BÁO CÁO BÀI THỰC HÀNH 05

Huấn luyện mô hình CNN và ResNet18 trên CIFAR-10

1. Mục tiêu.

Mục tiêu chính

- Xây dựng mô hình phân loại ảnh CIFAR-10.
- Tiền xử lý, chia tập dữ liệu hợp lý.
- Áp dụng hai mô hình: SimpleCNN và ResNet18 (hiệu chỉnh cho CIFAR-10).
- Huấn luyện với nhiều cấu hình siêu tham số.
- Ghi log bằng Wandb, tính accuracy trung bình và độ lệch chuẩn.
- Trực quan hóa kết quả và demo với Gradio.

2. Chuẩn bị dữ liệu.

Thành phần Mô tả

Dữ liệu	CIFAR-10 (dang pickle) từ cifar-10-batches-py
Dataset	CIFAR10Custom kế thừa Dataset, xử lý ảnh từ pickle
Tiền xử lý	Normalize (mean, std), augmentation (crop, flip, jitter,
	rotation)
Tập Train	Chia 80% train – 20% validation từ tập huấn luyện gốc
Tập Test	Dữ liệu test gốc CIFAR-10

3. Kiến trúc mô hình.

3.1. SimpleCNN.

Số block	4 block conv \rightarrow BN \rightarrow ReLU \rightarrow MaxPool
Số filters	$64 \rightarrow 128 \rightarrow 256 \rightarrow 512$
FC layers	FC1: $512 \rightarrow 256$ (dropout 0.5), FC2: $256 \rightarrow 10$
Loss	LabelSmoothingCrossEntropy, smoothing=0.1

3.2. ResNet18 (Hiệu chỉnh).

Dựa trên	torchvision.models.resnet18
Thay đổi	conv1: kernel=3, stride=1, padding=1; bo maxpool đầu
	(identity)
FC cuối	Thay thế bằng FC output 10 lớp
Loss	LabelSmoothingCrossEntropy, smoothing=0.1

4. Cấu hình huấn luyện.

Thành phần	Thông số chính
Optimizer	AdamW
Scheduler	ReduceLROnPlateau (monitor val_accuracy)
Loss	Label Smoothing CrossEntropy (smoothing=0.1)
Batch size	128
Epochs	30-50 tùy cấu hình
Log	Ghi log toàn bộ lên Wandb

Các cấu hình thử nghiệm:

Cấu hình	Learning Rate	Epochs
CFG1(cnn)	1e-3	40
CFG2(cnn)	2e-3	50
CFG3(cnn)	5e-4	40
CFG1(ResNet)	1e-3	30
CFG2(ResNet)	5e-4	40
CFG3(ResNet)	3e-4	50

5. Kết quả đánh giá.

Kết quả độ chính xác trung bình (Test Accuracy \pm Std)

Mô hình	Cấu hình	Accuracy (%) ± Std
SimpleCNN	CFG1	79.3 ± 0.6
SimpleCNN	CFG2	80.5 ± 0.5
SimpleCNN	CFG3	81.2 ± 0.4
ResNet18	CFG1	85.7 ± 0.3
ResNet18	CFG2	86.4 ± 0.2
ResNet18	CFG3	87.1 ± 0.2

ResNet18 cải tiến rõ rệt so với SimpleCNN, độ lệch chuẩn nhỏ → mô hình ổn định.

Biểu đồ theo dõi quá trình huấn luyện:

6. Giao diện Demo.

Thành phần	Mô tả
Thư mục ảnh	demo_images/ chứa ảnh minh họa 10 lớp
Tạo ảnh	split_demo_images.py tạo ảnh demo CIFAR-10
Giao diện Gradio	demo_gradio.py cho phép tải ảnh và dự đoán bằng
	ResNet18 tốt nhất
Chức năng chính	Tải ảnh → Dự đoán lớp → Hiển thị xác suất

7. Kết luận.

Nhận xét chính

- Mô hình ResNet18 hiệu chỉnh phù hợp và cho kết quả tốt hơn CNN cơ bản.
- Label Smoothing giúp mô hình ổn định, tránh overfit.
- Ghi log bằng Wandb hỗ trợ theo dõi huấn luyện rõ ràng.
- Triển khai Gradio trực quan giúp thử nghiệm mô hình nhanh chóng.
- Có thể mở rộng để thử nghiệm với các kiến trúc sâu hơn như DenseNet, ViT...