2-7. Теорема о делении с остатком вполне упорядоченных множеств.

Теорема $\forall \alpha, \beta \quad \exists ! \gamma, \delta : \delta < \alpha \text{ и } \alpha = \beta \cdot \gamma + \delta, \text{ где } \alpha, \beta, \gamma, \delta - \text{ВУМы.}$

Доказательство:

1) Существование.

Рассмотрим ζ такое, что заведомо $\beta \zeta > \alpha$ (например, подойдет $\zeta = \alpha + 1$).

Это значит, что α равняется некоторому начальному отрезку $\beta \zeta$. Этот начальный отрезок представляется в виде $[0;q), q \in \beta \zeta$ и потому $q=(b,g), b \in \beta, g \in \zeta$

$$\alpha \in [0;q) \Rightarrow \alpha = (s,t)$$
: либо $t < g$, а s любое из β , либо $t = g, s < b$.

Для каждого t < g получаем экземпляр β , порядок на этих экземплярах взят с [0;g) В итоге : $\gamma = [0;g), \delta = [0;b)$

2) Единственность.

Если $\gamma_1 = \gamma_2$, то аналогично единственности вычитания. Если $\gamma_1 < \gamma_2$, то $\gamma_1 + 1 \le \gamma_2$ и поэтому $\beta \cdot \gamma_1 + \delta_1 < \beta \cdot \gamma_1 + \beta = \beta \cdot (\gamma_1 + 1) \le \beta \cdot \gamma_2 \le \beta \cdot \gamma_2 + \delta_2$.