0. Allgemeines

$F = \frac{As}{V} = \frac{s}{\Omega}$ $H = \frac{Vs}{\Lambda} = \Omega s$

$$\sin(\omega t) = \frac{e^{j\omega t} - e^{-j\omega t}}{2j} \qquad \Rightarrow e^{j\omega t} - e^{-j\omega t} = 2j \cdot \sin(\omega t)$$
$$\cos(\omega t) = \frac{e^{j\omega t} + e^{-j\omega t}}{2} \qquad \Rightarrow e^{j\omega t} + e^{-j\omega t} = 2 \cdot \cos(\omega t)$$

$$e^{-jx} = \cos(x) - j \cdot \sin(x)$$

$$\sin(-x) = -\sin(x)$$

$$\cos(-x) = \cos(x)$$

$$i = C \cdot \frac{du}{dt}$$

$$z \rightarrow s \rightarrow j\omega$$
 (mit $z = e^{sT_a}$)

$$u = \frac{1}{c} \cdot \int i \, dt$$

Dirac-Impuls:
$$\lim_{T \to 0} \left(\frac{\sigma(t) - \sigma(t - T)}{T} \right) = \delta(t)$$
 $u = L \cdot \frac{di}{dt}$

$$u = L \cdot \frac{di}{dt}$$

$$\delta(t) = \frac{d\sigma(t)}{dt} \rightarrow \sigma(t) = \int_{-\infty}^{t} \delta(\tau) d\tau \quad i = \frac{1}{L} \cdot \int u dt$$

$$i = \frac{1}{L} \cdot \int u \, d$$

Energiegehalt Spule/Kondensator:

keine Energie wenn:

- → Kondensator: es liegt keine Spannung an
- → Spule: es fließt kein Strom

Mitternachtsformel: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$(312) \int e^{ax} dx = \frac{1}{a} \cdot e^{ax}$$

(313)
$$\int x \cdot e^{ax} dx = \left(\frac{ax - 1}{a^2}\right) \cdot e^{ax}$$

(314)
$$\int x^2 \cdot e^{ax} dx = \left(\frac{a^2 x^2 - 2ax + 2}{a^3}\right) \cdot e^{ax}$$

4. Systembeschreibung im Zeitbereich (DGL)

allg. DGL zur Beschreibung von LTI-Systemen:

 $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$ (reale Syst. immer $m \le n!$) homogene Lösung berechnen (Eigenverhalten des Systems):

- 1. rechte Seite gleich 0 setzen
- 2. charakteristische Gleichung: $a_n s^n + a_{n-1} s^{n-1} + \cdots + a_1 s + a_0 = 0$
- 2. wenn s_i Einfachpole: $y_h(t) = \sum_{i=1}^n A_i \cdot e^{s_i t}$ (mit A_i als Konstanten (Ermittlung aus Anfangsbed.) u. s_i als NS aus charakterist. Gleichung)
- 3. wenn s_i Mehrfachpole:

$$y_h(t) = \sum_{\lambda=1}^{i} (A_{\lambda} \cdot e^{s_{\lambda}t}) + e^{s_{i}t} \cdot (A_{i} + A_{i+1} \cdot t + \dots + A_{i+k-1} \cdot t^{k-1}) + \sum_{\lambda=i+k}^{n} (A_{\lambda} \cdot e^{s_{\lambda}t})$$

3. Systeme

Eigenschaften

Linearität

System linear, wenn aus $u_3 = k_1u_1 + k_2u_2$ folgt: $u_3 \Rightarrow y_3 = k_1y_1 + k_2y_2$ (mit k_1 , k_2 = const.) Zeitinvarianz

Zeitverschiebung des Eingangssignals muss zur gleichen Zeitverschiebung im Ausgangssignal führen: $u(t-T_0) \Rightarrow y(t-T_0)$

Faustregel: Koeffizienten von Ein- u. Ausgangssignal müssen zeitlich konstant sein

Kausalität: Verlauf Ausgangssignal zu jedem Zeitpunkt nur von Verlauf Eingangssignal zu jedem Zeitp. abhängig

Stabilität: jedes beschränkte Eingangssignal hat ein beschränktes Ausgangssignal zur Folge

Blockschaltbilder

Ladekurve

$$a_1(t) = \left(1 - e^{\frac{-t}{T_1}}\right) \cdot \sigma(t)$$

$$A_1(s) = \frac{1}{s(1 + sT_1)}$$

$$g(t) = \frac{1}{T_1} e^{\frac{-t}{T_1}} \cdot \sigma(t)$$

$$G_1(s) = \frac{1}{T_1} e^{\frac{-t}{T_1}} \cdot \sigma(t)$$

$$G_1(s) = \frac{1}{1 + sT_1}$$

Verstärker

entspricht Multiplikation mit einer Konstanten $Y = V \cdot U$

aus: $f(t) = H \cdot \left(rect\left(\frac{t}{T_t'}\right) \times rect\left(\frac{t}{T_2'}\right) \right)$ folgt: $F(\omega) = 4 \cdot H \cdot \frac{\sin\left(\frac{\omega}{2} \cdot T_1'\right) \cdot \sin\left(\frac{\omega}{2} \cdot T_2'\right)}{\omega^2}$

$$y(t) = \int_0^t u(\tau)d\tau$$

$$Y(s) = \frac{1}{sT_1} \cdot U(s)$$

$$G(s) = \frac{1}{sT_1} \cdot U(s)$$

$$G(s) = \frac{1}{sT_1}$$

nicht-lineares System durch Doppellinie gekennzeichnet

Faltung zweier rect-Funktionen (ergibt Trapez)

mit: $H = \frac{A}{T'}$ $T_1' = \frac{T_3 - T_2}{2}$ $T_2' = \frac{T_3 + T_2}{2}$

Sprung- u. Impulsantwort

Sprungantwort auf Einheitssprung $\sigma(t)$: a(t)

Bsp CR-Hochpass
$$\rightarrow a(t) = e^{-\frac{t}{RC}} \cdot \sigma(t)$$

Impulsantwort auf Einheitsimpuls $\delta(t)$: g(t)

Bsp RC-Tiefpass
$$\rightarrow g(t) = \frac{1}{RC} e^{-\frac{t}{RC}} \cdot \sigma(t)$$

$$g(t) = \frac{da(t)}{dt}$$
 $\Rightarrow a(t) = \int_{-\infty}^{t} g(\tau) d\tau$

Faltung

allg.: $y(t) = \int_{-\infty}^{\infty} u(\tau) \cdot g(t-\tau) d\tau = \int_{-\infty}^{\infty} u(t-\tau) \cdot g(\tau) d\tau$ für LTI u. rechtsseitige Eingangssignale gilt:

$$y(t) = \int_0^t u(\tau) \cdot g(t - \tau) d\tau$$

Sprungantwort PT₁-Glied

DGL RC-Glied: $T \frac{dy(t)}{dt} + y(t) = u(t)$ (T = RC)

$$\Rightarrow \frac{a(t) = \left(1 - e^{-\frac{t}{T}}\right) \cdot \sigma(t)}{a(t)}$$
 (Ladekurve C)

Sprungantwort PT2-Glied (Proportionalglied mit Verzögerung 2. Ordnung)

DGL RLC-Serienschwingkr.: $LC\frac{d^2y(t)}{dt^2} + RC\frac{dy(t)}{dt} + y(t) = u(t)$

Standard: $\frac{1}{\omega_0^2} \cdot \frac{d^2 y(t)}{dt^2} + \frac{2D}{\omega_0} \cdot \frac{dy(t)}{dt} + y(t) = u(t)$ Kennkreisfr. $\omega_0 = \frac{1}{\sqrt{LC}}$, Dämpfung $D = \frac{R}{2} \sqrt{\frac{C}{L}}$ charakteristische Gleichung: $\frac{1}{3}s^2 + \frac{2D}{3}s + 1 = 0$ \rightarrow Pole: $\frac{1}{3}(a^2 + b^2) + \frac{1}{3}(a^2 + b^2)$

1. Fall: D < 1: $a(t) = \left| 1 - e^{-D\omega_0 t} \cdot \left(\cos \left(\omega_0 \sqrt{1 - D^2} \cdot t \right) + \frac{D}{\sqrt{1 - D^2}} \sin \left(\omega_0 \sqrt{1 - D^2} \cdot t \right) \right) \right| \cdot \sigma(t)$

2. Fall: D = 1 (aperiod. Grenzfall): $a(t) = \left[1 - e^{-\frac{t}{T}} \left(1 + \frac{t}{T}\right)\right] \cdot \sigma(t)$

3. Fall: D > 1 (aperiod. Dämpfung): $a(t) = \left(1 - \frac{T_1}{T_1 - T_2} \cdot e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} \cdot e^{-\frac{t}{T_2}}\right) \cdot \sigma(t)$

5. Signal- und Systembeschreibung im Frequenzbereich

Fourier-Reihe

Fourier-Reihe allgemein: $x(t) = x_0 + \sum_{n=1}^{\infty} \hat{x}_n \cdot \cos(n\omega_0 t + \alpha_n)$

 $(x_0 = \text{Gleichanteil}, \hat{x}_n = \text{Amplituden}, \alpha_n = \text{Phasenverschiebung}, \omega_0 = \frac{2\pi}{T_0} = \text{Grundkreisfrequenz})$

Fourier-Reihe komplex: $x(t) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{jn\omega_0 t}$ (Synthesegleichung)

mit
$$c_n = \frac{1}{T_0} \cdot \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} x(t) \cdot e^{-jn\omega_0 t} dt$$
 (Analysegleichung) Symmetrien nutzen

Parsevalsches Theorem für Effektivwerte: $\frac{1}{T_0} \int_0^{T_0} |x(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2 = X_{eff}^2 \rightarrow \text{Wurzel}$

Parsevalsches Theorem allgemein: $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

Fourier-Transformation (FT)

Unterschied zur Fourier-Reihe:

Fourier-Reihe: periodisches Signal, dargestellt durch überlagerte sin- u./od. cos-Funktionen Fourier-Transformation: aperiodisches Signal; Betrachtung einer unendlichen langen Periode T

 \rightarrow Abstände im Spektrum verkleinern sich stets $\left(\frac{1}{T}\right)$, sodass FT die Fkt der ∞ vielen Koeffizienten darstellt

FT allgemein: $X(j\omega) = \int_{-\infty}^{\infty} x(t) \cdot e^{-j\omega t} dt$

Zusammenhänge Übergang periodisch → aperiodisch:

Rücktransformation: $x(t) = \frac{1}{2\pi} \cdot \int_{-\infty}^{\infty} X(j\omega) \cdot e^{j\omega t} d\omega$

periodisch		aperiodisch
<i>n</i> ∙∞₀	\rightarrow	ω
ω ₀	\rightarrow	$d\omega$
$T_0 \cdot c_n = \underbrace{X(jn\omega_0)}_{ \begin{subarray}{c} Fourier-Transformierte \\ ander Stelle\omega = n \cdot \omega_0 \end{subarray}}$	\rightarrow	$X(j\omega)$

Faltung: aus $y(t) = \int_{-\infty}^{\infty} u(\tau) \cdot g(t-\tau) d\tau$ folgt: $Y(j\omega) = G(j\omega) \cdot U(j\omega)$

<u>Parsevalsches Theorem</u>: $\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$

für reelle Signale: $\int_{-\infty}^{\infty} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(j\omega)|^2 d\omega$ $\rightarrow \int_{-\infty}^{\infty} x^2(t) dt = \text{normierter Energiegehalt}$

FT reeller Zeitfunktionen (in realen Systemen auftretende Signale immer reell)

jede Fkt in geraden u. ungeraden Anteil zerlegbar: $u(t) = \frac{u_g(t)}{u_g(t)} + \frac{u_u(t)}{u_g(t)} = \frac{u(-t)}{2} + \frac{u(t)}{2} + \left(-\frac{u(-t)}{2} + \frac{u(t)}{2}\right)$

- → Koeffizienten einer rein <u>ungeraden</u> Fkt sind rein <u>imaginär</u> (nur Sinus-Terme)
- → Koeffizienten einer rein geraden Fkt sind rein reell (nur Cosinus-Terme)

nach FT: $Re(U(j\omega)) = R(\omega) = \int_{-\infty}^{\infty} u_g(t) \cdot \cos(\omega t) dt$ und $Im(U(j\omega)) = X(\omega) = -\int_{-\infty}^{\infty} u_u(t) \cdot \sin(\omega t) dt$ Aus FT folgt: $|G(j\omega_0)| = |G(-j\omega_0)| \rightarrow \text{gerade Fkt}$ und $\varphi(-\omega_0) = -\varphi(\omega_0) \rightarrow \text{ungerade Fkt}$.

ightarrow Wenn u(t) reell, muss Amplitudengang gerade und Phasengang ungerade Funktion in ω sein

 $R(\omega) = \int_{-\infty}^{\infty} u_g(t) \cdot \cos(\omega t) dt = \int_{-\infty}^{\infty} u_g(t) \cdot e^{-j\omega t} dt = U_g(j\omega)$ $jX(\omega) = \int_{-\infty}^{\infty} u_u(t) \cdot \sin(\omega t) dt = \int_{-\infty}^{\infty} u_u(t) \cdot e^{-j\omega t} dt = U_u(j\omega)$

 \rightarrow FT des geraden Anteils von u(t) identisch mit Realteil von $U(j\omega)$, und FT des ungeraden Anteils von u(t) identisch mit Imaginärteil von $U(j\omega)$

Eigenschaft	Zeitbereich	Frequenzbereich
Linearität	$a \cdot u_1(t) + b \cdot u_2(t)$	$a \cdot U_1(j\omega) + b \cdot U_2(j\omega)$
Verschiebung	$u(t-T) \ u(t) \cdot e^{j\omega_0 t}$	$e^{-j\omega au}\cdot U(j\omega) \ U(j\omega-j\omega_0)$
Differentiation	$\frac{\frac{du(t)}{dt}}{(-jt)^n u(t)}$	$ \frac{j\omega \cdot U(j\omega)}{\frac{d^n}{d\omega^n}}U(j\omega) $
Integration	$\int\limits_{-\infty}^t u(\tau)d\tau$	$\frac{1}{j\omega}\cdot U(j\omega) + \pi\cdot U(0)\cdot\delta(\omega)$
Faltung	$\int_{-\infty}^{\infty} u(\tau) \cdot g(t-\tau) d\tau = u(t) * g(t)$	$G(j\omega)\cdot U(j\omega)$
Multiplikation	$2\pi \cdot u_1(t) \cdot u_2(t)$	$U_1(j\omega)^* U_2(j\omega)$
Symmetrie	u(t) $U(jt)$	$U(j\omega) \\ 2\pi \cdot u(-\omega)$

Zeitfunktion x(t)	Fourier-Transformierte X(j\o)
δ(<i>t</i>)	1
1	$2\pi\delta(\omega)$
$\operatorname{rect}\!\left(rac{t}{T} ight)$	$T \cdot \operatorname{si}\left(\frac{\omega T}{2}\right)$
$\operatorname{si}\left(\pi \frac{t}{T}\right)$	$ au \cdot \operatorname{rect}\!\left(rac{\omega au}{2\pi} ight)$
$e^{-\frac{t}{T}} \cdot \sigma(t) (T > 0)$	$\frac{T}{1+j\omega T}$
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	gleiche Amplitude: $\frac{2\pi}{T} \cdot \sum_{n=-\infty}^{\infty} \delta \left(\omega - n \frac{2\pi}{T} \right)$
$\mathrm{e}^{j\omega_0t}$	$2\pi\cdot\delta(\omega-\omega_0)$
$\cos(\omega_0 t + \varphi)$	$\pi \Big[\mathbf{e}^{j\phi} \cdot \delta \big(\omega - \omega_0 \big) + \mathbf{e}^{-j\phi} \cdot \delta \big(\omega + \omega_0 \big) \Big]$
$\sin(\omega_0 t + \varphi)$	$\frac{\pi}{j} \Big[\mathbf{e}^{j\varphi} \cdot \delta(\omega - \omega_0) - \mathbf{e}^{-j\varphi} \cdot \delta(\omega + \omega_0) \Big]$

Rechteckimpuls

$$x(t) = rect\left(\frac{t}{\tau}\right)$$

$$\leftrightarrow X(j\omega) = T \cdot si\left(\frac{\omega}{2} \cdot T\right)$$

2; sin (200)

FT bei periodischen Signalen

$$x(t) = \sum_{n = -\infty}^{\infty} c_n \cdot e^{jn\omega_0 t} \quad \to \quad X(j\omega) = 2\pi \sum_{n = -\infty}^{\infty} c_n \cdot \delta(\omega - n\omega_0)$$

- \rightarrow Impulsreihe mit Fläche von komplexen Fourier-Koeffizienten der periodischen Funktion (x 2π)
- → Spektrum des periodischen Signals

Multiplikationssatz

betrifft Faltung im Frequenzbereich:
$$2\pi \cdot u_1(t) \cdot u_2(t) \rightarrow U_1(j\omega) * U_2(j\omega)$$

(Faltungsregel:
$$\delta(\omega - a) * \delta(\omega - b) = \delta(\omega - a - b)$$
) auch: $si(2t) * \delta\left(t + \frac{\pi}{2}\right) = si\left(2\left(t + \frac{\pi}{2}\right)\right)$

Frequenzgang

Herleitung aus DGL:
$$a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$$

folgt:
$$Y(j\omega) \sum_{\nu=0}^{n} a_{\nu} \cdot (j\omega)^{\nu} = U(j\omega) \sum_{\mu=0}^{m} b_{\mu} \cdot (j\omega)^{\mu}$$

$$\Rightarrow \text{Frequenzgang: } \frac{G(j\omega) = \frac{Y(j\omega)}{U(j\omega)} = \frac{\sum_{\mu=0}^{m} b_{\mu} \cdot (j\omega)^{\mu}}{\sum_{\nu=0}^{n} a_{\nu} \cdot (j\omega)^{\nu}}$$

Fourier-Transformation RC-Glied (PT₁):
$$G(j\omega) = \frac{1}{1+j\omega T}$$

$$RLC(PT2): G(j\omega) = \frac{1}{\frac{1}{\omega_0^2}(j\omega)^2 + \frac{2D}{\omega_0}j\omega + 1}$$

Amplitudengang:
$$|G(\omega)| = \frac{|Z|}{|N|} = \frac{\sqrt{Re^2 + Im^2}}{\sqrt{Re^2 + Im^2}}$$

Phasengang:
$$\varphi(\omega) = \arctan\left(\frac{lm_Z}{Re_Z}\right) - \arctan\left(\frac{lm_N}{Re_N}\right) - \arctan\left(\frac{X}{0}\right) = -\frac{\pi}{2}!$$

$$\phi(\omega) = -\left[\arctan\left(\frac{0.2\omega}{1-\omega^2}\right) + \phi_1\right] \quad \text{mit} \ \phi_1 = \begin{cases} 0 & \text{für} & 1-\omega^2 \geq 0\\ 180^\circ & \text{für} & 1-\omega^2 < 0 \text{ und } \omega \geq 0\\ -180^\circ & \text{für} & 1-\omega^2 < 0 \text{ und } \omega < 0 \end{cases}$$

6. Idealisierte Modellsysteme

Dämpfungsmaß:
$$a(\omega) = -20 \cdot \lg(|G(\omega)|) \cdot dB$$

Phasenlaufzeit:
$$au_p = -rac{arphi(\omega)}{\omega} = ext{const.}$$
 bei verzerrungsfreien Systemen

Gruppenlaufzeit (Ableitung von Phasengang)

$$au_g = -rac{d \phi(\omega)}{d \omega} =$$
 bei verzerrungsfreien Systemen const. in entsprech. Frequenzbereich

Frequenzgang idealer Tiefpass

$$G_{TP}(j\omega) = rect\left(\frac{\omega}{2\omega_g}\right) \cdot e^{-j\omega_g \tau_p}$$

Rücktransformation ergibt Impulsantwort:
$$g_{TP}(t) = \frac{\omega_g}{\pi} \cdot si\left(\omega_g \cdot \left(t - \tau_p\right)\right)$$

Bild 6-5: Betrags- und Amplitudenverlauf des idealen Tiefpasses (ω-Achse linear geteilt)

→ idealer Tiefpass nicht realisierbar, da nicht kausal

Zeitdauer-Bandbreite-Produkt:
$$T \cdot B = \frac{2\pi}{\omega_g} \cdot \frac{\omega_g}{2\pi} = 1 = const.$$

→ hohe Bandbreite des TP verbunden mit kurzer Impulsdauer und hoher Flankensteilheit

Idealer Bandpass

$$G_{BP}(\omega) = rect\left(\frac{\omega + \omega_0}{\Delta \omega}\right) + rect\left(\frac{\omega - \omega_0}{\Delta \omega}\right)$$

Rücktransformation ergibt Impulsantwort:

$$g_{BP}(t) = g_{TP}(t) \cdot 2\cos(\omega_0 t) = \frac{\Delta\omega}{\pi} \cdot si\left(\frac{\Delta\omega}{2}t\right) \cdot \cos(\omega_0 t)$$

lässt nur Frequenzen in bestimmtem Bereich passieren

→ verschobener Tiefpass (und an y-Achse gespiegelt, da Frequenzgang immer symm.)

→ idealer Bandpass nicht realisierbar, da nicht kausal

bei gegebenen Pol- und Nullstellen:

$$\varphi(\omega) = +\arctan\left(\frac{\omega - Im_{s01}}{-Re_{s01}}\right) + \arctan\left(\frac{\omega - Im_{s02}}{-Re_{s02}}\right) - \arctan\left(\frac{\omega - Im_{s\infty1}}{-Re_{sm1}}\right) - \arctan\left(\frac{\omega - Im_{s\infty2}}{-Re_{sm2}}\right)$$

7. Laplace-Transformation

Allgemeines

wesentlicher Unterschied zu FT: betrachtet auch Einschaltvorgänge

nützlich wenn Integral von Fourier-Trafo (FT) nicht konvergiert

geht aus FT hervor, indem $j\omega$ in e-Fkt. Realteil erhält: $s = \sigma + j\omega$

- Laplace-Transformation allgemein: $X(s) = \mathcal{L}\{x(t)\} = \int_{-\infty}^{\infty} x(t) \cdot e^{-st} dt$

- einseitig: $X(s) = \mathcal{L}\{x(t)\} = \int_0^\infty x(t) \cdot e^{-st} dt$ (bei t = 0 rechtsseitiger Grenzwert!)

14 $\frac{1}{1} / \frac{1}{1}$

- Rücktransformation: $x(t)=rac{1}{2\pi j}\cdot\int_{\sigma_1-j\infty}^{\sigma_1+j\infty}X(s)\cdot e^{st}ds$

- Anfangswertsatz: $x(t = +0) = \lim[s \cdot X(s)]$

(nur wenn x(t) bei t=0 keine δ -Anteile)

- Endwertsatz: $x(t \to \infty) = \lim_{s \to X(s)} [s \cdot X(s)]$

(nur wenn endl. Grenzwert $\lim_{t\to\infty} (x(t))$)

	Bildfunktion F(s)	Original funktion $f(t)$
1	1	$\delta(t)$
2	$\frac{1}{s}$	$\varepsilon(t)$
3	$\frac{1}{s^2}$	$t \cdot \varepsilon(t)$
4	$\frac{1}{s^n}$	$\frac{t^{n-1}}{(n-1)!}\varepsilon(t)$
5	e^{-as}	$\delta(t-a)$
6	$\frac{a \cdot s}{1 + a \cdot s}$	$\delta(t) - \frac{1}{a}e^{-\frac{t}{a}} \cdot \varepsilon(t)$
7	$\frac{1}{s(1+a\cdot s)}$	$\left(1-e^{-\frac{t}{a}}\right)\varepsilon(t)$
8	$\frac{a}{s^2 + a^2}$	$\sin(at)\varepsilon(t)$
9	$\frac{s}{s^2 + a^2}$	$\cos(at)\varepsilon(t)$
10	$\frac{a}{s^2 - a^2}$	$\sinh(at)\varepsilon(t)$
11	$\frac{s}{s^2 - a^2}$	$\cosh(at)\varepsilon(t)$
12	$\frac{1}{(s^2+a^2)^2}$	$\frac{\sin(at) - a \cdot t \cdot \cos(at)}{2a^3} \varepsilon(t)$
13	$\frac{s}{(s^2+a^2)^2}$	$\frac{t \cdot \sin(at)}{2a} \varepsilon(t)$

- '	$\frac{1}{s-a} \frac{1}{s+a}$	$e^{at} \cdot \sigma(t) / e^{-at} \cdot \sigma(t)$
	f "ur Re(s) > Re(a)	
15	<u>n!</u>	
	S^{n+1}	$t^n \cdot \sigma(t)$
	$\begin{array}{c c} \text{für } Re(s) > 0 \\ \hline & 1 \end{array}$	
16		$\frac{1}{X} \cdot (1 - e^{-X \cdot t}) \cdot \sigma(t)$
	$s \cdot (s + X)$	I .
17	1	$e^{at} \cdot \frac{t^{n-1}}{(n-1)!} \cdot \sigma(t)$
	$\frac{\overline{(s-a)^n}}{s}$	(n-1)!
18		$(1+at)\cdot e^{at}\cdot \sigma(t)$
10	$\overline{(s-a)^2}$	1 1
19	1	$\frac{e^{at}-e^{bt}}{a-b}\cdot\sigma(t)$
	(s-a)(s-b)	
	$t \cdot e^{s_1 t} \cdot \sigma(t)$	$\frac{1}{(s-s_1)^2}$
	$e^{-\frac{t}{T}} \cdot \sigma(t)$	$\frac{1}{s + \frac{1}{T}}$
	$e^{-r} \cdot \sigma(t)$	$S + \frac{1}{T}$
	t^{n-1} $-\frac{t}{T}$	1
	$\frac{t^{n-1}}{(n-1)!} \cdot e^{-\frac{t}{T}} \cdot \sigma(t)$	$\frac{1}{\left(s+\frac{1}{T}\right)^n}$
	$\left(1-\mathrm{e}^{-\frac{t}{T}}\right)\cdot\sigma(t)$	$\frac{1}{s \cdot (1 + sT)}$
		s·(1+s1)
	$\sin(\omega_1 t) \cdot \sigma(t)$	$\frac{\omega_1}{s^2 + \omega_1^2}$
	$\cos(\omega_1 t) \cdot \sigma(t)$	$\frac{s}{s^2 + \omega_1^2}$
	$\left(\mathrm{e}^{-\sigma_1 t} \sin(\omega_1 t)\right) \cdot \sigma(t)$	$\frac{\omega_1}{(s+\sigma_1)^2+\omega_1^2}$
	$\left(\mathrm{e}^{-\sigma_1 t} \cos(\omega_1 t)\right) \cdot \sigma(t)$	$\frac{s + \sigma_1}{\left(s + \sigma_1\right)^2 + \omega_1^2}$

Eigenschaft	Zeitbereich	Bildbereich
Linearität	$y(t) = a \cdot u_1(t) + b \cdot u_2(t)$	$Y(s) = a \cdot U_1(s) + b \cdot U_2(s)$
Zeitverschiebung	y(t) = u(t-T)	$Y(s) = e^{-sT} \cdot U(s)$
Differentiation	$y(t) = \frac{d}{dt}(u(t) \cdot \sigma(t))$	$Y(s) = s \cdot U(s)$
	$y(t) = \frac{du(t)}{dt} \cdot \sigma(t)$	$Y(s) = s \cdot U(s) - u(-0)$
	$y(t) = \frac{d^2 u(t)}{dt^2} \cdot \sigma(t)$	$Y(s) = s^{2} \cdot U(s) - s \cdot u(-0) - \frac{du(t)}{dt}\Big _{t=-0}$
Integration	$y(t) = \int_{0}^{t} u(\tau) d\tau$	$Y(s) = \frac{1}{s} \cdot U(s)$
Faltung	$y(t) = \int_{0}^{t} u(\tau) \cdot g(t-\tau) d\tau$	$Y(s) = U(s) \cdot G(s)$

Übertragungsfunktion

aus $y(t) = \int_0^t u(\tau) \cdot g(t-\tau) d\tau$ folgt: $Y(s) = G(s) \cdot U(s)$ $\rightarrow G(s) = \frac{Y(s)}{U(s)} = \frac{Ausgang}{Eingang}$

wenn Impuls $\delta(t)$ als Eingang $\Rightarrow y(t) = g(t)$ da $Y(s) = G(s) \cdot 1$ wenn Sprung $\sigma(t)$ als Eingang $\Rightarrow a(t) = \int_0^t g(\tau) d\tau$ da $\frac{A(s) = \frac{G(s)}{s}}{s}$ \Rightarrow Impulsantwort g(t) ist Ableitung von Sprungantwort a(t): $g(t) = \frac{da(t)}{dt}$

Herleitung aus DGL: $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$

 $\Rightarrow G(s) = \frac{Y(s)}{U(s)} = \frac{\sum_{\mu=0}^{m} b_{\mu} \cdot s^{\mu}}{\sum_{\nu=0}^{n} a_{\nu} \cdot s^{\nu}}$

(für lineare, zeitinvariante Systeme)

→ Nullstellen des Zählers = Nullstellen von G(s), Nullst. des Nenners = Polstellen von G(s)

Übertragungsfunktion – Verknüpfung

Parallelschaltung: $G(s) = G_1(s) + G_2(s)$ Reihenschaltung: $G(s) = G_1(s) \cdot G_2(s)$

Gegenkopplung: $G(s) = \frac{G_1(s)}{1 + G_1(s) \cdot G_2(s)}$

Übertragungsfunktion – komplexe exponentielle Signale

 $\rightarrow y(t) = C \cdot G(s_1) \cdot e^{s_1 t}$ $u(t) = C \cdot e^{s_1 t}$ Eingang zB:

 $u(t) = \sum_{n=-\infty}^{\infty} c_n \cdot e^{jn\omega_0 t} \rightarrow y(t) = \sum_{n=-\infty}^{\infty} c_n \cdot G(jn\omega_0) \cdot e^{jn\omega_0 t}$ Eingang periodisch:

 \rightarrow für Fourier-Koeff. von y(t): Multiplikation Fourier-Koeff. u(t) mit $G(jn\omega_0)$

	Originalbereich	Bildbereich
Ohmscher Widerstand	$u(t) = R \cdot i(t)$	$U(s) = R \cdot I(s)$
Induktivität	$u(t) = L \cdot \frac{d}{dt}i(t)$	$U(s) = L \cdot (s \cdot I(s) - i(0))$
Kapazität	$u(t) = \frac{q}{c} = \frac{1}{c} \cdot \int_0^t i(\tau) d\tau$	$U(s) = \frac{I(s)}{s \cdot C} \qquad \text{für } u(0) = 0$

Partialbruchzerlegung

Einzelpole

- 1. Linearfaktorzerlegung Nennerpolynom (Vorfaktor nicht vergessen!)
- 2. $Y(s) = \frac{c_m \cdot s^m + \dots + c_1 \cdot s^1 + c_0}{h_n \cdot (s s_1) \cdot (s s_2) \cdot \dots \cdot (s s_n)} = \frac{R_1}{s s_1} + \frac{R_2}{s s_2} + \dots + \frac{R_n}{s s_n} + k$ mit $k = \begin{cases} \frac{c_m}{h_n} & \text{für } m = n \\ 0 & \text{für } m < n \end{cases}$
 - (wenn m = n enthält y(t) einen Dirac-Impuls)
- 3. Konstanten berechnen: $R_v = Y(s) \cdot (s s_v)|_{s=s_v}$
- konjugiert komplexe Polpaare möglich, Zsmfassung: $\frac{R_{v}}{s-s_{v}} + \frac{\overline{R_{v}}}{s-\overline{s_{v}}} = \frac{(R_{v} + \overline{R_{v}}) \cdot s (R_{v} \cdot \overline{s_{v}} + \overline{R_{v}} \cdot s_{v})}{s^{2} (s_{v} + \overline{s_{v}}) \cdot s + s_{v} \overline{s_{v}}}$

Mehrfachpole

- Linearfaktorzerlegung Nennerpolynom (Vorfaktor nicht vergessen!)
- $Y(s) = \frac{c_m \cdot s^m + \dots + c_1 \cdot s^1 + c_0}{h_n \cdot (s s_1)^i \cdot (s s_{i+1}) \cdot \dots \cdot (s s_n)} = \frac{A_{1,i}}{(s s_1)^i} + \frac{A_{1,i-1}}{(s s_1)^{i-1}} + \dots + \frac{A_{1,1}}{(s s_1)} + \sum_{v=i+1}^n \frac{R_v}{s s_v} + k$
- Konstanten berechnen: $R_n = Y(s) \cdot (s s_n) |_{s=s_n}$
- 4. Konstanten berechnen: $A_{1,i} = H(s)|_{s=s_1}$ $(H(s) = Y(s) \cdot (s-s_1)^i = \frac{c_m \cdot s^m + \dots + c_1 \cdot s^1 + c_0}{h_m \cdot (s-s_1)^i + \dots + c_n \cdot s^n})$ $A_{1,i-1} = \frac{dH(s)}{ds} |_{s=s_1}$

$$A_{1,i-2} = \frac{1}{2!} \cdot \frac{d^2 H(s)}{ds^2} \mid_{s=s_1} \quad \text{und } A_{1,1} = \frac{1}{(i-1)!} \cdot \frac{d^{i-1} H(s)}{ds^{i-1}} \mid_{s=s_1}$$

Rücktransformation in allgemeiner Form (Einfachpole)

$$Y(s) = \sum_{v=1}^{n} \frac{R_v}{s - s_v} + k \qquad \Rightarrow y(t) = (\sum_{v=1}^{n} R_v \cdot e^{s_v t}) \cdot \sigma(t) + k \cdot \delta(t)$$

Rücktransformation in allgemeiner Form (Mehrfachpole)

$$\overline{Y(s)} = \frac{A_{1,i}}{(s-s_1)^i} + \frac{A_{1,i-1}}{(s-s_1)^{i-1}} + \dots + \frac{A_{1,1}}{(s-s_1)} + \sum_{v=i+1}^n \frac{R_v}{s-s_v} + k$$

$$y(t) = \left[\left(\frac{A_{1,i}}{(i-1)!} \cdot t^{i-1} + \frac{A_{1,i-1}}{(i-2)!} \cdot t^{i-2} + \dots + A_{1,2} \cdot t + A_{1,1} \right) \cdot e^{s_1 t} + \sum_{v=i+1}^n R_v \cdot e^{s_v t} \right] \cdot \sigma(t) + k \cdot \delta(t)$$

Pole-Nullstellen-Diagramm

System realisierbar, wenn Nennergrad > Zählergrad

G(s) in Linearfaktoren: $G(s) = \frac{b_m}{a_n} \cdot \frac{(s-s_{01}) \cdot (s-s_{02}) \cdot \dots \cdot (s-s_{0m})}{(s-s_{02}) \cdot \dots \cdot (s-s_{0m})}$ ($s_{0\mu}$ = Nullstellen, $s_{\infty\nu}$ = Pole)

(s)

Stabilität

(asympt.) stabil: alle Pole haben Re < 0 (alle Pole links)

grenzstabil:

instabil: min. 1 Einzelpol mit Re > 0 (min. 1 Pol rechts)

instabil:

min. 1 Einzelpol mit Re = 0 min. 1 Mehrfachpol mit Re = 0 x = Pole. o = Nullstellen

Allpass

reiner Allpass: alle Pole symmetrisch zu Nullstellen (an Im-Achse)

reiner stabiler Allpass: alle Pole symmetrisch zu Nullstellen (an Im-Achse) und Pole mit Re < 0

nur bei stabilen Systemen! Erweiterung mit $\frac{s+s_{01}}{s+s_{01}}$ (s_{01} symm. zu NS mit Re > 0) Allpassanteil:

Minimalphasigkeit

rein minimalphasig: alle Nullstellen mit Re <= 0

Minimalphasiges Teilsys.: nur bei stabilen Systemen! Erweiterung siehe Allpass

Kapazität
$$i_C(t) = C \cdot \frac{du_C(t)}{dt}$$

$$\rightarrow I_C(s) = sC \cdot U_C(s) - C \cdot u_C(-0)$$

$$C \cdot u_C(-0) \leftrightarrow C \cdot u_C(-0) \cdot \delta(t)$$

→ Stromimpuls durch Stromquelle um C auf $u_{\mathcal{C}}(-0)$ aufzuladen

Induktivität
$$u_L(t) = L \cdot \frac{di_L(t)}{dt}$$

$$\Rightarrow I_L(s) = \frac{1}{sL} \cdot U_L(s) + \frac{1}{s} \cdot i_L(-0)$$

- $\frac{1}{2} \cdot i_L(-0) \leftrightarrow i_L(-0) \cdot \sigma(t)$
- \rightarrow Stromquelle mit Sprung, um $i_1(-0)$ einzuprägen

- $\frac{1}{2} \cdot u_c(-0) \leftrightarrow u_c(-0) \cdot \sigma(t)$
- → Spannungsquelle mit Sprung um C auf $u_{\mathcal{C}}(-0)$ aufzuladen

$$\rightarrow U_L(s) = sL \cdot I_L(s) - L \cdot i_L(-0)$$

- $L \cdot i_1(-0) \leftrightarrow L \cdot i_1(-0) \cdot \delta(t)$
- → Spannungsimpuls durch Spannungsquelle, um $i_L(-0)$ einzuprägen

stabil → Ausgangssignal strebt gegen 0 (nach anfänglicher Anregung)

- nur Pole mit Re < 0: Lösungsanteil $R_v \cdot e^{s_{\infty v}t} \cdot \sigma(t) \rightarrow$ schnelles Abklingen
- konjugiert komplexes Polpaar mit Re \leq 0: $2 \cdot |R_v| \cdot e^{\sigma_v t} \cdot \cos(\omega_v t + \alpha_v) \cdot \sigma_t \rightarrow$ Fkt schwingt abklingend
- <u>ein Pol = 0</u>: Impulsantwort enthält Anteil mit $R_v \cdot \sigma(t) \rightarrow$ Impulsantw. hat konst. Endwert $\neq 0$
- <u>konjugiert komplexes Polpaar mit Re = 0</u>: $2 \cdot |R_v| \cdot \cos(\omega_v t + \alpha_v) \cdot \sigma_t \rightarrow$ Fkt schwingt <u>nicht</u> abklingend
- Mehrfachpol = 0: $\left(\frac{A_{1,i}}{(i-1)!} \cdot t^{i-1} + \frac{A_{1,i-1}}{(i-2)!} \cdot t^{i-2} + \dots + A_{1,2} \cdot t + A_{1,1}\right) \cdot \sigma(t) \rightarrow \text{Fkt wächst unendlich hoch an}$
- Mehrfachpol > 0: enthält $e^{s_{\infty v}t} \rightarrow$ exponentielles Ansteigen bis unendlich

Allpass: $|G(\omega)| = const$ für alle ω und $\varphi(\omega) = beliebig <math>\rightarrow$ Verwendung zur Phasenkorrektur

→ verändert Energieinhalt nicht

Darstellung mit Phase zB:

$$G(j\omega) = \frac{|j\omega+3| \cdot |13-\omega^2+j4\omega|}{|j\omega+1| \cdot |5-\omega^2+j2\omega|} \cdot e^{j(\varphi_{01}+\varphi_{02/3}-\varphi_{\infty1}+\varphi_{\infty2/3})}$$

Nullstelle beziehungsweise Pol	Phasenanteil
reelle Nullstelle links liefert	0°+90°
reeller Pol links liefert	0°90°
konjugiert komplexes Nullstellenpaar links liefert	0°+180°
konjugiert komplexes Polpaar links liefert	0°180°
reelle Nullstelle rechts liefert	90°180°
konjugiert komplexes Nullstellenpaar rechts liefert	180°360°

8. Beschreibung linearer Systeme im Zustandsraum

Allgemeines

Zustandsvektor: $x(t) = \begin{pmatrix} x_1(t) \\ \dots \\ x_n(t) \end{pmatrix}$ (enthält Zustandsvariablen wie zB $i_1(t), u_{\mathcal{C}}(t)$, etc.)

1. Ordnung (= Anzahl Gleichungen) wird durch Anzahl Energiespeicher bestimmt

2. Maschen- und Knotengleichungen aufstellen, sodass jeweils eine erste Ableitung enthalten ist $(\dot{x}_1(t), \dot{x}_2(t))$ und $\dot{x}_3(t)$

3. Ableitungen auf linke Seite bringen

4. Zustandsgleichung: $\dot{x}(t) = A \cdot x(t) + b \cdot u(t)$

5. Ausgangsgleichung: $y(t) = c^T$.

(A = Systemmatrix, b = Eingangsvektor, c = Ausgangsvektor, d = Durchgriff)

Übertragungsfunktion

$$G(s) = \frac{Y(s)}{U(s)} = \frac{c^T \cdot adj(s \cdot I - A) \cdot b}{\det(s \cdot I - A)} + d \quad \text{(Achtung! Gilt nur für } x(-0) = 0)$$

Lösung mit Laplace

1. Zustandsgleichung transformieren: $s \cdot X(s) - x(-0) = A \cdot X(s) + b \cdot U(s)$

2.
$$\rightarrow X(s) = (s \cdot I - A)^{-1} \cdot x(-0) + (s \cdot I - A)^{-1} \cdot b \cdot U(s)$$
 und $Y(s) = c^T \cdot X(s) + d \cdot U(s)$

Blockschaltbild Zustands- u. Ausgangsgleichung

Inverse:
$$M^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ a & h & i \end{bmatrix}^{-1} = \frac{adj(M)}{\det(M)} =$$

Inverse:
$$M^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{adj(M)}{\det(M)} = \frac{1}{\det(M)} \cdot \begin{bmatrix} (-fh + ei) & (ch - bi) & (-ce + bf) \\ (fg - di) & (-cg + ai) & (cd - af) \\ (-eg + dh) & (bg - ah) & (-bd + ae) \end{bmatrix}$$

Determinante:

$$adj(M) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Kanonische Strukturen

allgemeine DGL: $a_n \frac{d^n y(t)}{dt^n} + \dots + a_1 \frac{dy(t)}{dt} + a_0 y(t) = b_m \frac{d^m u(t)}{dt^m} + \dots + b_1 \frac{du(t)}{dt} + b_0 u(t)$

daraus folgt: $G(s) = \frac{Y(s)}{V(s)} = \frac{\sum_{\mu=0}^{m} b_{\mu} \cdot s^{\mu}}{\sum_{n=0}^{n} a_{\mu} \cdot s^{\nu}} = \frac{b_{m} \cdot s^{m} + \dots + b_{1} \cdot s + b_{0}}{a_{m} \cdot s^{m} + \dots + a_{n} \cdot s + a_{n}}$

	$+ \cdots + a_1 \frac{1}{dt} + a_0 y(t) = b_m \frac{1}{dt^m} + \cdots + b_1 \frac{1}{dt} + \cdots$		$a_{v=0} a_v \cdot s^v \qquad a_n \cdot s^n + \dots + a_1 \cdot s + a_0$
$a_n = 1$	Zustandsgleichung	Ausgangsgleichung	Strukturbild
1. Kanonische Form Beobachternormalform	$ \begin{pmatrix} \dot{x}_{1}(t) \\ \dot{x}_{2}(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_{n}(t) \end{pmatrix} = \begin{pmatrix} -a_{n-1} & 1 & 0 & \cdots & 0 \\ -a_{n-2} & 0 & 1 & & \\ \vdots & \vdots & \vdots & \ddots & \\ -a_{1} & 0 & 0 & & 1 \\ -a_{0} & 0 & 0 & & 0 \end{pmatrix} \cdot \begin{pmatrix} x_{1}(t) \\ x_{2}(t) \\ \vdots \\ x_{n-1}(t) \\ x_{n}(t) \end{pmatrix} + \begin{pmatrix} b_{n-1} - a_{n-1}b_{n} \\ b_{n-2} - a_{n-2}b_{n} \\ \vdots \\ b_{1} - a_{1}b_{n} \\ b_{0} - a_{0}b_{n} \end{pmatrix} \cdot u(t) $	$y(t) = \underbrace{(1 0 \cdots 0)}_{\mathbf{c}^{T}} \cdot \underbrace{\begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}}_{\mathbf{c}^{T}} + \underbrace{b_n}_{\mathbf{d}} \cdot u(t)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. Kanonische Form Regelungsnormalform	$ \begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -a_0 & -a_1 & -a_2 & -a_3 & \cdots & -a_{n-1} \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{pmatrix} \cdot u(t) $	$y(t) = \underbrace{(b_0 - b_n a_0 b_1 - b_n a_1 \cdots b_{n-1} - b_n a_{n-1})}_{\mathbf{c}^{T}} \cdot \underbrace{\begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}}_{\mathbf{c}^{T}} + \underbrace{b_n \cdot u(t)}_{\mathbf{d}^{T}}$	$\underbrace{u(t)}_{1} \underbrace{\dot{x}_{n}(t)}_{1} \underbrace{\dot{x}_{n}(t)}_{1}$
3. Kanonische Form Kaskadenform $b_{0v} = -b_v \cdot s_{0v}$	$ \begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{pmatrix} = \begin{pmatrix} s_{\infty 1} & b_{01} & 0 & 0 & \cdots & 0 \\ 0 & s_{\infty 2} & b_{02} & 0 & \cdots & 0 \\ 0 & 0 & s_{\infty 3} & b_{03} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & b_{0(n-1)} \\ 0 & 0 & 0 & 0 & \cdots & s_{\infty n} \end{pmatrix} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ b_{0n} \end{pmatrix} \cdot u(t) $	$y(t) = \underbrace{\begin{pmatrix} 1 & 0 & \cdots & 0 \\ & \mathbf{c}^{T} & & \\ & & \vdots \\ & & x_n(t) \end{pmatrix}}_{\mathbf{c}} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}$	$U(s) \qquad G_n(s) \qquad Y_n(s) \qquad G_{n-1}(s) \qquad Y_{n-1}(s) \qquad \cdots \qquad Y_3(s) \qquad G_2(s) \qquad Y_2(s) \qquad G_1(s) \qquad Y_1(s) = Y(s)$ $y_{v+1}(t) \qquad \qquad x_v(t) \qquad y_v(t) \qquad \qquad x_v(t) \qquad y_v(t)$
4. Kanonische Form Parallelform geht <u>nicht</u> bei Mehrfachpolen u./od. konjugiert komplexen Polpaaren $G(s) = B_0 + \sum_{v=1}^n \frac{B_v}{s-s_{\infty v}}$	$ \begin{pmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \\ \vdots \\ \dot{x}_{n-1}(t) \\ \dot{x}_n(t) \end{pmatrix} = \underbrace{\begin{pmatrix} s_{\infty 1} & 0 & 0 & 0 & \cdots & 0 \\ 0 & s_{\infty 2} & 0 & 0 & \cdots & 0 \\ 0 & 0 & s_{\infty 3} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & s_{\infty n} \end{pmatrix}}_{\mathbf{A}} \cdot \begin{pmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{pmatrix} + \underbrace{\begin{pmatrix} B_1 \\ B_2 \\ B_3 \\ \vdots \\ B_{n-1} \\ B_n \end{pmatrix}}_{\mathbf{b}} \cdot u(t) $	$y(t) = \underbrace{\begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}}_{\mathbf{c}^{T}} \cdot \underbrace{\begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{pmatrix}}_{\mathbf{c}^{T}} + \underbrace{B_0}_{\mathbf{d}} \cdot u(t)$	$U(s) \qquad G_1(s) \qquad Y_1(s) \qquad U(t) \qquad X_V(t) \qquad X_V(t$

9. Abtastsysteme und Abtasttheorem

Allgemeines

zeitdiskretes gleich kontinuierliches Signal wenn für $y(k \cdot T_a) = u(k \cdot T_a)$ gilt: y(t) = u(t)Delta-Abtaster eines kontinuierlichen Signals: $u^*(t) = \sum_{k=-\infty}^{\infty} u(kT_a) \cdot \delta(t-kT_a)$

$$\Rightarrow \text{FT: } \underline{U^*(\omega)} = \frac{1}{T_a} \sum_{k=-\infty}^{\infty} \underline{U(\omega - k\omega_a)} \qquad \qquad (\text{mit } \omega_a = \frac{2\pi}{T_a} \text{ und } T_a = \frac{2\pi}{\omega_a})$$

(mit
$$\omega_a = \frac{2\pi}{T_a}$$
 und $T_a = \frac{2\pi}{\omega_a}$)

(mit ω_a = Abstand zur periodischen Wiederholung der FT des abgetasteten Signals)

- → abgetastetes Signal besitzt <u>periodische Fourier</u>-Transformierte
- \rightarrow wird durch idealen TP wieder auf Grenzfrequenz ω_g begrenzt $(G_{TP}(\omega) = T_a \cdot rect(\frac{\omega}{2\omega_a}))$

Abtasttheorem: Um Überlappung (Aliasing) der Frequenzbänder zu vermeiden, muss u(t)streng bandbegrenzt sein auf ω_a , dann fehlerfreie Beschreibung mgl mit: $\omega_a > 2\omega_a$

 \rightarrow Realität: u(t) nie stark bandbegrenzt \rightarrow Signal vor Abtastung durch TP mit steiler Flanke näherungsweise bandbegrenzt (Anti-Aliasing-Filter)

FT-Regel:

$$\sum_{n=-\infty}^{\infty} \delta \big(t - nT \big) \hspace{1cm} \text{gleiche Amplitude:} \hspace{0.2cm} \frac{2\pi}{T} \cdot \sum_{n=-\infty}^{\infty} \delta \bigg(\omega - n \frac{2\pi}{T} \bigg)$$

Zeitdiskrete Fourier-Transformation

FT zeitdiskretes Signal: $X(j\omega) = \sum_{k=-\infty}^{\infty} x(k) \cdot e^{-j\omega T_a k}$

= FT abgetastetes Signal: $U^*(j\omega) = \sum_{k=-\infty}^{\infty} u(kT_a) \cdot e^{-j\omega T_a k}$

Bsp:

$$u(k) = 3 \cdot \delta(k) + 2 \cdot \delta(k-1) + 7 \cdot \delta(k-5) \to U(j\omega) = 3 + 2 \cdot e^{-j\omega T_a 1} + 7 \cdot e^{-j\omega T_a 5}$$

Rücktransformation: $x(k) = \frac{T_a}{2\pi} \int_{\frac{\pi}{T}} X(j\omega) \cdot e^{j\omega T_a k} d\omega$ Symmetrien ausnutzen!

Annäherung:

DFT (diskrete FT): $N \cdot T_a \cdot c_n = T_a \sum_{n=m}^{m+N-1} x_1(k) \cdot e^{-jn\omega_0 T_a k}$ (mit N = Anzahl Abtastwerte)

Zeitdiskrete Fourier-Reihe

zeitdiskretes Signal periodisch, wenn $x(k) = x(k+N) \rightarrow$ Grundkreisfrequenz $\omega_0 = \frac{2\pi}{NT}$

Fourier-Reihe: $x(k) = \sum_{n=m}^{m+N-1} c_n \cdot e^{jn\omega_0 T_a k}$ (mit N = Anzahl Abtastwerte einer Periode)

Analysegleich.: $c_n = \frac{1}{N} \cdot \sum_{k=m}^{m+N-1} x(k) \cdot e^{-jn\omega_0 T_a k}$ (m = Startpkt; beliebig; für $c_0 : n = 0$)

10. Beschreibung zeitdiskreter Signale und Systeme

Signaldarstellung im Zeitbereich

 $\rightarrow g(k) = a(k) - a(k-1)$

da Zeitabstand zw Abtastungen T_a hier konstant, kann geschrieben werden: $x(kT_a) \equiv x(k)$

Zusammenhang:
$$\delta(k) = \sigma(k) - \sigma(k-1)$$
 und $\sigma(k) = \sum_{\nu=-\infty}^{\infty} \delta(\nu)$

$$\Rightarrow \frac{a(k) = \sum_{\nu = -\infty}^{\infty} g(\nu)}{a(k)}$$

komplexe Exponentialfunktion: $C \cdot e^{sk \cdot T_a} = C \cdot e^{(\sigma + j\omega)k \cdot T_a} = C \cdot e^{\sigma k \cdot T_a} \cdot e^{j\omega k T_a}$

→ Baustein für periodische zeitdiskrete Signale

Faltungssumme:
$$y(k) = \sum_{\nu=-\infty}^{\infty} u(\nu) \cdot g(k-\nu) \rightarrow y(k) = \left[\sum_{\nu=0}^{k} u(\nu) \cdot g(k-\nu)\right] \cdot \sigma(k)$$

Beschreibung zeitdiskreter Systeme im Zeitbereich

Herleitung
$$\frac{1}{z}$$
: $y(t) = u(t - T_a)$ $\rightarrow Y(s) = e^{-sT_a} \cdot U(s)$ $\rightarrow \text{setze } \frac{e^{sT_a}}{z} = z$ $\rightarrow Y(s) = \frac{1}{z} \cdot U(s)$

$$b(k) \equiv b(kT_a)$$

$$\boxed{\frac{1}{Z}}$$

$$b((k-1)T_a) \equiv b(k-1)$$

 $\frac{1}{x}$ = Laufzeitglied

Allgemeine Differenzengleichung

$$\alpha_0 \cdot y(k) + \alpha_1 \cdot y(k+1) + \dots + \alpha_n \cdot y(k+n) = \beta_0 \cdot u(k) + \beta_1 \cdot u(k+1) + \dots + \beta_n \cdot u(k+n)$$

Verschiebung:

$$\alpha_0 \cdot y(k-n) + \alpha_1 \cdot y(k-n+1) + \dots + \alpha_n \cdot y(k-n+n) = \beta_0 \cdot u(k-n) + \beta_1 \cdot u(k-n+1) + \dots + \beta_n \cdot u(k-n+n)$$

Differenzengleichung zeitdiskreter Integrator:
$$y(k) - y(k-1) = \frac{T_a}{T_i} \cdot u(k)$$

Differenzengleichung zeitdiskreter Differenzierer: $y(k) = \frac{T_d}{T_c} \cdot [u(k) - u(k-1)]$

Rekursive Lösung von Differenzengleichungen

Differenzengleichung nach y(k) auflösen \rightarrow Tabelle von k = -1 bis k = ...

Analytische Lösung von Differenzengleichungen

- 1. homogene Differenzengleichung: $\alpha_0 \cdot y(k) + \alpha_1 \cdot y(k+1) + \cdots + \alpha_n \cdot y(k+n) = 0$
- 2. charakteristische Gleichung: $\alpha_n z^n + \alpha_{n-1} z^{n-1} + \cdots + \alpha_1 z + \alpha_0 = 0$
- Pole bestimmen
- 4. homogene Lösung bei Einzelpolen: $y_h(k) = \sum_{\nu=1}^n A_{\nu} \cdot z_{\infty\nu}^k$..Doppelpol: $y_h(k) = (A_1 + A_2 \cdot k) \cdot z_{\infty 1}^k + \sum_{\nu=3}^n A_{\nu} \cdot z_{\infty \nu}^k$
 - \rightarrow stabil, wenn alle Pole im Einheitskreis ($|z_{\infty y}| < 1$)
- 5. partikuläre Lösung: bei Sprungantwort Konstante ansetzen, Gesamtlösung y(k) bestimmen, in Differenzengleichung einsetzen, homogene Lsg = 0, partikuläre Lösung verbleibt, angesetzte Konstante einsetzen, nach dieser Konstante auflösen, Ergebnis ist partikuläre Lsg
- 6. Konstanten A_{ν} durch Einsetzen der Anfangsbedingungen bestimmen

Sprungantwort zeitdiskretes PT₁-Glied: $y(k) = V\left(1 - e^{-\frac{t}{T_1}k}\right) \cdot \sigma(k)$

Frequenzgang

$$G(j\omega) = \frac{Y(j\omega)}{U(j\omega)} = \frac{\sum_{\mu=0}^{m} \beta_{\mu} \cdot e^{j\mu\omega T_a}}{\sum_{\nu=0}^{n} \alpha_{\nu} \cdot e^{j\nu\omega T_a}}$$
 (folgt aus Differenzengleichung)

11. z-Transformation

z-Transformierte: $U(z) = \sum_{k=0}^{\infty} u(k) \cdot z^{-k}$ (mit $z = e^{sT_a}$)

Ordnung: Nennergrad!

 $(m \leq n)$

Anfangswertsatz: $x(0) = \lim_{z \to \infty} [X(z)]$

Endwertsatz: $x(k \to \infty) = \lim[(z-1) \cdot X(z)]$

Eigenschaft	Zeitbereich	Bildbereich
Linearität	$y(k) = a \cdot u_1(k) + b \cdot u_2(k)$	$Y(z) = a \cdot U_1(z) + b \cdot U_2(z)$
Zeitverschiebung	y(k) = u(k-1)	$Y(z) = z^{-1} \cdot U(z) + u(-1)$
	y(k) = u(k-2)	$Y(z) = z^{-2} \cdot U(z) + z^{-1} \cdot u(-1) + u(-2)$
Differenz	y(k) = u(k) - u(k-1)	$Y(z) = (1-z^{-1}) \cdot U(z) - u(-1)$
Summation	$y(k) = \sum_{v=0}^{k} u(v)$	$Y(z) = \frac{1}{1-z^{-1}} \cdot U(z) = \frac{z}{z-1} \cdot U(z)$
Faltung	$y(k) = \sum_{v=0}^{k} u(v) \cdot g(k-v)$	$Y(z) = U(z) \cdot G(z)$
Multiplikation mit <i>k</i>	$y(k) = k \cdot u(k)$	$Y(z) = -z \cdot \frac{dU(z)}{dz}$
Modulation	$y(k) = a^k \cdot u(k)$	$Y(z) = U\left(\frac{z}{a}\right)$

Stabilität von zeitdiskreten Systemen

stabil

grenzstabil

 $\Rightarrow |z_{\infty \nu}| < 1$ \Rightarrow alle Pole innerhalb Einheitskreis $\Rightarrow |z_{\infty einzel}| = 1$ \Rightarrow min. ein Einzelpol auf Einheitskreis

instabil

Allpass

 $\rightarrow |z_{\infty y}| > 1$ od. $|z_{\infty mehrfach}| = 1$

→ min. ein Pol außerhalb Einheitskreis od. min. ein Mehrfachpol auf Einheitskreis

minimalphasig $\rightarrow |z_{0\mu}| \le 1$

→ alle NS kleiner gleich 1

 $\Rightarrow |z_0| = \frac{1}{|z_\infty|} \text{ und } \varphi_0 = \varphi_\infty$

→ Pol und NS liegen auf einem Strahl

Verzögerung

 $\rightarrow G(z) = z^{-i}$

 $\rightarrow i$ Pole in Ursprung

aus
$$G(z) = \frac{\beta_n \cdot z^n + \dots + \beta_1 \cdot z^1 + \beta_0}{\alpha_n \cdot z^n + \dots + \alpha_1 \cdot z^1 + \alpha_0}$$

 \rightarrow auf α_n normieren!

folgt:

 $g(0) = \beta_n$

 $g(1) = \beta_{n-1} - \beta_n \alpha_{n-1}$

 $a(0) = \beta_n$

 $a(1) = \beta_{n-1} + \beta_n (1 - \alpha_{n-1})$

Zeitfunktion x(k)	z-Transformierte <i>X</i> (<i>z</i>)
δ(<i>k</i>)	1
$\sigma(k)$	$\frac{z}{z-1}$
$k \cdot \sigma(k)$	$\frac{z}{(z-1)^2}$
$z_1^k \cdot \sigma(k)$ z.B. $z_1 = e^{s_1 T_a}$	$\frac{z}{z-z_1}$
$k \cdot z_1^k \cdot \sigma(k)$	$\frac{z_1z}{(z-z_1)^2}$
$[\sin(\omega_0 T_a k)] \cdot \sigma(k)$	$\frac{\sin(\omega_0 T_a) \cdot z}{z^2 - 2\cos(\omega_0 T_a) \cdot z + 1}$
$[\cos(\omega_0 T_a k)] \cdot \sigma(k)$	$\frac{z^2 - \cos(\omega_0 T_a) \cdot z}{z^2 - 2\cos(\omega_0 T_a) \cdot z + 1}$
$\left[\mathrm{e}^{-\sigma_0 T_a k} \sin(\omega_0 T_a k)\right] \cdot \sigma(k)$	$\frac{\mathrm{e}^{-\sigma_0 T_a} \cdot \sin(\omega_0 T_a) \cdot z}{z^2 - 2\mathrm{e}^{-\sigma_0 T_a} \cdot \cos(\omega_0 T_a) \cdot z + \mathrm{e}^{-2\sigma_0 T_a}}$
$\left[\mathrm{e}^{-\sigma_0 T_a k} \cos(\omega_0 T_a k)\right] \cdot \sigma(k)$	$\frac{z^2 - e^{-\sigma_0 T_a} \cdot \cos(\omega_0 T_a) \cdot z}{z^2 - 2e^{-\sigma_0 T_a} \cdot \cos(\omega_0 T_a) \cdot z + e^{-2\sigma_0 T_a}}$

Einschwingvorgänge / Partialbruchzerlegung

z muss im Zähler stehen

- 1. wenn mindestens eine NS bei z = 0: VORHER nach vorne ziehen: $\frac{Y(z)}{z} = \frac{Y_0}{z} + \sum_{\nu=1}^n \frac{Y_{\nu}}{z-z_{\nu}} + k$, anschließend hochmultiplizieren
- 2. wenn keine NS bei z=0: NACH Partialbruchzerlegung alle Brüche mit $\frac{z}{z}$ erweitern \rightarrow Verschiebungssatz bei Rücktrafo

Zustandsraum

Zustandsgleichung: $x(k+1) = A \cdot x(k) + b \cdot u(k)$

Ausgangsgleichung: $y(k) = c^T \cdot x(k) + d \cdot u(k)$

 \rightarrow z-transformiert: $z \cdot X(z) = A \cdot X(z) + b \cdot U(z)$ \Rightarrow z-transformiert: $Y(z) = c^T \cdot X(z) + d \cdot U(z)$

 $X(z) = (z \cdot I - A)^{-1} \cdot x(-1) + (z \cdot I - A)^{-1} \cdot b \cdot U(z)$ (mit Anfangsbedingung)

z-Übertragungsfunktion: $G(z) = \frac{Y(z)}{U(z)} = \frac{c^T \cdot adj(z \cdot I - A) \cdot b}{\det(z \cdot I - A)} + d$ (Achtung! Gilt nur für x(-0) = 0)

Ausgangsform: $\frac{\alpha_0 \cdot y(k) + \alpha_1 \cdot y(k+1) + \dots + \alpha_n \cdot y(k+n) = \beta_0 \cdot u(k) + \beta_1 \cdot u(k+1) + \dots + \beta_n \cdot u(k+n)}{\alpha_n \cdot z^n + \dots + \alpha_n \cdot z^n + \dots +$

$\alpha_n = 1$	Zustandsgleichung	Ausgangsgleichung	Strukturbild
1. Kanonische Form	$ \begin{pmatrix} x_{1}(k+1) \\ x_{2}(k+1) \\ \vdots \\ x_{n-1}(k+1) \\ x_{n}(k+1) \end{pmatrix} = \begin{pmatrix} -\alpha_{n-1} & 1 & 0 & \cdots & 0 \\ -\alpha_{n-2} & 0 & 1 & & \\ \vdots & \vdots & \vdots & \ddots & \\ -\alpha_{1} & 0 & 0 & \cdots & 1 \\ -\alpha_{0} & 0 & 0 & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} x_{1}(k) \\ x_{2}(k) \\ \vdots \\ x_{n-1}(k) \\ x_{n}(k) \end{pmatrix} + \begin{pmatrix} \beta_{n-1} - \alpha_{n-1}\beta_{n} \\ \beta_{n-2} - \alpha_{n-2}\beta_{n} \\ \vdots \\ \beta_{1} - \alpha_{1}\beta_{n} \\ \beta_{0} - \alpha_{0}\beta_{n} \end{pmatrix} \cdot u(k) $	$\begin{pmatrix} x_1(k) \\ x_2(k) \end{pmatrix}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2. Kanonische Form	$ \begin{pmatrix} x_1(k+1) \\ x_2(k+1) \\ x_3(k+1) \\ \vdots \\ x_{n-1}(k+1) \\ x_n(k+1) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ -\alpha_0 & -\alpha_1 & -\alpha_2 & -\alpha_3 & \cdots & -\alpha_{n-1} \end{pmatrix} \cdot \begin{pmatrix} x_1(k) \\ x_2(k) \\ x_3(k) \\ \vdots \\ x_{n-1}(k) \\ x_n(k) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix} \cdot u(k) $	$y(k) = \underbrace{(\beta_0 - \beta_n \alpha_0 \beta_1 - \beta_n \alpha_1 \cdots \beta_{n-1} - \beta_n \alpha_{n-1})}_{\mathbf{c}^{T}} \cdot \underbrace{\begin{pmatrix} x_1(k) \\ x_2(k) \\ \vdots \\ x_n(k) \end{pmatrix}}_{} + \underbrace{\beta_n \cdot u(k)}_{\mathbf{d}}$	$u(k) = \frac{1}{\alpha_{n}} x_{n}(k+1) \qquad \begin{bmatrix} \frac{1}{z} \\ \frac{1}{z} \end{bmatrix} x_{n}(k) \qquad \begin{bmatrix} \frac{1}{z} \\ \frac{1}{z} \end{bmatrix} x_{1}(k) \qquad$

→ 3. und 4. Kanonische Form selbes Prinzip wie bei zeitkontinuierlichen Systemen

12. Zeitdiskrete Systeme

FIR-Systeme (finite impulse response)

Übertragungsfunktion in Form: $\frac{G(z) = \frac{\beta_n \cdot z^n + \dots + \beta_1 \cdot z^1 + \beta_0}{\alpha_n \cdot z^n}$

$$\rightarrow g(k) = \frac{\beta_n}{\alpha_n} \cdot \delta(k) + \frac{\beta_{n-1}}{\alpha_n} \cdot \delta(k-1) + \frac{\beta_{n-2}}{\alpha_n} \cdot \delta(k-2) + \dots + \frac{\beta_0}{\alpha_n} \cdot \delta(k-n)$$

$$\Rightarrow \text{ The degree up a very polynomial point in the problem of the problem in the problem of the problem in the problem$$

 \rightarrow Überlagerung von n+1 verschobenen Impulsen:

aus G(z) folgt Transformation: $\alpha_n \cdot y(k+n) = \sum_{\mu=0}^n \beta_\mu \cdot u(k+\mu)$ \rightarrow Verschiebung des Nullpunkts: $y(k) = \sum_{\mu=0}^n \frac{\beta_{(n-\mu)}}{\alpha_n} \cdot u(k-\mu)$ keine Rückkopplungen, da nicht rekursiv FIR-Systeme <u>immer stabil</u>, da n-facher Pol bei z=0

$\alpha_n = 1$	Zustandsgleichung	Ausgangsgleichung	Strukturbild
1.	$(x_1(k+1))$ $(0 \ 1 \ 0 \ \cdots \ 0)$ $(x_1(k))$ (β_{n-1})	$(x_1(k))$	
Kanonische	$ x_2(k+1) $ 0 0 1 $ x_2(k) $ $ \beta_{n-2} $	$ x_2(k) $	
Form		$y(k) = \left(\frac{1}{\alpha_n} 0 \cdots 0\right) \cdot \left \begin{array}{c} \vdots \\ \vdots \\ \vdots \\ \end{array} \right + \frac{\beta_n}{\alpha_n} \cdot u(k)$	$\begin{pmatrix} \beta_0 \end{pmatrix}$ $\begin{pmatrix} \beta_1 \end{pmatrix} x_{n-1}(k+1)$ $\begin{pmatrix} \beta_2 \end{pmatrix}$ $\begin{pmatrix} \beta_{n-1} \end{pmatrix}$ $\begin{pmatrix} \beta_n \end{pmatrix}$
	$\begin{vmatrix} x_{n-1}(k+1) \end{vmatrix} = \begin{vmatrix} 0 & 0 & 0 & \cdots & 1 \end{vmatrix} = \begin{vmatrix} x_{n-1}(k) \end{vmatrix} = \beta_1$	$X_{n-1}(K)$ \overrightarrow{d}	$x_n(k+1)$ 1 $x_n(k)$ $\sqrt{ 1}$ $x_{n-1}(k)$ $x_n(k+1)$ 1 $x_n(k)$ $y(k)$
	$(x_n(k+1))$ $(0 \ 0 \ 0 \ \cdots \ 0)$ $(x_n(k))$ (β_0)	$(x_n(k))$	Z Z Z Z
	A b		
2.	$(x_1(k+1))$ $(0 \ 1 \ 0 \ 0 \ \cdots \ 0)$ $(x_1(k))$ (0)	$(x_1(k))$	$ \longrightarrow $
Kanonische	$ x_2(k+1) 0 0 1 0 \cdots 0 x_2(k) 0 $	$y(k) = (\beta_0 \beta_1 \cdots \beta_{n-1}) \cdot \begin{vmatrix} x_2(k) \\ \vdots \end{vmatrix} + \frac{\beta_n}{k} \cdot u(k)$	
Form	$\begin{vmatrix} x_3(k+1) \\ = \begin{vmatrix} 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ & & & & & & & & & & & & & & & & &$	α_n	β_n β_{n-1} $\lambda_{n-1}(k+1)$ β_1 β_0
		$\left(x_n(k)\right)$ \overrightarrow{d}	
	$\begin{vmatrix} x_{n-1}(k+1) & 0 & 0 & 0 & 0 & \cdots & 1 & x_{n-1}(k) \end{vmatrix} = 0$	(-11(-1))	$u(k)$ 1 $x_n(k+1)$ 1 $x_n(k)$ $x_n(k)$ 1 $x_n(k)$ 1 $x_n(k)$
	$\begin{pmatrix} x_n(k+1) \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} x_n(k) \end{pmatrix} \begin{pmatrix} \alpha_n^{-1} \end{pmatrix}$		\overline{z} \overline{z} \overline{z}
	À		

IIR-Systeme (infinite impulse response)

jedes System mit Pol bei $z \neq 0$ ist IIR-System \rightarrow mindestens 1 Rückführung in Blockschaltbild, daher auch rekursiv

(siehe allgemein Abschnitt "Zustandsraum")

12.3 Entwurf zeitdiskreter Systeme

(Ermittlung zeitdiskretes System aus bekanntem zeitkontinuierlichem System)

Näherung durch Rückwärtsdifferenzieren

Ersetzen der zeitkontinuierlichen durch zeitdiskrete Signale:

$$\frac{dy(t)}{dt} \to \frac{y(k) - y(k-1)}{T_a}$$

$$\frac{d^2y(t)}{dt^2} \to \frac{y(k)-2y(k-1)+y(k-2)}{T_c^2}$$

$$\frac{d^3y(t)}{dt^3} \to \frac{y(k) - 3y(k-1) + 3y(k-2) - y(k-3)}{T_a^3}$$

z-Transformation:

$$\frac{y(k)-y(k-1)}{T_a} \to \left(\frac{1-z^{-1}}{T_a}\right) \cdot Y(z)$$

$$\frac{y(k)-y(k-1)}{T_a} \to \left(\frac{1-z^{-1}}{T_a}\right) \cdot Y(z) \qquad \frac{y(k)-2y(k-1)+y(k-2)}{T_a^2} \to \left(\frac{1-z^{-1}}{T_a}\right)^2 \cdot Y(z) \qquad \dots \to \left(\frac{1-z^{-1}}{T_a}\right)^n \cdot Y(z)$$

Aus G(s) folgt G(z) mit Ersetzen: $s = \frac{1-z^{-1}}{z}$

geringere Schwingungsneigung als im Zeitkontinuierlichen:

Vergleich der zeitkontinuierlichen und zeitdiskreten Impulsantwort mit: $\frac{g_{kont}(k)}{g_{kont}(k)} = \frac{g(k)}{r}$

Näherung durch Vorwärtsdifferenzieren

Ersetzen der zeitkontinuierlichen durch zeitdiskrete Signale:

$$\frac{dy(t)}{dt} \to \frac{y(k+1) - y(k+1) - y(k+1)}{T_a}$$

$$\frac{d^2y(t)}{dt^2} \to \frac{y(k+2) - 2y(k+1) + y(k)}{T_c^2}$$

$$\frac{d^3y(t)}{dt^3} \to \frac{y(k+3) - 3y(k+2) + 3y(k+1) - y(k)}{T_a^3}$$

z-Transformation:

$$\frac{y(k+1)-y(k)}{T_a} \to \left(\frac{z-1}{T_a}\right) \cdot Y(z)$$

$$\frac{y(k+1)-y(k)}{T_a} \to \left(\frac{z-1}{T_a}\right) \cdot Y(z) \qquad \qquad \frac{y(k+2)-2y(k+1)+y(k)}{T_a^2} \to \left(\frac{z-1}{T_a}\right)^2 \cdot Y(z) \qquad \dots \to \left(\frac{z-1}{T_a}\right)^n \cdot Y(z)$$

Aus G(s) folgt G(z) mit Ersetzen: $s = \frac{z-1}{r}$

höhere Schwingungsneigung als im Zeitkontinuierlichen:

Bilineare Transformation

im Bildbereich von Laplace anwendbar

aus
$$z = e^{sT_a}$$
 folgt: $s = \frac{1}{T_a} \cdot \ln(z)$ \rightarrow Taylorreihe: $s \approx \frac{2(z-1)}{T_a(z+1)}$

 \rightarrow aus G(s) folgt G(z)

nur geringe Abweichungen zum Zeitkontinuierlichen:

Impulsinvariante Transformation (Ziel: Impulsantwort g(k) entspricht exakt g(t))

aus
$$G(s) = \sum_{v=1}^{n} \frac{R_v}{s - s_{\infty v}} + k$$
 folgt: $G(z) = \sum_{v=1}^{n} B_v \cdot \frac{z}{z - z_v} + k$
 $G(s) \to g(t) \to (t = kT_g) \to G(z)$ (bei $\sigma(t)$ nur $t = k!!$)

Korrektur für Sprungantwort erforderlich: $G_{korr}(z) = \frac{1}{G(k \to \infty)} \cdot G(z)$ (Endwertsatz!)

Sprunginvariante Transformation (Ziel: Sprungantwort a(k) entspricht exakt a(t))

aus
$$A(s) = G(s) \cdot \frac{1}{s} = \sum_{v=0}^{n} \frac{R_v}{s - s_{\infty v}}$$
 folgt: $A(z) = \sum_{v=0}^{n} B_v \cdot \frac{z}{z - z_v} = G(z) \cdot \frac{z}{z - 1}$

$$\Rightarrow G(z) = \frac{z-1}{z} \cdot A(z)$$

Vorgehen:
$$A(s) \rightarrow a(t) \rightarrow (t = kT_a) \rightarrow A(z) \rightarrow G(z)$$

(bei $\sigma(t)$ nur t = k!!)

