OUTPUT PENTODE

EL360

Output pentode for use in radar scanning, series regulator and similar applications and in pulse modulator applications.

$V_{\rm h}$	6.3	٧
I_{li}	1.27	Α

CAPACITANCES

Cout	7.7	рF
c _{in}	17.5	ρF
$c_{\mathbf{a} \cdot \cdot \cdot \mathbf{g} 1}$	<1.1	рF

CHARACTERISTICS

Pentode connection

 $V_{\mathbf{a}}$

V_a	100	250	٧
V_{g2}	100	250	٧
V_{g1}	-6.3	46	٧
l _a	120	48	mA
l_{g2}	8.3	5.5	mA
g m	16.5	6.9	mA/V
ra	3.7	13.5	$k\Omega$
$\mu_{\mathbf{g}_1-\mathbf{g}_2}$	6.0	5.0	

Triode connection (g2 connected to a)

l _a	100	mA
V_{g1}	-8.0	٧
g _m	14.5	mA/V
ra	380	Ω
μ	5.5	

100

EL360

DESIGN CENTRE RATINGS (unless otherwise stated)

Scanning, low voltage series regulator, and similar applications

$V_{\mathbf{a}(\mathbf{b})}$ max.	1.0	k٧
$V_{a(pk)}$ max.	7.0	k٧
$-v_{a(pk)}$ max. $(p_a = 15W)$	1.0	kV
$-v_{a(pk)}$ max. $(p_u = 10W)$	1.5	kV
V _a max.	800	٧
V _{g2(b)} max.	800	٧
V _{g2} max.	400	٧
$-v_{gt(pk)}$ max.	1.0	k٧
p _a max.	15	W
p _{g2} max.	5.0	W
V _{a+g2} max.	400	٧
p_{a+g2} max.	18	W
Ik max.	200	mΑ
R_{g1-k} max.	500	$\mathbf{k}\Omega$
V_{h-k} max.	200	٧

High voltage series regulator applications

V _{a(b)} max.	4.0	k٧
V _{g2(b)} max.	550	٧
V _a max.	2.0	kV
V _{g2} max.	400	٧
p _a max.	6.0	W
p _{g2} max.	2.0	W
Ik max.	5.0	mΑ

Pulse modulator applications

V _a max. (absolute)	5.0	k٧
p _a max.	10	W
*i _{k(pulse)} max. (absolute)	4.0	Α
V _{g2} max.	550	٧
p _{g2} max.	3.0	W
-V _{g1} max.	300	٧
+ V _{g1(pulse)} max.	60	٧

^{*}Max. pulse duration 1µs, duty factor 0.001

OUTPUT PENTODE

OCTOBER 1958 (1)

EL360

Page D3

Output pentode for use in radar scanning, series regulator and similar applications and in pulse modulator applications.

ANODE CURRENT PLOTTED AGAINST CONTROL-GRID VOLTAGE WITH ANODE AND SCREEN-GRID VOLTAGES AS PARAMETERS

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=150 \text{V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=200\text{V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=250 \text{V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=300 \text{V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=350 \text{V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=400 \text{V}$

ANODE CURRENT PLOTTED AGAINST CONTROL-GRID VOLTAGE WITH SCREEN-GRID VOLTAGE AS PARAMETER. $V_a=4kV$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE UP TO 5kV WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=200{\rm V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE UP TO 4kV WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=300{\rm V}$

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE UP TO 4kV WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=400{\rm V}$

ANODE CURRENT PLOTTED AGAINST CONTROL-GRID VOLTAGE WITH ANODE AND SCREEN-GRID VOLTAGES AS PARAMETER WHEN TRIODE CONNECTED

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER WHEN TRIODE CONNECTED

ANODE AND SCREEN-GRID CURRENTS PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER

ANODE AND SCREEN-GRID CURRENTS PLOTTED AGAINST ANODE VOLTAGE WITH SCREEN-GRID VOLTAGE AS PARAMETER. $V_{\rm g1}=+25 \text{V}$

ANODE AND SCREEN-GRID CURRENTS PLOTTED AGAINST ANODE VOLTAGE WITH SCREEN-GRID VOLTAGE AS PARAMETER. $V_{\rm g1}=+50 {\rm V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=150 {\rm V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{g2}=200 \text{V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER, $V_{\pi S} = 250 \text{V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=300\text{V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER. $V_{\rm g2}=350 \text{V}$

SCREEN-GRID CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER, $V_{g2}=400 \text{V}$