# Tóm tắt nội dung Chapter 11

Hồi quy và tương quan

Xét n cặp quan sát  $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ :





#### Theorem

Phương trình hồi quy tuyến tính đơn (Estimated or fitted regression line)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

Trong đó

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$S_{xy} = \sum_{i=1}^{n} (y_i - \bar{y})(x_i - \bar{x}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n}$$

### Các sai số (errors) $\mathcal{E}_i$

Chúng ta luôn giả sử rằng các sai số là độc lập với nhau và có cùng phân phối chuẩn N(0, σ²)

### $U\acute{o}c$ lượng điểm cho $\sigma^2$



$$SS_E = SS_T - \hat{\beta}_1 S_{xy}$$
  $SS_T = \sum_{i=1}^n (y_i - \overline{y})^2 = \sum_{i=1}^n y_i^2 - n(\overline{y})^2$ 

### Sử dụng Excel

|    | А                     | В            | С              | D                                 | Е           | F              | G           | Н            |             |
|----|-----------------------|--------------|----------------|-----------------------------------|-------------|----------------|-------------|--------------|-------------|
| 1  | SUMMARY OUTPUT        |              |                |                                   |             |                |             |              |             |
| 2  |                       |              |                | _                                 |             |                |             |              |             |
| 3  | Regression Statistics |              |                | $\hat{\sigma}$                    |             |                |             |              |             |
| 4  | Multiple R            | 0.310670688  |                |                                   |             |                |             |              |             |
| 5  | R Square              | 0.096516276  |                |                                   |             |                |             |              |             |
| 6  | Adjusted R Square     | -0.084180468 |                |                                   |             |                |             |              |             |
| 7  | Standard Error        | 4.612004796  | S              | S <sub>R</sub> =SS <sub>T</sub> - | SSE         |                |             |              |             |
| 8  | Observations          | 7            |                | R OOT                             | OOE         | 0.0            |             |              |             |
| 9  |                       |              |                |                                   |             | $SS_T$         |             |              |             |
| 10 | ANOVA                 |              |                |                                   |             |                |             |              |             |
| 11 |                       | df           | SS             | MS                                | E           | Significance F |             |              |             |
| 12 | Regression            | 1            | 11.36134454    | 11.36134454                       | 0.534134008 | 0.497668094    |             |              |             |
| 13 | Residual              | 5            | 106.3529412    | 21.27058824                       |             |                |             |              |             |
| 14 | Total                 | 6            | 117.7142857    |                                   |             |                |             |              |             |
| 15 |                       |              |                |                                   |             |                |             |              |             |
| 16 |                       | Coefficients | Standard Error | t Stat                            | P-value     | Lower 95%      | Upper 95%   | Lower 95.0%  | Upper 95.0% |
| 17 | Intercept             | 13.64705882  | 3.33234126     | 4.09533651                        | 0.009397596 | 5.081002915    | 22.21311473 | 5.081002915  | 22.21311473 |
| 18 | X Variable 1          | -0.764705882 | 1.046331539    | -0.730844722                      | 0.497668094 | -3.454386728   | 1.924974964 | -3.454386728 | 1.924974964 |





## Kiểm định giả thiết trong mô hình hồi quy

### Test on the $\beta_1$

$$H_0$$
:  $\beta_1 = \beta_{1,0}$ 

$$H_1$$
:  $\beta_1 \neq \beta_{1,0}$ 

Test statistic

$$T_0 = \frac{\hat{\beta}_1 - \beta_{1,0}}{\sqrt{\hat{\sigma}^2 / S_{xx}}}$$

has the t distribution with n - 2 degrees of freedom.

If  $|t_0| > t_{\alpha/2, \text{ n-2}}$ : reject  $H_0$ 

If  $|t_0| \le t_{\alpha/2, \text{ n-2}}$ : fail to reject  $H_0$ 

## Kiểm định giả thiết trong mô hình hồi quy

### Test on the $\beta_0$

 $H_0$ :  $\beta_0 = \beta_{0,0}$ 

 $H_1$ :  $\beta_0 \neq \beta_{0,0}$ 

If  $|t_0| > t_{\alpha/2, \text{ n-2}}$ : reject  $H_0$ 

If  $|t_0| < t_{\alpha/2, \text{ n-2}}$ : fail to reject  $H_0$ 

Test statistic

$$T_{0} = \frac{\hat{\beta}_{0} - \beta_{0,0}}{\sqrt{\hat{\sigma}^{2} \left[ \frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}} \right]}} = \frac{\hat{\beta}_{0} - \beta_{0,0}}{se(\hat{\beta}_{0})}$$

### Confidence Intervals on the Slope and Intercept

Đoạn tin cậy  $100(1-\alpha)\%$  cho  $\beta_1$  trong mô hình hồi quy là

$$\hat{\beta}_1 - t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}} \le \beta_1 \le \hat{\beta}_1 + t_{\alpha/2, n-2} \sqrt{\frac{\hat{\sigma}^2}{S_{xx}}}$$

Đoạn tin cậy  $100(1-\alpha)\%$  cho  $\beta_0$  là

$$\hat{\beta}_{0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[ \frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}} \right]} \leq \beta_{0} \leq \hat{\beta}_{0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^{2} \left[ \frac{1}{n} + \frac{\bar{x}^{2}}{S_{xx}} \right]}$$

#### Confidence Interval on the Mean Response

$$\hat{\mu}_{Y|x_0} = \hat{\beta}_0 + \hat{\beta}_1 x_0$$

A  $100(1-\alpha)\%$  confidence interval about the mean response at the value of  $x=x_0$  is given by

$$\hat{\mu}_{Y|x_0} - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]}$$

$$\leq \mu_{Y|x_0} \leq \hat{\mu}_{Y|x_0} + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]}$$

#### **Prediction of New Observations**

A  $100(1-\alpha)\%$  prediction interval on a future observation  $Y_0$  at the value  $x_0$  is given by

$$\hat{y}_0 - t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ 1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]}$$

$$\leq Y_0 \leq \hat{y}_0 + t_{\alpha/2, n-2} \sqrt{\hat{\sigma}^2 \left[ 1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right]}$$

### Hệ số tương quan: Correlation

#### Definition

The sample correlation coefficient

$$R = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}} = \frac{S_{XY}}{\sqrt{S_{XX}SS_T}}$$

Note that

$$\hat{\beta}_1 = \left(\frac{SS_T}{S_{XX}}\right)^{1/2} R$$

We may also write:

$$R^2 = \hat{\beta}_1^2 \frac{S_{XX}}{S_{YY}} = \frac{\hat{\beta}_1 S_{XY}}{SS_T} = \frac{SS_R}{SS_T}$$

## Hệ số tương quan: Correlation

#### Test on the $\rho$

$$H_0$$
:  $\rho = 0$ 

$$H_1$$
:  $\rho \neq 0$ 

$$T_0 = \frac{R\sqrt{n-2}}{\sqrt{1-R^2}}$$

has the t distribution with n - 2 degrees of freedom.

If  $|t_0| > t_{\alpha/2, \text{ n-2}}$ : reject  $H_0$ 

If  $|t_0| < t_{\alpha/2, \text{ n-2}}$ : fail to reject  $H_0$