Conectivos

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

13 de março de 2014

Plano de Aula

- Pensamento
- 2 Avisos
- Revisão
 - Pra quê serve a Lógica
 - Proposição
- 4 Linguagem Proposicional
 - Conectivos
 - Alfabeto
 - Fórmulas da LP
 - Subfórmulas

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Pra quê serve a Lógica
 - Proposição
- 4 Linguagem Proposicional
 - Conectivos
 - Alfabeto
 - Fórmulas da LP
 - Subfórmulas

Pensamento

Pensamento

Frase

Se A é o sucesso, então A = X + Y + Z.O trabalho é X;
Y é o lazer; e
Z é manter a boca fechada.

Quem?

Albert Einstein (1879 - 1955): Físico teórico alemão.

Sumário

- Pensamento
- 2 Avisos
- Revisão
 - Pra quê serve a Lógica
 - Proposição
- 4 Linguagem Proposicional
 - Conectivos
 - Alfabeto
 - Fórmulas da LP
 - Subfórmulas

Avisos

Avisos

Questão Avaliada 01 no Canvas

Prazo de máximo de submissão:

Hoje, até às 21h.

Notícias do Santa Cruz

COPA DO NORDESTE

Recife PE / Ilha do Retiro Quarta-Fetra 12/03/2014 - 22:00

Gols: Neto Batano Felipe Azevedo

Semifinal

SPORT VOLTA A VENCER O SANTA NA ILHA E SE APROXIMA DA FINAL DA COPA DO NE

Menos de uma semana depois do atropelamento pelo estadual, Leão bate Tricolor por 2 a 0 e tem boa vantagem na disputa por uma vaga na decisão

Sumário

- Pensamento
- Avisos
- Revisão
 - Pra quê serve a Lógica
 - Proposição
- 4 Linguagem Proposiciona
 - Conectivos
 - Alfabeto
 - Fórmulas da LP
 - Subfórmulas

Figura 1 : Criação de mecanismos de buscas.

Figura 2 : Desenvolvimento de processadores.

Figura 3 : Programas em Robótica.

Figura 4 : Representação do Conhecimento.

Proposição

É uma sentença declarativa que pode ser julgada como verdadeira ou falsa.

Exemplos

- Dez é menor do que sete. ✓
- Como está você? ×
- Como ela é talentosa! ×
- Existe vida em outros planetas do universo. √

Sumário

- Pensamento
- Avisos
- Revisão
 - Pra quê serve a Lógica
 - Proposição
- 4 Linguagem Proposicional
 - Conectivos
 - Alfabeto
 - Fórmulas da LP
 - Subfórmulas

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Conjunção

 $p \wedge q =$ "Dez é menor do que sete e existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Disjunção

 $p \lor q =$ "Dez é menor do que sete ou existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Condicional

 $p \rightarrow q =$ "Se dez é menor do que sete então existe vida em outros planetas do universo".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Negação

 $\neg p =$ "Dez **não** é menor do que sete".

Conectivos

São operadores lógicos que conectam proposições gerando como resultado novas proposições.

Exemplos

- p = "Dez é menor do que sete".
- q = "Existe vida em outros planetas do universo".

Negação

- ¬p = "Dez <mark>não</mark> é menor do que sete".
- $\neg q =$ "Não existe vida em outros planetas do universo".

Alfabeto

• Um conjunto infinito e contável de *símbolos proposicionais*, também chamados de *átomos*, ou de *variáveis proposicionais*:

$$\mathcal{P} = \{p_0, p_1, p_2, ...\}.$$

Alfabeto

• O conectivo unário ¬ (negação, lê-se: NÃO).

Alfabeto

Os conectivos binários ∧ (conjunção, lê-se: E), ∨ (disjunção, lê-se: OU), e → (implicação, lê-se: SE... ENTÃO...).

Alfabeto

• Os elementos de pontuação, que contêm apenas os parênteses '(' e ')'.

Alfabeto

- Um conjunto infinito e contável de símbolos proposicionais, também chamados de átomos, ou de variáveis proposicionais: $\mathcal{P} = \{p_0, p_1, p_2, ...\}.$
- O conectivo unário ¬ (negação, lê-se: NÃO).
- Os conectivos binários ∧ (conjunção, lê-se: E), ∨ (disjunção, lê-se: OU), e → (implicação, lê-se: SE... ENTÃO...).
- Os elementos de pontuação, que contêm apenas os parênteses '(' e ')'.

Fórmulas da LP

O conjunto \mathcal{L}_{LP} das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguinte regras de formação:

Fórmulas da LP

O conjunto \mathcal{L}_{LP} das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguinte regras de formação:

• Caso básico: Todos os símbolos proposicionais que estão em \mathcal{L}_{LP} ; ou seja, $\mathcal{P} \subseteq \mathcal{L}_{LP}$. Os símbolos proposicionais são chamados de *fórmulas atômicas*, ou átomos.

Fórmulas da LP

O conjunto \mathcal{L}_{LP} das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguinte regras de formação:

2 Caso indutivo 1: Se $A \in \mathcal{L}_{LP}$, então $(\neg A) \in \mathcal{L}_{LP}$.

Fórmulas da LP

O conjunto \mathcal{L}_{LP} das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguinte regras de formação:

3 Caso indutivo 2: Se $A, B \in \mathcal{L}_{LP}$, então $(A \wedge B) \in \mathcal{L}_{LP}$, $(A \vee B) \in \mathcal{L}_{LP}$, e $(A \rightarrow B) \in \mathcal{L}_{LP}$.

Fórmulas da LP

O conjunto \mathcal{L}_{LP} das fórmulas proposicionais é definido indutivamente como o menor conjunto, satisfazendo as seguinte regras de formação:

- **1 Caso básico:** Todos os símbolos proposicionais que estão em \mathcal{L}_{LP} ; ou seja, $\mathcal{P} \subseteq \mathcal{L}_{LP}$. Os símbolos proposicionais são chamados de *fórmulas atômicas*, ou átomos.
- **2** Caso indutivo 1: Se $A \in \mathcal{L}_{LP}$, então $(\neg A) \in \mathcal{L}_{LP}$.
- **3 Caso indutivo 2:** Se $A, B \in \mathcal{L}_{LP}$, então $(A \land B) \in \mathcal{L}_{LP}$, $(A \lor B) \in \mathcal{L}_{LP}$, e $(A \to B) \in \mathcal{L}_{LP}$.

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

Subfórmulas

O conjunto $\operatorname{Subf}(A)$ de subfórmulas de uma fórmula A é definido da seguinte maneira:

• Caso básico: A = pSubf(p) = p, para toda fórmula atômica $p \in \mathcal{P}$;

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

② Caso
$$A = (\neg B)$$

Subf $((\neg B)) = \{(\neg B)\} \cup Subf(B)$.

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

• Caso
$$A = (B \wedge C)$$

Subf $((B \wedge C)) = \{(B \wedge C)\} \cup Subf(B) \cup Subf(C).$

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

• Caso $A = (B \lor C)$ Subf $((B \lor C)) = \{(B \lor C)\} \cup Subf(B) \cup Subf(C).$

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

Subfórmulas

O conjunto Subf(A) de subfórmulas de uma fórmula A é definido da seguinte maneira:

- Caso básico: A = pSubf(p) = p, para toda fórmula atômica $p \in \mathcal{P}$;
- ② Caso $A = (\neg B)$ Subf $((\neg B)) = \{(\neg B)\} \cup \text{Subf}(B)$.
- **3** Caso $A = (B \wedge C)$ Subf $((B \wedge C)) = \{(B \wedge C)\} \cup Subf(B) \cup Subf(C).$
- Caso $A = (B \lor C)$ Subf $((B \lor C)) = \{(B \lor C)\} \cup Subf(B) \cup Subf(C).$

Onde estudar mais...

Seção 1.2: A Linguagem Proposicional

SILVA, F. S. C. Da; FINGER, M.; MELO, A. C. V. de. Em Lógica para Computação. São Paulo: Thomson Learning, 2006. Código Bib.: [519.687 SIL /log].

Conectivos

Esdras Lins Bispo Jr. bispojr@ufg.br

Lógica para Ciência da Computação Bacharelado em Ciência da Computação

13 de março de 2014

