MLlib and GraphX

Lecture 6 November 15th, 2017

Jonghyun Bae (jonghyun Bae (jonghbae@snu.ac.kr)
Computer Science and Engineering
Seoul National University

Slide credits: Holden Karau et al. (Learning Spark), Xiangrui Meng (MLlib), Joseph Bradley (Machine Learning Model Persistence), Jae W. Lee (SSE2029/2016-2)

MLlib & GraphFrames

- Special-purpose libraries for a variety of data science tasks
 - MLlib
 - GraphX

^{*} Image from https://www.safaribooksonline.com/library/view/data-analytics-with/9781491913734/ch04.html

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

Machine learning

ML is everywhere

What is machine learning?

Machine is learning itself! (So simple!)

 Learning the machine from the data and executing the operation that is not specified by the human being (complex mean)

Principle of machine learning

Recognition – Training – Evaluation – Recognition (repeat)

^{*} Image from http://blogs.teradata.com/data-points/building-machine-learning-infrastructure-2/

Logistic regression example

- Recognition (Featurization)
- Training
- Evaluation

Machine learning의 방법

- Supervised learning (지도 학습 in Kor.)
 - Inferring a function from labeled training data
 - Decision tree, random forest, linear regression, naïve bayesian,...

- Unsupervised learning (자율 학습 in Kor.)
 - Inferring a function to describe hidden structure from unlabled data

ML and data mining

- Machine learning: Find predicted results from known models
- Data mining: Find unexpected results from unclustered data

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

What is MLlib*

- Spark's library of machine learning functions
- Make practical machine learning scalable and easy
- Good combination with RDD persist (* . cache ())
 - Lots of ML is iterative algorithm

^{*} X. Meng et al. MLlib: Machine Learning in Apache Spark, JMLR, 17(34):1-7, 2016.

Benefits of MLlib

- Large dataset learning is possible using MapReduce method
- Algorithm implemented in consideration of parallel environment

RDD-based and DataFrame-based

- Why DataFrame-based API is recommended?
 - More user-friendly and understandable API than RDDs
 - Uniform API across ML algorithms and across multiple languages

Data type of MLlib

Vector

- Mathematical vector.
- Dense vector (all entry is stored) and Sparse vector (non-zero is stored only)

LabledPoint

For supervised learning algorithms such as classification and regression

Rating

A rating of a produce by a user, used in recommendation

Basics of MLlib

- High-level tools provided such as
 - ML Algorithms: common learning algorithms
 - Classification, regression, clustering and collaborative filtering
 - Featurization: feature extraction, transformation, dimensionality reduction
 - Pipelines: tools for constructing, evaluating, and tuning ML
 Pipelines

Basics of MLlib

- High-level tools provided such as
 - Persistence: saving and load algorithms, models, and Pipelines
 - Utilities: linear algebra, statistics, data handling

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

Pipelines

Purpose to make it easier to combine multiple algorithms into a single pipeline

Transformers

Abstraction that include feature transformers and learned models

Estimators

 Abstracts the concept of a learning or any algorithm that fits or trains on data

Pipelines example

Pipeline (Estimator)

```
>>> training = spark.createDataFrame([
       (0, "a b c d e spark", 1.0),
     (1, "b d", 0.0),
   (2, "spark f g h", 1.0),
   (3, "hadoop mapreduce", 0.0)
...], ["id", "text", "label"])
>>> tokenizer = Tokenizer(inputCol="text", outputCol="words")
>>> hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),
outputCol="features")
>>> lr = LogisticRegression(maxIter=10, regParam=0.001)
>>> pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])
>>> model = pipeline.fit(training)
```

Pipeline (Transformer)

```
>>> test = spark.createDataFrame([
   (4, "spark i j k"),
   (5, "1 m n"),
   (6, "spark hadoop spark"),
   (7, "apache hadoop")
...], ["id", "text"])
>>> prediction = model.transform(test)
>>> selected = prediction.select("id", "text", "probability,
prediction")
>>> for row in selected.collect():
       rid, text, prob, prediction = row
     print("(%d, %s) --> prob=%s, prediction=%f" %
              (rid, text, str(prob), prediction))
```

Featurization

Extraction

Extracting features from "raw" data

Transformation

Scaling, converting, or modifying features

Selection

Selecting a subset from a larger set of features

ML algorithms

- Classification
- Regression
- Clustering
- Collaborative filter

Classification

- Predict category or class "Y" from some inputs "X"
- Logistic regression, Decision tree classifier, Random forest classifier, Bayesian classification, ...

Logistic regression

- Detecting email spam and normal email
- Detecting normal transactions and abnormal transactions in credit card transactions

Regression

- Predictions from data by learning the relationship between features of your data and some observed, continuous-valued response
- Linear regression, Decision tree classifier, Random forest regression, ...

Linear regression

 Linear approach for modeling the relationship between a scala dependent variable Y and one or more variables denoted X

Clustering

- Assignment of a set of observations into subsets
 - High similarity between data in clusters

K-means

Clustering aims to partition n observations into k clusters

Collaborative filter

- Used for recommender system
- Fill in the entries of user-item association matrix

	Alice	Bob	Chaley	Delta	Edgar
The piano	-	-	+		+
Pulp Fiction	-	+	+	-	+
Clueless	+		-	+	-
Cliffhanger	-	-	+	-	+
Fargo	-	+	+	-	? => +

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

Graph theory

- Mathematical structures used to model pairwise relations between object
- Made up of vertices which are connected by edges

Graph Definitions

- A graph G consists of two sets: G(V, E)
- Edge
 - Connection between vertices
 - Possible empty set of edges E(G)

Vertex

- Fundamental unit of which graphs are formed
- Nonempty set of vertices V(G)

Graph Definitions

Directed graph

- Which edge is a directed pair of vertices, <v₀, v₁>
- This is different from <v₁, v₀>

Undirected graph

- Which the pair of vertices in an edge is unordered
- $< \mathbf{v}_0, \ \mathbf{v}_1 > = < \mathbf{v}_1, \ \mathbf{v}_0 >$

Graph Definitions

Cyclic / Acyclic graph

Spark has Directed Acyclic Graph scheduler (DAG scheduler)

Usage of graph algorithm

- 집단 혹은 계층이나 역활의 분화 설명
- 통계적인 모델을 이용해 관계의 영향력이 특정한 결과에 영향을 주는지를 측정

Graph problem example

Konigsberg bridge problem

- Degree of a vertex: the number of edges incident to it
- Eulerian walk: a walk starting at a vertex, going through each edge exactly once and terminating at the start vertex

^{*} Image from http://mathworld.wolfram.com/KoenigsbergBridgeProblem.html

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

GraphX

- Graph-parallel computation
- Optimize the representation of vertex and edge types reducing the in memory footprint

Graph structure in Spark

VertexRDD

- RDD[(VertexID, A)] and adds the additional constraint that each VertexId occurs only once
- Set of vertices each with an attribute of type A
- filter, minus, diff, innerJoin,...

EdgeRDD

- RDD[Edge[ED]] organized the edges in blocks partitioned
- mapValues, reverse, innerJoin

Graph structure in Spark

Optimized partitioning strategy

GraphFrame

- Graph structure based on DataFrame
- Vertex DataFrame
- Edge DataFrame

Example of GraphFrame

 Spark shell with GraphFrames use a specific version of the GraphFrames package

```
./bin/pyspark --packages graphframes:graphframes:0.5.0-spark2.1-s_2.11
```

Example of GraphFrame

```
>>> v = sqlContext.createDataFrame([
... ("a", "Alice", 34),
... ("b", "Bob", 36),
... ("c", "Charlie", 30),
... ("d", "David", 29),
...], ["id", "name", "age"])
>>>
>>> e = sqlContext.createDataFrame([
   ("a", "b", "friend"),
... ("b", "c", "follow"),
... ("c", "b", "follow"),
... ("d", "a", "friend"),
...], ["src", "dst", "relationship"])
```

Example of GraphFrame

```
>>> from graphframes import *
>>> g = GraphFrame(v, e)
# Query: Get in-degree of each vertex.
>>> g.inDegrees.show()
+---+
| id|inDegree|
+---+
| c| 1|
 b| 2|
+---+
>>>
```

Outline

- Machine learning
- Basics of MLlib
- Representative algorithms with MLlib
- Graph theory
- Graph structure in Spark (GraphX)
- Graph Algorithms with GraphX

Shortest path

- Based on Dijkstra's algorithm
- Fine the min cost of the path from a given source node to every other node
- Given
 - The cost $e(v_i, v_j)$ of all edges
 - v₀ is the source node
 - (v_i, v_j) = infinite if v_i and v_j are not connected

Shortest path pseudo code

```
\begin{split} &S <- \ \{v_0\}; \\ &\text{dist}[v_0] <- \ 0; \\ &\text{for each } v \text{ in } V - \{v_0\} \text{ do dist}[v] <- \ e(v_0, \ v); \\ &\text{while } S \ != V \text{ do} \\ &\text{choose a vertex } w \text{ in } V\text{-}S \text{ such that disk}[w] \text{ is a minimum}; \\ &\text{add } w \text{ to } S; \\ &\text{for each } v \text{ in } V\text{-}S \text{ do} \\ &\text{disk}[v] <- \min(\text{dist}[v], \text{ dist}[w] + e(w, \ v)); \end{split}
```

Shortest path example

^{*} Image from https://commons.wikimedia.org/wiki/File:Dijkstra_Animation.gif