Review Unit 15

1. Calculate E° for the following reaction:

$$2Al^{3+}(aq) + 3Cd(s) \rightarrow 2Al(s) + 3Cd^{2+}(aq)$$

- a) -2.06 V
- d) -4.52 V
- b) +4.52 V
- -1.26 V
- c) +2.06 V
- 2. Using data from the reduction potential table and the reaction

$$2Ag(s) + Pt^{2+}(aq) \rightarrow Pt(s) + 2Ag^{+}(aq)$$
 E° = 0.38 V

calculate the standard reduction potential of the half-reaction

Pt^{2*}(aq) + 2e
$$\rightarrow$$
 Pt(s)
a) -1.18 V
b) -0.40 V
c) 0.40 V
e) 2.00 V , 38 = (-,80) + X
 $\times = 1.18 \text{ V}$
 $\times = 1.18 \text{ V}$
 $\times = 1.18 \text{ V}$

- 3. Using data from the reduction potential table, predict which of the following is the best oxidizing agent.
 - a) F₂
- d) Ag+
- b) Ag
- e) Al³⁺
- c) Sn44
- 4. Which energy conversion shown below takes place in an electrolytic cell?
- a.) electrical to chemical
- b. chemical to electrical
- c. mechanical to electrical
- d. mechanical to chemical
- e. chemical to mechanical
- 5. How many electrons are transferred in the following reaction? SO_3 -(aq) + MnO_4 -(aq) $\rightarrow SO_4$ -2 + Mn^{+2} (aq)

$$SO_3$$
-(aq) + MnO_4 -(aq) $\rightarrow SO_4$ -2 + Mn^{+2} (aq)

- a. 6
- b. 2
- c) 10
- d. 4
- e. 3
- 6. What is the oxidation number of oxygen in H_2O_2 ?
- c. 0
- d. +2
- e. -2

Standard Reduction Potentials at 23	PC E°
(volts)	+2.87
$F_2(g) + 2e^- \rightarrow 2F'(aq)$	
$Au^{3+} + 3c^{-} \rightarrow Au(s)$	+1.50
$Cl_2(g) + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2(g) + 4H_3O^*(aq) + 4e^- \rightarrow 6H_2O(1)$	+1.23
$Br_2(1) + 2e^- \rightarrow 2Br'(aq)$	+1.08
$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$	+0.80
$Hg_2^{2+}(aq) + 2e^- \rightarrow 2Hg(1)$	+0.79
$I_2(s) + 2e^- \rightarrow 2\Gamma(aq)$	+0.535
$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$	+0.337
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2\operatorname{e}^{-} \to \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^- \to \operatorname{Sn}(s)$	-0.14
$Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.40
$Zn^{2+}(aq) + 2e^- \rightarrow Zn(s)$	-0.763
$2H_2O(1) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$	-0.828
$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	-1.66
$K^{+}(aq) + e^{-} \rightarrow K(s)$	-2.93
$Li^{+}(aq) + e^{-} \rightarrow Li(s)$	-3.045

7. Which of the following is the strongest oxidizing agent?

$$MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$$

 $E^{\circ} = 1.68V$

$$I_2 + 2e \rightarrow 2I$$

 $E^{\circ} = 0.54 \text{ V}$

$$Zn^{2+} + 2e^- \rightarrow Zn$$

 $E^{\circ} = -0.76V$

- a.) MnO₄
 - b. I2
 - c. Zn²⁺
 - d. MnO₂
 - 8. Which statement is true for any electrochemical cell?
 - a. Oxidation occurs at the anode, only.
 - b. Reduction occurs at the anode, only.
 - c. Oxidation occurs at both the anode and the cathode.
 - d. Reduction occurs at both the anode and the cathode.

Voltaic Cell

2n -> Zn+2+ 2e

1M ZnSO₄ and 1M CuSO₄

- 9. On the diagram provided, indicate with one or more arrows the direction of electron flow through the wire.
- 10. Write an equation for the half-reaction that occurs at the zinc electrode. 20 -> 20+2+ 2=
- Keep Voltages in compartments 11. Explain the function of the salt bridge.
- 12. What is the E_{cell} given:

$$Zn^{2+} + 2e \rightarrow Zn$$

 $Cu^{+2} + 2e \rightarrow Cu$

$$E^{\circ} = -.76V$$

$$E^{\circ} = -.76V$$
 $Zn \rightarrow Zn^{+2} + 2\sigma = .76$
 $E^{\circ} = .34V$ $Cu^{\dagger}Z+2e^{-} \Rightarrow Cu$.34

13. Which of the following is the correct cell notation for the reaction

$$Hg_2^{2+} + Cd(s) \rightarrow Cd^{2+} + 2Hg(l)$$

- a) $Cd^{2+} | Cd | | Hg_2^{2+} | Hg$
- b) Cd2+ | Hg22+ | | Cd | Hg
- (c) Cd | Cd²⁺ | Hg₂²⁺ | Hg
- d) Cd²⁺ | Hg | | Hg₂²⁺ | Cd
- e) Hg | Cd | | Hg₂²⁺ | Cd²⁺

Cd / Cd+41 Hgtz/ Hg

, Assume galvanie
Questions 14 - 15. You make a cell with a nickel electrode in a solution of nickel nitrate and a zinc electrode in a solution of zinc nitrate. $N_1 + 2 + 3N \longrightarrow N_1 + 3N + 2N + 2N + 2N + 2N + 2N + 2N + 2N$
14. If you could increase the concentration of Zn ⁺² , which of the following is true about the cell potential?
a. It would increase. b. It would decrease. c. It would remain constant. d. Cannot be determined. 5hift lift Eacle decrease. 5hift lift the case decrease.
15. If you could increase the concentration of Ni ²⁺ , which of the following is true about the cell potential?
(a) It would increase. b. It would decrease. c. It would remain constant. d. Cannot be determined.
16. If a current of 6.0 amps is passed through a solution of Ag ⁺ for 1.5 hours, how many grams of silver are produced?
a. 0.60 g b. 3.0 g #gAg = 1.5 hr x 60min x 60scc x 6.0 coolomb x 1 mole & x 108 g (c.) 36 g d. 1.0 g e. 0.34 g
17. If K for a reaction is equal to 1.0, what is the E° for the oxidation- reduction reaction? (a) 0.0 volt (b) -1.0 volt (c) 1.0 volt (d) 0.059 volt e) 0.030 volt (e) 0.030 volt
18. Sketch the galvanic cell based on the following overall reactions. Assume all concentrations are 1.0M and pressures are 1.0 atm. $2n + 2Ag + 3n^{+2} + 2Ag$ $2n(s) + Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + Ag(s)$ Show: a. direction of electron flow b. direction of ion migration through the salt bridge c. identify the cathode and anode d. Give the overall balanced reaction. e. Using the standard reduction table, calculate E° for the reaction f. Using line notation, describe the cell. $2n + 2Ag + 3n + 2 + 3Ag$ $2n + 3n + $
19. How many grams of cobalt metal will be deposited when a solution of cobalt(II) chloride is electrolyzed with a
guerrant of 10 amperes for 109 minutes?
a) 0.66 (0.0601/ 1 move x 1 move x 1 move x 59 =
a) 0.66 b) 4.0 #g = 109min × \frac{60sec}{1min} \times \frac{10.0Coul}{1sec} \times \frac{1mole \epsilon}{96485C} \times \frac{1mole \epsilon}{2mole \epsilon} \times \frac{1mole \epsilon}{1min} \times \frac{10.0Coul}{1min} \times \frac{1mole \epsilon}{46485C} \times \frac{1mole \epsilon}{2mole \epsilon} \times \frac{1mole \epsilon}{1min} \times 1mole \epsilo
d) 40

20. Balance the following redox equation which occurs in acidic solution. $N_2H_4(g) + BrO_3(aq) \rightarrow Br(aq) + N_2(g)$ (a) $3N_2H_4 + BrO_3 \rightarrow 3N_2 + Br' + 3H_2O + 6H^+$

b) $N_2H_4 + BrO_3^- + 2H^+ \rightarrow 2Br^- + N_2 + 3H_2O$

c) $3N_2H_4 + 2BrO_3^- + 12H^+ \rightarrow$

 $3N_2 + 2Br^2 + 6H_2O + 12H^4$

d) $N_2H_4 + 2BrO_3 + 8H^+ \rightarrow 2Br^- + N_2 + 6H_2O$

e) $3N_2H_4 + 2BrO_3 \rightarrow 3N_2 + 2Br^2 + 6H_2O$

N21+4 + BTOZ- -> BY-1 + NZ

OX (NZH4

-> N2 + 4H+ 12e-)

red Bros+ 6H+60 -> Br + 3 H20

= No H4 + BrOz + 6H+ - 3N, + 12H+ + Br 1 + 3H20

13. NaHy + Broz -> 3. Na + bH++ Br-1 +3H20,

21. Ecele =

Pb+2 + de -> Pb

Cu > Cu+2+20

E= - 13 V

E = -,34V

-,47V

electrolytic cell

AG= -nFE

A6 = - (2x96485) (-,47) = 90695.9 J = 191 KJ

Generated by CamScanner