Computabilità e Algoritmi - 16 Luglio 2015

Soluzioni Formali

Esercizio 1

Dimostrare che se un predicato $P(x,\bar{y})$ è semidecidibile allora $\exists x.P(x,\bar{y})$ è semidecidibile. Vale anche il contrario? Dimostrarlo o portare un controesempio.

Dimostrazione (Teorema di Proiezione):

(⇒) Se P(x, \bar{y}) è semidecidibile, allora $\exists x.P(x,\bar{y})$ è semidecidibile:

Poiché $P(x,\bar{y}) \subseteq \mathbb{N}^{(k+1)}$ è semidecidibile, per il teorema di struttura esiste $Q(t,x,\bar{y}) \subseteq \mathbb{N}^{(k+2)}$ decidibile tale che:

$$P(x,\bar{y}) \equiv \exists t.Q(t,x,\bar{y})$$

Ora consideriamo:

$$R(\bar{y}) \equiv \exists x.P(x,\bar{y}) \equiv \exists x.\exists t.Q(t,x,\bar{y}) \equiv \exists w.Q((w)_{1},(w)_{2},\bar{y})$$

Poiché Q è decidibile e la funzione di codifica è computabile, R è l'esistenziale di un predicato decidibile, quindi per il teorema di struttura R è semidecidibile.

(⇐) Il contrario NON vale:

Controesempio 1: Consideriamo $P(x,y) \equiv x \in W_x$ (il predicato di halting).

- P(x,y) non è semidecidibile (altrimenti K sarebbe semidecidibile)
- Tuttavia $Q(y) \equiv \exists x. P(x,y) \equiv \exists x. (x \in W_x)$ è costantemente vero poiché $K \neq \emptyset$, quindi Q è decidibile.

Controesempio 2 (meno degenere): Consideriamo $P(x,y) \equiv (y > x) \land (y \notin W_x) \in Q(y) \equiv \exists x.P(x,y).$

Con e_0 indice della funzione sempre indefinita, per ogni $y > e_0$ abbiamo $y \notin W_{e0}$, quindi Q(y) è vero per $y > e_0$. Questo rende Q decidibile.

Tuttavia P(x,y) non è semidecidibile: se lo fosse, potremmo semidecidere $y \notin W_x$ per y > x, il che contraddice il fatto che \bar{K} non è semidecidibile. \Box

Esercizio 2

Dimostrare che un insieme A è r.e. se e solo se $A \leq_m K$.

Dimostrazione:

(⇒) Se A è r.e., allora A \leq_m K:

Se A = \emptyset , allora A \leq_m K tramite qualsiasi funzione costante.

Se A $\neq \emptyset$, sia $a_0 \in A$ fissato. Poiché A è r.e., esiste sc_a computabile:

$$sc_a(x) = \{1 \text{ se } x \in A\}$$

{↑ altrimenti

Definiamo la funzione di riduzione:

$$f(x) = \{x \text{ se } x \in A$$

{a₀ altrimenti

Per il teorema SMN, possiamo costruire f computabile. Verifichiamo:

- Se $x \in A$: $f(x) = x e x \in A \Longrightarrow sc_a(x) \downarrow \Longrightarrow x \in W_x$ (usando l'indice che calcola sc_a)
- Se $x \notin A$: $f(x) = a_0$ e $a_0 \in A \Longrightarrow sc_a(a_0) \downarrow \Longrightarrow a_0 \in W_{a0}$

(⇐) Se A ≤_m K, allora A è r.e.:

Esiste f: $\mathbb{N} \to \mathbb{N}$ totale computabile tale che:

$$\forall x \in \mathbb{N}: x \in A \iff f(x) \in K$$

Poiché K è r.e., esiste sck computabile:

$$sc_k(y) = \{1 \text{ se } y \in K\}$$

{↑ altrimenti

Definiamo:

$$SC_a(x) = SC_k(f(x))$$

Questa è computabile per composizione e:

$$x \in A \iff f(x) \in K \iff sc_k(f(x)) \downarrow \iff sc_a(x) \downarrow$$

Quindi A è r.e.

Esercizio 3

Studiare la ricorsività dell'insieme $A = \{x \in \mathbb{N} : \exists y \in E_x \exists z \in W_x : x = y * z\}.$

Analisi:
$$A = \{x \in \mathbb{N} : \exists y \in E_x . \exists z \in W_x . x = y * z\}$$

L'insieme A contiene gli indici x tali che x può essere espresso come prodotto di un elemento del codominio di ϕ_x e un elemento del dominio di ϕ_x .

Semidecidibilità di A: A è semidecidibile. Infatti:

$$SC_a(x) = 1(\mu w. \exists y, z, t_1, t_2. y * z = x \land S(x, (w)_1, y, t_1) \land H(x, z, t_2))$$

dove S(x,u,v,t) verifica se $\varphi_x(u) = v$ in t passi e H(x,z,t) verifica se $\varphi_x(z) \downarrow$ in t passi.

Non ricorsività di A: Dimostriamo $K \leq_m A$. Definiamo g(u,v) tramite SMN:

$$g(u,v) = \{u \cdot v \text{ se } u \in K \text{ e } v = u\}$$

{\frac{1}{}} altrimenti

Per SMN, esiste s: $\mathbb{N} \to \mathbb{N}$ tale che $\phi_{s(u)}(v) = g(u,v)$.

Verifichiamo la riduzione s: $\mathbb{N} \to \mathbb{N}$:

- Se $u \in K$: $\phi_{s(u)}(u) = u \cdot u$, quindi $u \in E_{s(u)}$, $u \in W_{s(u)}$, e $s(u) = u \cdot u$, quindi $s(u) \in A$
- Se $u \notin K$: $\phi_{s(u)}$ è sempre indefinita, quindi $E_{s(u)} = W_{s(u)} = \emptyset$, quindi $s(u) \notin A$

Complemento Ā: Ā non è semidecidibile, altrimenti A sarebbe ricorsivo.

Conclusione:

- A è semidecidabile ma non ricorsivo
- Ā non è semidecidibile □

Esercizio 4

Studiare la ricorsività dell'insieme B = $\{x \in \mathbb{N} : |W_x \setminus E_x| \ge 2\}$.

Analisi: B = $\{x \in \mathbb{N} : |W_x \setminus E_x| \ge 2\}$ contiene gli indici per cui il dominio contiene almeno 2 elementi che non sono nell'immagine.

Saturazione: B è saturato: B = $\{x \mid \varphi_x \in \mathcal{B}\}\ dove\ \mathcal{B} = \{f \in C : |dom(f) \setminus cod(f)| \ge 2\}.$

Non ricorsività per Rice:

- B $\neq \emptyset$: la funzione f(x) = 0 ha dom(f) = \mathbb{N} , cod(f) = {0}, quindi |dom(f) \ cod(f)| = $\infty \ge 2$
- B $\neq \mathbb{N}$: la funzione identità ha dom(f) = cod(f) = \mathbb{N} , quindi $|dom(f) \setminus cod(f)| = 0$

Per Rice, B non è ricorsivo.

Semidecidibilità di B: B è semidecidibile. Per verificare $x \in B$, cerchiamo due elementi nel dominio che non sono nell'immagine:

$$sc_{\beta}(x) = 1(\mu w. \exists a, b, t_1, t_2. \ a \neq b \land H(x, a, t_1) \land H(x, b, t_2) \land \forall c, v, t_3 \le (w)_3. \ S(x, c, a, t_3) \lor S(x, c, b, t_3) \rightarrow False)$$

Complemento $\bar{\mathbf{B}}$: $\bar{\mathbf{B}} = \{x \in \mathbb{N} : |W_x \setminus E_x| \le 1\}$

B non è semidecidibile (altrimenti B sarebbe ricorsivo).

Conclusione:

- B è semidecidibile ma non ricorsivo
- Ē non è semidecidibile
 □

Esercizio 5

Enunciare il secondo teorema di ricorsione. Utilizzarlo per dimostrare che esiste un indice x tale che $W_x = \{kx \mid k \in \mathbb{N}\}.$

Secondo Teorema di Ricorsione (Kleene): Per ogni funzione $f: \mathbb{N} \to \mathbb{N}$ totale e computabile, esiste $e_0 \in \mathbb{N}$ tale che $\phi_{e0} = \phi f(e_0)$.

Dimostrazione dell'esistenza dell'indice:

Definiamo g: $\mathbb{N}^2 \to \mathbb{N}$: g(x,y) = {kx se y = kx per qualche k $\in \mathbb{N}$ {\begin{align*}
1 altrimenti

Più precisamente:

$$g(x,y) = \{\mu k.|y - k\cdot x| \text{ se } \mu k.|y - k\cdot x| \cdot x = y$$

{\(\begin{align*} \text{altrimenti} \)

Per il teorema SMN, esiste s: $\mathbb{N} \to \mathbb{N}$ totale computabile tale che:

$$\phi_{s(x)}(y) = g(x,y)$$

Per costruzione:

- $W_{s(x)} = \{kx \mid k \in \mathbb{N}\}$
- $E_{s(x)} = \{kx \mid k \in \mathbb{N}\}\$ (assumendo che g sia definita appropriatamente)

Applicando il secondo teorema di ricorsione alla funzione s, esiste $e \in \mathbb{N}$ tale che:

$$\phi_e = \phi_{s(e)}$$

Quindi:

$$W_e = W_{s(e)} = \{ke \mid k \in \mathbb{N}\}$$