Applicant:

Pironti, et al.

Application No.:

09/839,759

Docket No: Page 2

1085-2

IN THE CLAIMS

Please amend claims 1, 12 and 14 as follows:

1. (Amended) A process for recovering ethane from a hydrocarbon gas stream having methane, ethane and propane comprising.

providing the hydrocarbon gas stream comprising from about 40% to about 80 % by mole methane, from about 10% to about 50 % by mole ethane and from about 0.5% to about 10 % by mole propane;

cooling the hydrocarbon gas stream by refrigeration to form a cooled hydrocarbon gas stream;

separating the cooled hydrocarbon gas stream into a methane-rich stream and an ethane/propane-rich stream, said methane-rich stream having a first pressure and a first temperature;

expanding said methane-rich stream from said first pressure to a second pressure to lower the temperature of said methane-rich stream from said first temperature to a second temperature to provide a cooling source for said refrigeration, wherein said second pressure is lower than said first pressure and further wherein said second temperature is lower than said first temperature;

separating said ethane/propane-rich stream into an ethane-rich stream and a propane-rich stream; and

recovering said ethane-rich stream.

Applicant:

Pironti, et al.

Application No.:

09/839,759

Docket No:

1085-2

Page 3

12. (Amended) A process for recovering ethane from a methane, ethane and propane containing gas stream comprising:

providing the hydrocarbon gas stream comprising from about 40% to about 80 % by mole methane, from about 10% to about 50 % by mole ethane and from about 0.5% to about 10 % by mole propane;

cooling the hydrocarbon gas stream in a cryogenic heat exchanger to form a cooled hydrocarbon gas stream;

distilling the cooled hydrocarbon gas stream in a demethanizer column to form a methane-rich stream and an ethane/propane-rich stream;

compressing said methane-rich stream to form a compressed methane-rich stream; cooling said compressed methane-rich stream to form a compressed methane-rich stream; turboexpanding said compressed methane-rich stream to a lower pressure to provide a cooling source for said cryogenic heat exchanger;

distilling said ethane/propane-rich stream in a de-ethanizer column to form an ethane-rich stream and a propane-rich stream; and

recovering said ethane-rich stream.

14. (Amended) A process for providing a methane-rich stream from a hydrocarbon stream containing methane, ethane and propane comprising:

providing the hydrocarbon gas stream comprising from about 40% to about 80 % by mole methane, from about 10% to about 50 % by mole ethane and from about 0.5% to about 10 % by mole propane;

cooling the hydrocarbon gas stream by refrigeration to form a cooled hydrocarbon gas stream;

separating the cooled hydrocarbon gas stream into a methane-rich stream and an ethane/propane-rich stream, said methane-rich stream having a first pressure and a first

A2

A3

Applicant:

Pironti, et al.

Application No.:

09/839,759

Docket No:

1085-2

Page 4

temperature;

expanding said methane-rich stream from said first pressure to a second pressure to lower the temperature of said methane-rich stream from said first temperature to a second temperature to provide a cooling source for said refrigeration, wherein said second pressure is lower than said first pressure and further wherein said second temperature is lower than said first temperature; recovering said methane-rich stream.

Please cancel claim 6 without prejudice.