

- Analyze
- Fit Model (Enter Y-vamble and Model Effect, click "Run Model"),
- Factor Profiling (see the red down arraw)
- Box-Cox Y transformation

Rows	Y	X1	X2	YX
1	26	0	0	135.36124
2	17	0	10	117.708996
3	13	0	20	106.56367
4		0	30	
5	38	12	0	151.127558
6	26	12	10	135.36124
7	20	12	20	124.461025
8	15	12	30	112.508954
9	50	24	0	162.529342
10	37	24	10	150.019596
11	27	24	20	136.929204
12	22	24	30	128.420793
13	76	36	0	179.925128
14	53	36	10	164.950188
15	37	36	20	150.019596
16	27	36	30	136.929204
17	108	48	0	194.524343
18	83	48	10	183.585642
19	57	48	20	167.973056
20	41	48	30	154.284477
21	157	60	0	210.067349
22	124	60	10	200.263952
23	87	60	20	185.541114
24	63	60	30	172.131135

Click on this red down arous to "save Best Transformation" or " save Specific Transformation" as a column in the input file.

Transformed Y-value.

Sec Ediz Formula

window to discover

that $\hat{\lambda} = 0$.

See below for results of regression using transformed Y as the response.

Statistics and Graphics Guide

Standard Least Squares: Exploring the Prediction Equation

Prev | Next

Sometimes a transformation on the response fits the model better than the original response. A commonly used transformation raises the response to some power. Box and Cox (1964) formalized and described this family of power transformations. The **Factor Profiling** menu has the **Box Cox Y Transformation** command. The formula for the transformation is constructed so that it provides a continuous definition and the error sums of squares are comparable.

$$y^{(\lambda)} = \begin{pmatrix} \frac{y^{\lambda} - 1}{\lambda y^{\lambda - 1}} & \text{if } \lambda \neq 0 \\ y & \text{if } (y) & \text{if } \lambda = 0 \end{pmatrix}$$

where is the geometric mean

The plot shown here illustrates the effect of this family of power transformations on Y.

The **Box-Cox Y Transformation** command fits transformations from λ = -2 to 2 in increments of 0.2, and it plots the sum of squares error (SSE) across the λ power. The plot below shows the best fit when λ is between 1.0 and 1.5 for the Reactor.jmp data using the model with effects F, Ct, A, T, and Cn and all two-factor interactions. The best transformation is found on the plot by finding the lowest point on the curve.

