[Dynamic Programming]

Dr Dayal Kumar Behera

Sub-string vs Sub-sequence

Sub-string	Sub-sequence		
A string that is part of a longer string	A sequence that is part of a longer sequence.		
Ordered and symbols are consecutive	Ordered but symbols are not necessarily consecutive		
X = "abcdef" Y = "bcd" Y is a sub-string of X	X = "abcdef" Y = "bde" Y is a sub-sequence of X		

DNA Strand or chain is expressed as a string over a finite set {A, C, G, T}

S1 = ACCGGTCGAGTCGCGCGGAAGCCGGCCGAA

S2 = GTCCGTTCGGAATGCCGTTGCTCTGTAAA

We want to determine how similar these DNA strands are:

- A common approach is to check if one strand is a subsequence of the other.
- In other words, we're looking for a third strand, S3, where the bases in S3 appear in both S1 and S2.
- These bases must appear in the same order, but not necessarily consecutively.
- The longer the strand S3, the more similar the DNA strands are.

Formal Definition: Subsequence

Given a Sequence $X = \langle x_1, x_2, x_3, \dots, x_n \rangle$

another sequence $Z = \langle z_1, z_2, z_3, ..., z_k \rangle$ is a subsequence of X if there exist a strictly increasing sequence $\langle i_1, i_2, i_3, ..., i_k \rangle$ of indices of X such that for all j = 1, 2, ..., k we have $x_{i_j} = z_j$

Example

 $X = \langle A, B, C, B, D, A, B \rangle$

 $Z = \langle B, C, D, B \rangle$ is a subsequence of X with index sequence (2, 3, 5, 7)

$$x_{i_1} = z_1 \rightarrow x_2 = z_1$$
 for $i_1 = 2$, Z is found in X

Formal Definition: Common Subsequence

Given two Sequences X and Y, we say that a sequence Z is a common subsequence of X and Y iff Z is a subsequence of both X and Y.

For Example: Given two sequences

$$X = \langle A, B, C, B, D, A, B \rangle Y = \langle B, D, C, A, B, A \rangle$$

Common Subsequence

Longest Common Subsequence(LCS): Maximum length common subsequence.

LCS Problem: We are given two sequences $X = \langle x_1, x_2, x_3, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, y_3, \dots, y_n \rangle$ and find the maximum length common subsequence of X and Y.

Brute-force Approach: We will find all subsequence of X and check each subsequence to see whether it is also a subsequence of Y. (Keeping track of the longest sequence)

Note: As there are 2^m possible sub sequences of X, It is going to take exponential time.

Theorem

Optima Sub-Structure of LCS

Let $X = \langle x_1, x_2, x_3, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, y_3, \dots, y_n \rangle$ be sequences. And let $Z = \langle z_1, z_2, z_3, \dots, z_k \rangle$ be any LCS of X and Y

- 1. If $x_m = y_n$ then $z_k = x_m = y_n$ and Z_{k-1} is the LCS of X_{m-1} and Y_{n-1}
- 2. If $x_m \neq y_n$ then $z_k \neq x_m$ implies Z is the LCS of X_{m-1} and Y
- 3. If $x_m \neq y_n$ then $z_k \neq y_n$ implies Z is the LCS of X and Y_{n-1}

Proof

$$X = \begin{bmatrix} x_1, x_2, x_3...x_{m-1} & x_m \end{bmatrix} Y = \begin{bmatrix} y_1, y_2, y_3...y_{n-1} & y_n \end{bmatrix}$$

$$Z = \begin{bmatrix} z_1, z_2, z_3...z_{k-1} & z_k \end{bmatrix}$$

$$x_m = y_n$$

$$x_m \neq y_n$$

 $x_m \neq y_n$ and y_n not in LCS

$$X \quad A \quad B \quad C$$

$$\mathbf{Z} \quad \mathbf{B} \mathbf{C}$$

Z is an LCS of X and Y_{n-1}

Z is the LCS of X[1, 2, 3] and Y[1, 2]

 $x_m \neq y_n$ and x_m not in LCS

$$X \mid \mathbf{B} \mid \mathbf{C} \mid \mathbf{A}$$

$$Z \quad B C$$

Z is an LCS of X_{m-1} and Y

Z is the LCS of X[1, 2] and Y[1, 2, 3]

X_i and Y_j end with $x_i = y_j$

Let X_i denote the *ith prefix* x[1..i] of x[1..m], and X_0 denotes an empty prefix

$$X_{\mathbf{i}} \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_{\mathbf{i-1}} \mathbf{x}_{\mathbf{i}}$$

$$Y_i y_1 y_2 \dots y_{j-1} y_j = x_i$$

$$Z_k \begin{bmatrix} z_1 & z_2 \dots z_{k-1} \\ z_k & = y_j = x_i \end{bmatrix}$$

 Z_k is Z_{k-1} followed by $z_k = y_j = x_i$ where Z_{k-1} is an LCS of X_{i-1} and Y_{j-1} and LenLCS(i,j)=LenLCS(i-1,j-1)+1

$$x_m = y_n$$

$$X \mid \mathbf{B} \mid \mathbf{A} \mid \mathbf{C}$$

$$\mathbf{Z}$$
 \mathbf{B} \mathbf{C}

X_i and Y_j end with $x_i \neq y_i$

$$X_{i} \quad \boxed{x_{1} \quad x_{2} \quad \dots \quad x_{i-1} \quad x_{i}} \qquad \qquad X_{i} \quad \boxed{x_{1} \quad x_{2} \quad \dots \quad x_{i-1} \quad x_{i}}$$

$$Y_{j} \quad \boxed{y_{1} \quad y_{2} \quad \dots \quad y_{j-1} \quad y_{j}} \qquad \qquad Y_{j} \quad \boxed{y_{j} \quad y_{1} \quad y_{2} \quad \dots \quad y_{j-1} \quad y_{j}}$$

$$Z_{k} \quad \boxed{z_{1} \quad z_{2} \dots z_{k-1} \quad z_{k} \neq y_{j}} \qquad \qquad Z_{k} \quad \boxed{z_{1} \quad z_{2} \dots z_{k-1} \quad z_{k} \neq x_{i}}$$

$$Z_{k} \quad \text{is an LCS of } X_{i} \quad \text{and } Y_{j-1} \qquad \qquad Z_{k} \quad \text{is an LCS of } X_{i-1} \quad \text{and } Y_{j} \quad \text{and }$$

 $LenLCS(i,j)=\max\{LenLCS(i,j-1), LenLCS(i-1,j)\}$

Recursive Approach

$$C[i,j] = \begin{cases} 0 & if \ i = 0 \ and \ j = 0 \\ C[i-1,j-1]+1 & if \ i,j > 0 \ and \ x_i = y_j \\ max(C[i,j-1],C[i-1,j]) & if \ i,j > 0 \ and \ x_i \neq y_j \end{cases}$$

Writing the recurrence equation

- Let X_i denote the *ith prefix* x[1..i] of x[1..m], and
- X₀ denotes an empty prefix
- We will first compute the *length of an LCS of* X_m *and* Y_n , *LenLCS*(m, n), and then use information saved during the computation for finding the actual subsequence
- We need a recursive formula for computing LenLCS(i, j).

X = ABCBDABY = BDCABA

	j	0	1	2	3	4	5	6
i		$\mathbf{Y}_{\mathbf{j}}$	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

	j	0	1	2	3	4	5	6
i		$\mathbf{Y}_{\mathbf{j}}$	В	D	C	Α	В	Α
0	Xi	0	0	0	0	0	0	0
1	Α	0						
2	В	0						
3	С	0						
4	В	0						
5	D	0						
6	Α	0						
7	В	0						

LCS Length Algorithm

Aego LCS_Length

- 1. $m \leftarrow X.length$
- 2. $n \leftarrow Y.length$
- 3. Let B[1..m, 1..n] and C[1..m, 1..n] be two tables
- 4. for i = 0 to m
- 5. C[i, 0] = 0
- 6. for j = 0 to n
- 7. C[0, j] = 0

```
8. for i= 1 to m
      for j=1 to n
          if (x_i == y_i)
10.
                  then C[i, j] = C[i-1, j-1]+1
11.
                          B[i, i] = "
abla"
12.
13.
           else if (C[i-1, j] >= C[i, j-1])
                 then C[i, j] = C[i-1, j]
14.
                         B[i, j] = " \uparrow "
15.
           else C[i, j] = C[i, j-1]
16.
                   B[i, i] = "\leftarrow"
17.
```

PRINT-LCS(B,X,i,j)

```
Algo PRINT-LCS(B, X, i, j)
```

- 1. if i==0 OR j==0 then return
- 2. if B[i, j] == " ∇ "
- 3. PRINT-LCS(B, X, i-1, j-1)
- 4. print x_i
- 5. else if $B[i, j] == "\uparrow"$
- 6. PRINT-LCS(B, X, i-1, j)
- 7. else PRINT-LCS(B, X, i, j-1)

LCS Example (Another Solution)

LCS Example (Another Solution)

```
8. for i= 1 to m
       for j=1 to n
          if (x_i == y_i)
10.
                  then C[i, j] = C[i-1, j-1]+1
11.
                          B[i, i] = "
abla"
12.
13.
           else if (C[i, j-1] >= C[i-1, j])
                 then C[i, j] = C[i, j-1]
14.
                         B[i, i] = "\leftarrow"
15.
16.
           else C[i, j] = C[i-1, j]
                   B[i, j] = " \uparrow "
17.
```

Another Example

Possible Solutions:

<mark>abbaab</mark>

ababaa

bababa

Thank You