

SEQUENCE LISTING

<110> MACK, DAVID
GISH, KURT

<120> NOVEL METHODS OF DIAGNOSING AND TREATING BREAST CANCER,
COMPOSITIONS, AND METHODS OF SCREENING FOR BREAST
CANCER MODULATORS

<130> A-67860-3/DJB/JJD

<140> US 09/525,361
<141> 2000-03-15

<150> US 09/268,865
<151> 1999-03-15

<150> US 09/450,810
<151> 1999-11-29

<150> US 09/453,137
<151> 1999-12-02

<150> US 09/439,878
<151> 1999-11-12

<150> US 09/440,370
<151> 1999-11-12

<150> US 09/440,493
<151> 1999-11-15

<150> US 09/520,478
<151> 2000-03-08

<150> US 09/440,676
<151> 1999-11-16

<150> US 09/440,677
<151> 1999-11-16

<160> 62

<170> PatentIn Ver. 2.1

<210> 1
<211> 3264
<212> DNA
<213> Homo sapiens

<400> 1

RECEIVED
JAN 10 2002
TECH CENTER 1600/2900

gggacagggc tgaggatgag gagaaccctg gggaccaga agaccgtgcc ttgcccggaa 60
gtcctgcctg taggcctgaa ggacttgcct taacagagcc tcaacaacta cctgggtatt 120
cctacttcag ccccttggtg tgagcagctt ctcaacatga actacagcct ccacttggcc 180
ttcgtgtgtc tgagtctt cactgagagg atgtgcattc agggggagtca gttcaacgtc 240
gagggtcgcca gaagtgacaa gctttccctg cctggctttg agaacatcac agcaggatata 300
aacaatattc tcaggccaa ttttggtgaa gaaccctgtac agatagcgct gactctggac 360
attgcaagta tctcttagcat ttcagagagt aacatggact acacagccac catataccctc 420
cgacagcgct ggtggacca gcggctgtt tttgaaggca acaagagctt cactctggat 480
gccccctcg tggagttcct ctgggtgcca gatacttaca ttgtggagtc caagaagtcc 540
ttcctccatg aagtcaactgt gggaaacagg ctcatccgccc tcttctccaa tggcacggtc 600
ctgtatgccc tcagaatcac gacaactgtt gcatgttaaca tggatctgtc taaatacccc 660
atggacacac agacatgcaa gttgcagctg gaaagctggg gctatgatgg aaatgatgtg 720
gagttcacct ggctgagagg gaacgactt gtgcgtggac tggAACACCTT gcccgtgtc 780
cagtagccca tagagcggta tttcaccctt gtcaccagat cgcagcagga gacaggaaat 840
tacactagat tggtcttaca gtttgagctt cgaggaaatg ttctgttattt cattttggaa 900
acctacgttc ctccacttt cctgggtgtt ttgccttggg tttcatttt gatctctctc 960
gattcagtcc ctgcaagaac ctgcatttggaa gtgacgaccg tggatataat gaccacactg 1020
atgatcggtt cccgcacttc tcttccaaac accaactgtt tcataaggc catcgatgtg 1080
tacctgggaa tctgttttag ctttgtt gggccttgc tagaatatgc agttgctcac 1140
tacagttct tacagcagat ggcagccaaa gataggggaa caacaagga agtagaagaa 1200
gtcagtattt ctaatatcat caacagctcc atccctagct taaaacggaa gatcagctt 1260
gccagcattt aaatttccag cgacaacgtt gactacagtg acttgacaat gaaaaccagc 1320
gacaagttca agttgttcc cgagaaaaag atgggcagga ttgttgatta ttccacaatt 1380
caaaaaccca gtaatgttga tcactattcc aaactactgt ttcccttgat ttttatgcta 1440
gccaatgtat ttactgggc atactacatg tatttttag tcaatgttta atttcttgca 1500
tgccataggt cttaacacagg acaagataat gatgtttt gatatttttgg ccaagtgtgc 1560
acccacatcc aatggtgcta caagtgactg aaataatatt tgagtcttc tgctcaaaga 1620
atgaagctcc aaccatttggt ctaagctgtg tagaagtctt agcattatag gatcttgaa 1680
tagaaacatc agtccattcc tctttcatct taatcaagga cattccatg gagcccaaga 1740
ttacaaatgt actcagggtt gtttatttgg tggctccctg gtttgcattt acctcatata 1800
aagaatgggaa aggagaccat tgggttaaccc tcaagtgtca gaagttgtt taaaagtaac 1860
tatacatgtt ttttactaaa tctctgcagt gcttataaaaa tacatttttgc cctattttagg 1920
gagtaacatt ttcttagttt tgtttctgtt taaaatgaaa tatggctt tgtaattca 1980
ttggaagtca atgoactaac tcaataccaa gatgagtttt taaaataatga atattattta 2040
ataccacaaac agaattatcc ccaatttcca ataagtccta tcattgaaaa ttcaaatata 2100
agtgaagaaa aaatttagtag atcaacaatc taaacaaatc cctcggttct aagatacaat 2160
ggattccca tactggagg actctgaggc ttttattttcc cactatgtat attttatcat 2220
tttatttattt tacacacatc catcctaaac tataactaaag ccctttccc atgcatggat 2280
ggaaatggaa gattttttg taacttgcattc tagaagtctt aatatggctt gttgccatga 2340
aggcttgcag aatttgcattc attttcttagc tgccttttattt cacatgtga tgggtacta 2400
aaagtactgg gttgactcag agagtcgtt tcattctgtc attgctgcta ctctaaact 2460
gagcaacact ctcccgatgg cagatccccct gtatcattcc aagaggagca ttcatccctt 2520
tgctctaattt atcaggaatg atgcttattt gaaaacaaac tgcttgaccc aggaacaatg 2580
ggcttagctt aagtaaactt ggcttgcattc agatccctgaa tccttcacgc tggctgtctc 2640
tgagttggctt atcccgatc agcaggagcg tgctggccctt gactactgaa ctttctgagt 2700
aacaatgaga cacgttacag aacctatgtt caggttgcgg gtagactgccc ctctccaaat 2760
ccagccagag atgcacattc ctggccatgtt ctcagccaaac agtacaaaaa gtgatTTTg 2820
agtgtgccag ggttaaaggct tccagttcag cctcagttt ttagacaat ctgcctatct 2880
ttaatttctt agcttcctgt tctaataaaat gcacggctt acctttccctg tcagaatata 2940
accaaggctc taaaagatga ttcccttctt gtaactccctt agagccacag gttctcattc 3000
ctttcccat tataatttccat acaatttgcattt ttctatgagt ttgatcacctt gatttttta 3060

acaaaatatt tctaacggga atgggtggga gtgctggta aaagagatga aatgtggttg 3120
tatgagccaa tcataattgt gatTTTaa aaaaagtta aaagggaaaata tctgttctga 3180
aaccggactt aagcattgtt ttatataaa aacaatgata aagatgtgaa ctgtgaaata 3240
aatataccat attagctacc cacc 3264

<210> 2
<211> 1323
<212> DNA
<213> Homo sapiens

<400> 2
atgaactaca gcctccactt ggccttcgtg tgcgtggatc tcttcactga gaggatgtgc 60
atccagggga gtcagttcaa cgtcgaggc ggcagaagtgc acaagcttc cctgcctggc 120
tttgagaacc tcacagcagg atataacaaa ttctcgaggc ccaattttgg tgagaaccc 180
gtacagatag cgctgactct ggacattgc agtatctcta gcatttcaga gagtaacatg 240
gactacacag ccaccatata cctccgacag cgctggatgg accagccgct ggtgtttgaa 300
ggcaacaaga gcttcactct ggatgcccgc ctctggagt tcctctgggt gccagatact 360
tacattgtgg agtccaagaa gtccttcctc catgaagtca ctgtgggaaa caggctcatc 420
cgcccttttcc caatggcac ggtcctgtat gccctcagaa tcacgacaac tttgcacatgt 480
aacatggatc tgcataata cccatggac acacagacat gcaagttgca gctggaaagc 540
tggggctatg atggaaatga tggaggttc acctggctga gaggaaacga ctctgtgcgt 600
ggacttggAAC acctgcggct tgctcagtag accatagagc ggtatttcac cttagtcacc 660
agatcgcagc aggagacagg aaattacact agattggct tacagttga gcttcggagg 720
aatgttctgt atttcatttt ggaaacctac gttccttcca ctttcctgggt ggtgttgcgt 780
tgggttcat tttggatctc tctcgattca gtcctgc当地 gaacctgc当地 tggagtgc当地 840
accgtttat caatgaccac actgatgatc gggccccca cttctttcc caacaccaac 900
tgcttcatca aggccatcga tggatctg gggatctgct ttagcttgc当地 gtttggggcc 960
ttgctagaat atgcagttgc tcactacagt tccttacagc agatggcagc caaagatagg 1020
gggacaacaa aggaagtaga agaagtcagt attactaata tcataacag cttccatctcc 1080
agctttaaac ggaagatcag ctttgc当地 attggaaattt ccagc当地 ctttgc当地 1140
agtgacttga caatgaaaac cagc当地 cagtttgc当地 tttccgaga aaagatggc 1200
aggattgttgc当地 attatccac aattcaaaac cccagtaatg ttgatcacta ttccaaacta 1260
ctgtttccctt tgatTTTat gctagccaat gtatTTTact gggcataacta catgttattt 1320
tga 1323

<210> 3
<211> 440
<212> PRT
<213> Homo sapiens

<400> 3
Met Asn Tyr Ser Leu His Leu Ala Phe Val Cys Leu Ser Leu Phe Thr
1 5 10 15

Glu Arg Met Cys Ile Gln Gly Ser Gln Phe Asn Val Glu Val Gly Arg
20 25 30

Ser Asp Lys Leu Ser Leu Pro Gly Phe Glu Asn Leu Thr Ala Gly Tyr
35 40 45

Asn Lys Phe Leu Arg Pro Asn Phe Gly Gly Glu Pro Val Gln Ile Ala
50 55 60

Leu Thr Leu Asp Ile Ala Ser Ile Ser Ser Ile Ser Glu Ser Asn Met
65 70 75 80

Asp Tyr Thr Ala Thr Ile Tyr Leu Arg Gln Arg Trp Met Asp Gln Arg
85 90 95

Leu Val Phe Glu Gly Asn Lys Ser Phe Thr Leu Asp Ala Arg Leu Val
100 105 110

Glu Phe Leu Trp Val Pro Asp Thr Tyr Ile Val Glu Ser Lys Lys Ser
115 120 125

Phe Leu His Glu Val Thr Val Gly Asn Arg Leu Ile Arg Leu Phe Ser
130 135 140

Asn Gly Thr Val Leu Tyr Ala Leu Arg Ile Thr Thr Thr Val Ala Cys
145 150 155 160

Asn Met Asp Leu Ser Lys Tyr Pro Met Asp Thr Gln Thr Cys Lys Leu
165 170 175

Gln Leu Glu Ser Trp Gly Tyr Asp Gly Asn Asp Val Glu Phe Thr Trp
180 185 190

Leu Arg Gly Asn Asp Ser Val Arg Gly Leu Glu His Leu Arg Leu Ala
195 200 205

Gln Tyr Thr Ile Glu Arg Tyr Phe Thr Leu Val Thr Arg Ser Gln Gln
210 215 220

Glu Thr Gly Asn Tyr Thr Arg Leu Val Leu Gln Phe Glu Leu Arg Arg
225 230 235 240

Asn Val Leu Tyr Phe Ile Leu Glu Thr Tyr Val Pro Ser Thr Phe Leu
245 250 255

Val Val Leu Ser Trp Val Ser Phe Trp Ile Ser Leu Asp Ser Val Pro
260 265 270

Ala Arg Thr Cys Ile Gly Val Thr Thr Val Leu Ser Met Thr Thr Leu
275 280 285

Met Ile Gly Ser Arg Thr Ser Leu Pro Asn Thr Asn Cys Phe Ile Lys
290 295 300

Ala Ile Asp Val Tyr Leu Gly Ile Cys Phe Ser Phe Val Phe Gly Ala
305 310 315 320

Leu Leu Glu Tyr Ala Val Ala His Tyr Ser Ser Leu Gln Gln Met Ala
325 330 335

Ala Lys Asp Arg Gly Thr Thr Lys Glu Val Glu Val Ser Ile Thr
340 345 350

Asn Ile Ile Asn Ser Ser Ile Ser Ser Phe Lys Arg Lys Ile Ser Phe
355 360 365

Ala Ser Ile Glu Ile Ser Ser Asp Asn Val Asp Tyr Ser Asp Leu Thr
370 375 380

Met Lys Thr Ser Asp Lys Phe Lys Phe Val Phe Arg Glu Lys Met Gly
385 390 395 400

Arg Ile Val Asp Tyr Phe Thr Ile Gln Asn Pro Ser Asn Val Asp His
405 410 415

Tyr Ser Lys Leu Leu Phe Pro Leu Ile Phe Met Leu Ala Asn Val Phe
420 425 430

Tyr Trp Ala Tyr Tyr Met Tyr Phe
435 440

<210> 4
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 4
Ala Cys Asn Met Asp Leu Ser Lys Tyr Pro Met Asp Thr Gln Thr
1 5 10 15

<210> 5
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 5
Cys Lys Leu Gln Leu Glu Ser Trp Gly Tyr Asp Gly Asn Asp Val
1 5 10 15

```
<210> 6  
<211> 3290  
<212> DNA  
<213> Homo sapiens
```

tgcacgagca ctttagctgt tcagatctct gcattttata aatgcttctt accaagaaaag 2760
catttttagg tcattgcttg taccaggtaa tttttccgg gnatgggtaa gggttgggtt 2820
ttctgggtgg agtgggggtgg tgggtatTTT ttgttgcgc tttagtgcag gcctgttctg 2880
aggcaataac aagttgcgtgt gaaaacagca tgcgtgcgtg cctttgtaac tgcattggaaa 2940
ctttcacat gggttttctt ccaagttaat acagaaaatat gttaactgag agatgcaaAT 3000
gtaatatttt taacagttca tgaagttgtt attaaaataa ctaacataaa acttaattac 3060
tttaatatta tataattata gtatggcct tggttacaa acctttaaat tacattttag 3120
aatcaaaagt tgatagtctt agttatctt tgagtaagaa aagcttcctt aaagtcccatt 3180
acatttggac catggcagct aatTTTgtaa cttaagcatt catatgaact acctatggac 3240
atctattaaa gtgattgaca aaatctcaaa aaaaaaaaaaaaaaaa 3290

<210> 7
<211> 1479
<212> DNA
<213> Homo sapiens

<400> 7
atgaaaggcct tccacacttt ctgtgttgc cttctgggtgt ttgggagttgt ctctgaagcc 60
aagtttgcgt attttgggaa tgaggaggac atagtagagt atgatgataa tgacttcgct 120
gaatttgggg atgtcatgga agactctgtt actgaatctc ctcacgggt cataatcact 180
gaagatgatg aagatgagac cactgtggag ttggaaggcagg aggatgaaaa ccaagaagga 240
gattttgaag atgcagatac ccaggaggaa gatactgaga gtgaaccata tgatgatgaa 300
gaatttgaag gttatgaaaga caaaccagat acttcttcta gcaaaaataa agacccaata 360
acgattttgtt atgttcctgc acacctccag aacagctggg agagtttata tctagaaaatt 420
ttgatggtga ctggctgtgt tgcttatatc atgaattaca tcattggaa gaataaaaac 480
agtgccttg cacaggcctg gtttaacact catagggagc ttttggagag caactttact 540
ttatgggggg atgatgaaac taacaaagaa gccacaagca cagggaaagtt gaaccaggag 600
aatgagcaca tctataacct gtgggtttct ggtcgagtgt gctgtgaggg catgcttatac 660
cagctgaggt tcctcaagag acaagactta ctgaatgtcc tggccccggat gatgaggcca 720
gtgagtgatc aagtgcataat aaaagtaacc atgaatgtg aagacatgga tacctacgta 780
tttgctgttgc acacacggaa agccttgggt cgactacaga aagagatgca ggatttgagt 840
gagttttgtt gtgataaaacc taagtctgg gcaaaagtatg gactgcccggaa ctctttggcc 900
atccctgtcag agatgggaga agtcacagac ggaatgtatgg atacaaaagat gtttcacttc 960
ttacacaccc atgctgacaa gattgaatct gttcattttt cagaccagtt ctctggtcca 1020
aaaattatgc aagagggaaat tcagccttta aagctacactg acactaagag gacactgttgc 1080
tttacattta atgtgcctgg ctcaggttaac acttacccaa aggatatgga ggcactgtcta 1140
cccctgatga acatgggtat ttattctatt gataaaagccaa aaaagttccg actcaacaga 1200
gaaggcaaaac aaaaagcaga taagaaccgt gcccggatgg aagagaactt cttgaaaactg 1260
acacatgtgc aaagacagga agcagcacag tctcggcggg aggagaaaaa aagagcagag 1320
aaggagcggaa tcatgaatga ggaagatcct gagaacacgc gcaggctgg gggaggctgca 1380
ttgaggcgtg acgaaaaaaa agttggaaaaa gaagcaaatg aaaatgaaac aaatcaaagt 1440
gaaagccatg taaagccatc ccagagattt gagttctga 1479

<210> 8
<211> 492
<212> PRT
<213> Homo sapiens

<400> 8

Met Lys Ala Phe His Thr Phe Cys Val Val Leu Leu Val Phe Gly Ser
1 5 10 15

Val Ser Glu Ala Lys Phe Asp Asp Phe Glu Asp Glu Asp Ile Val
20 25 30

Glu Tyr Asp Asp Asn Asp Phe Ala Glu Phe Glu Asp Val Met Glu Asp
35 40 45

Ser Val Thr Glu Ser Pro Gln Arg Val Ile Ile Thr Glu Asp Asp Glu
50 55 60

Asp Glu Thr Thr Val Glu Leu Glu Gly Gln Asp Glu Asn Gln Glu Gly
65 70 75 80

Asp Phe Glu Asp Ala Asp Thr Gln Glu Gly Asp Thr Glu Ser Glu Pro
85 90 95

Tyr Asp Asp Glu Glu Phe Glu Gly Tyr Glu Asp Lys Pro Asp Thr Ser
100 105 110

Ser Ser Lys Asn Lys Asp Pro Ile Thr Ile Val Asp Val Pro Ala His
115 120 125

Leu Gln Asn Ser Trp Glu Ser Tyr Tyr Leu Glu Ile Leu Met Val Thr
130 135 140

Gly Leu Leu Ala Tyr Ile Met Asn Tyr Ile Ile Gly Lys Asn Lys Asn
145 150 155 160

Ser Arg Leu Ala Gln Ala Trp Phe Asn Thr His Arg Glu Leu Leu Glu
165 170 175

Ser Asn Phe Thr Leu Val Gly Asp Asp Gly Thr Asn Lys Glu Ala Thr
180 185 190

Ser Thr Gly Lys Leu Asn Gln Glu Asn Glu His Ile Tyr Asn Leu Trp
195 200 205

Cys Ser Gly Arg Val Cys Cys Glu Gly Met Leu Ile Gln Leu Arg Phe
210 215 220

Leu Lys Arg Gln Asp Leu Leu Asn Val Leu Ala Arg Met Met Arg Pro
225 230 235 240

Val Ser Asp Gln Val Gln Ile Lys Val Thr Met Asn Asp Glu Asp Met
245 250 255

Asp Thr Tyr Val Phe Ala Val Gly Thr Arg Lys Ala Leu Val Arg Leu
260 265 270

Gln Lys Glu Met Gln Asp Leu Ser Glu Phe Cys Ser Asp Lys Pro Lys
275 280 285

Ser Gly Ala Lys Tyr Gly Leu Pro Asp Ser Leu Ala Ile Leu Ser Glu
290 295 300

Met Gly Glu Val Thr Asp Gly Met Met Asp Thr Lys Met Val His Phe
305 310 315 320

Leu His Thr Tyr Ala Asp Lys Ile Glu Ser Val His Phe Ser Asp Gln
325 330 335

Phe Ser Gly Pro Lys Ile Met Gln Glu Glu Gly Gln Pro Leu Lys Leu
340 345 350

Pro Asp Thr Lys Arg Thr Leu Leu Phe Thr Phe Asn Val Pro Gly Ser
355 360 365

Gly Asn Thr Tyr Pro Lys Asp Met Glu Ala Leu Leu Pro Leu Met Asn
370 375 380

Met Val Ile Tyr Ser Ile Asp Lys Ala Lys Lys Phe Arg Leu Asn Arg
385 390 395 400

Glu Gly Lys Gln Lys Ala Asp Lys Asn Arg Ala Arg Val Glu Glu Asn
405 410 415

Phe Leu Lys Leu Thr His Val Gln Arg Gln Glu Ala Ala Gln Ser Arg
420 425 430

Arg Glu Glu Lys Lys Arg Ala Glu Lys Glu Arg Ile Met Asn Glu Glu
435 440 445

Asp Pro Glu Lys Gln Arg Arg Leu Glu Glu Ala Ala Leu Arg Arg Asp
450 455 460

Glu Lys Glu Val Gly Lys Glu Ala Asn Glu Asn Glu Thr Asn Gln Ser
465 470 475 480

Glu Ser His Val Lys Pro Ser Gln Arg Phe Glu Phe
485 490

<210> 9
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 9
Cys Lys Pro Asp Thr Ser Ser Ser Lys Asn Lys Asp Pro Ile Thr
1 5 10 15

<210> 10
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 10
Lys Phe Asp Asp Phe Glu Asp Glu Glu Asp Ile Val Glu Tyr Cys
1 5 10 15

<210> 11
<211> 1958
<212> DNA
<213> Homo sapiens

<400> 11
gcccggc tcgcaggcca ctctctgctg tcgcccgtcc cgcgcgctcc tccgaccgc 60
tccgctccgc tccgctcggc cccgcgcgc ccgtcaacat gatccgctgc ggctggcct 120
gcgagcgctg ccgcgtggatc ctgccttcgc tcctactcag cgccatcgcc ttgcacatca 180
tcgcgctggc cggccgcggc tggttgcagt ctgcgcacca cggccagacg tcctcgctgt 240
ggtgaaatg ctcccaagag ggcggcggca gcgggtctta cgaggaggc tgcagagcc 300
tcatggagta cgcgtgggt agagcagcgg ctgcgcatgc ctgcgcattc ttcatcatcc 360
tggtgatctg tttcatcctc tccttcttcg ccctctgtgg acccccagatg ctgttctcc 420
tgagagtgtat tggaggcttc cttgccttgg ctgcgtgttt ccagatcatc tcctcggtaa 480
tttacccctgtt gaagtacacc cagacccatca cccttcattgc caaccctgtt gtcacttaca 540
tctataactg ggcctacggc tttgggtggg cagccacgat tatttcgttgcattt ggctgtgcct 600
tcttcttcgt ctgcctcccc aactacgaag atgacccatgc gggcaatgcc aagcccagg 660
acttctacac atctgcctaa cttggaaatg aatgtggag aaaaatcgctg ctgcgtgat 720
ggactccaga agaagaaact gtttctccag gcgcatttgc accccatggat tggcagtgtt 780
catattatta aactagtcaa aaatgctaaa ataatttggg agaaaaatatt ttttaagtag 840
tgttatagtt tcatgtttat cttttattat gtttgcgtt gttgtgttctt ttcactaattt 900
acctataacta tgccaatatt tccttatatc tatttcataac atttataacta catttgcgtt 960
agaatatgca cgtgaaactt aacactttat aagtaaaaaa tgaggattcc aagatttaat 1020
aatctgatca agttcttgcatttccaaat agaatggact cggctctgtt aaggctaaagg 1080
agaagaggaa gataaggta aaagttgtt aatgcacccaaac attctaaaag aaatgcaaaaa 1140
aaaaagtttta tttcaagcc ttgcgcattat ttaaggaaaag caaaatcatt tcctaaatgc 1200
atatcatttgc ttgcgcattat cttgcgcattat tcattttgcatttgc taaggcttca 1260
tgttgactcg atatgtcattc taggaaatgc ctatttcattgc gtccaaacccgttgcatttgc 1320
ttggtaaggc tttccatttgc ttgcgcatttgc ttgcgcatttgc ttgcgcatttgc 1380
ttatagggtt aggggtgtggg aaaatgcatttatttgcatttgc ttgcgcatttgc 1440
atgttcagaa ccagactgtttgc ctggattttgc agatggacttgc ggtcttgcatttgc 1500
atagatctgg ttaagttgttgc tagttaagca ttgcgcatttgc ttgcgcatttgc 1560
cactaaaaca gcctcaggag aataatgcatttgc ttgcgcatttgc ttgcgcatttgc 1620

ctctatcata tagacaggct tctgatagtt tgcaactgta agcagaaaacc tacatatagt 1680
taaaatcccg gtcttcttg gtaaacagat tttaaatgtc tgatataaaa catgccacag 1740
gagaattcgg ggatttgagt ttctctgaat agcatatata tgatgcacat gataggcat 1800
tatgattttt taccatttcg acttacataa tgaaaaccaa ttcatttaa atatcagatt 1860
attatttgt aagttgtgga aaaagctaat tgtatcccc attatgaagt ttcccataa 1920
aaccaggat tctaaacttg aaaaaaaaaaaaaaaa 1958

<210> 12
<211> 582
<212> DNA
<213> Homo sapiens

<400> 12
atgatccgct gcggcctggc ctgcgagcgc tgccgctgga tcctgcccct gctcctactc 60
agcgccatcg cttcgacat catcgctg gccggcccg gctgggtgca gtctagcgac 120
cacggccaga cgtcctcgct gtggggaaa tgctccaaag agggcggcgg cagcgggtcc 180
tacgaggagg gctgtcagag cctcatggag tacgcgtggg gtagagcagc ggctgccatg 240
ctttctgtg gcttcatcat cctggtgatc tgtttcatcc ttccttctt cgccctctgt 300
ggaccccaaga tgcttgtt cctgagagtg attggaggtc tccttgccctt ggctgctgtg 360
ttccagatca tctccctggt aatttacccc gtgaagtaca cccagacctt cacccttcat 420
gccaaccctg ctgtcactta catctataac tggcctacg gctttgggtg ggcagccacg 480
attatcctga ttggctgtgc cttcttcttc tgctgcctcc ccaactacga agatgacctt 540
ctggcaatg ccaagccccag gtacttctac acatctgcct aa 582

<210> 13
<211> 193
<212> PRT
<213> Homo sapiens

<400> 13
Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro
1 5 10 15

Leu Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly
20 25 30

Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser Ser Leu Trp
35 40 45

Trp Lys Cys Ser Gln Glu Gly Gly Ser Gly Ser Tyr Glu Glu Gly
50 55 60

Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Ala Met
65 70 75 80

Leu Phe Cys Gly Phe Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe
85 90 95

Phe Ala Leu Cys Gly Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly

100 105 110

Gly Leu Leu Ala Leu Ala Ala Val Phe Gln Ile Leu Ser Leu Val Ile
115 120 125

Tyr Pro Val Lys Tyr Thr Gln Thr Phe Thr Leu His Ala Asn Pro Ala
130 135 140

Val Thr Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr
145 150 155 160

Ile Ile Leu Ile Gly Cys Ala Phe Phe Cys Cys Leu Pro Asn Tyr
165 170 175

Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser
180 185 190

Ala

<210> 14

<211> 193

<212> PRT

<213> Mouse

<400> 14

Met Leu Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu Pro
1 5 10 15

Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu Ala Gly
20 25 30

Arg Gly Trp Leu Gln Ser Ser Asn His Ile Gln Thr Ser Ser Leu Trp
35 40 45

Trp Arg Cys Phe Asp Glu Gly Gly Ser Gly Ser Tyr Asp Asp Gly
50 55 60

Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg Ala Ala Ala Thr
65 70 75 80

Leu Phe Cys Gly Phe Ile Ile Leu Cys Ile Cys Phe Ile Leu Ser Phe
85 90 95

Phe Ala Leu Cys Gly Pro Met Gln Leu Val Phe Leu Arg Val Ile Gly
100 105 110

Gly Leu Leu Ala Leu Ala Ala Ile Phe Gln Ile Leu Ser Leu Val Ile
115 120 125

Tyr Pro Val Lys Tyr Thr Gln Thr Phe Arg Leu His Asp Asn Pro Ala
130 140

Val Asn Tyr Ile Tyr Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr
145 160
150 155

Ile Ile Leu Ile Gly Cys Ser Phe Phe Cys Cys Leu Pro Asn Tyr
165 175
170 175

Glu Asp Asp Leu Leu Gly Ala Ala Lys Pro Arg Tyr Phe Tyr Pro Pro
180 190

Ala

<210> 15
<211> 124
<212> PRT
<213> Rat

<400> 15
Glu Tyr Ala Trp Gly Arg Ala Ala Ala Thr Leu Phe Cys Gly Phe
1 15
5 10

Ile Ile Leu Val Ile Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly
20 30
25 30

Pro Gln Met Leu Val Phe Leu Arg Val Ile Gly Gly Leu Leu Ala Leu
35 45
35 40
 45

Ala Ala Val Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr
50 60
50 55
 60

Thr Gln Thr Phe Arg Leu His Asp Asn Pro Ala Val Asn Tyr Ile Tyr
65 80
65 70
 75

Asn Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile Leu Ile Gly
85 95
85 90
 95

Cys Ser Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu
100 110
100 105
 110

Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala
115 120
115 120

<210> 16
<211> 15
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 16

Cys Ser Tyr Ser Ala Pro Ser Pro Ser Thr Ser Ser Arg Trp Pro
1 5 10 15

<210> 17

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 17

Cys Leu Pro Asn Tyr Glu Asp Asp Leu Leu Gly Asn Ala Lys Pro
1 5 10 15

<210> 18

<211> 15

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic

<400> 18

Cys Gly Gly Asn Ala Pro Lys Arg Gly Gly Arg Gly Ser Tyr
1 5 10 15

<210> 19

<211> 1970

<212> DNA

<213> Mouse

<400> 19

gtcaccggaa tcaagggttg gctggagcgc cgctccccg ccgycagccc gkkggccgcg 60
tcttcggggg agccgcctct tccttwatc ggckcygaca gcgctcgac gaccacttt 120
ggccgctgtct cctggccggc gttcctccgc tccgcgcccc ccgccaccga cgacatgtg 180
cgctgcggcc tggcctgcga ggcgtgcagg tggatcctgc ccctgtgtct gctcagcgcc 240
atcgcccttcg acatcatcgc gctggccggc cgccgctggc tgcaagtctag caaccacatc 300
cagacatcgt cgctttggtg gaggtgtttc gacggaggcg gcggcagcgg ctccctacgac 360
gatggctgcc agagcctcat ggagtacgca tggggacgag cagctgcagc cacgcttttc 420
tgtggctta tcatcctgtg catctgccttc attctctcg tcttcgcctt gtgtggacc 480
cagatgcttg ttttccttag agtcatttggaa ggcctcctcg cactggctgc catattccag 540
atcatctccc tggtaatcta cccccgtgaag tacacacaga ctttcaggct tcacgataac 600
cctgctgtta attacatcta taactgggcc tatggcttcg gatggccgc caccatcatc 660

ttgattggtt gttccttctt cttctgctgc ctccccaaact acgaggatga ccttttgggg 720
gccgccaagc ccaggtactt cstatccccca gcctaattgtg ggaggaagag cctgagaaaa 780
gcctgctgca agatggatct gaggagggaaa ctgttctcca aggccacaagg aacctacgtt 840
tgggcaatgt tcatatgatc agaaatgtta gaataaatgc taaagaaaat tcttcataat 900
tagtgttaag tttcatgtat gtcgtgtgga gttaaaaaaga cttgaattct gtttgctaaag 960
tatatgctaa ttttcctta tgtcaattct ataccattta agcttcattt gttaaagaat 1020
atgcctgtga aacttgataa ggtagaaatg gagcagcctc tcatttaata atctgatggg 1080
gcttctgttt ttccacatag aatgggttgc ttctgctaaag ggctacagag gaggaaagtc 1140
actggcaaaa cttccatgac caaatatcct gaaatttagtt tggtttttt taaaagacct 1200
tattttgagt tttcagttac ataaaagaagc agaagcagat tggtttccta agtgagcattc 1260
atttgtgaga atttttagtc agtgttttgc acaattatttgc tttttctaag cttcatgttg 1320
actttctctg atgcgttagaa aagtgttcta acgtggctga gttaagccg ctgtcattac 1380
tgaaatgcta agaattttcc tctttcccg tagttagag gggtagggtg tgggcagaag 1440
ccgtgttagc acatctgttag tattgtgtgt gtatgcttag aaccagcgt aaccggatgg 1500
gaggatggac taggcctaatt ccctcccaac tggtggatgt gaagaggcgtca ggttaggaagg 1560
cacaggaggg tcaccactgt cacagcagtg ccatgcagac atcctaggag aagacatggc 1620
agtgtttctt ctcagtgtt cttcccttaa ctgagctctg ctcacagaca gctagaatag 1680
atttttaactg aaacagaaac ctaaatgtaa taaaaaacct ggttttctt ggttaaggcaga 1740
cttaaaaatat ctgtatagta catgcaagtg gaaaatttgg gaatgcgtgt ctctgaatac 1800
ataccggaag ggctactatt accttttctt taccatttacttaccaa tggaaacgag 1860
cttgttttaa ctatcagaac actatgttgc aaggtgctgc aaagacagtt gaagtttca 1920
ttaccaattt ccccaataaa ccaggtgttc aaatcctgaa aaaaaaaggc 1970

<210> 20
<211> 582
<212> DNA
<213> Mouse

<400> 20
atgctgcgt gcggcctggc ctgcgagcgc tgcaagggtgga tcctgcccct gctgctgctc 60
agcgccatcg cttcgacat catcgctg gccggcccg gctggctgca gtctagcaac 120
cacatccaga catcgctgctt tggtggagg tgtttcgtacg agggcggcgg cagcggctcc 180
tacgacgtat gctgccagag cctcatggag taacgcatttgc gacgaggcgc tgcaaggccac 240
cttttctgtg gctttatcat cctgtgcattc tgcttcatttctt ctcgttctt cggccctgtgt 300
ggaccccaaga tgctgtttt cctgagagtc attggaggcc tcctcgact ggctgccata 360
ttccagatca tctccctgtt aatctacccc gtgaagtaca cacagacattt caggcttcac 420
gataaccctg ctgttaatta catctataac tggcctatg gcttcggatg ggcggccacc 480
atcatcttgc ttgggtgttc cttcttcttc tgctgcctcc ccaactacga ggatgacattt 540
ttggggcccg ccaagccag gtacttctat cccccagcct aa 582

<210> 21
<211> 536
<212> DNA
<213> Rat

<400> 21
gaataacgcct gggcccgagc agctgctgcc actctttctt gtggattcat catcctggtc 60
atctgcttca tcctctcgat cttcgccctg tggatggccccc agatgcttgc ttccctgaga 120
gtgattggag gcctctcgat actggctgcgt gtattccaga tcataccctt ggttatctat 180

cccgtaagt acacacaaac cttcaggctt catgataatc ccgctgttaa ttacatctac 240
aactgggcct atggcttcgg atggcagcc acgatcatct tgattgttg ctcttcttc 300
ttctgctgcc tccccacta cgaggatgac cttctggca atgcaaagcc caggtacttc 360
tatacatctg cctaattgtgg agggagatcc tgaaaaaagc ctgctgcaag atgcatgtga 420
ggaggaaagt gttctccaag gagcaaagaa cctatgtttg ggcaggttca atatgagtgg 480
aatgctaga ataaatgcta aagaaaattc ttcataaaaa aaaaaaaaaa aaaaaa 536

<210> 22

<211> 375

<212> DNA

<213> Rat

<400> 22

gaatacgcct gggccgagc agctgctgcc actctttct gtggattcat catcctggtc 60
atctgcttca tcctctcggtt ctgcgcctg tgtggacccc agatgcttgtt ttcctgaga 120
gtgattggag gcctctcgc actggctgct gtattccaga tcataccctt gtttatctat 180
cccgtaagt acacacaaac cttcaggctt catgataatc ccgctgttaa ttacatctac 240
aactgggcct atggcttcgg atggcagcc acgatcatct tgattgttg ctcttcttc 300
ttctgctgcc tccccacta cgaggatgac cttctggca atgcaaagcc caggtacttc 360
tatacatctg cctaa 375

<210> 23

<211> 471

<212> DNA

<213> Homo sapiens

<400> 23

tttgaagca ttttgtctg tgctccctga tcttcaggc accaccatga agttcttagc 60
agtccctggta ctcttggag tttccatctt tctggctctt gcccagaatc cgacaacagc 120
tgctccagct gacacgtatc cagctactgg tcctgctgat gatgaagccc ctgatgctga 180
aaccactgct gctgcaacaa ctgcgaccac tgctgctctt accactgcaa ccaccgctgc 240
ttctaccact gctgtaaag acattccagt tttacccaaa tgggttgggg atctccgaa 300
tggttagatgt tgccctgag atgaaatcag ctgagttt ctgcaattgg gtcacaacta 360
ttcatgcttc ctgtgatttc atccaactac ttaccttgc tacgatatcc cctttatctc 420
taatcagtt atttcttca aaataaaaaa taactatgag cgagctaaca t 471

<210> 24

<211> 273

<212> DNA

<213> Homo sapiens

<400> 24

atgaagttct tagcagtctt ggtactctt ggatttcca tctttctggc ctctgcccag 60
aatccgacaa cagctgctcc agctgacacg tatccagcta ctggcctgc tgatgatgaa 120
gccctgtatc ctgaaaccac tgctgctgca accactgcga ccactgctgc tcctaccact 180
gcaaccaccc ctgcttctac cactgctgt aaagacattc cagtttacc caaatgggtt 240
ggggatctcc cgaatggtag agtgtgtccc tga 273

<210> 25
<211> 90
<212> PRT
<213> Homo sapiens

<400> 25
Met Lys Phe Leu Ala Val Leu Val Leu Leu Gly Val Ser Ile Phe Leu
1 5 10 15

Val Ser Ala Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro
20 25 30

Ala Thr Gly Pro Ala Asp Asp Glu Ala Pro Asp Ala Glu Thr Thr Ala
35 40 45

Ala Ala Thr Thr Ala Thr Thr Ala Ala Pro Thr Thr Ala Thr Thr Ala
50 55 60

Ala Ser Thr Thr Ala Arg Lys Asp Ile Pro Val Leu Pro Lys Trp Val
65 70 75 80

Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
85 90

<210> 26
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 26
Gln Asn Pro Thr Thr Ala Ala Pro Ala Asp Thr Tyr Pro Ala Cys
1 5 10 15

<210> 27
<211> 15
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

<400> 27
Leu Pro Lys Trp Val Gly Asp Leu Pro Asn Gly Arg Val Cys Pro
1 5 10 15

<210> 28
<211> 1555
<212> DNA
<213> Homo sapiens

<400> 28
ggagtttctt ggagctgttg caatgtgtat gctggtgaaa tctacttgag cattaagcag 60
tatctccag cattgttagc tactgagtgg cacatcttca gtacgcata ttcgtgggg 120
actcaggcag aggtaaaagt gtgaaacctt tcagcattac ctaagaagca aaggctaat 180
tttggctgct tcattcttat ctcttctgcc acagttctaa cgtgcctgat ctactgagac 240
caaggatgac caatgactca gaaggaaaaa tgggatttaa acacccaaag atcatggga 300
atttcagagg tcatgccctc cctggAACCT tctttttat tattggctt tggtgggtga 360
caaagagtat tctgaagtat atctgaaaaa agcaaaagcg aacctgctat cttgggtcca 420
aaacattatt ctatcgattt gaaattttgg agggattac aatagttggc atggctttaa 480
ctggcatggc tggggagcag tttattctg gagggccccca tctgatgtt tatgactata 540
aacaaggcata ctggaatcaa ctccctggctt ggcattcattt caccatgtat ttcttcttg 600
ggctgttggg tggcagat atctttagtt tcaccatcg ttcacttcct gtgtccttaa 660
ccaagttaat gtttcaat gccttatttgg tggaggcctt tatcttctac aaccacactc 720
atggccggga aatgctggac atctttgtgc accagctgct ggtttggc gtcttctga 780
caggcctcgt tgccttcta gagttcccttgg ttcggAACAA tgtacttcgt gagctattgc 840
ggtaagtctt cattctgctt cagggagct gggttcttca gattggattt gtccctgtatc 900
cccccagtgg aggtcctgca tggatctga tggatcatga aaatattttg tttctcacca 960
tatgcttttgg tggcattat gcagtaacca ttgtcatcg tggaaatgaaat tatgcttca 1020
ttacctgggtt ggttaaatctt agacttaaga ggctctgctc ctcagaagttt ggacttctga 1080
aaaatgctga acgagaacaa gaatcagaag aagaaatgtt actttgatga gcttccagttt 1140
tttcttagata aaccttttctt ttttacatt gttctgggtt ttgtttctcg atcttttgg 1200
tggagaacag ctggctaagg atgactctaa gtgtactgtt tgcatttcca atttggtaa 1260
agtatttggaa tttaaatattt ttcttttttag ctttggaaat attttgggtt atactttcat 1320
tttgcacatc atgcacatca tggatttcag gggcttaggtt gatttttttc cagattatct 1380
aaagttgat gcccacacta tggaaagaaat atttggtttta ttgccttat agatatgctc 1440
aaggtaactg ggcttgctac tatttgaac tccttgacca tggaaattata cttgtttatc 1500
ttgttgctgc aatgagaaat aaatgaatgtt atgtattttgg tgcagaaaaa aaaaaa 1555

<210> 29
<211> 291
<212> PRT
<213> Homo sapiens

<400> 29
Met Thr Asn Asp Ser Glu Gly Lys Met Gly Phe Lys His Pro Lys Ile
1 5 10 15
Met Gly Asn Phe Arg Gly His Ala Leu Pro Gly Thr Phe Phe Phe Ile
20 25 30
Ile Gly Leu Trp Trp Cys Thr Lys Ser Ile Leu Lys Tyr Ile Cys Lys
35 40 45
Lys Gln Lys Arg Thr Cys Tyr Leu Gly Ser Lys Thr Leu Phe Tyr Arg
50 55 60

Leu Glu Ile Leu Glu Gly Ile Thr Ile Val Gly Met Ala Leu Thr Gly
 65 70 75 80
 Met Ala Gly Glu Gln Phe Ile Pro Gly Gly Pro His Leu Met Leu Tyr
 85 90 95
 Asp Tyr Lys Gln Gly His Trp Asn Gln Leu Leu Gly Trp His His Phe
 100 105 110
 Thr Met Tyr Phe Phe Gly Leu Leu Gly Val Ala Asp Ile Leu Cys
 115 120 125
 Phe Thr Ile Ser Ser Leu Pro Val Ser Leu Thr Lys Leu Met Leu Ser
 130 135 140
 Asn Ala Leu Phe Val Glu Ala Phe Ile Phe Tyr Asn His Thr His Gly
 145 150 155 160
 Arg Glu Met Leu Asp Ile Phe Val His Gln Leu Leu Val Leu Val Val
 165 170 175
 Phe Leu Thr Gly Leu Val Ala Phe Leu Glu Phe Leu Val Arg Asn Asn
 180 185 190
 Val Leu Leu Glu Leu Leu Arg Ser Ser Leu Ile Leu Leu Gln Gly Ser
 195 200 205
 Trp Phe Phe Gln Ile Gly Phe Val Leu Tyr Pro Pro Ser Gly Gly Pro
 210 215 220
 Ala Trp Asp Leu Met Asp His Glu Asn Ile Leu Phe Leu Thr Ile Cys
 225 230 235 240
 Phe Cys Trp His Tyr Ala Val Thr Ile Val Ile Val Gly Met Asn Tyr
 245 250 255
 Ala Phe Ile Thr Trp Leu Val Lys Ser Arg Leu Lys Arg Leu Cys Ser
 260 265 270
 Ser Glu Val Gly Leu Leu Lys Asn Ala Glu Arg Glu Gln Glu Ser Glu
 275 280 285
 Glu Glu Met
 290

<210> 30
 <211> 15
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic

 <400> 30
 Tyr Pro Pro Ser Gly Gly Pro Ala Trp Asp Leu Met Asp His Cys
 1 5 10 15

 <210> 31
 <211> 15
 <212> PRT
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic

 <400> 31
 Cys Leu Lys Asn Ala Glu Arg Glu Gln Glu Ser Glu Glu Glu Met
 1 5 10 15

 <210> 32
 <211> 10320
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> unsure
 <222> (10123)...(10185)
 <223> "n" at positions 10123 and 10185 can be any base.

 <400> 32
 ttcctccgca aaggctcatt tgatattaat agtgggttg tcttgaact gacgtaatgc 60
 gcggagactg aggtcctgac aagcgataac atttctgata aagaccgat cttactgcaa 120
 tctctagcgt cctctttttt ggtgctgctg gtttctccag acctcgcgtc ctctcgattg 180
 ctctctcgcc ttcctatttc tttttttttt ttttaaacaa aaaacaacac cccctcccct 240
 ctcccacccg gcacccggca catccttgct ctatttcatt tctctttctc tctctctctc 300
 tctctctctc ttttttaata aggggtgggg agggaaaggg gggggatgca ggaaaagacct 360
 ttttctctcc ccccgcaat aatccaagat caactctgca aacaacagaa gacggttcat 420
 ggctttggcc gccgcgccac catctttcgg gctgccgagg gtgttcttga cgattaatca 480
 acagatgtac agatcagctc tcaaaatgtc ttctgtgtct tctgagcgtc ttctaagaca 540
 attgcattag cctcctgcta gttgactaat agaattaata attgtaaaaaa gcactctaaa 600
 gccacatgcc ttatgaagtc aatgctgggt atgattttac aaatatggtc cgaaaaaaga 660
 acccccccttct gagaaacgtt gcaagtgaag gcgaggggcca gatcctggag cctatacgta 720
 cagaaagcaa ggtatctgga aagaacaaag aattttctgc agatcagatg tcagaaaata 780
 cggatcagag ttagtctgca gaactaaatc ataaggagga acatagcttgc catgttcaag 840
 atccatcttc tagcagtaag aaggacttga aaagcgcagt tctgagtgag aaggtggct 900
 tcaattatga aagccccagt aaggggagaa actttccctc ctttccgcattt gatgaggtga 960
 cagacagaaa tatgttggct ttctcttc cagctgctgg gggagtctgt gagcccttga 1020
 agtctccgca aagagcagag gcagatgacc ctcaagatat ggcctgcacc ccctcagggg 1080
 actcaactgga gacaaaggaa gatcagaaga tgtcacaaaa ggctacagag gaaacaggc 1140

aagcacaagg tggtaacgaa aattgtcaag gtttgagccc agtttcagtgcctcaaaaa 1200
acccacaagt gccttcagat ggggggttaa gactgaataa atccaaaact gacttactgg 1260
tgaatgacaa cccagacccg gcacccctgt ctccagagct tcaggactt aaatgcaata 1320
tctgtggata tggttactac ggcaacgacc ccacagatct gattaagcac ttccgaaagt 1380
atcaacttagg actgcataac cgccaccaggc aagatgctga gctggacagc aaaatcttg 1440
cccttcataa catggtgca gttcaggcatt ccaaagactt ccagaaggc aaccgttctg 1500
tggtttctgg tggctgcag gacatcaatt cttcaaggcc tggtttacta aatgggacct 1560
atgatgtgca ggtgacttca ggtggAACAT tcattggcat tggacggaaa acaccagatt 1620
gccaaggaa caccaggat ttccgctgta aattctgcaa tttcaactt atgggcaact 1680
catccaccga attagaacaa cattttcttc agactcaccc aaacaaaata aaagcttctc 1740
tcccccttc tgaggttgca aaacccctcg agaaaaactc taacaagtcc atccctgcac 1800
ttcaatccag tgattctgga gacttggaa aatggcagga caagataaca gtcaaagcag 1860
gagatgacac tcctgttggg tactcagtgc ccataaagcc cctcgattcc tctagacaaa 1920
atggtacaga gcccaccagg tactactggt gtaaattttg tagttcagc tggtagtcat 1980
ctagctcaact taaactgcta gaacattatg gcaaggcagca cggagcagtg cagtcaggcg 2040
gccttaatcc agagttaaat gataagctt ccaggggctc tgtcattaat cagaatgatc 2100
tagccaaaag ttcaagaaggag gagacaatga ccaagacaga caagagctcg agtggggcta 2160
aaaagaagga ctctccagc aagggagccg aggataatat ggttaacgagc tataattgtc 2220
agttctgtga ctcccgatata tccaaaagcc atggccctga tgtaattgtt gttggggccac 2280
ttctccgtca ttatcaacag ctccataaca ttcaaaatgtg taccattaaa cactgtccat 2340
tctgtcccg aggactttgc agcccgaaaa agcacccctgg agaaattact tatccgtttg 2400
ctttagaaaa aagtaattgt tcccactgtg cactcttgc tctgcacttg tctcttggg 2460
cggttggaaag ctcccgagtc aaacatcagt gccatcagt ttcattcacc accccctgacg 2520
tagatgtact cctctttcac tatgaaatgt tgcatgagtc ccaagcatcg gatgtcaaac 2580
aagaagcaaa tcaacctgca ggtatggatg ggcagcagtc tgtcaaggaa agcaaaagaaac 2640
actcatgtac caaatgttat tttattaccc aagtggaaaga agagatttcc cgacactaca 2700
ggagagcaca cagctgctac aaatggccgc atgtagctt tacagctgccc gataactcgt 2760
caactctgga gcacttcaac actgttcaact gccaggaaaca ggacatcaact acagccaaacg 2820
gcgaagagga cggttggatc atatccacca tcaaaagagga gcccggattt gacttcagg 2880
tctacaatct gcttaactcca gactctaaaa tgggagagcc agtttcttag agtgtggatg 2940
agagagagaa gctggaaagag aaggacgggc tcaaaagagaa agtttggacc gagagttcca 3000
gtgtatgaccc tggcaatgtg acttggagag gggcagacat cctgggggg agtccgtcat 3060
acacccaaagc aaggctgggg ctgctgacgc ctgtgtctgg cacccaaagag cagacaaaga 3120
ctcttaaggaa tagtcccaat gtggaggccg cccatctggc ggcacccattt tatggcttgg 3180
ctgtggaaac caaggattc ctgcaggggg cggcagctgg cggagagaag tctggggccc 3240
tccccccagca gtatccctgca tggggagaaaa acaagtccaa ggtatgaatcc cagtcctgt 3300
tacggaggcg tagaggctcc ggtgtttttt gtggccattt cctgaccaca aagaccccttc 3360
tctggcgaaa gaatgcaaat ggcggatatg tatgcaacgc gtgtggcctc taccagaagc 3420
ttcaactcgac tcccaggcct taaaacatca taaaacaaa caacggtgag cagattatta 3480
ggaggagaac aagaaagcgc cttaaccagg aggcacttca ggctggcagc ctcaacaaac 3540
agcagaggggg cagcaatgtg gagcaagtca atggaagcccc gtttagagagg aggtcagaag 3600
atcatctaac tggaaatgtc ac cagagaaaa ttccactccc cagcctaagt aaatacgaag 3660
cccagggttc attgactaaa agccattctg ctccggcagcc agtcctggtc agccaaactt 3720
tggatattca caaaaaggatg caaccccttgc acattcagat aaaaagtctt caggaaagta 3780
ctggagatcc agggaaatagt tcattccgtat ctggggaa aggaaggctt gagagaggca 3840
gtccctataga aaagtacatg agacctgcga aacacccaaa ttattccacca ccaggcagcc 3900
ctattgaaaa gtaccagtac ccacttttg gacttccctt ttttacataat gacttccaga 3960
gtgaagctga ttggctgcgg ttctggatgaa atataaagct ctccgttccctt ggaatccgc 4020
actacttgag tcacgtgcctt ggcctacca atcccttgcctt aaactatgtg cttatccca 4080
ccttcataact gcctccat ttttcagctg ttggatcaga caatgacatt cctcttagatt 4140
tggcgatcaa gcattccaga cctggggccaa ctgcaaacqg tqccctccaaq qaaaaaacqa 4200

aggcaccacc aaatgtaaaa aatgaaggc ctttgcattt gatggggcc 4260
atagaagtac tcaagatgaa ctttcaacaa aatgtgtgca ctgtggcatt gtcttctgg 4320
atgaagtat gtatgtttt catatgagtt gccatggta cagtggacct ttccagtgca 4380
gcatatgcca gcatacgttgc acggacaaat atgacttcac aacacatatac cagagggccc 4440
tgcatacgaa caatgcacaa gtggaaaaaa atggaaaacc taaagagtaa aaccttagca 4500
cttagcacaa ttaaatagaa atagtttc ttgatggaa ttcaatagct tgtaatgtct 4560
tatgaagacc tataaaaaaa atacttcata gggcctgcct tatccaacat gaaattccct 4620
tctttgtta ttctttctt ttagtggatg gttaccaaga taaaaaagtg agataaatgg 4680
tcaatgagaa agaatggaa atggtaaaca atcactttt aaaacctgtt aagtcaaaac 4740
catctggct aatatgtact ggggaaataa tccataagag atatcaccag actagaatta 4800
atataattat aaagaaagag accaaaactg tctagaattt gaaagggtt acatattatt 4860
atactaaagc agtactggac tggccatttg accatttgtt caaaaccca taaattgttg 4920
cctaaatcta taatgtatcat gaaaccctag gcagaggagg agaaattgaa gttccaggcc 4980
aatgaaagaa aaatggcgcc ctctcaattt agtcttctt cattggccat gttcagatt 5040
ttgacccatgaa aatgcgagct gtggtaggc ttggtagag tgcagcaagc aacatgacag 5100
atgggtgcac gctgtttta cccagccctg cctgtacata cacatgcaca ccctctctga 5160
tattttgtc cttagatgt tcaaatactc agtagtcctt ttgttgcgg ttagattca 5220
ttttgtccac acatgtaccc attttaaaaa acaatgtcct cgatgttctt gtatgtgatt 5280
cattttagcc aggtatttct ttcttgcgtg ttagtgaacca gtatggattt gctttctaa 5340
gcctccgtt gttactaat ctcacttggc acattataac taaagaatc ccctcaattc 5400
aaaagcatag atggatacaa atgtcagacc gtgggtttaa ttgtttaga acacatggca 5460
tttcttcaca aggtaaacccg ctgtattttt ttatttctt ttgggttaat ataatttcca 5520
aactttgtgg tcaggcagcg tctaaggta cgttaccaca gactgacagt tggtatatgt 5580
accagccaaat cccttcatta aatgtataca gatttagttt agtagcatta aataggattc 5640
tttagaagtat gtccatag aacttttaat acttaaggct ttgtaaaaac tatccatgaa 5700
gggaaagctc ctcagcataa ctgctcaggg aaatagggc aaataactga acattaaata 5760
atgggttaaa ggtgctgtt gtcgagccctc aatgttgcgt acaaggatgt atgtacaagg 5820
actgacttta ataatttgcata ttatattgtc ccaaccagta gtttattttt tgccacggag 5880
atgtagaaga tattacaagc tactggatgc actgtcagat taacttattt cattaaagaa 5940
gttgggagaa caaataggaa aaaaaaaaaact tattttctt gtaaatatta atgtattaca 6000
tttcaaaataa tgggtgcctga catatttaat aattttttc tacagtgtac gtatgcaaca 6060
aagatattcc atcatgcatt aggtcagtt ctggctctgc cttagtgc acatttgca 6120
atgtagaaa caaggtatg aagcaactat ttctattgca gttagatatcc ttttgcgtgt 6180
gtgtgtgtc attaaagttt taaacggtaa catgaaacaa atgaaagttc ttgtctataat 6240
ggtatggaaa acaagaagga aatgaaaata tttttatgcc tacttaggaa aaaaagggtt 6300
gcacttattc attccaagta cttttttttt ttaattttt aagctttaa ctcacattgt 6360
tatgtttaag atgataaaaca tatactctt ttttattgtc ttgtctatgt ttcatatgaa 6420
acatttcaga aattttttt ataaatgtt gtcgaatctg caacgctgtat ttttttttgc 6480
attctgttagt cgcatttgca ctccatttt acattaattt gcagttgc ttgtatcattt 6540
ttttgtttgg gttttgtttc ttttcacag tgccgggtct tcgtttctt aagttggatg 6600
gcaggttagag ttcaaccagt tcgtgactgt ttagcgaat gaagttaaaa aatgtcttt 6660
ctgatgttgt gttgtcattt tcattttgc attttttgtt ttgcattt aaaaaagaga 6720
aaagagaaaag caagagacag aaatcaggac taatgcctt gtttcagttt cattgttaac 6780
gggccttatt ctgatctcac ctgtcgctgta gctctaatat tcacataaaac taaaataaag 6840
aagtggaaatg aggagctttg acattcaaat tatgtgtatgt aattttatctt ccttaggaat 6900
tttgcatttgcattt gttgtcattt tcattttgc attttttgtt ttgcattt aaaaaagaga 6960
aaaagagagg agattccccca aaacaacaat attaattttt ctttagtaaaa agaataacag 7020
aatgcattgt ggcaatcctt aagcaacattt atctatgtgg actgtctaaa tcagcaaaac 7080
accagaagtt tggtaactt gggcaatatg acaagtattt ctttttggc aaaactactc 7140
attaagcaat ttctcttagt gttgttgc acggacaaat ttttttttgc gcatgtatgc 7200
cttttttattt tcattcaattt tttttttttt ctcacacatgata ctttttttttgc gcatgtatgc 7260

ttggaaaata catatcaactt ttcttggaaat atttatggtc agtctacttt ttagtaaaat 7320
atttttggat agcgttgaca cgatacatct tattccatac ttcttttatta ttgataattt 7380
tattttcatt ttttgcatttcc attattatac atattttgggt ggagaagagg ttgggcttt 7440
ttgaaagaga caaaaattta ttataaacact aaacactcct ttttgacat attaaagcct 7500
ttattccatc tctcaagata tattataaaa ttatattttt taatttaaga tttctgaatt 7560
attttatctt aaatttgtat tttaaacgag ctattatgggt acgaaacttt ttttaatgag 7620
gaatttcatg atgattttagg aatttctct cttggaaaag gcttcccctg tgatgaaaat 7680
gatgtgccag ctaaaaattgt gtgccattta aaaactgaaa atatttaaa attatttgc 7740
tatattctaa attgagctt ggatcaaact ttggccagg accagctcat gcgttctcat 7800
tcttccttt ctcactctt ctctcatcac tcacccctgt attcattctg ttgtttggga 7860
tagaaaaatc ataaagagoc aaccatctc agaacgttgt ggattgagag agacactaca 7920
tgactccaag tatatgagaa aaggacagag ctctaattga taactctgt gttcaaaagg 7980
aaaagagtat gcccaattct ctctacatga catattgaga tttttttaa tcaacttttta 8040
agatagtgtat gttctgttct aaactgttct gtttagtga agtagattt ttataaaaca 8100
agcatgggga ttcttttcta aggtaatatt aatgagaagg gaaaaaaagta tctttaacag 8160
ctctttgtt aagcctgtgg tagcacattt tggttataat tgcacatgtg cacataatct 8220
attatgatcc aatgcaaata cagctccaaa aatattaaat gtatatatat tttaaaatgc 8280
ctgagggaaat acattttct taataaactg aagagtctca gtatggctat taaaataatt 8340
attagcctcc tgggtgtgtgg ctgcaaaaca tcacaaagtg accggctctg agacctgtga 8400
actgctgccc tggtagtta ataaaattaa tgcatttctt gaggggaaat atctgcatc 8460
cagtgggga aatgtggagt aaagaagctg gtggctgtct tctgtgctgt atgcccagct 8520
tttgccttaa gttgagagga ggtcaacttt agctactgtc tttggttga gagccatggc 8580
aaaaaaaaaa aaagaaaaaa agatcaagtc gtctttggg agccagtaag gtgaaagctt 8640
gctgactgtc caaggcacaa gagaaaattg aggaattgaa atgcaacctg agtataaacc 8700
taaatattct aatcaaaggat aggtactgtt aggtgaaattt ctatcagcag gcaactgcaa 8760
atgagaagaa gatagaagga cggccgtcg gactttggag ggcattgtt tttcccaaa 8820
gaaagacggc caagggcaga ggcattggatt ctttgcagag cacttcctt tggttttca 8880
gtactgttcc atagacagtg ggctcacatg ttccctgatag tgctgcagtt gcttagaaag 8940
catcccagtt aattgcagta attagaactt ctggatatg cttagggcaga agtatagtca 9000
gtatgtcaca tgaagaaaaat gtgaaattca agagtaatcc acacgtgaga aactagacaa 9060
tgtacattca tgggttctct tgaaaggaaa gggagagctg taagttcac tctgtcctac 9120
accggagaaa agcaggaata actttaccgt gggaaataatg tttagctttt atcagagaaa 9180
attgtccttc tagacatag agtccaaaaa ctcaattctg gttttccct gttttttttt 9240
ttttttttt tcccaacata tgaaactgcag catacactt tttcttttttgcctcaggt 9300
tcctcasctg taaaattgaa aaatataatgt attaataata ttattaataa taataatgg 9360
aatgttagtac ttgtttgtaa agcacttga gatccttggt tgaaaggcac cataggagtg 9420
ccaagtatta ttatgtggcc aagggggtt aaaaactgt cagttccaa aggccagggaa 9480
aggttggggtt catttttctt aaagacgagc tgtaaatatc aactaggcag ccaatagtgt 9540
tgactatgaa gatgcaaaaac tattactagg ctgataaaaat catagttct taatggctac 9600
caataaggca aatatcacaat taataaacgc caaattccctt agggccgact atttgacaac 9660
cacatggaaa actttggggg aggcatgagg ggggaacatc taaaatgcc aatgtaaaat 9720
ttaacttaca gcaatattca ccagcagaaa atgtcttca tatggatga tttcatgtt 9780
ctaagaaaaa gaattcaatt tggatgcctg atttgaatac tagaatgtt gctataata 9840
ttctgttctt acaacacatg aaatttttc gttttatattt attttgtttt catagtgc 9900
gttcatttctt actcacaac atgttcttgg tggatgttctt atgcaaaacaa tcttcaggca 9960
gcaaaagatgt ctgttacatc taaaactgaa taataaaatgt ttaccaccag ttacacataa 10020
ccggcgttgggtt atgggttata tggattcaact ttcatccttc taggcaatag ggaaatacag 10080
atcattgtaa tatatatata tatatataca ggctctgtg aantgaaatg gtgaaatcaa 10140
atcaccatttca taaaattttttaa ttacttataat tgataaaagcc tggantctct caactgttt 10200
tgctttgtt ttttcttta accaatcaat ctcttactga tagattttgtt gtaaaaagat 10260
ataactactgtt ttcttcagaa agattaacaa taaaattgtt gtttatttca aaaaaaaaaa 10320

<210> 33
<211> 1281
<212> PRT
<213> Homo sapiens

<400> 33
Met Val Arg Lys Lys Asn Pro Pro Leu Arg Asn Val Ala Ser Glu Gly
1 5 10 15

Glu Gly Gln Ile Leu Glu Pro Ile Gly Thr Glu Ser Lys Val Ser Gly
20 25 30

Lys Asn Lys Glu Phe Ser Ala Asp Gln Met Ser Glu Asn Thr Asp Gln
35 40 45

Ser Asp Ala Ala Glu Leu Asn His Lys Glu Glu His Ser Leu His Val
50 55 60

Gln Asp Pro Ser Ser Ser Lys Lys Asp Leu Lys Ser Ala Val Leu
65 70 75 80

Ser Glu Lys Ala Gly Phe Asn Tyr Glu Ser Pro Ser Lys Gly Gly Asn
85 90 95

Phe Pro Ser Phe Pro His Asp Glu Val Thr Asp Arg Asn Met Leu Ala
100 105 110

Phe Ser Ser Pro Ala Ala Gly Gly Val Cys Glu Pro Leu Lys Ser Pro
115 120 125

Gln Arg Ala Glu Ala Asp Asp Pro Gln Asp Met Ala Cys Thr Pro Ser
130 135 140

Gly Asp Ser Leu Glu Thr Lys Glu Asp Gln Lys Met Ser Pro Lys Ala
145 150 155 160

Thr Glu Glu Thr Gly Gln Ala Gln Ser Gly Gln Ala Asn Cys Gln Gly
165 170 175

Leu Ser Pro Val Ser Val Ala Ser Lys Asn Pro Gln Val Pro Ser Asp
180 185 190

Gly Gly Val Arg Leu Asn Lys Ser Lys Thr Asp Leu Leu Val Asn Asp
195 200 205

Asn Pro Asp Pro Ala Pro Leu Ser Pro Glu Leu Gln Asp Phe Lys Cys
210 215 220

Asn Ile Cys Gly Tyr Gly Tyr Gly Asn Asp Pro Thr Asp Leu Ile
225 230 235 240

Lys His Phe Arg Lys Tyr His Leu Gly Leu His Asn Arg Thr Arg Gln
245 250 255

Asp Ala Glu Leu Asp Ser Lys Ile Leu Ala Leu His Asn Met Val Gln
260 265 270

Phe Ser His Ser Lys Asp Phe Gln Lys Val Asn Arg Ser Val Phe Ser
275 280 285

Gly Val Leu Gln Asp Ile Asn Ser Ser Arg Pro Val Leu Leu Asn Gly
290 295 300

Thr Tyr Asp Val Gln Val Thr Ser Gly Gly Thr Phe Ile Gly Ile Gly
305 310 315 320

Arg Lys Thr Pro Asp Cys Gln Gly Asn Thr Lys Tyr Phe Arg Cys Lys
325 330 335

Phe Cys Asn Phe Thr Tyr Met Gly Asn Ser Ser Thr Glu Leu Glu Gln
340 345 350

His Phe Leu Gln Thr His Pro Asn Lys Ile Lys Ala Ser Leu Pro Ser
355 360 365

Ser Glu Val Ala Lys Pro Ser Glu Lys Asn Ser Asn Lys Ser Ile Pro
370 375 380

Ala Leu Gln Ser Ser Asp Ser Gly Asp Leu Gly Lys Trp Gln Asp Lys
385 390 395 400

Ile Thr Val Lys Ala Gly Asp Asp Thr Pro Val Gly Tyr Ser Val Pro
405 410 415

Ile Lys Pro Leu Asp Ser Ser Arg Gln Asn Gly Thr Glu Ala Thr Ser
420 425 430

Tyr Tyr Trp Cys Lys Phe Cys Ser Phe Ser Cys Glu Ser Ser Ser Ser
435 440 445

Leu Lys Leu Leu Glu His Tyr Gly Lys Gln His Gly Ala Val Gln Ser
450 455 460

Gly Gly Leu Asn Pro Glu Leu Asn Asp Lys Leu Ser Arg Gly Ser Val
465 470 475 480

Ile Asn Gln Asn Asp Leu Ala Lys Ser Ser Glu Gly Glu Thr Met Thr
485 490 495

Lys Thr Asp Lys Ser Ser Ser Gly Ala Lys Lys Lys Asp Phe Ser Ser
500 505 510

Lys Gly Ala Glu Asp Asn Met Val Thr Ser Tyr Asn Cys Gln Phe Cys
515 520 525

Asp Phe Arg Tyr Ser Lys Ser His Gly Pro Asp Val Ile Val Val Gly
530 535 540

Pro Leu Leu Arg His Tyr Gln Gln Leu His Asn Ile His Lys Cys Thr
545 550 555 560

Ile Lys His Cys Pro Phe Cys Pro Arg Gly Leu Cys Ser Pro Glu Lys
565 570 575

His Leu Gly Glu Ile Thr Tyr Pro Phe Ala Cys Arg Lys Ser Asn Cys
580 585 590

Ser His Cys Ala Leu Leu Leu His Leu Ser Pro Gly Ala Ala Gly
595 600 605

Ser Ser Arg Val Lys His Gln Cys His Gln Cys Ser Phe Thr Thr Pro
610 615 620

Asp Val Asp Val Leu Leu Phe His Tyr Glu Ser Val His Glu Ser Gln
625 630 635 640

Ala Ser Asp Val Lys Gln Glu Ala Asn His Leu Gln Gly Ser Asp Gly
645 650 655

Gln Gln Ser Val Lys Glu Ser Lys Glu His Ser Cys Thr Lys Cys Asp
660 665 670

Phe Ile Thr Gln Val Glu Glu Ile Ser Arg His Tyr Arg Arg Ala
675 680 685

His Ser Cys Tyr Lys Cys Arg Gln Cys Ser Phe Thr Ala Ala Asp Thr
690 695 700

Gln Ser Leu Leu Glu His Phe Asn Thr Val His Cys Gln Glu Gln Asp
705 710 715 720

Ile Thr Thr Ala Asn Gly Glu Asp Gly His Ala Ile Ser Thr Ile
725 730 735

Lys Glu Glu Pro Lys Ile Asp Phe Arg Val Tyr Asn Leu Leu Thr Pro
740 745 750

Asp Ser Lys Met Gly Glu Pro Val Ser Glu Ser Val Val Lys Arg Glu
755 760 765

Lys Leu Glu Glu Lys Asp Gly Leu Lys Glu Lys Val Trp Thr Glu Ser
770 775 780

Ser Ser Asp Asp Leu Arg Asn Val Thr Trp Arg Gly Ala Asp Ile Leu
785 790 795 800

Arg Gly Ser Pro Ser Tyr Thr Gln Ala Ser Leu Gly Leu Leu Thr Pro
805 810 815

Val Ser Gly Thr Gln Glu Gln Thr Lys Thr Leu Arg Asp Ser Pro Asn
820 825 830

Val Glu Ala Ala His Leu Ala Arg Pro Ile Tyr Gly Leu Ala Val Glu
835 840 845

Thr Lys Gly Phe Leu Gln Gly Ala Pro Ala Gly Gly Glu Lys Ser Gly
850 855 860

Ala Leu Pro Gln Gln Tyr Pro Ala Ser Gly Glu Asn Lys Ser Lys Asp
865 870 875 880

Glu Ser Gln Ser Leu Leu Arg Arg Arg Arg Gly Ser Gly Val Phe Cys
885 890 895

Ala Asn Cys Leu Thr Thr Lys Thr Ser Leu Trp Arg Lys Asn Ala Asn
900 905 910

Gly Gly Tyr Val Cys Asn Ala Cys Gly Leu Tyr Gln Lys Leu His Ser
915 920 925

Thr Pro Arg Pro Leu Asn Ile Ile Lys Gln Asn Asn Gly Glu Gln Ile
930 935 940

Ile Arg Arg Arg Thr Arg Lys Arg Leu Asn Pro Glu Ala Leu Gln Ala
945 950 955 960

Glu Gln Leu Asn Lys Gln Gln Arg Gly Ser Asn Glu Glu Gln Val Asn
965 970 975

Gly Ser Pro Leu Glu Arg Arg Ser Glu Asp His Leu Thr Glu Ser His
980 985 990

Gln Arg Glu Ile Pro Leu Pro Ser Leu Ser Lys Tyr Glu Ala Gln Gly
995 1000 1005

Ser Leu Thr Lys Ser His Ser Ala Gln Gln Pro Val Leu Val Ser Gln
1010 1015 1020

Thr Leu Asp Ile His Lys Arg Met Gln Pro Leu His Ile Gln Ile Lys
1025 1030 1035 1040

Ser Pro Gln Glu Ser Thr Gly Asp Pro Gly Asn Ser Ser Ser Val Ser
1045 1050 1055

Glu Gly Lys Gly Ser Ser Glu Arg Gly Ser Pro Ile Glu Lys Tyr Met
 1060 1065 1070

 Arg Pro Ala Lys His Pro Asn Tyr Ser Pro Pro Gly Ser Pro Ile Glu
 1075 1080 1085

 Lys Tyr Gln Tyr Pro Leu Phe Gly Leu Pro Phe Val His Asn Asp Phe
 1090 1095 1100

 Gln Ser Glu Ala Asp Trp Leu Arg Phe Trp Ser Lys Tyr Lys Leu Ser
 1105 1110 1115 1120

 Val Pro Gly Asn Pro His Tyr Leu Ser His Val Pro Gly Leu Pro Asn
 1125 1130 1135

 Pro Cys Gln Asn Tyr Val Pro Tyr Pro Thr Phe Asn Leu Pro Pro His
 1140 1145 1150

 Phe Ser Ala Val Gly Ser Asp Asn Asp Ile Pro Leu Asp Leu Ala Ile
 1155 1160 1165

 Lys His Ser Arg Pro Gly Pro Thr Ala Asn Gly Ala Ser Lys Glu Lys
 1170 1175 1180

 Thr Lys Ala Pro Pro Asn Val Lys Asn Glu Gly Pro Leu Asn Val Val
 1185 1190 1195 1200

 Lys Thr Glu Lys Val Asp Arg Ser Thr Gln Asp Glu Leu Ser Thr Lys
 1205 1210 1215

 Cys Val His Cys Gly Ile Val Phe Leu Asp Glu Val Met Tyr Ala Leu
 1220 1225 1230

 His Met Ser Cys His Gly Asp Ser Gly Pro Phe Gln Cys Ser Ile Cys
 1235 1240 1245

 Gln His Leu Cys Thr Asp Lys Tyr Asp Phe Thr Thr His Ile Gln Arg
 1250 1255 1260

 Gly Leu His Arg Asn Asn Ala Gln Val Glu Lys Asn Gly Lys Pro Lys
 1265 1270 1275 1280

 Glu

<210> 34
 <211> 5277
 <212> DNA
 <213> Homo sapiens

<400> 34

actcaactata gggctcgagc ggccgccccgg gcaggggcc acccaccatc atctaaagaaa 60
gataaacttg gcaaatttaca tgcagggtct tcaggcaga ataatttcgaaaatctca 120
aaggacccta tctcagatg ttctgaatac ctctgagaat agagatttgcattcaacca 180
ggatacccaa ttcaagaact ccagaatca ggagacggag acatttgtc agtttgcac 240
cattggacca aatacaatga agtattctt ctgtgctctg gttttggctg tcctggcac 300
agaattgtg ggaaggctct gtgcactgt cagatccccg aggttcagag gacggataca 360
gcaggaacga aaaaacatcc gacccaaacat tattcttgc cttaccatgatcataagatgt 420
ggagctgggg tccctgcaag tcatgaacaa aacgagaaaag attatgaaac atggggggggc 480
caccttcattc aatgcctttg tgactacacc catgtgctgc ccgtcacggc cctccatgct 540
caccggaaag tatgtgcaca atcacaatgt ctacaccaac aacgagaact gctcttcccc 600
ctcggtggcag gccatgcattc agcctcgac ttttgcgttatcttaaca acactggcta 660
cagaacagcc tttttggaa aatacctaa tgaatataat ggcagctaca tccccctgg 720
gtggcgagaa tggcttggat taatcaagaa ttctcgcttc tataattaca ctgtttgtcg 780
caatggcatc aaagaaaagc atggatttgc ttatgcaaaag gactacttca cagacttaat 840
caactaacagc agcattaatt acttcaaaaat gtctaagaga atgtatcccc ataggcccgt 900
tatgtatgtg atcagccacg ctgcggccca cggccccgag gactcagccc cacagtttc 960
taaactgtac cccaatgctt cccaaacacat aactccttagt tataactatg caccacaaat 1020
ggataaaacac tggattatgc agtacacagg accaatgctg cccatccaca tgaattttac 1080
aaacattcta cagcgcaaaa ggctccagac tttgatgtca gtggatgatt ctgtggagag 1140
gctgtataac atgctgtgg agacggggga gctggagaat acttacatca ttacaccgc 1200
cgaccatgtt taccatattt ggcagtttgg actggcataag gggaaatcca tgccatatga 1260
ctttgatatt cgtgtgcctt ttttattcg tggccaagt gtagaaccag gatcaatagt 1320
cccacagatc gttctcaaca ttgacttggc cccacacgatc ctggatattt ctgggctcga 1380
cacacctcct gatgtggacg gcaagtctgt cctcaaactt ctggaccagg aaaagccagg 1440
taacaggtt cgaacacaaaca agaaggccaa aatttggcgt gatacattcc tagtggaaag 1500
aggcaaattt ctacgtaaaga aggaagaatc cagaagaat atccaaacagt caaatcactt 1560
gccccaaatataa gaacgggtca aagaactatg ccagcaggcc aggtaccaga cagcctgtga 1620
acaaccgggg cagaagtggc aatgcattga ggatacatct ggcaagcttc gaattcaca 1680
gtgtaaagga cccagtgacc tgctcacagt ccggcagagc acgcggaaacc tctacgctcg 1740
cggcttccat gacaaagaca aagagtgcag tttagggag tctggtaacc gtggcagcag 1800
aagccaaaga aagagtcaac ggcattttt gagaaccagg gggactccaa agtacaagcc 1860
cagatttgc catactcgcc agacacgttc ctgtccgtc gaatttgaag gtgaaatata 1920
tgacataaat ctggaaagaag aagaagaatt gcaagtgttgc aaccaagaa acattgctaa 1980
gcgtcatgtat gaaggccaca agggggccaa agatctccag gcttccagt gtggcaacag 2040
gggcaggatg ctggcagata gcagcaacgc cgtggccca cttaccactg tccgagtgac 2100
acacaagtgt tttattttc ccaatgactc tattcattgt gagagagaac tgtaccaatc 2160
ggccagagcg tgaaaggacc ataaggcata cattgacaaa gagattgaag ctctgcaaga 2220
taaaattaag aatttaagag aagttagagg acatctgaag agaaggaagc ctgaggaatg 2280
tagctgcagt aaacaaagct attacaataa agagaaagggt gtaaaaaaagc aagagaaatt 2340
aaagagccat cttcacccat tcaaggaggc tgctcaggaa gtagatagca aactgcaact 2400
tttcaaggag aacaaccgtt ggaggaagaa ggagagggag gagaagagac ggcagaggaa 2460
ggggggaaagag tgacgcctgc ctggcctcac ttgcttcacg catgacaacca accactggca 2520
gacagccccg ttctggaaacc tggatctt ctgtgctgc acgagttcta acaataacac 2580
ctactgggtt ttgcgtacag ttaatgagac gcataatttt cttttctgtg agtttgcac 2640
tggctttttt gagtattttt atatgaatac agatcctt cagctcacaa atacagtgc 2700
cacggtagaa cgaggcattt tgaatcagct acacgtacaa ctaatggagc tcagaagctg 2760
tcaaggat aagcagtgc acccaagacc taagaatctt gatgttggaa ataaagatgg 2820
aggaagctat gacccatcaca gaggacagtt atggatgg tggaaaggtt aatcagcccc 2880
gtctcactgc agacatcaac tggcaaggcc tagaggagct acacagtgtg aataaaaaca 2940
tctatgatcatac cagacaaaac tacagactt gtcgttggaa ctggactaat tacttgaagg 3000

<210> 35
<211> 871
<212> PRT
<213> *Homo sapiens*

<400> 3

Met Lys Tyr Ser Cys Cys Ala Leu Val Leu Ala Val Leu Gly Thr Glu
1 5 10 15

Leu Leu Gly Ser Leu Cys Ser Thr Val Arg Ser Pro Arg Phe Arg Gly
20 25 30

Arg Ile Gln Gln Glu Arg Lys Asn Ile Arg Pro Asn Ile Ile Leu Val
35 40 45

Leu Thr Asp Asp Gln Asp Val Glu Leu Gly Ser Leu Gln Val Met Asn
50 55 60

Lys Thr Arg Lys Ile Met Glu His Gly Gly Ala Thr Phe Ile Asn Ala
65 70 75 80

Phe Val Thr Thr Pro Met Cys Cys Pro Ser Arg Ser Ser Met Leu Thr
85 90 95

Gly Lys Tyr Val His Asn His Asn Val Tyr Thr Asn Asn Glu Asn Cys
100 105 110

Ser Ser Pro Ser Trp Gln Ala Met His Glu Pro Arg Thr Phe Ala Val
115 120 125

Tyr Leu Asn Asn Thr Gly Tyr Arg Thr Ala Phe Phe Gly Lys Tyr Leu
130 135 140

Asn Glu Tyr Asn Gly Ser Tyr Ile Pro Pro Gly Trp Arg Glu Trp Leu
145 150 155 160

Gly Leu Ile Lys Asn Ser Arg Phe Tyr Asn Tyr Thr Val Cys Arg Asn
165 170 175

Gly Ile Lys Glu Lys His Gly Phe Asp Tyr Ala Lys Asp Tyr Phe Thr
180 185 190

Asp Leu Ile Thr Asn Glu Ser Ile Asn Tyr Phe Lys Met Ser Lys Arg
195 200 205

Met Tyr Pro His Arg Pro Val Met Met Val Ile Ser His Ala Ala Pro
210 215 220

His Gly Pro Glu Asp Ser Ala Pro Gln Phe Ser Lys Leu Tyr Pro Asn
225 230 235 240

Ala Ser Gln His Ile Thr Pro Ser Tyr Asn Tyr Ala Pro Asn Met Asp
245 250 255

Lys His Trp Ile Met Gln Tyr Thr Gly Pro Met Leu Pro Ile His Met
260 265 270

Glu Phe Thr Asn Ile Leu Gln Arg Lys Arg Leu Gln Thr Leu Met Ser
275 280 285

Val Asp Asp Ser Val Glu Arg Leu Tyr Asn Met Leu Val Glu Thr Gly
290 295 300

Glu Leu Glu Asn Thr Tyr Ile Ile Tyr Thr Ala Asp His Gly Tyr His
305 310 315 320

Ile Gly Gln Phe Gly Leu Val Lys Gly Lys Ser Met Pro Tyr Asp Phe
325 330 335

Asp Ile Arg Val Pro Phe Phe Ile Arg Gly Pro Ser Val Glu Pro Gly
340 345 350

Ser Ile Val Pro Gln Ile Val Leu Asn Ile Asp Leu Ala Pro Thr Ile
355 360 365

Leu Asp Ile Ala Gly Leu Asp Thr Pro Pro Asp Val Asp Gly Lys Ser
370 375 380

Val Leu Lys Leu Leu Asp Pro Glu Lys Pro Gly Asn Arg Phe Arg Thr
385 390 395 400

Asn Lys Lys Ala Lys Ile Trp Arg Asp Thr Phe Leu Val Glu Arg Gly
405 410 415

Lys Phe Leu Arg Lys Lys Glu Glu Ser Ser Lys Asn Ile Gln Gln Ser
420 425 430

Asn His Leu Pro Lys Tyr Glu Arg Val Lys Glu Leu Cys Gln Gln Ala
435 440 445

Arg Tyr Gln Thr Ala Cys Glu Gln Pro Gly Gln Lys Trp Gln Cys Ile
450 455 460

Glu Asp Thr Ser Gly Lys Leu Arg Ile His Lys Cys Lys Gly Pro Ser
465 470 475 480

Asp Leu Leu Thr Val Arg Gln Ser Thr Arg Asn Leu Tyr Ala Arg Gly
485 490 495

Phe His Asp Lys Asp Lys Glu Cys Ser Cys Arg Glu Ser Gly Tyr Arg
500 505 510

Ala Ser Arg Ser Gln Arg Lys Ser Gln Arg Gln Phe Leu Arg Asn Gln
515 520 525

Gly Thr Pro Lys Tyr Lys Pro Arg Phe Val His Thr Arg Gln Thr Arg
530 535 540

Ser Leu Ser Val Glu Phe Glu Gly Glu Ile Tyr Asp Ile Asn Leu Glu
545 550 555 560

Glu Glu Glu Leu Gln Val Leu Gln Pro Arg Asn Ile Ala Lys Arg
565 570 575

His Asp Glu Gly His Lys Gly Pro Arg Asp Leu Gln Ala Ser Ser Gly
580 585 590

Gly Asn Arg Gly Arg Met Leu Ala Asp Ser Ser Asn Ala Val Gly Pro
595 600 605

Pro Thr Thr Val Arg Val Thr His Lys Cys Phe Ile Leu Pro Asn Asp
610 615 620

Ser Ile His Cys Glu Arg Glu Leu Tyr Gln Ser Ala Arg Ala Trp Lys
625 630 635 640

Asp His Lys Ala Tyr Ile Asp Lys Glu Ile Glu Ala Leu Gln Asp Lys
645 650 655

Ile Lys Asn Leu Arg Glu Val Arg Gly His Leu Lys Arg Arg Lys Pro
660 665 670

Glu Glu Cys Ser Cys Ser Lys Gln Ser Tyr Tyr Asn Lys Glu Lys Gly
675 680 685

Val Lys Lys Gln Glu Lys Leu Lys Ser His Leu His Pro Phe Lys Glu
690 695 700

Ala Ala Gln Glu Val Asp Ser Lys Leu Gln Leu Phe Lys Glu Asn Asn
705 710 715 720

Arg Arg Arg Lys Lys Glu Arg Lys Glu Lys Arg Arg Gln Arg Lys Gly
725 730 735

Glu Glu Cys Ser Leu Pro Gly Leu Thr Cys Phe Thr His Asp Asn Asn
740 745 750

His Trp Gln Thr Ala Pro Phe Trp Asn Leu Gly Ser Phe Cys Ala Cys
755 760 765

Thr Ser Ser Asn Asn Asn Thr Tyr Trp Cys Leu Arg Thr Val Asn Glu
770 775 780

Thr His Asn Phe Leu Phe Cys Glu Phe Ala Thr Gly Phe Leu Glu Tyr
785 790 795 800

Phe Asp Met Asn Thr Asp Pro Tyr Gln Leu Thr Asn Thr Val His Thr
805 810 815

Val Glu Arg Gly Ile Leu Asn Gln Leu His Val Gln Leu Met Glu Leu
820 825 830

Arg Ser Cys Gln Gly Tyr Lys Gln Cys Asn Pro Arg Pro Lys Asn Leu
835 840 845

Asp Val Gly Asn Lys Asp Gly Gly Ser Tyr Asp Leu His Arg Gly Gln
850 855 860

Leu Trp Asp Gly Trp Glu Gly
865 870

<210> 36
<211> 1922
<212> DNA
<213> Homo sapiens

<400> 36
aaccgagaag cgctccgtaa agccatccgc acgctcagaa aggccgtcca cagggagcag 60
tttcacctcc agctctcagg catgaacctc gacgtggcta aaaagcctcc cagaacatct 120
gaacgccagg cagagtccctg tggagtggc cagggtcatg cagaaaacca atgtgtcagt 180
tgcagggctg ggaccttata ttagtggagca cgagaacgct gcattttatg tccaaatgga 240
accttccaaa atgaggaagg acaaattact tgtgaaccat gcccaagacc agaaaattct 300
ggggccctga agaccccaga agcttgaat atgtctgaat gtggaggkct gtgtcaacct 360
actgaatatt ctgcagatgg ctttgcacct tgccagctct gtgcctggg casgttccag 420
cctgaagctg gtcgaacttc ctgcttcccc tggaggaggg gccttgcac caaacatcag 480
ggagctactt ctttcagga ctgtgaaacc agagttcaat gttcacctgg acatttctac 540
aacaccacca ctcaccgatg tattcggtgc ccagtggaa cataccagcc tgaatttgg 600
aaaaataatt gtgttcttg cccaggaat actacgactg actttgatgg ctccacaaac 660
ataacccagt gtaaaaaacag aagatgtgga ggggagctgg gagatttcac tgggtacatt 720
gaatcccaa actacccagg caattacca gccaacacccg agtgtacgtg gaccatcaac 780
ccaccccca agcgccgcat cctgatcgtg gtccctgaga tcttcctgcc catagaggac 840
gactgtgggg actatctggt gatgcggaaa acctcttcat ccaattctgt gacaacatat 900
gaaacctgcc agacctacga acgccccatc gccttcaccc ctccatgttgg 960
attcagttca agtccaatga agggAACAGC gctagagggt tccaggccc atacgtgaca 1020
tatgatgagg actaccagga actcattgaa gacatagttc gagatggcag gctctatgca 1080
tctgagaacc atcaggaaat acttaaggat aagaaactta tcaaggctct gtttgcatt 1140
ctggcccatc cccagaacta ttcaagttc acagcccagg agtcccggaa gatgtttcca 1200
agatcggtca tccgattgtc acgttccaaa gtgtccagggt ttttggacc ttacaaatga 1260
ctcagcccac gtgcactca atacaaatgt tctgtatag ggttggggg acagagctgt 1320
cttccttctg catgtcagca cagtcggta ttgtgcctc ccgtatctgt gactcattag 1380
agttcaattt ttatagataa tacagatatt ttgttaatt gaacttgggtt ttttttccc 1440
agcatcggtt atgttagactg agaatggctt tgagtggcat cagttctca ctgctgtgg 1500
cggtatgttt ggatagatca agggctggct gagctggact ttggtcagcc taggtgagac 1560
tcacctgtcc ttctgggtc ttactccctc tcaaggagtc ttttttttttggaa aggaggccac 1620
agaataagct gcttattctg aaacttcagc ttctcttagc ccggccctct ctaagggagc 1680
cctctgcaact cgtgtgcagg ctctgaccag gcagaacagg caagaggaga ggaaggaga 1740
cccctgcagg ctccctccac ccacccgttgg acctggggagg actcagtttc tccacagcct 1800
tctccagcct gtgtgataca agtttgcattc caggaacttg agttctaaagc agtgctcg 1860
aaaaaaaaaa gcagaaagaa ttagaaataa ataaaaacta agcacttctg gagacataaa 1920
aa 1922

<210> 37
<211> 1179
<212> DNA

<213> Homo sapiens

<400> 37

atgaacctcg acgtggctaa aaagcctccc agaacatctg aacgccaggc agagtcctgt 60
ggagtggcc agggcatgc agaaaaccaa tgggtcagtt gcaggcctgg gacctattat 120
gatggagcac gagaacgctg catttatgt ccaaatggaa cttccaaaaa tggaaagga 180
caaatgactt gtgaaccatg cccaagacca ggaaattctg gggccctgaa gaccccgaaa 240
gcttggata tgtctgaatg tggaggkctg tgtcaaccta ctgaatattc tgcatggc 300
tttgcacctt gccagctctg tgccctggc asgttccagc ctgaagctgg tcgaacttcc 360
tgcttccct gtggaggagg ctttgccacc aaacatcagg gagctacttc ctttcaggac 420
tgtgaaacca gagttcaatg ttccaccttggaa catttctaca acaccaccac tcaccgatgt 480
attcggtgcc cagtggaaac ataccagcct gaatttggaa aaaataattt tgtttcttgc 540
ccagggaaata ctacgactga ctttgatggc tccacaaaaca taacccagtg taaaaacaga 600
agatgtggag gggagctggg agatttcaact gggtacattg aatccccaaa ctacccaggc 660
aattacccag ccaacaccga gtgtacgtgg accatcaacc caccccccaa ggcggcgtac 720
ctgatcggtgg tccctgagat cttccctgccc atagaggacg actgtggga ctatctgg 780
atgcggaaaa ccttttcattc caattctgtg acaacatatg aaacctgcca gacctacgaa 840
cgccccatcg ctttcacccctc caggtcaaag aagctgtggaa ttcaagttcaa gtccaaatgaa 900
gggaaacagcg ctagagggtt ccaggtccca tacgtgacat atgatgagga ctaccaggaa 960
ctcattgaag acatagttcg agatggcagg ctctatgcat ctgagaacca tcagggaaata 1020
cttaaggata agaaacttat caaggctctg tttgatgtcc tggcccatcc ccagaacttat 1080
ttcaagtaca cagcccgagga gtcccggagag atggttccaa gatcggtcat ccgattgcta 1140
cgttccaaag tgtccaggtt tttgagacct tacaatga 1179

<210> 38

<211> 392

<212> PRT

<213> Homo sapiens

<220>

<221> UNSURE

<222> (111)

<223> "Xaa" at position 111 can be any amino acid.

<400> 38

Met Asn Leu Asp Val Ala Lys Lys Pro Pro Arg Thr Ser Glu Arg Gln
1 5 10 15

Ala Glu Ser Cys Gly Val Gly Gln Gly His Ala Glu Asn Gln Cys Val
20 25 30

Ser Cys Arg Ala Gly Thr Tyr Tyr Asp Gly Ala Arg Glu Arg Cys Ile
35 40 45

Leu Cys Pro Asn Gly Thr Phe Gln Asn Glu Glu Gly Gln Met Thr Cys
50 55 60

Glu Pro Cys Pro Arg Pro Gly Asn Ser Gly Ala Leu Lys Thr Pro Glu
65 70 75 80

Ala Trp Asn Met Ser Glu Cys Gly Gly Leu Cys Gln Pro Thr Glu Tyr
85 90 95

Ser Ala Asp Gly Phe Ala Pro Cys Gln Leu Cys Ala Leu Gly Xaa Phe
100 105 110

Gln Pro Glu Ala Gly Arg Thr Ser Cys Phe Pro Cys Gly Gly Leu
115 120 125

Ala Thr Lys His Gln Gly Ala Thr Ser Phe Gln Asp Cys Glu Thr Arg
130 135 140

Val Gln Cys Ser Pro Gly His Phe Tyr Asn Thr Thr Thr His Arg Cys
145 150 155 160

Ile Arg Cys Pro Val Gly Thr Tyr Gln Pro Glu Phe Gly Lys Asn Asn
165 170 175

Cys Val Ser Cys Pro Gly Asn Thr Thr Thr Asp Phe Asp Gly Ser Thr
180 185 190

Asn Ile Thr Gln Cys Lys Asn Arg Arg Cys Gly Glu Leu Gly Asp
195 200 205

Phe Thr Gly Tyr Ile Glu Ser Pro Asn Tyr Pro Gly Asn Tyr Pro Ala
210 215 220

Asn Thr Glu Cys Thr Trp Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile
225 230 235 240

Leu Ile Val Val Pro Glu Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly
245 250 255

Asp Tyr Leu Val Met Arg Lys Thr Ser Ser Ser Asn Ser Val Thr Thr
260 265 270

Tyr Glu Thr Cys Gln Thr Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg
275 280 285

Ser Lys Lys Leu Trp Ile Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala
290 295 300

Arg Gly Phe Gln Val Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu
305 310 315 320

Leu Ile Glu Asp Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn
325 330 335

His Gln Glu Ile Leu Lys Asp Lys Lys Leu Ile Lys Ala Leu Phe Asp
340 345 350

Val Leu Ala His Pro Gln Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser
355 360 365

Arg Glu Met Phe Pro Arg Ser Phe Ile Arg Leu Leu Arg Ser Lys Val
370 375 380

Ser Arg Phe Leu Arg Pro Tyr Lys
385 390

<210> 39
<211> 392
<212> PRT
<213> Homo sapiens

<220>
<221> UNSURE
<222> (111)
<223> "Xaa" at position 111 can be any amino acid.

<400> 39
Met Asn Leu Asp Val Ala Lys Lys Pro Pro Arg Thr Ser Glu Arg Gln
1 5 10 15

Ala Glu Ser Cys Gly Val Gly Gln Gly His Ala Glu Asn Gln Cys Val
20 25 30

Ser Cys Arg Ala Gly Thr Tyr Tyr Asp Gly Ala Arg Glu Arg Cys Ile
35 40 45

Leu Cys Pro Asn Gly Thr Phe Gln Asn Glu Glu Gly Gln Met Thr Cys
50 55 60

Glu Pro Cys Pro Arg Pro Gly Asn Ser Gly Ala Leu Lys Thr Pro Glu
65 70 75 80

Ala Trp Asn Met Ser Glu Cys Gly Leu Cys Gln Pro Thr Glu Tyr
85 90 95

Ser Ala Asp Gly Phe Ala Pro Cys Gln Leu Cys Ala Leu Gly Xaa Phe
100 105 110

Gln Pro Glu Ala Gly Arg Thr Ser Cys Phe Pro Cys Gly Gly Leu
115 120 125

Ala Thr Lys His Gln Gly Ala Thr Ser Phe Gln Asp Cys Glu Thr Arg
130 135 140

Val Gln Cys Ser Pro Gly His Phe Tyr Asn Thr Thr Thr His Arg Cys
145 150 155 160

Ile Arg Cys Pro Val Gly Thr Tyr Gln Pro Glu Phe Gly Lys Asn Asn
165 170 175

Cys Val Ser Cys Pro Gly Asn Thr Thr Thr Asp Phe Asp Gly Ser Thr
180 185 190

Asn Ile Thr Gln Cys Lys Asn Arg Arg Cys Gly Gly Glu Leu Gly Asp
195 200 205

Phe Thr Gly Tyr Ile Glu Ser Pro Asn Tyr Pro Gly Asn Tyr Pro Ala
210 215 220

Asn Thr Glu Cys Thr Trp Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile
225 230 235 240

Leu Ile Val Val Pro Glu Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly
245 250 255

Asp Tyr Leu Val Met Arg Lys Thr Ser Ser Ser Asn Ser Val Thr Thr
260 265 270

Tyr Glu Thr Cys Gln Thr Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg
275 280 285

Ser Lys Lys Leu Trp Ile Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala
290 295 300

Arg Gly Phe Gln Val Pro Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu
305 310 315 320

Leu Ile Glu Asp Ile Val Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn
325 330 335

His Gln Glu Ile Leu Lys Asp Lys Lys Leu Ile Lys Ala Leu Phe Asp
340 345 350

Val Leu Ala His Pro Gln Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser
355 360 365

Arg Glu Met Phe Pro Arg Ser Phe Ile Arg Leu Leu Arg Ser Lys Val
370 375 380

Ser Arg Phe Leu Arg Pro Tyr Lys
385 390

<210> 40
<211> 162
<212> PRT
<213> Mouse

<400> 40
 Thr Ile Asn Pro Pro Pro Lys Arg Arg Ile Leu Ile Val Val Pro Glu
 1 5 10 15

 Ile Phe Leu Pro Ile Glu Asp Asp Cys Gly Asp Tyr Leu Val Met Arg
 20 25 30

 Lys Thr Ser Ser Ser Asn Ser Val Thr Thr Tyr Glu Thr Cys Gln Thr
 35 40 45

 Tyr Glu Arg Pro Ile Ala Phe Thr Ser Arg Ser Lys Lys Leu Trp Ile
 50 55 60

 Gln Phe Lys Ser Asn Glu Gly Asn Ser Ala Arg Gly Phe Gln Val Pro
 65 70 75 80

 Tyr Val Thr Tyr Asp Glu Asp Tyr Gln Glu Leu Ile Glu Asp Ile Val
 85 90 95

 Arg Asp Gly Arg Leu Tyr Ala Ser Glu Asn His Gln Glu Ile Leu Lys
 100 105 110

 Asp Lys Lys Leu Ile Lys Ala Leu Phe Asp Val Leu Ala His Pro Gln
 115 120 125

 Asn Tyr Phe Lys Tyr Thr Ala Gln Glu Ser Arg Glu Met Phe Pro Arg
 130 135 140

 Ser Phe Ile Arg Leu Leu Arg Ser Lys Val Ser Arg Phe Leu Arg Pro
 145 150 155 160

 Tyr Lys

<210> 41
 <211> 2840
 <212> DNA
 <213> Homo sapiens

<400> 41
 cagcggccgc tgaattctag ggcgggttcg cgccccgaag gctgagagact ggcgctgctc 60
 gtgccctgtg tgccagacgg cggagctccg cggccggacc ccgcggccccc gctttgctgc 120
 cgactggagt ttggggaaag aaactctcc tgcggccaga agatttcttc ctggcgaaag 180
 ggacagcgaa agatgagggt ggcaggaaga gaaggcgctt tctgtctgcc ggggtcgac 240
 cgcgagaggg cagtgcctatg ttcctctcca tccttagtggc gctgtgcctg tggctgcacc 300
 tggcgctggg cgtgcgcggc ggcggctgcg aggccgtgcg catccctatg tgccggcaca 360
 tgccctggaa catcacgcgg atgccaacc acctgcacca cagcacgcag gagaacgcca 420
 tcctggccat cgagcgtac gaggagctgg tggacgtcaa ctgcagcgcc gtgctgcgt 480
 tcttcttctg tgccatgtac ggcggccattt gcaccctggaa gttcctgcac gaccctatca 540
 agccgtgcaa gtcgggtgc caacgcgcgc gcgacgactg cgagccctc atgaagatgt 600

acaaccacag ctggcccgaa agcctggcct gcgacgagct gcctgtctat gaccgtggcg 660
tgtgcatttc gcctgaagcc atcgtcacgg acctcccgga ggatgttaag tggatagaca 720
tcacaccaga catgatggta cagggaaaggc ctcttgatgt tgactgtaaa cgccctaagcc 780
ccgatcggtg caagtgtaaa aaggtgaagc caactttggc aacgtatctc agcaaaaact 840
acagctatgt tattcatgcc aaaataaaag ctgtcagag gagtggtgc aatgaggtca 900
caacgggtt ggatgtaaaa gagatctca agtcctcatc acccatccc cgaactcaag 960
tcccgcctcat tacaatttc tcttgccagt gtccacacat cctgccccat caagatgttc 1020
tcatcatgtg ttacgagtgg cgttcaagga ttagtgcattc tggaaattgc tttagttgaaa 1080
aatggagaga tcagcttagt aaaagatcca tacagtggga agagaggctg caggaacagc 1140
ggagaacagt tcaggacaag aagaaaacag ccgggcccac cagtcgtagt aatccccca 1200
aaccAAAGGG aaagcctcct gctcccaaAC cagccagtcc caagaagaAC attaaaACTA 1260
ggagtgcCcA gaagagaaca aaccggaaaaa gagtggtgagc taactagtt cccaaAGCggA 1320
gacttccgac ttccttacag gatgaggctg ggattgcct gggacagcct atgtaaggcc 1380
atgtgcccct tgccttaaca actcactgca gtgtcttca tagacacatc ttgcagcatt 1440
tttcttaagg ctatgctca gttttctt gtaagccatc acaagccata gtggtaggtt 1500
tgcccttgg tacagaaggt gagttaaAGC tggggaaaaa ggcttattgc attgcattca 1560
gagtaacctg tgtcataCTC ctagaagagt agggAAAATA atgtttgttA caattcgacc 1620
taatatgtgc attgtaaaAT aaatGCCATA tttCAAACAA aacacgtAA tttttacAG 1680
tatgttttat tacctttGA tatctgttGT tgcaatgttA gtgtttttt AAAATGtGAT 1740
gaaaatataa tgTTTtaAG aaggaacagt agtggatGA atgtttAAAG atctttatgt 1800
gtttatggTC tgcagaagGA ttttGtGAt gaaaggGGAt ttttGAAAAttAgagaAG 1860
tagcatatgg aaaattataa tggTTTTT taccatgac ttcaatgac ttcaatgttC gtttttagct 1920
agaaacttAA aaacAAAAAt aataataAAAG aaaaataAAAT aaaaaggAGA ggcagacaAt 1980
gtctggattc ctgttttttG gttacctgtat ttccatgatc atgtgttcc ttgtcaacac 2040
cctcttaAGC agcaccAGAA acagtggatt tgcgtgtacc attaggagtt aggtactaat 2100
tagttggcta atgctcaagt attttatacc cacaagagAG gtatgtcaCT catcttactt 2160
cccaggacat ccaccctgag aataattGA caagcttAA AATGGCCTC atgtggatGc 2220
caaattttgt ttttcttcat ttaaatattt tctttgccta aatacatgtg agaggagtt 2280
aatataAAAtG tacagagAGG aaagttgagt tccacctctG aaatgagaAt tacttgacAG 2340
ttgggatact ttaatcAGAA aaaaAGAAct tatttgcAGC attttatCAA caaatttcat 2400
aattgtggac aattggaggc atttatttTA aaaaACAAtt ttattggcct ttgtctaaca 2460
cagtaagcat gtattttata aggcatTCaa taaatgcaca acgcccAAAG gaaataAAAt 2520
cctatctaAt cctactctCC actacacAGA ggtaatcaCT attagtattt tggcatatta 2580
ttctccaggt gtttgcTTAt gcacttataa aatgatttGA acaaataAAAt ctaggaacct 2640
gtatacatgt gtttcataAC ctgcctcctt tgcttggccc ttatttgAGA taattttcc 2700
tgtcaagAAA gcagAAACCA tctcatttCt aacagctgtG ttatattCCA tagtatGcat 2760
tactcaacAA actgttGtGC tattggatac tttaggtggtt tcttcactGA caatactgAA 2820
taaacatctc accggaaAtC 2840

<210> 42
<211> 1041
<212> DNA
<213> Homo sapiens

<400> 42
atgttcctct ccatcctagt ggcgctgtgc ctgtggctgc acctggcgct gggcgtgcgc 60
ggcgccct gcgaggcggt gcgcatccct atgtgcggc acatgcctg gaacatcacg 120
cgatgcCcA accacctgca ccacagcAcG caggagaAcG ccattctggc catcgagcag 180
tacgaggAGC tggggacgt gaaACTgcAGC gcccgtgc gcttcttCt ctgtgcCATg 240
tacgcGCCA tttgcaccct ggagttcctg cacgacccta tcaagccgtg caagtgcgtg 300

tgccaaacgcg cgcgacga ctgcgagccc ctcatgaaga tgtacaacca cagctggccc 360
gaaaggcctgg cctgcacga gctgcctgtc tatgaccgtg gcgtgtgcat ttgcgcctgaa 420
gccatcgta cggacacctcc ggaggatgtt aagtggatag acatcacacc agacatgatg 480
gtacaggaaa ggcctcttga ttttgcgt aaacgcctaa gccccgatcg gtgcaagtgt 540
aaaaaggtga agccaacttt ggcaacgtat ctcagcaaaa actacagcta ttgttattcat 600
gccaaaataa aagctgtca gaggagtggc tgcaatgagg tcacaacggt ggtggatgta 660
aaagagatct tcaagtccctc atcaccatc cctcgaactc aagtcccgct cattacaaat 720
tcttcgttgc agtgtccaca catcctgccc catcaagatg ttctcatcat gtgttacgag 780
tggcggttcaa ggatgtatgtct tcttggaaat tgcttagttg aaaaatggag agatcagctt 840
agtaaaaagat ccatacagtg ggaagagagg ctgcaggaac agcggagaac agttcaggac 900
aagaagaaaa cagccggcgc caccagtcgt agtaatcccc ccaaaccaaa gggaaagcct 960
cctgctccca aaccagccag tcccaagaag aacattaaaa ctaggagtgc ccagaagaga 1020
acaaacccga aaagagtgtg a 1041

<210> 43

<211> 346

<212> PRT

<213> Homo sapiens

<400> 43

Met Phe Leu Ser Ile Leu Val Ala Leu Cys Leu Trp Leu His Leu Ala
1 5 10 15

Leu Gly Val Arg Gly Ala Pro Cys Glu Ala Val Arg Ile Pro Met Cys
20 25 30

Arg His Met Pro Trp Asn Ile Thr Arg Met Pro Asn His Leu His His
35 40 45

Ser Thr Gln Glu Asn Ala Ile Leu Ala Ile Glu Gln Tyr Glu Glu Leu
50 55 60

Val Asp Val Asn Cys Ser Ala Val Leu Arg Phe Phe Phe Cys Ala Met
65 70 75 80

Tyr Ala Pro Ile Cys Thr Leu Glu Phe Leu His Asp Pro Ile Lys Pro
85 90 95

Cys Lys Ser Val Cys Gln Arg Ala Arg Asp Asp Cys Glu Pro Leu Met
100 105 110

Lys Met Tyr Asn His Ser Trp Pro Glu Ser Leu Ala Cys Asp Glu Leu
115 120 125

Pro Val Tyr Asp Arg Gly Val Cys Ile Ser Pro Glu Ala Ile Val Thr
130 135 140

Asp Leu Pro Glu Asp Val Lys Trp Ile Asp Ile Thr Pro Asp Met Met
145 150 155 160

Val Gln Glu Arg Pro Leu Asp Val Asp Cys Lys Arg Leu Ser Pro Asp
 165 170 175

 Arg Cys Lys Cys Lys Lys Val Lys Pro Thr Leu Ala Thr Tyr Leu Ser
 180 185 190

 Lys Asn Tyr Ser Tyr Val Ile His Ala Lys Ile Lys Ala Val Gln Arg
 195 200 205

 Ser Gly Cys Asn Glu Val Thr Thr Val Val Asp Val Lys Glu Ile Phe
 210 215 220

 Lys Ser Ser Ser Pro Ile Pro Arg Thr Gln Val Pro Leu Ile Thr Asn
 225 230 235 240

 Ser Ser Cys Gln Cys Pro His Ile Leu Pro His Gln Asp Val Leu Ile
 245 250 255

 Met Cys Tyr Glu Trp Arg Ser Arg Met Met Leu Leu Glu Asn Cys Leu
 260 265 270

 Val Glu Lys Trp Arg Asp Gln Leu Ser Lys Arg Ser Ile Gln Trp Glu
 275 280 285

 Glu Arg Leu Gln Glu Gln Arg Arg Thr Val Gln Asp Lys Lys Lys Thr
 290 295 300

 Ala Gly Arg Thr Ser Arg Ser Asn Pro Pro Lys Pro Lys Gly Lys Pro
 305 310 315 320

 Pro Ala Pro Lys Pro Ala Ser Pro Lys Lys Asn Ile Lys Thr Arg Ser
 325 330 335

 Ala Gln Lys Arg Thr Asn Pro Lys Arg Val
 340 345

<210> 44
 <211> 749
 <212> DNA
 <213> Homo sapiens

<400> 44
 cggcaccaag agcactggcc aagtcaagtt ctctcgagag agtctctaga agacatgatg 60
 ctacactcag ctttgggtct ctgccttta ctcgtcacag tttcttccaa ctttgccatt 120
 gcaataaaaa aggaaaagag gcctcctcag acactctcaa gagatgggg agatgacatc 180
 acttgggtac aaacttatga agaaggcttc tttatgctc aaaaaagtaa gaagccatta 240
 atggttattc atcacctgga ggattgtcaa tactctcaag cactaaagaa agtatttgc 300
 caaatgaag aaatacaaga aatggctcag aataagttca tcattgtaaa ctttatgcat 360
 gaaaccactg ataagaattt atcacctgat gggcaatatg tgcctagaat catgtttgt 420
 gacccttctt taacagttt agctgacata gctggaagat actctaacag attgtacaca 480

tatgagcctc gggatttacc cctattgata gaaaacatga agaaagcatt aagacttatt 540
cagtcagagc tataagagat gatagaaaaa agccttcact tcaaagaagt caaatttcat 600
gaagaaaaacc tctggcacat tgacaaatac taaatgtgca agtatataga ttttgaata 660
ttactattta gttttttaa tgtgttgca atagtcttat taaaataaat gttttttaaa 720
tctgaaaaaaaaaaaaaaaaa 749

<210> 45
<211> 501
<212> DNA
<213> Homo sapiens

<400> 45
atgatgctac actcagctt gggtctctgc ctcttactcg tcacagttc ttccaacctt 60
gccattgcaa taaaaaagga aaagaggcct cctcagacac tctcaagagg atggggagat 120
gacatcactt gggtacaaac ttatgaagaa ggtctctttt atgctcaaaa aagtaagaag 180
ccattaatgg ttattcatca cctggagat tgtaatact ctcaagcact aaagaaagta 240
tttgc当地aa atgaagaaat acaagaaatg gctcagaata agttcatcat gctaaacctt 300
atgc当地aaa ccactgataa gaatttatca cctgatggc aatatgtgcc tagaatcatg 360
ttttagacc cttcttaac agtttagagct gacatagctg gaagataactc taacagattg 420
tacacatatg agcctcgggaa ttaccccta ttgatagaaa acatgaagaa agcattaaga 480
cttattcagt cagagctata a 501

<210> 46
<211> 166
<212> PRT
<213> Homo sapiens

<400> 46
Met Met Leu His Ser Ala Leu Gly Leu Cys Leu Leu Leu Val Thr Val
1 5 10 15

Ser Ser Asn Leu Ala Ile Ala Ile Lys Lys Glu Lys Arg Pro Pro Gln
20 25 30

Thr Leu Ser Arg Gly Trp Gly Asp Asp Ile Thr Trp Val Gln Thr Tyr
35 40 45

Glu Glu Gly Leu Phe Tyr Ala Gln Lys Ser Lys Lys Pro Leu Met Val
50 55 60

Ile His His Leu Glu Asp Cys Gln Tyr Ser Gln Ala Leu Lys Lys Val
65 70 75 80

Phe Ala Gln Asn Glu Glu Ile Gln Glu Met Ala Gln Asn Lys Phe Ile
85 90 95

Met Leu Asn Leu Met His Glu Thr Thr Asp Lys Asn Leu Ser Pro Asp
100 105 110

Gly Gln Tyr Val Pro Arg Ile Met Phe Val Asp Pro Ser Leu Thr Val
115 120 125

Arg Ala Asp Ile Ala Gly Arg Tyr Ser Asn Arg Leu Tyr Thr Tyr Glu
130 135 140

Pro Arg Asp Leu Pro Leu Leu Ile Glu Asn Met Lys Lys Ala Leu Arg
145 150 155 160

Leu Ile Gln Ser Glu Leu
165

<210> 47
<211> 3493
<212> DNA
<213> Homo sapiens

<400> 47

agcggccggg gccacgatgg agcgcgacgg ctgcgcgggg ggcgggagcc gcggcgccga 60
gggcgggcgc gctccccggg agggcccgcc gggaaacggc cgcgatcgcc gccgcagcca 120
cgctccggag gcccgggg acccgcaaggc ggccgcgtcc ttgctgcccc ctatggacgt 180
ggggggaggag ccgcggaga aggccgcgcg cgccgcact gccaaggacc ccaacaccta 240
taaagtactc tcgcgttat tgcgtatgc tgcgttaca acaatacttg gttgttatatt 300
tgggttggaaa ccaagctgtg ccaaagaagt taaaagttgc aaaggtcgct gtttcgagag 360
aacatttggg aactgtcgct gtgtatgtc ctgtgttag cttggaaact gctgtttaga 420
ttaccaggag acgtgcatacg aaccagaaca tatatggact tgcaacaat tcaggtgtgg 480
tgagaaaaagg ttgaccagaa gcctctgtgc ctgttcagat gactgcaagg acaagggcga 540
ctgctgcattc aactacagtt ctgtgtgtca aggtgagaaa agttggtag aagaaccatg 600
tgagagcatt aatgagccac agtgcggcagc aggtttgaa acgcctctta ccctcttatt 660
ttctttggat ggattcaggg cagaatattt acacacttgg ggtggacttc ttccctgttat 720
tagcaaacta aaaaaatgtg gaacatatac taaaacatg agaccgtat atccaacaaa 780
aactttcccc aatcaactaca gcattgtcac cggattgtat ccagaatctc atggcataat 840
cgacaataaa atgtatgtac caaaaatgaa tgcttccttt tcactaaaa gtaaagagaa 900
attnaatctt gagttgtaca aaggagaacc aatttgggtc acagctaagt atcaaggcct 960
caagtctggc acatttttct ggccaggatc agatgtggaa attaaggaa ttttcccaga 1020
catctataaa atgtataatg gttcgtatcc atttgaagaa aggattttag ctgttcttca 1080
gtggctacag cttcttaaag atgaaagacc acactttac actctgtatt tagaagaacc 1140
agattcttca ggtcattcat atggaccagt cagcagtgaa gtcataaag cttgcagag 1200
ggttgatggt atgggtggta tgctgtatgg tggctgtaaa gagctgaact tgacagatg 1260
cctgaacctc atccttattt cagatcatgg catggacaaa ggcagtgtt agaaaatacat 1320
atatactgaat aaatatttgg gggatgttaa aaatattaaa gttatctatg gacctgcagc 1380
tcgattgaga ccctctgtat tcccagatata atactattca tttaactatg aaggcattgc 1440
ccgaaatctt tcttgcggg aaccaaaccg gcacttcaaa ctttacatg aacatttctt 1500
acctaaggctt ttgcactttg ctaagagtga tagaatttgg cccttgacat tctatggaa 1560
ccctcagtgg caacttgcac tgaatccctc agaaaggaaa tatttggaa gtggatttca 1620
tggctctgac aatgtatccc caaatatgca agccctctt gttggctatg gacctggatt 1680
caagcatggc attgaggctg acacccatgg aaacattgaa gtctataact taatgtgtga 1740
tttactgaat ttgcacccgg ctccttaataa cggactatcat ggaagtccta accaccttct 1800
aaagaatctt gtttatacgc caaagcatcc caaagaagtg cacccttgg tacagtgcgg 1860
cttcacaaga aaccccgag ataacccatgg ctgcgtatgtt aacccttcga ttttgcggat 1920

tgaggattt caaacacagt tcaatctgac tgtggcagaa gagaagatta ttaagcatga 1980
 aactttaccc tatggaagac ctagagttct ccagaaggaa aacaccatct gtcttcttc 2040
 ccagcaccag tttatgagtg gatacagcca agacatctta atgcccctt ggacatccta 2100
 taccgtggac agaaatgaca gtttctctac ggaagacttc tccaactgtc tgtaccagga 2160
 cttagaatt cctcttagtc ctgtccataa atgttcattt tataaaaata acaccaaagt 2220
 gagttacggg ttcctctccc caccacaact aaataaaaat tcaagtggaa tatattctga 2280
 agctttgcct actacaaata tagtgccaat gtaccagagt ttcaagttt tatggcgcta 2340
 cttagtgc accctactgc gaaagtatgc tgaagaaaga aatggtgtca atgtcgtcag 2400
 tggtcctgtg tttgactttg attatgtgg acgttgttat tccttagaga atctgaggca 2460
 aaaaagaaga gtcatccgta accaagaaaat tttgattcca actcaacttct ttattgtgct 2520
 aacaagctgt aaagatacat ctcagacgcc tttgcactgt gaaaacctag acaccttagc 2580
 tttcattttc cctcacagga ctgataacag cgagagctgt gtgcattggg agcatgactc 2640
 ctcatgggtt gaagaattgt taatgttaca cagagcacgg atcacagatg ttgagcacat 2700
 cactggactc agcttctatc aacaaagaaa agagccagtt tcagacattt taaagttgaa 2760
 aacacatttgc ccaaccttta gccaagaaga ctgatatgtt ttttatcccc aaacaccatg 2820
 aatcttttg agagaacctt atattttata tagtccctcta gctacactat tgcatgttc 2880
 agaaaactgtc gaccagagtt agaacggagc cctcgggttat gcggacatct cagggaaact 2940
 tgcgtactca gcacagcagt ggagagtgtt cttgttgaat ttgcacata tttgaatgtg 3000
 taagcattgt atacattgtt caagttcggg ggaataaaaga cagaccacac ctaaaactgc 3060
 cttagtgcctt ctcttaaagg agaagtagct gtgaacatttgc tctggataacc agatatttga 3120
 atctttctta ctattggtaa taaaccttga tggcattggg caaacagtagt acttataatgta 3180
 gggttgggtt agcccatgtt atgtgactat ctttatgaga attttaaagt gttctggat 3240
 atcttttaac ttggagtttcc atttcttttca attgtgactatca aaaaaaaaaat taacagaagc 3300
 caaaataactt ctgagacctt gtttcaatct ttgtgtata tccccctaaaa atccaaagtta 3360
 ttaatcttat gtgtttctt ttttttttgattttt tgattggatt ttcttagatt taatggttca 3420
 aatgagttca actttgaggg acgatctttg aatataacttta cctattataa aatcttactt 3480
 tgtattttgtat tttt 3493

<210> 48

<211> 925

<212> PRT

<213> Homo sapiens

<400> 48

Met	Glu	Arg	Asp	Gly	Cys	Ala	Gly	Gly	Ser	Arg	Gly	Gly	Glu	Gly
1														
													10	
														15

Gly	Arg	Ala	Pro	Arg	Glu	Gly	Pro	Ala	Gly	Asn	Gly	Arg	Asp	Arg	Gly
														20	
															30

Arg	Ser	His	Ala	Ala	Glu	Ala	Pro	Gly	Asp	Pro	Gln	Ala	Ala	Ala	Ser
														35	
															40
															45

Leu	Leu	Ala	Pro	Met	Asp	Val	Gly	Glu	Glu	Pro	Leu	Glu	Lys	Ala	Ala
															50
															55
															60

Arg	Ala	Arg	Thr	Ala	Lys	Asp	Pro	Asn	Thr	Tyr	Lys	Val	Leu	Ser	Leu
															65
															70
															75
															80

Val Leu Ser Val Cys Val Leu Thr Thr Ile Leu Gly Cys Ile Phe Gly

85	90	95
Leu Lys Pro Ser Cys Ala Lys Glu Val Lys Ser Cys Lys Gly Arg Cys		
100	105	110
Phe Glu Arg Thr Phe Gly Asn Cys Arg Cys Asp Ala Ala Cys Val Glu		
115	120	125
Leu Gly Asn Cys Cys Leu Asp Tyr Gln Glu Thr Cys Ile Glu Pro Glu		
130	135	140
His Ile Trp Thr Cys Asn Lys Phe Arg Cys Gly Glu Lys Arg Leu Thr		
145	150	155
Arg Ser Leu Cys Ala Cys Ser Asp Asp Cys Lys Asp Lys Gly Asp Cys		
165	170	175
Cys Ile Asn Tyr Ser Ser Val Cys Gln Gly Glu Lys Ser Trp Val Glu		
180	185	190
Glu Pro Cys Glu Ser Ile Asn Glu Pro Gln Cys Pro Ala Gly Phe Glu		
195	200	205
Thr Pro Pro Thr Leu Leu Phe Ser Leu Asp Gly Phe Arg Ala Glu Tyr		
210	215	220
Leu His Thr Trp Gly Gly Leu Leu Pro Val Ile Ser Lys Leu Lys Lys		
225	230	235
Cys Gly Thr Tyr Thr Lys Asn Met Arg Pro Val Tyr Pro Thr Lys Thr		
245	250	255
Phe Pro Asn His Tyr Ser Ile Val Thr Gly Leu Tyr Pro Glu Ser His		
260	265	270
Gly Ile Ile Asp Asn Lys Met Tyr Asp Pro Lys Met Asn Ala Ser Phe		
275	280	285
Ser Leu Lys Ser Lys Glu Lys Phe Asn Pro Glu Trp Tyr Lys Gly Glu		
290	295	300
Pro Ile Trp Val Thr Ala Lys Tyr Gln Gly Leu Lys Ser Gly Thr Phe		
305	310	315
320		
Phe Trp Pro Gly Ser Asp Val Glu Ile Asn Gly Ile Phe Pro Asp Ile		
325	330	335
Tyr Lys Met Tyr Asn Gly Ser Val Pro Phe Glu Glu Arg Ile Leu Ala		
340	345	350
Val Leu Gln Trp Leu Gln Leu Pro Lys Asp Glu Arg Pro His Phe Tyr		

355

360

365

Thr Leu Tyr Leu Glu Glu Pro Asp Ser Ser Gly His Ser Tyr Gly Pro
 370 375 380

Val Ser Ser Glu Val Ile Lys Ala Leu Gln Arg Val Asp Gly Met Val
 385 390 395 400

Gly Met Leu Met Asp Gly Leu Lys Glu Leu Asn Leu His Arg Cys Leu
 405 410 415

Asn Leu Ile Leu Ile Ser Asp His Gly Met Glu Gln Gly Ser Cys Lys
 420 425 430

Lys Tyr Ile Tyr Leu Asn Lys Tyr Leu Gly Asp Val Lys Asn Ile Lys
 435 440 445

Val Ile Tyr Gly Pro Ala Ala Arg Leu Arg Pro Ser Asp Val Pro Asp
 450 455 460

Lys Tyr Tyr Ser Phe Asn Tyr Glu Gly Ile Ala Arg Asn Leu Ser Cys
 465 470 475 480

Arg Glu Pro Asn Gln His Phe Lys Pro Tyr Leu Lys His Phe Leu Pro
 485 490 495

Lys Arg Leu His Phe Ala Lys Ser Asp Arg Ile Glu Pro Leu Thr Phe
 500 505 510

Tyr Leu Asp Pro Gln Trp Gln Leu Ala Leu Asn Pro Ser Glu Arg Lys
 515 520 525

Tyr Cys Gly Ser Gly Phe His Gly Ser Asp Asn Val Phe Ser Asn Met
 530 535 540

Gln Ala Leu Phe Val Gly Tyr Gly Pro Gly Phe Lys His Gly Ile Glu
 545 550 555 560

Ala Asp Thr Phe Glu Asn Ile Glu Val Tyr Asn Leu Met Cys Asp Leu
 565 570 575

Leu Asn Leu Thr Pro Ala Pro Asn Asn Gly Thr His Gly Ser Leu Asn
 580 585 590

His Leu Leu Lys Asn Pro Val Tyr Thr Pro Lys His Pro Lys Glu Val
 595 600 605

His Pro Leu Val Gln Cys Pro Phe Thr Arg Asn Pro Arg Asp Asn Leu
 610 615 620

Gly Cys Ser Cys Asn Pro Ser Ile Leu Pro Ile Glu Asp Phe Gln Thr

625 630 635 640
Gln Phe Asn Leu Thr Val Ala Glu Glu Lys Ile Ile Lys His Glu Thr
645 650 655
Leu Pro Tyr Gly Arg Pro Arg Val Leu Gln Lys Glu Asn Thr Ile Cys
660 665 670
Leu Leu Ser Gln His Gln Phe Met Ser Gly Tyr Ser Gln Asp Ile Leu
675 680 685
Met Pro Leu Trp Thr Ser Tyr Thr Val Asp Arg Asn Asp Ser Phe Ser
690 695 700
Thr Glu Asp Phe Ser Asn Cys Leu Tyr Gln Asp Phe Arg Ile Pro Leu
705 710 715 720
Ser Pro Val His Lys Cys Ser Phe Tyr Lys Asn Asn Thr Lys Val Ser
725 730 735
Tyr Gly Phe Leu Ser Pro Pro Gln Leu Asn Lys Asn Ser Ser Gly Ile
740 745 750
Tyr Ser Glu Ala Leu Leu Thr Thr Asn Ile Val Pro Met Tyr Gln Ser
755 760 765
Phe Gln Val Ile Trp Arg Tyr Phe His Asp Thr Leu Leu Arg Lys Tyr
770 775 780
Ala Glu Glu Arg Asn Gly Val Asn Val Val Ser Gly Pro Val Phe Asp
785 790 795 800
Phe Asp Tyr Asp Gly Arg Cys Asp Ser Leu Glu Asn Leu Arg Gln Lys
805 810 815
Arg Arg Val Ile Arg Asn Gln Glu Ile Leu Ile Pro Thr His Phe Phe
820 825 830
Ile Val Leu Thr Ser Cys Lys Asp Thr Ser Gln Thr Pro Leu His Cys
835 840 845
Glu Asn Leu Asp Thr Leu Ala Phe Ile Leu Pro His Arg Thr Asp Asn
850 855 860
Ser Glu Ser Cys Val His Gly Lys His Asp Ser Ser Trp Val Glu Glu
865 870 875 880
Leu Leu Met Leu His Arg Ala Arg Ile Thr Asp Val Glu His Ile Thr
885 890 895
Gly Leu Ser Phe Tyr Gln Gln Arg Lys Glu Pro Val Ser Asp Ile Leu

900

905

910

Lys Leu Lys Thr His Leu Pro Thr Phe Ser Gln Glu Asp
915 920 925

<210> 49

<211> 2709

<212> DNA

<213> Homo sapiens

<400> 49

ggtttcaaa tggAACATT tgatgcatca cttagtacct atttcaaggc attgctaggc 60
cctcgagata ctagagtaaa aggatggttt cttctggaca attatatacc cacatttac 120
tgctctgtca tatatttact aattgtatgg ctgggaccaa aatacatgag gaataaacag 180
ccattctttt gcccggggat tttagtggc tataaccttg gactcacact gctgtctctg 240
tatatgttct gtgagttgt aacaggagta tggaaaggca aataacaactt ctctgtcag 300
ggcacacgca ccgcaggaga atcagatatg aagattatcc gtgtcctctg gtggtaactac 360
ttctccaaac tcataagaatt tatggacact ttcttcttca tcctgcgcaaa gaacaaccac 420
cagatcacgg tcctgcacgt ctaccaccat gcctcgatgc tgaacatctg gtggtttgc 480
atgaactggg tcccctgcgg ccactcttat tttggtgcca cacttaatag ctctcatccac 540
gtcctcatgt actcttacta tggtttgcg tcagtcctt ccatgcgtcc atacctctgg 600
tggaaagaagt acatcaacta ggggcagctg cttagtgc tgctgacaat catccagacc 660
agctgcgggg tcatctggcc gtgcacattc cctcttgggtt gttgtattt ccagatttgg 720
tacatgattt ccctgattgc tctcttca aacttctaca ttcaagaccta caacaagaaa 780
ggggcctccc gaaggaaaga ccacctgaag gaccaccaga atgggtccat ggctgctgtg 840
aatggacaca ccaacagctt ttccccctg gaaaacaatg tgaagccaag gaagctgcgg 900
aaggattgaa gtcaaagaat tggaaaccctc caaaccacgt catctgattt taagcacaat 960
atgagttgtg ccccaatgct cgtaacacgc tgctgtaact agtctgcct acaatagtgt 1020
gattcatgta ggaccttctt catcaatca aaacccctag aaaacgtata cagattatat 1080
aagttagggat aagatttcta acatttctgg gctctctgac ccctgcgcta gactgtggaa 1140
agggagtatt attatagttt acaacactgc tggccctta ttagttataa catgataggt 1200
gctgaattgt gattcacaat taaaaaacac tggtaatccaa actttttttt ttaactgttag 1260
atcatgcatg tgattgtaaa tggtaaatttgc tacaatgttg ttatggtaga gaaacacaca 1320
tgccttaaaa tttaaaaaggc agggcccaaa gcttattttt ttaaattttagg gtatgttca 1380
agtttgtatt aattttaat agctctgttt agaaaaaaatc aaagaccatg atttatgaaa 1440
ctaattgtac ataatttcca gtgacttgcgat gatgtgaaat cagacacggc accttcagtt 1500
ttgtactatt ggctttgaat caagcaggct caaatctgtt ggaacagtca gtttaacttt 1560
ttaacagatc ttatTTTTTt atttttagtgc ccactattaa tggtaaaaaagg ggggggctct 1620
acagcagtcg tggatgaaact taaaatata ttcttgcgat tcgagattttt aggaagggtg 1680
tagggtgagt aggccatttt taatttctga agtgcataatgt gtttttatac agcaaaacaaa 1740
aagtcaattt tgctttccac cagtgcgaga gaggatgtat acttttcaag agagatgatt 1800
gcctattttac cgtttgacag agtcccgtat atgagcaatg gggaaactggc tgccagggtc 1860
taaatttggc ttgattttatc cactgttatac tggtttgcaca cagatttccat tggtaaaaatgt 1920
gcctagttt ccaaaaattaa caaagggggg gaaaggacct tagaactttt taaggtaaaa 1980
tcaaataatag ctacagcata agagaatcga gaaatttgcgat agaggtact tggtaatgt 2040
aaatctaata gtacttgcgat tttcttgcgat ctttagaataatc aaagatgtgt ttagaaccctc 2100
ttgtttaaaa ataataatagact gcttataatc aaatcacaatc tcacacattt gaggcagtgg 2160
tcaaacaggt aaaggccatgc atgtgtgcgat ttttttttttgcgat tggaaatttgc gctctgtcaat 2220
accttctccca ttggggggaaa gatattttgc gaaaccactca tgacatatct tagaagggtca 2280
ttgacaatgt ataaactaat tggtttttgcgat ttttttttttgcgat aaatatcgtt accatgtct 2340

ttaattttgc acattcgtac tatagggagc ctattggttc tctattagtc ttgtgggaaa 2400
tctgtttgaa aaggagtcat ggcatctgtt tacatttacc ttatcaaacc tagaatgtgt 2460
atatttataa atgtatgtct tcattgctag gtactaattt gcagatgtct ttacatattt 2520
caatacagaa actataacat tcaatagtggt gctgtcaaag tgtgcttagc tcacctggat 2580
atacctacat tgttaaatgt ctaaacagta atcattaaaaa cattttgtat taaaaaaaaa 2640
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2700
aaaaaaaaaa 2709

<210> 50
<211> 299
<212> PRT
<213> Homo sapiens

<400> 50
Met Glu His Phe Asp Ala Ser Leu Ser Thr Tyr Phe Lys Ala Leu Leu
1 5 10 15

Gly Pro Arg Asp Thr Arg Val Lys Gly Trp Phe Leu Leu Asp Asn Tyr
20 25 30

Ile Pro Thr Phe Ile Cys Ser Val Ile Tyr Leu Leu Ile Val Trp Leu
35 40 45

Gly Pro Lys Tyr Met Arg Asn Lys Gln Pro Phe Ser Cys Arg Gly Ile
50 55 60

Leu Val Val Tyr Asn Leu Gly Leu Thr Leu Leu Ser Leu Tyr Met Phe
65 70 75 80

Cys Glu Leu Val Thr Gly Val Trp Glu Gly Lys Tyr Asn Phe Phe Cys
85 90 95

Gln Gly Thr Arg Thr Ala Gly Glu Ser Asp Met Lys Ile Ile Arg Val
100 105 110

Leu Trp Trp Tyr Tyr Phe Ser Lys Leu Ile Glu Phe Met Asp Thr Phe
115 120 125

Phe Phe Ile Leu Arg Lys Asn Asn His Gln Ile Thr Val Leu His Val
130 135 140

Tyr His His Ala Ser Met Leu Asn Ile Trp Trp Phe Val Met Asn Trp
145 150 155 160

Val Pro Cys Gly His Ser Tyr Phe Gly Ala Thr Leu Asn Ser Phe Ile
165 170 175

His Val Leu Met Tyr Ser Tyr Tyr Gly Leu Ser Ser Val Pro Ser Met
180 185 190

Arg Pro Tyr Leu Trp Trp Lys Lys Tyr Ile Thr Gln Gly Gln Leu Leu
195 200 205

Gln Phe Val Leu Thr Ile Ile Gln Thr Ser Cys Gly Val Ile Trp Pro
210 215 220

Cys Thr Phe Pro Leu Gly Trp Leu Tyr Phe Gln Ile Gly Tyr Met Ile
225 230 235 240

Ser Leu Ile Ala Leu Phe Thr Asn Phe Tyr Ile Gln Thr Tyr Asn Lys
245 250 255

Lys Gly Ala Ser Arg Arg Lys Asp His Leu Lys Asp His Gln Asn Gly
260 265 270

Ser Met Ala Ala Val Asn Gly His Thr Asn Ser Phe Ser Pro Leu Glu
275 280 285

Asn Asn Val Lys Pro Arg Lys Leu Arg Lys Asp
290 295

<210> 51

<211> 1019

<212> DNA

<213> Homo sapiens

<400> 51

tttttttta aacaaacaaa tgcgggttta ttcttcagat gatgttcatc cgtgaatgg 60
ccagggaagg accttcacc ttgactataat ggcattatgt catcacaagg tctgaggc 120
ctcctttcca tcctgcgtgg acagctaaga cctcagttt caatagcatc tagagcagt 180
ggactcagct ggggtgattt cgccccccat ctccggggga atgtctgaag acaattttgg 240
ttacctcaat gagggagtgg aggaggatac agtctacta ccaacttagt gataaaggcc 300
agggatgctg ctcaacctcc taccatgtac aggacgtctc cccattacaa ctacccaatc 360
cgaagtgtca actgtgtcag gactaagaaa ccctggttt gagtagaaaa gggcctggaa 420
agagggggagc caacaaatct gtctgcttcc tcacattagt cattggcaaa taagcattct 480
gtctctttgg ctgctgcctc agcacagaga gccagaactc tatcggcac caggataaca 540
tctctcagtg aacagagttg acaaggccta tggaaaatgc ctgatggat tatcttcagc 600
ttgttgagct tctaagttc tttcccttca ttctaccctg caagccaagt tctgttaagag 660
aatgcctga gttctagctc aggttttctt actctgaatt tagatctcca gacccttcct 720
ggccacaatt caaattaagg caacaaacat ataccttcca tgaagcacac acagactttt 780
gaaagcaagg acaatgactg cttgaattga ggccttgagg aatgaagctt tgaaggaaaa 840
gaatactttg tttccagccc cttccacaca ctcttcatgt gttaaccact gccttcctgg 900
accttggagc cacgttgact gtattacatg ttgttataga aaactgattt tagagttctg 960
atcggtcaag agaatgatta aatatacatt tcctacamaa aaaaaaaaaa aagtcgacg 1019

<210> 52

<211> 1332

<212> DNA

<213> Homo sapiens

<400> 52
agagatgggg gtctcaatat gttgccagg ctggctcaa actcctggc tcaagcgatc 60
cttggccctc ggcctccaa agtgcattgag ccaccatgcc tggcctgtt agtttgttt 120
caagttaaaa tacctttctt gtgtttcta attagaaaag taatatctac tcattgtaaa 180
aactcaaaca gtgcagaaaat gtagaaagta gaaagtgtaa gtcccctgtt gtccctctg 240
cctgagcaca accactgctc acagtttgat gtatatcctt ccagagactc tcaaatttaa 300
gcaaataatt tttattacca tgtctttta ttgaagacg tacatttgcc tccaaagttc 360
aacacaagtt caactgacca tatccttcca tgacctgaat agatgcatac ctttatcacg 420
atgttcaatt gccttgaaa gagagtagtc caggtatatt cctgatcaaatttggcatt 480
tttgatgata ctactctaca cagatcagac tcatgtgcag aatcgtgcct ggagagagag 540
gttggtaa gacagagatt tctggaaaca ttcaaattgc aaatggaaac ttgaaaccca 600
caatctaattt aggaatgtac tggaaaaata atctgaagag ttgacaaattt gtgtactaga 660
ttgaacacat ggaatgcaat gccaatgaga cttctgcac taaaacttat cctcatatgt 720
acaacaatga tgtgtgtatt atataacagt gatgtgtaca tttctgacac cccatacata 780
atatacacag tttgtataaa tgcatacatt taaaatata tatgtacaat acagctaaca 840
taaaaactgta gtacgcctga aggatattac tagtgcctaa tattgagtat gagtcactgc 900
gtgttcgcata caacttggaa gtgcagtaat tttttttttttaatcagtgc cagccaaat 960
tattttatgaa tcacatctt gaaactgtgc agtagcatat acatatatat tttttttttttaat 1020
catttttcac agttttccag agttactgtaa gaaatctgca tcaccaaaaa aaaaaaaaaaag 1080
caagattttt ttaacaatgt agacactttt cagacccagt aatctgcgtg tgatttccta 1140
ttttagatt cccaaagagac tttagcagtc accagccttta atgcattgtac agatattat 1200
tgtgacttaa tttatctgca gtttttaatc catgtgaaat tggaaattttt taaccgaact 1260
tggattaacc atgcctgcct ttcttaagggtt gcaaatgtta cattaaatga tttatgtt 1320
aaaaaaaaaa aa 1332

<210> 53
<211> 5
<212> PRT
<213> Artificial Sequence

<220>
<221> UNSURE
<222> (3)
<223> "Xaa" at position 3 can be any amino acid

<220>
<223> Description of Artificial Sequence: Ctyokine
receptor extracellular motif found in many
species.

<400> 53
Trp Ser Xaa Trp Ser
1 5

<210> 54
<211> 2744
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (138)..(2387)

<400> 54
ctcgtgccga attcggcacg agaccgcgtg ttccgcgcctg gtagagattt ctcgaagaca 60
ccagtgggcc cgtgtggaac caaacctgcg cgcggtggccg ggccgtggga caacgaggcc 120
gcggagacga aggcgca atg gcg agg aag tta tct gta atc ttg atc ctg 170
Met Ala Arg Lys Leu Ser Val Ile Leu Ile Leu
1 5 10
acc ttt gcc ctc tct gtc aca aat ccc ctt cat gaa cta aaa gca gct 218
Thr Phe Ala Leu Ser Val Thr Asn Pro Leu His Glu Leu Lys Ala Ala
15 20 25
gct ttc ccc cag acc act gag aaa att agt ccg aat tgg gaa tct ggc 266
Ala Phe Pro Gln Thr Thr Glu Lys Ile Ser Pro Asn Trp Glu Ser Gly
30 35 40
att aat gtt gac ttg gca att tcc aca cgg caa tat cat cta caa cag 314
Ile Asn Val Asp Leu Ala Ile Ser Thr Arg Gln Tyr His Leu Gln Gln
45 50 55
ctt ttc tac cgc tat gga gaa aat aat tct ttg tca gtt gaa ggg ttc 362
Leu Phe Tyr Arg Tyr Gly Glu Asn Asn Ser Leu Ser Val Glu Gly Phe
60 65 70 75
aga aaa tta cttcaa aat ata ggc ata gat aag att aaa aga atc cat 410
Arg Lys Leu Leu Gln Asn Ile Gly Ile Asp Lys Ile Lys Arg Ile His
80 85 90
ata cac cat gac cac gac cat cac tca gac cac gag cat cac tca gac 458
Ile His His Asp His His Ser Asp His Glu His His Ser Asp
95 100 105
cat gag cgt cac tca gac cat gag cat cac tca gac cac gag cat cac 506
His Glu Arg His Ser Asp His Glu His His Ser Asp His Glu His His
110 115 120
tct gac cat aat cat gct gct tct ggt aaa aat aag cga aaa gct ctt 554
Ser Asp His Asn His Ala Ala Ser Gly Lys Asn Lys Arg Lys Ala Leu
125 130 135
tgc cca gac cat gac tca gat agt tca ggt aaa gat cct aga aac agc 602
Cys Pro Asp His Asp Ser Asp Ser Ser Gly Lys Asp Pro Arg Asn Ser
140 145 150 155
cag ggg aaa gga gct cac cga cca gaa cat gcc agt ggt aga agg aat 650
Gln Gly Lys Gly Ala His Arg Pro Glu His Ala Ser Gly Arg Arg Asn

160	165	170	
gtc aag gac agt gtt agt gct agt gaa gtg acc tca act gtg tac aac Val Lys Asp Ser Val Ser Ala Ser Glu Val Thr Ser Thr Val Tyr Asn			698
175	180	185	
act gtc tct gaa gga act cac ttt cta gag aca ata gag act cca aga Thr Val Ser Glu Gly Thr His Phe Leu Glu Thr Ile Glu Thr Pro Arg			746
190	195	200	
cct gga aaa ctc ttc ccc aaa gat gta agc agc tcc act cca ccc agt Pro Gly Lys Leu Phe Pro Lys Asp Val Ser Ser Thr Pro Pro Ser			794
205	210	215	
gtc aca tca aag agc cgg gtg agc cgg ctg gct ggt agg aaa aca aat Val Thr Ser Lys Ser Arg Val Ser Arg Leu Ala Gly Arg Lys Thr Asn			842
220	225	230	235
gaa tct gtg agt gag ccc cga aaa ggc ttt atg tat tcc aga aac aca Glu Ser Val Ser Glu Pro Arg Lys Gly Phe Met Tyr Ser Arg Asn Thr			890
240	245	250	
aat gaa aat cct cag gag tgt ttc aat gca tca aag cta ctg aca tct Asn Glu Asn Pro Gln Glu Cys Phe Asn Ala Ser Lys Leu Leu Thr Ser			938
255	260	265	
cat ggc atg ggc atc cag gtt ccg ctg aat gca aca gag ttc aac tat His Gly Met Gly Ile Gln Val Pro Leu Asn Ala Thr Glu Phe Asn Tyr			986
270	275	280	
ctc tgt cca gcc atc atc aac caa att gat gct aga tct tgt ctg att Leu Cys Pro Ala Ile Ile Asn Gln Ile Asp Ala Arg Ser Cys Leu Ile			1034
285	290	295	
cat aca agt gaa aag aag gct gaa atc cct cca aag acc tat tca tta His Thr Ser Glu Lys Lys Ala Glu Ile Pro Pro Lys Thr Tyr Ser Leu			1082
300	305	310	315
caa ata gcc tgg gtt ggt ggt ttt ata gcc att tcc atc atc agt ttc Gln Ile Ala Trp Val Gly Gly Phe Ile Ala Ile Ser Ile Ile Ser Phe			1130
320	325	330	
ctg tct ctg ctg ggg gtt atc tta gtg cct ctc atg aat cggtt Leu Ser Leu Leu Gly Val Ile Leu Val Pro Leu Met Asn Arg Val Phe			1178
335	340	345	
ttc aaa ttt ctc ctg agt ttc ctt gtg gca ctg gcc gtt ggg act ttg Phe Lys Phe Leu Leu Ser Phe Leu Val Ala Leu Ala Val Gly Thr Leu			1226
350	355	360	
agt ggt gat gct ttt tta cac ctt ctt cca cat tct cat gca agt cac			1274

Ser	Gly	Asp	Ala	Phe	Leu	His	Leu	Leu	Pro	His	Ser	His	Ala	Ser	His
365				370					375						
cac cat agt cat agc cat gaa gaa cca gca atg gaa atg aaa aga gga															1322
His	His	Ser	His	Ser	His	Glu	Glu	Pro	Ala	Met	Glu	Met	Lys	Arg	Gly
380				385					390				395		
cca ctt ttc agt cat ctg tct tct caa aac ata gaa gaa agt gcc tat															1370
Pro	Leu	Phe	Ser	His	Leu	Ser	Ser	Gln	Asn	Ile	Glu	Glu	Ser	Ala	Tyr
									400	405			410		
ttt gat tcc acg tgg aag ggt cta aca gct cta gga ggc ctg tat ttc															1418
Phe	Asp	Ser	Thr	Trp	Lys	Gly	Leu	Thr	Ala	Leu	Gly	Gly	Leu	Tyr	Phe
									415	420			425		
atg ttt ctt gtt gaa cat gtc ctc aca ttg atc aaa caa ttt aaa gat															1466
Met	Phe	Leu	Val	Glu	His	Val	Leu	Thr	Leu	Ile	Lys	Gln	Phe	Lys	Asp
									430	435			440		
aag aag aaa aag aat cag aag aaa cct gaa aat gat gat gat gtg gag															1514
Lys	Lys	Lys	Asn	Gln	Lys	Lys	Pro	Glu	Asn	Asp	Asp	Asp	Val	Glu	
									445	450			455		
att aag aag cag ttg tcc aag tat gaa tct caa ctt tca aca aat gag															1562
Ile	Lys	Lys	Gln	Leu	Ser	Lys	Tyr	Glu	Ser	Gln	Leu	Ser	Thr	Asn	Glu
									460	465			470		475
gag aaa gta gat aca gat gat cga act gaa ggc tat tta cga gca gac															1610
Glu	Lys	Val	Asp	Thr	Asp	Asp	Arg	Thr	Glu	Gly	Tyr	Leu	Arg	Ala	Asp
									480	485			490		
tca caa gag ccc tcc cac ttt gat tct cag cag cct gca gtc ttg gaa															1658
Ser	Gln	Glu	Pro	Ser	His	Phe	Asp	Ser	Gln	Gln	Pro	Ala	Val	Leu	Glu
									495	500			505		
gaa gaa gag gtc atg ata gct cat gct cat cca cag gaa gtc tac aat															1706
Glu	Glu	Glu	Val	Met	Ile	Ala	His	Ala	His	Pro	Gln	Glu	Val	Tyr	Asn
									510	515			520		
gaa tat gta ccc aga ggg tgc aag aat aaa tgc cat tca cat ttc cac															1754
Glu	Tyr	Val	Pro	Arg	Gly	Cys	Lys	Asn	Lys	Cys	His	Ser	His	Phe	His
									525	530			535		
gat aca ctc ggc cag tca gac gat ctc att cac cac cat cat gac tac															1802
Asp	Thr	Leu	Gly	Gln	Ser	Asp	Asp	Leu	Ile	His	His	His	Asp	Tyr	
									540	545			550		555
cat cat att ctc cat cat cac cac cac caa aac cac cat cct cac agt															1850
His	His	Ile	Leu	His	His	His	His	Gln	Asn	His	His	Pro	His	Ser	
									560	565			570		

cac agc cag cgc tac tct cgg gag gag ctg aaa gat gcc ggc gtc gcc		1898	
His Ser Gln Arg Tyr Ser Arg Glu Glu Leu Lys Asp Ala Gly Val Ala			
575	580	585	
act ttg gcc tgg atg gtg ata atg ggt gat ggc ctg cac aat ttc agc		1946	
Thr Leu Ala Trp Met Val Ile Met Gly Asp Gly Leu His Asn Phe Ser			
590	595	600	
gat ggc cta gca att ggt gct gct ttt act gaa ggc tta tca agt ggt		1994	
Asp Gly Leu Ala Ile Gly Ala Ala Phe Thr Glu Gly Leu Ser Ser Gly			
605	610	615	
tta agt act tct gtt gct gtg ttc tgt cat gag ttg cct cat gaa tta		2042	
Leu Ser Thr Ser Val Ala Val Phe Cys His Glu Leu Pro His Glu Leu			
620	625	630	635
ggt gac ttt gct gtt cta cta aag gct ggc atg acc gtt aag cag gct		2090	
Gly Asp Phe Ala Val Leu Leu Lys Ala Gly Met Thr Val Lys Gln Ala			
640	645	650	
gtc ctt tat aat gca ttg tca gcc atg ctg gcg tat ctt gga atg gca		2138	
Val Leu Tyr Asn Ala Leu Ser Ala Met Leu Ala Tyr Leu Gly Met Ala			
655	660	665	
aca gga att ttc att ggt cat tat gct gaa aat gtt tct atg tgg ata		2186	
Thr Gly Ile Phe Ile Gly His Tyr Ala Glu Asn Val Ser Met Trp Ile			
670	675	680	
ttt gca ctt act gct ggc tta ttc atg tat gtt gct ctg gtt gat atg		2234	
Phe Ala Leu Thr Ala Gly Leu Phe Met Tyr Val Ala Leu Val Asp Met			
685	690	695	
gta cct gaa atg ctg cac aat gat gct agt gac cat gga tgt agc cgc		2282	
Val Pro Glu Met Leu His Asn Asp Ala Ser Asp His Gly Cys Ser Arg			
700	705	710	715
tgg ggg tat ttc ttt tta cag aat gct ggg atg ctt ttg ggt ttt gga		2330	
Trp Gly Tyr Phe Phe Leu Gln Ala Gly Met Leu Leu Gly Phe Gly			
720	725	730	
att atg tta ctt att tcc ata ttt gaa cat aaa atc gtg ttt cgt ata		2378	
Ile Met Leu Leu Ile Ser Ile Phe Glu His Lys Ile Val Phe Arg Ile			
735	740	745	
aat ttc tag ttaaggta aatgctagag tagctaaaa agttgtcata		2427	
Asn Phe			

gtttcagtag gtcataggga gatgagttt gatgctgtac tatgcagcgt ttaaagtttag 2487
 tgggttttgt gattttgtt ttgaatattt ctgtctgtta caaagtcaat taaaggtacg 2547

ttttaatatt taagtttattc tatcttgag ataaaatctg tatgtcaat tcaccggat 2607
taccagttta ttatgtaaac aagagatttg gcatgacatg ttctgtatgt ttcaggaa 2667
aatgtcttta atgcctttc aagaactaac acagttattc ctatactgga ttttaggtct 2727
ctgaagaact gctggtg 2744

<210> 55
<211> 749
<212> PRT
<213> Homo sapiens

<400> 55
Met Ala Arg Lys Leu Ser Val Ile Leu Ile Leu Thr Phe Ala Leu Ser
1 5 10 15
Val Thr Asn Pro Leu His Glu Leu Lys Ala Ala Ala Phe Pro Gln Thr
20 25 30
Thr Glu Lys Ile Ser Pro Asn Trp Glu Ser Gly Ile Asn Val Asp Leu
35 40 45
Ala Ile Ser Thr Arg Gln Tyr His Leu Gln Gln Leu Phe Tyr Arg Tyr
50 55 60
Gly Glu Asn Asn Ser Leu Ser Val Glu Gly Phe Arg Lys Leu Leu Gln
65 70 75 80
Asn Ile Gly Ile Asp Lys Ile Lys Arg Ile His Ile His His Asp His
85 90 95
Asp His His Ser Asp His Glu His His Ser Asp His Glu Arg His Ser
100 105 110
Asp His Glu His His Ser Asp His Glu His His Ser Asp His Asn His
115 120 125
Ala Ala Ser Gly Lys Asn Lys Arg Lys Ala Leu Cys Pro Asp His Asp
130 135 140
Ser Asp Ser Ser Gly Lys Asp Pro Arg Asn Ser Gln Gly Lys Gly Ala
145 150 155 160
His Arg Pro Glu His Ala Ser Gly Arg Arg Asn Val Lys Asp Ser Val
165 170 175
Ser Ala Ser Glu Val Thr Ser Thr Val Tyr Asn Thr Val Ser Glu Gly
180 185 190
Thr His Phe Leu Glu Thr Ile Glu Thr Pro Arg Pro Gly Lys Leu Phe
195 200 205
Pro Lys Asp Val Ser Ser Ser Thr Pro Pro Ser Val Thr Ser Lys Ser
210 215 220
Arg Val Ser Arg Leu Ala Gly Arg Lys Thr Asn Glu Ser Val Ser Glu
225 230 235 240
Pro Arg Lys Gly Phe Met Tyr Ser Arg Asn Thr Asn Glu Asn Pro Gln
245 250 255
Glu Cys Phe Asn Ala Ser Lys Leu Leu Thr Ser His Gly Met Gly Ile
260 265 270
Gln Val Pro Leu Asn Ala Thr Glu Phe Asn Tyr Leu Cys Pro Ala Ile
275 280 285

Ile Asn Gln Ile Asp Ala Arg Ser Cys Leu Ile His Thr Ser Glu Lys
 290 295 300
 Lys Ala Glu Ile Pro Pro Lys Thr Tyr Ser Leu Gln Ile Ala Trp Val
 305 310 315 320
 Gly Gly Phe Ile Ala Ile Ser Ile Ile Ser Phe Leu Ser Leu Leu Gly
 325 330 335
 Val Ile Leu Val Pro Leu Met Asn Arg Val Phe Phe Lys Phe Leu Leu
 340 345 350
 Ser Phe Leu Val Ala Leu Ala Val Gly Thr Leu Ser Gly Asp Ala Phe
 355 360 365
 Leu His Leu Leu Pro His Ser His Ala Ser His His His Ser His Ser
 370 375 380
 His Glu Glu Pro Ala Met Glu Met Lys Arg Gly Pro Leu Phe Ser His
 385 390 395 400
 Leu Ser Ser Gln Asn Ile Glu Glu Ser Ala Tyr Phe Asp Ser Thr Trp
 405 410 415
 Lys Gly Leu Thr Ala Leu Gly Gly Leu Tyr Phe Met Phe Leu Val Glu
 420 425 430
 His Val Leu Thr Leu Ile Lys Gln Phe Lys Asp Lys Lys Lys Asn
 435 440 445
 Gln Lys Lys Pro Glu Asn Asp Asp Val Glu Ile Lys Lys Gln Leu
 450 455 460
 Ser Lys Tyr Glu Ser Gln Leu Ser Thr Asn Glu Glu Lys Val Asp Thr
 465 470 475 480
 Asp Asp Arg Thr Glu Gly Tyr Leu Arg Ala Asp Ser Gln Glu Pro Ser
 485 490 495
 His Phe Asp Ser Gln Gln Pro Ala Val Leu Glu Glu Glu Val Met
 500 505 510
 Ile Ala His Ala His Pro Gln Glu Val Tyr Asn Glu Tyr Val Pro Arg
 515 520 525
 Gly Cys Lys Asn Lys Cys His Ser His Phe His Asp Thr Leu Gly Gln
 530 535 540
 Ser Asp Asp Leu Ile His His His Asp Tyr His His Ile Leu His
 545 550 555 560
 His His His His Gln Asn His His Pro His Ser His Ser Gln Arg Tyr
 565 570 575
 Ser Arg Glu Glu Leu Lys Asp Ala Gly Val Ala Thr Leu Ala Trp Met
 580 585 590
 Val Ile Met Gly Asp Gly Leu His Asn Phe Ser Asp Gly Leu Ala Ile
 595 600 605
 Gly Ala Ala Phe Thr Glu Gly Leu Ser Ser Gly Leu Ser Thr Ser Val
 610 615 620
 Ala Val Phe Cys His Glu Leu Pro His Glu Leu Gly Asp Phe Ala Val
 625 630 635 640
 Leu Leu Lys Ala Gly Met Thr Val Lys Gln Ala Val Leu Tyr Asn Ala
 645 650 655
 Leu Ser Ala Met Leu Ala Tyr Leu Gly Met Ala Thr Gly Ile Phe Ile
 660 665 670
 Gly His Tyr Ala Glu Asn Val Ser Met Trp Ile Phe Ala Leu Thr Ala
 675 680 685
 Gly Leu Phe Met Tyr Val Ala Leu Val Asp Met Val Pro Glu Met Leu

690 695 700
His Asn Asp Ala Ser Asp His Gly Cys Ser Arg Trp Gly Tyr Phe Phe
705 710 715 720
Leu Gln Asn Ala Gly Met Leu Leu Gly Phe Gly Ile Met Leu Leu Ile
725 730 735
Ser Ile Phe Glu His Lys Ile Val Phe Arg Ile Asn Phe
740 745

<210> 56
<211> 293
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<222> (190)
<223> "n" at position 190 can be any base

<400> 56
tttttttac tgtgaaattc taaaatcata tttattcacc aattcacaga aagtgtcata 60
acgaccacca acatgaatca gttttaggc attacaagc cacagctgaa aataaaaatc 120
tgtctgtgtt gaataggcat ttaacaaatt acttgaaaac tgcaagaatc ataattatta 180
taaatttaan gttttagtcaa acatggg taagatcaca gtcatggga gaagcccaac 240
agattccctgt gatgatcattt attttctcc tataatctta tatacatagg agg 293

<210> 57
<211> 2053
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (85) .. (1347)

<400> 57
ccggctcgcg ccctccgggc ccagcctccc gagccttcgg agcggcgcc gtcccagccc 60
agctccgggg aaacgcgagc cgcg atg cct ggg tgc tcc cgg ggc ccc 111
Met Pro Gly Gly Cys Ser Arg Gly Pro
1 5

gcc gcc ggg gac ggg cgt ctg cgg ctg gcg cga cta gcg ctg gta ctc 159
Ala Ala Gly Asp Gly Arg Leu Arg Leu Ala Arg Leu Ala Leu Val Leu
10 15 20 25

ctg ggc tgg gtc tcc tcg tct ccc acc tcc tcg gca tcc tcc ttc 207
Leu Gly Trp Val Ser Ser Ser Pro Thr Ser Ser Ala Ser Ser Phe
30 35 40

tcc tcc tcg gcg ccg ttc ctg gct tcc gcc gtg tcc gcc cag ccc ccg Ser Ser Ser Ala Pro Phe Leu Ala Ser Ala Val Ser Ala Gln Pro Pro	45	50	55	255
ctg ccg gac cag tgc ccc gcg ctg tgc gag tgc tcc gag gca gca gcg Leu Pro Asp Gln Cys Pro Ala Leu Cys Glu Cys Ser Glu Ala Ala Arg	60	65	70	303
aca gtc aag tgc gtt aac cgc aat ctg acc gag gtg ccc acg gac ctg Thr Val Lys Cys Val Asn Arg Asn Leu Thr Glu Val Pro Thr Asp Leu	75	80	85	351
ccc gcc tac gtg cgc aac ctc ttc ctt acc ggc aac cag ctg gcc gtg Pro Ala Tyr Val Arg Asn Leu Phe Leu Thr Gly Asn Gln Leu Ala Val	90	95	100	399
ctc cct gcc ggc gcc ttc gcc cgc cgg ccg ctg gcg gag ctg gcc Leu Pro Ala Gly Ala Phe Ala Arg Arg Pro Pro Leu Ala Glu Leu Ala	110	115	120	447
gcg ctc aac ctc agc ggc agc cgc ctg gac gag gtg cgc gcg ggc gcc Ala Leu Asn Leu Ser Gly Ser Arg Leu Asp Glu Val Arg Ala Gly Ala	125	130	135	495
ttc gag cat ctg ccc agc ctg cgc cag ctc gac ctc agc cac aac cca Phe Glu His Leu Pro Ser Leu Arg Gln Leu Asp Leu Ser His Asn Pro	140	145	150	543
ctg gcc gac ctc agt ccc ttc gct ttc tcg ggc agc aat gcc agc gtc Leu Ala Asp Leu Ser Pro Phe Ala Phe Ser Gly Ser Asn Ala Ser Val	155	160	165	591
tcg gcc ccc agt ccc ctt gtg gaa ctg atc ctg aac cac atc gtg ccc Ser Ala Pro Ser Pro Leu Val Glu Leu Ile Leu Asn His Ile Val Pro	170	175	180	639
cct gaa gat gag cgg cag aac cgg agc ttc gag ggc atg gtg gtg gcg Pro Glu Asp Glu Arg Gln Asn Arg Ser Phe Glu Gly Met Val Val Ala	190	195	200	687
gcc ctg ctg gcg ggc cgt gca ctg cag ggg ctc cgc cgc ttg gag ctg Ala Leu Leu Ala Gly Arg Ala Leu Gln Gly Leu Arg Arg Leu Glu Leu	205	210	215	735
gcc agc aac cac ttc ctt tac ctg cgg gat gtg ctg gcc caa ctg Ala Ser Asn His Phe Leu Tyr Leu Pro Arg Asp Val Leu Ala Gln Leu	220	225	230	783
ccc agc ctc agg cac ctg gac tta agt aat aat tcg ctg gtg agc ctg Pro Ser Leu Arg His Leu Asp Leu Ser Asn Asn Ser Leu Val Ser Leu	235	240	245	831

acc tac gtg tcc ttc cgc aac ctg aca cat cta gaa agc ctc cac ctg		879
Thr Tyr Val Ser Phe Arg Asn Leu Thr His Leu Glu Ser Leu His Leu		
250	255	260
265		
gag gac aat gcc ctc aag gtc ctt cac aat ggc acc ctg gct gag ttg		927
Glu Asp Asn Ala Leu Lys Val Leu His Asn Gly Thr Leu Ala Glu Leu		
270	275	280
caa ggt cta ccc cac att agg gtt ttc ctg gac aac aat ccc tgg gtc		975
Gln Gly Leu Pro His Ile Arg Val Phe Leu Asp Asn Asn Pro Trp Val		
285	290	295
tgc gac tgc cac atg gca gac atg gtg acc tgg ctc aag gaa aca gag		1023
Cys Asp Cys His Met Ala Asp Met Val Thr Trp Leu Lys Glu Thr Glu		
300	305	310
gta gtg cag ggc aaa gac cgg ctc acc tgt gca tat ccg gaa aaa atg		1071
Val Val Gln Gly Lys Asp Arg Leu Thr Cys Ala Tyr Pro Glu Lys Met		
315	320	325
agg aat cgg gtc ctc ttg gaa ctc aac agt gct gac ctg gac tgt gac		1119
Arg Asn Arg Val Leu Leu Glu Leu Asn Ser Ala Asp Leu Asp Cys Asp		
330	335	340
345		
ccg att ctt ccc cca tcc ctg caa acc tct tat gtc ttc ctg ggt att		1167
Pro Ile Leu Pro Pro Ser Leu Gln Thr Ser Tyr Val Phe Leu Gly Ile		
350	355	360
gtt tta gcc ctg ata ggc gct att ttc ctc ctg gtt ttg tat ttg aac		1215
Val Leu Ala Leu Ile Gly Ala Ile Phe Leu Leu Val Leu Tyr Leu Asn		
365	370	375
cgc aag ggg ata aaa aag tgg atg cat aac atc aga gat gcc tgc agg		1263
Arg Lys Gly Ile Lys Lys Trp Met His Asn Ile Arg Asp Ala Cys Arg		
380	385	390
gat cac atg gaa ggg tat cat tac aga tat gaa atc aat gcg gac ccc		1311
Asp His Met Glu Gly Tyr His Tyr Arg Tyr Glu Ile Asn Ala Asp Pro		
395	400	405
aga tta aca aac ctc agt tct aac tcg gat gtc tga gaaaatattag		1357
Arg Leu Thr Asn Leu Ser Ser Asn Ser Asp Val		
410	415	420
aggacagacc aaggacaact ctgcatgaga tgttagactta agctttatcc ctactaggct		1417
tgctccactt tcatcctcca ctatagatac aacggacttt gactaaaagc agtgaagggg		1477
atttgcttcc ttgttatgta aagtttctcg gtgtgttctg ttaatgtaag acgatgaaca		1537
gttgtgtata gtgttttacc ctcttcttt tcttggact cctcaacacg tatggaggga		1597

ttttcaggt ttcagcatga acatgggctt cttgctgtct gtctctctct cagtacagtt 1657
caaggtagt tag caagtgtacc cacacagata gcattcaaca aaagctgcct caacttttc 1717
gagaaaaata ctatttcat aaatatcagt ttattctca tgtacctaag ttgtggagaa 1777
aataattgca tcctataaac tgccctgcaga cgtagcagg ctcttcaaaa taactccatg 1837
gtgcacagga gcacctgcat ccaagagcat gcttacattt tactgttctg catattacaa 1897
aaaataactt gcaacttcat aacttcttg acaaagtaaa ttactttt gattgcagtt 1957
tatatgaaaa tgtactgatt ttttttaat aaactgcattc gagatccaac cgactgaatt 2017
gttaaaaaaa aaaaaaaaaa aagattctta aaagaa 2053

<210> 58
<211> 420
<212> PRT
<213> Homo sapiens

<400> 58
Met Pro Gly Gly Cys Ser Arg Gly Pro Ala Ala Gly Asp Gly Arg Leu
1 5 10 15
Arg Leu Ala Arg Leu Ala Leu Val Leu Leu Gly Trp Val Ser Ser Ser
20 25 30
Ser Pro Thr Ser Ser Ala Ser Ser Phe Ser Ser Ser Ala Pro Phe Leu
35 40 45
Ala Ser Ala Val Ser Ala Gln Pro Pro Leu Pro Asp Gln Cys Pro Ala
50 55 60
Leu Cys Glu Cys Ser Glu Ala Ala Arg Thr Val Lys Cys Val Asn Arg
65 70 75 80
Asn Leu Thr Glu Val Pro Thr Asp Leu Pro Ala Tyr Val Arg Asn Leu
85 90 95
Phe Leu Thr Gly Asn Gln Leu Ala Val Leu Pro Ala Gly Ala Phe Ala
100 105 110
Arg Arg Pro Pro Leu Ala Glu Leu Ala Ala Leu Asn Leu Ser Gly Ser
115 120 125
Arg Leu Asp Glu Val Arg Ala Gly Ala Phe Glu His Leu Pro Ser Leu
130 135 140
Arg Gln Leu Asp Leu Ser His Asn Pro Leu Ala Asp Leu Ser Pro Phe
145 150 155 160
Ala Phe Ser Gly Ser Asn Ala Ser Val Ser Ala Pro Ser Pro Leu Val
165 170 175
Glu Leu Ile Leu Asn His Ile Val Pro Pro Glu Asp Glu Arg Gln Asn
180 185 190
Arg Ser Phe Glu Gly Met Val Val Ala Ala Leu Leu Ala Gly Arg Ala
195 200 205
Leu Gln Gly Leu Arg Arg Leu Glu Leu Ala Ser Asn His Phe Leu Tyr
210 215 220

Leu Pro Arg Asp Val Leu Ala Gln Leu Pro Ser Leu Arg His Leu Asp
 225 230 235 240
 Leu Ser Asn Asn Ser Leu Val Ser Leu Thr Tyr Val Ser Phe Arg Asn
 245 250 255
 Leu Thr His Leu Glu Ser Leu His Leu Glu Asp Asn Ala Leu Lys Val
 260 265 270
 Leu His Asn Gly Thr Leu Ala Glu Leu Gln Gly Leu Pro His Ile Arg
 275 280 285
 Val Phe Leu Asp Asn Asn Pro Trp Val Cys Asp Cys His Met Ala Asp
 290 295 300
 Met Val Thr Trp Leu Lys Glu Thr Glu Val Val Gln Gly Lys Asp Arg
 305 310 315 320
 Leu Thr Cys Ala Tyr Pro Glu Lys Met Arg Asn Arg Val Leu Leu Glu
 325 330 335
 Leu Asn Ser Ala Asp Leu Asp Cys Asp Pro Ile Leu Pro Pro Ser Leu
 340 345 350
 Gln Thr Ser Tyr Val Phe Leu Gly Ile Val Leu Ala Leu Ile Gly Ala
 355 360 365
 Ile Phe Leu Leu Val Leu Tyr Leu Asn Arg Lys Gly Ile Lys Lys Trp
 370 375 380
 Met His Asn Ile Arg Asp Ala Cys Arg Asp His Met Glu Gly Tyr His
 385 390 395 400
 Tyr Arg Tyr Glu Ile Asn Ala Asp Pro Arg Leu Thr Asn Leu Ser Ser
 405 410 415
 Asn Ser Asp Val
 420

<210> 59

<211> 232

<212> DNA

<213> Homo sapiens

<400> 59

ttttaatta tactttta ttgaaagaaa aaacaataca atggacttta aaaagctaca 60
 tttgttatgg ttcataagga cagaggttta cacaggtttt atatatgtac acactgacaa 120
 tactatatca caacatcaga ggcaccattt ttgccacaga attaggtaat gaataaaact 180
 tctccaaatt aatctgttta aaaaatatct aaaaatggta agtatatttg ag 232

<210> 60

<211> 281

<212> DNA

<213> Homo sapiens

<400> 60

tacccaaaata tctgtattat ctataaaaat tgaactctaa tgagtcactg atacgggagg 60
 cagcaatacc cgactgtgct gacatgcaga aggaagacag ctctgtccca ccaaccctat 120
 agcagaacat ttgtattgag tggcacgtgg gctgagtcat ttgttaaggtc tcaaaaacct 180
 ggacactttg gaacgttagca atcggatgaa cgatcttggaa aacatctctc gggactcctg 240

ggctgtgtac ttgaaatagt tctggggatg ggcaggaca t

281

<210> 61
<211> 3085
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (256) .. (3012)

<400> 61
gagcagccaa aaggcccccg gactcgcgct gggccgcccc ggccgcagctg aaccgggggc 60
cgccgcctgcc aggcccacgg gtctggccca gcctggcgcc aaggggttcg tgcgctgtgg 120
agacgcggag ggtcgaggcg gcgcggcctg agtggaaaccc aatggaaaaaa gcatgacatt 180
tagaagtaga agacttagct tcaaattccct actccttcac ttactaattt tgtgatttg 240
aaatatccgc gcaag atg ttg acg ttg cag act tgg gta gtg caa gcc ttg 291
Met Leu Thr Leu Gln Thr Trp Val Val Gln Ala Leu
1 5 10
ttt att ttc ctc acc act gaa tct aca ggt gaa ctt cta gat cca tgt 339
Phe Ile Phe Leu Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys
15 20 25
ggt tat atc agt cct gaa tct cca gtt gta caa ctt cat tct aat ttc 387
Gly Tyr Ile Ser Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe
30 35 40
act gca gtt tgt gtg cta aag gaa aaa tgt atg gat tat ttt cat gta 435
Thr Ala Val Cys Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val
45 50 55 60
aat gct aat tac att gtc tgg aaa aca aac cat ttt act att cct aag 483
Asn Ala Asn Tyr Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys
65 70 75
gag caa tat act atc ata aac aga aca gca tcc agt gtc acc ttt aca 531
Glu Gln Tyr Thr Ile Ile Asn Arg Thr Ala Ser Ser Val Thr Phe Thr
80 85 90
gat ata gct tca tta aat att cag ctc act tgc aac att ctt aca ttc 579
Asp Ile Ala Ser Leu Asn Ile Gln Leu Thr Cys Asn Ile Leu Thr Phe
95 100 105
gga cag ctt gaa cag aat gtt tat gga atc aca ata att tca ggc ttg 627
Gly Gln Leu Glu Gln Asn Val Tyr Gly Ile Thr Ile Ile Ser Gly Leu

110	115	120	
cct cca gaa aaa cct aaa aat ttg agt tgc att gtg aac gag ggg aag Pro Pro Glu Lys Pro Lys Asn Leu Ser Cys Ile Val Asn Glu Gly Lys 125 130 135 140			675
aaa atg agg tgt gag tgg gat ggt gga agg gaa aca cac ttg gag aca Lys Met Arg Cys Glu Trp Asp Gly Gly Arg Glu Thr His Leu Glu Thr 145 150 155			723
aac ttc act tta aaa tct gaa tgg gca aca cac aag ttt gct gat tgc Asn Phe Thr Leu Lys Ser Glu Trp Ala Thr His Lys Phe Ala Asp Cys 160 165 170			771
aaa gca aaa cgt gac acc ccc acc tca tgc act gtt gat tat tct act Lys Ala Lys Arg Asp Thr Pro Thr Ser Cys Thr Val Asp Tyr Ser Thr 175 180 185			819
gtg tat ttt gtc aac att gaa gtc tgg gta gaa gca gag aat gcc ctt Val Tyr Phe Val Asn Ile Glu Val Trp Val Glu Ala Glu Asn Ala Leu 190 195 200			867
ggg aag gtt aca tca gat cat atc aat ttt gat cct gta tat aaa gtg Gly Lys Val Thr Ser Asp His Ile Asn Phe Asp Pro Val Tyr Lys Val 205 210 215 220			915
aag ccc aat ccg cca cat aat tta tca gtg atc aac tca gag gaa ctg Lys Pro Asn Pro His Asn Leu Ser Val Ile Asn Ser Glu Glu Leu 225 230 235			963
tct agt atc tta aaa ttg aca tgg acc aac cca agt att aag agt gtt Ser Ser Ile Leu Lys Leu Thr Trp Thr Asn Pro Ser Ile Lys Ser Val 240 245 250			1011
ata ata cta aaa tat aac att caa tat agg acc aaa gat gcc tca act Ile Ile Leu Lys Tyr Asn Ile Gln Tyr Arg Thr Lys Asp Ala Ser Thr 255 260 265			1059
tgg agc cag att cct cct gaa gac aca gca tcc acc cga tct tca ttc Trp Ser Gln Ile Pro Pro Glu Asp Thr Ala Ser Thr Arg Ser Ser Phe 270 275 280			1107
act gtccaa gac ctt aaa cct ttt aca gaa tat gtg ttt agg att cgc Thr Val Gln Asp Leu Lys Pro Phe Thr Glu Tyr Val Phe Arg Ile Arg 285 290 295 300			1155
tgt atg aag gaa gat ggt aag gga tac tgg agt gac tgg agt gaa gaa Cys Met Lys Glu Asp Gly Lys Gly Tyr Trp Ser Asp Trp Ser Glu Glu 305 310 315			1203
gca agt ggg atc acc tat gaa gat aga cca tct aaa gca cca agt ttc			1251

Ala Ser Gly Ile Thr Tyr Glu Asp Arg Pro Ser Lys Ala Pro Ser Phe			
320	325	330	
tgg tat aaa ata gat cca tcc cat act caa ggc tac aga act gta caa			1299
Trp Tyr Lys Ile Asp Pro Ser His Thr Gln Gly Tyr Arg Thr Val Gln			
335	340	345	
ctc gtg tgg aag aca ttg cct cct ttt gaa gcc aat gga aaa atc ttg			1347
Leu Val Trp Lys Thr Leu Pro Pro Phe Glu Ala Asn Gly Lys Ile Leu			
350	355	360	
gat tat gaa gtg act ctc aca aga tgg aaa tca cat tta caa aat tac			1395
Asp Tyr Glu Val Thr Leu Thr Arg Trp Lys Ser His Leu Gln Asn Tyr			
365	370	375	380
aca gtt aat gcc aca aaa ctg aca gta aat ctc aca aat gat cgc tat			1443
Thr Val Asn Ala Thr Lys Leu Thr Val Asn Leu Thr Asn Asp Arg Tyr			
385	390	395	
cta gca acc cta aca gta aga aat ctt gtt ggc aaa tca gat gca gct			1491
Leu Ala Thr Leu Thr Val Arg Asn Leu Val Gly Lys Ser Asp Ala Ala			
400	405	410	
gtt tta act atc cct gcc tgt gac ttt caa gct act cac cct gta atg			1539
Val Leu Thr Ile Pro Ala Cys Asp Phe Gln Ala Thr His Pro Val Met			
415	420	425	
gat ctt aaa gca ttc ccc aaa gat aac atg ctt tgg gtg gaa tgg act			1587
Asp Leu Lys Ala Phe Pro Lys Asp Asn Met Leu Trp Val Glu Trp Thr			
430	435	440	
act cca agg gaa tct gta aag aaa tat ata ctt gag tgg tgt gtg tta			1635
Thr Pro Arg Glu Ser Val Lys Lys Tyr Ile Leu Glu Trp Cys Val Leu			
445	450	455	460
tca gat aaa gca ccc tgt atc aca gac tgg caa caa gaa gat ggt acc			1683
Ser Asp Lys Ala Pro Cys Ile Thr Asp Trp Gln Gln Glu Asp Gly Thr			
465	470	475	
gtg cat cgc acc tat tta aga ggg aac tta gca gag agc aaa tgc tat			1731
Val His Arg Thr Tyr Leu Arg Gly Asn Leu Ala Glu Ser Lys Cys Tyr			
480	485	490	
ttg ata aca gtt act cca gta tat gct gat gga cca gga agc cct gaa			1779
Leu Ile Thr Val Thr Pro Val Tyr Ala Asp Gly Pro Gly Ser Pro Glu			
495	500	505	
tcc ata aag gca tac ctt aaa caa gct cca cct tcc aaa gga cct act			1827
Ser Ile Lys Ala Tyr Leu Lys Gln Ala Pro Pro Ser Lys Gly Pro Thr			
510	515	520	

gtt cg ^g aca aaa aaa gta ggg aaa aac gaa gct gtc tta gag tgg gac Val Arg Thr Lys Lys Val Gly Lys Asn Glu Ala Val Leu Glu Trp Asp 525 530 535 540	1875
caa ctt cct gtt gat gtt cag aat gga ttt atc aga aat tat act ata Gln Leu Pro Val Asp Val Gln Asn Gly Phe Ile Arg Asn Tyr Thr Ile 545 550 555	1923
ttt tat aga acc atc att gga aat gaa act gct gtg aat gtg gat tct Phe Tyr Arg Thr Ile Ile Gly Asn Glu Thr Ala Val Asn Val Asp Ser 560 565 570	1971
tcc cac aca gaa tat aca ttg tcc tct ttg act agt gac aca ttg tac Ser His Thr Glu Tyr Thr Leu Ser Ser Leu Thr Ser Asp Thr Leu Tyr 575 580 585	2019
atg gta cga atg gca gca tac aca gat gaa ggt ggg aag gat ggt cca Met Val Arg Met Ala Ala Tyr Thr Asp Glu Gly Gly Lys Asp Gly Pro 590 595 600	2067
gaa ttc act ttt act acc cca aag ttt gct caa gga gaa att gaa gcc Glu Phe Thr Phe Thr Pro Lys Phe Ala Gln Gly Glu Ile Glu Ala 605 610 615 620	2115
ata gtc gtg cct gtt tgc tta gca ttc cta ttg aca act ctt ctg gga Ile Val Val Pro Val Cys Leu Ala Phe Leu Leu Thr Thr Leu Leu Gly 625 630 635	2163
gtg ctg ttc tgc ttt aat aag cga gac cta att aaa aaa cac atc tgg Val Leu Phe Cys Phe Asn Lys Arg Asp Leu Ile Lys Lys His Ile Trp 640 645 650	2211
cct aat gtt cca gat cct tca aag agt cat att gcc cag tgg tca cct Pro Asn Val Pro Asp Pro Ser Lys Ser His Ile Ala Gln Trp Ser Pro 655 660 665	2259
cac act cct cca agg cac aat ttt aat tca aaa gat caa atg tat tca His Thr Pro Pro Arg His Asn Phe Asn Ser Lys Asp Gln Met Tyr Ser 670 675 680	2307
gat ggc aat ttc act gat gta agt gtt gtg gaa ata gaa gca aat gac Asp Gly Asn Phe Thr Asp Val Ser Val Val Glu Ile Glu Ala Asn Asp 685 690 695 700	2355
aaa aag cct ttt cca gaa gat ctg aaa tca ttg gac ctg ttc aaa aag Lys Lys Pro Phe Pro Glu Asp Leu Lys Ser Leu Asp Leu Phe Lys Lys 705 710 715	2403
gaa aaa att aat act gaa gga cac agc agt ggt att ggg ggg tct tca Glu Lys Ile Asn Thr Glu Gly His Ser Ser Gly Ile Gly Gly Ser Ser 720 725 730	2451

tgc atg tca tct tct agg cca agc att tct agc agt gat gaa aat gaa		2499
Cys Met Ser Ser Ser Arg Pro Ser Ile Ser Ser Ser Asp Glu Asn Glu		
735	740	745
tct tca caa aac act tcg agc act gtc cag tat tct acc gtg gta cac		2547
Ser Ser Gln Asn Thr Ser Ser Thr Val Gln Tyr Ser Thr Val Val His		
750	755	760
agt ggc tac aga cac caa gtt ccg tca gtc caa gtc ttc tca aga tcc		2595
Ser Gly Tyr Arg His Gln Val Pro Ser Val Gln Val Phe Ser Arg Ser		
765	770	775
gag tct acc cag ccc ttg tta gat tca gag gag cgg cca gaa gat cta		2643
Glu Ser Thr Gln Pro Leu Leu Asp Ser Glu Glu Arg Pro Glu Asp Leu		
785	790	795
caa tta gta gat cat gta gat ggc ggt gat ggt att ttg ccc agg caa		2691
Gln Leu Val Asp His Val Asp Gly Gly Asp Gly Ile Leu Pro Arg Gln		
800	805	810
cag tac ttc aaa cag aac tgc agt cag cat gaa tcc agt cca gat att		2739
Gln Tyr Phe Lys Gln Asn Cys Ser Gln His Glu Ser Ser Pro Asp Ile		
815	820	825
tca cat ttt gaa agg tca aag caa gtt tca tca gtc aat gag gaa gat		2787
Ser His Phe Glu Arg Ser Lys Gln Val Ser Ser Val Asn Glu Glu Asp		
830	835	840
ttt gtt aga ctt aaa cag cag att tca gat cat att tca caa tcc tgt		2835
Phe Val Arg Leu Lys Gln Gln Ile Ser Asp His Ile Ser Gln Ser Cys		
845	850	855
860		
gga tct ggg caa atg aaa atg ttt cag gaa gtt tct gca gca gat gct		2883
Gly Ser Gly Gln Met Lys Met Phe Gln Glu Val Ser Ala Ala Asp Ala		
865	870	875
ttt ggt cca ggt act gag gga caa gta gaa aga ttt gaa aca gtt ggc		2931
Phe Gly Pro Gly Thr Glu Gly Gln Val Glu Arg Phe Glu Thr Val Gly		
880	885	890
atg gag gct gcg act gat gaa ggc atg cct aaa agt tac tta cca cag		2979
Met Glu Ala Ala Thr Asp Glu Gly Met Pro Lys Ser Tyr Leu Pro Gln		
895	900	905
act gta cgg caa ggc ggc tac atg cct cag tga aggactagta gttcctgcta	3032	
Thr Val Arg Gln Gly Gly Tyr Met Pro Gln		
910	915	
caacttcagc agtacctata aagtaaagct aaaatgattt tatcttgaa ttc		3085

<210> 62
<211> 918
<212> PRT
<213> Homo sapiens

<400> 62
Met Leu Thr Leu Gln Thr Trp Val Val Gln Ala Leu Phe Ile Phe Leu
1 5 10 15
Thr Thr Glu Ser Thr Gly Glu Leu Leu Asp Pro Cys Gly Tyr Ile Ser
20 25 30
Pro Glu Ser Pro Val Val Gln Leu His Ser Asn Phe Thr Ala Val Cys
35 40 45
Val Leu Lys Glu Lys Cys Met Asp Tyr Phe His Val Asn Ala Asn Tyr
50 55 60
Ile Val Trp Lys Thr Asn His Phe Thr Ile Pro Lys Glu Gln Tyr Thr
65 70 75 80
Ile Ile Asn Arg Thr Ala Ser Ser Val Thr Phe Thr Asp Ile Ala Ser
85 90 95
Leu Asn Ile Gln Leu Thr Cys Asn Ile Leu Thr Phe Gly Gln Leu Glu
100 105 110
Gln Asn Val Tyr Gly Ile Thr Ile Ile Ser Gly Leu Pro Pro Glu Lys
115 120 125
Pro Lys Asn Leu Ser Cys Ile Val Asn Glu Gly Lys Lys Met Arg Cys
130 135 140
Glu Trp Asp Gly Gly Arg Glu Thr His Leu Glu Thr Asn Phe Thr Leu
145 150 155 160
Lys Ser Glu Trp Ala Thr His Lys Phe Ala Asp Cys Lys Ala Lys Arg
165 170 175
Asp Thr Pro Thr Ser Cys Thr Val Asp Tyr Ser Thr Val Tyr Phe Val
180 185 190
Asn Ile Glu Val Trp Val Glu Ala Glu Asn Ala Leu Gly Lys Val Thr
195 200 205
Ser Asp His Ile Asn Phe Asp Pro Val Tyr Lys Val Lys Pro Asn Pro
210 215 220
Pro His Asn Leu Ser Val Ile Asn Ser Glu Glu Leu Ser Ser Ile Leu
225 230 235 240
Lys Leu Thr Trp Thr Asn Pro Ser Ile Lys Ser Val Ile Ile Leu Lys
245 250 255
Tyr Asn Ile Gln Tyr Arg Thr Lys Asp Ala Ser Thr Trp Ser Gln Ile
260 265 270
Pro Pro Glu Asp Thr Ala Ser Thr Arg Ser Ser Phe Thr Val Gln Asp
275 280 285
Leu Lys Pro Phe Thr Glu Tyr Val Phe Arg Ile Arg Cys Met Lys Glu
290 295 300
Asp Gly Lys Gly Tyr Trp Ser Asp Trp Ser Glu Glu Ala Ser Gly Ile
305 310 315 320
Thr Tyr Glu Asp Arg Pro Ser Lys Ala Pro Ser Phe Trp Tyr Lys Ile
325 330 335
Asp Pro Ser His Thr Gln Gly Tyr Arg Thr Val Gln Leu Val Trp Lys
340 345 350
Thr Leu Pro Pro Phe Glu Ala Asn Gly Lys Ile Leu Asp Tyr Glu Val

355	360	365
Thr Leu Thr Arg Trp Lys Ser His Leu Gln Asn Tyr Thr Val Asn Ala		
370	375	380
Thr Lys Leu Thr Val Asn Leu Thr Asn Asp Arg Tyr Leu Ala Thr Leu		
385	390	395
400		
Thr Val Arg Asn Leu Val Gly Lys Ser Asp Ala Ala Val Leu Thr Ile		
405	410	415
Pro Ala Cys Asp Phe Gln Ala Thr His Pro Val Met Asp Leu Lys Ala		
420	425	430
Phe Pro Lys Asp Asn Met Leu Trp Val Glu Trp Thr Thr Pro Arg Glu		
435	440	445
Ser Val Lys Lys Tyr Ile Leu Glu Trp Cys Val Leu Ser Asp Lys Ala		
450	455	460
Pro Cys Ile Thr Asp Trp Gln Gln Glu Asp Gly Thr Val His Arg Thr		
465	470	475
480		
Tyr Leu Arg Gly Asn Leu Ala Glu Ser Lys Cys Tyr Leu Ile Thr Val		
485	490	495
Thr Pro Val Tyr Ala Asp Gly Pro Gly Ser Pro Glu Ser Ile Lys Ala		
500	505	510
Tyr Leu Lys Gln Ala Pro Pro Ser Lys Gly Pro Thr Val Arg Thr Lys		
515	520	525
Lys Val Gly Lys Asn Glu Ala Val Leu Glu Trp Asp Gln Leu Pro Val		
530	535	540
Asp Val Gln Asn Gly Phe Ile Arg Asn Tyr Thr Ile Phe Tyr Arg Thr		
545	550	555
560		
Ile Ile Gly Asn Glu Thr Ala Val Asn Val Asp Ser Ser His Thr Glu		
565	570	575
Tyr Thr Leu Ser Ser Leu Thr Ser Asp Thr Leu Tyr Met Val Arg Met		
580	585	590
Ala Ala Tyr Thr Asp Glu Gly Lys Asp Gly Pro Glu Phe Thr Phe		
595	600	605
Thr Thr Pro Lys Phe Ala Gln Gly Glu Ile Glu Ala Ile Val Val Pro		
610	615	620
Val Cys Leu Ala Phe Leu Leu Thr Thr Leu Leu Gly Val Leu Phe Cys		
625	630	635
640		
Phe Asn Lys Arg Asp Leu Ile Lys Lys His Ile Trp Pro Asn Val Pro		
645	650	655
Asp Pro Ser Lys Ser His Ile Ala Gln Trp Ser Pro His Thr Pro Pro		
660	665	670
Arg His Asn Phe Asn Ser Lys Asp Gln Met Tyr Ser Asp Gly Asn Phe		
675	680	685
Thr Asp Val Ser Val Val Glu Ile Glu Ala Asn Asp Lys Lys Pro Phe		
690	695	700
Pro Glu Asp Leu Lys Ser Leu Asp Leu Phe Lys Lys Glu Lys Ile Asn		
705	710	715
720		
Thr Glu Gly His Ser Ser Gly Ile Gly Gly Ser Ser Cys Met Ser Ser		
725	730	735
Ser Arg Pro Ser Ile Ser Ser Ser Asp Glu Asn Glu Ser Ser Gln Asn		
740	745	750
Thr Ser Ser Thr Val Gln Tyr Ser Thr Val Val His Ser Gly Tyr Arg		
755	760	765

His Gln Val Pro Ser Val Gln Val Phe Ser Arg Ser Glu Ser Thr Gln
770 775 780
Pro Leu Leu Asp Ser Glu Glu Arg Pro Glu Asp Leu Gln Leu Val Asp
785 790 795 800
His Val Asp Gly Gly Asp Gly Ile Leu Pro Arg Gln Gln Tyr Phe Lys
805 810 815
Gln Asn Cys Ser Gln His Glu Ser Ser Pro Asp Ile Ser His Phe Glu
820 825 830
Arg Ser Lys Gln Val Ser Ser Val Asn Glu Glu Asp Phe Val Arg Leu
835 840 845
Lys Gln Gln Ile Ser Asp His Ile Ser Gln Ser Cys Gly Ser Gly Gln
850 855 860
Met Lys Met Phe Gln Glu Val Ser Ala Ala Asp Ala Phe Gly Pro Gly
865 870 875 880
Thr Glu Gly Gln Val Glu Arg Phe Glu Thr Val Gly Met Glu Ala Ala
885 890 895
Thr Asp Glu Gly Met Pro Lys Ser Tyr Leu Pro Gln Thr Val Arg Gln
900 905 910
Gly Gly Tyr Met Pro Gln
915