Criptografia

Dulce Domingos

acetatos basedos nos livros da bibliografia da disciplina e nos acetatos da disciplina de segurança de anos lectivos anteriores (de P.Veríssimo, A.Bessani, M.Calha, H.Reiser)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

1

1

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- * Tipos de cifra
 - > Cifras de transposição
 - Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - Modos de operação
 - · Cifras por blocos
 - · Cifras Contínuas
 - Cifras assimétricas
 - Cifras híbridas
 - > Funções de síntese
 - Autenticação
 - MACs
 - Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

2

Introdução

- Criptografia
 - Krypthós (oculto) + graph (escrever)
 - > ③ o uso de criptografia revela-a
 - Fornece indícios de que a informação é sensível
 - Pode ser ilegal
- Esteganografia
 - > Conteúdo sensível é ocultado dentro de outro conteúdo
 - > Exemplos:
 - Escrita com tinta invisível
 - Ocultar conteúdos dentro de imagens nos bits menos significativos de cada pixel
- Criptanálise
 - Arte ou ciência de violar informação criptografada ou sistemas criptográficos
- Criptologia
 - Estudo de criptografia e criptanálise

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

3

3

Δ

Criptanálise

- Objectivos:
 - > Obter texto original
 - > Obter chave de cifra
 - > Obter algoritmo de cifra
- Algumas técnicas
 - > Ataques usando apenas o criptograma (ciphertext-only attacks)
 - Ataques com conhecimento de parte do texto original (known-plaintext attacks) + criptograma

TPC

- > Ataques com texto original escolhido (chosen-plaintext attacks)
 - Ataques com texto original escolhido de forma adaptativa (adaptive chosen-plaintext attacks)
- Ataques com criptogramas escolhidos (chosen-ciphertext attacks)
- Ataques de aniversário (birthday attacks)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

5

5

Evolução da tecnologia de cifra

- Primeiras cifras
 - Espartanos
 - O pergaminho só poderia ser lido se fosse enrolado num bastão com o mesmo diâmetro

- Cifra de César
 - Substitui uma letra pela késima letra seguinte no alfabeto, MOD 26
 - Mecanismo:
 - $-E_k(m) = (m + k) \mod 26$ (função de cifra)
 - $-D_k(c) = (26 + c k) \mod 26$ (função para decifrar)
 - Exemplo:
 - k = 2
 - Texto em claro: <u>seguranca</u>
 - Texto cifrado: <u>ugixtcpec</u>

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

6

Evolução da tecnologia de cifra

- Cifras mecânicas
 - Máquinas usadas para cifrar e decifrar mensagens
 - Antes dos computadores modernos, eram muito usados
 - Na Segunda Guerra Mundial:
 - Enigma (Alemanha),
 - Hagelin (Aliados),
 - Purple (Japão)
 - Formas de concretização variam (ex. uso de vários cilindros), mas em geral baseavam-se no uso de várias cifras de substituição extremamente complexas

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

7

7

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- Tipos de cifra
 - > Cifras de transposição
 - > Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - Modos de operação
 - · Cifras por blocos
 - · Cifras Contínuas
 - Cifras assimétricas
 - Cifras híbridas
 - Funções de síntese
 - Autenticação
 - MACs
 - Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

8

Tipos de cifras: cifras de transposição

- * Baralham os caracteres do texto original
- Exemplos:
 - > Permutações fixas em blocos com um número constante de caracteres
 - Permutação 45231
 - · Criptograma: raifc
 - Texto original ?
 - > Blocos verticais de dimensão fixa
 - Blocos verticais de 5 caracteres:

eaeo ...

loms

esqo

saun nbeh

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

9

9

Tipos de cifras: cifras de substituição

- Substituem os caracteres do alfabeto usado no texto original por caracteres de um alfabeto de substituição
- Monoalfabéticas
 - Usam apenas um alfabeto de substituição
 - > Um carácter do alfabeto original é substituído sempre pelo mesmo carácter
 - > Exemplo: cifra de César
 - Criptanálise
 - · Força bruta
 - Ataques com texto original escolhido
 - · Padrões estatísticos dos caracteres usados no texto original
 - Polialfabéticas
 - Aplicação sucessiva e cíclica de várias cifras monoalfabéticas
 - · Cifra de Vigenère

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

Cifra Vigenère

- Chave: conjunto de caracteres
- Mecanismo:
 - Repete-se a chave em sequência até que a chave seja do tamanho do texto a ser cifrado
 - Para cada letra, é feita uma substituição:

```
• B + C = D (A=0, B=1, C=2, ....)
```

- > Se a chave tem uma letra apenas, temos uma cifra monoalfabética
- Exemplo de uso:
 - > k = poema

```
Chave poemapoemapoe
Texto em claro elesnaosabemq
Texto cifrado tzienpcwmbtau
```

- Criptanálise:
 - Determinar a dimensão da chave -> criptanálise de N cifras monoalfabéticas
 - Técnicas estatísticas para determinar N: teste de Kasiski e índice de coincidência

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

11

11

Conceitos teóricos

- Cifra perfeita
 - ➤ Uma cifra diz-se **perfeita** quando, dado um criptograma *c*, a probabilidade de ele corresponder a um dado texto original *m* e de ter sido gerado com uma dada chave *k* é igual à probabilidade de ocorrência do texto *m*

Para cada texto em claro há sempre uma chave que geraria o criptograma

- ⇒ O cardinal do espaço de chaves tem de ser igual ge ou superior ao cardinal do espaço de textos em claro
 - ⇒Difícil
- Cifra de Vernam
 - · O comprimento da chave é maior ou igual do que o do texto a cifrar
- Dificuldades
 - · Para cada texto tem de ser usada uma chave diferente
 - O comprimento das chaves tem de ser igual ou superior ao dos textos
 - As chaves não são memorizáveis
 - Pré-distribuição de chaves de grande dimensão
 - Não faz sentido usar para cifrar dados armazenados

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

12

Conceitos teóricos

- Cifras seguras na prática
 - Uma cifra diz-se segura se cumprir o objectivo para que é usada
 - As vulnerabilidades da cifra, mesmo quando usada de forma correcta, não permitem a sua criptanálise em tempo útil e admitindo um investimento tendo em conta a relação custo-benefício
 - A cifra é usada de forma correcta, sem aumentar as suas vulnerabilidades intrínsecas
- Critérios para avaliar a qualidade das cifras [Claude Shannon,1949]:
 - 1. Quantidade de secretismo oferecida
 - Tempo mínimo de segurança do criptograma
 - Confusão e difusão (ver acetato seguinte)
 - 2. Dimensão das chaves
 - Cifra de Vernam gestão de chaves ☺
 - 3. Simplicidade de realização e uso
 - 4. Propagação de erros
 - 5. Dimensão do criptograma
 - O tamanho do texto cifrado não deve ser maior que o do texto em claro custo de armazenamento ou transmissão

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

13

13

Conceitos teóricos

- Cifras com boa quantidade de secretismo [Claude Shannon, 1949]:
 - Confusão
 - Relação entre texto em claro, chave e criptograma deve ser o mais complexa possível
 - É difícil descobrir parte do texto em claro mesmo conhecendo outras
 - É difícil descobrir parte ou toda a chave usada para produzir um criptograma
 - Difusão
 - Cada bit de informação do texto original deve influenciar vários bits do criptograma
 - Pequena alteração no texto original implica grandes alterações no criptograma

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

Conceitos teóricos

- Boas práticas:
 - > Criptanalista conhece o algoritmo de cifra e as suas fragilidades
 - · Segurança baseia-se no desconhecimento da chave
 - · Tem de ser baseado em matemática sólida
 - Tem de ter sido analisado por vários especialistas
 - Tem de ter passado no teste do tempo
 - Criptanalista pode capturar todos os criptogramas
 - Criptanalista conhece partes do texto original

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

15

15

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- Tipos de cifra
 - > Cifras de transposição
 - Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - Modos de operação
 - · Cifras por blocos
 - Cifras Contínuas
 - Cifras assimétricas
 - Cifras híbridas
 - > Funções de síntese
 - Autenticação
 - MACs
 - Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

16

Cifras modernas

- Tipo de chave
 - Cifras simétricas
 - · Chave secreta
 - Confidencialidade
 - Eficientes
 - N utilizadores e distribuição segura de chaves 🕾
 - Cifras assimétricas
 - Par de chaves
 - · Confidencialidade, autenticidade
 - Não eficientes
 - N utilizadores ©
 - Distribuição de chaves públicas
 - Cifra híbrida
 - · Cifra com chave simétrica
 - Distribuição de chave simétrica com cifras assimétricas
 - · Porquê?

- Modo de operação
 - Cifras por blocos
 - Cifras contínuas

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

17

17

Criptografia Simétrica

- Também denominada de chave partilhada ou de chave secreta
 - > chave de cifrar e decifrar iguais
 - bastante rápida
- ❖ Propriedade fundamental: D(K, E(K, m)) = m
- Cifras simétricas por blocos
 - > Data Encryption Standard (DES) (1977);
 - Triple-DES;
 - International Data Encryption Algorithm (IDEA);
 - > Advanced Encryption Standard (AES) (2000)
- Cifras simétricas contínuas

Ataques a cifras simétricas

- Criptanálise
 - Algoritmo
 - Deduzir texto em claro específico
 - Deduzir a chave
 - Conhecimento de características do texto em claro
 - Exemplos de pares texto em claro/criptograma
 - Se a chave for comprometida
 - Compromete mensagens passadas e futuras cifradas com a chave

- Ataques de força bruta
 - > Tenta todas as chaves
 - Em média, tem de tentar metade das chaves

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

19

19

Criptografia Simétrica – ponto de situação

- Em 1998 foi publicado o primeiro projecto de um sistema computacional e do software associado capaz de quebrar qualquer texto cifrado pelo DES em poucos dias
- Muitos desafios foram lançados para quebrar mensagens específicas cifradas com o DES
 - A maioria foi resolvida rapidamente usando computadores paralelos distribuídos (que são/eram muito caros!.....)
- Por outro lado, o IDEA tem resistido à passagem do tempo...
- O NIST seleccionou o algoritmo Rijndael como seu Advanced Encryption Standard (AES), o sucessor do DES
 - Desenhado para resistir a ataques bem sucedidos ao DES

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

20

DES - Data Encryption Standard

Criado em 1977 pelo governo americano com o objectivo de ser um algoritmo normalizado para cifrar/decifrar dados sensíveis, mas não classificados.

Problemas:

- Chaves pequenas (56 bits)
- Alguns passos do algoritmo não se sabe o porquê de existirem
- Muitos algoritmos para "quebrá-lo" já foram desenvolvidos
- Em 1998 foi apresentado um sistema que quebrava o DES em quatro dias
- > Ficou claro que ele já não era uma solução de segurança viável
- É um marco histórico

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

21

21

DES - alguns detalhes - SBOX substitution

S-boxes

 S_1

x0000x x0001x x0010x x0011x x0100x x0101x x0110x x0111x x1000x x1001x x1010x x1011x x1100x x1101x x1111x 2 15 11 8 3 10 6 12 5 9 0 7 0 15 4 14 2 13 1 10 6 12 11 9 5 3 8 0yyyy1 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0 1yyyy0 1yyyy1 15 12 2 6 13 9 1 7 5 11 3 14 10

Exemplo: $110011_2 \rightarrow 11_{10} = 1011_2$

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

25

25

DES - Data Encryption Standard

- Problemas
 - > Chaves pequenas (56 bits)
 - Não se conhece a justificação para alguns passos do algoritmo
 - > 1998: é possível comprometer chaves DES em 4 dias
 - Força bruta
 - > Chaves fracas, semi-fracas e potencialmente fracas
 - Pouco ou nada alteram o texto original
- Solução: Variantes do DES
 - > Utilização de várias cifras
 - Dual DES
 - Triple DES

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

26

Dual DES

❖Dual DES

- usa 2 chaves: K1 e K2:
 - "chaves" com 2n bits
 - Cifra: $C = E(K_2, E(K_1, P))$
 - Decifra: $P = D(K_2, D(K_1, C))$
 - Problema: pode ser atacado com 2ⁿ⁺¹ tentativas(vs as previstas: 2²ⁿ)
 - Como?
 - 0. Tenho um P e um C
 - 1.força bruta calcula E(K, P) para todas as K →2ⁿ
 - 2.força bruta calcula D(K, C)

e compara com os valores calculados em 1

-- meet-in-the-middle-attack

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

27

27

Triple DES

- Triple DES
 - > Usa DES 3 vezes com 2 ou 3 chaves
 - Normalizado em 1985: ANSI standard X9.17
 - > 2 chaves K1 e K2:
 - » Cifra: $C = E(K_1, D(K_2, E(K_1, P)))$
 - » Decifra: $P = D(K_{1}, E(K_{2}, D(K_{1}, C)))$
 - > 3 chaves:
 - » Cifra: $C = E(K_3, D(K_2, E(K_1, P)))$
 - » Decifra: $P = D(K_1, E(K_2, D(K_3, C)))$
 - » Requer $O(2^{2n})$ cifras e $O(2^n)$ de memória com chaves de 56 bits Ataque muito difícil

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

28

IDEA - International Data Encryption Algorithm

- Proposto em 1991 por investigadores da ETH Zurich
- Mais robusto que o DES
- usa chaves de 128 bits:
 - > ataque força bruta requer 10³⁸ cifrações
 - com chip de 10⁹ cifr/seg, requer 10¹³ anos
- Tão rápido quanto o DES:
 - Concretização em software: 386@33MHz faz 880Kbps
 - Concretização em hardware (chip da ETH Zurich) faz 177Mbps @25MHz
 - (agora escalem isso proporcionalmente aos processadores de hoje)
- Usado no PGP (Pretty Good Privacy)
- Nunca foi normalizado

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

29

29

AES - Advanced Encryption Standard

- Histórico:
 - Novo padrão do NIST para substituir o DES
 - Processo de seleção público (iniciado em 1997) onde se escolheu um algoritmo de entre vários candidatos
 - > O escolhido foi o Rijndael Novembro de 2001
- Princípios:
 - > Recebe como entrada blocos de 128 bits de texto em claro
 - As chaves podem ter 128, 192, 256 bits (quanto maior, mais seguro
 - > Produz blocos de 128 bits de texto cifrado
 - Funciona iterativamente
 - Cada bloco é dividido em 4 grupos de 4 bytes
 - Um bloco inteiro é modificado em cada iteração (no DES é só metade)
 - > Rápida e eficiente em CPUs pequenos e grandes

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

Cifras simétricas

Key size (bits)	Cipher	Number of Alternative Keys	Time Required at 10 ⁹ decryptions/s	Time Required at 10 ¹³ decryptions/s
56	DES	$2^{56} \approx 7.2 \times 10^{16}$	$2^{55} \text{ ns} = 1.125 \text{ years}$	1 hour
128	AES	$2^{128} \approx 3.4 \times 10^{38}$	$2^{127} \text{ ns} = 5.3 \times 10^{21}$ years	5.3×10^{17} years
168	Triple DES	$2^{168} \approx 3.7 \times 10^{50}$	$2^{167} \text{ ns} = 5.8 \times 10^{33}$ years	5.8×10^{29} years
192	AES	$2^{192} \approx 6.3 \times 10^{57}$	$2^{191} \text{ ns} = 9.8 \times 10^{40}$ years	9.8×10^{36} years
256	AES	$2^{256} \approx 1.2 \times 10^{77}$	$2^{255} \text{ ns} = 1.8 \times 10^{60}$ years	1.8×10^{56} years

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

32

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- Tipos de cifra
 - Cifras de transposição
 - Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - > Modos de operação
 - Cifras por blocos
 - Cifras Contínuas
 - Cifras híbridas
 - > Funções de síntese

Cifras assimétricas

- Autenticação
 - MACs
 - · Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

33

33

Modos de operação

- Cifra por blocos
 - > Processa o texto em claro por blocos, um bloco em cada iteração
 - > Produz um bloco por cada bloco de entrada
 - Pode reusar chaves
- Cifras contínuas
 - > Processa o texto em claro de forma contínua
 - > Normalmente mais rápidas

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

34

Modos de Cifra por Blocos

- ❖ ECB Electronic CodeBook
 - > cifra por blocos independentes
 - > Fraquezas
 - Reprodução de padrões de texto original dois blocos iguais produzem o mesmo criptograma
 - Vulnerável a ataques de reordenação ou replay

35

Modos de Cifra por Blocos

- CBC Cypher Block Chaining
 - O texto em claro é "XOR" com o texto cifrado do bloco anterior antes de ser cifrado
 - Reduz risco de replicação de padrões
 - Initialization Vector (IV): usado no 1º bloco (necessário para decifrar -> ver API
 - > Padding: bits para compor blocos inteiros do tamanho requerido pelo algoritmo

© 2025 DI-FCUL Reprodução pro

Modos de cifra por bloco - padding

- Modos de cifra: ECB e CBC
 - > Iso10126
 - Exemplo: Blocos de 8 bytes e texto em claro 0x616263
 - Texto com padding 0x616263????????05
 - > PKCS7
 - Exemplo: Blocos de 8 bytes e texto em claro 0x616263
 - Texto com padding 0x6162630505050505
 - Bit padding
 - 1011 1001 1101 0100 0010 011**1 0000 0000**

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

37

37

Modos de operação

- Cifra por blocos
 - > Processa o texto em claro por blocos, um bloco em cada iteração
 - > Produz um bloco por cada bloco de entrada
 - Pode reusar chaves
- Cifras contínuas
 - > Processa o texto em claro de forma contínua
 - > Normalmente mais rápidas

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

38

Cifras contínuas

- XOR (Exclusive OR)
 - ➤ (A XOR B) XOR A) = B
- Operação:
 - Geração da chaves em tempo real por uma black box
 - > Chaves usadas apenas uma vez
 - Atenção- ver WEP, fraquezas de RC4 (usado em SSL e WAP)
 - Distribuição?
 - A chave contínua é gerada em simultâneo em ambos os pontos sincronização
 - Black boxes são parametrizadas por uma master key
 - Cifra/decifra
 - · Processa um bit/byte de cada vez, continuamente

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

39

39

Cifras contínuas

- Usam chaves contínuas
- Usam princípio da confusão (não da difusão)
- As chaves não devem ser reusadas
 - Porquê ?
- O período de uma chave contínua deve ser o mais longo possível
 - Porquê ?
- A sequência de bits de uma chave contínua deve aparentar ser aleatória

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

40

Cifras contínuas ❖ CFB - Cypher Feedback Transforma sign por blo

- Transforma cifra por blocos em cifra contínua
- Vantagens sobre o CBC:
 - a cifra de bloco só é utilizada na direcção de cifrar (independentemente de a operação ser cifrar ou decifrar) o que simplifica a sua implementação, e
 - a mensagem não necessita de ser "padded" para um múltiplo do tamanho do bloco porque o algoritmo trabalha com qualquer quantidade de bytes

© 2025 DI-FCUL Reproduç

Cipher Feedback (CFB) mode encryption

41

Cifra contínuas

- ❖OFB Output Feedback
 - Mantém as vantagens do CFB e ainda acrescenta outra
 - a mensagem não é utilizada para iniciar o bloco seguinte, o que implica que as operações de cifra de bloco podem ser feitas antecipadamente permitindo que o último passo seja realizado em paralelo assim que o texto (mensagem ou mensagem cifrada) estiver disponível

© 2025 DI-FCUL Reprodu

Output Feedback (OFB) mode encryption

Cifra contínuas

- CTR (counter)
 - > Apresentado por Diffie e Hellman em 1979
 - Modo de cifra padrão para o AES
 - Nonce+contador devem ser diferentes em cada operação de cifra
 - Caso seja usada a mesma chave e o mesmo nonce+contador para cifrar dois conteúdos diferentes, eles serão cifrados com duas chaves contínuas iguais ⁽³⁾

43

Cifras simétricas contínuas

- Requisitos de robustez:
 - Secretismo, aleatoriedade e uso único da chave de fluxo
 - > A chave de fluxo precisa ser distribuída nas duas pontas do canal
- Uso em sistemas reais:
 - Em comunicação, a chave de fluxo é uma sequência pseudoaleatória produzida em tempo-real à velocidade do fluxo de texto, por uma caixa-preta;
 - A chave de fluxo é gerada nos dois extremos em simultâneo (as duas caixas pretas são sincronizadas)
 - A chave de fluxo é parametrizada por uma chave mestra
 - É susceptível a erros de bits, que podem dessincronizar o fluxo
 - Exemplo de algoritmo: RC4 (usado no SSL e no WAP)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

44

Modos de cifra - comparação

- Reforço de segurança
 - Esconder padrões de texto original
 - exemplo: ECB ⊗
 - Confusão na entrada da cifra
 - exemplo : CBC com realimentação de bits do criptograma
 - Possibilidade de reutilização de uma chave de cifra
 - · Cifras contínuas cuidado!
 - Alteração determinística do texto em claro através da manipulação do criptograma
 - · Cifra contínua fácil
- Optimização
 - Efectuar pré-processamento
 - Exemplos: OFB e CTR
 - Paralelização do modo de cifra
 - · Exemplos: ECB, CTR
- Tolerância a faltas
 - Propagação de erros
 - Exemplo: ECB erro num bit apenas afecta o respectivo criptograma
 - Recuperação de sincronismo de perda de bits

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

45

45

Criptografia Simétrica – vantagens/desvantagens

- Chave secreta
 - > se perdida ou revelada em qualquer ponta, o canal é comprometido
- Distribuição de chaves
 - O problema do ovo e da galinha: "como distribuir a chave para ter canais seguros sem ter canais seguros?"
 - E se as chaves precisarem de ser mudadas frequentemente
- Gestão de chaves
 - Grande escala
 - Comunicação arbitrária entre 10 participantes requer 45 chaves
 - > 100 participantes -> quase 5000
 - (n(n-1)/2) chaves são requeridas para n participantes
- Eficientes

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

46

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- Tipos de cifra
 - > Cifras de transposição
 - Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - > Modos de operação
 - · Cifras por blocos
 - Cifras Contínuas
 - > Cifras assimétricas
 - > Cifras híbridas
 - Funções de síntese
 - Autenticação
 - MACs
 - · Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

47

47

Criptografia Assimétrica

- Também chamada de cifra de chave pública
 - Cifra com chave pública Ku e decifra com chave privada Kr
 - > Em geral é muito mais lenta que a criptografia simétrica
- PRINCÍPIO:
 - Usam problemas matemáticos, para os quais não existe solução em tempo polinomial, aplicados a grande números factorização, cálculo de logaritmos discretos e knapsacks
- PROPRIEDADES:
 - ightharpoonup D(Kr,E(Ku,m))=m e E(Ku,D(Kr,m))=m
- Exemplos de Algoritmos:
 - Diffie-Helmann, para calcular um número secreto partilhado (1976); Rivest-Shamir-Adleman (RSA) (1978), ElGamal

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

48

Criptografia Assimétrica - Diffie-Hellman

- * PRINCÍPIO:
 - Lançou as bases para criptografia assimétrica em 1976
 - É baseado em uma one-way function (função irreversível) e na dificuldade em factorizar números resultantes do produto de números primos grandes
- OBJECTIVO:
 - Obter um número secreto K, partilhado entre A e B, sem o comunicar em claro
- OPERAÇÃO:
 - escolher dois números primos m e n públicos (n grande)
 - A gera um número aleatório x_a
 - ➤ A calcula y_a=m^xa MOD n
 - B gera um número aleatório x_h
 - \triangleright B calcula $y_b = m^{x_b} MOD n$
 - y_a e y_b são tornados públicos
 - Cada um calcula K localmente
 - \triangleright K= $y_b^{\ x_a}$ MOD $n = y_a^{\ x_b}$ MOD $n = m^{x_a^{\ x_b}}$ MOD n

secret x_a $y_a = m^{Xa} \mod n$ y_b $K = y_b^{Xa} \mod n$ y_b $K = y_b^{Xa} \mod n$ $y_b = m^{Xb} \mod n$ $K = y_a^{Xb} \mod n$

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

49

49

Segurança do Diffie-Hellman

- A segurança do Diffie-Hellman é baseada na dificuldade em se resolver o seguinte problema:
 - ▶ Dado um elemento m e os valores m^x e m^y , qual o valor de m^{xy} ?
- Isto é equivalente ao calculo de logaritmos discretos:
 - $> x = log_m^{mx}$
 - $> y = log_m^{my}$

(seria relativamente simples se não estivessemos a falar de aritmética modular — lembrem-se dos "mod~n" nas fórmulas)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

50

Criptografia Assimétrica - RSA

- Foi publicado em 1977 por três investigadores do MIT: Rivest, Shamir e Adleman (RSA)
- Pode ser usado tanto para cifrar quanto para assinar

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

51

51

Criptografia Assimétrica - RSA

É mais lento à medida que *d* e e crescem:

(*d* é geralmente grande enquanto *e* é pequeno)

- Gerar Chaves:
 - > Escolhe dois números primos grandes p, q
 - > Considere n = pq e $z = \phi(n) = (p-1)(q-1)$
 - Escolha e < n tal que e é <u>primo relativo</u> (não tem factores em comum) de z = φ(n)
 - Calcula d tal que ed MOD z = 1
 - > chave pública: Ku = (e, n); chave privada: Kr = (d, n)
- Cifrar:
 - \triangleright E(Ku,m) = m^e MOD n = c
- Decifrar:
 - \triangleright $D(Kr,c) = c^d MOD n = m$

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

52

Criptografia Assimétrica - RSA

- Criptanálise:
 - 1. Procura de chaves "à bruta"
 - Inexequível se usarmos chaves grandes (≥ 1024 bits)
 - 2. Ataques matemáticos
 - d é fácil de calcular a partir de e se forem conhecidos p e q -> factorização de nºs grandes
 - Determinar m a partir de c, e e n -> Função inversa da exponenciação modular: logaritmo modular
 - ainda seguro com chaves ≥ 1024 bits
 - Ataques temporais (timing attacks) na execução da operação de decifração
 - Consegue estimar d pelo tempo que demora uma decifração

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

53

secret xb

 $y_b = m^{Xb} \mod n$

 $K = y_a^{Xb} \mod n$

Κ

public m, n

 $y_a = m^{X_a} \mod n$

 $K = y_b^{Xa} \mod n$

53

Criptografia Assimétrica

- El Gamal
 - > Baseado em Diffie-Helman
 - Atenção: Bob deve escolher o k aleatório diferente para cada mensagem que envia para Alice.
 - Chave pública de Alice: m, n, y_a
 - ➤ Bob calcula x_b, cifra a mensagem com K e envia y_b para Alice
- Elliptic curve cryptography (ECC)
 - > Tão segura quanto RSA, mas com chaves menores
 - Elliptic curve Diffie-Hellman (ECDH)
 - · Chave de sessão em canal inseguro
 - https://www.youtube.com/watch?v=F3zzNa42-tQ

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

54

Criptografia Assimétrica - vantagens/desvantagens

- ❖ Eficiência ⊗
- ❖ Escala ☺
- Distribuição da chaves públicas cuidado!
 - > autenticidade das chave públicas
 - Como saber se afirmações do tipo "12DH457B6A9 é chave pública do Pedrinho" são verdadeiras?
 - Um chave pública a ser enviada pode ser interceptada e substituída...
 - Ou, se uma base de dados de chaves públicas (PKI ou CA) é comprometida, qualquer chave armazenada pode ser substituída por uma chave falsa criada pelo atacante
 - A definição de autoridades de certificação (alguém que certifique a autenticidade das chaves) é necessária

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

55

55

Sumário

- Introdução
- Criptografia e criptanálise
- Evolução da tecnologia de cifra
- Tipos de cifra
 - > Cifras de transposição
 - Cifras de substituição
 - Monoalfabéticas
 - Polialfabéticas
- Conceitos teóricos

- Cifras modernas
 - Cifras simétricas
 - > Modos de operação
 - · Cifras por blocos
 - Cifras Contínuas
 - Cifras assimétricas
 - Cifras híbridas
 - > Funções de síntese
 - > Autenticação
 - MACs
 - · Assinaturas digitais

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

57

57

Síntese Segura ou Digest de Mensagens

- Objectivo
 - Produzem valores de dimensão constante a partir de entradas (mensagens, ficheiros, ...) de dimensão variável
 - > A função de compressão é aplicada de forma iterativa
 - 2 argumentos de entrada da função de compressão: síntese prévia, bloco a processar
 - > Não servem para cifrar/decifrar

- Propriedades
 - > Resistência à descoberta do texto original
 - Dada a síntese H, é muito difícil descobrir um texto M, tal que H = h(M)
 - > Resistência à descoberta de um segundo texto original
 - Dado um Texto M, é muito difícil descobrir M'(M'≠M) tal que h(M)=H(M')
 - Resistência à colisão
 - É difícil descobrir dois textos quaisquer, M e M', M' \neq M, tais que h(M) = h(M')
- Exemplos de Funções: MD5, SHA-1, SHA-256

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

58

Funções de síntese: Resistência à colisão

- Dimensão das sínteses
 - Com sínteses de 128 bits e mensagens 1000 bits: ~ 2872 mensagens dão origem à mesma síntese
 - ➤ Síntese >= 128 bits
- Ataque do Aniversário (Birthday attack):
 - ➤ Baseia-se no "paradoxo do aniversário" e é usado para encontrar um par de mensagens com a mesma síntese (colisão)
 - Para sínteses de n bits, o atacante deve tentar aproximadamente 2^{n/2} mensagens
 - ➤ In a group of at least 23 randomly chosen people, there is more than 50% probability that some pair of them will have the same birthday. Such a result is counter-intuitive to many.

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

59

59

Síntese Segura - MD5

- Proposto por Ron Rivest (investigador do MIT)
- O último de uma série de funções MD2, MD4, ...
- Produz um valor de síntese de 128 bits
- Até recentemente era a função de síntese segura mais usada
 - Recentemente foram encontradas falhas tanto através de ataques de força bruta quanto por criptanálise
- Não é recomendada a sua utilização
- Especificado num padrão IETF (RFC1321)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

Síntese Segura- Secure Hash Algorithm (SHA-1)

- Proposto pelo NIST e pela NSA
- SHA-1
 - > Produz sínteses de 160 bits
 - Não seguro
- SHA-2
 - > SHA-256
 - > SHA-512
 - > SHA-224 e SHA-384
- SHA-3
 - Dimensões idênticas a SHA-2
 - > 2012
- Existem diversas versões do SHA. Estas são mais seguras na medida em que o tamanho da síntese produzida aumenta

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

61

61

Síntese Segura - versões do SHA

	SHA-1	SHA-256	SHA-384	SHA-512
Message digest size	160	256	384	512
Message size	< 2 ⁶⁴	SECTION	< 2128	< 2128
Block size	512	SEGURO SEGURO	1024	1024
Word size	32	32	64	64
Number of steps	80	80	80	80
Security	80	128	192	256

Notes: 1. All sizes are measured in bits.

Security refers to the fact that a birthday attack on a message digest of size n produces a collision with a workfactor of approximately 2^{n/2}.

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

62

Sínteses seguras

- Password
 - > Armazenamento de passwords
- Deteção de intrusões
 - > Guardar a hash dos ficheiros do SO
- O que obtemos e como ?
- Outras aplicações
 - > Slides seguintes

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

63

63

MAC - Message Authentication Code

- Funções de síntese integridade
- Message Autentication Code MAC
 - > Usa chave secreta partilhada
 - O que garante ?
 - Como produzir MACs
 - · Cifrar mensagem e síntese da mensagem
 - Cifrar síntese da mensagem ⊗
 - · Funções chaveadas
 - Funções de cifra por blocos: DES-MAC (criptograma gerado em modo CBC)
 - Funções de cifra contínua
 - Funções de síntese HMAC

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

64

HMAC - Hash Message Authentication Code

- Definido no RFC2104 do IETF
- Utiliza funções de síntese na mensagem:
- $H_k(m) = h(k' \oplus \text{ opad } || h(k' \oplus \text{ ipad } || m))$
 - ➤ ⊕ ou exclusivo
 - > || concatenação
 - > K' é a chave K preenchida (padded) para ter o tamanho de um bloco
 - > opad e ipad são constantes específicas de preenchimento
 - Overhead é de apenas mais 3 execuções da função de síntese em relação à geração do digest da mensagem
- Qualquer função de síntese segura pode ser usada no HMAC.
- A segurança e a eficiência do algoritmo dependem da função de síntese segura usada.
- A função de síntese pode ser substituída com o fim de melhorar segurança e/ou eficiência.

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

65

65

HMAC - Hash Message Authentication Code $H_k(m) = h(k' \oplus opad || h(k' \oplus ipad || m))$ onde: - Constantes ipad e opad; - \oplus ou exclusivo; - $\|$ concatenação. Overhead Overhead © 2025 DI-FCUL Reprodução proibida sem autorização prévia.

MAC - Message Authentication Code

- MAC:
 - > Alice e Beto compartilham uma chave k
 - \triangleright Alice envia $m \mid\mid H_k(m)$ para Beto
 - > Beto verifica que recebeu m de Alice
- E perante terceiros?
- Beto pode provar que foi Alice que enviou ?

ERRADO!

- Isto não é uma assinatura digital!
 - Uma terceira parte não pode determinar se foi Alice ou Beto quem gerou a mensagem
 - > i.e., não satisfaz a propriedade de não-repudiação

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

67

67

Assinaturas Digitais

- Autenticidade
 - quem assinou é identificável univocamente pela assinatura
- Integridade
 - uma assinatura correcta num documento garante que este não é alterável sem detecção
 - ▶ Não-reutilização
 - a assinatura ou parte do documento n\u00e3o \u00e9 reutiliz\u00e1vel em outro documento
- Não-repudiação
 - > o assinante não pode negar a sua assinatura
 - ➤ Não-forjamento
 - · quem assinou é o próprio e fê-lo deliberadamente

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

68

Assinaturas Digitais

- Modo de operação
 - > Cifrar com chave privada a síntese do texto original
 - > Algoritmos de assinatura mais usados
 - RSA
 - DSA
- DSS/DSA
 - > Proposta de assinaturas digitais do NIST (1991)
 - Digital Signature Standard (DSS)
 - Digital Signature Algorithm (DSA)
 - · derivado do algoritmo de assinatura ElGamal

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

69

69

Assinaturas às cegas

- Assinaturas às cegas
 - David Chaum, 1982
 - Garante o anonimato de quem solicita a assinatura e do que é efectivamente assinado
 - Utilidade
 - Dinheiro electrónico
 - Pagamentos anónimos
 - Votação electrónica

- > Exemplo com RSA
 - K aleatório
 - 1. Obscurecer: m'= ke. m mod n
 - 2. Assinar: $A(m') = (m')^d \mod n$
 - 3. Anular 1: $A = k^{-1}$. A (m') mod n

$$k^{-1} \cdot A (m') \equiv k^{-1} \cdot (m')^d$$

 $\equiv k^{-1} \cdot (k^e, m)^d$
 $\equiv k^{-1} \cdot k^{ed} \cdot m^d$
 $\equiv k^{-1} \cdot k \cdot m^d$
 $\equiv m^d \pmod{n}$

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

70

Cifras homomórficas

- Decifra(Operação(criptograma))=Operação'(texto em claro)
- $f(a \oplus b) = f(a) \otimes f(b)$
- Exemplo
 - RSA multiplicação

 $E(a).E(b)=a^e b^e \mod n = (ab)^e \mod n = E(ab)$

- Casos de uso
 - > Verificação de vírus sem decifra ficheiros
 - > Pesquisa em ficheiros cifrados (na nuvem)

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

71

71

Números aleatórios

- Usos
 - > Chaves,
- Aleatório
- Imprevisível
- Pseudo-aleatório

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

72

Bibliografia

- Segurança em Redes Informáticas
 - Cap 2
- Computer Security Principles and Practice
 - > Cap 2, 20, 21

© 2025 DI-FCUL Reprodução proibida sem autorização prévia.

73