COMPSCI 575: Combinatorics and Graph Theory

Mark C. Wilson

University of Massachusetts Amherst

Fall 2024

Lecture 7

• A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.

- A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.
- The sequence is finite if there are only finitely many nonzero values.

- A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.
- The sequence is finite if there are only finitely many nonzero values.
- The (1-variable) ordinary generating function (OGF) associated to a sequence $f = (a_0, a_1, ...)$ is the formal power series $F(z) = \sum_n a_n z^n$. We write $f \leftrightarrow F(z)$.

- A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.
- The sequence is finite if there are only finitely many nonzero values.
- The (1-variable) ordinary generating function (OGF) associated to a sequence $f = (a_0, a_1, ...)$ is the formal power series $F(z) = \sum_n a_n z^n$. We write $f \leftrightarrow F(z)$.
- For now, think of a power series as an "infinite degree polynomial" and don't worry about convergence — we will discuss this later.

- A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.
- The sequence is finite if there are only finitely many nonzero values.
- The (1-variable) ordinary generating function (OGF) associated to a sequence $f = (a_0, a_1, ...)$ is the formal power series $F(z) = \sum_n a_n z^n$. We write $f \leftrightarrow F(z)$.
- For now, think of a power series as an "infinite degree polynomial" and don't worry about convergence — we will discuss this later.
- Example: $1, 1, 1, \cdots$ has OGF $1 + z + z^2 + \cdots = 1/(1 z)$.

- A sequence of (complex) numbers is a function $f : \mathbb{N} \to \mathbb{C}$. We usually write it as $f = (a_0, a_1, \dots)$ where $a_i = f(i)$.
- The sequence is finite if there are only finitely many nonzero values.
- The (1-variable) ordinary generating function (OGF) associated to a sequence $f = (a_0, a_1, ...)$ is the formal power series $F(z) = \sum_n a_n z^n$. We write $f \leftrightarrow F(z)$.
- For now, think of a power series as an "infinite degree polynomial" and don't worry about convergence — we will discuss this later.
- Example: $1, 1, 1, \cdots$ has OGF $1 + z + z^2 + \cdots = 1/(1 z)$.
- Example: for fixed nonnegative integer n, the sequence $\binom{n}{0}, \ldots, \binom{n}{n}, \ldots$ has OGF $(1+z)^n$.

Why GFs?

 So far OGFs are just a convenient notation or data structure to describe long sequences, but soon they will be a powerful machine.

Why GFs?

- So far OGFs are just a convenient notation or data structure to describe long sequences, but soon they will be a powerful machine.
- Basic operations on sequences coming from combinatorics turn out to correspond to common algebra/calculus operations on OGFs.

Why GFs?

- So far OGFs are just a convenient notation or data structure to describe long sequences, but soon they will be a powerful machine.
- Basic operations on sequences coming from combinatorics turn out to correspond to common algebra/calculus operations on OGFs.
- The equality $\sum_n z^n = 1/(1-z)$ is purely formal at this stage but also makes sense for |z| < 1, and that allows us to use methods from calculus/mathematical analysis.

• If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:

- If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:
 - $f + g \leftrightarrow F(z) + G(z)$

- If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:
 - $ightharpoonup f + g \leftrightarrow F(z) + G(z)$
 - $ightharpoonup cf \leftrightarrow cF(z) \text{ for } c \in \mathbb{C}$

- If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:
 - $ightharpoonup f + g \leftrightarrow F(z) + G(z)$
 - $ightharpoonup cf \leftrightarrow cF(z) \text{ for } c \in \mathbb{C}$
 - (index multiply) $zF'(z) \leftrightarrow (0, a_1, 2a_2, 3a_3, \cdots)$

- If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:
 - $ightharpoonup f + g \leftrightarrow F(z) + G(z)$
 - $ightharpoonup cf \leftrightarrow cF(z) \text{ for } c \in \mathbb{C}$
 - ightharpoonup (index multiply) $zF'(z) \leftrightarrow (0, a_1, 2a_2, 3a_3, \cdots)$
 - (index divide) $\int_0^z (F(t) F(0))/t dt \leftrightarrow (0, a_1, a_2/2, a_3/3, \cdots)$

- If $f \leftrightarrow F(z), g \leftrightarrow G(z)$, then:
 - $ightharpoonup f+g\leftrightarrow F(z)+G(z)$
 - $ightharpoonup cf \leftrightarrow cF(z)$ for $c \in \mathbb{C}$
 - ightharpoonup (index multiply) $zF'(z) \leftrightarrow (0, a_1, 2a_2, 3a_3, \cdots)$
 - (index divide) $\int_0^z (F(t) F(0))/t dt \leftrightarrow (0, a_1, a_2/2, a_3/3, \cdots)$
- We can use these to compute some important special formulae.

• (right shift) Define Rf to be the sequence $(0, a_0, a_1, a_2, ...)$. Then $Rf \leftrightarrow zF(z) = \sum_n a_{n-1}z^n$.

- (right shift) Define Rf to be the sequence $(0, a_0, a_1, a_2, ...)$. Then $Rf \leftrightarrow zF(z) = \sum_n a_{n-1}z^n$.
- (left shift) Define Lf to be the sequence $(a_1, a_2, ...)$. Then $Lf \leftrightarrow (F(z) F(0))/z = \sum_n a_{n+1} z^n$.

- (right shift) Define Rf to be the sequence $(0, a_0, a_1, a_2, ...)$. Then $Rf \leftrightarrow zF(z) = \sum_n a_{n-1}z^n$.
- (left shift) Define Lf to be the sequence $(a_1, a_2, ...)$. Then $Lf \leftrightarrow (F(z) F(0))/z = \sum_n a_{n+1} z^n$.
- Define the convolution $f \star g$ of sequences $(a_0, a_1, ...)$ and $(b_0, b_1, ...)$ by

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

Then $f \star g \leftrightarrow F(z)G(z)$.

- (right shift) Define Rf to be the sequence $(0, a_0, a_1, a_2, ...)$. Then $Rf \leftrightarrow zF(z) = \sum_n a_{n-1}z^n$.
- (left shift) Define Lf to be the sequence $(a_1, a_2, ...)$. Then $Lf \leftrightarrow (F(z) F(0))/z = \sum_n a_{n+1} z^n$.
- Define the convolution $f \star g$ of sequences $(a_0, a_1, ...)$ and $(b_0, b_1, ...)$ by

$$c_n := \sum_{k=0}^n a_k b_{n-k}.$$

Then $f \star g \leftrightarrow F(z)G(z)$.

• In particular, using $G(z) = (1-z)^{-1}$ we see that partial sums $\sum_{k=0}^{n} a_k$ correspond to F(z)/(1-z).

Some important OGFs

• Starting with $\sum_{n\geq 0} z^n = (1-z)^{-1}$, we get

$$\sum_{n\geq 0} nz^n = z(1-z)^{-2}$$

and in general

$$\sum_{n>k} \binom{n}{k} z^n = \frac{z^k}{(1-z)^{k+1}}.$$

Some important OGFs

• Starting with $\sum_{n\geq 0} z^n = (1-z)^{-1}$, we get

$$\sum_{n>0} nz^n = z(1-z)^{-2}$$

and in general

$$\sum_{n>k} \binom{n}{k} z^n = \frac{z^k}{(1-z)^{k+1}}.$$

Also

$$\sum_{n\geq 1} z^n/n = -\log(1-z)$$

Some important OGFs

• Starting with $\sum_{n\geq 0} z^n = (1-z)^{-1}$, we get

$$\sum_{n} nz^n = z(1-z)^{-2}$$

and in general

$$\sum_{n>k} \binom{n}{k} z^n = \frac{z^k}{(1-z)^{k+1}}.$$

Also

$$\sum_{n} z^n/n = -\log(1-z)$$

Thus

$$\sum_{n \ge 1} H_n z^n = -\log(1-z)/(1-z)$$

where $H_n := \sum_{k=1}^n 1/k$ is the *n*th harmonic number.

• Example (Fibonacci): $a_0 = 0, a_1 = 1; a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.

- Example (Fibonacci): $a_0 = 0$, $a_1 = 1$; $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.
- Multiply $a_n = a_{n-1} + a_{n-2}$ by z^n .

- Example (Fibonacci): $a_0 = 0$, $a_1 = 1$; $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.
- Multiply $a_n = a_{n-1} + a_{n-2}$ by z^n .
- Let $F(z) = \sum_n a_n z^n$. Summing the above over all $n \ge 2$, we get $F(z) z = zF(z) + z^2F(z)$.

- Example (Fibonacci): $a_0 = 0$, $a_1 = 1$; $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.
- Multiply $a_n = a_{n-1} + a_{n-2}$ by z^n .
- Let $F(z) = \sum_n a_n z^n$. Summing the above over all $n \ge 2$, we get $F(z) z = zF(z) + z^2F(z)$.
- NOTE: the −z term, which is crucial, comes from the boundary conditions.

- Example (Fibonacci): $a_0 = 0$, $a_1 = 1$; $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.
- Multiply $a_n = a_{n-1} + a_{n-2}$ by z^n .
- Let $F(z) = \sum_n a_n z^n$. Summing the above over all $n \ge 2$, we get $F(z) z = zF(z) + z^2F(z)$.
- NOTE: the −z term, which is crucial, comes from the boundary conditions.
- This gives $F(z) = z/(1-z-z^2)$.

- Example (Fibonacci): $a_0 = 0$, $a_1 = 1$; $a_n = a_{n-1} + a_{n-2}$ for $n \ge 2$.
- Multiply $a_n = a_{n-1} + a_{n-2}$ by z^n .
- Let $F(z) = \sum_n a_n z^n$. Summing the above over all $n \ge 2$, we get $F(z) z = zF(z) + z^2F(z)$.
- NOTE: the -z term, which is crucial, comes from the boundary conditions.
- This gives $F(z) = z/(1-z-z^2)$.
- Note that F is a rational function.

• If we want an explicit formula, we can expand F(z) using partial fractions.

- If we want an explicit formula, we can expand F(z) using partial fractions.
- Let $\theta = (1 + \sqrt{5})/2$. Then by partial fractions

$$F(z) = \frac{1/\sqrt{5}}{1-\theta z} + \frac{1/\sqrt{5}}{1+\theta^{-1}z}.$$

- If we want an explicit formula, we can expand F(z) using partial fractions.
- Let $\theta = (1 + \sqrt{5})/2$. Then by partial fractions

$$F(z) = \frac{1/\sqrt{5}}{1-\theta z} + \frac{1/\sqrt{5}}{1+\theta^{-1}z}.$$

• Thus since $\sum_{n} z^{n} = 1/(1-z)$, we conclude that

$$a_n = \frac{1}{\sqrt{5}} \left[\theta^n - (-1)^n \theta^{-n} \right].$$

- If we want an explicit formula, we can expand F(z) using partial fractions.
- Let $\theta = (1 + \sqrt{5})/2$. Then by partial fractions

$$F(z) = \frac{1/\sqrt{5}}{1-\theta z} + \frac{1/\sqrt{5}}{1+\theta^{-1}z}.$$

• Thus since $\sum_{n} z^{n} = 1/(1-z)$, we conclude that

$$a_n = \frac{1}{\sqrt{5}} \left[\theta^n - (-1)^n \theta^{-n} \right].$$

 This procedure can be difficult in general, because factoring large degree polynomials over C requires numerical approximations, but in theory it always works.

- If we want an explicit formula, we can expand F(z) using partial fractions.
- Let $\theta = (1 + \sqrt{5})/2$. Then by partial fractions

$$F(z) = \frac{1/\sqrt{5}}{1-\theta z} + \frac{1/\sqrt{5}}{1+\theta^{-1}z}.$$

• Thus since $\sum_{n} z^{n} = 1/(1-z)$, we conclude that

$$a_n = \frac{1}{\sqrt{5}} \left[\theta^n - (-1)^n \theta^{-n} \right].$$

- This procedure can be difficult in general, because factoring large degree polynomials over C requires numerical approximations, but in theory it always works.
- Note that a problem involving natural numbers leads to an OGF with irrational numbers!

• Example: $f(n) = \sum_{k=0}^{n} {k \choose n-k}$ (where as usual ${m \choose l}$ is defined to be zero unless $0 \le l \le m$).

- Example: $f(n) = \sum_{k=0}^{n} {k \choose n-k}$ (where as usual ${m \choose l}$ is defined to be zero unless $0 \le l \le m$).
- We introduce the generating function

$$F(z) = \sum_{n\geq 0} f(n)z^n = \sum_{n\geq 0} \sum_{k\geq 0} {k \choose n-k} z^n.$$

- Example: $f(n) = \sum_{k=0}^{n} {k \choose n-k}$ (where as usual ${m \choose l}$ is defined to be zero unless $0 \le l \le m$).
- We introduce the generating function

$$F(z) = \sum_{n\geq 0} f(n)z^n = \sum_{n\geq 0} \sum_{k\geq 0} {k \choose n-k} z^n.$$

Reverse the order of summation to obtain

$$F(z) = \sum_{k>0} \sum_{n>k} z^n \binom{k}{n-k}.$$

- Example: $f(n) = \sum_{k=0}^{n} {k \choose n-k}$ (where as usual ${m \choose l}$ is defined to be zero unless $0 \le l \le m$).
- We introduce the generating function

$$F(z) = \sum_{n\geq 0} f(n)z^n = \sum_{n\geq 0} \sum_{k\geq 0} {k \choose n-k} z^n.$$

Reverse the order of summation to obtain

$$F(z) = \sum_{k>0} \sum_{n>k} z^n \binom{k}{n-k}.$$

• Change variable by I = n - k to get

$$F(z) = \sum_{k>0} z^k \sum_{l>0} z^l \binom{k}{l} = \sum_{k>0} z^k (1+z)^k = \frac{1}{1-z(1+z)}.$$