Lustre 1.8.9 - 2.x Client Performance Comparison and Tuning

John Fragalla
HPC Principal Architect

Xyratex, A Seagate Company

Lustre User Group Conference April 8-10, 2014

Agenda

- Benchmark Setup
- IOR Parameters and Settings
- Lustre Clients and Methodology
- Single Thread Performance
- Throughput Performance Results and Data
- Summary

Benchmark Setup

- Storage Architecture
 - -A Cluster 6000 SSU with GridRaid OSTs
 - Rated Storage Performance ≥ 6 GB/s Read or Write with IOR
 - InfiniBand FDR Interconnect
 - -Xyratex Lustre 2.1.0.x4-74
- Client Hardware
 - –8 Clients, each configured with QDR IB, 48GB Memory and
 12 Cores
 - -Scientific Linux 6.5 with Stock OFED

IOR Parameters and Settings

- Used mpirun to execute IOR with --byslot distribution
- IOR Parameters that were constant:
 - -F: File Per Process
 - -B: Direct IO Operation
 - t 64m: 64m Transfer Size per Task
 - b: 1024g for Single Thread and 512g for multiple tasks
 - -D: stonewall option, write for 4 minutes, and read for 2 minutes
- Lustre Settings
 - -Stripe Count of 1
 - -Stripe Size of 1m

Lustre Clients

- Compared the following clients:
 - -1.8.9, 2.1.6, 2.4.3, and 2.5.1
- Collected raw performance data using the following client settings with and without checksums enabled
 - -max_rpcs_in flight / max_dirty_mb
 - 32 / 128
 - 64 / 256
 - · 128 / 512
 - 256 / 1024

Single Thread Write Performance

Single Thread Client Write Performance - Checksums Disabled

Single Thread Read Performance

Single Thread Client Read Performance Checksums Disabled

Impact on Single Thread Performance when Checksums were Enabled

	Checksums Impact - Single Thread						
Version		Reads	Writes				
1.8.9	Performance Impact Difference (MB/s)	217.80	336.84				
	Percentage Impact Reduced	19%	35%				
2.1.6	Performance Impact Difference (MB/s)	37.70	27.81				
2.1.6	Percentage Impact Reduced	3%	6%				
0.4.0	Performance Impact Difference (MB/s)	45.51	9.14				
2.4.3	Percentage Impact Reduced	6%	1%				
0.5.1	Performance Impact Difference (MB/s)	44.91	6.50				
2.5.1	Percentage Impact Reduced	6%	1%				

1.8.9 Client Performance Results

Nodes and Tasks

Key: max_rpcs_in_flight / max_dirty_mb / checksums

1.8.9 Reads - Checksums Disabled

2.1.6 Client Performance Results

Write 32/128/0

Write 64/256/0

Write 128/512/0

Write 256/1024/0

2.1.6 Writes - Checksums Disabled

Key: max_rpcs_in_flight / max_dirty_mb / checksums

2.1.6 Reads - Checksums Disabled

2.4.3 Client Performance Results

Write 32/128/0

Write 64/256/0 Write 128/512/0

Write 256/1024/0

2.4.3 Writes - Checksums Disabled

Key: max_rpcs_in_flight / max_dirty_mb / checksums

2.4.3 Reads - Checksums Disabled

2.5.1 Client Performance Results

Write 32/128/0

Write 64/256/0 Write 128/512/0

Write 256/1024/0

Key: max_rpcs_in_flight / max_dirty_mb / checksums

2.5.1 Reads - Checksums Disabled

Average Negative Impact on Performance when Checksums Enabled

Average results using 4-96 Threads across 1-8 Clients

	Checksums Impact (max_rpcs_in_flight/max_dirty_mb)									
		Reads 32/128	Write 32/128	Read 64/256	Write 65/256	Read 128/512	Write 128/512	Read 256/1024	Write 256/1024	
1.8.9	Average Impact Difference (MB/s)	203.40	398.09	3.12	434.41	71.03	523.17	31.19	502.31	
	Average Impact Percentage	2%	10%	-1%	10%	0%	13%	0%	12%	
2.1.6	Average Impact Difference (MB/s)	541.64	269.93	446.17	196.06	445.79	189.33	453.34	180.07	
	Average Impact Percentage	22%	12%	19%	9%	18%	8%	9%	8%	
2.4.3	Average Impact Difference (MB/s)	333.18	94.53	277.32	77.16	380.47	194.21	326.76	315.71	
	Average Impact Percentage	7%	3%	5%	2%	7%	4%	5%	6%	
2.5.1	Average Impact Difference (MB/s)	486.11	161.09	245.24	154.50	366.05	256.85	346.78	423.12	
	Average Impact Percentage	12%	5%	5%	4%	6%	6%	6%	9%	

1.8.9, 2.4.3, 2.5.1 Overall Write Comparison

1.8.9, 2.4.3, 2.5.1 Writes Comparison - Checksums Disabled

1.8.9, 2.4.3, 2.5.1 Overall Read Comparison

1.8.9, 2.4.3, 2.5.1 Reads Comparison - Checksums Disabled

A Seagate Company

Maximizing Performance for Each Client

Max Performance Comparison - Checksums Disabled

Reads and Writes
RPCs/Dirty_MB/Checksums

Interesting Results Analyzing Raw Data

- In general, 1.8.9 Client performed the same regardless of client settings
- 2.4.3 and 2.5.1 followed the same performance curve
 - Clients settings need to be increased to achieve maximum storage throughput
 - -Both max_rpcs_in_flight and max_dirty_mb need to be increased to at lest 256
 - Anything less than 256 will result in less than optimal Storage performance
- The rule of thumb: max_dirty_mb = max_rpcs_in_flight * 4
 is not holding true with Client versions 2.4.3 and 2.5.1

Summary

- 1.8.9 single thread performance results are the highest, but
 2.4.3 and 2.5.1 improved over previous 2.x client versions
- With the right client settings, 2.4.3 and 2.5.1 client versions can maximize storage throughput, along with 1.8.9 clients
- 2.1.6 Client underperformed, regardless of client tuning
- Checksums impact varied with the number of threads, but, on average, not a "big" performance impact
 - Biggest impact on performance with Checksums enabled was on the Single Thread tests
- 2.4.3 and 2.5.1 performance results were similar across all threads and client tuning parameters

Thank You

John_Fragalla@xyratex.com

