MOCU for block-copolymer experimental design

Anthony DeGennaro

April 2019

General Problem Description

- We have a "real-life" physical system that maps feature inputs to outputs: $y = f_r(x)$. Because of either measurement noise and/or stochasticity in f_r (the latter of which could arise e.g. from physical processes in f_r that involve states/dynamics that we have not captured with x), the output of f_r given x may not be completely deterministic, and so we characterize the output of the real system with the conditional probability distribution $\rho_r(y|x)$.
- Because it is expensive to query this system, we have a computationally cheaper model that approximates its behavior: $\hat{y} = f_m(x, \theta)$, with $\theta \sim \rho(\theta)$. As before, if we wish to make this model non-deterministic, we may do so by constructing the probability distribution $\rho_m(y|x,\theta)$.
- The parameters θ capture any uncertainties in the model structure. If the model f_m is a physical model, then θ would consist of uncertain parameters appearing in the model dynamics. If instead the model is data-derived (e.g., POD-Galerkin, DMD/Koopman, spectral methods), then θ could simply capture statistical uncertainty in the weights/coefficients. As an example, if we had $f_m(\theta, x) = \sum_j \theta_j \phi_j(x)$ for some basis functions defined on x, then θ would simply represent the random coefficients of that expansion.
- We can think of θ as representing our ignorance in how the real system is related to the model system. That is, we assume that the real system *should* be described accurately by one of the candidate models represented by variations of θ , but we do not know which specific values of θ produce that agreement.
- Our goal w.r.t. operator design is to build a function $\psi_{IBR}(x,\theta): X \times \Theta \mapsto Y$ from a family of functions Ψ that does the "best" job approximating the model f_m on average over the uncertainty θ . For example, we could use neural networks and think of Ψ as the space of neural networks with a certain structure and number of weights. We wish to find the optimally-robust mapping:

```
\psi_{IBR}(x) = \operatorname{argmin}_{\psi \in \Psi} \mathbb{E}_{\theta}[C(\theta, \psi)]
```

where $C(\theta, \psi)$ is a cost function that quantifies the discrepancy between predictions made by ψ and f_m

• At the same time, we have model uncertainty vis-a-vis $\rho(\theta)$ that we wish to reduce by sampling the real system and updating our prior belief about θ to produce the posterior $\rho(\theta|D)$ through Bayesian inference. We don't want to select just any experiment though; we want to select that experiment $D = (x^*, y^*)$ that also reduces our cost. This leads (after "some algebra") to the MOCU framework for experiment selection:

$$x^* = \operatorname{argmin}_{x \in X} \, \mathbb{E}_y[\mathbb{E}_{\theta|y}[C(\theta, \psi_{IBR}^{\Theta|x,y})]]$$

• The nice thing about this framework is we are (1) designing experiments that respect an objective, (2) tuning a low-dimensional model to more accurately represent reality over the span of those objective-driven experiments, and (3) constructing a function that best represents the input/output mapping on average over all uncertainty, all in one shot.

Details Specific to Our Setting

1. Ground Truth Source

- We should start with a computational model (Cahn-Hilliard) as our ground truth source. In the future, we will hopefully shift to considering actual experimental data for this purpose. However, for an initial proof-of-concept, we should start here.
- The features $x \in X$ of Cahn-Hilliard are comprised of the material-specific parameters that appear in the dynamics. These parameters include the interface thickness parameter, the shape/form of the potential function, and other material constants. We will consult the materials-science literature in order to identify physically-meaningful ranges/distributions for these.
- We may make the system non-deterministic by adding noise to the dynamics, i.e. $\dot{x} = \mathcal{C}(x) + \mathcal{N}$, where $N \sim \rho(\mathcal{N})$ is some noise profile and $\mathcal{C}(\cdot)$ simply denotes the (deterministic) CH dynamics.
- We should begin by assuming known, fixed initial/boundary conditions, so as not to complicate things. If we want to consider a range of initial/boundary conditions, then probably we will have to incorporate these into the feature (experiment) space X via some parameterization.
- W.r.t. numerics, we should probably use Danial Faghihi-Shahrestani's (UT) code. If we cannot do that, I (Anthony DeGennaro, BNL) have a 2-D spectral solver, although that would be non-ideal for a variety of reasons.

2. Low-Dimensional Model

- The cheap model should be fitted prior to MOCU-based sampling using some k training data pairs $D_{train} = \{(x_1, \ldots, x_k), (y_1, \ldots, y_k)\}_{train}$, collected from Cahn-Hilliard. This model could be constructed in a variety of ways, depending on how we do things. POD/POD-Galerkin would be classical choices, and DMD/Koopman methods would be an interesting alternative. Karen Wilcox (UT) and Anthony DeGennaro (BNL) could investigate these and other approaches.
- We should fit a "mean" model to the training data: $\hat{y} = f_m(x, \theta_{fit})$, where θ_{fit} represent some weights (or coefficients) associated with the model fit
- To account for model imperfections etc., we can "fuzzify" the model with uncertainty and consider the parameterized class of models $\hat{y} = f_m(x, \theta + \mathcal{N})$ with $\theta \sim \rho(\theta)$ and $\mathcal{N} \sim \rho(\mathcal{N})$. θ accounts for uncertainty in the model structure; \mathcal{N} is just non-deterministic noise that makes the system stochastic.
- $\rho(\theta)$ should be based on our prior expectations. For example, the mean value should be at θ_{fit} . If we are using a POD-based or spectral type method, then we might also expect exponential decay in the variance of coefficients for higher-order modes.

3. Intrinsically Bayesian Robust Operator

- We should use some sort of regressor for $y = \psi(x, \theta)$, e.g. a fully-connected neural network
- The difference between $f_m(x,\theta)$ and $\psi(x,\theta)$ is that the computational model is a low-dimensional model that has been trained to approximate the physics, whereas ψ is just a function that maps (x,θ) to y. For example, if we use POD for f_m , then we have $\hat{y} = \sum_j \theta_j \phi_j(x) + \mathcal{N}$ and we will still have to drive the approximate system dynamics to steady-state to get \hat{y} , whereas ψ just gives a direct mapping. Also note that in the MOCU machinery, we will need to compute $\psi(\Theta|(x,y))$, which is the optimal regressor that approximates f_m given (x,y), for all combinations of $(x,y) \in X \times Y$. This will result in a different robust operator for each pair of (x,y)
- Obtaining ψ could be done in the usual way, e.g. training a neural net on a set of data generated by the ROM. For example, to approximate $\psi(\Theta|(x,y))$, we would train a neural network on a subset of k data points generated from the ROM using $(x,y;\theta_1...\theta_k)$

4. MOCU Methodology

• Ed Dougherty and Guang Zhao (A&M) have recently done a derivation showing how the MOCU sampling formula reduces from the general form presented in these notes to something else by marginalizing over Θ , under mild assumptions about X, Y, Θ, Ψ . As far as I can tell, these assumptions are perfectly valid and I defer to their presentation/algorithm for specific details.