If you think your random effects looks too sparse when settling on a model that converges, you could try dropping one effect term entirely and then simplifying the other:

```
(1 + Factor 1*Factor 2| Participant) + (1 + Factor 1*Factor 2| Item)
(1 + Factor 1+Factor 2| Participant)
(1 + Factor 1| Participant)
(1 + Factor 2| Participant)
```

You want to avoid random effects with just random intercepts (i.e., no slopes) as that can inflate the Type I error rate (Barr et al., 2013).

A few other LMM things...

- You can add participant and item covariates as fixed effects, and you can have a variety of continuous and categorical variables in your LMM. LMMs are very flexible.
- You'll find that sometimes several models fit your data always run likelihood comparison tests to determine which is the best fit. If you have a selection where not one is statistically better than the others, choose the model that makes most *theoretical* sense.