Cours 5 : Typage avancé

2024-2025 (450f02-dirty)

Thèmes

- types fantômes, types singletons, types uniques, type-state
- types (algébriques) non uniformes, généralisés
- types enregistrements, types objets (au sens P.O.O.)

Les types dans OCAML

- · le langage est fortement typé
- le système de types est très riche et expressif
- les types peuvent servir de spécification très fine
- on se rapproche des pré/post-conditions
- ces spécifications sont vérifiées par le compilateur
- Conclusion: il faut exploiter les types

le reste du monde

La plupart des constructions présentées existent ou peuvent être reproduites, plus ou moins complètement, dans d'autres langages fortement typés avec polymorphisme paramétrique (par exemple: C++, Java, Rust, F#, Haskell, . . .)

Types abstraits

"Type abstrait" : ensemble de valeurs abstraites caractérisé par des opérations et leurs spécifications [Liskov & Zilles, 1974]

- Séparation entre usage et implémentation
- Importance de la notion d'invariant

```
module type INT_SET = sig
  type t

val empty : t
  val member : int -> t -> bool
  val add : int -> t -> t
end
```

Ex : représentation par des listes sans doublon.

Représentation par un type concret

- 1. Le type abstrait (A) se situe dans le monde mathématique.
- 2. Choix d'un type concret C et d'une fonction d'abstraction $AF:C\to A$
 - AF pas implémentable mais à documenter
 - Surjective
 - Pas forcément injective (cf. {1; 2})
 - Généralement partielle, de domaine de définition RI

Représentation par un type concret

- 1. Le type abstrait (A) se situe dans le monde mathématique.
- 2. Choix d'un type concret C et d'une fonction d'abstraction $AF:C\to A$
 - AF pas implémentable mais à documenter
 - Surjective
 - Pas forcément injective (cf. {1; 2})
 - Généralement partielle, de domaine de définition RI

3. Une opération concrète est correcte si, quand elle respecte ses éventuelles préconditions, elle commute avec AF sur RI.

Invariant de représentation

RI = invariant de représentation → souvent implémentable.

```
module NoDupList : INT_SET = struct
 type t = int list
  (* AF: la liste [a1; ...; an] représente l'ensemble {a1, ..., an}. *)
  (* RI: la liste ne contient pas de doublons. *)
  (* En phase de débogage : *)
 let check_rep 1 =
   if List.(length (sort_uniq Int.compare 1) = length 1) then 1
   else failwith "RI"
  (* En phase d'exploitation : let check_rep l = l
      ou, mieux, emploi d'une version simplifiée et peu coûteuse *)
 let empty = check_rep []
 let member x s = List.mem x (check_rep s)
 let add x s = check_rep (if member x (check_rep s) then s else x :: s)
end
```

- Faut-il vérifier *RI* pour les arguments des fonctions *d'observation* (cf. deux check_rep s ci-dessus)?
- Quid des fonctions privées ?

Types fantômes

Types fantômes

Définition

Un type fantôme est un type paramétré :

- 1. dont au moins un des paramètres (variable fantôme) n'apparaît pas dans la définition des valeurs de ce type
- 2. dont la définition est abstraite par une signature

Exemples

```
module type S = sig type _ t ...
module M : S = struct type _ t = int ...
module type S = sig type (_,_) t ...
module M : S = struct type ('a, 'b) t = Nil | Cons of 'b * ('a, 'b) t ...
```

Usage

- caractériser un état interne/caché (type-state)
 → plutôt pour du code impératif (ou monade d'état, cf. cours 6)
- ne pénalise pas l'exécution (zero cost abstraction)

Exemple de type fantôme: spécification

- on veut imposer la lecture du premier caractère d'un fichier
- on définit l'interface FichierLecture1Car
- le paramètre du type _ fichier, prenant les valeurs debut et fin, définit l'état interne du fichier

```
module type FichierLecture1Car = sig
  type debut
  type fin
  type _ fichier
  val open : string -> debut fichier
  val read : debut fichier -> char * fin fichier
  val close : fin fichier -> unit
end
```

Exemple de type fantôme: réalisation

```
module Impl : FichierLecture1Car = struct
  type debut
  type fin
  type _ fichier = in_channel
  let open nom = open_in nom
  let read f = (input_char f, f)
  let close f = close_in f
end
```

Il est nécessaire d'imposer un usage purement séquentiel du fichier lu

• i.e. interdire:

```
let wrong = let f = Impl.open "toto" in (Impl.read f, Impl.read f, ...)
```

mais autoriser:

```
let lire_char nom =
  let f = Impl.open nom in
  let (c, f) = Impl.read f in
  Impl.close f;
  c
```


Types non uniformes

Définition

Un type (récursif) non uniforme 'a t fait apparaître des instances différentes du paramètre dans sa définition, **fonctions** de 'a.

Exemples

• listes alternées:

```
type ('a, 'b) alt_list = | Nil | Cons of 'a * ('b, 'a) alt_list
```

arbres binaires équilibrés:

```
type 'a perfect_tree = | Empty | Node of 'a * ('a * 'a) perfect_tree
```

Usage

- représenter des invariants de structure "descendants"
- meilleure spécification
- nécessite la "récursion polymorphe"

Fonction qui calcule la profondeur d'un arbre parfait :

Fonction qui calcule la profondeur d'un arbre parfait :

Fonction qui calcule la profondeur d'un arbre parfait :

Fonction qui calcule la profondeur d'un arbre parfait :

Récursion polymorphe : chaque application de depth doit avoir un type universellement quantifié.

Fonction qui calcule la profondeur d'un arbre parfait :

Récursion polymorphe : chaque application de depth doit avoir un type universellement quantifié.

Variables de type en OCaml: attention aux confusions!

Sous val (ex: val depth : 'a perfect_tree -> int) une variable de type est forcément quantifiée universellement.

Sous let (ex:let rec depth : 'a perfect_tree -> int), une variable de type n'est pas forcément quantifiée universellement. Elle l'est si :

- Le typeur infère que c'est possible;
- Ou si on l'impose au typeur (ex : avec 'a .) et que le typeur parvient à typer la fonction ainsi.

Types algébriques généralisés

Changement de notation!

Intuitivement les constructeurs Empty et Node sont des fonctions de profil :

```
Empty : 'a tree
Node : 'a tree * 'a * 'a tree -> 'a tree
```

OCaml offre une notation alternative pour les types algébriques qui reprend cette vision et explicite le type de retour de chaque constructeur :

```
type 'a tree =
    | Empty : 'a tree
    | Node : 'a tree * 'a * 'a tree -> 'a tree
```

Jusqu'ici, rien ne change p.r. à OCaml "de base"...

Changement de notation!

Intuitivement les constructeurs Empty et Node sont des fonctions de profil :

```
Empty : 'a tree
Node : 'a tree * 'a * 'a tree -> 'a tree
```

OCaml offre une notation alternative pour les types algébriques qui reprend cette vision et explicite le type de retour de chaque constructeur :

```
type _ tree =
    | Empty : _ tree
    | Node : 'a tree * 'a * 'a tree -> 'a tree
```

Jusqu'ici, rien ne change p.r. à OCaml "de base"...

Types algébriques généralisés (GADT)

Définition

Les types algébriques *généralisés* (GADT¹) permettent de choisir les paramètres de type librement. Syntaxe et inférence sont distincts des autres types.

Deux nouvelles possibilités

faire varier le type de retour des constructeurs:

```
type _ repr =
    | Int : int -> int repr
    | Add : (int -> int -> int) repr
```

variables de type n'apparaissant pas dans le type de retour:

```
type showable = Showable : 'a * ('a -> string) -> showable
```

¹Generalized Algebraic Data Type

Types algébriques généralisés

Usage

- généralisation des types non uniformes
- types singletons (une valeur, un type)
- types uniques
- permet d'exprimer le Run Time Type Information
- très expressif, associé au mécanisme d'exhaustivité du filtrage

Types singletons

Définition

Un type singleton est un type dont chaque valeur possible est associée à exactement une instance du GADT. Cela permet de « calculer dans les types » au moyen de ces valeurs.

```
type nat = Zero | Succ of nat
let deux = Succ (Succ Zero);;
val deux : nat = Succ (Succ Zero)
```

Types singletons

Définition

Un type singleton est un type dont chaque valeur possible est associée à exactement une instance du GADT. Cela permet de « calculer dans les types » au moyen de ces valeurs.

```
type nat = Zero | Succ of nat
let deux = Succ (Succ Zero);;
val deux : nat = Succ (Succ Zero)

type zero = Zero
type 'n succ = Succ of 'n
let deux = Succ (Succ Zero);;
val deux : zero succ succ = Succ (Succ Zero)
```

Types singletons

Définition

Un type singleton est un type dont chaque valeur possible est associée à exactement une instance du GADT. Cela permet de « calculer dans les types » au moyen de ces valeurs.

```
type nat = Zero | Succ of nat
let deux = Succ (Succ Zero);;
val deux : nat = Succ (Succ Zero)
type zero = Zero
type 'n succ = Succ of 'n
let deux = Succ (Succ Zero);;
val deux : zero succ succ = Succ (Succ Zero)
type zero = private Unused_zero
type 'n succ = private Unused2_succ
type _ nat = Zero : zero nat | Succ : 'a nat -> 'a succ nat
let deux = Succ (Succ Zero);;
val deux : zero succ succ nat = Succ (Succ Zero)
```

```
(* listes de taille n *)
type (_, _) nlist =
    | Nil : ('b, zero) nlist
    | Cons : 'a * ('a, 'n) nlist -> ('a, 'n succ) nlist
```

```
(* listes de taille n *)
type (_, _) nlist =
    | Nil : ('b, zero) nlist
    | Cons : 'a * ('a, 'n) nlist -> ('a, 'n succ) nlist

(* version totale de [hd] *)
let hd : ('a, _ succ) nlist -> 'a =
    function Cons (h, _) -> h;;
val hd : ('a, 'b succ) nlist -> 'a = <fun>
```

Pas un problème de récursion polymorphe, ici, mais de typage des motifs:

- Motif Nil : ('a, zero) nlist
- Motif Cons (x, xs) : ('a, n succ) nlist pour un certain n (= \$0)

La notation type m (pas d'apostrophe!) stipule que:

- (récursion polymorphe) m est quantifié universellement ;
- (type localement abstrait) dans les motifs, m est égal aux types correspondants inférés dans les motifs ; ici :

```
• motif Nil : ('a, zero) nlist:ajout de zero = m
```

motif Cons (x, xs) : ('a, \$0 succ) nlist:ajout de \$0 succ = m;

le typeur en déduit que les motifs sont bien typés (zero = m = \$0 succ).

Notation quasi-systématique quand on fait de la récursion sur un GADT!

Arithmétique dans les types (Prolog!)

On a parfois besoin de raisonner sur plus que la simple application du successeur. Exemple : spécifier l'addition au niveau des types.

$$\frac{n+m=p}{\text{O}+n=n} \text{ ADD_ZERO } \frac{n+m=p}{(n+1)+m=(p+1)} \text{ ADD_SUCC}$$

Arithmétique dans les types : induction

Montrer que $\forall a \cdot a + o = a$:

ADD_ZERO
$$\frac{p + o = p \vdash p + o = p}{p + o = p \vdash (p + 1) + o = (p + 1)} \text{ ADD_SUCC}$$
$$\frac{p + o = p \vdash (p + 1) + o = (p + 1)}{\forall a \cdot a + o = a} \text{ IND.}$$

Arithmétique dans les types : induction

Montrer que $\forall a \cdot a + o = a$:

ADD_ZERO
$$\frac{p + o = p \vdash p + o = p}{o + o = o}$$
 ADD_SUCC $\frac{p + o = p \vdash (p + 1) + o = (p + 1)}{\forall a \cdot a + o = a}$ IND.

Arithmétique dans les types : induction

Montrer que $\forall a \cdot a + o = a$:

ADD_ZERO
$$\frac{p + o = p \vdash p + o = p}{o + o = o}$$
 ADD_SUCC $\frac{p + o = p \vdash (p + 1) + o = (p + 1)}{\forall a \cdot a + o = a}$ IND

Rappel Coq:

```
Lemma add_zero_right: forall a, add a Zero a. Proof.
```

intro. induction a.

- apply Add_zero.
- apply Add_succ. apply IHm.

Qed.

Types uniques

Définition

Un type unique est un type associé à une seule donnée dans tout le programme. Un type unique est créé en même temps que la valeur correspondante.

Exemples

directement avec des GADT :

avec un type abstrait et un module de première classe (cf. annexe)

```
module type TypeUnique = sig
  type unique
  val value : unique
end
(* create_unique : 'a -> (module TypeUnique) *)
let create_unique (type a) (v : a) =
  (module struct type unique = a let value = v end : TypeUnique)
```

Types uniques: exemple

- on considère un chiffrement asymétrique de type RSA (Rivest-Shamir-Adleman)
 - clé publique pour chiffrer, clé privée pour déchiffrer
- clés publiques/privées de type key de même nature (entiers), mais devraient être distinguées
- la donnée chiffrée de type secret devrait être associée à ses clés

Types uniques : déclarations

```
Interface "classique":
module type RSA = sig
  (* clé *)
 type key
  (* secret produit *)
 type secret
  (* couple de clés publique/privée *)
 type key_pair = Kp of key * key
  (* creation d'une paire de cles publique/privee *)
 val create_key_pair : unit -> key_pair
  (* chiffrement a l'aide de la cle publique *)
 val encrypt : string -> key -> secret
  (* dechiffrement a l'aide de la cle privee *)
 val decrypt : secret -> key -> string
end
```

Types uniques : déclarations

```
Type fantôme (key):
module type RSA = sig
  (* paramètres pour les clés *)
 type pub
 type priv
  (* clé publique ou privée (type fantôme) *)
 type 'pub_or_priv key
  (* secret produit *)
 type secret
  (* couple de clés publique/privée *)
 type key_pair = Kp of pub key * priv key
  (* creation d'une paire de cles publique/privee *)
 val create_key_pair : unit -> key_pair
  (* chiffrement a l'aide de la cle publique *)
 val encrypt : string -> pub key -> secret
  (* dechiffrement a l'aide de la cle privee *)
 val decrypt : secret -> priv key -> string
end
```

Types uniques : déclarations

```
Type fantômes (key et secret) + type existentiel :
module type RSA = sig
  (* paramètres pour les clés *)
 type pub
 type priv
  (* clé publique ou privée avec marqueur 'u pour l'unicité de cette clé *)
 type ('pub_or_priv, 'u) key
  (* secret produit avec la clé de marqueur 'u *)
 type 'u secret
  (* couple de clés publique/privée avec marqueur d'unicité 'u *)
 type key_pair = Kp : (pub, 'u) key * (priv, 'u) key -> key_pair
  (* creation d'une paire de cles publique/privee *)
 val create_key_pair : unit -> key_pair
  (* chiffrement a l'aide de la cle publique *)
 val encrypt : string -> (pub, 'u) key -> 'u secret
  (* dechiffrement a l'aide de la cle privee *)
 val decrypt : 'u secret -> (priv, 'u) key -> string
end
```

Type existentiel

```
Type de Kp : \forall 'u . ((pub, 'u) key * (priv, 'u) key -> key_pair) 
 \cong (\exists 'u . (pub, 'u) key * (priv, 'u) key) -> key_pair
```

Quand Kp est appliqué, 'u est connu mais il est abstrait (oublié) dans key_pair.

On sait juste qu'il existe une instanciation pour 'u mais on ne peut la laisser s'échapper sans briser la barrière d'abstraction :

```
module M(R :RSA) = struct
  open R
  let x = let Kp (a,b) = create_key_pair () in 1
end;;
module M : functor (R : RSA) -> sig val x : int end

module M(R :RSA) = struct
  open R
  let x = let Kp (a,b) = create_key_pair () in a
end;;
Error: This expression has type (pub, $Kp_'u) key
  but an expression was expected of type 'a
    The type constructor $Kp_'u would escape its scope
```

Types existentiels: implémentation "bidon"

```
module Bidon : RSA = struct
  type pub
  type priv
  type ('pub_or_priv, 'u) key = unit (* int dans une vraie implémentation *)
  type 'u secret = string
  type key_pair = Kp : (pub, 'u) key * (priv, 'u) key -> key_pair
  let create_key_pair () = Kp ((), ())
  let encrypt s pubk = s
  let decrypt secret privk = secret
end
```

Types existentiels : implémentation "bidon"

```
let () =
  let open Bidon in
  let msg = "message super important" in
  let Kp (pubk1, privk1) = create_key_pair () in
  let Kp (pubk2, privk2) = create_key_pair () in
  let secret = encrypt msg pubk1 in
  let clair = decrypt secret privk2 in (* erreur *)
  print_endline clair;;
Error: This expression has type (priv, $Kp_'u1) key
  but an expression was expected of type (priv, $Kp_'u) key
  Type $Kp_'u1 is not compatible with type $Kp_'u
```

Types existentiels: implémentation "bidon"

```
let () =
  let open Bidon in
  let msg = "message super important" in
  let Kp (pubk1, privk1) = create_key_pair () in
  let Kp (pubk2, privk2) = create_key_pair () in
  let secret = encrypt msg pubk1 in
  let clair = decrypt secret privk1 in
  print_endline clair;;
message super important
```

Enregistrements

Types enregistrements

```
    type enregistrement "classique"

    champs mutables ou non

    mise-à-jour impérative (move_x : int -> t-> unit)

    mise-à-jour fonctionnelle (move_y : int -> t-> t)

type t = { mutable x : int; y : int }
let create x y = \{ x = x; y = y \}
let get_y p = p.y
(* filtrage : *)
let get_y { y; _ } = y
(* mise àjour impérative *)
let move_x d v = v.x <- v.x + d</pre>
(* mise-à-jour fonctionnelle *)
let move_y d v = { x = v.x; y = v.y + d }
(* ou mieux : *)
let move_y d v = { v with y = v.y + d }
let move_y d { x; y } = { x; y = y + d }
```

Types enregistrements inlinés

- type enregistrement "intégré" dans un type algébrique
- constructeurs avec arguments nommés plutôt que tuples anonymes

```
type t =
  | Point of {width: int; mutable x: float; mutable y: float}
  | . . .
let v = Point \{ width = 10; x = 0.; y = 0. \}
let scale 1 = function
  | Point p -> Point \{p \text{ with } x = 1 *. p.x; y = 1 *. p.y\}
  | ....
let print = function
  | Point \{x; y; \_\} -> Format.printf "%f/%f" x y
  1 . . . .
let reset = function
  | Point p \rightarrow p.x \leftarrow 0.; p.y \leftarrow 0.
let invalid = function
  | Point p -> p (* incorrect *)
```

Types enregistrements polymorphes

• un type enregistrement peut être paramétrique, par exemple:

```
> type ('a, 'b) t = {x: 'a; f: 'b list -> 'b};;
type ('a, 'b) t = { x : 'a; f : 'b list -> 'b; }
> let test1 r e = r.f [e] = e;;
val test1 : ('a, 'b) t -> 'b -> bool = <fun>
> let test2 r = (r.f [0] = 0) && (r.f [true] = true);;
Error: This expression has type bool but an expression was expected of type int
```

- un type enregistrement peut contenir des champs polymorphes
- le champ y est maintenant polymorphe en 'b:

```
> type 'a u = {x: 'a; f: 'b. 'b list -> 'b};;
type 'a u = { x : 'a; f : 'b. 'b list -> 'b; }
> let test1 r e = r.f [e] = e;;
val test1 : 'a u -> 'b -> bool = <fun>
> let test2 r = (r.f [0] = 0) && (r.f [true] = true);;
val test2 : 'a u -> bool = <fun>
```

Conclusion

- OCAML possède un langage de types très puissant
- nombreuses modélisations possibles, purement avec des types
- · abstractions à faible coût
- beaucoup d'autres aspects non évoqués
 - Objets et classes (typage structurel)
 - Variants extensibles
 - Variants polymorphes
 - Types étiquettes et options

Exemple de type unique avec un module de première classe

Une interface KeyPair spécifie les modules avec un type unique + 2 clés.

```
module type RSA = sig
type pub
type priv
 type ('typ, 'uniq) key
 type 'uniq secret
  (* Tout module qui implémente cette signature a un type existentiel car,
    étant abstrait, on sait juste qu'un type concret existe qui réalise
    "unique", mais on ne peut savoir lequel. *)
 module type KEY_PAIR = sig
     type unique
     val pubk : (pub, unique) key
     val privk : (priv, unique) key
   end
  (* creation d'une paire de cles publique/privee *)
 val create_key_pair : unit -> (module KEY_PAIR)
  (* chiffrement a l'aide de la cle publique *)
 val encrypt : string -> (pub, 'uniq) key -> 'uniq secret
  (* dechiffrement a l'aide de la cle privee *)
 val decrypt : 'uniq secret -> (priv, 'uniq) key -> string
end
```

Exemple de type unique: réalisation

• une réalisation "bidon"

```
module NullCrypt : RSA = struct
   type pub
   type priv
   type ('typ, 'uniq) key = unit
   type 'uniq secret = string
   module type KEY_PAIR = sig
     type unique
     val pubk : (pub, unique) key
     val privk : (priv, unique) key
   end
   let create_key_pair () = (module
                             struct
                               type unique
                               let pubk = ()
                               let privk = ()
                             end : KEY_PAIR)
   let encrypt by pk = by
   let decrypt se pk = se
 end
```

Exemple de type unique: réalisation

- une application classique
- garantie sans erreurs de clé

```
let _ =
  let msg = Bytes.of_string "message super important" in
  let (module Key1) = NullCrypt.create_key_pair () in
  let (module Key2) = NullCrypt.create_key_pair () in
  let msg_secret = NullCrypt.encrypt msg Key1.pubk in
  let msg_decode = NullCrypt.decrypt msg_secret Key1.privk (*erreur si mauvaise msg_decode = msg
```

Types algébriques généralisés: modélisation de problèmes

- on modélise, par des types, le problème Homme-Loup-Mouton-Chou
- *H*, sur une barque à 2 places, doit transporter *L*, *M* et *C*, de la rive gauche à la rive droite
- M ne peut rester seul (sans H) sur une rive avec L ou C

```
(* les positions: rive gauche ou rive droite *)
type q = private G
type d = private D
(* les 4 mouvements possibles des 4 entites h, l, m, c *)
type ('h, 'l, 'm, 'c, 'h1, 'l1, 'm1, 'c1) move =
 | H : ('h, 'l, 'm, 'c, 'h1, 'l, 'm, 'c) move
 | HL : ('h, 'h, 'm, 'c, 'h1, 'h1, 'm, 'c) move
 | HM : ('h, 'l, 'h, 'c, 'h1, 'l, 'h1, 'c) move
 | HC : ('h, 'l, 'm, 'h, 'h1, 'l, 'm, 'h1) move
(* condition de securite: m ne mange pas c et n'est pas mange par l *)
type ('h, 'l, 'm, 'c) safe =
 | SafeHM : ('h, 'l, 'h, 'c) safe
 | SafeHLC : ('h, 'h, 'm, 'h) safe
```

Types algébriques généralisés: SAT-solving

- un chemin est soit terminé (tous sur la rive droite), soit un premier mouvement sûr suivi du chemin restant
- exists_path permet de tester l'absence de solution, par des clauses de réfutation, qui sont vérifiées par le système de types
- le dernier filtre est refusé, il existe bien une solution de longueur 7

```
(* les chemins, listes de mouvements surs *)
type ('h, 'l, 'm, 'c) path =
 | OK : (d, d, d, d) path
  | GD : (g, 'l, 'm, 'c, d, 'll, 'm1, 'c1) move * (d, 'll, 'm1, 'c1) safe
          * (d, 'l1, 'm1, 'c1) path -> (g, 'l, 'm, 'c) path
 | DG : (d, 'l, 'm, 'c, g, 'll, 'm1, 'c1) move * (g, 'll, 'm1, 'c1) safe
          * (g, 'l1, 'm1, 'c1) path -> (d, 'l, 'm, 'c) path
let exists_path (p : (g, g, g, g) path) =
 match p with
 | GD (_, _, OK) -> .
 | GD (_, _, DG (_, _, GD (_, _, OK))) -> .
 | GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, OK))))) -> .
  | GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, OK))))|
```

Types algébriques généralisés: résolution de problèmes

- un chemin est soit terminé (tous sur la rive droite), soit un premier mouvement sûr suivi du chemin restant
- exists_path permet de tester l'absence de solution, par des clauses de réfutation, qui sont vérifiées par le système de types
- le dernier filtre est refusé, il existe bien une solution de longueur 7

```
(* les chemins, listes de mouvements surs *)
type ('h, 'l, 'm, 'c) path =
 | OK : (d, d, d, d) path
  | GD : (g, 'l, 'm, 'c, d, 'll, 'm1, 'c1) move * (d, 'll, 'm1, 'c1) safe
          * (d, 'l1, 'm1, 'c1) path -> (g, 'l, 'm, 'c) path
 | DG : (d, 'l, 'm, 'c, g, 'll, 'm1, 'c1) move * (g, 'll, 'm1, 'c1) safe
          * (g, 'l1, 'm1, 'c1) path -> (d, 'l, 'm, 'c) path
let exists_path (p : (g, g, g, g) path) =
 match p with
 | GD (_, _, OK) -> .
 | GD (_, _, DG (_, _, GD (_, _, OK))) -> .
 | GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, OK))))) -> .
  | GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, DG (_, _, GD (_, _, OK))))|
```

Cours 6: Monades

2024-2025 (450f02-dirty)

Introduction

Effet : tout ce que fait une fonction au-delà d'associer un résultat à une donnée en entrée.

P. ex. étant donnée une expression e qui s'évalue en une valeur v, si remplacer e par v (dans un calcul) change le comportement du programme, c'est que e produit aussi des effets.

Effets disponibles en OCaml

- état (y.c. d'ordre supérieur)
- exceptions
- entrées-sorties
- non-terminaison

•

Indisponibles

- non-déterminisme
- état polymorphe
- exceptions typées
- ...

Introduction

Pour distinguer un calcul *pur* $A \to B$ d'un calcul produisant *en plus* des effets, on donne à ce dernier un type $A \to T(B)$, où T décrit les effets à l'œuvre.

Une monade (Moggi 1989) = un module implémentant un effet donné sous la forme de T et d'opérations sur T respectant des lois algébriques générales.

Approche monadique: les foncteurs

Interface

```
module type FONCTEUR = sig
  type 'a t
  val map : ('a -> 'b) -> ('a t -> 'b t)
end
```

Lois

```
map id = id

map (f \circ g) = (map f) \circ (map g)
```

Approche monadique: les monades

Interface

```
module type MONADE = sig
  include FONCTEUR
  (* injecte une valeur dans un calcul avec effets *)
  val return : 'a -> 'a t
    (* "bind" : composition de calculs avec effets *)
  val (>>=) : 'a t -> ('a -> 'b t) -> 'b t
end
```

Lois

```
map f x = x >>= (fun v -> return (f v))
x >>= return = x
return v >>= f = f v
(f >>= g) >>= h = f >>= (fun x -> g x >>= h)
```

Monade "identité"

```
module Id : MONADE with type 'a t = 'a = struct
  type 'a t = 'a
  let map f x = f x
  let return x = x
  let (>>=) x f = f x
end
```

Monade "option" / "maybe" / "partialité" (I)

```
let mult_even xs ys =
  let trouve = List.find_opt (fun n -> n mod 2 = 0) in
  match trouve xs with
  | None -> None
  | Some x ->
    match trouve ys with
  | None -> None
  | Some y -> Some (x * y)

let xy = mult_even [ 1;3;5;8;5;4 ] [ 9;9;6;12;3 ]

val mult_even : int list -> int list -> int option = <fun>
val xy : int option = Some 48
```

Monade "option" / "maybe" / "partialité" (II)

Monade "option" / "maybe" / "partialité" (III)

```
let mult_even xs ys =
  let trouve = List.find_opt (fun n -> n mod 2 = 0) in
  let open Maybe in
  trouve xs >>= fun x ->
  trouve ys >>= fun y ->
  return (x * y)

let xy = mult_even [ 1;3;5;8;5;4 ] [ 9;9;6;12;3 ]

val mult_even : int list -> int list -> int option = <fun>
val xy : int option = Some 48
```

Bind

>>= est appelé "bind" car il associe une valeur à une variable pour un certain contexte, p. ex. dans trouve xs >>= fun x -> ...

S'il existait un opérateur let* (p. ex.) pouvant inspecter le contenu de ce que retourne trouve xs, on pourrait même écrire let* x = trouve xs in ...

>>= est appelé "bind" car il associe une valeur à une variable pour un certain contexte, p. ex. dans trouve xs >>= fun x -> ...

S'il existait un opérateur let* (p. ex.) pouvant inspecter le contenu de ce que retourne trouve xs, on pourrait même écrire let* x = trouve xs in ...

(OCaml permet de définir un tel opérateur depuis la v4.08.)

```
module type FONCTEUR = sig
  . . .
 val map2 : ('a -> 'b -> 'c) -> 'a t -> 'b t -> 'c t
end
. . .
module Maybe : MAYBE = struct
  . . .
 let map2 f x y = match x, y with
    | None, _ | _, None -> None
    | Some x', Some y' -> Some (f x' y')
end
let mult_even xs ys =
 let trouve = List.find_opt (fun n -> n mod 2 = 0) in
 let open Maybe in
 map2 ( * ) (trouve xs) (trouve ys)
```

Monade d'environnement / "reader" (I)

```
type expr = Const of int | Var of string | Add of expr * expr
let rec eval e env = match e with
  | Const c -> c
  | Var v ->
     (* on ignore l'exception [Not_found] de [List.assoc] pour cet exemple *)
     List.assoc v env
  | Add (e1, e2) ->
     let v1 = eval e1 env in
     let v2 = eval e2 env in
     v1 + v2
let env1 = [ ("x", 13); ("t", 1); ("y", 14) ]
let e = Add (Const 1, Add (Const 2, Var "x"))
let _ = eval e env1
```

Monade d'environnement / "reader" (II)

```
module type READER = sig
  include MONADE
  type env

  (* chaque monade particulière a en plus ses fonctions propres *)
   (* récupère l'environnement *)
  val ask : env t
   (* modifie l'environnement localement pour un calcul *)
  val local : (env -> env) -> 'a t -> 'a t
   (* exécute un calcul pour un environnement donné *)
  val run : 'a t -> env -> 'a
end
```

Monade d'environnement / "reader" (III)

```
module Make_reader(Env : sig type t end): READER with type env = Env.t = struct
type env = Env.t
type 'a t = env -> 'a

let return (v : 'a) : 'a t = fun _ -> v
let ( >>= ) (x : 'a t) (f : 'a -> 'b t) : 'b t = fun env -> f (x env) env
let map (f : 'a -> 'b) (x : 'a t) : 'b t = fun env -> f (x env)
let map2 f (x : 'a t) (y : 'b t) : 'c t= fun env -> f (x env) (y env)

let ask : env t = fun env -> env
let local (ext : env -> env) (x : 'a t) : 'a t = fun env -> x (ext env)
let run (x : 'a t) (env : env) : 'a = x env
end
```

Monade d'environnement / "reader" (IV)

```
module Reader = Make_reader(struct type t = (string * int) list end)
open Reader
let rec eval = function
  | Const c -> return c
  | Var v ->
     ask >>= fun env ->
     return (List.assoc v env)
  | Add (a, b) ->
     eval a >>= fun a' ->
     eval b >>= fun b' ->
     return (a' + b')
let _ = Reader.run (eval e) env1
```

Monade d'environnement / "reader" (V)

```
let rec eval = function
  | Const c -> return c
  | Var v -> map (List.assoc v) ask
  | Add (a, b) -> map2 ( + ) (eval a) (eval b)

let _ = Reader.run (eval e) env1

let _ =
  Reader.run
  (Reader.local (List.cons ("z", 15))
        (eval (Add (Var "x", Add (Var "y", Var "z"))))) env1
```

Permutations

- le type 'a list list rend le programme peu clair
- abstraction des ens. de permutations difficile
- la structuration monadique est une solution

```
(* insertions : 'a -> 'a list -> 'a list list *)
let rec insertions e l =
match 1 with
 | [] -> [ [e] ]
                                 (* insertion de e en fin
                                                                         *)
 | t::q -> (e::1)
                                    (* insertion de e avant t
                                                                         *)
          List.map (fun 1 \rightarrow t::1) (* on a joute t en tete des ...
                  (insertions e q) (* insertions de e apres t, i.e. dans q *)
(* permutations : 'a list -> 'a list list *)
let rec permutations 1 =
match 1 with
 | [] -> [ [] ]
 | e::q -> List.(flatten (map (fun p -> insertions e p) (permutations q)))
```

Monade non-déterministe / "ensembliste" (I)

- quelle différence avec la monade "option" ?
- applicable aux permutations? oui mais... cf. inf.

Monade non-déterministe / "ensembliste" (II)

Ici, un intérêt de l'approche monadique est de permettre de raisonner sur une seule permutation à la fois (la généralisation "non-déterministe" étant produite par >>=).

Compréhension

Dans le cas de cette monade, permutations q >>= **fun** p -> insertions e p peut être vu intuitivement comme la définition d'une liste par "compréhension": [insertions e p | p <- permutations q].

PS: on ne peut toujours pas définir insertions.

Monades additives

Interface

```
module type MONADE_PLUS = sig
  include MONADE
  val zero : 'a t
  val (++) : 'a t -> 'a t -> 'a t
end
```

Lois (variables selon les publications)

```
zero ++ a = a
a ++ zero = a
(a ++ b) ++ c = a ++ (b ++ c)
zero >>= f = zero

f >>= fun _ -> zero = zero
(a ++ b) >>= f = (a >>= f) ++ (b >>= f)
```

Insertions

```
module type NON_DETERMINISTIC = MONADE_PLUS with type 'a t = 'a list
module List_monad : NON_DETERMINISTIC = struct
  . . .
 let zero = []
 let (++) = (@)
end
let rec insertions e l = match l with
  | [] -> return [e]
  | t::q ->
     return (e::1)
     ++
     map (List.cons t) (insertions e q)
let rec permutations = function
  | [] -> return []
  | e::q -> permutations q >>= insertions e
```

Une monade ensembliste?(I)

Attention, cette monade n'empêche pas la présence de doublons :

```
> permutations [ 1;2;2;3 ];;
- : int list list =
[[1; 2; 2; 3]; [2; 1; 2; 3]; [2; 2; 1; 3]; [2; 2; 3; 1]; [1; 2; 2; 3]; ...]
(* ou encore *)
> let rec insertions e 1 = match 1 with
   | [] -> return [e]
   | t::q ->
      return (e::1) ++ return (e::1) (* !!! *)
      ++
      map (List.cons t) (insertions e q)
> permutations [ 1;2;2;3 ];;
- : int list list =
[[1; 2; 3]; [1; 2; 3]; \ldots]
```

Une monade ensembliste?(II)

Et si on implémente la monade avec des listes sans doublons?

Pas une monade! Pourquoi?

Application à la recherche de solutions

- on cherche un élément d'un type 'a qui satisfait une propriété
 ok : 'a -> bool
- on procède de proche en proche, en visitant différentes positions
- en utilisant une fonction neighbors : 'a -> 'a list qui donne les voisins d'un élément donné
- applications: rendre la monnaie, le compte est bon, labyrinthe, . . .

Application de l'application: rendre la monnaie

- le type pos représente l'état courant du problème: la monnaie à rendre et l'ensemble des pièces disponibles dans la caisse
- le critère (ok) est que le montant à rendre soit nul
- les actions possibles au voisin d'une position donnée sont: soit rendre la première pièce disponible; soit "jeter" cette première pièce

```
type pos = int * int list (* monnaie à rendre, pièces dans la caisse *)
let ok (a_rendre, caisse : pos) = a_rendre = 0
let neighbors (a_rendre, caisse : pos) = match caisse with
 | [] -> []
 | p::q -> (if p <= a_rendre then [(a_rendre-p, q)] else []) @ [(a_rendre, q)]
let rendre_monnaie a_rendre caisse = (* pour affichage lisible du résultat *)
 let rec loop = function
   | [] -> failwith "impossible"
   | [ (_, _) ] -> []
   | (n1, _)::(((n2, _)::_) as q) ->
       let ps = loop q in
       let p = n1 - n2 in
       if p > 0 then p :: ps else ps
 in loop (search neighbors ok (a_rendre, caisse));;
rendre_monnaie 6 [ 1;1;2;1;2;2 ];;
-: int list = [1; 1; 2; 2]
                                                                           25/28
```

Application à la recherche de solutions

1. utiliser le type 'a NDet.t à la la place de 'a list search_list : ('a -> 'b NDet.t) -> 'a NDet.t -> 'b NDet.t search : ('a -> 'a NDet.t) -> ('a -> bool) -> 'a -> 'a list NDet.t 2. utiliser zero et ++: let rec search_list explore positions = match positions with | [] -> zero | pos::queue -> explore pos ++ search_list explore queue 3. reconnaître bind: **let** search_list explore positions = positions >>= explore 4. le traitement du résultat de search_list est également un bind: let rec search neighbors ok pos = if ok pos then return [pos] else neighbors pos >>= search neighbors ok >>= **fun** chemin -> return (pos::chemin) contrairement à la version sans monade, avec NDet (avec listes sans

doublons), cette version renvoie toutes les solutions possibles!

Monades et encapsulation

- une monade M sert à encapsuler/représenter un "effet", par dessus un calcul normal
- le type 'a M.t est une valeur de type 'a, obtenue au moyen de l'effet M.t
- le type 'a M.t est le plus souvent abstrait, donc l'usage de la monade M est diffusif
- pour isoler l'usage de M, on définit une fonction
 run : 'a M.t -> 'a result, où 'a result dépend de 'a, mais pas de M.t
- la composition de monade, i.e. d'effets, est complexe, il faut a minima construire une bijection 'a M1.t M2.t <-> 'a M2.t M1.t

Des monades pour tout représenter

- variable d'état (modifiable), entrées-sorties, exceptions, non-déterminisme, calcul probabiliste, environnement, journalisation, transactions, continuations, . . .
- utiles même dans un langage où les effets sont nativement présents comme OCAML
- utiles également en logique (double négation), etc
- d'autres monades seront couvertes en TD et TP

Cours 7: Les continuations

2024-2025 (450f02-dirty)

Thèmes

- la notion de continuation, applicable à (presque) tous les langages
- la transformation CPS
- les continuations natives
- usages: inversion de contrôle, coroutines, processus utilisateurs, compilation, etc

La notion de continuation

- permet de représenter l'état d'un calcul en cours dans son contexte d'exécution, i.e. ce qui continue l'exécution
- supposons qu'on soit en train d'exécuter fact 3 (déf. usuelle de fact)
- à un moment de l'exécution, on en est à 3 * (2 * (fact 1))
- du point de vue du calcul courant (fact 1), la continuation (courante)
 peut être vue comme une fonction fun fact_1 -> 3 * 2 * fact_1
- attention : une continuation est relative à un contexte d'exécution
- p. ex. dans le programme 5 + fact 2, la continuation de fact 1 est
 fun fact_1 -> 5 + 2 * fact_1

Introduction de continuation: principe

- supposons f : a -> b, où l'on souhaite introduire une continuation
- f peut être appelée par g : b -> c quelconque
- on transforme f en kf : a -> (b -> c) -> c, intégrant ce futur
- le type b est devenu (b -> c) -> c, en fait très proche
- lien étroit avec la logique, où A est proche de $\neg \neg A = (A \to \bot) \to \bot$
- "inversion de contrôle" / principe d'Hollywood : "don't call us, we'll call you!"

Transformation systématique appelée Continuation-Passing Style (CPS)

```
> let f x = 2 * x;;
val f : int -> int = <fun>
> let g x = x + 5;;
val q : int -> int = <fun>
> let f' x k = k (2 * x);;
val f' : int -> (int -> 'a) -> 'a = < fun>
> let g' x k = k (x + 5);;
val g': int -> (int -> 'a) -> 'a = <fun>
> let h x = g (f x);;
val h : int -> int = <fun>
(* expliciter les calculs intermédiaires *)
> let h x =
   let fx = f x in
   let qfx = q fx in
   gfx;;
val h : int -> int = <fun>
> h 6;;
-: int = 17
```

Transformation systématique appelée Continuation-Passing Style (CPS)

```
> let f x = 2 * x;;
val f : int -> int = <fun>
> let g x = x + 5;;
val q : int -> int = <fun>
> let f' x k = k (2 * x);;
val f' : int -> (int -> 'a) -> 'a = < fun>
> let q' x k = k (x + 5);;
val q' : int -> (int -> 'a) -> 'a = < fun>
> let h x = g (f x);;
val h : int -> int = <fun>
(* expliciter les calculs intermédiaires puis introduire les continuations *)
                                     > let h' x k =
> let h x =
   let fx = f x in
                                         f' x (fun fx ->
   let qfx = q fx in
                                          q' fx (fun qfx ->
   gfx;;
                                            k gfx));;
val h : int -> int = < fun>
                                val h': int -> (int -> int) -> int = \langle fun \rangle
> h 6::
                                     > h' 6 (fun x -> x);;
-: int = 17
                                     -: int = 17
```

```
> let rec fact n =
   if n \le 0 then 1
   else n * fact (n - 1)::
val fact : int -> int = <fun>
> let rec fact n =
   if n \le 0 then 1
   else
     let fact_n_1 = fact (n - 1) in
     n * fact_n_1;;
val fact : int -> int = <fun>
> let rec kfact n k =
   if n \le 0 then k \mid 1
   else
     kfact (n - 1) (fun fact_n_1 ->
       k (n * fact_n_1));;
val kfact : int -> (int -> 'a) -> 'a = <fun>
> let fact' n = kfact n (fun fact_n -> fact_n);;
val fact' : int -> int = <fun>
```

```
> let rec fact n =
                                               fact' 3
    if n \le 0 then 1
                                               \rightarrow kfact 3 (fun fact_n -> fact_n)
                                                                    k3 = id
    else n * fact (n - 1)::
val fact : int -> int = <fun>
                                               \rightarrow kfact 2 (fun fn2 -> k3 (3 * fn2))
> let rec fact n =
                                                                     k2
    if n \le 0 then 1
                                               \rightarrow kfact 1 (fun fn1 -> k2 (2 * fn1))
    else
                                                                     k1
      let fact_n_1 = fact (n - 1) in \rightarrow kfact 0 (fun fn0 -> k1 (1 * fn0))
      n * fact_n_1;;
                                                                     \mathbf{k}0
val fact : int -> int = <fun>
                                               \rightarrow k0 1
> let rec kfact n k =
                                               \rightarrow k1 (1 * 1)
    if n \le 0 then k = 1
                                               \rightarrow k2 (2 * 1)
    else
                                               \rightarrow k3 (3 * 2)
      kfact (n - 1) (fun fact_n_1 ->
                                               \rightarrow 6
        k (n * fact_n_1));;
val kfact : int -> (int -> 'a) -> 'a = <fun>
> let fact' n = kfact n (fun fact_n -> fact_n);;
val fact' : int -> int = <fun>
```

```
> let rec fibo n =
   if n <= 1 then 1
   else fibo (n-1) + fibo (n-2);
val fibo : int -> int = <fun>
> let rec fibo n =
   if n <= 1 then 1
   else
     let fib_n_1 = fibo(n-1) in
     let fib_n_2 = fibo (n-2) in
     fib_n_1 + fib_n_2;;
val fibo : int -> int = <fun>
> let rec kfibo n k =
   if n \le 1 then k \mid 1
   else
     kfibo (n-1) (fun fib_n_1 ->
       kfibo (n-2) (fun fib_n_2 ->
         k (fib_n_1 + fib_n_2));;
val kfibo : int \rightarrow (int \rightarrow 'a) \rightarrow 'a = <fun>
> let fibo' n = kfibo n (fun fib_n -> fib_n);;
val fibo' : int -> int = <fun>
```

Transformation CPS

- récursivité terminale (– de pile vs. + de mémoire)
- mieux contrôler/changer/linéariser le flôt de contrôle d'un programme
- utile par exemple pour écrire un compilateur (gestion du flôt de contrôle)

Continuations pour étendre un langage

Exemple: la sémantique des exceptions

- on a un langage composé de : valeurs (val), fonctions (far(far)) et appel de fonction (far(far))
- on souhaite implanter/représenter la sémantique des exceptions
- une exécution peut terminer (succès) ou lever une exception (échec)
- on ajoute 2 continuations : k_- , d'échec; k_+ , de succès
- pour chacune des constructions du langage de départ
- auxquelles on ajoute le traitement des exceptions

Continuations natives

- la transformation CPS est fastidieuse et invasive (changement du code source)
- les continuations natives existent dans de nombreux langages : call/cc en Scheme
- ou bien des primitives inspirées de celles-ci : setjmp/longjmp en C, yield en Python, Scala, Racket, Haskell, etc
- ces primitives permettent de faire comme si on avait ajouté des paramètres supplémentaires de continuation dans le code des fonctions
- on étudiera une librairie de continuations (dites délimitées)

La librairie Delimcc (Oleg Kiselyov)

- l'implantation des continuations implique la recopie d'une partie de la pile d'appels
- new_prompt: unit -> 'a prompt, pour créer un marqueur de pile
- push_prompt: 'a prompt -> (unit -> 'a) -> 'a, pour délimiter l'usage des continuations, en insérant un marqueur dans la pile
- shift: 'a prompt -> (('b -> 'a) -> 'b, pour capturer la continuation courante, i.e. la pile depuis le marqueur jusqu'à l'appel en cours
- l'exécution de :

```
push_prompt p (fun () -> ... (shift p (fun k -> expr)) ...)
```

- suspend l'exécution en cours, lorsque doit être évaluée la sous-expression (shift ...) ci-dessus
- 2. capture dans la variable k la continuation courante (notamment la pile). (appeler (k arg) reprendrait alors son évaluation sur arg)
- 3. exécute *expr* (dépendant de k ou non, au choix), qui sera le résultat global de toute l'expression push_prompt ...
- dans d'autres langages, push_prompt et shift apparaissent sans marqueur de pile p et sont nommées reset et shift

Utilisation des continuations natives

- très proche des continuations explicites (mais **pas** équivalentes)
 - le type des expressions/fonctions ne change pas (pas de paramètre supplémentaire)
 - 2 types importants (et parfois ≠): celui de l'expression (push_prompt ...)
 et celui de la sous-expression (shift ...)
 - pas d'introduction de récursivité terminale, pas d'économie de pile d'appels
- souvent appelées exceptions reprenables (resumable exceptions)
 - calcul interrompu, comme pour une exception
 - mais on peut le reprendre, en utilisant la continuation k
 - push_prompt p (fun () -> ... (shift p (fun k -> expr)) ...) est un "try ... (raise (Exc k)) ... with Exc k -> expr"
 - dans le traitement d'erreur expr, on peut fournir à k une valeur qui remplace le (raise (Exc k)) et qui redémarre l'exécution "normalement" à l'endroit où le raise l'a arrêtée

Utilisation des continuations natives: factorielle

```
let fact n =
                                                        let fact n =
  let rec kfact n k =
                                                           let p = new_prompt () in
    if n \le 0 then k = 1
                                                           let rec loop n =
    else kfact (n-1) (fun fact_n_1 ->
                                                             if n \le 0 then shift p (fun k \rightarrow k 1)
            k (n * fact_n_1))
                                                             else n * loop (n-1)
  in kfact n (fun fact_n -> fact_n)
                                                           in push_prompt p (fun () -> loop n)
fact 3
                                                        fact 3
\rightarrow kfact 3 (fun fact_n -> fact_n)
                                                        \rightarrow push_prompt p (fun () -> loop 3)
                       k3 = id
                                                        (* marquage de la pile *)
\rightarrow kfact 2 (fun fn2 -> k3 (3 * fn2))
                                                        \rightarrow loop 3
                                                        \rightarrow 3 * loop 2
                        k2
\rightarrow kfact 1 (fun fn1 -> k2 (2 * fn1))
                                                        \rightarrow 3 * (2 * loop 1)
                                                        \rightarrow 3 * (2 * (1 * loop 0))
                        k1
                                                        \rightarrow 3 * (2 * (1 * shift p (fun k -> k 1))
\rightarrow kfact 0 (fun fn0 -> k1 (1 * fn0))
                                                                \rightarrow k = \text{fun } n \rightarrow 3 * (2 * (1 * n))
                        k0
\rightarrow k0 1 \rightarrow k1 (1 * 1) \rightarrow k2 (2 * 1)
                                                        \rightarrow k 1
                                                        \rightarrow 3 * (2 * (1 * 1))
\rightarrow id (3 * 2) \rightarrow 6
                                                        \rightarrow 6
```

- seul l'usage de k (i.e. $(k \ 1)$) nécessite réellement sa capture avec shift $_{15/23}$
- les continuations natives construisent implicitement cette valeur

Utilisation des continuations natives: concaténation de listes

```
(* CPS *)
let rec append 11 12 = match 11 with
 | Γ] → 12
                                     let append 11 12 =
 | t1 :: q1 -> t1 :: append q1 12
                                      let rec loop 11 k = match 11 with
(* fonction recursive locale, sans 12 *) | [] \rightarrow k 12
let append 11 12 =
                                         | t1 :: q1 ->
 let rec loop = function
                                            loop q1 (fun app_q1_l2 ->
   | [] -> 12
                                              k (t1 :: app_q1_12))
   | t1 :: q1 -> t1 :: loop q1
                                       in loop 11 (fun app_11_12 -> app_11_12)
 in loop 11
                                      (* avec continuations natives ;
(* avec variable intermediaire *)
                                        attention, n'économise pas la pile *)
let append 11 12 =
                                     let append 11 12 =
 let rec loop = function
                                       let p = new_prompt () in
   | [] -> 12
                                       let rec loop = function
   in t1 :: app_q1_12
                                      | t1 :: q1 -> t1 :: loop q1
                                       in push_prompt p (fun () -> loop 11)
 in loop 11
```

- la continuation k correspond à la fonction (**fun** 1 -> t₁::::::t_n::1) où [t₁;...;t_n] est la liste 11
- tous les éléments t_i parcourus sont stockés dans la pile d'appels capturée par k

Utilisation des continuations natives: concaténation de listes

• usage très contraint, i.e. nécessairement k : 'a list -> 'a list

```
let append 11 12 =
  let p = new_prompt () in
  let rec loop = function
    | [] -> shift p (fun k -> k 12)
    | t1 :: q1 -> t1 :: loop q1
  in push_prompt p (fun () -> loop 11)
```

- peut-on découpler le parcours de la concaténation à 12 ?
- oui, à condition de changer les types :

- 's -> ('s, 'a) res: type d'une continuation (l'appel de celle-ci doit renvoyer un ... res comme push_prompt ...)
- 's: type retourné par shift; polymorphe pour s'adapter à tout contexte (comme raise pour les exceptions)

Utilisation des continuations natives: concaténation de listes

```
type ('s, 'a) res =
  | Done of 'a
  | Wait of ('s -> ('s, 'a) res)
let append 11 12 =
 let p = new_prompt () in (* doit être fait après définition de ... res *)
 let rec loop 11 = (* ne fait que parcourir 11 *)
   match 11 with
     | [] ->  shift p (fun k -> Wait k)
     | t1 :: q1 -> t1 :: loop q1
 in
 let handle 11 12 = (* concaténation à 12 hors de loop! *)
   match push_prompt p (fun () -> Done (loop 11)) with
     | Done _ -> assert false (* necessairement un shift dans loop *)
     | Wait k -> match k 12 with
                   | Done r -> r
                   | Wait _ -> assert false (* un seul shift *)
 in handle 11 12
PS : res est inutilement général ici, la définition suivante suffirait :
type 'a res =
 | Done of 'a list
                                                                             18/23
  | Wait of ('a list -> 'a res)
```

- séparation des cas nominaux et des cas d'erreurs
- récupération des erreurs : compliqué avec exceptions ordinaires
- on souhaite par exemple lire la première ligne d'un fichier, avec entrée d'un autre nom et reprise en cas d'erreur
- traitements séparés:

```
(* cas nominal de lecture *)
 let cas nominal nom =
   Format.printf "tentative de lecture du fichier '%s'@." nom;
   let f = open_in (if Sys.file_exists nom then nom
                    else shift p (fun k -> BadName k)) in
   let 1 = input_line f in
   close_in f;
   Done 1
 (* cas d'erreur de lecture *)
 let cas erreur nom k =
   Format.printf "fichier '%s' inexistant, entrez un autre nom@." nom;
   k (read_line ())
• shift (fun k -> BadName k) remplace le nom du fichier à ouvrir
cas_nominal: string -> (string, string) res
• cas_erreur: string -> (string -> (...) res) -> (...) res
```

programme principal combinant les différents traitements:

```
let lecture_ligne_interactive nom =
  match push_prompt p (fun () -> cas_nominal nom) with
  | Done l   -> l
   | BadName k  ->
      match cas_erreur nom k with
   | Done l   -> l
   | _ -> assert false (* pas de shift dans le traitement d'erreur *)
```

- le traitement d'erreur n'est pas réentrant
- il faudrait différents constructeurs (comme BadName) pour gérer des erreurs différentes
- on aurait alors la déclaration de type:

```
type ('shift1, 'shift2, ..., 'a) res = ...
```

On souhaite maintenant lire un entier. Extension au traitement de plusieurs erreurs:

```
(* cas nominal de lecture *)
let cas nominal nom =
 Format.printf "tentative de lecture du fichier '%s'@." nom;
 let f = open_in (if Sys.file_exists nom then nom
                   else shift p (fun k -> BadName k)) in
 let i = try input_binary_int f with _ -> shift p (fun k -> NotInt k) in
 close_in f;
 Done i
(* cas d'erreur de lecture: fichier inexistant *)
let cas_erreur_fichier nom k =
 Format.printf "fichier '%s' inexistant, entrez un autre nom@." nom;
 k (read_line ())
(* cas d'erreur de lecture: pas d'entier dans le fichier *)
let cas erreur entier k =
 Format.printf "contenu incorrect, entrez un entier@.";
 k (read_int ())
  • cas_nominal: string -> (string, string, int) res
  • cas_erreur_fichier: string -> (string -> (...) res) -> (...) res
  • cas_erreur_entier: (int -> (...) res) -> (...) res
```

• avec le type suivant qui permet de traiter 2 types d'erreur:

```
type ('shift1, 'shift2, 'a) res =
    | BadName of ('shift1 -> ('shift1, 'shift2, 'a) res)
    | NotInt of ('shift2 -> ('shift1, 'shift2, 'a) res)
    | Done of 'a
```

ou bien directement le type spécialisé:

```
type res =
  | BadName of (string -> res) | NotInt of (int -> res) | Done of int
```

- BadName correspond à l'erreur de fichier (pas de fichier)
- NotInt correspond à l'erreur de contenu de fichier (pas d'entier)
- Done correspond à l'exécution nominale, qui renvoie l'entier lu dans le fichier

- les traitements d'erreurs doivent toujours rester sous la portée d'un push_prompt
- on a intérêt à factoriser ces traitements et éviter les match ... with ... imbriqués
- programme principal:

```
let traitement_erreur_fichier prog nom =
 match push_prompt p (fun () -> prog nom) with
   | BadName k -> cas_erreur_fichier nom k
    resultat -> resultat
let traitement_erreur_entier prog =
 match push_prompt p (fun () -> prog ()) with
     NotInt k -> cas erreur entier k
    | BadName _ -> assert false (* erreur recuperee plus tot *)
     Done i -> Done i
let lecture_ligne_interactive nom =
 match traitement erreur entier
       (fun () -> traitement_erreur_fichier cas_nominal nom) with
    Done i -> i
    _ -> assert false (* toutes les erreurs sont recuperees plus tot *)
```