Package 'SimTools'

May 11, 2023

Version 1.0-0	
Date 2021-02-24	
Title Toolkit for Simulation Output Including Monte Carlo and MCMC	
Author Dootika Vats <dootika@iitk.ac.in>, James M. Flegal <jflegal@ucr.edu>, Galin Jones <galin@umn.edu>, Gunjan Jalori.</galin@umn.edu></jflegal@ucr.edu></dootika@iitk.ac.in>	
Maintainer Dootika Vats <dootika@iitk.ac.in></dootika@iitk.ac.in>	
Imports mcmcse, mvtnorm	
Description Toolkit for simulation output including Monte Carlo and Markov chain Monte Carlo. Tools for a liable visualisations are available, and support for multiple chain MCMC is integrated.	re
License GPL (>= 2)	
Encoding UTF-8	
RoxygenNote 7.1.1	
NeedsCompilation no	
R topics documented:	
ACF addCI boxCI boxplot.Siid getCI plot.Siid plot.Smeme Siid Smeme	
Index	1

2 ACF

ACF

ACF Plot for Markov chain Monte Carlo

Description

Autocorrelation function plots for MCMC data (including multiple chains)

Usage

```
ACF(x,component = NULL, type = c("correlation", "covariance"),

plot= TRUE, lag.max = NULL, avg.col = "blue", chain.col = "red",

na.action = na.fail, auto.layout = TRUE, ask = dev.interactive())
```

Arguments

: an 'Smcmc' class object or a list of Markov chains or a Markov chain matrix

component : a vector of integers indicating which components' ACF plots are needed. By

default all components are drawn.

type : the kind of ACF plot: "correlation" or "covariance"

plot : TRUE if plots are required. If FALSE, raw values are returned

lag.max : Maximum lag for the ACF plot

chain.col : color for the ACF of the individual chains.

na.action : function to be called to handle missing values. 'na.pass' can be used.

auto.layout : logical argument for an automatic layout of plots

ask : activating interactive plots

avg.col : color for the overall ACF of each component

Value

returns the autocorrelation function plots of the Markov chains. Uses the more accurate globally-centered ACFs.

References

Agarwal, M., and Vats, D., "Globally-centered autocovariances in MCMC", arxiv - 2009.01799, 2020.

```
# Producing Markov chain
chain <- matrix(0, ncol = 1, nrow = 1e3)
chain[1,] <- 0
err <- rnorm(1e3)
for(i in 2:1e3)
{
   chain[i,] <- .3*chain[i-1,] + err[i]
}
chain <- Smcmc(list(chain))
ACF(chain)</pre>
```

addCI 3

addCI

Add simultaneous confidence interval to existing plot.

Description

Adds simultaneous confidence intervals for quantiles and means to an existing plot.

Usage

Arguments

x : a 'Smcmc' class object

CIs : the output from the 'getCI' function

component : numeric indicating which component to draw the confidence intervals for

bord : logical for whether a border is desired around the confidence intervals

mean : logical argument whether the mean is to be plotted

 $\mbox{mean.color} \qquad : \mbox{color for the mean confidence interval}$

quan.color : color for the quantile confidence intervals

opaq : opacity of mean.col and quan.col. A value of 0 is transparent and 1 is

completely opaque.

... : arguments passed on to the boundaries of the confidence intervals in 'seg-

ments'

Value

adds segments for confidence intervals into an already existing plot environment

```
chain <- matrix(0, ncol = 1, nrow = 1e3)
chain[1,] <- 0
err <- rnorm(1e3)
for(i in 2:1e3)
{
    chain[i,] <- .3*chain[i-1,] + err[i]
}
chain <- Smcmc(list(chain))
plot(density(chain$stacked[,1]))
CIs <- getCI(chain)
addCI(chain, CIs, component = 1)</pre>
```

4 boxplot.Siid

boxCI

Add simultaneous confidence interval to existing boxplot

Description

Adds simultaneous confidence intervals for quantiles to an existing boxplot.

Usage

Arguments

x : a 'Smcmc' class object

ci : the output from the 'getCi' function with 'iid = TRUE'

component : vector indicating which components to draw the confidence intervals for

dimn : numeric for how many components are being plotted

quan.color : color for the quantile confidence intervalshorizontal : logical for whether boxplots are horizontal

Value

adds segments for confidence intervals into an already existing plot environment

Examples

```
output <- matrix(rnorm(3*1e3), nrow = 1e3, ncol = 3)</pre>
```

boxplot.Siid

Boxplot for Siid

Description

Boxplots with simultaenous error bars around all quantiles for iid data.

Usage

getCI 5

Arguments

x : a 'Siid' class object

... : arguments sent to boxplot

alpha : confidence level of simultaneous confidence intervals

thresh : numeric typically less than .005 for the accuracy of the simulteaneous proce-

dure

quan.col : color for the quantile confidence intervals

opaq : opacity of mean.col and quan.col. A value of 0 is transparent and 1 is

completely opaque.

range : as defined for base boxplot width : as defined for base boxplot varwidth : as defined for base boxplot outline : as defined for base boxplot

plot : logical indicating whether the plot is to be constructed

border : as defined for base boxplot
col : as defined for base boxplot
ann : as defined for base boxplot
horizontal : as defined for base boxplot
add : as defined for base boxplot

Value

returns the base boxplot with simultaneous confidence intervals around all quantiles

References

Robertson, N., Flegal, J. M., Vats, D., and Jones, G. L., "Assessing and Visualizing Simultaneous Simulation Error", Journal of Computational and Graphical Statistics, 2020.

Examples

```
# Generating iid data
chain <- matrix(rnorm(3*1e3), nrow = 1e3, ncol = 3)
siid.obj <- Siid(chain)
boxplot(siid.obj)</pre>
```

getCI

Calculates simultaneous confidence intervals.

Description

Calculates simultaneous confidence intervals for means and quantiles as indicated for the desired MCMC output

6 plot.Siid

Usage

```
getCI(x, Q = c(0.1, 0.9), alpha = 0.05, thresh = 0.001, iid = FALSE, mean = TRUE)
```

Arguments

x : a 'Smcmc' class object
Q : vector of quantiles

alpha : confidence levels of the simulatenous intervals

thresh : threshold for the optimization methodology that calculates the simultaneous

CIs

iid : logical argument for constructing density plot for iid samples. Defaults to

FALSE

mean : logical indicating whether mean is to be plotted

Value

adds segments for confidence intervals into an already existing plot environment

References

Robertson, N., Flegal, J. M., Vats, D., and Jones, G. L., "Assessing and Visualizing Simultaneous Simulation Error", Journal of Computational and Graphical Statistics, 2020.

Examples

```
chain <- matrix(0, ncol = 1, nrow = 1e3)
chain[1,] <- 0
err <- rnorm(1e3)
for(i in 2:1e3)
{
    chain[i,] <- .3*chain[i-1,] + err[i]
}
chain <- Smcmc(list(chain))
plot(density(chain$stacked[,1]))
CIs <- getCI(chain)
addCI(chain, CIs, component = 1)</pre>
```

plot.Siid

Plot Siid

Description

Density plots with simultaenous error bars around means and quantiles for iid data.

plot.Siid 7

Usage

Arguments

x : a 'Siid' class object
Q : vector of quantiles

alpha : confidence level of simultaneous confidence intervals

thresh : numeric typically less than .005 for the accuracy of the simulteaneous proce-

dure

rug : logical indicating whether a rug plot is desired
plot : logical argument for is plots are to be returned
mean : logical argument whether the mean is to be plotted

border : whether a border is required for the simultaneous confidence intervals

mean.col : color for the mean confidence interval
quan.col : color for the quantile confidence intervals

opaq : opacity of mean.col and quan.col. A value of 0 is transparent and 1 is

completely opaque.

auto.layout : logical argument for an automatic layout of plots

ask : activating interactive plots

... : arguments passed on to the density plot in base R

Value

returns a plot of the univariate density estimates with simultaneous confidence intervals wherever asked. If plot == FALSE a list of estimates and simultaneous confidence intervals.

References

Robertson, N., Flegal, J. M., Vats, D., and Jones, G. L., "Assessing and Visualizing Simultaneous Simulation Error", Journal of Computational and Graphical Statistics, 2020.

```
# Generating iid data
chain <- matrix(rnorm(3*1e3), nrow = 1e3, ncol = 3)
siid.obj <- Siid(chain)
plot(siid.obj)</pre>
```

8 plot.Smcmc

Description

Density plots with simultaenous error bars around means and quantiles for MCMC data. The error bars account for the correlated nature of the process.

Usage

Arguments

x : a 'Smcmc' class object
Q : vector of quantiles

alpha : confidence level of simultaneous confidence intervals

thresh : numeric typically less than .005 for the accuracy of the simulteaneous proce-

dure

iid : logical argument for constructing density plot for iid samples. Defaults to

FALSE

plot : logical argument for is plots are to be returned
mean : logical argument whether the mean is to be plotted

border : whether a border is required for the simultaneous confidence intervals

mean.col : color for the mean confidence interval
quan.col : color for the quantile confidence intervals
rug : logical indicating whether a rug plot is desired

opaq : opacity of mean.col and quan.col. A value of 0 is transparent and 1 is

completely opaque.

auto.layout : logical argument for an automatic layout of plots

ask : activating interactive plots

 \ldots : arguments passed on to the density plot in base R

Value

returns a plot of the univariate density estimates with simultaneous confidence intervals wherever asked. If plot == FALSE a list of estimates and simultaneous confidence intervals.

References

Robertson, N., Flegal, J. M., Vats, D., and Jones, G. L., "Assessing and Visualizing Simultaneous Simulation Error", Journal of Computational and Graphical Statistics, 2020.

Siid 9

Examples

```
# Producing Markov chain
chain <- matrix(0, ncol = 1, nrow = 1e3)
chain[1,] <- 0
err <- rnorm(1e3)
for(i in 2:1e3)
{
   chain[i,] <- .3*chain[i-1,] + err[i]
}
chain <- Smcmc(list(chain))
plot(chain)</pre>
```

Siid

Siid class

Description

Class for independent and identically distributed (iid) samples

Usage

```
Siid(data, varnames = colnames(data))
```

Arguments

data : an iid output matrix with nsim rows and p columns

varnames : a character string equal to the number of columns in data

Value

an Siid class object

Examples

```
# Generating iid data
chain <- matrix(rnorm(3*1e3), nrow = 1e3, ncol = 3)
siid.obj <- Siid(chain)</pre>
```

Smcmc

Smcmc class

Description

Smcmc class for simulated data using Markov chain Monte Carlo

Usage

```
Smcmc(data, batch.size = TRUE, stacked = TRUE, varnames = colnames(data))
```

10 Smcmc

Arguments

data : a list of MCMC output matrices each with 'nsim' rows and 'p' columns

batch.size : logical argument, if true, calculates the batch size appropriate for this Markov

chain. Setting to TRUE saves time in future steps.

stacked : recommended to be 'TRUE'. logical argument, if true, stores a carefully

stacked version of the MCMC output for use later.

varnames : a character string equal to the number of columns in data

Value

an Smcmc class object

```
# Producing Markov chain
chain <- matrix(0, nrow = 1e3, ncol = 1)
chain[1,] <- 0
err <- rnorm(1e3)
for(i in 2:1e3)
{
   chain[i,] <- .3*chain[i-1,] + err[i]
}
smcmc.obj <- Smcmc(chain)</pre>
```

Index

```
ACF, 2
addCI, 3
as.Siid (Siid), 9
as.Smcmc (Smcmc), 9
boxCI, 4
boxplot.Siid, 4
getCI, 5
is.iid (Siid), 9
is.mcmc (Smcmc), 9
plot.Siid, 6
plot.Smcmc, 8
Siid, 9
Smcmc, 9
```