Statistical Methods in AI (CS7.403)

Lecture-22: ML for Time Series

Ravi Kiran (ravi.kiran@iiit.ac.in)

https://ravika.github.io

Examples

BSE SENSEX

Global Land Ocean temperature

Examples

Day	No. of Packets of Milk sold
Monday	90
Tuesday	88
Wednesday	85
Thursday	75
Friday	72
Saturday	90
Sunday	102

Year	Population(in Million)
1921	251
1931	279
1941	319
1951	361
1961	439
1971	548
1981	685

Time Series

- Time series is a sequence of observations often ordered in time.
- Popular Problem: Given a sequence, predict future samples.
- Applications:
 - Meteorology,
 - Finance,
 - Marketing etc.

ML View Point

Using the model + learned parameters θ :

- Track
- Predict
- Simulate
- Plan
- ...

Learning Problem: find parameters θ s.t. $\theta \approx \theta^*$

From: B. Boots

Notation and Problem

- Notation: x[0], x[1], x[2], ..., x[N].
- X[t], Where t is the time or index in the sequence.
- Assumption: Measurement at time t depends on three previous ones.
 - i.e., t-1, t-2 and t-3
- Why 3? We can have a different number.

Data

Raw Data	
Time	Sample
1	X_{1}
2	X_2
3	X_3
4	X_4
5	X_5
6	X_6
7	X ₇

Rearranged Data			
Feature-1	Feature-2	Feature-3	Y _i
X_1	X_2	X_3	X_4
X_2	X_3	X_4	X ₅
X_3	X_4	X_5	X_6
X_4	X_5	X_6	X ₇

Feature Vector		
Feature	Y _i	
V_1	X_4	
V_2	X_5	
V_3	X_6	
V_4	X_7	

A Simple Model

- X[t] = w1 X[t-1] + w2 X[t-2] + w3 X[t-3] + n
 - Where n is noise.

- Problem:
 - Given the sequence X[0], X[1], X[N]
 - Find coefficients w1, w2, w3

• Find the coefficients w1,w2,w3 such that prediction error is minimal.

Performance Metrics For Time Series Data

- Four common techniques are:
 - mean absolute deviation,
 - mean absolute percent error,
 - the mean square error,
 - root mean square error.

$$MAD = \sum_{i=1}^{n} \frac{\left| X_{i} - \hat{X}_{i} \right|}{n}$$

$$MAPE = \frac{100}{n} \sum_{i=1}^{n} \frac{\left| X_{i} - \hat{X}_{i} \right|}{\hat{X}_{i}}$$

$$MSE = \sum_{i=1}^{n} \frac{\left(X_{i} - \hat{X}_{i}\right)^{2}}{n}$$

$$RMSE = \sqrt{MSE}$$

 X_i : ACTUAL

 $\hat{\mathbf{X}}_i: PREDICTED$

More Powerful Model

- Xt = f(W, Xt-1, Xt-2, Xt-3) + n
- Problem:
 - Given the sequence X0, X1, XN
 - Find coefficients W
- Data may be modeled as in the above linear case.
- f() may be seen as a MLP

$$\min W \sum_{t=3}^{N} (X_{t} - f(W, X_{t-1}, X_{t-2}, X_{t-3}))^{2}$$

Time series prediction

Data (Revisit)

Raw Data	
Time	Sample
1	X_1
2	X_2
3	X_3
4	X_4
5	X_5
6	X ₆
7	X ₇

Rearranged Dat	a		
Feature-1	Feature-2	Feature-3	Y _i
X_1	X_2	X_3	X_4
X_2	X ₃	X_4	X_5
X_3	X_4	X_5	X_6
X_4	X ₅	X_6	X_7

Feature Vector		
Feature	Y _i	
V_1	X_4	
V_2	X_5	
V_3	X_6	
V_4	X ₇	

Neural Networks for Time Series Forecasting

Summary

- Predicting future samples is a new problem
- However, the solution is similar to what we know.
 - Cast as regression.
- Model can be linear
 - Linear regression
- Or nonlinear
 - MLP
- On how many past samples, the future sample will depend?
 - Order/model to be guessed?

Classical Models (AR and MA)

- Auto Regressive (AR) Model assumes $X_t = \alpha X_{t-1} + \epsilon_t$ (ϵ_t is random uncorrelated)
- AR: A model of order p is $X_t = \sum_{i=1}^{P} \alpha_i X_{t-i} + \epsilon_t$
- Moving Average (MA) model assumes $X_t = \mu + \epsilon_t + \beta_1 \epsilon_{t-1}$
- MA: a model of order q is $X_t = \mu + \epsilon_t + \sum_{j=1}^{} \beta_j \epsilon_{t-j}$

Classical Models (ARMA & ARIMA)

• ARMA (p,q):

$$X_{t} = \mu + \epsilon_{t} + \sum_{i=1}^{p} \alpha_{i} X_{t-i} + \sum_{j=1}^{q} \beta_{j} \epsilon_{t-j}$$

With $\beta_0 = 1$

- ARIMA (p, d, q):
 - A process is ARIMA (p, q, d) if $\nabla^d X$ is ARMA (p,q).
 - Where $\nabla X_t = X_t X_{t-1}$ and $\nabla^2 X_t = \nabla(\nabla X_t)$

Prediction using ARIMA and MLP

ARIMA MLP

