

# Introduction to Computing Section 5 – The Operating Systems Layer



# **Software Categories**



- Application software Software written to address specific needs—to solve problems in the real world (Programs that helps us solve real-world problems)
  - Word processing programs, games, inventory control systems, automobile diagnostic programs, and missile guidance programs are all application software
- System software Software that manages a computer system at a fundamental level (Programs that manage a computer system and interact with hardware)
  - It provides the tools and an environment in which application software can be created and run

#### **Operating System**



- An operating system
  - manages computer resources, such as memory and input/output devices
  - provides an interface through which a human can interact with the computer
  - allows an application program to interact with these other system resources

# **Operating System**





An operating system interacts with many aspects of a computer system.

#### **Operating System**



- The various roles of an operating system generally revolve around the idea of "sharing nicely"
- An operating system manages resources, and these resources are often shared in one way or another among programs that want to use them

#### Resource Management



- Multiprogramming The technique of keeping multiple programs in main memory at the same time that compete for access to the CPU so that they can execute
- Memory management The process of keeping track of what programs are in memory and where in memory they reside

#### Resource Management



- Process The dynamic representation of a program during execution.
- The operating system performs process management to carefully track the progress of a process and all of its intermediate states
- CPU scheduling determines which process in memory is executed by the CPU at any given point

#### **Batch Processing**



- A typical computer in the 1960s and '70s was a large machine
- Its processing was managed by a human operator
- The operator would organize various jobs from multiple users into batches

#### **Batch Processing**





Figure 10.2 In early systems, human operators would organize jobs into batches

# **Timesharing**



- Timesharing system A system that allows multiple users to interact with a computer at the same time
- Multiprogramming A technique that allows multiple processes to be active at once, allowing programmers to interact with the computer system directly, while still sharing its resources
- In a timesharing system, each user has his or her own virtual machine, in which all system resources are (in effect) available for use

#### **Other Factors**



- Real-time System A system in which response time is crucial given the nature of the application
- Response time The time delay between receiving a stimulus and producing a response
- Device driver A small program that "knows" the way a particular device expects to receive and deliver information.

# **Memory Management**



- Operating systems must employ techniques to
  - Track where and how a program resides in memory
  - Convert logical addresses into actual addresses
- Logical address (sometimes called a virtual or relative address) A value that specifies a generic location, relative to the program but not to the reality of main memory
- Physical address An actual address in the main memory device

The mapping from a logical address to a physical address is called address binding

# **Memory Management**





# Single Contiguous Memory Management



Operating system

Application program

- There are only two programs in memory
  - The operating system
  - The application program
- This approach is called single contiguous memory management

Figure 10.4
Main memory
divided into two
sections

# Single Contiguous Memory Management



- A logical address is simply an integer value relative to the starting point of the program
- To produce a physical address, we add a logical address to the starting address of the program in physical main memory

# Single Contiguous Memory Management





Logical address L

translates to

Physical address A + L

binding a logical address to a physical one

### **Partition Memory Management**



- Fixed partitions Main memory is divided into a particular number of partitions
- Dynamic partitions Partitions are created to fit the needs of the programs

# **Partition Memory Management**



Operating system Process 1 **Empty** Process 2 Process 3 **Empty** 

Base register

Bounds register length

Check: L < length? Yes

Address resolution in partition memory management

- At any point in time memory is divided into a set of partitions, some empty and some allocated to programs
- Base register A register that holds the beginning address of the current partition
- Bounds register A register that holds the length of the current partition

### **Partition Selection Algorithms**



Which partition should we allocate to a new program?

- First fit Allocate program to the first partition big enough to hold it
- Best fit Allocated program to the smallest partition big enough to hold it
- Worst fit Allocate program to the largest partition big enough to hold it



- Paged memory technique A memory management technique in which processes are divided into fixed-size pages and stored in memory frames when loaded into memory
  - Frame A fixed-size portion of main memory that holds a process page
  - Page A fixed-size portion of a process that is stored into a memory frame
  - Page-map table (PMT) A table used by the operating system to keep track of page/frame relationships



#### P1 PMT

| Page | Frame |  |  |
|------|-------|--|--|
| 0    | 5     |  |  |
| 1    | 12    |  |  |
| 2    | 15    |  |  |
| 3    | 7     |  |  |
| 1    | 22    |  |  |

#### P2 PMT

| Page | Frame |
|------|-------|
| 0    | 10    |
| 1    | 18    |
| 2    | 1     |
| 3    | 11    |

A paged memory management approach

#### **Memory**

| Frame | Contents |
|-------|----------|
| 0     |          |
| 1     | P2/Page2 |
| 2     |          |
| 3     |          |
| 4     |          |
| 5     | P1/Page0 |
| 6     |          |
| 7     | P1/Page3 |
| 8     |          |
| 9     |          |
| 10    | P2/Page0 |
| 11    | P2/Page3 |
| 12    | P1/Page1 |
| 13    |          |
| 14    |          |
| 15    | P1/Page2 |

- The logical address is often written as <page, offset>.
- To produce a physical address, you first look up the page in the PMT to find the frame number in which it is stored
- Then multiply the frame number by the frame size and add the offset to get the physical address

Ex: if process 1 active, logical address of <1,222>

Page 1 of process 1 is in frame 12 Physical address: 12\*1024+222=12510



- Demand paging An important extension of paged memory management
  - Not all parts of a program actually have to be in memory at the same time
  - In demand paging, the pages are brought into memory on demand
- Page swap The act of bringing in a page from secondary memory, which often causes another page to be written back to secondary memory



- The demand paging approach gives rise to the idea of virtual memory, the illusion that there are no restrictions on the size of a program
- Too much page swapping, however, is called thrashing and can seriously degrade system performance.



#### **Example**

Given the following PMT

| Page  | 1 | 1 | 2 | 3 |
|-------|---|---|---|---|
| Frame | 5 | 2 | 7 | 3 |

If the frame size is 1024, what is the physical address associated with the logical address <2,85>?

If the frame size is 1024, what is the physical address associated with the logical address <3,555>?

If the frame size is 1024, what is the physical address associated with the logical address <3,1555>?

### **Process Management**



#### The Process States



The process life cycle

### **The Process Control Block**



- The operating system must manage a large amount of data for each active process
- Usually that data is stored in a data structure called a process control block (PCB)
- Each state is represented by a list of PCBs, one for each process in that state

#### **The Process Control Block**



- Keep in mind that there is only one CPU and therefore only one set of CPU registers
  - These registers contain the values for the currently executing process
- Each time a process is moved to the running state:
  - Register values for the currently running process are stored into its PCB
  - Register values of the new running state are loaded into the CPU
  - This exchange of information is called a context switch

#### **CPU Scheduling**



- CPU Scheduling The act of determining which process in the *ready* state should be moved to the *running* state
  - Many processes may be in the ready state
  - Only one process can be in the running state, making progress at any one time

### **CPU Scheduling Algorithms**



#### First-Come, First-Served

 Processes are moved to the CPU in the order in which they arrive in the running state

#### **Shortest Job Next**

 Process with shortest estimated running time in the ready state is moved into the running state first

#### **Round Robin**

 Each process runs for a specified time slice and moves from the running state to the ready state to await its next turn if not finished

#### First-Come, First-Served



| Process | Service time |
|---------|--------------|
| p1      | 140          |
| p2      | 75           |
| рЗ      | 320          |
| p4      | 280          |
| p5      | 125          |

| 0 | 14 | 40 2 <sup>-</sup> | 15 53 | 85 8 | 15 9 | 40 |
|---|----|-------------------|-------|------|------|----|
|   | р1 | p2                | р3    | p4   | p5   |    |

The average turnaround time is: (140+215+535+815+940)/5=529

#### **Shortest Job Next**



 Looks at all processes in the ready state and dispatches the one with the smallest service time



The average turnaround time is: (75+200+340+620+940)/5=435

#### **Round Robin**



- Distributes the processing time equitably among all ready processes
- The algorithm establishes a particular time slice (or time quantum), which is the amount of time each process receives before being preempted and returned to the ready state to allow another process its turn

#### **Round Robin**

 Process
 Service time

 p1
 140

 p2
 75

 p3
 320

 p4
 280

 p5
 125



Suppose the time slice was 50



The average turnaround time is: (515+325+940+920+640)/5=668



#### **Example**

Given the following table of processes and services time

| Process P1      | P2   | <b>p3</b> | P4 | P5  |
|-----------------|------|-----------|----|-----|
| Service 12 time | 0 60 | 180       | 50 | 300 |

Draw a Gantt chart that show the completion time for each process using:

- + first-come, first-served CPU scheduling
- + the shortest-job-next CPU scheduling
- + round-robin CPU scheduling with a time slice of 60.



#### **Summary**

#### An operating system:

- > is the part of the system software,
- manages resources on a computer,
- serves as modulator among human users, applications software, hardware devices in the system.



Multiprogramming: is the technique for keeping multiple programs in memory at the same time

A process: is a program in execution.

→The OS: performs carefully CPU scheduling, memory management, process management to ensure fair access to the CPU.



Batch processing: organizes into batches using the same or similar resources.

Timesharing: allows multiple users to interact with a computer at the same time, creating a virtual machine for each user.

→The OS: manages memory to control and monitor where processes are loaded into main memory



Memory management technique: defines the manner in which it binds a logical address to a physical one.

The single contiguous approach: allows only one program other than the OS to be in main memory

The partition approach: divides memory into several partitions into which processes are loaded. Fix and dynamic partitions are applied.

The paging approach: devide memory into frames and programs into pages.



CPU scheduling algorithms: determine which process gets priority to use the CPU next.

First-come, first-served CPU scheduling: gives priority to the earliest-arriving job.

The shortest-job-next algorithm: gives priority to jobs with short running times.

Round-robin scheduling: rotates the CPU among active processes, giving a little time to each process.