Répondez directement sur l'énoncé en détaillant vos calculs et justifiant vos raisonnements.

Nom: CORRIGÉ

1. À l'aide de l'algorithme d'Euclide, résoudre la congruence 2096 $x \underset{97627}{\equiv} 1.$

Idée : on fabrique par combinaisons linéaires successives des congruences de la forme

$$\ell_i : a_i \underset{97627}{\equiv} 2096 x_i$$

jusqu'à obtenir celle qu'on cherche (qui existe forcément puisque $2096 \land 97627 = 1$).

Par exemple:

	i	$ a_i $	x_i
	1	97627	0
	2	2096	1
$\ell_1 - 46\ell_2$	3	1211	-46
$\ell_2 - \ell_3$	4	885	47
$\ell_3 - \ell_2$	5	326	-93
$\ell_4 - 2\ell_3$	6	233	233
$\ell_5 - \ell_4$	7	93	-326
$\ell_6 - 2\ell_5$	8	47	885
$\ell_7 - \ell_6$	9	46	-1211
$\ell_8 - \ell_7$	10	1	2096

et la dernière ligne nous apprend que $x \equiv 2096$.

2. À l'aide du théorème des restes chinois et de la factorisation $97627 = 233 \cdot 419$, confirmer votre réponse en 1.

Soit $\varphi: \mathbf{Z}_{97627} \to \mathbf{Z}_{233} \times \mathbf{Z}_{419}$ l'isomorphisme donné par le théorème des restes chinois.

On a, dans \mathbf{Z}_{97627} ,

$$2096 \cdot x = 1 \iff \varphi(2096 \cdot x) = \varphi(1)$$

$$\iff \varphi(2096) \cdot \varphi(x) = \varphi(1)$$

$$\iff (-1,1) \cdot \varphi(x) = (1,1)$$

$$\iff \varphi(x) = (-1,1)^{-1}$$

$$\iff \varphi(x) = (-1,1)$$

$$\iff x = \varphi^{-1}(-1,1) = 2096.$$

3. Combien existe-t-il de racines primitives dans \mathbf{Z}_{19} ? Construire une des tables de logarithmes possibles.

D'après un résultat vu en classe, on sait qu'il y a au moins une racine primitive dans \mathbf{Z}_{19} , de sorte que $\mathbf{Z}_{19}^{\times} \cong \mathbf{Z}_{18}$. Les racines primitives étant les éléments générateurs pour ce groupe, on conlut qu'il y en a

$$\phi(18) = \phi(2) \cdot \phi(9) = 1 \cdot (9-3) = 6.$$

Pour trouver une première racine primitive, on calcule les puissances d'un élément pris au hasard, par exemple $\alpha=2$:

Puisque ces 18 puissances sont toutes distinctes, on remarque que $\operatorname{ord}_{19}(2) = 18$ et donc que 2 est une racine primitive. Les 5 autres sont de la forme 2^i avec $i \wedge 18 = 1$, soit

4. Résoudre, avec un minimum de calculs, l'équation $9x^2 + x + 2 = 0$ dans \mathbf{Z}_{19} .

Puisque $2 \in \mathbf{Z}_{19}^{\times}$, on peut utiliser la formule usuelle et dire que les racines sont de la forme

$$x = \frac{-1 + \delta}{2 \cdot 9}$$

οù

$$\delta^2 = \Delta = 1^2 - 4 \cdot 9 \cdot 2 = 1 - 2^2 \cdot 2^8 \cdot 2^1 = 1 - 2^{11} = 1 - 15 = 5 = 2^{16} = (\pm 2^8)^2 = (\pm 9).$$

On trouve donc

$$x = \frac{-1 \pm 9}{2 \cdot 9} = \frac{-1 \pm 9}{-1} = 10 \text{ ou } -8 = 10 \text{ ou } 11.$$