INDIAN INSTITUTE OF TECHNOLOGY MADRAS

Department of Chemical Engineering

CH 5350 Applied Time-Series Analysis

Assignment 5

Due: Friday, November 07, 2014 11:00 PM

1. [Least Squares Estimation]

- (a) Prove that in the LS estimation of θ with the model $y[k]=x^T[k]\theta+e[k]$, $E(\hat{\sigma}^2_{\epsilon})=\sigma^2_e$, where $\hat{\sigma}^2_{\epsilon}=\frac{SSE}{N-p}$. Satte that any assumptions that you have to make.
- (b) The LS estimator and the Y-W estimator produce almost identical estimates of an AR(P) model, with a subtle difference. The subtle difference lies in the way each of these methods handle non-zero mean of a series. Show that this difference vanishes for large N.
- (c) Verify parts (a) and (b) using simulated series in R for an AR(2) model with $d_1 = -1.1, d_2 = 0.28$.
- 2. [MLE and Least Squares]
 - (a) Given two samples x[1] and x[2] (with different magnitudes) of a series, fit an AR(1) model using the MLE method (ITSM, Brockwell and Davis).
 - (b) For the process above, arrive at the Least Squares solution and compare it with the MLE.
- 3. [Problem from Schumway and Stoffer] Let M_t represent the cardiovascular mortality series discussed in Chapter 2, Example 2.2. Fit an

Let M_t represent the cardiovascular mortality series discussed in Chapter 2, Example 2.2. Fit ar AR(2) model to the data using linear regression and using Yule–Walker.

- (a) Compare the parameter estimates obtained by the two methods.
- (b) Compare the estimated standard errors of the coefficients obtained by linear regression with their corresponding asymptotic approximations.
- 4. [Fitting a seasonal model]
 - (a) For the data given in sarima_data.Rdata, fit a model by the classical approach of decomposing the series into seasonal, trend and stationary components (use the stl routine in R to achieve this decomposition). Fit an ARMA model to the stationary series.
 - (b) For the same data set, build a traditional SARIMA model in a systematic manner.
- 5. [Conditional Expectation]
 - (a) Prove that the solution to $\min_{g(x)} E((Y g(x))^2)$ is the conditional expectation E(Y|X).
 - (b) Show that if X and Y are jointly Gaussian with unconditional expectations μ_X and μ_Y respectively, the conditional expectation E(Y|X) is a linear function of x.
 - (c) Consider the random variable $y=x^2+z$ where x and z are independent zero-mean processes with unit variance. Find the MSE approximation of y with respect to x. What is the value of MSE?
 - (d) Suppose a linear approximation of y in part (c) is sought. What is the MSE obtained with the best linear model?