

UNIVERSITY OF DHAKA

Department of Applied Mathematics

Program: B.S. (Honours) in Applied Mathematics

Year: 4th , Academic Session: 2021 – 2022

Course No: AMTH 450, Course Title: MATH LAB IV

Assignment – 1: Solving Problems on Multivariate and Vector

Calculus with its Real-life Applications

Instruction: Write programming code using Mathematica/MATLAB to get the outputs and visualize the results of the following problems.

Name: Roll: Group:
Day - 1

1. (a) Use **PolarPlot**, **ParametricPlot**, **and ParametricPlot3D** to sketch the following curves/parametric curves:

(i)
$$r = e^{\cos \theta} - 2\cos 4\theta + \sin^5 \frac{\theta}{12}$$
, $0 \le \theta \le 24\pi$ [Butterfly]

$$(ii)\vec{r} = \langle 2\cos t + \cos 2t, 2\sin t - \sin 2t \rangle, 0 \le t \le 4\pi$$
 [Tricuspoid]

(iii)
$$x = \int_0^t \cos\left(\frac{\pi u^2}{2}\right) du$$
, $y = \int_0^t \sin\left(\frac{\pi u^2}{2}\right) du$, $-10 \le t \le 10$ [Cornu spiral]

$$(iii)\vec{r} = \langle a\cos t, a\sin t, ct \rangle, \frac{\pi}{3} \le t \le 8\pi, a = 1, c = \frac{1}{3}$$
 [Circular Helix]

(b) Use **Plot3D** to sketch the curve of intersection of the surfaces, and hence obtain two different views.

(i)
$$z = x^2 + y^2$$
, $y = 12 - z$, (ii) $9x^2 + y^2 + 9z^2 = 81$, $y = x^2$ ($z > 0$)
(iii) $\vec{r} = \langle t \sin t, tc \cos t, t^2 \rangle$, $z = x^2 + y^2$

(c) Sketch the contour plots of

$$(i) f(x,y) = 4x^2 + y^2, (ii) f(x,y,z) = z^2 - x^2 - y^2$$
 using level curves of height $k = 1, 4, 9, 16, 26, 36$.

$$(i) f(x,y) = |\sin x \sin y|, 0 \le x \le 2\pi, 0 \le y \le 2\pi$$

2. (a) Consider the functions:

$$(ii) f(x,y) = xye^{-\frac{1}{4}(x^2+y^2)}, -5 \le x \le 5, -5 \le y \le 5$$

Draw the three dimensional figures, and the level curves using **Plot3D**, **DensityPlot** in the neighborhoods of the origin. Also, try to use **Axes**, **PlotPoints**, **PlotStyle**, **ColorFunction** options to get a better graph.

- (b) The equations $(i)r = 1 2\sin(n\theta)$, and $(ii)r = 2 3\cos^2(n\theta)$, where n is a positive integer that represent a family of polar curves. Investigate the behavior of this family and form a conjecture about how the number of loops is related to n.
- **3.** (a) Find the volume of the solid obtained by revolving the region bounded by the graph of $y = x \cos^2 x$, x = 0, $x = \pi$, and x-axis about (i) the x-axis and (ii) the y-axis.
 - (b) Find the equation of the tangent plane and normal line to $f(x,y) = e^x \sin(\pi y)$ at the point P(0,1,0). Confirm your result graphically.

- Day 2

 (a) The temperature (in degrees Celsius) at a point (x,y) on a metal plate in the xyplane is $T(x,y) = 3x^2y$. Compute the gradient of T(x,y) at the point $\left(-1,\frac{3}{2}\right)$, and the directional derivative of T(x,y) at the point $\left(-1,\frac{3}{2}\right)$ in the direction $\left(-1,-\frac{1}{2}\right)$. Also, plot of the directional derivative with $-2 \le x \le 0, 0 \le y \le 2$, and visualize directional derivative over a surface.
 - Locate all relative extrema and saddle points of $(i) f(x,y) = 4xy - x^4 - y^4, (ii) f(x,y) = x^4 + y^4 - 20x^2 - 10xy - 25,$ $(iii) 3xe^{y} - x^{3} - e^{3y}, (iv) f(x,y) = x^{3} + y^{3} - 3x - 3y, (v) f(x,y) = 4x^{2}e^{y} - 2x^{4} - e^{4y}$ Confirm that your obtained results are consistent with graphs.
- 5. An electric charge is spread over the half-disk described by $x^2 + y^2 = 9$, $y \ge 0$. Draw (a) the region graphically and calculate the total charge on if the charge density at any point in (measured in coulombs per square meter) is $\sigma(x,y) = \sqrt{x^2 + y^2}$.
 - Sketch the solid in the first octant that is enclosed by the planes x = 0, z = 0, x = 5, (b) z - y = 0, and z = -2y + 6. Find the volume of the solid by breaking it into two parts.
 - (c) solid bounded between the surfaces $z = 4(x^2 + y^2)$ and $z = 16 - 4(x^2 + y^2)$ on the rectangular domain $[-1,1] \times [-1,1]$. Compute the volume of solid.
- Suppose that the temperature in degrees Celsius at a point (x, y) on a flat metal plate 6. (a) is T $(x, y) = 10 - 8x^2 - 2y^2$, where x and y are in meters. Find the average temperature of the rectangular portion of the plate for which $0 \le x \le 1$ and $0 \le y \le 2$.
 - Find the area of the region inside the circle $x^2 + y^2 = 4$ and to the right of (b) the line x = 1. Sketch the resultant region.
 - Find the volume of the solid inside the surface $r^2 + z^2 = 4$ and outside the surface r(c) = 2 cos θ . Sketch the resultant volume of the solid.
 - (d) Suppose that a geyser, centered at the origin of a polar coordinate system, sprays water in a circular pattern in such a way that the depth D of water that reaches a point at a distance of r feet from the origin in 1 hour is $D = ke^{-r}$. Find the total volume of water that the geyser sprays inside a circle of radius R centered at the origin. Take k = 1.5, R = 13.
- Find the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the planes z 7. (a) = 1 and x + z = 5.
 - Compute the mass of the solid region W bounded between the planes z = 1 x y(b) and z = 1 + x + y situated over the triangular domain D bounded by x = 0, y = 0, and y = 1-x. Assume the density of W is given by $\rho(x, y, z) = 1 + x^2 + y^2$.
 - Find the volume of the solid lying under the graph of the surface $z = x^3 + 4y$ and (c) above the region in the xy-plane bounded by the line y = 2x and the parabola $y = x^2$. Also draw the solid region.
 - Verify that the force field $\vec{F}(x,y) = e^y \hat{i} + x e^y \hat{j}$ is conservative on the entire xy-plane. (d) Find the work done by the field on a particle that moves from (1,0) to (-1,0). Take the potential function $\phi = xe^y + K$ for $\vec{F}(x,y)$.

The End