Лабораторная работа №6

Модели динамического программирования

Цель работы: Определить оптимальный маршрут доставки груза с минимальными транспортными расходами.

Постановка задачи

На заданной сети дорог имеется несколько маршрутов по доставке груза из пункта 1 в пункт 11. стоимость перевозки единицы груза между отдельными пунктами сети проставлены у соответствующий ребер. Необходимо определить оптимальный маршрут доставки груза из пункта 1 в пункт 11, который обеспечил бы минимальные транспортные расходы.

Решение

1 этап. Условная оптимизация.

1-й шаг. k = 1

 $F_1(i) = C_{i11}$

j	11	F ₁ (i)	j*
8	10	10	11
9	9	9	11
10	8	8	11

2-й шаг. k = 2

$F_2(i) = min\{C_{ij} + F_1(j)\}$

j	8	9	10	F ₂ (i)	j*
6	10+18	9+14	8+16	23	9
7	10+11	9+12	8+10	18	10

3-й шаг. k = 3

$F_3(i)=min\{C_{ij}+F_2(j)\}$

j	6	7	F ₃ (i)	j*
2	23+12	18+9	27	7
3	23+13	18+16 34		7
4	23+10 18		27	7
5	23+10	18+16	33	6

4-й шаг. k = 4

$F_4(i) \!\!=\!\! min\{C_{ij} \!\!+\!\! F_3(j)\}$

j	j	2	3	4	5	F ₄ (i)	j*
	1	27+16	34+9	27+14	33+12	41	4

2 этап. Безусловная оптимизация.

На этапе условной оптимизации получено, что минимальные затраты на перевозку груза из пункта 1 в пункт 11 составляют $F_4(1) = 41$. Данный результат достигается при движении груза 1 => 4 => 7 => 10 => 11. Таким образом, оптимальный маршрут доставки груза: 1 => 4 => 7 => 10 => 11 (показан стрелками).

Вывод: В ходе лабораторной работы, мы научились находить оптимальный маршрут при помощи условной оптимизации.