Geometric Shapes

Module 3 Lecture 1

CZ200

Lecture 1: Learning Objectives

- To understand how points and curves can be used in solving data visualization problems
- To understand curves as objects with 1 degree of freedom
- To understand what mathematical representation is the most efficient for defining and displaying curves
- To understand how different coordinate systems can be used together for deriving mathematical representations of curves

Geometric Shapes

- · Geometry has no color and texture
- Points 0 degree of freedom shape
- Curves 1 degree of freedom shape
- Surfaces 2 degree of freedom shape
- Solid objects 3 degree of freedom shape
- 2 and 3 dimensional spaces
- · Time is yet another dimension however different
- At the display level, drawn as pixels (picture elements), connected segments (polylines), and shaded polygons (polygon meshes)

CZ2003

Points

- Individual points
- Reference points
- Point rendering
- Splats (e.g. little oriented disks) rendering example (6 MP, 120M) rays https://www.youtube.com/watch?v=X_wyoroo4co
- 2D pixels (picture elements) and 3D voxels (volume elements)
- Defined by Cartesian coordinates (x, y, z), polar (r, α) , spherical (r, α, β) or cylindrical (h, r, α) coordinates

22003 3

Curves

- 2D and 3D
- · Polylines interpolation by connected straight line segments
- Implicit (only 2D)

$$f(x,y)=0$$

• Explicit (only 2D)

$$y=f(x)$$
 or $x=f(y)$

• Parametric (2D and 3D)

$$x=x(t)$$

y=y(t) $t = [t_1, t_2]$

x=x(t)y=y(t)

z=z(t)

 $t = [t_1, t_2]$

Straight Line. **Implicit Representation**

· Straight line

$$Ax + By + C = 0$$

$$\frac{y - y_1}{x - x_1} - \frac{y - y_2}{x - x_2} = 0$$

- Segment: $x \in [x_1, x_2], y \in [y_1, y_2]$ Straight line: $x, y \in (-\infty, \infty)$
- Ray: $x \in [x_1, \infty)$, $y \in [y_1, \infty)$
- Drawing is done by sampling points (pixels) within the x and y domains. It is slow since most of the points within the domain do not belong to the segment.

2D Curves: Study by Example

- Straight Line (Segment, Ray)
- Circle (Arc)
- · Ellipse (Arc)

Straight Line. **Implicit Representation**

· Straight line

$$Ax + By + C = 0$$

$$\frac{y - y_1}{x - x_1} - \frac{y - y_2}{x - x_2} = 0$$

- Segment: $x \in [x_1, x_2], y \in [y_1, y_2]$
- Straight line: $x, y \in (-\infty, \infty)$
- Ray: $x \in [x_1, \infty)$, $y \in [y_1, \infty)$

$$\frac{x}{a} + \frac{y}{b} = 1 \Rightarrow \frac{x}{a} + \frac{y}{b} - 1 = 0$$

Signed coordinates of points a and b

7

5

Straight Line. **Explicit Representation**

· Straight line

$$y = ax + b$$
 or $x = dy + c$

$$a = \frac{y - y_1}{x - x_1} = \frac{y - y_2}{x - x_2} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$

- Segment: $x \in [x_1, x_2], y \in [y_1, y_2]$
- Straight line: $x, y \in (-\infty, \infty)$
- Ray: $x \in [x_1, \infty)$, $y \in [y_1, \infty)$

- Drawing is done by incrementing x or y and obtaining y and x, respectively. Fast. Integer version used for drawing segments in all computers.
- Axes dependency: special cases for drawing vertical and horizontal lines x=c, y=b

9

11

Straight Line. **Parametric Representation**

· Parametric definition of a straight line segment $P = P_1 + \tau (P_2 - P_1)$

$$x = x_1 + \tau(x_2 - x_1) = x_1(1 - \tau) + \tau x_2$$

$$y = y_1 + \tau(y_2 - y_1) = y_1(1 - \tau) + \tau y_2$$

$$\tau = [0,1]$$

The animation illustrates drawing of the segment by computing coordinates of its points for every value of the parameter being incremented

Straight Line.

Parametric Representation

· Parametric definition of a straight line segment

$$P = P_1 + \tau(P_2 - P_1)$$

$$x = x_1 + \tau(x_2 - x_1) = x_1(1 - \tau) + \tau x_2$$

$$y = y_1 + \tau(y_2 - y_1) = y_1(1 - \tau) + \tau y_2$$

$$\tau = [0,1] \quad \text{One parameter !}$$

- · Straight line $\tau = (-\infty, \infty)$
- · Straight line ray, e.g., $\tau = [0, \infty)$ $\tau = (-\infty, 1]$

• Drawing is done by incrementing parameter τ and obtaining x and y- axes independent, Fast.

10

Straight Line. **Parametric Representation**

· Parametric definition of a straight line segment $P = P_1 + \tau (P_2 - P_1)$

$$x = x_1 + \tau(x_2 - x_1) = x_1(1 - \tau) + \tau x_2$$

$$y = y_1 + \tau(y_2 - y_1) = y_1(1 - \tau) + \tau y_2$$

$$\tau = [0,1]$$

The animation illustrates drawing of the segment by computing coordinates of its points for every value of the parameter being incremented

Straight Line.Parametric Representation

• Parametric definition of a straight line segment $P = P_1 + \tau(P_2 - P_1)$

$$x = x_1 + \tau(x_2 - x_1) = x_1(1 - \tau) + \tau x_2$$

$$y = y_1 + \tau(y_2 - y_1) = y_1(1 - \tau) + \tau y_2$$

$$\tau = [0,1]$$

The animation illustrates drawing of the segment by computing coordinates of its points for every value of the parameter being incremented

CZ2003

13

Straight Line.Parametric Representation

· Parametric definition of a straight line segment

$$P = P_1 + \tau(P_2 - P_1) \tag{1}$$

$$x = x_1 + \tau(x_2 - x_1) = x_1(1 - \tau) + \tau x_2$$

$$y = y_1 + \tau(y_2 - y_1) = y_1(1 - \tau) + \tau y_2$$

$$\tau = [0,1]$$

The animation illustrates drawing of the segment by computing coordinates of its points for every value of the parameter being incremented

CZ2003

14

Straight Line.Parametric Representation

Summary

2D straight lines, segments and rays can be defined analytically by

- Implicit functions

f(x,y)=0 — Slow for rendering

Explicit functionsy=f(x) or x=f(y)

Fast but axes dependent

Parametric functions
 One parameter only

x=x(t), y=y(t) $t=[t_1, t_2]$ – Fast and axes independent