

Chapter 3: Trigonometric functions

Concept:

Radian measure- relation between degree and radian- trigonometric functions- sign of trigonometric functions- trigonometric functions of sum and difference of two angles- trigonometric equations- sine formula- cosine formula- their applications.

Notes:

- If in a circle of radius r, an arc of length 'l' subtends an angle of θ radians then $l = r\theta$.
- Radian measure = $(\pi/180)$ x degree measure.
- Sin(-x) = -sin x
- Cos(-x) = cos x
- $Cos(2n\pi + x) = cos x$
- Sin $(2n\pi + x) = \sin x$
- Sin x = 0 gives x = $n\pi$ where $n \in \mathbb{Z}$
- Cos x = 0 gives x = $(2n+1)\pi/2$ where n \in **Z**
- Refer text book for other formulas.

Text book questions

Tent book questions	
Ex:3.1	Questions: 1*, 2*, 3*, 6
Ex:3.2	Questions: 6, 7, 8, 9, 10
Ex:3.3	Questions: 5, 6, 7*, 11, 12*, 14*, 15*, 16,
18, 21 [*] ,	
	$22^{**},23^{**},24^{*},25^{*}$
Ex:3.4	Questions: 5, 6, 7, 8, 9**
Misc. Ex:	Questions: 2, 3, 5, 6, 7, 8*, 9*, 10*
Examples:	Questions: 24**, 25**, 26*, 27*, 29**

Supplementary text

Ex:3.5 14**, 15**,16**

Questions: 1, 3, 6, 7, 10, 11, 13,

Examples:

Questions: 27**, 28*

Extra/ HOT Questions

- 1. The angles of a triangle are in A.P and the greatest angle is double the least. Express the angles in degrees and radians
- 2. Show that the equation cosec $x=4ab/(a+b)^2$ (ab>0) is possible if a=b
- 3. Show that a) $\sin 150 \cos 120 + \cos 330 \sin 660 = -1$

b)
$$\frac{\cos(90+x)\sec(-x)\tan(180-x)}{\sec(360-x)\sin(180+x)\cot(90=x)} = 1$$

- 4. If $\tan x = \frac{m}{m+1}$ and $\tan y = \frac{1}{2m+1}$, show that $x+y = 45^{\circ}$
- 5. Show that the following:
 - a) cos 10 cos 50 cos 60 cos 70 = 3/16
 - b) $\sin 10 \sin 50 \sin 60 \sin 70 = \sqrt{3}/16$
 - c) cos 20 cos40cos60=1/8
- 6. If $\sin x \sin y = 1/4$ and $3\tan x = 4\tan y$ then prove that $\sin(x+y) = 7/16$
- 7. Prove that $\frac{\sin 11x \sin x + \sin 7x \sin 3x}{\cos 11x \sin x + \cos 7x \sin 3x} = \tan 8x$
- 8. If m tan(x-30)= n tan(x+120) then show that $\frac{m-n}{2(m+n)} = \frac{1}{4} sec2x$
- 9. Solve the equation $4 \sin x \cos x + 2 \sin x + 2 \cos x + 1 = 0$
- 10. Solve the triangle when c=3.4cm, $A=25^{0}$, $B=85^{0}$ [ans; a=1.53cm, b=3.6cm, $C=80^{0}$
- 11. Show that for any parallelogram, if a and b are the sides of two non parallel sides, x is the angle between these two sides and d is the length of the diagonal that has a common vertex with sides a and b, then $d^2 = a^2 + b^2 + 2ab \cos x$