The ToothGrowth data Analysis

Kiattisak Chaisomboon

07/06/2020

Overview

We are going to analyze the ToothGrowth data in the R datasets package. We will study the change of the tooth length in pigs each type of supplement and changing dose quantity.

Exploratory Data Analysis

First, loading the dataset and check its dimension

```
library(dplyr)
```

```
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union

tg <- ToothGrowth
dim(tg)</pre>
```

[1] 60 3

The dataset contains 60 rows and 3 columns

Next, summarizing the basic data from the dataset

summary(ToothGrowth)

```
##
        len
                                 dose
                    supp
         : 4.20
                   OJ:30
                                   :0.500
## Min.
                            Min.
  1st Qu.:13.07
                   VC:30
                            1st Qu.:0.500
## Median :19.25
                            Median :1.000
  Mean
          :18.81
                            Mean
                                   :1.167
##
  3rd Qu.:25.27
                            3rd Qu.:2.000
## Max.
          :33.90
                                   :2.000
par(mfrow=c(1,2))
boxplot(len ~ supp, data=tg)
boxplot(len ~ dose, data=tg)
```


seem giving orange joice is better than an acid and give more dose is better

Inferential Data Analysis

Create variables each type of supplement

```
OJ <- subset(tg, supp == 'OJ')
VC <- subset(tg, supp == 'VC')</pre>
```

It's

```
Next.
t.test(OJ$len, VC$len, alternative='greater', paired = FALSE, var.equal = FALSE)
##
##
   Welch Two Sample t-test
##
## data: OJ$len and VC$len
## t = 1.9153, df = 55.309, p-value = 0.03032
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.4682687
                    Tnf
## sample estimates:
## mean of x mean of y
    20.66333 16.96333
half.dose <- subset(tg, dose == 0.5)
one.dose <- subset(tg, dose == 1)</pre>
two.dose <- subset(tg, dose == 2)</pre>
```

One dose effect greater than Half dose

10.605

##

19.735

Two dose effect greater than One dose