

Seasonal adjustment of economic data Quality assessment

Daniel Ollech, Anna Smyk / BBk, Insee Seasonal adjustment, 1 February January 2023

Visual inspection

Visual inspection

Visual inspection

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 3 / 22

Evaluating the ARIMA model

Auto-correlation function, ARIMA(0,1,1)(0,1,1) with regressors

Output in the production sector / Germany / Intermediate goods

Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 4 / 22

Evaluating the ARIMA model ACF for inadequate model

Auto-correlation function, ARIMA(0,1,0)(0,1,1) with regressors

Output in the production sector / Germany / Intermediate goods

Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 5 / 22

Evaluating the ARIMA model

Output in the production sector / Germany / Intermediate goods

Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 6 / 22

Periodogram

Output in the production sector / Germany / Intermediate goods

Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment - Quito, 1 February January 2023 Page 7 / 22

IAR Spectra

Output in the production sector / Germany / Intermediate goods

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 8 / 22

Spectra

Periodogram and AR Spectrum applied to

- Original Series (not in JD)
- Residuals
- Irregular
- Seasonally adjusted series

Seasonality tests in JD+ (I/VII)

Name	Variable checked for significance	Short		
Modified QS test	Autocorrelations at seasonal lags	QS		
Friedman test	ANOVA with repeated measures on intra-year ranks	Fried		
Kruskal-Wallis test	ANOVA without repeated measures on overall ranks	KW		
Test for spectral peaks	Tukey and AR(30) spectra at seasonal frequencies	SP		
Periodogram test	Weighted sum of periodogram at seasonal frequencies	PD		
F-test on seasonal dummies	Effects of seasonal dummies in the " $(pdq)(000)$ + mean + seasonal dummies" ARIMA model*	SD		
*Variant 1: $(mda) = (0.11)$ variant 2: (mda) automatically identified				

^{*} Variant 1: (pdq)=(011), variant 2: (pdq) automatically identified.

Seasonality tests in JD+ (II/V) Modified QS-test

Monthly electricity consumption in Germany

Source: Federal Network Agency Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 11 / 22

Seasonality tests in JD+ (III/V) $_{Modified\ QS-test}$

Monthly electricity consumption in Germany

Source: Federal Network Agency Deutsche Bundesbank

Daniel Ollech, Anna Smyk (BBk/Insee) Quality assessment – Quito, 1 February January 2023 Page 12 / 22

Seasonality tests in JD+ (IV/V) $_{Modified\ QS-test}$

$$QS = F\left[\hat{\rho}(y_t, y_{t-\tau}), \hat{\rho}(y_t, y_{t-2\tau})\right]$$

Null hypothesis

- No positive autocorrelation at seasonal lags (i.e. no seasonality)

Decision

Rejection if QS too large

$$FT = \frac{\text{Variance of month-specific mean ranks}}{\text{Variance of ranks within months}}$$

Rank assignment

- Within each year $\rightsquigarrow 1 \leqslant \text{rank}_{ij} \leqslant \tau$

Null hypothesis

Same month-specific mean ranks (i.e. no stable seasonality)

Decision

Rejection if FT-statistics too large

Which seasonality test should we use? Permutation-based variable importance, Ollech and Webel (2022)

Additional
$$F$$
-tests (I/II) Stable seasonality

$$F_S = rac{ ext{Variance of month-specific mean SI ratios}}{ ext{Variance of SI ratios within months}}$$

Null hypothesis

 Same month-specific averages in trend-adjusted series (i.e. no stable seasonality)

Decision

- Rejection if F_S too large

Additional F-tests (II/II) Moving seasonality

$$F_M = rac{ ext{Inter-year variance}}{ ext{Residual variance}}$$

Null hypothesis

– Absence of annual effects in trend-adjusted series (i.e. no moving seasonality, $Year_1 = Year_2 = \cdots = Year_T$)

Decision

– Rejection if F_M -statistic too large

Heuristics (I/III) M-statistics: basic idea

Indication

- Seasonal adjustment → Quality
- Development → Statistics Canada

Construction

- Domain $\rightsquigarrow [0,3]$
- Acceptance region \rightsquigarrow [0, 1]

Warning

Limited Relevance

Heuristics (II/III)
$$M$$
-statistics: $M7$

$$M7=\sqrt{rac{1}{2}(T_1+T_2)}, \quad ext{with } T_1=rac{7}{F_S} ext{ and } T_2=rac{3F_M}{F_S}$$

Interpretation

Does moving seasonality dominate stable seasonality?
 Non-identifiable seasonality

Heuristics for X-11 approach (III/III)

	Weight		Weight		
M-statistic	as a percentage	M-statistic	as a percentage		
M1	13	M7	16		
M2	13	M8	7		
M3	10	M9	7		
M4	5	M10	4		
M5	11	M11	4		
M6	10				

M8 to M11 are not calculated for series shorter than six years and, hence, other weights apply.

Summary

- Seasonality tests: QS and Friedman
- ACF and PACF helpful for ARIMA model
- Look at data

References: Methodology

Ollech and Webel (2018). An overall seasonality test based on recursive feature elimination in conditional random forests. In: Proceedings of the 5th International Conference on Time Series and Forecasting, 20–31.

Ollech and Webel (2022). A Random Forest-based Approach to Combining and Ranking Seasonality Tests. Journal of Econometric Methods.