Problem 3 (25pt)

Consider the following multirate systems:

- a. Find $H'_k(z)$ in terms of $H_k(z)$ and $G_k(z)$?
- b. Sketch the ideal responses of $H'_k(z)$ if $H_k(z)$ and $G_k(z)$ are the following ideal filters:

$$a = \frac{H_0^{1}(2)}{H_0(2)} = \frac{H_0(2)}{H_0(2^2)}$$

$$\frac{H_1^{1}(2)}{H_1(2^2)} = \frac{H_0(2)}{H_1(2^2)} + \frac{H_1(2)}{H_1(2^2)} = \frac{H_1(2)}{$$

Problem 4 (25pt)

a. Consider the multirate system shown below. Find the input-output relation, i.e., what is Y(z) in terms of X(z)?

Sketch $|Y(e^{j\omega})|$, for the following band limited input signal $X(e^{j\omega})$.

b. Let $H(z) = \frac{1+3z^{-2}-6z^{-3}}{1-0.5z^{-1}}$. What are the two polyphase components $H_{even}(z)$ and $H_{odd}(z)$?

$$\frac{1}{2}$$

$$b = \frac{1+3z^{2}-6z^{-3}}{\left(1-\frac{1}{2}z^{-1}\right)} = \frac{\left(1+3z^{-2}+6z^{-3}\right)\left(1+\frac{1}{2}z^{-1}\right)}{1-\frac{1}{4}z^{-2}} = \frac{1+\frac{1}{2}z^{2}+3z^{-2}-9z^{-3}}{1-\frac{1}{4}z^{-2}}$$