PHYS 1901 – Physics 1A (Advanced) Mechanics module

Prof Stephen Bartlett School of Physics

Rotation of Rigid Bodies

Chapter

9

So far we have examined linear motion;

- Newton's laws
- Energy conservation
- Momentum

Rotational motion seems quite different, but is actually familiar.

Remember: We are looking at rotation in fixed coordinates, not rotating coordinate systems.

For a circle of radius r, an angular displacement of θ corresponds to an arc length of

5= r 0

(Remember: use radians!)

Angular velocity is the change of angle with time

Counterclockwise rotation positive:

$$\Delta \theta > 0$$
, so $\omega_{\text{av-}z} = \Delta \theta / \Delta t > 0$

Clockwise rotation negative:

$$\Delta \theta > 0$$
, so $\Delta \theta < 0$, so $\omega_{\text{av-}z} = \Delta \theta / \Delta t > 0$ $\omega_{\text{av-}z} = \Delta \theta / \Delta t < 0$

Axis of rotation (z-axis) passes through origin and points out of page.

Distance through which point *P* on the body moves (angle θ is in radians)

There is a simple relation between

angular velocity and speed

Linear speed of point P (angular speed ω is in rad/s)

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Angular acceleration is the change of ω with time

Tangential acceleration is given by

$$a_{tan} = \frac{dV}{dt} = \frac{d(r\omega)}{dt} = r \frac{dco}{dt}$$

$$a_{tan} = r d$$

Radial and tangential acceleration components:

- $a_{\rm rad} = \omega^2 r$ is point P's centripetal acceleration.
- $a_{tan} = r\alpha$ means that P's rotation is speeding up (the body has angular acceleration).

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Rotational kinematics

Notice that the form of rotational relations is the same as the linear variables. Hence, we can derive identical kinematic equations:

Linear	Rotational
If a 15 constant	If a 15 constant
V=Vo+a+	w=wo+ x+
5=50+Vo++2a+2	O=00+000++=セメナ2

Net acceleration

Remember, for circular motion, there is always centripetal acceleration

$$a_{rad} = \frac{v^2}{r} = \frac{(r\omega)^2}{r} = r\omega$$

The total acceleration is the vector sum of a_{rad} and a_{tan} .

What is the source of a_{rad} ?

Radial and tangential acceleration components:

- $a_{\rm rad} = \omega^2 r$ is point P's centripetal acceleration.
- $a_{tan} = r\alpha$ means that *P*'s rotation is speeding up (the body has angular acceleration).

Copyright @ 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesley.

Rotational dynamics

As with rotational kinematics, we will see that the framework is familiar, but we need some new concepts;

Linear	Rotational
Mass	Moment of Inertia
Force	Torque

Moment of inertia

inertia:

- depends on 1) the distribution of the mass
 2) location of pivot

Point mass:

I point = mr 2 (units: kg m²)

I many =
$$\sum_{\text{all masses}} I_i = \sum_{\text{all masses}} m_i r_i$$
point point all masses

Moment of inertia

Calculate the moment of inertia of a rod of mass M, length L, rotating about an axis a distance h from one end.

Luckily, the moment of inertia is typically;

$$I = cMR^2$$

where c is a constant and is <1.

Object	I
Solid sphere (on axis)	2/5 M R ²
Hollow sphere (on axis)	2/3 M R ²
Rod (centre)	1/12 M L ²
Rod (end)	1/3 M L ²

Parallel axis theorem

If we know the moment of inertia through the centre of mass, the moment of inertia along a parallel axis *d* is:

The axis does not have to be through the body!

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Addison-Wesle