Link Layer

- Buổi trước
 - Chức năng cơ bản
 - MAC,
 - WLAN
- Hôm nay
 - PPP
 - Kênh ảo: ATM, MPLS...

Giao thức kết nối điểm-điểm (point-to-point)

- Một nút gửi, một nút nhận, một liên kết:
 - Không cần Media Access Control
 - Không cần địa chỉ
 - e.g., dialup link, ADSL, ISDN
- Một số giao thức DLC điểm-điểm:
 - PPP (point-to-point protocol)
 - HDLC: High level data link control

Các yêu cầu của PPP [RFC 1557]

- Packet framing:
 - Hỗ trợ nhiều giao thức
 - Dồn kênh/Phân kênh
- Bit transparency: Chuyển bất cứ mẫu bit nào
- Error detection (không cần correction)
- Connection liveness: Phát hiện được trạng thái đường truyền

- Sửa lỗi
- Ð/k luồng
- Thứ tự gói tin
- Hỗ trợ kết nối đa điểm

Để cho tầng trên!

PPP Data Frame

- Flag:
- Address: (Option)
- Control: (Dự trữ)
- Protocol: Giao thức tầng trên(eg, PPP-LCP, IP, IPCP, etc)

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	address	control				flag

PPP Data Frame

• info: dữ liệu

• check: CRC

1	1	1	1 or 2	variable length	2 or 4	1
01111110	11111111	00000011	protocol	info	check	01111110
flag	ddress	control				flag

Byte Stuffing

- Yêu cầu phải gửi được mẫu bit <01111110>
 - Q: <011111110> data or flag?

- Sender: Thêm một mẫu < 01111110> sau mỗi đoạn dữ liệu < 01111110> ("stuff")
- Receiver:
 - Nếu có hai chuỗi liên tiếp 01111110?
 - Nếu có một chuỗi 01111110?

Byte Stuffing


```
b5 b4 b2 01111110 01111110 b2 b1 b5 b4 01111110 01111110 b2 b1
```

PPP Data Control Protocol

Trước khi trao đổi dữ liệu

- Cấu hình PPP link (max. frame length, authentication)
- Cấu hình thông tin tầng mạng
 - Với IP: Sử dụng giao thức IP Control Protocol (IPCP) (protocol field: 8021) để trao đổi thông tin địa chỉ IP

ATM và MPLS

Công nghệ ảo hóa tài nguyên:

- Máy tính: Bộ nhớ ảo, thiết bị ảo, máy ảo
 - Java
 - VMware, MS virtual machine...
- Åo hóa: Không quan tâm đến chi tiết tầng dưới, chỉ quan tâm ở mức khái quát hóa (abstraction)

Internet: Mạng của các mạng

1974: Các mạng với công nghệ khác nhau

- ARPAnet
- data-over-cable networks
- packet satellite network (Aloha)
- packet radio network

- ... Sự khác nhau:
 - Địa chỉ
- Khuôn dạng gói tin
- Xử lí lỗi
- Chọn đường...

[&]quot;A Protocol for Packet Network Intercommunication", V. Cerf, R. Kahn, IEEE Transactions on Communications, May, 1974, pp. 637-648.

Internet: Mạng của các mạng

Internetwork layer (IP):

- Địa chỉ đồng nhất
- Mạng của các mạng

Gateway:

- Chuyển đổi khuôn dạng gói tin Encapsule/Decapsule
- Chọn đường (ở mức liên mạng)

Nguyên lý kết nối liên mạng của Cerf & Kahn's

- Hai tầng địa chỉ: Địa chỉ liên mạng và địa chỉ mạng riêng
- Sử dụng tầng IP -> Làm cho mạng trở nên đồng nhất
- Tất cả các công nghệ phía dưới có thể quan niệm là tầng dưới đối với giao thức IP
 - cable
 - satellite
 - 56K telephone modem
 - ADSL
 - ATM, MPLS
 -

- ATM, MPLS có các cơ chế riêng của nó
 - Mô hình dịch vụ, địa chỉ hóa, chọn đường khác với Internet
- Internet: Xem ATM, MPLS như là công nghệ "data-link" kết nối các IP routers
 - Giống như sử dụng modem quay số của mạng điện thoại

- Ra đời khoảng thập niên 90
- Mạng tốc độ cao: 155Mbps đến 622 Mbps hay cao hơn
- Broadband Integrated Service Digital Network
- Mục đích: Hỗ trợ việc truyền cả ba dạng dữ liệu tích hợp: voice, video, data
 - Hỗ trợ yêu cầu QoS của voice, video (Internet: best-effort)
 - Hỗ trợ mạng điện thoại thế hệ mới
 - Chuyển mạch gói tế bào (kích thước gói tin cố định) sử dụng kênh ảo (virtual circuit)

Kiến trúc ATM

- Phân mảnh/hợp nhất dữ liệu
- Giống như tầng giao vận trong mô hình Internet
- ATM layer: "Tầng mạng"
 - Chuyển mạch và chọn đường cho các tế bào (Cell)
- Physical layer

ATM: Là tầng mạng hay tầng liên kết dữ liệu?

Quan điểm: truyền dữ liệu cuối-cuối: "ATM truyền dữ liệu từ máy này sang máy kia"

ATM là tầng mạng

Thực tế: Sử dụng để kết nối các IP router

- "IP over ATM"
- ATM là tầng liên kết dữ liệu

- ATM Adaptation Layer (AAL): Tầng trung gian giữa các tầng trên và tầng ATM
 - IP
 - Các ứng dụng trực tiếp của ATM
 - Dữ liệu -> Cell

ATM Adaptation Layer (AAL)

Có nhiều kiểu AAL khác nhau:

- AAL1: CBR (Constant Bit Rate)
- AAL2: VBR (Variable Bit Rate)
- AAL5: chuyển tiếp dữ liệu gói tin

Tầng ATM

Service: vận chuyển tế bào

- Chức năng thì gần giống IP
- Dịch vụ đa dạng hơn

Tầng ATM: Kênh ảo

- Các tế bào được vận chuyển trong các kênh ảo từ nguồn tới đích
 - Phải thiết lập, hủy bỏ kênh ảo trước khi truyền dữ liệu
 - Mỗi tế bảo sẽ có 1 số hiệu kênh ảo tương ứng
 - Các bộ chuyển mạch phải duy trì trạng thái kênh ảo trong suốt quá trình truyền
- Permanent VCs (PVCs): Kênh ảo cố định
 - Thời gian sống rất lâu
 - Để kết nối các IP routers
- Switched VCs (SVC): Kênh ảo tạm thời
 - Động, chỉ kết nối khi có nhu cầu

- Ưu điểm của kênh ảo:
 - Hỗ trợ tốt QoS (bandwidth, delay, delay jitter)
- Hạn chế:
 - Tiêu tốn tài nguyên (PVC)
 - SVC: Gây ra trễ

ATM cell

- Kích thước cố định 53 bytes
 - Phần đầu: 5-byte
 - Dữ liệu 48-byte

- VCI: virtual channel ID (Số hiệu kênh ảo)
- PT: Payload type
- CLP: Cell Loss Priority bit
 - CLP = 1 : Có thể hủy bỏ nếu có tắc nghẽn
- HEC: Header Error Checksum
 - CRC

Tầng vật lý của ATM

Hai tầng con

- Transmission Convergence Sublayer (TCS): Tầng trung gian giữa ATM và tầng PMD
- Physical Medium Dependent: phụ thuộc hạ tầng vật lý

Physical Medium Dependent (PMD) sublayer

- SONET/SDH:
 - Mạng cáp quang;
 - Dùng công nghệ TDM
 - Có nhiều tốc độ khác nhau: OC3 = 155.52 Mbps;
 OC12 = 622.08 Mbps; OC48 = 2.45 Gbps, OC192 = 9.6
 Gbps
- TI/T3: Công nghệ của mạng điện thoại: 1.5 Mbps/ 45 Mbps

• ...

IP-Over-ATM

Mang "IP over Ethernet"

 ATM được sử dụng như các mạng LAN nhánh

IP-Over-ATM

Dữ liệu đi qua mạng IP-over-ATM như thế nào?

- Tại nút nguồn:
 - Chuyển đổi địa chỉ IP-ATM (ARP)
 - Chuyển dữ liệu (IP) cho AAL5
 - AAL5 chia gói tin IP thành các tế bào và chuyển cho tầng ATM
- Trong mạng ATM: các tế bào sẽ đi trong kênh ảo (VC) tới đích
- Tại nút đích:
 - AAL5 tập hợp tế bào lại thành một gói tin
 - Chuyển cho tầng IP

Multi-protocol label switching (MPLS)

- Mục đích: Tăng tốc việc chuyển tiếp gói tin IP trên các router
 - Mượn ý tưởng của kênh ảo (VC)
 - Các gói tin IP vẫn sử dụng địa chỉ IP

MPLS: Phải được hỗ trợ trên routers

- Label-switched router
- Chuyển tiếp gói tin dựa trên nhãn label mà không đọc địa chỉ IP
 - Bảng chuyển tiếp MPLS, không dùng bảng chọn đường IP
- Phải dùng các giao thức báo hiệu để lập kênh ảo
- Hỗ trợ QoS tốt hơn

in labe	l	out label	dest	out interface
		10	Α	0
		12	D	0
		8	Α	1

in label	out label	dest	out interface
10	6	Α	1
12	9	D	0

Α

Physical layer

- Đảm nhận việc truyền dòng bit
 - đặt dòng bit từ máy trạm lên đường truyền
 - lấy dòng bit từ đường truyền vào máy trạm
- Một số vấn đề
 - Phương tiện truyền
 - Mã hóa
 - Điều chế
 - Dồn kênh...

Từ tín hiệu tới gói tin

Analog Signal

"Digital" Signal

Bit Stream

0 0 1 0 1 1 1 0 0 0 1

Packets

Packet **Transmission**

Đường truyền

- Hữu tuyến
 - Twisted Pair
 - Coaxial Cable
 - Fiber Optics
- Vô tuyến, không dây
 - Radio
 - Hồng ngoại
 - Ánh sáng
 - ...

Cáp xoắn đôi

- (a) Category 3 UTP.
- (b) Category 5 UTP.

Cáp sợi quang

- (a) Một sợi cáp
- (b) Một đường cáp với 3 lõi

- Sử dụng các tín hiệu rời rạc, điện áp khác nhau để biểu diễn các bít 0 và 1.
- Việc truyền phải được đồng bộ giữa hai bên
- Có thể mã hóa theo từng bit hoặc một khối các bit, e.g., 4 hay 8 bits.
- Có nhiều cách biểu diễn khác nhau, NRZ, Manchested,...

Non-Return to Zero (NRZ)

1 -> điện áp cao; 0 -> điện áp thấp

Non-Return to Zero Inverted (NRZI)

1 -> chuyển điện áp; 0 -> giữ nguyên

Ethernet Manchester Encoding

- Điện áp chuyển từ thấp lên cao: 0
- Điện áp chuyển từ cao về thấp : 1

- Điều chế
- Dồn kênh
- Chuyển đổi tín hiệu...
-
- Cần nhiều thời gian và khóa học khác!

- Virus, mal-ware, security hole and DoS
- Password cracking
- Sniffing, phishing and information protection
- Firewall, Anti-virus
- Encryption

Acknowledgement

- This course materials contain charts and texts provided by:
 - Materials from the textbook "Computer Network, a top down approach" J.F Kurose and K.W. Ross
 - Materials from the textbook "Computer Network", A. Tanenbaum