THEORY AND FLUENT DATA

Volumetric flow rate	Q_V	8.33E-07	m^3/s
Width	W	0.04	m
Length	L	0.1	m
Gap	2H	0.0016	m
Aspect ratio	2H/W	0.04	1/AR=20
Area of cross section	А	0.000064	m^2
Flow velocity	U	0.013015625	m/s
Hydraulic diameter	DH	0.003076923	m
Temperature	Т	288	K
Kinematic viscosity	ν	1.00E-06	m2/s
Density	ρ	998	kg/m3
Specific heat	Ср	4,187	J/kg-K
Thermal conductivity	К	0.598	W/m-k
Reynolds number	Re	40.04807692	
Prandtl number	Pr	8.00	
Expected flow development length	х	0.012322485	m
Expected thermal development length	xt	0.02	m
Inlet temperature	T_in	288	К
Bulk temperature at exit	T_out	310	К
Q to be supplied for getting above temperature	Q	76.61	W
Surface area (each side)	As	0.004	m2
Heat flux on each surface for above Q	q	9576.25	W/m^2
Nu_analytical	Nu	8.325	
h_analytical	h	1617.96375	W/m^2-K
Temperature difference	dT	5.918704915	К
Cation at a discovery we will be seen a water	Tall many	315.9187049	К
Estimated maximum wall temperature	T_wall_max	42.76870492	С
	inlet	-441.4024963	W
Total heat transfer rate	outlet	58.35807800	W
	wall	383.04998	W

FLUENT					
Pressure drop	dP	2.575993	Pa		
T_wall_max	T_wall_max	303	K		
Wall shear	τ	0.05112791	Pa		
Friction coefficient	Cf	0.604821805			
Pumping power	Q_p	2.1458E-06	W		
flow development length	х	0.0128	m		
Nusselt No	Nu	8.42			

THEORY					
Wall shear for fully developed flow	τ	0.050659416	Pa		
Friction coefficient	Cf	0.599279712			
Pressure drop for the length L	dP	1.646431008	Pa		
Pumping power	Q_p	1.37148E-06	W		

ERROR ESTIMATION					
Friction coefficient		0.9247923	%		
Pumpimg power		56.45921316	%		
Flow development length		3.87515006	%		

FLUENT PLOT RESULTS

Sample plotting coordinates	x2	6.16124E-05	m
	x2	0.000123225	m
	x2	0.000616124	m
	x2	0.002772559	m
	y2	0.0008	m

				NATURAL	CONVECTION			
				length(L)	10	mm		
				Tw	78	deg C		
				Tambient	25	deg C		
				T_mean	51.5	deg C		
			Properties	of air at T_	mean			
				Nu				
				Pr	0.7228			
				nu	0.00001798	m^2/s		
				beta	0.00308166	K^-1		
	(g*beta*(Tw- Tamb)*L^3)/nu^2			Gr	4956.22257			
	Gr*Pr			Ra	3582.357673			
		As Ra <(10^9) ,Convection is laminar						
			Calculate I	BL thickness	at TE ,by consid	dering eta	=6 from fig	
				at eta	6			
eta=(eta=(y/x)*((Gr/4)^0.25))		Thermal B	L thickness	0.010112966	m		
			•		10.11296602	mm		
			From Fig t	he max.Velo	ocity is at eta=1			
				eta	1			
				f(eta)	0.28			
				T*	0.5			
	T*=(T-Tamb)/(Tw-Tamb)			T_max vel	324.5	К	From CFD	
				y_max vel	1.68	mm	1mm	
	f(eta)=(ux/2*nu)*(Gr^-0.5)			max_vel	0.071	m/s	0.11m/s	
		FROM CFD	From emperical					
	h (W/m^2-K)	12.11744	13.01					
	q (W/m^2)	642.2243	689.49					
	Q (W)	1.503677	1.614					

	% ERROR
y_max vel	40.5
max_vel	-54.9
h (surface heat transfer coefficient)	6
Q(heat rate)	7

Geometric Model of the fin

Solvent Domain

Static temperature contour

Velocity contour

