Tärnülesanne nr. 59

Joosep Näks

Olgu p ja q kompleksarvud, kusjuures $q \neq 0$. Tõestage, et kui ruutvõrrandi $x^2 + px + q^2 = 0$ lahendite moodulid on võrdsed, siis $\frac{p}{q}$ on reaalarv.

Lahendus:

Olgu ruutvõrrandi lahendid x_1 ja x_2 , seega peab kehtima $x-x_1=0$ ja $x-x_2=0$ ehk ka $(x-x_1)(x-x_2)=0 \Leftrightarrow x^2-x(x_1+x_2)+x_1x_2=0$. Sellest järeldub, et algses võrrandis $p=-x_1-x_2$ ja $q^2=x_1x_2$.

Esitan lahendid eksponentkujul kompleksarvudena: $x_1 = me^{ia}$, $x_2 = me^{ib}$ (ülesande tekstis on antud, et moodulid on võrdsed).

Vaja on näidata, et $\frac{p}{q}$ on reaalarv, see on aga sama, mis $\frac{-x_1-x_2}{\sqrt{x_1x_2}}=\frac{-me^{ia}-me^{ib}}{\sqrt{me^{ia}-me^{ib}}}=\frac{-m(e^{ia}+e^{ib})}{me^{i\frac{a+b}{2}}}=-\frac{e^{ia}}{e^{i\frac{a+b}{2}}}-\frac{e^{ib}}{e^{i\frac{a+b}{2}}}=-e^{i\frac{a-b}{2}}-e^{i\frac{b-a}{2}}=-e^{i\frac{a-b}{2}}-e^{-i\frac{a-b}{2}}.$ Viin saadud summa trigonomeetrilisele kujule:

$$\begin{aligned} -e^{i\frac{a-b}{2}} - e^{-i\frac{a-b}{2}} &= -\left(\cos\frac{a-b}{2} + i\sin\frac{a-b}{2} + \cos-\frac{a-b}{2} + i\sin-\frac{a-b}{2}\right) \\ &= -\left(\cos\frac{a-b}{2} + i\sin\frac{a-b}{2} + \cos\frac{a-b}{2} - i\sin\frac{a-b}{2}\right) \\ &= -2\cos\frac{a-b}{2} \end{aligned}$$

Ning kuna a ja b olid võrrandi lahendite argumendid, on need reaalarvud ehk ka $\frac{p}{q}=-2\cos\frac{a-b}{2}$ on reaalarv.