1.a izpit iz Moderne fizike 1

18. december 2020

čas reševanja 90 minut

1. Z natančnim merilcem merimo hitrost svetlobe pri prehodu skozi prozorno tekočino. Ko je tekočina v mirovanju, izmerimo njen lomni količnik n=1,33. Nato tekočino po cevi spravimo v gibanje s hitrostjo v=2 m/s v smeri širjenja svetlobe (glej skico). Za koliko se poveča hitrost svetlobe pri potovanju skozi gibajočo se tekočino, merjeno v laboratorijskem sistemu?

2. V potencialu je ujet delec, katerega stanje opišemo kot superpozicijo osnovnega in prvega vzbujenega stanja:

$$\Psi(x,0) = \frac{1}{\sqrt{2}} (\psi_1(x) + \psi_2(x)) .$$

Če označimo z E_1 energijo osnovnega, z E_2 pa energijo prvega vzbujenega stanja, kolikšna je pričakovana vrednost energije $\langle E \rangle$ in kolikšna njena nedoločenost δE ? Izračunaj nihajni čas τ pričakovane vrednosti lege delca $\langle x(t) \rangle$ okoli srednje vrednosti.

- 3. Opazujemo razpad K^+ mezona v njegovem mirovnem sistemu. Razpade lahko ali v anti-mion μ^+ in brezmasni nevtrino, $K^+ \to \mu^+ \nu_\mu$, ali v $K^+ \to \pi^+ \pi^0$. Določi gibalno količino razpadnih produktov v težiščnem sistemu za oba primera. Kolikšna je energija nevtrina? Kolikšno gibalno količino μ^+ izmeri opazovalec, ki se giblje z $\beta=0.6$ v smeri μ^+ ? $m_{K^+,\mu^+,\pi^+,\pi^0}=\{494,106,140,135\}$ MeV/ c^2 .
- 4. Elektronu v osnovnem stanju neskončne potencialne jame širine [0, a/2], potencial hipoma raztegnemo na [0, a]. Določi, s kolikšno verjetnostjo je v osnovnem oziroma v prvem vzbujenem stanju raztegnjene jame. Izračunaj povprečno energijo, produkt nedoločenosti lege in gibalne količine ter zapiši časovni razvoj.

$$\int_0^{a/2} \mathrm{d}x \, \sin\left(\frac{2\pi x}{a}\right) \sin\left(\frac{n\pi x}{a}\right) = \frac{2a \sin\frac{n\pi}{2}}{\pi (4 - n^2)}$$
$$\sum_{k=0}^{\infty} \frac{1}{(1 - (k + 1/2)^2)^2} = \frac{\pi^2}{4} = \sum_{k=0}^{\infty} \frac{(k + 1/2)^2}{(1 - (k + 1/2)^2)^2}$$