Experiment 9

Aim: To perform Exploratory data analysis using Apache Spark and Pandas

Theory:

1. What is Apache Spark and How Does It Work?

Apache Spark is an open-source, distributed computing framework designed for big data processing and analytics. It provides an interface for programming entire clusters with implicit data parallelism and fault tolerance.

Key Features of Apache Spark:

- In-Memory Processing: Spark stores intermediate data in RAM, making it significantly faster than Hadoop MapReduce.
- Lazy Evaluation: Spark optimizes execution by delaying computation until necessary.
- Fault Tolerance: Uses Resilient Distributed Datasets (RDDs) to recover lost data.
- Multiple Language Support: Works with Python (PySpark), Scala, Java, and R.
- Rich Libraries: Includes Spark SQL (structured data), MLlib (machine learning),
 GraphX (graph processing), and Spark Streaming (real-time data).

How Apache Spark Works?

- Spark applications run as independent processes coordinated by a SparkContext in the driver program.
- The Cluster Manager (e.g., YARN, Mesos, or Spark Standalone) allocates resources.
- Executors run on worker nodes to perform computations and store data.
- Data is partitioned across nodes for parallel processing.

2. How is Data Exploration Done in Apache Spark?

Exploratory Data Analysis (EDA) in Spark involves examining datasets to summarize their main characteristics, often using visual methods and statistical summaries.

Steps for EDA in Apache Spark:

- 1. Loading the Dataset
 - a. Read data from CSV, JSON, Parquet, or other formats using spark.read. df = spark.read.csv("data.csv", header=True, inferSchema=True)
- 2. Viewing Data Structure
 - a. Check schema (column names and data types) using printSchema().
 - b. Display sample records with show().

```
df.printSchema()
df.show(5)
```

3. Basic Statistics

a. Compute summary statistics (count, mean, stddev, min, max) using describe().

```
df.describe().show()
```

- 4. Handling Missing Values
 - a. Identify null values:

```
from pyspark.sql.functions import col, isnan, when, count df.select([count(when(col(c).isNull(), c)).alias(c) for c in df.columns]).show()
```

b. Drop or fill missing values:

```
df_clean = df.na.drop() # Drop rows with nulls
df_filled = df.na.fill(0) # Fill nulls with 0
```

- 5. Data Aggregation and Grouping
 - a. Group data and compute aggregations:df.groupBy("category").agg({"price": "avg", "quantity": "sum"}).show()
- 6. Data Visualization (Using Pandas Integration)
 - a. Convert Spark DataFrame to Pandas DataFrame for visualization: import matplotlib.pyplot as plt pandas_df = df.toPandas() pandas_df["price"].hist() plt.show()
- 7. Correlation Analysis
 - a. Compute correlations between numerical columns:

```
from pyspark.ml.stat import Correlation
from pyspark.ml.feature import VectorAssembler
assembler = VectorAssembler(inputCols=numeric_cols, outputCol="features")
df_vector = assembler.transform(df).select("features")
matrix = Correlation.corr(df_vector, "features").collect()[0][0]
print(matrix.toArray())
```

- 8. Handling Categorical Data
 - a. Use StringIndexer or OneHotEncoder for categorical variables.
 from pyspark.ml.feature import StringIndexer
 indexer = StringIndexer(inputCol="category", outputCol="categoryIndex")

indexed df = indexer.fit(df).transform(df)

- 9. Saving Processed Data
 - a. Write the cleaned/processed data back to storage: df.write.parquet("processed_data.parquet")

Conclusion:

In this experiment, we learned about Exploratory Data Analysis (EDA) using Apache Spark and Pandas.

- Spark provides a distributed framework for handling large-scale datasets efficiently.
- Key steps included data loading, schema inspection, missing value handling, statistical summaries, and visualization.
- Pandas integration helped in plotting and further analysis.
- Spark's parallel processing makes it suitable for big data EDA, while Pandas is useful for smaller datasets.