425 Applied 3D Algebra

HW₅

Joey Domino

1. RIGHT HAND ORTHO CAMERA

Camera position and orientation:

Camera Orthographic Projection:

Left = -500 Near clip Plane: 1 Right = 500 Far clip Plane : 8000 Top = 264 NDC [-1, 1] on all 3 axes

Bottom = -264

Screen details

(0,0) at top left corner. 2048 x 1080 pixels Z-depth range [0,1]

A.

View-to-World Matrix

1. We need to find the fwd and side vectors

Normalize "up" vector

'up' is already normalized

$$V^{\prime}up' = (0, 1, 0)$$

$$Get fwd = -(Tpos - Cpos) = -dir$$

Fwd is negated before we are inverting our z axis due to our right handedness.

fwd = -(-558, -434, 372) fwd = (558, 434, -372) Normalize the fwd vector ||vfwd|| = sqrt(558^2+434^2+-372^2) = sqrt(638104) ||vfwd|| = 798.8141211 V^fwd = (558, 434, -372) /798.8141211 V^fwd = (0.698535, 0.543305, -0.46569) side = 'up' x v^fwd (0, 1, 0) (0.698535, 0.543305, -0.46569)

Side = (-0.46569, 0, -0.698535)

Now normalize our new side

 $||side|| = sqrt(-0.46569^2 + 0 + -0.698535^2) = 0.83953$

V^side = (-0.46569, 0, -0.698535) / 0.83953

V^side = (-0.5547, 0, -0.83205)

 $V^up = v^fwd \times v^side$

(0.698535, 0.543305, -0.46569) (0.543305*-0.83205 - -0.46569*0,

(-0.5547, 0, -0.83205) -(0.698535*-0.83205 - -0.46569*-0.5547),

0.698535*0 - 0.543305*-0.5547

V^{up} = (-0.452057, 0.83953, 0.30137)

В.

Find C World-to-view

Cworld-to-view = Cview-to-world^-1 =
$$\begin{pmatrix} R^t & -(R^t^*Cpos) \\ 0 & 1 \end{pmatrix}$$

 $-(R^*Cpos) = (0.5547, -12.980446, 3.492675)$

Cworld-to-view

			_
-0.5547	0	-0.83205	0.5547
-0.452057	0.83953	0.30137	-12.980446
0.698535	0.543305	-0.46569	3.492675
0	0	0	1

C.

Compute Orthographic Projection Matrix
This is when we start using the other fields

Left = -500 Top = 264 Near clip Plane: 1 Right = 500 Bottom = -264 Far clip Plane : 8000

NDC [-1, 1] on all 3 axes

Ortho matrix xyz

$$0x = 2/(-500 - 500)$$
 $y = 2/(264 - -264)$ $z = 2/(1 - 8000)$
 $x = 0.002$ $y = 0.0038$ $z = 0$

Ortho Matrix translation xyz

X = -(Right-Left/Right + Left)

X = 0

Y = -(Top-Bottom/Top+Bottom) <- divide by 0. It's 0.

Y = 0

Z = -(Near - Far plane/Near + Far plane)

Z = -(-0.99975)

Mortho_

D.

NDC to screen matrix

3x3 xyz

X = Width/2 = 2048/2 Y = -(Height/2) = -1080/2 Z = z-depth range/2 X = 1024 Y = -540 Z = 0.5

NDC-to-Screen

P1: (523, -637, 302) P2: (530, -642, 283) P3: (538, -623, 304)

Steps to complete for each point

Position in camera space
 Cworld-to-view * P123 <- put Points 1/2/3 together into their own matrix

*

P1`	P2`	P3` _
290.6628	305.6397	265.97865
67.57466	43.400489	82.858401
-1600.809375	-1600.26607	-1600.498915
1	1	1

- Is position in the NDC?

Points are in scene if within NDC range. In this case, [-1, 1]

Mortho * Cworld-to-view[P1,P2,P3]

P1"	P2"	P3"
0.5813256	0.6112794	0.5319573
0.256783708	0.1649218582	0.3148619238
-1.40045234375	-1.4003165175	-1.40037472875
1	1	1

- Its screen (x,y) coordinates

P1 = (1619.2774144, 401.33679768) P2 = (1649.9501056, 450.942196572) P3 = (-0.200226171875, -0.20015825875)

F. Will update if I have time.

G.User clicks = (497, 530)Compute world-space points on the near and far planes.

Set click to near/far

Screen to NDC matrix

Inverse NDC-to-Screen

$$X = 2/Width = 2/2048$$
 $Y = -(2/Height) = -2/1080$ $Z = 2/z$ -depth range $X = 0.000977$ $Y = -0.001852$ $Z = 2$

Screen-to-NDC

$$\begin{pmatrix} 0.000977 & 0 & 0 & -1 \\ 0 & -0.001852 & 0 & 1 \\ 0 & 0 & 2 & -1 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}$$

Screen-to-NDC positions

Near	Far
-0.514431	-0.514431
0.01844	0.01844
-1	1
1	1

Invert ortho projection and multiply it against the NDC positions

Mortho_

Now take the Projection Near/Far and multiply the world-to-view matrix by it

2.

Camera position and orientation

Position = Cpos = (5, 3, 2)

Target = Tpos = (434, -480, 270)

'Up' vector = (0, 1, 0)

Z-depth [0,1]

a.

Camera Perspective Field of View = PI/6 Near clip plane: 1

Far clip plane: 7000

Aspect ratio: Same as screen (1280x720)

NDC [-1,1] on all 3 axes

Compute the view to world matrix Done the same way as otho.

2. We need to find the fwd and side vectors

We are in a right handed area, negate the fwd direction.

$$Get fwd = -(Tpos - Cpos) = -dir$$

$$Fwd = (-429, 483, -268)$$

Normalize the fwd vector

 $||fwd|| = sqrt(429^2 + -483^2 + 268^2) = 699.3954532$

v^fwd = (-429, 483, -268)/ 699.3954532

v^fwd = (-0.613387, 0.690596, -0.3831881)

NOTE: up is not normalized, so neither will side. NORMALIZE IT

side = 'up' x v^fwd

'up' = (0, 1, 0)

V^fwd = (-0.613387, 0.690596, -0.3831881)

Side = (-0.3831881, 0, 0.613387)

Now normalize our new side

 $||side|| = sqrt(0.3831881^2 + 0 + -0.613387^2) = 0.7232404$

V^side = (-0.3831881, 0, 0.613387) / 0.7232404

V^side = (-0.529821, 0, 0.8481093)

Now for the actual Up vector

 $V^up = v^fwd \times v^side$

(-0.613387, 0.690596, -0.3831881)

(-0.529821, 0, 0.8481093)

 $V^up = (0.58570, 0.72324, 0.36589)$

b.

Find C World-to-view

Cworld-to-view = Cview-to-world^-1 =
$$\begin{pmatrix}
R^t & -(R^t*Cpos) \\
0 & 1
\end{pmatrix}$$

-(R^t*Cpos) = (0.952887, -5.83, 1.7615232)

Cworld-to-view

-0.529821	0	0.848109	0.952887
0.58570	0.72324	0.36589	-5.8299
-0.613387	0.690596	-0.3831881	1.7615232
0	0	0	1
			ノ

c.

Field of View = PI/6 Near clip plane: 1 Far clip plane: 7000

Aspect ratio: Same as screen = 1280x720

NDC [-1,1] on all 3 axes

Z-depth [0,1]

Perspective Matrix

d = cot(Theta/2) = 1/Tan((PI/6)/2) = 3.73205

a = width/height = 1280/720 = 1.77778

X = d/a Y = d Z = -(f+n)/(f-n)

X = 2.09928 Y = 3.73205 Z = -1.00029 Tz = -2.00029

Tz = (2*n*f)/(n-f)

Mpersp

2.09928	0	0	0
0	3.73205	0	0
0	0	-1.0029	-2.00029
0	0	-1	0

d.

NDC to screen matrix

3x3 xyz

$$X = Width/2 = 1280/2$$
 $Y = -(Height/2) = 720/2$ $Z = z$ -depth range/2

$$X = 640$$
 $Y = -360$

$$Z = 0.5$$

NDC-to-Screen

(640	0	0	640	
	0	-360	0	360	
	0	0	0.5	0.5	
	0	0	0	1	
`					/

e.

- Its position in camera space

Multiply World-to-view by p1p2p3

(-0.529821	0	0.848109	0.952887
0.58570	0.72324	0.36589	-5.83
-0.613387	0.690596	-0.3831881	1.7615232
0	0	0	1
)

P1`

-20.014578 -49.714 -874.672336

P2` P3` -39.837396 -26.265675 -56.18221 -30.07136 -875.1384511 -874.9711732 1

- Its position in the NDC

Take the perspective matrix and multiply it by P1`P2`P3`

Then divide it by the width

2.09928	0	0	0
0	3.73205	0	0
0	0	-1.0029	-2.00029
0	0	-1	0
\			/

*

		$\overline{}$
-20.014578	-39.837396	-26.265675
-49.714	-56.18221	-30.07136
-874.672336	-875.1384511	-874.9711732
1	1	1
1017 = 1	00.10111	00.07.200

-42.01620330384 -185.5351337 875.2085957744 874.672336

-83.62984867488 -209.6748168305 875.67606260819 875.1384511 -55.139006214 -112.227819088 875.50829960228 874.9711732

Divide each by their w's to get 1 back in 4^{th} row.

P1"		P2"
-0.0480	365	-0.09
-0.2121	196	-0.23
1.0006	131	1.000
1		_1

P2"
-0.0955618
-0.2395905
1.0006143
1

P3"
-0.0630181
-0.1282646
1.0006139
1

- Its screen (x,y) coordinates.

Multiply Px" by NDC-to-Screen to get screen coordinates.

			$\overline{}$
640	0	0	640 `
0	-360	0	360
0	0	0.5	0.5
0	0	0	1
_			

(-0.0480365	-0.0955618	-0.0630181
-0.2121196	-0.2395905	-0.1282646
1.0006131	1.0006143	1.0006139
1	1	1 <i>J</i>

Mndc2scr

f.

I'll do this if I have time.

g.

Get near/far clip planes in screen space

Invert NDC-to-screen matrix

Screen-to-NDC matrix

X = 2/1280 = 0.0015625	0.0015625	0	0	-1
Y = -2/720 = -0.00278	0	-0.00278	0	1
Z = 2/dz = 2/1 = 2	0	0	2	-1
	(0	0	0	1

NDC

Inverse Perspective Matrix

$$d = cot(Theta/2) = 1/Tan((PI/6)/2) = 3.73205$$
 near plane: 1
 $a = width/height = 1280/720 = 1.77778$ far plane: 7000

$$X = a/d$$
 $Y = 1/d$ $Z = 0$ Wfwd = -(f-n)/(2fn) $Tw = (f+n)/(2fn)$
 $X = 0.476355$ $Y = 0.26795$ $Z = 0$ Wfwd = -0.49993 $Tw = 0.50007$

Mpersp^-1

 0.334375
 0.334375

 0.22994
 0.22994

 -1
 1

 1
 1

Mpersp^-1 (Hom. Coord)

Divide each coordinate by their w row to get value back to 1 Camera Space

Now multiply against the Cview-to-world to get proper cords

3.

Camera Position and orientation

Cpos = (7, -1, 9)

Tpos = TGO at (1, 3, 15)

'up' vector = (0, 1, 0)

z-depth range [0,1]

Camera Perspective projection

FOV: PI/6

near clip plane: 1

far clip plane: 1000

Aspect Ratio: Screen: 1280x720

NDC [-1,1] on all 3 axes

Determine which triangles will be back-face culled and which will be visible to camera Multiply world against TGO model to get vertices in world space

Ra	Rb		Rc	
Ва		Вс	Bb	<-each tri a,b,c
Ga	Gc	Gb		
	Wa	Wb	Wc	
P1	P2	Р3	P4 _	
1.539634	-0.42738	2.16028	1.2671	
3.337197	4.338542	2.992829	1.668629	
15.771423	15.413404	14.191483	15.395113	
_ 1	1	1	1	
_				

Let's go in order

T1 - red

V1 (b-a) = (-1.967014, 1.001345, -0.358019) V2 (c-a) = (-0.272534, -1.668568, -0.37631)

Get the normal vector by crossing the two we just created.

$$N = v1 \times v2 = (1.001345*-0.37631 - -0.358019*-1.668568$$
$$-(-1.967014*-0.37631 - -0.358019*-0.272534),$$
$$-1.967014*-1.668568 - 1.001345*-0.272534)$$
$$(-0.97420, -0.64263, 3.55500)$$

Vlos = (a –Cpos) = (-5.460366, 4.337197, 6.771423)

Now get the dot product of the normal and Vlos. If < 0, we are visible to the camera

Red is back-faced culled

T2 - Blue

V1 (b-a) = (-0.272534, -1.668568, -0.37631) V2 (c-a) = (0.620646, -0.379141, -1.57994)

Get the normal vector by crossing the two we just created.

$$N = v1 \times v2 = (2.49356, -0.66414, 1.13892)$$

Vlos = (a –Cpos) = (-5.460366, 4.337197, 6.771423)

Now get the dot product of the normal and Vlos. If < 0, we are visible to the camera

Vlos.dot(n) = -8.78415

Blue is visible from the camera

T3 - Green

V1 (b-a) =(0.620646, -0.379141, -1.57994)

V2 (c-a) =(-1.967014, 1.001345, -0.358019)

Get the normal vector by crossing the two we just created.

 $N = v1 \times v2 = (1.717805, 3.32997, -0.124295)$

Vlos = (a –Cpos) = (-5.460366, 4.337197, 6.771423)

Now get the dot product of the normal and Vlos. If < 0, we are visible to the camera

Vlos.dot(n) = 4.221237851

Green is back-culled

T4 - White

V1 (b-a) = (2.58408, -1.345713, -1.221921)

V2 (c-a) = (1.69448, -2.669913, -0.018291)

Get the normal vector by crossing the two we just created.

 $N = v1 \times v2 = (-3.23781, -2.02326, -4.61899)$

Vlos = (a –Cpos) = (-7.42738, 5.338542, 6.413404)

Now get the dot product of the normal and Vlos. If < 0, we are visible to the camera

Vlos.dot(n) = -16.37601535

White is visible from the camera