§9.1 微分方程的基本概念

2016-2017 **学年** II

Outline

• 设 y = f(x) 为未知函数,如下方程

$$\frac{dy}{dx} = y \sin x, \quad y' - 2xy + e^{x} = 0,$$
$$(y''')^{4} - (y''')^{2} = 5 - y, \dots$$

都是所谓常微分方程

• 设 y = f(x) 为未知函数,如下方程

$$\frac{dy}{dx} = y \sin x, \quad y' - 2xy + e^x = 0,$$
$$(y''')^4 - (y''')^2 = 5 - y, \dots$$

都是所谓常微分方程

● 注 xdy + ydx = 0 也是常微分方程

• 设 y = f(x) 为未知函数,如下方程

$$\frac{dy}{dx} = y \sin x, \quad y' - 2xy + e^x = 0,$$
$$(y''')^4 - (y''')^2 = 5 - y, \dots$$

都是所谓常微分方程

● 注 xdy + ydx = 0 也是常微分方程:

$$xdy + ydx = 0 \implies x\frac{dy}{dx} + y = 0$$

• 设 y = f(x) 为未知函数,如下方程

$$\frac{dy}{dx} = y \sin x, \quad y' - 2xy + e^x = 0,$$
$$(y''')^4 - (y''')^2 = 5 - y, \dots$$

都是所谓常微分方程

● 注 xdy + ydx = 0 也是常微分方程:

$$xdy + ydx = 0 \implies x\frac{dy}{dx} + y = 0$$

• 实际问题 $\xrightarrow{\overline{z}\overline{k}}$ 微分方程 $\xrightarrow{\overline{x}\overline{k}\overline{k}\overline{k}}$ 实际问题

例 在理想实验条件下,任何时刻,培养皿中细菌的分裂速度与细菌数目成正比,比例常数 k 为正常数。问细菌数目随时间变化规律。

例 在理想实验条件下,任何时刻,培养皿中细菌的分裂速度与细菌数目成正比,比例常数 k 为正常数。问细菌数目随时间变化规律。

探讨 设 y(t) 为 t 时刻细菌数目,

例 在理想实验条件下,任何时刻,培养皿中细菌的分裂速度与细菌数目成正比,比例常数 k 为正常数。问细菌数目随时间变化规律。

探讨 设 y(t) 为 t 时刻细菌数目,则 y'(t) 为细菌分裂速度,

例 在理想实验条件下,任何时刻,培养皿中细菌的分裂速度与细菌数目成正比,比例常数 k 为正常数。问细菌数目随时间变化规律。

探讨 设 y(t) 为 t 时刻细菌数目,则 y'(t) 为细菌分裂速度,并且 $y'(t) = k \cdot y(t)$

例 在理想实验条件下,任何时刻,培养皿中细菌的分裂速度与细菌数目成正比,比例常数 k 为正常数。问细菌数目随时间变化规律。

探讨 设 y(t) 为 t 时刻细菌数目,则 y'(t) 为细菌分裂速度,并且 $y'(t) = k \cdot y(t)$

如何求出 y(t)?

• 常微分方程中, 未知函数的导数的最高阶数称为微分方程的阶

常微分方程	阶数
$y' - 2xy^3 + e^x = 0$	
$(y''')^{400} - (y'')^2 + y' = 5e^x - y$	
xdy + ydx = 0	
$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7x = 0$	

• 常微分方程中,未知函数的导数的最高阶数称为微分方程的阶

常微分方程	阶数
$y'-2xy^3+e^x=0$	1
$(y''')^{400} - (y'')^2 + y' = 5e^x - y$	
xdy + ydx = 0	
$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7x = 0$	

• 常微分方程中,未知函数的导数的最高阶数称为微分方程的阶

常微分方程	阶数
$y'-2xy^3+e^x=0$	1
$(y''')^{400} - (y'')^2 + y' = 5e^x - y$	3
xdy + ydx = 0	
$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7x = 0$	

• 常微分方程中, 未知函数的导数的最高阶数称为微分方程的阶

常微分方程	阶数
$y'-2xy^3+e^x=0$	1
$(y''')^{400} - (y'')^2 + y' = 5e^x - y$	3
xdy + ydx = 0	1
$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7x = 0$	

• 常微分方程中, 未知函数的导数的最高阶数称为微分方程的阶

常微分方程	阶数
$y'-2xy^3+e^x=0$	1
$(y''')^{400} - (y'')^2 + y' = 5e^x - y$	3
xdy + ydx = 0	1
$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 7x = 0$	2

• 若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

$$\frac{dy}{dx} - 3y$$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

$$\frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} =$$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

$$\mathbf{m} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3ce^{3x$$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

$$\mathbf{g} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x}$$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

$$\frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\mathbf{m} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\mathbf{m} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件,才有可能得到唯一解。一般添加所谓"初始条件"。

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件, 才有可能得到唯一解。一般添加所谓"初始条件"。

例 求 $\frac{dy}{dx} - 3y = 0$ 在初始条件 y(0) = 2 下的解。

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\mathbf{m} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件,才有可能得到唯一解。一般添加所谓"初始条件"。

例 求 $\frac{dy}{dx} - 3y = 0$ 在初始条件 y(0) = 2 下的解。

解 已知 $y = Ce^{3x}$ 。

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件,才有可能得到唯一解。一般添加所谓"初始条件"。

例 求 $\frac{dy}{dx} - 3y = 0$ 在初始条件 y(0) = 2 下的解。

解 已知 $y = Ce^{3x}$ 。 将 y(0) = 2 代入,得 $2 = C \cdot e^{3.0} =$

若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\mathbf{m} \qquad \frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件, 才有可能得到唯一解。一般添加所谓"初始条件"。

例 求 $\frac{dy}{dx} - 3y = 0$ 在初始条件 y(0) = 2 下的解。

解 已知 $y = Ce^{3x}$ 。 将 y(0) = 2 代入,得 $2 = C \cdot e^{3\cdot 0} = C$

常微分方程的解I

• 若一个函数代入常微分方程后,使方程成为恒等式,则称该函数为 该微分方程的解

例 验证 $y = Ce^{3x}$ 是否微分方程 $\frac{dy}{dx} - 3y = 0$ 的解,其中 C 为任意常数。

$$\frac{dy}{dx} - 3y = (Ce^{3x})' - 3Ce^{3x} = C \cdot 3e^{3x} - 3Ce^{3x} = 0$$

注 通常,满足微分方程的函数可以有很多。这时要对方程附加额外条件, 才有可能得到唯一解。一般添加所谓"初始条件"。

例 求
$$\frac{dy}{dx} - 3y = 0$$
 在初始条件 $y(0) = 2$ 下的解。

解 已知
$$y = Ce^{3x}$$
。 将 $y(0) = 2$ 代入,得 $2 = C \cdot e^{3 \cdot 0} = C$,所以 $y = 2e^{3x}$ 。

例 验证 $y = xe^x$ 是否微分方程 y'' - 2y' + y = 0 的解?

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y' =$$

$$y'' =$$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y' = (xe^x)' = y'' = y$$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y'' = (xe^x)' = e^x + xe^x$$
$$y'' =$$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y' = (xe^{x})' = e^{x} + xe^{x}$$

 $y'' = (e^{x} + xe^{x})' =$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y'' = (xe^{x})' = e^{x} + xe^{x}$$
$$y'' = (e^{x} + xe^{x})' = e^{x} + e^{x} + xe^{x} = e^{x}$$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y' = (xe^{x})' = e^{x} + xe^{x}$$
$$y'' = (e^{x} + xe^{x})' = e^{x} + e^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$\therefore y'' - 2y' + y =$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y' = (xe^{x})' = e^{x} + xe^{x}$$
$$y'' = (e^{x} + xe^{x})' = e^{x} + e^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$\therefore y'' - 2y' + y = (2e^x + xe^x) - 2(e^x + xe^x) + xe^x$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

$$y'' = (xe^{x})' = e^{x} + xe^{x}$$

$$y'' = (e^{x} + xe^{x})' = e^{x} + e^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$y'' = (xe^{x})' + xe^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$y'' = (xe^{x})' + xe^{x} + xe^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$\therefore y'' - 2y' + y = (2e^x + xe^x) - 2(e^x + xe^x) + xe^x = 0$$

例 验证
$$y = xe^x$$
 是否微分方程 $y'' - 2y' + y = 0$ 的解?

解

$$y' = (xe^{x})' = e^{x} + xe^{x}$$
$$y'' = (e^{x} + xe^{x})' = e^{x} + e^{x} + xe^{x} = 2e^{x} + xe^{x}$$

$$\therefore y'' - 2y' + y = (2e^x + xe^x) - 2(e^x + xe^x) + xe^x = 0$$

所以 $y = xe^x$ 是微分方程 y'' - 2y' + y = 0 的解

例 验证 $y = c_1 x + c_2 x^2$ 是否微分方程 $y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$ 的解? 其中 c_1 , c_2 是任意常数

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y'' = y'' = y''$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y =$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y' = (c_1x + c_2x^2)' = y'' =$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y =$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$
$$y'' =$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y =$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$
$$y'' = (c_1 + 2c_2x)' =$$
$$y'' - \frac{2}{y}y' + \frac{2}{y^2}y =$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x}y' + \frac{2}{x^2}y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$
$$y'' = (c_1 + 2c_2x)' = 2c_2$$
$$2$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y =$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$
$$y'' = (c_1 + 2c_2x)' = 2c_2$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y = (2c_2) - \frac{2}{x}(c_1 + 2c_2x) + \frac{2}{x^2}(c_1x + c_2x^2)$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y'' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$

$$y'' = (c_1 + 2c_2x)' = 2c_2$$

$$y'' - \frac{2}{x}y' + \frac{2}{x^2}y = (2c_2) - \frac{2}{x}(c_1 + 2c_2x) + \frac{2}{x^2}(c_1x + c_2x^2)$$

$$= 2c_2 - \frac{2c_1}{x} - 4c_2 + \frac{2c_1}{x} + 2c_2$$

 $v' = (c_1x + c_2x^2)' = c_1 + 2c_2x$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

$$y'' = (c_1 + 2c_2x)' = 2c_2$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y = (2c_2) - \frac{2}{x}(c_1 + 2c_2x) + \frac{2}{x^2}(c_1x + c_2x^2)$$

$$= 2c_2 - \frac{2c_1}{x} - 4c_2 + \frac{2c_1}{x} + 2c_2 = 0$$

例 验证
$$y = c_1 x + c_2 x^2$$
 是否微分方程 $y'' - \frac{2}{x} y' + \frac{2}{x^2} y = 0$ 的解? 其中 c_1 , c_2 是任意常数

解

$$y' = (c_1x + c_2x^2)' = c_1 + 2c_2x$$
$$y'' = (c_1 + 2c_2x)' = 2c_2$$

$$\therefore y'' - \frac{2}{x}y' + \frac{2}{x^2}y = (2c_2) - \frac{2}{x}(c_1 + 2c_2x) + \frac{2}{x^2}(c_1x + c_2x^2)$$
$$= 2c_2 - \frac{2c_1}{x} - 4c_2 + \frac{2c_1}{x} + 2c_2 = 0$$

所以 $y = c_1 x + c_2 x^2$ 是微分方程 $y'' - \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

1.
$$y = Ce^{3x}$$
 是 $y' - 3y = 0$ 的解

2.
$$y = xe^x$$
 是 $y'' - 2y' + y = 0$ 的解

3.
$$y = c_1 x + c_2 x^2 \neq y'' - \frac{2}{x} y' + \frac{1}{x^2} y = 0$$
 的解

如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解
- 2. $y = xe^x$ 是 y'' 2y' + y = 0 的解
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解
- 2. $y = xe^x$ 是 y'' 2y' + y = 0 的解
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

- 1. $y = Ce^{3x} \neq y' 3y = 0$ 的解(通解)
- 2. $y = xe^x$ 是 y'' 2y' + y = 0 的解
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解(通解), $y = 2e^{3x}$ 是特解
- 2. $y = xe^x$ 是 y'' 2y' + y = 0 的解
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解(通解), $y = 2e^{3x}$ 是特解
- 2. $y = xe^x \pm y'' 2y' + y = 0$ 的解 (特解)
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解(通解), $y = 2e^{3x}$ 是特解
- 2. $y = xe^x \pm y'' 2y' + y = 0$ 的解 (特解)
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解 (通解)

- 如果常微分方程的解含有相互独立的任意常数,且数目与常微分方程的阶相同,则称此解是微分方程的通解
- 如果常微分方程的解不包含有任意取值的常数,则称此解是微分方程的特解

比较:

- 1. $y = Ce^{3x}$ 是 y' 3y = 0 的解(通解), $y = 2e^{3x}$ 是特解
- 2. $y = xe^x \pm y'' 2y' + y = 0$ 的解 (特解)
- 3. $y = c_1 x + c_2 x^2 \neq y'' \frac{2}{x} y' + \frac{1}{x^2} y = 0$ 的解 (通解)

注 通常,添加初始条件后,可确定出通解中的常数,从而得出特解。

