

2nd AIAA Drag Prediction Workshop TAU Results

O. Brodersen¹⁾, M. Rakowitz¹⁾, M. Sutcliffe²⁾

1) DLR, Institute of Aerodynamics and Flow Technology, Braunschweig, Germany
2) Airbus Deutschland, Bremen, Germany

Numerical Method

- DLR-TAU software solves RANS equations
- Node-centered, hybrid grids, dual grids
- Various discretization schemes, turbulence models
- Grid adaptation
- Acceleration techniques, vectorized, parallelized
- Grids generated with Centaur from Centaursoft
- TAU was developed in the German MEGAFLOW project

Nacelle pressure distribution

60°

Nacelle pressure distribution

180°

Nacelle pressure distribution

300°

0.03

Case 1: Influence of Grid Density

ΔC_D extrapolated

Code	WB	WBNP
TAU	-2.3%	-2.4%
elsA	+1.0%	+0.9%

elsA (ICEM grids used; grids not suitable for grid refinement!)

→ Geometry influences trailing edge separation

→ Geometry influences trailing edge separation

Case 1: Flow Phenomena

Case 2: Drag Coeffcients

Case 2: Moment Coefficients

Case 3: Comparison with transition / fully turbulent

Case 3: Comparison with transition / fully turbulent

Conf.	C_D	C_{D}	ΔC_D
	Trans.	Turb.	
WB	287.4	282.1	5.3
WBNP	330.6	329.0	1.6

Case 3: Comparison with transition / fully turbulent

F6 wbnp nacelle 300 deg cut

Brodersen , Rakowitz, Sutcliffe ———

Case 4: Mach Drag Rise

DLR-F6 Cases: Installation drag

(AIAA-Journal Vol. 39, No. 6, Nov-Dec 2002)

C _{D-Install.}	Exp.	TAU
L1 – L2	10.7	11.8
L2 – L3	3.0	2.3

Summary

- Hybrid method (TAU & Centaur) is able to predict drag for DLR-F6 within a range of 5-8% (C_I =0.5)
- Grid adaptations are necessary to reduce discretization errors
- Flow phenomena have to be computed correctly to ensure drag prediction
- Trailing edge geometry of DLR-F6 has an influence on wing upper side flow separations
- Wing lower side transition is of importance
- Drag differences of 1-2 dc can be computed when errors are systematic
- Remaining questions: transition, trailing edge effects