Lorena Silva Sampaio,	Samira	Haddad
-----------------------	--------	--------

Análise e Implementação de Algoritmos de Busca de uma r-Arborescência Inversa de Custo Mínimo em Grafos Dirigidos com Aplicação Didática Interativa

Lorena Silva Sampaio, Samira Haddad

Análise e Implementação de Algoritmos de Busca de uma r-Arborescência Inversa de Custo Mínimo em Grafos Dirigidos com Aplicação Didática Interativa

Dissertação apresentada ao Programa de Pós-Graduação como requisito parcial para obtenção do título de Mestre.

Universidade Faculdade Programa de Pós-Graduação

Orientador: Prof. Dr. Mário Leston

Brasil

2025

Agradecimentos

Agradecimentos (opcional).

Resumo

Este trabalho apresenta uma análise e implementação de algoritmos de busca de uma r-arborescência inversa de custo mínimo em grafos dirigidos com aplicação didática interativa.

Palavras-chave: Grafos. Arborescência. Algoritmos. Visualização.

Abstract

This work presents an analysis and implementation of algorithms for finding a minimum cost inverse r-arborescence in directed graphs with interactive didactic application.

Keywords: Graphs. Arborescence. Algorithms. Visualization.

Lista de ilustrações

Figura 1 –	Ciclo gerado pelas escolhas locais "mais baratas por vértice". Os arcos	
	grossos (custo 1) entram em a,b,c e formam $a \to b \to c \to a$. Os arcos	
	tracejados partindo de r existem, mas são mais caros e por isso não	
	são escolhidos pelo critério local	9
Figura 2 –	Ajuste de custo reduzido para um arco entrando em um ciclo con-	
	traído: o arco (u, w) com $w \in C$ torna-se (u, x_C) com custo reduzido	
	$c'(u,x_C)=c(u,w)-c(a_w)$, onde a_w é o arco de menor custo que entra	
	em w	10
Figura 3 -	Bijeção entre arborescências no grafo contraído e no original: toda	
	arborescência em D' escolhe exatamente um arco que entra em x_C ; ao	
	expandir C , esse arco corresponde a um (u,w) que entra em algum	
	$w \in C$ e os arcos internos (de custo reduzido zero) são mantidos,	
	preservando o custo total	11
Figura 4 -	Reexpansão de C : no grafo contraído seleciona-se um arco que entra	
	em x_C ; ao expandir, x_C é substituído por C e o arco selecionado	
	entra em algum $w \in C$; remove-se exatamente um arco interno de C	
	para eliminar o ciclo, preservando conectividade e custo total (arcos	
	internos têm custo reduzido zero)	11

Sumário

1	ALGORITMO DE CHU-LIU/EDMONDS	9
1.1	O problema dos ciclos e a solução por contração	9
1.1.1	Supervértices e contração de ciclos	10
1.2	Descrição do algoritmo	10
1.2.1	Exemplo prático: Chu–Liu/Edmonds	12
1.2.2	Corretude	14
1.2.3	Complexidade	15
1.3	Implementação em Python	15
1.3.1	Normalização por vértice	16
1.3.2	Construção de F^* :	17
1.3.2.1	Detecção de ciclo:	18
1.3.2.2	Contração de ciclo:	19
1.3.2.3	Remoção de arestas que entram na raiz:	21
1.3.2.4	Remoção de arco interno:	21
1.3.2.5	Procedimento principal (recursivo):	22
1.3.2.6	Notas finais sobre a implementação	25
1.3.2.7	Decisões de projeto e implicações práticas	26
1.3.2.8	Transição para a abordagem primal-dual	26
	REFERÊNCIAS	28
	ANEXOS	29
	ANEXO A – ANEXO A	30

1 Algoritmo de Chu-Liu/Edmonds

O algoritmo de Chu–Liu/Edmonds encontra uma r-arborescência de custo mínimo em um digrafo ponderado. A estratégia funciona de forma gulosa ao escolher, para cada vértice $v \neq r$, o arco de entrada mais barato. No entanto, essa abordagem pode gerar ciclos dirigidos, incompatíveis com a estrutura de arborescência. O algoritmo resolve esse problema combinando normalização de custos, contração de ciclos em supervértices e expansão controlada para garantir otimalidade.

1.1 O problema dos ciclos e a solução por contração

Em uma r-arborescência, cada $v \neq r$ deve ter exatamente um arco de entrada e r tem grau de entrada zero. Se escolhermos para cada vértice o arco mais barato que nele entra, podemos formar um ciclo dirigido C onde todos os vértices recebem seu único arco de dentro do próprio C. Nesse caso, nenhum arco entraria em C a partir de $V \setminus C$ (o corte $\delta^-(C)$ ficaria vazio) e, como $r \notin C$, não existiria caminho de r para os vértices de C, contrariando a alcançabilidade exigida.

A Figura 1 ilustra com um microexemplo: três vértices a,b,c (todos fora de r) onde o arco mais barato que entra em b vem de a, o de c vem de b e o de a vem de c, formando o ciclo $a \to b \to c \to a$. Embora existam arcos de r para cada vértice, eles são mais caros e não são escolhidos pelo critério local, deixando os vértices "presos"no ciclo sem conexão com a raiz.

Figura 1 – Ciclo gerado pelas escolhas locais "mais baratas por vértice". Os arcos grossos (custo 1) entram em a,b,c e formam $a \to b \to c \to a$. Os arcos tracejados partindo de r existem, mas são mais caros e por isso não são escolhidos pelo critério local.

A solução consiste em *normalizar os custos por vértice*: para cada $v \neq r$, subtraímos de todo arco que entra em v o menor custo entre os arcos que chegam a v. Após esse ajuste (custos reduzidos), cada $v \neq r$ passa a ter ao menos um arco de custo reduzido

zero. Se os arcos de custo zero forem acíclicos, já temos a r-arborescência ótima. Se formarem um ciclo C, contraímos C em um **supervértice** x_C , ajustamos os custos dos arcos externos e resolvemos recursivamente no grafo menor. Ao final, expandimos as contrações removendo exatamente um arco interno de cada ciclo para manter grau de entrada 1 e aciclicidade global.

1.1.1 Supervértices e contração de ciclos

Dado um subconjunto $C\subseteq V$ que forma um ciclo dirigido, a *contração de C* substitui todos os vértices de C por um único vértice x_C — o supervértice. Todo arco com exatamente uma ponta em C passa a ser incidente a x_C : arcos (u,w) com $u\notin C$, $w\in C$ tornam-se (u,x_C) ; arcos (w,v) com $w\in C$, $v\notin C$ tornam-se (x_C,v) ; e arcos com ambas as pontas em C são descartados.

Para preservar a comparação relativa dos custos, ajustamos os arcos que *entram* em C: para um arco (u,w) com $w \in C$, definimos $c'(u,x_C)=c(u,w)-c(a_w)$, onde a_w é o arco mais barato que entra em w. Essa normalização garante que decisões ótimas no grafo contraído podem ser traduzidas de volta na expansão.

Figura 2 – Ajuste de custo reduzido para um arco entrando em um ciclo contraído: o arco (u,w) com $w \in C$ torna-se (u,x_C) com custo reduzido $c'(u,x_C) = c(u,w) - c(a_w)$, onde a_w é o arco de menor custo que entra em w.

A Figura 2 mostra o ajuste: o arco (u,b) com custo 7 torna-se (u,x_C) com custo reduzido 7-5=2, já que $a_b=(a\to b)$ tem custo 5.

1.2 Descrição do algoritmo

Apresentamos o algoritmo em visão operacional de alto nível, focando na lógica e nos passos principais. Detalhes de implementação serão discutidos na próxima seção. Denotamos por A' o conjunto de arcos escolhidos na construção da r-arborescência.

Construa A' escolhendo, para cada $v \neq r$, um arco de menor custo que entra em v. Se (V,A') é acíclico, então A' já é uma r-arborescência ótima, pois realizamos o menor

custo de entrada em cada vértice e nenhuma troca pode reduzir o custo mantendo as restrições (KLEINBERG; TARDOS, 2006, Sec. 4.9).

Se A' contiver um ciclo dirigido C (que não inclui r), normalizamos os custos de entrada, contraímos C em um supervértice x_C ajustando arcos que entram em C por $c'(u,x_C)=c(u,w)-c(a_w)$, e resolvemos recursivamente no grafo contraído.

As arborescências do grafo contraído correspondem, em bijeção, às arborescências do grafo original com exatamente um arco entrando em ${\cal C}$. Como os arcos internos de ${\cal C}$ têm custo reduzido zero, os custos são preservados na ida e na volta.

Figura 3 – Bijeção entre arborescências no grafo contraído e no original: toda arborescência em D' escolhe exatamente um arco que entra em x_C ; ao expandir C, esse arco corresponde a um (u,w) que entra em algum $w \in C$ e os arcos internos (de custo reduzido zero) são mantidos, preservando o custo total.

Na expansão, reintroduzimos C e removemos exatamente um arco interno para manter grau de entrada 1 e aciclicidade global (SCHRIJVER, 2003; KLEINBERG; TARDOS, 2006).

Figura 4 – Reexpansão de C: no grafo contraído seleciona-se um arco que entra em x_C ; ao expandir, x_C é substituído por C e o arco selecionado entra em algum $w \in C$; remove-se exatamente um arco interno de C para eliminar o ciclo, preservando conectividade e custo total (arcos internos têm custo reduzido zero).

Abaixo, a descrição formal do algoritmo.

Abaixo, temos a descrição formal do algoritmo.

Algoritmo 1.1: Chu-Liu/Edmonds (visão operacional)

Entrada: digrafo D=(V,A), custos $c:A\to\mathbb{R}_{\geq 0}$, raiz $r.^a$

- 1. Para cada $v \neq r$, escolha $a_v \in \operatorname{argmin}_{(u,v) \in A} c(u,v)$. Defina $y(v) := c(a_v)$ e $F^* := \{a_v : v \neq r\}$.
- 2. Se (V, F^*) é acíclico, devolva F^* . Por (KLEINBERG; TARDOS, 2006, Obs. 4.36), trata-se de uma r-arborescência de custo mínimo.
- 3. Caso contrário, seja C um ciclo dirigido de F^* (com $r \notin C$). Contração: contraia C em um supervértice x_C e defina custos c' por

$$\begin{aligned} c'(u,x_C) &:= c(u,w) - y(w) = c(u,w) - c(a_w) & \text{para } u \notin C, \ w \in C, \\ c'(x_C,v) &:= c(w,v) & \text{para } w \in C, \ v \notin C, \end{aligned}$$

descartando laços em x_C e permitindo paralelos. Denote o digrafo contraído por D'=(V',A').

- 4. **Recursão:** compute uma r-arborescência ótima T' de D' com custos c'.
- 5. **Expansão:** seja $(u, x_C) \in T'$ o único arco que entra em x_C . No grafo original, ele corresponde a (u, w) com $w \in C$. Forme

$$T := (T' \setminus \{\text{arcos incidentes a } x_C\}) \cup \{(u, w)\} \cup ((F^* \cap A(C)) \setminus \{a_w\}).$$

Então T tem grau de entrada 1 em cada $v \neq r$, é acíclico e tem o mesmo custo de T'; logo, é uma r-arborescência ótima de D (KLEINBERG; TARDOS, 2006; SCHRIJVER, 2003, Sec. 4.9).

1.2.1 Exemplo prático: Chu-Liu/Edmonds

A seguir, ilustramos o funcionamento do algoritmo de Chu–Liu/Edmonds em um grafo de teste. Mostramos o grafo original, os principais passos do algoritmo e a arborescência final encontrada. A Figura abaixo apresenta o grafo original com os pesos das arestas

 $[^]a$ Se algum $v \neq r$ não possui arco de entrada, não existe r-arborescência.

O primeiro passo do nosso algoritmo seria remover as arestas que entram na raiz (vértice 0), porém não há nenhuma nesse caso, logo não existe a necessidade de alterar o grafo.

Dessa forma, o próximo passo é normalizar os pesos das arestas de entrada para cada vértice, nessa etapa, Para cada vértice X (exceto a raiz), o algoritmo encontra a aresta de menor peso que entra em X e subtrai esse menor peso de todas as arestas que entram em X (relembrando que isso serve para zerar o peso da aresta mínima de entrada em cada vértice)

Normalizando pesos de arestas de entrada para '1': Nesse processo notamos que as únicas arestas de entrada são 0 e 2 onde $(0 \rightarrow 1)$ tem peso 3.0 e $(2 \rightarrow 1)$ tem peso 1.0, elegendo a aresta 2 como a de menor peso podemos subtrair o peso das arestas restantes (no caso, o peso da aresta 0) pelo valor do peso da aresta 0, resultando em um novo peso de '2' para a aresta 0

Repetiremos o passo anterior para todas as outras arestas

Com os pesos normalizados, o próximo passo é construir F^* , para isso, selecionamos para cada vértice, a aresta de menor custo de entrada. Além disso, detectamos um ciclo em F^* , formado pelos vértices $\{1 \ e \ 2\}$. Portanto, precisamos contrair esse ciclo em um supervértice n*0. O resultado é o seguinte:

Agora, repetimos o processo recursivamente no grafo contraído até obter uma arborescência.

Após validarmos que a F* não possuí mais ciclos e notarmos que F* forma uma arborescência iremos começar o processo de expanção do ciclo contraído para obter a arborescência final no grafo original. Dessa forma, Adicionamos a aresta de entrada ao ciclo: (0, 1), (1, 2) e a aresta externa de saída: (1, 3), chegando em uma arborescência válida.

1.2.2 Corretude

A corretude do algoritmo de Chu–Liu/Edmonds baseia-se em três pilares principais:

1. Normalização por custos reduzidos: para cada $v \neq r$, defina $y(v) := \min\{c(u,v) : (u,v) \in A\}$ e c'(u,v) := c(u,v) - y(v). Para qualquer r-arborescência T, vale

$$\sum_{a \in T} c'(a) = \sum_{a \in T} c(a) - \sum_{v \neq r} y(v),$$

pois há exatamente um arco de T entrando em cada $v \neq r$. O termo $\sum_{v \neq r} y(v)$ é constante (independe de T); assim, minimizar $\sum c$ equivale a minimizar $\sum c'$

(KLEINBERG; TARDOS, 2006, Obs. 4.37). Em particular, os arcos a_v de menor custo que entram em v têm custo reduzido zero e formam F^* .

- 2. Caso acíclico: se (V, F^*) é acíclico, então já é uma r-arborescência e, por realizar o mínimo custo de entrada em cada $v \neq r$, é ótima (KLEINBERG; TARDOS, 2006, Obs. 4.36).
- 3. *Caso com ciclo (contração/expansão):* se F^* contém um ciclo dirigido C, todos os seus arcos têm custo reduzido zero.

Contraia C em x_C e ajuste apenas arcos que *entram* em C: $c'(u, x_C) := c(u, w) - y(w) = c(u, w) - c(a_w)$.

Resolva o problema no grafo contraído D', obtendo uma r-arborescência ótima T' sob c'. Na expansão, substitua o arco $(u, x_C) \in T'$ pelo correspondente (u, w) (com $w \in C$) e remova a_w de C.

Como os arcos de C têm custo reduzido zero e $c'(u,x_C)=c(u,w)-y(w)$, a soma dos custos reduzidos é preservada na ida e na volta; logo, T' ótimo em D' mapeia para T ótimo em D para c'. Pela equivalência entre c e c', T também é ótimo para c. Repetindo o argumento a cada contração, obtemos a corretude por indução (KLEINBERG; TARDOS, 2006; SCHRIJVER, 2003, Sec. 4.9).

Em termos intuitivos, y funciona como um potencial nos vértices: torna "apertados" (custo reduzido zero) os candidatos corretos; ciclos de arcos apertados podem ser contraídos sem perder otimalidade.

1.2.3 Complexidade

Na implementação direta, selecionar os a_v , detectar/contrair ciclos e atualizar estruturas custa O(m) por nível; como o número de vértices decresce a cada contração, temos no máximo O(n) níveis e tempo total O(mn), com n = |V|, m = |A|.

O uso de memória é O(m+n), incluindo mapeamentos de contração/expansão e as filas de prioridade dos arcos de entrada. A implementação a seguir adota a versão O(mn) por simplicidade e está disponível no repositório do projeto (https://github.com/lorenypsum/GraphVisualizer).

1.3 Implementação em Python

Esta seção apresenta uma implementação em Python do algoritmo de Chu–Liu/Edmonds. A arquitetura segue os passos teóricos: recebe como entrada um digrafo ponderado, os custos das arestas e o vértice raiz. O procedimento seleciona, para cada vértice, o arco de menor custo de entrada, verifica se o grafo é acíclico e, se necessário, contrai ciclos

e ajusta custos. Ao final, retorna como saída a r-arborescência ótima: um conjunto de arestas que conecta todos os vértices à raiz com custo mínimo.

• Entrada: digrafo ponderado D = (V, A), custos $c : A \to \mathbb{R}$, raiz $r \in V$.

• Hipóteses:

- Dérepresentado como um objeto networkx.DiGraph, com pesos armazenados no atributo de arestas 'w'.
- D é conexo a partir de r:
- (i) todo v ≠ r é alcançável a partir de r (caso contrário, não há r-arborescência);
 (ii) para todo subconjunto não vazio X ⊆ V \ {r}, existe ao menos um arco que entra em X (δ⁻(X) ≠ Ø; condições clássicas de existência à la Edmonds (SCHRIJVER, 2003)).
- Os custos são não negativos: $c(a) \ge 0$ para todo $a \in A$.
- Saída: conjunto $A^* \subseteq A$ com $|A^*| = |V| 1$, tal que cada $v \neq r$ tem grau de entrada 1, todos os vértices são alcançáveis a partir de r e $\sum_{a \in A^*} c(a)$ é mínimo.
- **Convenções:** arcos paralelos (múltiplos arcos entre o mesmo par de vértices) são permitidos após contrações; laços (self-loops) são descartados.

A seguir, detalhamos as implementações das funções principais e auxiliares, começando pela normalização dos custos por vértice.

1.3.1 Normalização por vértice

Esta função normaliza 1 os custos das arestas que entram em um vértice v: calcula $y(v)=\min\{w(u,v)\}$ e substitui cada peso w(u,v) por w(u,v)-y(v).

A função recebe como entrada um digrafo D (objeto nx.DiGraph²) e o rótulo node do vértice cujas arestas de entrada devem ser normalizadas. A implementação coleta todas as arestas de entrada de node com seus pesos (linha 2) e, se a lista estiver vazia, retorna imediatamente sem fazer alterações (linhas 3–4). Caso contrário, calcula o peso mínimo yv usando uma compreensão de gerador³ que extrai o terceiro elemento de

Aqui, "normalizar" significa subtrair do peso de cada aresta que entra em v o menor peso de entrada (custos reduzidos), preservando a ordem relativa; assim, ao menos uma entrada em v passa a ter custo 0, sem afetar a comparação entre soluções.

nx.DiGraph é a classe da biblioteca NetworkX que representa grafos dirigidos (directed graphs). Ela armazena vértices e arestas direcionadas, permitindo associar atributos arbitrários (como pesos) às arestas através de dicionários. A notação D[u][v]["w"] acessa o peso da aresta (u, v).

Em Python, uma compreensão de gerador (generator comprehension) é uma expressão da forma (expr for item in iterable) que produz valores sob demanda, sem criar uma lista completa na memória. Aqui, (w for _, _, w in predecessors) extrai apenas os pesos das tuplas, permitindo calcular o mínimo de forma eficiente.

cada tupla (linha 5) e, para cada predecessor u, subtrai yv do peso armazenado em D[u][node]["w"] (linha 6).

A função não retorna nenhum valor (retorno implícito None), pois a operação é realizada in-place 4 : o grafo D passado como parâmetro é modificado diretamente. Como efeito colateral, ao menos uma aresta de entrada de node terá custo reduzido zero após a execução. A complexidade é $O(\deg^-(v))$, pois cada operação percorre as arestas de entrada uma única vez.

```
Normalização por vértice: custos reduzidos

Altera os pesos das arestas que entram em 'node' subtraindo de cada uma o menor peso de entrada no grafo D.

1 def normalize_incoming_edge_weights(D: nx.DiGraph, node: str):
2 predecessors = list(D.in_edges(node, data="w"))
3 if not predecessors:
4 return
5 yv = min((w for _, _, w in predecessors))
```

1.3.2 Construção de F^* :

D[u][node]["w"] -= yv

6

A função constrói o subdigrafo F^* selecionando, para cada vértice $v \neq r_0$, uma única aresta de custo reduzido zero que entra em v.

A função recebe como entrada um digrafo D (objeto nx.DiGraph) e o identificador r0 da raiz. A implementação cria um novo digrafo vazio F_star (linha 2). Em seguida, para cada vértice v diferente de r0 (linhas 3–4), coleta todas as arestas de entrada de v com seus pesos em uma lista e armazena na variável in_edges (linha 5). Se não houver arestas de entrada, prossegue para o próximo vértice (linhas 6–7). Caso contrário, utiliza uma compreensão de gerador para encontrar o primeiro predecessor u cuja aresta (u, v) tem peso zero (linha 8) e, se existir, adiciona essa aresta a F_star com peso zero (linhas 9–10).

A função retorna o digrafo F_star contendo exatamente uma aresta entrando em cada $v \neq r_0$, todas com custo reduzido zero. O grafo original D não é modificado. A complexidade é O(m), onde m é o número de arestas, pois cada aresta é considerada no máximo uma vez durante a iteração sobre todos os vértices.

⁴ No jargão de programação, "in-place" significa que a estrutura original é alterada diretamente, sem criar uma cópia. Isso economiza memória e tempo, mas introduz efeitos colaterais.

Construção de F star

Constrói o subgrafo funcional F star a partir do grafo D e da raiz r0 entrando em r0.

```
1 def get_Fstar(D: nx.DiGraph, r0: str):
2
      F_star = nx.DiGraph()
3
      for v in D.nodes():
4
          if v != r0:
5
              in_edges = list(D.in_edges(v, data="w"))
              if not in_edges:
6
7
                  continue
8
              u = next((u for u, _, w in in_edges if w == 0), None)
9
0
                  F_star.add_edge(u, v, w=0)
1
      return F_star
```

1.3.2.1 Detecção de ciclo:

a função detecta um ciclo dirigido em F^* (se existir) e retorna um subgrafo contendo o ciclo. Caso contrário, retorna None. A função utiliza a função find_cycle do NetworkX, que implementa um algoritmo eficiente de detecção de ciclos.

A função executa em O(m). Isso ocorre porque a função find_cycle do NetworkX utiliza uma abordagem baseada em busca em profundidade (DFS) para detectar ciclos em grafos direcionados.

A complexidade dessa abordagem é linear em relação ao número de vértices e arestas do grafo, ou seja, O(m), onde m é o número de arestas. A função não modifica o grafo original, mas cria um subgrafo contendo apenas os vértices e arestas que fazem parte do ciclo detectado.

Detecção de ciclo dirigido em F^*

Encontra um ciclo dirigido no grafo. Por fim, retorna um subgrafo contendo o ciclo, ou None caso não exista.

```
8 % return F_star.subgraph(nodes_in_cycle).copy()
9
10 % except nx.NetworkXNoCycle:
11 % return None
```

1.3.2.2 Contração de ciclo:

a função contrai um ciclo dirigido simples C em um **supervértice** x_C , redirecionando arcos incidentes a C e ajustando custos de acordo com a regra de *custos reduzidos*. O grafo é modificado *in-place* e a rotina devolve dicionários auxiliares para permitir a *reexpansão* correta do ciclo.

Em alto nível, o procedimento de contração de ciclo recebe como entrada um ciclo dirigido C em D, a raiz r_0 (que não pertence a C), e um rótulo novo para o supervértice x_C . Para cada arco que entra em C, cria um arco para x_C com custo ajustado; para cada arco que sai de C, redireciona a saída para partir de x_C ; laços internos são descartados. O procedimento devolve dicionários que permitem reexpansão correta do ciclo ao final. Como efeito colateral, remove os vértices de C e insere x_C no grafo. Se não houver arco entrando em C, não existe r-arborescência; se não houver arco saindo, x_C pode isolar componentes. O custo total é preservado e o procedimento é linear no número de arestas.

Essas escolhas garantem a *equivalência de custo* entre soluções ótimas no grafo contraído e no original após a reexpansão: os arcos internos de C têm custo reduzido zero e apenas as entradas em C recebem o desconto y(w), mantendo a bijeção entre arborescências descrita anteriormente.

A expressão "no próprio lugar (inplace)" no docstring abaixo 5 indica que o grafo D é modificado diretamente.

Contração de ciclo

Contrai um ciclo C no grafo D, substituindo-o por um supervértice rotulado 'label'. Nesse processo, modifica o grafo D no próprio lugar (in-place) e por fim, devolve dicionários auxiliares para a reexpansão.

```
1 % def contract_cycle(D: nx.DiGraph, C: nx.DiGraph, label: str):
```

[&]quot;Inplace" significa que a função altera diretamente a estrutura de dados existente, sem criar uma cópia. Assim, após a chamada, o grafo D já refletirá as remoções, inserções e ajustes feitos. Isso reduz alocações e pode ser mais eficiente, mas exige cuidado com aliasing/referências ativas, pois o estado anterior não é preservado a menos que seja salvo explicitamente.

```
3
4 %
         cycle_nodes: set[str] = set(C.nodes())
5
6 %
         # Stores the vertex u outside the cycle and the vertex v inside the
      cycle that receives the minimum weight edge
7 %
         in_to_cycle: dict[str, tuple[str, float]] = {}
8
9 %
         for u in D.nodes:
             if u not in cycle_nodes:
0 %
                 # Find the minimum weight edge that u has to any vertex in C
1 %
2 %
                 min_weight_edge_to_cycle = min(
3 %
                     ((v, w) for _, v, w in D.out_edges(u, data="w") if v in
      cycle_nodes),
4 %
                     key=lambda x: x[1],
5 %
                     default=None,
.6 %
                 )
7 %
                 if min_weight_edge_to_cycle:
8 %
                     in_to_cycle[u] = min_weight_edge_to_cycle
9
20 %
         for u, (v, w) in in_to_cycle.items():
21 %
             D.add_edge(u, label, w=w)
22
23 %
         # Stores the vertex v outside the cycle that receives the minimum
      weight edge from a vertex u inside the cycle
24 %
         out_from_cycle: dict[str, tuple[str, float]] = {}
25
26 %
         for v in D.nodes:
27 %
             if v not in cycle_nodes:
28 %
                 # Find the minimum weight edge that v receives from any vertex
       in C
29 %
                 min_weight_edge_from_cycle = min(
30 %
                     ((u, w) for u, _, w in D.in_edges(v, data="w") if u in
      cycle_nodes),
31 %
                     key=lambda x: x[1],
32 %
                     default=None,
33 %
34 %
                 if min_weight_edge_from_cycle:
35 %
                     out_from_cycle[v] = min_weight_edge_from_cycle
36
37 %
         for v, (u, w) in out_from_cycle.items():
```

```
D.add_edge(label, v, w=w)

Where the state of the state o
```

1.3.2.3 Remoção de arestas que entram na raiz:

a função remove todas as arestas que entram no vértice raiz r_0 do grafo G. A função modifica o grafo *in-place* e executa em $O(\deg^-(r_0))$.

Isso ocorre porque a função obtém todas as arestas que entram em r_0 usando o método in_edges do NetworkX, que tem complexidade $O(\deg^-(r_0))$.

Em seguida, a função remove essas arestas usando o método remove_edges_from, que também opera em tempo linear em relação ao número de arestas sendo removidas. Portanto, o tempo total de execução da função é $O(\deg^-(r_0))$. A função não cria uma cópia do grafo original, mas altera diretamente a estrutura de dados do grafo fornecido.

```
Remoção de arestas que entram na raiz

Remove todas as arestas que entram no vértice raiz r0 no grafo D. Por fim, retorna o grafo atualizado.

1 % def remove_edges_to_r0(
2 % D: nx.DiGraph, r0: str
3 % ):
4 % # Remove all edges entering r0
5 % in_edges = list(D.in_edges(r0))
6 % if in_edges:
7 % D.remove_edges_from(in_edges)
8 % return D
```

1.3.2.4 Remoção de arco interno:

ao expandir o ciclo C, a função remove o arco interno que entra no vértice de entrada v do ciclo, já que v agora recebe um arco externo do grafo. A função modifica o subgrafo do ciclo *in-place* e executa em $O(\deg^-(v))$.

Remover arco interno na reexpansão

Remove a aresta interna que entra no vértice de entrada 'v' do ciclo C, pois 'v' passa a receber uma aresta externa do grafo.

```
1 % def remove_internal_edge_to_cycle_entry(C: nx.DiGraph, v):
2
3 %    predecessor = next((u for u, _ in C.in_edges(v)), None)
4
5 %    C.remove_edge(predecessor, v)
```

1.3.2.5 Procedimento principal (recursivo):

A função principal implementa o algoritmo de Chu–Liu/Edmonds de forma recursiva e atua como um orquestrador das fases do método. Em alto nível, ela mantém a seguinte lógica:

O procedimento principal do algoritmo segue estes passos: prepara a instância removendo entradas na raiz, normaliza os custos das arestas que entram em cada vértice (exceto a raiz) para garantir pelo menos uma entrada de custo reduzido zero, constrói o grafo funcional F^* escolhendo para cada vértice a entrada de menor custo reduzido, verifica se F^* é acíclico (se for, retorna como r-arborescência ótima), e, caso haja ciclo, contrai o ciclo em um supervértice, ajusta os custos das entradas e resolve recursivamente; ao retornar, expande o ciclo e remove uma aresta interna para garantir aciclicidade e grau de entrada igual a 1.

Mais especificamente, o procedimento garante as seguintes propriedades e passos:

- Função (entradas/saídas): Entrada: digrafo ponderado D=(V,A), raiz r_0 , e, opcionalmente, funções draw_fn e log para visualização e registro. Saída: um subdigrafo dirigido T de D com |V|-1 arcos em que todo $v \neq r_0$ tem grau de entrada 1, todos os vértices alcançam r_0 e o custo total $\sum_{a \in T} c(a)$ é mínimo.
- Invariantes: Após a normalização por vértice, cada $v \neq r_0$ tem pelo menos uma entrada de custo reduzido zero; o conjunto F^* contém exatamente uma entrada por vértice distinto de r_0 ; em toda contração, apenas arcos que *entram* no componente têm seus custos reduzidos ajustados por $c'(u, x_C) = c(u, w) c(a_w)$, preservando comparações relativas.
- Detecção de ciclo e contração: Se F^* contém um ciclo C, todos os seus arcos têm custo reduzido zero. O procedimento forma o supervértice x_C , reescreve arcos

incidentes (descarta laços internos) e prossegue na instância menor. Essa etapa pode manter arcos paralelos e ignora laços.

- Recursão e expansão: Ao obter T' ótimo no grafo contraído, o método mapeia T' de volta para D: substitui o arco (u,x_C) por um (u,w) apropriado (com $w \in C$) e remove uma única aresta interna de C, restaurando a propriedade "uma entrada por vértice" e a aciclicidade.
- Empates e robustez: Empates de custo são resolvidos de modo determinístico/local, sem afetar a otimalidade. Arcos paralelos podem surgir após contrações e são tratados normalmente; laços são descartados por construção.
- Logs e desenho (opcionais): Na implementação disponibilizada no repositório do projeto integramos o solver com a interface do projeto de forma que se fornecidos, log recebe mensagens estruturadas por nível de recursão, e draw_fn e draw_step pode ser chamado para ilustrar passos relevantes (normalização, detecção/contração de ciclos, retorno da recursão e expansão).
- Casos-limite: Se algum $v \neq r_0$ não possui arco de entrada na instância corrente, detecta-se inviabilidade (não existe r-arborescência). Se F^* já é acíclico, retorna imediatamente (base da recursão).
- Complexidade: Em uma implementação direta, cada nível de recursão executa seleção/checagem/ajustes em tempo proporcional a O(m), e há no máximo O(n) níveis devido às contrações, totalizando O(mn) e memória O(m+n).

Essa rotina encapsula, portanto, a estratégia primal do método: induzir arestas de custo reduzido zero por normalização local, extrair uma estrutura funcional F^* de uma entrada por vértice, e resolver conflitos cíclicos por contração/expansão, preservando custos e correção em todas as etapas.

Procedimento principal (recursivo)

Função recursiva que encontra a arborescência ótima em um digrafo D com raiz r0 usando o algoritmo de Chu–Liu/Edmonds.

```
1 % def find_optimum_arborescence_chuliu(
2 % D: nx.DiGraph,
3 % r0: str,
4 % level=0,
5 % ):
6
7 % D_copy = D.copy()
8
```

```
9 %
         for v in D_copy.nodes:
             if v != r0:
.0 %
1 %
                 normalize_incoming_edge_weights(D_copy, v)
2
         # Build F_star
3 %
4 %
         F_star = get_Fstar(D_copy, r0)
 5
.6 %
         if nx.is_arborescence(F_star):
             for u, v in F_star.edges:
 7 %
                 F_{star}[u][v]["w"] = D[u][v]["w"]
.8 %
9 %
             return F_star
20
         else:
21 %
22 %
             C: nx.DiGraph = find_cycle(F_star)
23
24 %
             contracted_label = f"\n n*{level}"
25 %
             in_to_cycle, out_from_cycle = contract_cycle(
                 D_copy, C, contracted_label
26 %
27 %
             )
28
29 %
             # Recursive call
30 %
             F_prime = find_optimum_arborescence_chuliu(
31 %
                 D_copy,
32 %
                  r0,
33 %
                 level + 1
34 %
             )
35
36 %
             # Identify the vertex in the cycle that received the only incoming
        edge from the arborescence
37 %
             in_edge = next(iter(F_prime.in_edges(contracted_label, data="w")),
        None)
38
39 %
             u, _{-}, _{-} = in_{-}edge
40
41 %
             v, _ = in_to_cycle[u]
42
43 %
             # Remove the internal edge entering vertex 'v' from cycle C
44 %
             remove_internal_edge_to_cycle_entry(
45 %
                 C, v
46 %
             ) # Note: w is coming from F_prime, not from G
```

```
48 %
             # Add the external edge entering the cycle (identified by in_edge)
       , the weight will be corrected at the end using G
49 %
             F_prime.add_edge(u, v)
50
             # Add the remaining edges of the modified cycle C
51 %
52 %
             for u_c, v_c in C.edges:
53 %
                 F_prime.add_edge(u_c, v_c)
54
             # Add the external edges leaving the cycle
55 %
             for _, z, _ in F_prime.out_edges(contracted_label, data=True):
56 %
57
58 %
                 u_cycle, _ = out_from_cycle[z]
59 %
                 F_prime.add_edge(u_cycle, z)
60
             F_prime.remove_node(contracted_label)
61 %
62
63 %
             # Update the edge weights with the original weights from G
             for u, v in F_prime.edges:
64 %
                 F_{prime}[u][v]["w"] = D[u][v]["w"]
65 %
66
67 %
             return F_prime
```

1.3.2.6 Notas finais sobre a implementação

A implementação acima segue diretamente a descrição do algoritmo de Chu–Liu/Edmonds, enfatizando clareza e correção. Para aplicações práticas, otimizações podem ser introduzidas, como estruturas de dados eficientes para seleção de mínimos, detecção rápida de ciclos e manipulação de grafos dinâmicos. Além disso, a função pode ser adaptada para lidar com casos especiais, como grafos desconexos ou múltiplas raízes, conforme necessário.

A complexidade da implementação direta é O(mn) no pior caso, onde m é o número de arestas e n o número de vértices, devido à potencial profundidade de recursão e ao processamento linear em cada nível. Implementações mais sofisticadas podem reduzir isso para $O(m\log n)$ usando estruturas avançadas, como heaps e union-find, mas a versão apresentada prioriza a compreensão do algoritmo fundamental.

SAMIRA

1.3.2.7 Decisões de projeto e implicações práticas

Antes de prosseguir para uma visão alternativa do mesmo problema, vale destacar algumas decisões de projeto e implicações práticas da implementação de Chu–Liu/Edmonds:

- Estruturas e efeitos colaterais: Optamos por modificar grafos *in-place* (por exemplo, durante a normalização e a contração de ciclos) para reduzir alocações e facilitar a visualização incremental. Isso exige invariantes explícitos e cuidado com referências ativas ao grafo original.
- Empates, paralelos e laços: Empates são resolvidos de forma determinística/local sem afetar a otimalidade. A contração pode induzir *arcos paralelos*; preservamos apenas o de menor custo. Laços (self-loops) são descartados por construção.
- Validação e testes: O repositório inclui artefatos úteis para experimentação (por exemplo, tests.py, test_results.csv, test_log.txt). Onde um volume de grafos é gerado aleatoriamente, a função é executada e os resultados são validados são comparados com soluções de força bruta.
- Integração com visualização e logs: A função draw_fn permite registrar *snapshots* (normalização, formação de F^* , contração/expansão). O log facilita auditoria e depuração em execuções recursivas.
- Extensões: Variantes com múltiplas raízes, restrições adicionais (p.ex., proibições por partição) e empacotamento de arborescências exigem ajustes na fase de extração/expansão ou formulações via matroides.

1.3.2.8 Transição para a abordagem primal-dual

Embora o algoritmo de Chu–Liu/Edmonds seja elegante e eficiente, sua mecânica operacional — normalizar custos, selecionar mínimos, contrair ciclos — pode parecer um conjunto de heurísticas bem-sucedidas sem uma justificativa teórica unificadora aparente. Por que escolher a melhor entrada para cada vértice garante otimalidade global após o tratamento de ciclos? A resposta reside na dualidade em programação linear.

No capítulo seguinte, revisitaremos o mesmo problema sob uma ótica primal—dual em duas fases, proposta por András Frank. Essa perspectiva organiza a normalização via potenciais $y(\cdot)$, explica os custos reduzidos e introduz a noção de cortes apertados (família laminar) como guias das contrações. Veremos como a mesma

No contexto primal–dual, "potenciais" são valores escalares y(v) atribuídos aos vértices para definir custos reduzidos c'(u,v)=c(u,v)-y(v). Ajustar y desloca uniformemente os custos das arestas que entram em v, sem mudar a otimalidade global: preserva a ordem relativa entre entradas e torna "apertadas" (custo reduzido zero) as candidatas corretas, habilitando contrações e uma prova de corretude via cortes apertados.

mecânica operacional (normalizar \to contrair \to expandir) emerge de condições duais que também sugerem otimizações e generalizações.

Referências

KLEINBERG, J.; TARDOS, É. *Algorithm Design*. [S.l.]: Addison-Wesley, 2006. Citado 3 vezes nas páginas 11, 12 e 15.

SCHRIJVER, A. *Combinatorial Optimization: Polyhedra and Efficiency*. [S.l.]: Springer, 2003. Citado 4 vezes nas páginas 11, 12, 15 e 16.

ANEXO A - Anexo A

Conteúdo do anexo A.