Deep Learning and Artificial Intelligence

Practical Workshop

Day 2

22nd Jan-2025

Day 3 23rd Jan-2025

SESSION 1

T S. DR. HASAN FIRDAUS BIN MOHD ZAKI

Director for Center For Unmanned Technologies, IIUM Malaysis Years of Exp. 73

INTRODUCTION TO DEEP LEARNING

(G) 6:00PM to 7:30PM

SESSION 2

DR. AHMAD JAZLAN BIN HAJA MOHIDEEN

Associate Professor IIUM Malaysia Years of Exp. 13

PYTHON FOR DEEP LEARNING

(5) 8:00PM to 9:30PM

Day 4 24th Jan-2025

SESSION 7

T.S. DR. HASAN FIRDAUS BIN MOHD ZAKI

Director for Center For Unmanned Technologies, IIUM Malaysis Years of Exp.13

OBJECT DETECTION ON VIDEOS

(5) 6:00PM to 7:30PM

SESSION 8

DR. AHMED RIMAZ FAIZABADI

Delloyd R&D Sdn Bhd, Lead Al Specialist Years of Exp:20

USE CASE OF VIDEO ANALYTICS IN INTELLIGENT TRANSPORT SYSTEM

(5) 8:00PM to 9:30PM

SESSION 3

DR. AHMED RIMAZ FAIZABADI

Dellayd R&D Sdn Bhd, Lead AI Specialist Years of Exp:20

OPENCY

(E) 6:00PM to 7:30PM

SESSION 4

DR.ZULKIFLI BIN ZAINAL ABIDIN

Associate Professor, MCT IIUM. Years of Exp:14

INTRODUCTION TO PYTORCH (CLASSIFICATION)

(5) 8:00PM to 9:30PM

Day 5 25th Jan-2025

SESSION 9

DR. ZULKIFLI BIN ZAINAL ABIDIN

Associate Professor, MCT IIUM. Years of Exp.14

DEVELOPMENT CUSTOM OBJECT DETECTOR FOR AERIAL DRONES.

(E) 6:00PM to 7:30PM

SESSION 10

MR. YOUSEF ABD ALHATTAB

Research officer, Center For Unmanned Technologies, IIUM Malaysia Years of Exp:10 years

VIDEO SEGMENTATION APPLICATION AND EXAMPLES

(5) 8:00PM to 9:30PM

6:30PM TO 7:30PM ONLINE TEST & FEEDBACK

7:30PM TO 8:00PM VALEDICTORY SESSION

NOTE: 26th JAN IS HOLIDAY

SESSION 5

DR. MUHAMMAD AFIF BIN HUSMAN

Associate Professor IIUM Malaysia Years of Exp.15

TRANSFER LEARNING

(5) 6:00PM to 7:30PM

SESSION 6

DR. AHMAD JAZLAN BIN HAJA MOHIDEEN

Associate Professor IIUM Malaysia Years of Exp.13

INTRODUCTION TO EMBEDDED AI

(E) 8:00PM to 9:30PM

Day 6 27th Jan-2025

SESSION 11

DR. MUHAMMAD AFIF BIN HUSMAN

Associate Professor IIUM Malaysia Years of Exp.15

INTELLIGENT ANALYTICS FOR TRACKING & COUNTING MINI PROJECTS.

(C) 2:00PM to 3:30PM

SESSION 12

MR. YOUSEF ABD ALHATTAB

Research officer, Center for Unmanned Technologies, IIUM Malaysia Years of Exp.10 years

INTRODUCTION OF MLOPS

🔁 3:30PM to 5:00PM

SESSION 13

DR. ASIF AFZAL

Research professor & Luxembourg University Years of Exp:14

HOW TO COMPREHEND COMPUTER VISION RESEARCH PAPERS

(5) 5:00PM to 7:30PM

What is object detection?

Image Classification

Classification VS Detection

Neural Networks

Input

DL Model/ Network/ Architecture

Classification "Ronaldo"

Regression
Nose tip (x,y)

Object Detection

- Regression (x,y,w,h)
- Classification ("face")

Instance Segmentation

Pixel-wise Classification ("face")

Object Detection

Bounding box

x, y, w, h

Class

Car

Brief History

Brief History

First detector

Viola Jones

2001

First detector

Histogram of Oriented Gradients (2005)

Alexnet (2012)

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

AlexNet (2012)

Classification <

Detection

AlexNet (2012)

Classification

Detection

How to use AlexNet for object detection?

Alexnet (2012)

RCNN (2014)

Yolo (2016)

Yolo (2016)

Single Pass for object detection (one-stage)

Single-shot detectors

Comparison

Performance Metrics

Performance Metrics

- 1) Classification: Car or not?
- 2) Localization: How accurate is the location?

Performance Metrics

1) Car or not?

Classification mAP

2) How well is the localization

Localization IoU

Values between 0-1

Values between 0-1

Confusion Matrix

Precision

Recall

Confusion Matrix

True Positive: You predicted positive and it's true.

False Positive: You predicted positive and it's false.

False Negative: You predicted negative and it's false.

True Negative: You predicted negative and it's true.

Corresponds to not predicting a bounding box, Usually a background, so not used in metrics calculation

Precision/ Recall

Precision

Actual Positives out of the total positive predictions

Precision =

True Positives

True Positives + False Positives

Recall

Actual Positives out of all predictions

Recall =

True Positives

True Positives + False Negatives

Single class \rightarrow AP

Multi class \rightarrow mAP

Object detection

- 1.Data collection download images
- 2. Annotate using Roboflow
- 3. Generate dataset → download to google colab
- 4. Train the model using the dataset
- 5. Download the model and test on our python script

Object detection

Virtual Environment

- 1. Install anaconda & VSCode
- 2. Anaconda prompt: conda create --name ATAL python=3.8
- 3. conda activate ATAL

YOLOv11 Ultralytics

- 1. Go to https://docs.ultralytics.com/
- 2. Go to Quickstart
- 3. pip install ultralytics
- 4. Install PyTorch with GPU
- 5. Run CLI: yolo predict model=yolo11n.pt source=<source file>

Run YOLOv11 in VSCode

- 1. Select Interpreter: CTRL+SHIFT+P
- 2. Select your virtual env (e.g. "ATAL)
- 3. Go to https://docs.ultralytics.com/modes/predict/#streaming-source-for-loop
- 4. Paste the code in VSCode
- 5. Change the Source, Model and execute the code