Elastic_net_model

```
In [35]: import pandas as pd
          import warnings
          warnings.filterwarnings("ignore")
In [36]: data=pd.read csv("/home/placement/Desktop/ramaraju/fiat500.csv")
          data=data.drop(['ID','lat','lon'],axis=1)
In [37]:
In [38]: data
Out[38]:
                 model
                       engine_power age_in_days
                                                       previous_owners price
                                 51
                                                 25000
                                                                       8900
              0
                 lounge
                                            882
                                                                    1
                                 51
                                           1186
                                                 32500
                                                                       8800
              1
                   pop
              2
                                 74
                                                142228
                                                                       4200
                  sport
                                           4658
                                 51
                                                160000
                                                                       6000
                 lounge
                                           2739
                                 73
                                           3074
                                                106880
                                                                       5700
                   pop
           1533
                  sport
                                 51
                                           3712 115280
                                                                       5200
           1534
                 lounge
                                 74
                                           3835
                                                112000
                                                                       4600
           1535
                                 51
                                                                    1 7500
                   pop
                                           2223
                                                 60457
           1536
                 lounge
                                 51
                                           2557
                                                 80750
                                                                       5990
           1537
                                 51
                                                                    1 7900
                                           1766
                                                 54276
                   pop
```

Out[39]:

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1538 rows × 6 columns

In [41]: data1

Out[41]:

	model	engine_power	age_in_days	km	previous_owners	price
0	1	51	882	25000	1	8900
1	2	51	1186	32500	1	8800
2	3	74	4658	142228	1	4200
3	1	51	2739	160000	1	6000
4	2	73	3074	106880	1	5700
1533	3	51	3712	115280	1	5200
1534	1	74	3835	112000	1	4600
1535	2	51	2223	60457	1	7500
1536	1	51	2557	80750	1	5990
1537	2	51	1766	54276	1	7900

1389 rows × 6 columns

```
In [42]: y=datal['price']
x=datal.drop('price',axis=1)
```

In [43]: x

Out[43]:

	model	engine_power	age_in_days	km	previous_owners
0	1	51	882	25000	1
1	2	51	1186	32500	1
2	3	74	4658	142228	1
3	1	51	2739	160000	1
4	2	73	3074	106880	1
1533	3	51	3712	115280	1
1534	1	74	3835	112000	1
1535	2	51	2223	60457	1
1536	1	51	2557	80750	1
1537	2	51	1766	54276	1

1389 rows × 5 columns

```
In [44]: y
Out[44]: 0
                 8900
                 8800
         2
                 4200
         3
                 6000
         4
                 5700
                  . . .
         1533
                 5200
         1534
                 4600
         1535
                 7500
         1536
                 5990
         1537
                 7900
         Name: price, Length: 1389, dtype: int64
```

```
In [45]: from sklearn.model selection import train test split
         x train,x test,y train,y test=train test split(x,y,test size=0.33,random state=42)
In [46]: x train.shape
Out[46]: (930, 5)
In [47]: x test.shape
Out[47]: (459, 5)
In [48]: y train.shape
Out[48]: (930,)
In [49]: y_test.shape
Out[49]: (459,)
In [50]: x_train.head()
Out[50]:
              model engine_power age_in_days
                                             km previous_owners
          915
                  1
                             51
                                       397 17081
                                                            1
           12
                  1
                             51
                                                            1
                                       456
                                           18450
           638
                  1
                             51
                                       397 21276
                                                            1
           190
                  1
                             51
                                           19000
                                       821
                                                            1
           701
                  1
                             51
                                       701 27100
                                                            1
```

```
In [51]: x_test.head()
```

Out[51]:

		model	engine_power	age_in_days	km	previous_owners
(625	1	51	3347	148000	1
:	187	1	51	4322	117000	1
2	279	2	51	4322	120000	1
-	734	2	51	974	12500	1
;	315	1	51	1096	37000	1

```
In [52]: y_train.head()
Out[52]: 915
                10900
                 9700
         12
         638
                10850
         190
                 9990
         701
                10300
         Name: price, dtype: int64
In [53]: y_test.head()
Out[53]: 625
                 5400
         187
                 5399
         279
                 4900
         734
                10500
         315
                 9300
         Name: price, dtype: int64
```

```
In [54]: from sklearn.linear model import ElasticNet
         from sklearn.model selection import GridSearchCV
         elastic = ElasticNet()
         parameters = {'alpha': [1e-15, 1e-10, 1e-8, 1e-4, 1e-3,1e-2, 1, 5, 10, 20]}
         elastic regressor = GridSearchCV(elastic, parameters)
         elastic regressor.fit(x_train, y_train)
Out[54]:
                GridSearchCV
          ▶ estimator: ElasticNet
                ▶ ElasticNet
In [55]: elastic regressor.best params
Out[55]: {'alpha': 1e-15}
In [56]: elastic=ElasticNet(alpha=1e-15)
         elastic.fit(x train,y train)
         y pred elastic=elastic.predict(x test)
In [57]: from sklearn.metrics import mean squared error
         Elasticnet Error=mean squared error(y pred elastic,y test)
         Elasticnet Error
Out[57]: 522589.1692194676
In [58]: from sklearn.metrics import r2 score
         r2 score(y test,y pred elastic)
Out[58]: 0.8582526737355334
```

```
In [59]: Results=pd.DataFrame(columns=['Actual','predicted'])
    Results['Actual']=y_test
    Results['predicted']=y_pred_elastic
    Results=Results.reset_index()
    Results['ID']=Results.index
    Results.head(10)
```

Out[59]:

	index	Actual	predicted	ID
0	625	5400	5478.082470	0
1	187	5399	5128.749813	1
2	279	4900	4939.964669	2
3	734	10500	9770.938056	3
4	315	9300	9383.407921	4
5	652	10850	10319.804281	5
6	1472	9500	9912.760894	6
7	619	7999	8526.411840	7
8	992	6300	5910.610353	8
9	1154	10000	10119.997990	9

```
In [60]: import seaborn as sns
import matplotlib.pyplot as plt
sns.lineplot(x='ID',y='Actual',data=Results.head(50))
sns.lineplot(x='ID',y='predicted',data=Results.head(50))
plt.plot()
```

Out[60]: []

In []:	