Lista 4: Algebry uniwersalne i iloczyny tensorowe

Matematyka nieprzemienna 2024/25

1. Niech G będzie grupą skończoną i niech $\mathbb{C}[G]$ oznacza *-algebrę funkcji na G o wartościach zespolonych (patrz zadanie 1 lista 3). Definiujemy $\pi:\mathbb{C}[G]\ni \delta_g\mapsto U_g\in B(H)$ jako rozszerzenie do *-homomorfizmu wzoru

$$U_a(\delta_h) = \delta_{ah}$$
.

Napisz, jak działa U_f ($f \in \mathbb{C}[G]$) na elemencie $k \in \mathbb{C}[G]$. Wykaż, że π jest wierną reprezentacją $\mathbb{C}[G]$ i że $\mathbb{C}[G] \ni f \mapsto ||U_f||_{B(H)}$ jest normą \mathbb{C}^* na $\mathbb{C}[G]$.

2. Niech $(e_n)_{n\in\mathbb{N}}$ będzie bazą zero-jedynkową $\ell^2(\mathbb{N})$. Definiujemy

$$S_q: \ell^2(\mathbb{N}) \ni e_n \mapsto \sqrt{1 - q^{n+1}} e_{n+1} \in \ell^2(\mathbb{N}).$$

Wyznacz S_q^* i wykaż, że $S_q^* S_q - q S_q S_q^* = (1-q) I_{\ell^2(\mathbb{N})}$.

- 3. Niech H będzie przestrzenią Hilberta. Pokaż, że jeśli $A,B\in B(H)$ spełniają warunek $AA^*+BB^*=I_H$, to $\|A\|\leq 1$ i $\|B\|\leq 1$.
- 4. Wykaż, że istnieje uniwersalna C*-algebra (z jedynką) A generowana przez dwa elementy unitarne u i v spełniające warunek $vu = \lambda uv$, gdzie $\lambda \in \mathbb{C}$ i $|\lambda| = 1$. Jaką C*-algebrę dostajemy dla $\lambda = 1$?

Wskazówka: Niech $H=L^2(\mathbb{T})$ z iloczynem skalarnym $\langle f,g\rangle:=\int_0^1\overline{f(e^{2\pi ix})}g(e^{2\pi ix})dx$. Pokaż, że $u\mapsto U$, gdzie (Uf)(z)=zf(z) oraz $v\mapsto V$, gdzie $(Vf)(z)=f(\lambda z)$ dla $f\in L^2(\mathbb{T})$ definiuje reprezentację A na $H=L^2(\mathbb{T})$.

5. Niech H_1 i H_2 będą przestrzeniami Hilberta. Wówczas istnieje jedyny iloczyn skalarny na $H_1\odot H_2$, który spełnia warunek

$$\langle x \otimes y, x' \otimes y' \rangle_{H_1 \odot H_2} = \langle x, x' \rangle_{H_1} \langle y, y' \rangle_{H_2}, \quad x, x' \in H_1, y, y' \in H_2.$$

Niech $\|.\otimes..\|$ oznacza normę na $H_1\odot H_2$ indukowaną przez ten iloczyn skalarny. Wówczas iloczynem tensorowym przestrzeni Hilberta H_1 i H_2 nazywamy uzupełnienie $H_1\odot H_2$ w tej normie, czyli przestrzeń Hilberta

$$H_1 \otimes H_2 = \overline{H_1 \odot H_2}^{\parallel . \parallel}$$
.

Niech $T_i \in B(H_i)$ dla i = 1, 2. Definujemy operator $T_1 \otimes T_2 \in B(H_1 \otimes H_2)$ poprzez (jednoznaczne) liniowe i ciągłe rozrzeszenie wzoru

$$T_1 \otimes T_2(x \otimes y) := T_1 x \otimes T_2 y, \quad x \in H_1, y \in H_2.$$

Wykaż, że wtedy

$$(T_1 \otimes T_2)^* = T_1^* \otimes T_2^*.$$

6. Niech A będzie algebrą \mathbb{C}^* , $n \in \mathbb{N}_1$ i niech E_{ij} oznacza macierz jednostkową w $M_n(\mathbb{C})$ (tzn. $(E_{ij})_{kl} = 1$ wtw, gdy k = i, l = j, poza tym mamy 0). Przez $M_n(A)$ oznaczamy zbiór wszystkich macierzy $n \times n$ o wyrazach w A (z działaniami analogicznymi jak na $M_n(\mathbb{C})$, np. $([a_{ij}]_{i,j=1}^n)^* = [a_{ji}^*]_{i,j=1}^n$). Definiujemy odwzorowanie

$$\Phi: M_{(A)} \ni [a_{ij}]_{i,j=1}^n \mapsto \sum_{i,j=1}^n E_{ij} \odot a_{ij} \in M_n(\mathbb{C}) \odot A.$$

Wykaż, że Φ jest *-izomorfizmem algebr.

7. Niech A i B będą algebrami C*. Na algebraicznym iloczynie tensorowym $A\odot B$ definiujemy działania:

$$(x \otimes y) \cdot (x' \otimes y') := xx' \otimes yy', \qquad (x \otimes y)^* = x^* \otimes y^*.$$

Wykaż, że $A \odot B$ z tymi działaniami jest *-algebrą.

- 8. Niech A, B i C będą algebrami C^* . Niech $\phi: A \to C$ i $\psi: B \to C$ będą *-homomorfizmami. Pokaż, że wtedy:
 - (a) istnieje (jednoznacznie wyznaczone) odwzorowanie liniowe $\phi \times \psi : A \otimes B \to C$ takie, że $\phi \times \psi(a \otimes b) = \phi(a)\psi(b)$.
 - (b) $\phi \times \psi$ jest *-homomorfizmem wtw, gry $\phi(A)$ i $\psi(B)$ komutują, tzn. dla dowolnych $x \in A$ i $y \in B$ zachodzi $\phi(x)\psi(y) = \psi(y)\phi(x)$.
- 9. Uzasadnij, że norma maksymalna na $A \odot B$

$$A \odot B \ni x \mapsto ||x||_{\max} := \sup\{||\pi(x)|| : \pi : A \odot B \to B(H) \text{ jest reprezentacją}\}$$

jest normą C*.