MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 2, 2019/2020

BST3254 – MONTE CARLO SIMULATION TECHNIQUES

(All sections / Groups)

28 FEBRUARY 2020 9.00 a.m. – 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENT

- 1. This question paper consists of 6 pages excluding the cover page.
- 2. Attempt ALL FOUR questions.
- 3. Write your answers in the Answer Booklet provided.
- 4. The statistical tables are attached at the end of this question paper.

Question 1 (25 marks)

Consider the following historical data from an electrical company:

	Dei	mand Data

Demand	5	12	20	24	30
Probability	0.10	0.35	0.15	0.20	0.20

Lead	time	Data

	20000 02224	20 01101		
Lead time (in months)	1	2	3	4
Probability	0.25	0.17	0.36	0.22

The company orders 40 units of the product whenever the inventory level reaches 5 or less by the end of the month. The costs associated with managing inventory includes the cost of ordering, the carrying cost and the stockout cost. The cost of ordering of RM 50 per order. The carrying cost of RM 2 per month for each unit that is left in the inventory at the end of each year. The stockout cost has been set at RM 3 for every short unit.

(a) Establish the random number intervals for the demand and lead time data set.

(4 marks)

(b) Simulate 12 months of operation for the company assuming that there is currently 20 units in inventory. Use the following random numbers for your simulation:

Demand: 29, 07, 24, 15, 45, 96, 39, 81, 76, 67, 55, 47

Lead: 40, 24, 32, 11, 72

(12 marks)

(c) Compute the average holding cost, average ordering cost and average stockout cost for the company.

(9 marks)

Continued...

Question 2 (25 marks)

a) Model verification and validation are important activities in a simulation project. They determine the success of the project. However, these activities are often neglected when the simulation is carried out.

State two possible reasons a researcher would neglect such important activities.

(4 marks)

b) Generate a sequence of two random integers and their corresponding random numbers (in four decimal places) using the mixed congruential method with $X_0 = 3$, a = 8, c = 7 and m = 128.

(4 marks)

c) Test the following sequence of numbers, R_i , for independence. Let i = 1 and m = 8 lags.

i-th	Ri
_ 1	0.75
2	0.89
3	0.33
4	0.68
5	0.19
6	0.69
7	0.31
8	0.35
9	0.49
10	0.36

i-th	Ri
11	0.12
12	0.64
13	0.91
14	0.05
15	0.93
16	0.01
17	0.28
18	0.41
19	0.43
20	0.88

i-th	Ri
21	0.23
22	0.99
23	0.60
24	0.95
25	0.87
26	0.28
27	0.15
28	0.27
29	0.58
30	0.83

- (i) Find the largest integer M such that $i + (M+1)m \le N$. (4 marks)
- (ii) At significance level $\alpha = 0.05$, perform the autocorrelation test on the data above.

(13 marks)

Continued...

Question 3 (25 marks)

Consider the following pdf:

$$f(x) = \begin{cases} \frac{x^2 + x}{x} & -1 < x < 0 \\ \frac{x - x^2}{x}, & 0 \le x < 1 \end{cases}$$

a) Show that the random variate generator for the random variable X is as follows:

$$X = \begin{cases} -1 + \sqrt{2R}, & \text{for } 0 < R < 1/2 \\ 1 - \sqrt{-2R + 2}, & \text{for } 1/2 \le R < 1 \end{cases}$$
 (22 marks)

b) Use the random variate generator developed in (a) to generate random variates that corresponds to the random numbers R_i given below:

Question 4 (25 marks)

a) Test the following sequence of random numbers for uniformity at significance level of 1%.

 b) Consider the following input data for a simulation model that predicts the factory's damage costs.

Number of accidents	Frequency	Probability, $P(X = x)$
0	44	0.47237
1	33	0.35427
2	10	0.13285
3	4	0.03321
4	1	0.00621
5 or more	0	0.00106

Apply the chi-square test to the sample data to test the hypothesis that the underlying distribution is Poisson at significance level $\alpha = 0.05$.

(15 marks)

End of Questions.

APPENDIX - BST3254 MONTE CARLO SIMULATION TECHNIQUES STATISTICAL TABLES

Kolmogorov - Si	nirnov Critical	Values	——————————————————————————————————————	
Degrees of				
Freedom				
(N)	$D_{0.10}$	$D_{0.05}$	$D_{0.01}$	
1	0.950	0.975	0.995	
2	0.776	0.842	0.929	
2 3	0.642	0.708	0.828	
4	0.564	0.624	0.733	
5	0.510	0.565	0.669	
6	0.470	0.521	0.618	
7	0.438	0.486	0.577	
8	0.411	0.457	0.543	
9	0.388	0.432	0.514	
10	0.368	0.410	0.490	
11	0.352	0.391	0.468	
12	0.338	0.375	0.450	
13	0.325	0.361	0.433	
14	0.314	0.349	0.418	
15	0.304	0.338	0.404	
16	0.295	0.328	0.392	
17	0.286	0.318	0.381	
18	0.278	0.309	0.371	
19	0.272	0.301	0.363	
20	0.264	0.294	0.356	
25	0.240	0.270	0.320	
30	0.220	0.240	0.290	
35	0.210	0.230	0.270	
Over	1.22	<u>1.36</u>	1.63	
35	√N	√N	√N	

Table 1
The Upper Tail Area Under the
Standard Normal Curve

\mathbf{Z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641
0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
3.6	0.0002	0.0002	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.7	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.8	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
3.9	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4.0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

RAR

 Table A.7
 Critical Values for Chi-Squared Distributions

	χ^2_{ν} density curve
	Shaded area = α
0	_ X _{a,v}

~					α		0		L X2, v	
v	,995	.99	.975	.95	.90	.10	.05	.025	.01	.005
1	0.000	0.000	0.001	0.004	0.016	2.706	3.843	5.025	6.637	7.882
2	0.010	0.020	0.051	0.103	0.211	4.605	5.992	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.344	12.837
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.832	15.085	16.748
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.440	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.012	18.474	20.276
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.534	20.090	21.954
9	1.735	2.088	2.700	3.325	4.168	14.684	16.919	19.022	21.665	23.587
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.724	26.755
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5.892	7.041	19.812	22.362	24.735	27.687	29.817
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4.600	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.577	32.799
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	34.267
17	5.697	6.407	7.564	8.682	10.085	24,769	27.587	30.190	33.408	35.716
18	6.265	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	37.156
19	6.843	7.632	8.906	10.117	11.651	27.203	30.143	32.852	36.190	38.580
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997
21	8.033	8.897	10.283	11.591	13,240	29.615	32.670	35.478	38.930	41.399
22	8.643	9.542	10.982	12.338	14.042	30.813	33.924	36.781	40.289	42.796
23	9.260	10.195	11.688	13.090	14.848	32.007	35.172	38.075	41.637	44.179
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.558
25	10.519	11.523	13.120	14.611	16.473	34.381	37.652	40.646	44.313	46.925
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.807	12.878	14.573	16.151	18.114	36.741	40.113	43.194	46.962	49.642
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.120	14.256	16.147	17.708	19.768	39.087	42.557	45.772	49.586	52.333
30	13.787	14.954	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
31	14.457	15.655	17.538	19.280	21.433	41.422	44.985	48.231	52.190	55.000
32	15.134	16.362	18.291	20.072	22,271	42.585	46.194	49.480	53.486	56.328
33	15.814	17.073	19.046	20.866	23.110	43.745	47.400	50.724	54.774	57.646
34	16.501	17.789	19.806	21.664	23.952	44.903	48.602	51.966	56.061	58.964
35	17.191	18.508	20.569	22.465	24.796	46.059	49.802	53.203	57.340	60.272
36	17.887	19.233	21.336	23.269	25.643	47.212	50.998	54.437	58.619	
37	18.584	19.960	22.105	24.075	26.492	48.363	52.192	55.667		61.581
38	19.289	20.691	22.878	24.884	27.343	49.513	53.384	56.896	59.891	62.880
39	19.994	21.425	23.654	25.695	28.196	50.660	54.572	58.119	61.162	64.181
40	20.706	22.164	24.433	26.509	29.050	51.805	55.758	59.342	62.426	65.473
		·					00.700	J7.34Z	63.691	66.766

For $\nu > 40$, $\chi_{a,\nu}^2 \approx \nu \left(1 - \frac{2}{9\nu} + z_a \sqrt{\frac{2}{9\nu}}\right)^3$

