Email training, N5 October 9-16

Problem 5.1. Let $a^2 + b^2 > a + b$ with a > 0 and b > 0. Prove that

$$a^3 + b^3 > a^2 + b^2$$
.

Problem 5.2. Let the sequence x_n is given such that $0 < x_1 < 1$ and $x_{k+1} = x_k - x_k^2$ for all $k \ge 1$. Prove that for all n one has

$$x_1^2 + x_2^2 + \ldots + x_n^2 < 1.$$

Problem 5.3. Find the maximum value of expression $\sqrt{x^2 + y^2}$ if it's known that

$$\{-4 \le y - 2x \le 2, \ 1 \le y - x \le 2\}.$$

Problem 5.4. Prove that for any numbers a, b, c > 0 the following inequality holds

$$\frac{a}{bc} + \frac{b}{ca} + \frac{c}{ab} \ge \frac{2}{a} + \frac{2}{b} - \frac{2}{c}.$$

Problem 5.5. Prove the inequality

$$\sqrt{a+1} + \sqrt{2a-3} + \sqrt{50-3a} \le 12.$$

Problem 5.6. Let the parabola $y = x^2 + px + q$ is given, which intersects coordinate axes in 3 different points. Consider the circumcircle of the triangle having vertices these 3 points. Prove that there is a point that belongs to that circle, regardless of values p and q. Find that point.

Problem 5.7. -

 \triangle ABC is an isosceles triangle with AB = AC = $\underline{2}$. There are 100 points

$$P_1 + P_2 + \dots + P_{100}$$
 on the side BC. Write $m_i = A P_i^2 + B P_i \times P_i C (i = 1, 2, 3, \dots, 100)$.

Find the value of $m_1 + m_2 + \dots + m_{100}$.

Problem 5.8. -

Let a and b be two sides of a triangle. How Should the third side c be chosen so that the points of contact of the incircle and excircle with side c divide that side into three equal segments? (The excircle corresponding to the side c is the circle which is tangent to the side c and the extensions of the sides a and b.)

Solution submission deadline October 16, 2022