Package 'IxPopDyMod'

October 23, 2023

Title Framework for Tick Population and Infection Modeling

Version 0.3.0
Maintainer Myles Stokowski <mylesstokowski@gmail.com></mylesstokowski@gmail.com>
Description Code to specify, run, and then visualize and analyze the results of Ixodidae (hard-bodied ticks) population and infection dynamics models. Such models exist in the literature, but the source code to run them is not always available. 'IxPopDyMod' provides an easy way for these models to be written and shared.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
<pre>URL https://github.com/dallenmidd/IxPopDyMod</pre>
Depends R (>= 3.2.4)
Suggests covr, knitr, rmarkdown, testthat (>= 3.0.0)
Imports magrittr, stats, checkmate
Language en-US
Config/testthat/edition 3
NeedsCompilation no
Author Myles Stokowski [aut, cre], David Allen [aut] (https://orcid.org/0000-0002-0712-9603)
Repository CRAN
Date/Publication 2023-10-23 20:20:02 UTC
R topics documented:
annual_growth_rate

2 annual_growth_rate

	constant_fun	5
	density_fun	6
	expo_fun	6
	feed_fun	7
	find_n_feed	8
	format.predictor_spec	9
	get_pred_from_table	9
	growth_rate	10
	host_example_config	10
	infect_example_config	11
	infect_fun	11
	life_cycle	12
	new_transition_function	12
	ogden2005	13
	ogden_feed_fun	14
	parameters	15
	predictors	15
	predictor_spec	16
	print.predictor_spec	17
	print.transition	17
	run	18
	snow_cover_fun	18
	temp_example_config	19
	transition	19
	winter_tick	20
Index		22

 $annual_growth_rate$

Calculate annual growth rate

Description

Calculate annual growth rate

Usage

annual_growth_rate(out)

Arguments

out

Model output data frame

Value

Numeric vector of length one representing the annual factor by which the total tick population changes. To use this function, it is best to run the model for at least three years.

config 3

Examples

```
## Not run:
out <- run(ogden2005)
annual_growth_rate(out)
## End(Not run)</pre>
```

config

Create a config object

Description

Make a config object from the input parameters, and ensure that the inputs meet the requirements for the model. The returned object is a complete description of a model run scenario.

Usage

```
config(
  cycle,
  initial_population,
  preds = NULL,
  steps = 365L,
  max_duration = 365L,
  verbose = TRUE
)
```

Arguments

cycle A tick's life_cycle test

initial_population

Named numeric vector indicating starting population for each life stage. Life

stages not specified are assumed to be 0.

preds Optional input predictors data

steps Numeric vector of length one indicating the duration to run the model over in

days.

max_duration Numeric vector of length one. Determines the maximum number of days that

a duration-based transition can last, after which ticks are removed from the

model/die. Default of 365 is likely sensible for most cases.

verbose Boolean; whether to warn about coercion to inputs

Value

A config object

4 config_ex_1

Examples

```
# We build a simple example config
my_config <- config(
  cycle = life_cycle(
        transition("a", "b", function() 0.1, "probability"),
        transition("b", "a", function() 10, "probability")
  ),
  initial_population = c(a = 1)
)

# If we make a change to an existing `config`, it is a good idea to check
# whether it is still valid by calling `config()` on it again. For example,
# here we set the initial_population of a life stage that is not included in
# the life cycle.
my_config$initial_population <- c(a = 1, c = 1)

## Not run:
# Now, we re-run the validations, which will throw an error
do.call(config, my_config)

## End(Not run)</pre>
```

config_ex_1

Simple model configuration example

Description

This model configuration uses only non-delay transitions, and no transitions depend on predictors (e.g. weather or host community). Parameter values are selected so that the population is stable over time.

Usage

```
config_ex_1
```

Format

A config

config_ex_2

config_ex_2

Simple model configuration example using delays

Description

This model configuration uses delay transitions for all transitions except the adult to eggs transition. As in config_ex_1, no transitions depend on predictors, and the population is stable over time.

Usage

```
config_ex_2
```

Format

A config

 $constant_fun$

Constant function

Description

Constant function

Usage

```
constant_fun(a)
```

Arguments

а

Parameter a in parameters table.

Value

Numeric vector of length 1 equal to input parameter a

```
constant_fun(1)
```

6 expo_fun

density	fun
uensity	_i uii

Density dependent mortality

Description

Density dependent mortality

Usage

```
density_fun(x, y, a, b, c, pref)
```

Arguments

x	Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
У	Predictor 2 in transitions table. Number of feeding ticks in life stages specified by predictor 2.
а	Parameter a in parameters table.
b	Parameter b in parameters table.
С	Parameter c in parameters table.
pref	Parameters named pref in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.

Value

Numeric vector of length 1, indicating mortality rate

Examples

```
density_fun(c(10, 20), 100, .1, .3, .2, c(.5, .8))
```

expo_fur	ex	po_	ſξι	ın
----------	----	-----	-----	----

Exponential function

Description

Exponential function

Usage

```
expo_fun(x, a, b)
```

feed_fun 7

Arguments

X	Predictor 1 in transitions table.
а	Parameter a in parameters table.
b	Parameter b in parameters table.

Value

Numeric vector of length 1

Examples

```
expo_fun(.5, .1, .3)
```

feed_fun	Probability of actively questing and then finding a host

Description

Probability of actively questing and then finding a host

Usage

```
feed_fun(x, y, a, pref, q, tmin, tmax)
```

Arguments

X	Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
у	Predictor 2 in transitions table. Numeric vector of length 1 indicating temperature.
a	Parameter a in parameters table.
pref	Parameters named pref in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.
q	Parameter q in parameters table. Used in Briere function.
tmin	Parameter tmin in parameters table. Indicates minimum temperature at which ticks actively quest.
tmax	Parameter tmax in parameters table. Indicates maximum temperature at which ticks actively quest.

Details

Product of binomial and Briere functions (prob of finding a host) * (prob of active questing)

find_n_feed

Value

Numeric vector of length 1

Examples

```
feed_fun(10, 30, .001, .1, .5, 20, 40)
```

find_n_feed

Probability of finding a host and successfully feeding on it

Description

Probability of finding a host and successfully feeding on it

Usage

```
find_n_feed(x, a, pref, feed_success)
```

Arguments

X	of the host species. Length should be equal to the number of host species.
а	Parameter a is the probability that a tick finds any one host.
pref	Parameters named pref in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.
feed_success	Parameters named feed success in parameters table. Numeric vector of length equal to the number of host species. Values are the feeding success rate for ticks in a given transition while feeding on each host species.

Value

Numeric vector of length 1 indicating probability that ticks find any host and then successfully feed on that host.

```
find_n_feed(10, .1, 1, .5)
find_n_feed(runif(2) * 10, .1, runif(2), runif(2))
```

format.predictor_spec 9

format.predictor_spec Format a predictor_spec

Description

Format a predictor_spec

Usage

```
## S3 method for class 'predictor_spec'
format(x, ...)
```

Arguments

```
x a predictor_spec
... not used
```

Value

string representation of input

```
get_pred_from_table Get a predictor from input data
```

Description

Get a predictor from input data

Usage

```
get_pred_from_table(time, pred, table)
```

Arguments

time Numeric vector of days to get data. Ignored if input is constant over time (as

indicated by NA value in 'j_day' column)

pred string specifying the name of the predictor, e.g. "host_den"

table input predictors table

Value

a numeric vector of predictor values

host_example_config

growth_rate

Calculate multiplicative growth rate of population

Description

Calculate multiplicative growth rate of population

Usage

```
growth_rate(out)
```

Arguments

out

Model output data frame

Value

Numeric vector of length one representing daily growth rate.

Examples

```
out <- run(config_ex_1)
growth_rate(out)</pre>
```

 $host_example_config$

Configuration for showing how we can modify host community data

Description

Configuration for showing how we can modify host community data

Usage

```
host_example_config
```

Format

A config

infect_example_config 11

infect_example_config Configuration for showing infection dynamics

Description

Configuration for showing infection dynamics

Usage

```
infect_example_config
```

Format

A config

infect_fun	Probability that a feeding tick becomes engorged infected or uninfected
------------	---

Description

Probability that a feeding tick becomes engorged infected or uninfected

Usage

```
infect_fun(x, from_infected, to_infected, host_rc, pref)
```

Arguments

X	Predictor 1 in transitions table. Numeric vector indicating host density for each of the host species. Length should be equal to the number of host species.
from_infected	Parameter from_infected in parameters table. Value should be 1 if transition is from an infected tick stage, 0 otherwise.
to_infected	Parameter to_infected in parameters table. Value should be 1 if transition is to an infected tick stage, 0 otherwise.
host_rc	Parameters named host_rc in parameters table. Numeric vector of length equal to the number of host species. Values are the host reservoir competence for each host species.
pref	Parameters named pref in parameters table. Numeric vector of length equal to the number of host species. Values are the preference for ticks in a given transition for each host species.

Details

Since density dependent mortality is subtracted later, in this function we assume that all feeding ticks feed successfully and become engorged.

Value

Numeric vector of length 1

Examples

```
infect_fun(10, 0, 0, .3, 1)
infect_fun(10, 0, 1, .3, 1)
infect_fun(10, 1, 1, .3, 1)
```

life_cycle

Create a life_cycle from a collection of transitions

Description

Create a life_cycle from a collection of transitions

Usage

```
life_cycle(...)
```

Arguments

... A set of transitions

Value

```
a life_cycle
```

new_transition_function

Constructor for transition functions

Description

Constructor for transition functions

Usage

```
new_transition_function(fun)
```

Arguments

fun A function

Transition functions must return a numeric vector. See constant_fun, expo_fun and infect_fun for examples for how to write custom functions.

ogden2005

ogden2005	Configuration for Ixodes scapularis population dynamics model from
oguenzoo5	Ogden et al. 2005
	· · · · · · · · · · · · · · · · · · ·

Description

This model configuration recreates the Ixodes scapularis (blacklegged tick) population dynamics model from Ogden et al. 2005. This is a relatively complete model of tick population dynamics, including the effects of both temperature and the host community on tick life-stage transitions. We include this configuration to show that our package can be used to recreate existing models.

Usage

ogden2005

Format

A config

Details

In this config, the population starts with 10000 questing adults. The predictor data includes average temperature for each day, and density of hosts over the model run. Here the host community is stable with 20 deer and 200 mice.

See Also

```
Ogden et al. (2005) doi:10.1016/j.ijpara.2004.12.013
```

```
data(ogden2005)
## Not run:
output <- run(ogden2005)
graph_population_each_group(output)
## End(Not run)</pre>
```

ogden_feed_fun

ogden_	feed	fun
Uguen	_	_ı uıı

Probability of actively questing times constant host finding probability

Description

Probability of actively questing times constant host finding probability

Usage

```
ogden_feed_fun(x, a, q, tmin, tmax)
```

Arguments

X	Predictor 1 in transitions table. Numeric vector of length 1 indicating temperature.
а	Parameter a in parameters table.
q	Parameter q in parameters table. Used in Briere function.
tmin	Parameter tmin in parameters table. Indicates minimum temperature at which ticks actively quest.
tmax	Parameter tmax in parameters table. Indicates maximum temperature at which ticks actively quest.

Details

(const prob of finding a host) * (prob of active questing)

Value

Numeric vector of length 1

See Also

```
Based on Ogden et al. (2005) doi:10.1016/j.ijpara.2004.12.013
```

```
ogden_feed_fun(30, .03, .01, 10, 35)
```

parameters 15

parameters

Create a set of parameters

Description

Create a set of parameters

Usage

```
parameters(...)
```

Arguments

A set of named numeric vectors, each corresponding to a parameter. If a parameter is of length > 1, each element must be named.

Value

a parameters object

Examples

```
# create a set of scalar parameters
parameters(a = 1, b = 2)

# parameters of length > 1 may be useful for host-related parameters that
# differ between host species, for example tick feeding success
parameters(a = 1, feeding_success = c(deer = 0.49, squirrel = 0.17))
```

predictors

Create a table of predictors

Description

A data frame of input data to be used in as predictor values in transition functions.

Usage

```
predictors(df, verbose = FALSE)
```

16 predictor_spec

Arguments

df

input data frame, with columns:

pred String specifying the name of the predictor, e.g. "temp" or "host_den"

pred_subcategory This column allows specifying predictors for which there are multiple values for a given j_day. Predictor values are sorted by this column in the config set up. This ensures that when accessing a predictor with multiple values for the same j day, we get a vector of predictor values ordered by this column. A typical use for this column is to specify the host density of each host species.

j_day Integer specifying the Julian day, or NA for predictors with constant value over time

value Numeric value of predictor

verbose

Boolean; whether to warn about reordering the df

Value

a predictors object

predictor_spec

Specify how a single predictor should be used

Description

Specify how a single predictor should be used

Usage

```
predictor_spec(pred, first_day_only = TRUE)
```

Arguments

pred

String indicating where to get predictor data. Can be one of:

- A string in the "pred" column in the predictors table. In this case, the predictor value passed to the containing transition's fun is the corresponding value of that predictor in the table.
- A string that matches at least one life stage name via regex. In this case, the value passed to the containing transition's fun is the sum of the population sizes of all matched life stages.

first_day_only Boolean indicating whether to repeat the predictor data value from the first day of a transition when evaluating it (TRUE case), or to use the range of predictor data over the duration of a transition (FALSE case). FALSE is only valid for transitions with "duration" as the transition_type, because "probability" type transitions only last one day. A value of FALSE also requires the name parameter to be a value in the predictors table "pred" column, not a tick life stage.

print.predictor_spec 17

Value

```
a predictor_spec list-based object
```

Description

Print a predictor_spec

Usage

```
## S3 method for class 'predictor_spec'
print(x, ...)
```

Arguments

```
x a predictor_spec
... not used
```

Description

Print a transition

Usage

```
## S3 method for class 'transition' print(x, ...)
```

Arguments

```
x A transition
```

... not used

snow_cover_fun

run

Run the model

Description

Run the model

Usage

```
run(cfg, progress = TRUE)
```

Arguments

cfg An IxPopDyMod::config object

progress Boolean indicating whether to log progress every 100 steps

Value

Data frame of population of ticks of each life stage each day

Examples

```
run(config_ex_1)
```

snow_cover_fun

Mortality as a function of whether there is a snow on the ground

Description

Mortality as a function of whether there is a snow on the ground

Usage

```
snow_cover_fun(x, no_snow_mort, snow_mort)
```

Arguments

x amount of snow on ground

no_snow_mort mortality with no snow on the ground snow_mort mortality with snow on the ground

temp_example_config 19

temp_example_config

Configuration for showing how we can modify climate data

Description

Configuration for showing how we can modify climate data

Usage

```
temp_example_config
```

Format

A config

transition

Create a transition object

Description

A transition object represents a single transition between two tick life stages, or the mortality rate from a life stage.

Usage

```
transition(
  from,
  to,
  fun,
  transition_type,
  mortality_type = NULL,
  predictors = NULL,
  parameters = list()
)
```

Arguments

from The name of the life stage a tick is transitioning from.

to The name of the life stage a tick is transitioning to, or NULL if the transition is

representing mortality.

fun The transition function to evaluate. The inputs of the function are predictors

and parameters. The output is the daily probability of completing the transition, for "probability" transitions, or the daily rate the transition takes place, for

"duration" transitions.

20 winter_tick

transition_type

One of: "probability": the evaluated transition is interpreted as the daily fraction of ticks that complete the transition. Ticks remain in the original life stage if they do not complete a transition or undergo mortality. "duration": the transition is complete on the first day that the cumulative sum of the evaluated transition is greater than or equal to 1. No ticks remain in the original life stage at the end of a transition - they either complete the transition or die.

mortality_type

One of: NULL: the default, indicating that the transition is not mortality. "per_day": indicates that the evaluated transition is the fraction of ticks that dies each day. "throughout_transition": only valid for "duration" type transitions, where it indicates that the evaluated transition is the fraction of ticks that die throughout the entire transition.

predictors

Optional, a named list of predictor_spec objects that specify how any predictor data should be used in evaluating fun. The names are matched with the formal args to fun to determine which input in fun each predictor will be passed

to.

parameters

Optional, a parameters object, or a named list of numeric vectors.

Value

a transition object

winter_tick

Configuration for winter tick population dynamics model

Description

This is a model configuration based on a literature search on the factors affect the winter tick life cycle. Many of the transitions and parameters in this configuration are drawn from Drew and Samuel (1986). We include this configuration to show that our package is flexible for modeling multiple tick species with different life histories.

Usage

winter tick

Format

An object of class config of length 5.

See Also

Drew and Samuel (1986) doi:10.1139/z86105

Drew and Samuel (1985) doi:10.7589/0090355821.3.274

Addison and McLaughlin (1988) doi:10.2307/3282188

Ogden et al. (2005) doi:10.1016/j.ijpara.2004.12.013

winter_tick 21

```
data(winter_tick)
## Not run:
output <- run(winter_tick)
graph_population_each_group(winter_tick)
## End(Not run)</pre>
```

Index

```
* datasets
                                                 print.predictor_spec, 17
    config_ex_1, 4
                                                 print.transition, 17
    config_ex_2, 5
                                                 run, 18
    host_example_config, 10
    infect_example_config, 11
                                                 snow_cover_fun, 18
    ogden2005, 13
    temp_example_config, 19
                                                 temp_example_config, 19
    winter_tick, 20
                                                 transition, 12, 16, 19
annual_growth_rate, 2
                                                 winter_tick, 20
config, 3, 4, 5, 10, 11, 13, 19
config_ex_1, 4
config_ex_2, 5
constant_fun, 5, 12
density_fun, 6
expo_fun, 6, 12
feed_fun, 7
find_n_feed, 8
format.predictor_spec, 9
get_pred_from_table, 9
growth_rate, 10
host_example_config, 10
infect\_example\_config, 11
infect_fun, 11, 12
life_cycle, 3, 12
new_transition_function, 12
ogden2005, 13
ogden_feed_fun, 14
parameters, 15, 20
predictor_spec, 16, 20
predictors, 3, 15, 16
```