Exercise 5. Answer Sheet

Student's Name:Tsuyoshi kumamoto Student's ID:s1250050

Problem 1. (15 points) Consider the graph below.

Draw a shortest path spanning tree with root at vertex s. Show the cost (weight) of paths to each vertex.

Put your answer here.

Problem 2. (15 points) Dijksta's algorithm cannot handle negative weights. Show an example and explain what happens.

Put your answer here.

If there is a negative weight, it will fall into a cycle. Example:

Problem 3. (20 points) Extend the pseudocode of the Bellman-Ford algorithm given at the lecture so it can detect negative cycles.

```
def Bellman-Ford-modified (G,s,w):

Init-SS (G,s)

for i=1 to |G.V|-1

for each edge (u,v) in G.E

RELAX (u,v,w)

Add your code here.

u := uv.source

v := uv.destination

if u.distance + uv.weight < v.distance:

error message
```

Problem 4. (50 points) Write a program implementing Dijksta's algorithm. Upload your source code. Show your input graph and the obtained shortest path spanning tree in the space below.

Put your answer here.

```
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

#define SIZE 1000
#define TRUE 1
#define FALSE 0

int D[SIZE][SIZE];
int COST[SIZE];
int V[SIZE];
```

```
int N;
char USE[SIZE];
int dijkstra(int s, int g){
 int min, target;
 int i,neear;
  COST[s] = 0;
 while(1){
   min = INT_MAX;
   for(i=0; i<N; i++){
      if(!USE[i] && min > COST[i]){
  min = COST[i];
  target = i;
    }
    if(target == g){
     return COST[g];
    for(neear = 0; neear<N; neear++){</pre>
      if(COST[neear]>D[target][neear] + COST[target]){
  COST[neear] = D[target][neear] + COST[target];
  V[neear] = target;
   USE[target] = TRUE;
int main(){
 int r;
  int a,b,l;
 int s,d;
  int i,j,node;
  for(i=0; i<SIZE; i++){</pre>
   COST[i] = INT_MAX;
   USE[i] = FALSE;
   V[i] = -1;
   for(j=0; j<SIZE; j++){</pre>
     D[i][j] = INT_MAX;
  printf("バーテックスの数を入力:input vertex number\n");
  scanf("%d",&N);
  printf("ルートの数の入力:Root number\n");
  scanf("%d",&r);
  for(i=0; i<r; i++){
   printf("道の両端のバーテックスとその道の距離を入力\n");
```

```
scanf("%d %d %d",&a,&b,&l);
D[a][b]=l;
}
scanf("%d %d",&s,&d);

printf("距離:%d\n",dijkstra(s,d));

node = d;
printf("%d",node);
while(1){
   node = V[node];
   printf(" -> %d",node);
   if(node == s){
        break;
   }
}
return 0;
}
```

The correction was not in time.