Semantics and Verification

Lecture 6

9 March 2010

Overview

Last lecture:

Hennessy-Milner logic

This lecture:

- Hennessy-Milner logic with recursion (introduction)
- Tarski's fixed-point theorem

Next lecture:

Hennessy-Milner logic with recursion

2

Tarski's Fixed-Point Theorem

- Last lecture
- Hennessy-Milner logic with recursion
- 3 Lattice theory
- Tarski's Fixed Point Theorem

Verifying Correctness of Reactive Systems

Equivalence Checking Approach

- ullet is an abstract equivalence, e.g. \sim or pprox
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

- |= is the satisfaction relation
- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Hennessy-Milner Logic: Syntax

Syntax of the Formulae ($a \in Act$)

$$F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition:

- tt all processes satisfy this property
- ff no process satisfies this property
- ∧, ∨ usual logical AND and OR
- (a) F there is at least one a-successor that satisfies F
- [a]F all a-successors have to satisfy F

Hennessy-Milner Logic: Denotational Semantics

For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F.

Denotational Semantics: $[\![\]\!]$: Formulae $o 2^{Proc}$

- [tt] = Proc
- \bullet $\llbracket ff \rrbracket = \emptyset$
- $[F \lor G] = [F] \cup [G]$
- $\bullet \ \llbracket F \wedge G \rrbracket = \llbracket F \rrbracket \cap \llbracket G \rrbracket$
- $[\langle a \rangle F] = \langle a \rangle [F]$
- $[[a]F] = [\cdot a \cdot][F]$

where $\langle \cdot a \cdot \rangle$, $[\cdot a \cdot] : 2^{Proc} \rightarrow 2^{Proc}$ are defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in Proc \mid \exists p'. \ p \xrightarrow{a} p' \text{ and } p' \in S \}$$

 $[\cdot a \cdot] S = \{ p \in Proc \mid \forall p'. \ p \xrightarrow{a} p' \implies p' \in S \}$

Relationship between HML and Strong Bisimilarity

Hennessy-Milner Theorem

Let $(Proc, Act, \{ \stackrel{a}{\longrightarrow} | a \in Act \})$ be an image-finite LTS and $p, q \in Proc$. Then

$$p \sim q$$

if and only if

for every HML formula $F: (p \models F \iff q \models F)$.

 One says that HML is adequate with respect to strong bisimilarity for image-finite LTS.

Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

- $md(F \wedge G) = md(F \vee G) = \max\{md(F), md(G)\}$
- $md([a]F) = md(\langle a \rangle F) = md(F) + 1$

Idea: a formula F can "see" only upto depth md(F).

Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

- $md(F \wedge G) = md(F \vee G) = \max\{md(F), md(G)\}$
- $md([a]F) = md(\langle a \rangle F) = md(F) + 1$

Idea: a formula F can "see" only upto depth md(F).

Theorem (let F be a HM formula and k = md(F))

If the defender has a winning strategy in the strong bisimulation game from s and t up to k rounds, then $s \models F \iff t \models F$.

Conclusion

There is no Hennessy-Milner formula F that can detect a deadlock in an arbitrary LTS.

Temporal Properties not Expressible in HM Logic

- $s \models Inv(F)$ iff all states reachable from s satisfy F
- $s \models Pos(F)$ iff there is a reachable state which satisfies F

Fact

Properties Inv(F) and Pos(F) are not expressible in HM logic.

Temporal Properties not Expressible in HM Logic

- $s \models Inv(F)$ iff all states reachable from s satisfy F
- $s \models Pos(F)$ iff there is a reachable state which satisfies F

Fact

Properties Inv(F) and Pos(F) are not expressible in HM logic.

Let $Act = \{a_1, a_2, \dots, a_n\}$ be a finite set of actions. We define

- $\langle Act \rangle F \stackrel{\text{def}}{=} \langle a_1 \rangle F \vee \langle a_2 \rangle F \vee \ldots \vee \langle a_n \rangle F$
- $[Act]F \stackrel{\text{def}}{=} [a_1]F \wedge [a_2]F \wedge \ldots \wedge [a_n]F$

$$\begin{aligned} & \textit{Inv}(F) \equiv F \wedge [\textit{Act}]F \wedge [\textit{Act}][\textit{Act}]F \wedge [\textit{Act}][\textit{Act}][\textit{Act}]F \wedge \dots \\ & \textit{Pos}(F) \equiv F \vee \langle \textit{Act}\rangle F \vee \langle \textit{Act}\rangle \langle \textit{Act}\rangle F \vee \langle \textit{Act}\rangle \langle \textit{Act}\rangle \langle \textit{Act}\rangle F \vee \dots \end{aligned}$$

• no deadlock = $Inv(\langle Act \rangle tt)$

Infinite Conjunctions and Disjunctions vs. Recursion

Problems

- Infinite formulae are not allowed in HM logic
- Infinite formulae are difficult to handle

Why not to use recursion?

- Inv(F) expressed by $X \stackrel{\text{def}}{=} F \wedge [Act]X$
- Pos(F) expressed by $Y \stackrel{\text{def}}{=} F \lor \langle Act \rangle Y$

Question: How to define the semantics of such equations?

• Want sets $[X], [Y] \subseteq 2^{Proc}$

Solving Equations is Tricky

Equations over Natural Numbers $(n \in \mathbb{N})$

```
n = 2 * n one solution n = 0
```

n = n + 1 no solution

n = 1 * n many solutions (every $n \in \mathbb{N}$ is a solution)

Equations over Sets of Integers $(M \in 2^{\mathbb{N}})$

$$M = (\{7\} \cap M) \cup \{7\}$$
 one solution $M = \{7\}$

 $M = \mathbb{N} \setminus M$ no solution

 $M = \{3\} \cup M$ many solutions (every $M \supseteq \{3\}$)

What about Equations over Processes?

$$X \stackrel{\text{def}}{=} [a] \text{ff} \lor \langle a \rangle X \quad \Rightarrow \quad \text{find } S \subseteq 2^{Proc} \text{ s.t. } S = [\cdot a \cdot] \emptyset \cup \langle \cdot a \cdot \rangle S$$

General Approach – Lattice Theory

Problem

For a set *D* and a function $f: D \to D$, for which elements $x \in D$ do we have

$$x = f(x)$$
?

Such elements are called fixed points.

Theorem (Tarski)

Let (D, \sqsubseteq) be a complete lattice and let $f: D \to D$ be a monotonic function. Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} = \sqcup \{x \in D \mid x \sqsubseteq f(x)\}$$

$$z_{min} = \sqcap \{x \in D \mid f(x) \sqsubseteq x\}$$

Partially Ordered Sets

Partially ordered set

A partially ordered set (or simply a partial order) is a pair (D, \sqsubseteq) such that

- D is a set
- $\sqsubseteq \subseteq D \times D$ is a binary relation on D which is
 - reflexive: $\forall d \in D$. $d \sqsubseteq d$
 - antisymmetric: $\forall d, e \in D. \ d \sqsubseteq e \land e \sqsubseteq d \Rightarrow d = e$
 - transitive: $\forall d, e, f \in D$. $d \sqsubseteq e \land e \sqsubseteq f \Rightarrow d \sqsubseteq f$

Monotonic Functions

A function $f: D \rightarrow D$ is called monotonic if

$$d \sqsubseteq e \Rightarrow f(d) \sqsubseteq f(e)$$

for all $d, e \in D$.

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \subseteq d$) iff $x \subseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Supremum and Infimum

Upper/Lower Bounds (Let $X \subseteq D$)

- $d \in D$ is an upper bound for X (written $X \sqsubseteq d$) iff $x \sqsubseteq d$ for all $x \in X$
- $d \in D$ is a lower bound for X (written $d \sqsubseteq X$) iff $d \sqsubseteq x$ for all $x \in X$

Least Upper Bound and Greatest Lower Bound (Let $X \subseteq D$)

- $d \in D$ is the least upper bound (supremum) for $X (\sqcup X)$ iff
 - **○** *X* \sqsubseteq *d*
- $d \in D$ is the greatest lower bound (infimum) for $X (\sqcap X)$ iff

Complete Lattices and Tarski's Theorem

Complete Lattice

A partially ordered set (D, \sqsubseteq) is called a complete lattice iff $\sqcup X$ and $\sqcap X$ exist for all $X \subseteq D$.

Theorem (Tarski)

Let (D, \sqsubseteq) be a complete lattice and let $f : D \to D$ be a monotonic function.

Then f has a unique largest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} \stackrel{\text{def}}{=} \sqcup \{x \in D \mid x \sqsubseteq f(x)\}$$

$$z_{min} \stackrel{\mathrm{def}}{=} \sqcap \{x \in D \mid f(x) \sqsubseteq x\}$$

Computing Fixed Points on Finite Lattices

Let (D, \sqsubseteq) be a complete lattice and $f: D \to D$ monotonic. Let $f^1(x) \stackrel{\text{def}}{=} f(x)$ and $f^n(x) \stackrel{\text{def}}{=} f(f^{n-1}(x))$ for n > 1, i.e.,

$$f^n(x) = \underbrace{f(f(\ldots f(x)\ldots))}_{n \text{ times}}.$$

Theorem

If D is a finite set then there exist integers M, m > 0 such that

- $z_{max} = f^{M}(\top)$
- $z_{min} = f^m(\bot)$

Idea (for z_{min}): The following sequence stabilizes for any finite D

$$\bot \sqsubseteq f(\bot) \sqsubseteq f(f(\bot)) \sqsubseteq f(f(f(\bot))) \sqsubseteq \cdots$$