GEOMETRIA ANALÍTICA (2024-1)

Prova 1

R Ex/UNIFAL-MG

Ciencia da Computação

Frof Tiego J. Arruda

A:

Exercícios Propostos¹

1. (2,5 pt.) Considere as matrizes $A = (a_{ij})_{2\times 2}$, tal que $a_{ij} = \begin{cases} 2j - i^2, & i = j \\ i + 1, & i \neq j \end{cases}$, e $B = (b_{ij})_{2\times 2}$, onde $b_{ij} = i + j$. Determine:

(d) (0,5 pt.)
$$tr(A+B) - det(B^7)$$

(b) (0,5 pt.)
$$2A - 3B$$

(c) (0.5 pt.)
$$B^2 - BA^t$$

(e) (0,5 pt.)
$$\det(3B^tA^{-1})$$

(2,5 pt.) Resolva os exercícios abaixo.

(a) (1,0 pt.) Calcule
$$x$$
 para que $B = \begin{pmatrix} 1 & x & 0 \\ 0 & 0 & -2 \\ x-1 & 15-3x & 0 \end{pmatrix}$ seja invertível.

(2,5 pt.) Resolva os exercícios abaixo.

(a) (1,0 pt.) Calcule
$$x$$
 para que $B = \begin{pmatrix} 1 & x & 0 \\ 0 & 0 & -2 \\ x-1 & 15-3x & 0 \end{pmatrix}$ seja invertível.

(b) (1,5 pt.) Determine o valor de y na equação
$$\begin{vmatrix} -3 & 1 & -2 & 3 \\ 6 & 2 & y^3 & -1 \\ 45 & 10 & 5 & 0 \\ 3 & 1 & 2 & 0 \end{vmatrix} = -30. \begin{vmatrix} -2 \cdot (3)^2 & 4 \cdot 3 \cdot 30 \\ -2 \cdot (3)^2 & 4 \cdot 3 \cdot 30 \\ -30 \cdot 30 & -30 \cdot 30 \end{vmatrix}$$

4. (2,0 pt.) Verifique se $A = \begin{pmatrix} -11 & 2 & 4 \\ -4 & 0 & 2 \\ 6 & -1 & -2 \end{pmatrix}$ invertível usando a regra de Sarrus e, em caso afirmativo, calcule a sua inversa usando o método da matriz adjunta.

5.) (2,0 pt.) Considere a equação matricial

$$\begin{vmatrix} -3 & 2 & 4 \\ 0 & 0 & 2 \\ 2 & 1 & -2 \end{vmatrix} = -2 \cdot \begin{vmatrix} -3^2 \\ 2 & 1 \end{vmatrix}$$

$$= -2 \cdot (3 - 4)$$

onde todas as matrizes são quadradas e de mesma ordem 2 x 2.

(a) (0,5 pt.) Determine X em função das matrizes A, B e C e comente se é necessária alguma imposição à matriz A para se resolver a equação.

 $AX + C^t = 3B - 2X$

(b) (1,5 pt.) Sendo $A = \begin{pmatrix} -1 & 1 \\ -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}$ e $C = \begin{pmatrix} 1 & 3 \\ 0 & 5 \end{pmatrix}$, determine a matrix X e seu traço. $\chi = \chi \left(\frac{3b}{x} - 2 \right)$ $\chi = \chi \left(\frac{3b}{x} - 2 \right)$ $\chi = \chi \left(\frac{3b}{x} - 2 \right)$ $\chi = \chi \left(\frac{3b}{x} - 2 \right)$

$$AX = x(38 - 2)$$
 $AX = x(38 - 2)$
 $AX = x(38 - 2)$
 $AX = x(38 - 2)$

$$AX + C^{\xi} = 2(\frac{3b}{2} - x)$$

 $AX = 2(\frac{3b}{2} - x) - C^{\xi}$

oque o nome completo nas folhas de prova e escreva o resultado final das questões à caneta Respostas sem resolução e/ou justificativa não serão consideradas. Não é permitido o uso de quaisquer equipamentos eletrônicos. Data da Avaliação: 20/03/2024

(1) (a)
$$A = \begin{bmatrix} 2 \cdot 1 - 1^2 & 2 + 1 \\ 1 + 1 & 2 \cdot 2 - 2^2 \end{bmatrix} = \begin{bmatrix} 2 - 1 & 3 \\ 2 & 4 - 4 \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 0 \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$

$$2A-3B = -4 -3$$

-5 -12

c)
$$B^2 = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
. $\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$. $\begin{bmatrix} 2 \cdot 2 + 3 \cdot 3 \\ 3 \cdot 2 + 4 \cdot 3 \end{bmatrix}$. $\begin{bmatrix} 2 \cdot 2 + 3 \cdot 3 \\ 3 \cdot 2 + 4 \cdot 3 \end{bmatrix}$. $\begin{bmatrix} 2 \cdot 2 + 3 \cdot 4 \\ 3 \cdot 2 + 4 \cdot 3 \end{bmatrix}$. $\begin{bmatrix} 3 \cdot 2 + 4 \cdot 4 \\ 48 \cdot 25 \end{bmatrix}$

B · A^t =
$$\begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}$$
 · $\begin{bmatrix} 1 & 2 \\ 2 & 2 \\ 3 & 4 \end{bmatrix}$ = $\begin{bmatrix} 2 \cdot 1 + 3 \cdot 3 \\ 3 \cdot 4 + 4 \cdot 3 \end{bmatrix}$ 2 · 2 · 2 · 3 · 0 $\begin{bmatrix} 2 & 4 \\ 4 & 3 \\ 4 & 4 \end{bmatrix}$ = $\begin{bmatrix} 3 & 4 \\ 4 & 4 \end{bmatrix}$

$$B^{2}$$
 BA^{t} $= \begin{bmatrix} 13 & 18 \\ 18 & 25 \end{bmatrix}$ $= \begin{bmatrix} 8 & 4 \\ 15 & 6 \end{bmatrix}$ $= \begin{bmatrix} 5 \\ 3 & 19 \end{bmatrix}$

d)
$$tr(A+B) - det(B^{\dagger})$$
 $= tr(A) + tr(B) - (det(B))^{\dagger}$
 $= 3 = 2.4 - 3.3 = 8.9 = -1$

1.42+1																
(2)	0	1	-1	0	3	=	-1.	(-1)) ⁵ .	D14	17 -		- 12			
	0	2	7	0	0	-	214		1 8	PRO E	8月11日	· Bir				
	0	- 1	0	2	- 3	_	1	- 1	0	3	= + 021	. D&1	+ 035.	Daa		
	-1	0	0	0	0		2	1	0	0	2.	1	0 (3)	+	103	1
Ta	0	4	4	1	2	1	-1	0	2	-3	1 1 1 1 1 1	0	2-3		-1 2 -3	>
							4	4	1	2		4	12		412	

$$= -2 \cdot \begin{bmatrix} -1 \cdot D_{11} + 3 \cdot D_{13} \\ -2 \cdot \begin{bmatrix} -2 \cdot 3 + 3 \cdot D_{13} \\ -2 \cdot 42 \end{bmatrix} + \begin{bmatrix} 2 \cdot -3 + 3 \cdot D_{13} \\ -2 \cdot \begin{bmatrix} -7 + 3 \cdot -8 \\ -7 - 24 \end{bmatrix} + \begin{bmatrix} 2 \cdot -3 + 3 \cdot -9 \\ -2 \cdot \begin{bmatrix} -7 - 24 \end{bmatrix} + 7 - 27$$

$$= -2 \cdot -31 - 20$$

$$= 62 - 20$$

$$= 42$$

Alum : Lucas Carrijo Terrari

(5) a)
$$Ax + C^{t} = 3B - 2x$$

 $Ax = 3B - 2x - C^{t}$
 $Ax + 8x = 3B - C^{t}$
 $(x + 2) = 3B - C^{t}$
 $(x + 2) = 3B - C^{t}$

$$\begin{array}{c|c}
A\chi + & \chi = 3B - C^{t} \\
\chi (A + \chi) = 3B - C^{t}
\end{array}$$

A deve ser inversivel, ou determinante não pode ser O

Adj
$$A = \begin{bmatrix} 3 & -1 \\ 2 & -1 \end{bmatrix}$$

9-1 -6-3

-3-5

6-0

X =

$$A^{-1} = \begin{bmatrix} -3 & 1 \\ -2 & 1 \end{bmatrix}$$
 $C^{t} = \begin{bmatrix} 1 & 3 \\ 0 & 5 \end{bmatrix}$

$$= \begin{bmatrix} 8 & -9 \\ 6 & -8 \end{bmatrix} \cdot \begin{bmatrix} -3 & 1 \\ -2 & 1 \end{bmatrix} + \begin{bmatrix} 4 & -\frac{1}{2} \\ 3 & -4 \end{bmatrix} \quad \begin{bmatrix} \chi_{\pm} & -2 & -\frac{1}{2} \\ 1 & -6 \end{bmatrix}$$