ЛЕКЦИЯ 6.1 ТРИГОНОМЕТРИЧЕСКАЯ ИНТЕРПОЛЯЦИЯ

Мы снова обращаемся к методам приближения функций. Но если раньше мы применяли для приближения алгебраические полиномы, то теперь будем использовать для этого тригонометрические функции. Таким образом, мы изучим методы тригонометрической аппроксимации и интерполяции, которые получили широкое применение в цифровой обработке сигналов, автоматике, радиотехнике, обработке изображений.

Для тригонометрической интерполяции имеется хорошо разработанный математический аппарат – ряды Фурье. Начнём с изложения основ этой теории.

1. Преобразование Фурье

Преобразование Фурье – это интегральное преобразование, которое ставит в соответствие исходной функции f вещественного аргумента t некоторую другую функцию вещественного аргумента s по формуле

$$\widehat{f(s)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(t)e^{-ist}dt.$$

Функцию \hat{f} называют *Фурье-образом* функции f. Обратное преобразование имеет вид

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f(s)} e^{ist} ds.$$

Переменная t обычно понимается как время, т.е. f – это изменяющийся во времени сигнал; s – это частота гармонической составляющей (гармоники) сигнала f. Функция \hat{f} описывает коэффициенты (амплитуды) разложения f по гармоникам.

Преобразование Фурье имеет место только для непрерывных функций. Идея Фурье состояла в том, что непрерывный периодический сигнал может быть представлен суммой выбранных должным образом сигналов синусоидальной формы. Удобство Фурье-образов вместо исходных функций в том, что часто исходные дифференциальные уравнения после применения преобразования Фурье превращаются в алгебраические.

Основные свойства преобразования Фурье таковы:

1.
$$\widehat{f^{(n)}(t)} = (is)^n \widehat{f(s)}$$
;

2.
$$f(\widehat{t-t_0}) = e^{-ist_0}\widehat{f(s)};$$

3.
$$f(at) = |a|^{-1} \widehat{f(\frac{s}{a})};$$

4. Фурье-образ линейной комбинации функций является линейной комбинацией Фурье-образов этих функций.

Пример. Найти Фурье-образ функции

$$f(t) = \begin{cases} 0, |t| > 2, \\ 2, |t| < 2. \end{cases}$$

По формуле прямого преобразования Фурье

$$\widehat{f(\omega)} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} f(x)e^{-it\omega}dt =$$

$$= \frac{2}{\sqrt{2\pi}} \int_{-\infty}^{2} 2\cos\omega t dt = \frac{4}{\omega\sqrt{2\pi}} \sin 2\omega.$$

Тогда исходная функция запишется в виде

$$f(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \widehat{f(\omega)} e^{it\omega} d\omega = \frac{2}{\pi} \int_{-\infty}^{+\infty} \frac{\sin 2\omega}{\omega} e^{it\omega} d\omega.$$

2. Тригонометрический ряд Фурье

При анализе периодических процессов, встречающихся в радиотехнике, электронике, автоматическом управлении, периодические функции разлагают в pяд Фурье. Ряд Фурье для функции f – это функциональный тригонометрический ряд

$$S(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nt + \sum_{n=1}^{\infty} b_n \sin nt,$$

где

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) dt,$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos nt dt, \quad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin nt dt,$$

 $n=1,2,\dots$. Его коэффициенты вычисляются по функции f. Она должна быть периодической с периодом 2π . Ряд может быть построен и для функций с произвольным периодом T=2l (l – полупериод). В этом случае в ряде Фурье производится замена

$$u = t \frac{l}{\pi} \Leftrightarrow t = u \frac{\pi}{l}.$$

Тогда

$$S(u) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{\pi n}{l}u\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{\pi n}{l}u\right) \Rightarrow$$

$$\Rightarrow S(u) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{2\pi n}{T}u\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi n}{T}u\right),$$

где

$$a_0 = \frac{1}{l} \int_{-l}^{l} f(u) du,$$

$$a_n = \frac{1}{l} \int_{-l}^{l} f(u) \cos\left(\frac{\pi n}{l}u\right) du, \quad b_n = \frac{1}{l} \int_{-l}^{l} f(u) \sin\left(\frac{\pi n}{l}u\right) du,$$

 $n=1,2,\dots$ Достаточным условием существования ряда Фурье функции f является её интегрируемость на отрезке $[-\pi;\pi]$ ([-l;l] для функции с периодом T=2l). Условия сходимости ряда Фурье функции даёт теорема Дирихле.

Теорема 1 (Дирихле). Если функция f кусочно-непрерывна и кусочно-дифференцируема на отрезке $[-\pi;\pi]$, то ее ряд Фурье сходится на всей числовой оси и его сумма S есть периодическая функция с периодом 2π .

Чему равна сумма ряда Фурье? В точках непрерывности t функции сумма ряда S(t) совпадает с самой функцией: S(t)=f(t). В точках разрыва t_0 функции сумма ряда равна

$$S(t_0) = \frac{f(t_0 - 0) + f(t_0 + 0)}{2}.$$

В точках $-\pi$ и π , т.е. на концах отрезка $[-\pi;\pi]$ сумма ряда равна

$$S(-\pi) = S(\pi) = \frac{f(-\pi + 0) + f(\pi - 0)}{2}$$
.

Эти результаты сформулированы для функции с периодом 2π. Они справедливы и для функций с произвольным периодом (с соответствующими заменами величин).

Пример. Функция f(x) = 1 - 3x задана на отрезке $[-\pi; \pi]$. Разложим её в ряд Фурье на нём, считая её периодической с периодом 2π . Вычисляем коэффициенты тригонометрического ряда a_0 , a_n , b_n и функцию S:

$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - 3x) dx = 2; \ a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - 3x) \cos nx \, dx = 0;$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} (1 - 3x) \sin nx \, dx = \frac{6}{n} \cos \pi n = \frac{6}{n} (-1)^n;$$

$$S(x) = 1 + 6 \sum_{n=1}^{\infty} \frac{(-1)^n}{n} \sin nx.$$

Тогда исходную функцию можно приблизить частичными суммами тригонометрического ряда:

$$S_1(x) = 1 - 6\sin x,$$

$$S_2(x) = 1 - 6\sin x + 3\sin 2x,$$

$$S_3(x) = 1 - 6\sin x + 3\sin 2x - 2\sin 3x,$$

$$S_4(x) = 1 - 6\sin x + 3\sin 2x - 2\sin 3x + 1,5\sin 4x.$$

Получаем тригонометрическую аппроксимацию функции f. Графики исходной функции и ее аппроксимации S_2 , S_4 приведены на рис. 1.

Рис. 1. Функция и её тригонометрические аппроксимации в примере на с. 4

 Табл. 1. Преобразования, основанные на разложении исходного сигнала по гармоникам, и

 их характеристики

Название преоб-	Исходные дан-	Прямое и обратное	Результат
разования	ные	преобразования	
Преобразование	Функция f	Да	Функция \hat{f}
Фурье			
Ряд Фурье	Функция <i>f</i>	Только прямое	Сумма функциональ-
		преобразование	ного ряда S
Интерполяция три-	Табличная функ-	Только прямое	Функция - интерпо-
гонометрическим	ция $(t_i, f(t_i))$	преобразование	ляционный тригоно-
полиномом			метрический поли-
			ном Т
Аппроксимация	Табличная функ-	Только прямое	Функция - аппрокси-
тригонометриче-	ция $(t_i, f(t_i))$	преобразование	мирующий тригоно-
ским полиномом			метрический поли-
			ном Т
Дискретное пре-	Табличная функ-	Да	Табличная функция
образование	ция $(t_i, f(t_i))$		(i, F(i))
Фурье			
Быстрое преобра-	Табличная функ-	Да	Табличная функция
зование Фурье	ция $(t_i, f(t_i))$		(i, F(i))
Непрерывное пре-	Функция сигна-	Только прямое	Сумма функциональ-
образование Уол-	лов	преобразование	ного обобщенного
ша-Адамара			ряда Фурье
Дискретное пре-	Дискретный	Да	Дискретный набор
образование Уол-	набор сигналов		значений
ша-Адамара			

В таблице 1 перечислены преобразования, основанные на разложении исходного сигнала по гармоникам, и их характеристики: исходные данные – что преобразуется; имеется ли обратное преобразование; результат. Два из них уже рассмотрены: преобразование и ряд Фурье.

3. Аппроксимация и интерполяция тригонометрическими полиномами

Поставим и решим задачу аппроксимации табличной функции тригонометрическими полиномами. Пусть дана табличная функция y = f(x) (табл. 2).

Табл. 2. Функция y = f(x)

i	x_i	y_i
0	x_0	y_0
1	x_1	y_1
:	÷	÷
n	x_n	y_n

Тригонометрическим полиномом называется частичная сумма тригонометрического ряда:

$$S_k(x) = \frac{a_0}{2} + \sum_{i=1}^k a_i \cos ix + \sum_{i=1}^k b_i \sin ix.$$

Число k называется степенью полинома, a_i , b_i – его коэффициенты. Но это частичная сумма ряда Фурье для функции с периодом 2π . Надо перевести её на период $T=x_n-x_0$. Пусть $y_0=y_n$. Тогда функцию f можно считать периодической с периодом $T=x_n-x_0$. Вне таблицы она доопределяется по периодичности. Тригонометрический полином подстановкой

$$u = x \frac{l}{\pi} \Leftrightarrow x = u \frac{\pi}{l},$$

где

$$l=\frac{T}{2}=\frac{x_n-x_0}{2},$$

приводится к виду

$$S_k(x) = \frac{a_0}{2} + \sum_{i=1}^k a_i \cos\left(\frac{\pi i}{l}x\right) + \sum_{i=1}^k b_i \sin\left(\frac{\pi i}{l}x\right) =$$
$$= \frac{a_0}{2} + \sum_{i=1}^k a_i \cos\left(\frac{2\pi i}{T}x\right) + \sum_{i=1}^k b_i \sin\left(\frac{2\pi i}{T}x\right)$$

(новая переменная в S_k опять обозначена x).

Задача состоит в построении тригонометрического полинома S_k степени k, приближающего функцию f. В такой постановке она некорректна: нужно математически точно определить приближение функции полиномом. Сделаем это так, как в методе наименьших квадратов: построить тригонометрический полином, для которого среднеквадратическое отклонение от табличных значений будет наименьшим. Дальше введём некоторые условия на исходные данные, чтобы более точно сформулировать задачу.

Пусть таблица функции f равномерная, т.е. узлы идут с постоянным шагом h. Делаем замену

$$t = \frac{x - x_0}{h}.$$

Точки x_j , которые мы теперь можем называть узлами аппроксимации, переходят в множество точек $\{0,1,...,n\}$:

$$t_{j} = \frac{x_{j} - x_{0}}{h} \Rightarrow$$

$$\Rightarrow t_{j} = \frac{x_{0} + jh - x_{0}}{h} = j,$$

 $j=0,1,\ldots,n$; период T функции по новой переменной t равен n, полупериод - $\frac{n}{2}$:

$$T = n \implies l = \frac{n}{2}$$

Тогда введём в рассмотрение многочлен S_k от новой переменной t:

$$S_k(t) = \frac{a_0}{2} + \sum_{i=1}^k \left(a_i \cos\left(\frac{2\pi i}{T}t\right) + b_i \sin\left(\frac{2\pi i}{T}t\right) \right) =$$

$$= \frac{a_0}{2} + \sum_{i=1}^k \left(a_i \cos\left(\frac{2\pi i}{T} \cdot \frac{x - x_0}{h}\right) + b_i \sin\left(\frac{2\pi i}{T} \cdot \frac{x - x_0}{h}\right) \right)$$

(это не замена в многочлене от x, а запись многочлена того же вида от переменной t). Тогда считается, что

$$f(x) \approx S_k(t) = S_k\left(\frac{x - x_0}{h}\right).$$

Очевидно, что тригонометрический многочлен определяется своими коэффициентами $a_0, a_1, \dots, a_k, b_1, \dots, b_k$. Поэтому величина, которую надо минимизировать, зависит от них и определяется формулой

$$T(a_0, a_1, ..., a_k, b_1, ..., b_k) = \sum_{j=0}^{n} (S_k(j) - y_j)^2$$

(сумма квадратов отклонений полинома от табличных значений).

Задача метода наименьших квадратов теперь формулируется так: построить тригонометрический полином S_k , для которого значение T будет минимальным. Нужно найти 2k+1 коэффициент $a_0,a_1,...,a_k,\ b_1,...,b_k$. Известно, что задача имеет единственное решение, если 2k+1 < n+1, или

$$k < \frac{n}{2}$$
.

Примем это без доказательства и будем решать задачу при этом условии.

Тригонометрический многочлен есть по форме обобщённый многочлен по системе тригонометрических функций

$$1, \cos\left(\frac{2\pi}{T}t\right), \dots, \cos\left(\frac{2\pi(k-1)}{T}t\right), \cos\left(\frac{2\pi k}{T}t\right), \\ \sin\left(\frac{2\pi}{T}t\right), \dots, \sin\left(\frac{2\pi(k-1)}{T}t\right), \sin\left(\frac{2\pi k}{T}t\right).$$

Известно, что эта система ортогональна на отрезке [0;T] (или [0;n]):

$$\sum_{j=0}^{n} \sin\left(\frac{2\pi mj}{T}\right) \sin\left(\frac{2\pi pj}{T}\right) = \begin{cases} 0, \text{ если } m \neq p, \\ \frac{n+1}{2}, \text{ если } m = p \neq 0, \end{cases}$$
 (1)

$$\sum_{j=0}^{n} \cos\left(\frac{2\pi m j}{T}\right) \cos\left(\frac{2\pi p j}{T}\right) = \begin{cases} 0, \text{ если } m \neq p, \\ \frac{n+1}{2}, \text{ если } m = p \neq 0, \\ n+1, \text{ если } m = p = 0, \end{cases}$$
 (2)

$$\sum_{j=0}^{n} \sin\left(\frac{2\pi mj}{T}\right) \cos\left(\frac{2\pi pj}{T}\right) = 0.$$

Система функций называется ортогональной, если скалярное произведение любых попарно различных функций из неё равно нулю. Скалярное произведение вводится каким-

либо образом в данном функциональном пространстве. Здесь скалярное произведение есть сумма попарных произведений значений функций в узлах:

$$\varphi \psi = \sum_{j=0}^{n} \varphi(j) \psi(j).$$

Воспользуемся результатом, полученным ранее в лекции 3.1 об аппроксимации. Тогда было выведено решение: вектор коэффициентов обобщённого многочлена \bar{a} находится из нормальной системы МНК

$$\Gamma \overline{a} = \overline{b}$$
,

где $\Gamma = P^T P$, $\overline{b} = P^T \overline{y}$,

$$P = \begin{pmatrix} \varphi_{0}(t_{0}) & \varphi_{1}(t_{0}) & \cdots & \varphi_{2k}(t_{0}) \\ \varphi_{0}(t_{1}) & \varphi_{1}(t_{1}) & \cdots & \varphi_{2k}(t_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{0}(t_{n}) & \varphi_{1}(t_{n}) & \cdots & \varphi_{2k}(t_{n}) \end{pmatrix}, \overline{a} = \begin{pmatrix} \frac{a_{0}}{2} \\ a_{1} \\ \vdots \\ a_{k} \\ b_{1} \\ \vdots \\ b_{k} \end{pmatrix}, \overline{y} = \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n} \end{pmatrix},$$

где $\Gamma = P^T P$ – матрица Грама. При этом в соответствии со структурой вектора \overline{a} базисные функции обозначены следующим образом:

$$\overline{a} = \begin{pmatrix} \frac{a_0}{2} \\ a_1 \\ \vdots \\ a_k \\ b_1 \\ \vdots \\ b_k \end{pmatrix} \Rightarrow \begin{cases} \varphi_0(t) = 1, \\ \varphi_1(t) = \cos\left(\frac{2\pi}{T}t\right), \\ \vdots \\ \varphi_k(t) = \cos\left(\frac{2\pi k}{T}t\right), \\ \varphi_{k+1}(t) = \sin\left(\frac{2\pi}{T}t\right), \\ \vdots \\ \varphi_{2k}(t) = \sin\left(\frac{2\pi k}{T}t\right). \end{cases}$$

Вычислим матрицу Грама для тригонометрической системы базисных функций:

$$\|\Gamma\|_{mp} = \varphi_m \varphi_p = \sum_{j=0}^n \varphi_m(j) \varphi_p(j) = 0, m \neq p,$$

$$\|\Gamma\|_{11} = \varphi_0^2 = n + 1,$$

$$\|\Gamma\|_{mm} = \varphi_{m-1}^2 = \frac{n+1}{2}, m = 2, ..., 2k + 1.$$

Внедиагональные элементы равны нулю в силу ортогональности, диагональные вычисля-

ются по формулам (1), (2). В итоге матрица Грама получается диагональная:

$$\Gamma = P^T P = \begin{pmatrix} \varphi_0^2 & 0 & \cdots & 0 \\ 0 & \ddots & \vdots \\ \vdots & & 0 \\ 0 & \cdots & 0 & \varphi_{2k}^2 \end{pmatrix} = \begin{pmatrix} n+1 & 0 & & 0 \\ 0 & \frac{n+1}{2} & \cdots & 0 \\ & \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{n+1}{2} \end{pmatrix}.$$

Теперь вычислим вектор правых частей \overline{b} :

$$\overline{b} = P^{T} \overline{y} = \begin{pmatrix} \varphi_{0}(t_{0}) & \varphi_{1}(t_{0}) & \cdots & \varphi_{2k}(t_{0}) \\ \varphi_{0}(t_{1}) & \varphi_{1}(t_{1}) & \cdots & \varphi_{2k}(t_{1}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{0}(t_{n}) & \varphi_{1}(t_{n}) & \cdots & \varphi_{2k}(t_{n}) \end{pmatrix}^{T} \overline{y} =$$

$$= \begin{pmatrix} \varphi_{0}(t_{0}) & \varphi_{0}(t_{1}) & \cdots & \varphi_{0}(t_{n}) \\ \varphi_{1}(t_{0}) & \varphi_{1}(t_{1}) & \cdots & \varphi_{1}(t_{n}) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_{2k}(t_{0}) & \varphi_{2k}(t_{1}) & \cdots & \varphi_{2k}(t_{n}) \end{pmatrix} \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n} \end{pmatrix} =$$

$$= \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \cos\left(\frac{2\pi}{T}\right) & \cdots & \cos\left(\frac{2\pi n}{T}\right) \\ \vdots & & \sin\left(\frac{2\pi k}{T}\right) & \cdots & \sin\left(\frac{2\pi n}{T}\right) \\ \vdots & & & \vdots \\ 0 & & \sin\left(\frac{2\pi k}{T}\right) & \cdots & \sin\left(\frac{2\pi k n}{T}\right) \end{pmatrix} \begin{pmatrix} y_{0} \\ y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = \begin{pmatrix} \sum_{j=0}^{n} y_{j} \\ \sum_{j=0}^{n} y_{j} \cos\left(\frac{2\pi j}{T}\right) \\ \vdots \\ \sum_{j=0}^{n} y_{j} \cos\left(\frac{2\pi k j}{T}\right) \\ \sum_{j=0}^{n} y_{j} \sin\left(\frac{2\pi j}{T}\right) \\ \vdots \\ \sum_{j=0}^{n} y_{j} \sin\left(\frac{2\pi k j}{T}\right) \end{pmatrix}$$

Получаем систему с диагональной матрицей, которая очень легко решается. В итоге имеем коэффициенты тригонометрического полинома наилучшего среднеквадратического отклонения:

$$a_0 = \frac{2}{n+1} \sum_{j=0}^{n} y_j,$$

$$a_i = \frac{2}{n+1} \sum_{j=0}^{n} y_j \cos\left(\frac{2\pi i j}{T}\right), i = 1, ..., k,$$

$$b_i = \frac{2}{n+1} \sum_{j=0}^{n} y_j \sin\left(\frac{2\pi i j}{T}\right), i = 1, ..., k,$$

где T = n – период функции. Строим многочлен

$$S_k(t) = \frac{a_0}{2} + \sum_{i=1}^k \left(a_i \cos\left(\frac{2\pi i}{T}t\right) + b_i \sin\left(\frac{2\pi i}{T}t\right) \right)$$

с этими коэффициентами и вычисляем приближённо f(x) как $S_k\left(\frac{x-x_0}{h}\right)$:

$$f(x) \approx S_k(t) = S_k\left(\frac{x - x_0}{h}\right).$$

Как уже отмечалось, при $k \leq \frac{n}{2}$ задача имеет единственное решение. Если $k = \frac{n}{2}$ (n чётное), то аппроксимирующий полином превращается в интерполяционный, и $S_k(x_j) = y_j$, j = 0, 1, ..., n. Это уже *тригонометрическая интерполяция* табличной функции. Если n нечётное, то интерполяция имеет место для степени полинома $k = \frac{n+1}{2}$.

Пусть n+1=2N, т.е. число узлов чётно. Однозначно определяемая аппроксимация, как и для алгебраического полинома, имеет место при $k \leq N$. Наибольшая степень полинома может быть N. При k=N аппроксимирующий полином превращается в интерполяционный и $S_N(x_j)=y_j$. В этом случае $h=\frac{\pi}{N}$ (функция f периодическая с периодом $T=2\pi$, рассматривается на отрезке $[-\pi;\ \pi]$, узлы идут от $-\pi$ до π с постоянным шагом). Тогда f интерполируется полиномом

$$f(x) \approx S_N\left(\frac{x-x_0}{h}\right) = \frac{a_0}{2} + \sum_{i=1}^{N-1} (a_i \cos i(x-x_0) + b_i \sin i(x-x_0)) + a_N \cos N(x-x_0),$$

где

$$a_{i} = \frac{1}{N} \sum_{j=0}^{2N-1} f(x_{j}) \cos\left(\frac{j\pi}{N}i\right), i = 0, 1, ..., N-1,$$

$$b_{i} = \frac{1}{N} \sum_{j=0}^{2N-1} f(x_{j}) \sin\left(\frac{j\pi}{N}i\right), i = 1, ..., N-1,$$

$$a_{N} = \frac{1}{2N} \sum_{j=0}^{2N-1} f(x_{j}) \cos \pi j.$$

Всего коэффициентов 2N, они определяются из 2N условий интерполяции в точках

 $-\pi, -\pi + \frac{\pi}{N}, \dots, \pi - \frac{\pi}{N}$. Получаем тригонометрический интерполирующий полином степени N.

Пример. Дана функция f(x) = -3x + 1 , рассмотрим ее на отрезке $[-\pi; \pi]$. Пусть узлов на отрезке задания 6, номера узлов 0, 1, ..., 5, N = 3. Тогда для приближения функции получим интерполяционный тригонометрический полином степени 3:

$$f(x) \approx T\left(\frac{x - x_0}{h}\right) = \frac{a_0}{2} + \sum_{i=1}^{2} \left(a_i \cos\left(\frac{\pi i}{3} \cdot \frac{x - x_0}{h}\right) + b_i \sin\left(\frac{\pi i}{3} \cdot \frac{x - x_0}{h}\right)\right) + a_3 \cos\left(\pi \frac{x - x_0}{h}\right),$$

где

$$a_{i} = \frac{1}{3} \sum_{j=0}^{5} f(x_{j}) \cos\left(\frac{j\pi}{3}i\right), i = 0, 1, 2, 3,$$

$$b_{i} = \frac{1}{3} \sum_{j=0}^{5} f(x_{j}) \sin\left(\frac{j\pi}{3}i\right), i = 1, 2.$$

Подставляя известные значения

$$f(x_j) = -3x_j + 1, x_j = -\pi + \frac{\pi}{3}j,$$

вычислим

$$a_0 = 2,571$$
, $a_1 = 3,142$, $a_2 = 3,142$, $a_3 = 1,157$, $b_0 = 0$, $b_1 = 5,441$, $b_2 = 1,814$.

Подстановка узлов x_j в функции f и T подтверждает, что построен интерполяционный тригонометрический полином (проверьте это самостоятельно). На рис. 2 приведены графики полиномов T, g_3 и исходной функции f. Полиномы третьей степени – это построенный выше интерполяционный T и частичная сумма ряда Фурье g_3 со слагаемыми до 3-й степени включительно.

Среди всех тригонометрических полиномов для заданной функции частичный ряд Фурье имеет наименьшую среднюю погрешность.

Теорема 2. Средняя погрешность тригонометрического полинома степени n наименьшая для частичного ряда Фурье и она равна

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} (f(x) - S_n(x))^2 dx.$$

Рис. 2. Функция и её тригонометрические полиномы третьей степени примера на с. 12 Построенные нами приближения не противоречат этому утверждению.

Погрешность тригонометрической интерполяции оценивается по следующей теореме.

Теорема 3. Для погрешности (остаточного члена) интерполяции тригонометрическим многочленом S_k $R_k(x) = f(x) - S_k\left(\frac{x-x_0}{h}\right)$ верна оценка

$$|R_k(x)| \le \frac{C}{n^{r+1}}M,$$

где

$$M = \max_{x \in [a:b]} \left| f^{(r+1)}(x) \right|,$$

n=2k или $n=2k-1,\ C>0$ – константа, r+1 – максимальный порядок существующей производной, [a;b] – отрезок, содержащий все узлы.

Таким образом, точность интерполяции возрастает с увеличением числа r+1 про- изводных. Тригонометрическая интерполяция имеет одно очень важное преимущество перед алгебраической. С ростом числа узлов её погрешность равномерно стремится к ну-

лю, если функция f имеет по крайней мере вторую производную на отрезке $[x_0;\ x_n]$. Это значит, что скорость сходимости к нулю не зависит от точки интерполяции.