Aerospace Math Appendix

Autonomous UAV Networks - Digital Green v2.3

1. International Standard Atmosphere (ISA)

The simulator applies ISA standards for air density and temperature to preserve aerodynamic accuracy. Temperature and pressure variations with altitude are governed by:

```
T(h) = T + L \cdot h
p(h) = p \cdot (T/T)^{-g/(R \cdot L)}
(h) = p/(R \cdot T)
Where:
• T = 288.15 K, p = 101325 Pa
• L = -0.0065 K/m (lapse rate)
• R = 287.058 J/(kg·K), g = 9.80665 m/s<sup>2</sup>
```

2. Aerodynamic Power Model

Total propulsion power combines induced, parasite, and climb components:

```
\begin{split} &P\_total = P\_induced + P\_parasite + P\_climb \\ &P\_induced = (2 \cdot W^2)/( & \cdot e \cdot AR \cdot & \cdot S \cdot V) \\ &P\_parasite = \frac{1}{2} \cdot & \cdot S \cdot C\_D0 \cdot V^3 \\ &P\_climb = W \cdot V \cdot sin( & ) \\ &Parameters: \\ &\bullet W = m \cdot g \text{ (weight)} \end{split}
```

- e = Oswald efficiency
- AR = Aspect ratio
- C_D0 = Zero lift drag coefficient
- = Air density at altitude

3. Electrical and Battery Model

```
Electrical power draw is corrected for propeller and motor efficiencies: P_elec = P_total / ( _prop· _motor)

Battery discharge follows: E_Wh = P_elec· t / 3600

SoC = E_remaining / E_nominal
```

4. Flight Kinematics

UAV motion follows 3 DOF planar plus altitude kinematics with stall and climb constraints:

```
_{\{t+1\}} = _{t} +  (limited by turn rate)
V = clamp(V_cmd, 1.05·V_stall, V_max)
h_{\{t+1\}} = h_t + V \cdot \sin( )· t
```

5. RF Propagation (Two Ray + Rician)

Signal gain combines Free Space Path Loss (FSPL) with ground reflection via Two Ray modeling:

 $FSPL(dB) = 32.44 + 20 \cdot log$ (f_GHz·1000) + 20 \cdot log (d_km)

 $E_{tot} = E + \cdot E$

Rician fading introduces a deterministic LOS component (K, dB) with random multipath scattering, yielding gain scaling by $|g|^2$, where $g = s + n_l l + j \cdot n_l Q$.

6. LTE MCS and MAC Throughput

Effective data rate derives from Shannon or LTE MCS interpolation:

 $C = B \cdot log (1 + SINR) \cdot K_MAC \cdot _PHY$

TDMA, NOMA, and RSMA adjust throughput via time, power, and rate splitting factors respectively.

7. Graph Flow Algorithm

A directed graph G(V,E) models link capacities between UAVs. A "widest path" heuristic estimates aggregate throughput from sources to sinks, updating residual capacities iteratively (akin to Ford–Fulkerson) for network realism.

© 2025 - Aerospace Accurate Autonomous UAV Networks v2.3