Insper

Ciência dos Dados

Aula 08 Teoria da Probabilidade

Magalhães e Lima, Capítulo2

Objetivos de Aprendizagem

Os alunos devem ser capazes de:

 Traduzir informações descritas em problemas práticos fazendo uso da teoria da probabilidade

Denomina-se **fenômeno** (ou experimento) **aleatório** à situação ou acontecimento cujos resultados não podem ser previstos com certeza.

A teoria das probabilidades estabelece modelos matemáticos para os fenômenos aleatórios, tais como:

- ✓ Quais as chances das vendas crescerem se abaixarmos os preços?
- ✓ Qual a probabilidade do projeto terminar no prazo?
- ✓ Quais as chances de um novo investimento ser lucrativo?

Nestes casos, modelos podem ser estabelecidos para quantificar as incertezas das diversas ocorrências.

- \Rightarrow **Espaço amostral** (Ω ou S) conjunto de resultados possíveis de um experimento aleatório.
- **Evento** (A, B, ...) qualquer subconjunto do espaço amostral.

- **Exemplo:** Estudar o preço de uma determinada passagem de avião daqui uma semana. Qual a probabilidade do preço da passagem não aumentar?
- Espaço amostral = {aumento de preço, preço estável, diminuição no preço}

Evento = {preço estável, diminuição no preço}

Probabilidade: medida da incerteza da ocorrência de um evento

Ocorrência do evento é igualmente possível quanto impossível

Os principais métodos de estabelecer probabilidades aos eventos analisados são os métodos clássico, frequentista e subjetivo.

Insper

•
$$P(\Omega) = 1$$
 (evento certo)

A: evento qualquer pertencente a Ω
 0 ≤ P(A) ≤ 1

Evento Complementar

$$P(A^c) = 1 - P(A)$$

Insper

Definição: Interseção

{A ∩ B}: conjunto dos pontos do espaço amostral que pertencem, simultaneamente, aos eventos A e B.

Evento A A B

Evento B

A interseção ocorre se A e B ocorrem ao mesmo tempo.

União de 2 eventos

$$P(A \text{ ou } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(B) = P(A \cap B) + P(A^{c} \cap B)$$

$$P(A) = P(A \cap B) + P(A \cap B^{c})$$

Probabilidade Condicional

Insper

Probabilidade Condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Probabilidade Condicional

$$\mathbf{P}(\mathbf{B}|\mathbf{A}) = \frac{\mathbf{P}(\mathbf{A} \cap \mathbf{B})}{\mathbf{P}(\mathbf{A})}$$

Exemplo 1 - Visualizando eventos em tabela

Foram avaliados 960 dias de negociações na Bovespa entre 2010 e 2013 com retornos positivos ou negativos para as ações da Ambev e da Petrobras.

Mesmos resultados descritos anteriormente apresentam os seguintes resultados na tabela abaixo:

A m b o v	Petrobras		Total
Ambev	Sobe	Desce	Total
Sobe	291	220	511
Desce	194	255	449
Total	485	475	960

Exemplo 1

Distribuição conjunta: avaliação do comportamento conjunto de 2 variáveis.

Distribuição marginal: avaliação do comportamento individual de cada uma das ações.

Ambev	Petrobras		Total
Ambev	Sobe	Desce	Otal
Sobe	291	220	511
Desce	194	255	449
Total	485	475	960

Distribuição conjunta das ações

Distribuição marginal das ações Insper

Exemplo 1

Ambev	Petrobras		Total
	Sobe	Desce	I Ulai
Sobe	291	220	511
Desce	194	255	449
Total	485	475	960

Perguntas:

- Sorteado um dia ao acaso, qual a probabilidade da ação da Ambev ter subido?
- E da ação da Petrobras ter subido?
- Sorteado um dia ao acaso, qual a probabilidade das duas ações terem subido nesse dia?

Exemplo 1: Probabilidade marginal e conjunta

A: as ações da Ambev subiram

B: as ações da Petrobras subiram

•
$$P(A) = 511/960 = 0.532$$

•
$$P(B) = 485/960 = 0.505$$

•
$$P(A \in B) = P(A \cap B) =$$

= $291/960 = 0,303$

Exemplo 1

Probabilidades associadas ao problema do comportamento das ações

Ambev	Petrobras		Total
	Sobe	Desce	l Otal
Sobe	30,3%	22,9%	53,2%
Desce	20,2%	26,6%	46,8%
Total	50,5%	49,5%	100,0%

Em vermelho: probabilidades conjuntas

Em azul: probabilidades marginais

Exemplo 1

Ambev	Petro	Petrobras	
	Sobe	Desce	Total
Sobe	30,3%	22,9%	53,2%
Desce	20,2%	26,6%	46,8%
Total	50,5%	49,5%	100,0%

Perguntas:

- Qual é a probabilidade das ações de pelo menos uma das empresas subir?
- Sabendo que em um dia a ação da Petrobras subiu, qual a probabilidade da ação Ambev também ter subido?

Insper

Exemplo 1: União de 2 eventos

A: as ações da Ambev subiram

B: as ações da Petrobras subiram

P(A ou B)= P(A
$$\cup$$
 B) =
= P(A) + P(B) - P(A \cap B)=
= 0,532 + 0,505 - 0,303 = 73,4%

Exemplo 1:

Probabilidade Condicional

A: as ações da Ambev subiram

B: as ações da Petrobras subiram

$$P(A \mid B) = \frac{291}{485} = \frac{291/960}{485/960} = \frac{0,303}{0,505} = 0,60$$

Exemplo 1 – Árvore de probabilidades

Árvore de Probabilidades

Insper

Probabilidade Condicional

$$P(A|B) = \frac{P(A \cap B)}{P(B)} \rightarrow P(A \cap B) = P(B)P(A|B)$$

ou

$$P(B|A) = \frac{P(A \cap B)}{P(A)} \rightarrow P(A \cap B) = P(A)P(B|A)$$

Árvore de Probabilidades

Árvore de Probabilidades

$$P(B) = P(A \cap B) + P(A^{c} \cap B)$$

$$P(B) = 0.532 \times 0.570 + 0.468 \times 0.432 = 0.505$$

Árvore de Probabilidades

$$P(A \mid B) = \frac{0,532 \times 0,570}{0,532 \times 0,570 + 0,468 \times 0,432} = 0,60$$

Insper

Independência

Se o fato de ter conhecimento sobre um evento

A não altera a expectativa sobre a probabilidade de um evento B, então os eventos A e B são independentes.

Exemplo: Gostar de assistir filmes x Gênero.

A preferência por assistir filmes depende de gênero?

Frequências Relativas

	Gênero		
Assiste Filmes?	Masculino	Feminino	Total
Sim	42%	18%	60%
Não	28%	12%	40%
Total	70%	30%	100%

S: gosta de assistir filmes H: homem M: mulher

Entre os homens, qual a probabilidade de gostar de assistir filmes? E entre as mulheres?

$$P(S | H) = \frac{P(S \cap H)}{P(H)} = \frac{0.42}{0.70} = 0.60$$

$$P(S \mid M) = \frac{P(S \cap M)}{P(M)} = \frac{0.18}{0.30} = 0.60$$

Notamos que

$$P(S|H) = P(S) e P(S|M) = P(S)$$

Logo, a preferência por assistir filmes independe do gênero.

Eventos Independentes

Dois eventos A e B quaisquer contidos ao mesmo espaço amostral são independentes quando

$$P(A | B) = P(A)$$
 ou $P(B | A) = P(B)$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} \Rightarrow P(A \cap B) = P(A \mid B)P(B)$$

A e B independentes \Rightarrow P(A \cap B) = P(A)P(B)

Exemplo 2

Uma empresa vem sofrendo ataques de hackers. Para proteger seus sistemas, ela instala três dispositivos de proteção. Eles funcionam de modo independente e cada um deles é eficaz em 95% dos ataques. Qual a probabilidade de proteção se

- a) for necessário que todos funcionem para haver proteção?
- b) bastar que apenas um funcione para haver proteção?

Exemplo 2 (cont.)

 P_i : proteção do *i-ésimo* dispositivo, i = 1, 2, 3.

$$P(P_1) = P(P_2) = P(P_3) = 0.95$$

$$= P(P_1 \cap P_2 \cap P_3) =$$

$$= P(P_1) P(P_2) P(P_3) =$$

$$= 0.95 \times 0.95 \times 0.95 = 0.857$$

Insper (Instituto de Ensino e Pesquisa EXERCÍCIOS

A probabilidade de que o preço dos combustíveis aumente no mês vindouro é estimada em 0,4.

Se isto ocorrer, a probabilidade de que os preços dos transportes coletivos também aumentem é de 0,5; caso contrário, esta probabilidade é de 0,1.

Se naquele mês o preço das passagens de fato subirem, qual a probabilidade de os preços dos combustíveis não terem sofrido majoração?

Insper

Resposta: 0,231

Uma revendedora de veículos trabalha com duas marcas de automóveis: A e B. 70% dos que adquirem carros populares, escolhem a marca A. Dentre os que adquirem carros não populares, 80% compram A. Sabe-se que 60% das vendas são de carros populares.

- a. Qual é a probabilidade de um consumidor comprar um carro da marca A? 0,74
- b. Sabendo que uma pessoa comprou um carro da marca A, qual é a probabilidade de ter sido um carro popular? 0,568

- 80% dos funcionários de uma agência financeira são homens.
- Nos últimos 2 anos, dos funcionários promovidos, 89% eram homens. Das mulheres, 15% foram promovidas.
- Qual é a probabilidade de alguém ser promovido num prazo de 2 anos? $_{0,273}$
- Se uma pessoa é do sexo masculino, qual é a probabilidade de ser promovida? E se for do sexo feminino? 0,30 e 0,15
- Um comitê sindical levantou a questão de que estava havendo discriminação.
- A acusação procede?

- Analisando-se o histórico de acidentes provocados por clientes de uma seguradora, sabe-se que 10% dos contratos resultam em sinistros. A probabilidade de um homem causar um sinistro é 12%, enquanto que a probabilidade de uma mulher causar um sinistro é de 0,06.
- a. Sorteado um contrato ao acaso, qual é a probabilidade de ser de um homem? 0,667
- b. Sorteado um contrato no qual ocorreu um sinistro, qual é a probabilidade de ter sido causado por uma mulher? 0,20

39

- Uma pesquisa de assinantes de revista mostrou que 45,8% alugaram um carro nos últimos 12 meses por razões comerciais, 54% alugaram um carro durante os últimos 12 meses por razões pessoais e 30% alugaram um carro nos últimos 12 meses tanto por razões comerciais como por razões pessoais.
- a. Qual é a probabilidade de um assinante ter alugado um carro durante os últimos 12 meses por razões comerciais ou pessoais? 0,698
- b. Qual é a probabilidade de um assinante não ter alugado um carro durante os últimos 12 meses por razões comerciais e nem pessoais? 0,302

O gerente de um posto de gasolina sabe da sua experiência que 80% dos clientes usam cartão de crédito quando compram gasolina.

Admita independência entre clientes.

Qual é a probabilidade dos dois próximos clientes comprarem gasolina usando cartão de crédito?

E de pelo menos 1 usar cartão de crédito?

A = evento de que o 10. cliente use CC

B = evento de que o 20. cliente use CC

41 Insper

Considerando apenas os países que ganharam pelo menos uma medalha nos Jogos Olímpicos de 2012, as seguintes probabilidades foram observadas ao analisar, conjuntamente, o índice de desenvolvimento humano (IDH \geq 0,75 ou IDH < 0,75) de 2011 e o tipo de medalha olímpica (ouro, prata ou bronze).

- ✓ A probabilidade de um atleta, que pertence a um destes países, ganhar uma medalha de ouro é de 31,5%. P(O)=0,315
- ✓ Se um país tem IDH igual ou superior a 0,75, então a probabilidade de um atleta ganhar uma medalha de ouro é 35,0% e, na mesma condição, a de um atleta ganhar uma medalha de prata é de 32,9%. P(O|A)=0,35 e P(P|A)=0,329
- ✓ Entre países com IDH inferior a 0,75, a probabilidade de um atleta ganhar uma medalha de ouro é 23,3%. P(O|A^c)=0,233
- ✓ Por fim, se um atleta ganhou uma medalha de bronze, a probabilidade de que ele pertença a um país com IDH inferior a 0,75 é de 38,4%. P(Ac|B)=0,384

Considerando apenas os países que ganharam pelo menos uma medalha nos Jogos Olímpicos de 2012, responda:

- a) Qual a probabilidade de um atleta ser de um país com IDH igual ou superior a 0,75?
 P(A)=0,701
- **b)** Qual a probabilidade de uma medalha de prata pertencer a um atleta que representa um país com IDH igual ou superior a 0.75? **P(A|P)=0.722**
- c) Com base nos resultados mencionados que consideram apenas países que ganharam pelo menos uma medalha nas Olimpíadas de Londres, o IDH de um destes países pode influenciar o tipo de medalha que um atleta pode ganhar? Justifique sua resposta considerando informações numéricas. Como P(O) é diferente de P(O|A), já é o suficiente para mostrar que tipo de medalha é dependente do IDH de um país.

- Uma fábrica de parafusos tem exatamente três maquinas trabalhando na linha de produção, aqui, nomeadas de: M1, M2 e M3. A máquina M2 produz 28% do total de parafusos e a M3 é responsável por 39% da produção total. Para o setor de Controle de Qualidade, cada parafuso (produzido por uma das três maquinas) pode ser classificado como: perfeito, defeituoso recuperável ou defeituoso descartável.
- Do total de parafusos produzidos, 81% são classificados como perfeitos.
- Da produção total, 2% são produzidos pela máquina M2 e classificados como defeituosos descartáveis.
- Dos parafusos produzidos pela máquina M1, 75,8% são classificados como perfeitos. Da produção da maquina M2, 92,8% são classificados como perfeitos.
- Apenas considerando o que é produzido pela máquina M3, 17,9% são classificados como defeituosos recuperáveis. Entretanto, de todos os parafusos defeituosos recuperáveis, 41,7% são produzidos pela máquina M1.

Responda:

- a) Calcule a probabilidade de um parafuso ser produzido pela máquina M2 e classificado como perfeito. =0,260
- b) Considerando que um parafuso é classificado como perfeito,
 qual a probabilidade dele ter sido produzido pela máquina M1?
 =0,309
- c) Qual a probabilidade de um parafuso ter sido produzido pela máquina M3 dado que esse foi classificado como perfeito?
 =0,370
- d) Calcule a probabilidade de um parafuso ser classificado como defeituoso recuperável. =0,120

Resolução de Exercícios

?? minutos:

Fazer os exercícios...

Preparo para próxima aula

Os alunos devem se preparar com:

- 1. Leitura prévia necessária: Magalhães e Lima (7ª. Edição): Seção 3.1 e Definição 4.2 (pág. 110) e Definição 4.5 (pág. 121).
- 2. Python.