DIGITAL TRANSMISSION

DIGITAL TRANSMISSION (CHANNEL)

Simplified Communications Model - Diagram

Wire Channel

สัญญาณแบบไหนที่ส่งบน DIGITAL CHANNEL

ทำไมต้องมีสัญญาณ หลากหลายแบบ

เพื่อลดข้อจำกัด และ เพิ่มความสามารถในการส่ง
 ข้อมูล

a ดข้อจำกัด Error ที่อาจเกิดขึ้นกับสัญญาณ

■ เพิ่ม Bit rate ในการส่งข้อมูล

• เพิ่ม Data pattern เพื่อทั้งเลือกส่ง Data และ Control information

เราสามารถส่ง SIGNAL ที่เป็นตัวแทนข้อมูลแบบไหนได้บ้าง ใน DIGITAL CHANNEL

Line Coding

Block Coding

Line coding

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

เป็นการแทน Data element ด้วย Signal element โดยตรง

โดยมีรูปแบบการแทน ขึ้นกับ bit/signal element (r)

ทำไมต้องมีสัญญาณ หลากหลายแบบ

เพื่อลดข้อจำกัด และ เพิ่มความสามารถในการส่ง
 ข้อมูล

a ดข้อจำกัด Error ที่อาจเกิดขึ้นกับสัญญาณ

- เพิ่ม Bit rate ในการส่งข้อมูล
- เพิ่ม Data pattern เพื่อทั้งส่ง Data และ Control information

ERROR แบบใดที่เกิดกับสัญญาณ และควรหลีกเลี่ยง

Distortion (DC Component)

- Bit Synchronization
 - Lack of clk synchronization between Tx, Rx
 - Delay of signal

- ใช้ signal level -> (+,-) แทน (+, 0)
 - เพื่อลดปัญหา DC Component
- as้าง Transition เมื่อมีบิต '0', '1' ติดกันนาน ๆ
 - เพื่อลดปัญหา Bit synchronization
- แทนสัญญาณให้ r (bit/signal element) มีค่ามาก
 - เพื่อเพิ่ม Bit rate

POLAR NRZ-L AND NRZ-I SCHEMES

RS232 based protocols (Unipolar NRZ)

$$\frac{1}{2}V^2 + \frac{1}{2}(0)^2 = \frac{1}{2}V^2$$

Normalized power

การแทน data bit ด้วย signal element สามารถเลือกได้ แทนด้วย signal level แทนด้วย signal transition Ethernet (IEEE 802.3) 100Mbps

O No inversion: Next bit is 0

Inversion: Next bit is 1

POLAR RZ / POLAR BIPHASE

Ethernet networks Hard drive

ACTIVITY #8

BIPOLAR

AMI with Scrambling

a. Previous level is positive.

b. Previous level is negative.

B8ZS

Bipolar schemes: AMI and pseudoternary

T-1 and E-1 lines

MULTILEVEL

Multilevel: 2BIQ scheme

ISDN (Telephone Line)

Previous level: Previous level: positive negative

Next bits	Next level	Next level
00	+1	-1
01	+3	-3
10	-1	+1
11	-3	+3

Transition table

MULTILEVEL

MULTITRANSITION: MLT-3 SCHEME

a. Typical case

b. Worse case

c. Transition states

Block coding concept

Combining n-bit groups into a stream

Figure 4.15 Using block coding 4B/5B with NRZ-I line coding scheme

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence
0000	11110	Q (Quiet)	00000
0001	01001	I (Idle)	11111
0010	10100	H (Halt)	00100
0011	10101	J (Start delimiter)	11000
0100	01010	K (Start delimiter)	10001
0101	01011	T (End delimiter)	01101
0110	01110	S (Set)	11001
0111	01111	R (Reset)	00111
1000	10010		
1001	10011		
1010	10110		
1011	10111		
1100	11010		
1101	11011		
1110	11100		
1111	11101		

Figure 4.17 8B/10B block encoding

NRZ encoding: RS232 based protocols

Manchester encoding:

- Ethernet networks (IEEE 802.3)
- Hard drive

Differential Manchester encoding:

• token-ring networks (IEEE 802.5)

NRZ-Inverted encoding:

- USB
- Fiber Distributed Data Interface (FDDI)

2BIQ: ISDN (Telephone Line)

8B6T: 100 Mbps Ethernet

B8ZS and HDB3 : Fiber Optic

4B/5B NRZI: Ethernet 100 Mbps and FDDI

8B/10B: Gigabit Ethernet

APPLICATIONS OF LINE CODING

LINE CODING SUMMARIZE

Objective	Line Coding	Data rate
High Data rate	2B1Q 4D-PAM5	2 x Signal rate 4 channel of (2 x Signal rate)
No Error Sync Long '1'	NRZ-I, AMI, MLT-3	Signal rate
No Sync Error	RZ, Manchester, Differential Manchester	(1/2) x signal rate
	8B6T	(4/3) x signal rate
	4B/5B, 8B/10B	Require higher signal rate Data rate depends on chosen line coding technique
	B8ZS, HDB3 (AMI with Scrambling)	Signal rate 4.2