K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Cascade Amplifier Design

9th July, **2020**

Design 1:

Design two stage RC coupled cascade amplifier to meet the following specifications: $A_V \ge 170$, $V_{o(rms)} = 2.5V$, $R_i \ge 1M\Omega$. Select suitable transistor from datasheet.

Solution:

Step 1: For the above given requirement, we can use CS-CS self-bias JFET amplifier.

Figure 1: Circuit diagram

JFET BFW11 parameters: (from datasheet)

$$I_{DSS} = 7mA$$
 $V_P = -2.5V$ $r_d = 50k\Omega$ $g_{mo} = 5600\mu \mho$

Step 2: Selection of voltage gain: $A_V \ge 170$...(given)

Let $A_V = 190$

Also, let $A_{V1} = 0.6A_{V2}$

$$\therefore A_V = A_{V1} \times A_{V2}$$

$$\therefore 190 = 0.6A_{V2}^2 \implies A_{V2} = 17.7951$$

 $A_{V2} \approx 18$

$$\therefore A_{V1} = 10.6771 \implies A_{V1} \approx 11$$

Step 3: Design of second stage:

Calculation of Q-point: (V_{GSQ2}, I_{DQ2})

Since I_{DQ} is not given, using mid-point biasing we can find I_{DQ} and V_{GSQ}

$$\therefore I_{DQ} = \frac{I_{DSS}}{2} = \frac{7mA}{2} = 3.5mA$$

In saturation, $I_{DQ} = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$

$$\therefore V_{GS} = V_P \left[1 - \sqrt{\frac{I_D}{I_{DSS}}} \right]$$

$$V_{GS} = (-2.5) \left[1 - \sqrt{\frac{3.5mA}{7mA}} \right]$$

$$\therefore V_{GS} = -0.7302V$$

Step 4: Calculation of R_{D2} :

$$|A_{V2}| = g_m(r_{d2} \parallel R_{D2})$$
 ...(1)

$$g_{m1} = g_{m2} = g_{m0} \left[1 - \frac{V_{GS}}{V_P} \right]$$

$$\therefore g_m = 5600 \times 10^{-6} \left[1 - \frac{0.732}{2.5} \right]$$

$$\therefore g_m = 3.9603 mA/V$$

Also,
$$r_{d1} = r_{d2} = r_d = 50k\Omega$$

From (1),
$$18 = 3.9603 \times 10^{-3} [50k\Omega \parallel R_{D2}]$$

$$\frac{18}{3.9603 \times 10^{-3}} = \frac{R_{D2} \times 50k\Omega}{50k\Omega + R_{D2}}$$

$$\therefore R_{D2} = 4.9995k\Omega$$

Choosing higher standard values, $R_{D2} = 2.1k\Omega, 1/4W$

Step 5: Calculation of R_{S2} :

$$V_{GSQ} = -I_{DQ}R_{S2}$$

$$\therefore R_{S2} = \frac{-V_{GSQ}}{I_{DQ}} = \frac{0.732}{3.5mA}$$

$$\therefore R_{S2} = 0.2091k\Omega$$

Choosing higher standard value, $R_{S2} = 180\Omega, 1/4W$

Step 6: Selection of R_{G2} :

To prevent loading for first stage, let $R_{G2} = 1M\Omega, 1/4W$

Step 7: Calculation for V_{DD} :

Applying KVL to JFET 2, D-S loop:

$$V_{DD} - I_{DQ2}R_{D2} - V_{DSQ2} - I_{DQ2}R_{S2} = 0$$

$$V_{DD} = I_{DQ2}(R_{D2} + R_{S2}) + V_{DSQ2}$$

$$V_{DSQ2} \ge 1.5 \left[\mid V_P \mid + V_{opeak} \right]$$

The value is multiplied by 1.5 to take care of the saturation voltages, variations in resistance, variation in supply voltage and device parameter variation.

$$V_{DSQ2} \geq 1.5 \left[\mid V_P \mid + V_{opeak} \right]$$

$$V_{DSQ2} \ge 1.5 \left[2.5 + \sqrt{2}(2.5) \right]$$

$$V_{DSQ2} \ge 9.0533$$

$$\therefore V_{DSQ} = 9.1V$$

$$V_{DD} = (3.5 \times 10^{-3})(0.18k\Omega + 5.1k\Omega) + 9.1$$

$$\therefore V_{DD} = 27.58V$$
selecting $V_{DD} = 30V$

Figure 2: D-S loop of JFET 2

Design of first stage:

Step 8: Selection of R_{D1} :

$$\mid A_{V2}\mid =g_m(r_d\parallel R_{D2})=3.6603(50k\Omega\parallel 5.1k\Omega)$$

$$|A_{V2}| = 18.3281$$

i.e.
$$|A_{V1}| = \frac{A_V}{|A_{V2}|} = \frac{190}{18.3281} = 10.3666$$

Let
$$A_{V1} = 11$$

$$|A_{V1}| = g_{m1}(r_{d1} \parallel R_{D1} \parallel R_{G2})$$

Figure 3: Small signal equivalent circuit for stage 1

 $\therefore 11 = 3.9603(50k\Omega \parallel R_{D1} \parallel 1M\Omega)$

 $\therefore 11 = 3.9603(47.62k\Omega \parallel R_{D1})$

$$\therefore \frac{11}{3.9603} = \frac{R_{D1}(47.62k\Omega)}{R_{D1} + 47.62k\Omega}$$

 $\therefore R_{D1} = 2.9496k\Omega$

Choosing higher standard value, $\therefore R_{D1} = 3.3k\Omega, 1/4W$

Step 9: Selection of $R_{S1}: V_{GSQ1} = -I_{DQ1}R_{S1}$

$$\therefore R_{S1} = \frac{-V_{GSQ1}}{I_{DQ1}} = \frac{0.7320}{3.5mA}$$

$$R_{S1} = 0.2091k\Omega = 209.1\Omega$$

Choosing lower standard value, $R_{S1} = 180\Omega, 1/4W$

Step 10: Selection of $R_{G1:}$

To avoid loading effect and fulfill the requirement of $R_i \geq 1M\Omega$ Select $R_{G1} = 1.2M\Omega, 1/4W$

Step 11: Selection of coupling capacitors:

 $C_{C1},\,C_{C2},\,C_{C3}$: Since f_L is not given, we choose audio frequency $f_L=20Hz$

For C_{C1} :

Figure 4: For calculating C_{C1}

$$\therefore C_{C1} = \frac{1}{2\pi R_{eq} f_L} \quad ...(\text{here } R_{eq} = R_{G1})$$

$$\therefore C_{C1} = \frac{1}{2\pi R_{G1} f_L} = \frac{1}{2\pi (1.2M)(20)}$$

$$\therefore C_{C1} = 6.63nF$$

Choosing higher standard value, $\therefore C_{C1} = 6.8nF/60V$

Here, voltage rating should be greater than twice of V_{DD}

For C_{C2} :

Figure 5: For calculating C_{C2}

$$\therefore C_{C2} = \frac{1}{2\pi R_{eq} f_L}$$

here, $R_{eq} = r_{d1} \parallel R_{D1} + R_{G2}$

$$\therefore R_{eq} = 50k\Omega \parallel 3.3k\Omega + 1M\Omega$$

$$\therefore R_{eq} = 1.0031 M\Omega$$

$$\therefore C_{C2} = \frac{1}{2\pi (1.00031M\Omega)(20)}$$

$$\therefore C_{C2} = 7.933nF$$

Choosing higher standard value, $C_{C2} = 8.2nF/60V$

For C_{C3} :

Figure 6: For calculating C_{C3}

$$R_{eq} = r_{d2} \parallel R_{D2}$$

$$\therefore C_{C3} = \frac{1}{2\pi R_{eq} f_L}$$

$$R_{eq} = 50k\Omega \parallel 5.1k\Omega$$

$$\therefore R_{eq} = 4.6279k\Omega$$

$$\therefore C_{C3} = \frac{1}{2\pi (4.6279k\Omega)(20)} = 1.7195\mu F$$

Choosing higher standard value, $C_{C3} = 1.8 \mu F, 60V$

Step 12: Selection of bypass capacitor:

Since $g_{m1} = g_{m2} = g_m = 3.6603 mA/V$ and $R_{S1} = R_{S2} = 180\Omega$

$$\therefore C_{S1} = C_{S2} = \frac{1}{2\pi R_{eq} f_L}$$

here, $R_{eq} = 1/g_m \parallel R_S$

$$\therefore R_{eq} = 252.51 \parallel 180 = 0.1051k\Omega$$

$$\therefore C_{S1} = C_{S2} = \frac{1}{2\pi (0.1051k\Omega)(20)}$$

$$\therefore C_{S1} = C_{S2} = 75.7250 \mu F$$

Choosing higher standard value, $C_{S1} = C_{S2} = 100 \mu F$

Step 13: Completed Designed circuit:

Figure 7: Completed Designed circuit

Small signal equivalent circuit is shown in figure 8:

Figure 8: Small signal equivalent circuit

Input impedance: $Z_i = R_{G1} = 1.2M\Omega$

Output impedance: $Z_o = r_{d2} \parallel R_{D2}$

 $\therefore Z_o = 50k\Omega \parallel 5.1k\Omega = 4.6279k\Omega$

For Stage 1, $A_{V1} = V_1/V_s$ here, $V_s = V_{gs}$

$$\therefore V_1 = -g_m V_{gs}(r_{d1} \parallel R_{D1} \parallel R_G)$$

$$\therefore A_{V1} = -g_m(r_{d1} \parallel R_{D1} \parallel R_G)$$

$$\therefore A_{V1} = (-3.9603 \times 10^{-3})(50k\Omega \parallel 3.3k\Omega \parallel 1.2M\Omega)$$

$$\therefore A_{V1} = (-3.9603 \times 10^{-3})(3.0877k\Omega) = -12.22$$

$$\therefore |A_{V1}| = 12.2200$$

For stage 2, $A_{V2} = V_{out}/V_1$

$$\therefore V_{out} = -g_m V_{gs}(r_{d2} \parallel R_{D2})$$

here,
$$V_1 = V_{gs}$$

$$\therefore A_{V2} = -g_m(r_{d2} \parallel R_{D2})$$

$$\therefore A_{V2} = -(3.9603 \times 10^{-3})(4.6279k\Omega)$$

$$A_{V2} = -18.3281$$

$$|A_{V2}| = 18.3281$$

Overall gain: $A_{Vt} = A_{V1} \times A_{V2} = 223.9694$

$$\therefore A_{Vt} = 47dB$$

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 9: Circuit Schematic: Results

Input and output waveforms for each stage are shown below:

Figure 10: Input and output waveform for Stage 1

Figure 11: Input and output waveform for Stage 2

Figure 12: Input and output waveform for designed circuit

Comparsion between theoretical and simulated values:

Parameter	Theoretical value	Simulated value
DC parameters of Stage 1: I_{DQ1} , V_{GSQ1}	3.5 mA, -0.732 V	3.5016 mA, -0.7318 V
DC parameters of Stage 1: I_{DQ2} , V_{GSQ2}	3.5 mA, -0.732 V	3.5016 mA, -0.7318 V
Voltage gain of Stage 1 : $ A_{V1} $	> 11	13.4435
Voltage gain of Stage $2: A_{V2} $	>18	20.8860
Overall voltage gain: A_V (in dB)	47dB	48.9673
Input impedance: Z_i	$1.2 \mathrm{M}\Omega$	_
Output impedance: Z_o	$4.6279 \mathrm{k}\Omega$	_

Design 2:

Design two stage RC coupled cascade amplifier for following specifications:

 $A_V \geq 450,\, V_{CC}=20V,\, S \leq 10,\, R_i \geq 1M\Omega$

Select a suitable transistor from datasheet.

Solution: Above requirements can be fulfilled by CS-CE stage.

Stage 1 is of JFET since $R_i \ge 1M\Omega$

Step 1: Circuit diagram and selection of transistor:

Figure 13: Circuit diagram

Select BC147B, since h_{fe} and h_{ie} are high.

BC147B Parameters: $h_{fe} = 330$ $h_{FE} = 290 = \beta$

 $h_{ie} = 4.5k\Omega$ $V_{CC(sat)} = 0.25V$

BFW11 Parameters: $I_{DSS} = 7mA$, $g_{mo} = 5600 \circ$, $V_P = -2.5 V$, $r_d = 50 k \circ$

Step 2:Selection of gain:

 $A_V \ge 450$...(given)

Let $A_{V1} = 4$, since JFET Amplifier gain is small.

then
$$A_{V2} = \frac{A_V}{A_{V1}}$$

$$\therefore A_{V2} = \frac{450}{4} = 120$$

Design of second stage:

Step 3: Selection of R_C :

$$\mid A_{V2}\mid = \frac{h_{fe}R_{C}}{h_{ie}}$$

$$\therefore 120 = \frac{330 \times R_C}{4.5 \times 10^3}$$

$$\therefore R_C = 1.636k\Omega$$

Choosing higher standard value, $R_C = 1.8k\Omega, 1/4W$

Step 4: Selection of Q-point (V_{CEQ}, I_{CQ})

$$V_{CC} = 20V$$
 ...(given)

$$V_{CE} = \frac{V_{CC}}{2} = 10V$$

$$V_E = 0.1 V_{CC} = 0.1(20)$$

$$\therefore V_E = 2V$$

Applying KVL to C-E loop:

$$V_{CC} - V_{RC} - V_{CEQ} - V_E = 0$$

$$\therefore V_{RC} = V_{CC} - V_{CEQ} - V_E = 20 - 10 - 2$$

$$\therefore V_{RC} = 8V$$

Now,
$$V_{RC} = I_{CQ}(R_C)$$

$$\therefore I_{CQ} = \frac{V_{RC}}{R_C} = \frac{8V}{1.8k\Omega}$$

$$\therefore I_{CQ} = 4.444mA$$

$$\therefore I_B = \frac{I_{CQ}}{\beta} = \frac{4.444mA}{290}$$

$$\therefore I_B = 15.3255 \mu A$$

$$I_E = (1 + \beta)I_B$$

$$I_E = (290 + 1)(15.3255\mu A)$$

$$\therefore I_E = 4.4597mA$$

Step 5: Selection of R_E :

$$V_E = 2V$$

$$\therefore V_E = I_E R_E$$

$$\therefore R_E = \frac{V_E}{I_E} = \frac{2}{4.4597mA}$$

$$R_E = 448.46\Omega$$

Choosing lower standard value, this is only in case of CS-CE amplifier.

$$\therefore R_E = 420\Omega, 1/4W$$

Step 6: Selection of biasing resistors: $(R_1 \& R_2)$

$$S \le 10$$
 ...(given)

Let S = 9

$$S = \frac{1+\beta}{1+\beta \left[\frac{R_E}{R_B + R_E}\right]}$$

here, $R_B = R_1 \parallel R_2$

$$\therefore 9 = \frac{1 + 290}{1 + \left[290 \times \frac{420}{420 + R_B}\right]}$$

$$\therefore R_B = 3.4672k\Omega$$

i.e.
$$\frac{R_1 R_2}{R_1 + R_2} = 3.4672 k\Omega$$
 ...(1)

Also,
$$V_{TH} = V_B = \frac{R_2 V_{CC}}{R_1 + R_2}$$

$$\therefore V_B = \frac{R_2(20)}{R_1 + R_2} \qquad ...(2)$$

Applying KVL to B-E loop:

$$V_B - I_{BQ}R_B - V_{BE} - I_{EQ}R_E = 0$$

$$\therefore V_B = \frac{I_{CQ}}{\beta} R_B + V_{BE} + I_{CQ} R_E \quad \dots (\because I_{CQ} = \beta I_{BQ} \& I_{CQ} \approx I_{EQ})$$

$$\therefore V_B = \frac{4.444mA}{290}(3.4672k\Omega) + 0.7 + (4.444mA)(0.42)$$

$$V_B = 2.6179V$$

From (2),
$$2.6179 = \frac{R_2(20)}{R_1 + R_2}$$

$$\therefore \frac{R_2}{R_1 + R_2} = 0.13$$

From (1), $(0.13)R_1 = 3.4672$

 $\therefore R_1 = 26.6708k\Omega$

Choosing higher standard value, $R_1 = 27k\Omega, 1/4W$

Also,
$$\frac{R_1 R_2}{R_1 + R_2} = 3.4672$$

$$\therefore \frac{(27k\Omega)R_2}{27k\Omega + R_2} = 3.4672$$

$$\therefore R_2 = 3.9780k\Omega$$

Choosing higher standard value, $R_2 = 4.2k\Omega, 1/4W$

Design of first stage:

Step 7: Selection of Q-point (I_{DQ}, V_{GSQ})

Using mid-point biasing technique, $I_{DQ} = \frac{I_{DSS}}{2} = \frac{7mA}{2}$...(from datasheet)

$$I_{DQ} = 3.5mA$$

For JFET in saturation,
$$I_D = I_{DSS} \left[1 - \frac{V_{GS}}{V_P} \right]^2$$

On rearranging,
$$V_{GSQ} = V_P \left[1 - \sqrt{\frac{I_{DQ}}{I_{DSS}}} \right] = -2.5 \left[1 - \sqrt{\frac{3.5mA}{7mA}} \right]$$

$$\therefore V_{GSQ} = -0.732V$$

Now,
$$g_{m1} = g_{mo} \left[1 - \frac{V_{GS}}{V_P} \right]$$

$$\therefore g_{m1} = (5600 \times 10^{-6}) \left[1 - \frac{0.732}{2.5} \right]$$

$$g_{m1} = 3.9603 mA/V$$

Step 8: Selection of R_D :

$$|A_{V2}| = \frac{h_{fe} \times R_C}{hie} = \frac{330 \times 1.8k\Omega}{4.5} = 132$$

$$|A_{V1}| = \frac{A_V}{|A_{V2}|} = \frac{450}{132} = 3.41$$

Let
$$|A_{V1}| = 3.5$$

$$\mid A_{V1} \mid = g_m(r_d \parallel R_1 \parallel R_2 \parallel hie \parallel R_D)$$

Figure 14: For selection of R_D

$$\therefore 3.5 = (3.9603 \times 10^{-3})(50k\Omega \parallel 27k\Omega \parallel 4.2k\Omega \parallel 4.5k\Omega \parallel R_D)$$

$$\therefore 3.5 = (3.9603 \times 10^{-3})(1.9329k\Omega \parallel R_D)$$

$$\therefore 0.8838 = \frac{R_D(1.9329k\Omega)}{R_D + 1.9329k\Omega}$$

$$\therefore R_D = 1.6283k\Omega$$

Choosing higher standard value, $R_D = 1.8k\Omega, 1/4W$

Step 9: Selection of R_S

$$V_{GSQ} = -I_{DQ}(R_S)$$

$$\therefore R_S = \frac{-V_{GSQ}}{I_{DQ}}$$

$$\therefore R_S = \frac{-(-0.732)}{3.5mA}$$

$$R_S = \frac{-(-0.732)}{3.5mA}$$

$$\therefore R_S = 209.14\Omega$$

Choosing lower standard value, $R_S=180\Omega, 1/4W$

Step 10: Selection of R_G :

Let
$$R_G = 1.2 M\Omega$$
 since $R_i \ge 1 M\Omega$

$$\therefore R_G = 1.2M\Omega, 1/4W$$

Step 11: Selection of coupling capacitors:

For C_{C1} :

Since f_L is not given, we choose $f_L = 20 Hz$ which is audio frequency.

Figure 15: Low frequency equivalent circuit for C_{C1}

$$\therefore C_{C1} = \frac{1}{2\pi R_{eq} f_L}$$

here $R_{eq} = R_G$

$$\therefore R_{eq} = 1.2M\Omega$$

$$\therefore C_{C1} = \frac{1}{2\pi (1.2M\Omega)(20)} = 6.63nF$$

Choosing higher standard value, $C_{C1} = 6.8nF/50V$

For C_{C2} :

Figure 16: Low frequency equivalent circuit for C_{C2}

here,
$$R_{eq} = r_d \parallel R_D + R_1 \parallel R_2 \parallel h_{ie}$$

$$\therefore R_{eq} = 50k\Omega \parallel 1.8k\Omega + 27k\Omega \parallel 4.2k\Omega \parallel 4.5k\Omega$$

$$\therefore R_{eq} = 1.7375k\Omega + 2.0106k\Omega$$

$$\therefore R_{eq} = 3.7481k\Omega$$

$$\therefore C_{C2} = \frac{1}{2\pi R_{eq} f_L} = \frac{1}{2\pi (3.7481k\Omega)(20)}$$

$$\therefore C_{C2} = 2.1231 \mu F$$

Choosing higher standard value, $C_{C2}=2.1231 \mu F$

For C_{C3} :

Figure 17: Low frequency equivalent circuit for C_{C3}

here, $R_{eq} = R_C = 1.8k\Omega$

$$C_{C3} = \frac{1}{2\pi R_{eq} f_L}$$

$$C_{C3} = \frac{1}{2\pi (1.8k\Omega)(20)} = 4.42\mu F$$

Choosing higher standard value, $C_{C3} = 4.7 \mu F / 50 \text{V}$

Step 12: Selection of bypass capacitors:

a. C_S :

$$C_S = \frac{1}{2\pi R_{eq} f_L}$$

$$\therefore R_{eq} = R_S \parallel 1/g_m = 180 \parallel 252.52$$

$$R_{eq} = 105.09\Omega$$

$$\therefore C_S = \frac{1}{2\pi(105.09)(20)} = 75.72\mu F$$

Choosing higher standard value, $C_S = 82\mu F/50V$

b. C_E :

$$X_{C_E} = 0.1R_E$$

$$\frac{1}{2\pi f_L C_E} = 0.1R_E$$

$$\therefore C_E = \frac{1}{0.1(R_E)f_L(20)}$$

$$\therefore C_E = \frac{1}{0.1(0.42k\Omega)(20)(2\pi)}$$

$$\therefore C_E = 189.47\mu F$$

Choosing higher standard value, $C_E = 220 \mu F / 50 V$

Step 13: Completed Designed circuit:

Figure 18: Completed Designed circuit

Small signal equivalent circuit is shown in figure 19:

Figure 19: Small signal equivalent circuit

$$A_{V1} = \frac{V_1}{V_s} \qquad ... (\text{here } V_s = V_{gs})$$

$$\therefore V_1 = -g_{m1}V_{gs}(r_d \parallel R_D \parallel R_1 \parallel R_2 \parallel r_\pi)$$

$$\therefore A_{V1} = -g_{m1}(r_d \parallel R_D \parallel R_1 \parallel R_2 \parallel r_{\pi})$$

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}} = \frac{290(26mV)}{4.44mA}$$

$$\therefore r_{\pi} = 1.6967k\Omega$$

$$g_{m2} = \frac{I_{CQ}}{V_T} = \frac{4.44mA}{26mV}$$

$$g_{m2} = 170.7692 mA/V$$

$$\therefore A_{V1} = -(3.9603 \times 10^{-3})(50k\Omega \parallel 1.8k\Omega \parallel 27k\Omega \parallel 4.2k\Omega \parallel 1.6967k\Omega)$$

$$A_{V1} = -2.7501$$

For A_{V2} :

$$A_{V2} = \frac{V_{out}}{V_1}$$

$$\therefore V_1 = V_{\pi}$$

Also,
$$V_{out} = -g_{m2}V_{\pi}R_C$$

$$\therefore A_{V2} = -g_{m2}R_C$$

$$\therefore A_{V2} = -(170.7692 \times 10^{-3})(1.8k\Omega)$$

$$A_{V2} = -307.38V$$

Overall gain: $A_{Vt} = A_{V1} \times A_{V2}$

$$\therefore A_{Vt} = (-2.7501)(-307.38)$$

$$A_{Vt} = 845.3257$$

Input impedance:

$$Z_i = R_G = 1.2 M\Omega$$

Output impedance:

$$Z_o = r_d \parallel R_D = 50k\Omega \parallel 1.8k\Omega$$

$$\therefore Z_o = 1.7375k\Omega$$

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 20: Circuit Schematic: Results

Input and output waveforms for each stage are shown below:

Figure 21: Input and output waveform for Stage 1

Figure 22: Input and output waveform for Stage 2

Figure 23: Input and output waveform for designed circuit

Comparsion between theoretical and simulated values:

Parameters	Theoretical value	Simulated value
Stage 1 DC parameters: I_{DQ1}, V_{GSQ1}	8.5 mA, -0.732 V	3.8861 mA, -0.7V
Stage 2 DC parameters: I_B , I_C	$15.3255\mu A, 4.44mA$	$16.2601\mu\text{A}, 4.715\text{mA}$
I_E, V_E, V_B	4.4597mA, 2V, 2.1697V	4.7317mA, 1.9837V, 2.6333V
Voltage gain of Stage 1: $ A_{V1} $	2.7501	2.9618
Voltage gain of Stage 2: $ A_{V2} $	307.38	313.25
Overall voltage gain: A_{Vt}	845.3257	927.8
Input impedance: Z_i	$1.2 \mathrm{M}\Omega$	-
Output impedance: Z_o	$1.7375 \mathrm{k}\Omega$	-

Table 2: Design 2