Analysis Qual Solutions

D. Zack Garza

December 27, 2019

Contents

1	II 2019
	. 1
	2 a
	B b
	1 2
	5 3
	1.5.1 a
	1.5.2 b
	1.5.3 c
	3 4
	1.6.1 a
	1.6.2 b
	7 5
	3 a
) b
^	
2	ring 2019
	1

1 Fall 2019

1.1 1

Cesaro mean/summation. Break series apart into pieces that can be handled separately.

1.2 a

Prove a stronger result:

$$a_n \to A \implies \frac{1}{N} \sum_{k=1}^{N} a_k \to A.$$

Idea: once N is large enough, $a_k \approx A$, and all smaller terms will die off as $N \to \infty$. See this MSE answer.

Suppose $S_k \to S$. Choose ℓ large enough such that

$$k \ge \ell \implies |S_k - S| < \varepsilon.$$

With ℓ fixed, choose N large enough such that

$$k \le \ell \implies \frac{|S_k - S|}{N} < \varepsilon.$$

Then

$$\left| \left(\frac{1}{N} \sum_{k=1}^{N} S_k \right) - S \right| = \frac{1}{N} \left| \sum_{k=1}^{N} (S_k - S) \right|$$

$$\leq \frac{1}{N} \sum_{k=1}^{N} |S_k - S|$$

$$= \sum_{k=1}^{\ell} \frac{|S_k - S|}{N} + \sum_{k=\ell+1}^{N} \frac{|S_k - S|}{N}$$

$$\to 0.$$

1.3 b

Define

$$\Gamma_n := \sum_{k=n}^{\infty} \frac{a_k}{k}.$$

Then $\Gamma_1 = \sum_k \frac{a_k}{k}$ and each Γ_n is a tail of this series, so by assumption $\Gamma_n \to 0$.

Then

$$\frac{1}{n} \sum_{k=1}^{n} a_k = \frac{1}{n} (\Gamma_0 + \Gamma_1 + \dots + \Gamma_n - \mathbf{\Gamma_{n+1}})$$

$$\to 0.$$

This comes from consider the following summation:

$$\Gamma_1: \qquad a_1 + \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_2: \qquad \frac{a_2}{2} + \frac{a_3}{3} + \cdots$$

$$\Gamma_3: \qquad \frac{a_3}{3} + \cdots$$

$$\sum_{i=1}^n \Gamma_i: \qquad a_1 + a_2 + a_3 + \cdots + a_n + \frac{a_{n+1}}{n+1} + \cdots$$

1.4 2

DCT, and bounding in the right place. Don't evaluate the actual integral!

Use the fact that $\int_0^1 \cos(tx) dt = \sin(x)/x$, then

$$\left| \frac{\partial^n}{\partial x} \sin(x) / x \right| = \left| \frac{\partial^n}{\partial x} \int_0^1 \cos(tx) \, dt \right|$$

$$= ? \left| \int_0^1 \frac{\partial^n}{\partial x} \cos(tx) \, dt \right|$$

$$= \left| \int_0^1 -t^n \sin(tx) \, dt \right| \quad \text{for } n \text{ odd}$$

$$\leq \int_0^1 |t^n \sin(tx)| \, dt$$

$$\leq \int_0^1 t^n \, dt$$

$$= \frac{1}{n+1}$$

$$< \frac{1}{n}.$$

Where the DCT is justified by noting that $f(t) = \cos(tx)$ is dominated by g(t) = 1 on [0, 1], which integrates to 1.

1.5 3

Borel-Cantelli.

Use the following observation: for a sequence of sets X_n ,

$$\limsup_n X_n = \{x \ni x \in X_n \text{ for infinitely many } n\} = \bigcap_{m \in \mathbb{N}} \bigcup_{n \geq m} X_n$$

$$\liminf_n X_n = \{x \ni x \in X_n \text{ for all but finitely many } n\} = \bigcup_{m \in \mathbb{N}} \bigcap_{n \geq m} X_n.$$

And recall

$$\prod_{n} e^{x_n} = e^{\sum_{n} x_n} \quad \text{and} \quad \sum_{n} \log(x_n) = \log\left(\prod_{n} x_n\right).$$

1.5.1 a

The Borel σ -algebra is closed under countable unions/intersections/complements, and $B = \limsup_{n} B_n$ is an intersection of unions of measurable sets.

1.5.2 b

We'll use the fact that tails of convergent sums go to zero, so $\sum_{n\geq M} \mu(B_n) \xrightarrow{M\to\infty} 0$, and $B_M :=$

$$\bigcap_{m=1}^{M} \bigcup_{n \geq m} B_n \searrow B.$$

$$\mu(B_M) = \mu\left(\bigcap_{m \in \mathbb{N}} \bigcup_{n \ge m} B_n\right)$$

$$\leq \mu\left(\bigcup_{n \ge m} B_n\right) \quad \text{for all } m \in \mathbb{N}$$

$$\to 0,$$

and the result follows by continuity of measure.

1.5.3 c

To show $\mu(B) = 1$, we'll show $\mu(B^c) = 0$.

Let
$$B_k = \bigcap_{m=1}^{\infty} \bigcup_{n=m}^{K} B_n$$
. Then

$$\mu(B_K^c) = \mu\left(\bigcup_{m=1}^{\infty} \bigcap_{n=m}^{K} B_n^c\right)$$

$$\leq \sum_{m=1}^{\infty} \mu\left(\bigcap_{n=m}^{K} B_n^c\right) \quad \text{by subadditivity}$$

$$= \sum_{m=1}^{\infty} \prod_{n=m}^{K} 1 - \mu(B_n)$$

$$\leq \sum_{m=1}^{\infty} \prod_{n=m}^{K} e^{-\mu(B_n^c)} \quad \text{by hint}$$

$$= \sum_{m=1}^{\infty} e^{-\sum_{n=m}^{K} \mu(B_n^c)}$$

$$\to 0$$

since $\sum_{n=m}^K \mu(B_n^c) \to \infty$, and we can apply continuity of measure since $B_K^c \xrightarrow{K \to \infty} B^c$.

1.6 4

Bessel's Inequality, surjectivity of Riesz map, and Parseval's Identity. Trick – remember to write out finite sum S_N , and consider $||x - S_N||$.

1.6.1 a

Claim:

$$0 \le \left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|^2 = \|x\|^2 - \sum_{n=1}^{N} |\langle x, u_n \rangle|^2$$
$$\implies \sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le \|x\|^2.$$

Proof: Let
$$S_N = \sum_{n=1}^N \langle x, u_n \rangle u_n$$
. Then

$$0 \le \|x - S_N\|^2$$

$$= \langle x - S_n, x - S_N \rangle$$

$$= \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2$$

$$\xrightarrow{N \to \infty} \|x\|^2 - \sum_{n=1}^N |\langle x, u_n \rangle|^2.$$

1.6.2 b

- 1. Fix $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.
- 2. Define

$$x \coloneqq \lim_{N \to \infty} S_N = \lim_{N \to \infty} \sum_{k=1}^{N} a_k u_k$$

3. $\{S_N\}$ Cauchy (by 1) and H complete $\implies x \in H$.

4.

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n \quad \forall n \in \mathbb{N}$$

since the u_k are all orthogonal.

5.

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2$$

by Pythagoras since the u_k are normal.

Bonus: We didn't use completeness here, so the Fourier series may not actually converge to x. If $\{u_n\}$ is **complete** (so $x = 0 \iff \langle x, u_n \rangle = 0 \ \forall n$) then the Fourier series does converge to x and $\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 = ||x||^2$ for all $x \in H$.

1.7 5

Continuity in L^1 (recall that DCT won't work! Notes 19.4, prove it for a dense subset first). Lebesgue differentiation in 1-dimensional case. See HW 5.6.

1.8 a

Choose $g \in C_c^0$ such that $||f - g||_1 \to 0$.

By translation invariance, $\|\tau_h f - \tau_h g\|_1 \to 0$.

Write

$$\|\tau f - f\|_{1} = \|\tau_{h} f - g + g - \tau_{h} g + \tau_{h} g - f\|_{1}$$

$$\leq \|\tau_{h} f - \tau_{h} g\| + \|g - f\| + \|\tau_{h} g - g\|$$

$$\to \|\tau_{h} g - g\|,$$

so it suffices to show that $\|\tau_h g - g\| \to 0$ for $g \in C_c^0$.

Fix $\varepsilon > 0$. Enlarge the support of g to K such that

$$|h| \le 1$$
 and $x \in K^c \implies |g(x-h) - g(x)| = 0$.

By uniform continuity of g, pick $\delta \leq 1$ small enough such that

$$x \in K, |h| \le \delta \implies |g(x-h) - g(x)| < \varepsilon,$$

then

$$\int_{K} |g(x-h) - g(x)| \le \int_{K} \varepsilon = \varepsilon \cdot m(K) \to 0.$$

1.9 b

We have

$$\int_{\mathbb{R}} |A_h(f)(x)| \ dx = \int_{\mathbb{R}} \left| \frac{1}{2h} \int_{x-h}^{x+h} f(y) \ dy \right| \ dx$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} \int_{x-h}^{x+h} |f(y)| \ dy \ dx$$

$$=_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{y-h}^{y+h} |f(y)| \ d\mathbf{x} \ d\mathbf{y}$$

$$= \int_{\mathbb{R}} |f(y)| \ dy$$

$$= ||f||_{1}.$$

and (rough sketch)

$$\int_{\mathbb{R}} |A_h(f)(x) - f(x)| dx = \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) dy \right) - f(x) \right| dx$$

$$= \int_{\mathbb{R}} \left| \left(\frac{1}{2h} \int_{B(h,x)} f(y) dy \right) - \frac{1}{2h} \int_{B(h,x)} f(x) dy \right| dx$$

$$\leq_{FT} \frac{1}{2h} \int_{\mathbb{R}} \int_{B(h,x)} |f(y - x) - f(x)| dx dy$$

$$\leq \frac{1}{2h} \int_{\mathbb{R}} ||\tau_x f - f||_1 dy$$

$$\to 0 \text{ by (a).}$$

2 Spring 2019

2.1 1