Polyhedral geometry 1

Computational Visual Design (CVD-Lab), DIA, "Roma Tre" University, Rome, Italy

Computational Graphics 2012

Section 1

Linear spaces

1.
$$\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$$
; (commutativity of addition)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)
- 4. there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)
- 4. there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)
- 5. $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$; (distrib. of addition w.r.t. product)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)
- 4. there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)
- 5. $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$; (distrib. of addition w.r.t. product)
- 6. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{v}$; (distrib. of product w.r.t. addition)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)
- 4. there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)
- 5. $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$; (distrib. of addition w.r.t. product)
- 6. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{v}$; (distrib. of product w.r.t. addition)
- 7. $\alpha \cdot (\beta \cdot \mathbf{v}) = (\alpha \beta) \cdot \mathbf{v}$; (associativity of product)

- 1. $\mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v}$; (commutativity of addition)
- 2. $\mathbf{u} + (\mathbf{v} + \mathbf{w}) = (\mathbf{u} + \mathbf{v}) + \mathbf{w}$; (associativity of addition)
- 3. there is a $\mathbf{0} \in \mathcal{V}$ such that $\mathbf{v} + \mathbf{0} = \mathbf{v}$; (neutral el. of addition)
- 4. there is a $-\mathbf{v} \in \mathcal{V}$ such that $\mathbf{v} + (-\mathbf{v}) = \mathbf{0}$; (inverse of add.)
- 5. $\alpha \cdot (\mathbf{v} + \mathbf{w}) = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{w}$; (distrib. of addition w.r.t. product)
- 6. $(\alpha + \beta) \cdot \mathbf{v} = \alpha \cdot \mathbf{v} + \alpha \cdot \mathbf{v}$; (distrib. of product w.r.t. addition)
- 7. $\alpha \cdot (\beta \cdot \mathbf{v}) = (\alpha \beta) \cdot \mathbf{v}$; (associativity of product)
- 8. $1 \cdot \mathbf{v} = \mathbf{v}$. (neutral element of product)

Example: vector space of real matrices

Let $\mathcal{M}_n^m(\mathbb{R})$ be the set of $m \times n$ matrices with elements in the field \mathbb{R} . An element A in such a set is denoted as

$$A = (\alpha_{ij})$$

Addition and multiplication by a scalar are defined component-wise:

$$A + B = (\alpha_{ij}) + (\beta_{ij}) = (\alpha_{ij} + \beta_{ij})$$
$$\gamma A = \gamma(\alpha_{ij}) = (\gamma \alpha_{ij})$$

Example: vector space of polynomials of degree $\leq n$

A linear space we will make often use of in Computer Graphics and Geometric modeling is the space of dimension n + 1:

$$\mathcal{P}^n(\mathbb{R}) = \{ p : \mathbb{R} \to \mathbb{R} : u \mapsto \sum_{i=1}^n a_i p^i, a_i \in \mathbb{R} \}$$

of univariate polynomials of degree $\leq n$ on the real field (with real coefficients), with $p^i \in P_n$, where

$$P_n = (p^n, p^{n-1}, ..., p^1, p^0)$$
 and $p^i : u \mapsto u^i$

is the power basis.

Let $(\mathcal{V},+,\cdot)$ be a vector space on the field $\mathcal{F}.$

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U}, +, \cdot)$ is a vector space with respect to the same operations.

Let $(\mathcal{V},+,\cdot)$ be a vector space on the field $\mathcal{F}.$

 $\mathcal{U}\subset\mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U},+,\cdot)$ is a vector space with respect to the same operations.

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset$; for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$

Let $(\mathcal{V}, +, \cdot)$ be a vector space on the field \mathcal{F} . $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U}, +, \cdot)$ is a vector space with respect to the same operations. $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset$; for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$ codimension of a subspace $\mathcal{U} \subset \mathcal{V}$ is defined as $\dim \mathcal{V} - \dim \mathcal{U}$

Let $(\mathcal{V},+,\cdot)$ be a vector space on the field $\mathcal{F}.$

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if $(\mathcal{U}, +, \cdot)$ is a vector space with respect to the same operations.

 $\mathcal{U} \subset \mathcal{V}$ is a subspace of \mathcal{V} if and only if $\mathcal{U} \neq \emptyset$;

for each $\alpha \in \mathcal{F}$ and $\mathbf{u}_1, \mathbf{u}_2 \in \mathcal{U}$, $\alpha \mathbf{u}_1 + \mathbf{u}_2 \in \mathcal{U}$

codimension of a subspace $\mathcal{U} \subset \mathcal{V}$ is defined as

 $\dim \mathcal{V} - \dim \mathcal{U}$

Examples of codimension in 1D, 2D, 3D?

Linear combination

Let
$$\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \in \mathcal{V}$$
 and $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$,

The vector

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n = \sum_{i=1}^n \alpha_i \mathbf{v}_i \in \mathcal{V}$$

is called a linear combination of vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$

Span

▶ The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .

Span

- ▶ The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .
- ► Such a subspace is called the span of *S* and is denoted as

 $\lim S$

Span

- ▶ The set of all linear combinations of elements of a set $S \subset \mathcal{V}$ is a subspace of \mathcal{V} .
- ► Such a subspace is called the span of *S* and is denoted as

$\lim S$

▶ If a subspace \mathcal{U} of \mathcal{V} can be generated as the span of a set S of vectors in \mathcal{V} , then S is called a generating set or a spanning set for \mathcal{U} .

Linear independence

▶ A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if

$$\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$$

implies that $\alpha_i = 0$ for each i

Linear independence

▶ A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is linearly independent if

$$\sum_{i=1}^n \alpha_i \mathbf{v}_i = \mathbf{0}$$

implies that $\alpha_i = 0$ for each i

▶ As a consequence, a set of vectors is linearly independent when none of them belongs to the span of the others.

Bases and coordinates

When working with vector spaces, the concept of basis, a discrete subset of linearly independent elements, is probably the most useful to deal with.

 each element of the space can be represented uniquely as linear combination of basis elements

Bases and coordinates

When working with vector spaces, the concept of basis, a discrete subset of linearly independent elements, is probably the most useful to deal with.

- each element of the space can be represented uniquely as linear combination of basis elements
- ▶ this leads to a parametrization of the space, i.e. to represent each element by a sequence of scalars, called its coordinates with respect to the chosen basis.

A set of vectors $\{{f e}_1,{f e}_2,\ldots,{f e}_n\}$ is a basis for the vector space ${\cal V}$ iff

1. the set is linearly independent, and

A set of vectors $\{{f e}_1,{f e}_2,\ldots,{f e}_n\}$ is a basis for the vector space ${\cal V}$ iff

- 1. the set is linearly independent, and
- 2. $V = \lim \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \}$

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

 $\dim \mathcal{V}$

► Some important properties of the bases of a vector space are:

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

- ► Some important properties of the bases of a vector space are:
 - 1. each spanning set for \mathcal{V} contains a basis;

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

- ► Some important properties of the bases of a vector space are:
 - 1. each spanning set for ${\cal V}$ contains a basis;
 - 2. each minimal spanning set is a basis;

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

- ► Some important properties of the bases of a vector space are:
 - 1. each spanning set for V contains a basis;
 - 2. each minimal spanning set is a basis;
 - 3. each linearly independent set of vectors is contained in a basis;

▶ Every two bases of $\mathcal V$ have the same number of elements, that is called the dimension of $\mathcal V$ and is denoted

- ► Some important properties of the bases of a vector space are:
 - 1. each spanning set for V contains a basis;
 - 2. each minimal spanning set is a basis;
 - 3. each linearly independent set of vectors is contained in a basis;
 - 4. each maximal set of linearly independent vectors is a basis;

If $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$ is an ordered basis for \mathcal{V} , then for each $\mathbf{v} \in \mathcal{V}$ there exists a unique n-tuple of scalars $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathcal{F}$ such that

$$\mathbf{v} = \sum_{i=1}^{n} \alpha_i \mathbf{e}_i.$$

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

▶ If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

- ▶ If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$
- ▶ But this one would imply $\sum (\alpha_i \beta_i)\mathbf{e}_i = \mathbf{0}$, hence $(\alpha_i \beta_i) = \mathbf{0}$,

The *n*-tuple of scalars (α_i) is called the components of **v** with respect to the ordered basis $(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n)$.

- ▶ If such a *n*-tuple were not unique, then $\mathbf{v} = \sum \alpha_i \mathbf{e}_i = \sum \beta_i \mathbf{e}_i$
- ▶ But this one would imply $\sum (\alpha_i \beta_i)\mathbf{e}_i = \mathbf{0}$, hence $(\alpha_i \beta_i) = \mathbf{0}$,
- i.e. $\alpha_i = \beta_i$, for every *i*.

▶ Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .

- ▶ Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- ▶ Of course, their coordinates are $(1 \ 0 \ \cdots \ 0), (0 \ 1 \ \cdots \ 0), \ldots, (0 \ 0 \ \cdots \ 1),$ and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

- ▶ Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- ▶ Of course, their coordinates are $(1 \ 0 \ \cdots \ 0), (0 \ 1 \ \cdots \ 0), \ldots, (0 \ 0 \ \cdots \ 1),$ and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

If we take n (linearly independent) vectors $V = (\mathbf{v}_1, \dots, \mathbf{v}_n) \subset \mathcal{V}$, represented in B coordinates as [V], and want to parametrize \mathcal{V} with respect to the new basis, we have, for transformation of coordinates:

$$[I] = [T][V]$$

- ▶ Let $B = (\mathbf{e}_1, \dots, \mathbf{e}_n) \subset \mathcal{V}$ be a basis for \mathcal{V} .
- ▶ Of course, their coordinates are $(1\ 0\ \cdots\ 0), (0\ 1\ \cdots\ 0), \ldots, (0\ 0\ \cdots\ 1)$, and, in B coordinates, the basis is represented by the matrix

$$[B] = [I]$$

.

If we take n (linearly independent) vectors $V = (\mathbf{v}_1, \dots, \mathbf{v}_n) \subset \mathcal{V}$, represented in B coordinates as [V], and want to parametrize \mathcal{V} with respect to the new basis, we have, for transformation of coordinates:

$$[I] = [T][V]$$

and hence:

$$\lceil T \rceil = \lceil V \rceil^{-1}$$

▶ Let $P_3 = (u^3, u^2, u, 1)$

- Let $P_3 = (u^3, u^2, u, 1)$
- ▶ and $B_3 = ((1 u)^3, 3u(1 u)^2, 3u^2(1 u), u^3)$ be two ordered bases

- Let $P_3 = (u^3, u^2, u, 1)$
- ▶ and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- ▶ for the linear space $\mathcal{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .

- Let $P_3 = (u^3, u^2, u, 1)$
- ▶ and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- ▶ for the linear space $\mathcal{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- ▶ the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

- ▶ Let $P_3 = (u^3, u^2, u, 1)$
- ▶ and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- ▶ for the linear space $\mathcal{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

▶ the $[P_3]$ matrix in the B_3 basis is

$$[P_3]_{B_3} = [B_3]_{P_3}^{-1} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1/3 & 1 \\ 0 & 1/3 & 1/6 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

- Let $P_3 = (u^3, u^2, u, 1)$
- ▶ and $B_3 = ((1-u)^3, 3u(1-u)^2, 3u^2(1-u), u^3)$ be two ordered bases
- ▶ for the linear space $\mathcal{P}^3(\mathbb{R})$ of polynomials with deg ≤ 3 .
- ▶ the $[B_3]$ matrix in the P_3 basis is

$$[B_3]_{P_3} = \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 3 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

▶ the $[P_3]$ matrix in the B_3 basis is

$$[P_3]_{B_3} = [B_3]_{P_3}^{-1} = \left(egin{array}{cccc} 0 & 0 & 0 & 1 \ 0 & 0 & 1/3 & 1 \ 0 & 1/3 & 1/6 & 1 \ 1 & 1 & 1 & 1 \end{array}
ight)$$

WHY ?

