Nonparametric Partial Disentanglement via Mechanism Sparsity

Sébastien Lachapelle, Pau Rodríguez López, Yash Sharma, Katie Everett, Rémi Le Priol, Alexandre Lacoste, Simon Lacoste-Julien

Contributions

- New principle for disentanglement based on mechanism sparsity regularization motivated by novel identifiability guarantees
- Extending [2] to nonparametric and partial disentanglement results
- Given a latent ground-truth graph, our theory describes how entangled the learned representation is expected to be
- Algorithm based on VAEs and constrained optimization to enforce sparsity
- Many examples to show the scope of our theory

An identifiable model with latent dynamics

- Observation (e.g. image): $oldsymbol{x}^t \in \mathbb{R}^{d_x}$ for all $t \in [T]$
- Latent factors: $\boldsymbol{z}^t \in \mathbb{R}^{d_z}$ for all $t \in [T]$, with $d_z \leq d_x$
- Auxiliary variables (e.g. action or intervention index): $m{a}^t \in \mathbb{R}^{d_a}$ for all $t \in [T]$
- $\boldsymbol{x}^t = \boldsymbol{f}(\boldsymbol{z}^t) + \boldsymbol{n}^t$, where $\boldsymbol{n}^t \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$ and \boldsymbol{f} is a diffeomorphism onto its image
- Latent dynamical system: $p(\boldsymbol{z}^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t}) = \prod_{i=1}^{d_z} p(\boldsymbol{z}_i^t \mid \boldsymbol{z}_{\mathbf{Pa}_i^z}^{< t}, \boldsymbol{a}_{\mathbf{Pa}_i^a}^{< t})$ where \mathbf{Pa}_i^z and \mathbf{Pa}_i^a are the parents of \boldsymbol{z}_i^t in graphs \boldsymbol{G}^z and \boldsymbol{G}^a .

Terminology & Notation

- Ground-truth parameter: $oldsymbol{ heta} := (oldsymbol{f}, p, oldsymbol{G})$
- Learned parameter: $\hat{m{ heta}} := (\hat{m{f}}, \hat{p}, \hat{m{G}})$
- Entanglement map: $m{v}:=m{f}^{-1}\circ\hat{m{f}}$, assuming $m{f}(\mathbb{R}^{d_z})=\hat{m{f}}(\mathbb{R}^{d_z})$
- Entanglement graph: $m{V}_{i,j}=0 \iff orall m{z} \in \mathbb{R}^{d_z}, \; rac{\partial m{v}_i}{\partial m{z}_i}(m{z})=0$
- Complete disentanglement: Graph $m{V}$ is a permutation, i.e. $m{v} = m{d} \circ m{P}^{ op}$ where $m{d}$ is element-wise
- Partial disentanglement: Graph $oldsymbol{V}$ is not complete nor a permutation
- $\mathbb{R}^{m \times n}_{\boldsymbol{B}} := \{ \boldsymbol{M} \in \mathbb{R}^{m \times n} \mid \boldsymbol{B}_{i,j} = 0 \implies \boldsymbol{M}_{i,j} = 0 \}$ (it's a vector space!)
- Abuse of notation: $m{M} \subseteq m{B} \iff m{M} \in \mathbb{R}_{m{B}}^{m imes n}$

Constrained VAE approach

- Approximate posterior: $q(m{z}^{\leq T}\mid m{x}^{\leq T}, m{a}^{< T}) := \prod_{t=1}^T q(m{z}^t\mid m{x}^t)$
- Transition model: $\hat{p}(\boldsymbol{z}_i^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})$ is a Gaussian distribution with mean $\hat{\boldsymbol{\mu}}_i(\boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})$ (theory allows for more flexibility)
- Evidence lower bound:

$$\begin{split} \log \hat{p}(\boldsymbol{x}^{\leq T}|\boldsymbol{a}^{$$

Adding sparsity constraint:

$$\max_{\hat{\boldsymbol{f}}, \hat{\boldsymbol{\mu}}, \boldsymbol{\gamma}, q} \mathbb{E}_{\hat{\boldsymbol{G}} \sim \sigma(\boldsymbol{\gamma})} \mathsf{ELBO}(\hat{\boldsymbol{f}}, \hat{\boldsymbol{\mu}}, \hat{\boldsymbol{G}}, q) \ \text{ subject to } \ \mathbb{E}_{\hat{\boldsymbol{G}} \sim \sigma(\boldsymbol{\gamma})} ||\hat{\boldsymbol{G}}||_0 \leq \beta \ .$$

- Using Gumbel-sigmoid trick to estimate gradient w.r.t. γ .
- Constrained optimization is done by doing gradient ascent-descent on the Lagrangian. We are using the python library cooper [1].
- [1] J. Gallego-Posada and J. Ramirez. Cooper: a toolkit for lagrangian-based constrained optimization. https://github.com/cooper-org/cooper, 2022.
- [2] S. Lachapelle, Rodriguez Lopez, P., Y. Sharma, K. E. Everett, R. Le Priol, A. Lacoste, and S. Lacoste-Julien. Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ICA. In First Conference on Causal Learning and Reasoning, 2022.

Proof sketch & G-preserving matrices

Proposition: If $p(\boldsymbol{x}^{\leq T} \mid \boldsymbol{a}^{<T}) = \hat{p}(\boldsymbol{x}^{\leq T} \mid \boldsymbol{a}^{<T})$ everywhere, then $\boldsymbol{f}(\mathbb{R}^{d_z}) = \hat{\boldsymbol{f}}(\mathbb{R}^{d_z})$ and $\hat{p}(\boldsymbol{z}^t \mid \boldsymbol{z}^{<t}, \boldsymbol{a}^{<t}) = p(\boldsymbol{v}(\boldsymbol{z}^t) \mid \boldsymbol{v}(\boldsymbol{z}^{<t}), \boldsymbol{a}^{<t}) |\det D\boldsymbol{v}(\boldsymbol{z}^t)|$.

• By taking the \log on both sides and computing derivative w.r.t. both \pmb{z}^t and \pmb{a}^τ with $\tau < t$ we get

$$\underbrace{H_{z,a}^{t,\tau} \log \hat{p}(\boldsymbol{z}^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})}_{\subset \hat{\boldsymbol{G}}^a} = D\boldsymbol{v}(\boldsymbol{z}^t)^{\top} \underbrace{H_{z,a}^{t,\tau} \log p(\boldsymbol{v}(\boldsymbol{z}^t) \mid \boldsymbol{v}(\boldsymbol{z}^{< t}), \boldsymbol{a}^{< t})}_{\subseteq \boldsymbol{G}^a}.$$

- The Hessian of the log-conditional-densities have the same sparsity as $m{G}^a$!
- If we assume that $\hat{G}^a = G^a$, we have that $Dv(z^t)$ preserves the graph G^a , which motivates the following definition:

G-preserving matrix: $C^ op \mathbb{R}_G^{m imes n} \subseteq \mathbb{R}_G^{m imes n}$ (forms a group when C are invertible!)

Proposition: A matrix
$$C$$
 is G -preserving if and only if for all $i, j, G_i, \not\subseteq G_j$ $\Longrightarrow C_{i,j} = 0$.

- In other words, G-preserving matrices are sparse!
- Thus, if for all $m{z}^t$, $H_{z,a}^{t, au}\log p$ spans $\mathbb{R}_{m{G}^a}^{d_z imes d_a}$, then $Dm{v}(m{z}^t)$ is $m{G}^a$ -preserving!
- Result assumes only $\|\hat{G}^a\|_0 \le \|G^a\|_0$, so additional permutation indeterminacy.
- Similar argument works for sparsity of $m{G}^z$:

$$\underbrace{H_{z,z}^{t,\tau} \log \hat{p}(\boldsymbol{z}^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})}_{\subset \hat{\boldsymbol{G}}^z} = D\boldsymbol{v}(\boldsymbol{z}^t)^{\top} \underbrace{H_{z,z}^{t,\tau} \log p(\boldsymbol{v}(\boldsymbol{z}^t) \mid \boldsymbol{v}(\boldsymbol{z}^{< t}), \boldsymbol{a}^{< t})}_{\subseteq \boldsymbol{G}^z} D\boldsymbol{v}(\boldsymbol{z}^\tau)$$

Identifiability results

Nonparametric identifiability results

Assume $p(\boldsymbol{x}^{\leq T} \mid \boldsymbol{a}^{< T}) = \hat{p}(\boldsymbol{x}^{\leq T} \mid \boldsymbol{a}^{< T})$.

Theorem 1: Partial disentanglement via sparse $m{G}^a$ - continuous a

If " $H_{z,a}^{t,\tau} \log p(\boldsymbol{z}^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})$ spans $\mathbb{R}_{\boldsymbol{G}^a}^{d_z \times d_a}$ " and $||\hat{\boldsymbol{G}}^a||_0 \le ||\boldsymbol{G}^a||_0$, then $\boldsymbol{V} = \boldsymbol{C}\boldsymbol{P}^{\top}$ where \boldsymbol{C} is \boldsymbol{G}^a -preserving.

Theorem 2: Partial disentanglement via sparse G^a - discrete a (important for interventions!)

If " $\Delta_a^{\tau,\vec{\epsilon}}D_z^t\log p(z^t\mid z^{< t}, a^{< t})$ spans $\mathbb{R}_{G^a}^{d_z\times d_a}$ " and $||\hat{G}^a||_0 \leq ||G^a||_0$, then $V = CP^{\top}$ where C is G^a -preserving.

Theorem 3: Partial disentanglement via sparse G^z

If " $H_{z,z}^{t,\tau} \log p(\boldsymbol{z}^t \mid \boldsymbol{z}^{< t}, \boldsymbol{a}^{< t})$ spans $\mathbb{R}_{\boldsymbol{G}^z}^{d_z \times d_z}$ " and $||\hat{\boldsymbol{G}}^z||_0 \le ||\boldsymbol{G}^z||_0$, then $\boldsymbol{V} = \boldsymbol{C}\boldsymbol{P}^\top$ where \boldsymbol{C} is \boldsymbol{G}^z -preserving and $(\boldsymbol{G}^z)^\top$ - preserving.

- Since invertible ${m G}$ -preserving matrices form a group, the dependency graph of ${m z}={m v}(\hat{m z})$ is the same as $\hat{m z}={m v}^{-1}({m z})$ (modulo permutation)
- Graphical criterion of [2] implies complete disentanglement!

Experiments

(a) ActionBlockNonDiag dataset, $\beta = 10$

(b) TimeBlockNonDiag dataset, $\beta = 30$