測驗 • 40 MIN

作業三

✓ 提交您的作業
截止時間 2月3日 15:59 CST 答題次數 3/8 hours

再試

✓ 收到成績

通過條件 75% 或更高

成績 100%

查看反饋 我們會保留您的最高分數

 $\mathbf{2}$

SGD: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \eta(-\nabla err(\mathbf{w}_t, \mathbf{x}_n, y_n))$

PLA: $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + 1 \cdot [[y_n \neq \text{sign}(\mathbf{w}_t^T \mathbf{x}_n)]](y_n \mathbf{x}_n)$

When $err(\mathbf{w}) = max(0, -y\mathbf{w}^T\mathbf{x})$:

• CASE A:

If $y\mathbf{w}^T\mathbf{x} \ge 0$, $err(\mathbf{w}) = 0$ and $y = sign(y) = sign(\mathbf{w}^T\mathbf{x})$.

Since we ignore the points that are not differentiable, $\nabla err(\mathbf{w}) = 0$, and $\mathbf{w}_{t+1} = \mathbf{w}_t$.

• CASE B:

Otherwise, $y\mathbf{w}^Tx < 0$, $err(\mathbf{w}) = -y\mathbf{w}^T\mathbf{x}$, $\nabla err(\mathbf{w}) = -y\mathbf{x}$. \mathbf{w}_{t+1} will be update as follows:

$$\mathbf{w}_{t+1} = \mathbf{w}_t + \eta(-\nabla err(\mathbf{w}_t, \mathbf{x}_n, y_n))$$
$$= \mathbf{w}_t + \eta(-(-y_n \mathbf{x}_n))$$
$$= \mathbf{w}_t + \eta y_n \mathbf{x}_n$$

Since $y\mathbf{w}^T\mathbf{x} < 0$, $y = \text{sign}(y) \neq \text{sign}(\mathbf{w}^T\mathbf{x})$. The SGD result will be same as PLA when $\eta = 1$.

we construct the expansion of $f(x + \Delta x)$ by Taylor Theorem:

$$f(x + \Delta x) \approx f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2$$

To minimize $f(x + \Delta x)$, set the derivative to be zero.

$$0 = \frac{d}{dt} \left(f(x) + f'(x)\Delta x + \frac{1}{2}f''(x)\Delta x^2 \right) = f'(x) + f''(x)\Delta x$$

thus we can get $\Delta x = -\frac{f'(x)}{f''(x)}$, the iteration will be:

$$x_{k+1} = x_k + \Delta x = x_k - \frac{f'(x)}{f''(x)}$$

According to the question, we will get the result below in high dimension:

$$E(u + \Delta u, v + \Delta v) = E(u, v) - (\nabla^2 E(u, v))^{-1} \nabla E(u, v)$$
$$(\Delta u, \Delta v) = -(\nabla^2 E(u, v))^{-1} \nabla E(u, v)$$

4

Derive from maximum likelihood solution to negative log likelihood:

$$\begin{aligned} & \max_{h} \prod_{n=1}^{N} h_{y_n}(\mathbf{x}_n) \\ &= \max_{\mathbf{w}} \prod_{n=1}^{N} \frac{\exp(\mathbf{w}_{y_n}^T \mathbf{x}_n)}{\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n)} \\ &= \max_{\mathbf{w}} \ln \left(\prod_{n=1}^{N} \frac{\exp(\mathbf{w}_{y_n}^T \mathbf{x}_n)}{\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n)} \right) \\ &= \max_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \left(\ln \left(\exp(\mathbf{w}_{y_n}^T \mathbf{x}_n) \right) - \ln \left(\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n) \right) \right) \\ &= \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \left(\ln \left(\sum_{i=1}^{K} \exp(\mathbf{w}_i^T \mathbf{x}_n) \right) - \mathbf{w}_{y_n}^T \mathbf{x}_n \right) \end{aligned}$$

5

Find out the optimal w:

$$\min_{\mathbf{w}} E_{in}(\mathbf{w}) = \min_{\mathbf{w}} \frac{1}{N+K} \left(\sum_{n=1}^{N} (y_n - \mathbf{w}^T \mathbf{x}_n)^2 + \sum_{k=1}^{K} (\tilde{y}_k - \mathbf{w}^T \tilde{\mathbf{x}}_k)^2 \right)
= \min_{\mathbf{w}} \frac{1}{N+K} \left(||X\mathbf{w} - \mathbf{y}||^2 + ||\tilde{X}\mathbf{w} - \tilde{\mathbf{y}}||^2 \right)
= \min_{\mathbf{w}} \frac{1}{N+K} \left(||\mathbf{w}^T X^T X \mathbf{w} - 2\mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}|| + ||\mathbf{w}^T \tilde{X}^T \tilde{X} \mathbf{w} - 2\mathbf{w}^T \tilde{X}^T \tilde{\mathbf{y}} + \tilde{\mathbf{y}}^T \tilde{\mathbf{y}}|| \right)$$

$$\nabla E_{in}(\mathbf{w}) = \frac{2}{N+K} \left((X^T X \mathbf{w} - X^T \mathbf{y}) + (\tilde{X}^T \tilde{X} \mathbf{w} - \tilde{X}^T \tilde{\mathbf{y}}) \right) = 0$$
$$\mathbf{w} = (X^T X + \tilde{X}^T \tilde{X})^{-1} (X^T \mathbf{y} + \tilde{X}^T \tilde{y})$$

6

Use the same way as question 5 to find out the optimal \mathbf{w}_{reg} :

$$\mathbf{w}_{reg} = argmin_{\mathbf{w}} \ \frac{\lambda}{N} ||\mathbf{w}||^2 + \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2$$

$$\begin{aligned} \min_{\mathbf{w}} E(\mathbf{w}) &= \min_{\mathbf{w}} \frac{\lambda}{N} ||\mathbf{w}||^2 + \frac{1}{N} ||\mathbf{X}\mathbf{w} - \mathbf{y}||^2 \\ &= \min_{\mathbf{w}} \frac{1}{N} \left(||\lambda \mathbf{w}^T \mathbf{w}|| + ||\mathbf{w}^T X^T X \mathbf{w} - 2 \mathbf{w}^T X^T \mathbf{y} + \mathbf{y}^T \mathbf{y}|| \right) \end{aligned}$$

$$\nabla E(\mathbf{w}) = \frac{2}{N} \left(\lambda \mathbf{w} + (X^T X \mathbf{w} - X^T \mathbf{y}) \right) = 0$$
$$\mathbf{w}_{reg} = (X^T X + \lambda)^{-1} X^T \mathbf{y}$$

Compare \mathbf{w}_{reg} with \mathbf{w} in question 5, then we can get the equations below:

$$\tilde{X}^T \tilde{X} = \lambda, \ \tilde{X}^T \tilde{\mathbf{y}} = 0 \Longrightarrow \tilde{X} = \sqrt{\lambda} I, \ \tilde{\mathbf{y}} = 0$$

My findings

- The orange one is under stochastic gradient descent algorithm with $\eta = 0.001$, and the blue one is under fixed rate gradient descent algorithm with $\eta = 0.01$.
- The E_{in} of fixed rate gradient descent is monotonic, and the E_{in} of stochastic gradient descent is not. The main cause of this difference is the value of η . I have tried two algorithms with same value of η , and we can get similar descent of E_{in} .
- By the introduction of these two algorithms in class, we know that SGD may takes less times on computation than fixed rate gradient.

8

My findings

• The figure is similar to the figure in question 7. For all t, the value of $E_{out}(\mathbf{w}_t)$ is about 0.01 higher than $E_{in}(\mathbf{w}_t)$.

