Pattern Recognition Lecture 16. Clustering

Dr. Shanshan ZHAO

School of AI and Advanced Computing Xi'an Jiaotong-Liverpool University

Academic Year 2023-2024

DTS201TC

Dr. Shanshan ZHAO

Table of Contents

1 Introduction

- 2 Clustering
- 3 K-means

Dr. Shanshan ZHAO

- 1 Introduction
- 2 Clustering
- **3** K-means

PR/ML algorithms category

Supervised Learning

labeled data, task-driven

- Classification
- Regression
 - e.g., Population growth prediction, Market prediction, etc.

Unsupervised Learning

unlabeled data, data-driven

- Dimensionality Reduction
- Clustering

Dr. Shanshan ZHAO AIAC XJTLU
DTS201TC 4 / 26

- Introduction
- 2 Clustering
- **3** K-means

Clustering

- Unsupervised learning , Requires data, but no labels
- Detect patterns, e.g.
 - Group emails or search results
 - Regions of images
- Useful when don't know what you're looking for

I HAVE NO IDEA WHAT I'M DOING

Applications

Image Segmentation

[Slide from James Hayes]

Applications

Clustering gene expression data

Eisen et al. PNAS 1998

Dr. Shanshan ZHAO

Clustering

- The organization of unlabeled data into similarity groups called clusters.
- A cluster is a collection of data items which are "similar" between them, and "dissimilar" to data items in other clusters.

AIAC XJTLU

Similarities?

Defining Distance Measures

Definition: Let O1 and O2 be two objects from the universe of possible objects. The distance (dissimilarity) between O1 and O2 is a real number denoted by D(O1,O2).

e.g.

- Euclidean distance
- Correlation coefficient
- etc.

Clustering

Clustering

- Hierarchical algorithms find successive clusters using previously estabilished clusters. These algorighms can either agglometrative (bottom-up) or divisive (top-down):
 - Agglometrative algorithms begin with each elements as a separate cluster and merge them into successive larger clusters;
 - Divisive algorithms begin with the whole set and proceed to divide it into successively smaller clusters.
- Partitional algorithems typically determine all clusters at once, but can also be used as divisive algorithms in the hierarchical clustering.
- Bayesian algorithms try to generate a posteriori distribution over the collection of all parittions of the data.

- 1 Introduction
- 2 Clustering
- **3** K-means

K-means

An iterative clustering algorithm

- Initialize: Pick K random points as cluster centers
- Alternate:
 - 1. Assign data points to closest cluster center
 - 2. Change the cluster center to the average of its assigned points
- Stop when no points' assignments change

Step 1. Randomly initialize cluster centers

Step 2. Determine cluster membership for each input

Step 3. Re-estimate cluster centers

Result of the first iteration

Second Iteration

Result of the second iteration

K-means convergence (stopping) criterion

- no (or minimum) re-assignments of data points to different clusters
- no (or minimum) change of centroids
- minimum decrease in the sum of squared error (SSE)

$$SSE = \sum_{j=1}^{k} \sum_{\mathbf{x} \in C_j} d(\mathbf{x}, \mathbf{m}_j)^2$$
 C_j is the j th cluster,

- \mathbf{m}_i is the centroid of cluster C_i (the mean vector of all the dáta points in C_i),
- $d(\mathbf{x}, \mathbf{m}_i)$ is the (Eucledian) distance between data point \mathbf{x} and centroid m,

Summary: K-Means

Strength

- Simple, easy to implement and debug
- Intuitive objective function: optimizes intra-cluster similarity
- Relatively efficient.

Weakness

- Applicable only when mean is defined, what about categorical data?
- Often terminates at a local optimum. Initialization is important.
- Need to specify K, the number of clusters, in advance.
- Unable to handle noisy data and outliers.
- Not suitable to discover clusters with non-convex shapes

Dr. Shanshan ZHAO DTS201TC

Appendix

A local optimum:

Figure 1: K-Means Getting Stuck

Appendix

(a) K-means not able to properly cluster

(b) Changing the features (distance function) can help

Thank You!

Q & A