A temporal interpretation of intuitionistic quantifiers

Luca Carai joint work with Guram Bezhanishvili

New Mexico State University

Nice, TACL 2019 June 21, 2019

Propositional version (from IPC to S4)

$$\begin{array}{cccc} \bot^t = & \bot \\ p^t = & \Box p & \text{for each propositional letter } p \\ (\varphi \land \psi)^t = & \varphi^t \land \psi^t \\ (\varphi \lor \psi)^t = & \varphi^t \lor \psi^t \\ (\varphi \to \psi)^t = & \Box (\neg \varphi^t \lor \psi^t) \end{array}$$

Propositional version (from IPC to S4)

$$\begin{array}{cccc} \bot^t = & \bot \\ p^t = & \Box p & \text{for each propositional letter } p \\ (\varphi \land \psi)^t = & \varphi^t \land \psi^t \\ (\varphi \lor \psi)^t = & \varphi^t \lor \psi^t \\ (\varphi \to \psi)^t = & \Box (\neg \varphi^t \lor \psi^t) \end{array}$$

Theorem (McKinsey and Tarski 1948)

IPC
$$\vdash \varphi$$
 iff **S4** $\vdash \varphi^t$

Predicate version (from IQC to QS4):

$$(\forall x \varphi)^t = \Box \forall x \varphi^t (\exists x \varphi)^t = \exists x \varphi^t$$

Predicate version (from IQC to QS4):

$$(\forall x\varphi)^t = \Box \forall x\varphi^t (\exists x\varphi)^t = \exists x\varphi^t$$

Theorem (Rasiowa and Sikorski 1963)

$$\mathbf{IQC} \vdash \varphi \quad \textit{iff} \quad \mathbf{QS4} \vdash \varphi^t$$

Predicate version (from IQC to QS4):

$$(\forall x\varphi)^t = \Box \forall x\varphi^t (\exists x\varphi)^t = \exists x\varphi^t$$

Theorem (Rasiowa and Sikorski 1963)

$$\mathbf{IQC} \vdash \varphi \quad \textit{iff} \quad \mathbf{QS4} \vdash \varphi^t$$

Later, in 1968, Schütte gave a proof using Kripke semantic.

Temporal interpretation

Our idea is to develop an alternative temporal interpretation of the intuitionistic quantifiers.

∀ as "always in the future";

Temporal interpretation

Our idea is to develop an alternative temporal interpretation of the intuitionistic quantifiers.

- ∀ as "always in the future";
- \bullet \exists as "sometime in the past".

MONADIC CASE

Definition (Prior, Bull)

Definition (Prior, Bull)

The monadic intuitionistic propositional calculus MIPC is obtained by enriching IPC by two "quantifier modalities" \forall , \exists such that

∀ satisfies the S4-axioms for □;

Definition (Prior, Bull)

- ∀ satisfies the S4-axioms for □;
- ∃ satisfies the S4-axioms for ♦;

Definition (Prior, Bull)

- \forall satisfies the **S4**-axioms for \square ;
- ∃ satisfies the S4-axioms for ⋄;
- \exists satisfies the **S5**-axiom $(\exists p \land \exists q) \rightarrow \exists (\exists p \land q)$;

Definition (Prior, Bull)

- ∀ satisfies the S4-axioms for □;
- ∃ satisfies the S4-axioms for ⋄;
- \exists satisfies the **S5**-axiom $(\exists p \land \exists q) \rightarrow \exists (\exists p \land q)$;
- $\bullet \ \exists p \to \forall \exists p;$

Definition (Prior, Bull)

- \forall satisfies the **S4**-axioms for \square ;
- ∃ satisfies the S4-axioms for ⋄;
- \exists satisfies the **S5**-axiom $(\exists p \land \exists q) \rightarrow \exists (\exists p \land q)$;
- $\exists p \rightarrow \forall \exists p$;
- $\exists \forall p \rightarrow \forall p$.

Definition (Prior, Bull)

The monadic intuitionistic propositional calculus MIPC is obtained by enriching IPC by two "quantifier modalities" \forall , \exists such that

- ∀ satisfies the S4-axioms for □;
- ∃ satisfies the S4-axioms for ⋄;
- \exists satisfies the **S5**-axiom $(\exists p \land \exists q) \rightarrow \exists (\exists p \land q);$
- $\exists p \rightarrow \forall \exists p$;
- $\exists \forall p \rightarrow \forall p$.

Theorem (Bull 1966)

MIPC axiomatizes the monadic fragment of IQC.

Definition (Ono 1977)

Definition (Ono 1977)

An **Ono frame** is a triple (X, R, Q) with

ullet R is a partial order on X;

Definition (Ono 1977)

- R is a partial order on X;
- ullet Q is a quasi-order on X;

Definition (Ono 1977)

- R is a partial order on X;
- ullet Q is a quasi-order on X;
- $R \subseteq Q$;

Definition (Ono 1977)

- R is a partial order on X;
- \bullet Q is a quasi-order on X;
- $R \subseteq Q$;
- xQy iff

Definition (Ono 1977)

- R is a partial order on X;
- Q is a quasi-order on X;
- $R \subseteq Q$;
- xQy iff there is $z \in X$ such that xRz

Definition (Ono 1977)

- R is a partial order on X;
- Q is a quasi-order on X;
- $R \subseteq Q$;
- xQy iff there is $z \in X$ such that xRz and zE_Qy

Definition (Ono 1977)

An **Ono frame** is a triple (X, R, Q) with

- R is a partial order on X;
- Q is a quasi-order on X;
- \bullet $R \subseteq Q$;
- xQy iff there is $z \in X$ such that xRz and zE_Qy

where zE_Qy means zQy and yQz.

Let (X, R, Q) be an Ono frame. Propositional connectives are interpreted in the intuitionistic Kripke frame (X, R) in the standard way and:

Let (X, R, Q) be an Ono frame. Propositional connectives are interpreted in the intuitionistic Kripke frame (X, R) in the standard way and:

$$x \vDash \forall \varphi \quad \text{iff} \quad \forall y (xQy \Rightarrow y \vDash \varphi)$$

Let (X, R, Q) be an Ono frame. Propositional connectives are interpreted in the intuitionistic Kripke frame (X, R) in the standard way and:

$$x \vDash \forall \varphi$$
 iff $\forall y (xQy \Rightarrow y \vDash \varphi)$
 $x \vDash \exists \varphi$ iff $\exists y (xE_Q y \& y \vDash \varphi)$

Let (X, R, Q) be an Ono frame. Propositional connectives are interpreted in the intuitionistic Kripke frame (X, R) in the standard way and:

$$x \vDash \forall \varphi$$
 iff $\forall y (xQy \Rightarrow y \vDash \varphi)$
 $x \vDash \exists \varphi$ iff $\exists y (xE_Qy \& y \vDash \varphi)$

Theorem (Ono 1977, Bezhanishvili 1998)

MIPC is complete with respect to the class of Ono frames.

MS4

Definition (Fischer-Servi 1977)

MS4 is obtained from the fusion $\textbf{S4} \otimes \textbf{S5}$ by adding the left commutativity axiom

$$\Box \forall p \to \forall \Box p$$

where \Box is the **S4**-modality and \forall is the **S5**-modality,

MS4

Definition (Fischer-Servi 1977)

MS4 is obtained from the fusion $S4 \otimes S5$ by adding the left commutativity axiom

$$\Box \forall p \to \forall \Box p$$

where \square is the **S4**-modality and \forall is the **S5**-modality,

Theorem (Fischer-Servi 1977)

MS4 axiomatizes the monadic fragment of QS4.

Definition (Esakia 1988)

Definition (Esakia 1988)

An **MS4**-frame is a triple (X, R, E) where

• R is a quasi-order on X;

Definition (Esakia 1988)

- R is a quasi-order on X;
- E is an equivalence relation on X;

Definition (Esakia 1988)

- R is a quasi-order on X;
- E is an equivalence relation on X;
- if xEy and yRz,

Definition (Esakia 1988)

- R is a quasi-order on X;
- E is an equivalence relation on X;
- if xEy and yRz, then there is $u \in X$ such that xRu

Definition (Esakia 1988)

- R is a quasi-order on X;
- E is an equivalence relation on X;
- if xEy and yRz, then there is $u \in X$ such that xRu and uEz.

Let (X, R, E) be an **MS4**-frame. The Boolean connectives and \square are interpreted in the Kripke frame (X, R) in the standard way and the modality:

Let (X, R, E) be an **MS4**-frame. The Boolean connectives and \square are interpreted in the Kripke frame (X, R) in the standard way and the modality:

$$x \vDash \forall \varphi \quad \text{iff} \quad \forall y (xEy \Rightarrow y \vDash \varphi)$$

Let (X, R, E) be an **MS4**-frame. The Boolean connectives and \square are interpreted in the Kripke frame (X, R) in the standard way and the modality:

$$x \vDash \forall \varphi \quad \text{iff} \quad \forall y (xEy \Rightarrow y \vDash \varphi)$$

Theorem (Esakia)

MS4 is complete with respect to the class of MS4-frames.

Relationship between Ono and MS4-frames

Given an Ono frame (X, R, Q), we obtain the **MS4**-frame (X, R, E_Q) .

Relationship between Ono and MS4-frames

Given an Ono frame (X, R, Q), we obtain the **MS4**-frame (X, R, E_Q) .

Vice versa from an **MS4**-frame (X, R, E) we obtain the Ono frame $(X, R, R \circ E)$.

Relationship between Ono and MS4-frames

Given an Ono frame (X, R, Q), we obtain the **MS4**-frame (X, R, E_Q) .

Vice versa from an **MS4**-frame (X, R, E) we obtain the Ono frame $(X, R, R \circ E)$.

This correspondence is not a bijection. Indeed, $Q = R \circ E_Q$ but $E \neq E_{R \circ E}$ in general. But it restricts to a bijection on canonical frames.

Monadic version of the Gödel translation

The Gödel translation of **IQC** into **QS4** restricts to a translation of **MIPC** into **MS4**.

$$(\forall \varphi)^t = \Box \forall \varphi^t (\exists \varphi)^t = \exists \varphi^t$$

Monadic version of the Gödel translation

The Gödel translation of **IQC** into **QS4** restricts to a translation of **MIPC** into **MS4**.

$$(\forall \varphi)^t = \Box \forall \varphi^t (\exists \varphi)^t = \exists \varphi^t$$

Theorem (Fischer-Servi 1977)

$$\mathsf{MIPC} \vdash \varphi \quad \textit{iff} \quad \mathsf{MS4} \vdash \varphi^t$$

Main idea

Interpret the quantifiers as temporal modalities:

- ∀ as "always in the future";
- \bullet \exists as "sometime in the past".

Main idea

Interpret the quantifiers as temporal modalities:

- ∀ as "always in the future";
- \bullet \exists as "sometime in the past".

We do so by defining the temporal logic **TS4** and adjust the Gödel translation in such a way it remains full and faithful when we translate **MIPC** into **TS4**.

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

We then have four temporal modalities:

■_F as "always in the future";

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

- ■_F as "always in the future";
- ■_P as "always in the past";

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

- ■_F as "always in the future";
- ■_P as "always in the past";
- ♠_F as "sometime in the future";

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

- ■_F as "always in the future";
- ■_P as "always in the past";
- ♠_F as "sometime in the future";
- \blacklozenge_P as "sometime in the past".

Definition (Esakia 1978, Wolter 1998)

S4.t is the temporal logic obtained from Prior's tense logic by adding the **S4**-axioms for the modalities \blacksquare_F and \blacksquare_P .

We then have four temporal modalities:

- ■_F as "always in the future";
- ■_P as "always in the past";
- ♠_F as "sometime in the future";
- \blacklozenge_P as "sometime in the past".

Where $\oint_F = \neg \blacksquare_F \neg$ and $\oint_P = \neg \blacksquare_P \neg$.

Idea:

• S4 to interpret IPC as usual;

Idea:

- S4 to interpret IPC as usual;
- S4.t to interpret the quantifier modalities of MIPC.

Idea:

- S4 to interpret IPC as usual;
- **S4.t** to interpret the quantifier modalities of **MIPC**.

Definition

TS4 is obtained from the fusion **S4** \otimes **S4.t**, where \square is the **S4** modality and \blacksquare_F and \blacksquare_P are the **S4.t** modalities, by adding the axioms

Idea:

- S4 to interpret IPC as usual;
- **S4.t** to interpret the quantifier modalities of **MIPC**.

Definition

TS4 is obtained from the fusion **S4** \otimes **S4.t**, where \square is the **S4** modality and \blacksquare_F and \blacksquare_P are the **S4.t** modalities, by adding the axioms

- $\bullet \blacksquare_F q \rightarrow \Box \blacksquare_F q;$
- $\blacklozenge_F q \rightarrow \diamondsuit (\blacklozenge_F q \land \blacklozenge_P q)$.

Definition

A $\mathbf{TS4}$ -frame is a triple (X, R, Q) with

Definition

A $\mathbf{TS4}$ -frame is a triple (X, R, Q) with

• R, Q are quasi-orders;

Definition

A **TS4**-frame is a triple (X, R, Q) with

- R, Q are quasi-orders;
- $R \subseteq Q$ (axiom $\blacksquare_F q \rightarrow \Box \blacksquare_F q$);

Definition

A **TS4**-frame is a triple (X, R, Q) with

- R, Q are quasi-orders;
- $R \subseteq Q$ (axiom $\blacksquare_F q \rightarrow \Box \blacksquare_F q$);
- xQy iff there is $z \in X$ such that xRz and zE_Qy . (axiom $\oint_F q \to \diamondsuit(\oint_F q \land \oint_P q)$).

Let (X, R, Q) be a **TS4**-frame. The **S4**-connectives are interpreted in the Kripke frame (X, R) as usual. We extend the interpretation to the temporal modalities as follows:

Let (X, R, Q) be a **TS4**-frame. The **S4**-connectives are interpreted in the Kripke frame (X, R) as usual. We extend the interpretation to the temporal modalities as follows:

$$x \vDash \blacksquare_F \varphi \quad \text{iff} \quad \forall y (xQy \Rightarrow y \vDash \varphi)$$

Let (X, R, Q) be a **TS4**-frame. The **S4**-connectives are interpreted in the Kripke frame (X, R) as usual. We extend the interpretation to the temporal modalities as follows:

$$x \vDash \blacksquare_F \varphi$$
 iff $\forall y (xQy \Rightarrow y \vDash \varphi)$
 $x \vDash \blacksquare_P \varphi$ iff $\forall y (yQx \Rightarrow y \vDash \varphi)$

Let (X, R, Q) be a **TS4**-frame. The **S4**-connectives are interpreted in the Kripke frame (X, R) as usual. We extend the interpretation to the temporal modalities as follows:

$$x \vDash \blacksquare_F \varphi$$
 iff $\forall y(xQy \Rightarrow y \vDash \varphi)$
 $x \vDash \blacksquare_P \varphi$ iff $\forall y(yQx \Rightarrow y \vDash \varphi)$

Theorem

TS4 is complete with respect to the class of **TS4**-frames.

Translation of MIPC into TS4

$$(\forall \varphi)^* = \blacksquare_F \varphi^* (\exists \varphi)^* = \blacklozenge_P \varphi^*$$

Translation of MIPC into TS4

$$(\forall \varphi)^* = \blacksquare_F \varphi^* (\exists \varphi)^* = \blacklozenge_P \varphi^*$$

MIPC	in Ono-frames	*-translation in TS4 -frames
$\forall \varphi$ $\exists \varphi$	$\forall y(xQy \Rightarrow y \vDash \varphi) \exists y(xE_Qy \& y \vDash \varphi)$	$\forall y(xQy \Rightarrow y \vDash \varphi^*)$ $\exists y(yQx \& y \vDash \varphi^*)$

Translation of MIPC into TS4

$$(\forall \varphi)^* = \blacksquare_F \varphi^* (\exists \varphi)^* = \blacklozenge_P \varphi^*$$

MIPC	in Ono-frames	$*$ -translation in ${f TS4}$ -frames
$\forall \varphi$ $\exists \varphi$	$\forall y(xQy \Rightarrow y \vDash \varphi) \exists y(xE_Qy \& y \vDash \varphi)$	$\forall y(xQy \Rightarrow y \vDash \varphi^*)$ $\exists y(yQx \& y \vDash \varphi^*)$

Theorem

$$\mathsf{MIPC} \vdash \varphi \quad \textit{iff} \quad \mathsf{TS4} \vdash \varphi^*$$

MS4.t

Definition

MS4.t is obtained from the fusion $\textbf{S4.t} \otimes \textbf{S5}$ by adding the left commutativity axiom

$$\Box_F \forall p \to \forall \Box_F p.$$

Where the two temporal **S4**-operators are denoted by \Box_F and \Box_P and the **S5**-operator by \forall .

Translation of MS4 into MS4.t

We can think of MS4.t as an extension of MS4.

$$(\forall \varphi)^{\#} = \forall \varphi^{\#}$$
$$(\Box \varphi)^{\#} = \Box_F \varphi^{\#}$$

Translation of MS4 into MS4.t

We can think of MS4.t as an extension of MS4.

$$(\forall \varphi)^{\#} = \forall \varphi^{\#}$$
$$(\Box \varphi)^{\#} = \Box_{F} \varphi^{\#}$$

Theorem

$$MS4 \vdash \varphi$$
 iff $MS4.t \vdash \varphi^{\#}$

Translation of TS4 into MS4.t

$$(\Box \varphi)^{\dagger} = \Box_F \varphi^{\dagger}$$
$$(\blacksquare_F \varphi)^{\dagger} = \Box_F \forall \varphi^{\dagger}$$
$$(\blacksquare_P \varphi)^{\dagger} = \forall \Box_P \varphi^{\dagger}$$

Translation of TS4 into MS4.t

$$(\Box \varphi)^{\dagger} = \Box_F \varphi^{\dagger}$$
$$(\blacksquare_F \varphi)^{\dagger} = \Box_F \forall \varphi^{\dagger}$$
$$(\blacksquare_P \varphi)^{\dagger} = \forall \Box_P \varphi^{\dagger}$$

Theorem.

TS4 $\vdash \varphi$ iff **MS4.t** $\vdash \varphi^{\dagger}$

Theorem

MS4.t has the finite model property.

Theorem

MS4.t has the finite model property.

Corollary

• MIPC has the finite model property (Bull, Ono, Fischer-Servi);

Theorem

MS4.t has the finite model property.

Corollary

- MIPC has the finite model property (Bull, Ono, Fischer-Servi);
- MS4 has the finite model property;

Theorem

MS4.t has the finite model property.

Corollary

- MIPC has the finite model property (Bull, Ono, Fischer-Servi);
- MS4 has the finite model property;
- TS4 has the finite model property.

Theorem

MS4.t has the finite model property.

Corollary

- MIPC has the finite model property (Bull, Ono, Fischer-Servi);
- MS4 has the finite model property;
- TS4 has the finite model property.

Thus we obtain an uniform approach for the proof of the finite model property for all these logics.

PREDICATE CASE

$$(\forall x\varphi)^t = \Box_F \forall x\varphi^t (\exists x\varphi)^t = \Diamond_P \exists x\varphi^t$$

$$(\forall x\varphi)^t = \Box_F \forall x\varphi^t (\exists x\varphi)^t = \Diamond_P \exists x\varphi^t$$

Therefore

 the intuitionistic ∀ is interpreted as "for each object in the domain of every future world";

$$(\forall x\varphi)^t = \Box_F \forall x\varphi^t (\exists x\varphi)^t = \Diamond_P \exists x\varphi^t$$

Therefore

- the intuitionistic ∀ is interpreted as "for each object in the domain of every future world";
- the intuitionistic ∃ is interpreted as "there exists an object in the domain of some past world".

$$(\forall x\varphi)^t = \Box_F \forall x\varphi^t (\exists x\varphi)^t = \Diamond_P \exists x\varphi^t$$

Therefore

- the intuitionistic ∀ is interpreted as "for each object in the domain of every future world";
- the intuitionistic ∃ is interpreted as "there exists an object in the domain of some past world".

To make these ideas work we use Corsi's semantic (2002).

Thanks for your attention!

$Q^{\circ}S4.t + CBF_{F}$

Let us consider a predicate language containing two modal operators \Box_F and \Box_P . The logic $\mathbf{Q}^{\circ}\mathbf{S4}.\mathbf{t} + \mathbf{CBF_F}$ is the one defined by the axioms

$$\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \qquad \forall y (\forall x \varphi(x) \to \varphi(y/x))$$

$$\forall x \forall y \varphi \leftrightarrow \forall y \forall x \varphi \qquad \forall x (\varphi \to \psi) \to (\forall x \varphi \to \forall x \psi)$$

$$\exists \top \qquad \varphi \to \forall x \varphi \quad \text{provided } x \text{ not free in } \varphi.$$

That is closed under necessitation, universal generalization and modus ponens.

Semantic for $Q^{\circ}S4.t + CBF_F$

We consider Kripke frames $(X, R, \{D_w\}, U)$ with:

- a **S4**-Kripke frame (*X*, *R*);
- a set *U*, called outer domain;
- a map associating to any world $w \in X$ a set $D_w \subseteq U$ called inner domain at w;
- wRv implies $D_w \subseteq D_v$.

Theorem (Corsi 2002)

 $\mathbf{Q}^{\circ}\mathbf{S4.t} + \mathbf{CBF_F}$ is complete with respect to the class of frames described above where the quantified variables are interpreted in the inner domains D_w 's while the free variables and constants are interpreted inside the outer domain U.

Translation of IQC into $Q^{\circ}S4.t + CBF_{F}$

The following is a full and faithful translation of IQC into $Q^\circ S4.t + CBF_F$.

$$P^{t} = \Box_{F}P$$
$$(\varphi \to \psi)^{t} = \Box_{F}(\neg \varphi^{t} \lor \psi^{t})$$
$$(\forall x \varphi)^{t} = \Box_{F} \forall x \varphi^{t}$$
$$(\exists x \varphi)^{t} = \Diamond_{P} \exists x \varphi^{t}$$

This translation is full and faithful only when restricted to sentences. This is because only the universal closure of the universal instantiation axiom is provable in $\mathbf{Q}^{\circ}\mathbf{S4.t} + \mathbf{CBF_{F}}$. We cannot have completeness with respect to the class of frames described above if we include the universal instantiation axiom.

Translation of IQC into $Q^{\circ}S4.t + CBF_{F}$

The following is a full and faithful translation of IQC into $Q^{\circ}S4.t + CBF_{F}$.

$$P^{t} = \Box_{F}P$$
$$(\varphi \to \psi)^{t} = \Box_{F}(\neg \varphi^{t} \lor \psi^{t})$$
$$(\forall x \varphi)^{t} = \Box_{F} \forall x \varphi^{t}$$
$$(\exists x \varphi)^{t} = \exists x \Diamond_{P} \varphi^{t}$$

This translation is full and faithful only when restricted to sentences. This is because only the universal closure of the universal instantiation axiom is provable in $\mathbf{Q}^{\circ}\mathbf{S4.t} + \mathbf{CBF_{F}}$. We cannot have completeness with respect to the class of frames described above if we include the universal instantiation axiom.

Constant domains

The logic QS4.t is obtained by adding the universal instantiation axiom to $Q^{\circ}S4.t + CBF_{F}$.

It is complete with respect to the class of frames with inner domains coinciding with the outer domain and therefore constant.

The previous translation gives a full and faithful translation of $\mathbf{IQC} + (\forall x \, (\forall x \, \varphi \lor \psi)) \to (\forall x \, \varphi \lor \forall x \, \psi)$ into $\mathbf{QS4.t}$. In this case the translation works for all the sentences.