

Lab Manual

Subject: Machine Learning

Course Code Al-414

Ву

Mohammad Mukedas 2023-BS-AI-008

Supervised by Sir Saeed

Degree name: BSAI-4A

DEPARTMENT OF COMPUTATIONAL SCIENCE

Table Of Content

Project 1: YouTube Spam Commentusing regressio	
Description:	. 3
Tools & Technologies:	3
How It Works:	3
Expected Output:	3
What is Basic EDA in Machine Learning?	. 4
Project 2: Mushroom Classification Using Classifier	. 8
Introduction:	. 8
Dataset:	. 8
Proram:	.9

1: YouTube Spam Comment Classification

Description:

This project involves collecting YouTube comments and analyzing them using a regression algorithm. The comments are turned into numerical features (using) techniques like TF-IDF or Bag of Words), and then a regression model is trained to predict whether a comment is spam (1) or not spam (0).

Tools & Technologies:

- > Python
- Pandas, NumPy (for data handling)
- Scikit-learn (for regression models)
- Text processing tools (like CountVectorizer or TfidfVectorizer)

How It Works:

- **1.**Data Collection: Gather labeled YouTube comments (spam or not spam).
- 2. Text Preprocessing: Clean the text (remove punctuation, lowercase, etc.
- **3.**Feature Extraction: Convert comments into numerical vectors.
- 4. Model Training: Use a regression model (like Logistic Regression) to learn patterns.
- **5.**Prediction: Test the model on new comments to classify them.

Expected Output:

The system should label new YouTube comments as spam (1) or not spam (0) with good accuracy.

Program:

import Libraries 1 import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, confusion_matrix, accuracy_score import joblib

Step 2: Load the Dataset

df = pd.read_csv("C:/Users/AS/Downloads/Youtube-Spam-Dataset.csv")

What is Basic EDA in Machine Learning?

EDA (Exploratory Data Analysis) is the **first step in any ML project**, where you **understand and explore your dataset** before building a model. It helps you find patterns, spot outliers, and understand data quality.

Step 3: Basic EDA

```
Class Distribution:
    CLASS
    1    1005
    0    951
    Name: count, dtype: int64

df['CLASS'].value_counts().plot(kind='bar', title='Class Distribution')

<Axes: title={'center': 'Class Distribution'}, xlabel='CLASS'>
```



```
plt.show()
```

Step 4: Data Preprocessing

df = df[['CONTENT', 'CLASS']].dropna()

Step 5: Split the Dataset

```
X = df['CONTENT']

y = df['CLASS']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 6: Feature Extraction using TF-IDF

```
tfidf = TfidfVectorizer(stop_words='english', max_features=5000)

X_train_tfidf = tfidf.fit_transform(X_train)

X_test_tfidf = tfidf.transform(X_test)
```

Step 7: Model Training

```
model = LogisticRegression()

model.fit(X_train_tfidf, y_train)

LogisticRegression  
LogisticRegression()
```

Step 8: Model Evaluation

```
y_pred = model.predict(X_test_tfidf)
print("\nAccuracy:", accuracy_score(y_test, y_pred))
Accuracy: 0.9489795918367347
print("\nClassification Report:\n", classification_report(y_test, y_pred))
Classification Report:
               precision
                            recall f1-score
                                               support
                   0.92
                             0.97
                                       0.94
                                                  176
                   0.97
                             0.94
                                       0.95
                                                  216
                                       0.95
                                                  392
    accuracy
                   0.95
                             0.95
                                       0.95
                                                  392
   macro avg
weighted avg
                   0.95
                             0.95
                                       0.95
                                                  392
```

```
print("\nConfusion Matrix:\n", confusion_matrix(y_test, y_pred))

Confusion Matrix:
  [[170 6]
  [ 14 202]]
```

Step 9: Save the Model and Vectorizer

```
joblib.dump(model, "spam_classifier_model.pkl")

['spam_classifier_model.pkl']

joblib.dump(tfidf, "tfidf_vectorizer.pkl")

['tfidf_vectorizer.pkl']
```

Project 2: Mushroom Classification Using Classifier

Introduction:

In this project, we will examine the data and build different **machine learning models** that will detect if the mushroom is **edible or poisonous** by its specifications like cap shape, cap color, gill color, etc. using different classifiers.

Dataset:

The dataset used in this project is that contains 8124 instances of mushrooms with 23 features like cap-shape, cap-surface, cap-color, bruises, odor, etc.

The **python libraries** and packages we'll use in this project are namely:

- NumPy
- Pandas

- Seaborn
- Matplotlib
- Graphviz
- Scikit-learn

We'll use the specifications like cap shape, cap color, gill color, etc. to classify the mushrooms into edible and poisonous.

Proram:

Importing Libraraies

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import os
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.metrics import classification_report, confusion_matrix, precision_recall_curve, auc, roc_curve
```



```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8124 entries, 0 to 8123
Data columns (total 23 columns):
     Column
                               Non-Null Count
                                               Dtype
                                                object
 0
     class
                               8124 non-null
 1
     cap-shape
                               8124 non-null
                                                object
 2
     cap-surface
                               8124 non-null
                                                object
 3
     cap-color
                               8124 non-null
                                                object
 4
     bruises
                               8124 non-null
                                                object
 5
                               8124 non-null
     odor
                                                object
 6
     gill-attachment
                               8124 non-null
                                                object
 7
     gill-spacing
                               8124 non-null
                                                object
                               8124 non-null
 8
     gill-size
                                                object
 9
     gill-color
                               8124 non-null
                                                object
 10 stalk-shape
                               8124 non-null
                                                object
 11 stalk-root
                               8124 non-null
                                                object
 12 stalk-surface-above-ring 8124 non-null
                                                object
 13 stalk-surface-below-ring 8124 non-null
                                                object
 14 stalk-color-above-ring
                                                object
                               8124 non-null
 15 stalk-color-below-ring
                               8124 non-null
                                                object
                                                object
 16
    veil-type
                               8124 non-null
     veil-color
                               8124 non-null
 17
                                                object
 18 ring-number
                               8124 non-null
                                                object
```

	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color	 stalk- surface- below- ring	stalk- color- above- ring	stalk- color- below- ring	veil- type	veil- color	ring- number		spore- print- color
count	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124	 8124	8124	8124	8124	8124	8124	8124	8124
unique	2	6	4	10	2	9	2	2	2	12	 4	9	9	1	4	3	5	9
top	е	x	у	n	f	n	f	C	b	b	 S	w	w	р	w	0	р	w
freq	4208	3656	3244	2284	4748	3528	7914	6812	5612	1728	 4936	4464	4384	8124	7924	7488	3968	2388

```
count = df['class'].value_counts()
plt.figure(figsize=(8,7))
# Updated syntax for sns.barplot with x and y as named parameters
sns.barplot(x=count.index, y=count.values, alpha=0.8, palette="prism")
# Alternative syntax for newer seaborn versions:
# sns.barplot(data=count.reset_index(), x='index', y='class', alpha=0.8, palette="prism")
plt.ylabel('Count', fontsize=12)
plt.xlabel('Class', fontsize=12)
plt.title('Number of poisonous/edible mushrooms')
#plt.savefig("mushrooms1.png", format='png', dpi=500)
plt.show()
```



```
df = df.astype('category')
df.dtypes
class
                            category
cap-shape
                            category
cap-surface
                            category
cap-color
                            category
bruises
                            category
odor
                            category
gill-attachment
                            category
gill-spacing
                            category
gill-size
                            category
gill-color
                            category
stalk-shape
                            category
stalk-root
                            category
stalk-surface-above-ring
                            category
stalk-surface-below-ring
                            category
stalk-color-above-ring
                            category
stalk-color-below-ring
                            category
veil-type
                            category
veil-color
                            category
ring-number
                            category
ring-type
                            category
spore-print-color
                            category
population
                            category
```

	df[c	olumn]	= labele	encoder	.fit_tra	ansfor	m(df[column])											
df.	df.head()																		
	class	cap- shape	cap- surface	cap- color	bruises	odor	gill- attachment	gill- spacing	gill- size	gill- color		stalk- surface- below- ring	stalk- color- above- ring	stalk- color- below- ring		veil- color	ring- number		spore- print- color
0	1	5	2	4	1	6	1	0	1	4		2	7	7	0	2	1	4	2
1	0	5	2	9	1	0	1	0	0	4		2	7	7	0	2	1	4	3
2	0	0	2	8	1	3	1	0	0	5		2	7	7	0	2	1	4	3
3	1	5	3	8	1	6	1	0	1	5		2	7	7	0	2	1	4	2
4	0	5	2	3	0	5	1	1	0	4		2	7	7	0	2	1	0	3


```
plt.figure(figsize=(14,12))
sns.heatmap(df.corr(),linewidths=.1,cmap="Purples", annot=True, annot_kws={"size": 7})
plt.yticks(rotation=0);
#plt.savefig("corr.png", format='png', dpi=400, bbox_inches='tight')
```



```
df[['class', 'gill-color']].groupby(['gill-color'], as_index=False).mean().sort_values(by='class', ascending=False)
    gill-color
                class
          0 1.000000
0
 8
          8 1.000000
 3
          3 0.721311
          2 0.670213
 2
7
          7 0.428954
          11 0.255814
10
          10 0.204659
          4 0.156863
 5
          5 0.106870
          9 0.097561
 1
          1 0.000000
 6
          6 0.000000
```

```
new_var = df[['class', 'gill-color']]
new_var = new_var[new_var['gill-color']<=3.5]
# Changed factorplot to catplot as factorplot is deprecated in newer seaborn versions
# Fixed the parameter order in catplot function to avoid duplicate 'data' argument
sns.catplot(x='class', col='gill-color', data=new_var, kind='count', height=4.5, aspect=.8, col_wrap=4);
#plt.savefig("gillcolor1.png", format='png', dpi=500, bbox_inches='tight')</pre>
```



```
X = df.drop(['class'], axis=1)
y = df["class"]
 \textit{X\_train, X\_test, y\_train, y\_test = train\_test\_split(X, y, random\_state=42, test\_size=0.1) } 
from sklearn.linear_model import LogisticRegression
lr = LogisticRegression(solver="lbfgs", max_iter=500)
lr.fit(X_train, y_train)
print("Test Accuracy: {}%".format(round(lr.score(X_test, y_test)*100,2)))
Test Accuracy: 94.96%
y_pred_lr = lr.predict(X_test)
\label{logistic Regression Classifier report: $$ \n^{"}, classification\_report(y\_test, y\_pred\_lr)$) $$
Logistic Regression Classifier report:
               precision
                            recall f1-score
                                                 support
           0
                    0.96
                              0.94
                                         0.95
                                                    433
                    0.94
                              0.96
                                         0.95
                                                    380
           1
    accuracy
                                         0.95
                                                    813
   macro avg
                    0.95
                              0.95
                                         0.95
                                                    813
                                         0.95
                                                    813
weighted avg
                    0.95
                              0.95
```

```
cm = confusion_matrix(y_test, y_pred_lr)
x_axis_labels = ["Edible", "Poisonous"]
y_axis_labels = ["Edible", "Poisonous"]
f, ax = plt.subplots(figsize =(7,7))
sns.heatmap(cm, annot = True, linewidths=0.2, linecolor="black", fmt = ".0f", ax=ax, cmap="Purples", xticklabels=x_axis_labels, plt.xlabel("PREDICTED LABEL")
plt.ylabel("TRUE LABEL")
plt.title('Confusion Matrix for Logistic Regression Classifier')
#plt.savefig("Lrcm.png", format='png', dpi=500, bbox_inches='tight')
plt.show()
```

