Системы счисления – Домашнее задание 1

Пеганов Антон peganoff2@mail.ru

21 октября 2019 г.

Задача 1

Ежедневно практикуйтесь в слепой печати на английском (US English) по этому курсу.

Задача 2

Решите задачу 977A из архива codeforces.

Задача 3

Решите задачу 791A из архива codeforces.

Задача 4

Напишите программу для перевода вещественного числа из десятичной системы счисления в двоичную систему счисления. Оформите алгоритм перевода в виде функции dec2bin(). Функция dec2bin() должна использовать функцию dec2bin_int() для перевода целой части числа и функцию dec2bin_frac() для перевода дробной части числа. Разрешается возвращать результат как в виде целого числа, так и в виде строки.

Примеры

Вход	Выход	
1.25	1.01	
2	10.0	
3.5	11.1	
3.5	11.1	
0.5	0.1	
0	0.0	
-0.5	-0.1	
-10	-1010.0	

Таблица 1: примеры входных и выходных данных к задаче 4.

Справочные материалы

План решения задачи

Чтобы написать большую прграмму, ее нужно разделить на несколько простых функций, а затем реализовать эти функции по отдельности.

- 1. Оформите программу для перевода целого числа в двоичную систему счисления в виде функции dec2bin_int(). Не забудьте ее отладить. Код мы уже подготовили на занятии.
- 2. Реализуйте функцию dec2bin_frac() для перевода дробной части в двоичную систему счисления.
- 3. Создайте функцию dec2bin(), которая будет разделять число на целую и дробную части. Функция dec2bin() должна вызывать функции dec2bin_int() и dec2bin_frac() и объединять результаты их работы.

Алгоритм перевода дробной части числа

При переводе дробной части сначала вычисляются старшие разряды, а затем младшие. Формальное описание представлено в алгоритме 1.

Алгоритм 1 Перевод дробной части в двоичную систему счисления

- 1: Инициализировать dec>0— число в десятичной системе счисления с нулевой целой частью.
- 2: $bin \leftarrow$ ''—переменная в которую, помещается результат (число d в двоичной системе счисления). bin—строка, которая может состоять только из символов '0' и '1'. bin инициализируется пустой строкой.
- 3: До тех пор пока dec>0 выполнять
- 4: $digit \leftarrow \operatorname{trunc}(dec \cdot 2)$ Функция $\operatorname{trunc}()$ возвращает целую часть числа.
- 5: $bin \leftarrow bin + \text{str}(digit)$ Переменная digit превращается в строку и дописывается к bin справа.
- 6: $dec \leftarrow frac(dec \cdot 2)$ Из переменной dec «удаляется» часть, добавленная к bin. Функция frac() возвращает дробную часть поданного на вход числа.
- 7: Конец цикла
- 8: Теперь результат в bin.

Трассировка алгоритма 1 представлена в таблице 2.

Как писать функции в PascalABC

Функции создаются с помощью ключевого слова function. После скобок с аргументами функции указывается тип возвращаемого значения. Значение возвращается присвоением значения переменной, имя которой совпадает с именем функции (см. листинг 1).

Homework 1 Системы счисления Пеганов Антон

Номер строки алгоритма 1	Переменные после выполнения операций в строке алгоритма		
	dec	bin	digit
1	0.625		
2	0.625	1.1	
4	0.625	1.1	1
5	0.625	'1'	1
6	0.25	'1'	1
4	0.25	'1'	0
5	0.25	'10'	0
6	0.5	'10'	0
4	0.5	'10'	1
5	0.5	'101'	1
6	0	'101'	1
7	0	'101'	1

Таблица 2: значения переменных из алгоритма 1 при переводече числа 0.625 в двоичную систему счисления. Если номер строки алгоритма равен i, то в соответствующем ряду таблицы записаны значения переменных после выполнения i-й строки. В таблице нет третьей строки алгоритма, так как в третей строке переменные не меняются.

```
program MyProgram;

function mysum(x,y: integer): integer;

var
    s: integer; (* local variables *)

begin
    s:=x+y;
    mysum:=s (* return value from function *)

end;

begin
    var a,b: integer;
    readln(a);
    readln(b);
    writeln(mysum(a,b))

end.
```

Листинг 1: Функция mysum() для сложения двух целых чисел.

Функции, которые могут пригодиться в решении задачи 4

- abs() возвращает модуль числа.
- trunc() возвращает целую часть числа.
- frac() возвращает дробную часть числа.