Risikoanalysen in der IT

Risiko: Potenzielles Schadensereigniss / Unerwünschtes Ereignis (Technisch, Finanziell, Physisch, Personell), Risiken: Erkennen, Bewerten, Massnahmen, Protokollieren / Dokumentieren, Zukünftige Ereignisse - Fragen: How Save? (Analyse, estimation), How safe is enough? (Beurteiliung, assessment), How safe is too safe (Management), **Messung:** R = f(F,C) F: Frequency, C: Consequence - Begriffe (Normal): Gefährdung: Potenzielle Schadensquelle, Bedrohung: Alles was Schwachstelle ausnutzen kann - Begriffe (ISO 31000): Risiko: Auswirkung der Unabwägbarkeit auf Schutzziele, Auswirkung: Abweichung vom Erwarteten (positiv / negativ) – Welche Gefährdungen / Szenarien / Auswirkungen gibt es?, Unsicherheit: Informationsmangel in Bezug auf ein Ereignis, eine Entwicklung, Wahrscheinlichkeit ist ein Mass für Unsicherheit – Wie wahrscheinlich ist es?, Schutzziele (objectives): unterschiedliche Aspekte, relevant auf verschiedenen Ebenen – Welche Ziele gibt es? | IT: Probability: Statistische Wahrscheinlichkeit, Likelihood: Geschätzte Wahrscheinlichkeit | Analysen: Risikoanalyse: R= (A,C,P) oder (A,B,C,P,U,K) – A: Accident, C: Consequence, P; Probability, B: C hängt von Barrieren-Wirksamkeit ab, U: A und C enthalten Ungewissheiten, K: U hängt von Kenntnisstand K ab - Vulnerability-Analyse: V = (B,C,P,U,K|A), K|A: Wissen Anfälligkeit best. Stelle gegen A, Analyse Systemschwachstelle – Resilence-Analyse: Re = (B,C,P,U,K|Ai) K|Ai: Wissen Anfälligkeit best. Stelle gegen alle Arten von Bedrohungen, Mass Widerstandskraft | Risikoanalytik Probleme: Wenig Zeit, Schnelle Systementwicklung, Bedeutung IT, Knappe Ressourcen, Komplexität | Risikoanalyse: Ziele definieren, Def. Unsicherheiten / Ungewissheiten (gemessen mit WSK), Definition unterswünschte Ereignis (Abweichung vom Ziel), Auswirkung + Ausmass - As Low As Reasonable Practicable - Umgekehrte Pyramide, Unten: Tiefe Einzelrisiken, Massnahmen getroffen, Inkaufnahme, Mitte: Normen, Standards, Anforderungen erfüllt, Inkaufnahme höhere Risiken, Oben: Risiko vs "Konsument"-Risiko

Methoden:

Fishbone: Häufigkeit: Nein, Ausmass: Nein, Auswirkungen: Nein, Unsicherheiten: Nein, Ursachen: Ja – Fishbone / Ishikawa, Brainstorming, Def. Auslöser / Ursachen

Master Logic Diagramm: Häufigkeit: Nein, Ausmass: Nein, Auswirkungen: Nein, Unsicherheiten: Nein, Ursachen: Ja – Ursachen / Auswirkungen Ereignis, Hierarchie von Ursachen, grafisch dargestellte Liste

Bow-Tie: Häufigkeiten: Nein, Ausmass: Prosa, Auswirkungen: Indirekt, Unsicherheiten: Nein, Ursachen: Ja, Ursachen / Auswirkungen, Ursachen – Ereignis: Präventive Spärren, Ereignis – Schaden: Schadensmindernde Sperren, Mehrere Sperren pro Verbindung, Eskalationsfaktor: Pro Sperre EF, Schwächt Wirkung Sperre, Massnahmen zur Verhinderung Abschwächung Frequency / Consequence-Diagramm & Risikomatrix: X-Achse: Ausmass, Y-Achse: Häufigkeit, Häufigkeit / Ausmass pro Top-Event eintragen, Akzeptanzlinie: Bewertung (Was ist noch akzeptabel?) unterhalb: gute Risiken, oberhalb: schlechte R, Linie durch Mgmt / Auftraggeber festgelegt, evtl. Ausschluss best. Ausmasse / Häufigkeiten – Verschiebung Punkte Fishbone, Bow-Tie, MLD: Top-Event wird benötigt.

Failure Mode and Effects Analysis (FMEA): Ausfallarten / Konsequenzen, Qualitative Untersuchung von Einheiten auf Ausfallarten und deren Auswirkungen auf übergeordnetes System, induktiv, Prozess: PDCA, Gründe FMEA: Umsetzung Unternehmensziele (Null-Fehler-Produkte), steigende Kunden-Req., verschärfte gesetzl. Auflagen, Einsatz über gesamten Entwicklungsprozess, meist in Risiko- / Qualitätsmanagement Fertigungsindustrie – Ablauf: 1. Ablauf alle Einheiten (E), 2. Identifizierung Ausfallarten für jede E., 3. Bestimmung Auswirkungen jeder Ausfallart auf andere E und Auswertung Auswirkung auf System / Systemzustand, 4. Klassifizierung nach Gefahr pro Ausfallart, 5. Ermittlung Vorgehensweise Reduktion Ausfallhäufigkeit / - wirkung, 6. Ausfüllen Formelblatt – Arten: System-, Konstruktions-, Produkt-, Prozess-FMEA – Spalten: 1. Baugruppe/Teil/Prozess/Schritt, 2. Ausfallart (Entwicklung und Gebrauch), 3. Fehlerfolgen (Worst Case), 4. Control Item D (Sicherheitsrelevant: J/N), 5. Fehlerursachen (Mensch, Maschine, Material, Methode, Mitwelt), 6. Verhütungs- / Prüfmassnahmen, 7. Auftreten (1-10), 8. Bedeutung (1-10), 9. Entdeckbarkeit (1-10) vor Auslieferung an Kunde, ausgehend von betrachteten Arbeitsphase, E > 1 (Fehler erst mind. Im übernächsten Arbeitsschritt entdeckt), E = 0 (Design-Fehler, Entdeckt bei internem Kunden, Fertigungsfehler), E = 10 (Entdeckt bei externem Kunden, Lebensdauerursachen), 10. Risikoprioritätszahl RPZ (= A*B*E) RPZmin = 1, mittel = 125, max = 1000, Orientierungsgrösse, RPZ mit grossem A vorrangig bearbeiten, A >= 8, b >= 8: intensive Betrachtung - Kunde: derjenige bei dem der ungünstigste Fall auftreten kann (K-FMEA: meist Endbenutzer Produkt – P-FMEA: letzter Arbeitschritt, bei dem der Fehler zu Störungen führen kann)

ZuverlässigkeitskenngrössenSchätzung:

WSK / Probability (Pr): Dimensionslose Grösse zwischen 0 und 1 (Basis: Axiomsystem Kolmogoroff), klassisch: frequentistisch: relative Häufigkeit (bzw. %), subjektiv: Grad Erwartung / Vertrauen eines individuums – Häufigkeit: absolut: Anzahl eingeroffener Ereignisse n, relativ: bezogen auf ein Ereignis p = n/N (p =

Evt. Weiter Ab Slide 14 (Grundlagen Zuverlässigkeitsanalyse)

Badewannenkurve: Verlauf Ausfallrate, 3 Phasen: sinkend (Frühausfälle, Optimierungsphase), konstant (zufällige ausfälle), steigend (Verschleiss, Alter) – **Mean Time To Failure (mittlere Lebensdauer):** MTFF = t betriebszeit /

n_GesamtzahlAusfälleBeobachtungszeitraum, entspricht Kehrwert Ausfallrate lambda_konstant = 1/MTFF, nur bei nicht instandsetzbaren Einheiten – **Mean Time Between Failures** (mitt. Ausfallabstand), nur bei konstanter Ausfallrate, entspricht Kehrwert Ausfallrate, nur bei instandsetzbaren E.,

Zuverlässigkeitsblockdiagramme:

Zeigt Funktionieren eines Systems, grafische Darstellung Boolsche Gleichung, Seriensystem, Parallelsystem, hat Eingang E und Ausgang A, Berechnung System-Zustandswahrscheinlichkeit (Ausfall- / Überlebenswsk) – **Serie**: System funktioniert wenn beide Komponenten funktionieren, fällt aus wenn eine ausfällt – **Parallel**: System funktioniert wenn eine Komp. Ausfälle, fällt aus wenn beide ausfallen – Boole: 1: Komp funktioniert, 0: funktioniert nicht – **Überlebenswsk**: P(Xi = 1) = P(xi) = pi - Ausfallwsk: P(Xi = 0) = P(nicht xi) = qi - pi + qi = 1 bzw. Pi = 1-qi

- System-Überlebenswahrsch.:	- System-Ausfallwahrsch.:	Seriensyste $W_1 = \{x_1, x_2, x_3, x_4, x_5, x_6, x_6, x_6, x_6, x_6, x_6, x_6, x_6$			Parallels $W_1 = \{x_1$			
$R_{\mathcal{S}} = P(X_{\mathcal{S}}) = P(x_1 \wedge x_2)$	$F_P = P(\overline{X}_P) = P(\overline{x}_1 \wedge \overline{x}_2)$	Wi	<i>x</i> ₁	<i>X</i> ₂	- W _i	<i>x</i> ₁	X ₂	
$= \rho_1 \cdot \rho_2$ = $(1 - q_1) \cdot (1 - q_2)$ = $1 - q_1 - q_2 + q_1 \cdot q_2$	$= q_1 \cdot q_2$ = $(1 - p_1) \cdot (1 - p_2)$ = $1 - p_1 - p_2 + p_1 \cdot p_2$	Wi	11:	1	W ₁ W ₂ W ₃	1 0 1	0 1 1	
- System-Ausfallwahrsch.:	- System-Überlebenswahrsch.:	$S = x_1 \cdot x_2$ $R = p_1 \cdot p_2$			$S = x_1 (1 - x_2) + (1 - x_1) x_2 + x_1 x_2 = \dots = x_1 + x_2 - x_1 x_2$		$(x_1)x_2 + x_1x_2 =$	
$F_S = P(\overline{X}_S) = P(\overline{x}_1 \vee \overline{x}_2)$ = $P(\overline{x}_1) + P(\overline{x}_2) - P(\overline{x}_1 \wedge \overline{x}_2)$	$R_P = P(X_P) = P(x_1 \lor x_2)$ = $P(x_1) + P(x_2) - P(x_1 \land x_2)$				$R = p_1 +$	$p_2-p_1p_2$		
$= q_1 + q_2 - q_1 \cdot q_2$ $\equiv 1 - p_1 \cdot p_2 = 1 - Rs$	$= p_1 + p_2 - p_1 \cdot p_2$ $\equiv 1 - q_1 \cdot q_2 = 1 - F_P$							

Minimalschnitt: kleinste Menge ausgefallener Komponenten, die den Weg vom E zu A versperren, kleinOmegai = $\{$ nicht x1, nicht x2,.. $\}$ **Minimalpfad**: Kleinste Menge funktionierender K, die Weg von E nach A offen hält phij = $\{$ x1, x2,... $\}$ **Boolsche Algebra**

Modell: Zustand technisches System, Gesucht: Vorgehensweise Berechnung AusfallWSK, Problem: Übergang von Boolesche in kanonische Darstellung notwendig, Verfahren Quanitifzierung: ZBD, Minimalschnitte / -pfade, Funktions- / Wahrheitstabellen, Fehlerbäume – Problem 1: X = xi zur WSK P(X = xi), Problem 2: ODER, P(A U B) = P(A)+P(B) – P(A n B), P(A U B) != P(A) +r(B)

Boolesche Variable

$$X = \begin{cases} L : & \text{Zustand erfüllt} \\ O : & \text{Zustand } nicht \text{ erfüllt} \end{cases}$$

Boolesche Operatoren

- ▶ UND: \land , \cap (Anm.: Wird in Funktionen oft weggelassen, z. B. $X \land Y \equiv X$
- ▶ ODER: V, U

Boolesche Axiome (Schaltalgebra)

symbolisch	Beschreibung	symbolisch	Beschreibung
$ \begin{array}{l} X \wedge Y = Y \wedge X \\ X \vee Y = Y \vee X \end{array} $	kommutative Gesetze	$\frac{\overline{\overline{X}}}{\overline{O}} = X$ $\overline{O} = 1; \overline{L} = 0$	Verneinungsgese
$X \wedge Y \wedge Z = (X \wedge Y) \wedge Z$ $X \vee Y \vee Z = (X \vee Y) \vee Z$	assoziative Gesetze	$\begin{pmatrix} \overline{X \wedge Y} \\ \overline{X \vee Y} \end{pmatrix} = \overline{X} \vee \overline{Y}$ $\begin{pmatrix} \overline{X} \vee \overline{Y} \\ \overline{X} \vee \overline{Y} \end{pmatrix} = \overline{X} \wedge \overline{Y}$	de-Morgansches Gesetz
$ \begin{array}{l} X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z) \\ X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z) \end{array} $	distributive Gesetze	$O \wedge X = O$ $L \vee X = L$	Extremalgesetze
$ \begin{array}{l} X \wedge X = X \\ X \vee X = X \end{array} $	Idempotenzgesetze	$ L \wedge X = X \\ O \vee X = X $	Neutralitätsgese
$X \wedge (X \vee Y) = X$ $X \vee (X \wedge Y) = X$	Absorptionsgesetze	$X \lor \left(\overline{X} \land Y\right) = X \lor Y$ $X \land \left(\overline{X} \lor Y\right) = X \land Y$	
$X \wedge \overline{X} = O$ $X \vee \overline{X} = L$	Komplementärgesetze		

Ausfallrate = $^{\text{lambda}}$ = $n/(N^*\text{tbetrieb})$ (Bezogen auf Zeit (interval)) Ausfallwsk: $F(t) = 1-e^{-tambda}$, konstante Ausfalla Ausfallwahrscheinlichkeit (P = n/N)

MeanTimeToFialure (1/x)

Wahrscheinlichkeit: $F(t) = 1-e^{-t}$

Emp. Ausfalldichte ^f(t) = Anz. Der im intervall t, t+delta T

ausgefallenen Einheiten / n

Emp. Ausfallrate ^lambda(t) = "" / Anz. Zur Zeit t funktionsfähig. Elmenten * delta t

Kanonische Darstellung Boolescher Funktionen

Disjunktive Normalform (DN)

 $K_0 \vee K_1 \vee \cdots \vee K_{n-1} = \bigvee_{i=0}^{n-1} K_i$

 K_i : Konjunktionsterm, z.B. $x \wedge y$ aus einfachen oder negierten Booleschen Variablen

Beispiel: Exklusiv-ODER

 $f(x_0,x_1)=(x_0\wedge \overline{x}_1)\vee (\overline{x}_0\wedge x_1)$

▶ Ausgezeichnete DN (ADN): in jedem K_i kommt jede Variable genau einmal vor (einfach oder negiert). Eine solche Konjunktion wird Minterm MI genannt.

Vorgehensweise: "Unvollständige" Konjunktionsterme K_i mit "1": $X \vee \overline{X} = L$ erweitern

$$\begin{array}{rcl} x_0 \vee \overline{x}_1 & = & x_0(x_1 \vee \overline{x}_1) \vee \overline{x}_1(x_0 \vee \overline{x}_0) \\ & = & x_0 x_1 \vee x_0 \overline{x}_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1 \, | \, \text{Idempotenzgesetz} \\ & = & x_0 x_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1 \end{array}$$

Vertiefung des Beispiels $x_0 \vee \overline{x}_1$

- ▶ ADN des Beispiels (s.o.): $x_0 \vee \overline{x}_1 = x_0 x_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1$
- ▶ Diese ADN enhält drei Minterme MI

$$MI_1 = x_0x_1$$
; $MI_2 = x_0\overline{x}_1$; $MI_3 = \overline{x}_0\overline{x}_1$

Scheinbar bleibt das "Summenproblem" mit den ODER-Verknüpfungen. Aber: Eine paarweise Verknüpfung von Mintermen ergibt null, d.h.

$$MI_1 \wedge MI_2 = x_0 x_0 x_1 \overline{x}_1 = 0$$

$$MI_1 \wedge MI_3 = x_0 \overline{x}_0 x_1 \overline{x}_1 = 0$$

$$MI_2 \wedge MI_3 = x_0 \overline{x}_0 \overline{x}_1 \overline{x}_1 = 0$$

Damit wird der Übergang zu Wahrscheinlichkeiten möglich:

$$x_0 \vee \overline{x}_1 = x_0 x_1 \vee x_0 \overline{x}_1 \vee \overline{x}_0 \overline{x}_1 = x_0 x_1 + x_0 \overline{x}_1 + \overline{x}_0 \overline{x}_1$$

$$\Rightarrow P(x_0 \vee \overline{x}_1) = P(x_0) P(x_1) + P(x_0) \overline{x}_1 + P(\overline{x}_0) P(\overline{x}_1)$$