

Red personalizable de sensores inalámbricos de uso agrícola

Autor:

Ing. Leonardo Agustín Muñoz Valdearenas

Director:

TBD (TBD)

Codirector:

TBD (TBD)

${\rm \acute{I}ndice}$

1. Descripción técnica-conceptual del proyecto a realizar.	•	•		•		•	•	 5
2. Identificación y análisis de los interesados	٠							 8
3. Propósito del proyecto								 8
4. Alcance del proyecto								 9
5. Supuestos del proyecto								 9
6. Requerimientos	•							 9
7. Historias de usuarios (<i>Product backlog</i>)								 10
8. Entregables principales del proyecto	٠							 11
9. Desglose del trabajo en tareas								 12
10. Diagrama de Activity On Node	٠							 13
11. Diagrama de Gantt								 15
12. Presupuesto detallado del proyecto								 17
13. Gestión de riesgos			 •					 17
14. Gestión de la calidad	•		 •					 18
15. Procesos de cierre				_	_			 19

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	20 de junio de 2023
1	Se completa hasta el punto 5 inclusive	4 de julio de 2023
2	Se completa hasta el punto 9 inclusive	12 de julio de 2023
3	Se completa hasta el punto 12 inclusive	25 de julio de 2023

Acta de constitución del proyecto

Buenos Aires, 20 de junio de 2023

Por medio de la presente se acuerda con el Ing. Leonardo Agustín Muñoz Valdearenas que su Trabajo Final de la Carrera de Especialización en Sistemas Embebidos se titulará "Red personalizable de sensores inalámbricos de uso agrícola", consistirá esencialmente en el desarrollo de una red de sensores distribuida para la medición de parámetros ambientales, y tendrá un presupuesto preliminar estimado de 625 h de trabajo y \$800.000, con fecha de inicio 20 de junio de 2023 y fecha de presentación pública TBD.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Nicolas Manuel Muñoz Viña Las Perdices

TBD Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

En la actualidad, se observa una tendencia en alza hacia el monitoreo de parámetros en los procesos productivos en general. El propósito de esta práctica es incrementar los rendimientos, reducir el consumo de recursos y optimizar los resultados obtenidos. Esto puede extrapolarse al sector agrícola, donde la medición de parámetros involucrados en el desarrollo del fruto, tales como temperatura y humedad del sueldo, ayuda a mejorar la calidad el producto final obtenido. Las principales ventajas del monitoreo y control de cultivos mediante este tipo de técnicas son:

- Ahorro de agua de riego.
- Prevención de enfermedades.
- Detección de falencias en el sistema de riego.
- Identificación de zonas dañadas por heladas.
- Uso eficiente de agroquímicos.

Para la medición de los parámetros que el cliente requiera, se deben distribuir sensores con su correspondiente microcontrolador y sistema de energía autónomo, usualmente basado en energía solar. Una vez los sensores fueron distribuidos, la recolección de datos se puede realizar de dos diferentes maneras en términos generales:

- Recolección manual: en este esquema los nodos sensores registran las mediciones en una memoria interna y el usuario debe extraer dichas mediciones periodicamente de manera manual. Si bien es una solución sencilla y de bajo costo, su desventaja principal es su imposibilidad de uso en ubicaciones remotas de difícil acceso.
- Recolección mediante punto de acceso: otra manera de obtener las mediciones de los sensores distribuidos es mediante una conexión a internet a través de un punto de acceso (o usualmente llamado gateway), de esta manera los datos son accesibles para el usuario de manera remota por medio de una base de datos. Este concepto de utilizar un punto de acceso a internet es lo que hoy se conoce como internet de la cosas (IoT de sus siglas en inglés). Es evidente que un esquema de este estilo mejora de manera significativa la experiencia de usuario de acceso los datos, aunque implica una mayor complejidad por la necesidad de mantener activo un enlace de comunicaciones y eventualmente requerir algún mantenimiento.

En este proyecto se propone la utilización del segundo esquema de recolección de datos planteado previamente, aunque reemplazando el acceso a internet de un único sensor por una red de sensores inalámbrica (WSN de sus siglas en inglés Wireless Sensor Network) con único punto de acceso a internet como puede observarse a continuación en la figura 1.

La implementación WSN se ha visto disminuida en costos, principalmente por los avances tecnológicos en lo que respecta a capacidad de integración y disminución de consumo, permitiendo la llegada a un mercado masivo.

El propósito del desarrollo de una WSN como plataforma en sí, es permitir al cliente en particular elegir los parámetros que desea medir en sus cultivos y así dar una mayor personalización en

Figura 1. Arquitectura de una WSN.

la solución, por ejemplo, si se desease medir el valor de pH de una zona en particular con un sensor que el cliente requiera, este podría adaptarse de manera casi transparente para la red. Además, permite una generalización en el diseño ya que se parte de una base común que abarca la implementación de la red y los protocolos, permitiendo una fácil adaptación a los requerimientos de cada cliente.

Bajo este esquema, el proyecto requerirá del desarrollo de tres módulos principales como se observa en la figura 2 y la función de cada uno de estos se lista a continuación:

- Nodo con punto de acceso o gateway: es el nodo encargado de la recepción de los datos de toda la red (siguiendo un esquema de red mesh), y enviarlos a internet para que estén disponibles para el usuario. Además almacenará los datos de manera local en caso de que hubiese una falla con el enlace.
- Nodo de enrutamiento: su función es colectar de los datos de los nodos sensores que este tenga conectados y rediccionar mensajes de otros nodos de enrutamiento dentro de la red, para que los mismos puedan llegar al nodo con punto de acceso.
- Nodo sensor: es el nodo encargado de la adquisición periódica de los datos del sensor que este tenga conectado y su envío hacia el nodo de enrutamiento más cercano.

Figura 2. Diagrama general de la red WSN propuesta.

En la actualidad existen diferentes tecnologías para el transceiver que se encuentra dentro de los módulos mencionados previamente. Estas se diferencian principalmente en lo que refiere a consumo, tasa de datos, cantidad de dispositivos que admite, distancia máxima de comunicación y el costo final por nodo de comunicación. Las más utilizadas se listan a continuación:

- Bluetooth de bajo consumo.
- LoraWAN.
- Narrow Band IoT.
- Sigfox.
- 6LoWPAN.
- Wi-Fi.
- Zigbee.

Es importante aclarar que la definición del tipo de transceiver utilizado en el presente proyecto se realizará durante el desarrollo el proyecto. A modo de análisis preliminar, debe optarse por una opción que priorice el bajo consumo por sobre una alta tasa de datos ya que en aplicaciones agrícolas los parámetros a analizar son en general de variación lenta. Además, se prevé una distancia entre nodos sensores del orden de decenas de metros en lugar de kilómetros, por lo que una tecnología de gran alcance no resulta algo prioritario.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Nicolas Manuel Muñoz	Viña Las Perdices	Apoderado
Responsable	Ing. Leonardo Agustín	FIUBA	Alumno
	Muñoz Valdearenas		
Orientador	TBD	TBD	Director Trabajo final
Usuario final	Ing. Christian Ciaglo	Viña Las Perdices	Ing. Agrónomo

Las características principales de cada uno de los interesados listados previamente son:

- Nicolas Manuel Muñoz: persona entusiasta, fomenta la inversión en nuevas tecnologías dentro de su empresa pero siempre que se demuestre fehasientemente que la inversión será rentable. Como cualquier persona con un cargo gerencial, dispone de poco tiempo por lo que los resultados deben ser concisos y comprobables.
- Director : aún sin definir.
- Ing. Christian Ciaglo: ingeniero agrónomo a cargo del cuidado del viñedo de la bodega, actualmente tiene instalados sensores del estilo de recolección manual (como se categorizó en la sección 1). Es la persona que ayudará a establecer los requerimientos de los sensores y será el principal beneficiario de los resultados del proyecto, por lo que es de gran importancia mantener una comunicación periódica durante la etapa temprana del proyecto.

3. Propósito del proyecto

El propósito de este proyecto es el desarrollo de una red de sensores distribuidos de bajo costo y con gran escalabilidad, para que los productores dispongan de datos de alta resolución espacial que mejoren la toma de decisiones, aumentando así ganancias y rendimientos de sus cultivos. Esto se propone tomando como base que la mayoría de la matriz productiva Argentina depende del sector agrícola en general. A pesar de esto, un porcentaje muy pequeño de productores disponen de métricas ambientales y de salud de sus cultivos, lo cual podría incrementar el rendimiento de sus cultivos de manera significativa. Esto puede deberse a falta de interés por su conocimiento, baja oferta de soluciones en el mercado o bien porque se requiere de una gran inversión inicial.

4. Alcance del proyecto

Como se especificó en la sección 1, el proyecto requiere del desarrollo de tres módulos principales y una interfaz de usuario para la visualización e interpretación de los datos colectados. En lo que refiere a la presentación de proyecto dentro del marco de la Carrera de Especialización en Sistemas Embebidos, no se realizará un software de visualización específico, sino que se adaptará a la utilización de algún software previamente desarrollado que cumpla los requerimientos propuestos.

Se realizará una fabricación de una cantidad de módulos limitada pero suficientes para validar el funcionamiento integral del proyecto propuesto, por lo que no se realizará un lote de producción en serie que afecte la duración del proyecto.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se toman en cuenta los siguientes supuestos que refieren al marco de desarrollo:

- Disponibilidad de componentes: si bien en este proyecto se realizará un gran esfuerzo por priorizar el uso de componentes disponibles a nivel nacional, inevitablemente habrán componentes específicos dentro del diseño que deberán ser adquiridos desde el exterior.
- Políticas macroeconómicas: se supondrá que las políticas de importación se mantendrán como lo hacen actualmente, lo cual permite el ingreso al país de pequeñas cantidades de componentes sin necesidad de presentar una excesiva cantidad de documentación legal que pueda afectar los tiempos de desarrollo del proyecto.
- Desarrollo a nivel prototipo: este proyecto solo será fabricado a nivel de prototipo sin realizar iteraciones para optimizar la producción en serie del mismo.
- Permiso de comunicaciones: para la comunicaciones dentro de la WSN se utilizará una banda no licenciada para evitar la necesidad de permisos especiales, en caso de que ocurra un cambio legal durante el desarrollo del proyecto se tomará una decisión conjunta con las autoridades del proyecto para evaluar que la alternativa no perjudique de manera significativa el desarrollo del proyecto.

6. Requerimientos

1. Requerimientos funcionales

1.1. Comunicaciones.

- 1) Se debe usar una frecuencia de uso no licenciado.
- 2) En cada red debe haber solamente un único nodo gateway.
- 3) El nodo gateway debe enviar los datos a internet mediante la red celular.
- 4) Cada módulo debe tener un identificador único.
- 5) Se debe implementar un protocolo de comunicación con confirmación de recepción de paquetes.

- 6) Los módulos debe tener un indicador lumínico para indicar errores.
- 1.2. Alimentación.
 - 1) Los módulos deben disponer de un panel solar.
 - 2) Los módulos deben almacenar energía en una batería.
 - 3) Todos los módulos deben enviar el porcentaje de batería restante de forma periódica.
 - 4) La vida útil de la batería debe ser mayor a 10 años.
- 1.3. Datos.
 - 1) Cada nodo envía una única medición por trama.
 - 2) El nodo gateway debe tener una memoria auxiliar donde almacene los datos.
 - 3) El nodo gateway debe colocar una estampa de tiempo a los datos.
- 2. Requerimientos de documentación.
 - 2.1. Se debe documentar de manera clara el protocolo de comunicación.
 - 2.2. Los formatos de trama deben estar claramente documentados.
 - 2.3. Se deberá justificar el dimensionamiento del sistema de alimentación de cada tipo de módulo.
 - 2.4. Se deberán documentar procedimientos de puesta en marcha de los módulos.
 - 2.5. Se deberá realizar un informe de avance del proyecto y una memoria de trabajo final, una vez finalizado el mismo.
- 3. Requerimientos de testing.
 - 3.1. Se deben presentar resultados de cobertura de las pruebas unitarias y de integración.
 - 3.2. Se deben realizar pruebas de aceptación en presencia del cliente.
 - 3.3. Se deben evidenciar los resultados obtenidos en las pruebas de sistema.
- 4. Requerimientos de interoperatividad.
 - 4.1. Los datos enviados a internet deben tener un formato JSON, de tal forma de ser compatible con interfaces de usuario desarrolladas por terceros.

7. Historias de usuarios (*Product backlog*)

A continuación se muestra el puntaje que se asignará a cada item dentro de los story points:

- 1. Dificultad.
 - Baja 2.
 - Media 5.
 - Alta 13.
- 2. Complejidad.
 - Baja 5.
 - Media 8.
 - Alta 13.

3. Riesgo.

- Baja 1.
- Media 3.
- Alta 8.

Como cliente quiero que la cantidad de módulos pueda escalarse para cubrir la superficie de todo el viñedo.

- Dificultad media (5): lograr establecer numerosos enlaces de radio de baja potencia y de manera simultánea en una gran extensión no es una tarea trivial, aunque no se espera que sea de gran dificultad.
- Complejidad alta (13): requerirá la implementación de un protocolo de comunicación lo suficientemente robusto para establecer cientos de enlaces, por lo que complejizará significativamente el esquema de acceso al medio.
- Riesgo alto (8): en caso de que esto no pueda lograrse, significaría un gran fracaso en el proyecto y requeriría de un replanteamiento de hardware y de la topología de la red.

Story point: 34.

Como usuario quiero que los nodos sensores sean versátiles para poder probar diferentes sensores y poder experimentar en función de los resultados.

- Dificultad baja (2): los sensores comerciales en su mayoría utilizan interfaces de comunicación estándar, por lo que se prevé que la integración de estos sea relativamente sencilla.
- Complejidad media (8): se requerirá implementar el driver para el sensor en particular (tramas, tasa de datos, control de errores, etc.).
- Riesgo medio (3): en caso de que no pueda realizarse la adapatación directa con algún sensor específico, se espera que las horas de ingeniería para adaptarlo a la plataforma sean bajas.

Story point: 13.

8. Entregables principales del proyecto

Los entregables del proyecto son:

- Un prototipo del nodo gateway.
- Dos prototipos del nodo de enrutamiento.
- Cuatro prototipos del nodo sensor.
- Circuitos esquemáticos.

- Código fuente del firmware.
- Intrucciones de puesta en marcha.
- Manual de usuario.
- Informe final.

9. Desglose del trabajo en tareas

A continuación se presenta el desglose de trabajo en tareas con su correspondiente duración estimada:

- 1. Desarrollo de módulos (subtotal 405).
 - 1.1. Enlace de comunicación (subtotal 160 h).
 - 1) Implementación del protocolo dentro de la WSN (30 h).
 - 2) Desarrollo del método de enrutamiento automático (30 h).
 - 3) Definición del formato de tramas (15 h).
 - 4) Desarrollo de la interfaz con el transceiver (40 h).
 - 5) Realizar control de paquetes (25 h).
 - 6) Desarrollo de la interfaz con módulo de red celular (20 h).
 - 1.2. Alimentación (subtotal 55 h).
 - 1) Estimación y verificación de consumos (10 h).
 - 2) Dimensionamiento de componentes (15 h).
 - 3) Selección de componentes (30 h).
 - 1.3. Sensores (subtotal 60 h).
 - 1) Selección de sensores (20 h).
 - 2) Programación de drivers específicos (40 h).
 - 1.4. Armado (subtotal 130 h).
 - 1) Diseño de esquemáticos (40 h).
 - 2) Armado y prueba del prototipo (20 h).
 - 3) Diseño de placas (40 h).
 - 4) Ensamblaje de módulos definitivos (30 h).
- 2. Testing (subtotal 90 h).
 - 2.1. Realizar pruebas unitarias (40 h).
 - 2.2. Realizar pruebas de integración (25 h).
 - 2.3. Realizar pruebas de sistema (25 h).
- 3. Documentación (subtotal 130 h).
 - 3.1. Realizar reporte de testing (30 h).
 - 3.2. Redacción del manual de usuario (20 h).
 - 3.3. Elaboración del informe de avance (20 h).
 - 3.4. Redacción de la memoria del trabajo final (40 h).
 - 3.5. Elaboración de la presentación del proyecto (20 h).

Total de horas del proyecto: 625 h.

10. Diagrama de Activity On Node

En la figura 3 se muestra el diagrama de AoN (Activity on Node de sus siglas en inglés) del presente proyecto, siguiendo el desgloce de tareas reviamente definido en la sección 9. Las referencias temporales de cada una de las actividades se encuentran especificadas en horas.

Ing. Leonardo Agustín Muñoz Valdearenas

Figura 3. Diagrama de Activity on Node.

11. Diagrama de Gantt

En la figura 4, se muestra el diagrama de Gantt del presente proyecto siguiendo el desgloce de tareas de la sección 9.

Figura 4. Diagrama de Gantt del proyecto

12. Presupuesto detallado del proyecto

COSTOS DIRECTOS								
Descripción	Cantidad	Valor unitario	Valor total					
Placa de desarrollo STM32G031	3	\$ 5.000	\$ 15.000					
Microcontrolador SMT32G031	5	\$ 2.500	\$ 12.500					
Transceiver de radio	5	\$ 1.500	\$ 7.500					
Módulo de GSM	1	\$ 10.000	\$ 10.000					
Modelo de PBC final	10	\$ 500	\$ 5.000					
Sensor de temperatura	2	\$ 1.000	\$ 2.000					
Sensor de humedad de suelo	2	\$ 3.500	\$ 7.000					
Panel solar	5	\$ 1.500	\$ 7.500					
Supercapacitor	6	\$ 1.000	\$ 6.000					
Batería de litio	3	\$ 3.000	\$ 9.000					
Circuito de protección para batería de litio	3	\$ 400	\$ 1.200					
SUBTOTAL								
COSTOS INDIRECTOS								
Descripción	Cantidad	Valor unitario	Valor total					
30% de los costos directos	1	\$ 24.810	\$ 24.810					
SUBTOTAL								
TOTAL								

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

- Severidad (S):
- Ocurrencia (O):

Riesgo	S	О	RPN	S*	O*	RPN*

b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Elija al menos diez requerientos que a su criterio sean los más importantes/críticos/que aportan más valor y para cada uno de ellos indique las acciones de verificación y validación que permitan asegurar su cumplimiento.

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.