Problem 6Maximize $f(x, y) = \sin^2(5\pi(x^{3/4} - 0.1)) - (y - 1)^4 2 \le x \le 4; -1 \le y \le 2; x+y \le 5$ Maximum=1 at (x,y)=(3.575,1)

Category	Item	Content
	Inertia Weight	1.0
	Acceleration Constants	Self confidence factor = 2
Tuning Parameters and	(Full model)	Swarm confidence factor = 2
Setting Condition	Velocity Limit	$K_V = 0.7$
	Swarm Size	40
	Termination Condition	Achieve Max 250 Iterations
	Constraint Handling	
Penalty	Static	MINUS 999
A dla ana C	tuataaxx	Repair Outlier to Boundary
Adhere S	trategy	X [2,4] Y [-1,2]
T	he Final Optimization Re	esults
Optima	ıl Value	0.9999820659659432
Optimal for Dec	ision Variable X	3.5750214245286918
Optimal for Dec	ision Variable Y	1.0633541344148891

Using Wilcoxon rank sum test 混和排序 GA & PSO RANK

Part one: compare the performance in optimal value.

Compare Final Optimization Results

	1	2	3	4	5	6	7	8
GA Optimal	0.999976578	0.99999	0.9999746	0.9999959	0.9999997	0.999997	0.999997	0.999987137
PSO Optimal	0.999999137	0.999997	0.9999884	0.9989892	0.9999809	0.999974	0.999997	0.999999868
_	9	10	11	12	13	14	15	
GA Optimal	9 0.999996	10 0.999998636	11 0.999994055	12 0.99999675	13 0.999997		15 0.999952046	

Rank of Wilcoxon Rank Sum Test

Rank	1	2	3	4	5	6	7	8
GA Optimal	5	13	4	16	30	24	23	9
PSO Optimal	26	21	10	1	7	3	18	30
	9	10	11	12	13	14	15	
GA Optimal	17	25	15	20	22	19	2	
PSO Optimal	14	29	12	6	28	27	8	

Hypothesis Test 1:

$$H_0: \eta_1 \neq \eta_2 \text{ V.S } H_1: \quad \eta_1 = \eta_2$$

$$CR: \{Z < -Z_{\alpha/2} \text{ or } Z > Z_{\alpha/2} \}$$

Because $n_1 > 10$, $n_2 > 10$ Approximate normalization (Z distribution)

$$W_1 = 5+13+4+16+30+24+23+9+17+25+15+20+22+19+2=244$$

$$W_2 = 26 + 21 + 10 + 1 + 7 + 3 + 18 + 30 + 14 + 29 + 12 + 6 + 28 + 27 + 8 = 240$$

$$E(W_1) = n_1(n_1+n_2+1)/2 = 232.5$$

$$Var(W_1) = n_1 n_2(n_1 + n_2 + 1)/12 = 581.25$$

$$Z = \frac{W1 - E(W1)}{\sqrt{Var(W1)}} = (244-232.5)/24.1091 = 0.47699$$

Reject H₀ at
$$\alpha = 0.05$$
 if $Z_0 > Z_{0.025} = 1.96$ or $Z_0 < -Z_{0.025} = -1.96$

Because $Z_0 = 0.47699$ not locate at critical region

Thus, do not reject H_0 Hypothesis Test 1 at $\alpha = 0.05$, For my 2 algorithms, there are no

enough evidence to show that GA & PSO have significant different.

Hypothesis Test 2:

$$H_0: \eta_1 >= \eta_2 \text{ V.S } H_1: \quad \eta_1 < \eta_2$$

 $CR: \{Z < -Z_{\alpha}\}$

$$\begin{split} W_1 &= 5 + 13 + 4 + 16 + 30 + 24 + 23 + 9 + 17 + 25 + 15 + 20 + 22 + 19 + 2 = 244 \\ W_2 &= 26 + 21 + 10 + 1 + 7 + 3 + 18 + 30 + 14 + 29 + 12 + 6 + 28 + 27 + 8 = 240 \end{split}$$

Because $n_1 > 10$, $n_2 > 10$ Approximate normalization (Z distribution)

$$E(W_1) = n_1(n_1+n_2+1)/2 = 232.5$$

 $Var(W_1) = n_1 n_2(n_1+n_2+1)/12 = 581.25$

$$Z = \frac{W_1 - E(W_1)}{\sqrt{Var(W_1)}} = (244-232.5)/24.1091 = 0.47699$$

Reject H₀ at α = 0.05 if Z_0 < - $Z_{0.05}$ = -1.645 Because Z_0 = 0.47699 not locate at critical region

Thus, do not reject H_0 Hypothesis Test 2 at α = 0.05, For my 2 algorithms, there are no enough evidence to show that PSO performance significance greater than GA performance.

Part two: compare the performance in solution Time

Compare Solution Time

	1	2	3	4	5	6	7	8
GA TIME	8.952366	8.158956	6.0435960	9.7287270	6.3310800	6.2068670	6.7334180	9.7724420
PSO TIME	3.71808	3.91612	3.678529	4.826299	3.517157	3.816037	3.415198	3.652631
	9	10	11	12	13	14	15	
GA TIME	9.855072	8.947202	9.519951	9.183107	9.80964	8.506256	9.564501	
			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					

Rank of Wilcoxon Rank Sum Test

	1	2	3	4	5	6	7	8
GA TIME	8	11	15	4	13	14	12	3
PSO TIME	23	20	24	16	27	21	30	26
	9	10	11	12	13	14	15	

GA TIME	1	9	6	7	2	10	5	
PSO TIME	19	28	22	25	29	17	18	

Hypothesis Test 1:

$$H_0: \mathbf{\eta}_1 \neq \mathbf{\eta}_2 \text{ V.S } H_1: \quad \mathbf{\eta}_1 = \mathbf{\eta}_2$$

 $CR: \{Z < -Z_{\alpha/2} \text{ or } Z > Z_{\alpha/2} \}$

Because $n_1 > 10$, $n_2 > 10$ Approximate normalization (Z distribution)

$$W_1 = 8+11+15+4+13+14+12+3+1+9+6+7+2+10+5 = 120$$

 $W_2 = 23+20+24+16+27+21+30+26+19+28+22+25+29+17+18 = 345$

$$\begin{split} E(W_1) &= n_1 (n_1 + n_2 + 1)/2 = 232.5 \\ Var(W_1) &= n_1 \ n_2 (n_1 + n_2 + 1)/12 = 581.25 \\ Z &= \ \frac{W_1 - E(W_1)}{\sqrt{Var(W_1)}} = (120 - 232.5)/24.1091 = -4.666 \end{split}$$

Reject H₀ at $\alpha = 0.05$ if $Z_0 > Z_{0.025} = 1.96$ or $Z_0 < -Z_{0.025} = -1.96$

Because $Z_0 = -4.666$ *locate at* critical region

Thus, **Reject H**₀ Hypothesis Test 1 at α = 0.05, For my 2 algorithms, there are enough evidence to show that GA & PSO have significant different.

Hypothesis Test 2:

$$H_0: \eta_1 >= \eta_2 \text{ V.S } H_1: \quad \eta_1 < \eta_2$$

 $CR: \{Z < -Z_{\alpha}\}$

Because $n_1 > 10$, $n_2 > 10$ Approximate normalization (Z distribution)

$$\begin{split} W_1 &= 8+11+15+4+13+14+12+3+1+9+6+7+2+10+5 = 120 \\ W_2 &= 23+20+24+16+27+21+30+26+19+28+22+25+29+17+18 = 345 \end{split}$$

$$\begin{split} E(W_1) &= n_1 (n_1 + n_2 + 1)/2 = 232.5 \\ Var(W_1) &= n_1 \ n_2 (n_1 + n_2 + 1)/12 = 581.25 \\ Z &= \quad \frac{W_1 - E(W_1)}{\sqrt{Var(W_1)}} = (120 - 232.5)/24.1091 = -4.666 \end{split}$$

Reject H₀ at
$$\alpha$$
= 0.05 if Z₀< - Z_{0.05} = -1.645

Because $Z_0 = -4.666$ *locate at* critical region

Thus, **Reject H₀** Hypothesis Test 2 at α = 0.05, For my 2 algorithms, there are enough evidence to show that compare THE SOULTION TIME PSO is superior to GA.

The evolution history

For the evolution history part, majority PSO convergence at 20~30 iterations But majority GA convergence at 50~70 iterations.

Program Code:

1

```
Problem 6
@Aaron YuKu Chen M10801108

"""

import pandas as pd
import numpy as np
from numpy.random import randn
import random
import math as m
from matplotlib import pyplot as plt
import datetime

start_time = datetime.datetime.now() # record time
pi = m.pi # set π, objective function will use it
swarm_size = 40 # swarm size set 40
max_iterations = 250 # set max run 250 time iterations
x_domain = [2, 4] # set the domain for decision variable X
y_domain = [-1, 2] # set the domain for decision variable Y
initial_velocity_constraint = [-1, 1] # set constraint for initial velocity
# set parameters
w = 1
r1, r2 = random.uniform(0, 1), random.uniform(0, 1)
c1, c2 = 2, 2
k_v = 0.7
```

3

```
def computeFitness(current_locations, pBest_fitness, pBest_locations, gBest_fitness,
                      gBest_location): # compute the fitness then update pBest and determine gBest
    temp fitnessValue = []
    for particle in range(swarm size): # compute the value of decision variable X.Y
         x_value = current_locations[particle][0]
         y_value = current_locations[particle][1]
         fit x value + y value <= 5: # Check the third constrains
fitness_value = m.sin(5 * pi * (x_value ** (3 / 4) - 0.1)) ** 2 - (y_value - 1) ** 4</pre>
                 # if not follow third constraints , give penalty
              fitness_value = m.sin(5 * pi * (x_value ** (3 / 4) - 0.1)) ** 2 - (y_value - 1) ** 4 - 999
         temp_fitnessValue.append(fitness_value)
         current_fitness = temp_fitnessValue # set it as current fitness value
    for order in range(swarm_size): # update pBest
         if current_fitness[order] > pBest_fitness[order]:
    pBest_fitness[order] = current_fitness[order] # if current one superior than pBest fitness, update it.
    pBest_locations[order] = current_locations[order] # update their locations , too.
             pass
    for order_gBest in range(swarm_size): # determine gBest
   if current_fitness[order_gBest] > gBest_fitness:
              gBest_fitness = current_fitness[order_gBest] # if find someone better than gBest fitness, update it.
              gBest_location = current_locations[order_gBest] # determine the location , too.
         else:
              pass # if do not better than both of pBest or gBest, pass it.
    return pBest_fitness, pBest_locations, gBest_fitness, gBest_location
```

4

5

```
def computeNewLocation(current_locations, new_velocities): # update the outcome as new locations
    new_locations = current_locations + new_velocities
    return new_locations
```

6

7

8

```
history_gBest_fitness = pd.DataFrame(history_gBest_fitness)
plt.style.use('ggplot')
plt.plot(range(max_iterations), pd.DataFrame.rolling(history_gBest_fitness, window=30, min_periods=1).max())
plt.xlim(0, 250)
plt.ylim(0.99, 1.001)

plt.xlabel("Iterations")
plt.ylabel("Optimal gBest Value")
plt.title("Particle Swarm Optimization for Problem 6")

plt.show()
end_time = datetime.datetime.now()
print(end_time - start_time).second
```