## Name: Anooshka Bajaj

1 a. Table 1 Minimum and Maximum Attribute Values Before and After Min-Max Normalization

| S. No. | Attribute                        | Before Min-Max Normalization |              | After Min-Max<br>Normalization |         |
|--------|----------------------------------|------------------------------|--------------|--------------------------------|---------|
|        |                                  | Minimum                      | Maximum      | Minimum                        | Maximum |
| 1      | Temperature (in °C)              | 10.085110                    | 31.375000    | 3.0                            | 9.0     |
| 2      | Humidity (in g.m <sup>-3</sup> ) | 34.205670                    | 99.720000    | 3.0                            | 9.0     |
| 3      | Pressure (in mb)                 | 992.654583                   | 1037.604386  | 3.0                            | 9.0     |
| 4      | Rain (in ml)                     | 0.000000                     | 2470.500000  | 3.0                            | 9.0     |
| 5      | Lightavgw/o0 (in lux)            | 0.000000                     | 10565.352300 | 3.0                            | 9.0     |
| 6      | Lightmax (in lux)                | 2259.000000                  | 54612.000000 | 3.0                            | 9.0     |
| 7      | Moisture (in %)                  | 0.000000                     | 100.000000   | 3.0                            | 9.0     |

### Inferences:

- 1. When the outliers are replaced by median of the respective attributes, then the number of outliers in each attribute in the replaced data is reduced.
- 2. Before normalization, the data is widely spread for every attribute. One attribute may overshadow the other. After normalization, the values of the attributes are changed to a common scale. The minimum values and the maximum values of each attribute is same.

b.

Table 2 Mean and Standard Deviation Before and After Standardization

| S. No. | Attribute                        | Before Standardization |                | After Standardization |                |
|--------|----------------------------------|------------------------|----------------|-----------------------|----------------|
|        |                                  | Mean                   | Std. Deviation | Mean                  | Std. Deviation |
| 1      | Temperature (in °C)              | 21.369665              | 4.125407       | 0                     | 1              |
| 2      | Humidity (in g.m <sup>-3</sup> ) | 83.992117              | 17.565823      | 0                     | 1              |
| 3      | Pressure (in mb)                 | 1014.760524            | 6.121343       | 0                     | 1              |
| 4      | Rain (in ml)                     | 168.400011             | 399.689066     | 0                     | 1              |

| 5 | Lightavgw/o0 (in  | 2197.392401  | 2220.820133  | 0 | 1 |
|---|-------------------|--------------|--------------|---|---|
|   | lux)              |              |              |   |   |
| 6 | Lightmax (in lux) | 21788.623280 | 22064.993089 | 0 | 1 |
| 7 | Moisture (in %)   | 32.386053    | 33.653245    | 0 | 1 |

1. Before standardization, the data is spread along wide ranges values for every attribute. One attribute may overshadow other. After standardization, each attribute has unit standard deviation and 0 mean which overcomes this problem.

## 2 a.



Figure 1 Scatter Plot of 2D Synthetic Data of 1000 samples

### Inferences:

- 1. Attribute 1 and Attribute 2 have high positive correlation.
- 2. The density of points near origin is more. As we move outwards, density decreases.



Figure 2 Plot of 2D Synthetic Data and Eigen Directions

- 1. The spread of the data is more across 2<sup>nd</sup> eigen vector than the 1<sup>st</sup> because the magnitude of eigen value 2 is greater than eigen value 1. (18.16910025 and 1.69971065)
- 2. The density of points at the intersection is more and as we move outwards, density decreases.

c.



Figure 3 Projected Eigen Directions onto the Scatter Plot with 1st Eigen Direction highlighted



Figure 4 Projected Eigen Directions onto the Scatter Plot with 2nd Eigen Direction highlighted

- 1. Eigen value is directly proportional to the variance of the data. In this case, eigen value 2 is greater than eigen value 1.
- 2. Larger eigen value means that the it contains more data information. the

## **d.** Reconstruction Error = 6.02

### Inferences:

1. The value of reconstruction error is low. This means that the original data is reconstructed properly i.e. the data is lossless.

# 3 a.

Table 3 Variance and Eigen Values of the projected data along the two directions

| Direction | Variance   | Eigen Value |
|-----------|------------|-------------|
| 1         | 2.19996801 | 2.20229848  |
| 2         | 1.41932231 | 1.42082583  |

### Inferences:

1. More the variance i.e. spread of the data, greater is the eigen value.



Figure 5 Plot of Landslide Data after dimensionality reduction

1. The density around the median of reduced data is very high and reduces as we move away. The reduced data follows a skewed Gaussian distribution. The variance of each attribute of the reduced data is the eigen value corresponding to it.

b.

c.



Figure 6 Plot of Eigen Values in descending order



Figure 7 Line Plot to demonstrate Reconstruction Error vs. Components

### Inferences:

1. The value of error is inversely proportional to the quality of reconstruction.