SIEMENS

Seven Segment Display 7 mm (0.28") Low Current Version

HDN 1075 O HDN 1077 O

Features

- Excellent character appearance
- · Evenly lighted segments
- Wide viewing angle 2φ = 50 °
- · Mitred corners on segments
- · Grey package provides optimum contrast
- Low power consumption
- IC-compatible
- Right hand decimal

Туре	Polarity	Color of emission	Luminous intensity/ Segment I _F = 2 mA I _V (µcd)	Ordering code	
HDN 1075 O	common an- ode	super-red	260 (typ.)	Q68000-A4315	
HDN 1077 O	common cathode	super-red	260 (typ.)	Q68000-A4317	

Maximum Ratings (TA = 25 °C)

Description	Symbol	Value	Unit °C	
Operating temperature range	Тор	0 + 85		
Storage temperature range	T stg	- 40 + 85	°C	
Lead soldering temperature, 2 mm from base	Ts	260	°C for 3 s	
Forward surge current per segment or DP 1)	I _{FM}	100	mA	
DC forward current per segment or DP ²⁾	IF	15	mA	
Reverse voltage per segment or DP	V _A	6	٧	
Total power dissipation	P _{tot}	320	mW	

- 1) Do not exceed maximum average current per segment (see graph of the peak forward current)
- 2) Derate maximum average current above TA = 75 °C at 0.5 mA/°C per segment

Characteristics (TA = 25 °C)

Parameter	Symbol	Values			Unit
		min	typ.	ma	
Luminous intensity per segment (Digit average)		-			
2 mA	Iv	180	260		μcd
5 mA	Iv	<u>=</u> .	1000		μcd
20 mA PK, 1:4 Duty factor	Iv	-	1300	-	μcd
Peak wavelength	λpeak		635	-	nm
Dominant wavelength (Digit average)	λdom	612	-	625	nm
Forward voltage per segment or DP I = 2 mA	VF	20	1.8	-	V
Break down voltage per Segment I _R = 10 μA	VBR	6	15	-	V
Thermal resistance LED junction-to-pin	R thy PIN	+0		180	°C/W/Seg

Relative spectral emission $I_{rel} = f(\lambda)$

V(λ) = Standard eye response curve

Peak forward current $I_{FM} = f(V_{FM})$ $t_P/T = 0.001$, $t_P = 10 \mu s$, $T_A = 25 °C$

Rel. luminous intensity $I \lor /I \lor (25 \circ C) = f(T_A)$ $I_F = 2 \text{ mA}$

SIEMENS

Max. permissible forward current $I_F = f(T_A)$

Luminous intensity $I_V = f(I_F)$ $T_A = 25 \, ^{\circ}\text{C}$

Relative efficiency $I \vee I \vee (2 \text{ mA}) = f(I \text{ FM})$ T = 7.5 C

Total power dissipation per segment $P_{\text{tot}} = f_{\text{(}}(T_{\text{A}})$

Package Outlines

