

(19)

Europäisches Patentamt
European Patent Office
Office européen des brevets

(11)

EP 1 117 669 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

29.01.2003 Bulletin 2003/05

(51) Int Cl.7: C07F 9/6561, A61K 31/675

(21) Application number: 99949151.7

(86) International application number:
PCT/GB99/03207

(22) Date of filing: 27.09.1999

(87) International publication number:
WO 00/018775 (06.04.2000 Gazette 2000/14)

(54) ANTIVIRAL PURINE DERIVATIVES

ANTIVIRALE PURIN-DERIVATE

DERIVES DE PURINE ANTIVIRaux

(84) Designated Contracting States:
AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

SI

(72) Inventors:

- MCGUIGAN, Christopher
Whitchurch Cardiff CF4 2EH (GB)
- BALZARINI, Jan
B-3001 Heverlee (BE)

(30) Priority: 28.09.1998 GB 9821058

(74) Representative: Howard, Paul Nicholas et al

(43) Date of publication of application:
25.07.2001 Bulletin 2001/30Carpmaels & Ransford
43 Bloomsbury Square
London WC1A 2RA (GB)

(73) Proprietors:

- UNIVERSITY COLLEGE CARDIFF
CONSULTANTS LTD.
Cardiff CF1 3XR (GB)
- REGA FOUNDATION
3000 Leuven (BE)

(56) References cited:

EP-A- 0 369 409	EP-A- 0 434 450
EP-A- 0 468 866	WO-A-92/06102
WO-A-96/29336	

EP 1 117 669 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

EP 1 117 669 B1

Description

[0001] The present invention relates to a chemical compound. In particular the present invention relates to a chemical compound suitable for use as an anti-viral agent. The present invention also relates to the therapeutic use of the present chemical compound, to a pharmaceutical composition containing the present compound and to use of the present compound in the manufacture of a medicament.

5 [0002] Since the recognition of human acquired immunodeficiency syndrome (AIDS) much interest and research activity has been directed to its understanding and to attempting to provide a means of treatment. The human immunodeficiency virus (HIV) has been identified as the presumed aetiological agent in AIDS. A large literature now exists related to the use of a wide variety of chemical compounds having as their object a demonstration of anti-viral activity with respect to HIV, hepatitis B virus (HBV), herpes and other viruses.

10 [0003] A class of compounds which has demonstrated anti-viral activity and which has been the subject of a large amount of research are nucleoside analogues.

15 [0004] An example of such a compound is "Abacavir" which is a substituted adenine analogue (Foster R.H. & Faulds D. Drugs 1998 55 729-736). This compound has entered clinical use due to the potential activity and stability of the compound displayed in preliminary work.

20 [0005] WO-9629336 relates to a class of nucleoside analogues said to be highly active with respect to HIV. In particular WO-9629336 addresses the problem of providing compounds which are said to be highly potent *in vitro* viral inhibitors in both TK⁻ and TK⁺ cells. The compounds disclosed in WO-9629336 are phosphoramidates of purine or pyrimidine nucleoside analogues. Such compounds can however display chemical, for example acid, or biological, for example nucleoside phosphorylase, instability towards glycoside bond cleavage. Consequential deactivation may limit their potential clinical efficacy.

25 [0006] A compound however to be potentially useful in a clinical setting needs to exhibit a number of other properties as well as demonstrating, at least *in vitro* tests, a sufficient and desired anti-viral activity. Primarily, these other properties comprise good pharmacokinetic properties, sufficient stability in the compound to permit its ease of handling and supply, and sufficiently low toxicity to permit its administration with an acceptable level of side effects to a patient in need of treatment for the viral infection in question.

30 [0007] In practice however it is frequently found that attempts to modify a compound demonstrating anti-viral activity *in vitro*, in order to improve its other properties, can have a detrimental effect on the anti-viral activity it displays. Ideally moreover any compound proposed for clinical trials needs also to have a ready means of administration and to be preparable by an economically viable route.

35 [0008] It is an object of the present invention to provide a novel class of compounds exhibiting potent anti-viral, in particular anti HIV and/or HBV activity, in combination with good pharmacokinetic and stability properties and exhibiting sufficiently low toxicity so as to provide a compound having beneficial properties for clinical use.

[0009] According to the present invention there is provided a compound according to the following formula (I):

wherein
Ar is an aryl group,

EP 1 117 669 B1

R¹ and R² are independently selected from the group comprising H, alkyl and aryl groups; X is selected from the group comprising O, NH, NR⁴ and S wherein R⁴ is selected from the group comprising alkyl and aryl groups;

R⁵ is selected from the group comprising H, alkyl and aryl groups, wherein when R¹ and R⁵ are each alkyl they may be linked to form a 5- or 6- membered ring;

and R³ is selected from the group comprising H, alkyl, aryl, heterocyclic and polycyclic groups, or a pharmaceutically acceptable derivative or metabolite thereof.

[0010] The present invention includes salts and physiologically functional derivatives of the presently defined compounds.

[0011] Reference in the present specification to an alkyl group means a branched or unbranched, cyclic or acyclic, saturated or unsaturated (e.g. alkenyl or alkynyl) hydrocarbyl radical. Where cyclic, the alkyl group is preferably C₃ to C₁₂, more preferably C₅ to C₁₀, more preferably C₅ to C₇. Where acyclic, the alkyl group is preferably C₁ to C₁₆, more preferably C₁ to C₆, more preferably methyl or ethyl.

[0012] Reference in the present specification to an aryl group means an aromatic group, such as phenyl or naphthyl, or a heteroaromatic group containing one or more, preferably one, heteroatom for example O, N and/or S, such as pyridyl, pyrrolyl, furanyl and thiophenyl. Preferably, the aryl group comprises phenyl or substituted phenyl.

[0013] The alkyl and aryl groups may be substituted or unsubstituted, preferably unsubstituted. Where substituted, there will generally be 1 to 3 substituents present, preferably 1 substituent. Substituents may include halogen atoms and halomethyl groups such as CF₃ and CCl₃; oxygen containing groups such as oxo, hydroxy, carboxy, carboxyalkyl, alkoxy, alkoyl, alkoyloxy, aryloxy, aryloyl and aryloyoxy; nitrogen containing groups such as amino, alkylamino, di-alkylamino, cyano, azide and nitro; sulphur containing groups such as thiol, alkylthiol, sulphonyl and sulphoxide, heterocyclic groups which may themselves be substituted; alkyl groups, which may themselves be substituted; and aryl groups, which may themselves be substituted, such as phenyl and substituted phenyl. Alkyl includes substituted and unsubstituted benzyl. Reference in the present specification to alkoxy and aryloxy groups means alkyl-O- and aryl-O- groups, respectively. Reference to alkoyl and aryloyl groups means alkyl-CO- and aryl-CO-, respectively.

[0014] Reference in the present specification to heterocyclic groups means groups containing one or more, optionally bridged, rings containing 1 to 6 heteroatoms in total. Each ring in the group may contain 3 to 12, preferably 1 to 6, atoms in total. At least one ring present contains 1 to 2 heteroatoms. Where two or more rings are present they may be fused or unfused. The rings can contain unsaturation. Heteroatoms includes O, S and N. Examples of such heterocyclic groups containing one or more pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, tetrahydrofuranyl, pyranyl, pyronyl, pyridyl, pyrazinyl, pyridazinyl, piperidyl, piperazinyl, morpholinyl, thionaphthyl, benzofuranyl, isobenzofuryl, indolyl, oxyindolyl, isoindolyl, indazolyl, indolinyl, 7-azaindolyl, isoindazolyl, benzopyranyl, coumarinyl, isocoumarinyl, quinolyl, isoquinolyl, naphridinyl, cinnolinyl, quinazolinyl, pyridopyridyl, benzoxazinyl, quinoxadinyl, chromenyl, chromanyl, isochromanyl and carbolinyl.

[0015] References in the present specification to polycyclic groups means a group comprising two or more non-aromatic carbocyclic or heterocyclic rings which may themselves be substituted. Preferably the group contains 2 to 4 fused or non-fused rings, each ring suitably containing 3 to 12 atoms, more suitably 4 to 10, more suitably 5 to 7, and even more suitably 5 to 6 atoms. The definitions of cyclic alkyl and heterocyclic rings given above also apply to the rings in the polycyclic groups.

[0016] Reference in the present specification to halogen means a fluorine, chlorine, bromine or iodine radical, preferably fluorine or chlorine radical.

[0017] The group Ar comprises a substituted or unsubstituted aryl group, wherein the term "aryl group" and the possible substitution of said group is as defined above. Preferably, Ar is a substituted or unsubstituted phenyl group. Particularly preferred substituents are electron withdrawing groups such as halogen (preferably chlorine or fluorine), trihalomethyl (preferably trifluoromethyl), cyano and nitro groups. Preferably, Ar is phenyl, 3,5-dichloro-phenyl, p-trifluoromethyl-phenyl, p-cyano-phenyl, or p-nitro-phenyl.

[0018] R³ is selected from hydrogen, alkyl, aryl, heterocyclic and polycyclic groups.

[0019] Preferably, R³ is a substituted or unsubstituted alkyl group. Preferably, R³ is a substituted or unsubstituted C₁₋₆ alkyl group, more preferably an ethyl or methyl group.

[0020] Preferably, R³ is selected from the group comprising -CH₃, -C₂H₅ and -CH₂Ph.

[0021] Preferably, at least one of R¹ and R² is hydrogen. It will be appreciated that if R¹ and R² are different, the carbon atom to which they are bonded is an asymmetric centre.

[0022] Preferably this carbon atom is chiral. When this carbon atom is chiral, the stereochemistry at this site may be D or L or mixed, with L-stereochemistry being preferred.

[0023] Suitably, R¹ and R² are the same or different and are H, -CH₃ or -C₂H₅. Preferably, R¹ is H and R² is -CH₃, -CH₂CH₃ or CH₂Ph.

[0024] R⁵ and R¹ can be linked to form an alkylene bridge comprising 3 to 4 carbon atoms so as to form a 5- or 6-membered ring. Preferably R⁵ is hydrogen.

EP 1 117 669 B1

[0025] It will be appreciated that the group $-\text{NH-CHR}^1-\text{CO}_2\text{R}^3$ corresponds to a carboxy-protected α -amino acid. Preferably, the group R^1 corresponds to the side chain of a naturally occurring amino acid such as Alanine, Arginine, Asparagine, Aspartic Acid, Cysteine, Cystine, Glycine, Glutamic Acid, Glutamine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Proline, Serine, Threonine, Tryptophan, Tyrosine, Valine. Preferably, R^1 is Me or PhCH_2 corresponding to the side chain of alanine or phenylalanine, respectively. Preferably, the stereochemistry at the asymmetric centre $-\text{CHR}^1-$ corresponds to an L-amino acid.

[0026] It is a feature of the aryl ester phosphate compounds of the present invention that they exhibit significantly enhanced anti-viral efficacy in *in vitro* tests, in comparison to their corresponding nucleoside analogue, (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, which is known as Abacavir and which has the following structural formula:

[0027] According to a further aspect of the present invention there is provided a compound of formula (II):

wherein R^1 , R^2 , R^3 , R^5 and X are as defined above, or a pharmaceutically acceptable derivative or metabolite thereof. Preferably X is O.

[0028] The intracellular generation of such anti-viral metabolites is an important feature of the invention for several reasons. In cases where the nucleoside is not a good substrate for host nucleotide kinases, activation will be poor and anti-viral efficacy low, even if the triphosphate is an excellent RT inhibitor. In such cases, the generation of the present metabolites may lead to a very significant enhancement in anti-viral action.

[0029] By "a pharmaceutically acceptable derivatives" is meant any pharmaceutically acceptable salt, ester or salt of such ester or any other compound which upon administration to a recipient is capable of providing (directly or indirectly) a compound of the present formula or present metabolite. Preferred "pharmaceutically acceptable derivatives" include sodium, succinate, fumarate, glutarate and D-tartrate salts.

[0030] By "pharmaceutically acceptable metabolite" is meant a metabolite or residue of a compound of the present formula or present metabolite which gives rise to reverse transcriptase inhibition exhibited by the present compounds.

[0031] According to a further aspect of the present invention there is provided a compound according to the present

EP 1 117 669 B1

invention for use in a method of treatment, prophylaxis or diagnosis, preferably in the prophylaxis or treatment of viral infection.

[0032] According to a further aspect of the present invention there is provided use of a compound according to the present invention in the manufacture of a medicament for the prophylaxis or treatment of viral infection.

5 [0033] A method of prophylaxis or treatment of viral infection can comprise administration to a patient in need of such treatment an effective dose of a compound according to the present invention.

[0034] The viral infection may comprise any viral infection such as HIV and herpes virus, including HSV 1 and HSV 2, CMV, VZV, EBV, HAV, HBV, HCV, HDV, HHV6, HHV7, HHV8, papilloma, adenoviruses, rabies and influenza.

10 [0035] Preferably, the viral infection comprises HIV or HBV infection, more preferably HIV-I or HIV-II. It is a feature of the present invention that the compounds exhibit good activity against HIV-I and HIV-II, and HBV.

[0036] According to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of the present invention in combination with a pharmaceutically acceptable excipient.

[0037] According to a further aspect of the present invention there is provided a method of preparing a pharmaceutical composition comprising the step of combining a compound of the present invention with a pharmaceutically acceptable

15 excipient.

[0038] Compounds of the present invention can demonstrate significant stability towards acid-mediated hydrolytic decomposition. The present compounds can thus be particularly suitable for oral administration under typical dosing conditions in humans as they can retain stability under the highly acidic environment of the stomach.

20 [0039] As the purine in compounds of formula (I) is a weak base ($pK_a=5.0$) and the compounds of formula (I) demonstrate stability to acids, salts can be formed of compounds of formula (I) with acids, such as carboxylic acids and dicarboxylic acids. Such salts can be stable, crystalline solids, which can be beneficial in terms of improved shelf-life and ease of handling during manufacture into pharmaceutical compositions. Preferred carboxylic and dicarboxylic acids include malonic, succinic, glutaric, fumaric and tartaric acids. In contrast to the salts of compounds of formula (I), the free bases of compounds of formula (I) can be in a non-crystalline amorphous form which can be hygroscopic.

25 [0040] The P-OH group of compounds of formula (II) is a weak acid and can therefore form monobasic salts with bases to give, for example, sodium, potassium, ammonium, and triethylammonium salts. In compounds of formula (II) when X is OH, dibasic salts can be formed. Such dibasic salts can be in the form of stable solids, which can provide benefits of improved shelf-life and ease of handling during manufacture into pharmaceutical compositions.

30 [0041] Compounds of the present invention can also demonstrate enhanced stability in biological media, for example, in human plasma. The increased half-life of compounds embodying the present invention in media such as human plasma may permit a pharmacokinetic advantage in dosing in humans in need of treatment.

[0042] The medicament employed in the present invention can be administered by oral or parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration.

35 [0043] For oral administration, the compounds of the invention will generally be provided in the form of tablets or capsules, as a powder or granules, or as an aqueous solution or suspension.

[0044] Tablets for oral use may include the active ingredients mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavouring agents, colouring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.

45 [0045] Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredients is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.

[0046] Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

50 [0047] Formulations suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or spray formulations containing in addition to the active ingredient such carriers as are known in the art to be appropriate.

[0048] For intramuscular, intraperitoneal, subcutaneous and intravenous use, the compounds of the invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotonicity. Suitable aqueous vehicles include Ringer's solution and isotonic sodium chloride. Aqueous suspensions according to the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinylpyrrolidone and gum tragacanth, and a wetting agent such as lecithin. Suitable preservatives for aqueous suspensions include ethyl and n-propyl p-hydroxybenzoate.

[0049] The compounds of the invention may also be presented as liposome formulations.

EP 1 117 669 B1

[0050] In general a suitable dose will be in the range of 0.01 to 10 mg per kilogram body weight of the recipient per day, preferably in the range of 0.2 to 1.0 mg per kilogram body weight per day. The desired dose is preferably presented once daily, but may be dosed as two, three, four, five or six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example, containing 10 to 1500 mg, preferably 20 to 1000 mg, and most preferably 50 to 700 mg of active ingredient per unit dosage form.

5 [0051] According to a further aspect of the present invention there is provided a process for the preparation of the present compound comprising reaction of a compound of formula

10

15

20

25

with a compound of formula

30

35 wherein R¹, R², R³, R⁵ and X have the meanings given above.

[0052] The reaction may be carried out under dry conditions at ambient temperature in tetrahydrofuran in the presence of N-methylimidazole, or by using t-butyl magnesium chloride and an excess of the appropriate phosphorochloride reagent.

40 [0053] Compounds embodying the present invention wherein Ar is replaced by H may be prepared from the acid form by treatment of the ester with an aqueous base.

[0054] Compounds wherein X is NH or NR⁴ can be prepared by treating the acid form (X = O and R³ = H) with amine.

45 [0055] The above starting material, (1S, 4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol, is known as Abacavir and may be made by any procedure known in the art, for example by procedures described in European Patent Specification Number 0434450, PCT Patent Application No. PCT/GB95/02014, and PCT Patent Application No. PCT/EP98/02835.

50 [0056] The invention will now be described with reference to the following Examples. It will be appreciated that what follows is by way of example only and that modifications to detail may be made whilst still falling within the scope of the invention.

50 EXPERIMENTAL PROCEDURES

General methods

55 [0057] The following anhydrous solvents and reagents were bought dry from Aldrich with sure seal stoppers: Dichloromethane (DCM), diethyl ether (Et₂O), tetrahydrofuran (THF), N-methyl imidazole (NMI), methanol (MeOH), dimethylformamide (DMF), pyridine (pyr), dioxane, and tBuMgCl. Triethylamine (NEt₃) was dried by refluxing over CaH₂ for several hours and then distilled off for immediate use.

EP 1 117 669 B1

Chromatography

5 [0058] Thin layer chromatography (tlc) was performed on commercially available Merck Kieselgel 60F₂₅₄ (product name) plates and the separated components were visualised using ultra violet light (254nm and 366nm), or by treatment with a 5% ethanolic solution of dodeca-molybdo-phosphoric acid (MPA) followed by heating. Column chromatography was performed using Woelm silica (32-63mm) as the stationary phase.

Spectral Characterisation

10 [0059] All NMR spectral data, unless otherwise stated, were obtained in CDCl₃. Proton and Carbon-13 nuclear magnetic resonance were recorded on a Bruker Avance DPX300 (product name) spectrometer with operating frequencies of 300MHz and 75MHz respectively. Phosphorous-31 NMR spectra were recorded on a Bruker Avance DPX300 spectrometer operating at 121MHz, and are reported in units of δ relative to 85% phosphoric acid as the external standard, positive shifts are downfield. The following abbreviations are used in the assignment of NMR signals: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), bs (broad signal), dd (double of doublets), dt (double of triplets).

15 [0060] Low resolution mass spectra were run on a VG Platform II Fisons instrument (Fisons, Altrincham, UK) (atmospheric pressure ionization, electrospray mass spectrometry) in either negative or positive ion mode.

20 [0061] High Performance Liquid Chromatography (HPLC) was performed on an SSODS2 (product name) reverse phase column with an eluent of water/acetonitrile. 100% water (0 mins), 20% water (35mins), 20% water (45mins), 100% water (55mins), with a flow rate of 1 ml/min and detection by UV at 254 nm. Standards: acetone (*t*_R 4.54mins), toluene (*t*_R 10.21mins). Final products showed purities >99%, with undetectable amounts of the parent nucleoside.

Nomenclature and Numbering of Compounds

25 [0062] IUPAC nomenclature is used where possible, but for ease some compounds are abbreviated. Numbering is by conventional nucleoside numbering.

30

35

40

Standard Procedures

45 [0063] For practical purposes, standard procedures are given where applicable.

Standard Procedure 1

50 [0064] To a stirring solution of anhydrous alcohol (10mol eq) was added thionyl chloride (2mol eq) dropwise at 0°C, and the resulting solution stirred for 1hr. Upon rising to room temperature, the appropriate amino acid (1mol eq) was added and the reaction heated at reflux for 6-16hrs. Removal of the solvent and recrystallisation from methanol:ether gave the amino ester hydrochloride salts.

Standard Procedure 2

55 [0065] The appropriate amino acid (1mol eq), para-toluene sulfonic acid (1.1mol eq) and the appropriate alcohol (1mol eq) were heated under reflux in toluene (100ml), under Dean and Stark conditions, for 6-16hrs. On cooling to room temperature the solvent was removed under reduced pressure to give an oil. This was solubilised in dichloromethane (50ml) and washed with 10% K₂CO₃ (50ml), and water (50ml), filtered and the filtrate reduced to dryness to give

EP 1 117 669 B1

an oil. This was solubilised in the minimum amount of acetone and neutralised with 2M HCl, and then lyophilised to give the amino acid ester hydrochloride salts.

Standard procedure 3

5

[0066] Phenyl dichlorophosphate (1mol eq) and the appropriate amino acid ester hydrochloride salt (1mol eq) were suspended in anhydrous dichloromethane (30-60ml). Anhydrous triethylamine (2mol eq) in anhydrous dichloromethane (30ml) was added dropwise at -80°C, and the reaction left to rise to room temperature overnight. The solvent was removed under reduced pressure, and under nitrogen, to give white solids. This was washed with anhydrous ether (2x25ml), filtered and the filtrate reduced to dryness to give the products as crude oils. These were stored in anhydrous THF and used without any further purification.

10

Standard Procedure 4

15

[0067] (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (1mol eq) was dried by azeotroping with anhydrous pyridine (3x5ml), and then suspended in anhydrous THF (5-30ml). To the suspension was added tBuMgCl (1-2mol eq, 1.0M solution in THF) dropwise, and the resulting suspension stirred for 10mins. The phosphorochloridate species (3mol eq, solution in THF) was then added dropwise and the resulting solution stirred at room temperature for 24-96hrs. The reaction was then quenched by the addition of sat.NH₄Cl (0.1ml), and after 10mins the solvent was removed under reduced pressure. The crude product was purified by silica column chromatography.

20

L-Alanine methyl ester hydrochloride.

25

C₄H₁₀O₂N₁Cl₁, MW=139.38.

[0068] This was synthesised according to **Standard Procedure 1**, using anhydrous methanol (34ml, 0.84mol), thionyl chloride (8.2ml, 0.112mol) and L-alanine (5.0g, 0.056mol). The product was isolated as a white solid (2.87g, 36.7%).
¹H NMR (D₂O): δ 4.07-4.00 (1H,q,CH,J=7.22Hz), 3.83 (3H,s,OCH₃), 1.39-1.37 (3H,t,CH₃).
¹³C NMR (D₂O): δ 171.5 (CO), 53.9 (OCH₃), 49.1 (CH), 15.4 (CH₃).

30

Phenyl-(methoxy-L-alaninyl)-phosphorochloridate.

C₁₀H₁₃O₄N₁Cl₁P₁, MW=277.65.

35

[0069] This was synthesised according to **Standard Procedure 3**, using L-Alanine methyl ester hydrochloride (2.0g, 14.34mmol), phenyl phosphorodichloridate (3.02g, 2.14ml, 14.34mmol) and anhydrous triethylamine (2.90g, 4.0ml, 28.68mmol). The product (3.91g, 98.2%) was isolated as a colourless crude oil which was stored in anhydrous THF (40ml) to give a 0.47M solution.

³¹P NMR: δ 9.28, 8.97 (1:1).

40

¹H NMR: δ 7.39-7.34 (2H,m,'*o*'-Ph), 7.29-7.20 (3H,m,'*m*'+'*p*'-Ph), 4.49-4.37 (1H,q,NHala), 4.27-4.09 (1H,m,CHala), 3.78 (3H,d,OCH₃), 1.52-1.49 (3H,dd,CH₃).

¹³C NMR: 173.6 (CO), 150.1 ('*ips*'-Ph), 130.25 ('*m*'-Ph), 126.4 ('*p*'-Ph), 120.9 ('*o*'-Ph), 53.2 (OCH₃), 51.0 (CH), 20.9 (CH₃ala).

45

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-L-alaninyl)]-phosphate. C₂₄H₃₀O₅N₇P₁, MW=527.53.

C₂₄H₃₀O₅N₇P₁, MW=527.53.

50

[0070] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (500mg, 1.75mmol), tBuMgCl (1.0M solution in THF) (1.75ml, 1.75mmol) and phenyl-(methoxy-L-alaninyl)-phosphorochloridate (0.47M solution in THE) (11.17ml, 5.24mmol), in THF (30ml) and stirring at room temperature for 70hrs. The crude product was purified by column chromatography eluting with 3% MeOH in DCM and then 2% MeOH in DCM to give the product as a white foam (442mg, 48%).

55

³¹P NMR (MeOH-d₄): δ 3.97, 3.88.

¹H NMR: δ 7.41 (1H,d,C8), 7.24-7.19 (2H,m,'*o*'-Ph), 7.13-7.03 (3H,m,'*m*'+'*p*'-Ph), 6.08 (1H,bs,NH), 5.98 (1H,q,H2'), 5.78 (t,H3'), 5.44 (1H,t,H1'), 5.09 (2H,bs,NH₂), 4.22-4.02 (3H,m,NHala+H5'), 3.99-3.87 (1H,m,CHala), 3.59 (3H,t, OCH₃), 3.05 (1H,d,H4'), 2.92 (1H,bs,CHcPr), 2.73-2.62 (1H,m,1of H6'), 1.62-1.53 (1H,m,1of H6'), 1.30-1.25 (3H,t,

EP 1 117 669 B1

CH₃ala), 0.78-0.71 (2H,q,2H of CH₂cPr), 0.54-0.49 (2H,t,2H of CH₂cPr).

¹³C NMR: δ 174.6 (CO), 160.3 (C2), 156.6 (C4), 151.3 (C6), 151.1 ('*ipso*'-Ph), 136.8 (C8), 135.9 (C2'), 131.5 (C3'), 130.0 ('*m*'-Ph), 125.2 ('*p*'-Ph), 120.5 ('*o*'-Ph), 115.0 (C5), 69.2 (C5'), 59.2 (C1'), 52.8 (OCH₃), 50.5 (CHala), 46.0 (C4'), 34.9 (C6'), 24.2 (CHcPr), 21.2 (CH₃ala), 7.7 (CH₂cPr).

5 MS ES⁺ : m/z 527.86 (100%) (M)⁺, 546.84 (M+K)⁺.

MS FAB: For C₂₄H₃₁O₅N₇P, requires 528.212431, found 528.213848.

HPLC: *t*_R 30.33 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

10 IR: 3328.6 (N-Hstr.), 2922.1, 2862.9 (C-Hstr.), 1734.4 (C=Ostr.), 1590.9 (aromatic C-Cstr.), 1462.9 (C-Hdef.), 1376.8 (-CH₃sym.def.), 1207.1 (P-O-aryl), 1154.0 (C-Ostr.), 1027.7 (P-O-alkyl), 933.4 (olefinic C-Hdef.), 721.8 (monosub. aromatic C-Hdef.).

Phenyl-(methoxy-D-alaninyl)-phosphorochloridate.

C₁₀H₁₃O₄N₁Cl₁P₁, MW=277.65.

15

[0071] This was synthesised according to **Standard Procedure 3**, using D-alanine methyl ester hydrochloride (1.0g, 7.17mmol), PhOP(O)Cl₂ (1.51g, 1.07ml, 7.17mmol) and NEt₃ (1.45g, 2.0ml, 14.0mmol) to yield 1.66g (83.4%) of crude product that was stored in anhydrous THF (10ml), to give a 0.60mmol/ml solution that was used without further purification.

20 ³¹P NMR: δ 9.38, 9.18 (1:1).

¹H NMR: δ 7.39-7.30 (2H,t,'*o*'-Ph), 7.29-7.09 (3H,m,'*m*'+'*p*'-Ph), 4.85-4.80 (1H,d,NHala), 4.19-4.11 (1H,m,CHala), 3.75 (3H,d,OCH₃), 1.52-1.49 (3H,dd,CH₃ala).

¹³C NMR: δ 173.6 (CO), 150.1 ('*ipso*'-Ph), 130.3 ('*o*'-Ph), 126.4 ('*p*'-Ph), 120.9 ('*m*'-Ph), 53.2 (OCH₃), 50.9 (CHala), 21.0 (CH₃ala).

25

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-D-alaninyl)]-phosphate. Cf1583.

C₂₄H₃₀O₅N₇P₁, MW=527.53.

30

[0072] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (400mg, 1.4mmol), tBuMgCl (1.0M solution in THF) (2.1ml, 2.1mmol), and phenyl-(methoxy-D-alaninyl)-phosphorochloridate (0.6M solution in THF) (7.0ml, 4.19mmol) in THF (25ml) stirring at room temperature for 36hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ and then 2.5% MeOH in CHCl₃ to give the product as a white foam (318.6mg, 43.2%).

³¹P NMR: δ 3.93, 3.70.

¹H NMR: δ 7.56+7.51 (1H,d,H8), 7.37-7.32 (2H,m,'*o*'-Ph), 7.29 (1H,d,'*p*'-Ph), 7.25-7.15 (2H,m,'*m*'-Ph), 6.10 (1H,t, J=5.28Hz,H2'), 6.03 (1H,bs,NHcPr), 5.94-5.89 (1H,m,H3'), 5.54 (1H,bs,H1'), 5.01 (2H,bs,NH₂), 4.26-3.83 (4H,m,CHala,NHala+H5'), 3.72 (3H,d,OCH₃), 3.18 (1H,s,CHcPr), 3.02 (1H,bs,H4'), 2.86-2.75 (1H,m,1 of H6'), 1.78-1.64 (1H,m, 1 of H6'), 1.39-1.36 (3H,dd,CH₃ala), 0.90-0.83 (2H,q,J=6.13Hz,2H of CH₂cPr), 0.63 (2H,bs, 2H of CH₂cPr).

40

¹³C NMR: δ 174.5 (CO), 160.3 (C2), 156.6 (C4) 151.2 (C6), 151.0 ('*ipso*'-Ph), 136.8 (C2'), 136.1 (C8), 131.5 (C3'), 130.0 ('*m*'-Ph), 125.3 ('*p*'-Ph), 120.5 ('*o*'-Ph), 115.2 (C5), 69.3 (C5'), 59.3 (C1'), 52.9 (CHala), 50.5 (OCH₃), 46.0 (C4'), 34.9 (C6'), 24.1 (CHcPr), 21.4 (CH₃ala), 7.8 (CH₂cPr).

MS ES⁺ : m/z 527.86 (100%) (M)⁺, 546.84 (M+K)⁺.

45

MS FAB: For C₂₄H₃₁O₅N₇P requires 528.212431, found 528.211505.

HPLC: *t*_R 29.807 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3333.6 (N-Hstr.), 2923.4, 2853.4 (C-Hstr.), 1734.1 (C=Ostr.), 1591.1 (aromatic C-Cstr.), 1458.3 (C-Hdef.), 1376.7 (-CH₃sym.def.), 1208.3 (P-O-aryl), 1153.3 (C-Ostr.), 1026.9 (P-O-alkyl), 931.9 (olefinic C-Hdef.), 721.6 (monosub. aromatic C-Hdef.).

50

Phenyl-(methoxy-L-phenylalaninyl)-phosphorochloridate.

C₁₆H₁₇O₄N₁Cl₁P₁, MW=353.74.

55

[0073] This was synthesised according to **Standard Procedure 3**, using L-phenylalanine methyl ester (1.0g, 4.64mmol), PhOP(O)Cl₂ (0.98g, 0.70ml, 4.64mmol) and NEt₃ (0.94g, 1.30ml, 9.28mmol) to yield 1.45g (88.4%) of crude product as an oil that was stored in anhydrous THF (10ml), to give a 0.41mmol/ml solution that was used without further purification.

EP 1 117 669 B1

³¹P NMR: δ 9.37, 9.23 (1:1).

¹H NMR: δ 7.60-7.16 (10H,m,2xPh), 4.70-4.49 (1H,m,CHala), 4.38-4.16 (1H,m,NHala), 3.89 (3H,d,OCH₃), 3.23 (2H, m,CH₂Ph).

5 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-L-phenylalaninyl)]-phosphate. C11585.

C₃₁H₃₄O₅N₇P₁, MW=603.6.

10 [0074] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (300mg, 1.05mmol), tBuMgCl (1.0M solution in THF) (1.57ml, 1.57mmol) and phenyl-(methoxy-L-phenylalaninyl)-phosphorochloride (0.41M solution in THF) (7.66ml, 3.14mmol) in THF (20ml) stirring at room temperature for 48hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ and then 2.5% MeOH in CHCl₃ to give the product as a white foam (272.9mg, 43.15%).

15 ³¹P NMR: δ 3.91, 3.80.

¹H NMR: δ 7.47-7.43 (1H,d,H8), 7.31-7.06 (10H,m,2xPh), 6.25 (1H,d,NHcPr), 6.00-5.95 (1H,q,H2'), 5.87-5.81 (1H,t, H3'), 5.49 (1H,s,H1'), 5.19 (2H,bs,NH₂), 4.31-3.92 (4H,m,CHala,NHala+H5'), 3.64 (3H,d,OCH₃), 3.02-2.89 (4H,m, CH₂Ph,CHcPr+H4'), 2.78-2.63 (1H,m,1 of H6'), 1.63-1.49 (1H,m,1 of H6'), 0.86-0.80 (2H,q,J=6.24Hz,2H of CH₂cPr), 0.60 (2H,d,2H of CH₂cPr).

20 ¹³C NMR: δ 174.3 (CO), 161.5 (C2), 157.7 (C4), 152.4 (C6) 152.1 ('ipsd'-OPh), 137.7 ('ipsd'-Bn), 137.1 (C2'), 136.9 (C8), 132.4 (C3'), 130.9 ('o'+m'-Bn), 129.9 ('m'-OPh), 128.4 ('p'-Bn), 126.2 ('p'-OPh), 121.5 ('o'-OPh), 116.1 (C5), 70.1 (C5'), 60.1 (C1'), 57.2 (CHala), 53.6 (OCH₃), 46.9 (C6'), 41.7 (C4'), 35.9 (CH₂Ph), 25.1 (CHcPr), 8.7 (CH₂cPr).

MS ES⁺ : m/z 603.8 (100%, M⁺), 604.8 (35%, M+H⁺), 625.7 (15%, M+Na⁺).

MS FAB: For C₃₁H₃₄O₅N₇P requires 604.243731, found 604.242585.

25 HPLC: t_R 34.707, 35.020 (100%)-(100% water (0mins) 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3331.7 (N-Hstr.), 3007.2, 2952.2 (C-Hstr.), 1741.1 (C=Ostr.), 1595.6, 1487.7 (aromatic C-Cstr.), 1455.0 (C-Hdef.), 1393.9 (-CH₃sym.def.), 1252.5 (P=O), 1214.3 (P-O-aryl), 1125.3 (C-Ostr.), 1025.6 (P-O-alkyl), 935.8 (olefinic C-Hdef.), 754.8 (monosub.aromatic C-Hdef.).

30

Pbenyl-(methoxyglycyl)-phosphorochloride.

C₉H₁₁O₄N₁Cl₁P₁, MW=263.62.

35 [0075] This was synthesised according to **Standard Procedure 3**, using glycine methyl ester (1.5g, 11.9mmol), PhOP(O)Cl₂ (2.52g, 1.79ml, 11.9mmol) and NEt₃ (2.42g, 3.33ml, 23.9mmol) to yield 3.07g (97.15%) of crude product as an oil that was stored in anhydrous THF (15ml), to give a 0.774mmol/ml solution that was used without further purification.

³¹P NMR: δ 10.43.

40 ¹H NMR: δ 7.43-7.38 (2H,m,'o'-Ph), 7.31-7.25 (3H,m,'m'+p'-Ph), 4.67 (1H,bs,NHala), 3.94 (2H,dd,CH₂), 3.83 (3H,s, OCH₃).

¹³C NMR: δ 170.4 (CO), 150.1 ('ipsd'-Ph), 130.2 ('m'-Ph), 126.4 ('p'-Ph), 120.8 ('o'-Ph), 53.1 (OCH₃), 43.4 (CH₂).

45 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-glycyl)]-phosphate. C11588.

C₂₃H₂₈O₅N₇P₁, MW=513.49.

50 [0076] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (300mg, 1.05mmol), tBuMgCl (1.0M solution in THF) (1.57ml, 1.57mmol) and phenyl-(methoxy-glycyl)-phosphorochloride (0.774M solution in THF) (4.06ml, 3.14mmol) in THF (20ml) stirring at room temperature for 96hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ and then with 2.5% MeOH in CHCl₃ to give the product as a white foam (82.6mg, 15.4%).

55 ³¹P NMR: δ 4.79, 4.67 (1:1).

¹H NMR: δ 7.40-7.36 (1H,d,H8), 7.24-7.19 (2H,t,'o'-Ph), 7.15-7.10 (2H,t,'m'-Ph), 7.07-7.02 (1H,t,'p'-Ph), 6.00-5.96 (2H, m,H2'+NHcPr), 5.80-5.76 (1H,m,H3'), 5.45-5.41 (1H,t,H1'), 4.99 (2H,bs,NH₂), 4.14-4.00 (3H,m,NHala+H5'), 3.62 (3H, s,OCH₃), 3.03 (1H,d,H4'), 2.91 (1H,d,CHcPr), 2.73-2.62 (1H,m,1 of H6'), 1.62-1.51 (1H,m,1 of H6'), 1.45-1.43 (6H,t, 2xCH₃), 0.78-0.71 (2H,q,2H of CH₂cPr), 0.54-0.49 (2H,t,2H of CH₂cPr).

EP 1 117 669 B1

¹³C NMR: δ 172.1 (CO), 160.2 (C2), 156.6 (C4), 152.0 (C6), 151.7 ('*ipso*-Ph), 137.7 (C8), 137.1 (C2'), 132.0 (C3'), 130.8 ('*m*'-Ph), 126.0 ('*p*'-Ph), 121.2 ('*o*'-Ph), 115.5 (C5), 69.9 (C5'), 60.0 (C1'), 53.5 (OCH₃), 46.7 (C4'), 43.9 (CH₂), 35.4 (C6'), 25.0 (CHcPr), 8.5 (CH₂cPr).

MS ES⁺ : m/z 513.9 (100%, M⁺), 514.8 (25%, M+H⁺), 535.8 (40%, M+Na⁺).

5 MS FAB: For C₂₃H₂₉O₅N₇P requires 514.196781, found 514.195321.

HPLC: t_R 28.419 (99.9%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3342.0 (N-Hstr.), 1749.8 (C=Ostr.), 1596.2, 1488.4 (aromatic C-Cstr.), 1451.9 (C-Hdef.), 1394.7 (-CH₃sym.def.), 1259.6 (P=O), 1212.1 (P-O-aryl), 1151.6 (C-Ostr.), 1026.8 (P-O-alkyl), 937.8 (olefinic C-Hdef.), 760.7 (monosub.aromatic C-Hdef.).

10

Methyl-2-amino-2-methylpropanoate hydrochloride.

C₅H₁₂O₂N₁Cl₁, MW=153.61.

15

[0077] This was synthesised according to **Standard Procedure 1**, using 2-amino-isobutyric acid (4g, 0.039mol) with thionyl chloride (5.66ml, 0.078mol) and anhydrous methanol (23.5ml, 0.58mol). This gave the product as a white solid (5.805g, 97.4%).

¹H NMR (DMSO): δ 8.85 (3H,s,NH₃⁺Cl⁻), 3.72 (3H,s,OMe), 1.48 (6H,s,2xMe).

¹³C NMR (DMSO): δ 172.8 (COOMe), 56.6 (OMe), 53.9 (CMe₂), 24.1 (2xMe).

20

MS ES⁺ : m/z 117.71 M+H⁺, 142.88 M+Na⁺.

Phenyl-(methyl-2-amino-2-methylpropanoate)-phosphorochloridate.

C₁₁H₁₅O₄N₁Cl₁P₁, MW=291.67.

25

[0078] This was synthesised according to **Standard Procedure 3**, using 2-amino-isobutyrate methyl ester hydrochloride (1.0g, 6.51mmol), PhOP(O)Cl₂ (1.37g, 0.97ml, 6.51mmol) and NEt₃ (1.32g, 1.18ml, 13.02mmol), to yield 1.73g (91%) of the crude product as an oil. This was stored in anhydrous THF (10ml) to give a solution of 0.593mmol/ml, and used without further purification.

30

³¹P NMR: δ 6.86.

¹H NMR: δ 7.43-7.38 (2H,t,'*o*'-Ph), 7.32-7.21 (3H,m,'*m*'+'*p*'-Ph), 4.84 (1H,d,NHala), 3.83 (3H,s,OCH₃), 1.72 (6H,d, 2xCH₃).

¹³C NMR: δ 175.7 (CO), 150.3 ('*ipso*-Ph), 130.3 ('*m*'-Ph), 126.3 ('*p*'-Ph), 121.0 ('*o*'-Ph), 58.8 (OCH₃), 53.6 (C(CH₃)₂), 27.3 + 27.0 (2xCH₃).

35

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy- α , α dimethylglyciny)]-phosphate. Cf1584.

C₂₅H₃₂O₅N₇P₁, MW=542.23.

40

[0079] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (300mg, 1.05mmol), tBuMgCl (1.0M solution in THF) (1.57ml, 1.57mmol) and phenyl-(methoxy-dimethylglyciny)-phosphorochloridate (0.59M solution in THF) (5.3ml, 3.14mmol) in THF (20ml) stirring at room temperature for 96hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ and then with 2.5% MeOH in CHCl₃ to give the product as a white foam (193.7mg, 34.14%).

³¹P NMR: δ 2.49.

¹H NMR: δ 7.40-7.36 (1H,d,H8), 7.24-7.19 (2H,t,'*o*'-Ph), 7.15-7.10 (2H,t,'*m*'-Ph), 7.07-7.02 (1H,t,'*p*'-Ph), 6.00-5.96 (2H, m,H2'+NHCPr), 5.80-5.76 (1H,m,H3'), 5.45-5.41 (1H,t,H1'), 4.99 (2H,bs,NH₂), 4.14-4.00 (3H,m,NHala+H5'), 3.62 (3H, s,OCH₃), 3.03 (1H,d, H4'), 2.91 (1H,d,CHcPr), 2.73-2.62 (1H,m,1of H6'), 1.62-1.51 (1H,m,1of H6'), 1.45-1.43 (6H,t, 2xCH₃), 0.78-0.71 (2H,q,2H of CH₂cPr), 0.54-0.49 (2H,t,2H of CH₂cycl.).

MS ES⁺ : m/z 541.9 (100%, M⁺), 563.8 (30%, M+Na⁺).

MS FAB: For C₂₅H₃₃O₅N₇P requires 542.228081, found 542.228428.

HPLC: t_R 28.347 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3346.0 (N-Hstr.), 2923.0, 2853.5 (C-Hstr.), 1734.0 (C=Ostr.), 1590.2 (aromatic C-Cstr.), 1458.4 (C-Hdef.), 1376.8 (-CH₃sym.def.), 1261.3 (P=O), 1152.7 (C-Ostr.), 1028.0 (P-O-alkyl), 936.0 (olefinic C-Hdef.), 721.7 (monosub.aromatic C-Hdef.).

EP 1 117 669 B1

L-Aspartic acid dimethyl ester hydrochloride.

 $C_6H_{12}O_4N_1Cl_1$, MW=197.62.

5 [0080] This was synthesised according to **Standard Procedure 1**, using L-asparagine (2.5g, 0.019mol) with thionyl chloride (3.67ml, 0.042mol) and anhydrous methanol (12.86ml, 0.32mol). This gave L-aspartic acid dimethyl ester hydrochloride in 3.70g, 99% yield.
 1H NMR (MeOH-d₄): δ 4.53-4.50 (1H,t,CH), 3.94 (3H,s,OCH₃), 3.85 (3H,s,OCH₃), 3.18 (2H,d,CH₂).
 ^{13}C NMR (MeOH-d₄): δ 170.4, 168.4 (CO), 53.0+52.0 (2xOMe), 49.4 (CH), 33.8 (CH₂).

10 Phenyl-(dimethoxy-L-aspartyl)-phosphorochloridate.

 $C_{12}H_{15}O_8N_1Cl_1P_1$, MW=335.68.

15 [0081] This was synthesised according to **Standard Procedure 3**, using L-Aspartic acid dimethyl ester (1.0g, 5.04mmol), PhOP(O)Cl₂ (1.06g, 0.75ml, 5.04mmol) and NEt₃ (1.02g, 1.40ml, 10.1mmol) to yield 0.55g (32.4%) of crude product as an oil that was stored in anhydrous THF (5ml), to give a 0.33mmol/ml solution that was used without further purification.
 ^{31}P NMR: δ 9.74, 9.59 (1:1).

20 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(L-aspartic acid dimethyl ester)]-phosphate. Cf1 589.

 $C_{24}H_{30}O_5N_7P_1$, MW=527.53.

25 [0082] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (250mg, 0.87mol), tBuMgCl (1.0M solution in THF) (0.87ml, 0.87mmol) and phenyl-(L-aspartic acid dimethyl ester)-phosphorochloridate (0.50M solution in THF) (5.20ml, 2.62mmol) in THF (15ml) and stirring at room temperature for 48hrs. The crude product was purified by eluting with 2.5% MeOH in CHCl₃ (x2) to give the product as a pale yellow foam (163.5mg, 32.0%).
 ^{31}P NMR: δ 4.19, 3.76 (1:1).

30 1H NMR: δ 7.40 (1H,d,H8), 7.24-7.19 (2H,t,' δ -Ph), 7.12-7.03 (3H,m,' m +' p '-Ph), 6.05-5.95 (2H,m,H2'+NHcPr), 5.79 (1H,d,H3'), 5.44 (1H,s,H1'), 5.02 (2H,bs,NH₂), 4.38-4.07 (4H,m,H5',NHala+CHala), 3.61 (3H,s,OCH₃), 3.54 (3H,d,OCH₃), 3.05-2.52 (5H,m,CH₂aa,H4',CHcPr,+1 of H6'), 1.64-1.52 (1H,m,1 of H6'), 0.77-0.73 (2H,t,J=5.49Hz,2Hof CH₂cPr), 0.51 (2H,bs,2H of CH₂cPr).

35 ^{13}C NMR: δ 173.3 (CO), 172.4 (CO), 161.5 (C2), 157.7 (C4), 152.3 (C8), 152.1 ('*ipso*-Ph), 137.8 (C2'), 137.0 (C6), 132.6 (C3'), 131.1 (' m '-Ph), 126.4 (' p '-Ph), 121.6 (' δ -Ph), 116.2 (C5), 70.5 (C5'), 60.3 (C1'), 54.3 (OCH₃), 53.5 (OCH₃), 52.6 (CHala), 47.1 (C4'), 39.7 (CH₂ala), 36.0 (C6'), 25.1 (CHcPr), 8.8 (CH₂cPr).

40 MS ES⁺ : m/z 585.8 (100%, M⁺), 607.7 (30%, M+Na⁺).
MS FAB: For $C_{26}H_{33}O_5N_7P$ requires 586.217910, found 586.217510.

HPLC: t_R 29.261 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3347.5 (N-Hstr.), 2850.7 (C-Hstr.), 1739.9 (C=Ostr.), 1596.1 (aromatic C-Cstr.), 1461.9 (C-Hdef.), 1376.6 (-CH₃sym. def.), 1262.4 (P=O), 1211.2 (P-O-aryl), 1158.3 (C-Ostr.), 1027.0 (P-O-alkyl), 935.6 (olefinic C-Hdef.), 761.5, 722.0 (monosub.aromatic C-Hdef.).

45 3-cyclohexyl-L-alanine methyl ester hydrochloride salt

 $C_9H_{19}N_1O_2Cl_1$, MW=221.75

50 [0083] This was synthesised according to **Standard Procedure 1**, using 3-cyclohexyl-L-alanine (3.0g, 17.5mmol), methanol (30ml), and thionyl chloride (2.56ml, 35mmol). The product was isolated as a white solid (3.23g, 83.9%).
 1H NMR (MeOH-d₄): δ 4.12-4.07 (3H,t,CHala), 3.85 (3H,s,OCH₃), 1.74-1.68 (6H,m,CH₂+o-CH₂), 1.56-1.43 (1H,m,CH), 1.36-1.15 (4H,m, m -CH₂), 1.05-0.90 (2H,q, p -CH₂).
 ^{13}C NMR: δ 170.15 (CO), 52.7 (OCH₃), 50.8 (CHala), 38.2 (CH₂), 33.6 (CH), 33.0+32.7 (2xCH₂-o), 26.3 (p -CH₂), 26.0+25.9 (2xCH₂-m).

EP 1 117 669 B1

Phenyl-(methoxy-3-cyclohexyl-L-alaninyl)-phosphorochloridate**C₁₈H₂₃N₁O₄P₁Cl₁, MW=359.82**

5 [0084] This was synthesised according to **Standard Procedure 3**, using 3-Cyclohexyl-L-alanine methyl ester hydrochloride salt (0.7g, 3.16mmol), PhOP(O)Cl₂ (0.47ml, 3.16mmol), triethylamine (0.88ml, 6.31mmol) in DCM (60ml). The usual workup yielded the crude product as a yellow oil (1.18g, 100%), which was stored in THE (7ml) to give a 0.45M solution.
³¹P NMR: δ 9.79, 9.49 (1:1).

10 ¹H NMR: δ 7.49-7.43 (2H,m,'o'-Ph), 7.37-7.19 (3H,m,'m'+p'-Ph), 4.46-4.35 (1H,q,NHala), 4.32-4.20 (1H,m,CHala), 3.88-3.85 (3H,dd,OCH₃), 1.94-1.90 (1H,d,CHcHx), 1.76-1.60

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(methoxy-3-cyclohexane-L-alaninyl)-phosphate. Cf1709.**C₃₀H₄₀N₇O₅P₁, MW=609.66**

15 [0085] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (150mg, 0.52mmol), tBuMgCl (1.05ml, 1.05mmol, of a 1.0M solution in THF), in THF (4ml) and phenyl-(methoxy-3-cyclohexane-L-alaninyl)-phosphorochloridate (3.5ml, 1.57mmol, of a 0.45M solution in THF), at room temperature for 24hrs. After 24hrs, additional phenyl-(methoxy-3-cyclohexane-L-alaninyl)-phosphorochloridate (2.5ml, 1.12mmol, of a 0.45M solution in THF) was added and the reaction stirred for another 24hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃, and then 2.5% MeOH in CHCl₃ to give the pure product as a pale yellow foamy solid (79.6mg, 24.9%).

20 ³¹P NMR: δ 4.14, 3.98 (1:1).
¹H NMR: δ 7.50 (1H,d,H8), 7.34-7.13 (5H,t,OPh), 6.20 (1H,s,NHcPr), 6.08 (1H,t,H2'), 5.89 (1H,q,H3'), 5.53 (1H,bs, H1'), 5.16 (2H,bs,NH₂), 4.24-3.84 (4H,m,H5',NHala+CHala), 3.66 (3H,s,OCH₃), 3.34 (1H,bs,), 3.11 (1H,d,), 3.03 (1H, bs,), 2.84-2.72 (1H,m,1 of H6'), 1.98-1.36 (8H,m,), 1.11 (3H,bs,), 0.89-0.83 (4H,m,2Hof cPr+CH₂'p'), 0.63 (2H,d,2Hof cPr).
³⁰ ¹³C NMR: δ 174.8CO 160.2 (C2), 156.5 (C4), 151.3 (C6), 151.2 ('ipso'-Ph), 136.8 (C2'), 135.9 (C8), 131.5 (C3'), 130.0 ('m'-Ph), 125.2 ('p'-Ph), 120.5 ('o'-Ph), 115.1 (C5), 69.4 (C5'), 59.3 (C1'), 52.7 (CHala), 46.1 (C4'), 42.5 (CH₂), 34.9 (C6'), 33.8 (CHcHx), 32.7 (CH₂'o'), 26.7 (CH₂'m'), 26.4 (CH₂'p'), 24.2 (CHcPr), 7.8 (CH₂cPr).
MS ES⁺: m/z 610.3 (40%, M⁺), 632.3 (100%, M+Na⁺), 633.3 (25%, M+H+Na⁺).
MS FAB: For C₃₀H₄₀O₅N₇NaP requires 632.2726, found 632.2727.

35 HPLC: t_R 42.154 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(L-alaninyl)-phosphate diammonium salt. Cf1540.

40 [0086] (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-L-alaninyl)]-phosphate (125mg, 0.24mmol) was stirred in H₂O:NEt₃ (10ml, 1:1 v/v), at 25-35°C for 5hrs. The reaction mixture was extracted with DCM (8x20ml), and the aqueous layer reduced to dryness. The resulting solid was solubilised in isopropanol and purified by flash column chromatography, gradient eluting with i-PrOH:H₂O:NH₃ (11:1:1 to 9:1:2). The appropriate fractions were reduced to dryness and freeze dried to give the pure product as a white foamy solid (106mg, 95%).
³¹P NMR (D₂O):- δ 8.62 (s).
¹H NMR (D₂O):- δ 7.79 (1H,s,H8), 6.08 (1H,d,H2'), 5.77 (1H,d,H3'), 5.35 (1H,t,H1'), 3.71-3.58 (2H,m,H5'), 3.41-3.32 (1H,m,CHa,a), 3.02-2.94 (1H,m,NHCH), 2.70-2.59 (2H,m,H4'+1 of CH₂), 1.57-1.49 (1H,dt,1 of CH₂), 1.10 (3H,d,CH₃), 0.83-0.76 (2H,q,1 of CH₂cyclo.), 0.61-0.56 (2H,q,1 of CH₂cyclo.).
50 MS ES⁺ : m/z 437.9 (100%, M⁺).
MS FAB: calculated m/z 438.165481, found m/z 438.163790.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(D-alaninyl)-phosphate diammonium salt.

55 [0087] (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(methoxy-D-alaninyl)]-phosphate (100mg, 0.19mmol) was stirred in H₂O:NEt₃ (8ml, 1:1 v/v), for 16hrs. The reaction mixture was extracted with DCM (5x20ml), and the aqueous layer reduced to dryness. The resulting solid was solubilised in iso-

EP 1 117 669 B1

propanol and purified by flash column chromatography, gradient eluting with i-PrOH:H₂O:NH₃ (11:1:1 to 9:1:2). The appropriate fractions were reduced to dryness and freeze dried to give the pure product as a white foamy solid (88%).

³¹P NMR (MeOH-d₄): δ 7.81 (s).

¹H NMR: δ 8.74 (1H,s,H8), 6.12 (1H,d,J=5.53Hz,H2'), 5.78 (1H,t,H3'), 5.44 (1H,d,J=6.21Hz,H1'), 3.74 (2H,t,J=5.42Hz, H5'), 3.70-3.60 (1H,m,CHala), 3.01 (1H,bs,H4'), 2.84 (1H,d,J=3.28Hz,CHcPr), 2.73-2.63 (1H,dt,J=8.66Hz+5.17Hz, 1 of H6'), 1.67-1.58 (1H,m,1 of CH₂), 1.21 (3H,d,J=7.01Hz,CH₃ala), 0.79-0.73 (2H,q,J=6.68Hz,2H of CH₂cPr), 0.53 (2H, t,2H of CH₂cPr).

¹³C NMR: δ 179.8 (CO), 161.2 (C2), 157.1 (C4), 151.1 (C6), 139.5 (C2'), 137.8 (C8), 130.7 (C3'), 114.6 (C5), 68.0 (C5'), 60.5 (C1'), 51.9 (CHala), 47.6 (C4'), 35.9 (C6'), 24.4 (CHcPr), 21.7 (CH₃ala), 7.6 (CH₂cPr).

MS ES⁺ : m/z 437.9 (100%, M⁺).

MS FAB: calculated m/z 438.165481, found m/z 438.167842.

Phenyl-(ethoxy-L-alaninyl)-phosphorochloridate.

C₁₁H₁₅O₄N₁Cl₁P₁, MW=291.67.

[0088] This was synthesised according to **Standard Procedure 3**, using L-Alanine ethyl ester hydrochloride (1.0g, 6.51mmol), PhOP(O)Cl₂ (1.37g, 0.97ml, 6.51mmol) and NEt₃ (1.32g, 1.81ml, 13.0mmol) to yield 1.85g (97.4%) of crude product as an oil that was stored in anhydrous THF (10ml), to give a 0.63mmol/ml solution that was used without further purification.

³¹P NMR: δ 9.41, 9.16 (1:1).

¹H NMR: δ 7.42-7.35 (2H,dd, 'o'-Ph), 7.31-7.25 (3H,m,'m'+'p'-Ph); 4.71 (1H,d,NHala), 4.31-4.13 (3H,m,OCH₂+CHala), 1.55-1.52 (3H,dd,OCH₂CH₃), 1.33-1.30 (3H,dd,CH₃ala).

¹³C NMR: δ 173.1 (CO), 150.2 ('psd'-Ph), 130.3 ('m'-Ph), 126.4 ('p'-Ph), 120.9 ('o'-Ph), 62.3 (OCH₂), 51.0 (CHala), 20.9 (CH₂CH₃), 14.5 (CH₃ala).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(ethoxy-L-alaninyl)]-phosphate. Cf1587.

C₂₄H₃₀O₅N₇P₁, MW=527.53.

[0089] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (300mg, 1.4mmol), tBuMgCl (1.0M solution in THF) (1.57ml, 1.57mmol), and phenyl-(ethoxy-L-alaninyl)-phosphorochloridate (0.49M solution in THF) (6.45ml, 3.14mmol) in anhydrous THF (20ml), and stirring at room temperature for 24hrs. The crude product was purified by column chromatography eluting with 2.5% MeOH in CHCl₃ to give the product as a pale yellow foam (290mg, 51.1%).

³¹P NMR: δ 4.04, 3.96 (1:1).

¹H NMR: δ 7.39 (1H,d,J=7.56Hz,H8), 7.23-7.18 (2H,t,J=7.90Hz,'o'-Ph), 7.12-7.10 (2H,t,'m'-Ph), 7.06-7.01 (1H,t, J=7.13Hz,'p'-Ph), 6.18 (1H,bs,NHcPr), 5.97-5.95 (1H,t,H2'), 5.79-5.75 (1H,t,J=5.55Hz,H3'), 5.43 (1H,s,H1'), 5.13 (2H, bs,NH₂), 4.30-4.14 (1H,m,NHala), 4.06-4.00 (4H,m,H5'+OCH₂), 3.96-3.84 (1H,m,CHala), 3.03 (1H,d,J=5.74Hz,H4'), 2.92 (1H,bs,CHcPr), 2.71-2.61 (1H,m,1 of H6'), 1.60-1.51 (1H,m,1 of H6'), 1.29-1.24 (3H,t,J=6.64Hz,CH₃ala), 1.18-1.11 (3H,m,CH₂CH₃), 0.75-0.71 (2H,q,J=6.76Hz,2H of CH₂cPr), 0.50 (2H,bs,2H of CH₂cPr).

¹³C NMR: δ 173.35 (CO), 159.8 (C2), 156.0 (C4), 150.6 (C6) 150.4('psd'-Ph), 136.1 (C2'), 135.1 (C8), 130.8 (C3'), 129.3 ('m'-Ph), 124.5 ('p'-Ph), 119.8 ('o'-Ph), 114.4 (C5), 68.6 (C5'), 61.2 (OCH₂), 58.5 (C1'), 50.0 (CHala), 45.3 (C4'), 34.3 (C6'), 23.4 (CHcPr), 20.6 (CH₃ala), 13.8 (CH₂CH₃), 7.0 (CH₂cPr).

MS ES⁺ : m/z 541.9 (100%, M⁺), 546.84 (28%, M+H⁺), 563.8 (25%, M+Na⁺).

MS FAB: For C₂₅H₃₃O₅N₇P, requires 542.228081, found 542.228131.

HPLC: t_R 31.76, 32.03 (100%)-(100% water (0mins) 20% water (35mins), 20% water (45mins), 100% water (55mins)).

IR: 3334.1 (N-Hstr.), 1734.5 (C=Ostr.), 1595.9, 1488.0 (aromatic C-Cstr.), 1450.3 (C-Hdef.), 1394.2 (-CH₃sym.def.), 1252.8 (P=O), 1210.4 (P-O-aryl), 1153.3 (C-Ostr.), 1026.0 (P-O-alkyl), 934.8 (olefinic C-Hdef.), 759.0 (monosub. aromatic C-Hdef.).

Phenyl-(benzoxo-L-alaninyl)-phosphorochloridate.

C₁₆H₁₇O₄N₁Cl₁P₁, MW=353.74.

[0090] This was synthesised according to **Standard Procedure 3**, using L-alanine benzyl ester hydrochloride (1.0g,

EP 1 117 669 B1

4.64mmol), PhOP(O)Cl₂ (0.98g, 0.69ml, 4.64mmol) and NEt₃ (0.94g, 1.29ml, 9.27mmol) to yield 1.61g (98.2%) of crude product that was stored in anhydrous THF (10ml), to give a 0.46mmol/ml solution that was used without further purification.

³¹P NMR: δ 9.41, 9.23 (1:1).

5 ¹H NMR: δ 7.41-7.21 (10H,m,2xPh), 5.24 (2H,d,CH₂Ph), 4.95-4.88 (1H,t,NHala), 4.36-4.15 (1H,m,CHala), 1.56 (3H, t,CH₃ala).

¹³C NMR: δ 172.9 (CO), 150.2 ('*ipso*-OPh), 135.5 ('*ipso*-CH₂Ph), 130.3 ('*m'*-OPh), 129.0 ('*o'*-CH₂Ph), 128.7 ('*m'*+'*p'*-CH₂Ph), 126.4 ('*p'*-OPh), 121.0 ('*o'*-OPh), 68.0 (OCH₂), 51.1 (CHala), 20.8 (CH₃ala).

10 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl-(benzoxo-L-alaninyl)]-phosphate. Cf1582.**

C₃₀H₃₅O₅N₇P₁, MW=603.6.

15 [0091] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (400mg, 1.4mmol), tBuMgCl (1.0M solution in THF) (2.1ml, 2.1mmol), and phenyl-(benzoxo-L-alaninyl)-phosphorochloride (0.46M solution in THF) (9.2ml, 4.19mmol) in anhydrous THF (20ml), and stirring at room temperature for 64hrs. The crude product was purified by column chromatography eluting with 3% MeOH in CHCl₃, and then 2.5% MeOH in CHCl₃ to give the product as a white foam (82.2mg, 9.75%).

20 A second synthesis was undertaken with (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (200mg, 0.7mmol), tBuMgCl (2.43ml of a 1.0M soln in THF, 2.43mmol), and phenyl-(benzoxo-L-alaninyl)-phosphorochloride (2.2ml of a 0.46M soln in THF, 2.1mmol) in THF (2.5ml). Purification by column chromatography eluting with 3% MeOH in CHCl₃ gave the pure product as a white foamy solid (90mg, 21.3%).

³¹P NMR: δ 3.82, 3.72 (1:1).

25 ¹H NMR: δ 7.51 (1H,d,H8), 7.37-7.15 (10H,m,OPh+CH₂Ph), 6.10-6.04 (1H,m,H2'), 5.96 (1H,bs,NHcPr), 5.89 (1H,dd, J=5.36Hz,H3'), 5.54 (1H,t,H1'), 5.16 (2H,bs,NH₂), 4.96 (2H,bs,CH₂Ph), 4.23-4.05 (3H,m,NHala+H5'), 3.89-3.70 (1H, dt,CHala), 3.16-3.12 (1H,t,H4'), 3.03 (1H,bs,CHcPr), 2.85-2.71 (1H,m,1of H6'), 1.74-1.64 (1H,m,1of H6'), 1.44-1.39 (3H,t,J=7.84Hz,CH₃ala), 0.88 (2H,q,J=6.75Hz,2H of CH₂cPr), 0.64 (2H,m,2H of CH₂cPr).

¹³C NMR: δ 173.3 (CO), 159.7 (C2), 156.0 (C4), 150.9 (C6), 150.7 ('*ipso*-OPh), 136.4 (C2'), 135.7 ('*ipso*-Bn), 135.2 (C8), 131.0 (C3'), 129.6 ('*o'*-Bn), 128.6 ('*m'*-Bn), 128.5 ('*p'*-Bn), 128.2 ('*m'*-OPh), 124.9 ('*p'*-OPh), 120.1 ('*o'*-OPh), 114.8 (C5), 68.8 (C5'), 67.2 (CH₂Ph), 58.9 (C1'), 50.3 (CHala), 45.6 (C4'), 34.4 (C6'), 23.7 (CHcPr), 21.0 (CH₃ala), 7.4 (CH₂cPr).

MS ES⁺ : m/z 603.8 (100%, M⁺), 604.8 (30%, M+H⁺), 625.7 (20%, M+Na⁺).

MS FAB: For C₃₀H₃₅O₅N₇P requires 604.243731, found 604.241775.

35 HPLC: t_R 33.39 (99.7%)-(100% water (0mins) 20% water (35mins), 20% water (45mins), 100% water (55mins)).
IR: 3355.9 (N-Hstr.), 2923.3, 2853.7 (C-Hstr.), 1734.1 (C=Ostr.), 1595.6 (aromatic C-Cstr.), 1458.4 (C-Hdef.), 1376.5 (-CH₃sym.def.), 1154.4 (C-Ostr.), 1028.2 (P-O-alkyl), 935.8 (olefinic C-Hdef.), 721.7 (monosub.aromatic C-Hdef.).

L-Alanine *n*-propyl ester hydrochloride salt.

40 **C₆H₁₄N₁O₂Cl₁**, MW=167.634

[0092] This was synthesised according to **Standard Procedure 1**, using anhydrous propan-1-ol (42.0ml, 0.56mol), thionyl chloride (8.2ml, 0.112mol) and L-alanine (5.0g, 0.056mol). The product was isolated as a white solid (8.88g, 94.3%).

45 ¹H NMR (MeOH-d₄): δ 4.34-4.26 (2H,m,OCH₂), 4.24-4.17 (1H,q,CHala), 1.88-1.78 (2H,m,CH₂), 1.65 (3H,d,J=7.24Hz, CH₃ala), 1.10-1.05 (3H,t,CH₂CH₃).

¹³C NMR: δ 170.1 (CO), 68.0 (OCH₂), 48.9 (CHala), 21.9 (CH₂), 15.3 (CH₃ala), 9.5 (CH₂CH₃).

50 **Phenyl-(*n*-propoxy-L-alaninyl)-phosphorochloride**

C₁₂H₁₇N₁O₄P₁Cl₁, MW=305.79

55 [0093] This was synthesised according to **Standard Procedure 3**, using L-Alanine *n*-propyl ester hydrochloride salt (0.5g, 2.98mmol), PhOP(O)Cl₂ (0.45ml, 2.98mmol), triethylamine (0.83ml, 5.97mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (0.84g, 92.1%), which was stored in THF (5ml) to give a 0.55M solution.

³¹P NMR: δ 9.41, 9.17 (1:1).

¹³C NMR: δ 173.1 (CO), 150.1 ('*ipso*-Ph), 130.0 ('*m'*-Ph), 126.4 ('*p'*-Ph), 121.0 ('*o'*-Ph), 67.9 (OCH₂), 51.0 (CHala),

EP 1 117 669 B1

22.3 (CH_2CH_3), 21.0 (CH_3ala), 10.7 (CH_2CH_3).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(n-propoxy-L-alaninyl)-phosphate. Cf1646.

5

$\text{C}_{26}\text{H}_{34}\text{N}_7\text{O}_5\text{P}_1$, MW=555.57

[0094] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THE (3ml) and phenyl-(n-propyl-L-alaninyl)-phosphorochloride (1.9ml, 1.05mmol, of a 0.55M solution in THF), at room temperature for 24hrs. The crude product was purified by eluting with 3% MeOH in CHCl_3 to give the pure product as a pale yellow foamy solid (123mg, 63.4%).

^{31}P NMR: δ 4.06, 3.98 (1:1).

^1H NMR: δ 7.40 (1H,d,J=7.99Hz,H8), 7.23-7.18 (2H,dd,' σ -Ph), 7.12-7.02 (3H,m,' m +' p '-Ph), 6.16 (1H,bs,H3'), 5.96 (1H,t,H2'), 5.78 (1H,d,J=5.83Hz,NHcycl), 5.44 (1H,bs,H1'), 5.15 (2H,bs,NH₂), 4.33-4.18 (1H,m,CHala), 4.15-4.04 (2H, m,OCH₂), 4.01-3.88 (2H,m,H5'), 3.65 (1H,bs,NHala), 3.03 (1H,d,H4'), 2.92 (1H,bs,CHcycl), 2.72-2.62 (1H,m,1 of H6'), 1.60-1.47 (3H,m,1 of H6'+ CH_2CH_3), 1.30-1.26 (3H,t,CH₃ala), 0.84-0.80 (3H,m, CH_2CH_3), 0.73 (2H,d,J=6.8Hz,1 of CH₂cycl), 0.51 (2H,bs, 1 of CH₂cycl).

^{13}C NMR: δ 174.1(CO) 160.4 (C2), 156.6 (C4), 151.1 (C6+'ipsd'-Ph), 136.8 (C2'), 135.9 (C8), 131.5 (C3'), 130.0 (' m '-Ph), 125.2 (' p '-Ph), 120.5 (' σ -Ph), 115.0 (C5), 69.2 (C5'), 67.4 (OCH₂), 59.2 (C1'), 50.6 (CHala), 46.0 (C4'), 35.0 (C6'), 24.2 (CHcPr), 22.3 (CH_2CH_3), 21.5 (CH₃ala), 10.7 (CH_2CH_3), 7.7 (CH₂cycl).

MS ES $^+$: m/z 555.8 (100%, M $^+$), 557.0 (30%, M+H $^+$).

MS FAB: For $\text{C}_{26}\text{H}_{35}\text{O}_5\text{N}_7\text{P}$ requires 556.2437, found 556.2438.

HPLC: t_R 34.708 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

25

L-Alanine n-butyl ester hydrochloride salt.

$\text{C}_7\text{H}_{16}\text{N}_1\text{O}_2\text{Cl}_1$, MW=181.661

[0095] This was synthesised according to **Standard Procedure 1**, using anhydrous butan-1-ol (51.4ml, 0.56mol), thionyl chloride (8.2ml, 0.112mol) and L-alanine (5.0g, 0.056mol). The product was isolated as a white solid (8.86g, 86.9%).

^1H NMR (MeOH-d₄): δ 4.29-4.17 (2H,m,OCH₂), 4.13-4.06 (1H,q,CHala), 1.71-1.62 (2H,m,OCH₂CH₂), 1.53 (3H,d, J=7.25Hz,CH₃ala), 1.47-1.34 (2H,m, CH_2CH_3), 0.96-0.91 (3H,t, CH_2CH_3).

^{13}C NMR: δ 170.1 (CO), 66.2 (OCH₂), 48.9 (CHala), 30.6 (OCH₂CH₂), 19.0 (CH_2CH_3), 15.3 (CH₃ala), 13.0 (CH_2CH_3).

Phenyl-(n-butoxy-L-alaninyl)-phosphorochloride

$\text{C}_{13}\text{H}_{19}\text{N}_1\text{O}_4\text{P}_1\text{Cl}_1$, MW=317.82

40

[0096] This was synthesised according to **Standard Procedure 3**, using L-Alanine n-butyl ester hydrochloride salt (0.5g, 2.75mmol), PhOP(O)Cl₂ (0.41ml, 2.75mmol), triethylamine (0.77ml, 5.5mmol) in DCM (80ml). The usual workup yielded the crude product as a yellow oil (0.84g, 94.5%), which was stored in THF (5ml) to give a 0.525M solution.

^{31}P NMR: δ 9.39, 9.10 (1:1).

^1H NMR: δ 7.43-7.15 (5H,m,Ph), 4.68-4.59 (1H,q,CHala), 4.27-4.05 (3H,m,OCH₂+NHala), 1.73-1.59 (2H,m, OCH₂CH₂), 1.56-1.53 (2H,dd, CH_2CH_3), 1.46-1.37 (3H,m,CH₃ala), 1.00-0.92 (3H,m, CH_2CH_3).

^{13}C NMR: δ 173.2 (CO), 150.1 ('ipsd'-Ph), 130.3 (' m '-Ph), 126.4 (' p '-Ph), 121.0 (' σ '-Ph), 66.2 (OCH₂), 51.0 (CHala), 30.9 (OCH₂CH₂), 21.0 (CH₃ala), 19.4 (CH_2CH_3), 14.1 (CH_2CH_3).

50

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(n-butoxy-L-alaninyl)-phosphate. Cf1647.

$\text{C}_{27}\text{H}_{36}\text{N}_7\text{O}_5\text{P}_1$, MW=569.597

[0097] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THE (3ml) and phenyl-(n-butoxy-L-alaninyl)-phosphorochloride (2.0ml, 1.05mmol, of a 0.525M solution in THF), at room temperature for 24hrs. The crude product was purified by eluting with 3% MeOH in CHCl_3 to give the pure product

EP 1 117 669 B1

as a pale yellow foamy solid (157mg, 78.9%).

³¹P NMR: δ 4.01, 3.95(1:1).

¹H NMR: δ 7.40 (1H,d,J=7.32Hz,H8), 7.23-7.18 (2H,t,'o'-Ph), 7.11 (2H,t,'m'-Ph), 7.04 (1H,t,'p'-Ph), 6.02 (1H,bs,H3'), 5.97 (1H,t,H2'), 5.78 (1H,bs,NHcycl), 5.44 (1H,bs,H1'), 5.06 (2H,bs,NH₂), 4.22-3.88 (6H,m,CHala,OCH₂,H5'+NHala), 3.05 (1H,d,H4'), 2.93 (1H,bs,CHcycl), 2.72-2.62 (1H,m,1 of H6'), 1.61-1.47 (3H,m,1 of H6'+OCH₂CH₂), 1.30-1.26 (5H, t,CH₃ala+CH₂CH₃), 0.85-0.80 (3H,t,CH₂CH₃), 0.74 (2H,d,J=6.45Hz, 1 of CH₂cycl), 0.51 (2H,bs, 1 of CH₂cycl).

¹³C NMR: δ 174.1(CO), 160.4 (C2), 156.7 (C4), 151.2 (C6), 151.1 ('ipso'-Ph), 136.7 (C2'), 135.8 (C8), 131.5 (C3'), 130.0 ('m'-Ph), 125.2 ('p'-Ph), 120.5 ('o'-Ph), 115.0 (C5), 69.3 (C5'), 65.8 (OCH₂), 59.2 (C1'), 50.6 (CHala), 46.0 (C4'), 35.0 (C6'), 30.9 (OCH₂CH₂), 24.1 (CHcPr), 21.5 (CH₃ala), 19.4 (CH₂CH₃), 14.1 (CH₂CH₃), 7.8 (CH₂cycl).

MS ES⁺: m/z 569.9 (70%, M⁺), 570.9 (20%, M+H⁺), 591.8 (100%, M+Na⁺), 607.8 (20%, M+K⁺).

HPLC: t_R 38.27 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

L-Alanine *t*-propyl ester hydrochloride salt.

C₈H₁₄N₁O₂Cl₁, MW=167.634

[0098] This was synthesised according to **Standard Procedure 1**, using anhydrous propan-2-ol (43.0ml, 0.56mol), thionyl chloride (8.2ml, 0.112mol) and L-alanine (5.0g, 0.056mol). The product was isolated as a semicrystalline solid (8.86g, 86.9%).

¹H NMR (MeOH-d₄): δ 5.16-5.08 (1H,m,CHala), 4.11-4.04 (1H,q,OCH(Me)₂), 1.55 (3H,d,J=7.21Hz,CH₃ala), 1.34-1.31 (6H,dd,CH(Me)₂).

¹³C NMR: δ 169.5 (CO), 70.8 (COCH(Me)₂), 48.9 (CHala), 20.8 (CH₃ala), 15.3 (CH(Me)₂).

Phenyl-(*t*-propoxy-L-alaninyl)-phosphorochloridate

C₁₂H₁₇N₁O₄P₁Cl₁, MW=305.79

[0099] This was synthesised according to **Standard Procedure 3**, using L-Alanine *t*-propyl ester hydrochloride salt (0.5g, 2.98mmol), PhOP(O)Cl₂ (0.45ml, 2.98mmol), triethylamine (0.83ml, 5.97mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (1.12g, >100%), which was stored in THF (5ml) to give a 0.597M solution.

³¹P NMR: δ 9.45, 9.17 (1:1).

¹³C NMR: δ 172.6 (CO), 150.2 ('ipso'-Ph), 130.3 ('m'-Ph), 126.4 ('p'-Ph), 121.0 ('o'-Ph), 70.1 (OCH), 51.1 (CHala), 22.1 (CH(CH₃)₂), 20.9 (CH₃ala).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(*t*-propoxy-L-alaninyl)-phosphate. Cf1661.

C₂₆H₃₄N₇O₅P₁, MW=555.57

[0100] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THE (3ml) and phenyl-(*t*-propyl-L-alaninyl)-phosphorochloridate (1.76ml, 1.05mmol, of a 0.597M solution in THF), at room temperature for 72hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ (x2) to give the pure product as a pale yellow foamy solid (106.8mg, 54.8%).

³¹P NMR: δ 4.02, 3.98 (1:1).

¹H NMR: δ 7.41 (1H,d,J=8.12Hz,H8), 7.24-7.19 (2H,m,'o'-Ph), 7.13-7.03 (3H,m,'m'+'p'-Ph), 6.37 (1H,bs,,NHcPr), 5.98 (1H,t,H3'), 5.80-5.76 (1H,m,H2'), 5.43 (1H,bs,H1'), 5.21 (2H,bs,NH₂), 4.94-4.86 (1H,m,OCH), 4.15-3.98 (2H,m,H5'), 3.92-3.83 (1H,m,CHala), 3.59 (1H,bs,NHala), 3.06-2.98 (1H,m,H4'), 2.93 (1H,bs,CHcPr), 2.74-2.63 (1H,m,1 of H6'), 1.62-1.53 (1H,m,1 of H6'), 1.34-1.18 (3H,m,CH₃ala), 1.15-1.11 (6H,m,CH(CH₃)₂), 0.79-0.73 (2H,q,2H of CH₂cPr), 0.53 (2H,bs,2H of CH₂cPr).

¹³C NMR: δ 173.5(CO) 159.8 (C2), 156.2 (C4), 151.1 (C6), 151.0 ('ipso'-Ph), 136.9 (C2'), 136.1 (C8), 131.3 (C3'), 130.0 ('m'-Ph), 125.3 ('p'-Ph), 120.5 ('o'-Ph), 115.0 (C5), 69.6 (C5'), 69.2 (OCH), 59.3 (C1'), 50.7 (CHala), 46.0 (C4'), 34.9 (C6'), 24.2 (CHcPr), 22.0 (CH(CH₃)₂), 21.4 (CH₃ala), 7.8 (CH₂cycl).

ES⁺: m/z 555.9 (100%, M⁺), 556.9 (30%, M+H⁺).

MS MALDI/ TOF: For C₂₆H₃₅O₅N₇P found 555.575.

HPLC: t_R 35.85 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

EP 1 117 669 B1

Phenyl-tertbutyloxy-L-alaninyl phosphorochloridate.**C₁₈H₁₇O₄N₁Cl₁P₁, MW=353.74.**

5 [0101] This was synthesised according to **Standard Procedure 3**, using L-alanine *tert*-butyl ester hydrochloride (0.5g, 2.75mmol), PhOP(O)Cl₂ (0.41ml, 2.75mmol) and NEt₃ (0.77ml, 5.5mmol) to yield 0.77g (87.5%) of crude product that was stored in anhydrous THF (5ml), to give a 0.48mmol/ml solution that was used without further purification.
³¹P NMR: δ 9.53, 9.20 (1:1).
¹H NMR: δ 7.44-7.39 (2H,t,*'o*-Ph), 7.32-7.26 (3H,m,*'m*+*'p*-Ph), 4.47-4.34 (1H,m,NHala), 4.17-4.04 (1H,m,CHala), 1.53 (9H,3s,3xCH₃).
¹³C NMR: δ 170.7 (CO), 148.7 (*'ipsd*-Ph), 128.9 (*'o*-Ph), 124.9 (*'p*-Ph), 119.5 (*'m*-Ph), 81.65 (CMe₃), 50.0 (CHala), 26.9 (3xCH₃).

10 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl-tertbutyloxy-L-alaninyl)-phosphate. Cf1645.

C₂₄H₃₀O₅N₇P₁, MW=603.6.

15 [0102] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (140mg, 0.52mmol), tBuMgCl (1.05ml, 1.05mmol of a 1.0M solution in THF), and phenyl-(*tert*butyloxy-L-alaninyl)-phosphorochloridate (3.3ml, 1.57mmol, of a 0.48M solution in THF), in anhydrous THE (4ml) stirring at room temperature for 48hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ to give the pure product as white foamy solid (192.3mg, 69.0%).
³¹P NMR: δ 4.15 (s).
¹H NMR: δ 7.40 (1H,d,J=8.35Hz,H8), 7.23-7.18 (2H,t,*'m*-Ph), 7.12 (2H,d,*'o*-Ph), 7.06-7.02 (1H,t,*'p*-Ph), 6.09 (1H,bs, H2'), 5.97 (1H,bs,H3'), 5.77 (1H,d,NHcPr), 5.44 (1H,bs,H1), 5.10 (2H,bs,NH₂), 4.14-4.05 (3H,m,H5'+NHala), 3.85-3.77 (1H,q,CHala), 3.04 (1H,bs,H4'), 2.93 (1H,bs,CHcPr), 2.72-2.62 (1H,m,1 of H6'), 1.58-1.53 (1H,t,1 of H6'), 1.34 (9H,d, CMe₃), 1.27-1.23 (3H,t,CH₃ala), 0.73 (2H,d,2Hof CH₂cPr), 0.51 (2H,bs,2HofCH₂cPr).
¹³C NMR: δ 173.2 (CO), 160.4 (C2), 156.7 (C4), 151.2 (C6+*'ipsd*-Ph), 136.8 (C2'), 135.9 (C8), 131.5 (C3'), 130.0 (*'m*-Ph), 125.2 (*'p*-Ph), 120.6 (*'o*-Ph), 115.2 (C5), 82.3 (C[CH₃]₃), 69.3 (C5'), 59.1 (C1'), 46.0 (C4'), 35.0 (C6'), 28.3 (3xCH₃), 24.2 (CHcPr), 21.5 (CH₃ala), 7.8 (CH₂cPr).
MS ES⁺: m/z 570.0 (100%, M⁺), 570.9 (32%, M+H⁺).
MS FAB: For C₂₇H₃₇O₅N₇P requires 570.2594, found 570.2598.
HPLC: t_R 36.158 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

35 **L-Alanine *n*-pentyl ester hydrochloride salt****C₈H₁₆N₁O₂Cl₁, MW=195.69**

40 [0103] This was synthesised according to **Standard Procedure 1**, using pentan-1-ol (36.3ml, 0.337mol), thionyl chloride (4.92ml, 67.4mmol) and L-Alanine (3.0g, 33.7mmol). The product was isolated as a white solid pure product (4.86g, 73.7%).
¹H NMR (MeOH-d₄): δ 4.32-4.20 (2H,m,OCH₂), 4.16-4.08 (1H,m,CHala), 1.77-1.68 (2H,m,OCH₂CH₂), 1.56 (3H,d, J=7.22Hz,CH₃ala), 1.42-1.36 (4H,m,CH₂CH₂CH₃), 0.97-0.93 (3H,m,CH₂CH₃).
¹³C NMR: δ 170.1 (CO), 66.5 (OCH₂), 48.8 (CHala), 28.2 (OCH₂CH₂), 28.0 (CH₂CH₂CH₃), 22.3 (CH₂CH₃), 15.2 (CH₃ala), 13.3 (CH₂CH₃).

Phenyl-(*n*-pentoxy-L-alaninyl)-phosphorochloridate**C₁₄H₂₁N₁O₄P₁Cl₁, MW=333.78**

50 [0104] This was synthesised according to **Standard Procedure 3**, using L-Alanine *n*-pentyl ester hydrochloride salt (0.5g, 2.56mmol), PhOP(O)Cl₂ (0.38ml, 2.56mmol), triethylamine (0.71ml, 5.11mmol) in DCM (60ml). The usual workup yielded the crude product as a yellow oil (0.79g, 92.6%), which was stored in THF (5ml) to give a 0.47M solution.
³¹P NMR: δ 9.39, 9.12 (1:1).
¹H NMR: δ 7.43-7.38 (2H,m,*'o*-Ph), 7.32-7.25 (3H,m,*'m*+*'p*-Ph), 4.63 (1H,dd,NHala), 4.24-4.11 (3H,m,OCH₂+CHala), 1.73-1.65 (2H,m,OCH₂CH₂), 1.57-1.53 (3H,dd,CH₃ala), 1.42-1.35 (4H,m,2xCH₂), 0.97-0.91 (3H,m,CH₂CH₃).
¹³C NMR: δ 173.1 (CO), 150.1 (*'ipsd*-Ph), 130.3 (*'m*-Ph), 126.4 (*'p*-Ph), 121.0 (*'o*-Ph), 66.5 (OCH₂), 51.0 (CHala),

EP 1 117 669 B1

28.6 (CH₂-C2), 28.3 (CH₂-C3), 22.7 (CH₂-C4), 21.0 (CH₃ala), 14.1 (CH₃-C5).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(n-pentyloxy-L-alaninyl)-phosphate. Cf1706.

5

C₂₈H₃₈N₇O₅P₁, MW=583.7

[0105] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (3ml) and phenyl-(n-pentyloxy-L-alaninyl)-phosphorochloride (2.22ml, 1.05mmol, of a 0.47M solution in THF), at room temperature for 24hrs. The crude product was purified by eluting with 2.5-3.0% MeOH in CHCl₃ (x2) to give the pure product as a pale yellow foamy solid (143.2mg, 70.2%).

³¹P NMR: δ 3.99, 3.95 (1:1).

¹H NMR: δ 7.41 (1H,d,J=7.18Hz,H8), 7.24-7.19 (2H,m,'o'-Ph), 7.12-7.02 (3H,m,'m'+^p-Ph), 6.09 (1H,bs,NHcPr), 5.98 (1H,d,H2'), 5.79 (1H,bs,H3'), 5.44 (1H,bs,H1'), 5.09 (2H,bs,NH₂), 4.16-3.88 (6H,m,CHala,OCH₂,H5'+NHala), 3.05 (1H, bs,H4'), 2.94 (1H,bs,CHcPr), 2.73-2.63 (1H,m,1of H6'), 1.62-1.51 (3H,m,1of H6'+OCH₂CH₂), 1.31-1.21 (7H,t, CH₃ala+2xCH₂), 0.81-0.74 (5H,m,CH₃+2Hof CH₂cPr), 0.52 (2H,bs,2Hof CH₂cPr).

¹³C NMR: δ 174.1(CO), 160.1 (C2), 156.5 (C4), 151.2 (C6), 151.1 ('ipso'-Ph), 136.8 (C2'), 136.1 (C8), 131.5 (C3'), 130.0 ('m'-Ph), 125.2 ('p'-Ph), 120.5 ('o'-Ph), 115.1 (C5), 69.3 (C5'), 66.1 (OCH₂), 59.3 (C1'), 50.7 (CHala), 46.0 (C4'), 34.9 (C6'), 28.6 (CH₂-C2), 28.3 (CH₂-C3), 24.2 (CHcPr), 22.6 (CH₂-C4), 21.5 (CH₃ala), 14.3 (CH₃-C5), 7.8 (CH₂cPr).

MS ES⁺: m/z 584.2 (100%, M⁺), 585.2 (25%, M+H⁺).

MS FAB: For C₂₈H₃₉O₅N₇P requires 584.2750, found 584.2757.

HPLC: t_R 40.294 (99.3%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

25

L-Alanine n-hexyl ester hydrochloride salt

C₉H₂₀N₁O₂Cl₁, MW=209.75

[0106] This was synthesised according to **Standard Procedure 2**, using L-Alanine (2.0g, 22.5mmol), hexan-1-ol (2.82ml, 22.5mmol), *p*-toluene sulfonic acid monohydrate (4.7g, 24.7mmol), and toluene (100ml). L-alanine n-hexyl ester hydrochloride was isolated as a white powdery solid (3.32g, 70.5%).

¹H NMR (MeOH-d₄): δ 4.31-4.18 (2H,m,OCH₂), 4.17-4.09 (1H,q,CHala), 1.75-1.66 (2H,m,OCH₂CH₂), 1.57 (3H,d, J=7.20Hz,CH₃ala), 1.45-1.35 (6H,m,[CH₂]₃CH₃), 0.94-0.89 (3H,t,CH₂CH₃).

¹³C NMR: δ 170.1 (CO), 66.5 (OCH₂), 48.9 (CHala), 31.6 (OCH₂CH₂), 28.6 (O[CH₂]₂CH₂), 25.6 (CH₂CH₂CH₃), 22.6 (CH₂CH₃), 15.4 (CH₃ala), 13.4 (CH₂CH₃).

Phenyl-(n-hexyloxy-L-alaninyl)-phosphorochloride

C₁₅H₂₃N₁O₄P₁Cl₁, MW=347.81

40

[0107] This was synthesised according to **Standard Procedure 3**, using L-Alanine n-hexyl ester hydrochloride salt (0.5g, 2.38mmol), PhOP(O)Cl₂ (0.36ml, 2.38mmol), triethylamine (0.66ml, 4.77mmol) in DCM (60ml). The usual workup yielded the crude product as a yellow oil (0.69g, 83.2%), which was stored in THE (4ml) to give a 0.496M solution.

³¹P NMR: δ 9.40, 9.10 (1:1).

¹H NMR: δ 7.44-7.14 (5H,m,OPh), 4.25 (1H,bs,NHala), 4.23-4.03 (3H,m,OCH₂+CHala), 1.70-1.63 (2H,m,CH₂-2), 1.57-1.54 (2H,m,CH₂-3), 1.47-1.32 (7H,m,CH₃ala+2CH₂-4,5), 0.93-0.91 (3H,dd,CH₃-6).

¹³C NMR: δ 173.2 (CO), 150.1 ('ipso'-Ph), 130.3 ('m'-Ph), 126.4 ('p'-Ph), 120.9 ('o'-Ph), 66.4 (OCH₂), 51.0 (CHala), 31.7 (CH₂-C2), 28.9 (CH₂-C3), 25.8 (CH₂-C4), 22.9 (CH₂-C5), 21.0 (CH₃ala), 14.4 (CH₃-C6).

50

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(n-hexyloxy-L-alaninyl)-phosphate.

C₂₉H₄₀N₇O₅P₁, MW=597.651

55

[0108] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (3ml) and phenyl-(n-hexyloxy-L-alaninyl)-phosphorochloride (2.11ml, 1.05mmol, of a 0.496M solution in THE), at room temperature for 24hrs. Additional phenyl-(n-hexyloxy-L-alaninyl)-phosphorochloride (1.5ml, 0.68mmol, of a

EP 1 117 669 B1

0.496M solution in THF), was added and the reaction stirred for a further 24hrs. The crude product was purified by eluting with 3.0% MeOH in CHCl_3 (x2) to give the pure product as a pale yellow foamy solid.

^{31}P NMR: δ 3.94, 3.91 (1:1).

^1H NMR: δ 7.52 (1H,d,J=8.00Hz,H8), 7.36-7.31 (2H,m,'o'-Ph), 7.25-7.15 (3H,m,'m'+ p' -Ph), 6.26 (1H,bs,NHcPr), 6.13-6.08 (1H,m,H2'), 5.93-5.88 (1H,m,H3'), 5.58-5.53 (1H,m,H1'), 5.14 (2H,bs,NH₂), 4.28-3.89 (6H,m,CHala,OCH₂, H5'+NHala), 3.17 (1H,t,H4'), 3.04 (1H,bs,CHcPr), 2.87-2.75 (1H,m,1of H6'), 1.74-1.61 (3H,m,1 of H6'+OCH₂CH₂), 1.43-1.31 (9H,1,CH₃ala+3xCH₂), 0.92-0.85 (5H,m,CH₃+2Hof CH₂cPr), 0.68-0.63 (2H,q,2Hof CH₂cPr).

^{13}C NMR: δ 174.1CO, 160.1 (C2), 156.5 (C4), 151.2 (C6), 151.1 ('ipsd'-Ph), 136.9 (C2'), 136.0 (C8), 131.4 (C3'), 130.0 ('m'-Ph), 125.3 ('p'-Ph), 120.5 ('o'-Ph), 115.0 (C5), 69.2 (C5'), 66.1 (OCH₂), 59.3 (C1'), 50.7 (CHala), 46.0 (C4'), 34.9 (C6'), 31.7 (OCH₂CH₂), 28.8 (CH₂-ester), 25.8 (CH₂-ester), 24.2 (CHcPr), 21.9 (CH₂-ester), 21.5 (CH₃ala), 14.4 (CH₃-ester), 7.8 (CH₂cPr).

L-Alanine cyclo-hexyl ester hydrochloride salt

$\text{C}_9\text{H}_{16}\text{N}_1\text{O}_2\text{Cl}_1$, MW=205.71

[0109] This was synthesised according to **Standard Procedure 2**, using L-Alanine (2.0g, 22.5mmol), cyclohexanol (2.34ml, 22.5mmol), *p*-toluene sulfonic acid monohydrate (4.7g, 24.7mmol), and toluene (100ml). The *p*-toluene sulfonate salt was isolated as a pale orange solid (1.45g).

[0110] The reaction was repeated using L-Alanine (3.0g, 33.7mmol), cyclohexanol (5.26ml, 50.6mmol), *p*-toluene sulfonic acid monohydrate (9.62g, 50.6mmol), and toluene (100ml). L-alanine cyclohexyl ester hydrochloride salt was isolated as a white solid (3.15g, 45.45%).

^1H NMR (MeOH-d₄): δ 4.90 (1H,m,OCH), 4.12-4.04 (1H,q,CHala), 1.92-1.81 (2H,m,OCHCH₂), 1.80-1.63 (2H,m, OCHCH₂), 1.55 (3H,d,J=7.23Hz,CH₃ala), 1.49-1.33 (6H,m,[CH₂]₃).

^{13}C NMR: δ 169.5 (CO), 75.4 (OCH), 48.9 (CHala), 31.3 (2xCH₂-o), 25.2 (2xCH₂-m), 23.5 (p-CH₂), 15.3 (CH₃ala).

Phenyl-(c-hexyloxy-L-alaninyl)-phosphorochloridate

$\text{C}_{15}\text{H}_{21}\text{N}_1\text{O}_4\text{P}_1\text{Cl}_1$, MW=345.79

[0111] This was synthesised according to **Standard Procedure 3**, using L-Alanine c-hexyl ester hydrochloride salt (0.7g, 3.4mmol), PhOP(O)Cl₂ (0.51ml, 3.4mmol), triethylamine (0.95ml, 6.8mmol) in DCM (60ml). The usual workup yielded the crude product as a yellow oil (1.12g, 95.2%), which was stored in THF (7ml) to give a 0.46M solution.

^{31}P NMR: δ 9.43, 9.07 (1:1).

^1H NMR: δ 7.44-7.33(2H,m,'o'-Ph), 7.32-7.20 (3H,m,'m'+ p' -Ph), 4.92-4.83 (1H,m,OCH), 4.55-4.42 (1H,m,NHala), 4.28-4.15 (1H,m,CHala), 1.89 (2H,bd,CH₂-o'), 1.76 (1H,bd,CH₂-o'), 1.54 (3H,d,CH₃ala), 1.49-1.32 (6H,m, CH₃3CH₂-m'+ p').

^{13}C NMR: δ 172.5 (CO), 150.1 ('ipsd'-Ph), 130.3 ('m'-Ph), 126.4 ('p'-Ph), 121.0 ('o'-Ph), 74.9 (OCH), 51.1 (CHala), 31.8 (CH₂-o'), 25.6 (CH₂-p'), 21.0 (CH₃ala).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(c-hexyloxy-L-alaninyl)-phosphate. Cf1707.

$\text{C}_{29}\text{H}_{38}\text{N}_7\text{O}_5\text{P}_1$, MW=595.635

[0112] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (3ml) and phenyl-(c-hexyloxy-L-alaninyl)-phosphorochloridate (2.28ml, 1.05mmol, of a 0.46M solution in THF), at room temperature for 24hrs. The crude product was purified by eluting with 3-4% MeOH in CHCl_3 , and then 2.5-3.0% MeOH in CHCl_3 to give the pure product as a pale yellow foamy solid (199mg, 95.7%).

^{31}P NMR: δ 4.06, 3.99 (1:1).

^1H NMR: δ 7.42 (1H,d,J=8.15Hz,H8), 7.23-7.18 (2H,m,'o'-Ph), 7.12-7.02 (3H,m,'m'+ p' -Ph), 6.31 (1H,bs,NHcPr), 5.98 (1H,bs,H2'), 5.78 (1H,bs,H3'), 5.43 (1H,bs,H1'), 5.21 (2H,bs,NH₂), 4.66 (1H,bs,OCH), 4.17-4.02 (3H,m,H5'+NHala), 3.95-3.85 (1H,m,CHala), 3.05-2.94 (2H,m,H4'+CHcPr), 2.73-2.63 (1H,m,1of H6'), 1.69 (2H,bs,CH₂-o'), 1.62-1.53 (2H, m,CH₂-o'), 1.45-1.18 (9H,m,CH₃ala+3xCH₂-m'+ p'), 0.76 (2H,d,2Hof CH₂cPr), 0.53 (2H,bs,2Hof CH₂cPr).

^{13}C NMR: δ 172.0CO, 158.4 (C2), 154.8 (C4), 149.7 (C6), 149.6 ('ipsd'-Ph), 135.5 (C2'), 134.7 (C8), 130.0 (C3'), 128.6 ('m'-Ph), 123.8 ('p'-Ph), 119.1 ('o'-Ph), 113.1 (C5), 72.9 (OCH), 67.8 (C5'), 57.9 (C1'), 59.4 (CHala), 44.7 (C4'), 34.5 (C6'), 30.3 (CH₂-o'), 24.2 (CH₂-m'), 22.8 (CHcPr), 22.5 (CH₂-p'), 20.1 (CH₃ala), 6.4 (CH₂cPr).

EP 1 117 669 B1

MS ES⁺: m/z 596.2 (100%, M⁺), 597.3 (20%, M+H⁺).

MS FAB: For C₂₉H₃₉O₅N₇P requires 596.2750, found 596.2750.

HPLC: t_R 40.502 (99.8%)-(100% water (0mins) 20% water (35mins), 20% water (45mins), 100% water (55mins)).

5 L-alanine cyclohexane-methyl ester hydrochloride

C₁₀H₂₀N₁O₂Cl₁, MW=221.75

[0113] This was synthesised according to **Standard Procedure 2**, using L-Alanine (3.0g, 33.7 mmol), cyclohexane methanol (4.15ml, 33.7mmol), *p*-toluene sulfonic acid monohydrate (7.05g, 37.1mmol), and toluene (100ml). 9.2g of the the PTSA salt was solubilised in DCM (50ml), and washed with 10% K₂CO₃ (50ml), and water (2x50ml), dried over MgSO₄, filtered and the filtrate reduced to dryness to give a yellow oil. This was neutralised with 2M HCl, stirred for 2hrs, and then freeze-dried to give the hydrochloride salt as a white solid (4.32g, 75.8%).

10 ¹H NMR (MeOH-d₄): δ 4.19-4.01 (3H,m,OCH+CHala), 1.79-1.69 (5H,m,CH+o-CH₂), 1.58 (3H,d,J=7.21Hz,CH₃ala), 1.37-1.20 (4H,m,*m*-CH₂), 1.09-0.98 (2H,q,*p*-CH₂).
15 ¹³C NMR: δ 170.1 (CO), 71.3 (OCH₂), 48.9 (CHala), 37.3 (CH), 29.5 (2xCH₂-*o*), 26.4 (*p*-CH₂), 25.7 (2xCH₂-*m*), 15.4 (CH₃ala).

20 Phenyl-(cyclohexane-methoxy-L-alaninyl)-phosphorochloridate

C₁₆H₂₃N₁O₄P₁Cl₁, MW=359.82

[0114] This was synthesised according to **Standard Procedure 3**, using L-Alanine cyclohexane-methyl ester hydrochloride salt (0.7g, 3.16mmol), PhOP(O)Cl₂ (0.47ml, 3.16mmol), triethylamine (0.88ml, 6.31mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (1.10g, 96.8%), which was stored in THF (6ml) to give a 0.51M solution.

31P NMR: δ 9.35, 9.05 (1:1).
¹H NMR: δ 4.61-4.50 (1H,q,NHala), 4.28-4.13 (1H,m,CHala), 4.04-4.00 (2H,q,OCH₂), 1.78-1.74 (7H,t,CHcHx+'o'-CH₂), 1.57-1.54 (3H,dd,CH₃ala), 1.06-0.96 (2H,q,*p*-CH₂).
35 ¹³C NMR: δ 173.1 (CO), 150.1 ('*ipso*'-Ph), 130.3 ('*m*'-Ph), 126.4 ('*p*'-Ph), 121.0 ('*o*'-Ph), 71.4 (OCH₂), 51.0 (CHala), 37.4 (CHcHx), 29.9 (CH₂'*o*'), 26.7 (CH₂'*m*'), 25.9 (CH₂'*p*'), 21.1 (CH₃ala).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-Phenyl-(cyclohexane-methoxy-L-alaninyl)-phosphate. Cf1708.

35 C₃₀H₄₀N₇O₅P₁, MW=609.66

[0115] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (5ml) and phenyl-(cyclohexane-methoxy-L-alaninyl)-phosphorochloridate (2.06ml, 1.05mmol, of a 0.51M solution in THF), at room temperature for 48hrs. The crude product was purified by eluting with 4-6% MeOH in DCM, and then 3% MeOH in CHCl₃ to give the pure product as a pale yellow foamy solid (161.1mg, 75.6%).

31P NMR: δ 3.99, 3.92 (1:1).
¹H NMR: δ 7.40 (1H,d,J=7.07Hz,H8), 7.24-7.19 (2H,t,'*o*'-Ph), 7.13-7.03 (3H,m,'*m*'+'*p*'-Ph), 6.00-5.96 (2H,m,H2'+NH-cPr), 5.79 (1H,q,H3'), 5.45 (1H,d,H1'), 5.05 (2H,bs,NH₂), 4.16-4.01 (3H,m,OCH₂+NHala), 3.98-3.88 (1H,m,CHala), 3.86-3.74 (2H,m,H5'), 3.07-3.00 (1H,t,H4'), 2.94 (1H,bs,CHcPr), 2.74-2.63 (1H,m,lof H6'), 1.88-1.50 (7H,m,CHcHx+2CH₂'*o*'), 1.31-1.27 (3H,t,CH₃ala), 1.21-0.99 (4H,m,2CH₂'*m*'), 0.89-0.79 (2H,q,CH₂'*p*'), 0.75 (2H,d,2Hof CH₂cPr), 0.54-0.50 (2H,t,2Hof CH₂cPr).

45 ¹³C NMR: δ 174.1(CO), 160.2 (C2), 156.4 (C4), 151.2 (C6), 151.1 ('*ipso*'-Ph), 136.7 (C2'), 136.0 (C8), 131.5 (C3'), 130.0 ('*m*'-Ph), 125.2 ('*p*'-Ph), 120.5 ('*o*'-Ph), 115.1 (C5), 71.0 (OCH₂), 69.3 (C5'), 59.3 (C1'), 50.7 (CHala), 46.1 (C4'), 37.4 (CHcHx), 34.9 (C6'), 29.9 (CH₂'*o*'), 26.6 (CH₂'*m*'), 25.9 (CH₂'*p*'), 24.2 (CHcPr), 21.5 (CH₃ala), 7.8 (CH₂cPr).
50 MS ES⁺: m/z 610.3 (50%, M+H⁺), 632.3 (100%, M+Na⁺), 633.3 (M+H+Na⁺).

HPLC: t_R 42.859 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

55

EP 1 117 669 B1

4-Chlorophenyl-phosphorodichloride**C₆H₄O₂P₁Cl₃, MW=246.43**

5 [0116] Phosphorus oxychloride (2ml, 21.5mmol) was stirred with anhydrous diethylether (70ml) in a 250ml RBF. To this was added, dropwise, a solution of 4-chlorophenol (2.1ml, 21.5mmol), and anhydrous triethylamine (3.0ml, 21.5mmol) in anhydrous diethylether (30ml) at -80°C. This was stirred vigorously at -80°C for 1hr and left to rise to room temperature over 16hrs. The triethylamine hydrochloride salt was filtered off, and the filtrate reduced to dryness to give the crude product as a yellow oil (4.61 g, 87.2%).

10 ³¹P NMR: δ 4.99 (s).

13C NMR: δ 148.4 ('*p*-Cl-Ph), 133.2 ('*p*-Ph), 130.7 ('*m*-Ph), 122.4 ('*o*-Ph).

4-Chlorophenyl-(methoxy-L-alaninyl)-phosphorochloride**C₁₀H₁₂N₁O₄P₁Cl₂, MW=246.43**

15 [0117] This was synthesised according to **Standard Procedure 3**, using L-Alanine methyl ester hydrochloride (2.61g, 18.7mmol) and *p*-chlorophenyl phosphorodichloride (4.61g, 18.7mmol) and triethylamine (5.21ml, 37.4mmol) in anhydrous DCM (100ml). The usual workup yielded the crude product as a colourless crude oil (3.76g, 64.4%) which

20 was stored in anhydrous THF (20ml) to give a 0.6M solution that was used without further purification.

³¹P NMR: δ 9.48, 9.25 (1:1).

¹H NMR: δ 7.36 (2H,d,J=8.20Hz,'*o*-Ph), 7.32-7.22 (2H,m,'*m*-Ph), 4.69 (1H,d,NHala), 4.27-4.15 (1H,m,CHala), 3.82 (3H,d,OCH₃), 1.56-1.53 (3H,dd,J=7.04Hz,CH₃ala).

13C NMR: δ 173.4 (CO), 148.6 ('*p*-Cl-Ph), 131.9 ('*p*-Ph), 130.3 ('*m*-Ph), 122.3 ('*o*-Ph), 53.2 (OCH₃), 50.9 (CHala),

25 20.9 (CH₃ala).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol**O-[4-chlorophenyl-(methoxy-L-alaninyl)]-phosphate. Cf1620.****C₂₄H₂₉N₇O₅P₁Cl₁, MW=562.02**

30 [0118] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (250mg, 0.87mmol), tBuMgCl (1.75ml, 1.75mmol of a 1.0M solution in THF), and 4-chlorophenyl-(methoxy-L-alaninyl)-phosphorochloride (4.37ml, 2.62mmol, of a 0.6M solution in THF), in anhydrous THF (13ml) stirring at room temperature for 24hrs. The crude product was purified by eluting with 3% MeOH in CHCl₃ to give the pure product as white foamy solid (364.5mg, 74.5%).

³¹P NMR: δ 4.01 (s).

¹H NMR: δ 7.42 (1H,d,H8), 7.22-7.17 (2H,m,'*m*-Ph), 7.09-7.03 (2H,t,'*o*-Ph), 5.99 (1H,d,H2'), 5.93 (1H,s,H3'), 5.83 (1H,bs,NHcPr), 5.45 (1H,bs,H1'), 4.96 (2H,bs,NH₂), 4.11 (2H,bs,H5'), 4.03-3.86 (1H,m,CHala), 3.62 (3H,s,OCH₃), 3.07 (1H,d,J=5.9Hz,H4'), 2.92 (1H,bs,CHcPr), 2.76-2.64 (1H,m,of H6'), 1.64-1.59 (1H,t,1 of H6'), 1.32-1.26 (3H,q,CH₃ala), 0.76 (2H,d,J=6.40Hz,2H of CH₂cPr), 0.53 (2H,bs,2Hof CH₂cPr).

13C NMR: δ 174.4 (CO), 160.4 (C2), 156.7 (C4), 151.3 (C6), 149.7 ('*p*-Cl-Ph), 136.7 (C2'), 135.9 (C8), 131.6 (C3'), 130.5 ('*p*-Ph), 130.0 ('*m*-Ph), 121.9 ('*o*-Ph), 115.2 (C5), 69.4 (C5'), 59.25 (C1'), 52.9(OCH₃), 50.6 (CHala), 46.0 (C4'), 34.9 (C6'), 24.1 (CHcPr), 21.4 (CH₃ala), 7.8 (CH₂cPr).

45 HPLC: t_R 32.693, 33.012 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

4-Bromophenyl-phosphorodichloride**C₆H₄O₂Cl₂Br₁, MW=289.87**

50 [0119] This was synthesised by a method analogous to that of 4-chlorophenylphosphorodichloride, except using: Phosphorus oxychloride (3.29g, 2ml, 21.5mmol), and 4-bromophenol (3.71g, 21.5mmol) in anhydrous diethylether (70ml), and anhydrous triethylamine (2.71g, 3ml, 21.5mmol) in anhydrous diethylether (30ml). The reaction was stirred at -80°C to room temperature for 16hrs. After filtration, and removal of the solvent, the product was obtained as a clear liquid (5.14g, 82.6%).

³¹P NMR: δ 4.88 (s).

¹H NMR: δ 7.63 (2H,d,J=8.14Hz,'*o*-Ph), 7.28 (2H,t,'*m*-Ph),

EP 1 117 669 B1

¹³C NMR: δ 149.0 ('*ipso*'-Ph), 133.7 ('*m*'-Ph), 122.6 ('*o*'-Ph), 120.9 ('*p*'-Ph).

4-Bromophenyl-(methoxy-L-alaninyl)-phosphorochloride

5 **C₁₀H₁₂N₁O₄P₁Cl₁Br₁, MW=356.55**

[0120] This was synthesised according to **Standard Procedure 3**, using L-alanine methyl ester hydrochloride salt (1.0g, 7.16mmol), 4-bromophenyl-phosphorodichloride (1.82g, 7.16mmol), triethylamine (2ml, 14.3mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (2.24g, 87.7%), which was stored in THF (12ml) to give a 0.524M solution.

10 ³¹P NMR: δ 9.16, 9.10 (1:1).

¹³C NMR: δ 173.4(CO), 150.1 ('*ipso*'-Ph), 133.3 ('*m*'-Ph), 122.7 ('*o*'-Ph), 119.6 ('*p*'-Ph), 53.3 (OCH₃), 51.0 (CHala), 20.9 (CH₃ala).

15 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[4-bromophenyl-(methoxy-L-alaninyl)]-phosphate. C1710.**

C₂₄H₂₉N₇O₅P₁Br₁, MW=606.42

20 [0121] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (5ml) and 4-bromophenyl-(methoxy-L-alaninyl)-phosphorochloride (2.0ml, 1.05mmol, of a 0.524M solution in THF), at room temperature for 24hrs. The crude product was purified by eluting with 4-6% MeOH in DCM, and then in 4% MeOH in DCM, to give the pure product as a white foamy solid (115.2mg, 54.4%).

25 ³¹P NMR: δ 3.96 (s).

¹H NMR: δ 7.42 (1H,d,H8), 7.34-7.30 (2H,dd,J=8.73Hz,'o'-Ph), 7.03-6.97 (2H,t,J=8.68Hz, 'm'-Ph), 6.02-5.97 (2H,m, H₂'+NHcPr), 5.83-5.79 (1H,m,H3'), 5.43 (1H,t,H1'), 5.06 (2H,bs,NH₂), 4.28-4.04 (3H,m,H5'+NHala), 4.02-3.85 (1H,m, CHala), 3.61 (3H,d,OCH₂), 3.05 (1H,d,J=6.09Hz,H4'), 2.94 (1H,d,CHcPr), 2.75-2.66 (1H,m, of H6'), 1.66-1.56 (1H,m, 1 of H6'), 1.31-1.25 (3H,dd,CH₃ala), 0.79-0.72 (2H,q,2H of CH₂cPr), 0.54-0.49 (2H,t,2H of CH₂cPr).

30 ¹³C NMR: δ 174.4(CO), 160.3 (C2), 156.6 (C4), 151.3 (C6) 150.2 ('*ipso*'-Ph), 136.7 (C2'), 136.0 (C8), 133.0 ('*m*'-Ph), 131.6 (C3'), 122.4 ('*o*'-Ph), 118.1 ('*p*'-Ph), 115.2 (C5), 69.4 (C5'), 59.3 (C1'), 52.9 (OCH₃), 50.6 (CHala), 46.0 (C4'), 34.8 (C6'), 24.2 (CHcPr), 21.3 (CH₃ala), 7.8 (CH₂cPr).

MS ES⁺: m/z 606.13 (40%, M⁺), 628.1065 (100%, 79-M+Na⁺), 630.0967 (95%, 81-M+Na⁺).

35 MS FAB: For C₂₄H₂₉O₅N₇NaPBr requires 628.1049, found 628.1058, and C₂₄H₂₉O₅N₇NaP⁸¹Br requires 630.1028, found 630.1042.

HPLC: t_R 35.882 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

4-Fluorophenyl-phosphorodichloride

40 **C₆H₄O₂P₁Cl₂F₁, MW=228.97**

[0122] This was synthesised by a method analogous to that of 4-chlorophenylphosphorodichloride, except using: Phosphorus oxychloride (3.29g, 2ml, 21.5mmol), and 4-fluorophenol (2.41g, 21.5mmol) in anhydrous diethylether (70ml), and anhydrous triethylamine (2.71g, 3ml, 21.5mmol) in anhydrous diethylether (30ml). The reaction was stirred at -80°C for 4hrs, and then at room temperature for 2hrs. After filtration, and removal of the solvent, the product was obtained as a clear liquid (4.08g, 83.0%).

45 ³¹P NMR: δ 5.50 (s).

¹H NMR: δ 7.29-7.24 (2H,m,'o'-Ph), 7.09 (2H,t,J=8.29Hz,'m'-Ph),

50 ¹³C NMR: δ 159.7 ('*ipso*'-Ph), 145.8 ('*m*'-Ph), 122.6 ('*o*'-Ph), 117.5 ('*p*'-Ph).

4-Fluorophenyl-(methoxy-L-alaninyl)-phosphorochloride

C₁₀H₁₂N₁O₄P₁Cl₁F₁, MW=295.65

55 [0123] This was synthesised according to **Standard Procedure 3**, using L-alanine methyl ester hydrochloride salt (1.0g, 7.16mmol), 4-fluorophenyl-phosphorodichloride (1.64g, 7.16mmol), triethylamine (2ml, 14.3mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (1.97g, 93.0%), which was stored in THF (12ml) to give a 0.56M solution.

EP 1 117 669 B1

³¹P NMR: δ 9.84, 9.60(1:1).

¹H NMR: δ 7.32-7.23(2H,m,'o'-Ph), 7.12-7.06 (2H,m,'m'-Ph), 4.69 (1H,bs,NHala), 4.22 (1H,bs,CHala), 3.82 (3H,d, OCH₃), 1.57-1.53 (3H,m,CH₃ala).

¹³C NMR: δ 173.5(CO), 161.6 ('ipsd'-Ph), 145.9 ('m'-Ph), 122.5 ('o'-Ph), 117.0 ('p'-Ph), 53.2 (OCH₃), 50.9 (CHala), 20.9 (CH₃ala).

5

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[4-fluorophenyl-(methoxy-L-alaninyl)]-phosphate. Cf1737.

10 **C₂₄H₂₉N₇O₅P₁F₁, MW=545.57**

[0124] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (5ml) and 4-fluorophenyl-(methoxy-L-alaninyl)-phosphorochloride (1.89ml, 1.05mmol, of a 0.56M solution in THF), at room temperature for 24hrs. The solvent was removed under reduced pressure and the residue columned in 2.5-5% methanol in chloroform, and then in 3% methanol in chloroform, to give the pure product as a pale yellow foamy solid (62.0mg, 32.5%).

³¹P NMR: δ 4.24, 4.23, 4.20, 4.19.

20 ¹H NMR: δ 7.52 (1H,d,H8), 7.21-7.14 (2H,m,'o'-Ph), 7.03-6.97 (2H,m,'m'-Ph), 6.16 (1H,bs,NHcPr), 6.10-6.07 (1H,q, H2'), 5.93-5.89 (1H,q,H3'), 5.44 (1H,d,H1'), 5.14 (2H,bs,NH₂), 4.23-3.98 (4H,m,H⁵',NHala+CHala), 3.72 (3H,d,OCH₂), 3.16 (1H,d,J=6.03Hz,H4'), 3.03 (1H,d,CHcPr), 2.86-2.74 (1H,m,1 of H6'), 1.76-1.66 (1H,m,1 of H6'), 1.42-1.35 (3H,dd, CH₃ala), 0.89-0.83 (2H,q,2H of CH₂cPr), 0.65-0.60 (2H,t,2H of CH₂cPr).

25 ¹³C NMR: δ 174.4(CO), 161.5 (C2), 160.3+156.6 ('p'-Ph), 156.6 (C4), 151.3 (C6) 150.2 ('ipsd'-Ph), 136.8 (C2'), 136.0 (C8), 131.6 (C3'), 121.9 ('o'-Ph), 115.1 (C5), 69.3 (C5'), 59.3 (C1'), 52.9 (OCH₃), 50.6 (CHala), 46.0 (C4'), 34.9 (C6'), 24.2 (CHcPr), 21.3 (CH₃ala), 7.8 (CH₂cPr).

HPLC: t_R 31.536 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

4-iodophenyl-phosphorodichloride

30 **C₆H₄O₂P₁Cl₂I₁, MW=336.07**

[0125] This was synthesised by a method analogous to that of 4-chlorophenylphosphorodichloride, except using: Phosphorus oxychloride (3.29g, 2ml, 21.5mmol), and 4-iodophenol (4.72g, 21.5mmol) in anhydrous diethylether (60ml), and anhydrous triethylamine (2.71g, 3ml, 21.5mmol) in anhydrous diethylether (20ml). The reaction was stirred at -80°C for 4hrs, and then at room temperature for 2hrs. After filtration, and removal of the solvent, the product was obtained as a clear liquid (6.2g, 85.8%).

³¹P NMR: δ 4.72 (s).

¹H NMR: δ 7.71 (2H,d,J=8.59Hz,'o'-Ph), 7.06-7.02 (2H,dd,3=8.80Hz,'m'-Ph),

¹³C NMR: δ 149.9 ('ipsd'-Ph), 139.8 ('m'-Ph), 122.9 ('o'-Ph), 91.9 ('p'-Ph).

40

4-iodophenyl-(methoxy-L-alaninyl)-phosphorochloride

C₁₀H₁₂N₁O₄P₁Cl₁I₁, MW=403.55

45 [0126] This was synthesised according to **Standard Procedure 3**, using L-alanine methyl ester hydrochloride salt (1.0g, 7.16mmol), 4-iodophenyl-phosphorodichloride (2.41g, 7.16mmol), triethylamine (2ml, 14.3mmol) in DCM (70ml). The usual workup yielded the crude product as a yellow oil (3.59g, >100%), which was stored in THF (14ml) to give a 0.51M solution.

³¹P NMR: δ 9.31, 9.08 (1:1).

50 ¹H NMR: 7.74-7.69(2H,m,'o'-Ph), 7.32-7.05 (2H,m,'m'-Ph), 4.73 (1H,bs,NHala), 4.20 (1H,bs,CHala), 3.81 (3H,d, OCH₃), 1.56-1.53 (3H,dd,J=7.06Hz,CH₃ala).

¹³C NMR: δ 173.4(CO), 149.9 ('ipsd'-Ph), 139.8 ('m'-Ph), 123.0 ('o'-Ph), 90.4 ('p'-Ph), 53.3 (OCH₃), 50.9 (CHala), 20.9 (CH₃ala).

55

EP 1 117 669 B1

**(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol
O-[4-iodophenyl-(methoxy-L-alaninyl)]-phosphate. Cf1738.**

C₂₄H₂₉N₇O₅P₁I₁, MW=653.48

5

[0127] This was synthesised according to **Standard Procedure 4**, using (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (100mg, 0.35mmol), tBuMgCl (0.7ml, 0.7mmol, of a 1.0M solution in THF), in THF (5ml) and 4-iodophenyl-(methoxy-L-alaninyl)-phosphorochloride (2.05ml, 1.05mmol, of a 0.51M solution in THE), at room temperature for 48hrs. The solvent was removed under reduced pressure and the residue columned in 3-6% methanol in chloroform, and then in 3% methanol in chloroform, to give the pure product as a white foamy solid (82.0mg, 29.9%).

10 3¹P NMR: δ 3.92 (s).

1H NMR: δ 7.63-7.59 (2H,dd,J=8.65Hz,'m'-Ph), 6.98 (2H,t,J=8.20Hz'*o*-Ph), 6.25 (1H,bs,NHcPr), 6.09 (1H,t,H2'), 5.91 (1H,t,H3'), 5.54 (1H,d,H1'), 5.21 (2H,bs,NH₂), 4.35-4.16 (3H,m,H5',NHala), 4.07-3.95 (1H,m,CHala), 3.71 (3H,d, OCH₃ala), 3.15 (1H,d,J=7.23Hz,H4'), 3.03 (1H,bs,CHcPr), 2.85-2.74 (1H,m,1of H6'), 1.76-1.65 (1H,m,1of H6'), 1.43-1.35 (3H,t,CH₃ala), 0.89-0.83 (2H,q,2Hof CH₂cPr), 0.63 (2H,bs,2Hof CH₂cPr).

15 13C NMR: δ 174.4(CO) 160.2 (C2), 156.5 (C4), 151.1 (C6) 151.0 ('*ipso*-Ph), 139.0 (C2'), 136.8 ('*m*'-Ph), 136.0 (C8), 131.5 (C3'), 122.8 ('*o*'-Ph), 115.0 (C5), 88.9 ('*p*'-Ph), 69.4 (C5'), 59.3 (C1'), 52.9 (OCH₃), 50.6 (CHala), 46.0 (C4'), 34.8 (C6').

20 HPLC: t_R 33.848 (100%)-(100% water (0mins), 20% water (35mins), 20% water (45mins), 100% water (55mins)).

L-Alanine (3-pentyl) ester hydrochloride salt

25 [0128]

25

30

35

[0129] Thionyl chloride (1.6 ml, 0.022 M) was added dropwise to a stirred solution of 3-pentanol (18.2 ml, 0.17 M) at 0 °C under nitrogen. The mixture was stirred for 30 minutes, then allowed to warm to room temperature. L-Alanine (pre-dried at 60 °C over P₂O₅ for 4 hrs: 1.0 g, 0.011 M) was added and the resulting suspension was heated at reflux overnight (the reaction mixture became a clear, colourless solution). The solvent was removed under reduced pressure to leave an oil which was repeatedly triturated and coevaporated with diethyl ether, then petrol (60/80) to remove traces of 3-pentanol. The resulting oily residue solidified on drying under high vacuum to give a peach-coloured solid (1.96 g, 10 mmol, 89 %).

40 δ_H (d₄-CH₃OH, 300 MHz) 0.94 (t, 6H, O-CH(CH₂CH₃)₂, J = 7), 1.57 (d, 3H, CH₃-ala, J= 7), 1.67 (m, 4H, O-CH (CH₂CH₃)₂, J = 7), 4.12 (q, 1H, CH-ala, J = 7), 4.88 [m, 1H, O-CH(C₂H₂)₂]; δ_C (d₄-CH₃OH, 75 MHz) 8.87 [O-CH (CH₂CH₃)₂], 15.38 (CH₃-ala), 26.39, 26.44 [O-CH(CH₂CH₃)₂], 48.82 (CH-ala), 79.88 [O-CH(C₂H₅)₂], 170.03 (C=O).

50

55

EP 1 117 669 B1

Phenyl(3-pentyloxy-L-alaninyl)phosphorochloridate

[0130]

5

10

15

[0131] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.45 ml, 3.0 mmol), dry triethylamine (0.8 ml, 6.0 mmol), L-alanine (3-pentyl) ester hydrochloride salt 1a (0.583 g, 3.0 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale yellow oil (1.055 g, >100%).

20

δ_p (CDCl₃, 121 MHz) 8.99, 9.37

[0132] The product was redissolved in dry THF (5 ml) and used as a 0.211 g/ml solution.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(3-pentyloxy-L-alaninyl)phosphate] [Cf 1685]

25

[0133]

30

35

40

45

[0134] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl(3-pentyloxy-L-alaninyl)phosphorochloridate 1b (3.3 ml of 0.211 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 1.5 hrs. The crude residue was purified twice by column chromatography, using (i) MeOH:CHCl₃ (4:96) and (ii) MeOH:CHCl₃ (3:97) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.202 g, 0.35 mmol, 50 %). δ_p (CDCl₃, 121 MHz) 3.89; δ_H (CDCl₃, 300 MHz) 0.66 (m, 2H, CH₂-cPr), 0.90 [m, 8H, CH₂-cPr and CH(CH₂CH₃)₂], 1.43 (m, 3H, CH₃-ala), 1.58 [m, 4H, CH(CH₂CH₃)₂], 1.72 (m, 1H, 6'H_a), 2.82 (m, 1H, 6'H_b), 3.05 (m, 1H, CH-cPr), 3.20 (m, 1H, 4'H), 3.77 (m, 1H, CH-ala), 4.05 (m, 1H, NH-ala), 4.22 (m, 2H, 5'H), 4.80 (m, 1H, O-CH-), 4.89 (bs, 2H, NH₂), 5.56 (m, 1H, 1'H), 5.78 (bs, 1H, NH-cPr), 5.93 (m, 1H, 3'H), 6.12 (m, 1H, 2'H), 7.26 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.37 (CH₂-cPr), 8.50 [CH(CH₂CH₃)₂], 20.28 (CH₃-ala), 22.68 (CH-cPr), 25.28, 25.38 [CH(CH₂CH₃)₂], 33.51, 33.60 (6'C), 44.59, 44.69 (4'C), 49.40 (CH-ala), 57.79, 57.83 (1'C), 67.90 (5'C), 77.29 (OCH), 113.86 (5C), 119.10-119.18 (o-Ph), 123.84 (p-Ph), 128.61 (m-Ph), 130.09, 130.16 (3'C), 134.45, 134.56 (8C), 135.27, 135.41 (2'C), 149.66-149.93 (6C and *ipso*-Ph), 155.26 (4C), 158.95 (2C), 172.32, 172.44 (C=O); *m/z* (FAB) 584.2751 (MH⁺, C₂₈H₃₉N₇O₅P requires 584.2750).

EP 1 117 669 B1

L-Alanine (3,3-dimethyl-1-butyl) ester hydrochloride salt

[0135]

5

10

[0136] Prepared according to **Standard Procedure 2**, from L-alanine (1.6 g, 18 mmol), *p*-TSA monohydrate (3.8 g, 20 mmol), 3,3-dimethyl butan-1-ol (2.2 ml, 18 mmol) and toluene (100 ml). Conversion to the hydrochloride salt: the *p*-toluene sulfonate salt was redissolved in CHCl₃ and washed with 10 % potassium carbonate solution and water. The organic layer was dried (MgSO₄), filtered and the solvent was removed under reduced pressure to give the crude product as an oil. Aq. HCl (1 M), was added and the solution stirred for 30 minutes at room temperature. The solution was freeze-dried to give the hydrochloride salt as a white solid (3.31 g, 15.8 mmol, 88 %).

20 δ_H (*d*₄-CH₃OH, 300 MHz) 0.93 [s, 9H, O-(CH₂)₂(CH₃)₃], 1.50 (d, 3H, CH₃-ala, *J* = 7), 1.59 (t, 2H, O-CH₂CH₂, *J* = 7), 4.05 (q, 1H, CH-ala, *J* = 7), 4.25 (m, 2H, O-CH₂); δ_c (*d*₄-CH₃OH, 75 MHz) 15.18 (CH₃-ala), 28.91 [C(CH₃)₃], 29.54 [C(CH₃)₃], 41.62 (O-CH₂CH₂), 48.85 (CH-ala), 64.11 (O-CH₂CH₂), 170.03 (C=O).

Phenyl(3,3-dimethyl-1-butoxy-L-alaninyl)phosphorochloridate

25

[0137]

30

35

40 [0138] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.45 ml, 3.0 mmol), dry triethylamine (0.8 ml, 6.0 mmol), L-alanine (3,3-dimethyl-1-butyl) ester hydrochloride salt **2a** (0.632 g, 3.0 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale yellow oil (1.038 g, 99 %).

δ_P (CDCl₃, 121 MHz) 8.94, 9.30

[0139] The product was redissolved in dry THE (5 ml) and used as a 0.208 g/ml solution.

45

50

55

EP 1 117 669 B1

(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(3,3-dimethyl-1-butoxy-L-alaninyl)phosphoryl]phosphate [Cf 1687]

[0140]

5

10

15

20

[0141] Prepared according to **Standard Procedure 4**, from (1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl (3,3-dimethyl-1-butoxy-L-alaninyl) phosphorochloridate **2b** (3.5 ml of 0.208 g/ml solution, 2.1 mmol) and dry THE (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 1.5 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.287 g, 0.5 mmol, 69 %).

δ_P (CDCl₃, 121 MHz) 3.83; δ_H (CDCl₃, 300 MHz) 0.66 (m, 2H, CH₂-cPr), 0.90 (m, 2H, CH₂-cPr), 0.97 [s, 9H, C(CH₃)₃] 1.41 (m, 3H, CH₃-ala), 1.57 (m, 2H, O-CH₂CH₂), 1.74 (m, 1H, 6'H_a), 2.82 (m, 1H, 6'H_b), 3.05 (m, 1H, CH-cPr), 3.20 (m, 1H, 4'H), 3.70 (m, 1H, CH-ala), 4.04 (m, 1H, NH-ala), 4.22 (m, 4H, 5'H and O-CH₂CH₂), 4.88 (bs, 2H, NH₂), 5.57 (m, 1H, 1'H), 5.75 (bs, 1H, NH-cPr), 5.93 (m, 1H, 3'H), 6.12 (m, 1H, 2'H), 7.27 (m, 5H, ArH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.35 (CH₂-cPr), 19.95, 20.01 (CH₃-ala), 22.69 (CH-cPr), 28.52 [C(CH₃)₃], 28.52 [C(CH₃)₃], 33.49, 33.57 (6'C), 40.59, 40.63 (OCH₂CH₂'), 44.58, 44.68 (4'C), 49.28 (CH-ala), 57.79, 57.83 (1'C), 62.28, 62.31 (OCH₂CH₂'), 67.86, 67.94 (5'C), 113.81 (SC), 119.10, 119.16 (*p*-Ph), 123.84 (*o*-Ph), 128.61 (*m*-Ph), 130.10, 130.16 (3'C), 134.47, 134.56 (8C), 135.29, 135.40 (2'C), 149.67-149.75 (6C and *ipso*-Ph), 155.25 (4C), 158.96 (2C), 172.55, 172.65 (C=O); *m/z* (FAB) 598.2896 (MH⁺, C₂₉H₄₁N₇O₅P requires 598.2907).

L-Alanine (4-methyl-1-pentyl) ester *p*-toluene sulfonate salt

[0142]

40

45

[0143] Prepared according to **Standard Procedure 2**, from L-alanine (1.6 g, 18 mmol), *p*-TSA monohydrate (3.8 g, 20 mmol), 4-methyl pentan-1-ol (2.24 ml, 18 mmol) and toluene (100 ml). The *p*-toluene sulfonate salt was isolated as a white solid (6.082 g, 17.6 mmol, 98 %). δ_H (*d*₄-CH₃OH, 300 MHz) 0.93 [d, 6H, CH(CH₃)₂], 1.27 (m, 2H, O-CH₂CH₂CH₂'), 1.54 (d, 3H, CH₃-ala), 1.59 [m, 1H, CH(CH₃)₂], 1.69 [m, 2H, O-(CH₂)₂CH₂'], 2.39 (s, 3H, CH₃, *p*-TSA), 4.10 (m, 1H, CH-ala), 4.24 (m, 2H, O-CH₂'), 7.25 (d, 2H, ArH, *p*-TSA), 7.72 (d, 2H, ArH, *p*-TSA); δ_C (*d*₄-CH₃OH, 75 MHz) 15.23 (CH₃-ala), 20.31 (CH₃-*p*-TSA), 21.83 [CH(CH₃)₂], 26.45 (O-CH₂CH₂CH₂'), 27.87 [CH(CH₃)₂], 34.93 (O-CH₂CH₂CH₂'), 48.85 (CH-ala), 66.77 [O-CH₂(CH₂)₂], 125.93 (*o*-Ph, *p*-TSA), 128.83 (*m*-Ph, *p*-TSA), 140.75 (*ipso*-C-CH₃, *p*-TSA), 142.39 (*ipso*-C-S-*p*-TSA), 170.07 (C=O).

EP 1 117 669 B1

Phenyl(4-methyl-1-pentyloxy-L-alaninyl)phosphorochloridate

[0144]

5

10

15

[0145] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (4-methyl-1-pentyl) ester *p*-toluene sulfonate salt **3a** (2.081 g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, colourless oil (1.79 g, 85 %).

20 δ_p (CDCl₃, 121 MHz) 8.95, 9.31

[0146] The product was redissolved in dry THF (10 ml) and used as a 0.179 g/ml solution.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl (4-methyl-1-pentyloxy-L-alaninyl)phosphate [Cf1721]

25

[0147]

30

35

40

[0148] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl(4-methyl-1-pentyloxy-L-alaninyl)phosphorochloridate **3b** (4.1 ml of 0.179 g/ml solution, 2.1 mmol) and dry THF (10 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3 hrs. The crude residue was purified by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.288 g, 0.5 mmol, 69 %).

50 δ_p (CDCl₃, 121 MHz) 3.84, 3.88; δ_H (CDCl₃, 300 MHz) 0.64 (m, 2H, CH₂-cPr), 0.87 (m, 2H, CH₂-cPr), 1.24 [m, 2H, CH (CH₃)₂], 1.40 (t, 3H, CH₃-ala), 1.60 [m, 3H, CH(CH₃)CH₃], 1.73 [m, 3H, CH(CH₃)CH₃], 2.19 (m, 1H, 6'H_a), 2.80 (m, 1H, 6'H_b), 3.03 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 3.88 (m, 1H, CH-ala), 4.03 (m, 3H, OCH₂- and NH -ala), 4.21 (m, 2H, 5'H), 4.99 (bs, 2H, NH₂), 5.55 (m, 1H, 1'H), 5.91 (m, 2H, NH-cPr and 3'H), 6.10 (m, 1H, 2'H), 7.29 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 7.79 (CH₂-cPr), 21.55 (CH₃-ala), 21.61 [CH(CH₃)₂], 23.69 (CH-cPr), 25.66 (O-CH₂CH₂CH₂), 29.63 [CH(CH₃)₂], 35.00 (6'C), 38.81 (O-CH₂CH₂CH₂), 46.01, 46.11 (4'C), 50.72 (CH-ala), 59.21 (1'C), 69.31 (5'C), 69.85 (O-CH₂CH₂), 115.25 (5C), 120.52-120.62 (*p*-Ph), 125.25 (*o*-Ph), 130.04 (*m*-Ph), 131.59 (3'C), 135.98 (8C), 136.71, 136.79 (2'C), 151.08, 151.17 (6C and *ipso*-Ph), 156.70 (4C), 160.40 (2C), 174.00, 174.10 (C=O); *m/z* (FAB) 598.2883 (MH⁺, C₂₉H₄₁N₇O₅P requires 598.2907).

EP 1 117 669 B1

L-Alanine (cyclopropyl methyl) ester hydrochloride salt

[0149]

5

10

[0150] Thionyl chloride (1.2 ml, 0.017 M) was added dropwise to a stirred solution of cyclopropyl methanol (6.8 ml, 8.4 mmol) at 0 °C under nitrogen. The mixture was stirred for 30 minutes, then allowed to warm to room temperature. 15 L-Alanine (pre-dried at 60 °C over P₂O₅ for 4 hrs: 0.75 g, 8.4 mmol) was added and the resulting suspension was heated at reflux overnight (the reaction mixture became a clear, colourless solution). The solvent was removed under reduced pressure to leave an orange/red oil which was repeatedly triturated and coevaporated with diethyl ether, to remove traces of cyclopropyl methanol. Diethyl ether (~200 ml) was added and the mixture was stirred for 30 min. 20 The resulting suspension was filtered to give the product as a cream solid (1.29 g, 7.1 mmol, 85 %). δ_H (d₄-CH₃OH, 300 MHz) 0.38 (m, 2H, CH₂-cPr), 0.65 (m, 2H, CH₂-cPr), 1.24 (m, 1H, CH-cPr), 1.60 (d, 3H, CH₃-ala, J = 7), 4.13 (m, 3H, CH-ala and O-CH₂); δ_C (d₄-CH₃OH, 75 MHz) 4.17 (CH₂-cPr), 10.98 (CH-cPr), 16.72 (CH₃-ala), 50.33 (CH-ala), 72.70 (O-CH₂), 171.56 (C=O).

Phenyl(cyclopropyl methoxy-L-alaninyl)phosphorochloridate

25

[0151]

30

35

40

[0152] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (cyclopropyl methyl) ester *p*-toluene sulfonate salt 4a (1.082 g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, yellow oil (1.79 g, 94 %).

45 δ_P (CDCl₃, 121 MHz) 9.00, 9.36

[0153] The product was redissolved in dry THF (5 ml) and used as a 0.385 g/ml solution.

50

55

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(cyclopropyl methoxy-L-alaninyl)]phosphate

[Cf 1774]

5

[0154]

10

15

20

25 [0155] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *BuMgCl* (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(cyclopropyl methoxy-L-alaninyl) phosphorochloride **4b** (1.85 ml of 0.385 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3.5 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.244 g, 0.4 mmol, 61 %).
 30 δ_p (CDCl₃, 121 MHz) 3.88, 3.94; δ_H (CDCl₃, 300 MHz) 0.29 (m, 2H, CH₂-cPr), 0.61 (m, 2H, CH₂-cPr), 0.87 (m, 2H, CH₂-cPr), 1.17 (m, 1H, CH-cPr), 1.42 (t, 3H, CH₃-ala), 1.69 (m, 1H, 6'H_a), 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 4.01 (m, 4H, OCH₂, CH-ala and NH-ala), 4.21 (m, 2H, 5'H), 5.03 (bs, 2H, NH₂), 5.56 (m, 1H, 1'H), 5.91 (m, 1H, 3'H), 6.05 (bs, 1H, NH-cPr), 6.10 (m, 1H, 2'H), 7.25 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz)
 35 2.24 (CH₂-cPr), 6.33 (CH₂-cPr), 8.66 (CH₂-cPr), 20.05, 20.11 (CH₃-ala), 22.68 (CH-cPr), 33.55 (6'C), 44.58, 44.68 (4'C), 49.24, 49.31 (CH-ala), 57.77, 57.82 (1'C), 67.76, 67.93 (O-CH₂), 69.27, 69.29 (5'C), 113.74 (5C), 119.10-119.19 (p-Ph), 123.84 (o-Ph), 128.61 (m-Ph), 130.09, 130.13 (3'C), 134.42, 134.50 (8C), 135.32, 135.40 (2'C), 149.66, 149.74 (6C and ipso-Ph), 155.26 (4C), 159.00 (2C), 172.64, 172.73 (C=O).

40 **L-Alanine (cyclobutyl methyl) ester hydrochloride salt**

[0156]

45

50

55 [0157] Prepared according to **Standard Procedure 2**, from L-alanine (1.6 g, 18 mmol), *p*-TSA monohydrate (3.8 g, 20 mmol), cyclobutane methanol (1.9 ml, 20 mmol) and toluene (100 ml). The *p*-toluene sulfonate salt was isolated as a white solid (4.249 g, 12.9 mmol, 72 %). δ_H (d₄-CH₃OH, 300 MHz) 1.54 (d, 3H, CH₃-ala, J = 7), 1.89 (m, 4H, cBu-2/4H), 2.08 (m, 2H, cBu-3H), 2.39 (s, 3H, CH₃, *p*-TSA), 2.69 (m, 1H, CH-cBu), 4.11 (q, 1H, CH-ala, J = 7), 4.22 (m, 2H, O-CH₂), 7.26 (d, 2H, ArH, *p*-TSA), 7.73 (d, 2H, ArH, *p*-TSA); δ_C (d₄-CH₃OH, 75 MHz) 16.7 (CH₃-ala), 19.6 (CH₂-cBu), 21.7 (CH₃-*p*TSA), 25.9 (CH₂-cBu), 35.7 (CH-cBu), 48.9 (CH-ala), 71.3 (O-CH₂), 127.4 (o-Ph, *p*-TSA), 130.3 (m-Ph, *p*-TSA), 142.2 (ipso-C-CH₃, *p*-TSA), 143.8 (ipso-C-S, *p*-TSA), 171.6 (C=O).

EP 1 117 669 B1

Phenyl(cyclobutyl methoxy-L-alaninyl)phosphorochloridate

[0158]

5

10

15

[0159] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (cyclobutyl methyl) ester *p*-toluene sulfonate salt **5a** (1.98 g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, colourless oil (2.04 g, >100%).

20 δ_P (CDCl₃, 121 MHz) 9.00, 9.34

[0160] The product was redissolved in dry THF (5 ml) and used as a 0.408 g/ml solution.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(cyclobutyl methoxy-L-alaninyl)]phosphate

25

[Cf 1773]

30

35

40

45

[0162] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(cyclobutyl methoxy-L-alaninyl) phosphorochloridate **5b** (1.7 ml of 0.408 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.213 g, 0.4 mmol, 52 %).

δ_P (CDCl₃, 121 MHz) 3.87, 3.91; δ_H (CDCl₃, 300 MHz) 0.65 (m, 2H, CH₂-cPr), 0.89 (m, 2H, CH₂-cPr), 1.41 (t, 3H, CH₃-ala), 1.74 (m, 3H, CH₂-cBu and 6'H_a), 2.06 (m, 2H, CH₂-cBu), 2.61 (m, 2H, CH₂-cBu), 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.19 (m, 1H, 4'H), 3.90 (m, 1H, NH-ala), 4.09 (m, 3H, OCH₂- and CH-ala), 4.22 (m, 2H, 5'H), 4.98 (bs, 2H, NH₂), 5.56 (m, 1H, 1'H), 5.92 (m, 2H, 3'H and NH-cPr), 6.11 (m, 1H, 2'H), 7.26 (m, 5H, ArH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.37 (CH₂-cPr), 17.33 (CH₂-cBu), 20.17, 20.23 (CH₃-ala), 22.68 (CH-cPr), 23.57 (2 \times CH₂-cBu), 32.86 (CH-cBu), 33.51, 33.55 (6'C), 44.58, 44.68 (4'C), 49.23, 49.28 (CH-ala), 57.81, 57.85 (1'C), 67.78-67.94 (5'C), 68.17, 68.20 (O-CH₂), 113.83 (SC), 119.09-119.19 (*p*-Ph), 123.87 (*o*-Ph), 128.62 (*m*-Ph), 130.11, 130.15 (3'C), 134.51,

EP 1 117 669 B1

134.61 (8C), 135.30, 135.39 (2'C), 149.64-149.97 (6C and *ipso*-Ph), 155.20 (4C), 158.87 (2C), 172.64, 172.74 (C=O).

L-Alanine (cyclopentyl methyl) ester p-toluenesulfonate salt

5 [0163]

10

15

20 [0164] Prepared according to **Standard Procedure 2**, from L-alanine (1.6 g, 18 mmol), *p*-TSA monohydrate (3.8 g, 20 mmol), cyclopentane methanol (1.9 ml, 18 mmol) and toluene (100 ml). The *p*-toluenesulfonate salt was isolated as a white solid (6.21 g, 18 mmol, 100 %). δ_H (d_4 -CH₃OH, 300 MHz) 1.22 (m, 2H, cPent 2/5H_a), 1.46 (d, 3H, CH₃-ala), 1.56 (m, 4H, cPent 2/3/4/5H_b), 1.70 (m, 2H, cPent 3/4H_a), 2.19 (m, 1H, CH-cPent), 2.31 (s, 3H, CH₃, *p*-TSA), 4.06 (m, 3H, O-CH₂ and CH-ala), 7.18 (d, 2H, ArH, *p*-TSA), 7.64 (d, 2H, ArH, *p*-TSA); δ_C (d_4 -CH₃OH, 75 MHz) 15.25 (CH₃-ala), 20.30 (CH₃, *p*-TSA), 25.27 (CH₂-cPent), 29.10, 29.15 (CH₂-cPent), 38.72 (CH-cPent), 48.84 (CH-ala), 70.12 (O-CH₂), 125.93 (*o*-Ph, *p*-TSA), 128.82 (*m*-Ph, *p*-TSA), 140.75 (*ipso*-C-CH₃, *p*-TSA), 142.40 (*ipso*-C-S, *p*-TSA), 170.09 (C=O).

25 **Phenyl(cyclopentyl methoxy-L-alaninyl)phosphorochloridate**

[0165]

30

35

40

45 [0166] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (cyclopentane methyl) ester *p*-toluenesulfonate salt 6a (2.069 g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, yellow oil (1.97 g, 95 %).

50 [0167] δ_P (CDCl₃, 121 MHz) 8.94, 9.30

[0167] The product was redissolved in dry THF (10 ml) and used as a 0.197 g/ml solution.

55

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(cyclopentylmethoxy-L-alaninyl)phosphoryl]phosphate [Cf 1722]

[0168]

5

10

15

20

25

30

35

[0169] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl (cyclopentane methoxy-L-alaninyl) phosphorochloridate **6b** (3.7 ml of 0.197 g/ml solution, 2.1 mmol) and dry THF (10 ml). TLC (8 % MeOH in CHCl_3) showed the reaction to be complete after 3 hrs. The crude residue was purified by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.314 g, 0.5 mmol, 75 %).
 δ_{P} (CDCl_3 , 121 MHz) 3.86, 3.87; δ_{H} (CDCl_3 , 300 MHz) 0.65 (m, 2H, CH_2 -cPr), 0.89 [m, 8H, CH_2 -cPr and $(\text{CH}_2)_3$ -cPent], 1.24 (m, 2H, CH_2 -cPent), 1.41 (m, 3H, CH_3 -ala), 1.65 (m, 2H, CH -cPent and 6'H_a), 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH -cPr), 3.19 (m, 1H, 4'H), 3.80 (m, 1H, CH -ala), 4.07 (m, 3H, OCH_2 and NH-ala), 4.22 (m, 2H, 5'H), 4.92 (bs, 2H, NH₂), 5.55 (m, 1H, 1'H), 5.81 (bs, 1H, NH-cPr), 5.92 (m, 1H, 3'H), 6.11 (m, 1H, 2'H), 7.26 (m, 5H, ArH), 7.52 (d, 1H, 8H); δ_{C} (CDCl_3 , 75 MHz) 6.42 (CH_2 -cPr), 21.43 (CH_3 -ala), 22.73 (CH -cPr), 24.59 (CH_2 -cPent), 25.35 (CH_2 -cPent), 26.64 (CH -cPent), 33.43, 33.51 (6'C), 44.58, 44.68 (4'C), 49.23 (CH -ala), 57.86, 57.91 (1'C), 64.69, 64.97 (O- CH_2), 67.84 (5'C), 113.74 (5C), 119.09-119.18 (*p*-Ph), 123.88 (*o*-Ph), 128.62 (*m*-Ph), 130.05, 130.11 (3'C), 134.65, 134.76 (8C), 135.33, 135.44 (2'C), 149.63, 149.72 (6C and *ipso*-Ph), 154.98 (4C), 158.59 (2C), 172.50, 172.60 (C=O); *m/z* (FAB) 598.2745 (MH^+ , $\text{C}_{29}\text{H}_{39}\text{N}_7\text{O}_5\text{P}$ requires 596.2750).

L-Alanine (cyclobutyl) ester *p*-toluene sulfonate salt

[0170]

40

45

50

[0171] Prepared according to **Standard Procedure 2**, except using benzene as solvent: from L-alanine (1.0 g, 11 mmol), *p*-TSA monohydrate (2.35 g, 12 mmol), cyclobutanol (0.9 ml, 11 mmol) and benzene (65 ml). The *p*-toluenesulfonate salt was isolated as a white solid (1.73 g, 5.5 mmol, 49 %).
 δ_{H} ($d_4\text{-CH}_3\text{OH}$, 300 MHz) 1.51 (d, 3H, CH_3 -ala, $J=7$), 1.75 (m, 2H, CH_2 -cBu), 2.14 (m, 2H, CH_2 -cBu), 2.37 (m, 5H, CH_2 -cBu and CH_3 , *p*-TSA), 4.05 (q, 1H, CH -ala, $J=7$), 5.08 (m, 1H, CH_2 -cBu), 7.24 (d, 2H, ArH, *p*-TSA), 7.70 (d, 2H, ArH, *p*-TSA); δ_{C} ($d_4\text{-CH}_3\text{OH}$, 75 MHz) 14.57 (CH_2 -cBu), 16.58 (CH_3 -ala), 21.73 (CH_3 -*p*-TSA), 31.38, 31.44 (CH_2 -cBu), 50.16 (CH -ala), 72.47 (CH -cBu), 127.35 (*o*-Ph, *p*-TSA), 130.23 (*m*-Ph, *p*-TSA), 142.13 (*ipso*-C- CH_3 , *p*-TSA), 143.89 (*ipso*-C-S, *p*-TSA), 170.71 (C=O).

EP 1 117 669 B1

Phenyl(cyclobutoxy-L-alaninyl)phosphorochloridate

[0172]

5

10

15

[0173] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.75 ml, 5.0 mmol), dry triethylamine (1.4 ml, 10.0 mmol), L-alanine (cyclopentane methyl) ester *p*-toluene sulfonate salt **7a** (1.58 g, 5.0 mmol) and dry DCM (65 ml total). The crude product was obtained as a clear, colourless oil (1.13 g, 71 %).

20 δ_p (CDCl₃, 121 MHz) 8.96, 9.33

[0174] The product was redissolved in dry THF (5 ml) and used as a 0.226 g/ml solution.

(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(cyclobutoxy-L-alaninyl)]phosphate [Cf 1775]

25

[0175]

30

35

40

45

[0176] Prepared according to **Standard Procedure 4**, from (1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(cyclobutyl meth-oxy-L-alaninyl) phosphorochloridate **7b** (2.95 ml of 0.226 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3.5 hrs. The crude residue was purified by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a pale, yellow oil, which solidified to a cream solid after trituration and coevaporation with diethyl ether (0.238 g, 0.4 mmol, 60 %).

δ_p (CDCl₃, 121 MHz) 3.89, 3.93; δ_H (CDCl₃, 300 MHz) 0.63 (m, 2H, CH₂-cPr), 0.87 (m, 2H, CH₂-cPr), 1.39 (m, 3H, CH₃-ala), 1.65 (m, 2H, CH₂-cBu), 1.81 (m, 1H, 6'H_a), 2.04 (m, 2H, CH₂-cBu), 2.36 (m, 2H, CH₂-cBu), 2.80 (m, 1H, 6'H_b), 3.03 (m, 1H, CH-cPr), 3.17 (m, 1H, 4'H), 3.97 (m, 2H, NH-ala and CH-ala), 4.18 (m, 2H, 5'H), 4.98 (m, 3H, MH₂ and OCH), 5.55 (m, 1H, 1'H), 5.91 (m, 1H, 3'H), 6.01 (m, 1H, NH-cPr), 6.10 (m, 1H, 2'H), 7.25 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 7.80 (CH₂-cPr), 13.82 (CH₂-cBu), 21.42 (CH₃-ala), 22.06 (CH-cPr), 30.52-30.63 (CH₂-cBu), 35.01 (6'C), 46.01, 46.12 (4'C), 50.50 (CH-ala), 59.26 (1'C), 69.30 (CH-cBu), 70.19 (5'C), 115.25 (5C), 120.53, 120.59 (p-Ph), 125.28 (o-Ph), 130.05 (m-Ph), 131.53 (3'C), 135.97 (8C), 136.73, 136.85 (2'C), 151.08-151.17 (6C and

EP 1 117 669 B1

ipso-Ph), 156.71 (4C), 160.44 (2C), 173.33 (C=O).

L-Alanine (cyclopentyl) ester p-toluene sulfonate salt

5 [0177]

10

15

[0178] Prepared according to **Standard Procedure 2**, except using benzene as solvent: from L-alanine (1.6 g, 18 mmol), *p*-TSA monohydrate (3.8 g, 20 mmol), cyclopentanol (1.6 ml, 18 mmol) and benzene (100 ml). The *p*-toluene sulfonate salt was isolated as a beige solid (2.81 g, 8.5 mmol, 47 %).

20 [0178] δ_H (*d*₄-CH₃OH, 300 MHz) 1.51 (d, 3H, CH₃-ala, *J*= 7), 1.71 (m, 6H, CH₂-cPnt), 1.92 (m, 2H, CH₂-cPnt), 2.39 (m, 5H, CH₂-cBu and CH₃, *p*-TSA), 4.04 (q, 1H, CH-ala, *J*= 7), 5.28 (m, 1H, CH-cPnt), 7.26 (d, 2H, ArH, *p*-TSA), 7.73 (d, 2H, ArH, *p*-TSA); δ_C (*d*₄-CH₃OH, 75 MHz) 16.59 (CH₃-ala), 21.72 (CH₃-*p*TSA), 24.97 (CH₂-cPnt), 33.81, 33.97 (CH₂-cPnt), 50.31 (CH-ala), 81.37 (CH-cPnt), 127.36 (*o*-Ph, *p*-TSA), 130.25 (*m*-Ph, *p*-TSA), 142.20 (*ipso*-C-CH₃, *p*-TSA), 143.79 (*ipso*-C-S, *p*-TSA), 171.17 (C=O).

25 **Phenyl(cyclopentyloxy-L-alaninyl)phosphorochloridate**

[0179]

30

35

40

[0180] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (cyclopentane methyl) ester *p*-toluene sulfonate salt **8a** (1.98 g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, colourless oil (1.8 g, 91 %).

δ_P (CDCl₃, 121 MHz) 9.01, 9.37

45 [0181] The product was redissolved in dry THF (5 ml) and used as a 0.361 g/ml solution.

50

55

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(cyclopentoxy-L-alaniny)]phosphate [Cf 1776]

[0182]

5

10

15

20.

[0183] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(cyclobutyl meth-oxy-L-alaniny) phosphorochloride **8b** (1.93 ml of 0.361 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3.5 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.254 g, 0.4 mmol, 62 %).

δ_p (CDCl₃, 121 MHz) 3.97, 3.98; δ_H (CDCl₃, 300 MHz) 0.64 (m, 2H, CH₂-cPr), 0.87 (m, 2H, CH₂-cPr), 1.38 (m, 3H, CH₃-ala), 1.67 (m, 7H, 3 \times CH₂-cPent and 6'H_a), 1.86 (m, 2H, CH₂-cPent), 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 3.96 (m, 2H, NH-ala and CH-ala), 4.21 (m, 2H, 5'H), 5.02 (bs, 1H, NH₂), 5.18 (m, 1H, OCH), 5.56 (m, 1H, 1'H), 5.91 (m, 1H, 3'H), 5.98 (bs, 1H, NH-cPr), 6.11 (m, 1H, 2'H), 7.25 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 7.78 (CH₂-cPr), 21.42, 21.48 (CH₃-ala), 24.07 (CH-cPr), 32.91- (CH₂-cPent), 33.05, 33.08 (6'C), 34.97, 35.02 (CH₂-cPent), 46.02, 46.12 (4'C), 50.71 (CH-ala), 59.21, 59.25 (1'C), 69.22, 69.29 (5'C), 78.90 (OCH), 115.23 (5C), 120.55-120.61 (p-Ph), 125.28 (o-Ph), 130.05 (m-Ph), 131.53, 131.59 (3'C), 135.87, 135.97 (8C), 136.73, 136.86 (2'C), 151.09, 151.18 (6C and *ipso*-Ph), 156.71 (4C), 160.44 (2C), 173.71, 173.80 (C=O).

35

L-Alanine (phenethyl) ester p-toluene sulfonate salt

[0184]

40

45

[0185] Prepared according to **Standard Procedure 2**, from L-alanine (1.0 g, 11 mmol), *p*-TSA monohydrate (2.35 g, 12 mmol), phenethyl alcohol (1.3 ml, 11 mmol) and toluene (65 ml). The *p*-toluene sulfonate salt was isolated as an off-white solid (4.0 g, 10.9 mmol, 97 %). δ_H (*d*₄-CH₃OH, 300 MHz) 1.46 (d, 3H, CH₃-ala, *J* = 7), 2.32 (2, 3H, CH₃, *p*-TSA), 2.93 (t, 2H, CH₂Ph, *J* = 7), 4.07 (q, 1H, CH-ala, *J* = 7), 4.37 (m, 2H, O-CH₂) 7.22 (m, 7H, ArH, *p*-TSA and PhH), 7.78 (d, 2H, ArH, *p*-TSA); δ_C (*d*₄-CH₃OH, 75 MHz) 16.80 (CH₃-ala), 22.06 (CH₃-*p*TSA), 36.20 (CH₂-Ph), 50.41 (CH-ala), 68.28 (O-CH₂), 127.70, 127.83 (o-Ar and o-Ph, *p*-TSA), 129.81 (*p*-Ar), 130.13, 130.48 (*m*-Ar and *m*-Ph, *p*-TSA), 139.23 (*ipso*-ArC), 142.30 (*ipso*-C-CH₃, *p*-TSA), 143.83 (*ipso*-C-S, *p*-TSA), 171.44 (C=O).

EP 1 117 669 B1

Phenyl(phenoxy-L-alaninyl)phosphorochloridate

[0186]

5

10

15

15

[0187] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.5 ml, 33 mmol), dry triethylamine (0.93 ml, 6.7 mmol), L-alanine (phenethyl) ester *p*-toluene sulfonate salt **9a** (1.232g, 3.3 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, colourless oil (1.16 g, 94 %).

20 δ_p (CDCl₃, 121 MHz) 8.93, 9.25

[0188] The product was redissolved in dry THF (5 ml) and used as a 0.233 g/ml solution.

25 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(phenoxy-L-alaninyl)]phosphate** [Cf 1777]

[0189]

30

35

40

45

45

[0190] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(phenoxy-L-alaninyl) phosphorochloridate **9b** (3.3 ml of 0.233 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 3 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a pale, yellow oil, which solidified to a cream solid after trituration and coevaporation with diethyl ether (0.181 g, 0.3 mmol, 42 %).

50 δ_p (CDCl₃, 121 MHz) 3.81, 3.86; δ_H (CDCl₃, 300 MHz) 0.65 (m, 2H, CH₂-cPr), 0.89 (m, 2H, CH₂-cPr), 1.35 (m, 3H, CH₃-ala), 1.71 (m, 1H, 6'H_a), 2.80 (m, 1H, 6'H_b), 2.96 (m, 2H, CH₂Ph), 3.03 (m, 1H, CH-cPr), 3.17 (m, 1H, 4'H), 3.91 (m, 2H, NH-ala and CH-ala), 4.18 (m, 2H, OCH), 4.36 (m, 2H, 5'H), 4.99 (bs, 1H, NH₂), 5.56 (m, 1H, 1'H), 5.92 (m, 2H, 3'H and NH-cPr), 6.09 (m, 1H, 2'H), 7.26 (m, 10H, ArH and PhH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.36 (CH₂-cPr), 19.98, 20.04 (CH₃-ala), 22.65 (CH₂-cPr), 33.46, 33.54 (6'C), 33.90 (CH₂-Ph), 44.56, 44.66 (4'C), 49.21 (CH-ala), 57.79, 57.85 (1'C), 64.84 (OCH₂), 67.82 (5'C), 113.79 (5C), 119.11-119.17 (p-Ph), 123.87 (p-Ar), 125.68 (o-Ph), 127.53 (o-Ar), 127.83 (m-Ph), 128.62 (m-Ar), 130.07, 130.14 (3'C), 134.48 (8C), 135.30, 135.39 (2'C), 136.25 (ipso-Ar),

EP 1 117 669 B1

149.63, 149.71 (6C and *Ipso*-Ph), 155.25 (4C), 158.94 (2C), 172.75, 172.45 (C=O).

L-Alanine (3-phenyl-1-propyl) ester p-toluene sulfonate salt

5 [0191]

10

15

[0192] Prepared according to **Standard Procedure 2**, from L-alanine (1.0 g, 11 mmol), *p*-TSA monohydrate (2.35 g, 12 mmol), 3-phenyl-1-propanol (1.5 ml, 11 mmol) and toluene (65 ml). Removal of the solvent gave the crude product as a yellow oil. Diethyl ether was added and the mixture was cooled for 30 mins. The resulting suspension was filtered to give the *p*-toluene sulfonate salt as a white solid (4.24 g, 11.2 mmol, 100 %).

20 δ_H (d_4 -CH₃OH, 300 MHz) 1.53 (d, 3H, CH₃-ala, J =7), 1.97 (m, 2H, CH₂CH₂Ph), 2.34 (2, 3H, CH₃, *p*-TSA), 2.67 (t, 2H, CH₂Ph, J =7), 4.10 (q, 1H, CH-ala, J =7), 4.20 (t, 2H, O-CH₂, J =7) 7.22 (m, 7H, ArH, *p*-TSA and PhH), 7.75 (d, 2H, ArH, *p*-TSA); δ_C (d_4 -CH₃OH, 75 MHz) 16.77 (CH₃-ala), 21.93 (CH₃-*p*TSA), 31.63 (CH₂CH₂-Ph), 33.37 (CH₂-Ph), 50.44 (CH-ala), 67.27 (O-CH₂), 127.26-127.58 (σ -Ar and σ -Ph, *p*-TSA), 129.66-130.00 (p -Ar), 130.41 (m -Ar and m -Ph, *p*-TSA), 142.31 (*Ipso*-ArC), 142.82 (*Ipso*-C-CH₃, *p*-TSA), 143.82 (*Ipso*-C-S, *p*-TSA), 171.47 (C=O).

25

Phenyl(phenethoxy-L-alaninyl)phosphorochloridate

30 [0193] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.5 ml, 3.3 mmol), dry triethylamine (0.93 ml, 6.7 mmol), L-alanine (3-phenyl-1-propyl) ester *p*-toluene sulfonate salt **9a** (1.27g, 3.3 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale brown oil (1.16 g, 90 %).

δ_P (CDCl₃, 121 MHz) 8.94, 9.27

The product was redissolved in dry THF (5 ml) and used as a 0.231 g/ml solution.

35

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(3-phenyl-1-propoxy-L-alaninyl)]phosphate [Cf 1778]

40 [0194]

45

50

55 [0195] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(3-phenyl-1-propoxy-L-alaninyl) phosphorochloridate **10b** (3.5 ml of 0.231 g/ml solution, 2.1 mmol) and dry THF (8 ml).

[0196] TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 4 hrs. The crude residue was purified

EP 1 117 669 B1

three times by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a pale, yellow oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.330 g, 0.5 mmol, 75 %).
 δ_p (CDCl₃, 121 MHz) 3.89, 3.91; δ_H (CDCl₃, 300 MHz) 0.63 (m, 2H, CH₂-cPr), 0.88 (m, 2H, CH₂-cPr), 1.42 (m, 3H, CH₃-ala), 1.72 (m, 1H, 6'H_a), 1.98 (CH₂CH₂Ph), 2.69 (CH₂Ph), 2.80 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 4.07 (m, 6H, NH-ala, CH-ala, OCH and 5'H), 5.00 (bs, 1H, NH₂), 5.56 (m, 1H, 1'H), 5.91 (m, 2H, 3'H and NH-cPr), 6.10 (m, 1H, 2'H), 7.25 (m, 10H, ArH and PhH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.35 (CH₂-cPr), 20.06, 20.12 (CH₃-ala), 22.65 (CH-cPr), 29.02 (CH₂CH₂Ph), 30.97 (CH₂Ph), 33.48, 33.55 (6'C), 44.57, 44.67 (4'C), 49.26 (CH-ala), 57.78, 57.84 (1'C), 63.84 (OCH₂), 67.88 (5'C), 113.83 (5C), 119.10, 119.15 (*p*-Ph and *p*-Ar), 123.86 (*o*-Ph), 125.09 (*o*-Ar), 127.33, 127.47 (*m*-Ph), 128.63 (*m*-Ar), 130.10, 130.17 (3'C), 134.47, 134.58 (8C), 135.27, 135.37 (2'C), 139.81 (*ipso*-Ar), 149.65, 149.74 (6C and *ipso*-Ph), 155.27 (4C), 158.98 (2C), 172.49, 172.58 (C=O).

L-Alanine (4-phenyl-1-butyl) ester *p*-toluene sulfonate salt

[0197]

15

25

[0198] Prepared according to **Standard Procedure 2**, from L-alanine (1.0 g, 11 mmol), *p*-TSA monohydrate (2.35 g, 12 mmol), 4-phenyl-1-butanol (1.7 ml, 11 mmol) and toluene (65 ml). Removal of the solvent gave the crude product as a clear, colourless oil, which solidified to a white solid after trituration and coevaporation with petrol (60/80) (4.4 g, 11.2 mmol, 100 %).
 δ_H (d₄-CH₃OH, 300 MHz) 1.55 (d, 3H, CH₃-ala, J = 7), 1.74 (m, 4H, -(CH₂)₂CH₂Ph), 2.41 (2, 3H, CH₃, *p*-TSA), 2.67 (m, 2H, CH₂Ph), 4.12 (q, 1H, CH-ala, J = 7), 4.28 (m, 2H, O-CH₂) 7.25 (m, 7H, ArH, *p*-TSA and PhH), 7.75 (d, 2H, ArH, *p*-TSA); δ_C (d₄-CH₃OH, 75 MHz) 16.65 (CH₃-ala), 21.74 (CH₃-*p*TSA), 29.18, 29.50 (OCH₂(CH₂)₂CH₂-Ph), 36.72 (CH₂-Ph), 50.27 (CH-ala), 67.74 (O-CH₂), 127.31, 127.36 (*o*-Ar and *o*-Ph, *p*-TSA), 129.79 (*p*-Ar), 130.25 (*m*-Ar and *m*-Ph, *p*-TSA), 142.14 (*ipso*-ArC), 143.64, 143.87 (*ipso*-C-CH₃ and *ipso*-C-S, *p*-TSA), 171.47 (C=O).

35

Phenyl(4-phenyl-1-butoxy-L-alaninyl)phosphorochloridate

[0199]

40

50

[0200] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.5 ml, 3.3 mmol), dry triethylamine (0.93 ml, 6.7 mmol), L-alanine (4-phenyl-1-butyl) ester *p*-toluene sulfonate salt 11a (1.32g, 3.3 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale brown oil (1.13 g, 85 %).
 δ_p (CDCl₃, 121 MHz) 8.89, 9.24

[0201] The product was redissolved in dry THF (5 ml) and used as a 0.226 g/ml solution.

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl(4-phenyl-1-butoxy-L-alaninyl)phosphorochloridate [Cf 1779]

[0202]

5

•

10

15

20

[0203] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ⁴BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(4-phenyl-1-butoxy-L-alaninyl) phosphorochloridate **11b** (3.7 ml of 0.226 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 4 hrs. The crude residue was purified by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.314 g, 0.5 mmol, 69 %).

25

δ_P (CDCl₃, 121 MHz) 3.87, 3.90; δ_H (CDCl₃, 300 MHz) 0.65 (m, 2H, CH₂-cPr), 0.87 (m, 2H, CH₂-cPr), 1.41 (m, 3H, CH₃-ala), 1.71 (m, 5H, (CH₂)₂CH₂Ph and 6'H_a), 2.65 (m, 2H, CH₂Ph), 2.80 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.17 (m, 1H, 4'H), 4.06 (m, 6H, NH-ala, CH-ala, 5'H and OCH₂-) 5.02 (bs, 1H, NH₂), 5.56 (m, 1H, 1'H), 5.90 (m, 1H, 3'H), 5.98 (bs, 1H, NH-cPr), 6.10 (m, 1H, 2'H), 7.25 (m, 10H, ArH and PhH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.35 (CH₂-cPr), 20.05, 20.11 (CH₃-ala), 22.65 (CH-cPr), 26.51 (CH₂CH₂CH₂Ph), 27.02 (CH₂(CH₂)₂Ph), 33.48, 33.55 (6'C), 34.32 (CH₂Ph), 44.56, 44.67 (4'C), 49.22, 49.26 (CH-ala), 57.79, 57.83 (1'C), 64.40 (OCH₂), 67.86, 67.94 (5'C), 113.75 (5C), 119.10, 119.15 (p-Ph and p-Ar), 123.85 (o-Ph), 124.88 (o-Ar), 127.33, 127.35 (m-Ph), 128.61 (m-Ar), 130.07, 130.12 (3'C), 134.44, 134.54 (8C), 135.30, 135.39 (2'C), 140.76 (ipso-Ar), 149.64-149.87 (6C and ipso-Ph), 155.26 (4C), 158.98 (2C), 172.53, 172.63 (C=O).

30

L-Alanine (2-cyclohexyl ethyl) ester p-toluenesulfonate salt

35

[0204]

40

45

50

[0205] Prepared according to **Standard Procedure 2**, from L-alanine (1.0 g, 11 mmol), p-TSA monohydrate (2.35 g, 12 mmol), 2-cyclohexyl ethanol (1.56 ml, 11 mmol) and toluene (65 ml). Removal of the solvent gave the crude product as a clear, colourless oil, which solidified to a white solid after trituration and coevaporation with diethyl ether (2.8 g, 7.5 mmol, 67 %).

55

δ_H (d₄-CH₃OH, 300 MHz) 0.97 (m, 2H, CH₂), 1.24 (m, 4H, 2 × CH₂), 1.42 (m, 1H, CH-cHx), 1.54 (d, 3H, CH₃-ala, J = 7), 1.63 (m, 2H, CH₂), 1.75 (m, 4H, 2 × CH₂), 2.39 (s, 3H, CH₃, p-TSA), 4.09 (q, 1H, CH-ala, J = 7), 4.28 (m, 2H, O-CH₂), 7.25 (d, 2H, ArH, p-TSA), 7.72 (d, 2H, ArH, p-TSA); δ_C (d₄-CH₃OH, 75 MHz) 16.65 (CH₃-ala), 21.74 (CH₃-cHx), 22.65 (CH-cPr), 26.51 (CH₂CH₂CH₂Ph), 27.02 (CH₂(CH₂)₂Ph), 33.48, 33.55 (6'C), 34.32 (CH₂Ph), 44.56, 44.67 (4'C), 49.22, 49.26 (CH-ala), 57.79, 57.83 (1'C), 64.40 (OCH₂), 67.86, 67.94 (5'C), 113.75 (5C), 119.10, 119.15 (p-Ph and p-Ar), 123.85 (o-Ph), 124.88 (o-Ar), 127.33, 127.35 (m-Ph), 128.61 (m-Ar), 130.07, 130.12 (3'C), 134.44, 134.54 (8C), 135.30, 135.39 (2'C), 140.76 (ipso-Ar), 149.64-149.87 (6C and ipso-Ph), 155.26 (4C), 158.98 (2C), 172.53, 172.63 (C=O).

EP 1 117 669 B1

*p*TSA), 27.68 (CH₂), 27.93 (CH₂), 34.58 (CH₂), 34.62 (CH₂), 36.10 (CH-cHx), 50.27 (CH-ala), 66.05 [O-CH₂(CH₂)₂], 127.36 (*o*-Ph, *p*-TSA), 130.24 (*m*-Ph, *p*-TSA), 142.13 (*ipso*-C-CH₃, *p*-TSA), 143.89 (*ipso*-C-S, *p*-TSA), 171.49 (C=O).

Phenyl(2-cyclohexyl ethoxy-L-alaninyl)phosphorochloridate

5

[0206]

10

15

20

[0207] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (cyclohexyl ethyl) ester *p*-toluene sulfonate salt **12a** (2.24g, 6.0 mmol) and dry DCM (100 ml total). The crude product was obtained as a clear, colourless oil (1.86 g, 83 %).

δ_p (CDCl₃, 121 MHz) 8.96, 9.31

The product was redissolved in dry THF (5 ml) and used as a 0.372 g/ml solution.

25

(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(2-cyclohexyl-1-ethoxy-L-alaninyl)]phosphate [Cf 1780]

30

[0208]

35

40

45

[0209] Prepared according to **Standard Procedure 4**, from (1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9*H*-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(cyclohexyl ethoxy-L-alaninyl) phosphorochloridate **12b** (2.1 ml of 0.372 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 2.5 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.302 g, 0.5 mmol, 69 %).

δ_p (CDCl₃, 121 MHz) 3.91, 3.94; δ_H (CDCl₃, 300 MHz) 0.64 (m, 2H, CH₂-cPr), 0.91 (m, 4H, CH₂ and CH₂-cPr), 1.21 (m, 2H, CH₂), 1.41 (m, 3H, CH₃-ala), 1.52 (m, 2H, CH-cHx and 6'H_a), 1.70 (m, 6H, 3 \times CH₂), 2.80 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 4.10 (m, 6H, NH-ala, CH-ala, OCH₂ and 5'H), 5.03 (bs, 1H, NH₂), 5.56 (m, 1H, 1'H), 5.96 (m, 1H, 3'H), 5.98 (m, 1H, NH-cPr), 6.10 (m, 1H, 2'H), 7.25 (m, 5H, Ar), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.35 (CH₂-cPr), 20.05, 20.12 (CH₃-ala), 22.69 (CH-cPr), 25.11 (CH₂), 25.37 (CH₂), 32.04, 32.07 (6'C), 33.45, 33.58 (CH-cHx), 34.76 (CH₂), 44.58, 44.69 (4'C), 49.28 (CH-ala), 57.78, 57.83 (1'C), 62.88 (OCH₂), 67.86 (5'C), 113.82 (5C), 119.10-119.19 (*p*-Ph), 123.85 (*o*-Ph), 128.61 (*m*-Ph), 130.12 (3'C), 134.44, 134.54 (8C), 135.28, 135.38 (2'C),

EP 1 117 669 B1

149.66-149.94 (6C and *ipso*-Ph), 155.28 (4C), 155.99 (2C), 172.57, 172.66 (C=O).

L-Alanine (3-cyclohexyl-1-propyl) ester p-toluenesulfonate salt

5 [0210]

15

[0211] Prepared according to **Standard Procedure 2**, from L-alanine (1.0 g, 11 mmol), *p*-TSA monohydrate (2.35 g, 12 mmol), 3-cyclohexyl-1-propanol (1.7 ml, 11 mmol) and toluene (65 ml). The solvent was removed and diethyl ether was added. The resulting suspension was filtered to give the product as a white solid (3.9 g, 10.1 mmol, 90%). δ_H (d_4 -CH₃OH, 300 MHz) 0.92 (m, 2H, CH₂), 1.23 (m, 6H, 3 \times CH₂), 1.54 (d, 3H, CH₃-ala, J = 7), 1.71 (m, 7H, CH-cHx and 3 \times CH₂), 2.39 (s, 3H, CH₃, *p*-TSA), 4.10 (q, 1H, CH-ala, J = 7), 4.22 (m, 2H, O-CH₂), 7.25 (d, 2H, ArH, *p*-TSA), 7.72 (d, 2H, ArH, *p*-TSA); δ_c (d_4 -CH₃OH, 75 MHz) 16.66 (CH₃-ala), 21.74 (CH₃-*p*TSA), 27.36 (CH₂), 27.83 (CH₂), 28.11 (CH₂), 34.80 (CH₂), 34.90 (CH₂), 39.03 (CH-cHx), 50.27 (CH-ala), 68.27 (OCH₂), 127.36 (*o*-Ph, *p*-TSA), 130.24 (*m*-Ph, *p*-TSA), 142.12 (*ipso*-C-CH₃, *p*-TSA), 143.89 (*ipso*-C-S, *p*-TSA), 171.49 (C=O).

25 **Phenyl(3-cyclohexyl-1-propoxy-L-alaninyl)phosphorochloridate**

[0212]

30

40

[0213] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.9 ml, 6.0 mmol), dry triethylamine (1.7 ml, 12.0 mmol), L-alanine (3-cyclohexyl-1-propyl) ester *p*-toluenesulfonate salt 13a (2.32g, 6.0 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale yellow oil (2.31 g, 99%).

45 [0214] The product was redissolved in dry THF (5 ml) and used as a 0.463 g/ml solution.

50

55

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(3-cyclohexyl-1-propoxy-L-alaniny)]phosphate [Cf 1781]

[0215]

5

10

15

20

[0216] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(3-cyclohexyl-1-propoxy-L-alaniny) phosphorochloride **13b** (1.8 ml of 0.463 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CHCl_3) showed the reaction to be complete after 2.5 hrs. The crude residue was purified by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.276 g, 0.4 mmol, 62 %).

25

20.09, 20.15 (CH_3 -ala), 22.66 (CH -cPr), 24.85 (CH_2), 25.27 (CH_2), 25.55 (CH_2), 29.92 (CH_2), 32.20, 32.33 (C), 33.49, 33.57 (CH -cHx), 36.22 (CH_2), 44.58, 44.68 (C), 49.27 (CH -ala), 57.78, 57.83 (C), 65.01 (OCH_2), 67.84 (C), 113.86 (C), 119.10-119.19 (p -Ph), 123.85 (σ -Ph), 128.61 (m -Ph), 130.12 (C), 134.47, 134.57 (C), 135.28, 135.38 (C), 149.65-149.74 (C and *ipso*-Ph), 155.27 (C), 158.96 (2 C), 172.53, 172.64 (C=O).

L-Alanine (4-cyclohexyl-1-butyl) ester *p*-toluene sulfonate salt

[0217]

40

45

50

[0218] Prepared according to **Standard Procedure 2**, from L-alanine (0.51 g, 5.8 mmol), *p*-TSA monohydrate (1.21 g, 6.3 mmol), 4-cyclohexyl-1-butanol (1.0 ml, 5.8 mmol) and toluene (65 ml). The *p*-toluene sulfonate salt was obtained as a white crystalline solid (2.15 g, 5.4 mmol, 93 %).

55

δ_{H} (d_4 - CH_3OH , 300 MHz) 0.92 (m, 2H, CH_2), 1.17 (m, 6H, 3 \times CH_2), 1.39 (m, 2H, CH_2), 1.54 (d, 3H, CH_3 -ala, J = 7), 1.69 (m, 7H, CH -cHx and 3 \times CH_2), 2.39 (s, 3H, CH_3 , *p*-TSA), 4.10 (q, 1H, CH -ala, J = 7), 4.24 (m, 2H, O-CH_2), 7.25 (d, 2H, ArH, *p*-TSA), 7.72 (d, 2H, ArH, *p*-TSA); δ_{C} (d_4 - CH_3OH , 75 MHz) 16.66 (CH_3 -ala), 21.74 (CH_3 -*p*-TSA), 24.51 (CH_2), 27.89 (CH_2), 28.18 (CH_2), 30.25 (CH_2), 34.90 (CH_2), 38.59 (CH_2), 39.27 (CH -cHx), 50.27 (CH -ala), 67.94 (OCH_2), 127.36 (σ -Ph, *p*-TSA), 130.23 (m -Ph, *p*-TSA), 142.15 (*ipso*-C- CH_3 , *p*-TSA), 143.89 (*ipso*-C-

EP 1 117 669 B1

S, *p*-TSA), 171.49 (C=O).

Phenyl(4-cyclohexyl-1-butoxy-L-alaninyl)phosphorochloridate

5 [0219]

10

15

20

[0220] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.45 ml, 3.0 mmol), dry triethylamine (0.8 ml, 6.0 mmol), L-alanine (4-cyclohexyl-1-butyl) ester *p*-toluene sulfonate salt 14a (1.2g, 3.0 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, brown oil (1.36 g, >100 %).

δ_p (CDCl₃, 121 MHz) 8.91, 9.28

The product was redissolved in dry THF (5 ml) and used as a 0.272 g/ml solution.

25

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(4-cyclohexyl-1-butoxy-L-alaninyl)]phosphate [Cf 1782]

30 [0221]

35

40

45

[0222] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol) phenyl(3-cyclohexyl-1-propoxy-L-alaninyl) phosphorochloridate 14b (3.1 ml of 0.272 g/ml solution, 2.1 mmol) and dry THF (8 ml). TLC (8 % MeOH in CNCl₃) showed the reaction to be complete after 2.5 hrs. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.341 g, 0.5 mmol, 75 %).

δ_p (CDCl₃, 121 MHz) 3.89, 3.91; δ_H (CDCl₃, 300 MHz) 0.65 (m, 2H, CH₂-cPr), 0.86 (m, 2H, CH₂-cPr), 1.21 (m, 8H, 4 \times CH₂), 1.41 (m, 3H, CH₃-ala), 1.65 (m, 8H, CH-cHx, 3 \times CH₂ and 6'H_b), 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.19 (m, 1H, 4'H), 4.04 (m, 6H, NH-ala, CH-ala, OCH₂ and 5'H), 4.96 (bs, 1H, NH₂), 5.56 (m, 1H, 1'H), 5.92 (m, 1H, 3'H and NH-cPr), 6.11 (m, 1H, 2'H), 7.26 (m, 5H, Ar), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.37 (CH₂-cPr), 20.10, 20.16 (CH₃-ala), 22.00 (CH₂), 22.65 (CH-cPr), 25.34 (CH₂), 25.64 (CH₂), 27.77 (CH₂), 32.28 (CH-cHx), 33.48, 33.56 (6'C), 36.45 (CH₂), 44.58, 44.68 (4'C), 49.24 (CH-ala), 57.79, 57.84 (1'C), 64.69 (OCH₂), 67.84, 67.94 (5'C), 113.86 (5C), 119.10-119.19 (*p*-Ph), 123.86 (*o*-Ph), 128.62 (*m*-Ph), 130.11, 130.17 (3'C), 134.47, 134.57 (8C), 135.28, 135.39 (2'C), 149.65-149.74 (6C and *lps*-Ph), 155.26 (4C), 158.96 (2C), 172.54, 172.64 (C=O).

EP 1 117 669 B1

Phenyl(methoxy-L-valinyl)phosphorochloridate

[0223]

5

10

15

[0224] Prepared according to Standard Procedure 3, from phenyl dichlorophosphate (0.45 ml, 3.0 mmol), dry triethylamine (0.8 ml, 6.0 mmol), L-valine methyl ester hydrochloride salt (0.5 g, 3.0 mmol) and dry DCM (60 ml total).

20 The crude product was obtained as a clear, colourless oil (0.922 g, >100%).

δ_p (CDCl₃, 121 MHz) 8.99, 9.37

[0225] The product was redissolved in dry THF (5 ml) and used as a 0.184 g/ml solution.

25 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(methoxy-L-valinyl)phosphate [Cf 1686]

[0226]

30

35

40

[0227] Prepared according to Standard Procedure 4, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl(methoxy valinyl)phosphorochloridate 15a (3.5 ml of 0.184 g/ml solution, 2.1 mmol) and dry THF (5 ml). The reaction mixture was stirred for 16 hrs, after which time a further 1.5 ml of the solution of 15a was added. The reaction mixture was stirred for a further 4 hrs. The crude residue was purified by column chromatography, using MeOH:DCM (5:95) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.161 g, 0.3 mmol, 41%).

50 δ_p (CDCl₃, 121 MHz) 4.65, 4.74; δ_H (CDCl₃, 300 MHz) 0.66 (m, 2H, CH₂-cPr), 0.94 [m, 8H, CH₂-cPr and CH(CH₃)₂], 1.71 (m, 1H, 6'H_a), 2.06 [m, 1H, CH(CH₃)₂], 2.81 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.18 (m, 1H, 4'H), 3.52 (m, 1H, CH-val), 3.70 (d, 3H, OCH₃), 3.83 (m, 1H, NH-val), 4.22 (m, 2H, 5'H), 4.86 (bs, 2H, NH₂), 5.56 (m, 1H, 1'H), 5.74 (bs, 1H, NH-cPr), 5.93 (m, 1H, 3'H), 6.11 (m, 1H, 2'H), 7.27 (m, 5H, ArH), 7.52 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.37 (CH₂-cPr), 16.36, 16.45 [CH(CH₃)₂], 22.65 (CH-cPr), 31.08, 31.16 [CH(CH₃)₂], 33.61 (6'C), 44.60, 44.70 (4'C), 51.05, 51.10 (OCH₃), 57.78 (1'C), 58.96, 59.01 (CH-val), 67.90 (5'C), 113.91 (5C), 119.03-119.13 (*o*-Ph), 123.80 (*p*-Ph), 128.58 (*m*-Ph), 130.05, 130.14 (3'C), 134.47 (8C), 135.27, 135.39 (2'C), 149.66-149.84 (6C and *ipso*-Ph), 155.28 (4C), 158.96 (2C), 172.10, 172.19 (C=O); *m/z* (FAB) 556.2428 (MH⁺, C₂₆H₃₅N₇O₅P requires 556.2437).

EP 1 117 669 B1

Phenyl(methoxy-L-leucinyl)phosphorochloridate

[0228]

5

10

15

[0229] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.41 ml, 2.8 mmol), dry triethylamine (0.77 ml, 5.5 mmol), L-leucine methyl ester hydrochloride salt (0.5 g, 2.8 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, pale yellow oil (1.062 g, >100%).

δ_P (CDCl₃, 121 MHz) 9.33, 9.51

20

[0230] The product was redissolved in dry THF (5 ml) and used as a 0.212 g/ml solution.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(methoxy-L-leucinyl)phosphate [Cf 1718]

25

[0231]

30

35

40

[0232] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol 0.2 g, 0.7 mmol), *t*BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl (methoxy-L-leucinyl)phosphorochloridate 16a (3.2 ml of 0.212 g/ml solution, 2.1 mmol) and dry THE (10 ml). TLC (8 % MeOH in CHCl₃)

45 showed the reaction to be complete after 2 hrs. The crude residue was purified twice by column chromatography, using MeOH: CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after trituration and coevaporation with diethyl ether (0.211 g, 0.4 mmol, 53 %).

50 δ_P (CDCl₃, 121 MHz) 3.98, 4.06; δ_H (CDCl₃, 300 MHz) 0.64 (m, 2H, CH₂-cPr), 0.89 [m, 8H, CH₂-cPr and CH(CH₃)₂], 1.51 (m, 2H, CH₂-leu), 1.69 [(m, 2H, CH(CH₃)₂ and 6'H_a], 2.80 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.16 (m, 1H, 4'H), 3.67 (m, 1H, CH-leu), 3.69 (d, 3H, OCH₃), 3.98 (m, 1H, NH-leu), 4.19 (m, 2H, 5'H), 4.97 (bs, 2H, NH₂), 5.55 (m, 1H, 1'H), 5.91 (m, 1H, NH-cPr and 3'H), 6.09 (m, 1H, 2'H), 7.25 (m, 5H, ArH), 7.51 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.37 (CH₂-cPr), 20.69, 20.82 (CH₃-leu), 22.69 (CH-cPr), 23.28, 23.41 [CH(CH₃)₂], 33.54 (6'C), 42.60-42.81 (CH₂-leu), 44.59, 44.70 (4'C), 51.19, (OCH₃), 52.07, 52.16 (CH-leu), 57.80 (1'C), 67.91, 67.98 (5'C), 113.88 (5C), 118.99-119.14 (*o*-Ph), 123.80 (*p*-Ph), 128.58 (*m*-Ph), 130.06, 130.14 (3'C), 134.53 (8C), 135.27, 135.34 (2'C), 149.68-149.76 (6C and *ipso*-Ph), 155.28 (4C), 158.97 (2C), 173.12, 173.23 (C=O); *m/z* (FAB) 570.2610 (MH⁺, C₂₇H₃₇N₇O₅P requires 570.2594).

EP 1 117 669 B1

Phenyl(methoxy-L-prolinyl)phosphorochloridate

[0233]

5

10

15 [0234] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.54 ml, 3.6 mmol), dry triethylamine (1.0 ml, 7.2 mmol), L-proline methyl ester hydrochloride salt (0.6 g, 3.6 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, colourless oil (1.24 g, >100 %).

16 δ_P (CDCl₃, 121 MHz) 9.02, 9.22

17 [0235] The product was redissolved in dry THF (5 ml) and used as a 0.248 g/ml solution.

20

18 (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(methoxy-L-prolinyl)phosphate [Cf 1719]

[0236]

25

30

35

40

41 [0237] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.2 g, 0.7 mmol), ¹BuMgCl (1.0 M in THF: 1.4 ml, 1.4 mmol), phenyl(methoxy-L-prolinyl)phosphorochloridate 17a (2.6 ml of 0.248 g/ml solution, 2.1 mmol) and dry THE (10 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 20 hrs. The crude residue was purified twice by column chromatography, using MeOH: CHCl₃ (4:96) as eluent, to give the product as a clear, colourless oil, which solidified to a white foam after

42 trituration and coevaporation with diethyl ether (0.168 g, 0.3 mmol, 44 %).

43 δ_P (CDCl₃, 121 MHz) 2.83, 2.90; δ_H (CDCl₃, 300 MHz) 0.65 (m, 2H, CH₂-cPr), 0.90 (m, 2H, CH₂-cPr), 1.92 (m, 5H, CH₂CH₂-pro and 6'H_a), 2.83 (m, 1H, 6'H_b), 3.04 (m, 1H, CH-cPr), 3.17 (m, 1H, 4'H), 3.45 (m, 2H, N-CH₂-pro), 3.70 (d, 3H, OCH₃), 4.13 (m, 1H, CH-pro), 4.30 (m, 2H, 5'H), 4.87 (bs, 2H, NH₂), 5.56 (m, 1H, 1'H), 5.73 (bs, 1H, NH-cPr), 5.91

44 (m, 1H, 3'H), 6.12 (m, 1H, 2'H), 7.27 (m, 5H, ArH), 7.55 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.42 (CH₂-cPr), 22.62 (CH-cPr), 23.91, 24.02 (CH₂-pro), 30.38, 30.49 (CH₂-pro), 33.54 (6'C), 44.61, 44.72 (4'C), 46.89 (N-CH₂), 51.07, 51.19 (OCH₃), 57.71, 57.80 (1'C), 58.84, 58.92 (CH-pro), 67.67, 67.75 (5'C), 113.87 (5C), 118.90-119.22 (*o*-Ph), 123.64, 123.73 (*p*-Ph), 128.55, 128.59 (*m*-Ph), 130.00 (3'C), 134.46 (8C), 135.42, 135.63 (2'C), 149.81, 149.90 (6C and *ipso*-Ph), 155.20 (4C), 158.87 (2C), 172.72, 173.23 (C=O); *m/z* (FAB) 554.2283 (MH⁺, C₂₆H₃₃N₇O₅P requires 554.2281).

55

EP 1 117 669 B1

Phenyl(dibenzylxy-L-aspartinyl)phosphorochloridate

[0238]

5

10

15

[0239] Prepared according to **Standard Procedure 3**, from phenyl dichlorophosphate (0.45 ml, 3.0 mmol), dry triethylamine (0.8 ml, 6.0 mmol), L-aspartate dibenzyl ester *p*-toluene sulfonate salt (1.46 g, 3.0 mmol) and dry DCM (60 ml total). The crude product was obtained as a clear, yellow oil (0.8024 g, 55 %).

20 δ_p (CDCl₃, 121 MHz) 9.43, 9.58

[0240] The product was redissolved in dry THF (5 ml) and used as a 0.16 g/ml solution.

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl(dibenzylxy-L-aspartinyl)phosphate [C1 1720]

25

[0241]

30

35

40

[0242] Prepared according to **Standard Procedure 4**, from (1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol (0.157 g, 0.55 mmol), *t*BuMgCl (1.0 M in THF; 1.1 ml, 1.1 mmol), phenyl(dibenzylxy-L-aspartinyl) phosphorochloridate 18a (5.0 ml of 0.16 g/ml solution, 1.6 mmol) and dry THF (10 ml). TLC (8 % MeOH in CHCl₃) showed the reaction to be complete after 1.5 hrs. The crude residue was purified twice by column chromatography, using MeOH: CHCl₃ (3:97) as eluent, to give the product as a clear, colourless oil, which solidified to an off-white foam after trituration and coevaporation with diethyl ether (0.284 g, 0.4 mmol, 70 %).

50 δ_p (CDCl₃, 121 MHz) 3.68, 4.24; δ_H (CDCl₃, 300 MHz) 0.63 (m, 2H, CH₂-cPr), 0.85 (m, 2H, CH₂-cPr), 1.63 (m, 1H, 6'H_a), 2.71 (m, 1H, 6'H_b), 3.06 (m, 2H, CH-cPr and 4'H), 4.14 (m, 2H, CH-asp, NH-asp), 4.34 (m, 2H, 5'H), 4.98 (bs, 2H, NH₂), 5.06 (d, 2H, OCH₂Ph), 5.13 (d, 2H, OCH₂Ph), 5.53 (m, 1H, 1'H), 5.88 (m, 2H, NH-cPr and 3'H), 6.01 (m, 1H, 2'H), 7.25 (m, 15H, ArH), 7.49 (d, 1H, 8H); δ_C (CDCl₃, 75 MHz) 6.35 (CH₂-cPr), 22.64 (CH-cPr), 33.40 (6'C), 37.44, 37.60 (CH₂-asp), 44.50, 44.57 (4'C), 50.20, 50.33 (CH-asp), 57.79 (1'C), 65.77 (OCH₂Ph), 66.65 (OCH₂Ph), 67.86, 68.00 (5'C), 113.85 (5C), 119.09-119.34 (*o*-Ph), 123.92 (*p*-Ph), 127.34-127.55 (*m*-Ph and *m/p*-Bn), 128.61 (*o*-Bn), 130.06 (3'C), 134.00 (*ipso*-Bn), 134.03 (*ipso*-Bn), 134.61 (8C), 135.23, 135.27 (2'C), 149.47-149.91 (6C and *ipso*-Ph), 155.28 (4C), 158.95 (2C), 169.22, 169.43, 170.00, 170.29 (C=O).

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (2-methylpropyl)oxy-L-alaninyl phosphate) CF1672

[0243] This was prepared by Standard Procedure 4. 70% yield.

5 δ_p 3.87, 3.91.

δ_H 0.64 (2H, m, CH_aH_b , CH_aH_b , cyclopropyl), 0.92 (8H, m, CH_aH_b , CH_aH_b , cyclopropyl, $CH(CH_3)_2$), 1.42 (3H, m, CH_3 alaninyl), 1.71 (1H, m, 6'- H_aH_b), 1.92 (1H, m, $CH(CH_3)_2$), 2.81 (1H, m, 6'- H_aH_b), 3.03 (1H, m, CH cyclopropyl), 3.19 (1H, m, 4'-H), 3.87 (3H, m, CH alaninyl, $CH_2CH(CH_3)_2$), 4.09 (1H, m, NH alaninyl), 4.20 (2H, m, 5'-H), 4.91 (2H, br s, NH_2), 5.53 (1H, br m, 1'-H), 5.80 (1H, br s, NH-cyclopropyl), 5.92 (1H, m, 3'-H), 6.12 (1H, m, 2'-H), 7.31 (5H, m, Ph-H), 7.48 (1H, br d, 8H)

10 δ_C 5.45 (CH_2 -cyclopropyl x 2), 17.01 ($CH(CH_3)_2$), 19.23, 19.29 (Me alaninyl), 21.74 (CH-cyclopropyl), 25.72 (CH $(CH_3)_2$), 32.58, 32.64 (6'-C), 43.66, 43.76 (4'-C), 48.35 (CH alaninyl), 56.90 (1'-C), 66.88, 66.96, 67.03 (5'-C), 69.57, 69.60 ($CH_2CH(CH_3)_2$), 118.17, 118.20, 118.24, 118.27 (*o*-Ph, 5-C), 122.94 (*p*-Ph), 127.70 (*m*-Ph), 129.19, 129.24 (3'-C), 134.35, 134.45 (8-C, 2'-C), 148.81, 148.72 (*i*-Ph), 149.62, 149.76 (6-C), 154.34 (4-C), 158.91, 158.96 (2-C), 171.68, 171.58 (C(O) alaninyl).

MS m/e 570.2505 (M^+ , $C_{27}H_{36}N_7O_5P$ requires 570.2515).

HPLC t_R 33.11 min. (0% CH_3CN (0 min), 80% CH_3CN (35 min), 80% CH_3CN (45 min), 0% CH_3CN (55 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl**(2,2-dimethylpropyl)oxy-L-alaninyl phosphate) CF1673**

[0244] This was prepared by Standard Procedure 4. 94% yield.

5 δ_p 3.88, 3.94.

δ_H 0.61 (2H, m, CH_aH_b , CH_aH_b , cyclopropyl), 0.85 (2H, br m, CH_aH_b , CH_aH_b , cyclopropyl), 0.91 (9H, s, $C(CH_3)_3$), 1.41 (3H, m, CH_3 alaninyl), 1.70 (1H, m, 6'- H_aH_b), 2.78 (1H, m, 6'- H_aH_b), 3.03 (1H, m, CH cyclopropyl), 3.18 (1H, m, 4'-H), 3.81 (3H, m, CH alaninyl, $CH_2CH(CH_3)_2$), 4.09 (1H, m, NH alaninyl), 4.20 (2H, m, 5'-H), 4.97 (2H, br s, NH_2), 5.52 (1H, br m, 1'-H), 5.86 (1H, br s, NH-cyclopropyl, 3'-H), 6.08 (1H, m, 2'-H), 7.25 (5H, m, Ph-H), 7.48 (1H, br d, 8H).

25 δ_C 7.89 (CH_2 -cyclopropyl x 2), 21.74, 21.77 (Me alaninyl), 26.81 ($C(CH_3)_3$), 24.21 (CH-cyclopropyl), 31.90 ($C(CH_3)_3$), 35.06 (6'-C), 46.10, 46.20 (4'-C), 50.79, 50.83 (CH alaninyl), 59.42 (1'-C), 66.35 (5'-C), 69.34, 69.41, 69.49 ($CH_2C(CH_3)_3$), 116.41 (5-C), 120.62, 120.66, 120.68, 120.72 (*o*-Ph), 125.39 (*p*-Ph), 130.15 (*m*-Ph), 131.61, 131.65 (3'-C), 136.82, 136.90 (8-C, 2'-C), 151.16, 151.25 (6-C, *i*-Ph), 156.78 (4-C), 158.91, 160.44 (2-C), 174.09, 174.20 (C(O) alaninyl).

ES+ m/e 584.2640 (MH^+ , $C_{28}H_{39}N_7O_5P$ requires 584.2672).

HPLC t_R 34.97 min (0% CH_3CN (0 min), 80% CH_3CN (35 min), 80% CH_3CN (45 min), 0% CH_3CN (55 min)).

35

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (3-methylbutyl)oxy-L-alaninyl phosphate) CF1674

[0245] This was prepared by Standard Procedure 4.47% yield.

40 δ_p 3.87, 3.89:

δ_H 0.57 (2H, m, CH_aH_b , CH_aH_b , cyclopropyl), 0.80 (8H, m, CH_aH_b , CH_aH_b , cyclopropyl, $CH(CH_3)_2$), 1.30 (3H, m, CH_3 alaninyl), 1.42 (2H, m, OCH_2CH_2), 1.62 (2H, m, 6'- H_aH_b , $CH(CH_3)_2$), 2.70 (1H, m, 6'- H_aH_b), 2.92 (1H, br s, CH cyclopropyl), 3.07 (1H, m, 4'-H), 3.88 (3H, m, CH alaninyl, OCH_2CH_2), 4.07 (3H, m, NH alaninyl, 5'-H), 4.91 (2H, br s, NH_2), 5.48 (1H, br m, 1'-H), 5.83 (2H, br s, NH-cyclopropyl, 3'-H), 6.03 (1H, m, 2'-H), 7.18 (5H, m, Ph-H), 7.42 (1H, br d, 8H).

45 δ_C 7.81 (CH_2 -cyclopropyl x 2), 21.49, 21.56 (Me alaninyl), 22.79, 22.83 ($CH(CH_3)_2$), 24.10 ($CH(CH_3)_2$), 25.38 (CH-cyclopropyl), 34.91, 34.99 (OCH_2CH_2), 37.54 (6'-C), 46.01, 46.11 (4'-C), 50.70 (CH alaninyl), 59.25, 59.29 (1'-C), 64.63, 64.66 (OCH_2CH_2), 69.22, 69.30, 69.38 (5'-C), 116.17 (5-C), 120.53, 120.55, 120.59, 120.61 (*o*-Ph), 125.28 (*p*-Ph), 130.05 (*m*-Ph), 131.54, 131.60 (3'-C), 135.96 (8-C), 136.70, 136.81 (2'-C), 151.09, 151.17 (6-C, *i*-Ph), 156.68 (4-C), 160.34 (2-C), 173.94, 174.05 (C(O) alaninyl).

50 ES+ m/e 584.2664 (MH^+ , $C_{28}H_{39}N_7O_5P$ requires 584.2672).

HPLC t_R 38.51 min (0% CH_3CN (0 min), 80% CH_3CN (35 min), 80% CH_3CN (45 min), 0% CH_3CN (55 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (cycloheptanyl)oxy-L-alaninyl phosphate) CF1752

55

[0246] This was prepared by Standard Procedure 4.41% yield. δ_p 3.96, 3.98.

δ_H 0.68 (2H, m, CH_aH_b , CH_aH_b , cyclopropyl), 0.99 (2H, m, CH_aH_b , CH_aH_b , cyclopropyl), 1.36 (5H, m, CH_3 alaninyl, 5'- H_aH_b , 6'- H_aH_b), 1.80 (11H, m, 6'- H_aH_b , 2"-H, 3"-H, 4"-H, 7"-H, 5"- H_aH_b , 6"- H_aH_b), 2.80 (1H, m, 6'- H_aH_b), 3.12 (1H,

EP 1 117 669 B1

br s, CH cyclopropyl), 3.22 (1H, m, 4'-H), 3.97 (2H, m, CH alaninyl, NH alaninyl), 4.20 (2H, m, 5'-H), 4.95 (1H, m, O-CH), 5.18 (2H, br s, NH₂), 5.57 (1H, br m, 1'-H), 5.90 (1H, m, 3'-H), 6.12 (1H, m, 2'-H), 6.25 (1H, br s, NH cyclopropyl), 7.25 (5H, m, Ph-H), 7.51 (1H, br d, 8H).
⁵ δ_C 15.08 (CH₂-cyclopropyl x 2), 28.76, 28.82 (Me alaninyl), 30.40, 30.44 (3"-C, 6"-C), 24.10 (CH(CH₃)₂), 31.57 (CH-cyclopropyl), 35.87 (4"-C, 5"-C), 41.26, 41.29, 41.31, 41.36 (6"-C), 42.24 (2"-C, 7"-C), 53.32, 53.42 (4'-C), 58.08 (CH alaninyl), 61.15 (1'-C), 66.62 (5'-C), 116.17 (5-C), 127.81, 127.85, 127.88, 127.91 (o-Ph), 132.54 (p-Ph), 137.32, 137.49 (m-Ph), 138.75 (3'-C), 143.21 (8-C), 144.13, 144.22 (2'-C), 158.40, 158.49 (6-C, i-Ph), 164.42 (4-C), 167.41 (2-C), 180.47, 180.51, 180.59 (C(O) alaninyl).
 ES+ m/e 632.2719 (M[Na]⁺, C₃₀H₄₀N₇O₅NaP requires 632.2726).
¹⁰ HPLC t_R 41.92 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl diethoxy-L-asparty phosphate) CF1714

¹⁵ [0247] This was prepared by Standard Procedure 4.54% yield.
 δ_P 3.76, 4.19.
 δ_H 0.62 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 0.88 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.25 (6H, m, CH₃-CH₂-O aspartyl x 2), 1.68 (1H, m, 6'-H_aH_b), 2.75 (2H, m, -(CO)-CH_aH_b aspartyl, 6'-H_aH_b), 2.97 (2H, m, CH cyclopropyl, -(CO)-CH_aH_b aspartyl), 3.16 (1H, m, 4'-H), 4.15 (8H, m, CH aspartyl, CH₂-O aspartyl x 2, NH aspartyl, 5'-H), 4.90 (2H, br s, NH₂), 5.52 (1H, br m, 1'-H), 5.80 (1H, br s, NH-cyclopropyl), 5.90 (1H, m, 3'-H), 6.08 (1H, m, 2'-H), 7.21 (5H, m, Ph-H), 7.48 (1H, br d, 8H).
²⁰ δ_C 8.65 (CH₂-cyclopropyl x 2), 15.31 (CH₃-CH₂-O aspartyl x 2), 24.92 (CH-cyclopropyl), 35.72 ((CO)-CH₂ aspartyl), 39.74, 39.91 (6'-C), 46.82, 46.90 (4'-C), 52.41, 52.47 (CH aspartyl), 60.11 (1'-C), 62.22 (CH₃-CH₂-O(CO)CH₂ aspartyl), 63.15 (CH₃-CH₂-O(CO)CH aspartyl), 70.14, 70.27, 70.35 (5'-C), 116.12 (5-C), 121.33, 121.40, 121.49, 121.55 (o-Ph), 126.15 (p-Ph), 130.86 (m-Ph), 132.36 (3'-C), 136.90 (8-C), 137.54 (2'-C), 151.81, 151.85 (6-C, i-Ph), 157.39 (4-C), 161.01 (2-C), 171.67, 171.81 (C(O)CH₂ aspartyl), 172.38, 172.48, 172.52, 172.62 (C(O) aspartyl).
 ES+ m/e 614.2393 (MH⁺, C₂₈H₃₇N₇O₇P requires 614.2492).
 HPLC t_R 30.37 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

³⁰ **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-methionyl phosphate) CF1715**

[0248] This was prepared by Standard Procedure 4.49% yield.
 δ_P 3.90, 4.03.
³⁵ δ_H 0.61 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 0.86 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.71 (1H, m, CH-CH_aCH_b methioninyl), 1.90 (1H, m, CH-CH_aCH_b methioninyl), 2.01 (3H, d, CH₃-S-), 2.30 (1H, m, 6'-H_aH_b), 2.47 (2H, m, 5'-CH₂), 2.78 (1H, m, 6'-H_aH_b), 2.97 (1H, br m, CH cyclopropyl), 3.14 (1H, m, 4'-H), 3.70 (3H, d, CH₃-O-), 3.80 (1H, m, CH methioninyl) 4.17 (3H, m, NH methioninyl, 5'-H), 4.89 (2H, br s, NH₂), 5.49 (1H, m, 1'-H), 5.80 (1H, br s, NH-cyclopropyl), 5.90 (1H, m, 3'-H), 6.08 (1H, m, 2'-H), 7.24 (5H, m, Ph-H), 7.43 (1H, br d, 8H).
⁴⁰ δ_C 6.52 (CH₂-cyclopropyl x 2), 14.42, 14.47 (CH₃-S-), 22.81 (CH-cyclopropyl), 28.63, 28.78 (S-CH₂), 32.62, 32.73, 32.81 (CH-CH₂- methioninyl), 33.65 (6'-C), 44.73, 44.83 (4'-C), 51.67 (CH methioninyl), 57.99 (1'-C), 68.13, 68.20, 68.27 (5'-C), 114.03 (5-C), 119.15, 119.22, 119.24, 119.30 (o-Ph), 124.05, 124.10 (p-Ph), 128.80 (m-Ph), 130.26, 130.30 (3'-C), 134.72 (8-C), 135.42, 135.47 (2'-C), 149.76, 149.80, 149.84, 149.89 (i-Ph), 150.08 (6-C), 155.38 (4-C), 159.06 (2-C), 172.25, 172.28, 172.32, 172.36 (C(O)).
⁴⁵ ES+ m/e 588.2053 (MH⁺, C₂₆H₃₄N₇O₅PS requires 588.2080).
 HPLC t_R 29.64 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-tryptophanyl phosphate) CF1750

⁵⁰ [0249] This was prepared by Standard Procedure 4. 70% yield.
 δ_P 3.88, 4.01.
 δ_H 0.68 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 0.92 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.53 (1H, m, 6'-H_aH_b), 2.68 (1H, m, 6'-H_aH_b), 2.99 (2H, br m, CH cyclopropyl, 4'-H), 3.22 (2H, m, CH₂-Trp), 3.66 (3H, d, CH₃-O-), 3.93 (3H, m, NH Trp, 5'-H), 4.35 (1H, m, CH Trp), 4.94 (2H, br s, NH₂), 5.49 (1H, m, 1'-H), 5.87 (2H, m, NH-cyclopropyl, 3'-H), 5.97 (1H, m, 2'-H), 7.01 (1H, m, 6"-H), 7.26 (7H, m, Ph-H, 4"-H, 5"-H), 7.46 (1H, m, 7"-H), 7.52 (1H, m, 2"-H), 8.63 (1H, br d, 8H).
⁵⁵ δ_C 7.81 (CH₂-cyclopropyl x 2), 24.10 (CH-cyclopropyl), 34.86, 34.91 (6'-C), 45.81, 45.90, 46.00 (4'-C), 52.97 (CH Trp), 59.24, 59.29 (1'-C), 69.14, 69.20 (5'-C), 109.86, 110.11 (3"-C), 111.72 (7"-C), 118.91 (5-C), 119.95, 120.04 (4"-C, 5"-C),

EP 1 117 669 B1

120.40, 120.47, 120.57, 120.63 (*o*-Ph), 122.49, 122.56 (6"-H), 123.70 (2"-C), 125.23, 125.29 (*p*-Ph), 127.79, 127.98 (9"-C), 130.04 (*m*-Ph), 131.27 (3'-C), 136.08 (8-C), 136.50, 136.55, 136.76, 136.87 (2'-C, 8"-C), 151.05, 151.14, 151.17, 151.26 (*i*-Ph, 6-C), 156.68 (4-C), 160.35 (2-C), 173.58, 173.66 (C(O)).

ES+ m/e 643.2432 (MH⁺, C₃₂H₃₆N₈O₅P requires 643.2546).

5 HPLC t_R 31.46 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

**(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-
isoleucinyl phosphate) CF1751**

10 [0250] This was prepared by Standard Procedure 4.60% yield.

δ_P 4.48, 4.54.

δ_H 0.68 (2H, m, CH_aH_b, CH_aH_b cyclopropyl), 0.91 (8H, m, CH_aH_b, CH_aH_b cyclopropyl, CH₃ x 2 isoleucinyl), 1.15 (1H, m, CH_aCH_b isoleucinyl), 1.45 (1H, m, CH_aCH_b isoleucinyl), 1.75 (2H, m, 6'-H_aH_b, CH₃CH), 2.83 (1H, m, 6'-H_aH_b), 3.05 (1H, br m, CH cyclopropyl), 3.19 (1H, m, 4'-H), 3.62 (1H, m, NH isoleucinyl), 3.71 (3H, d, CH₃O-), 3.88 (1H, m, CH isoleucinyl), 4.21 (2H, m, 5'-H), 4.91 (2H, br s, NH₂), 5.55 (1H, m, 1'-H), 5.81 (1H, br s, NH-cyclopropyl), 5.93 (1H, m, 3'-H), 6.12 (1H, m, 2'-H), 7.28 (5H, m, Ph-H). 7.52 (1H, br d, 8H).

δ_C 7.82 (CH₂-cyclopropyl x 2), 11.89 (CH₃CH₂), 15.72 (CH₃CH), 24.08 (CH-cyclopropyl), 25.04, 25.13 (CH₃CH₂), 34.99 (6'-C), 39.49, 39.56, 39.64 (CH₂CH), 46.04, 46.14 (4'-C), 52.46, 52.50 (CH isoleucinyl), 59.24, 59.44, 59.54 (1'-C), 69.34 (5'-C), 116.12 (5-C), 120.47, 120.53, 120.58 (*o*-Ph), 125.27 (*p*-Ph), 130.03 (*m*-Ph), 131.50, 131.57 (3'-C), 136.04 (8-C), 136.84, 136.74 (2'-C), 151.10, 151.18, 151.27 (*i*-Ph, 6-C), 156.69 (4-C), 161.06, 161.09, 161.35, 161.41 (2-C), 173.48, 173.53 (C(O)).

ES+ m/e 570.2496 (MH⁺, C₂₇H₃₇N₇O₅P requires 570.2594).

HPLC t_R 32.83, 33.14 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

25 **(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl dimethoxy-L-
glutamyl phosphate) CF1749**

[0251] This was prepared by Standard Procedure 4.38% yield.

δ_P 3.99.

30 δ_H 0.68 (2H, m, CH_aH_b, CH_aH_b cyclopropyl), 0.91 (2H, m, CH_aH_b, CH_aH_b cyclopropyl), 1.73 (1H, m, 6'-H_aH_b), 2.12 (1H, m, C(O)CH₂CH_aH_b), 2.38 (2H, m, C(O)CH₂), 2.82 (1H, m, 6'-H_aH_b), 3.05 (1H, m, CH cyclopropyl), 3.18 (1H, m, 4'-H), 3.68 (3H, s, MeOC(O)CH₂), 3.72 (3H, s, MeOC(O)CH), 3.85 (1H, m, NH glutyl), 4.10 (1H, m, CH glutyl), 4.21 (2H, m, 5'-H), 4.95 (2H, br s, NH₂), 5.57 (1H, br m, 1'-H), 5.88 (1H, br s, NH-cyclopropyl), 5.95 (1H, m, 3'-H), 6.10 (1H, m, 2'-H), 7.25 (5H, in, Ph-H), 7.54 (1H, br s, 8H).

35 δ_C 7.82 (CH₂-cyclopropyl x 2), 24.12 (CH-cyclopropyl), 29.66, 29.73, 29.88 (C(O)CH₂CH₂), C(O)CH₂CH₂), 34.91 (6'-C), 46.02, 46.12 (4'-C), 52.19 (CH₃OC(O)CH₂CH₂), 54.17, 54.28 (CH₃OC(O)CH₂), 54.17 (CH glutyl), 59.31 (1'-C), 69.50 (5'-C), 115.42 (5-C), 120.48, 120.51, 120.55, 120.58 (*o*-Ph), 125.39 (*p*-Ph), 130.09, 130.22 (*m*-Ph), 131.55, 131.60 (3'-C), 136.13 (8-C), 1136.68, 136.77 (2'-C), 150.98, 151.05, 151.13 (6-C), 151.76 (*i*-Ph), 156.65 (4-C), 160.99, 161.02, 161.08, 161.12 (2-C), 173.33, 173.43 (C(O) x 2 glutyl).

40 ES+ m/e 600.2216 (MH⁺, C₂₇H₃₅N₇O₇P requires 600.2335).

HPLC t_R 27.25 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

45 **(1*S*,4*R*)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (methoxy-*α*-
ethyl-L-glycinyl phosphate) CF1783**

[0252] This was prepared by Standard Procedure 4.44% yield.

δ_P 4.10.

50 δ_H 0.59 (2H, m, CH_aH_b, CH_aH_b cyclopropyl), 0.83 (5H, br m, CH_aH_b, CH_aH_b cyclopropyl, CH₃-CH₂), 1.68 (3H, m, CH₃-CH₂, 6'-H_a), 2.69 (1H, m, 6'-H_aH_b), 2.91 (1H, m, 4'-H), 3.06 (1H, m, CH cyclopropyl), 3.58 (3H, d, J 3.0, MeO), 3.90 (2H, m, NH glycinyl, CH glycinyl), 4.07 (2H, m, 5'-H), 5.02 (2H, br s, NH₂), 5.42 (1H, m, 1'-H), 5.75 (1H, m, 3'-H), 5.98 (1H, m, 2'-H), 6.03 (1H, m, NH cyclopropyl), 7.18 (5H, m, Ph-H), 7.41 (1H, br d, 8H).

55 δ_C 7.76 (CH₂-cyclopropyl x 2), 9.68, 9.76 (CH₃CH₂), 24.12 (CH-cyclopropyl), 28.05' (CH₃CH₂), 35.01 (6'-C), 46.02, 46.13 (4'-C), 52.70, 52.73 (CH₃O), 56.02 (1'-C), 59.25 (CH-ala), 69.38 (5'-C), 116.10 (5-C), 120.48, 120.50, 120.55, 120.57 (*o*-Ph), 125.27 (*p*-Ph), 130.04 (*m*-Ph), 131.51 (3'-C), 135.86 (8-C), 136.86 (2'-C), 151.08, 151.13, 151.22 (6-C, i-Ph), 156.67 (4-C), 160.40 (2-C), 173.84, 173.87, 173.92 (C(O) alaninyl).

ES+ m/e 564.2094 (M[Na]⁺, C₂₅H₃₂N₇O₅NaP requires 564.2100).

HPLC t_R 16.82, 16.84 min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (methoxy- α -phenyl(RS)glycinyl phosphate) CF1784

[0253] This was prepared by Standard Procedure 4.46% yield.

5 δ_p 3.18, 3.28, 3.42, 4.29.

Proton and Carbon NMR gave complex spectra, consistent with the racemised product.

ES+ m/e 612.2086 ($M[Na]^+$, $C_{29}H_{32}N_7O_5NaP$ requires 612.2100).

HPLC t_R 17.63, 18.50 min (0% CH_3CN (0 min), 80% CH_3CN (15 min), 80% CH_3CN (25 min), 0% CH_3CN (35 min)). (1:1.08 racemisation by HPLC)

10

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (methoxy- α -butyl-L-glycinyl phosphate) CF1786

[0254] This was prepared by Standard Procedure 4.51% yield*.

15 δ_p 4.10, 4.16.

δ_H 0.51 (2H, m, CH_aH_b , CH_aH_b cyclopropyl), 0.72 (5H, br m, CH_aH_b , CH_aH_b cyclopropyl, CH_3-CH_2), 1.18 (4H, m, $CH_3-CH_2-CH_2$), 1.54 (3H, m, CH_2-CH_2O , 6'- H_aH_b), 2.73 (1H, m, 6'- H_aH_b), 2.93 (1H, m, 4'-H), 3.09 (1H, m, CH cyclopropyl), 3.52 (1H, m, CH glycinyl), 3.62 (3H, s, MeO), 3.87 (1H, m, NH glycinyl), 4.12 (2H, m, 5'-H), 4.75 (2H, br s, NH_2), 5.45 (1H, m, 1'-H), 5.79 (2H, br s, NH-cyclopropyl, 3'-H), 6.00 (1H, m, 2'-H), 7.20 (5H, m, Ph-H), 7.42 (1H, br d, 8H).

20

δ_C 7.76 (CH_2 -cyclopropyl x 2), 14.23 (CH_3CH_2), 22.56 (CH_3CH_2), 24.14 (CH-cyclopropyl), 27.43, 27.50 ($CH_3CH_2CH_2$), 34.50, 34.58 (CH_2CH_2O), 35.01 (6'-C), 46.02, 46.12 (4'-C), 52.66, 52.68 (CH_3O), 54.87, 54.94 (1'-C), 59.20 (CH-ala), 69.30, 69.37 (5'-C), 115.18 (5-C), 120.29, 120.42, 120.50, 120.57 (σ -Ph), 125.21 (ρ -Ph), 130.00 (m -Ph), 131.51, 131.54 (3'-C), 135.86 (8-C), 136.71, 136.76 (2'-C), 151.12, 151.16, 151.20, 151.25 (6-C, ι -Ph), 156.73 (4-C), 160.49, 160.96 (2-C), 174.19, 174.26 (C(O) glycinyl).

25

ES+ m/e 592.2428 ($M[Na]^+$, $C_{27}H_{36}N_7O_5NaP$ requires 592.2413).

HPLC t_R 1834, 18.41, min and 16.64 min (6:1) (0% CH_3CN (0 min), 80% CH_3CN (35 min), 80% CH_3CN (45 min), 0% CH_3CN (55 min)).

* Note: compound isolated as 6:1 (S:R) stereoisomeric mixture at the amino acid residue α -carbon. Additional resonances in the ^{31}P NMR spectra are noted at 4.35 and 5.18, corresponding to the minor configuration (R) amino acid residue containing diastereoisomers.

30

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl (methoxy- α -propyl-L-glycinyl phosphate) CF1785

35

[0255] This was prepared by Standard Procedure 4.50% yield.

δ_p 4.14, 4.21.

δ_H 0.62 (2H, m, CH_aH_b , CH_aH_b cyclopropyl), 0.86 (5H, br m, CH_aH_b , CH_aH_b cyclopropyl, CH_3-CH_2), 1.32 (2H, m, CH_3-CH_2), 1.63 (3H, m, CH_3-CH_2 , 6'- H_aH_b), 2.79 (1H, m, 6'- H_aH_b), 3.03 (1H, m, 4'-H), 3.18 (1H, m, CH cyclopropyl), 3.71 (3H, d, J 3.0, MeO), 3.97 (1H, m, CH glycinyl), 4.15 (3H, m, 5'-H, NH glycinyl), 5.09 (2H, br s, NH_2), 5.55 (1H, m, 1'-H), 5.90 (1H, m, 3'-H), 6.08 (2H, m, 2'-H, NH cyclopropyl), 7.23 (5H, m, Ph-H), 7.52 (1H, br d, 8H).

40

δ_C 7.55 (CH_2 -cyclopropyl x 2), 13.98 (CH_3CH_2), 18.62, 18.70 (CH_3CH_2), 24.15 (CH-cyclopropyl), 35.00 (6'-C), 36.89, 36.96 (CH_2CH_2O), 46.02, 46.12 (4'-C), 52.68 (CH_3O), 54.70, 54.77 (1'-C), 59.21 (CH-ala), 69.31, 69.38 (5'-C), 115.24 (5-C), 120.45, 120.51, 120.57 (σ -Ph), 125.22 (ρ -Ph), 130.01 (m -Ph), 131.54 (3'-C), 135.89 (8-C), 136.72, 136.78 (2'-C), 151.11, 151.16, 151.20, 151.25 (6-C, ι -Ph), 156.72 (4-C), 160.45, 160.95 (2-C), 174.18, 174.25 (C(O) alaninyl).

45

ES+ m/e 578.2259 ($M[Na]^+$, $C_{26}H_{34}N_7O_5NaP$ requires 578.2257).

HPLC t_R 17.57 min (0% CH_3CN (0 min), 80% CH_3CN (35 min), 80% CH_3CN (45 min), 0% CH_3CN (55 min)).

50

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-((p -(2",2"-dimethoxyproplonic acid methyl ester)-phenyl)methoxy-L-alaninyl phosphate) CF1671

[0256] This was prepared by Standard Procedure 4.24 % yield.

δ_p 3.72, 3.84.

δ_H 0.56 (2H, m, CH_aH_b , CH_aH_b cyclopropyl), 0.79 (2H, m, CH_aH_b , CH_aH_b cyclopropyl), 1.30 (3H, m, CH_3 alaninyl), 1.63 (1H, m, 6'- H_aH_b), 2.70 (1H, m, 6'- H_aH_b), 2.95 (1H, br s, 4'-H), 3.07 (3H, m, CH cyclopropyl, Ph- CH_2), 3.26 (6H, s, (OMe)₂), 3.52 (3H, s, C(OMe)₂COOMe), 3.61 (3H, s, COOMe alaninyl), 3.84 - 4.08 (4H, m, CH alaninyl, NH alaninyl, 5'-H), 4.99 (2H, br s, NH_2), 5.46 (1H, br m, 1'-H), 5.81 (1H, br s, 3'-H), 6.02 (2H, m, 3'-H, NH-cyclopropyl), 6.02 (1H, m, 2'-H), 7.02 (4H, m, Ph-H), 7.45 (1H, br d, 8H).

δ_C 7.77 (CH_2 -cyclopropyl x 2), 21.37 (Me alaninyl), 24.01 (CH-cyclopropyl), 34.89 (6'-C), 39.55 (Ph- CH_2), 45.97, 46.09

EP 1 117 669 B1

(4'-C), 50.53 ((MeO)₂, CH₃OO alaninyl), 52.65 (C(OMe)₂COOMe), 59.28 (1'-C), 69.29 (5'-C), 103.27 (C(OMe)₂), 120.31, 120.38 (o-Ph), 122.94 (p-Ph), 131.35 (m-Ph), 131.39 (3'-C), 136.79 (8-C, 2'-C), 150.14, 150.05 (i-Ph, 6-C), 152.12 (4-C), 160.24 (2-C), 169.08 (C(OMe)₂COOMe), 174.36, 174.46 (C(O) alaninyl).

ES+ m/e 696.2531 ([M]⁺, C₃₀H₄₀N₇O₉NaP requires 696.2523).

5 HPLC *t*_R 29.02 min (0% CH₃CN (0 min), 80% CH₃CN (35 min), 80% CH₃CN (45 min), 0% CH₃CN (55 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(*p*-methoxyphenyl) methoxy-L-alaninyl phosphate) CF1815

10 [0257] This was prepared by Standard Procedure 4.23% yield.

δ_p 4.23, 4.28.

δ_H 0.72 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.0 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.48 (3H, m, CH₃ alaninyl), 1.82 (1H, m, 6'-H_aH_b), 2.80 (1H, m, 6'-H_aH_b), 3.11 (1H, br s, 4'-H), 3.25 (1H, m, CH cyclopropyl), 3.67 (1H, m, NH alaninyl), 3.77 (3H, s, COOMe alaninyl), 3.89 (3H, s, MeO-Ar), 4.14 (1H, m, CH alaninyl), 4.30 (2H, m, 5'-H), 4.94 (2H, br s, NH₂), 5.65 (1H, br m, 1'-H), 5.83 (1H, br s, NH-cyclopropyl), 6.00 (1H, m, 3'-H), 6.17 (1H, m, 2'-H), 6.92 (2H, m, m-Ar), 7.23 (2H, m, o-Ar), 7.63 (1H, s, 8H).

δ_C 7.81 (CH₂-cyclopropyl x 2), 21.46, 21.52 (Me alaninyl), 24.00 (CH-cyclopropyl), 34.96 (6'-C), 46.04, 46.14 (4'-C), 50.64 (CH₃OO alaninyl), 52.89 (CH-alaninyl), 56.02 (CH₃O-Ar), 59.28 (1'-C), 69.30 (5'-C), 114.98 (m-Ph, 5-C), 121.42, 121.46, 121.52 (o-Ph), 131.52, 131.56 (3'-C), 135.98, (2'-C), 136.76, 136.87 (i-Ph), 144.61 (8-C), 156.71 (4-C), 157.01 (pAr), 161.40, 160.99 (2-C), 174.39, 174.50 (C(O) alaninyl).

HPLC *t*_R 16.28 (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-(*p*-propoxyphe-nyl) methoxy-L-alaninyl phosphate) CF1816

25 [0258] This was prepared by Standard Procedure 4.56% yield.

δ_p 4.33, 4.41.

δ_H 0.62 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 0.82 (2H, m, CH_aH_b, CH_aH_b, cyclopropyl), 1.03 (3H, t, J 6.0, CH₃-CH₂), 1.39 (3H, m, CH₃ alaninyl), 1.66 (1H, m, 6'-H_aH_b), 1.80 (2H, h, J 6.0, CH₃-CH₂), 2.79 (1H, m, 6'-H_aH_b), 3.01 (1H, br s, 4'-H), 3.12 (1H, m, CH cyclopropyl), 3.72 (3H, s, COOMe alaninyl), 3.89 (2H, t, J 6.0, CH₂-O), 4.04 (2H, m, CH alaninyl, NH alaninyl), 4.17 (2H, m, 5'-H), 5.10 (2H, br s, NH₂), 5.52 (1H, br m, 1'-H), 5.51 (1H, br s, NH-cyclopropyl), 5.89 (1H, m, 3'-H), 6.04 (1H, m, 2'-H), 6.81 (2H, m, mAr), 7.11 (2H, m, o-Ar), 7.51 (1H, s, 8H).

δ_C 7.77 (CH₂-cyclopropyl x 2), 10.91 (CH₃-CH₂), 21.39, 21.46 (Me alaninyl), 22.97 (CH₃-CH₂), 24.14 (CH-cyclopropyl), 34.96 (6'-C), 46.02, 46.13 (4'-C), 50.57, 50.65 (CH₃OO alaninyl), 52.85, 52.87 (CH-alaninyl), 53.89 0, 59.25 (1'-C), 69.16, 69.24, 69.33 (5'-C), 70.30 (CH₂-O), 115.24, 115.26 (5-C), 115.57 (m-Ph), 121.37, 121.40, 121.43, 121.46 (o-Ph), 131.51, 131.57 (3'-C), 135.93, (2'-C), 136.77, 136.85 (i-Ph), 144.47, 144.55 (8-C), 156.54, 156.73 (4-C), 160.45 (p-Ar), 160.91 (2-C), 174.48, 174.59 (C(O) alaninyl).

HPLC *t*_R min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

40 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[4-hydroxyacetophenone-(methoxy-L-alaninyl)]-phosphoramidate Cf 1794**

45 [0259] This was prepared by Standard procedure 4. The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (3%:97) and MeOH:EtOAc (5:95) as eluent, to give the product as a white foam (30 mg, 17 mmol, 15 %).

δ_p 3.496.

δ_H 0.66 (m,2H,CH₂-cPr), 0.85 (m,2H,CH₂-cPr), 1.33 (m, 3H, CH₃-CH), 1.7 (m, 1H, H'6), 2.53 (s, 3H, CH₃-COPh), 2.8 (m, 1H, H'6), 2.9 (m, 1H, CH-cPr), 3.1 (m, 1H, H'4), 3.6 (s, 3H, CH₃-O), 3.9 (m, 1H, CH₃-CH), 4.1 (m, 2H, H'5), 4.9 (m, 2H, NH₂), 5.5 (m, 1H,H'1), 5.85 (m, 1H, H'3), 6.1 (m, 2H, H'2,NHcPr) 7.2 (dd, 2H, o-Ar), 7.5 (m, 1H, H₈), 7.8 (dd, 2H, p-Ar)

50 δ_C 6.371 (CH₂cPr), 20 (CH-CH₃aa), 21.671 (NHCH₃), 25 (CH₃CO), 33.458 (C6), 44.55 (C'4), 49.5 (CHaa), 51.4 (OCH₃), 57.9 (C'1), 67.9 (C'5), 113.787 (C5), 120 (o-Ar), 122.22 (p-Ar), 128.743 (m-Ar), 130 (C'3), 134.53 (C'2), 135.31 (C8), 150.31 (i-Ar), 155.18 (C6), 156.342 (C2), 158.8 (C4), 173.004 (COOCH₃), 198 (CO-Ar).

HPLC *t*_R: 15.976 min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

55

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[4-n-butylphenyl-(methoxy-L-alaninyl)]-phosphate Cf 1795

[0260] The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (3%:97) and MeOH:CH₂Cl₂ (5:95) as eluent, to give the product as a white foam (15 mg, 0.025 mmol, 4 %).

δ_p 3.93-4.00.

δ_H 0.66 (m,2H,CH₂-cPr), 0.85 (m,2H,CH₂-cPr), 1.1 (m,3H, CH₃-CH₂), 1.2 (m,4H, CH₂-CH₂), 1.33 (m, 3H, CR3-CR), 1.7 (m, 1H, H'6), 2.5 (m, 2H, CH₂-Ar), 2.8 (m, 1H, H'6), 2.9 (m, 1H, CH-cPr), 3.1 (m, 1H, H'4), 3.6 (s, 3H, CH₃-O), 3.9 (m, 1H, CH₃-CH), 4.1 (m, 2H, H'5), 4.9 (m, 2H, NH₂), 5.5 (m, 1H, H'1), 5.85 (m, 1H, H'3), 6.1 (m, 2H, H'2, NHcPr), 7.2 (dd, 2H, o-Ar), 7.5 (m, 1H, H8), 7.8 (dd, 2H, p-Ar).

δ_C 6.371 (CH₂cPr), 14.345 (CH₃-CH₂), 21.49 (CH-CH₃aa), 22.66 (CH₂-CH₃), 21.671 (NHCH₃), 30.127 (CH₂-CH₂-CH₂), 33.458 (C'6), 34.047 (CH₂-Ar), 44.55 (C'4), 49.5 (Chaa), 51.4 (OCH₃), 57.9 (C'1), 67.9 (C5), 113.787 (C5), 120 (o-Ar), 122.22 (p-Ar), 128.743 (m-Ar), 130 (C'3), 134.53 (C'2), 135.31 (C8), 146.58 (f-Ar) 155.18 (C6), 156.342 (C2), 158.8 (C4), 173.004 (COOCH₃)

HPLC t_r : 19.591 min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenylphenyl-(methoxy-L-alaninyl)]-phosphate Cf 1788

[0261] The crude residue was purified three times by column chromatography, using MeOH:CHCl₃ (3:97) and MeOH:CH₂Cl₂ (5:95) and MeOH:AcOEt (3:97) as eluent, to give the product as a yellow foam (35 mg, 0.058 mmol, 8 %).

δ_p 3.94-3.96.

δ_H 0.66 (m,2H,CH₂-cPr), 0.85 (m,2H,CH₂-cPr), 1.33 (m, 3H, CH₃-CH), 1.7 (m, 1H, H'6), 2.8 (m, 1H, H'6), 2.9 (m, 1H, CH-cPr), 3.25 (m, 1H, H'4), 3.6 (s, 3H, CH₃-O), 4.1 (m, 1H, CH₃-CH), 4.25 (m, 2H, H'5), 4.9 (m, 2H, NH₂), 5.5 (m, 1H, H'1), 5.85 (m, 1H, H'3), 6.15 (m, 2H, H'2, NHcPr), 7.35 (m, 9H, Ar), 7.6 (m, 1H, H8).

δ_C 6.371 (CH₂cPr), 21.49 (CH-CH₃aa), 21.671 (NHCH₃), 33.458 (C'6), 46.14 (C'4), 50.671 (Chaa), 52.9 (OCH₃), 59.9 (C'1), 65.9 (C'5), 115.787 (C5), 120 (o-Ar), 122.22 (p-Ar), 128.743 (m-Ar), 130 (C'3), 134.53 (C'2), 135.31 (C8), 145.25 (f-Ar), 155.18 (C6), 156.342 (C2), 158.8 (C4), 173.004 (COOCH₃)

HPLC t_r : 19.147 min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

30

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenoxyphenyl-(methoxy-L-alaninyl)]-phosphate Cf 1787

[0262] The crude residue was purified twice by column chromatography, using MeOH:CHCl₃ (3:97) and MeOH:CH₂Cl₂ (5:95) as eluent, to give the product as a yellow foam (35 mg, 0.058 mmol, 8 %).

δ_p 4.212-4.184.

δ_H 0.66 (m,2H,CH₂-cPr), 0.85 (m,2H,CH₂-cPr), 1.33 (m, 3H, CH₃-CH), 1.7 (m, 1H, H'6), 2.8 (m, 1H, H'6), 2.9 (m, 1H, CH-cPr), 3.25 (m, 1H, H'4), 3.6 (s, 3H, CH₃-O), 4.1 (m, 1H, CH₃-CH), 4.25 (m, 2H, H'5), 4.9 (m, 2H, NH₂), 5.5 (m, 1H, H'1), 5.85 (m, 1H, H'3), 6.15 (m, 2H, H'2, NHcPr), 7.35 (m, 9H, Ar), 7.6 (m, 1H, H8).

40

δ_C 6.371 (CH₂cPr), 21.49 (CH-CH₃aa), 21.671 (NHCH₃), 33.458 (C'6), 46.14 (C'4), 50.671 (Chaa), 52.9 (OCH₃), 59.9 (C'1), 65.9 (C'5), 115.787 (C5), 120 (o-Ar), 122.22 (p-Ar₂), 128.743 (m-Ar), 130 (C'3), 134.53 (C'2), 135.31 (C8), 153.83 (f-Ar₂, m-Ar₁), 155.18 (C6), 156.342 (C2), 158.8 (C4), 173.004 (COOCH₃)

HPLC t_r : 18.830 min (0% CH₃CN (0 min), 80% CH₃CN (15 min), 80% CH₃CN (25 min), 0% CH₃CN (35 min)).

45

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl methoxy- α , α -cyclopentylglycyl] phosphate Cf1763

[0263] This was prepared by Standard procedure 4 in 77% yield.

^{31}P (CDCl₃) 3.02, 3.09

50

1H (CDCl₃) 0.56-0.61 (2H,m, CH₂ (cpro)), 0.81-0.89 (2H, m, CH₂ (cpro)), 1.58-1.78 (5H, m, CCH₂CH₂CH₂CH₂C, and H6'), 1.87-2.18 (4H, m, CCH₂CH₂CH₂CH₂C), 2.64-2.74 (1H, m, H6'), 2.83-3.09 (2H, m, CH(cpro), H4'), 3.60-3.62 (3H, s, OCH₃(ala)), 4.04-4.19 (2H, m, H5'), 5.20 (2H, bs, NH₂), 5.42-5.47 (1H, m, H1'), 5.77-5.83 (1H, m, H3'), 5.98-6.02 (1H, m, H2'), 6.20 (NH(cpro)), 7.06-7.27 (5H, m, Ar), 7.42-7.48 (1H, s, H8).

55

^{13}C (CDCl₃) 8.02 (CH₂(cpro)), 24.37, 24.41 (CCH₂CH₂CH₂CH₂C), 34.73 (C6'), 38.48, 38.68, 38.79, 38.87 (CCH₂CH₂CH₂CH₂C), 46.05, 46.15 (C4'), 52.99 (OCH₃(ala)), 59.56, 59.60 (C1'), 67.16 (C (aa), 69.28, 69.37 (C5'), 114.76 (C5), 120.46, 120.52 (o-Ph), 125.22 (p-Ph), 130.04 (m-Ph), 131.19 (C3'), 136.72 (C8), 137.13,137.20 (C2'), 151.27, 151.31, 151.36, 151.40 (C6), 155.56 (C4), 158.95 (C2), 175.96, 176.00 (CO).

EP 1 117 669 B1

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl methoxy-a,a-cylohexylglyciny] phosphate Cf1764

[0264] This was prepared by Standard procedure 4 in 15% yield.

5 ^{31}P (CDCl₃) 2.89, 3.00
 ^1H (CDCl₃) 0.74 (2H, m, CH₂ (cpro)), 1.01-1.03 (2H, m, CH₂ (cpro)), 1.29-2.23 (11H, m, CCH₂CH₂CH₂CH₂C, and H6'), 2.72-2.83 (1H, m, H6'), 3.17 (1H, bs, CH(cpro)), 3.35-3.43 (1H, m, H4'), 3.69-3.70 (3H, s, OCH₃(aa)), 4.16-4.29 (2H, m, H5'), 5.52-5.66 (1H, m, H1'), 5.79 (1H, bs, NH(cpro)), 5.85-5.90 (1H, m, H3'), 6.08-6.10 (1H, m, H2'), 7.15-7.35 (5H, m, Ar), 7.37-7.63 (1H, d, H8).
10 ^{13}C (CDCl₃) 8.30 (CH₂(cpro)), 21.49, 21.68, 21.84, 22.02, 22.11 (CCH₂CH₂CH₂CH₂C), 25.14, 25.47, 25.72 (CCH₂CH₂CH₂CH₂C), 34.37, 34.59 (C6'), 46.06, 46.16 (C4'), 52.75, 53.12 (OCH₃(aa)), 59.95, 60.19 (C1'), 69.22 (C5'), 120.41, 120.47 (o-Ph), 125.22 (p-Ph), 130.04 (m-Ph), 130.72, 130.82 (C3'), 137.41 (C8), 137.56 (C2'), 151.33, 151.43 (C6), 175.37 (CO).

15 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[phenyl methoxy-a,a-cylopropylglyciny] phosphate Cf1762**

[0265] This was prepared by Standard procedure 4 in 69% yield.

31 ^{31}P (CDCl₃) 3.84
20 ^1H (CDCl₃) 0.68 (2H, m, CH₂ (cpro)), 0.90-0.92 (2H, m, CH₂ (cpro)), 1.16-1.49 (4H, m, CCH₂CH₂C(aa)), 1.66-1.72 (1H, m, H6'), 2.72-2.82 (1H, m, H6'), 3.08-3.15 (2H, m, CH(cpro), H4'), 3.61-3.63 (3H, d, OCH₃(aa)), 4.24-4.26 (2H, m, H5'), 5.24 (2H, bs, NH₂), 5.53 (1H, bs, H1'), 5.87 (1H, m, H3'), 6.07 (1H, m, H2'), 6.42-6.45 (1H, bs, NH(cpro)), 7.15-7.35 (5H, m, Ar), 7.56-7.61 (1H, d, H8).
25 ^{13}C (CDCl₃) 7.92 (CH₂(cpro)), 18.38 (CH₂ (aa)), 35.20 (C6'), 52.88 (OCH₃(aa)), 59.45 (C1'), 69.32 (C5'), 120.52 (o-Ph), 125.29 (p-Ph), 130.04 (m-Ph), 137.03 (C2'), 151.13 (C6), 160.96, 160.98 (C2), 174.35 (CO).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[p-(methoxycarbonyl)phenyl methoxy-L-alaniny] phosphate Cf1766

30 [0266] This was prepared by Standard procedure 4 in 37% yield.

31 ^{31}P (CDCl₃) 3.54, 3.58
 ^1H (CDCl₃) 0.66-0.69 (2H, m, CH₂ (cpro)), 0.88-0.94 (2H, m, CH₂ (cpro)), 1.38-1.43 (3H, t, CH₃(ala)), 1.70-1.81 (1H, m, H6'), 2.76-2.89 (1H, m, H6'), 3.07 (1H, m, CH(cpro)), 3.21 (1H, m, H4'), 3.71-3.73 (3H, d, OCH₃(ala)), 3.94 (3H, s, COOCH₃), 3.98-4.12 (1H, m, CH(ala)), 4.20-4.31 (2H, m, H5'), 5.19 (2H, bs, NH₂), 5.54-5.57 (1H, m, H1'), 5.91-5.96 (5H, m, H3'), 6.09-6.14 (1H, m, H2'), 6.21 (1H, bs, NH(cpro)), 7.27-7.32 (2H, m, ArO₂H), 7.53-7.54 (1H, d, H8), 8.02-8.06 (2H, m, COAr₂H).
25 ^{13}C (CDCl₃) 7.75 (CH₂(cpro)), 21.22, 21.29, 21.46 (CH₃(ala)), 24.16 (NHCH), 34.83 (C6'), 45.97, 46.07 (C4'), 50.59 (CH(ala)), 52.57, 59.32 (OCH₃(ala)), 59.27, 59.32 (C1'), 69.43 (C5'), 115.07, 115.11 (C5), 120.28, 120.31, 120.34, 120.38 (o-Ph), 127.07 (p-Ph), 131.58, 131.66 (m-Ph), 131.88 (C3'), 135.94, 136.04 (C2'), 136.61, 136.73 (C8), 151.31 (C6), 156.52 (C2), 160.97 (C4), 171.57 (CO), 174.30, 174.39 (CO).

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[p-(trifluoromethylthio)phenyl methoxy-L-alaniny] phosphate Cf 1769

45 [0267] This was prepared by Standard procedure 4 in 34% yield.

31 ^{31}P (CDCl₃) 3.67, 3.88
 ^1H (CDCl₃) 0.81 (2H, bs, CH₂ (cpro)), 1.06-1.08 (2H, m, CH₂ (cpro)), 1.50-1.54 (3H, t, CH₃(ala)), 1.83-1.93 (1H, m, H6'), 2.87-2.99 (1H, m, H6'), 3.23-3.31 (1H, m, CH(cpro)), 3.82-3.84 (3H, d, OCH₃(ala)), 4.14-4.15 (1H, m, CH(ala)), 4.32-4.40 (2H, m, H5'), 5.65 (3H, bs, H1', NH₂), 6.01-6.04 (1H, m, H3'), 6.19-6.23 (1H, m, H2'), 6.64 (1H, bs, NH(cpro)), 7.37-7.43 (2H, m, Ar), 7.67 (1H, d, H8), 7.73-7.76 (2H, m, Ar).
50 ^{13}C (CDCl₃) 8.16 (CH₂(cpro)), 21.39, 21.45 (CH₃(ala)), 34.45 (C6'), 46.09 (C4'), 50.66 (CH(ala)), 53.01 (OCH₃(ala)), 59.87 (C1'), 69.34 (C5'), 77.47, 77.67 (CF₃S ?), 121.64, 121.69 (o-Ph), 127.07 (p-Ph), 136.99, 137.14 (C2'), 138.56 (C8), 153.36, 153.45 (C6), 160.93 (C4), 174.27 (CO).

55 **(1 S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[p-(2-methoxyvinyl)phenyl methoxy-L-alaniny] phosphate Cf 1767**

[0268] This was prepared by Standard procedure 4 in 38% yield.

EP 1 117 669 B1

³¹P (CDCl₃) 3.70, 3.74

¹H (CDCl₃) 0.58-0.61 (2H, bs, CH₂ (cpro)), 0.81-0.85 (2H, m, CH₂ (cpro)), 1.30-1.36 (3H, t, CH₃(ala)), 1.61-1.72 (1H, m, H6'), 2.33 (3H, s, CH₃CO), 2.70-2.79 (1H, m, H6'), 2.99 (1H, bs, CH(cpro)), 3.13 (1H, bs, H4'), 3.64-3.65 (3H, d, OCH₃(ala)), 3.92-4.01 (1H, m, CH(ala)), 4.11-4.21 (2H, m, H5'), 5.14 (3H, bs, H1', NH₂), 5.47-5.49 (1H, m, H1'), 5.82-5.87 (1H, m, H3'), 6.01-6.06 (1H, m, H2'), 6.12 (1H, bs, NH(cpro)), 6.57-6.63 (1H, dd, CH₃COCH=CH), 7.14-7.46 (6H, m, H8, Ar, CH₃COCH=).

¹³C (CDCl₃) 7.95 (CH₂(cpro)), 21.45 (CH₃(ala)), 28.02 (CH₃CO), 34.69 (C6'), 46.11 (C4'), 50.64 (CH(ala)), 52.99 (OCH₃(ala)), 59.53 (C1'), 121.03, 121.10, 121.17 (o-Ph), 127.39 (p-Ph), 130.13 (CH₃COCH=CH), 131.44, 131.55 (C3'), 136.76 (C2'), 142.59 (CH₃COCH=CH), 152.72 (C6), 174.26, 174.36 (CO(ala)), 198.70 (COCH₃).

10

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[p-(2-phenylcarbonylvinyl)phenyl methoxy-L-alaninyl] phosphate Cf 1771

[0269] This was prepared by Standard procedure 4 in 26% yield.

15

³¹P (CDCl₃) 3.75, 3.79

¹H (CDCl₃) 0.61-0.66 (2H, m, CH₂ (cpro)), 0.85-0.91 (2H, m, CH₂ (cpro)), 1.39-1.44 (3H, m, CH₃(ala)), 1.67-1.86 (1H, m, H6'), 2.77-2.87 (1H, m, H6'), 3.04-3.05 (1H, bs, CH(cpro)), 3.19-3.21 (1H, bs, H4'), 3.72-3.73 (3H, d, OCH₃(ala)), 4.02-4.13 (1H, m, CH(ala)), 4.19-4.29 (2H, m, H5'), 5.17 (3H, bs, H1', NH₂), 5.53-5.58 (1H, m, H1'), 5.90-5.95 (1H, m, H3'), 6.09-6.15 (2H, m, H2', NH(cpro)), 7.24-8.08 (12H, m, Ar-, CH=CH-, Ar-, H8).

20

¹³C (CDCl₃) 7.85 (CH₂(cpro)), 21.35, 21.41, 21.48 (CH₃(ala)), 24.22 (CH(NH)), 34.80 (C6'), 46.01 (C4'), 50.67 (CH(ala)), 52.97 (OCH₃(ala)), 59.37 (C1'), 69.40 (C5'), 115.07 (C5), 121.01, 121.07, 121.14 (o-Ph), 128.92, 129.06 (p-Ph), 133.27 (C3'), 136.13, 136.23 (C2'), 138.53 (C8), 152.77, 152.86 (C6), 156.31 (C2), 160.97, 160.99 (C4), 174.31, 174.41 (CO(ala)), 190.76 (CO (Ar)).

25

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[p-(2,2-dicyanovinyl)phenyl methoxy-L-alaninyl] phosphate Cf 1768

[0270] This was prepared by Standard procedure 4 in 10% yield.

³¹P (CDCl₃) 4.54, 4.65

30

¹H (CDCl₃) 0.61-0.66 (2H, m, CH₂ (cpro)), 0.85-0.91 (2H, m, CH₂ (cpro)), 1.34-1.41 (3H, m, CH₃(ala)), 1.67-1.83 (1H, m, H6'), 2.77-2.88 (1H, m, H6'), 2.95-2.97 (1H, m, CH(cpro)), 3.23 (1H, bs, H4'), 3.68-3.70 (3H, d, OCH₃(ala)), 3.99-4.03 (1H, m, CH(ala)), 4.22-4.32 (2H, m, H5'), 5.49-5.53 (1H, m, H1'), 5.99-6.03 (1H, m, H3'), 6.16-6.22 (1H, m, H2'), 6.94-6.97 (1H, dd, Ar-CH=CH), 7.36-7.41 (Ar), 7.64-7.65 (1H, d, H8), 7.92-8.16 (Ar).

35

¹³C (CDCl₃) 6.56 (CH₂(cpro)), 19.85 (CH₃(ala)), 23.33 (CH(cpro)), 34.23 (C6'), 46.07 (C4'), 50.47, 50.53 (OCH₃(ala)), 51.78 (CH(ala)), 59.51 (C1'), 69.19, 69.29 (C5'), 113.84, 114.08 (C5), 121.14, 121.21, 121.27 (o-Ph), 128.49 (p-Ph), 130.74, 130.85 (m-Ph), 132.84 (C3'), 136.01 (C2'), 136.88, 136.99 (C8), 156.47 (C2), 160.99, 161.03 (C4), 174.27 (CO).

40

(1S,4R)-4-(2-amino-6-cyclopropylamino-9H-purin-9-yl)-2-cyclopentene-1-methanol O-[o-(carboxylate ethyl ester)phenyl methoxy-L-alaninyl] phosphate Cf1798

45

[0271] This was prepared by Standard procedure 4 in 24% yield.

³¹P (CDCl₃) 4.03, 4.16

¹H (CDCl₃) 0.64-0.70 (2H, m, CH₂ (cpro)), 0.92-0.93 (2H, d, CH₂ (cpro)), 1.38-1.47 (6H, m, CH₃(ala), CH₃CH₂O), 1.73-1.83 (1H, m, H6'), 2.78-3.24 (3H, m, H6', H4', CH(cyclo)), 3.64-3.72 (3H, s, OCH₃(ala)), 4.08-4.20 (1H, m, CH(ala)), 4.23-4.45 (4H, m, H5', CH₂CH₃), 5.21 (2H, bs, NH₂), 5.55-5.60 (1H, m, H1'), 5.89-5.93 (1H, m, H3'), 6.13-6.18 (1H, m, H2'), 7.23-7.61 (1H, m, H8), 7.88-7.92 (1H, d, Ar).

50

¹³C (CDCl₃) 7.95 (CH₂(cpro)), 14.65 (CH₃CH₂), 21.33, 21.39, 21.68, 21.74 (CH₃(ala)), 24.30 (NHCH), 34.80 (C6'), 46.04, 46.14 (C4'), 50.49 (CH(ala)), 52.74, 52.83 (OCH₃(ala)), 59.45 (C1'), 61.76, 61.82 (CH₂CH₃), 69.43, 69.51, 69.64 (C5'), 114.92 (C5), 122.93, 123.09, 123.60, 123.67125.26 (Ar), 131.34 (Ar), 131.77, 131.86 (C3'), 134.00 (Ar), 136.48 (C2'), 137.05 (C8), 150.20, 150.28 (C6), 155.88 (C2), 160.78, 160.86 (C4), 174.28, 174.39, 174.55, 174.65 (CO).

55

EP 1 117 669 B1

Example A

(1R, 4S)-9-[4-(hydroxymethyl)-2-cyclopenten-2-yl] guanine-5'-[phenyl-(methoxy-L-alaninyl)]-phosphate.

5 $C_{21}H_{25}O_6N_6P_1$, MW=488.45.

[0272] R. Vince and M. Hua, J. Med. Chem. 1990, 33, 17-21 describes a procedure for the synthesis of (1R,4S)-9-[4-(hydroxymethyl)-2-cyclopenten-1-yl] guanine. (1R,4S)-9-[4-(hydroxymethyl)-2-cyclopenten-1-yl] guanine (400mg, 1.618mmol) was dried by azeotroping with anhydrous pyridine (4x10ml), kept under $N_2(g)$, and suspended in anhydrous THE (30ml). tBuMgCl (1.0M solution in THF) (1.6ml, 1.618mmol) was added dropwise and the resulting darker suspension vigorously stirred for 10mins. Phosphorochloridate (4.79ml, 2.43mmol) was added dropwise, and the reaction mixture stirred at room temperature for 69hrs. After this time, the suspended solid was partially in solution but a solid was still observed on the sides of the flask. More phosphorochloridate was added (4.79ml, 2.43mmol), and the reaction mixture stirred for a further 55hrs before being quenched by the addition of sat. NH_4Cl solution (0.25m).
 10 After stirring for a further 10mins, the solvent was removed under reduced pressure to give the crude product as a yellow gum which was solubilised in MeOH, dried over $MgSO_4$ (s), filtered and the filtrate reduced to dryness. The residue was solubilised in MeOH, silica added, and then the solvent removed to give the product preabsorbed onto silica which was loaded onto a silica column and eluted with 8% MeOH in $CHCl_3$. The product was further purified by gradient elution from 5→9 MeOH in DCM on a biotage flash-40 column, and after evaporation of the appropriate fractions, the product was obtained as a white foam (70mg, 8.6%).
 15 [0273] The compound had the formula

20

25

30

35

^{31}P NMR (MeOH- d_4): δ 5.18, 4.86 (1:1).

40 1H NMR: δ 7.67 (1H), 7.37-7.30 (2H), 7.21-7.14 (3H), 6.17-6.10 (1H), 5.97-5.94 (1H), 5.53-5.48 (1H), 4.28-4.15 (2H), 4.00-3.87 (1H), 3.66 (3H), 3.18 (1H), 2.83-2.71 (1H), 1.82-1.66 (1H), 1.36-1.29 (3H).

^{13}C NMR: δ 174.4*, 158.5, 154.1, 151.7, 151.1*, 136.9*, 136.5, 130.7, 129.7, 125.0, 120.4*, 116.8, 68.9*, 59.8, 51.7, 50.5*, 46.0*, 34.2, 19.3*.

MS ES⁺ : m/z 488.86 (100%) (M)⁺, 500.04 (12%)(M+Na)⁺, 507.96 (25%)(M+K)⁺.

45 MS FAB: calculated m/z 489.165146, found m/z 489.164677.

In vitro Testing

[0274] Cells were infected with HIV-1 as previously described [Balzarini *et al.* AIDS (1991), 5, 21-28]. Briefly, 5×10^5 cells per milliliter were infected with HIV-1 or HIV-2 at 100 CCID₅₀ (50% cell culture infective dose) per milliliter of cell suspension. Then 100 μ L of the infected cell suspension was transferred to microtiter plate wells and mixed with 100 μ L of the appropriate dilutions of the test compounds. After 4 days giant cell formation was recorded microscopically in the HIV-infected cell cultures [CEM]. The 50% effective concentration (EC₅₀) and 50% cytotoxic concentration (CC₅₀) were defined as the compound concentrations required to reduce by 50% the number of giant cells or viable cells in the virus-infected and mock-infected cell cultures, respectively.
 50 [0275] In the following Tables data columns are, in order.

HIV1 CEM: EC₅₀ in μ M for inhibition of HIV-1 in CEM cells.

EP 1 117 669 B1

HTV1 CEM: EC₅₀ in μM for inhibition of HIV-2 in CEM cells.
 CC₅₀ CEM: CC₅₀ in μM for toxicity to CEM cells.

5 [0276] Table I below contains *in vitro* data comparing the biological activity of compound cf1490 with its non-phosphoramidated counterpart, Abacavir, and with the compound of comparative Example A and its non-phosphoramidated counterpart. Abacavir is currently used in the treatment of patients with HIV infection.

Table I

Compound	EC ₅₀ /μM		CC ₅₀ /μM	Fold Improvement
	HIV-1	HIV-2		
1490	0.07	0.09	13.1	30.2
Abacavir	1.9	3	78	
Example A	1.3	0.85	123	1.9
Nonphosphoramidated counterpart of Example A	2	2.3	157	

20 [0277] As can be seen in Table I compound cf 1490 embodying the present invention shows a much enhanced potency (27 to 33 fold) with respect to HIV *in vitro* than the known non-phosphoramidated Abacavir. The fold improvement in Table I is the mean increase in potency of the phosphoramidate compound versus its parent nucleoside for HIV 1 and HIV 2.

25 [0278] The surprising nature of this result is demonstrated having regard to Comparative Example A and its non-phosphoramidated counterpart. The structure of the non-phosphoramidated counterpart of Example A is *prima facie* similar to that of Abacavir. The phosphoramidate of Example A, however, shows a potency with respect to HIV which is merely comparable to that of its nonphosphoramidated counterpart, whose structural formula is:

40 [0279] Table II below compares the *in vitro* potency data of the compound 1490 with known equivalent data disclosed in PCT/GB96/00580 for known phosphoramidated compounds. The data in each case were obtained by the *in vitro* assay described above under "*in vitro* testing"

Table II

Compound	EC ₅₀ /μM		CC ₅₀ /μM
	HTV-1	HIV-2	
	CEM	CEM	CEM
1490	0.07	0.09	13.1
951	0.1	0.07	55
1078	0.55	0.65	209
1093	0.016	0.035	2.57

55 [0280] Each of compounds 951, 1078 and 1093 is a phosphoramidate of a nucleoside analogue.
 [0281] Compound 951 is 2', 3'-dideoxy -2', 3'-didehydrothymidine 5'-(phenyl exthoxyalaninyl) phosphoramidate.
 [0282] Compound 1078 is 2', 3'-dideoxy -2', 3'-didehydrothymidine 5'-(phenyl dimethoxyaspartyl) phosphoramidate.

EP 1 117 669 B1

[0283] Compound 1093 is 2', 3'-dideoxy adenosine 5'-(phenyl methoxyalaninyl) phosphoramidate.
 [0284] As can be seen from Table II the compound 1490 demonstrates a high degree of potency with respect to HIV.
 [0285] Potency and toxicity data on an expanded range of compounds is presented in Table III, in which:

5 Cpd and Init refer to the compound reference numbers;

X refers to the aryl (phosphate) moiety;

10 Y refers to the group;

15

20

Z refers to the bonding in the five membered sugar ring: = is unsaturated pentene;

H is saturated.

25

B in each case is "1592" which refers to the base present in Abacavir.

[0286] The data columns are, in order:

30 HTV 1 CEM: EC₅₀ in μ M for inhibition of HIV1 in CEM cells

HIV2 CEM: EC₅₀ in μ M for inhibition of HIV-2 in CEM cells

HIV2CEM.TK- EC₅₀ μ M for inhibition of HIV-2 in CEM/TK⁻ cells

CC₅₀ CEM: CC₅₀ μ M for toxicity to CEM cells

EC₅₀ MSV: EC₅₀ μ M for inhibition of MSV

MCC MSV: minimum cytotoxic concentration in MSV essay.

35

40

45

50

55

EP 1 117 669 B1

Table III

5	Code	Initi	X	Y	Z	B	HRV1 CEM	HRV2 CEM	HRV2 CEM	CECO CEM	ECO50 MSV	Modesty
1490	SH	PRO		MeAlNH			1592	0.05	0.05	19.1	1.0	>4
1640	SH	Cl		AlNH			1592	1.2	0.95	116		
1682	SH	PRO		BzAlNH			1592	0.083	0.11	12.6		
1683	SH	PRO		Me-D-AlNH			1592	1.38	4.5	-	64.3	
1594	SH	PRO		MeIMe2DyNH			1592	0.067	0.08	-	6.91	
1585	SH	PRO		MePhenNH			1592	1.42	2.13	-	38.1	
1597	SH	PRO		EtAlNH			1592	0.07	0.08	-	12.1	
1588	SH	PRO		MeCyanNH			1592	1.76	2	-	>100	
1599	SH	PRO		MeZapNH			1592	1.42	1.9	-	44.2	
1695	SH	PRO		D-AlNH			1592	1.2	0.8	213		
1620	SH	PRO		MeAlNH			1592	0.014	0.083	0.013	4.7	
1645	SH	PRO		IBuAlNH			1592	3.7	8	3.3	11.7	>20
1649	SH	PRO		PrAlNH			1592	0.083	0.12	0	2	>4
1847	SH	PRO		BuAlNH			1592	0.096	0.17	6.23	0.92	>4
1661	SH	PRO		IPDOAlNH			1592	0.6	0.85	9.18	27.6	>20
1871	AS	PRO		D-MeOCOCOCMe2COPh			1592	0.1	0.12	12.1	8.2	>20
1672	AS	PRO		IPCH2DyAlNH			1592	0.08	0.1	14.4	1.98	>4
1673	AS	PRO		IBuCH2DyAlNH			1592	0.16	0.19	6.07	2.92	>4
1674	AS	PRO		IPCH2CH2DyAlNH			1592	0.28	0.28	10.7	2.04	>4
1680	AS	HA		MeAlNH	H		1592	12.5	17.6	237	2100	>100
1685	AS	PRO		3-phenyl-Ac-NH			1592	1.8	2	12.6	19.7	>20
1688	AS	PRO		Novel NH			1592	3.6	4	3.6	64.1	>20
1687	AS	PRO		IBuCH2CH2DyAlNH			1592	0.2	0.2	0.14	10.2	2.22
1702	A	HA		-	H		1592	2.60	2.60	17.9	2100	>100
1706	SH	PRO		nPrAlNH			1592	0.095	0.09	19.4	1.45	>4
1707	SH	PRO		CHxAlNH			1592	0.33	0.25	10.2	2.84	>4
1708	SH	PRO		CHxCH2AlNH			1592	0.16	0.19	16.1	1.3	>4
1709	SH	PRO		MeICHxCH2AlNH			1592	1.2	2	16	1.72	>4
1710	SH	4-Bz-PhO		MeAlNH			1592	0.055	0.049	6.76	0.61	>0.8
1713	A	4-MCOCMe2O2COPh		MeAlNH			1592	0.053	0.085	14	10.8	>20
1714	A	SH		diEiASP			1592	0.55	2.1	23.1	7.18	>20
1716	A	SH		NeMeT			1592	1.16	2.73	48.9	10.2	>20
1716	SH	PRO		MeAlNH			1592	0.86	1.48	22	0.94	>20
1719	SH	PRO		MePTN			1592	4	6.6	19.4	11.6	2100
1720	SH	PRO		Bz2AlNH			1592					
1721	SH	PRO		IP1CH23AlNH			1592	0.05	0.14	12.6	3.2	>4
1722	SH	PRO		OpentmCH2AlNH			1592	0.13	0.49	16.2		
1737	SH	P-F-PhO		MeAlNH			1592					
1738	SH	P-PhO		MeAlNH			1592					
1739	SH	PRO		Ph2AlNH			1592					
1749	A	SH		MeCzNH			1592					
1760	A	SH		MeDzNH			1592					
1781	A	SH		MeTzNH			1592					
1762	A	SH		CHzAlNH			1592					

EP 1 117 669 B1

Acid stability

[0287] Compounds were tested for their stability towards acid-mediated hydrolytic decomposition employing a test designed to simulate stomach conditions. Each compound was incubated in dilute HCl of pH1 for 24 hours at 25°C. 5 0.3mg of compound were added to 1mL of 0.1N HCl at 25°C. HPLC was run immediately for time = 0 and at intervals up to approximately 24 hours.

[0288] The results for compound 1587, and for comparative compounds labelled 1001 and 1093 and described in PCT/GB96/00580, are given in table IV below.

Table IV

Compound	Time (hr)	Compound left (%)
1587	0	100
	22	77
1001	0	0
	17	0
1093	0	100
	13	0

[0289] Compound 1001 disappeared immediately (<1min). Compound 1093 degraded after less than 13 hours. The majority of compound 1587 remained in tact after 22 hours.

[0290] Each of compounds 1001 and 1093 is a phosphoramidate of an adenosine analogue. Compound 1001 is 2', 25 3' -dideoxy -2',3' didehydroadenosine-5'-(phenylmethoxyalaninyl) phosphate. Compound 1093 is 2'3' -dideoxy adenosine 5'-(phenyl methoxyalaninyl) phosphate.

[0291] The results given in Table V above demonstrate the acid stability of a compound embodying the present invention compared to known compounds.

Biological stability

[0292] Compound 1587 of the present invention and the two comparative compounds 1001 and 1093 identified above were tested for their stability towards biological decomposition. Each compound was incubated in normal heparinised 35 human plasma at 37°C for 4 hours. At selected time points (0, 15, 30 min, and 1, 2, 4 hours) duplicate samples were removed and deproteinated by acetonitrile extraction. Drug concentrations were then determined by LC/MS/MS analysis using standard methods. The results are shown in Table V below.

Table V

Compound	% Remaining at 4 hours	Half-life (hours)
1587	91	26
1001	52	4.6
1093	50	4.2

45 [0293] Under the conditions of the test the data in Table V shows a 6-fold stability advantage of compound 1587 over each of compounds 1001 and 1093.

Example 1

50 **(1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate Succinate Salt**

(a) Phenylethoxy-L-alaninyl phosphorochloridate

55 [0294] L-alanine ethyl ester hydrochloride (3.0 g, 0.02 moles) was suspended in dry methylene chloride (40 mL). To this suspension was added phenyl phosphorodichloridate (2.9 mL, 0.02 mol) and the mixture was cooled to - 80 °C. N,N-Diisopropylethylamine (Aldrich, 6.8 mL, 0.04 mol) was added to the reaction in aliquots (1-2 mL) over a 1 h time

EP 1 117 669 B1

period. Reaction allowed to warm slowly to room temperature while stirring for 2 h. Organic solvent was removed in vacuo and the residue treated with diethyl ether (100 mL). The diethyl ether solution was filtered to remove insoluble inorganics and concentrated in vacuo to give the product as a colourless syrup. This product was used without further purification in part b.

5

(b) (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate

10

[0295] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol (1.5 g, 5.2 mmol) was dried by addition of dioxane and concentration in vacuo. To the dried nucleoside was added anhydrous pyridine (10 mL) and tetrahydrofuran (20 mL). Subsequently, tert-butyl magnesium chloride (6 mL, 1M solution in tetrahydrofuran, 6 mmol) was added slowly. The reaction was stirred for 20 min and a solution of phenyl ethoxy-L-alaninyl phosphorochloride (part a, 3 g, 0.01 mol in 20 mL tetrahydrofuran) was added. The reaction was stirred at room temperature for 10 h and subsequently concentrated in vacuo to a brown syrup. This syrup was dissolved in methylene chloride (100 mL) the methylene chloride extracted with water (2x100 mL), dried (MgSO_4), filtered and concentrated to a brown solid foam. This solid foam was purified by flash chromatography using 5% methanol in chloroform as eluent to give 1.7 g (60 %) of, after purification, a 4:6 mixture of the phosphate isomers as a white solid foam. $^1\text{H-NMR}$ (CDCl_3): δ 7.47 (2 s, 1H), 7.10-7.46 (m, 5H), 6.07 (m, 1H), 5.9 (m, 1H), 5.78 (s, 1H), 5.5 (m, 1H), 4.84 (bs, 2H), 4.1 (m, 4H), 4.00 (m, 1H), 3.64 (m, 1H), 3.14 (m, 1H), 3.0 (m, 1H), 2.78 (m, 1H), 1.68 (m, 1H), 1.36 (2xd, 3H), 1.22 (2xt, 3H), 0.86 (m, 2H), 0.6 (m, 2H); $^{31}\text{P-NMR}$ (CDCl_3): δ 3.05, 3.02.

20

Anal. Calcd. for $\text{C}_{25}\text{H}_{32}\text{N}_7\text{O}_5\text{P}$ x 1/4 CHCl_3 : C, 53.07; H, 5.70; N, 17.15. Found: C, 52.81; H, 5.95; N, 16.91.

(c) (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate Succinate Salt

25

[0296] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl)phosphate (part 1b, 376 mg, 0.7 mmol) was dissolved in ethanol. To this solution was added succinic acid (82 mg, 0.7 mmol) and the resulting solution evaporated to dryness. The residue was dissolved in acetonitrile (10-20 mL) with heating. Precipitate formed upon cooling. The mixture was stored in the refrigerator overnight and solid collected by filtration to give 330 mg (72 %) of a 4:6 mixture of the phosphate isomers as a solid; $^1\text{H-NMR}$ (DMSO-d_6): δ 12.14 (s, 2H), 7.58 (s, 1H), 7.1-7.4 (m, 6H), 5.9-6.1 (m, 3H), 5.85 (broad s, 2H), 5.42 (m, 1H), 3.95-4.15 (m, 4H), 3.8 (m, 1H), 3.05 (m, 2H), 2.65 (m, 1H), 2.4 (s, 4H), 1.63 (m, 1H), 1.4 (2xd, 3H), 1.12 (t, 3H), 0.5-0.7 (m, 4H); $^{31}\text{P-NMR}$ (DMSO-d_6): δ : 4.00 and 3.68; high resolution mass spectrum: calcd for $\text{C}_{25}\text{H}_{32}\text{N}_7\text{O}_5\text{P}$ ($\text{M}+\text{H}$)⁺ (m/z) 542.2281, found 542.2282.

Anal. Calcd. for $\text{C}_{25}\text{H}_{32}\text{N}_7\text{O}_5\text{P-C}_4\text{H}_6\text{O}_4\cdot 1/2\text{H}_2\text{O}$: C, 52.09; H, 5.87; N, 14.66. Found: C, 52.13; H, 5.72; N, 14.61.

35

Example 2

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate Succinate Salt

40

(a) Phenylmethoxy-L-alaninyl phosphorochloride.

[0297] L-alanine methyl ester hydrochloride (10 g, 0.072 mol) was suspended in dry methylene chloride (100 mL). To this suspension was added phenyl phosphorodichloride (10.7 g, 7.6 mL) and the mixture was cooled to -80 °C. Subsequently N,N-Diisopropylethylamine (Aldrich, 25 mL) was added to the reaction in aliquots (1-2 mL) over a 1 h time period. The solution was stirred for 30 min at -80°C, then allowed to warm slowly to room temperature while stirring for 2 h. Organic solvent was removed in vacuo and the residue treated with diethyl ether (100 mL). The diethyl ether solution was filtered to remove insoluble inorganics and concentrated in vacuo to give the product as a colorless syrup: $^{31}\text{P-NMR}$ (CDCl_3) δ 8.61; 8.37 ppm. This product was used without further purification in Example 2b

50

(b) (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate

55

[0298] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol (5.5 g, 0.018 moles) was dried by addition of dioxane and concentration in vacuo. To the dried nucleoside was added anhydrous tetrahydrofuran (30 mL) and pyridine (40 mL). Subsequently tert-butyl magnesium chloride (23 mL, 1M solution in tetrahydrofuran, 1.3 equivalents) was added slowly. The reaction was stirred for 20 min and a solution of phenylmethoxy-L-alaninyl phosphorochloride (12 g, 0.043 moles, 2.5 equivalents in 20 mL THE) was added. The reaction was stirred

EP 1 117 669 B1

at room temperature for 12 h and subsequently concentrated in vacuo to a brown syrup. This syrup was dissolved in methylene chloride (100 mL) the methylene chloride extracted with water (2x100 mL), dried (MgSO_4), filtered and concentrated to a brown foam. This foam was purified by flash chromatography using 5% methanol in chloroform as eluent to give 6.9 g (75 %) of a mixture of the phosphate isomers of the title compound as a white solid foam. $^1\text{H-NMR}$ (CDCl_3): δ 7.5 (2 x s, 1H), 7.1-7.4 (m, 5H), 6.1 (m, 1H), 5.9 (m, 2H), 5.5-5.6 (m, 1H), 4.9 (bs, 2H), 4.2 (m, 2H), 4.05 (m, 1H), 3.7 (s, 3H), 3.6-3.8 (m, 1H) 3.17 (m, 1H), 3.0 (m, 1H), 2.8 (m, 1H), 1.7 (m, 1H), 1.4 (2 x d, 3H), 0.9 (m, 2H), 0.6 (m, 2H); $^{31}\text{P-NMR}$ (CDCl_3): δ 3.07, 3.02.

Anal. Calcd. for $\text{C}_{24}\text{H}_{30}\text{N}_7\text{O}_5\text{P} \times 2/5 \text{CHCl}_3$: C, 50.94; H, 5.33; N, 17.00. Found: C, 50.83; H, 5.39; N, 16.94.

10 (c) (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate Succinate Salt

[0299] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate (part b, 100 mg, 0.19 mmol) was dissolved in methanol. To this solution was added succinic acid (22 mg, 0.19 mmol) and the resulting solution evaporated to dryness. The residue was dissolved in acetonitrile (10mL) with heating. Precipitate formed upon cooling. The mixture was stored in the refrigerator overnight and solid collected by filtration to give 70 mg (57%) of a mixture of the phosphate isomers as a solid; $^1\text{H-NMR}$ (DMSO-d_6): δ 12.15 (s, 2H, D_2O exchangeable), 7.61 (s, 1H), 7.36 (3H, becomes 2H on D_2O exchange), 7.20 (3H), 5.9-6.1 (m, 3H), 5.88 (broad s, 2H, D_2O exchangeable), 5.44 (m, 1H), 4.0-4.2 (m, 2H), 3.85 (m, 1H), 3.60 (s, 3H), 3.05 (2H), 2.65 (m, 1H), 2.44 (s, 4H), 1.64 (m, 1H), 1.23 (m, 3H), 0.5-0.7 (m, 4H); $^{31}\text{P-NMR}$ (DMSO-d_6): δ ; 3.99 and 3.66;

Anal. Calcd. for $\text{C}_{24}\text{H}_{30}\text{N}_7\text{O}_5\text{P-C}_4\text{H}_6\text{O}_4 \cdot 1/2\text{H}_2\text{O}$: C, 51.38; H, 5.70; N, 14.98. Found: C, 51.36; H, 5.66; N, 14.99.

Example 3

25 (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate Fumarate Salt

[0300] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl)phosphate (198 mg, 0.37 mmol) was dissolved in ethanol. To this solution was added fumaric acid (43 mg, 0.37 mmol) and the resulting solution evaporated to dryness. The residue was dissolved in acetonitrile (10 mL) with heating. Precipitate formed upon cooling. The mixture was stored in the refrigerator overnight and solid collected by filtration to give 185 mg (75 %) of a 4:6 mixture of the phosphate isomers as a solid; $^1\text{H-NMR}$ (DMSO-d_6): δ 7.6 (s, 1H), 7.1-7.4 (m, 6H), 6.64 (s, 2H), 5.9-6.1 (m, 3H), 5.87 (broad s, 2H), 5.44 (m, 1H), 3.95-4.15 (m, 4H), 3.84 (m, 1H), 3.05 (m, 2H), 2.65 (m, 1H), 1.63 (m, 1H), 1.23 (m, 3H), 1.15 (t, 3H), 0.5-0.7 (m, 4H); $^{31}\text{P-NMR}$ (DMSO-d_6): δ ; 4.00 and 3.67.

Anal. Calcd. for $\text{C}_{25}\text{H}_{32}\text{N}_7\text{O}_5\text{P-C}_4\text{H}_4\text{O}_4 \cdot 1/2\text{H}_2\text{O}$: C, 52.25; H, 5.59; N, 14.71. Found: C, 52.25; H, 5.51; N, 14.49.

Example 4

40 (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate Glutarate Salt

[0301] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl)phosphate (part 1b, 200 mg, 0.38 mmol) was dissolved in ethanol. To this solution was added glutaric acid (50 mg, 0.38 mmol) and the resulting solution evaporated to dryness. The residue was dissolved in acetonitrile (10 mL) with heating. The mixture was stored in the refrigerator overnight and solid collected by filtration to give 130 mg (50 %) of a 67:33 mixture of the phosphate isomers as a solid; $^1\text{H-NMR}$ (DMSO-d_6): δ 7.6 (s, 1H), 7.1-7.4 (m, 6H), 5.9-6.1 (m, 3H), 5.87 (broad s, 2H), 5.44 (m, 1H), 3.95-4.2 (m, 4H), 3.8 (m, 1H), 3.1 (m, 2H), 2.65 (m, 1H), 2.25 (t, 4H), 1.7 (m, 3H), 1.23 (m, 3H), 1.15 (t, 3H), 0.5-0.7 (m, 4H); $^{31}\text{P-NMR}$ (DMSO-d_6): δ ; 4.00 and 3.68.

Anal. Calcd. for $\text{C}_{25}\text{H}_{32}\text{N}_7\text{O}_5\text{P-C}_5\text{H}_8\text{O}_4 \cdot 1/2\text{H}_2\text{O}$: C, 52.78; H, 6.05; N, 14.36. Found: C, 52.97; H, 6.07; N, 14.33.

Example 5

55 (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl) ethoxy-L-alaninyl) phosphate D-Tartrate Salt

[0302] (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl) ethoxy-L-alaninyl)phosphate (157 mg, 0.29 mmol) was dissolved in ethanol. To this solution was added D-tartaric acid (44 mg,

EP 1 117 669 B1

0.29 mmol) and the resulting solution evaporated to dryness. The residue was dissolved in acetonitrile (10 mL) with heating. The mixture was stored in the refrigerator overnight and solid collected by filtration to give 112 mg of a 53:47 mixture of the phosphate isomers as a solid; $^1\text{H-NMR}$ (DMSO- d_6): δ 7.6 (s, 1H), 7.1-7.4 (m, 6H), 5.8-6.2 (m, 5H), 5.44 (m, 1H), 4.3 (s, 2H), 3.95-4.2 (m, 4H), 3.8 (m, 1H), 3.35 (broad s, 2H), 3.1 (m, 2H), 2.65 (m, 1H), 1.7 (m, 1H), 1.23 (m, 3H), 1.15 (t, 3H), 0.5-0.7 (m, 4H); $^{31}\text{P-NMR}$ (DMSO- d_6): δ 4.00 and 3.67.

Example 6

10 **(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate Diastereomers**

[0303] An approximately 1:1 mixture of diastereomers of (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate was prepared using similar methodology as above: $^1\text{H-NMR}$ (CDCl_3): δ 7.5 (2 x s, 1H), 7.1-7.4 (m, 5H), 6.1 (m, 1H), 5.9 (m, 2H), 5.5-5.6 (m, 1H), 4.9 (bs, 2H), 4.2 (m, 2H), 4.05 (m, 1H), 3.7 (s, 3H), 3.6-3.8 (m, 1H) 3.17 (m, 1H), 3.0 (m, 1H), 2.8 (m, 1H), 1.7 (m, 1H), 1.4 (2 x d, 3H), 0.9 (m, 2H), 0.6 (m, 2H); $^{31}\text{P-NMR}$ (CDCl_3): δ 3.07, 3.02.

Anal. Calcd. for $\text{C}_{24}\text{H}_{30}\text{N}_7\text{O}_5\text{P} \times 2/5 \text{CHCl}_3$: C, 50.94; H, 5.33; N, 17.00. Found: C, 50.83; H, 5.39; N, 16.94.

[0304] The phosphate isomers were separated with Supercritical Fluid Chromatography using a Chiralpak AS (product name) column, 25 % methanol in carbon dioxide as the eluent, flow rate 2 mL/min, temperature 40°C, and pressure 2.068428x10⁷ Pa (3000psi). The first isomer to elute had a RT of 2.9 min and was 100% enantiopure; evaporation of solvents gave the isomer as a white solid foam: $^1\text{H-NMR}$ (CDCl_3): δ 7.50 (s, 1H), 7.3-7.4 (m, 2H), 7.15-7.25 (m, 3H), 6.11 (m, 1H), 5.91 (m, 1H), 5.86 (s, 1H), 5.55 (m, 1H), 4.89 (s, 2H), 4.24 (m, 2H), 4.05 (m, 1H), 3.72 (s, 3H), 3.65 (m, 1H), 3.20 (m, 1H), 3.02 (m, 1H), 2.83 (m, 1H), 1.72 (m, 1H), 1.37 (d, 3H), 0.89 (m, 2H), 0.62 (m, 2H); $^{31}\text{P-NMR}$ (CDCl_3): δ 3.07.

Anal. Calcd. for $\text{C}_{24}\text{H}_{30}\text{N}_7\text{O}_5\text{P} \times 1/7 \text{CHCl}_3$: C, 53.25; H, 5.58; N, 18.00. Found: C, 53.27; H, 5.69; N, 17.72.

[0305] The second isomer to elute had a RT of 6.7 min and was 100% enantiopure; evaporation of solvents gave the isomer as a white solid foam: $^1\text{H-NMR}$ (CDCl_3): δ 7.52 (s, 1H), 7.25-7.4 (m, 2H), 7.15-7.22 (m, 3H), 6.11 (m, 1H), 5.94 (m, 1H), 5.85 (s, 1H), 5.55 (m, 1H), 4.88 (s, 2H), 4.22 (m, 2H), 4.04 (m, 1H), 3.75 (s, 3H), 3.7-3.75 (m, 1H), 3.17 (m, 1H), 3.04 (m, 1H), 2.80 (m, 1H), 1.73 (m, 1H), 1.42 (d, 3H), 0.89 (m, 2H), 0.67 (m, 2H); $^{31}\text{P-NMR}$ (CDCl_3): δ 3.0.

Anal. Calcd. for $\text{C}_{24}\text{H}_{30}\text{N}_7\text{O}_5\text{P} \times 1/5 \text{CHCl}_3$: C, 52.71; H, 5.52; N, 17.78. Found: C, 52.61; H, 5.67; N, 17.53.

Example 7

35 **(1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methylamino-L-alaninyl) phosphate Sodium Salt**

[0306] (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate (0.060 g, 0.11 mmoles) was suspended in solution of 40% aqueous methylamine (60 ml) and stirred at room temperature for 18 hours. The volatiles were removed by spin evaporation *in vacuo* and the residue was dissolved in water (50 ml), extracted with dichloromethane (2x50 ml) and purified by anion exchange chromatography on a Sep-Pak® Vac 35cc Accell™ Plus QMA cartridge (Waters Corp., P/N WAT054725) (HCO_3^- form) with an aqueous ammonium bicarbonate buffer (0 - 0.5 M gradient, 1 L). The appropriate fractions were combined and the volatiles were removed by spin evaporation *in vacuo*. The residue was twice dissolved in deionized water and spin evaporated *in vacuo* to give (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methylamino-L-alaninyl) phosphate as the ammonium salt. This salt was dissolved in deionized water and passed through a Sep-Pak® Vac 20cc Accell™ Plus CM cartridge (Waters Corp., P/N WAT054675) (Na^+ form) using deionized water. The appropriate fractions were combined and lyophilized to give 0.026 g (46% yield) of (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methylamino-L-alaninyl) phosphate sodium salt 2.2 hydrate as a white solid: MS (ES⁻) *m/e* 449 (MH^-).

Anal. Calcd. for $\text{C}_{18}\text{H}_{26}\text{N}_8\text{NaO}_4\text{P} \cdot 2.2 \text{H}_2\text{O}$: C, 42.22; H, 5.98; N, 21.88. Found: C, 42.36; H, 5.77; N, 21.66.

Example 8

55 **(1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-cyclopropylamino-L-alaninyl) phosphate Sodium Salt**

[0307] (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-cyclopropylamino-L-alaninyl) phosphate sodium salt was prepared by a method analogous to that used to prepare (1S,4R)-

EP 1 117 669 B1

4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methylamino-L-alaninyl) phosphate sodium salt except that the 40% aqueous methylamine solution was replaced by a solution of cyclopropylamine (5 ml, 72 mmoles) in deionized water (50 ml). Lyophilization of the combined fractions gave 35 mg (58% yield) of (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-cyclopropylamino-L-alaninyl) phosphate sodium salt 2.5 hydrate as a white solid: MS (ES⁻) *m/e* 475 (MH⁺).

5 Anal. Calcd. for C₂₀H₂₈N₈NaO₄P · 2.5 H₂O: C, 44.20; H, 6.12; N, 20.61. Found: C, 44.27; H, 5.81; N, 20.49.

Example 9

10 (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N,N-dimethylamino-L-alaninyl) phosphate Sodium Salt

[0308] (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-dimethylamino-L-alaninyl) phosphate sodium salt was prepared by a method analogous to that used to prepare (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methylamino-L-alaninyl) phosphate sodium salt except that the 40% aqueous methylamine solution was replaced by a 40% aqueous dimethylamine solution (50 ml). Lyophilization of the combined fractions gave 39 mg (59% yield) of (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N,N-dimethylamino-L-alaninyl) phosphate sodium salt trihydrate as a white solid: MS (ES⁻) *m/e* 463 (MH⁺).

15 Anal. Calcd. for C₁₉H₂₈N₈NaO₄P · 3.0 H₂O: C, 42.22; H, 6.34; N, 20.73. Found: C, 42.40; H, 6.01; N, 20.51.

20 Anal. Calcd. for C₁₉H₂₈N₈NaO₄P · 3.0 H₂O: C, 42.22; H, 6.34; N, 20.73. Found: C, 42.40; H, 6.01; N, 20.51

Example 10

25 (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(L-alaninyl) phosphate Disodium Salt

[0309] (1S,4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-alaninyl)phosphate (0.5 g, 0.95 mmoles) was suspended in solution of triethylamine (30 ml) and deionized water (30 ml) and stirred at room temperature for 18 hours. The volatiles were removed by spin evaporation *in vacuo* and the residue was dissolved in water (50 ml), extracted with dichloromethane (2x50 ml) and purified by anion exchange chromatography on a Sep-Pak® Vac 35cc Accell™ Plus QMA cartridge (Waters Corp., P/N WAT054725) (HCO₃⁻ form) with an aqueous ammonium bicarbonate buffer (0 - 0.5 M gradient, 1 L). The appropriate fractions were combined and the volatiles were removed by spin evaporation *in vacuo*. The residue was twice dissolved in deionized water and spin evaporated *in vacuo* to give (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(L-alaninyl) phosphate as the ammonium salt. This salt was dissolved in deionized water and passed through a Sep-Pak® Vac 20cc Accell™ Plus CM cartridge (Waters Corp., P/N WAT054675) (Na⁺ form) using deionized water. The appropriate fractions were combined and lyophilized to give 0.430 g (86% yield) of (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(L-alaninyl) phosphate disodium salt 2.5 hydrate as a white solid: MS (ES⁻) *m/e* 436 (MH⁺).

30 Anal. Calcd. for C₁₇H₂₂N₇Na₂O₅P · 2.5 H₂O: C, 38.79; H, 5.17; N, 18.63. Found: C, 38.62; H, 5.11; N, 18.43.

35 Anal. Calcd. for C₁₇H₂₂N₇Na₂O₅P · 2.5 H₂O: C, 38.79; H, 5.17; N, 18.63. Found: C, 38.62; H, 5.11; N, 18.43.

Anti-Hepatitis B Virus Activity

40 [0310] Compounds of Example 1 to 10 were tested for anti- Hepatitis B Virus activity according to the method described by Jansen, R. et al., *Antimicrobial Agents and Chemotherapy*, Vol. 37, No. 3, pp. 441-447, 1993. Representative IC₅₀ values were in the range of 0.017μM - 3.0 μM.

45 The solubility and solution/solid state stability of three salt forms of (1S, 4R)-4-[2-amino-6-(cyclopropylamino)-9(H)-purin-9-yl]-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate

50 [0311] The salts have handling and formulation advantages in that they are stable, free-flowing crystalline solids that do not change composition, even at elevated temperature and humidity. The free base of (1S, 4R)-4-[2-amino-6-(cyclopropylamino)-9(H)-purin-9-yl]-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-alaninyl) phosphate in contrast, is a hygroscopic, amorphous solid foam that could not be crystallized.

55

EP 1 117 669 B1

5	Form	Solid Type*	0.1 N HCl		PBS		HPMC/Tween		Solid State Stability (%)
			Solubility (mg/mL)	Stability (%)	Solubility (mg/mL)	Stability (%)	Solubility (mg/mL)	Stability (%)	
10	Free Base	Amorphous Hygroscopic	> 5	69.1	0.054	98.5	0.04	97.6	93.7
15	Glutarate	crystals	>5	69.3	0.084	99.9	>0.25, <1	98.6	98.9
20	Fumarate	crystals	>5	70.0	0.086	98.5	0.22	983	97.1
25	Succinate	crystals	>5	66.0	0.069	99.8	>0.25, <1	98.8	99.6
Solution stability = % of parent (AUC) after 27 hr at room temperature, normalized to initial AUC.									
Solid state stability = % of parent (AUC) after two weeks at 60°C, normalized to initial AUC.									

[0312] The free bases of the phosphoramides of 2',3'-dideoxy adenosine and 2',3'-dideoxy-2',3'-didehydroadenosine are hygroscopic amorphous foams or gums. However, their instability to acid prevents advantageous utilization of complexes with acids to form salts with improved physical properties; exposure to acids degrades these compounds rapidly. (1S, 4R)-4-[2-amino-6-(cyclopropylamino)-9(H)-purin-9-yl]-2-cyclopentene-1-methanol (abacavir) has enhanced stability to acid, compared to nucleosides containing labile glycosidic bonds between heterocycle and sugar. Thus phosphoramidate protides of abacavir form stable salts that have been found to have advantageous physical properties suitable for pharmaceutical development.

Claims

30

1. A compound of the formula (I):

35

40

45

50

55 wherein

Ar is an aryl group

R¹ and R² are each independently selected from the group comprising H, alkyl and aryl groups,

X is selected from the group comprising O, NH, NR⁴ and S where R⁴ is selected from the group comprising

EP 1 117 669 B1

alkyl and aryl;

R⁵ is selected from the group comprising H, alkyl and aryl groups, wherein when R¹ and R⁵ are each alkyl they may be linked to form a 5- or 6- membered ring;

and R³ is selected from the group comprising H, alkyl, aryl, heterocyclic and polycyclic groups, or a pharmaceutically acceptable derivative or metabolite thereof.

5 2. A compound according to claim 1 wherein
Ar is phenyl or substituted phenyl.

10 3. A compound according to any one of claims 1 to 2 wherein R³ is selected from the group comprising -CH₃, -C₂H₅ and -CH₂Ph.

15 4. A compound of the formula (II):

15

20

25

30

35

wherein R¹, R², R³, R⁵ and X have the meanings ascribed in Claim 1.

40 5. A compound according to any one of claims 1 to 4 wherein R¹ and R² are the same or different and are H, -CH₃ or -CH₂CH₃.

6. A compound according to any one of claims 1 to 4 wherein R¹ is H and R² is -CH₃, -CH₂CH₃ or -CH₂Ph.

7. A compound according to any one of claims 1 to 6 wherein the C atom bearing R¹ and R² is chiral.

45 8. A compound according to any one of claims 1 to 6 wherein the compound has L chirality with respect to the C atom bearing R¹ and R².

9. A compound according to any one of claims 1 to 8 wherein X is O.

50 10. A compound selected from:

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-alaniny] phosphate

55 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[L-alaniny] phosphate diammonium salt

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl benzyloxy-L-

EP 1 117 669 B1

alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-D-alaninyl] phosphate

5

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α , α -dimethylglyciny] phosphate

10

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-phenylalaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl ethoxy-L-alaninyl] phosphate

15

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxyglyciny] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl L-aspartyl dimethyl ester] phosphate.

20

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-chlorophenyl methoxy-L-alaninyl] phosphate

25

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl tertbutyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl n-propoxy-L-alaninyl] phosphate

30

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl n-butyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl i-propoxy-L-alaninyl] phosphate

35

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[(p-(2",2"-dimethoxy-propionic acid methyl ester) phenyl) methoxy-L-alaninyl] phosphate

40

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl (2-methylpropyl)oxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl (2,2-dimethylpropyl)oxy-L-alaninyl] phosphate

45

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 3-methylbutyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 3-pentyloxy-L-alaninyl] phosphate

50

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-valinyl] phosphate

55

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 3,3-dimethyl-1-butyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl n-pentyloxy-L-alaninyl] phosphate

EP 1 117 669 B1

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl cyclohexyloxy-L-alaninyl] phosphate

5 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl cyclohexanemethoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[Phenyl methoxy-3-cyclohexane-L-alaninyl] phosphate

10 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-bromophenyl methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl diethoxy-L-aspartyl] phosphate

15 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-methionyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-leucinyl]phosphate

20 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-prolinyl]phosphate.

25 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methylene-[phenyl dibenzylxy-L-aspartinyl]phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 4-methyl-1-pentyloxy-L-alaninyl] phosphate

30 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclopentylmethoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-fluorophenyl methoxy-L-alaninyl] phosphate

35 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-iodophenyl methoxy-L-alaninyl] phosphate

40 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl dimethoxy-L-glutamyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-tryptophanyl] phosphate

45 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy-L-isoleucinyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cycloheptan-ylxy-L-alaninyl] phosphate

50 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclobutylmethoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclopropylmethoxy-L-alaninyl] phosphate

55 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclobutyl-

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclobutyl-

EP 1 117 669 B1

loxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl cyclopentyl-
5 loxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl phenethoxy-
10 L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 3-phenyl-
15 1-propanoyl-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 4-phenyl-
20 1-butoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 2-cyclohexyl-
25 1-ethoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 3-cyclohexyl-
30 1-propanoyl-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl 4-cyclohexyl-
35 1-butoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α -
40 ethyl-L-glycyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α -
45 phenyl(RS)glycyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α -
50 butyl-RS-glycyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-phenoxyphenyl-
55 methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-phenylphenyl-
60 methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-hydroxyacetophenone-
65 methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[4-butylphenyl meth-
70 oxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-methoxyphenyl-
75 methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-propoxyphenyl-
80 methoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α ,
85 α -cyclopentylglycyl] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α ,
90 α -cyclohexylglycyl] phosphate

EP 1 117 669 B1

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[phenyl methoxy- α ,
5 α -cyclopropylglyciny] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-(methoxycarbo-
nyl)phenyl methoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-(trifluoromethylth-
io)phenyl methoxy-L-alaniny] phosphate

10 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-(2-methoxyvinyl)-
phenyl methoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-(2-phenylcarbonyl-
15 vinyl)phenyl methoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[p-(2,2-dicyanovinyl)-
phenyl methoxy-L-alaniny] phosphate

20 (1S,4R)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol O-[o-(carboxylate ethyl-
ester)phenyl methoxy-L-alaniny] phosphate

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-
alaniny) phosphate succinate salt

25 (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-
alaniny) phosphate succinate salt

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-
alaniny) phosphate fumarate salt

30 (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-
alaniny) phosphate glutarate salt

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl ethoxy-L-
alaniny) phosphate D-tartrate salt

35 (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl methoxy-L-
alaniny) phosphate diastereoisomers

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-methyl-
40 amino-L-alaniny) phosphate sodium salt

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N-cyclopro-
pylamino-L-alaniny) phosphate sodium salt

45 (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(phenyl N,N-dimeth-
ylamino-L-alaniny) phosphate sodium salt

(1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentene-1-methanol O-(L-alaniny) phos-
50 phate disodium salt.

11. Use of a compound according to any one of claims 1 to 3, to claim 10, or to any one of claims 5 to 9 as dependent
on any one of claims 1 to 3 in the manufacture of a medicament for the treatment or prophylaxis of a viral infection.

55 12. Use of a compound according to claim 11 wherein the viral infection comprises HIV.

13. Use of a compound according to claim 11 wherein the viral infection comprises HBV.

EP 1 117 669 B1

14. A compound according to any one of claims 1 to 3, to claim 10, or to any one of claims 5 to 9 as dependent on any one of claims 1 to 3 for use in a method of treatment, prophylaxis or diagnosis.

5 15. A compound according to claim 14 wherein the method comprises a method of prophylaxis or treatment of viral infection comprising administration to a patient in need of such treatment an effective dose of the compound.

10 16. A compound according to claim 15 wherein the viral infection is HIV.

17. A compound according to claim 15 wherein the viral infection is HBV.

15 18. A compound according to any one of claims 14 to 17 wherein the method comprises administering orally to a patient an effective dose of the compound.

19. A pharmaceutical composition comprising a compound according to any one of claims 1 to 3, to claim 10, or to any one of claims 5 to 9 as dependent on any one of claims 1 to 3 in combination with a pharmaceutically acceptable excipient.

20. A composition according to claim 19 in a form for oral administration.

25 21. A process for the preparation of a compound according to any one of claims 1 to 3, to claim 10, or to any one of claims 5 to 9 as dependent on any one of claims 1 to 3 comprising reacting a compound having the formula

with a compound of formula

50

Revendications

55 1. Un composé de formule (I):

EP 1 117 669 B1

5

10

15

20

où

Ar est un groupement aryle

25 R¹ et R² sont chacun sélectionnés indépendamment parmi le groupe composé de H, de groupements alkyle et aryle,X est sélectionné à partir du groupe composé de O, NH, NR⁴ et S où R⁴ est sélectionné parmi le groupe comprenant les alkyle et aryle ;30 R⁵ est sélectionné parmi le groupe composé de H, de groupements alkyle et aryle, où lorsque R¹ et R⁵ sont chacun alkyle ils peuvent être reliés pour former un noyau à 5 ou 6 membres ;et R³ est sélectionné parmi le groupe comprenant les H, groupements alkyle et aryle hétérocycliques et polycycliques, ou un dérivé ou métabolite pharmaceutiquement acceptable de celui-ci.

2. Un composé suivant la revendication 1 où
35 Ar est le phényle ou phényle substitué.
3. Un composé suivant n'importe laquelle des revendications 1 à 2 où R³ est sélectionné parmi le groupe comprenant les -CH₃, -C₂H₅ et -CH₂Ph.
- 40 4. Un composé de formule (II):

45

50

55

EP 1 117 669 B1

5

10

15

20

où R¹, R², R³, R⁵ et X ont les significations décrites dans la Revendication 1.

25 5. Un composé suivant n'importe laquelle des revendications 1 à 4 où R¹ et R² sont identiques ou différents et sont H, -CH₃ ou -CH₂CH₃.

6. Un composé suivant n'importe laquelle des revendications 1 à 4 où R¹ est H et R² est -CH₃, -CH₂CH₃ ou -CH₂-Ph.

30 7. Un composé suivant n'importe laquelle des revendications 1 à 6 où l'atome C qui contient R¹ et R² est chiral.

8. Un composé suivant n'importe laquelle des revendications 1 à 6 où le composé a une chiralité L par rapport à l'atome C qui contient R¹ et R².

35 9. Un composé suivant n'importe laquelle des revendications 1 à 8 où X est O.

10. Un composé sélectionné parmi :

40 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle méthoxy-L-alaniny] phosphate.

Sel de (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[L-alaniny] phosphate diammonium.

45 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle benzyloxy-L-alaniny] phosphate.

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle méthoxy-D-alaniny] phosphate.

50 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle méthoxy-a,a-diméthylglyciny] phosphate.

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle méthoxy-L-phenylalaniny] phosphate.

55 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényle éthoxy-L-alaniny] phosphate.

EP 1 117 669 B1

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxyglyciny] phosphate.

5 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl L-aspartyl di-méthyle ester] phosphate.

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-chlorophényl méthoxy-L-alaniny] phosphate.

10 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl tertbutyloxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl n-propoxy-L-alaniny] phosphate

15 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl n-butyloxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl i-propoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[(p-(2",2"-acide diméthoxypropionique méthyl ester) phényl) méthoxy-L-alaniny] phosphate

25 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl (2-méthylpropyl)oxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl (2,2-diméthylpropyl)oxy-L-alaniny] phosphate

30 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 3-méthylbutyloxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 3-pentyloxy-L-alaniny] phosphate

35 1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-valinyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 3,3-diméthyl-1-butyloxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl n-pentyloxy-L-alaniny] phosphate

45 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl cyclohexyloxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl cyclohexane-méthoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[Phényl méthoxy-3-cyclohexane-L-alaniny] phosphate

50 1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-bromophényl méthoxy-L-alaniny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl diéthoxy-L-as-

EP 1 117 669 B1

partyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-méthionyl] phosphate

5

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-leucinyl] phosphate

10

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-prolinyl] phosphate.

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl dibenzyloxy-L-aspartinyl] phosphate

15

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 4-méthyle-1-pentyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cyclopentylméthoxy-L-alaninyl] phosphate

20

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-fluorophényl méthoxy-L-alaninyl] phosphate

25

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-iodophényl méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl diméthoxy-L-glutamyl] phosphate

30

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-tryptophanyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-L-isoleucinyl] phosphate

35

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cycloheptanyl-méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cyclobutylméthoxy-L-alaninyl] phosphate

40

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cyclopropylméthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cyclobutyloxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl cyclopentylméthoxy-L-alaninyl] phosphate

50

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl phénéthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 3-phényl-1-propoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 4-phényl-1-butoxy-L-alaninyl] phosphate

EP 1 117 669 B1

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 2-cyclohexyl-1-éthoxy-L-alaninyl] phosphate

5 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 3-cyclohexyl-1-propoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl 4-cyclohexyl-1-butoxy-L-alaninyl] phosphate

10 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy- α -éthyl-L-glyciny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-a-phényl(RS)glyciny] phosphate

15 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-a-propyl-L-glyciny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-([phényl méthoxy-a-butyl-RS-glyciny] phosphate

20 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-phénoxyphényl méthoxy-L-alaninyl]phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-phénylphényl méthoxy-L-alaninyl]phosphate

25 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-hydroxyacetophéno-ne méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[4-butylphényl méthoxy-L-alaninyl] phosphate

30 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-méthoxyphényl méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-propoxyphényl méthoxy-L-alaninyl] phosphate

35 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy- α,α -cyclopentylglyciny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy- α,α -cyclohexylglyciny] phosphate

40 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-a,a-cylopropylglyciny] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[phényl méthoxy-a,a-cylopropylglyciny] phosphate

45 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-(méthoxycarbonyl)phényl méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-(trifluorométhylthio)phényl méthoxy-L-alaninyl] phosphate

50 (1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-(2-méthoxyvinyl)phényl méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-(2-phénylcarbonylvi-

EP 1 117 669 B1

nyl)phényl méthoxy-L-alaninyl] phosphate

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[p-(2,2-dicyanovinyl)phényl méthoxy-L-alaninyl] phosphate

5

(1S,4R)-4-[2-amino-6-(cycloproylamino)-9H-purin-9-yl]-2-cyclopentène-1-méthanol O-[o-(carboxylate éthyl ester)phényl méthoxy-L-alaninyl] phosphate

10

Sel succinate de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl éthoxy-L-alaninyl) phosphate

Sel succinate de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl méthoxy-L-alaninyl) phosphate

15

Sel fumarate de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl éthoxy-L-alaninyl) phosphate

Sel glutarate de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl éthoxy-L-alaninyl) phosphate

20

Sel D-tartrate de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl éthoxy-L-alaninyl) phosphate

Diastéréoisomères de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl méthoxy-L-alaninyl) phosphate

Sel de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl N-méthylamino-L-alaninyl) phosphate sodique

25

Sel de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl N-cyclopropylamino-L-alaninyl) phosphate sodique

Sel de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(phényl N,N-diméthylamino-L-alaninyl) phosphate sodique

35

Sel de (1S,4R)-4-(2-amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopentène-1-méthanol O-(L-alaninyl) phosphate disodique

40

11. L'utilisation d'un composé suivant n'importe laquelle des revendications 1 à 3, la revendication 10 ou n'importe laquelle des revendications 5 à 9 comme il dépend de n'importe laquelle des revendications 1 à 3 dans la fabrication d'un médicament pour le traitement ou la prophylaxie d'une infection virale.

12. L'utilisation d'un composé suivant la revendication 11 où l'infection virale comprend le VIH.

45

13. L'utilisation d'un composé suivant la revendication 11 où l'infection virale comprend le VHB.

14. Un composé suivant n'importe laquelle des revendications 1 à 3, la revendication 10 ou n'importe laquelle des revendications 5 à 9 comme il dépend de n'importe laquelle des revendications 1 à 3 destiné à l'usage dans une méthode de traitement, de prophylaxie ou de diagnostic.

50

15. Un composé suivant la revendication 14 où la méthode comprend une méthode de prophylaxie ou de traitement d'une infection virale comprenant l'administration à un patient qui a besoin de ce traitement d'une dose efficace du composé.

55

16. Un composé suivant la revendication 15 où l'infection virale est le VIH.

17. Un composé suivant la revendication 15 où l'infection virale est le VHB.

EP 1 117 669 B1

18. Un composé suivant n'importe laquelle des revendications 14 à 17 où la méthode comprend l'administration par voie orale à un patient d'une dose efficace de composé.

5 19. Une composition pharmaceutique comprenant un composé suivant n'importe laquelle des revendications 1 à 3, la revendication 10 ou n'importe laquelle des revendications 5 à 9 comme il dépend de n'importe laquelle des revendications 1 à 3 en association avec un excipient pharmaceutiquement acceptable.

10 20. Une composition suivant la revendication 19 sous une forme destinée à la voie orale.

10 21. Un procédé pour la préparation d'un composé suivant n'importe laquelle des revendications 1 à 3, la revendication 10 ou n'importe laquelle des revendications 5 à 9 comme il dépend de n'importe laquelle des revendications 1 à 3 qui comprend la mise en réaction d'un composé qui a pour formule

15

20

25

30

Patentansprüche

1. Verbindung der Formel (I):

35

40

45

50

55

in der

Ar eine Arylgruppe ist;

R¹ und R² jeweils unabhängig aus der Gruppe gewählt werden, die H, Alkyl und Arylgruppen umfasst;

EP 1 117 669 B1

X aus der Gruppe gewählt ist, die O, NH, NR⁴ und S umfaßt, wobei R⁴ aus der Gruppe gewählt ist, die Alkyl und Aryl umfaßt;

R⁵ aus der Gruppe gewählt ist, die H, Alkyl- und Arylgruppen umfaßt, wobei, wenn R¹ und R⁵ jeweils Alkyl sind, sie unter Bildung eines 5- oder 6-gliedrigen Ringes verknüpft sein können;

5 und R³ aus der Gruppe gewählt ist, die H, Alkyl-, Aryl-, heterocyclische und polycyclische Gruppen umfaßt; oder ein pharmazeutisch annehmbares Derivat oder Metabolit davon.

2. Verbindung gemäß Anspruch 1, wobei Ar Phenyl oder substituiertes Phenyl ist.
- 10 3. Verbindung gemäß einem der Ansprüche 1 bis 2, wobei R³ aus der Gruppe gewählt ist, die -CH₃, -C₂H₅ und -CH₂Ph umfaßt.
4. Verbindung der Formel (II):

15

20

25

30

35

in der R¹, R², R³, R⁵ und X die in Anspruch 1 zugewiesenen Bedeutungen besitzen.

5. Verbindung gemäß einem der Ansprüche 1 bis 4, in der R¹ und R² gleich oder unterschiedlich sind und H, -CH₃ oder -CH₂CH₃ sind.
- 40 6. Verbindung gemäß einem der Ansprüche 1 bis 4, in der R¹ H ist und R² -CH₃, -CH₂CH₃ oder -CH₂-Ph ist.
7. Verbindung gemäß einem der Ansprüche 1 bis 6, in der das C-Atom, welches R¹ und R² trägt, chiral ist.
8. Verbindung gemäß einem der Ansprüche 1 bis 6, in der die Verbindung L-Chiralität in Bezug auf das C-Atom, welches R¹ und R² trägt, besitzt.
- 45 9. Verbindung gemäß einem der Ansprüche 1 bis 8, in der X O ist.

50

10. Verbindung, gewählt aus:

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-alaninyl]phosphat

55

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[L-alaninyl]phosphat-diammoniumsalz

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylbenzyloxy-L-alaninyl]phosphat

EP 1 117 669 B1

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-D-alaninyl]phosphat

5 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α , α -dimethylglyciny]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-phenylalaninyl]phosphat

10 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxyglyciny]phosphat

15 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-L-aspartylidimethylester]phosphat

(1S, 4R)-4-(2-Amino-6-(cyclopropylamino)-9H-purin-9-yl)-2-cyclopenten-1-methanol-O-[4-chlorphenylmethoxy-L-alaninyl]phosphat

20 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyltertbutyloxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-n-propoxy-L-alaninyl]phosphat

25 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-n-butyloxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-i-propoxy-L-alaninyl]phosphat

30 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-*i*-propoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[(*p*-(2",2"-dimethoxy-propionsäuremethylester)phenyl)methoxy-L-alaninyl]phosphat

35 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl(2-methylpropyl)oxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-(2,2-dimethylpropyl)oxy-L-alaninyl]phosphat

40 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-3-methylbutyloxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-3-pentyloxy-L-alaninyl]phosphat

45 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-valinyl] phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-3,3-dimethyl-1-butyloxy-L-alaninyl]phosphat

50 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-n-pentyloxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylcyclohexylo-

EP 1 117 669 B1

xy-L-alaninyl]phosphat

(1S,4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylcyclohexanmethoxy-L-alaninyl]phosphat

5

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-3-cyclohexan-L-alaninyl]phosphat

10

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[4-bromphenylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyldiethoxy-L-aspartyl]phosphat

15

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-methionyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-leucinyl]phosphat

20

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-prolinyl]phosphat

25

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methylen-[phenyldibenzoyloxy-L-aspartinyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-4-methyl-1-pentyloxy-L-alaninyl]phosphat

30

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylcyclopentylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[4-fluorphenylmethoxy-L-alaninyl]phosphat

35

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[4-iodphenylmethoxy-L-alaninyl]phosphat

40

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyldimethoxy-L-glutamyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-tryptophanyl]phosphat

45

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy-L-isoleucinyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-Methanol-O-[phenylcycloheptanethoxy-L-alaninyl]phosphat

50

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-Methanol-O-[phenylcyclobutylmethoxy-L-alaninyl]phosphat

55

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-Methanol-O-[phenylcyclopropylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-Methanol-O-[phenylcyclobutylmethoxy-L-alaninyl]phosphat

EP 1 117 669 B1

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylcyclopentylolxy-L-alaninyl]phosphat

5 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylphenethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-3-phenyl-1-propoxy-L-alaninyl]phosphat

10 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-4-phenyl-1-butoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-2-cyclohexyl-1-ethoxy-L-alaninyl]phosphat

15 15 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-3-cyclohexyl-1-propoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenyl-4-cyclohexyl-1-butoxy-L-alaninyl]phosphat

20 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α -ethyl-L-glyciny]phosphat

25 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α -phenyl(RS)glyciny]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α -propyl-L-glyciny]phosphat

30 30 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α -butyl-RS-glyciny]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-phenoxyphenylmethoxy-L-alaninyl]phosphat

35 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-phenylphenyl methoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[4-hydroxyacetophenonmethoxy-L-alaninyl]phosphat

40 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[4-butylphenylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-methoxyphenylmethoxy-L-alaninyl]phosphat

45 45 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-propoxyphenylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α , α -cyclopentylglyciny]phosphat

50 (1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α , α -cyclohexylglyciny]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[phenylmethoxy- α , α -

EP 1 117 669 B1

cylopropylglycinyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-(methoxycarbonyl)phenylmethoxy-L-alaninyl]phosphat

5

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-(trifluormethylthio)phenylmethoxy-L-alaninyl]phosphat

10

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-(2-methoxyvinyl)phenylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-(2-phenylcarbonylvinyl)phenylmethoxy-L-alaninyl]phosphat

15

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[p-(2,2-dicyanovinyl)phenylmethoxy-L-alaninyl]phosphat

(1S, 4R)-4-[2-Amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopenten-1-methanol-O-[o-(carboxylatethylester)phenylmethoxy-L-alaninyl]phosphat

20

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylethoxy-L-alaninyl)phosphat-succinatsalz

25

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylmethoxy-L-alaninyl)phosphat-succinatsalz

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylethoxy-L-alaninyl)phosphat-fumaratsalz

30

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylethoxy-L-alaninyl)phosphat-glutaratsalz

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylethoxy-L-alaninyl)phosphat-D-tartratsalz

35

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenylmethoxy-L-alaninyl)phosphatdiastereoisomere

40

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenyl-N-methylamino-L-alaninyl)phosphat-natriumsalz

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenyl-N-cyclopropylamino-L-alaninyl)phosphat-natriumsalz

45

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(phenyl-N,N-dimethylamino-L-alaninyl)phosphat-natriumsalz

(1S, 4R)-4-(2-Amino-6-cyclopropylamino-9(H)-purin-9-yl)-2-cyclopenten-1-methanol-O-(L-alaninyl)phosphat-dinatriumsalz

50

11. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 3, gemäß Anspruch 10 oder gemäß einem der Ansprüche 5 bis 9, welche von einem der Ansprüche 1 bis 3 abhängen, bei der Herstellung eines Medikamentes zur Behandlung oder Prophylaxe einer viralen Infektion.

55

12. Verwendung einer Verbindung gemäß Anspruch 11, bei der die virale Infektion HIV umfaßt.

13. Verwendung einer Verbindung gemäß Anspruch 11, bei der die virale Infektion HBV umfaßt.

EP 1 117 669 B1

14. Verbindung gemäß einem der Ansprüche 1 bis 3, gemäß Anspruch 10 oder gemäß einem der Ansprüche 5 bis 9, welche von einem der Ansprüche 1 bis 3 abhängen, zur Verwendung bei einem Verfahren zur Behandlung, Prophylaxe oder Diagnose.

5 15. Verbindung gemäß Anspruch 14, bei der das Verfahren ein Verfahren der Prophylaxe oder Behandlung einer viralen Infektion umfaßt, umfassend das Verabreichen einer wirksamen Dosis der Verbindung an einen eine solche Behandlung benötigenden Patienten.

10 16. Verbindung gemäß Anspruch 15, wobei die virale Infektion HIV ist.

17. Verbindung gemäß Anspruch 15, wobei die virale Infektion HBV ist.

15 18. Verbindung gemäß mindestens einem der Ansprüche 14 bis 17, wobei das Verfahren das orale Verabreichen einer wirksamen Dosis der Verbindung an einen Patienten umfaßt.

19. Pharmazeutische Zusammensetzung, umfassend eine Verbindung gemäß einem der Ansprüche 1 bis 3, gemäß Anspruch 10 oder gemäß einem der Ansprüche 5 bis 9, welche von einem der Ansprüche 1 bis 3 abhängen, in Kombination mit einem pharmazeutisch annehmbaren Vehikel.

20 20. Zusammensetzung gemäß Anspruch 19 in einer Form zur oralen Verabreichung.

21. Verfahren zur Herstellung einer Verbindung gemäß einem der Ansprüche 1 bis 3, gemäß Anspruch 10 oder gemäß einem der Ansprüche 5 bis 9, welche von einem der Ansprüche 1 bis 3 abhängen, umfassend das Umsetzen einer Verbindung der Formel

25

30

35

40

mit einer Verbindung der Formel

45

50

55

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.