Дискретная математика 1 семестр ПИ, Лекция, 09/25/21

Собрано 11 октября 2021 г. в 16:13

Содержание

1.	Основы комбинаторики	1
	1.1. Множества	1
	1.2. Мощность множества	1
	1.3. Комбинаторика	2

1.1. Множества

Def. 1.1.1. Множество - совокупность объектов.

Def. 1.1.2. Покрытием множества A называется множество $B = \{B_1, B_2, ..., B_k\} : \bigcup_i B_i \supset A$

Def. 1.1.3. Разбиением множества A называется $\pi(X) = \{X_i\}$:

$$X_i \neq \varnothing, \bigcup_i X_i = A, \forall i \neq j \to X_i \cap X_j = \varnothing$$

Def. 1.1.4. Пусть B, C – разбиения A. B называется измельчением C, если B – разбиение A $u \ \forall i \ \exists j : B_i \subset C_i$

1.2. Мощность множества

- 1. $|\emptyset| = 0$
- 2. $X = \{x_1, x_2, ..., x_n\} \Rightarrow |X| = n$
- 3. \mathbb{N} счётное. \mathbb{Z} тоже счётное:

$$f(x) = \begin{cases} 1, x = 0 \\ 2x, x > 0 \\ 2|x| + 1, x < 0 \end{cases}$$

4. [0,1]. Пусть существует $q: \mathbb{N} \to [0,1]$

- 1. $0, a_1 a_2 ... a_k ...$
- 2. $0, b_1b_2...b_k...$
- 3. $0, c_1c_2...c_k...$

Рассмотрим $\alpha = 0, \alpha_1 \alpha_2 \alpha_3 ... \alpha_k ..., \alpha_1 \neq a_1, \alpha_2 \neq b_2, \alpha_3 \neq c_3$ и т.д. Таким образом, всегда найдётся не пронумерованное число.

|[0,1]| – континуум

Def. 1.2.1. Множество всех подмножеств A обозначается 2^A

Утверждение 1.2.2. $|2^A| = 2^{|A|}$

Доказательство. База: $A=\varnothing, |A|=0, 2^A=\{\varnothing\} \Rightarrow |2^A|=2^{|A|}=1$ Индукционное предположение: Пусть $\forall A: |A|\leqslant k \to |2^A|=2^{|A|}$

Индукционный переход:

Рассмотрим $A: |A| = k+1, B_1 \in 2^{A \setminus \{x_{k+1}\}}, B = \{x_{k+1}\} \cup B_1$ $2^A = 2^{A \setminus \{x_{k+1}\}} \cup \{B\}$

$$\begin{cases} |2^{A \setminus \{x_{k+1}\}}| = 2^k \\ |\{B\}| = 2^k \end{cases} \Rightarrow 2^A = 2^k + 2^k = 2^{k+1} = 2^{|A|}$$

1.3. Комбинаторика

1. $A, B : A \cap B = \emptyset$

$$|A \cup B| = |A| + |B|$$

2. $A_1, ..., A_n, \forall i, j \rightarrow (i \neq j \Rightarrow A_i \cap A_j = \varnothing)$

$$|\bigcup_{i=1}^{n} A_i| = \sum_{i=1}^{n} |A_i|$$

3. $A, B, A \cap B \neq \emptyset$

$$|A \cup B| = |A| + |B| - |A \cap B|$$

4. $A_1, ..., A_n$

$$\left| \bigcup_{i=1}^{n} A_i \right| = \sum_{i=1}^{n} |A_i| - \sum_{i,j=1}^{n} |A_i \cap A_j| + \sum_{i,j,k=1}^{n} |A_i \cap A_j \cap A_k - \dots + (-1)^{n+1} |\bigcap_{i=1}^{n} A_i|$$

5. A, B

$$|A \times B| = |A| \cdot |B|$$

6. $A_1, ..., A_n$

$$|A_1 \times A_2 \times \dots \times A_n| = \prod_{i=1}^n |A_i|$$

1. Перестановки: $\langle a_1...a_n \rangle = \overline{\langle a_1...a_n \rangle, a_n}$. Тогда

$$|<1:n>|=|<1:n-1>\times(1:n)|=|<1:n-1>|\cdot n=1\cdot 2\cdot ...\cdot n=n!$$

2. Размещения. $n \cdot (n-1) \cdot ... \cdot (n-k+1)$

$$A_n^k = \frac{n!}{(n-k)!}$$

3. Сочетания.

$$A_n^k = C_n^k \cdot k! \Leftrightarrow C_n^k = \frac{n!}{k!(n-k)!}$$

4. Сочетания с повторениями. Выставим все k выбранных объектов в ряд и поставим между ними n-1 перегородку: до первой перегородки будут элементы 1-го типа, от первой до второй перегородки — 2-го типа и т.д. Таким образом, всего n+k-1 место. Нам нужно выбрать n-1 перегородку из этих n+k-1 мест

$$\overline{C}_{n}^{k} = C_{n+k-1}^{n-1} = C_{n+k-1}^{k}$$

Def. 1.3.1. Пусть дан выпуклый п-угольник. Найти количество способов разбить его на треугольники с непересекающимися сторонами

$$C_0=1, C_n=\sum_{i=0}^{n-1}C_i\cdot C_{n-i-1}$$
 — Числа Каталана