CLAIM AMENDMENTS

2	Listing of Claims:
3	CLAIMS
4	1. (currently amended) A method for comprising forming a pattern on a surface (10) by
5	deposition of a mixture (20) that comprises an application material of molecules, oligomers,
6	nanoparticles and a combination thereof (22) and a phase-change transfer material (24), the
7	method step of forming comprising the steps of:
8	b.) heating the mixture (20) to a melt;
9	c.) depositing the melted mixture—(21) on the surface (10) with a phase-change printing
10	technique, thereby the melted mixture (21) solidifies instantaneously when it reaches the
11	surface (10); and
12	d.) removing the transfer material (24) by sublimation.
	a., romoving the transfer material (21) by submittation.
13	2. (currently amended) The method according to claim 1, further comprising the step of a.)
14	mixing the application material $\frac{(22)}{(22)}$ with the transfer material $\frac{(24)}{(24)}$ to the mixture $\frac{(20)}{(20)}$.
	mining the approached material (22) with the transfer material (24) to the infixture (20).
15	3. (currently amended) The method according to <u>claim 1</u> any one of the preceding claims,
16	wherein the step of removing the transfer material (24) by sublimation comprises applying a
17	low pressure to and/or heating the deposited mixture (20).
18	4. (currently amended) The method according to <u>claim 1</u> any one of the preceding claims.
19	comprising repeating the steps b.) to d.) to deposit multiple layers.
20	5. (currently amended) A process for fabricating an organic light-emitting device (OLED)
21	comprising the steps of:
22	heating a composition (20) to a melt-(21), the composition (20) comprises an organic
23	material (22) and a phase-change transfer material (24);
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

1

- depositing the melted composition—(21) onto a surface —(10) by a phase-change printing
- 2 technique, thereby the melted composition (21) solidifies instantaneously when it reaches the
- 3 surface $\frac{10}{10}$; and
- 4 removing the transfer material—(24) by sublimation whereby the organic material—(22)
- 5 remains on the surface $\frac{10}{10}$.
- 6. (currently amended) A composition (20) for patterning a surface (10) comprising
- 7 an application material (22) for forming a pattern, and
- 8 a phase-change transfer material (24) that sublimates after patterning by an action, wherein
- 9 the application material-(22) comprises one of an organic material, an organic light-emitting
- device OLED material, biological molecules, nanoparticles, and a combination thereof.
- 7. (original) The composition according to claim 6 being a mixed powder.
- 8. (currently amended) The composition according to claim 6 one of the preceding claims 6 and
- 7, wherein the transfer material (24) is a solid at approximately 0°C and melts at ambient
- pressure below 200°C.
- 9. (currently amended) The composition according to claim 6 one of the preceding claims 6 and
- 8, wherein the transfer material (24) comprises cyclododecane or its derivatives.
- 17 10. (currently amended) The composition according to claim 6 one of the preceding claims 6 and
- 18 9, wherein the transfer material (24) comprises one or more components.
- 19 11. (currently amended) The method according to claim 1, claims 1 to 4 used to fabricate one of
- an organic electronic device, a monochrome and/or color display, a biological pattern, a
- biochip, a sensor, a semiconductor device, and a circuit.
- 22 12. (currently amended) A process for fabricating a field-effect transistor comprising the steps of:
- forming source and drain contacts (402) on a substrate (400);

- heating a composition (20) to a melt-(21), the composition (20) comprises an organic
- 2 material (22) and a phase-change transfer material (24);
- depositing the melted composition—(21) onto the substrate (400) with the source and drain
- 4 contacts (402) by a phase-change printing technique, thereby the melted composition (21)
- solidifies instantaneously when it reaches the substrate (400);
- 6 removing the transfer material (24) by sublimation whereby the organic material (22)
- 7 remains on the surface (10) as an organic semiconducting layer (404);
- 8 forming an insulating layer (406) on the organic semiconducting layer (404); and
- 9 forming a gate contact (408) on the insulating layer (406).
- 10 13. (currently amended) The process according to claim 12, wherein at least one of the
- source/drain contacts-(402), the insulating layer-(406), and the gate contact-(408) is created
- according to the method of claims 1 to 4:
- forming a pattern on a surface by deposition of a mixture that comprises an application
- 14 <u>material of molecules, oligomers, nanoparticles and a combination thereof and a</u>
- phase-change transfer material, the step of forming comprising the steps of:
- 16 <u>heating the mixture to a melt;</u>
- depositing the melted mixture on the surface with a phase-change printing technique,
- thereby the melted mixture solidifies instantaneously when it reaches the surface; and
- removing the transfer material by sublimation, by the phase-change printing technique.
- 20 14. (new) The process according to claim 13, wherein the step of forming further comprising
- 21 the step of a.) mixing the application material with the transfer material to the mixture.
- 22 15. (new) The process according to claim 13, wherein the step of removing the transfer
- 23 material by sublimation comprises applying a low pressure to and/or heating the deposited
- 24 mixture.
- 25 16. (new) The process according to claim 13, further comprising repeating the steps b.) to d.)
- to deposit multiple layers.

ر مر ر

- 17. (new) The method according to claim 1, wherein the step of removing the transfer material
 by sublimation comprises applying a low pressure to and/or heating the deposited mixture,
 and further comprising the steps of a.) mixing the application material with the transfer
 material to the mixture; and further comprising repeating steps b.) to d.) to deposit multiple
 layers.
- 6 18. (new) The composition according to claim 6, being a mixed powder, and wherein:
- the transfer material is a solid at approximately 0°C and melts at ambient pressure below 200°C.
- 9 the transfer material comprises cyclododecane or its derivatives, and
- the transfer material comprises a plurality of components.
- 11 19. (new) The method according to claim 4, used to fabricate one of an organic electronic 12 device, a monochrome and/or color display, a biological pattern, a biochip, a sensor, a 13 semiconductor device, and a circuit.
- 14 20. (new) The composition according to one of the preceding claim 7, wherein the transfer 15 material is a solid at approximately 0°C and melts at ambient pressure below 200°C.

Docket No.: CH920030021US1