矩阵乘法 实验报告

吴佳龙 2018013418

摘要

本次实验结合理论分析和程序设计,运用了不同算法计算矩阵乘法,具体地,这些方法为:暴力方法,Strassen 算法,改进的 Strassen 算法,并验证了它们的结果正确性,比较了它们的计算时间,实验结果与理论分析相符。并意外地,发现了一个由 CPU 缓存机制影响计算时间的现象。

1 问题

比较两个矩阵相乘的常规方法与 Strassen 方法。

说明:为了方便比较,本次实验中限定参与计算的矩阵为方阵,研究方阵规模 n 对于计算效率的影响。

2 实验环境

操作系统: Windows 10 IDE: Visual Studio 2017

处理器: 3.1 GHz 双核 Intel Core i5

3 算法分析

本次实验共两种算法,分别在以下 2 个小 节中进行算法描述与分析。

3.1 暴力方法

void mut_brute(const mat & A, const mat
& B, mat & res);

算法描述 根据矩阵乘法的计算公式

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}, \forall i, j = 1, \cdots, n$$

通过朴素的三重循环实现。

时间复杂度分析 $\Theta(n^3)$

3.2 Strassen 算法及其改进

void mut_strassen(const mat & A, const
 mat & B, mat & res);

void mut_strassen_plus(const mat & A,
 const mat & B, mat & res);

算法原理 将 C = AB 分块成 $\frac{n}{2} \times \frac{n}{2}$ 矩阵之间的运算

$$\left[\begin{array}{cc} r & s \\ t & u \end{array}\right] = \left[\begin{array}{cc} a & b \\ c & d \end{array}\right] \cdot \left[\begin{array}{cc} e & f \\ g & h \end{array}\right]$$

并定义

$$P_{1} = a \cdot (f - h), P_{2} = (a + b) \cdot h$$

$$P_{3} = (c + d) \cdot e, P_{4} = d \cdot (g - e)$$

$$P_{5} = (a + d) \cdot (e + h), P_{6} = (b - d) \cdot (g + h)$$

$$P_{7} = (a - c) \cdot (e + f)$$

可以验证有

$$r = P_5 + P_4 - P_2 + P_6$$

$$s = P_1 + P_2$$

$$t = P_3 + P_4$$

$$u = P_5 + P_1 - P_3 - P_7$$

时间复杂度分析 每一次分治的过程共需要调用 7 次乘法,这些乘法为规模更小的子问题,其余的矩阵加减操作的复杂度为 $\Theta(n^2)$ 。因此复杂度满足

$$T(n) = 7T(\frac{n}{2}) + \Theta(n^2)$$

运用主定理解得

$$T(n) = \Theta(n^{\log_2 7}) \approx \Theta(n^{2.81})$$

Strassen 算法的改进 在运用 Strassen 算法的过程中,发现 Strassen 算法虽然渐进意义下复杂度优于暴力方法,但是在 n 不太大的范围内(本次实验对 $n \le 2000$ 左右统计了计算时间),实际计算时间远远多于暴力方法。具体结果详见 Section 4。

经过思考,实际实现的 Strassen 算法效率 不高的重要原因是: 当 n 特别小时,若仍运用 Strassen 算法原理中的计算公式进行计算,复 杂度的常数因子极其巨大。

因此提出对于 Strassen 算法的改进: 递归调用时,若 n 的大小小于某一阈值 n_{thre} ,则改为暴力方法计算。这一阈值可以是精心挑选的,理想情况下,它应该是暴力方法与朴素 Strassen 算法的时间曲线的交点。本次实验中,固定阈值 $n_{thre}=50$,根据实验结果,这已经能大大加快 Strassen 算法的效率,从而超越暴力方法。

改进的时间复杂度分析 在渐进意义下,对于 $n \leq n_{thre}$ 的矩阵做乘法,计算复杂度是 $\Theta(1)$ 的。改进的 Strassen 的复杂度为

$$T(n) = \begin{cases} 7T(\frac{n}{2}) + \Theta(n^2), & n > n_{thre} \\ \Theta(1), & n \leq n_{thre} \end{cases}$$

解得

$$T(n) \approx \Theta(1 \cdot (\frac{n}{n_{thre}})^{2.81}) = \Theta(n^{2.81})$$

与朴素 Strassen 算法相同,且具有更小的常数 因子。

4 结果分析

4.1 结果正确性

首先我们验证了算法实现的正确性,验证方法为:随机生成两矩阵 $A,B \in [-100,100]^{n\times n}$,并调用不同方法计算他们的乘积,再比较不同方法的结果。注意到这里为了防止计算结果超出 int 类型的范围,我们限定矩阵元素位于区间 [-100,100] 且为整数。

实验表明,对于随机生成的两矩阵,不同 方法的计算结果总是相同的。由此可以认为我 们对于算法的实现是无误的。

4.2 计算时间

对于不同大小的 n , 统计不同方法进行一次矩阵乘法的计算时间如图 1 。

结果分析 暴力方法的计算时间随着 n 的增大而呈现一条下凸曲线,这符合 $\Theta(n^3)$ 的时间复杂度。

朴素的 Strassen 算法所需的时间超过了暴力方法,即使它的渐进意义下的复杂度更低,这是由于常数因子过大造成的。另外,在n=300,400,500之间,计算时间呈现出阶梯状;在 $n=600\sim1000$ 之间也出现了 90-100 s左右的阶梯。具体原因由于知识所限无法分析,猜测可能与 CPU 的多级缓存有关。

改进的 Strassen 算法的效率超过了暴力方法,也呈现一条下凸曲线,但增长更加缓慢。

4.3 CPU 缓存机制对于计算时间的影响

对一些特殊的 n 调用暴力方法,得到的结果如表 1。

结果分析 对于 n = 512, 1024, 2048,计算速度都出人意料地慢于它们的邻近值。

结合自己有限的计算机体系结构的相关知识,做出的原因分析如下:在本次实验的代码实现中,为了提高效率,将二维矩阵采用一维数组的形式存储,而在某些操作中,需要对矩阵的第一维下标进行枚举,造成了对于内存地址可能的步长为2的幂次的连续访问,而这些地址的末几位都是相同的。根据缓存机制,这些地址都被缓存到同一组,不断冲突,带来大量的内存访问,从而使 CPU 缓存的作用大大降低。

因此, CPU 高速缓存友好的代码实现应尽量避免步长为 2 的较大次幂的访问模式, 从而避免缓存冲突。

在矩阵乘法这一问题下,解决方式很简单: 将规模为 2 的幂次的矩阵存储在稍微大一点

Figure 1: n 在 100 至 2000 之间,不同算法的运行时间。

Table 1: CPU 缓存机制对计算时间的影响

n	计算时间 (s)	n	计算时间 (s)	n	计算时间 (s)
510	0.4533672064	1022	4.9410565644	2046	62.9813054067
511	0.4090590820	1023	4.9569864271	2047	62.7638478806
512	0.6051968601	1024	16.8471694999	2048	146.7896244709
513	0.4238428995	1025	5.0706152361	2049	62.5015500551
514	0.4265950617	1026	4.9658465305	2050	62.9635729621
<u> </u>					

的数组中,比如将 2048×2048 的矩阵存储在 **朴素的 Strassen 算法** $\Theta(n^{2.81})$ 的复杂度具 2049×2049的数组中。

总结: 不同方法的比较

法慢多少, 甚至快于朴素的 Strassen 算法。

有很高的理论价值, 但是实现繁琐, 且常数因 子过大,需要非常精细的实现,且 n 较大的情 况下,才能超越暴力方法的运算效率。

暴力方法 实现极其简单,常数因子小, $\Theta(n^3)$ 改进的 Strassen 算法 结合了暴力方法 的复杂度在小范围的 n 也并不比 Strassen 算 和 Strassen 算法各自的优点,复杂度仍为 $\Theta(n^{2.81})$,但常数因子较小,快于暴力方法。