

M2177.003100 Deep Learning

[7: Convolutional Neural Nets (Part 2)]

Electrical and Computer Engineering Seoul National University

© 2020 Sungroh Yoon. this material is for educational uses only. some contents are based on the material provided by other paper/book authors and may be copyrighted by them.

(last compiled at 10:04:00 on 2020/10/10)

Outline

More on Convolution

 $\begin{array}{l} {\sf Backprop\ over\ Convolution} \\ 1\times 1\ {\sf Convolution} \\ {\sf Transposed\ Convolution} \\ {\sf Other\ Types} \end{array}$

Summary

References

- Deep Learning by Goodfellow, Bengio and Courville Link
 - Chapter 9
- online resources:

 - Stanford CS231n: CNN for Visual Recognition Link
 - ▶ Dive into Deep Learning (14.10 Transposed Convolution) ▶ Link

 - Kunlun Bai's Blog on Convolution Types Link
- note:
 - you should open this file in Adobe Acrobat to see animated images (other types of pdf readers will not work)

Outline

More on Convolution

Backprop over Convolution

 1×1 Convolution Transposed Convolution Other Types

Summary

Recall: convolution

- with kernel flipping
 - commutative

$$\begin{split} Z(i,j) &= (K*V)(i,j) = \sum_{m} \sum_{n} \underbrace{K(m,n)}_{\text{kernel}} \underbrace{V(i-m,j-n)}_{\text{input volume}} \\ &= \sum_{m} \sum_{n} K(i-m,j-n) \, V(m,n) \\ &= (V*K)(i,j) \end{split}$$

- without kernel flipping
 - not commutative

$$Z(i,j) = (\underline{K} * V)(i,j) = \sum_{m} \sum_{n} \underbrace{\underline{K(m,n)}}_{\text{kernel}} \underbrace{V(i+m,j+n)}_{\text{input volume}}$$

we stick to this definition of convolution

Preview: backprop over convolution

forward

$$K * V = Z$$

$$C\mathbf{v} = \mathbf{z}$$

backward¹

$$\mathbf{d} V = \widetilde{K} * \widehat{G}$$

$$\mathbf{d} \mathbf{v} = C^{\top} \mathbf{g}$$

$$\mathbf{d} K = G * V$$

- $\mathbf{v}, \mathbf{z}, \mathbf{g}$: flattened versions of V, Z, G, respectively
- ightharpoonup C: matrix representation of "convolution with K"

$$ightarrow C^ op$$
 : leads to transposed convolution

- $ightharpoonup \widehat{G}$: zero-padded version of G

 $^{ightharpoonup \widetilde{K}}$: flipped version of kernel K

 $^{^1}$ non-commutativity of "convolution without kernel flipping" \Rightarrow difference in operations to compute dV and dK

Running example

- \bullet K * V = Z
 - $(k, m, s, p)^2 = (2, 3, 1, 0)$

result

$$z_{11} = k_{11}v_{11} + k_{12}v_{12} + k_{21}v_{21} + k_{22}v_{22}$$

$$z_{12} = k_{11}v_{12} + k_{12}v_{13} + k_{21}v_{22} + k_{22}v_{23}$$

$$z_{21} = k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32}$$

$$z_{22} = k_{11}v_{22} + k_{12}v_{23} + k_{21}v_{32} + k_{22}v_{33}$$

²sizes of kernel, input, stride, and padding, respectively

Convolution as a matrix operation

where

$$\mathbf{v} = (v_{11}, v_{12}, v_{13}, v_{21}, v_{22}, v_{23}, v_{31}, v_{32}, v_{33})$$

$$\mathbf{z} = (z_{11}, z_{12}, z_{21}, z_{22})$$

 v_{11}

 v_{12}

										12		
	k ₁₁	k_{12}	0	k_{21}	k_{22}	0	0	0	0	v_{13}		z_{11}
	0	k_{11}	k_{12}	0	k ₂₁	k ₂₂	0	0	0	v_{21}	_	z_{12}
	0	0	0	k_{11}	k_{12}	0	k ₂₁	k_{22}	0	v_{22}	_	z_{21}
ļ	0	0	0	0	k_{11}	k_{12}	0	k ₂₁	k_{22}	v_{23} v_{31}		z_{22}
					\widetilde{C}					v_{32}	e.	ž
										v_{33}		

$$\begin{aligned} k_{11}v_{11} + k_{12}v_{12} + k_{21}v_{21} + k_{22}v_{22} &= z_{11} \\ k_{11}v_{12} + k_{12}v_{13} + k_{21}v_{22} + k_{22}v_{23} &= z_{12} \\ k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32} &= z_{21} \\ k_{11}v_{22} + k_{12}v_{23} + k_{21}v_{32} + k_{22}v_{33} &= z_{22} \end{aligned}$$

 v_{11}

 v_{12}

 v_{33}

 z_{11}

 z_{12}

 z_{21}

 z_{11}

 z_{12}

 z_{21}

 z_{22}

v_{11}	v_{12}	v_{13}	v_{21}	v_{22}	v_{23}	v_{31}	v_{32}	v_{33}			
k ₁₁	k ₁₂	0	k_{21}	k ₂₂	0	0	0	0			
0	k_{11}	k_{12}	0	k_{21}	k_{22}	0	0	0			
0	0	0	k_{11}	k_{12}	0	k_{21}	k_{22}	0			
0	0	0	0	k_{11}	k_{12}	0	k_{21}	k_{22}			
				\widetilde{C}							

 \Downarrow

$k_{11}v_{11} + k_{12}v_{12} + k_{21}v_{21} + k_{22}v_{22} = z_{11}$	
$k_{11}v_{12} + k_{12}v_{13} + k_{21}v_{22} + k_{22}v_{23} = z_{12}$	ļ
$k_{11}v_{21} + k_{12}v_{22} + k_{21}v_{31} + k_{22}v_{32} = z_{21}$	
$k_{11}v_{22} + k_{12}v_{23} + k_{21}v_{32} + k_{22}v_{33} = z_{22}$,

$\operatorname{d} V = \widetilde{K} * \widehat{G}$

matrix representation (reveals "thansposed convolution")

forward
$$(C: dim reducer)$$

$$K * V = Z$$

$$C\mathbf{v} = \mathbf{z}$$

backward $(C^{\top}: dim expander)$

$$\mathbf{d}\,V = \widetilde{K} * \widehat{G}$$

$$\mathbf{d}\mathbf{v} = C^{\top}\mathbf{g}$$

dK = G * V

$$\begin{split} \mathrm{d}k_{11} &= g_{11}v_{11} + g_{12}v_{12} + g_{21}v_{21} + g_{22}v_{22} \\ \mathrm{d}k_{12} &= g_{11}v_{12} + g_{12}v_{13} + g_{21}v_{22} + g_{22}v_{23} \\ \mathrm{d}k_{21} &= g_{11}v_{21} + g_{12}v_{22} + g_{21}v_{31} + g_{22}v_{32} \\ \mathrm{d}k_{22} &= g_{11}v_{22} + g_{12}v_{23} + g_{21}v_{32} + g_{22}v_{33} \end{split}$$

Review: backprop over convolution

forward

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

• backward³

$$\begin{aligned} \mathbf{d}\, V &= \widetilde{K} * \widehat{G} \\ \mathbf{d}\mathbf{v} &= C^{\top}\mathbf{g} \\ \mathbf{d}K &= G * V \end{aligned}$$

- $\mathbf{v}, \mathbf{z}, \mathbf{g}$: flattened versions of V, Z, G, respectively
- ightharpoonup C: matrix representation of "convolution with K"

$$[K*()]$$

ho $C^{ op}$: leads to transposed convolution

$$[\widetilde{K}*\widehat{(\)}]$$

- $ightharpoonup \widetilde{K}$: flipped version of kernel K
- $lackbox{$\widehat{G}$}$: zero-padded version of G

 $^{^3}$ non-commutativity of "convolution without kernel flipping" \Rightarrow difference in operations to compute dV and dK

Outline

More on Convolution

Backprop over Convolution

 1×1 Convolution

Transposed Convolution Other Types

Summary

1×1 convolution

- aka pointwise convolution
- widely used for depth adjustment e.g. inception module in GoogeLeNet

example:

• each filter: size $1 \times 1 \times 64$ (performs a 64-dim dot product)

1×1 convolution on volumes

• nonlinearity (e.g. ReLU) can follow 1×1 convolution \rightarrow "network in network"

image modified from: Ng, Deep Learning (Coursera), https://www.coursera.org/specializations/deep-learning

Depth adjustment

• 1×1 convolution: widely used for depth adjustment

e.g.

- each filter: size $1 \times 1 \times 64$ (performs a 64-dim dot product)
- preserves spatial dimensions and reduces depth
- ▶ projects depth to vower dimension (combination of feature maps)
- in general
 - ightharpoonup we can reduce/maintain/increase depth using 1×1 convolution

- ullet a set of 1 imes 1 conv filters: can be interpreted as forming an FC layer
 - ▶ input dimension of this FC layer
 - = depth of the input volume to 1×1 conv filters
 - output dimension of this FC layer
 - = $\underline{\text{number}}$ of 1×1 conv filters
- example: $2 \times 2 \times 3$ volume applied to two $1 \times 1 \times 3$ filters
 - ightharpoonup 2 imes 2 = 4 applications of the FC layer that maps 3 neurons to 2 neurons

Network in network

• Mlpconv layer with "micro network" within each conv layer composed of FC layer (with 1×1 conv) + nonlinearity

- can compute more abstract features for local patches
- precursor to GoogLeNet and ResNet "bottleneck" layers

Outline

More on Convolution

Backprop over Convolution 1×1 Convolution

Transposed Convolution

Other Types

Summary

Motivation: upsampling

- desire to use a transform going in opposite direction of normal convolution
 - e.g. deciring layer of a convolutional autoencoder project feature maps to a higher-dim space
- example in cv: semantic segmentation

- downsampling: convolution + pooling
- how to do upsampling?

Rule-based upsampling

nearest neighbor

input: 2 x 2 output: 4 x 4

• "bed of nails"

input: 2 x 2 output: 4 x 4

• max unpooling: remember modeling positions from pooling layer

Transposed convolution

- $\underline{\underline{\text{leavalle}}}$ upsampling: smaller map \rightarrow larger map
 - c.f. regular convolution: downsampling (larger map \rightarrow smaller map)
 - ▶ does not refer to the deconvolution (i.e. inverse of convolution)⁴
 - ▶ aka fractionally strided⁵ conv, upconv, backward strided conv
- example

image source: Dumoulin & Visin (2016), https://arxiv.org/pdf/1603.07285.pdf

- ightharpoonup 3 imes 3 filter
- ightharpoonup 2 imes 2 input ightharpoonup 5 imes 5 output
- note:

⁴thus, transposed convolution is sometimes (inappropriately) called *deconvolution* but is different from the deconvolution in engineering and mathematics

⁵stride: gives ratio between movement in output and input (i.e. in-pixels/out-pixels)

more examples:

- 1D transposed convolution $(3 \times 1 \text{ kernel})$
 - output contains copies of kernel weighted by input
 - ► overlaps are <u>Summed</u>

• 2D transposed convolution $(2 \times 2 \text{ kernel})$

image sources: Fei-Fei Li, J. Johnson, S. Yeung, CS231n: Convolutional Neural Networks for Visual Recognition (2017), http://cs231n.stanford.edu/2017/index.html; Zhang et al., Dive into Deep Learning (2019), https://d21.ai/

More formally

- recall: backprop over convolution
 - ightharpoonup assume: $\dim(\mathbf{v}) > \dim(\mathbf{z})$

forward (C: dim reducer)

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

▶ backward (C^{\top} : dim expander)

$$\mathbf{d}\,V = \widetilde{K} * \widehat{G}$$

$$\mathbf{d}\mathbf{v} = \boldsymbol{C}^{\top}\mathbf{g}$$

- transposed convolution with a kernel
 - backward pass of regular convolution with the same kernel

TransposedConv
$$(K, X) = \widetilde{K} * \widehat{X}$$

more details:

Outline

More on Convolution

 $\begin{array}{l} {\sf Backprop\ over\ Convolution} \\ 1\times 1\ {\sf Convolution} \\ {\sf Transposed\ Convolution} \\ {\sf Other\ Types} \end{array}$

Summary

Dilated convolution (atrous convolution)

- introduces another convolution parameter: dilation rate
 - defines a spacing between values in a filter
 - e.g. 3×3 filter with dilation rate 2
 - \Rightarrow the same field of view as 5×5 filter (but only uses 9 parameters)
- effect: a wider field of view at the same computational cost
 - real-time segmentation, speech synthesis
- example
 - \triangleright 3 \times 3 filter
 - dilation rate of 2
 - no zero-padding

Separable convolution

- two types
 - spatially separable conv
 - ▶ depthwise separable conv: popular (e.g. MobileNet, Xception)
- spatially separable convolution
 - operates on 2D spatial dimensions (height and width)
 - decomposes a convolution into two separate operations
 - *i.e.* a 2D kernel \rightarrow two 1D kernels

$$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

- ⇒ reduction in computation compared with regular convolution
- ▶ rarely used in deep learning (not every 2D kernel is decomposable)

- depthwise separable convolution: two-step process
 - 1. depthwise convolution
 - 2. pointwise (1×1) convolution
- e.g. $7 \times 7 \times 3$ image $\rightarrow 5 \times 5 \times 1$ feature map

$$[(k, m, s, p) = (3, 7, 1, 0)]$$

regular convolution

$$(3 \times 3 \times 3) \times (5 \times 5) = 675$$
 mults

NO computational gain for 1 filter!

depthwise separable convolution

total: 675 + 75 = 750 mults

image source: https://towardsdatascience.com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

- how about multiple (e.g. 128) filters?
 - regular convolution

$$128 \times (3 \times 3 \times 3) \times (5 \times 5) = 128 \times 675 = 86,400$$
 mults

depthwise separable convolution

$$3 \times (3 \times 3 \times 1) \times (5 \times 5) + 128 \times (1 \times 1 \times 3) \times (5 \times 5) = 9,600$$
 mults

- \Rightarrow huge computational gain! (only 11% of regular conv)
- significantly fewer kernel parameters ($128 \times 27 = 3,456$ vs $27 + 128 \times 3 = 411$)
 - ⇒ reduced model במף (problematic if not properly trained)

image source: https://towardsdatascience.com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

3D convolution

- regular (2D) convolution
 - kernel depth = input depth
 - kernel moves only in 2D (width, height)

- 3D convolution
 - kernel depth < input depth</p>
 - kernel moves in all <u>3D</u> (width, height, depth)

ightharpoonup describes spatial relationships of object in d-dim space

image source: https://towardsdatascience.com/
a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Grouped convolution

- first introduced in AlexNet (2012): mainly due to limited Memory
 - other advantages also exist

regular convolution

grouped convolution (2 groups)

image sources: Krizhevsky et al., 2012. ImageNet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems; https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Convolution by frequency domain conversion

- convolution: equivalent to the following
 - 1. convert both input/kernel to frequency domain using Fourier transform
 - 2. perform point-wise multiplication of the two signals
 - 3. convert back to time domain using an inverse Fourier transform
- for some problem sizes
 - ▶ this can be faster than the naïve implementation of discrete convolution

Remarks

- active areas of research
 - devising faster ways of performing convolution
 - approximate convolution without harming accuracy of the model
 - fast evaluation of forward propagation
- in commercial setting
 - typically devote more resources to deployment of a net than its training
 - ⇒ techniques that improve efficiency of only to toward prop are useful
 - e.g. TensorRT, TensorFlowLite, Core ML, Caffe2Go

Outline

More on Convolution

 $\begin{array}{l} {\sf Backprop\ over\ Convolution} \\ 1\times 1\ {\sf Convolution} \\ {\sf Transposed\ Convolution} \\ {\sf Other\ Types} \end{array}$

Summary

Summary

- backprop over convolution (assumption: $\dim(\mathbf{v}) > \dim(\mathbf{z})$)
 - ▶ forward (*C*: dim reducer)

$$K * V = Z$$
$$C\mathbf{v} = \mathbf{z}$$

▶ backward (C^{\top} : dim expander)

$$\begin{split} \mathbf{d}\, V &= \widetilde{K} * \widehat{G} \\ \mathbf{d}\mathbf{v} &= C^{\top}\mathbf{g} \\ \mathbf{d}K &= G * V \end{split}$$

- various types of convolution operations exist (their fast inference: crucial)
 - **pointwise** (1×1) convolution: for depth adjustment
 - transposed (fractionally strided) convolution: for learnable upsampling
 - dilated convolution, separable convolution: for efficiency (+ alpha)
 - ▶ 3D convolution, grouped convolution, and many others