Sistemas de Recomendação

Prof. Danilo Silva

EEL7514/EEL7513 - Tópico Avançado em Processamento de Sinais EEL410250 - Aprendizado de Máquina

EEL / CTC / UFSC

Introdução

Sistemas de Recomendação

- Objetivo: a partir de dados sobre um usuário (avaliações, compras passadas, etc), recomendar itens que este usuário tem mais chance de se interessar
 - Também conhecido como "filtragem" (de itens para um dado usuário)
- Exemplos: Netflix, Spotify, Amazon, e-commerce em geral
- Tipos de abordagem:
 - Filtragem baseada em conteúdo (content-based filtering): requer uma descrição do conteúdo dos itens (atributos)
 - Filtragem colaborativa (collaborative filtering): baseia-se exclusivamente nas avaliações de outros usuários
 - Híbrida

Conteúdo

Filtragem Baseada em

Filtragem Baseada em Conteúdo

- Suponha n itens e f atributos
- lacktriangle Cada item i é descrito por um vetor de atributos $\mathbf{q}_i \in \mathbb{R}^f$
- Matriz de atributos dos itens:

$$\mathbf{Q} = egin{bmatrix} -\mathbf{q}_1^T - \ dots \ -\mathbf{q}_n^T - \end{bmatrix} \in \mathbb{R}^{n imes f}$$

- Seja r_{ui} a avaliação (rating) dada ao item i pelo usuário u
- ▶ Seja $\mathcal{I}_u \subseteq \{1, \dots, n\}$ o conjunto de itens avaliados pelo usuário u
- ▶ Problema: para um usuário u, dadas \mathbf{Q} e as avaliações conhecidas r_{ui} , $i \in \mathcal{I}(u)$, prever as avaliações desconhecidas r_{ui} , $i \notin \mathcal{I}(u)$

Exemplo

Filme	q_1 (romance)	q_2 (ação)	Alice	
Star Wars	0.1	0.93	0	
Matrix	0.05	0.99	0	
X-Men	0	0.95	?	
Titanic	0.99	0.05	4	
Casablanca	0.92	0	?	

Exemplo

Filme	q_1 (romance)	q_2 (ação)	Alice	Bruno	Carol	Davi
Star Wars	0.1	0.93	0	5	5	0
Matrix	0.05	0.99	0	5	?	?
X-Men	0	0.95	?	?	4	0
Titanic	0.99	0.05	4	0	0	5
Casablanca	0.92	0	?	0	0	5

Exemplo: Regressão Linear

A avaliação do item i pelo usuário u é modelada como

$$\hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i$$

(possivelmente incluindo um atributo constante $q_{i0} = 1$)

- ▶ Conjunto de treinamento (para o usuário u): $\mathcal{D}_u = \{(\mathbf{q}_i, r_{ui}), i \in \mathcal{I}_u\}$
- Função custo:

$$J = \sum_{i \in \mathcal{I}_u} (\mathbf{p}_u^T \mathbf{q}_i - r_{ui})^2$$

Solução:

$$\mathbf{p}_u = (\mathbf{Q}_u^T \mathbf{Q}_u)^{-1} \mathbf{Q}_u^T \mathbf{r}_u, \quad \text{onde} \quad \begin{cases} \mathbf{Q}_u = \mathbf{Q} \left[\mathcal{I}_u, : \right] \\ \mathbf{r}_u = (r_{ui}, \ i \in \mathcal{I}_u)^T \end{cases}$$

Limitações / Extensões

Extensões:

- ▶ Todo ou parte do vetor p_u pode ser obtida diretamente a partir de dados de perfil ou de comportamento do usuário
 - Especialmente útil quando o usuário não efetuou nenhuma avaliação
- Outros modelos mais sofisticados (não-lineares)

Limitações:

- Determinação de Q
 - Exige conhecimento específico do domínio para encontrar bons atributos
 - Os atributos que seriam mais preditivos podem n\u00e3o estar presentes nos dados dispon\u00edveis

Filtragem Colaborativa

Filtragem Colaborativa

- Suponha m usuários e n itens
- lacktriangle Seja r_{ui} a avaliação (rating) dada ao item i pelo usuário u
- ▶ Seja $\mathcal{R} = \{(u,i) :$ usuário u avaliou o item $i\}$ o conjunto que indica as avaliações conhecidas
- ▶ Problema: dadas as avaliações conhecidas r_{ui} , $(u,i) \in \mathcal{R}$, prever as avaliações desconhecidas r_{ui} , $(u,i) \notin \mathcal{R}$

Exemplo

Filme	Alice	Bruno	Carol	Davi
Star Wars	0	5	5	0
Matrix	0	5	?	?
X-Men	?	?	4	0
Titanic	4	0	0	5
Casablanca	?	0	0	5

Filtragem Colaborativa: Tipos de abordagem

- Baseada em memória: guarda toda a matriz de avaliações e realiza predições baseadas em similaridade de avaliações
 - Considera como vizinhos usuários que possuem preferências semelhantes
 - Recomenda a um usuário itens bem avaliados pelos seus vizinhos
- Baseada em modelo: ajusta aos dados um modelo que possui variáveis ocultas (fatores latentes)
 - ▶ Assume que itens e usuários podem ser representados por vetores em um espaço de dimensão *f* pequena
 - Recomenda a um usuário os itens mais próximos a ele neste espaço latente

Modelo de Fatoração Matricial

- Seja f o número de fatores latentes
- A avaliação do item i pelo usuário u é modelada como

$$\hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i, \quad \text{onde } \mathbf{p}_u, \mathbf{q}_i \in \mathbb{R}^f$$

 Corresponde a encontrar uma fatoração aproximada de posto f para a matriz com entradas faltantes

$$\mathbf{R} = [r_{ui}] \approx \mathbf{P}\mathbf{Q}^T$$

- ▶ Conjunto de treinamento: $\mathcal{D} = \{r_{ui}, (u, i) \in \mathcal{R}\}$
- Função custo:

$$J = \sum_{(u,i)\in\mathcal{R}} (\mathbf{p}_u^T \mathbf{q}_i - r_{ui})^2$$

Não é convexa pois ambos \mathbf{p}_u e \mathbf{q}_i são variáveis de otimização

Mínimos Quadrados Alternados

Alternating Least Squares

- Se Q está fixa, sabemos a solução ótima para P
- Se P está fixa, sabemos a solução ótima para Q (por simetria)
- Algoritmo:
 - ▶ Inicialize P e Q aleatoriamente
 - Otimize P (com Q fixo) e depois Q (com P fixo)
 - Repita o item anterior até a convergência
- A cada iteração o custo nunca pode aumentar, portanto deve convergir (para um ótimo local)

Método do Gradiente Estocástico

Otimizar a função custo conjuntamente em todas as variáveis

$$J = \sum_{(u,i) \in \mathcal{R}} (\mathbf{p}_u^T \mathbf{q}_i - r_{ui})^2$$

Aprimorando o Método

Adicionar biases explicitamente:

$$\hat{r}_{ui} = \mu + b_u + b_i + \mathbf{p}_u^T \mathbf{q}_i$$

Adicionar regularização L2 em todos os pesos (exceto μ):

$$J = \sum_{(u,i)\in\mathcal{R}} (\mathbf{p}_u^T \mathbf{q}_i - r_{ui})^2 + \lambda(\|\mathbf{p}_u\|^2 + \|\mathbf{q}_i\|^2 + b_u^2 + b_i^2)$$

Exemplo: Competição Netflix (2006-2009)

Rank leam Name		В	Best lest Score % Impr		iprovement	ement Best Submit Time		
Grand Prize - RMSE = 0.8567 - Winning Team: BellKor's Pragmatic Chaos								
1	BellKor's Pragmatic Chaos	1	0.8567	1	10.06	2009-07-26 18:18:28		

Aplicação: Encontrando itens semelhantes

- ▶ O modelo efetivamente aprende uma representação em \mathbb{R}^f para os itens (e para os usuários)
 - Extração de atributos automática
- De posse desta representação, podemos resolver outros problemas como:
 - Encontrar itens semelhantes a um dado item:

$$\min_{j\neq i} \|\mathbf{q}_j - \mathbf{q}_i\|$$

Encontrar grupos de itens semelhantes (clustering)

Implementação usando Redes Neurais

- ▶ Considere o conjunto de dados $\mathcal{D} = \{((u,i), r_{ui}), (u,i) \in \mathcal{R}\}$, onde u e i são variáveis categóricas:
 - $u \in \{1, \dots, m\}$ indica o usuário
 - $i \in \{1, \dots, n\}$ indica o item
- ightharpoonup Em outras palavras, temos amostras das variáveis (\mathbf{x}, y) , onde
 - $\mathbf{x} = (u, i)$ é o vetor de atributos
 - $y = r_{ui}$ é o valor-alvo
- ▶ Desejamos construir um modelo de rede neural que realiza a predição $\hat{y} = r_{ui}$ para $(u,i) \not\in \mathcal{D}$

Interpretação via Redes Neurais

O problema é que essas variáveis de entrada são categóricas. Para usar um modelo de regressão, podemos antes transformá-las em variáveis binárias usando one-hot encoding:

$$\mathbf{x}_1 = (x_{11}, \dots, x_{1m})^T, \quad x_{1j} = 1[j = u]$$

 $\mathbf{x}_2 = (x_{21}, \dots, x_{1n})^T, \quad x_{2j} = 1[j = i]$

- ▶ Dessa forma, temos como vetor de entrada $\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2) \in \{0, 1\}^{m+n}$
- Sejam

$$\mathbf{P} = egin{bmatrix} -\mathbf{p}_1^T - \ dots \ -\mathbf{p}_m^T - \end{bmatrix} \qquad \mathbf{e} \qquad \mathbf{Q} = egin{bmatrix} -\mathbf{q}_1^T - \ dots \ -\mathbf{q}_n^T - \end{bmatrix}$$

É fácil ver que:

$$\hat{r}_{ui} = \mathbf{p}_u^T \mathbf{q}_i = (\mathbf{x}_1^T \mathbf{P})(\mathbf{Q}^T \mathbf{x}_2)$$

Interpretação via Redes Neurais

- Este modelo pode ser implementado por uma rede neural com uma arquitetura particular:
 - lacksquare A primeira camada calcula $\mathbf{z}=(\mathbf{z}_1,\mathbf{z}_2)\in\mathbb{R}^{2f}$, onde

$$\mathbf{z}_1 = \mathbf{P}^T \mathbf{x}_1 \qquad (= \mathbf{p}_u)$$

 $\mathbf{z}_2 = \mathbf{Q}^T \mathbf{x}_2 \qquad (= \mathbf{q}_i)$

- A segunda camada (camada de saída) calcula $\hat{r}_{ui} = \mathbf{z}_1^T \mathbf{z}_2$
- Na literatura, a operação que mapeia uma variável categórica em um vetor em \mathbb{R}^f , como no mapeamento

$$u \in \{1, \dots, m\} \quad \mapsto \quad \mathbf{z}_1 \in \mathbb{R}^f$$

 $i \in \{1, \dots, n\} \quad \mapsto \quad \mathbf{z}_2 \in \mathbb{R}^f$

é chamada de embedding

 Esta operação está eficientemente implementada em bibliotecas como Keras, evitando a necessidade de utilizar one-hot encoding