

(19)日本国特許庁 (JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-311997

(P2001-311997A)

(43)公開日 平成13年11月9日(2001.11.9)

(51) Int. Cl. 7	識別記号	FI	· テーマコード (参考)
G03B 19/12		G03B 19/12	2Н002
7/083	•	7/083	2H054
9/28	•	9/28	Z 2H081
11/00	e e	11/00	2H083
H04N 5/225		H04N 5/225	D 5C022
	審査請求	未請求 請求項の数5 OL	(全8頁) 最終頁に続く
(21)出願番号	特願2000-132672(P2000-132672)	(71)出願人 000000376	
		オリンパス光学	工業株式会社
(22)出願日	平成12年5月1日(2000.5.1)	東京都渋谷区幡ヶ谷2丁目43番2号 (72)発明者 樋口 達治	
	-	東京都渋谷区幡	ヶ谷2丁目43番2号 オリ
		ンパス光学工業	株式会社内
	·	(74)代理人 100058479	•
		弁理士 鈴江	武彦 (外4名)
		F ターム(参考) 2H002 CC01 JA07 2H054 AA01 CD03	
		2H081 AA02	•

(54) 【発明の名称】電子カメラ

(57)【要約】

【課題】フォーカルプレーンシャッタを内蔵する電子カメラにおいて、同シャッタから発生する摩耗粉により引起こされる画質の低下を防止する。

【解決手段】電子カメラ10のレンズ鏡筒14内に、被写体像を結像するための撮影レンズ系21、23が配設される。カメラ本体12内に、分岐光路形成するためのビームスプリッタ24と、結像された被写体像を光電変換するための撮像素子30が配設される。ビームスプリッタ24と撮像素子30との間に、IRカットフィルタ28及びローパスフィルタ29が配設される。ビームスプリッタ24とIRカットフィルタ28との間に、撮像素子30への入射光を機械的に遮断するためのフォーカルブレーンシャッタ25が配設される。撮像素子30とローパスフィルタ29との間で、保持枠43により密閉された空間が形成される。

2H083 AA04 AA09 AA26 AA32 5C022 AA13 AB01 AB12 AC42 AC51 AC52 AC54 AC78

【特許請求の範囲】

【請求項1】被写体像を結像するための撮影レンズ系 と、

結像された被写体像を光電変換するための撮像素子と、 前記撮影レンズ系と前記撮像素子との間に配置され、前 記撮像素子への入射光に光学的な処理を施すための光学 部材と、

前記撮影レンズ系と前記光学部材との間に配置され、前 記撮像素子への入射光を機械的に遮断するためのフォー カルプレーンシャッタと、を具備することを特徴とする 10 電子カメラ。

【請求項2】前記光学部材と前記撮像素子との間に実質 的に密閉された空間を形成するための枠部材を更に具備 することを特徴とする請求項1に記載の電子カメラ。

【請求項3】前記撮影レンズ系と前記光学部材との間に 配設された分岐光路形成手段を更に具備し、前記分岐光 路形成手段は、前記撮影レンズ系を通過した光束を複数 の光束に分割するためのビームスプリッタと、前記撮影 レンズ系を通過した光束の方向を変化させる位置と前記 光束を通過させる位置との間で移動可能な可動ミラー と、からなる群から選択されることを特徴とする請求項 1または2に記載の電子カメラ。

【請求項4】被写体像を結像するための撮影レンズ系

結像された被写体像を光電変換するための撮像素子と、 前記撮影レンズ系を通過した光束を複数の光束に分割す るためのビームスプリッタと、前記撮影レンズ系を通過 した光束の方向を変化させる位置と前記光束を通過させ る位置との間で移動可能な可動ミラーと、からなる群か ら選択され、前記撮影レンズ系と前記撮像素子との間に 30 カシャッタで行ったほうがよい)。 配設された分岐光路形成手段と、

前記撮影レンズ系と前記分岐光路形成手段との間に配置 され、前記撮像素子への入射光を機械的に遮断するため のフォーカルプレーンシャッタと、を具備することを特 徴とする電子カメラ。.

【請求項5】前記撮像素子へ入射する光束を制限するた めの絞りと、

前記絞りの開口面積の設定値を形成するための手段と、 前記フォーカルプレーンシャッタのシャッタ速度の設定 値を形成するための手段と、

前記シャッタ速度の設定値が同じであっても、前記絞り の開口面積の設定値に応じて、前記フォーカルプレーン シャッタを異なる態様で動作させ、所定の露光時間を得 るための手段と、を更に具備することを特徴とする請求 項1乃至4のいずれかに記載の電子カメラ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電子カメラに関し、 より具体的には、内蔵するフォーカルプレーンシャッタ 処した電子カメラに関する。

[0002]

【従来の技術】銀塩カメラ(銀塩フィルムを使用するカ メラ)として、先幕及び後幕を有するタイプのフォーカ ルプレーンシャッタを内蔵するものが知られている。銀 塩カメラでは、露光時間以外はフィルム面を遮蔽しなけ ればならないため、このフォーカルプレーンシャッタの 動作は以下のようなものとなる。

【0003】露光前は、先幕が常に遮蔽位置にあり、後 幕は退避位置にある。レリース操作により、先幕が退避 位置に移動してフィルム面が開放され、露光される。所 定時間後、退避位置にある後幕が移動してフィルム面が 遮蔽され、露光が終了する。即ち、先幕と後幕との動作 のタイミングによりシャッタ秒時が決まる。低速時(例 えば1/500SEC以上)には、先幕が退避してから 後幕が移動するが、高速時には、先幕の移動中に後幕の 移動が開始する。この場合、先幕の後尾と後幕の先頭と の間のスリット状の隙間の間隔 (大きさ) により、露光 時間が決まる(スリットシャッタモード)。

【0004】これに対して、電子カメラにおいては、光・ 電変換用の撮像素子、例えばCCDのターンオン/オフ により規定される素子シャッタにより、銀塩カメラにお ける露光時間に相当する時間を設定することができる。 しかし、次のような理由から、電子カメラにおいても、 メカシャッタが使用される。先ず、インタレースCCD の場合は、露光終了にメカシャッタの動作が必要とな る。また、プログレッシブCCDの場合は、スミア対策 上、素子シャッタで露光を完了させてから、直ちにメカ シャッタで遮蔽する必要がある(従って、露光終了もメ

【0005】例えば、特開平11-122542には、 先幕或いは後幕の一方のみを有するタイプのフォーカル プレーンシャッタを内蔵する電子カメラが開示される。 また、特開平11-218838には、絞り兼用シャッ タとして機能する多数の羽根を有するタイプのフォーカ ルプレーンシャッタを内蔵する電子カメラが開示され る。なお、上記後者の公報中には、先幕及び後幕を有す るタイプのフォーカルプレーンシャッタも使用可能であ ることが付記される。

[0006]

【発明が解決しようとする課題】従来のフォーカルプレ ーンシャッタを内蔵する電子カメラ、例えば上記2つの 公報に開示される電子カメラにおいては、同シャッタは CCDの直前に配設される。この構成は、フォーカルプ レーンシャッタの役割がCCDの撮像面を遮蔽すること にあることに由来する。この点は、銀塩カメラにおいて も同様である。

【0007】フォーカルプレーンシャッタは、高速で且 つ相当な回数作動するため、羽根同士の接触による摩耗 から発生する摩耗粉により引起こされる画質の低下に対 50 により、摩耗粉を発生させる。銀塩カメラの場合、銀塩

フィルムの寸法が大きいため、摩耗粉による画質の低下は殆ど問題となっていない。しかし、本発明者の研究によれば、電子カメラでは、摩耗粉がCCDのカバーガラスに付着すると、付着した摩耗粉が撮影した画面に黒い点として現れ、画質の低下させることが判明した。これは、CCDの撮像面が、銀塩フィルムに比べて、かなり寸法が小さいこと、カバーガラスが撮像面にかなり近接していること、等の理由による。

【0008】本発明はかかる従来技術の問題点に基づいてなされたものであり、フォーカルプレーンシャッタを 10 内蔵する電子カメラにおいて、同シャッタから発生する摩耗粉により引起こされる画質の低下を防止することを目的とする。

[0009]

【課題を解決するための手段】本発明の第1の視点は、電子カメラであって、被写体像を結像するための撮影レンズ系と、結像された被写体像を光電変換するための撮像素子と、前記撮影レンズ系と前記撮像素子との間に配置され、前記撮像素子への入射光に光学的な処理を施すための光学部材と、前記撮影レンズ系と前記光学部材と 20の間に配置され、前記撮像素子への入射光を機械的に遮断するためのフォーカルプレーンシャッタと、を具備することを特徴とする。

【0010】本発明の第2の視点は、第1の視点の電子 カメラにおいて、前記光学部材と前記撮像素子との間に 実質的に密閉された空間を形成するための枠部材を更に 具備することを特徴とする。

【0011】本発明の第3の視点は、第1または第2の 視点の電子カメラにおいて、前記撮影レンズ系と前記光 学部材との間に配設された分岐光路形成手段を更に具備 し、前記分岐光路形成手段は、前記撮影レンズ系を通過 した光束を複数の光束に分割するためのビームスプリッ タと、前記撮影レンズ系を通過した光束の方向を変化さ せる位置と前記光束を通過させる位置との間で移動可能 な可動ミラーと、からなる群から選択されることを特徴 とする。

【0012】本発明の第4の視点は、電子カメラであって、被写体像を結像するための撮影レンズ系と、結像された被写体像を光電変換するための撮像素子と、前記撮影レンズ系を通過した光束を複数の光束に分割するためのビームスプリッタと、前記撮影レンズ系を通過した光束の方向を変化させる位置と前記光束を通過させる位置との間で移動可能な可動ミラーと、からなる群から選択され、前記撮影レンズ系と前記撮像素子との間に配設された分岐光路形成手段と、前記撮影レンズ系と前記分岐光路形成手段との間に配置され、前記撮像素子への入射光を機械的に遮断するためのフォーカルプレーンシャッタと、を具備することを特徴とする。

【0013】本発明の第5の視点は、第1乃至第4のい は、本体12の外装13に固定された取付け枠41に取ずれかの視点の電子カメラにおいて、前記撮像素子へ入 50 付けられて固定される。フィルタ28、29は第2の保

射する光束を制限するための絞りと、前記絞りの開口面 積の設定値を形成するための手段と、前記フォーカルプ レーンシャッタのシャッタ速度の設定値を形成するため の手段と、前記シャッタ速度の設定値が同じであって も、前記絞りの開口面積の設定値に応じて、前記フォー カルプレーンシャッタを異なる態様で動作させ、所定の 露光時間を得るための手段と、を更に具備することを特 徴とする。

【0014】さらに、本発明に係る実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施の形態に示される全構成要件から幾つかの構成要件が省略されることで発明が抽出された場合、その抽出された発明を実施する場合には省略部分が周知慣用技術で適宜補われるものである。

[0015]

【発明の実施の形態】以下に本発明の実施の形態について図面を参照して説明する。なお、以下の説明において、略同一の機能及び構成を有する構成要素については、同一符号を付し、重複説明は必要な場合にのみ行う。

【0016】図1は本発明の実施の形態に係る電子カメラの内部構造を示す断面図である。図1図示の如くこの電子カメラ10は、カメラ本体12と、本体12の外装13の前面に着脱自在に取付けられたレンズ鏡筒14とを備える。

【0017】レンズ鏡筒14内部には、光路L1に沿って入射光側から順に、2つのズームレンズ21と、絞り22と、フォーカスレンズ23とが配設される。2つのズームレンズ21とフォーカスレンズ23とにより、被写体像を結像するための撮影レンズ系が構成される。

【0018】一方、カメラ本体12内の入口には、撮像レンズ系から入射した被写体像をCCD撮像素子30側(光路L2)と光学ファインダユニット50側(光路L3)とに分離するためのビームスプリッタ24(分岐光路形成手段)が配設される。ビームスプリッタ24と撮像素子30との間には、光路L2に沿ってシャッタ25と、2種類の光学フィルタ28、29とが配設される。

【0019】シャッタ25は、後述する態様で開閉駆動される先幕26及び後幕27を有するタイプのフォーカルプレーンシャッタからなる。フィルタ28は、赤外線をカットするためのIRカットフィルタからなり、フィルタ29は、モアレの発生を防止するためのローパスフィルタからなる。CCD撮像素子(光電変換素子)30は、撮像面30aに結像された入射した被写体像を光電変換し、電気信号として出力する。

【0020】ビームスプリッタ24及びシャッタ25は 第1の保持枠42内に保持される。第1の保持枠42 は、本体12の外装13に固定された取付け枠41に取

6

持枠43内に保持され、第2の保持枠43により、フィルタ29と撮像素子30との間に、塵埃等の侵入を防ぐ 実質的に密閉された空間が形成される。第2の保持枠4 3は、第1の保持枠42は取付けられて固定される。

【0021】第2の保持枠43の端部には第1のプリント基板44が配設され、ここに撮像素子30が実装される。更に、第1のプリント基板44に対して直角をなすように、保持枠42、43の下側には、第2のプリント基板45が配設される。

【0022】ビームスプリッタ24により光路L2から 10 分岐された光路L3に対応して、光学ファインダユニット50が第1の保持枠43に取付けられる。光学ファインダユニット50は、直角に折り曲げられたファインダ枠51の両端に配設されたレンズ52及び接眼レンズ54と、ファインダ枠51の折り曲げ部に配設されたミラー53とを有する。ビームスプリッタ24により側に分離された光束は、これ等の光学部材52、53、54を介してカメラ本体12の背面のファインダ窓55に導かれる。

【0023】カメラ本体12の背面の中央には、画像表 20 示して D15 が配設される。画像表示して D15 は、記 録モード時には撮影ファインダとして、再生モード時に は記録済みの撮影画像の再生モニタとして使用される。 【0024】前述の如く、フォーカルプレーンシャッタ 25は、高速で且つ相当な回数作動するため、羽根(先 幕26及び後幕27)同士の接触による摩耗により、摩 耗粉を発生させる。この点に関し、本実施の形態に係る 電子カメラ10においては、シャッタ25は、撮像素子 30から離れて、フィルタ28、29よりも入射光側に 配設される。しかも、第2の保持枠43により、フィル 30 タ29と撮像素子30との間に、塵埃等の侵入を防ぐ実 質的に密閉された空間が形成される。このため、摩耗粉 が撮像素子30のカバーガラスに付着するのを防止する ことができ、従って、付着した摩耗粉が撮影した画面に 黒い点として現れ、画質の低下させる現象を回避するこ とができる。

【0025】図2は電子カメラ10内の回路を中心に全体の構成示すプロック図である。

【0026】撮影の対象である被写体の光像は撮影レンズ系21、23を介して取り込まれ、CCD撮像素子30上に結像される。この際、設定条件や撮影環境に応じて、ズームレンズ21、絞り22、フォーカスレンズ23が、駆動制御部31の制御下で、夫々ズームモータ32、絞りアクチュエータ33、及びAF(オートフォーカス)モータ34によって駆動される。また、シャッタ25の先幕26及び後幕27は、駆動制御部35の制御下で、夫々先幕アクチュエータ36及び後幕アクチュエータ37によって駆動される。各アクチュエータ33、36、37はモータとソレノイドとの組み合せにより構成される。

【0027】 撮像素子30は、撮像面30aに結像された入射した被写体像を光電変換し、電気信号として出力する。 撮像素子30からの信号は、信号処理を行う撮像回路63を介してA/D(アナログ/デジタル)変換回路64に入力される。 A/D変換回路64からの信号は、AE(自動露光)/AF(自動焦点)回路65を介してシステムコントローラ61に入力されると共に、バス62を介して内蔵メモリ66に入力される。

【0028】内蔵メモリ66はバス62を介してシステムコントローラ61に接続される。内蔵メモリ66に格納された画像データは、圧縮処理された後、バス62からI/F(インターフェース)69を介して、カードスロット内のメモリカード68に記録される。この際、入力された画像データは、システムコントローラ61の制御により、メモリカード68に記録可能な信号に変換される。

【0029】また、バス8には、VRAM(ビデオRAM)71、駆動制御部72を介して画像表示LCD15が接続される。撮像素子30或いはメモリカード68から供給され、内蔵メモリ66に格納された画像データは、駆動制御部72を介して画像表示LCD26に送られ、映像として再生表示される。

【0030】システムコントローラ61にはまた、操作部73が接続される。操作部73は種々の操作ボタン及び操作キーを含む。操作部73を介してシステムコントローラ61に操作指令が入力され、本電子カメラの動作が設定される。

【0031】システムコントローラ61には更に、ストロボ、ストロボ制御回路、ストロボコンデンサ等を含むストロボ発光部74が接続される。

【0032】次に、シャッタ駆動制御部35及びシステムコントローラ61の制御下で行われる、電子カメラ10の撮影モードにおけるシャッタ25の動作について詳述する。図3及び図4は、夫々低速シャッタ時(例えば1/500msec以上)及び高速シャッタ時(例えば1/500msec未満)のシャッタ25の動作シーケンスを示すタイミングチャートである。図5(a)、

【0033】 先幕26及び後幕27の夫々は、上端部側が夫々のアクチュエータ36、37のモータにより駆動されるロールにより巻き取られ、下端部側がばねにより駆動されるロールにより巻き取られるように構成される。 先幕26及び後幕27は、モータ側のロールに巻き取られてチャージ状態となり、夫々のアクチュエータ3506、37のソレノイドがオフされると、リリースされて

(5)

8

高速度でばね側のロールに巻き取られる。

【0034】チャージ状態において、先幕26は撮像素子30の撮像面30aを遮蔽する閉鎖状態となり、後幕27は撮像面30aを遮蔽しない開放状態となる。逆に、リリース状態において、先幕26は撮像素子30の撮像面30aを遮蔽しない開放状態となり、後幕27は撮像面30aを遮蔽する閉鎖状態となる。即ち、先幕26及び後幕27は、チャージ状態及びリリース状態において、閉鎖状態と開放状態とが全く逆となるように設定される。

【0035】図5(a)は撮影モードの初期に設定されるセットアップ状態を示し、ここで、先幕26及び後幕27は共に撮像面30aを遮蔽しない開放状態にある(先幕26はリリース状態、後幕27はチャージ状態)。このような状態で、撮像素子30を使用して、画像表示LCD15上での被写体のモニタリングや、AE(自動露光)/AF(自動焦点)処理のための測光が行われる。図5(b)はレリーズSW(スイッチ)がオンされる直前のレディ状態を示し、ここで、先幕26は撮像面30aを遮蔽する閉鎖状態にあり、後幕27は撮像の面30aを遮蔽しない開放状態にある(先幕26及び後幕27は共にチャージ状態)。

【0036】図3図示の如く、低速シャッタ時において、図5(b)図示のレディ状態からレリーズSWがオンされると、先ず、先幕26がリリースされ、撮像面30aが開放される。また、これと概ね同期して、素子シャッタ(撮像素子30のターンオン/オフにより規定される)がオンされ、撮像が開始される。予め設定された所定の撮像時間が経過すると、後幕27がリリースされ、撮像面30aが遮蔽される。その後、読み出しのた30めに撮像素子30の信号の転送が行われる。即ち、この場合、素子シャッタのオンからメカシャッタ25による遮蔽の間の期間により、銀塩カメラにおける露光時間に相当する時間(以下、露光時間という)が決まる。

【0037】一方、図4図示の如く、高速シャッタ時には、図5 (b) 図示のレディ状態において既に素子シャッタがオン状態とされる。レディ状態からレリーズSWがオンされると、先ず、先幕26がリリースされると共に、先幕26の移動中に後幕27がリリースされ、後幕27の移動が開始する。換言すると、先幕26及び後幕4027が幾分のタイムラグを以ってリリースされ、並行して走行しながら撮像面30aの露光が行われる(図6

(a))。後幕27により撮像面30aが遮蔽されると(図6(b))、露光が終了する。その後、読み出しのために撮像素子30の信号の転送が行われる。即ち、この場合、先幕26の後尾と後幕27の先頭との間のスリット状の隙間25aの間隔(大きさ)により、銀塩カメラにおける露光時間に相当する時間(以下、露光時間という)が決まる(スリットシャッタモード)。

【0038】ところで、本発明に係る電子カメラにおい 50 くなる。即ち、露光時間Tは、絞り22の開口径Dの影

ては、従来の電子カメラに比べてシャッタ25が撮像素子30の撮像面30aから離れた位置に配置される。例えば、本実施の形態の電子カメラ10の光学部品の配列は、図9図示のようなものであるのに対して、これ等の光学部品を従来の電子カメラの構造に従って配置すると図8図示のような配列となる。このため、従来の構造に比較して、絞り22の開口面積(開口径)の影響を強く受けるようになり、高速シャッタ時のスリットシャッタモードにおいて、同一のシャッタ速度でも、絞り22の間口径によって、撮像面の露光時間が大きく異なってくる。以下、この点ついて説明する。

【0039】図7は絞りの開口径と露光時間との関係を説明するための図である。図7において、撮像素子30の撮像面30aの直前の位置P1は、図8図示の従来の構造の場合におけるシャッタ25の位置を示し、撮像面30aから離れた位置P2は、図9図示の本実施の形態におけるシャッタ25の位置を示す。

【0040】高速シャッタ時のスリットシャッタモードにおいて、撮像面30aの露光時間Tは、次式(1)の式で求められる。ここで、Sはスリット25aの幅、v」はシャッタ速度(先幕26及び後幕27の走行速度であって、両幕の速度は等しい)、dはシャッタ25(位置P1またはP2)における光束の径を表す。

【0041】T=(S+d)/v …(1) また、光束の径dは、次式(2)の式で求められる。ここで、fはズームレンズ21の焦点距離(ズームレンズ21から撮像面30aまでの距離)、xはズームレンズ21からシャッタ25(位置P1またはP2)までの距離、Dは絞り22の開口径を表す。

【0042】 d=(f-x) D/f …(2) 図8図示の従来の構造のように、シャッタ25が撮像面30aの直前の位置P1にある場合、式(2)において、距離xは焦点距離fと近い値となるため、絞り22の開口径Dの大小に関わらず、シャッタ25における光束の径dは非常に小さい値となる。この場合、式(1)において、光束の径dはスリット25aの幅Sに対して十分小さいため、露光時間Tを決める要素として、スリット25aの幅Sとシャッタ速度vとが支配的となる。即ち、露光時間Tは、絞り22の開口径Dの影響をあまり受けない。

【0043】これに対して、図9図示の本実施の形態の構造のように、シャッタ25が撮像面30aから離れた位置P2にある場合、式(2)において、距離xは焦点距離fに比べて小さい値となるため、シャッタ25における光束の径dはかなり大きな値となる。この場合、式(1)において、光束の径dはスリット25aの幅Sに対して小さくない値となり、しかも絞り22の開口径Dの変化に依存して光束の径dは大きく変化するため、露光時間Tを決める要素として、光束の径dの影響が大きくなる。即ち、軽光時間Tは、絞り22の関口径Dの影

響を大きく受けるようになる。

【0044】例えば、図7の右側には、誇張した形で、 絞り22の開口径をF2、F4に設定した場合の、位置 P2における光束の径d2、d4と、スリット25aの 幅Sとの関係が示される。同図図示の如く、光束の径 d 2、d4が、スリット25aの幅Sの夫々約4倍、2倍 であるとすると、シャッタ速度vが同じあっても、絞り 22の開口径をF2、F4に設定した場合の撮像面30 aの露光時間T2、T4は、式(1)から5:3の比と なるように大きく異なってしまう。

【0045】かかる問題点を解消するため、本実施の形 態に係る電子カメラ10においては、シャッタ駆動制御 部35が、システムコントローラ61で形成される絞り 22の開口面積の設定値と、シャッタ25のシャッタ速 度の設定値に応じて、先幕26及び後幕27の駆動を制 御し、撮像面30aの露光時間が、シャッタ速度の設定 値により得るべき所定の露光時間となるようにする。即 ち、シャッタ駆動制御部35は、シャッタ速度の設定値 が同じ場合でも、先幕26及び後幕27を、絞り22の 開口面積の設定値に応じて、異なる態様で動作させ、所 20 定の露光時間を得る。これにより、上述のように、従来 の電子カメラに比べてシャッタ25が撮像素子30の撮 像面30aから離れた位置に配置されることによる、問 題を解消することができる。

【0046】図10及び図11は本発明の別の実施の形 態に係る電子カメラの光学部品の配列を示す図である。 【0047】図10図示の実施の形態においては、シャ ッタ25は、ビームスプリッタ24よりも入射光側に配 設される。図11図示の実施の形態においては、光学フ ァインダへの分岐光路を形成するための分岐光路形成手 30 段として、ビームスプリッタ24に代えてクリックリタ ーンミラー80が配設される。ビームスプリッタ24 は、撮影レンズ系を通過した光束の方向を光学ファイン グ側へ変化させる位置Prと、光束を撮像素子30側へ 通過させる位置Psとの間で移動可能となる。

【0048】図10及び図11図示の実施の形態におい ても、シャッタ25は、撮像素子30から離れて、フィ ルタ28、29よりも入射光側に配設されるため、フォ ーカルプレーンシャッタ25からの摩耗粉が撮像素子3 0の撮像面に付着するのを防止することができ、従っ 40 で、画質の低下を回避することができる。なお、これ等 実施の形態においても、図1図示の実施の形態のよう に、適当な保持枠により、撮像素子30とその直前の光 学部材(ここではフィルタ29)との間に、塵埃等の侵 入を防ぐ実質的に密閉された空間を形成することが望ま LV.

【0049】なお、上述の実施の形態においては、フォ ーカルプレーンシャッタ25として、先幕26及び後幕 27を有するタイプのシャッタ25が例示されるが、本 発明は、一枚のみの幕(羽根)を有するタイプや、多数 50 25 a:スリット状の隙間

の羽根を有するタイプのフォーカルプレーンシャッタに も適用することができる。

【0050】その他、本発明の思想の範疇において、当 業者であれば、各種の変更例及び修正例に想到し得るも のであり、それら変更例及び修正例についても本発明の 範囲に属するものと了解される。

[0051]

【発明の効果】本発明によれば、フォーカルプレーンシ ャッタを内蔵する電子カメラにおいて、同シャッタから 10 発生する摩耗粉により引起こされる画質の低下を防止す ることができる。

【図面の簡単な説明】

【図1】本発明の実施の形態に係る電子カメラの内部構 浩を示す断面図

【図2】図1図示の電子カメラ内の回路を中心に全体の 構成示すプロック図。

【図3】図1図示の電子カメラにおける、低速シャッタ 時のシャッタの動作シーケンスを示すタイミングチャー ١.

【図4】図1図示の電子カメラにおける、高速シャッタ。 時のシャッタの動作シーケンスを示すタイミングチャー

【図5】(a)、(b)は、図1図示の電子カメラにお ける、低速及び高速シャッタ時に共通のセットアップ状 態及びレディ状態における先幕及び後幕と撮像素子の撮 像面との関係を示す図。

【図6】(a)、(b)は、図1図示の電子カメラにお ける、高速シャッタ時の先幕及び後幕と撮像素子の撮像 面との関係を示す図である。

【図7】絞りの開口径と露光時間との関係を説明するた

【図8】図1図示の光学部品を従来の電子カメラの構造 に従って配置して示す図。

【図9】図1図示の電子カメラの光学部品の配列を示す

【図10】本発明の別の実施の形態に係る電子カメラの 光学部品の配列を示す図。

【図11】本発明の更に別の実施の形態に係る電子カメ ラの光学部品の配列を示す図。

【符号の説明】

10:電子カメラ

12:カメラ本体

14:レンズ鏡筒

15:LCD

21: ズームレンズ

22:絞り

23:フォーカスレンズ

24:ビームスプリッタ

25:フォーカルプレーンシャッタ

12

26:先幕

27:後幕

28: I Rカットフィルタ 29: ローパスフィルタ

30:CCD撮像素子(光電変換素子)

30a:撮像面

41:取付け枠

42、43:保持枠

44、45:プリント基板

50:光学ファインダユニット

【図1】

11

【図5】

【図3】

【図6】

