

AoPS Community 1995 USAMO

USAMO 1995

www.artofproblemsolving.com/community/c4493

by MithsApprentice, bookworm271828, paul_mathematics, rrusczyk

- April 27th
- Let p be an odd prime. The sequence $(a_n)_{n\geq 0}$ is defined as follows: $a_0=0, a_1=1, \ldots, a_{p-2}=p-2$ and, for all $n\geq p-1, \ a_n$ is the least positive integer that does not form an arithmetic sequence of length p with any of the preceding terms. Prove that, for all $n, \ a_n$ is the number obtained by writing n in base p-1 and reading the result in base p.
- A calculator is broken so that the only keys that still work are the \sin , \cos , and \tan buttons, and their inverses (the \arcsin , \arccos , and \arctan buttons). The display initially shows 0. Given any positive rational number q, show that pressing some finite sequence of buttons will yield the number q on the display. Assume that the calculator does real number calculations with infinite precision. All functions are in terms of radians.
- Given a nonisosceles, nonright triangle ABC, let 0 denote the center of its circumscribed circle, and let A_1 , B_1 , and C_1 be the midpoints of sides BC, CA, and AB, respectively. Point A_2 is located on the ray OA_1 so that OAA_1 is similar to OA_2A . Points B_2 and C_2 on rays OB_1 and OC_1 , respectively, are defined similarly. Prove that lines AA_2 , BB_2 , and CC_2 are concurrent, i.e. these three lines intersect at a point.
- **4** Suppose q_0, q_1, q_2, \ldots is an infinite sequence of integers satisfying the following two conditions:
 - (i) m-n divides q_m-q_n for $m>n\geq 0$,
 - (ii) there is a polynomial $\,P\,$ such that $\,|q_n| < P(n)\,$ for all $\,n\,$

Prove that there is a polynomial Q such that $q_n = Q(n)$ for all n.

Suppose that in a certain society, each pair of persons can be classified as either *amicable* or *hostile*. We shall say that each member of an amicable pair is a *friend* of the other, and each member of a hostile pair is a *foe* of the other. Suppose that the society has n persons and q amicable pairs, and that for every set of three persons, at least one pair is hostile. Prove that there is at least one member of the society whose foes include $q(1-4q/n^2)$ or fewer amicable pairs.

AoPS Community 1995 USAMO

These problems are copyright © Mathematical Association of America (http://maa.org).