Инфографика & Со.

3КШ МФТИ, 27 февраля 2015

Александр Дайняк, ФИВТ МФТИ

Построение диаграмм и графов

С древних времён до наших дней

Генеалогическое дерево династии Саксонов (XII век)

Дерево добродетелей (XIV век)

Дерево грехов (XIV век)

Помеченные деревья из статьи Кэли (1857) о деревьях.

A. Cayley. On the Theory of the Analytical Forms Called Trees. *Philosophical Magazine*, 4(13):172–176, 1857.

Логический квадрат — диаграмма отношений между силлогизмами. Juan de Celaya (1490—1558)

(Это граф K_{12} .)

Иллюстрация А.-Т. Вандермонда (1771 г.) к задаче об обходе шахматной доски конём.

Иллюстрация У. Гамильтона (1857) к задаче об обходе икосаэдра.

Графы молекул из статьи А.К. Брауна (1864).

Ранние статьи по визуализации

• H.W. Tutte '1963 How to draw a graph

• D. E. Knuth '1970

How shall we draw a tree

Д. Кнут о визуализации графов

D.E. Knuth (GD' 1996):

Graph drawing is the best possible field I can think of:
 It merges aesthetics, mathematical beauty and wonderful algorithms.
 It therefore provides a harmonic balance between the left and right brain parts.

• A good graph drawing algorithm should leave something for the user's satisfaction.

Типичные области применения графов

- Software engineering: UML диаграммы, диаграммы вызовов
- Биология: геномика, пищевые цепи, ...
- Сети: инструменты управления сетями, Интернет
- Безопасность: сетевые атаки
- Социальные сети: Twitter, Facebook, etc.

Пользовательские требования

- Читабельность: видны основные структурные особенности графа.
- Конформизм: рисунок должен соответствовать стилевым соглашениям, характерным для конкретной прикладной области.
- Управляемость: пользователь может контролировать параметры укладки.
- **Быстродействие** соответствует цели (динамический граф на экране / высококачественная диаграмма для печати / ...)

Соглашения (conventions)

Соглашение — это свойство, которому укладка графа должна удовлетворять «беспрекословно», в противном случае граф не считается уложенным вовсе.

Примеры:

- Вершины графа не должны лежать на рёбрах, концами которых они не являются.
- Как могут изображаться рёбра (отрезком прямой / полилинией / дугой окружности / сплайном / ...)
- Как должны располагаться вершины (если ребро идёт из u в v, то v лежит ниже u / вершины и изгибы рёбер должны иметь целочисленные координаты / ...).

Соглашения (conventions)

Правило — это пожелание, которое следует выполнить в максимально возможном объёме. Правила имеют, в основном, эстетическую мотивацию.

Примеры:

- Кривые, изображающие рёбра, должны быть покороче.
- Количество изгибов на рёбрах должно быть поменьше.
- Число пересечений рёбер должно быть поменьше.
- Вершины не должны находиться слишком близко.
- Углы между пересекающимися рёбрами побольше.
- Площадь укладки поменьше.
- Симметрии графа должны прослеживаться.

Часто не бывает «лучшей» укладки

Читабельность vs. соответствие правилам

There is [always] a gap between the user's view and the formalism D. E. Knuth

Трудности визуализации реальных графов

People don't want to draw graphs.

They want to draw pictures that contain graphs.

Brendan Madden, 2003

У реального графа есть семантика → появляются семантические правила.

Трудности визуализации реальных графов

Примеры семантически-продиктованных правил:

- Выделенные вершины должны располагаться неподалёку.
- Выделенные вершины должны располагаться на одной прямой.
- Выделенные вершины должны располагаться в центре рисунка.
- Выделенные вершины должны располагаться на периферии.

Укладки СБИС

Ещё сложнее, чем укладка графов: множество дополнительных технологических правил.

Укладки СБИС

Ещё сложнее, чем укладка графов: множество дополнительных технологических правил.

Технические подходы к визуализации

- Топология → форма → метрика
- Силовые методы
- Методы, основанные на укладках планарных графов
- Методы типа «разделяй и властвуй»

Топология → форма → метрика

Этап «топология»: определяем, как упорядочены рёбра вокруг каждой вершины.

$$V := \{1,2,3,4,5\}$$

 $E := \{(1,2), (1,3), (1,4), (1,5), (2,4), (3,5), (4,5)\}$

Топология \rightarrow форма \rightarrow метрика

Этап «форма»: определяем форму рёбер.

(В случае ортогональных представлений — количество изломов.)

Топология → форма → метрика

Этап «метрика»: подбираем все длины.

Теорема Татта «о резиновой укладке»

Teopeма. (Tutte '1963 — Tutte's rubber band embedding)

Пусть Г — множество вершин *трёхсвязного* планарного графа, составляющее границу одной из граней в какой-нибудь укладке.

Тогда укладку графа можно получить, если закрепить вершины Г в вершинах произвольного выпуклого многоугольника, и представить, что рёбра графа стремятся стянуться, как резинки.

Полученная при стабилизации такой физической системы «картинка» и будет искомой укладкой.

Укладки графов платоновых тел, полученные методом Татта

Силовые (force-directed) методы укладки

Определяется система сил, действующих на укладку:

- Силы притяжения между вершинами
- Силы отталкивания между вершинами
- Силы, действующие на рёбра

Минимизируется «энергия» системы: стандартные численные методы, моделирование отжига и пр.

Примеры инфографики

Инфографика в сети и инфографика сетей

Ссылки

- Взаимное влияние различных языков программирования
- Семантические сети
- Отделение данных от их представления, например, HTML+CCS
- <u>Библиотека D3, примеры использования</u>
- Пример интерактивной силовой укладки
- Gephi визуализация графов в домашних условиях

Как нужно делать инфографику

Несколько способов ввести людей в заблуждение с помощью графиков

Обрезаем ось ординат...

Обрезаем ось ординат...

Переходим к кумулятивным показателям...

Переходим к кумулятивным показателям...

Cumulative Annual Revenue

3D нас спасёт...

3D нас спасёт...

Administration Takes 27% of each dollar

Когда за деревьями леса не видно...

Успехов!

