

SEQUENCE LISTING

(1) GENERAL INFORMATION

(i) APPLICANT: Neuhold, Lisa
Killar, Loran

(ii) TITLE OF THE INVENTION: TRANSGENIC ANIMAL MODEL FOR
DEGENERATIVE DISEASES OF CARTILAGE

(iii) NUMBER OF SEQUENCES: 21

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Darby & Darby PC
(B) STREET: 805 Third Avenue
(C) CITY: New York
(D) STATE: NY
(E) COUNTRY: USA
(F) ZIP: 10022

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Diskette
(B) COMPUTER: IBM Compatible
(C) OPERATING SYSTEM: DOS
(D) SOFTWARE: FastSEQ for Windows Version 2.0

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: 08/994,689
(B) FILING DATE: 1997-12-19
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE:

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Green, Reza
(B) REGISTRATION NUMBER: 38,475
(C) REFERENCE/DOCKET NUMBER: 0630/0D532

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 212-527-7700
(B) TELEFAX: 212-753-6237
(C) TELEX: 236687

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

Met	His	Pro	Gly	Val	Leu	Ala	Ala	Phe	Leu	Ser	Trp	Thr	His		
1				5				10				15			
Cys	Arg	Ala	Leu	Pro	Leu	Pro	Ser	Gly	Gly	Asp	Glu	Asp	Asp	Leu	Ser
				20				25			30				
Glu	Glu	Asp	Leu	Gln	Phe	Ala	Glu	Arg	Tyr	Leu	Arg	Ser	Tyr	Tyr	His
				35			40			45					
Pro	Thr	Asn	Leu	Ala	Gly	Ile	Leu	Lys	Glu	Asn	Ala	Ala	Ser	Ser	Met
	50				55				60						
Thr	Glu	Arg	Leu	Arg	Glu	Met	Gln	Ser	Phe	Phe	Gly	Leu	Glu	Val	Thr
	65				70				75			80			
Gly	Lys	Leu	Asp	Asp	Asn	Thr	Leu	Asp	Val	Met	Lys	Lys	Pro	Arg	Cys
					85			90				95			
Gly	Val	Val	Asp	Val	Gly	Glu	Tyr	Asn	Val	Phe	Pro	Arg	Thr	Leu	Lys
				100			105				110				
Trp	Ser	Lys	Met	Asn	Leu	Thr	Tyr	Arg	Ile	Val	Asn	Tyr	Thr	Pro	Asp
			115			120			125						
Met	Thr	His	Ser	Glu	Val	Glu	Lys	Ala	Phe	Lys	Lys	Ala	Phe	Lys	Val
	130				135				140						
Trp	Ser	Asp	Val	Thr	Pro	Leu	Asn	Phe	Thr	Arg	Leu	His	Asp	Gly	Ile
	145				150				155				160		
Ala	Asp	Ile	Met	Ile	Ser	Phe	Gly	Ile	Lys	Glu	His	Gly	Asp	Phe	Tyr
				165				170				175			
Pro	Phe	Asp	Gly	Pro	Ser	Gly	Leu	Leu	Ala	His	Ala	Phe	Pro	Pro	Gly
			180				185				190				
Pro	Asn	Tyr	Gly	Gly	Asp	Ala	His	Phe	Asp	Asp	Glu	Thr	Trp	Thr	
	195				200				205						
Ser	Ser	Ser	Lys	Gly	Tyr	Asn	Leu	Phe	Leu	Val	Ala	Ala	His	Glu	Phe
	210				215				220						
Gly	His	Ser	Leu	Gly	Leu	Asp	His	Ser	Lys	Asp	Pro	Gly	Ala	Leu	Met
	225				230				235				240		
Phe	Pro	Ile	Tyr	Thr	Tyr	Thr	Gly	Lys	Ser	His	Phe	Met	Leu	Pro	Asp
				245				250				255			
Asp	Asp	Val	Gln	Gly	Ile	Gln	Ser	Leu	Tyr	Gly	Pro	Gly	Asp	Glu	Asp
			260				265				270				
Pro	Asn	Pro	Lys	His	Pro	Lys	Thr	Pro	Asp	Lys	Cys	Asp	Pro	Ser	Leu
	275				280				285						
Ser	Leu	Asp	Ala	Ile	Thr	Ser	Leu	Arg	Gly	Glu	Thr	Met	Ile	Phe	Lys
	290				295				300						
Asp	Arg	Phe	Phe	Trp	Arg	Leu	His	Pro	Gln	Gln	Val	Asp	Ala	Glu	Leu
	305				310				315				320		
Phe	Leu	Thr	Lys	Ser	Phe	Trp	Pro	Glu	Leu	Pro	Asn	Arg	Ile	Asp	Ala
			325				330					335			

Ala Tyr Glu His Pro Ser His Asp Leu Ile Phe Ile Phe Arg Gly Arg
 340 345 350
 Lys Phe Trp Ala Leu Asn Gly Tyr Asp Ile Leu Glu Gly Tyr Pro Lys
 355 360 365
 Lys Ile Ser Glu Leu Gly Leu Pro Lys Glu Val Lys Lys Ile Ser Ala
 370 375 380
 Ala Val His Phe Glu Asp Thr Gly Lys Thr Leu Leu Phe Ser Gly Asn
 385 390 395 400
 Gln Val Trp Arg Tyr Asp Asp Thr Asn His Ile Met Asp Lys Asp Tyr
 405 410 415
 Pro Arg Leu Ile Glu Glu Asp Phe Pro Gly Ile Gly Asp Lys Val Asp
 420 425 430
 Ala Val Tyr Glu Lys Asn Gly Tyr Ile Tyr Phe Phe Asn Gly Pro Ile
 435 440 445
 Gln Phe Glu Tyr Ser Ile Trp Ser Asn Arg Ile Val Arg Val Met Pro
 450 455 460
 Ala Asn Ser Ile Leu Trp Cys
 465 470

09272450
 (2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 470 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

CTCGAGTTA CCACTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC	60
TATCAGTGAT AGAGAAAAGT GAAAGTCGAG TTTACCACTC CCTATCAGTG ATAGAGAAAA	120
GTGAAAGTCG AGTTTACAC TCCCTATCAG TGATAGAGAA AAGTGAAAGT CGAGTTTACC	180
ACTCCCTATC AGTGATAGAG AAAAGTGAAA GTCGAGTTA CCACTCCCTA TCAGTGATAG	240
AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT GAAAGTCGAG	300
CTCGGTACCC GGGTCGAGTA GCGGTGTACG GTGGGAGGCC TATATAAGCA GAGCTCGTT	360
AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC ATAGAAGACA	420
CCGGGACCGA TCCAGCCTCC GCGGCCCGA ATTAGCTTGA TATCGAATTG	470

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 3479 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGTACCACTA GTAAGCTTAG ATCCACTGTC TGGGATTATA TCAGGACAAC CGAACGCCTGG	60
--	----

AAAGTGTATT	AGGTAGAGCA	TTTCTTCCA	CGTGTGGG	CACGTTCCG	ACAGCTAGGA	120
TTCCAGCTCT	GTCTTTGTAT	GTACAGACT	GTAAATCAAT	CGCAGGTGAA	ACTGTGGGAA	180
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCC	GTGAGACTCT	AGGCCTTTC	CCCTGCCACC	240
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGAG	GCGGGCCGG	GCGGTCTTC	TGCTCTTAG	300
CGTGGCGGAC	GCGGCGGCG	GGGCAGGGCT	GGAGCAGAGA	GCGCTGCAGT	GATAGAACTT	360
TCTGACCCCG	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGGTGGCGA	GCTAAGCCAG	420
AGCCGAACGC	TGGAGCTCTG	GGAGGAACAT	CGAAGGTTT	TATGTGGTCT	GAGATCGGCC	480
TGACTATATT	TTTTGTCTT	AAATTGCAA	GCACACACCC	ACAAAGCTGC	GGTCTTGACC	540
GGTATTCTT	ATAGAGCGCA	ATGGAGTGAG	CTGAGTGTCT	AAACGATTTC	CCTAATTCTAT	600
CTGATAGCAG	AGGCGCTCTC	CTAATTGGCG	AAGAGCTGCC	TCATGTCCGC	AACTTTTGG	660
CAGAGTGAAT	TCCACAGCTT	TGTGTGTGTG	TGTGGGGGGG	GGTGTAAAGG	GTGTCTAAAA	720
CTTCGGTCT	CCTACTATT	TGTATCTCGA	CCGGTTGGTT	TTACACCCCG	GCTCATCTCA	780
TCAACGAAA	CACCCCCACT	CTCCTATGGA	CCCAAGGACC	TGACGTGGGG	GAAGGTGGAC	840
ATTAGGAATG	TCAGAAACCT	AGAGTCCACG	CTCCTCCTCT	CCATCTTCC	ACGAGTTTGG	900
GAAACTCTT	GGCTGCGAAG	ACTTTGACCC	ACATCTGCAT	TTCTCAGCCC	CAGCTTCCAA	960
AAAGTGTGCA	GGTTCGGGAG	GGGAGACCTC	AGTCCTCCTT	TGTGAGGCTT	GTTCGCGTTG	1020
AGGGATTGGC	AGCGATGGCT	TCCAGATGGG	CTGAAACCCCT	GCCCCTATT	ATTTAAACTG	1080
GTTCCTCGTG	GAGAGCTGTG	AATCGGGCTC	TGTATGCGCT	CGAGAAAAGC	CCCATTCTATG	1140
AGAGGCAAGG	CCCAGTGGGT	CCCCCGACT	CCCCGACCCC	CCTCTCCCAC	AATATATCCC	1200
CCCTCCCTGT	CCCCGCCTGC	CGCCACCTCC	CGGGCTCCGG	CCCCGCGCG	AGCAGCGACG	1260
AAAGAACACA	GTTCGGCGAA	AGAGGTAGCT	TTTAATTGG	CCAGCCACAA	AGAATCACTT	1320
ATGCCGCACG	GCGGTAACGA	GGGAACCGG	ATCGGGCGGC	CAGGATGCTA	TCTGTGTAGC	1380
CCTTTCTGTG	CCACAATTAG	GGTGGTGCTG	GCTTCCTCCG	ACCGCACCTA	GGCGATCTGG	1440
TTACACTGTT	GGCTCCTTTC	TTGGGCAGTC	ATTTAATCCT	ACTTTTACT	CTACGAATGT	1500
CTGTCTGATG	GAGGGCTGTG	TCCGGAGCCC	CATCCACAAA	GAGTCAGCCA	GCAGCTCTCA	1560
CACCCGGCTG	GATCTCATAT	GGTCACTCT	CAGTACAATC	TGCTCTGATG	CCGCATAGTT	1620
AAAGCCAGCCA	AGCTAGCTTG	CGCAAGCTAG	CTTGCAGTCC	GTAAAAATGT	GTGAGAGTTA	1680
CAAAATGTCT	TCCGGGCTAA	GATCCGACAG	CCATGGTCCA	AAGAAGACTT	CGGCACTGCA	1740
GACTTAAAC	CAGCTTCTA	GCAGAGGCAG	AAGGATCTAG	AGCCAAAGGC	AAAGACTTGA	1800
ATAGGCTGGG	AAGATGCAAG	AATGGCATT	TACATAAAGA	ACACTCTCTC	CTTTCCAGC	1860
CAGCACACTT	GCATAGAAAT	TAAGTTTAC	ACTTGAAGTT	CTTTGTTCC	ATCCTGAGAA	1920
CTCTCCAAAGT	CTGAGGTGGT	GTGGTATGCT	GGGTAATTCT	CCCCACCCCG	CAACATTCCC	1980
GGGGGGTCTC	ATGGGGTAG	CTTCTCCCAA	GGACTTCCAG	CGGCAACACA	GAAATCCCAC	2040
TTCGAGACAA	AGGAGTTACT	GCTTAAATCA	GGCCCTAATT	TCCAAGGTT	CCTTGCTTA	2100
AAAGTCCCTA	GAGGACCATC	TCACTTCTAA	AGAAAAGGTG	TATTGGGGGA	CCCATTCTCA	2160
ACCTCCTTGT	TATGGAAGGA	GACTTCGGGA	ACAGAGCAAG	GGCTGAGCCT	CCGGCAGTTT	2220
GGGGTAAGGT	TGGGGTTGGG	GGGAGCAAGG	AAGGCAAGTG	AGGCTGGAGG	CCCAGGGATA	2280
GGGGAAGATG	TGTGTGTGTG	TGTGTGTGTG	TGTGTGTGTG	TGTGTGTGTG	TCGGGGATGG	2340
TGGTGGTGG	CAAACTAGGAA	ACTCTGGCGC	TTTCTCCTCC	CCTCACAAAA	CTGAGTCCAG	2400
CTGGAGCCGC	CTCCAGACTC	TCTGGCCAGG	GCCTCAGAGT	GGTCAACAGT	CCCTGGCCAG	2460
CGTTGCTCTC	TCCAGGCTAA	GGGCACCCAC	TCCCCTGGAG	ATTCCCTGAAC	CTGGGCCAGG	2520
AAAGAGCCGAA	TTAGACAAGT	GTCTCCAATC	CGGCTGCGTG	CGGATTTGT	TGCGGTGTCC	2580
CTCGGTTGTC	TGCAGTTCT	TTAGTCCCTT	CCCTGGCCTG	CCCCTTACAC	CTCCACACAG	2640
GTCCCCCTCT	GTGTAGGAAT	ACACCAAGACC	CTCTCTTAGC	CACACACACC	TCCAGTCCCC	2700
CGTCTACCTA	GATTTTTTC	ATAGCTAGTT	GGATGGGGGA	TGGGTTAGGG	AGGCTGGGTT	2760
TGCGAGCCTC	CAGGTGGGAG	TTCACCGACA	GGTACTCCGC	AAAGGAGCTG	GAAGGCAGGT	2820
CTGGAAAAC	GTCCCCCAGA	TTTAGGATTC	TGGGCAGCTT	CCATCAGCTT	ATACTTGGC	2880
TCCCCCGCCC	CCTAAACTCC	CCATCCCCAC	CTTCCTTCT	CCCGTTACTT	CGTCCTCCCT	2940
CGCCTTCCA	GCCTTGAGTC	TAAAGCTCCA	TGTTATGCC	TCTGCAAACAA	ACCCCTCC	3000
TTCTAACCCCC	AGCAGAACTC	CGAGGAAAGG	GGCCGGAGGC	CCCCCTCTC	GCCTGTGGTT	3060
AGAGGGGGCA	GTGTGGCAGT	CCCAAGTGGG	GGCGACCGGA	GGCCGTCTCG	GTGCCCGGCC	3120

CGATCAGGCC	ACTGGGCACA	TCGGGGCGG	GAAGCTGGC	TCACCAAAGG	GGCGACTGGC	3180
CTTGGCAGGT	GTGGGCTCTG	GTCCGGCCTG	GGCAGGCTCC	GGGGCGGGG	TCTCAGGTTA	3240
CAGCCCCCGC	GGGGGCTGGG	GGCGGGCCCG	CGGTTGGGC	TGGTTGCCA	GCCTTGAG	3300
CGACCGGGAG	CATATAACCG	GAGCCTCTGC	TGGGAGAAGA	CGCAGAGCGC	CGCTGGGCTG	3360
CCGGGTCTCC	TGCCTCCTCC	TCCTGCTCCT	AGAGCCTCCT	GCATGAGGGC	GCGGTAGAGA	3420
CCCGGACCCG	CTCCGTGCTC	TGCCGCCTCG	CCGAGCTTCG	CCCGCAAGCT	GGGGAATTC	3479

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 8 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

Pro Arg Cys Gly Val Pro Asp Val
1 5

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 39 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

AAGCCAAGAT GCGGGGTTGT CGATGTGGGT GAATACAAT

39

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 40 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

GAAAAAGCCA AGATGCGGGG GTCCTGATGT GGGTGAATAC

40

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 98 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

GGTACCACTA GTAAGCTTAG ATCTCATATG GTCGACCCCG GGGATTCCCT GCAGGGATCC TCTAGAAGTA CTCCATGGGT ATACATCGAT GCGGCCGC	60 98
--	----------

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 2792 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

GGTCAAGTTTA CCACTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT GAAAGTCGAG TTTACCACTC CCTATCAGTG ATAGAGAAAA GTGAAAGTCG AGTTTACAC TCCCTATCAG TGATAGAGAA AAGTGAAAGT CGAGTTTACC TACCCCTATC AGTGATAGAG AAAAGTGAAA GTCGAGTTA CCACTCCCTA TCAGTGATAG AGAAAAGTGA AAGTCGAGTT TACCACTCCC TATCAGTGAT AGAGAAAAGT GAAAGTCGAG CTCGGTACCC GGGTCGAGTA GGCCTGTACG GTGGGAGGCC TATATAAGCA GAGCTCGTT AGTGAACCGT CAGATCGCCT GGAGACGCCA TCCACGCTGT TTTGACCTCC ATAGAAGACA CCGGGACCGA TCCAGCCTCC GCGGCCCCGA ATTAGCTGA TATCGAATTG GAGCTCGGT CCCCGGGGATC CTCTAGACAA GATGCATCCA GGGGTCTGG CTGCCCTCCT CTTCTTGAGC TGGACTCATT GTCGGGCCCT GCCCCCTCCC AGTGGTGGTG ATGAAGATGA TTTGTCTGAG GAAGACCTCC AGTTTGCAGA GCGCTACCTG AGATCATACT ACCATCCTAC AAATCTCGCG GGAATCCTGA AGGAGAAATGC AGCAAGCTCC ATGACTGAGA GGCTCCGAGA AATGCAGTCT TTCTTCGGCT TAGAGGTGAC TGGCAAACCT GACGATAACA CCTAGATGT CATAAAAAG CCAAGATGCG GGGTTGTCGA TGTGGGTGAA TACAATGTT TCCCTCGAAC TCTTAAATGG TCCAAAATGA ATTTAACCTA CAGAATTGTG AATTACACCC CTGATATGAC TCATTCTGAA GTCGAAAAGG CATTCAAAAA AGCCTTCAA GTTGGTCCG ATGTAACCTC TCTGAATTT ACCAGACTTC ACGATGGCAT TGCTGACATC ATGATCTTT TTGGAATTAA GGAGCATGGC GACTTCTACC CATTGATGG GCCCTCTGGC CTGCTGGCTC ATGCTTTCC TCCTGGGCCA AATTATGGAG GAGATGCCA TTTTGATGAT GATGAAACCT GGACAAGTAG TTCCAAAGGC TACAACCTGT TTCTTGTGC TGCGCATGAG TTCGGCCACT CCTTAGGTCT TGACCACTCC AAGGACCTG GAGCACTCAT GTTCCCTATC TACACCTACA CCGGAAAAG CCACTTATG CTTCCTGATG ACGATGTACA AGGGATCCAG TCTCTCTATG GTCCAGGAGA TGAAGACCCC AACCTAAAC ATCCAAAAAC GCCAGACAAA TGTGACCCCT CTTATCCCT TGATGCCATT ACCAGTCTCC GAGGAGAAAC AATGATCTT AAAGACAGAT TCTTCTGGCG CCTGCATCCT CAGCAGGTTG ATGCGGAGCT GTTTTAACG AAATCATTG GGCCAGAACT TCCCAACCGT ATTGATGCTG CATATGAGCA CCCTTCTCAT GACCTCATCT TCATCTTCAG AGGTAGAAAA TTTGGGCTC TTAATGGTTA TGACATTCTG GAAGGTTATC CAAAAAAAT ATCTGAACTG GGTCTTCAA AAGAAGTTAA GAAGATAAGT GCAGCTGTT ACTTGAGGA TACAGGCAAG	60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960 1020 1080 1140 1200 1260 1320 1380 1440 1500 1560 1620 1680
---	---

ACTCTCCTGT	TCTCAGGAAA	CCAGGTCTGG	AGATATGATG	ATACTAACCA	TATTATGGAT	1740
AAAGACTATC	CGAGACTAAT	AGAAGAAGAC	TTCCCAGGAA	TTGGTGATAA	AGTAGATGCT	1800
GTCTATGAGA	AAAATGGTTA	TATCTATTT	TTCAACGGAC	CCATACAGTT	TGAATACAGC	1860
ATCTGGAGTA	ACCGTATTGT	TCGCGTCATG	CCAGCAAATT	CCATTTGTG	GTGTTAAGTG	1920
TCTTTTAAA	AATTGTTATT	AAATCCTGA	AGAGCATTG	GGGTAATACT	TCCAGAAGTG	1980
CGGGGTAGGG	GAAGAAGAGC	TATCAGGAGA	AAGCTCTAGT	TCTAGAGGGC	CCTATTCTAT	2040
AGTGTACACCT	AAATGCTAGA	GGATCTTGT	GAAGGAACCT	TACTCTGTG	GTGTGACATA	2100
ATTGGACAAA	CTACCTACAG	AGATTAAAG	CTCTAAGGTA	AATATAAAAT	TTTTAAGTGT	2160
ATAATGTGTT	AAACTACTGA	TTCTAATTGT	TTGTTGATT	TAGATTCCAA	CCTATGGAAC	2220
TGATGAATGG	GAGCAGTGGT	GGAAATGCCTT	TAATGAGGAA	AACCTGTTT	GCTCAGAAGA	2280
AATGCCATCT	AGTGATGATG	AGGCTACTGC	TGACTCTCAA	CATTCTACTC	CTCCAAAAAA	2340
GAAGAGAAAAG	GTAGAAGAGCC	CCAAGGACTT	TCCTTCAGAA	TTGCTAAGTT	TTTGAGTCA	2400
TGCTGTGTTT	AGTAATAGAA	CTCTTGCTTG	CTTGCTATT	TACACCACAA	AGGAAAAAGC	2460
TGCACTGCTA	TACAAGAAAA	TTATGGAAAA	ATATTTGATG	TATAGTGCCT	TGACTAGAGA	2520
TCATAATCAG	CCATACCACA	TTTGTAGAGG	TTTACTTGC	TTTAAAAAAC	CTCCCCACACC	2580
TCCCCCTGAA	CCTGAAACAT	AAAATGAATG	CAATTGTTGT	TGTTAACTTG	TTTATTGCAG	2640
CTTATAATGG	TTACAAATAA	AGCAATAGCA	TCACAAATT	CACAAATAAA	GCATTTTTT	2700
CACTGCATTC	TAGTTGTTG	TTGTCCAAAC	TCATCAATGT	ATCTTATCAT	GTCTGGATCA	2760
TCCCGCCATG	GGTATACATC	GATGCGGCCG	CC			2792

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 5276 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GGTACCACTA	GTAAGCTTAG	ATCCACTGTC	TGGGATTATA	TCAGGACAAC	CGAACCTGG	60
AAAGTGTATT	AGGTAGAGCA	TTTCTTCCA	CGTGTGGGG	CACGTTCCG	ACAGCTAGGA	120
TTCCAGCTCT	GTCTTGTAT	GTACAGACT	GTAAATCAAT	CGCAGGTGAA	ACTGTTGGA	180
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCC	GTGAGACTCT	AGGCCTTTC	CCCTGCCACC	240
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGAG	GCGGGCCCGG	GCGGTCTTTC	TGCTCTTAG	300
CGTGGCGGAC	GCGGCGGCCG	GGCAGGGCT	GGAGCAGAGA	GCGCTGCAGT	GATAGAACTT	360
TCTGACCCCG	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGGTGGCGA	GCTAAGCCAG	420
AGCCGAACGC	TGGAGCTCTG	GGAGGAACAT	CGAAGTGT	GTATGTGGTC	TGAGATCGGC	480
CTGACTATAT	TTTTTGTC	TAAATTGCA	AGCACACACC	CACAAAGCTG	CGGTCTTGAC	540
CGGTATTCTT	TATAGAGCGC	AATGGAGTGA	GCTGAGTGT	TAAACGATTT	CCCTAATTCA	600
TCTGATAGCA	GAGGCGCTCT	CCTAATTGGC	GAAGAGCTGC	CTCATGTCCG	CAACTTTTG	660
GCAGAGTGAA	TTCCACAGCT	TTGTGTGTG	GTGTGGGGGG	GGGTGTAAGG	GGTGTCTAAA	720
ACTTTGGTC	TCCTACTATT	CTGTATCTCG	ACCGGTTGGT	TTTACACCCC	GGCTCATCTC	780
ATCAACGCAA	ACACCCCCAC	TCTCCTATGG	ACCCAAGGAC	CTGACGTGGG	GGAAGGTGGA	840
CATTAGGAAT	GTCAGAAACC	TAGAGTCCAC	GCTCCTCCTC	TCCATCTTTC	CACGAGTTG	900
GGAAACCTCT	TGGCTGCGAA	GACTTTGACC	CACATCTGCA	TTTCTCAGCC	CCAGCTTCCA	960
AAAGTGTG	AGGTTCGGG	GGGGAGACCT	CAGTCCTCCT	TTGTGAGGCT	TGTTTGC	1020
GAGGGATTGG	CAGCGATGGC	TTCCAGATGG	GCTGAAACCC	TGCCCGTATT	TATTAAACT	1080
GGTTCCCTCGT	GGAGAGCTGT	GAATCGGGCT	CTGTATGCGC	TCGAGAAAAG	CCCCATTCA	1140

GAGAGGCAAG	GCCCAGTGGG	TCCCCCGAC	TCCCCGACCC	CCCTCTCCA	CAATATATCC	1200
CCCCTCCCTG	TGCCCCCTG	CCGCCACCTC	CCGGGCTCCG	GCCCCGCGCG	CAGCGGCGAC	1260
GAAGCAACAC	AGTTCCCCGA	AAGAGGTAGC	TTTTTAATTG	GCCAGCCACA	AAGAATCACT	1320
TATGCCGCAC	GGCGGTAAACG	AGGGGAACCG	GATCGGGCGG	CCAGGATGCT	ATCTGTGTAG	1380
CCCTTTCGT	GCCACAATT	GGGTGGTGCT	GGCTTCCCTC	GACCGCACCT	AGGCGATCTG	1440
GTTACACTGT	TGGCTCCTT	CTTGGGCAGT	CATTTAATCC	TACTTTTAC	TCTACGAATG	1500
TCTGTCTGAT	GGAGGGCTGT	GTCCGGAGCC	CCATCCACAA	AGAGTCAGCC	AGCAGCTCTC	1560
ACACCCGGCT	GGATCTCATA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	1620
TAAGCCAGCC	AAGCTAGCTT	GCGCAAGCTA	GCTTGCATC	CGTAAAATG	TGTGAGAGTT	1680
ACAAAATGTC	TTCCGGGCTA	AGATCCGACA	GCCATGGTCC	AAAGAAGACT	TCGGCACTGC	1740
AGACTTAAAA	CCAGCTTCT	AGCAGAGGCA	GAAGGATCTA	GAGCCAAAGG	CAAAGACTTG	1800
AATAGGCTGG	GAAGATGCAA	GAATGGCATT	TTACATAAAG	AACACTCTCT	CCTTTCCAG	1860
CCAGCACACT	TGCATAGAAA	TTAAGTTTA	CACTTGAAGT	TCTTGTGTT	CATCCTGAGA	1920
AGCTCCAAAG	TCTGAGGTGG	TGTGGTATGC	TGGGTAATT	TCCCCACCC	CCAACATTCC	1980
CTGGGGGTT	CATGGGGTA	GCTTCTCCA	AGGACTTCCA	GCGGCAACAC	AGAAATCCCA	2040
CTTCGAGACA	AAGGAGTTAC	TGCTTAAATC	AGGCCCTAAT	TTCCAAGGTT	CCCTTGCTT	2100
AAAGTTCCCT	AGAGGACCAT	CTCACTTCTA	AAGAAAAGGT	GTATTGGGG	ACCCATCCTC	2160
AACCTCCTTG	TTATGGAAGG	AGACTTCGGG	AACAGAGCAA	GGGCTGAGCC	TCCGGCAGTT	2220
TGGGTAAGG	TTGGGTTGG	GGGGAGCAAG	GAAGGCAAGT	GAGGCTGGAG	GCCCAGGGAT	2280
AGGGGAAGAT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	CTCGGGGATG	2340
GTGGTGGTGG	ACAACCTAGGA	AACTCTGGCG	CTTTCTCCTC	CCCTCACAAA	ACTGAGTCCA	2400
GCTGGAGCCG	CCTCCAGACT	CTCTGGCCAG	GGCCTCAGAG	TGGTCAACAG	TCCCTGGCCA	2460
CGTGTGCTCT	CTCCAGGCTA	AGGGCACCCA	CTCCCCTGGA	GATTCTGAA	CCTGGGCCAG	2520
GAAGAGCCGA	ATTAGACAAG	TGTCTCCAAT	CCGGCTGCGT	GC GGATTTG	TTGCGGTGTC	2580
CTCGGTTGT	CTGCAGTTCC	TTTAGTCCCT	TCCCTGGCCT	GCCCCTTACA	CCTCCACACA	2640
GGTCCCCCTC	TGTGTAGGAA	TACACCAGAC	CCTCTCTTAG	CCACACACAC	CTCCAGTCCC	2700
CCGTCTACCT	AGATTTTTT	CATAGCTAGT	TGGATGGGGG	ATGGGTTAGG	GAGGCTGGGT	2760
TTGCGAGCCT	CCAGGTGGGA	GTTCACCGAC	AGGTACTCCG	CAAAGGAGCT	GGAAGGCAGG	2820
TCTGGAAAAC	TGTCCCCCAG	ATTAGGATT	CTGGGAGCT	TCCATCAGCT	TATACTTTGG	2880
CTCCCCCGCC	CCCTAAACTC	CCCATCCCCA	CCTTCCTTTC	TCCCGTTACT	TCGTCCTCCC	2940
TCGCCTTCTC	AGCCTTGAGT	CTAAAGCTCC	ATGCTTATGC	CTCTGCAAAC	AACCCCTCC	3000
CTTCTAACCC	CAGCAGAACT	CCGAGGAAAG	GGGCCGGAGG	CCCCCTTCT	CGCCTGTGGT	3060
AGAGGGGGC	AGTGTGGCAG	TCCCAAGTGG	GGGCGACCGG	AGGCCGTCTC	GGTCCCCCGC	3120
CGGATCAGGC	CACTGGCAC	ATCGGGGGCG	GGAAGCTGGG	CTCACCAAAG	GGGCGACTGG	3180
CCTTGGCAGG	TGTGGGCTCT	GGTCCGGCCT	GGGCAGGCTC	CGGGGGCGGG	GTCTCAGGTT	3240
ACAGCCCCGC	GGGGGGCTGG	GGGGCGGGCC	GCGGTTTGGG	CTGGTTTGCC	AGCCTTTGGA	3300
GCGACCGGGA	GCATATAACC	GGAGCCTCTG	CTGGGAGAAG	ACGCAGAGCG	CCGCTGGGCT	3360
GCGGGGTCTC	CTGCCTCCTC	CTCCTGCTCC	TAGAGCCTCC	TGCAATGAGGG	CGCGGTAGAG	3420
ACCCGGACCC	GCTCCGTGCT	CTGCCGCTC	GCCGAGCTC	GCCCGCAAGC	TGGGAATT	3480
ATATGTCTAG	ATTAGATAAA	AGTAAAGTGA	TTAACAGCGC	ATTAGAGCTG	CTTAATGAGG	3540
TCGGAATCGA	AGGTTAACCA	ACCCGTAAAC	TCGCCAGAA	GCTAGGTGTA	GAGCAGCCTA	3600
CATTGTATTG	GCATGTAAA	ATAAAGCGGG	CTTGCTCGA	CGCCTTAGCC	ATTGAGATGT	3660
TAGATAGGCA	CCATACTCAC	TTTGCCCTT	TAGAAGGGGA	AAGCTGGCAA	GATTTTTAC	3720
GTAATAACGC	TAAAAGTTT	AGATGTGTT	TACTAAGTCA	TCGCGATGGA	GCAAAAGTAC	3780
ATTTAGGTAC	ACGGCCTACA	GAAAAAACAGT	ATGAAACTCT	CGAAAATCAA	TTAGCCTTTT	3840
TATGCCAACA	AGGTTTTCA	CTAGAGAATG	CATTATATGC	ACTCAGCGCT	GTGGGGCATT	3900
TTACTTTAGG	TTGCGTATTG	GAAGATCAAG	AGCATCAAGT	CGCTAAAGAA	GAAAGGGAAA	3960
CACCTACTAC	TGATAGTATG	CCGCCATTAT	TACGACAAGC	TATCGAATT	TTTGATCACC	4020
AAGGTGCAGA	GCCAGCCTTC	TTATTCGGCC	TTGAATTGAT	CATATGCGGA	TTAGAAAAAC	4080
AACTTAAATG	TGAAAGTGGG	TCCGCGTACA	GCCGCGCGCG	TACGAAAAAC	AATTACGGGT	4140
CTACCATCGA	GGGCCTGCTC	GATCTCCCGG	ACGACGACGC	CCCCGAAGAG	CGGGGGCTGG	4200

CGGCTCCGCG	CCTGTCCTT	CTCCCCGCGG	GACACACGCG	CAGACTGTCG	ACGGCCCCC	4260
CGACCGATGT	CAGCCTGGGG	GACGAGCTCC	ACTTAGACGG	CGAGGACGTG	GCGATGGCGC	4320
ATGCCGACGC	GCTAGACGAT	TTCGATCTGG	ACATGTTGGG	GGACGGGGAT	TCCCCGGGTC	4380
CGGGATTTAC	CCCCCACGAC	TCCGCCCTC	ACGGCGCTCT	GGATATGGCC	GACTTCGAGT	4440
TTGAGCAGAT	GTTCACCGAT	GCCCTTGGAA	TTGACGAGTA	CGGTGGGTAG	GGGGCGCGAG	4500
GATCCTCTAG	AGGGCCCTAT	TCTATAGTGT	CACCTAAATG	CTAGAGGATC	TTTGTGAAGG	4560
AACCTTACTT	CTGTGGTGTG	ACATAATTGG	ACAAACTACC	TACAGAGATT	AAAGCTCTA	4620
AGGTAAATAT	AAAATTTTA	AGTGTATAAT	GTGTTAAACT	ACTGATTCTA	ATTGTTGTG	4680
TATTTAGAT	TCCAACCTAT	GGAACTGATG	AATGGGAGCA	GTGGTGGAAAT	GCCTTAAATG	4740
AGGAAAACCT	GTTCGCTCA	GAAGAAATGC	CATCTAGTGA	TGATGAGGCT	ACTGCTGACT	4800
CTCAACATTC	TACTCCTCCA	AAAAAGAAGA	GAAAGGTAGA	AGACCCCAAG	GACTTCCTT	4860
CAGAATTGCT	AAGTTTTTG	AGTCATGCTG	TGTTTAGTAA	TAGAACTCTT	GCTTGCTTTG	4920
CTATTTACAC	CACAAAGGAA	AAAGCTGCAC	TGCTATACAA	GAAAATTATG	AAAAAATATT	4980
TGATGTATAG	TGCCTTGACT	AGAGATCATA	ATCAGCCATA	CCACATTTGT	AGAGGTTTA	5040
CTTGCTTTAA	AAAACCTCCC	ACACCTCCCC	CTGAACCTGA	AACATAAAAT	GAATGCAATT	5100
GTTGTTGTTA	ACTTGTTAT	TGCAAGCTTAT	AATGGTTACA	AATAAAGCAA	TAGCATCACA	5160
AATTCACAA	ATAAAGCATT	TTTTCACTG	CATTCTAGTT	GTGGTTGTC	CAAACTCATC	5220
AATGTATCTT	ATCATGTCTG	GATCATCCCC	CCATGGGTAT	ACATCGATGC	GGCCGC	5276

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7664 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

GGTACCACTA	GTAAGCTTAG	ATCCACTGTC	TGGGATTATA	TCAGGACAAC	CGAACGCTGG	60
AAAGTGTATT	AGGTAGAGCA	TTTTCTTCCA	CGTGTGGGG	CACGTTCCG	ACAGCTAGGA	120
TCAGCTCT	GTCTTTGTAT	GTTACAGACT	GTAAATCAAT	CGCAGGTGAA	ACTGTTGGA	180
CAGTAGGTGG	GGATCAAAGA	CCCTCCGCC	GTGAGACTCT	AGGCCTTTC	CCCTGCCACC	240
AGCCTGTCTC	CAGAGATGCT	CTGGAAGGGAG	GCGGGCCGG	GCGGTCTTTC	TGCTCTTTAG	300
CGTGGCGGAC	GCGGCGGCCGG	GGCAGGGCT	GGAGCAGAGA	GCGCTGCAGT	GATAGAACTT	360
TCTGACCCCG	CTGCGCAGGG	CGGCAGGGTG	GCAGGGTGGC	AGGGTGGCGA	GCTAAGCCAG	420
AGCCGAACGC	TGGAGCTCTG	GGAGGAACAT	CGAAGTGT	GTATGTGGTC	TGAGATCGGC	480
CTGACTATAT	TTTTTGTC	TAAATTGCA	AGCACACACC	CACAAAGCTG	CGGTCTTGAC	540
CGGTATTCTT	TATAGAGCGC	AATGGAGTGA	GCTGAGTGT	TAAACGATTT	CCCTAATTCA	600
TCTGTAGCA	GAGGCGCTCT	CCTAATTGGC	GAAGAGCTGC	CTCATGTCCG	CAACTTTTG	660
GCAGAGTGAA	TTCCACAGCT	TTGTGTGTG	GTGTGGGGGG	GGGTGTAAGG	GGTGTCTAAA	720
ACTTTGGTC	TCCTACTATT	CTGTATCTG	ACCGGTTGGT	TTTACACCCC	GGCTCATCTC	780
ATCAACGCAA	ACACCCCCAC	TCTCCTATGG	ACCCAAGGAC	CTGACGTGGG	GGAAGGTGGA	840
CATTAGGAAT	GTCAGAAACC	TAGAGTCCAC	GCTCCTCCTC	TCCATCTTC	CACGAGTTG	900
GGAAACCTCT	TGGCTGCGAA	GACTTTGACC	CACATCTGCA	TTTCTCAGCC	CCAGCTTCCA	960
AAAGTGTGC	AGGTTCGGG	GGGGAGACCT	CAGTCCTCCT	TTGTGAGGCT	TGTTGCGTT	1020
GAGGGATTGG	CAGCGATGGC	TTCCAGATGG	GCTGAAACCC	TGCCCGTATT	TATTAAACT	1080
GGTTCTCGT	GGAGAGCTGT	GAATGGGGCT	CTGTATGCCG	TCGAGAAAAG	CCCCATTCAT	1140
GAGAGGCAAG	GCCCAGTGGG	TCCCCCGAC	TCCCCGACCC	CCCTCTCCCA	CAATATATCC	1200

CCCCCTCCCTG	TGCCCGCCTG	CCGCCACCTC	CCGGGCTCCG	GCCCCGGCG	CAGCGGCAC	1260
GAAGCAACAC	AGTTCCCCGA	AAGAGGTAGC	TTTTAATTG	GCCAGCCACA	AAGAATCACT	1320
TATGCCGCAC	GGCGGTAACG	AGGGGAACCG	GATCGGGCGG	CCAGGATGCT	ATCTGTGTAG	1380
CCCTTTCGT	GCCACAATTA	GGGTGGTGCT	GGCTTCCCTCC	GACCGCACCT	AGGCATCTG	1440
GTTACACTGT	TGGCTCCCTT	CTTGGCAGT	CATTTAATCC	TACTTTTAC	TCTACGAATG	1500
TCTGTCTGAT	GGAGGGCTGT	GTCCGGAGCC	CCATCCACAA	AGAGTCAGCC	AGCAGCTCTC	1560
ACACCCGGCT	GGATCTCATA	TGGTGCACTC	TCAGTACAAT	CTGCTCTGAT	GCCGCATAGT	1620
TAAGCCAGCC	AAGCTAGCTT	GCGCAAGCTA	GCTTGCATC	CGTAAAAATG	TGTGAGAGTT	1680
ACAAAATGTC	TTCCGGGCTA	AGATCCGACA	GCCATGGTCC	AAAGAAGACT	TCGGCACTGC	1740
AGACTTAAA	CCAGCTTCT	AGCAGAGGCA	GAAGGATCTA	GAGCCAAAGG	CAAAGACTTG	1800
AATAGGCTGG	GAAGATGCAA	GAATGGCATT	TTACATAAAAG	AACACTCTCT	CCTTTCCAG	1860
CCAGCACACT	TGCATAGAAA	TTAAGTTTA	CACTTGAAGT	TCTTGTTC	CATCCTGAGA	1920
AGCTCCAAAG	TCTGAGGTGG	TGTGGTATGC	TGGGTAATTG	TCCCCACCCC	CCAACATTCC	1980
CTGGGGTTC	CATGGGGTGA	GCTTCTCCCA	AGGACTTCCA	GCGGCAACAC	AGAAATCCCA	2040
CTTCGAGACA	AAGGAGTAC	TGCTTAAATC	AGGCCCTAAT	TTCCAAGGTT	CCCTTGCTT	2100
AAAGTTCCCT	AGAGGACCAT	CTCACTTCTA	AAGAAAAGGT	GTATTGGGG	ACCCATCCTC	2160
AACCTCCTG	TTATGGAAGG	AGACTTCGGG	AACAGAGCAA	GGGCTGAGCC	TCCGGCAGTT	2220
TGGGGTAAGG	TTGGGGTTGG	GGGGAGCAAG	GAAGGCAAGT	GAGGCTGGAG	GCCCAGGGAT	2280
AGGGGAAGAT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	GTGTGTGTGT	CTCGGGGATG	2340
GTGGTGGTGG	ACAACCTAGGA	AACTCTGGCG	CTTTCTCCTC	CCCTCACAAA	ACTGAGTCCA	2400
GCTGGAGCCG	CCTCCAGACT	CTCTGGCCAG	GGCCTCAGAG	TGGTCAACAG	TCCCTGGCCA	2460
CGCGTGTCT	CTCCAGGCTA	AGGGCACCCA	CTCCCCCTGGA	GATTCTGAA	CCTGGGCCAG	2520
GAAGAGCCGA	ATTAGACAAG	TGTCTCCAAT	CCGGCTGCGT	GCGGATTTG	TTGCGGTGTC	2580
CCTCGGGTGT	CTGCAGTTCC	TTTAGTCCCT	TCCCTGGCCT	GCCCCTTACA	CCTCCACACA	2640
GGTCCCCCTC	TGTGTAGGAA	TACACCAGAC	CCTCTCTTAG	CCACACACAC	CTCCAGTCCC	2700
CCGTCTACCT	AGATTTTTT	CATAGCTAGT	TGGATGGGGG	ATGGGTTAGG	GAGGCTGGGT	2760
GTGCGAGCCT	CCAGGTGGGA	GTTCACCGAC	AGGTACTCCG	CAAAGGAGCT	GGAAAGGCAGG	2820
CTGGAAAAC	TGTCCCCCAG	ATTAGGATT	CTGGGCAGCT	TCCATCAGCT	TATACTTTGG	2880
CTCCCCCGCC	CCCTAAACTC	CCCATCCCCA	CCTTCCTTTC	TCCCGTTACT	TCGTCCTCCC	2940
TCGCCTTTC	AGCCTTGAGT	CTAAAGCTCC	ATGCTTATGC	CTCTGCAAAC	AACCCCTCC	3000
CTTCTAACCC	CAGCAGAACT	CCGAGGAAAG	GGGCCGGAGG	CCCCCCTCT	CGCCTGTGGT	3060
AGAGGGGGC	AGTGTGGCAG	TCCCAAGTGG	GGGCGACCGG	AGGCCGTCTC	GGTGCCCGC	3120
CGGATCAGGC	CACTGGGCAC	ATCGGGGGCG	GGAAAGCTGGG	CTCACCAAAG	GGCGACTGG	3180
CCTTGGCAGG	TGTGGGCTCT	GGTCCGGCCT	GGGCAGGCTC	CGGGGGCGGG	GTCTCAGGTT	3240
ACAGCCCCGC	GGGGGGCTGG	GGGGCGGCC	GCGGTTTGGG	CTGGTTTGCC	AGCCTTTGGA	3300
CGCACCGGGA	GCATATAACC	GGAGCCTCTG	CTGGGAGAAG	ACGCAGAGCG	CCGCTGGGCT	3360
GCCGGGTCTC	CTGCCTCCTC	CTCCTGCTCC	TAGAGCCTCC	TGCATGAGGG	CGCGGTAGAG	3420
ACCCGGACCC	GCTCCGTGCT	CTGCCGCCTC	GCCGAGCTTC	GCCCGCAAGC	TGGGAAATTG	3480
GGATCCCCGG	GATCGAAAGA	GCCTGCTAAA	GCAAAAAAGA	AGTCACCATG	TCGTTTACTT	3540
TGACCAACAA	GAACGTGATT	TTCGTTGCCG	GTCTGGGAGG	CATTGGTCTG	GACACCAGCA	3600
AGGAGCTGCT	CAAGCGCGAT	CCCGTCGTTT	TACAACGTCG	TGACTGGGAA	AACCCCTGGCG	3660
TTACCCAAC	TAATGCCCTT	GCAGCACATC	CCCCTTCCG	CAGCTGGCTT	TATAGCGAAG	3720
AGGCCCGCAC	CGATCGCCCT	TCCCAACAGT	TGCGCAGCCT	GAATGGCGAA	TGGCGTTTG	3780
CCTGGTTTCC	GGCACCAAGAA	GCGGTGCCGG	AAAGCTGGCT	GGAGTGCAG	CTTCCCTGAGG	3840
CCGATACTGT	CGTCGTCCCC	TCAAACGGC	AGATGCACGG	TTACGATGCG	CCCATCTACA	3900
CCAACGTAAC	CTATTCCATT	ACGGTCAATC	CGCCGTTTG	TCCACGGAG	AATCCGACGG	3960
GTTGTTACTC	GTCACATTT	AATGTTGATG	AAAGCTGGCT	ACAGGAAGGC	CAGACCGCAA	4020
TTATTTTGA	TGGCGTTAAC	TTGGCGTTTC	ATCTGTGGTG	CAACGTGCAG	TGGGTCGGTT	4080
ACGGCCAGGA	CAGTCGTTTG	CCGTCTGAAT	TTGACCTGAG	CGCATTCTTA	CGCGCCGGAG	4140
AAAACCGCCT	CGCGGTGATG	GTGCTGCAGT	GGAGTGCAGGG	CAGTTATCTG	GAAGATCAGG	4200
ATATGTGGCG	GATGAGCGGC	ATTTCCGTG	ACGTCTCGTT	GCTGCATAAA	CCGACTACAC	4260

AAATCAGCGA	TTTCCATGTT	GCCACTCGCT	TTAATGATGA	TTTCAGCCGC	GCTGAACCTGG	4320
AGGCTGAAGT	TCAGATGTGC	GGCGAGTTGC	GTGACTACCT	ACGGGTAACA	GTTCCTTTAT	4380
GGCAGGGTGA	AACGCAGGTC	GCCAGCGGC	CCGCGCCTT	CGGCGGTGAA	ATTATCGATG	4440
AGCGTGGTGG	TTATGCCGAT	CGCGTCACAC	TACGTCTGAA	CGTCGAAAC	CCGAAACTGT	4500
GGAGCGCCGA	AATCCCAGAT	CTCTATCGT	CGGTGGTTGA	ACTGCACACC	GCCGACGGCA	4560
CGCTGATTGA	AGCAGAAGCC	TGCGATGTG	GTTTCCGCGA	GGTGCAGGATT	GAAAATGGTC	4620
TGCTGCTGCT	GAACGGCAAG	CCGTTGCTGA	TTCGAGGCCT	TAACCGTCAC	GAGCATCATC	4680
CTCTGCATGG	TCAGGTCATG	GATGAGCAGA	CGATGGTGCA	GGATATCCTG	CTGATGAAGC	4740
AGAACAACTT	TAACGCCGTG	CGCTGTTCGC	ATTATCCGAA	CCATCCGCTG	TGGTACACGC	4800
TGTGCGACCG	CTACGGCCTG	TATGTGGTGG	ATGAAGCCAA	TATTGAAACC	CACGGCATGG	4860
TGCCAATGAA	TCTGCTGACC	GATGATCCGC	GCTGGCTACC	GGCGATGAGC	GAACGGTAA	4920
CGCGAATGGT	GCAGCGCGAT	CGTAATCACC	CGAGTGTGAT	CATCTGGTCG	CTGGGAAATG	4980
AATCAGGCCA	CGGCGCTAAT	CACGACGCGC	TGTATCGCTG	GATCAAATCT	GTCGATCCTT	5040
CCCGCCCGGT	GCAGTATGAA	GGCGGCGGAG	CCGACACCAC	GGCCACCGAT	ATTATTTGCC	5100
CGATGTACGC	GCGCGTGGAT	GAAGACCAAGC	CCTTCCCGGC	TGTGCCGAAA	TGGTCCATCA	5160
AAAAATGGCT	TTCGCTACCT	GGAGAGACGC	GCCCGCTGAT	CCTTTCGCAA	TACGCCACG	5220
CGATGGGTA	CAGTCTTGGC	GGTTTCGCTA	AATACTGGCA	GGCGTTTCGT	CAGTATCCCC	5280
GTTTACAGGG	CGGCTTCGTC	TGGGACTGGG	TGGATCAGTC	GCTGATTAAA	TATGATGAAA	5340
ACGGCAACCC	GTGGTCGGCT	TACGGCGGTG	ATTTCGGCGA	TACGCCAAC	CATGCCAGT	5400
TCTGTATGAA	CGGTCTGGTC	TTTGCACG	GCACGCCGCA	TCCAGCGCTG	ACGGAAGCAA	5460
AAACACCAGCA	GCAGTTTTTC	CAGTTCCGTT	TATCCGGGC	AACCATCGAA	GTGACCAGCG	5520
AATACCTGTT	CCGTCTAGC	GATAACGAGC	TCCCGACTG	GATGGTGGCG	CTGGATGGTA	5580
AGCCGCTGGC	AAGCGGTGAA	GTGCCTCTGG	ATGTCGCTCC	ACAAGGTAAA	CAGTTGATTG	5640
AACTGCCCTGA	ACTACCGCAG	CCGGAGAGCG	CCGGGCAACT	CTGGCTCAC	GTACCGCTAG	5700
TGCAACCGAA	CGCGACCGGA	TGGTCAGAAG	CCGGGCACAT	CAGCCCTGG	CAGCAGTGGC	5760
GTCTGGCGGA	AAACCTCAGT	GTGACGCTCC	CCGCCGCGTC	CCACGCCATC	CCGCATCTGA	5820
GCACCAAGCA	AATGGATTAA	TGCAATCGAGC	TGGGTAATAA	GCCTTGGCAA	TTAAACCGCC	5880
AGTCAGGCTT	TCTTCACAG	CTGTGGATTG	GCGATAAAAA	ACAACGTCTG	ACGCCGCTGC	5940
GCGATCAGT	CACCCGTGCA	CCGCTGGATA	ACGACATTGG	CGTAAGTGA	GCGACCCGCA	6000
TTGACCCCTAA	CGCCTGGTC	GAACGCTGGA	AGGCGGCGGG	CCATTACCA	GCCGAAGCAG	6060
CGTTGTTGCA	GTGCACGGCA	GATACACTG	CTGATGCGGT	GCTGATTACG	ACCGCTCACG	6120
CGTGGCAGCA	TCAGGGAAA	ACCTTATTAA	TCAGCCGGAA	AACCTACCGG	ATTGATGGTA	6180
GTGGTCAAAT	GGCGATTAC	GTGATGTTG	AAGTGGCGAG	CGATACACCG	CATCCGGCGC	6240
GGATTGGCCT	GAACGTCCAG	CTGGCGCAGG	TAGCAGAGCG	GGTAAACTGG	CTCGGATTAG	6300
GGCCGCAAGA	AAACTATCCC	GACCGCCTTA	CTGCCGCTG	TTTGACCGC	TGGGATCTGC	6360
CATTGTCAGA	CATGTATACC	CCGTACGTC	TCCCGAGCGA	AAACGGTCTG	CGCTCGGGGA	6420
CGCGCGAATT	GAATTATGGC	CCACACCACT	GGCGCGGCGA	CTTCCAGTTC	AACATCAGCC	6480
GCTACAGTCA	ACAGCAACTG	ATGGAAACCA	GCCATCGCCA	TCTGCTGCAC	GCGBAAAGAAG	6540
GCACATGGCT	GAATATCGAC	GGTTCCATA	TGGGGATTGG	TGGCGACGAC	TCCTGGAGCC	6600
CGTCAGTATC	GGCGGAATT	CAGCTGAGCG	CCGGTCGCTA	CCATTACCA	TTGGTCTGGT	6660
GTCAAAAATA	ATAATAACCG	GCAGGCCATG	TCTGAAAGTA	TTCGCGTAAG	GAAATCCATT	6720
ATGTAATATT	AAAAAAACAC	AAACTTTGG	ATGTTCGGTT	TATTCTTTT	CTTTTACTTT	6780
TTTATCATGG	GAGCCTACTT	CCCGTTTTTC	CCGATTTGGC	TACATGACAT	CAACCATATG	6840
AGCAAAAGTG	ATACGGGTAT	TATTTTGCC	GCTATTCTC	TGTTGTCGCT	ATTATTCCAA	6900
CCGCTGTTGG	TCTGTTTCT	GACAAACTCG	GCCTCGACTC	TAGACTGAGA	ACTTCAGGGT	6960
GAGTTGGGG	ACCCCTGATT	GTTCTTCTT	TTTCGCTATT	GAAAAATTCA	TGTTATATGG	7020
AGGGGGCAAA	GTTTTCAGGG	TGTTGTTAG	AATGGGAAGA	TGTCCCTGT	ATCACCATGG	7080
ACCCCTCATGA	TAATTTGTT	TCTTTCACCT	TCTACTCTGT	TGACAACCAT	TGTCTCCTCT	7140
TATTTCTTT	TCATTTCTG	TAACTTTTT	CGTTAAACTT	TAGCTGCTAT	TTGTAACGAA	7200
TTTTTAAATT	CACTTCGTT	TATTTGTCAG	ATTGTAAGTA	CTTCTCTAA	TCACCTTTTT	7260
TTCAAGGCAA	TCAGGGTAAT	TATATTGTAC	TTCAAGCACAG	TTTAGAGAA	CAATTGTTAT	7320

AATTAAATGA	TAAGGTAGAA	TATTTCTGCA	TATAAATTCT	GGCTGGCGTG	GAAATATTCT	7380
TATTGGTAGA	AACAACTACA	TCCTGGTAAT	CATCCTGCCT	TTCTCTTTAT	GGTACAATG	7440
ATATACACTG	TTTGAGATGA	GGATAAAAATA	CTCTGAGTCC	AAACCGGGCC	CCTCTGCTAA	7500
CCATGTTCAT	GCCTTCTTCT	TTTCCTTACA	GCTCCTGGGC	AACGTGCTGG	TTGTTGTGCT	7560
GTCTCATCAT	TTTGGCAAAG	AATTCACTCC	TCAGGTGCAG	GCTGCCTATC	AGAAGGTGGT	7620
GGCTGGTGTG	GCCAATGCC	TGGCTCACAA	ATACCACTGA	GATC		7664

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

CGAGGGCCTG CTCGATCTCC

20

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 20 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

GGCATTCCAC CACTGCTCCC

20

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GAGCACCCTT CTCATGACCT C

31

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

GTTGGTGTAG ATGGGCGCAT CG

22

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 21 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

GCGGGGTCTC AGGTTACAGC C

21

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

GCCCTCTGGC CTGCTGGCTC ATG

23

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 24 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CAGGAGAGTC TTGCCTGTAT CCTC

24

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1521 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CAAGATGCAT	CCAGGGTCC	TGGCTGCCTT	CCTCTTCTTG	AGCTGGACTC	ATTGTCGGGC	60
CCTGCCCTT	CCCAGTGGTG	GTGATGAAGA	TGATTGTCT	GAGGAAGACC	TCCAGTTGC	120
AGAGCGCTAC	CTGAGATCAT	ACTACCATCC	TACAAATCTC	GCAGGAATCC	TGAAGGAGAA	180
TGCAGCAAGC	TCCATGACTG	AGAGGCTCCG	AGAAAATGCAG	TCTTTCTTCG	GCTTAGAGGT	240
GACTGGAAA	CTTGACGATA	ACACCTTAGA	TGTCATGAAA	AAGCCAAGAT	GCAGGGTTGT	300
CGATGTGGG	TGAATAACAATG	TTTCCCTCG	AACTCTTAAA	TGGTCCAAA	TGAATTAAAC	360
CTACAGAATT	GTGAATTACA	CCCCTGATAT	GACTCATTCT	GAAGTCGAAA	AGGCATTCAA	420
AAAAGCCTTC	AAAGTTGGT	CCGATGTAAC	TCCTCTGAAT	TTTACCAAGAC	TTCACGATGG	480
CATTGCTGAC	ATCATGATCT	CTTTGGAAAT	TAAGGAGCAT	GGCGACTTCT	ACCCATTGAA	540
GGGCCCTCT	GGCCTGCTGG	CTCATGCTT	TCCTCTGGG	CCAAATTATG	GAGGAGATGC	600
CCATTTGAT	GATGATGAAA	CCTGGACAAG	TAGTTCCAAA	GGCTACAAC	TGTTCTTGT	660
CGCTGCGCAT	GAGTTCGGCC	ACTCCTTAGG	TCTTGACCAC	TCCAAGGACC	CTGGAGCACT	720
ATGTTTCCT	ATCTACACCT	ACACCGGCAA	AAGCCACTT	ATGCTTCCTG	ATGACGATGT	780
ACAAGGGATC	CAGTCTCTCT	ATGGTCCAGG	AGATGAAGAC	CCCAACCCTA	AACATCCAAA	840
AACGCCAGAC	AAATGTGACC	CTTCCTTATC	CCTTGATGCC	ATTACCAAGTC	TCCGAGGAGA	900
AAACAATGATC	TTTAAAGACA	GATTCTTCTG	GCGCCTGCAT	CCTCAGCAGG	TTGATGCGGA	960
CGTGTTTTA	ACGAAATCAT	TTTGGCCAGA	ACTTCCCAAC	CGTATTGATG	CTGCATATGA	1020
GCACCCCTCT	CATGACCTCA	TCTTCATCTT	CAGAGGTAGA	AAATTGGG	CTCTTAATGG	1080
TTATGACATT	CTGGAAGGTT	ATCCCCAAA	AATATCTGAA	CTGGGTCTTC	CAAAAGAAGT	1140
TAAGAAGATA	AGTGCAGCTG	TTCACTTTGA	GGATACAGGC	AAGACTCTCC	TGTTCTCAGG	1200
AAACCAGGTC	TGGAGATATG	ATGATACTAA	CCATATTATG	GATAAAAGACT	ATCCGAGACT	1260
AAATAGAAGAA	GAATTCCCAG	GAATTGGTGA	TAAAGTAGAT	GCTGTCTATG	AGAAAAATGG	1320
TTATATCTAT	TTTTCAACG	GACCCATACA	GTGGAATAC	AGCATCTGGA	GTAACCGTAT	1380
GTTCGCGTC	ATGCCAGCAA	ATTCCATTAA	GTGGTGTAA	GTGTCCTTTT	AAAAATTGTT	1440
ATTTAAATCC	TGAAGAGCAT	TTGGGGTAAT	ACTTCCAGAA	GTGCGGGGTA	GGGAAAGAAG	1500
AGCTATCAGG	AGAAAGCTTG	G				1521

(2) INFORMATION FOR SEQ ID NO:19

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 7 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Pro Arg Cys Gly Xaa Pro Asp

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 12 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

His Glu Xaa Gly His Xaa Xaa Xaa Xaa His Ser
 1 5 10

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 471 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met His Pro Gly Val Leu Ala Ala Phe Leu Phe Leu Ser Trp Thr His
 1 5 10 15
 Cys Arg Ala Leu Pro Leu Pro Ser Gly Gly Asp Glu Asp Asp Leu Ser
 20 25 30
 Glu Glu Asp Leu Gln Phe Ala Glu Arg Tyr Leu Arg Ser Tyr Tyr His
 35 40 45
 Pro Thr Asn Leu Ala Gly Ile Leu Lys Glu Asn Ala Ala Ser Ser Met
 50 55 60
 Thr Glu Arg Leu Arg Glu Met Gln Ser Phe Phe Gly Leu Glu Val Thr
 65 70 75 80
 Gly Lys Leu Asp Asp Asn Thr Leu Asp Val Met Lys Lys Pro Arg Cys
 85 90 95
 Gly Gly Val Asp Val Gly Glu Tyr Asn Val Phe Pro Arg Thr Leu Lys
 100 105 110
 Trp Ser Lys Met Asn Leu Thr Tyr Arg Ile Val Asn Tyr Thr Pro Asp
 115 120 125
 Met Thr His Ser Glu Val Glu Lys Ala Phe Lys Lys Ala Phe Lys Val
 130 135 140
 Trp Ser Asp Val Thr Pro Leu Asn Phe Thr Arg Leu His Asp Gly Ile
 145 150 155 160
 Ala Asp Ile Met Ile Ser Phe Gly Ile Lys Glu His Gly Asp Phe Tyr

165	170	175	
Pro Phe Asp Gly	Pro Ser Gly Leu	Leu Ala His Ala Phe	Pro Pro Gly
180	185	190	
Pro Asn Tyr Gly	Gly Asp Ala His	Phe Asp Asp Asp	Glu Thr Trp Thr
195	200	205	
Ser Ser Ser Lys	Gly Tyr Asn Leu	Phe Leu Val Ala	Ala His Glu Phe
210	215	220	
Gly His Ser Leu	Gly Leu Asp His	Ser Lys Asp Pro	Gly Ala Leu Met
225	230	235	240
Phe Pro Ile Tyr	Thr Tyr Gly Lys	Ser His Phe Met	Leu Pro Asp
245	250	255	
Asp Asp Val Gln	Gly Ile Gln Ser	Leu Tyr Gly Pro	Gly Asp Glu Asp
260	265	270	
Pro Asn Pro Lys	His Pro Lys Thr	Pro Asp Lys Cys	Asp Pro Ser Leu
275	280	285	
Ser Leu Asp Ala	Ile Thr Ser Leu	Arg Gly Glu	Thr Met Ile Phe Lys
290	295	300	
Asp Arg Phe	Phe Trp Arg Leu	His Pro Gln Gln	Val Asp Ala Glu Leu
305	310	315	320
Phe Leu Thr Lys	Ser Phe Trp Pro	Glu Leu Pro Asn Arg	Ile Asp Ala
325	330	335	
Ala Tyr Glu His	Pro Ser His Asp	Leu Ile Phe Ile	Phe Arg Gly Arg
340	345	350	
Lys Phe Trp Ala	Leu Asn Gly Tyr	Asp Ile Leu Glu	Gly Tyr Pro Lys
355	360	365	
Lys Ile Ser Glu	Leu Gly Leu Pro	Lys Glu Val Lys	Lys Ile Ser Ala
370	375	380	
Ala Val His Phe	Glu Asp Thr Gly	Lys Thr Leu Leu	Phe Ser Gly Asn
385	390	395	400
Gln Val Trp Arg	Tyr Asp Asp Thr	Asn His Ile Met	Asp Lys Asp Tyr
405	410	415	
Pro Arg Leu Ile	Glu Asp Phe Pro	Gly Ile Gly Asp	Lys Val Asp
420	425	430	
Ala Val Tyr Glu	Lys Asn Gly Tyr	Ile Tyr Phe Phe	Asn Gly Pro Ile
435	440	445	
Gln Phe Glu Tyr	Ser Ile Trp	Ser Asn Arg Ile	Val Arg Val Met Pro
450	455	460	
Ala Asn Ser Ile	Leu Trp Cys		
465	470		