ELETROMAGNETISMO EE - MIEBIOL & MIEBIOM

Constantes que podem ser úteis na resolução dos problemas:

$$e = 1.6x10^{-19} \text{ C};$$
 $m_e = 9.1x10^{-31} \text{ kg};$ $K = 9x10^9 \text{ Nm}^2/\text{C}^2;$ $m_p = 1.7x10^{-27} \text{ kg};$ $G = 6.7x10^{-11} \text{ N m}^2/\text{kg}^2$:

- 1. Um prego de ferro (Z = 26, A = 55.847) tem uma massa de 3 g.
 - a) Calcule a carga correspondente a todos os electrões do prego. (~134 kC)
 - b) Calcule a carga eléctrica com que fica o prego se for possível retirar um electrão a cada átomo de ferro.
- 2. Um bastão de plástico é friccionado com um pano de lã e adquire a carga de -8 μ C. Calcule o número de electrões que foram transferidos do tecido de lã para o bastão de plástico. (~5 ×10¹³)
- 3. Um electrão gira em torno de um núcleo de hélio (carga +2e). Qual das entidades (electrão ou núcleo) exerce maior força sobre a outra? Justifique.
- 4. A distância média entre o electrão e o protão no átomo de hidrogénio é de 5.3x10⁻¹¹ m.
 - a) Calcule a intensidade da força de atracção entre as duas partículas devido às suas cargas eléctricas.
 - b) Comparar a intensidade da força gravítica com a intensidade da força eléctrica exercida pelo protão no electrão. $(F_e = 8.2 \times 10^8, F_g = 3.6 \times 10^{-47} \text{ N})$
- 5. Uma partícula carregada ($q_A = 5 \mu C$, $m_A = 20 g$) gira numa órbita circular e estacionária, com velocidade de magnitude $v_A = 7 m/s$, em torno de uma outra partícula carregada ($q_B = -5 \mu C$, $m_B = 20 g$) que se encontra fixa. Calcule o raio da órbita. ($R_{Orb} = 23 cm$)
- 6. Richard Feynman no Volume 2 do seu Physics Lectures, na primeira página do Capítulo 1, *Electromagnetism*, descreve o extraordinário equilíbrio que existe entre cargas positivas e negativas na matéria e como disso depende a estabilidade do mundo tal como o conhecemos. A certa altura, no terceiro parágrafo, diz: "Ainda assim, tão perfeito é o balanço [entre cargas positivas e negativas no corpo humano] que mesmo que se se colocar perto de alguém não sentirá qualquer força. Se estivesse a um braço de distância de alguém e se ambos tivessem 1% de eletrões a mais do que de protões, a força de repulsão seria incrível. Quão grande? Suficiente para levantar o Empire State Building? Não! Suficiente para levantar o Monte Evereste? Não! A repulsão seria suficiente para levantar um "peso" equivalente à massa da Terra."

Demonstre a veracidade desta afirmação de R. Feynman. (Nota: Apesar de se poder encontrar à volta de 60 elementos químicos distintos no corpo humano, 99% do número total dos átomos são hidrogénio (63%), oxigénio (24%) e carbono (12%). $(F \approx 6 \times 10^{25} \text{ N})$

Departamento de Física 2018/19

7. Considere dois grãos de poeira esféricos, com 500 μm de diâmetro e densidade 2.8 g/cm³. Calcule o número de electrões que cada grão de poeira teria de ter a mais (ou a menos), para que a força de Coulomb compense a atracção gravitacional entre os grãos de poeira (G = 6.67x10⁻¹¹ Nm²kg⁻²).

(~98 electrões)

8. Imagine que quer fazer uma experiência de electrostática e para isso precisa de carregar electricamente uma haste que tem na mão, esfregando-a com um tecido de lã. Acha que consegue realizar a experiência se a haste for metálica? Justifique.

- 9. Aproxima-se uma haste de borracha carregada de uma pequena esfera electricamente neutra de esferovite suspensa num fio (m_{esfera} = 3 g). Quando o equilíbrio é atingido o fio faz um ângulo de 15° com a direcção vertical (ver figura).
 - a) Se a esfera está electricamente neutra, porque é atraída para a haste?
 - b) Represente as forças aplicadas na esfera.
 - c) Calcule a magnitude da força eléctrica que actua na esfera.
- 10. Duas esferas condutoras idênticas \mathbf{A} e \mathbf{B} , electricamente isoladas, estão separadas por uma distância \mathbf{a} (muito maior que o diâmetro das esferas). A esfera \mathbf{A} tem uma carga positiva $\mathbf{+Q}$; a esfera \mathbf{B} está electricamente neutra. Suponha que as esferas são momentaneamente ligadas por um fio condutor. A interacção eléctrica entre as duas esferas, após a remoção do fio, é atractiva ou repulsiva? Qual será a intensidade da força eléctrica que uma esfera exerce sobre a outra depois de o fio ter sido removido? $(|F| = \frac{KQ^2}{4a^2})$
- 11. Três cargas eléctricas estão sobre o eixo dos xx, como ilustrado na figura 3. A carga positiva q_2 = +6 μ C está na origem e a carga positiva q_1 = +15 μ C está em x = 2 m. Onde deverá ser colocada uma carga negativa q_3 , a fim de que a força resultante sobre essa carga seja nula?

(
$$d_{13}$$
=0.77 m, d_{23} = 1.23 m

- 12. Três cargas pontuais, de 2 μ C, 7 μ C e -4 μ C, estão situadas nos vértices de um triângulo equilátero com 0.5 m de lado, como mostra a figura. Calcular a força resultante sobre a carga de 7 μ C. $(\vec{F}_{O1} = 0.756\hat{\imath} 0.436\hat{\jmath} \ N)$
- 13. Duas esferas condutoras idênticas, mantidas fixas a uma distância de 50 cm, uma da outra, atraem-se com uma força electrostática de módulo igual a 0.108 N. As esferas são ligadas por um fio condutor. Quando o fio é removido, as esferas repelem-se com uma força de 0.0360 N. Quais eram as cargas iniciais das esferas?

(1.0 μC; 3.0 μC)

14. A figura mostra seis partículas carregadas, com carga de módulo igual a $3x10^{\circ}$ C; A posição e o sinal da carga de cada partícula são indicados na, onde a = 2.0 cm e $\theta = 30^{\circ}$. Calcule a força resultante que actua na partícula q_2 .

- $(\vec{F} = -202.5\hat{\imath} 350.8\hat{\jmath} \text{ N})$
- 15. Duas cargas pontuais $q_1 = -4 \mu C$ e $q_2 = -5 \mu C$ estão colocadas , respectivamente nos pontos de coordenadas (0, 0) e (0, 2m). Existe algum ponto sobre o eixo y em que o campo eléctrico seja nulo? Qual? (sim, y = 0.944m)
- 16. Duas cargas de 3 μ C, uma positiva e outra negativa, encontram-se separadas por uma distância de 10 cm. Indique, justificando:
 - a) Qual é a direcção do campo eléctrico em qualquer ponto sobre a recta mediatriz do segmento de recta que une as duas cargas.
 - b) Haverá algum ponto sobre a recta que passa pelas duas cargas em que o campo eléctrico se anule?

 Justifique. ((a) paralela ao eixo que une as cargas; (b)não))
- 17. Determine qual deve ser a magnitude, direcção e sentido de um campo eléctrico \vec{E} de modo a que a resultante da força gravítica e da força eléctrica que actuam num electrão colocado nesse campo seja nula.

$$(|E| = 5.57 \times 10^{-11} \text{ N/C})$$

18. Considere a distribuição de cargas indicada na figura (+Q= 1x10⁻⁶ C e -Q= -1x10⁻⁶ C), onde quatro cargas pontuais estão localizadas nos vértices de um quadrado com lados de comprimento a = 1 cm. Determine:

- a) o vetor campo elétrico no ponto B.
- b) a força eléctrica que actua sobre a carga um electrão que seja colocado no ponto B.

$$(\vec{E} = -5.09 \times 10^8 \text{ (NC}^{-1}) \hat{j}; \vec{F} = 8.15 \times 10^{-11} \text{ (N)} \hat{j})$$

19. Numa célula cristalina de Cloreto de Césio (CsCl), oito iões positivos de Césio (Cs^+) localizam-se nos vértices de um cubo de aresta 0,40 nm e um ião negativo de Cloro (Cl^-) localiza-se no centro do cubo (ver figura).

- a) Diga qual o valor da carga eléctrica de um ião Cs⁺ e de um ião Cl⁻, usando unidades do Sistema Internacional.
- b) Qual a magnitude da força eléctrica exercida pelos pelos oito iões Césio no ião Cloro? Justifique.
- c) Se numa célula cristalina de Cloreto de Césio faltar um ião de Césio, qual será a intensidade da força eléctrica que os outros sete iões de Césio exercem no ião de Cloro? $(|F| = 1.92 \times 10^{-9} \text{ C})$
- 20. Duas cargas punctiformes de q_1 = 5 μ C e q_2 = -5 μ C estão localizadas nos pontos P_1 = (1m, 3m) e P_2 = (2m, -2m) respectivamente.
 - a) Calcular o campo eléctrico no ponto $P_3 = (-1m, 0)$.

$$(\vec{E} = (+0.96\hat{\imath} - 4.8\hat{\jmath})kN/C)$$

b) Calcular a força que actua num electrão colocado no ponto P₃.

$$(\vec{F} = (-1.54\hat{\imath} + 7.78\hat{\jmath}) \times 10^{-16} \text{N})$$

- 21. Um electrão com velocidade $\vec{v}_0 = 2 \times 10^6 \ (\text{ms}^{-1}) \ \hat{\imath}$ entra numa região onde existe um campo eléctrico uniforme $\vec{E} = -1000 \ (\text{NC}^{-1}) \ \hat{\imath}$.
 - a) Calcule a aceleração a que fica sujeito.

$$(\vec{a} = 1.75 \times 10^{14} \text{ (ms}^{-2}) \hat{\imath})$$

- b) Que distância percorre o electrão até ao instante em que a sua velocidade se anule? O que acontece após esse instante? (a velocidade não se anula...)
- 22. A figura representa as linhas de campo eléctrico devidas a duas placas metálicas paralelas electricamente carregadas.

- a) Pode-se concluir qual o sinal das cargas eléctricas de cada placa? Justifique
- b) Qual o sentido da força eléctrica a que um electrão fica sujeito nos pontos X, Y e Z? E um protão?
- c) Em qual das posições X, Y ou Z a intensidade da força eléctrica a que fica sujeito um protão é maior? Justifique.
- d) Compare a aceleração sofrida por um protão com a aceleração sofrida por um electrão num dos pontos à sua escolha (X, Y ou Z).
- 23. Seis pequenas esferas metálicas estão fixas nos vértices de um hexágono regular como se mostra na figura. Uma sétima esfera (esfera G) é colocada no centro do hexágono. As esferas B a F são electricamente neutras, as esferas A e G têm carga igual e positiva (+Q).

24. Considere o arranjo de três partículas carregadas mostrado na figura. A magnitude da carga das partículas é igual, mas q_1 e q_2 são positivas e q_3 é negativa. Faça um esboço da trajectória que seguirá a partícula q_1 se for solta enquanto se mantêm fixas q_2 e q_3 .

