COSC 4368 Fundamentals of Artificial Intelligence

Intro to Machine Learning September 25th, 2023

What is Machine Learning

"Learning is any process by which a system improves performance from experience."

- Herbert Simon

- Definition by Tom Mitchell (1998):
 - Machine learning is the study of algorithms that
 - Improve their performance P
 - At some task T
 - With experience E
 - A well-defined learning task is given by <P, T, E>

When Do We Use Machine Learning

- ML is used when:
 - Human expertise does not exist (navigating on Mars)
 - Humans can't explain their expertise (speech recognition)
 - Models must be customized (personalized medicine)
 - Models are based on huge amount of data (genomics)
 - Systems need to adapt to changing environments

(1) navigating on Mars

(2) Speech recognition

(3) genomics

- Learning isn't always useful
 - No need to "learn" to calculate payroll

A Classic Example of Task that Needs ML

Types of Machine Learning

- Supervised learning:
 - Given: training data and desired outputs (labels)
 - Learns a mapping from data to label
- Unsupervised learning:
 - Given: training data with no labels
 - Look for 'interesting' patterns in the data, e.g., clustering
- Semi-supervised learning:
 - Given: training data and a few labels
- Reinforcement learning:
 - Learning agent interacts with the environment and seeks to maximize the total return

Machine Learning Workflow

- Workflow sketch:
 - 1. Should I use ML on this problem? Understand domain, prior knowledge and goals
 - Is there a pattern to detect?
 - Can I solve it analytically?
 - Do I have data?
 - 2. Gather and organize data
 - Preprocessing, cleaning, visualizing, etc.
 - 3. Establishing a baseline
 - 4. Choosing a model, loss, regularization, etc.
 - 5. Optimization: Learn models
 - 6. Hyperparameter search
 - 7. Analyze performance (testing)
 - 8. Deploy discovered knowledge

Various Function Representations (Models)

- Numerical functions
 - Linear models
 - Neural networks
 - Support vector machines
- Symbolic functions
 - Decision trees, etc.
- Instance-based functions
 - Nearest-neighbor, etc.
- Probabilistic graphical model
 - Bayesian networks, Markov networks, etc.

Various Search/Optimization Algorithms

- Gradient descent
- Dynamic programming
- Divide and conquer
- Evolutionary computing
- Etc.

Various Evaluation Metrics

- Accuracy
- Square error
- Likelihood
- Precision and recall
- Cost/Utility
- Entropy
- KL divergence
- Etc.

ML in a Nutshell

- Tens of thousands of machine learning algorithms
 - Hundreds new every year
- Every ML algorithm has three components:
 - Representation
 - Optimization
 - Evaluation

ML in a Nutshell

• Learning can be viewed as using direct or indirect experience to approximate a chosen target function

• Function approximation can be viewed as a search through a space of hypotheses (representations of functions) for one that best fits the training data

• Different learning methods assume different hypothesis spaces and/or employ different search techniques

Supervised Learning

- Focus on supervised learning
- Given a training dataset consisting of inputs and corresponding labels

Task	Inputs	Labels	
object recognition	image	object category	
image captioning	image	caption	
document classification	text	document category	
speech-to-text	audio waveform	text	
į	i.	:	

• What an image looks like to the computer:

13

- Machine learning algorithms need to handle lots of types of data:
 - Images, text, audio waveforms, etc.
- Common strategy: represent the input as an input vector in
 - Map to another space that is easy to manipulate
 - Vectors are a great representation since we do linear algebra

• Example: image to vector

• Mathematically, our training set consists of a collection of pairs of an input vector and its corresponding target or label

- Regression: is a real number, e.g., stock price
- Classification: is an element of a discrete set, e.g., which class
- These days, is often a highly structured output, e.g., image

Hypothesis

• Each was generated by some unknown function:

• Objective: discover a function (hypothesis) that can approximate the true function

• Learning is a search through the space of possible hypotheses

Hypothesis Evaluation --- Error Rate

- Error rate: the proportion of mistakes the hypothesis makes
 - How many time its prediction for an example
 - Low error rate on the training set does not mean good generalization on unseen data
 - Use a test set of samples to evaluate the accuracy of a hypothesis

Image: ML procedure

Hypothesis Evaluation

- Cross validation
 - Measure performance on unseen data to select a good hypothesis
 - An independent evaluation of the final hypothesis (reported final performance)
 - Split the available dataset into three subsets:
 - Training set: used to learn the model (find the hypothesis)
 - Validation set: used to pick a good hypothesis and tune hyperparameters, evaluate the current the hypothesis and see if we need to improve it
 - Test set: test the final hypothesis, never touch it until you are completely done with learning

Training set	Validation set	Test set
--------------	----------------	----------

Hypothesis Evaluation and Test Set

- We generally assume that the training and test examples are independently drawn from the same overall distribution of data
 - We call this 'i.i.d.': independent and identically distributed
- A hypothesis *generalizes* well if it correctly predicts the labels for novel examples (testing)
 - Generalization error is a measure of how accurately a model is able to predict the labels for previously unseen data
- Special techniques needed to handle non-independent samples and training-testing distribution shift

Model Selections

- (a) linear (b) polynomial (c) polynomial fit or approximate linear fit (d) sinusoidal fit
- Consistent hypothesis: it agrees with all the data
- Two steps: select the hypothesis space and optimize (find the best in the space)
- How to choose among multiple consistent hypothesis?
 - Tradeoff between complex hypotheses that fit the training data well and simpler hypotheses that may generalize better

Underfitting and Overfitting

- Underfitting: when the model is too simple, both training and testing errors are large
- Overfitting: when the model is too complex, the training error is low, whereas the testing error can increase

Ockham's Razor

• Given two models of similar generalization errors, one should prefer the simpler model over the more complex model

• For complex models, there is a greater chance that it would also fit the noise in data

• Usually, simple models are more robust with respect to noise

Hypothesis Evaluation --- Loss Function

- The loss function is defined as the amount of utility lost by predicting when the correct answer is for input
- Simplified version
- Examples:
 - Absolute value loss:
 - Squared error loss:
 - 0/1 loss: if, else 1
- Expected generalization loss
 - Assume the underlying data distribution
 - Expected generalization loss:
 - Best hypothesis (function) in hypothesis space:

Hypothesis Evaluation --- Loss Function

- Empirical loss on a set of examples:
 - The underlying data distribution is unknown
 - Use empirical loss to estimate generalization loss
 - Empirical loss:
 - Estimated best hypothesis in hypothesis space :
 - The best we try to find during training
 - May differ from the true function because:
 - may not be realizable, e.g., not in the hypothesis space
 - is learnt based on finite number of samples; sample variance different datasets lead to different
 - may not be deterministic, e.g., contains noise
 - The hypothesis space is very complex, and it is computationally intractable to find the global optima

Small-Scale Learning vs Large-Scale Learning

- Early stage of machine learning --- small datasets and simple models
 - Generalization error mostly comes from
 - The true function is not in the hypothesis space
 - Large sample variance

- Current stage of machine learning --- large datasets and complex models
 - Generalization error mostly comes from
 - Computationally intractable to find the globally optimal function

Regularization

• The optimization problem in training:

- Regularization: prefer to learn a function that has certain properties
 - Explicitly penalize the functions that do not have that property
 - E.g., can penalize complex functions: push more weights in the function close to zero