Magnetismo

Método y recomendaciones

♦ PROBLEMAS

• Campo magnético

Partículas

- Un protón con una energía cinética de 4,0·10⁻¹⁵ J penetra perpendicularmente en un campo magnético uniforme de 40 mT. Calcula:
 - a) El módulo de la fuerza a la que está sometido el protón dentro del campo.
 - b) El tipo de movimiento realizado por el protón, la trayectoria que describe y el radio de esta.

Datos: $q_p = 1.6 \cdot 10^{-19} \text{ C}; m_p = 1.67 \cdot 10^{-27} \text{ kg}.$ (A.B.A.U. extr. 22)

Rta.: a) $F_B = 1.4 \cdot 10^{-14} \text{ N}$; b) R = 0.57 m.

- 2. Una partícula de masa 8 ng y carga eléctrica $-2 \mu C$ entra en una región del espacio en la que hay un campo magnético $\vec{B} = 3 \vec{j}$ T, con una velocidad $\vec{v} = 6 \vec{i}$ km·s⁻¹. Calcula:
 - a) La velocidad angular con que se mueve.
 - b) La intensidad de campo eléctrico (vector) que se debe aplicar para que la partícula siga una trayectoria rectilínea.

(A.B.A.U. ord. 22)

Rta.: a) $\omega = 7.5 \cdot 10^5 \text{ rad/s}$; b) $\overline{E} = -1.80 \cdot 10^4 \overline{k} \text{ N/C}$.

- 3. Un electrón se acelera desde el reposo mediante una diferencia de potencial de 1,0·10³ V, penetrando a continuación, perpendicularmente, en un campo magnético uniforme de 0,20 T. Calcula:
 - a) La velocidad del electrón al entrar en el campo magnético.
 - b) El radio de la trayectoria del electrón.
 - c) El módulo, la dirección y el sentido del campo eléctrico uniforme necesario para que el electrón no experimente desviación a su paso por la región en la que existen el campo eléctrico y el magnético. Datos: $q_e = -1.6 \cdot 10^{-19} \text{ C}$; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$. (A.B.A.U. extr. 19)

Datos: $q_e = -1.6 \cdot 10^{-19} \text{ C}$; $m_e = 9.1 \cdot 10^{-31} \text{ kg}$. **Rta.:** a) $v = 1.9 \cdot 10^7 \text{ m/s}$; b) $r = 5.4 \cdot 10^{-4} \text{ m}$; c) $|E| = 3.8 \cdot 10^6 \text{ N/C} \perp \overline{v} \perp \overline{B}$.

- 4. Un protón se mueve en un círculo de radio r = 20 cm, perpendicularmente a un campo magnético B = 0.4 T. Determina:
 - a) La velocidad del protón.
 - b) El período del movimiento.
 - c) El campo eléctrico necesario para anular el efecto del campo magnético.

Datos: $q_p = 1.6 \cdot 10^{-19} \text{ C}$; $m_p = 1.67 \cdot 10^{-27} \text{ kg}$.

(A.B.A.U. ord. 19)

Rta.: a) $v = 7,66 \cdot 10^6 \text{ m/s}$; b) $T = 1,64 \cdot 10^{-7} \text{ s}$; c) $E = 3,07 \cdot 10^6 \text{ N/C}$.

Corrientes

- 1. Dos conductores rectilíneos, paralelos e infinitos, están situados en el plano yz, en la dirección del eje z, separados una distancia de 80 cm. Si por cada uno de ellos circula una corriente de 12 A en sentidos contrarios, calcula:
 - a) La fuerza por unidad de longitud que se ejercen mutuamente, indicando la dirección y el sentido de esta
 - b) El vector campo magnético en el punto medio de la distancia que separa los conductores.

DATO: $\mu_0 = 4\pi \ 10^{-7} \text{ T m A}^{-1}$. **Rta.:** a) $F/l = 3.6 \cdot 10^{-5} \text{ N/m}$; b) $\overline{B} = -1.20 \cdot 10^{-5} \overline{\textbf{j}} \text{ T}$ (A.B.A.U. ord. 23)

2. Por un hilo conductor rectilíneo e infinitamente largo, situado sobre el eje *X*, circula una corriente eléctrica en el sentido positivo del dicho eje. El valor del campo magnético producido por dicha co-

rriente es de $6\cdot10^{-5}$ T en el punto A(0, $-y_A$, 0), y de $8\cdot10^{-5}$ T en el punto B(0, $+y_B$, 0). Sabiendo que $y_A + y_B = 21$ cm, determina:

- a) La intensidad que circula por el hilo conductor.
- b) El módulo y la dirección del campo magnético producido por dicha corriente en el punto de coordenadas (0, 8, 0) cm.

Dato: $\mu_0 = 4 \pi 10^{-7} \text{ T·m·A}^{-1}$.

(A.B.A.U. extr. 21)

Rta.: a) I = 36 A; b) $\overline{B} = 9.10^{-5} \overline{\textbf{k}} \text{ T}$.

- 3. Dos hilos conductores muy largos, rectilíneos y paralelos, se disponen verticalmente separados 8 cm. Por el conductor situado a la izquierda circula una corriente de intensidad 30 A, y por el situado a la derecha, otra de 20 A, ambas hacia arriba. Calcula:
 - a) El campo de inducción magnética en el punto medio entre los dos conductores.
 - b) La fuerza por unidad de longitud ejercida sobre un tercer conductor vertical situado entre los dos conductores iniciales, a 3 cm del conductor de la izquierda, por el que circula una corriente de 10 A dirigida hacia abajo.
 - c) ¿Es conservativo el campo magnético creado por el conductor? Justifícalo.

Dato: $\mu_0 = 4 \pi \ 10^{-7} \ \text{T·m·A}^{-1}$.

(A.B.A.U. ord. 18)

Rta.: a) \overline{B} = 5,00·10⁻⁵ T; b) \overline{F} / l = 1,2·10⁻³ N/m hacia el 2.° conductor.

♦ CUESTIONES

• Campo magnético

Partículas

- 1. Una partícula tiene una carga de 5 nC y penetra en una región del espacio donde hay un campo magnético $\overline{\bf B} = 0.6$ $\overline{\bf i}$ T con una velocidad $\overline{\bf v} = 8 \cdot 10^6$ $\overline{\bf j}$ m·s⁻¹, describiendo una circunferencia de 2 µm de radio. El valor de la masa de la partícula es:
 - A) 7.5×10^{-22} kg.
 - B) 4.5×10^{-22} kg.
 - C) 2.5×10^{-22} kg.

(A.B.A.U. ord. 24)

- 2. Un núcleo del isótopo ⁴2He describe una trayectoria de radio *r* en un campo magnético. Sin variar las condiciones del campo magnético ni de la dirección o velocidad de entrada, hacemos incidir un núcleo de ³2He que describirá una trayectoria de radio:
 - A) Menor.
 - B) Mayor.
 - C) Igual.

(A.B.A.U. ord. 23)

- 3. Dos partículas con cargas, respectivamente, Q_1 y Q_2 , describen trayectorias circulares de igual radio en una región en la que hay un campo magnético estacionario y uniforme. Ambas partículas:
 - A) Deben tener la misma masa.
 - B) Deben tener la misma velocidad.
 - C) No es necesario que tengan la misma masa ni velocidad.

(A.B.A.U. extr. 21)

- 4. Una partícula cargada penetra en una región donde existe un campo magnético uniforme perpendicular a la velocidad de la partícula. El radio de la órbita descrita:
 - A) Aumenta si aumenta la intensidad del campo magnético.
 - B) Aumenta si aumenta la energía cinética de la partícula.
 - C) No depende de la energía cinética de la partícula.

(A.B.A.U. ord. 21, extr. 19)

- 5. Una partícula se mueve en un círculo de radio r perpendicularmente a un campo magnético, $\overline{\textbf{\textit{B}}}$. Si duplicamos el valor de $\overline{\textbf{\textit{B}}}$, el valor de r:
 - A) Se duplica.
 - B) Se reduce a la mitad.
 - C) No varía.

(A.B.A.U. extr. 20)

- 6. Un protón y una partícula α entran perpendicularmente en el seno de un campo magnético estacionario y uniforme de inducción, \overline{B} , describiendo trayectorias circulares de igual radio. El cociente entre las velocidades de la partícula α y del protón, $v(\alpha) / v(p)$, es:
 - A) 0.5
 - B) 2
 - C) 8

DATOS: $m(\alpha) = 4 m(p)$; $q(\alpha) = 2 q(p)$.

(A.B.A.U. ord. 20)

- 7. Si una partícula cargada se mueve en un campo magnético y este ejerce una fuerza, dicha fuerza siempre es perpendicular a la velocidad de la partícula.
 - A) Verdadero.
 - B) Falso.
 - C) Depende del módulo de la velocidad de la partícula.

(A.B.A.U. extr. 18)

- 8. Si una partícula cargada de masa despreciable penetra en un campo magnético uniforme con una velocidad que forma un ángulo de 180° con las líneas del campo, la trayectoria que describe la partícula es:
 - A) Rectilínea.
 - B) Circular.
 - C) Parabólica.

(A.B.A.U. ord. 18)

Corrientes

- 1. La relación entre el módulo del campo magnético B_1 creado por una corriente rectilínea indefinida I en un punto situado a la distancia perpendicular r del conductor y el B_2 creado por otra corriente 2 I en un punto situado a la distancia 3 r, B_1/B_2 , es:
 - A) 2/3
 - B) 9 / 2
 - C) 3 / 2

(A.B.A.U. extr. 23)

- 2. Por un conductor recto muy largo circula una corriente de 1 A. El campo magnético que se origina en sus cercanías se hace más intenso cuanto:
 - A) Más grueso sea el conductor.
 - B) Mayor sea su longitud.
 - C) Más cerca del conductor esté el punto donde se determina.

(A.B.A.U. extr. 17)

- 3. Dos conductores idénticos A y B paralelos, con corrientes respectivas + *I* y *I* (entrando y saliendo del plano del papel) están separados una distancia *a*. Un tercer conductor, C, paralelo e idéntico a los anteriores y con corriente + *I* (entrando) se sitúa en *a*/2. Sobre él se ejerce una fuerza:
 - A) Dirigida hacia A.
 - B) Dirigida hacia B.
 - C) No se ejerce ninguna fuerza sobre él.

(A.B.A.U. ord. 17)

• Inducción electromagnética

- 1. Sobre una mesa, en dirección horizontal, colocamos una espira (bobina) y en su interior situamos un imán en forma de barra con sus polos norte y sur en dirección vertical. Al acercar/alejar una barra de hierro hacia el interior de la espira, en la espira:
 - A) Se induce una corriente eléctrica.
 - B) No se induce corriente.
 - C) No se tiene información suficiente para saber si se induce corriente eléctrica.

(A.B.A.U. extr. 23)

- 2. Una espira metálica es recorrida por una corriente eléctrica que disminuye en el tiempo. En la espira:
 - A) Se induce una corriente eléctrica que tiene el sentido contrario al de la corriente inicial, oponiéndose a esta.
 - B) No se induce corriente eléctrica alguna.
 - C) Se induce una corriente que tiene el mismo sentido que la corriente eléctrica inicial, reforzando su valor.

(A.B.A.U. extr. 22)

- 3. La fuerza electromotriz inducida en un circuito tiende:
 - A) A disminuir el flujo magnético que atraviesa el circuito.
 - B) A aumentar el flujo magnético que atraviesa el circuito.
 - C) Pueden ser correctas las dos opciones anteriores.

(A.B.A.U. ord. 22)

- 4. Se induce corriente en una espira conductora si: A) Es atravesada por un flujo magnético constante.
 - B) Gira en el seno de un campo magnético uniforme.
 - C) En ambos casos.

(A.B.A.U. extr. 20)

- 5. La orientación que debe tener la superficie de una espira en un campo magnético uniforme para que el flujo magnético sea nulo es:
 - A) Paralela al campo magnético.
 - B) Perpendicular al campo magnético.
 - C) Formando un ángulo de 45° con el campo magnético.

(A.B.A.U. extr. 17)

Actualizado: 13/06/24

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.