Assignment 5 Solutions

1.7.5

5. To find the equilibria we solve

$$(y^2 - \alpha)(y^2 - 4) = 0,$$

obtaining $y = \pm 2$ and $y = \pm \sqrt{\alpha}$ if $\alpha \ge 0$. Hence, there are two bifurcation values of α , $\alpha = 0$ and $\alpha = 4$.

For $\alpha < 0$, there are only two equilibria. The point y = -2 is a sink and y = 2 is a source. At $\alpha = 0$, there are three equilibria. There is a sink at y = -2, a source at y = 2, and a node at y = 0. For $0 < \alpha < 4$, there are four equilibria. The point y = -2 is still a sink, $y = -\sqrt{\alpha}$ is a source, $y = \sqrt{\alpha}$ is a sink, and y = 2 is still a source.

For $\alpha=4$, there are only two equilibria, $y=\pm 2$. Both are nodes. For $\alpha>4$, there are four equilibria again. The point $y=-\sqrt{\alpha}$ is a sink, y=-2 is now a source, y=2 is now a sink, and $y=\sqrt{\alpha}$ is a source.

1.7.13

- 13. (a) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii), and (vi). Since y = 0 is the only equilibrium point for A < 0, this only corresponds to equation (iii).
 - (b) The phase line corresponding to A = 0 is the only phase line with y = 0 as an equilibrium point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to

A < 0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the phase lines corresponding to A > 0, note that dy/dt < 0 for $-\sqrt{A} < y < \sqrt{A}$. Consequently, the bifurcation diagram corresponds to equation (v).

- (c) The phase line corresponding to A=0 is the only phase line with y=0 as an equilibrium point, which corresponds to equations (ii), (iv), and (v). For the phase lines corresponding to A<0, there are no equilibrium points. Only equations (iv) and (v) satisfy this property. For the phase lines corresponding to A>0, note that dy/dt>0 for $-\sqrt{A}< y<\sqrt{A}$. Consequently, the bifurcation diagram corresponds to equation (iv).
- (d) Each phase line has an equilibrium point at y = 0. This corresponds to equations (i), (iii), and (vi). The phase lines corresponding to A > 0 only have two nonnegative equilibrium points. Consequently, the bifurcation diagram corresponds to equation (i).

1.7.16

16. The graph of g can only intersect horizontal lines above 4 once, and it must go from above to below as y increases. Then there is exactly one sink for $\alpha \le -4$.

Similarly, the graph of g can only intersect horizontal lines below -4 once, and it must go from above to below as y increases. Then there is exactly one sink for $\alpha \ge 4$.

Finally, the graph of g must touch the y-axis at exactly six points so that there are exactly six equilibria for $\alpha = 0$.

The following graph is the graph of one such function.

1.7.21

21. If C < kN/4, the differential equation has two equilibria

$$P_1 = \frac{N}{2} - \sqrt{\frac{N^2}{4} - \frac{CN}{k}}$$
 and $P_2 = \frac{N}{2} + \sqrt{\frac{N^2}{4} - \frac{CN}{k}}$.

The smaller one, P_1 , is a source, and the larger one, P_2 , is a sink. Note that they are equidistant from N/2. Also, note that any population below P_1 tends to extinction.

If C is near kN/4, then P_1 and P_2 are near N/2. Consequently, if the population is near zero, it will tend to extinction. As C is decreased, P_1 and P_2 move apart until they reach $P_1 = 0$ and $P_2 = N$ for C = 0.

Once P is near zero, the parameter C must be reset essentially to zero so that P will be greater than P_1 . Simply reducing C slightly below kN/4 leaves P in the range where dP/dt < 0 and the population will still die out.