Problem

Let EQBP = { $\langle B_1,B_2 \rangle_{\rm I\ B_1}$ and B2 are equivalent branching programs}. Show that EQBP is coNP-complete.

Step-by-step solution

Step 1 of 2

Consider $EQ_{BP} = \{\{B_1, B_2\} | B_1 \text{ and } B_2 \text{ both are equivalent branching program}\}$

Branching programs B_1 and B_2 can be described by acyclic graph rejects or may accept input strings s_1, s_2, \ldots, s_n . For turing machines these problems are un-decidable but these problems are coNP complete for circuits.

Comment

Step 2 of 2

Consider the problem $^{EQ_{BP}}$ that is B_1 and B_2 is restricted to read-once programs. By using the equivalence with coRP for testing the equivalence, and by reduction from $^{co-3SAT}$ it will be coNP .

Polynomial can be determined by following way:

- Assign the vertex in programs $EQ_{\it BP}$ for branching, from root to final states.
- Label all incoming edges, now vertex polynomials will be sum of polynomials of edge which are incoming.
- $\bullet \ \, \text{Polynomial which is associated with final state} \ \, 1 \ \text{will be branching program polynomial}.$

As the branching program is read-once, and have power not more than one. Hence polynomial cannot be more than degree of n. Hence, EQ_{BP} must be coNP.

Comment