Домашнее задание 12

Цифры Вашего кода — a_0, \ldots, a_9 . В каждом из четырех блоков задач Вам нужно решить только один вариант, выбор которого определяется цифрами Вашего кода так, как указано.

- 1. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_5+a_8 . Для указанной ниже открытой области U найдите неотрицательную функцию $\rho_U: U \to \mathbb{R}_{\geqslant 0}$, такую, что $\rho_U(z)|dz|$ гиперболическая метрика в области U.
 - (0) $U = \{x + iy \mid x < 0\}.$
 - (1) $U = \mathbb{C} \setminus (-\infty, 0]$.
 - (2) $U = \{x + iy \mid -\pi < y < \pi\}.$
 - (3) $U = \{z \in \mathbb{C} \mid 1 < |z| < 2\}.$
 - (4) $U = \{z \in \mathbb{C} \mid 0 < |z| < 1\}.$
 - (5) $U = \{x + iy \mid -\pi < y < \pi, \ x < 0\}.$
 - (6) $U = \{x + iy \mid x, y > 0\}.$
 - (7) $U = \mathbb{C} \setminus [-1, 1]$.
 - (8) $U = \{x + iy \mid x^2 + y^2 > 1, y > 0\}.$
 - (9) $U = \mathbb{C} \setminus \{x + 2\pi i k \mid -\infty < x \le 0, \ k \in \mathbb{Z}\}.$
- **2.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_0+a_6 . Опишите (и нарисуйте) образ верхней полуплоскости относительно следующего отображения. (Точка z_0 произвольная точка в верхней полуплоскости, а интеграл вычисляется по отрезку, соединяющему точки z_0 и z. Подынтегральное выражение понимается как произвольная однозначная ветвь на \mathbb{H} .)
 - (0) $F(z) = \int_{z_0}^z \frac{dz}{\sqrt{z^2 1}}$.
 - (1) $F(z) = \int_{z_0}^z \frac{dz}{\sqrt{z(z^2-1)}}$.
 - (2) $F(z) = \int_{z_0}^z \frac{dz}{(z^2-1)^{2/3}}$.
 - (3) $F(z) = \int_{z_0}^z \frac{dz}{\sqrt{z(z-1)^3(z-2)}}$.
 - (4) $F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt[5]{z^2(z^2-1)^2(z^2-4)^2}}$.
 - (5) $F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt[3]{(z^2-1)^2(z^2-4)^2(z^2-9)^2}}$.

(6)
$$F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt{z(z-1)(z-2)}}$$
.

(7)
$$F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt{z}}$$
.

(8)
$$F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt[4]{z(z-1)^3}}$$
.

(9)
$$F(z) = \int_{z_0}^{z} \frac{dz}{\sqrt{z^4 - 3z^2 + 1}}$$
.

- **3.** Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа a_2+a_5 . Докажите, что следующие уравнения имеют бесконечно много решений в комплексных числах.
 - (0) $\sin(z + e^z) = 2$.
 - (1) $(z + e^z)^2 = 1$.
 - (2) $(\sin z + 3z^3 + 1)^4 = -1$.
 - (3) $(\sin z z)^3 + \sin z = z + 1$.
 - (4) $\cos(e^z \sin z) = 2$.
 - (5) $\exp(1/\sin z) + z = 1$.
 - (6) $tg(z^3) + z = 2$.
 - (7) $e^{1/(z^2-1)} = 2z 5$.
 - (8) $(\sin(\operatorname{tg}(z)) 2)(1 + 2z) = 3.$
 - $(9) \sin(\operatorname{ctg} z) = z + e.$
- 4. Вам нужно решить тот пункт, номер которого совпадает с последней цифрой числа $a_8 + a_9$. Пусть $U \subset \mathbb{C}$ односвязная открытая область, отличная от \mathbb{C} . Рассмотрим голоморфное отображение $f: U \to U$ и точку $a \in U$, такую, что f(a) = a. (Такая точка называется nenodeumenoù). Итперация $f^{\circ n}: U \to U$ определяется по индукции формулами $f^{\circ 1} = f$ и $f^{\circ n+1} = f \circ f^{\circ n}$. Докажите, что . . .
 - (0) Если $f'(a) = e^{2\pi i/5}$, то $f \circ f \circ f \circ f \circ f = id$.
 - (1) Если |f'(a)| < 1, то уравнение f' = 0 имеет решение в U.
 - (2) Если |f'(a)| < 1, то $f^{\circ 3}(b) = b$ влечет b = a.
- (3) Если f не является конформным автоморфизмом, то $f^{\circ n}(z) \to a$ равномерно на компактах.
 - (4) Если $f \in Aut(U)$ и $f^{\circ n}(b) = b$ для $b \neq a$, то $f^{\circ n} = id$.
- (5) Для всякой точки $b \in U$ последовательность $f^{\circ n}(b)$ лежит на некоторой гладкой кривой.
 - (6) Если $|f^{\circ n}(b) a| > n^{-1/2}$ при $b \neq a$, то |f'(a)| = 1.

- (7) Если a является единственной критической точкой для f в U, то существует конформный изоморфизм $h: U \to \mathbb{D}$, такой, что $h \circ f \circ h^{-1}(z) = z^k$ для некоторого натурального k > 1 и всех $z \in \mathbb{D}$.
- (8) Если f(b)=a для некоторого $b\in U\setminus\{a\},$ то f'=0 имеет решение в U.
 - **(9)** Если |f'(a)| = 1, то $f \in Aut(U)$.
- **5.** Бонусная задача. Эту задачу не надо записывать. Вы можете рассказать ее вашему семинаристу и получить за нее бонусные баллы. Решайте тот пункт, номер которого совпадает с последней цифрой числа $a_4 + a_8$.
 - (0) Упражнение 12.3 на стр. 246 основного учебника.
 - (1) Упражнение 12.4 на стр. 246 основного учебника.
 - (2) Упражнение 12.5 на стр. 246 основного учебника.
 - (3) Упражнение 12.6 на стр. 246 основного учебника.
 - (4) Упражнение 12.8 на стр. 247 основного учебника.
 - (5) Упражнение 12.9 на стр. 247 основного учебника.
- (6) Докажите, что любой конформный изоморфизм прямоугольника на прямоугольник, переводящий (при соответствии границ) все четыре вершины в вершины, продолжается до конформного автоморфизма плоскости \mathbb{C} .
- (7) Приведите пример голоморфного сюръективного отображения кругового кольца на круг.
- (8) Конечным произведением Бляшке называется отображение вида

$$B(z) = e^{i\theta} \left(\frac{z - a_1}{1 - \overline{a}_1 z} \right) \left(\frac{z - a_2}{1 - \overline{a}_2 z} \right) \dots \left(\frac{z - a_n}{1 - \overline{a}_n z} \right),$$

в котором $a_1, \ldots, a_n \in \mathbb{D}$, а $\theta \in \mathbb{R}$. Пусть отображение $f : \overline{\mathbb{D}} \to \overline{\mathbb{D}}$ непрерывно на $\overline{\mathbb{D}}$ и голоморфно в \mathbb{D} . Предположим, что |f(z)| = 1 для любого z, такого, что |z| = 1. Докажите, что в этом случае f совпадает с конечным произведением Бляшке.

(9) Приведите пример голоморфного сюръективного отображения круга на круговое кольцо.