Data Wrangling and R

Overview

Over the past few weeks, This report have a general understanding of designing databases and how to use SQL to retrieve information from business data.

Table of Contents

Part 1: Database design
1.2. Redesigning for 3NF: ERD Creation, Relational Schema, and SQL Table Generation 2 1.2.1. ERD Diagram 2 1.2.2. Converted relational schema 3 1.2.3. Generated SQL statements 3
1.2.1. ERD Diagram21.2.2. Converted relational schema31.2.3. Generated SQL statements3
1.2.2. Converted relational schema
1.2.3. Generated SQL statements
Part 2: Database retrieval using SQL5
2.1. Defining Table Relationships: Constraints, Primary Keys, and Foreign Keys in Database Design5
2.2. Using SQL for Business Insights: Answering Key Questions to Support Managerial Decisions5
2.2.1. Display the orders that have an order quantity greater than 35
2.2.2. Querying Vendor Orders: Counting Vendors with Credit Ratings Above 26
2.2.3. Display names of vendors and their preferred status of vendors who live in Washington province6
2.2.4. Distinct 2012 Orders Shipped by 'Truck' or 'Cargo Ship': Count and Total Quantity7
2.2.5. Display vendors name, state and its latest receipt cost in descending order of both standard price and average lead times
2.2.6. Calculate the quarter sales of vendors in Washington province8
2.2.7. Top Two Vendors by Order Quantity8
2.2.8. Identifying the Best Vendors by Shipping Type: Criteria Proposal, Justification, and SQL Solution for Optimized Order Processing9
2.2.9. Display the vendor that have sold the highest orders and lowest lead time that is the best vendor10
2.2.10. Finding the Most Efficient and Cost-Effective Vendor: Criteria Definition and SQL Solution for Optimal Selection
2.2.11. Calculate the average order fulfillment cost and time

Part 1: Database design

Analysis of University Students and Courses: Key Insights and Findings

Student_ID	Student_Name	Student_Age	Course_ID	Course_Name	Course_Instructor	Course_Credits	Course_Department	Department_Location	Department_Head
1	John	20	101	Math	Prof. Smith	3	Math	Building A	Prof. Johnson
1	John	20	102	Physics	Prof. Johnson	4	Physics	Building B	Prof. Adams
2	Mary	22	103	Chemistry	Prof. Lee	3	Chemistry	Building C	Prof. Lee
3	Mike	19	101	Math	Prof. Smith	3	Math	Building A	Prof. Johnson
3	Mike	19	104	Biology	Prof. Davis	4	Biology	Building D	Prof. White
4	Lisa	21	105	History	Prof. Wilson	3	History	Building E	Prof. Wilson
5	Alex	20	106	English	Prof. Turner	3	English	Building F	Prof. Turner
6	Sarah	22	103	Chemistry	Prof. Lee	3	Chemistry	Building C	Prof. Lee
7	Bob	19	107	Computer Sci.	Prof. Johnson	4	Computer Science	Building G	Prof. Adams
8	Emily	20	108	Psychology	Prof. White	3	Psychology	Building H	Prof. White

1.1. Evaluating Normal Forms: 1NF, 2NF, and 3NF Analysis with Anomalies in Data Management

The table satisfies the first normal form (1NF) because:

- The table does not have any attributes that hold multiple values.
- It hold only atomic values (no multi-valued attributes).

The table does not satisfy the second normal form (2NF) because both Student_ID and Course_ID are primary keys and Course_Credits is a non-key attribute then Course_Credits (non-key attribute) is partially dependent on Course_ID, not the whole primary key. This violates the 2NF.

The table does not satisfy the third normal form (3NF) because it does not satisfy the second normal form (2NF).

Examples:

- Insertion anomaly: Because the primary keys are Student_ID and Course_ID, we cannot add a new Course_Name before having a student enrolled in it.
- Delection anomaly: deleting the row have Student_Name "Lisa", the information related to Course_Name "History" included Course_Instructor, Course_ Department and Department_Location will be deleted.
- Update anomaly: a change of Biology Department_Head "Prof.White" requires multiple updates because he is also the course instructor of Psychology Course and the Department Head of Psychology Department.

1.2. Redesigning for 3NF: ERD Creation, Relational Schema, and SQL Table Generation

Answer:

1.2.1. ERD Diagram

Constraints imposed by the cardinality of the relationships:

- 1. A student must enroll at least one course to appear in the system and may enroll many courses.
- 2. A course can have multiple students (many students).
- 3. A course must be located in one (and only one) department.
- 4. A department must have at least one course and may have many courses.
- 5. A course may have many course instructors.
- 6. A course instructor must attend at least one course and may attend many courses.

1.2.2. Converted relational schema

1.2.3. Generated SQL statements

```
CREATE TABLE Student
(
Student_ID INT NOT NULL,
Student_Name VARCHAR(250) NOT NULL,
Student_Age NUMERIC(2) NOT NULL,
PRIMARY KEY (Student_ID)
);

CREATE TABLE Department
(
Department_Location VARCHAR(250) NOT NULL,
Department_Head VARCHAR(250) NOT NULL,
Department_ID INT NOT NULL,
Department_Name VARCHAR(40) NOT NULL,
```

```
PRIMARY KEY (Department_ID)
);
CREATE TABLE Course_Instructor
 Instructor_Name VARCHAR(250) NOT NULL,
 Instructor_Email VARCHAR(250) NOT NULL,
 Instructor_ID INT NOT NULL,
 PRIMARY KEY (Instructor_ID)
);
CREATE TABLE Course
 Course_ID INT NOT NULL,
 Course_Name VARCHAR(250) NOT NULL,
 Course_Credit NUMERIC(2) NOT NULL,
 Department_ID INT NOT NULL,
 PRIMARY KEY (Course_ID),
 FOREIGN KEY (Department_ID) REFERENCES Department(Department_ID)
);
CREATE TABLE Enroll
 Course_ID INT NOT NULL,
 Student_ID INT NOT NULL,
 PRIMARY KEY (Course_ID, Student_ID),
 FOREIGN KEY (Course_ID) REFERENCES Course(Course_ID),
 FOREIGN KEY (Student_ID) REFERENCES Student(Student_ID)
);
CREATE TABLE Have
 Course_ID INT NOT NULL,
 Instructor_ID INT NOT NULL,
```

```
PRIMARY KEY (Course_ID, Instructor_ID),

FOREIGN KEY (Course_ID) REFERENCES Course(Course_ID),

FOREIGN KEY (Instructor_ID) REFERENCES Course_Instructor(Instructor_ID)

);
```

Part 2: Database retrieval using SQL

2.1. Defining Table Relationships: Constraints, Primary Keys, and Foreign Keys in Database Design

- Purchase Order Detail and Purchase Order Header:
 - o One Purchase Order Detail can specify only one Purchase Order.
 - One Purchase Order can appear in multiple Purcase
 Order Detail.
- Purchase Order Header and Ship Method:
 - One Purchase Order can specify only one Ship Method.
 - One Ship Method can appear in multiple Purchase
 Order.
- Vendor and Purchase Order Header
 - o One Purchase Order can specify only one Vendor.
 - One Vendor can appear in multiple Purchase Order.
- Vendor and Product Vendor
 - One Product can have multiple Vendors.
 - One Vendor can appear in multiple Products.

2.2. Using SQL for Business Insights: Answering Key Questions to Support Managerial Decisions.

2.2.1. Display the orders that have an order quantity greater than 3.

2.2.2. Querying Vendor Orders: Counting Vendors with Credit Ratings Above 2

2.2.3. Display names of vendors and their preferred status of vendors who live in Washington province.

Code	SELECT v.Name , v.PreferredVendorStatus, vvwa.StateProvinceName
	FROM Purchasing. Vendor v, Purchasing. vVendor With Addresses vvwa
	WHERE vvwa.StateProvinceName = 'Washington'

2.2.4. Distinct 2012 Orders Shipped by 'Truck' or 'Cargo Ship': Count and Total Quantity

2.2.5. Display vendors name, state and its latest receipt cost in descending order of both standard price and average lead times.

Code	SELECT v.Name as VendorName , vvwa.StateProvinceName , pv.LastReceiptCost
	FROM Purchasing. Vendor v
	JOIN Purchasing.vVendorWithAddresses vvwa
	on v.BusinessEntityID = vvwa.BusinessEntityID
	JOIN Purchasing. Product Vendor pv
	<pre>on pv.BusinessEntityID = v.BusinessEntityID</pre>
	ORDER BY pv.AverageLeadTime DESC, pv.StandardPrice DESC

Returned	■ F	Results	:1 ×					
	οT g	SELECT	Γ v.Name as VendorName ,	vvwa.St. 💖 Enter a SQL expr	ression to filter results (use Ctrl+Space)	▶ ▼	♦ ▼ ▼	
table	Grid		NendorName **	StateProvinceName *	123 LastReceiptCost		₹ Value ×	
	=	1	International Trek Center	California	51.5600		Internati	
	ŧ	2	Fitness Association	Washington	37.1000		w l	
	T Text	3	Fitness Association	Washington	37.1000		:: :::	
	,0	4	Fitness Association	Washington	37.1000			
		5	Fitness Association	Washington	30.9400		i	
		6	Fitness Association	Washington	30.9400		<u>=1</u>	
		7	Fitness Association	Washington	30.9400			
		8	Integrated Sport Products	California	24.7500			
		9	Green Lake Bike Company	Colorado	59.4600			
	pi	10	Green Lake Bike Company	Colorado	33.8800			
	Record	11	Integrated Sport Products	California	38.7500			
		12	Integrated Sport Products	California	38.4900		_	
			Integrated Sport Products		38 4000			
		♥ Re	efresh ▼ ! ⊘ Save ▼ ⊠ (lancel : ⇒ = = = = K <	> > I ■ Export data ▼ 200 Res	sult-set fetch size		
		2	00 row(s) fetched - 79ms (3	ms fetch), on 2023-09-10 a		and secretaristic	21	
			AEST en_AU Writa	ole Smart	Insert 23 : 1 [330]	Sel: 330 7		

2.2.6. Calculate the quarter sales of vendors in Washington province.

2.2.7. Top Two Vendors by Order Quantity

2.2.8. Identifying the Best Vendors by Shipping Type: Criteria Proposal, Justification, and SQL Solution for Optimized Order Processing

Proposed	Select the top five vendors for the five shipping methods based on highest order quantity
criterion	processed in the lowest average processing time.
Justificatio	The vendors are selected by the highest order quantity handled for each shipping type. This
n	guarantees that the vendors with the highest sales volume are prioritized.
	Minimum average processing time is an important variable in determining order fulfillment
	efficiency.
	The goal is to determine the top five suppliers for every delivery method who not only
	handle a large volume of orders but also finish the deal in the shortest period of time,
	showing effectiveness in their operations. It will help to increase the company's sales and
	reputation.
Code	WITH AvgProcessTime AS (
	SELECT poh.VendorID,
	AVG(DATEDIFF(DAY, poh.OrderDate, poh.ShipDate)) AS AvgProcessTime, sm.ShipMethodID
	FROM Purchasing.PurchaseOrderHeader poh
	JOIN Purchasing.ShipMethod sm
	ON poh.ShipMethodID = sm.ShipMethodID
	JOIN Purchasing.PurchaseOrderDetail pod ON poh.PurchaseOrderID = pod.PurchaseOrderID
	GROUP BY poh.VendorID, sm.ShipMethodID
),
	TotalOrderQuantity AS (
	SELECT poh. VendorID as VendorId, poh. ShipMethodID as ShipMethodID, sm. Name as
	ShipMethod, SUM(pod.OrderQty) AS TotalOrderQty
	FROM Purchasing.PurchaseOrderDetail pod
	JOIN Purchasing.PurchaseOrderHeader poh
	ON poh.PurchaseOrderID = pod.PurchaseOrderID
	JOIN Purchasing.ShipMethod sm
	ON sm.ShipMethodID = poh.ShipMethodID
	GROUP BY poh.VendorID, poh.ShipMethodID, sm.Name),
	RankedVendors AS (
	SELECT TotalOrderQuantity.ShipMethodID AS
	ShipMethodID,TotalOrderQuantity.ShipMethod, TotalOrderQuantity.VendorID AS
	VendorID,
	TotalOrderQuantity.TotalOrderQty AS TotalOrderQty, AvgProcessTime.AvgProcessTime AS
	AvgProcessTime,
	ROW_NUMBER() OVER (PARTITION BY TotalOrderQuantity.ShipMethodID ORDER BY
	TotalOrderQuantity.TotalOrderQty DESC) AS Rank
	FROM TotalOrderQuantity
	JOIN AvgProcessTime
	ON TotalOrderQuantity.VendorID = AvgProcessTime.VendorID
	AND TotalOrderQuantity.ShipMethodID = AvgProcessTime.ShipMethodID)
	SELECT RankedVendors.ShipMethodID, RankedVendors.ShipMethod,
	RankedVendors.VendorID, v.Name AS VendorName,

2.2.9. Display the vendor that have sold the highest orders and lowest lead time that is the best vendor.

Code	WITH AvgProcessTime AS (
	SELECT poh.VendorID,
	AVG(DATEDIFF(DAY, poh.OrderDate, poh.ShipDate)) AS AvgProcessTime, sm.ShipMethodID
	FROM Purchasing.PurchaseOrderHeader poh
	JOIN Purchasing.ShipMethod sm
	ON poh.ShipMethodID = sm.ShipMethodID
	JOIN Purchasing.PurchaseOrderDetail pod ON poh.PurchaseOrderID = pod.PurchaseOrderID
	GROUP BY poh.VendorID, sm.ShipMethodID
),
	TotalOrderQuantity AS (
	SELECT poh. VendorID as VendorId, poh. ShipMethodID as ShipMethodID, sm. Name as
	ShipMethod, SUM(pod.OrderQty) AS TotalOrderQty
	FROM Purchasing.PurchaseOrderDetail pod
	JOIN Purchasing.PurchaseOrderHeader poh
	ON poh.PurchaseOrderID = pod.PurchaseOrderID
	JOIN Purchasing.ShipMethod sm
	ON sm.ShipMethodID = poh.ShipMethodID
	GROUP BY poh. VendorID, poh. ShipMethodID, sm. Name),
	RankedVendors AS (
	SELECT TotalOrderQuantity.ShipMethodID AS ShipMethodID,TotalOrderQuantity.ShipMethod, TotalOrderQuantity.VendorID AS VendorID,
	TotalOrderQuantity.TotalOrderQty AS TotalOrderQty, AvgProcessTime.AvgProcessTime AS
	AvgProcessTime,
	ROW_NUMBER() OVER (PARTITION BY TotalOrderQuantity.ShipMethodID ORDER BY
	TotalOrderQuantity.TotalOrderQty DESC) AS Rank
	FROM TotalOrderQuantity
	JOIN AvgProcessTime
	ON TotalOrderQuantity.VendorID = AvgProcessTime.VendorID
	AND TotalOrderQuantity.ShipMethodID = AvgProcessTime.ShipMethodID)
	SELECT TOP 1 RankedVendors.ShipMethodID as ShipMethodID,RankedVendors.ShipMethod,
	RankedVendors.VendorID,
	v.Name AS VendorName, RankedVendors.TotalOrderQty, pv.AverageLeadTime
	FROM RankedVendors
	JOIN Purchasing. Vendor v
	ON RankedVendors.VendorID = v.BusinessEntityID

2.2.10. Finding the Most Efficient and Cost-Effective Vendor: Criteria Definition and SQL Solution for Optimal Selection

Proposed	Select the best vendor that has the smallest order return rate and the cheapest standard
criterion	price.
Justificatio	Low return rates tend to be indicative of great product quality, customer happiness, and
n	efficient customer service.
	The Lower standard cost might make a vendor more appealing to clients and contribute to their market competitiveness.
	The goal is to choose a vendor who not only has a solid track record of reducing order
	returns but also offers affordable pricing. When it comes to quality and pricing, this vendor
	is likely to be the greatest choice for the organization.
Code	WITH ReturnRate AS (
Code	SELECT pv.BusinessEntityID AS VendorID, AVG(pod.RejectedQty / pod.OrderQty) AS
	AvgOrderReturnRate
	FROM Purchasing.ProductVendor pv
	JOIN Purchasing.PurchaseOrderDetail pod
	ON pv.ProductID = pod.ProductID
	GROUP BY pv.BusinessEntityID),
	VendorCheapestPrice AS (
	SELECT pv.BusinessEntityID AS VendorID, MIN(pv.StandardPrice) AS MinStandardPrice
	FROM Purchasing.ProductVendor pv
	GROUP BY pv.BusinessEntityID)
	SELECT TOP 1 a.VendorID, v.Name AS VendorName, a.AvgOrderReturnRate,
	b.MinStandardPrice
	FROM ReturnRate a
	JOIN VendorCheapestPrice b
	ON a.VendorID = b.VendorID
	JOIN Purchasing. Vendor v
	ON b.VendorID = v.BusinessEntityID
	ORDER BY a.AvgOrderReturnRate ASC, b.MinStandardPrice ASC;

2.2.11. Calculate the average order fulfillment cost and time

