CO Oxidation By Pt Single Atoms and Pt_nO_x Clusters on Ceria

Hui Wang, Jin-Xun Liu, Lawrence Allard, Sungsik Lee, Jilei Liu, Hang Li, Jianqiang Wang, Jun Wang, Se Oh, Wei Li, Maria Flytzani-Stephanopoulos, Meiqing Shen, Ming Yang

Bryan R Goldsmith

Low-temperature CO oxidation on PGM/CeO_x

Platinum group metals (PGM) dispersed on ceria supports need to be more active in eliminating CO emissions below 150 °C during engine cold start.

[1]. Roberts, Andrew, Richard Brooks, and Philip Shipway. "Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions." *Energy Conversion and Management* 82 (2014): 327-350.

Pt₁ single-atoms supported on oxides is of interest for low-temperature CO oxidation

Pt₁ catalysts using CeO_2 , [1-2] Al_2O_3 , [3] and KLTL zeolite^[4] supports were probed for CO oxidation.

Unfortunately, such Pt_1 catalysts often perform similar to or worse than conventional Pt particles.

At 150 °C

 Pt_1/CeO_2 : TOF (×10² s⁻¹) of 0.05–9.2

Pt particle/CeO₂: TOF ($\times 10^2$ s⁻¹) of 0.4–35

The question arises whether a multi-atom catalytic site (ensemble of $M-O_x$ species) will increase the catalytic performance under oxygen rich conditions

[1]. J. Jones, H. Xiong et al. Science 353 (2016); [2]. L. Nie, D. Mei, et al. Science 358, (2017); [3]. Z. Zhang et al. Nat. Commun. 8 (2017); [4]. J. D. Kistler et al. Angew. Chem. Int. Ed. 53 (2014); [5]. A. Bruix, Y. Lykhach et al. Angew. Chem. 53 (2014)

Experimental synthesis of Pt₁/CeO₂ and Pt-O-Pt/CeO₃

ceria support (10-30 nm particles)

Pt₁ single-atom catalyst

0.9 - 1.1 nm Pt-O-Pt catalyst

Our experiments show the 1 nm Pt-O-Pt/CeO₂ clusters are much more active than Pt₁/CeO₂ at low temperatures

CO oxidation light-off performance ([CO] = 0.1%, $[O_2]$ = 5 %, balanced with N_2)

Study low-temperature CO oxidation by Pt₁ and ~1 nm Pt oxide clusters (Pt-O-Pt) on ceria

Goal

Understand the intrinsic activity difference and mechanism of Pt₁/CeO₂ and Pt-O-Pt/CeO₂

Reaction conditions

- Low temperature: T < 150 °C
- Oxygen rich feed: $[CO]:[O_2] = 1:50$
- 'Water free' conditions

Perform DFT modeling to understand the structure and activity of Pt_1/CeO_2 and Pt_xO_y/CeO_2

- Density functional theory (DFT) calculations were done using VASP software.
- Cluster structure search using genetic algorithm + grand canonical Monte-Carlo (GA+GCMC).[1]
- $CeO_2(111)$ used as the model support (experiment used 10-30 nm ceria particles).
- Surface oxygen vacancies are filled (oxygen-rich conditions).

Stable Pt₁/CeO₂(111) configuration

Perform DFT modeling to understand the structure and activity of Pt_1/CeO_2 and Pt_xO_y/CeO_2

- Density functional theory (DFT) calculations were done using VASP software.
- Cluster structure search using genetic algorithm + grand canonical Monte-Carlo (GA+GCMC)^[1].
- $CeO_2(111)$ used as the model support (experiment used 10-30 nm ceria particles).
- Surface oxygen vacancies are filled (oxygen-rich conditions).

Stable Pt₁/CeO₂(111) configuration

Pt₁/CeO₂ and Pt₈O₁₄/CeO₂ models are consistent with EXAFS and XPS characterization (post reaction)

Bader charge Pt_1/CeO_2 (+1.51) < Pt_8O_{14}/CeO_2 (+1.23 ± 0.21)

→ Surface oxygen vacancies will be rapidly filled under our oxygen-rich conditions and low-temperature. [1-2]

- 1. At the metal-support interface
- 2. At the Pt₈O₁₄ cluster edge
- 3. On Pt₈O₁₄ cluster

^[1] M. Fronzi *et al. J. Chem. Phys.* 131 (2009)

^[2] V. Botu, R. Ramprasad, A. Mhadeshwar. Surf. Science 619 (2014)

→ Surface oxygen vacancies will be rapidly filled under our oxygen-rich conditions and low-temperature. [1-2]

- 1. At the metal-support interface
- 2. At the Pt₈O₁₄ cluster edge
- 3. On Pt₈O₁₄ cluster

^[1] M. Fronzi *et al. J. Chem. Phys.* 131 (2009)

^[2] V. Botu, R. Ramprasad, A. Mhadeshwar. Surf. Science 619 (2014)

→ Surface oxygen vacancies will be rapidly filled under our oxygen-rich conditions and low-temperature. [1-2]

- 1. At the metal-support interface
- 2. At the Pt₈O₁₄ cluster edge
- 3. On Pt₈O₁₄ cluster

^[1] M. Fronzi *et al. J. Chem. Phys.* 131 (2009)

^[2] V. Botu, R. Ramprasad, A. Mhadeshwar. Surf. Science 619 (2014)

→ Surface oxygen vacancies will be rapidly filled under our oxygen-rich conditions and low-temperature. [1-2]

- 1. At the metal-support interface
- 2. At the Pt₈O₁₄ cluster edge
- 3. On Pt₈O₁₄ cluster

^[1] M. Fronzi *et al. J. Chem. Phys.* 131 (2009)

^[2] V. Botu, R. Ramprasad, A. Mhadeshwar. Surf. Science 619 (2014)

Microkinetic modeling for mechanistic hypothesis testing of CO oxidation by Pt_1 /CeO₂(111) and Pt_8O_{14} /CeO₂(111)

$$r_i = \sum_{j=1}^N \left(k_j \nu_i^j \prod_{k=1}^M c_k^{\nu_k^j} \right)$$

$$k = \frac{k_{\rm B}T}{h} e^{-\frac{\Delta G^{\ddagger}}{RT}}$$

$$X_{\mathrm{RC},i} = \frac{k_i}{r} \left(\frac{\partial r}{\partial k_i} \right)_{k_{j \neq i}, K_i} = \left(\frac{\partial \ln r}{\partial \ln k_i} \right)_{k_{j \neq i}, K_i} \checkmark \text{ Reaction rate, coverages, apparent activation barrier}$$

Use MKMCXX^[1] mean-field microkinetic modeling software.

Inputs to software

- ✓ Adsorption energies of reactant, intermediates, and product
- ✓ Forward and backward reaction barriers
- ✓ Temperature, pressure

Output:

[1] https://www.mkmcxx.nl/

[1a] Filot, Ivo AW, Rutger A. van Santen, and Emiel JM Hensen. "The optimally performing Fischer-Tropsch catalyst." Angewandte Chemie International Edition 53.47 (2014): 12746-12750.

CO oxidation on Pt₁/CeO₂(111) follows MVK mechanism

CO oxidation at Pt₈O₁₄/CeO₂ interface

CO oxidation at Pt-O-Pt in Pt₈O₁₄ is favored

CO oxidation at Pt-O-Pt in Pt₈O₁₄ is favored based on microkinetic modeling

CLARIIFY THIS SLIDE

Pt-O-Pt/CeO₂ has 100-1000x higher TOF than Pt₁/CeO₂ for low-temperature CO oxidation

- 1) Semi-quantitative structural and kinetic agreement found between experiment and models for both the Pt-O-Pt/CeO₂ and Pt₁/CeO₂ systems.
- 2) High catalytic activity may arise from the Pt-O-Pt unit in Pt-O-Pt/CeO₂ under these O₂-rich conditions.

Acknowledgements

Jin-Xun Liu

Collaborators on this work

Hui Wang Jun Wang

Lawrence, F. Allard

Sungsik Lee Wei Li

Jilei Liu

Hang Li

Jianqiang Wang

Se H. Oh

Maria Flytzani-Stephanopoulos

Meiging Shen (Tianjin U)

Ming Yang (General Motors)

Work supported by start-up funds provided by University of Michigan, Ann Arbor

Hui Wang[†], Jin-Xun Liu[†], Lawrence, F. Allard, Sungsik Lee, Jilei Liu, Hang Li, Jianqiang Wang, Jun Wang, Se H. Oh, Wei Li, Maria Flytzani-Stephanopoulos, Meiqing Shen*, Bryan R. Goldsmith* and Ming Yang*, Nature Communications 10.1 (2019): 1-12.

Supporting Information

- (1) Structure identified by Genetic Algorithm
- (2) Structure identified under reaction conditions by Genetic algorithm + Grand Canonical Monte Carlo

Pt₈/CeO₂

Pt₈O₁₄/CeO₂

(3) Microkinetic modeling of hypothesized mechanisms and comparison with experimental measurements

Impact of the ceria support is minimal in this temperature range, compared to the cluster structure

Cluster structure optimization using a genetic algorithm (GA)

Standard GA workflow^[1-2]

Example^[1]: Pt₁₃/MgO

- [1] E. L. Kolsbjerg, A. A. Peterson, B. Hammer. *Phys. Rev. B* 97 (2018)
- [2] D. M. Deaven and K.-M. Ho. *Phys. Rev. Lett.* 75 (1995)

Example of the genetic algorithm applied to Rh₈/TiO₂

Grand Canonical Monte Carlo (GCMC) to model structure of nanoclusters under reaction conditions

For grand canonical ensemble:

$$\mu_{gas}(P,T) = Constant$$

Monte Carlo moves

- Addition of reactants
- Deletion of reactants
- Movement of reactants
- Metal atom migration

- [1] A. C. T. van Duin et al. NPJ. Comput. Mater. 2 (2016)
- [2] T. P. Senftle, R. J. Meyer, M. J. Janik, A. C. T. Van Duin, J. Chem. Phys. 139 (2013)
- [3] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications. Academic Press; (2002)