- Lab 3 due Friday 11:55pm
 - TA office hour Thursday, possibly additional
 OH on Friday
- Sample midterm 1 questions
 - Review Lecture Monday
 - Solutions will be discussed and posted then
- Midterm 1 in class on Wed. (10/14)
 - Similar question topics/types as in sample
 - 50 min, close book, paper based, no aids

Midterm 1 topics

- 1. Data modeling and similarity metrics
 - Vectors, sets, strings, graphs
- 2. NLP techniques
- 3. Map-Reduce API
- 4. Exploratory Analysis using visualizations

- 3 more examples of M/R applications
- Web as a graph
 - Ways to search and rank the Web
- Link Analysis and Page Rank
 - Computing importance scores for each web page based on link structures
- Mathematics abstraction of the problem with flow equations and solutions
 - Gaussian elimination not scalable
- Matrix formulation of the problem

Rank Vector r = Eigenvector of M

The flow equations can be written

$$r = Mr$$

- The rank vector r is an eigenvector of the stochastic web matrix M
 - with corresponding eigenvalue 1

- We can now efficiently solve for
 - The method is called Power iteration

Power Iteration Example

$$y = y/2 + a/2$$

 $a = y/2 + m$
 $m = a/2$

$$r = Mr$$

Power Iteration method

- Given a web graph with N nodes, where the nodes are pages and edges are hyperlinks
- Power iteration: a simple iterative scheme
 - Suppose there are N web pages
 - Initialize: $\mathbf{r}^0 = [1/N,....,1/N]^T$
 - Iterate: $\mathbf{r}^{k+1} = \mathbf{M}\mathbf{r}^k$
 - Stop when $|\mathbf{r}^{k+1} \mathbf{r}^{k}|_1 < \varepsilon$
- $\mathbf{r^{(t+1)}}_{i} = \sum_{i \to j} \mathbf{r^{(t)}}_{i} / \mathbf{d}_{i}$ d_i is out-degree of node i
 - $|\mathbf{x}|_1 = \sum_{1 \le i \le N} |x_i|$ is the L₁ norm
 - Can use any other vector norm e.g., Euclidean norm

Power Iteration Example (cont.)

Power Iteration:

- Set $r_i = 1/N$
- 1: $r'_{j} = \sum_{i \to j} r_{i}/d_{i}$ (i.e., r' = Mr)
- 2: r=r'
- Goto 1

Random Walk Interpretation

- Imagine a random web surfer
 - At any time t, surfer is on some page P
 - At time t+1, the surfer follows an outlink from P uniformly at random
 - Ends up on some page Q linked from P
 - Process repeats indefinitely
- Let p(t) be a vector whose ith
 component is the probability that the
 surfer is at page i at time t
 - p(t) is a probability distribution on pages
 - p(t) is a link-based importance rank t->∞

PageRank: Problems

2 problems:

- (1) Spider traps (all outlinks are within the group)
 - Eventually spider traps absorb all importance

 Such pages cause importance to "leak out"

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped

 Spider traps violate the conditions needed for the random walk theorem

Microsoft becomes a spider trap

$$y$$
 1 1 3/4 5/8 0
 $a = 1$ 1/2 1/2 3/8 ... 0
 m 1 3/2 7/4 2 3

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β , follow a link at random
 - With probability 1- β , jump to some page uniformly at random
 - Common values for β are in the range 0.8 to 0.9
- Results: Surfer will teleport out of spider trap within a few time steps

Random teleports ($\beta = 0.8$)

y 7/15 7/15 1/15 a 7/15 1/15 1/15 m 1/15 7/15 13/15

Random teleports ($\beta = 0.8$)

- Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step
 - All importance becomes zero

Microsoft becomes a dead end

Dealing with dead-ends

Teleport

- Follow random teleport links with probability 1.0 from dead-ends
- Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate deadends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph