LABORATORY MANUAL FOR JOULE'S CALORIMETER

Joule's Calorimeter

A_{IM}

To measure the value of Joules's constant (J) or Mechanical Equivalent of Heat by Joule's Calorimeter.

Outcome: Understanding the principle of equality the heat energy and mechanical energy.

Apparatus required

- 1. Joule's Calorimeter
- 2. Sensitive Thermometer
- 3. Key
- 4. Ammeter
- 5. Voltmeter
- 6. Rheostat
- 7. Power supply

HEORY

According to the law of thermodynamics, the amount of work converted into heat (W) is directly proportional to the quantity of heat generated (H).

Thus,
$$W = JH$$

Where J is called the mechanical equivalent of heat or Joule's constant.

Therefore,
$$J = \frac{W}{H}$$

If W is measured in Joules and H is measured in calories, the unit of J will be Joule/calorie.

In this experiment, electrical energy (W) is converted into heat. If 'I' current flows in a conductor for a time 't' and 'V' is the potential difference across the conductor, then the work done in time t = V.I.t Joules (in SI units). i.e,

$$W = V.I.t$$
 -----(1)

If 'm' is the mass of calorimeter and stirrer and ' m_k ' is the mass of K-oil, then the heat gained by the calorimeter and K-oil in calorie is

$$H = (m. s + m_k. s_k)\Theta$$
-----(2)

Where 's' and ' s_k ' are the specific heat capacities of copper and K-oil respectively and ' Θ ' is the rise in temperature of calorimeter and K-oil.

PROCEDURE

- 1. Circuit is completed as shown in the diagram.
- 2. The calorimeter is filled up to 2/3rd by known K-oil (volume may be measured with the help of a measuring cylinder).
- 3. Then, the current is adjusted (say at 1 A) with the help of a rheostat and the initial temperature of the calorimeter is noted. (current can be adjusted between 1 A to 2 A for the experiment)
- 4. Current is allowed to pass through the calorimeter for a measured time 't' during which the temperature of calorimeter increases by 4-5° C. Final Temperature is noted and increase in temperature is calculated.
- 5. Mass of the calorimeter is noted. Similarly, mass of the K-oil is calculated using its known values of density and volume (supplied in lab).
- 6. The circuit is disconnected and *J* is calculated.

Figure

Figure: Schematic Diagram of Calorimeter

Table: Measurement of Joule's Constant

S. No	Current 'I' in Amp.	P.D. 'V' in Volt	Time (t) in sec.	Increase in temp. in "C"	Mass of Calorimete r in gm	Mass of K-oil in gm.	l in
		<-y			- 17 57		
	8/96						
	8 84					- V	
	125						

Data sheet

Mass of Calorimeter with stirrer = 89.12 gm.

Sp. Heat of Cu = 0.094 cal / gm $^{\circ}$ C = 390 Joules/kg K

Sp. Heat of K-Oil = 0.51 cal / gm °C = 2142 Joules/kg K

Density of K-Oil = 0.8×10^3 kg/m³

Volume of K-Oil = ml (will be supplied as accurate value may vary)

CALCULATION

Show all the calculations for finding J.

RESULT

∴ The value of Joules's constant (*J*) or Mechanical Equivalent of Heat is Joule/Cal.

Theoretical value of $J_T = 4.18$ Joules/Cal

Percentage error in the experimental value of $\mathbf{J} = \dots$

PRECAUTIONS

- 1. Before turning on the circuit all the connections should be carefully checked.
- 2. Measure the vol. of K-Oil using measuring cylinder before starting the experiment.
- 3. While taking the temperature reading avoid any parallax error.
- 4. Do not heat the oil more than 75 °C.

Sample viva questions

- 1. What is meant by J?
- 2. What is the purpose of measuring the voltage and current at regular intervals during the course of the experiment? Briefly explain the method of determining W.
- 3. Why it is known as mechanical equivalent of heat.