Logistic Regression Model Logistic Regression

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \cdots, (x^{(m)}, y^{(m)})\}$$

m examples

$$x \in \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix} \qquad x_0 = 1, y \in \{0, 1\}$$

$$x_0 = 1, y \in \{0, 1\}$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

How to choose parameters θ ?

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

Linear regression:
$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \frac{\left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^2}{\cosh\left(h_{\Theta}(x^{(i)}), y\right)}$

$$Cost(h_{\theta}(x^{(i)}), y^{(i)}) = \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

Zost function $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \frac{h_{\theta}(x^{(i)}) - 1}{\cos t(h_{\theta}(x^{(i)}))}$

$$\rightarrow$$
 Cost $(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} (h_{\theta}(x^{\bullet}) - y^{\bullet})^2$

$$\longrightarrow \operatorname{Cost}(h_{\theta}(x^{\otimes}), y^{\otimes}) = \frac{1}{2} \left(h_{\theta}(x^{\otimes}) - y^{\otimes} \right)^2$$

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet}\right)^{2} \leftarrow \int_{\operatorname{Convex}^{*}} J(\theta) \int_{\operatorname{Mindows'u Etkinleştir}} U(\theta) \int_{\operatorname{Mindows'$$

$$\rightarrow$$
 Linear regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{m} \int_{i=1}^{m} \frac{1}{m} \int_{i=1$

$$\longrightarrow \operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet} \right)^{2} \longleftarrow$$

Logistic

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \frac{h_{\theta}(x^{(i)}) - y^{(i)}}{2}$$

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet} \right)^{2} \longleftarrow$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

$$\operatorname{Cost}(h_{\theta}(x^{\bullet}), y^{\bullet}) = \frac{1}{2} \left(h_{\theta}(x^{\bullet}) - y^{\bullet} \right)^{2} \longleftarrow$$

Non-convexity???

- So what I would like to do is come up with a convex cost function so that the GD works well.
 - By working well we mean it finds the global minimum

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Cost}(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1 \\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(\underline{h_{\theta}(x)}, y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Cost
$$= 0$$
 if $y = 1, h_{\theta}(x) = 1$ Note that we But as $h_{\theta}(x) \to 0$ are at y=1 $Cost \to \infty$

Captures intuition that if $h_{\theta}(x) = 0$, (predict $P(y = 1|x; \theta) = 0$), but y = 1, we'll penalize learning algorithm by a very large cost.

Hence we have to arrange

□ 4)

theta's so that at this point

h(x) !=0

$$Cost(h_{\theta}(x^{(i)}, y^{(i)})) = \begin{cases} \frac{-\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$Cost(h_{\theta}(x^{(i)}, y^{(i)}) = \begin{cases} \frac{-\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Exercise

In logistic regression, the cost function for our hypothesis outputting (predicting) $h_{\theta}(x)$ on a training example that has label $y \in \{0,1\}$ is:

$$\underline{\operatorname{Cost}(h_{\theta}(x), y)} = \begin{cases} -\log h_{\theta}(x) & \text{if } y = 1\\ -\log (1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

Which of the following are true? Check all that apply.

- \bigcirc If $h_{\theta}(x) = y$, then $cost(h_{\theta}(x), y) = 0$ (for y = 0 and y = 1).
- \bigcirc If y=0 then $cost(\underline{h}_{\theta}(x), y) \rightarrow \infty$ as $\underline{h}_{\theta}(x) \rightarrow 1$
- O If y=0 then $cost(h_{\theta}(x), y) \rightarrow \infty$ as $h_{\theta}(x) \rightarrow \infty$
- O Regardless of whether y=0 or y=1, if $h_{\theta}(x) = 0.5$, then $cost(h_{\theta}(x), y) > 0$