Data analysis tasks with python

Electricity consumption analysis

 Implementation: in python 3.9, environment according to https://github.com/DiLTAnalytics/default model environment/

• steps

- write a python script for a standardized load profile analysis of electricity meter measurement data (kilowatt, 15-minute intervals)
- Different grip operators provide load profiles of big buildings in different formats (3 examples attached) prepare a standardized, modular analysis using python for the raw data including proper documentation (e.g. jupyter notebook, readme) for all the steps.
- The results should be available as well as CSV and the plots as JPGs.
- First step: think about meaningful plausibility checks, e.g. create scatter plot for outlier detection, etc.
 - Make a suggestion of 2 plausibility checks and present it to me

Screenshots of raw data (3 csv files)

MEC	AT0080000870000000000000000097058	
UNIT	kWh	
TGRID	15	
Zeitbereich	01.01.2019 00:01 - 01.01.2020 00:00	
Summe im Zeitraum	50.743,050 kWh	
Max im Zeitraum	21,920 kW	
01.01.2019 00:15	1,3	
01.01.2019 00:30	0,77	
01.01.2019 00:45	0,8	
01.01.2019 01:00	0,78	
01.01.2019 01:15	0,78	
01.01.2019 01:30	0,76	
01.01.2019 01:45	0,82	
01.01.2019 02:00	0,8	
01.01.2019 02:15	0,73	
01.01.2019 02:30	0,83	
01.01.2019 02:45	0,77	
01.01.2019 03:00	0,79	
01.01.2019 03:15	0,77	
01.01.2019 03:30	0,75	
01.01.2019 03:45	0,76	
01.01.2019 04:00	0,89	

Anlage						
Vertragsbeze						
Anlagenadre						
GP-Nummer						
Geschäftspar						
GP-Adresse						
VP-Nummer						
Vertriebsspa						
Zählpunkt						
Netzebene			6			
Netzgebiet			N08170			
Service			NE			
Branche						
Profil			10000308			
Profilbezeich			OP_L_AT008170086050000000000000000			
Profilrolle			1001			
Profiltyp/ME			01/kW			
Maximum			89,52			
Summe kW			453.685,20			
Summe kWh			113.421,30			
Profilwert	01.01.2020	00:00	6,72			
Profilwert	01.01.2020	00:15	6,8			
Profilwert	01.01.2020	00:30	6,64			
Profilwert	01.01.2020	00:45	6,72			
Profilwert	01.01.2020	01:00	6,72			
Profilwert	01.01.2020	01:15	6,96			
Profilwert	01.01.2020	01:30	7,6			
Profilwert	01.01.2020	01:45	7,92			
Profilwert	01.01.2020	02:00	7,28			
Profilwert	01.01.2020	02:15	6,56			
Profilwert	01.01.2020	02:30	6,96			
Profilwert	01.01.2020	02:45	6,8			
Profilwert	01.01.2020	03:00	7,6			

4	Α	В	С	D
1	Date	Time	1-1:1.5.0	
2	01.01.2019	00:15	21,76	
3	01.01.2019	00:30	20,64	
4	01.01.2019	00:45	21,84	
5	01.01.2019	01:00	20,96	
6	01.01.2019	01:15	21,12	
7	01.01.2019	01:30	20,32	
8	01.01.2019	01:45	21,84	
9	01.01.2019	02:00	22,24	
10	01.01.2019	02:15	21,6	
11	01.01.2019	02:30	19,04	
12	01.01.2019	02:45	20,32	
13	01.01.2019	03:00	22,16	
14	01.01.2019	03:15	21,68	
15	01 01 2019	03.30	21.84	

Create a report per dataset

Description of analysis	Result of analysis (write all results in a CSV)
Name of dataset	Name of analysed CSV
Time period of data set	dd.mm.yyyy-dd.mm.yyyy
Count amount of kWh values	1 integer (should be ~35000)
Total energy consumption (=sum of all values)	1 Decimal (kWh)
Maximum value in dataset	1 Decimal value (kWh) and corresponding timestamp
Minimum value in dataset	1 Decimal value (kWh) and corresponding timestamp
Average and median of daily sum in dataset	2 Decimal values (kWh) and standard deviation
Average and median of daily sum on weekdays	2 Decimal values (kWh) and standard deviation
Average and median of daily sum on saturdays and sundays	2 Decimal values (kWh) and standard deviation
Average and median of on sundays at 03:00 in the morning	2 Decimal values (kWh) and standard deviation
Average daily sum between 08:00-17:00 on weekdays	1 Decimal value (kWh) and standard deviation
Average daily sum between 08:00-17:00 on Saturdays and sundays	1 Decimal value (kWh) and standard deviation
Average daily sum between 17:00-08:00 on weekdays	1 Decimal value (kWh) and standard deviation
Average daily sum between 17:00-08:00 on saturdays and sundays	1 Decimal value (kWh) and standard deviation

Create 3 bar charts

- Bar chart 1: daily sums in kWh (y-axis), date on xaxis
- Bar chart 2: weekly sums in kWh (y-axis), number of calendar week on xaxis
- Bar chart 3: Monthly sums in kWh (y-axis), month (mm.yy) on x-axis

Example how bar chart 2 could look like

Number of calendar week (

Create 2 bar charts

- Sort values of bar chart 1
 (slide before) by size
 (descending): daily sums
 in kWh (y-axis), number
 of days on x-axis
- Sort values of bar chart 2
 (slide before) by size
 (descending): weekly
 sums in kWh (y-axis), first
 day of related week on x axis

Example how bar chart 1 could look like

Create a line diagram

- Multiply each 15-minvalue with 4 (converts kWh in kW)
- Create a plot which arranges the kW values by size (y-axis, descending) and time in hours on x-axis

Example plot how it could look like (blue, orange & red line, don't take care about the labels in the plot)

Create a carpet plot

 Create a carpet plot or heat map (kWh values on y-axis, hour of the day (e.g. 06:00, 12:00, 18:00) on x-axis

Example how the plot should look like

Create a line diagram of the average daily profile per day of the week

- Multiply each 15-min-value with 4 (converts kWh in kW)
- Calculate the average 15minute value per weekday and time of the day (e.g. on all mondays at 08:00 the average value is 45 kW)
- Create a line diagram out of the calculated values (kWh values on y-axis, hour of the day (e.g. 06:00, 12:00, 18:00) on x-axis which shows the a line diagram per day

Example how the plot could look like

Legend: Monday

Tuesday Wednesday Thursday Friday

Saturday Sunday

Hour of the day (on y-axis)