122COM: Searching

David Croft

Introduction

Linear search

Pinary coare

String searchin

Quiz

Recap

122COM: Searching

David Croft

Coventry University david.croft@coventry.ac.uk

2018

- 1 Introduction
- 2 Linear search
- Binary search
- 4 String searching
- 5 Quiz
- Recap

C

You have all attempted the green Codio exercises for this week.

Introduction

Linear search

String searchir

Doc:

Searching is used everywhere in computing.

- Obvious applications.
 - Text files.
 - Databases.
 - File systems.
 - Search engines.
- Hidden applications.
 - Computer games.
 - Field Of View (FOV) search for objects in view.
 - Path finding https://www.youtube.com/watch?v=19h1g22hby8.
 - Network routing.
 - Sat Nav.
 - Recommender systems.
 - Netflix What-to-watch.
 - Amazon recommended items.

ntroduction

Linear search

String searching

Quiz

Reca

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

Introduction
Linear search

Binary searc

Quiz

Reca

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R
\uparrow					•	•				•				
Ζ														

Iterate over elements.

Simplest searching algorithm.

Also called sequential search.

Until found or until end of sequence.

■ Potentially slow.

■ Worst case if the value isn't in the sequence at all.

■ *O*(*n*)

■ Discuss *O*() notation last week.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R	
	\uparrow					•				•					
	Ζ														

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R	
		\uparrow				•									
		Ζ													

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

0			_			-						_	
Α	В	Z	Q	K	 G	Н	U	Α	Р	L	F	N	R

ntroduction

Linear search

String searching

Quiz

Reca

- Simplest searching algorithm.
 - Also called sequential search.
 - Iterate over elements.
 - Until found or until end of sequence.
 - Potentially slow.
 - Worst case if the value isn't in the sequence at all.
 - *O*(*n*)
 - Discuss *O*() notation last week.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

0			_	-	_		-		_					-
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

0			_			-						_	
Α	В	Z	Q	K	 G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.

- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

					_		-		_				13	
Α	В	Z	Q	K	L	G	Η	U	Α	Р	L	F	N	R

- Simplest searching algorithm.
 - Also called sequential search.
 - Iterate over elements.
 - Until found or until end of sequence.
 - Potentially slow.
 - Worst case if the value isn't in the sequence at all.
 - *O*(*n*)
 - Discuss *O*() notation last week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

ntroduction

Linear search

String searching

Quiz

Reca

- Simplest searching algorithm.
 - Also called sequential search.
 - Iterate over elements.
 - Until found or until end of sequence.
 - Potentially slow.
 - Worst case if the value isn't in the sequence at all.
 - *O*(*n*)
 - Discuss *O*() notation last week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- **■** *O*(*n*)
 - Discuss *O*() notation last week.

ntroduction

Linear search

String searching

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

			_		_		-						13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

					_		-		_				13	
Α	В	Z	Q	K	L	G	Η	U	Α	Р	L	F	N	R

ntroduction

Linear search

String searching

Quiz

Neca

- Simplest searching algorithm.
 - Also called sequential search.
 - Iterate over elements.
 - Until found or until end of sequence.
 - Potentially slow.
 - Worst case if the value isn't in the sequence at all.
 - *O*(*n*)
 - Discuss *O*() notation last week.

					_		-		_				13	
Α	В	Z	Q	K	L	G	Η	U	Α	Р	L	F	N	R

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

													13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

ntroduction

Linear search

String searching

Quiz

Reca

- Also called sequential search.
- Iterate over elements.
- Until found or until end of sequence.
- Potentially slow.
 - Worst case if the value isn't in the sequence at all.
- *O*(*n*)
 - Discuss *O*() notation last week.

					_		-						13	
Α	В	Z	Q	K	L	G	Н	U	Α	Р	L	F	N	R

Binary search

A Divide & conquer algorithm.

- Pro: Muuuuuuch faster than linear search.
- Con: Only works on sorted sequences.
- The algorithm:
 - Find middle value of the sequence.
 - If search value == middle value then success.
 - If search value is < middle value then forget about the top half of the sequence.
 - If search value is > middle value then forget about the bottom half of the sequence.
 - Repeat from step 1 until len(sequence) == 0.

			_	-	_		-		_					14
Α	В	C	D	E	F	G	Н		J	K	L	М	N	Ο

			_	•	_		•						13	•
Α	В	C	D	Е	F	G	Н	I	J	K	L	М	N	0
							\uparrow							

Quiz

Doca

Linear search Binary search

String searching

Quiz

_

Binary search

String searching

Quiz

D

Binary search

searching

Quiz

Recar

Binary search String

Quiz

D

Binary search

Maximum number of comparisons needed? Binary Search Trees.

■ How many times can we divide our sequence in half?

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $\log_2(n)$
 - \blacksquare n = 15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$

Introduction

Linear search

String searching

Quiz

кеса

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $\log_2(n)$
 - \blacksquare n=15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Covered *O*() complexity last week.

Binary search

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $\log_2(n)$
 - \blacksquare n=15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Covered O() complexity last week.
- Find E.

Introduction

Linear search

Binary search String

Quiz

rcca

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $log_2(n)$
 - \blacksquare n=15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Covered *O*() complexity last week.
- Find E.

Maximum number of comparisons needed? Binary Search Trees.

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $\log_2(n)$
 - \blacksquare n=15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Covered O() complexity last week.
- Find E.

Maximum number of comparisons needed? Binary Search Trees.

- How many times can we divide our sequence in half?
- Ideal depth of the tree is $\log_2(n)$
 - \blacksquare n=15 in this example.
 - $\log_2(15) = 3.9 \Rightarrow 3$
- Binary search has a complexity of $O(\log n)$.
 - Covered O() complexity last week.
- Find E.

Clearly much faster than linear search.

- To search a trillion elements linearly could mean a trillion comparisons.
- Binary search does it in 39.

But...

- Have to sort the list first.
- Sorting lists can be expensive.
 - Will cover sorting in a later week.
- Can't always sort sequences.
- Ordering can be important.
 - E.g. Words in text documents.
 - E.g. Genes in genetic chromosomes.

122COM: Searching

David Croft

Introduction

linear search

Binary searc

String searchin

Ouiz

Recap

Break

String

searching

I.e. Text searching.

- Finding one sequence in another sequence.
- Naive search.
 - Like linear search but with multiple values to compare.
 - Is very slow.

text = S S а n X a m р search = m р е h а n Х а m е m е h а n e Χ a m а е Х m р S n e Х а m Х а р е m e

122COM: Searching

David Croft

Introduction

Linear search

Rinary sparc

String searching

Ouiz

Recan

Quiz

By what other name is linear search known?

- Divide & Conquer.
- Binary search.
- **Sequential** search.
- Path finding.

Quiz

- Divide & Conquer.
- Binary search.
- **Sequential search.**
- Path finding.

What is the downside of binary search compared to linear?

- Can only search sequences.
- Can only search numbers.
- **Section** 2 Can only search sorted sequences.
- Can only search an even number of things.

What is the downside of binary search compared to linear?

- Can only search sequences.
- Can only search numbers.
- 3 Can only search sorted sequences.
- Can only search an even number of things.

No it isn't.

It only searches is and os.

It only searches two things.

It's a divide & conquer algorithm.

Binary search is faster than linear search because

Binary search is faster than linear search because

- No it isn't.
- It only searches is and os.
- It only searches two things.
- It's a divide & conquer algorithm.

The *O*() complexity of binary search is _____.

- **1** *O*(*n*)
- It depends on how many elements are being searched.
- $O(\log n)$
- **⊿** *O*(*n*!)

The *O*() complexity of binary search is _____.

- **1** *O*(*n*)
- It depends on how many elements are being searched.
- $O(\log n)$
- **⊿** *O*(*n*!)

Linear searc Binary searc

String searching

Quiz

Recap

Everyone

- Searching algorithms are key to understanding many data type.
 - I.e. sets and maps/dicts.
- Key to writing efficient code.
- Key to understanding memory/processor trade offs.

Recap

- Searching
 - Applications everywhere.
- Linear search.
 - Simple.
 - Slow.
- Binary search.
 - Ordered sequence.
 - Very fast.
 - Divide & Conquer.
- String searching.
 - Finding subsequence in sequence.

- Complete the yellow Codio exercises for this week.
- Attempt the green Codio exercises for next week.
- If you have spare time attempt the red Codio exercises.
 - Will need to look at the Boyer-Moore advanced lecture slides.
- If you are having issues come to the PSC. https://gitlab.com/coventry-university/ programming-support-lab/wikis/home

122COM: Searching

David Croft

Introduction

Linear search

Rinary spare

String searching

Ouiz

Recap

The End

