

19. 3. 2004

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 3月24日

出 願 番 号 Application Number:

特願2003-079315

[ST. 10/C]:

[JP2003-079315]

出 願 人 Applicant(s):

日本碍子株式会社

REC'D 13 MAY 2004
WIPO PCT

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2004年 4月22日

今井康

ページ: 1/E

【書類名】

特許願

【整理番号】

WP04357

【提出日】

平成15年 3月24日

【あて先】

特許庁長官 太田 信一郎 殿

【国際特許分類】

B01D 39/20

C04B 38/00 303

【発明の名称】

セラミックフィルタ

【請求項の数】

2

【発明者】

【住所又は居所】

愛知県名古屋市瑞穂区須田町2番56号 日本碍子株式

会社内

【氏名】

山田 知広

【特許出願人】

【識別番号】

000004064

【氏名又は名称】

日本碍子株式会社

【代理人】

【識別番号】

100088616

【弁理士】

【氏名又は名称】

渡邉 一平

【手数料の表示】

【予納台帳番号】

009689

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 9001231

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 セラミックフィルタ

【特許請求の範囲】

【請求項1】 二つの端面及び外周面を有するとともに、一方の前記端面から他方の前記端面まで貫通する被浄化流体の複数の主流路が隔壁を隔てて形成された多孔質体と、前記主流路の内壁面に配設された濾過膜とから構成され、前記主流路の、前記一方の端面側の開口部から流入した前記被浄化流体を、前記多孔質体の内部を透過させることにより浄化し、前記多孔質体の前記外周面から浄化流体として取り出すセラミックフィルタであって、

前記複数の主流路の、前記被浄化流体の流路方向に垂直な断面形状が、所定のパターンで列状に配列されてなり、

互いに隣接する所定の主流路(第一特定主流路)列の間に位置する前記隔壁の 、前記被浄化流体の流路方向に垂直な断面形状が、所定間隔を隔てた二本の平行 直線により形成される形状を包摂する形状であり、

前記第一特定主流路の、前記被浄化流体の流路方向に垂直な断面形状が、前記隔壁を介して対向する所定の辺(基準辺)どうしが前記二本の平行直線を構成するように配置される七角形以上の多角形であり、かつ、

前記基準辺の両端で交わる辺を第二辺及び第三辺、前記第二辺と、前記基準辺の反対端で交わる辺を第四辺、前記第三辺と、前記基準辺の反対端で交わる辺を第五辺とした場合に、 θ_1 、 θ_2 、 θ_3 、 θ_4 (但し、前記 θ_1 、 θ_2 、 θ_3 、 θ_4 は、それぞれ前記基準辺と前記第二辺のなす角度 (θ_1)、前記基準辺と前記第三辺のなす角度 (θ_2)、前記第二辺と前記第四辺のなす角度 (θ_3)、前記第三辺と前記第五辺のなす角度 (θ_4)を示す)が $110\sim160$ °の範囲であるとともに、前記基準辺の長さ (A)と、前記第四辺と前記第五辺の最大離隔長さ (B)とが、0.3 B \leq A \leq 0.7 B の関係を満たすことを特徴とするセラミックフィルタ。

【請求項2】 前記多孔質体の前記外周面を含む部分に、前記第一特定主流路以外の所定の主流路(第二特定主流路)が外部空間と連通するようにスリット状の補助流路が形成されてなるとともに、前記第二特定主流路は、その両端面の開口

部が封止されてなり、前記主流路の、前記一方の端面側の開口部から流入した前記被浄化流体を、前記多孔質体の内部を透過させることにより浄化し、前記多孔質体の前記外周面及び前記補助流路の出口から浄化流体として取り出す請求項1に記載のセラミックフィルタ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】 本発明は液体・ガス等の流体濾過に用いられるセラミックフィルタに関し、更に詳しくは、濾過膜に亀裂等の欠陥を生ずることなく、歩留り向上のなされたセラミックフィルタに関する。

[0002]

【従来の技術】 セラミックフィルタは、高分子膜等と比較して、物理的強度、耐久性に優れるため信頼性が高いこと、耐食性が高いため酸アルカリ等による洗浄を行っても劣化が少ないこと、更には、濾過能力を決定する細孔径の精密な制御が可能である点において、固液分離用のフィルタ等として有用である。

【0003】 セラミックフィルタは、平板状、チューブ状等、種々の形状に加工されたセラミック多孔体を濾材として濾過を行うが、単位体積当たりの濾過面積が大きく、濾過処理能力が高い点において、図2に示すようなセラミックからなる多孔質体22に原液(被浄化流体)の流路(セル)23が多数形成された、いわゆるモノリス型のセラミックフィルタ21が広範に利用されている。

【0004】 モノリス型のセラミックフィルタは、基材となる多孔質体のみを 濾材として、又は透水量を確保しつつ濾過性能を向上させる観点から、流路(セ ル)の内壁面に、基材となる多孔質体の細孔に比して更に細孔径が小さいセラミ ック濾過膜(以下、単に「濾過膜」と記す)を形成した状態で使用される。

【0005】 このようなセラミックフィルタのセル(主流路)の、被浄化流体の流路方向に垂直な断面の形状(セル形状)としては、単位体積当たりの濾過面積を大きくとることができる点において四角形セルが汎用されているが、逆洗を容易にするために五角形以上の多角セル(例えば、六角形セル等)、又は円形セルのようなコーナー部を有しないセル形状等が好ましいとされている。

【0006】 セラミックフィルタは一種のハニカム構造体であるため、他のハ

ニカム構造体と同様に成形原料の坏土を押出成形し、乾燥した後、焼成する方法等によって製造することができる。しかしながら、前述の多角セル、円形セル等のセルは、流路方向と直行する方向からの力に対する強度が低いため、押出成形体の自重や、押出工程以降の工程(焼成工程等)で発生する振動等の外力により、セル又はセラミックフィルタ自体が容易につぶれて変形等する問題があった。

【0007】 このような問題を回避すべく、関連する従来技術として、少なくとも1組の隣接するセル列の間に、基材(多孔質体)を直線的に横断するセル壁が形成された、逆洗が容易であるとともに製造時における自重や外力による変形等の不具合の発生が防止されたセラミックフィルタが開示されている(例えば、特許文献1参照)。

【0008】 しかしながら、特許文献1に記載されたセラミックフィルタによっても、セル内壁面のコーナー部において形成された濾過膜に亀裂等の欠陥が生ずる場合があるため、このような膜欠陥の発生が抑止され、製造歩留りの向上がなされたセラミックフィルタの開発が望まれている。

[0009]

【特許文献1】

特開2000-342920号公報

[0010]

【発明が解決しようとする課題】 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、濾過膜に亀裂等の欠陥を生ずることなく、歩留り向上のなされたセラミックフィルタを提供することにある。

[0011]

【課題を解決するための手段】 即ち、本発明によれば、二つの端面及び外周面を有するとともに、一方の前記端面から他方の前記端面まで貫通する被浄化流体の複数の主流路が隔壁を隔てて形成された多孔質体と、前記主流路の内壁面に配設された濾過膜とから構成され、前記主流路の、前記一方の端面側の開口部から流入した前記被浄化流体を、前記多孔質体の内部を透過させることにより浄化し、前記多孔質体の前記外周面から浄化流体として取り出すセラミックフィルタで

あって、前記複数の主流路の、前記被浄化流体の流路方向に垂直な断面形状が、所定のパターンで列状に配列されてなり、互いに隣接する所定の主流路(第一特定主流路)列の間に位置する前記隔壁の、前記被浄化流体の流路方向に垂直な断面形状が、所定間隔を隔てた二本の平行直線により形成される形状を包摂する形状であり、前記第一特定主流路の、前記被浄化流体の流路方向に垂直な断面形状が、前記隔壁を介して対向する所定の辺(基準辺)どうしが前記二本の平行直線を構成するように配置される七角形以上の多角形であり、かつ、前記基準辺の両端で交わる辺を第二辺及び第三辺、前記第二辺と、前記基準辺の反対端で交わる辺を第四辺、前記第三辺と、前記基準辺の反対端で交わる辺を第四辺、前記第三辺と、前記基準辺の反対端で交わる辺を第五辺とした場合に、 θ 1、 θ 2、 θ 3、 θ 4 (但し、前記 θ 1、 θ 2、 θ 3、 θ 4は、それぞれ前記基準辺と前記第二辺のなす角度(θ 1)、前記基準辺と前記第三辺のなす角度(θ 2)、前記第二辺と前記第四辺のなす角度(θ 3)、前記第三辺と前記第五辺のなす角度(θ 5 の範囲であるとともに、前記基準辺の長さ(θ 7 と、前記第四辺と前記第五辺の最大離隔長さ(θ 8 とが、 θ 8 る θ 8 と θ 9 とが、 θ 8 る θ 9 とが、 θ 9 とのの質解を満たすことを特徴とするセラミックフィルタが提供される。

【0012】 本発明においては、多孔質体の外周面を含む部分に、第一特定主流路以外の所定の主流路(第二特定主流路)が外部空間と連通するようにスリット状の補助流路が形成されてなるとともに、第二特定主流路は、その両端面の開口部が封止されてなり、主流路の、一方の端面側の開口部から流入した被浄化流体を、多孔質体の内部を透過させることにより浄化し、多孔質体の外周面及び補助流路の出口から浄化流体として取り出すことが好ましい。

[0013]

【発明の実施の形態】 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。

【0014】 本発明のセラミックフィルタは、二つの端面及び外周面を有するとともに、一方の端面から他方の端面まで貫通する被浄化流体の複数の主流路が

隔壁を隔てて形成された多孔質体と、主流路の内壁面に配設された濾過膜とから 構成され、主流路の、一方の端面側の開口部から流入した被浄化流体を、多孔質 体の内部を透過させることにより浄化し、多孔質体の外周面から浄化流体として 取り出すセラミックフィルタであり、複数の主流路の、被浄化流体の流路方向に 垂直な断面形状(以下、単に「断面形状」というときは、「被浄化流体の流路方 向に垂直な断面形状」を意味する)が、所定のパターンで列状に配列されてなり 、互いに隣接する第一特定主流路列の間に位置する隔壁の断面形状が、所定間隔 を隔てた二本の平行直線により形成される形状を包摂する形状であり、第一特定 主流路の断面形状が、隔壁を介して対向する基準辺どうしが前述の二本の平行直 線を構成するように配置される七角形以上の多角形であり、かつ、基準辺の両端 で交わる辺を第二辺及び第三辺、第二辺と、基準辺の反対端で交わる辺を第四辺 、第三辺と、基準辺の反対端で交わる辺を第五辺とした場合に、 $heta_1$ 、 $heta_2$ 、 $heta_3$ 、 θ_4 (但し、 θ_1 、 θ_2 、 θ_3 、 θ_4 は、それぞれ基準辺と第二辺のなす角度(θ_1)、基準辺と第三辺のなす角度(θ ₂)、第二辺と第四辺のなす角度(θ ₃)、第 三辺と第五辺のなす角度($heta_4$)を示す)が $1\,1\,0\,\sim\,1\,6\,0$ °の範囲であるとと もに、基準辺の長さ(A)と、第四辺と第五辺の最大離隔長さ(B)とが、0. 3B≦A≦0. 7Bの関係を満たすことを特徴とするものである。以下、本発明 の実施の形態について具体的に説明する。

【0015】 図1(a)~図1(c)は、本発明のセラミックフィルタの一実施形態を示す図面であり、図1(a)は斜視図、図1(b)は図1(a)のP部拡大図、図1(c)は第一特定主流路の拡大図である。本実施形態のセラミックフィルタ1は、一方の端面4aから他方の端面4bまで貫通する主流路3が複数形成された多孔質体2と、主流路3の内壁面に配設された濾過膜5とから構成されている。また、主流路3の断面形状が所定のパターンで列状に配列されており、多孔質体2の外周面6を含む部分には、第二特定主流路3bが外部空間と連通するようにスリット状の補助流路10が形成され、第二特定主流路3bは、その両端面の開口部(図1(b)においては、一方の端面の開口部11のみ示す)において封止部7が形成されることにより封止されている。

【0016】 図1 (a) ~図1 (c) に示すセラミックフィルタ1を用いて、

液体・ガス等の流体の濾過して浄化する場合には、浄化すべき流体(被浄化流体)を、主流路3の一方の端面4a側の開口部11から流入させ、多孔質体2の内部を透過させることにより浄化し、多孔質体2の外周面6及び補助流路9の出口10から浄化流体として取り出す。

【0017】 本実施形態のセラミックフィルタ1は、第一特定主流路3a列の間に位置する隔壁8の断面形状が、所定間隔を隔てた二本の平行直線により形成される形状を包摂する形状である。隔壁8の断面形状をこのように形成することにより、主流路の断面形状に関わらずセラミックフィルタの機械的強度を向上させることができる。

【0018】 また、本実施形態のセラミックフィルタ1は、第一特定主流路3 aの断面形状が七角形であり、隔壁8を介して対向する第一特定主流路3 aの基準辺31どうしが二本の平行直線を構成するように配置されている。なお、第一特定主流路3 aの断面形状は、図1 (b)、図1 (c)に示すような七角形に限定されず、七角形以上の多角形であってもよい。更に、本実施形態のセラミックフィルタ1は、第一特定主流路3 aの断面形状である七角形以上の多角形が、図1 (c)に示すように、基準辺31の両端で交わる辺を第二辺32及び第三辺33、第二辺と、基準辺31の反対端で交わる辺を第四辺34、第三辺33と、基準辺31の反対端で交わる辺を第五辺35とした場合に、基準辺31と第二辺32のなす角度(θ_1)、基準辺31と第三辺33のなす角度(θ_2)、第二辺32と第四辺34のなす角度(θ_3)、第三辺33と第五辺35のなす角度(θ_4)が110~160°の範囲であるとともに、基準辺31の長さ(A)と、第四辺34と第五辺35の最大離隔長さ(B)とが、0.3B \leq A \leq 0.7Bの関係を満たすものである。

生率が極めて低いため、製造歩留りの向上を図ることができるとともに、製品信頼性の高いセラミックフィルタ1である。

【0020】 また、第一特定主流路の断面形状が七角形である本発明の本実施 形態であるセラミックフィルタと、五角形であるものとを比較した場合に、上述 した濾過膜の欠陥の発生率が低減される効果に加えて、密に主流路を配列するこ とができるために被浄化流体の濾過効率が極めて高いという効果をも奏する。

【0021】 本実施形態のセラミックスフィルタ1は、図1(c)に示すように θ_1 、 θ_2 、 θ_3 、 θ_4 が110~160°の範囲であるとともに、AとBとが0.3B \leq A \leq 0.7Bの関係を満たすものである。なお、濾過膜5(図1(b)参照)における亀裂等の欠陥の発生を更に抑制し、更なる歩留り向上のなされたセラミックフィルタ1(図1(a)参照)とする観点からは、 θ_1 、 θ_2 、 θ_3 、 θ_4 は120~150°の範囲であることが好ましく、130~140°の範囲であることが更に好ましい。また、同様の観点から、AとBとが0.35B \leq A \leq 0.65Bの関係を満たすことが好ましく、0.4B \leq A \leq 0.6Bの関係を満たすことが好ましく、0.4B \leq A \leq 0.6Bの関係を満たすことが好ましく、0.4B \leq A \leq 0.6Bの関係を満たすことが好ましい。

【0022】 また、図1(a)~図1(c)に示すように、本実施形態のセラミックフィルタ1においては、多孔質体2の外周面6を含む部分に、第二特定主流路3bが外部空間と連通するようにスリット状の補助流路10が形成され、第二特定主流路3bは、その両端面の開口部において封止部7が形成されることにより封止されていることが好ましい。このような所定の補助流路10が形成されてなる本実施形態のセラミックフィルタ1は、多孔質体2の中心部近傍の主流路3からの浄化流体の回収が容易となり、セラミックフィルタ1の濾過処理能力を10倍以上に飛躍的に向上させることが可能となる点において好ましい。また、セラミックフィルタ1内の流量分布、逆洗時の逆洗圧力分布を大幅に改善することができる点においても好ましい。

【0023】 本発明のセラミックフィルタの基材である多孔質体の断面形状は特に限定されず、円形、正方形、長方形、又は六角形等のものを用いることができる。但し、押出成形がし易く、焼成変形が少なく、また、ハウジングとのシールがし易い点において、断面形状が円形であることが好ましい。多孔質体は、物

理的強度、耐久性、耐食性に優れるセラミックで構成されるが、セラミックの種類は特に限定されず、例えばアルミナ、チタニア、ムライト、ジルコニア、コージェライト、又はこれらの混合物等、種々のセラミック材料の中から被濾過流体等に対する耐食性、製造容易性、コスト等、目的に応じて適宜選択すればよい。

【0024】 多孔質体を製造するに際しては、まず、骨材、焼結助剤の他、分散媒、有機バインダ、必要により界面活性剤、可塑剤等を添加し、混練してなる坏土を押出成形してなる成形体を得る。骨材は、前述のセラミック材料から選択すればよい。骨材を含む坏土を成形し、焼成することにより、骨材の粒径に応じた細孔を有する多孔質体が形成される。また、焼結助剤は、骨材どうしの結合を強化するための添加材であって、平均粒径5μm未満のセラミック粒子からなる骨材とともに坏土に添加することにより、骨材間の結合が強化され、強固な多孔質体が形成される。焼結助剤の材質も特に限定されず、例えばアルミナ、シリカ、ジルコニア、チタニア、ガラスフリット、長石、コージェライト等を用いることができる。通常は、骨材どうしの結合強度を確保し、多孔質体の細孔閉塞を防止するため、骨材及び焼結助剤の全質量に対して、10~35質量%程度添加すればよい。押出成形して得られた成形体を乾燥し、これを流路方向と垂直に所定の長さに切断した後に焼成して多孔質体を得ることができる。

【0025】 多孔質体のサイズについても限定されないが、例えば、流路方向の全長が $150\sim2000$ mm程度、多孔質体が円柱状である場合において外径 30mm ϕ 以上のものが一般的であるが、本発明においては横置きで焼成等を行う必要がある大型のもの、具体的には外径 90mm ϕ 、全長 500mm以上の大型であることが好ましい。

【0026】 多孔質体には、一方の端面から他方の端面まで貫通する複数の主流路が隔壁を隔てた状態で形成されているが、本発明においては、各主流路は無作為に形成(配列)されているのではなく、複数の主流路が並列するように配置された主流路列が複数列形成されている。主流路の孔径については、単位体積当たりの濾過面積の確保、逆洗時における堆積物の剥離し易さ、濾過流体の多孔質体中における透過抵抗の低減等の観点から被浄化流体の性状(固形分濃度、固形分の大きさ、粘度等)にあった孔径を選択すればよい。例えば、上水の濾過に使

用する場合であれば1~5mm程度であることが好ましい。また、多孔質体の強度を確保するため、全ての主流路の空隙容積が多孔質体体積の80%以下であることが好ましい。なお、本発明にいう主流路の孔径とは、主流路の被濾過流体の流路方向に垂直な断面形状における最大孔径をいうものとする。

【0027】 本発明のセラミックフィルタにおける濾過膜は、細孔径が数10μm以下の薄膜であり、多孔質体と同様のセラミックにより構成される。濾過膜は、多孔質体の主流路の内壁面にセラミックからなる骨材粒子を含むスラリーを用いて所定膜厚を有する製膜層を形成した後、焼成することにより主流路の内壁面に配設(形成)することができる。具体的には、骨材粒子を水等の分散媒中に分散し、必要に応じ有機バインダ、pH調整剤、界面活性剤等を添加することにより製膜用スラリーを調製し、従来公知の方法、例えばディップ製膜法、特公昭63−66566号公報に記載の濾過製膜法等を用いて主流路の内壁面に製膜層を形成し、乾燥した後、1300℃程度の高温で焼成すればよい。

【0028】 骨材粒子のセラミックの種類は特に限定されず、例えばアルミナ、チタニア、ムライト、ジルコニア、シリカ、スピネル、又はそれらの混合物等を用いることができる。但し、粒子径が制御された原料を入手し易く、安定な製膜層を形成でき、かつ、耐食性が高い材質(例えばアルミナ等)を用いることが好ましい。濾過膜の細孔径は骨材粒子の粒径により制御することができる。なお、濾過膜は少なくとも一層形成することが好ましく、二層以上形成してもよい。

【0029】 スリット状の補助流路は、図1(a)、図1(b)に示すように多孔質体2の焼成前又は焼成後に、ダイヤ電着カッター等の刃物により、補助流路9を形成すべき第二特定流路3bの列が外部空間と連通するように破断して形成すればよい。ここで、補助流路9に連通する第二特定流路3bについては、浄化流体への被浄化流体の混入を防止するため多孔質体2の両端面の開口部を目詰め部材等により封止して封止部7を形成する。即ち、なお、第二特定主流路3bの内壁面には、前述した濾過膜を形成する必要はない。

[0030]

【実施例】 以下、本発明を実施例により具体的に説明するが、本発明はこれら 実施例に限定されるものではない。

[0031]

(実施例1)

骨材として、粒径が $30\sim100\,\mu$ mとなるように篩い分けしたアルミナを使用し、これに、焼結助材として粒径 $0.5\sim5\,\mu$ mの長石、分散媒として水、有機バインダとしてメチルセルロースを添加し、混練して得られた坏土を押出成形することにより複数の主流路を有するハニカム状の成形体を得た。この成形体を乾燥した後、所定の長さとなるように流路方向と垂直に切断し、これを焼成することにより、内径 $180\,m$ m、流路の内径 $2.2\,m$ m、長さ $1000\,m$ m、1列に最大53個の主流路を有する主流路列を61列備えた、全主流路数が約 $220\,0$ 個のハニカム状の多孔質体を得た。なお、JIS浸漬法により測定した多孔質体の気孔率は36%、水銀圧入法により測定した平均細孔径は $13\,\mu$ mであった。

【0032】 次いで、ダイヤ電着カッターを用いて、多孔質体の流路方向の中心部に6列おきにスリット状の補助流路を形成した。補助流路の出口の幅は1.2 mmであり、補助流路の出口の縁端部はR形状に加工した。その後、乾燥及び焼成することにより、補助流路を有する多孔質体を製造した。

【0033】 次に、補助流路に連通する第二特定主流路3b(図3参照)の両端面の開口部にガラス質からなる封止部材を充填した後に焼成して封止部7を形成し、図3に示すような主流路3の断面形状の配列パターンを有する多孔質体を製造した。更に、第二特定主流路3a以外の主流路の内壁面に、膜厚が 10μ mのアルミナからなる濾過膜を形成することにより、セラミックフィルタを製造した(実施例1)。なお、実施例1のセラミックフィルタの第二特定主流路3bは、幅が2.5mm、高さが2mmの長方形、第一特定主流路3aは、 θ_1 =135°、 θ_2 =135°、 θ_3 =135°、 θ_4 =135° 、 θ_4 = θ_4 0° 、 θ_4 0

[0034]

(比較例1)

主流路の断面形状の配列パターンを、図4に示すような配列パターンとすること以外は、前述の実施例1と同様の操作によりセラミックフィルタを製造した(比較例1)。なお、比較例1のセラミックフィルタの第二特定主流路3bは、幅が2.5mm、高さが2mmの長方形、第一特定主流路3aは、幅が2.5mm、最大高さが2.4mmのホームベース状の五角形、これら以外の主流路3は、対辺が2.5mmの六角形であり、第一特定主流路3aが第二特定主流路3bと高さ方向に並列するように配置されている。

[0035]

(欠陥の調査 (不良率の測定))

図 5 に示す高圧発泡試験機 5 0 を使用して、エアーバブル法によりセラミックフィルタ 5 1 における欠陥を調査した。具体的には、実施例 1 及び比較例 1 のセラミックフィルタ 5 1 (n=6 0(但し、「n」は試料数を示す))を高圧発泡試験機 5 0 内に設置した後に液体で湿潤し、これに対して圧力を徐々に上昇させながら加圧エアーを送り込み、気孔から発泡する圧力より気孔径を算出した。この方法により、気孔径換算で 5 μ m以上の発泡が起きた主流路を欠陥主流路とし、欠陥主流路が一つでも発生した場合は、そのセラミックフィルタ 5 1 を不良としてカウントして不良率を測定した。なお、図 5 中、符号 5 2 はパッキン、符号 5 3 はバルブ、符号 5 4 はO-リングを示す。

[0036]

【表1】

	不良本数(本、n=60)	不良率(%)
美 他 例 】	2	3.3
比較例1	11	18.3

【0037】 表1に示す結果から、比較例1のセラミックフィルタに比して実施例1のセラミックフィルタの方が不良率の値が低いことが分かる。なお、比較例1において発生した不良の形態は、主として隣接主流路の直角部の膜において発生した亀裂であった。これは、直角部においては均一な膜厚で濾過膜が製膜されずに局所的に厚く製膜された箇所を生じ、その箇所において焼成時に亀裂が発

ページ: 12/E

生したためであると考えられる。従って、本発明のセラミックフィルタの優れた 特性を確認することができた。

[0038]

【発明の効果】 以上説明したように、本発明のセラミックフィルタは、複数の主流路の、被浄化流体の流路方向に垂直な断面形状が所定のパターンで列状に配列され、第一特定主流路列の間に位置する隔壁の、被浄化流体の流路方向に垂直な断面形状が所定の形状であり、第一特定主流路の、被浄化流体の流路方向に垂直な断面形状が、所定の状態で配置される所定の関係を満たす七角形以上の多角形であるため、濾過膜に亀裂等の欠陥を生ずることなく、歩留り向上のなされたセラミックフィルタである。

【図面の簡単な説明】

- 【図1】 本発明のセラミックフィルタの一実施形態を示す図面であり、図1 (a) は斜視図、図1 (b) は図1 (a) のP部拡大図、図1 (c) は第一特定主流路の拡大図である。
- 【図2】 従来のセラミックフィルタの一実施形態を示す斜視図である。
- 【図3】 実施例1のセラミックフィルタの、主流路の断面形状の配列パターンを示す拡大図である。
- 【図4】 比較例1のセラミックフィルタの、主流路の断面形状の配列パターンを示す拡大図である。
- 【図5】 高圧発泡試験機の一例を示す概略図である。

【符号の説明】

1,21,51…セラミックフィルタ、2,22…多孔質体、3…主流路、3 a …第一特定主流路、3 b…第二特定主流路、4 a…一方の端面、4 b…他方の端面、5…濾過膜、6…外周面、7…封止部、8…隔壁、9…補助流路、10…補助流路の出口、11…開口部、23…流路(セル)、31…基準辺、32…第二辺、33…第三辺、34…第四辺、35…第五辺、50…高圧発泡試験機、52…パッキン、53…バルブ、54…O-リング。

【図1】

【図3】

【図5】

【要約】

【課題】 濾過膜に亀裂等の欠陥を生ずることなく、歩留り向上のなされたセラミックフィルタを提供する。

【選択図】 図1

ページ: 1/E

特願2003-079315

出願人履歴情報

識別番号

[000004064]

1. 変更年月日

1990年 8月24日

[変更理由]

新規登録

住 所 氏 名 愛知県名古屋市瑞穂区須田町2番56号

日本碍子株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
☐ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.