Claims

1. Process for the production of C_1 - C_{15} -epothilone fragments of general formula I,

in which

 $R^{1a},\,R^{1b}$ are the same or different and mean hydrogen, $C_1\text{-}C_{10}\text{-}alkyl,$ aryl,

 C_7 - C_{20} -aralkyl, or together mean a - $(CH_2)_m$ group with m=2,3,4 or 5,

R^{2a}, R^{2b} are the same or different and mean hydrogen, C₁-C₁₀-alkyl,

 C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl, aryl, C_7 - C_{20} -aralkyl or together mean a -(CH₂)_n group with n = 2, 3, 4 or 5,

R³ means hydrogen, C₁-C₁₀-alkyl, aryl, C₇-C₂₀-aralkyl,

R4a, R4b are the same or different and mean hydrogen, C1-C10-alkyl, aryl,

 C_7 - C_{20} -aralkyl or together mean a -(CH_2)_p group with p = 2, 3, 4 or 5,

R⁵ means hydrogen, C₁-C₁₀-alkyl, aryl, C₇-C₂₀-aralkyl,

- R⁶, R⁷ each mean a hydrogen atom, together an additional bond or together an oxygen atom,
- G means a group X=CR8-, a bicyclic or tricyclic aryl radical,
- means hydrogen, halogen, C₁-C₂₀-alkyl, aryl, C₇-C₂₀-aralkyl, which all can be substituted,
- means an oxygen atom, two alkoxy groups OR^{23} , a C_2 - C_{10} -alkylene- α , ω -dioxy group, which can be straight-chain or branched, H/OR 9 or a grouping $CR^{10}R^{11}$, whereby
 - R²³ stands for a C₁-C₂₀-alkyl radical,
 - R⁹ stands for hydrogen or a protective group PG^x,
 - R¹⁰, R¹¹ are the same or different and stand for hydrogen, a C₁-C₂₀-alkyl, aryl, or C₇-C₂₀-aralkyl radical, or R¹⁰ and R¹¹ together with the methylene carbon atom together stand for a 5- to 7-membered carbocyclic ring,
- R¹³ means CH₂OR^{13a}, CH₂-Hal, CHO, CO₂R^{13b}, or COHal,
- R¹⁴ means hydrogen, OR^{14a}, Hal, or OSO₂R^{14b},
- R^{13a} , R^{14a} mean hydrogen, SO_2 -alkyl, SO_2 -aryl, SO_2 -aralkyl or together a -(CH₂)_o group or together a $CR^{15a}R^{15b}$ group,
- R^{13b}, R^{14b} mean hydrogen, C₁-C₂₀-alkyl, aryl, C₁-C₂₀-aralkyl,
- R^{15a}, R^{15b} are the same or different and mean hydrogen, C₁-C₁₀-alkyl, aryl,

C7-C20-aralkyl, or together a -(CH2)q group,

- o means 2 to 4,
- q means 3 to 6,
- R²⁰ means OPG³, NHR²⁹, or N₃,
- Z means an oxygen atom or H/OR¹², whereby

 R^{12} is hydrogen or a protective group PG^{Z} including all stereoisomers as well as mixtures thereof, and

free hydroxyl groups in R^{13} and R^{14} can be etherified or esterified, free carbonyl groups in Z and R^{13} can be ketalized, converted into an enol ether or reduced, and free acid groups in R^{13} und R^{14} can be converted into their salts with bases, characterized in that

a C1-C6 fragment (epothilone numbering system) of general formula A

in which

 $R^{1a'}$, $R^{1b'}$, $R^{2a'}$, $R^{2b'}$, $R^{13'}$ and $R^{14'}$ have the meanings already mentioned for R^{1a} , R^{1b} , R^{2a} , R^{2b} , R^{13} and R^{14} , including all stereoisomers as well as mixtures thereof, and free hydroxyl groups in R^{13} und R^{14} can be etherified or esterified, free

carbonyl groups in A und R¹³ can be ketalized, converted into an enol ether or reduced, and free acid groups in A can be converted into their salts with bases, is reacted with a C7-C12 fragment (epothilone numbering system) of general formula

in which

9

 $R^{3a'}$, $R^{4a'}$, $R^{4b'}$ and $R^{5'}$ have the meanings already mentioned for R^{3a} , R^4 and R^5 , and

- V means an oxygen atom, two alkoxy groups OR^{17} , a C_2 - C_{10} -alkylene- α , ω -dioxy group, which can be straight-chain or branched, or H/OR¹⁶,
- W means an oxygen atom, two alkoxy groups OR^{19} , a C_2 - C_{10} -alkylene- α , ω -dioxy group, which can be straight-chain or branched, or H/OR¹⁸,
- R^{16} , R^{18} , independently of one another, mean hydrogen or a protective group PG^1 ,

 R^{17} , R^{19} , independently of one another, mean C_1 - C_{20} -alkyl, to form a partial fragment of general formula AB

in which

R1a', R1b', R2a', R2b', R3', R4a', R4b', R5, R13', R14', V and Z have the alreadymentioned meanings, and

PG¹⁴ represents a hydrogen atom or a protective group PG, and this partial fragment of general formula AB is reacted with a C13-C15 fragment (epothilone numbering system) of general formula C

in which

G' has the meaning already mentioned in general formula I for G, and

R7' means a hydrogen atom,

 R^{20} ' means halogen, N_3 , NHR^{29} , a hydroxy group, a protected hydroxy group $O-PG^3$, a protected amino group $NR^{29}PG^3$, a C_1-C_{10} -alkylsulfonyloxy

group, which optionally can be perfluorinated, a benzoyloxy group that is optionally substituted by C₁-C₄-alkyl, nitro, chlorine or bromine, an $NR^{29}SO_2CH_3 \ group, \ an \ NR^{29}C(=O)CH_3 \ group, \ or \ a \ CH_2-C(=O)-CH_3 \ group,$ group,

R21 means a hydroxy group, halogen, a protected hydroxy group OPG³, a phosphonium halide radical PPh₃⁺Hal⁻ (Ph = Phenyl; Hal = F, Cl, Br, I), a phosphonate radical P(O)(OQ)₂ (Q = C_1 - C_{10} -alkyl or phenyl) or a phosphine oxide radical P(O)Ph₂ (Ph = Phenyl),

 R^{29} means hydrogen or C_1 - C_6 -alkyl,

to form a compound of general formula ABC (= compound of general formula I)

in which

R¹a', R¹b', R²a', R²b', R³', R⁴a', R⁴b', R⁵', R⁶, R⁷, R¹3, R¹4, G and Z have the already mentioned meanings, and

 PG^{14} represents a hydrogen atom or a protective group PG.

- 2. Process according to claim 1, wherein a compound of general formula I, in which
 - R^{1a} , R^{1b} are the same and mean C_1 - C_6 -alkyl, or together mean a - $(CH_2)_m$ group with m = 2, 3 or 4,
 - R^{2a} , R^{2b} are different and mean hydrogen, C_1 - C_6 -alkyl, C_2 - C_{10} -alkenyl, C_2 - C_{10} -alkinyl or C_7 - C_{20} -aralkyl,
 - R⁵ means hydrogen, C₁-C₆-alkyl,
 - R8 means hydrogen, halogen, C1-C6-alkyl,
 - R^{15a} , R^{15b} are the same or different and mean hydrogen, C_1 - C_6 -alkyl, aryl, C_7 - C_{20} -aralkyl, or together mean a - $(CH_2)_q$ group,
 - q means 3 to 6,

is produced.

- 3. Process according to claim 1, wherein a compound of general formula I, in which
 - R^{1a} , R^{1b} are the same and mean C_1 - C_3 -alkyl, or together mean a - $(CH_2)_m$ group with m = 2, 3 or 4,
 - R^{2a} means hydrogen,
 - R2b means C1-C5-alkyl, C2-C6-alkenyl, or C2-C6-alkinyl,
 - R⁵ means hydrogen, or C₁-C₃-alkyl,
 - R^6 , R^7 together mean an additional bond,
 - G means a group X=CR8-, or a bicyclic aryl radical,

R8 means hydrogen, fluorine, chlorine, or C₁-C₃-alkyl,

X means oxygen or a group CR¹⁰R¹¹,

R¹⁰ means hydrogen,

R¹¹ means aryl,

R¹³ means CH₂OR^{13a} or CO₂R^{13b},

R¹⁴ means OR^{14a},

R13a, R14a together mean a CR15aR15b group,

R^{13b} means hydrogen or C₁-C₆-alkyl,

 R^{15a} , R^{15b} are the same and mean C_1 - C_3 -alkyl, or together mean a -(CH₂)_q group, or

R^{15a}, R^{15b} are different and mean hydrogen or aryl,

q means 4 or 5,

Z means oxygen,

is produced.

4. Process for the production of epothilone derivatives of general formula II

in which substituents R^{1a}, R^{1b}, R^{2a}, R^{2b}, R³, R^{4a}, R^{4b}, R⁵, R⁶, R⁷, G, OPG² and Z have the meanings that are indicated in general formula I, and

A-K means a group -O-C(=O), -OCH₂-, -CH₂C(=O)-, -NR²⁹-C(=O)-, or -NR²⁹-SO₂-, wherein an initial epothilone product of general formula I that is obtained according to one of the preceding claims 1 to 3 is cyclized.

5. Compounds of general formula AB

in which R^{1a'}, R^{1b'}, R^{2a'}, R^{2b'}, R^{3'}, R^{4a'}, R^{4b'}, R⁵, R^{13'}, R^{14'}, V and Z have the already mentioned meanings, and PG¹⁴ represents a hydrogen atom or a protective group PG.