$\boldsymbol{Part}\;\boldsymbol{I}.\; \text{Definitions of main symbols}.$

Symbols	Descriptions
Γ	bilateral grid
Γ_{ι}	the grid size corresponding to the temporal axis
t_l	time layer
v_i	grid cell
$ v_i^f (v_i^b)$	the number of pixels that are foreground (background) within v_i
$\alpha^f_{v_i}$ ($\alpha^b_{v_i}$)	the percentage of the foreground (background) pixels within v_i
$p_{t_l}^f (p_{t_l}^b)$	foreground (background) appearance model for time layer t_i
$p_{_{I_l}}$	normalized appearance (foreground) model for time layer t_i
$P(v_i)$ $(p_{t_i}(v_i))$	probability of v_i to be the foreground
$S_{t_l}^f (S_{t_l}^b)$	foreground (background) grid cells at time layer t_l
$S^a_{t_l}$	set of ambiguous colors at time layer t_l
$S_{t_l}^u$	set of unconstrained colors at time layer t_l
S^a	sets of ambiguous colors over all time layers
S^u	sets of unconstrained colors over all time layers
$p_{t_l}^a$	GMM trained from $S_{t_l}^a$ for time layer t_l
$p_{t_l}^a(v_i)$	probability of v_i be misclassified
$T_{t_l}^f (T_{t_l}^b)$	minimum foreground (background) probability thresholds for time layer t_l
$\{(\pi_k^f,\mu_k^f,\Sigma_k^f)\}_{k=1}^K$	parameters of appearance model $p_{t_l}^f$
$\{(\pi_k^b,\mu_k^b,\Sigma_k^b)\}_{k=1}^K$	parameters of appearance model $p_{t_l}^b$

Part II. The main steps to construct the DAM with reliability measurements are summarized in Algorithm 1.

Algorithm 1 Reliable and Dynamic Appearance Modeling

```
Input: all non-empty grid cells \{v_i \in \Gamma\}
/* (1) constructing the dynamic appearance model P = \{p_t\}_{t=1}^{\Gamma_t} */
for t_i \in \Gamma, do
    step 1: compute the weight of each grid cell v_i using |v_i^f|, \alpha_{v_i}^f (see details in eq. (4))
    step 2: build a foreground appearance model p_h^f
    step 3: repeat step 1 using |v_i^b|, \alpha_{v_i}^b and step 2, and obtain the background appearance model p_{t_i}^b
    step 4: compute the normalized appearance (foreground) model p_{t_i} using p_{t_i}^f, p_{t_i}^b
    for v_i in time layer t_i do
        step 5: estimate the probability (to be the foreground) P(v_i) = p_{i_i}(v_i) = p_{i_i}^f / (p_{i_i}^f + p_{i_i}^b)
    end for
end for
/* (2) reliability measurements */
for t_i \in \Gamma_t do
   /* (2.1) defining the ambiguous colors */
   step 6: validate the appearance models p_{t_i}^f and p_{t_i}^b using S_{t_i}^f and S_{t_i}^b, and determine the misclassified
   colors S_t^a
   step 7: train an additional GMM p_{t_i}^a from S_{t_i}^a
   /* (2.2) defining the unconstrained colors */
   step 8: compute the minimum probability thresholds T_i^f and T_i^b using the parameters \{(\pi_k^f, \mu_k^f, \Sigma_k^f)\}_{k=1}^K
   and \{(\pi_k^b, \mu_k^b, \Sigma_k^b)\}_{k=1}^K of p_{i_l}^f and p_{i_l}^b, respectively. (see details in eq. (5))
   /* (2.3) discrimination */
   for v_i in time layer t_i do
      step 9: compute the probability p_t^a(v_i)
      if p_{t_i}^a(v_i) > p_{t_i}^f(v_i) and p_{t_i}^a(v_i) > p_{t_i}^b(v_i) then
          v_i is ambiguous (v_i \in S_{t_i}^a)
      end if
      if p_t^f(v_i) < T_t^f and p_t^b(v_i) < T_t^b then
          v_i is unconstrained (v_i \in S_{t_i}^u)
      if v_i \in S_{t_i}^a or v_i \in S_{t_i}^u then
         step 10: assign v_i a trivial likelihood P(v_i) = 0.5
      end if
   end for
end for
Output: the probability of each grid cell P(v_i)
```