НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 3.2.4(4.5) «Свободные колебания в электрическом контуре»

Овсянников Михаил Александрович студент группы Б01-001 2 курс ФРКТ

г. Долгопрудный 2021 г.

Цель работы: исследование отклика колебательного контура на периодические внешние импульсы.

В работе используются: генератор импульсов, электронное реле, магазин сопротивлений, магазин емкостей, индуктивность, электронный осциллограф, универсальный мост.

Экспериментальная установка. На рис. 1 приведена схема для исследования свободных колебаний в контуре, содержащем постоянную индуктивность L и переменные ёмкость C и сопротивление R. Колебания наблюдаются на экране осциллографа.

Рис.1. Схема установки для исследования свободных колебаний

Выпишем все необходимые для работы расчетные формулы. Период колебаний:

$$T = 2\pi\sqrt{LC} \tag{1}$$

Частота колебаний:

$$\nu = \frac{1}{T} = \frac{1}{2\pi\sqrt{LC}}\tag{2}$$

Логарифмический декремент затухания:

$$\Theta = \ln \frac{U_k}{U_{k+1}} = \frac{1}{n} \ln \frac{U_k}{U_{k+n}} \tag{3}$$

Критическое сопротивление:

$$R_{\rm kp} = 2\sqrt{\frac{L}{C}} \tag{4}$$

Добротность:

$$Q = 2\pi \frac{W}{\Delta W_T} = \frac{W}{\Delta W} = \frac{\pi}{\gamma T} = \frac{\omega_0 L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{L}{C}}$$
 (5)

Ход работы:

Соберем схему по рис.1.

При ненулевой нагрузке зафиксируем картины, которые показывает осциллограф для напряжения U_c на конденсаторе и тока $I \sim \frac{dU_c}{dt}$ на нем.

Из графиков видно, что в начальный момент времени заряд конденсатора максимален, а ток нулевой.

Выставим емкость конденсатора C=0,02 мк $\Phi=2\cdot 10^{-8}$ Ф. По графикам из осциллографа найдем период T=340 мкс. Теперь по этим данным рассчитаем индуктивность катушки L:

$$T=2\pi\sqrt{LC}\Longrightarrow L=rac{T^2}{4\pi^2C}pprox 147\ {
m M}\Gamma{
m H}$$

Итак, $L_{
m paccчетh} = 147 \ {
m M}\Gamma{
m H}.$

Теперь измерим индуктивность катушки напрямую с помощью устройства TETPOH-RLC-200:

 $L_{\text{измер}} = 143 \text{ м}\Gamma\text{н}.$

 $R_{\text{катушки}} \approx 16,5 \text{ Ом.}$

Как видим, в пределах погрешности измеренное и рассчитанное значения индуктивности L совпадают.

Теперь измерим зависимость квадрата периода от емкости при нулевом внешнем сопротивлении:

$C, 10^{-2} \text{ мк} \Phi$	1	2	4	7	9
T^2 , 10^3 MKC^2	57,6	115,6	230,4	409,6	518,4

Построим график этой зависимости.

Используя метод наименьших квадратов получаем:

$$T^2(C) = aC + b$$
, где $a = 57$ 92 $10^{-1}c^2$

$$b = -0.10 \cdot 10^3 \text{ MKc}^2$$
;

$$a=57,92 \; rac{10^{-1} {
m c}^2}{\Phi} \qquad \qquad b=-0,10 \cdot 10^3 \; {
m MKc}^2; \ \sigma_a=0,12 \; rac{10^{-1} {
m c}^2}{\Phi} \qquad \qquad \sigma_b=0,37 \cdot 10^3 \; {
m MKc}^2.$$

$$\sigma_b = 0,37 \cdot 10^3 \; \text{mkc}^2.$$

По графику видно, что точки хорошо ложатся на прямую.

Исследуем зависимость добротности системы Q и логарифмического декремента затухания Θ от внешнего сопротивления $R_{\text{внеш}}$. Для этого будем изменять сопротивление в диапазоне от 0 до 15 Ом. На экране осциллографа выбираем два удаленных гребня, измеряем количество периодов n между ними и отношение амплитуд $\frac{U_1}{U_n}$. Тогда $\Theta = \frac{1}{n} \ln \frac{U_1}{U_n}$, и $Q = \frac{\pi}{\Theta}$. Занесем все в таблицу:

$R_{\text{внеш}}, O_{\text{M}}$	n	$\frac{U_1}{U_n}$	Θ	Q
0	23	2	0,030	104,60
2	21	2	0,033	95,15
4	20	2	0,034	92,35
6	19	2	0,036	87,22
8	17	2	0,041	76,59
10	25	3	0,044	71,36
12	24	3	0,046	68,26
15	28	4	0,049	64,08

Теперь построим график зависимости
$$\Theta(R_{\text{внеш}})$$
. $\Theta=2\pi\frac{R}{R_{\text{кр}}}=2\pi\frac{R_{\text{внеш}}}{R_{\text{кр}}}+2\pi\frac{R_{\text{внут}}}{R_{\text{кр}}}$ Опять же, используя МНК, получаем:

$$\Theta = aR_{\text{внеш}} + b$$
, где
 $a = 1,32 \cdot 10^{-3} \text{ Ом}^{-1}$
 $b = 29,66 \cdot 10^{-3}$;
 $\sigma_a = 0,07 \cdot 10^{-3} \text{ Ом}^{-1}$
 $\sigma_b = 0,32 \cdot 10^{-3}$.

Получаем $R_{\rm kp} = \frac{2\pi}{a} \approx 4760 \; {\rm Om} \sim 4800 \; {\rm Om}.$

$$R_{\text{внут}} = \frac{bR_{\text{кр}}}{2\pi} \approx 22,47 \text{ Om}.$$

Как видно из графика, точки неидеально, но все же ложатся на прямую.

Произведем расчет и непосредственное измерение критического сопротивления $R_{\rm kp}$.

Формула $R_{\rm kp}=2\sqrt{\frac{L}{C}}.$ Получаем $R_{\rm kp}\approx 5366~{\rm Om}\sim 5400~{\rm Om}.$

По измерению получаем $R_{\rm kp} \approx 4579~{\rm Om} \sim 4600~{\rm Om}.$ Итак, все три значения (рассчетное, из графика и по эксперименту) достаточно близки друг к другу.

Посчитаем логарифмический декремент затухания Θ по фазовой диаграмме для трех разных значений сопротивления, указанных выше.

Способ тот же, что и при определении Θ по гребням волн, только

амплитудой теперь является расстояние до центра.
1)
$$n=6;$$
 $\frac{U_1}{U_n}=\frac{4.2}{0.4}=10,5;$ $\Theta\approx 0,392$

2)
$$n = 2;$$
 $\frac{U_1}{U_n} = \frac{4,2}{0,4} = 10,5;$ $\Theta \approx 1,176$

3)
$$n = 13;$$
 $\frac{U_1}{U_n} = \frac{4.2}{0.6} = 7, 0;$ $\Theta \approx 0, 150$

Вывод: в данной работе было проведено исследование отклика колебательного контура на периодические внешние импульсы, проверена зависимость периода колебаний от емкости конденсатора, найдена индуктивность катушки $L=143~\mathrm{mFh}$, высчитано внутреннее сопротивление цепи $R_{\mathrm{внут}}=22,47~\mathrm{Om}$ и исследована зависимость логарифмического декремента затухания колебаний от внешнего сопротивления цепи. Все ошибки связаны с погрешностью расчетов и неточностью измерений.