

Problème

On s'intéresse dans ce problème au mouvement d'un disque en contact avec une demicirconférence. On considère le problème plan, c'est-à-dire que les vitesses et les efforts en jeu appartiennent au même plan vectoriel (\vec{x}_0, \vec{y}_0) .

Soit R_g un référentiel galiléen et $R_0:(O,\vec{x}_0,\vec{y}_0)$ un repère orthonormé direct lié à ce référentiel, \vec{y}_0 étant vertical ascendant. Le disque S, de centre G, est homogène de rayon r et de masse m. la demi-circonférence C de centre O, de rayon R (R>r) est contenue dans le plan (O,\vec{x}_0,\vec{y}_0) . Outre les efforts de contact le disque S est soumis aux actions de la gravité, le champ de pesanteur étant noté $-g\vec{y}_0$.

On note:

- I le point de contact de S avec C.
- \vec{n} le vecteur unitaire normal à C en I.
- R_1 un repère orthonormé direct $(O, \vec{t}, \vec{n}, \vec{z}_0)$ où \vec{t} est un vecteur unitaire tangent à C en I.
- R un repère orthonormé direct lié à $S(G, \vec{x}, \vec{y}, \vec{z}_0)$.

La position dans $R_0:(O,\vec{x}_0,\vec{y}_0)$ de tout point lié à S est repère au moyen de deux angles $\alpha(t)$ et $\beta(t)$ (fonctions du temps t et comptés positivement autour de \vec{z}_0), où:

$$\alpha(t) = (\vec{x}_0, \vec{t}) = (\vec{y}_0, \vec{n})$$
$$\beta(t) = (\vec{x}_0, \vec{x}) = (\vec{y}_0, \vec{y})$$

Dans tout le problème, les résultats vectoriels sont à exprimer dans la base $(O, \vec{t}, \vec{n}, \vec{z}_0)$.

Etude cinématique:

- a. Déterminer les vecteurs de rotations $\vec{\Omega}_{(R_1/R_e)}; \vec{\Omega}_{(S/R_e)}; \vec{\Omega}_{(S/R_1)}$.
- b. Déterminer le vecteur $\vec{V}(G \in S/R_g)$ et $\vec{\Gamma}(G \in S/R_g)$.
- c. Déterminer les torseurs cinématiques $V(R_1/R_g)$ et $V(S/R_g)$ par leurs éléments de réduction aux points de votre choix.
- d. Déterminer la vitesse du point géométrique de contact I par rapport à R_g .
- e. Déterminer la vitesse de glissement en *I* de *S* par rapport à *C*.
- f. En déduire la vitesse du point géométrique de contact *I* par rapport à *S*.
- g. Dans l'hypothèse d'un roulement sans glissement de S sur C déterminer l'expression de $\dot{\beta}$ en fonction de $\dot{\alpha}$, R et r.

Etude cinétique:

a. Soit $J_G(S)$ l'opérateur d'inertie du disque S (d'épaisseur nulle). Expliquer pourquoi la matrice $I_G(S)$ de cet opérateur a pour expression dans toute base orthonormée du type $(-,-,\vec{z}_0)$:

$$I_G(S) = \begin{bmatrix} A & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & C \end{bmatrix}$$
; exprimer C .

- b. On admet que $C = \frac{1}{2}mr^2$, en déduire la valeur de A.
- c. Déterminer le moment cinétique $\vec{\sigma}_G(S/R_g)$ de S par rapport à R_g en G.
- d. Déterminer le torseur cinétique $\sigma_G(S/R_g)$ de S par rapport à R_g .

Etude dynamique:

- a. Déterminer le moment dynamique $\vec{\delta}_G(S/R_g)$ de S par rapport à R_g en G.
- b. Déterminer le torseur dynamique $\delta_G(S/R_g)$ de S par rapport à R_g .
- c. En déduire le moment dynamique $\vec{\delta}_I(S/R_g)$ de S par rapport à R_g en I.