Literature:

Semiconductor and PN junction: p 42-72

Diode: p 166, 167, 175 – 186

Assignments:

1.1:

In the laboratory, 2 sets of related values of current and voltage at two temperatures have been measured for the diode 1N4001:

- At 25°C: $(V_{D1}, I_{D1}) = (540 \text{ mV}, 1\text{mA})$, and $(V_{D2}, I_{D2}) = (450 \text{ mV}, 0.1\text{mA})$
- At 75°C: $(V_{D1}, I_{D1}) = (420 \text{ mV}, 1\text{mA})$, and $(V_{D2}, I_{D2}) = (315 \text{ mV}, 0.1\text{mA})$
 - a. Calculate the constants of the diode equation: n and I_s for each temperature.
 - b. Calculate the temperature coefficient [mV/K] of the diode at current = 1 mA.

Hint: use the approximated equation: $I_D=I_s~e^{rac{V_D}{n\,V_T}}$ and $V_D=n\,V_T~lnrac{I_D}{I_s}$

1.2:

Assuming a diode operates in reverse bias and forward bias regions, explain the process, and plot the following curves by using:

- 1. The ideal model.
 - a. Draw the equivalent circuit and calculate I, I_{R_1} , I_{R_2} , V_{R1} , V_D and V_{R2}
 - When *V* < 0
 - When V = 0
 - When V > 0
 - b. The I-V curve.
 - c. The I_{R_2} -V curve.
 - d. The I_D -V curve.
 - e. The V_{R1} -V curve, with V_{R1} denoting the voltage across R1.
 - f. The V_D -V curve, with V_D denoting the voltage across diode.
- 2. the constant voltage drop model:
 - g. Draw the equivalent circuit and calculate I, I_{R_1} , I_{R_2} , V_{R1} , V_D and V_{R2}
 - When $V < V_{D,on}$

- When $V = V_{D,on}$
- When $V = \frac{R_1 + R_2}{R_2} V_{D,on}$
- When $V > \frac{R_1 + R_2}{R_2} V_{D,on}$
- h. The I-V curve.
- i. The I_{R_2} -V curve.
- j. The I_D -V curve.
- k. The V_{R1} -V curve, with V_{R1} denoting the voltage across R1.
- I. The V_D -V curve, with $\ V_D$ denoting the voltage across diode.
- m. The V_{R2} -V curve, with V_{R2} denoting the voltage across R2.

1.3:

Simulate the circuit in the above figure using LTspice. Set $R_1=100~\Omega$, $R_2=200~\Omega$, diode 1N4148, and linearly sweep V from -10 to 20 V, with 0.1 V step. Plot the following curves:

- a. The I-V curve.
- b. The I_{R_2} -V curve.
- c. The I_D -V curve.
- d. The $V_{R1} ext{-V}$ curve, with $\ V_{R1}$ denoting the voltage across R1.
- e. The $V_D ext{-V}$ curve, with $\ensuremath{V_D}$ denoting the voltage across diode.
- f. The $V_{R2} ext{-V}$ curve, with $\ V_{R2}$ denoting the voltage across R2.