# Computer Architecture Fundamentals

#### Load/Store/ALU

| 3130 | 29 25 | 24 19 | <u>18</u> 14 | 13 | 12 5   | 4 0 |
|------|-------|-------|--------------|----|--------|-----|
| op   | rd    | op3   | rs1          |    | opf    | rs2 |
| op   | rd    | ор3   | rs1          | 0  | asi    | rs2 |
| op   | rd    | ор3   | rs1          | 1  | simm13 | 3   |

#### **Branches/sethi**

| <u>3130</u> | 29 | 28 25 | 24 22 | 21 0   |
|-------------|----|-------|-------|--------|
| op          | a  | cond  | op2   | disp22 |
| op          |    | rd    | op2   | disp22 |

#### Call

3130 29 0 op dip30

# Computer Architecture: A definition

Computer architecture is the abstraction of a physical system (microcode and hardware) as seen by the machine-language programmer or a compiler writer. It is the definition of the conceptual structure and fuctional behavior of a processor as opposed to such attributes as the processor's underlying data flow and controls, logic design, and circuit technology."

From: Myers, G.J., "Advances in Computer Architecture," Second Edition, John Wiley & Sons, New York, N.Y., 1978.

## Machine Code is Computer Architecture

- The machine code of a microprocessor describes and defines the architecture of a computer.
- Described in Manual of Operation or Architecture Manual

# **Assembly Language is not Computer Architecture**

- Assembly Language is a representation of machine code that facilitates its programming
- There isn't a one-to-one correspondence between machine code and assembly language
- Assembly language may represent instructions or elements such as registers that are non existent on the machine code.
  - Stack Pointer in SPARC
  - Move instruction in SPARC

#### Rule of thumb

An element of a computer is architectural if it has a representation in the machine code of its processor.

# **Architectural Aspects**

- Instructions
- Operand access modes
- Instruction formats
- Data types
- Primary memory
- Registers
- Interrupts, Traps, Exceptions
- Instruction execution flow
- Processor operation modes

## **Non Architectural Aspects**

- Secondary memory (hard disk, flash memory, solid state drive, etc.)
- Buses
- Periferals
- Control unit
- ALU
- Fabrication technology
- Logic circuits

# Aspects that may or may not be Architectural

- Caches
- Pipelines
- Stacks
- Input/output (I/O)

Always apply the rule of thumb

# Fundamental Architectural Elements

- Instructions
- Registers
- Primary memory
- Data types
- Instruction formats
- Addressing modes
- Input/Output
- Interruptions
- Processor operation modes

#### **Instructions**

- Data transfer (move, load, stores, swaps)
- Arithmetic & logic (add, subtract, compare, and, or, shift, rotate)
- Control (branch, jump, trap, software interrupt, subroutine)
- I/O (input, output)
- Floating Point (add, subtract, multiply, divide)

## Registers

- General purpose integer
- Program counter or instruction pointer
- Stack pointer
- Program status register
- Condition codes
- Floating point

# Primary Memory (Architectural Memory)

- Is the random access memory space accessed through machine code instructions
- Typically organized in bytes (Intel 8086 exception)
- 2<sup>32</sup> locations in most modern architectures
- Numbers represented with more than one location are stored big-endian or little-endian



#### **Data Types**

- Integer (sign or unsign)
  - Literal less than 8 bytes
  - *Byte* 8 *bits*
  - Halfword 16 bits
  - Word 16 or 32 bits
  - Longword 32 bits
  - Doubleword 2 Words
  - Quadword 4 Words
- Floating Point
  - **3**2 and 64 bits

#### **Instruction Formats**

- Determines the significance of the bits that constitutes an instruction
- Fixed size (RISC architectures)
- Variable size (CISC architectures)

# **Addressing Modes**

| Addressing Mode   | Effective Address                                                                  |
|-------------------|------------------------------------------------------------------------------------|
| Immediate         | Operand is number included in the instruction                                      |
| Register          | Operand is the content of a register                                               |
| Direct            | A number in the instruction                                                        |
| Register Indirect | The content of a register                                                          |
| Based             | The content of a register plus a number included in the instruction (displacement) |
| Based Indexed     | The addition of the content of two register                                        |
| Relative          | The content of PC plus a number included in the instruction (offset)               |

# Primary Memory (Architectural Memory)

- Virtual Memory
  - Mapping of architectural memory with physically implemented memory
  - Facilitates multiprocessing
  - Provides data protection scheme

## Input/Output

- Separate I/O storage space
- No architectural support

#### Memory-Mapped I/O



### Interruptions

- Change the normal order of execution of instructions
- Save processor state (architectural registers)
- Take instruction execution to another memory space

## **Types of Interruptions**

- Interrupts caused by asynchronous external events
- Exceptions caused when a special condition is detected during the execution of an instruction
- Traps caused by instructions explicitly designed for requesting interrupts (software interrupt)

#### **Processor Operation Modes**

- Processors can usually operate on different modes
- Allow the operating system to protect critical information and prevent unwarranted access to the system
- Establish execution privileged shells
  - Some instructions can only be executed on a specific mode
  - Any instruction can be executed in the most privileged mode

## **Three Signature Architectures**

- •IBM System 360
- Digital VAX-11
- •Intel 8086

## **IBM System 360 Architecture**

- Introduced by International Bussiness Machines (IBM) in 1964
- Flagship architecture of IBM during the 60s and 70s
- Evolved into IBM System 370
- Close to two thirds of the market share by 1965

#### **IBM 360: Instructions**

- Data transfer
- Arithmetic, logic
- Decimal
- Branch
- Subroutines
- Floating Point
- Input/Output
- Translate

## **IBM 360: Registers**

- 16 32-bit general purpose registers
- 4 64-bit floating point registers
- IA instruction address
- PSW Program Status Word

### IBM 360: Memory

- 2<sup>24</sup> bytes (2<sup>32</sup> on later versions)
- Instructions must begin on even addresses.
- Big-Endian format

## IBM 360: Data Types

| Туре                 | Size       |  |
|----------------------|------------|--|
| Character            | 8 bits     |  |
| Halfword             | 16 bits    |  |
| Word                 | 32 bits    |  |
| Double Word          | 64 bits    |  |
| Quad Word            | 128 bits   |  |
| Short Floating Point | 32 bits    |  |
| Long Floating Point  | 64 bits    |  |
| Decimal              | 1-16 bytes |  |

#### **IBM 360: Instruction Formats**



## **IBM 360: Addressing Modes**

| Addressing<br>Mode | Effective Address Operand 1 | Effective Address<br>Operand2     | Effective Address Operand 3 |
|--------------------|-----------------------------|-----------------------------------|-----------------------------|
| R-R                | Operand is [O1Reg]          | Operand is [O2Reg]                |                             |
| R-S                | Operand is [O1Reg]          | [BReg] + Displacement             | Operand is [Reg3]           |
| R-X                | Operand is [O1Reg]          | [XReg] + [BReg] +<br>Displacement |                             |
| S-I                | Immediate                   | [BReg] + Displacement             |                             |
| S-S                | [BReg1] + Displacement1     | [BReg2] + Displacement2           |                             |
| S-S                | [BReg1] + Displacement1     | [BReg2] + Displacement2           |                             |

In S-S formats L, L1, And L2 indicate the size of the data in number of bytes

## IBM 360: Input/Output

Channels

Separate processing unit

## **IBM 360: Interrupts**

- Input/Output I/O channels
- Program program excecution exceptions
- Supervisor Supervisor Call instruction
- External external event
- Machine Check conditions associated with I/O channels or CPU

## **IBM 360: Operation Modes**

User

Supervisor

#### **VAX-11** Architecture

- VAX Virtual Address Extension
- Introduced in 1977 by Digital Equipment Corporation
- An extension of the PDP-11
- Capable of emulating a subset of of the PDP-11 instructions
- Introduced virtual memory
- Performance comparable with IBM 360

#### **VAX-11: Instructions**

- Data transfer
- Arithmetic, logic
- Branch
- Subroutines
- Floating Point
- Special operations
  - Convertion of data types
  - Evaluation of Polynomials

## **VAX-11:** Registers

- 16 32-bit general purpose registers
  - R12- Argument Pointer
  - R13- Frame Pointer
  - R14- Stack Pointer
  - R15- Program Counter
- Program Status Register

## VAX-11: Memory

• 2<sup>32</sup> bytes divided in four 1G bytes blocks



- Instructions and data can be stored starting at any address
- Little-Endian format

## **VAX-11: Data Types**

| Туре       | Size     |
|------------|----------|
| Byte       | 8 bits   |
| Word       | 16 bits  |
| Longword   | 32 bits  |
| Quadword   | 64 bits  |
| Octaword   | 128 bits |
| F_floating | 32 bits  |
| D_floating | 64 bits  |
| G_floatig  | 64 bits  |
| H_floating | 128 bits |

#### **VAX-11: Instruction Formats**



- There can be from 1 to 6 operand specifiers
- An operand specifier can have from 1 to six bytes

#### **VAX-11: Operand Specifiers**



### **VAX-11: Operand Specifiers**



# **VAX-11: Operand Specifiers**



Base Mode: Any addressing mode except Literal

# **VAX-11: Addressing Modes**

| Addressing Mode        | Effective Address                   |
|------------------------|-------------------------------------|
| Literal                | Operand is literal value            |
| Indexed                | Base Mode EA + [[Reg]*length]       |
| Register               | Operand is content of Reg           |
| Register deferred      | [Reg]                               |
| Autodecrement          | Decrement Reg by length, then [Reg] |
| Autoincrement          | [Reg], then increment Reg by length |
| Autoincrement deferred | [[Reg]], then increment Reg by 4    |
| Displacement           | Displacement + [Reg]                |
| Displacement deferred  | [Displacement + [Reg]]              |

length - number of bytes of data (byte=1, word=3, long=4)

# VAX-11: Input/Output

- Memory-mapped I/O
- I/O registers mapped to main memory locations

#### **VAX-11: Interrupts and Exceptions**

- Interrupts caused by external events usually not directly related to the executed code
- Exceptions interruptions directly related with the executed code

#### **VAX-11: Operation Modes**

- Kernel –operating system management
- Executive file management
- Supervisor- system processess
- User user programs

#### Intel 8086 Architecture

- Introduced in 1978 by Intel Corporation
- Successor of Intel 8080/8085
- Predecessor of Intel® 64 and IA-32 Architectures
- Intel 8088- spin-off with additional 8-bit data bus
- 16 bit architecture
- Microprocessor implementation

#### Intel 8086: Instructions

- Data transfer
- Arithmetic, logic
- Branch
- Subroutines
- Stack Management
- Flag Manipulation
- String Manipulation
- Input/Output
- Floating Point (with Floating Point Co-processor 8087)

### Intel 8086: Registers

- 4 16-bit main "general purpose" registers
  - AX (AH|AL), BX (BH|BL), CX (CH|CL), DX (DH|DL)
- 4 Index registers
  - SI, DI, BP, SP
- 4 Segment registers
  - CS, DS, SS, ES
- IP Instruction Pointer
- SR Status Register

### Intel 8086: Memory

• 2<sup>20</sup> 16-bit cells divided in four 1M word segments



- Instructions and data can be stored starting at any address
- Little Endian format

# Intel 8086: Data Types

| Туре           | Size       |
|----------------|------------|
| Byte           | 8 bits     |
| Word           | 16 bits    |
| Integer        | 16 bits    |
| Floating Point | 32 bits    |
| Pointer        | 16/32 bits |

#### **Intel 8086: Instruction Formats**



Register/Register Indirect mode

# **Intel 8086: Addressing Modes**

| Addressing Mode   | Effective Address                                                                      |
|-------------------|----------------------------------------------------------------------------------------|
| Immediate         | Operand is Immediate value                                                             |
| Register          | Operand is content of register                                                         |
| Direct            | Displacement                                                                           |
| Register Indirect | [BX or BP or SI or DI]                                                                 |
| Based             | [BX or BP] + Displacement                                                              |
| Indexed           | [SI or DI] + Displacement                                                              |
| Based Indexed     | [BX or BP] + [SI or DI] + Displacement                                                 |
| Direct I/O        | Immediate                                                                              |
| Indirect I/O      | [DX]                                                                                   |
| String            | <ul><li>[SI] - source start address</li><li>[DI] - destination start address</li></ul> |

# Intel 8086: Input/Output

- 32,768 16-bit ports with fixed port addressing
- 65,536 8-bit ports with variable port addressing

### Intel 8086: Interrupts

- 2 external interrupts
  - INTR
  - NMI non maskable interrupt
- 4 internal interrupts
  - Divide error
  - *INT interrupt instruction*
  - *INTO interrupt on overflow instruction*
  - Single-step

### **INTEL 8086: Operation Modes**

- Real Mode
- Protected Mode (added to 80286 and successors including Pentium)

#### **Lesson Outcomes**

- Apply the rule of thumb to determine what is and what is no architectural
- Understand fundamental elements of the computer architecture of a processor
  - instructions
  - registers
  - data types
  - memory
  - instruction formats
  - addressing modes
  - I/O
  - interrupts and exceptions
  - modes of operation
- Identify similarities and differences between the IBM 360, Digital VAX-11 and the Intel 8086 architectures