Task 1: Implement a linear regression model to predict the prices of houses based on their square footage and the number of bedrooms and bathrooms.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
```

Load the dataset

In [47]: data = pd.read_csv(r'C:\Users\Lenovo\Downloads\train.csv')

Select relevant features (Square Footage, Bedrooms, and Bathrooms) and the target (Price)

```
In [51]: features = ['GrLivArea', 'BedroomAbvGr', 'FullBath']
   target = 'SalePrice'
```

Extract features (X) and target (y)

In [54]: X = data[features]

Handle missing values by filling them with the median

In [57]: X = X.fillna(X.median())

y = data[target]

Split the data into training and testing sets

In [60]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the Linear Regression model

Make predictions

In [66]: y_pred = model.predict(X_test)

Evaluate the model

In [69]: mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

Output evaluation metrics

```
In [72]: print("Model Coefficients:", model.coef_)
    print("Model Intercept:", model.intercept_)
    print("Mean Squared Error (MSE):", mse)
    print("R-squared (R²):", r2)

Model Coefficients: [ 104.02630701 -26655.16535734 30014.32410896]
    Model Intercept: 52261.74862694448
    Mean Squared Error (MSE): 2806426667.247852
    R-squared (R²): 0.6341189942328374
```

Plotting Actual Prices vs Predicted Prices

```
In [75]: plt.figure(figsize=(10, 6))
    plt.scatter(y_test, y_pred, color='blue', alpha=0.6, label='Predicted vs Actual')
    plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], color='red', linewidth=2, label='Ideal Regression Line')
    plt.xlabel("Actual Prices")
    plt.ylabel("Predicted Prices")
    plt.title("Actual vs Predicted House Prices")
    plt.legend()
    plt.show()
```

