ISO Presentation

Quantum Programming

Tristan Nemoz Supervisor: Mario Berta

Goal: exponential speed-up

- Goal: exponential speed-up
- HHL¹ (2009): $O(n) \rightarrow O(\log(n) \kappa^2)$

¹Harrow, Hassidim, and Lloyd, "Quantum Algorithm for Linear Systems of Equations".

- Goal: exponential speed-up
- HHL¹ (2009): $O(n) \to O(\log(n) \kappa^2)$
- Quantum Recommendation Systems² (2016): $O(n^2) \rightarrow O(\text{poly}(k) \text{ polylog}(m n))$

London

¹Harrow, Hassidim, and Lloyd, "Quantum Algorithm for Linear Systems of College Equations".

²Kerenidis and Prakash, Quantum Recommendation Systems.

- Goal: exponential speed-up
- HHL¹ (2009): $O(n) \to O(\log(n) \kappa^2)$
- Quantum Recommendation Systems² (2016): $O(n^2) \rightarrow O(\text{poly}(k) \text{ polylog}(m n))$

London

¹Harrow, Hassidim, and Lloyd, "Quantum Algorithm for Linear Systems of College Equations".

²Kerenidis and Prakash, Quantum Recommendation Systems.

• *m* users can rate *n* products

m users can rate n products (binary voting)

- m users can rate n products (binary voting)
- Not all ratings are known

- m users can rate n products (binary voting)
- Not all ratings are known
- Can we predict whether user j will like product k?

Mathematical description

Binary recommendation system

Let $\mathbf{P} \in \{0; 1\}^{m \times n}$, whose coefficients are known with a given probability. A quantum recommendation system, given $\hat{\mathbf{P}}$ the incomplete respresentation of \mathbf{P} and an user j, predicts k such that $\mathbf{P}_{j,k} = 1$ with high probability.

Mathematical description

Binary recommendation system

Let $\mathbf{P} \in \{0; 1\}^{m \times n}$, whose coefficients are known with a given probability. A quantum recommendation system, given $\hat{\mathbf{P}}$ the incomplete respresentation of \mathbf{P} and an user j, predicts k such that $\mathbf{P}_{j,k} = 1$ with high probability.

Impossible problem without assumptions

The low-rank assumption

Let **P** be the unknown preference matrix. For a given precision parameter ε , there exists a rank-k matrix **T** such that:

$$\|\mathbf{P} - \mathbf{T}\|_F \leqslant \varepsilon \|\mathbf{P}\|_F$$
.

The low-rank assumption

Let **P** be the unknown preference matrix. For a given precision parameter ε , there exists a rank-k matrix **T** such that:

$$\|\mathbf{P} - \mathbf{T}\|_F \leqslant \varepsilon \|\mathbf{P}\|_F$$
.

 \implies there are k types of typical users.

The low-rank assumption

Let **P** be the unknown preference matrix. For a given precision parameter ε , there exists a rank-k matrix **T** such that:

$$\|\mathbf{P} - \mathbf{T}\|_F \leqslant \varepsilon \|\mathbf{P}\|_F$$
.

 \implies there are k types of typical users.

The low-rank assumption

Let **P** be the unknown preference matrix. For a given precision parameter ε , there exists a rank-k matrix **T** such that:

$$\|\mathbf{P} - \mathbf{T}\|_F \leqslant \varepsilon \|\mathbf{P}\|_F$$
.

 \implies there are k types of typical users.

Problem initialization

P can be sampled into $\hat{\mathbf{P}}$ such that $\hat{\mathbf{P}}$ holds the low-rank assumption. Hence, ε is assumed to be known.

• Introduced in 2016³

Imperial College London

- Introduced in 2016³
- Offers an exponential speed-up regarding to classical algorithms at that time

Imperial College London

³Kerenidis and Prakash, Quantum Recommendation Systems.

- Introduced in 2016³
- Offers an exponential speed-up regarding to classical algorithms at that time
- No practical implementation proposed

Imperial College London

- Introduced in 2016³
- Offers an exponential speed-up regarding to classical algorithms at that time
- No practical implementation proposed

Imperial College London

³Kerenidis and Prakash, Quantum Recommendation Systems.

- Introduced in 2016³
- Offers an exponential speed-up regarding to classical algorithms at that time
- No practical implementation proposed

Problem statement

How does the real-world implementation of the Quantum Recommendation System algorithm differs from its theoretic implementation?

Imperial College London

³Kerenidis and Prakash, Quantum Recommendation Systems.

• Operates on bit-strings 0110110001

- Operates on bit-strings 0110110001
- Bits are elements of $\{0; 1\}$

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)
- Operates with a limited set of gates:

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)
- Operates with a limited set of gates:

(a) NOT gate

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)
- Operates with a limited set of gates:

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)
- Operates with a limited set of gates:

Figure: Classical gates

- Operates on bit-strings 0110110001
- Bits are elements of {0; 1}
- Some operations are reversible, some are not
- Cloning or setting a bit to 0 can be done in O(1)
- Operates with a limited set of gates:

Figure: Classical gates

• Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations are reversible

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to $|0\rangle$ is **impossible**

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to |0> is impossible (in the general case)

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to $|0\rangle$ is **impossible** (in the general case)
- Operates with a limited set of matrices/gates:

Quantum computing

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to $|0\rangle$ is **impossible** (in the general case)
- Operates with a limited set of matrices/gates:

(a) The $\mathbf{R}_z(\theta)$ gate

Quantum computing

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to $|0\rangle$ is **impossible** (in the general case)
- Operates with a limited set of matrices/gates:

Quantum computing

- Operates on **qubits**-strings $|q_1\rangle$ $|q_2\rangle$ $|q_3\rangle$ $|q_4\rangle$ $|q_5\rangle$
- Qubits are normalized vectors of C²
- All operations (aside from measuring) are reversible
- Cloning or setting a qubit to $|0\rangle$ is **impossible** (in the general case)
- Operates with a limited set of matrices/gates:

Figure: Quantum gates

Qubits

A qubit $|q\rangle$ is a normalized vector of \mathbb{C}^2 . We denote:

$$|q\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Qubits

A qubit $|q\rangle$ is a normalized vector of \mathbb{C}^2 . We denote:

$$|q\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Qubits

A qubit $|q\rangle$ is a normalized vector of \mathbb{C}^2 . We denote:

$$|q\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle.$$

Qubits

A qubit $|q\rangle$ is a normalized vector of \mathbb{C}^2 . We denote:

$$|q\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle.$$

A qubits-string is called a **quantum register**.

Qubits

A qubit $|q\rangle$ is a normalized vector of \mathbb{C}^2 . We denote:

$$|q\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle.$$

A qubits-string is called a **quantum register**. It is mathematically described as the tensor product of these qubits, that is:

$$|q_1\rangle |q_2\rangle \cdots |q_n\rangle = \bigotimes_{i=1}^n |q_k\rangle$$
.

Figure: The Bloch Sphere

Figure: The Bloch Sphere

Possibility to encode information with qubits-strings

- Possibility to encode information with qubits-strings
- Linearity allows to apply operations on several qubits-string at a time

- Possibility to encode information with qubits-strings
- Linearity allows to apply operations on several qubits-string at a time
- Possibility to get a probabilistic view of a qubit at the price of forcing it into a certain state.

- Possibility to encode information with qubits-strings
- Linearity allows to apply operations on several qubits-string at a time
- Possibility to get a probabilistic view of a qubit at the price of forcing it into a certain state. Measurement destroys information.

 The real-world implementation of the algorithm is quite straight-forward, except for:

- The real-world implementation of the algorithm is quite straight-forward, except for:
 - Loading a vector stored in a classical structure as a quantum state

- The real-world implementation of the algorithm is quite straight-forward, except for:
 - Loading a vector stored in a classical structure as a quantum state
 - Applying the Quantum Phase Estimation subroutine

- The real-world implementation of the algorithm is quite straight-forward, except for:
 - Loading a vector stored in a classical structure as a quantum state
 - Applying the Quantum Phase Estimation subroutine
 - Comparing a qubits-string and a bits-string

- The real-world implementation of the algorithm is quite straight-forward, except for:
 - Loading a vector stored in a classical structure as a quantum state
 - Applying the Quantum Phase Estimation subroutine
 - Comparing a qubits-string and a bits-string

Loading a vector as a quantum state

Loading a vector as a quantum state

Let $\mathbf{x} \in \mathbf{R}^n$ be a normalized vector.

Loading a vector as a quantum state

Loading a vector as a quantum state

Let $\mathbf{x} \in \mathbf{R}^n$ be a normalized vector. Then, its associated quantum state is:

$$|x
angle = \sum_{j\in\{0\,;\,1\}^{\left\lceil\log_2(n)
ight\rceil}} \mathbf{x}_j\,\,|q
angle\,\,.$$

Loading a vector as a quantum state

Loading a vector as a quantum state

Let $\mathbf{x} \in \mathbf{R}^n$ be a normalized vector. Then, its associated quantum state is:

$$|x
angle = \sum_{j \in \{0\,;\,1\}^{\lceil \log_2(n) \rceil}} \mathbf{x}_j \,\, |q
angle \,\,.$$

Loading **x** means creating $|x\rangle$ from $|0\rangle^{\otimes \lceil \log_2(n) \rceil}$ with a polylogarithmic number of gates⁴.

⁴Prakash, "Quantum Algorithms for Linear Algebra and Machine Learning.

QRAM⁵

A QRAM is a binary tree whose leaves stores the coefficients of a vector \mathbf{x} and whose nodes stores the sum of its leaves values.

⁵Prakash, "Quantum Algorithms for Linear Algebra and Machine Learning."

QRAM⁵

A QRAM is a binary tree whose leaves stores the coefficients of a vector ${\bf x}$ and whose nodes stores the sum of its leaves values.

1

Figure: An example of a QRAM tree

⁵Prakash, "Quantum Algorithms for Linear Algebra and Machine Learning."

QRAM⁵

A QRAM is a binary tree whose leaves stores the coefficients of a vector \mathbf{x} and whose nodes stores the sum of its leaves values.

Figure: An example of a QRAM tree

⁵Prakash, "Quantum Algorithms for Linear Algebra and Machine Learning."

QRAM⁵

A QRAM is a binary tree whose leaves stores the coefficients of a vector \mathbf{x} and whose nodes stores the sum of its leaves values.

Figure: An example of a QRAM tree

⁵Prakash, "Quantum Algorithms for Linear Algebra and Machine Learning."

Loading from QRAM

• Method described in Dervovic et al., *Quantum linear systems* algorithms: a primer

Loading from QRAM

- Method described in Dervovic et al., Quantum linear systems algorithms: a primer
- Uses 2^k rotations gates around the y-axis at level k of the tree whose angle are determined using QRAM

Loading from QRAM

- Method described in Dervovic et al., Quantum linear systems algorithms: a primer
- Uses 2^k rotations gates around the y-axis at level k of the tree whose angle are determined using QRAM
- Goal: parallelize the execution of the rotations using superposition

Parallel execution of controlled rotations

Let $|x\rangle$ be a *n*-qubits quantum register and $|0\rangle$ be a target qubit.

Parallel execution of controlled rotations

Let $|x\rangle$ be a *n*-qubits quantum register and $|0\rangle$ be a target qubit. Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the *y*-axis of angle θ_k only if the first quantum register is in state $|k\rangle$

Parallel execution of controlled rotations

Let $|x\rangle$ be a *n*-qubits quantum register and $|0\rangle$ be a target qubit. Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the *y*-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to *n*.

Parallel execution of controlled rotations

Let $|x\rangle$ be a *n*-qubits quantum register and $|0\rangle$ be a target qubit. Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the *y*-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to *n*.

QRAM function assumption

It is possible, using QRAM, to design a gate L_k such that:

$$\mathbf{L}_{k} |k\rangle |0\rangle^{\otimes t} = |k\rangle |\overline{\theta_{k}}\rangle$$

where $\overline{\theta_k}$ is the best *t*-bits approximation of θ_k .

A simpler problem

Parallel execution of rotations

It is possible to get the state $|\theta\rangle$ $e^{i\theta}$ $|x\rangle$ from the state $|\theta\rangle$ (α $|0\rangle + \beta$ $|1\rangle$)

A simpler problem

Parallel execution of rotations

It is possible to get the state $|\theta\rangle$ $e^{i\theta}$ $|x\rangle$ from the state $|\theta\rangle$ $(\alpha |0\rangle + \beta |1\rangle)$ in time O(1).

A simpler problem

Parallel execution of rotations

It is possible to get the state $|\theta\rangle$ $e^{i\theta}$ $|x\rangle$ from the state $|\theta\rangle$ (α $|0\rangle + \beta$ $|1\rangle$) in time O(1).

The z-rotation

Given an angle θ , the rotation around the z-axis of the Bloch sphere is given by the gate:

$$\mathbf{R}_z(heta) = egin{pmatrix} 1 & 0 \ 0 & \mathrm{e}^{\mathrm{i}\, heta} \end{pmatrix} \,.$$

Let
$$\theta_i \in \{0; 1\}$$
.

Let $\theta_i \in \{0; 1\}$.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

Let
$$\theta_i \in \{0; 1\}$$
.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

$$|\psi\rangle =$$

Let
$$\theta_i \in \{0; 1\}$$
.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

$$|\psi
angle = \left\{ egin{aligned} |0
angle & & ext{if } heta_i = 0 \end{aligned}
ight.$$

Let
$$\theta_i \in \{0; 1\}$$
.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

$$|\psi\rangle = \begin{cases} |0\rangle & \text{if } \theta_i = 0 \\ \mathrm{e}^{\mathrm{i}\,2^{-k}} \; |1\rangle & \text{if } \theta_i = 1 \end{cases}$$

Let
$$\theta_i \in \{0; 1\}$$
.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

$$|\psi\rangle = \begin{cases} |0\rangle & \text{if } \theta_i = 0\\ e^{i \, 2^{-k}} \, |1\rangle & \text{if } \theta_i = 1 \end{cases} = e^{i \, \theta_i \, 2^{-k}} \, |\theta_i\rangle$$

Let
$$\theta_i \in \{0; 1\}$$
.

$$|\theta_i\rangle$$
 — $\mathbf{R}_z\left(\frac{1}{2^k}\right)$ — $|\psi\rangle$

$$|\psi\rangle = \begin{cases} |0\rangle & \text{if } \theta_i = 0 \\ \mathrm{e}^{\mathrm{i}\,2^{-k}} |1\rangle & \text{if } \theta_i = 1 \end{cases} = \mathrm{e}^{\mathrm{i}\,\theta_i^*\,2^{-k}} |\theta_i\rangle$$

Let
$$\theta = \sum_{k=0}^{t-1} \theta_k 2^{-k}$$
.

Let
$$\theta = \sum_{k=0}^{t-1} \theta_k \, 2^{-k}$$
.

$$|\theta_{0}\rangle \longrightarrow \mathbf{R}_{z}(1)$$

$$|\theta_{1}\rangle \longrightarrow \mathbf{R}_{z}\left(\frac{1}{2}\right)$$

$$\vdots \qquad \vdots$$

$$|\theta_{t-1}\rangle \longrightarrow \mathbf{R}_{z}\left(\frac{1}{2^{t-1}}\right)$$

Figure: Parallel execution of *z*-rotations

Let
$$\theta = \sum_{k=0}^{t-1} \theta_k 2^{-k}$$
.

$$|\theta_0\rangle \longrightarrow \mathbb{R}_z(1)$$

$$|\theta_1\rangle \longrightarrow \mathbb{R}_z\left(\frac{1}{2}\right)$$

$$\vdots \qquad \vdots$$

$$|\theta_{t-1}\rangle \longrightarrow \mathbb{R}_z\left(\frac{1}{2^{t-1}}\right)$$

$$|\theta_{t-1}\rangle \longrightarrow \mathbb{R}_z\left(\frac{1}{2^{t-1}}\right)$$

Figure: Parallel execution of *z*-rotations

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

Applying the z-rotation gates in the previous circuit applies a rotation on the target qubit around the z-axis of angle θ_k in time O(1).

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

Applying the z-rotation gates in the previous circuit applies a rotation on the target qubit around the z-axis of angle θ_k in time O(1).

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

Applying the z-rotation gates in the previous circuit applies a rotation on the target qubit around the z-axis of angle θ_k in time O(1).

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

As a recall:

Parallel execution of controlled rotations consists in applying on the target qubit a rotation around the y-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time constant with respect to n.

Controlling the z-rotation gates on the target qubit in the previous circuit applies a rotation on the target qubit around the z-axis of angle θ_k only if the first quantum register is in state $|k\rangle$ in time O(t).

Is it possible to transform a *y*-rotation into a *z*-rotation of the same angle?

Converting a *z*-rotation to a *y*-rotation

Figure: An exemple of a transformation of a y-rotation into a z-rotation

Converting a *z*-rotation to a *y*-rotation

Rotate the sphere

Figure: An exemple of a transformation of a y-rotation into a z-rotation

Converting a *z*-rotation to a *y*-rotation

Rotate the sphere

Figure: An exemple of a transformation of a *y*-rotation into a *z*-rotation

Errata

Patate

Conclusion

Patate

References I

- National et al. Quantum linear systems algorithms: a primer. 2018. arXiv: 1802.08227 [quant-ph].
 - Harrow, Aram W., Avinatan Hassidim, and Seth Lloyd. "Quantum Algorithm for Linear Systems of Equations". In: Physical Review Letters 103.15 (2009). ISSN: 1079-7114. DOI: 10.1103/physrevlett.103.150502. URL: http://dx.doi.org/10.1103/PhysRevLett.103.150502.
- Nerenidis, Iordanis and Anupam Prakash. Quantum Recommendation Systems. 2016. arXiv: 1603.08675 [quant-ph].
 - Prakash, Anupam. "Quantum Algorithms for Linear Algebra and Machine Learning.". PhD thesis. EECS Department, University of California, Berkeley, 2014. URL: http: //www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-211.html.

Imperial College London