S Y S T E M S L I M I T E D

GIS Contactless Card Reader for Eco Rewards

Because GIS Ltd has no control over the end use of the application programs using the information in this document no warranty is given or should be implied as to the suitability of its use in any particular application. No liability can be accepted for any consequential loss or damage, howsoever caused, arising as a result of the contents of this document.

GIS Ltd has a policy of continuing development and therefore reserves the right to make changes without prior notification.

Copyright © GIS Ltd, 2020.

All rights reserved. No part of the contents of this document may be reproduced or transmitted in any form without the prior written permission of the copyright holders.

Title GIS Contactless Card Reader Eco Rewards

Subject Specification of GIS Contactless Card Reader for Eco Rewards

Version 1.1

Author Mark Sylvester Date 16 January 2020

Pages 11 Status Issued

File: EcoRewardsReader.docx

Table of Contents

1. Int	roduction	3
1.1.	Hardware	3
2. Ca	rd Processing	4
2.1.	Card Reading Procedure	4
2.2.	Record Store	5
3. Ho	ost Communication	6
3.1.	Cards Message	6
3.2.	Status Message	7
3.3.	Status Response	7
4. Co	onfiguration	8
4.1.	LoRa Configuration	8
5. Di	agnostic Console	9
5.1.	Record Store	9
5.2.	Card Reader	10
5.3.	LoRa	10
5 4	Commands	11

1. Introduction

The GIS Contactless Card Reader for Eco Rewards in a device for reading ITSO, LASSeO and NFC Tags and recording them for the purpose of generating statistics.

1.1. Hardware

Embedded ARM processor board with 256K Flash and 128K RAM.

LoRaWAN Module using 868MHz unlicensed band.

Tri-colour LED to indicate state of reader as follows:

LED	Battery	LoRa State	Card Reading
Flashing	Good	On-line	Yes
GREEN			
Flashing	Poor	On-line	Yes
AMBER			
Flashing RED	Good or Poor	Off-line	Yes
Steady RED	Empty	Off-line	No

Buzzer to indicate card reading state, two quick beeps with green LED on card read ok, one long bleep with red LED for card read failure.

1.2. Software

The software written by GIS reads the card number from the presented ITSO card, LASSeO card or NFC tag and records this along with the current date&time.

Periodlically these records are transmitted to a host system using the LoRa WAN network.

2. Card Processing

2.1. Card Reading Procedure

Card Type	Application	Procedure
DESFire	All	Select Card to obtain UID
		Reset Card to obtain ATS
	ITSO	Select Application AID A0 02 16
		Read file 15 to obtain Shell
		Save Timestamp+Shell.ISRN to record store
	LASSeO	Select Application AID F4 01 10
		Read file 1 to obtain CardHolderNumber
		Save Timestamp+CardHolderNumber to record store
		N.B: If an ITSO and LASSeO application are
		encoded on the same card only the ITSO
		Shell.ISRN will be recorded
	Other	Card ignored
Mifare	All	Select Card to obtain UID
Ultralite	NFC Tag	Read Page 3 to obtain NFC Capability Container
		Read Pages 415 to obtain NDEF record containing
		TXT CardNumber
		Save Timestamp+CardNumber to record store
	Other	Card ignored
Mifare+	All	Select Card to obtain UID (may be random)
		Reset Card to obtain ATS
	ITSO	Select MF A0 00 00 02 16 'I 'T 'S' 'O '- '1
		Select DF 01 00
		Read EF 1 to obtain Shell
		Save Timestamp+Shell.ISRN to record store
	Other	Card ignored
Generic	All	Reset Card to obtain ATS
Micro	ITSO	Select Card to obtain UID (may be random)
		Select MF A0 00 00 02 16 'I 'T 'S' 'O '- '1
		Select DF 01 00
		Read EF 1 to obtain Shell
		Save Timestamp+Shell.ISRN to record store
	Other	Card ignored
Mobile	All	
Phone	NFC Tag	Select Application D2 76 00 00 85 01 01
	Application	Read CC EF (E101) to obtain NFC Capability
		Container
		Read NDEF EF (E104) to obtain NDEF record
		containing TXT CardNumber
		Save Timestamp+CardNumber to record store
	Other	Phone ignored

2.2. Record Store

The reader contains a Flash chip (2Mbyte) which is used to store the details of cards read before they are transmitted to the host.

The following record will be stored for each card read:

Field	Size	Usage
	(bytes)	
Timestamp	4	Date/time of capture in seconds since 2001/01/01
		00:00
Type	1	One of ITSO, LASSEO, NFC
Serial	9	ITSO Card:
		9 bytes, 18 BCD digits
		LASSeO Card:
		8 bytes, 16 BCD digits
		NFC Tag:
		5 bytes, 10 BCD digits
Spare	2	
Total	16	

The reader uses two pointers into the record flash memory to manage a cyclic buffer of records. The Flash can store 130816 records before becoming full.

3. Host Communication

3.1. Cards Message

The reader will send the card records over a LoRa network link to a LoRaWAN server. The LoRa payload will consist of the following fields:

Field	Size (bytes)	Usage	
DevID	4	Device identifier (8 BCD digits)	
TSN	4	Transaction Sequence (8 BCD digits)	
Type	1	0x63 = ITSO Card	
		0x4C = LASSeO Card	
		0x54 = NFC Tag	<u>e</u>
Serial	8	ITSO Card Number (less first byte 0x63),	Repeated ip to 4 time
		16 BCD digits)ea
	8	LASSeO Card Number, 16 BCD digits	Rej
	5	NFC Tag Number	dn db
Timestamp	3	Date/time of capture in minutes since	
_		2019/01/01 00:00	
Total	44 to 50		

Worst case, 3 ITSO records, 44 bytes:

Best case, 2 NFC plus 2 ITSO records, 50 bytes:

For example:

```
05 11 18 70 00 00 00 12 4C 63 38 00 00 85 35 15 '...p....Lc8...5.'
01 07 BF 80 54 22 22 23 00 13 07 BF 80 54 22 22 '....T""#.....T""'
23 00 12 07 BF 81 '#.....
```

3.2. Status Message

Periodically the reader will send a status message containing the following information:

Field	Size (bytes)	Usage
DevID	4	Device identifier (8 BCD digits)
TSN	4	Transaction Sequence (8 BCD digits)
Date	4	YYYYMMDD, 8 BCD digits
Time	2	HHMM, 4 BCD digits
Uptime	4	Minutes, 8 BCD digits
Battery	2	XXXX mV (solar power) 3800 (mains power), 4
		BCD digits
USB	2	YYYY mV (solar power), 0000 (mains power), 4
		BCD digits
Storage	4	Number of messages pending, 8 BCD digits
Total	26	

For example:

```
05 11 18 70 00 00 00 12 20 19 12 19 14 31 00 00 '...p....1...'
01 25 40 80 48 88 00 00 00 00 '.%@.H.....'
```

3.3. Status Response

In response to the status message the host may send the following information:

Field	Size (bytes)	Usage
Header	5	String 'SETDT'
Date	4	YYYYMMDD (8 BCD digits)
Time	2	HHMM (4 BCD digits)
Total	11	

The reader may be requested to re-start by sending a response message containing the value 'RESTART' followed by the device identifier as a string, e.g. 'RESTART0511870'.

4. Configuration

4.1. LoRa Configuration

A configuration file (LORA.INI) will be read by the reader on start-up to configure it's LoRa stack.

The following configuration items are required:

Item	Format	Usage
Version	V.L.I	Firmware version
Options	Bit mask	To use ADR set option A
		To use OTAA link establishment set option 0,
		otherwise ABP will be used
		To send data un-confirmed set option U
DataPort	Decimal	Port to which card record messages will be sent
StatusPort	Decimal	Port to which status messages will be sent&received
Frequency	Decimal	LoRa frequency to be used, minimum
		863000000Hz, maximum 870000000Hz
ChannelID	Decimal	LoRa channel to be used, 3 thru 15
Class	'a' or 'c'	LoRa class to be used
Power	Decimal	LoRa power level to be used, minimum -3,
		maximum +14
AppEUI	Binary [8]	Application EUI expected by LoRaWAN gateway
		when using OTAA link establishment
Key1	Binary [16]	When using OTAA this is the Application Key
		expected by the LoRaWan gateway, otherwise the
		ABP Network Session Key expected by the
		LoRaWan gateway
Key2	Binary [16]	When using ABP this is the Application Session
		Key expected by the LoRaWan gateway

For example:

[GISLORA]

Version=1.1.1

Options=0

[RADIO]

Frequency=868100000

ChannelID=7

Class=a

Power=8

[APPLICATION]

DataPort=1

StatusPort=2

AppEUI=70B3D57ED0025CDF

Key1=E3FCB36FF9A78F1833289562A34C317C

Key2=

5. Diagnostic Console

The readers serial port can be connected to PC using a USB ← → Serial converter. Running a terminal emulator (e.g. Putty@115200,8,N,1) allows diagnostics to be displayed. On start-up the following messages will be shown:

```
GIS Activity Demo V1.2.1
Device 05111870 (00:4e:00:3e) EUI 00:04:a3:0b:00:25:81:c9

13:54:49 RECS:Header@0x0000 In=604 Out=510 Max=130816 Ctr=510 TSN=510
13:54:49 LORA:Initialise O=8000 P=1/2 T=600/240/3600 I=300 E=3
13:54:49 LORA:Radio F=868100000 Ch=7 Cl=a P=8
13:54:49 LORA:Initialise
13:54:49 LORA:Initialise
13:54:49 LORA:Registering
13:55:00 LORA:Registered
13:55:00 LORA:Registered
13:55:00 LORA:Sleeping for 3600s
```

Information is displayed with a time prefix and a module prefix. The top line shows the software revision. The next line shows the device identifier (in decimal and hex) and the device EUI. The final line shows the date and time; the battery voltage; the voltage of the USB input; and the state of the LoRa connection.

Diagnostics are available from the following modules.

5.1. Record Store

The RECS prefix identifies messages relating to the messages store, for example: RECS: Header@0x0000 In=10 Out=10 Max=130816 Ctr=10 TSN=10

This shows the current In and Out pointers into the record store, and the Max number of records which can be stored before the reader stops reading cards. The Ctr is the total number of records the reader has processed; and the TSN is the current transaction sequence number.

5.2. Card Reader

The CARDS prefix identifies message occurring during card processing.

The message CARD: Present? indicates the card reader has been initialised and is waiting a card to be presented.

When a card is presented one of the following messages will be displayed depending on the card type:

Card Type	Message
ITSO	CARDS:ITSO 633597 0109 1028 6281
LASSeO	CARDS:LASSeO 633800 0085 3515 01
NFC	CARDS:NFCTag 2222230012

5.3. LoRa

The LORA prefix identifies message occurring during data transmission.

The initial start-up sequence will typically be:

```
14:04:14 LORA:Initialise
14:04:14 LORA:Awaiting Registration
14:04:17 LORA:Registered
14:04:22 LORA:Sleeping for 3600s
```

An attempt to send records will show the following sequence of events:

```
13:58:33 LORA: Publishing 44 bytes on Port 1
05 11 18 70 00 00 05 10 54 22 22 23 00 12 19 E1 '...p...T""#....'
24 54 22 22 23 00 13 19 E1 34 54 22 22 23 00 12 '$T""#....4T""#...'
19 E1 47 54 22 22 23 00 13 19 E1 5E '..GT""#....^ '
13:58:33 LORA: Awoken
13:58:33 LORA: Transmitting 44 bytes on Port 1
13:59:22 LORA: Received 0 bytes on Port 0
13:59:24 RECS: Header@0x0000 In=604 Out=514 Ctr=514 TSN=514
13:59:24 LORA: Sleeping for 3600s
```

5.4. Commands

The following commands may be executed by pressing the corresponding key on the terminal:

Key	Action	Description
c	Fake card	Generate a fake UID and store it
19	Counter	Repeat following fake card command n times
d	Date	Enter Year, Month and day to set RTC
t	Time	Enter Hour and Minute to set RTC
1	Transmit	Initiate LoRa transmission if not already in progress
r	Restart	Restart LoRa connection if not already registered
SPACE	Refresh	Refresh terminal output