1 Introduction

Law of Induction ***

Used when we wish to prove a statement S(n) is valid for all $n \ge n_0$ (usually $n_0 = 0$ or 1)

The steps are as follows:

- 1. Base case: $S(n_0)$ to prove
- 2. Induction Hypothesis: Assume S(n) is valid for an arbitrary $n \ge n_0$. Then prove that S(n+1) is valid.

Example 1.1

Prove that $2^n > n$ for $n \ge 1$.

Proof. By induction:

Base case: $2^1 = 2 > 1$, true.

Induction Hypothesis: Assume $2^n > n$ for an arbitrary $n \ge 1$.

$$2^{n+1} = 2(2^n) >_{IH} 2(n) = n + n \ge n + 1$$

Thus, the induction implies that $2^n > n$ for $n \ge 1$.

Proof by Contradiction **

Used when we wish to prove that $P \implies Q$. We assume not Q, and prove not P.

 $P \implies Q$ is equivalent to not $Q \implies$ not P.

Rationals vs Irrationals 1.3

A real number x is rational if there are integers p,q with $x=\frac{p}{q},\,q\neq0,$ and $\frac{p}{q}$ is in reduced form (no common nontrivial divisor of p and q)

 $\frac{8}{6}$ is not in reduced form: $\frac{4}{3}$ is.

The irrational numbers are all non-rationals.

Example 1.2

Prove that $\sqrt{5}$ is irrational.

Proof. By contradiction: Assume $\sqrt{5} = \frac{p}{q}$ in reduced form, p, q integers.

Then, $p=\sqrt{5}q$, so $p^2=5q^2$, so $5|p^2$, so 5|p (by arithmetic laws) Let 5r=p, with $r\in\mathbb{Z}$. then $5q^2=p^2=25r^2$, so $q^2=5r^2$, so 5|q

Then, 5|p and 5|q, so $\frac{p}{q}$ is not in reduced form. Contradiction.

1.4 Upper bounds

Definition 1.3

A set $S \subseteq R$ has an **upper bound** b if $b \ge x$ for all x in S.

A set $S \subseteq R$ has a **lower bound** c if $c \le x$ for all x in S.

Definition 1.4

If b is the smallest upper bound of S, then b is the **least upper bound** of S (lub S), which is the supremum

If c is the largest lower bound of S, then c is the greatest lower bound of S (glb S), which is the infimum of S (inf S)

Axiom 1.5 (Completeness Axiom / Least Upper Bound Axiom)

If S has an upper bound, S has a sup S.

If S has an lower bound, S has an inf S.

Example 1.6

 $S_1 = \{x \in \mathbb{R} : x^2 < 2\}$, sup $S_1 = \sqrt{2}$, inf $S_1 = -\sqrt{2}$ $S_2 = \text{rationals} < 1$. sup $S_2 = 1$, inf S does not exist. (The supremum and infimum must be numbers)

 $S_3 = \text{irrationals} < 1. \sup S_3 = 1, \inf S_3 \text{ does not exist.}$ $S_4 = \{\frac{1}{n}\}_{n=1}^{\infty}, \sup S_4 = 1, \inf S_4 = 0$ $S_5 = \{1, 2, 3, \dots\}. \sup S_5 \text{ does not exist, } \inf S_5 = 1$

Archimedean Property *** 1.5

Property 1.7 (Archimedean Property)

For any c > 0, there is an integer n > c.

Equivalently, for any c > 0, there is an integer n with $0 < \frac{1}{n} < c$.

Theorem 1.8

Let a < b. Then there is a rational number in (a, b).

Proof. Assume 0 < a < b. So, b - a > 0.

By the Archimedean Property, there is an integer n with $0 < \frac{1}{n} < \frac{b-a}{2}$. Then, $\frac{2}{n} < b-a$, so $a+\frac{2}{n} < b$, so $a < a+\frac{1}{n} < a+\frac{2}{n} < b$. So, there must be some $\frac{k}{n}$ in $[a+\frac{1}{n},a+\frac{2}{n}]\subseteq (a,b)$

If a < b < 0, then just look at 0 < -b < -a, and find the rational in (-b, -a)

If a < 0 < b, then 0 is the rational.