第 3 章 f: 函数图形的描绘

数学系 梁卓滨

2019-2020 学年 I

Outline

解 先求出驻点、拐点.

解 先求出驻点、拐点.

$$y'=3x^2-2x-1$$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0$$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

47 / 大·北山沙上 + 12 上

例1 画出函数 $v = x^3 - x^2 - x + 1$ 的图形.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \Rightarrow x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \Rightarrow x = \frac{1}{3}$
然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \Rightarrow x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \Rightarrow x = \frac{1}{3}$
然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

3f 图形描绘

2/4 ⊲ ⊳ Δ ⊽

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

然后判定单调区间,凹凸区间.

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

$$y' = 3x^2 - 2x - 1 = (3x + 1)(x - 1) = 0 \implies x = -\frac{1}{3}, 1$$

 $y'' = 6x - 2 = 0 \implies x = \frac{1}{3}$

解 先求出驻点、拐点.

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

 $y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1 + x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1 + x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1 + x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1 + x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$
$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$
$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$
$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1 + x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = 2x \cdot e^{-x^2} + (1+x^2) \cdot (-2x)e^{-x^2} = -2x^3e^{-x^2} = 0 \implies x = 0$$

$$y'' = 2x^2(2x^2 - 3)e^{-x^2} = 0 \implies x = 0, \pm \sqrt{\frac{3}{2}}$$

解 先求出驻点、拐点.

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$
$$y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$$

解 先求出驻点、拐点.

$$y' = \frac{(\ln x)'x - x' \ln x}{x^2} = \frac{1 - \ln x}{x^2} = 0 \implies x = e$$

 $y'' = \frac{2 \ln x - 3}{x^3} = 0 \implies x = e^{\frac{3}{2}}$

