

# Software Safety

Risk and Risk Assessment

Prof. Dr.-Ing. Patrick Mäder, MSc. Martin Rabe

# Copyright

• This lecture is based on a book by Chris Hobbs [Ho16] and heavily inspired by his course on Embedded Safety-Critical System Development.

#### Contents

1. Acceptable Risk

2. Hazards and Risks

# Acceptable Risk

# Humans' Notion of Safety

#### Most of us have a general notion of safety:

- · Water is safe to drink
- · Food is safe to eat
- · A car is safe to drive

# **Humans' Notion of Safety**

#### Most of us have a general notion of safety:

- · Water is safe to drink
- · Food is safe to eat
  - · We imply, e.g., the absence of harmful micro organisms
  - Is food 100% free of these items?
     No. The levels of these items are below a certain threshold which has been determined to be safe
- · A car is safe to drive

# **Humans' Notion of Safety**

#### Most of us have a general notion of safety:

- · Water is safe to drink
- · Food is safe to eat
- · A car is safe to drive
  - Cars are different as they contain electronic parts, mechanical parts, combustible energy sources etc.
  - There are manifold potential hazards. Many factors need be evaluated before a car can be deemed safe.
  - Is a car 100% safe?
     No. There are established thresholds for braking response, bumper impact resistance, tire durability

## Safety Thresholds

- · Concept of safety thresholds: established safety engineering principle
  - Not unique to software or electronic systems
  - Idea that there are various thresholds above or below which a product is considered to be safe has been applied in microbiology, medicine, engineering for many years
  - Goal: to determine how safe is 'safe enough' without over- or under-engineering a product

# How Safe is Safe Enough?

#### "99.9% risk-free" in the United States today:

- · one hour of unsafe drinking water per month;
- 20,000 children per year suffering from seizures or convulsions due to faulty whooping cough vaccinations;
- · 16,000 pieces of mail lost per hour;
- 500 incorrect surgical operations each week;
- 50 newborns dropped by doctors each day.

→not really "safe enough" in today's society

[Jeffrey W. Vincoli, Basic Guide to System Safety, 3rd Ed., 2014]

Prof. Dr.-Ing. Patrick Mäder, MSc Software Safety 6 / 26

# 99.99% still unacceptable in certain instances

#### "99.99% risk-free" assurance level would mean:

- 2.000 incorrect drug prescriptions per year:
- 370,000 checks deducted from the wrong account per week;
- 3,200 times per year, your heart would fail to beat;
- 5 children sustaining permanent brain damage per year because of faulty whooping cough vaccinations.

Prof. Dr.-Ing. Patrick Mäder, MSc Software Safety 7 / 26

## Risk and Perception

#### · Risk Perception

· Subjective judgment that people make about the characteristics and severity of a risk

#### · Risk Aversion

 Reluctance of people to accept a bargain with an uncertain payoff rather than another bargain with more certain, but possibly lower, expected payoff

#### Scale Aversion

- · Tendency to want greater protection where consequences are high
- Example: a scale averse person would prefer 100 deaths as the result of more frequent incidents in a 10 year period than a single event with 100 deaths in the same period

## Risk Assessment: As Low As Reasonably Practical (ALARP)

#### As Low As Reasonably Practical (ALARP)

- residual risk shall be reduced as far as reasonably practicable
- · principle, e.g., applied in UK and NZ health and safety law
- Risk regions
  - · Unacceptable region
  - · Tolerability region
  - · Broadly acceptable region
- for a risk to be ALARP: must be demonstrable that the cost involved in reducing the risk further would be grossly disproportionate to the benefit gained





[Pixabay]

#### Risk Assessment: Exercise (1/2)

#### Rank the fatality risks of the following events

- Falling aircraft
- Smoking
- Work accident
- · Lightning strike
- · Road / car accident



[Pixabay]

#### · Fatality risk figures

| Falling aircraft    | $2.0 \cdot 10^{-8}/yr$ | (0.02cpm) |
|---------------------|------------------------|-----------|
| Lightning strike    | $1.0 \cdot 10^{-7}/yr$ | (0.1cpm)  |
| Insect / snake bite | $1.0 \cdot 10^{-7}/yr$ | (0.1cpm)  |
| Work accident       | $1.0 \cdot 10^{-5}/yr$ | (10cpm)   |
| Road accident       | $1.0 \cdot 10^{-4}/yr$ | (100cpm)  |
| Car accident        | $1.5 \cdot 10^{-4}/yr$ | (150cpm)  |
| Smoking             | $5.0 \cdot 10^{-3}/yr$ | (5000cpm) |
|                     |                        |           |

cpm: chances per million of the population per year

[D. S. Herrmann: Software Safety and reliability. IEEE, 1999]

Prof. Dr.-Ing. Patrick Mäder, MSc Software Safety 11 / 26

# Risk Assessment: Globally At Least Equivalent (GAMAB)

**GAMAB**: A new system must offer a global level of risk no worse than that offered by an existing equivalent system.

Note: a worsening of one part of the system is acceptable if, overall, the system is no worse.

- prescribed, e.g., by European railway standard EN 50126, 1997; Eisenbahn-Bau- und Betriebsordnung EBO
- · common risk acceptance criterion in France
- · sets current level of safety as a minimum requirement
- premise: risk of comparable system in operation deemed acceptable
- Synonyms
  - · Globalement Au Moins Aussi Bon (GAMAB)
  - · Globalement Au Moins E´quivalent (GAME)
  - · Globally At Least Equivalent (GALE)



[Pixabav]

# Risk Assessment: Minimum Endogenous Mortality (MEM)

- Endogenous mortality *R* is the probability that a person in a particular area will die or suffer serious injury during a given year as a result of causes other than illness or disease
- · included are death from:
  - sport
  - · do-it-yourself activities
  - work machines
  - transport accidents
- · excluded are death from:
  - · illness or disease
  - · congenital malformation
- Specified MEM [EN 50126] = lowest  $R_m \approx 2 \times 10^{-4}$  fatalities/person-year in the age group 5–15 years of developed countries
- → MEM asserts that, taken over a defined population, the system being deployed should not substantially affect *R*





[Pixabay]

- MEM is mainly used as an absolute risk threshold for the approval of complete systems
- new systems must not have a higher risk than the existing ones (cp. GAMAB)
- since everyone is exposed to "many" (standardized: 20) technical systems at the same time → threshold of 1/20 MEM = 0.00001 deaths/year set per system → this value must not be exceeded by planned innovations
- contrarily, new technologies must generally be more secure than old ones, as technical progress makes this possible (cp. ALARP)

Hazards and Risks

### Standards' Definitions

|               | IEC 61508                                                                          | ISO 26262                                                                          |
|---------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| Harm          | Physical injury or damage to the                                                   | Physical injury or damage to the                                                   |
| (Schaden)     | health of people or damage to property or the environment                          | health of persons                                                                  |
| Risk (Risiko) | Combination of the probability of occurrence of harm and the severity of that harm | Combination of the probability of occurrence of harm and the severity of that harm |
| Tolerable     | Risk which is accepted in a given                                                  | _                                                                                  |
| risk          | context based on the current values                                                |                                                                                    |
|               | of society                                                                         |                                                                                    |
| Unreason-     | _                                                                                  | Risk judged to be unacceptable in                                                  |
| able risk     |                                                                                    | a certain context according to valid                                               |
| Cafaty        |                                                                                    | societal moral concepts                                                            |
| Safety        | Freedom from unacceptable risk                                                     | Absence of unreasonable risk                                                       |

Prof. Dr.-Ing. Patrick Mäder, MSc Software Safety 15 / 26

### Hazards and Risks (1/2)

#### Hazard = Potential source of harm

#### Example (figure):

· Hazard: the pole

· Risk: that a boat would run into it



###

#### Hazards and Risks (2/2)



[www.]

#### 4.2 Risk: Stack Memory Overflow

#### 4.2.1 Statement of Risk

If the size of a thread's stack is under-estimated then stack overflow may occur during the execution of the application. The system's behaviour is then indeterminate and may lead to dangerous failure.

#### 4.2.2 Mitigation

The QOS places a "guard page" at the top of the stack to detect overflow. This is marked as being unwritable and, if a thread overflows its stack, the attempted write operation to the guard page will be detected.

SSR-SAF-0340 The QOS SHALL provide a means for detecting the overflow of the stack of any thread and SHALL notify the thread of this condition.

Sending SIGBUS would be a suitable way to notify the offending thread.

SSR-SAF-0350 If the notification sent in accordance with requirement SSR-SAF-0340 is not handled, the QOS SHALL kill the application containing the offending thread.

#### 4.2.3 Residual Risk

The QOS's mechanism to detect stack overflow is a read-only guard page in memory at the end of the stack. This only has a finite size and, while it is very likely to catch any accidental stack overflow, it can be circumvented by a malicious program that allocates a large amount of uninitialised data on the stack.

[www.]

## Faults, Errors, and Failures



[Hobbs, 2016]

# Random vs. Systematic Failures

#### Random Failure

- · Results from hardware degradation
- Occurs at a random time
- · Resulting system failure rates can be predicted with reasonable accuracy

#### Systematic Failure

- · Related in a deterministic way to a certain cause
- Can only be eliminated by a change of the design or of the manufacturing process, operational procedures, documentation etc.
- Cannot be accurately predicted / statistically quantified

- · Avoidance of systematic faults during design, production, ...
  - Use of techniques and procedures that aim to avoid the introduction of faults during any phase of the safety lifecycle
- · Tolerance of systematic faults during operation
  - Ability of a functional unit to continue to perform a required function in the presence of systematic faults or errors
- · Tolerance of random faults during operation
  - Ability of a functional unit to continue to perform a required function in the presence of random faults or errors

# **Functional Safety**

|            | IEC 61508                              | ISO 26262                         |
|------------|----------------------------------------|-----------------------------------|
| Safety     | Freedom from unacceptable risk         | Absence of unreasonable risk      |
| Functional | Part of the overall safety relating to | Absence of unreasonable risk due  |
| Safety     | the EUC and the EUC control system     | to hazards caused by malfunction- |
|            | that depends on the correct func-      | ing behavior of E/E systems       |
|            | tioning of the E/E/PE safety-related   |                                   |
|            | systems and other risk reduction       |                                   |
|            | measures                               |                                   |

EUC: Equipment Under Control
E/E/PE (system): Electrical/Electronic/Programmable Electronic system
E/E (system): Electrical and/or Electronic system

Prof. Dr.-Ing. Patrick Mäder, MSc Software Safety 21 / 26

# Example: What is Functional Safety?

- Application that can cause harm (a risk):
  - · Airbag exploding when infant is sitting in front seat
- Need to assess the risk:
  - · Infant getting injured "not good at all"
- Find a mitigation strategy, e.g. a safety function:
  - · Detecting infant in front seat and disabling airbag
    - · Sensor delivers signal to
    - · Software/Hardware controlling an
    - Actuator (disabler)
- Functional Safety is then:
  - An infant in front seat is not exposed to an unacceptable (unreasonable) risk



# Functional Safety: Lifecycle Approach (1/3)

- · Concept can be traced back to 1947.
- Manufacturer takes a systems approach by designing and building safety into the entire system from initial conceptualization to retirement.
- · Concept applicable to safety of complex electronics and software based systems.
- "The primary concern of the safety life cycle is the management of hazards: their identification, evaluation, elimination, and control through analysis, design and management procedures." [Nancy Leveson, 1995]

# Functional Safety: Lifecycle Approach (2/3)

#### · Emphasizes:

- · Integration of safety into the design,
- · Systematic hazard identification and analysis
- · Addressing the entire system in addition to the subsystems and components
- · Using protection layers for risk reduction
- · Qualitative and quantitative approaches
- To achieve functional safety, manufacturers construct and implement a safety life cycle suitable for each application.

# Functional Safety: Lifecycle Approach (3/3)

- Various life cycle activities and defenses against systematic failures that are necessary to achieve functional safety occur at different stages in the design and operation of the system
- · Therefore it is considered an essential step to define (i.e., describe) a lifecycle
- Various functional safety standards are based on a safety lifecycle approach; they
  describe a safety lifecycle and identify activities and requirements based on it

# Summary

- No system is totally safe and no system meets its safety requirements under all conditions.
- There are different approaches to assessing acceptable risk:

· British: ALARP

· French: GAMAB

· German: MEM

• We need to know how safe, how secure and how fast the system must be. And what functionality it must offer.

Questions?