

Instrumentación y Control: Informe de avance N°1

Utilización de placa de audio como sistema de adquisición de datos

Docentes: Dr. Hernán Grecco

JTP. Guillermo Patterson

AY 1. Agustín Corbat

Curso: 1er Cuatrimestre 2019

Por: Marcelo Cabrera / Mario Gatto - INLAB S.A (Grupo 10)

Fecha de entrega: 14/05/2019

Instrumentación y Control: Informe de avance N 1

Contenido

Objetivo	3
Recursos utilizados	
Descripcion de la experiencia	3
Resultados	
Valores maximos y minimos de deteccion	5
Primer experiencia de generacion y captura de datos	5
Barrido de frequencias	7

Objetivo

Con base en la posibilidad de utilizar la placa de sonido de una computadora portátil de generar y leer señales realizar diversos experimentos demostrando las capacidades y limitaciones de mencionado componente de hardware para realizar estas funcionalidades.

Recursos utilizados

- ➤ Computadora personal Toshiba Satellite L845 ® con placa de sonido "on-Board" modelo Conexant HD- Smart Audio. Sistema Operativo Windows 8.1.
- Software generador/osciloscopio SoundCard Scope 1.46 (Christian Zeitnitz 2015, Christian@Zeitnizt.de) para el control de resultados en paralelo a las rutinas de cálculo.
- > IDE Spyder con Python 3.6

Descripción de la experiencia

Para no depender físicamente de los osciloscopios/generadores de funciones profesionales del Laboratorio de Física utilizamos un software externo (SoundCard Scope 1.46) que posee ambas funcionalidades (con las limitaciones propias de la placa de audio). Con base a los resultados de este software realizamos las calibraciones/ensayos con la placa de audio. Se utilizó un cable con conectores plug 3.5 mm en ambos extremos, uno de ellos conectados a la salida de auricular de la placa de audio y el otro conectado a la entrada de micrófono de la misma placa de audio.

Figura 1 Conexión en placa de audio

La información disponible sobre la placa de audio "on-board" (Conexant SmartAudio HD) es escasa [1] , no obstante se dispone de la siguiente hoja de datos.

Analog Performance Characteristics

Parameter	Minimum	Typical	Maximum	Units			
Line Outputs							
Full Scale Output Voltage		1.0		Vrms			
Dynamic Range (measured with -60 dBFS signal present)		100		dBFS			
Total Harmonic Distortion + Noise (THD + N)		-85		dB			
Channel Crosstalk		-84		dBFS			
Analog Frequency Response (+/- 3 dB at 20 Hz, +/- 1 dB at 20000 Hz)	20		20000	Hz			
Headphone Outpu	ıt						
Full Scale Output Voltage		1.2		Vrms			
Dynamic Range (measured with -60 dBFS signal present)		99		dBFS			
Total Harmonic Distortion + Noise (THD + N)		-87		dB			
Channel Crosstalk		-75		dBFS			
Analog Frequency Response (+/- 3 dB at 20 Hz, +/- 1 dB at 20000 Hz)	20		20000	Hz			
Class-D Speaker Amplifier	r Outputs	-	-				
Full Scale Output Voltage (into 4 Ω)	3.96	4.0	4.2	Vp			
	2.83	2.90	3	Vrms			
Dynamic Range (measured with -60 dBFS signal present)		94		dBFS			
Total Harmonic Distortion + Noise (THD + N, measured at -3 dBFS)		-71		dBFS			
Analog Frequency Response (+/- 3 dB at 20 Hz, +/- 1 dB at 20000 Hz)	20		20000	Hz			
Efficiency (Measured at 1 W/Ch)		85		%			
Microphone/Line Inputs							
Full Scale Input Voltage (With 20 dB boost)	0.1			Vrms			
Full Scale Input Voltage (With boost off)	1.0						
Dynamic Range (measured with -60 dBFS signal present)		91		dBFS			
Total Harmonic Distortion + Noise (THD + N)		-87		dBFS			
Channel Crosstalk (measured at 1 kHz, 0 dB gain)		-84		dBFS			
Analog Frequency Response (+/- 3 dB at 200 Hz, +/- 1 dB at 20000 Hz)	200		20000	Hz			
Input Resistance							
0 dB		15.8		kΩ			
10-40 dB		5.0					
Input Capacitance		5		pF			

Figura 2 Hoja de especificación de placa de audio "on board"

Las placas de audio poseen una capa de software (en el caso de Windows es DirectSound ®) que gestiona la interfaz entre las aplicaciones y el "driver" de la placa de sonido. Esto hace que la señal que recibe la placa de sonido esté sujeta a un procesamiento que no posee control de usuario.

Resultados

A continuación se muestran los resultados de los experimentos realizados:

Valores máximos y mínimos de detección

Mediante SoundCard Scope ® se ha establecido que la máxima tensión que admite la entrada placa de audio es de 0.707 V (RMS) o 1.999 Vp-p . A su vez la mínima tensión detectada en promedio 0.001 V (RMS) o 0.003 Vp-p.

Se debe mencionar que dichos valores se obtienen generando una señal sinusoidal y observando la no saturación de la señal. Para todas las experiencias el volumen de salida de audio (desde el sistema operativo) fue del 50%.

Primer experiencia de generación y captura de datos

Se han utilizado dos códigos de python que utilizan la librería *pyaudio* para la generación de datos (audio) y la recepción de información.

Señal sinusoidal, f= 200 Hz , A=1

Figura 3 Función sinusoidal (en cuentas) -200 Hz, A=1

Los valores máximos de cuentas fueron -30211 y 30010 . Luego 1.999 Vp-p (del punto anterior) se corresponde con 2*2^15 cuentas (o la mitad del valor de Vp-p con 2^15 cuentas , 32768) . Luego queda el anterior grafico con la calibración efectuada.

Figura 4 Función sinusoidal (en Volt) -200 Hz, A=1

Esto da un valor de Vp-p de 1.8368 V.

Puede observarse también que en el intervalo de tiempo graficado existe una cantidad de picos correspondientes con la frecuencia del experimento. A su vez, se verificó este resultado con la herramienta osciloscopio del software *SoundCard Scope* ® obteniéndose un resultado similar.

Barrido de frecuencias

Se realizó la experiencia modificando la frecuencia de la señal , manteniendo la amplitud constante (3 valores). Los resultados se visualizan a continuación:

Frecuencia (Hz)	VPP (A=1.0)	VPP (A=0.5)	VPP (A=0.1)
10	0.776	0.379	0.075
20	1.246	0.616	0.122
50	1.676	0.848	0.170
100	1.802	0.912	0.183
200	1.837	0.932	0.187
500	1.848	0.938	0.189
1000	1.864	0.939	0.189
5000	1.844	0.936	0.188
10000	1.824	0.932	0.186
15000	1.794	0.930	0.184
20000	1.676	0.839	0.169
25000	1.711	0.903	0.180

 Tabla 1:
 Resumen de datos de barrido de frecuencias

Se representan los datos anteriores en un grafico semilogaritmico:

Figura 5 Barrido de frecuencias

Se observa claramente que existe un refuerzo del sistema para las frecuencias entre 50 y 15000 Hz. Esto es debido a que se asume de manera fisiológica que el rango audible del ser humano está entre 20 y 20000 Hz.