Мрежов слой Маршрутизация

Маршрутизация

- Определяне/изчисляване на оптимален маршрут за пренасяне на пакети през дадена мрежа от даден подател към определен/и получател/и, въз основа на определен/и критерий/и за оптималност.
- Видове
 - Определяне на следващия маршрутизатор/скок (next-hop routing) най-често използван вил!
 - Определяне на целия маршруг от подателя до получателя (source routing) използва се от хостовете в определени случаи, например:
 Еталонно тестване на мрежи (benchmarking)
 - Маршрутизация в някои видове безжични мрежи (multi-hop ad hoc networks, **MANETs**)
- Маршрутизиращи алгоритми
 - Изчисляват оптимален маршрут (най-кратък път) през мрежата
 - Попълват и актуализират маршругизиращи таблици
- Маршрутизиращи таблици
 - Поддържани в мрежовите възли
 - Тоддържати и формация за най-краткия път до всяка дестинация, с адреса на следващия маршрутизатор, към който трябва да се предадат пакетите.

Маршрутизация: Критерии и метрики		
Критерий	Метрика	
MIN транзитно време / MIN време на закъснение	Закъснение на предаването (msec) / Географско разстояние (km)	
MIN брой скокове	Брой на скоковете	
MIN брой на пакетите в опашките по маршрута	Средно закъснение поради изчакване в опашките (msec)	
МАХ пропускателна способност	Скорост на предаване (bps)	
МАХ надеждност / сигурност	BER / ниво на шифриране	
MIN комуникационни разходи	€/\$	
Обикновено се изпо	олзват съставни метрики,	

Маршрутизация: Типове метрики

Добавящи се (additive) (напр., закъснение, вариация на закъснението (jitter), (логаритъм на) брой успешни предавания, • брой скокове, \$/ € цена)

Метриката на даден път е <u>сума</u> • от метриките на съставните му комуникационни линии.

Умножаващи се (multiplicative) (напр., надеждност, вероятност за успешно предаване)

– Метриката на на даден път

е произведение от метриките на съставните му комуникационни линии.

C MIN-MAX стойност (concave) (например, скорост)

Метриката на на лален път e MIN или MAX стойност на метриките на съставните му комуникационни линии.

 $M_{i;j}$ is the metric for link $\{i,j\}$ M(P) = metric of path

Additive $: M(P) = M_{i;j} + M_{i;k} + ... + M_{l;m}$ Multiplicative: $M(P) = M_{i:i} \times M_{i:k} \times ... \times M_{i:m}$ $: M(P) = \min \{ M_{i,i}, M_{i,k}, ..., M_{i,m} \}$

Маршрутизация: Определяне на най-краткия път Всяка линия има иена на използване в зависимост от нейните метрики: Дължина Закъснение Ниво на задръстване Цената може да е различна в двете посоки Цената за използване на даден път е функция на цените на съставните му линии Най-кратък е пътят с MIN цена! Определяне на най-краткия път: Построяване на граф на мрежата • Възлите му са маршрутизаторите • Дъгите му са комуникационните линии дъгите му са комуникационнителници Изчисляване на цената на всяка дъга като претеглена функция на всички метрики, използвани от маршрутизиращия алгоритъм. Напр. cost = ((K1*bandwidth) + (K2*bandwidth)(256-load) + (K3*delay)] * [(K5'(reliability + K4)] * 256 Избиране на маршрут, съответстващ на най-краткия път про упетория дъгов.

през мрежовия граф

Класически маршрутизиращи стратегии

- Наводнение (flooding)
- По случаен начин
- Статична/фиксирана
- Динамична

Маршрутизация по случаен начин

- Всеки маршрутизатор избира само 1 изходящ порт за препредаване на входящ пакет
 - Селекцията може да бъде по случаен признак или по ред на номерата в кръг (round robin)
- Подобрение
 - Избиране на изходящ порт въз основа на вероятности
- Не е необходима информация за мрежата
 - <u>Няма маршрутизиращи таблици</u>
- Проста стратегия с много по-малко натоварващ трафик от наводнението
- Не се минимизират разходите/цената!

Статична маршрутизация

- Не е адаптивна

 Не се основава на измервания или оценки на текущия мрежов трафик и топология
- Маршрути
- Предварително изчислени (off-line) Зареждат се в маршрутизаторите при иницииране на мрежата
- Маршрутизиращи таблици

 - Съдържат <u>статична информация</u> Създадени и дефинирани преди функциониране на мрежата
 - Рядко актуализирани
 - Само при значителна промяна в топологията на мрежата
 - Въз основа на очаквания трафик или капацитет
- Предимства
- Простота
- Недостатъци
 - Липса на гъвкавост
 - Липса на реакция при повреда или претоварване/задръстване на мрежата
- Приложения
- - Малки мрежи
 - Гръбнаци на големи мрежи

Динамична маршрутизация

- Използвана от почти всички видове мрежи с комутация на пакети
- Адаптивна
- Променя се във времето с цел отразяване на промените в топологията и трафика на мрежата, причинени от повреди и претоварвания/задръствания.
- Изисква информация за мрежата
 Маршрутизиращите таблици се актуализират често и автоматично
- Предимства
- Подобрена производителност Подпомагане контрола на задръстванията (congestion control)
- Недостатъци
 - Решенията са по-сложни
 - Компромис между качеството на информацията за мрежата и допълнителните разходи (режийните)
 - п допълнителните разходи (режимините)
 Твърде бързата реакция може да предизвика осцилации (колебания) в маршрутизирането
 Твърде бавната реакция може да доведе до използване на информация, която вече е остаряла.
 Теоретичните ползи може да не се осъществят!
- 2 вида контрол
- Централизиран
- Разпределен

Динамична маршрутизация: Централизиран контрол

- 1 управляващ възел изчислява всички маршрути (по зададен алгоритъм) и актуализира маршругизиращите таблици на всички останали мрежови възли
- Нова информация за мрежата (необходима за актуализация) се получава чрез специални пакети за поддръжка (maintenance packets)
 - Информират за закъснения, откази на линии/възли, задръствания и др.
- Не е толкова надежден колкото разпределения
 - Единична точка на отказ
 - Необходимост от резервиране
- Няма задръствания!

Динамична маршрутизация: Разпределен контрол

- Всеки маршрутизатор сам изчислява маршруги (по зададен алгоритъм) и актуализира своя собствена маршрутизираща таблица, възоснова на информация:
 - Получена от другите маршрутизатори
 - Извлечена от преминаващите пакети
- По-надежден от централизирания контрол
- Може да предизвика задръствания

Динамични разпределени маршрутизиращи алгоритми: Видове

- С използване на дистанционен вектор (distance vector)
 - Вектор, съдържащ разстоянието/цената и пътя (следващия маршругизатор) до всички известни дестинации
 - Съхранява се във всеки маршрутизатор и се обменя само със съседните маршрутизатори
 - Недостатъци:
 - Бавна сходимост на маршрути

 - Нестабилност Тенденция за създаване на (затворени) маршрутни кръгове в мобилни мрежи
- С използване на състоянието на линиите (link state)
 - Поддържане на информация за глобалната топология на мрежата в маршрутизаторите чрез периодично наводнение от страна на всеки маршрутизатор с информация за <u>състоянието</u> на неговите <u>линии</u>
 - Недостатъци:

 - Голям трафик, предизвикван от наводненията. Огромно количество ресурси за изчисляване на маршрути
 - в маршрутизаторите
 - Мобилността води до чести наводнения!

Дистанционно-векторна маршрутизация (distance vector routing)

- Споделяне на информация:
 - За цялата мрежа (интернет)
 - Само между съседите
 - На редовни интервали
- Определяне на най-краткия път чрез използване на:
 - Алгоритъм на **Bellman** (1957)
 - Алгоритъм на Ford-Fulkerson (1962)

Актуализиране на маршрутизиращите таблици ➤ ПЕРИОЛИЧНО (по ПРЕДВАРИТЕЛНО ЗАДАДЕНИ ИНТЕРВАЛИ) СЪСЕДНИТЕ МАРШРУТИЗАТОРИ ПРОДЪЛЖАВАТ ДА ОБМЕНЯТ СВОИТЕ ТЕКУЩИ ТАБЛИЦИ. СЪДЪРЖАЩИ ИНФОРМАЦИЯ ЗА ВСИЧКИ ИЗВЕСТНИ ИМ МРЕЖИ. > ИЗПОЛЗВАЙКИ ТАЗИ ИНФОРМАЦИЯ, ВСЕКИ МАРШРУТИЗАТОР АКТУАЛИЗИРА СВОЯТА ТАБЛИЦА ЧРЕЗ ПРИЛАГАНЕ НА СЛЕДНИЯ АКТУАЛИЗИРАЩ АЛГОРИТЬМ: ✓ Ако няма информация за рекламираната дестинация, маршрутизаторът я добавя незабавно в таблицата си; ✓ В противен случай: 1) Ако значението на полето NEXT HOP е същото (което означава, че информацията идва от същия рекламиращя маршрутизатор), новата информация заменя стария запис в таблицата, дори ако новият записе с по-голямо РАЗСТОЯНИЕ! 2) В противен случай (т.е. информацията идва от друг маршрутизатор): ■ Ако РАЗСТОЯНИЕТО в новия запис е по-малко от това в съществуващия (стар) запис, новият запис измества стария. Ако РАЗСТОЯНИЕТО в новия запис е по-голямо от това в съществуващия (стар) запис, старият запис остава (т.е. таблицата не се променя). Ако РАЗСТОЯНИЕТО в новия запис е равно на това в съществуващия (стар) запис, записът с по-малко NEXT HOP значение <u>остава</u> в таблицата.

Маршрутизиращи таблици след обмен на първоначалните таблици (1. итерация) r d n r d n A 1 A C 5 C D 9 C E 5 G A 6 B B 5 B D 4 D B 9 C A 8 B 5 C 3 B 1 B 6 B E 4 E 8 F C 2 7 F F 5 F D 4 D D 5 F G 5 B G 5 E F 2 E 2 G E 1 E G 1 G F 1 F G 4 G | G 2 | G • Всеки маршрутизатор изпраща своята таблица на съседите си • Изпращаната таблица съдържа адреса на изпращащия маршрутизатор (записан в полето n), заедно с цената за изпращане на пакет от този маршрутизатор към всяка известна на него дестинация в мрежата. • Маршрутизаторите променят таблиците си по такъв начин, че да сведат до минимум иената до всяка конкретна дестинация. • След получаване на таблицата на съсед i, маршрутизатор j добавя цената на линията і-ј към всяка нова (получена) дестинация. • В таблицата остават само най-кратките маршрути

Окончателни маршрутизиращи таблици $r \mid d \mid n$ d n $r \mid d \mid n$ A 5 B B 4 B C 2 C D 5 E E 1 E A 6 B B 5 B D 4 D A 1 A C 5 C D 9 C A 10 C B 1 A 6 G 5 A B 5 G C 3 G D 4 D F 2 G C 6 B D 10 B B 9 C 4 E 4 F 6 Е E 6 B E 3 G 3 G G 2 G G 5

- По време на следващите итерации маршрутизаторите добавят новопридобитата информация за мрежата към своите таблици и ги изпращат на съседите си.
- По този начин, всеки маршрутизатор получава обратно своята собствена информация заедно с нова информация за другите съседи на своите съсели
- След определен брой итерации всеки маршрутизатор ще получи информация за всеки друг маршрутизатор в мрежата.
- След това периодично всеки маршрутизатор продължава да изпраща информацията си за цялата мрежа към своите съседи. Това споделяне на информация се извършва, независимо дали мрежата се е променила от последния път, или не.

Маршрутизация с използване на състоянието на линиите (link state routing)

Споделяне на информация:

- За съседство
 - Откриване на всички съседи чрез изпращане на пакети HELLO
- Откриване на всички съседи чрез изпращане на пакети HELLO
 по всяка една комуникационна линия
 Научаване на техните мрежови адреси
 Оценяване състоянието на линията към всеки един от тях
 (например, какво е закъснението, скоростта, € цената и т.н.)
 Например, закъснението се измерва чрез изпращане на ЕСНО пакети.
 С всички маршрутизатори в мрежата (или интернет)
 Създаване на Link State Packet (LSP), съдържащ текущото състояние на
 всинки показати линия.
- - всички локални линии.

 - Вичан локалил литин.
 Изпращане на LSP до всички маршругизатори,
 използвайки наводнение (flooding).
 Всички LSP се потвърждават по линиите между всеки два маршрутизатора за предотвратяване на грешки
- Веднага когато има значителна промяна в състоянието на дадена
- И периодъзва > Периодъзва за се гарантира премахването на стара информация
 Периодъзва > Периодъув (по-дългият период предпазва от създаването на прекалено голям трафик от наводненията)
- Формиране на база данни LSD (Link State Database), създаване на дърво с най-краткия път (с използване на алгоритъма на Dijkstra), зграждане/обновяване на маршругизиращата таблица

База данни за състоянието на линиите (Link State Database, LSD)				
Advertiser	Network	Cost	Neighbor	
A	14	1	В	
A	78	3	F	
Α	23	2	Е	
В	14	4	A	
В	55	2	C	
С	55	5	В	
С	66	2	D	
D	66	5	С	
D	08	3	\mathbf{E}	
Е	23	3	A	
Е	08	2	D	
F	78	2	A	
\mathbf{F}	92	3	_	

Net	Cost	Next router
08	4	E
14	1	
23	2	
55	3	В
66	5	В
78	3	
92	6	\mathbf{F}

