Алгебраические подгруппы комплексного тора

Мишко Николай

Сибирский федеральный университет Институт математики и фундаментальной информатики

15 апреля 2024 года

Понятие алгебраической группы

Под алгебраическим многообразием H понимаем множество решений системы полиномиальных уравнений. Говорим, что H является алгебраической группой, если на H определена структура группы. Известным примером являются эллиптические кривые.

Рассмотрим подробнее алгебраические подгруппы $(\mathbb{C}^{\times})^n$.

Теорема Артина

G — группа, K — поле, а K^{\times} — его мультипликативная группа. Гомоморфизм $f: G \to K^{\times}$ называют **характером**. Характеры f_1, f_2, \ldots, f_n линейно независимы, если для всех $\alpha_1, \alpha_2, \ldots, \alpha_n \in K$ выполнено:

$$\alpha_1 f_1 + \alpha_2 f_2 + \ldots + \alpha_n f_n = 0 \Rightarrow \alpha_1 = \alpha_2 = \ldots = \alpha_n = 0.$$

Теорема (Артин)

Любые n попарно различных характеров линейно независимы.

Теорема Шмидта

Для
$$lpha=(lpha_1,\dots,lpha_n)\in\mathbb{Z}^n$$
 и $z=(z_1,\dots,z_n)\in G^n$ пишем
$$z^lpha=z_1^{lpha_1}\cdot z_2^{lpha_2}\cdot\dots\cdot z_n^{lpha_n}$$

Отображение $z\mapsto z^{\alpha}$ определяет характер $\chi_{\alpha}:(K^{\times})^n\to K^{\times}.$ Всякий многочлен распадается в сумму ($I\subseteq\mathbb{Z}^n$ конечно):

$$P = \sum_{i \in I} a_i \chi_i$$

Теорема (Шмидт)

Пусть K — поле. Всякая алгебраическая подгруппа H группы $(K^{\times})^n$ задаётся системой некоторого числа N биномиальных уравнений, а именно, существуют N показателей $\alpha_i, \beta_i \in \mathbb{Z}^n$, что $H = \{z \in (K^{\times})^n \mid \forall 1 \leq i \leq N \colon z^{\alpha_i} = z^{\beta_i}\}.$

Мономиальные параметризации

Обозначим $\phi_{\alpha}(t)=(t^{\alpha_1},t^{\alpha_2},\ldots,t^{\alpha_n})$, где $\alpha_1,\ldots,\alpha_n\in\mathbb{Z}^k$.

$$\phi_{\alpha} = \begin{pmatrix} t_1 \\ t_2 \\ \vdots \\ t_k \end{pmatrix} \mapsto \begin{pmatrix} t_1^{\alpha_1^1} \cdot t_2^{\alpha_1^2} \cdot \dots \cdot t_k^{\alpha_1^k} \\ t_1^{\alpha_2^1} \cdot t_2^{\alpha_2^2} \cdot \dots \cdot t_k^{\alpha_2^k} \\ \vdots \\ t_1^{\alpha_n^1} \cdot t_2^{\alpha_n^2} \cdot \dots \cdot t_k^{\alpha_n^k} \end{pmatrix}$$

 $\alpha\mapsto\phi_{\alpha}$ определяет строгий функтор $\mathrm{Matr}(\mathbb{Z})\to\mathrm{Grp}$ в полях нулевой характеристики.

Нормальная форма Смита

Теорема (о существовании нормальной формы Смита)

Пусть $\alpha \in \mathbb{Z}^{m \times n}$ — матрица. Тогда существуют такие матрицы $\beta_1 \in \mathrm{GL}^m(\mathbb{Z})$ и $\beta_2 \in \mathrm{GL}^n(\mathbb{Z})$, что

$$\exists \varepsilon_1, \dots, \varepsilon_r \in \mathbb{Z} \setminus \{0\} \colon \beta_1 \alpha \beta_2 = \begin{pmatrix} \varepsilon_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \varepsilon_r & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{pmatrix} = \varepsilon,$$

причём $\varepsilon_1 \mid \varepsilon_2 \mid \ldots \mid \varepsilon_r$ и $r = \operatorname{rank}(\alpha)$.

Инъективность мономиальной параметризации

 ϕ_{α} распадается в композицию: $\phi_{\beta_1^{-1}} \circ \phi_{\varepsilon} \circ \phi_{\beta_2^{-1}}$. $\phi_{\beta_1^{-1}}$ и $\phi_{\beta_2^{-1}}$ — биекции, поэтому инъективность ϕ_{α} определяется инъективностью ϕ_{ε} .

Теорема

Пусть $\alpha \in \mathbb{Z}^{n \times k}$ — матрица.

$$\phi_lpha: (\mathbb{C}^ imes)^k o (\mathbb{C}^ imes)^n$$
 инъективно $\Leftrightarrow arepsilon_1 = arepsilon_r = \ldots = 1 \wedge r = k$ $\Leftrightarrow lpha_i$ порождают всю решётку \mathbb{Z}^k

Существование мономиальной параметризации

Биномиальные уравнения можно переписать в виде $\ker(\phi_{\beta})$.

Теорема

 $\operatorname{Im}(\phi_{lpha})$ — алгебраическая подгруппа тора.

 $\omega_K(n)$ — группа корней из единицы степени n над полем K. Определим $\Pi(\beta) = |\omega_K(\varepsilon_1)| \cdot \ldots \cdot |\omega_K(\varepsilon_r)|$.

Теорема

Если $\ker(\phi_{\beta}) = \ker(\phi_{\beta'})$, то $\Pi(\beta) = \Pi(\beta')$.

Теорема

Если $\Pi(H) = 1$, то для H существует мономиальная параметризация.

Существование мономиальной параметризации

Теорема

 $H\subseteq (\mathbb{C}^{ imes})^n$ имеет $\Pi(H)$ компонент связности.

Следствие

Для $H\subseteq (\mathbb{C}^{\times})^n$ существует мономиальная параметризация тогда и только тогда, когда H связно.

Для алгебраической подгруппы тора $H\subseteq (\mathbb{C}^\times)^n$ рассмотрим компоненту связности H° , содержащую единицу.

Следствие

Для $H^{\circ}\subseteq (\mathbb{C}^{ imes})^n$ существует мономиальная параметризация.

Спасибо за внимание