《计算理论导引》期末试卷

南京大学计算机科学与技术系

2016年6月

本试卷满分100分,共六题。考试时间2小时。开卷。

姓名	学号	成绩

一. (30分)

- (1) 什么是 Turing 机?
- (2) 什么是 Church-Turing Thesis?
- (3) 为什么算法和 Turing 机概念在可以构成"思维机器"的现代观点中占有如此核心的地位? 是否在原则上存在一个算法可达到绝对极限呢?

- 二. (30 分) 设 A 表示 \mathcal{EF} , B 表示 $\mathcal{PRF} \mathcal{EF}$, C 表示 $\mathcal{GRF} \mathcal{PRF}$, D 表示 $\mathcal{RF} \mathcal{GRF}$, E 表示不可计算的数论函数类。判定下列数论函数所属的函数类,选择 A、B、C、D、E 之一,填在题后的表格中。
 - (1) $f: \mathbb{N} \to \mathbb{N}$ 为处处无定义的函数。
 - (2) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若 } n \text{ 为偶数} \\ \text{无定义, } \text{ 否则} \end{cases}$$

- (3) Ackermann 函数。
- (4) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,0) = m$$

$$f(m,n+1) = n + f(m^2,n)$$

- (5) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \lfloor \log_{10} n \rfloor$,这里 $\lfloor x \rfloor$ 为对 x 向下取整。
- (6) $f: \mathbb{N}^2 \to \mathbb{N}$ 定义为

$$f(m,n) = \begin{cases} 1, & \text{若存在 } M, N \in \Lambda \text{ 使得 } m = \lceil M \rceil, n = \lceil N \rceil \text{ 且 } M =_{\beta} N \\ 2, & \text{否则} \end{cases}$$

- (7) $f: \mathbb{N} \to \mathbb{N}$ 定义为 $f(n) = \pi$ 的十进制展开式中的第 n 个数字。
- (8) $f: \mathbb{N} \to \mathbb{N}$ 定义为

$$f(n) = \begin{cases} 0, & \text{若存在 Turing} \text{ 机 } M \text{ 使 } n = \sharp M \text{ 且 } M \text{ 对于一切输入皆停机} \\ 1, & \text{否则} \end{cases}$$

(9) Gödel 的 *β*–函数。

(10)
$$f: \mathbb{N} \to \mathbb{N}$$
 定义为 $f(n) = 2^{3^4}$ · · ⁽ⁿ⁺²⁾
$$n+1$$
 层高。

对于上述各函数,判定其所属函数类,选择 $A \times B \times C \times D \times E$ 之一,填在下面的表格中。

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
D	D	С	A	A	Е	A	Е	A	В

三. (10 分) 构造 ADD $\in \Lambda^{\circ}$ 使 ADD λ -定义数论函数 add

$$add(x, 0) = x$$
$$add(x, y + 1) = suc(add(x, y))$$

这里 suc 为后继函数。

$$\frac{1}{100} = \frac{1}{100} | \frac{1$$

四. (10 分) 若在系统 $\lambda\beta$ 中加入

$$(\star)$$
 $\lambda x. x = \lambda x. xx$

作为额外公理,则对任何的 $M, N \in \Lambda$, $\lambda \beta + (\star) \vdash M = N$ 。

$$i = \sum_{k=1}^{\infty} \sum_{k=1}^{\infty}$$

五. (10 分) 设 M 为如下定义的 Turing 机:

	0	1
1	0R8	0R2
2	0R3	1R2
3	1R4	1R3
4	1R5	
5	1L6	
6	0L7	1L6
7	0R1	1L7
8		

输入: $(2,1):01^n0\cdots$,这里 $n\in\mathbb{N}^+$ 。求输出。(只需要写出结果。)

六. (10 分) 设 Turing 机 M 计算函数 f(x)=2x,试求 Turing 机 P 其计算函数 $g(x)=2^x$ 。 (只需要写出构造 P 的思想。)