Stochastic particle production in the early universe

Marcos A. G. García

Rice University

Based on 1705.???, with

M. Amin, O. Wen (Rice U.) H. Xie (U. Wisconsin)

Motivation

Cosmological inflation is the early period of accelerated expansion, $a\sim e^{Ht}$

Motivation

Cosmological inflation is the early period of accelerated expansion, $a\sim e^{Ht}$

When inflation ends, the Universe reheats...

Motivation

Cosmological inflation is the early period of accelerated expansion, $a\sim e^{Ht}$

When inflation ends, the Universe reheats...in a potentially complicated way

Consider $N_{\rm f}$ coupled (scalar) fields. Assume the evolution of fluctuations contains localized non-adiabatic events with random strengths at random intervals, and that the fields are otherwise free

$$\left[\mathbbm{1}\,\partial_{\tau}^2 + \boldsymbol{\omega}^2 + \mathbf{m}^s(\tau)\right] \cdot \boldsymbol{\chi}(\tau,\mathbf{k}) = 0\,, \qquad \omega_a^2 = k^2 + m_a^2 \label{eq:continuous}$$

Consider $N_{\rm f}$ coupled (scalar) fields. Assume the evolution of fluctuations contains localized non-adiabatic events with random strengths at random intervals, and that the fields are otherwise free

$$\left[\mathbbm{1}\,\partial_{\tau}^2 + \pmb{\omega}^2 + \mathbf{m}^s(\tau)\right] \cdot \pmb{\chi}(\tau,\mathbf{k}) = 0\,, \qquad \omega_a^2 = k^2 + m_a^2 \label{eq:constraints}$$

After the j-th event,

$$\chi^a_j(au) \equiv rac{1}{\sqrt{2\omega_a}} \left[eta^a_j e^{i\omega_a au} + lpha^a_j e^{-i\omega_a au}
ight] \,, \qquad \qquad \left(eta^j_j
ight) = \mathbf{M}_j \left(eta^j_{j-1}
ight)$$

Consider $N_{\rm f}$ coupled (scalar) fields. Assume the evolution of fluctuations contains localized non-adiabatic events with random strengths at random intervals, and that the fields are otherwise free

$$\left[\mathbbm{1}\;\partial_{\tau}^2 + \pmb{\omega}^2 + \pmb{\mathsf{m}}^s(\tau)\right] \cdot \pmb{\chi}(\tau, \mathbf{k}) = 0\,, \qquad \omega_a^2 = k^2 + m_a^2$$

After the j-th event,

$$\chi_j^a(\tau) \equiv \frac{1}{\sqrt{2\omega_a}} \left[\beta_j^a e^{i\omega_a \tau} + \alpha_j^a e^{-i\omega_a \tau} \right] \,, \qquad \qquad \left(\begin{matrix} \beta_j \\ \alpha_j \end{matrix} \right) = \mathbf{M}(j) \begin{pmatrix} \beta_0 \\ \alpha_0 \end{pmatrix}$$

Consider $N_{\rm f}$ coupled (scalar) fields. Assume the evolution of fluctuations contains localized non-adiabatic events with random strengths at random intervals, and that the fields are otherwise free

$$\left[\mathbbm{1}\,\partial_{\tau}^2 + \pmb{\omega}^2 + \pmb{\mathsf{m}}^s(\tau)\right] \cdot \pmb{\chi}(\tau,\mathbf{k}) = 0\,, \qquad \omega_a^2 = k^2 + m_a^2 \label{eq:polyanomega}$$

A random walk (with drift) for the occupation number

$$n_a(j) = \frac{1}{2\omega_a} \left(|\dot{\chi}_j^a|^2 + \omega_a^2 |\chi_j^a|^2 \right) - \frac{1}{2} = |\beta_j^a|^2$$

Consider $N_{\rm f}$ coupled (scalar) fields. Assume the evolution of fluctuations contains localized non-adiabatic events with random strengths at random intervals, and that the fields are otherwise free

$$\left[\mathbbm{1}\,\partial_{\tau}^2 + \pmb{\omega}^2 + \pmb{\mathsf{m}}^s(\tau)\right] \cdot \pmb{\chi}(\tau,\mathbf{k}) = 0\,, \qquad \omega_a^2 = k^2 + m_a^2 \label{eq:power_power}$$

Randomness and non-adiabaticity are encoded in $\mathbf{M} \Rightarrow \text{define } P(\mathbf{M}; \tau)$

$$\partial_{\tau}P(\mathbf{M};\tau) = -\partial_{\mathbf{M}}\left[\frac{\langle\delta\mathbf{M}\rangle_{\mathbf{M}_{2}}}{\delta\tau}P(\mathbf{M};\tau)\right] + \frac{1}{2!}\partial_{\mathbf{M}}^{2}\left[\frac{\langle\delta\mathbf{M}^{2}\rangle_{\mathbf{M}_{2}}}{\delta\tau}P(\mathbf{M};\tau)\right]$$

$$\mathbf{M} = \begin{pmatrix} \mathbf{u} & 0 \\ 0 & \mathbf{u}^* \end{pmatrix} \begin{pmatrix} \sqrt{1+\mathbf{n}} & \sqrt{\mathbf{n}} \\ \sqrt{\mathbf{n}} & \sqrt{1+\mathbf{n}} \end{pmatrix} \begin{pmatrix} \mathbf{v} & 0 \\ 0 & \mathbf{v}^* \end{pmatrix}$$

where $\mathbf{u}, \mathbf{v} \in U(N_{\mathrm{f}})$, and $\mathbf{n} = \mathrm{diag}(n_1, n_2, \cdots) \quad \Rightarrow \quad N_{\mathrm{f}}(2N_{\mathrm{f}}+1)$ variables in FP equation!

$$\mathbf{M} = \begin{pmatrix} \mathbf{u} & 0 \\ 0 & \mathbf{u}^* \end{pmatrix} \begin{pmatrix} \sqrt{1+\mathbf{n}} & \sqrt{\mathbf{n}} \\ \sqrt{\mathbf{n}} & \sqrt{1+\mathbf{n}} \end{pmatrix} \begin{pmatrix} \mathbf{v} & 0 \\ 0 & \mathbf{v}^* \end{pmatrix}$$

where $\mathbf{u}, \mathbf{v} \in U(N_{\mathrm{f}})$, and $\mathbf{n} = \mathrm{diag}(n_1, n_2, \cdots) \quad \Rightarrow \quad N_{\mathrm{f}}(2N_{\mathrm{f}} + 1)$ variables in FP equation!

Is it possible to derive universal or quasi-universal results?

$$\mathbf{M} = \begin{pmatrix} \mathbf{u} & 0 \\ 0 & \mathbf{u}^* \end{pmatrix} \begin{pmatrix} \sqrt{1+\mathbf{n}} & \sqrt{\mathbf{n}} \\ \sqrt{\mathbf{n}} & \sqrt{1+\mathbf{n}} \end{pmatrix} \begin{pmatrix} \mathbf{v} & 0 \\ 0 & \mathbf{v}^* \end{pmatrix}$$

where $\mathbf{u}, \mathbf{v} \in U(N_{\mathrm{f}})$, and $\mathbf{n} = \mathrm{diag}(n_1, n_2, \cdots) \implies N_{\mathrm{f}}(2N_{\mathrm{f}} + 1)$ variables in FP equation!

Is it possible to derive universal or quasi-universal results?

Assume the building block P maximizes the Shannon entropy

$$S[P] = -\int P(\mathbf{M}; \delta \tau) \ln P(\mathbf{M}; \delta \tau) d\mathbf{M}$$

subject to the constraints:

- * The local mean particle production rate is known and fixed, $\mu_j\equivrac{1}{N_c}rac{\langle n_j
 angle_{\delta au}}{\delta au}$
- Coarse-grained continuity, $\mathbf{M}_{\tau+\delta\tau} \xrightarrow{\delta\tau \to 0} \mathbf{M}_{\tau}$

$$\mathbf{M} = \begin{pmatrix} \mathbf{u} & 0 \\ 0 & \mathbf{u}^* \end{pmatrix} \begin{pmatrix} \sqrt{1+\mathbf{n}} & \sqrt{\mathbf{n}} \\ \sqrt{\mathbf{n}} & \sqrt{1+\mathbf{n}} \end{pmatrix} \begin{pmatrix} \mathbf{v} & 0 \\ 0 & \mathbf{v}^* \end{pmatrix}$$

where $\mathbf{u},\mathbf{v}\in U(N_{\mathrm{f}})$, and $\mathbf{n}=\mathrm{diag}(n_1,n_2,\cdots) \ \Rightarrow \ N_{\mathrm{f}}(2N_{\mathrm{f}}+1)$ variables in FP equation!

Is it possible to derive universal or quasi-universal results?

The Maximum Entropy Ansatz

Then (Mello, Pereyra, Kumar 1988; Amin, Baumann 2016),

- P is flat (Haar) wrt \mathbf{u} , $dP(\{\mathbf{u},\mathbf{n},\mathbf{v}\}) = P(\{\mathbf{n},\mathbf{v}\}) d\mu(\mathbf{u})$
- A closed set of equations for the moments of $n=\sum_a n_a$ is obtained,

$$\partial_{\tau} \langle \ln(1+n) \rangle \xrightarrow{\tau \to \infty} \frac{2N_{\rm f}}{N_{\rm f}+1} \mu$$

i.e. exponential growth

Exact Results

Consider the approximation

$$m_{ab}^{
m s}(au) = 2\sqrt{\omega_a\omega_b}\sum_{j=1}^{N_{
m s}} \Lambda_{ab}(au_j)\delta(au- au_j)\,,$$

where τ_i are uniformly distributed, and

$$\langle \Lambda_{ab} \rangle = 0, \qquad \langle \Lambda_{ab} \Lambda_{cd} \rangle = \sigma_{ab}^2 (\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc})$$

The transfer matrix takes the form

$$\mathbf{M}_{j} = \mathbb{1} + i \underbrace{\begin{pmatrix} \mathbf{a}_{j}^{*} & 0 \\ 0 & \mathbf{a}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{\Lambda}_{j} & \mathbf{\Lambda}_{j} \\ -\mathbf{\Lambda}_{j} & -\mathbf{\Lambda}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{j} & 0 \\ 0 & \mathbf{a}_{j}^{*} \end{pmatrix}}_{\mathbf{m}_{j}}, \qquad \mathbf{a}_{j} \equiv \operatorname{diag}(e^{i\omega_{1}\tau_{j}}, e^{i\omega_{2}\tau_{j}}, \cdots)$$

Exact Results

Consider the approximation

$$m_{ab}^{
m s}(au) = 2\sqrt{\omega_a\omega_b}\sum_{j=1}^{N_{
m s}} \Lambda_{ab}(au_j)\delta(au- au_j)\,,$$

where τ_i are uniformly distributed, and

$$\langle \Lambda_{ab} \rangle = 0, \qquad \langle \Lambda_{ab} \Lambda_{cd} \rangle = \sigma_{ab}^2 (\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc})$$

The transfer matrix takes the form

$$\mathbf{M}_{j} = \mathbb{1} + i \underbrace{\begin{pmatrix} \mathbf{a}_{j}^{*} & 0 \\ 0 & \mathbf{a}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{\Lambda}_{j} & \mathbf{\Lambda}_{j} \\ -\mathbf{\Lambda}_{j} & -\mathbf{\Lambda}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{j} & 0 \\ 0 & \mathbf{a}_{j}^{*} \end{pmatrix}}_{\mathbf{m}_{j}}, \qquad \mathbf{a}_{j} \equiv \operatorname{diag}(e^{i\omega_{1}\tau_{j}}, e^{i\omega_{2}\tau_{j}}, \cdots)$$

Will focus on the total occupation number. Define $\mathbf{R} = \mathbf{M}\mathbf{M}^{\dagger}$:

$$n(j) \; = \; rac{1}{4} \mathrm{Tr} \left[\mathbf{M}(j) \mathbf{M}^\dagger(j) - \mathbb{1}
ight] \; \equiv \; rac{1}{4} \mathrm{Tr} \left[\mathbf{R}(j) - \mathbb{1}
ight]$$

Exact Results

Consider the approximation

$$m_{ab}^{
m s}(au) = 2\sqrt{\omega_a\omega_b}\sum_{j=1}^{N_{
m s}} \Lambda_{ab}(au_j)\delta(au- au_j)\,,$$

where τ_i are uniformly distributed, and

$$\langle \Lambda_{ab} \rangle = 0, \qquad \langle \Lambda_{ab} \Lambda_{cd} \rangle = \sigma_{ab}^2 (\delta_{ac} \delta_{bd} + \delta_{ad} \delta_{bc})$$

The transfer matrix takes the form

$$\mathbf{M}_{j} = \mathbb{1} + i \underbrace{\begin{pmatrix} \mathbf{a}_{j}^{*} & 0 \\ 0 & \mathbf{a}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{\Lambda}_{j} & \mathbf{\Lambda}_{j} \\ -\mathbf{\Lambda}_{j} & -\mathbf{\Lambda}_{j} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{j} & 0 \\ 0 & \mathbf{a}_{j}^{*} \end{pmatrix}}_{\mathbf{m}_{i}}, \qquad \mathbf{a}_{j} \equiv \operatorname{diag}(e^{i\omega_{1}\tau_{j}}, e^{i\omega_{2}\tau_{j}}, \cdots)$$

Will focus on the total occupation number. Define $\mathbf{R} = \mathbf{M}\mathbf{M}^{\dagger}$:

$$\mathbf{R} = \begin{pmatrix} \mathbf{u} & 0 \\ 0 & \mathbf{u}^* \end{pmatrix} \begin{pmatrix} \sqrt{1+\mathbf{n}} & \sqrt{\mathbf{n}} \\ \sqrt{\mathbf{n}} & \sqrt{1+\mathbf{n}} \end{pmatrix}^2 \begin{pmatrix} \mathbf{u}^\dagger & 0 \\ 0 & \mathbf{u}^\intercal \end{pmatrix}$$

Single field

Only two parameters, n and $u=e^{i\phi}$. Computation is straightforward,

$$\begin{split} \langle \delta n \rangle &= (2n+1)\,\sigma^2 \\ \langle \delta \phi \rangle &= 0 \end{split} \qquad \begin{aligned} \langle \delta n \, \delta n \rangle &= 2n(n+1)\sigma^2 \\ \langle \delta n \, \delta \phi \rangle &= 0 \\ \langle \delta \phi \, \delta \phi \rangle &= \frac{\sigma^2}{8n(n+1)} (12n^2 + 12n + 1) \end{split}$$

Single field

Only two parameters, n and $u=e^{i\phi}$. Computation is straightforward,

$$\begin{split} \langle \delta n \rangle &= (2n+1)\,\sigma^2 \\ \langle \delta \phi \rangle &= 0 \end{split} \qquad \begin{aligned} \langle \delta n \, \delta n \rangle &= 2n(n+1)\sigma^2 \\ \langle \delta n \, \delta \phi \rangle &= 0 \\ \langle \delta \phi \, \delta \phi \rangle &= \frac{\sigma^2}{8n(n+1)}(12n^2 + 12n + 1) \end{split}$$

No ϕ dependence! \Rightarrow maximum entropy

Single field

Only two parameters, n and $u=e^{i\phi}$. Computation is straightforward,

$$\begin{split} \langle \delta n \rangle &= (2n+1)\,\sigma^2 \\ \langle \delta \phi \rangle &= 0 \\ &\qquad \qquad \langle \delta n \, \delta n \rangle = 2n(n+1)\sigma^2 \\ \langle \delta n \, \delta \phi \rangle &= 0 \\ &\qquad \qquad \langle \delta n \, \delta \phi \rangle = \frac{\sigma^2}{8n(n+1)}(12n^2 + 12n + 1) \end{split}$$

No ϕ dependence! \Rightarrow maximum entropy

The FP equation is

$$\frac{1}{\sigma^2} \frac{\partial}{\partial \tau} P(n; \tau) = \frac{\partial}{\partial n} \left[n(n+1) \frac{\partial}{\partial n} P(n; \tau) \right]$$

Only two parameters, n and $u = e^{i\phi}$. Computation is straightforward,

$$\begin{split} \langle \delta n \rangle &= (2n+1)\,\sigma^2 & \langle \delta n \, \delta n \rangle &= 2n(n+1)\sigma^2 \\ \langle \delta \phi \rangle &= 0 & \langle \delta n \, \delta \phi \rangle &= 0 \\ \langle \delta \phi \, \delta \phi \rangle &= \frac{\sigma^2}{8n(n+1)}(12n^2+12n+1) \end{split}$$

No ϕ dependence! \Rightarrow maximum entropy

The FP equation is

$$\frac{1}{\sigma^2}\frac{\partial}{\partial \tau}P(n;\tau) = \frac{\partial}{\partial n}\left[n(n+1)\frac{\partial}{\partial n}P(n;\tau)\right]$$

with solution $(n \gg 1)$

$$P(n;\tau) dn = \frac{1}{\sqrt{4\pi\sigma^2\tau}} \exp\left[-\frac{(\ln n - \sigma^2\tau)^2}{4\sigma^2\tau}\right] d\ln \tau$$

$$\Rightarrow n = e^{\sigma^2\tau} - 1$$

Six parameters now, n_1 , n_2 and

$$\mathbf{u}(\phi,\theta,\psi,\varphi) = e^{-\frac{i}{2}\phi} \begin{bmatrix} \cos\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi+\psi)} & -\sin\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi-\psi)} \\ \sin\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi-\psi)} & \cos\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi+\psi)} \end{bmatrix}$$

Six parameters now, n_1 , n_2 and

$$\mathbf{u}(\phi,\theta,\psi,\varphi) = e^{-\frac{i}{2}\phi} \begin{bmatrix} \cos\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi+\psi)} & -\sin\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi-\psi)} \\ \sin\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi-\psi)} & \cos\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi+\psi)} \end{bmatrix}$$

⇒ need 27 corre<u>lators</u>

Six parameters now, n_1 , n_2 and

$$\mathbf{u}(\phi,\theta,\psi,\varphi) = e^{-\frac{i}{2}\phi} \begin{bmatrix} \cos\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi+\psi)} & -\sin\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi-\psi)} \\ \sin\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi-\psi)} & \cos\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi+\psi)} \end{bmatrix}$$

⇒ need 27 correlators

Let

$$\langle (\Lambda_{11})^2 \rangle_{\delta\tau} = \sigma_1^2 \,, \qquad \langle (\Lambda_{22})^2 \rangle_{\delta\tau} = \sigma_2^2 \,, \qquad \langle (\Lambda_{12})^2 \rangle_{\delta\tau} = \langle (\Lambda_{12})^2 \rangle_{\delta\tau} = \sigma_\perp^2 \,.$$

Six parameters now, n_1 , n_2 and

$$\mathbf{u}(\phi,\theta,\psi,\varphi) = e^{-\frac{i}{2}\phi} \begin{bmatrix} \cos\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi+\psi)} & -\sin\frac{\theta}{2}\,e^{-\frac{i}{2}(\varphi-\psi)} \\ \sin\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi-\psi)} & \cos\frac{\theta}{2}\,e^{\frac{i}{2}(\varphi+\psi)} \end{bmatrix}$$

⇒ need 27 correlators

```
 \begin{aligned} & (\delta h^{(1)} \delta h^{(1)}_h) = \tilde{R}_h^{(1)}(\theta), \\ & (\delta h^{(1)} \delta h^{(1
```


$N_{\rm f}$ fields

$$\mathbf{u} = \left(\prod_{2 \le k \le N} \mathbf{A}(k)\right) \cdot [SU(N-1)] \cdot e^{i \mathbf{\lambda}_{N^2-1} \alpha_{N^2-1}} \;, \qquad \mathbf{A}(k) = e^{i \mathbf{\lambda}_3 \alpha_{(2k-3)}} \, e^{i \mathbf{\lambda}_{(k-1)^2+1} \alpha_{2(k-1)}} \; .$$

$N_{ m f}$ fields

$$\mathbf{u} = \left(\prod_{2\leqslant k\leqslant N}\mathbf{A}(k)\right)\cdot \left[SU(N-1)\right]\cdot e^{i\boldsymbol{\lambda}_{N^2-1}\alpha_{N^2-1}}\;, \qquad \mathbf{A}(k) = e^{i\boldsymbol{\lambda}_3\alpha_{(2k-3)}}\,e^{i\boldsymbol{\lambda}_{(k-1)^2+1}\alpha_{2(k-1)}}$$

 \Rightarrow need $\mathcal{O}(N_{\mathrm{f}}^{4})$ correlators!

$N_{\rm f}$ fields

$$\mathbf{u} = \left(\prod_{2\leqslant k\leqslant N} \mathbf{A}(k)\right) \cdot \left[SU(N-1)\right] \cdot e^{i\boldsymbol{\lambda}_{N^2-1}\alpha_{N^2-1}} \;, \qquad \mathbf{A}(k) = e^{i\boldsymbol{\lambda}_3\alpha_{(2k-3)}} \, e^{i\boldsymbol{\lambda}_{(k-1)^2+1}\alpha_{2(k-1)}} \;,$$

 \Rightarrow need $\mathcal{O}(N_{\rm f}^4)$ correlators!

Among other assumptions, consider

$$oldsymbol{\sigma}^2 = egin{pmatrix} \sigma_\perp^2/2 & \sigma_\perp^2 & \cdots & \sigma_\perp^2 \ \sigma_\perp^2 & \sigma_2^2/2 & \cdots & \sigma_\perp^2 \ dots & dots & dots & dots \ \sigma_\perp^2 & \sigma_\perp^2 & \cdots & \sigma_2^2/2 \end{pmatrix}$$

Conclusion

- Avoid relying on detailed model building, and take a coarse grained approach to the particle production in the early universe
- MEA captures the universal features arising from a Central Limit Threorem (concentration of measure)...
- · ...as long as there's no hierarchy of couplings
- Break from weak scattering limit ⇒ Random Matrix Theory?
- Next: include expansion and metric perturbations

Conclusion

- Avoid relying on detailed model building, and take a coarse grained approach to the particle production in the early universe
- MEA captures the universal features arising from a Central Limit Threorem (concentration of measure)...
- · ...as long as there's no hierarchy of couplings
- Break from weak scattering limit ⇒ Random Matrix Theory?
- Next: include expansion and metric perturbations

Thank you