Package 'STCYP'

September 9, 2025

Title Spatio-Temporal Crop Yield Prediction

Version 1.0.0			
Description Provides crop yield and meteorological data for Ontario, Canada. Includes functions for fitting and predicting data using spatio-temporal models, as well as tools for visualizing the results. The package builds upon existing R packages, including 'copula' (Hofert et al., 2025) <doi:10.32614 cran.package.copula="">, and 'bsts' (Scott, 2024) <doi:10.32614 cran.package.bsts="">.</doi:10.32614></doi:10.32614>			
License MIT + file LICENSE			
Encoding UTF-8			
RoxygenNote 7.3.2			
Imports bsts, copula, ggplot2, grDevices, rootSolve, stats			
Depends R (>= 4.0.0)			
LazyData true			
LazyDataCompression xz			
Suggests knitr, rmarkdown, testthat (>= 3.0.0),			
VignetteBuilder knitr			
Config/testthat/edition 3			
NeedsCompilation no			
Author Marie Michaelides [aut], Mélina Mailhot [aut], Yongkun Li [aut, cre]			
Maintainer Yongkun Li <yongkun.li@concordia.ca></yongkun.li@concordia.ca>			
Repository CRAN			
Date/Publication 2025-09-09 14:40:23 UTC			
Contents			
clayton.theta			

2 clayton.theta

	lt	4
	lynamic.rho	5
	lynamic.theta.clayton	6
	lynamic.theta.frank	6
	lynamic.theta.gumbel	7
,	lynamic.theta.joe	7
	it_bsts	8
	rank.theta	8
	GH.theta	9
	nit_params_full	9
	oe.theta	10
	og_likelihood_noGEV_3d	10
	nedoid_names	11
	n_test	12
	ı_train	
	olot_forecast	12
1	olot_forecast_compare	13
1	imul_fun_noGEV_3d	14
	ime	
	ime_test	
i	ime_train	
		17
	<u></u>	
		18
		19
	z_train	19
		20
		_0

clayton.theta

Compute Clayton Copula Parameter from Kendall's Tau

Description

Computes the Clayton copula dependence parameter based on Kendall's tau.

Usage

clayton.theta(tau)

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Clayton copula parameter.

copula_list 3

Examples

```
clayton.theta(mean(cor(cbind(u[[1]], u[[2]], u[[3]]), method = "kendall")))
```

copula_list

Supported copula types

Description

A list containing supported copula types.

Usage

```
copula_list
```

Format

A list of copula types.

copulas "Gaussian" "Clayton" "Frank" "Gumbel" "Joe"

data

Real crop yield and meteorological data of 24 regions for Ontario, Canada from 1950 to 2022 and anticipated data from 2023 to 2100.

Description

Real crop yield and meteorological data of 24 regions for Ontario, Canada from 1950 to 2022 and anticipated data from 2023 to 2100.

Usage

data

Format

A data frame with 1752 rows and 27 variables:

time chr: year from 1950-2022

CD chr: 24 subregions

lat num: latitudelon num: longitude

yield num: wheat crop yield per census division, in bushel/acre

cdd num: Annual maximum number of consecutive days with daily precipitation below 1mm (unit = days)

4 dt

cddcold num: Annual cooling degree days above 18C (unit = degree_days)

dlyfrzthw num: Annual number of days with a diurnal freeze-thaw cycle: tmax > 0 degc and tmin <= -1 degc

firstfallfrost num: First day of year with temperature below 0 degc for at least 1 days

frostdays num: Annual number of days with minimum daily temperature below 0C

icedays num: Annual number of days with maximum daily temperature below 0 degC

nrcdd num: The annual number of dry periods of 6 days and more, during which the maximal precipitation on a window of 6 days is under 1.0 mm

prcptot num: Annual total precipitation (unit = mm)

r1mm num: Annual number of days with daily precipitation over 1.0 mm/day

r10mm num: Annual number of days with daily precipitation over 10.0 mm/day

r20mm num: Annual number of days with daily precipitation over 20.0 mm/day

rx1day num: Annual maximum 1-day total precipitation (unit = mm)

rx5day num: Annual maximum 5-day total precipitation (unit = mm)

tgmean num: Annual mean of daily mean temperatures (unit = C degrees)

tnmean num: Annual mean of daily minimum temperatures (unit = C degrees)

tnmin num: Annual minimum of daily minimum temperatures (unit = C degrees)

tr18 num: Annual number of tropical nights: defined as days with minimum daily temperature above 18 degc

txmax num: Annual minimum of daily maximum temperature (unit = C degrees)

txmean num: Annual mean of daily maximum temperature (unit = C degrees)

txgt25 num: Annual number of days where daily maximum temperature exceeds 25 degC

txgt27 num: Annual number of days where daily maximum temperature exceeds 27 degC

txgt29 num: Annual number of days where daily maximum temperature exceeds 29 degC

Source

ClimateData.ca

dt

Selected data from year 1950 to 2022 and covariates including txgt27, tr18, cddcold, txgt29, and tnmean for case study.

Description

Selected data from year 1950 to 2022 and covariates including txgt27, tr18, cddcold, txgt29, and tnmean for case study.

Usage

dt

dynamic.rho 5

Format

A data frame with 1752 rows and 10 variables:

time chr: year from 1950-2022

CD chr: 24 subregions

lat num: latitudelon num: longitude

yield num: wheat crop yield per census division, in bushel/acre

cddcold num: Annual cooling degree days above 18C (unit = degree_days)

tnmean num: Annual mean of daily minimum temperatures (unit = C degrees)

tr18 num: Annual number of tropical nights: defined as days with minimum daily temperature

above 18 degc

txgt27 num: Annual number of days where daily maximum temperature exceeds 27 degC

txgt29 num: Annual number of days where daily maximum temperature exceeds 29 degC

Source

ClimateData.ca

dynamic.rho

Compute Dynamic Gaussian Copula Correlation Parameter (rho)

Description

Computes the time-varying correlation parameter (rho) for a Gaussian copula.

Usage

```
dynamic.rho(params, lagged_rho, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

lagged_rho Numeric, the previous rho value.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Gaussian copula correlation.

6 dynamic.theta.frank

dynamic.theta.clayton Compute Dynamic Clayton Copula Parameter

Description

Computes the Clayton copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.clayton(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Clayton copula parameter.

dynamic.theta.frank Compute Dynamic Frank Copula Parameter

Description

Computes the Frank copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.frank(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Frank copula parameter.

dynamic.theta.gumbel 7

dynamic.theta.gumbel Compute Dynamic Gumbel Copula Parameter

Description

Computes the Gumbel copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.gumbel(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Gumbel copula parameter.

Description

Computes the Joe copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.joe(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Joe copula parameter.

8 frank.theta

fit_bsts

Fit a Bayesian Structural Time Series (BSTS) Model

Description

Fits a BSTS model for a time series y, given a vector or matrix of covariates z.

Usage

```
fit_bsts(y, z, lags = 0, MCMC.iter = 5000)
```

Arguments

y A numeric vector (time series response variable).

z A numeric vector or matrix (covariates).

lags Integer, number of lags for the autoregressive component.

MCMC.iter Integer, number of MCMC iterations.

Value

A fitted BSTS model.

frank.theta

Compute Frank Copula Parameter from Kendall's Tau

Description

Computes the Frank copula dependence parameter based on Kendall's tau.

Usage

```
frank.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Frank copula parameter.

GH.theta 9

GH. theta

Compute Gumbel Copula Parameter from Kendall's Tau

Description

Computes the Gumbel-Hougaard copula dependence parameter based on Kendall's tau.

Usage

```
GH.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Gumbel copula parameter.

Examples

```
GH.theta(mean(cor(cbind(u[[1]], u[[2]], u[[3]]), method = "kendall")))
```

init_params_full

Initial Parameters for 3D Pseudo-Loglikelihood Estimation

Description

Initial Parameters for 3D Pseudo-Loglikelihood Estimation

Usage

```
init_params_full
```

Format

A numeric vector of length (2 + M) where:

omega Baseline autoregressive coefficient.

alpha Parameter controlling variance.

gamma1, gamma2, gamma3 Coefficients related to external factors.

joe.theta

Compute Joe Copula Parameter from Kendall's Tau

Description

Computes the Joe copula dependence parameter based on Kendall's tau.

Usage

```
joe.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Joe copula parameter.

Examples

```
joe.theta(mean(cor(cbind(u[[1]], u[[2]], u[[3]]), method = "kendall")))
```

```
log_likelihood_noGEV_3d
```

Log-Likelihood Function for 3D Copula Model

Description

Computes the negative log-likelihood of a 3-dimensional copula model with a time-varying copula structure.

Usage

```
log_likelihood_noGEV_3d(params, u1, u2, u3, X_t, z1, z2, z3, copula)
```

Arguments

params	Numeric vector, model parameters.
u1	Numeric vector (length n_train), pseudo-observations for margin 1.
u2	Numeric vector (length n_train), pseudo-observations for margin 2.
u3	Numeric vector (length n_train), pseudo-observations for margin 3.
X_t	Numeric matrix ($n_{train} \times M$), risk factors affecting copula parameters.
z1	Numeric matrix (n_train x M), observed data for margin 1.

medoid_names 11

z2	Numeric matrix (n_train x M), observed data for margin 2.
z3	Numeric matrix (n_train x M), observed data for margin 3.
copula	Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".

Value

The negative log-likelihood value for optimization.

Examples

 $medoid_names$

list containing Chatham-Kent, Lambton, and Wellington

Description

list containing Chatham-Kent, Lambton, and Wellington

Usage

medoid_names

Format

An object of class character of length 3.

plot_forecast

n_test 19

Description

19

Usage

n_test

Format

An object of class integer of length 1.

n_train 54

Description

54

Usage

n_train

Format

An object of class integer of length 1.

plot_forecast

Plot Observed Data and BSTS Forecast

Description

Creates a plot of observed data, forecasted values, and confidence intervals.

plot_forecast_compare

13

Usage

```
plot_forecast(
  forecast,
  data_train,
  data_test,
  time,
  quant_high,
  quant_low,
  observed_col,
  forecast_col,
  title
)
```

Arguments

forecast A matrix of BSTS forecast samples. Numeric vector, training data. data_train data_test Numeric vector, test data. time Numeric vector, representing time indices. Numeric, upper quantile for confidence interval. quant_high Numeric, lower quantile for confidence interval. quant_low observed_col Character, color for observed data. forecast_col Character, color for forecasted data. Character, title of the plot. title

Value

A ggplot2 object.

```
plot_forecast_compare Compare Forecasts from Two Models
```

Description

Generates a time series plot comparing the forecasts from two models along with observed data.

Usage

```
plot_forecast_compare(
  forecast1,
  forecast2,
  data_train,
  data_test,
  time,
```

```
quant_high,
quant_low,
col1,
title
)
```

Arguments

forecast1	Numeric matrix, forecasted values from the first model (columns: time points).
forecast2	$Numeric\ matrix, forecasted\ values\ from\ the\ second\ model\ (columns:\ time\ points).$
data_train	Numeric vector, training data used for modeling.
data_test	Numeric vector, actual test data for evaluation.
time	Numeric vector, representing the time points corresponding to the data.
quant_high	Numeric, upper quantile (e.g., 0.9) for confidence interval.
quant_low	Numeric, lower quantile (e.g., 0.1) for confidence interval.
col1	Character, color for observed data lines.
title	Character, title for the plot.

Value

A ggplot2 object showing the forecast comparison.

```
simul_fun_noGEV_3d Function to optimize the full pseudo-loglikelihood and perform new forecasts
```

Description

Function to optimize the full pseudo-loglikelihood and perform new forecasts

Usage

```
simul_fun_noGEV_3d(
    nsim = 100,
    n_train,
    n_test,
    copula,
    init_params,
    fn,
    u1,
    u2,
    u3,
    z1_train,
    z2_train,
    z3_train,
```

```
z1_test,
z2_test,
z3_test,
X_t,
y1_test,
y2_test,
y3_test,
BSTS_1,
BSTS_2,
BSTS_3
)
```

Arguments

nsim	Integer, number of simulation replications.
n_train	Integer, number of training observations.
n_test	Integer, number of test observations.
copula	Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".
init_params	Numeric vector, initial parameter values for optimization.
fn	Function, log-likelihood function for parameter estimation.
u1	Numeric vector (n_train), first pseudo-observation for the copula.
u2	Numeric vector (n_train), second pseudo-observation for the copula.
u3	Numeric vector (n_train), third pseudo-observation for the copula.
z1_train	Numeric matrix (n_train x M), observed data for the first margin and sub-feature.
z2_train	Numeric matrix (n_train x M), observed data for the second margin and subfeature.
z3_train	Numeric matrix (n_train x M), observed data for the third margin and subfeature.
z1_test	Numeric matrix (n_test x M), true future data for the first margin and sub-feature.
z2_test	Numeric matrix (n_test x M), true future data for the second margin and subfeature.
z3_test	Numeric matrix (n_test x M), true future data for the third margin and subfeature.
X_t	Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.
y1_test	Numeric vector (n_test), true future values for the first response variable.
y2_test	Numeric vector (n_test), true future values for the second response variable.
y3_test	Numeric vector (n_test), true future values for the third response variable.
BSTS_1	Fitted BSTS model for the first response variable.
BSTS_2	Fitted BSTS model for the second response variable.
BSTS_3	Fitted BSTS model for the third response variable.

time_test

Value

A list containing:

theta_simulated

Simulated copula parameters across replications.

y1_simulated Simulated values for the first response variable.
y2_simulated Simulated values for the second response variable.
y3_simulated Simulated values for the third response variable.
MSE Mean squared error for each simulation run.

optim_results Results from the optimization process.

time 1950-2022

Description

1950-2022

Usage

time

Format

An object of class character of length 73.

 $\verb|time_test| 2004-2022|$

Description

2004-2022

Usage

time_test

Format

An object of class character of length 19.

time_train 17

time_train

1950-2003

Description

1950-2003

Usage

 $time_train$

Format

An object of class character of length 54.

u

Pseudo-Observations of BSTS Residuals for Crop Yield Forecasting

Description

Pseudo-Observations of BSTS Residuals for Crop Yield Forecasting

Usage

u

Format

A matrix with dimensions $(n_t rain, D)$:

- **n_train** Number of time points used in the training set.
- **D** Number of regions analyzed (Chatham-Kent, Lambton, Wellington).

Source

Derived from residuals of BSTS models fitted to crop yield data.

18 y_train

y_test

Crop Yield Data for Testing in BSTS Models

Description

Crop Yield Data for Testing in BSTS Models

Usage

y_test

Format

A matrix with dimensions $(n_t est, D)$:

- **n_train** Number of time points used in the test set.
- $\label{eq:DNumber of regions analyzed (Chatham-Kent, Lambton, Wellington).} \label{eq:DNumber of regions analyzed}$

Source

Historical crop yield records from ClimateData.ca.

y_train

Crop Yield Training Matrix

Description

Training crop-yield data used for BSTS models.

Usage

y_train

Format

A numeric matrix with n_train rows and D columns:

 ${f rows}$ (n_train) Number of time points in the training set.

columns (D) Regions analyzed (Chatham-Kent, Lambton, Wellington).

Source

ClimateData.ca (processed)

z_test

 z_test

Standardized Covariates (Test)

Description

Standardized climate covariates used to forecast with the BSTS models (test).

Usage

z_test

Format

A numeric array with dimensions $n_{test} \times D \times M$:

- n_test Number of test time points.
- D Regions (Chatham-Kent, Lambton, Wellington).
- M Number of covariates (cddcold, tr18, txgt27, tnmean, txgt29).

Source

ClimateData.ca (processed)

z_train

Standardized Covariates (Training)

Description

Standardized climate covariates used to fit the BSTS models (training).

Usage

z_train

Format

A numeric array with dimensions $n_{train} \times D \times M$:

- n_train Number of training time points.
- D Regions (Chatham-Kent, Lambton, Wellington).
- M Number of covariates (cddcold, tr18, txgt27, tnmean, txgt29).

Source

ClimateData.ca (processed)

Index

```
* datasets
                                                    n_train, 12
    copula_list, 3
                                                    plot_forecast, 12
    data, 3
                                                    plot_forecast_compare, 13
    dt, 4
    init_params_full, 9
                                                    simul_fun_noGEV_3d, 14
    medoid_names, 11
    n_test, 12
                                                    time, 16
    n_train, 12
                                                    \texttt{time\_test}, \textcolor{red}{16}
    time, 16
                                                    time_train, 17
    time_test, 16
    {\it time\_train}, 17
                                                    u, 17
    u, 17
    y_test, 18
                                                    y_test, 18
    y_train, 18
                                                    y_train, 18
    z_test, 19
                                                    z_test, 19
    z_train, 19
                                                    z_train, 19
clayton.theta, 2
copula_list, 3
data, 3
dt, 4
dynamic.rho, 5
dynamic.theta.clayton, 6
{\it dynamic.theta.frank}, \\ 6
dynamic.theta.gumbel, 7
dynamic.theta.joe, 7
fit_bsts, 8
frank.theta,8
GH. theta, 9
init_params_full, 9
joe.theta, 10
log_likelihood_noGEV_3d, 10
medoid_names, 11
n_test, 12
```