Министерство науки и высшего образования Российской Федерации

Федеральное государственное вюджетное образовательное учреждение высшего образования Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет) $(M\Gamma T Y \text{ им. H.Э. Баумана})$

ФАКУЛЬТЕТ	«Информатика и системы управления»	
КАФЕДРА	«Программное обеспечение ЭВМ и информационные технологии»	
НАПРАВЛЕНІ	ИЕ ПОДГОТОВКИ «09.03.04 Программная инженерия»	

ОТЧЕТ по лабораторной работе №10

Название:	Рекурсии		
Дисциплина:	Функциональное	и логическое программирование	_
Студент	ИУ7-66Б _{Группа}	Подпись, дата	А.Д. Ковель
Преподаватель			Н. Б. Толпинская
Преподаватель			Ю. В. Строганов
		Подпись, дата	И. О. Фамилия

Москва, 2023 г.

1 Практические задания

Цель работы: изучить рекурсивные способы организации программ на Prolog, методы формирования эффективных рекурсивных программ и порядок реализации таких программ.

Задачи работы: приобрести навыки использования рекурсии на Prolog, эффективного способа ее организации и прядка работы соответствующей программы. Изучить возможность и необходимость использования системных предикатов в рекурсивной программе на Prolog, принципы и особенности порядка работы такой программы. Способ формирования и изменения резольвенты в этом случае и порядок формирования ответа.

Задание

Используя хвостовую рекурсию, разработать программу, позволяющую найти

- 1. n!,
- 2. п-е число Фибоначчи.

Убедиться в правильности результатов.

Для одного из вариантов ВОПРОСА и каждого задания составить таблицу, отражающую конкретный порядок работы системы:

Т.к. резольвента хранится в виде стека, то состояние резольвенты требуется отображать в столбик: вершина – сверху! Новый шаг надо начинать с нового состояния резольвенты!

Для одного из вариантов ВОПРОСА составить таблицу, отражающую конкретный порядок работы системы.

Ход работы

Листинг 1.1 – Описательные разделы программы

```
factorial (1, Result, X):- Result=X, !.
1
2
     factorial(N, Result, X):-
3
       X_{\text{new}}=N*X,
       Nm=N-1,
4
       factorial (Nm, Result, Xnew).
5
6
7
     fibonacci(1, Result, Last1, Last2):- Result=0, !.
8
     fibonacci(2, Result, Last1, Last2):- Result=Last2, !.
9
     fibonacci (N, Result, Last1, Last2):-
10
       Last2new=Last1+Last2,
11
12
       N_{\text{new}}=N_{-1}
       fibonacci (Nnew, Result, Last2, Last2new).
13
```

Решение:

- 1. factorial(10, F, 1).
- 2. fibonacci(22, F, 0, 1).

Приложение А

Таблица 1.1 – Порядок работы системы для factorial(3, F, 1)

№	Резольвента	Термы, подстановка	продолжение
1	factorial(3, F, 1)	T1=factorial(3, F, 1)	следующее
		T2=factorial(1, Result, X) нет	правило
2	factorial(3, F, 1)	T1=factorial(3, F, 1) T2=factorial(N, Result, X) да $\theta = \{N=3, Result=F, X=1\}$	переход к телу правила
	Xnew=3*1,		
3	Nm=3-1, factorial(Nm, Result, Xnew)	X new= $3*1$ да $\theta = \{X$ new= $3*1=3\}$	следующее правило
4	Nm=N-1, factorial(Nm, Result, 3)	$Nm=N-1$ да $\theta=\{Nm=3-1=2\}$	следующее правило
5	factorial(3, Result, 3)	T1=factorial(3, Result, 3) T2=factorial(1, Result, X) нет	следующее правило
6	factorial(2, Result, 3)	T1=factorial $(3, Result, 3)T2=$ factorial $(N, Result, X)да\theta = \{N=2, Result=Result, X=3\}$	переход к телу правила
7	Xnew=2*3, Nm=2-1, factorial(Nm, Result, Xnew)	$Xnew=2*3$ да $\theta = \{Xnew=2*3=6\}$	следующее правило
8	Nm=2-1, factorial(Nm, Result, 6)	$Nm=2-1$ да $\theta=\{Nm=2-1=1\}$	следующее правило
9	factorial(1, Result, 6)	T1=factorial $(1, Result, 6)T2=$ factorial $(1, Result, X)да\theta = \{Result=Result, X=6\}$	переход к телу правила
10	Result=6, !	Result=6 да $\theta = \{\text{Result}=6\}$	следующее правило
11	!	! остановка обработки процедуры	откат

Таблица 1.2 – Порядок работы системы для fibonacci(4, F, 0, 1)

$N_{\overline{0}}$	Резольвента	Термы, подстановка	продолжение
1	fibonacci(4, F, 0, 1)	T1=fibonacci(4, F, 0, 1) T2=fibonacci(1, Result, Last1, Last2) HET	следующее правило
2	fibonacci(4, F, 0, 1)	T1=fibonacci(4, F, 0, 1) T2=fibonacci(2, Result, Last1, Last2) HET	следующее правило
3	fibonacci(4, F, 0, 1)	T1=fibonacci(4, F, 0, 1) T2=fibonacci(N, Result, Last1, Last2) да $\theta = \{N=4, Result=F, Last1=0, Last2=1\}$	переход к телу правила
4	Last2new=0+1, Nnew=4-1, fibonacci(Nnew, Result, 1, Last2new).	$egin{aligned} & \operatorname{Last2new} = 0 + 1 \ & \operatorname{дa} \ & \theta = \{ \operatorname{Last2new} = 0 + 1 = 1 \} \end{aligned}$	следующее правило
5	Nnew=4-1, fibonacci(Nnew, Result, 1, 1)	$Nm=4-1$ да $\theta = \{Nm=4-1=3\}$	следующее правило
6	fibonacci(3, Result, 1, 1)	T1=fibonacci(3, Result, 1, 1) T2=fibonacci(1, Result, Last1, Last2) нет	следующее правило
7	fibonacci(3, Result, 1, 1)	T1=fibonacci(4, Result, 0, 1) T2=fibonacci(2, Result, Last1, Last2) нет	следующее правило
8	fibonacci(3, Result, 1, 1)	T1=fibonacci(3, Result, 1, 1) T2=fibonacci(N, Result, Last1, Last2) да $\theta = \{N=3, Result=Result, Last1=1, Last2=1\}$	переход к телу правила
9	Last2new=1+1, Nnew=3-1, fibonacci(Nnew, Result, 1, Last2new).	$egin{aligned} & \operatorname{Last2new} = 1 + 1 \\ & \operatorname{дa} \\ & \theta = \{\operatorname{Last2new} = 1 + 1 = 2\} \end{aligned}$	следующее правило
10	Nnew=3-1, fibonacci(Nnew, Result, 1, 2)	$Nm=3-1$ да $\theta = \{Nm=3-1=2\}$	следующее правило

Таблица 1.3 – Порядок работы системы для fibonacci(4, F, 0, 1)

$N_{\overline{0}}$	Резольвента	Термы, подстановка	продолжение
11	fibonacci(2, Result, 1, 2)	T1=fibonacci(2, Result, 1, 2) T2=fibonacci(1, Result, Last1, Last2) HET	следующее правило
12	fibonacci(2, Result, 1, 2)	T1=fibonacci $(2, Result, 1, 2)T2=$ fibonacci $(2, Result, Last1, Last2)да\theta=\{Result=Result, Last1=1, Last2=2\}$	переход к телу правила
13	Result=2, !	$Result=2$ да $\theta = \{Result=2\}$	следующее правило
14	!	! остановка обработки процедуры	откат