$\textbf{QSAT} \in \textbf{PSPACE}$

Let the formulas we use be written $Q_i x_i Q_{i+1} x_{i+1} \dots Q_n x_n \phi_i(x_i, \dots, x_n)$.

QSAT-REK(ϕ)

- (1) **if** The first quantifier is $\exists x_i$
- (2) if $QSAT-REK(Q_{i+1}...\phi(0,x_{i+1},...,x_n)) = 1$
- (3) or
- (4) QSAT-REK $(Q_{i+1}...\phi(1,x_{i+1},...,x_n)) = 1$
- (5) Erase all recursively active memory
- (6) return 1
- (7) **if** The first quantifier is $\forall x_i$
- (8) if $QSAT-REK(Q_{i+1}...\phi(0,x_{i+1},...x_n)) = 1$
- (9) and
- (10) QSAT-REK $(Q_{i+1} \dots \phi(1, x_{i+1}, \dots x_n)) = 1$
- (11) Erase all recursively active memory
- (12) return 1
- (13) **if** ϕ does not contain any quantifier
- (14) Compute the value of ϕ and return it

When we have a formula with k variables we use p(k) bits of memory for each variable. This shows that $p(n) + p(n-1) + \dots p(1) \le np(n)$ bits of memory are used and this shows that QSAT \in PSPACE.

NSPACE

A non-deterministic algorithm decides a language ${\cal L}$ if

- A(x) =Yes with probability $> 0 \Leftrightarrow x \in L$.
- $A(x) = \text{No with probability } 1 \Leftrightarrow x \notin L$.

TIME(f(n)) is the class of problems which can be decided in time O(f(n)) by a deterministic algorithm.

NTIME(f(n)) is the class of problems which can be decided in time O(f(n)) by a non-deterministic algorithm.

It is possible to show that $A \in \mathsf{NTIME}(f(n)) \Rightarrow A \in \mathsf{TIME}(c^{f(n)})$

 $A \in P \Leftrightarrow A \in \mathsf{TIME}(n^k)$ for some k.

 $A \in \mathsf{NP} \Leftrightarrow A \in \mathsf{NTIME}(n^k)$ for some k

In the same way we can define NPSPACE by

 $A \in \mathsf{NPSPACE} \Leftrightarrow A \in \mathsf{NSPACE}(n^k)$ for some k

The Planning Problem

We have a set of state variables c_1, c_2, \ldots, c_n with values 0 or 1. The values of c_1, c_2, \ldots, c_n tells us what state we are in. We have operators O_1, O_2, \ldots, O_k which changes the state variables. The problem is:

Input: Lists c_1, c_2, \ldots, c_n and $O_1, O_2, \ldots O_k$. A start state C_0 and a goal state C^* .

Goal: Is there a sequence $O_{i_1}, O_{i_2}, \dots O_{i_j}$ that transforms C_0 to C^* ?

Planning ∈ PSPACE

We use Savitch's Theorem. There can be at most 2^n different states in Planning. We want to know if there is a path $C_0 \to C^*$. Such a path has length $\leq 2^n - 1$. Use the algorithm in Savitch's Theorem. It uses O(n) bits of memory.

PSPACE = NPSPACE

Sketch proof:

Let X be a problem in NPSPACE. Let M be a non-deterministic Turing Machine which decides X and uses $O(n^k)$ bits of memory. The computation graph contains at most $O(c^{n^k})$ vertices.

The algorithm in Savitch's Theorem finds an accepting computation in the computation graph (if there is one) and uses at most $O((\log c^{n^k})^2) = O(n^{2k})$.

So we get $X \in \mathsf{PSPACE}$.

GEOGRAPHY is **PSPACE-Complete**

We know that GEOGRAPHY \in PSPACE.

It is possible to make a reduction QSAT \leq_P GEOGRAPHY.