范畴论介绍

周梦轩

April 8, 2024

河北工业大学

目录

- 1. 引言
- 2. 范畴的定义与示例
- 3. 态射的定义
- 4. 集合范畴中的一个命题
- 5. 命题的反例

从同构讲起

在分析学中,称 Banach 空间 X 与 Y 同构,并记作 $X \cong Y$,如果存在双射 $f: X \to Y$,使得 f 与 f^{-1} 均为有界线性映射。

在代数学中,称群 X 与 Y 同构,并记作 $X\cong Y$,如果存在双射 $f:X\to Y$,使得对于任意 $x,y\in X$,成立 f(xy)=f(x)f(y)。

在拓扑学中,称拓扑空间 X 与 Y 同构,并记作 $X\cong Y$,如果存在双射 $f:X\to Y$,使得 f 与 f^{-1} 均为连续映射。

范畴的定义与示例

范畴 category

范畴 C 包含:

- · 对象 (object): Obj(C)
- · **态射 (morphism)**: $\operatorname{Hom}_{\mathsf{C}}(A,B)$, 其中称 A 为源 (source), B 为目标 (target)。

成立如下公理:

1. **态射复合**:对于任意对象 $A, B, C \in \mathrm{Obj}(C)$,存在态射复合

$$\circ: \operatorname{Hom}\nolimits_{\mathsf C}(A,B) \times \operatorname{Hom}\nolimits_{\mathsf C}(B,C) \longrightarrow \operatorname{Hom}\nolimits_{\mathsf C}(A,C)$$

$$(f,g) \longmapsto g \circ f$$

2. **恒等态射**: 对于任意对象 $S\in \mathrm{Obj}(\mathsf{C})$,存在恒等态射 $\mathbb{1}_S\in \mathrm{Hom}_\mathsf{C}(S,S)$,使得对于任意态射 $f\in \mathrm{Hom}_\mathsf{C}(A,B)$,成立

$$f \circ \mathbb{1}_A = \mathbb{1}_B \circ f = f$$

3. **结合律**: 对于任意态射 $f \in \operatorname{Hom}_{\mathsf{C}}(A,B), g \in \operatorname{Hom}_{\mathsf{C}}(B,C), h \in \operatorname{Hom}_{\mathsf{C}}(C,D)$,成立

$$(h \circ g) \circ f = h \circ (g \circ f)$$

范畴示例

集合范畴 Set:

- · $Obj(Set) = \{$ 集合 $\}$
- $\operatorname{Hom}_{\operatorname{Set}}(A,B) = \{$ 映射 $f: A \to B\}$

矩阵范畴 ٧:

- $Obj(V) = \mathbb{N}^*$
- · $\operatorname{Hom}_{\forall}(m,n) = \{\{a_{ij}\}_{m \times n} \mid a_{ij} \in \mathbb{R}\}$

群范畴 Grp:

- $Obj(Grp) = {$ **群**(G,*) $}$
- ・ $\operatorname{Hom}_{\operatorname{Grp}}((G,*),(H,\star))=\{$ 映射 $\varphi:G\to H\mid \varphi(x*y)=\varphi(x)\star \varphi(y)\}$

态射的定义

左逆态射, 右逆态射

左逆态射: 对于范畴 C,以及对象 $A,B\in \mathrm{Obj}(\mathsf{C})$,称态射 $g\in \mathrm{Hom}_\mathsf{C}(B,A)$ 为态射 $f\in \mathrm{Hom}_\mathsf{C}(A,B)$ 的左逆态射,如果成立 $g\circ f=\mathbbm{1}_A$ 。

右逆态射: 对于范畴 C,以及对象 $A,B\in \mathrm{Obj}(\mathsf{C})$,称态射 $g\in \mathrm{Hom}_\mathsf{C}(B,A)$ 为态射 $f\in \mathrm{Hom}_\mathsf{C}(A,B)$ 的右逆态射,如果成立 $f\circ g=\mathbbm{1}_B$ 。

6

同构态射, 同构

同构态射:对于范畴 C,以及对象 $A,B \in \mathrm{Obj}(\mathsf{C})$,称态射 $f \in \mathrm{Hom}_\mathsf{C}(A,B)$ 为同构态射,如果存在态射 $g \in \mathrm{Hom}_\mathsf{C}(B,A)$,使得成立

$$g \circ f = \mathbb{1}_A, \qquad f \circ g = \mathbb{1}_B$$

同构:对于范畴 C,称对象 $A,B\in \mathrm{Obj}(C)$ 是同构的,且记作 $A\cong B$,如果存在同构态射 $f\in \mathrm{Hom}_{\mathbb{C}}(A,B)$ 。

单态射,满态射

单态射:对于范畴 C,以及对象 $A,B\in \mathrm{Obj}(\mathsf{C})$,称态射 $f\in \mathrm{Hom}_\mathsf{C}(A,B)$ 为单态射,如果对于任意对象 $Z\in \mathrm{Obj}(\mathsf{C})$,以及任意态射 $\alpha_1,\alpha\in \mathrm{Hom}_\mathsf{C}(Z,A)$,成立

$$f \circ \alpha_1 = f \circ \alpha_2 \implies \alpha_1 = \alpha_2$$

满态射:对于范畴 C,以及对象 $A,B\in \mathrm{Obj}(\mathsf{C})$,称态射 $f\in \mathrm{Hom}_\mathsf{C}(A,B)$ 为满态射,如果对于任意对象 $Z\in \mathrm{Obj}(\mathsf{C})$,以及任意态射 $\beta_1,\beta\in \mathrm{Hom}_\mathsf{C}(B,Z)$,成立

$$\beta_1 \circ f = \beta_2 \circ f \implies \beta_1 = \beta_2$$

集合范畴中的一个命题

一个命题

对于映射 $f: A \to B$, 如下命题等价。

- 1. f 为单射。
- 2. f 存在左逆。
- 3. f 为单态射。

单射 ⇒ 存在左逆

定义映射

$$g: B \longrightarrow A$$

$$f(a) \longmapsto a$$

首先来验证 g 的定义是良好的。取 $a_1,a_2\in A$,满足 $f(a_1)=f(a_2)$,由 f 的单射性, $a_1=a_2$,于是 g 定义良好。 其次来验证 $g\circ f=\mathbbm{1}_A$ 。任取 $a\in A$,注意到

$$(g \circ f)(a) = g(f(a)) = a$$

那么 $g \circ f = \mathbb{1}_A$ 。

综合这两点,f 存在左逆 g。

存在左逆 ⇒ 单态射

记
$$f$$
 的左逆为 g ,那么 $g \circ f = \mathbb{1}_A$ 。

任取
$$\alpha_1, \alpha_2$$
, 满足 $f \circ \alpha_1 = f \circ \alpha_2$, 那么

$$\alpha_1 = \mathbb{1}_A \circ \alpha_1 = g \circ f \circ \alpha_1 = g \circ f \circ \alpha_2 = \mathbb{1}_A \circ \alpha_2 = \alpha_2$$

于是 f 是单态射。

单态射 ⇒ 单射

任取 $a_1,a_2\in A$,满足 $f(a_1)=f(a_2)$ 。

定义 $\alpha_1:Z \to \{a_1\}$ 和 $\alpha_2:Z \to \{a_2\}$,任取 $z \in Z$,注意到

$$(f\circ\alpha_1)(z)=f(\alpha_1(z))=f(a_1)=f(a_2)=f(\alpha_2(z))=(f\circ\alpha_2)(z)$$

因此 $f \circ \alpha_1 = f \circ \alpha_2$, 于是 $\alpha_1 = \alpha_2$, 即 $a_1 = a_2$, 进而 f 是单射。

总结

定理1

对于映射 $f: A \rightarrow B$, 如下命 题等价。

- 1. f 为单射。
- 2. f 存在左逆。
- 3. f 为单态射。

定理 2

对于映射 $f: A \rightarrow B$, 如下命 题等价。

- 1. f 为满射。
- 2. f 存在右逆。
- 3. *f* 为满态射。

命题的反例

在群范畴 Grp 中, 群同态映射

$$\varphi: \mathbb{Z}/3\mathbb{Z} \longrightarrow S_3$$

$$[0]_3 \longmapsto (1)$$

$$[1]_3 \longmapsto (132)$$

$$[2]_3 \longmapsto (123)$$

为单态射,但是不存在左逆,因为群同态映射 $S_3 \to \mathbb{Z}/3\mathbb{Z}$ 只能为平凡映射。

