

Финал - Бэкенд-разработка

О 1 июн 2019, 16:00:06

старт: 1 июн 2019, 12:00:00

финиш: 1 июн 2019, 16:00:00

длительность: 04:00:00

начало: 1 июн 2019, 12:00:00 конец: 1 июн 2019, 16:00:00

I. Михаил и билборды

	Все языки	Python 2.7	Python 3.6
Ограничение времени	2 секунды	7 секунд	7 секунд
Ограничение памяти	256Mb	256Mb	256Mb
Ввод	стандартный ввод или input.txt		
Вывод	стандартный вывод или output.txt		

Индустриализация добралась до самых отдалённых уголков страны, и наружная реклама уже вовсю показывается в Байтландии. Реклама на билбордах показывается по определённым правилам:

- каждый рекламодатель назначает ставку, которую он готов заплатить за своё объявление;
- в момент предполагаемого показа определяется список рекламных объявлений, готовых показаться на билборде, который находится в определённой точке;
- RTB-система (Real-time bidding) проводит аукцион второй цены между всеми объявлениями.

Аукцион второй цены проходит по следующей схеме:

- отсеиваются объявления, которые не готовы заплатить не менее минимальной ставки MinCost;
- рекламные объявления сортируются по убыванию ставок;
- первое объявление назначается победителем;
- со счёта рекламодателя списывается ставка второго объявления или MinCost, если объявление в аукционе одно.
- если есть несколько объявлений с максимальной ставкой Cost, то победитель из них выбирается случайно; в таком случае с рекламодателя списывается Cost.

Одной из новинок в индустрии рекламы является геотаргетинг — возможность задать окружность на карте, ограничивающую множество щитов, на которых необходимо производить рекламные показы конкретного объявления. Волевым решением Байтландия была выбрана в качестве испытательного полигона для новой функциональности. Перед аналитиком Михаилом стоит задача: определить места в городе, в которых рекламодатели готовы заплатить наибольшее количество денег. Для этого Михаил прикрепил огромный билборд на свой автомобиль и решил проехать по прямой улице из точки (X_{start}, Y_{start}) . Автомобиль Михаила может ехать только с постоянной скоростью. В некоторые моменты времени аналитик останавливается и проверяет, какая реклама показывается на его билборде.

Помогите аналитику Михаилу определить лучшие места для расположения билбордов.

Формат ввода

Первая строка входных данных содержит 4 целых числа $-10^9 \le X_{start}, Y_{start}, dx, dy \le 10^9$ — стартовую точку и вектор движения, который автомобиль проезжает за единицу времени. Гарантируется, что либо dx, либо dy равен нулю, но при этом они не равны нулю одновременно.

Вторая строка содержит количество остановок $1 \le N \le 3 \cdot 10^5$. Третья строка содержит N возрастающих целых чисел $0 \le t_i \le 10^9$. Четвёртая строка содержит 2 числа: количество объявлений $1 \le M \le 10^5$ и минимальную ставку $1 \le MinCost \le 10^9$.

Далее следует M окружностей, описывающих настройки соответствующих объявлений. Каждая окружность описывается 4 целыми числами: $-10^9 < X, Y < 10^9$ — центр окружности, радиус $1 < R < 10^9$ и ставка $1 < Cost < 10^9$.

Формат вывода

Выведите N чисел — стоимость победившего объявления в моменты времени $t_1,\dots,t_N.$

Пример 1

Ввод	Вывод
0 0 0 1	50 50 50 100 50 200 250 250 50 50
10	
0 1 2 3 4 5 6 7 8 9	
4 50	
0 2 1 100	
0 4 1 200	
0 6 1 300	
0 7 1 250	

Пример 2

Ввод	Вывод
-3 -1 3 0	200 300 100
3	
1 3 20	
3 100	
6 -1 1 400	
8 -1 9 300	
0 -3 3 200	

