# Bridging the MLOps Gap: From AI Research to Production-Ready Systems

Presented by Bharath Reddy Baddam

Campbellsville University

Conf42 MLOps 2025



# Today's Agenda

| 01                                                        | 02                                                                      |                                                          | 03                                                     |
|-----------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------|
| The MLOps Challenge                                       | ML Pipeline Orchestration                                               |                                                          | Production Infrastructure                              |
| Exploring why many ML models don't make it to production. | Automating ML pipelines using tools like Kubeflow, MLflow, and Airflow. |                                                          | Building scalable, cloud-native infrastructure for ML. |
| 04                                                        |                                                                         | 05                                                       |                                                        |
| Monitoring & Observability                                |                                                                         | CI/CD for ML                                             |                                                        |
| Ensuring model performance and quality in production.     |                                                                         | Adopting CI/CD for robust ML development and deployment. |                                                        |

## The MLOps Challenge

#### From Research to Production

Only **20%** of machine learning models successfully transition to production environments.

Key barriers contributing to this challenge include:

- Reproducibility gaps between research and engineering.
- · Lack of standardized deployment processes.
- Insufficient monitoring and maintenance frameworks.
- · Inadequate testing methodologies for ML systems.
- Poor integration with existing enterprise systems.



## The MLOps Evolution

#### **Manual ML Process**

Data scientists operate in isolation, relying on notebooks and manual processes. Deployments are often ad-hoc and lack repeatability.

#### CI/CD for ML

ML workflows are integrated with DevOps practices, enabling automated testing and streamlined deployment pipelines.

#### **ML Pipeline Automation**

Workflow tools and versioning are introduced, automating basic training but with limited production capabilities.

#### **Full MLOps**

Achieving end-to-end automation from experimentation to production, including comprehensive monitoring, drift detection, and automated retraining.

Achieving MLOps maturity empowers organizations to reduce deployment time by 80% and maintain over 95% model accuracy in production.

# **ML Pipeline Orchestration**

Automating the model lifecycle from training to deployment

## **ML Pipeline Components**

#### **Data Preparation**

Cleaning, feature engineering, and validation of raw data before model training.

#### Monitoring

Continuous observation of model performance, data drift, and system health.



#### **Model Training**

Hyperparameter tuning, cross-validation, and performance metric tracking.

#### **Model Evaluation**

Rigorous testing against holdout datasets and validation against business KPIs.

#### **Deployment**

Packaging models for inference and seamlessly deploying to target environments.

A fully automated pipeline reduces human intervention points and creates reproducible, auditable workflows, accelerating the journey from research to production.



## **Orchestration Tools Comparison**

#### **Kubeflow**

- Kubernetes-native ML platform
- Integrated notebook environments
- Comprehensive pipeline component library
- Robust model serving capabilities

**Best for:** Organizations deeply integrated with Kubernetes

#### **MLflow**

- Centralized experiment tracking
- Versioned model registry
- Streamlined model deployment
- Language-agnostic design for broad compatibility

**Best for:** Teams prioritizing experimentation and version control

#### **Apache Airflow**

- Versatile workflow orchestration engine
- Extensive operator ecosystem
- Advanced dependency management
- Powerful scheduling for recurring tasks

**Best for:** Orchestrating complex, data-intensive ML pipelines

## **Production Infrastructure**

Designing cloud-native ML systems that scale

## Infrastructure as Code for ML Environments

#### • Infrastructure Definition

Defining cloud resources using tools like Terraform, CloudFormation, or Pulumi.

#### Containerization

Packaging models and dependencies in versioned environments using Docker.

#### Deployment Automation

Automating the provisioning of consistent environments across development, testing, and production.

#### **Benefits**

- Reproducible environments eliminate "it works on my machine" issues.
- Enabling version control for infrastructure, aligning with model versioning.
- Facilitating easy rollback capabilities for both models and infrastructure.
- Cost optimisation through right-sizing and auto-scaling.



### Real-time Inference Architectures

#### **Design Considerations**

High-throughput prediction systems require specialised architectures:

#### **Horizontal Scaling**

Kubernetes-based deployments with autoscaling based on request volume

#### **Load Balancing**

Request distribution across multiple model servers with health checks

#### **Caching Layers**

Redis or in-memory caching for frequently requested predictions



**Target latency:** 50-200ms for real-time applications

#### Hardware Acceleration

GPU/TPU optimisation for deep learning models

# Monitoring & Observability

Preventing model drift and maintaining production quality



## **Model Monitoring Systems**

#### Data Drift Detection

Statistical
monitoring of input
distributions
compared to
training data

- KL divergence
- PopulationStability Index
- Feature correlation changes

#### Model Performance Tracking

Continuous evaluation of prediction quality

- Accuracy, F1, AUC metrics
- Confusion matrix changes
- Business KPI impact

"

#### Operational Metrics

System health and performance indicators

- Latency percentiles
- Throughput measurements
- Resource utilisation

"

# Automated Retraining and Deployment

#### **Trigger-based Retraining**

Automate model refreshing based on monitoring signals:

- Performance-based: When accuracy drops below threshold
- Time-based: Regular intervals (weekly/monthly)
- Data-based: When drift exceeds acceptable levels
- Volume-based: After processing N new examples

#### Champion-Challenger Deployment

Safely validate new models before full deployment:

- Deploy new model alongside existing one
- Shadow deployment (no live traffic)
- Canary deployment (small % of traffic)
- A/B testing for business impact
- Automated rollback if performance degrades



# CI/CD for Machine Learning

Implementing continuous integration patterns for ML workflows

## **ML-Specific Testing Framework**

1

#### **Data Validation Tests**

Verify data quality, schema compliance, and distribution characteristics using tools like TensorFlow Data Validation or Great Expectations 2

## Model Performance Tests

Ensure model metrics meet minimum thresholds on validation data and test for regressions against previous versions 3

#### **Integration Tests**

Verify end-to-end pipeline functionality, including data preprocessing, training, and deployment steps 4

## **Load & Performance Tests**

Assess prediction latency, throughput capacity, and resource consumption under simulated load conditions

5

#### **Security & Compliance Tests**

Check for data leakage, PII exposure, and compliance with regulatory requirements like GDPR or HIPAA

A comprehensive testing framework reduces deployment risk and maintains quality across the entire MLOps lifecycle, ensuring models are both technically sound and business-ready.

Thank You!