Systems & Control Engg. IIT Bombay, Powai Mumbai 400076 Maharashtra, India

SC 624, Spring 2017 *Quiz 2*

Date: 31 Jan 2018 Time: 90 min

Recall that \mathbb{N}^* is the positive integers, $\mathbb{N} = \{0\} \cup \mathbb{N}^*$. For us $i := \sqrt{-1}$.

Recall that a (non-empty) set X endowed with a maximal (smooth) atlas (a.k.a. a smoothness,) is a smooth manifold.

- 1. Let M be a smooth manifold of dimension n, and $\{(U_i, \phi_i)\}_{i \in \mathbb{N}}$ be an atlas of M compatible with its smoothness. Recall the topology that we endowed M with; A set $O \subset M$ is open iff $\phi_i(O \cap M_i)$ is an open subset of \mathbb{R}^n for all $i \in \mathbb{N}$. Does there exist a countable base for this topology. If yes, find such a base. If no, prove why such a base cannot exist.
- 2. Endow the set $\mathbb{S}^n := \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1} x_i^2 = 1\}$ with an atlas. Is the topology endowed on \mathbb{S}^n by the atlas you found via the definition in the previous question the same as the subspace topology it inherits as a subspace of \mathbb{R}^{n+1} with the standard topology.
- 3. Consider the map $F: \mathbb{S}^2 \ni (x_1, x_2, x_3) \to F(x_1, x_2, x_3) := (\frac{x_1}{2}, \frac{\sqrt{3}x_1}{2}, x_2, x_3) \in \mathbb{S}^3$.
 - Find the local representative of F and T_pF at $p=(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0)$ in the coordinates you found in question 2.
 - Define a curve $(-\frac{1}{2},\frac{1}{2})\ni t\mapsto \gamma_p(t)\coloneqq (\sqrt{\frac{1-t^2}{2}},\sqrt{\frac{1-t^2}{2}},t)\in \mathbb{S}^2$. Find 2 distinct curves belonging to the equivalence class of $T_pF([\gamma_p(t)])$. Here, p is the point defined in the previous part.
- 4. Let $\mathbb{B}^n := \{(x_1, x_2, ..., x_{n+1}) \in \mathbb{R}^n \mid \sum_{i=1}^n x_i^2 < 1\}$. Is \mathbb{B}^n diffeomorphic to \mathbb{R}^n ? If yes, find such a diffeomorphism. If not, prove why they are not diffeomorphic.
- 5. Show that $T\mathbb{S}^1$ is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$. Assume that \mathbb{S}^1 is endowed with any one of the smoothness demonstrated during the lectures.