Bayesian Inference: Principles and Practice

2. Bayesian Inference: Marginalisation

Mike Tipping

Marginalisation

- It would be incorrect to assume that since the *maximum a posteriori* (MAP) and penalised least-squares (PLS) estimates are equivalent, the Bayesian framework is simply a probabilistic re-interpretation of classical methods
- This is not the case!
- The distinguishing element of Bayesian methods is *marginalisation*, where we attempt to integrate out all 'nuisance' variables
- As we will now see, this is a powerful component of the Bayesian framework

Lecture 2: Overview

- Marginalisation: the Bayesian way to make predictions
- Approximate Bayesian prediction for our example model
- The marginal likelihood and Ockham's razor
- Bayesian model selection

Making Predictions

Consider, having 'learned' from the training values \mathbf{t} , how we make a prediction for data t_* given a new input datum x_* :

Framework	Learned Quantity	Prediction
Classical	W _{PLS}	$y(x_*; \mathbf{w}_{PLS})$
MAP Bayesian	$ ho(\mathbf{w} \mathbf{t}, \alpha, \sigma^2)$	$\rho(t_* \mathbf{w}_{MAP},\sigma^2)$
True Bayesian	$ ho(\mathbf{w} \mathbf{t}, \alpha, \sigma^2)$	$p(t_* \mathbf{t},\alpha,\sigma^2)$

■ Where, following the 'true Bayesian' way, we *marginalise* to obtain:

$$p(t_*|\mathbf{t},\alpha,\sigma^2) = \int p(t_*|\mathbf{w},\sigma^2) p(\mathbf{w}|\mathbf{t},\alpha,\sigma^2) d\mathbf{w}$$

The predictive distribution $p(t_*|\mathbf{t}, \alpha, \sigma^2)$ incorporates our uncertainty over the weights **w** by taking all likely values, having seen **t**, into account

The General Bayesian Predictive Framework

- In general, for any model, if we wish to predict t_* given some training data \mathbf{t} , what we really, really want is: $p(t_*|\mathbf{t})$
- So far, we've only placed a prior over the weights \mathbf{w} to be truly, truly, Bayesian, we should define $p(\alpha)$, a *hyperprior*, and $p(\sigma^2)$
- Then the full posterior over 'nuisance' variables becomes:

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t}) = \frac{p(\mathbf{t} | \mathbf{w}, \sigma^2) p(\mathbf{w} | \alpha) p(\alpha) p(\sigma^2)}{p(\mathbf{t})}$$

■ The highlighted normalising factor is called the *marginalised likelihood*:

$$p(\mathbf{t}) = \int p(\mathbf{t}|\mathbf{w}, \sigma^2) p(\mathbf{w}|\alpha) p(\alpha) p(\sigma^2) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

and is nearly always analytically intractable!

Nevertheless, as we'll soon see, p(t) is a very useful quantity

Practical Bayesian Prediction (1)

So, full Bayesian inference in our model would be:

$$p(t_*|\mathbf{t}) = \int p(t_*|\mathbf{w}, \sigma^2) \ p(\mathbf{w}, \alpha, \sigma^2|\mathbf{t}) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

- We can't compute either $p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t})$ or $p(t_* | \mathbf{t})$ analytically
- Procedure:
 - 1. Perform analytically computable integrations
 - 2. Approximate remainder, perhaps by:
 - Type-II maximum likelihood
 - Laplace's method
 - Variational techniques
 - Sampling

Practical Bayesian Prediction (2)

Ideally, we desire the full posterior $p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t})$, which can be written as:

$$p(\mathbf{w}, \alpha, \sigma^2 | \mathbf{t}) \equiv p(\mathbf{w} | \mathbf{t}, \alpha, \sigma^2) p(\alpha, \sigma^2 | \mathbf{t})$$

- First term is our earlier weight posterior: $p(\mathbf{w}|\mathbf{t}, \alpha, \sigma^2) \sim N(\mu, \Sigma)$
- Second term $p(\alpha, \sigma^2 | \mathbf{t})$ we will approximate by a δ -function at its mode. *i.e.* we find "most probable" values α_{MP} and σ^2_{MP} which maximise:

$$p(\alpha, \sigma^2 | \mathbf{t}) = \frac{p(\mathbf{t} | \alpha, \sigma^2) \ p(\alpha) \ p(\sigma^2)}{p(\mathbf{t})}$$

If we (sensibly) assume flat, *uninformative*, priors over $\log \alpha$ and $\log \sigma$, then we equivalently maximise $p(\mathbf{t}|\alpha, \sigma^2)$ — "Type-II maximum likelihood"

Practical Bayesian Prediction (3)

■ Having found α_{MP} and σ_{MP}^2 , our approximation to the predictive distribution is:

$$\int p(t_*|\mathbf{t}) = \int p(t_*|\mathbf{w}, \sigma^2) \ p(\mathbf{w}|\mathbf{t}, \alpha, \sigma^2) \ p(\alpha, \sigma^2|\mathbf{t}) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

$$\approx \int p(t_*|\mathbf{w}, \sigma^2) \ p(\mathbf{w}|\mathbf{t}, \alpha, \sigma^2) \ \delta(\alpha_{\mathsf{MP}}, \sigma^2_{\mathsf{MP}}) \ d\mathbf{w} \ d\alpha \ d\sigma^2$$

$$= \int p(t_*|\mathbf{w}, \sigma^2_{\mathsf{MP}}) \ p(\mathbf{w}|\mathbf{t}, \alpha_{\mathsf{MP}}, \sigma^2_{\mathsf{MP}}) \ d\mathbf{w}$$

Note that we don't require that $p(\alpha, \sigma^2 | \mathbf{t}) \approx \delta(\alpha_{\text{MP}}, \sigma_{\text{MP}}^2)$ but:

True $p(t_*|\mathbf{t}) = 0.727$ Approximation $p(t_*|\alpha_{\mathsf{MP}}) = 0.725$

Practical Bayesian Prediction (4)

Recall that $p(\mathbf{w}|\mathbf{t}, \alpha_{\text{MP}}, \sigma_{\text{MP}}^2) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, from which the approximate predictive distribution is:

$$p(t_*|\mathbf{t}) \approx \int p(t_*|\mathbf{w}, \sigma_{\mathsf{MP}}^2) \ p(\mathbf{w}|\mathbf{t}, \alpha_{\mathsf{MP}}, \sigma_{\mathsf{MP}}^2) \ d\mathbf{w} = N(\mu_*, \sigma_*^2)$$

with:

$$\mu_* = y(x_*; \mu)$$

$$\sigma_*^2 = \sigma_{\mathsf{MP}}^2 + \mathbf{f}^\mathsf{T} \Sigma \mathbf{f}$$

where $\mathbf{f} = [\phi_1(x_*), \dots, \phi_M(x_*)]^T$

- Intuitively:
 - I the mean predictor μ_* is the model function evaluated with the posterior mean weights (the same as the MAP prediction)
 - I the predictive variance σ_*^2 is the sum of variances associated with both the noise process and the uncertainty of the weight estimates

Marginal Likelihood

- To find α_{MP} and σ_{MP}^2 we maximise the "marginal likelihood" $p(\mathbf{t}|\alpha, \sigma^2)$
- This is given by:

$$p(\mathbf{t}|\alpha, \sigma^2) = \int p(\mathbf{t}|\mathbf{w}, \sigma^2) \ p(\mathbf{w}|\alpha) \ d\mathbf{w}$$

$$= (2\pi)^{-N/2} |\sigma^2\mathbf{I} + \alpha^{-1} \Phi \Phi^{\mathsf{T}}|^{-1/2} \exp\left\{-\frac{1}{2} \mathbf{t}^{\mathsf{T}} (\sigma^2\mathbf{I} + \alpha^{-1} \Phi \Phi^{\mathsf{T}})^{-1} \mathbf{t}\right\}$$

- This is a Gaussian distribution over the single N-dimensional dataset vector t
- Note: we can use all the data to directly determine $\alpha_{\rm MP}$ and $\sigma_{\rm MP}^2$ we don't need to reserve a separate data set to validate their values

The Bottom Line

Using only 15 examples and no validation data, the Bayesian approach for setting α finds a closer model to the 'truth':

	Classical	Bayesian	Truth
Error	2.33	1.66	1.49

■ The marginal likelihood criterion successfully rejects models that are either too simple or too complex — this is "Ockham's razor", a popular Bayesian concept

Ockham's Razor

In the fourteenth century, William of Ockham proposed:

"Pluralitas non est ponenda sine neccesitate"

which literally translates as "entities should not be multiplied unnecessarily"

- In the context of machine learning, this translates as "models should be no more complex than is sufficient to explain the data"
- The Bayesian procedure is effectively implementing "Ockham's Razor" by assigning lower probability *both* to models that are too simple *and* too complex
- Why is an intermediate value of α preferred?

(increasing complexity →) Space of all data sets t rom a **20** muibeM Noisy Sine Data n High a Probability $p(t \mid \alpha)$ Marginal Model

Model Selection

- Our models are also conditioned on other variables we have so far ignored: the choice of basis set Φ and, for our Gaussian RBF, the width parameter r
- We should define priors $P(\Phi)$ and p(r), and integrate out those variables when making predictions
- More practically, we could use $p(\mathbf{t}|\Phi,r)$ as a criterion for model selection
- For this model, it is feasible to integrate out α and σ^2 numerically
- We compute the integral $p(\mathbf{t}|\Phi,r)=\int p(\mathbf{t}|\alpha,\sigma^2,\Phi,r)\;p(\alpha)\;p(\sigma^2)\;d\alpha\;d\sigma^2$ by sampling log-uniformly from $\alpha\in[10^{-12},10^{12}]$ and $\sigma\in[10^{-4},10^0]$

Model Selection via $p(\mathbf{t}|\Phi, r)$

Correlation between $p(t|\Phi, r)$ and test error

The Story So Far...

- Marginalised likelihoods within the Bayesian framework allow us to:
 - estimate hyperparameters
 - I choose between models

such that we can determine 'good' models without needing validation data

- Additional benefits of the Bayesian framework are:
 - It is straightforward to estimate the noise variance
 - We can sample from both prior and posterior models of the data
 - I The exact parameterisation of the model is irrelevant
 - Lecture 3: incorporation of other priors of interest (*i.e.* sparsity) and functional optimisation of hyperparameters