TD5 M1S2 Probabilité, Martingale et chaîne de Markov

5.1 Exemples (non) pathologiques

- 1. Donner un exemple de sous-martingale $(X_n)_{n\in\mathbb{N}}$ telle que $(X_n^2)_{n\in\mathbb{N}}$ est une surmartingale. Est-ce que cela contredit la première proposition sur la transformation de martingale : $si\ \varphi: \mathbb{R} \to \mathbb{R}_+$ est convexe croissante et $(X_n)_{n\in\mathbb{N}}$ est une sousmartingale avec $\mathbb{E}(|\varphi(X_n)|) < \infty$ pour tout $n \in \mathbb{N}$, alors $(\varphi(X_n))_{n\in\mathbb{N}}$ est une sousmartingale.
- 2. Soit $(X_n)_{n\in\mathbb{N}}$ le processus aléatoire défini par $X_n = \sum_{i=1}^n \xi_i$, où les ξ_i , $i \geq 1$ sont indépendantes avec $\xi_1 = 0$ et, pour tout $i \geq 2$,

$$\mathbb{P}(\xi_i = i^2) = \frac{1}{i^2} \text{ et } \mathbb{P}\left(\xi_i = -\frac{i^2}{i^2 - 1}\right) = 1 - \frac{1}{i^2}.$$

- (a) Prouver que $(X_n)_{n\in\mathbb{N}}$ est une martingale qui converge p.s. vers $-\infty$.
- (b) Pourquoi ce n'est pas contradictoire au théorème de convergence des sousmartingales ?

5.2 Martingale exponentielle

Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables aléatoires i.i.d. de loi de Bernoulli de paramètre $p\in]0,1[$. Pour tout $n\in\mathbb{N}^*$, on note

$$S_n = \sum_{k=1}^n X_k$$
, et $M_n = \frac{e^{S_n}}{\mathbb{E}(e^{S_n})}$.

- 1. Justifier que les $M_n, n \in \mathbb{N}^*$ sont bien définies.
- 2. Montrer que $(M_n)_{n\in\mathbb{N}^*}$ est une martingale convergeant presque-sûrement.

5.3 Convergence de martingale dans L^2

Soit $\beta > 1$. Soit $(A_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes de carré intégrable telles que pour tout $n \in \mathbb{N}^*$ on ait $\mathbb{E}(A_n) = 1$ et $\mathbb{E}(A_n^2) = 1 + \frac{1}{n^{\beta}}$.

- 1. Montrer que $(A_n)_{n\in\mathbb{N}^*}$ converge presque-sûrement vers 1.
- 2. Pour tout $n \in \mathbb{N}^*$, on se donne une fonction θ_n de A_1, \ldots, A_{n-1} , et on définit $S_n = \sum_{k=1}^n (A_k 1) \sin(\theta_k)$. Montrer que $(S_n)_{n \in \mathbb{N}^*}$ est une martingale par rapport à une filtration que l'on déterminera.
- 3. Montrer que $(S_n)_{n\in\mathbb{N}^*}$ converge presque-sûrement et dans L^2 .
- 4. En déduire que $\prod_{k=1}^{n} (1 + (A_k 1) \sin{(\theta_k)})$ est borné presque-sûrement.

5.4 Marche aléatoire autorégressive

Considérons $(X_n)_{n\geq 1}$ une suite de variables aléatoires à valeurs dans $\{0,1\}$. Nous posons

$$X_0 = 1$$
 et, $\forall n \in \mathbb{N}$, $S_n = \sum_{p=0}^n X_p$.

Nous supposons que, pour tout $n \in \mathbb{N}$, la loi de X_{n+1} sachant (X_0, \ldots, X_n) est la loi de Bernoulli de paramètre $M_n := \frac{S_n}{n+2}$. Enfin, nous considérons $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}$ la filtration naturelle de $(X_n)_{n \in \mathbb{N}}$.

- 1. (a) Montrer que $\mathbb{E}(S_{n+1} \mid \mathcal{F}_n) = \frac{(n+3)S_n}{n+2}$.
 - (b) Montrer que $(M_n)_{n\in\mathbb{N}}$ est une \mathcal{F} -martingale.
 - (c) Montrer que $(M_n)_{n\in\mathbb{N}}$ converge presque sûrement vers une variable M_{∞} telle que $\mathbb{E}(M_{\infty}) = 1/2$.
- 2. (a) Montrer que $\mathbb{E}(S_{n+1}^2 \mid \mathcal{F}_n) = \frac{(n+4)S_n^2 + S_n}{n+2}$.
 - (b) Soit $Z_n = \frac{S_n(S_n+1)}{(n+2)(n+3)}$, $\forall n \in \mathbb{N}$. Montrer que $(Z_n)_{n \in \mathbb{N}}$ est une \mathcal{F} -martingale.
 - (c) En utilisant la martingale $(Z_n)_{n\in\mathbb{N}}$, calculer $\mathbb{E}(M_\infty^2)$.