

(1~ 0° 4 ·	
Masseaunte: ment	
1	
—	
Q. 2.4	<u> </u>
dove a <bet f="" onsem<="" th=""><th>tivi</th></bet>	tivi
tormalmente:	
C,	
Siamo $x \in [a,b]$, c	
consectivi, B p	ra'.
· se $x \in [a, \frac{a+b}{2})$, allora fl(x) = a
· Su X = (a+b)	allora fl(x) = b
	1 and the
• 52 X = ato 2	hor mantissa pani
ellono flix = a	, altrimenti fl(x) = b.
	V
M	
Moissimo envone relati	Jo Commisse
nell'annot andoments:	
X C [700 000 0 00 100 100 100 100 100 100 10	
X E [realmin, red me	* J (-> J(K) E II-
(Pen semplieté, sujoniamo	x > 0)

Conditionaments dell'antimities de machina Considerans × aprox di × (x, x el?) e définions l'enrone relativo on signo: E := X-X N.B. Sia x > 0. Se Ex > 0, layrox è pur eccesso (x > x) altrimenti è per difetto 5: Na: $\times \mathcal{E}_{\times} = \overset{\sim}{\times} - \times \overset{\sim}{<=>} \times + \times \mathcal{E}_{\times} = \overset{\sim}{\times} \overset{\sim}{<=>}$ $\iff X = \chi(1+\varepsilon_{\times})$ Samme/sottratione Siano X, y ER. Consideriens

Osse mostioni
(1) disug. Triong. => { > 1
(2) K groude se 1x+11 Neolo
Somma/sttratione:
• Den Conditionala si $K \approx 1$
· mal andinionata & K >> 1
0 5gen 971 one
X, y hormo segno concorde =>
$\Rightarrow (X+Y) = X + Y \Rightarrow$
\Rightarrow $K = 1$

Dung	u.						
La	Somme	Mo	lske	e	Md		
condi	Aiomata segmo ef	Solo	Se	gli'	odd	endi	
hems	segm of	losto	e lo	2	Se 1	$\langle z \rangle \rightarrow$	< ;
	touto 1						
9001	its pin	Y e	Vicin	40 &	-×		
Le	rendite	d'	nuc's	Me	tuob	à	
	Semme	l l.					
(Y 22 - '	× į	det	(a)	eno	ne	
di	/ Bur cel	losi 01	ue	(di	cifre		
(X, y, Vicion	ui a essere o dell'oltro"				V		
(Mol	tiplica	+(OMC					
Siano	$X, Y \in$	R .	Cm si	Livian	10:		

 $\rightarrow \times \gamma \in \mathbb{R}$ "Lattor" (XY) (-> fl(fl(x) fl(y)) "di maccina Ablicamo $\left(1+\varepsilon_{xy}\right)=\chi\left(1+\varepsilon_{x}\right)\chi\left(1+\varepsilon_{y}\right)$ dumque $1 + \varepsilon_{xy} = (1 + \varepsilon_{x})(1 + \varepsilon_{y}) =$ $= 1 + \varepsilon_{x} + \varepsilon_{y} + \varepsilon_{x} \varepsilon_{y}$ traseurasile rispetto a ExiEy, R |Exi, |Ey| seus molto preedi (ipoteri Dunque trascurondo l'estimo $\varepsilon_{xy} \approx \varepsilon_{x} + \varepsilon_{y}$

Infine disug. \triangle $|\mathcal{E}_{xy}| \approx |\mathcal{E}_{x} + \mathcal{E}_{y}|$ $\leq 2 \max |(\epsilon_{\times}|, |\epsilon_{Y}|)$ alle $E_{xy} \leq 2 \max |E_x|, |E_y|$ Mormo d' enn. rel. import cond. K togtog l'operatione à sempre seu conditionée

...
$$\approx (1 + \epsilon_x)(1 - \epsilon_y) =$$

$$= 1 + \epsilon_x - \epsilon_y - \epsilon_x \epsilon_y \approx$$

$$\approx 1 + \epsilon_x - \epsilon_y \quad (\mu n \mid \epsilon_x \mid, \mid \epsilon_y \mid)$$

$$(\mu n \mid \epsilon_x \mid, \mid \epsilon_x \mid, \mid \epsilon_y \mid)$$

$$(\mu n \mid \epsilon_x \mid, \mid \epsilon_x \mid, \mid \epsilon_y \mid)$$

$$(\mu n \mid \epsilon_x \mid, \mid \epsilon_x \mid, \mid \epsilon_x \mid, \mid \epsilon_y \mid)$$

$$(\mu n \mid \epsilon_x \mid, \mid$$

Riopitoliamo: Mol and. Se Y≈-X Somme X+Y moltiplicarione ben Cond. ben Cond. d Vikone