Anticipez les besoins en consommation électrique de bâtiments

Soutenance de projet

Nicolas FAUCONNIER Parcours Ingénieur ML 31/01/2022

Seattle

Plan

Problématique

Projet et missions

2.

Data Cleaning

Nettoyage et pré-sélection des données

3.

Analyse exploratoire

Analyse univariée et multivariée

4.

Feature Engineering

Création de nouvelles variables et pipeline de pré-processing

5

Modélisation

Entrainement et évaluation des modèles

1. Problématique

Projet et missions

1. Problématique

Contexte

La ville de Seattle mène différentes études afin d'atteindre son objectif de ville neutre en émissions de carbone en 2050. La prédiction des émissions de gaz à effet de serre et de la consommation des bâtiments de la ville seraient utiles pour atteindre cet objectif. Cela permettrait également de diminuer les coûts liés aux relevés de consommation.

Missions

- Réaliser une courte analyse exploratoire des données
- Tester différents modèles de prédiction, sélectionner et optimiser les plus performants
- Juger de l'intérêt de l'ENERGYSTARScore comme variable explicative des émissions de gaz à effet de serre

2. Data Cleaning

Nettoyage et présélection des variables explicatives pertinentes pour la modélisation

Dataset

Caractéristiques techniques de bâtiments de la ville de Seattle, pour les années 2015 et 2016. Données issues du permis d'exploitation commerciale.

Le dataset spécifiquement utilisé ici est hébergé sur Kaggle au lien suivant: https://www.kaggle.com/city-of-seattle/

Aussi disponible sur la plateforme opendata de Seattle.

- 2 .csv, pour un total de 3Mb
- ~3300 lignes et ~47 colonnes par année

Données

- Informations sur les consommations d'énergie
- Nature du bâtiment: différents types d'usages
- Surfaces: total, par type d'usage, parking
- Données de localisation: quartier, Zipcode, longitude et latitude
- Autres: commentaires, est un outlier, année de construction, année du relevé

Data Cleaning

- Suppression des colonnes non exploitables ou inutiles: commentaires, adresses, données inconnues sans descriptions ou trop éparses
- Suppression des colonnes redondantes: différentes unités d'une même mesure, données normalisées (selon la surface et les variations de températures annuelles)
- Harmonisation des colonnes entre 2015 et 2016: noms, dtypes, extraction des longitudes et latitudes d'une colonne en .json dans le dataset de 2015

Data Cleaning

Harmonisation des catégories

Suppression des outliers indiqués dans le dataset

Valeurs incohérentes: valeurs négatives, incohérence des surfaces

Data Cleaning

Surfaces par type d'usage:

- Fill par 0 des usages 2 et 3
- création de la catégorie « None » quand XLargestUsage = NaN

Suppression de l'année 2015:

- Valeurs quasi-identiques avec 2016, et constitue presque la totalité des observations
- Pas de déséquilibre dans le training pour les quelques observations uniques
- → 1622 observations

(Nb. Pas de doublons sur la même année)

3. Analyse exploratoire

Analyse univariée et multivariée

Analyse univariée

Beaucoup de variables quantitatives ont une majorité de valeur proche de zéro:

SiteEnergyUse(kBtu)

Notamment les variables à prédire:

Considération de la log-transformation

Analyse univariée

Aucune variable catégorielle n'est également

distribuée

count

Analyse bivariée

Les deux variables à expliquer sont corrélées avec de nombreuses features.

La corrélation négative et forte entre la consommation/proportion de gaz et d'électricité suggère qu'un type d'énergie se soustrait à l'autre dans la plupart des cas.

Analyse bivariée

Le type d'usage semble avoir un lien avec les variables à expliquer, pas la localisation:

4. Feature Engineering

Création de nouvelles variables et pipeline de préprocessing

Création de nouvelles variables

Pivot des types d'usages (et déduction du 4ème usage le plus important quand c'est possible)

Age de la propriété

Variables Dummies:

- Plus d'un bâtiment
- Plus d'un étage
- Plus d'un usage
- Possède un parking

Pipeline de pré-processing

5. Modélisation

Entrainement et évaluation des modèles

Features et transformations

Features en commun: Surface intérieure, âge de la propriété

Combinaisons de features testées:

- Nombre de bâtiments, d'étages et surface du parking <u>VS</u>. leurs dummies
- Longitude et latitude <u>VS</u>. Neighborhood
- LargestUsage, sa surface et dummy plus d'un usage <u>VS</u>. surfaces pivotées
- ENERGYSTARScore; avec VS. Sans

Transformations:

- OneHotEncoding
- StandardScaler
- Log-transformation puis StandardScaler (testé avec ou sans)

Modèles

- Regression linéaire → Baseline
- Regression Ridge
- Regression Lasso
- Regression ElasticNet
- SVM
- RandomForestRegressor
- XGBRegressor

GHGEmissions: Recherche du meilleur modèle

36

165

180

181

27

10

24

25

Ridge(random state=1337)

Ridge(random state=1337)

LinearRegression()

LinearRegression()

LinearRegression()

LinearRegression()

LinearRegression()

XGBRegressor(random state=1337)

XGBRegressor(random state=1337)

XGBRegressor(random state=1337)

Fonction testant toutes les combinaisons de Feature x Transformation x Modèle sur le

training test (20% du dataset) par Cross-Validation (k=5)							
	Model	label	Log Transformation	neg_mean_absolute_error	fit_time		
60	Ridge(random_state=1337)	Dummies_Lon_lat_LargestUsage_ENERGYSTARScore	1.0	-7.124000e-01	0.0030		

du datast	et) par Gross-validation (k=5))		
Model	label	Log Transformation	neg_mean_absolute_error	fit
_state=1337)	Dummies_Lon_lat_LargestUsage_ENERGYSTARScore	1.0	-7.124000e-01	(

0.0092

0.0112

0.0040

0.2082

0.2056

0.2046

0.0222

0.0122

0.0522

0.0214

0.0228

-7.184000e-01

-7.184000e-01

-7.188000e-01

-7.232000e-01

-7 246000e-01

-3 464497e+11

-3.896742e+11

-1.155827e+12

-2.480234e+12

-2.601300e+12

1.0

1.0

0.0

1.0

0.0

1.0

0.0

1.0

1.0

0.0

aining test (20% du dataset) par Cross-Validation (K=5)							
	Model	label	Log Transformation	neg_mean_absolute_error	fit		
	Ridge(random_state=1337)	Dummies_Lon_lat_LargestUsage_ENERGYSTARScore	1.0	-7.124000e-01			
	Pidge(random_state=1337)	Dummies Neighborhood Largest Isage ENERGYSTARScore	1.0	-7 13/1000e-01			

Continues Neighborhood LargestUsage ENERGYSTAR...

Continues Neighborhood LargestUsage ENERGYSTAR...

Dummies Neighborhood LargestUsage ENERGYSTARScore

Dummies Neighborhood LargestUsage ENERGYSTARScore

Continues Lon lat LargestUsage ENERGYSTARScore

Dummies Lon lat UGFA No ENERGYSTARScore

Dummies Lon lat UGFA No ENERGYSTARScore

Continues Lon lat UGFA No ENERGYSTARScore

Dummies Lon lat UGFA ENERGYSTARScore

Dummies Lon lat UGFA ENERGYSTARScore

GHGEmissions: Régression Ridge

Recherche de la meilleure valeur d'alpha par GridSearch et CV, puis évaluation :

name alpha mean test score mean score time

		param_aipna	mean_test_score	mean_score_time
	5	1.25	-0.712286	0.000713
	6	1.4	-0.712333	0.000725
['PropertyGFATotal',	4	1.1	-0.712342	0.000748
'PropertyGFABuilding(s)',	3	1	-0.712390	0.000729
'Age', 'MoreThanOneBuilding',	7	1.5	-0.712443	0.000775
'MoreThanOneFloor', 'HasParking',	2	0.9	-0.712499	0.000769
'Longitude',	1	0.75	-0.712751	0.000897
'Latitude', 'LargestPropertyUseType',	8	2	-0.713186	0.000982
'LargestPropertyUseTypeGFA' 'MoreThanOneUse',	0	0.5	-0.713468	0.000882
'ENERGYSTARScore']	9	10	-0.727478	0.000689
	10	100	-0.791326	0.000712
	11	1000	-0.876194	0.000680

MAE = 0.727 échelle log, sur set de validation

MAE à l'échelle = 1.069 Tonnes de C02

GHGEmissions: XGBoost

Recherche des meilleurs hyperparamètres par GridSearch et CV, puis évaluation :

```
param_learning_rate param_max_depth param_n_estimators param_reg_alpha param_reg_lambda mean_test_score mean_fit_time
                     0.1
                                                                                                1.3
                                                                                                            -0.706054
                                                                                                                            0.618665
                     0.1
                                                                                                            -0.706674
                                                                                                                            0.801353
                                                           200
                                                                                                1.3
111
                    0.15
                                                           150
                                                                               0
                                                                                                1.1
                                                                                                            -0.708083
                                                                                                                            0.473094
127
                    0.15
                                                                                                1.3
                                                                                                            -0.708127
                                                                                                                            0.422218
19
                     0.1
                                                                              0.5
                                                                                                1.3
                                                                                                            -0.708484
                                                                                                                            0.655359
```

```
['PropertyGFATotal',
  'PropertyGFABuilding(s)',
  'Age',
  'NumberofBuildings',
  'NumberofFloors',
  'PropertyGFAParking',
  'Neighborhood',
  'LargestPropertyUseType',
  'LargestPropertyUseTypeGFA',
  'MoreThanOneUse'.
```

'ENERGYSTARScore']

```
parameters = {
        'n_estimators': [50, 100, 150, 200],
        'learning_rate': [0.1, 0.15, 0.3],
        'max_depth': [3, 4, 5, 6],
        'reg_alpha': [0.5, 0],
        'reg_lambda': [1.1, 1.3, 1.5]
}
```


MAE = 0.760 (vs. 0.727) échelle log, sur set de validation

MAE à l'échelle = 1.138 Tonnes de C02

GHGEmissions: Intérêt de l'ENERGYSTARScore

Entrainement d'une régressions Ridge avec le même alpha (1.25) et les mêmes features, mais <u>SANS</u> l'ENERGYSTARScore:

MAE avec ENERGYSTARScore = 0.727

MAE sans ENERGYSTARScore = 0.761

I'ENERGYSTARSCore est une feature utile!

SiteEnergyUse: Recherche du meilleur modèle

Même démarche: test de toutes les combinaisons de Feature x Transformation x Modèle sur le training test par Cross-Validation, **SANS l'ENERGYSTARScore** (data leakage)

Featur	es Log Transformation	Model	R²	fit_time	label	neg_mean_absolute_error	neg_mean_absolute_percentage_error	neg_mean_squared_error
30 [PropertyGFATotal, PropertyGFABuilding(s), Age	9 1.0	Ridge(random_state=1337)	4.856000e-01	0.0080	Dummies_Lon_lat_LargestUsage	-6.202000e-01	-3.450100e+14	-1.598400e+00
22 [PropertyGFATotal, PropertyGFABuilding(s), Age	e 1.0	Ridge(random_state=1337)	4.848000e-01	0.0030	Continues_Lon_lat_LargestUsage	-6.204000e-01	-3.446441e+14	-1.598400e+00
95 [PropertyGFATotal, PropertyGFABuilding(s), Age	e 0.0	XGBRegressor(random_state=1337)	4.400000e-01	0.1852	Dummies_Lon_lat_LargestUsage	-6.274000e-01	-3.514656e+14	-1.731000e+00
94 [PropertyGFATotal, PropertyGFABuilding(s), Age	9 1.0	XGBRegressor(random_state=1337)	4.400000e-01	0.1830	Dummies_Lon_lat_LargestUsage	-6.274000e-01	-3.514656e+14	-1.731000e+00
83 [PropertyGFATotal, PropertyGFABuilding(s), Age	e 0.0	XGBRegressor(random_state=1337)	4.532000e-01	0.1956	Continues_Neighborhood_LargestUsage	-6.286000e-01	-3.501257e+14	-1.685200e+00
1 [PropertyGFATotal, PropertyGFABuilding(s), Ag	e 0.0	LinearRegression()	-8.025323e+24	0.0168	Continues_Neighborhood_UGFA	-2.798725e+11	-3.616580e+14	-1.617929e+25
5 [PropertyGFATotal, PropertyGFABuilding(s), Ag	e 0.0	LinearRegression()	-1.816020e+25	0.0144	Continues_Lon_lat_UGFA	-4.160329e+11	-3.572319e+14	-4.396692e+25
13 [PropertyGFATotal, PropertyGFABuilding(s), Ag	e 0.0	LinearRegression()	-1.249242e+26	0.0082	Dummies_Lon_lat_UGFA	-5.379766e+11	-3.549054e+14	-2.106209e+26
4 [PropertyGFATotal, PropertyGFABuilding(s), Ag	e 1.0	LinearRegression()	-3.508557e+25	0.0090	Continues_Lon_lat_UGFA	-7.274076e+11	-3.600080e+14	-1.057333e+26

→ La régression Ridge avec log-transformation surperforme des modèles non linéaires

SiteEnergyUse : Régression Ridge

Recherche de la meilleure valeur d'alpha par GridSearch et CV, puis évaluation :

'PropertyGFATotal',
'PropertyGFABuilding(s)',
'Age',
'MoreThanOneBuilding',
'MoreThanOneFloor',
'HasParking',
'Longitude',
'Latitude',
'LargestPropertyUseType',
'LargestPropertyUseTypeGFA'
'MoreThanOneUse']

	param_alpha	mean_test_score	mean_score_time
9	2.5	-0.618393	0.000754
8	2	-0.618708	0.000865
7	1.5	-0.619337	0.000716
6	1.4	-0.619505	0.000671
5	1.25	-0.619785	0.000684
4	1.1	-0.620085	0.000662
3	1	-0.620313	0.000741
2	0.9	-0.620575	0.001112
1	0.75	-0.621070	0.000998
0	0.5	-0.622088	0.001228

15.0

7.5 5.0 2.5

5.0 7.5

MAE = 0.713

R² très faible (0.365)

Pistes d'amélioration

- Obtenir plus d'observations
- Obtenir plus de features
- Méthode de sélection des features plus avancée (LOFO)
- Enjeux de qualité des données

Merci

Avez-vous des questions?