LL(1) Parsing, pt. 1

CS 440: Programming Languages and Translators, Spring 2020

A. Parsing Using a Context-Free Grammar and Push-Down Automaton

- Regular expressions, finite-state automata, and regular grammars work with the same set of languages.
- Similarly, context-free grammars and "push-down automata" both relate to context-free languages:
 - A context-free language is one generated by a context-free grammar. Context-free languages are also
 the ones recognizable using push-down automata.
 - A Push-Down Automaton (PDA) is a finite state machine augmented with a stack.
 - The state transition function maps a state, input symbol, and top-of-stack symbol to a new state and a stack operation (pop the stack, push a symbol onto the stack, or do nothing).
 - As with finite-state machines, there are deterministic and non-deterministic PDAs, but the nondeterministic PDAs can do things deterministic PDAs can't.
 - The set-of-states transformation used to map nondeterministic finite automata to equivalent deterministic finite automata doesn't work with PDAs.
 - (We can keep track of all the possible states we might be in, but we can't form the set of all possible stack configurations we might be in.)
 - For parsing, we much prefer the deterministic PDAs (DPDAs) because they don't require backtracking
 to execute the way a nondeterministic PDA can. A deterministic CFL (DCFL) is a language that can
 be parsed using a DPDA, and we use DCFLs to describe programming languages.
 - The simplest kind of DPDA has just one automaton state: Given the next input symbol and the top of the stack, gobble the input symbol and perform a stack operation.
 - It turns out that a language is LL(1) if it can be parsed by a DPDA with just one state.

B. LL(1) Parsing, the Predict table, and First sets

- We've been parsing LL(1) languages using recursive descent. The state of a recursive descent parser can be described using the current input symbol and a stack (which tracks the sequence of rule applications that got us where we're at). We have a nonterminal A that we're trying to expand and we look at the next input symbol to figure out which of the rules for A to apply (A → α₁? A → α₂? etc?)
 - As an example if we have rules $A \to \mathbf{x}$... and $A \to \mathbf{y}$... and the next input symbol is \mathbf{x} , then we go with the $A \to \mathbf{x}$... rule.
 - If no rules apply the next input symbol is x and there's no way for A to yield something that starts with x (i.e., $A \rightarrow x$ x ...) then we have a parse error. If x 1 rule applies, the language isn't LL(1).
- For a stack-based approach to LL(1) parsing, the "which rule do we apply?" decisions are stored in a **prediction table**: $Predict(A, \mathbf{x}) = \text{the set of rules that apply if the current nonterminal to expand is A and the next input symbol is <math>\mathbf{x}$. If $Predict(A, \mathbf{x}) = \emptyset$, then we have a parse error. If $Predict(A, \mathbf{x})$ contains > 1 rule, then the language is not LL(1). (This is something we can check for when we build the prediction table.)

- The key to building the *Predict* table is the idea that for rule $A \to \alpha$, if from α we can continue to something that begins with terminal symbol x, then it makes sense to try expanding A using $A \to \alpha$ if the next input symbol is x.
- The set $First(\alpha)$ holds the answers to the question of what terminal symbols we can find if we start with α and look at all its possible derived yields.
- **Definition**: $First(\alpha) = \{ \mathbf{x} \in T \mid \alpha \to^* \mathbf{x} \ \beta \text{ for some } \beta \in (V \mid T)^* \} \}$. I.e., what sentential forms \mathbf{x} ... can we get to if we start from α ?
 - For all β , $\{x\} = First(x \beta)$. I.e., if α begins with a terminal symbol x, then certainly $x \in First(\alpha)$.
 - For all rules $A \to \alpha$, $First(A \beta) \supseteq First(\alpha \beta)$. I.e., if we want to know the First set for A, we certainly need the First sets for all rhs's of rules for A.
 - There's a complicating factor: If $A \to * x...$, then for all β , $A \beta \to * x... \beta$, so we don't need to know about $First(\beta)$, right? But if $A \to * \varepsilon$, then $A \beta \to * \varepsilon \beta$, so $First(A \beta) \supseteq First(\beta)$, so we do care about $First(\beta)$. So,
 - If $A \rightarrow * \epsilon$ then for all β , $First(A \beta) = First(A)$.
 - If $A \to * \varepsilon$ then for all β , $First(A \beta) \supseteq First(\beta)$.
- **Definition 1**: For a nonterminal A and terminal x,
 - $Predict(A, \mathbf{x}) = \{ \text{rule } A \to \alpha \mid (\text{For some } \beta), S \to^* \dots A \beta \text{ and } \mathbf{x} \in First(A \beta) \}$
- If $A \to *$ ε then in theory, we need to know $First(\beta)$ for all possible β (of which there are an infinite number). But actually, we only need to worry about the $A\beta$ we can get to from the start symbol. The situation is actually even better than that, but let's first look at the basic stack-based parsing algorithm and then go back to the details of calculating the Predict table using First(A) and a helper function Follow(A).

C. Stack-Based LL(1) Parsing using Predict

- First, so that we can distinguish between the first use of the start symbol and any subsequent use, we'll **modify** the grammar a bit:
 - 1: Add a fresh (unused) terminal symbol \$ used to signal end-of-input.
 - 2: Add a new start symbol S' and a rule $S' \rightarrow S$ \$ where S is the nominal start symbol.

Basic algorithm:

```
Concatenate $ to end of input string and initialize the stack: push S' onto it.
```

```
while top of stack \neq $ {
```

Let x be next character of remaining input.

if x = \$, parse error (input ended early)

Pop top of stack

if it's a terminal y

if x = y, remove x from the input and continue loop else parse error

else (the top of the stack was a nonterminal *A*)

if $Predict(A, \mathbf{x})$ says error (it's \emptyset) then parse error (unexpected terminal \mathbf{x})

else check $Predict(A, \mathbf{x})$ for an entry $A \to \alpha$ and push α onto the stack

end

if (loop has ended, top of stack is \$ and) next the input character is \$We parsed successfully!else parse error (leftover input)

D. Example of Using Prediction table for LL(1) Parse

• See Example 1.

Example 1: Grammar of Balanced Parens plus variables x and y

Terminals = $() \times y$ \$

Rules

Rule Nbr	Rule
0	$S' \rightarrow S $ \$
1	$S \rightarrow P S$
2	$S \to x$
3	$P \rightarrow \backslash (S \backslash)$
4	$P \rightarrow y$

$Predict(A, s) = Rule\ number\ (blank\ entry = error)$

Nonterminal	()	х	У
S'	$0: S' \to S $ \$		2: S → x	$1: S \to P S$
S	$1: S \to P S$		2: S → x	$1: S \to P S$
P	$3: P \rightarrow \backslash (S \backslash)$			4: <i>P</i> → y

Leftmost Derivation of (yx) (x) x\$

S'\$

 $\rightarrow S $$

 $\rightarrow PS$ \$

 \rightarrow (S) S \$

 \rightarrow (PS) S\$

 \rightarrow (y S) S \$

 \rightarrow (y x) PS \$

 \rightarrow (y x) (S) S \$

 \rightarrow (yx)(x)S\$

 \rightarrow (y x) (x) x \$

Trace of Parse of (y x) (x) x

		•
Stack (Top to Left)	Rule nbr or = (terminals)	Input
S'	0	(yx)(x)x\$
S \$	1	(yx)(x)x\$
P S \$	3	(yx)(x)x\$
(S)S\$	=	(yx)(x)x\$
S) S\$	1	yx)(x)x\$
PS)S\$	4	yx)(x)x\$
y S) S \$	=	yx)(x)x\$
S) S\$	2	x)(x)x\$
x) S\$	=	x)(x)x\$
) S\$	=)(x)x\$
S \$	1	(x)x\$
P S \$	3	(x)x\$
(S)S\$	=	(x)x\$
S) S\$	2	x) x\$
x) S\$	=	x) x\$
) S\$	=) x \$
S \$	2	x \$
x \$	=	x \$
\$	=	\$

NT	()	x	У
S'	$0:S'\to S\ \$$		2: <i>S</i> → x	$1: S \to P S$
S	$1: S \to P S$		2: S → x	$1: S \to P S$
P	$3: P \rightarrow \backslash (S \backslash)$			4: <i>P</i> → y

(End of example 1)

Activity Questions for Lecture 13

1. Calculate the First(...) sets and the Predict table for a language without ε rules, specifically,

$$S \rightarrow A \$$

$$A \rightarrow a B$$

$$B \to CDe$$

$$C \rightarrow c C \mid D$$

$$D \to dD$$

- 2. Use the *Predict* table from question 1 and calculate a trace of the parse of a d a d c e e \$ using the parsing algorithm.
- 3. Calculate the *First*(...) sets and the *Predict* table for the following language

$$S' \to S \$$

$$S \rightarrow a S b S$$

$$S \rightarrow c$$

4. Use the *Predict* table from question 2 and calculate a trace of the parse of a a c b a c b c b c \$.

Solutions to Activity Questions for Lecture 13

1. (Calculate First sets and LL prediction table for grammar with no ε rules.)

Here's the reasoning behind the First set contents with each rule and its implications.

$$S \to A \$$
 First(S) \supseteq First(A)

$$A \rightarrow a B$$
 $a \in First(A)$

$$B \to CD$$
 e First(B) \supseteq First(C)

$$C \to c \mid D$$
 $c \in First(C)$; $First(C) \supseteq First(D)$

$$D \to d$$
 $d \in First(C)$

$$D \rightarrow A$$
 First(D) \supseteq First(A)

So we get

$$First(S) = \{a\}$$

$$First(A) = \{a\}$$

$$First(B) = \{c, d\}$$

$$First(C) = \{c, d\}$$

$$First(D) = \{a, d\}$$

Prediction Table

Nonterminal	a	С	d	е
S	$0: S \to A \$			
A	$1: A \rightarrow a B$			
В		$2: B \to CDe$	$2: B \to CDe$	
С		3: <i>C</i> → c	$4: C \to D$	$5: C \to D$
D	$6: D \to A$		5: <i>D</i> → d	

2. (Trace parse)

Trace of Parse of a d a d c e e \$

Stack (Top to Left)	Rule # / = term?	Input
S	0	adadcee\$
A \$	1	adadcee\$
a <i>B</i> \$	=	adadcee\$
B \$	2	dadcee\$
<i>CD</i> e \$	4	dadcee\$
<i>DD</i> e \$	5	dadcee\$
d <i>D</i> e \$	=	dadcee\$
<i>D</i> e \$	6	adcee\$
<i>A</i> e \$	1	adcee\$
a <i>B</i> e \$	=	adcee\$
<i>B</i> e \$	2	dcee\$
<i>CD</i> e e \$	3	dcee\$
c D e e \$	=	dcee\$
<i>D</i> e e \$	5	d e e \$
d e e \$	=	dee\$
e e \$	=	e e \$
e \$	=	e \$
\$	success!	\$

Rule
$S \to A \$
$A \rightarrow a B$
$B \rightarrow CDe$
$C \rightarrow c$
$C \rightarrow D$
D o d
$D \rightarrow A$

3. (First sets and Predict table for LL(1) grammar without ϵ rules)

Rule 0 $S' \to S$ \$ Implies $First(S) \subseteq First(S')$

Rule 1: $S \rightarrow a S b S$ $a \in First(S)$

Rule 2: $S \rightarrow c$ $c \in First(S)$

So $First(S) = First(S') = \{a, c\}$

Predict table

Nonterminal	a	b	С	\$
S'	$0: S' \to S $ \$		$0: S' \to S $ \$	
S	$1: S \rightarrow a S b S$		2: S → c	

4. (Calculate trace of a parse)

Trace of Parse of a a c b a c b c b c \$

Stack (Top to Left)	Rule # / = term?	Input
S'	0	aacbacbcbc\$
S \$	1	aacbacbcbc\$
a S b S \$	=	aacbacbcbc\$
S b S \$	1	acbacbcbc\$
a S b S b S \$	=	acbacbcbc\$
S b S b S \$	2	cbacbcbc\$
c b S b S \$	=	cbacbcbc\$
b S b S \$	=	bacbcbc\$
S b S \$	1	acbcbc\$
a <i>S</i> b <i>S</i> b <i>S</i> \$	=	acbcbc\$
S b S b S \$	2	cbcbc\$
c b S b S \$	=	cbcbc\$
b S b S \$	=	bcbc\$
S b S \$	2	cbc\$
c b S \$	=	cbc\$
b S \$	=	bc\$
S \$		c \$
с\$	=	c \$
\$	success!	\$