Chapter 2

Lambda Calculus

We study pure untyped lambda-calculus in this chapter as a theory of substitution. We assume the existence of a denumerable set **VAR** of (object) variables $\mathbf{x}_0, \mathbf{x}_1, \mathbf{x}_2, \ldots$, and use x, y, z to range over these variables. Given two variables x_1 and x_2 , we write $x_1 = x_2$ if both x_1 and x_2 denote the same \mathbf{x}_n for some natural number n; similarly, we write $x_1 < x_2$ ($x_1 \le x_2$) if x_1 and x_2 denote \mathbf{x}_{n_1} and \mathbf{x}_{n_2} , respectively, for some natural numbers n_1 and n_2 satisfying $n_1 < n_2$ ($n_1 \le n_2$); we write $x_1 > x_2$ ($x_1 \ge x_2$) to mean $x_2 < x_1$ ($x_2 \le x_1$).

Definition 2.0.1 (λ -**terms**) *The* (pure) λ -terms are formally defined below:

terms
$$t ::= x \mid \lambda x.t \mid t_1(t_2)$$

We use **TERM** for the set of all λ -terms. Given a λ -term t, t is either a variable, or a λ -abstraction of the form $\lambda x.t_1$, or an application of the form $t_1(t_2)$. We write $t_1 \equiv t_2$ to mean that t_1 and t_2 are syntactically the same.

When giving examples, we often use I for $\lambda x.x$, K for $\lambda x.\lambda y.x$, K' for $\lambda x.\lambda y.y$, and S for $\lambda x.\lambda y.\lambda z.x(z)(y(z))$. A few other special λ -terms are to be introduced later.

Definition 2.0.2 (Size of λ **-terms)** *We define a unary function* $size(\cdot)$ *to compute the size of a given* λ *-term:*

$$\begin{array}{rcl} size(x) & = & 0 \\ size(\lambda x.t) & = & 1 + size(t) \\ size(t_1(t_2)) & = & 1 + size(t_1) + size(t_2) \end{array}$$

Clearly, we have size(I) = 1, size(K) = 2 and size(S) = 6.

There is often a need to refer to a subterm in a given λ -term. For this purpose, we introduce *paths* defined as finite sequences of natural numbers:

paths
$$p ::= \emptyset \mid n.p$$

We use \emptyset for the empty sequence and n.p for the sequence whose head and tail are n and p, respectively, where n ranges over natural numbers. Given two paths p_1 and p_2 , we write $p_1@p_2$ for the concatenation of p_1 and p_2 . We say that p_1 is a prefix of p_2 if $p_2 = p_1@p_3$ for some path p_3 ; this prefix is proper if p_3 is not empty. We say that p_1 and p_2 are incompatible if neither of them is the prefix of the other.

We use **PATH** for the set of all paths and \overline{p} to range over finite sets of paths. Given n and \overline{p} , we use $n.\overline{p}$ for the set $\{n.p \mid p \in \overline{p}\}$. Given p_0 and \overline{p} , the sets $p_0@\overline{p}$ and $\overline{p}@p_0$ are $\{p_0@p \mid p \in \overline{p}\}$ and $\{p@p_0 \mid p \in \overline{p}\}$, respectively.

Definition 2.0.3 We define as follows a partial binary function $subterm(\cdot, \cdot)$ from (**TERM**, **PATH**) to **TERM**:

```
subterm(t,\emptyset) = t
subterm(t_1(t_2), 0.p) = subterm(t_1, p)
subterm(t_1(t_2), 1.p) = subterm(t_2, p)
subterm(\lambda x.t, 0.p) = subterm(t, p)
```

Given two λ -terms t_1, t_2 and a path p, we say that t_1 is a subterm of t_2 at p if $subterm(t_2, p) = t_1$; this substerm is proper if p is not empty. We may simply say that t_1 is a subterm of t_2 if $subterm(t_2, p) = t_1$ for some path p. Also, we may say that t_1 has an occurrence in t_2 (at p) if t_1 is a subterm of t_2 (at p). Note that for a λ -term of the form $\lambda x.t$, the variable x following the binder λ does not count as an occurrence (in the formal sense).

Given a λ -term, we use paths(t) for the set of paths such that $p \in paths(t)$ if and only if subterm(t,p) is defined. Clearly, for every λ -term t, we have

- $\emptyset \in paths(t)$, and
- $p_0 \in paths(t)$ implies that $p \in paths(t)$ holds for every prefix p of p_0 .

Note that for every λ -term $t, p \in paths(t)$ implies p being a sequence of 0's and 1's.

Definition 2.0.4 (Variable Set) We define a function vars as follows that maps λ -terms to finite sets of variables:

```
vars(x) = \{x\}
vars(\lambda x.t) = vars(t) \cup \{x\}
vars(t_1(t_2)) = vars(t_1) \cup vars(t_2)
```

Clearly, for every λ -term t_0 , $x \in vars(t_0)$ if and only if t_0 has a subterm of the form x or $\lambda x.t.$

Definition 2.0.5 (Free Variable Set) We define a function FV as follows that maps λ -terms to finite sets of variables:

```
\begin{array}{rcl} \mathit{FV}(x) & = & \{x\} \\ \mathit{FV}(\lambda x.t) & = & \mathit{FV}(t) \backslash \{x\} \\ \mathit{FV}(t_1(t_2)) & = & \mathit{FV}(t_1) \cup \mathit{FV}(t_2) \end{array}
```

Given a λ -term t, we refer to FV(t) as the set of free variables in t. We say that a variable x is free in t if and only if $x \in FV(t)$ holds.

Given a λ -term t_0 and a variable x, an occurrence of x in t_0 at p_0 is a free occurrence if $subterm(t_0, p)$ is not of the form $\lambda x.t$ for any prefix p of p_0 . It is clear from the definition of FV that $x \in FV(t)$ if and only if x has at least one free occurrence in t.

2.1 α -Equivalence

Definition 2.1.1 (Variable Replacement) Given a λ -term t and two variables x and y, we define t[y/x] as follows by structural induction on t:

$$\begin{array}{rcl} x[y/x] & ::= & y \\ x'[y/x] & ::= & x' \text{ if } x' \text{ is not } x \\ t_1(t_2)[y/x] & ::= & t_1[y/x](t_2[y/x]) \\ (\lambda x.t)[y/x] & ::= & \lambda x.t \\ (\lambda x'.t)[y/x] & ::= & \lambda x'.t[y/x] \text{ if } x \neq x' \end{array}$$

We refer to t[y/x] as the λ -term obtained from replacing (free occurrences) of x with y in t.

Clearly, size(t[y/x]) = size(t) for all λ -terms t and variables x and y.

Proposition 2.1.2 We have the following.

- 1. $t[x/x] \equiv t$.
- 2. $t[y/x] \equiv t \text{ if } x \notin FV(t)$.
- 3. $t[y/x][z/y] \equiv t[z/x]$ if $y \notin vars(t)$.

Proof Both (1) and (2) are straightforward. We prove (3) by structural induction on t.

- t is x. Then both $t[y/x][z/y] \equiv z$ and $t[z/x] \equiv z$ hold, and we are done.
- t is x' for some variable $x' \neq x$. Then $x' \neq y$ also holds as $y \notin vars(t)$. So $t[y/x][z/y] \equiv x'$ and $t[z/x] \equiv x'$, and we are done.
- t is $t_1(t_2)$. For i=1,2, we have $t_i[y/x][z/y] \equiv t_i[z/x]$ by induction hypotheses on t_i . Therefore, $t[y/x][z/y] \equiv t[z/x]$ holds as well.
- t is $\lambda x.t_0$. Then $t[y/x][z/y] \equiv t[z/y]$, and $t[z/x] \equiv t$. By (2), $t[z/y] \equiv t$ holds, and we are done.
- t is $\lambda x'.t_0$ for some $x' \neq x$. We have $t_0[y/x][z/y] \equiv t_0[z/x]$ by induction hypthesis on t_0 . Note that $x' \neq y$ since $y \notin vars(t)$. So we have $t[y/x][z/y] \equiv t[z/x]$.

We conclude the proof as all the cases are covered.

Definition 2.1.3 *We use* Γ *for a sequence of variables defined as follows:*

$$\Gamma ::= \emptyset \mid \Gamma, x$$

We write $x \in \Gamma$ to indicate that x occurs in Γ , and $|\Gamma|$ for the length of Γ , that is, the number of variables in Γ . If $x \in \Gamma$ holds, we define $\Gamma(x)$ as follows: $\Gamma(x) = |\Gamma|$ if $\Gamma = \Gamma_1, x$ and $\Gamma(x) = \Gamma_1(x)$ if $\Gamma = \Gamma_1, x_1$ for some $x_1 \neq x$.

Definition 2.1.4 (\alpha-normal forms) We use t for α -normal forms defined as follows:

$$\alpha$$
-normal forms $\underline{t} ::= x \mid n \mid \lambda(\underline{t}) \mid \underline{t}_1(\underline{t}_2)$

where n ranges over positive integers.

Given an α -normal form \underline{t} , $shift(\underline{t})$ is the α -normal form obtained from increasing each n in \underline{t} by 1. Formally, we have

$$shift(x) = x; shift(n) = n + 1; shift(\underline{t}_1(\underline{t}_2)) = shift(\underline{t}_1)(shift(\underline{t}_2)); shift(\lambda(\underline{t}_1)) = \lambda(shift(\underline{t}_1))$$

Definition 2.1.5 (α -equivalence) Given a sequence Γ of variables and a term t, $NF_{\alpha}(\Gamma;t)$ is defined inductively as follows:

$$\mathit{NF}_\alpha(\Gamma;t) = \left\{ \begin{array}{ll} x & \textit{if } t = x \textit{ for some } x \not\in \Gamma; \\ \Gamma(x) & \textit{if } t = x \textit{ for some } x \in \Gamma; \\ \lambda(\underline{t}_0) & \textit{if } t = \lambda x.t_0 \textit{ and } \underline{t}_0 = \mathit{NF}_\alpha(\Gamma,x;t_0); \\ \underline{t}_1(\underline{t}_2) & \textit{if } t = t_1(t_2) \textit{ and } \underline{t}_1 = \mathit{NF}_\alpha(\Gamma;t_1) \textit{ and } \underline{t}_2 = \mathit{NF}_\alpha(\Gamma;t_2). \end{array} \right.$$

We use $NF_{\alpha}(t)$ as a shorthand for $NF_{\alpha}(\emptyset;t)$. Given two terms t_1 and t_2 , we say that t_1 and t_2 are α -equivalent if $NF_{\alpha}(t_1) \equiv NF_{\alpha}(t_2)$ holds, and we use $t_1 \equiv_{\alpha} t_2$ to indicate that t_1 and t_2 are α -equivalent. Note that \equiv_{α} is an equivalence relation, that is, \equiv_{α} is reflexive, symmetric and transitive.

Clearly, we have $NF_{\alpha}(I) = \lambda(1)$, $NF_{\alpha}(K) = \lambda(\lambda(1))$, and $NF_{\alpha}(S) = \lambda(\lambda(\lambda(1(3)(2(3)))))$, and note that $\lambda(shift(NF_{\alpha}(I))) = \lambda(\lambda(2)) = NF_{\alpha}(K')$.

Given \underline{t} and x, we use $\underline{t}[1/x]$ and $\underline{t}[y/x]$ for the α -normal forms obtained from replacing each occurrence of x in \underline{t} with 1 and y, respectively. For brevity, the formal defintions for these replacements are omitted.

Proposition 2.1.6 For every λ -abstraction $\lambda x.t$, we have

$$NF_{\alpha}(\lambda x.t) = \lambda(shift(NF_{\alpha}(t))[1/x])$$

Proof Let us first establish the following equation for all sequences Γ :

$$NF_{\alpha}(x,\Gamma;t) = shift(NF_{\alpha}(\Gamma,t))[1/x]$$

We proceed by structural induction on *t*:

- t is x. If $x \in \Gamma$, then both sides of the equation equal $\Gamma(x) + 1$. Otherwise, both sides of the equation equal 1.
- t is some variable y that is distinct from x. If $y \in \Gamma$, then both sides of the equation equal $\Gamma(y) + 1$. Otherwise, both sides of the equation equal y.
- t is of the form $\lambda x_1.t_1$. By definition, $NF_{\alpha}(x,\Gamma;t) = \lambda(NF_{\alpha}(x,\Gamma,x_1;t_1))$. By induction hypothesis on t_1 , we have the following:

$$NF_{\alpha}(x,\Gamma,x_1;t_1) = shift(NF_{\alpha}(\Gamma,x_1;t_1))[1/x]$$

Note that we have:

$$\lambda(shift(NF_{\alpha}(\Gamma, x_1; t_1))[1/x]) = shift(\lambda(NF_{\alpha}(\Gamma, x_1; t_1)))[1/x]$$

Hence, $NF_{\alpha}(x, \Gamma; t) = shift(NF_{\alpha}(\Gamma; t))[1/x]$ holds.

2.2. SUBSTITUTION 7

• t is of the form $t_1(t_2)$. This is straightforward based on the properties of $NF_{\alpha}(\cdot)$, $shift(\cdot)$ and variable replacement.

We conclude the inductive proof as all the cases are covered. Let Γ be \emptyset , and we have $NF_{\alpha}(x;t) = shift(NF_{\alpha}(t))[1/x]$. Therefore, we have $NF_{\alpha}(\lambda x.t) = \lambda(shift(NF_{\alpha}(t))[1/x])$.

Given a λ -abstraction $\lambda x.t$, let us choose a variable y not in vars(t). By Proposition 2.1.6, we have

$$NF_{\alpha}(\lambda x.t) = \lambda(shift(NF_{\alpha}(t))[1/x])$$
 and $NF_{\alpha}(\lambda y.t[y/x]) = \lambda(shift(NF_{\alpha}(t[y/x]))[1/y])$

It should be easy to note that $shift(NF_{\alpha}(t))[1/x] = shift(NF_{\alpha}(t[y/x]))[1/y]$. Therefore, $\lambda x.t$ and $\lambda y.t[y/x]$ are α -equivalent.

2.2 Substitution

Definition 2.2.1 (Substitutions) We use θ for substituitions, which are finite mappings from variables to λ -terms:

substitutions
$$\theta ::= [] | \theta[x \mapsto t]$$

We may use [] for the empty mapping and $\theta[x \mapsto t]$ for the mapping that extends θ with a link from x to t, where x is assumed to be not in $\mathbf{dom}(\theta)$. We use $\mathbf{dom}(\theta)$ for the (finite) domain of θ and $vars(\theta)$ for the following (finite) set of variables:

$$\mathbf{dom}(\theta) \cup (\cup_{x \in \mathbf{dom}(\theta)} vars(\theta(x)))$$

We may use $[x_1 \mapsto t_1, \dots, x_n \mapsto t_n]$ for the subtitution θ such that $\mathbf{dom}(\theta) = \{x_1, \dots, x_n\}$ and $\theta(x_i) = t_i$ for $1 \le i \le n$, where x_1, \dots, x_n are assumed to be distinct variables.

Definition 2.2.2 Given a λ -term t and a substitution θ , we use $t[\theta]$ for the result of applying the substitution θ to t, which is formally defined below as a function by induction on the size of t:

- $t[\theta] = \theta(x)$ if t is some x in $dom(\theta)$.
- $t[\theta] = x$ if t is some x not in $dom(\theta)$.
- $t[\theta] = \lambda y.(t_1[y/x])[\theta]$ if t is $\lambda x.t_1$, where y is the first variable not in $vars(t_1) \cup vars(\theta)$. Note that the reason for choosing y in such a manner is to guarantee that applying a substitution θ to a term t can be done deterministically.
- $t[\theta] = t_1[\theta](t_2[\theta])$ if $t = t_1(t_2)$.

Given two substitutions θ_1 and θ_2 , we write $\theta_1 \equiv_{\alpha} \theta_2$ to mean that $\theta_1(x) \equiv_{\alpha} \theta_2(x)$ holds for every $x \in \mathbf{dom}(\theta_1) = \mathbf{dom}(\theta_2)$. We are to prove that $t[\theta] \equiv_{\alpha} t'[\theta']$ whenever $\theta \equiv_{\alpha} \theta'$ and $t \equiv_{\alpha} t'$, that is, the operation of applying a substitution to a term is well-defined modulo α -equivalence.

Let us use $\underline{\theta}$ for finite mappings from variables to α -normal forms and $shift(\underline{\theta})$ be the mapping $\underline{\theta}'$ such that $\mathbf{dom}(\underline{\theta}') = \mathbf{dom}(\underline{\theta})$ and $\underline{\theta}'(x) = shift(\underline{\theta}(x))$ for each $x \in \mathbf{dom}(\underline{\theta}')$. Given \underline{t} , we define $\underline{t}[\underline{\theta}]$ as follows:

$$\underline{t}[\underline{\theta}] = \left\{ \begin{array}{ll} \underline{\theta}(x) & \text{if } t = x; \\ n & \text{if } t = n; \\ \lambda(t_1[\underline{\theta}']) & \text{if } t = \lambda(\underline{t}_1) \text{ and } \underline{\theta}' = shift(\underline{\theta}); \\ t_1[\underline{\theta}](t_2[\underline{\theta}]) & \text{if } t = t_1(t_2). \end{array} \right.$$

Proposition 2.2.3 Given x, t and θ , if y is a variable not in $vars(t) \cup vars(\theta)$, then we have the following equation:

$$shift(\underline{t}[y/x][\underline{\theta}])[1/y] = shift(\underline{t})[1/x][shift(\underline{\theta})]$$

Proof We proceed by structural induction on \underline{t} . For brevity, we only consider the case where t is of the form $\lambda(\underline{t}_1)$. Note that $shift(\underline{t}[y/x][\underline{\theta}]) = \lambda(shift(\underline{t}_1[y/x][\underline{\theta}']))$ in this case, where $\underline{\theta}' = shift(\underline{\theta})$. By induction hypothesis on \underline{t}_1 , we have:

$$shift(\underline{t}_1[y/x][\underline{\theta}'])[1/y] = shift(\underline{t}_1)[1/x][shift(\underline{\theta}')]$$

Note that $shift(\underline{t})[1/x][shift(\underline{\theta})] = \lambda(shift(\underline{t}_1)[1/x])[\underline{\theta}'] = \lambda(shift(\underline{t}_1)[1/x][shift(\underline{\theta}')])$, and we have

$$shift(\underline{t}[y/x][\underline{\theta}])[1/y] = \lambda(shift(\underline{t}_1[y/x][\underline{\theta}'])[1/y]) = shift(\underline{t})[1/x][shift(\underline{\theta})]$$

All of the other cases can be readily handled.

Proposition 2.2.4 *We have the following equation:*

$$NF_{\alpha}(t[\theta]) = NF_{\alpha}(t)[NF_{\alpha}(\theta)]$$

In other words, the substitution function given in Definition 2.2.2 is well-defined modulo the α -equivalence relation.

Proof Let $\underline{\theta} = NF_{\alpha}(\theta)$. We proceed by induction on the size of t. The only interesting case is the one where t is of the form $\lambda x_1.t_1$. By definition, $t[\theta] = \lambda y.t_1[y/x_1][\theta]$, where y is some variable not appearing in $vars(t_1) \cup vars(\theta)$. By induction hypothesis on $t_1[y/x_1]$, $NF_{\alpha}(t_1[y/x_1][\theta]) = NF_{\alpha}(t_1[y/x_1])[\underline{\theta}]$ holds. Let $\underline{t}_1 = NF_{\alpha}(t_1)$, and we have $NF_{\alpha}(t_1[y/x_1]) = \underline{t}_1[y/x_1]$. By Proposition 2.2.3, we have

$$\lambda(shift(NF_{\alpha}(t_1[y/x_1][\theta]))[1/y]) = \lambda(shift(\underline{t}_1[y/x_1][\underline{\theta}])[1/y]) = \lambda(shift(\underline{t}_1)[1/x_1][shift(\underline{\theta})])$$

Note that $NF_{\alpha}(t) = \lambda(shift(\underline{t}_1)[1/x1])$, which leads to $NF_{\alpha}(t)[\underline{\theta}] = \lambda(shift(\underline{t}_1)[1/x1][shift(\underline{\theta})])$. So we have $NF_{\alpha}(t[\theta]) = NF_{\alpha}(t)[NF_{\alpha}(\theta)]$ in this case. All of the other cases can be readily handled.

Given θ_1 and θ_2 , we use $\theta_2 \circ \theta_1$ for the substitution θ such that $\mathbf{dom}(\theta) = \mathbf{dom}(\theta_1) \cup \mathbf{dom}(\theta_2)$, and for each $x \in \mathbf{dom}(\theta)$, $\theta(x) = x[\theta_1][\theta_2]$.

Lemma 2.2.5 $(t[\theta_1])[\theta_2] \equiv_{\alpha} t[\theta_2 \circ \theta_1].$

Proof As an exercise.

Given a λ -abstraction $\lambda x.t$ and a finite set of variables, we can also choose another λ -abstraction $\lambda x'.t'$ that is α -equivalent to $\lambda x.t$ while guaranteeing that x' does not occur in the given finite set of variables. This is often called α -conversion or α -renaming (of a bound variable).

2.3. β -REDUCTION 9

2.3 β -Reduction

Definition 2.3.1 (β -redexes) A λ -term t is a β -redex if it is of the form $\lambda x.t_1(t_2)$, and its contractum is $t_1[x:=t_2]$. We may also refer to the contractum of a β -redex as the reduct of the β -redex.

Given a λ -term t, \mathcal{R} is a set of β -redexes in t if \mathcal{R} a finite set of paths such that subterm(t,p) is a β -redex for each $p \in \mathcal{R}$.

Definition 2.3.2 (λ -term Contexts)

contexts
$$C ::= [] \mid \lambda x.C \mid C(t) \mid t(C)$$

Given a context C and a λ -term t, we use C[t] for the λ -term obtained from replacing the hole [] in C, which is formally defined below:

$$C[t] = \begin{cases} t & \text{if } C \text{ is } [];\\ \lambda x.(C_0[t]) & \text{if } C \text{ is } \lambda x.C_0;\\ C_1[t](t_2) & \text{if } C \text{ is } C_1(t_2);\\ t_1((C_2[t])) & \text{if } C \text{ is } t_1(C_2). \end{cases}$$

Given a context C and a path p, we use subterm(C, p) for either a context or a term defined below:

```
\begin{array}{rcl} subterm(C,\emptyset) & = & C \\ subterm(C(t),0.p) & = & subterm(C,p) \\ subterm(t(C),0.p) & = & subterm(t,p) \\ subterm(C(t),1.p) & = & subterm(t,p) \\ subterm(t(C),1.p) & = & subterm(C,p) \\ subterm(\lambda x.C,0.p) & = & subterm(C,p) \end{array}
```

Definition 2.3.3 (\beta-reduction) Given two λ -terms t_1, t_2 and a path p, we write $[p]: t_1 \to_{\beta} t_2$ if $t_1 \equiv C[t]$ for some context C and β -redex t, where subterm(C, p) = [], and $t_2 \equiv C[t']$ for the reduct t' of t. A reduction [p] is a top reduction if $p = \emptyset$, and it is a head reduction if $p = 0 \dots 0.\emptyset$.

Let $\omega = \lambda x.x(x)$ and $\Omega = \omega(\omega)$. Clearly, we have $[\emptyset]: \Omega \to_{\beta} \Omega$, which is a top reduction.

We may write $t_1 \to_{\beta} t_2$ to mean $[p]: t_1 \to_{\beta} t_2$ for some p. We refer to the binary relation \to_{β} as (one-step) β -reduction, and use \to_{β}^+ and \to_{β}^* for the transitive closure and the reflexive and transitive closure of \to_{β} , respectively. We may also refer to \to_{β}^* as multi-step β -reduction. In addtion, we use \equiv_{β} for the minimal equivalence relation containing \to_{β} .

Definition 2.3.4 (\beta-reduction Sequences) We use σ for (finite) β -reduction sequences defined as follows:

```
\beta-reduction sequences \sigma ::= \emptyset \mid [p] + \sigma
```

where \emptyset stands for the empty β -reduction sequence. Note that we may omit writing the trailing \emptyset in β -reduction sequence.

We write $\sigma: t \to_{\beta}^* t'$ to mean that σ is a β -reduction sequence from t to t', that is, σ is of the form $[p_1] + \ldots + [p_n] + \emptyset$ and there are λ -terms $t = t_1, \ldots, t_{n+1} = t'$ such that $[p_i]: t_i \to_{\beta} t_{i+1}$ holds for each $1 \le i \le n$. We write $\sigma: t$ to mean $\sigma: t \to_{\beta}^* t'$ for some t', which can be denoted by $\sigma(t)$.

Proposition 2.3.5 Assume $\sigma: t \to_{\beta}^* t'$ and $\sigma = [p_1] + [p_2]$. If p_1 and p_2 are incompatible, then we have $\sigma': t \to_{\beta}^* t'$ for $\sigma' = [p_2] + [p_1]$.

Proof By structural induction on t.

Let σ be a β -reduction sequence from t such that each [p] in σ implies $p=0.p_1$ or $p=1.p_1$ for some p_1 . By applying Proposition 2.3.5 repeatedly, we can arrange σ into σ' of the form $0.\sigma'_1+1.\sigma'$ such that $\sigma(t)=\sigma'(t)$.

Proposition 2.3.6 Assume $\sigma: t \to_{\beta}^* t'$. Then for every substitution θ , we also have $\sigma: t[\theta] \to_{\beta}^* t'[\theta]$.

Proof It is straightforward to verify that $[p]: t \to_{\beta} t'$ implies $[p]: t[\theta] \to_{\beta} t'[\theta]$. Then the proposition follows immediately.

Lemma 2.3.7 Assume that $\sigma: t$. If $\sigma = \sigma_1 + [\emptyset]$ for some σ_1 containing no head reduction, that is, $[\emptyset]$ does not appear in σ_1 , then there exists $\sigma': t$ such that $\sigma' = [\emptyset] + \sigma'_1$ for some σ'_1 and $\sigma'(t) = \sigma(t)$.

Proof Since σ contains a head reduction, t must be of the form $\lambda x.t_1(t_2)$. Since σ_1 contains no head reduction, we can assume by Proposition 2.3.5 that $\sigma_1 = 0.0.\sigma_{11} + 1.\sigma_{12}$ for some $\sigma_{11}:t_1$ and $\sigma_{12}:t_2$. Clearly, $\sigma_1(t) = \lambda x.\sigma_{11}(t_1)(\sigma_{12}(t_2))$, and $\sigma(t) = \sigma_{11}(t_1)[x:=\sigma_{12}(t_2)]$. Let p_1^x,\ldots,p_n^x be an enumeration of the possitions of all free occurrences of x in $\sigma(t_1)$, and

$$\sigma' = [\emptyset] + \sigma_{11} + p_1^x @ \sigma_{12} + \ldots + p_n^x @ \sigma_{12}$$

Clearly, we have $\sigma': t$ and $\sigma'(t) = \sigma(t)$.

2.4 Developments

Definition 2.4.1 (Residuals under β **-reduction)** Let t_0 be $C[(\lambda x.t_1)t_2]$, where the hole [] in C is at some position p_0 , and $t'_0 = C[t_1[x := t_2]]$. For each β -redex in t_0 at some position p, the residuals of the β -redex, denoted by $\mathbf{Res}(t_0, p_0, p)$, is a set of subterms in t'_0 defined as follows:

- 1. If $p = p_0$, then $Res(t_0, p_0, p) = \emptyset$.
- 2. If $p = (p_0.0)@p'$, then $Res(t_0, p_0, p) = \{p_0@p'\}$.
- 3. If $p = (p_0.1)@p'$, then $\operatorname{Res}(t_0, p_0, p) = \{p_0@p_x@p'\}$, where p_x ranges over all paths such that $\operatorname{subterm}(t_1, p_x)$ is a free occurrence of x in t_1 .
- 4. Otherwise, p_0 is not a prefix of p. In this case, $Res(t_0, p_0, p) = \{p\}$.

Clearly, the residuals of a β -redex are β -redexes themselves.

Definition 2.4.2 (\lambda-terms with marked β -redexes) *Given a* λ -term t *and a set* \mathcal{R} *of* β -redexes in t, we write t/\mathcal{R} a λ -term with marked β -redexes, or a marked λ -term for short.

Definition 2.4.3 (Developments) Assume that t is a λ -term and \mathcal{R} is a set of β -redexes in t. A β -reduction sequence σ is from t/\mathcal{R} is called a development if σ is empty, or $\sigma = [p] + \sigma_1$ for some $p \in \mathcal{R}$ and [p] reduces t/\mathcal{R} to t_1/\mathcal{R}_1 and σ_1 is a development of t_1/\mathcal{R}_1 .

2.4. DEVELOPMENTS 11

A finite development σ of t/\mathcal{R} is complete if $\sigma(t/\mathcal{R}) = t'/\emptyset$ for some t'.

Lemma 2.4.4 Let P be a unary predicate on marked λ -terms. Assume that P is modulo α -equivalence, that is, $P(t_1/\mathcal{R})$ implies $P(t_2/\mathcal{R})$ whenever $t_1 \equiv_{\alpha} t_2$ holds, and

- 1. $P(x/\emptyset)$ holds for every variable x.
- 2. For t/\mathcal{R} , $P(t/\mathcal{R})$ implies $P(\lambda x.t/0.\mathcal{R})$.
- 3. For t_1/\mathcal{R}_1 and t_2/\mathcal{R}_1 , $P(t_1/\mathcal{R}_1)$ and $P(t_2/\mathcal{R}_2)$ implies $P(t/\mathcal{R})$, where $t=t_1(t_2)$ and $\mathcal{R}=0.\mathcal{R}_1\cup 1.\mathcal{R}_2$
- 4. For t_1/\mathcal{R}_1 and t_2/\mathcal{R}_2 , $P(t_1/\mathcal{R}_1)$, $P(t_2/\mathcal{R}_2)$ and $P(t_1/\mathcal{R}_1[x := t_2/\mathcal{R}_2])$ implies $P(t/\mathcal{R} \cup \{\emptyset\})$, where $t = (\lambda x.t_1)(t_2)$ and $\mathcal{R} = \{\emptyset\} \cup 0.0.\mathcal{R}_1 \cup 1.\mathcal{R}_2$.

Then $P(t/\mathcal{R})$ holds for every marked λ -term t/\mathcal{R} .

Proof We first prove that for every marked λ -term t/\mathcal{R} , $P(t/\mathcal{R}[\theta])$ holds for every substitution θ that maps variables to marked λ -terms satisfying P, that is, $P(\theta(x))$ for each $x \in \mathbf{dom}(\theta)$. We proceed by structural induction on t.

- t is some variable x. Then $t[\theta]$ is either x or $\theta(x)$. So $P(t[\theta])$ holds.
- t is $\lambda x_0.t_0$ for some λ -term t_0 . Then $\mathcal{R} = 0.\mathcal{R}_0$ for some set \mathcal{R}_0 of redexes in t_0 . Given that P is modulo α -equivalence, we may assume $t[\theta] \equiv \lambda x_0.t_0[\theta]$ without loss of generality. By induction hypothesis on t_0 , we have $P(t_0[\theta])$. By (2), we have $P(t[\theta]/\mathcal{R})$.
- t is $t_1(t_2)$ and $\emptyset \notin \mathcal{R}$. Then $\mathcal{R} = 0.\mathcal{R}_1 \cup 1.\mathcal{R}_2$ for some sets \mathcal{R}_0 and \mathcal{R}_1 of redexes in t_1 and t_2 , respectively. Clearly, $t[\theta] = t_1[\theta]((t_2[\theta]))$. By induction hypothesis, both $P(t_1/\mathcal{R}_0[\theta])$ and $P(t_2/\mathcal{R}_1[\theta])$ hold. By (3), we have $P(t/\mathcal{R}[\theta])$.
- t is $(\lambda x.t_1)(t_2)$ and $\emptyset \in \mathcal{R}$. Then $\mathcal{R} = \{\emptyset\} \cup 0.0.\mathcal{R}_1 \cup 1.\mathcal{R}_2$ for some \mathcal{R}_1 and \mathcal{R}_2 . By induction hypothesis on t_2 , $P(t_2/\mathcal{R}_2[\theta])$ holds. Let θ' be $\theta[x \mapsto t_2/\mathcal{R}_2[\theta]]$. By induction hypothesis on t_1 , $P(t_1/\mathcal{R}_1[\theta'])$ holds. Note that $t_1/\mathcal{R}_1[\theta']$ is α -equivalent to $t_1/\mathcal{R}_1[\theta][x := t_2/\mathcal{R}_2[\theta]]$. By (4), $P(t/\mathcal{R}[\theta])$ holds.

Therefore, by structural induction, $P(t/\mathcal{R}[\theta])$ for all λ -terms t and all substitutions θ such that $P(\theta(x))$ holds for each $x \in \mathbf{dom}(\theta)$. Let θ be the empty substitution, and we have $P(t/\mathcal{R})$ for all λ -terms t.

Theorem 2.4.5 (Finite Developments) For each λ -term t, there exists a number n such that the length of every development from t is less than or equal to n.

Proof Let $P(t/\mathcal{R})$ be the statement that there is a number n such that the length of every development from t/\mathcal{R} is less than or equal to n.

- Assume t = x for some variable x. Then we can choose n to be 0.
- Assume $t = \lambda x.t_1$. Then $\mathcal{R} = 0.\mathcal{R}_1$ for some set \mathcal{R}_1 of β -redexes in t_1 . Note in this case that each developlement from t/\mathcal{R} is of the form $0.\sigma_1$ for some development σ_1 from t_1/\mathcal{R}_1 . Hence, $P(t_1/\mathcal{R}_1)$ implies $P(t/\mathcal{R})$.

- Assume $t = t_1(t_2)$ and $\emptyset \notin \mathcal{R}$. Then $\mathcal{R} = 0.\mathcal{R}_1 \cup 1.\mathcal{R}_2$, and each development from t/\mathcal{R} can essentially be written as $0.\sigma_1 + 1.\sigma_2$, where σ_1 and σ_2 are some developments from t_1/\mathcal{R}_1 and t_2/\mathcal{R}_2 , respectively. Clearly, $P(t_1/\mathcal{R}_1)$ and $P(t_2/\mathcal{R}_2)$ implies $P(t/\mathcal{R})$ in this case.
- Assume $t = (\lambda x.t_1)(t_2)$ and $\emptyset \in \mathcal{R}$. Let σ be any development from t/\mathcal{R} . We may assume that $[\emptyset]$ appears in σ for otherwise we can simply take $\sigma + [\emptyset]$ instead. Let $\sigma = \sigma_1 + [\emptyset] + \sigma_2$. By studying the proof of Lemma 2.3.7, we see that there is a development σ' from t/\mathcal{R} that is of the form $[\emptyset] + \sigma_1' + \sigma_2$. Assume $[\emptyset] : t/\mathcal{R} \to_\beta t'/\mathcal{R}'$. Then we clearly have $P(t_1/\mathcal{R}_1)$, $P(t_2/\mathcal{R}_2)$ and $P(t'/\mathcal{R}')$ implies $P(t/\mathcal{R})$.

By Lemma 2.4.4, we have $P(t/\mathcal{R})$ for all t/\mathcal{R} . Given t, let \mathcal{R}_t be the set of all β -redexes in t. Then every development from t is a development from t/\mathcal{R}_t . Hence, we are done.

Given t/\mathcal{R} , let $\mu_0(t/\mathcal{R})$ be the maximum of $length(\sigma)$, where σ ranges over all the developments of t/\mathcal{R} . Let $\mu_0(t)$ be $\mu_0(t/\mathcal{R}_t)$, where \mathcal{R}_t is the set of all β -redexes in t. Theorem 2.4.5 simply states that $\mu_0(t) < \infty$ for all t.

Lemma 2.4.6 Assume that σ_1 and σ_2 are two complete developments from t/\mathcal{R} . Then $\sigma_1(t/\mathcal{R}) = \sigma_2(t/\mathcal{R})$.

Proof Let $P(t/\mathcal{R})$ be the statement that $\sigma_1(t/\mathcal{R}) = \sigma_2(t/\mathcal{R})$ for every pair of complete developments σ_1 and σ_2 from t/\mathcal{R} .

- Assume t = x for some variable x. Clearly, $P(t/\mathcal{R})$ holds.
- Assume $t = \lambda x.t_1$. Then $\mathcal{R} = 0.\mathcal{R}_1$ for some set β -redexes in t_1 . Clearly $P(t_1/\mathcal{R}_1)$ implies $P(t/\mathcal{R})$.
- Assume $t = t_1(t_2)$ and $\emptyset \notin \mathcal{R}$. Then $\mathcal{R} = 0.\mathcal{R}_1 \cup 1.\mathcal{R}_2$, where \mathcal{R}_1 and \mathcal{R}_2 are some sets of β -redexes in t_1 and t_2 , respectively. Clearly, $P(t_1/\mathcal{R}_1)$ and $P(t_2/\mathcal{R}_2)$ implies $P(t/\mathcal{R})$.
- Assume $t=(\lambda x.t_1)(t_2)$ and $\emptyset \in \mathcal{R}$. Let $\sigma_1=\sigma_{11}+[\emptyset]+\sigma_{12}$ and $\sigma_2=\sigma_{21}+[\emptyset]+\sigma_{22}$. By studying the proof of Lemma 2.3.7, we see that there is a complete development σ_1' from t/\mathcal{R} that is of the form $[\emptyset]+\sigma_{11}'+\sigma_{12}$, and $\sigma_1'(t)=\sigma_1(t)$. Similarly, there is a complete development σ_2' from t/\mathcal{R} that is of the form $[\emptyset]+\sigma_{21}'+\sigma_{22}$, and $\sigma_2'(t)=\sigma_2(t)$. Assume $[\emptyset]:t/\mathcal{R}\to_\beta t'/\mathcal{R}'$. Note that $\sigma_{11}'+\sigma_{12}$ and $\sigma_{21}'+\sigma_{22}$ are complete developments from t'/\mathcal{R}' . Hence, $P(t'/\mathcal{R}')$ implies $P(t/\mathcal{R})$.

By Lemma 2.4.4, we have $P(t/\mathcal{R})$ for all t/\mathcal{R} , which yields this lemma.

Lemma 2.4.7 Assume σ_1 and σ_2 are developments from t. Then there exists σ_1' and σ_2' such that $\sigma_1 + \sigma_2'$ and $\sigma_2 + \sigma_1'$ are developments from t to some term t'.

Proof Assume σ_1 and σ_2 are developments from t/\mathcal{R}_1 and t/\mathcal{R}_2 , respectively. Then σ_1 and σ_2 are also developments from t/\mathcal{R} for $\mathcal{R} = \mathcal{R}_1 \cup \mathcal{R}_2$. By Theorem 2.4.5, there exists σ_1' and σ_2' such that both $\sigma_1 + \sigma_2'$ and $\sigma_2 + \sigma_1'$ are complete developments from t/\mathcal{R} . By Lemma 2.4.6, we have

$$(\sigma_1 + \sigma_2')(t/\mathcal{R}) = (\sigma_2 + \sigma_1')(t/\mathcal{R})$$

This concludes the proof.

Definition 2.4.8 (Standard Developments) A standard development σ from t/\mathcal{R} is standard if

- 1. σ is empty, or
- 2. $\sigma = [p] + \sigma_1$ for the leftmost p in \mathcal{R} and σ_1 is a standard devlopment of $[p](t/\mathcal{R})$.

2.5 Fundamental Theorems of λ -calculus

Lemma 2.5.1 Assume that σ_1 is a development from t. For every finite β -reduction sequence σ_2 from t, there exists a development σ'_1 and a β -reduction sequence σ'_2 such that $(\sigma_1 + \sigma'_2)(t) = (\sigma_2 + \sigma'_1)(t)$.

Proof We proceed by induction on the length of σ_2 .

- $\sigma_2 = \emptyset$. Let $\sigma_1' = \sigma_1$ and $\sigma_2' = \emptyset$, and we are done.
- $\sigma_2 = \sigma_{20} + \sigma_{21}$, where σ_{20} is a nonempty development. Let σ_{10} be σ_1 . By Lemma 2.4.7, there exists two developments σ'_{10} and σ'_{20} such that $(\sigma_{10} + \sigma'_{20})(t) = (\sigma_{20} + \sigma'_{10})(t)$. By induction hypthesis on $\sigma(t)$, there exist a development σ''_{10} and a β -reduction sequence σ'_{21} such that $(\sigma'_{10} + \sigma'_{21})(\sigma_{20}(t)) = (\sigma_{21} + \sigma''_{10})(\sigma_{20}(t))$. Let $\sigma'_{1} = \sigma''_{10}$ and $\sigma'_{2} = \sigma'_{20} + \sigma'_{21}$, and we are done.

If $\sigma_2 = \sigma_{21} + \ldots + \sigma_{2n}$ for some developments $\sigma_{21}, \ldots, \sigma_{2n}$, then it is clear from the proof that σ_2' can be written in the form of $\sigma_{21}' + \ldots + \sigma_{2n}'$, where σ_{2i}' are all development for $1 \le i \le n$. In other words, if σ_2 is a concatenation of n developments, then σ_2' can also be chosen to be a concatenation of n developments.

Lemma 2.5.1 is often referred to as *Strip Lemma* for the obvious reason.

Theorem 2.5.2 (Church-Rosser) Assume that $t \equiv_{\beta} t'$, where \equiv_{β} is the minimal equivalence relation containing \rightarrow_{β} . Then there exists $\sigma_1 : t$ and $\sigma_2 : t'$ such that $\sigma_1(t) = \sigma_2(t')$.

Proof $t \equiv_{\beta} t'$ implies the existence of λ -terms t_0, t_1, \ldots, t_n for some $n \geq 1$ such that $t = t_0$ and $t' = t_n$ and for each $0 \leq i < n$, either $t_i \to_{\beta} t_{i+1}$ or $t_{i+1} \to_{\beta} t_i$ holds. We proceed by induction on t_i .

- Assume n = 1. We omit this trivial case for brevity.
- Assume n > 0. By induction hypothesis, we have σ_{11} and σ_{12} such that $\sigma_{11}(t_1) = \sigma_{12}(t_n)$.
 - Assume $[p]: t_0 \to_{\beta} t_1$ for some p. Let $\sigma_1 = [p] + \sigma_{11}$ and $\sigma_2 = \sigma_{12}$, and we are done.
 - Assume $[p]: t_1 \to_{\beta} t_0$ for some p. Clearly, [p] is a development, By Lemma 2.5.1, we have σ_{10} and σ_{20} such that

$$([p] + \sigma_{10})(t_1) = (\sigma_{11} + \sigma_{20})(t_1)$$

Let $\sigma_1 = \sigma_{10}$ and $\sigma_2 = \sigma_{12} + \sigma_{20}$, and we are done.

We conclude the induction proof as all the cases are covered.

Lemma 2.5.3 Assume $\sigma = \sigma_1 + \sigma_2$ is finite β -reduction sequence for a λ -term t, where σ_1 is a standard development and σ_2 is a standard β -reduction sequence. Then we can construct a standard (finite) β -reduction sequence σ' from t such that $\sigma(t) = \sigma'(t)$.

Proof We are to define a binary function std_2 that takes the arguments σ_1 and σ_2 and returns σ' .

Theorem 2.5.4 (Standardization)

Given a λ -term t, we use $norm_{\beta}(t)$ for the (possibly infinite) reduction sequence σ from t such that each β -reduction step in σ is leftmost and $\sigma(t)$ is in normal form σ is finite.

Theorem 2.5.5 (Normalization) Assume $\nu(t) < \infty$. Then $norm_{\beta}(t)$ is finite.

Lemma 2.5.6 Assume $\mu(u[x:=v](t_1)\dots(t_n))<\infty$ and $\mu(v)<\infty$. Then we have:

$$\mu((\lambda x.u)(v)(t_1)...(t_n)) \le 1 + \mu(u[x:=v](t_1)...(t_u)) + \mu(v)$$

Proof Let $t^* = u[x := v](t_1) \dots (t_n)$, Clearly, $\mu(t^*) < \infty$ implies that $\mu(u), \mu(t_1), \dots, \mu(t_n)$ are all finite. We proceed by induction on $\mu(u) + \mu(v) + \mu(t_1) + \dots + \mu(t_n)$. Let $t = \mu((\lambda x.u)(v)(t_1) \dots (t_n))$. Assume $[p] : t \to_{\beta} t'$, and we do a case analysis on p.

• Assume p in u. Then $t' = (\lambda x. u')(v)(t_1)...(t_n)$ for some u' such that $u \to_{\beta} u'$ holds. By induction hypothesis,

$$\mu(t') \le 1 + \mu(u'[x := v](t_1) \dots (t_u)) + \mu(v) \le \mu(t^*) + \mu(v)$$

• Assume p in v. Then $t' = (\lambda x.u)(v')(t_1)...(t_n)$ for some v' such that $v \to_{\beta} v'$ holds. By induction hypothesis,

$$\mu(t') \le 1 + \mu(u[x := v'](t_1) \dots (t_u)) + \mu(v') \le \mu(t^*) + \mu(v)$$

• Assume p in t_i for some $1 \le i \le i$. Then $t' = (\lambda x.u)(v)(t_1)...(t'_i)...(t_n)$ for some t'_i such that $t_i \to_\beta t'_i$ holds. By induction hypothesis,

$$\mu(t') \le 1 + \mu(u[x := v](t_1) \dots (t'_i) \dots (t_u)) + \mu(v) \le \mu(t^*) + \mu(v)$$

• Assume that p is the outmost β -redex $(\lambda x.u)(v)$. Then $t^* = t'$. So, $\mu(t') \leq \mu(t^*) + \mu(v)$.

So $\mu(t') \leq \mu(t^*) + \mu(v)$ for each t' such that $t \to_{\beta} t'$ holds, and this yields $\mu(t) \leq 1 + \mu(t^*) + \mu(v)$.

Definition 2.5.7 (λ_I **-terms and** β_I **-redexes)** A λ -term t_0 is a λ_I -term if for every subterm t of t_0 , t being of the form $\lambda x.t_1$ implies $x \in FV(t_1)$. Moreover, a β -redex $\lambda x.t_1(t_2)$ is a β_I -redex if $x \in FV(t_1)$.

Lemma 2.5.8 Assume that σ is a development of t/\mathcal{R} , where \mathcal{R} is a set of β_I -redexes. Then $\mu(\sigma(t)) < \infty$ implies $\mu(t) < \infty$.

Proof Let $t' = \sigma(t)$. Assume $\mu(t') < \infty$, and we proceed to prove $\mu(t) < \infty$ by induction on $\langle \mu(t'), size(t') \rangle$, lexicographically ordered.