Acquiring and Exploiting Lexical Knowledge for Twitter Sentiment Analysis

Felipe Bravo-Marquez

Chief Supervisor: Bernhard Pfahringer Supervisor: Eibe Frank

Department of Computer Science, University of Waikato

17 July, 2017

Message-level Polarity Classification (MPC)

1. Automatically classify a tweet to classes positive, negative, or neutral.

- Challenge: Tweets use a unique informal dialect including many abbreviations, acronyms, misspelled words, hashtags, and emoticons, e.g., IoI, omg, hahaha, #hatemonday, #SweetAsBro, #yeahnah, :) .
- 3. State-of-the-art solutions use **supervised** machine learning models trained from **manually** annotated examples [Kiritchenko et al., 2014].
- Label sparsity problem (LS): manual annotation is labour-intensive and time-consuming.

Research Problem

This thesis addresses the label sparsity problem for Twitter sentiment classification by automatically building **two type of resources**.

- Twitter-specific opinion lexicons: we develop machine learning models to induce polarity lexicons from tweets.
- Synthetically labelled tweets: we develop distant supervision methods based on lexical knowledge (we go beyond emoticons).

Word-sentiment Associations for Polarity Lexicon Induction

Word-level Classification Results using RBF SVMs

Weighted AUC					
Dataset	PMI-SO	ALL FEATURES			
ED.EM	0.62 ± 0.02	0.65 ± 0.02 +			
STS	0.64 ± 0.02	0.66 \pm 0.01 $+$			
ED.SL	$\textbf{0.63} \pm \textbf{0.02}$	0.65 \pm 0.02 $+$			

Table: World-level classification performance.

Tweet-centroid Model for Lexicon Induction

	AUC	
Dataset	Seed Lexicon	TCM Lexicon
Sanders	0.78 ± 0.04	0.83 \pm 0.04 $+$
6-human	0.79 ± 0.03	0.83 \pm 0.02 $+$
SemEval	$\textbf{0.78} \pm \textbf{0.02}$	0.84 \pm 0.02 $+$

Multi-Label Classification of Emotions with TCM

spaz no-show shite dismisses >:/ f*cking killn slapped s**t psychotic nazi killings nem fk ifc in stung think worryin in worder #hate murders anger

o:] yaaay o nov18 de squee so squee so squee so hvz il—# muppets at #fun140 unforgettable twloha i m bc
saviour bc
o:))):-)) # bc
fantastical favotter }}}

joy

#fishing bunderway 70 man bunderway 70 m have #webradio #wahm

anticipation

ignores missin bitter withdrawls g cryin #626 sobs crashes
o ober sucky upsets
o ober sucky upsets
o dead : 6 deflated
o gunshot gunshot bombings

sadness

humiliated racists relle arrah rapists hick whatt genocide ick liars raggedy b***h sena hmph ≥ ₾ sena hmph à gar talentless and skanky nawl skanky E = fkn cheater wacka wtf

disgust

whooo #doodlejump #couponcabin moorning j-e-t-sc.c. 70th thank 5t shorter on bluegreen hi noobie pressie bluegreen histatsx ∞ #twibbon geaux popstar

surprise

#sog psycho faked #cotto cbp executions #dvd mutated prox strangled botnet robbers hippós ਚੱ #chld

servants worthwhile meister clement #happybirthday \(\geq #nappybirthday
:) ny- su hubbard a zig
llc south year a su hubbard a su usd/cad star-ledger prayers eckhart -thank offi d- kaplan il-

trust

Transfer Learning with Tweet Centroids

Partitioned TCM

- We propose a modification of TCM for increasing the number of labelled instances it produces.
- The word-tweet set $\mathcal{M}(w)$ is **partitioned** into smaller disjoint subsets $\mathcal{M}(w)_1, \ldots \mathcal{M}(w)_z$ of a fixed size determined by p.
- We calculate one tweet centroid vector \overrightarrow{w} for **each partition** labelled according to \mathcal{L} .

TCM for MPC

	6HumanCoded		Sanders		SemEval	
EAA	$\textbf{0.805} \pm \textbf{0.005}$	= -	0.800 ± 0.017	= +	0.802 ± 0.006	= -
LAA	0.809 ± 0.001	+=	0.778 ± 0.002	- =	0.814 ± 0.000	+=
TCM	0.776 ± 0.004		0.682 ± 0.024		0.779 ± 0.008	
TCM $(p=5)$	0.834 ± 0.002	++	0.807 ± 0.008	= +	0.833 ± 0.002	++
TCM (p=10)	0.845 ± 0.003	+ +	0.817 ± 0.006	+ +	0.841 ± 0.002	++
TCM (p=20)	0.850 ± 0.003	++	0.815 ± 0.011	++	0.844 ± 0.003	++
TCM ($p=50$)	0.844 ± 0.004	++	0.785 ± 0.010	- +	0.836 ± 0.004	++
TCM (p=100)	0.829 ± 0.003	+ +	0.752 ± 0.019		0.821 ± 0.004	++

Table: Message-level Polarity Classification Results. Best results per column are given in bold.

Annotate-Sample-Average (ASA)

- What if we average random tweets containing different words with the same polarity?
- What if we can define the number of instances to generate?
- This could be useful for creating compact and balanced training datasets.

ASA algorithm

- Annotation: every time a word from L is found, the tweet is added to sets posT or negT (depending on the polarity).
- Sample: randomly sample with replacement a tweets from either posT or negT for each generated instance.
- 3. Averaging: average and label sampled feature vectors.

ASA results

	6HumanCoded		Sanders		SemEval	
EAA_U	0.805 ± 0.005	==	0.800 ± 0.017	= = + +	$\textbf{0.802} \pm \textbf{0.006}$	= +
EAA_B	0.809 ± 0.001	====	0.795 ± 0.016	= = + +	$\textbf{0.798} \pm \textbf{0.007}$	- =
LAA_U	0.809 ± 0.001	+===	0.778 ± 0.002	==	$\textbf{0.814} \pm \textbf{0.000}$	+ + = =
LAA_B	0.809 ± 0.001	+===	0.778 ± 0.003	==	$\textbf{0.813} \pm \textbf{0.001}$	+ + = =
ASA $(a = 1, m = F)$	0.793 ± 0.005		0.762 ± 0.016		0.787 ± 0.007	
ASA ($a = 5, m = F$)	0.837 ± 0.004	++++	0.807 ± 0.010	= = + +	$\textbf{0.833} \pm \textbf{0.003}$	++++
ASA ($a = 10, m = F$)	0.845 ± 0.001	++++	0.812 ± 0.015	++++	$\textbf{0.840} \pm 0.003$	++++
ASA ($a = 50, m = F$)	0.815 ± 0.003	++++	0.759 ± 0.006		0.810 ± 0.004	++
ASA ($a = 100, m = F$)	0.781 ± 0.003		0.720 ± 0.007		0.779 ± 0.004	
ASA $(a = 500, m = F)$	0.723 ± 0.002		0.670 ± 0.008		$\textbf{0.729} \pm \textbf{0.005}$	
ASA ($a = 1000, m = F$)	0.712 ± 0.002		0.665 ± 0.007		0.721 ± 0.005	

Table: AUC measure for different distant supervision models. Best results per column are given in bold.

Conclusions

- Twitter-specific polarity lexicons and lexicon-based distant supervision methods can successfully tackle the polarity classification of tweets when labels are scarce.
- We proposed two methods (Word Sentiment Associations and TCM) for building Twitter-specific opinion lexicons (acquisition of lexical knowledge).
- These methods could be used to create domain-specific lexicons.
- They could also be used to study the dynamics of opinion-words.
- Future work: try non-linear representations on TCM (Auto-Encoders or RBM).

Conclusions

- We proposed two distant supervision methods (TCM and ASA) that outperformed LAA and EAA for MPC.
- TCM is a unified model for message-level and word-level sentiment classification.
- Future work: subjectivity, emotions, handle negations, non-linear representations and deep networks.

Questions?

Thanks for your Attention!

Acknowledgements

- University of Waikato Doctoral Scholarship
- Machine Learning Group at the University of Waikato

References I

Kiritchenko, S., Zhu, X., and Mohammad, S. M. (2014). Sentiment analysis of short informal texts. *Journal of Artificial Intelligence Research*, 50:723–762.