AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

- 1.-31. (Cancelled).
- 32. (Previously Presented): A crosslinked polymer obtainable by radical polymerisation of ethylenically unsaturated monomers including
 - a) a zwitterionic monomer of the general formula I

wherein

\$

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from the group consisting of

$$H_2C = C - C - A - C$$

$$\begin{split} & CH_2 = C(R) - CH_2 - O^-, \ CH_2 = C(R) - CH_2 OC(O)^-, \ CH_2 = C(R) OC(O)^-, \ CH_2 = C(R) - O^-, \\ & CH_2 = C(R) CH_2 OC(O) N(R^1)^-, \ R^2 OOCCR = CRC(O)^-O^-, \ RCH = CHC(O)O^-, \\ & RCH = C(COOR^2) CH_2 - C(O)^-O^-, \end{split}$$

wherein:

R is hydrogen or a C_1 - C_4 alkyl group;

 R^1 is hydrogen or a $C_1\text{-}C_4$ alkyl group or R^1 is -B-X where B and X are as defined above; and

 R^2 is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above;

A is -O- or -NR 1 -;

K is selected from the group consisting of -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pDC(O)O-, -(CH₂)_pNR³C(O)-, -(CH₂)_pNR³C(O)NR³-, -(CH₂)_pNR³C(O)O-, -(CH₂)_pOC(O)NR³-, -(CH₂)_pNR³C(O)NR³- (in which the groups R³ are the same or different), -(CH₂)_pO-, -(CH₂)_pSO₃-, and optionally in combination with B, a valence bond and p is from 1 to 12 and R³ is hydrogen or a C₁-C₄ alkyl group;

b) an aromatic group containing monomer of the general formula II Y^1R^4 II

wherein \boldsymbol{Y}^{1} is selected from the group consisting of

 $CH_2=C(R^5)-CH_2-O-, CH_2=C(R^5)-CH_2 OC(O)-, CH_2=C(R^5)OC(O)-, CH_2=C(R^5)-O-, CH_2=C(R^5)CH_2OC(O)N(R^6)-, R^7OOCCR^5=CR^5C(O)-O-, R^5CH=CHC(O)O-, R^5CH=C(COOR^7)CH_2-C(O)-O-,$

$$R^{5}HC$$
 N
and
 $R^{5}C$
 N
 $R^{5}C$
 N

wherein:

R⁵ is hydrogen or a C₁-C₄ alkyl group;

R⁶ is hydrogen or a C₁-C₄ alkyl group or R⁶ is R⁴;

R⁷ is hydrogen or a C₁₋₄ alkyl group or R⁴;

 A^1 is -O- or -NR⁶-:

 K^1 is selected from the group consisting of $-(CH_2)_qOC(O)$ -, $-(CH_2)_qC(O)O$ -, $-(CH_2)_qNR^8$ -, $-(CH_2)_qNR^8C(O)$ -, $-(CH_2)_qC(O)NR^8$ -, $-(CH_2)_qNR^8C(O)O$ -, $-(CH_2)_qOC(O)NR^8$ -, $-(CH_2)_qNR^8C(O)NR^8$ - (in which the groups R^8 are the same or different), $-(CH_2)_qO$ -, $-(CH_2)_qSO_3$ -, and a valence bond and q is from 1 to 12 and R^8 is hydrogen or a C_1 - C_4 alkyl group;

and R4 is an aromatic group; and

c) a cross-linking monomer of the general formula III

$$(Y^2)_n R^9$$
 III

in which n is an integer of at least 2, each Y² is selected from the group consisting of

$$\begin{split} & CH_2 = C(R^{10}) - CH_2 - O^-, \ CH_2 = C(R^{10}) - CH_2 \ OC(O)^-, \ CH_2 = C(R^{10}) OC(O)^-, \ CH_2 = C(R^{10}) - O^-, \\ & CH_2 = C(R^{10}) CH_2 OC(O) N(R^{11})^-, \ R^{12} OOCCR^{10} = CR^{10} C(O)^-O^-, \ R^{10} CH = CHC(O)O^-, \\ & R^{10} CH = C(COOR^{12}) CH_2 - C(O)^-O^-, \end{split}$$

wherein:

R¹⁰ is hydrogen or a C₁-C₄ alkyl group;

R¹¹ is hydrogen or a C₁-C₄ alkyl group;

R¹² is hydrogen or a C₁₋₄ alkyl group;

 A^2 is -O- or -NR¹¹-;

 K^2 is selected from the group consisting of $-(CH_2)_rOC(O)$ -, $-(CH_2)_rC(O)O$ -, $-(CH_2)_rNR^{12}$ -, $-(CH_2)_rNR^{12}C(O)$ -, $-(CH_2)_rC(O)NR^{12}$ -, $-(CH_2)_rNR^{12}C(O)O$ -, $-(CH_2)_rOC(O)NR^{12}$ -, $-(CH_2)_rNR^{12}C(O)NR^{12}$ - (in which the groups R^{12} are the same or different), $-(CH_2)_rO$ -, $-(CH_2)_rSO_3$ - and a valence bond and r is from 1 to 12 and R^{12} is hydrogen or a C_1 - C_4 alkyl group;

and R9 is an n-functional organic group;

wherein the cross-linked polymer is swellable in water such that the water content of the polymer when fully swollen in deionized water is in the range of 10 to 50% by weight, and the zwitterionic monomer of general formula I is present in an amount of at least 5 mole %, the aromatic group containing monomer of general formula II is present in an amount of at least 10 mole %, and the cross-linking monomer of general formula III is present in an amount of 0.01 to 10 mole %, based upon total monomer.

33. (Previously Presented): A polymer according to claim 32 in which R⁴ is benzyl or phenyl.

- 34. (Previously Presented): A polymer according to claim 32 in which Y and Y^2 are the same, and are $CH_2=CR^xCOA$, in which R^x is methyl or hydrogen and A is 0.
- 35. (Previously Presented): A polymer according to claim 32 in which the cross-linking monomer comprises a compound of the general formula III in which R⁹ is an aromatic group.
- 36. (Previously Presented): A polymer according to claim 32 in which the crosslinking monomer comprises a compound of the formula III in which R⁹ is an aliphatic group.
- 37. (Previously Presented): A polymer according to claim 32 in which the monomers include a mixture of at least two cross-linking monomers of the general formula III, in at least one of which R^9 is an aromatic group and in at least one of which R^9 is an aliphatic group.
- 38 (Previously Presented): A polymer according to claim 37 in which the molar ratio of crosslinking monomer in which R^9 is aromatic to crosslinking monomer in which R^9 is aliphatic is in the range 10:1 to 1:10.
- 39. (Previously Presented): A polymer according to claim 32 in which the zwitterionic monomer is present in molar amount in the range 1 to 95% based on total ethylenically unsaturated monomer.
- 40. (Previously Presented): A polymer according to claim 32 in which the aromatic group containing monomer is present in a molar amount in the range 10 to 99% based on total ethylenically unsaturated monomer.
- 41. (Previously Presented): A polymer according to claim 32 in which the crosslinking monomer is present in a molar amount in the range 0.01 to 10% based on total ethylenically unsaturated monomer.

42. (Previously Presented): A polymer according to claim 32 in which the zwitterionic group has the general formula IV

$$\begin{array}{c|c}
X^{4} & 0 \\
P & X^{5} \\
\Theta & IV
\end{array}$$

in which the moieties X^4 and X^5 , which are the same or different, are -0-, -S-, -NH- or a valence bond and W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is a C_{1-12} -alkylene group.

43. (Previously Presented): A polymer according to claim 42 in which X is a group of formula V:

where the groups R^{16} are the same or different and each is hydrogen or C_{1-4} alkyl, and m is from 1 to 4.

- 44. (Previously Presented): A gel comprising a polymer according to claim 32 swollen by a liquid.
 - 45. (Previously Presented): A gel according to claim 44 in which the liquid is aqueous.
- 46. (Previously Presented): A refractive device formed of a polymer according to claim 32.

- 47. (Previously Presented): A device according to claim 46 which has an average transmission for visible light in the range 400 to 700nm wavelength of at least 90% when swollen by water.
- 48. (Previously Presented): A device according to claim 46 which comprises an absorber of electromagnetic rdiation.
- 49. (Previously Presented): A device according to claim 46, having a refractive index when fully swollen in water on the range 1.45-1.60.
- 50. (Currently Amended): A polymerisation process <u>for preparing a cross linked</u> <u>polymer</u>, in which a polymerisation mixture containing ethylenically unsaturated monomers is subjected to radical polymerisation, whereby addition polymerisation of the ethylenically unsaturated groups takes place, and in which the monomers include
 - a) a zwitterionic monomer of the general formula I

YBX I

wherein

B is a straight or branched alkylene, oxaalkylene or oligo-oxaalkylene chain optionally containing one or more fluorine atoms or, if X or Y contains a terminal carbon atom bonded to B, a valence bond;

X is a zwitterionic group; and

Y is an ethylenically unsaturated polymerisable group selected from the group consisting of

$$H_2C = C - C - A - C$$

 $CH_2=C(R)-CH_2-O-, CH_2=C(R)-CH_2OC(O), CH_2=C(R)OC(O), CH_2=C(R)-O-, \\ CH_2=C(R)CH_2OC(O)N(R^1)-, R^2OOCCR=CRC(O)-O-, RCH=CHC(O)O, RCH-C(COOR^2)CH_2-C(O)-O-, \\ C(O)-O-, RCH=CHC(O)O-, RCH=CHC(O)O-$

wherein:

R is hydrogen or a C_1 - C_4 alkyl group;

 R^1 is hydrogen or a $C_1.C_4$ alkyl group or R^1 is -B-X where B and X are as defined above; and

 R^2 is hydrogen or a C_{1-4} alkyl group or BX where B and X are as defined above; A is -0- or -NR¹-;

K is selected from the group consisting of -(CH₂)_pOC(O)-, -(CH₂)_pC(O)O-, -(CH₂)_pNR³C(O)O-, -(CH₂)_pNR³C(O)O-, -(CH₂)_pNR³C(O)NR³-, -(CH₂)_pNR³C(O)O-, -(CH₂)_pOC(O)NR³-, -(CH₂)_pNR³C(O)NR³- (in which the groups R³ are the same or different), -(CH₂)_pO-, -(CH₂)_pSO₃-, and optionally in combination with B, a valence bond and p is from 1 to 12 and R³ is hydrogen or a C₁-C₄ alkyl group[[.]];

b) an aromatic group containing monomer of the general formula II

$$Y^1 R^4$$
 II

wherein Y^1 is selected from the group consisting of

$$H_2C = C - C - A^1$$

$$\begin{split} & \text{CH}_2 = \text{C}(\text{R}^5) - \text{CH}_2 - \text{O} -, \text{ CH}_2 = \text{C}(\text{R}^5) - \text{CH}_2 \text{ OC(O)} -, \text{ CH}_2 = \text{C}(\text{R}^5) \text{OC(O)} -, \text{ CH}_2 = \text{C}(\text{R}^4) - \text{O} -, \\ & \text{CH}_2 = \text{C}(\text{R}^5) \text{CH}_2 \text{OC(O)} \text{N}(\text{R}^6) -, \text{ R}^7 \text{OOCR}^5 = \text{CR}^5 \text{C(O)} - \text{O} -, \text{ R}^5 \text{CH} = \text{CHC(O)} -, \\ & \text{R}^5 \text{CH} = \text{C}(\text{COOR}^7) \text{CH}_2 - \text{C(O)} - \text{O} -, \end{split}$$

wherein:

R⁵ is hydrogen or a C₁.C₄ alkyl group;

R⁶ is hydrogen or a C₁.C₄ alkyl group or R⁶ is R⁴;

 R^7 is hydrogen or a C_{1-4} alkyl group or R^4 ;

 A^1 is -O- or -NR⁶-;

 $K^1 \text{ is selected from the group consisting of -(CH_2)_qOC(O)-, -(CH_2)_qC(O)O-,} \\ -(CH_2)_qOC(O)O-, -(CH_2)_qNR^8-, -(CH_2)_qNR^8C(O)-, -(CH_2)_qC(O)NR^8-, -(CH_2)_qNR^8C(O)O-,} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ are the same or different),} \\ -(CH_2)_qOC(O)NR^8-, -(CH_2)_qNR^8C(O)NR^8- \text{ (in which the groups } R^8 \text{ (in which the$

- $(CH_2)_qO$ -, - $(CH_2)_qSO_3$ -, and a valence bond and [[p]] \underline{q} is from 1 to 12 and R^8 is hydrogen or a $C_1.C_4$ alkyl group;

and R4 is an aromatic group; and

c) a cross-linking monomer of the general formula III

$$(Y^2)_n R^9$$
 III

in which n is an integer of at least 2, each Y² is selected from the group consisting of

$$H_{2}C = \begin{bmatrix} R^{10} \\ -C - A^{2} \\ 0 \end{bmatrix}$$

$$\begin{split} & CH_2 = C(R^{10}) - CH_2 - O^-, \ CH_2 = C(R^{10}) - CH_2 OC(O)^-, \ CH_2 = C(R^{10}) OC(O)^-, \ CH_2 = C(R^{10}) O^-, \\ & CH_2 = C(R^{10}) CH_2 OC(O) N(R^{11})^-, \ R^{12} OOCCR^{10} = CR^{10} C(O)^-O^-, \ R^{10} CH = CHC(O)O^-, \\ & R^{10} CH = C(COOR^{12}) CH_2 - C(O)^-O^-, \end{split}$$

wherein:

R¹⁰ is hydrogen or a C₁.C₄ alkyl group;

R¹¹ is hydrogen or a C₁.C₄ alkyl group;

[[R^{11}]] $\underline{R^{12}}$ is hydrogen or a C_{1-4} alkyl group;

 A^2 is -O- or -NR¹¹-;

 K^2 is selected from the group consisting of -(CH²)_rOC(O)-, -(CH²)_rC(O)O-, -(CH₂)_rNR¹²-, -(CH₂)_rNR¹²C(O)-, -(CH₂)_rC(O)NR¹²-,

- $(CH_2)_rNR^{12}C(O)O$ -, - $(CH_2)_rOC(O)NR^{12}$ -, - $(CH_2)_rNR^{12}C(O)NR^{12}$ - (in which the groups R^{12} are the same or different), - $(CH_2)_rO$ -, - $(CH_2)_rSO_3$ - and a valence bond and r is from 1 to 12 and R^{12} is hydrogen or a C_1 - C_4 alkyl group;

and R⁹ is an n-functional organic group[[.]];

wherein the cross-linked polymer is swellable in water such that the water content of the polymer when fully swollen in deionized water is in the range of 10 to 50% by weight, and the zwitterionic monomer of general formula I is present in the crosslinked polymer in an amount of at least 5 mole %, the aromatic group containing monomer of general formula II is present in the crosslinked polymer in an amount of at least 10 mole %, and the cross-linking monomer of general formula III is present in the crosslinked polymer in an amount of 0.01 to 10 mole %, based upon total monomer.

- 51. (Previously Presented): A process according to claim 50 in which the zwitterionic monomer is present in molar amount in the range 1 to 95% based on total ethylenically unsaturated monomer.
- 52. (Previously Presented): A process according to claim 50 in which the aromatic group containing monomer is present in a molar amount in the range 10 to 99% based on total ethylenically unsaturated monomer.
- 53. (Previously Presented): A process according to claim 50 in which the crosslinking monomer is present in a molar amount in the range 0.01 to 10% based on total ethylenically unsaturated monomer.
- 54. (Previously Presented): A process according to claim 50 in which polymerisation is initiated by a thermal, a redox or a U.V. initiator.

- 55. (Previously Presented): A process according to claim 50 in which the zwitterionic monomer and aromatic group containing monomer are immiscible in the absence of a co-solvent, and in which the polymerisation mixture contains a co-solvent which is a non-polymerisable liquid whereby the polymerisation mixture is a homogeneous solution.
- 56. (Previously Presented): A process according to claim 55 in which the co-solvent is an alcohol.
- 57. (Previously Presented): A process according to claim 55 in which the co-solvent is present in the polymerisation mixture in an amount in the range 5 to 90% by weight.
- 58. (Previously Presented): A process of forming a refractive device in which a polymerisation process according to claim 55 is carried out, the co-solvent is removed from the product polymer to form a xerogel which is substantially free of co-solvent, and the xerogel is shaped by cutting to a predetermined three dimensional shape.
- 59. (Previously Presented): A process according to claim 58 in which the refractive device is an intraocular lens.
- 60. (Previously Presented): A process of forming a refractive device in which a polymerisation process according to claim 55 is carried out whilst the polymerisation mixture is in a mould and, after polymerisation, the solvent is removed from the polymer.
- 61. (Previously Presented): A process according to claim 58 in which after the said cutting step, the xerogel is swollen in aqueous liquid.
- 62. (Previously Presented): A polymer according to claim 35 in which R⁹ is a bisphenol A group.

- 63. (Previously Presented): A polymer according to claim 36 in which R⁹ is an ethylene or an oligo (ethyleneoxy) ethylene group.
- 64. (Previously Presented): A polymer according to claim 37 in which the aromatic group is a bisphenol A group and the aliphatic group is an ethylene or oligo(ethyleneoxy) ethylene group.
- 65. (Previously Presented): A polymer according to claim 32 in which the zwitterionic monomer is present in a molar amount in the range 10 to 25%. The aromatic group containing monomer is present in a molar amount in the range 75 to 90% and the cross-linking monomer is present in a molar amount in the range 0.5 to 3%, each based on total ethylenically unsaturated monomer.
- 66. (Previously Presented): A polymer according to claim 42 in which X^4 and X^5 are O and W^+ is a group of formula $-W^1-N^+R^{14}_3$, $-W^1-P^+R^{15}_3$, $-W^1-S^+R^{15}_2$ or $-W^1-Het^+$ in which:

W¹ is alkylene of 2-6 carbon atoms optionally containing one or more ethylenically unsaturated double or triple bonds, disubstituted-aryl, alkylene aryl, aryl alkylene, or alkylene aryl alkylene, disubstituted cycloalkyl, alkylene cycloalkyl, cycloalkyl alkylene or alkylene cycloalkyl alkylene, which group W¹ optionally contains one or more fluorine substituents and/or one or more functional groups; and

either the groups R¹⁴ are the same or different and each is hydrogen, selected from the group consisting of alkyl of 1 to 4 carbon atoms and aryl, or two of the groups R¹⁴ together with the nitrogen atom to which they are attached form a heterocyclic ring containing from 5 to 7 atoms or the three groups R¹⁴ together with the nitrogen atom to which they are attached form a fused ring structure containing from 5 to 7 atoms in each ring, and optionally one or more of the

groups R^{14} is substituted by a hydrophilic functional group, and the groups R^{15} are the same or different and each is R^{14} or a group OR^{14} , where R^{14} is as defined above; or

Het is an aromatic nitrogen-, phosphorus- or sulphur- containing ring.

- 67. (Previously Presented): A polymer according to claim 43 in which m is 2 and each R^{16} is methyl.
- 68. (Previously Presented): A process according to claim 60 in which the solvent is removed from the polymer after the polymer has been removed from the mould, and in which the polymer is subsequently swollen in an aqueous liquid.
- 69. (Previously Presented): A process according to claim 50 in which the monomers include a mixture of at least two cross-linking monomers of the general formula III, in at least one of which R⁹ is an aromatic group and in at least one of which R⁹ is an aliphatic group.
- 70. (Previously Presented): A process according to claim 69 in which the zwitterionic monomer is present in a molar amount in the range 10 to 25%. The aromatic group containing monomer is present in a molar amount in the range 75 to 90% and the cross-linking monomer is present in a molar amount in the range 0.5 to 3%, each based on total ethylenically unsaturated monomer.
- 71. (Previously Presented): A process according to claim 50 in which the zwitterionic group has the general formula IV

$$X^{4} \stackrel{O}{\underset{P}{\longrightarrow}} X^{5} \stackrel{W}{\underset{M}{\longrightarrow}}$$
 IV

in which the moieties X^4 and X^5 , which are the same or different, are -O-, -S-, -NH- or a valence bond and W^+ is a group comprising an ammonium, phosphonium or sulphonium cationic group and a group linking the anionic and cationic moieties which is a C_{1-12} -alkylene group.

72. (Currently Amended): A process according to claim 71 in which X is a group of formula V: