UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE INGENIERÍA

Departamento de Ingeniería Informática

Estudio de eficiencia hospitalaria de hospitales públicos chilenos usando estrategia basada en dominancia de Pareto

Gabriel Elías Gaete Lucero

Profesor guía: Manuel Villalobos-Cid

Tesis de grado presentada en conformidad a los requisitos para obtener el título de Ingeniero de Ejecución en informática

Santiago – Chile 2020

© Gabriel Elías Gaete Lucero , 2020
 Algunos derechos reservados. Esta obra está bajo una Licencia Creative Commons
Atribución-Chile 3.0. Sus condiciones de uso pueden ser revisadas en:
http://creativecommons.org/licenses/by/3.0/cl/.

RESUMEN

Uno de los pilares de cualquier país debe ser su sistema de salud. Ya sea que se hable de sistema público o privado, indudablemente se necesitan recursos: medicamentos, personal médico, salas de hospitalización, etc. Sin embargo, considerando que éstos son escasos, ¿se estará haciendo un uso eficiente de éstos? Para responder esta pregunta, este trabajo se pone por objetivo el efectuar un diagnóstico de la eficiencia técnica de los hospitales públicos en Chile durante el periodo 2014-2018, mediante el uso de una estrategia basada en dominancias de Pareto. Para esto, se propone el cálculo de la eficiencia técnica sobre cada hospital, considerando tanto una agrupación propuesta por el MINSAL, como también una clasificación con base a su casuística. Para cada año, se determinan las mejores clasificaciones encontradas utilizando diferentes técnicas de clusterización, como también al uso de diversos índices de evaluación de clústers. Luego, se calcula tanto la eficiencia técnica sobre esta agrupación, como sobre la agrupación propuesta por el MINSAL. Es con base a los resultados obtenidos en ese proceso, que luego se determina qué variables pueden ser consideradas determinantes de la eficiencia. Cada uno de los resultados son presentados de manera anual, de forma que se puede realizar un análisis sobre la evolución de cada hospital y de cada uno de los grupos evaluados. Por último, esta investigación no solo permite generar un ranking de eficiencia hospitalaria, sino que también permite concluir sobre cómo podría mejorar la eficiencia de cada hospital, ya sea disminuyendo gastos elevados, o incluso con la creación de nuevas políticas públicas enfocadas en las variables determinantes de la eficiencia.

Palabras Claves: hospitales públicos chilenos; eficiencia técnica; casuística; Pareto; técnicas de agrupamiento.

AGRADECIMIENTOS

No podría entregar este trabajo sin antes agradecer a mi familia. A mis abuelos, Ricardo, Mercedes, Gabriel y Cecilia, pero en especial a mis padres, Miriam Lucero y Gabriel Gaete. Agradezco a mi hermano, Oscar, por el tiempo que he sacrificado con él por llevar a cabo este trabajo. Gracias por todo su esfuerzo y apoyo, si no fuera por ustedes, no estaría aquí.

Agradezco también a mis amigos, tanto a los que he conocido durante la universidad, como a aquellos que han estado conmigo desde el colegio. Marco, Daniel, gracias por sus consejos, por escucharme cuando los necesito.

Agradezco a quienes han estado conmigo virtualmente durante la pandemia, han sido un importante apoyo. Bastián, Vicente, muchas gracias por todas las veces que hemos compartido "proyectos", que a veces no son más que una excusa para conversar. En especial a ti, Leah, sabes que he aprendido mucho contigo, y si nombrara todo lo que tengo que agradecerte, necesitaría más de una página. Tengo pendiente ese viaje de 10.200kms.

Por último, pero no menos importante, agradezco a cada uno de los profesores que tuve a lo largo de este camino, en especial a Manuel Villalobos, mi profesor guía. Tiene un gusto especial el trabajar con alguien que tiene pasión por lo que hace. Gracias por su confianza en mi, y por la paciencia de aguantar correos y mensajes a las 3am un día sábado.

TABLA DE CONTENIDO

1	Intro	oducció						1
	1.1	Antece	edentes y motivación					1
	1.2	Descri	ipción del problema					3
	1.3	Soluci	ón propuesta					3
	1.4	Objetiv	vos y alcance del proyecto	 				4
		1.4.1	Objetivo general	 				4
		1.4.2	Objetivos específicos					4
		1.4.3	Alcances	 				5
	1.5	Metod	ología y herramientas utilizadas	 				5
		1.5.1	Metodología	 				5
		1.5.2	Primera etapa: organización de datos y definición de variables .					6
		1.5.3	Segunda etapa: procesamiento de datos					6
		1.5.4	Tercera etapa: análisis de resultados					7
		1.5.5	Cuarta etapa: generación de conocimiento					7
		1.5.6	Herramientas de desarrollo	 				7
	1.6		ización del documento					7
		- 3						
2	Ante	eceden	tes					9
	2.1	Marco	Teórico	 				9
		2.1.1	Estudios previos	 				9
		2.1.2	Métodos para el cálculo de la eficiencia técnica	 				11
			2.1.2.1 Aproximación de Fronteras Estocásticas (SFA)					11
			2.1.2.2 Análisis Envolvente de Datos (DEA)	 				11
			2.1.2.3 Variante Malmquist-DEA					12
			2.1.2.4 Formulaciones matemáticas					12
		2.1.3	Enfoque utilizado					13
		2.1.4	Matrices de distancia					14
		2.1.5	Métricas de distancia					14
			2.1.5.1 Distancia euclideana					14
			2.1.5.2 Distancia con base a correlación centrada de Pearson					15
			2.1.5.3 Distancia Manhattan					15
			2.1.5.4 Distancia Canberra					16
		2.1.6	Técnicas de clustering					16
			2.1.6.1 Método de particiones					17
			2.1.6.2 Agrupación jerárquica					17
			2.1.6.3 Agrupación difusa					
			2.1.6.4 Agrupación basada en densidad					
			2.1.6.5 Agrupación basada en modelos					
			2.1.6.6 Agrupación basada en grafos					
		2.1.7	Métricas de evaluación de clustering					
			2.1.7.1 Índice de Silhouette					19
			2.1.7.2 Índice de Ball-Hall					20
			2.1.7.2 Indice de Dail-Hail					20
		2.1.8	Modelos de regresión					21
		2.1.0	2.1.8.1 Modelo Tobit					21
			2.1.8.2 Regresión Lineal					22
			Z.1.0.Z Negresion Linear	 •	٠.	•	•	
3	Des	arrollo	de la investigación					23
•			ización y definición de variables					
	J.,	-	Descripción del conjunto de datos	 		•		23

	3.2	Proces	samiento de datos
		3.2.1	Pre-categorización de hospitales
		3.2.2	Categorización de hospitales
		3.2.3	Aplicación de DEA y Malmquist-DEA
		3.2.4	Análisis de determinantes
4	Doc	ultados	3
4			aciones MINSAL
	4.1		Análisis de correlación
			Resultados eficiencia técnica
	42		ación en base a distancias
			Análisis de correlación
			Resultados eficiencia técnica
	4.3		s de determinantes
			Año 2014
			4.3.1.1 Regresion con modelo Tobit
			4.3.1.2 Regresión lineal
		4.3.2	Año 2015
			4.3.2.1 Regresión con modelo Tobit
			4.3.2.2 Regresión lineal
		4.3.3	Año 2016
			4.3.3.1 Regresión con modelo Tobit
		404	4.3.3.2 Regresión lineal
		4.3.4	Año 2017
			4.3.4.1 Regresión con modelo Tobit
		4.3.5	Año 2018
		4.5.5	4.3.5.1 Regresión con modelo Tobit
			4.3.5.2 Regresión lineal
	4.4	Malmo	juist 2014-2018
			Análisis de correlación
			Resultados índice de Malmquist
		4.4.3	Resultados índice de cambio de eficiencia
_			
5		cusión	4
	5.1		014
		5.1.1	MINSAL: grupo 1
		5.1.2 5.1.3	MINSAL: grupo 2
		5.1.3	MINSAL: grupo 4
		5.1.5	MINSAL: grupo 5
	5.2	Año 2	9 1
	O	5.2.1	MINSAL: grupo 1
		5.2.2	MINSAL: grupo 2
		5.2.3	MINSAL: grupo 3
		5.2.4	MINSAL: grupo 4
		5.2.5	MINSAL: grupo 5
	5.3	Año 2	016
		5.3.1	MINSAL: grupo 1
		5.3.2	MINSAL: grupo 2
		5.3.3	MINSAL: grupo 3
		5.3.4	MINSAL: grupo 4
		5.3.5	MINSAL: grupo 5
	5.4	Año 2	017

		5.4.1 MINSAL: grupo 1	59				
		5.4.2 MINSAL: grupo 2	60				
		5.4.3 MINSAL: grupo 3	60				
		5.4.4 MINSAL: grupo 4	61				
		5.4.5 MINSAL: grupo 5	61				
	5.5	Año 2018	62				
		5.5.1 MINSAL: grupo 1	63				
		5.5.2 MINSAL: grupo 2	63				
		5.5.3 MINSAL: grupo 3	64				
		5.5.4 MINSAL: grupo 4	64				
		5.5.5 MINSAL: grupo 5	64				
	5.6	Malmquist-DEA 2014-2018	66				
		5.6.1 Índice de productividad Malmquist	66				
		5.6.2 Índice de eficiencia periodo 2014-2018	67				
6		nclusiones	69				
	6.1	Objetivos	69				
	6.1.1 Objetivos específicos						
		6.1.1.1 Organizar los datos de FONASA	69				
	6.1.1.2 Agrupar hospitales con base a la casuística						
	, , ,						
			71				
		6.1.1.5 Generar conocimiento en base a resultados	71				
	6.0	6.1.2 Objetivo general	72				
	0.2	Trabajos futuros	73 74				
		6.2.1 Observaciones finales	74				
GI	osari	io	75				
•		•	. •				
Referencias bibliográficas 70							
Αı	nexos	S	79				
A Portada artículo Jornadas Chilenas de la Computación 2021 79							
A Portada artículo Jornadas Chilenas de la Computación 2021 7							
Αį	Apéndices 80						
Α	Res	ultados	80				
	A.1 Descripción de archivos						

ÍNDICE DE TABLAS

3.1 3.2	Cantidad de hospitales por categoría en propuesta MINSAL	
4.1	Resultados eficiencia para agrupaciones MINSAL (parte 1)	30
4.2	Resultados eficiencia para agrupaciones MINSAL (parte 2)	
4.3	Resultados eficiencia para agrupaciones MINSAL (parte 3)	
4.4	Resultados eficiencia para agrupaciones en base a distancias (parte 1)	35
4.5	Resultados eficiencia para agrupaciones en base a distancias (parte 2)	36
4.6	Resultados eficiencia para agrupaciones en base a distancias (parte 3)	37
4.7	Valores para la regresión utilizando un modelo Tobit	
4.8	Valores para la regresión lineal	
4.9	Valores para la regresión utilizando un modelo Tobit	
4.10	Valores para la regresión lineal	
4.11	Valores para la regresión utilizando un modelo Tobit	
4.12	Valores para la regresión lineal	
4.13	Valores para la regresión utilizando un modelo Tobit	
4.14	Valores para la regresión lineal	
4.15	Valores para la regresión utilizando un modelo Tobit	
4.16		42
4.17	Correlación del índice Malmquist para el periodo 2014-2018	
4.18 4.19	Correlación de la eficiencia técnica para el periodo 2014-2018	
4.19	Resultados Malmquist para el periodo 2014-2018 (Parte 1)	46
4.21	Resultados Malmquist para el periodo 2014-2018 (Parte 2)	40
4.21		46
4.22	Resultados en el cambio de la eficiencia técnica para el periodo 2014-2018. (Parte	47
5.1	Eficiencia comparativa en hospitales del grupo 1 MINSAL	48
5.2	Eficiencia comparativa en hospitales del grupo 2 MINSAL	
5.3	Eficiencia comparativa en hospitales del grupo 3 MINSAL	49
5.4	Eficiencia comparativa en hospitales del grupo 4 MINSAL	
5.5	Eficiencia comparativa en hospitales del grupo 5 MINSAL	
5.6	Eficiencia comparativa en hospitales del grupo 1 MINSAL	
5.7	Eficiencia comparativa en hospitales del grupo 2 MINSAL	
5.8	Eficiencia comparativa en hospitales del grupo 3 MINSAL	
5.9	Eficiencia comparativa en hospitales del grupo 4 MINSAL	
5.10	Eficiencia comparativa en hospitales del grupo 5 MINSAL	
5.11	1	55
5.12 5.13	Eficiencia comparativa en hospitales del grupo 2 MINSAL	
5.13	, , , , , , , , , , , , , , , , , , , ,	
5.14	, , , , , , , , , , , , , , , , , , , ,	57
(1)	Ltigiongia comparativa on hoggitalog dal aruna E MINICAI	57
	1	57
5.16	Eficiencia comparativa en hospitales del grupo 1 MINSAL	59
5.16 5.17	Eficiencia comparativa en hospitales del grupo 1 MINSAL	59 60
5.16 5.17 5.18	Eficiencia comparativa en hospitales del grupo 1 MINSAL	59 60 60
5.16 5.17 5.18 5.19	Eficiencia comparativa en hospitales del grupo 1 MINSAL	59 60 60 61
5.16 5.17 5.18	Eficiencia comparativa en hospitales del grupo 1 MINSAL	59 60 60

5.23	Eficiencia comparativa en hospitales del grupo 3 MINSAL	64
5.24	Eficiencia comparativa en hospitales del grupo 4 MINSAL	64
5.25	Eficiencia comparativa en hospitales del grupo 5 MINSAL	64
5.26	Indice Malmquist comparativo periodo 2014-2018	66
5.27	Indice de eficiencia comparativo periodo 2014-2018	67

ÍNDICE DE ILUSTRACIONES

1.1	Gastos invertidos en salud en relación al Producto Interno Bruto	2
1.2	Metodología a aplicar	(
4.1	Correlación agrupación MINSAL, año 2014	28
4.2	Correlaciones agrupación MINSAL, año 2015 y 2016	29
4.3	Correlaciones agrupación MINSAL, año 2017 y 2018	29
4.4	Correlación para la mejor clusterización encontrada, año 2014	33
4.5	Correlaciones agrupación basada en distancias, año 2015 y 2016	33
4.6	Correlaciones agrupación basada en distancias, año 2017 y 2018	34
4.7	Correlación del índice Malmquist para el periodo 2014-2018	43
4.8	Correlación de la eficiencia técnica para el periodo 2014-2018	44
A.1	Portada artículo Jornadas Chilenas de la computación 2021	79

CAPÍTULO 1. INTRODUCCIÓN

1.1 ANTECEDENTES Y MOTIVACIÓN

La salud es un derecho fundamental garantizado en el artículo 25 de la declaración de los derechos humanos (Asamblea General de las Naciones Unidas, 1948), y que en Chile, luego de la reforma en el año 2000, se provee mediante un sistema de salud mixto, es decir, público y privado. Según una encuesta realizada (Maipo Salud, 2018), alrededor de un 80% de la población pertenece al sistema público de salud, mientras que el 20% restante se distribuye entre quienes están afiliados a una ISAPRE (sistema privado), y quienes están acogidos a los beneficios de las Fuerzas Armadas. Además de esto, según un estudio publicado por la Super Intendencia de Salud, en conjunto con DataVoz (Valenzuela, P., Pezoa, M., 2015), se concluye que un 92% de la población usuario del sistema de salud considera que se requieren cambios fundamentales. Esta percepción es compartida por usuarios de FONASA como de ISAPRE.

Desde el año 2020 y durante 2021 el mundo se encuentra en un estado de pandemia, donde ha quedado aún más de manifiesto que el sistema de salud, tanto a nivel mundial, como en particular el caso chileno, necesitan de una mayor inyección de recursos, acompañado de una buena gestión de éstos.

Según (Henríquez, 2020), el gasto público en Chile destinado a la salud ha ido incrementando sostenidamente los últimos años, algo que también se refleja en la figura 1.1 al establecer la relación entre el gasto invertido en salud y el producto interno bruto. A pesar de esto, la producción hospitalaria se ha mantenido estancada durante la última década. Esto trae como consecuencia que el gasto por egreso hospitalario se ha más que duplicado en una década (Henríquez, 2020). El diagnóstico preliminar apunta a que los presupuestos no se adaptan a las realidades del gasto operacional efectivo, lo cual genera una deuda hospitalaria. Sin embargo, ¿cuánto de esto está explicado por una mala estimación presupuestaria, y cuánto por la ineficiencia de las instituciones?

Entendiendo que los recursos son limitados, es que toma mayor fuerza el saber cuándo una institución está malgastándolos, como indica la *World Health Organization*, en un estudio publicado el 2010, donde se afirma que se podría ahorrar entre un 20% y un 40% de los actuales gastos destinados a salud (World Health Organization, 2010). Entre las causales más comunes de este malgasto se encuentra la contratación deficiente de servicios y personal; el uso inadecuado de insumos, medicamentos y dispositivos médicos; sobrestimación de las estancias hospitalarias, reintervenciones y errores de praxis clínicas; e inclusive, eventos relacionados con corrupción y fraude (Hamidi & Akinci, 2016; Nassar et al., 2020).

De acuerdo a las estadísticas presentadas por la Organización para la Cooperación y el Desarrollo Económico (OCDE) (u *OECD*, por sus siglas en inglés) (The Organization for Economic Co-operation and Development, 2020), considerando aportes públicos y privados, a pesar de que Chile sigue aumentando su inversión en salud, y que el gasto total (tomando en cuenta la inversión pública y privada) supera al promedio *OCDE* desde el 2017, la inversión pública sigue siendo una de más bajas entre los países pertenecientes a esta organización (The Organization for Economic Co-operation and Development, 2015). Es importante mencionar que el problema no es que el gasto privado sea mayor al gasto público, sino que éste último además de ser pequeño en comparación a países OCDE, no está siendo del todo eficiente.

Figura 1.1: Gastos invertidos en salud en relación al Producto Interno Bruto. Fuente: Organización para la Cooperación y el Desarrollo Económico. Elaboración propia, (2020)

Si los recursos destinados a salud se siguen malgastando, no sólo se verá afectada la economía de cada país, al invertir en un servicio que no rinde como se espera, sino que también se verán afectadas las vidas humanas, con un sistema de salud frágil, por ejemplo, en circunstancias como el contexto sanitario actual.

Esta investigación apunta a determinar y comparar la **eficiencia técnica** de los hospitales públicos chilenos durante los últimos años, entendiendo a la eficiencia técnica como la medida que permite reflejar si los recursos están siendo explotados al máximo de su capacidad productiva, es decir, que no haya capacidad ociosa de los factores productivos, mediante el uso de **casuísticas**, siendo este un término que hace referencia a un grupo de pacientes que requieren

exámenes, procedimientos y recursos similares, dentro de una misma entidad hospitalaria. Es decir, la casuística corresponde a la tipología de pacientes que atiende una institución de salud.

1.2 DESCRIPCIÓN DEL PROBLEMA

Entendiendo que los recursos son limitados en las instituciones públicas de salud, y que como señala la Organización Mundial de la Salud (World Health Organization, 2010) se podrían ahorrar entre el 20% y el 40% del gasto invertido en esta área debido a ineficiencias, es por ello que es fundamental el conocer la eficiencia técnica de cada hospital público chileno. Considerando esto, se formulan las siguientes preguntas de investigación:

- 1. ¿Cuál es la eficiencia técnica de los hospitales públicos de nuestro país durante el último quinquenio?
- 2. ¿Existe una relación entre la eficiencia técnica de los hospitales y criterios sanitarios de calidad, como por ejemplo, el índice de letalidad, cantidad de egresos, entre otros?

1.3 SOLUCIÓN PROPUESTA

La solución propuesta busca realizar un análisis comparativo de la eficiencia técnica de los distintos establecimientos que componen a la red pública de salud chilena, utilizando los datos entregados por FONASA, comprendiendo los años 2014-2018, extendiendo el trabajo de (Villalobos-Cid et al., 2016), de tal forma que se pueda contribuir entregando un estudio a modo de revisión de la eficiencia técnica hospitalaria durante los últimos años.

Con los datos mencionados, y con base a lo realizado por (Villalobos-Cid et al., 2016), se determinarán las variables de entrada y salida, a las cuales se les aplicarán las técnicas DEA y Malmquist-DEA, con tal de obtener la eficiencia técnica por año, como también de forma dinámica, comprendiendo un rango de años.

Se utilizan técnicas de minería de datos y análisis estadístico para la investigación y procesamiento de estos datos. La solución también abarcará los conceptos de bases de datos, algoritmos, y optimizaciones multi-objetivo, con el fin de posteriormente aplicar la solución en el área de la administración hospitalaria y la ingeniería clínica.

El principal propósito de la solución es evaluar la eficiencia técnica de los hospitales públicos chilenos de la red asistencial, considerando un análisis dinámico que contemple

diferentes periodos de tiempo, tomando como referencia lo realizado por (Villalobos-Cid et al., 2016). Además, ésta solución debe permitir evaluar las eficiencias con base en diferentes indicadores de calidad, tomando como base el trabajo de (Santelices C et al., 2013), todo esto con tal de poder generar un estudio que sirva como revisión de los últimos años, y que además ayude a determinar qué hospitales pueden mejorar su administración de recursos.

1.4 OBJETIVOS Y ALCANCE DEL PROYECTO

1.4.1 Objetivo general

Evaluar la eficiencia técnica de los hospitales públicos chilenos, por medio de un modelo basado en dominancias de Pareto, que involucre diferentes periodos de tiempo y considere distintos indicadores de calidad asistenciales.

1.4.2 Objetivos específicos

- Organizar los distintos datos proporcionados por FONASA dentro de estructuras de datos que permitan su manejo, disponiendo de las variables tanto de entrada y salida a utilizar, como también aquellas a considerar criterios de calidad.
- 2. Agrupar los hospitales según su casuística.
- 3. Evaluar la eficiencia técnica de los hospitales tanto para cada uno de los años, como para un rango de años.
- Evaluar la relación entre la eficiencia técnica de los hospitales, con las variables identificadas como criterios de calidad.
- Analizar los resultados obtenidos a lo largo de cada una de las etapas, con el fin de generar conocimiento a partir de estos.

1.4.3 Alcances

Con tal de efectuar un análisis dinámico, es que las técnicas descritas serán aplicadas a los años 2014-2018, considerando cada año por si sólo, como también distintos periodos comprendidos entre éstos años, además siempre considerando solamente a los centros hospitalarios pertenecientes a la red de salud pública chilena. Todo esto se lleva a cabo utilizando librerías y funciones existentes en el lenguaje de programación R, y extendiendo el trabajo de (Villalobos-Cid et al., 2016) para los años mencionados.

1.5 METODOLOGÍA Y HERRAMIENTAS UTILIZADAS

1.5.1 Metodología

Al ser este trabajo una investigación de tipo evaluativa (Sanca Tinta, 2011), se utiliza la metodología DEA tradicional (Villalobos-Cid et al., 2016; Paço, 2013; Karsak & Karadayi, 2017) (Fontalvo et al., 2019). Esta dispone de 4 etapas no secuenciales. En la **primera etapa**, se realiza una organización de los datos financieros y hospitalarios disponibles por (Carlier, 2019), los cuales son utilizados como entradas y salidas, siguiendo las definiciones propuestas por (Villalobos-Cid et al., 2016). La **segunda etapa** involucra procesamiento, en donde se trabaja sobre los datos organizados tanto para generar la agrupación de hospitales, como para realizar el cálculo de la eficiencia técnica. La **tercera etapa** consiste en una fase de análisis de resultados, evaluando los criterios de calidad desde una perspectiva de las ciencias de la computación y de conocimiento del problema, según la metodología propuesta por (Santelices C et al., 2013), que establece una regresión con modelo Tobit. Por último, la **cuarta etapa** permite la generación de conocimiento mediante la escritura de la memoria. De esta forma, las etapas podrían ser representadas por la siguiente figura:

Figura 1.2: Metodología a aplicar. Fuente: Elaboración propia, (2020)

1.5.2 Primera etapa: organización de datos y definición de variables

En primer lugar, se organizan los datos proporcionados por FONASA dentro de matrices anuales para cada uno de los años mencionados en los alcances de este estudio. Tanto las variables de entrada como las de salida están dadas por el trabajo de (Villalobos-Cid et al., 2016). Es en esta etapa que se definen los criterios de calidad.

1.5.3 Segunda etapa: procesamiento de datos

En primer lugar, se realiza la agrupación de los hospitales mediante su casuística usando las variables de producción hospitalaria. Se aplican diferentes técnicas de clusterización, y mediante una evaluación de la calidad de ese agrupamiento, se selecciona la técnica que permita generar la mejor agrupación de hospitales.

Teniendo la agrupación de hospitales mediante su casuística, y con las matrices anuales realizadas en la primera etapa, se aplica la técnica DEA para cada uno de los años, desde 2014 a 2018, ambos incluidos, para determinar la eficiencia técnica para cada uno de los años, replicando el trabajo de (Villalobos-Cid et al., 2016). Luego, se aplica la técnica Malmquist-DEA para todos los años como conjunto.

1.5.4 Tercera etapa: análisis de resultados

Se evaluan los resultados obtenidos en la etapa previa mediante un análisis de fronteras de Pareto, con el objetivo de llevar a cabo una evaluación de la eficiencia técnica hospitalaria.

Además, se realiza un análisis de los resultados obtenidos, determinando la relación entre la eficiencia técnica y las variables utilizadas como criterio de calidad en los hospitales. Se replica el trabajo de (Santelices C et al., 2013).

1.5.5 Cuarta etapa: generación de conocimiento

Para la generación de conocimiento se toma en cuenta cada uno de los resultados generados en las etapas previas. El realizar conclusiones sobre estos análisis permite generar esta memoria a modo de reporte con el conocimiento necesario, y que posibilitará concluir sobre la eficiencia técnica de cada uno de los hospitales.

1.5.6 Herramientas de desarrollo

- R, en su versión 4.0.2. Lenguaje de programación con enfoque en análisis estadístico.
- GitHub para el control de versiones del código fuente.
- Sublime Text Build 3211, para el desarrollo de la solución.
- Mac Os Catalina, sistema operativo de 64 bits.

1.6 ORGANIZACIÓN DEL DOCUMENTO

En el capítulo 2 se revisan los conceptos generales de las técnicas de cálculo de eficiencia técnica, los distintos propósitos y fundamentos teóricos de estos. En el capítulo 3 se detalla en mayor profundidad las tareas realizadas en cada una de las etapas de la metodología. El capítulo 4 presenta los resultados de cada una de las etapas, orientados a permitir un análisis y discusión en el capítulo 5. Por último, el capítulo 6 presenta las conclusiones obtenidas mediante la investigación, incorporando además trabajos a futuro.

Los resultados completos de la investigación para cada una de las etapas descritas en el capítulo 3 se podrán encontrar en cualquiera de las siguientes direcciones:

- https://drive.google.com/drive/folders/12LJzsAaf9Wib1TTloPFtVmbZzZJpY2WC?usp=sharing
- $\bullet \ \mathtt{https://github.com/gaelgalu/ResultadosMemoria}$

CAPÍTULO 2. ANTECEDENTES

El objetivo de este capítulo es establecer un marco referencial de los estudios realizados en el ámbito de la eficiencia hospitalaria. Se detalla algunos de los planteamientos realizados por investigadores tanto a nivel mundial, como también de estudios realizados en nuestro país. Adicionalmente, se establecen ciertos fundamentos teóricos que ayudarán al lector a comprender el estudio llevado a cabo.

2.1 MARCO TEÓRICO

2.1.1 Estudios previos

Dentro del ámbito de gestión hospitalaria, se han realizando diferentes estudios e investigaciones evaluando y comparando distintos indicadores con tal de analizar establecimientos de salud públicos. Uno de estos indicadores ha sido la medición de la **eficiencia técnica**, definida como la habilidad de obtener el máximo producto posible, dados una canasta de factores de producción y un nivel de tecnología determinados (Coll & Blasco, 2006). Con la definición anterior, se desprende la necesidad de determinar tanto un producto, como los factores de producción. Estos factores productivos serán considerados *entradas*, mientras que los productos serán considerados *salidas*.

Considerando que la salud puede ser vista como servicio, y a los establecimientos hospitalarios como prestadores de éste (Barahona-Urbina, 2011), los productos pueden ser pacientes egresados, intervenciones quirúrgicas, días/camas ocupados, entre otros, mientras que por otro lado, los factores de producción pueden ser el uso de camas hospitalarias, personal, gasto financiero, entre otros recursos (Kohl et al., 2018).

Kohl et al., durante el año 2018, realizaron un estudio llamado *The use of Data Envelopment Analysis (DEA) in healthcare with a focus on hospitals*, en donde se analizan 262 estudios sobre las aplicaciones de la técnica DEA con un enfoque en hospitales. Este estudio toma especial relevancia porque termina por hacer una revisión de los últimos 10 años anteriores a la investigación (comprendiendo el periodo entre 2005 y 2016), teniendo en cuenta además, los propósitos de investigación de éstas publicaciones.

Mirando la realidad nacional, en el año 2011 Barahona-Urbina realizó un Análisis Envolvente de Datos (*DEA*, por sus siglas en inglés), considerando como variables de entrada la información relacionada con médicos, enfermeras, matronas, camas disponibles, y como variable

de salida, los egresos hospitalarios. Esta última variable asume que el objetivo de cada centro de salud, es producir egresos hospitalarios. El trabajo de Barahona-Urbina se circunscribe a la actividad hospitalaria, por lo que los aspectos relacionados con la actividad ambulatoria, tanto en resultados como en insumos, fueron excluídos. Los datos utilizados fueron recopilados desde el Departamento de Estadísticas e Información de la Salud (DEIS).

En el año 2013, se midió la eficiencia técnica de los hospitales públicos en Chile, considerando un sistema de Grupos Relacionados por el Diagnóstico (GRD), consistiendo este en un sistema de clasificación de pacientes que permite relacionar distintos tipos de pacientes tratados en un hospital (es decir, su *casuística*), con el coste que representa su asistencia. Este estudio sólo considera 28 hospitales, los cuales poseían hasta esa fecha la herramienta implementada (Santelices C et al., 2013).

En el 2016, Villalobos-Cid et al. proponen la opción de categorizar a los establecimientos de salud en base a su casuística, utilizando técnicas de análisis y minería de datos, principalmente para categorizar previamente los distintos hospitales y así establecer un parámetro de comparación ideal. Habiendo agrupado estos hospitales, se realizó el cálculo de la eficiencia técnica. En este estudio se aplica una técnica de análisis de frontera denominado *Data Envelopment Analysis (DEA)*, el cual, en palabras simples, determina una frontera de mejores prácticas de "Unidades de Toma de Decisiones", o *Decision Making Units (DMUs)* eficientes, que envuelva a todas las DMUs ineficientes. Se puede asignar un valor de eficiencia a cada DMU midiendo la distancia a la frontera.

Dada la importancia de la clasificación de hospitales para este estudio, y la baja tasa de implementación de esta herramienta en el sistema de salud público chileno (Santelices C et al., 2013) (Carlier, 2019), es que la metodología propuesta por Carlier soluciona este problema, permitiendo "realizar un análisis integral sobre los datos de producción hospitalaria dispuestos por el MINSAL y con estos, identificar las variables que año a año, fundamentan la categorización que plantea el MINSAL, en base a la complejidad de sus establecimientos de salud. El identificar estas variables permitiría, en trabajos futuros, analizar indicadores de gestión orientados a las variables de mayor importancia, estableciendo parámetros de eficiencia más certeros y con foco en aquellas variables" (Carlier, 2019).

Previo a esta memoria, no existe registro de estudios en Chile que hayan considerado un rango de tiempo determinado. El estudio de Villalobos-Cid et al. considera solamente los datos de producción entregados por el DEIS el año 2015 (correspondientes al año ejecutivo 2014).De esta forma, el presente estudio busca contribuir en esta dirección.

2.1.2 Métodos para el cálculo de la eficiencia técnica

En la literatura, existen diferentes métodos para realizar cálculos de la eficiencia técnica siendo los utilizados con mayor frecuencia el Análisis Envolvente de Datos (o *DEA*, por sus siglas en inglés), y la Aproximación de Fronteras Estocásticas (o mayormente conocido como *SFA*, por sus siglas en inglés). El primero utiliza técnicas de programación lineal (Saati et al., 2011), mientras que el segundo, utiliza métodos econométricos. A pesar de esta diferencia, ambos ofrecen soluciones estudiando "fronteras de Pareto".

2.1.2.1 Aproximación de Fronteras Estocásticas (SFA)

El **Análisis de Frontera Estocástico** (SFA) hace referencia a un conjunto de técnicas de análisis estadístico utilizadas para estimar las funciones de producción o de costos, al tiempo que se tiene en cuenta de forma explícita la existencia de ineficiencia en las empresas. La palabra operativa en esta definición es *ineficiencia*, lo que implica que los productores pueden comportarse de manera no óptima en sus decisiones de maximizar o minimizar alguna función objetivo (por ejemplo, beneficios, producción, ingresos o costos) (William C. Horrace, 2020).

La característica más importante de este método, es que permite asumir tanto errores aleatorios como de ineficiencia.

2.1.2.2 Análisis Envolvente de Datos (DEA)

El **Análisis de Envolvente de Datos** (DEA) es una técnica basada en la programación matemática para evaluar el rendimiento relativo de las organizaciones. Aunque las principales aplicaciones han sido en la evaluación de organizaciones sin fines de lucro, la técnica puede aplicarse con éxito a otras situaciones que compiten con otras técnicas como el análisis de costos beneficio y la toma de decisiones multicriterio.

El DEA permite identificar las unidades eficientes e ineficientes en un marco en el que los resultados se consideran en su contexto particular. Esta eficiencia técnica consiste en la capacidad que tiene una unidad de conseguir la mayor producción a partir de un conjunto de insumos (orientación de salida), o bien la capacidad de minimizar el recurso consumido según un valor determinado de producción (orientación de entrada). De cualquier forma, la eficiencia

técnica es medida en un rango entre 0 y 1, considerando que, un valor 1 indica la pertenencia a la frontera de producción, mientras que un valor 0 señala el límite máximo de la ineficiencia (Coelli, 2003).

Además, el DEA también proporciona información que permite la comparación de cada unidad de ineficiente con su "grupo de pares", es decir, un grupo de unidades eficientes que son idénticas a las unidades objeto de análisis. Esas unidades modelo pueden estudiarse luego para determinar los factores de éxito que pueden tratar de seguir otras unidades comparables (Santos et al., 2013).

Como método no paramétrico, el DEA no requiere supuestos sobre la forma específica de la frontera o la densidad de probabilidad de los insumos y productos utilizados en el proceso de producción. Sin embargo, el DEA no asume ningún error ni desviación de la frontera eficiente, sino que se supone que se debe totalmente a la ineficiencia (Katharakis et al., 2013).

2.1.2.3 Variante Malmquist-DEA

Existe una variación de la técnica DEA, conocida como "Malmquist-DEA" debido a que fue iniciada por el investigador Malmquist en 1953 como una cantidad a utilizar en el análisis del consumo de insumos (Fare et al., 2011).

Fare, en 1994, desarrolló un índice de productividad Malmquist basado en DEA, con el objetivo de analizar el cambio en la productividad a lo largo del tiempo (Fuentes & Lillo-Bañuls, 2015). Además, el índice se desglosa en dos componentes (Fare et al., 2011), uno que mide el cambio en la frontera tecnológica, y el otro el cambio en la eficiencia técnica. El índice de productividad de Malmquist puede medir la relación de las eficiencias de la DEA en dos períodos de tiempo diferentes con el desplazamiento de las fronteras de la eficiencia de la DEA (Coelli, 2008).

2.1.2.4 Formulaciones matemáticas

Es importante, además de entender en qué consiste cada una de las técnicas explicadas anteriormente, tener en cuenta que estas técnicas no salen de la nada, sino que tienen su base y fundamento en las matemáticas. Considerando esto, puede ser interesante para el lector conocer las formulaciones matemáticas que dan vida tanto al Análisis Envolvente de Datos, como también al Análisis de Fronteras Estocásticas.

Comenzando con el Análisis Envolvente de Datos, tenemos la siguiente fórmula.

$$e_k = \frac{\sum_{i=1}^{n_{\text{out}}} v_i y_{ik}}{\sum_{i=1}^{n_{\text{in}}} u_i x_{ik}} \quad k = 1...n$$
 (2.1)

La fórmula (2.1) correspondiente a la técnica de Análisis Envolvente de Datos, permite el cálculo de la eficiencia técnica (e_k) de una DMU_k para una cantidad n de DMUs, con una cantidad n_{in} de entradas y n_{out} de salidas, considerando los factores de peso tanto para una entrada, u_i , como para su salida, v_i . Además, se proporciona la entrada i para una DMU k como x_{ik} , junto con su respectiva salida y_{ik} . La premisa de esta fórmula, es determinar los vectores \vec{u}, \vec{v} que maximicen la eficiencia para cada una de las DMU.

Es importante mencionar que además de esto, DEA puede considerar retornos a escala. Cuando los cambios en la entrada afectan proporcionalmente a la salida, se está aplicando un modelo de retorno de escala constante. En caso contrario, el modelo se denomina retorno de escala variable (Villalobos-Cid et al., 2016).

Por otra parte, la formulación matemática para el Análisis de Fronteras Estocásticas es la siguiente:

$$ln y_i = ln f(x_i; \beta) + v_i - u_i$$
(2.2)

En esta fórmula, tanto v como u_i constituyen las diferencias más grandes entre SFA y DEA, ya que la primera variable corresponde a un componente de "ruido estadístico", mientras que la segunda indica una ineficiencia técnica no negativa. Estas dos variables, constituyen un término de error, que lo diferencia de la DEA. Por otra parte, completan la fórmula las siguientes variables, donde y_i es salida escalar observada del productor, x_i es un vector de n entradas usadas por el productor i, f (\mathbf{x}_i ; β) corresponde a la frontera de producción, mientras que β es un vector con los parámetros tecnológicos a ser estimados. Asumiendo que la frontera de producción toma la forma logaritmica de Cobb-Douglas (Aigner & Chu, 1968), la formulación matemática de SFA queda de la siguiente manera:

$$\ln y_i = \beta_0 + \sum_n \beta_n \ln x_{ni} + v_i - u_i$$
 (2.3)

2.1.3 Enfoque utilizado

Para llevar a cabo esta investigación se ha decidido utilizar la técnica Malmquist-DEA, dado que es la técnica que permite responder el cómo varía tanto la productividad, como la eficiencia técnica en un periodo de tiempo determinado, siendo la única técnica dentro de los antecedentes expuestos, que permite un análisis dinámico. Por otra parte, para realizar el cálculo de la eficiencia técnica de un año en particular, se utilizará la técnica DEA, de tal forma que los resultados puedan ser comparados con los obtenidos por (Villalobos-Cid et al., 2016) y (Santelices C et al., 2013).

2.1.4 Matrices de distancia

Una matriz de distancia se define como una matriz que permite describir la distancia entre distintos elementos en un espacio. En el contexto de este estudio, se hace imprescindible utilizar estas matrices, dado que se necesita realizar el cálculo de la eficiencia técnica sobre agrupaciones de hospitales similares. Estos hospitales deben ser agrupados considerando la distancia según clustering que exista entre ellos. Esta matriz de distancia se debe crear en base a la normalización de variables de producción proporcionadas por el DEIS.

De esta forma, la matriz de datos que se debe utilizar para este estudio, debe ser una matriz de $n \times n$, en donde n representa la cantidad de establecimientos de salud a analizar. En esta matriz, cada valor de i,j, con 0 < i < n y 0 < j < n representa la distancia que existe entre el establecimiento i y el establecimiento j, considerando alguna métrica de distancia para esto.

2.1.5 Métricas de distancia

Para realizar una agrupación de elementos, las métricas de distancia toman especial relevancia, puesto que es en base a estas que se puede cuantificar la similitud o distancia. A continuación se definen algunas de estas métricas:

2.1.5.1 Distancia euclideana

En matemáticas, álgebra y geometría, específicamente en análisis real, análisis complejo y geometría analítica, la distancia euclideana es una función no negativa usada para calcular la distancia entre dos puntos, en un espacio de hasta N dimensiones. Esta distancia está definida de la siguiente forma:

$$d(A,B) = \sqrt{\sum_{i=1}^{N} (b_i - a_i)^2} = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_N - a_N)^2}$$
 (2.4)

De esa forma, A y B son dos vectores, mientras que a_n y b_n representan al elemento n de los vectores A y B, respectivamente.

2.1.5.2 Distancia con base a correlación centrada de Pearson

Esta distancia está basada en el índice de correlación de Pearson entre dos vectores. La fórmula que la describe es la siguiente:

$$d(A,B) = 1 - corr(A,B) \tag{2.5}$$

Donde la correlación de Pearson se define de la siguiente manera:

$$corr(A,B) = \frac{\sum_{i=1}^{n} (a_i + \bar{a}) (b_i + \bar{b})}{\sqrt{\sum_{i=1}^{n} (a_i + \bar{a})^2 \sum_{i=1}^{n} (b_i + \bar{b})^2}}$$
(2.6)

Por tanto, la distancia queda expresada con la siguiente fórmula:

$$d(A,B) = 1 - \frac{\sum_{i=1}^{n} (a_i + \bar{a}) (b_i + \bar{b})}{\sqrt{\sum_{i=1}^{n} (a_i + \bar{a})^2 \sum_{i=1}^{n} (b_i + \bar{b})^2}}$$
(2.7)

Siendo A y B vectores, a_i y b_i los i-ésimos elementos del vector A y B, respectivamente, mientras que \bar{a} y \bar{b} representan sus medias aritméticas.

2.1.5.3 Distancia Manhattan

La distancia Manhattan es una métrica de distancia entre dos puntos en un espacio vectorial de N dimensiones. Es la suma de las longitudes de las proyecciones del segmento de línea entre los puntos sobre los ejes de coordenadas. En términos sencillos, calcula la distancia que habría que recorrer para ir de un punto de datos a otro si se sigue un camino en forma de cuadrícula. La distancia Manhattan entre dos puntos es la suma de las diferencias de sus correspondientes componentes.

$$d(A,B) = \sum_{i=1}^{n} |a_i - b_i|$$
 (2.8)

Siendo A y B vectores, a_i y b_i los \emph{i} -ésimos elementos del vector A y B, respectivamente.

2.1.5.4 Distancia Canberra

Esta distancia es similar a la distancia Manhattan, solo difiere en que la diferencia absoluta entre las variables de los dos vectores se divide por la suma de los valores absolutos de las variables. La ecuación generalizada se da de la siguiente manera:

$$d(A,B) = \sum_{i=1}^{n} \frac{|a_i - b_i|}{|a_i| + |b_i|}$$
 (2.9)

Siendo A y B vectores, a_i y b_i los i-ésimos elementos del vector A y B, respectivamente. En caso de que alguno de los términos tenga numerador y denominador igual a cero, estos serán omitidos y la suma se realiza como si ellos no existiesen.

2.1.6 Técnicas de clustering

Los métodos de clusterización son utilizados para identificar grupos con objetos similares en colecciones de datos multivariados. Existen diferentes tipos de clusterización, entre las que se incluyen:

- · Método de particiones.
- · Agrupación jerárquica.
- · Agrupación difusa.
- · Agrupación basada en densidad.
- · Agrupación basada en modelos.
- · Agrupación basada en grafos.

Entre estos diferentes tipos de clusterización, existen a su vez distintas formas de generar clústers. A continuación se detallan algunos de los más utilizados.

2.1.6.1 Método de particiones

Los algoritmos de partición son técnicas de clustering que subdividen los conjuntos de datos en un conjunto de k grupos, donde k es un número de grupos preestablecido por el analista. Dentro del método de agrupación por particiones, una de las técnicas más populares es K-means, donde cada cluster está representado por el centro o la media de los puntos de datos que pertenecen a ese cluster. El método K-means es sensible a valores atípicos.

Otra técnica perteneciente al método de agrupación por particiones es PAM (*Partitioning Around Medoids*), la cual es una versión más robusta de K-means dado que es menos sensible a valores atípicos. El algoritmo PAM se basa en la búsqueda de K medoides entre las observaciones del conjunto de datos. Estas observaciones deben representar la estructura de los datos. Después de encontrar un conjunto de K medoides, se construyen K clusters asignando cada observación al medoide más cercano.

Existe una tercera técnica, que es una adaptación de PAM para conjunto de datos de gran tamaño, llamada CLARA (*Clustering Large Applications*). Internamente, divide el universo de datos en conjuntos más pequeños, y a cada uno de estos, aplica el algoritmo PAM. Cada uno de estos conjuntos de datos es dividido en K clusters. Una vez de que están divididos, el universo entero de datos es asignado al cluster con el medoide más cercano.

2.1.6.2 Agrupación jerárquica

La agrupación jerárquica es un acercamiento alternativo a la agrupación por particiones. Ésta técnica no necesita que el investigador especifique la cantidad de clústers que se deben generar. El resultado de la agrupación jerárquica es una representación de los objetos basada en un árbol, que también se conoce como dendrograma. Las observaciones pueden subdividirse en grupos cortando el dendrograma a un nivel de similitud deseado.

2.1.6.3 Agrupación difusa

La agrupación difusa se considera un clustering suave, en el que cada elemento tiene una probabilidad de pertenecer a cada cluster. En otras palabras, cada elemento tiene un conjunto de coeficientes de pertenencia que corresponden al grado de estar en un clúster determinado.

Esto es diferente de la agrupación k-means y k-medoid, en la que cada objeto está asignado exactamente a un clúster. El clustering de k-means y k-medoides se conoce como clustering duro o no difuso.

En el clustering difuso, los puntos cercanos al centro de un cluster, pueden estar en el cluster en un grado más alto que los puntos en el borde de un cluster. El grado de pertenencia de un elemento a un clúster determinado es un valor numérico que varía de 0 a 1. Un método comúnmente utilizado para realizar una agrupación difusa es FANNY (*Fuzzy Analysis Clustering*).

2.1.6.4 Agrupación basada en densidad

La idea detrás de una agrupación basada en densidad, es imitar la "intuición" humana, siendo un cluster una agrupación de alta densidad de datos, separados por regiones de menor densidad de datos. Un método utilizado para realizar una agrupación basada en densidad es DBSCAN (*Density-Based Spatial Clustering and Application with Noise*).

2.1.6.5 Agrupación basada en modelos

Los métodos tradicionales de clustering, como el clustering jerárquico y el clustering de k-means, son heurísticos y no se basan en modelos formales. Además, k-means requiere que el usuario especifique el número óptimo de clusters.

Una alternativa es el clustering basado en modelos, que considera que los datos provienen de una distribución que es una mezcla de dos o más clusters (Fraley & Raftery, 2002). A diferencia de k-means, el clustering basado en modelos utiliza una asignación suave, donde cada punto de datos tiene una probabilidad de pertenecer a cada cluster. Una técnica utilizada en la agrupación basada en modelos, puede ser McLust, el cual es una agrupación basada en modelos de mezclas gaussianas finitas parametrizadas.

2.1.6.6 Agrupación basada en grafos

El clustering de grafos es la tarea de agrupar los vértices del grafo en clusters teniendo en cuenta la estructura de aristas del grafo, de tal manera que debe haber muchas aristas dentro

de cada cluster y relativamente pocas entre los clusters (Schaeffer, 2007). Uno de los métodos utilizados para realizar una agrupación basada en grafos es MST-kNN (*Minimum Spanning Tree (MST) - k Nearest Neighbor (kNN)*) (Parraga-Alava et al., 2021) (Inostroza-Ponta et al., 2008).

2.1.7 Métricas de evaluación de clustering

Para evaluar la calidad de una agrupación y así determinar si es óptima o no, existen diferentes métricas. En este documento se definen tres, sin embargo, existen muchas más.

2.1.7.1 Índice de Silhouette

El índice de Silhouette es una medida que permite saber qué tan similar es un objeto a su propia agrupación, en comparación a las demás agrupaciones. En términos generales, el índice de Silhouette está en el rango [-1, 1], donde un bajo indica que el objeto está mal agrupado, mientras que un valor alto indica lo contrario, que el objeto está bien agrupado. Éste índice está dado por la siguiente fórmula.

$$C = \frac{1}{K} \sum_{k=1}^{K} \mathfrak{s}_k \tag{2.10}$$

Donde K corresponde a la cantidad de clústers, y \mathfrak{s}_k corresponde a los índices de silhouette de cada uno de estos clústers.

$$\mathfrak{s}_k = \frac{1}{n_k} \sum_{i \in I_k} s(i) \tag{2.11}$$

Estos índices de Silhouette de cada clúster está dado por la siguiente fórmula:

$$s(i) = \frac{b(i) - a(i)}{\max(a(i), b(i))}$$
(2.12)

Donde b(i) se define como la menor distancia promedio del objeto i a otro clúster, mientras que a(i) se define como la distancia promedio del objeto i a los otros objetos pertenecientes al mismo clúster.

2.1.7.2 Índice de Ball-Hall

La dispersión media de un clúster es la media de las distancias al cuadrado de los puntos del clúster con respecto a su baricentro. El índice Ball-Hall es la media de la dispersión promedio, considerando todos los clústers.

A diferencia del índice de Silhouette, el índice de Ball-Hall no está contenido dentro de un rango de valores. Otra diferencia en relación al índice de Silhouette, es que para el caso de Ball-Hall, mientras menor sea el valor del índice, mejor realizada está la agrupación, puesto que indicaría que las distancias al cuadrado de los puntos del clúster hacia su baricentro son menores (los objetos del clúster están más unidos).

La fórmula que describe al índice de Ball-Hall es la siguiente:

$$C = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{n_k} \sum_{i \in I_k} \left\| M_i^{\{k\}} - G^{\{k\}} \right\|^2$$
 (2.13)

Siendo K la cantidad de clústers, n_k la cantidad de objetos dentro del clúster K, M_i corresponde a un objeto i dentro del clúster k, mientras que G corresponde al baricentro de los puntos M_i en relación al clúster k.

2.1.7.3 Índice de Dunn

El índice de Dunn (introducido por J. C. Dunn en 1974), es una métrica para evaluar los algoritmos de agrupación, en el que el resultado se basa en los propios datos agrupados. Como todos los demás índices de este tipo, el objetivo de este índice de Dunn es identificar conjuntos de clústers que sean compactos, con una pequeña varianza entre los objetos del mismo, y bien separados del resto de clústers, en los que las medias de los distintos clústers estén suficientemente separadas, en relación con la varianza dentro del clúster.

Cuanto mayor sea el valor del índice de Dunn, mejor será la agrupación. El índice de Dunn está dado por la siguiente fórmula:

$$C = \frac{d_{\min}}{d_{\max}} \tag{2.14}$$

Donde d_{\min} se define como la distancia mínima entre puntos de diferentes clústers, mientras que d_{\max} corresponde a la distancia máxima entre dos puntos de un mismo clúster.

2.1.8 Modelos de regresión

Un modelo de regresión es un modelo matemático que busca determinar la relación entre una variable dependiente (Y), con respecto a otras variables, llamadas explicativas o independientes.

El modelo de regresión se suele utilizar en las Ciencias Sociales con el fin de determinar si existe, o no, relación causal entre una variable dependiente (Y) y un conjunto de otras variables explicativas (X). Asimismo, el modelo busca determinar cuál será el impacto sobre la variable dependiente (Y) ante un cambio en las variables explicativas (X) (Roldán, 2016).

2.1.8.1 Modelo Tobit

Existen ciertos modelos en los que la variable dependiente se encuentra truncada y censurada, representando solamente una parte de la población total. Esto se puede ver, por ejemplo, en aquellas variables que deban ser superior a un determinado umbral (el número de egresos, el índice de letalidad, o el promedio de días-cama de un hospital jamás serán menores a cero). Dada esta condición, se debe tener en cuenta las modificaciones inducidas en la distribución estadística de la variable dependiente truncada o censurada.

El modelo Tobit puede ser expresado de la siguiente manera:

$$y_t = X_t \beta + u_i \quad \text{ si } X_t \beta + u_t > 0$$

$$= 0 \quad \text{ si } X_t \beta + u_t \leq 0$$

$$t = 1, 2, \dots, N$$

Donde N es el número de observaciones, y_t es la variable dependiente, X_t es un vector de variables independientes, β es un vector de coeficientes desconocidos, y u_t es un error independientemente distribuido, que se asume normal, con media igual a cero y una varianza constante σ^2 (McDonald & Moffitt, 1980). Este tipo de regresión es recomendada para evaluar determinantes en los hospitales públicos chilenos, de acuerdo a investigaciones previas (Santelices C et al., 2013).

2.1.8.2 Regresión Lineal

La regresión lineal analiza la relación entre dos variables, X e Y. Para cada sujeto (o unidad experimental), se conocen tanto X como Y y se quiere encontrar la mejor línea recta a través de los datos. En algunas situaciones, la pendiente y/o el intercepto tienen un significado científico. En otros casos, se utiliza la línea de regresión lineal como una curva estándar para encontrar nuevos valores de X a partir de Y, o de Y a partir de X. En general, el objetivo de la regresión lineal es encontrar la línea que mejor predice Y a partir de X. La regresión lineal lo hace encontrando la línea que minimiza la suma de los cuadrados de las distancias verticales de los puntos a la línea (Harvard Apparatus, 2002; Macrini et al., 2018).

CAPÍTULO 3. DESARROLLO DE LA INVESTIGACIÓN

La investigación será realizada mediante una metodología de cuatro etapas, con un enfoque en la generación de conocimiento. Cada una de las etapas consistieron en lo siguiente:

3.1 ORGANIZACIÓN Y DEFINICIÓN DE VARIABLES

El proceso de organización y definición de variables se define como el conjunto de tareas en donde, además de seleccionar los datos con los cuales se va a trabajar, también se ordenan de forma que puedan trabajarse de mejor manera. En este caso, el conjunto de datos que se debió organizar y definir, fueron dados por los archivos disponibles en la plataforma del Departamento de Estadísticas e Información de la Salud, además de los archivos relacionados a gastos, proporcionados por el Fondo Nacional de Salud (FONASA).

3.1.1 Descripción del conjunto de datos

Para llevar a cabo este estudio, se utilizaron en general dos conjuntos de datos. El primero, corresponde a **A)** los gastos relacionados a personal (denominado también *subtítulo 21*), **B)** el gasto relacionado a bienes y servicios de consumo (o también *subtítulo 22*, según el clasificador presupuestario) y **C)** el gasto total, considerando la suma de todos los subtítulos. El segundo conjunto de datos corresponde a diferentes estadísticos hospitalarios y variables varias (por ejemplo, días-cama utilizados, promedio de pacientes internados, etc).

Ambos conjuntos de datos pertenecen a cada uno de los hospitales que componen a la red de salud pública chilena, entre los años 2014 y 2018, ambos incluidos, siendo estos los años en los que se comprende el estudio, extendiendo así lo realizado por (Villalobos-Cid et al., 2016).

Además de estos archivos, también se cuenta con una agrupación de hospitales realizada por el MINSAL, que propone una clasificación en base a la complejidad de estos. Estas complejidades son las siguientes:

- Alta complejidad adulto, correspondiente a hospitales ubicados en las grandes urbes y principales ciudades.
- Mediana complejidad, correspondiente a hospitales ubicados en ciudades de carácter secundario.

- Baja complejidad, correspondiente a hospitales ubicados en ciudades pequeñas o zonas rurales
- Alta complejidad niños, correspondiente a los hospitales de alta complejidad con un enfoque de atención pediátrica.
- Alta complejidad psiquiatría, correspondiente a hospitales de alta complejidad con un enfoque de atención psiquiátrica

Cada uno de los datos mencionados anteriormente, fueron almacenados en distintos archivos x/sx y csv, en matrices de datos anuales, para facilitar su posterior manejo en R.

En base a las variables entregadas por el DEIS, se buscar generar nuevas agrupaciones de hospitales en base a la casuística, pensando en que la categorización propuesta por el MINSAL es bastante desigual:

ID	Categoría MINSAL	Nº Hospitales
1	Baja complejidad	101
2	Mediana complejidad	21
3	Alta complejidad adulto	57
4	Alta complejidad psiquiatría	4
5	Alta complejidad niños	4

Tabla 3.1: Cantidad de hospitales por categoría en propuesta MINSAL. Fuente: Elaboración propia, (2020)

3.2 PROCESAMIENTO DE DATOS

3.2.1 Pre-categorización de hospitales

Cada uno de las matrices anuales de datos proporcionadas por el DEIS, contiene una gran cantidad de variables, más de 6500 en algunos casos. A pesar de esto, no todas proporcionan información relevante que permita diferenciar un hospital de otro. Para trabajar solo con aquellas que realmente permitan agrupar con base a la casuística, se eliminan todas las variables que tengan una varianza igual (o muy cercana) a cero.

El criterio para determinar si la varianza "es muy cercana a cero", fue establecer el corte en un 1%, es decir, y dado que se trabajó sobre 182 hospitales, fueron eliminadas todas las variables que tuviesen el mismo valor (varianza igual a cero), o a lo más 1 valor diferente (1,82). Por lo tanto, todas las variables restantes tienen a lo menos 2 valores diferentes.

Tras aplicar este filtro en base a la varianza, la cantidad de variables finales se resume en la siguiente tabla:

Año	Variables iniciales	Variables filtradas	Variables finales
2014	6663	1477	5186
2015	6495	1268	5227
2016	5651	449	5202
2017	5371	459	4912
2018	5191	423	4768

Tabla 3.2: Cantidad de variables filtradas.

Fuente: Elaboración propia, (2020)

3.2.2 Categorización de hospitales

La categorización de hospitales se ha hecho considerando tres matrices diferentes:

• Matriz de variables normalizada.

Matriz de distancia euclideana en base a las variables normalizadas.

Matriz de distancia correlacional en base a las variables normalizadas.

Además de esto, para cada una de las matrices mencionadas, se aplican diferentes técnicas de clustering. Para la matriz con las variables normalizadas se aplica lo siguiente:

• Kmeans (package: stats v3.6.2)

• Clara (package: cluster)

• Pam (package: cluster)

• Fanny (package: cluster)

• McLust (package: mclust)

Para las matrices de distancia, se aplican las siguientes técnicas de clustering:

• Kmeans (package: stats v3.6.2)

• Clara (package: cluster)

• Pam (package: cluster)

• Fanny (package: cluster)

• McLust (package: mclust)

• MstKnn (package: mstknnclust)

Para el caso de K-means, Clara, Pam, Fanny, en donde se necesita especificar la cantidad de clústers, se han generado las clusterizaciones considerando desde dos a diez categorías, para todas las matrices a las cuales estas técnicas son aplicadas. Una vez hecho esto, para determinar qué categorización es la mejor, por cada una de las agrupaciones se realiza un cálculo tanto del índice de Silhouette, de Dunn, y de Ball-Hall. Luego, estos índices se normalizan con tal de asegurar de que estén en una escala comparable. Dado que Ball-Hall es un índice que se comporta de manera que a mayor valor, mayor dispersión de un cluster, por ende, la agrupación es peor, se ha decidido tras normalizar, invertir los resultados de tal forma que 0 indique la peor agrupación, y 1, por otra parte, indica la mejor agrupación según Ball-Hall. De esta manera, todos los índices se comportan de la misma manera.

Debido a que cada una de las agrupaciones tiene resultados para los tres índices, se realiza el cálculo de una frontera de Pareto con los índices óptimos. Con base a distancias euclideanas, se determina la distancia a cero de cada una de las intersecciones de los índices para cada agrupación realizada. Se selecciona como mejor agrupación aquella cuya distancia de los índices sea la más lejana al punto (0, 0, 0).

3.2.3 Aplicación de DEA y Malmquist-DEA

Para llevar a cabo el cálculo de eficiencia mediante la técnica de Análisis Envolvente de Datos, se definieron las siguientes entradas y salidas:

- Entradas: Se consideran como entradas los presupuestos ejecutados y destinados para personal (subtítulo 21), y el relacionado a bienes y servicios (subtítulo 22). Todos estos valores son representados en miles de pesos.
- Salidas: Se consideran como salidas la cantidad de días-cama ocupados, el número de egresos, y el total de consultas médicas y especialidades.

Cada una de las variables consideradas como entradas y salidas, corresponden a los resultados de cada uno de los hospitales considerados en el estudio para cada uno de los correspondientes años.

Por otra parte, este análisis de eficiencia técnica se realiza sobre dos agrupaciones propuestas: la del MINSAL, y aquella que obtuvo un mejor resultado en el proceso descrito en la etapa anterior.

Este cálculo de eficiencia se realiza considerando tanto un enfoque orientado a las entradas, un enfoque orientado a las salidas, y además, para cada una de estas, se considera un retorno a escala constante, variable, y no-creciente.

Para el caso de Malmquist-DEA, y dado que los índices que se obtienen a través de esta técnica no son una comparación entre hospitales, sino que es una comparación temporal de un hospital consigo mismo, no se hace necesaria la utilización de ninguna agrupación.

A pesar de que para extender el estudio de (Villalobos-Cid et al., 2016) sólo se requiere de un análisis en el cambio de la frontera de eficiencia, también se han incluido los resultados en cuanto a cambio en el índice de productividad.

3.2.4 Análisis de determinantes

Antes de llevar a cabo un análisis y buscar posibles relaciones entre la eficiencia técnica y criterios de calidad, se determina cuáles de las variables entregadas por el DEIS podrían tener una relación con la eficiencia. Las variables seleccionadas para llevar a cabo el análisis han sido las siguientes:

- Promedio de días de estada: se espera encontrar una relación que indique que a mayor promedio de días de estada, la eficiencia sea menor.
- Promedio de días-cama: se espera encontrar una relación que indique que a mayor promedio de días-cama, la eficiencia sea menor.
- Cantidad de egresos: se espera encontrar una relación que indique que a mayor cantidad de egresos, la eficiencia sea mayor.
- Índice de letalidad: se espera encontrar una relación que indique que a mayor índice de letalidad, la eficiencia sea menor.
- Pacientes D2 y D3: se espera encontrar una relación que indique que a mayor cantidad de pacientes en categoría D2 (pacientes de bajo riesgo y dependencia parcial) y D3 (pacientes de bajo riesgo y autosuficiencia), la eficiencia sea menor.

Para lograr determinar si existe una relación, ya sea directa o inversa de las variables anteriormente mencionadas con la eficiencia relativa de cada hospital, se ha decidido llevar a cabo dos tipos de análisis de regresión. En primer lugar, y basándose en el estudio realizado por (Santelices C et al., 2013), se realiza una regresión utilizando un modelo Tobit, y además se efectua una regresión lineal.

CAPÍTULO 4. RESULTADOS

4.1 AGRUPACIONES MINSAL

4.1.1 Análisis de correlación

A los resultados obtenidos para cada uno de los años se realizó un análisis de correlación, para determinar la relación entre los distintos coeficientes de eficiencia técnica. En el caso de la eficiencia técnica para la agrupación propuesta por el MINSAL, los resultados fueron los siguientes:

Figura 4.1: Correlación agrupación MINSAL, año 2014 Fuente: Elaboración propia, (2021)

Figura 4.2: Correlaciones agrupación MINSAL, año 2015 y 2016 Fuente: Elaboración propia, (2021)

Figura 4.3: Correlaciones agrupación MINSAL, año 2017 y 2018 Fuente: Elaboración propia, (2021)

En cada figura, "mic, miv, min, moc, mov" y "mon", hacen referencia a "MINSAL Input Constante", "MINSAL Input Variable", "MINSAL Input No-Creciente", "MINSAL Output Constante", "MINSAL Output Variable" y "MINSAL Output No-Creciente", respectivamente.

Con base a la correlación obtenida para cada uno de los años, es posible afirmar que no existe una gran diferencia entre cada una de las distintas formas de calcular la eficiencia técnica. Es por esta razón, y con el fin de evitar que esta sección se alargue demasiado de forma innecesaria, es que los resultados presentados solamente considerarán el caso orientado a la entrada, con retorno a escala variable. El resto de resultados se pueden encontrar en el apéndice.

4.1.2 Resultados eficiencia técnica

La tabla de resultados para la eficiencia técnica del MINSAL, incluye una columna anual llamada "cluster", la cual indica el ID del grupo al que cierto hospital pertenece. Estos IDs están dados por la tabla 3.1.

NOMBRE	AÑO		AÑO		AÑO		AÑO		_	2018
	cluster	eff								
Hosp. Dr. Carlos Cisternas (Calama)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Juana Ross de Edwards (Penablanca. Villa Alemana)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Centro Geriatrico Paz de la Tarde (Limache)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. San Antonio (Putaendo)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. San Vicente de Tagua-Tagua	1	1,000	1	0,887	1	1,000	1	1,000	1	1,000
Hosp. de Marchigue	1	1,000	1	1,000	1	0,949	1	1,000	1	1,000
Hosp. de Rio Bueno	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. del Perpetuo Socorro de Quilacahuin	1	1,000	1	1,000	1	1,000	1	1,000	1	0,810
Hosp. San Vicente (Arauco)	1	1,000	1	1,000	1	1,000	1	0,632	1	0,789
Hosp. de Vilcun	1	1,000	1	0,962	1	0,875	1	0,966	1	0,955
Hosp. de Paillaco	1	0,986	1	1,000	1	0,999	1	1,000	1	1,000
Hosp. de Queilen	1	0,974	1	1,000	1	1,000	1	0,939	1	1,000
Hosp. de Carahue	1	0.962	1	0.926	1	0.773	1	0.872	1	0.774
Hosp. de Lolol	1	0,957	1	0,979	1	1,000	1	0,965	1	1,000
Hosp. Dr. Eduardo Gonzalez Galeno (Cunco)	1	0,933	1	1,000	1	0,842	1	0,897	1	0,733
Hosp. Clorinda Avello (Santa Juana)	1	0,932	1	0,968	1	0,913	1	0.999	1	0,956
Hosp. Mision San Juan de la Costa	1	0,931	1	1,000	1	1,000	1	1,000	1	0,904
Hosp. de Quellon	1	0,923	1	0,829	1	1,000	1	1,000	1	1,000
Hosp. Del Salvador (Peumo)	1	0,909	1	0,901	1	0,875	1	0,683	1	0,764
Hosp. de Rio Negro	1	0.903	1	0.748	1	0,905	1	0,813	1	0,717
Hosp. de Maullin	1	0.900	1	0,853	1	0,899	1	1.000	1	0,717
Hosp. de Nadilli Hosp. de Petorca	1	0,894	1	0,868	1	0,899	1	1,000	1	1,000
	1	0,869	1				1	1,000	1	1,000
Hosp. de Los Lagos	1	-,		0,988	1	0,807	1			,
Hosp. Dr. Leopoldo Ortega R. (Chile Chico)	-	0,869	1	0,819	1	0,666	-	0,736	1	0,748
Hosp. Comunitario de Achao	1	0,864	1	0,996	1	0,964	1	0,792	1	0,797
Hosp. de Pichidegua	1	0,854	1	0,825	1	0,881	1	0,826	1	0,894
Hosp. de Litueche	1	0,853	1	0,948	1	0,937	1	0,999	1	0,953
Hosp. de Coinco	1	0,839	1	0,782	1	0,991	1	0,863	1	0,893
Hosp. de Galvarino	1	0,813	1	0,825	1	0,838	1	0,901	1	0,824
Hosp. de Hualane	1	0,801	1	0,852	1	0,768	1	0,846	1	0,886
Hosp. de Gorbea	1	0,800	1	0,854	1	0,815	1	0,921	1	0,810
Hosp. Santa Filomena (Graneros)	1	0,786	1	0,844	1	0,744	1	0,757	1	0,766
Hosp. Dr. Jeronimo Mendez Arancibia (Chanaral)	1	0,784	1	0,879	1	0,913	1	0,903	1	0,829
Hosp. Comunitario de Yumbel	1	0,782	1	0,853	1	0,896	1	1,000	1	0,873
Hosp. Dr. Benjamin Pedreros (Chanco)	1	0,781	1	0,873	1	0,912	1	0,936	1	0,825
Hosp. Dr. Abel Fuentealba Lagos de San Javier	1	0,774	1	0,711	1	1,000	1	1,000	1	1,000
Hosp. de Lanco	1	0,758	1	0,668	1	0,433	1	0,411	1	0,536
Hosp. de Licanten	1	0,755	1	0,994	1	0,820	1	0,836	1	0,942
Hosp. de Llanquihue	1	0,752	1	0,709	1	0,752	1	0,796	1	0,759
Hosp. de Teno	1	0,743	1	0,946	1	0,974	1	0,918	1	0,737
Hosp. de Pichilemu	1	0,736	1	0,713	1	0,701	1	0,778	1	0,744
Hosp. de Loncoche	1	0,735	1	0,671	1	0,655	1	0,705	1	0,705
Hosp. de Mejillones	1	0,730	1	0,713	1	0,652	1	0,703	1	0,743
Hosp. de Frutillar	1	0,726	1	0,788	1	0,793	1	0,998	1	0,907
Hosp. de Tolten	1	0,725	1	0,719	1	0,756	1	0,759	1	0,817
Hosp. de Futaleufu	1	0,721	1	0,699	1	0,757	1	0,707	1	0,588
Hosp. Penco - Lirquen	1	0,719	1	0,594	1	0,646	1	0,824	1	0,933
Hosp. de Purranque	1	0,706	1	0,574	1	0,720	1	0,728	1	0,684
Hosp. San Agustin de Florida	1	0,699	1	0,702	1	0,703	1	0,729	1	0,711
Hosp. de Nancagua	1	0,695	1	0,674	1	0,708	1	0,803	1	0,906
Hosp. de Palena	1	0,686	1	0,794	1	0,866	1	0,966	1	0,873
Hosp. Comunitario de Salud Familiar de Bulnes	1	0,683	1	0,630	1	0,574	1	0,677	1	0,662
Hosp. Comunitario de Salud Familiar de Quirihue	1	0,675	1	0,691	1	0,701	1	0,754	1	0,737
Hosp. Dr. Arturo Hillerns Larranaga (Saavedra)	1	0,674	1	0,697	1	0,712	1	0,780	1	0,785
Hosp. Lord Cochrane	1	0,670	1	0,926	1	1,000	1	1,000	1	0,886
Hosp. Dr. Manuel Magalhaes Medling (Huasco)	1	0.668	1	0,658	1	0,700	1	0,780	1	0,806
Hosp. Dr. Jorge Ibar (Cisnes)	1	0,659	1	0,765	1	0,792	1	0,844	1	0,773
Hosp. San Juan de Dios (Vicuna)	1	0,654	1	0,624	1	0,658	1	0,763	1	0,703
Hosp. Dr. Florencio Vargas (Diego de Almagro)	1	0,649	1	0,024	1	0,753	1	0,703	1	0,870
1100p. Dr. 1 lorenele vargas (Diego de Alinagio)	,	0,043		0,121		0,700	'	0,044	'	0,010

Tabla 4.1: Resultados eficiencia para agrupaciones MINSAL (parte 1) Fuente: Elaboración propia, (2021)

30

NOMBRE	AÑO	2014	AÑO	2015	AÑO 2016	AÑO 2017		AÑO	2018
HOMBRE	cluster	eff	cluster	eff	cluster eff	cluster e	ff	cluster	eff
Hosp. de Curepto	1	0,643	1	0,851	1 0,853	1 0	,838	1	0,888
Hosp. de Fresia	1	0,634	1	0,558	1 0,639		767	1	0,787
Hosp. Comunitario de Salud Familiar Pedro Morales Campos (Yungay)	1	0,624	1	0,666	1 0,618		689	1	0,699
Hosp. de Puerto Aysen	1	0,621	1	0,400	1 0,471		777	1	0,459
Hosp. de Puerto Octay	1	0,619 0.616	1	0,657 0.604	1 0,705 1 0.644		,763 .662	1	0,707
Hosp. Comunitario Dr. Roberto Munoz Urrutia de Huepil Hosp. Mercedes (Chimbarongo)	1	0,609	1	0,580	1 0,644 1 0,678		620	1	0,627 0,584
Hosp. San Agustin (La Ligua)	1	0,597	1	0,648	1 0,687		858	1	0,894
Hosp. de Longuimay	1	0,591	1	0.680	1 0.707		718	1	0.825
Hosp. Comunitario de Laja	1	0,585	1	0,566	1 0,506		566	1	0,606
Hosp. San Juan de Dios (Combarbala)	1	0,584	1	0,705	1 0,676	1 0,	,663	1	0,687
Hosp. Dr. Victor Hugo Moll (Cabildo)	1	0,584	1	0,577	1 0,623		798	1	0,803
Hosp. San Francisco (Llaillay)	1	0,581	1	0,602	1 0,666		,757	1	0,910
Hosp. Comunitario de Mulchen	1	0,576	1	0,625	1 0,618		641	1	0,706
Hosp. de Puren	1	0,567	1	0,519	1 0,550		,626	1	0,643
Hosp. de Corral	1	0,556	1	0,635	1 0,672		802	1	0,818
Hosp. Comunitario de Santa Barbara Hosp. Comunitario de Salud Familiar de El Carmen	1	0,554 0,554	1	0,539 0.558	1 0,547 1 0.593		,597 .645	1	0,619 0.670
Hosp. de Contulmo	1	0,554	1	0,556	1 0,593		756	1	0,670
Hosp. Intercultural Kallvu Llanka (Canete)	1	0,533	1	0,347	1 0,549		.691	1	0,739
Hosp. San Pedro (Los Vilos)	1	0,536	1	0,640	1 0,571		636	1	0,608
Hosp. Dr. Oscar Hernandez E.(Curacautin)	1	0,535	1	0,483	1 0,477		530	1	0,524
Hosp. de Molina	1	0,533	1	0,730	1 0,761		727	1	0,981
Hosp. Dr. Jose Arrano (Andacollo)	1	0,510	1	0,597	1 0,628		714	1	0,725
Hosp. de Salamanca	1	0,506	1	0,513	1 0,495	1 0	517	1	0,486
Hosp. Dr. Marco Antonio Chamorro (Porvenir)	1	0,496	1	0,691	1 0,643	1 0	,550	1	0,474
Hosp. Comunitario de Salud Familiar Dr. Eduardo Contreras Trabucco de Coelemu	1	0,485	1	0,470	1 0,536	1 0	,529	1	0,592
Hosp. 21 de Mayo (Taltal)	1	0,476	1	0,607	1 0,563		,584	1	0,617
Hosp. de Lebu	1	0,472	1	0,484	1 0,428		,510	1	0,500
Hosp. Adriana Cousino (Quintero)	1	0,472	1	0,516	1 0,513		,557	1	0,537
Hosp. Comunitario de Nacimiento	1	0,470	1	0,469	1 0,543		591	1	0,614
Hosp. Santo Tomas (Limache)	1	0,466	1	0,539	1 0,445 1 0,712		,517 ,555	1	0,574
Hosp. Dr. Mario Sanchez Vergara (La Calera) Hosp. Hanga Roa (Isla De Pascua)	1	0,458 0.443	1	0,514 0.603	1 0,712 1 0.411		,555 .498	1	0,559 0.782
Hosp. de Til Til	1	0,443	1	0,508	1 0,552		638	1	0,782
Hosp, de Calbuco	1	0.398	1	0.403	1 0.360		399	1	0.430
Hosp. de Collipulli	1	0,391	1	0,390	1 0,422		526	1	0,550
Hosp. Dr. Marcos Macuada (Tocopilla)	1	0,361	1	0,370	1 0,469	1 0	663	1	0,827
Hosp. San Jose (Casablanca)	1	0,355	1	0,365	1 0,421	1 0,	,502	1	0,506
Hosp. de Curacavi	1	0,312	1	0,298	1 0,376		,429	1	0,377
Hosp. Adalberto Steeger (Talagante)	2	1,000	2	1,000	2 1,000		,000	2	1,000
Hosp. de Penaflor	2	1,000	2	1,000	2 1,000		,000	2	0,997
Hosp. San Luis (Buin)	2	1,000	2	1,000	2 1,000		,000	2	1,000
Hosp. de Enfermedades Infecciosas Dr. Lucio Cordova (San Miguel)	2	1,000	2	1,000	2 1,000		,000	2	1,000
Hosp. San Jose de Maipo Hosp. Dr. Ricardo Valenzuela Saez (Rengo)	2	1,000 1,000	2	1,000 1,000	2 1,000 2 1,000		,000	2	1,000 1,000
Hosp. de Constitucion	2	1,000	2	1,000	2 1,000		,000	2	1,000
Hosp. San Jose (Parral)	2	1,000	2	1,000	2 1,000		.000	2	1,000
Hosp. San Juan de Dios (Cauquenes)	2	1,000	2	1.000	2 1,000		.000	2	1,000
Hosp. Dr. Abraham Godoy (Lautaro)	2	1,000	2	0,965	2 0,740		645	2	0,622
Hosp. de Villarrica	2	1,000	2	1,000	2 1,000		000	2	0,955
Hosp. Dr. Dino Stagno M.(Traiguen)	2	1,000	2	1,000	2 1,000	2 1	,000	2	1,000
Hosp. Dr. Augusto Essmann Burgos (Natales)	2	0,972	2	0,952	2 0,827		678,	2	0,552
Hosp. de Pitrufquen	2	0,944	2	1,000	2 1,000		,862	2	0,641
Hosp. Provincial Dr. Rafael Avaria (Curanilahue)	2	0,878	2	0,843	2 0,858		,904	2	0,684
Hosp. de Santa Cruz	2	0,806	2	1,000	2 1,000		,000	2	1,000
Hosp. Dr. Humberto Elorza Cortes (Illapel)	2	0,803	2	0,889	2 0,968		,000	2	1,000
Hosp. Traumatologico (Concepcion)	2	0,767 0,669	2	0,834 0,786	2 1,000 2 0,900		,763 ,834	2	0,830 1,000
Hosp. Intercultural de Nueva Imperial Hosp. de Ancud	2	0,669	2	0,786	2 0,830		,834 .747	2	0.739
Hosp. Provincial del Huasco Monsenor Fernando Ariztia Ruiz (Vallenar)	2	0,649	2	0,714	2 1.000		.640	2	1.000
Hosp. Carlos Van Buren (Valparaiso)	3	1,000	3	0,960	3 1,000		,000	3	0,740
	-	.,500	-	-,500	,000	- '		-	-,

Tabla 4.2: Resultados eficiencia para agrupaciones MINSAL (parte 2)

NOMBRE	AÑO	2014	AÑO	2015	AÑO 2	2016	AÑO 2017		AÑO	2018
NOWIDAL	cluster	eff	cluster	eff	cluster	eff	cluster	eff	cluster	eff
Hosp. Dr. Eduardo Pereira Ramirez (Valparaiso)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. Claudio Vicuna (San Antonio)	3	1,000	3	1,000	3	1,000	3	0,992	3	1,000
Complejo Hospitalario San Jose (Santiago. Independencia)	3	1,000	3	1,000	3	0,955	3	0,919	3	0,991
Instituto Nacional del Cancer Dr. Caupolican Pardo Correa (Santiago. Recoleta)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. San Juan de Dios (Santiago. Santiago)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Instituto Traumatologico Dr. Teodoro Gebauer Hosp. Del Salvador (Santiago. Providencia)	3	1,000 1.000	3	0,927 1.000	3	0,817 0.934	3	1,000 0.776	3	0,874 0.885
Hosp. Dr. Luis Tisne B. (Santiago. Providencia)	3	1,000	3	1,000	3	1,000	3	1,000	3	1.000
Instituto Nacional Geriatrico Presidente Eduardo Frei Montalva	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. Barros Luco Trudeau (Santiago. San Miguel)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. El Pino (Santiago. San Bernardo)	3	1,000	3	0,990	3	0,953	3	0,939	3	0,897
Complejo Hospitalario Dr. Sotero del Rio (Santiago. Puente Alto)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. Dr. Cesar Garavagno Burotto (Talca)	3	1,000	3	1,000	3	0,841	3	0,795	3	1,000
Hosp. Presidente Carlos Ibanez del Campo (Linares)	3	1,000	3	1,000	3	1,000	3	1,000	3	0,974
Hosp. Clinico Herminda Martin (Chillan)	3	1,000	3	1,000	3	0,905	3	0,965	3	0,880
Hosp. San Jose (Coronel)	3	1,000	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. Dr. Mauricio Heyermann (Angol)	3	1,000	3	0,869	3	0,810	3	0,896	3	0,924
Hosp. Dr. Hernan Henriquez Aravena (Temuco)	3	0,997	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. San Juan de Dios (Los Andes)	3	0,996	3	0,953	3	0,989	3	1,000	3	0,992
Hosp. Regional de Rancagua Hosp. de Tome	3	0,992 0,990	3	0,932 0,942	3	0,870 0,896	3	0,927 0,889	3	0,863 0,903
Hosp. Clinico Regional Dr. Guillermo Grant Benavente (Concepcion)	3	0,990	3	1.000	3	1.000	3	1.000	3	1.000
Hosp. Dr. Leonardo Guzman (Antofagasta)	3	0.968	3	0.949	3	0,848	3	0,815	3	0,664
Hosp. de San Camilo (San Felipe)	3	0,967	3	0,945	3	0,968	3	1,000	3	1,000
Hosp. San Jose (Melipilla)	3	0,939	3	0,969	3	0,868	3	0,897	3	0,974
Hosp. de San Carlos	3	0,939	3	0,866	3	0,956	3	0,817	3	0,866
Hosp. San Martin (Quillota)	3	0,938	3	0,964	3	0,988	3	0,949	3	1,000
Hosp. San Juan de Dios (San Fernando)	3	0,934	3	1,000	3	1,000	3	1,000	3	1,000
Hosp. de Lota	3	0,926	3	0,967	3	0,889	3	0,869	3	0,907
Hosp. Clinico Regional (Valdivia)	3	0,924	3	0,957	3	0,946	3	0,981	3	0,923
Complejo Asistencial Dr. Victor Rios Ruiz (Los angeles)	3	0,923	3	0,965	3	0,971	3	1,000	3	1,000
Hosp. San Jose de Victoria	3	0,902	3	0,736	3	0,786	3	0,819	3	0,864
Hosp. Dr. Juan Noe Crevanni (Arica)	3	0,895	3	0,923	3	1,000	3	0,935	3	1,000
Hosp. San Juan de Dios (La Serena)	3	0,885	3	0,826	3	0,982	3	0,997	3	0,885
Hosp. Las Higueras (Talcahuano)	3	0,870	3	0,961	3	0,826	3	0,847	3	0,873
Hosp. Dr. Felix Bulnes Cerda (Santiago. Quinta Normal) Hosp. San Juan de Dios (Curico)	3	0,867 0.860	3	0,822 0,930	3	0,741 0.940	3	0,838 1,000	3	0,802 1,000
Hosp. Padre Alberto Hurtado (San Ramon)	3	0,860	3	0,930	3	0,940	3	0.923	3	0.922
Hosp. San Pablo (Coquimbo)	3	0,853	3	0,817	3	0,823	3	0,923	3	0,322
Hosp. Base San Jose de Osorno	3	0.840	3	1.000	3	0,816	3	0,804	3	0.746
Hosp. Dr. Antonio Tirado Lanas (Ovalle)	3	0,814	3	0,799	3	0,906	3	0,854	3	0,782
Hosp. Dr. Ernesto Torres Galdames (Iguique)	3	0.805	3	0.951	3	1.000	3	1.000	3	1.000
Hosp. de Puerto Montt	3	0,785	3	0,867	3	0,860	3	0,810	3	0,786
Hosp. Clinico San Borja-Arriaran (Santiago. Santiago)	3	0,783	3	0,745	3	0,727	3	0,810	3	0,880
Hosp. de Quilpue	3	0,750	3	0,946	3	0,761	3	0,754	3	0,705
Hosp. San Jose del Carmen (Copiapo)	3	0,725	3	0,720	3	0,959	3	0,975	3	1,000
Hosp. Dr. Gustavo Fricke (Vina del Mar)	3	0,722	3	0,766	3	0,776	3	0,795	3	0,668
Hosp. de Castro	3	0,650	3	0,848	3	0,763	3	0,711	3	0,798
Hosp. de Urgencia Asistencia Publica Dr. Alejandro del Rio	3	0,646	3	0,645	3	0,544	3	0,505	3	0,595
Hosp. Clinico Metropolitano La Florida Dra. Eloisa Diaz Inzunza	3	0,597	3	0,519	3	0,726	3	0,694	3	0,675
Hosp. Clinico Metropolitano El Carmen Doctor Luis Valentin Ferrada	3	0,585 0.553	3	0,977 0,581	3	0,988 0,562	3	0,896 0,582	3	0,834 0.649
Instituto de Neurocirugia Dr. Alfonso Asenjo Hosp. Regional (Coihaique)	3	0,553	3	0,581	3	0,562	3	0,582	3	0,649
Hosp. Del Salvador (Valparaiso)	4	1,000	4	1,000	4	1,000	4	1,000	4	1,000
Hosp. Psiquiatrico Dr. Philippe Pinel (Putaendo)	4	1,000	4	1,000	4	1,000	4	1,000	4	1,000
Instituto Psiquiatrico Dr. Jose Horwitz Barak (Santiago. Recoleta)	4	1,000	4	1,000	4	1,000	4	1,000	4	1,000
Hosp. Psiquiatrico El Peral (Santiago. Puente Alto)	4	1,000	4	1,000	4	1,000	4	1,000	4	1,000
Hosp. Clinico de Ninos Dr. Roberto del Rio (Santiago. Independencia)	5	1,000	5	1,000	5	1,000	5	1,000	5	1,000
Hosp. de Ninos Dr. Luis Calvo Mackenna (Santiago. Providencia)	5	1,000	5	1,000	5	1,000	5	1,000	5	1,000
Instituto de Rehabilitacion Infantil Pedro Aguirre Cerda	5	1,000	5	1,000	5	1,000	5	1,000	5	1,000
Hosp. Dr. Exequiel Gonzalez Cortes (Santiago. San Miguel)	5	1,000	5	1,000	5	1,000	5	1,000	5	1,000

Tabla 4.3: Resultados eficiencia para agrupaciones MINSAL (parte 3)

4.2 AGRUPACIÓN EN BASE A DISTANCIAS

4.2.1 Análisis de correlación

Al igual que para las agrupaciones del MINSAL, se realizó un análisis de correlación para determinar la relación entre los distintos coeficientes de eficiencia técnica. En el caso de la agrupación en base a distancias, los resultados fueron los siguientes:

Figura 4.4: Correlación para la mejor clusterización encontrada, año 2014 Fuente: Elaboración propia, (2021)

Figura 4.5: Correlaciones agrupación basada en distancias, año 2015 y 2016 Fuente: Elaboración propia, (2021)

Figura 4.6: Correlaciones agrupación basada en distancias, año 2017 y 2018 Fuente: Elaboración propia, (2021)

En cada figura, "dic, div, din, doc, dov" y "don", hacen referencia a "Distancia Input Constante", "Distancia Input Variable", "Distancia Input No-Creciente", "Distancia Output Constante", "Distancia Output Variable" y "Distancia Output No-Creciente", respectivamente.

Con base a la correlación obtenida para cada uno de los años, es posible afirmar que no existe una gran diferencia entre cada una de las distintas formas de calcular la eficiencia técnica. Es por esta razón, y con el fin de evitar que esta sección se alargue demasiado de forma innecesaria, es que los resultados presentados solamente considerarán el caso orientado a la entrada, con retorno a escala variable. El resto de resultados se pueden encontrar en el apéndice.

4.2.2 Resultados eficiencia técnica

Al igual que para los resultados de eficiencia de las agrupaciones MINSAL, los siguientes resultados incluyen una columna anual llamada "cluster", la cual indica el ID del grupo al que cierto hospital pertenece. En este caso, dado que la casuística de un hospital puede variar cada año, estos "IDs" también varían. Además, a diferencia de las agrupaciones MINSAL, estos "IDs" no tienen un nombre en particular, solo sirven para identificar qué hospitales son parte de un mismo grupo.

NOMBRE	AÑO	2014	AÑO 2015		AÑO 2016		AÑO 2017		AÑO 2018	
<u>-</u>	cluster	eff	cluster	eff	cluster	eff	cluster	eff	cluster	eff
Hosp. Carlos Van Buren (Valparaiso)	1	1,000	1	1,000	1	0,998	1	1,000	1	0,721
Hosp. Centro Geriatrico Paz de la Tarde (Limache)	1	1,000	1	1,000	1	1,000	1	1,000	1	0,866
Hosp. Psiquiatrico Dr. Philippe Pinel (Putaendo)	1	1,000 1,000	1 2	1,000 1,000	1	1,000	1	1,000	1	1,000
Complejo Hospitalario San Jose (Santiago. Independencia) Hosp. Clinico de Ninos Dr. Roberto del Rio (Santiago. Independencia)	1	1,000	1	1,000	1	0,937 0,757	1	1,000 0,433	1	0,991 0,576
Instituto Psiquiatrico Dr. Jose Horwitz Barak (Santiago, Recoleta)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Instituto Nacional del Cancer Dr. Caupolican Pardo Correa (Santiago. Recoleta)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Del Salvador (Santiago. Providencia)	1	1,000	1	1,000	1		1	0,644	1	0,864
Hosp. Dr. Luis Tisne B. (Santiago. Penalolen)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Instituto Nacional Geriatrico Presidente Eduardo Frei Montalva	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Barros Luco Trudeau (Santiago. San Miguel)	1	1,000	2	1,000	1		1	1,000	1	1,000
Hosp. Dr. Exequiel Gonzalez Cortes (Santiago. San Miguel)	1	1,000	1	1,000	1	1,000	1	0,441	1	0,492
Complejo Hospitalario Dr. Sotero del Rio (Santiago. Puente Alto)	1	1,000	3	1,000	1	1,000	2	1,000	1	1,000
Hosp. Dr. Ricardo Valenzuela Saez (Rengo)	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Dr. Coopy Carayagna Ryratta (Talaa)	1	1,000 1,000	1	1,000 1,000	1	0,949 0,834	1	1,000	1	1,000
Hosp. Dr. Cesar Garavagno Burotto (Talca) Hosp. Presidente Carlos Ibanez del Campo (Linares)	1	1,000	1	1,000	1	1,000	1	0,909 1,000	1	1,000 0,974
Hosp. de Rio Bueno	1	1,000	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. del Perpetuo Socorro de Quilacahuin	1	1,000	1	1,000	1		1	1,000	1	0,810
Hosp. Dr. Mauricio Heyermann (Angol)	1	1,000	1	0,826	i	0,725	i	0,858	i	0,916
Hosp. San Juan de Dios (Cauquenes)	1	0.994	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. de Paillaco	1	0,986	1	1,000	1		1	1,000	1	1,000
Hosp. Dr. Hernan Henriquez Aravena (Temuco)	1	0,982	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. de Queilen	1	0,974	1	1,000	1	1,000	1	0,939	1	1,000
Hosp. Claudio Vicuna (San Antonio)	1	0,972	1	0,941	1	0,953	1	0,925	1	0,890
Hosp. Clinico Regional Dr. Guillermo Grant Benavente (Concepcion)	1	0,970	4	1,000	2	1,000	3	1,000	2	1,000
Hosp. de Villarrica	1	0,967	1	0,988	1	1,000	1	0,892	1	0,848
Hosp. El Pino (Santiago. San Bernardo)	1	0,964	1	0,892	1	0,885	1	0,880	1	0,864
Hosp. San Juan de Dios (Santiago. Santiago)	1	0,963 0,957	1 1	1,000 0,979	1 1	1,000 1,000	1 1	1,000 0,965	1 1	1,000 1,000
Hosp. de Lolol Hosp. San Luis (Buin)	1	0,944	1	0,979	1	0,911	1	0,869	1	1,000
Hosp. de Penaflor	1	0,944	1	1,000	1	1,000	1	0,698	1	0,730
Hosp. San Antonio (Putaendo)	1	0,943	1	0,969	1	0,994	1	1,000	i	1,000
Complejo Asistencial Dr. Victor Rios Ruiz (Los angeles)	1	0,923	1	1,000	1	0,971	1	1,000	1	1,000
Hosp. Mision San Juan de la Costa	1	0,921	1	1,000	1	0,993	1	1,000	1	0,871
Hosp. de San Camilo (San Felipe)	1	0,913	1	0,931	1	0,952	1	0,973	1	1,000
Hosp. de Rio Negro	1	0,903	1	0,772	1	0,896	1	0,808	1	0,714
Hosp. San Martin (Quillota)	1	0,902	1	0,954	1		1	0,855	1	0,971
Hosp. Clinico Herminda Martin (Chillan)	1	0,902	1	1,000	1		1	0,989	1	0,868
Hosp. Dr. Juan Noe Crevanni (Arica)	1	0,894	1	0,949	1		1	0,931	1	1,000
Hosp. de Petorca	1	0,894	1	0,868	1	0,848	1	0,911	1	0,995
Hosp. Regional de Rancagua	1	0,887 0,883	1 1	0,863 0,818	1	0,838 0,976	1	0,876	1 1	0,780 0,885
Hosp. San Juan de Dios (La Serena) Hosp. San Juan de Dios (San Fernando)	1	0,883	1	1,000	1		1	0,997 0,971	1	0,865
Hosp. San Jose (Melipilla)	1	0,871	1	1,000	1		1	0,897	1	0,883
Hosp. Las Higueras (Talcahuano)	1	0,870	1	1,000	1		1	0,860	1	0,873
Hosp. San Juan de Dios (Los Andes)	1	0,869	1	0,912	1	0,909	1	0,894	1	0,908
Hosp. de Los Lagos	1	0,869	1	0,988	1	0,807	1	1,000	1	1,000
Hosp. Dr. Leopoldo Ortega R. (Chile Chico)	1	0,869	1	0,820	1	0,666	1	0,736	1	0,748
Hosp. Dr. Felix Bulnes Cerda (Santiago. Quinta Normal)	1	0,867	1	0,840	1		1	0,830	1	0,799
Hosp. San Jose (Parral)	1	0,864	1	0,848	1		1	1,000	1	1,000
Hosp. Comunitario de Achao	1	0,864	1	0,996	1	0,964	1	0,792	1	0,797
Hosp. de Enfermedades Infecciosas Dr. Lucio Cordova (Santiago. San Miguel)	1	0,864	1	0,800	1	0,853	1	0,921	1	0,928
Hosp. Padre Alberto Hurtado (San Ramon)	1	0,857	1	0,841	1		1	1,000	1	0,922
Hosp. de Pichidegua	1	0,854 0.854	1 1	0,825 1.000	1	0,870 0.946	1	0,826 0.985	1 1	0,894 0.923
Hosp. Clinico Regional (Valdivia) Hosp. de Litueche	1	0,854	1	0,948	1	0,946	1	0,985	1	0,923
Hosp. Del Salvador (Peumo)	1	0,846	1	0,946	1	0,869	1	0,999	1	0,955
Hosp. San Juan de Dios (Curico)	1	0,839	1	0.953		0,809		1.000	1	1.000
		5,000	•	3,000	*	3,000	*	,,000	*	,,000

Tabla 4.4: Resultados eficiencia para agrupaciones en base a distancias (parte 1)

Fuente: Elaboración propia, (2021)

NOMBRE	AÑO		AÑO		AÑO		AÑO 2017		AÑO 2018	
	cluster		cluster	eff	cluster	eff	cluster	eff	cluster	eff
Hosp. Del Salvador (Valparaiso)	1	0,836	1	0,818	1	0,699	1	0,690	1	0,700
Hosp. Adalberto Steeger (Talagante)	1	0,835	1	0,785	1	0,749	1	0,807	1	0,799
Instituto Nacional de Rehabilitacion Infantil Presidente Pedro Aguirre Cerda	1	0,825	1	0,944	1	0,952	1	1,000	1	1,000
Hosp. Base San Jose de Osorno	1	0,821	1	0,990	1	0,776	1	0,762	1	0,732
Hosp. Dr. Leonardo Guzman (Antofagasta)	1	0,806	1	0,924	1	0,824	1	0,810	1	0,659
Hosp. de San Carlos	1	0,806	1	0,758	1	0,917	1	0,694	1	0,734
Hosp. de Coinco	1	0,805	1	0,780	1	0,987	1	0,858	1	0,893
Hosp. de Hualane	1	0,801	1	0,852	1	0,768	1	0,845	1	0,886
Hosp. de Tome	1	0,793	1	0,807	1	0,716	1	0,628	1	0,838
Hosp. San Jose de Victoria	1	0,792	1	0,631	1	0,728	1	0,704	1	0,825
Hosp. Dr. Jeronimo Mendez Arancibia (Chanaral)	1	0,784	1	0,879	1	0,913	1	0,903	1	0,829
Hosp. San Pablo (Coquimbo)	1	0,784	1	0,740	1	0,771	1	0,775	1	0,723
Hosp. Clinico San Borja-Arriaran (Santiago. Santiago)	1	0,783	1	1,000	1	0,727	1	0,810	1	0,880
Hosp. Dr. Benjamin Pedreros (Chanco)	1	0,781	1	0,873	1	0,912	1	0,936	1	0,823
Hosp. Dr. Abraham Godoy (Lautaro)	1	0,770	1	0,600	1	0,505	1	0,442	1	0,444
Hosp. de Santa Cruz	1	0,770	1	0,957	1	0,949	1	0,956	1	0,920
Hosp. de Licanten	1	0,755	1	0,994	1	0,820	1	0,836	1	0,942
Hosp. Dr. Carlos Cisternas (Calama)	1	0,754	1	0,576	1	0,739	1	0,700	1	0,737
Hosp. de Llanquihue	1	0,752	1	0,709	1	0,745	1	0,769	1	0,741
Hosp. Dr. Ernesto Torres Galdames (Iquique)	1	0,750	1	1,000	1	1,000	1	1,000	1	1,000
Hosp. Dr. Eduardo Pereira Ramirez (Valparaiso)	1	0,734	1	0,663	1	0,772	1	0,789	1	0,784
Hosp. Juana Ross de Edwards (Penablanca. Villa Alemana)	1	0,728	1	0,710	1	0,730	1	0,721	1	0,714
Hosp. de Tolten	1	0,725	1	0,719	1	0,756	1	0,759	1	0,794
Hosp. de Futaleufu	1	0,721	1	0,699	1	0,757	1	0,706	1	0,588
Hosp. Dr. Gustavo Fricke (Vina del Mar)	1	0,721	1	0,792	1	0,776	1	0,806	1	0,668
Hosp. Dr. Abel Fuentealba Lagos de San Javier	1	0,720	1	0,711	1	0,815	1	0,792	1	0,792
Hosp. Dr. Antonio Tirado Lanas (Ovalle)	1	0,716	1	0,745	1	0,897	1	0,845	1	0,768
Hosp. de Frutillar	1	0,695	1	0,755	1	0,757	1	0,885	1	0,806
Hosp. de Ninos Dr. Luis Calvo Mackenna (Santiago. Providencia)	1	0,688	1	0,625	1	0,502	1	0,378	1	0,390
Hosp. de Palena	1	0,686	1	0,794	1	0,866	1	0,966	1	0,873
Hosp. de Puerto Montt	1	0,686	1	0,904	1	0,837	1	0,797	1	0,751
Hosp. de Quellon	1	0,673	1	0,629	1	0,754	1	0,583	1	0,614
Hosp. Lord Cochrane	1	0,670	1	0,926	1	1,000	1	1,000	1	0,886
Hosp. de Purranque	1	0,668	1	0,585	1	0,651	1	0,674	1	0,667
Hosp. Dr. Manuel Magalhaes Medling (Huasco)	1	0,668	1	0,658	1	0,699	1	0,780	1	0,800
Hosp. de Quilpue	1	0,667	1	0,831	1	0,742	1	0,726	1	0,678
Hosp. Traumatologico (Concepcion)	1	0,663	1	0,731	1	0,791	1	0,693	1	0,709
Hosp. Dr. Jorge Ibar (Cisnes)	1	0,659	1	0,765	1	0,792	1	0,844	1	0,769
Hosp. Psiquiatrico El Peral (Santiago. Puente Alto)	1	0,653	1	0,693	1	0,755	1	0,784	1	0,718
Hosp. Dr. Florencio Vargas (Diego de Almagro)	1	0,649	1	0,727	1	0,753	1	0,844	1	0,870
Hosp. San Jose del Carmen (Copiapo)	1	0,649	1	0,666	1	0,772	1	0,786	1	0,858
Hosp. de Pitrufquen	1	0,637	1	0,600	1	0,720	1	0,521	1	0,445
Instituto Traumatologico Dr. Teodoro Gebauer	1	0,620	1	0,788	1	0,692	1	0,492	1	0,517
Hosp. Clinico Metropolitano La Florida Dra. Eloisa Diaz Inzunza	1	0,597	1	0,470	1	0,725	1	0,683	1	0,663
Hosp. de Lonquimay	1	0,591	1	0,680	1	0,707	1	0,718	1	0,825
Hosp. de Castro	1	0,588	1	0,825	1	0,703	1	0,701	1	0,769
Hosp. San Francisco (Llaillay)	1	0,579	1	0,601	1	0,644	1	0,756	1	0,845
Hosp. Clinico Metropolitano El Carmen Doctor Luis Valentin Ferrada	1	0,564	1	0,816	1	0,824	1	0,785	1	0,735
Hosp. Penco - Lirquen	1	0,563	1	0,512	1	0,490	1	0,417	1	0,516
Hosp. de Ancud	1	0,560	1	0,628	1	0,628	1	0,504	1	0,599
Hosp. Intercultural de Nueva Imperial	1	0,555	1	0,519	1	0,686	1	0,689	1	0,687
Hosp. de Corral	1	0,553	1	0,635	1	0,672	1	0,802	1	0,818
Hosp. de Contulmo	1	0,553	1	0,571	1	0,654	1	0,767	1	0,747
Hosp. Regional (Coihaique)	1	0,523	1	0,529	1	0,509	1	0,546	1	0,429
Hosp. Provincial del Huasco Monsenor Fernando Ariztia Ruiz (Vallenar)	1	0,509	1	0,547	1	0,642	1	0,544	1	0,698
Hosp. Dr. Marco Antonio Chamorro (Porvenir)	1	0,493	1	0,691	1	0,626	1	0,550	1	0,470
Hosp. 21 de Mayo (Taltal)	1	0,472	1	0,607	1	0,563	1	0,584	1	0,613
Hosp. de Til Til Hosp. Dr. Augusto Essmann Burgos (Natales)	1	0,439	1	0,503	1	0,506	1	0,624	1	0,659
	1	0,430	1	0,458	1	0,429	1	0,341	1	0,314

Tabla 4.5: Resultados eficiencia para agrupaciones en base a distancias (parte 2)

NOMBRE	AÑO		AÑO			2016	AÑO 2017		AÑO 2018	
	cluster	eff	cluster	eff	cluster		cluster	eff	cluster e	
losp. de Calbuco	1	0,397	1	0,403	1	0,358	1	0,368	1 0	
losp. Hanga Roa (Isla De Pascua)	1	0,382	1	0,427	1	0,353	1	0,389	1 0	
nstituto de Neurocirugia Dr. Alfonso Asenjo	1	0,350	1	0,386	1	0,462	1	0,377	1 0	
losp. de Urgencia Asistencia Publica Dr. Alejandro del Rio	1	0,335	1	0,327	1	0,325	1	0,336	1 0	
łosp. de Mejillones	2	1,000	1	0,713	1	0,652	1	0,703	1 0	
losp. San Jose de Maipo	2	1,000	1	0,446	1	0,641	1	0,682	1 0	
losp. Santa Filomena (Graneros)	2	1,000	1	0,844	1	0,739	1	0,749	1 0	
losp. San Vicente de Tagua-Tagua	2	1,000	1	0,777	1	0,862	1	0,756	1 0	
losp. de Nancagua	2	1.000	1	0.674	1	0.708	1	0,802	1 0	
losp. de Teno	2	1,000	1	0,946	1	0,969	1	0,917	1 0	
losp. de Curepto	2	1,000	1	0,851	1	0,853	1	0,838	1 0	
losp. de Constitucion	2	1,000	1	0.741	1	0,938	1	0,752	1 0	
losp. San Jose (Coronel)	2	1.000	1	0,741	1	0,950	1	1.000	1 1	
	2	1,000	1	0,841		- ,		0,665		
losp. de Lota					1		1			
losp. Clorinda Avello (Santa Juana)	2	1,000	1	0,851	1	0,812		0,908	1 0	
losp. de Vilcun	2	1,000	1	0,954	1	0,871	1	0,982	1 0	
losp. de Carahue	2	1,000	1	0,928	1	0,773	1	0,878	1 0	
osp. de Lanco	2	1,000	1	0,668	1	0,433	1	0,411	1 0	
osp. de Maullin	2	1,000	1	0,853	1	0,856	1	0,881	1 0	
osp. Provincial Dr. Rafael Avaria (Curanilahue)	2	1,000	1	0,690	1	0,578	1	0,611	1 0	
osp. San Vicente (Arauco)	2	1,000	1	0,566	1	0,772	1	0,428	1 0	
losp. Dr. Dino Stagno M.(Traiguen)	2	1,000	1	0.566	1	0,547	1	0.473	1 0	
losp. Dr. Eduardo Gonzalez Galeno (Cunco)	2	0,984	1	1,000	1	0,842	1	0,891	1 0	
osp. de Galvarino	2	0,967	1	0,825	1	0,838	1	0,896	1 0	
osp. San Agustin de Florida	2	0.947	1	0.700	1	0.702	1	0.732	1 0	
osp. Comunitario de Yumbel	2	0,902	1	0,700	1	0,702		0,732	1 0	
	2									
osp. Mercedes (Chimbarongo)		0,901	1	0,569	1		1	0,623	1 0	
osp. de Puerto Octay	2	0,868	1	0,657	1		1	0,761	1 0	
osp. de Pichilemu	2	0,861	1	0,713	1	0,701	1	0,793	1 0	
osp. Dr. Arturo Hillerns Larranaga (Saavedra)	2	0,856	1	0,699	1	0,712	1	0,783	1 0	
osp. Comunitario de Salud Familiar de Bulnes	2	0,846	1	0,600	1	0,553	1	0,654	1 0	
osp. San Juan de Dios (Combarbala)	2	0,831	1	0,705	1	0,676	1	0,662	1 0	
osp. de Gorbea	2	0,828	1	0,859	1	808,0	1	0,925	1 0	
osp. de Fresia	2	0.810	1	0.558	1	0.619	1	0.715	1 0	
osp. de Loncoche	2	0,799	1	0,681	1	0,655	1	0,711	1 0	
osp. Dr. Jose Arrano (Andacollo)	2	0,796	1	0,597	1	0,628	1	0,713	1 0	
osp. Comunitario de Salud Familiar de Quirihue	2	0.773	1	0.658	1	0.656	1	0.720	1 0	
osp. Dr. Victor Hugo Moll (Cabildo)	2	0,732	1	0,579	1		1	0,717	1 0	
	2		1		1	0,658	1			
osp. San Juan de Dios (Vicuna)	2	0,726 0.722		0,626 0.596				0,764		
osp. Dr. Humberto Elorza Cortes (Illapel)			1		1	0,854	1	0,770		
osp. Comunitario de Mulchen	2	0,712	1	0,571	1	0,563	1	0,611	1 0	
osp. de Puren	2	0,702	1	0,519	1	0,550	1	0,628	1 0	
osp. de Molina	2	0,698	1	0,730	1	0,756	1	0,722	1 0	
osp. Comunitario Dr. Roberto Munoz Urrutia de Huepil	2	0,688	1	0,596	1	0,627	1	0,667	1 0	
osp. Comunitario de Salud Familiar Pedro Morales Campos (Yungay)	2	0,688	1	0,668	1	0,618	1	0,691	1 0	
osp. Comunitario de Laja	2	0,669	1	0,534	1	0,496	1	0,552	1 0	
osp. San Pedro (Los Vilos)	2	0,665	1	0,637	1	0,550	1	0,595	1 0	
osp. de Lebu	2	0,650	1	0,484	1	0,439	1	0,506	1 0	
osp. Comunitario de Salud Familiar de El Carmen	2	0,647	1	0.565	1	0,593	1	0.652	1 0	
osp. San Agustin (La Ligua)	2	0,639	1	0,561	1	0,552		0,511	1 0	
osp. de Salamanca	2	0,634	i	0,513	i		1	0,515	1 0	
	2	0,604	1	0,513	1	0,637		0,552	1 0	
osp. Dr. Mario Sanchez Vergara (La Calera)										
osp. Santo Tomas (Limache)	2	0,596	1	0,539	1	0,416	1	0,470	1 0	
sp. San Jose (Casablanca)	2	0,595	1	0,365	1	0,421	1	0,502	1 0	
sp. Comunitario de Salud Familiar Dr. Eduardo Contreras Trabucco de Coelemu	2	0,592	1	0,464	1	0,492	1	0,528	1 0	
osp. Comunitario de Santa Barbara	2	0,588	1	0,538	1	0,535	1	0,593	1 0	
osp. Dr. Oscar Hernandez E.(Curacautin)	2	0,581	1	0,483	1	0,477	1	0,530	1 0	
osp. Intercultural Kallvu Llanka (Canete)	2	0,563	1	0,306	1	0,402	1	0,406	1 0	
osp. Comunitario de Nacimiento	2	0,527	1	0,468	1	0,522	1	0,574	1 0	
osp. de Puerto Aysen	2	0,526	1	0,338	1	0,371	1	0,325	1 0	
osp. de l' de le 71,9en osp. Adriana Cousino (Quintero)	2	0.506	1	0.523	1	0.511		0.554	1 0	
osp. Adriana Codsino (Quintero)	2	0,300	1	0,323	1	0,311		0,525	1 0	
	2									
osp. de Curacavi osp. Dr. Marcos Macuada (Tocopilla)		0,462	1	0,291	1	0,343		0,347	1 0	
	2	0,406	1	0,356	1	0,430	1	0,510	1 0	

Tabla 4.6: Resultados eficiencia para agrupaciones en base a distancias (parte 3)

4.3 ANÁLISIS DE DETERMINANTES

Para determinar qué variables pueden ser consideradas como determinantes de la eficiencia, se ha realizado un análisis de regresión mediante modelo Tobit, como también con regresión lineal. Los resultados anuales se presentan a continuación.

4.3.1 Año 2014

4.3.1.1 Regresion con modelo Tobit

					Tobit		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	-2,26E-04 (-0,385)	3,23E-08 (0,029)	7E-06 (1,223)	-3,020** (-2,837)	-0,200 (-1,502)
	Input	Variable	6,34E-04 (1,411)	-2,89E-07 (-0,338)	7E-06 (1,587)	-0,785 (-0,965)	0,063 (0,624)
MINSAL		No-creciente	-2,68E-04 (-0,466)	4,1E-07 (0,375)	1E-05(.) (1,682)	-2,934** (-2,817)	-0,188 (-1,452)
WIINOAL		Constante	-2,25E-04 (-0,383)	2,78E-08 (0,025)	7E-06 (1,224)	-3,019** (-2,833)	-0,198 (-1,495)
	Output	Variable	6,99E-04 (1,399)	7,44E-08 (0,078)	9E-06(.) (1,669)	-1,782* (-1,967)	-0,140 (-1,241)
		No-creciente	-3,60E-04 (-0,651)	6E-07 (0,570)	9E-06 (1,562)	-3,110** (-3,101)	-0,209(.) (-1,676)
		Constante	1,38E-04 (0,257)	-1E-06 (-1,292)	4E-06 (0,797)	-0,979 (-1,005)	-0,086 (0,315)
	Input	Variable	5,4E-05 (0,122)	-2E-06* (-1,965)	1,5E-05** (3,207)	1,298 (1,614)	0,253* (2,535)
Mejor Clusterización		No-creciente	4,6E-05 (0,083)	-1E-06 (-0,909)	1,7E-05** (2,926)	-1,279 (-1,277)	-0,091 (-0,736)
iviejoi Giusterizacion		Constante	1,37E-04 (0,255)	-1E-06 (-1,289)	4E-06 (0,791)	-0,987 (-1,014)	-0,087 (-0,719)
	Output	Variable	-1,32E-04 (-0,303)	-1E-06 (-1,231)	1,4E-05** (3,037)	0,387 (0,489)	0,178(.) (1,809)
		No-creciente	-1,10E-04 (-0,210)	-1E-06 (-0,509)	1,4E-05** (2,645)	-1,452 (-1,533)	-0,126 (-1,071)

Tabla 4.7: Valores para la regresión utilizando un modelo Tobit.

En rojo se encuentran los valores pertenecientes al tipo de DEA utilizado en esta sección. Estadístico "z" en paréntesis. Significancia al (.)10%, *5%, **1% y ***0,1%. Fuente: Elaboración propia, (2021)

4.3.1.2 Regresión lineal

					Lineal		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	-2,26E-04 (-0,374)	3,23E-08 (0,028)	7E-06 (1,118)	-3,020** (-2,775)	-0,200 (-1,459)
	Input	Variable	6,34E-04 (1,370)	-2,89E-07 (-0,328)	7E-06 (1,541)	-0,785 (-0,937)	0,063 (0,606)
MINSAL		No-creciente	-2,68E-04 (-0,452)	4,1E-07 (0,364)	1E-05 (1,634)	-2,934** (-2,735)	-0,188 (-1,410)
WIINSAL		Constante	-2,25E-04 (-0,372)	2,7E-08 (0,024)	7E-06 (1,189)	-3,019** (-2,751)	-0,198 (-1,451)
	Output	Variable	6,99E-04 (1,358)	7,4E-08 (0,076)	9E-06 (1,621)	-1,782(.) (-1,910)	-0,140 (-1,205)
		No-creciente	-3,60E-04 (-0,362)	1E-06 (0,553)	9E-06 (1,517)	-3,110** (-3,011)	-0,209 (-1,628)
		Constante	1,38E-04 (0,250)	-1E-06 (-1,255)	4E-06 (0,774)	-0,979 (-0,976)	-0,086 (-0,691)
	Input	Variable	5,4E-05 (0,118)	-2E-06(.) (-1,908)	1,5E-05** (3,114)	1,298 (1,567)	0,253* (2,462)
Mejor Clusterizacion		No-creciente	4,6E-05 (0,080)	-1E-06 (-0,883)	1,7E-05** (2,841)	-1,279 (-1,240)	-0,091 (0,715)
Wejor Clusterización		Constante	1,37E-04 (0,248)	-1E-06 (-1,252)	4E-06 (0,768)	-0,987 (-0,985)	-0,087 (-0,698)
	Output	Variable	-1,32E-04 (-0,294)	-1E-06 (-1,195)	1,4E-05** (2,949)	0,387 (0,474)	0,178(.) (1,757)
		No-creciente	-1,10E-04 (-0,204)	-1E-06 (-0,494)	1,4E-05* (2,568)	-1,452 (-1,488)	-0,126 (-1,040)

Tabla 4.8: Valores para la regresión lineal.

4.3.2 Año 2015

4.3.2.1 Regresión con modelo Tobit

					Tobit		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	5,18E-05 (0,104)	-1,37E-06 (-1,403)	1,46E-05** (2,597)	0,973 (0,899)	-0,174 (-1,196)
	Input	Variable	4,99E-04 (1,376)	-4,03E-07 (-0,565)	8,09E-06* (1,968)	-0,785 (-0,993)	-0,061 (-0,573)
MINSAL		No-creciente	3,22E-05 (0,067)	-1,10E-06 (-1,158)	1,90E-05*** (3,478)	0,888 (0,847)	-0,159 (-1,126)
WIINSAL		Constante	5,14E-05 (0,103)	-1,36E-06 (-1,394)	1,46E-05** (2,586)	0,972 (0,897)	-0,175 (-1,196)
	Output	Variable	6,04E-04 (1,423)	-5,42E-07 (-0,649)	1,18E-05* (2,458)	-0,620 (-0,670)	-0,226(.) (-1,813)
		No-creciente	-2,44E-05 (-0,051)	-9,21E-07 (-0,988)	1,83E-05*** (3,411)	0,760 (0,736)	-0,159 (-1,143)
		Constante	4,37E-04 (0,965)	-2,51E-06** (-2,820)	2,09E-05*** (4,076)	0,658 (0,666)	-0,141 (-1,055)
	Input	Variable	7,76E-05 (0,201)	-1,12E-06 (-1,474)	1,68E-05*** (3,830)	-0,896 (-1,065)	-0,068 (-0,602)
Mejor Clusterizacion		No-creciente	2,80E-04 (0,625)	-1,87E-06* (-2,116)	2,79E-05*** (5,482)	0,098 (0,100)	-0,207 (-1,570)
Wejor Clusterización		Constante	4,41E-04 (0,978)	-2,50E-06** (-2,819)	2,09E-05** (4,094)	0,655 (0,666)	-0,142 (-1,069)
	Output	Variable	1,29E-05 (0,032)	-9,75E-07 (-1,221)	1,88E-05*** (4,081)	-0,820 (-0,927)	-0,280* (-2,351)
		No-creciente	1,70E-04 (0,391)	-1,47E-06(.) (-1,722)	2,54E-05*** (5,166)	0,174 (0,184)	-0,224(.) (-1,754)

Tabla 4.9: Valores para la regresión utilizando un modelo Tobit.

En rojo se encuentran los valores pertenecientes al tipo de DEA utilizado en esta sección. Estadístico "z" en paréntesis. Significancia al (.)10%, *5%, **1% y ***0,1%. Fuente: Elaboración propia, (2021)

4.3.2.2 Regresión lineal

					Lineal		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	5,18E-05 (0,101)	-1,37E-06 (-1,363)	1,46E-05* (2,523)	0,973 (0,874)	-0,174 (-1,162)
	Input	Variable	4,99E-04 (1,337)	-4,03E-07 (-0,549)	8,09E-06(.) (1,912)	-0,785 (-0,965)	-0,061 (-0,556)
MINSAL		No-creciente	3,22E-05 (0,065)	-1,10E-06 (-1,125)	1,90E-05** (3,379)	0,888 (0,823)	-0,159 (-1,094)
WIINOAL		Constante	5,14E-05 (0,101)	-1,36E-06 (-1,355)	1,46E-05* (2,512)	0,972 (0,871)	-0,175 (-1,162)
	Output	Variable	6,04E-04 (1,383)	-5,42E-07 (-0,630)	1,18E-05* (2,387)	-0,620 (-0,651)	-0,226 (-1,761)
		No-creciente	-2,44E-05 (-0,050)	-9,21E-07 (-0,960)	1,83E-05** (3,314)	0,760 (0,715)	-0,159 (-1,110)
		Constante	4,37E-04 (0,938)	-2,51E-06** (-2,740)	2,09E-05*** (3,960)	0,658 (0,647)	-0,141 (-1,026)
	Input	Variable	7,76E-05 (0,195)	-1,12E-06 (-1,432)	1,68E-05*** (3,721)	-0,896 (-1,034)	-0,068 (-0,585)
Mejor Clusterizacion		No-creciente	2,80E-04 (0,608)	-1,87E-06* (-2,056)	2,79E-05*** (5,326)	0,098 (0,097)	-0,207 (-1,527)
Wejor Glusterización		Constante	4,41E-04 (0,951)	-2,50E-06** (-2,739)	2,09E-05*** (3,978)	0,655 (0,648)	-0,142 (-1,039)
	Output	Variable	1,29E-05 (0,031)	-9,75E-07 (-1,186)	1,88E-05*** (3,965)	-0,820 (-0,901)	-0,280* (-2,285)
		No-creciente	1,70E-04 (0,380)	-1,47E-06(.) (-1,673)	2,54E-05*** (5,019)	0,174 (0,179)	-0,224(.) (-1,704)

Tabla 4.10: Valores para la regresión lineal.

4.3.3 Año 2016

4.3.3.1 Regresión con modelo Tobit

					Tobit		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	2,9E-04 (0,416)	-9,155E-07 (-1,017)	1,218E-05* (2,123)	1,014 (0,989)	-0,277(.) (-1,937)
	Input	Variable	6E-04 (1,212)	-2,434E-07 (-0,388)	6,238E-06 (1,561)	-0,251 (-0,351)	0,054 (0,543)
MINSAL		No-creciente	2,2E-04 (0,316)	-7,597E-07 (-0,845)	1,657E-05** (2,892)	0,872 (0,851)	-0,302* (-2,113)
WIIIVOAL		Constante	2,9E-04 (0,416)	-9,155E-07 (-1,017)	1,218E-05* (2,123)	1,014 (0,989)	-0,277(.) (-1,937)
	Output	Variable	8,8E-04 (1,403)	-5,636E-07 (-0,703)	1,108E-05* (2,169)	0,556 (0,608)	-0,127 (-0,999)
		No-creciente	1,9E-04 (0,268)	-7,673E-07 (-0,865)	1,658E-05** (2,932)	0,898 (0,888)	-0,321* (-2,277)
		Constante	6,3E-04 (0,999)	-1,855E-06* (-2,297)	1,588E-05** (3,086)	0,728 (0,791)	-0,342** (-2,659)
	Input	Variable	2,3E-04 (0,442)	-1,029E-06 (-1,539)	1,382E-05** (3,246)	0,453 (0,594)	0,038 (0,362)
Mejor Clusterizacion		No-creciente	5,8E-04 (0,925)	-1,664E-06* (-2,067)	2,513E-05*** (4,900)	1,036 (1,129)	-0,379** (-2,954)
Wejor Glusterizacion		Constante	6,3E-04 (0,999)	-1,855E-06* (-2,296)	1,588E-05** (3,086)	0,725 (0,788)	-0,342** (-2,659)
	Output	Variable	2,4E-04 (0,416)	-1,025E-06 (-1,385)	1,677E-05*** (3,558)	1,021 (1,210)	-0,254* (-2,162)
		No-creciente	4,3E-04 (0,708)	-1,305E-06(.) (-1,665)	2,289E-05*** (4,584)	1,054 (1,180)	-0,428*** (-3,421)

Tabla 4.11: Valores para la regresión utilizando un modelo Tobit.

En rojo se encuentran los valores pertenecientes al tipo de DEA utilizado en esta sección. Estadístico "z" en paréntesis. Significancia al (.)10%, *5%, **1% y ***0,1%. Fuente: Elaboración propia, (2021)

4.3.3.2 Regresión lineal

					Lineal		
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3
		Constante	2,9E-04 (0,405)	-9,155E-07 (-0,989)	1,218E-05* (2,066)	1,014 (0,962)	-0,277(.) (-1,885)
	Input	Variable	6E-04 (1,180)	-2,434E-07 (-0,378)	6,238E-06 (1,519)	-0,251 (-0,341)	0,054 (0,529)
MINSAL		No-creciente	2,2E-04 (0,307)	-7,597E-07 (-0,822)	1,657E-05** (2,813)	0,872 (0,828)	-0,302* (-2,057)
WIINSAL		Constante	2,9E-04 (0,405)	-9,155E-07 (-0,989)	1,218E-05* (2,066)	1,014 (0,962)	-0,277(.) (-1,885)
	Output	Variable	8,8E-04 (1,365)	-5,636E-07 (-0,684)	1,108E-05* (2,110)	0,556 (0,592)	-0,127 (-0,972)
		No-creciente	1,9E-04 (0,261)	-7,673E-07 (-0,841)	1,658E-05** (2,853)	0,898 (0,864)	-0,321* (-2,217)
		Constante	6,3E-04 (0,972)	-1,855E-06* (-2,235)	1,588E-05** (3,002)	0,728 (0,770)	-0,342* (-2,597)
	Input	Variable	2,3E-04 (0,430)	-1,029E-06 (-1,497)	1,382E-05** (3,157)	0,453 (0,578)	0,038 (0,352)
Mejor Clusterizacion		No-creciente	5,8E-04 (0,899)	-1,664E-06* (-2,011)	2,513E-05*** (4,767)	1,036 (1,099)	-0,379** (-2,888)
Wejor Clusterización		Constante	6,3E-04 (0,972)	-1,855E-06* (-2,234)	1,588E-05** (3,002)	0,725 (0,766)	-0,342* (-2,596)
	Output	Variable	2,4E-04 (0,405)	-1,025E-06 (-1,348)	1,677E-05*** (3,461)	1,021 (1,178)	-0,254* (-2,103)
		No-creciente	4,3E-04 (0,689)	-1,305E-06(.) (-1,620)	2,289E-05*** (4,460)	1,054 (1,148)	-0,428** (-3,346)

Tabla 4.12: Valores para la regresión lineal.

4.3.4 Año 2017

4.3.4.1 Regresión con modelo Tobit

			Tobit							
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3			
		Constante	4E-04 (0,491)	-2,79E-07 (-0,315)	8,26E-06 (1,386)	0,135 (0,149)	-0,319* (-2,142)			
	Input	Variable	8E-04 (1,504)	-2,55E-07 (-0,416)	7,28E-06 (1,762)	-0,173 (-0,276)	0,107 (1,040)			
MINSAL		No-creciente	5E-04 (0,637)	-6,18E-07 (-0,723)	1,70E-05** (2,953)	0,102 (0,117)	-0,320* (-2,220)			
WINVOAL	Output	Constante	4E-04 (0,487)	-2,66E-07 (-0,301)	8,17E-06 (1,370)	0,132 (0,147)	-0,319* (-2,141)			
		Variable	1,2E-03(.) (1,690)	-5,01E-07 (-0,636)	1,26E-05* (2,370)	0,126 (0,157)	-0,115 (-0,867)			
		No-creciente	4E-04 (0,557)	-6,18E-07 (-0,738)	1,69E-05** (2,997)	0,177 (0,207)	-0,340* (-2,408)			
		Constante	9E-04 (1,344)	-7,19E-07 (-0,996)	8,87E-06(.) (1,825)	0,194 (0,264)	-0,219(.) (-1,802)			
	Input	Variable	7E-04 (1,170)	-1,25E-06(.) (-1,784)	1,78E-05*** (3,782)	0,930 (1,302)	0,186 (1,574)			
Mejor Clusterizacion		No-creciente	1E-03 (1,566)	-1,81E-06* (-2,447)	2,93E-05*** (5,886)	0,595 (0,789)	-0,307* (-2,468)			
Wejor Glusterizacion		Constante	9E-04 (1,345)	-7,19E-07 (-0,997)	8,88E-06(.) (1,827)	0,198 (0,269)	-0,219(.) (-1,799)			
	Output	Variable	7E-04 (1,124)	-1,27E-06(.) (-1,734)	2,19E-05*** (4,421)	0,592 (0,790)	-0,147 (-1,192)			
		No-creciente	8E-04 (1,299)	-1,59E-06* (-2,214)	2,76E-05*** (5,695)	0,489 (0,666)	-0,382** (-3,148)			

Tabla 4.13: Valores para la regresión utilizando un modelo Tobit.

En rojo se encuentran los valores pertenecientes al tipo de DEA utilizado en esta sección. Estadístico "z" en paréntesis. Significancia al (.)10%, *5%, **1% y ***0,1%. Fuente: Elaboración propia, (2021)

4.3.4.2 Regresión lineal

			Lineal						
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3		
		Constante	4E-04 (0,479)	-2,79E-07 (-0,308)	8,26E-06 (1,353)	0,135 (0,146)	-0,319* (-2,092)		
	Input	Variable	8E-04 (1,468)	-2,55E-07 (-0,406)	7,28E-06(.) (1,720)	-0,173 (-0,269)	0,107 (1,016)		
MINSAL		No-creciente	5E-04 (0,622)	-6,18E-07 (-0,705)	1,70E-05** (2,883)	0,102 (0,114)	-0,320* (-2,168)		
WIINOAL	Output	Constante	4E-04 (0,475)	-2,66E-07 (-0,294)	8,17E-06 (1,337)	0,132 (0,143)	-0,319* (-2,090)		
		Variable	1,2E-03(.) (1,650)	-5,01E-07 (-0,621)	1,26E-05* (2,313)	0,126 (0,153)	-0,115 (-0,847)		
		No-creciente	4E-04 (0,543)	-6,18E-07 (-0,720)	1,69E-05** (2,925)	0,177 (0,202)	-0,340* (-2,351)		
		Constante	9E-04 (1,312)	-7,19E-07 (-0,972)	8,87E-06(.) (1,782)	0,194 (0,258)	-0,219(.) (-1,760)		
	Input	Variable	7E-04 (1,142)	-1,25E-06(.) (-1,741)	1,78E-05*** (3,692)	0,930 (1,271)	0,186 (1,536)		
Mejor Clusterizacion		No-creciente	1E-03 (1,529)	-1,81E-06* (-2,389)	2,93E-05*** (5,746)	0,595 (0,770)	-0,307* (-2,412)		
Wejor Glusterizacion		Constante	9E-04 (1,313)	-7,19E-07 (-0,973)	8,88E-06(.) (1,783)	0,198 (0,263)	-0,219(.) (-1,757)		
	Output	Variable	7E-04 (1,097)	-1,27E-06(.) (-1,693)	2,19E-05*** (4,316)	0,592 (0,771)	-0,147 (-1,163)		
		No-creciente	8E-04 (1,268)	-1,59E-06* (-2,161)	2,76E-05*** (5.559)	0,489 (0,650)	-0,382** (-3,078)		

Tabla 4.14: Valores para la regresión lineal.

4.3.5 Año 2018

4.3.5.1 Regresión con modelo Tobit

			Tobit						
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3		
		Constante	3E-04 (0,333)	-7,03E-07 (-0,739)	1,19E-05* (1,992)	0,209 (0,215)	-0,392** (-2,894)		
	Input	Variable	1,1E-03(.) (1,874)	-4,89E-07 (-0,776)	8,43E-06* (2,142)	-0,338 (-0,525)	0,124 (1,387)		
MINSAL		No-creciente	4E-04 (0,468)	-9,33E-07 (-0,999)	1,99E-05*** (3,414)	0,082 (0,086)	-0,374** (-2,815)		
WIINOAL	Output	Constante	3E-04 (0,331)	-7,30E-07 (-0,766)	1,18E-05* (1,980)	0,161 (0,166)	-0,396** (-2,918)		
		Variable	1,5E-03(.) (1,899)	-6,88E-07 (-0,804)	1,54E-05** (2,878)	-0,705 (-0,807)	-0,049 (-0,400)		
		No-creciente	3E-04 (0,391)	-9,55E-07 (-1,037)	2,04E-05*** (3,535)	0,021 (0,022)	-0,385** (-2,940)		
		Constante	5E-04 (0,624)	-1,63E-06* (-1,982)	1,47E-05** (2,857)	0,027 (0,032)	-0,350** (-2,987)		
	Input	Variable	3E-04 (0,450)	-1,32E-06(.) (-1,930)	1,55E-05*** (3,635)	0,049 (0,070)	0,208* (2,146)		
Mejor Clusterizacion		No-creciente	5E-04 (0,731)	-2,00E-06* (-2,425)	2,96E-05*** (5,734)	0,115 (0,136)	-0,376** (-3,198)		
Wejor Clusterización		Constante	5E-04 (0,624)	-1,63E-06* (-1,982)	1,47E-05** (2,857)	0,025 (0,030)	-0,350** (-2,987)		
	Output	Variable	3E-04 (0,443)	-1,31E-06 (-1,619)	2,25E-05*** (4,452)	-0,359 (-0,435)	0,004 (0,031)		
		No-creciente	4E-04 (0,547)	-1,75E-06* (-2,145)	2,86E-05*** (5,633)	0,099 (0,119)	-0,414*** (-3,565)		

Tabla 4.15: Valores para la regresión utilizando un modelo Tobit.

En rojo se encuentran los valores pertenecientes al tipo de DEA utilizado en esta sección. Estadístico "z" en paréntesis. Significancia al (.)10%, *5%, **1% y ***0,1%. Fuente: Elaboración propia, (2021)

4.3.5.2 Regresión lineal

			Lineal						
			PromDiasEstada	DiasCama	Egresos	IndiceLetalidad	PacientesD2_D3		
		Constante	3E-04 (0,326)	-7,03E-07 (-0,723)	1,19E-05(.) (1,951)	0,209 (0,210)	-0,392** (-2,838)		
MINSAL	Input	Variable	1,1E-03(.) (1,839)	-4,89E-07 (-0,760)	8,43E-06* (2,097)	-0,338 (-0,514)	0,124 (1,358)		
		No-creciente	4E-04 (0,458)	-9,33E-07 (-0,978)	1,99E-05** (3,343)	0,082 (0,084)	-0,374** (-2,760)		
	Output	Constante	3E-04 (0,324)	-7,30E-07 (-0,750)	1,18E-05(.) (1,939)	0,161 (0,162)	-0,396** (-2,862)		
		Variable	1,5E-03(.) (1,860)	-6,88E-07 (-0,788)	1,54E-05** (2,819)	-0,705 (-0,791)	-0,049 (-0,391)		
		No-creciente	3E-04 (0,383)	-9,55E-07 (-1,015)	2,04E-05*** (3,462)	0,021 (0,022)	-0,385** (-2,883)		
		Constante	5E-04 (0,611)	-1,63E-06(.) (-1,941)	1,47E-05** (2,798)	0,027 (0,031)	-0,350** (-2,933)		
	Input	Variable	3E-04 (0,440)	-1,32E-06(.) (-1,890)	1,55E-05*** (3,559)	0,049 (0,069)	0,208* (2,102)		
Mejor Clusterizacion		No-creciente	5E-04 (0,716)	-2,00E-06* (-2,374)	2,96E-05*** (5,615)	0,115 (0,133)	-0,376** (-3,143)		
wejor Glusterizacion		Constante	5E-04 (0,611)	-1,63E-06(.) (-1,941)	1,47E-05** (2,798)	0,025 (0,029)	-0,350** (-2,933)		
	Output	Variable	3E-04 (0,433)	-1,31E-06 (-1,585)	2,25E-05*** (4,359)	-0,359 (-0,426)	0,004 (0,030)		
		No-creciente	4E-04 (0,536)	-1,75E-06* (-2,100)	2,86E-05*** (5,516)	0,099 (0,117)	-0,414*** (3,504)		

Tabla 4.16: Valores para la regresión lineal.

4.4 MALMQUIST 2014-2018

4.4.1 Análisis de correlación

Para el caso de la variante de la técnica DEA, se ha llevado a cabo un análisis de correlación, con tal de determinar la relación entre los distintos coeficientes, tanto en el índice "Malmquist", el cual indica la diferencia en la productividad entre dos periodos, como para el índice de eficiencia, el cual marca el cambio en la eficiencia técnica entre los periodos.

Para este caso, no se han considerado técnicas de clusterización, puesto que Malmquist-DEA compara una DMU consigo misma en un diferente periodo.

Los resultados obtenidos para el análisis de correlación del índice Malmquist son los siguientes:

	Input/RTS Cons.	Input/RTS Var.	Input/RTS No Crec.	Output/RTS Cons.	Output/RTS Var.	Output/RTS No Crec.
Input/RTS Cons.	1,000	1,000	1,000	1,000	1,000	1,000
Input/RTS Var.	1,000	1,000	1,000	1,000	1,000	1,000
Input/RTS No Crec.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS Cons.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS Var.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS No Crec.	1,000	1,000	1,000	1,000	1,000	1,000

Tabla 4.17: Correlación del índice Malmquist para el periodo 2014-2018.

Figura 4.7: Correlación del índice Malmquist para el periodo 2014-2018. Fuente: Elaboración propia, (2021)

En la figura 4.7 se indica "malm" para referirse al índice Malmquist, mientras que las demás etiquetas corresponden a "out, in, crs, vrs" y "nirs", las cuales indican orientaciones a la salida, a la entrada, retorno a escala constante, retorno a escala variable, y por último, el retorno a escala no creciente, respectivamente. Es mediante esta correlación que se puede determinar que no solo existe una relación entre estas variables, sino que además no existe una mayor diferencia entre una y otra.

Por otra parte, los resultados obtenidos para el análisis de correlación del cambio en la eficiencia técnica, son los siguientes:

	Input/RTS Cons.	Input/RTS Var.	Input/RTS No Crec.	Output/RTS Cons.	Output/RTS Var.	Output/RTS No Crec.
Input/RTS Cons.	1,000	1,000	1,000	1,000	1,000	1,000
Input/RTS Var.	1,000	1,000	1,000	1,000	1,000	1,000
Input/RTS No Crec.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS Cons.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS Var.	1,000	1,000	1,000	1,000	1,000	1,000
Output/RTS No Crec.	1,000	1,000	1,000	1,000	1,000	1,000

Tabla 4.18: Correlación de la eficiencia técnica para el periodo 2014-2018.

Fuente: Elaboración propia, (2021)

Figura 4.8: Correlación de la eficiencia técnica para el periodo 2014-2018. Fuente: Elaboración propia, (2021)

Al igual que para el caso del índice Malmquist, el análisis de correlación para el cálculo de la diferencia en la eficiencia técnica entre los años mencionados indica que, al menos para este caso, las diferentes variaciones en el cálculo, esto es, considerando los distintos retornos a escala, o si el enfoque está hacia el input o el output, los resultados que se tendrán son los mismos.

4.4.2 Resultados índice de Malmquist

Hospit	al	Malmquist	Hospital	Malmquist
	Dr. Juan Noe Crevanni (Arica)	0,706	Hosp. Dr. Ricardo Valenzuela Saez (Rengo)	0,524
Hosp.	Dr. Ernesto Torres Galdames (Iquique)	0,714	Hosp. San Vicente de Tagua-Tagua	0,471
Hosp.	Dr. Leonardo Guzman (Antofagasta)	0,584	Hosp. de Pichidegua	0,543
	Dr. Carlos Cisternas (Calama)	0,642	Hosp. San Juan de Dios (San Fernando)	0,638
	Dr. Marcos Macuada (Tocopilla)	1,190	Hosp. Mercedes (Chimbarongo)	0,536
	21 de Mayo (Taltal)	0,577	Hosp. de Nancagua	0,590
	de Mejillones San Jose del Carmen (Copiapo)	0,479 0,845	Hosp. de Santa Cruz Hosp. de Marchigue	0,590 0,431
	Dr. Jeronimo Mendez Arancibia (Chanaral)	0,459	Hosp. de Pichilemu	0,431
	Dr. Florencio Vargas (Diego de Almagro)	0,734	Hosp. de Lolol	0,545
	Provincial del Huasco Monsenor Fdo. Ruiz (Vallenar)	0,729	Hosp. de Litueche	0,549
	Dr. Manuel Magalhaes Medling (Huasco)	0,429	Hosp. San Juan de Dios (Curico)	0,724
	San Juan de Dios (La Serena)	0,573	Hosp. de Teno	0,507
Hosp.	San Pablo (Coquimbo)	0,572	Hosp. de Molina	0,912
Hosp.	Dr. Antonio Tirado Lanas (Ovalle)	0,584	Hosp. de Hualane	0,465
Hosp.	Dr. Humberto Elorza Cortes (Illapel)	0,906	Hosp. de Licanten	0,652
	de Salamanca	0,434	Hosp. Dr. Cesar Garavagno Burotto (Talca)	0,543
	San Juan de Dios (Combarbala)	0,586	Hosp. de Curepto	0,842
	Dr. Jose Arrano (Andacollo)	0,621	Hosp. de Constitucion	0,523
	San Juan de Dios (Vicuna)	0,499	Hosp. Presidente Carlos Ibanez del Campo (Linares)	0,560
	San Pedro (Los Vilos)	0,523	Hosp. Dr. Abel Fuentealba Lagos de San Javier	0,610
	Carlos Van Buren (Valparaiso) Dr. Eduardo Pereira Ramirez (Valparaiso)	0,493 0,719	Hosp. San Jose (Parral) Hosp. San Juan de Dios (Cauquenes)	0,641 0,639
	Claudio Vicuna (San Antonio)	0,575	Hosp. Dr. Benjamin Pedreros (Chanco)	0,039
	Del Salvador (Valparaiso)	0,477	Hosp. Clinico Herminda Martin (Chillan)	0,580
	San Jose (Casablanca)	0,747	Hosp. de San Carlos	0,557
	Dr. Gustavo Fricke (Vina del Mar)	0,568	Hosp. Comunitario de Salud Familiar de Bulnes	0,337
	San Martin (Quillota)	0,634	Hosp. Comunitario de Salud Familiar Yungay	0,565
	de Quilpue	0,596	Hosp. Comunitario de Salud Familiar de Quirihue	0,535
	Dr. Mario Sanchez Vergara (La Calera)	0,624	Hosp. Comunitario de Salud Familiar de El Carmen	0,691
Hosp.	Santo Tomas (Limache)	0,695	Hosp. Comunitario de Coelemu	0,633
Hosp.	San Agustin (La Ligua)	0,734	Hosp. Clinico Regional Dr. Guillermo Grant (Concepcion)	0,591
	Dr. Victor Hugo Moll (Cabildo)	0,682	Hosp. Traumatologico (Concepcion)	0,563
	de Petorca	0,818	Hosp. San Jose (Coronel)	0,644
	Adriana Cousino (Quintero)	0,586	Hosp. de Lota	0,641
	Juana Ross de Edwards (Villa Alemana)	0,599	Hosp. Clorinda Avello (Santa Juana)	0,506
	Centro Geriatrico Paz de la Tarde (Limache)	0,463	Hosp. San Agustin de Florida	0,492
	de San Camilo (San Felipe)	0,662	Hosp. Las Higueras (Talcahuano)	0,571
	San Juan de Dios (Los Andes)	0,630	Hosp. de Tome	0,594
	San Francisco (Llaillay) San Antonio (Putaendo)	0,777 0,599	Hosp. Penco - Lirquen Complejo Asistencial Dr. Victor Rios Ruiz (Los angeles)	0,592 0,579
	Psiquiatrico Dr. Philippe Pinel (Putaendo)	0,589	Hosp. Comunitario de Mulchen	0,649
	ejo Hospitalario San Jose (Independencia)	0,502	Hosp. Comunitario de Nacimiento	0,715
	Clinico de Ninos Dr. Roberto del Rio	0,401	Hosp. Comunitario de Yumbel	0,581
	o Psiquiatrico Dr. Jose Horwitz Barak	0,743	Hosp. Comunitario de Laja	0,520
	o Nacional del Cancer	0,638	Hosp. Comunitario de Santa Barbara	0,536
Hosp.	de Til Til	1,151	Hosp. Comunitario Dr. Roberto Munoz Urrutia de Huepil	0,463
	San Juan de Dios (Santiago. Santiago)	0,639	Hosp. Dr. Hernan Henriquez Aravena (Temuco)	0,656
nstitut	o Traumatologico Dr. Teodoro Gebauer	0,534	Hosp. Dr. Abraham Godoy (Lautaro)	0,352
	Dr. Felix Bulnes Cerda (Santiago. Quinta Normal)	0,605	Hosp. de Galvarino	0,408
	Adalberto Steeger (Talagante)	0,489	Hosp. de Vilcun	0,432
	de Penaflor	0,542	Hosp. Dr. Eduardo Gonzalez Galeno (Cunco)	0,356
	San Jose (Melipilla)	0,528	Hosp. Intercultural de Nueva Imperial	0,656
	de Curacavi Clinico San Borja-Arriaran (Santiago. Santiago)	0,605 0,569	Hosp. de Carahue Hosp. Dr. Arturo Hillerns Larranaga (Saavedra)	0,356
	Clinico Metropolitano El Carmen Dr. Luis Ferrada	0,816	Hosp. de Pitrufquen	0,570 0,393
	de Urgencia Asistencia Publica Dr. Alejandro del Rio	0,795	Hosp. de Filidiquen Hosp. de Tolten	0,595
	Del Salvador (Santiago. Providencia)	0,413	Hosp. de Gorbea	0,483
	Dr. Luis Tisne B. (Santiago. Penalolen)	0,654	Hosp. de Loncoche	0,405
	de Ninos Dr. Luis Calvo Mackenna (Providencia)	0,272	Hosp. de Villarrica	0,448
	o de Neurocirugia Dr. Alfonso Asenjo	0,698	Hosp. Clinico Regional (Valdivia)	0,667
	o Nacional de Rehabilitacion Infantil Pdte. Pedro Aguirre Cerd		Hosp. de Corral	0,617
	o Nacional Geriatrico Presidente Eduardo Frei	0,786	Hosp. de Los Lagos	0,542
losp.	Hanga Roa (Isla De Pascua)	0,953	Hosp. de Lanco	0,300
	Barros Luco Trudeau (Santiago. San Miguel)	0,693	Hosp. de Rio Bueno	0,422
	Dr. Exequiel Gonzalez Cortes (Santiago. San Miguel)	0,349	Hosp. de Paillaco	0,574
	San Luis (Buin)	0,656	Hosp. Base San Jose de Osorno	0,589
	Enfermedades Infecciosas Dr. Lucio Cordova (San Miguel)	0,619	Hosp. de Purranque	0,466
	Psiquiatrico El Peral (Santiago. Puente Alto)	0,703	Hosp. de Rio Negro	0,410
	El Pino (Santiago. San Bernardo)	0,668	Hosp. de Puerto Octay	0,399
	ejo Hosp.ario Dr. Sotero del Rio (Puente Alto)	0,534	Hosp. Mision San Juan de la Costa	0,682
	San Jose de Maipo	0,830	Hosp, de Puerto Montt	0,510
	Padre Alberto Hurtado (San Ramon) Clinico Metropolitano La Florida Dra. Eloisa Diaz	0,590	Hosp. de Puerto Montt Hosp. de Llanguihue	0,676
	Clinico Metropolitano La Florida Dra. Eloisa Diaz Regional de Rancagua	0,755 0,580	Hosp. de Lianquinue Hosp. de Frutillar	0,443 0,690
	Regional de Rancagua Santa Filomena (Graneros)	0,555	Hosp. de Fresia	0,690
	ounta i nomena (Oraneros)	0,555	ricop. do ricola	0,002
	de Coinco	0,621	Hosp. de Maullin	0,308

Tabla 4.19: Resultados Malmquist para el periodo 2014-2018 (Parte 1)

Hospital	Malmquist	Hospital	Malmquist
Hosp. de Palena	0,311	Hosp. San Vicente (Arauco)	0,306
Hosp. de Futaleufu	0,349	Hosp. Dr. Mauricio Heyermann (Angol)	0,517
Hosp. Regional (Coihaique)	0,543	Hosp. de Puren	0,661
Hosp. de Puerto Aysen	0,376	Hosp. de Collipulli	0,844
Hosp. Dr. Leopoldo Ortega R. (Chile Chico)	0,495	Hosp. Dr. Dino Stagno M.(Traiguen)	0,477
Hosp. Lord Cochrane	0,607	Hosp. San Jose de Victoria	0,621
Hosp. Dr. Jorge Ibar (Cisnes)	0,681	Hosp. Dr. Oscar Hernandez E.(Curacautin)	0,454
Hosp. Dr. Augusto Essmann Burgos (Natales)	0,428	Hosp. de Lonquimay	0,658
Hosp. Dr. Marco Antonio Chamorro (Porvenir)	0,487	Hosp. de Castro	0,627
Hosp. Provincial Dr. Rafael Avaria (Curanilahue)	0,450	Hosp. de Ancud	0,621
Hosp. de Lebu	0,463	Hosp. Comunitario de Achao	0,421
Hosp. Intercultural Kallvu Llanka (Canete)	0,440	Hosp. de Quellon	0,559
Hosp. de Contulmo	0.628	Hosp. de Queilen	0.237

Tabla 4.20: Resultados Malmquist para el periodo 2014-2018 (Parte 2)

Fuente: Elaboración propia, (2021)

4.4.3 Resultados índice de cambio de eficiencia

Hospital	Eficiencia	Hospital	Eficiencia
Hosp. Dr. Juan Noe Crevanni (Arica)	1,141	Hosp. de Til Til	2,442
Hosp. Dr. Ernesto Torres Galdames (Iquique)	1,070	Hosp. San Juan de Dios (Santiago. Santiago)	0,957
Hosp. Dr. Leonardo Guzman (Antofagasta)	0,893	Instituto Traumatologico Dr. Teodoro Gebauer	0,804
Hosp. Dr. Carlos Cisternas (Calama)	1,449	Hosp. Dr. Felix Bulnes Cerda (Santiago. Quinta Normal)	0,981
Hosp. Dr. Marcos Macuada (Tocopilla)	2,739	Hosp. Adalberto Steeger (Talagante)	0,970
Hosp. 21 de Mayo (Taltal)	1,458	Hosp. de Penaflor	0,951
Hosp. de Mejillones	1,040	Hosp. San Jose (Melipilla)	0,905
Hosp. San Jose del Carmen (Copiapo)	1,268	Hosp. de Curacavi	1,180
Hosp. Dr. Jeronimo Mendez Arancibia (Chanaral)	1,064	Hosp. Clinico San Borja-Arriaran (Santiago. Santiago)	0,932
Hosp. Dr. Florencio Vargas (Diego de Almagro)	1,711	Hosp. Clinico Metropolitano El Carmen Dr. Luis Ferrada	1,247
Hosp. Provincial del Huasco Monsenor Fdo. Ruiz (Vallenar)	1,605	Hosp. de Urgencia Asistencia Publica Dr. Alejandro del Rio	1,143
Hosp. Dr. Manuel Magalhaes Medling (Huasco)	0,949	Hosp. Del Salvador (Santiago. Providencia)	0,653
Hosp. San Juan de Dios (La Serena)	0,939	Hosp. Dr. Luis Tisne B. (Santiago. Penalolen)	1,000
Hosp. San Pablo (Coquimbo)	0,888	Hosp. de Ninos Dr. Luis Calvo Mackenna (Providencia)	0,899
Hosp. Dr. Antonio Tirado Lanas (Ovalle)	0,948	Instituto de Neurocirugia Dr. Alfonso Asenjo	1,101
Hosp. Dr. Humberto Elorza Cortes (Illapel)	1,466	Instituto Nacional de Rehabilitacion Infantil Pdte. Pedro Aquirre Cerda	1,000
Hosp. de Salamanca	0,942	Instituto Nacional Geriatrico Presidente Eduardo Frei	1,000
Hosp. San Juan de Dios (Combarbala)	1,219	Hosp. Hanga Roa (Isla De Pascua)	2.353
Hosp. Dr. Jose Arrano (Andacollo)	1.156	Hosp. Barros Luco Trudeau (Santiago. San Miguel)	1,035
Hosp. San Juan de Dios (Vicuna)	1,071	Hosp. Dr. Exeguiel Gonzalez Cortes (Santiago. San Miguel)	1,000
Hosp. San Pedro (Los Vilos)	1,167	Hosp. San Luis (Buin)	1,016
Hosp. Carlos Van Buren (Valparaiso)	0.760	Hosp. Enfermedades Infecciosas Dr. Lucio Cordova (San Miguel)	1.000
Hosp. Dr. Eduardo Pereira Ramirez (Valparaiso)	1,050	Hosp. Psiguiatrico El Peral (Santiago. Puente Alto)	1,064
Hosp. Claudio Vicuna (San Antonio)	0,981	Hosp. El Pino (Santiago. San Bernardo)	0,932
Hosp. Del Salvador (Valparaiso)	1.000	Complejo Hosp.ario Dr. Sotero del Rio (Puente Alto)	0.846
Hosp. San Jose (Casablanca)	1,390	Hosp. San Jose de Maipo	1,000
Hosp. Dr. Gustavo Fricke (Vina del Mar)	0,879	Hosp. Padre Alberto Hurtado (San Ramon)	0,946
Hosp. San Martin (Quillota)	1,025	Hosp. Clinico Metropolitano La Florida Dra. Eloisa Diaz	1,195
Hosp. de Quilpue	0.936	Hosp. Regional de Rancagua	0.848
Hosp. Dr. Mario Sanchez Vergara (La Calera)	1.313	Hosp. Santa Filomena (Graneros)	1,194
Hosp. Santo Tomas (Limache)	1,349	Hosp. de Coinco	1,237
Hosp. San Agustin (La Ligua)	1,686	Hosp. Del Salvador (Peumo)	0,700
Hosp. Dr. Victor Hugo Moll (Cabildo)	1,455	Hosp. Dr. Ricardo Valenzuela Saez (Rengo)	1,000
Hosp. de Petorca	1.855	Hosp. San Vicente de Tagua-Tagua	1,000
Hosp. Adriana Cousino (Quintero)	1,252	Hosp. de Pichidegua	1,075
Hosp. Juana Ross de Edwards (Villa Alemana)	1.000	Hosp. San Juan de Dios (San Fernando)	1,072
Hosp. Centro Geriatrico Paz de la Tarde (Limache)	1,000	Hosp. Mercedes (Chimbarongo)	1,011
Hosp. de San Camilo (San Felipe)	1.049	Hosp. de Nancaqua	1,328
Hosp. San Juan de Dios (Los Andes)	0,993	Hosp. de Santa Cruz	1,294
Hosp. San Francisco (Llaillay)	1.703	Hosp. de Marchique	0.830
Hosp. San Antonio (Putaendo)	1,703	Hosp. de Pichilemu	0,830
Hosp. Psiguiatrico Dr. Philippe Pinel (Putaendo)	1,000	Hosp. de Lolol	1,044
Complejo Hospitalario San Jose (Independencia)	0,786	Hosp. de Litueche	1,128
Hosp. Clinico de Ninos Dr. Roberto del Rio	1.000	Hosp. San Juan de Dios (Curico)	1,126
Instituto Psiquiatrico Dr. Jose Horwitz Barak	1,000	Hosp. de Teno	1,124
Instituto Psiquiatrico Dr. Jose Horwitz Barak Instituto Nacional del Cancer	1,000	Hosp. de Molina	2,198
Instituto ivacional dei Gancei	1,000	1105p. ue Mullid	2, 198

Tabla 4.21: Resultados en el cambio de la eficiencia técnica para el periodo 2014-2018. (Parte 1) Fuente: Elaboración propia, (2021)

Hospital	Eficiencia	Hospital	Eficienc
Hosp. de Hualane	0,996	Hosp. de Villarrica	0,93
Hosp. de Licanten	1,387	Hosp. Clinico Regional (Valdivia)	1,02
Hosp. Dr. Cesar Garavagno Burotto (Talca)	0,870	Hosp. de Corral	1,41
Hosp. de Curepto	1,958	Hosp. de Los Lagos	1,21
Hosp. de Constitucion	0,977	Hosp. de Lanco	0,65
Hosp. Presidente Carlos Ibanez del Campo (Linares)	0,921	Hosp. de Rio Bueno	1,00
Hosp. Dr. Abel Fuentealba Lagos de San Javier	1,282	Hosp. de Paillaco	1,26
Hosp. San Jose (Parral)	1,000	Hosp. Base San Jose de Osorno	0,9
Hosp. San Juan de Dios (Cauquenes)	1,000	Hosp. de Purranque	0,99
Hosp. Dr. Benjamin Pedreros (Chanco)	1,040	Hosp. de Rio Negro	0,90
Hosp. Clinico Herminda Martin (Chillan)	0,892	Hosp. de Puerto Octay	0,8
Hosp. de San Carlos	0,896	Hosp. Mision San Juan de la Costa	1,13
Hosp. Comunitario de Salud Familiar de Bulnes	0,956	Hosp. del Perpetuo Socorro de Quilacahuin	0,87
Hosp. Comunitario de Salud Familiar Yungay	1,230	Hosp. de Puerto Montt	1,0
Hosp. Comunitario de Salud Familiar de Quirihue	1,021	Hosp. de Llanquihue	0,96
Hosp. Comunitario de Salud Familiar de El Carmen	1,455	Hosp. de Frutillar	1,2
Hosp. Comunitario de Salud Familiar de Coelemu	1,244	Hosp. de Fresia	1,2
Hosp. Clinico Regional Dr. Guillermo Grant (Concepcion)	0,901	Hosp. de Maullin	0,6
Hosp. Traumatologico (Concepcion)	1,167	Hosp. de Calbuco	1,2
Hosp. San Jose (Coronel)	1,000	Hosp. de Palena	0,6
Hosp. de Lota	1,003	Hosp. de Futaleufu	0,7
Hosp. Clorinda Avello (Santa Juana)	0,930	Hosp. Regional (Coihaigue)	0,8
Hosp. San Agustin de Florida	0,884	Hosp. de Puerto Aysen	0,7
Hosp. Las Higueras (Talcahuano)	0,927	Hosp. Dr. Leopoldo Ortega R. (Chile Chico)	1,1
Hosp. de Tome	0,915	Hosp. Lord Cochrane	1,4
Hosp. Penco - Lirguen	1,331	Hosp. Dr. Jorge Ibar (Cisnes)	1,5
Complejo Asistencial Dr. Victor Rios Ruiz (Los angeles)	0,913	Hosp. Dr. Augusto Essmann Burgos (Natales)	0,7
Hosp. Comunitario de Mulchen	1,250	Hosp. Dr. Marco Antonio Chamorro (Porvenir)	0,9
Hosp. Comunitario de Nacimiento	1,483	Hosp. Provincial Dr. Rafael Avaria (Curanilahue)	0.7
Hosp. Comunitario de Yumbel	1,066	Hosp. de Lebu	1.0
Hosp. Comunitario de Laja	0,991	Hosp. Intercultural Kallvu Llanka (Canete)	1,0
Hosp. Comunitario de Santa Barbara	1,131	Hosp. de Contulmo	1,4
Hosp. Comunitario Dr. Roberto Munoz Urrutia de Huepil	0,893	Hosp. San Vicente (Arauco)	0,7
Hosp. Dr. Hernan Henriquez Aravena (Temuco)	1,014	Hosp. Dr. Mauricio Heyermann (Angol)	0,8
Hosp. Dr. Abraham Godoy (Lautaro)	0,667	Hosp. de Puren	1,3
Hosp. de Galvarino	0,946	Hosp. de Collipulli	1,7
Hosp. de Vilcun	0,923	Hosp. Dr. Dino Stagno M.(Traiguen)	0.7
Hosp. Dr. Eduardo Gonzalez Galeno (Cunco)	0,826	Hosp. San Jose de Victoria	0,9
Hosp. Intercultural de Nueva Imperial	1,310	Hosp. Dr. Oscar Hernandez E.(Curacautin)	0,9
Hosp. de Carahue	0,766	Hosp. de Longuimay	1,5
Hosp. Dr. Arturo Hillerns Larranaga (Saavedra)	1,216	Hosp. de Castro	1,0
Hosp. de Pitrufquen	0,711	Hosp. de Castro Hosp. de Ancud	1,0
Hosp. de l'italiquem	1,195	Hosp. Comunitario de Achao	0,9
Hosp. de Folien	0,974	Hosp. de Quellon	1,16
ioop. uc ooibea	0,014	rioop. ac gacilori	1,11

Tabla 4.22: Resultados en el cambio de la eficiencia técnica para el periodo 2014-2018. (Parte 2) Fuente: Elaboración propia, (2021)

CAPÍTULO 5. DISCUSIÓN

Con base a los resultados obtenidos, es posible generar tablas en donde se pueda comparar directamente la eficiencia de los hospitales, para cada año y para cada grupo, y de esta forma, generar una discusión en base a estos resultados. Es importante mencionar que, para ciertos hospitales en algún año particular, hay espacios vacíos en las tablas. Esto se debe a que no existe un registro de cuántas camas/egresos/consultas se tuvieron para esa institución. Por otra parte, los valores monetarios están expresados en miles.

5.1 AÑO 2014

Comparando los resultados obtenidos para los hospitales del año 2014, es posible construir la siguiente tabla resumen para cada uno de los grupos.

5.1.1 MINSAL: grupo 1

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Carlos Cisternas (Calama)	349	1460	5714	105	438	1714	1,000
2	Juana Ross de Edwards (Villa Alemana)	91	1435	50119	46	723	25260	1,000
3	Geriatrico Paz de la Tarde (Limache)	92	2651	11971	18	531	2399	1,000
4	San Antonio (Putaendo)	139	1322		47	449		1,000
5	San Vicente de Tagua-Tagua	212	916	2117	112	485	1120	1,000
-	Promedio	459,9	2104,5	50305,3	140,2	643,8	17566,9	0,705
95	de Calbuco	367	1770	25141	100	485	6883	0,398
96	de Collipulli	432	2227		151	778		0,391
97	Dr. Marcos Macuada (Tocopilla)	519	1917	12633	203	751	4950	0,361
98	San Jose (Casablanca)	1525	9694		600	3810		0,355
99	de Curacavi	533	4479		155	1299		0,312

Tabla 5.1: Eficiencia comparativa en hospitales del grupo 1 MINSAL Fuente: Elaboración propia, (2021)

En primer lugar, para la agrupación propuesta por el MINSAL, específicamente, se pueden realizar diferentes análisis. Por ejemplo, los hospitales que están en primer lugar, con una eficiencia técnica máxima (1,000), están ahí a pesar de tener gastos por sobre el promedio.

Analizando el caso del primer hospital en la tabla, "Dr. Carlos Cisternas (Calama)", su relación en el gasto del subtítulo 21 con la cantidad de camas es mayor a los cuatro hospitales que también tienen el máximo de eficiencia, incluso, si se compara con el hospital que está en la segunda ubicación "Juana Ross de Edwards (Villa Alemana)", tiene un gasto de casi cuatro veces en este mismo criterio. A pesar de todo esto, se mantiene en primer lugar debido a que es el hospital más eficiente en la relación subtítulo 22 por egreso.

También se dan otro tipo de casos, por ejemplo, con el hospital "Juana Ross de Edwards (Villa Alemana)", en donde deja de ser comparativamente mejor gracias a la administración de todas sus variables. Particularmente, este hospital tiene una eficiencia máxima

dado que es el que mejor relación tiene entre el subtítulo 21 y la cantidad de camas. Esto lo hace ser parte de la frontera de Pareto que DEA establece.

5.1.2 MINSAL: grupo 2

David	11:	0-04/	C-04/	0-04/	C-00/	C-00/	C-00/	-ш
Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Adalberto Steeger (Talagante)	202	1047	2665	88	458	1164	1,000
2	de Penaflor	364	1519	2433	107	446	715	1,000
3	San Luis (Buin)	198	985	3594	63	313	1143	1,000
4	de Enfermedades Infecciosas (San Miguel)	67	1584	6688	198	4717	19916	1,000
5	San Jose de Maipo	122	4674	83915	37	1405	25226	1,000
-	Promedio	226,7	1297,2	8145,2	107,1	745,9	3832,3	0,907
17	Dr. Humberto Elorza Cortes (Illapel)	385	1438	5493	110	411	1569	0,803
18	Traumatologico (Concepcion)	157	1012	2533	136	878	2196	0,767
19	Intercultural de Nueva Imperial	178	1373	2942	120	927	1986	0,669
20	de Ancud	361	1654	4314	119	543	1417	0,649
21	Provincial del Huasco Monseñor Fdo. Ruiz	278	1447	4001	143	746	2062	0,570

Tabla 5.2: Eficiencia comparativa en hospitales del grupo 2 MINSAL Fuente: Elaboración propia, (2021)

Para la segunda agrupación propuesta por el MINSAL, la eficiencia técnica en promedio es mayor que para el grupo 1. Nuevamente se da un caso particular. El hospital "San José de Maipo" tiene varias salidas en las que relativamente usa mucho de sus entradas. Por ejemplo, la relación entre el subtítulo 21 y los egresos es 3.6 veces el promedio gastado por todos los hospitales que componen al segundo grupo MINSAL. También gasta más que el promedio en su relación entre el subtítulo 21 y las consultas que realiza, incluso esa relación es 10,3 veces el promedio. A pesar de todo esto, tiene una eficiencia máxima, simplemente porque es el hospital que mejor relación tiene entre el subtítulo 22 y las camas.

Por otra parte, comparativamente, el hospital en primer lugar es más eficiente en todas las variables en comparación tanto al promedio, como también al último hospital de la tabla.

5.1.3 MINSAL: grupo 3

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Carlos Van Buren (Valparaiso)	187	1289	2439	116	800	1514	1,000
2	Dr. Eduardo Pereira Ramirez (Valparaiso)	147	1467	2826	78	774	1490	1,000
3	Claudio Vicuna (San Antonio)	194	933	1997	114	547	1171	1,000
4	Complejo San Jose (Santiago. Independencia)	170	1285	1968	140	1060	1623	1,000
5	Instituto Nacional del Cancer (Recoleta)	280	2517	1127	291	2618	1172	1,000
-	Promedio	218,3	1534,6	3540,6	139,2	999,3	2098,1	0,892
50	de Urgencia Dr. Alejandro del Rio	286	3652	30137	140	1792	14789	0,646
51	Clinico Met. La Florida Dra. Eloisa Diaz	395	3740	2526	306	2901	1959	0,597
52	Clinico Metropolitano El Carmen Dr. Ferrada	315	2662	2824	257	2173	2305	0,585
53	Instituto de Neurocirugia Dr. Asenjo	310	2195	4288	289	2046	3997	0,553
54	Regional (Coihaique)	438	2252	3708	206	1059	1743	0,523

Tabla 5.3: Eficiencia comparativa en hospitales del grupo 3 MINSAL

Fuente: Elaboración propia, (2021)

Para el tercer grupo de la clusterización propuesta por el MINSAL, nuevamente se repite lo que viene siendo la tónica de todos los resultados: el hospital que está en primer lugar es

más eficiente en todas las variables en comparación tanto al promedio de la clusterización, como también al hospital que está en último lugar.

5.1.4 MINSAL: grupo 4

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Del Salvador (Valparaiso)	123	4242	2147	51	1769	895	1,000
2	Psiquiatrico Dr. Philippe Pinel (Putaendo)	44	5494	17231	13	1630	5112	1,000
3	Instituto Psiquiatrico Dr. Jose Horwitz (Recoleta)	59	3272	6334	30	1649	3191	1,000
4	Psiquiatrico El Peral (Puente Alto)	76	32833	175107	27	11503	61350	1,000
-	Promedio	75,3	11460,2	50204,8	30,1	4137,8	17637,3	1,000

Tabla 5.4: Eficiencia comparativa en hospitales del grupo 4 MINSAL

Fuente: Elaboración propia, (2021)

Para el cuarto grupo dentro de la clasificación MINSAL, ocurre un problema. Existen tan pocos hospitales dentro de esta clasificación, que DEA no tiene tantos puntos de comparación. Dado que son 6 relaciones entre entrada/salida, cada uno de estos hospitales será completamente eficiente en al menos una categoría, lo que teóricamente lo colocaría dentro de la frontera de Pareto formada por DEA. Por esta razón, todos los hospitales tienen una eficiencia relativa máxima en esta sección.

Este problema se resuelve mediante la clusterización realizada en base a distancias de la frontera de Pareto, formada a partir de los índices de evaluación de clústers. Para el año 2014, la mejor clusterización encontrada es una que contiene dos grandes grupos de hospitales.

Esto permite que la comparación de hospitales sea mayor en relación a la clusterización realizada por el MINSAL, sin caer en el problema de comparar hospitales que no tengan relación entre sí, o que no sean de características similares.

Considerando las dos clusterizaciones se puede hacer un mejor análisis comparativo de la eficiencia entre hospitales, puesto que por ejemplo, el **hospital del Salvador (Valparaíso)**, perteneciente a la categoría de hospitales psiquiátricos en la categorización MINSAL, pasa de tener un DEA con valor 1 (resultado extremadamente eficiente), a un 0.836, que no es un mal valor, pero disminuye en relación a los hospitales con los que se compara.

5.1.5 MINSAL: grupo 5

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Clinico de Ninos Dr. Roberto del Rio	434	2431	2393	196	1096	1079	1,000
2	de Ninos Dr. Luis Calvo Mackenna	391	1893	2073	440	2131	2335	1,000
3	Instituto Nacional de Rehabilitacion Infantil	309	715	3291	161	372	1711	1,000
4	Dr. Exequiel Gonzalez Cortes (San Miguel)	741	1766	1760	378	901	897	1,000
-	Promedio	468,7	1701,4	2379,3	293,6	1125,1	1505,6	1,000

Tabla 5.5: Eficiencia comparativa en hospitales del grupo 5 MINSAL

Fuente: Elaboración propia, (2021)

Al igual que con el grupo anterior, cada uno de los hospitales es técnicamente

eficiente dado que al ser cuatro unidades, con seis variables de comparación, siempre una será más eficiente que la otra en algunas de estas categorías. Todos los hospitales tienen una eficiencia técnica máxima.

Por otra parte, tanto el modelo de regresión Tobit como la regresión lineal entregan resultados bastante similares entre sí. Al analizar los valores que se obtienen de ambas regresiones, se tiene lo siguiente para cada variable:

- Promedio de días de estada: tanto el estadístico z para el modelo Tobit (0,094 promedio) como el estadístico t para la regresión lineal (0,114 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los promedios de días de estada.
- Días cama: tanto el estadístico z para el modelo Tobit (-0,538 promedio) como el estadístico t para la regresión lineal (-0,5225 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los días-cama
- Egresos: para los egresos, el comportamiento es diferente a lo visto en las variables anteriores. Ambos modelos de regresión siempre entregan un valor positivo (lo que indicaría que a mayor cantidad de egresos, mayor eficiencia técnica), y además, tanto el modelo Tobit (1,8625 z promedio) como la regresión lineal (1,802 t promedio) entregan un estadístico significativo, convirtiendo a la variable de egresos en un determinante de la eficiencia.
- Indice de letalidad: para el caso del índice de letalidad, existe una diferencia en los resultados, dependiendo del tipo de agrupación. En el caso MINSAL, a pesar que los estadísticos para el caso orientado a la entrada con retorno a escala variable no tienen un valor que permita determinar una relación con la eficiencia, todos los demás permitirían concluir que al aumentar el índice de letalidad, la eficiencia disminuye (con un z promedio de -1,44 y t promedio de -1,397. Para agrupación MINSAL, con entre un 1% y 5% de nivel de significancia). Esto no se repite para las agrupaciones con base en distancias.
- Pacientes D2 y D3: a pesar de que para algunos casos se podría concluir con un nivel de significancia de 5% o 10% que a mayor cantidad de pacientes D2 y D3 la eficiencia disminuye, en promedio la significancia tanto para la regresión lineal (-0,337), como para el modelo Tobit (-0,384), son demasiado pequeños para generar conclusiones.

5.2 AÑO 2015

Algo importante a mencionar en el año 2015, es que para la eficiencia técnica calculada en base a la agrupación MINSAL, orientada a la salida y con un retorno a escala

variable, se decidió eliminar al "hospital provincial del Huasco Monseñor Fernando Ariztía Ruiz (Vallenar)", puesto que con sus valores tanto de "entrada" como de "salida", su valor DEA se indeterminaba. Esto podría estar ocurriendo porque la combinación de entradas y salidas provoca que su valor DEA quede como el resultado de una operación indeterminada (por ejemplo, una división por cero).

5.2.1 MINSAL: grupo 1

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Carlos Cisternas (Calama)	369	1608	6306	145	632	2478	1,000
2	Juana Ross de Edwards (Villa Alemana)	107	1559	41544	47	692	18439	1,000
3	Geriatrico Paz de la Tarde (Limache)	114	3351	16636	24	703	3489	1,000
4	San Antonio (Putaendo)	155	1567		62	629		1,000
5	de Marchigue 👚	318	2276		109	778		1,000
-	Promedio	519,4	2535	37483,3	164,3	782	12582,6	0,724
95	de Collipulli 🁚	474	2650		158	886		0,390
96	Dr. Marcos Macuada (Tocopilla)	519	2003	10626	230	888	4709	0,370
97	San Jose (Casablanca)	1593	11097		514	3578		0,365
98	Intercultural Kallvu Llanka (Canete)	420	1893	9742	156	702	3610	0,347
99	de Curacavi	592	5789		223	2175		0.298

Tabla 5.6: Eficiencia comparativa en hospitales del grupo 1 MINSAL

Fuente: Elaboración propia, (2021)

Dentro del primer grupo de hospitales, en la clusterización propuesta por el MINSAL, para el año 2015 los primeros cuatro hospitales conservan su posición relativa al año 2014. Ya la quinta ubicación sufre un cambio, el **hospital de Marchigue** sube en la clasificación de eficiencia comparativa, desplazando al **hospital de San Vicente de Tagua-Tagua**.

En los últimos lugares existe un mayor movimiento de hospitales en comparación con el año anterior. El **hospital de Calbuco** deja de estar entre los últimos cinco hospitales, además el **hospital de Collipulli**, **Tocopilla** y **San José de Casablanca** suben una ubicación. El **hospital de Curacaví** se mantiene dos años consecutivos como el hospital menos eficiente dentro de la clasificación de hospitales de baja complejidad en la agrupación propuesta por el MINSAL.

5.2.2 MINSAL: grupo 2

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Adalberto Steeger (Talagante)	235	1194	3071	111	565	1455	1,000
2	de Penaflor	424	1830	2367	122	526	680	1,000
3	San Luis (Buin)	221	1149	4806	64	332	1388	1,000
4	de Enfermedades Infecciosas (San Miguel)	83	1987	7718	272	6494	25221	1,000
5	San Jose de Maipo	155	6412	70740	43	1795	19805	1,000
-	Promedio	266,8	1587,1	7970,6	132,9	946,8	4051,9	0,937
17	Provincial Dr. Rafael Avaria (Curanilahue)	413	1539	4945	151	563	1809	0,843
18	Traumatologico (Concepcion)	202	1275	2178	174	1101	1881	0,834
19	Intercultural de Nueva Imperial	195	1379	6347	126	893	4111	0,786
20	de Ancud	363	2086	4506	110	631	1364	0,714
21	Provincial del Huasco Monseñor Fdo. Ruiz	309	1567	3799	168	852	2067	0,688

Tabla 5.7: Eficiencia comparativa en hospitales del grupo 2 MINSAL

Fuente: Elaboración propia, (2021)

Para el año 2015, el segundo grupo dentro de la clasificación propuesta por el

MINSAL, correspondiente a hospitales de mediana complejidad, tiene pocas variaciones con respecto al año anterior. Los cinco hospitales más eficientes en comparación a los demás no tienen variación en sus posiciones respecto al año anterior. Los últimos cuatro hospitales en este ranking también se mantienen en sus posiciones, el hospital en la ubicación 17 cambia. Esta vez, el hospital provincial Dr. Rafael Avaria, en Curanilahue, disminuye su eficiencia relativa dentro de su grupo, lo que lo hace descender a esa posición.

5.2.3 MINSAL: grupo 3

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Eduardo Pereira Ramirez (Valparaiso) 👚	160	1745	3698	88	954	2021	1,000
2	Claudio Vicuna (San Antonio) 👚	201	983	2461	120	588	1471	1,000
3	Complejo San Jose (Santiago. Independencia) 👚	192	1468	2231	129	986	1500	1,000
4	Instituto Nacional del Cancer (Recoleta) 👚	357	2910	1199	335	2735	1126	1,000
5	San Juan de Dios (Santiago. Santiago) 👚	172	1679	2419	161	1575	2269	1,000
-	Promedio	242,3	1714	3733	151,7	1088,2	2181,8	0,905
50	San Jose del Carmen (Copiapo)	254	1950	3400	159	1222	2131	0,720
51	de Urgencia Dr. Alejandro del Rio 👢	302	4267	30582	159	2247	16108	0,645
52	Instituto de Neurocirugia Dr. Asenjo	352	2519	4374	286	2047	3555	0,581
53	Regional (Coyhaique)	528	2671	5282	199	1006	1990	0,540
54	Clinico Met. La Florida Dra. Eloisa Diaz 👢	338	2812	5148	243	2021	3700	0,519

Tabla 5.8: Eficiencia comparativa en hospitales del grupo 3 MINSAL Fuente: Elaboración propia, (2021)

Si en el grupo de hospitales de mediana complejidad habían pocos cambios, para el año 2015 se genera mucho movimiento en las posiciones del tercer grupo, correspondiente a los hospitales de alta complejidad para adultos. Los cinco hospitales más eficientes en relación a los demás dentro de su grupo, tienen una variación con respecto al año anterior. En 2014 era el hospital Carlos Van Buren de Valparaíso el que lideraba este grupo; para este año, ni si quiera aparece entre los primeros cinco. Esta vez, el que queda en primer lugar es el hospital Dr. Eduardo Pereira Ramirez, también de Valparaíso, por tener la mejor relación entre el gasto en subtítulo 22 y las camas hospitalarias.

En la parte baja, esta vez es el **hospital clínico metropolitano de la florida, Dra. Eloísa Díaz** el que obtiene la menor eficiencia en comparación al resto. Su eficiencia (0.519) incluso está muy por debajo del promedio del grupo (0.905).

5.2.4 MINSAL: grupo 4

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Del Salvador (Valparaiso)	125	4386	2915	50	1758	1168	1,000
2	Psiquiatrico Dr. Philippe Pinel (Putaendo)	50	6381	22462	16	2054	7230	1,000
3	Instituto Psiquiatrico Dr. Jose Horwitz (Recoleta)	69	3873	7133	36	2007	3696	1,000
4	Psiquiatrico El Peral (Puente Alto)	81	34449	304742	26	11081	98023	1,000
-	Promedio	81,3	12272,1	84312,8	32	4224,7	27529,1	1,000

Tabla 5.9: Eficiencia comparativa en hospitales del grupo 4 MINSAL

Para el año 2015, se tiene el mismo problema con la cuarta y quinta categoría de los grupos propuestos por el MINSAL, y esto será una constante para todos los años, puesto que estos grupos no son dinámicos. Sin embargo, para este año, la mejor clusterización encontrada en base a las distancias de los índices de evaluación de clústeres no presenta una gran ayuda, dado que a pesar de estar compuesto por cuatro grupos, en tres de estos ocurre el mismo problema: son grupos muy pequeños.

A pesar de todo esto, hay un punto a favor: los hospitales que están en grupos pequeños no se repiten entre la clusterización MINSAL y la clusterización en base a distancias. De esta forma, y siguiendo con el ejemplo del **hospital del Salvador (Valparaíso)**, pasa de tener una eficiencia de 1 en el grupo MINSAL, a una eficiencia de 0,818 en la propuesta en base a distancias. Su eficiencia técnica disminuye un 18,2% al ser comparado en un grupo con más hospitales y de casuística similar.

5.2.5 MINSAL: grupo 5

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Clinico de Ninos Dr. Roberto del Rio	432	2615	2400	205	1238	1137	1,000
2	de Ninos Dr. Luis Calvo Mackenna	416	2073	2457	411	2049	2429	1,000
3	Instituto Nacional de Rehabilitacion Infantil	311	650	3707	210	438	2502	1,000
4	Dr. Exequiel Gonzalez Cortes (San Miguel)	802	1970	1683	403	990	845	1,000
-	Promedio	490.2	1827.1	2562	307.1	1178.9	1728.2	1.000

Tabla 5.10: Eficiencia comparativa en hospitales del grupo 5 MINSAL Fuente: Elaboración propia, (2021)

Al igual que con el grupo anterior, cada uno de los hospitales es técnicamente eficiente dado que al ser cuatro unidades, con seis variables de comparación, siempre una será más eficiente que la otra en algunas de estas categorías. Todos los hospitales tienen una eficiencia técnica máxima.

En cuanto a la búsqueda de criterios de calidad, los resultados de la regresión lineal y la regresión en base a un modelo Tobit entregan valores similares. Las conclusiones que se pueden obtener en base a estos resultados son:

- Promedio de días de estada: tanto el estadístico z para el modelo Tobit (0,518 promedio) como el estadístico t para la regresión lineal (0,503 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los promedios de días de estada.
- Días cama: para el caso de los días cama, existe una diferencia en los resultados, dependiendo del tipo de agrupación. En el caso de agrupación con base en distancias, a pesar que los estadísticos para los casos con retorno a escala variable no tienen un valor que permita determinar una relación con la eficiencia, todos los demás permitirían concluir

que a mayor cantidad de días-cama, la eficiencia disminuye (con un z promedio de -1,53 y t promedio de -1,484, con entre un 1% y 10% de nivel de significancia). Esto no se repite para las agrupaciones MINSAL.

- Egresos: ambos modelos de regresión siempre entregan un valor positivo (lo que indicaría que a mayor cantidad de egresos, mayor eficiencia técnica), y además, tanto el modelo Tobit (3,602 z promedio) como la regresión lineal (3,784 t promedio) entregan un estadístico significativo, convirtiendo a la variable de egresos en un determinante de la eficiencia.
- Indice de letalidad: deja de tener el comportamiento visto en el año 2014. Para este año, tanto el estadístico z para el modelo Tobit (0,111 promedio) como el estadístico t para la regresión lineal (0,109 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y el índice de letalidad.
- Pacientes D2 y D3: a pesar de que para algunos casos se podría concluir con un nivel de significancia de 5% o 10% que a mayor cantidad de pacientes D2 y D3 la eficiencia disminuye, en promedio la significancia tanto para la regresión lineal (-1,251), como para el modelo Tobit (-1,287), son demasiado pequeños para generar conclusiones.

5.3 AÑO 2016

Para el año 2016, la "mejor clusterización" encontrada en base a distancias es bastante peculiar, puesto que son dos grupos de hospitales (al igual que para el año 2014), sin embargo, uno de estos grupos está conformado únicamente por un solo hospital. Eso hace que para este año, la clusterización encontrada en base a las distancias a la frontera de Pareto formada por los índices de evaluación de clústers no tenga mucho sentido, puesto que para ese único hospital será imposible aplicar la técnica DEA (no tiene otro hospital con cual compararse). Servirá únicamente para ser filtrado de la lista completa de hospitales.

5.3.1 MINSAL: grupo 1

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Hospital Dr. Carlos Cisternas (Calama)	382	1731	3557	185	837	1721	1,000
2	Hospital Juana Ross de Edwards (Penablanca. Villa Alemana)	116	1873	55834	46	750	22354	1,000
3	Hospital Centro Geriatrico Paz de la Tarde (Limache)	127	3887	11640	31	948	2839	1,000
4	Hospital San Antonio (Putaendo)	185	1646		59	526		1,000
5	Hospital San Vicente de Tagua-Tagua 👚	231	1067	3548	106	492	1637	1,000
-	Promedio	475,4	3138,8	71373,9	154,8	1012,5	22760,1	0,737
95	Hospital de Collipulli	636	3396		184	982		0,422
96	Hospital San Jose (Casablanca) 1	1474	10656		496	3586		0,421
97	Hospital Hanga Roa (Isla De Pascua)	1048	5120	13246	632	3090	7994	0,411
98	Hospital de Curacavi 👚	652	7965	26940	194	2371	8020	0,376
99	Hospital de Calbuco 🚚	478	2767	41346	165	956	14287	0,360

Tabla 5.11: Eficiencia comparativa en hospitales del grupo 1 MINSAL

Dentro del primer grupo de hospitales, en la clusterización propuesta por el MINSAL, para el año 2016, los primeros cuatro hospitales nuevamente se mantienen en la misma posición, lo que los lleva a estar en la máxima eficiencia por tres años consecutivos. En el quinto lugar, el hospital de San Vicente de Tagua-Tagua desplaza al hospital de Marchigue.

Entre los hospitales con peor eficiencia, el **hospital de Curacaví** deja de estar en la última posición tras haber estado dos años consecutivos siendo el hospital con peor eficiencia en relación a los demás hospitales. Por otra parte, el **hospital de Calbuco**, quien ocupa el último lugar, tiene una eficiencia (0.360) que equivale prácticamente a la mitad de la eficiencia promedio (0.737).

5.3.2 MINSAL: grupo 2

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Adalberto Steeger (Talagante)	271	1367	4341	126	636	2021	1,000
2	de Penaflor	539	2091	2172	141	548	569	1,000
3	San Luis (Buin)	256	1402	5099	70	385	1400	1,000
4	de Enfermedades Infecciosas (San Miguel)	96	2379	6543	265	6530	17960	1,000
5	San Jose de Maipo	114	6068	97431	33	1779	28561	1,000
-	Promedio	301,8	1828	9465	149,2	1073,9	4242,5	0,958
17	Intercultural de Nueva Imperial 1	180	1543	4666	116	997	3013	0,900
18	Provincial Dr. Rafael Avaria (Curanilahue)	478	1717	10321	183	658	3956	0,858
19	de Ancud 1	400	2564	3854	141	903	1358	0,830
20	Dr. Augusto Essmann Burgos (Natales)	529	2659	7683	203	1022	2953	0,827
21	Dr. Abraham Godoy (Lautaro)	275	1878	5582	197	1348	4007	0,740

Tabla 5.12: Eficiencia comparativa en hospitales del grupo 2 MINSAL Fuente: Elaboración propia, (2021)

Al igual que con el grupo 1 (baja complejidad), el grupo 2 (mediana complejidad) mantiene en la misma posición a los cinco hospitales más eficientes por tercer año consecutivo.

Por parte de los hospitales menos eficientes, esta vez es el **hospital Dr. Abraham Godoy**, de Lautaro, el que queda en último lugar. A pesar de que algunas de sus relaciones entre entradas/salidas son mejores que el promedio, en comparación a los demás hospitales sigue siendo más ineficiente.

5.3.3 MINSAL: grupo 3

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Juan Noe Crevanni (Arica)	250	1625	2301	150	973	1377	1,000
2	Dr. Ernesto Torres Galdames (Iquique) 👚	212	2048	4261	99	958	1992	1,000
3	Carlos Van Buren (Valparaiso) 👚	231	1723	4260	138	1029	2544	1,000
4	Dr. Eduardo Pereira Ramirez (Valparaiso) -	187	1837	4114	89	872	1953	1,000
5	Claudio Vicuna (San Antonio)	226	1198	2653	146	774	1714	1,000
-	Promedio	271,6	2008,3	4350,4	167,6	1267	2548,5	0,894
50	Clinico San Borja-Arriaran (Santiago)	337	2185	3980	305	1980	3607	0,727
51	Clinico Met. La Florida Dra. Eloisa Diaz	336	2599	3261	255	1971	2473	0,726
52	Regional (Coyhaique)	608	2838	5182	272	1267	2314	0,595
53	Instituto de Neurocirugia Dr. Alfonso Asenjo 👃	381	2705	4356	316	2245	3615	0,562
54	de Urgencia Dr. Alejandro del Rio 🚚	354	4860	44464	184	2531	23156	0,544

Tabla 5.13: Eficiencia comparativa en hospitales del grupo 3 MINSAL

En el tercer grupo de la clusterización propuesta por el MINSAL (correspondiente a alta complejidad adultos), existe un cambio en las posiciones tanto entre los cinco primeros hospitales, como también en los cinco últimos. Aquí el más importante de analizar, son los cinco últimos, ya que a pesar de que hubieron cambios en los cinco primeros, todos siguen teniendo una eficiencia máxima.

En los últimos cinco lugares, siendo los hospitales menos eficientes en comparación al resto, el **hospital clínico metropolitano de la Florida Dra. Eloísa Díaz**, deja de estar en última posición, subiendo tres puestos, y mejorando en gran medida su eficiencia, ya que pasa de un 0.519 en 2015, a un 0.726. Es decir, mejora un 20% en relación a los demás hospitales en el plazo de un año.

Esta vez, el hospital que tiene la peor eficiencia en comparación a los demás hospitales, es el **hospital de urgencia Dr. Alejandro del Río**, disminuyendo su eficiencia en un 10.1% en un año.

5.3.4 MINSAL: grupo 4

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Del Salvador (Valparaiso)	140	5728	4930	52	2128	1831	1,000
2	Psiquiatrico Dr. Philippe Pinel (Putaendo)	61	7809	16857	19	2478	5349	1,000
3	Instituto Psiquiatrico Dr. Jose Horwitz Barak (Recoleta)	78	4401	9150	36	2031	4223	1,000
4	Psiquiatrico El Peral (Puente Alto)	90	32012	608233	29	10412	197819	1,000
-	Promedio	92.3	12487.6	159792.5	34.2	4262.2	52305.8	1.000

Tabla 5.14: Eficiencia comparativa en hospitales del grupo 4 MINSAL Fuente: Elaboración propia, (2021)

Dado que el cuarto grupo de hospitales en la clusterización propuesta por el MINSAL no puede ser comparada en esta tabla, se deben comprobar sus resultados en la clusterización realizada en base a las mejores distancias.

El hospital del Salvador, en Valparaíso, pasa de tener una eficiencia perfecta (1.000), a un 0.699.

5.3.5 MINSAL: grupo 5

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Clinico de Ninos Dr. Roberto del Rio	532	3166	3256	244	1450	1492	1,000
2	de Ninos Dr. Luis Calvo Mackenna	481	2401	4327	431	2155	3884	1,000
3	Instituto Nacional de Rehabilitacion Infantil	346	752	3879	180	391	2015	1,000
4	Dr. Exequiel Gonzalez Cortes (San Miguel)	1094	2333	1973	540	1152	975	1,000
-	Promedio	612,9	2162,8	3358,6	348,7	1287,1	2091,3	1,000

Tabla 5.15: Eficiencia comparativa en hospitales del grupo 5 MINSAL

Fuente: Elaboración propia, (2021)

Dentro del quinto grupo, el **hospital de atención infantil Dr. Luis Calvo Mackenna** (**Providencia**) que también es uno de los hospitales que no tiene una evaluación precisa en la

clusterización MINSAL por encontrarse en un grupo de hospitales demasiado pequeño, termina siendo uno de los más afectados al pasar desde la clusterización MINSAL a la clusterización en base a distancias. En la primera, tiene un valor máximo (1,000), mientras que en la última, su eficiencia técnica disminuye a 0,502. Es decir, pierde casi un 50% de su eficiencia técnica debido a que no podía ser comparado de mejor manera. Su ineficiencia se debe en gran medida a que es uno de los centros que más dinero gasta del subtítulo 22 en camas y egresos.

En cuanto a la búsqueda de criterios de calidad, los resultados de la regresión lineal y la regresión en base a un modelo Tobit entregan valores similares. Las conclusiones que se pueden obtener en base a estos resultados son:

- Promedio de días de estada: tanto el estadístico z para el modelo Tobit (0,71 promedio) como el estadístico t para la regresión lineal (0,691 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los promedios de días de estada.
- Días cama: se mantiene el comportamiento del año 2015. En el caso de agrupación con base en distancias, a pesar que los estadísticos para los casos con retorno a escala variable no tienen un valor que permita determinar una relación con la eficiencia, todos los demás permitirían concluir que a mayor cantidad de días-cama, la eficiencia disminuye (con un z promedio de -1,340 y t promedio de -1,304, con entre un 5% y 10% de nivel de significancia). Esto no se repite para las agrupaciones MINSAL.
- Egresos: ambos modelos de regresión siempre entregan un valor positivo (lo que indicaría que a mayor cantidad de egresos, mayor eficiencia técnica), y además, tanto el modelo Tobit (3,022 z promedio) como la regresión lineal (2,94 t promedio) entregan un estadístico significativo, convirtiendo a la variable de egresos en un determinante de la eficiencia.
- Indice de letalidad: tanto el estadístico z para el modelo Tobit (0,806 promedio) como el estadístico t para la regresión lineal (0,784 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y el índice de letalidad.
- Pacientes D2 y D3: para todas las combinaciones, exceptuando aquellas que son con retorno a escala variable, se puede concluir que al aumentar los pacientes D2-D3, la eficiencia disminuye. Esto con una significancia de entre 1% a 10%, con un estadístico t promedio de -1,805, y un z promedio de -1,851.

5.4 AÑO 2017

Algo importante a mencionar en el año 2017, es que para la eficiencia técnica calculada en base a la agrupación realizada en base a la distancia, orientada a la salida y con un retorno a escala variable, se producía un error en la librería al incluir al **hospital de Lord Cochrane**, impidiendo no sólo obtener los resultados para ese hospital en particular, sino que para todos los demás hospitales. Dado a ese problema, se decidió eliminar del estudio al mencionado hospital, sólo en las condiciones nombradas (año 2017, cluster en base a distancias, orientado a la salida y con un retorno a escala variable).

Para el año 2017, se vuelve a repetir el mismo problema que ocurrió en 2016 con la clusterización hecha en base a las distancias, con la diferencia, que esta vez son tres los clústers totales, donde dos de ellos son compuestos únicamente por un solo hospital. Estos dos hospitales, al no tener puntos de comparación, tendrán siempre una eficiencia técnica máxima (1,000).

5.4.1 MINSAL: grupo 1

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Carlos Cisternas (Calama)	386	1839	5695	218	1039	3219	1,000
2	de Petorca 👚	638	4538	27818	165	1177	7216	1,000
3	Juana Ross de Edwards (Penablanca. Villa Alemana)	136	2280	1102807	52	871	421433	1,000
4	Centro Geriatrico Paz de la Tarde (Limache)	163	4412	18439	36	983	4107	1,000
5	San Antonio (Putaendo)	218	1914		63	554		1,000
-	Promedio	522,8	3613,7	121683,3	175,2	1177,8	47907	0,775
95	San Jose (Casablanca) 1	1409	13761		481	4700		0,502
96	Hanga Roa (Isla De Pascua) 1	1031	5358	17352	592	3077	9964	0,498
97	de Curacavi 👚	760	9689	37371	213	2721	10496	0,429
98	de Lanco 👃	2162	10928		646	3263		0,411
99	de Calbuco	521	3839	35640	165	1217	11297	0.399

Tabla 5.16: Eficiencia comparativa en hospitales del grupo 1 MINSAL

Fuente: Elaboración propia, (2021)

El hospital Dr. Carlos Cisternas (Calama) se mantiene por cuarto año consecutivo en el primer lugar del primer grupo en la clusterización MINSAL. El resto de hospitales, sufre una pequeña variación respecto a los años anteriores, dado que durante este año, el hospital de Petorca subió a la segunda posición. Esto hizo que los demás descendieran un puesto, sin embargo, todos siguen teniendo una eficiencia técnica máxima (1.000).

En los hospitales menos eficientes, a pesar de que hay movimiento en las posiciones y en las eficiencias, el **hospital de Calbuco** sigue estando en el último lugar, a pesar de mejorar su eficiencia (pasa de un 0.360 a un 0.399).

5.4.2 MINSAL: grupo 2

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Humberto Elorza Cortes (Illapel)	632	2081	2894	198	652	907	1,000
2	Adalberto Steeger (Talagante)	295	1505	5766	148	753	2885	1,000
3	de Penaflor -	547	2423	3013	165	731	909	1,000
4	San Luis (Buin) 🚚	272	1565	10923	73	423	2952	1,000
5	de Enfermedades Infecciosas (San Miguel)	96	2567	7418	282	7533	21766	1,000
-	Promedio	342,2	2116,3	19903,6	175,2	1284,9	9788,3	0,908
17	Traumatológico (Concepcion)	214	1422	50999	215	1429	51249	0,763
18	de Ancud 👚	406	2614	5975	158	1014	2318	0,747
19	Dr. Augusto Essmann Burgos (Natales)	672	3423	12112	253	1287	4552	0,678
20	Dr. Abraham Godoy (Lautaro)	317	2412	11056	216	1643	7533	0,645
21	Provincial del Huasco Monseñor Fdo. Ruiz	335	2014	10478	183	1102	5734	0,640

Tabla 5.17: Eficiencia comparativa en hospitales del grupo 2 MINSAL

Fuente: Elaboración propia, (2021)

El segundo grupo, correspondiente a los hospitales de mediana complejidad, por primera vez dentro de cuatro años tienen una variación en las posiciones, dado que el **hospital Dr. Humberto Elorza Cortes (Illapel)** se posiciona como el más eficiente en comparación a su grupo. Esto hace que los demás hospitales desciendan una posición, sin embargo, a pesar de todo, siguen teniendo una eficiencia máxima.

Entre los hospitales menos eficientes, a pesar de que en general, algunos hospitales empeoraron su eficiencia, aún así logran subir posiciones. El hospital Provincial del Huasco Monseñor Fernando Ruiz es el menos eficiente de este grupo para el año 2017, con una eficiencia del 0.640. Esto hace que los siguientes hospitales suban una posición, a pesar de haber empeorado su eficiencia en relación al año anterior. Por ejemplo, el hospital Dr. Abraham Godoy (Lautaro), que pasa de tener una eficiencia de 0.740 en 2016, a tener 0.645 en 2017, y que sin embargo abandona la última posición.

5.4.3 MINSAL: grupo 3

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Ernesto Torres Galdames (Iquique) 👚	259	2290	6743	127	1124	3310	1,000
2	Carlos Van Buren (Valparaiso) 👚	238	1854	6159	151	1179	3917	1,000
3	Dr. Eduardo Pereira Ramirez (Valparaiso)	191	1956	6402	89	909	2973	1,000
4	de San Camilo (San Felipe) 1	277	1374	4925	142	704	2525	1,000
5	San Juan de Dios (Los Andes)	258	1379	6334	137	732	3363	1,000
-	Promedio	293,5	2185	14418,6	182,6	1392	9120,1	0,895
50	de Castro -	426	2519	6318	159	938	2353	0,711
51	Clinico Met. La Florida Dra. Eloisa Diaz	344	2625	6640	274	2093	5294	0,694
52	Instituto de Neurocirugia Dr. Alfonso Asenjo	417	2896	8965	330	2292	7097	0,582
53	Regional (Coyhaique)	650	3187	8074	290	1423	3604	0,546
54	de Urgencia Dr. Alejandro del Rio	383	5250	379968	222	3043	220219	0,505

Tabla 5.18: Eficiencia comparativa en hospitales del grupo 3 MINSAL

Fuente: Elaboración propia, (2021)

Para el 2017, el hospital Dr. Juan Noé Crevani deja de estar primero en este ranking, incluso desapareciendo de las primeras cinco posiciones, lo mismo el hospital Claudio Vicuña, el cual ya venía descendiendo el año anterior. Esto hace que aparezca en la quinta posición el hospital San Juan de Dios (Los Andes). Nuevamente, y como ha sido la tónica

todos los años, todos los hospitales en esta tabla tienen una eficiencia máxima.

El hospital de Urgencia Dr. Alejandro del Río se mantiene por segundo año consecutivo como el hospital menos eficiente dentro de este grupo, incluso empeorando aún más su eficiencia, ya que pasa de un 0.544 a un 0.505. Todos sus valores están por encima del promedio de su grupo.

5.4.4 MINSAL: grupo 4

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Del Salvador (Valparaiso)	142	7011	4420	53	2615	1648	1,000
2	Psiquiatrico Dr. Philippe Pinel (Putaendo)	65	8332	30925	21	2703	10033	1,000
3	Instituto Psiquiatrico Dr. Jose Horwitz (Recoleta)	83	4885	6788	35	2075	2883	1,000
4	Psiquiatrico El Peral (Puente Alto)	95	31168	222852	36	11753	84033	1,000
-	Promedio	96.3	12849.1	66246.1	36.3	4786.5	24649.6	1.000

Tabla 5.19: Eficiencia comparativa en hospitales del grupo 4 MINSAL Fuente: Elaboración propia, (2021)

Dado que el cuarto grupo de hospitales en la clusterización propuesta por el MINSAL no puede ser comparada en esta tabla, se deben comprobar sus resultados en la clusterización realizada en base a las mejores distancias.

El **hospital del Salvador**, en Valparaíso, pasa de tener una eficiencia perfecta (1.000),a un 0.690.

5.4.5 MINSAL: grupo 5

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Clinico de Ninos Dr. Roberto del Rio	539	3055	13155	232	1312	5650	1,000
2	de Ninos Dr. Luis Calvo Mackenna	497	2841	14951	456	2603	13697	1,000
3	Instituto Nacional de Rehabilitacion Infantil	381	763	82705	193	387	41945	1,000
4	Dr. Exequiel Gonzalez Cortes (San Miguel)	819	2503	12777	403	1232	6287	1,000
-	Promedio	559,1	2290,9	30896,8	320,9	1383,6	16894,8	1,000

Tabla 5.20: Eficiencia comparativa en hospitales del grupo 5 MINSAL Fuente: Elaboración propia, (2021)

El hospital de atención infantil Dr. Luis Calvo Mackenna (Providencia) el cual es uno de los hospitales que no tiene una evaluación precisa en la clusterización MINSAL por encontrarse en un grupo de hospitales demasiado pequeño, y que fue uno de los más afectados el año 2016, disminuyendo su eficiencia cerca de un 50%, esta vez disminuye aún más. En la clusterización MINSAL tiene una eficiencia técnica máxima (dado que no tiene suficientes elementos de comparación), mientras que en la clusterización propuesta en base a distancias, su eficiencia técnica es de 0,378. Es decir, existe alrededor de un 62,2% de diferencia en la eficiencia técnica de este hospital entre ambas clusterizaciones. Al tener una eficiencia técnica de 0,378, indicaría que está siendo un 62,2% menos eficiente que los hospitales con los cuales está siendo comparado.

En cuanto a la búsqueda de criterios de calidad, los resultados de la regresión lineal y la regresión en base a un modelo Tobit entregan valores similares. Las conclusiones que se pueden obtener en base a estos resultados son:

- Promedio de días de estada: tanto el estadístico z para el modelo Tobit (1,101 promedio) como el estadístico t para la regresión lineal (1,075 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los promedios de días de estada.
- Días cama: comportamiento similar al año 2016. En el caso de agrupación con base en distancias, a pesar que los estadísticos para los casos con retorno a escala constante no tienen un valor que permita determinar una relación con la eficiencia, todos los demás permitirían concluir que a mayor cantidad de días-cama, la eficiencia disminuye (con un z promedio de -1,108 y t promedio de -1,082, con entre un 5% y 10% de nivel de significancia). Esto no se repite para las agrupaciones MINSAL.
- Egresos: ambos modelos de regresión siempre entregan un valor positivo (lo que indicaría que a mayor cantidad de egresos, mayor eficiencia técnica), y además, tanto el modelo Tobit (3,023 z promedio) como la regresión lineal (2,950 t promedio) entregan un estadístico significativo, convirtiendo a la variable de egresos en un determinante de la eficiencia.
- Indice de letalidad: tanto el estadístico z para el modelo Tobit (0,382 promedio) como el estadístico t para la regresión lineal (0,374 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y el índice de letalidad.
- Pacientes D2 y D3: para todas las combinaciones, exceptuando aquellas que son con retorno a escala variable, se puede concluir que al aumentar los pacientes D2-D3, la eficiencia disminuye. Esto con una significancia de entre 1% a 10%, con un estadístico t promedio de -1,431, y un z promedio de -1,46.

5.5 AÑO 2018

Para el año 2018, vuelve a ocurrir exactamente la misma situación que para el año 2016. La clusterización propuesta en base a las distancias de la frontera de Pareto formada a partir de los índices de evaluación de clústers, agrupa a los hospitales en dos clústers, en donde el segundo "grupo" está compuesto por solamente un hospital, haciendo que esta agrupación no tenga mucho más sentido que el de excluir a este hospital del resto de hospitales.

5.5.1 MINSAL: grupo 1

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Carlos Cisternas (Calama)	434	2156	5606	220	1091	2835	1,000
2	de Petorca	571	4230	13519	155	1149	3673	1,000
3	Juana Ross de Edwards (Penablanca. Villa Alemana)	150	2521	1258064	55	930	463973	1,000
4	Centro Geriatrico Paz de la Tarde (Limache)	167	4939	37375	42	1233	9328	1,000
5	San Antonio (Putaendo)	262	2451		62	584		1,000
-	Promedio	591	4302,3	100165,3	196,1	1393,1	35661	0,772
95	de Salamanca 👃	705	3788	231348	281	1511	92272	0,486
96	Dr. Marco Antonio Chamorro (Porvenir)	784	7282		282	2622		0,474
97	de Puerto Aysen 🎩	1154	6356	17281	338	1862	5063	0,459
98	de Calbuco 👚	554	4367	40038	187	1471	13488	0,430
99	de Curacavi 👢	848	11357	109782	230	3079	29759	0,377

Tabla 5.21: Eficiencia comparativa en hospitales del grupo 1 MINSAL

Fuente: Elaboración propia, (2021)

El hospital Dr. Carlos Cisternas (Calama) se mantiene por quinto año consecutivo en el primer lugar del primer grupo en la clusterización MINSAL. El resto de los hospitales se mantiene en la misma posición que el año anterior, todos también con una eficiencia máxima.

Entre los hospitales con peor eficiencia para este grupo, durante el año 2018 existe un movimiento de posiciones. Nuevamente, y al igual que en 2016, el **hospital de Curacaví** queda en último lugar, con una eficiencia de 0.377, la cual a pesar de ser mejor que la del año 2017, no es suficiente para superar la nueva eficiencia del **hospital de Calbuco**, el cual aumentó de 0.399 a 0.430.

5.5.2 MINSAL: grupo 2

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Provincial del Huasco Monsenor Fdo. Ruiz 👚	378	2309	5307	200	1220	2803	1,000
2	Dr. Humberto Elorza Cortes (Illapel)	663	2193	3899	198	653	1161	1,000
3	Adalberto Steeger (Talagante)	306	1659	7236	160	865	3773	1,000
4	San Luis (Buin)	268	1647	8403	71	436	2225	1,000
5	de Enfermedades Infecciosas (San Miguel)	112	2769	5589	346	8579	17313	1,000
-	Promedio	365,8	2384,3	22421,8	195	1459,2	11881	0,906
17	de Ancud 🁚	490	2795	7401	174	993	2629	0,739
18	Provincial Dr. Rafael Avaria (Curanilahue)	548	2261	14673	201	831	5389	0,684
19	de Pitrufquen 🎩	467	2675	10044	318	1821	6840	0,641
20	Dr. Abraham Godoy (Lautaro)	404	2874	10302	257	1831	6565	0,622
21	Dr. Augusto Essmann Burgos (Natales)	679	3769	43234	253	1405	16121	0.552

Tabla 5.22: Eficiencia comparativa en hospitales del grupo 2 MINSAL

Fuente: Elaboración propia, (2021)

Dentro de este grupo, durante el año 2018 ocurre un gran cambio. El hospital menos eficiente del año 2017, este año pasa a ser el más eficiente de todos, el **hospital provincial del Huasco Monseñor Fernando Ruiz**. En 2017 tenía una eficiencia de 0.640, mientras que en 2018 tiene una eficiencia máxima en comparación a los demás hospitales.

Para este año, el **hospital Dr. Augusto Essmann Burgos (Natales)** es el hospital menos eficiente en comparación al resto de hospitales teniendo una diferencia de 0.354 con el promedio de este grupo.

5.5.3 MINSAL: grupo 3

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Dr. Juan Noe Crevanni (Arica)	248	1856	4433	175	1305	3118	1,000
2	Dr. Ernesto Torres Galdames (Iquique)	306	2422	6251	135	1068	2756	1,000
3	San Jose del Carmen (Copiapo)	224	2395	6391	128	1372	3663	1,000
4	Dr. Eduardo Pereira Ramirez (Valparaiso) -	202	2247	7586	98	1091	3682	1,000
5	Claudio Vicuna (San Antonio)	252	1543	6388	147	899	3721	1,000
-	Promedio	321,2	2358,4	386734,4	203,8	1522,1	230492,1	0,888
50	Dr. Gustavo Fricke (Vina del Mar)	365	2752	8377	286	2156	6561	0,668
51	Dr. Leonardo Guzman (Antofagasta) 👃	369	2869	7386	291	2268	5839	0,664
52	Instituto de Neurocirugia Dr. Alfonso Asenjo	485	3025	5904	370	2309	4507	0,649
53	de Urgencia Dr. Alejandro del Rio 👚	358	4936	19718517	213	2933	11715006	0,595
54	Regional (Coyhaigue)	726	3256	12605	347	1556	6024	0,456

Tabla 5.23: Eficiencia comparativa en hospitales del grupo 3 MINSAL

Fuente: Elaboración propia, (2021)

Durante el 2018, el **hospital Dr. Juan Noé Cravani** vuelve a ser el hospital más eficiente de este grupo, al igual que en 2016.

El hospital de Urgencia Dr. Alejandro del Rio logra aumentar su eficiencia para el año 2018, dejando de ser el hospital menos eficiente y dándole ese lugar al hospital regional de Coyhaique, el cual tiene una eficiencia de 0.456, casi la mitad de la eficiencia promedio (0.895).

5.5.4 MINSAL: grupo 4

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Del Salvador (Valparaiso)	153	7486	6054	54	2661	2152	1,000
2	Psiquiatrico Dr. Philippe Pinel (Putaendo)	66	8304		22	2791		1,000
3	Instituto Psiquiatrico Dr. Jose Horwitz (Recoleta)	89	4945	9088	36	1978	3635	1,000
4	Psiquiatrico El Peral (Puente Alto)	108	37068	227463	37	12606	77357	1,000
-	Promedio	104	14450,8	80868,3	37,2	5009	27714,7	1,000

Tabla 5.24: Eficiencia comparativa en hospitales del grupo 4 MINSAL

Fuente: Elaboración propia, (2021)

Dado que el cuarto grupo de hospitales en la clusterización propuesta por el MINSAL no puede ser comparada en esta tabla, se deben comprobar sus resultados en la clusterización realizada en base a las mejores distancias.

El **hospital del Salvador**, en Valparaíso, pasa de tener una eficiencia perfecta (1.000), a un 0.700.

5.5.5 MINSAL: grupo 5

Rank	Hospital	\$s21/camas	\$s21/egresos	\$s21/consultas	\$s22/camas	\$s22/egresos	\$s22/consultas	Eff
1	Clinico de Ninos Dr. Roberto del Rio	572	3217	12768	218	1226	4864	1,000
2	de Ninos Dr. Luis Calvo Mackenna	824	3006	11036	699	2549	9361	1,000
3	Instituto Nacional de Rehabilitacion Infantil	437	807	49538	178	328	20121	1,000
4	Dr. Exequiel Gonzalez Cortes (San Miguel)	457	3156	9459	242	1668	5000	1,000
-	Promedio	572,6	2546,5	20700,3	334	1442,8	9836,5	1,000

Tabla 5.25: Eficiencia comparativa en hospitales del grupo 5 MINSAL

Fuente: Elaboración propia, (2021)

El hospital de atención infantil Dr. Luis Calvo Mackenna (Providencia) el cual es uno de los hospitales que no tiene una evaluación precisa en la clusterización MINSAL por encontrarse en un grupo de hospitales demasiado pequeño, y que fue uno de los más afectados el año 2017, teniendo una ineficiencia de alrededor del 62% esta vez sigue en valores parecidos, muy alejados de la eficiencia obtenida en la agrupación realizada por el MINSAL. En la clusterización MINSAL tiene una eficiencia técnica máxima (dado que no tiene suficientes elementos de comparación), mientras que en la clusterización propuesta en base a distancias, su eficiencia técnica es de 0,390. Es decir, existe alrededor de un 61% de diferencia en la eficiencia técnica de este hospital entre ambas clusterizaciones. A la misma vez, este valor indicaría que tiene una ineficiencia del 61%, muy alejado de lo que es, por ejemplo, el instituto nacional de rehabilitación infantil Presidente Pedro Aguirre Cerda, dado que este último tiene una eficiencia técnica máxima (1,000) en ambas agrupaciones.

En cuanto al análisis de determinantes, los resultados de la regresión lineal y la regresión en base a un modelo Tobit entregan valores similares. Las conclusiones que se pueden obtener en base a estos resultados son:

- Promedio de días de estada: tanto el estadístico z para el modelo Tobit (0,725 promedio) como el estadístico t para la regresión lineal (0,711 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y los promedios de días de estada.
- Días cama: comportamiento similar al año 2017. En el caso de agrupación con base en distancias, a pesar que los estadísticos para el caso orientado a la salida con retorno a escala variable no tiene un valor que permita determinar una relación con la eficiencia, todos los demás permitirían concluir que a mayor cantidad de días-cama, la eficiencia disminuye (con un z promedio de -1,52 y t promedio de -1,412, con entre un 5% y 10% de nivel de significancia). Esto no se repite para las agrupaciones MINSAL.
- Egresos: ambos modelos de regresión siempre entregan un valor positivo (lo que indicaría que a mayor cantidad de egresos, mayor eficiencia técnica), y además, tanto el modelo Tobit (3,426 z promedio) como la regresión lineal (3,355 t promedio) entregan un estadístico significativo, convirtiendo a la variable de egresos en un determinante de la eficiencia.
- Indice de letalidad: tanto el estadístico z para el modelo Tobit (-0,074 promedio) como el estadístico t para la regresión lineal (-0,073 promedio), son demasiado pequeños para concluir que existe una relación entre la eficiencia técnica y el índice de letalidad.
- Pacientes D2 y D3: para todas las combinaciones, exceptuando aquellas que son con retorno a escala variable, se puede concluir que al aumentar los pacientes D2-D3, la

eficiencia disminuye. Esto con una significancia de entre 0,1% a 5%, con un estadístico t promedio de -1,146, y un z promedio de -1,762.

5.6 MALMQUIST-DEA 2014-2018

Al igual que con los resultados DEA, es posible comparar la diferencia tanto en el índice de producción Malmquist, como en el cambio de la eficiencia de los hospitales, de tal forma generar una discusión en base a estos resultados.

5.6.1 Índice de productividad Malmquist

Rank	Hospital	Indice Malmquist
1	Hosp. Dr. Marcos Macuada (Tocopilla)	1,190
2	Hosp. de Til Til	1,151
3	Hosp. Hanga Roa (Isla De Pascua)	0,953
4	Hosp. de Molina	0,912
5	Hosp. Dr. Humberto Elorza Cortes (Illapel)	0,906
6	Hosp. San Jose del Carmen (Copiapo)	0,845
7	Hosp. de Collipulli	0,844
8	Hosp. de Curepto	0,842
9	Hosp. San Jose de Maipo	0,830
10	Hosp. de Petorca	0,818
-	Promedio	0,578
173	Hosp. Dr. Eduardo Gonzalez Galeno (Cunco)	0,356
174	Hosp. Dr. Abraham Godoy (Lautaro)	0,352
175	Hosp. de Futaleufu	0,349
176	Hosp. Dr. Exequiel Gonzalez Cortes (Santiago. San Miguel)	0,349
177	Hosp. de Palena	0,311
178	Hosp. de Maullin	0,308
179	Hosp. San Vicente (Arauco)	0,306
180	Hosp. de Lanco	0,300
181	Hosp. de Ninos Dr. Luis Calvo Mackenna (Providencia)	0,272
182	Hosp. de Queilen	0,237

Tabla 5.26: Indice Malmquist comparativo periodo 2014-2018 Fuente: Elaboración propia, (2021)

Con base a la tabla 5.26, la cual establece un ranking de hospitales en base a la mejora en la productividad, considerando los años 2014 y 2018, se puede concluir que el hospital que más incrementó su productividad (aunque no necesariamente su eficiencia), es el **Hospital Dr. Marcos Macuada (Tocopilla)**, produciendo un 19% más, en comparación a lo que produjo el año 2014.

Por otra parte, el hospital que más disminuyó su productividad (no necesariamente

su eficiencia), es el **Hospital de Queilén**, produciendo solo un 23,7% de lo que debería producir con las entradas que tiene el año 2018, basado en lo que produjo el año 2014.

En promedio para el año 2018, los hospitales están produciendo un 57,8% menos de lo que deberían producir con los ingresos que tienen, basados en los resultados que tuvieron individualmente el año 2014.

5.6.2 Índice de eficiencia periodo 2014-2018

Rank	Hospital	Indice Eficiencia
1	Hosp. Dr. Marcos Macuada (Tocopilla)	2,739
2	Hosp. de Til Til	2,442
3	Hosp. Hanga Roa (Isla De Pascua)	2,353
4	Hosp. de Molina	2,198
5	Hosp. de Curepto	1,958
6	Hosp. de Petorca	1,855
7	Hosp. de Collipulli	1,771
8	Hosp. Dr. Florencio Vargas (Diego de Almagro)	1,711
9	Hosp. San Francisco (Llaillay)	1,703
10	Hosp. San Agustin (La Ligua)	1,686
-	Promedio	1,096
173	Hosp. Dr. Augusto Essmann Burgos (Natales)	0,736
174	Hosp. Dr. Dino Stagno M.(Traiguen)	0,712
175	Hosp. de Pitrufquen	0,711
176	Hosp. Del Salvador (Peumo)	0,700
177	Hosp. de Palena	0,680
178	Hosp. Dr. Abraham Godoy (Lautaro)	0,667
179	Hosp. Del Salvador (Santiago. Providencia)	0,653
180	Hosp. de Lanco	0,652
181	Hosp. de Maullin	0,606
182	Hosp. de Queilen	0,523

Tabla 5.27: Indice de eficiencia comparativo periodo 2014-2018 Fuente: Elaboración propia, (2021)

Con base a la tabla 5.27, la cual establece un ranking de hospitales en base a la mejora en la eficiencia, considerando los años 2014 y 2018, se puede concluir que el hospital que más incrementó su eficiencia (y que también coincide con que fue el que más aumentó su productividad), es el **Hospital Dr. Marcos Macuada (Tocopilla)**, aumentando su eficiencia en un 173%. Esto incluso se puede observar en los resultados de eficiencia comparativa, puesto que para el 2014, el hospital mencionado tenía una eficiencia de 0.361, mientras que el año 2018, su

eficiencia era del 0.827 (considerando un enfoque a las entradas, y un retorno a escala variable). No solo mejoró en relación a si mismo, sino que también mejoró comparativamente a su grupo en la clusterización MINSAL.

Por otra parte, el hospital que más disminuyó su eficiencia (y que también coincide con que fue el que más disminuyó su productividad), es el **Hospital de Queilén**, con una efectividad que es un 52,3% de lo que debería ser, considerando las entradas que tiene el año 2018 y basándose en la eficiencia que tuvo el año 2014. A pesar de que este resultado no se refleja en la eficiencia DEA cuando se utiliza un enfoque orientado a las entradas con un retorno a escala variable, sí es posible notar una baja cuando se utiliza un retorno a escala constante/creciente, en donde se pasa de una eficiencia de 0.320 en 2014, a una eficiencia de 0.167 en 2018.

En promedio para el año 2018, los hospitales incrementaron su eficiencia un 9.6%, basados en los resultados que tuvieron individualmente el año 2014.

CAPÍTULO 6. CONCLUSIONES

En el presente capítulo se concluye respecto de los objetivos planteados, se discuten los posibles cursos que puede seguir la investigación y se presentan las observaciones finales.

En este trabajo, se llevó a cabo un cálculo y posterior análisis de la eficiencia técnica de la red hospitalaria pública chilena, dentro del periodo 2014-2018, tomando como punto de partida diferentes datos disponibles en los registros del DEIS, como también los presupuestos anuales de cada hospital, accedidos a través de FONASA. Utilizando el método de análisis envolvente de datos (DEA) para cada año, además de su variante Malmquist-DEA para un rango de años, fue posible extender el estudio realizado por (Villalobos-Cid et al., 2016), considerando un espectro mayor de años. Usar una metodología que permite generar conocimiento por cada una de las etapas fue beneficioso debido a que se pueden ir desarrollando conclusiones desde una etapa temprana en la investigación, además de permitir la corrección de errores o la consideración de nuevos puntos de vista u aspectos que mejoran la calidad del estudio y del posterior análisis.

6.1 OBJETIVOS

Al comienzo de esta investigación, se plantearon diferentes objetivos (Sección 1.4), como también preguntas (Sección 1.2) que sirvieron de base y guía para el estudio realizado. Las conclusiones que se pueden realizar en base a esos objetivos, y las respuestas a las preguntas de investigación son las siguientes:

6.1.1 Objetivos específicos

Fueron cinco los objetivos específicos que guiaron esta investigación, en búsqueda de lograr el objetivo general. Se presenta una lista con estos objetivos, seguidos de su respectiva conclusión.

6.1.1.1 Organizar los datos de FONASA

Tanto los datos entregados por FONASA como los entregados por el DEIS, fueron organizados en matrices anuales. El organizar los datos de esta manera, facilitó el proceso

de operación sobre estas bases de datos, las cuales originalmente estaban desordenadas. Se concluye que la organización de datos en matrices anuales, tanto para FONASA como para el DEIS fue un éxito, dado que no sólo permitió acelerar el proceso de desarrollo, sino que también fue una ayuda a la hora de revisar los resultados de las primeras operaciones. La creación de estas matrices es detallada en el capítulo 3.

6.1.1.2 Agrupar hospitales con base a la casuística

Con base a diferentes técnicas de clusterización, se pudo generar diversos grupos basándose en la distancia entre cada hospital (esto permite determinar la similitud entre hospitales, lo que ayuda a agrupar en base a la casuística), considerando las variables entregadas por FONASA. Usando diferentes métodos para evaluar clusters, se determinó cuál agrupación era la mejor para cada año. Algo importante que esto permite concluir, es que los hospitales no tienen una categorización estática, como propone el MINSAL, sino que la casuística puede variar cada año. Es decir, las agrupaciones en base a casuística pueden variar cada año. Por tanto, dado que para cada año se logró llegar a una clusterización diferente a la propuesta por el MINSAL, considerando diferentes hospitales en cada grupo, y permitiendo evaluar ciertos hospitales que no era posible evaluar con la propuesta del MINSAL (como los de atención infantil y de atención psiquiátrica), es que se concluye que el objetivo se ha cumplido. La generación de estos grupos de hospitales con base a casuística es explicada en mayor detalle en el capítulo 3.

6.1.1.3 Evaluar eficiencia técnica para cada año, como para rango de años

Se logró realizar un cálculo de la eficiencia técnica para cada hospital dentro del rango de tiempo determinado, además considerando tanto los diferentes grupos propuestos en la clusterización MINSAL, como los generados con base en las técnicas de clusterización, extendiendo así el trabajo de Villalobos-Cid et al.. Esto permite realizar un análisis año a año de la evolución de cada hospital con respecto a las otras instituciones que componen a su mismo grupo para un año en particular. Además, se logró calcular la eficiencia técnica como también la productividad considerando un rango de años, mediante el uso de Malmquist. Todos estos resultados son presentados en el capítulo 4.

6.1.1.4 Evaluar relación entre eficiencia técnica y criterios de calidad

Con base a la eficiencia técnica de cada uno de los hospitales, para cada uno de los años, se realizó tanto una regresión lineal, como una regresión con modelo Tobit. De esta forma, se logra determinar si existe o no una relación entre la eficiencia, y diferentes variables. Tal como se presentó en el capítulo 5, no todas las variables terminan siendo igual de robustas a la hora de explicar la eficiencia. Por una parte, se tiene la variable de promedio de días de estada, la cual se demostró que no tiene relación alguna con el comportamiento de la eficiencia. La variable de días-cama, a pesar de que bajo ciertas condiciones y para algunos años logra una relación más estrecha con la eficiencia, esta no se mantiene constante ni es lo suficientemente robusta como para ser considerado un factor determinante. Lo mismo pasa con el índice de letalidad, el cual se esperaba ser una variable clave a la hora de explicar bajas de eficiencia, solo se convierte en un determinante para el año 2014, en agrupaciones del MINSAL. Desde el año 2016 en adelante, la variable de pacientes D2-D3 logra aumentar su relación con la eficiencia, permitiendo explicar las bajas de esta última. Es importante mencionar que estos pacientes al ser auto-suficientes, no debiesen estar ocupando camas hospitalarias, y por la misma razón, reportes de autogestión solicitan controlar la cantidad de estos pacientes (Cordero et al., 2017). Por último, la variable más robusta para explicar la eficiencia, corresponde a la cantidad de egresos, donde mientras más egresos tenga el hospital, su eficiencia se incrementa.

Dado que se logra descartar y determinar qué variables son determinantes sobre la eficiencia, se concluye que el objetivo se ha cumplido. Los resultados son presentados en el capítulo 4, mientras que el respectivo análisis para cada año se presenta en el capítulo 5.

6.1.1.5 Generar conocimiento en base a resultados

El conocimiento generado a partir de los resultados corresponde a las conclusiones que se pueden sacar de cada hospital en particular, para cada uno de los años que se comprendieron en esta investigación. Se puede determinar qué hospitales están siendo técnicamente eficientes (lo que no necesariamente indica que lo hagan bien, sino que son más eficientes en la ejecución de su presupuesto en comparación al resto), además de poder determinar qué hospitales deben mejorar en la eficiencia de su uso de recursos. Por otra parte, al tener el detalle de variables, se puede determinar comparativamente en qué criterios están siendo poco eficientes, si se debe disminuir costos por egresos, por días-cama, o consultas médicas. Además, al tener una comparación comprendida en un rango de años, se pueden realizar conclusiones con base a cambios internos que cada hospital haya tenido, si el haber tomado cierta política en un año particular mejoró la eficiencia, si la empeoró, o si simplemente no

fue una medida que impactara en este ámbito. Por otra parte, el análisis de determinantes permite saber a qué variables se les debe prestar una mayor atención con tal de mejorar la eficiencia. Todo este conocimiento, no sólo permitirá determinar qué hospitales deben mejorar, sino que permite establecer un punto de comparación sobre qué medidas implementar a futuro.

6.1.2 Objetivo general

Se propuso como objetivo general de esta investigación el evaluar la eficiencia técnica de los hospitales públicos chilenos, por medio de un modelo basado en dominancias de Pareto, involucrando diferentes periodos de tiempo y considerando distintos indicadores de calidad.

A lo largo de esta investigación, todos estos puntos fueron abordados, permitiendo no sólo generar una respuesta a la primera pregunta de investigación, generando una comparativa anual de la eficiencia hospitalaria para cada hospital público chileno, sino que también se ha generado una base de conocimientos que puede ser la pauta para que cada hospital sepa en qué criterios debe mejorar su eficiencia, sobre a qué destinar una mayor cantidad de su presupuesto, sobre a que disminuir presupuesto, etc.

Además, respondiendo la segunda pregunta de investigación, se logra tener conocimiento sobre qué variables pueden ser consideradas criterios de calidad, permitiendo que cada hospital pueda comenzar a enfocar sus recursos en mejorar estas variables, ya sea destinando mayores recursos para disminuir, por ejemplo, la cantidad de pacientes D2 y D3, o creando nuevas políticas que apunten a maximizar la cantidad de egresos.

Por otra parte, dado que este trabajo busca extender lo realizado por (Villalobos-Cid et al., 2016), se hace interesante comparar los resultados obtenidos para el año en común (2014). A pesar de que Villalobos obtiene una agrupaciones diferentes (algo que puede variar debido a la cantidad de variables eliminadas), se tiene una conclusión similar respecto a qué hospitales son los más eficientes y los menos eficientes. Se coincide en que uno de los hospitales más eficientes para el año 2014 es el **Hospital Dr. Carlos Cisterna (Calama)**, obteniendo una calificación máxima (1.000) en ambos estudios. Lo mismo ocurre con el **Hospital San José de Coronel**. Revisando más abajo en el ranking generado por los estudios, se tiene al **Hospital clínico metropolitano El Carmen, Dr. Luis Valentín Ferrada**, el cual en la clusterización propuesta por (Villalobos-Cid et al., 2016) tiene un valor DEA del 0.502, valor bastante similar al 0.585 obtenido en el presente estudio, a pesar de la diferencia en la clusterización.

Considerando el conocimiento generado a partir de esta investigación, dando respuestas a las preguntas de investigación formuladas y logrando los objetivos específicos, se concluye que se ha logrado el objetivo general.

6.2 TRABAJOS FUTUROS

El desarrollo de esta investigación permitió identificar posibles trabajos futuros, que ayuden no sólo al MINSAL, sino que a cada entidad hospitalaria. Estos trabajos son los siguientes:

- Análisis de eficiencia técnica durante y posterior a la pandemia: sin duda alguna, la pandemia
 de coronavirus que azotó en 2020 y aún durante 2021, marcará un antes y un después,
 tanto en los ingresos como los egresos de los hospitales analizados en este estudio. Será
 importante realizar un análisis para ver cómo cambió la eficiencia de cada hospital tanto en
 el período crítico de la pandemia, como posterior a esta.
- Sistema de análisis periódico: el contar con un sistema de análisis periódico de eficiencia permitiría tanto al MINSAL como a los directores de cada uno de los hospitales registrados en este sistema, el saber qué tan bien se están ocupando los recursos, saber también en qué deberían destinar un mayor presupuesto, etc. Se tendría un mayor control sobre la eficiencia, permitiendo tomar medidas que la incrementen.
- Creación de registros históricos de eficiencia: la creación de un registro histórico de eficiencias permitiría tener una base de conocimientos para futuras decisiones. Los directores de hospitales podrían determinar en qué manera afecta una política, en base a decisiones que se han tomado en el pasado, con tal de mejorar la eficiencia en el uso de sus recursos. Por otra parte, se podrían tomar mejores decisiones en cuanto a la entrega de recursos a cada uno de estos hospitales.
- Sistema dinámico de clusterización: al igual como ocurrió durante este estudio, la casuística del hospital no siempre se mantiene fija. A pesar de que el MINSAL considere a un hospital de "mediana complejidad", un cierto año en particular podría tener una atención más cercana a los hospitales de "alta complejidad", mientras que en otros años podría ser de "baja complejidad". La creación de un sistema dinámico de clusterización, permitiría determinar la clasificación de un hospital en un cierto periodo determinado. Esto mejoraría la comparación entre hospitales, permitiendo realizar un análisis más exacto de la eficiencia técnica de cada uno de estos, e incluso permitiendo un análisis para aquellos hospitales que están en un grupo muy pequeño en la agrupación MINSAL.

6.2.1 Observaciones finales

Más allá del presente documento, y lo que se ha desarrollado para dar conclusión a la investigación, se hace inevitable mencionar lo mucho que falta por avanzar en términos de transparencia y control de la eficiencia en el sector público. Hay hospitales que cada año reciben más y más presupuesto, pero su eficiencia no hace más que empeorar. Esto no necesariamente significa que se deba reducir el presupuesto, sino que se debe mejorar el control en lo que cada hospital gasta, y la eficiencia que eso conlleva.

La ausencia de un mecanismo público y transparente que permita fiscalizar los gastos, y en especial la eficiencia de cada hospital, no permite que haya una instancia en la que los hospitales de menor eficiencia puedan justificar sus elevados gastos en ciertas categorías, en comparación a otros hospitales con una casuística similar.

Se hace de suma importancia que este mecanismo fiscalizador exista lo antes posible, junto con un sistema de medición de la eficiencia, público y transparente, y que considere a todas las unidades que componen a la red pública hospitalaria.

GLOSARIO

Casuística: el concepto de casuística hospitalaria hace referencia a los distintos tipos de pacientes que consultan un establecimiento de salud, y está definida por distintos factores como el diagnóstico, el pronóstico de los pacientes, la dificultad del tratamiento, el nivel de cuidado médico, los recursos utilizados, entre otros (Hornbrook, 1982). Los directivos de hospitales y los responsables de la Administración sanitaria suelen utilizar el concepto de complejidad de la casuística (case mix) para indicar que los pacientes tratados precisan de más recursos, lo que se traduce en un coste más alto de la asistencia médica. Por lo tanto, desde el punto de vista de los directivos y administradores, la complejidad de la casuística refleja la demanda de consumo de recursos que el paciente hace a una institución (Centro de Estudios Financieros, 2002)

Clústers: proviene del término en inglés *cluster*, que en español se traduce como "grupo" o "racimo". Dentro del contexto de esta investigación, se hace referencia a un grupo de hospitales con características similares, y que entregan servicios similares, como un "**clúster**", ya que previo a realizar el cálculo y análisis de la eficiencia relativa de estos hospitales, se realizará un proceso de "*clusterización*", es decir, se agruparan los hospitales similares entre sí, para realizar una comparación equivalente.

Eficiencia Técnica: dentro del ámbito de gestión hospitalaria, se han realizando diferentes estudios e investigaciones evaluando y comparando distintos indicadores con tal de analizar establecimientos de salud públicos. Uno de estos indicadores ha sido la medición de la **eficiencia técnica**, definida como la habilidad de obtener el máximo producto posible, dados una canasta de factores de producción y un nivel de tecnología determinados (Coll & Blasco, 2006).

Fronteras de Pareto: una frontera de Pareto, es un concepto económico que puede ser aplicado a las fronteras de producción. En concreto, la frontera de Pareto corresponde a un conjunto de soluciones que optimizan un resultado en base a al menos dos variables, y en donde cada una de estas soluciones que componen la frontera no se puede mejorar sin empeorar a la(s) otra(s) variable(s).

Grupo Relacionado por el Diagnóstico (GRD): los GRD, o Grupos Relacionados por el diagnóstico, corresponde a una herramienta de gestión normalizadora en la que mediante un el uso de un programa informático y utilizando los datos de los pacientes dados de alta, permite una clasificación de estos en grupos clínicamente similares y con parecido consumo de recursos sanitarios.

Índice de Productividad Malmquist: representa el crecimiento de la productividad total de los factores (PTF) de una unidad productiva, en este caso cada hospital. Refleja el progreso en eficiencia de conformidad con los cambios tecnológicos en el tiempo, que se manifiesta como desplazamiento de la propia frontera bajo un marco de múltiples insumos y productos (Martínez-Damián, 2013).

Programación lineal: la programación lineal es parte de una importante sección de las matemáticas conocida como "técnicas de optimización". En particular, la programación lineal consiste en el proceso de obtener el mejor valor posible (un máximo o un mínimo, dependiendo de cada caso), dado un conjunto de condiciones y desigualdades, mediante la búsqueda de la intersección de éstas.

Unidades de Toma de Decisiones: la idea detrás de los estudios de eficiencia es comparar la actuación real de una unidad productiva con respecto a un óptimo, pero por lo general en la práctica no se dispone de un conocimiento exhaustivo sobre el ámbito en el que se desenvuelven las unidades estudiadas, ni tampoco se conoce con exactitud la tecnología ni las restricciones que pueden afectar a dicha producción en particular (Pinilla, 2001). Estas unidades estudiadas, toman el nombre de *Unidades de Tomas de Decisiones*, o DMU, por sus siglas en inglés. Cabe mencionar, que estos cálculos de eficiencia mediante DMU son relativos, es decir, se calculan en relación a diferentes DMU, y no sobre si mismas.

REFERENCIAS BIBLIOGRÁFICAS

- Aigner, D., & Chu, S. F. (1968). American Economic Association On Estimating the Industry Production Function. *The American Economic Review*, (pp. 826–839).
- Asamblea General de las Naciones Unidas (1948). Declaración universal de los derechos humanos. Accedido el 31 de Mayo del 2020.
 - URL https://www.un.org/es/universal-declaration-human-rights/
- Barahona-Urbina, P. (2011). Análisis de eficiencia hospitalaria en Chile. *Anales de la Facultad de Medicina*, 72, 33 38.
 - URL http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1025-55832011000100006&nrm=iso
- Carlier, A. (2019). Caracterización de la clasificación de los establecimientos públicos de salud en chile según complejidad mediante la identificación de variables asociadas a casuística hospitalaria.
- Centro de Estudios Financieros (2002). El concepto de complejidad del case mix.

 URL https://www.gestion-sanitaria.com/concepto-complejidad-del-case-mix.html
- Coelli, T. (2003). Una introducción a las medidas de eficiencia para reguladores de servicios públicos y de transporte. Banco Mundial.
- Coelli, T. (2008). A Guide to DEAP Version 2.1: A Data Envelopment Analysis (Computer) Program.. University of New England, 1 ed. URL https://www.owlnet.rice.edu/~econ380/DEAP.PDF
- Coll, V., & Blasco, O. (2006). Evaluación de la eficiencia mediante el análisis envolvente de datos. Universidad de Málaga.
- Cordero, A., Araya, E., Cortés, V., & Esturillo, C. (2017). Instrumento de evaluación: Establecimientos autogestionados en red.
 - URL https://www.ssmaule.cl/dig/ControlDeGestion/BalancedScored/2017/
 antecedentes/Instrumento%20de%20Evaluacion%20EAR-BSC%202017%20VF%20(15%20Marzo%202017).pdf
- Fare, R., Grosskopf, S., & Margaritis, D. (2011). Malmquist productivity indexes and dea. *International Series in Operations Research & Management Science*, (pp. 127–149).
- Fontalvo, T. J., De la Hoz, E. J., & Olivos, S. (2019). Metodología de Análisis Envolvente de Datos (DEA) GLMNET para la Evaluación y Pronóstico de Eficiencia Financiera en una Zona Franca Industrial Colombia. *Información tecnológica*.
- Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. *Journal of the American Statistical Association*, 97(458), 611–631. URL https://sites.stat.washington.edu/raftery/Research/PDF/fraley2002.pdf
- Fuentes, R., & Lillo-Bañuls, A. (2015). Smoothed bootstrap malmquist index based on dea model to compute productivity of tax offices. *Expert Systems with Applications*, *42*(5), 2442–2450.
- Hamidi, S., & Akinci, F. (2016). Measuring Efficiency of Health Systems of the Middle East and North Africa (MENA) Region Using Stochastic Frontier Analysis. *Applied Health Economics and Health Policy*, 14(3), 337–347.
 - URL https://doi.org/10.1007/s40258-016-0230-9
- Harvard Apparatus (2002). Guide to equilibrium dialysis.

 URL https://www.harvardapparatus.com/media/harvard/pdf/Guide%20to%20Equilibrium%
 20Dialysis.pdf

- Henríquez, M. (2020). *Eficiencia del gasto hospitalario en Chile*. Observatorio Fiscal. URL https://observatoriofiscal.cl/archivos/documento/20200816122601070.pdf
- Hornbrook, M. (1982). Hospital case mix: its definition, measurement and use: part 1. the conceptual framework.
- Inostroza-Ponta, M., of Newcastle (N.S.W.). School of Electrical Engineering, U., & Science, C. (2008). An integrated and scalable approach based on combinatorial optimization techniques for the analysis of microarray data. School of Electrical Engineering and Computer Science.
- Karsak, E., & Karadayi, M. (2017). Imprecise dea framework for evaluating health-care performance of districts. *Kybernetes*, *46*, 706–727.
- Katharakis, G., Katharaki, M., & Katostaras, T. (2013). Sfa vs. dea for measuring healthcare efficiency: A systematic review. 2, 152–166.
- Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J. O. (2018). The use of data envelopment analysis (dea) in healthcare with a focus on hospitals. In *Health Care Management Science*, vol. 22, (pp. 245–286).
- Macrini, L., Gonçalves, A., Almeida, R., & Samanez, C. (2018). Specifying weight restriction limits in data envelopment analysis with the wong and beasley and cone ratio methods. *Pesquisa Operacional*, *38*, 523–533.
- Maipo Salud (2018). Aumento de afiliados a fonasa. el gran desafío de decidir en nuestra salud. Accedido el 25 de Junio del 2020.
 - $\begin{tabular}{ll} URL \ https://maiposalud.cl/blog/aumento-de-afiliados-a-fonasa-el-gran-desafio-de-decidir-en-nuestra-salud/ \end{tabular}$
- Martínez-Damián, M. (2013). Índice de malmquist y productividad estatal en méxico. *Agricultura, sociedad y desarrollo*, 10(3), 359–369.
 - URL http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1870-54722013000300005&lng=es&tlng=es
- McDonald, J. F., & Moffitt, R. A. (1980). The uses of tobit analysis. *The Review of Economics and Statistics*, 62(2), 318.
- Nassar, H., Sakr, H., Ezzat, A., & Fikry, P. (2020). Technical efficiency of health-care systems in selected middle-income countries: an empirical investigation. *Review of Economics and Political Science*, *5*(4), 267–287.
 - URL https://doi.org/10.1108/REPS-03-2020-0038
- Parraga-Alava, J., Moscato, P., & Inostroza-Ponta, M. (2021). mstknnclust: vignettes/guide.rmd. URL https://rdrr.io/cran/mstknnclust/f/vignettes/guide.Rmd
- Paço, C. (2013). El uso de la metodología dea (data envelopment analysis) para la evaluación del impacto de las tic en la productividad del sector hotelero. *Via Tourism Review*.
- Pinilla, A. (2001). La medición de la eficiencia y la productividad.
- Roldán, P. (2016). Modelo de regresión. Accedido el 30 de Mayo del 2020. URL https://economipedia.com/definiciones/modelo-de-regresion.html
- Saati, S., Hatami-Marbini, A., & Tavana, M. (2011). Data envelopment analysis: An efficient duo linear programming approach. *International Journal of Productivity and Quality Management*, 7, 90–103.
- Sanca Tinta, M. D. (2011). Tipos de investigación científica.

 URL http://www.revistasbolivianas.org.bo/scielo.php?pid=S2304-37682011000900011&script=sci_arttext

- Santelices C, E., Ormeño C, H., Delgado S, M., Lui M, C., Valdés V, R., & Durán C, L. (2013). Análisis de los determinantes de la eficiencia hospitalaria: el caso de Chile. *Revista médica de Chile*, *141*, 457 463.
 - URL https://scielo.conicyt.cl/scielo.php?script=sci_arttext&pid=S003498872013000400006&nrm=iso
- Santos, J., Negas, E., & Cavique, L. (2013). *Introduction to Data Envelopment Analysis*, (pp. 37–50).
- Schaeffer, S. E. (2007). Graph clustering. *Computer Science Review*, 1(1), 27–64. URL https://www.sciencedirect.com/science/article/pii/S1574013707000020
- The Organization for Economic Co-operation and Development (2015). How does health spending in chile compare? Accedido el 31 de Mayo del 2020.
 - URL http://www.oecd.org/els/health-systems/Country-Note-CHILE-0ECD-Health-Statistics-2015.pdf
- The Organization for Economic Co-operation and Development (2020). Health spending. URL https://data.oecd.org/healthres/health-spending.htm
- Valenzuela, P., Pezoa, M. (2015). Estudio de opinión a usuarios del sistema de salud, reforma y posicionamiento de la superintendencia de salud. Accedido el 25 de Junio del 2020. URL http://www.supersalud.gob.cl/documentacion/666/articles-12432_recurso_1.pdf
- Villalobos-Cid, M., Chacón, M., Zitko, P., & Inostroza-Ponta, M. (2016). A new strategy to evaluate technical efficiency in hospitals using homogeneous groups of casemix. *Journal of Medical Systems*, 40(4), 103.
- William C. Horrace (2020). Stochastic frontier analysis. Accedido el 09 de Julio del 2020.

 URL https://www.encyclopedia.com/social-sciences/applied-and-social-sciences-magazines/stochastic-frontier-analysis
- World Health Organization (2010). Health systems financing: the path to universal coverage. Accedido el 30 de Mayo del 2020.
 - URL https://www.who.int/whr/2010/en/

ANEXO A. PORTADA ARTÍCULO JORNADAS CHILENAS DE LA COMPUTACIÓN 2021

Classification of Chileans public hospitals based on healthcare production using clustering techniques

Juan Giglio*, Gabriel Gaete-Lucero*, Manuel Villalobos-Cid*†‡

*Departamento de Ingeniería Informática Universidad de Santiago de Chile (USACH), Santiago, Chile.

†Programa para el Desarrollo de Sistemas Productivos Sostenibles (PDSPS), Facultad de Ingeniería, USACH.

{juan.giglio, gabriel.gaete.l, manuel.villalobos}@usach.cl

† Corresponding author

Abstract-Governments worldwide have adopted different associated with the fronting the pandemic SARS-CoV-2. These measures include different approaches to assign and manage the resources, control the spread of the virus, and mitigate the contagious. The technical efficiency allows evaluating the success rate in government managing and health facilities performance. Since technical efficiency is a relative measure, experts must compare the hospitals by adjusting their production according to the type of patient treated: case-mix. The literature recommends using the Related Groups for Diagnosis system (DRG) to adjust hospitals production. However, only 80 of the more than 195 public hospitals have implemented this system in Chile, limiting the evaluation of technical efficiency. The Ministry of Health of Chile (MINSAL) has proposed an administrative categorisation for the public hospitals: high, medium, and low complexity. Managers can use this classification to group the hospitals avoiding bias. However, how good is this classification according to the data science point of view? In this work, we evaluate the categorisation proposed by MINSAL by applying internal clustering indexes using input features associated with healthcare production related to case-mix. After evaluating different alternative partitions, we propose a new classification to be used in technical efficiency analyses.

 ${\it Index Terms} {\bf - Data \ \ science, \ \ clustering \ \ methods, \ \ health} \\ information, \ management, \ public \ \ healthcare, \ \ hospitals. \\$

I. Introduction

Since its apparition in China in late December 2019, the new coronavirus, *SARS-CoV-2*, has reached more than 200 countries around the globe [1]. Attempting to mitigate the virus's spread and reduce the related effects on the population, governments worldwide have adopted multiple measures that include different strategies to assign and manage healthcare resources [2].

In developing countries as Chile, healthcare organisations have limited resources. Thus, it is essential to evaluate how the current pandemic has affected the hospitals' efficiency in using resources and how the healthcare production has been affected. Different countries have evaluated this phenomenon in hospitals during the last year by measuring technical efficiency (TE) [3–5]. This relative metric quantifies how hospitals (firms) utilise a given set of inputs to produce outputs, and the firm with the highest score is used to rank the remaining ones [6]. The literature [4–7] recommends weighting the healthcare production using the Groups

Related by the Diagnosis (DRG) to avoid bias by contrasting hospitals with different types of patients (i.e. *case-mix*).

The DRG is a patient classification system that standardises prospective payment by grouping patients according to similar features such as costs, gender, age, procedures, diagnosis, and comorbidities [8]. Currently, only 80 of the more than 190 Chilean public hospitals have the DRG system, involving different implementation times, codification criteria, coverage percentage, and records quality [9]. All of these factors limit the evaluation of TE. Although there are not recent studies performed during the last five years, different authors have previously evaluated TE in Chilean hospitals using different strategies instead of the DRGs: analysing partial data [10], grouping hospitals according to their geographic location [11], clustering hospitals based on features related to healthcare products [6]. or using the categorisation for the public hospitals proposed by the Ministry of Health (Chile) [12]. However, these solutions are not directly associated with the hospitals' case-mix [13].

Currently, the Department of Health Statistics and Information of Chile (DEIS) has more than 5,000 features related to case-mix that are recorded annually from public hospitals: discharges, procedures, diseases, categorisation of patients, among others [14]. In this work, we evaluate the categorisation proposed by MINSAL by applying internal cluster validity indices over input features associated with healthcare production and DRGs. The goal is to know if there are new categorisations that allow grouping hospitals according to case-mix, considering better quality indexes than the MINSAL proposal. We use classical partition clustering techniques considering two different distance metrics to test the alternative categorisations. We also implement a clustering strategy based on the Non-dominated Sorting Genetic Algorithm - II (NSGA-II) for the same purpose [15]. Finally, after the quality evaluation, we propose a new classification of hospitals that will allow evaluating TE in future analyses.

This manuscript is organised as follows: Section II introduces the methodology used in this work, including the description of a proposed multi-objective algorithm. The experimental results and the main conclusions are included in Sections III and IV, respectively.

978-1-7281-5613-2/19/\$31.00 ©2019 IEEE

Figura A.1: Portada artículo Jornadas Chilenas de la computación 2021.

APÉNDICE A. RESULTADOS

Los resultados completos de la investigación para cada una de las etapas descritas en el capítulo 3 se podrán encontrar en cualquiera de las siguientes direcciones:

- https://drive.google.com/drive/folders/12LJzsAaf9Wib1TTloPFtVmbZzZJpY2WC?usp= sharing
- https://github.com/gaelgalu/ResultadosMemoria

A.1 DESCRIPCIÓN DE ARCHIVOS

En la carpeta compartida se encontrarán los siguientes archivos:

- Resumen Grupos con base a distancias, el cual contiene los resultados para cada una de las combinaciones de eficiencia calculada sobre los grupos creados con base a distancias, considerando las diferentes orientaciones de DEA, además de los distintos tipos de retorno a escala. Se listan también los clusters a los que pertenece cada uno de los hospitales para cada año.
- Resumen MINSAL, el cual contiene los resultados para cada una de las combinaciones de eficiencia calculada sobre los grupos propuestos por el MINSAL, considerando las diferentes orientaciones de DEA, además de los distintos tipos de retorno a escala. Se listan también los grupos a los que pertenece cada uno de los hospitales según clasificación MINSAL.
- Resumen Malmquist, el cual contiene tanto los índices de productividad Malmquist, como los índices de cambio de eficiencia para cada uno de los periodos y sub-periodos contenidos entre los años 2014-2018.
- Resumen DEA, el cual además de contener los resultados DEA para cada año, contiene los valores para las entradas y salidas utilizadas al momento de calcular la eficiencia técnica, además de la relación entre estas variables.