The steady state under given conditions can be expressed with following equations:

$$\begin{split} \left(C_{Cl_in} - C_{Na_in} - C_{K_in}\right) & V_i = -\frac{EC}{F} \;, \\ \left(C_{Cl_out} - C_{Na_out} - C_{K_out}\right) & V_o = \frac{EC}{F} \;, \\ C_{K_in} + C_{Na_in} + C_{Cl_in} = C_{K_out} + C_{Na_out} + C_{Cl_out} \;, \\ E = \frac{RT}{F} \ln \frac{C_{Cl_in}}{C_{Cl_out}} \;. \end{split}$$

After some mathematical transformations of these equations, following formula can be written:

$$E = \frac{RT}{F} \ln \frac{1}{C_{Cl_out}} \left[C_{Cl_out} - \frac{EC}{2F} \left(\frac{1}{V_i} + \frac{1}{V_o} \right) \right]$$

This can be transformed to a less complicated form:

$$\ln E_2 = \left(-\frac{m}{np}\right)E_2 + \left(\frac{m}{np}\right),$$

$$m = C_{Cl_out} > 0,$$

$$n = \frac{RT}{F} > 0,$$

$$p = \frac{C}{2F}\left(\frac{1}{V_i} + \frac{1}{V_o}\right) > 0,$$

$$E_2 = \frac{m - pE}{m}.$$

Now, it can be easily conceived that there is only one solution for this equation, i.e. $E_2 = 1$, which yields further: $E = (m - mE_2)/p = 0$.