Домашнее задание 10. Простые строковые алгоритмы Автор: *Головко Денис*, Б05–225

Задача 2.

Решение.

Докажем утверждение по индукции. Для n=1 утверждение верно. Предположим, что для n утверждение доказано. Рассмотрим строку $s=a_1\ldots a_n$. Добавим к ней символ x, получим $sx=a_1\ldots a_nx$. Покажем, что подпалиндромов увеличилось не более чем на один. Рассмотрим два случая:

- 1. Пусть $x \notin \{a_1, \dots, a_n\}$. Тогда появился один новый подпалиндром "x".
- 2. Пусть $x \in \{a_1, \dots, a_n\}$ и появилось хотя бы два новых подпалиндрома:

```
\exists k,l: 1 \leqslant k \leqslant l \leqslant n \ (a_k = a_l = x, \ "a_k a_{k+1} \dots x" \ и \ "a_l a_{l+1} \dots x" \ – новые подпалиндромы)
```

Тогда $\exists j: k < j \leqslant n: a_k \dots a_j = a_l \dots x$, то есть подпалиндром " $a_l \dots x$ " уже существовал. Значит, новых подпалиндромов появилось не более одного.

Переход индукции доказан.

Задача 3.

Решение.

Сначала каждому массиву однозначно сопоставим разностный массив. Например, массиву a=[5,6,8,9,1,2,4] будет сопоставлен $\mathrm{diff_a}=[-1,-2,-1,8,-1,-2]$, а массиву b=[1,2,4] сопоставим $\mathrm{diff_b}=[-1,-2]$. Это занимает O(|a|+|b|) времени. Далее, осталось найти число вхождений массива $\mathrm{diff_b}$ в массив $\mathrm{diff_a}$.

Построим префикс-функцию для \dim_b , это позволит избежать лишних сравнений при попытке сопоставить \dim_b с подмассивами \dim_a . Далее пробежимся по массиву \dim_a , сохраняя j – позицию в \dim_b . При возникновении несовпадения префикс-функция покажет, в каком месте \dim_b следует продолжить сравнение. Приведу псевдокод решения (обозначим $a = \dim_a$, $b = \dim_b$):

```
1.
      int count = 0;
      std::vector<int> pi = compute_prefix_function(b);
2.
3.
      int j = 0;
4.
      for (int i = 0; i < length(a); i++) {
          while (j > 0 \&\& (j == length(b) || a[i] != b[j])) j = pi[j-1];
5.
          if (a[i] == b[j]) ++j;
6.
7.
          if (j == len(b)) {
8.
               ++count;
9.
               j = pi[j-1];
10.
          }
11.
      }
12.
      return count;
```

 $A c u м n m o m u \kappa a. O(|a| + |b|)$

Задача 4.

Решение.

Пусть h — высота сжатого бора (максимальная длина ветки). Покажем, что $h = O\left(\sqrt{\sum |s_i|}\right)$. Рассмотрим самую длинную ветку в сжатом боре, ее высота h. Рассмотрим лист. Так как бор сжатый, исходящая степень вершины перед листом хотя бы 2. Аналогично, поднимаемся наверх. Тогда сумма высот всех веток будет хотя бы $1+2+\ldots+h=\frac{h(h+1)}{2}$. (На рисунке красная ветка — самая длинная высоты остальных, начиная от корня, оцениваются хотя бы 1, хотя бы 2, и тд.)

Тогда, имеем оценку: $\Theta(h^2) \leqslant \sum |s_i|$. Отсюда следует, что $h = O\left(\sqrt{\sum |s_i|}\right)$.

Оценим количество вершин в графе. Рассмотрим произвольное дерево на n вершинах. В нем n-1 ребро. Сумма степеней вершин в таком графе 2n-2 (так как каждое ребро добавляет 2). Получим, что средняя степень вершины в дереве $\frac{2n-2}{n}=2-\frac{2}{n}<2$. Теперь рассмотрим сжатый бор. В нем есть либо вершины степени 1, либо вершины степени хотя бы 3. Вершин степени 1 всего O(n), где n – количество строк. Из доказанного ранее факта, так как средняя степень вершины в дереве меньше двух, вершин степени хотя бы 3 так же O(n). Значит, количество вершин в графе можно оценить как O(n).

Задача 5.

Решение.

Вначале применим алгоритм Ахо-Корасика к строкам первой таблицы. Используя этот алгоритм, найдем все вхождения строк из первой таблицы в строки второй таблицы. После этого в соответствующих местах второй таблицы будем сохранять номера терминальных вершин бора. Последний этап — искать в столбцах второй таблицы последовательности номеров $t_0t_1\dots t_{n-1}$, где каждое t_i — это номер терминальной вершины бора для i-ой строки из первой таблицы. Поиск можем выполнить с применением Z-функции. В итоге, время выполнения будет линейно зависеть от площадей данных таблиц.