In this chapter we develop the principles that permit us to calculate the values of the physical properties of a system as a function of the temperature. We assume that the system \mathcal{S} of interest to us is in thermal equilibrium with a very large system \mathcal{R} , called the **reservoir**. The system and the reservoir will have a common temperature τ because they are in thermal contact.

The total system $\Re + \&$ is a closed system, insulated from all external influences, as in Figure 3.1. The total energy $U_0 = U_{\Re} + U_{\&}$ is constant. In particular, if the system is in a state of energy ε_s , then $U_0 - \varepsilon_s$ is the energy of the reservoir.

Figure 3.1 Representation of a closed total system decomposed into a reservoir \Re in thermal contact with a system &.

BOLTZMANN FACTOR

A central problem of thermal physics is to find the probability that the system & will be in a specific quantum state s of energy ε_s . This probability is proportional to the Boltzmann factor.

When we specify that \mathcal{S} should be in the state s, the number of accessible states of the total system is reduced to the number of accessible states of the reservoir \mathcal{R} , at the appropriate energy. That is, the number $g_{\mathcal{R}+\mathcal{S}}$ of states