Theta function:

Steps:

1. For all pairs (x, z) such that $0 \le x < 5$ and $0 \le z < w$, let

$$C[x,z]=A[x,0,z] \oplus A[x,1,z] \oplus A[x,2,z] \oplus A[x,3,z] \oplus A[x,4,z].$$

2. For all pairs (x, z) such that $0 \le x < 5$ and $0 \le z < w$ let

$$D[x, z]=C[(x-1) \mod 5, z] \bigoplus C[(x+1) \mod 5, (z-1) \mod w].$$

3. For all triples (x, y, z) such that $0 \le x < 5$, $0 \le y < 5$, and $0 \le z < w$, let

$$A'[x,y,z] = A[x,y,z] \oplus D[x,z].$$

Let us consider the output as the following

cf748aa5cd36e44be6659c8c35b35083f97cd7896c8403a800

Step 1:

Inversing the above bits

Step 2:

Z=0

2	1	0	0	0	0
1	0	1	0	0	1
0	1	1	1	0	0
4	0	0	0	0	1
3	1	1	1	1	0
	3	4	0	1	2

2	1	0	0	0	0
1	1	0	1	0	1
0	0	0	1	0	1
4	0	0	0	0	1
3	1	0	1	0	0
	3	4	0	1	2

Z=2

-2					
2	1	0	1	1	1
1	1	1	1	1	0
0	1	1	1	1	0
4	1	0	1	1	0
3	1	0	0	0	1
	3	4	0	1	2

Z<u>=3</u>

2	0	1	1	1	1
1	0	0	0	0	1
0	0	1	1	0	1
4	1	0	1	0	0
3	0	1	0	1	1
	3	4	0	1	2

Z<u>=4</u>

2	1	1	1	0	1
1	0	0	1	0	0
0	0	0	0	1	0
4	0	0	0	0	0
3	1	0	0	1	1
	3	4	0	1	2

Z<u>=5</u>

2	1	0	0	0	1
1	1	1	1	1	0
0	1	0	0	1	0
4	1	0	1	0	0
3	0	0	0	1	1
	3	4	0	1	2

Z	=6

2	0	1	0	0	0
1	1	1	0	1	1
0	0	1	1	1	0
4	0	0	1	0	0
3	1	0	0	1	1
	3	4	0	1	2

Z=7

2	1	0	1	1	0
1	1	0	0	1	0
0	1	1	1	0	1
4	1	0	0	1	0
3	1	1	1	1	0
	3	4	0	1	2

The below is the compression operation that has been done based on the equation 1

Y plane

7	1	0	1	0	1
6	0	1	0	1	0
5	0	1	0	1	0
4	0	1	0	0	0
3	1	1	1	0	0
2	1	0	0	0	0
1	1	0	1	0	1
0	1	1	0	1	0
	3	4	0	1	2

Xor the bits as shown in the figure:

Y plane:

7	0	1	1	1	1
6	1	0	0	0	1
5	1	0	1	0	1
4	1	1	1	0	1
3	0	1	1	1	1
2	0	0	0	1	1
1	0	1	1	1	1
0	0	0	1	1	0
	3	4	0	1	2

Z=0

2	0	0	1	1	1
1	1	1	1	1	1
0	0	1	0	1	0
4	1	0	1	1	1
3	0	1	0	0	0
	3	4	0	1	2

Z=1

2	1	0	0	0	0
1	1	0	1	0	1
0	0	0	1	0	1
4	0	0	0	0	1
3	1	0	1	0	0
	3	4	0	1	2

Z=2

2	1	1	0	1	0
1	0	0	0	1	1
0	0	0	0	1	1
4	1	1	0	1	1
3	0	1	1	0	0
	3	4	0	1	2

Z=3	

2	0	0	1	1	0
1	0	0	0	0	1
0	0	1	1	0	1
4	1	0	1	0	0
3	0	1	0	1	
	3	4	0	1	2

Z=4

2	0	1	0	0	0
1	1	0	0	0	1
0	1	0	1	1	1
4	1	0	1	0	1
3	0	1	1	1	0
	3	4	0	1	2

Z=5

2	0	0	1	0	1
1	0	1	0	1	0
0	0	1	1	1	0
4	0	0	0	0	0
3	1	0	1	1	1
	3	4	0	1	2

Z = 6

2	1	1	0	0	0
1	0	1	0	1	1
0	1	1	1	1	0
4	1	0	1	0	0
3	0	0	0	1	1
	3	4	0	1	2

<u>Z</u>=7

2	0	0	0	1	1
1	0	0	1	1	0
0	0	1	0	0	0
4	0	0	1	1	1
3	0	1	0	1	1
	3	4	0	1	2

The binary bits are obtained from the above the slices:

The inverse function is performed for the above values:

When coverting the above binary bits into hexa, we get the below result

7a751e50c983e5df1361298da1465436f8e8228dd985975d04

 $C[(x-1) \mod 5, z] = A[(x-1) \mod 5, 0, z] \oplus A[(x-1) \mod 5, 1, z] \oplus A[(x-1) \mod 5, 2, z] \oplus A[(x-1) \mod 5, 3, z] \oplus A[(x-1) \mod 5, 4, z].$

```
---- equation (1)
```

 $C \ [(x+1) \bmod 5, (z-1) \bmod 8] = A[(x+1) \bmod 5, 0, (z-1) \bmod 8] \ \bigoplus A[(x+1) \bmod 5, 1, (z-1) \bmod 8] \ \bigoplus A[(x+1) \bmod 5, 2, (z-1) \bmod 8] \ \bigoplus A[(x+1) \bmod 5, 3, (z-1) \bmod 8] \ \bigoplus A[(x+1) \bmod 5, 4, (z-1) \bmod 8].$

-----equation (2)

 $D[x, z] = C[(x-1) \mod 5, z] \oplus C[(x+1) \mod 5, (z-1) \mod w].$ ----equation (3)

Equation 1 and 2 in 3

 $\begin{aligned} \mathbf{D}[\mathbf{x}, \mathbf{z}] &= \mathrm{A}[(x\text{-}1) \bmod 5, 0, z] \oplus \mathrm{A}[(x\text{-}1) \bmod 5, 1, z] \oplus \mathrm{A}[(x\text{-}1) \bmod 5, 2, z] \oplus \mathrm{A}[(x\text{-}1) \bmod 5, 3, z] \oplus \mathrm{A}[(x\text{-}1) \bmod 5, 4, z] \oplus \mathrm{A}[(x\text{-}1) \bmod 5, 0, (z\text{-}1) \bmod 8] \oplus \mathrm{A}[(x\text{+}1) \bmod 5, 1, (z\text{-}1) \bmod 8] \\ \oplus \mathrm{A}[(x\text{+}1) \bmod 5, 2, (z\text{-}1) \bmod 8] \oplus \mathrm{A}[(x\text{+}1) \bmod 5, 3, (z\text{-}1) \bmod 8] \oplus \mathrm{A}[(x\text{+}1) \bmod 5, 4, (z\text{-}1) \bmod 8] \end{aligned}$

We know that

$$A'[x,y,z] = A[x,y,z] \oplus D[x,z] \qquad -----equation (4)$$

We were trying to get a definite relationship between A and A` but we were able to get till the the above equation