Identifiability

Joachim Vandekerckhove Spring 2025

A model is non-identifiable if different parameter combinations yield the exact same predictions (likelihood).

A model is non-identifiable if different parameter combinations yield the exact same predictions (likelihood).

The data cannot distinguish between these combinations.

A model is non-identifiable if different parameter combinations yield the exact same predictions (likelihood).

The data cannot distinguish between these combinations.

Structural Non-Identifiability: Inherent in model equations.

A model is non-identifiable if different parameter combinations yield the exact same predictions (likelihood).

The data cannot distinguish between these combinations.

Structural Non-Identifiability: Inherent in model equations.

Consequences:

- Poor MCMC convergence ($\hat{R} \gg 1$, low ESS).
- Unreliable posterior distributions (drifting, odd shapes).
- Strong correlations between confounded parameters.
- Misleading inferences.

Example: Hierarchical SDT Model

Predicting Hits (H_{ip}) and False Alarms (F_{ip}) for person p under condition i.

Example: Hierarchical SDT Model

Predicting Hits (H_{ip}) and False Alarms (F_{ip}) for person p under condition i. **Likelihood**: Binomial counts based on SDT probabilities.

$$(H_{ip}, F_{ip}) \sim SDT\left(d'_{ip}, c_p, n_s, n_n\right)$$

Example: Hierarchical SDT Model

Predicting Hits (H_{ip}) and False Alarms (F_{ip}) for person p under condition i. **Likelihood**: Binomial counts based on SDT probabilities.

$$(H_{ip}, F_{ip}) \sim SDT\left(d'_{ip}, c_p, n_s, n_n\right)$$

Hierarchical Parameter Models (Non-Identified Version):

$$\begin{split} d'_{ip} &= \alpha_p + \gamma_i \\ \gamma_i &= \zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i \\ \alpha_p &\sim \mathrm{Normal}(\mu_\alpha, \sigma_\alpha^2) \\ c_p &\sim \mathrm{Normal}(\mu_c, \sigma_c^2) \end{split} \qquad \text{(Person sensitivity intercept)}$$

The core issue lies in the definition of sensitivity d'_{ip} :

$$\begin{aligned} d_{ip}' &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{aligned}$$

The core issue lies in the definition of sensitivity d'_{ip} :

$$\begin{split} d'_{ip} &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{split}$$

The likelihood only depends on the sum $(\alpha_p + \zeta_0)$.

The core issue lies in the definition of sensitivity d_{ip}^{\prime} :

$$\begin{split} d'_{ip} &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{split}$$

The likelihood only depends on the sum $(\alpha_p + \zeta_0)$.

Let
$$\tilde{\alpha}_p = \alpha_p - C$$
 and $\tilde{\zeta}_0 = \zeta_0 + C$.

Then $\tilde{\alpha}_p + \tilde{\zeta}_0 = \alpha_p + \zeta_0$. The predicted d'_{ip} is unchanged.

The core issue lies in the definition of sensitivity d'_{ip} :

$$\begin{split} d'_{ip} &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{split}$$

The likelihood only depends on the sum $(\alpha_p + \zeta_0)$.

Let
$$\tilde{\alpha}_p = \alpha_p - C$$
 and $\tilde{\zeta}_0 = \zeta_0 + C$.

Then $\tilde{\alpha}_p + \tilde{\zeta}_0 = \alpha_p + \zeta_0$. The predicted d'_{ip} is unchanged.

As a result, there cannot exist a unique set of optimal parameters.

The core issue lies in the definition of sensitivity d'_{ip} :

$$\begin{aligned} d'_{ip} &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{aligned}$$

The likelihood only depends on the sum $(\alpha_p + \zeta_0)$.

Let
$$\tilde{\alpha}_p = \alpha_p - C$$
 and $\tilde{\zeta}_0 = \zeta_0 + C$.

Then $\tilde{\alpha}_p + \tilde{\zeta}_0 = \alpha_p + \zeta_0$. The predicted d'_{ip} is unchanged.

As a result, there cannot exist a unique set of optimal parameters.

Nothing can distinguish trade-offs between μ_{α} and ζ_{0} .

The core issue lies in the definition of sensitivity d'_{ip} :

$$\begin{aligned} d'_{ip} &= \alpha_p + \gamma_i \\ &= \alpha_p + (\zeta_0 + \zeta_1 \cdot \mathsf{predictor}_i) \\ &= (\alpha_p + \zeta_0) + \zeta_1 \cdot \mathsf{predictor}_i \end{aligned}$$

The likelihood only depends on the sum $(\alpha_p + \zeta_0)$.

Let
$$\tilde{\alpha}_p = \alpha_p - C$$
 and $\tilde{\zeta}_0 = \zeta_0 + C$.

Then $\tilde{\alpha}_p + \tilde{\zeta}_0 = \alpha_p + \zeta_0$. The predicted d'_{ip} is unchanged.

As a result, there cannot exist a unique set of optimal parameters.

Nothing can distinguish trade-offs between μ_{α} and ζ_0 .

This is structural non-identifiability.

Fitting the non-identified model is expected to show:

Fitting the non-identified model is expected to show:

– **Poor Convergence** for confounded parameters (μ_{α}, ζ_0) : High \hat{R} , Low ESS.

Fitting the non-identified model is expected to show:

- **Poor Convergence** for confounded parameters (μ_{α}, ζ_0) : High \hat{R} , Low ESS.
- Wandering Trace Plots: Chains for μ_{α} , ζ_0 may not mix or stabilize.

Fitting the non-identified model is expected to show:

- **Poor Convergence** for confounded parameters (μ_{α}, ζ_0) : High \hat{R} , Low ESS.
- Wandering Trace Plots: Chains for μ_{α} , ζ_0 may not mix or stabilize.
- Strong Posterior Correlation: A clear negative correlation between μ_{α} and ζ_0 samples.

Fitting the non-identified model is expected to show:

- **Poor Convergence** for confounded parameters (μ_{α}, ζ_0) : High \hat{R} , Low ESS.
- Wandering Trace Plots: Chains for μ_{α} , ζ_0 may not mix or stabilize.
- Strong Posterior Correlation: A clear negative correlation between μ_{α} and ζ_0 samples.
- **Sampling Difficulties**: Potential warnings (divergences, etc.).

Any or all of these can occur.

PyMC Code (Non-Identified SDT)

Key parameter definitions causing the issue:

```
1 # Uninformative priors for Sensitivity (d') parameters
2 mu_alpha = pm.Normal("mu_alpha", mu=0.0, sigma=1.0e9) # << Part 1
3 sigma_alpha = pm.HalfNormal("sigma_alpha", sigma=1.0e9)
4 zeta0 = pm.Normal("zeta0", mu=0.0, sigma=1.0e9) # << Part 2
5 zeta1 = pm.Normal("zeta1", mu=0.0, sigma=1.0e9)
6
7 # Person sensitivity intercepts (drawn from mu_alpha)
8 alpha_p = pm.Normal("alpha_p", ...)
9
10 # Calculate d' using alpha_p and gamma_i
11 d_ip = pm.Deterministic("d_ip", alpha_p[...] + gamma_i) # << Part 3
12
13 # ... SDT calculations ...
```

Use 'arviz.plot_trace()' focusing on 'mu_alpha' and 'zeta0'.

Use 'arviz.plot_trace()' focusing on 'mu_alpha' and 'zeta0'.

Look For:

- Poor mixing for 'mu_alpha', 'zeta0'.
- Chains exploring different levels.
- Compare to well-behaved traces (e.g., 'mu_c').
- Corroborate with high \hat{R} in summary.

For comparison, here are trace plots of the fixed (identified) model:

MCMC Output Table

--- Non-Identified SDT Model Summary ---

mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat
40.779	268.443	-304.985	570.827	128.271	70.199	5.0	17.0	2.70
-38.809	268.503	-569.032	307.068	128.298	70.209	5.0	17.0	2.70
-0.397	0.028	-0.446	-0.350	0.008	0.001	15.0	180.0	1.22
0.048	0.058	-0.020	0.173	0.027	0.014	5.0	26.0	2.35
	40.779 -38.809 -0.397	40.779 268.443 -38.809 268.503 -0.397 0.028	40.779 268.443 -304.985 -38.809 268.503 -569.032 -0.397 0.028 -0.446	40.779 268.443 -304.985 570.827 -38.809 268.503 -569.032 307.068 -0.397 0.028 -0.446 -0.350	40.779 268.443 -304.985 570.827 128.271 -38.809 268.503 -569.032 307.068 128.298 -0.397 0.028 -0.446 -0.350 0.008	40.779 268.443 -304.985 570.827 128.271 70.199 -38.809 268.503 -569.032 307.068 128.298 70.209 -0.397 0.028 -0.446 -0.350 0.008 0.001	40.779 268.443 -304.985 570.827 128.271 70.199 5.0 -38.809 268.503 -569.032 307.068 128.298 70.209 5.0 -0.397 0.028 -0.446 -0.350 0.008 0.001 15.0	40.779 268.443 -304.985 570.827 128.271 70.199 5.0 17.0 -38.809 268.503 -569.032 307.068 128.298 70.209 5.0 17.0 -0.397 0.028 -0.446 -0.350 0.008 0.001 15.0 180.0

Sampling 4 chains for 1_500 tune and 1_000 draw iterations (6_000 + 4_000 draws total) took 379 seconds. There were 1000 divergences after tuning. Increase 'target_accept' or reparameterize.

--- Identified SDT Model Summary ---

	mean	sd	hdi_3%	hdi_97%	mcse_mean	mcse_sd	ess_bulk	ess_tail	r_hat	
mu_alpha_intercept	1.936	0.149	1.659	2.221	0.008	0.004	380.0	598.0	1.01	
zeta1	-0.398	0.033	-0.463	-0.341	0.001	0.000	3558.0	3080.0	1.00	
mu_c	0.072	0.062	-0.046	0.186	0.003	0.002	426.0	735.0	1.01	

Sampling 4 chains for 1_500 tune and 1_000 draw iterations (6_000 + 4_000 draws total) took 12 seconds.

Possible Diagnosis 2: Pair Plots

Use 'arviz.plot_pair()' for sensitivity parameters 'mu_alpha', 'zeta0'.

Possible Diagnosis 2: Pair Plots

Use 'arviz.plot_pair()' for sensitivity parameters 'mu_alpha', 'zeta0'.

Look For:

- Strong linear correlation "ridge."
- Specifically, a negative correlation between 'mu_alpha' and 'zeta0'.
- Poorly conditioned marginal densities.

Common strategies:

Common strategies:

a) Reparameterization (Preferred):

- Remove redundant parameters (e.g., remove ζ_0).
- Use sum-to-zero constraints (more complex).
- Use contrasts relative to a baseline condition.

Common strategies:

- a) Reparameterization (Preferred):
 - Remove redundant parameters (e.g., remove ζ_0).
 - Use sum-to-zero constraints (more complex).
 - Use contrasts relative to a baseline condition.
- b) Informative Priors: Can sometimes help practically, but remember that your conclusions will then strongly depend on your assumptions.

Common strategies:

- a) Reparameterization (Preferred):
 - Remove redundant parameters (e.g., remove ζ_0).
 - Use sum-to-zero constraints (more complex).
 - Use contrasts relative to a baseline condition.
- b) Informative Priors: Can sometimes help practically, but remember that your conclusions will then strongly depend on your assumptions.

Let's see what informative priors can do...

Using Informative Priors

Setting $\mu_{\alpha} \sim N(0, 1.5)$ gives converging chains:

```
--- Semi-Identified SDT Model Summary ---
            sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk
                                                             ess_tail r_hat
   mean
mu_alpha
           1.301 0.827 -0.310
                                   2.807
                                              0.018
                                                      0.013
                                                               2023.0
                                                                         2365.0
                                                                                 1.00
            0.629 0.825 -0.924
                                                               2002.0
                                                                         2339.0
zeta0
                                   2.183
                                              0.018
                                                      0.013
                                                                                 1.00
zeta1
           -0.398 0.033 -0.459
                                  -0.338
                                              0.001
                                                      0.001
                                                               3915.0
                                                                         2744.0
                                                                                 1.00
            0.067 0.064 -0.051
                                   0.190
                                              0.003
                                                      0.002
                                                                480.0
                                                                         720.0
                                                                                 1.01
mu_c
```

Using Informative Priors

Even reasonable trace plots:

Using Informative Priors

Even reasonable trace plots:

But the trade-off pops out of the pair plot:

Applying the Real Fix: Remove ζ_0

Interpretation changes: μ_{α} becomes 'mu_alpha_int', average d' when predictor=0.

Applying the Real Fix: Remove ζ_0

Interpretation changes: μ_{lpha} becomes 'mu_alpha_int', average d' when predictor=0.

```
1 # Priors for Sensitivity (d') parameters
2 mu_alpha_int = pm.Normal("mu_alpha_int", ...) # Was mu_alpha
3 sigma_alpha = pm.HalfNormal("sigma_alpha", ...)
4 # zeta0 = pm.Normal("zeta0", ...) # <<< REMOVED
5 zeta1 = pm.Normal("zeta1", ...)
6
7 # Person sensitivity intercepts (drawn from mu_alpha_intercept)
8 alpha_p = pm.Normal("alpha_p", ...)
9
10 # Condition Effects on Sensitivity (NO intercept)
11 gamma_i = pm.Deterministic("gamma_i", zeta1 * cond_pred_data)
12
13 # SDT likelihood calculations are structurally identical
14 # . . .
```

Results After Fixing

The identified model should exhibit good MCMC behavior.

Results After Fixing

The identified model should exhibit good MCMC behavior.

Expected Results:

- Good convergence ($\hat{R} \approx 1$).
- High Effective Sample Sizes (ESS).
- Well-mixed, stable trace plots.

Now there should also be no problematic correlations involving 'mu_alpha_int'.

Non-identifiability can arise in hierarchical models from redundant parameters (e.g., multiple intercepts).

Non-identifiability can arise in hierarchical models from redundant parameters (e.g., multiple intercepts).

Additive structures like $d'={\sf person_effect}+{\sf condition_effect}$ are common sources if both components have intercepts.

Non-identifiability can arise in hierarchical models from redundant parameters (e.g., multiple intercepts).

Additive structures like $d'=\mathsf{person_effect}+\mathsf{condition_effect}$ are common sources if both components have intercepts.

Diagnose using MCMC convergence stats $(\hat{R}, \, \text{ESS})$ and visual checks (trace plots, pair plots).

Non-identifiability can arise in hierarchical models from redundant parameters (e.g., multiple intercepts).

Additive structures like $d'={\sf person_effect}+{\sf condition_effect}$ are common sources if both components have intercepts.

Diagnose using MCMC convergence stats (\hat{R}, ESS) and visual checks (trace plots, pair plots).

Fix primarily via reparameterization (removing redundancy, using constraints).

Non-identifiability can arise in hierarchical models from redundant parameters (e.g., multiple intercepts).

Additive structures like $d' = \text{person_effect} + \text{condition_effect}$ are common sources if both components have intercepts.

Diagnose using MCMC convergence stats (\hat{R}, ESS) and visual checks (trace plots, pair plots).

Fix primarily via reparameterization (removing redundancy, using constraints).

Always check for potential identifiability issues before interpreting model parameters. A model with convergence issues will generally not yield reliable inferences!

Identifiability

Joachim Vandekerckhove Spring 2025