Математическая Статистика

8 марта 2014 г.

Глава 1

Основы

1.1 Методы оценок характеристик распределения наблюдаемых случайных величин

 x_1, \ldots, x_n — независимые одинаково распределённые случайные величины с неизвестной функцией распределения F. Логично, что вероятность выпадения каждого x_k (вероятность того, что наугад взятый из выборки x будет равен x_k) одинакова

$$P(x = x_k) = \frac{1}{n}$$

Цель — найти F или сказать что-то о её свойствах.

1.1.1 Эмпирическая функция наблюдения

Определение 1.1.1. Эмпирической (выборочной) функцией распределения, построенной по выборке x_1, \ldots, x_n называется функция

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теорема 1.1.1. Неизвестная функция распределения F(x) может быть сколь угодно точно восстановлена по выборке достаточно большого объема [1, стр. 25].

$$\mathbb{P}\left(F_n\left(x\right) \xrightarrow[n \to \infty]{} F\left(x\right)\right) = 1$$

Доказательство. Вспомним, чему равна эмперическая функция распределения

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Заметим, что индикаторы $1 (x_k \leq x)$ являются независимыми одинаково распределёнными случайными величинами, а функция распределения F(x) можно записать следующим образом

$$F(x) = \mathbb{P}\left\{x_1 \le x\right\} = M\mathbb{1}\left(x_1 \le x\right)$$

4 Глава 1. Основы

Так как эмпирическая функция распределения является средним арифметическим индикаторов, то по усиленному закону больших чисел она сходится к неизвестной функции распределения почти новерное при устремлении длины выборки к бесконечности

$$F_{n}(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}\left(x_{k} \leq x\right) \xrightarrow[n \to \infty]{a.s.} M\mathbb{1}\left(x_{1}\right) = F\left(x\right)$$

$$\Rightarrow F_{n}(x) \xrightarrow[n \to \infty]{a.s.} F\left(x\right)$$

1.1.2 Гистограмма

Как можно попытаться отследить плотность распределения? Постараемся найти функцию распределения, а потом и плотность.

Допустим, F имеет хорошую (непрерывную) плотность. Как тогда из F получить p?

Мы знаем, что F'=p, но это никому не нужно, так как F'_n — производная ступенчатой функции, которая почти везде будет равна нулю.

Но также мы помним, что

$$F(b) - F(a) = \int_{a}^{b} p(x) dx$$

Тогда, положив a=x, взяв некую Δ , и постановив $b=x+\Delta$, получаем следующее

$$F(x + \Delta) - F(x) = \int_{-\infty}^{x+\Delta} p(y) dy$$

Делим обе части на Δ и при достаточно малых его значениях получаем

$$\frac{1}{\Delta} \cdot \int_{x}^{x+\Delta} p(y) \, dy = \frac{F(x+\Delta) - F(x)}{\Delta} \approx \frac{dF(x)}{dx} = p(x)$$

Значит, можем заменить p(x) не производной, а такой разностью.

$$p(x) \approx \frac{F(x + \Delta) - F(x)}{\Delta}$$

Возьмём выборку из m случайных величин в порядке возрастания a_1,\dots,a_m , обозначим отрезки $I_j=[a_{j-1},a_j]$ и введём функцию $q\left(y\right)$

$$q(y) = \sum_{j=1}^{m} \frac{F(a_j) - F(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1}(y \in I_j)$$

Теперь введём последовательность функций $q_n(y)$ и видим, что она сходится к $q_n(y)$ почти наверное согласно закону больших чисел, а та в свою

очередь имеет сходимость порядка $\frac{1}{n}$ к плотности распределения $p\left(y\right)$

$$q_n(y) = \sum_{j=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1}(y \in I_j)$$
(1.1)

Отметим, что q_n сходится к q почти наверное, а q в свою очередь сходится к p

$$q_n\left(y\right) \xrightarrow[n \to \infty]{a.s.} q\left(y\right) \xrightarrow[m \to \infty]{} p\left(y\right)$$

Функция q_n называется **гистограммой**.

Избавимся от a_{j} в формуле, а для этого вспомним, чему равно $F_{n}\left(x\right)$

$$F_n(x) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1}(x_k \le x)$$

Теперь посмотрим, чему равна разность $F_n\left(a_j\right) - F_n\left(a_{j-1}\right)$, которая, как мы видим, является вероятностью того, что x попало в отрезок I_j

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_j) - \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \le a_{j-1})$$

Сгруппируем слагаемые и получим чуть более компактную запись разности

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \left[\mathbb{1} \left(x_k \le a_j \right) - \mathbb{1} \left(x_k \le a_{j-1} \right) \right]$$
 (1.2)

Рассмотрим возможные значения индикаторов

Если оба индикатора равны единице, это значит, что x_k не больше a_j и не больше a_{j-1} . Поскольку $a_{j-1} \le a_j$, то можно обойтись тем, что $x \le a_{j-1}$

$$\begin{cases} \mathbb{1} (x_k \le a_j) = 1 \\ \mathbb{1} (x_k \le a_{j-1}) = 1 \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases} \Rightarrow x_k \le a_{j-1} \le a_j \Rightarrow x_k \le a_{j-1}$$

Такая ситуация, что x больше, чем a_j , но не больше, чем a_{j-1} , невозможна, так как a_{j-1} не больше, чем a_j , а признать возможной такое положение дел $(a_j < x_k \le a_{j-1})$ означало бы то, что $a_j < a_{j-1}$

$$\begin{cases} 1 (x_k \le a_j) = 0 \\ 1 (x_k \le a_{j-1}) = 1 \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases} \Rightarrow \begin{cases} a_j < x_k \le a_{j-1} \\ a_{j-1} \le a_j \end{cases}$$

Если оба индикатора равны нулю, то это значит, что x строго больше как a_j , так и a_{j-1} . Опять же, поскольку $a_{j-1} \le a_j$, то достаточно сказать, что $x > a_j$.

$$\begin{cases} \mathbbm{1} \left(x_k \leq a_j \right) = 0 \\ \mathbbm{1} \left(x_k \leq a_{j-1} \right) = 0 \end{cases} \Rightarrow \begin{cases} x_k > a_j \\ x_k > a_{j-1} \\ a_j \geq a_{j-1} \end{cases} \Rightarrow x_k > a_j \geq a_{j-1} \Rightarrow x_k > a_j$$

б Глава 1. Основы

Если же x больше, чем a_{j-1} , но не больше, чем a_j , то x попадает в полуинтервал $(a_{j-1},a_j]$

$$\begin{cases} 1 (x_k \le a_j) = 1 \\ 1 (x_k \le a_{j-1}) = 0 \end{cases} \Rightarrow \begin{cases} x_k \le a_j \\ x_k > a_{j-1} \\ a_j \ge a_{j-1} \end{cases} \Rightarrow a_{j-1} < x_k \le a_j$$

Вспомним формулу (1.2)

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^{n} \left[\mathbb{1} \left(x_k \le a_j \right) - \mathbb{1} \left(x_k \le a_{j-1} \right) \right]$$

Очевидно, что нас интересуют те пары, разность которых не равна нулю. Это значит, что те случаи, когда $x>a_j$ или $x\leq a_{j-1}$, нас не интересуют. Поскольку такой случай, что $a_j< x\leq a_{j-1}$ невозможен, то его тоже отбросим. Значит, остался только тот вариант, когда x попадает в полуинтервал $(a_{j-1},a_j]$

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \left[\mathbb{1} \left(x_k \le a_j \right) - \mathbb{1} \left(x_k \le a_{j-1} \right) \right] = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} \left(x_k \in (a_{j-1}, a_j] \right)$$

Пренебрегаем тем, что у нас полуинтервал, и будем считать, что вероятность попадения x чётко на границу интервала пренебрежимо мала и заменим индикатор на более удобный.

$$\frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in (a_{j-1}, a_j]) = \frac{1}{n} \cdot \sum_{k=1}^{n} \mathbb{1} (x_k \in I_j)$$

Получаем компактную запись для разности функций распределения

$$F_n(a_j) - F_n(a_{j-1}) = \frac{1}{n} \cdot \sum_{k=1}^n \mathbb{1}(x_k \in I_j)$$
 (1.3)

Вернёмся к уравнению (1.1)

$$q_n(y) = \sum_{i=1}^{m} \frac{F_n(a_j) - F_n(a_{j-1})}{a_j - a_{j-1}} \cdot \mathbb{1}(y \in I_j)$$

Воспользовавшись тем, что (a_j-a_{j-1}) — длина отрезка I_j , а разность $F_n\left(a_j\right)-F_n\left(a_{j-1}\right)$ была только что компактизирована, получаем такую формулу

$$q_n\left(y\right) = \sum_{j=1}^{m} \frac{1}{n} \sum_{k=1}^{n} \mathbb{1}\left(x_k \in I_j\right) \cdot \frac{1}{|I_j|} \cdot \mathbb{1}\left(y \in I_j\right)$$

Упростим формулу. Введём функцию $\nu_j(x)$ [1, стр. 68], которая считает количество элементов выборки x_1,\ldots,x_n , попавших в интервал I_j . Это будет сумма индикаторов того, что элемент x_k попал в интервал I_j

$$\nu_{j}(X) = \sum_{x \in X} \mathbb{1}(x \in I_{j}) = \sum_{k=1}^{n} \mathbb{1}(x_{k} \in I_{j})$$

Поскольку $\mathbb{1}(y \in I_j)$ зависит от j и не зависит от k, то его можно перенести во внешнюю сумму. Получаем следующую формулу

$$q_{n}\left(y\right) = \sum_{j=1}^{m} \frac{\mathbb{1}\left(y \in I_{j}\right)}{n \cdot |I_{j}|} \cdot \nu_{j}\left(X\right)$$

У этой суммы только один ненулевой элемент, так как y может попасть только в один отрезок (пренебрегаем возможностью его попадения на границу между двумя отрезками). Тогда обозначим номер отрезка, в который попал y, как k, а функцию $q_n\left(y\right)$ как q_n^k

$$q_n^k = \frac{\nu_k\left(X\right)}{n \cdot |I_k|} \tag{1.4}$$

Что мы тут видим? Теперь k — номер "столбика" гистограммы (номер интересующего нас отрезка — номер отрезка, в который попал y).

"Высота" столбика (значение функции на определённом отрезке) пропорциональна количеству элементов, попавших в этот отрезок (что логично). Кроме того, происходит деление на общее количество элементов, которое возникло, чтобы q(y) сходилось к p(y).

Делителю же $|I_k|$ отведена особая роль — он предотвращает искажение гистограммы при различных длинах отрезков. Получается, что, чем длиннее отрезок, тем ниже столбик, так как элементы более "размазаны" по отрезку — тоже логично.

Если рассматривать значение функции как высоту прямоугольника, а длину отрезка как его ширину (графически это так и изображается), то оказывается, что отношение количества элементов, попавших в отрезок, к количеству всех элементов выборки (вероятность того, что случайно взятый элемент из выборки попадёт в k-ый отрезок $[1, \, \text{стр. } 24]$) яется площадью прямоугольника

$$S_k = \frac{\nu_k(X)}{n} = \mathbb{P}_n(x \in I_k)$$

Введём замену в формуле (1.4) и умножим обе части на длину отрезка

$$\mathbb{P}_n \left(x \in I_k \right) = q_n^k \cdot |I_k|$$

Если устремить количество отрезков к бесконечности $(m \to \infty)$, то каждый отрезок будет сжиматься в точку. При этом вероятность попадения x в отрезок будет стремиться к вероятности попадения x в точку y. Введём обозначения $|I_j| = \delta$, $I_j = \Delta_y$

$$\mathbb{P}_{n}\left(x=y\right) \approx \mathbb{P}_{n}\left(x \in \Delta_{y}\right) = q_{n}\left(y\right) \cdot \delta, m \to \infty$$

Очень напоминает ситуацию с плотностью распределения непрерывной случайной величины ξ

$$\mathbb{P}\left(\xi = x\right) \approx p\left(x\right) \cdot \delta, \delta \to 0$$

Нужно отметить, что количество элементов выборки должно стремиться к бесконечности $(n \to \infty)$, так как плотность может быть лишь у непрерывных случайных величин. Чем больше будет элементов, тем плотнее они будут стоять на числовой прямой.

8 Глава 1. Основы

1.1.3 Оценка неизвестных параметров

Снова у нас есть x_1, \ldots, x_n — выборка из распределения F_{θ} , где θ — неизвестный параметр из множества Θ

Пример 1.1.1. Имеем нормальное распределение с известным СКО $\sigma=1$ и неизвестным математическим ожиданием a-N(a,1). Тогда $\theta-$ математическое ожидание a

Пример 1.1.2. Есть нормальное распределение, в котором неизвестны оба параметра. Тогда θ будет парой (a, σ)

Главный вопрос — определение основных параметров распределения выборки.

Определение 1.1.2. Функцию от выборки, значение которой заменяет неизвестный параметр, назвают оценкой

Пример 1.1.3. Предположим, что выборка сделана из распределения Бернулли, то есть $\{x_i\}$ — набор одинаково распределённых случайных величин, причём

$$x_i = \begin{cases} 1, & p \\ 0, & 1-p \end{cases}$$

Tогда неизвестный параметр— величина p (вероятность удачного эксперимента)

$$\theta = p \in [0;1] = \Theta$$

Введём разные оценки р

$$\hat{p}_1 = \frac{1}{n} \sum_{k=1}^n x_k$$

$$\hat{p}_2 = x_1$$

$$\hat{p}_3 = \frac{2}{n} \sum_{k=1}^{\lfloor \frac{n}{2} \rfloor} x_k$$

Замечание: Поскольку \hat{p} — случайная величина, то может оказаться, что она не равна настоящему параметру p

$$\mathbb{P}\left\{\hat{p}=p\right\}=0$$

- 1. Возникает мысль о том, что разность $\hat{p}-p$ должна быть "маленькой". Например, чтобы $M\left(\hat{p}-p\right)^2$ было самое маленькое из возможных.
- 2. Также логично желать того, чтобы оценка \hat{p} сходилась к истинному значению параметра p по вероятности $(\hat{p} \xrightarrow[n \to \infty]{\mathbb{P}} p)$ или почти всюду $(\hat{p} \xrightarrow[n \to \infty]{a.s.} p)$

- 1.1. Методы оценок характеристик распределения наблюдаемых случайных величин9
 - 3. При многократном повторении эксперимента даже самая (на первый взгляд) плохая оценка может оказаться полезной

$$M\hat{p_1} \approx p$$

 $M\hat{p_2} \approx p$
 $M\hat{p_3} \approx p$

Например, если целый год каждый день дают набор чисел, а статистик считает значение параметра p с помощью оценки \hat{p} , то в среднем за год у него получится величина, близкая к истинному p.

Определение 1.1.3 (Состоятельная оценка). Оценка $\hat{\theta}$ называется состоятельной, если стремится к истинному значению θ по вероятности

$$\hat{\theta} \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$

Определение 1.1.4 (Сильно состоятельная оценка). Оценка $\hat{\theta}$ называется сильно состоятельной, если стремится к истинному значению θ почти наверное

$$\hat{\theta} \xrightarrow[n \to \infty]{a.s.} \theta$$

10 Глава 1. Основы

Литература

[1] Боровков А. А. Математическая статистика. Санкт-Петербург: Лань, 2010. 705 с.

12 Литература

Оглавление

1	Основы			3
	1.1	Метод	Mетоды оценок характеристик распределения наблюдаемых -	
		случайных величин		3
		1.1.1	Эмпирическая функция наблюдения	3
		1.1.2	Гистограмма	4
		1.1.3	Оценка неизвестных параметров	8