Surrogate-based system reliability applied to space-variant problems modeled by random fields

C. AMRANE

P. Beaurepaire C. Mattrand J-M .Bourinet N. Gayton

Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France

21 June 2021

Reliability analysis of space-variant problems

Reliability analysis of space-variant problems

• Probability of failure :

$$P_f = P(\min_{\tau \in \mathcal{D}} g(\mathbf{X}, \tau) \leq 0)$$

Probability of failure :

$$P_f = \mathsf{P}(\min_{\tau \in \mathcal{D}} g(\mathbf{X}, \tau) \leq 0)$$

- 1st approach :
 - Consider a unique critical location $au= au^{(0)}$

$$P_f = P(\min_{ au \in \mathcal{D}} g(\mathbf{X}, au^{(0)}) \leq 0)$$

Probability of failure :

$$P_f = \mathsf{P}(\min_{ au \in \mathcal{D}} g(\mathbf{X}, au) \leq 0)$$

- 1st approach :
 - Consider a unique critical location $au = au^{(0)}$

$$P_f = P(\min_{ au \in \mathcal{D}} g(\mathbf{X}, au^{(0)}) \leq 0)$$

- The location $\tau^{(0)}$ may not be well identified
- The failure probability could be under or overestimated
- Spatial random variability may generates multiple critical zones

• Probability of failure :

$$P_f = P(\min_{\tau \in \mathcal{D}} g(\mathbf{X}, \tau) \leq 0)$$

• Probability of failure :

$$P_f = P(\min_{\tau \in \mathcal{D}} g(\mathbf{X}, \tau) \leq 0)$$

- 2nd approach :
 - Consider multiple critical locations

$$P_f \simeq P(\min_{i=1,\ldots,p} g(\mathbf{X}, \tau^{(i)}) \leq 0) \simeq P(\min_{i=1,\ldots,p} g_i(\mathbf{X}) \leq 0)$$

Probability of failure :

$$P_f = \mathsf{P}(\min_{ au \in \mathcal{D}} \, g(\mathbf{X}, au) \leq 0)$$

- 2nd approach :
 - Consider multiple critical locations

$$P_f \simeq P(\min_{i=1,\ldots,p} g(\mathbf{X}, \tau^{(i)}) \leq 0) \simeq P(\min_{i=1,\ldots,p} g_i(\mathbf{X}) \leq 0)$$

► Equivalence with series systems :

$$P_f \simeq P_{f,Sys} = \mathsf{P}(\cup_{i=1}^p g_i(\mathsf{X}) \leq 0) = \mathsf{P}(g_{comp}(\mathsf{X}) \leq 0)$$

where
$$g_{comp}(\mathbf{X}) = \min_{j=1,...,p} g_j(\mathbf{X})$$

Probability of failure :

$$P_f = P(\min_{ au \in \mathcal{D}} g(\mathbf{X}, au) \leq 0)$$

- 2nd approach :
 - Consider multiple critical locations

$$P_f \simeq P(\min_{i=1,\ldots,p} g(\mathbf{X}, \tau^{(i)}) \leq 0) \simeq P(\min_{i=1,\ldots,p} g_i(\mathbf{X}) \leq 0)$$

► Equivalence with series systems :

$$P_f \simeq P_{f,Sys} = \mathsf{P}(\cup_{i=1}^p g_i(\mathbf{X}) \leq 0) = \mathsf{P}(g_{comp}(\mathbf{X}) \leq 0)$$

where
$$g_{comp}(\mathbf{X}) = \min_{j=1,...,p} g_j(\mathbf{X})$$

- Consider space-variant problems as series systems
- Apply system reliability approaches

Challenges

- Very high number of locations p >> 1
- How many and which locations are to consider?
- Realistic high-fidelity computational models imply time consuming performance functions

Challenges

- ullet Very high number of locations p>>1
- How many and which locations are to consider?
- Realistic high-fidelity computational models imply time consuming performance functions

Approach

- Adaptive search of potential failure zones
- Surrogate model-based system reliability method

Outline

- Context
- 2 AK-SYS : Active Learning and Kriging-based SYStem reliability method
- AK-SYSs for reliability analysis of space-variant problems
- 4 Application example
- 5 Conclusions and perspectives

Outline

- Context
- 2 AK-SYS : Active Learning and Kriging-based SYStem reliability method
- AK-SYSs for reliability analysis of space-variant problems
- Application example
- 6 Conclusions and perspectives

Motivations

- Few works consider the use of adaptive learning Kriging when space-variant problems are treated as series systems
- Easy to implement
- Concentrate the numerical effort on regions with a significant probability content

Motivations

- Few works consider the use of adaptive learning Kriging when space-variant problems are treated as series systems
- Easy to implement
- Concentrate the numerical effort on regions with a significant probability content

Illustration

$$\begin{aligned} P_{f,Sys} &= P(\cap_{i=1}^{3} g_{i}(\mathbf{X}) \leq 0) \\ &= P(\max_{i} g_{i}(\mathbf{X}) \leq 0) \\ &= P(g(\mathbf{X})) \leq 0 \end{aligned}$$

1. Fauriat et Gayton 2014

Motivations

- Few works consider the use of adaptive learning Kriging when space-variant problems are treated as series systems
- Easy to implement
- Concentrate the numerical effort on regions with a significant probability content

Illustration

$$\begin{aligned} P_{f,Sys} &= P(\cap_{i=1}^{3} g_{i}(\mathbf{X}) \leq 0) \\ &= P(\max_{i} g_{i}(\mathbf{X}) \leq 0) \\ &= P(g(\mathbf{X})) \leq 0 \end{aligned}$$

1. Fauriat et Gayton 2014

^{2.} Baudin et al. 2016

For a given
$$\mathbf{u}^{(k)}, k=1,...,N_{MC}$$
:

$$U_s(\mathbf{u}^{(k)}) = \frac{|\mu_{\hat{g}_s}(\mathbf{u}^{(k)})|}{\sigma_{\hat{g}_s}(\mathbf{u}^{(k)})}$$

$$s = \underset{i}{\operatorname{argmax}} \ \mu_{\hat{g}_i}(\mathbf{u}^{(k)})$$

$$\min_{i=1,\dots,N_{MC}} U_s(\mathbf{u}^{(i)}) \geq 2$$

$$\mathbf{u}^* = \min_{k=1,\dots,N_{MC}} U_s(\mathbf{u}^{(k)})$$

$$\hat{P}_f = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} I\{ \underset{j=1,\dots,m}{\min} \hat{g}_j(\mathbf{x}^{(i)}) \leq 0 \}$$

Outline

- Context
- 2 AK-SYS: Active Learning and Kriging-based SYStem reliability method
- AK-SYSs for reliability analysis of space-variant problems
- Application example
- 5 Conclusions and perspectives

AK-SYSs for reliability analysis of space-variant problems

Based on the AK-SYS framework

AK-SYSs for reliability analysis of space-variant problems

- Based on the AK-SYS framework
- Combines an adaptive search of critical zones with the adaptive enrichment process of AK-SYS
- The performance functions are evaluated on u* and all the Kriging models are updated at each iteration

AK-SYSs for reliability analysis of space-variant problems


```
For each \mathbf{u}^{(i)}, i=1,...,N_{IDoE}: I^* = \operatorname*{argmin}_I G_I(\mathbf{u}^{(i)}) g^* = G_{I^*} If g^* \notin M then : M = M \cup \{g^*\}
```



```
I^* = \operatorname{argmin} G_I(\mathbf{u}^*)
g^* = G_{I^*}
If g^* \notin M^{(j)} then:
      M^{(j+1)} = M^{(j)} \cup \{g^*\}
```


$$\hat{P}_f = \frac{1}{N_{MC}} \sum_{i=1}^{N_{MC}} I\{ \underset{l=1,\dots,m}{min} \hat{g}_l(\mathbf{u}^{(i)}) \leq 0 \}$$

Outline

- Context
- 2 AK-SYS: Active Learning and Kriging-based SYStem reliability method
- AK-SYSs for reliability analysis of space-variant problems
- 4 Application example
- 5 Conclusions and perspectives

Case 1 : Spatial random material property

- $\nu = 0.3$
- *E* ∼ *LN*(200, 50) *GPa*
- d = 0.5 mm

Case 1 : Spatial random material property

- $\nu = 0.3$
- *E* ∼ *LN*(200, 50) *GPa*
- d = 0.5 mm

Case 2 : Spatial random material property and boundary conditions

- $\nu = 0.3$
- E ~ LN(200, 50)GPa
- $d \sim N(0.5, 0.05) mm$

- The Karhunen-Loève (KL) expansion² is used to model a stationary Gaussian stochastic field of E and d;
- The KL expansion is truncated to $r_E = 18$ for E and to $r_d = 6$;
 - \rightarrow 18 RVs for case 1
 - \rightarrow 24 RVs for case 2
- For each realization of the random field :

$$G_j(\mathbf{u}) = \sigma_y - \sigma_j \tag{1}$$

where $\sigma_y = 800$ MPa is the yield stress of the material, σ_j is the Von Mises stress calculated with the FEM on the j^{th} node and j = 1, ..., 1946.

^{2.} Ghanem, Member et Spanos 1991

Abaqus coupling with python

- Create the input files
 - → values of Young's modulus in each element of the discretized space
 - \rightarrow values of the applied load

Execute Abaqus

```
command2 = ['C:\Appli\SIMULIA\Commands/abaqus.bat', 'cae', 'noGUI=runmodel.py'] |
process2 = subprocess.call(command2, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
```

- Read the output file
 - \rightarrow contain the values of the Qol
 - \rightarrow a python script is used to read the file

Case 1 : Spatial random material property

Method	N_{calls}	$P_{f,Sys}$	RAE	
МС	50000	0.00156	_	
FORM	2855	0.00202	29.7%	
AK-MCS	190	0.00154	1.28%	
AK-SYSs	166	0.00156	0.00%	

Case 1 : Spatial random material property

Method	N_{calls}	$P_{f,Sys}$	RAE
МС	50000	0.00156	_
FORM	2855	0.00202	29.7%
AK-MCS	190	0.00154	1.28%
AK-SYSs	166	0.00156	0.00%

Case 2 : Spatial random material property and boundary conditions

Method	N_{calls}	Coefficient of variation of N _{calls}	P_{Sys}	RMAE
MC	50000	_	0.00452	_
FORM	10802	=	0.00540	19.50%
AK-MCS	654.75	10.59%	0.00347	23.14%
AK-SYSs	566.20	4.99%	0.00417	7.72%

Case 2 : Spatial random material property and boundary conditions

Method	N _{calls}	Coefficient of variation of N_{calls}	P _{Sys}	RMAE
MC	50000	_	0.00452	_
FORM	10802	=	0.00540	19.50%
AK-MCS	654.75	10.59%	0.00347	23.14%
AK-SYSs	566.20	4.99%	0.00417	7.72%

Case 2 : Spatial random material property and boundary conditions

Method	N_{calls}	Coefficient of variation of N _{calls}	P_{Sys}	RMAE
MC	50000	-	0.00452	_
FORM	10802	=	0.00540	19.50%
AK-MCS	654.75	10.59%	0.00347	23.14%
AK-SYSs	566.20	4.99%	0.00417	7.72%

Case 2 : Spatial random material property and boundary conditions

Results of the sensitivity to the IDoE size

Size of the	ID₀E	100	150	200	25 0	300	35 0	4 00
AK-MCS:	P _{Sys}	0.00346	0.0035	0.00348	0.00348	0.00344	0.00356	0.00356
	Added Samples	222	263	264	248	309	322	312
AK-SYSs:	P_{Sys}	0.00348	0.00398	0.00396	0.00398	0.00444	0.00442	0.00444
	Added Samples	142	194	176	167	215	194	187
Initial set of	G	39, 1834, 27, 47, 12, 37, 1832, 56	39, 1834, 27, 47, 12, 37, 1832, 56, 1854	39, 1834, 27, 47, 12, 37, 1832, 56, 1854, 1855, 1836	39, 1834, 27, 47, 12, 37, 1832, 56, 1854, 1855, 1836	39, 1834, 27, 47, 12, 37, 1832, 56, 1854, 1855, 1836	39, 1834, 27, 47, 12, 37, 1832, 56, 1854, 1855, 1836	39, 1834, 27, 47, 12, 37, 1832, 56, 1854, 1855, 1836
Added G		1833	1835, 1836, 1833	1835	1835, 1833	1835, 1833, 1830	1835, 1833, 1830	1835, 1833, 1830

Outline

- Context
- 2 AK-SYS: Active Learning and Kriging-based SYStem reliability method
- AK-SYSs for reliability analysis of space-variant problems
- 4 Application example
- 5 Conclusions and perspectives

Conclusions and perspectives

- This presentation exposes an extension of AK-SYS to space-variant problems named AK-SYSs
- Locate the critical zones whiteout prior assumptions on their locations
- AK-SYSs outperforms AK-MCS, performed on a composite performance function, in terms of accuracy, robustness and computational cost.
- Sensitivity to the IDoE's size
 - More recent system reliability methods, such as AK-SYSi³ and EEK-SYS⁴ could be investigated
- Spatial correlation between the LSFs should be considered

^{3.} Yun et al. 2019

^{4.} Jiang et al. 2020

References

- Baudin, Michaël et al. (2016). "OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation". In: *Handbook of Uncertainty Quantification*. Sous la dir. de Roger Ghanem, David Higdon et Houman Owhadi. Cham: Springer International Publishing, p. 1-38.
- Fauriat, W. et N. Gayton (2014). "AK-SYS: An adaptation of the AK-MCS method for system reliability". In: Reliability Engineering and System Safety 123, p. 137-144. issn: 09518320. doi: 10.1016/j.ress.2013.10.010.
- Ghanem, By Roger G, Associate Member et Pol D Spanos (1991). "Spectral stochastic finite-element formulation for reliability analysis". In: Journal of Engineering Mechanics 117.10, p. 2351-2372.
- Jiang, Chen et al. (2020). "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces". In: Reliability Engineering and System Safety 198.2019, p. 106906. issn: 09518320. doi: 10.1016/j.ress.2020.106906.
 - Yun, Wanying et al. (2019). "AK-SYSi: an improved adaptive Kriging model for system reliability analysis with multiple failure modes by a refined U learning function". In: Structural and Multidisciplinary Optimization 59.1, p. 263-278. issn: 16151488. doi: 10.1007/s00158-018-2067-3.