```
In [91]: import pandas as pd
In [92]: data=pd.read csv("/home/placement/Desktop/yamuna/fiat500.csv")
In [93]: data.describe()
Out[93]:
                                              age_in_days
                                                                     km previous_owners
                            ID engine power
                                                                                                    lat
                                                                                                                lon
                                                                                                                            price
             count 1538.000000
                                  1538.000000
                                               1538.000000
                                                             1538.000000
                                                                              1538.000000
                                                                                           1538.000000
                                                                                                        1538.000000
                                                                                                                     1538.000000
             mean
                     769.500000
                                    51.904421
                                               1650.980494
                                                             53396.011704
                                                                                 1.123537
                                                                                             43.541361
                                                                                                          11.563428
                                                                                                                     8576.003901
               std
                     444.126671
                                     3.988023
                                               1289.522278
                                                             40046.830723
                                                                                  0.416423
                                                                                              2.133518
                                                                                                           2.328190
                                                                                                                     1939.958641
                       1.000000
                                                                                  1.000000
                                                                                             36.855839
                                                                                                           7.245400
              min
                                    51.000000
                                                366.000000
                                                             1232.000000
                                                                                                                     2500.000000
                                                                                                           9.505090
              25%
                     385.250000
                                    51.000000
                                                670.000000
                                                             20006.250000
                                                                                  1.000000
                                                                                             41.802990
                                                                                                                     7122.500000
              50%
                     769.500000
                                    51.000000
                                               1035.000000
                                                                                  1.000000
                                                                                             44.394096
                                                                                                          11.869260
                                                                                                                     9000.000000
                                                             39031.000000
              75%
                    1153.750000
                                    51.000000
                                               2616.000000
                                                             79667.750000
                                                                                  1.000000
                                                                                             45.467960
                                                                                                          12.769040
                                                                                                                    10000.000000
              max 1538.000000
                                    77.000000
                                               4658.000000
                                                           235000.000000
                                                                                  4.000000
                                                                                             46.795612
                                                                                                          18.365520
                                                                                                                    11100.000000
```

1/10

In []:

In [94]: data.head()

Out[94]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700

localhost:8888/notebooks/elastic.ipynb

In [95]: data

Out[95]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

In [96]: data1=data.loc[(data.previous_owners==1)]

In [97]: data1

Out[97]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	рор	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	рор	73	3074	106880	1	41.903221	12.495650	5700
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	рор	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1389 rows × 9 columns

```
In [98]: data2= data1.drop(['lat','lon','ID'],axis=1)
    data2
```

Out[98]:

	model	engine_power	age_in_days	km	previous_owners	price
0	lounge	51	882	25000	1	8900
1	pop	51	1186	32500	1	8800
2	sport	74	4658	142228	1	4200
3	lounge	51	2739	160000	1	6000
4	pop	73	3074	106880	1	5700
1533	sport	51	3712	115280	1	5200
1534	lounge	74	3835	112000	1	4600
1535	pop	51	2223	60457	1	7500
1536	lounge	51	2557	80750	1	5990
1537	pop	51	1766	54276	1	7900

1389 rows × 6 columns

```
In [99]: data2 = pd.get_dummies(data1)
```

```
In [100]: data2.shape
```

Out[100]: (1389, 11)

In [101]: data2

Out[101]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	price	model_lounge	model_pop	model_sport
0	1	51	882	25000	1	44.907242	8.611560	8900	1	0	0
1	2	51	1186	32500	1	45.666359	12.241890	8800	0	1	0
2	3	74	4658	142228	1	45.503300	11.417840	4200	0	0	1
3	4	51	2739	160000	1	40.633171	17.634609	6000	1	0	0
4	5	73	3074	106880	1	41.903221	12.495650	5700	0	1	0
1533	1534	51	3712	115280	1	45.069679	7.704920	5200	0	0	1
1534	1535	74	3835	112000	1	45.845692	8.666870	4600	1	0	0
1535	1536	51	2223	60457	1	45.481541	9.413480	7500	0	1	0
1536	1537	51	2557	80750	1	45.000702	7.682270	5990	1	0	0
1537	1538	51	1766	54276	1	40.323410	17.568270	7900	0	1	0

1389 rows × 11 columns

```
In [102]: y = data2['price']
x = data2.drop('price',axis= 1)
```

```
In [103]: y
Out[103]: 0
                      8900
                      8800
                      4200
            2
             3
                      6000
             4
                      5700
            1533
                      5200
            1534
                      4600
            1535
                      7500
            1536
                      5990
                      7900
            1537
            Name: price, Length: 1389, dtype: int64
In [104]: from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.33,random_state=42)
In [105]: x_test.head(5)
```

Out[105]:

	ID	engine_power	age_in_days	km	previous_owners	lat	lon	model_lounge	model_pop	model_sport
625	626	51	3347	148000	1	41.903221	12.49565	1	0	0
187	188	51	4322	117000	1	45.329800	10.12680	1	0	0
279	280	51	4322	120000	1	40.672379	14.72822	0	1	0
734	735	51	974	12500	1	39.214539	9.11049	0	1	0
315	316	51	1096	37000	1	45.550171	12.07188	1	0	0

localhost:8888/notebooks/elastic.ipynb

```
In [106]: import warnings
          warnings.filterwarnings("ignore")
          from sklearn.linear model import ElasticNet
          from sklearn.model selection import GridSearchCV
          elastic = ElasticNet()
          parameters = { 'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
          elastic regressor = GridSearchCV(elastic, parameters)
          elastic regressor.fit(x train, y train)
Out[106]:
                                              GridSearchCV
           GridSearchCV(estimator=ElasticNet(),
                        param grid={'alpha': [1e-1$, 1e-10, 1e-08, 0.0001, 0.001, 0.01, 1,
                                              5, 10, 20]})
                                        ▶ estimator: ElasticNet
                                              ▶ ElasticNet
In [107]: elastic regressor.best params
Out[107]: {'alpha': 0.01}
In [108]: elastic=ElasticNet(alpha=0.1)
          elastic.fit(x train,y train)
          y pred elastic=elastic.predict(x test)
In [109]: from sklearn.metrics import r2 score
          r2 score(y test,y pred elastic)
Out[109]: 0.8624332546885342
```

localhost:8888/notebooks/elastic.ipynb 7/10

```
In [110]: from sklearn.metrics import mean_squared_error
    elastic_error=mean_squared_error(y_pred_elastic,y_test)
    elastic_error

Out[110]: 507176.34708970657

In [111]: Results=pd.DataFrame(columns=['Actual','Predicted'])
    Results['Actual']=y_test
    Results['Predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['Id']=Results.index
    Results.head(10)
```

Out[111]:

_		index	Actual	Predicted	ld
	0	625	5400	5441.350587	0
	1	187	5399	5211.241092	1
	2	279	4900	4744.676536	2
	3	734	10500	9520.671060	3
	4	315	9300	9503.085621	4
	5	652	10850	10419.319488	5
	6	1472	9500	9835.689999	6
	7	619	7999	8464.236038	7
	8	992	6300	5819.939349	8
	9	1154	10000	10193.181401	9

```
In [113]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='Id',y='Actual',data=Results.head(50))
sns.lineplot(x='Id',y='Predicted',data=Results.head(50))
plt.plot()
```

Out[113]: []

In []:

In []: