НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ВЫСШАЯ ШКОЛА ЭКОНОМИКИ

Конспект Лекций

«Дифференциальные уравнения. Первый семестр» москва 2020

Содержание

1.	Билет 1	2
	1.1. Обыкновенные Дифференциальные Уравнения	2 2 2 3
2.	Билет 2	4
	 2.1. Локальная теорема существования и единственности задачи Коши. Доказательство. 2.2. Эквивалентное интегральное уравнение 2.3. Пример неединственности 	4 4
3.	билет	5
	3.1. Теорема сжимающих отображений	5
4.	Билет	6
	4.1. Локальная теорема непрерывной зависимости от параметра	6
5.	Билет	8
	5.1. Глобальная теорема единственности	8
	5.2. Продолжение решений ОДУ	9
6.	Билет	10
		10 11
7 .		12
		12
		12 12
		13
8.		14
	8.1. Линейное ДУ	14 14
	о.2. продолжимость решении системь на весь интервал	14

1.1. Обыкновенные Дифференциальные Уравнения

$$y:I\to\mathbb{R}^d,I\in\mathbb{R}$$

Обыкновенное дифференциальное уравнение – $F(x,y(x),y'(x),\ldots,y^{(n)}(x))=0(*),$ n – порядок ур-я

$$F: \Omega \to \mathbb{R}^d, \Omega \in \mathbb{R}^{1+d(n+1)}$$

F – непрпрерывная функция

<u>Определение.</u> Решение ОДУ это $y:I\to \mathbb{R}^d:\exists y^{'},\ldots,y^{(n)}:I\to \mathbb{R}^d,(*)$ обращается в тождество при подстановке.

 $y^{(n)}(x) = \varphi(x, y(x, \dots, y^{(n-1)}(x))$ (**) — ОДУ разрешенное относительно старшей производной. Мы будем заниматься только ими.

Если
$$\left| \frac{\delta F_i}{\delta y_J^{(n)}} \right| \neq 0$$
, то локально (*) эквивалентно (**)

1.2. Сведение к системе 1-го порядка.

$$(\#) \begin{cases} z_0(x) = y(x) \\ z_1(x) = y'(x) \\ \dots \\ z_{n-1}(x) = y^{(n-1)}(x) \end{cases}$$

Или же (* * *)

$$\begin{cases} z'_{n-1} = \varphi(x, z_1, \dots, z_{n-1}) \\ z'_{n-2} = z_{n-1} \\ \dots \\ z'_0 = z_1 \end{cases}$$

Лемма

- 1) Если $y:I\to\mathbb{R}^d$ решение (**), то набор $(z_0=y,z_1=y',\dots,z_{n-1}=y^{(n-1)})$ решение (***)
- 2) Пусть $(z_0, z_1, \dots, z_{n-1})$ решение (***). Тогда $y = z_0$ решением (**) и верны формулы (#)

1.3. Задача Коши для уранения первого и высших порядков

$$\begin{cases} \dot{x}=f(t,x)\\ x(t_0)=x_0\\ t_0\in\mathbb{R},x_0\in\mathbb{R}^d\\ \text Пример \ \dot{x}=x,x(1)=2.\ \text{Решением будет}\ x=\frac{2}{e}e^t \end{cases}$$

$$\begin{cases} y^{(n)}(x) = \varphi(x, y(x, \dots, y^{(n-1)}(x)) \\ y_0(x_0) = \hat{z}_0 \\ y_1(x_0) = \hat{z}_1 \\ \dots \\ y_{n-1}(x_0) = \hat{z}_{n-1} \end{cases}, y_i \in \mathbb{R}^d \iff (**) \begin{cases} y(x_0) = \hat{z}_0 \\ \dots \\ y^{(n-1)} = \hat{z}_{n-1} \end{cases}$$

1.4. Задача Коши с параметром

$$\begin{array}{l} \lambda \in \Lambda \subset \mathbb{R}^m \\ *_{\lambda} \\ \dot{x} = F(t,x,\lambda) \\ x(t_0) = x_0(\lambda) \\ x(t,\lambda) - \text{решение } *_{\lambda} \end{array}$$

2.1. Локальная теорема существования и единственности задачи Коши. Доказательство.

$$\begin{cases} \dot{x} = F(t,x) \\ x(t_0) = x_0 \\ F: \Omega \to \mathbb{R}^n, \Omega \in \mathbb{R}^{n+1}, (t_0,x_0) \in \Omega \text{ и выполнено:} \end{cases}$$

- 1) $D = \overline{B_{\delta}}(t_0) \times \overline{B_{\epsilon}}(x_0) \subset \Omega$
- 2) $F \in C(D)(||F||_{C(D)} \le M)$
- 3) F липшицева по x на D, т.е. для $\forall (t,x), (t,y) \in D|F(t,x) F(t,y) \le L|x-y||$

Тогда существует $\tau = \tau(\delta, \epsilon, L, M)$: з.К. имеет единственное решение на $[t_0 - \tau, t_0 + \tau]$ (в конце отрезках односторонние производные)

2.2. Эквивалентное интегральное уравнение

Лемма x – непрерывн, решение задачи Коши \iff x решение: $x(t) = x_0 + \int\limits_{t_0}^t F(s,x(s))ds(**)$

Доказательство: (\Longrightarrow) Если x решение задачи Коши, то x дифференцируема, т.е. непрерывна. Тогда F(s,x(s)) непрерывн, т.е. $x\in C^1$

$$x_0 + \int\limits_{t_0}^t F(s,x(s))ds = x_0 + \int\limits_{t_0}^t \dot{x}(s)ds = x_0 + x(t) - x(t_0) = x(t)$$
 (\Longleftrightarrow) x — решение интегрального уравнения. Тогда x — непрерывн, тогда $F(s,x(s))$ непре-

 $(\Leftarrow)x$ – решение интегрального уравнения. Тогда x – непрерывн, тогда F(s,x(s)) непрерывно. Тогда $\frac{dx}{dt} = F(t,x(t))$. При этом начальное условие выполняется $x(t_0) = x_0 + \int\limits_{t_0}^t = x_0 \ \Box$

2.3. Пример неединственности

$$x(t) = t^{3}$$

$$\dot{x}(t) = 3t^{2} = 3x^{2/3}$$

$$\begin{cases} \dot{x} = 3x^{2/3} \\ x(0) = 0 \end{cases}$$

$$x_{1}(t) = t^{3}, x_{2}(t) = 0, x(t) = (t - a)^{3}$$

Другой пример:

Пусть $x: J \to \mathbb{R}^d$ – решение задачи Коши

 $I \subset J, x|_I : I \to \mathbb{R}^d$ – тоже решение

Ограниченный интервал существования

$$\dot{x}(t) = x^2 + 1$$

 $x(t) = \tan(t-c), t \in [c-\frac{\pi}{2}; c+\frac{\pi}{2}]$ (можно с константой написать, потому что можно сдвигать)

3. билет

3.1. Теорема сжимающих отображений

Пусть (X, ρ) полное метрическое пространтсво и $f: X \to X$ и существует $q < 1: \forall x, y \in \mathcal{C}$ $X\rho(f(x),f(y)) \leq q\rho(x,y)$. Тогда $\exists !z \in X: f(z)=z$

Доказательство Взять точку x и начать ее оперировать $x, f(x), f^2(x), \ldots$ тогда $\rho(f^n(x), f^m(x)) \le$ $\sum_{k=n}^{m-1} q^k d \leq \sum_{k=n}^{\infty} q^k d = q^n \cdot C, C = \frac{d}{1-q}$. Тогда эта последовательность фундаментальна. то есть она сходится.

 $f^n(x) \to z, f^{n+1}(x) \to z$. С другой стороны $f^{n+1}(x) = f(f^n(x)) \to f(z) \Longrightarrow f(z) = z$. единственность. Пусть их две. Тогда при операции их образы, а значит и они сами должны стать ближе. Противоречие.

□

3.2. Доказательство теоремы локального существования и единственности.

Доказательство нашей теоремы Часть 1:

Потребуем $\tau \leq \delta$ (У1)

 $E_I = \{x: I \to \overline{B_\epsilon}(x_0) - .\}\ I \subset [t_0 \tau, t_0 + \tau]$ - отрезок $E \subset C^0(I \to \mathbb{R}^n)$ - полное метрическое пространство, E замкнутое подмножество, тогда E полное.

Пусть
$$\Phi: E \to E: (\Phi(x))(t) = x_0 + \int_{t_0}^t F(s, x(s)) ds$$
. Тогда

- 1) φ определена(У1), поскольку $F \in C(D)$, а там ф-я определена и непрерывна и можно взять интеграл
- 2) $\Phi(x) \to C^1([t_0 \tau, t_0 + \tau] \to \mathbb{R}^n)$
- $\exists t \in \overline{B_{\epsilon}}(t_0)(\Phi(x))(t) \in \overline{B_{\epsilon}}(x_0)$. Действительно $|\Phi(x)(t) x_0| = |\int\limits_{t_0}^t F(s,x(s))ds| \le M|t_0 t| \le M|t_0 t|$ $M\tau < \epsilon$

Потребуем второе условие $au \leq \frac{\epsilon}{M}$ (У2) Значит Ф действительно из E в E. Проверим, что Ф сжимающее с q=0,5

$$x_1,x_2\in E, |\Phi(x_1)(t)-\Phi(x_2)(t)|=|\int\limits_{t_0}^t F(s,x_1(s))ds-F(s,x_2(s))|ds\leq (\text{в силу липпивости})|\int\limits_{t_0}^t L|x_1(s)-x_2(s)|ds\leq L|t-t_0|\cdot||x_1-x_2||\leq L\tau||x_1-x_2||x_1-x_2||$$

Положим $L\tau \leq 0, 5$. Тогда все ок.

Получили, что при трех условиях $\tau \leq \delta, \tau \leq \frac{\epsilon}{M}, \tau \leq \frac{1}{2L}$ Существует единственное $x \in E_I : x$ решение $x(t) = x_0 + \int_0^t F(s, x(s)) ds(**)$ по принципу сжимающего отображения. Решения зазадчи Коши на отрезке (и даже любом подотрезке) единственны.

Вторая часть:

Если $\tilde{x}: J \to \mathbb{R}^n$ – решение (*) или мы уже знаем что или (**), то $x|_{I \cap J} = \tilde{x}|_{I \cap J}$

Пусть K– любой отрезок в $I\cap J$. Тогда если x неподвижная точка $\Phi_{[t_0\tau,t_0+\tau]}$ то $x|_K,\tilde{x}|_K$ решения задачи Коши (*) на К.

По части 1 для $\Phi_K x|_K = \tilde{x}|_K$. Следовательно $x|_{I\cap J} = \tilde{x}|_{I\cap J}$

4.1. Локальная теорема непрерывной зависимости от параметра

$$*_{\lambda} \begin{cases} \dot{x} = F(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}$$

 $st_{\lambda} egin{cases} \dot{x} = F(t,x,\lambda) \\ x(t_0) = x_0(\lambda) \\ F: \Omega o \mathbb{R}^n, \Omega \in \mathbb{R}^{n+1+m}, x_0: \Psi o \mathbb{R}^n$ и выполнено:

- 1) $D = \overline{B_{\delta}}(t_0) \times \overline{B_{\epsilon}}(x_0(\lambda)) \times \overline{B_{\epsilon}}(\lambda_0) \subset \Omega, \forall \lambda \in \overline{B_{\epsilon}}(\lambda_0)x_0(\lambda) \in \overline{B_{\epsilon/2}}(x_0(\lambda_0))$
- 2) $F \in C(D), x_0 \in C(\overline{B_{\varepsilon}}(\lambda_0)(||F||_{C(D)} \leq M)$
- 3) F линейно по x на D, т.е. для $\forall (t,x,\lambda), (t,y,\lambda) \in D|F(t,x,\lambda F(t,y,\lambda)| \leq L|x-y|$

Рисунок 1 Тогда

- 0. $(*_{\lambda})$ имеет решение x_{λ} на $\overline{B_{\tau}}(t_0)$, $\tau = \tau(\delta, \epsilon/2, L, M)$ (из теоремы Существования и единственности) (почему $\epsilon/2$ см. лекция 49:50)
- 1. $x_{\lambda} \in C^0(\overline{B_{\tau}}(t_0)) \to \mathbb{R}^n$ b $\lambda \to x_{\lambda}$ непрерывно на $\overline{B_{\varepsilon}}(\lambda_0)$. (Утверждается непрерывность из диска в множество непрерывных функций)

Эквивалентно

1'.
$$x(\lambda, t) = x_{\lambda}(t), x \in C(\overline{B_{\xi}}(\lambda_0) \times \overline{B_{\tau}}(t_0))$$

Доказательство экивалентности:

 $1 \to 1'$. (t, λ) . Хотим построить окрестность, в которой мало будут отличатся функции.

- 1) $\forall \, \xi > 0 \exists \, \alpha > 0 : \forall \, \lambda' \in B_{\alpha}(\lambda) ||x_{\lambda} x_{\lambda'}|| < \frac{xi}{2}$
- 2) Сама функция x_{λ} непрерывна. Поэтому $\forall \xi \exists \beta > 0 : \forall t' \in B_{\beta}(t) |x_{\lambda}(t) x_{\lambda}(t')| < \frac{\xi}{2}$

Тогда $\forall \lambda' \in B_{\alpha}(\lambda), t' \in B_{\beta}(t)|x_{\lambda}(t) - x_{\lambda'}(t')| \leq |x_{\lambda}(t) - x_{\lambda}(t')| + |x_{\lambda}(t') - x_{\lambda'}(t')| \leq \xi$

 $1' \to 1$. Если x непрерывна на $B_{\xi}(\lambda_0) \times B_{\tau}(t_0)$. Поскольку компакт, x равномерно непрерывно. $\forall \xi \exists \gamma > 0 : \forall \lambda, \lambda' |\lambda - \lambda'| < \gamma \Longrightarrow \forall t |x(t, \lambda) - x(t, \lambda')| < \xi$

 $\forall \lambda, \lambda': |\lambda - \lambda'| < \gamma(\xi) \to ||x_\lambda - x_\lambda'||_{C^0(B_{\tau}(t_0))} < \xi$ – получается непрерывность.

Доказательство теоремы: Будем считать, что решения заданы на множестве $E = \{x:$ $\overline{B_{\tau}}(t_0) \to \overline{B_{\epsilon}}(x_0)$ – непрерывно}

 $\Phi_{\lambda}: E \to E: (\Phi_{\lambda}(x))(t) = x_0(\lambda) + \int\limits_{t_0}^t F(s,x(s),\lambda) ds$. Тогда неподвижная точка Φ_{λ} – решение задачи Коши, то есть x_{λ} . Хотим понять, как эта точка будет меняться с изменением λ .

4.2. Принцип сжимающих отображений с параметром

 $\Phi: \Lambda \times X \to X, X$ - полное метрическое, Λ – метрическое.

- 1) Ф непрерыв
- 2) Существует $q_0 < 1$: $\forall \lambda \in \Lambda \Phi_{\lambda}$ сжимающее с коэффициентом q_0 то есть $\forall x, y \in \Lambda \Phi_{\lambda}$ $X\rho(\Phi_{\lambda}(x),\Phi_{\lambda}(y)) \leq q_0\rho(x,y)$

Тогда если $z(\lambda)$ неподвижная точка Φ_{λ} , то $z:\Lambda\to X$ – непрерывно.

Доказательство: Докажем, что z непр. в λ_0 . $z_0 = z(\lambda_0)$

Рассмотрим последовательность $z_0, \Phi_{\lambda}(z_0), \Phi_{\lambda}^2(z_0), \dots$ Тогда $\rho(z_0, \Phi_{\lambda}(z_0)) = \rho(\Phi_{\lambda_0}(z_0), \Phi_{\lambda}(z_0))$.

Из непрерывности Φ_{λ} следует, что существует $U \ni \lambda_0 : \forall \lambda \in U \rho(\Phi_{\lambda_0}(z_0), \Phi_{\lambda}(z_0)) \leq \epsilon$

 $\rho(\Phi_{\lambda}^{n}(z_{0}),\Phi_{\lambda}^{m}(z_{0})) \leq \epsilon \sum_{k=n}^{m-1} q_{0}^{k} \leq \frac{\epsilon q^{n}}{1-q}$. Опять пользуемся фундаментальностью последовательности, поэтому последовательность имеет предел. $\Phi_{\lambda}^m(z_0) \to z(\lambda), m \to +\infty$. Перейдем к пределу. $\rho(\Phi_{\lambda}^n(z_0), z(\lambda)) \leq \frac{\epsilon q^n}{1-q}$. при n = 0 $\rho(z(\lambda_0), z(\lambda)) \leq \frac{\epsilon}{1-q}$

Решили, для каких отображений стоит применять принцип сжимающих отображений. Осталось проверить, что Φ непрерывно по λ

- 1) $\Phi_{\lambda}: E \to E$ непрерывно и сжимает с коэффициентом 0, 5. Дословно переносится из доказательства Теоремы существования и единственности. Только в нужные места встаить "непрерывно по λ "
- 2) Ф непрерывн.

$$\begin{split} |\Phi(\lambda,x)(t) - \Phi(\tilde{\lambda},\tilde{x})(t)| &= |x_0(\lambda) + \int_{t_0}^t F(s,x(s),\lambda) ds - x_0(\tilde{\lambda}) + \int_{t_0}^t F(s,\tilde{x}(s),\tilde{\lambda}) ds| \leq |x_0(\lambda) - x_0(\tilde{\lambda})| + \int_{t_0}^t |F(s,x(s),\lambda) - F(s,\tilde{x}(s),\tilde{\lambda}) ds| \leq \\ &\leq |x_0(\lambda) - x_0(\tilde{\lambda})| + \int_{t_0}^t |F(s,x(s),\lambda) - F(s,\tilde{x}(s),\lambda) ds| + \int_{t_0}^t |F(s,\tilde{x}(s),\lambda) - F(s,\tilde{x}(s),\tilde{\lambda}) ds| \end{split}$$

- 1) Здесь пользуемся равномерной непрерывностью $x_0(\lambda)$: Для любого $\xi \exists \alpha : |\lambda \tilde{\lambda}| < \alpha \Longrightarrow$ $|x_0(\lambda) - x_0(\lambda)| \leq \frac{\xi}{2}$
- 2) Пользуемся липшиевостью
- 3) Здесь пользуемся равномерной непрерывностью: Для любого $\xi \; \exists \; \beta : |\lambda \tilde{\lambda}| < \beta \Longrightarrow$ $|F(t,x,\lambda) - F(t,x,\tilde{\lambda})| < \xi \forall t,x$

Выражение оценивается $\leq \frac{\xi}{3} + L||x - \tilde{x}|| \cdot |t - t_0| + \xi|t - t_0| \leq \xi(\frac{1}{3} + \tau) + L\tau||x - \tilde{x}||$, где $|t - t_0|$ оценивается τ .

Теперь если потребуем еще одно доп. условие $||x - \tilde{x}|| < \xi$, то все выражение оценивается $|\Phi(\lambda,x)(t)-\Phi(\tilde{\lambda},\tilde{x})(t)| \leq \xi(\frac{1}{3}+\tau+L\tau)\forall t.$ То есть норма меньше либо равно то выражение. Значит непрерывно.

5.1. Глобальная теорема единственности

Рассмотрим з. Коши и $(t_0, x_0) \in \Omega$, $f, f'_x \in C(\Omega)$ Тогда если $x^{(1)}: I^{(1)} \to \mathbb{R}^d, x^{(2)}: I^{(2)} \to \mathbb{R}^d$ – решения з. Коши, то $x^{(1)}|_{I^{(1)} \cap I^{(2)}} = x^{(2)}|_{I^{(1)} \cap I^{(2)}}$ (причем тождественно) (!)

Доказательство: Рассмотрим $\{t \ge t_0 : x^{(1)}|_{[t_0,t]} = x^{(2)}|_{[t_0,t]}\} = A$

- 1) $t_0 \in A$
- 2) Если $t \in A$, то $\forall t' \in [t_0, t], t' \in A$
- 3) Может быть $A=[t_0,+\infty)$ Тогда $I^{(1)}=(\ldots,+\infty), I^{(2)}=(\ldots,+\infty), x^{(1)}(t)=x^{(2)}(t)$ при $t \in [t_0, +\infty)$
- Может быть $A = [t_0, \tau)$
- Может быть $A = [t_0, \tau]$

Пусть $A = [t_0, \tau)$. Если $\sup I^{(1)} = \tau$ или $\sup I^{(2)} = \tau$, то $(!) - x^{(1)}|_{I^{(1)} \cap I^{(2)}} = x^{(2)}|_{I^{(1)} \cap I^{(2)}}$ (причем тождественно) верно при $t \ge t_0$ При $t \le t_0$ разбираемся аналогично.

Пусть $\tau \in I^{(1)} \cap I^{(2)}$. Раз это не макисмум этих интервалов, то это внутренняя точка.

 $x^{(1)}(au) = \lim_{t \to \tau - 0} x^{(1)}(t) = \lim_{t \to \tau - 0} x^{(2)}(t) = x^{(2)}(au)$ (пользуясь тем, что наши решения слева совпадают, а значит и в момент времени au). Значит $au \in A$. А мы договорились, что такого не бывает.

Пусть
$$A = [t_0, \tau], x^{(1)}.x^{(2)}$$
 – реш. з. K.(1-1)
$$\begin{cases} \dot{x} = f(t, x) \\ x(\tau) = x^{(1)}(\tau) = x^{(2)}(\tau) \end{cases}$$

Значит эти два решения совпадают в маленькой окрестности. Т.е. $x^{(1)}(t)=x^{(2)}(t)$ при $t\in$ $\overline{B_{\delta}}(\tau)$.

Множество A таково что на $[t_0, \tau]$ совпадают B силу теоремы сущ. и единственности, примененной к (1-1) з. К. на отрезке с центром в τ . Значит они совпадают на $[t_0, \tau + \delta) \subset A$. Противоречие.

Ослабление условия $f'_x \in C(K)$

5.2. Продолжение решений ОДУ

Определение. Решение задачи Коши $x:I\to \mathbb{R}^n$ (I интервал) непродолжимо, если не существует $\hat{x}: J \to \mathbb{R}, I \subset J: \hat{x}|_{I} = x$

Теорема Всякое решение продолжается до непродолжимого. (Если верна теореме существования и единстевнности, то есть $f, f'_x \in C$)

Доказательство: Пусть Ξ – множество всех решений задачи Коши. Рассмотрим $J \cup_{(x:I \to \mathbb{R}^n) \in \Xi}$ I. Тогда J – открытое множество.

1. J - интервал.

Если $t \in J$, то $t \in I$ для некоторого $(x:I \to \mathbb{R}^n) \in Xi$. Тогда $[t_0,t] \subset I \subset J \Longrightarrow J =$ (inf(I), sup(J)).

2. Определим $\overline{x}: J \to \mathbb{R}^n, \overline{x}(t) = x(t),$ если $(x: I \to \mathbb{R}^n) \in \Xi, t \in I.$

Корректность:

 $x_1:I_1\to\mathbb{R}^n, x_2:I_2\to\mathbb{R}^n\in\Xi, t\in I_1\cap I_2.$ Тогда $x_1(t)=x_2(t)$ из глобальной теоремы единстевнности $(X_1|_{I_1\cap I_2}=X_2|_{I_1\cap I_2})$

 $3. \ \overline{x} \in \Xi$

Если $t\in J$, то существует $(x:I\to\mathbb{R}^n)\in Xi, t\in I$. Тогда некоторая $B_\delta(t)\subset I$ $\Longrightarrow x|_{B_\delta(t)}=\overline{x}|_{B_\delta(t)}$ $\Longrightarrow \frac{d\overline{x}}{dt}(t)=\frac{dx}{dt}(t)=f(t,x(t))=f(t,\overline{x}(t))$ $\overline{x}(t_j)=x_0$

 $4. \overline{x}$ непродолжимо.

Если нет, то существует $\tilde{x}: \tilde{I} \to \mathbb{R}^n$) $\in \Xi, J \subset \tilde{I}$. НО это противоречит $J = \bigcup_{(x:I \to \mathbb{R}^n) \in \Xi} I$

5.3. Примеры

6.1. Глобальная теорема непрерывной зависимости от параметра

Рассмотрим задачу Коши $(*_{\lambda})$

$$\begin{cases} \dot{x} = F(t, x, \lambda) \\ x(t_0) = x_0(\lambda) \end{cases}, F, F' \in C(\Omega)$$

при $\lambda=\lambda_0,\ x_{\lambda_0}$ – решение $(*_{\lambda_0}).$ Решение определено на некотором интервале, но мы выделим отрезок $I.\ x_{\lambda_0}:I\to\mathbb{R}^n$

Тогда $\exists U \ni \lambda_0$:

- 1) $\forall \lambda \in U$ решение $(*_{\lambda})$ существует на I (по глобальной теореме единственности, раз существует, то и единственно)
- 2) $x(\lambda, t) = x_{\lambda}(t), x$ непрервано на $U \times I$.

Доказательство: Основа: решаем задачу Коши на маленьких отрезках и собираем все глобальное решение из множества локальных.

Посмотрим множество точек $K=\{(t,x_{\lambda_0}(t),\lambda),t\in I\}$ – график непрерывной функции на компакте. Значит это тоже компакт.

Тогда расстояние от компакта до границы $dist(K,\partial\Omega)=\alpha>0$. Действительно, $dist(x,\partial\Omega)$ непрерывная функция, поскольку даже липшицева (если сдвинули точку x, торасстояние до любого множества не может измениться больше чем на то, что мы сдвинули). Неперывная функция на компакте достигает своего минимума, а ноль быть не может, поскольку тогда точка x лежит на границе.

Фиксируем $\epsilon = \delta = \zeta = \frac{\alpha}{4}$

To есть
$$\forall (\hat{t}, \hat{x}, \hat{\lambda}) \in K \ \overline{B_{\delta}}(\hat{t}) \times \overline{B_{\epsilon}}(\hat{x}) \times \overline{B_{\zeta}}(\hat{\lambda}) \subset \hat{K} \subset \Omega$$

Рассмотрим $\{(t,x,\lambda): dist((t,x,\lambda),K) \leq \frac{3\alpha}{4}\} = \hat{K}$ – компакт (замкнуто и ограничено). $\hat{L}\subset\Omega$.

 $||F||_{C^0(\hat{K})} \leq M, ||F'_x||_{C^0(\hat{K})} \leq L$, потому что непрерывная функция на компакте. Все 4 константы, участвующие в локальных теоремах, одинаковы для всех точек компакта K.

Вывод: $\tau = \tau(\delta, \epsilon, L, M)$ можно выбрать одним и тем же для всех точек компакта K.

Рассмотрим $\{min\ I = t_{-l} < t_{-l+1} < \dots < t_0 < t_1 < \dots < t_k = max\ I | |t_i - t_{i-1}| < \tau \}$

Рассматриваем такую последовательность задач Коши:

$$(*_i) \begin{cases} \dot{x}_i = F(t, x_i, \lambda) \\ x_i(t_{i-1}, \lambda) = \begin{cases} x_{i-1}(t_{i-1}, \lambda), & i \ge 2 \\ x_0(\lambda), i = 1 \end{cases}$$

 $(*_1)$ – задача Коши с начальным условием $x_1(t_0) = x_0(\lambda)$. При $\lambda \in U_1 \ni \lambda_0 \ x_{1\lambda}$ опеределен на $[t_0, t_1]$ (и даже немного шире, потому что расстояние между сосежними точками строго меньше τ).

В частности, $x_1(t_1, \lambda)$ непрерывно по $\lambda, x_1(t_1, \lambda_0) = x_{\lambda_0}(t_1)$.

 $(*_2)$ — задача Коши с начальным условием $x_2(t_1)=x_1(t_1,\lambda)$. Правая часть непрерывная функция, которая при $\lambda=\lambda_0$ попадает на наш компакт. То есть решения этой задачи при $\lambda\in U_2\ni\lambda_0$ определен на $[t_1,t_2]$ (и даже немного шире, потому что расстояние между соседними точками строго меньше τ). $x_2(t_2,\lambda)$ непрерывно по $\lambda,x_2(t_2,\lambda_0)=x_{\lambda_0}(t_2)$.

Замечание: $x_{1,\lambda}, x_{2,\lambda}$ — решения $*_2$. По локальной или глобальной теореме единственности $x_{1,\lambda} = x_{1,\lambda}$ на пересечении областей определения.

Весь процесс продолжается и продолжается. И в итоге...

$$\hat{x}(t)=x_i(t,\lambda),$$
 если $x_i(t,\lambda)$ определено и $t\in(\frac{t_{i-1}+t_{i-2}}{2},\frac{t_i+t_{i+1}}{2}),\lambda\in\cap U_i$

x(t) определено на $[t_0, max(I)]$. Аналогично для $t \in [min(I), t_0]$. Осталось проверить, что $\hat{x}(t, \lambda)$ – решение Коши (*)

Дейстивтельно: Уравнение: $\forall t \exists (t\beta, t+\beta) \hat{x}|_{(t\beta,t+\beta)} = x_i|_{(t\beta,t+\beta)} = x_i|_{(t\beta,t+\beta)}.x_i$ удовлетворяет уравнению в $t \Longrightarrow \hat{x}$ тоже, но с начальным условием $\hat{x}(t_0) = x_1(t_0) = x_0(\lambda)$.

Итак. доказали, что при $\lambda \in \cap U_i$ (конечное пересение) все решение $x(t,\lambda)$ существуют. Покажем, что $\hat{x}(t,\lambda)$ непрерывна.

Вщзьмем $\tilde{t} \in [t_i, t_{i+1}], i \geq 0$. Локально $\hat{x} = x_i$, тогда проверим, что x_i непрерывна по λ . Заметим. что зависимость от λ передается в каждую следующую задачу Коши и входит в уравнение. Но каждая функция непрерывн по $(t, \lambda)\square$.

6.2. Теорема о продолжении решения до границы (или за границу) компакта

 $f:\Omega\to\mathbb{R}^n, f,f_x'\in C(\Omega)$. $K\subset\Omega, (t_0,x_0)\in\Omega, (t_0,x_0)\in\Omega, x;J\to\mathbb{R}^n$ непродолжимое решение задачи Коши.

Тогда существует $T: t_0 < T < sup(J): x(J) \notin K$ при $t \in (T, sup(J))$

Замечание, если $sup(J) = +\infty$, то $T \in \mathbb{R}$

Доказательство: Если $sup(J) = +\infty$, то очевидно. Действительно, $T = max(t|(t,x) \in K)$ $sup(J) = t_{=} \in \mathbb{R}$.

Напоминание (если помним формулировку теоремы существования и единстевнности): Если $(\tilde{t}, \tilde{x}) \in \Omega$, то решение задачи Коши определено на $B_{\tau}(\tilde{t})$, причем $\tau = \tau(\epsilon, \delta, M, L)$, где эти параметры определяются так: $B = \overline{B_{\delta}}(\tilde{t}) \times \overline{B_{\epsilon}}(\tilde{x} \subset \Omega, sup_B | f | \leq M, sup | f'_x | \leq L$

Идея : если точка $(\tilde{t}, \tilde{x}) \in K$, то можем гарантировать фиксированные значения для (ϵ, δ, M, L) Рассмотрим $\rho = min_K(dist(t, x), \mathbb{R}^n \backslash \Omega) > 0$. Тогда $\tilde{K}\{(t, x) \in \mathbb{R}^{n+1} : dist((t, x), K)^{\underline{\rho}}_2\}$ – непрерывная функция принимает значения из данного замкнутого сножетсва, поэтому тоже замкнуто и $\tilde{K} \subset \Omega.\tilde{K}$ ограничено $(K \subset B_R(0, 0) \Longrightarrow \tilde{K} \subset B_{R+\rho/2}(0, 0))$. Тогда \tilde{K} компакт.

Положим $\epsilon = \delta = \frac{\rho}{4}$. Тогда $\forall \ (\tilde{t}.\tilde{x}) \in KB = \overline{B_{\delta}}(\tilde{t}) \times \overline{B_{\epsilon}}(\tilde{x} \subset \tilde{K})$

 $sup_B|f| \le sup_{\tilde{K}}|f| := M, sup_B|f'_x| \le sup_{\tilde{K}}|f'_x| := L.$

Итак $au = au_K$ можно считать одинаковым для всех $(ilde{t}, ilde{x}) \in K/$

Положим $T = t_{=} - \tau_{K}$. Если существует $t \in (\tau.t_{+}) : (\hat{t}, x|_{\hat{t}}) \in K$, то задача Коши $(*_{y})$ $\begin{cases} \dot{y} = f(t, y) \\ y(\hat{t}) = x(\hat{t}) \end{cases}$

имеет решение $y: B_{\tau}(\hat{t}) \to \mathbb{R}^n$ (теорема существования и единственности с нашей количественной оценкой).

С другой стороны, x– тоже решение задачи коши $(*_y)$

Тогда существует \overline{y} непродолжимое решение $(*_y)$

 $\overline{y}(t_0) = x(t_0) = x_0 \Longrightarrow \overline{y}$ решение (*). НО \overline{y} определено при $t = t_+$ (и равно $y(t_+)$), а \overline{x} непроддолжимое решение (*) – не определено при $t = t_+$. Противоречие с тем, что \overline{x} продолжение $\overline{y}\square$

7.

7.1. Операторы Коши

 $\dot{x}=F(t,x),F,F_x'\in C(\Omega).$ Расммотрим отображение $X_{t_0t_1}(y)=\hat{x}$ $\begin{cases} \dot{x} = F(t, x) \\ x(t_0) = y \end{cases}$ ѝ ее решение

- 1) $X_{tt} = id$
- 2) $X_{t_2t_3}X_{t_1t_2}=X_{t_1t_3}$. Если t_2 между t_1,t_3 область определения совпадает. Иначе на пересечении областей определения
- 3) $X_{st} = X_{ts}^{-1}$
- 4) $X_{ts}(y)$ непрерывно по (t,s)
- 5) X_{ts} определено на $A_{ts} \subset -$ открытое множество из глобальной теоремы непрерывной зависимости. $B_{ts}=X_{ts}(A_{ts})=A_{st}.~X_{ts}:A_{ts}\to A_{st},X_{st}\to A_{ts}$ гомеоморфизмы. Вывод: X_{ts} гомеоморфзим.

Лемма (λ -параметр.) $\dot{x}=f(t,x,\lambda), f\in C.X_{t_0t_1}^{\lambda}$ -его оператор Коши. Тогда $X_{t_0t_1}^{\lambda}(y)$ непрерывно по $(t, t_0, t_1.\lambda)$

Доказательство:

Мы решим задачу Коши: (*) $\begin{cases} \dot{x} = f(t, x, \lambda) \\ x(t_0) = y \end{cases}$. Проблема возникает в зависимости от t_0 (В доказательстве непрерывности раннее предполагали t_0 постоянным, а тут надо непрерывность по t_0 еще)

$$\begin{cases}
z(s) = x(t_0 + s) \\
\frac{ds}{ds}(s) = \dot{x}(t_0 + s) = f(t_0 + s, x(t_0, s), \lambda) = f(t_0 + s, z(s), \lambda) \\
z(0) = y
\end{cases}$$

 $z(s) = x(t_0 + s)$ $\begin{cases} \frac{ds}{ds}(s) = \dot{x}(t_0 + s) = f(t_0 + s, x(t_0, s), \lambda) = f(t_0 + s, z(s), \lambda) \\ z(0) = y \end{cases}$ $(*) \iff (**) \begin{cases} \frac{ds}{ds} f(t_0 + s, \lambda) \\ z(0) = y \end{cases}$. Посмотрим на эту систему, как на задачу коши с параметром-

 $z_{\lambda,t_0,y}(s)$ непрерывно по (λ,t_0,y,s) . Тогда $X_{t_0t_1}^{\lambda}(y)=z_{\lambda,t_0,y}(t_1-t_0)$ непрерывно.

7.2. Автономные ДУ

 $\dot{x} = f(x)$ – нет зависимости от времени

7.3. Сдвиг по времени

Лема Если x– решение автономного ДУ, то $\hat{x}(t) = x(t+a) \forall a \in \mathbb{R}$ тоже решение.

Доказательство: $\hat{x}(t) = \dot{x}(t+a) = f(x(t+a)) = f(\hat{x}(t))$

следствие Для автономного ДУ $X_{t_0t_1} = X_{t_0+a,t_1+a}$ операторы Коши зависят не от $t_0, t_1,$ а от их разности

7.4. Преобразования потока автономного ДУ

Определение. Преобразования потока автономного ДУ – это $g^t = X_{o,t}$. Свойства

1)
$$g^0 = id$$

2)
$$g^{t+s} = g^t g^s (g^t g^s = X_{0,t} X_{0,s} = X_{s,t+s} X_{0,s} = X_{0,t+s} = g^{t+s})$$

3)
$$g^{-t} = (g^t)^{-1}$$

- 4) $g^t(x)$ непрерывно по (t,x)
- 5) g^t гомеоморфзим

8.1. Линейное ДУ

 $\dot{x}=A(t)x+b(t), A(t)\in Mat_{n\times n}(\mathbb{R}), x\in \mathbb{R}^n, A,b\in C(I), I$ – интервал. Тогда выполнено условие теоремы сущ. и един. $f'_x=A$

8.2. Продолжимость решений системв на весь интервал

Теорема Пусть $A,b\in C(I)$. Тогда все решения $\dot{x}=A(t)x+b(t), A(t)\in Mat_{n\times n}(\mathbb{R})$ продолжаются на весь I

Доказательство: Пусть $[\alpha, \beta] \subset I$ Рассмотрим x(t)- решение $x(\alpha)$ определено. Докажем, что x определено на $[\alpha, \beta]$. Устремляя $\beta \to \sup I$ получим требуемое.

 $||A(t)|| \leq M, |b(t)| \leq B \forall t$ (Норма здесь значит, что применяя A к вектору, он удлинится не более чем в M раз) $\forall u |Au| \leq M|u|.M = nmax_{[t \in [\alpha,\beta]]}|a_{ij}(t)|, ||Au||_{\infty} = max|(Au)_j| \leq max_{[t \in [\alpha,\beta]]} \cdot (\sum |u_i|) \leq Mmax|u_i| = ||u||_{\infty}$

У нас будет евклидова норма $||Au||_2 \leq \tilde{M}||u||_2$

$$\frac{d}{dt}(||x||^2) = \frac{d}{dt}(\langle x, x \rangle) = 2 \langle x, \dot{x} \rangle \le 2||x||(||Ax + b||) \le 2||x||(\tilde{M}||x|| + B)$$

$$\frac{d}{dt}(||x||) = \frac{d}{2||x||} \frac{d}{dt}(||x||^2) \le \tilde{M}||x|| + B$$

Пусть R(t) = ||x(t)|| (по дороге доказали, что она дифференцируема. если норма не равняется нулю)

Тогда $S(t) = e^{-(\tilde{M}+1)t}R(t)$

$$\frac{ds}{dt} = -(\tilde{M}+1)s(t) + e^{-(\tilde{M}+1)t}\dot{R}(t) \le e^{-(\tilde{M}+1)t}(-R(t)\tilde{M}+1) + R(t)\tilde{M}+B) \le e^{-(\tilde{M}+1)t}(B-R(t)) \le e^{-(\tilde{M}+1)t}(B-e^{-(\tilde{M}+1)t}s(t)) \le e^{-(\tilde{M}+1)t}(B-e^{-(\tilde{M}+1)t}s(t)) \le e^{-(\tilde{M}+1)t}(b-e^{-(\tilde{M}+1)\alpha s(t)}).$$

Пусть $s(\alpha) = s_0$, $s_1 = 2Be^{-(\tilde{M}+1)\alpha}$, то s(t) не может превзойти $max(s_0,s_1) = \overline{s}$ (s убывает). Тогда $R(t) = e^{-(\tilde{M}+1)t}s(t) \le e^{-(\tilde{M}+1)t}\overline{s}(t)$. То есть R не может неограничено возрастать, что значит, что R определено вплоть до $\beta\Box$