UVA CS 4501: Machine Learning

Lecture 5: Non-Linear Regression Models

Dr. Yanjun Qi

University of Virginia

Department of Computer Science

Where are we? Five major sections of this course

- ☐ Regression (supervised)
- ☐ Classification (supervised)
- Unsupervised models
- ☐ Learning theory
- ☐ Graphical models

Today →

Regression (supervised)

- ☐ Four ways to train / perform optimization for linear regression models
 - Normal Equation
 - ☐ Gradient Descent (GD)
 - ☐ Stochastic GD
 - Newton's method
- ☐ Supervised regression models
 - ☐ Linear regression (LR)
 - □ LR with non-linear basis functions
 - ☐ Locally weighted LR
 - ☐ LR with Regularizations

Today

- Regression Models Beyond Linear
- LR with non-linear basis functions
 - Instance-based Regression: K-Nearest Neighbors
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

LR with non-linear basis functions

 LR does not mean we can only deal with linear relationships

$$\hat{y} = \theta^T \mathbf{x} \qquad \hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(\mathbf{x}) = \theta^T \varphi(\mathbf{x})$$

LR with non-linear basis functions

 We are free to design basis functions (e.g., nonlinear features:

Here $\varphi_j(x)$ are fixed basis functions (also define $\varphi_0(x)=1$)

• E.g.: polynomial regression:

$$\varphi(x) := \left[1, x, x^2\right]^T$$

e.g. (1) polynomial regression

e.g. (1) polynomial regression

$$\hat{y} = \theta^{T} \mathbf{x}$$

$$\hat{y} = \theta^{T} \varphi(\mathbf{x})$$

$$\phi(\mathbf{x}) = [1, x_{1}, x_{2}, x_{1}^{2}, x_{2}^{2}]$$

KEY: if the bases are given, the problem of learning the parameters is still linear.

Many Possible Basis functions

- There are many basis functions, e.g.:
 - Polynomial

$$\varphi_j(x) = x^{j-1}$$

Radial basis functions

$$\phi_j(x) = \exp\left(-\frac{(x-\mu_j)^2}{2s^2}\right)$$

Sigmoidal

$$\phi_j(x) = \sigma \left(\frac{x - \mu_j}{S} \right)$$

- Splines,
- Fourier,
- Wavelets, etc

Many Possible Basis functions

e.g. (2) LR with radial-basis functions

• E.g.: LR with RBF regression:

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

$$\varphi(x) := \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3), K_{\lambda_4}(x, r_4)\right]^T$$

$$\vec{\Theta} = [\Theta_0, \Theta_1, \Theta_2, \Theta_3, \Theta_4]^T$$

$$\theta^* = (\varphi^T \varphi)^{-1} \varphi^T \vec{y}$$

RBF = radial-basis function: a function which depends only on the radial distance from a centre point

Gaussian RBF
$$\rightarrow K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

as distance from the center r increases, the output of the RBF decreases

1D case

$$K_{\lambda}(x,r) = \exp\left(-\frac{(x-r)^2}{2\lambda^2}\right)$$

X =	$K_{\lambda}(x,r)=$
r	1
$r+\lambda$	0.6065307
$r+2\lambda$	0.1353353
$r+3\lambda$	0.0001234098

e.g. another Linear regression with 1D RBF basis functions (assuming 3 predefined centres and width)

$$\varphi(x) \coloneqq \left[1, K_{\lambda_1}(x, r_1), K_{\lambda_2}(x, r_2), K_{\lambda_3}(x, r_3) \right]^T$$

$$\theta^* = \left(\varphi^T \varphi \right)^{-1} \varphi^T \vec{y}$$

e.g. a LR with 1D RBFs (3 predefined centres and width)

1D RBF

$$y^{est} = \beta_1 \phi_1(x) + \beta_2 \phi_2(x) + \beta_3 \phi_3(x)$$

• After fit:

$$y^{est} = 2\phi_1(x) + 6.05\phi_2(x) + 0.5\phi_3(x)$$

e.g. Even more possible Basis Func?

Two main issues:

- To Learn the parameter $heta^*$
 - Almost the same as LR, just \rightarrow X to $\varphi(x)$
 - Linear combination of basis functions (that can be non-linear)
- How to choose the model order,
 - E.g. what polynomial degree for polynomial regression
 - E.g., where to put the centers for the RBF kernels? How wide?

e.g. 2D Good and Bad RBF Basis

 X_1

• A good 2D RBF Blue dots denote coordinates of input vectors

Center Sphere of significant X_2 influence of center

Two bad 2D RBFs

Issue: Overfitting and underfitting

Generalisation: learn function / hypothesis from past data in order to "explain", "predict", "model" or "control" new data examples

K-fold Cross Validation !!!!

(2) Multivariate Linear Regression with basis Expansion

$$\hat{y} = \theta_0 + \sum_{j=1}^m \theta_j \varphi_j(x) = \varphi(x)^T \theta$$

Today

- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
- Instance-based Regression: K-Nearest Neighbors
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

K-Nearest Neighbor

Features

- All instances correspond to points in an pdimensional Euclidean space
- Regression is delayed till a new instance arrives
- Regression is done by comparing feature vectors of the different points
- Target function may be discrete or real-valued
 - When target is continuous, the prediction is the mean value of the k nearest training examples

K=5-Nearest Neighbor (1D input)

K=1-Nearest Neighbor (1D input)

K-Nearest Neighbor

Variants: Distance-Weighted k-Nearest Neighbor Algorithm

- Assign weights to the neighbors based on their "distance" from the query point
 - Weight "may" be inverse square of the distances

- All training points may influence a particular instance
 - E.g., Shepard's method/ Modified Shepard, ... by

 Geospatial Analysis

 eg. $\mathcal{A} = \mathcal{A} = \mathcal$

Instance-based Regression vs. Linear Regression

- Linear Regression Learning
 - Explicit description of target function on the whole training set

- Instance-based Learning
 - Learning=storing all training instances
 - Referred to as "Lazy" learning

Today

- Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Instance-based Regression: K-Nearest Neighbors
- Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

Locally weighted regression

- aka locally weighted regression, local linear regression, LOESS, ...
 - A combination of kNN and Linear regression

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Locally weighted regression

Use RBF function to pick out/emphasize the neighbor region of x_0 $K_{\lambda}(x_i, x_0)$

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Locally weighted regression

Figure 2: In locally weighted regression, points are weighted by proximity to the current x in question using a kernel. A regression is then computed using the weighted points.

Instead of minimizing

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_{i}^{T} \theta - y_{i})^{2} \qquad \text{SSE}$$

now we fit to minimize

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (\mathbf{x}_i^T \theta - y_i)^2$$
 where

$$w_i = K_{\lambda}(\mathbf{x}_i, \mathbf{x}_0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_0)^2}{2\lambda^2}\right)$$

where x_0 is the query point for which we'd like to know its corresponding y

We fit \theta to minimize
$$J(\theta) = \frac{1}{2} \sum_{i=1}^{n} w_i (\mathbf{x}_i^T \theta - y_i)^2$$

 w_i comes from:

$$w_i = K_{\lambda}(\mathbf{x}_i, \mathbf{x}_0) = \exp\left(-\frac{(\mathbf{x}_i - \mathbf{x}_0)^2}{2\lambda^2}\right)$$

x_0 is the query point for which we'd like to know its corresponding y

Essentially we put higher weights on training examples that are close to the query point x_0 (than those that are further away from the query point x_0)

• The width of RBF matters!

Figure 3: The estimator variance is minimized when the kernel includes as many training points as can be accommodated by the model. Here the linear LOESS model is shown. Too large a kernel includes points that degrade the fit, too small a kernel neglects points that increase confidence in the fit.

LEARNING of Locally weighted linear regression

 Separate weighted least squares training and inference at each target point x₀

 →Separate weighted least square error minimization at each target point x₀:

$$\theta^*(\mathbf{x}_0) = \arg\min \frac{1}{2} \sum_{i=1}^n w_i (\mathbf{x}_i^T \theta(\mathbf{x}_0) - y_i)^2$$

$$= \arg\min \frac{1}{2} \sum_{i=1}^n K_{\lambda}(x_i, x_0) (\mathbf{x}_i^T \theta(\mathbf{x}_0) - y_i)^2$$

$$\hat{f}(x_0) = \mathbf{x}_0^T \boldsymbol{\theta}^*(\mathbf{x}_0)$$

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \hat{\beta}(x_0)x_0$$

Extra: Solution of Locally weighted linear/NonLinearBasis regression

$$W_{N\times N}(x_0) = diag(K_{\lambda}(x_0, x_i)), i = 1, ..., N$$

$$\text{locally weighted } LR : (X^T W_{\lambda_0} X)^{-1} X^T W_{\lambda_0} Y$$

$$LWR \theta^*(\mathbf{x}_0) = (B^T W(x_0) B)^{-1} B^T W(x_0) y$$

$$\text{Locally weighted } \text{e.g. polynomial Regression} X \rightarrow B$$

LR $\theta^* = (X^T X)^{-1} X^T \vec{y}$

More → Local Weighted Polynomial Regression

Local polynomial fits of any degree d

$$\min_{\alpha(x_0),\beta_j(x_0),j=1,...,d} \sum_{i=1}^{N} K_{\lambda}(x_0,x_i) \left[y_i - \alpha(x_0) - \sum_{j=1}^{d} \beta_j(x_0) x_i^j \right]$$

Blue: true

$$\hat{f}(x_0) = \hat{\alpha}(x_0) + \sum_{j=1}^d \hat{\beta}_j(x_0) x_0^j$$

Extra: Parametric vs. non-parametric

- Locally weighted linear regression is a non-parametric algorithm. $f(x_i) = \chi_{i}^{7} \Theta^{*}$
- The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm
 - because it has a fixed, finite number of parameters (the θ), which are fit to the data;
 - Once we've fit the \theta and stored them away, we no longer need to keep the training data around to make future predictions.
 - In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around.
- The term "non-parametric" (roughly) refers to the fact that the amount of knowledge we need to keep, in order to represent the hypothesis grows with linearly the size of the training set.

 $f(X^3) = X_4^3 \Theta_*(X^3)$

(3) Locally Weighted / Kernel Linear Regression

Today Recap

- ☐ Regression Models Beyond Linear
 - LR with non-linear basis functions
 - Instance-based Regression: K-Nearest Neighbors
 - Locally weighted linear regression
 - Regression trees and Multilinear Interpolation (later)

References

- Big thanks to Prof. Eric Xing @ CMU for allowing me to reuse some of his slides
- ☐ Prof. Nando de Freitas's tutorial slide