Inteligentne Systemy Obliczeniowe Wykład 6

Piotr Wąsiewicz Zakład Sztucznej Inteligencji - ISE FW

pwasiewi@elka.pw.edu.pl

Generowanie reguł klasyfikujących algorytmem AQ

Indukcja reguł

• $k_1 = \{< \text{słoneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepła}, ?, ?> \}$ $k_2 = \{< \text{słoneczna}, \text{ciepła}, ?, ?> \}$ $k_2 \prec k_1$

 k_2 jest bardziej szczegółowe od k_1 , k_1 jest bardziej ogólne od k_2

- $S\rhd k$ to dokładniej $(\exists k\in S)k\rhd x$ zbiór wszystkich x pokrywanych przez $k\in S$
- $\{k_1 \triangleright x\} = \{1, 2, 5, 6, 9\}$
- $\{k_2 \rhd x\} = \{1, 2\}$
- Kompleks tylko z jednym selektorem nieuniwersalnym zwany jest kompleksem atomowym .

Indukcja reguł - sekwencyjne pokrywanie

funkcja sekwencyjne-pokrywanie(T) argumenty wejściowe:

T - zbiór trenujący dla pojęcia c

zwraca: zbiór reguł reprezentujący hipotezę przybliżającą c

```
R:=0; P:=T; jak długo P\neq 0 wykonaj k:=\operatorname{znajd\acute{z}\text{-kompleks}}(T,P); d:=\operatorname{kategoria}(k,T,P); R:=R\cup\{k\rightarrow d\}; P:=P-P_k; koniec jak długo zwróć R
```


Indukcja reguł - algorytm AQ

funkcja znajdź-kompleks-aq(T, P) argumenty wejściowe:

- T zbiór trenujący dla pojęcia c,
- P podzbiór zbioru T zawierający przykłady nie pokryte przez wygenerowane wcześniej reguły

zwraca: kompleks pokrywający pewną liczbę przykładów z P należących do jednej kategorii;

```
x_s := \mathsf{ziarno} - \mathsf{pozytywne}(P); S := \{<?>\}; \mathsf{jak} \ \mathsf{d}\mathsf{lugo} \ (\exists x \in T)S \rhd x \land c(x) \neq c(x_s) \ \mathsf{wykonaj} x_n := \mathsf{ziarno} - \mathsf{negatywne}(T, S, x_s); S' := \mathsf{czesciowa} - \mathsf{gwiazda}(x_s, x_n); \mathsf{jesli} \ S' = 0 \ \mathsf{to} \ \mathsf{zwroc} < 0 >; \mathsf{koniec} \ \mathsf{jesli} S := S \cap S' S := S \cap S' S := S - \{k \in S | (\exists k' \in S)k \prec k'\} S := \mathsf{Arg} \ \mathsf{max}_{k \in S}^m \ v_k(x_s, T, P) \mathsf{koniec} \ \mathsf{jak} \ \mathsf{d}\mathsf{lugo} \mathsf{zwroc} \ \mathsf{arg} \ \mathsf{max}_{k \in S} \ v_k(x_s, T, P)
```


Indukcja reguł - częściowa gwiazda

- x_s ziarno-pozytywne,
- x_n ziarno-negatywne

zwraca: zbiór maksymalnie ogólnych kompleksów pokrywających x_s i nie pokrywających x_n

$$S' := 0$$

dla wszystkich atrybutów a_i określonych na dziedzinie wykonaj

$$k:=$$
; - kompleks $V:=A_i-\{a_i(x_n)\};$ jeśli $a_i(x_s)\in V$ to umieść selektor s_V w k na pozycji i ; $S':=S'\cup\{k\};$

koniec jeśli

koniec dla

Zbiór testowy T

ISO - p. 7/9

Kolejne kroki algorytmu AQ

•
$$x_s = 1, c(x_s) = 0, x_n = 3, c(x_n) = 1, S = \{ \}$$

• powstaje częściowa gwiazda: $S' = S \cap S' = \{ < \text{słoneczna} \lor \text{deszczowa}, ?, ?, ? > \};$

• gwiazda w dalszym ciągu pokrywa przykłady z T o kategorii 1, wybór $x_n=4$

• $S' = \{ \langle s \text{ioneczna} \vee pochmurna, ?, ?, ? \rangle, \langle ?, z \text{imna} \vee c \text{iepła}, ?, ? \rangle \}$

• $S \cap S' = \{ < \text{słoneczna}, ?, ?, ? >, < \text{słoneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepła}, ?, ? > \}$

• $S = \{k_1, k_2\}, v_{k_1} = |T_{k_1}^0| + (|T^1| - |T_{k_1}^1|) = 3 + (9 - 2) = 10,$ $v_{k_2} = 10$

• wybór pada na k_2 , który pokrywa dalej przykłady z c=1, $x_n=5$

• $S' = \{ < \text{słoneczna} \lor \text{pochmurna}, ?, ?, ? >, < ?, \text{umiarkowana} \lor \text{ciepła}, ?, ? >, <?, ?, \text{duża}, ? > \}$

• $S \cap S' = \{ < \text{słoneczna}, \text{zimna} \lor \text{ciepła}, ?, ? >, < \text{słoneczna} \lor \text{deszczowa}, \text{ciepła}, ?, ? >, <$

Kolejne kroki algorytmu AQ

- 3. $P = \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14\}$, dla $P \neq 0$ znajdź-kompleks (T, P)
- 4. dla $x_s=3, c(x_s)=1$ powstaje nowa reguła: $R=\{<$ słoneczna \lor deszczowa, zimna \lor ciepła, duża, $?>\to 0, <$ pochmurna \lor deszczowa, ?,?, słaby $>\to 1\}$
- 5. Po kolejnych wywołaniach głównej funkcji i zmniejszaniu zbioru P otrzymuje się zbiór reguł:

 $R = \{ \langle \text{słoneczna} \lor \text{deszczowa}, \text{zimna} \lor \text{ciepła}, \text{duża}, ? \rangle \rightarrow 0, \}$

< pochmurna \lor deszczowa, ?, ?, słaby $> \rightarrow 1$,

< deszczowa, zimna \lor umiarkowana, ?, silny $> \to 0$,

< słoneczna \lor pochmurna, zimna \lor umiarkowana, ?, silny $> \to 1$,

< słoneczna \lor pochmurna, zimna \lor umiarkowana, duża, słaby $> \to 0$,

<?,?, normalna, słaby $> \rightarrow 1$

