Tutorial o6 - Time hierarchy, oracles, and advice

Exercise 1. Deterministic time hierarchy

In this exercise we consider the *time hierarchy theorem* that states that allowing Turing machines more computation time strictly increases the set of languages that they can decide.

Theorem. *If* f, g are functions satisfying $f(n) \log f(n) = o(g(n))$ and g is time constructible, then DTIME $(f(n)) \subseteq DTIME(g(n))$.

Let \mathcal{U} be the universal deterministic Turing machine constructed on TD1 (i.e., a machine that halts within $C_{\alpha}T \log T$ steps if $M_{\alpha}(x)$ halts within T steps.) Consider the language

$$\mathcal{L} := \{(\alpha, x) : \mathcal{U}(\alpha, (\alpha, x)) \text{ rejects in at most } g(|(\alpha, x)|) \text{ steps} \}.$$

- **1.** Show that $\mathcal{L} \in \text{DTIME}(g(n))$.
- **2.** Show that if M_{α} is a machine that runs in time cf(n) for some c > 0, then the language recognized by M_{α} is not equal to \mathcal{L} , i.e., $\mathcal{L} \notin \mathsf{DTIME}(f(n))$.
- **3.** Prove that $P \subseteq EXP$.

Exercise 2. Some Oracles

- 1. Let C be one of the classes P, NP, EXP, NEXP. Show that $C^P = C$.
- **2.** Show that $P^{PSPACE} = NP^{PSPACE} = PSPACE$.
- 3. Show that $NEXP \subseteq EXP^{NP}$.
- **4.** Show that if NP = coNP, then $NP^{NP} = NP$.

Exercise 3. Advice

- **1.** Prove that $NP \subseteq P/\log \text{ implies } P = NP$.
- **2.** Prove that every language $\mathcal{L} \subset \Sigma^*$ belongs to $P/|\Sigma|^n$.
- 3. Show that there exists a *decidable* unary language that does not belong to P. A language $L \subseteq \{0,1\}^*$ is called sparse if there exists a polynomial p such that $|L \cap \{0,1\}^n| \le p(n)$ for all p
- 4. Show that every sparse language is in P/poly

Exercise 4. Nondeterministic time hierarchy

We will prove the time hierarchy theorem for nondeterministic TMs:

Theorem (Nondeterministic Time Hierarchy Theorem). *If* f, g are functions satisfying f(n+1) = o(g(n)), and g is nondecreasing, time constructible, and satisfies $g(n) \ge n$, then $\mathsf{NTIME}(f(n)) \subsetneq \mathsf{NTIME}(g(n))$.

To prove the theorem, we use the following fact: there exists a universal nondeterministic TM $\hat{\mathcal{U}}$ such that if $M_{\alpha}(x)$ halts within T steps, then $\hat{\mathcal{U}}(\alpha, x)$ halts within $C_{\alpha}T$ steps (and $\hat{\mathcal{U}}(\alpha, x)$ has an accepting path iff $M_{\alpha}(x)$ does).

Theorem (Nondeterministic Universal Turing Machine). There exists a NDTM U_N such that for every $x, \alpha \in \{0,1\}^*$, $U_N(\alpha,x) = N_\alpha(x)$ where N_α denotes the NDTM represented by α . Moreover, if N_α halts on input x within T steps, then $U_N(\alpha,x)$ halts within cT steps for some constant c.

Now, construct a NDTM V that takes on input $\langle \alpha, 1^k, y \rangle$ (where we insert some new input 1^k to artificially increase the size), and again we want V to accept iff $M_{\alpha}(\langle \alpha, y \rangle)$ rejects.

- if $|y| \ge g(|\alpha| + k)$, then accept iff $M_{\alpha}(\langle \alpha, 1^k, \epsilon \rangle)$ rejects on computation path y. Note that if M_{α} does not halt on this computation path, then V rejects.
- if $|y| \ge g(|\alpha| + k)$, it runs $M_{\alpha}(\langle \alpha, 1^k, y0 \rangle)$ and $M_{\alpha}(\langle \alpha, 1^k, y1 \rangle)$ for $\le g(n)$ steps each and accepts iff both accept
- **1.** Show that *V* runs in time O(g(n)).
- **2.** Show that there is no machine N such that $N(\langle \alpha, 1^i, x \rangle) = V(\langle \alpha, 1^i, x \rangle)$ for all α , i and n that runs in time $\leq cf(n)$.