Ve203 Discrete Mathematics (Spring 2022)

Assigment 2

Date Due: 21:00 PM, Tuesday, Mar. 08, 2022

This assignment has a total of (44 points).

Exercise 2.1 (2 pts)

Show by induction that every nonempty finite set of real numbers has a smallest element.

Exercise 2.2 (2 pts)

What is wrong with the following **proof** of the "theorem"?

Theorem. Given any positive number a, then for all positive integer n, we have $a^{n-1} = 1$.

Proof. If n=1, $a^{n-1}=a^{1-1}=a^0=1$. By induction, assume that the theorem is true for $n=1,2,\ldots,k$, then for n=k+1,

$$a^{(k+1)-1} = a^k = \frac{a^{k-1} \times a^{k-1}}{a^{(k-1)-1}} = \frac{1 \times 1}{1} = 1$$

therefore the theorem is true for all positive integers n.

Exercise 2.3 (2 pts)

Define a nonempty sorted list as either

- $\langle x, \langle \rangle \rangle$; or
- $\langle x, \langle y, L \rangle \rangle$ where $x \leq y$ and $\langle y, L \rangle$ is a nonempty sorted list.

Prove by structural induction that in a nonempty sorted list $\langle x, L \rangle$, every element z in L satisfies $z \geq x$.

Exercise 2.4 (4 pts)

Show that for any logical proposition φ using the connectives $\{\neg, \land, \lor, \rightarrow\}$, i.e., wffs, there exists a proposition that is logically equivalent to φ using only

- (i) (2 pts) $\{\downarrow\}$, where \downarrow is the Peirce arrow (NOR), with $p \downarrow q \Leftrightarrow \neg(p \lor q)$.
- (ii) (2 pts) {|}, where | is the Sheffer stroke (NAND), with $p \mid q \Leftrightarrow \neg(p \land q)$.

Exercise 2.5 (4 pts)

Show by induction that the following two algorithms mergeSort and merge are correct.

```
Input: A[1 \dots n], unsorted array
   Output: all the A[i], 1 \le i \le n in increasing order
1 Function mergeSort(A[1...n]):
       if n = 1 then
\mathbf{2}
3
           return A
       else
4
           L \leftarrow \mathtt{mergeSort}(1 \dots | \frac{n}{2} |)
5
           R \leftarrow \mathtt{mergeSort}(|\frac{n}{2}| + 1 \dots n)
           return merge(L, R)
       end
8
9 end
```

```
Input: X[1 \dots n], Y[1 \dots m], 2 sorted arrays
   Output: X \cup Y sorted with elements in increasing order
 1 Function merge (X[1 \dots n], Y[1 \dots m]):
      if n = 0 then
 2
          return Y
 3
      else if m=0 then
          return X
 5
      else if X[1] < Y[1] then
 6
          return X[1] followed by merge(X[2...n], Y)
 7
         return Y[1] followed by merge(X, Y[2...m])
      end
10
11 end
```

Exercise 2.6 (10 pts)

Let

$$m \sim n \quad :\Leftrightarrow \quad 2 \mid (n-m), \qquad m, n \in \mathbb{Z}.$$

- (i) (1pt) Show that \sim is an equivalence relation.
- (ii) (1pt) What partition $\mathbb{Z}_2 := \mathbb{Z}/\sim$ is induced by \sim ?
- (iii) (2pts) Define addition and multiplication on \mathbb{Z}_2 by the addition and multiplication of class representatives, i.e.,

$$[m] + [n] := [m + n],$$
 $[m] \cdot [n] := [m \cdot n].$

Show that these operations are well-defined, i.e., independent of the representatives m and n of each class.

- (iv) (6 pts) Verify that $(\mathbb{Z}_2, +, \cdot)$ is a field, i.e.,
 - (a) Closure under addition, i.e., $\forall m, n \in \mathbb{Z}_2$, $\exists m + n \in \mathbb{Z}_2$;
 - (b) Closure under multiplication, i.e., $\forall m, n \in \mathbb{Z}_2, \exists m \cdot n \in \mathbb{Z}_2$;
 - (c) Commutativity of the addition "+", i.e., m+n=n+m for all $m,n\in\mathbb{Z}_2$;
 - (d) Commutativity of the multiplication "·", i.e., $m \cdot n = n \cdot m$ for all $m, n \in \mathbb{Z}_2$;
 - (e) Associativity of the addition "+", i.e., (m+n)+k=n+(m+k) for all $m,n,k\in\mathbb{Z}_2$;
 - (f) Associativity of the multiplication ".", i.e., $(m \cdot n) \cdot k = n \cdot (m \cdot k)$ for all $m, n, k \in \mathbb{Z}_2$;
 - (g) Distributivity: $k \cdot (m+n) = k \cdot m + k \cdot n$ for all $k, m, n \in \mathbb{Z}_2$;
 - (h) Existence of an additive identity, i.e., $\exists 0 \in \mathbb{Z}_2, \forall m \in \mathbb{Z}_2 : 0 + m = m + 0 = m$;
 - (i) Existence of a multiplicative identity, i.e., $\exists 1 \in \mathbb{Z}_2, \forall m \in \mathbb{Z}_2 \colon 1 \cdot m = m \cdot 1 = m$;
 - (j) Existence of an additive inverse, i.e., $\forall m \in \mathbb{Z}_2$, $\exists n \in \mathbb{Z}_2$ such that m+n=n+m=0;
 - (k) Existence of a multiplicative inverse, i.e., $\forall m \in \mathbb{Z}_2, m \neq 0, \exists n \in \mathbb{Z}_2 \text{ such that } m \cdot n = n \cdot m = 1;$
 - (l) The additive and multiplicative identity elements are different, i.e., $0 \neq 1$.

Exercise 2.7 (8 pts)

Determine whether the relation R on the set of all integers is reflexive, symmetric and/or transitive, where $(x, y) \in R$ iff

(i)
$$x + y = 0$$

(ii)
$$2 | (x - y)$$

(iii)
$$xy = 0$$

(iv)
$$x = 1$$
 or $y = 1$

(v)
$$x = \pm y$$

(vi)
$$x = 2y$$

(vii)
$$xy \ge 0$$

(viii)
$$x = 1$$

Exercise 2.8 (12 pts)

Let $f: X \to Y$ be any function. Show that for all $A, B \subset X$, we have

- (i) (2pts) $f(A \cup B) = f(A) \cup f(B)$.
- (ii) (2pts) $f(A \cap B) \subset f(A) \cap f(B)$, where equality holds if f is injective.
- (iii) (2pts) $f(A) f(B) \subset f(A B)$, where equality holds if f is injective.

Show that for all $C, D \subset Y$, we have

- (iv) (2pts) $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- (v) (2pts) $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- (vi) (2pts) $f^{-1}(C-D) = f^{-1}(C) f^{-1}(D)$.

Note that the function $f^{-1}: 2^Y \to 2^X$ has better behavior than $f: 2^X \to 2^Y$ with respect to union, intersection, and complementation. (Note that $f: 2^X \to 2^Y$ is induced by $f: X \to Y$, which is a not uncommmon overloading/abusing of notation.)