Cleanroom Software Engineering

MADE BY: HARSHITA SHARMA

UNIT 2

- Approach
- ► Functional Specification
- Design and Testing

THE APPROACH

What is it?

- Cleanroom
- Clean as you proceed
- Formal modelling and verification method
- Specialized specification approach
- Unique verification method
- rigourous

Why Cleanroom Software Engineering?

- What's the idea behind it?
- Advantages
 - Saved from rework
 - Less effort
 - Reduced cost
 - More robust software
- Emphasis on mathematical verification of correctness before coding
- Certification of software reliability
- Bottom line

Traditional strategy vs CSE

- Commencement
- Idea
- Cost
- Certifies reliability
- Flow

Representation

- Box structures
- Purpose: Encapsulation
- Step 1: Box structure designing
- Step 2: Correctness verification
- Step 3: Statistical usage testing

The Cleanroom Process Model

Increment Planning

Requirements Gathering

Box Structure Specification

Formal Design

Correctness Verification

The Cleanroom Process Model

Code Generation, Inspection and Verification

Statistical Test Planning

Statistical Use Testing

Ceritfication

Modelling Activities

Increment Planning

Requirements Gathering

Box Structure Specification

Formal Design

Formal Verification Activities

Correctness Verification

Code Generation, Inspection and Verification

Statistical Test Planning

Statistical Use Testing

Ceritfication

Code Generation, Inspection and Verification

□ BSS translated□ to□ Programming□ Language

Technical

Reviews

(semantics)

and
syntactic)

Correctness
 Overification of
 ♦ the source
 code

Certification

FUNCTIONAL SPECIFICATION

- Done by BSS
- Modelling activity
- ▶ What is a box?

Initial Box Stepwise refinement Final Box

Hierarchy of Box Refinement

- Advantage partition for analyst
- Property of each box referential transparency

Black Box and its Specification

State Box and its Specification

Clear Box and its Specification

Refinement Approach using BSS

CLEANROOM DESIGN

Basics

- Structured programming
- ▶ 2 things to be refined:
 - Functions
 - Data
- 2 parts:
 - Design refinement
 - Design Verification

Design Refinement

Done using clear box specification

Program function f

Subfunction sequence implementing f (g + h)

Conditional constructs implemented in g and h

Incorporating Correctness Verification

How is CV done?

- ► Formal CV done at each level of refinement
- Generic correction conditions are attached to various structured programming constructs

Examples of CV conditions

- ▶ If a function f is expanded into a sequence g and h, the correctness condition for all input to f is
- Does g followed by h do f?
- When a function p is refined into a conditional of the form, if <c> then q, else r, the correctness condition for all input to p is
- Whenever condition c is true, does q do p; and whenever c is false, does r do p?

- When function m is refined as a loop, the correctness conditions for all input to m are
- Is termination guaranteed?
- Whenever c is true, does n followed by m do m; and whenever c is false, does skipping the loop still do m?
- ► Each time a clear box is refined to the next level of detail, these correctness conditions are applied.

Design Verification

Does CV for a procedural design.

Procedural Design

Add correctness conditions

Prove the conditions are true for all cases

Question

Design and verify a small program that finds the integer part y of a square root of a given integer x.

Solution

- Design and verify a small program that finds the integer part y of a square root of a given integer x.
- Step 1: Show procedural design (flowchart)
- Step 2: Add correctness conditions
- Step 3: Design Verification (verify the conditions hold true in all cases)

Final flowchart will look like

CLEANROOM TESTING

Basics

- ▶ Traditional vs Cleanroom Approach
- 2 parts:
 - Statistical Use Testing
 - Certification

Statistical Use Testing

- ▶ What is it?
 - ► Testing as per intended use by users
 - ▶ Why statistical?

Certification

- Specifies reliability
- Uses MTTF
- Advantages:
 - Reuse
 - ► Each component will have a certified reliability

Certification Creates three models:

Sampling Model

Component Model

Certification Model

The Certification Process

