

Aula 2 – Dados Elegíveis & Amostragens

Mentoria em Risco de Crédito & Ciência de Dados Material de apoio para impressão (PDF) Versão ¹ – 13 jul 2025

Sumário

- Aula 2 Dados Elegíveis & Amostragens
 - Sumário
 - Visão geral
 - Conceitos-chave
 - Modelos PD, LGD, EAD & dados elegíveis
 - Regimes de política de crédito
 - Amostragem
 - Snapshot
 - Painel
 - Right Censoring & Left Truncation
 - Sample Weights (pesos de amostra)
 - Construção de Targets
 - Recomendações Práticas
 - Erros Comuns & Armadilhas
 - Glossário
 - Referências Sugeridas

Visão geral

Esta aula aprofunda os fundamentos de **dados elegíveis** e **amostragem** para modelos de risco de crédito. O foco recai sobre:

- diferenças entre dados necessários para PD, LGD e EAD;
- escolha entre amostragem snapshot e painel;
- efeitos de right censoring e left truncation;
- uso responsável de sample weights;
- boas práticas para definir targets (Ever 90 M12, Over 90 M12 etc.).

Todo o conteúdo foi refinado para remover informações sensíveis (nomes próprios, empresas, exemplos internos) e corrigir pequenos deslizes identificados na transcrição.

Conceitos-chave

Modelos PD, LGD, EAD & dados elegíveis

Modelo	Pergunta-chave	Dados elegíveis (<i>performing</i>)	
PD	Qual a probabilidade de o contrato entrar em <i>default</i> nos próximos 12 meses?	Registros sem <i>default</i> ou <i>workout</i> até a data-base. Incluem atrasos < 90 dias.	
LGD	Quanto será recuperado após o default?	Registros em <i>default</i> ou em workout (negociação/recuperação). Período de <i>cura</i> não integra a amostra.	
EAD	Qual exposição haverá no momento do <i>default</i> futuro?	Mesmos dados de PD mais o registro do primeiro <i>default</i> de cada contrato.	

Workout & Cura *Workout* inicia quando o devedor demonstra esforço de pagamento (ex.: acordo, amortização parcial). *Cura* é o intervalo (tipicamente ≥ 3 meses) em que o contrato permanece sem atraso após zerar o saldo vencido, antes de voltar ao status *performing*.

Regimes de política de crédito

Mudanças relevantes de política podem distorcer o modelo. Estratégias recomendadas:

- Manter **máximo de dados** e identificar regimes via **flags** (variável *dummy*);
- Avaliar estabilidade com KS, PSI ou compressão (PCA, t-SNE) entre safras;
- EBA recomenda ≥ 5 anos de histórico para carteiras de varejo (CRD Art. 144–147).

Amostragem

Snapshot

Seleciona uma única observação de cada contrato.

Vantagens	Desvantagens
Implementação simples; menor custo computacional; útil p/ application score.	Viés de recência (safras recentes super-representadas); ignora dinâmica comportamental; reduz peso de variáveis históricas.

Quando usar: modelos de concessão, testes rápidos, base com vida muito curta. **Evitar**: modelos comportamentais (PD dinâmico, LGD, EAD), monitoramento.

Painel

Mantém o filme completo da vida do contrato.

Vantagens	Desvantagens
-----------	--------------

Vantagens	Desvantagens
Captura evolução de risco e comportamento; adequado a vintage analysis, backtesting & monitoramento; reduz viés de recência.	Demanda maior processamento; requer cuidado com grupos <i>performing</i> e maturidade das safras.

Quando usar: PD comportamental, LGD, EAD, análises de safra, modelos de sobrevivência.

Right Censoring & Left Truncation

Conceito	Risco	Boa prática
Right Censoring – safras mais recentes não completaram o horizonte do target.	Subestimar taxa de mau; superestimar recuperação.	Excluir safra < H-target (ex.: remover últimos 12 meses se alvo = 90 M12) ou calibrar.
Left Truncation – falta de histórico pré-corte.	Variáveis históricas truncadas; valores ausentes concentrados.	Iniciar amostra após janelas históricas críticas (ex.: excluir primeiros 6 meses).

Sample Weights (pesos de amostra)

Objetivos principais:

- 1. **Balancear classes** em problemas desbalanceados (ex.: inadimplência ≈ 10 %);
- 2. Ponderar recência sem duplicar efeitos (não aplicar se amostra já foi recency-sampled);
- 3. Aplicar pesos manuais (ex.: receita), mantendo prudência regulatória.

```
model.fit(X, y, sample_weight=w) # vetores customizados > class_weight="balanced"
```

* Atenção: não combine recency sampling e peso por recência – risco de duplicar o mesmo viés.

Construção de Targets

Target	Definição	Observações
Over 90	90 + dias de atraso no registro atual.	Segmenta <i>default</i> corrente (mau na origem).
Ever 90 M12	Algum atraso ≥ 90 d nos 12 m após o registro.	Necessita janela futura completa; sensível a right censoring.
Ever 90 M6 (ou Alternativa quando histórico é curto.		Aumenta número de safras maduras.

Exemplo de timeline simplificado

 	Mês	DPD	 Over 90	 Ever 90 M12
	t0	0	0	?
	•••			
	t+7	120	1	1 (retro)
	•••			•••

Após workout e **cura** ≥ **3 m**, o contrato volta para o grupo *performing* e ganha um novo *spell_id* (vida 2) para futuros modelos.

Recomendações Práticas

- 1. **Defenda o maior volume possível** de dados; só reduza após análises de estabilidade e qualidade.
- 2. **Use flags** de regime de política em vez de descartar safras inteiras.
- 3. **Corte à direita** conforme horizonte do target para evitar *understatement* de risco.
- 4. **Evite SMOTE e congêneres** em crédito riscos de gerar perfis incoerentes. Prefira sample weights.
- 5. Monitore o modelo continuamente (input drift, performance drift); todo modelo degrada.
- 6. **Documente** cada passo (*dataset*, filtros, amostragem, pesos, targets) para auditoria.

Erros Comuns & Armadilhas

- Tratamento igual de variáveis estáticas & históricas em *snapshot*.
- Reutilizar pesos de recência após recency sampling.
- Modelar PD com poucas safras maduras (right censoring).
- Confiar cegamente no class_weight="balanced" opções manuais são mais transparentes.
- Usar métricas de KS sem verificar *PSI* ou distribuição temporal.

Glossário

Termo	Definição rápida	
DPD	Days Past Due (dias em atraso).	
Ever 90 Indicador se houve atraso ≥ 90 d em qualquer momente		
Over 90 Indicador de atraso ≥ 90 d no momento corrente.		
Workout	Fase de renegociação/recuperação após default.	
Cura	Período sem atraso após zerar saldo vencido (tipicamente ≥ 3 m).	
Right Censoring	Safras sem horizonte futuro completo.	
Left Truncation	Corte de histórico anterior ao período de análise.	
Sample Weight	Peso aplicado a cada observação no treinamento.	

Referências Sugeridas

- 1. European Banking Authority Guidelines on PD and LGD estimation (EBA/GL/2017/16).
- 2. Basel Committee on Banking Supervision IRB Approach: Supporting Document (2023).
- 3. Hand, D. J.; Henley, W. E. Statistical Classification Methods in Consumer Credit Scoring (1997).
- 4. Siddiqi, N. Credit Risk Scorecards: Developing and Implementing Intelligent Credit Scoring (2nd ed.).
- 5. Brown, I.; Mues, C. An Experimental Comparison of Classification Algorithms for Imbalanced Credit Risk Data (ESWA 2012).

Direitos autorais: Uso exclusivo para alunos da mentoria. Proibida redistribuição não autorizada.