

2: Basic Algebra

EN1106 - Introductory Mathematics

Level I - Semester 1

Algebraic Terminology

Algebraic Notations

- Algebra is the study of symbols and the rules that govern the manipulation of the symbols.
 - Constants: Symbols that take fixed or unchanging values
 - Variables: Symbols that represent quantities that can vary
- Symbols are usually English or Greek and are case-sensitive
- Position of a symbol in relation to other symbols is important
 - e.g. xy, x^y, y_x

Algebraic Notations

Symbols are usually English or Greek and are case-sensitive

A	α	alpha	I	ι	iota	P	ρ	rho
\boldsymbol{B}	β	beta	K	κ	kappa	\sum	σ	sigma
Γ	γ	gamma	Λ	λ	lambda	T	au	tau
Δ	δ	delta	M	μ	mu	Y	v	upsilon
E	ε	epsilon	N	ν	nu	Φ	ϕ	phi
Z	ζ	zeta	Ξ	ξ	xi	X	χ	chi
H	η	eta	O	0	omicron	Ψ	ψ	psi
Θ	θ	theta	Π	π	pi	Ω	ω	omega

Algebraic Notations

- Position of a symbol in relation to other symbols is important
 - e.g. xy, x^y, y_x
 - When a symbol is placed to the right and slightly higher than another symbol it is referred to as a superscript. (x^y)
 - If a symbol is placed to the right and slightly lower than another symbol it is called a subscript (y_x)

Algebraic Expression

• A quantity made up of symbols together with +, -, \times , or \div is called an algebraic expression.

•	Addition	x + y
---	----------	-------

- Subtraction x y
- Multiplication $x \times y$
- Division $x \div y$

Powers or Indices

- To abbreviate quantity a x a x a, the notation a³, pronounced 'a cubed', is used.
 - The superscript "3" is called a power or index and the letter "a" is called the base.
- Similarly a \times a is written a^2 , pronounced 'a squared'.
- When the BODMAS rule is applied, powers should be given higher priority than any other operation

- 5. Write the following expressions compactly using indices:
 - (a) xxxyyx (b) xxyyzzz
 - (c) xyzxyz (d) abccba

- 9. Without using a calculator find
 - (a) $(-6)^2$ (b) $(-3)^2$ (c) $(-4)^3$

(d) $(-2)^3$

- 6. Using a calculator, evaluate
- (a) 7^4 (b) 7^5 (c) $7^4 \times 7^5$ (d) 7^9

- (e) 8^3 (f) 8^7 (g) $8^3 \times 8^7$ (h) 8^{10}

Substitution and Formulae

- Substitution replacing letters by actual numerical values.
 - e.g. Find the value of a^3 when a = 3. $a^3 = a \times a \times a$. Substitute the number 3 in place of the letter a as $3\times3\times3=27$.
- A formula is used to relate two or more quantities
 - e.g. Use the formula A = pq to find A when p = 5 and q = 2. $A = p \times q = 5 \times 2 = 10$.

Evaluate $3x^2y$ when x = 2 and y = 5.

Use the formula $y = \frac{x^3}{2} + 3x^2$ to find y when

(a)
$$x = 0$$
 (b) $x = 2$ (c) $x = 3$

(d)
$$x = -1$$

Addition and Subtraction of Like Terms

- Like terms are multiples of the same quantity.
 - E.g. y, 7y and 0.5y are all multiples of y and so are like terms.
- Like terms can be collected together and added or subtracted in order to simplify them.

• E.g.
$$y + 7y + 0.5y = 8.5y$$

 $3x + 7x - x^2 = 10x - x^2$

1. Simplify, if possible,

(a)
$$5p - 10p + 11q + 8q$$
 (b) $-7r - 13s + 2r + z$ (c) $181z + 13r - 2$

(d)
$$x^2 + 3y^2 - 2y + 7x^2$$
 (e) $4x^2 - 3x + 2x + 9$

2. Simplify

(a)
$$5y + 8p - 17y + 9q$$
 (b) $7x^2 - 11x^3 + 14x^2 + y^3$ (c) $4xy + 3xy + y^2$

(d)
$$xy + yx$$
 (e) $xy - yx$

Expansion and Factorization of Algebraic Expressions

Multiplying Algebraic Expressions

- When multiplying three or more numbers together the order in which we carry out the multiplication is also irrelevant.
- E.g. (1) Simplify (2x)(5x) (2x)(5x) could be written as $(2 \times x) \times (5 \times x)$, and then as $(2 \times 5) \times (x \times x)$, which evaluates to $10x^2$.
- E.g. (2) Simplify (a)×(-2b). (a)×(-2b) = (-2ab)

- 1. Simplify each of the following:
 - (a) (4)(3)(7) (b) (7)(4)(3) (c) (3)(4)(7)
- 2. Simplify
 - (a) $5 \times (4 \times 2)$ (b) $(5 \times 4) \times 2$
- 3. Simplify each of the following:
 - (a) 7(2z) (b) 15(2y) (c) (2)(3)x
 - (d) 9(3a) (e) (11)(5a) (f) 2(3x)
- 4. Simplify each of the following:
 - (a) $5(4x^2)$ (b) $3(2y^3)$ (c) $11(2u^2)$
 - (d) $(2 \times 4) \times u^2$ (e) $(13)(2z^2)$

- 7. Simplify each of the following:
 - (a) $(abc)(a^2bc)$ (b) $x^2y(xy)$
 - (c) $(xy^2)(xy^2)$
- 8. Explain the distinction, if any, between $(xy^2)(xy^2)$ and xy^2xy^2 .
- 9. Explain the distinction, if any, between $(xy^2)(xy^2)$ and $(xy^2) + (xy^2)$. In both cases simplify the expressions.
- 10. Simplify
 - (a) (3z)(-7z) (b) 3z 7z

Removing Brackets

- Expression (5 4) + 7 is different from 5 (4 + 7) because of the position of the brackets. In order to simplify an expression it is often necessary to remove brackets.
- e.g. Remove the brackets from a(b + c)
 ab + ac

e.g. Remove the brackets from a(b - c)
 ab - ac

Removing Brackets

E.g. Remove the brackets from (a + b)(c + d)
 a(c+ d) + b(c+ d)
 ac + ad + bc + bd

E.g. Remove the brackets from (a + b)(c - d)
a(c - d) + b(c - d)
ac - ad + bc - bd

- 1. Remove the brackets from
 - (a) 4(x+1) (b) -4(x+1)
 - (c) 4(x-1) (d) -4(x-1)
- 2. Remove the brackets from
 - (a) 5(x-y) (b) 19(x+3y)
 - (c) 8(a+b) (d) (5+x)y
 - (e) 12(x+4) (f) 17(x-9)
 - (g) -(a-2b) (h) $\frac{1}{2}(2x+1)$
 - (i) -3m(-2+4m+3n)
- 3. Remove the brackets and simplify the expressions:
 - (a) 18 13(x+2) (b) x(x+y)

- 5. Remove the brackets and simplify the following expressions:
 - (a) (x+3)(x-7) (b) (2x-1)(3x+7)
 - (c) (4x+1)(4x-1)
 - (d) (x+3)(x-3) (e) (2-x)(3+2x)
- 6. Remove the brackets and simplify the following expressions:

(a)
$$\frac{1}{2}(x+2y) + \frac{7}{2}(4x-y)$$

(b)
$$\frac{3}{4}(x-1) + \frac{1}{4}(2x+8)$$

Quadratic Expressions

- Expressions of the form ax² + bx + c, where a, b and c are numbers, are called quadratic expressions.
- The coefficient of x² is "a", and "a" cannot be zero
- The coefficient of x is "b", and it can be zero
- The constant term is "c", and it can be zero

Examples of Quadratic Expressions

•
$$x^2 + 6x + 8$$

•
$$x^2 - x - 30$$

•
$$x^2 - 5x + 6$$

•
$$2x^2 + 5x - 3$$

•
$$2y^2 - 5y + 2$$

quadratic coefficient $Ax^{2} + bx + c$ constan

Factorizing Quadratic Expressions

- To factorise a quadratic expression means to express it as a product of two or more terms.
- (1) Quadratic expressions where the coefficient of x^2 is 1

$$x^2 + bx + c$$

The factorisation of $x^2 + bx + c$ will be of the form (x + m)(x + n). This means that mn must equal c and m + n must equal b.

$$(x + m)(x + n) = (x + m)x + (x + m)n$$

= $x^2 + mx + nx + mn$
= $x^2 + (m + n)x + mn$

Factorizing Quadratic Expressions(2)

Example for factorising quadratic expressions where the coefficient of x^2 is 1

Factorizing Quadratic Expressions (3)

(2) Quadratic expressions where the coefficient of x^2 is not 1 $2x^2 + 11x + 12$

All possible factors of the first and last terms must be found.

The factors of the first term, $2x^2$, are 2x and x.

The factors of the last term, 12, are 12,1 -12,-1 6,2 -6,-2 and 4,3 -4,-3.

Try each combination in turn to find which gives a coefficient of x of 11.

The only one producing a middle term of 11x is 3 & 4 where (2x + 3)(x + 4).

$$2x^2 + 8x + 3x + 12$$

Therefore, the factors of $2x^2 + 11x + 12$ are (2x + 3)(x + 4)

- Factorise the following quadratic expressions:
 - (a) $x^2 + 3x + 2$ (b) $x^2 + 13x + 42$
 - (c) $x^2 + 2x 15$ (d) $x^2 + 9x 10$
 - (e) $x^2 11x + 24$ (f) $x^2 100$
 - (g) $x^2 + 4x + 4$ (h) $x^2 36$
 - (i) $x^2 25$ (j) $x^2 + 10x + 9$
 - (k) $x^2 + 8x 9$ (l) $x^2 8x 9$
 - (m) $x^2 10x + 9$ (n) $x^2 5x$

- 2. Factorise the following quadratic expressions:
 - (a) $2x^2 5x 3$ (b) $3x^2 5x 2$
 - (c) $10x^2 + 11x + 3$ (d) $2x^2 + 12x + 16$
 - (e) $2x^2 + 5x + 3$ (f) $3s^2 + 5s + 2$
 - (g) $3z^2 + 17z + 10$ (h) $9x^2 36$
 - (i) $4x^2 25$

Evaluation of Algebraic Expressions

Algebraic Fractions

One algebraic expression divided by another is called an algebraic fraction.

• e.g. (1)
$$\frac{3x}{5x}$$

(2)
$$\frac{3x^2}{6x}$$

 Note: Rules for determining the sign of the answer when dividing positive and negative algebraic expressions are the same as those used for dividing numeric.

Cancelling common factors

- In numerical fractions, any factors which appear in both the numerator and the denominator are called common factors.
- These can be cancelled.
- e.g.

(1)

$$\frac{3}{12} = \frac{1 \times 3}{4 \times 3} = \frac{1 \times 3}{4 \times 3} = \frac{1}{4}$$

(2)

$$\frac{\frac{1}{3}}{\frac{15}{3}} \times \frac{\frac{5}{5}}{6} = \frac{1}{6}$$

Simplify Algebraic Fractions

 A fraction is expressed in its simplest form by factorising the numerator and denominator and cancelling any common factors.

• e.g. (1)
$$\frac{x+4}{(x-3)(x+4)} = \frac{1 \cdot (x+4)}{(x-3)(x+4)} = \frac{1}{x-3}$$

(2)
$$\frac{x+2}{x^2+3x+2} = \frac{1(x+2)}{(x+2)(x+1)} = \frac{1}{x+1}$$

1. Simplify

(a)
$$\frac{9x}{3y}$$
 (b) $\frac{9x}{x^2}$ (c) $\frac{9xy}{3x}$ (d) $\frac{9xy}{3y}$

(e)
$$\frac{9xy}{xy}$$
 (f) $\frac{9xy}{3xy}$

2. Simplify

(a)
$$\frac{15x}{3y}$$
 (b) $\frac{15x}{5y}$ (c) $\frac{15xy}{x}$ (d) $\frac{15xy}{xy}$

(a)
$$\frac{15x}{3y}$$
 (b) $\frac{15x}{5y}$ (c) $\frac{15xy}{x}$ (d) $\frac{15xy}{xy}$ (e) $\frac{x^5}{-x^3}$ (f) $\frac{-y^3}{y^7}$ (g) $\frac{-y}{-y^2}$ (h) $\frac{-y^{-3}}{-y^4}$

3. Simplify the following algebraic fractions:

(a)
$$\frac{4}{12+8x}$$
 (b) $\frac{5+10x}{5}$ (c) $\frac{2}{4+14x}$

(d)
$$\frac{2x}{4+14x}$$
 (e) $\frac{2x}{2+14x}$ (f) $\frac{7}{49x+7y}$

(g)
$$\frac{7y}{49x + 7y}$$
 (h) $\frac{7x}{49x + 7y}$

(n)
$$\frac{x+3}{x^2+7x+12}$$

(c)
$$\frac{2x+8}{x^2+2x-8}$$
 (d) $\frac{7ab}{a^2b^2+9ab}$

Multiplication of Algebraic Fractions

 To multiply two algebraic fractions: multiply the numerators together and multiply the denominators together.

• e.g.
$$\frac{5}{7x} \times \frac{4}{3y}$$
$$\frac{20}{21xy}$$

$$\frac{a}{a+b} \times \frac{b}{5a^2} := \frac{ab}{5a^2(a+b)}$$

Division of Algebraic Fractions

 Division is performed by inverting the second fraction and multiplying.

• e.g. (1)
$$\frac{10a}{b} \div \frac{a^2}{3b} = \frac{10a}{b} \times \frac{3b}{a^2} = \frac{30ab}{a^2b} = \frac{30}{a}$$

(2)
$$\frac{x^2y^3}{z} \div \frac{y}{x} = \frac{x^2y^3}{z} \times \frac{x}{y} = \frac{x^3y^3}{zy} = \frac{x^3y^2}{z}$$

Simplify

(a)
$$\frac{5}{4} \times \frac{a}{25}$$
 (b) $\frac{5}{4} \times \frac{a}{b}$ (c) $\frac{8a}{b^2} \times \frac{b}{16a^2}$

(d)
$$\frac{9x}{3y} \times \frac{2x}{y^2}$$
 (e) $\frac{3}{5a} \times \frac{b}{a}$ (f) $\frac{1}{4} \times \frac{x}{y}$

(b)
$$\frac{x-2}{4} \div \frac{x}{16}$$
 (c) $\frac{12ab}{5ef} \div \frac{4ab^2}{f}$
(d) $\frac{x+3y}{2x} \div \frac{y}{4x^2}$ (e) $\frac{3}{x} \times \frac{3}{y} \times \frac{1}{z}$

Simplify

$$\frac{x+1}{x+2} \times \frac{x^2+6x+8}{x^2+4x+3}$$

Addition and subtraction of algebraic fractions

- Similar to adding and subtracting numerical fractions.
- e.g.

$$\frac{4}{x+y} = \frac{4}{x+y} \times \frac{y}{y} = \frac{4y}{(x+y)y}$$

$$\frac{4}{x+y} - \frac{3}{y}$$

$$\frac{3}{y} = \frac{3}{y} \times \frac{x+y}{x+y} = \frac{3(x+y)}{(x+y)y}$$

$$\frac{4}{x+y} - \frac{3}{y} = \frac{4y}{(x+y)y} - \frac{3(x+y)}{(x+y)y} = \frac{4y - 3(x+y)}{(x+y)y} = \frac{y - 3x}{(x+y)y}$$

Proper and Improper Fractions

Proper Fractions

Highest power of the numerator < Highest power of the denominator

• e.g.
$$\frac{x+5}{x^3}$$
 , $\frac{x^2+3x-9}{2x^3+7}$

Improper Fractions

Highest power of the numerator >= Highest power of the denominator

• e.g.
$$\frac{9x^2}{3x}$$
 , $\frac{x^3 + x^2 + x + 100}{100x^3 - 5x^2}$

Partial fractions

- A single fraction can be expressed as the sum of two or more simpler fractions.
- Each of these simpler fractions is known as a partial fraction.

Formulae

Rearranging a Formula

- Transposing a formula involves rearrange the formula.
- To transpose a formula:
 - a. add the same quantity to both sides
 - b. subtract the same quantity from both sides
 - c. multiply or divide both sides by the same quantity
 - d. perform operations on both sides

Rearranging a Formula Example

Transpose the formula for "F"

$$C = \frac{5 (F - 32)}{9}$$

Multiply both sides by 9 to get:

$$9C = 5(F - 32)$$

Write backwards to get F on to the left:

$$5(F - 32) = 9C$$

Divide both sides by 5 to get:

$$F - 32 = \frac{9C}{5}$$

Add 32 to both sides to get:

$$F = \frac{9C}{5} + 32$$

Transpose each of the following formulae to make *x* the subject:

(a)
$$y = 3x$$
 (b) $y = \frac{1}{x}$ (c) $y = 7x - 5$

(d)
$$y = \frac{1}{2}x - 7$$
 (e) $y = \frac{1}{2x}$

(f)
$$y = \frac{1}{2x+1}$$
 (g) $y = \frac{1}{2x} + 1$

(h)
$$y = 18x - 21$$
 (i) $y = 19 - 8x$

Make x the subject of the following formulae:

(a)
$$y = 1 - x^2$$
 (b) $y = \frac{1}{1 - x^2}$

(c)
$$y = \frac{1 - x^2}{1 + x^2}$$