

Algoritmos para o Freeze-Tag e Problemas de Robótica de Enxame Relacionados^a

Aluno: Lucas de Oliveira Silva

Orientador: Lehilton Lelis Chaves Pedrosa

Instituto de Computação, Unicamp

10 de Março de 2025

 $[^]a$ Financiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) processo #2022/13435-4

Sumário

Problemas Estudados Freeze-Tag Problem Angular Freeze-Tag Problem Minimum Scan Cover

Publicações Resultantes

Trabalhos Futuros

Freeze-Tag Problem

Contexto

Motivação

• Modela problemas de transmissão de dados e design de redes;

Motivação

- Modela problemas de transmissão de dados e design de redes;
- Soluções são árvores binárias geradoras de altura mínima;

Motivação

- Modela problemas de transmissão de dados e design de redes;
- Soluções são árvores binárias geradoras de altura mínima;
- Ligado às árvores de multicast (estruturas de comunicação da camada de aplicação).

Definição - Instância

• Conjunto de n robôs R;

Definição - Instância

- Conjunto de *n* robôs *R*;
- Robô inicial $r_0 \in R$ (fonte);

Definição - Instância

- Conjunto de *n* robôs *R*;
- Robô inicial $r_0 \in R$ (fonte);
- Função de distância dist: $R \times R \to {\rm I\!R}^+$.

O conjunto de movimentos (schedule ou árvore de ativação):

• Árvore binária $\mathcal T$ enraizada em r_0 que visita todos os robôs;

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

- Árvore binária \mathcal{T} enraizada em r_0 que visita todos os robôs;
- Minimizamos o *makespan*, isto é, o tempo total de ativação.

Freeze-Tag Problem

Resultados Teóricos: Anteriores e Novos

Conjectura Inicial

Conjectura (Arkin et al. [ABF+06])

O FTP é NP-difícil para as distâncias Euclidiana (L_2) ou de Manhattan (L_1) no plano \mathbb{R}^2 .

Conjectura Inicial

Conjectura (Arkin et al. [ABF+06])

O FTP é NP-difícil para as distâncias Euclidiana (L_2) ou de Manhattan (L_1) no plano \mathbb{R}^2 .

Problema 35 do The Open Problems Project [ODM01].

Resultados Anteriores

Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias L_p em qualquer espaço de dimensão fixa ${\rm I\!R}^{\rm d}$, com tempo de execução $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$.

Resultados Anteriores

Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias L_p em qualquer espaço de dimensão fixa ${\rm I\!R}^{\rm d}$, com tempo de execução $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$.

Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L_2 no plano.

Resultados Anteriores

Teorema (Arkin et al. [ABF+02])

Existe um EPTAS para o FTP com distâncias L_p em qualquer espaço de dimensão fixa ${\rm I\!R}^{\rm d}$, com tempo de execução $O(n\log n) + 2^{O((1/\varepsilon)^2\log 1/\varepsilon)}$.

Teorema (Abel et al. [AAY17])

O FTP é NP-difícil para distância L₂ no plano.

Teorema (Demaine e Rudoy [DR17])

O FTP é NP-difícil para distâncias L_p , onde p > 1, em 3D.

Nossos Resultados

Teorema (Pedrosa e Silva [PdOS23b])

O FTP é fortemente NP-difícil para distância L_1 em 3D.

Nossos Resultados

Teorema (Pedrosa e Silva [PdOS23b])

O FTP é fortemente NP-difícil para distância L_1 em 3D.

Corolário (Pedrosa e Silva [PdOS23b])

O FTP é NP-difícil em grades 3D sem pesos nas arestas.

Resultado Anterior

Teorema (Arkin et al. [ABF+02])

O FTP é fortemente NP-difícil em estrelas com pesos nas arestas.

Nossos Resultados

Corolário (Pedrosa e Silva [PdOS23a])

O FTP é NP-difícil em árvores binárias enraizadas, sem pesos nas arestas, com a fonte na raiz e robôs desativados apenas nas folhas.

Nossos Resultados

Corolário (Pedrosa e Silva [PdOS23a])

O FTP é NP-difícil em árvores binárias enraizadas, sem pesos nas arestas, com a fonte na raiz e robôs desativados apenas nas folhas.

Corolário (Pedrosa e Silva [PdOS23a])

O FTP é fortemente NP-difícil em árvores ternárias enraizadas, com pesos nas arestas, a fonte na raiz e um robô desativado em cada outro nó.

Resultado Anterior

Teorema (Arkin et al. [ABF+02])

É NP-difícil aproximar o FTP em grafos com pesos nas arestas dentro de um fator menor que 5/3, mesmo se o grafo tiver grau máximo 4 e possuir exatamente um robô em cada nó.

Nosso Resultado

Teorema

É NP-difícil aproximar o FTP em grafos sem pesos nas arestas dentro de um fator de até $^{3}/_{2}$, mesmo se o grafo tiver diâmetro 2 e possuir ao menos um robô em cada nó.

Freeze-Tag Problem

Resultados Experimentais

 Experimentos foram realizados devido à ausência de implementações exatas;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;
- Uma formulação CP implementada usando o CP-SAT do Google OR-Tools;

- Experimentos foram realizados devido à ausência de implementações exatas;
- Duas formulações MIP implementadas usando Gurobi;
- Uma formulação CP implementada usando o CP-SAT do Google OR-Tools;
- Avaliação feita com instâncias usando a distância L_2 em \mathbb{R}^2 .

Tornando um PTAS mais Prático

Implementamos o EPTAS de Arkin et al. [ABF⁺06], substituindo a enumeração lenta do algoritmo por nossa formulação CP.

Angular Freeze-Tag Problem

Contexto

O **Angular Freeze-Tag Problem** (AFTP) surge como um problema de **broadcast** entre satélites em 2018 [FK18]:

• Recursos limitados restringem o movimento dos satélites;

- Recursos limitados restringem o movimento dos satélites;
- Grandes distâncias impossibilitam um broadcast simultâneo;

- Recursos limitados restringem o movimento dos satélites;
- Grandes distâncias impossibilitam um broadcast simultâneo;
- O crescimento das constelações de satélites.

ullet Conjunto $P=\{p_1,\ldots,p_n\}\subseteq {\rm I\!R}^{
m d}$ de posições distintas;

- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ de posições distintas;
- Cada p_i corresponde a um satélite associado a α_i ;

- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ de posições distintas;
- Cada p_i corresponde a um satélite associado a α_i ;
- Inicialmente, apenas p_1 contém um dado a ser propagado.

Angular Freeze-Tag Problem

Resultados Anteriores e Novos

Resultados Anteriores

Teorema (Fekete e Krupke [FK18])

É NP-difícil aproximar o AFTP em 2D dentro de um fator menor que $^{5}/_{3}$.

Resultados Anteriores

Teorema (Fekete e Krupke [FK18])

É NP-difícil aproximar o AFTP em 2D dentro de um fator menor que $^{5}/_{3}$.

Teorema (Fekete e Krupke [FK18])

Existe uma 9-aproximação para o AFTP em 2D, assumindo um limite inferior de $\varepsilon > 0$ para a rotação inicial de qualquer satélite que rotacione sua antena.

Nossos Resultados

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

Nossos Resultados

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

Teorema

Seja I uma instância do AFTP em 2D, **F** um número real e **k** um inteiro positivo. Então, existe um algoritmo que roda em tempo $(n\frac{Fk}{\varepsilon})^{O(\frac{Fk}{\varepsilon})}$ e ou prova que toda solução ótima requer mais de F de energia total, ou encontra uma solução com makespan no máximo (1+1/k)OPT(I).

Nossos Resultados

Chamamos de **energia total** de uma solução a soma da rotação total realizada por todos os satélites.

Teorema

Seja I uma instância do AFTP em 2D, **F** um número real e **k** um inteiro positivo. Então, existe um algoritmo que roda em tempo $(n\frac{Fk}{\varepsilon})^{O(\frac{Fk}{\varepsilon})}$ e ou prova que toda solução ótima requer mais de F de energia total, ou encontra uma solução com makespan no máximo (1+1/k)OPT(I).

Teorema

Para todo inteiro positivo k, existe uma (1+1/k)-aproximação para o AFTP em 2D com o objetivo de minimizar a energia total, que roda em tempo $(n\frac{k}{\varepsilon})^{O(\frac{k}{\varepsilon})}$.

Minimum Scan Cover

Contexto

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:

O **Minimum Scan Cover** (MSC) foi introduzido em 2021 [FKK21] como um problema de comunicação ponto a ponto entre satélites:

 $\stackrel{\mathsf{o}}{p_4}$

 É possível usar tanto transmissão direcional quanto recepção omnidirecional;

- É possível usar tanto transmissão direcional quanto recepção omnidirecional;
- Mas exige duas antenas, aumentando custo e complexidade.

• Conjunto $P=\{p_1,\ldots,p_n\}\subseteq {\rm I\!R}^{
m d}$ de posições distintas;

- Conjunto $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^d$ de posições distintas;
- Grafo G = (P, E) onde $E \subseteq P \times P$.

Escalonamento $\mathcal{S} \colon E \to \mathbb{R}^+$ onde queremos minimizar $\max_{e \in E} \mathcal{S}(e)$:

Definição - Solução

Escalonamento $\mathcal{S} \colon E \to \mathbb{R}^+$ onde queremos minimizar $\max_{e \in E} \mathcal{S}(e)$:

Definição - Solução

Escalonamento $\mathcal{S} \colon E \to \mathrm{I\!R}^+$ onde queremos minimizar $\max_{e \in E} \mathcal{S}(e)$:

Definição - Solução

Escalonamento $\mathcal{S} \colon E \to \mathrm{I\!R}^+$ onde queremos minimizar $\max_{e \in E} \mathcal{S}(e)$:

Minimum Scan Cover

Resultados Anteriores e Novos para 1D

Resultado Anterior

Teorema (Fekete et al. [FKK21])

Mesmo em 1D, para todo $\gamma \geq 1$, uma γ -aproximação para o MSC implica que P = NP.

Nossos Resultados

Teorema

Existe um algoritmo \mathcal{FPT} para o MSC em 1D, parametrizado pela largura de árvore k, que roda em tempo $k^{O(k)} \cdot n$.

Nossos Resultados

Teorema

Existe um algoritmo \mathcal{FPT} para o MSC em 1D, parametrizado pela largura de árvore k, que roda em tempo $k^{O(k)} \cdot n$.

Corolário

Existe uma 3-aproximação para o MSC em 1D em grafos planares, que roda em tempo $O(n^2)$.

Minimum Scan Cover

Resultados Anteriores e Novos para 2D

Resultados Anteriores

Teorema (Fekete et al. [FKK21])

Mesmo em 2D, para todo $\gamma < 3/2$, uma γ -aproximação para o MSC em grafos bipartidos implica que P = NP.

Resultados Anteriores

Teorema (Fekete et al. [FKK21])

Mesmo em 2D, para todo $\gamma < 3/2$, uma γ -aproximação para o MSC em grafos bipartidos implica que P = NP.

Teorema (Fekete et al. [FKK21])

Existe uma $\frac{9}{2}$ -aproximação para o MSC em 2D em grafos bipartidos.

Preliminares

Uma instância usando $\ell=8$ direções:

Nossos Resultados

Teorema

Existe um algoritmo \mathcal{FPT} para MSC em 2D, parametrizado pela largura de árvore k e ℓ , que roda em tempo $k^{O(k\ell\log(\ell))} \cdot n$.

Nossos Resultados

Teorema

Existe um algoritmo \mathcal{FPT} para MSC em 2D, parametrizado pela largura de árvore k e ℓ , que roda em tempo $k^{O(k\ell\log(\ell))} \cdot n$.

Corolário

Existe uma 3-aproximação para MSC em 2D em grafos planares parametrizada por ℓ , que roda em tempo $\ell^{O(\ell)} \cdot n + O(n^2)$.

Preliminares

Uma instância de ângulo mínimo não nulo λ :

Nosso Resultado

Teorema

Existe uma 2-aproximação para o MSC em 2D parametrizada pela largura de árvore k e $\lceil 1/\lambda \rceil$, que roda em tempo $\lambda^{-O(k^2 + \frac{k \log k}{\lambda})} \cdot (\log k)^{O(k^2)} \cdot n$.

Esboço da Prova

• Seja $\mathcal{I}=(P,G)$ uma instância de ângulo mínimo não nulo $\lambda;$

Esboço da Prova

- Seja $\mathcal{I} = (P, G)$ uma instância de ângulo mínimo não nulo λ ;
- Recebemos uma decomposição em árvore de G com largura k;

Esboço da Prova

- Seja $\mathcal{I} = (P, G)$ uma instância de ângulo mínimo não nulo λ ;
- Recebemos uma decomposição em árvore de G com largura k;
- *WLOG*, considere que $\lambda < \pi$.

• Seja $M:=\lfloor \pi/\lambda \rfloor \geq 1$;

- Seja $M := |\pi/\lambda| \ge 1$;
- O disco ao redor de cada $p_i \in P$ é dividido em 4M setores:

- Seja $M := |\pi/\lambda| \ge 1$;
- O disco ao redor de cada $p_i \in P$ é dividido em 4M setores:

- Seja $M := \lfloor \pi/\lambda \rfloor \geq 1$;
- O disco ao redor de cada $p_i \in P$ é dividido em 4M setores:

Consideramos uma relaxação $\hat{\mathcal{I}} := \mathcal{I}$ dependendo de θ :

Consideramos uma relaxação $\hat{\mathcal{I}}:=\mathcal{I}$ dependendo de θ :

Observação

Cada solução ótima de custo N θ corresponde a uma função $\hat{h}\colon P\to \{0,\dots,4M-1\}^{N+1}.$

Lema

Seja t^* o ótimo de \mathcal{I} . Então, $t^* \leq 3\pi \lceil \log_2(k+1) \rceil$.

Pelo 1° Lema, existe uma solução de $\hat{\mathcal{I}}$ com custo $N\theta$, onde:

$$N \leq 6 |\pi/\lambda| \lceil \log_2(k+1) \rceil$$

Particionamos o intervalo de tempo $[0, (N+1)\theta)$:

Particionamos o intervalo de tempo $[0, (N+1)\theta)$:

Lema

Existe uma solução de custo no máximo $\lfloor t^*/\theta \rfloor \theta$ para $\hat{\mathcal{I}}$, que mapeia arestas para pontos em $\{i \cdot \theta \mid i \in [N]\}$.

Com programação dinâmica sobre a decomposição em árvore, calculamos uma solução ótima para $\hat{\mathcal{I}}$ em tempo:

$$\lambda^{-O(k^2 + \frac{k \log k}{\lambda})} \cdot (\log k)^{O(k^2)} \cdot n$$

Seja $\hat{\mathcal{S}}^*$ uma solução ótima para $\hat{\mathcal{I}}$:

Observação

• Se o ângulo entre **e** e **f** não é zero, então é ao menos $\lambda > \theta$;

Observação

- Se o ângulo entre **e** e **f** não é zero, então é ao menos $\lambda > \theta$;
- Logo, $|\hat{S}^*(\mathbf{e}) \hat{S}^*(\mathbf{f})| > \theta$, e não pertencem ao mesmo E^i .

Construímos uma solução $\mathcal S$ para $\mathcal I$ a partir de $\hat{\mathcal S}^*$:

Arestas no mesmo $E^i \checkmark$

Sabemos que
$$|\hat{\mathcal{S}}^*(e) - \hat{\mathcal{S}}^*(f)| = |i - j| \cdot \theta \ge \phi$$

Logo, por definição,
$$|S(e) - S(f)| = 2|i - j| \cdot \theta \ge \phi + \theta$$

Arestas no mesmo $E^i \checkmark$

Arestas $\mathbf{e} \in E^i$ e $\mathbf{f} \in E^j$ onde $i \neq j$ \checkmark

Então, \mathcal{S} é válido.

Pelo $2^{\mathbf{Q}}$ Lema, o custo de ${\mathcal{S}}$ é no máximo $2\lfloor t^*/\theta \rfloor \theta \leq 2t^*$

Nosso Resultado

Corolário

Existe uma 5-aproximação para o MSC em 2D em grafos planares parametrizada por $\lceil 1/\lambda \rceil$, que roda em tempo $\lambda^{-O(1/\lambda)} \cdot n + O(n^2)$.

 O resumo estendido intitulado "Freeze-Tag Remains NP-hard on Binary and Ternary Trees" apresentado no VIII Encontro de Teoria da Computação (ETC 2023) [PdOS23a];

- O resumo estendido intitulado "Freeze-Tag Remains NP-hard on Binary and Ternary Trees" apresentado no VIII Encontro de Teoria da Computação (ETC 2023) [PdOS23a];
- O artigo "Freeze-Tag is NP-hard in 3D with L₁ distance" apresentado no XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023) [PdOS23b];

- O resumo estendido intitulado "Freeze-Tag Remains NP-hard on Binary and Ternary Trees" apresentado no VIII Encontro de Teoria da Computação (ETC 2023) [PdOS23a];
- O artigo "Freeze-Tag is NP-hard in 3D with L₁ distance" apresentado no XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023) [PdOS23b];
- O resumo estendido intitulado "Chain Traveling Salesmen Problem" apresentado no 11th Latin American Workshop on Cliques in Graphs (LAWCG 2024);

- O resumo estendido intitulado "Freeze-Tag Remains NP-hard on Binary and Ternary Trees" apresentado no VIII Encontro de Teoria da Computação (ETC 2023) [PdOS23a];
- O artigo "Freeze-Tag is NP-hard in 3D with L₁ distance" apresentado no XII Latin-American Algorithms, Graphs and Optimization Symposium (LAGOS 2023) [PdOS23b];
- O resumo estendido intitulado "Chain Traveling Salesmen Problem" apresentado no 11th Latin American Workshop on Cliques in Graphs (LAWCG 2024);
- O artigo "Realizing Graphs with Cut Constraints" a ser apresentado no 14th International Conference on Algorithms and Complexity (CIAC 2025) [dOSCdP+25];

Trabalhos Futuros

Freeze-Tag Problem

ullet NP-dificuldade do FTP para a distância L_1 no plano;

Freeze-Tag Problem

- NP-dificuldade do FTP para a distância L_1 no plano;
- Aproximação de fator constante para métricas gerais ou árvores;

Freeze-Tag Problem

- NP-dificuldade do FTP para a distância L₁ no plano;
- Aproximação de fator constante para métricas gerais ou árvores;
 - ∘ O melhor fator conhecido é $O(\sqrt{\log n})$ [KLS05].

Angular Freeze-Tag Problem

 F e/ou k no expoente do tempo de execução das aproximações;

Angular Freeze-Tag Problem

- F e/ou k no expoente do tempo de execução das aproximações;
- Dificuldade do AFTP para minimização da energia total;

Angular Freeze-Tag Problem

- F e/ou k no expoente do tempo de execução das aproximações;
- Dificuldade do AFTP para minimização da energia total;
- Uma aproximação para 3D.

Minimum Scan Cover

ullet Eliminar a dependência de λ ou obter um \mathcal{FPT} exato;

Minimum Scan Cover

- Eliminar a dependência de λ ou obter um \mathcal{FPT} exato;
- Algum limite inferior/superior não trivial para 3D.

Obrigado a todos pela atenção...

Obrigado a todos pela atenção...

Fim.

Referências i

[AAY17]	Zachary Abel, Hugo A. Akitaya, and Jingjin Yu. Freeze tag awakening in 2D is NP-hard. In Abstracts from the 27th Fall Workshop on Computational Geometry, pages 105–107, 2017.
[ABF ⁺ 02]	Esther M. Arkin, Michael A. Bender, Sandor P. Fekete, Joseph S. B. Mitchell, and Martin Skutella. The Freeze-Tag Problem: How to Wake up a Swarm of Robots. In <i>Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)</i> , pages 568–577. Society for Industrial and Applied Mathematics, 2002.
[ABF ⁺ 06]	Esther M. Arkin, Michael A. Bender, Sandor P. Fekete, Joseph S. B. Mitchell, and Martin Skutella. The Freeze-Tag Problem: How to Wake Up a Swarm of Robots. <i>Algorithmica</i> , 46(2):193–221, 2006.
[dOSCdP ⁺ 25]	Lucas de Oliveira Silva, Vítor Gomes Chagas, Samuel Plaça de Paula, Greis Yvet Oropeza Quesquén, and Uéverton dos Santos Souza. Realizing graphs with cut constraints, 2025.
[DR17]	Erik D. Demaine and Mikhail Rudoy. Freeze tag is hard in 3D. In Abstracts from the 27th Fall Workshop on Computational Geometry, 2017.
[FK18]	Sándor P. Fekete and Dominik Krupke. Beam it up, Scotty: Angular freeze-tag with directional antennas. EuroCG 2018 Berlin, 2018.
[FKK21]	Sándor P. Fekete, Linda Kleist, and Dominik Krupke. Minimum scan cover with angular transition costs. SIAM Journal on Discrete Mathematics, 35(2):1337–1355, 2021.
[KLS05]	Jochen Könemann, Asaf Levin, and Amitabh Sinha. Approximating the degree-bounded minimum diameter spanning tree problem. Algorithmica, 41(2):117–129, February 2005.

Referências ii

[ODM01] Joseph O'Rourke, Erik D. Demaine, and Joseph S. B. Mitchell.

TOPP: Problem 35: Freeze-Tag: Optimal Strategies for Awakening a Swarm of Robots —

topp.openproblem.net.

 ${\tt https://topp.openproblem.net/p35,\ 2001}.$

[Accessed 04-12-2024].

[PdOS23a] Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva.

Freeze-Tag Remains NP-hard on Binary and Ternary Trees.

In *Anais do VIII Encontro de Teoria da Computação (ETC 2023)*. Sociedade Brasileira de Computação - SBC, August 2023.

[PdOS23b] Lehilton Lelis Chaves Pedrosa and Lucas de Oliveira Silva.

Freeze-Tag is NP-Hard in 3D with L_1 distance.

In Proceedings of the XII Latin-American Algorithms, Graphs and Optimization Symposium.

Elsevier BV, 2023.