MATH 902 LECTURE NOTES, SPRING 2022

Contents

1.	Finiteness conditions	1
1.1.	Finitely generated algebras	1
1.2.	Finitely generated modules	3
1.3.	Integral extensions	4
1.4.	Commutative Noetherian rings and modules	7
1.5.	Application: Finite generation of rings of invariants	9
Index		19

Lecture of January 19, 2022

In this class, all rings are assumed to be commutative, with associative multiplication and containing 1.

1. Finiteness conditions

1.1. **Finitely generated algebras.** We start by recalling a definition from last semester, specialized to the setting of commutative rings.

Definition 1.1 (Algebra). Given a ring A, an A-algebra is a ring R equipped with a ring homomorphism $\phi: A \to R$. This defines an A-module structure on R given by restriction of scalars, that is, for $a \in A$ and $r \in R$, $ar := \phi(a)r$ that is compatible with the internal multiplication of R i.e.,

$$a(rs) = (ar)s = r(as)$$
 for all $a \in A, rs \in R$.

We will call ϕ the structure homomorphism of the A-algebra R.

- **Example 1.2.** If A is a ring and x_1, \ldots, x_n are indeterminates, the inclusion map $A \hookrightarrow A[x_1, \ldots, x_n]$ makes the polynomial ring into an A-algebra.
 - When $A \subseteq R$ the inclusion map makes R an A-algebra. In this case the A-module multiplication ar coincides with the internal (ring) multiplication on R.
 - ullet Any ring comes with a unique structure as a \mathbb{Z} -algebra.

The collection of A-algebras forms a category where the morphisms are ring homomorphisms $f: R \to S$ such that the following diagram commutes

for structural homomorphisms $\varphi:A\to R$ and $\psi:A\to S$.

Definition 1.3 (Algebra generation). Let R be an A-algebra and let $\Lambda \subseteq R$ be a set. The A-algebra generated by a subset Λ of R, denoted $A[\Lambda]$, is the smallest (w.r.t containment) subring of R containing Λ and $\varphi(A)$.

A set of elements $\Lambda \subseteq R$ generates R as an A-algebra if $R = A[\Lambda]$.

Note that there are two different meanings for the notation A[S] for a ring A and set S: one calls for a polynomial ring, and the other calls for a subring of something.

This can be unpackaged more concretely in a number of equivalent ways:

Lemma 1.4. The following are equivalent

- (1) Λ generates R as an Λ -algebra.
- (2) Every element in R admits a polynomial expression in Λ with coefficients in $\phi(A)$, i.e.

$$R = \left\{ \sum_{\text{finite}} \phi(a) \lambda_1^{i_1} \cdots \lambda_n^{i_n} \mid a \in A, \lambda_j \in \Lambda, i_j \in \mathbb{N} \right\}.$$

(3) The A-algebra homomorphism $\psi : A[X] \to R$, where A[X] is a polynomial ring on a set of indeterminates X in bijection with Λ and $\psi(x_i) = \lambda_i$, is surjective.

Proof. Let $S = \{\sum_{\text{finite}} \phi(a) \lambda_1^{i_1} \cdots \lambda_n^{i_n} \mid a \in A, \lambda_j \in \Lambda, i_j \in \mathbb{N} \}$. For the equivalence between (2) and (3) we note that S is the image of ψ . In particular, S is a subring of R. It then follows from the definition that (1) implies (2). Conversely, any subring of R containing $\phi(A)$ and Λ certainly must contain S, so (2) implies (1).

Example 1.5. We may have also seen these brackets used in $\mathbb{Z}[\sqrt{d}]$ for some $d \in \mathbb{Z}$ to describe the ring

$${a + b\sqrt{d} \mid a, b \in \mathbb{Z}}.$$

In fact, this is a special instance of generating: the \mathbb{Z} -algebra generated by \sqrt{d} in the most natural place, the algebraic closure of \mathbb{Q} , is exactly the set above. The point is that for any power $(\sqrt{2})^n$, write n = 2q + r with $r \in \{0, 1\}$, so $(\sqrt{2})^n = 2^d(\sqrt{2})^r$. Similarly, the ring $\mathbb{Z}[\sqrt[3]{d}]$ can be written as

$${a + b\sqrt[3]{d} + c\sqrt[3]{d^2} \mid a, b, c \in \mathbb{Z}}.$$

Note that the homomorphism ψ in part (3) need not be injective.

- If the homomorphism ψ is injective (so an isomorphism) we say that A is a free algebra.
- the set $\ker(\psi)$ measures how far R is from being a free A-algebra and is called the set of relations on Λ .

Definition 1.6 (Algebra-finite). We say that $\varphi: A \to R$ is algebra-finite, or R is a finitely generated A-algebra, if there exists a finite set of elements f_1, \ldots, f_d that generates R as an A-algebra. We write $R = A[f_1, \ldots, f_d]$ to denote this.

The term *finite-type* is also used to mean this.

Remark 1.7. Note that, by the lemma on generating sets, an A-algebra is finitely generated if and only if it is isomorphic to a quotient of a polynomial ring over A in finitely many variables. The choice of an isomorphism with a quotient of a polynomial ring is equivalent to a choice of generating set.

Lecture of January 21, 2022

Example 1.8. Let K be a field, and $B = K[x, xy, xy^2, xy^3, \dots] \subseteq C = K[x, y]$, where x and y are indeterminates. Let A be a finitely generated subalgebra of B, and write $A = K[f_1, \dots, f_d]$. Since each f_i is a (finite) polynomial expression in the monomials $\{xy^i \mid i \in \mathbb{N}\}$, it involves only finitely many of these monomials. Thus, there is an m such that $\{f_1, \dots, f_d\} \subset K[x, xy, \dots, xy^m]$, and hence $A \subseteq K[x, xy, \dots, xy^m]$. But, every element of $K[x, xy, \dots, xy^m]$ is a K-linear combination of monomials with the property that the y exponent is no more than m times the x exponent, so this ring does not contain xy^{m+1} . Thus, B is not a finitely generated K-algebra.

Optional Exercise 1.9. Let $A \xrightarrow{\phi} B \xrightarrow{\psi} C$ be ring homomorphisms (so B is an A-algebra via ϕ , C is a B-algebra via ψ , and C is an A-algebra via $\psi \circ \phi$). Then

- If $A \xrightarrow{\phi} B$ and $B \xrightarrow{\psi} C$ are algebra-finite, then $A \xrightarrow{\psi\phi} C$ is algebra-finite. (Take the union of the generating sets.)
- If $A \xrightarrow{\psi \phi} C$ is algebra-finite, then $B \xrightarrow{\psi} C$ is algebra-finite. (Use the same generating set.)
- If $A \xrightarrow{\psi \phi} C$ is algebra-finite, then $A \xrightarrow{\phi} B$ may not be algebra-finite. (Use the previous example.)

Remark 1.10. Any surjective φ is algebra-finite: the target is generated by 1. Since any homomorphism $\phi:A\to R$ can be factored as $\phi=\psi\circ\varphi$ where φ is the surjection $\varphi:A\to A/\ker(\varphi)$ and ψ is the inclusion $\psi:A/\ker(\varphi)\hookrightarrow R$, to understand algebra-finiteness, it suffices to restrict our attention to injective homomorphisms by the last bullet point of the previous exercise.

There are many basic questions about algebra generators that are surprisingly difficult. Let $R = \mathbb{C}[x_1, \ldots, x_n]$ and $f_1, \ldots, f_n \in R$. When do f_1, \ldots, f_n generate R over \mathbb{C} ? It is not too hard to show that the Jacobian determinant

$$\det \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$

must be a nonzero constant. It is a big open question whether this is in fact a sufficient condition!

1.2. **Finitely generated modules.** We will also find it quite useful to consider a stronger finiteness property for maps.

Definition 1.11. (Module generation) Let M be an A-module and let $\Gamma \subseteq M$ be a set. The A-submodule of M generated by Γ , denoted $\sum_{\gamma \in \Gamma} A\gamma$, is the smallest (w.r.t containment) submodule of M containing Γ . A set of elements $\Gamma \subseteq M$ generates M as an A-module if the submodule of M generated by Γ is M itself, i.e. $M = \sum_{\gamma \in \Gamma} A\gamma$.

This also has some equivalent realizations:

Lemma 1.12. The following are equivalent:

- (1) Γ generates M as an A-module.
- (2) Every element of M admits a linear combination expression in the elements of Γ with coefficients in A
- (3) The homomorphism $\theta: A^{\oplus Y} \to M$, where $A^{\oplus Y}$ is a free A-module with basis Y in bijection with Γ via $\theta(y_i) = \gamma_i$, is surjective.

Optional Exercise 1.13. Prove the previous lemma.

Definition 1.14 (Module-finite). We say that a ring homomorphism $\varphi: A \to R$ is module-finite if R is a finitely-generated A-module, that is, there is a finite set $m_1, \ldots, m_n \in M$ so that $M = \sum_{i=1}^n Am_i$.

As with algebra-finiteness, surjective maps are always module-finite in a trivial way. The notion of module-finite is much stronger than algebra-finite, since a linear combination is a very special type of polynomial expression. To be specific:

Lemma 1.15 (Module-finite \Rightarrow algebra-finite). If $\varphi: A \to R$ is module-finite then it is algebra-finite.

The converse is not true.

Example 1.16. (1) If $K \subseteq L$ are fields, L is module-finite over K just means that L is a finite field extension of K.

- (2) The Gaussian integers $\mathbb{Z}[i]$ satisfy the well-known property (or definition, depending on your source) that any element $z \in \mathbb{Z}[i]$ admits a unique expression z = a + bi with $a, b \in \mathbb{Z}$. That is, $\mathbb{Z}[i]$ is generated as a \mathbb{Z} -module by $\{1, i\}$; moreover, they form a free module basis!
- (3) If R is a ring and x an indeterminate, $R \subseteq R[x]$ is not module-finite. Indeed, R[x] is a free R-module on the basis $\{1, x, x^2, x^3, \dots\}$. It is however algebra-finite.
- (4) Another map that is *not* module-finite is the inclusion of $K[x] \subseteq K[x, 1/x]$. Note that any element of K[x, 1/x] can be written in the form $f(x)/x^n$ for some $f(x) \in K[x]$ and $n \in \mathbb{N}$. Then, any finitely generated K[x]-submodule M of K[x, 1/x] is of the form $M = \sum_i \frac{f_i(x)}{x^{n_i}} \cdot K[x]$; taking $N = \max\{n_i \mid i\}$, we find that $M \subseteq 1/x^N \cdot K[x] \neq K[x, 1/x]$.

Optional Exercise 1.17. Let $A \xrightarrow{\phi} B \xrightarrow{\psi} C$ be ring homomorphisms. Then

- If $A \xrightarrow{\phi} B$ and $B \xrightarrow{\psi} C$ are module-finite, then $A \xrightarrow{\psi \phi} C$ is module-finite.
- If $A \xrightarrow{\psi \phi} C$ is module-finite, then $B \xrightarrow{\psi} C$ is module-finite.

We will see that $A \xrightarrow{\psi \phi} C$ is module-finite does not imply $A \xrightarrow{\phi} B$ is module-finite soon.

1.3. **Integral extensions.** In field theory, there is a close relationship between (vector space-)finite field extensions and algebraic equations. The situation for rings is similar.

Definition 1.18 (Integral element/extension). Let $\phi: A \to R$ be a ring homomorphism (for which we will denote $\phi(a)$ by a) and $r \in R$. The element r is *integral* if there are elements $a_0, \ldots, a_{n-1} \in A$ such that

$$r^{n} + a_{n-1}r^{n-1} + \dots + a_{1}r + a_{0} = 0;$$

i.e., r satisfies a equation of integral dependence over A. The homomorphism ϕ is integral if every element of R is integral over A.

Example 1.19. Let $A = \mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$. The element $t = \sqrt{2} \in A$ is integral over \mathbb{Z} , since $t^2 - 2 = 0$. Likewise, $s = 1 + \sqrt{2}$ is integral over \mathbb{Z} , as $s^2 = 3 + 2\sqrt{2}$, so $s^2 - 2s - 1 = 0$.

On the other hand, $\frac{1}{2} \in \mathbb{Q}$ is not integral over \mathbb{Z} : if

$$\left(\frac{1}{2}\right)^n + a_{n-1} \left(\frac{1}{2}\right)^{n-1} + \dots + a_0 = 0$$

with $a_i \in \mathbb{Z}$, multiply through by 2^n to get $1 + 2a_{n-1} + 2^2a_{n-2} + \cdots + 2^na_0 = 0$, which is impossible.

Lecture of January 24, 2022

Proposition 1.20. Let $A \subseteq R$ be rings.

- (1) If $r \in R$ is integral over A then A[r] is module-finite over A.
- (2) If $r_1, \ldots, r_t \in R$ are integral over A then $A[r_1, \ldots, r_t]$ is module-finite over A.
- Proof. (1) Suppose r is integral over A, satisfying the equation $r^n + a_{n-1}r^{n-1} + \cdots + a_1r + a_0 = 0$. Then $A[r] = \sum_{i=0}^{n-1} Ar^i$. Indeed, $s \in A[r]$ with a polynomial expression $s = p(r) = \sum c_j r^j$ of degree $m \ge n$, we can use the equation above to rewrite the leading term $a^m r^m$ as $-a_m r^{m-n} (a_{n-1} r^{n-1} + \cdots + a_1 r + a_0)$, and decrease the degree in r.
 - (2) Write $A_0 := A \subseteq A_1 := A[r_1] \subseteq A_2 := A[r_1, r_2] \subseteq \cdots \subseteq A_t := A[r_1, \ldots, r_t]$. Note that r_i is integral over A_{i-1} : use the same monic equation of r_i over A. Then, the inclusion $A \subseteq A[r_1, \ldots, r_t]$ is a composition of module-finite maps, hence is module-finite.

We recall that the *classical adjoint* of an $n \times n$ matrix A is the $n \times n$ matrix whose (i, j)-entry is $(-1)^{i+j}$ times the determinant of the matrix obtained from A by removing the ith column and the jth row.

Lemma 1.21 (Determinantal trick). Let R be a ring, $B \in M_{n \times n}(R)$, $v \in R^{\oplus n}$, and $r \in R$.

- (1) $\operatorname{adj}(B)B = \det(B)I_{n \times n}$.
- (2) If Bv = rv, then $det(rI_{n \times n} B)v = 0$.
- *Proof.* (1) When R is a field, this is a basic linear algebra fact. We deduce the case of a general ring from the field case.

The ring R is a \mathbb{Z} -algebra, so we can write R as a quotient of some polynomial ring $\mathbb{Z}[X]$. Let $\psi : \mathbb{Z}[X] \longrightarrow R$ be a surjection, $a_{ij} \in \mathbb{Z}[X]$ be such that $\psi(a_{ij}) = b_{ij}$, and let $A = [a_{ij}]$. Note that

$$\psi(\operatorname{adj}(A)_{ij}) = \operatorname{adj}(B)_{ij}$$
 and $\psi((\operatorname{adj}(A)A)_{ij}) = (\operatorname{adj}(B)B)_{ij}$,

since ψ is a homomorphism, and the entries are the same polynomial functions of the entries of the matrices A and B, respectively. Thus, it suffices to establish

$$\operatorname{adj}(B)B = \det(B)I_{n \times n}$$

in the case when $R = \mathbb{Z}[X]$, and we can do this entry by entry. Now, $R = \mathbb{Z}[X]$ is an integral domain, hence a subring of a field (its fraction field). Since both sides of the equation

$$(\operatorname{adj}(B)B)_{ij} = (\det(B)I_{n\times n})_{ij}$$

live in R and are equal in the fraction field (by linear algebra) they are equal in R. This holds for all i, j, and thus 1) holds.

(2) We have $(rI_{n\times n} - B)v = 0$, so by part 1)

$$\det(rI_{n\times n} - B)v = \operatorname{adj}(rI_{n\times n} - B)(rI_{n\times n} - B)v = 0.$$

Theorem 1.22. Let $A \subseteq R$ be module-finite. Then R is integral over A.

Proof. Given $r \in R$, we want to show that r is integral over A. The idea is to show that multiplication by r, realized as a linear transformation over A, satisfies the characteristic polynomial of that linear transformation.

Write $R = Ar_1 + \cdots + Ar_t$. We may assume that $r_1 = 1$, perhaps by adding module generators. By assumption, we can find $a_{ij} \in A$ such that

$$rr_i = \sum_{j=1}^t a_{ij} r_j$$

for each i. Let $C = [a_{ij}]$, and v be the column vector (r_1, \ldots, r_t) . We have rv = Cv, so by the determinant trick, $\det(rI_{n\times n} - C)v = 0$. Since we chose one of the entries of v to be 1, we have in particular that

 $\det(rI_{n\times n}-C)=0$. Expanding this determinant as a polynomial in r, this is a monic equation with coefficients in A.

Collecting the previous results, we now have a useful characterization of module-finite extensions:

Corollary 1.23 (Characterization of module-finite extensions). Let $A \subseteq R$ be rings. R is module-finite over A if and only if R is integral and algebra-finite over A.

Proof. (\Rightarrow): A generating set for R as an A-module serves as a generating set as an A-algebra. The remainder of this direction comes from the previous theorem. (\Leftarrow): If $R = A[r_1, \ldots, r_t]$ is integral over A, so that each r_i is integral over A, then R is module-finite over A by Proposition 1.20.

Corollary 1.24. If R is generated over A by integral elements, then R is integral. Thus, if $A \subseteq S$, the set of elements of S that are integral over A form a subring of S.

Proof. Let $R = A[\Lambda]$, with λ integral over A for all $\lambda \in \Lambda$. Given $r \in R$, there is a finite subset $L \subseteq \Lambda$ such that $r \in A[L]$. By the theorem, A[L] is module-finite over A, and $r \in A[L]$ is integral over A.

For the latter statement, the first statement implies that

 $\{\text{integral elements}\}\subseteq A[\{\text{integral elements}\}]\subseteq \{\text{integral elements}\},$

so equality holds throughout, and {integral elements} is a ring.

Example 1.25. (1) Not all integral extensions are module-finite. Let $K = \overline{K}$, and consider the ring

$$R = K[x, x^{1/2}, x^{1/3}, x^{1/4}, x^{1/5}, \dots] \subseteq \overline{K(x)}.$$

Clearly R is generated by integral elements over K[x], hence integral, but is not algebra-finite over K[x].

(2) Let x, y, z be indeterminates. Set $R = \mathbb{C}[x, y]$ to be a polynomial ring, and $S = \mathbb{C}[x, y, z]/(x^2 + y^2 + z^2)$ to be a quotient of a polynomial ring. We claim that we can realize R as a subring of S; i.e., the \mathbb{C} -algebra homomorphism from R to S that sends x to x and y to y is injective. Indeed, the kernel is the set of polynomials in x, y that are multiples of $z^2 + x^2 + y^2$, but, thinking of $\mathbb{C}[x, y, z]$ as R[z], any nonzero multiple of $z^2 + x^2 + y^2$ must have z-degree at least 2, so none only involve x, y. Thus, we have an inclusion $R \subseteq S$.

The ring S is module-finite over R: indeed, S is generated over R as an algebra by one element z that is integral over R.

Lecture of January 26, 2022

Definition 1.26. If $A \subseteq R$, the *integral closure of* A *in* R is the set of elements of R that are integral over A. If R is a domain, the *integral closure* of R is its integral closure in its fraction field.

Example 1.27. \mathbb{Z} is integrally closed in \mathbb{Q} : this follows from essentially the same argument we used to show that $\frac{1}{2}$ is not integral over \mathbb{Q} .

Optional Exercise 1.28. The integral closure of
$$\mathbb{Z}$$
 in $\mathbb{Q}(\sqrt{d})$ is $\begin{cases} \mathbb{Z}[\sqrt{d}] & \text{if } d \not\equiv 1 \pmod{4} \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}] & \text{if } d \equiv 1 \pmod{4}. \end{cases}$

Optional Exercise 1.29. Let $A \xrightarrow{\phi} B \xrightarrow{\psi} C$ be ring homomorphisms. Then $A \xrightarrow{\phi} B$ and $B \xrightarrow{\psi} C$ are integral if and only if $A \xrightarrow{\psi\phi} C$ is integral.

Here is a useful fact about integral extensions that we will use multiple times; it also gives a flavor for the power of the integrality condition on a map.

Proposition 1.30. Let R and S be domains and $R \subseteq S$ be integral. Then R is a field if and only if S is a field.

Proof. (\Rightarrow) Say R = K is a field and let $s \in S$ be nonzero. The ring K[s] is integral over K and algebra-finite, hence module finite; i.e., a finite dimensional vector space. Then multiplication by s on K[s] is an injective K-linear map, since $K[s] \subseteq S$ is a domain, and hence surjective. This means that s has an inverse, and hence S is a field.

 (\Leftarrow) Say S=L is a field and let $r \in R$. Then $r^{-1} \in L$ and is hence integral over R. Take an integral equation

$$(r^{-1})^n + a_1(r^{-1})^{n-1} + \dots + a_n = 0$$

with $a_i \in R$, and multiply through by r^{n-1} to get

$$r^{-1} + a_1 + a_2r + \dots + a_nr^{n-1} = 0,$$

so $r^{-1} \in R$.

- 1.4. Commutative Noetherian rings and modules. We recall that a ring R is *Noetherian* if the following equivalent conditions hold:
 - (1) The set of ideals of R has ACC (every ascending chain has a maximal element)
 - (2) Every nonempty collection of ideals of R has a maximal element (i.e., an ideal not contained in any other; not necessarily a maximal ideal though)
 - (3) Every ideal of R is finitely generated.

Similarly, a module M is Noetherian if the following equivalent conditions hold:

- (1) The set of submodules of M has ACC (every ascending chain has a maximal element)
- (2) Every nonempty collection of sumbodules of M has a maximal element
- (3) Every submodule of M is finitely generated.

When R is Noetherian, a module is finitely generated if and only if it is Noetherian, and hence every submodule of a finitely generated module is finitely generated.

Example 1.31. (1) If K is a field, the only ideals in K are (0) and (1) = K, so K is a Noetherian ring.

- (2) \mathbb{Z} is a Noetherian ring. More generally, if R is a PID, then R is Noetherian. Indeed, every ideal is finitely generated!
- (3) As a special case of the previous example, consider the ring of germs of complex analytic functions near 0.

$$\mathbb{C}\{z\}:=\{f(z)\in\mathbb{C}[\![z]\!]\mid f\text{ is analytic on a neighborhood of }z=0\}.$$

This ring is a PID: every ideal is of the form (z^n) , since any $f \in \mathbb{C}\{z\}$ can be written as $z^n g(z)$ for some $g(z) \neq 0$, and any such g(z) is a unit in $\mathbb{C}\{z\}$.

(4) A ring that is *not* Noetherian is a polynomial ring in infinitely many variables over a field k, $R = k[x_1, x_2, \ldots]$: the ascending chain of ideals

$$(x_1) \subseteq (x_1, x_2) \subseteq (x_1, x_2, x_3) \subseteq \cdots$$

does not stabilize.

(5) The ring $R = K[x, x^{1/2}, x^{1/3}, x^{1/4}, x^{1/5}, \dots]$ is also *not* Noetherian. A nice ascending chain of ideals is

$$(x) \subsetneq (x^{1/2}) \subsetneq (x^{1/3}) \subsetneq (x^{1/4}) \subsetneq \cdots$$

(6) The ring of continuous real-valued functions $\mathcal{C}(\mathbb{R},\mathbb{R})$ is not Noetherian: the chain of ideals

$$I_n = \{ f(x) \mid f|_{[-1/n, 1/n]} \equiv 0 \}$$

is increasing and proper. The same construction shows that the ring of infinitely differentiable real functions $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R})$ is not Noetherian: properness of the chain follows from, e.g., Urysohn's lemma (though it's not too hard to find functions distinguishing the ideals in the chain). Note that if we asked for analytic functions instead of infinitely-differentiable functions, every element of the chain would be the zero ideal!

Remark 1.32. If R is Noetherian and $I \subseteq R$, then R/I is Noetherian as well, since there is an order-preserving bijection

{ideals of
$$R$$
 that contain I } \leftrightarrow {ideals of R/I }.

Definition 1.33. If R is a commutative ring and x is an indeterminate the set

$$R[\![x]\!] = \left\{ \sum_{i \ge 0} r_i x^i \mid r_i \in R \right\}$$

with the obvious addition and multiplication is called the *power series ring* in the variable x with coefficients in R. If x_1, \ldots, x_d are distinct indeterminates the *power series ring* in all of these variables is defined inductively as

$$R[x_1, \dots, x_n] = (R[x_1, \dots, x_{d-1}])[x_d].$$

We will now give a huge family of Noetherian rings.

Theorem 1.34 (Hilbert's Basis Theorem). Let R be a Noetherian ring. Then the rings $R[x_1, \ldots, x_d]$ and $R[x_1, \ldots, x_d]$ are Noetherian.

Proof. We give the proof for polynomial rings, and indicate the difference in the power series argument. By induction on d, we can reduce to the case d = 1. Given $I \subseteq R[x]$, let

$$J = \{a \in R \mid \text{ there is some } ax^n + \text{lower order terms (wrt } x) \in I\}.$$

So $J \subseteq R$ consists of all the leading coefficients of polynomials in I. We can check (exercise) that this is an ideal of R. By our hypothesis, J is finitely generated, so let $J = (a_1, \ldots, a_t)$. Pick $f_1, \ldots, f_t \in R[x]$ such that the leading coefficient of f_i is a_i , and set $N = \max\{\deg f_i\}$.

Given any $f \in I$ of degree greater than N, we can cancel off the leading term of f by subtracting a suitable combination of the f_i , so any $f \in I$ can be written as f = g + h where $h \in (f_1, \ldots, f_t)$ and $g \in I$ has degree at most N, so $g \in I \cap (R + Rx + \cdots + Rx^N)$. Note that since $I \cap (R + Rx + \cdots + Rx^N)$ is a submodule of the finitely generated free R-module $R + Rx + \cdots + Rx^N$, it is also finitely generated as an R-module. Given such a generating set, say $I \cap (R + Rx + \cdots + Rx^N) = (f_{t+1}, \ldots, f_s)$, we can write any such $f \in I$ as an R[x]-linear combination of these generators and the f_i 's. Therefore, $I = (f_1, \ldots, f_t, f_{t+1}, \ldots, f_s)$ is finitely generated, and R[x] is a Noetherian ring.

In the power series case, take J to be the coefficients of *lowest degree* terms.

Corollary 1.35. If R is Noetherian, then any finitely generated R-algebra is Noetherian as well.

Proof. A finitely generated R-algebra is a quotient ring of a polynomial ring in finitely many variables over R.

Note that the converse to this is false, e.g., a power series ring over a field is Noetherian, but is not a finitely generated algebra.

Lecture of January 28, 2022

We now give a subtle connection between the finiteness conditions discussed.

Theorem 1.36 (Artin-Tate Lemma). Let $A \subseteq B \subseteq C$ be rings. Assume that

- A is Noetherian,
- C is module-finite over B, and
- \bullet C is algebra-finite over A.

Then, B is algebra-finite over A.

Proof. Let $C = A[f_1, \ldots, f_r]$ and $C = Bg_1 + \cdots + Bg_s$. Then,

$$f_i = \sum_j b_{ij} g_j$$
 and $g_i g_j = \sum_k b_{ijk} g_k$

for some $b_{ij}, b_{ijk} \in B$. Let $B_0 = A[\{b_{ij}, b_{ijk}\}] \subseteq B$. Since A is Noetherian, so is B_0 .

We claim that $C = B_0 g_1 + \cdots + B_0 g_s$. Given an element $c \in C$, write c as a polynomial expression in f_1, \ldots, f_r , and since the f_i are linear combinations of the g_i , we can rewrite $c \in A[\{b_{ij}\}][g_1, \ldots, g_s]$. Then using the equations for $g_i g_j$ we can write c in the form required.

Now, since B_0 is Noetherian, C is a finitely generated B_0 -module, and $B \subseteq C$, then B is a finitely generated B_0 -module, too. In particular, $B_0 \subseteq B$ is algebra-finite. We conclude that $A \subseteq B$ is algebra-finite, as required.

1.5. **Application: Finite generation of rings of invariants.** Historically, commutative algebra has roots in classical questions of algebraic and geometric flavors, including the following natural question:

Question 1. Given a (finite) set of symmetries, consider the collection of polynomial functions that are fixed by all of those symmetries. Can we describe all the fixed polynomials in terms of finitely many of them?

To make this precise, let G be a group acting on a ring R, or just as well, a group of automorphisms of R. The main case we have in mind is when $R = K[x_1, \ldots, x_d]$ is a polynomial ring and K is a field. We are interested in the set of elements that are *invariant* under the action,

$$R^G := \{ r \in R \mid g(r) = r \text{ for all } g \in G \}.$$

Note that R^G is a subring of R. Indeed, given $r, s \in R^G$, then

$$r+s=g(r)+g(s)=g(r+s)$$
 and $rs=g(r)g(s)=g(rs)$ for all $g\in G$,

since each g is a homomorphism. Note also that if $G = \langle g_1, \dots, g_t \rangle$, then $r \in \mathbb{R}^G$ if and only if $g_i(r) = r$ for $i = 1, \dots, t$. The question above can now be rephrased as follows:

Question 2. Given a finite group G acting on $R = K[x_1, \ldots, x_d]$, is R^G a finitely generated K-algebra?

Observe that, in this setting, R^G is a K-subalgebra of R, which is a finitely generated K-algebra, but this does not guarantee a priori that R^G is a finitely generated K-algebra.

Example 1.37 (Standard representation of the symmetric group). Let S_n be the symmetric group on n letters acting on $R = K[x_1, \ldots, x_n]$ via $\sigma(x_i) = x_{\sigma(i)}$.

For example, if n = 3, then $f = x_1^2 + x_2^2 + x_3^2$ is invariant, while $g = x_1^2 + x_1x_2 + x_2^2 + x_3^2$ is not, since swapping 1 with 3 gives a different polynomial.

You may recall the Fundamental Theorem of Symmetric Polynomials says that every element of \mathbb{R}^{S_n} can be written as polynomial expression in the elementary symmetric polynomials

$$e_1 = x_1 + \dots + x_n$$

$$e_2 = \sum x_i x_j$$

$$\vdots$$

$$e_n = x_1 x_2 \dots x_n.$$

E.g, f above is $e_1^2 - 2e_2$. (Moreover, any symmetric polynomial can be written like so in a *unique* way, so R^{S_n} is a free K-algebra.) So even though we have infinitely many invariant polynomials, we can understand them in terms of only finitely many of them, which are *fundamental* invariants.

Example 1.38 (Negative variables). Let $G = \{e, g\}$ act on R = K[x] by negating the variable: $g \cdot x = -x$ for all i, so $g \cdot f(x) = f(-x)$. Suppose that the characteristic of K is not 2, so $-1 \neq 1$. Write $f = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$. We have $g(x^i) = (-x)^i = (-1)^i x^i$, so

$$g(f) = (-1)^n a_n x^n + (-1)^{n-1} a_{n-1} x^{n-1} + \dots + a_0,$$

which differs from f unless for each odd i, $a_i = 0$. That is,

$$R^G = \{ f \in R \mid \text{every term of } f \text{ has even degree} \}.$$

Any such f is a polynomial in x^2 , so we have

$$R^G = K[x^2].$$

This computation readily generalizes to the case where $G = \{e, g\}$ acts on $K[x_1, \ldots, x_n]$ by negating all of the variables. This yields the subring generated by all monomials of degree two.

Optional Exercise 1.39. Verify that the ring of invariants described above is indeed generated by all of the monomials of degree two.

Proposition 1.40. Let k be a field, R be a finitely-generated k-algebra, and G a finite group of automorphisms of R that fix k. Then $R^G \subseteq R$ is module-finite.

Proof. Since integral implies module-finite, we will show that R is algebra-finite and integral over R^G .

First, since R is generated by a finite set as a k-algebra, and $k \subseteq R^G$, it is generated by the same finite set as an R^G -algebra as well. Extend the action of G on R to R[t] with G fixing t. Now, for $r \in R$, consider the polynomial $F_r(t) = \prod_{g \in G} (t - g(r)) \in R[t]$. Then G fixes $F_r(t)$, since for each $h \in G$,

$$h(F_r(t)) = h \prod_{g \in G} (t - g(r)) = \prod_{g \in G} (h \cdot t - hg(r)) = F_r(t)$$

Thus, $F_r(t) \in (R[t])^G$. Notice that $(R[t])^G = R^G[t]$, since

 $g(a_nt^n+\cdots+a_0)=a_nt^n+\cdots+a_0 \implies (g\cdot a_n)t^n+\cdots+(g\cdot a_0)=a_nt^n+\cdots+a_0$. Therefore, $F_r(t)\in R^G[t]$. The leading term (with respect to t) of $F_r(t)$ is $t^{|G|}$, so $F_r(t)$ is monic, and r is integral over R^G . Therefore, R is integral over R^G .

Theorem 1.41 (Noether's finiteness theorem for invariants of finite groups). Let K be a field, R be a polynomial ring over K, and G be a finite group acting K-linearly on R. Then R^G is a finitely generated K-algebra.

Proof. Observe that $K \subseteq R^G \subseteq R$, that K is Noetherian, $K \subseteq R$ is algebra-finite, and $R^G \subseteq R$ is module-finite. Thus, by the Artin-Tate Lemma, we are done!

INDEX

 $A[\Lambda], 2$ $A[f_1,\ldots,f_d],\ 2$ $\mathbb{C}\{z\}, 7$ $\mathcal{C}(\mathbb{R},\mathbb{R}),\,8$ $\mathcal{C}^{\infty}(\mathbb{R},\mathbb{R}),\,8$ $\sum_{\gamma \in \Gamma} A\gamma, \, 3$ algebra, 1 algebra generated by, 2algebra-finite, $2\,$ classical adjoint, 5determinantal trick, 5equation of integral dependence, 4 ${\it finite-type,}\ 2$ finitely generated $A\text{-algebra},\,2$ Gaussian integers, 4generates, 2generates as a module, 3 integral closure, 6integral element, 4Jacobian, 3 module generated by a set, 3 ${\it module-finite},\,4$ Noetherian, 7power series ring, 8 structure homomorphism, 1