Содержание 1

Содержание

1.	Введ	дение в теорию групп	2
	1.1	Преобразования	2
	1.2	Группы	3
	1.3	Группа перестановок	4
	1.4	Циклическая группа	4

1. Введение в теорию групп

Общая конва такова: следуем [Б01], добавляя нужные конкретно нам примеры. Делаем мощный упор в действие

1.1 Преобразования

Определение 1. Пусть M — некоторое множество элементов произвольной природы. Если каждой упорядоченной паре элементов из M поставлен в соответствие определённый элемент также из M, то говорят, что на M задана бинарная операция (обозначим её за \circ).

Говоря чуть более взрослым языком, бинарная операция — это отображение

$$\circ : M \times M \to M, \quad (m, m) \mapsto m \circ m \in M.$$

Пример 1. Для начала, всякие скучные числовые примеры.

Причём же тут преобразования? Оказывается, бинарные операции — удобный способ записывать, что происходит, когда мы проделываем последовательно много различных преобразований. Рассмотрим сначала некоторые примеры.

Пример 2. Повороты равностороннего треугольника, переводящие его в себя, *переставляют* вершины. Композиция преобразований — бинарная операция. Какие у неё свойства? Выпишем *таблицу умножения* (см. [Б01, пример 1]).

А еще есть симметрии, их тоже можно композицировать (и композицировать с поворотами).

Коллеги, сюда напишите Ваш любимый пример про строки и любимый пример про графы (по штуке, соовтественно).

Теперь давайте подумаем, какие свойства ествественно было бы требовать от преобразований.

- Если мы говорим о преобразованиях одного типа, то естественно требовать, чтобы когда мы проделывали несколько одно за другим, получалось преобразование того же типа (как композиция поворотов поворот).
- Во всех примерах мы видели, что есть тождественное преобразование (которое просто не делает ничего).
- Кроме того, композиция преобразований естественным образом *ассоциативна*. То есть, для любых преобразований f,g,h мы имеем $f\circ (g\circ h)=(f\circ g)\circ h=f\circ g\circ h.$
- В примерах мы также видели, что для каждого преобразования g существует преобразование h, которое после применения g возвращает ситуацию в исходный вид.

Теперь попробуем сделать наши примеры немного более строгими.

Определение 2. Напоминиание про функции, инъекции, сюръекции, биекции.

Приведём какой-нибудь не слишком скучный пример.

Пример 3. Пусть отображение φ ставит в соответствие каждому городу мира первую букву из его названия на русском языке (например, φ (Санкт-Петербург) = С). Будет ли φ отображением всех городов мира **на** весь русский алфавит?

Нет, не будет (так как едва ли есть город, начинающийся на ъ, например). Будет ли это отображение инъективным? Очевидно, что тоже нет.

Пока что мы понимали слово *преобразование* наивно, дадим теперь строгое математическое определение.

1.2 Группы 3

Определение 3. Произвольное взаимно однозначное отображение множества M на себя, $g \colon M \to M$, мы будем для краткости называть *преобразованием* множества M.

Пример 4. Если множество M конечное, то можно писать табличку и будет перестановка (слово перестановка тут еще не говорим), но тем не менее.

Определение 4. Так как преобразование — это взаимно однозначное отображение, то для каждого преобразования g существует обратное преобразование g^{-1} , которое определяется следующим образом: если g(A) = B, то $g^{-1}(B) = A$.

Пример 5. Выписать обратное преобразование для какой-нибудь композиции поворота и симметрии.

Если у нас есть некоторое фиксированное множество M и все его преобразования, то мы можем определить их произведение (композицию):

$$(g_1g_2)(A) = g_1(g_2(A)),$$

то есть сначала делаем g_2 , а потом g_1 .

Определение 5. Пусть некоторое множество преобразований G таково, что

- 1. если преобразования g_1 и g_2 содержатся в G, то и их произведение $g_3=g_1g_2$ содержится в G:
- 2. если преобразование g содержится в G, то и обратное ему преобразование g^{-1} содержится в G.

Тогда такое множество преобразований G мы будем называть $\it группой$ преобразований.

1.2 Группы

И вот мы наконец плавно подошли к одному из главных определений в нашем курсе.

Определение 6. Множество G с заданной на нём бинарной операцией \circ (мы часто будем называть её умножением) называется *группой*, если

- 1. $(a \circ b) \circ c = a \circ (b \circ c) = a \circ b \circ c$.
- 2. Существует нейтральный элемент $e \in G$, то есть такой элемент, что $e \circ g = g \circ e = g$ для всех элементов $g \in G$.
- 3. У всех элементов $g \in G$ есть обратный элемент g^{-1} , то есть такой, что $g \circ g^{-1} = g^{-1} \circ g = e$.

Замечание. Заметим, что любая группа преобразований является группой. Группы бывают разные, но в дальнейшем, группы преобразований будут основным примером групп для нас.

Пример 6. Вновь глупые числовые примеры. Пояснение примеров из прошлого параграфа.

Замечание. Вот в этом месте я бы хотел сделать такой разгон про то, зачем это всё на самом деле (зачем переходить от изучения конкретных преобразований к групп, как обще алгебраических структур. Хороший пример такого разгона в первых пяти минутах этой лекции, гляньте пж. Мне кажется, что это **очень важно** при изложении групп детям.

После того, как мы вдоволь насладились примерами, можно начать изучать наши объекты с общей точки зрения.

Наблюдение 1. Нейтральный элемент группы единственен. Обратный элемент к элементу группы $g \in G$ единственен.

Замечание. Какими аксиомами группы мы пользовались для доказательства?

Определение 7. Два элемента группы $a,b\in G$ называются коммутирующими (или, перестановочными), если ab=ba. Если все элементы группы G коммутируют между собой, G называтеся Абелевой или коммутативной.

Замечание. Заметим, что **не абелевы** группы бывают. Например, рассмотренная нами ранее группа симметрий треугольника $S_3 \cong D_3$.

Пример 7. Заметим, что $(ab)^1 = b^{-1}a^{-1}$ (Сначала мы надеваем носок, а потом ботинок. С другой стороны, сначала мы снимаем ботинок, а потом носок).

Наблюдение 2. В группе можно сокращать равенство справа и слева.

1.3 Группа перестановок

Мы об этом уже не раз говорили, теперь

Определение 8. Пусть X — множество. Множество взаимно однозначных отображений $X \to X$ образует группу (отностельно композиции), её мы будем называть *симметрической группой* на множестве X и обозначать S_X .

Замечание. Если множество X конечно и в нём n элементов, то мы можем думать про него, как про множество $\{1,2,\ldots,n\}$. Тогда перестановки можно записывать в виде табличек вида

$$\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}.$$

Симметрическу группу множества $\{1, 2, \dots, n\}$ мы будем обозначать, как S_n .

Про группу перестановок вообще много чего можно говорить. Чего мы хотим про неё говорить?

1.4 Циклическая группа

to be upd...

Список литературы

[Б01] Алексеев В. Б. *Теорема Абеля в задачах и решениях.* 1-е изд. М.: МЦНМО, 2001. URL: https://old.mccme.ru/free-books/pdf/alekseev.pdf.