Лабораторная работа №4

Статическая маршрутизация в компьютерных сетях

Оглавление

1.	Введение	1
2.	Статическая маршрутизация	
3.	Статическая маршрутизация сети в пакете Cisco Packet Tracer	
	3.1 Создание модели сети в пакете Cisco Packet Tracer	3
	3.2 Расчет подсетей	
	3.3 Начальная настройка маршрутизаторов	
	3.3.1 Базовая настройка	4
	3.3.2 Настройка интерфейсов Fast Ethernet	4
	3.3.3 Настройка интерфейсов Serial	4
	3.4 Настройка компьютеров	5
	3.5 Настройка статической маршрутизации	5
	3.6 Исследование отказоустойчивости сети со статической маршрутизацией	7
	3.7 Создание альтернативных маршрутов	7
	3.8 Проверка отказоустойчивости сети с альтернативными маршрутами	8
	3.9 Формирование маршрута «по умолчанию»	8
4.	Статическая маршрутизация на реальном оборудовании	10
	4.1 Организация работы	10
	4.2 Подключение сетевых устройств	10
	4.3 Удаление предыдущей конфигурации	10
	4.4 Конфигурация маршрутизаторов и настройка статической маршрутизации	10
5.	Задание для самостоятельной работы	11
6.	Рекомендуемые материалы	11

1. Введение

Транспортировка пакетов в IP-сетях осуществляется на основе информации о текущей конфигурации сети, имеющейся у маршрутизаторов и конечных станций.

Рациональный маршрут следования пакета выбирается путем анализа данных, содержащихся в *таблицах маршрутизации*. По результатам анализа IP-пакет, принятый маршрутизатором или сформированный в компьютере пользователя, продвигается в направлении узла-получателя сообщения.

Таблицы маршрутизации могут различаться в зависимости от фирмы-производителя и принятой операционной системы, однако, в любом случае должны содержать следующую информацию:

- адрес сети назначения с указанием маски;
- сетевой адрес следующего маршрутизатора;
- выходной порт маршрутизатора, на который должен быть направлен пакет:
- метрика маршрута, характеризующая меру предпочтения данного маршрута в соответствии с заданным критерием 1 .

В зависимости от способа ввода информации в таблицу маршрутизации различают статическую или динамическую маршрутизацию.

При *статической* маршрутизации все записи в таблице имеют неизменный, статический характер и вносятся администратором сети.

¹ Наиболее часто применяется критерий, учитывающий количество промежуточных маршрутизаторов (хопов) в данном маршруте. Кроме того, используются метрики, соответствующие признакам D, T и R в поле сервиса IP-пакета (T – пропускная способность, T – вносимая задержка, R – надежность маршрута).

При **динамической** маршрутизации все данные вносятся в таблицы маршрутизации с помощью специальных сетевых протоколов. Протоколы маршрутизации позволяют собирать информацию о топологии связей в сети и оперативно вносить в таблицы данные об изменениях связей, возникающих в сети. Результатом работы протоколов является согласование содержания таблиц маршрутизации у взаимодействующих маршрутизаторов.

2. Статическая маршрутизация

Статическая маршрутизация — вид маршрутизации, при котором записи в таблице маршрутизации создаются и удаляются вручную сетевым администратором.

Содержание записей таблиц маршрутизации различается в зависимости от размещения сети назначения и требований конкретных пользователей. Так, в маршрутах к сетям, непосредственно подключенным к портам данного маршрутизатора, указывается адрес выходного порта и отсутствуют ссылки на какой-либо другой маршрутизатор.

Для отдельного пользователя возможно назначение специфического маршрута, отличающегося от типового маршрута к данной сети; при этом в таблицу заносится полный IP-адрес узла назначения.

Пакеты, адресованные пользователям сетей, данные о которых отсутствуют в графе «сеть назначения», направляются к одному из соседних маршрутизаторов, через который обеспечивается доступ к этим сетям. Такой маршрутизатор называется моршрутизатором по умолчанию.

Все записи в таблице имеют статус «статических» с условно бесконечным сроком действия. При возникновении изменений в сети администратор должен оперативно скорректировать таблицы маршрутизации для тех маршрутизаторов, у которых произошедшие изменения требует смены маршрутов следования пакетов.

Статическая маршрутизация осуществляется администратором сети без участия каких-либо протоколов маршрутизации и обычно применяется в сетях с простой топологией, объединяющих небольшое (1-3) число подсетей, и имеющих доступ к сети Интернет через шлюз, являющийся шлюзом по умолчанию.

Статическая маршрутизируемая среда может применяться для:

- сети малого предприятия;
- сети домашнего офиса;
- филиала с одной сетью.

Достоинства статической маршрутизации:

- простота отладки и конфигурирования в малых компьютерных сетях;
- экономия аппаратных ресурсов маршрутизатора;
- отсутствие динамической нагрузки на сеть.

Основным **недостатком** статической маршрутизации является чувствительность к повреждениям линий связи. Если маршрутизатор выходит из строя или канал связи становится недоступным, маршрутизатор не реагирует на неисправность, статический маршрут остается активным, при этом другие маршрутизаторы в сети будут продолжать передавать данные по недоступному маршруту.

В малых сетях (например, с тремя локальными сетями, соединенными между собой маршрутизаторами) подобные ситуации могут оперативно решаться администратором. Однако при масштабировании сети существенно возрастает трудоемкость коррекции таблиц маршрутизации. Поэтому в крупных сетях более предпочтительным оказывается использование специальных протоколов маршрутизации.

Маршруты статической маршрутизации вводятся командой *ip route*.

Задание порта по умолчанию производится командой *ip route 0.0.0.0 0.0.0.0 interface/next hop ip address*.

Просмотр текущего состояния таблицы маршрутизации осуществляется при помощи команды **show ip route**.

Данные таблиц статической и динамической маршрутизации объединяются в одной таблице, в которую попадают лучшие из сформированных маршрутов.

В данной лабораторной работе изучаются методы организации составной сети на основе статической маршрутизации. Выполнение работы позволяет студентам детально ознакомиться с общими процедурами маршрутизации пакетов в IP-сетях.

Статическая маршрутизации сети практически выполняется в работе на маршрутизаторах фирмы Cisco.

3. Статическая маршрутизация в пакете Cisco Packet Tracer

3.1 Создание модели сети в программе Cisco Packet Tracer

Откройте программу Cisco Packet Tracer и создайте сеть, аналогичную показанной на рис. 1. Используйте типы и названия устройств, указанные в таблице 1.

Рис 1. Сетевая структура с тремя локальными сетями, объединенными маршрутизаторами

Таблица 1

Группа устройств	Название устройства	Кол-во	Дополнительные модули
Маршрутизатор	1841	3	WIC-2T
Коммутаторы	2950-24	3	-
Конечные устройства	РС-РТ (компьютер)	3	-

3.2 Расчет подсетей

На основе рис.1 определите ір-адреса и маски для всех устройств. Для всех подсетей определите диапазон адресов, доступных для использования и широковещательный адрес. Портам маршрутизатора присвойте первые адреса, а портам сетевых карт компьютеров — последние адреса подсетей. Результаты расчетов занесите в таблицу 2.

Таблица 2

Название	Интерфейс	Подсеть	IP	Маска	Шлюз
устройства					
R1	Fa0/0	LAN_1			-
R1	S0/0/0	WAN_1			-
R1	S0/0/1	WAN_3			-
R2	Fa0/0	LAN_2			-
R2	S0/0/0	WAN_1			-

R2	S0/0/1	WAN_2		-
R3	Fa0/0	LAN_3		-
R3	S0/0/0	WAN_3		-
R3	S0/0/1	WAN_2		-
PC1	Eth0	LAN_1		
PC2	Eth0	LAN_2		
PC3	Eth0	LAN_3		

3.3 Начальная настройка маршрутизаторов

3.3.1 Базовая настройка

Удалите старую конфигурацию и произведите базовую настройку маршрутизаторов (подробно базовая настройка маршрутизатора рассматривалась в лабораторной работе №2).

```
Router *configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) *hostname R1
R1(config) *enable secret class
R1(config) *line console 0
R1(config-line) *password cisco
R1(config-line) *login
R1(config-line) *line vty 0 15
R1(config-line) *password cisco
```

Важное замечание. Не забудьте задать маршрутизаторам разные имена.

3.3.2 <u>Настройка интерфейсов Fast Ethernet</u>

При настройке интерфейсов используйте рассчитанные ранее адреса и маски (таблица 2). Ниже приведен пример настройки для интерфейса FastEthernet 0/0 на маршрутизаторе R1:

```
R1(config) # interface fa0/0
R1(config-if) # description connection to PC1
R1(config-if) # ip address 172.16.1.17 255.255.255.240
R1(config-if) # no shutdown
```

3.3.3 <u>Настройка интерфейсов Serial</u>

Для соединения маршрутизаторов между собой используются серийные порты (см. рис.1), в настройке которых имеются отличия от FastEthernet: на интерфейсе необходимо задать скорость канала в битах. Скорость задается на интерфейсе только с одной стороны канала связи, на DCE устройстве (Data Circuit-terminating Equipment — Аппаратура Передачи Данных). DCE устройство конвертирует сигналы от DTE (Data Terminal Equipment — Оконечное Оборудование Данных) и преобразует их в форму, приемлемую для передачи по линии WAN-служб. Поэтому, чтобы произвести настройку серийного интерфейса, необходимо узнать тип устройства на каждой стороне. Эту информацию можно получить при помощи команды show controllers serial. В примере ниже вывод команды сильно сокращен. Интересующая нас информация находится в начале и выделена красным:

```
R1#show controllers serial 0/0/0
Interface Serial0/0/0
Hardware is PowerQUICC MPC860
DCE V.35, clock rate 2000000
idb at 0x81081AC4, driver data structure at 0x81084AC0
SCC Registers:
```

General [GSMR]=0x2:0x00000000, Protocol-specific [PSMR]=0x8 Events [SCCE]=0x0000, Mask [SCCM]=0x0000, Status [SCCS]=0x00 Transmit on Demand [TODR]=0x0, Data Sync [DSR]=0x7E7E -----< вывод команды сокращен >-----

Следующим шагом является настройка интерфейса на маршрутизаторах (предполагается что, R1 – DCE, R2 – DTE):

R1(config)#interface serial 0/0/0

R1(config-if)#ip address 192.168.10.1 255.255.255.252

R1(config-if)#clock rate 2000000

R1(config-if)#no shutdown

R2(config)#interface serial 0/0/0 R2 (config-if)#ip address 192.168.10.2 255.255.255.252 R2 (config-if)#no shutdown

Аналогичным образом настройте другие интерфейсы Serial на всех маршрутизаторах в соответствии с обозначениями рисунка 1..

Важно! clock rate устанавливается только со стороны DCE устройства, задающего тактовую частоту работы приемопередатчиков на линии связи между маршрутизаторами.

После этого проверьте доступность соседних маршрутизаторов (имеющих непосредственное подключение друг к другу) при помощи команды ping:

R2 #ping 192.168.10.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.10.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 21/21/22 ms

3.4 Настройка компьютеров

Настройте компьютеры PC1, PC2, PC3, указав IP-адрес, маску и шлюз из таблицы 2 (настройка IP-адресов в Cisco Packet Tracer была описана в методических указаниях к лабораторной работе №1). При помощи команды ping проверьте доступность узлов сети: внутренние и внешние интерфейсы ближайших маршрутизаторов, дальних маршрутизаторов и компьютеров. Объясните полученные результаты

3.5 Настройка статической маршрутизации

Для продвижения пакетов из одной сети в другую маршрутизаторам необходимо знать, куда направлять входящие пакеты. Одним из вариантов сделать это — статическая маршрутизация. В оборудовании компании cisco добавление статических маршрутов осуществляется в режиме глобальной конфигурации при помощи команды "ip route". Команда имеет следующий синтаксис:

ip route (destination ip network address) (mask) (interface/next hop ip address)(metric) где

destination ip network address - ip-адрес сети назначения mask - маска сети назначения,

interface/next hop ip address — выходной интерфейс текущего маршрутизатора или ip-адрес следующего маршрутизатора, соответственно;

metric — метрика или приоритет маршрута (при существовании одинаковых маршрутов до одной и той же сети выбирается маршрут с меньшей метрикой). По умолчанию используется значение метрики равное 1.

Так, для того чтобы на маршрутизаторе R1 добавить маршрут до локальной сети LAN_2, в режиме глобальной конфигурации выполните команду:

R1(config)#ip route 10.10.10.0 255.255.255.0 192.168.10.2

Чтобы просмотреть текущую таблицу маршрутизации, выполните в привилегированном режиме команду **show ip route**:

R1#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area

* - candidate default, U - per-user static route, o - ODR

P - periodic downloaded static route

Gateway of last resort is not set

10.0.0.0/24 is subnetted, 1 subnets

S 10.10.10.0 [1/0] via 172.16.1.17

172.16.0.0/28 is subnetted, 1 subnets

C 172.16.1.16 is directly connected, FastEthernet0/0

192.168.10.0/30 is subnetted, 2 subnets

- C 192.168.10.0 is directly connected, Serial0/0/0
- C 192.168.10.4 is directly connected, Serial0/0/1

В выводе команды символом С отмечены сети, непосредственно подключенные к маршрутизатору, символ S используется для обозначения статических маршрутов. Расшифровка символов приводится в самом начале вывода команды.

Обратите внимание, что интерфейс fa 0/0 маршрутизатора R1 имеет адрес, принадлежащий сети LAN1, интерфейс Se 0/0/0 относится сети WAN1, а Se 0/0/1 – к сети WAN3. Поэтому маршрутизатор изначально знает о существовании этих сетей, что в таблице маршрутизации отмечено символом С. Эти сети (LAN1, WAN1, WAN3) прописывать на R1 не нужно.

На маршрутизаторе R1 добавьте статические маршруты до всех сетей, к которым маршрутизатор не подключен (LAN2, WAN2). Затем проверьте правильность указания статических маршрутов, изучив вывод команды show ip route.

С компьютера PC1 проверьте доступность интерфейсов маршрутизаторов и компьютеров в других локальных сетях. Как изменилась доступность узлов по сравнению с проверкой, выполнявшейся в п.3.3 настоящей работы? Как объяснить подобное поведение устройств в сети?

Изучите таблицу маршрутизации на остальных маршрутизаторах (R2, R3). Добавьте необходимые статические маршруты, чтобы обеспечить полносвязность сети. Для проверки изучите таблицы маршрутизации на маршрутизаторах R2 и R3.

Важно! Маршруты должны быть прописаны в двух направлениях. Это необходимо для того, чтобы передаваемые пакеты достигали узла назначения, а пакеты от узла назначения могли вернуться к узлу-источнику.

С компьютера РС1 проверьте доступность интерфейсов маршрутизаторов и компьютеров в других локальных сетях. Как изменилась доступность узлов по сравнению с предыдущей проверкой?

3.6 <u>Исследование отказоустойчивости сети со статической маршрутизацией</u>

Статическая маршрутизация помимо своих преимуществ — простоты настройки и отсутствия вычислительной нагрузки на ЦП, имеет один очень важный недостаток — неспособность автоматически реагировать на изменения топологии, происходящих в результате сбоев или модернизации сети.

B Cisco Packet Tracer удалите линию связи между маршрутизаторами R1 и R3. Затем с компьютера PC1 проверьте доступность интерфейсов маршрутизаторов и компьютеров в других локальных сетях.

С чем связано потеря полносвязности в сети?

Восстановите работоспособность сети, изменив статические маршруты таким образом, чтобы сети LAN1 и LAN3 были снова доступны друг для друга. Для удаления старых статических маршрутов используйте команду **no ip route**:

R1(config)#no ip route 172.16.1.32 255.255.258.248 192.168.10.6

3.7 Создание альтернативных маршрутов

Одним из способов повышения отказоустойчивости сети является задание альтернативных маршрутов. В основе этого метода лежит использование параметра **metric** в команде **ip route static**. На каждом маршрутизаторе продублируйте все существующие маршруты, заменив на них next hop ip-адресом интерфейса другого маршрутизатора и указав metric равный двум. Ниже приведен пример для R1 для сети LAN_2 (10.10.10.0/24):

```
R1#show running-config
Building configuration...
-----< вывод команды сокращен >-----!
ip classless
ip route 10.10.10.0 255.255.255.0 192.168.10.2
-----< вывод команды сокращен >-----
```

R1(config)#ip route 10.10.10.0 255.255.255.0 192.168.10.6 2

При помощи команды show ip route просмотрите таблицу маршрутизации: R1#sh ip route

```
-----< вывод команды сокращен >----
10.0.0.0/24 is subnetted, 1 subnets

S 10.10.10.0 [1/0] via 192.168.10.2
172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks

C 172.16.1.16/28 is directly connected, FastEthernet0/0

S 172.16.1.32/28 [1/0] via 192.168.10.6

S 172.16.1.32/29 [1/0] via 192.168.10.6

192.168.10.0/30 is subnetted, 3 subnets

C 192.168.10.0 is directly connected, Serial0/0/0

C 192.168.10.4 is directly connected, Serial0/0/1

S 192.168.10.8 [1/0] via 192.168.10.2
```

Обратите внимание, что в таблице маршрутизации новые маршруты отсутствуют, т.к. их метрика меньше маршрутов созданных раньше.

3.8 Проверка отказоустойчивости сети с альтернативными маршрутами

Снова удалите линию связи между маршрутизаторами R1 и R3.

При помощи команды show ip route просмотрите таблицу маршрутизации. В таблице маршретизации появились маршруты с метрикой 2.

R1#sh ip route

R1#sh ip route

-----< вывод команды сокращен >-----

10.0.0.0/24 is subnetted, 1 subnets

10.10.10.0 [2/0] via 192.168.10.6

172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks

- C 172.16.1.16/28 is directly connected, FastEthernet0/0
- S 172.16.1.32/28 [1/0] via 192.168.10.6
- S 172.16.1.32/29 [1/0] via 192.168.10.6
 - 192.168.10.0/30 is subnetted, 1 subnets
- C 192.168.10.4 is directly connected, Serial0/0/1

С компьютера РС1 проверьте доступность интерфейсов маршрутизаторов и компьютеров в других локальных сетях.

3.9 <u>Формирование маршрута «по умолчанию»</u>

Часто возникают ситуации, когда указанный в пакете адрес сети назначения отсутствует в зафиксированных маршрутах. В этом случае пакеты направляются на интерфейс соседнего маршрутизатора, имеющего выходы в общую сеть. Для этого формируется так называемый маршрут «по умолчанию». Синтаксис такой команды:

ip route 0.0.0.0 0.0.0.0 (interface/ next hop ip address)

В маршруте «по умолчанию» ір-адрес сети назначения указан как 0.0.0.0 и маска сети назначения как 0.0.0.0.

Пример команды: ip route 0.0.0.0 0.0.0.0 192.168.10.1

Команда означает, что все пакеты, имеющие неизвестные адреса назначения, следует отправлять на адрес 192.168.10.1.

Важно! В случае наличия нескольких маршрутов со статической маршрутизацией выбирается более специфичный, т.е. тот, в котором указана более точно сеть назначения. Таким образом, получается, что маршрут по умолчанию имеет самый низкий приоритет. Это удобно, т.к. позволяет значительно сократить количество записей в таблице маршрутизации: можно создавать только те маршруты, у которых next-hop отличается от маршрута «по умолчанию».

B Cisco Packet Tracer создайте устройство Generic Server-PT и подключите его к порту FastEthernet 0/1 маршрутизатора R2, как показано на рис.2

Рис.2. Добавление сервера к исходной сети

Настройте интерфейсы сервера и маршрутизатора, используя данные из таблицы 3.

Таблица 3

Название	Интерфейс	Подсеть	IP	Маска	Шлюз
устройства					
R2	Fa0/1	10.10.11.0/30	10.10.11.1	255.255.255.252	-
Server1	Fa	10.10.11.0/30	10.10.11.2	255.255.255.252	10.10.11.1

На маршрутизаторах R1 и R3 пропишите маршрут «по умолчанию» на маршрутизатор R2:

R1(config)#ip route 0.0.0.0 0.0.0.0 192.168.10.2

R3(config)#ip route 0.0.0.0 0.0.0.0 192.168.10.9

Просмотрите таблицу маршрутизации:

10.0.0.0/24 is subnetted, 1 subnets

- S 10.10.10.0 [1/0] via 192.168.10.2
 - 172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
- C 172.16.1.16/28 is directly connected, FastEthernet0/0
- S 172.16.1.32/28 [1/0] via 192.168.10.6
- S 172.16.1.32/29 [1/0] via 192.168.10.6

192.168.10.0/30 is subnetted, 3 subnets

- C 192.168.10.0 is directly connected, Serial0/0/0
- C 192.168.10.4 is directly connected, SerialO/0/1
- S 192.168.10.8 [1/0] via 192.168.10.2

S* 0.0.0.0/0 [1/0] via 192.168.10.2

Проверьте доступность интерфейса Fa0/1 маршрутизатора R2 и сервера Server1 с компьютеров локальных сетей при помощи команды ping:

PC>ping 10.10.11.2

Pinging 10.10.11.2 with 32 bytes of data:

Reply from 10.10.11.2: bytes=32 time=130ms TTL=126

Reply from 10.10.11.2: bytes=32 time=115ms TTL=126

Reply from 10.10.11.2: bytes=32 time=104ms TTL=126

Reply from 10.10.11.2: bytes=32 time=104ms TTL=126

```
Ping statistics for 10.10.11.2:
Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
Minimum = 104ms, Maximum = 130ms, Average = 113ms
```

4. Статическая маршрутизация на реальном оборудовании

4.1. Организация работы

Разбейтесь на группы по два-четыре человека. В зоне ответственности каждой группы должен находиться один маршрутизатор, коммутатор и два компьютера (один компьютер будет узлом сети, второй используйте для подключения к маршрутизатору через консоль).

4.2. Подключение сетевых устройств

Включите устройства и соедините их между собой, выбрав правильный тип кабеля согласно схеме Рис. Ошибка! Источник ссылки не найден. Используя специальный консольный кабель, подключите СОМ-порт (разъем DВ-9) компьютеров к своему маршрутизатору. Подключитесь к терминалу маршрутизаторов, используя программу putty, как было описано в работе №2.

4.3. Удаление предыдущей конфигурации

Для предотвращения лишних ошибок удалите предыдущую конфигурацию маршрутизатора.

```
R1#enable
R1#erase startup-config
Erasing the nvram filesystem will remove all configuration files!
Continue? [confirm]y[OK]
Erase of nvram: complete
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram
R1#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
```

Аналогичные действия проделайте на своем коммутаторе:

```
Switch#enable
Switch#erase startup-config
Erasing the nvram filesystem will remove all configuration files!
Continue? [confirm]y[OK]
Erase of nvram: complete
%SYS-7-NV_BLOCK_INIT: Initialized the geometry of nvram

Switch#copy running-config startup-config
Destination filename [startup-config]?
Building configuration...
[OK]
```

Важно! Не забывайте сохранять конфигурацию устройств при помощи команды **copy running-config startup-config**

4.4. <u>Конфигурация маршрутизаторов и настройка статической маршрутизации</u>

Совместно с преподавателем повторите пункты 3.2-3.9 настоящей работы на реальной сети с учетом специфики оборудования.

5. Задание для самостоятельной работы

Получите у преподавателя pkf-фаил с персональным заданием. Откройте этот файл в программе Cisco Packet Tracer и следуйте инструкциям, которые появятся после открытия файла. Отправьте преподавателю в электронном виде отчет о выполнении самостоятельной работы.

6. Рекомендуемые материалы

- 1. М.А.Плоткин. Лекции по курсу «Сети связи и системы коммутации». Тема 6 Технология Интернет. Раздел «Маршрутизация в IP-сетях».
- 2. В.Г.Олифер и др. Компьютерные сети. 4-е издание, ПИТЕР, 2012г. Глава 16 Протокол межсетевого взаимодействия. Раздел «Схема IP-маршрутизации», стр.517-533;
- 3. В.Г.Олифер и др. Компьютерные сети. 4-е издание, ПИТЕР, 2012г. Глава 17 Базовые протоколыТСР/IP. Раздел «Общие свойства и классификация протоколов маршрутизации», стр. 572-574.
- 4. Димарцио Д.Ф. Маршрутизаторы Cisco. Пособие для самостоятельного изучения. Перевод с англ. СПб: Символ Плюс, 2003г.
- 5. Хаброкен Д. Как работать с маршрутизаторами Cisco. Перевод с англ. М: ДМК Пресс. 2005г.
- 6. Интернет ресурс linkmeup. Сети для самых маленьких. Часть третья. Статическая маршрутизация http://linkmeup.ru/blog/14.html, 2013 г.