

Institut für Algebra und Geometrie Prof. Dr. Wilderich Tuschmann Dr. Rafael Dahmen Dr. Elisa Hartmann Martin Günther, M. Sc.

Lineare Algebra I

Winter-Semester 2020/2021

Übungsblatt 7

21.12.20

Aufgabe 1 (ISBN-Nummern)

(10 Punkte)

Bücher wurden bis zum Jahr 2006 mit einer zehnstelligen ISBN-Nummer gekennzeichnet:

$$z_1-z_2$$
 z_3 z_4-z_5 z_6 z_7 z_8 z_9-z_{10} .

Dabei kennzeichnet die erste Ziffer z_1 das Land, die Ziffern z_2, z_3, z_4 den Verlag, die Ziffern z_5, \ldots, z_9 das Buch, und die letzte Ziffer z_{10} ist eine Prüfziffer, für die auch die römische Zahl X (für 10) stehen kann. Die Prüfziffer wird dabei so berechnet, dass der Term

$$1z_1 + 2z_2 + 3z_3 + \ldots + 9z_9 + 10z_{10}$$

ein Vielfaches von 11 ist.

- a) Bei der Eingabe der ISBN-Nummern werden häufig folgende Fehler gemacht:
 - i) Genau eine der Ziffern wird falsch eingegeben, oder
 - ii) Zwei beliebige der Ziffern werden vertauscht.

Beweisen Sie: Wenn man einen dieser Fehler bei einer gültigen ISBN-Nummer macht, erhält man eine ISBN-Nummer mit falscher Prüfziffer.

b) Sie wollen ein Buch mit der ISBN-Nummer 0-465-02?85-0 bestellen. Eine Ziffer (?) können Sie nicht erkennen. Errechnen Sie diese Ziffer.

Hinweis: Vielleicht brauchen Sie dabei: $7 \cdot 8 \equiv 1 \pmod{11}$.

c) Bei der neueren dreizehnstelligen ISBN-Nummer wird die Prüfziffer z_{13} so berechnet, dass der Term

$$z_1 + 3z_2 + z_3 + 3z_4 + \cdots + z_{11} + 3z_{12} + z_{13}$$

durch 10 teilbar ist.

Beweisen Sie: Die Vertauschung zweier benachbarter Ziffern z_i, z_{i+1} führt genau dann zu einer falschen Prüfziffer, falls die Differenz $z_i - z_{i+1}$ nicht durch 5 teilbar ist.

Bemerkung: Die dreizehnstellige IBAN hat dieses schwächere Prüfverfahren, da sie mit den EAN-Nummern übereinstimmt, die weltweit für Barcodes verwendet werden. Beim Einlesen eines Barcodes ist ein Vertauschen von Ziffern sowieso sehr unwahrscheinlich.

Aufgabe 2 (10 Punkte)

a) Gemäß Beispiel 4.1.3.(i) ist der Körper $\mathbb{Q}(\sqrt{2})$ aus Aufgabe 3 von Blatt 5 ein Vektorraum über \mathbb{Q} .

Beweisen Sie, dass die folgende Abbildung linear ist und bestimmen Sie eine Basis ihres Kerns:

$$\varphi_1 \colon \mathbb{Q}^2 \to \mathbb{Q}(\sqrt{2})$$

$$\binom{a}{b} \mapsto \sqrt{2} \, a + \frac{b}{\sqrt{2}}$$

b) Zeigen Sie, dass die folgende Abbildung linear ist und bestimmen Sie eine Basis ihres Kerns:

$$\varphi_2 \colon \mathbb{F}_5^3 \to \mathbb{F}_5^3$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \mapsto \begin{pmatrix} a+2b+2c \\ 2a+3b+c \\ a+c \end{pmatrix}$$

Aufgabe 3 (Körpererweiterungen als Vektorräume)

(10 Punkte)

- a) Beweisen Sie, dass \mathbb{F}_4 genau einen Unterkorper $K \subset \mathbb{F}_4$ mit $K \neq \mathbb{F}_4$ besitzt und dass dieser isomorph zu \mathbb{F}_2 ist.
- b) Gemäß Beispiel 4.1.3.(i) ist \mathbb{F}_4 ist somit ein \mathbb{F}_2 -Vektorraum. Bestimmen Sie eine Basis dieses Vektorraums.
- c) Bestimmen Sie einen \mathbb{F}_2 -Vektorraumisomorphismus $(\mathbb{F}_2)^4 \to (\mathbb{F}_4)^2$.

Aufgabe 4 (Komplexe Vektorräume)

(10 Punkte)

Es sei $(V, +, \cdot)$ ein *n*-dimensionaler \mathbb{C} -Vektorraum mit $n \in \mathbb{N}$. Beweisen Sie die folgenden Aussagen:

- a) Durch Einschränkung der Skalarmultiplikation $\cdot: \mathbb{C} \times V \to V$ auf $\cdot|_{\mathbb{R} \times V} : \mathbb{R} \times V \to V$ erhält man daraus einen \mathbb{R} -Vektorraum $(V, +, \cdot|_{\mathbb{R} \times V})$.
- b) Die Dimension von V als \mathbb{R} -Vektorraum ist 2n.
- c) Die Abbildung $J\colon V\to V, v\mapsto i\cdot v$ ist $\mathbb R$ -linear und bijektiv. Bestimmen Sie die inverse Abbildung.
- d) Es sei $\varphi \colon V \to V$ eine \mathbb{R} -lineare Abbildung. Zeigen Sie, dass φ genau dann \mathbb{C} -linear ist, wenn $\varphi \circ J = J \circ \varphi$ gilt.

Aufgabe 5 (Bonusaufgabe zu Weihnachten) (10 Punkte)

Diese Aufgabe ist als Bonusaufgabe gedacht. Zur Bearbeitung haben Sie Zeit bis zum 18.01.21.

Wir betrachten die Matrix

Bestimmen Sie die multiplikative Inverse A^{-1} von A. Was soll A^{-1} , als Pixelgrafik, darstellen?

Hinweis: Sie können die Inverse von A bestimmen, indem Sie den Gauß-Algorithmus auf die Blockmatrix $(A|\mathbb{1}_{12})$ anwenden. Die erweiterte Zeilenstufenform davon ist dann $(\mathbb{1}_{12}|A^{-1})$. Sie brauchen nicht zu begründen, warum das funktioniert.

Denken Sie daran, im Körper \mathbb{F}_2 und nicht in \mathbb{R} zu rechnen.

Abgabe bis Montag, den 11.01.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.