Лекция 2

Введение в механику. Описание позиции и ориентации твердого тела в 2D.

Механика

- Механика раздел физики, изучающий движение тел.
- Механика делится на три части:
 - Кинематика изучает законы, вне зависимости от причин, его вызывающих
 - Динамика изучает законы движения и его причины
 - Статика изучает условия, при которых тела находятся в покое.

Математические модели

- В настоящем курсе будут использоваться две модели – материальная точка и твердое тело
- Законы движения твердого тела выводятся из законов движения материальной точки
- Для материальной точки существуют три фундаментальных законов Ньютона:
 - Если на тело не действует никаких сил, то оно покоится, либо движется с постоянной скоростью.
 - F=ma
 - Сила действия равна сила противодействия. При этом силы находятся на одной прямой и направлены противоположно друг другу.

Кинематика

- Движение изменение положения тел друг относительно друга со временем.
- Чтобы описать движение тела, вводятся понятия перемещения, скорости, ускорения.
- Кинематика использует линейную алгебру, интегральное и дифференциально счисление.

Kinematic Equations

$$v_f = v_i + at$$

$$v_f^2 = v_i^2 + 2a \Delta x$$

$$\Delta x = v_i t + \frac{1}{2} a t^2$$

$$\Delta x = \frac{1}{2} (v_i + v_f) t$$

Понятие производной (на доске)

$$\mathcal{O}(t) = \lim_{\Delta t} \frac{\Delta S}{\Delta t} = \lim_{\Delta t} \frac{S(t+\Delta t) - S(t)}{\Delta t}$$

$$\Delta t \to 0$$

$$S(t) = \alpha t^{2}$$

$$S(t+\Delta t) = \alpha (t+\Delta t)^{2} = \alpha (t^{2} + 2\Delta t \cdot t + \Delta t^{2})$$

$$\Delta S = S(t+\Delta t) - S(t) = \alpha (2\Delta t \cdot t + \Delta t^{2})$$

$$= 2\Delta t \cdot \Delta t + \alpha \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

$$\Delta S = 2\Delta t + \Delta \Delta t^{2}.$$

Элементы линейной алгебры

- Вектор направленный отрезок.
- Две ключевые операции линейной алгебры – умножение вектора на число и сложение векторов.
- Сумма произведений векторов на числа есть линейная комбинация.

Definition of Vector Space

Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed axioms are satisfied for every u, v, and w in V and every scalar (real number) c and d, then V is called a vector space.

Addition	

	+		

$$2. \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$$

3.
$$\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$$

Scalar Multiplication:

cu is in V.

7.
$$c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$$

8.
$$(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$$

9. $c(d\mathbf{u}) = (cd)\mathbf{u}$

10.
$$1(\mathbf{u}) = \mathbf{u}$$

Closure under addition Commutative property

Associative property Additive identity

Additive inverse

Closure under scalar multiplication

Distributive property Distributive property Associative property Scalar identity

Действия над векторами

Описание положения точки (на доске)

- Для численного описания вводится система координат.
- Каждый вектор линейная комбинация базисных векторов.
- Координаты векторов представлены коэфициентами в линейной комбинации.
- Линейную комбинацию можно записать в матричном виде

Описание положения точки (на доске)

- Для численного описания вводится система координат.
- Каждый вектор линейная комбинация базисных векторов.
- Координаты векторов представлены коэфициентами в линейной комбинации.
- Линейную комбинацию можно записать в матричном виде

Описание положения твердого тела (на доске)

- Для того, чтобы описать положение твердого тела, нужно привязать к нему систему координат, которая будет двигаться вместе с ним.
- Затем необходимо определить три параметра: координаты системы отсчета тела и угол между осями х.
- Параметры, необходимые для описания положения системы называются степенями свободы.

Описание положения с помощью матриц (параллельный перенос)

Описание положения с помощью матриц (Вращение)

Вращение + перенос

$$\overline{P}^{B} = \overline{P}^{C} + \overline{V}_{A}.$$

$$\overline{P}^{B} = \overline{P}^{X}, \overline{\chi}_{A} + \overline{P}^{X}, \overline{y}_{A} + \overline{V}_{A}.$$

$$\overline{P}^{B} = \left[\overline{\chi}_{A}^{B} \overline{y}_{A}^{B} \overline{v}_{A}^{B}\right] \left[\begin{array}{c} P_{X}^{A} \\ P_{Y}^{A} \end{array}\right]$$

Источники

- Strang Introduction to Linear algebra
- Фихтенгольц основы матанализа.
- Трофимова Курс общей физики
- Craig Introduction to Robotics