

Primer Trabajo Práctico

14 de Abril de 2010

Algoritmos y Estructuras de Datos III

Integrante	LU	Correo electrónico
Bianchi, Mariano	92/08	bianchi-mariano@hotmail.com
Brusco, Pablo	527/08	pablo.brusco@gmail.com
Di Pietro, Carlos Augusto Lyon	126/08	cdipietro@dc.uba.ar

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2160 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (54 11) 4576-3359

http://www.fcen.uba.ar

Índice

1.	Ejer	ccicio 1	3
	1.1.	Introducción	3
	1.2.	Análisis de la complejidad del algoritmo	3
	1.3.	Resultados	3
	1.4.	Conclusiones	3
2.	Ejer	rcicio 2	4
	2.1.	Introducción	4
	2.2.	Explicación	4
	2.3.	Anexo: Demostraciones	5
3.	Ejer	rcicio 3	7
	3.1.	Introducción	7

- 1. Ejercicio 1
- 1.1. Introducción
- 1.2. Análisis de la complejidad del algoritmo
- 1.3. Resultados
- 1.4. Conclusiones

2. Ejercicio 2

2.1. Introducción

2.2. Explicación

Primero, algunas definiciones:

\mathbf{Def}_1 :

Un grafo G es fuertemente orientable si existe una asignación de direcciones a los ejes del conjunto de ejes del grafo G tal que el digrafo resultante es fuertemente conexo.

\mathbf{Def}_2 :

un puente, arista de corte o istmo es una arista que al eliminarse de un grafo incrementa el número de componentes conexos de éste. Equivalentemente, una arista es un puente si y sólo si no está contenido en ningún ciclo.

Teorema [Robbins, 1939]:

Un grafo conexo G es fuertemente orientable si y solo si G no tiene puentes (Demostración en el anexo).

Con esté teorema podemos ver que si encontramos al menos 1 puente en nuestro grafo, significa que no podremos orientarlo como queremos, y de lo contrario, si encontramos que no hay ningun puente, podremos orientarlo. Por lo tanto, el algoritmo utilizado realiza exactamente esa comprobación. Veamos como trabaja:

comprobación(Grafo G)

```
1 Complejidad: O(n^3)

2 var eje : int \leftarrow 0

3 var n : int \leftarrow cantNodos(G)

4 while eje \neq m do

5 | k \leftarrow RecorridoSinEje(eje,G)

6 | if k \neq n then return no se puede

7 | eje \leftarrow eje + 1

8 end

9 return fuertemente conexo
```

RecorridoSinEje(eje,G) es una funcion que recorre el grafo G (con BFS o DFS) sin utilizar la arista eje y retorna la cantidad de nodos visitados, como la forma de recorrer utilizada, solo recorre nodos conectados a la raiz (es decir, al nodo donde comienza el recorrido), quiere decir que el resultado va a ser n (la cantidad total de nodos de G) si G es conexo y menor que

n si el eje sacado, estamos en presencia de 2 componentes conexas, por lo tanto, el eje sacado, era un puente. Cuando eje = 0, representa, recorrer a G completo con todos sus nodos. En este punto podria pasar que G no sea conexo y esta función devolvería el resultado correcto.

2.3. Anexo: Demostraciones

Teorema [Robbins, 1939]:

Un grafo conexo G es fuertemente orientable si y solo si G no tiene puentes.

$Demostración: \rightarrow)$

Utilizando el contrareciproco, supongamos que el grafo G tiene una arista de corte e que une a los vertices u y v. Entonces el unico camino entre u y v en el grafo G es e (ver figura). Por lo tanto para cualquier asignacion de direcciones, el nodo cola(e) nunca va a poder ser alcanzada por el nodo cabeza(e) (ver cuadro 1).

Cuadro 1:

Demostración: \leftarrow)

Supongamos que G es un nodo conexo sin aristas de corte. Por lo tanto toda arista en G cae en un ciclo de G. Para construir una orientación fuerte del grafo G, empezaremos con cualquier ciclo (D_0) de G y dirigiremos sus ejes en una dirección. Si el ciclo D_0 contiene todos los nodos de G, entonces la orientación esta completa (ya que D_0 está completamente orientado). De lo contrario, hay que elegir cualquier eje e uniendo al vertice u en D_0 a un vertice v en $V_G - V_{D_0}$ (ese eje existe ya que G es conexo). Sea $C = \langle u, e, v, ..., u \rangle$ un ciclo que contiene al eje e, y sea w el primer vertice luego de v en C que cae en el ciclo D_0 (ver cuadro 2).

Cuadro 2:

A continuación, direccionamos los ejes de este camino de v a w, por lo tanto obtenemos el camino directo v - w, lo llamaremos P. Luego direccionamos el eje e desde u hasta v. Luego, consideremos el digrafo D_1 formado agregando e a D_0 y todos los vertices del camino P.

Como D_0 es fuertemente conexo, entonces hay un camino dew a u (Q) en D_0 (ver cuadro 3). La concatenación de P con Q y e forman un ciclo simple direccionado que contiene u y los nuevos vertices en D_1 . (si los vertices u y w son los mismos, entonces P satisface ser un ciclo simple direccionado)

Por lo tanto, el vertice u y todos estos nuevos vetices son mutuamente alcanzables en D_1 . Pero u y cada vectice del digrafo D_0 tambien son mutuamente alcanzables, y, por lo tanto , el digrafo D_1 es fuertemente conexo. Este proceso puede continuar hasta que el digrafo D_1 para algun $l \geq 1$, contenga todos los vertices de G. En este punto, cualquier asignacion de direcciones hacia las aristas sin direccion completaran la orientación de G, puesto que contendrá el digrafo fuertemente conexo D_l como subdigrafo.

Cuadro 3:

- 3. Ejercicio 3
- 3.1. Introducción