## Delineamento em Blocos Casualizados

Rodrigo R. Pescim

Universidade Estadual de Londrina

09 de junho de 2020

Experimento em blocos casualizados são aqueles que levam em consideração os **3 princípios básicos** da experimentação, sendo que o **controle local** é realizado na sua forma mais simples e é chamado de **blocos**.

Sempre que **não houver homogeneidade** das condições experimentais, deve-se utilizar o princípio do **controle local**, estabelecendo, então, subambientes homogêneos (blocos) e instalando, em cada um deles, todos os tratamentos, igualmente repetidos.

O delineamento em blocos casualizados é mais eficiente que o inteiramente ao acaso e, essa eficiência depende da uniformidade das unidades experimentais de cada bloco, podendo, inclusive, existir diferenças bem acentuadas de um bloco para outro.

Deve-se ressaltar que nem sempre bloco é sinônimo de repetição. O número de blocos e de repetições coincide apenas quando os tratamentos ocorrem uma única vez em cada bloco.

As principais vantagens desse delineamento são:

- Controla as diferenças que ocorrem nas condições ambientais, de um bloco para outro;
- Onduz a uma estimativa mais exata para a variância residual, uma vez que a variação ambiental entre blocos é isolada.

Em relação a outros delineamentos, o delineamento em blocos casualizados apresenta as seguintes **desvantagens**:

- Pela utilização do princípio do controle local, há uma redução no número de graus de liberdade do resíduo;
- A exigência de homogeneidade das unidades experimentais dentro de cada bloco limita o número de tratamentos, que não pode ser muito elevado.

## Modelo Estatístico

- Suponha / tratamentos que serão comparados e / blocos.
- Suponha ainda que existe uma observação por tratamento em cada bloco e a ordem em que os tratamentos são atribuídos a cada um dos blocos é determinado aleatoriamente.
- Os dados seriam da forma:

| Bloco 1                 |
|-------------------------|
| <i>y</i> <sub>1</sub> 1 |
| <i>y</i> <sub>21</sub>  |
| <i>y</i> <sub>31</sub>  |
| :                       |
| <i>y<sub>I</sub></i> 1  |

| Bloco 2                |  |
|------------------------|--|
| <i>y</i> <sub>12</sub> |  |
| <i>y</i> <sub>22</sub> |  |
| <i>y</i> <sub>32</sub> |  |
| :                      |  |
| V12                    |  |



## Modelo Estatístico

O modelo estatístico para este delineamento é representado por

$$y_{ij} = \mu + \tau_i + \beta_j + \epsilon_{ij},$$
  $\begin{cases} i = 1, 2, ..., I \\ j = 1, 2, ..., J \end{cases}$  (1)

em que:

- $\mathbf{0}$   $\mu$  é a média geral (ou uma constante);
- y<sub>ij</sub> é o valor observado na unidade experimental que recebeu o i-ésimo tratamento no j-ésimo bloco;
- $\bullet$   $\tau_i$  é um parâmetro que representa o efeito do i-ésimo tratamento;
- **1**  $\beta_i$  é um parâmetro que representa o efeito do j-ésimo bloco;
- **1**  $\epsilon_{ij}$  é um componente do erro aleatório, associado ao j-ésimo bloco e i-ésimo tratamento, tal que  $\epsilon_{ii} \sim N(0, \sigma^2)$

Pode-se resumir as somas de quadrados da seguinte forma:

$$SQTotal = \sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij}^{2} - C$$
  $SQTrat = \sum_{i=1}^{I} \frac{y_{i}^{2}}{J} - C$ 

$$SQBlocos = \sum_{i=1}^{J} \frac{y_{ij}^{2}}{I} - C$$
  $SQRes = SQTotal - SQTrat - SQBlocos$ 

Os cálculos são usualmente apresentados em uma tabela de variância, tal como a próxima Tabela.

Tabela 1: Quadro da análise de variância para DBC

| C.V.   | S.Q.     | gl         | Q.M.                       | F <sub>calc</sub>      | $F_{tab}$                   |
|--------|----------|------------|----------------------------|------------------------|-----------------------------|
| Trat   | SQTrat   | / - 1      | SQTrat<br>I−1              | <u>QMTrat</u><br>QMRes | $F_{\alpha;I-1,(I-1)(J-1)}$ |
| Blocos | SQBlocos | J-1        | SQBlocos<br>J-1            |                        |                             |
| Res    | SQRes    | (I-1)(J-1) | $\frac{SQRes}{(I-1)(J-1)}$ |                        |                             |

Total SQTotal IJ-1

**Exemplo 1:** Um experimento foi realizado para determinar o efeito de quatro produtos químicos (tratamentos) diferentes sobre a resistência de um tecido. Esses produtos químicos são usados como parte do processo de acabamento sob prensagem permanente permanente. Cinco amostras de tecido (blocos) foram selecionadas e um planejamento em blocos casualizados foi realizado, testando cada tipo de produto químico uma vez, em uma ordem aleatória, em cada amostra de tecido.

Tabela 2: Valores de resistência

| Blocos                    | PQ1    | PQ 2   | PQ 3   | PQ 4   | Totais  |
|---------------------------|--------|--------|--------|--------|---------|
| Tecido 1                  | 6,4    | 10,9   | 12,0   | 11,2   | 40,5    |
| Tecido 2                  | 6,2    | 11,6   | 10,9   | 11,6   | 40,3    |
| Tecido 3                  | 6,2    | 11,4   | 11,5   | 10,9   | 40,0    |
| Tecido 4                  | 7,1    | 10,4   | 11,1   | 12,1   | 40,7    |
| Tecido 5                  | 6,6    | 12,4   | 11,8   | 10,1   | 40,9    |
| $\sum_{j=1}^{5} y_{ij}$   | 32,5   | 56,7   | 57,3   | 55,9   | 202,4   |
| $\sum_{j=1}^{5} y_{ij}^2$ | 211,81 | 645,25 | 657,51 | 627,23 | 2.141,8 |

Antes de se proceder à análise de variância, pode-se utilizar o gráfico boxplot para a análise exploratória dos dados e, também, verificar se as exigências do modelo estão satisfeitas.

Homogeneidade de variâncias: A aplicação do teste de Bartlett é:

Bartlett test of homogeneity of variances data: resp by trat
Bartlett's K-squared = 2.5002, df = 3, p-value = 0.4753
mostrando que há homogeneidade de variâncias.

Normalidade dos resíduos: Usa-se o teste de Shapiro-Wilk, cujo resultado é:

```
Shapiro-Wilk normality test data: res W = 0.9778, p-value = 0.9033
```

**Teste de Aditividade de Tukey:** Aplica-se para verificar se os efeitos principais são aditivos. Usa-se o pacote *dae* 

```
mod1 <- aov(resp ~ trat + blocos + Error(blocos/trat), data = dat1)
tukey.1df(aov.obj = mod1, data = dat1, error.term = 'blocos:trat')</pre>
```

e os resultados são:

\$Tukey.SS

[1] 0.1536787

\$Tukey.F

[1] 0.2978101

\$Tukey.p

[1] 0.5961517

\$Devn.SS

[1] 5.676321

mostrando que os efeitos principais são aditivos.

Logo, os pressupostos para a análise de variância foram verificados, ou seja, os dados apresentam homogeneidade de variâncias, têm distribuição que não difere da normal e os efeitos principais são aditivos. Pode-se, portanto, aplicar a metodologia discutida aos dados apresentados.

$$SQTotal = \sum_{i=1}^{I} \sum_{j=1}^{J} y_{ij}^{2} - C$$

$$= (6, 4^{2} + 10, 9^{2} + \dots + 10, 1^{2}) - \frac{(202, 4)^{2}}{4 \times 5}$$

$$SQTotal = 93, 512$$

$$SQTrat = \sum_{i=1}^{J} \frac{y_{i}^{2}}{J} - C$$

$$= \frac{1}{5} \left[ 55, 9^{2} + 56, 7^{2} + 57, 3^{2} + 32, 5^{2} \right] - \frac{(202, 4)^{2}}{4 \times 5}$$

$$SQTrat = 87, 560$$

$$SQBlocos = \sum_{j=1}^{J} \frac{y_{.j}^{2}}{l} - C$$

$$= \frac{1}{4} \left[ 40, 5^{2} + 40, 3^{2} + \dots + 40, 9^{2} \right] - \frac{(202, 4)^{2}}{4 \times 5}$$

$$SQBlocos = 0, 122$$

$$SQRes = SQTotal - SQTrat - SQBlocos$$

$$= 93, 512 - 87, 560 - 0, 122$$

$$SQRes = 5.83$$

Tabela 3: Análise de variância no delineamento em blocos casualizados.

| Causa de | S.Q.   | g.l. | Q.M.   | $F_{calc}$ | $F_{tab}$            | Pr(>F)    |
|----------|--------|------|--------|------------|----------------------|-----------|
| variação |        |      |        |            |                      |           |
| Blocos   | 0,122  | 4    | 0,030  | 0,0628     | 3,2592 <sup>ns</sup> | 0,9918    |
| Trat.    | 87,560 | 3    | 29,187 | 60,0755    | 3,4903**             | 1,689e-07 |
| Resíduos | 5,830  | 12   | 0,486  |            |                      |           |

Como  $F_{calc} > 3,49$ , rejeita-se  $H_0$ , ou seja, pelo menos um dos tratamentos difere dos demais.

Como pelo menos duas das médias de tratamentos diferem entre si, é necessário aplicar o teste de Tukey para determinar qual o tratamento que difere dos demais.

Para obter o teste de Tukey diretamente do R, os comandos são:

```
>(tukey = TukeyHSD(mod,'trat', ord=T))
>par(mai=c(1,1,.7,.2))
>plot(tukey, las=1, col='blue')
```

Construindo-se a tabela das médias ordenadas em ordem decrescente, tem-se:

|      | Médias |   |
|------|--------|---|
| PQ 3 | 11,46  | а |
| PQ 2 | 11,34  | а |
| PQ 4 | 11,18  | а |
| PQ 1 | 6,50   | b |

em que letras iguais indicam médias semelhantes.

Considerando um nível de significância de 5%, concluí-se que os produtos químicos diferem com relação a resistência do tecido. As diferenças entre as médias de tratamentos podem ser visualizadas na Figura de comparação das diferenças entre tratamentos pelo Teste de Tukey.

## Exemplo 2:

- Um fabricante de dispositivo médico produz enxertos vasculares (veias artificiais).
- Estes enxertos s\u00e3o produzidos politetrafluoretileno (PTFE), resina combinados com um lubrificante para dentro de tubos.
- Frequentemente, alguns dos tubos em uma corrida de produção contêm pequenas saliências na superfície externa. Esses defeitos são conhecidos como "flicks". O defeito é a causa para rejeição da unidade.
- O desenvolvedor do produto responsável pelos enxertos vasculares suspeita que a pressão de extrusão afeta a ocorrência de movimentos e, portanto, tem a intenção de realizar um experimento para investigar essa hipótese.
   No entanto, a resina é fabricada por um fornecedor externo e é entregue ao fabricante do dispositivo médico em lotes.
- O engenheiro também suspeita que pode haver uma variação significativa de lote para lote. Portanto, o desenvolvedor do produto decide investigar o efeito de quatro diferentes níveis de pressão de extrusão em flicks usando um DBC. considerando lotes de resina como blocos.

Note que existem 4 níveis de pressão de extrusão (tratamentos) e 6 lotes de resina (blocos). A variável resposta é o rendimento, ou o percentual de tubos no ciclo de produção que não continha quaisquer flicks.

| Lotes            | Nív   |       |       |       |        |
|------------------|-------|-------|-------|-------|--------|
| Lotes            | 8500  | 8700  | 8900  | 9100  | У. ј   |
| 1                | 90.3  | 92.5  | 85.5  | 82.5  | 350.8  |
| П                | 89.2  | 89.5  | 90.8  | 89.5  | 359.0  |
| Ш                | 98.2  | 90.6  | 89.6  | 85.6  | 364.0  |
| IV               | 93.9  | 94.7  | 86.2  | 87.4  | 362.2  |
| V                | 87.4  | 87.0  | 88.0  | 78.9  | 341.3  |
| VI               | 97.9  | 95.8  | 93.4  | 90.7  | 377.8  |
| y <sub>i</sub> . | 556.9 | 550.1 | 533.5 | 514.6 | 2155.1 |