Unidade III: Camada de Enlace

Prof. Max do Val Machado

Instituto de Ciências Exatas e Informática Departamento de Ciência da Computação Disciplina Redes de Computadores I

Agenda

- Introdução
- Orientação à Conexão e Existência de Confirmação
- Enquadramento
- · Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Agenda

- Introdução
- · Orientação à Conexão e Existência de Confirmação
- Enquadramento
- · Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Conceitos Básicos

Nós: os hospedeiros e os roteadores

 Enlaces: os canais de comunicação que se conectam a nós adjacentes pelo caminho de comunicação (por exemplo, os enlaces com fio, os sem e as LANs

Tipos de Enlaces

 Full-duplex: podem ser usados nos dois sentidos ao mesmo tempo, como uma estrada de mão dupla

 Half-duplex: usados em qualquer sentido, mas apenas um deles de cada vez, como uma linha férrea de trilho único

· Simplex: permitem o tráfego em apenas uma direção, como uma rua de mão única

Na camada de enlace, a mensagem é chamada de quadro e encapsula o pacote

Relação entre as Camadas de Física e de Enlace

· A física fornece um fluxo de bits bruto para a de enlace

 Se o canal tiver ruído, a física pode inserir alguma redundância para reduzir a taxa de erro para um nível tolerável

· A enlace transforma o fluxo de bits bruto em quadros

· A enlace pode detectar e, eventualmente, corrigir erros

Motivação

 Dado duas máquinas conectadas diretamente através de um canal de comunicação, podemos ter algumas limitações:

- Os canais podem produzir erros
- A taxa de dados é finita

O atraso de propagação é diferente de zero

Questões de Projeto da Camada de Enlace

· Fornecer uma interface de serviços bem definida para a camada de rede

- · Tarefas da camada de enlace
 - Enquadramento
 - Controle de erros: detecção ou correção
 - Controle de fluxo, permitindo que receptores mais lentos não sejam atropelados por transmissões rápidas

Principal Serviço da Camada de Enlace

 Transferência de dados da camada de rede de uma máquina origem para a mesma camada de uma máquina de destino

Agenda

- Introdução
- · Orientação à Conexão e Existência de Confirmação
- Enquadramento
- Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Serviços Oferecidos à Camada de Rede

· Classificados quando a:

· Orientação à conexão

Existência de confirmação

Orientação à Conexão

 A origem pode enviar quadros de forma numerada, garantindo a entrega e a ordem de entrega de cada um deles

 Apropriada para canais longos ou não confiáveis (e.g., satélite ou circuitos telefônicos interurbano)

- Três fases:
 - estabelecimento da conexão
 - transmissão de um ou mais quadros
 - término da conexão

Confirmação quadro a quadro

• É um *overhead* em canais confiáveis (e.g., fibra óptica) e interessante em não confiáveis (e.g., canais sem fio)

Relacionada à questão de otimização (nunca uma exigência)

 As camadas de rede ou transporte podem efetuar a confirmação, contudo, um pacote pode ser dividido em vários quadros

 Por exemplo, se um pacote é dividido em 10 quadros e 20% dos quadros são perdidos, o tempo para reenviar o pacote é maior que o de dois quadros

 Conhecendo o tamanho dos quadros e parâmetros de atraso, a confirmação pode evitar a transmissão de dados já comprometidos

Serviços Oferecidos à Camada de Rede

· Serviço sem conexão nem confirmação

· Serviço sem conexão com confirmação

Serviço com conexão e confirmação

Serviço com conexão e sem confirmação (não)

Serviço <u>sem</u> Conexão <u>nem</u> Confirmação

• Conexão não é estabelecida à priori

• Origem envia quadros independentes para o destino que não os confirma

Quadros perdidos s\u00e3o ignorados

Serviço **sem** Conexão **nem** Confirmação

- Classe de serviço apropriada quando:
 - taxa de erros é "baixa"
 - alguma camada superior faz o processo de recuperação de erros
 - dados atrasados são piores que falhas (e.g., sistemas de tempo real (voz))

Serviço normalmente usado em LANs

Serviço **sem** Conexão **com** Confirmação

- · Conexão não é estabelecida a priori
- Destino confirma os quadros recebidos
- · Origem usa mecanismo de temporização para reenviar quadros não confirmados
- Uma confirmação perdida pode acarretar diversas retransmissões de um quadro e, consequentemente, faça com que ele seja recebido várias vezes
- · Serviço apropriado para canais não são confiáveis (e.g., comunicação sem fio)

Serviço **com** Conexão **e** Confirmação

- Serviço mais sofisticado
- · Origem e destino estabelecem uma conexão antes da transmissão de dados
- Quadros recebidos corretamente
- · Camada de enlace pode entregar os quadros em ordem para a de rede

Agenda

- Introdução
- Orientação à Conexão e Existência de Confirmação
- Enquadramento
- · Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Enquadramento

- É a divisão do fluxo de bits em quadros
 - · Quando um nó envia um quadro, ele calcula e insere seu checksum no quadro
 - Quando um nó recebe um quadro, ele verifica o checksum desse quadro

 Permite que o receptor identifique o início de novos quadros consumindo pouco overhead

Técnicas para Enquadramento

- Contagem de bytes
- Byte stuffing
- Bit stuffing
- Violação de código da camada física

Contagem de Bytes

· Cada quadro terá um campo indicando seu número de bytes

Contagem de Bytes

- Desvantagem: fortemente sensível a erros
 - No exemplo, um erro no contador do segundo quadro (se tornou 7), faz com que o receptor não identifique o início dos demais quadros

Byte Stuffing

Contorna o problema de ressincronização dos quadros (no caso de erros),
 inserindo bytes de flag para delimitar o início e fim dos quadros

FLAG Cabeçalho	Campo de carga útil	Final	FLAG
----------------	---------------------	-------	------

Quadro limitado com bytes de flag

Byte Stuffing

· Quatro exemplos de sequências de bytes antes e depois do byte stuffing

Byte Stuffing

Desvantagens:

 overhead com a inserção de bytes que pode ser minimizado inserindo caracteres menos frequentes

 depende da utilização de caracteres de 8 bits sendo que existem sistemas diferentes (e.g., o UNICODE emprega caracteres de 16 bits)

Exercício (1)

- · Sabendo o caractere de flag é o @ e o de escape, #, quais serão as mensagens resultantes da aplicação do *byte stuffing* em:
 - a) ABC
 - b) A@C
 - c) @@A@@
 - d) @##A
 - e) @DC##

Bit Stuffing

· Minimiza o overhead do byte stuffing, permitindo flags com número arbitrário de bits

Cada quadro começa e termina com o padrão 0111 1110 (0x7E)

 Quando o emissor identifica cinco bits com 1, ele insere um bit com 0 e o receptor efetua o processo contrário

· O comprimento do quadro depende de sua carga útil

Exemplo da Técnica de Bit Stuffing

Dados com

bit stuffing

Dados

armazenados

pelo receptor

0110<u>11111111111111</u>10010

Violação de Código da Camada Física

 Uma das técnicas da camada física é a inserção de redundância, fazendo com que alguns sinais não ocorram em dados regulares

 Esses sinais podem ser explorados para início e fim de quadro pela camada de enlace

Usado no padrão IEEE 802.11

Observações sobre as Técnicas de Enquadramento

· Protocolos de enlace, por segurança, podem usar uma ou mais técnicas

O IEEE 802.11 e o Ethernet fazem com que cada quadro tenha um preâmbulo e seja seguido por um campo de comprimento

Agenda

- Introdução
- Orientação à Conexão e Existência de Confirmação
- Enquadramento
- Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Controle de Fluxo

- O que fazer quando um transmissor é mais rápido que o receptor?
- · Protocolos de enlace normalmente consideram técnicas baseadas em:
 - Feedback: o receptor envia feedbacks sobre sua capacidade de processamento de quadros
 - Velocidade: o protocolo tem um mecanismo interno que limita a velocidade de transmissão sem usar feedback

Agenda

- Introdução
- Orientação à Conexão e Existência de Confirmação
- Enquadramento
- · Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Controle de Erros

 Como garantir que os quadros serão entregues na camada de rede do destino e na ordem/forma correta?

Uma solução é não garantir

Outra é dar um feedback ao emissor

Feedback

• Enviado pelo receptor, pode ser uma confirmação positiva ou negativa

 Positivo: quando o receptor recebe um quadro, ele envia um ACK. Se o emissor não receber o ACK após um tempo, ele retransmite o quadro

Negativo: quando um nó recebe o quadro n sendo que ele não recebeu o (n-1),
 o receptor envia um NACK (n)

Recuperação de Erros com ACK

Recuperação de Erros com NACK

Algumas Considerações

Não existe mundo perfeito

· Os erros normalmente acontecem em rajadas o que minimiza a quantidade de blocos com erro, contudo, dificulta a detecção ou a correção dos erros

A correção de erros é chamada de Correção Adiantada de Erros ou Forward Error
 Correction (FEC)

Inserção de Redundância nos Quadros

· Permite que o receptor seja capaz de detectar ou corrigir erros

· A correção normalmente demanda mais redundância que a de detecção

- Cada quadro é composto por $\mathbf{n} = \mathbf{m} + \mathbf{r}$ bits, onde temos \mathbf{m} bits de dados e \mathbf{r} bits de redundância sendo \mathbf{r} calculado a partir de \mathbf{m}
 - Taxa de código: fração da palavra que representa os dados não redundantes

Estratégias para Inserção de Redundância

Estratégia sistemática: os próprios m bits de dados são enviados

 Estratégia linear: os r bits de redundância são calculados como uma função (popularmente, a operação XOR) dos m de dados

Operação XOR

р	q	$p \oplus q$
F	F	F
F	v	v
V	F	v
V	V	F

Dependência do Meio

- Códigos de detecção de erros:
 - Usados em canais altamente confiáveis, como as fibras
 - Bloco defeituoso é retransmitido

- Códigos de correção de erros:
 - Usados em canais como enlaces sem fio que geram muitos erros

Algumas Técnicas para Detecção de Erros

Verificação de paridade

Checksum

· Verificação de redundância cíclica (CRC, Cyclic Redundancy Check)

Verificação de Paridade

Insere um bit de paridade no quadro para garantir que o número total 1s seja par.
 No exemplo, o valor desse bit é 1, pois os dados têm um número ímpar de 1s

Esquemas de Paridade

• Esquema de paridade par: quando o número total 1s é par

Esquema de paridade ímpar: quando o número total 1s é ímpar

Verificação Bidimensional de Paridade

• Enxerga o fluxo de bits como uma matriz e verifica a paridade de cada linha / coluna, aumentando o *overhead* e qualidade da verificação, e permitindo a correção de 1 bit

Verificação em Colunas de Paridade

 Solução intermediária entre as duas anteriores e que é robusta para identificar rajadas de erros (situação comum na transmissão de bits)

Checksum

 Termo normalmente usado para indicar um grupo de bits de verificação associados a uma mensagem, independente de como são calculados

Na literatura, observa-se diversas variações dessa técnica

Utilizado no protocolo IP (camada de rede)

Cyclic Redundancy Check (CRC)

Tipo mais forte de detecção de erros

Tem uso generalizado na camada de enlace

 Efetua a divisão de polinômios e faz com que o resto da divisão seja usado na detecção de erros

Representação usando Polinômio

• Considera que os m bits de dados são os coeficientes de um polinômio com m termos, variando desde x^{m-1} até x^0 (grau m-1)

• Exemplo: $\frac{110001}{543210}$ representa o polinômio $x^5 + x^4 + x^0$

Polinômio Gerador - G(x)

· Definido antecipadamente por emissor e receptor

Seus bits de maior e menor ordem sempre serão um (por definição)

Polinômios Geradores Comuns

CRC	G(x)
CRC-8	$x^8 + x^2 + x + 1$
CRC-10	$x^{10} + x^9 + x^5 + x^4 + x + 1$
CRC-12	$x^{12} + x^{11} + x^3 + x^2 + 1$
CRC-16	$x^{16} + x^{15} + x^2 + 1$
CRC-CCITT	$x^{16} + x^{12} + x^5 + 1$
CRC-32	$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Fonte: PETERSON; DAVIE, 2004, p.70

Polinômios Geradores Comuns

Redes Ethernet utilizam CRC-32

· Redes Asynchronous Transfer Mode (ATM) utilizam CRC-8, CRC-10 e CRC-32

Exercício (2)

Mostre a sequência de bits dos polinômios geradores abaixo:

a) CRC-8:
$$x^8 + x^2 + x + 1$$

b) CRC-10:
$$x^{10} + x^9 + x^5 + x^4 + x + 1$$

Ideia Básica do CRC

 O emissor adiciona um conjunto de bits de controle no final do quadro de forma que o quadro (agora, dados + bits de controle) é divisível pelo polinômio gerador G(x)

 O receptor efetua a divisão do polinômio representado pelos bits do quadro pelo polinômio gerador G(x) e se o resto dessa divisão for zero, temos sucesso, ou seja, não detecção de erros

Polinômio Dividendo - D(x)

Polinômio Dividendo - D(x)

Produto da multiplicação do polinômio de dados da mensagem M(x) por x^R onde R
 representa o maior grau do polinômio gerador (seu número de bits menos um)

• Por exemplo, se M(x) = $10011010 = x^7 + x^4 + x^3 + x = G(x) = 1101 = x^3 + x^2 + 1$, e R = 3 e o polinômio dividendo D(x) = $(x^7 + x^4 + x^3 + x) * (x^3) = (x^{10} + x^7 + x^6 + x^4) = 10011010000$

• Ou seja, o polinômio dividendo D(x) = M(x) mais R zeros inseridos à direita

Aritmética Polinomial

 É feita em módulo 2 segundo as regras da teoria algébrica, logo, não há transportes para adição nem empréstimos para subtração

Nesse caso, tanto a adição como a subtração são como o XOR

A divisão será realizada através de várias subtrações

Polinômio a ser Transmitido T(x)

 \cdot T(x) = D(x) **or** resto da divisão de D(x) por G(x)

• Seja M(x) = 10011010 e G(x) = 1101, calcule T(x)

• 1º passo: calcular o polinômio dividendo D(x)

• 2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

Exemplo

• Seja M(x) = 10011010 e G(x) = 1101, calcule T(x)

• 1º passo: calcular o polinômio dividendo D(x)

$$D(x) = 10011010000$$

2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

Exemplo

• Seja M(x) = 10011010 e G(x) = 1101, calcule T(x)

1º passo: calcular o polinômio dividendo D(x)

$$D(x) = 10011010000$$

• 2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

Exemplo: Divisão de D(x) por G(x)

10011010000 1101

Exemplo: Divisão de D(x) por G(x)

```
10011010000 1101
xor 1101 1
```

```
10011010000 1101
xor 1101 1
1001
```

```
10011010000 1101

xor 1101 11

1001

xor 1101

100
```

```
10011010000 1101

xor 1101 11

1001

xor 1101

1000
```

```
10011010000 1101

xor 1101 111

1001

xor 1101

1000

xor 1101

101
```

```
10011010000 1101

xor 1101 111

1001

xor 1101

1000

xor 1101

1011
```

```
10011010000 1101

xor 1101 1111

1001

xor 1101

1000

xor 1101

1011

xor 1101

110
```

```
10011010000 1101

xor 1101 1111

1001

xor 1101

1000

xor 1101

1011

xor 1101

1100
```

```
10011010000
                   1101
xor 1101
                 11111
    1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
        1100
    xor 1101
         001
```

```
10011010000
                    1101
                 111110
xor 1101
    1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
        1100
    xor 1101
         0010
```

```
10011010000
                     1101
                 1111100
xor 1101
    1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
        1100
    xor 1101
         00100
```

```
10011010000
                      1101
                   11111000
<u>xor 1101</u>
     1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
         1100
     xor 1101
          001000
```

```
10011010000
                     1101
                 111110001
xor 1101
    1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
        1100
    xor 1101
         001000
        xor 1101
             101
```

```
10011010000
                     1101
                  111110001
xor 1101
    1001
 xor 1101
      1000
  xor 1101
       1011
   xor 1101
        1100
    xor 1101
         001000
        xor 1101
             101
                        resto
```

Exemplo

• Seja M(x) = 10011010 e G(x) = 1101, calcule T(x)

1º passo: calcular o polinômio dividendo D(x)

$$D(x) = 10011010000$$

2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)
 resto = 101

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

• Seja
$$M(x) = 10011010 e G(x) = 1101$$
, calcule $T(x)$

1º passo: calcular o polinômio dividendo D(x)

$$D(x) = 10011010000$$

2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)
 resto = 101

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

$$T(x) = 10011010101$$

Ideia Básica do CRC

 O emissor adiciona um conjunto de bits de controle no final do quadro de forma que o quadro (agora, dados + bits de controle) é divisível pelo polinômio gerador G(x)

 O receptor efetua a divisão do polinômio representado pelos bits do quadro pelo polinômio gerador G(x) e se o resto dessa divisão for zero, temos sucesso, ou seja, não detecção de errros

Exemplo na Recepção

• Como T(x) = 10011010101 e G(x) = 1101, temos:

Exemplo na Recepção

• Seja M(x) = 111100101 e G(x) = 101101, calcule T(x)

1º passo: calcular o polinômio dividendo D(x)

• 2º passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)

3º passo: D(x) or com o resto da divisão de D(x) por G(x)

Exercício (4)

Seja R(x) = 11110010101010 um quadro recebido e o polinômio gerador G(x) =
 101101, informe se conseguimos identificar algum erro usando CRC

Exercício (5)

• Seja M(x) = 1101011011 e G(x) = 10011, calcule T(x)

1o passo: calcular o polinômio dividendo D(x)

• 2o passo: encontrar o resto da divisão de D(x) pelo polinômio gerador G(x)

3o passo: D(x) or com o resto da divisão de D(x) por G(x)

Exercício (6)

Qual é o resto obtido pela divisão módulo 2 de x⁷+x⁵+1 pelo polinômio gerador
 x³+1?

Exercício (7)

• Um fluxo de bits 10011101 é transmitido com a utilização do método de CRC padrão descrito no texto. O polinômio gerador é x³+1. Mostre o string de bit real transmitido. Suponha que o terceiro bit a partir da esquerda seja invertido durante a transmissão. Mostre que esse erro é detectado na extremidade receptora.

Algumas Técnicas para Correção de Erros

- Código de Hamming
- Código Convolucional Binário
- Outros

(1) Recodificamos a mensagem de tal forma que os bits potência de dois (1, 2, 4, 8, 16, ...) serão bits de verificação

Nesse caso, observamos que os bits de verificação são: b1, b2, b4 e b8

(2) Na nova mensagem (ainda incompleta), selecionamos os bits com 1 e efetuamos um XOR entre os valores de suas respectivas posições

```
b2 b3 b4 b5 b6 b7 b8 b9
Como os bits com valor um são b3, b6 e b9:
                       Binário
           Pos.
           XOR
```


(3) Completamos a mensagem a ser enviada com os valores do XOR na ordem inversa

Mensagem a ser enviada:
0 0 1 1 0 1 1

(4) No recebimento da mensagem, efetuamos um XOR com as posições cujo valor seja igual a 1

(5) Se a resposta do XOR for zero, o código de Hamming não detectou qualquer erro

Mensagem recebida:

XOR

0 0 0 0

(6) Se a resposta do XOR for diferente de zero, o código de Hamming detectou um erro no bit indicado pelo XOR

```
Mensagem recebida com erro na posição:
               b2
                   b3 b4 b5 b6 b7 b8
                           Binário
                   Pos.
                           1 0 0 0
                           1 0 0 1
                   XOR
```

Exercício (8)

Mostre que a figura abaixo está correta

Exercício (9)

· Um usuário deseja enviar uma mensagem contendo a letra 'G', como ficarão os

bits dessa mensagem aplicando o Código de Hamming

Código Convolucional Binário

 Utilizado pela NASA, ele converte cada bit de entrada em dois de saída, conforme a figura abaixo

· Para cada bit de entrada, suas saídas dependem dos últimos seis bits

 Para decodificação, utilizamos algoritmos probabilísticos que encontram a sequência de bits que tem a maior probabilidade de ser a original

Código Convolucional Binário

 Para os primeiros bits, considera-se que os anteriores eram 000000, assim, por exemplo, se a entrada for 111, a saída será 111001

- •Saída 1: b1 ⊕ b3 ⊕ b4 ⊕ b6 ⊕ b7
- •Saída 2: b1 ⊕ b2 ⊕ b3 ⊕ b4 ⊕b7

Exercício (10)

· Quais são as funções da camada de enlace. Explique cada uma delas.

Agenda

- Introdução
- Orientação à Conexão e Existência de Confirmação
- Enquadramento
- Controle de Fluxo
- · Controle de Erro
- Camada de Enlace da Internet

Camada de Enlace da Internet

· A Internet consiste em hosts e roteadores conectados através de uma

infraestrutura de comunicação

 Boa parte dessa infraestrutura são linhas dedicadas ponto a ponto

Point-to-Point Protocol (PPP)

- · Protocolo de enlace usado nas comunicações ponto-a-ponto da Internet
- Definido na RFC 1661 e atualizado nas RFCs 1662 e 1663
- Detecta erros
- Aceita vários protocolos
- · Permite que endereços IP sejam negociados em tempo de conexão
- · Permite a autenticação

Recursos do PPP

- Método de enquadramento não ambíguo
- Protocolo de Controle de Enlace (LCP, Link Control Protocol) para ativar linhas, testá-las, negociar opções e desativá-las
- Protocolo de Controle de Rede (NCP, Network Control Protocol) para negociar as opções da camada de rede independente do protocolo de rede usado

Exemplo de uma conexão PPP

- Computador A chama o roteador de um provedor através de um modem
- · Conexão física é estabelecida
- · Quadros LCP são trocados e os parâmetros PPP são selecionados
- Quadros NCP são trocados e os parâmetros de rede são selecionados (e.g., número IP é assinalado a A)
- Conexão definida e A é visto como um computador estático da rede
- Finalização: NCP termina conexão de rede, liberando o número IP
- LCP termina conexão de enlace
- Conexão física é terminada

Exercício (11)

· Explique o funcionamento das técnicas de enquadramento Contagem de bytes,

byte stuffing e bit stuffing.

Exercício (12)

 Explique o funcionamento da técnica de correção de erro denominada matriz de paridade

Exercício (13)

Explique a recuperação de erros com ACK e NACK