

Elettrotecnica Parte 10: Sistemi Trifase

Prof. Ing. Giambattista Gruosso, Ph. D.

Dipartimento di Elettronica, Informazione e Bioingegneria

Indice

- Sistema Trifase
- Potenza nel sistema trifase
- Cenni di distribuzione della potenza

POLITECNICO DI MILANO

Terna trifase di Generatori

POLITECNICO DI MILANO

Terna trifase di Generatori

POLITECNICO DI MILANO

Carico Trifase

POLITECNICO DI MILANO

Carico Trifase bilanciato

POLITECNICO DI MILANO

$$\overline{Z_{L1}} = \overline{Z_{L2}} = \overline{Z_{L3}}$$

Carico Trifase bilanciato

POLITECNICO DI MILANO

$$\overline{Z}_{\Delta} = 3\overline{Z}_{Y}$$

Tensione di Centro stella

POLITECNICO DI MILANO

Prof. G. Gruosso

$$\mathbf{V}_{\text{OG}} = \frac{\mathbf{E}_{10}\mathbf{Y}_{1} + \mathbf{E}_{20}\mathbf{Y}_{2} + \mathbf{E}_{30}\mathbf{Y}_{3}}{\mathbf{Y}_{1} + \mathbf{Y}_{2} + \mathbf{Y}_{3}}$$

$$\mathbf{V}_{\text{OG}} = \frac{\mathbf{E}_{10} + \mathbf{E}_{20} + \mathbf{E}_{30}}{3} = 0$$

Nb: Sono in grassetto quindi sono numeri complessi

Tensione di Centro stella

POLITECNICO DI MILANO

$$\bar{I}_1 = \frac{\bar{E}_{10}}{\bar{Z}_1}$$

$$\bar{I}_2 = \frac{\bar{E}_{20}}{\bar{Z}_2}$$

$$\overline{I}_3 = \frac{\overline{E}_{30}}{\overline{Z}_3}$$

Esempio di Calcolo

POLITECNICO DI MILANO

Esempio di Calcolo

POLITECNICO DI MILANO

Esempio di Calcolo: rete ridotta al monofase

POLITECNICO DI MILANO

Calcolo della potenza

POLITECNICO DI MILANO

Prof. G. Gruosso

Scegliamo il 2 come nodo di riferimento

$$p(t) = v_{12}(t)i_1(t) + v_{32}(t)i_3(t) = v_{12}(t)i_1(t) - v_{23}(t)i_3(t)$$

Calcolo della potenza

POLITECNICO DI MILANO

$$p(t) = v_{12}(t)i_1(t) - v_{23}(t)i_3(t) =$$

$$= [e_1(t) - e_2(t)]i_1(t) - [e_2(t) - e_3(t)]i_3(t) =$$

$$= e_1(t)i_1(t) - e_2(t)[i_1(t) + i_3(t)] + e_3(t)i_3(t) =$$

$$= e_1(t)i_1(t) + e_2(t)i_2(t) + e_3(t)i_3(t)$$

Calcolo della potenza

POLITECNICO DI MILANO

$$p(t) = e_{10}(t)i_{1}(t) + e_{20}(t)i_{2}(t) + e_{30}(t)i_{3}(t) =$$

$$= E_{0}I\cos\varphi + E_{0}I\cos(2\omega t + \varphi_{V} + \varphi_{I}) +$$

$$+ E_{0}I\cos\varphi + E_{0}I\cos(2\omega t + \varphi_{V} + \varphi_{I} + \frac{2}{3}\pi) +$$

$$+ E_{0}I\cos\varphi + E_{0}I\cos(2\omega t + \varphi_{V} + \varphi_{I} - \frac{2}{3}\pi) =$$

Potenza trifase in regime fasoriale

POLITECNICO DI MILANO

Potenza attiva

$$P = 3E_0 I \cos \varphi = \sqrt{3}VI \cos \varphi$$

Potenza reattiva

$$Q = 3E_0 I \operatorname{sen} \varphi = \sqrt{3}VI \operatorname{sen} \varphi$$

Prof. G. Gruosso

Potenza apparente

$$S = 3E_0 I = \sqrt{3}VI$$

Fattore di potenza

$$\cos \Phi = \cos \varphi$$

Che fine fa il fattore ½ ? Tradizionalmente in regime trifase si usano i valori efficaci

Rifasamento in regime trifase

POLITECNICO DI MILANO

$$Q_R = P(tg\varphi' - tg\varphi)$$

$$Q_R = -3\omega C V_{Ce}^2 = -\omega C_Y V_e^2 = -3\omega C_\Delta V_e^2$$

Rifasamento in regime trifase

POLITECNICO DI MILANO

$$Q_R = P(tg\varphi' - tg\varphi)$$

$$Q_R = -3\omega C V_{Ce}^2 = -\omega C_Y V_e^2 = -3\omega C_\Delta V_e^2$$

Rifasamento in regime trifase

POLITECNICO DI MILANO

Prof. G. Gruosso

collegamento a stella

$$C_{Y} = \frac{P(tg\varphi - tg\varphi')}{\omega V_{e}^{2}}$$

collegamento a triangolo

$$C_{\Delta} = \frac{P(tg\varphi - tg\varphi')}{3\omega V_{\varrho}^{2}} = \frac{C_{\Upsilon}}{3}$$

Carico Trifase: determinazione dei parametri

POLITECNICO DI MILANO

$$\tan \varphi = \frac{Q}{P}$$
 Determino lo sfasamento

$$I = \frac{P}{\sqrt{3} \cdot V \cdot \cos \varphi}$$
 Determino la corrente di linea

Carico Trifase: determinazione dei parametri

POLITECNICO DI MILANO

$$R_{y} = \frac{P}{3I^{2}}$$

$$X_{y} = \frac{Q}{3I^{2}}$$

$$\overline{Z}_{y} = R_{y} + jX_{y}$$

Applicazioni

POLITECNICO DI MILANO

