Exercise Sheet 5

Exercise 1

Consider the real exponential integral, defined by

$$Ei(\lambda) := \int_{\lambda}^{\infty} \frac{e^{-t}}{t} dt$$

for large values of λ .

(a) Use integration by parts to show that

$$Ei(\lambda) = e^{-\lambda} \left(\frac{1}{\lambda} - \frac{1}{\lambda^2} + \frac{2!}{\lambda^3} - \frac{3!}{\lambda^4} + \dots + \frac{(-1)^{n-1}(n-1)!}{\lambda^n} \right) + r_n(\lambda),$$

where

$$r_n(\lambda) = (-1)^n n! \int_{\lambda}^{\infty} \frac{e^{-t}}{t^{n+1}} dt.$$

- (b) Show that for fixed n, $|r_n(\lambda)| \to 0$ as $\lambda \to \infty$.
- (c) Show that for fixed n, $r_n(\lambda) = o(\frac{(n-1)!e^{-\lambda}}{\lambda^n})$ as $\lambda \to \infty$, and conclude that $Ei(\lambda)$ has the asymptotic expansion

$$Ei(\lambda) \approx e^{-\lambda} \left(\frac{1}{\lambda} - \frac{1}{\lambda^2} + \frac{2!}{\lambda^3} - \frac{3!}{\lambda^4} + \dots \right) \,.$$

- (d) Show that the asymptotic series in (c) diverges for fixed λ .
- (e) Approximate the value Ei(10). Determine how many terms in the asymptotic expansion of $Ei(\lambda)$ are needed to ensure that the error with respect to the value Ei(10) provided by some scientific package is less than 10^{-8} . Compare the empirical number of these terms with the number estimated from the theoretical expression for $r_n(x)$.