07 октября 2017 14 октября 2017

Лабораторная работа № 1.2.5

Исследование вынужденной регулярной прецессии гироскопа

Цель работы: исследовать вынужденную прецессию гироскопа; установить зависимость скорости вынужденной прецессии от величины момента сил, действующих на ось гироскопа и сравнить ее со скоростью, расчитанной по скорости прецессии.

В работе используется: гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенциркуль, линейка.

Теоретическая справка

Момент сил, который необходимо приложить к маховику для того, чтобы вызвать вращение оси маховика с угловой скоростью $\vec{\Omega}$, определяется формулой

$$\vec{M} = \vec{\Omega} \times \vec{L}.\tag{1}$$

Для изучения регулярной прецессии гироскопа будем подвешивать к его оси дополнительные грузы. Это сместит общий центр масс и создаст момент сил тяжести, вызывающий прецессию. Скорость прецесси в этом случае равна

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{2}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа (рис. 1).

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на жесткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I}{f}} \tag{3}$$

Чтобы исключить модуль крчения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого можно легко вычислить момент инерции $I_{\rm ц}$. Для определения момента инерции ротора гироскопа имеем

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},\tag{4}$$

здесь $T_{\rm ц}$ — период крутильных колебаний цилиндра.

Экспериментальная установка

Экспериментальная установка для исследования прецессии уравновешенного гироскопа показана на рис. 1. Ротором гироскопа ялвяется ротор высокооборотного электромотора М. Кожух мотора скреплен с кольцом Б. Мотор с кольцом могут вращаться в кольце А вокруг горизонтальной оси 66, которое может вращаться вокруг вертикальной оси aa. Рычак С направлен по оси симметрии ротора. На рычаг подвешивают грузы Γ , с помощью которых можно менять силу F, момент которой определяется расстоянием l от точки подвеса до горизональной оси кольца A.

Рис. 1: Схема установки

Ход работы

- 1. Определим в какую сторону вращается ротор.
- 2. Подвесим на рычаг груз и отклоним его на 5-10 градусов и с помощью секундомера найдем угловую скорость регулярной прецессии Ω . Также измерим скорость опускания рычага.
- 3. Проделаем серию измерений, описанных в предыдущем пункте при 5-7 значениях момента M и силы F относительно центра масс гироскопа. Построим график зависимости Ω от M.
- 4. Измерим момент инерции ротора гироскопа относительно оси симметрии методом крутильных колебаний. Оценим погрешности I_0 и Ω .
- 5. Определим частоту вращения ротора гироскопа по фигурам Лиссажу.

Проведение измерений

- 1. При легком постукивании по рычагу положение гироскопа в пространстве не изменяется. Это означает, что модуль вектора момента импульса вследствие вращения вокруг своей оси достаточно велик, и малый момент сил не приводит к отклонению этого вектора на сколь-нибудь значимый угол.
- 2. Воздействуя на рычаг гироскопа, расположим его горизонтально, перпендикулярно лучу зрения. Подвесим груз к рычагу справа. При этом начинается медленное вращение гироскопа против часовой стрелки, если смотреть сверху. Другими словами, вектор угловой скорости прецессии $\vec{\Omega}$ направлен вверх, а вектор \vec{M} направлен от экспериментатора (рис. 2). Тогда из (1) следует, что вектор \vec{L} направлен вправо. Таким образом, по направлению прецессии удалось определить направление вращения ротора.

Рис. 2: Направление векторов $\vec{M}, \vec{L}, \vec{\Omega}$

3. Отклоним рычаг на 5-10 градусов вверх от горизонтальной плоскости. Подвесим груз и дождемся момента времени, когда он опустится на 5-10 градусов ниже горизонтальной плоскости, сделав целое число оборотов N. При этом будем измерять время, в течение которого происходит прецессия. По времени оборота T можно получить угловую скорость прецессии $\Omega = \frac{2\pi}{T}$. По массе груза m и расстоянию от точки подвеса груза до центра масс гироскопа $l=(120\pm1)$ мм определим момент силы, действующей на ротор: M=mgl. Проведем измерения для нескольких значений масс m. Результаты занесем в таблицу 1.

NT, c	227,13	169,32	270,36	214,46	177,26	139,90	113,64	91,61	74,69
N	1	1	2	2	2	2	2	2	2
$\Omega, 10^{-4} \text{ рад/c}$	276,62	371,07	464,79	585,94	708,90	898,21	1105,77	1371,68	1682,42
$\Delta\Omega$, 10^{-4} рад/с	0,1	0,2	0,1	0,2	0,3	0,5	0,7	1,0	1,6
m, г	57	74	93	116	142	180	219	273	335
$M, 10^{-3} H \cdot M$	67,1	87,1	109,5	136,6	167,2	211,9	257,9	321,5	394,5
ΔM , $10^{-3} H \cdot M$	1,2	1,5	1,9	2,4	2,9	3,7	4,5	5,5	6,8

Таблица 1: Измерения периода для грузов различных масс

4. По таблице 1 построим график зависимости $\Omega(M)$ (рис. 3). Поскольку $M=\Omega L$, то угловой коэффициент на график 1/L. Его можно вычислить методом наименьших квадратов:

$$\left\langle \frac{1}{L} \right\rangle = \frac{\langle M\Omega \rangle}{\langle M^2 \rangle} \approx 0.428 \frac{c}{\kappa_{\Gamma} \cdot M^2}$$

$$\Delta \left(\frac{1}{L} \right) = \frac{1}{\sqrt{9}} \sqrt{\frac{\langle \Omega^2 \rangle}{\langle M^2 \rangle} - \left\langle \frac{1}{L} \right\rangle^2} \approx 0.0006 \frac{c}{\kappa_{\Gamma} \cdot M^2}$$

$$L = (2.336 \pm 0.003) \frac{\kappa_{\Gamma} \cdot M^2}{c}$$

Рис. 3: График завимости $\Omega(M)$

В свою очередь, $L=I_0\omega_0$, где I_0 — момент инерции ротора относительно оси симметрии, ω_0 — угловая скорость вращения вокруг своей оси.

5. Для измерения момента инерции воспользуемся крутильными колебаниями. Проведем измерения для ротора и для цилиндра. Будем считать время 10 колебаний. Результаты занесем в таблицу 2.

Из формулы (3) следует, что $T_0 \sim \sqrt{I_0}$. Тогда справедливо следующее соотношение:

$$\frac{T_0}{T_c} = \sqrt{\frac{I_0}{I_c}} \quad \Rightarrow \quad I_0 = I_c \frac{T_0^2}{T_c^2} \tag{5}$$

$N_{\overline{0}}$	T_c	T_0	$\langle T_c \rangle$	$\langle T_0 \rangle$
1	40,78	32,29		
2	40,69	32,33	40,79	32,39
3	40,90	$32,\!55$		

Таблица 2: Период колебаний ротора и цилиндра за $T=10\ c$

Момент инерции цилиндра определяется по его массе $m_c = (1618,4\pm0,5)$ г и диаметру $d_c = (7,7\pm0,01$ см):

$$I_c = \frac{1}{2}m_c \left(\frac{d_c}{2}\right)^2 = \frac{1}{8}m_c d_c^2 \tag{6}$$

Тогда из (5) и (6) имеем формулу для момента инерции ротора:

$$I_0 = \frac{m_c d_c^2 T_0^2}{8T_c^2} = (0.796 \pm 0.01) \cdot 10^{-3} \text{ Kp} \cdot \text{M}^2.$$
 (7)

Окончательно частота вращения гироскопа:

$$f = \frac{\omega_0}{2\pi} = \frac{L}{2\pi I_0} = (457 \pm 6) \ \Gamma$$
ц (8)

6. Используем намагниченность ротора электромотора, чтобы измерить частоту вращения гироскопа. Для этого на один вход осциллографа подадим переменное напряжение регулируемой частоты, а на другой вход — ЭДС индукции, наводимую в «отключенной» обмотке статора гироскопа. При совпадении частот на экране изобразится эллипс. Получаем значение (472.3 ± 0.5) .

Вывод

7. Первый метод привел к результату, который занижен на 3% по сравнению с тем значением, которое получается измерением частоты ЭДС индукции. Второй способ будем считать более достоверным вследствие того, что он предполагает лишь одно прямое измерение. Расхождение не укладывается в пределы погрешностей, попытаемся найти причину такой ошибки. Вероятно, она вызывается моментом сил трения в горизонтальной оси. Действительно, поскольку рычаг гироскопа опускается, то происходит вращение вокруг горизонтальной оси. Значит, будет существовать момент сил трения. Чтобы сделать оценку, приравняем его к моменту сил трения в вертикальной оси.

Трение в вертикальной оси приводит к прецессии вокруг горизонтальной оси. За время проведения каждого из экспериментов, отраженных в таблице 1, рычаг гироскопа опускался примерно на 10° . Используя величину продолжительности измерений, получаем угловую скорость прецессии $\Omega_{\rm np}\approx 2\cdot 10^{-3}$ рад/с (это значение можно рассматривать лишь по порядку величины, поскольку погрешность измерения угла составляет 5°). Тогда момент сил трения равен

$$M_{\mathrm{rp}} = \Omega_{\mathrm{np}} L \approx 5 \cdot 10^{-3} \; \mathrm{H} \cdot \mathrm{m}.$$

Это составляет около 1% от момента силы со стороны груза.

8. В качестве дополенения приведем график зависимости f от времени t, которое прошло с момента выключения гироскопа (рис. 4). На достаточно большом промежутке график хорошо приближается к прямой с угловым коэффициентом около -0.3 Γ ц 2 . Оценим момент сил трения в оси гироскопа:

$$M_{\omega} = I_0 |\dot{\omega}| = 2\pi I_0 |\dot{f}| \approx 1.5 \cdot 10^{-3} \; \mathrm{H \cdot M}$$

Если же рессматривать самое начало временного промежутка, то угловой коэффициент можно грубо оценить по двум точкам, то есть $\approx -0.9~\Gamma \text{ц}^2$. В итоге получаем момент сил, в 3 раза больший, чем «установишийся»: $4.5 \cdot 10^{-3}~\text{H} \cdot \text{м}$.

Рис. 4: График зависимости f(t)