Problem Solving and Computational Thinking

"Problem solving is a skill that can be developed via practice"

- Define the Problem
 - What exactly is the problem that we are trying to solve?
- Identify the Problem
 - How and why did the problem happen?
- What are all the possible solutions?
 - The ideal solution could be one of the many possible solutions.
- A decision is to be made.
 - · Any decision is usually better than no decision at all.

"COMMUNICATION" MEANS: SAYING AND HEARING HAVE THE SAME MESSAGE

Tree Swing picture from 1970s - Businessballs.com (Ack T & W Fleet)

- Assign responsibility to carry out the decision.
 - If a team then who will do what and when.
 - · If alone, still decide when are you going to do it
- · Set a schedule.
 - Without schedule and deadline, its just a discussion.
- •Task self/someone else to take definite action to implement the solution and resolve the problem.

Core Components of Computational Thinking

- Decomposition
 - Break down complex problems into smaller, simpler problems.
- Pattern recognition
 - Make connections between similar problems and experience.
- Abstraction
 - Identify important information while ignoring unrelated or irrelevant details.
- Algorithms
 - Creates sequential rules to follow in order to solve a problem.

Algorithm and Data Structures

Algorithm

• A "finite sequence" of "well defined" computational steps that transforms "input" into the "output".

- Basic constructs of an algorithm.
 - Linear Sequence statements that follow one after the other.
 - Conditional "if then else"
 - Loop sequence of statements that are repeated a number of times.

Data Structure

 A data structure is a way to store and organize data in order to facilitate access and modifications.

• No single data structure works well for all purposes, and so it is important to know the strengths and limitations of several of them.

Linear Data Structures

If same Brocening Array is to be done int sum = 0; Need for an array? on a set of int age = 20; Values. int year = 2024; Sum of 3 numbers Sum of 100 numbers wit not, noz, no3; int nos [100]; int sum = 0; wit sum = 0; for (i=0; i<100; ++i) sum = no1 + no2 + no3; Sun = Sun + mos [i];

Properties of Array

- Data Structure that stores multiple elements, all of the same type.
- All elements of an array are stored sequentially in memory, one after another.

Ruch element

amount A

Pros and Cons of Array

- eliments are
 - Stoord 1 >lugical size

how many

- Efficient lookup OR Random access.
- Efficient in adding and removing elements at the end of array

Disadvantages

Advantages

- Fixed size. Resizing of array is inefficient.
- Insertion and deletion of elements, in middle of array is inefficient.

allocated.

momory 17

- an element
- an [0] =10; ++ Count;

Grunt

and [Count] = 20; ++ count;

delite lost element -- count; n=3 = Bhysical six Resize amay count = 3 4 logical size (1) (reate larger array n = 34Count = 3 Copy elements from old array to new.

3 Give to old memory.

```
public static int[] resizeArray(int[] arr, int newSize) {
    // Create a larger array.
    int[] newArray = new int[newSize];

    // Copy elements from old array to new.
    for (int i = 0; i < arr.length; ++i) {
        newArray[i] = arr[i];
    }

    return newArray;
}</pre>
```

Insert an element

n=4 Count=3/4

ins + (5, 1) (1) Shift eliments to right by one place.

2) Stock clement at bosition 3 Increment logical size by 1

```
public static int insertInArray(int[] arr, int n, int pos, int value) {
    // Shift elements to right by one place.
    for (int i = n; i > pos; --i) {
        arr[i] = arr[i - 1];
    }

    // Store new element.
    arr[pos] = value;

    // Increment logical size by 1.
    return n + 1;
}
```

```
Assignment: Implement delute an element from areay.
```