1 Lezione del 07-11-24

1.1 Simplesso per i flussi

Vediamo come applicare un algoritmo del simplesso ai problemi di ottimizzazione sui grafi, in particolare per risolvere problemi di fluso minimo.

Abbiamo che un qualsiasi albero di copertura ammissibile T rappresenta una base del poliedro, e quindi si possono calcolare i costi ridotti c_{ij}^{π} su tutti gli archi che comprende:

$$c_{ij}^{\pi} = c_{ij} + \pi_i - \pi_j$$

Si ha che, dal teorema di Bellman, se $\forall (i,j) \in L : c_{ij}^{\pi} \geq$, allora la base duale è ammissibile e siamo all'ottimo. Altrimenti, dovrà essere che $\exists (i,j) \in L : c : ij^{\pi} < 0$. Scegliamo questo (i,j) come **arco entrante**.

Si ha che l'arco entrante forma un ciclo con gli archi dell'albero T. Si sceglie allora una direzione di percorrenza del ciclo concorde a (i,j), e si partizionano gli archi del ciclo in \mathcal{C}^+ per gli archi concordi a questa direzione, e \mathcal{C}^- per gli archi discordi. Se \mathcal{C}^- è vuoto, si ha che l'ottimo è $-\infty$. Altrimenti si sceglie l'arco in \mathcal{C}^- con costo minore. Questo rappresenterà l'arco uscente.

Si aggiorna qunidi la base come avevamo visto per gli altri simplessi, rimuovendo l'arco uscente dall'albero e introducendo l'arco entrante.

Teorema 1.1: sul guadagno nel simplesso per i flussi

$$c^+x(\theta) = c^+\overline{x} + \theta c_{ij}^\pi$$