Segundo Parcial

- **1-** Describa los modelos clásico, de Einstein y de Debye, desarrollados para explicar el C_v , de un sólido tridimensional.
- **a-** Calcule la temperatura de Einstein θ_E , y muestre que el modelo de Einstein tiende asintóticamente al valor clásico para $T \gg \theta_E$, pero falla en la descripción a bajas temperaturas, calcule la dependencia del calor específico con la temperatura para $T \to 0$.
- **b-** Calcule la temperatura de Debye θ_D , y muestre que el modelo de Debye, tiende asintóticamente al valor clásico para $T\gg\theta_D$, y a bajas temperaturas concuerda con la dependencia en temperatura obtenida de manera experimental.
- 2-
- **a-** Describa las características de la radiación emitida por un cuerpo negro.
- b-

Si todas las personas de la tierra apuntaran a la Luna con un puntero láser al mismo tiempo, ¿cambiaría de color?

Datos:

Cte de Stefan-Boltzmann s =5,67x10⁻⁸ (Wm⁻²K⁻⁴).

Radio del Sol = $R=6,96x10^8$ m

Distancia entre la Tierra y el Sol, r=1,49x10¹¹ m

Temperatura del Sol= 5800K

Extraído del libro ¿Qué pasaría si...? Randall Munroe

- **3-** Sea un sistema de N partículas con spin=1 y masa m contenido en un recipiente de volumen $V=L^3$ a una temperatura T>0.
 - **a-** Escriba la expresión que representa al número de partículas $n(\varepsilon)$ con energía entre ε y $\varepsilon + d\varepsilon$.
 - **b-** Muestre que si la distancia entre partículas d, es muy grande comparada con la longitud de onda térmica de de Broglie λ_B , la distribución corresponde al límite clásico (distribución de Boltzmann).
 - **C-** Muestre que la condición anterior, $d \gg \lambda_B$ es equivalente a $z^{-1} \gg 1$, siendo z la fugacidad, calcule el potencial químico.
 - **d** Calcule la corrección a primer orden de la expresión de la energía clásica producto de los efectos cuánticos.
 - **e-** Compare los resultados anteriores con un conjunto de partículas con spin =1/2.
 - **f** Identifique en el siguiente gráfico, al sistema de bosones, fermiones y clásico, justifique.

- **4-** Un gas de N fermiones completamente degenerado con spin=1/2 se coloca en un recipiente cilíndrico de radio R y altura H. El gas se encuentra bajo los efectos de una aceleración gravitatoria constante *g*, que actúa en la dirección z.
 - **a-** Explique que representa la condición de gas de Fermi completamente degenerado.
 - **b-** Calcule el momento de Fermi p_F , la energía de Fermi ε_F y la temperatura de Fermi T_F .
 - C- Calcule la energía promedio del sistema.