Определения 1

1 Определения

1. Сформулируйте определение окрестности точки $x \in \mathbb{R}$.

Окрестностью $U(x_0)$ точки x_0 называют любой интервал, содержащий эту точку

2. Сформулируйте определение ϵ -окрестности точки $x \in \mathbb{R}$.

 ϵ -окрестностью $U_{\epsilon}(x_0)$ точки x_0 называют интервал с центром в x_0 и длиной 2ϵ т.е.

$$U_{\epsilon}(x_0) = (x_0 - \epsilon, x_0 + \epsilon) = \{x \in \mathbb{R}, \epsilon > 0 : x_0 - \epsilon < x < x_0 + \epsilon\}$$

3. Сформулируйте определение окрестности $+\infty$.

Окрестностью точки $+\infty$ называют интервал вида $(a,+\infty)$, где a — произвольное действительное число.

$$U(+\infty) = \{x \in \mathbb{R} : x > a\}, a > 0$$

4. Сформулируйте определение окрестности $-\infty$.

Окрестностью точки $-\infty$ называют интервал вида $(-\infty,a)$, где a — произвольное действительное число.

$$U(-\infty) = \{x \in \mathbb{R} : x < a\}, a > 0$$

5. Сформулируйте определение окрестности ∞ .

Окрестностью бесконечности ∞ «без знака» называют объединение двух бесконечных интервалов $(-\infty, -a) \cup (a, +\infty)$, где а — произвольное действительное число.

$$U(\infty) = \{x \in \mathbb{R} : |x| > a\}, a > 0$$

6. Сформулируйте определение предела последовательности.

Число а называется пределом последовательности $\{x_n\}, n \to +\infty$, если для любого сколь угодно малого $\epsilon > 0$ существует номер $N = N(\epsilon)$ такой, что если порядковый номер члена последовательности $n \geqslant N$, то имеет место неравенство $|x_n - a| < \epsilon$.

$$\lim_{n \to \infty} x_n = a \iff \forall \epsilon > 0 \ \exists N = N(\epsilon) \in \mathbb{N} : \forall n > N(\epsilon) \longrightarrow |x_n - a| < \epsilon$$

7. Сформулируйте определение сходящейся последовательности.

Последовательность, придел которой существует и конечен при $n \to \infty$. Поскольку неравенство $|a-x_n| < \epsilon$ эквивалентно неравенству $a-\epsilon < x_n < a+\epsilon$, то все элементы сходящейся последовательности за исключением конечного их числа при любом $\epsilon > 0$ лежат в ϵ -окрестности точки a.

8. Сформулируйте определение ограниченной последовательности.

Последовательность x_n называется ограниченной снизу, если существует число c_1 такое, что $x_n \geqslant c_1$ при всех n=1,2,...

Последовательность x_n называется ограниченной сверху, если существует число c_2 такое, что $x_n\leqslant c_2$ при всех n=1,2,...

Последовательность x_n ограниченная как сверху, так и снизу, называется ограниченной, то есть $c_1 \leqslant x_n \leqslant c_2$ при всех n=1,2,...

$$\exists M > 0, M \in \mathbb{R} : \forall n \in \mathbb{N} \longrightarrow |x_n| \leqslant M (m \leqslant x_n \leqslant M, m \in \mathbb{R})$$

9. Сформулируйте определение монотонной последовательности.

Последовательность называется монотонной, если она неубывающая $(x_{n+1} \geqslant x_n)$, возрастающая $(x_{n+1} > x_n)$, невозрастающая $(x_{n+1} \leqslant x_n)$ или убывающая $(x_{n+1} < x_n)$ для $\forall n \in \mathbb{N}$

10. Сформулируйте определение возрастающей последовательности.

Определения 2

Последовательность называется возрастающей, если $x_{n+1} > x_n \forall n \in \mathbb{N}$

11. Сформулируйте определение убывающей последовательности.

Последовательность называется убывающей, если $x_{n+1} < x_n \forall n \in \mathbb{N}$

12. Сформулируйте определение невозрастающей последовательности.

Последовательность называется невозрастающей, если $x_{n+1} \leqslant x_n \forall n \in \mathbb{N}$

13. Сформулируйте определение неубывающей последовательности.

Последовательность называется неубывающей, если $x_{n+1} \geqslant x_n \forall n \in \mathbb{N}$

14. Сформулируйте определение фундаментальной последовательности.

Последовательность x_n называется фундаментальной, если для любого $\epsilon>0$ существует номер $N=N(\epsilon)$ такой, что для всех $m\geqslant N$ и $n\geqslant N$ выполняется неравенство $|x_m-x_n|<\epsilon.$

15. Сформулируйте критерий Коши существования предела последовательности.

Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы она была фундаментальной.

16. Сформулируйте определение по Гейне предела функции.

Пусть функция f(x) определена в проколотой окрестности $\mathring{U}(x_0)$ точки x_0 . Число a называется пределом функции f(x) при $x \to x_0$, если для любой последовательности x_n точек из $\mathring{U}(x_0)$, для которой $\lim_{n \to \infty} x_n = x_0$, выполняется равенство $\lim_{n \to \infty} f(x_n) = a$.

17. Сформулируйте определение бесконечно малой функции.

Функция f(x) называется бесконечно малой при $x \to x_0, x_0 \in \mathbb{R},$ если $\lim_{x \to x_0, x_0 \in \mathbb{R}} f(x) = 0.$

18. Сформулируйте определение бесконечно большой функции.

Функция f(x) называется бесконечно большой при $x \to x_0, x_0 \in \mathbb{R}$, если $\lim_{x \to x_0} f(x) = +\infty$.

19. Сформулируйте определение бесконечно малых функций одного порядка.

Если существует конечный отличный от нуля предел $\lim_{x\to x_0} \frac{f(x)}{g(x)} = C \neq 0$, то говорят, что f(x) и g(x) являются при $x\to x_0$ бесконечно малыми одного порядка и пишут f(x)=O(g(x)).

20. Сформулируйте определение несравнимых бесконечно малых функций.

Если при $x \to x_0$ не существует ни конечного, ни бесконечного предела отношения $\frac{f(x)}{g(x)}$ или $\frac{g(x)}{f(x)}$, то говорят, что f(x) и g(x) не сравнимы при $x \to x_0$.

21. Сформулируйте определение эквивалентных бесконечно малых функций.

В случае C=1, т.е. если $\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$, функции f(x) и g(x) называют эквивалентными бесконечно малыми и пишут $f(x)\sim g(x)$, при $x\to x_0$.

22. Сформулируйте определение порядка малости одной функции относительно другой.

Пусть f(x) и g(x) бесконечно малые при $x \to x_0$. Если при некотором k бесконечно малые f(x) и $(g(x))^k$ являются бесконечно малыми одного порядка, то говорят, что f(x) имеет порядок малости k по сравнению с g(x) при $x \to x_0$.

23. Сформулируйте определение приращения функции.

Приращением функции называют $\Delta f(x_0) = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$.

24. Сформулируйте определение непрерывности функции в точке (любое).

Пусть $X \subset R$, и пусть на X задана числовая функция f(x). Эта функция называется непрерывной в точке $x_0 \in X$, если для любого $\epsilon > 0$ существует число $\delta = \delta(\epsilon) > 0$ такое, что при всех $x, |x - x_0| < \delta$, выполняется неравенство $|f(x) - f(x_0)| < \epsilon$.

- 25. Сформулируйте определение непрерывности функции на интервале.
- 26. Сформулируйте определение непрерывности функции на отрезке.
- 27. Сформулируйте определение точки разрыва.

Пусть функция f(x) определена в некоторой окрестности точки x_0 или в проколотой окрестности этой точки. Если данная функция не является непрерывной точке x_0 , то x_0 называется точкой разрыва функции f(x).

28. Сформулируйте определение точки устранимого разрыва.

Определения 3

Если x_0 — точка разрыва первого рода, и если $f(x_0-0)=f(x_0+0)$, то такой разрыв называют устранимым.

29. Сформулируйте определение точки разрыва І-го рода.

Если x_0 — точка разрыва функции f(x), и существуют конечные пределы $\lim_{x\to x_0-} f(x) = f(x_0-0)$ и $\lim_{x\to x_0+} f(x) = f(x_0+0)$, то x_0 называется точкой разрыва первого рода.

30. Сформулируйте определение точки разрыва II-го рода.

Функция f(x) имеет точку разрыва второго рода при $x=x_0$, если по крайней мере один из односторонних пределов не существует или равен бесконечности.

2 Определение предела по Коши

1. Сформулируйте определение по Коши $\lim_{x\to 0} f(x) = b$, где $b\in \mathbb{R}$. Приведите соответствующий пример (с геометрической иллюстрацией).

Пусть f(x) определена в проколотой окрестности $\mathring{U}(x_0)$ точки $x_0=0$. Число $b\in\mathbb{R}$ называется приделом функции f(x) в точке $x\to x_0$, если для любого $\epsilon>0$ существует число $N=N(\epsilon)>0$ такое, что для всех $x\in\mathring{U}_N(x_0)$ выполняется неравенство $|f(x)-b|<\epsilon$

Рис. 1: f(x)

2. Сформулируйте определение по Коши $\lim_{x\to a}f(x)=+\infty,$ где $a\in\mathbb{R}.$ Приведите соответствующий пример (с геометрической иллюстрацией).

Пусть f(x) определена в проколотой окресности $\mathring{U}(x_0), x_0 = a$. Тогда $\lim_{x \to x_0} f(x) = +\infty$, если существует сколь угодно малое $\epsilon > 0$, такое что найдется число $N = N(\epsilon) > 0$, при котором если $x \in \mathring{U}_N(x_0)$ $0 < |x - x_0| < N$, то справедливо неравенство $f(x) > \epsilon$

Рис. 2: f(x)

3. Сформулируйте определение по Коши $\lim_{x \to \infty} f(x) = 0$. Приведите соответствующии пример (с геометрической иллюстрацией).

Пусть f(x) определена в окресности $+\infty$. Тогда число 0 является пределом функции f(x), если для любого сколь угодно малого $\epsilon > 0$ найдется такое $N = N(\epsilon) > 0$, что если $x \in \mathring{U}_N(x_0)$ $0 < |x - x_0| < N$,

то верно неравенство $|f(x)| < \epsilon$

Рис. 3: f(x)

4. Сформулируйте определение по Коши $\lim_{x\to a-0}f(x)=-\infty$, где $a\in\mathbb{R}.$ Приведите соответствующий пример (с геометрической иллюстрацией).

 $\lim_{x \to a-0} f(x) = -\infty$ - левосторонний предел функции f(x) при $x \to a$, если для любого сколь угодно малого $\epsilon > 0$ найдется такое $N = N(\epsilon) > 0$, что если $x \in \mathring{U}_N^-(x_0)$, то верно неравенство $f(x) < -\epsilon$

Рис. 4: f(x)

Теоремы 6

3 Теоремы

1. Сформулируйте теорему об ограниченности сходящейся числовой последовательности.

Всякая сходящаяся последовательность ограничена.

$$\exists \lim_{x \to \infty} x_n = a, a \in \mathbb{R} \to \exists M > 0 : \forall n \in \mathbb{N} \ x_n \in M$$

2. Сформулируйте теорему о связи функции, ее предела и бесконечно малой.

Если существует конечный $\lim_{x\to a} f(x)=A$, то f(x) представлена в виде $f(x)=A+\alpha(x)$, где $\lim_{x\to a} \alpha(x)=0$ - бесконечно малая при $x\to a$

3. Сформулируйте теорему о сумме конечного числа бесконечно малых функций.

Сумма конечного числа функций, являющихся бесконечно малыми, при $x \to a$, есть величина бесконечно малая при $x \to a$

$$\exists \lim_{x \to a} \alpha_k(x) = 0 \to \lim_{x \to a} \sum_{k=1}^n \alpha_k(x) = 0$$

4. Сформулируйте теорему о произведении бесконечно малой на ограниченную функцию.

Если функция $\alpha(x)$ бесконечно малая при $x \to a$, а f(x) ограниченная функция, то $\alpha(x) \times f(x)$ бесконечно малая, при $x \to a$.

5. Сформулируйте теорему о связи бесконечно малой и бесконечно большой функций.

Если f(x) бесконечно большая при $x \to a$, то $\frac{1}{f(x)}$ бесконечно малая при $x \to a$. Если $\alpha(x)$ бесконечно малая при $x \to a$ и отличная от нуля, то $\frac{1}{\alpha(x)}$ бесконечно большая при $x \to a$

6. Сформулируйте теорему о необходимом и достаточном условии эквивалентности бесконечно малых.

Две бесконечно малые ф-ции при $x \to a$ эквивалентны \iff их разность есть бесконечно малая более высокого порядка, чем каждая из них

$$(f(x) \sim g(x) \ x \rightarrow a) \iff (f(x) - g(x) = o(f(x))) \lor (f(x) - g(x) = o(g(x)))$$

7. Сформулируйте теорему о сумме бесконечно малых разных порядков.

Если функции $\alpha(x),\beta(x),...,\gamma(x)$ бесконечно малые при $x\to a$, то $\alpha(x)+\beta(x)+...+\gamma(x)\sim\alpha(x)$ при $x\to a$, где $\lim_{x\to a}\frac{\beta(x)}{\alpha(x)}=0;...\lim_{x\to a}\frac{\gamma(x)}{\alpha(x)}=0$