

IoT Sensor Devices

...

Roman Staszewski Zenseio August 30, 2016

Agenda

- What hardware is needed for IoT systems?
- What are IoT Sensor Devices ("The Things")?
- What are sensors used for?
- How are sensors connected to internet?
- How are IoT sensors powered?

About Roman Staszewski and Zenseio

- The founder and CEO of Zenseio since 2014
- Expertise in embedded hardware and systems
- Previously, Distinguished
 Member of Technical Staff at
 Texas Instruments for over 20 years

- Zenseio versatile IoT Sensor Platform for rapid prototyping and industrial deployments
- Consulting and custom engagements

What hardware is needed for IoT systems?

What are IoT Sensor Devices ("The Things")?

- IoT Sensors are sensors that connect to internet
- 3 required functions:
 - Sensors
 - Connectivity
 - Power Supply
 - o MCU is a helpful support function
- There are thousands of different sensors
- There are hundreds of different communication methods
- There are hundreds of power supply options
- Diversity, low power, RF, and low cost make IoT Sensors difficult to implement

Sensors

What Are Sensors Used For?

- Sense and measure physical quantities, and convert them into digital representation
- Not only (super)human-like senses
- But, everything else worth measuring
- Not only our world's digital nervous system
- But, eventually, digital mirror of our world

Source: Harbor Research

We are giving our world a digital nervous system. Location data using GPS sensors. Eyes and ears using cameras and microphones, along with sensory organs that can measure everything from temperature to pressure changes.

Example - How Sensors are Used ... Today

What drives sensors progress?

- 1. MEMS -
 - Micro-Electro-Mechanical Systems
 - a. Digital friendly
 - b. Versatile
 - c. Precise
 - d. Small
 - e. Low power
- Consumer electronics created economies of scale to reduce costs
- IoT benefits from MEMS and economies of scale will further slash costs & increase capability

Future Sensor Trends

- More sensors
 - o MEMS
 - o Imagers
 - o Electro-Magnetic
 - o Biochemical
- ... For everything
- Cheaper
- Smaller
- More power efficient
- Easier to use

But, know-how about sensor properties is vitally more important:)

Wireless Connectivity

How are sensors connected to internet?

- Plethora of connectivity options with various characteristics
- Wireless is the key enabler
- Pushing power/cost/range capabilities, so always many tradeoffs to consider and to compromise on
- Applications drive the connectivity choice

How to Select Communication Technology

Application Requirements

Technology

- Range & Throughput
- Interoperability
- Power consumption
- Size

Business

Solution cost (Capex+Opex)
Time to market
Ease of use / support model
Risk factors

Short Range High Speed

- Ethernet
- Wi-Fi

Short Range Moderate Speed

- 802.15.4
- ZigBee
- ZWave
- Bluetooth
- Thread

Long Range High Power

- Cellular
- Satellite
- Microwave

Long Range Low Power

Source: Infiswift

Comparison of Leading (Unlicensed) LPWAN

Pros

- Private and public networks
- MAC & network layers are open
- Good hardware availability
- Flexible for broad uses
- Inexpensive
- · Excellent battery life

Cons

- Proprietary PHY layer
- Transceivers only available from Semtech (for now)

Pros

- Easy/quick product development
- Well capitalized and good network availability
- Inexpensive

Cons

- Must use public network
- Very limited data transfer
- Use is limited and caters to sensor networks, status monitoring, etc.

Pros

- Very similar to SIGFOX great for sensor networks
- · Good urban range
- Open standard

Cons

- Upstream data only
- Very slow (100bps)

Pros

- · Private and public networks
- Excellent bi-directional communication
- Scalable base stations
- Good bandwidth utilization

Cons

- Works in crowded 2.4 GHz band
- Higher frequency less penetrable

Cellular IoT Strategy (Licensed Spectrum)

- NB-IoT and EC-GSM
- Matching range and low power to unlicensed LPWAN
- Late to market compared to unlicensed LPWAN
- Will be more expensive to operate
 - Need to pay for spectrum license
 - And, for network certifications
- But, will provide better QoS and scalability
- And, possibly better longevity with more big suppliers

Power Supply

Energy Harvesting

- Sensors, radios, and MCU's are becoming very power efficient
- Low cost power management technology is already here
- Battery technology is improving too
- Powering IoT Sensors from harvested ambient energy sources is feasible in intermittent operation
- Typical ambient energy sources
 - Light
 - Thermal
 - Motion/vibration
 - EM fields

Major elements of a wireless IoT node (Source: Cymbet)

ergy Source	Harvested Power
ibration/Motion	
Human	4 μW/cm ²
Industry	100 μW/cm ²
emperature Difference	
Human	25 μW/cm ²
Industry	1-10 mW/cm ²
ght	
Indoor	10 μW/cm ²
Outdoor	10 mW/cm ²
F	
GSM	0.1 μW/cm ²
WiFi	0.001 mW/cm ²

Conclusions

- IoT Sensors & Cloud fundamental enablers for IoT
- Wireless/sensor/power/compute technologies becoming good enough & improving
- Entering **virtuous circle**
 - Increased capabilities / Cost reduction
 - Business (and not only) benefits
 - o Investment
 - Innovation
- Driving the fourth industrial revolution (Industry 4.0)
- Unprecedented, once-in-a-lifetime opportunities
- Still early stages best time to get in

