

# PREDICTING DIABETES

#### **Presented By:**

Sultanah Aldossari Rawan Alharbi

# CONTENTOUNTENT



Introduction

Dataset

**Expolarity Data Analysis** 

Data Pre-processing

Model Building and Evaluation

Conclusion

### PROBLEM STATEMENT

- Diabetes is a common chronic disease and poses a great threat to human health.
- It can lead to chronic damage and dysfunction of various tissues. Therefore, The earlier diagnosis is obtained, the much easier we can control diabetes.
- Our aim is to predict diabetes using Classification techniques.

### DATASET

Pregnancies Glucose **Blood Pressure** Skin Thickness Insulin ВМІ Diabetes Pedigree Age Outcome **Function** 

### TOOLS









EXPOLARITY DATA

ANALYSIS



















### CONT: EDA

Relationship between target and predictors



#### DATA PRE-PROCESSING

**Outliers Handling** 

Handle Zeros

**Scaling Data** 

Split into
Train and Test

### MODEL EXPERIMENTS:

|    | Algorithm Used                            | Accuracy | Recall   | Precision | F1-Score | AUC      |
|----|-------------------------------------------|----------|----------|-----------|----------|----------|
| 0  | K-Nearest Neighbours                      | 0.785088 | 0.682353 | 0.725000  | 0.703030 | 0.764253 |
| 1  | K-Nearest Neighbours Tuned                | 0.789474 | 0.635294 | 0.760563  | 0.692308 | 0.758206 |
| 2  | Logistic Regression                       | 0.824561 | 0.752941 | 0.771084  | 0.761905 | 0.810037 |
| 3  | Logistic Regression with Ridge Regression | 0.807018 | 0.811765 | 0.711340  | 0.758242 | 0.807980 |
| 4  | Logistic Regression with Lasso            | 0.811404 | 0.811765 | 0.718750  | 0.762431 | 0.811477 |
| 5  | Random Forest                             | 0.785088 | 0.647059 | 0.743243  | 0.691824 | 0.757096 |
| 6  | Random Forest Tuned                       | 0.780702 | 0.776471 | 0.680412  | 0.725275 | 0.779844 |
| 7  | Decision Tree                             | 0.710526 | 0.682353 | 0.597938  | 0.637363 | 0.704813 |
| 8  | Decision Tree Tuned                       | 0.750000 | 0.600000 | 0.689189  | 0.641509 | 0.719580 |
| 9  | Gradient Boosting Classifier              | 0.767544 | 0.764706 | 0.663265  | 0.710383 | 0.766968 |
| 10 | Ada Boost Classifier                      | 0.754386 | 0.705882 | 0.659341  | 0.681818 | 0.744550 |
| 11 | Ada Boost Classifier Tuned                | 0.736842 | 0.835294 | 0.606838  | 0.702970 | 0.756808 |
| 12 | Bagging for Decision Tree                 | 0.824561 | 0.752941 | 0.771084  | 0.761905 | 0.810037 |
| 13 | Support Vector Classifier                 | 0.802632 | 0.647059 | 0.785714  | 0.709677 | 0.771082 |
| 14 | Support Vector Classifier Tuned           | 0.807018 | 0.788235 | 0.720430  | 0.752809 | 0.803209 |
| 15 | Bagging for Support Vector Classifier     | 0.811404 | 0.800000 | 0.723404  | 0.759777 | 0.809091 |

#### MODEL SELECTION:

|             | Algorithm Used                          | Accuracy | Recall   | Precision | F1-Score | AUC      |
|-------------|-----------------------------------------|----------|----------|-----------|----------|----------|
| 0           | K-Nearest Neighbours                    | 0.785088 | 0.682353 | 0.725000  | 0.703030 | 0.764253 |
| 1           | K-Nearest Neighbours Tuned              | 0.789474 | 0.635294 | 0.760563  | 0.692308 | 0.758206 |
| 2           | Loaistic Rearession                     | 0.824561 | 0.752941 | 0.771084  | 0.761905 | 0.810037 |
| <b>3</b> Lo | gistic Regression with Ridge Regression | 0.807018 | 0.811765 | 0.711340  | 0.758242 | 0.807980 |
| 4           | Logistic Regression with Lasso          | 0.811404 | 0.811765 | 0.718750  | 0.762431 | 0.811477 |
| 5           | Random Forest                           | 0.785088 | 0.647059 | 0.743243  | 0.691824 | 0.757096 |
| 6           | Random Forest Tuned                     | 0.780702 | 0.776471 | 0.680412  | 0.725275 | 0.779844 |
| 7           | Decision Tree                           | 0.710526 | 0.682353 | 0.597938  | 0.637363 | 0.704813 |
| 8           | Decision Tree Tuned                     | 0.750000 | 0.600000 | 0.689189  | 0.641509 | 0.719580 |
| 9           | Gradient Boosting Classifier            | 0.767544 | 0.764706 | 0.663265  | 0.710383 | 0.766968 |
| 10          | Ada Boost Classifier                    | 0.754386 | 0.705882 | 0.659341  | 0.681818 | 0.744550 |
| 11          | Ada Boost Classifier Tuned              | 0.736842 | 0.835294 | 0.606838  | 0.702970 | 0.756808 |
| 2           | Bagging for Decision Tree               | 0.824561 | 0.752941 | 0.771084  | 0.761905 | 0.810037 |
| 3           | Support Vector Classifier               | 0.802632 | 0.647059 | 0.785714  | 0.709677 | 0.771082 |
| 14          | Support Vector Classifier Tuned         | 0.807018 | 0.788235 | 0.720430  | 0.752809 | 0.803209 |
| 15          | Bagging for Support Vector Classifier   | 0.811404 | 0.800000 | 0.723404  | 0.759777 | 0.809091 |

### BEST PREFORMED ALGORITHM:

#### Ada Boost

Recall = 84%AUC = 76%

#### **Logistic Regression L2**

Recall = 81% AUC = 80%

#### Logistic Regression L1

Recall = 81%AUC = 81%

#### ADA BOOST CLASSIFIER

#### Confusion matrix & ROC Curve Plot





#### LOGISTIC REGRESSION L2:

#### Confusion matrix & ROC Curve Plot





#### LOGISTIC REGRESSION LI

Confusion matrix & ROC Curve Plot





### DIABETES PREDICTION APP

#### FUTURE WORK



Collect more data about diabetes and analyze them

For better predictions



Build a system that helps people in getting an initial information

### CONCLUSION



# THANK YOU FOR LISTENING!