dual, and it is obtained by minimizing the Lagrangian $L(v,\mu)$ of Problem (P) over the variable $v \in \mathbb{R}^n$, holding μ fixed, where $L \colon \Omega \times \mathbb{R}^m_+ \to \mathbb{R}$ is given by

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v),$$

with $\mu \in \mathbb{R}_+^m$.

The two steps of the method are:

- (1) Find the dual function $\mu \mapsto G(\mu)$ explictly by solving the minimization problem of finding the minimum of $L(v,\mu)$ with respect to $v \in \Omega$, holding μ fixed. This is an unconstrained minimization problem (with $v \in \Omega$). If we are lucky, a unique minimizer u_{μ} such that $G(\mu) = L(u_{\mu}, \mu)$ can be found. We will address the issue of uniqueness later on.
- (2) Solve the maximization problem of finding the maximum of the function $\mu \mapsto G(\mu)$ over all $\mu \in \mathbb{R}^m_+$. This is basically an unconstrained problem, except for the fact that $\mu \in \mathbb{R}^m_+$.

If Steps (1) and (2) are successful, under some suitable conditions on the function J and the constraints φ_i (for example, if they are convex), for any solution $\lambda \in \mathbb{R}_+^m$ obtained in Step (2), the vector u_{λ} obtained in Step (1) is an optimal solution of Problem (P). This is proven in Theorem 50.17.

In order to prove Theorem 50.17, which is our main result, we need two intermediate technical results of independent interest involving the notion of saddle point.

The local minima of a function $J: \Omega \to \mathbb{R}$ over a domain U defined by inequality constraints are saddle points of the Lagrangian $L(v,\mu)$ associated with J and the constraints φ_i . Then, under some mild hypotheses, the set of solutions of the *Minimization Problem* (P)

minimize
$$J(v)$$

subject to $\varphi_i(v) \leq 0, \quad i = 1, \dots, m$

coincides with the set of first arguments of the saddle points of the Lagrangian

$$L(v,\mu) = J(v) + \sum_{i=1}^{m} \mu_i \varphi_i(v).$$

This is proved in Theorem 50.15. To prove Theorem 50.17, we also need Proposition 50.14, a basic property of saddle points.