Introdução aos Word Embeddings

Word Embeddings são representações vetoriais densas de palavras que capturam relações semânticas em um espaço multidimensional.

- Transformam palavras em vetores numéricos
- Capturam significado e contexto
- Permitem operações matemáticas com palavras
- Base para modelos de NLP modernos

Limitações das Representações One-Hot

A Problemas do One-Hot

Alta dimensionalidade: Tamanho = vocabulário

Esparsidade extrema: Apenas 1 posição ativa

Sem relações semânticas: Todas palavras igualmente

distantes

Ineficiência computacional: Muito espaço

desperdiçado

Vantagens dos Embeddings Densos

Baixa dimensionalidade: 50-300 dimensões

Representação densa: Todos valores significativos

Relações semânticas: Palavras similares próximas

Eficiência: Menos parâmetros, mais informação

Hipótese Distribucional

"Palavras que aparecem em contextos similares tendem a ter significados similares"

— J.R. Firth (1957)

Princípio Fundamental

Contexto define significado: Palavras vizinhas

Padrões de co-ocorrência: Frequência conjunta

Base para: Word2Vec, GloVe e FastText

Operações Vetoriais e Analogias

Word embeddings permitem realizar **operações algébricas** com palavras, capturando relações semânticas complexas.

A famosa analogia:

rei - homem + mulher ≈ rainha

Outras analogias possíveis:

Paris - França + Itália ≈ Roma (capitais)

Carro - roda + asa ≈ Avião (transportes)

Médico - homem + mulher ≈ Médica (profissões)

Estas operações funcionam porque os embeddings **codificam relações** entre conceitos no espaço vetorial, permitindo **raciocínio analógico**.

Visualização de Embeddings

Embeddings existem em espaços de **alta dimensionalidade** (50-300 dimensões), mas podemos visualizá-los em 2D/3D usando técnicas de **redução de dimensionalidade**.

Técnicas de Visualização

PCA: Preserva variância global

t-SNE: Preserva estrutura local

UMAP: Equilíbrio entre estrutura local e global

Insights da Visualização

Palavras semanticamente similares formam clusters

Relações análogas aparecem como vetores paralelos

Distância entre palavras indica similaridade semântica

Aplicações Práticas

Word embeddings são fundamentais para diversas aplicações de **Processamento de Linguagem Natural** e **Inteligência Artificial**.

▲☑ Tradução Automática

Mapeamento entre espaços vetoriais de diferentes idiomas

Análise de Sentimento

Detecção de emoções e opiniões em textos

Classificação de Documentos

Categorização automática de textos por tópico

Chatbots e Assistentes Virtuais

Compreensão de linguagem natural e geração de respostas

APPLICATIONS OF WORD EMBEDDINGS MACHINE **DOCUMENT** SENTIMENT **TRANSLATION CLASSIFICATION ANALYSIS SEARCH CHATBOTS** RECOMMENDATION **ENGINES SYSTEMS**