Math 445 Number Theory

October 22, 2004

Since the Jacobi symbol has essentially the same properties as the Legendre symbol, we can compute them in essentially the same way; extract factors of 2 from the top (and -1), and use reciprocity to compute the rest. The advantage: we don't need to factor the top any further, any odd number will work fine.

Example:
$$\left(\frac{2225}{3333}\right) = \left(\frac{3333}{2225}\right)(-1)^{1666 \cdot 1112} = \left(\frac{2225 + 1108}{2225}\right) = \left(\frac{2^2 \cdot 277}{2225}\right) = \left(\left(\frac{2}{2225}\right)\right)^2 \left(\frac{277}{2225}\right) = \left(\frac{2225}{277}\right)(-1)^{1112 \cdot 138} = \left(\frac{277 \cdot 9 + 182}{277}\right) = \left(\frac{182}{277}\right) = \left(\frac{91}{277}\right) \left(\frac{91}{277}\right) = (-1)^{\frac{277^2 - 1}{8}} \left(\frac{277}{91}\right)(-1)^{138 \cdot 45} = (-1)^{\frac{9591}{8}} \left(\frac{91 \cdot 3 + 4}{91}\right) = (-1)\left(\frac{4}{91}\right) = (-1)\left(\left(\frac{2}{91}\right)\right)^2 = -1$$

One basic result coming from reciprocity: for a fixed (odd) a, we can determine for which primes p the equation $x^2 \equiv a \pmod{p}$ will have solutions.

 $1=\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)(-1)^{\frac{p-1}{2}\frac{a-1}{2}}$ is determined by $\left(\frac{p}{a}\right)$ (which only depends on $p \mod a$) and (if $a\equiv 3\pmod 4$) on $p\mod 4$ (to determine the parity of $\frac{p-1}{2}\frac{a-1}{2}$ - if $a\equiv 1\pmod 4$) it is always even). So $\left(\frac{a}{p}\right)$ depends on $p\mod a$ and on $p\mod 4$ (when $a\equiv 3\pmod 4$), so it depends at most on $p\mod 4a$ (by the Chinese Remainder Theorem). So the primes for which $x^2\equiv a\pmod p$ have solutions fall precisely into certain equivalence classes mod a or 4a, depending upon a. If we include even values for a, then we need to extract 2's, and the result will depend upon $p\mod 8$ (for the $\left(\frac{2}{p}\right)$'s) and, at worst, on $p\mod a/2$, and so it still depends at most on $p\mod 4a$.

A brief interlude: we know that there are infinitely many primes. But how are they distributed? For example, $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, but $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < \infty$. So how about $\sum_{p \text{ prime }} \frac{1}{p}$? We will show that this sum diverges, so that we know that, in some sense, primes are more common than perfect squares....

To show this, pick a positive number N, and let $p_1,\dots p_k$ be the primes $\leq N$. Then let $A=\sum_{i_1,\dots i_k=0}^\infty \frac{1}{p_1^{i_1}\dots p_k^{i_k}}=(\sum_{i_1=0}^\infty (\frac{1}{p_1})^{i_1})\cdots(\sum_{i_k=0}^\infty (\frac{1}{p_k})^{i_k})=\frac{1}{1-\frac{1}{p_1}}\cdots\frac{1}{1-\frac{1}{p_k}}=\frac{p_1}{p_1-1}\cdots\frac{p_k}{p_k-1}$. But the initial sum includes all denomenators $\leq N$, since every $k\leq N$ is a product of primes $\leq N$, i.e, is a product of the primes p_1,\dots,p_k . So $A\geq\sum_{n=1}^N\frac{1}{n}\geq\int_1^N\frac{1}{x}\;dx=\ln(N)$ by the integral test. So $\frac{p_1}{p_1-1}\cdots\frac{p_k}{p_k-1}\geq\ln(N)$. Taking logs of both sides, we have $\sum_{i=1}^k\ln(\frac{p_i}{p_i-1})=\sum_{i=1}^k\ln(1+\frac{1}{p_i-1})\geq\ln(\ln(N))$. But from power series we know that for |x|<1, $\ln(1+x)=x-\frac{x^2}{2}+\frac{x^3}{3}-\ldots\leq x$ (since it is an alternating series with terms decreasing to 0 (or, if you prefer, by using $\frac{1}{1+x}\leq 1$ and integrating from 1 to x)), so $\sum_{i=1}^k\frac{1}{p_i-1}\geq\sum_{i=1}^k\ln(1+\frac{1}{p_i-1}\geq\ln(\ln(N))$. But $\frac{1}{p_i-1}\leq\frac{p_i+2}{p_i^2}=\frac{1}{p_i}+\frac{2}{p_i^2}$ (since $(p_i-1)(p_i+2)=p_i^2+p_1-2\geq p_i^2$), so $\sum_{i=1}^k\frac{1}{p_i}+\frac{2}{p_i^2}\geq\sum i=1^k\frac{1}{p_{i-1}}>\ln(\ln(N))-\sum_{i=1}^k\frac{2}{p_i^2}\geq\ln(\ln(N))-\sum_{i=1}^\infty\frac{2}{p_i^2}\geq\ln(\ln(N))-\frac{\pi^2}{3}\geq\ln(\ln(N))-4$. So the sum of the reciprocals of the primes $\leq N$ is $\geq \ln(\ln(N))-4$. Since $\ln(\ln(N))$ tends to ∞ as $N\to\infty$ (albeit very slowly), the sum of the reciprocals of the primes diverges.

It is in fact true that as $n \to \infty$, $(\sum_{p \text{ prime}, p \le n} \frac{1}{p}) - \ln(\ln(n))$ converges to a finite constant M, known as the *Meissel-Mertens constant*. It's value is, approximately, 0.26149721284764278...