TD 7 : Lemme de Borel-Cantelli

Une étoile désigne un exercice important.

Exercice 1. Soit $(A_n)_{n\geq 1}$ une suite d'événements sur un espace de probabilité Ω . On note $\liminf A_n$ l'événement

$$\bigcup_{k} \bigcap_{n \ge k} A_n$$

et on note $\limsup A_n$ l'événement

$$\bigcap_{k} \bigcup_{n > k} A_n.$$

1. Montrer que pour tout k,

$$\mathbb{P}(\bigcap_{n>k} A_n) \le \inf_{n\ge k} \mathbb{P}(A_n) \text{ et } \mathbb{P}(\bigcup_{n>k} A_n) \ge \sup_{n\ge k} \mathbb{P}(A_n).$$

2. En déduire les deux inégalités suivantes :

$$\mathbb{P}(\liminf A_n) \le \liminf \mathbb{P}(A_n) \text{ et } \mathbb{P}(\limsup A_n) \ge \limsup \mathbb{P}(A_n).$$

3. Déterminer les quantités intervenant dans 2. lorsque $\Omega = \{-1; +1\}$, $\mathbb{P}(\{-1\}) = 1/4$, $\mathbb{P}(\{+1\}) = 3/4$, $A_n = \{(-1)^n\}$.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes de même loi de Bernoulli de paramètre $p\in]0,1[:\mathbb{P}(X_n=1)=p,\,\mathbb{P}(X_n=0)=1-p.$

- 1. Montrer qu'il y a presque sûrement une infinité de n tels que $X_n = 1$.
- 2. Pour $n \in \mathbb{N}$, on définit l'événement $A_n = \{X_n = X_{n+1} = \cdots = X_{2n-1} = 1\}$. Montrer que p.s. il n'y a qu'un nombre fini de A_n qui sont réalisés.
- * Exercice 3. Loi des grands nombres L^4 Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. avec $E[X_n]=0$, et admettant un moment d'ordre 4 fini. On note $m_4:=\mathbb{E}[(X_1)^4]<+\infty$, et $\sigma^2=\mathbb{E}[(X_1)^2]<+\infty$. On pose $S_n=X_1+\ldots+X_n$.
 - 1. Calculer $E[(S_n)^4]$.
 - 2. En déduire une majoration de $\mathbb{P}\left(\left|\frac{1}{n}S_n\right| \geq \varepsilon\right)$ pour tout $\varepsilon > 0$.
 - 3. Conclure que pour tout $\varepsilon > 0$, $\mathbb{P}\left(\limsup_{n \to \infty} \left| \frac{1}{n} S_n \right| > \varepsilon\right) = 0$, et en déduire que \mathbb{P} -p.s. $\lim_{n \to \infty} \frac{1}{n} S_n = 0$ (= $\mathbb{E}[X_1]$).
- * Exercice 4. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoire indépendantes, de loi exponentielle de paramètre 1.
 - 1. Montrer que, pour tout $\varepsilon > 0$, $\sum_{n \geq 1} \mathbb{P}(X_n > \varepsilon) = +\infty$. En déduire que presque sûrement, $\liminf_{n \to \infty} X_n = 0$.
 - 2. Étudier selon les valeurs de α la convergence de la série $\sum_{n\geq 1} \mathbb{P}(X_n \geq \alpha \log n)$.
 - 3. En déduire que presque sûrement on a, $\limsup_{n\to\infty} \left(\frac{X_n}{\log n}\right) = 1$.

Exercice 5. Soit $(X_n)_{n\geq 1}$ une suite de v.a. à valeurs dans \mathbb{N} , indépendantes et de même loi. Montrer qu'on a les deux cas suivants :

— ou bien $E(|X_1|) < +\infty$ et alors $\mathbb{P}(\limsup\{|X_n| \ge n\}) = 0$.

— ou bien $E(|X_1|) = +\infty$ et alors $\mathbb{P}(\limsup\{|X_n| \ge n\}) = 1$.

Exercice 6. Soit $(X_n)_{n\geq 1}$ une suite de v.a. indépendantes à valeur dans $\{-1,1\}$, de même loi : $\mathbb{P}(X_n=1)=p, \ \mathbb{P}(X_n=-1)=1-p$ pour un $p\in]0,1[$ fixé. On note $S_n=\sum_{k=1}^n X_k$ et $S_0=0$.

- 1. Pour $n \in \mathbb{N}$, calculer $\mathbb{P}(S_n = 0)$.
- 2. Etudier $\sum \mathbb{P}(S_n = 0)$. Que peut-on en conclure?

Exercice 7. On reprend les notations de l'exercice 6 avec p = 1/2. On veut montrer que pour tout k, p.s. $S_n = k$, infiniment souvent (où $S_n = \sum_{k=1}^n X_k$ et $S_0 = 0$).

- 1. On a (cf. Exercice 1.6) $\sum \mathbb{P}(S_n = 0) = +\infty$. Peut-on appliquer Borel-Cantelli?
- 2. On pose $q_j = \mathbb{P}(\sup_{n\geq 0} S_n \geq j)$ pour tout $j \in \mathbb{Z}$. En envisageant les deux valeurs possibles de X_1 , montrer que $q_j = (q_{j-1} + q_{j+1})/2$.
- 3. En déduire que $q_j = 1$ pour tout $j \ge 0$, et que $\mathbb{P}(\limsup S_n = +\infty) = 1$.
- 4. Montrer que $\mathbb{P}(\liminf S_n = -\infty) = 1$.
- 5. Montrer que pour tout k, p.s. $S_n = k$, infiniment souvent.

Exercice 8. Soient X_1, X_2, \ldots des v.a. i.i.d. réelles à densité. On pose $A_k = \{X_k > \max_{1 \le i \le k-1} X_i\}$ l'événement qui exprime que le record est battu au temps k.

- 1. Reprendre l'exercice 5.?? pour montrer que $\mathbb{P}(A_k) = \frac{1}{k}$.
- 2. Montrer que les événements $(A_k)_{k\geq 1}$ sont indépendants.
- 3. $R_n = \sum_{k=1}^n \mathbf{1}_{A_k}$ le nombre de fois que le record a été battu au temps n. Montrer que $R_n \to +\infty$ \mathbb{P} -p.s.
- 4. On parle de double-records si le record est battu à l'instant k, et de nouveau battu à l'instant k + 1. Montrer que p.s. il n'y a qu'un nombre fini de double-records.

Exercice 9. Soient X_1, X_2, \ldots des variables de Bernouilli *indépendantes* de paramètre 1/2. On considère la variable aléatoire

$$L_n$$
 = longueur maximale d'une séquence de 1 parmi X_1, \ldots, X_n = max $\{k \; ; \; \exists \, 1 \leq i \leq n-k+1, X_i = X_{i+1} = \cdots = X_{i+k-1} = 1\}$

- 1. Montrer que, pour tout $k \geq 1$, $\mathbb{P}(L_n < k) \leq \left(1 \frac{1}{2^k}\right)^{\lfloor n/k \rfloor}$. Indication : découper l'intervalle $[\![1,n]\!]$ en $\lfloor n/k \rfloor$ intervalles de longueur k, et un intervalle de longueur inférieure à k.
- 2. Pour tout $\varepsilon > 0$, on définit $A_n^{\varepsilon} = \{L_n < (1-\varepsilon)\log_2 n\}$ ($\log_2 n = \ln n/\ln 2$). Montrer que pour tout $\varepsilon > 0$, p.s. il n'y a qu'un nombre fini de A_n^{ε} réalisés.
- 3. En déduire que p.s., $\liminf_{n\to\infty} \frac{L_n}{\log_2 n} \geq 1$.
- 4. Montrer que pour tout $k \ge 1$, $\mathbb{P}(L_n \ge k) \le n \times \frac{1}{2^k}$.
- 5. Montrer que, pour tout $\varepsilon > 0$, $\mathbb{P}(L_n \ge (1+\varepsilon)\log_2 n) \to 0$ quand $n \to \infty$. Peut-on appliquer le Lemme de Borel-Cantelli?

 On a montré avec la question 3. que $\frac{L_n}{\log_2(n)}$ converge vers 1 en probabilité. Pour montrer la convergence \mathbb{P} -p.s. il faut utiliser une astuce : considérer des sous-séquences.
- 6. Soit $\varepsilon > 0$. On définit la séquence $n_j = \lfloor j^{2/\varepsilon} \rfloor$ pour $j \geq 1$. Montrer que p.s., il n'y a qu'un nombre fini de j tels que $L_{n_j} \geq (1+\varepsilon) \log_2(n_j)$.
- 7. Montrer que $\limsup_{n\to\infty} \frac{L_n}{\log_2 n} = \limsup_{j\to\infty} \frac{L_{n_j}}{\ln n_j}$ (le long de la sous-séquence n_j). Indication : observer que pour $n \in [n_{j-1}, n_j]$ on a $L_{n_{j-1}} \le L_n \le L_{n_j}$, et utiliser que $\ln(n_j)/\ln(n_{j-1}) \to 1$ quand $j \to \infty$. En déduire que p.s. $\limsup_{n\to\infty} \frac{L_n}{\log_2 n} \le 1$.
- 8. Conclure.