

Abschlussprüfung Sommer 2024

Fachinformatiker für Anwendungsentwicklung

Dokumentation zur betrieblichen Projektarbeit

Importprofil-Tool

Verwaltung von Profilen für den Datenimport von Schülerdaten

Abgabedatum: Berlin, den 05.06.2024

Prüfungsbewerber:

Marco Garagna
Wigandstaler Straße 37
13086 Berlin

Ausbildungsbetrieb:

ASCI GmbH

Alt-Friedrichsfelde 5A

10315 Berlin

Verwaltung von Profilen für den Datenimport von Schülerdaten

Inhaltsverzeichnis

Inhaltsverzeichnis

inital to 1012010111110	
Inhaltsverzeichnis	. i
AbbildungsverzeichnisI	Ш
Tabellenverzeichnisl'	V
Verzeichnis der Listings	V
Abkürzungsverzeichnis\	/
1 Einleitung	1
1.1 Projektumfeld	1
1.2 Projektziel	1
1.3 Projektbegründung	1
1.4 Projektschnittstellen	2
1.5 Projektabgrenzung	2
2 Projektplanung	2
2.1 Projektphasen	2
2.2 Abweichungen vom Projektantrag	2
2.3 Ressourcenplanung	2
2.4 Entwicklungsprozess	3
3 Analysephase	3
3.1 Ist-Analyse	3
3.2 Wirtschaftlichkeitsanalyse	3
3.2.1 Make or Buy-Entscheidung	3
3.2.2 Projektkosten	4
3.2.3 Amortisationsdauer	4
3.3 Nutzwertanalyse	5
3.4 Anwendungsfälle	5
3.5 Qualitätsanforderungen	5
3.6 Lastenheft/Fachkonzept	5
4 Entwurfsphase	5
4.1 Zielplattform	5
4.2 Architekturdesign	6
4.3 Entwurf der Benutzeroberfläche	6
4.4 Datenmodell	7
4.5 Geschäftslogik	7
4.6 Maßnahmen zur Qualitätssicherung	8
4.7 Pflichtenheft/Datenverarbeitungskonzept	8
5 Implementierungsphase	8
5.1 Implementierung der Datenstrukturen	8

Verwaltung von Profilen für den Datenimport von Schülerdaten

Inhaltsverzeichnis

5.2	Implementierung der Benutzeroberfläche	8
5.3	Implementierung der Geschäftslogik	9
6 Ab	onahmephase	9
7 Ei	nführungsphase	9
8 Do	okumentation	9
9 Fa	azit	10
9.1	Soll-/Ist-Vergleich	10
9.2	Lessons Learned	10
9.3	Ausblick	10
Literati	urverzeichnis	11
Eidess	stattliche Erklärung	12
Anhan	g	i
A1	Detaillierte Zeitplanung	i
A2	Lastenheft (Auszug)	ii
A3	Use-Case-Diagramm	iii
A4	Pflichtenheft (Auszug)	iv
A5	Datenbankmodell	v
A6	Ereignisgesteuerte Prozesskette	vi
A7	Oberflächenentwürfe	vii
A8	Screenshots der Anwendung	viii
A9	Entwicklerdokumentation (Auszug)	x
A10	Testfall und sein Aufruf auf der Konsole	xi
A11	Klasse: ComparedNaturalModuleInformation	xii
A12	Klassendiagramm	xiv
A13	Benutzerdokumentation (Auszug)	xv

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Abbildungsverzeichnis

Abbildungsverzeichnis	
Abbildung 1: Use-Case-Diagramm	iv
Abbildung 2: Entity-Relationship-Model	V
Abbildung 3: Tabellenmodell	vi
Abbildung 4: Prozess des Einlesens eines Moduls	vi
Abbildung 5: Liste der Module mit Filtermöglichkeiten	vii
Abbildung 6: Anzeige der Übersichtsseite einzelner Module	viii
Abbildung 7: Anzeige und Filterung der Module nach Tags	viii
Abbildung 8: Liste der Module mit Filtermöglichkeiten	ix
Abbildung 9: Auszug aus der Entwicklerdokumentation mit <i>PHPDoc</i>	x
Abbildung 10: Aufruf des Testfalls auf der Konsole	Xi
Abbildung 11: Klassendiagramm	xiv
Abbildung 12: Auszug aus der Benutzerdokumentation	xv

Marco Garagna III

Verwaltung von Profilen für den Datenimport von Schülerdaten

Tabellenverzeichnis

Tabellenverzeichnis	
Tabelle 1: Grobe Zeitplanung	2
Tabelle 2: Kostenaufstellung	4
Tabelle 3: Entscheidungsmatrix	6
Tabelle 4: Soll-/Ist-Vergleich	10
Tabelle 5: Detaillierte Zeitplanung	ii

Marco Garagna IV

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Verzeichnis der Listings

Verzeichnis der Listings	
Listing 1: Testklasse	xii

Listing 2: Klasse ComparedNaturalModuleInformationxiv

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Abkürzungsverzeichnis

Abkürzungsverzeichnis

API	Application Programming Interface
CD	Continuous Deployment
CSV	Comma Separated Values
EPK	Ereignisgesteuerte Prozesskette
ERM	Entity Relationship Model
GUI	Graphical User Interface
HTML	Hypertext Markup Language
JPA	Jakarta Persistence API
JSF	Jakarta Server Faces
MVC	Model View Controller
PHP	PHP Hypertext Preprocessor
SCM	Source Code Management
SQL	Structured Query Language
SVN	
	Subversion
	Subversion Unified Modeling Language

Marco Garagna VI

ASCI SYSTEMHAUS

Einleitung

1 Einleitung

1.1 Projektumfeld

ASCI Systemhaus GmbH hatte vor einigen Jahren die webbasierte Anwendung SyABO für die Verwaltung von Fahrkartenabonnenten und Schülerverkehrsdaten im ÖPNV entwickelt. Dieses Programm ist bei verschiedenen Verkehrsunternehmen in Deutschland im Einsatz.

Jedes Verkehrsunternehmen hat mehrere Datenlieferanten, die im SyABO als Vertragspartner-Objekte dargestellt sind. Um einen problemlosen Datenaustausch durch die SyABO-Schnittstelle zu gewährleisten, muss jedes Verkehrsunternehmen mit jedem Vertragspartner bestimmte Konventionen vereinbaren. Die Einigung über diese Konventionen wurde unter anderem aufgrund der Eigenschaften der CSV-Datei getroffen.

1.2 Projektziel

Nach der Implementierung dieser neuen Funktionalität kann der Anwender jedem Vertragspartner ein eigenes konfigurierbares Importprofil zuweisen.

Die Erstellung der neuen Funktion besteht aus drei Teilen:

- 1. Die Entwicklung einer Benutzeroberfläche (UI) für die Profilerstellung und zur Verwaltung der Profile.
- 2. Die Erweiterung der bestehenden Benutzeroberfläche zur Verwaltung der Vertragspartner, um eine obligatorische Zuordnung eines Importprofils zum Vertragspartner zu ermöglichen.
- 3. Der dritte Teil ist die Überarbeitung des bestehenden Importassistent-Servlets, der für den Import der CSV-Datei selbst verantwortlich ist. Dieser muss angepasst und erweitert werden, um die Funktion korrekt zu implementieren und die Benachrichtigungen für Benutzer zu behandeln. Eine Benachrichtigung des Benutzers ist zum Beispiel dann erforderlich, wenn ein Import für einen Vertragspartner erfolgen soll, dem noch kein Importprofil zugewiesen wurde.

Jedes Importprofil enthält alle erforderlichen Informationen, die vom Importassistenten benötigt werden, um die Daten einzulesen und aufzubereiten. Dadurch, dass jeder Vertragspartner ein für ihn definiertes Importprofil nutzt, kann der Aufbau der CSV-Dateien von dem Vertragspartner bestimmt werden, solange die für das Programm erforderlichen Mindestdaten darin enthalten sind. Das spart Abstimmungsaufwand und auf der Seite der Vertragspartner den Anpassungsaufwand an die von SyABO vorgegebenen Strukturen.

1.3 Projektbegründung

Der Import der Daten erfolgt derzeit anhand von Schlüsselwörtern in der CSV-Datei, die einmalig im Programm festgelegt wurden. Dadurch ist eine Abstimmung des

Programmnutzers mit den unterschiedlichen Einrichtungen über das Format der CSV-Datei erforderlich. Um den Einsatz des Programms künftig flexibler zu gestalten, soll das Programm mit unterschiedlichen, auf den jeweiligen Datenlieferanten bezogenen Profilen für den Import der Daten aus den CSV-Dateien arbeiten, sodass beliebige Schlüsselwörter in den CSV-Dateien verwendet werden können.

ASCI

Projektplanung

1.4 Projektschnittstellen

Für das Deployment der gesamten Anwendung bleibt der Jenkins CI Server als Schnittstelle bestehen, der die Anwendung auf einem internen Server veröffentlicht. Eine zweite Schnittstelle ist spezifisch für das vorhandene Feature der Servlet Importprofil-Funktionalität für CSV-Importe. Die Endbenutzer der Anwendung sind Mitarbeiter der Administrationsabteilung.

Während der Entwicklung der Funktionalitäten und Benutzeroberflächen ist es wichtig, in regelmäßigem Kontakt mit dem Projektleiter zu bleiben. Dies ermöglicht eine flexible Anpassung an die Anforderungen und kann die Einführungsphase verkürzen.

Die Benutzeroberflächen stehen allen Mitarbeitern mit den entsprechenden Rollen sofort im Anwendungsmenü zur Verfügung, ohne dass eine separate Installation erforderlich ist.

1.5 Projektabgrenzung

Bezüglich der in 1.2 Projektziel genannte Punkte: Punkt eins ist ein wesentlicher Bestandteil der neuen Implementierung dieses Projekts, nämlich das Hauptelement. Punkte zwei und drei sind Anpassungen bzw. Erweiterungen bestehender Komponenten von SyABO. Sie sind notwendig, damit Punkt 1 überhaupt funktionieren kann. Im Gegensatz zu Punkt 1 sind die Datenmodelle und Implementierungen bereits vorhanden.

2 Projektplanung

2.1 Projektphasen

Eine detailliertere Zeitplanung ist in Tabelle 5 in Anhang A1 zu sehen.

Projektphase	Geplante Zeit
Analyse	9 h
Entwurf	12 h
Implementierung	46 h
Abnahme	2 h
Einführung	2 h
Dokumentation	9 h
Gesamt	80 h

Tabelle 1: Grobe Zeitplanung

2.2 Abweichungen vom Projektantrag

 Sollte es Abweichungen zum Projektantrag geben (z.B. Zeitplanung, Inhalt des Projekts, neue Anforderungen), müssen diese explizit aufgeführt und begründet werden.

2.3 Ressourcenplanung

Anschließend wurden verwendete Ressourcen im Anhang A.2: Verwendete Ressourcen auf Seite ii aufgelistet. Neben allen Hard- und Softwareressourcen wurde auch das Personal aufgenommen. Im Hinblick auf anfallende Kosten wurde darauf geachtet, dass die Nutzung der Software kostenfrei ist oder die Lizenzen dem Unternehmen bereits zur Verfügung stehen. Dadurch konnten die Projektkosten auf einem Minimum gehalten werden. Unter anderem

ASCI SYSTEMHAUS

IMPORTPROFIL-TOOL

Verwaltung von Profilen für den Datenimport von Schülerdaten

Analysephase

wurde für die Modellierung unterschiedlicher UML-Diagramme diagrams.net und als Anwendungsserver Apache Tomcat genutzt.

2.4 Entwicklungsprozess

 Welcher Entwicklungsprozess wird bei der Bearbeitung des Projekts verfolgt (z.B. Wasserfall, agiler Prozess)?

Die Durchführung des Projektes wird testgetrieben durch kontinuierliches Review mit einem Projektbetreuer und Stakeholder, um sicherzustellen, dass alle Projektparteien mit dem aktuellen Entwicklungsstand des Features und dessen Funktionalität einverstanden sind, bevor eine Projektphase als abgeschlossen gilt.

Das erweiterte Wasserfallmodell ermöglicht es dem Projektteam jedoch, zu einer früheren Phase zurückzukehren, um z.B. nachträglich erfasste Verbesserungen zu berücksichtigen und schließlich Ergebnisse zu erzielen, die allen Anforderungen entsprechen.

3 Analysephase

3.1 Ist-Analyse

Für den Import von Schülerdaten aus CSV-Dateien in die SyABO-Datenbank existiert bereits eine Schnittstelle. Die Funktion, die die Importdaten aufbereitet, nennt sich Importassistent und wurde als Servlet-Komponente implementiert. Die Aufbereitung der Daten aus der CSV-Datei erfolgt anhand von Schlüsselwörtern, die in der ersten Zeile der CSV-Datei stehen. Die für die Verwendung definierten Schlüsselwörter und deren Beziehungen zu den Programmdaten sind in der Datei "importoptionen.properties" gespeichert.

Auf einer grafischen Benutzeroberfläche kann der Nutzer die vom Programm erkannten Fehler in Datensätzen nachbearbeiten bzw. ergänzen. Nach der Korrektur werden die Daten aus den temporär angelegten Datenbanktabellen in die Arbeitsdatenbanktabellen gespeichert.

Die Anwendung durch Importassistent Servlet UI erlaubt einen Import von Schülerdaten mittel ein CSV-Datei. Daraus ergeben sich folgende Probleme (Ticket im Anhang Seite ...):

- mehrere Datenlieferanten, die mit jeweilig eigenen Formaten die Dateien liefern können.
- nicht flexibel genug.
- mehrere Datenlieferanten, unterschiedlichen Spaltenbezeichnungen, Zeichensatz
- Es sind Anpassungen erforderlich, um die Importdateien in eine standardisierte Form zu bringen.

3.2 Wirtschaftlichkeitsanalyse

Aus der Behebung der in 3.1 Ist-Analyse genannten Probleme resultieren neben technischen Vorteilen auch reduzierte Verwaltungszeiten für die Führungskräfte. Der daraus entstehende finanzielle Vorteil soll im Folgenden dargelegt werden.

3.2.1 Make or Buy-Entscheidung

Da es sich beim ASCI-Systemhaus um kritische Infrastruktur des ÖPNV Deutschland handelt, die strengen Datenschutz- und Sicherheitsrichtlinien unterliegt, müsste eine eingekaufte Softwarelösung von Drittherstellern vor dem Einsatz sehr gründlich auf potenzielle Schwachstellen

Verwaltung von Profilen für den Datenimport von Schülerdaten

Analysephase

und Sicherheitsrisiken geprüft werden. Diese Prüfung würde weitaus mehr Kosten verursachen, als die eigenständige Entwicklung. Eine Eigenproduktion ist daher die sinnvollere Option.

3.2.2 Projektkosten

Die Projektkosten setzen sich maßgeblich aus den Personalkosten, sowohl des Auszubildenden wie auch der beteiligten Mitarbeiter, sowie den Kosten für die Bereitstellung der benötigten Arbeitsmaterialien und des Arbeitsplatzes zusammen. Dabei kann für die Mitarbeiter ein Stundensatz von 40 EUR. Zur Ermittlung des ungefähren Stundensatzes des Auszubildenden wurde folgende Rechnung genutzt:

$$8\frac{h}{Tag} \cdot 220\frac{Tage}{Jahr} = 1.760\frac{h}{Jahr}$$

$$1.000\frac{\epsilon}{Monat} \cdot 13, 3\frac{Monate}{Jahr} = 13.300\frac{\epsilon}{Jahr}$$

$$\frac{13.300\frac{\epsilon}{Jahr}}{1.760\frac{h}{Jahr}} \approx 7,56\frac{\epsilon}{h}$$

Es ergibt sich also ein Stundensatz von 7,56 EUR. Die Durchführungszeit des Projekts beträgt 80 Stunden. Für die Nutzung von Ressourcen¹ wird ein pauschaler Stundensatz von 15 EUR angenommen. Für die anderen Mitarbeiter wird pauschal ein Stundensatz von 25 EUR angenommen. Eine Aufstellung der Kosten befindet sich in Tabelle 2 und sie betragen insgesamt 2.739,20 EUR.

Vorgang	Zeit	Kosten / Stunde	Kosten
Entwicklung	80 h	7,56 € + 15 € = 22,56 €	1.804,80 €
Fachgespräch	3 h	25 € + 15 € = 40,00 €	120,00 €
Genehmigung	3 h	25 € + 15 € = 40,00 €	120,00 €
Abnahme	1 h	25 € + 15 € = 40,00 €	40,00 €
	-	Gesamt	2.084,80 €

Tabelle 2: Kostenaufstellung

3.2.3 Amortisationsdauer

- Welche monetären Vorteile bietet das Projekt (z.B. Einsparung von Lizenzkosten, Arbeitszeitersparnis, bessere Usability, Korrektheit)?
- Wann hat sich das Projekt amortisiert?

Beispielrechnung (verkürzt)

Bei einer Zeiteinsparung von ca. drei Stunden pro Monat, das entspricht 36 Stunden im Jahr. Daraus ergibt sich folgende Amortisationsgleichung:

Amortisationszeit =
$$\frac{2.084,80 €}{36 \frac{h}{Jahr} * 40 \frac{€}{h}} \approx 1,448 Jahre \approx 17,5 Monate$$

¹ Räumlichkeiten, Arbeitsplatzrechner etc.

ASCI

IMPORTPROFIL-TOOL

Verwaltung von Profilen für den Datenimport von Schülerdaten

Entwurfsphase

Nach ungefähr 17,5 Monaten sind die Kosten für die Entwicklung des neuen Features von den durch sie entstehenden Einsparungen gedeckt. Ein entsprechendes Diagramm liegt im Anhang A3 Amortisationsdiagramm auf S. iii vor.

3.3 Nutzwertanalyse

Darstellung des nicht-monetären Nutzens (z.B. Vorher-/Nachher-Vergleich anhand eines Wirtschaftlichkeitskoeffizienten).

Beispiel

Ein Beispiel für eine Entscheidungsmatrix findet sich in Kapitel 4.2 (Architekturdesign).

3.4 Anwendungsfälle

Bei einem Treffen mit den Projektbeteiligten wurde ein Anwendungsfalldiagramm entwickelt, das die Hauptfunktionen der zu entwickelnde Anwendung darstellt. Dieses unter Use-Case-Diagramm auf S. aufgeführte Diagramm kann des Weiteren zur Einteilung der Implementierung in einzelne Features herangezogen werden.

3.5 Qualitätsanforderungen

Um eine möglichst hohe Qualität der Importprofil-Tool sicherzustellen, wurden die einzelnen Funktionen mittels Komponenten- und Integrationstests überprüft. Hierdurch konnte zunächst die Korrektheit der einzelnen Komponenten bestätigt werden und weitergehend das Zusammenspiel mit anderen, voneinander abhängigen Komponenten.

In der weiter fortgeschrittenen Entwicklungsphase wurden Systemtests genutzt, um die gesamte Funktion zu überprüfen. Durch die Bereitstellung einer Testdatenbank des Kunden waren realistische Daten zum Testen vorhanden.

Die in Abschnitt 6 beschriebene Abnahmephase durch den Kunden stellt den Abnahmetest dar. Durch diese Teststufe konnte noch einmal die Korrektheit der Funktion in einer Kopie einer Produktiv-Datenbank des Kunden bestätigt werden.

3.6 voneinander abhängigen Komponenten. Lastenheft/Fachkonzept

Das unter Lastenheft (Auszug) auf S. aufgeführte Lastenheft entstand als Resultat aus der Analysephase in Kooperation mit dem Auftraggeber des Projekts und bildet die Grundlage für die nachfolgende Entwurfsphase des Projekts.

4 Entwurfsphase

4.1 Zielplattform

Bei der Auswahl der Zielplattform für das Projekt haben sich mehrere Bereiche ergeben, die berücksichtigt werden müssen.

Die Geschäftslogik im Backend wird mit *JavaEE* implementiert. Dies geschieht aus mehreren Gründen: Java ist die vorherrschende Programmiersprache im Unternehmen und es stehen alle erforderlichen Entwicklungstools zur Verfügung.

Zur Kommunikation mit der Datenbank wird JPA verwendet, ein Framework, das eine einfache Möglichkeit bietet, objektorientierte Datenmodelle in einer Datenbank zu speichern. Als Daten-

Verwaltung von Profilen für den Datenimport von Schülerdaten

Entwurfsphase

bank wird PostgreSQL verwendet, da sie eine robuste und weit verbreitete Open-Source-Datenbank ist. Die Datenbankserver sind bei jedem Kunden des ASCI-Systemhauses gehostet, um Datenschutzprobleme zu vermeiden. Der Server, auf dem das Backend gehostet wird, ist ein Apache Tomcat Server.

Für das Frontend steht das JSP, JSF und Spring Framework zur Verfügung, das mit entsprechenden Frontend-Bibliotheken verwendet wird, um HTML-Code abzubilden und die Benutzeroberfläche zu entwickeln.

Die Benutzeroberfläche wird hauptsächlich für die Nutzung mit dem Browser Firefox optimiert, da dies der Standardbrowser im Unternehmen ist.

4.2 Architekturdesign

Die Umsetzung des Projektes soll auf Basis des MVC-Konzepts erfolgen. Dieses sieht eine Trennung der Anwendung in das Datenmodell (Model), die Darstellung der Daten (View) und die Steuerung des Programmes (Controller) vor.

Diese Teilung erfolgt, um die spätere Bearbeitung und Auswertung der Daten sowie des Programmes zu vereinfachen und diese unabhängig voneinander zu ermöglichen. So können die jeweiligen Komponenten mit geringem Aufwand angepasst oder sogar ausgetauscht werden, ohne dass die anderen Bestandteile davon betroffen sind. Des Weiteren wird die Übersichtlichkeit und Wartbarkeit des Quellcodes durch die Nutzung des MVC-Konzepts verbessert.

Die Rolle der View soll im zu entwickelnden Programm von der im Frontend eingesetzten Webapplikation eingenommen werden. Diese ist lediglich für das Ausgeben von Daten aus dem Backend und das Annehmen von Benutzereingaben zuständig und kann daher jederzeit ausgetauscht werden.

Für den Controller werden Java Klassen im Backend eingesetzt, welche auf die Anfragen des Frondendes reagieren. Diese sind für die Berechnung beziehungsweise Abfrage der Ausgabeparameter sowie die Speicherung der vom User eingegebenen Daten im Model zuständig.

Basierend auf den Kriterien in Tabelle 3 wurde das Java Framework Spring als Implementierungsplattform für die Anwendung ausgewählt.

Eigenschaft	Gewich- tung	Akelos	CakePHP	Spring	Eigenent- wicklung
Dokumentation	5	4	3	5	0
Reengineering	3	4	2	5	3
Generierung	3	5	5	5	2
Testfälle	2	3	2	3	3
Standardaufgaben	4	3	3	3	0
Gesamt	17	65	52	73	21
Nutzwert		3,82	3,06	4,29	1,24

Tabelle 3: Entscheidungsmatrix

4.3 Entwurf der Benutzeroberfläche

Die Hauptanforderung an alle Benutzeroberflächen der Anwendung ist, dass sie im gleichen Design, Look and Feel wie die bestehenden "Standard"-Seiten der Anwendung gestaltet wer-

ASCI

IMPORTPROFIL-TOOL

Verwaltung von Profilen für den Datenimport von Schülerdaten

Entwurfsphase

den. Bei den Importassistent Servlet-Elementen mussten keine GUI-Anpassungen vorgenommen werden, während auf der Vertragspartner Verwaltung lediglich ein Dropdown-Menü zur Auswahl hinzugefügt werden musste.

Die vollständige Neugestaltung der Hauptseite bedeutet in erster Linie, dass ein umfangreiches Design in enger Abstimmung mit dem zuständigen Berater entwickelt wird, wobei Skizzen als Hilfsmittel verwendet werden.

Durch iteratives Vorgehen und kurze Feedback-Meetings wurde eine nahezu endgültige Lösung vereinbart, die es ermöglichte, die erforderlichen GUI-Elemente zu identifizieren.

Diese sind in Abbildung 8: Benutzeroberfläche Mockup Seite v zu sehen.

Im Rahmen der Entwurf Konzept wurde insbesondere darauf geachtet, die Art und Anzahl der einzubindenden Eingabe- und Ausgabefelder in den jeweiligen Menüreitern sowie die Umsetzung des Corporate Designs des ASCI-Systemhauses entsprechend zu gestalten.

4.4 Datenmodell

• Entwurf/Beschreibung der Datenstrukturen (z.B. ERM und/oder Tabellenmodell, XML-Schemas) mit kurzer Beschreibung der wichtigsten (!) verwendeten Entitäten.

Beispiel

In Anhang A6 wird ein ERM dargestellt, welches lediglich Entitäten, Relationen und die dazugehörigen Kardinalitäten enthält.

4.5 Geschäftslogik

- Modellierung und Beschreibung der wichtigsten (!) Bereiche der Geschäftslogik (z.B. mit Komponenten-, Klassen-, Sequenz-, Datenflussdiagramm, Programmablaufplan, Struktogramm, EPK).
- Wie wird die erstellte Anwendung in den Arbeitsfluss des Unternehmens integriert?

ASC SYSTEMBAUS

IMPORTPROFIL-TOOL

Verwaltung von Profilen für den Datenimport von Schülerdaten

Implementierungsphase

Beispiel

Ein Klassendiagramm, welches die Klassen der Anwendung und deren Beziehungen untereinander darstellt, kann im Anhang A13 eingesehen werden.

Die EPK in Anhang A7 zeigt den grundsätzlichen Ablauf beim Einlesen eines Moduls.

4.6 Maßnahmen zur Qualitätssicherung

- Welche Maßnahmen werden ergriffen, um die Qualität des Projektergebnisses (siehe Kapitel 3.5) zu sichern (z.B. automatische Tests, Anwendertests)?
- Ggfs. Definition von Testfällen und deren Durchführung (durch Programme/Benutzer).
- Um eine möglichst hohe Qualität der Zeiterfassung sicherzustellen, wurden die einzelnen Funktionen mittels Komponenten- und Integrationstests überprüft.
- Hierdurch konnte zunächst die Korrektheit der einzelnen Komponenten bestätigt
- werden und weitergehend das Zusammenspiel mit anderen, voneinander abhängigen Komponenten. In der weiter fortgeschrittenen Entwicklungsphase wurden Systemtests genutzt, um die gesamte Funktion zu überprüfen. Durch die Bereitstellung einer Testdatenbank des Kunden waren realistische Daten zum Testen vorhanden.

4.7 Pflichtenheft/Datenverarbeitungskonzept

 Auszüge aus dem Pflichtenheft/Datenverarbeitungskonzept, wenn es im Rahmen des Projekts erstellt wurde.

Beispiel

Ein Beispiel für das auf dem Lastenheft (siehe Kapitel 3.5) aufbauende Pflichtenheft ist im Anhang A5 zu finden.

5 Implementierungsphase

5.1 Implementierung der Datenstrukturen

• Beschreibung der angelegten Datenbank (z.B. Generierung von SQL aus Modellierungswerkzeug oder händisches Anlegen), XML-Schemas usw.

5.2 Implementierung der Benutzeroberfläche

- Beschreibung der Implementierung der Benutzeroberfläche, falls dies separat zur Implementierung der Geschäftslogik erfolgt (z.B. bei HTML-Oberflächen und Stylesheets).
- Ggfs. Beschreibung des Corporate Designs und dessen Umsetzung in der Anwendung.
- Screenshots der Anwendung

Beispiel

Screenshots der Anwendung in der Entwicklungsphase mit Dummy-Daten befinden sich im Anhang A9.

Verwaltung von Profilen für den Datenimport von Schülerdaten

Abnahmephase

5.3 Implementierung der Geschäftslogik

- Beschreibung des Vorgehens bei der Umsetzung/Programmierung der entworfenen Anwendung.
- Ggfs. interessante Funktionen/Algorithmen im Detail vorstellen, verwendete Entwurfsmuster zeigen.
- Quelltextbeispiele zeigen.
- Hinweis: Es wird nicht ein lauffähiges Programm bewertet, sondern die Projektdurchführung. Dennoch würde ich immer Quelltextausschnitte zeigen, da sonst Zweifel an der tatsächlichen Leistung des Prüflings aufkommen können.

Beispiel

Die Klasse ComparedNaturalModuleInformation findet sich im Anhang A12.

6 Abnahmephase

Die Abnahme durch den Kunden verlief durch das iterative Vorgehen bei der Entwicklung sehr

vorausschaubar. Der Auftraggeber wurde durch konstante Rücksprachen während der Entwicklung und dem Vorstellen vorläufiger Ergebnisse bereits früh eingebunden. Das Projekt war ihm somit bekannt und alle Funktionen waren vertraut sowie in erwartetem Umfang umgesetzt. Die finale Abnahme war hiermit erfolgreich und der Kunde hat die Zeiterfassung zufrieden entgegengenommen.

In der Diskussion mit dem Kunden wurden weitere neue Funktionen herausgefunden, die jedoch als neue Anforderungen gewertet werden. Es besteht somit Interesse an einer Weiterentwicklung der Importprofil-Tool.

Des Weiteren wurde vereinbart, dass in nächster Zeit regelmäßig Rücksprache über den Einsatz der Lösung gehalten wird. Gegebenenfalls wird es dann noch geringfügige Anpassungen geben.

7 Einführungsphase

- Welche Schritte waren zum Deployment der Anwendung nötig und wie wurden sie durchgeführt (automatisiert/manuell)?
- Wurden Ggfs. Altdaten migriert und wenn ja, wie?
- Wurden Benutzerschulungen durchgeführt und wenn ja, Wie wurden sie vorbereitet?

8 Dokumentation

Neben der Projektdokumentation wurde auch eine betriebsinterne Entwicklungs- bzw. Funktionsdokumentation für das Firmen-Wiki von ASCI Systemhaus GmbH erstellt. In dieser sind die genauen Funktionen und Hinweise zur korrekten Implementation auf einem Kundensystem dokumentiert.

Hierdurch kann die Funktion des Programmes zum Beispiel im Fall von einer Fehlfunktion auch von anderen Mitarbeitern nachvollzogen werden. Außerdem ist es so anderen Kollegen möglich, die Importprofile für Neukunden zu implementieren.

Verwaltung von Profilen für den Datenimport von Schülerdaten

Fazit

Fazit

9.1 Soll-/Ist-Vergleich

- Wurde das Projektziel erreicht und wenn nein, warum nicht?
- Ist der Auftraggeber mit dem Projektergebnis zufrieden und wenn nein, warum nicht?
- Wurde die Projektplanung (Zeit, Kosten, Personal, Sachmittel) eingehalten oder haben sich Abweichungen ergeben und wenn ja, warum?
- Hinweis: Die Proiektplanung muss nicht strikt eingehalten werden. Vielmehr sind Abweichungen sogar als normal anzusehen. Sie müssen nur vernünftig begründet werden (z.B. durch Änderungen an den Anforderungen, unter-/überschätzter Aufwand).

Beispiel (verkürzt)

Wie in Tabelle 4 zu erkennen ist, konnte die Zeitplanung bis auf wenige Ausnahmen eingehalten werden.

Phase	Geplant	Tatsächlich	Differenz
Analyse	9 h	8 h	-1 h
Entwurf	12 h	12 h	
Implementierung	46 h	49 h	+3 h
Abnahme	2 h	1 h	
Einführung	2 h	1 h	
Dokumentation	9 h	7 h	-2 h
Gesamt	80 h	80 h	

Tabelle 4: Soll-/Ist-Vergleich

9.2 **Lessons Learned**

Der Zeitaufwand für den Umbau alter Logik durch neue Funktionalität wurde stark unterschätzt. Wenn es sich um eine monolithische Architekturanwendung handelt, ist zu erwarten, dass, wenn alte Funktionalität entfernt oder angepasst werden muss, viel Zeit, Überlegung und Information darüber, wie die Funktionalität ursprünglich gedacht war, aufgewendet werden muss. Auch die besondere Rolle der Stakeholder Kommunikation im Bereich der Softwareentwicklung wird während der Ausführung des Projektes deutlich. So ist schnell klar, dass ohne ausreichende Rücksprache und gemeinsame Planung kein Produkt entstehen kann, welches den Ansprüchen der Auftraggeber*innen entspricht.

Ebenfalls wird die Bedeutung von intensiver Planung von der gegebenen Projektstruktur betont. In diesem kann das Projekt nach der Meinung des Autors und dessen Ausbilder*innen als großer Erfolg bezeichnet werden, welcher sowohl einen didaktischen als auch einen praktischen Mehrwert liefert.

9.3 Ausblick

Wie wird sich das Projekt in Zukunft weiterentwickeln (z.B. geplante Erweiterungen)?

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Literaturverzeichnis

Literaturverzeichnis

Grashorn, D., 2010. Entwicklung von NatInfo – Webbasiertes Tool zur Unterstützung der Entwickler, Vechta: s.n.

ISO/IEC 9126-1, 2001. Software-Engineering – Qualität von Software-Produkten – Teil 1: Qualitätsmodell. s.l.:s.n.

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Eidesstattliche Erklärung

Eidesstattliche Erklärung

Ich, Marco Garagna, versichere hiermit, dass ich meine Dokumentation zur betrieblichen Projektarbeit mit dem Thema

Importprofil-Tool – Verwaltung von Profilen für den Datenimport von Schülerdaten

selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe, wobei ich alle wörtlichen und sinngemäßen Zitate als solche gekennzeichnet habe. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Berlin, den 29.04.2024	
Marco Garagna	

Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

Anhang

A1 Detaillierte Zeitplanung

Analysephase			9 h
Durchführung der Ist-Soll-Analyse (vorhandenen Importassistent)		3 h	
2. Wirtschaftlichkeitsprüfung und Amortisationsrechnung des Projektes		2 h	
3. Unterstützung des Fachbereichs bei der Erstellung des Lastenheftes		2 h	
4. Prüfung der technischen und organisatorischen Machbarkeit		1 h	
5. Erstellen eines Use-Case-Diagramms		1 h	
Entwurfsphase			12 h
Nutzwertanalyse zur Auswahl des Frameworks		1 h	
2. Datenbankentwurf		3 h	
2.1. ER-Modell erstellen	2 h		
2.2. Konkretes Tabellenmodell erstellen	1 h		
4. Benutzeroberflächen entwerfen und abstimmen		3 h	
5. Erstellen eines UML-Komponentendiagramms der Anwendung		2 h	
6. Erstellen des Pflichtenhefts		3 h	
Implementierungsphase			46 h
Implementierung Importprofil Verwaltung Komponente		25 h	
1.1. Implementierung Datentyp Klasse, DAO und Transaction Klassen	6 h		
1.2. Implementierung UI des Importprofils	5 h		
1.3. Implementierung der Logik für Profilverwaltung (CRUD)	7 h		
1.4. Implementierung der Eingabevalidierung	3 h		
1.5. Testen der Funktionalität der einzelnen Elemente des Importprofils	4 h		
2. Anpassung Vertragspartner Verwaltung (vorhandenes Element)		10 h	
2.1. Anpassung UI der Logik für Importprofil-Auswahl	4 h		
2.2. Implementierung der Logik für Importprofil Auswahl	6 h		
3. Anpassung Importassistent (vorhandenes Element)		5 h	
3.1. Die mit Externen "properties" verbundene alte Logik entkoppeln	1 h		
3.2. Neue Logik mit Profil-Unterelementen verbinden	4 h		
4. Datenbanktabelle und Pflege		6 h	
Abnahme und Deployment			4 h
Code Review mit Ausbilder und Geschäftsführer		2 h	
2. Abnahme durch Ausbilder und PM		1 h	
3. Commit des Features und Deployment mit Jenkins		1 h	

Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

Gesamt		80 h
3.1. Generierung durch <i>JAVAdoc</i>	1 h	
3. Programmdokumentation	1 h	
2. Erstellen der Projektdokumentation	7 h	
Erstellen der Benutzerdokumentation	1 h	
Erstellen der Dokumentation		9 h

Tabelle 5: Detaillierte Zeitplanung

A2 Lastenheft (Auszug)

Es folgt ein Auszug aus dem Lastenheft mit Fokus auf die Anforderungen:

Die Anwendung muss folgende Anforderungen erfüllen.

- 1. Mit Hilfe der zu entwickelnden Importprofilverwaltung (neue Seite) müssen...
 - 1.1. Importprofile hinzugefügt und mit einem Namen versehen.
 - 1.2. Importprofile bearbeitet.
 - 1.3. Importprofile entfernt.
 - 1.4. Ein Mitarbeiter kann Importprofile hinzufügen.
 - 1.5. Ein Mitarbeiter kann Importprofile bearbeiten.
 - 1.6. Ein Mitarbeiter kann Importprofile entfernen.
- 2. Mit Hilfe der zu entwickelnden Importprofiauswahl (Seite Ergänzung) müssen...
 - 2.1. Importprofil für einen bestimmten Datenlieferanten ausgewählt.
 - 2.2. Importprofil für einen bestimmten Datenlieferant gespeichert.
- 3. Folgende Informationen müssen bezüglich einer Importprofil allgemein speicherbar sein:
 - 3.1. Erste Tabelle:
 - Profilbezeichnung.
 - Zeichencodierung der Importdateien.
 - Verwendetes Trennzeichen.
 - Verwendetes Text Trennzeichen.
 - 3.2. Zweite Tabelle:
 - Referenz auf das Hauptprofil.
 - Spaltenbezeichnung.
 - Interne Referenz.
 - Datum Format und Zahlen Format (nice to have)².
 - 3.3. Dritte Tabelle:
 - Referenz auf das Hauptprofil.
 - Farbe
 - Interne Referenz.

Marco Garagna ii

² Aus Zeitgründen wurde es nicht in die erste Iteration Implementiert.

A3 Amortisationsdiagramm

Abbildung 1: Amortisationsdiagramm

Marco Garagna iii

A4 Use-Case-Diagramm

Abbildung 2: Use-Case-Diagramm

A5 Pflichtenheft (Auszug)

Zielbestimmung

- 1. Plattform
 - 1.1. Die Anwendung wird mit Java 5 implementiert.
 - 1.2. Die Entwicklung der Webkomponente geschieht mit Jakarta EE.
 - 1.3. Die Webanwendung wird nur im Intranet erreichbar sein.
 - 1.4. Die Webanwendung wird auf einem Apache Tomcat betrieben.
 - 1.5. TortoiseSVN wird für SCM genutzt.
 - 1.6. Maven wird für den automatischen Build-Prozess genutzt.
 - 1.7. Der Jenkins-Server übernimmt das CD.
- 2. Datenbank
 - 2.1. Die Datenbankanbindung erfolgt durch ORM (IBatis).
 - 2.2. Die Daten werden in einer *PostgreSQL* Datenbank gespeichert.
- 3. Benutzeroberflächen
 - 3.1. Die Benutzeroberflächen werden mithilfe von JSF realisiert.

Marco Garagna iv

Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

- 3.2. Die Benutzeroberflächen werden mit CSS 3.
- 3.3. Grundlage zur weiteren Gestaltung ist JSP.
- 3.4. Die Benutzeroberflächen werden nicht responsiv sein.

4. Zielgruppen

4.1. Das Importprofilverwaltungstool wird lediglich von Mitarbeitern der Administrationsabteilung der Verschieden ASCI-Kunden genutzt.

A6 Datenbankmodell

Abbildung 3: Entity-Relationship-Model

Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

Abbildung 4: Tabellenmodell

A7 Ereignisgesteuerte Prozesskette

Abbildung 5: Prozess des Einlesens eines Moduls

Marco Garagna vi

Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

A8 Oberflächenentwürfe

Abbildung 6: Benutzeroberfläche Mockup

Marco Garagna vii

Anhand

Abbildung 7: Anzeige der Übersichtsseite einzelner Module

A9 Screenshots der Anwendung

Tags

Abbildung 8: Anzeige und Filterung der Module nach Tags

Marco Garagna viii

IMPORTPROFIL-TOOL Verwaltung von Profilen für den Datenimport von Schülerdaten

Anhang

Modules

Abbildung 9: Liste der Module mit Filtermöglichkeiten

Marco Garagna ix

A10 Entwicklerdokumentation (Auszug)

Abbildung 10: Auszug aus der Entwicklerdokumentation mit PHPDoc

Anhand

A11 Testfall und sein Aufruf auf der Konsole

```
PuTTY
                                                                                          _ | | X
o-suse-ws1:/srv/www/symfony/natural # ./symfony test:unit ComparedNaturalModuleInformation
# Empty Information
ok 1 - Has no catalog sign
ok 2 - Source has to be created
 Perfect Module
ok 3 - Right modulename selected
ok 4 - Source sign shines global
ok 5 - Catalog sign shines global
ok 6 - Source sign shines at ENTW
  7 - Catalog sign shines at ENTW
ok 8 - Source sign shines at QS
ok 9 - Catalog sign shines at QS
ok 10 - Source sign shines at PROD
ok 11 - Catalog sign shines at PROD
ok 12 - Source sign shines at SVNENTW
ok 13 - Catalog sign is empty at SVNENTW
ao-suse-ws1:/srv/www/symfony/natural #
```

Abbildung 11: Aufruf des Testfalls auf der Konsole

```
$t->comment('Empty Information');
$emptyComparedInformation = new
    ComparedNaturalModuleInformation(array());
$t->is($emptyComparedInformation->getCatalogSign(),
    ComparedNaturalModuleInformation:: EMPTY SIGN, 'Has no catalog
    sign');
$t->is($emptyComparedInformation->getSourceSign(),
    ComparedNaturalModuleInformation::SIGN CREATE, 'Source has to be
    created');
$t->comment('Perfect Module');
$criteria = new Criteria();
$criteria->add(NaturalmodulenamePeer::NAME, 'SMTAB');
$moduleName = NaturalmodulenamePeer::doSelectOne($criteria);
$t->is($moduleName->getName(), 'SMTAB', 'Right modulename
    selected');
$comparedInformation = $moduleName->loadNaturalModuleInformation();
$t->is($comparedInformation->getSourceSign(),
    ComparedNaturalModuleInformation::SIGN OK, 'Source sign shines
    global');
$t->is($comparedInformation->getCatalogSign(),
    ComparedNaturalModuleInformation::SIGN OK, 'Catalog sign shines
    global');
$infos = $comparedInformation->getNaturalModuleInformations();
foreach($infos as $info) {
```

Marco Garagna xi


```
$env = $info->getEnvironmentName();
$t->is($info->getSourceSign(),
ComparedNaturalModuleInformation::SIGN_OK, 'Source sign shines
at ' . $env);
if($env != 'SVNENTW') {
    $t->is($info->getCatalogSign(),
ComparedNaturalModuleInformation::SIGN_OK, 'Catalog sign shines
at ' . $info->getEnvironmentName());
} else {
    $t->is($info->getCatalogSign(),
ComparedNaturalModuleInformation::EMPTY_SIGN, 'Catalog sign is
empty at ' . $info->getEnvironmentName());
}
```

Listing 1: Testklasse

A12 Klasse: ComparedNaturalModuleInformation

Kommentare und simple Getter/Setter werden nicht gezeigt.

```
class ComparedNaturalModuleInformation {
   const EMPTY_SIGN = 0;
   ...
   const SIGN_ERROR = 5;

   private $naturalModuleInformations = array();

   public static function environments() {
      return array("ENTW", "SVNENTW", "QS", "PROD");
   }

   public static function signOrder() {
      return array(self::SIGN_ERROR, self::SIGN_NEXT_STEP, self::SIGN_CREATE_AND_NEXT_STEP, self::SIGN_CREATE, self::SIGN_OK);
   }

   public function __construct(array $naturalInformations) {
      $this->allocateModulesToEnvironments($naturalInformations);
      $this->determineSourceSignsForAllEnvironments();
```

Marco Garagna xii


```
private function allocateModulesToEnvironments(array
$naturalInformations) {
    foreach ($naturalInformations as $naturalInformation) {
         $env = $naturalInformation->getEnvironmentName();
         if(in array($env, self::environments())) {
             $this->naturalModuleInformations[array search($env,
self::environments())] = $naturalInformation;
    }
private function allocateEmptyModulesToMissingEnvironments() {
    if(array key exists(0, $this->naturalModuleInformations)) {
         $this->naturalModuleInformations[0]-
>setSourceSign(self::SIGN OK);
    }
    for($i = 0;$i < count(self::environments());$i++) {</pre>
        if(!array_key_exists($i, $this-
>naturalModuleInformations)) {
             $environments = self::environments();
             $this->naturalModuleInformations[$i] = new
EmptyNaturalModuleInformation($environments[$i]);
             $this->naturalModuleInformations[$i]-
>setSourceSign(self::SIGN CREATE);
    }
}
private function containsSourceSign($sign) {
    foreach($this->naturalModuleInformations as $information) {
         if($information->getSourceSign() == $sign) {
             return true;
         }
    return false;
```

Marco Garagna xiii


```
private function containsCatalogSign($sign) {
    foreach($this->naturalModuleInformations as $information) {
        if($information->getCatalogSign() == $sign) {
            return true;
        }
    }
    return false;
}
```

Listing 2: Klasse ComparedNaturalModuleInformation

A13 Klassendiagramm

Abbildung 12: Klassendiagramm

Marco Garagna xiv

A14 Benutzerdokumentation (Auszug)

Symbol	Bedeutung global	Bedeutung einzeln
辛	Alle Module weisen den gleichen Stand auf.	Das Modul ist auf dem gleichen Stand wie das Modul auf der vorherigen Umgebung.
©	Es existieren keine Module (fachlich nicht möglich).	Weder auf der aktuellen noch auf der vorherigen Umgebung sind Module angelegt. Es kann also auch nichts übertragen werden.
	Ein Modul muss durch das Übertragen von der vorherigen Umgebung erstellt werden.	Das Modul der vorherigen Umgebung kann übertragen werden, auf dieser Umgebung ist noch kein Modul vorhanden.
选	Auf einer vorherigen Umgebung gibt es ein Modul, welches übertragen werden kann, um das nächste zu aktualisieren.	Das Modul der vorherigen Umgebung kann übertragen werden um dieses zu aktualisieren.
7	Ein Modul auf einer Umgebung wurde entgegen des Entwicklungsprozesses gespeichert.	Das aktuelle Modul ist neuer als das Modul auf der vorherigen Umgebung oder die vorherige Umgebung wurde übersprungen.

Abbildung 13: Auszug aus der Benutzerdokumentation

Marco Garagna xv