Use of column abundances of ammonia detected from space-based sensors to derive agricultural emissions

https://maraisresearchgroup.co.uk/

Proof of concept starts with the TES instrument

NASA Tropospheric Emission Spectrometer (TES) instrument on the Aura A-Train

Multiyear (2006-2009) average boundary layer mixing ratios of ammonia

Demonstrates feasibility

Low data density (multiple days to achieve global coverage)

5 km x 8 km resolution

Launched 2004 Midday overpass No longer operating

[Shephard et al., 2011]

Progressed to IASI instruments

Infrared Atmospheric Sounding Interferometer (IASI) instruments on MetOp-A, -B, and -C satellites

Long-term (Oct 2007 to Sept 2022) seasonal mean total column densities

And to CrIS instruments

Cross-track Infrared Sounder (CrIS) instruments on NOAA satellites

Long-term (2013-2017) annual mean total column densities

Daily global coverage

~14 km elliptical pixel resolution

Data record since 2012

Midday overpass

Traditional optimal estimation retrieval method using model prior

Case study of UK ammonia emissions:

- The UK National Atmospheric Emission Inventory (NAEI)
- IASI (morning overpass) NH3 observations
- CrIS (midday overpass) NH3 observations
- A state-of-science chemical transport model
- Surface network observations
- Collaboration with NAEI developer and satellite data providers

Part of a Defra-funded research project with collaborators at NCEO

Inventory (Bottom-Up) Emissions

National Atmospheric Emission Inventory (NAEI) annual NH₃ emissions for 2016

Gg = kilotonnes

Mapped to 0.1 degree resolution

Provided at 1 km resolution from 5 km resolution nitrogen flow model

Agriculture most (>80%) of total total anthropogenic emissions

Dominant sources are manure management, fertilizer use, dairy and beef cattle farming

[Marais et al., 2021]

Observationally-derived (Top-Down) Emissions

Convert atmospheric column concentrations to surface emissions using a model

More complex inversion techniques using adjoints, machine learning, Lagrangian models tracking plumes

Preprocess to Finer Resolution than Instrument

Use so-called oversampling to enhance spatial resolution relative to native resolution of instrument

Oversampling Technique

Weights pixel by area of overlap

Oversampling technique over London

Lose time (temporal) resolution; gain spatial resolution

Improve resolution from 12-40 km to 10 km for an instrument observing ammonia (NH₃)

Multiyear means from the IASI (morning overpass) instrument

Multiyear (2008-2018) monthly means for warmer months of the year

Climatological mean to be consistent with bottom-up ammonia emissions

IASI-derived multiyear (2008-2018) monthly mean NH₃ emissions

Focus on Mar-Sep when warm temperatures and clearer conditions increase sensitivity to surface NH₃

Monthly emissions for March-September from IASI-derived estimates sum to 271.5 Gg

Satellite vs inventory NH₃ emissions: spatial distribution

Comparison of months with peak emissions according to IASI (April and July)

Large July difference over locations dominated by dairy cattle. Inventory is 27-49% less than the satellite values.

Satellite vs inventory NH₃ emissions: seasonality

All reproduce spring April peak (fertilizer & manure use). Only the satellite show summer July peak (dairy cattle?).

The increase in emissions in September in CrIS is spurious.

Ground-truthing Requires Abundant, Suitable Surface Observations

Network (points) and model (background) surface NH₃ in Mar-Sep

Points are for DELTA instruments (blue circles)

DELTA instruments support model underestimate (NMB = -38%)

So do passive low-cost ALPHA instruments (yellow triangles)

(NMB = -41.5%)

GEOS-Chem underestimate in surface NH₃ driven with the NAEI corroborates results from IASI

Leads to reluctance to uptake by inventory developers and integration in policy decisions

In Summary

- Sustained space-based sensor record of ammonia from instruments in low-Earth orbit
- Spatial resolutions of ~12-14 km enhanced by oversampling, but lots of data needed
- Ammonia short-lived, so relate column abundances to surface emissions using a model
- Application to the cloudy UK even feasible!
- Estimate emissions that are consistent with spring fertilizer application location and timing
- Identify large bottom-up and top-down emissions discrepancies in summer over cattle farming intensive regions that requires further investigation
- Bottom-up and top-down inconsistencies confirmed with surface network observations of ammonia (crucial for ground truthing!)
- Geostationary infrared instrument soon to launch over Europe to observe ammonia every 30 min (including over Africa)

Links to Cited Peer-reviewed Studies

- Shephard et al., 2011: <u>www.atmos-chem-phys.net/11/10743/2011/</u>
- Clarisse et al., 2023: <u>https://doi.org/10.5194/amt-16-5009-2023</u>
- Dammers et al., 2019: https://doi.org/10.5194/acp-19-12261-2019
- Marais et al., 2021: https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021JD035237
- Hellsten et al., 2008: https://doi.org/10.1016/j.envpol.2008.02.017