18 ENDLICHE AUTOMATEN

18.1 ERSTES BEISPIEL: EIN GETRÄNKEAUTOMAT

• siehe Skript;

18.2 MEALY-AUTOMATEN

Achtung: Im Gegensatz zu früheren Jahren schreiben wir f_* statt f^* und f_{**} statt f^{**} , um Verwechslungen mit dem durch h induzierten Homomorphismen h^{**} zu vermeiden. Die Notation h^{**} bleibt, ist aber nun Homomorphismen vorbehalten. Analoges gilt für g_* und g_{**} . Bitte in den Tutorien konsistent mitmachen! Danke.

- Man nehme den Getränkeautomaten und
 - "überlege" sich $f_*((0,-),R10)$ (durch den Zustandsgraphen laufen)
 - "berechne" $f_*((0, -), R10)$
 - analog f_{**}
- Man erarbeite die alternative Definition

$$f_{**}(z,\varepsilon) = z$$
 und für alle $x \in X$ und $w \in X^*$ ist $f_{**}(z,xw) = z \cdot f_{**}(f(z,x),w)$

Man betrachte die folgenden Beispielautomaten:

- Getränkautomat: man mache sich klar:
 - $-g_*((0,-),R10) = R$
 - $-g_{**}((0,-),R10) = R$
 - $-g_{**}((0,-),R110) = 1R$
- nur ein Zustand z, $X = Y = \{a, b\}$ und g(z, a) = b und g(z, b) = ba
 - wie sieht $w_1 = g_{**}(z, \mathbf{a})$ aus?
 - $w_2 = g_{**}(z, w_1), \dots w_{i+1} = g_{**}(z, w_i)$?
 - was passiert mit den Längen?
- $Z = \mathbb{Z}_5$, $X = \{a, b\}$, $Y = \{0, 1\}$, bei b gleicher Zustand, Ausgabe 0, bei a einen Zustand weiter, bei jedem 5. a Ausgabe 1, sonst Ausgabe 0. Was tut der Automat?

18.3 MOORE-AUTOMATEN

 Die Unterschiede zwischen Moore- und Mealy-Automaten sind "klein": Abgesehen vom leeren Wort, für das ein Mealy-Automat keine Ausgabe liefern kann, gilt: Man kann zu jedem Moore-Automaten einen Mealy-Automaten konstruieren, so dass das g* für beide gleich ist. Und die umgekehrte Richtung von Mealy- zu Moore-Automaten funktioniert auch. • Falls jemand fragt: Die erste Richtung von Moore zu Mealy ist ganz einfach: Man "zieht die Ausgabe aus einem Zustand "zurück" zu den Eingaben an den Kanten zu diesem Zustand.

Die umgekehrte Richtung ist ein bisschen aufwändiger, aber auch kein Hexenwerk; siehe http://de.wikipedia.org/wiki/Mealy-Automat, Abschnitt Zusammenhang_mit_Moore-Automat.

18.4 ENDLICHE AKZEPTOREN

- 18.4.1 Beispiele formaler Sprachen, die von endlichen Akzeptoren akzeptiert werden können
 - Bitte bitte die akzeptierenden Zustände nur so nennen, und *nicht* Endzustände. Langjährige Erfahrung zeigt, dass das zu falschen Intuitionen führt.
 - Man entwickele einen Akzeptor mit $X = \{a, b\}$, der alle Wörter akzeptiert, bei denen die Anzahl der a durch 5 teilbar ist. (Anzahl der b ist also egal.)

Kreis mit 5 Zuständen; bei jedem a eins weiter, bei jedem b Schlinge; akzeptieren bei Anfangszustand.

• Man entwickele einen Akzeptor mit $X = \{a, b\}$, der alle Wörter akzeptiert, in denen nirgends hintereinander zwei b vorkommen. Hier "muss" man zählen, wieviele b unmittelbar hintereinander kamen, aber nur bis 2:

- Diskussion: einfachste Version von Syntaxanalyse
- 18.4.2 Eine formale Sprache, die von keinem endlichen Akzeptoren akzeptiert werden kann
 - Ich finde, dass einem der Beweis, dass $\{a^kb^k \mid k \in \mathbb{N}_0\}$ von keinem endlichen Akzeptor erkannt werden kann, wesentliches über endliche Automaten vermittelt: Wenn ein hinreichend langes Wort w akzeptiert wird (und das ist garantiert immer der Fall, wenn die Sprache unendlich ist), dann läuft man für ein Teilwort v durch eine Schleife, und dann ändert mehrfaches Durchlaufen der Schleife (bzw. ganz weglassen) nichts am Akzeptierungsverhalten (Pumpinglemma für reguläre Sprachen).