2018 年全国大学生数学建模竞赛暨美赛培训 非线性规划

厦门大学2017 级各学院

数学建模团队: 谭忠教授; 助教: 蒋晓芬, 李然, 卢若心, 汪颖

要 求: (1) 必 须 用TEX输 入 编 辑 后 将TEXPDF以 及 图 表 一 并 发 邮 件 提 交 给ztan85@163.com及model2019xmu@163.com,压缩包及邮件主题名为"编号+姓名+专业+第*次作业";

- (2) 必须抄题, 以免判错。
- 1. 小溪纺织厂制造粗斜纹棉布. 每月的固定成本是80000元,每 尺粗斜纹棉布的可变成本是3.5元. 根据下面的线性方程,需求与价格 相关

$$v = 17000 - 5666p$$

为纺织厂建立一个非线性利润函数并计算能使利润最大化的价格、最优的生产量和每月的最大利润.

2. 某公司生产按桶卖给分销商的啤酒,公司的月固定成本是120000元,可变成本是每桶170元.公司得出以下的利润函数和需求约束:

$$max: z = vp - 12000 - 17v$$

$$s.t: v = 1800 - 15p$$

求解这个非线性规划模型以得到最优价格(p).

3. 某陶瓷公司建立一下非线性规划模型来求得每天生产的 $\bar{m}(x_1)$ 和杯子 (x_2) 的最优量:

$$max: z = 7x_1 - 0.31x_1^2 + 8x_2 - 0.4x_2^2$$

$$s.t: 4x_1 + 5x_2 = 100$$

计算该非线性规划模型的最优解。

4. 某公司研发、出售、安装计算机系统. 该公司将其顾客群分为5个区域,有15个出售和安装计算机系统的代表. 该公司打算将销售人员派往各地区,以使他们的日销售收入最大化. 虽然随着分配到各地的销售人员的增加,销售量也在增加,但根据下列的非线性公式,销售量的增加比例在下降:

总销售量
$$= a - \frac{b}{x}$$

各地区的日销售量的a,b参数如下表所示:

			地区(单位:元)		
	1	2	3	4	5
a	15000	24000	8100	12000	21000
b	9000	15000	5300	7600	12500

由于一些地区是在城区而另一些不是,各地区代表的日开支不同。公司有65000元的日常开支预算(包括差旅费),地区1每个代表的平均日开支是3550元,地区2是5400元,地区3是2900元,地区4是2750元,

地区5是4900元. 用公式表达并解决该问题的非线性规划模型,以求得获得最大日销售量时分配到每个地区的代表数目。

5. 某电力公司每天最多可以生产250万度电. 来自高需求(高峰区)的客户和低需求(非高峰区)客户的电力需求(单位:百万度)由下列公式确定:

高需求:
$$5.8 - 0.06p_h + 0.005p_l$$

低需求:
$$3.0 - 0.11p_l + 0.008p_h$$

可变量 p_l 为在低需求期每度电的价格; p_h 为高需求期每度电的价格. 列出公式并求解本问题的非线性规划模型,以求出能最大化收入的价格结构.

6. E市公安部门把城市分成4个区. 该部门每天每次换班分配20个可用的巡逻警车到每个区. 在值班期间公安部门打算分配巡逻车到每个区, 以追求最低的犯罪率,同时对报警电话的平均响应时间不超过10分钟. 随着越多的巡逻车被分配到一个区域, 这一区域的犯罪率和响应时间也随着减少, 但是根据下列公式,减少的比率在下降:

$$y = a + \frac{b}{x}$$

日犯罪率(每1000人的犯罪次数)和响应时间(分钟)的参数*a*和*b*如下表 所示:

	犯罪率		响应时间(分钟)	
	a	b	a	b
1	0.24	0.15	4	11
2	0.37	0.21	8	8
3	0.21	0.12	6	10
4	0.48	0.30	3	9

列出公式并求解本问题的非线性规划模型,以求出能使总犯罪率最小的分配到每个区域的巡逻警车的数量.

7. 某连锁餐馆从4个不同的食物供应商处购买原料. 公司打算建造一个新的分销中心, 在将原料运输到不同的餐馆之前来处理和包装每道菜使用的原料. 供应商用40尺的拖车运送食品原料. 4个供应商的坐标和运输到分销中心的年运输量如下:

供应商	坐标(x)	坐标(y)	年运输量)
A	200	200	65
В	100	500	120
\mathbf{C}	250	600	90
D	500	300	75

计算分销中心的坐标以最小化供应商的总运输距离.

8. 某装修公司打算建一个新型的仓库来服务某商店分布在福建 省6个城市的分店—福州店、厦门店、泉州店、漳州店、莆田店和龙岩 店. 以江西省的南昌市为坐标原点(0,0), 这些城市的坐标(千米)和供应商每个酒店的年运输量如下:

供应商	坐标(x)	坐标(y)	年运输量
福州店	15	85	160
厦门店	42	145	90
泉州店	88	145	105
漳州店	125	140	35
莆田店	135	125	60
龙岩店	180	18	75

计算最小化到各商店的总路程的新仓库的坐标值,并在坐标上标出到这些坐标最近的城市.

9. 一个投资顾问帮助一对夫妇规划退休金的投资组合. 该顾问推荐了3种股票—A、B和C. 下面是每种股票的年回报率、方差和股票之间的协方差:

股票	年回报率	方差
Allied Electronics	0.14	0.10
Bank United	0.10	0.04
Consolidated Computers	0.12	0.08

股票组合	协方差
A,B	0.4
$_{\rm A,C}$	0.7
В,С	0.3

这对夫妇要求最低的总投资组合回报率为0.11. 计算每种股票在 投资组合中的投资比例以达到最低的风险.

10. 某咨询公司有8个与客户已签订合同的开发计算机系统和软件的项目. 该公司共有35个员工可分配到不同的项目上. 该公司为每个项目开发出如下的利润函数, 这里x_i为分配到一个项目的成员数:

项目	利润(元)
1	$250000x_1^{0.50}$
2	$370000x_2^{0.30}$
3	$140000x_3^{0.70}$
4	$250000x_1^{0.50}$
5	$370000x_2^{0.30}$
6	$140000x_3^{0.70}$
7	$280000x_7^{0.45}$
8	$315000x_8^{0.40}$

这些函数考虑了项目完成时间、成本和基于分配的团队成员数量的项目成功概率. 这些函数表明随着团队成员的增加,利润也增加了,

但是随着团队成员数的增加,其增加的比率降低. 因此, 随着分配到一 计算的价值最高。设某天的汇率、现有货币和当天需求如下: 个项目的成员数的增加,其边际效果递减. 计算为了获得最大利润分配 到每个项目的团队成员的最优人数.

- 11. 某厂向用户提供发动机,合同规定,第一、二、三季度末分 别交货40台、60台、80台。每季度的生产费用为 $f(x) = ax + bx^2$ (单 位:元),其中x是该季度生产的台数。若交货后有剩余,可用于下 季度交货, 但需要支付存储费, 每台每季度c元。已知工厂每季度最 大生产能力为100台,第一季度开始时无存货,设a = 50、b = 0.2、 c=4,问:工厂应该如何安排生产计划,才能既满足合同又使总费 用最低。讨论a、b、c变化对计划的影响,并作出合理的解释。
- 12. 某工厂向用户提供发动机,按合同规定,其交货数量和日 期是:第一季度末交40台,第二季末交60台,第三季末交80台。工厂 发生碰撞。如果会碰撞,则应计算如何调整各架(包括新进入的)飞 的最大生产能力为每季100台,每季的生产费用是 $f(x) = 50x + 0.2x^2$ 机飞行的方向角,以避免碰撞。现假定条件如下: (元), 此处x为该季生产发动机的台数。若工厂生产的多,多余的发 动机可移到下季向用户交货,这样,工厂就需支付存贮费,每台发动 机每季的存贮费为4元。问该厂每季应生产多少台发动机,才能既满 足交货合同,又使工厂所花费的费用最少(假定第一季度开始时发动 机无存货)。
- 13. 一基金管理人的工作是:每天将现有的美元、英镑、马克和 日元四种货币按当天汇率相互兑换, 使在满足需要的条件下, 按美元

	美元	英镑	马克	日元	现有量(×10 ⁸)	需求量(×10 ⁸)
美元	1	0.58928	1.743	138.3	8	6
英镑	1.697	1	2.9579	234.7	1	3
马克	0.57372	0.33808	1	79.346	8	1
日元	0.007233	0.00426	0.0126	1	0	10

问该天基金管理人应如何操作。("按美元计算的价值"指兑入、 总出汇率的平均值,如1英镑相当于 $\frac{1.697+(1/0.58928)}{2}$ = 1.696993美元)

- 14. 在约10000m高空的某边长160km的正方形区域内, 经常有若 干架飞机作水平飞行。区域内每架飞机的位置和速度向量均由计算机 记录其数据,以便进行飞行管理。当一架欲进入该区域的飞机到达区 域边缘时,记录其数据后,要立即计算并判断是否会与区域内的飞机
 - 1)不碰撞的标准为任意两架飞机的距离大于8km;
 - 2) 飞机飞行方向角调整的幅度不应超过30度;
 - 3) 所有飞机飞行速度均为每小时800km;
- 4) 进入该区域的飞机在到达区域边缘时,与区域内飞机的距离 应在60km以上;
 - 5) 最多需考虑6架飞机;
 - 6)不必考虑飞机离开此区域后的状况。

骤,对以下数据进行计算(方向角误差不超过0.01度),要求飞机飞 还需要10根5m长的钢管。应如何下料最节省? 行方向角调整的幅度尽量小。

设该区域4个顶点的座标为(0,0),(160,0),(160,160),(0,160).记录数 据如下:

飞机编号	横坐标x	纵坐标y	方向角度
1	150	140	243
2	85	85	236
3 150		155	220.5
4	145	50	159
5	130	150	230
新进入	0	0	52

注:方向角指飞行方向与x轴正向的夹角。

试根据实际应用背景对你的模型进行评价与推广。

- 15. (钢管下料问题)某钢管零售商从钢管厂进货,将钢管按照顾 客的要求切割后售出。从钢管厂进货时得到原材料钢管都是19m长。
- (1) 现有一客户需要50根4m长、20根6m长、15根8m长的钢管, 问应如何下料最节省?
- (2) 零售商如果采用的不同切割模式太多,将会导致生产过程 的复杂化,从而增加生产和管理成本,所以该零售商规定采用的不同

请你对这个避免碰撞的飞行管理问题建立数学模型,列出计算步。切割模型不能超过3种。此外,该客户除需要(1)中的三种钢管外,

16. 某省属高校的招生问题: 过去5年内, 该省属高校提高了来 自省内和省外学生的学费,目的是弥补省政府拨款不足所造成的预 算缺口。该大学的管理机构一直认为收到的入学申请数与学费没有 关系, 但是, 过去两年内申请和注册数的减少证明了这种想法是错误 的。学校负责招生的人员发现被接受并且入学的申请数 (x_1) 和每学期 的学费(t_1)之间存在以下关系:

$$x_1 = 21000 - 12t_1(州内)$$

$$x_2 = 35000 - 6t_2(州外)$$

该省属高校想建立一个能表示省内学费、省外学费和期望入学的新生 人数的计划模型。学校教室至多能够容纳1400名新生,同时至少需要 招收700名新生来达到所有的班级规模目标。学校根据历史数据了解 到,所有省内的新生大约有55%想住在学校宿舍,72%的省外新生想 住本学校宿舍,而学校最多只有800个床位可供新生入住。学校同时 想确保入学标准能够维持其高学术水准。从历史数据得出,省内学生 的SAT平均分数是960分,省外学生的SAT平均分数是1150分。学校 希望招收的新生的SAT平均分数至少是1000分。

省属高校是一个省支持的机构, 所以省政府也想确保学校不会因

为省外的学生付更高的学费而且有较好的分数而仅仅招收省外的学 取的学费、总的学费,在这样的收费下期望招收的省内和省外学生的生。因此政府制定了一项政策:招收省外的新生不能超过新生总数 数量。的55%.

为该省属高校建立一个非线性规划模型并解答,指出学校应该收