Problem Set 1: Sets and Categories

cheer#9469

July 14, 2021

1 Naive Set Theory

Proof. Let's consider three requirements for \sim :

- reflexivity: $\forall a \in \mathbb{R}$, we have $a a = 0 \in \mathbb{Z}$, then $a \sim a$.
- symmetry: $\forall a, b \in \mathbb{R}$, if $a \sim b$, that if $a b \in \mathbb{Z}$, then $b a \in \mathbb{Z}$, that is $b \sim a$.
- transitivity: $\forall a, b, c \in \mathbb{R}$, if $a \sim b$ and $b \sim c$, we have $a c = (a b) (b c) \in \mathbb{Z}$, that is $a \sim c$.

 \mathbb{R}/\sim contains equivalence classes which has same fraction.

Proof. Let's consider \approx :

- reflexivity: $\forall (a_1, a_2) \in \mathbb{R} \times \mathbb{R}$, we have $a_1 a_1 = 0 \in \mathbb{Z}$ and $a_2 a_2 = 0 \in \mathbb{Z}$, then $a \approx a$.
- symmetry: $\forall (a_1, a_2), (b_1, b_2) \in \mathbb{R} \times \mathbb{R}$, if $(a_1, a_2) \approx (b_1, b_2)$, that it $b_1 a_1 \in \mathbb{Z}$ and $b_2 a_2 \in \mathbb{Z}$, then $a_1 b_1 \in \mathbb{Z}$ and $a_2 b_2 \in \mathbb{Z}$, that is $b \approx a$.
- transitivity: $\forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in \mathbb{R} \times \mathbb{R}$, if $(a_1, a_2) \approx (b_1, b_2)$ and $(b_1, b_2) \approx (c_1, c_2)$, we can show that $c1 a1 = (c1 b1) (b1 a1) \in \mathbb{Z}$ and $c2 a2 = (c2 b2) (b2 a2) \in \mathbb{Z}$, that is $a \approx c$.

if we split a 2D plane into consecutive 1×1 squares that align with x and y axis, $\mathbb{R} \times \mathbb{R} / \approx$ contains equivalence classes which has same relative position within the square.

2 Functions on Sets

- **2.1** By corollary 2.2, function f is a bijection iff it has a two sided inverse, that is $f \circ g = 1$ and $g \circ f = 1$, and this tells us g has a two sided inverse at the same time, thus g is a bijection by this corollary. Suppose we can compose two bijection as $f \circ g$, we know that $(f \circ g) \circ (g^{-1} \circ f^{-1}) = 1$ and $(g^{-1} \circ f^{-1}) \circ (f \circ g) = 1$, so their composition is also a bijection.
- **2.2** Support we have bijection $f: A' \mapsto A''$ and $g: B' \mapsto B''$, and consider $h: A' \cup B' \mapsto A'' \cup B''$:

$$h(x) = \begin{cases} f(x) & \text{if } x \in A' \\ g(x) & \text{if } x \in B' \end{cases}$$

It has a two sided inverse:

$$h^{-1}(y) = \begin{cases} f^{-1}(y) & \text{if } y \in A'' \\ g^{-1}(y) & \text{if } y \in B'' \end{cases}$$

So $A' \cup B' \cong A'' \cup B''$.

We choose copys of original set such that they are disjoint, which fulfills the condition, so disjoint unions are isomorphic.

3 Categories

3.1

• Identity: $Hom_{C^{op}}(A, A) = Hom_C(A, A)$

• Compose:

$$Hom_{C^{op}}(A,B) \circ Hom_{C^{op}}(B,C) := Hom_{C}(C,B) \circ Hom_{C}(B,A) = Hom_{C}(C,A) = Hom_{C^{op}}(A,C)$$

• Associativity:

$$(Hom_{C^{op}}(A,B)\circ Hom_{C^{op}}(B,C))\circ Hom_{C^{op}}(C,D) = Hom_{C^{op}}(A,C)\circ Hom_{C^{op}}(C,D) = Hom_{C^{op}}(A,D)$$

$$Hom_{C^{op}}(A,B)\circ (Hom_{C^{op}}(B,C)\circ Hom_{C^{op}}(C,D)) = Hom_{C^{op}}(A,B)\circ Hom_{C^{op}}(B,D) = Hom_{C^{op}}(A,D)$$

• Identify in compose:

$$Hom_{C^{op}}(A,A) \circ Hom_{C^{op}}(A,B) = Hom_{C}(B,A) \circ Hom_{C}(A,A) = Hom_{C}(B,A) = Hom_{C^{op}}(A,B)$$
$$Hom_{C^{op}}(A,B) \circ Hom_{C^{op}}(B,B) = Hom_{C}(B,B) \circ Hom_{C}(B,A) = Hom_{C}(B,A) = Hom_{C^{op}}(A,B)$$

• Different morphism for difference objects.

3.2

• Identity: Identify Matrix $N \times N$

• Compose: Matrix multiplication.

• Associativity: Linear tranformation is associative.

• Identify in compose: Multiply by identity matrix.

• Different morphism for difference objects.

But can't see how to deal with 0-order...

3.3 Example 3.9

• $Obj(C^{A,B}) = diagrams$

• morphisms

are commutative diagrams

Example 3.10

• $Obj(C^{\alpha,\beta}) = commutative diagrams$

• morphisms

4 Morphisms

Proof. \forall morphisms b' and b'', if $b' \circ f = b'' \circ \circ f$, compose both side with its right-inverse, that is $b' \circ f \circ f_{right}^{-1} = b'' \circ f \circ f_{right}^{-1}$, then b' = b'', so f is an epimorphism.

In the category defined by \leq on \mathbb{Z} , every morphism is an epimorphism, but it doesn't have any right-inverse, they just don't exist.

5 Universal Properties

5.1 Products are universal properties, they are initial objects of category thus should be isomorphic.

5.2

For every set Z and morphisms

there exist a unique morphism $\sigma: Z \longrightarrow A \times B \times C$ such that the diagram

commutes.

This is 5.4 Products from Aluffi.

We do it again and get what we want:

 σ' for $A\times(B\times C)$ can be constructed in a similiar way.

 $(A \times B) \times C$ and $A \times (B \times C)$ are both final objects, thus they are isomorphic.