МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ) ФИЗТЕХ-ШКОЛА ЭЛЕКТРОНИКИ, ФОТОНИКИ И МОЛЕКУЛЯРНОЙ ФИЗИКИ

Лабораторная работа по курсу Вакуумная электроника

Термоэлектронный диод

выполнил студент 2 курса группы Б04-006 **Белостоцкий Артемий**

1. Цель работы.

Практическое изучение явления термоэлектронной эмиссии и процессов токопрохождения в вакууме, изготовление диода и исследование некоторых его характеристик

2. Экспериментальная установка.

Рис.1.Схема экспериментальной установки

- 1. Форвакуумный насос
- 2. Турбомолекулярный насос
- 3. Вакуумная камера
- 4. Клапан с электрическим управлением
- 5. Измерительная насадка
- 6. Фильтр входящего воздуха
- 7. Диод
- 8. Источник питания НҮ 3010Е
- 9. Вольтметр GPR-30H100

3. Ход работы.

Повышая ток накала катода, будем фиксировать напряжение накала катода, по полученный данный построим график зависимости $I_{\text{нак}}(U_{\text{нак}})$:

Построим график зависимости сопротивления R катода от приложенной мощности P. Сопротивление катода рассчитаем по формуле:

$$R = \frac{U_{\text{\tiny HAK}}}{I_{\text{\tiny HAK}}} \tag{1}$$

Приложенную мощность – по формуле:

$$P = U_{\text{\tiny HAK}} I_{\text{\tiny HAK}} \tag{2}$$

Рис.2.Зависимость R(P)

Построим графики зависимости температуры катода (T_{κ}) от тока накала ($I_{\text{нак}}$). Для построения графика на основании изменения сопротивления катода воспользуемся формулой:

$$T = \frac{1}{\alpha} \left(\frac{R \pi d^2}{4 \rho l} - 1 \right) \quad , \tag{3}$$

Где d = 0,15 мм, l = 40 мм, $\alpha = 9,29 * 10^{-3}$, $\rho = 6,4 * 10^{-6}$ Ом*см — параметры катода.

Для построения графика на основании расчётов с использованием энергетического баланса воспользуемся законом Стефана-Больцмана и значениями подводимой мощности, полученной в предыдущих шагах. Таким образом будем использовать формулу:

$$T = \sqrt[4]{\frac{P}{S_{\mathcal{E}}\sigma}} \quad , \tag{4}$$

где $\epsilon = 0.032$ — степень черноты катода, $\sigma = 5.67 * 10^{-8}\,\mbox{Дж/(c*м}^2\mbox{*}\mbox{K}^4)$, S

Рис.3. График зависимости температуры катода от тока накала

Построим графики зависимости анодного тока от анодного напряжения при различных значениях тока накала $I_{\text{нак}}$ в координатах $lg(I_{\text{a}})$ от $lg(U_{\text{a}})$.

Рис.4. Зависимость $lg(I_a)(lg(U_a))$ для $I_H = 2,4$ A

Рис.5. Зависимость $lg(I_a)(lg(U_a))$ для $I_{\scriptscriptstyle H}$ = 2,5 A

Рис.6. Зависимость $lg(I_a)(lg(U_a))$ для $I_{\scriptscriptstyle H}$ = 2,6 A

Рис.8. Зависимость $lg(I_a)(lg(U_a))$ для $I_{\scriptscriptstyle H}$ = 2,8 A

Рис.9. Зависимость $lg(I_a)(lg(U_a))$ для $I_{\scriptscriptstyle H}$ = 2,9 A

Рис.10. Зависимость $lg(I_a)(lg(U_a))$ для $I_{\scriptscriptstyle H}$ = 3,0 A

Из начального участка графиков найдем первеанс g, используя формулу:

$$I_a = gU_a^{\frac{3}{2}} \quad , \tag{5}$$

С помощью первеанса определим отношение удельный заряд электрона:

$$\frac{e}{m} = \frac{81}{8} \left(g \frac{r_a}{l_a} \right)^2 \quad , \tag{6}$$

где r_a = 2,5 мм, l_a = 30 мм.

Полученные данные занесем в Таблицу 2:

I _H , A	G * 10 ⁻⁵ , A*B ^{-3/2}	e/m * 10 ⁻¹¹
2,4	2	2,81
2,5	2,7	5,13
2,6	4,8	1,62
2,7	6,7	3,16
2,8	7,1	3,54
2,9	10	7,03
3	7	3,45

Тогда среднее значение <g $> = 5,76 * 10^{-5} \, A*B^{-3/2}, <$ e/m $> = 2,8 * 10^{-10} \, \text{Кл/кг}$

Теоретические значения:

$$g = 2,33*10^{-6} \frac{S_k}{R_a^2} = 8,8*10^{-5} A*B^{-3/2},$$

где S_k - площадь поверхности катода, R_a – радиус анода.

$$\frac{e}{m} = 1,76 * 10^{-11} \frac{Kn}{\kappa 2}$$

Вычислим КПД диода для каждого тока накала по формуле:

$$H = \frac{I_{\text{Hak}}}{P} \tag{7}$$

Полученные данные занесем в Таблицу 3:

I _H , A	Р, Вт	Н, А/Вт
2,4	9,86	0,24
2,5	11,05	0,23
2,6	12,01	0,22
2,7	13,39	0,20
2,8	15,34	0,18

Построим график зависимости анодного тока от тока накала при различных значениях напряжения:

Рис.11. зависимости анодного тока от тока накала при различных значениях напряжения

4. Выводы.

- 1)Наглядно изучили явление термоэлектронной эмиссии и процессы токопрохождения в вакууме
 - 2)Изготовили вакуумный диод
 - 3)Изучили характеристики диода вольт амперную характеристику и первеанс: