

Lista de

VETORES

FORMULÁRIO

Relações Trigonométricas

$$sen \theta = C_o/h$$
 $cos \theta = C_a/h$
 $tan \theta = C_o/C_a$
 $h^2 = C_o^2 + C_a^2$

Cinemática unidimensional

$$\Delta x = x_f - x_i \tag{1}$$

$$\Delta v = v_f - v_i \tag{2}$$

$$\Delta t = t_f - t_i \tag{3}$$

$$\overline{v} = \Delta x / \Delta t \tag{4}$$

$$\overline{a} = \Delta v / \Delta t \tag{5}$$

$$v = \lim_{\Delta t \to 0} \overline{v} \tag{6}$$

$$= \lim_{\Delta t \to 0} \Delta x / \Delta t \tag{7}$$

$$a = \lim_{\Delta t \to 0} \overline{a} \tag{8}$$

$$= \lim_{\Delta t \to 0} \Delta v / \Delta t \tag{9}$$

Fórmulas para aceleração constante:

$$v = v_0 + at \tag{10}$$

$$x - x_0 = v_0 t + a t^2 / 2 \tag{11}$$

$$v^2 = v_0^2 + 2a\Delta x \tag{12}$$

$$x - x_0 = (v_0 + v)t/2$$
 (13)

$$x - x_0 = vt - at^2/2 \tag{14}$$

Vetores

Dado um referencial com dois eixos perpendiculares x e y e dois vetores unitários $\hat{\imath}$ e $\hat{\jmath}$, cujas direções são as dos eixos coordenados, temos

$$a_x = a\cos\theta$$
 $a_y = a\sin\theta$ (15)

$$a = \sqrt{a_x^2 + a_y^2} \quad \tan \theta = a_y / a_x.$$
 (16)

Se

$$\vec{a} = a_x \hat{\imath} + a_y \hat{\jmath}, \quad \vec{b} = b_x \hat{\imath} + b_y \hat{\jmath}, \quad (17)$$

então

$$\vec{c} = \vec{a} + \vec{b} \tag{18}$$

$$= (a_x + b_x)\hat{\imath} + (a_y + b_y)\hat{\jmath}.$$
 (19)

Cinemática bi e tridimensional

$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i \tag{20}$$

$$\Delta \vec{v} = \vec{v}_f - \vec{v}_i \tag{21}$$

$$\Delta t = t_f - t_i \tag{22}$$

$$\overline{\vec{v}} = \Delta \vec{x} / \Delta t \tag{23}$$

$$\overline{\vec{a}} = \Delta \vec{v} / \Delta t \tag{24}$$

$$\vec{v} = \lim_{\Delta t \to 0} \overline{\vec{v}} \tag{25}$$

$$= \lim_{\Delta t \to 0} \Delta \vec{r} / \Delta t \tag{26}$$

$$\vec{a} = \lim_{\Delta t \to 0} \bar{\vec{a}} \tag{27}$$

$$= \lim_{\Delta t \to 0} \Delta \vec{v} / \Delta t \tag{28}$$

Movimento de projéteis

Altura máxima, trajetória e alcance horizontal:

$$H = (v_0^2 \operatorname{sen}^2 \theta) / 2g \tag{29}$$

$$y(x) = (\tan \theta_0)x - \frac{gx^2}{(2v_0^2 \cos^2 \theta_0)}$$
(30)

$$R = [v_0^2 \sec(2\theta_0)]/g \tag{31}$$

Movimento Circular Uniforme

Aceleração centrípeta e período:

$$a_c = v^2/r$$
 $T = 2\pi r/v$ (32)

Movimento Relativo

$$\vec{r}_S = \vec{r}_{S'} + \vec{r}_{SS'} \tag{33}$$

$$\vec{v}_S = \vec{v}_{S'} + \vec{v}_{SS'} \tag{34}$$

$$\vec{a}_S = \vec{a}_{S'} + \vec{a}_{SS'} \tag{35}$$

(36)

Lista 1

VETORES

- 1. Quais são as componentes a_x e a_y de um vetor \vec{a} , cujo módulo é de 5,00 se o ângulo formado entre o vetor e o semieixo x positivo é de:
 - (a) $\theta_1 = 65^\circ$, medido no sentido anti-horário?
 - (b) $\theta_2 = 138^\circ$, medido no sentido anti-horário?
 - (c) $\theta_3 = 225^\circ$, medido no sentido anti-horário?
 - (d) $\alpha_1 = 25^\circ$, medido no sentido horário?
 - (e) $\alpha_2 = 130^\circ$, medido no sentido horário?
 - (f) $\alpha_3 = 270^\circ$, medido no sentido horário?
- 2. Quais são as componentes b_x e b_y de um vetor \vec{b} , cujo módulo é de 10,00 se o ângulo formado entre o vetor e o semieixo y positivo é de:
 - (a) $\beta_1 = 20^\circ$, medido no sentido anti-horário?
 - (b) $\beta_2 = 110^\circ$, medido no sentido anti-horário?
 - (c) $\beta_3 = 225^\circ$, medido no sentido anti-horário?
 - (d) $\gamma_1 = 25^\circ$, medido no sentido horário?
 - (e) $\gamma_2 = 130^\circ$, medido no sentido horário?
 - (f) $\gamma_3 = 270^\circ$, medido no sentido horário?
- 3. Quais são as componentes b_x e b_y de um vetor \vec{b} , cujo módulo é de 10,00 se o ângulo formado entre o vetor é:
 - (a) $\delta_1 = 20^\circ$, em relação ao semieixo x negativo, medido no sentido anti-horário?
 - (b) $\delta_2 = 110^\circ$, em relação ao semieixo x negativo, medido no sentido anti-horário?
 - (c) $\delta_3 = 45^\circ$, em relação ao semieixo x negativo, medido no sentido horário?
 - (d) $\delta_4 = 95^\circ$, em relação ao semieixo x negativo, medido no sentido horário?
 - (e) $\xi_1 = 25^\circ$, em relação ao semieixo *y* negativo, medido no sentido anti-horário?

- (f) $\xi_2 = 130^\circ$, em relação ao semieixo y negativo, medido no sentido anti-horário?
- (g) $\xi_3 = 35^\circ$, em relação ao semieixo *y* negativo, medido no sentido horário?
- (h) $\xi_4 = 650^\circ$, em relação ao semieixo *y* negativo, medido no sentido horário?
- 4. Determine o módulo e o ângulo em relação ao semieixo x positivo dos vetores descritos pelas seguintes componentes:
 - (a) $a_x = 3 e a_y = 4$.
 - (b) $a_x = -3 e a_y = 4$.
 - (c) $a_x = 3 e a_y = -4$.
 - (d) $a_x = -3 e a_y = -4$.
- 5. Os vetores \vec{a} e \vec{b} são dados por

$$\vec{a} = 3\,\hat{\imath} + 5\,\hat{\jmath} \tag{37}$$

$$\vec{b} = 1\,\hat{\imath} - 1\,\hat{\jmath}.\tag{38}$$

Um terceiro vetor, \vec{c} , tem módulo 6 e faz um ângulo de -25° em relação ao semieixo x positivo. Determine o módulo e o ângulo em relação ao semieixo x positivo para os vetores:

- (a) $\vec{d} = \vec{a} + \vec{b}$.
- (b) $\vec{e} = \vec{a} \vec{b}$.
- (c) $\vec{f} = \vec{b} + \vec{c}$.
- (d) $\vec{g} = \vec{a} \vec{c}$.
- (e) $\vec{h} = \vec{b} + \vec{c}$.
- (f) $\vec{m} = \vec{b} \vec{c}$.
- (g) $\vec{n} = \vec{a} + \vec{b} + \vec{c}$.
- (h) $\vec{p} = \vec{a} + \vec{b} \vec{c}$.
- (i) $\vec{q} = \vec{a} \vec{b} + \vec{c}$.
- (j) $\vec{r} = \vec{a} \vec{b} \vec{c}$.