Análise da Complexidade de Algoritmos II

24/09/2025

Sumário

- Recap
- Procurar o maior elemento de um array não-ordenado
- Análise do Melhor Caso, do Pior Caso e do Caso Médio
- Linear Search Procura sequencial de um elemento num array
- Ordens de complexidade
- Notações habituais
- Exercícios / Tarefas

Sugestões de leitura

Recapitulação

Algoritmos

- Algoritmos deterministas vs Algoritmos não-deterministas
- Análise do desempenho / eficiência computacional
 - Complexidade Temporal vs Complexidade Espacial
- Análise experimental vs Análise formal
- Classes de complexidade Quais ?
- Eficiência relativa

Análise da Complexidade – Para quê?

- Vários algoritmos para resolver uma instância de um problema
 - Diferentes classes / ordens de complexidade
- Qual é o algoritmo mais eficiente / com melhor desempenho ?
- Um algoritmo para resolver várias instâncias de um problema
 - Dimensão sucessivamente maior
 - Configurações diferentes para a mesma dimensão
- Como estimar o desempenho / o tempo de execução ?

Exemplo

```
de i = 0 até 256:
   contador[i] = 0;
enquanto não fim de ficheiro:
   ler próximo carater;
   incrementar contador[próximo carater];
```

- Inicialização : 256 incrementos da variável i
- Inicialização : 256 atribuições ao array
- Leitura do ficheiro : (n + 1) comparações para detetar o fim do ficheiro
- Leitura do ficheiro: n incrementos de elementos do array
- Qual é o factor que determina o desempenho ?
- O esforço da fase de inicialização é importante ?

Multiplicação de matrizes – Caso geral

$$A(m \times n) \times B(n \times p) = C(m \times p)$$

- Quantas multiplicações são efetuadas ?
- Ordem de complexidade ?

• Modificaram o código da aula anterior ?

[Wikimedia.org]

Procura do Maior Elemento de um Array Não Ordenado

Procura da 1º ocorrência do major elemento

```
int searchMax( int a[], int n ) {
      int indexMax = 0;
      for( int i=1; i<n; i++ ) {
            if( a[i] > a[indexMax] ) {
        indexMax = i;
      return indexMax;
```

Procura da 1º ocorrência do major elemento

- Quantas comparações ?
- Ncomp(n) = n 1
- Número fixo de comparações
- Algoritmo linear no número de comparações efetuadas

Procura da 1º ocorrência do maior elemento

- Quantas atribuições à variável indexMax ?
- Número de atribuições depende da localização da 1º ocorrência do maior elemento!!
- Melhor caso : 1 atribuição Quando ?
- Pior caso : n atribuições Quando ?
- Caso médio? -> Simplificação : Equiprobabilidade Verosímil?
 (1 + 2 + 3 + ... + n) / n = (n + 1) / 2

Melhor Caso, Pior Caso e Caso Médio

Best case, Worst case

- Dn = conjunto de instâncias de dimensão n
- Lé uma instância de Dn
- t(I) = tempo de execução ou nº de operações para a instância I

$$B(n) = \min_{I \in D_n} t(I) \qquad W(n) = \max_{I \in D_n} t(I)$$

Average case

- Dn = conjunto de instâncias de dimensão n
- I é uma instância de Dn
- p(I) = probabilidade de ocorrência da instância I
- t(I) = tempo de execução ou nº de operações para a instância I

$$A(n) = \sum_{I \in D_n} p(I) \times t(I)$$

Procura Sequencial — Array Não Ordenado

Procura sequencial de um valor num array

- Dado um array não ordenado com n elementos
- Procurar um dado valor x
- Devolver o índice da sua 1ª ocorrência, se pertencer ao array

Procura sequencial de um valor num array

```
int search( int a[], int n, int x ) {
       for( int i=0; i<n; i++ ) {
               if( a[i] == x ) {
                      return i;
       return -1;
```

Comparações?

• B(n) = 1

- Quando?

• W(n) = n

- Quando?

- A(n) = ?
- Simplificação: o elemento procurado pertence ao array
- Simplificação: equiprobabilidade -> p(x==a[i]) = 1/n

$$A(n) = \frac{1}{n} \times (1 + 2 + ... + n) = (n + 1) / 2 \approx n / 2$$

Ordens de Complexidade

Ordem de Complexidade

- Classificar a eficiência de um algoritmo para instâncias de grande dimensão
- Qual é a rapidez com que cresce o tempo de execução (i.e., o nº de operações), quando a dimensão dos dados se torna (muito) maior ?
- O que acontece se a dimensão dos dados é
 - o dobro ?
 - dez vezes maior ?
 - •
- Como representar essa taxa / rapidez ?

Ordens de Complexidade

Valores aproximados para algumas funções habituais

n	log ₂ n	n	n log ₂ n	n ²	n ³	2 ⁿ	n!
10	3.3	10	3.3 x 10 ¹	10 ²	10 ³	10 ³	3.6 x 10 ⁶
10 ²	6.6	10 ²	6.6 x 10 ²	10 ⁴	10 ⁶	1.3 x 10 ³⁰	9.3 x 10 ¹⁵⁷
10 ³	10	10 ³	10 ⁴	10 ⁶	10 ⁹	?	?
10 ⁴	13	10 ⁴	1.3 x 10 ⁵	10 ⁸	10 ¹²	?	?
10 ⁵	17	10 ⁵	1.7 x 10 ⁶	10 ¹⁰	10 ¹⁵	?	?
10 ⁶	20	10 ⁶	2.0 x 10 ⁷	10 ¹²	10 ¹⁸	?	?

Notação habitual

- A rapidez com que cresce o nº de operações é um indicador da eficiência de um algoritmo
- Como comparar / classificar algoritmos para um mesmo problema?
 - Comparando as suas ordens de complexidade!!
- Notação habitual : O(n), $\Omega(n)$, $\Theta(n)$

Big-Oh: $t(n) \in O(g(n))$

Majorante / Limite superior

- O(g(n)): conjunto de todas as funções com a mesma ordem de crescimento que g(n) ou com uma ordem de crescimento inferior
- $t(n) \le c g(n)$, para todo o $n \ge n_0$, c é uma constante positiva
- t(n), g(n) : funções não negativas sobre o conjunto dos números naturais

Big-Omega: $t(n) \in \Omega(g(n))$

Minorante / Limite inferior

• $\Omega(g(n))$: conjunto de todas as funções com a mesma ordem de crescimento que g(n) ou com uma ordem de crescimento superior

• $t(n) \ge c g(n)$, para todo o $n \ge n_0$, c é uma constante positiva

Big-Theta : $t(n) \in \Theta(g(n))$

- Enquadramento
- ⊕(g(n)): conjunto de todas as funções com a mesma ordem de crescimento que g(n)
- $c_1 g(n) \le t(n) \le c_2 g(n)$, para todo o $n \ge n_0$, c_1 , c_2 constantes positivas
- $t(n) \in O(g(n))$ e $t(n) \in \Omega(g(n))$

Notação – Exemplo

- A notação oculta detalhes que não são importantes quanto ao modo como uma função cresce
 - Esquecer constantes e termos de ordem inferior
- $T_1(n) = 2 n^2 + 3000 n + 5$
- $T_2(n) = 10 n^2 + 100 n 23$
- Para valores elevados de n, T₂(n) cresce mais depressa do que T₁(n)
- MAS, ambas crescem de modo quadrático : $\Theta(n^2)$

Exemplo – Importância do termo de maior grau

• $f(n) = a n^2 + b n + c$, com a = 0.0001724, b = 0.0004 e c = 0.1

n	f(n)	a n²	a n² / f(n)
125	2.8	2.7	94.7%
250	11.0	10.8	98.2%
500	43.4	43.1	99.3%
1000	172.9	172.4	99.7%

Notação – Exemplos

notation	provides	example	shorthand for	used to
Big Theta	asymptotic order of growth	$\Theta(N^2)$	$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$:	classify algorithms
Big Oh	$\Theta(N^2)$ and smaller	$O(N^2)$		develop upper bounds
Big Omega	$\Theta(N^2)$ and larger	$\Omega(N^2)$	$\frac{1/2}{N^2}$ N^5 $N^3 + 22 N \log N + 3 N$:	develop lower bounds

[Sedgewick & Wayne]

Ordens de Complexidade/Classes de Eficiência

- \bullet O(1): constante
 - Que algoritmos ?
- O(log n) : logarítmico
 - E.g., diminuir-para-reinar
- O(n) : linear
 - Processar todos os elementos de um array, uma lista, etc.
- O(n log n) : n-log-n
 - E.g., dividir-para-reinar

Ordens de Complexidade/Classes de Eficiência

- O(n^k): polinomial (quadrático, cúbico, etc.)
 - k ciclos encastelados
- $O(2^n)$: exponencial
 - Gerar todos os subconjuntos de um conjunto com n elementos
- O(n!) : fatorial
 - Gerar todas as permutações de um conjunto com n elementos

Ordens de Complexidade/Classes de Eficiência

order of growth	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
$\log N$	logarithmic	while (N > 1) { N = N / 2; }	divide in half	binary search	~ 1
N	linear	for (int i = 0; i < N; i++) { }	loop	find the maximum	2
$N \log N$	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) { }	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

[Sedgewick & Wayne]

Exercícios / Tarefas

Exercício 1 – Completar com ∈ ou ∉

•
$$T(n) = 10 n^2 + 100 n - 23$$

$$T(n) ? O(n^2) T(n) ? O(n^3)$$

$$T(n) ? O(n^3)$$

$$T(n)$$
? $\Omega(n^2)$

$$T(n)$$
 ? $\Omega(n^3)$

$$T(n)$$
 ? $\Omega(n)$

$$T(n) ? \Theta(n^2)$$

$$T(n) ? \Theta(n^3)$$

$$T(n) ? \Theta(n)$$

Exercício 2 — Verdadeiro ou Falso

- Se $t(n) \ge cg(n)$, para todo o $n > n_0$, então t(n) é da ordem de O(g(n)), i.e., t(n) pertence a O(g(n)).
- Se $t(n) \le cg(n)$, para todo o $n > n_0$, então t(n) é da ordem de $\Omega(g(n))$, i.e., t(n) pertence a $\Omega(g(n))$.
- Se t(n) > cg(n), para todo o $n > n_0$, então t(n) é da ordem de $\Omega(g(n))$, i.e., t(n) pertence a $\Omega(g(n))$.

Exercício 3 — Verdadeiro ou Falso

- Seja $t(n) = 2 n \log(n) + 3 n$. Então t(n) é da ordem de $O(n^2)$, i.e., t(n) pertence a $O(n^2)$.
- Seja $t(n) = n \log(n) + 1000 n$. Então t(n) é da ordem de O(n), i.e., t(n) pertence a O(n).
- Seja $t(n) = 1000 n^2 + n^3$. Então t(n) é da ordem de $O(n^2)$, i.e., t(n) pertence a $O(n^2)$.

Tarefa – Procura Sequencial num Array

- Variações do algoritmo básico :
- Encontrar a última ocorrência do major elemento
- Encontrar a primeira ocorrência do menor elemento
- Encontrar a última ocorrência do menor elemento
- Como modificar o código ?
- O que se mantém da análise anterior ?
- O que muda da análise anterior ?

Sugestões de leitura

Sugestões de leitura

- J. J. McConnell, Analysis of Algorithms, 1st Edition, 2001
 - Capítulo 1: secções 1.1, 1.2, 1.4

- A. Levitin, Introduction to the Design and Analysis of Algorithms, 3rd
 Edition, 2012
 - Capítulo 2: secções 2.1, 2.2, 2.3