Table of Contents

Assignment 4 - Binary Image Manipulation	1
(1) Display the binary test image you are using, unmodified	
(2)Scroll that test image up by 10 pixels and display the result.	
(3) Scroll the test image down by 10 pixels and display the result.	
(4) Scroll the test image left by half its width and display the result.	
(5) Scroll the result image from (4) back to the right by the same amount	
(6) In a comment, answer this question in your own words. Is the image	
(7) Compute and display the boundary image.	
(8) Dilate your test image. Then dilate that result. Then dilate that	
(8) Erode your test image. Then erode that result. Then erode that result	
(9) Take the result image from (8), and dilate it 3 times. Display the	
(10) In a comment, answer this question in your own words. Is the image	
(11) Find the boundary of the test image. Dilate it once. Display the	
(13) In a comment, answer this question in your own words. What is the	
Conclusion	

Assignment 4 - Binary Image Manipulation

Aaron Davis I pledge that this assignment is legitimate and the work herein is my own and that I received no unauthorized assistance to complete said assignment.

```
img = imread('fish-a059.gif');
binaryfish = logical(img);
```

(1) Display the binary test image you are using, unmodified.

```
imshow(binaryfish);

%Web Address: http://www.lems.brown.edu/~dmc/Fish.html
%Dimensions: 95px x 152px
```


(2)Scroll that test image up by 10 pixels and display the result.

fish2 = scrollUp(binaryfish, 10);
imshow(fish2);

(3) Scroll the test image down by 10 pixels and display the result.

fish3 = scrollDown(binaryfish, 10);
imshow(fish3);

(4) Scroll the test image left by half its width and display the result.

```
sizef = size(binaryfish);
fish4= scrollLeft(binaryfish, (sizef(:,2)/2));
imshow(fish4);
```


(5) Scroll the result image from (4) back to the right by the same amount

and display the result.

fish5 = scrollRight(binaryfish, (sizef(:,2)/2));
imshow(fish5);

(6) In a comment, answer this question in your own words. Is the image

from (5) the same as the original image? Why or why not?

%The image in (5) is not identical to the original because when the image %was moved to the left in 4, the part that moved off of the edge of the %image was lost, so when it was moved back to the right there was only %black space.

(7) Compute and display the boundary image.

fish7 = FindBoundary(binaryfish);
imshow(fish7);

(8) Dilate your test image. Then dilate that result. Then dilate that

%result. (So the original image will now have been dilated three times).
%Display the result.
fish8 = DialateImage(DialateImage(DialateImage(binaryfish)));
imshow(fish8);

(8) Erode your test image. Then erode that result. Then erode that result.

%(So the original image will now have been eroded three times). Display the
%result.
erodef = ErodeImage(ErodeImage(ErodeImage(binaryfish)));

imshow(erodef);

(9) Take the result image from (8), and dilate it 3 times. Display the

result.

fish9 = DialateImage(DialateImage(DialateImage(erodef)));
imshow(fish9);

(10) In a comment, answer this question in your own words. Is the image

%from (9) the same as the original image? Why or why not?

*The Image in (9) would not be the same as the original simply because of *the amount of information about shape lost in the erosion, and the jagged *edges, etc. created in erosion.

(11) Find the boundary of the test image. Dilate it once. Display the

result.

```
boundaryf = (FindBoundary(binaryfish));
fish11 = DialateImage(boundaryf);
imshow(fish11);

%%(12) Dilate the test image once, then find the boundary of the result.
%Display this image.
dialatedf = DialateImage(binaryfish);
fish12 = FindBoundary(dialatedf);
imshow(fish12);
```


(13) In a comment, answer this question in your own words. What is the

difference, if any, between the images from (11) and (12)?

%The image in (11) is the boundary of the dialated image. It is 1 pixel %wide and at the "area of boundary" of the dialated image. The image in %(12) is the boundary of the original image itself, dialated. It is more %than 1 pixel wide and at the "area of boundary" for the original image. %The main difference is width of the line, but the placing is altered also.

Conclusion

%I had difficulty figuring out the logistics of finding the boundary of and %dialating the image ecause of the complex logical statement. I really %learned a substantial amount from the assignment. It helped me understand %logical operators (which I had trouble with previously, not due to the %quality of the lectures of course XD.) I also really began to understand %the logistics and functionality of functions.

