DCN - CEUNES - UFES Eletromagnetismo

Atividade: Corrente e resistência¹

I. Circuito elétrico

Qualquer caminho fechado por onde a *corrente elétrica* retorna às estruturas (fios, resistores, capacitores, etc) que formam o caminho é chamado de *circuito elétrico*. Para manter uma corrente estacionária não deve existir interrupções no circuito elétrico, sendo a *fonte de alimentação* a estrutura responsável por manter o fluxo de cargas. O diagrama abaixo representa um circuito formado por fios, uma lâmpada incandescente e uma bateria de 3 V (fonte).

A bateria induz o fluxo de carga (a corrente) por todo o circuito. Um corrente estacionária é observada no caminho fechado que passa pelo filamento da lâmpada e pela bateria. O brilho da lâmpada depende da corrente elétrica I que passa pelo filamento, podendo, portanto, ser usado como indicador da magnitude da corrente no circuito. Quanto maior é a corrente pelo filamento maior é brilho da lâmpada. O brilho da lâmpada também depende da resistência R do filamento.

II. Lâmpadas em série

Considere um circuito elétrico formado por duas lâmpadas idênticas conectadas uma após a outra como mostra a figura abaixo. Nesta montagem:

- **A.** Como que a corrente I medida no primeiro circuito se compara com a corrente do circuito das lâmpadas ligadas em série?
- **B.** O brilho de cada lâmpada é maior, menor ou permanece o mesmo quando comparado com o brilho da lâmpada ligada sozinha?
- **C.** Qual é o sentido da corrente no circuito? O sentido da corrente influencia na intensidade do brilho das lâmpadas?
- **D.** Como a magnitude de corrente através de uma das lâmpadas se compara com a magnitude de corrente na outra?
- **E.** Podemos considerar cada lâmpada como um obstáculo, uma *resistência* a corrente no circuito. Se forem adicionadas ao circuito mais lâmpadas conectadas em série, a *resistência total* aumentará, diminuirá ou permanecerá a mesma?

F. Formule uma relação que forneça como que a corrente através da bateria muda em função do número de lâmpadas conectadas em série.

III. Lâmpadas em paralelo

Considere um novo circuito produzido com duas lâmpadas idênticas conectadas em paralelo aos terminais da bateria.

- **A.** Em relação à corrente medida próximo ao terminal da bateria, qual deve ser a intensidade da corrente por cada lâmpada?
- **B.** Como que a corrente *I* (medida no primeiro circuito) se compara com a corrente que passa por cada lâmpada neste novo circuito?
- C. Em relação ao brilho da lâmpada no primeiro circuito, cada lâmpada ligada em paralelo terá um brilho menor, maior ou igual?
- **D.** Formule uma relação que forneça como que a corrente através da bateria muda em função do número de lâmpadas conectadas em paralelo.
- **E.** Comparando os circuitos em série e em paralelo, o que acontece com uma das lâmpadas se a outra é removida?

IV. Circuito misto

Considere, como ilustrado abaixo, um circuito formado por três lâmpadas idênticas. A resistência da chave interruptora, quando fechada, é desprezível.

- **A.** Classifique as lâmpadas A, B e C em função da intensidade do brilho quando a chave está fechada.
- **B.** Há mudança no brilho da lâmpada A quando a chave estiver aberta? Explique.
- 1 Adaptado do livro *Tutorials in Introductory Physics* de McDermontt, Shaffer e Phys. Educ. Group da Univ. de Washington.