UGANDA ADVANCED CERTIFICATE OF EDUCATION

PRE-UNEB TEST1 2024

PURE MATHEMATICS

PAPER 1

3 HOURS

INSTRUCTIONS.

Attempt all questions from section A and any five from section B

SECTION A

- 1. Express $5\sin^2 x 3\cos x \sin x + \cos^2 x$ in the form of $a + b\cos(2x B)$
- 2. Given that points P (3, 4, 6) and Q (5, 7, 4). Find the coordinates of C such that it divides the line PQ in the ratio of 3:4 (a) internally (b) externally
- 3. Given that A (-3, 0) and B (3, 0) are fixed points. Show that the locus of P (x, y) which moves such that PB = 2PA is a circle and find its radius and centre.
- 4. Solve the inequality $\frac{x-2}{x+1} \le \frac{x+1}{x+3}$
- 5. Evaluate $\int \frac{dx}{1+\cos x}$ b) $\int 3x^2 e^x dx$
- 6. The sum of the height and radius of a right circular cone is 9cm. show that the maximum volume of the cone is $36\pi cm^2$
- 7. Prove by induction that $8^n 7n + 6$ is divisible by 7 for all $n \ge 1$.
- 8. Solve the differential equation $\frac{dy}{dx} + 2ycotx = cosec^2x$

SECTION B

Attempt any five questions from this section

- 9. Express $f(x) = \frac{x^3 x^2 3x + 5}{(x 1)(x^2 1)}$ as a partial fraction and hence show $\int_0^2 f(x) dx = \frac{1}{2} In 27$ (12 marks)
- 10. The parametric equations $x = \frac{1+t}{1-t}$ and $y = \frac{2t^2}{1-t}$ represent a curve.

- a). Find the Cartesian equation of the curve
- b). Determine the turning points of the curve and their nature.
- c). State the asymptotes and intercepts of the curve
- d). Hence sketch the curve. (12 marks)
- 11. (a) Find the equation of the plane passing through the points A
- (2, 5, 6) B (1, 7, 4) and C (1, 9, 13) (04 marks) b) Find the angle between the plane above and the line $\frac{x-4}{3} = \frac{2-y}{5} = \frac{y-4}{5}$

 $\frac{z-6}{2} \qquad (03 \text{ marks})$

- c) Show that the lines $r = (-2i + 5j 11k) + \mu(3i + j + 3k)andr = (8i + 9j) + t(4i + 2j + 5k)$ intersect hence find the position vector of their point of intersection. (05 marks)
 - 12. (a) Solve the differential equation; $x^2 \frac{dy}{dx} = x^2 + y^2 + xy$

(4 marks)

- (b) The rate of cooling of a body in air is said to be proportional to the difference between the temperature, θ of the body and temperature θ_0 of air. If the temperature of air is kept constant at $20^{\circ}C$ and the body cools from $100^{\circ}C$ to $60^{\circ}C$ in 20 minutes. In what time will the body cool to $30^{\circ}C$ (08marks)
- 13. Prove that the chord P(ap², 2ap) and Q(aq², 2aq) on the parabola $y^2 = 4ax$ has the equation (p + q)y = 2x + 2apq (05 marks)
- b) Show that the if the chord above makes a right angle at the origin show that pq = -4
- c) Show that the locus of the midpoint of PQ is $y^2 = 2a(x 4a)$ (07 marks)
- 14. Given that x and y are real values such that $xz + yz^- = 7i + 2$, where z = 2 + i, find the modulus of x + yi (04 marks)
- b) Using Demovres theorem, prove that $16sin^5\theta = sin5\theta 5sin3\theta + 10sin\theta$ (04 marks)
- c) Find the locus of Z which moves such that |z 3i| = 3|z + 2| (04)

15. a) Determine the maximum point of the expression 6sinx - 3cosx (03marks)

b) Prove that
$$\frac{\cos 11^0 + \sin 11^0}{\cos 11^0 - \sin 11^0} = \tan 56^0$$
 (03marks)

- c) In a triangle ABC, prove that cos2A + cos2B + cos2C = -1 4cosAcosBcosC (06 marks)
- 16. a) The second, fourth and eighth terms of an AP are in GP. If the sum of the third and the fifth term is 20. Find the first four terms of the progression. (05 marks)
- b) Expand $\sqrt{\frac{1+5x}{1-5x}}$ as far as the term including x^3 . taking the first three terms, evaluate $\sqrt{14}$ to 3sfs (07 marks)

kadowebenon@gmail.com

PRE-UNEB PURE MATHS GUIDE 2024

	PRE-UNEB PURE MATHS GUIDE 2024						
NUMBER	SOLUTIONS						
1.	$Let 5sin^2x - 3cosxsinx + cos^2x = A$						
	$A = \frac{5}{2}(1 - \cos 2x) + \frac{1}{2}(1 + \cos 2x) - \frac{3}{2}\sin 2x$						
	$= 3 - (2\cos 2x + 1.5\sin 2x)^{2}$						
	$3 - (2\cos 2x + 1.5\sin 2x) \equiv 3 - R\cos(2x - B)$						
	$= 3 - (R\cos 2x \cos B + R\sin 2x \sin B)$						
	By comparison,						
	2 = RcosB and $1.5 = RsinB$						
	$R = \sqrt{2^2 + 1.5^2} = 2.5$						
	$B = \tan^{-1} \frac{1.5}{2}$						
	<u>L</u>						
	B = 36.87						
	$A = 3 - 2.5\cos(2x - 36.87)$						
2.	a) $\mathbf{OC} = \frac{4\binom{3}{4} + 3\binom{5}{7}}{4+3}$						
	a) $\mathbf{OC} = \frac{\sqrt{67} - \sqrt{47}}{4+3}$						
	10 = 1						
	$=\frac{1}{7}\left(\frac{37}{36}\right)$						
	(36)						
	$= \frac{1}{7} \binom{27}{37}$ The coordinates of $C\left(\frac{27}{7}, \frac{37}{7}, \frac{36}{7}\right)$						
	b) $\mathbf{OC} = \frac{-4 \binom{3}{4} + 3 \binom{5}{7}}{-4+3}$						
	b) $C = \frac{1}{-4+3}$						
	$-\begin{pmatrix} -3 \\ -5 \end{pmatrix}$						
	$-\begin{pmatrix} 3\\12 \end{pmatrix}$						
	The coordinates of $C(-3, -5, 12)$						
3.	$\sqrt{(x-3)^2 + (y-0)^2} = 2\sqrt{(x+3)^2 + (y-0)^2}$						
	$x^2 - 6x + 9 + y^2 = 4(x^2 + 6x + 9 + y^2)$						
	$x^2 + y^2 + 10x + 27 = 0$ is a circle						
	By comparison with the general equation of the circle						
	2g = 10,						
	g = 5						
	f = 0						
	The centre is (-5, 0)						

	$Radius = \sqrt{25 - 3}$						
	$Radius = \sqrt{22}units$						
4.			<i>x</i> –	2	x+1		
	$\frac{\frac{x-2}{x+1} - \frac{x+1}{x+3} \le 0}{\frac{-x-7}{(x+1)(x+3)} \le 0}$						
		-x-7					
			$(x \dashv$	- 1)($(x + 3)^{-3}$		
	For critical values,						
	x = -7, x = -3, x = -1						
	Table of	1	.			1 . 4	İ
			-7 < x <	-3	-3 < x < -1	x > -1	
	-x-7		-		_	-	
	x+1	-	-		_	+	
	x+3	+	-		+	+	
	Net		_		+	_	
	sign	l wired rand	 ao is	v <	-3 and $x > -1$		
5.	-) (1 1	$\int \frac{dx}{dx}$	<i>λ</i> <u>></u>	-3 and $x \ge -1$		
0.	a) J -	$\frac{1}{1+\cos x}ax =$	$\int \frac{1+2\cos^2\frac{x}{2}}{1+\cos^2\frac{x}{2}}$	<u>-</u> 1			
			_	_ [dx		
	$= \int \frac{dx}{2\cos^2 \frac{1}{2}}$ $= \frac{1}{2} \int \sec^2 \frac{x}{2} dx$ $= \tan \frac{x}{2} + c$						
	accept the t — substitution						
b)				ſ	$^{2}e^{x}dx$		
				<u> </u>			
		Differentia		Inte	gration		
	+	$+$ $3x^2$ e^x					
	-	62			$\frac{e^x}{x}$		
	+	6	+		$\frac{e^x}{e^x}$		
	_	0			e^x		
	C						
	$\int 3x^2 e^x dx = 3x^2 e^x - 6x e^x + 6e^x + A$						
		J					
6.				$h + \frac{1}{2}$	r = 9		
				h =	9 - r		

	$v = \frac{1}{3}\pi r^2 h$
	1 1
	$v = \frac{1}{3}\pi r^2(9-r) = \frac{1}{3}\pi(9r^2 - r^3)$
	$\frac{dv}{dr} = \frac{1}{3}\pi(18r - 3r^2) = 0$
	3r(6-r)=0
	r = 0 and $r = 6cm$
	r = 6cm
	h = 9 - 6
	h = 3cm
	$v_{max} = \frac{1}{3}\pi(6)^2(3) = 36\pi$
	$\frac{7max}{3}$
7.	$let a_n = 8^n - 7n + 6$
1.	Trying n=1
	$a_1 = 8^2 - 7(1) + 6$
	= 7
	It is true for n=1
	Trying n=2
	$a_2 = 8^2 - 7(2) + 6$
	= 56
	It is true for n=2
	$a_2 - a_1 = 56 - 7$
	= 49
	Suppose it is true for $n=k$
	$a_k = 8^k - 7k + 6$ Trying n=k+1
	$a_{k+1} = 8^{k+1} - 7k - 7 + 6$
	$a_{k+1} - a_k = (8^{k+1} - 7k - 7 + 6) - (8^k - 7k + 6)$
	$=7(8^k-1)$
	Since it holds for n=1, n=2, n=k and n=k+1, then $8^n - 7n + 6$ is
	divisible by 7 for all $n \ge 1$
8.	$\frac{dy}{dx} + 2ycotx = cosec^2x$
	$\frac{1}{dx} + 2y \cos x - \cos x$
	$R = e^{2\int cotx dx} = cos^2 x$
	$\cos^2 x \frac{dy}{dx} + 2y \cot x \cos^2 x = \cot^2 x$
	$\frac{dx}{dx} = \frac{dx}{dx}$

10					.4 1	1 4		
10.	x - xt = 1 + t $x - 1 = t(x + 1)$							
			X					
		$t = \frac{x-1}{x+1}$						
	D-14: 4 :	4	2(x-1)	2(x + 1	1		
	Putting t in	Putting t into y $y = 2(\frac{x-1}{x+1})^2 x \left(\frac{x+1}{x+1-x+1}\right)$						
	$y = \frac{x^2 - 2x + 1}{x + 1}$ $\frac{dy}{dx} = \frac{(x+1)(2x-2) - (x^2 - 2x + 1)(1)}{(x+1)^2} = 0$							
1		7	(, 4) (0		<u>x +</u>	1	1) (4)	
b.	-	$\frac{dy}{dy} =$	$\frac{(x+1)(2x+1)}{x}$	x-z	(2) - (x)	$\frac{x^2 - 2x + 1}{x^2 - 2x}$	$\frac{(1)(1)}{(1)} = 0$	
		dx		, ((x + 1)	$)^{2}$	· ·	
				•	2x-3			
			•		(x - 1)	1) = 0		
						-		
		whe	n x = -3, y	$y = \frac{1}{2}$	<u> </u>	$\frac{1}{1} = -8$	(-3, -8)	
		when $x = -3$, $y = \frac{(-3-1)^2}{-3+1} = -8 \ (-3, -8)$						
		when $x = 1, y = \frac{(1-1)^2}{1+1} = 0$ (1,0)						
		L	x = -3	R	L	x = 1	R	
	$\frac{dy}{dy}$	+	0	-	-	0	+	
	sign on $\frac{dy}{dx}$							_
			maxima			minima		
c.	Vertical asy	mpt	otes	4				
					$y \to \pm$			
	ν -	1	is the equ	•	$+1)^2$ -		l asymptot	
	Slanting asy		_	ulloi	t Oj ti	ie verticui	ασγπιρισι	
	By long divi			+ <u></u>	<u> </u>			
	by long and	.0101	y - x = 3	л		.00		
					$\begin{array}{c} x \to \pm \\ \to x - \end{array}$			
	v = x	· — 3	is the equ	_			tal asymni	tote
d.	Intercepts	<u>, J</u>	is the equi	~~~~ <u>~</u>	coj cr	1101 12011		
				Wh	en y =	= 0		
					- 1) ² =			
	x = 1 (1,0)							
			Whe	n x =	= 0, y =	= 1 (0,1)		

c.	$\int -2 + 3\mu \setminus (8 + 4t)$						
	$\begin{pmatrix} -2+3\mu\\5+\mu\\-11+3\mu \end{pmatrix} = \begin{pmatrix} 8+4t\\9+2t\\5t \end{pmatrix}$						
	(== 1 5 ps/ (50 /						
	$3\mu - 4t = 10, \dots \dots (1)$						
	$\mu - 2t = 4, \dots \dots (2)$						
	$3\mu - 5t = 11 \dots (3)$						
	eqn(1) - eqn(2)						
	$\mu = 2$						
	$from \ eqn(2)$						
	t = -1						
	Putting the unknowns into eqn (3)						
	$3\mu - 5t = 3(2) - 5(-1)$						
	= 11						
	Since $LHS = RHS$ then the lines intersect						
	/-2+3(2)						
	$r = \begin{pmatrix} -2+3(2) \\ 5+2 \\ -11+3(2) \end{pmatrix}$						
	$\sqrt{-11+3(2)}$						
	Point of intersection is $(4, 7, -5)$ $x^{2}\left(v + x\frac{dv}{dx}\right) = x^{2} + (vx)^{2} + vx^{2}$ $x\frac{dv}{dx} = (1 + v^{2})$						
12.	dv						
	$x^{2}\left(v+x\frac{d}{dx}\right)=x^{2}+(vx)^{2}+vx^{2}$						
	dv						
	$x\frac{1}{dx} = (1+v^2)$						
	$\int \frac{dv}{(1+v^2)} = \int \frac{dx}{x}$						
	$\int \frac{1}{(1+v^2)} = \int \frac{1}{x}$						
	$\tan^{-1} v = Inx + c$						
	$\frac{y}{x} = \tan(\ln x + c)$						
	y = xtan(Inx + c)						
b.	$\frac{y = x tan(Inx + c)}{\frac{-d\theta}{dt}} \propto (\theta - 20)$ $\int \frac{d\theta}{(\theta - 20)} = -k \int 1 dt$						
	$\frac{dt}{dt} \propto (\theta - 2\theta)$						
	$\int \frac{d\theta}{dt} = -k \int 1 dt$						
	$\int \frac{(\theta-20)}{(\theta-20)} = -\kappa \int 1 dt$						
	$In(\theta - 20) = -kt + c$						
	$t=0, \theta=100^{0}C$						
	In(100-20)=c						
	c = In80						
	$In\left(\frac{\theta-20}{80}\right)=-kt$						
	$ln\left(\frac{80}{80}\right) = -\kappa t$						
	$t=20$ minutes, $\theta=60$						

	$In\frac{40}{80} = -20k$					
	10^{10} 80^{-200}					
	$k = \frac{In2}{20}$					
	$(\theta - 20)^{20} - tIn2$					
	$In\left(\frac{\sigma}{80}\right) = \frac{372}{20}$					
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
	$In\left(\frac{\theta - 20}{80}\right) = \frac{-tIn2}{20}$ $In\frac{10}{80} = -t\frac{In2}{20},$					
	t (0 minutes					
13.	$\frac{y - 2aq}{x - aq^2} = \frac{2ap - 2aq}{ap^2 - aq^2}$					
	$\frac{1}{x-aq^2} - \frac{1}{ap^2-aq^2}$					
	$\frac{y-2aq}{x-aq^2} = \frac{1}{p+q}$					
	$y(p+q) = x + aq^2 + 2apq$					
	y(p+q) = 2x + 2apq					
b.	$y(p+q) = 2x + 2apq$ $Gradient of OP = \frac{2ap - 0}{ap^2 - 0} = \frac{2}{p}$ $Gradient of OQ = \frac{2aq - 0}{aq^2 - 0} = \frac{2}{q}$					
	ap^2-0 p					
	Gradient of $OO = \frac{2aq - 0}{a} = \frac{2}{a}$					
	Gradient of OPx Gradient of $OQ = -1$					
	$\frac{2}{p}x\frac{2}{q} = -1$					
	p q					
	$ \frac{-x}{q} = -1 $ $ pq = -4 $ $ Y = \frac{2ap + 2aq}{2} = a(p+q) $ $ p + q = \frac{Y}{q} \dots					
c.	$Y = \frac{2\alpha p + 2\alpha q}{2} = a(p+q)$					
	$\frac{2}{Y}$					
	$p + q = \frac{1}{q} \dots					
	$X = \frac{a(p^2 + q^2)}{2}$					
	$X = \frac{1}{2}$					
	$2X = a((p+q)^2 - 2pq)$					
	$2X = a\left(\frac{Y}{a}\right)^2 - 2a(-4)$					
	$Y^{2} = 2a(X - 4a)$ $x(2+i) + y(2-i) = 7i + 2$					
14.						
	2x + xi + 2y - yi = 7i + 2					
	(x - y)i + (2x + y) = 7i + 2 Equating real and imaginary terms					
	$x - y = 7 \dots \dots (1)$					
	$2x + y = 2 \dots \dots (2)$					
<u> </u>	······································					

	agn(1) + agn(2)					
	eqn(1) + eqn(2) $x = 3 and y = -4$					
	$x - 3 \operatorname{inta} y = -4$ $x + yi = 3 - 4i$					
h	$ 3 - 4i = \sqrt{3^2 + (-4)^2} = 5units$					
b.	$From \ (2isin\theta)^5 = \left(z + \frac{1}{z}\right)^5$					
	$32isin^5\theta = z^5 + 5z^4 \frac{1}{-z} + 10z^3 \left(\frac{-1}{z}\right)^2 + 10z^2 \left(\frac{-1}{z}\right)^3 + 5z^4 \left(\frac{-1}{z}\right)^4$					
	$+\left(\frac{-1}{z}\right)^5$					
	$32isin^5\theta = \left(z^5 - \frac{1}{z^5}\right) - 5\left(z^3 - \frac{1}{z^3}\right) + 10\left(z - \frac{1}{z}\right)$					
	$32isin^5\theta = (2isin5\theta) - 5(2isin3\theta) + 10(2isin\theta)$					
	$16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$					
c.	x + (y - 3)i = 3 (x + 2) + yi					
	$\sqrt{x^2 + (y-3)^2} = 3\sqrt{(x+2)^2 + y^2}$					
	$x^2 + y^2 - 6y + 9 = 9(x^2 + 4x + 4 + y^2)$					
	$8y^2 + 8x^2 + 42x + 27 = 0$					
4 =	The locus is a circle					
15.	$Let \ 6sinx - 3cosx \equiv Rsin(x - B)$					
	$6sinx - 3cosx \equiv RsinxcosB - RcosxsinB$					
	Equating $6 = R cos B$ 2 = R sin B					
	$R = \sqrt{6^2 + 3^2} = \sqrt{45}$					
	$B = \tan^{-1}\frac{3}{6} = 26.57$					
	$6\sin x - 3\cos x = \sqrt{45}\sin(x - 26.57)$					
	$(6sinx - 3cosx)max = \sqrt{45}$					
	Occurs when $x - 26.57 = \sin^{-1} 1$					
	x = 90 + 26.57 = 116.57					
	$\max point (116.57, \sqrt{45})$					
b.	$RHS = \tan(45 + 11)$					
	tan45 + tan11					
	$=\frac{1-tan11tan45}{1-tan11tan45}$					
	$\langle sin11 + cos11 \rangle / cos11 \rangle$					
	= () \(\gamma \)					

	sin11 + cos11						
	$=\frac{sit11 + cos11}{cos11 - sin11}$						
c.	$LHS = 2\cos(A+B)\cos(A-B) + 2\cos^2 C - 1$						
<u> </u>	But $cosC = cos(180 - (A + B))$						
	`						
	$= -\cos(A + B)$						
	$LHS = 2\cos(A+B)\cos(A-B) + 2\cos^{2}(A+B) - 1$						
	$= 2\cos(A+B)\left\{\cos(A+B) + \cos(A-B)\right\} - 1$						
	$= 2\cos(A+B)(2\cos A\cos B) - 1$						
	=-1-4cosAcosBcosC						
	=RHS						
16.	a+d, $a+3d$, $a+7d$						
	$\frac{a+3d}{a+3d} = \frac{a+7d}{a+7d}$						
	$\frac{a+d}{a+d} \equiv \frac{a+3d}{a+3d}$						
	$8ad - 6ad = 2d^2$						
	$2ad - 2d^2 = 0$						
	2d(a-d)=0						
	Either $d = 0$ or $d = a$						
	a = d						
	The progression is 2d,4d,8d						
	$r = \frac{4d}{2d}$						
	r = 2						
	2d, 4d, 8d, 16d, 32d						
	8d + 32d = 20						
	40d = 20						
	d = 0.5, $a = 0.5$						
1	The first four terms are 1, 2, 4, 8						
b.	$1+5x (1+5x)^2$						
	$\sqrt{\frac{1+5x}{1-5x}} = \sqrt{\frac{(1+5x)^2}{1-25x^2}}$						
	$\sqrt{1-3\lambda} \sqrt{\frac{1-23\lambda}{1}}$						
	$= (1+5x)(1-\frac{1}{2}(-25x^2)$						
	25 125						
	$= 1 + 5x + \frac{25}{2}x^2 + \frac{125}{2}x^3$						
	$using \ x = \frac{1}{\Omega}$						
	$using x = \frac{1}{9}$						

$$\sqrt{\frac{1+\frac{5}{9}}{1-\frac{5}{9}}} \approx 1+5\left(\frac{1}{9}\right) + \frac{25}{2}\left(\frac{1}{9}\right)^{2}$$

$$\sqrt{14} \approx \frac{2x277}{2x81}$$

$$\sqrt{14} \approx 3.42$$