효율성 분석을 통한 TIPS 프로그램 성과 분석

인하대학교 김효준, 이준민, 오동현

목차

- 1. 연구배경, 목표
- 2. 선행연구
- 3. 연구방법론
- 4. 분석자료
- 5. 실증분석 결과
- 6. 연구의 시사점 및 한계

1. 연구배경, 목표

연구배경

- 국내 벤처기업의 총 매출액이 2019년 12월말 기준 193.3조원으로 집계
 - 『2020년 벤처기업정밀실태조사』에 따르면, 기업 당 평균 매출액은 52억 9,500만원, 평균 영업이익은 1억 2,000 만원, 평균 순이익은 2,400 만원으로 나타남
 - 전년 대비 매출영업이익율 2.3%, 매출순이익률 9.5%, 매출액증감률은 0.5% 로 다소 감소
- Tech Incubator Program For Startup(이하 TIPS) 프로그램으로 기술기반의 창업에 관심을 갖는 사람 혹은 단체를 지원
 - TIPS 프로그램은 중소기업청의 주관으로 민간주도형 기술 창업 지원 프로그램을 의미
 - TIPS의 운영기관이 기준을 가지고 유망한 기술 창업 팀을 선발하고, 운영사의 지원 규모 및 종류에 따라 지원
 - 더불어 정부는 R&D 자금과 같이 기술 발전 비용 혹은 운영 비용을 지원

연구배경

• 팁스를 통해 발굴·육성된 스타트업이 성과를 도출

- 2021년 2월 기준, '지놈앤컴퍼니', '이오플로우', '티앤알바이오팹', '펨토바이오메드', '뷰노'까지 총 5개의 기업이 코스닥에 상장
- 창업 2년에서 5년 동안 1042개의 스타트업 중 19개의 기업이 '카카오', '네이버', ' 쏘카' 와 같은 대기 업 또는 선배 중소기업에 M&A 성공
- '뉴라클사이언스', '인핏앤컴퍼니', '루닛' 과 같이 팁스 선정 바이오 텍의 투자 유치도 활발
- 스타트업 '스트라티오'는 2015년 미국의 최대 B2B 인큐베이터 'Alchemist Accelerator', '케이큐브벤처스', 'GoGlobal Consulting Service' 등에서 총 24억원의 투자 유치 성공

연구목표

- 메타프론티어를 통한 TIPS 성과 분석
 - TIPS 프로그램 참여를 통한 기업을 성과를 확률변경분석법 기반의 메타프론티어 분석법을 통해 타기업군과의 성과 분석
 - TIPS 프로그램에 대한 평가를 통해 지원 산업 선정 및 세부 예산안 수립 과정에서도 예산 투입의 근 거자료로 활용 가능
- 기업 단위 데이터로 TIPS 프로그램 효율성 평가하고 이를 증대 하고 창업 기업의 경쟁력 제고를 위한 정책적 시사점 제시
 - TIPS 프로그램의 의의, 한계, 활용방안 등 제시
 - 효율성 증대 방향 모색 방향 제시

2. 선행 연구

선행연구

- Audretsch et al(2002): 공공·민간 기술 SBIR 프로그램
 - 민관 기술협력의 효과를 정량적으로 계측
 - 설문조사한 자료에 계량경제학적 방법론을 적용
 - R&D는 기술의 상업화를 촉진, 수혜한 연구가 야기하는 사회적 순편익이 매우 큼을 밝힘
- Busom and Ferná (2008): R&D 지원이 R&D 전략에 미치는 영향 분석
 - 민간기업이 공공으로부터 R&D 보조를 받게 되면 R&D 전략에 영향을 미치는지 정량적으로 분석
 - 공공 R&D 보조 프로그램은 민간기업이 타 기관, 혹은 타 기업과 협력을 돕는 촉진제로 작용을 시사
- Grilo and Santos (2015): 포르투갈의 Madan Parque 인큐베이팅 프로그램
 - 인큐베이팅 된 NTBF 기반의 기업의 효율성을 평가하고 개선하기 위해 DEA 방법론을 활용하여 모델 개발
 - 비효율적인 기업들은 평균적으로 R&D에 과도하게 투자하며, 기업은 생산성 성장 시기를 갖음
- Kaiser and Kuhn(2012): 덴마크의 조인트 벤처 프로그램
 - 공공연구기관과 민간이 협력하여 설립하는 연구기반 조인트 벤처의 효과성을 살피고, 정량 분석 실시
 - 연구기반 조인트 벤처 프로그램에 참여하면 특허 출원 횟수가 통계적으로 유의한 수준에서 증가
 - 연구기반 조인트 벤처에 참여는 기업들의 고용을 2.5% 증가시키며, 이들 민간기업의 부가가치 상실
- Barbero et al.(2012): 스페인 안달루시아의 인큐베이션 프로그램
 - 성장지표, R&D 프로그램 참여, R&D 투입, R&D 성과, 고용창출 비용를 성과 지표로 하여 프로그램 별 지표의 변화를 정 량적으로 측정
 - 민간 주도, 기초 연구 중신 및 대학 주도 인큐베이션은 목표를 달성하였으나, 지역 주도 인큐베이션 프로그램은 달성 실패

선행연구

Rubin et al.(2015): 호주와 이스라엘 인큐베이터

- 지식의 흐름과 인큐베이션 프로그램 참여기업의 성과를 정량적으로 분석
- 인큐베이션 프로그램 참여기업과 인큐베이터 간의 협력 활동은 인큐베이션 참여기업의 재무에 대한 지식 수준을 높임

• Colombo and Delmastro (2002): 유럽 테크노파크 인큐베이터 프로그램

- 프로그램 참여기업과 비참여깁업 간의 성과를 설립자에 대한 특성, 성장 및 혁신 달성도, 기업간 네트워킹 정도, 공공 보조금 활용 등의 지표를 활용하여 정량적으로 계측
- 인큐베이션 참여 기업의 성과가 더 나음을 시사

Son et al. (forthcoming): 한국의 기술지주회사와 대학

- 2012년 부터 2017년까지 DEA를 활용하여 기술지주회사가 대학 인큐베이션 생산성에 미치는 영향 분석
- 기업가정신의 중요성에 대해 관심을 기울이지. 않는 대학에 비해서 기업가 정신의 중요성에 대해 관심을 기울이는 대학에 더 유의미하게 발생

• Jin(2020): 중국의 인큐베이팅 산업의 효율성

- 중국의 인큐베이팅 산업의 효율성을 DEA분석을 통해 평가
- 지역적으로 효율성의 불균형이 있었으며, 몇몇 지역에서 비효율성이 게측
- 인큐베이팅을 관리하는 주체가 제도와 매커니즘을 혁신하고 시장 중심의 개혁을 바탕으로 투자가 기반

3. 연구방법론

연구 방법론 -효율성

- 점 F가 의미하는 바는 기업 F가 X_0 만큼의 투입요소를 이용하여 산출 요소를 생산하고 있음을 의미
- 파란 곡선은 가장 효율성이 높은 생산자들이 만들어내는 벤치마크 생산함수
- 만약 기업 F가 가장 효율적인 상태가 된다면 Y_2 산출요소
- 최대의 생산량과 실제 생산량과의 비율 $\frac{y_1}{y_2}$ 을 효율성이라 정의

연구방법론-확률변경분석법

- 생산함수 회귀식에 기술적 효율성을 대표하는 항을 넣어,
 최대우도추정법(Maxium liklihood)으로 생산함수를 추정하는 방법
 - 기술적 효율성은 항상 양의 값을 갖는 특정 확률분포를 따르는 것을 가정
 - N가지의 투입 요소를 이용하여 한 가지의 산출 요소를 생산한다고 가정
 - $Y_i = f(x_i; \beta)e^{-\mu_i}$
 - 아래 첨자 i는 기업을 의미하며, γ 는 산출 요소, χ 는 투입 요소를 나타내는 벡터이며, β 는 추정해야 하는 모수, μ 는 비효율성이며, 기업 i가 최대로 생산해낼 수 있는 산출량에 비해 적게 생산해낼 수 밖에 없는 요소

메타 프론티어(meta-frontier)

Figure 1. Metafrontier function model.

<그림2-1 > Metafrontier function model

자료 출처: O'donnell(2004)

• 확률변경분석법 기반의 메타 프론티어(meta-frontier) 분석법 활용

- 같은 기술을 사용하는 동질적인 기업들을 하나의 그룹을 묶고 각자의 프론티어 도출
- 모든 시점에서 모든 그룹별 생산 프론티어를 포락하는 메타 프론티어 생산함수 도출
- 도출된 메타 프론티어를 기반으로 서로 다른 기술을 가지고 있는 그룹들의 생산함수와 비교함으로서 효율성 측정 가능

메타 프론티어(meta frontier)

- 메타프론티어 분석법을 통하여 각 집단의 효율성 계측 가능
 - $y_{i(k)} = e^{x_{i(k)}\beta_k + v_{i(k)} u_{i(k)}}$
 - 여러개의 서로 다른 생산함수를 가진 그룹이 존재한다고 사정 할 때, k번째 그룹의 단순 확률 변경 모형
 - $-y_{i(k)}$ 와 $x_{i(k)}$ 는 각각 k번째 그룹의 i번째 기업의 산출물 벡터와 투입물 벡터
 - $-\beta_k$ k번째 그룹과 관련되어 측정된 미지 변수
 - 일반적으로 최대우도방식을 통해 측정되며, 기술 효율성 값은 결합된 오차로부터 추출
 - $TE_{i(k)} = e^{-u_{i*k}}$
- 기술적 효율성(TE_{i}^{*}) 은 그룹효율성($TE_{i(k)}$)과 기술 격차 비율(TGR)을 통해 효율성 계측
 - $y_{i}^{*} = f(x_{1i}, x_{1i} \dots x_{1i}; \beta^{*})e^{V_{i(k)}}$
 - y_I^* 는 메타프론티어 산출물, β^* 는 메타프론티어의 변수 벡터
 - 일반적으로 최대우도방식을 통해 측정되며, 기술 효율성 값은 결합된 오차로부터 추출
 - $TE_{i}^{*} = TE_{i(k)} x TGR$

모형

• 투입요소 업력, 종사자 수와 산출 요소 매출액의 3변수 모형

$$- y_i = \beta_0 + \beta_l l_i + \beta_g g_i - u_i$$

-
$$y_i = \beta_0 + \beta_l l_i + \beta_g g_i + \frac{1}{2} \beta_l l_i^2 + \frac{1}{2} \beta_g g_i^2 + \beta_{gl} g_i l_i + -u_i$$

- l_i 과 g_i 는 각각 종업원 수 와 업력에 대한 로그 값

• 투입요소 업력돠 산출 요소 매출액의 2변수 모형

$$- y_i = \beta_0 + \beta_l l_i + \beta_g g_i - u_i$$

4. 분석 자료

분석 자료

• 기업 단의 자료를 이용

- 4개의 기업군 TIPS 기업, 연구소 기업, 각각의 대조군으로 분류하여 활용
- 연구소 기업 1001개, 연구소 대조군 기업 5792개, TIPS 기업 523개, TIPS 대조군 기업 8,995개
- 분석 기간:2017년~2019년
- 산출요소: 매출액/투입요소: 종업원수/업력

• KOSIS에서 발표하는 GDP 디플레이터를 통해 디플레이션

금액 단위로 표기되는 매출액 항목에 대하여 가격 변동분의 효과를 차감하기 위하여 활용

분석 자료-3변수 모형

<표 4-1> 3변수 모형의 기술 통계량(n = 1,436)

변수	평균	표준편차	중간값	최대값	최소값
매출액 (십억 원)	8.00	42.81	0.96	922.74	0.00
업력 (년)	4.40	2.48	4.00	19.00	1.00
종업원 수 (명)	27.93	99.27	8.00	2784.00	1.00

분석 자료-3변수 모형

<표 4-2 > 3변수 모형의 기술 통계량(기업 타입별)

변수	구분	평균	표준편차	중간값	최대값	최소값
	연구소기업	10.12	46.36	0.60	370.42	0.00
매출액 (십억 원)	연구소기업 대조군	8.85	43.49	0.91	627.85	0.00
	TIPS	0.97	2.19	0.35	23.58	0.00
	TIPS 대조군	7.95	44.09	1.18	922.74	0.00
	연구소기업	23.94	81.62	6.00	732.00	1.00
종업원 수 (명)	연구소기업 대조군	27.61	93.64	8.00	1544.00	1.00
	TIPS	20.24	21.96	12.00	131.00	1.00
	TIPS 대조군	29.27	108.63	8.00	2784.00	1.00
	연구소기업	5.44	3.68	4.00	17.00	1.00
업력 (년)	연구소기업 대조군	3.92	2.87	3.00	19.00	1.00
	TIPS	4.74	1.89	4.00	11.00	1.00
	TIPS 대조군	4.59	2.01	4.00	10.00	1.00

분석 자료-2변수 모형

<표 4-3 > 산업별 투입 및 산출 요소들의 평균(n=1,809)

변수	평균	표준편차	중간값	최대값	최소값
매출액 (십억 원)	3.04	22.26	0.55	922.74	0.00
업력 (년)	4.05	2.28	4.00	19.00	1.00

분석 자료-2변수 모형

<표 4-4> 2변수 모형의 기술 통계량(기업 타입별)

변수	구분	평균	표준편차	중간값	최대값	최소값
	연구소기업	4.35	34.41	0.31	583.88	0.00
메츠애 /시어 의	연구소기업 대조군	3.10	21.66	0.52	627.85	0.00
매출액 (십억 원)	TIPS	0.81	2.24	0.25	36.48	0.00
	TIPS 대조군	3.07	22.07	0.65	922.74	0.00
	연구소기업	4.21	2.80	3.00	17.00	1.00
어려 (면)	연구소기업 대조군	3.79	2.74	3.00	19.00	1.00
업력 (명)	TIPS	4.29	1.76	4.00	11.00	1.00
	TIPS 대조군	4.19	1.87	4.00	11.00	1.00

5. 실증분석 결과

3변수 모형

<표 5-1> 모형 추정 결과(3변수 모형, n = 1,436)

모수	콥-더글러스	트랜스로그	기업 타입 변수가 포함된 콥-더글러스	기업 타입 변수가 포함된 트랜스로그
(Intercept)	12.093ª (0.3569)	12.6454ª (0.3555)	11.323ª (0.3568)	11.80157ª (0.3696)
$oldsymbol{eta}_l$	0.941ª (0.0158)	0.4592ª (0.0582)	0.945ª (0.0157)	0.50387ª (0.0567)
$oldsymbol{eta}_g$	0.310ª (0.0363)	-0.0446 (0.1282)	0.386ª (0.0374)	0.09478 ^a (0.1320)
$\boldsymbol{\beta}_{ll}$	-	0.1999a (0.0172)	-	0.18511 ^a (0.0168)
$oldsymbol{eta}_{gg}$	-	0.4357ª (0.0955)	-	0.37164ª (0.0961)
$oldsymbol{eta}_{lg}$	-	-0.0591 ^b (0.0272)	-	-0.05884 ^b (0.0264)
산업 더미	Yes	Yes	Yes	Yes
기업 타입	No	No	Yes	Yes
γ	0.838a (0.0112)	0.8532ª (0.0104)	0.823ª (0.0125)	0.84233ª (0.0112)
σ^2	4.531ª (0.1412)	4.4815 ^a (0.1364)	4.153ª (0.1317)	4.15229² (0.1289)
로그우도	-7539.75	-7455.07	-7407.06	-7333.84

3변수 모형-로그 우도비 검정

<표 5-2> 로그 우도비 검정 결과(3변수 모형)

	기업 타입 변수가 포함된 콥- 더글러스	트랜스로그	기업 타입 변수가 포함된 트랜스로그
콥-더글러스	169.36 ^a (11.34, 3)	265.39 ^a (11.34,3)	411.82ª (16.81, 6)
기업 타입 변수가 포함된 콥- 더글러스	-	-	242.46ª (11.34, 3)
트랜스로그	-	-	146.43ª (11.34, 3)

자료: 자료를 분석하여 직접 작성.

비고: 괄호 안의 숫자는 각각 1%의 유의수준에서 카이제곱분포의 임계값과 자유도를 의미

3변수 모형-메타 프론티어

<표 5-3> 기업타입 변수가 포함된 트랜스로그 (3변수 모형)

	TGR	TE	TE*
연구소	0.40	0.42	0.17
연구소 대조군	0.83	0.38	0.31
TIPS	0.25	0.31	0.07
TIPS 대조군	0.87	0.35	0.30

자료: 자료를 분석하여 직접 작성.

비고: 괄호 안의 숫자는 각각 1%의 유의수준에서 카이제곱분포의 임계값과 자유도를 의미

3변수 모형- 윌콕슨-만-위트니 순위 검정

<표 5-4> 기업 타입별 효율성에 대한 윌콕슨-만-위트니 순위 검정 결과

	연구소기업	연구소기업 대조군	연구소기업 대조군
	(5년 이상)	(5년 미만)	(5년 이상)
연구소기업	-2.96 (0)	-1.83 (0.07)	-1.42 (0.16)
(5년 미만)	_,,,	,,,,,	
연구소기업	_	2.16 (0.03)	2.31 (0.02)
(5년 이상)		, ,	, ,
연구소기업 대조군		-	0.54 (0.59)
지의 지의 지의 자리			

자료: 자료를 분석하여 직접 작성. 비고: 괄호 안의 숫자는 p- value

2변수 모형

<표 5-5> 모형 추정 결과(2변수 모형, n = 18,019)

모수	콥-더글러스	기업 타입 변수가 포함된 콥- 더글러스
(Intercept)	13.061ª (0.2335)	12.294ª (0.2395)
$oldsymbol{eta}_l$	0.717ª (0.0229)	0.736ª (0.0233)
$oldsymbol{eta}_g$	Yes	Yes
산업 더미	No	No
기업 타입	0.697a (0.0117)	0.696a (0.0115)
γ	5.684ª (0.1066)	5.554ª (0.1037)
σ^2	-35792.6	-35594.1
로그우도	13.061ª (0.2335)	12.294ª (0.2395)

비고: 위 첨자 a, b, c는 각각 유의수준 1%, 5%, 10%를 의미. 괄호 안의 숫자는 표준오차를 의미

2변수 모형-메타 프론티어

<표 5-6> 기업타입 변수가 포함된 트랜스로그 (2변수 모형)

	TGR	TE	TE*
연구소	0.22	0.46	0.10
연구소 대조군	0.73	0.34	0.25
TIPS	0.33	0.30	0.10
TIPS 대조군	0.74	0.34	0.25

자료: 자료를 분석하여 직접 작성.

비고: 괄호 안의 숫자는 각각 1%의 유의수준에서 카이제곱분포의 임계값과 자유도를 의미

2변수 모형-윌콕슨 만-위트니 순위 검정

<표 5-7> 기업 타입별 효율성에 대한 윌콕슨-만-위트니 순위 검정 결과

	연구소기업	연구소기업 대조군	연구소기업 대조군
	(5년 이상)	(5년 미만)	(5년 이상)
연구소기업	80757 (0)	1469463 (0)	584381 (0.76)
(5년 미만)	00707 (0)	1 100 100 (0)	00 1001 (0.70)
연구소기업	_	818077 (0)	320133 (0)
(5년 이상)		•	. ,
연구소기업 대조군	_	_	4568152 (0)
(5년 이만)			

자료: 자료를 분석하여 직접 작성. 비고: 괄호 안의 숫자는 p- value

종합 결과

- 4개의 기업군 중 TIPS 기업의 효율성이 가장 작음
 - 3변수의 모형 7%, 2변수 모형 약 11%
 - 다른 기업군의 효율성에 비해 비교적 낮은 효율성 계측

- 업력이 쌓임에 따라 효율성 증가
 - 연구소 기업과 연구소 기업 대조군 기업을 5년 기준으로 볼 때 효율성의 차이가 있음
 - 업력 5년 이상 연구소 기업의 효율성이 다른 기간에 비해 효율성이 큼

6. 연구의 시사점 및 한계

연구의 시사점 및 한계

• TIPS 프로그램의 효과가 나타나기까지 시간이 걸림

- 업력 5년 이상 연구소기업의 대조군 효율성이 다른 기업군보다 높은 것을 통해, 어느 정도의 효율성을 보이기 위해서는 시간적 여유가 필요
- TIPS 프로그램 참여 기업의 존속 기간이 5년 이상 되도록 지원 방향 설정 및 정책적 지원 필요

• TIPS 프로그램 지원 방향 재검토 필요

- 산출 변수인 매출액을 증진 시킬 수 있는 방법 혹은 매출을 다각화 할 수 있는 지원 방향 검토
- 기업의 업력이나 규모에 맞는 효율적인 인적 자원 관리 지원 필요

• 자료의 부족함으로 인한 변수 활용 미흡

- 자료의 부재로 인해 흔히 쓰이는 투입 및 산출요소를 사용하지 못함
- 업력, 종업원 수 이외의 투입변수 추가 활용 예정

Thank you!