《数据库系统》——数据库设计

ER模型向关系模型的映射

讲解人: 陆伟 教授

目标与任务

目标与任务

Elements in ER Model
entity
strong, weak
attribute
simple, composite, mutli-value
relationship
1:1, 1:N, M:N
N-ary
recursive
value set
key attribute

Elements in Relation Model
relation(table)
attribute(column)
foreign key
domain
primary key (alternate key)

一个简单案例的思考

D-1(dNo), D-2(dName), D-3(officeRoom), ... S-1(sNo), S-2(sName), S-3(sex), ...

D-S(dNo, dName, officeRoom, homepage, sNo, sName, sex, email, age)

S(sNo, sName, sex, email, age, dNo)

D(dNo, dName, officeRoom, homepage)

□ 多对多二元联系

□ 多对多递归联系

□ 复杂联系类型

□ 多值属性

讨论:复合属性如何处理?

Elements in ER Model
entity
strong, weak
attribute
simple, composite, mutli-value
relationship
1:1, 1:N, M:N
N-ary
recursive
value set
key attribute

Elements in Relation Model
relation(table)
attribute(column)
foreign key
domain
primary key (alternate key)

□ 强实体与弱实体

Student(sNo, sName, sex, DOB, address, email)

Primary key: sNo

□一对多联系

Department(dNo, dName, officeRoom, homepage)

Primary key: dNo

Student(sNo, sName, sex, DOB, address, email, dNo)

Primary key: sNo

Foreign key: dNo references Department(dNo)

□ 一对一联系 – 联系双方实体均为全部参与

Teacher(tNo, tName, officeRoom, address, homepage, carNo, color)

Primary key: tNo

□ 一对一联系—一方全部参与,另一方部分参与

Teacher(tNo, tName, officeRoom, address, homepage, carNo)

Primary key: tNo

Foreign key: carNo references Car(carNo)

Car(carNo, color)

Primary key: carNo

□ 一对一联系 – 联系双方实体均为部分参与

Teacher(tNo, tName, officeRoom, address, homepage, carNo)

Primary key: tNo

Foreign key: carNo references Car(carNo)

Car(carNo, color)

Primary key: carNo

□一对一递归联系

- (1) with mandatory participation on both sides, represent the recursive relationship as a single relation with two copies of the primary key.
- (2) with mandatory participation on only one side, we have the option to create a single relation with two copies of the primary key, or to create a new relation to represent the relation.
- (3) with optional participation on both sides, create a new relation.

Participation constraint	Disjoint constraint	Relation required
M	And	Single relation (with one or more discriminators to distinguish the type of each tuple)
О	Or	Two relations: one relation for superclass and one relation for all subclasses (with one or more discriminators to distinguish the type of each tuple)
M	And	Many relations: one relation for each combined superclass/subclass
О	Or	Many relations: one relation for superclass and one for each subclass

总结

实体/联系	映射
强实体	创建包含所有简单属性的的关系
弱实体	创建包含所有简单属性的关系(主关键字等到每个主实体的联系映射后再确定)
1:*二元联系	将一方实体的主关键字处理为表示多方实体关系的外部关键字
1:1二元联系	
(a)双方强制参与	组合为一个实体
(b)一方强制参与	将"可选"方实体的主关键字处理为表示"强制"方实体关系的外部关键字
(c)双方可选参与	无进一步消息任选
超类/子类联系	参照超类/子类映射表
*:*二元联系、复杂联系	创建一个关系表示该联系,该关系包含该联系的所有属性。参与联系的所有实体的主关键字作为该关系的外部关键字
多值属性	创建一个新关系表示多值属性,并将主实体的主关键字作为该关系的外部关键字

关于本讲内容

祝各位学习愉快!

感谢观看!

讲解人: 陆伟 教授