0.1 Estensioni finite

Lezioni del 05-06/11/2019 (appunti grezzi)

Definizione

Un'estensione di campi \mathbb{L}/\mathbb{K} si dice finita se $|\mathbb{L}:\mathbb{K}| < \infty$.

Proposizione

Sia \mathbb{L}/\mathbb{K} un'estensione finita. Allora, ogni elemento $a \in \mathbb{L}$ è algebrico su \mathbb{K} .

Dimostrazione. Sia $\phi_a : \mathbb{K}[x] \to \mathbb{L}$ la valutazione in a. Poiché $\dim_{\mathbb{K}} \mathbb{K}[x] = \infty$ (una base sono tutti i monomi $1, x, x^2, ...$) e $|\mathbb{L} : \mathbb{K}| = \dim_K(L) < \infty$, ϕ_a non è iniettiva, cioè $\ker(\phi_a) \neq \{0_K\}$. Dunque, per $f \in \ker(\phi_a) \setminus \{0_K\}$, si ha $f(a) = \phi_a(f) = 0$.

Proposizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi, e sia $a \in \mathbb{L}$. Allora, sono equivalenti

- (i) a è algebrico su \mathbb{K}
- (ii) $|\mathbb{K}(a): \mathbb{K}| < \infty$
- (iii) esiste un'estensione finita M/K, $M \subseteq L$ tale che $a \in M$

Dimostrazione. Per la proposizione precedente, sappiamo già che (iii) implica (i). Vediamo che (i) implica (ii). Infatti, $K[a] = \operatorname{Im}(\phi_a) \simeq K[x]/\ker(\phi_a)$ è un campo, e K(a) = K[a] implica che $|K[a]:K| = |K[a]:K| = \operatorname{deg}^*(\min_{a,K}) < \infty$. Mostriamo ora che non (i) implica non (ii). Infatti, non (i) sse a è trascendente su K. Quindi, $\phi_a:K[x] \to L$ è iniettiva, e $K(a) \supseteq \operatorname{im}(\phi_a) \simeq K[x]$ perché K(a) contiene il sottospazio vettoriale $\operatorname{im}(\phi_a)$ e $\operatorname{dim}_K(K(a)) = \infty$. Dunque, il fatto che (i) implica (ii) e non (i) implica non (ii), sappiamo che (i) se e solo se (ii). Ma (ii) implica (iii) è banale: infatti prendo M = K(a).

Definizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi. Denotiamo con $\mathrm{alg}_{\mathbb{K}}(\mathbb{L})$ l'insieme degli elementi $a \in L$ algebrici su K.

Proposizione

Sia \mathbb{L}/\mathbb{K} un'estensione di campi. Allora, $\mathrm{alg}_{\mathbb{K}}(\mathbb{L})$ è un sottocampo di \mathbb{L} .

Dimostrazione. Siano $a, b \in \operatorname{alg}_{\mathbb{K}}(\mathbb{L})$. Basta dimostrare che a+b, ab e a^{-1} stanno in $\operatorname{alg}_{\mathbb{K}}(\mathbb{L})$. Poiché $a \in \operatorname{alg}_{\mathbb{K}}(\mathbb{L})$, per la proposizione 2 sappiamo che $|K(a):K| < \infty$. Poiché $b \in \operatorname{alg}_{\mathbb{K}}(\mathbb{L})$, esiste $\min_{b,K}(x) \in K[x] \subseteq K(a)[x]$. Dunque, b è algebrico su K(a), da cui

$$|K(\{a,b\}):K| = |K(a)(b):K(a)| \cdot |K(a):K| < \infty$$

per la Formula del grado. Poiché $a+b,ab,a^{-1}\in K(\{a,b\})$, per la Proposizione 2 sappiamo che $a+b,ab,a^{-1}\in \mathrm{alg}_{\mathbb{K}}(\mathbb{L})$.

Trovare esplicitamente i polinomi che annullano a + b, $ab \in a^{-1}$ sarebbe stato un incubo!

Definizione

Un campo \mathbb{K} si dice algebricamente chiuso se ogni polinomio $f \in \mathbb{K}[x]$ con $\deg^*(f) \geq 1$ ammette una radice.

Esempio. Per il Teorema Fondamentale dell'Algebra (lui dice Teorema di Gauss) sappiamo che $\mathbb C$ è un campo algebricamente chiuso. La dimostrazione è tutt'altro che banale e richiede o l'analisi complessa o la Teoria di Galois. \square

Denotiamo con $\overline{\mathbb{Q}} = alg_{\mathbb{Q}}(\mathbb{C})$.

Proposizione

 $\overline{\mathbb{Q}}$ è un campo algebricamente chiuso.

Dimostrazione. Sia $f = \sum_{i=0}^{n} a_i x^i \in \overline{\mathbb{Q}}[x]$ con $\deg^*(f) \geq 1$. Poiché $f \in C[x]$ essendo $\overline{\mathbb{Q}} \subseteq \mathbb{C}$, per il Teorema Fondamentale dell'Algebra esiste $c \in \mathbb{C}$ tale che f(c) = 0. Definiamo $M = \overline{\mathbb{Q}}(\{a_0, a_1, \dots, a_n\})$. Allora, per la formula del grado

$$|M:Q| = |M:Q(\{a_0,\ldots,a_{n-1}\})| \cdot |Q(\{a_0,\ldots,a_{n-1}\}):Q(\{a_0,\ldots,a_{n-2}\})| \cdot \ldots$$

Ma sappiamo che $|M:Q(\{a_0,\ldots,a_{n-1}\})| \leq \deg^*(\min_{a_n,Q})$ e induttivamente $|M:Q| \leq \prod_{i=0}^n \deg^*(\min_{a_i,Q})$. Quindi, $|M(c):Q| = |M(c):M| \cdot |M:Q|$, dove $|M(c):M| \leq n$ e $|M:Q| \leq \infty$. Dunque, per la Proposizione 2 concludiamo che $c \in \overline{\mathbb{Q}}$.

Proposizione 2.X.Y: Costruzione di Kronecker

Sia \mathbb{K} un campo e sia $f \in \mathbb{K}[x]$ con $\deg^*(f) \geq 1$. Allora, esiste un'estensione \mathbb{L}/\mathbb{K}_0 finita e un elemento $a \in \mathbb{L}$ tale che f(a) = 0, dove $\mathbb{K}_0 \simeq \mathbb{K}$.

Dimostrazione. Poiché K[x] è un dominio principale, possiamo scrivere $f = h \cdot f_0$ dove $h \in K[x]$ è primo e dunque irriducibile. Definiamo $L = K[x]/\langle h \rangle$. Poiché $\langle h \rangle \lhd K[x]$ è un ideale massimale, tale L è un campo. Definiamo $K_0 = \{b + \langle h \rangle : b \in K\}$, cioè $K_0 = \pi(K)$, dove $\pi \colon K[x] \to L$ è la proiezione canonica. Poiché $\langle h \rangle$ è un ideale primo, $K \cap \langle h \rangle \{0_K\}$, quindi la restrizione $\pi_K \colon K \to K_0$ è un isomorfismo. Inoltre, $|L \colon K_0| = \deg^*(h) < \deg^*(f) < \infty$, quindi abbiamo trovato un'estensione finita. Sia $h = \sum_{k=0}^n a_k x^k$, e sia $I = \langle h \rangle$. Detto $a = x + I \in L$, si ha che

$$h(a) = \sum_{k=0}^{n} a_k (x+I)^k = \sum_{k=0}^{n} a_k (x^k + I) = \left(\sum_{k=0}^{n} a_k x^k\right) + I = h + I = I = O_L.$$

Questo mostra che per ogni polinomio troviamo $a \in L$ tale che f(a) = 0, come desiderato.

2