ЗАКОН СОХРАНЕНИЯ МОМЕНТА ИМПУЛЬСА И КРИВЫЕ ВТОРОГО ПОРЯДКА

1 Теория

1.1 ЗСМИ

Момент импульса в замкнутой системе тел постоянен:

$$\vec{L} = [\vec{p} \times \vec{r}] = \text{const}$$

Площади, заметаемые радиус-вектором \vec{r} за равные промежутки времени, равны.

1.2 Эллипс

Эллипс - геометрическое место точек, сумма расстояний от которых до точек фокусов F_1 и F_1 постоянна и равна 2a.

Большая полуось - отрезок, пересекающий оба фокуса, концы которого лежат на эллипсе.

Малая полуось - срединный перпендикуляр к большой полуоси, ограниченный точками эллипса.

Фокальное расстояние - полурасстояние между фокусами эллипса.

Эксцентриситет - характерная величина, равная $e=rac{c}{a}$

Перицентр - отрезок, соединяющий фокус и точку, наименнее удаленную от даного фокуса.

Апоцентр - отрезок, соединяющий фокус и точку, наиболее удаленную от даного фокуса.

Фокальный параметр - отрезок, огранниченный точками эллипса и пересекающий его фокус под прямым углом.

Истинная аномалия - угол между радиус-вектором \vec{r} и перицентром эллиппса.

Оптическое свойство эллипса - луч, испущенный из одного фокуса эллипса, попадет в другой фокус эллипса.

1.3 Парабола

Парабола - геометрическое место точек, равноудаленных от фокуса F и директрисы d ($F \notin d$)

Оптическое свойство параболы - пучок лучей, параллельных оптической оси параболы, соберется в её фокусе.

2 Простые задачи

2.1

Найдите эксцентриситет поперечного сечения Сатурна, если его полярный и экваториальный радиус равны $R_{pol}=54360~{\rm km}$ и $R_{eq}=60270~{\rm km}$ соотвественно.

2.2

Докажите, что среднее гармноническое перицентра и апоцетнтра эллипса равны его фокальному параметру.

2.3

Вы находитесь в фокусе эллипса с a=1 а.е. В другом его фокусе находится световая бомба, которая в какой-то момент взрывается изотропно. Через какой промежуток времени небо для вас озарится ярким пламенем?

Желтоухов С.Г.

2.4

Найдите эксчетриситет орбиты астероида если радиус вектор от центрального тела до астероида равен 2 а.е. и находится под углом в 30° относительно фокального параметра орбиты, равного 2.6 а.е.

2.5

Докажите, что фокальный параметр параболы вдвое больше ее перицентра.

Желтоухов С.Г.

2.6

Найдите минимальную скорость кометы, если в момент, когда ее скорость составляла угол $\alpha=78^{\circ}$ с вектором силы тяжести звезды и была равна v=40 км/с, она была на расстоянии r=1 а.е. от звезды, а ее афелий равен Q=9 а.е.

2.7

Найдите расстояние между объектами Б и Ы, если известно, что они являются объектами солнечной системы, их периоды равны 4 и 6 лет соответственно, их большие полуоси лежат на одной прямой, а $e_b=0.1;\; \nu_b=25^\circ$ и $e_{bl}=0.8;\; \nu_{bl}=50^\circ.$

2.8

МАС включает солнечные панели только на расстоянии $\leq a$. Какую часть своего периода она не будет заряжаться, если эксцентриситет её орбиты e=0.4?

УТС-2019

3 Задачи посложнее

3.1

Посчитайте минимальное расстояние между объектами с разностью истинных аномалий в 50° , если a=1, а e=0.5

3.2

Комета летящая по параболе с фокальным параметром p=1.5 а.е. прошла за небольшой промежуток времени 400 км. Сколько за это время она пройдет за это же время вблизи фокального параметра? Оцените, сколько она пройдет на расстоянии в 15 а.е.?

3.3

Обычный мечтатель решил, что он хочет стать транснептунным объектом, который бы мог касаться Плутона

в афелии, будучи сам в перигелии своей орбиты. Также он хотел бы, чтобы в афелии он мог бы наблюдать полное затмение Солнца Плутоном с фазой 1. Какие большую полуось и эксцентриситет орбиты мечтатель должен избрать, если он хочет, чтобы его мечты стали явью?

3.4

Астрокот, находясь на Венере, решил почесать спину и, поэтому, отправился на Марс по наиболее выгодной траектории. Чтобы почесаться, ему надо касаться Олимпа $(h=21~{\rm km})$ на максимально возможной скорости раз в два дня. Посчитайте сумму эксцентриситов двух использованных Астрокотом орбит. $R_{mars}=3389~{\rm km}.$