Banco de Dados I

Introdução

Cap. 1 e 2 (Elmasri) Cap. 1 (Silberschatz) ✓ Cap. 1 (Ramakrihsnan)

Denio Duarte duarte@uffs.edu.br

Motivação

DENIO DUARTE 📲 ?

Início > Graduação > Diário de Classe > Registrar Encontros e Faltas > Encontros

Graduação -

▼ Diário de Classe

Acadêmicos com Situação INC

Consultar Diário

Encerrar Diário

Registrar Avaliações e Notas

Registrar Encontros e Faltas

- Plano de Ensino
- Relatórios
- **Atividades Docentes**
- ▶ Configurações

Campus: Chapecó

28674 - Ciência da Computação - 4ª fase (Remoto) - Vespertino - 2020/2 Turma:

Comp. Curricular: GEX090 - Banco de dados I

Frequência Mínima Exigida: 75%

Situação do Plano de Ensino: Em edição ?

Importar encontros do Plano de Ensino

Encontros

Total de períodos previstos: 72 Total de períodos cadastrados: 0

Total de períodos faltantes: 72

Nº	Datas	Turno	Conteúdo	Períodos*	Alterar	Excluir	Faltas
IN	Datas	Turno	Conteudo	Total	Alterar	EXCIUIT	railas

Nenhum encontro cadastrado para a turma.

Total de períodos cadastrados:

PT - Presencial teórica | PP - Presencial prática | PCCr - Prática como componente curricular | NP - Não presencial | Est - Atividade de estágio | Pes - Atividade de pesquisa | Ext - Atividade de extensão. Turno: M - Manhā | T - Tarde | N - Noite | (-) Turno não definido.

* Cada período de aula equivale a 50 minutos.

Novo Encontro

Motivação

Dados

- Podemos definir como a menor característica de um objeto
 - Nome, idade, cor, altura, potência, valor, dimensão, coordenada x, capacidade ...
 - Os dados têm um domínio associado:
 - Nome é representado por uma cadeia de caracteres
 - Idade é representado por um inteiro entre 0 e 110
 - Cor pode ser azul, vermelho e verde
 - ...
- Mais adiante, chamaremos de atributo

Dados

Porém os dados estão "soltos" por aí – Bando de Dados

Gustavo Kuerten Gustavo Kuerten Magda Cotrofe Salvador Dali Salvador Santos Rosangela Santos

Banco de Dados I Sistemas Operacionais Fisiologia I História Medieval Ciência da Computação
Ciência da Computação
Física
História

012-1	
20,00	
2013-1	•
1/0	

5,6 8,0 6,3

- Temos que organizá-los para serem úteis

BDR

BD S

- Banco de Dados
 - Conjunto de dados integrados e relacionados que tem como objetivo atender uma comunidade de usuários.
 - Propriedades implícitas
 - Representa aspectos do mundo real (minimundo ou universo de discurso).
 - Coleção de dados logicamente coerentes com algum significado inerente.
 - Projetado, construído e povoado (instanciado) para aplicações específicas

- Banco de Dados
 - Exemplos de minimundos ou universos de discurso
 - Universidade
 - Acadêmico: preocupado com os dados dos alunos, componentes curriculares, matrículas, professores, etc
 - Gestão de Pessoas: preocupado com os servidores (professores e técnicos administrativos, titulação, cargo, horas trabalhadas, férias, etc)

- Banco de Dados (formato relacional)
 - Acadêmico

Mat Nome		Altura	Sexo	Data Nasc	Curso	
11	Gustavo Kuerten	1,90	M	10/09/1976	1	
22	Magda Cotrofe	1,75	F	18/01/1963	3	
33	Salvador Dali	1,68	M	11/05/1904	1	
44	Rosangela Santos	1,65	F	20/12/1990	2	

Ver Dados Código Nome Ciência da Computação Educação Física História Código Nome **Mat Disciplina** Semestre Média Banco de Dados I 2012-1 7,5 Sistemas Operacionais 5,6 2012-2 33 2 Fisiologia I 2013-1 8,0 História Medieval 2013-1 6,3

Banco de Dados (formato semi-estruturado)

```
{ Estudante: [ { matricula: 11,
              nome: "Gustavo Kuerten",
              altura: 1.9,
              sexo: "M"
              dtnasc: "1976-09-10",
              curso: {codigo:1, nome: "Ciência da Computação"}
              historico:
                  {ccr: "Banco de Dados I", semestre: "2012-1", media: 7.5}
            { matricula: 33,
              nome: "Salvador Dali".
              altura: 1.68,
              sexo: "M"
              dtnasc: "1904-05-11",
              curso: {codigo:1, nome: "Ciência da Computação"}
              historico:
                  {ccr: "Sistemas Operacionais", semestre: "2013-1", media: 8.5}
           }}
```

Ver Dados

- Questões para refletir:
 - Como os dados estão organizados no disco?
 - Como acessar os dados armazenados?
 - Como estes programas "enxergam" os dados no disco?

Como os dados estão organizados no disco?

Como os dados estão organizados no disco?

 SSD (Solid State Drive) começam a substituir os discos tradicionais

- SSD Vantagens
 - Sem tempo de busca (seek time)
 - Sem latência de rotação (rotational latency)
- SSD Desvantagens
 - Custo de escrita e leitura são diferentes
 - Todos os algoritmos de acesso a disco e buffer de um SGBD devem ser adequados ao funcionamento dos SSDs.

- Como acessar os dados armazenados?
 - Depende da interface utilizada pelo programador:
 - Diretamente
 - Pouco utilizada (necessário conhecer o hardware)
 - Sistema Operacional
 - Utiliza a camada Sistema de Arquivos
 - Sistema Gerenciador de Banco de Dados (SGBD)
 - Interface que separa o programa do banco de dados

- Como estes programas "enxergam" os dados no disco?
 - Os dados estão organizados no disco como um sequência de bytes
 - Esse formato não é interessante para os programas
 - Organização na memória RAM:
 - Lista encadeada
 - Vetor
 - Árvore
 - Pilha, etc

- Dois pontos nos interessam
 - Como acessar os dados
 - Como os dados são vistos pelos programas (ou como são organizados pela interface)
 - Chamaremos Modelo de Dados

- Sistema de arquivos
 - Não utilizam software específico para gerenciar os dados
 - Utilizam rotinas do sistema operacional
 - Nenhuma instalação adicional para o uso
 - Problema com redundância, segurança, confiança
 - Dados são sequência de bytes
 - Volume pequeno de dados

 Sistema de arquivos struct rec { int cod; char nome[20]; }; struct rec myrec; FILE *f; f=open("meuarquivo.dat","r+"); if (f==NULL) exit(0); myrec.cod=1; strcpy(myrec.nome,"Cliente Um"); fwrite(&myrec, sizeof(struct rec),1,f); fseek(f,0,SEEK_SET); fread(&myrec,sizeof(myrec),1,f);

fclose(f);

printf("Codigo: %d Nome: %s",myrec.cod,myrec.nome);

- Sistema Gerenciador de Banco de Dados SGBD
 - Grande volume de dados
 - Oferece controle de redundância, segurança e confiança
 - Necessita a instalação do SGBD para o uso
 - Linguagens de programação têm que ter bibliotecas de acesso

- SGBD
 - Relacional

```
create table cliente(
  cod integer not null primary key,
  nome varchar(20) not null
);
  :
insert into cliente (cod,nome) values (1,'Cliente Um');
  :
select * from cliente;
  :
```

SGBD Sistema de Arquivo VS struct rec { int cod; char nome[20];} create table cliente(struct rec myrec; cod integer not null primary key, FILE *f nome varchar(20) not null); f=open("meuarquivo.dat","r+"); if f==NULL exit(0); insert into cliente (cod,nome) myrec.cod=1 values (1,'Cliente Um'); strcpy(myrec.nome,"Cliente Um"); fwrite(&myrec, sizeof(struct rec),1); select * from cliente; fseek(f,0,SEEK_SET); fread(&myrec,sizeof(myrec),1,f); printf("Codigo: %d Nome: %s",myrec.cod,myrec.nome); fclose(f);

Modelo de Dados

- Os SGBDs tratam seus dados de várias formas
 - Essas formas são chamadas de modelo de dados (como os dados são organizados para os programas acessarem)
 - Hierárquico
 - Redes
 - Relacional
 - Orientado a objetos
 - Objeto-Relacional
 - Semi-estruturado
 -

- Modelo Hierárquico (IMS IBM)
 - Baseado em estrutura de árvores

Hierárquico

- Modelo de Rede (CODASYL)
 - Baseado em links e conexões
 - Representa dados como tipos de registros
 - Relaciona um registro com um ou vários outros através de ponteiramento

Redes

Relacional

- Proposto por Codd em 1970
- Dados são vistos como relação (tabelas)
- O relacionamento entre as relação é feito através de valores comuns entre as mesmas
- Modelo baseado em um formalismo matemática
- Definido sobre o mesmo a álgebra relacional
- A base matemática permite
 - Otimizar consultas
 - Otimizar acesso
 - Otimizar armazenamento

Relacional

PRODUCT					
Product_key	Description	Brand			
1	Beautiful Girls	MKF Studios			
2	Toy Story	Wolf			
3	Sense and Sensibility	Parabuster Inc.			
4	Holiday of the Year	Wolf			
5	Pulp Fiction	MKF Studios			
6	The Juror	MKF Studios			
7	From Dusk Till Dawn	Parabuster Inc.			
8	Hellraiser: Bloodline	Big Studios			

SALES_FACT Product_key Store_key Sales Profit Cost 6 1.15 1.24 1 2.39 16.7 6.91 9.79 7.16 2.75 4.40 3 2.93 1.84 4.77 3 11.93 4.59 7.34 14.31 5.51 8.80

- Relacional
 - Modelo de banco de dados mais utilizado por aplicações comerciais
 - Oracle
 - SQLServer
 - DB2
 - MySQL
 - PostgreSQL
 - Firebird

- Extensões do modelo relacional
- Orientado a objetos
- Objetos-relacionais
- Semiestruturados

- SGBD NoSQL (Not Only SQL)
 - Classe de SGBD para trabalhar com quantidade volumosa de dados distribuídos em diferentes nós de uma rede
 - Modelos de dados
 - Orientado a documentos (JSON, XML)
 - MongoDB, CouchBase, eXist
 - Orientado a colunas
 - MonetDB, C-store, Cassandra
 - Orientado a chave/valor
 - DynamoDB, SimpleDB, Redis, Riak
 - Orientado a grafos
 - Neo4j, GraphBase

Classificação

- Banco de dados convencionais
 - Características
 - Dados bem estruturados
 - Tipos de dados simples (inteiros, caracteres, data, reais, ...)
 - Transações simples e curtas
 - Acesso através de chaves

Classificação

- Banco de dados não convencionais
 - Características
 - Grande volume de dados (às vezes, não estruturados)
 - Tipos de dados complexos (gráficos, imagens, sons, ...)
 - Transações longas
 - Caminho de acessos n\u00e3o triviais
 - Controle de versões

Classificação

- Big Data
 - Conjunto de problemas e suas soluções tecnológicas em computação para tratar certos tipos de dados:
 - Volumosos, heterogêneos, fácil acesso
 - 3 V's: volumosos, variados e velozes
 - SGBDs NoSQL foram propostos para atender Big Data
 - Volume
 - Giga (G): bilhões
 - Tera (T): trilhões
 - Peta (P): mil trilhões
 - Exa (E): milhões de trilhões
 - 5E → todas as palavras ditas pelos humanos

SGBD

Sistema Gerenciando de Banco de Dados (SGBD)

SGBD

Sistema Gerenciando de Banco de Dados (SGBD)

Conjunto de programas que permite ao usuário manter um banco de dados de forma consistente e segura

Arquitetura três-camadas (ANSI/SPARC)

Arquitetura três-camadas

Arquitetura três-camadas

```
create table Func (
  Nome varchar2(30),
  CPF   number(11),
  Sal      number(10,2),
  CProf  number(4),
  CDepto  number(4))
```


Arquitetura três-camadas

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

```
create table Func (
  Nome varchar2(30),
  CPF   number(11),
  Ender varchar2(40),
  Sal   number(10,2),
  CProf number(4),
  CDepto number(4))
```

Arquitetura três-camadas

Independência lógica dos dados: O nivel conceitual pode ser alterado sem afetar o nível externo.

```
create table Func (
  Nome varchar2(30),
  CPF   number(11),
  Ender varchar2(40),
  Sal   number(10,2),
  CProf  number(4),
  CDepto  number(4))
```

Arquitetura três-camadas

Independência física dos dados: capacidade de alterar o esquema interno sem a necessidade de alteração do esquema conceitual.

Funções Básicas

- Integridade semântica
 - Dados corretos em relação ao domínio da aplicação
 - Tamanho de uma sequência de caracteres
 - Cardinalidade entre tabelas 1:N, 1:1, etc
 - Regras de integridade
 - Chaves primárias/estrangeiras

Funções Básicas

- Cópia, restauração e recuperação de dados
 - Backup, restore (restauração), recovery (recuperação)
- Desempenho: mecanismos de otimização
- Segurança
 - Não permitir inconsistências nos dados
 - Segurança de acesso
 - Permissões, visões
 - Segurança contra falhas
 - Gerenciamento de transações
 - Gerenciamento de recuperação

Funções Básicas

- Concorrência
 - Permitir acessos simultâneos aos dados com garantia da consistência
- Independência dos dados
- Capacidade dos dados de um BD persistirem ao longo de diferentes execuções de programas de aplicação (persistência)

Componentes SGBD

Componentes de um SGBD

Fonte: <u>Database Systems</u>: the Complete <u>Book</u> <u>Garcia-Molina</u>, <u>Ulman</u>, <u>Widom</u>