D 21/04/2021

Notes

- Interpolation works now (also for periodic functions)
- Shape notes/ multishape tests complete, except for questions and convergence stuff
- Tested the 'VectorToShape' for w and when to use
- DDFT talk (maybe different example?)
- ALOP Workshop

Questions

- Reference for exact no-flux AD solution?
- Plotting single normals
- Polar Diff at r = 0?
- Wedge linear, quadrilateral bilinear. why?
- Algorithm writing (how to improve this)
- Loewen paper: N = 100 how to translate to ρ
- Loewen V_{ext} problem: Do we do V_2 as well? Interesting $\hat{\rho}$?
- ∇V_{ext} control 'constant' spatial averaging?
- Is DDFT valid for **w** which is not ∇V ? (see DDFT review 3.4/4.4 need diffusion dominated flow?)

1 Separation Example

We model a separation example with the external potential

$$V_{ext} = 10 \left(\frac{r}{4\sigma}\right)^4 + \cos(2\pi t/2.75) \left(\frac{r}{\sigma}\right)^2.$$

We choose $\rho_0 = \bar{\rho}e^{-V_{ext}}$ and $\bar{\rho} = 0.05$. The domain is $[0,5]^2$ with N=30 and n=60. The time horizon is (0,3). If we define $r=|y_1|$, the solutions for $\kappa=1$ and $\kappa=-1$ for the sedimentation equation with corresponding V_2 are displayed in Figures 1 and 2. The results for the standard overdamped equation look very similar. The external potential is shown in Figure 3. The two-dimensional problem (meaning $r=\sqrt{y_1^2+y_2^2}$) are essentially the same.

Figure 1: '1D' solutions for sedimentation, $\kappa = 1$

Figure 2: '1D' solutions for sedimentation, $\kappa=-1$

Figure 3: '1D' V_{ext}