f-Divergence Variational Inference

Skorik Sergey

MIPT, 2022

April 11, 2023

Preliminaries

2 f-variational bounds

- Stochastic optimization
- 4 Experiments

Motivation

Introduction

Let consider the Bayesian inference

$$p(z|x) = \frac{p(z,x)}{p(x)}$$

MCMC algorithms estimate the evidence $p(x) = \int p(z,x) dx$ via sampling. However, since sampling tends to be a slow and computationally intensive process, VI becomes a good alternative to perform Bayesian inference. Let's denote a family of approximate densities \mathcal{Q} . The VI problem is to find the member $q^*(z) \in \mathcal{Q}$ that minimizes the distance between the true posterior D(q(z)||p(z|x)). This distance called **divergence**. Some examples of divergences:

• Kullback-Leibler: $\int p(x) \frac{p(x)}{q(x)} dx$

2 Pearson χ^2 : $\int \frac{(q(x)-p(x))^2}{p(x)} dx$

Definition 1 The f-divergence from probability density functions q(z) to p(z) is defined as

$$D_f(q(z)||p(z)) =: \int f\left(\frac{q(z)}{p(z)}\right) p(z) dz = \mathbb{E}_p\left[f\left(\frac{q(z)}{p(z)}\right)\right], \qquad (1)$$

where $f(\cdot)$ is a convex function with f(1) = 0.

Table: Divergences $D_f(q||p)$

Divergences	f(t)
KL divergecne	t log t
General χ^n -divergence	t^n-1 , $n\in\mathbb{R}\setminus(0,1)$
Hellinger $lpha$ -divergence \mathcal{H}_{lpha}	$(t^{\alpha}-1)/(\alpha-1)$, $\alpha\in\mathbb{R}^{+}\setminus\{1\}$

Definition 2 Given a function $f:(0,1)\to\mathbb{R}$, the dual function $f^*:(0,1)\to\mathbb{R}$ is defined as

$$f^*(t) = t \cdot f(1/t)$$

Properties:

- $(f^*)^* = f$
- 2 if f is convex, f^* is also convex
- **3** if f(1) = 0, then $f^*(1) = 0$
- With dual function f^* an identity between the forward and reverse f-divergences can be established

$$D_{f^*}(p||q) = \int \frac{p(z)}{q(z)} f\left(\frac{q(z)}{p(z)}\right) q(z) dz = D_f(q||p)$$

In order to facilitate the derivation of f-variational bound, especially when the latent variable model is involved, we introduce a surrogate f-divergence $D_{f_{\lambda}}$ defined by the generator function

$$f_{\lambda}(\cdot) = f(\lambda \cdot) - f(\lambda)$$
 (2)

where $\lambda \geqslant 0$ is a constant.

Proposition

Proposition 1: Given two probability distributions q and p, a convergent sequence $\lim_{n\to\infty}\lambda_n=1,\ \lambda_n\geqslant 0$ and a convex function $f:(0,+\infty)\to\mathbb{R}$ such that f(1)=0 and $f(\cdot)$ is uniformly continuous, the f-divergences between q and p satisfy

$$D_{f_{\lambda_n}}(q||p) \to D_f(q||p)$$
 (3)

almost everywhere as $n \to \infty$

Proof

Proof:

$$\lim_{n \to \infty} D_{f_{\lambda_n}}(q||p) = \lim_{n \to \infty} \int p(z) \left[f\left(\lambda_n \frac{q(z)}{p(z)}\right) - f(\lambda_n) \right] dz =$$

$$= \lim_{n \to \infty} \int p(z) f\left(\lambda_n \frac{q(z)}{p(z)}\right) dz - \lim_{n \to \infty} f(\lambda_n) \int p(z) dz =$$

$$= \int \lim_{n \to \infty} p(z) f\left(\lambda_n \frac{q(z)}{p(z)}\right) dz = D_f(q||p)$$

Shifted homogeneity

We then introduce a class of f-functions equipped with a structural advantage in decomposition, which will be invoked later to derive the coordinate-wise VI algorithm under mean-field assumption.

Definition 3 A convex function f belongs to $\mathcal{F}_{\{0,1\}}$, if f(1)=0 and for any $t, \tilde{t} \in \mathbb{R}$ we have

$$f(t\tilde{t}) = t^{\gamma} f(\tilde{t}) + f(t)\tilde{t}^{\eta}, \tag{4}$$

where $\gamma \in \mathbb{R}$ and $\eta \in \{0,1\}$. Function f is type 0 shifted homogeneous or $f \in \mathcal{F}_0$ if $\eta = 0$, and type 1 shifted homogeneous or $f \in \mathcal{F}_1$ if $\eta = 1$.

Shifted homogeneity

Propositions

The duality property between F0 and F1 is stated in Proposition 2.

Proposition 2 Given $f_0 \in \mathcal{F}_0$ and $f_1 \in \mathcal{F}_1$, the dual functions $f_0^* \in \mathcal{F}_1$ and $f_1^* \in \mathcal{F}_0$.

When $f \in \mathcal{F}_{\{0,1\}}$, we can establish a more profound relationship, in contrast with Proposition 1, between f-divergence D_f and surrogate divergence $D_{f_{\lambda}}$

Proposition 3 When $f\in\mathcal{F}_{\{0,1\}}$ and $\lambda>0$, an f-divergence D_f and its surrogate divergence D_{f_λ} satisfy

$$D_{f_{\lambda}}(q||p) = \lambda^{\gamma} D_{f}(q||p)$$
 (5)

Shifted homogeneity

Proofs

Proof of Proposition 2. Let $f_0 \in \mathcal{F}_0$. Since

$$f^*(t\tilde{t}) = t\tilde{t} \cdot f\left(\frac{1}{t\tilde{t}}\right) = t\tilde{t}\left[\left(\frac{1}{t}\right)^{\gamma_0} \cdot f\left(\frac{1}{\tilde{t}}\right) + f\left(\frac{1}{t}\right)\right] =$$
$$= t^{1-\gamma_0} \cdot f_0^*(\tilde{t}) + f_0^*(t) \cdot \tilde{t}$$

by letting $\gamma=1-\gamma_0$ we can conclude that $f_0^*\in\mathcal{F}_1$. Case $f_1\in\mathcal{F}_1$ proved analogous.

Proof of Proposition 3. We start this proof by substituting (1), (2) and (4) into the LHS of (5)

$$egin{aligned} D_{f_{\lambda}}(q||p) &= \mathbb{E}_{p}[f_{\lambda}(q/p)] = \mathbb{E}_{p}[f(\lambda q/p)] - f(\lambda) = \ &= \lambda^{\gamma} \mathbb{E}_{p}[f(q/p)] + f(\lambda) \mathbb{E}_{p}[(q/p)^{\eta}] - f(\lambda) = \lambda^{\gamma} D_{f}(q||p) \end{aligned}$$

10 / 20

f-variational bounds

Given a convex function f such that f(1)=0 and a set of i.i.d. samples $\mathcal{D}=\{x^{(n)}\}_{n=1}^N$, the generator function $f_{p(\mathcal{D})^{-1}}$ with $p(\mathcal{D})>0$ can induce a surrogate f-divergence.

$$D_{f_{p(\mathcal{D})}-1}(q(z)||p(z|\mathcal{D})) = \frac{1}{p(\mathcal{D})} \mathbb{E}_{q(z)} \left[f^* \left(\frac{p(z,\mathcal{D})}{q(z)} \right) \right] - f \left(\frac{1}{p(\mathcal{D})} \right)$$
 (6)

Multiplying both sides of (6) by $p(\mathcal{D})$ and with rearrangements, we have

$$\mathcal{L}_{f}(q,\mathcal{D}) = \mathbb{E}_{q(z)}\left[f^{*}\left(\frac{p(z,\mathcal{D})}{q(z)}\right)\right] = f^{*}(p(\mathcal{D})) + p(\mathcal{D}) \cdot D_{f_{p(\mathcal{D})}-1}(q(z)||p(z|\mathcal{D}))$$
(7)

f-variational bounds

Theorem 1 Dual function of evidence $f^*(p(\mathcal{D}))$ is bounded above by f-variational bound $\mathcal{L}_f(q,\mathcal{D})$

$$\mathcal{L}_{f}(q,\mathcal{D}) = \mathbb{E}_{q(z)}\left[f^{*}\left(\frac{p(z,\mathcal{D})}{q(z)}\right)\right] \geqslant f^{*}(p(\mathcal{D})), \tag{8}$$

Examples:

1 KL-divergence: $f(t) = t \log t \Rightarrow f^*(t) = -\log t$ which is convex and decreasing.

$$\log p(\mathcal{D}) \geqslant \mathbb{E}_{q(z)}[\log p(z,\mathcal{D})] - \mathbb{E}_{q(z)}[\log q(z)] = ELBO$$

2 χ^2 -divergence. $f(t) = t^{-1} - t \Rightarrow f^*(t) = t^2 - 1$, so

$$\mathbb{E}_{q(z)}\left[\left(\frac{p(z,\mathcal{D})}{q(z)}\right)^2 - 1\right] \geqslant p(x)^2 - 1$$

4□ > 4₫ > 4 ½ > 4 ½ > ½
 900

Importance-weighted VI

Corollary 1 When $1 \leqslant L_1 \leqslant L_2$, the importance-weighted f-variational bound $\mathcal{L}_f^{IW}(q, \mathcal{D}, L)$ and the f-variational bound $\mathcal{L}_f(q, \mathcal{D})$ satisfy

$$\mathcal{L}_f(q,\mathcal{D})\geqslant \mathcal{L}_f^{IW}(q,\mathcal{D},L_1)\geqslant \mathcal{L}_f^{IW}(q,\mathcal{D},L_2)\stackrel{L\to\infty}{\longrightarrow} f^*(p(\mathcal{D}))$$

where $\mathcal{L}_f^{IW}(q,\mathcal{D},L)$ is defined as

$$\mathcal{L}_f^{IW}(q, \mathcal{D}, L) = \mathbb{E}_{z_{1:L} \sim q(z)} \left[f^* \left(\frac{1}{L} \sum_{l=1}^{L} \frac{p(z_l, \mathcal{D})}{q(z_l)} \right) \right]$$

, and $z_{1:L} = \{z_l\}_{l=1}^L$ are $L \in \mathbb{N}$ i.i.d. samples from q(z).

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Sandwich formula

After composing both sides of (8) with the inverse dual function $(f^*)^{-1}$, we have the following observations:

1 When the dual function f^* is increasing (or non-decreasing) on \mathbb{R}^+ , the composition gives an evidence upper bound:

$$(f^*)^{-1}\circ\mathcal{L}_f(q,\mathcal{D})\geqslant p(\mathcal{D})$$

② When the dual function f^* is decreasing (or non-increasing) on \mathbb{R}^+ , the composition gives an evidence lower bound:

$$(f^*)^{-1} \circ \mathcal{L}_f(q, \mathcal{D}) \leqslant p(\mathcal{D})$$

3 When the dual function f^* is non-monotonic on \mathbb{R}^+ , the composition gives a local evidence bound by applying previous two observations on a monotonic interval f^* :

$$(f^*)^{-1}\circ\mathcal{L}_f(q,\mathcal{D})\geqslant p(\mathcal{D})$$

Sandwich formula

Based on these observations, we can readily imply a sandwich formula for evidence $p(\mathcal{D})$, which is essential for accurate VI.

Corollary 2 Given convex functions f and g such that f(1) = g(1) = 0 on an interval where f^* is increasing and g^* is decreasing the evidence $p(\mathcal{D})$ satisfy

$$(g^*)^{-1} \circ \mathbb{E}_{q(z)} \left[g^* \left(\frac{p(z, \mathcal{D})}{q(z)} \right) \right] \leqslant p(\mathcal{D}) \leqslant (f^*)^{-1} \circ \mathbb{E}_{q(z)} \left[f^* \left(\frac{p(z, \mathcal{D})}{q(z)} \right) \right]. \tag{9}$$

Stochastic optimization

An intuitive approach to apply stochastic optimization is to compute the standard gradient of $\mathcal{L}_f(q,\mathcal{D})$ or $\mathcal{L}_f^{IW}(q,\mathcal{D})$ w.r.t. θ

$$\nabla_{\theta} \mathcal{L}_{f}(q_{\theta}, \mathcal{D}) = \mathbb{E}_{q_{\theta}(z)} \left[f' \left(\frac{q_{\theta}(z)}{p(z, \mathcal{D})} \right) \cdot \nabla_{\theta} \log q_{\theta}(z) \right], \tag{10}$$

where f'(t) denotes $\partial f(t)/\partial t$.

An unbiased Monte Carlo (MC) estimator for (10) can be obtained by drawing z_1, z_2, \ldots, z_K from $q_{\theta}(z)$ and

$$\nabla_{\theta} \hat{\mathcal{L}}_{f}(q_{\theta}, \mathcal{D}) = \frac{1}{K} \sum_{k=1}^{K} \left[f^{'} \left(\frac{q_{\theta}(z_{k})}{p(z_{k}, \mathcal{D})} \right) \cdot \nabla_{\theta} \log q_{\theta}(z_{k}) \right]$$
(11)

Stochastic optimization

An alternative to the score function gradient is the reparameterization gradient, which empirically has a lower estimation variance. Let $\varepsilon \sim \mathcal{N}(0,1)$ and $z=g_{\theta}(\varepsilon)=\mu+\Sigma^{\frac{1}{2}}\varepsilon$.

The gradient of $\mathcal{L}_f(q,\mathcal{D})$ after reparameterization becomes

$$\nabla_{\theta} \mathcal{L}_{f}^{rep}(q_{\theta}, \mathcal{D}) = \nabla_{\theta} \mathbb{E}_{p(\varepsilon)} \left[f^{*} \left(\frac{p(g_{\theta}(\varepsilon), \mathcal{D})}{q_{\theta}(g_{\theta}(\varepsilon))} \right) \right]. \tag{12}$$

An unbiased MC estimator for (12) is

$$\nabla_{\theta} \hat{\mathcal{L}}_{f}^{rep}(q_{\theta}, \mathcal{D}) = \frac{1}{K} \sum_{k=1}^{K} \left[\nabla_{\theta} f^{*} \left(\frac{p(g_{\theta}(\varepsilon_{k}), \mathcal{D})}{q_{\theta}(g_{\theta}(\varepsilon_{k}))} \right) \right], \tag{13}$$

where $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_K$ are drawn from $p(\varepsilon)$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Synthetic example

Let
$$x = sin(z) + \mathcal{N}(0, 0.01)$$
, $z \sim U[0, \pi]$, $p(z) = U[0, \pi] \Rightarrow p(x|z) = \mathcal{N}(sin(z), 0.01)$ and $q_{\theta}(z) = U\left[\frac{1-\theta}{2}\pi, \frac{1+\theta}{2}\pi\right]$. $\theta_0 = 1.5$ is fixed.

Figure: f-variational bounds on synthetic data.

Bayesian neural network

Dataset	Test RMSE (lower is better)				Test negative log-likelihood (lower is better)			
	KL-VI	χ-VI	α-VI	f _{c1} -VI	KL-VI	χ-VI	α-VI	f _{c1} -VI
Airfoil	2.16±.07	2.36±.14	2.30±.08	2.34±.09	2.17±.03	2.27±.03	2.26±.02	2.29±.02
Aquatic	$1.12 \pm .06$	$1.20 \pm .06$	$1.14 \pm .07$	$1.14 \pm .06$	$1.54 \pm .04$	$1.60 \pm .08$	$1.54 \pm .07$	$1.54 \pm .06$
Boston	$2.76 \pm .36$	$2.99 \pm .37$	$2.86 \pm .36$	$2.87 \pm .36$	$2.49 \pm .08$	$2.54 \pm .18$	$2.48 \pm .13$	$2.49 \pm .13$
Building	$1.38 \pm .12$	$2.82 \pm .51$	$1.83 \pm .22$	$1.80 \pm .21$	$6.62 \pm .02$	$6.94 \pm .13$	$6.79 \pm .03$	$6.74 \pm .04$
CCPP	$4.05 \pm .09$	$4.14 \pm .11$	$4.06 \pm .08$	$4.33 \pm .12$	$2.82 \pm .02$	$2.84 \pm .03$	$2.82 \pm .02$	$2.95 \pm .01$
Concrete	$5.40 \pm .24$	$3.32 \pm .34$	$5.32 \pm .27$	$5.26 \pm .21$	$3.10 \pm .04$	$2.61 \pm .18$	$3.09 \pm .04$	$3.09 \pm .03$
Fish Toxicity	$0.88 \pm .04$	$0.90 \pm .04$	$0.89 \pm .04$	$0.88 \pm .03$	$1.28 \pm .04$	$1.27 \pm .04$	$1.29 \pm .04$	$1.29 \pm .03$
Protein	$1.93 \pm .19$	$2.45 \pm .42$	$1.87 \pm .17$	$1.97 \pm .21$	$2.00 \pm .07$	$2.01 \pm .08$	$2.04 \pm .08$	$2.21 \pm .04$
Real Estate	7.48 ± 1.41	7.51 ± 1.44	7.46 ± 1.42	7.52 ± 1.40	$3.60 \pm .30$	$3.70 \pm .45$	$3.59 \pm .32$	$3.62 \pm .33$
Stock	$3.85{\pm}1.12$	3.90 ± 1.09	3.88 ± 1.13	3.82 ± 1.11	$-1.09 \pm .04$	$-1.09 \pm .04$	$-1.09 \pm .04$	$-1.09 \pm .04$
Wine	$.642 \pm .018$	$.640 \pm .021$	$.638 \pm .018$	$.643 \pm .019$	$.966 \pm .027$	$.965 {\pm} .028$	$.964 \pm .025$	$.975 \pm .027$
Yacht	$\textbf{0.78} {\pm} \textbf{.12}$	$1.18 \pm .18$	$0.99 \pm .12$	$1.00 \pm .18$	$\textbf{1.70} {\pm} \textbf{.02}$	$1.79 \pm .03$	$1.82 \pm .01$	$2.05 \pm .01$

Figure: BNN test results

Bayesian variational autoencoder

	KL-VI	χ -VI	α -VI	TV-VI	$f_{ m c1} ext{-VI}$	$f_{ m c2} ext{-VI}$
Caltech 101	$73.80{\pm}2.27$	$73.84{\pm}2.16$	74.95 ± 2.76	74.32 ± 2.26	74.87 ± 2.56	$74.85{\pm}2.94$
Frey Face	$160.85 \pm .72$	$160.57 \pm .95$	161.06 ± 1.16	161.11 ± 1.00	$160.52 \pm .88$	$160.65 \pm .87$
MNIST	$59.06 \pm .40$	$62.13 \pm .50$	$61.90 \pm .69$	$62.44 \pm .41$	$59.60 \pm .25$	$59.53 \pm .42$
Omniglot	$109.62 \pm .20$	$110.57 \pm .28$	$110.81 \pm .32$	$110.21 \pm .31$	$107.13 \pm .39$	$108.29 \pm .28$

Figure: Average test reconstruction errors of f-VAEs