

Amazon Recommendation Systems

Steve Shi, Bhadri Vaidhyanathan, Vanshika Tibarewalla

Agenda

- Background
- Data Pipeline
- Data Profile
- Exploratory Data Analysis
- Machine Learning Models
- Results and Inference
- Challenges and Future Scope

Background: Business Value

3rd largest company in the world by revenue

200mn customers

12mn products

2003: Amazon.com Recommenda tions: Item-to-Item Collaborative Filtering

Jeff Wilke, Amazon's consumer worldwide CEO, delivering a keynote presentation at re:MARS 2019

Data Profile

Basic User Rating Data

Used for:

- Memory-based CF
- Model-based CF
- Content-based

Attributes:

- asin (productID)
- reviewerID
- Ratings
- timestamp

Review Text Data

Used for:

Sentimental Analysis

Attributes

- asin (productID)
- reviewerID
- reviewText
- Summary

Magazine Description

Used for:

- Content-based models
- Model-based (FM)

Attributes

- asin (productID)
- categories
- title
- description
- also_buy
- also_view

a

Data Pipeline

Data Collection

Data Analysis & Collaboration

Packages

Exploratory Data Analysis (EDA)

Unique Products and Reviewers

Ratings

Distribution of ratings

Majority of the products have a rating of 5

Sentiment Level Distribution

Most products mildly positive

Top magazines/users

Family Diving

BACKYARD LIVING

WILDER

Top customers by rating count

5

Recommendation Systems

Model Approaches

KNN

Feature Engineering:

Active customers

Steps:

- Count the number of unique product reviews for each unique reviewer
- 2. Average value found to be 20
- Drop reviewers with count<20:10k reviewers

Top 10 reviewers Sorted by Count

	reviewerID	rating
48609	A3JPFWKS83R49V	55
32315	A2OTUWUSH49XIN	26
60746	AEMZRE6QYVQBS	25
46846	A3GA09FYFKL4EY	24
52524	A3R7MXVQRGGIQ9	22
38444	A30H2335OM7RD6	22
14817	A1RPTVW5VEOSI	21
64002	AKMEY1BSHSDG7	21
69735	AVF9FV7AMRP5C	20
28160	A2H3JURQZOHVMB	20

Problem: ____

Lack of features

Solution:

Use Sentiment Score from Review Summary

Steps:

- Used filtered data (users with >20 reviews) to create an item-user matrix
- Use Cosine similarity
- Nearest Neighbour Model
- \bullet K = 6

Recommendations for B0065MEDRI:

```
1: B006BFR2U4, with distance of 0.988167194060955:
2: B000INCK4I, with distance of 0.9934467397187514:
3: B000066HVN, with distance of 0.9940040150159131:
```

4: B00005N7VP, with distance of 0.9941629630396817:

5: B00005NIPE, with distance of 0.9959081886984714:

Collaborative Filtering - Item-Based

- Use cosine similarity
- Recommend 10 products

Problem:

item-item CF does not have a lot of intersection with Amazon's own 'Also-buy' data 10 recommendations to users who have buy B00005N7Q1

asin	
B00005N7Q1	1.000000
B00006LIR1	0.040265
B00005R8BL	0.036821
B0193CNAIY	0.028030
B00006K1BF	0.028030
B00005N7SA	0.024097
B00005N7SC	0.022225
B007FIR1Z2	0.019820
B007ZUWNA8	0.019072
B00007AZRH	0.018646
BOOOUMJODW	0. 017431

Collaborative Filtering - User-Based

Problem:

Originally Dataset has more than 70000 users, it cost too much time to compute on local laptop

A2877WXAPQ7T50 is the most similar user to user A3JPFWKS83R49V

Run model and test:

- Recommended magazines based on similar user's purchase history
- user A3JPFWKS83R49V already purchased to all of them

Filtering customers who purchased more than 3 item to reduce computing time

reviewerID

A3JPFWKS83R49V 1.000000 A2877WXAPQ7T50 0.304830

recommendations to users A3JPFWKS83R49V

asin

B00005NIOC 5.0

Content-Based Model

Data Cleaning:

- Removing Null Value
- Removing replicate value
- Clean up description text

- Keyword extraction with Rake
- Create vector representation
- Create the similarity matrix

Provide recommendation:

All recommended magazines are related women/fashion magazines

	asin	description	category	desc2	clean_desc
0	B00005N7NQ	[REASON is edited for people interested in economic, social, and international issues. Viewpoint	[Magazine Subscriptions, Professional & Educational Journals, Professional & Trade, Humanities &	REASON is edited for people interested in economic, social, and international issues. Viewpoint	reason is edited for people interested in economic social and international issues viewpoint str
1	B00005N7OC	[Written by and for musicians. Covers a variety of musical styles and includes transcriptions fr	[Magazine Subscriptions, Arts, Music & Photography, Music]	Written by and for musicians. Covers a variety of musical styles and includes transcriptions fro	written by and for musicians covers a variety of musical styles and includes transcriptions from
2	B00005N7OD	[Allure is the beauty expert. Every issue is full of celebrity tips and insider secrets from the	[Magazine Subscriptions, Fashion & Samp; Style, Women]	Allure is the beauty expert. Every issue is full of celebrity tips and insider secrets from the	allure is the beauty expert every issue is full of celebrity tips and insider secrets from the p

key_words	bag_of_words
[reason, edited, people, interested, economic, social, international, issues, viewpoint, stresse	professionaleducational journals professional trade humanities social sciences economicse conomictheo

clean_categ	description	asin	
[fashionstyle, women]	[Allure is the beauty expe	B00005N7OD	2
[fashionstyle, women]	[Harper's BAZAAR, the fash	B00005N7QN	50
[fashionstyle, women]	[Marie Claire Idees focuse	B00007AZEO	768
[fashionstyle, international]	[Glamour UK is Britain s n	B00007M2OH	883
[fashionstyle]	[New Beauty is the first p	B0007INI2C	2159
1.5			

Content-Based Model: Validation

Our Recommendations

VS

Recommendations made in Amazon.com

Customers also search

Beauty From the Block

Model Based - Matrix Factorization NMF and SVD

Goal: Predict rating for products that user has not tried

Python Package - Surprise Algorithms:

- Non-negative Matrix Factorization(NMF)
- Singular Value Decomposition (SVD)

Methodology:

KFold Cross Validation

Parameter Modelling		Mean RMSE	
No. of rating/product or user	Kfold	SVD	NMF
All	5	1.37	1.39
>1	5	1.23	1.18
>1	10	1.23	1.16
>2	10	1.13	1.1

				a887W	
	3	?	1	?	1
B	1	?	4	1	?
C	3	1	?	3	1
D	?	3	?	4	4

Model Error Output:

'User and/or item is unknown.'

Factorization Machines

Goal: Include more features and detect more latent factors

Data Augmentation: Age Group and Gender data sampled from MovieLens dataset

	Actual	Prediction	delta
0	3	2.601987	0.398013
1	2	3.914806	-1.914806
2	5	4.912905	0.087095
3	5	4.660848	0.339152
4	5	4.959595	0.040405

RMSE = 1.006

Challenges & Future Scope

Challenges:

- **Collaborative filtering:** Compute power not sufficient to run all recommendation smoothly.
- Content-based model: do not have expertise and time to design and assign attributes.
- Model based Matrix Factorization(NMF and SVD): Cold Start problem
- **Factorization Machine:** Heavy feature engineering, very large feature space

Future Scope:

- Using Sentiment and Emotion Analysis to run a classification model.
- Field Aware Factorization machines for inclusion of multiple latent factors

Thank you!

Questions?

https://github.com/battery-code/evaluation RecommendationSystems

a

References

- Data Source: Amazon https://jmcauley.ucsd.edu/data/amazon/
- https://www.kdnuggets.com/2017/02/natural-language-processing-key-terms-explained.html
- John Snow Labs: https://nlp.johnsnowlabs.com/
- NLTK Pre Trained pipeline for Sentiment Analysis:
 https://www.analyticsvidhya.com/blog/2021/06/rule-based-sentiment-analysis-in-python/
- Matrix Factorization: https://www.youtube.com/watch?v=ZspR5PZemcs
- Model Based: https://towardsdatascience.com/how-you-can-build-simple-recommender-systems-with-surprise-b0d32a8e4
 802
- Factorization Machines: https://www.analyticsvidhya.com/blog/2018/01/factorization-machines/