ANALOG IC DESIGN COURSE PROJECT

Date of submission: 9/4/24

Objectives:

Design a 2-stage Op-amp in 180 nm technology targeting different applications.

- 1. High Gain
- 2. High Gain Band Width (GBW)
- 3. Low area
- 4. Low Power

General Specifications:

```
Supply voltage (VDD) = 1.8 V
```

Reference current source (Iref) = $20 \mu A$

Slew rate =
$$1V/\mu s$$

Phase margin $>= 60^{\circ}$

Load Capacitance (CL) = 10pF

$$ICMR = 0.6-1.4 \text{ V}$$

1. Problem 1: High Gain

DC gain
$$\geq = 75 dB$$

$$GBW > = 10MHz$$

$$Pdiss < =1mW$$

Lmax
$$\leq 2\mu m$$

2. Problem 2: High Gain Band Width (GBW)

$$Gain >= 40dB$$

$$GBW >= 70MHz$$

$$Pdiss < =1mW$$

$$Lmax \ll 2\mu m$$

3. Problem 3: Low area(area should be minimum)

Gain >= 40dB

GBW >= 10MHz

Pdiss < =1mW

Lmax $\leq 2\mu m$

4. Problem 4: Low Power (Power should be minimum)

Gain >= 40dB

GBW >= 10MHz

Pdiss < =0.25 mW

Lmax $\leq 2\mu m$

Analysis:

1. DC Analysis

- a. Report the schematic of the diff pair with DC OP point annotated: Id, Vgs, Vds, Vth, Vdsat, gm, gds, gmb, region.
- b. Check that all transistors operate in saturation.
- 2. AC Analysis.
 - a. Observe pole-zero analysis of your circuit.
 - b. Frequency response of your circuit.
 - c. Find Av, PM, Bandwidth, CMRR, PSRR.
 - d. Give a proper reason for selecting any value of any parameter.
- 3. Transient Analysis.
 - a. slew rate.
 - b. ICMR, OCMR.

EE517 Analog VLSI Lab-(Jan-May 24)-project				
SI. No	Roll	Name	batch	Topic
1	234102406	Chandan Bordoloi	Batch1	
2	234102407	Charugundla Sai Bharath	Batch1	Problem1 : LM OTA : gain
3	234102408	Deepika S	Batch1	optimisation
4	234102409	Harsh Kumar Tiwari	Batch1	
5	234102421	Prajakta Arvind Wakde	<u>Batch2</u>	
6	234102422	Saurabh kumar	Batch2	Problem 4: LM OTA :Power
7	234102410	Kartali Chanukya	<u>Batch2</u>	<u>optimisation</u>
8	234102412	Kotapati Vamshi Krishna	<u>Batch2</u>	
9	234102414	Pushpendra Gurjar	<u>Batch3</u>	
10	234102417	Soham Kundu	<u>Batch3</u>	Problem 3 : LM OTA:Area
11	234102418	Varunkumar Reddy Abbannagari	<u>Batch3</u>	optimisation LM
12	234102419	Ameen Mohammed	<u>Batch3</u>	
13	234102420	Gangala Venkata Sai	<u>Batch4</u>	Problem 2 :OTA :bandwidth
14	234102411	Kasi Viswanadham Naidu Bodepu	<u>Batch4</u>	optimisation
15	234102413	Nagendra Kundrapu	<u>Batch4</u>	<u>Optimisation</u>
Total no: of students: 15				