

Linear Algebra

Samira Hossein Ghorban s.hosseinghorban@ipm.ir

Fall, 2021

(Department of CE

Lecture #29

1/29

Review: Inner products on real linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\ \, \bullet \ \, \langle v,v\rangle \geqslant 0 \text{ for all } v\in V.$
- $\langle v, v \rangle = 0$ if and only if v = 0.
- lacksquare $\langle cu,w
 angle = c\langle u,w
 angle$ for all $u,w\in V$ and $c\in\mathbb{R}$
- $lackbox{v} \langle rac{\mathbf{v}}{\mathbf{v}} \rangle = \langle rac{\mathbf{v}}{\mathbf{v}}, rac{\mathbf{v}}{\mathbf{v}}
 angle.$ $lackbox{v}$

Department of CE

Lecture #2

2 / 29

Review: Inner products on linear space

• The definition of the above inner product is not useful for complex vector spaces V.

• Let $0 \neq u \in V$ and $i \in \mathbb{C}$.

$$\underbrace{\langle \mathbf{i}u, \mathbf{i}u \rangle}_{-1} = \underbrace{i^2 \langle u, u \rangle}_{+} < 0.$$

$$\langle iu_1 iu_2 = i \langle u_1 iu_2 \rangle$$

$$= i i \langle u_1 u_2 \rangle$$

$$= +1 \langle u_1 u_2 \rangle$$

<7, r> e in

Review: Inner products on complex linear space

An inner product on V is a function $\langle , \rangle : V \times V \to \mathbb{R}$ such that

- $\langle v, v \rangle = 0$ if and only if v = 0.

Review: Notes

< 17: VXV -> ¢

Let V be an inner product, Then

Review: Symmetric matrices

Definition

A symmetric matrix is a square matrix that is equal to its transpose.

He Mul F)

Let $A \in M_n(\mathbb{R})$, then there is a matrix $B \in M_n(\mathbb{R})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{R}^n$.

Review: Hermitian matrices

Definition

A hermitian matrix is a square matrix, which is equal to its conjugate transpose matrix.

Let $A \in M_n(\mathbb{C})$, then there is a matrix $B \in M_n(\mathbb{C})$ such that $\langle Ax, y \rangle = \langle x, By \rangle$ for each $x, y \in \mathbb{C}^n$.

B = {\n, --, \n \} $\omega_{,\gamma} \in V \qquad T: V \to V$ $[v]_{g} = \chi \qquad A = [\tau]_{g}$ [w] = > <TV, w>= <Y,,? N) < Ax, y> = < x, \$ y> (10) < A[1] (7) >=9; <10, 9) = a; ti, ti <41 BB> = b> ~ [] 7: V -> V

[T)_g = [

 $A(v_i)_{\mathcal{B}} = (i_i \cup j_{\mathcal{A}})_{\mathcal{A}}$

< Any> = < a, Ay> = < a, Ay> = < a, Ay> = < a, Ay> = < a, Ay>

<Axiy> 5<n, Ay>

Definition
A matrix
$$A \in \mathbb{C}$$
 Hermitian i $A^{H} = A$.

< A2, y> s<1, Ay>

< A2, y> 5< n /2y>

Review: Unitary matrices

• For each $x, y \in \mathbb{F}^n$,

$$\langle \underline{U}x,\underline{U}y\rangle = \langle x,\underline{U}^*\underline{U}y\rangle . = \langle n,\gamma \rangle$$

 \bullet If U is unitary, then

$$\langle Ux, Uy \rangle = \langle x, y \rangle.$$

That means U preserves inner product.

 $\langle \alpha_1 y \rangle = \langle \cup \alpha_1 \cup y \rangle$

Review: Inner product on finite-dimensional linear spaces

- \bullet Suppose that V is finite-dimensional linear space where $B = \{v_1, \dots, v_n\}$ is an ordered basis for V.
- $oldsymbol{\circ}$ We are given a particular inner product on V.
- The inner product is completely determined by the entries of matrix G where

$$G_{ij} = \langle v_i, v_i \rangle$$
.

• Let $v, w \in V$. If $x = [v]_B$ and $y = [w]_B$, then

$$\langle v,w\rangle=y^*Gx.$$
 If $V=\mathbb{F}^n$. Then for each $x,y\in V$,

if we consider standard basis for V.

Inner product on V and change basis

- Suppose that $B = \{v_1, \dots, v_n\}$ and $B' = \{v'_1, \dots, v'_n\}$ are two bases for a linear space V.
- For each $w \in V$, $[w]_B = P[w]_{B'}$, where the *i*-th column of P is $[v'_i]_B$. So $v'_i = \sum_{r=1}^n P_{ri}v_r$.
- A matrix H as the inner product matrix respect to B':

$$\begin{aligned} H_{ij} &= \left\langle v_j', v_i' \right\rangle = \left\langle \sum_{r=1}^n P_{rj} v_r, \sum_{k=1}^n P_{ki} v_r \right\rangle \\ &= \sum_{r=1}^n \sum_{k=1}^n P_{rj} P_{ki} \left\langle v_r, v_k \right\rangle G_{kr} \\ &= (P^*GP)_{ij} \end{aligned}$$

• Consequently, $H = P^*GP$.

< M, 49 > 5

Gji s (~11 7) عنی فرد بعق دری ه ه نری فرد بعق دری ا پردائی : سرن نام ۲ ت می الماسی $= (P^*GP)_{ij}$ where G is the inner product respect to B. $Consequently, H = P^*GP$ $= \chi P G P$ $= \chi P G P P$ $= \chi P G P P$ $= \chi P G P$

<nm> = [m]BC [N]B

Review: The properties of G

- \bullet $G_{ii} > 0$, for each $1 \leq i \leq n$.
- ② G self-adjoint.
- G is invertible.
- $\det G > 0$.

Review: Is the above process reversible?

Let V in a lienar space on \mathbb{R} with dimension n with a basis B. **Question.** When a bilinear function $\langle , \rangle : V \times V \to \mathbb{F}$ such that

$$\langle v, w \rangle = y^* \overline{G} x$$

and $x = [v]_B$ and $y = [w]_B$, is an inner product for $G \in M_n(\mathbb{F})$.

Is the above process reversible?

By the definition of an inner product, we should have

- ② G is self-adjoint $(G^* = G)$.

Definition

A self-adjoint matrix $A \in M_n(\mathbb{F})$ is called

- positive definite if x + Ax > 0 for each $0 \neq \underline{x} \in \mathbb{F}^n$.
- **2** positive semi-definite if $x^T A x \ge 0$ for each $x \in \mathbb{F}^n$.

Self-adjoint matrices

Theorem

If A is a self-adjoint matrix, then an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

$$P^*AP = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}.$$

$$P_{S}(P_{i} - P_{i}) \rightarrow AP_{i} = \lambda_{i} P_{i}$$
 $< P_{i} / (O_{i} > 1)$

Tests for positive definiteness

Theorem

Each of the following tests is a necessary and sufficient condition for the self-adjoint $matrix\ A$ to be $positive\ definite$:

- All eigenvalues of A are positive.
- All upper left submatrices A_k have positive determinants.
- All pivots (without row exchanges) are positive.
- The test brings together three of the most basic ideas in the book:
 - o pivots,
 - determinants,
 - eigenvalues.

det An

• First, we show that a self-adjoint matrix Λ is positive definite if and only if all eigenvalues of A are positive.

(Department of CE.)

17/2

Proof.

• Second, we show that if all eigenvalues of self-adjoint matrix A is positive then all upper left submatrices A_k have positive determinants.

ob: det
$$A_{k} > 0 \equiv A_{k} = A_{k} =$$

E)

Lecture #29

18/2

Proof.

• Third, we show that if all upper left submatrices \underline{A}_k of self-adjoint matrix A are positive then all pivots (without row exchanges) are positive.

positive.
$$A = \bigcup_{k} DU = \begin{bmatrix} 1 & 1 & 0 \\ \hline * & 4 \end{bmatrix} \begin{bmatrix} P_{k} & 0 \\ \hline 0 & * \end{bmatrix} \begin{bmatrix} V_{k} & * \\ \hline 0 & * \end{bmatrix}$$

partment of CE \ Lecture

Proof.

• Fourth, we show that if all pivots (without row exchanges) of self-adjoint matrix A are positive then \underline{A} is positive definite.

A = LDU,
$$(x \neq 0, x \neq 0, x \neq 0)$$
 $(x \neq 0, x \neq 0, x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq 0, x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq 0, x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq 0, x \neq 0, x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq 0)$
 $(x \neq 0, x \neq$

(Department of CE

Lecture #2

20 / 29

Example

- Let $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$. The matrix A is positive semidefinite,
- The eigenvalues are $\lambda_1 = 0, \lambda_2 = \lambda_3 = 3$ (a zero eigenvalue).

Smi-positre

dat AL

Positive definite matrices

Theorem

A matrix A is positive definite if and only if there is a matrix R, possibly with dependent columns, such that $A = R^*R$.

Theorem

I matrix
$$\Lambda$$
 is positive definite if and only if there is a matrix R and R are such that R

Cholesky decomposition

ullet Every positive definite matrix A can be factored as

$$A = R^*R$$
.

where R is upper triangular with positive diagonal elements.

- R^*R is called Cholesky decomposition for A.
- \bullet R is called the Cholesky factor of A.

Positive definite square root

$$A = \underbrace{PDP^*} = (P \sqrt{D}) (\sqrt{D} P^*),$$
 where P is invertible matrix.

- So $A = PDP^* = (P\sqrt{DP^*})(P\sqrt{DP^*})$
- $P\sqrt{D}P^*$ is called **positive** definite square root of A.

Review: Positive definite and positive semi-definite matrices

Definition

A hermitian matrix $A \in M_n(\mathbb{C})$ is called

- **o** positive definite if $x^H Ax > 0$ for each $0 \neq x \in \mathbb{C}$.
- **2** positive semi-definite if $x^H Ax \ge 0$ for each $x \in \mathbb{C}$.

AIRR

A= (PDP)2

Remark

- Remark. The conditions for semidefiniteness could also be deduced from *tests for definiteness* by the following trick:
 - Add a small multiple of the identity to get a positive definite matrix

 $A + \epsilon I$.

- 2 Then let ϵ approach zero.
- **3** At ϵ they must still be nonnegative.

7£

Department of CE

Lecture #29

-26/2

Tests for positive semi-definiteness

Theorem

Each of the following tests is a necessary and sufficient condition for the self-adjoint matrix A to be positive semi-definite:

- All eigenvalues of A are non-negative.
- ② All upper left submatrices A_k have non-negative determinants.
- All pivots (without row exchanges) are non-negative.

ルAルシ。 A+e L X(A+E I) n >。 水An + extn>。 がAn + extn>。

A useful lemma for self-adjoint matrices

Lemma

Let $A \in M_n(\mathbb{F})$ be a self-adjoint matrix then there is an invertible matrix $P \in M_n(\mathbb{F})$ such that $P^*P = I$ and

- A singular value decomposition (SVD) is a generalization of this where $A \in M_{mn}(\mathbb{F})$ does not have to be self-adjoint or even square.

(Description of CE)

Lecture #20

28 / 29

AC (self-all) with

Thank You!

MAN> °

Department of CE

Lecture #29

29 / 29

$$f(n) = (x - \lambda_1)^{d_1} \cdots (n - \lambda_n)^{d_n}$$

$$P(n) = (n - \lambda_1)^{r_1} \cdots (n - \lambda_n)^{r_n}$$

AE Nn(IF)

- \(\lambda\)

¢

11

MV 10 - 40 /1.0

$$N_{i} = \prod_{w_{i}} - \lambda_{i} I \qquad N_{i} = 0$$

$$\text{If } d_{i} = W_{i} = d_{i} = v_{i} \qquad W_{i} = Z_{i} \setminus V_{i} \setminus V_{i}$$

$$R_{i} = \sum_{v_{i}} V_{i} \setminus V$$

 $V = \frac{2(v_1, T_1)}{T_1} \oplus \cdots \oplus \frac{2(v_n, A)}{T_n}$ $[+A]^{T_0}$ $[+A]^{T_0}$