Practice Set 2

Consider alphabet set $\Sigma = \{a, b\}$ unless specified. Define Context Free Language (CFL), Context Free Grammar (CFG) and Pushdown Automata (PDA) for the following:

1. $L = a^*, \Sigma = \{a\}$

<u>CFL</u>:

 $L = \{ \Lambda, a, aa, aaa, aaaa, \dots \}$

CFG:

 $S \to aS \mid \Lambda$

<u>PDA</u>:

2. $L = (a + b)^*$

<u>CFL</u>:

 $L = \{ \Lambda, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, ... \}$

CFG:

$$S \rightarrow aS \mid bS \mid \Lambda$$

PDA:

3. $L = (a + b)^+$

CFL:

 $L = \{~a,\,b,\,aa,\,ab,\,ba,\,bb,\,aaa,\,aab,\,aba,\,abb,\,baa,\,bab,\,bba,\,bbb,\,\dots~\}$

CFG:

$$S \rightarrow aS \mid bS \mid a \mid b$$

PDA:

4. Language with 'aa' in them somewhere.

<u>CFL</u>:

 $L = \{ aa, aaa, aab, baa, aaaa, aaab, baaa, baab, ... \}$

CFG:

 $S \to TaaT$

 $T \to aT \mid bT \mid \Lambda$

PDA:

5. Strings that end with a.

<u>CFL</u>:

 $L = \{ a, aa, ba, aaa, aba, baa, bba, \dots \}$

CFG:

 $S \to Sa \mid a \mid b \mid \Lambda$

PDA:

6. Strings that start with a.

CFL:

 $L = \{ a, aa, ab, aaa, aab, aba, abb, \dots \}$

CFG:

 $S \rightarrow aS \mid a \mid b \mid \Lambda$

PDA:

7. Strings that do not contain the substring 'aaa'.

<u>CFL</u>:

<u>CFG</u>:

 $S \rightarrow ST \mid aa \mid a \mid \Lambda$

 $T \rightarrow bS$

 $Sudipto\ Ghosh-B.Sc.\ (Hons.)\ Computer\ Science-Semester\ V-19/78003-TOC\ Assignment\ 2$

8. $L = a^n b^n, n \ge 0$

<u>CFL</u>:

 $L = \{ \Lambda, ab, aabb, aaabbb, ... \}$

CFG:

 $S \to aSb \mid \Lambda$

PDA:

9. $L = a^n b^n, n \ge 1$

<u>CFL</u>:

 $L = \{ \Lambda, ab, aabb, aaabbb, ... \}$

CFG:

 $S \to aSb \mid ab$

<u>PDA</u>:

10. For the language Even-Palindrome.

<u>CFL</u>:

 $L = \{ \Lambda, aa, bb, aaaa, abba, baab, bbbb, \dots \}$

CFG:

 $S \rightarrow aSa \mid bSb \mid \Lambda$

11. For the language Odd-Palindrome.

<u>CFL</u>:

 $L = \{ a, b, aaa, aba, bab, bbb, \dots \}$

CFG:

 $S \rightarrow aSa \mid bSb \mid a \mid b$

<u>PDA</u>:

12. For the language Palindrome.

<u>CFL</u>:

 $L = \{ \Lambda, a, b, aa, bb, aaa, aba, bab, bbb, \dots \}$

CFG:

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \Lambda$

PDA:

13. $L = a^n b a^n, n \ge 1$

<u>CFL</u>:

 $L = \{ aba, aabaa, aaabaaa, ... \}$

CFG:

 $S \to aSa \mid aba$

PDA: (contd.)

14. $L = (aa + bb)^*$

<u>CFL</u>:

 $L = \{ \Lambda, aa, bb, aaaa, aabb, bbaa, bbbb, ... \}$

CFG:

 $S \rightarrow aaS \mid bbS \mid \Lambda$

PDA:

15. $L = (aa + bb)^+$

<u>CFL</u>:

 $L = \{ aa, bb, aaaa, aabb, bbaa, bbbb, ... \}$

CFG:

 $S \rightarrow aaS \mid bbS \mid aa \mid bb$

PDA:

16. Even no. of a's. (distributed anywhere)

<u>CFL</u>:

 $L = \{ \Lambda, b, aa, bb, aab, baa, aba, aabb, abab, abba, bbaa, bbbb, ... \}$

CFG:

 $S \rightarrow aSa \mid bS \mid \Lambda$

PDA: (contd.)

17. L= aa*bb*

<u>CFL</u>:

 $L = \{ ab, aab, abb, aabb, aaab, abbb, ... \}$

CFG:

 $S \to a T b U$

 $T \to aT \mid \Lambda$

 $U \to bU \mid \Lambda$

PDA:

18. L=(a+b)*bb(a+b)*

CFL:

 $L = \{ bb, abb, bba, bbb, aabb, abba, abbb, bbaa, bbba, bbbb, ... \}$

CFG:

 $S \to TbbT$

 $T \to aT \mid bT \mid \Lambda$

PDA:

19. L= a^{4n} , $n \ge 1$

CFL:

 $L = \{ aaaa, aaaaaaaaa, aaaaaaaaaaaa, ... \}$

CFG:

 $S \rightarrow aaaaS \mid aaaa$

20. $L = a^n b^n a^m$, n, $m \ge 1$ (positive independent integers)

CFL:

 $L = \{ aba, abaa, aabba, aabbaa, aabbaa, aaabba, ... \}$

CFG:

 $S \rightarrow TU$

 $T \rightarrow aTb \mid ab$

 $U \to aU \mid a$

PDA:

21. $L = a^n b^m a^m$, $n, m \ge 1$ (positive independent integers)

<u>CFL</u>:

 $L = \{ aba, aaba, aaaba, abbaa, aabbaa, aabbaa, abbbaaa, ... \}$

CFG:

 $S \to TU$

 $T \to aT \mid a$

 $U \rightarrow bUa \mid ba$

22. $L = a^n S$, S starts with 'b' and length(S) = n

<u>CFL</u>:

 $L = \{ \text{ ab, aaba, aabb, aaabaa, aaabab, aaabbam aaabbb, } \dots \}$

<u>CFG</u>:

 $S \rightarrow aSa \mid aSb \mid ab$

<u>PDA</u>:

23. Strings that do not have 'ab' as substring.

<u>CFL</u>:

 $L = \{ \Lambda, a, b, aa, ba, bb, aaa, baa, bba, \dots \}$

CFG:

 $S \to TU \mid \Lambda$

 $T \to bT \mid \Lambda$

 $U \to aU \mid \Lambda$

24. Strings that do not contain the substring 'baa'.

CFL:

 $L = \{\ \Lambda,\ a,\ b,\ aa,\ ab,\ ba,\ bb,\ aaa,\ aab,\ aba,\ abb,\ bab,\ bba,\ bbb,\ \dots\ \}$

CFG:

 $S \to aS \mid bT \mid \Lambda$

 $T \to bT \mid aU \mid \Lambda$

 $U \to bU \mid \Lambda$

<u>PDA</u>:

25.
$$L=a^i\,b^j\,c^k,\,i,j,\,k\geq 0$$
 and $i+j=k,\,\Sigma=\{a,\,b,\,c\}$

<u>CFL</u>:

 $L = \{ \Lambda, ac, bc, aacc, abcc, bbcc, ... \}$

<u>CFG</u>:

 $S \to T \mid U \mid \Lambda$

 $T \to aTc \mid U \mid \Lambda$

 $U \to bUc \mid \Lambda$

26.
$$L = a^p b^q c^r d^s$$
, p, q, r, $s \ge 0$ and $p + q = r + s$, $\Sigma = \{a, b, c, d\}$

<u>CFL</u>:

 $L = \{ \Lambda, ac, ad, bc, bd, abcd, aabcdd, aabcdd, abbcdd, abbcdd, \dots \}$

CFG:

$$S \to T \mid U \mid \Lambda$$

$$T \rightarrow aTd \mid aWc \mid U \mid \Lambda$$

$$W \rightarrow aWc \mid V \mid \Lambda$$

$$U \to bUd \mid bXc \mid \Lambda$$

$$X \rightarrow bXc \mid \Lambda$$

$$V \to b X c$$

<u>PDA</u>:

27. Language that contains exactly 2 or 3 b's, $\Sigma = \{a, b\}$ (distributed anywhere, in clumps)

Distributed Anywhere:

CFL:

 $L = \{ bb, abb, bab, bba, abab, abba, baba, ... \}$

CFG:

 $S \rightarrow TTU \mid TTTU$

 $T \to Ub$

 $U \to aU \mid \Lambda$

PDA:

In Clumps:

CFL:

 $L = \{ bb, abb abb, bba, bbb, abba, abbb, bbaa, bbba, ... \}$

CFG:

 $S \to TUT$

 $T \to aT \mid \Lambda$

 $U \to bb \mid bbb$

<u>PDA</u>:

28. L = (aaa + b)*

<u>CFL</u>:

 $L = \{\ \Lambda,\ b,\ bb,\ aaa,\ bbb,\ aaab,\ baaa,\ bbbb,\ \dots\ \}$

CFG:

 $S \rightarrow aaaS \mid bS \mid \Lambda$

29. $L = a^m b^n a^{m+n}, n, m \ge 1$

<u>CFL</u>:

 $L = \{ abaa, aabaaa, abbaaa, aabbaaaa, abbbaaaa, ... \}$

CFG:

 $S \rightarrow aSa \mid aTa$

 $T \rightarrow bTa \mid ba$

<u>PDA</u>:

30. $L = a^n b^m$, $n \neq m$

<u>CFL</u>:

 $L = \{ aab, abb, aaab, abbb, aaaab, aabbb, abbbb, ... \}$

CFG:

 $S \to a T b$

 $T \rightarrow aTb \mid aT \mid Tb \mid a \mid b$

<u>PDA</u>:

31. $L = a^n b^m, n > m$

CFL:

 $L = \{ aab, aaab, aaaab, aaaab, aaaab, aaaab, ... \}$

CFG:

 $S \to a T b$

 $T \rightarrow aTb \mid aT \mid a$

PDA:

Sudipto Ghosh – B.Sc. (Hons.) Computer Science – Semester V – 19/78003 – TOC Assignment 2

32. $L = a^n b^m, n \ge m$

<u>CFL</u>:

 $L = \{ ab, aab, aaab, aaab, aaaab, aaaab, aaaab, aaaabb, aaabbb, ... \}$

CFG:

 $S \to a T b$

 $T \rightarrow aTb \mid aT \mid \Lambda$

PDA:

33. $L = a^n b^m, n \le m$

CFL:

 $L = \{ abb, abbb, aabbb, aabbbb, aabbbb, abbbbb, ... \}$

CFG:

 $S \rightarrow aTb$

 $T \rightarrow aTb \mid Tb \mid b$

<u>PDA</u>:

34. $L = a^n b^m, n \le m$

CFL:

<u>CFG</u>:

$$\begin{split} S &\to aTb \\ T &\to aTb \mid Tb \mid \Lambda \end{split}$$

<u>PDA</u>:

35. L = Non-Palindrome words

CFL:

 $L = \{ ab, ba, aab, abb, baa, bba, aaab, aaba, abaa, abab, abbb, baba, bbba, ... \}$

CFG:

 $S \rightarrow aSa \mid bSb \mid aTb \mid bTa$

 $T \to aT \mid bT \mid \Lambda$

PDA:

36. L = EQUAL (Equal no. of a's and b's distributed anywhere)

CFL:

 $L = \{ ab, ba, aabb, abab, abba, baba, baab, bbaa, ... \}$

CFG:

 $S \to aSb \mid bSa \mid SS \mid \Lambda$

