MATE 6540: Tarea 3

Due on 19 de mayo $\label{eq:prof.Prof.Iván Cardona} \textit{Cardona}, C41, 19 de mayo$

Sergio Rodríguez

Problem 0

Considere al espacio $\widehat{\mathbf{2}}$ con la topología discreta $\mathcal{T}_{\mathrm{disc}}$.

Demuestre la proposición:

El espacio topológico (X,\mathcal{T}_X) es conexo \iff No existe una función continua $g:(X,\mathcal{T}_X) \to \left(\widehat{\mathbf{2}},\mathcal{T}_{\mathrm{disc}}\right)$ que sea suprayectiva.

Problem 1

Sea X un conjunto infinito dotado de la siguiente topología

 $\mathcal{T}_{cof} = \{U \subseteq X \mid X \setminus U \text{ es finito o } U = \emptyset\}$ (i.e. la topología de los complementos finitos)

- (a) Demuestre: (X, \mathcal{T}_{cof}) es conexo.
- (b) Demuestre: (X, \mathcal{T}_{cof}) es compacto.

Problem 2

Dé ejemplos de subespacios A y B de $(\mathbb{R}^2, \mathcal{T}_{\varepsilon^2})$ tales que:

- (a) A y B son conexos, pero $A \cap B$ no es conexo.
- (b) A y B no son conexos, pero $A \cup B$ es conexo.
- (c) A y B son conexos pero $A \setminus B$ no es conexo.
- (d) $A \vee B$ son conexos $\sqrt{A} \cap \overline{B} \neq \emptyset$, pero $A \cup B$ no es conexo.

Problem 3

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_\infty = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

- (a) Demuestre que \mathcal{T}_{∞} es una topología sobre Y.
- (b) Sea \mathcal{T}' la topología relativa sobre X, la que hereda como subconjunto de Y. Demuestre que $\mathcal{T}'=\mathcal{T}_X$.

Problem 4

Sean (X, \mathcal{T}_X) un espacio topológico y $\{\infty\}$ un objeto que no pertenezca a X. Defina $Y = X \cup \{\infty\}$ y $\mathcal{T}_\infty = \{U \subseteq Y \mid U \in \mathcal{T}_X \text{ o } Y \setminus U \text{ es compacto y cerrado en } X\}.$

(c) Demuestre que $(Y, \mathcal{T}_{\infty})$ es compacto.