NP	Networks and Protocols (NP)	Prof. Dr. A. Grebe
CCNA ITN	Introduction to Networks (ITN)	

CCNA ITN Lab 2 Homework Deadline: 7.12.

Name: Shabnaz Khanam

IPv4 Subnetting Basic IPv4 and IPv6 LAN Router and Switch Configuration TFTP Server

NP Course NP Chapter 4-5

PrepExam: ITN Module Group Exams 8-10

ITN Module Group Exams 11-13

Homework / Preparation

Part 1: Cisco IOS Basic Configuration Commands

- a. Read the Lab Instructions of this Lab
- b. Check the IOS Command List, provided for the Labs.
- c. Which IOS commands are necessary to configure the following tasks?
 - Enter the privileged mode from startup mode. Router>enable
 - Enter the configuration (EXEC) mode from terminal. Router#configure terminal
 - Set the hostname to R1. Router(config)# hostname R1
 - Disable DNS lookup. **R1(config)#no** ip domain- lookup
 - Assign class the EXEC encrypted password Enable secret class
 - Configure global password encryption.
 - Return from configuration (EXEC) mode: exit
 - Assign cisco the console password and enforce login and set logging synchronous to prevent console messages from interrupting command entry.

R1(config)# line

console 0

R1(config-line)#

password cisco

R1(config-line)#

login

R1(config-line)#

R1(config-line)#exit

- Use vty (Telnet) lines 0-4, assign **cisco** as the vty (Telnet) password and enforce login.

R1(config)#

Line vty 0 4

R1(config-line)#

Password cisco

R1(config-line)#

login

R1(config-line)#exit

- Create a banner that will warn anyone accessing the device that unauthorized access is prohibited.

R1(config)#banner motd #message#

- Save the running configuration to the startup configuration file.

R1(config)#copy running-config startup-config

Display the running configuration.
 R1(config)#show startup-config

- Display the status of all interfaces in brief. R1(config)#

Show interfaces status

NP	Networks and Protocols (NP)	Prof. Dr. A. Grebe
CCNA ITN	Introduction to Networks (ITN)	

Part 2: Calculate IPv4 Subnets

Step 1: Network Topology A

Given is the following network topology.

PC-A is in subnet A with **208 hosts** in total.

PC-B is in subnet B with 98 hosts in total.

Calculate the appropriate minimum sized subnets.

- a. How many IP subnets are given in the topology in total? 2
- b. Which subnet mask is used in network A?255.255.255.0
- c. Which subnet mask is used in network B?255.255.255.128

Plan the subnets with private IP addresses in the IP address range of 192.168.0.0 / 16. Design your subnet addressing scheme (decimal) starting with network A. The network addresses shall be consecutive without any gap in the used address space.

Subnet Number	Subnet IP Address	First Usable Host IP Address	Last Usable Host IP Address	Broadcast IPAddress
A	192.168.0.0/24	192.168.0.1/24	192.168.0.254/24	192.168.0.255/24
В	192.168.1.0/25	192.168.1.1/25	192.168.1.126/25	192.168.1.127/25

Step 2: Network Topology B

Given is the following network topology. You have been given the private IP address space 172.16.0.0/24.

PC-A and PC-B are in a subnet with 48 hosts.

The subnet between the router R1 and R2 has no additional hosts.

Plan your subnets with the following rules:

- Subnets shall have a minimum size needed to support all IP addresses in that subnet

Page 3 of 5

- Subnets shall be planned form the largest to the smallest one
- Subnet addresses shall be consecutive without any address space gap
- a. How many IP subnets are in the topology in total? 2
- b. How many "0" bits in the subnet mask are needed for the largest subnet?6
- c. Which subnet mask is used in the largest subnet (decimal)?255.255.255.192
- d. How many "0" bits in the subnet mask are needed for the second largest subnet?2
- e. Which subnet mask is used in that subnet (decimal)?255.255.255.252

Design your subnet addressing scheme (decimal).

Subnet Number	Subnet IP Address	First Usable Host IP Address	Last Usable Host IP Address	Broadcast IP Address
A	172.16.0.0/26	172.16.0.1/26	172.16.0.62/26	172.16.0.63/26
В	172.16.0.64/30	172.16.0.65/30	172.16.0.66/30	172.16.0.67/30

Step 3: Network Topology C

The network topology C is illustrated in the following topology. Use the **192.168.10.0/24** network address range to provide addresses to the network devices, and then design a new addressing scheme to support the additional network requirement.

NP	Networks and Protocols (NP)	Prof. Dr. A. Grebe
CCNA ITN	Introduction to Networks (ITN)	

b. In the following table you find the number of host IP addresses per subnet.

Subnet	Number of hosts	Number of router IPs	Subnet mask	Maximum hosts IP addresses
Subnet PC-A, PC-B	101	1	255.255.255.128	126
Subnet PC-C	42	1	255.255.255.192	62
Subnet R1-R2	0	2	255.255.255.252	2
Subnet R2-R3	0	2	255.255.255.252	2

- c. Plan your subnets according to the following rules:
 - Subnets shall have a minimum size needed to support all IP addresses in that subnet
 - Subnets shall be planned form the largest to the smallest one
 - Subnet addresses shall be consecutive without any address space gap

Fill the following table with the subnet information:

Subnet Number	Subnet IP Address	First Usable Host IP Address	Last Usable Host IP Address	Broadcast IP Address
1	192.168.10.0/25	192.168.10.1/25	192.168.10.126/25	192.168.10.127/25
2	192.168.10.128/26	192.168.10.129/26	192.168.10.190/26	192.168.10.191/2
3	192.168.10.192/30	192.168.10.193/30	192.168.10.194/30	192.168.10.195/30
4	192.168.10.196/30	192.168.10.197/30	192.168.10.198/30	192.168.10.199/30

How many IP addresses from the given IP address range 192.168.10.0/24 have not been assigned to any subnet?

Part 3: IPv6 Addresses

a. Which 2 types of IPv6 addresses must be configured on an IPv6 interface?

Anycast and

multicast

b. Given is the IPv6 global prefix **2001:638:402:1303 / 64** and the IPv6 host address **::100 / 64** Create the global unicast IPv6 address and the link-local unicast IPv6 address for that interface:

Global unicast: 2001:638:402:1303:100 / 64

Link-local unicast: FE80:100 / 64