HUF75545P3, HUF75545S3, HUF75545S3S

Data Sheet September 2002

75A, 80V, 0.010 Ohm, N-Channel, UltraFET® Power MOSFET

Packaging

Symbol

Features

- Ultra Low On-Resistance
 - $r_{DS(ON)} = 0.010\Omega$, $V_{GS} = 10V$
- · Simulation Models
 - Temperature Compensated PSPICE® and SABER™ Electrical Models
 - Spice and SABER Thermal Impedance Models
 - www.fairchildsemi.com
- · Peak Current vs Pulse Width Curve
- · UIS Rating Curve

Ordering Information

PART NUMBER	PACKAGE	BRAND
HUF75545P3	TO-220AB	75545P
HUF75545S3	TO-262AA	75545S
HUF75545S3S	TO-263AB	75545S

NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-263AB variant in tape and reel, e.g., HUF75545S3ST.

HUF75545P3, HUF75545S3,

Absolute Maximum Ratings $T_C = 25^{\circ}C$, Unless Otherwise Specified

	1101 733431 3, 1101 7334333	,
	HUF75545S3S	UNITS
Drain to Source Voltage (Note 1)V _{DSS}	80	V
Drain to Gate Voltage ($R_{GS} = 20k\Omega$) (Note 1)	80	V
Gate to Source Voltage	±20	V
Drain Current		
Continuous (T _C = 25 ^o C, V _{GS} = 10V) (Figure 2)	75	Α
Continuous (T_C = 100 0 C, V_{GS} = 10V) (Figure 2)	73	Α
Pulsed Drain Current	Figure 4	
Pulsed Avalanche Rating	Figure 6	
Power Dissipation	270	W
Derate Above 25 ^o C	1.8	W/oC
Operating and Storage Temperature	-55 to 175	οС
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	οС
Package Body for 10s, See Techbrief TB334T _{pkq}	260	οС
NOTES:		

^{1.} $T_{.J} = 25^{\circ}C$ to $150^{\circ}C$.

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Product reliability information can be found at http://www.fairchildsemi.com/products/discrete/reliability/index.html
For severe environments, see our Automotive HUFA series.

All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.

HUF75545P3, HUF75545S3, HUF75545S3S

Electrical Specifications $T_C = 25^{\circ}C$, Unless Otherwise Specified

PARAMETER	SYMBOL	TES	T CONDITIONS	MIN	TYP	MAX	UNITS
OFF STATE SPECIFICATIONS					•		
Drain to Source Breakdown Voltage	BV _{DSS}	I _D = 250μA, V _{GS} = 0	OV (Figure 11)	80	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 75V, V _{GS} = 0)V	-	-	1	μΑ
		V _{DS} = 70V, V _{GS} = 0	OV, T _C = 150 ^o C	-	-	250	μΑ
Gate to Source Leakage Current	I _{GSS}	V _{GS} = ±20V		-	-	±100	nA
ON STATE SPECIFICATIONS	ı			<u> </u>	1		-
Gate to Source Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = 25$	0μA (Figure 10)	2	-	4	V
Drain to Source On Resistance	r _{DS(ON)}	I _D = 75A, V _{GS} = 10	V (Figure 9)	-	0.0082	0.010	Ω
THERMAL SPECIFICATIONS	1			1	1		
Thermal Resistance Junction to Case	$R_{\theta JC}$	TO-220 and TO-263	}	-	-	0.55	oC/W
Thermal Resistance Junction to Ambient	$R_{\theta JA}$			-	-	62	oC/W
SWITCHING SPECIFICATIONS (VGS	= 10V)	1					1
Turn-On Time	t _{ON}	V _{DD} = 40V, I _D = 75	$V_{DD} = 40V, I_{D} = 75A$ $V_{GS} = 10V,$ $R_{GS} = 2.5\Omega$		-	210	ns
Turn-On Delay Time	t _d (ON)	$V_{GS} = 10V$, $R_{GS} = 2.5\Omega$			14	-	ns
Rise Time	t _r			-	125	-	ns
Turn-Off Delay Time	t _{d(OFF)}				40	-	ns
Fall Time	t _f				90	-	ns
Turn-Off Time	tOFF			-	-	195	ns
GATE CHARGE SPECIFICATIONS	1			*		I	1
Total Gate Charge	Q _{g(TOT)}	V _{GS} = 0V to 20V	V _{DD} = 40V,	-	195	235	nC
Gate Charge at 10V	Q _{g(10)}	V _{GS} = 0V to 10V	$I_D = 75A,$ $I_{g(REF)} = 1.0mA$	-	105	125	nC
Threshold Gate Charge	Q _{g(TH)}	V _{GS} = 0V to 2V	(Figure 12)	-	6.8	8.2	nC
Gate to Source Gate Charge	Q _{gs}			-	15	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			-	43	-	nC
CAPACITANCE SPECIFICATIONS	*	•		'		•	
Input Capacitance	C _{ISS}	$V_{DS} = 25V, V_{GS} = 0$	OV,	-	3750	-	pF
Output Capacitance	C _{OSS}	f = 1MHz (Figure 12)		-	1100	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	350	-	pF
		<u> </u>			1	1	

Source to Drain Diode Specifications

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Source to Drain Diode Voltage	V _{SD}	I _{SD} = 75A	-	-	1.25	V
		I _{SD} = 35A	-	-	1.00	٧
Reverse Recovery Time	t _{rr}	$I_{SD} = 75A$, $dI_{SD}/dt = 100A/\mu s$	-	-	100	ns
Reverse Recovered Charge	Q _{RR}	I _{SD} = 75A, dI _{SD} /dt = 100A/μs	-	-	300	nC

Typical Performance Curves

80 V_{GS} = 10V V_{GS} = 10V V_{GS} = 10V 175 T_C, CASE TEMPERATURE (°C)

FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE

FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE

FIGURE 4. PEAK CURRENT CAPABILITY

Typical Performance Curves (Continued)

FIGURE 5. FORWARD BIAS SAFE OPERATING AREA

FIGURE 7. TRANSFER CHARACTERISTICS

FIGURE 9. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE

NOTE: Refer to Fairchild Application Notes AN9321 and AN9322.

FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY

FIGURE 8. SATURATION CHARACTERISTICS

FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE

FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE

NOTE: Refer to Fairchild Application Notes AN7254 and AN7260.

FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT

Test Circuits and Waveforms

FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT

FIGURE 15. UNCLAMPED ENERGY WAVEFORMS

FIGURE 16. GATE CHARGE TEST CIRCUIT

FIGURE 17. GATE CHARGE WAVEFORMS

FIGURE 18. SWITCHING TIME TEST CIRCUIT

FIGURE 19. SWITCHING TIME WAVEFORM

PSPICE Electrical Model

.SUBCKT HUF75545 2 1 3; rev 21 May 1999

CA 12 8 5.4e-9 CB 15 14 5.3e-9 CIN 6 8 3.4e-9

DBODY 7 5 DBODYMOD LDRAIN DBREAK 5 11 DBREAKMOD **DPLCAP** DRAIN **DPLCAP 10 5 DPLCAPMOD** -02 10 RLDRAIN ≷RSLC1 EBREAK 11 7 17 18 87.4 DBREAK EDS 14 8 5 8 1 51 RSLC2 EGS 13 8 6 8 1 **ESLC** ESG 6 10 6 8 1 11 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 50 17 18 DBODY RDRAIN **EBREAK ESG** IT 8 17 1 **EVTHRES** 16 21 19 8 **MWEAK** LDRAIN 2 5 1.0e-9 LGATE **EVTEMP** LGATE 1 9 5.1e-9 GATE RGATE 18 22 LSOURCE 3 7 4.4e-9 MMFD 20 MSTRO RLGATE MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD **LSOURCE** CIN SOURCE MWEAK 16 21 8 8 MWEAKMOD 8 3 **RSOURCE** RBREAK 17 18 RBREAKMOD 1 RLSOURCE RDRAIN 50 16 RDRAINMOD 4.80e-3 O S2A RGATE 9 20 0.87 S₁A **RBREAK** RI DRAIN 2 5 10 14 13 13 15 17 18 **RLGATE 1 9 51** 8 RLSOURCE 3 7 44 S1B RVTFMP S₂B RSLC1 5 51 RSLCMOD 1e-6 СВ 19 RSLC2 5 50 1e3 CA IT RSOURCE 8 7 RSOURCEMOD 1.6e-3 RVTHRES 22 8 RVTHRESMOD 1 **VBAT** <u>5</u> RVTEMP 18 19 RVTEMPMOD 1 **EGS EDS** 8 S1A 6 12 13 8 S1AMOD S1B 13 12 13 8 S1BMOD **RVTHRES** S2A 6 15 14 13 S2AMOD S2B 13 15 14 13 S2BMOD

VBAT 22 19 DC 1

ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*320),3))}

```
.MODEL DBODYMOD D (IS = 3.6e-12 RS = 2.1e-3 TRS1 = 1.5e-3 TRS2 = 5.1e-6 CJO = 4.6e-9 TT = 3.3e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 2.3e-1 TRS1 = 0 TRS2 = -1.8e-5)
.MODEL DPLCAPMOD D (CJO = 4.8e-9 IS = 1e-30 N = 10 VJ = 1 M = 0.8)
MODEL MMEDMOD NMOS (VTO = 3.04 KP = 6 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.87)
.MODEL MSTROMOD NMOS (VTO = 3.5 KP = 105 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
MODEL MWEAKMOD NMOS (VTO = 2.65 KP = 0.12 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 8.7 )
.MODEL RBREAKMOD RES (TC1 = 1.3e-3 TC2 = -1e-6)
.MODEL RDRAINMOD RES (TC1 = 9e-3 TC2 = 2.8e-5)
.MODEL RSLCMOD RES (T\dot{C}1 = 1.53e-3 TC2 = 2e-5)
.MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6)
.MODEL RVTHRESMOD RES (TC1 = -2.3e-3 TC2 = -1.2e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.9e-3 TC2 = 5e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -5 VOFF= -3)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3 VOFF= -5)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -1.5 VOFF= 0.5)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 0.5 VOFF= -1.5)
```

.ENDS

NOTE: For further discussion of the PSPICE model, consult **A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options**; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.

SABER Electrical Model

REV 21 may 1999

```
template huf75545 n2,n1,n3
electrical n2,n1,n3
var i iscl
d..model dbodymod = (is = 3.6e-12, cjo = 4.6e-9, tt = 3.3e-8, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 4.8e-9, is = 1e-30, vj=1.0, m = 0.8)
m..model mmedmod = (type=_n, vto = 3.04, kp = 6, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.5, kp = 105, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.65, kp = 0.12, is = 1e-30, tox = 1)
                                                                                                                               LDRAIN
                                                                                 DPLCAP
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -5, voff = -3)
                                                                                            5
                                                                                                                                          DRAIN
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3, voff = -5)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -1.5, voff = 0.5)
                                                                                                                              RLDRAIN
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.5, voff = -1.5)
                                                                                              RSLC1
                                                                                                          RDBREAK
                                                                                              51
                                                                               RSLC2
c.ca n12 n8 = 5.4e-9
                                                                                                                   72
                                                                                                                               RDBODY
c.cb n15 n14 = 5.3e-9
                                                                                                ISCL
c.cin n6 n8 = 3.4e-9
                                                                                                            DBREAK 
                                                                                              50
d.dbody n7 n71 = model=dbodymod
                                                                                              RDRAIN
                                                                            <u>6</u>
8
d.dbreak n72 n11 = model=dbreakmod
                                                                      ESG
                                                                                                                    11
                                                                                  EVTHRES
d.dplcap n10 n5 = model=dplcapmod
                                                                                              21
                                                                                     (<u>19</u>)
                                                                                                             MWEAK
                                                                    EVTEMP
                                                   LGATE
i.it n8 n17 = 1
                                                                                                                            ▲ DBODY
                                                            RGATE
                                         GATE
                                                                                                              EBREA
                                                                                                     MMED
I.ldrain n2 n5 = 1e-9
                                                                   20
I.lgate n1 n9 = 5.1e-9
                                                                                             MSTR
                                                  RLGATE
I.Isource n3 n7 = 4.4e-9
                                                                                                                              LSOURCE
                                                                                        CIN
                                                                                                                                         SOURCE
                                                                                                  8
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u
                                                                                                             RSOURCE
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u
                                                                                                                              RLSOURCE
                                                                                                                 RBREAK
res.rbreak n17 n18 = 1, tc1 = 1.3e-3, tc2 = -1e-6
                                                                                                             17
res.rdbody n71 n5 = 2.1e-3, tc1 = 1.5e-3, tc2 = 5.1e-6
res.rdbreak n72 n5 = 2.3e-1, tc1 = 0, tc2 = -1.8e-5
                                                                                                                             RVTEMP
res.rdrain n50 n16 = 4.8e-3, tc1 = 9e-3, tc2 = 2.8e-5
                                                                                       СВ
                                                                                                                             19
res.rgate n9 n20 = 0.87
                                                              CA
                                                                                                            т (
res.rldrain n2 n5 = 10
res.rlgate n1 n9 = 51
                                                                                                                              VBAT
                                                                        EGS
                                                                                    EDS
res.rlsource n3 n7 = 44
res.rslc1 n5 n51 = 1e-6, tc1 = 1.53e-3, tc2 = 2e-5
                                                                                                          8
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 1.6e-3, tc1 = 1e-3, tc2 = 1e-6
                                                                                                                 RVTHRES
res.rvtemp n18 n19 = 1, tc1 = -2.9e-3, tc2 = 5e-7
res.rvthres n22 n8 = 1, tc1 = -2.3e-3, tc2 = -1.2e-5
spe.ebreak n11 n7 n17 n18 = 87.4
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/320))**3))
```

SPICE Thermal Model

REV 21 May 1999

HUF75545T

CTHERM1 th 6 6.4e-3
CTHERM2 6 5 3.0e-2
CTHERM3 5 4 1.4e-2
CTHERM4 4 3 1.6e-2
CTHERM5 3 2 5.5e-2
CTHERM6 2 tl 1.5

RTHERM1 th 6 3.2e-3
RTHERM2 6 5 8.1e-3
RTHERM3 5 4 2.3e-2
RTHERM4 4 3 1.3e-1
RTHERM5 3 2 1.8e-1
RTHERM6 2 tl 3.8e-2

SABER Thermal Model

SABER thermal model HUF75545T

```
template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6=6.4e\text{-}3 ctherm.ctherm2 6.5=3.0e\text{-}2 ctherm.ctherm3 5.4=1.4e\text{-}2 ctherm.ctherm4 4.3=1.6e\text{-}2 ctherm.ctherm5 3.2=5.5e\text{-}2 ctherm.ctherm6 2.11=1.5 rtherm.rtherm1 th 6=3.2e\text{-}3 rtherm.rtherm2 6.5=8.1e\text{-}3 rtherm.rtherm3 5.4=2.3e\text{-}2 rtherm.rtherm4 5.4=2.3e\text{-}2 rtherm.rtherm5 5.2=1.8e\text{-}1 rtherm.rtherm6 5.2=1.8e\text{-}1 rtherm.rtherm6 5.2=1.8e\text{-}2
```


TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

	ACEx™	FACT™	ImpliedDisconnect™	PACMAN™	SPM™
	ActiveArray™	FACT Quiet Series™	ISOPLANAR™	POP™	Stealth™
	Bottomless™	FAST [®]	LittleFET™	Power247™	SuperSOT™-3
	CoolFET™	FASTr™	MicroFET™	PowerTrench [®]	SuperSOT™-6
	CROSSVOLT™	FRFET™	MicroPak™	QFET™	SuperSOT™-8
	DOME™	GlobalOptoisolator™	MICROWIRE™	QS™	SyncFET™
	EcoSPARK™	GTO™	MSX™	QT Optoelectronics™	TinyLogic™
	E ² CMOS™	HiSeC™	MSXPro™	Quiet Series™	TruTranslation™
	EnSigna™	I ² C™	OCX^{TM}	RapidConfigure™	UHC™
	Across the board.	Around the world.™	OCXPro™	RapidConnect™	UltraFET [®]
The Power Franchise™			OPTOLOGIC [®]	SILENT SWITCHER®	VCX^{TM}
Programmable Active Droop™		OPTOPLANAR™	SMART START™		

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	No Identification Needed Full Production This datasheet contains fin Semiconductor reserves the any time without notice in the semiconductor reserves the se	
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.