Detachment (SPL) + tool & cover formulations

	Parameters	Values
m_{t}		1.5
n _t		1
K_{t}	m ^{3-2mt} /yr	2.0×10^{-5}
K _{SP}	m ^{-(2m+1)} /yr	4.0×10^{-5}
K_{SA}	$m^{-0.5}$	5.0×10^{-2}
K_{GA}	m ⁻¹	7.0×10^{-3}
$m^{1,2,3}$		0.5, -0.25, 0
n ^{1,2,3}		1, -0.5, 0
k_{w}	m ^{1-3b} /yr ^b	1
b		0.5

¹detachment-limited stream power model

from Gasparini et al. [2006]

General form:

 $I = K P^{d} f(Qs) (PA)^{m} S^{n}$

where:

f(Qs) = Qs/W (1-Qs/Qt)

²saltation-abrasion model

³generalised abrasion model

Detachment + tool & cover formulations

+ Gravel production function based on slope angle

General form:

 $I = K P^d f(Qs) (PA)^m S^n$ where: $f(Qs) = Qs/W (1-Qs_b/Qt)$ $Qs_b = Qs f(S)$