

Quickly Locate Faults Method

Team members: Liu Yuequn, Huang Zhengting, Huang Xiaokai

Part I Background

Part II
PTHP Method

Part III
Case Study

Part IV Summary

The scale of the network is huge, and the structure is interconnected

A single fault may trigger multiple types of alarms

Design a causal discovery model

Learn causality from alarm data

Suitable for non-topological and topological structures

Intelligent operation and maintenance

- > Difficulties in the current competition data set:
 - Simply merge all Solution goals:
- Combine topology 2 Combine causal priori edges (c) Correct Detection with topology Information

A Priori-based Topological Hawkes Process (PTHP):

Solution Introduction - PTHP

> The causal graph search based on climbing method with a priori:

Optimize the target (BIC):

$${\rm max}_{\mathcal{G}_V}[{\rm max}_{\Theta}L_B(\mathcal{G}_V,\Theta;\mathcal{E},\mathcal{G}_N)]$$

Where:
$$L_B(G_V, \Theta; \mathcal{E}, G_N) = \underbrace{L(G_V, \Theta; \mathcal{E}, G_N)}_{\text{QMRg}} + \underbrace{\frac{p \log(m)}{2}}_{\text{PICSTIFE}}$$

$$L(G_V, \Theta; \mathcal{E}, G_N)$$

$$= \sum_{n \in \mathbb{N}} \sum_{v \in \mathbb{V}} \int_{t \in \mathbb{T}} \log \left[e^{-\lambda_v(n, t)\Delta t} \left(\lambda_v(n, t) dt \right)^{dC(n, v)} \right]$$

$$= \sum_{v \in \mathbb{V}} \sum_{n \in \mathbb{N}} \int_{t \in \mathbb{T}} \left[-\lambda_v(n, t) dt + \log(\lambda_v(n, t)) dC(n, v) \right] + const$$

- > EM step:
 - Calculate the likelihood score of the causal structure **G**_V
- > Hill-Climbing step:
 Search for the highest-score
 causal structure: G

> The alarm data including the alarm id, the id of the device where the alarm occurred, and the start and end time.

arm_id 0de	vice_id start_ti	imestamp en	d_timestamp
11	55	0	0
12	260	23	23
5	107	32	32
3	107	32	32

We classify data based on whether there is a topological structure provided between devices as the primary condition, and the number of devices as a secondary condition.

The number of devices included in each data of the finals data

Choice of Parameters

According to the above-mentioned data classification principle, we use the PTHP model in the preliminary stage, take data 1-4 (real causal diagrams have been given) as the experimental subjects, set up multiple experimental groups, and obtain the best parameters through the control variables.

		datase	et2		
delta	max_hop	penalty	max_iter	data_num	
			100		
0.05	1	AIC	150	2500	
0. 1	2	BIC	200	5000	
0.2	3		250	7500	
				10000	
	fdr	tpr	fpr	shd	gscore
delta					
0. 01	0.12	0. 9167	0.037	5	0. 7
0. 1	0. 2414	0. 9167	0.0864	9	0.
0. 2	0. 3548	0. 8333	0. 1358	15	0.
max_hop					
1	0. 303	0. 9583	0. 1235	11	0. ;
2	0. 2414	0. 9167	0.0864	9	0.
3	0. 2143	0. 9167	0. 0741	8	0. (
penalty					
AIC	0.3684	1	0. 1728	14	0.4
BIC	0. 2414	0, 9167	0, 0864	9	0.

Through full experimentation and verification on the rest of the test data, we get the following applicable standard parameters.

Data With Topology				
epsilon	1			
delta	0.01			
max hop	2			
penalty	BIC			
sample size	5000			
Data Withou	ut Topology			
Data Withou	ut Topology 1			
epsilon	1			
epsilon delta	0.01			

Problems with Data 1 And Data 2

Through the standard parameters, we got a great performance of data 3~10, but the effect of data 1 and data 2 is not good.

- ➤ After the data analysis stage, we found that data 1 and data 2 have the following characteristics:
 - The direct debugging parameter score is low, and the guess is caused by the hidden variable.
 - There are as many as hundreds of devices, which results in a large amount of data used for training and has a certain impact on the results of training.
 - After studying the topological graph, it can be found that the topological graphs of data 1 and 2 are composed of multiple connected subgraphs.

Data	Number of connected graphs			
1	53			
2	48			
3-10	1			

Partial topological graph of data 1

Processing of Data 1 And Data 2

Aiming at the data characteristics of data 1 and data 2, we adopted a priori-based processing method:

- A. we divide the topological graph into different connected subgraphs and use only partial connected subgraphs to reduce the training data.
- B. Through the PCMCl algorithm and other methods, the possible causal relationship is found as a priori.
- C. Use part of the priori causality for iteratively training the PTHP model to gradually adjust the causal diagram to improve the model effect.

- ➤In order to extract the training data, We choose the connected subgraphs that includes all alarm ids:
 - The set of device ids is composed of multiple selected connection subgraphs. In other words, there is no edge connection between the selected device ids and the unselected device ids in the topology graph, and they do not affect each other.
 - The data required to include contains all types of alarms.

Obtain training data according to the connected subgraphs

> Find the priori through the pcmci algorithm

the results of PCMCI

Obtain a priori by counting the number of alarms

Potential parent node obtained by statistics

172

> Get priori edges from the data

7192

7241

11447	1	172	107523	107523			
11526	3	1	107706	107706			-
,	-1	-1			1	.3	
11071	1	1	107204	107204		→ 5	
11081	3	1	107204	107204			

83082

83091

83082

83091

Based on Priori Training PTHP Model

- 1. First place in the preliminary and finals
- 2. The relevant code is open source

Semi-finals

得分

0.8097

得分

0.8097

0.8056

0.7984

Thanks for listening

Team members: Liu Yuequn, Huang Zhengting, Huang Xiaokai