МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-КАВКАЗСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ» ФАКУЛЬТЕТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ НАУК ИМЕНИ ПРОФЕССОРА Н.И.ЧЕРВЯКОВА

ЛАБОРАТОРНАЯ РАБОТА №19

Алгоритмизация и программирование

Множества

Выполнил студент:

Сивко Иван Андреевич студент 2 курса группа ПМИ-б-о-23-2, направление подготовки 01.03.02

Проверил:

Ассистент кафедры вычислительной математики и кибернетики, к.ф.-м.н., Черкашина Анастасия Андреевна

Вариант 9

Цель:

- Совершенствование навыков разработки программ в среде программирования MS Visual Studio
- Совершенствование навыков в программировании с использованием множеств
- Исследование процесса формирования множеств
- Исследование операций с элементами множеств

Задание 1

1 Условие:

Дан текст из строчных латинских букв, за которым следует точка. Вывести на экран все буквы входящие в текст по одному разу.

2 Алгоритм / Мат. модель

Программа анализирует строку, состоящую из строчных латинских букв, завершающуюся точкой, и выводит все уникальные символы этой строки, исключая пробелы. Для этого используется структура данных, обеспечивающая хранение уникальных элементов (в данном случае — множества). Алгоритм работает следующим образом:

1. Чтение входных данных:

Программа сначала проверяет наличие аргументов командной строки. Если они есть, строка собирается из всех переданных аргументов. В противном случае программа запрашивает строку у пользователя через стандартный ввод, ограничивая ввод точкой, чтобы исключить символы после неё.

2. Использование множества для хранения уникальных символов:

Весь текст из строки помещается в стандартное множество std::set, которое автоматически удаляет все дубликаты, оставляя только уникальные символы.

3. Фильтрация пробелов:

При выводе уникальных символов из множества проверяется, что символ не является пробелом. Это делается с помощью стандартной функции isspace.

4. Вывод результата:

Уникальные символы выводятся на экран через пробел.

5. Завершение работы программы:

После выполнения всех операций программа корректно завершает выполнение, возвращая код ${\tt EXIT_SUCCESS}$.

Название	Тип	Описание		
Переменные main				
inputStr	std::string	Строка, в которой будет храниться весь ввод поль-		
		зователя или аргументы командной строки.		
chr	char	Переменная, которая используется для итерации		
		по символам строки в процессе вывода уникаль-		
		ных символов.		

Таблица 1: Переменные, функции и структуры, используемые в программе

3 Диаграмма:

4 Код:

source code

```
#include <cstdlib>
#include <cstdint>
#include <cctype>
#include <set>
#include <limits>
#include <iostream>
int main(int32_t argc, const char** argv) {
    std::string inputStr{};
    if (argc > 1)
        for (size_t i{1}; i<argc; ++i)</pre>
            inputStr += argv[i];
    else {
        std::cout << "Введите строку: ";
        std::getline(std::cin >> std::ws, inputStr, '.');
        std::cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');
    std::cout << "Уникальные символы в строке: ";
    for (char chr : std::set<char>(inputStr.begin(), inputStr.end()))
        if (!isspace(chr))
            std::cout << chr << ', ';
    std::cout << '\n';</pre>
    return EXIT_SUCCESS;
}
```

5 Результат работы программы:

\$./a.out

ВВедите строку: Hello world

hello xd xd xd

Уникальные симВолы В строке: H d e h l o r w x

\$./a.out "Hello world"

Уникальные симВолы В строке: H d e l o r w

Задание 2

Выбрав произвольные множества A, B и C с ограничениями C++, проиллюстрировать истинность следующих свойств операций над множествами и отношений между ними (с нижним индексом в формулах используется дополнение множества до соответствующего базового типа T, т.е. Bt = T - B, где B: set of T).

1 Условие:

Выбрав произвольные множества A, B и C с ограничениями C++, проиллюстрировать истинность следующих свойств операций над множествами и отношений между ними (с нижним индексом в формулах используется дополнение множества до соответствующего базового типа T, т.е. Bt = T - B, где B: set of T).

1. $A \setminus B = A \cap B_T$;	$_{14.}(A \setminus B) \setminus C = (A \setminus C) \setminus B;$
2. $A \setminus (A \setminus B) = A \cap B$,	15. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$;
3. $B \bigcup (A \setminus B) = A \bigcup B$	16. $A \cup (B \setminus C) \supset (A \cup B) \setminus C$;
4. $B \cap (A \setminus B) = \emptyset$,	$17.(A \setminus B) \cup C \supset (A \cup C) \setminus B$
5. $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$;	$18. (A \setminus B)_T = A_T \cup (A \cap C);$
6. $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C);$	19. $A \cup (B \cup C) = (A \cup B) \cup C$;
7. <i>A</i> ∩ <i>B</i> ⊂ <i>A</i> ∪ <i>B</i> ,	$20. A \cap (B \cap C) = (A \cap B) \cap C;$
8. $A = (A \setminus B) \cup (A \cap B)$;	$21.\left(A\cap B_T\right)_T = A_T \cup B;$
9. $(A \setminus B) \cap (A \cap B) = \emptyset$	$22. (A \cup B)_T = A_T \cap B_T;$
$10.(A \setminus B) \cap B = \varnothing$	$23. (A \cap B)_T = A_T \cup B_T;$
11. $A \setminus B = A \setminus (A \cap B);$	24. $A \cap (B \setminus C) = (A \cap B) \setminus (A \cap C);$
12. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C);$	25. $A \setminus (B \cup C) = (A \setminus B) \setminus C$.
13. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C);$	

2 Алгоритм / Мат. модель

Программа выполняет операции над двумя множествами целых чисел, введёнными пользователем. После ввода данных выполняются следующие шаги:

1. Инициализация переменных:

Программа инициализирует несколько переменных:

• setA и setB — множества типа uint32_t, которые будут хранить элементы, введённые пользователем.

2. Ввод данных:

• Пользователь вводит элементы для множества setA. Ввод продолжается до тех пор, пока не будет введена пустая строка или некорректное значение.

- Ввод элементов множества setВ аналогичен.
- Для каждого введённого числа функция operator» пытается преобразовать строку в число и добавить его в соответствующее множество.
- Если ввод некорректен (например, введено нечисловое значение), программа выведет сообщение об ошибке и запросит ввод снова.

3. Операции над множествами:

- Программа выполняет операцию вычитания множества $A \setminus B$, используя перегруженный operator-. Результат выводится на экран.
- Затем выполняется операция пересечения множеств $A \cap B$ с использованием перегруженного operator&. Результат также выводится на экран.
- Далее проверяется, является ли пересечение множества $A \setminus B$ и множества $A \cap B$ пустым с использованием операции operator&. Результат выводится в виде логического значения true или false.

4. Вывод результатов:

- Программа выводит результат операции $A \setminus B$, затем результат операции $A \cap B$.
- В конце выводится результат проверки условия $(A \setminus B) \cap (A \cap B) = \emptyset$, которое возвращает логическое значение, подтверждающее или опровергающее пустоту пересечения.

Название	Тип	Описание		
Функции				
operator»()	std::istream&	Перегрузка оператора ввода для ввода множе-		
		ства. Читает числа из потока и добавляет их в		
		множество.		
operator *()	std::ostream&	Перегрузка оператора вывода для вывода множе-		
		ства в стандартный поток вывода.		
operator-()	std::set <t></t>	Перегрузка оператора вычитания для множеств,		
		возвращающая элементы первого множества, ко-		
		торые не принадлежат второму.		
operator&()	std::set <t></t>	Перегрузка оператора пересечения для множеств,		
		возвращающая элементы, общие для двух мно-		
		жеств.		
Переменные main				
setA	$std::set < uint 32_t >$	Множество для хранения элементов первого мно-		
		жества, введенного пользователем.		
setB	$std::set < uint 32_t >$	Множество для хранения элементов второго мно-		
		жества, введенного пользователем.		

Таблица 2: Переменные, функции и типы данных, используемые в программе

3 Диаграмма:

4 Код:

```
#include <cstdlib>
#include <cstdint>
#include <set>
#include <sstream>
#include <algorithm>
#include <iostream>
std::istream& operator>>(std::istream& in, std::set<uint32_t>& set) {
    std::string inputStr;
    while (true) {
        std::getline(in, inputStr);
        std::stringstream sstream(inputStr);
        if (uint32_t num; sstream >> num)
            set.insert(num);
        else if (!inputStr.empty())
            std::cout << "Wrong input, try again\n";</pre>
        else
            break;
    }
    return in;
}
template <typename T>
std::ostream& operator<<(std::ostream& out, const std::set<T>& set) {
    for (const T& el : set)
        out << el << ', ';
```

```
return out;
}
template <typename T>
std::set<T> operator-(const std::set<T>& a, const std::set<T>& b) {
    std::set<T> res;
    std::set_difference(a.begin(), a.end(), b.begin(), b.end(), std::inserter(res, res.end
    return res;
}
template <typename T>
std::set<T> operator&(const std::set<T>& a, const std::set<T>& b) {
    std::set<T> res;
    std::set_intersection(a.begin(), a.end(), b.begin(), b.end(), std::inserter(res, res.e
    return res;
}
int main() {
    std::set<uint32_t> setA, setB;
    std::cout << "Enter set A: ";</pre>
    std::cin >> setA;
    std::cout << "Enter set B: ";</pre>
    std::cin >> setB;
    std::cout << "A - B: " << (setA - setB) << '\n'
        << "A & B: " << (setA & setB) << '\n'
        << "(A \\ B) & (A & B)=={}: "
        << std::boolalpha << (((setA - setB) & (setA & setB)) == std::set<uint32_t>{}) <<
    return EXIT_SUCCESS;
}
source code
   Результат работы программы:
```

```
$ ./a.out
Enter set A: 1
2
Enter set B: 2
3
A - B: 1
A & B: 2
(A \ B) & (A & B)=={}: true
```