M-III Online Test

mihirpimparade@gmail.com Switch account

* Required

Email *

Your email

Division *

Option 1

. Particular Integral $\frac{1}{D+1}((\tan x + \tan^2 x))$

$$[A]e^{-x}(\tan x - 1)$$

[B]
$$(\tan x - 1)$$

C]
$$e^x(\tan x -$$

$$[A]e^{-x}(\tan x - 1) \qquad \qquad [B] (\tan x - 1) \qquad [C] \quad e^{x}(\tan x - 1) \qquad [D] \, e^{x}(\tan x + 1)$$

 \bigcap D

Name of Student *

Your answer

In solving differential equation $\frac{d^2y}{dx^2} + 4y = 4 \sec^2 2 x$ by method of variation of

Parameters, Complimentary function = $c_1 \cos 2x + c_2 \sin 2x$,

Particular Integral = $u \cos 2x + v \sin 2x$ then v is equal to

[A] log(sec 2x + tan 2x)

[B] - sec 2x

[C] sec 2x + tan 2x

[D] log(tan 2x)

Question

... the simultaneous linear differential equations $\frac{du}{dx} + v = sinx, \frac{dv}{dx} + u = cosx$, solution

of u using $D = \frac{d}{dt}$ is obtain from

- a) $(D^2 + 1)u = 2\cos x$ b) $(D^2 1)u = 0$ C) $(D^2 1)u = \sin x \cos x$ d) $(D^2 1)v = -2\sin x$

Roll No. *

Your answer

Question

For the differential equation $(2x+3)^2 \frac{d^2y}{dx^2} - 2(2x+3) \frac{dy}{dx} - 12y = 6x,$ complimentary

function is given by

[A]
$$c_1(2x+3)^3 + c_2(2x+3)^{-1}$$
 [B] $c_1(2x+3)^{-3} + c_2(2x+3)$ [C] $c_1(2x+3)^3 + c_2(2x+3)^2$ [D] $c_1(2x-3)^2 + c_2(2x-3)^{-1}$

$$c_1(2x+3)^{-3}+c_2(2x+3)^{-3}$$

$$c_1(2x+3)^3 + c_2(2x+3)^2$$

$$c_1(2x-3)^2 + c_2(2x-3)^{-1}$$

Particular Integral $\frac{1}{D+2}e^{-x}e^{e^{x}}$ where $D \equiv \frac{d}{dx}$ is

[A] $e^{2x}e^{e^{x}}$ [B] $e^{-2x}e^{e^{x}}$ [C]

 $[A] e^{2x} e^{e^X}$

 $[D]^{e^{-x}e^{e^x}}$

Particular Integral of Differential equation

 $(D^4 + 10D^2 + 9)y = \sin 2x + \cos 4x$

- [A] $-\frac{1}{23}\sin 2x \frac{1}{105}\cos 4x$
- [B] $\frac{1}{15}\sin 2x + \cos 4x$
- [C] $-\frac{1}{15}\sin 2x + \frac{1}{105}\cos 4x$
- [D] $-\frac{1}{15}\sin 2x + \frac{1}{87}\cos 4x$

Question

. Solution of symmetric simultaneous DE $\frac{dx}{x} = \frac{dy}{y} = \frac{dz}{z}$ is

$$A) x = c_1 y, y = c_2 z$$

A)
$$x = c_1 y, y = c_2 z$$
 B) $x - y = c_1 z, y - z = c_2 x$

C)
$$x + y = c_1, y + z = c_2$$
 D) $x + y = c_1, y - z = c_2$

Question

The differential equation $(x+2)^2 \frac{d^2y}{dx^2} + 3(x+2) \frac{dy}{dx} + y = 4 \sin[\log(x+2)]$ of utting $x+2=e^z$ and using $D\equiv \frac{d}{dz}$ is transformed into

[A]
$$(D^2 + 3D + 1)y = 4\sin(\log z)$$

$$[B] (D^2+1)y=4\sin z$$

[C]
$$(D^2 + 2D + 1)y = 4\sin[\log(x+2)]$$
 [D] $(D^2 + 2D + 1)y = 4\sin z$

[D]
$$(D^2 + 2D + 1)y = 4 \sin z$$

The solution of differential equation $\frac{d^3y}{dx^3} - 5\frac{d^2y}{dx^2} + 8\frac{dy}{dx} - 4y = 0$ is

[A] $c_1 e^x + (c_2 x + c_3) e^{2x}$

[B] $c_1 e^x + c_2 e^{2x} + c_3 e^{3x}$

[C] $(c_2x + c_3)e^{2x}$

[D] $c_1e^{-x} + (c_2x + c_3)e^{-2x}$

- A
- () B
- 0

*

Particular Integral of Differential equation $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = xe^x \sin x$ is

$$-e^{x}(x\sin x + 2\cos x)$$
[A]
$$(x\sin x + 2\cos x)$$
[C]

[B] $e^{x}(x\sin x - 2\cos x)$ $-e^{x}(x\cos x + 2\sin x)$ [D]

- **О** В
- \bigcirc 0

*

Particular Integral of Differential equation

$$\frac{d^3y}{dx^3} - 4\frac{dy}{dx} = 2\cosh 2x$$
 is

$$[A] \frac{1}{4} \cosh 2x$$

[B]
$$\frac{x}{8}\cosh 2x$$

$$[C] \frac{x}{4} \cosh 2x$$

$$\sum_{[D]} \frac{x}{4} \sinh 2x$$

- (A
- \bigcirc

Particular Integral of Differential equation

$$[A] \frac{e^{-3x}}{2x}$$

$$\frac{e^{-3x}}{12x}$$

 $(D^2 + 6D + 9)y = e^{-3x}x^{-3}$

[D]
$$(c_1x + c_2)e^{-3x}$$

Particular Integral of Differential equation $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = e^{-x}\cos x$ is $-e^{-x} \sin x$ [B] $(c_1x + c_2)e^{-x}$

$$-e^{-x}\cos x$$

 $(D-1)^3 y = e^x \sqrt{x}$

Particular Integral of Differential equation

[A]
$$\frac{4}{15}e^{x}x^{\frac{5}{2}}$$

In solving differential equation $\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$ by method of variation of parameters, Complimentary function = $c_1 x e^{3x} + c_2 e^{3x}$,

Particular Integral = $uxe^{3x} + ve^x$ then u is equal to

[A]
$$-\frac{2}{x^3}$$

$$[B] \frac{1}{x}$$

$$[C] - \frac{1}{x}$$

$$[B] \frac{1}{x} \qquad [C] -\frac{1}{x} \qquad [D] - \log x$$

Submit Clear form

Never submit passwords through Google Forms.

This content is neither created nor endorsed by Google. Report Abuse - Terms of Service - Privacy Policy

!