Pengaruh Parameter Meteorologi terhadap Kedalaman Lapisan Campuran (*Mixed Layer Depth*) di Perairan Aceh

Proposal TESIS

Diajukan untuk melengkapi tugas-tugas dan Memenuhi syarat-syarat guna pelaksanaan penelitian Tesis

Oleh:

MUH. NUR HIDAYAT 2108201010005

PROGRAM STUDI MAGISTER MATEMATIKA PROGRAM PASCASARJANA UNIVERSITAS SYIAH KUALA DARUSSALAM, BANDA ACEH 2022

PENGESAHAN

Judul Tesis : Pengaruh Parameter Meteorologi terhadap Kedalaman

Lapisan Campuran (Mixed Layer Depth) di Perairan Aceh

Nama Mahasiswa : Muh. Nur Hidayat NPM : 2108201010005 Program Studi : Magister Matematika

C

Menyetujui Komisi Pembimbing

Pembimbing Utama, Pembimbing Pendamping,

<u>Prof. Dr. Ir. Syamsul Rizal</u> <u>NIP. 196101221987031003</u>

<u>Prof. Dr. Marwan Ramli, S.Si.,M.Si.</u> <u>NIP. 197111251999031003</u>

Mengetahui:

Dekan Fakultas MIPA Ketua Prodi Magister Matematika FMIPA

Universitas Syiah Kuala, Universitas Syiah Kuala,

Prof. Dr. Teuku Mohamad Iqbalsyah, S.Si,M.Sc.

Dr. Dra. Intan Syahrini, M.Si

NJB 10711010107021002

NIP. 197110101997031003 NIP. 196409081991022001

KATA PENGANTAR

Puji syukur kehadirat Allah SWT yang telah melimpahkan nikmat karunia-Nya sehingga proposal penelitian yang berjudul **Pengaruh Parameter Meteorologi terhadap Kedalaman Lapisan Campuran** (*Mixed Layer Depth*) **di Perairan Aceh** dapat terselesaikan dengan baik. Penelitian ini dilakukan untuk memenuhi salah satu syarat dalam memperoleh gelar Magister pada Program Studi Matematika, Universitas Syiah Kuala.

Penyusunan proposal penelitian ini tidak terlepas dari bantuan tim pembimbing. Oleh karena itu, ucapan terima kasih disampaikan kepada pihak-pihak tersebut.

Proposal penelitian ini tidak terlepas dari segala kekurangan, baik dalam hal penulisan maupun pembahasan dari topik penelitian. Oleh sebab itu, diperlukan saran demi penyusunan penelitian yang lebih baik. Semoga penelitian dapat memberi manfaat bagi pembaca untuk melaksanakan penelitian selanjutnya.

Banda Aceh, Agustus 2022

Penulis

RINGKASAN

Samudera Hindia adalah samudera terbesar ketiga di dunia, meliputi sekitar 19.8% dari total volume lautan dan merupakan lautan yang sangat berpengaruh bagi ekosistem di Bumi. Cakupan wilayah dari Samudera Hindia termasuk di dalamnya Teluk Benggala (Bay of Bengal (BoB)), Laut Andaman, Selat Malaka, dan Perairan Aceh. Dengan cakupan wilayah yang begitu luas, Samudera Hindia merupakan penyumbang besar bagi sistem iklim dunia dan oleh karena itu sangat penting untuk dapat diprediksi. Pengembangan model kelautan berusaha untuk menggambarkan iklim global dengan cukup baik disertai dengan pengamatan. Namun, variabilitas spasial dan temporal perlu dipahami untuk prediksi yang lebih baik. Kajian mengenai kontribusi parameter meteorologi: 2m air temperature, 2m specific humidity, convective precipitation rate, sea level pressure, wind stress U, dan wind stress V terhadap variabilitas MLD menggunakan data output model resolusi tinggi untuk jangka panjang belum pernah dilakukan sebelumnya khususnya untuk wilayah perairan Aceh, oleh karena itu penelitian ini bertujuan untuk menginyestigasi MLD berdasarkan parameter meteorologi yang telah disebutkan sebelumnya. Analisis dengan model iklim ditekankan sebagai verifikasi untuk observasi MLD yang dilakukan pada sampel stasiun wilayah peneltian. Pada akhirnya, dari hasil analisis yang dilakukan akan diperoleh hubungan antara parameter meteorologi dan MLD. Penelitian ini diharapkan mampu memberikan kontribusi ilmiah dan memperkaya pengetahuan tentang kedalaman lapisan campuran. Hal ini karena kedalaman lapisan campuran berperan penting secara iklim fisik dalam hal menentukan interval kisaran temperatur di wilayah laut dan pesisir. Sebagai tambahan, panas yang tersimpan dalam lapisan campuran menyediakan sumber panas yang mendorong variabilitas global seperti El Niño. Kedalaman lapisan campuran juga berperan dalam menentukan tingkatan rata-rata cahaya yang dapat dilihat oleh organisme laut seperti fitoplankton. Selain itu, dari periodesitas model iklim yang diperoleh akan bermanfaat untuk tujuan fishing ground, mitigasi perubahan iklim dan bencana hidro-oseanografi, tata ruang dan konservasi laut, dan sumber energi terbarukan.

DAFTAR ISI

KATA P	PENGANTAR	iii			
RINGK	ASAN	iv			
DAFTA	R ISI	V			
DAFTAR TABEL vi					
DAFTA	R GAMBAR	vii			
BAB I	PENDAHULUAN	1			
1.1	Latar Belakang	1			
1.2	Rumusan Masalah	5			
1.3	Tujuan Penelitian	6			
1.4	Urgensi dan Kebaruan Penelitian	7			
1.5	Manfaat Penelitian	7			
1.6	Sistematika Penulisan	7			
BAB II	TINJAUAN PUSTAKA	8			
2.1	Persamaan Gerak Fluida	8			
2.2	Persamaan Primitif	10			
2.3	Arakawa C grid	11			
2.4	Model Iklim	13			
2.5	Kedalaman Lapisan Campuran	15			
BAB III	I METODOLOGI PENELITIAN	17			
3.1	Domain Penelitian	17			
3.2	Data Penelitian	18			
	3.2.1 Data Oseanografi	18			
	3.2.2 Data Meteorologi	19			
3.3	Prosedur Penelitian	20			
DAFTA	D DIICTAKA	21			

DAFTAR TABEL

Tabel 3.1	Stasiun Penelitian	18

DAFTAR GAMBAR

Gambar 2.1	(a) Ilustrasi partikel sebagai sifat fisis fluida, (b) Aliran massa jenis masuk dan keluar. Gambar direproduksi dari (Versteeg	
	& Malalasekera, 2007)	9
Gambar 2.2	Diskritisasi grid dalam Parcels. Di bidang horizontal: (a) grid persegi, (b) grid lengkung, di bidang vertikal: (c) grid level z,	
	(d) grid level s (Delandmeter & van Sebille, 2019)	12
Gambar 2.3	Grid Arakawa: (a) Grid A dan (b) Grid C (Delandmeter & van	
	Sebille, 2019)	13
Gambar 2.4	(a) Profil suhu laut terbuka yang khas untuk wilayah lintang tengah, menunjukkan lapisan campuran, termoklin yang curam, dan suhu yang relatif stabil di kedalaman, (b) Profil suhu representatif untuk daerah tropis, lintang tengah, dan kutub, dan (c) Di daerah beriklim sedang, lapisan campuran lebih dalam dan termoklin kurang menonjol di musim dingin dibandingkan dengan musim panas (Webb, 2021)	16
Gambar 3.1	Data batimetri domain perairan Aceh, dicuplik dari SRTM15+	17
Gambar 3.2	Diagram alir penelitian	20

BAB I PENDAHULUAN

1.1. Latar Belakang

Samudera Hindia adalah samudera terbesar ketiga di dunia, meliputi sekitar 19.8% dari total volume lautan (Eakins & Sharman, 2010) dan merupakan lautan yang sangat berpengaruh bagi ekosistem di Bumi. Cakupan wilayah dari Samudera Hindia termasuk di dalamnya Teluk Benggala (*Bay of Bengal* (BoB)), Laut Andaman, Selat Malaka, dan Perairan Aceh. Dengan cakupan wilayah yang begitu luas, Samudera Hindia merupakan penyumbang besar bagi sistem iklim dunia dan oleh karena itu sangat penting untuk dapat diprediksi. Pengembangan model kelautan berusaha untuk menggambarkan iklim global dengan cukup baik disertai dengan pengamatan. Namun, variabilitas spasial dan temporal perlu dipahami untuk prediksi yang lebih baik. Pemanasan matahari dan kekuatan angin bervariasi dalam ruang dan waktu yang akan tercermin dalam variabilitas lapisan campuran laut dan suhu permukaan. Oleh karena itu, peran gaya atmosfer lokal pada variabilitas lapisan campuran dan, karenanya, pada suhu permukaan laut menjadi fokus dari tesis ini.

Beberapa studi observasional dan pemodelan telah dilakukan untuk mempelajari pengaruh interaksi atmosfer-laut terhadap variabilitas suhu permukaan laut (SST), salinitas permukaan laut (SSS), klorofil-a (chl-a), kedalaman lapisan campuran (MLD) dan sirkulasi pada wilayah perairan Samudera Hindia, diantaranya adalah, pencampuran turbulen di lapisan atas BoB utara dipengaruhi oleh lapisan dangkal yang menutupi perairan asin teluk, yang dihasilkan dari arus besar air tawar dari sungai-sungai besar yang mengalir dari anak benua Asia dan dari curah hujan di atas teluk selama musim panas (Kantha et al., 2019). Karena BoB juga berbatasan dengan laut Arab, perbedaan sering terjadi pada musim dingin, yaitu upwelling dan konveksi musim dingin, yang meningkatkan biomassa fitoplankton di Laut Arab, tetapi sangat lemah atau bahkan tidak ada di BoB. Demikian pula, masukan nutrisi melalui aliran sungai ke BoB tidak cukup untuk meningkatkan stok fitoplankton di luar perairan (Jyothibabu et al., 2021). BoB memiki keunikan akibat instrusi air tawar dari curah hujan yang tinggi selama

musim panas sebagai hasil penetrasi insolasi matahari di kolom air (Kantha et al., 2019). Srivastava et al., 2018 mensimulasikan model tanpa gaya angin dekat permukaan, hasilnya adalah SST (*Sea Surface Temperature*) wilayah tersebut sangat meningkat di semua musim, sedangkan, tanpa adanya gaya radiasi gelombang pendek yang masuk, mereka mendapatkan hasil yang benar-benar berlawanan. Ditemukan bahwa pengaruh pemaksaan fluks air tawar pada SST wilayah tersebut sangat kecil. Ditemukan juga bahwa SSS (*Sea Surface Salinity*) laut Arab dan BoB menurun tanpa adanya gaya angin dekat permukaan dan radiasi gelombang pendek yang masuk, sedangkan di BoB utara meningkat tanpa adanya gaya fluks air tawar (Srivastava et al., 2018).

Adveksi lateral yang kuat dari air salinitas rendah mengarah pada pengembangan stratifikasi laut atas yang kuat (stratifikasi salinitas), yang dapat berdampak signifikan pada evolusi SST dan SSS dengan memodifikasi pencampuran di dekat permukaan. Fluks udara-laut tidak cukup untuk mensimulasikan evolusi SST dengan benar di BoB utara, dan bahwa penghitungan adveksi air tawar diperlukan untuk mengurangi kesalahan dalam SST (Buckley et al., 2020). Pendinginan SST yang nyata (sekitar $2.0-2.5^{\circ}$ C) dan peningkatan salinitas permukaan laut (~ 1 psu) di sisi kanan jalur topan. SST yang tinggi, TCHP (*tropical cyclone heat potential*) dan kedalaman lapisan isotermal yang dalam adalah kekuatan pemicu samudera utama untuk mengintensifkan siklon Titli (Akhter et al., 2022).

Pengaruh radiasi panas terhadap lapisan permukaan batas BoB tergantung pada variabel biologis (Chl-a atau Klorofil-a) dan fisik (panas). Pemanasan biologis 10 Wm⁻² akan menghasilkan pemanasan tambahan 0,008°C jam⁻¹ di laut bagian atas yang menunjukkan dampak signifikan dari peningkatan konsentrasi chl-a (Parida et al., 2022). Konsentrasi maksimum klorofil-a di permukaan dan di bawah permukaan atau *subsurface chlorophyll-a maximum* (SCM) lebih tinggi selama musim panas dan awal musim gugur dibandingkan musim lainnya, terutama di sepanjang wilayah pesisir dan bagian barat BoB. Selama musim panas dan awal musim gugur, masukan nutrisi sungai, intrusi air bergizi dari Laut Arab, dan upwelling pesisir adalah tiga pendorong dominan yang mengendalikan konsentrasi klorofil-a di permukaan dan SCM. Pengangkatan termoklin yang diinduksi oleh tegangan angin positif meningkatkan pasokan nutrisi dan dengan demikian secara signifikan meningkatkan konsentrasi klorofil-a di SCM di

sepanjang sisi barat teluk selama paruh kedua tahun ini. Selama musim semi, kedalaman eufotik yang dalam memainkan peran penting dalam mengendalikan konsentrasi dan kedalaman SCM (Chowdhury et al., 2021).

Kekuatan angin mempengaruhi secara simultan kondisi MLD. Presipitasi menunjukkan dampak tidak langsung pada MLD. Curah hujan membutuhkan waktu untuk mengumpulkan efek untuk mengubah keadaan MLD. Waktu yang diperlukan untuk presipitasi adalah dua bulan sebelum terjadi perubahan MLD (Ikhwan et al., 2022). Pendinginan terutama disebabkan oleh pencampuran hangat (32°C), tutupan segar yang terbentuk selama bulan-bulan sebelumnya dari angin sepoi-sepoi dan langit cerah, yang menyumbang sekitar setengah dari pendinginan. Fluks panas udara-laut memainkan peran sekunder, terhitung sekitar seperempat dari pendinginan. Kedalaman pencampuran didiagnosis dengan dua ukuran: kedalaman lapisan campuran tradisional dan "kedalaman pencampuran" yang didefinisikan sebagai kedalaman terdalam yang tidak stabil terhadap ketidakstabilan geser. Kedalaman pencampuran kira-kira dua kali (~ 65 m) dari kedalaman lapisan campuran (\sim 35 m), yang menggambarkan pentingnya "lapisan transisi" di antara mereka. Lapisan campuran diratifikasi kembali menjadi 2 lapisan dalam sehari setelah badai berakhir dengan gelombang frekuensi mendekati inersia yang ditimbulkan oleh badai Roanu meningkatkan laju pencampuran diapiknal pada kedalaman lapisan transisi (Kumar et al., 2019).

MLD secara signifikan terdampar di selatan garis lintang pantai timur India (EICC) yang terpisah, area yang didominasi oleh aktivitas pusaran antisiklon. Lapisan campuran yang lebih dangkal dan stratifikasi yang ditingkatkan dengan efek relative wind (RW) dikaitkan dengan dominasi isopiknal oleh kecepatan Ekman ke atas yang tidak normal, yang dengan sendirinya dihasilkan oleh interaksi arus permukaan antisiklonik dan angin monsun barat daya yang berlaku. Bagian barat daya BoB ini merupakan titik panas untuk pertukaran momentum antara sirkulasi permukaan dan angin monsun, sehingga merupakan area potensial untuk pengukuran lapangan terfokus untuk energetika sirkulasi laut dan interaksi udara-laut (Seo et al., 2019). MLD yang sebenarnya tidak hanya bergantung pada kecepatan angin, tapi salinitas juga berperan di teluk utara. Namun, ada perubahan yang dapat diabaikan dalam SST bahkan ketika MLD berubah secara signifikan karena termoklin dalam memisahkan perubahan MLD

dan SST. Sebaliknya, termoklin yang lebih dangkal di teluk barat membatasi potensi MLD, yang menyebabkan perubahan SST yang lebih besar. Gelombang Rossby upwelling (atau downwelling) pada dasarnya mengkondisikan laut bagian atas dengan mengurangi (atau meningkatkan) potensi MLD. Variasi SST melemah hanya ketika termoklin semakin dalam selama peristiwa downwelling, yang terjadi kemudian di teluk barat karena gelombang Rossby merambat ke barat (Jain et al., 2021).

Dampak angin kencang dirasakan pada kedalaman yang lebih besar untuk suhu daripada salinitas di seluruh domain; namun, dampaknya diwujudkan dengan distribusi vertikal yang berbeda di bagian utara daripada di bagian selatan Teluk. Seperti yang diharapkan, pencampuran yang ditingkatkan yang disebabkan oleh angin yang lebih kuat menurunkan (atau meningkatkan) suhu laut bagian atas (salinitas) sebesar 0.2°C (0.3 psu), dan melemahkan stratifikasi dekat-permukaan. Selain itu, angin yang lebih kuat meningkatkan aktivitas pusaran air, memperkuat arus batas barat musim semi dan meningkatkan upwelling pantai selama musim semi dan musim panas di sepanjang pantai timur India (Jana et al., 2018). Berdasarkan inversi termal, rata-rata profil BoB barat laut memiliki lapisan campuran yang lebih dalam (MLD 10.30 m) dan lapisan isotermal (ILD 8.40 m) dibandingkan profil di BoB timur laut. Lapisan penghalang di BoB barat laut juga lebih tebal (2.79 m) daripada di BoB timur laut (1.05 m). Salah satu alasan yang mungkin untuk perbedaan ini adalah masuknya air tawar besar-besaran di BoB barat laut, karena air tawar mengurangi salinitas (27 PSU di BoB barat laut versus 35 PSU di BoB timur laut) dan menghasilkan MLD dan ILD yang lebih dangkal (Masud-Ul-Alam et al., 2022). Stratifikasi dan lapisan depan lapisan campuran berkembang dalam skala waktu yang relatif singkat, kemungkinan sebagai respons terhadap kekuatan atmosfer yang kuat baik yang terkait dengan siklon tropis, kondisi monsun timur laut yang berkelanjutan, atau kombinasi keduanya (Shroyer et al., 2020).

Masuknya air tawar yang besar berkaitan erat dengan MLD yang dangkal, pembentukan lapisan penghalang yang tebal, dan sirkulasi yang kuat dan pembalikan suhu (Dandapat et al., 2020). Korelasi parsial menunjukkan bahwa fluks panas bersih (Qnet) adalah kontributor utama pendalaman MLD pada BoB utara, sedangkan tekanan angin mengontrol pendalaman atas BOB selatan. Variabilitas musiman menunjukkan pendalaman MLD selama monsun musim panas dan musim dingin dan pendangkalan selama

pra dan pasca monsun di atas BoB (Sadhukhan et al., 2021). Perubahan yang diamati pada MLD dengan jelas membatasi rezim utara-selatan yang berbeda dengan 15°LU sebagai garis lintang pembatas. Utara dari garis lintang ini MLD tetap dangkal (\sim 20 m) hampir sepanjang tahun tanpa menunjukkan musim yang berarti. Kurangnya musim menunjukkan bahwa air salinitas rendah, yang selalu ada di teluk utara, mengontrol stabilitas dan MLD. Penyegaran musim dingin yang diamati didorong oleh curah hujan musim dingin dan debit sungai terkait, yang didorong ke lepas pantai di bawah sirkulasi yang berlaku. Stratifikasi yang dihasilkan begitu kuat sehingga bahkan pendinginan 4°C pada suhu permukaan laut (SST) selama musim dingin tidak dapat memulai pencampuran konvektif. Sebaliknya, wilayah selatan menunjukkan variabilitas semi-tahunan yang kuat dengan MLD yang dalam selama musim panas dan musim dingin dan MLD yang dangkal selama musim semi dan musim gugur. MLD dangkal di musim semi dan musim gugur dihasilkan dari pemanasan primer dan sekunder yang terkait dengan peningkatan radiasi matahari yang masuk dan angin yang lebih ringan selama periode ini. Lapisan campuran yang dalam selama musim panas dihasilkan dari dua proses: peningkatan kekuatan angin dan intrusi air salinitas tinggi yang berasal dari Laut Arab (Narvekar & Prasanna Kumar, 2006).

Dari beberapa penelitian yang telah disebutkan di atas, kajian mengenai kontribusi parameter meteorologi: 2m air temperature, 2m specific humidity, convective precipitation rate, sea level pressure, wind stress U, dan wind stress V terhadap variabilitas MLD menggunakan data output model resolusi tinggi untuk jangka panjang belum pernah dilakukan sebelumnya khususnya untuk wilayah perairan Aceh, oleh karena itu penelitian ini bertujuan untuk menginvestigasi MLD berdasarkan parameter meteorologi yang telah disebutkan sebelumnya. Analisis dengan model iklim ditekankan sebagai verifikasi untuk observasi MLD yang dilakukan pada sampel stasiun wilayah peneltian. Pada akhirnya, dari hasil analisis yang dilakukan akan diperoleh hubungan antara parameter meteorologi dan MLD.

1.2. Rumusan Masalah

Pada latar belakang, telah diuraikan penelitian-penelitian terkait MLD dan mengapa MLD penting untuk menggambarkan iklim global. Telah dijelaskan pula

secara ringkas mengenai hal-hal apa saja yang akan dilakukan dalam penelitian ini. Fokus dari penelitian tesis ini adalah menjawab masalah utama, yaitu

Bagaimana pengaruh parameter meteorologi terhadap kedalaman lapisan campuran (*Mixed Layer Depth*) di Perairan Aceh?

Subpertanyaan berikut akan berkontribusi pada perumusan jawaban atas masalah utama.

- Bagaimana analisis kedalaman lapisan campuran (MLD) di wilayah perairan
 Aceh dalam 12 bulan pada tahun 2021?
- Bagaimana analisis model iklim untuk parameter-parameter meteorologi 2m air temperature, 2m specific humidity, convective precipitation rate, sea level pressure, wind stress U, dan wind stress V selama 22 tahun, tahun 2000 2021?
- Bagaimana hubungan parameter meteorologi terhadap analisis kedalaman lapisan campuran (MLD) di wilayah perairan Aceh?

1.3. Tujuan Penelitian

Tujuan dari penelitian tesis ini adalah mencari tahu pengaruh parameter meteorologi terhadap kedalaman lapisan campuran (*Mixed Layer Depth*) di Perairan Aceh dengan cara menjawab beberapa masalah terkait,

- Analisis kedalaman lapisan campuran (MLD) di wilayah perairan Aceh dalam 12 bulan pada tahun 2021.
- Analisis model iklim untuk parameter-parameter meteorologi 2m air temperature,
 2m specific humidity, convective precipitation rate, sea level pressure, wind stress
 U, dan wind stress V selama 22 tahun, tahun 2000 2021.
- Hubungan parameter meteorologi terhadap analisis kedalaman lapisan campuran (MLD) di wilayah perairan Aceh.

1.4. Urgensi dan Kebaruan Penelitian

Sejauh pengamatan kami, studi secara detail terkait 6 parameter meteorologi dan dampaknya terhadap lapisan vertikal di wilayah perairan Aceh belum pernah dilakukan sebelumnya. Oleh karena itu, dirasa penting untuk melakukan penelitian ini guna mengetahui pengaruh paramater meteorologi terhadap kedalaman lapisan campuran (MLD).

1.5. Manfaat Penelitian

Penelitian ini diharapkan mampu memberikan kontribusi ilmiah dan memperkaya pengetahuan tentang kedalaman lapisan campuran atau MLD. Hal ini karena MLD berperan penting secara iklim fisik dalam hal menentukan interval kisaran temperatur di wilayah laut dan pesisir. Sebagai tambahan, panas yang tersimpan dalam lapisan campuran menyediakan sumber panas yang mendorong variabilitas global seperti El Ni \tilde{n} o. MLD juga berperan dalam menentukan tingkatan rata-rata cahaya yang dapat dilihat oleh organisme laut seperti fitoplankton. Selain itu, dari periodesitas model iklim yang diperoleh akan bermanfaat untuk tujuan fishing ground, mitigasi perubahan iklim dan bencana hidro-oseanografi, tata ruang dan konservasi laut, dan sumber energi terbarukan.

1.6. Sistematika Penulisan

Tesis ini tersusun atas 5 bab. Bab pertama menjelaskan pendahuluan tentang latar belakang mengapa penelitian ini dilakukan, background masalah yang mendasari, tujuan penelitian, manfaat penelitian, serta kebaruan dari penelitian. Bab kedua berisikan tinjauan pustaka menyangkut ulasan singkat materi penelitian. Bab ketiga membahas tentang metode penelitian yang dilakukan, data yang yang digunakan, serta diagram alir (*flowchart*) dari penelitian. Bab keempat membahas hasil dan pembahasan penelitian. Terakhir, bab kelima membahas tentang kesimpulan dari penelitian.

BAB II TINJAUAN PUSTAKA

Bab ini menjelaskan lebih detail mengenai pustaka relevan dan tinjauan teori dalam penelitian ini. Hal ini bertujuan untuk mereview, mengupdate, mengkritik dan mensintesis literatur, melakukan meta-analisis literatur, melakukan konsepsi ulang dari topik yang direview, dan menjawab pertanyaan spesifik penelitian dari topik yang telah direview dalam literatur (Torraco, 2016). Struktur pembahasan studi relevan dan tinjauan teori selanjutnya dibagi dalam beberapa hal: pertama, akan dibahas mengenai persamaan gerak fluida dan persamaan Navier-Stokes dalam pemodelan laut, serta grid C Arakawa. Selanjutnya, akan dibahas mengenai model iklim yang digunakan sebagai verifikasi dan terakhir tentang kedalaman lapisan campuran. Meskipun demikian, karena fokus dari penelitian ini adalah observasi kedalaman lapisan campuran berdasarkan data output OGCM (*Ocean General Circulation Model*) dan hubungan serta pengaruh parameter meteorologi terhadap lapisan campuran, maka persamaan Navier-Stokes tidak akan direview secara detail dan hanya akan dirujuk sebagaimana mestinya.

2.1. Persamaan Gerak Fluida

Persamaan matematika yang mengatur aliran viskoelastik fluida berasal dari persamaan-persamaan hukum konservasi fisika yaitu konservasi massa, momentum dan persamaan konstitutif reologi (Alves et al., 2021). Penjabaran dari hukum-hukum tersebut menentukan bagaimana suatu persamaan model hidrodinamika dibuat. Salah satu persamaan fluida yang paling terkenal adalah persamaan Navier-Stokes yang terdiri dari persamaan momentum, persamaan kontinuitas, dan persamaan konservasi densitas (Haditiar et al., 2020). Persamaan Navier-Stokes digunakan untuk menggambarkan fluida yang mengalir dan dianggap memiliki pergerakan yang kontinu. Diketahui bahwa hasil pengamatan dari sebuah partikel fluida yang mengalir memiliki sifat-sifat fluida secara umum yaitu kecepatan, temperatur, tekanan dan densitas (Rafiq et al., 2019; Das et al., 2018; Khan et al., 2019). Sebuah partikel fluida diilustrasikan pada Gambar 2.1a, dan 2.1b. Komponen fluida seperti tekanan p, kecepatan u, dan densitas p terletak

pada pusat partikel yang bergantung terhadap waktu (t) dan ruang (x,y,z). Sehingga, komponen-komponen tersebut dapat ditulis dalam fungsi p(x,y,z,t), u(x,y,z,t) dan $\rho(x,y,z,t)$.

Asumsikan bahwa partikel fluida yang diobservasi sangat kecil sehingga sifat fluida pada permukaan kubus dapat diekspresikan secara akurat dengan menggunakan dua suku pertama dari ekspansi deret Taylor,

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n = f(a) + \frac{f'(a)}{1!} (x-a) + \dots$$

Sebagai contoh, tekanan pada muka W dan E, keduanya memiliki jarak $\frac{1}{2}\delta x$ dari posisi partikel di tengah sehingga diperoleh bentuk ekspresi,

$$p - \frac{\partial p}{\partial x} \frac{1}{2} \delta x$$
 dan $p + \frac{\partial p}{\partial x} \frac{1}{2} \delta x$.

Hal yang sama dapat dilakukan untuk variabel yang lainnya.

Gambar 2.1. (a) Ilustrasi partikel sebagai sifat fisis fluida, (b) Aliran massa jenis masuk dan keluar. Gambar direproduksi dari (Versteeg & Malalasekera, 2007)

Massa jenis dari partikel $\rho(x,y,z,t)$ pada gambar bagian (a) dapat diterjemahkan sebagai aliran yang masuk dan keluar. Pada gambar bagian (b), arah aliran massa jenis pada partikel pusat merupakan jumlahan dari aliran massa jenis masuk dan keluar. Dengan cara yang sama, dapat juga dilakukan untuk tekanan dan kecepatan.

2.2. Persamaan Primitif

Model sirkulasi laut atau *Ocean General Circulation Models* (OGCM) menggunakan persamaan Navier-Stokes untuk memodelkan fenomena fisis yang terjadi di lautan. Lautan adalah fluida yang dapat dijelaskan dengan baik dengan pendekatan persamaan-persamaan primitif, yaitu persamaan Navier-Stokes bersama dengan persamaan keadaan nonlinier yang menggabungkan dua variabel (suhu dan salinitas) dengan kecepatan fluida, ditambah dengan pertimbangan beberapa asumsi dan hipotesis (Gurvan et al., 2022).

Beberapa hipotesis yang digunakan adalah hipotesis Boussinesq, hipotesis hidrostatik, dan hipotesis tak termampatkan (*incompressibility*). Berdasarkan hipotesis Boussinesq, variasi densitas diabaikan kecuali dalam kontribusinya terhadap gaya apung sehingga

$$\rho = \rho(T, S, p). \tag{2.1}$$

Untuk hipotesis hidrostatik, persamaan momentum vertikal direduksi menjadi keseimbangan antara gradien tekanan vertikal dan gaya apung (ini menghilangkan proses konvektif dari persamaan Navier-Stokes awal dan proses konvektif harus diparameterisasi sebagai gantinya)

$$\frac{\partial p}{\partial z} = -\rho g. \tag{2.2}$$

Selanjutnya untuk hipotesis tak termampatkan, persamaan 3-D divergensi untuk vektor kecepatan U=(u,v,w) (dalam koordinat kartesius (x,y,z)) diasumsikan menjadi 0, diperoleh

$$\nabla \cdot U = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.$$
 (2.3)

Karena gaya gravitasi dominan dalam persamaan gerak skala besar, maka berguna untuk memilih himpunan ortogonal dari vektor satuan (i,j,k) yang dihubungkan dengan Bumi sedemikian rupa sehingga k adalah vektor lokal ke atas dan (i,j) adalah 2 vektor ortogonal terhadap k - dalam hal ini bersinggungan dengan permukaan geopotensial. Selanjutnya definisikan beberapa variabel berikut, U adalah vektor kecepatan dengan $U = U_h + wk$ (h adalah notasi vektor horizontal lokal di atas bidang (i,j)), T adalah potensial temperatur, S adalah salinitas, ρ adalah densitas in situ. Bentuk vektor

invarian dari persamaan primitif dalam sistem vektor (i, j, k) diberikan oleh persamaan berikut (Gurvan et al., 2022),

- Persamaan kesetimbangan momentum

$$\frac{\partial U_h}{\partial t} = -\left[(\nabla \times U) \times U + \frac{1}{2} \nabla (U^2) \right]_h - f \, k \times U_h - \frac{1}{\rho_o} \nabla_h p + D^U + F^U. \quad (2.4)$$

- Persamaan konservasi panas dan salinitas

$$\frac{\partial T}{\partial t} = -\nabla \cdot (T \ U) + D^{U} + F^{U}
\frac{\partial S}{\partial t} = -\nabla \cdot (S \ U) + D^{U} + F^{U}$$
(2.5)

Dengan ∇ operator vektor turunan yang diperumum dalam arah (i,j,k), t adalah waktu, z adalah koordinat vertikal, ρ adalah densitas in situ dalam persamaan keadaan hipotesis Boussinesq, ρ_o adalah densitas referensi, p adalah tekanan, $f=2\Omega$. k adalah percepatan Coriolis (dengan Ω adalah vector kecepatan sudut bumi), g adalah percepatan gravitasi. D^U, D^T , dan D^S adalah parameterisasi dari fisika skala kecil untuk momentum, temperature, dan salinitas, dan F^U, F^T , dan F^S adalah suku gaya permukaan.

Dalam aplikasinya, persamaan Navier-Stokes tidak hanya digunakan untuk memodelkan laut, tapi juga merambah ke bidang pemodelan cuaca (Rohli & Li, 2021), aliran air dalam pipa (Ouchiha et al., 2012) dan aliran udara di sekitar sayap pesawat (Tulus et al., 2019). Dalam bentuk persamaan lengkap dan simplifikasi, persamaan ini juga dapat digunakan untuk mendesain kereta api (Croquer et al., 2020), pesawat terbang (Chau & Zingg, 2021), dan mobil (Ambarita et al., 2018). Terdapat juga studi tentang aliran darah (Gill et al., 2021), desain stasiun pembangkit listrik (Yang et al., 2019), dan analisis polusi udara (Issakhov et al., 2022).

2.3. Arakawa C grid

Diskritisasi grid di bidang horizontal dapat dibedakan menjadi grid persegi (rectiliniear) Gambar 2.2a dan grid lengkung (curvlinear) Gambar 2.2b, di bidang vertikal berupa grid level z (z-coordinates) Gambar 2.2c dan grid level s (σ -coordinate)

Gambar 2.2d (Delandmeter & van Sebille, 2019).

Gambar 2.2. Diskritisasi grid dalam Parcels. Di bidang horizontal: (a) grid persegi, (b) grid lengkung, di bidang vertikal: (c) grid level z, (d) grid level s (Delandmeter & van Sebille, 2019)

.

Dalam aplikasinya, beberapa software pemodelan laut mengimplementasikan grid bertingkat (*staggered grid*) yang diperkenalkan oleh Arakawa & Lamb, 1977, yaitu grid A, B dan C. Lebih lanjut, antara grid A, dan grid C terdapat perbedaan fundamental yaitu letak penyimpanan simpul variabel (lihat Gambar 2.3), sedangkan grid B dapat dianggap sebagai peralihan dari grid A ke grid C dan perbedaan tipe model grid ini menjadi penting dikarenakan peningkatan kapasitas komputasi yang stabil di banyak pusat pemodelan iklim telah mengantarkan periode transisi untuk model laut global (Barham et al., 2018; Delandmeter & van Sebille, 2019).

Gambar 2.3. Grid Arakawa: (a) Grid A dan (b) Grid C (Delandmeter & van Sebille, 2019)

Grid A adalah satu-satunya *unstaggered grid* dalam grid Arakawa dimana variabel-variabelnya (*zonal velocity (u), meridional velocity (v), tracers (T)*) hanya terdapat pada titik sudut grid, berbeda dengan grid C yang berada di sisi dan tengah grid. *i* dan *j* adalah indeks yang merepresentasikan variabel kolom dan baris dimana variabel disimpan.

2.4. Model Iklim

Aplikasi deret waktu (*time series*) banyak melibatkan data yang menunjukkan siklus musiman. Contoh yang paling umum digunakan adalah data cuaca. Dalam penelitian Haridhi et al., 2016, model nonlinear regresi (Pers. 2.6) digunakan untuk mengkarakterisasi hubungan antara SST (*sea surface temperature*) dan ND (*net deployment*) - penyebaran jaring nelayan pukat cincin tradisional. Untuk menvalidasi temuan ini, mereka menggunakan persamaan siklus musiman Crawley (2012, p. 793) dan mencari korelasi antara data SST dan data meteorologi. Dilain hal, Ikhwan et al., 2022 dalam penelitiannya mengkaji tentang kedalaman lapisan campuran (MLD) di laut Andaman menggunakan data salinitas (SSS) dari model 3-D CMEMS (*Copernicus Marine Environment Monitoring Service*). Model iklim digunakan untuk mengidentifikasi dan memvalidasi jumlah musim MLD dalam setahun. Persamaan nonregresi linear (Haridhi et al., 2016) diformulasikan dalam bentuk,

$$y = b_1 + b_2(\sin(b_3x + b_4)) \tag{2.6}$$

dengan b_1 adalah konstanta pergeseran vertikal, b_2 adalah amplitudo gelombang sinus, b_3 adalah frekuensi, x adalah variabel waktu, dan b_4 adalah fase.

Misalkan sebuah titik bergerak dengan kecepatan konstan pada suatu lingkaran dengan jari-jari ρ dan t adalah waktu yang dihitung saat jari-jari terhubung dengan titik pusat pada sudut θ dibawah sumbu horizontal. Jika titik tersebut diproyeksikan pada sumbu horizontal maka jarak proyeksi dari titik pusat adalah

$$x = \rho \cos(\omega t - \theta) \tag{2.7}$$

dengan ρ adalah amplitudo, ω adalah kecepatan sudut atau frekuensi, dan θ adalah perpindahan fase. Gerakan proyeksi bolak-balik sepanjang sumbu horizontal digambarkan sebagai gerak harmonik sederhana.

Kecepatan sudut diukur dalam radian per satuan periode, kuantitas $2\pi/\omega$ adalah periode siklus. Pergerakan fase, juga diukur dalam radian, menunjukkan sejauh mana fungsi kosinus telah berpindah oleh pergeseran sepanjang waktu. Jadi, alihalih puncak fungsi terjadi pada waktu t=0, seperti yang terjadi pada fungsi kosinus biasa, sekarang terjadi pada waktu $t=\theta/\omega$. Selanjutnya perhatikan bahwa $\cos(A-B)=\cos(A)\cos(B)+\sin(A)\sin(B)$, akibatnya persamaan 2.7 dapat ditulis menjadi

$$x = \rho \cos(\theta) \cos(\omega t) + \rho \sin(\theta) \sin(\omega t)$$

= $\alpha \cos(\omega t) + \beta \sin(\omega t)$ (2.8)

dengan

$$\alpha = \rho \cos(\theta), \quad \beta = \rho \sin(\theta), \quad \text{dan} \quad \alpha^2 + \beta^2 = \rho^2.$$

Persamaan untuk siklus musiman (Crawley, 2012, p. 793) secara lengkap diberikan oleh,

$$y = \alpha + \beta \sin(2\pi t) + \gamma \cos(2\pi t) + \epsilon \tag{2.9}$$

dengan α adalah konstanta pergesaran vertikal, β adalah amplitude dari gelombang sinus, γ adalah amplitude dari gelombang kosinus, t adalah waktu, dan ϵ adalah elemen residual yang mungkin mewakili komponen white-noise tidak beraturan dalam proses yang mendasari data.

2.5. Kedalaman Lapisan Campuran

Secara umum, suhu laut berada pada kisaran -2° C sampai 30° C. Air terhangat cenderung berada pada air permukaan di daerah lintang rendah, sedangkan air permukaan di daerah kutub jelas jauh lebih dingin. Dikarenakan pola arus permukaan, pada garis lintang yang setara, air di sisi timur cekungan laut lebih dingin daripada air di sisi barat. Meskipun air permukaan bisa sangat hangat, sebagian besar air di lautan lebih dalam, airnya lebih dingin, sehingga suhu rata-rata seluruh lautan adalah sekitar 4° C.

Gambar 2.4a menunjukkan profil suhu yang khas untuk lautan terbuka pada daerah lintang tengah. Air yang hangat berada pada permukaan dikarenakan pancaran sinar matahari dan hanya dapat menembus kedalaman ≤ 1000 m (Webb, 2021). Karena air permukaan lebih hangat, kepadatannya juga lebih rendah dibandingkan air yang lebih dalam, sehingga air hangat ini tetap berada di permukaan dan dapat menjadi lebih hangat karena sinar matahari.

Suhu yang cukup konstan pada kedalaman 100-200m atas disebut sebagai *mixed layer*. *Mixed layer* atau lapisan campuran adalah hasil dari pengaruh angin permukaan, gelombang, dan arus yang mencampur air bagian atas dan mendistribusikan panas ke seluruh lapisan ini. Di bawah lapisan campuran terdapat penurunan suhu yang cepat sejalan dengan peningkatan kedalaman lautan. Lapisan ini disebut sebagai *thermocline*. Di bawah lapisan termoklin, suhu laut dalam cukup konstan sekitar 2° C yang terus turun hingga ke dasar laut. Ada sedikit perubahan suhu di laut dalam, karena jauh dari sumber panas yang signifikan, menjadikannya salah satu daerah yang paling stabil secara termal di bumi.

Gambar 2.4. (a) Profil suhu laut terbuka yang khas untuk wilayah lintang tengah, menunjukkan lapisan campuran, termoklin yang curam, dan suhu yang relatif stabil di kedalaman, (b) Profil suhu representatif untuk daerah tropis, lintang tengah, dan kutub, dan (c) Di daerah beriklim sedang, lapisan campuran lebih dalam dan termoklin kurang menonjol di musim dingin dibandingkan dengan musim panas (Webb, 2021)

Profil suhu bervariasi pada garis lintang yang berbeda, karena air permukaan lebih hangat di dekat khatulistiwa dan lebih dingin di kutub. Di daerah tropis lintang rendah, permukaan laut jauh lebih hangat, yang mengarah ke termoklin yang sangat menonjol (lihat gambar 2.4b). Selain itu, tidak banyak perubahan musiman pada suhu permukaan di daerah tropis, sehingga hanya ada sedikit perubahan musiman di profil suhu. Di daerah lintang tinggi (kutub), ada sedikit perbedaan antara suhu permukaan dan suhu air dalam, dan suhu cukup konstan di semua kedalaman. Oleh karena itu, perairan kutub tidak memiliki termoklin yang kuat, dan seperti halnya air tropis, hanya ada sedikit perubahan suhu musiman.

Daerah beriklim sedang (lintang tengah) menunjukkan fluktuasi musiman yang lebih besar pada suhu permukaan daripada kutub atau daerah tropis; perbedaan $8-15^{\circ}\mathrm{C}$ dari musim panas ke musim dingin di zona beriklim sedang, dibandingkan dengan hanya $\sim 2^{\circ}\mathrm{C}$ di daerah kutub dan tropis. Di daerah beriklim sedang, air permukaan jauh lebih hangat di musim panas dan termoklin lebih menonjol dibandingkan dengan musim dingin. Tetapi di musim dingin termoklin lebih dalam di garis lintang tengah daripada di musim panas. Ini karena badai musim dingin mengaduk-aduk air permukaan lebih banyak daripada yang terjadi di musim panas, menciptakan termoklin yang lebih dalam dan dengan demikian lebih dalam (lihat gambar 2.4c).

BAB III METODOLOGI PENELITIAN

3.1. Domain Penelitian

Domain penelitian meliputi wilayah perairan Aceh dengan koordinat $3^{\circ}-6.75^{\circ}$ LU dan $93^{\circ}-97.5^{\circ}$ BT (lihat Gambar 3.1). Data batimetri untuk domain penelitian diperoleh dari SRTM15+ (https://topex.ucsd.edu/) - kisi elevasi global yang diperbarui pada interval pengambilan sampel spasial 15 arc-second (ukuran piksel $\sim 500 \times 500$ m di ekuator) (Tozer et al., 2019). Penelitian ini dilakukan dengan mengkaji variabilitas lapisan vertikal berdasarkan data meteorology di 8 stasiun berbeda dalam domain penelitian (Tabel 3.1). Hal ini bertujuan untuk mengetahui MLD dan variasinya dari waktu ke waktu. Lebih lanjut, pertimbangan jumlah stasiun ini, dikarenakan perairan Aceh merupakan perairan yang relatif lebih kompleks.

Gambar 3.1. Data batimetri domain perairan Aceh, dicuplik dari SRTM15+

Table 3.1. Stasiun Penelitian

Stasiun No.	Koordinat
1	3.25°LU, 94°BT
2	3.25° LU, 95° BT
3	3.25° LU, 97° BT
4	4.5° LU, 94° BT
5	4.5° LU, 95° BT
6	6° LU, 94° BT
7	6° LU, 95° BT
8	6° LU, 97° BT

3.2. Data Penelitian

3.2.1. Data Oseanografi

Data oseanografi yang digunakan adalah data arus permukaan, serta data temperatur dari NEMO (*Nucleus for European Modeling of the Ocean*) yang merupakan salah satu model sirkulasi laut (OGCM) yang menggunakan model numerik tiga dimensi Navier-Stokes. Model NEMO adalah model komputasi resolusi tinggi yang digunakan untuk kegiatan penelitian dan layanan peramalan dalam oseanografi dan klimatologi, yang dikembangkan secara berkelanjutan sejak 2008 oleh konsorsium Eropa yang terdiri dari 5 institusi (CMCC | CNRS | Mercator Ocean | Met Office | NERC). Hal ini dimaksudkan untuk menjadi alat yang fleksibel untuk mempelajari fenomena fisik dan biogeokimia dalam sirkulasi laut, serta interaksinya dengan komponen sistem iklim Bumi, pada berbagai skala ruang dan waktu (Gurvan et al., 2022).

Penelitian ini menggunakan data output model NEMO (https://www.nemo-ocean.eu/) untuk data analisis global temperatur tiga dimensi yang didownload dari website CMEMS selama 12 bulan (Januari - Desember) tahun 2021. Dalam analisis kami, resolusi data output yang digunakan adalah dx = dy = 5 menit pada bidang

horizontal dan 50-lapisan ($k \in [1, 50]$) dengan ketebalan berbeda pada bidang vertikal:

 $z_k = \{0.49, 1.54, 2.65, 3.82, 5.08, 6.44, 7.93, 9.57, 11.40, 13.47, 15.82, 18.50, 21.60, 25.21, 29.44, 34.43, 40.34, 47.37, 55.76, 65.81, 77.85, 92.33, 109.73, 130.67, 155.85, 186.12, 222.47, 266.04, 318.13, 380.21, 453.94, 541.089, 643.57, 763.33, 902.34, 1062.44, 1245.29, 1452.25, 1684.28, 1941.89, 2225.08, 2533.33, 2865.70, 3220.82, 3597.03, 3992.48, 4405.22, 4833.29, 5274.78, 5727.92\}(m).$

3.2.2. Data Meteorologi

Data meteorologi yang digunakan adalah data reanalysis NCEP/NCAR per 6 jam (https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html) selama 22 tahun dari tahun 2000 sampai 2021 untuk 6 parameter yaitu: 2m air temperature, 2m specific humidity, convective precipitation rate, sea level pressure, wind stress U, dan wind stress V.

3.3. Prosedur Penelitian

Gambar 3.2. Diagram alir penelitian

Prosedur penelitian mengikuti diagram alir pada Gambar 3.2. Data-data terkait penelitian didownload terlebih dahulu kemudian diinterpolasi untuk memenuhi data yang kosong serta untuk memperoleh resolusi spasial yang lebih detail. Selanjutnya data hasil interpolasi kemudian dibaca dan di konversi ke dalam data matriks pada MATLAB. Hasilnya adalah peta arus, elevasi, temperature, dan data meteorologi. Peta temperature kemudian diobservasi untuk menentukan kedalaman lapisan campuran selama 12 bulan. Sebagai verifikasi atas observasi kedalaman lapisan campuran, akan dilakukan analisis model iklim terhadap data meteorologi (2m air temperature, 2m specific humidity, convective precipitation rate, sea level pressure, wind stress U, dan wind stress V) selama 22 tahun dari tahun 2000 sampai 2021.

DAFTAR PUSTAKA

- Akhter, S., Qiao, F., Wu, K., Yin, X., Chowdhury, K. A., Ahmed, M. K., & Kamal, A. M. (2022, apr). Spatiotemporal variations of the thermohaline structure and cyclonic response in the northern Bay of Bengal: The evaluation of a global ocean forecasting system. *Journal of Sea Research*, 182, 102188. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1385110122000260 doi: 10.1016/j.seares.2022.102188
- Alves, M., Oliveira, P., & Pinho, F. (2021, jan). Numerical Methods for Viscoelastic Fluid Flows. *Annual Review of Fluid Mechanics*, 53(1), 509–541. Retrieved from https://www.annualreviews.org/doi/10.1146/annurev-fluid-010719-060107 doi: 10.1146/annurev-fluid-010719-060107
- Ambarita, H., Siregar, M. R., & Kawai, H. (2018, mar). Study on aerodynamics characteristics an urban concept car for energy-efficient race. *IOP Conference Series: Materials Science and Engineering*, 343(1), 012025. Retrieved from https://iopscience.iop.org/article/10.1088/1757-899X/343/1/012025 doi: 10.1088/1757-899X/343/1/012025
- Arakawa, A., & Lamb, V. R. (1977). Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model. In (pp. 173–265). Retrieved from https://linkinghub.elsevier.com/retrieve/pii/B9780124608177500094 doi: 10.1016/B978-0-12-460817-7.50009-4
- Barham, W., Bachman, S., & Grooms, I. (2018, may). Some effects of horizontal discretization on linear baroclinic and symmetric instabilities. *Ocean Modelling*, 125, 106–116. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1463500318301008 doi: 10.1016/j.ocemod.2018.03.004
- Buckley, J. M., Mingels, B., & Tandon, A. (2020, feb). The impact of lateral advection on SST and SSS in the northern Bay of Bengal during 2015. *Deep Sea Research Part II: Topical Studies in Oceanography*, 172, 104653. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967064519300906 doi: 10.1016/j.dsr2.2019.104653
- Chau, T., & Zingg, D. W. (2021). Aerodynamic Optimization of a Transonic Strut-Braced-Wing Regional Aircraft Based on the Reynolds-Averaged Navier-Stokes Equations. In *Aiaa aviation and aeronautics forum and exposition, aiaa aviation forum 2021*. American Institute of Aeronautics and Astronautics Inc, AIAA. Retrieved from https://arc.aiaa.org/doi/10.2514/6.2021-2526 doi: 10.2514/6.2021-2526
- Chowdhury, K. A., Jiang, W., Liu, G., Ahmed, M. K., & Akhter, S. (2021, nov). Dominant physical-biogeochemical drivers for the seasonal variations in the surface chlorophyll-a and subsurface chlorophyll-a maximum in the Bay of Bengal. *Regional Studies in Marine Science*, 48, 102022. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S235248552100414X doi: 10.1016/j.rsma.2021.102022
- Crawley, M. J. (2012). The r book. John Wiley & Sons.
- Croquer, S., Fellouah, H., & Poncet, S. (2020, jul). Aerodynamic Performance of

- Different Metro Train Geometries through a Straight Tunnel Based on Steady and Unsteady Reynolds-Averaged Navier-Stokes Modeling. *SAE Technical Papers*, 2020-January, 91–104. Retrieved from https://www.sae.org/publications/technical-papers/content/2020-01-5068/doi: 10.4271/2020-01-5068
- Dandapat, S., Gnanaseelan, C., & Parekh, A. (2020, feb). Impact of excess and deficit river runoff on Bay of Bengal upper ocean characteristics using an ocean general circulation model. *Deep Sea Research Part II: Topical Studies in Oceanography*, 172, 104714. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967064519300888 doi: 10.1016/j.dsr2.2019.104714
- Das, K., Acharya, N., & Kundu, P. K. (2018, may). Influence of Variable Fluid Properties on Nanofluid Flow over a Wedge with Surface Slip. *Arabian Journal for Science and Engineering*, 43(5), 2119–2131. Retrieved from http://link.springer.com/10.1007/s13369-017-2499-x doi: 10.1007/s13369-017-2499-x
- Delandmeter, P., & van Sebille, E. (2019, aug). The Parcels v2.0 Lagrangian framework: new field interpolation schemes. *Geoscientific Model Development*, *12*(8), 3571–3584. Retrieved from https://gmd.copernicus.org/articles/12/3571/2019/doi: 10.5194/gmd-12-3571-2019
- Eakins, B., & Sharman, G. (2010). Volumes of the World's Oceans from ETOPO1 | NCEI. Retrieved 2022-07-31, from https://www.ngdc.noaa.gov/mgg/global/etopo1_ocean_volumes.html
- Gill, H., Fernandes, J., Chehab, O., Prendergast, B., Redwood, S., Chiribiri, A., ... Lamata, P. (2021, dec). Evaluation of aortic stenosis: From Bernoulli and Doppler to Navier-Stokes. *Trends in Cardiovascular Medicine*. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1050173821001468 doi: 10.1016/j.tcm.2021.12.003
- Gurvan, M., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., ... Moulin, A. (2022, March). *Nemo ocean engine*. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.6334656 doi: 10.5281/zenodo.6334656
- Haditiar, Y., Putri, M. R., Ismail, N., Muchlisin, Z. A., Ikhwan, M., & Rizal, S. (2020, sep). Numerical study of tides in the Malacca Strait with a 3-D model. *Heliyon*, 6(9), e04828. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S2405844020316716 doi: 10.1016/j.heliyon.2020.e04828
- Haridhi, H. A., Nanda, M., Wilson, C. R., & Rizal, S. (2016, nov). Preliminary study of the sea surface temperature (SST) at fishing ground locations based on the net deployment of traditional purse-seine boats in the northern waters of Aceh A community-based data collection approach. *Regional Studies in Marine Science*, 8, 114–121. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S2352485516302146 doi: 10.1016/j.rsma.2016.10.002
- Ikhwan, M., Haditiar, Y., Wafdan, R., Ramli, M., Muchlisin, Z. A., & Rizal, S. (2022, feb). Seasonal variability of mixed layer depth in the Andaman Sea. *International Journal of Environmental Science and Technology*, 1–10. Re-

- trieved from https://link.springer.com/10.1007/s13762-022 -03976-5 doi: 10.1007/s13762-022-03976-5
- Issakhov, A., Tursynzhanova, A., & Abylkassymova, A. (2022, may). Numerical study of air pollution exposure in idealized urban street canyons: Porous and solid barriers. *Urban Climate*, 43, 101112. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S221209552200030X doi: 10.1016/j.uclim.2022.101112
- Jain, V., Shankar, D., Vinayachandran, P., Mukherjee, A., & Amol, P. (2021, dec). Role of ocean dynamics in the evolution of mixed-layer temperature in the Bay of Bengal during the summer monsoon. *Ocean Modelling*, 168, 101895. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1463500321001487 doi: 10.1016/j.ocemod.2021.101895
- Jana, S., Gangopadhyay, A., Lermusiaux, P. F., Chakraborty, A., Sil, S., & Haley, P. J. (2018, nov). Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions. *Journal of Marine Systems*, 187, 206–222. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0924796318300423 doi: 10.1016/j.jmarsys.2018.08.001
- Jyothibabu, R., Karnan, C., Arunpandi, N., Santhi Krishnan, S., Balachandran, K., & Sahu, K. (2021, feb). Significantly dominant warm-core eddies: An ecological indicator of the basin-scale low biological production in the Bay of Bengal. *Ecological Indicators*, 121, 107016. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S1470160X20309559 doi: 10.1016/j.ecolind.2020.107016
- Kantha, L., Weller, R. A., Farrar, J. T., Rahaman, H., & Jampana, V. (2019, oct). A note on modeling mixing in the upper layers of the Bay of Bengal: Importance of water type, water column structure and precipitation. *Deep Sea Research Part II: Topical Studies in Oceanography*, 168, 104643. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967064519300657 doi: 10.1016/j.dsr2.2019.104643
- Khan, M. I., Hayat, T., Khan, M. I., Waqas, M., & Alsaedi, A. (2019, feb). Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: A mathematical model for entropy generation. *Journal of Physics and Chemistry of Solids*, 125, 153–164. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0022369718325186 doi: 10.1016/j.jpcs.2018.10.015
- Kumar, B. P., D'Asaro, E., Suresh kumar, N., & Ravichandran, M. (2019, oct). Widespread cooling of the Bay of Bengal by tropical storm Roanu. *Deep Sea Research Part II: Topical Studies in Oceanography*, 168, 104652. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967064518303163 doi: 10.1016/j.dsr2.2019.104652
- Masud-Ul-Alam, M., Khan, M. A. I., Barrett, B. S., Rivero-Calle, S., Golder, M. R., & Rouf, M. A. (2022, jun). Spatial variability of the winter thermal inversion in the northern Bay of Bengal. *Regional Studies in Marine Science*, *53*, 102417. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S2352485522001311 doi: 10.1016/j.rsma.2022.102417
- Narvekar, J., & Prasanna Kumar, S. (2006, may). Seasonal variability of the mixed layer

- in the central Bay of Bengal and associated changes in nutrients and chlorophyll. *Deep Sea Research Part I: Oceanographic Research Papers*, *53*(5), 820–835. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967063706000513 doi: 10.1016/j.dsr.2006.01.012
- Ouchiha, Z., Loraud, J. C., Ghezal, A., Kessal, M., Benzaoui, A., & Ghiaasiaan, S. M. (2012, apr). An investigation of highly pressurized transient fluid flow in pipelines. *International Journal of Pressure Vessels and Piping*, 92, 106–114. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0308016111001645 doi: 10.1016/j.ijpvp.2011.11.006
- Parida, C., Lotliker, A. A., Roy, R., & Vinayachandran, P. (2022, feb). Radiant heating rate associated with chlorophyll dynamics in upper ocean of Southern Bay of Bengal: A case study during Bay of Bengal Boundary Layer Experiment. Deep Sea Research Part II: Topical Studies in Oceanography, 196, 105026. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S096706452200011X doi: 10.1016/j.dsr2.2022.105026
- Rafiq, T., Mustafa, M., & Farooq, M. A. (2019, nov). Numerical assessment of Bödewadt flow and heat transfer over a permeable disk with variable fluid properties. *Physica A: Statistical Mechanics and its Applications*, *534*, 122138. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0378437119312427 doi: 10.1016/j.physa.2019.122138
- Rohli, R. V., & Li, C. (2021). The seven basic equations in weather forecasting models. In *Meteorology for coastal scientists* (pp. 171–185). Cham: Springer International Publishing. Retrieved from https://doi.org/10.1007/978-3-030-73093-2_18 doi: 10.1007/978-3-030-73093-2_18
- Sadhukhan, B., Chakraborty, A., & Kumar, A. (2021, mar). Role of external forcing on the seasonal and interannual variability of mixed layer depth over the Bay of Bengal using reanalysis datasets during 1980-2015. *Dynamics of Atmospheres and Oceans*, 93, 101200. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0377026520301585 doi: 10.1016/j.dynatmoce.2020.101200
- Seo, H., Subramanian, A. C., Song, H., & Chowdary, J. S. (2019, oct). Coupled effects of ocean current on wind stress in the Bay of Bengal: Eddy energetics and upper ocean stratification. *Deep Sea Research Part II: Topical Studies in Oceanography*, 168, 104617. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S096706451930061X doi: 10.1016/j.dsr2.2019.07.005
- Shroyer, E. L., Gordon, A. L., Jaeger, G. S., Freilich, M., Waterhouse, A. F., Farrar, J. T., ... Mahadevan, A. (2020, feb). Upper layer thermohaline structure of the Bay of Bengal during the 2013 northeast monsoon. *Deep Sea Research Part II: Topical Studies in Oceanography*, 172, 104630. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0967064519300748 doi: 10.1016/j.dsr2.2019.07.018
- Srivastava, A., Dwivedi, S., & Mishra, A. K. (2018, apr). Investigating the role of air-sea forcing on the variability of hydrography, circulation, and mixed layer depth in the Arabian Sea and Bay of Bengal. *Oceanologia*, 60(2), 169–186. Retrieved from https://linkinghub.elsevier.com/retrieve/pii/S0078323417300957 doi: 10.1016/j.oceano.2017.10.001

- Torraco, R. J. (2016, jul). Writing Integrative Reviews of the Literature. *International Journal of Adult Vocational Education and Technology*, 7(3), 62–70. Retrieved from https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJAVET.2016070106 doi: 10.4018/IJAVET.2016070106
- Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., & Wessel, P. (2019, oct). Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. *Earth and Space Science*, 6(10), 1847–1864. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1029/2019EA000658 doi: 10.1029/2019EA000658
- Tulus, Khairani, C., Marpaung, T. J., & Suriati. (2019, nov). Computational Analysis of Fluid Behaviour Around Airfoil with Navier-Stokes Equation. In *Journal of physics: Conference series* (Vol. 1376, p. 012003). IOP Publishing. Retrieved from https://iopscience.iop.org/article/10.1088/1742-6596/1376/1/012003 doi: 10.1088/1742-6596/1376/1/012003
- Versteeg, H. K., & Malalasekera, W. (2007). An introduction to computational fluid dynamics: the finite volume method. Pearson education.
- Webb, P. (2021). *Introduction to oceanography*. Roger Williams University. Retrieved from https://rwu.pressbooks.pub/webboceanography/
- Yang, D. D., Luo, X. W., Liu, D. M., Huang, R. F., & Zhu, Z. C. (2019, sep). Unstable flow characteristics in a pump-turbine simulated by a modified Partially-Averaged Navier-Stokes method. *Science China Technological Sciences*, 62(3), 406–416. Retrieved from https://link.springer.com/article/10.1007/s11431-017-9259-3 doi: 10.1007/s11431-017-9259-3