

INNER PRODUCTS

Why

1

Definition

Let (X, \mathbf{R}) be a vector space. A function $f: X \times X \to \mathbf{R}$ is an *inner product* on the vector space (X, \mathbf{R}) if

1.
$$f(x,x) \ge 0, = 0 \longleftrightarrow x = 0,$$

2.
$$f(x + y, z) = f(x, z) + f(y, z)$$
,

3.
$$f(x,y) = f(y,x)$$
, and

4.
$$f(\alpha x, y) = \alpha f(x, y)$$
.

An *inner product space* is an ordered pair: a real vector space and an inner product.²

Examples

 \mathbb{R}^n with the usual inner product is an inner product space. Some authors call any finite-dimensional inner product space over the real numbers is a *Euclidean vector space*.

Examples

If $f: X \times X \to \mathbf{R}$ is an inner product we regularly denote f(x,x) by $\langle x,x \rangle$.

¹Future editions will complete and rework this sheet.

²Future editions will discuss complex inner products.

Orthogonality

Two vectors in an inner product space are *orthogonal* if their inner product is zero. An *orthogonal family of vectors* in an inner product space is a family of vectors for which distinct family members are orthogonal.

A vector is *normalized* if its inner product with itself is one.

