

การประกวดนวัตกรรมเทคโนโลยีสิ่งอำนวยความสะดวกสำหรับคนพิการ (TIAT)

ผลงาน : "หุ่นยนต์ติดตามและตรวจจับการล้มสำหรับผู้ป่วยอัมพาตครึ่งชีก"

กลุ่ม : BME4SHARE (มหาวิทยาลัยศรีนครินทรวิโรฒ)

บทน้ำ

เนื่องจากสภาพสังคมส่วนใหญ่ในปัจจุบัน สมาชิกในครอบครัวไทยที่สุขภาพสมบูรณ์แข็งแรง มีความสามารถและศักยภาพต่างๆมาก เพียงพอต้องออกจากครัวเรือนเพื่อทำงานหาเลี้ยงชีพในช่วงเวลาทำงานที่แตกต่างกัน ส่วนผู้ที่ไม่สามารถประกอบอาชีพได้ เช่น ผู้สูงอายุที่ไม่ สามารถทำงานได้แล้ว ผู้ป่วยที่ต้องพักอยู่ในครัวเรือน หรือแม้กระทั่งผู้เป็นอัมพฤกษ์อัมพาต ก็ต้องพักอาศัยอยู่ในครัวเรือนของตนซึ่งอาจจะไม่ มีผู้ดูแลอย่างใกล้ชิดในช่วงเวลาที่คนในครอบครัวหรือผู้ดูแลออกไปทำงาน ส่งผลให้การเป็นอยู่ในช่วงเวลาดังกล่าวไม่สะดวกมากนัก และ บางครั้งอาจมีอุบัติเหตุหรือเหตุฉุกเฉินต่างๆเกิดขึ้นด้วย ซึ่งถือว่าอันตรายมากสำหรับผู้สูงอายุหรือผู้ป่วยที่อยู่บ้านในช่วงที่ไม่มีผู้ดูแล

ผู้พิการที่มีอาการอัมพาตครึ่งชีกที่ได้รับการบำบัดฟื้นฟูสมรรถภาพร่างกายจากสถานพยาบาลแล้ว สามารถช่วยเหลือตัวเองได้ เดิน ได้ตามลำพังโดยไม่ต้องการผู้ช่วยเหลือ ถือเป็นหนึ่งในกลุ่มบุคคลที่เราให้ความสนใจ เพราะว่าบุคคลกลุ่มนี้เราไม่สามารถคาดการณ์ได้ว่าจะมี อาการหกล้มขณะเดินด้วยตัวคนเดียวหรือไม่และเวลาใด ซึ่งหากเกิดอาการหกล้มแล้วไม่มีผู้ดูแลดังที่ได้กล่าวมาข้างต้นก็จะส่งผลร้ายต่อตัวผู้ พิการ และอาจให้ความช่วยเหลือไม่ทันด้วย ดังนั้นถ้าหากไม่มีผู้ดูแลในช่วงเวลาที่ผู้พิการอยู่ตามลำพัง การใช้เทคโนโลยีต่างๆเข้ามาช่วยแบ่ง เบาภาระและเสริมสร้างคุณภาพชีวิตให้กับผู้พิการจึงเป็นเรื่องที่หลีกเลี่ยงไม่ได้ในปัจจุบัน

วัตถุประสงค์

- 1. เพื่อพัฒนาความคิดสร้างสรรค์และความชำนาญในสาขาเทคโนโลยีหุ่นยนต์ระบบอัตโนมัติ
- 2. เพื่อสร้างสรรค์นวัตกรรมด้านการวิจัยและพัฒนาศักยภาพหุ่นยนต์ช่วยเหลือผู้พิการ
- เพื่อส่งเสริมให้มหาวิทยาลัยเตรียมความพร้อมในการทำหุ่นยนต์ช่วยเหลือผู้พิการ
- 4. เพื่อแลกเปลี่ยนประสบการณ์และถ่ายทอดเทคโนโลยีทางด้านหุ่นยนต์ช่วยเหลือผู้พิการ
- เพื่อได้แสดงศักยภาพการประดิษฐ์หู่นยนต์ช่วยเหลือผู้พิการในระดับประเทศและในระดับโลก
- 6. เพื่อกระตุ้นให้เกิดการพัฒนาหุ่นยนต์ช่วยเหลือผู้พิการอย่างจริงจังและสามารถขยายผลเพื่อประโยชน์ต่อสังคมโดยรวม

การสำรวจความคิดเห็นจากบุคคลที่เกี่ยวข้อง (ณ ศูนย์การแพทย์สมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี จ.นครนายก)

เพื่อตอบสนองความต้องการของแต่ละบุคคลอย่างตรงจุด จึงมีการลงพื้นที่สำรวจว่าพวกเขามีความคิดเห็นอย่างไรเกี่ยวกับเรื่องการ ล้มของผู้พิการหรือผู้รับการกายภาพบำบัดแล้ว และความต้องการอื่นๆในการดูแลผู้พิการที่ต้องอยู่ตามลำพัง ได้ผลการสำรวจดังนี้

ผู้รับการสัมภาษณ์คนที่ 1 : ผู้ป่วยเคยล้มที่รับการกายภาพบำบัดและญาติ

ผู้ป่วยเป็นผู้ชายพูดไม่ได้ ญาติเป็นผู้หญิงเป็นอาจารย์ที่มีความรู้ ทั้งคู่กลัวว่าจะเกิดการล้ม ขึ้นอีก ญาติให้ข้อมูลว่า ถ้าเป็น Sensor ติดตามตัวจะต้องใช้จำนวนมาก ตัวผู้ป่วยจะรู้สึก รำคาญ ถ้าเป็นกล้องตรวจจับจะรู้สึกว่าดีกว่า และถ้าเป็นหุ่นยนต์เล็กๆเดินตามเพื่อ ตรวจจับก็จะดี แต่ต้องพิจารณาว่าสภาพแวดล้อมที่อาศัยอยู่มีความเหมาะสมที่จะทำ หรือไม่ ราคาที่เห็นว่าเหมาะสมที่จะซื้อมาใช้ประมาณไม่เกิน 5,000 บาท

ผู้รับการสัมภาษณ์คนที่ 2 : ผู้ป่วยอัมพาตครึ่งซีกผ่าตัดเปลี่ยนข้อเข่าและญาติ

ผู้ป่วยพูดไม่ได้ ญาติให้สัมภาษณ์ว่ากลัวเหตุการณ์การล้มจะเกิดขึ้นอีก ถ้าจะมีอุปกรณ์ ป้องกันการล้มหรือแจ้งเตือนได้ก็จะดี ต้องการอุปกรณ์แบบใดก็ได้ที่แจ้งเตือนญาติให้ทราบ ได้ว่าผู้ป่วยเกิดการล้ม ราคาประเมินตามต้นทุนและมีความเหมาะสม ถ้าราคาถูกเกินไป อาจทำให้ได้ชิ้นงานที่ขาดคุณภาพ ราคาที่รับได้อยู่ในช่วงหลักพัน

ผู้รับการสัมภาษณ์คนที่ 3 : ผู้ป่วยอัมพฤกษ์กำลังฝึกเดินและผู้ดูแล

ผู้ป่วยล้มเพราะเส้นเลือดในสมองแตกวูบลงไป พูดไม่ได้แต่รับรู้ทุกอย่างตามปกติ ผู้ดูแลให้ สัมภาษณ์ว่าการทำเครื่องป้องกันการล้มเป็นอะไรที่ยาก ถ้าทำได้ก็จะดีมาก แต่ถ้าทำเป็น เครื่องช่วยเตือนว่าล้มในขณะที่ไม่มีผู้ดูแลก็ค่อนข้างเห็นด้วย อยากให้ทำเป็นอุปกรณ์ที่ใช้ งานได้ง่าย สามารถตรวจจับการล้มได้ เพื่อที่ผู้ดูแลสามารถให้ความช่วยเหลือได้ทันก่อนที่ จะสายเกินไป ราคาต้องเหมาะสมกับคุณภาพ ให้ราคาไม่เกิน 10,000 บาท

ผู้รับการสัมภาษณ์คนที่ 4 : เจ้าหน้าที่ผู้ทำการกายภาพบำบัด

ผู้รับการณ์สัมภาษณ์ให้ข้อมูลว่า ถ้าตรวจจับการล้มของคนในวอร์ดควรจะเป็น Sensor เพราะเจ้าหน้าที่เกิดความสะดวกในการทำงานมากกว่า ไม่เดินไปชนตัว Sensor แต่ถ้าเป็น ผู้ป่วยที่กายภาพแล้วและอนุญาตให้กลับบ้านได้ ควรจะเป็นกล้องตรวจจับ ถ้าเป็นหุ่นยนต์ ตัวเล็กๆเดินตามก็จะดีมาก ไม่ต้องใช้กล้องจำนวนมาก และผู้ใช้จะรู้สึกสบายใจไม่ต้อง กังวลว่าตนถูกจับตามองอยู่ ถ้าเกิดการล้มขึ้นก็ให้ส่งสัญญาณเตือนผู้ดูแล จะได้ให้ความ ช่วยเหลือได้ทัน ราคาให้เทียบกับ Smartphone ราคาถูกที่ผู้คนมาซื้อเป็นเจ้าของได้

*ผู้รับการสำรวจอนุญาตให้ถ่ายรูปเพื่อเป็นหลักฐานแต่ไม่ต้องการเปิดเผยใบหน้าของตน

แนวคิด

หลังจากที่ได้สำรวจความคิดเห็นจากบุคลากรทางการแพทย์ ผู้ป่วยกายภาพบำบัดและญาติของผู้ป่วย ทำให้ได้ข้อสรุปว่า ช่วงเวลาที่ ผู้พิการอยู่ตามลำพังโดยไม่มีผู้ดูแล ญาติต้องการให้มีอุปกรณ์ช่วยตรวจสอบเมื่อผู้พิการเกิดการล้มและแจ้งเตือนมายังญาติผ่านโทรศัพท์มือถือ เพื่อให้ญาติได้คิดหาแนวทางการดูแลปฐมพยาบาลเบื้องต้นและนำส่งสถานพยาบาลต่อไป ดังนั้น จากข้อสรุปดังกล่าวนี้ทำให้เกิดแนวคิดว่าจะ ทำเป็นหุ่นยนต์สัตว์เลี้ยงน่ารักๆติดตามผู้พิการซึ่งในตัวหุ่นยนต์นี้มีกล้องตรวจจับการล้มที่ใช้ความรู้ทาง Image Processing ในการตรวจวัด โดยใช้กล้องตัวเดียวเพื่อให้ผู้ใช้งานเกิดความสะดวกและเมื่อตรวจพบว่าเกิดการล้ม ก็จะให้ระบบของหุ่นยนต์ส่งข้อความหรือสัญญาณไร้สาย ทางไกลต่างๆ ไปยังโทรศัพท์มือถือของญาติหรือผู้ดูแลให้ทราบได้

เมื่อนำความต้องการของผู้รับการสัมภาษณ์กับแนวคิดข้อมูลเชิงเทคนิคมาวิเคราะห์ตามหลักการ Quality Function Deployment (QFD) ที่ทาง Seagate ให้การอบรม Workshop เมื่อวันที่ 25 พฤศจิกายน 2557 ได้เบื้องต้นดังนี้

• ความต้องการของลูกค้า (Customer Requirements)

- 1. ต้องการให้ขึ้นงานใช้งานง่ายและเกิดความสะดวกที่สุด
- 2. ต้องการให้ชิ้นงานให้ผลเร็วและแม่นยำ เพื่อจะได้ให้การช่วยเหลือทัน
- 3. ต้องการให้ชิ้นงานมีความปลอดภัย เช่น ไม่ต้องงานให้ชิ้นงานไฟรั่ว มีคม เป็นต้น
- 4. ต้องการให้เวลาใช้งานชิ้นงานเกิดความเกะกะกับตัวผู้ใช้ให้น้อยที่สุด
- 5. ถ้ามีความสวยงามก็จะดึงดูดให้น่าใช้งาน
- 6. ราคาเหมาะสมกับคุณภาพ ราคาต่ำเกินไปอาจทำให้คุณภาพชิ้นงานไม่ดี ราคาสูงเกินไปทำให้มีฐานลูกค้าน้อย

• ข้อกำหนดทางเทคนิค (Technical Requirements)

1. เป็นไปตามมาตรฐานที่กำหนดไว้ คือ สามารถตรวจจับผู้พิการว่าล้มได้อย่างถูกต้อง เคลื่อนที่ตามในระยะที่เหมาะสม สามารถ หลบหลีกสิ่งกีดขวางได้ และสามารถแจ้งเตือนไปยังผู้ดูแลได้อย่างรวดเร็ว

ความเร็วในการประมวลผลของระบบ
 การเคลื่อนที่ของหุ่นยนต์
 ตรวจจับได้ทุกสภาพแวดล้อม

- 5. จำนวนแบบหุ่นยนต์
- 6. จำนวนแบบสี
- 7. คุณภาพกล้อง
- 8. คุณภาพวงจร

+ + + + + + + + + + + + + + + + + + + +												
Direction of Improvement						1		1	1	1	1	1
Technical Populinaments					Performance Measures			Size of Range		Technical Details		
Requirements Customer Requirements		Kano Classification	Customer Importance	เป็นไปตามมาตรฐาน	ความเร็วในการประมวลผล	การเคลื่อนที่ของหุ่นยนต์	ตรวจจับได้ในทุกสภาพแวดล้อม	จำนวนแบบหุ่นยนต์	จำนวนแบบสี	คุณภาพกล้อง	คุณภาพวงจร	
	oility	ใช้งานง่ายและสะดวก	1D	4			9	9	3	3		
	Usability	ให้ผลเร็วและแม่นยำ	1D	5	9	9		9			9	9
Robot	Performance	ปลอดภัย	Att	5	9		3		1	1		
Rol		เกิดความเกะกะน้อย	Att	3			3					-1
	Attractive	ความสวยงามน่าใช้	МВ	1					9	9		
	Attra	ราคาเหมาะสม	1D	3							3	3
						45	60	81	26	26	54	54
	รูป A : House of QFD											

• การจัดความสำคัญแบบคาโน (Kano Classification)

จัดความสำคัญได้ 3 ลักษณะคือ

1D	หมายถึง	เป็นคุณลักษณะทางคุณภาพที่ลูกค้าไม่ได้ให้ความสนใจ แต่ถ้าคุณลักษณะดังกล่าวขาด
		หายไป ลูกค้าจะเกิดความไม่พอใจทันที คุณลักษณะทางคุณภาพประเภทนี้เป็นสิ่งที่ลูกค้า
		มักไม่เอ่ยถึง แต่คาดหวังว่าจะมีอยู่ในตัวผลิตภัณฑ์

Att หมายถึง เป็นสิ่งที่ลูกค้าต้องการให้มีในผลิตภัณฑ์ ถ้าคุณลักษณะเหล่านี้มีมากขึ้น จะทำให้ลูกค้ามี ความพึงพอใจมากขึ้น

MB หมายถึง เป็นคุณลักษณะของผลิตภัณฑ์ที่ทำให้ลูกค้ายินดีด้วยความประหลาดใจ คุณลักษณะทาง
คุณภาพเหล่านี้เป็นสิ่งที่ลูกค้าไม่สามารถเอ่ยถึงได้ เพราะเป็นสิ่งที่อยู่นอกเหนือความ
คาดหมาย ดังนั้นถ้าคุณสมบัติเหล่านี้ขาดหายไป ลูกค้าจะไม่รู้สึกทางลบแต่อย่างใด

โดยทางคณะผู้จัดทำได้ประเมินความสำคัญแบบคาโนต่อความต้องการของผู้ใช้งานตามที่ปรากฏในตาราง*รูป A*

ความสำคัญของลูกค้า (Customer Importance)

คือการให้ความสำคัญต่อความต้องการของลูกค้าว่าสิ่งใดสำคัญมาก สิ่งใดสำคัญน้อย ซึ่งกำหนดได้ตามตาราง*รูป A* (5 =สำคัญมากที่สุด , 4 =ค่อนข้างสำคัญ , 3 =สำคัญปานกลาง , 2 =ความสำคัญค่อนข้างต่ำ , 1 =ความสำคัญต่ำ)

ความสัมพันธ์ระหว่าง Customer Requirements และ Technical Requirements

เมื่อนำข้อมูลทั้งสองมาหาความสัมพันธ์กัน จะให้ความสัมพันธ์ดังตาราง*รูป A* (9 = มีความสัมพันธ์กันมาก , 3 = มี ความสัมพันธ์กันปานกลาง , 1 = มีความสัมพันธ์กันน้อย , ช่องใดไม่ได้ใส่ข้อมูลคือไม่มีผล)

ทิศทางการปรับปรุงในอนาคต (Direction of Improvement)

ในตารางรูป A ข้อมูลทางเทคนิคข้อมูลใดมีสัญลักษณ์ **ท**มายถึง จะปรับปรุงให้มีเพิ่มขึ้นในอนาคต ข้อมูลทาง เทคนิคใดมีสัญลักษณ์ หมายถึง จะปรับปรุงให้ลดลงในอนาคต และถ้าข้อมูลใดไม่มีสัญลักษณ์ใดๆเลย หมายถึงให้คงสภาพ ดังเดิม

• ความสัมพันธ์ระหว่างข้อมูลทางเทคนิค (Interrelationship between technical descriptors)

คือส่วนของหลังคาในตาราง*รูป A* ข้อมูลทางเทคนิคคู่ใดเป็น + หมายถึง เทคนิคคู่นั้นเสริมกัน ข้อมูลทางเทคนิคคู่ใดเป็น – หมายถึง เทคนิคคู่นั้นค้านหรือขัดกัน และข้อมูลทางเทคนิคคู่ใดไม่มีเครื่องหมาย หมายถึง เทคนิคคู่นั้นไม่มีผลต่อกัน

การให้ความสำคัญกับข้อมูลทางเทคนิค

คือส่วนล่างสุดของตาราง*รูป A* ที่เกิดจากการนำความสัมพันธ์ระหว่าง Customer Requirements และ Technical Requirements คุณกับ Customer Importance ซึ่งทำให้เห็นแนวโน้มการให้ความสำคัญทางเทคนิคได้ดังนี้

ให้ความสำคัญ อันดับ 1	เป็นไปตามมาตรฐาน	(90 คะแนน)
ให้ความสำคัญ อันดับ 2	ตรวจจับได้ในทุกสภาพแวดล้อม	(81 คะแนน)
ให้ความสำคัญ อันดับ 3	การเคลื่อนที่ของหุ่นยนต์	(60 คะแนน)
ให้ความสำคัญ อันดับ 4	คุณภาพกล้องและคุณภาพวงจร	(54 คะแนน)
ให้ความสำคัญ อันดับ 5	ความเร็วในการประมวลผล	(45 คะแนน)
ให้ความสำคัญ อันดับ 6	จำนวนแบบหุ่นยนต์และแบบสี	(26 คะแนน)

^{***} หมายเหตุ ยังไม่สามารถสร้าง Prioritized customer requirements และ Prioritized technical descriptors ในตาราง รูป A ได้ เพราะว่ายังไม่มีข้อมูลที่เกี่ยวข้องกับคู่แข่ง

งานวิจัยที่ศึกษาในการทำชิ้นงาน

- 1. Human fall detection on embedded platform using depth maps and wireless accelerometer: by Bogdan Kwolek and Michal Kepski
- 2. Depth-based Human Fall Detection via Shape Features and Improved Extreme Learning Machine : by Xin Ma , Haibo Wang , Bingxia Xue , Mingang Zhou , Bing Ji and Yibin Li (Member IEEE)
- 3. Comparison of low-complexity fall detection algorithms for body attached accelerometers : by Maarit Kangas , Antti Konttila , Per Lindgren , Ilkka Winblad and Timo Jamsa
- 4. A HYBRID HUMAN FALL DETECTION SCHEME: by Yie-Tarng Chen, Yu-Ching Lin and Wen-Hsien Fang
- 5. A VIDEO-BASED HUMAN FALL DETECTION SYSTEM FOR SMART HOMES : by Yie-Tarng Chen , Yu-Ching Lin and Wen-Hsien Fang
- 6. Fall Detection from Human Shape and Motion History using Video Surveillance : by Caroline Rougier , Jean Meunier , Alain St-Arnaud and Jacqueline Rousseau
- 7. Aging in Place : Fall Detection and Localization in a Distributed Smart Camera Network : by Adam Williams , Deepak Ganesan and Allen Hanson

ระบบของอุปกรณ์

ชิ้นงานนี้ประกอบไปด้วยระบบ 2 ระบบคือ

ส่วนของ Hardware หรือระบบขับเคลื่อนหุ่นยนต์

ระบบโดยรวมของหุ่นยนต์ติดตามและตรวจจับการล้มประกอบด้วยส่วนที่สำคัญ 2 ส่วน คือ การควบคุมหุ่นยนต์ และ การติดตามด้วยการประมวลผลภาพถ่าย

1) การควบคุมหุ่นยนต์

สำหรับวงจรในการควบคุมหุ่นยนต์ ประกอบด้วย โมดูลกล้อง (Camera Module), หน่วยประมวลผล คือ Raspberry Pi หน่วยความจำ 512 MB รุ่น บีพลัส (Raspberry Pi 512MB Model B+), วงจรขับมอเตอร์ (Drive motor circuit), อแดปเตอร์ไวไฟ รุ่น Edimax (Wifi adapter: Edimax)

ระบบของหุ่นยนต์ติดตามและตรวจจับการล้มของผู้ป่วยอัมพาตครึ่งชีกจะรับภาพผู้ป่วยด้วยกล้องและส่งข้อมูลไป ประมวลผลด้วย Raspberry Pi ซึ่งหน่วยประมวลผลจะทำหน้าที่ 4 ประเภท คือ ติดตามผู้ป่วย , การควบคุมการเคลื่อนที่ของ หุ่นยนต์ , ตรวจจับการล้ม และ การแจ้งเตือนเมื่อเกิดการล้ม โดยมีการทำงานดังนี้

สำหรับวงจรควบคุมการเคลื่อนที่ของหุ่นยนต์ จะใช้วงจร H-Bridge เพื่อควบคุมมอเตอร์ 2 ตัว โดยวงจรสามารถ ควบคุมมอเตอร์ได้ 2 ตัว วงจรนี้จะควบคุมการหมุนของมอเตอร์ เพื่อให้หุ่นยนต์สามารถติดตามการเคลื่อนที่ของผู้ป่วยได้ คล่องตัวที่สุด ชุดประมวลผลจะควบคุมให้หุ่นยนต์เคลื่อนที่ด้านหน้า เคลื่อนที่ไปถอยหลัง การเลี้ยวซ้าย และการเลี้ยวขวาได้ ตามการเคลื่อนที่ของผู้ป่วย

2) การติดตามด้วยการประมวลผลภาพถ่าย

สำหรับการติดตามผู้ป่วยนั้น จะใช้หลักการ color detect เพื่อทำการหาว่าผู้ป่วยอยู่ตำแหน่งใดของภาพ โดยใช้การ แปลงสีจาก RGB เป็น HSV จากนั้นทำการหา contour ที่ใหญ่ที่สุด เพื่อทำการวิเคราะห์หาจุดศูนย์กลาง และนำค่าจุด ศูนย์กลางมาใช้ในการควบคุมหุ่นยนต์ให้เคลื่อนไหวตามผู้ป่วยได้อย่างถูกต้อง ซึ่งจะอธิบายอย่างละเอียดในส่วนของ Software

• ส่วนของ Software หรือระบบตรวจจับการล้มด้วย Image Processing และการส่งสัญญาณแจ้งเตือนไปยังผู้ดูแล

ใช้หลักการการประมวลผลภาพด้วย OpenCV Library โดยใช้โปรแกรมภาษา Python ซึ่งเหมาะกับการประมวลผลใน Raspberry Pi โดยเน้นความรวดเร็วในการประมวลผลแบบ Real-Time แบ่งออกเป็น 3 ขั้นตอนหลัก ได้แก่ การตรวจจับเสื้อและ รองเท้าด้วยโมเดลสี HSV การหาจุดศูนย์กลางมวลและฐานรองรับ และการตรวจสอบการล้ม

1) การตรวจจับเสื้อและรองเท้าด้วยโมเดลสี HSV (Shirt & Shoes Detection by using HSV Model Color)

- กำหนดช่วงสีของเสื้อและรองเท้าที่เหมาะสม
- เลือกบริเวณที่มีค่าสีตามที่กำหนดไว้ให้เป็นสีขาว นอกนั้นเป็นสีดำ
- ใช้ขบวนการมอร์โฟโลยี โดยการ Dilation แล้วจึง Erotion เพื่อให้ได้บริเวณเสื้อและรองเท้าที่ชัดเจนมากขึ้น

2) การหาจุดศูนย์กลางมวลและฐานรองรับ (Center of Mass & Base of Support)

- ใช้ contour ในการเลือกพื้นที่ที่มีขนาดใหญ่สุด
- ใช้ moment ในการหาจุด centroid เปรียบเสมือนเป็นจุดศูนย์กลางมวล
- บริเวณที่เป็นรองเท้าให้หาขอบซ้ายและขวาสุดเพื่อให้เป็นขอบของฐานรองรับ

3) การตรวจสอบการล้ม (Fall Checking)

- ดูสมดุลของร่างกาย โดยการเปรียบเทียบจุดศูนย์กลางมวลที่ฉายลงบนฐานรองรับเทียบกับขอบของฐานรองรับ ถ้าอยู่
 ภายนอกจะถือว่าเกิดการเสียสมดุลและมีโอกาสล้มสูง
- วัดความเร็วของจุดศูนย์กลางมวล โดยเทียบจากพิกัดจุดศูนย์กลางมวลของเฟรมก่อนหน้า ถ้าเกินกว่าที่กำหนดไว้ ถือว่าล้ม
- ในกรณีที่ความเร็วไม่เกินที่กำหนดแต่อยู่ภายนอกฐานรองรับ ให้ดูการเคลื่อนที่ของจุดศูนย์กลางมวล ถ้าหยุดอยู่ที่ระดับหนึ่ง ถือว่านั่ง ถ้าเคลื่อนที่ต่อไปเรื่อยๆจนถึงพื้นถือว่าล้ม
 - *กำหนดให้ <mark>สีแดง</mark> หมายถึง ตรวจจับว่าล้ม , <mark>สีเหลือง</mark> หมายถึง ตรวจจับว่าระวังล้ม และสี**เขียว** หมายถึง ตรวจจับว่าไม่ล้ม

ส่วน Software เรื่องการส่งสัญญาณแจ้งไปยังผู้ดูแลกำลังทำการศึกษาเพื่อพัฒนาต่อไป

การทดลอง

การทดลองชิ้นงานแบ่งได้ตามระบบดังนี้

ส่วนของ Hardware หรือระบบขับเคลื่อนหุ่นยนต์

กำลังอยู่ในช่วงการประดิษฐ์และทดลอง

ส่วนของ Software หรือระบบตรวจจับการล้มด้วย Image Processing

สำหรับขั้นตอนการทดสอบประสิทธิภาพของวิธีที่ใช้ในการตรวจจับการล้มจากสมดุลและความเร็ว จากตัวอย่างจำนวน 25 ตัวอย่าง สวมเสื้อสีแดงและรองเท้าสีเหลืองเพื่อโปรแกรมสามารถเก็บข้อมูลส่วนร่างกายและเท้าได้ ถ่ายภาพแบบ Real-Time จากทิศทางการล้มทั้งหมด 8 ทิศ รวมทั้งหมด 200 ข้อมูล พบว่าผลการทดลองการตรวจจับการล้มด้วยวิธีที่นำเสนอ มีค่าความ ถูกต้องเฉลี่ยอยู่ที่ 96.00% ดังแสดงในตารางผลการอ่านผลของโปรแกรมเมื่อผู้รับการทดลองทำท่าล้มจริงๆ

ผลการอ่านผลของโปรแกรมเมื่อผู้รับการทดลองทำท่าล้มจริงๆ อ่านผลได้ดังนี้ (ผลที่ถูกต้องจะต้องอ่านผลว่า "<u>ล้ม</u>")

νω	องศาระหว่างผู้รับการทดลองกับมุมกล้อง								
ผู้รับการทดลอง	0°	45°	90°	135°	180°	225°	270°	315°	
Subject 01	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 02	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 03	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 04	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 05	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 06	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 07	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 08	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 09	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 10	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 11	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 12	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 13	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 14	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 15	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ล้ม ล้ม		ล้ม	
Subject 16	ล้ม	ล้ม	ล้ม	ไม่ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 17	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 18	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 19	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 20	ไม่ล้ม	ล้ม	ล้ม	ล้ม	ไม่ล้ม	ล้ม	ล้ม	ล้ม	
Subject 21	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 22	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 23	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 24	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Subject 25	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	ล้ม	
Accuracy	92%	96%	96%	92%	92%	100%	100%	100%	
Average Accuracy 96.00%									

ในขณะเดียวกันผู้วิจัยได้ทำการทดสอบประสิทธิภาพของวิธีการตรวจจับการล้มที่นำเสนอในกรณีเปลี่ยนท่าทางจากยืน เป็นนั่งและจากนั่งเป็นยืนซึ่งจะต้องไม่มีการแจ้งเตือนว่าล้ม จากทั้งหมด 8 ทิศทางดังรูป แสดงผลตามตารางผลการอ่านผลของ โปรแกรมเมื่อผู้รับการทดลองนั่งเก้าอี้พบว่ามีค่าความถูกต้องเฉลี่ย 96.00%

ผลการอ่านผลของโปรแกรมเมื่อผู้รับการทดลองนั่งเก้าอี้ อ่านผลได้ดังนี้ (ผลที่ถูกต้องจะต้องอ่านผลว่า "<u>ไม่ล้ม</u>")

νω	องศาระหว่างผู้รับการทดลองกับมุมกล้อง								
ผู้รับการทดลอง	0°	45°	90°	135°	180°	225°	270°	315°	
Subject 01	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 02	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ล้ม	ไม่ล้ม	
Subject 03	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 04	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 05	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 06	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 07	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 08	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 09	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 10	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 11	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 12	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 13	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 14	ไม่ล้ม	ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 15	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ล้ม	ไม่ล้ม	
Subject 16	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ล้ม	ไม่ล้ม	
Subject 17	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 18	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 19	ไม่ล้ม	ไม่ล้ม	ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 20	ล้ม	ไม่ล้ม							
Subject 21	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 22	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 23	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Subject 24	ล้ม	ไม่ล้ม							
Subject 25	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	ไม่ล้ม	
Accuracy	92%	96%	96%	100%	100%	96%	88%	100%	
Average Accuracy				96.0	00%				

ทดสอบทำท่าทางพิเศษ ซึ่งแสดงผลตามรูป ประกอบด้วย

- ก. ท่ากางขา ระยะขอบฐานรองรับจะกว้างขึ้นตามขอบเท้า
- ข. ท่าไขว้ขา ขอบฐานรองรับซ้ายและขวาจะสลับกันให้อัตโนมัติ
- ค. ท่ายืนด้วยเท้าข้างเดียว ฐานรองรับจะอยู่เฉพาะเท้าที่แตะพื้น

ทดสอบเล่นกับ Freeline Skates เพื่อจำลองสถานการณ์ล้มจริง

ให้ผู้ทดสอบที่เล่นเครื่อง Freeline Skates ยังไม่เป็นมาลองเล่น 4 ครั้ง พบว่า มีการแจ้งเตือนล้มได้ตรงกับการล้มจริงทั้ง 4 ครั้ง ดังรูป

แนวทางการพัฒนาต่อ

หลังจากนี้จะพัฒนาอุปกรณ์ในเรื่องต่างๆดังนี้

- 1. ทำให้หุ่นยนต์เคลื่อนที่ได้ตามโปรแกรมที่เขียน
- 2. พัฒนาระบบตรวจจับให้สามารถทำงานในสภาวะแสงที่แตกต่างกันได้
- 3. พัฒนาระบบการส่งสัญญาณแจ้งเตือนไปยังผู้ดูแลในรูปของข้อความหรือ Application Android

ประโยชน์และผลกระทบ

• ประโยชน์

- สามารถตรวจจับการล้มของผู้พิการและส่งสัญญาณเตือนไปยังผู้ดูแลขณะที่ไม่อยู่กับผู้พิการได้
- ขนาดชิ้นงานเล็ก น้ำหนักเบา และเก็บรักษาง่าย
- ต้นทุนในการผลิตต่ำ เพราะลงทุนเพียงตัวรถ กล้อง และ Raspberry Pi เท่านั้น
- การออกแบบตัวรถจะเป็นสัตว์เลี้ยงน่ารัก ใช้กล้องตรวจจับตัวเดียว คอยเคลื่อนที่ตามผู้พิการใน
 ระยะที่เหมาะสม ผู้พิการจึงไม่เกิดความระแวงว่าตัวเองถูกจ้องมองเหมือนการติดกล้องวงจรปิด

• ผลกระทบ

- ที่อยู่อาศัยของผู้พิการต้องเปิดสัญญาณอินเทอร์เน็ตเมื่อต้องการใช้งานหุ่นยนต์
- แสงสว่างของสภาพแวดล้อมมีผลต่อการตรวจจับ
- ที่อยู่อาศัยของผู้พิการ ถ้าความสูงของพื้นมีความต่างระดับกัน มีผลต่อการเดินของหุ่นยนต์