A Way of Implementing Statistical Methods for Ordinal Data to Researchers

Elisabeth Svensson, Journal of Mathematics and System Science 2 (2012) 8-12

The frequency distribution of ordinal data from certain population with size n on a five-point scale, the ordered categories being

degrees scaled from very satisfied, A, to very un-satisfied, E, 5scales. Let X be pre-category data, Y be post-category data

某個單位,工作人員對工作環境的滿意度從極好到極差,分為五個等級,為了提高工作人員對環境的滿意度,公司決定重新裝修辦公室,並且回收了243調查紀錄,其中X代表裝修前員工的評價,Y代表裝修後員工的評價.裝修的代價,是否提高了員工對環境的滿意度?

Other Applications

檢驗受訓前後的認知是否有明顯的差別?手術前後,吃藥前後,病人的不舒服感是否有效改善?

Relative Position, RP

with value within (-1,1), estimates the difference between the probabilities of the marginal distribution Y being shifted toward higher categories than X and the opposite, $\mathbf{P}(X < Y) - \mathbf{P}(Y < X)$. A positive value of \mathbf{RP} , indicates that the data set Y has systematically toward higher categories than X has, and negative toward lower categories:

$$RP = \frac{1}{n^2} \sum_{i} y_i C(X)_{i-1} - \frac{1}{n^2} \sum_{i} x_i C(Y)_{i-1}$$

where C(X), C(Y): Accumated Frequencies of X, Y respectively. In brief, RP is a sign of a homogeneous group change which could reflect the efficacy of certain plan for the group and reflects the what future trends become.

Relative rank variance, RV,

is defined by the sum squares of aug-rank differences:

$$RV = \frac{6}{n^3} \sum_{i} \sum_{j} \left(\bar{R}_{ij}^{(X)} - \bar{R}_{ij}^{(Y)} \right)^2 x_{ij}$$

where n is the total sample size and:

$$\bar{R}_{ij}^{(X)} = \sum_{k=1}^{i-1} \sum_{j=1}^{i-1} x_{kj} + \sum_{\nu=1}^{j-1} x_{i\nu} + \frac{1}{2} (1 + x_{ij})$$

$$\bar{R}_{ij}^{(Y)} = \sum_{k=1}^{j-1} \sum_{i} x_{ik} + \sum_{i=1}^{j-1} x_{\nu j} + \frac{1}{2} (1 + x_{ij})$$

RV indicates sign of individual heterogeneity in changes, or individual variation in changes.

The percentage un-satisfication, **PA**, is 0:

$$\frac{f_{EE} + f_{DD}}{\text{total}} = 0$$

```
In [1]: import numpy as np
        from scipy.stats import t,norm
        from ipy_table import make_table,apply_theme,set_cell_style,set_column
        %precision 4
Out[1]: '%.4f'
In [4]: from IPython.display import HTML
        HTML('''<script>
        code show=true;
        function code toggle() {
         if (code show){
         $('div.input').hide();
         } else {
         $('div.input').show();
         code show = !code show
        $( document ).ready(code_toggle);
        </script>
        To toggle on/off the raw Python code, click <a href="javascript:code_to
        [<code style="background-color:brown;color:yellow;"> here </code>]</a>
```

Out[4]: To toggle on/off the raw Python code, click [here].

Jackknife Resampling

Like Harry Potter looking for sword of gryffindor in Gringotts.

Suppose that $\phi(X)$ be the estimator from X, here RP and RV included. The i,j th pseudovalue of $\phi(X)$ is the same estimator from the submatrix of X, by deleting i column and j row of X, and denoted as $\phi_{i,i}(X)$.

```
In [9]:
        S=np.array([
                [' Y\X ','1','...','i','...','m'],
                ['1','X11','...','X1i','...','X1m'],
               ['!','','','','',''],
               ['j','Xj1','...','Xji','...','Xjm'],
                ['m','Xm1','...','Xmi','...','Xmm']
        1)
        make table(S)
        apply theme('basic both')
        set cell style(0,0, thick border='left,top')
        #set cell style(0, 0, color='lightblack')
        set column style(0, color='lightgray')
        set column style(3, color='gray')
        set row style(3, color='gray')
        #for i in range(1,n+1):
             set cell style(i,n+1-i, thick border='all',color="lightbrown")
        set cell style(0, 0, color='orange')
```

Out[9]:

 Y\X	1	 i	 m
1	X11	 X1i	 X1m
ı			
j	Xj1	 Xji	 Xjm
ı			
m	Xm1	 Xmi	 Xmm

One can then obtain confidence intervals and carry out statistical tests using the Central Limit The- orem. Specifically, let

$$\bar{\phi}(X) = \frac{\sum_{i,j} \phi_{i,j}(X)}{n}, V(\bar{\phi}(X)) = \frac{\sum_{i,j} (\phi_{i,j}(X) - \bar{\phi}(X))^2}{n - 1}$$

be the mean and sample variance of the pseudovalues. The **Jackknife** $(1-\alpha)\%$ **confidence interval** for $\phi(X)$ is:

$$\left(\bar{\phi}(X) + z_{\alpha/2} \sqrt{\frac{V(\bar{\phi}(X))}{n}}, \bar{\phi}(X) + z_{1-\alpha/2} \sqrt{\frac{V(\bar{\phi}(X))}{n}}\right)$$

where Z represents the standard normal random variable, and z_{α} is the percent point at α for Z, i.e.

$$Pr(Z < z_{\alpha}) = \alpha$$

Sub-Matrix Slicing of Numpy array

The following slices the numpy ndarray by deleting (i)-row and (j)-column: np.delete(np.delete(tabledata, j-1, 1), i-1, 0)

```
In [11]: # displat the ordinal data
         make table(tabledata)
Out[11]:
          0 15
                0
                   8
                      0
             0 16 62 10
            0 20 43
                      0
                  0 45
          0
            5
                0
          0
                3 16
                      0
             0
         def ordinalData(tabledata, category=['A','B','C','D','E']):
In [12]:
             n=len(tabledata)
             Span_data=np.array([])
             for k in range(n+1):
               if k==0:
                  column ex= np.append(np.array(['Y\X']),category)
                  column ex= np.append(column ex, 'Total')
                  #column_ex= np.append(np.array([' \ ']),category)
                  Span_data=np.append(Span_data,column_ex)
               else:
                  Sdata=np.array([category[-k]])
                  total= np.sum(tabledata[-k])
                  Sdata=np.append(Sdata,tabledata[-k])
```

Sdata=np.append(Sdata,total)

Span data= np.append(Span data, 'Total')

Span_data=Span_data.reshape([n+2,n+2])

sum for each pre-Category data

return Span data

Span_data=np.append(Span_data,Sdata)

Span data= np.append(Span data,np.sum(tabledata))

Span data= np.append(Span data,np.sum(tabledata,axis=0))

```
In [13]: Sdata=ordinalData(tabledata)
    n=len(tabledata)
    make_table(Sdata)

apply_theme('basic_both')
    set_cell_style(0,0, thick_border='left,top')
    #set_cell_style(0, 0, color='lightblack')
    set_column_style(0, color='lightgray')
    for i in range(1,n+1):
        set_cell_style(i,n+1-i, thick_border='all',color="lightbrown")

set_cell_style(0, 0, color='orange')
```

```
Out[13]:
              Y\X A
                        В
                            C
                                 D
                                      E Total
                Ε
                   0
                        0
                                 16
                             3
                                      0
                                            19
                        5
                            0
                                     45
                                           50
                D
                    0
                                  0
                    0
                           20
                                 43
                                           63
                В
                   0
                            16
                                 62
                                     10
                                           88
                       15
                             0
                                  8
                                      0
                                           23
             Total
                       20
                            39 129 55
                                          243
                    0
```

```
In [22]: def senssonRP(tabledata):
    AvgX=np.sum(tabledata,axis=0)
    AvgY=AvgY/sum(AvgX)
    AvgY=np.sum(tabledata,axis=1)
    AvgY=AvgY/sum(AvgY)
    CX=np.zeros(len(AvgX))
    for i in range(len(AvgX)-1):
        CX[len(AvgX)-i-1]=sum(AvgX[:len(AvgX)-i-1])
    CY=np.zeros(len(AvgY))
    for i in range(len(AvgY))-1):
        CY[len(AvgY)-i-1]=sum(AvgY[:len(AvgY)-i-1])
        RP=sum(AvgY*CX-AvgX*CY)
```

```
In [24]: def RPJackknife(tabledata):
              n=len(tabledata)
              tt=np.array([])
              for i in range(n):
                  for j in range(n):
                      tt=np.append(tt,senssonRP(np.delete(np.delete(tabledata,j,
              return tt.reshape([n,n])
 In [25]: def RVJackknife(tabledata):
              n=len(tabledata)
              tt=np.array([])
              for i in range(n):
                  for j in range(n):
                      tt=np.append(tt,senssonRV(np.delete(np.delete(tabledata,j,
              return tt.reshape([n,n])
 In [27]: def SvenssonRPCIs(tabledata,p=0.95):
              RP=senssonRP(tabledata)
              RPJ=RPJackknife(tabledata)
              pp=norm.ppf((1+p)/2, loc=0)
              a=RP-pp*RPJ.std()/np.sqrt(len(tabledata[0])**2)
              b=RP+pp*RPJ.std()/np.sqrt(len(tabledata[0])**2)
              if int(p*100) == float(p*100):
                 decimals = 0
              else:
                 decimals = 1 # Assumes 2 decimal places for money
              print('{0:.{1}f}'.format(p*100, decimals),"% confidence interval o
              print(" CIs: (%.3f,%.3f)" %(a,b))
              print(" %.3f
                                       %.3f " %(a,RP,b))
                             %0.3f
              if (RP<0):
                  result="Toward the Lower A"
              else:
                  result="Toward the Upper E"
              print("\nConclusion: %s" %result)
In [167]: #Reference the bottom
          W = ' \setminus 033[0m' \# white (normal)]
          R = ' \ 033[31m' \# red]
          G = ' \ 033[32m' # green]
          0 = ' \ 033[1;33m' # orange]
          B = ' \ 033[34m' \# blue]
           = '\033[35m' # purple
          T = ' \ 033[1;33;47m' #Title]
```

```
In [45]: def SvenssonRVCIs(tabledata,p=0.95):
            RV=senssonRV(tabledata)
            RVJ=RVJackknife(tabledata)
            pp=norm.ppf((1+p)/2, loc=0)
            a=RV-pp*RVJ.std()/np.sqrt(len(tabledata[0])**2)
            b=RV+pp*RVJ.std()/np.sqrt(len(tabledata[0])**2)
            if int(p*100) == float(p*100):
               decimals = 0
            else:
               decimals = 1 # Assumes 2 decimal places for money
            print(T+' {0:.{1}f}'.format(p*100, decimals),"% confidence interva
            print(" CIs: (%.3f,%.3f)" %(a,b))
            print(" %.3f %0.3f %.3f " %(a,RV,b))
            if (RV<0.2):
                result="Individual Variation is small"
            elif (RV<0.6):
                result="Individual Variation has to be concerned"
                result="Individual Variation is ver large"
            print("\nConclusion: %s" %result)
```

Estimated RP and 95%/97.5% Confidence Intervals

Estimated RV and 95% Confidence Intervals

Conclusion

- 1. The negavtive RP and 95% confidence interval of RP, which not including 0, confirm that re-design the office workplace actually make the satisfication more progress.
- 2. Though the RV is too small not to neglect the individual variations, we have to respect to each person's feeling.

Note

Original reference about ordinal data always suggests make statistical inferences by Central Limit Theorem; however, *t*-criterion is much suitable here.

Appendix: HTML Layout in color

The escape codes are entered right into the print statement.

```
print("\033[1;32;40m Bright Green \n")
```

The above ANSI escape code will set the text colour to bright green. The format is;

- \033[Escape code, this is always the same
- 1 = Style, 1 for normal.
- 32 = Text colour, 32 for bright green.
- 40m = Background colour, 40 is for black.

TEXT COLOR	CODE	TEXT STYLE	CODE	BACKGROUND COLOR	CODE
Black	30	No effect	0	Black	40
Red	31	Bold	1	Red	41
Green	32	Underline	2	Green	42
Yellow	33	Negative1	3	Yellow	43
Blue	34	Negative2	5	Blue	44

Purple	35	Purple	45
Cyan	36	Cyan	46
White	37	White	47

In [33]:

```
print("\033[0;37;40m Normal text\n")
print("\033[2;37;40m Underlined text\033[0;37;40m \n")
print("\033[1;37;40m Bright Colour\033[0;37;40m \n")
print("\033[3;37;40m Negative Colour\033[0;37;40m \n")
print("\033[5;37;40m Negative Colour\033[0;37;40m\n")
print("\033[1;37;40m \033[2;37:40m TextColour BlackBackground
print("\033[1;30;40m Dark Gray
                                    \033[0m 1;30;40m
                                                                 0]880/
print("\033[1;31;40m Bright Red
                                    \033[0m 1;31;40m
                                                                 0]880/
print("\033[1;32;40m Bright Green
                                    \033[0m 1;32;40m
                                                                 01880/
print("\033[1;33;40m Yellow
                                    \033[0m 1;33;40m
                                                                 0]880/
print("\033[1;34;40m Bright Blue
                                    \033[0m 1;34;40m
                                                                 0]880/
print("\033[1;35;40m Bright Magenta \033[0m 1;35;40m
                                                                 0]880/
print("\033[1;36;40m Bright Cyan
                                    \033[0m 1;36;40m
                                                                 0]880/
print("\033[1;37;40m White
                                    \033[0m 1;37;40m
                                                                 01880/
```

Normal text

Underlined text

Bright Colour

Negative Colour

Negative Colour

TextColour BlackBackground

	LouredBackground	Texteorour	Gleybackground
Dark Gray	1;30;40m	Black	0;30;47m
Black ();37;41m		
Bright Red	1;31;40m	Red	0;31;47m
Black ();37;42m		
Bright Green	1;32;40m	Green	0;32;47m
Black ();37;43m		
Yellow	1;33;40m	Brown	0;33;47m
Black ();37;44m		
Bright Blue	1;34;40m	Blue	0;34;47m
Black ();37;45m		
Bright Mager	nta 1;35;40m	Magenta	0;35;47m
Black ();37;46m		
Bright Cyan	1;36;40m	Cyan	0;36;47m
Black ();37;47m		
White	1;37;40m	Light Grey	0;37;40m
Black ();37;48m		

TextColour GreyBackground

χ^2 Analysis

the same Properties

$$\chi^2 = \sum \frac{(f_0 - f_e)^2}{f_e} \sim \chi^2_{(m-1)\times(n-1)}$$

Correlation Analysis

Correlation

$$\rho = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}}$$

Fisher Statistics

$$t_{n-2} = |r| \sqrt{\frac{n-2}{1-r^2}}$$

ANOVA

 $H_0: \mu_1 = \mu_2 = \cdots = \mu_n$

$$SSE = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (x_{ij} - \bar{x}_{.j})^2 \sim \chi_{ns-s}^2$$

$$SSA = \sum_{j=1}^{s} \sum_{i=1}^{n_j} (\bar{x}_{.j} - \bar{x})^2 \sim \chi_{n-s}^2$$

$$SST = SSE + SSA \sim \chi_{ns-1}^2$$

Statistic

$$F_{(s-1)\times(n-s)} = \frac{SSA/(s-1)}{SSE/(n-s)}$$

χ^2 Test

The numbers of absent data of certain person were recorded as follows. Are there the same during same year? 某人的出缺席資料如下,每一年的情況是否相同?

```
Month
absent num(2015) 21 18 15 5
absent num(2016)
                 21
                     18 15 11
```

- 1. 2015: $\chi^2=9.814>\chi^2_{0.05}(3)=7.815$, reject H_0 , data are different in 2015. 2. 2016: $\chi^2=3.369<\chi^2_{0.05}(3)=7.815$, do not reject H_0 , data is the same in 2016.

```
In [ ]:
```

In [3]: import scipy.stats as stats import numpy as np import pandas as pd

```
In [3]: abs2015 = pd.DataFrame(["March"]*21 + ["April"]*18 +\
                                 ["May"]*15 + ["June"]*5)
        abs2016 = pd.DataFrame(["March"]*21 + ["April"]*18 +\
                                 ["May"]*15 + ["June"]*11)
        abs2015 table = pd.crosstab(index=abs2015[0], columns="count")
        print( "2015")
        print(abs2015_table)
        2015
        col 0 count
        April
                  18
                   5
        June
        March
                  21
                  15
        May
In [6]: def chisqrare(data,alpha=0.05):
            data table = pd.crosstab(index=data[0], columns="count")
            fo = data_table
            fe = fo.mean() # Get expected counts
            chi squared stat = (((fo-fe)**2)/fe).sum()
            df=len(fo)-1 # degree of freedoms
            crit = stats.chi2.ppf(q = 0.95,df=df) # Find the critical value fo
            p_val = 1 - stats.chi2.cdf(x=chi_squared_stat,df=df) # p-value= P
            stat str="The \chi 2 statistic is "
            df_str=" with degree of freedoms "
            p_str="the p-value is "
            cri str=", critical value χ2 is "
            if (p val>alpha):
               test str="Test: do not reject H0 ";
            else:
               test_str="Test: reject H0 ";
```

print(stat_str,chi_squared_stat[0],df_str,df,"\n",p_str,p_val[0],c;

```
In [22]: | def chisqrare_v2(data,alpha=0.05):
            data table = pd.crosstab(index=data[0], columns="count")
            fo = data table
            fe = fo.mean() # Get expected counts
            chi\_squared\_stat = (((fo-fe)**2)/fe).sum()
            df=len(fo)-1 # degree of freedoms
            crit = stats.chi2.ppf(q = 0.95,df=df) # Find the critical value fo.
            p val = 1 - stats.chi2.cdf(x=chi squared stat,df=df) # p-value= P
            stat str="The X2 statistic is "
            df str=" with degree of freedoms "
            p_str=", the p-value is "
            cri str=", critical value χ2 is "
            print(stat_str,chi_squared_stat[0],df_str,df,p_str,p_val[0],)
            if (p val>alpha):
               test str="Test: do not reject H0 ";
                        χ2")
               print("
               print("|-----> oo")
               print(" %.3f %.3f" %(chi squared stat[0],crit) )
               print(test str)
            else:
               test str="Test: reject H0 ";
               print("
                       χ2")
               print("|-----> oo")
               print(" %.3f %.3f" %(crit,chi squared stat[0]) )
               print(test str)
            #print(stat str,chi squared stat[0],df str,df,"\n",p str,p val[0],
In [20]: chisqrare_v2(abs2015,alpha=0.05)
        The X2 statistic is 9.81355932203 with degree of freedoms 3, the
        p-value is 0.0202192807196
                 χ2
        |----x----> oo
              7.815 9.814
        Test: reject H0
In [23]: chisqrare_v2(abs2016,alpha=0.05)
        The X2 statistic is 3.36923076923 with degree of freedoms 3, the
        p-value is 0.338122659055
        |-----> oo
              3.369 7.815
        Test: do not reject H0
```

Whether does the eduacation degree relate to the gendre? 教育程度和性別是否有差別

```
In [25]: from scipy.stats import chi2 contingency
In [29]: def chisquare2 v2(data,alpha=0.05,index="",columns=""):
             if (index!=""):
               df=pd.DataFrame(Edu data.T,index=index, columns=columns)
                df=pd.DataFrame(Edu data.T)
             fo= data
             chi2, p, df, fe =chi2_contingency(fo)
             fo str="Observed Data: "
             stat str="The \chi 2 statistic is "
             df str=" with degree of freedoms "
             p_str="the p-value is "
             cri_str=", critical value X2 is "
             crit = stats.chi2.ppf(q = 1-alpha,df=df)
             print(stat str,chi2,df str,df,p str,p)
             if (p>alpha):
               test str="Test: do not reject H0 ";
               print("|-----> oo")
               print(" %.3f %.3f" %(chi2,crit) )
               print(test str)
             else:
               test str="Test: reject H0 ";
               print("
                         χ2")
               print("|-----> oo")
               print(" %.3f %.3f" %(crit,2) )
               print(test str)
In [31]: def chisquare2(data,alpha=0.05,index="",columns=""):
             fo= data
             chi2, p, df, fe =chi2_contingency(fo)
             fo_str="Observed Data: "
             stat str="The X2 statistic is "
             df str=" with degree of freedoms "
             p_str="the p-value is "
             cri str=", critical value χ2 is "
             crit = stats.chi2.ppf(q = 1-alpha,df=df)
             if (p>alpha):
               test_str="Test: do not reject H0 ";
               test str="Test: reject H0 ";
             print(stat str,chi2,df str,df,"\n",p str,p,cri str,crit,"\n",test
In [27]: Edu data=np.array([[71,115, 140, 130],[110, 141, 181, 198]])
         Edutype=["A", "B", "C", "D"]
         gender=["Male","Female"]
```

In [147]: | df=pd.DataFrame(Edu data.T,index=Edutype, columns=gender) df Out[147]: Male Female 71 Α 110 В 115 141 С 140 181 D 130 198 In [150]: chisquare2(Edu_data,index=Edutype, columns=gender) The X2 statistic is 2.56567071395 with degree of freedoms the p-value is 0.463539723191, critical value X2 is 7.8147279032 Test: do not reject H0 In [33]: chisquare2_v2(Edu_data,index=Edutype, columns=gender) The X2 statistic is 2.56567071395 with degree of freedoms

-value is 0.463539723191

Test: do not reject H0

Correlation

Does the profit have related to the ad. buget? 每一年的獲得利益程度 是否和廣告支出有關?

```
X 0.20 0.30 0.20 0.40 0.35 0.48 0.30 0.58 0.43 0.60 0.55 0.4
2 0.4 0.58 0.51
   20
        25
             24
                  30
                       32
                            40
                                 28
                                     50
                                           40
                                                70
                                                     48
                                                          39
     65
         56
42
```

- 1. r = 0.9179
- 2. $t = |0.9179| \sqrt{\frac{15-2}{1-0.9179^2}} = 8.3403 > t_{0.025}(13) = 2.1604 \text{ reject } H_0: r = 0, \text{ i.e. } X.Y$ do have corelated with each other.

Out[35]: (0.9179, 0.0000)

```
In [45]: def fisherR v2(data,alpha=0.05,two sided=True):
             r,p=stats.pearsonr(data[0],data[1] )
             df=len(data[0])-2
             cor_str=" correlation is: "
             print(cor_str+"%.3f" %r)
             stat str="The Fisher t statistic is "
             df_str=" with degree of freedoms "
             p_str="the p-value is "
             if two sided:
                cri str=", critical value t (two-tailed) is "
                q=1-alpha/2
                cri_str=", critical value t (one-tailed) is "
                q=1-alpha
             t cri = stats.t.ppf(q = q,df=df)
             rt=np.abs(r)*np.sqrt((df)/(1-r**2))
             #t=np.abs(r cri)*np.sqrt((df)/(1-r cri**2))
             if (p>alpha and two sided):
                test str="Test: do not reject H0: r=0, i.e. X, Y independent ";
                                             t(%s,%.3f)" %(df,q))
                print("
                print("-oo <---(-----x-----)c-----> oo")
                print(" %.3f %.3f" %(chi2,crit) )
                print(test_str)
             elif(p>alpha and not two sided):
                print("")
             elif(p<alpha and not two sided):</pre>
                print("")
             else:
                test_str="Test: reject H0, i.e. X,Y dependent";
                                             t(%s,%.3f)" %(df,q))
                print("-oo <---(----x-----)c-----> oo")
                print(" %.3f %.3f" %(chi2,crit) )
                print(test_str)
             #print(cor_str,r,"\n",stat_str,rt,df_str,df,"\n",p_str,p,cri_str,t
```

```
In [47]: def fisherR(data,alpha=0.05,two sided=True):
             r,p=stats.pearsonr(data[0],data[1])
             df=len(data[0])-2
             cor str=" correlation is: "
             stat str="The Fisher t statistic is "
             df_str=" with degree of freedoms "
             p str="the p-value is "
             if two sided:
                cri str=", critical value t (two-tailed) is "
                q=1-alpha/2
             else:
                cri str=", critical value t (one-tailed) is "
                q=1-alpha
             t cri = stats.t.ppf(q = q,df=df)
             rt=np.abs(r)*np.sqrt((df)/(1-r**2))
             \#t=np.abs(r\_cri)*np.sqrt((df)/(1-r\_cri**2))
             if (p>alpha):
                test str="Test: do not reject H0: r=0, i.e. X, Y independent ";
             else:
                test str="Test: reject H0, i.e. X,Y dependent";
             print(stat_str,rt,df_str,df,"\n",p_str,p,cri_str,t_cri,"\n",test_s
```

In [48]: fisherR(dataXY)

```
The Fisher t statistic is 8.33951789063 with degree of freedoms 1 3 the p-value is 1.414544429e-06, critical value t (two-tailed) is 2.16036865646 Test: reject H0, i.e. X,Y dependent
```

ANOVA

are there any difference amounf different groups? 群眾之間是否有差別?

```
Type/trial A B C D
     1
                3
                   8 10 8
                7 11 7 8
     2
     3
                7
                      3 5
      4
                3 7 5 5
     5
                8 8 11 2
                              df
                               3
                                   MSA = SSA/3 = 10.45
   SSA(Factor A)
                    31.350
   SSE(Error)
                              16
                                   MSE=SSE/16=6.4
                    102.4
   SST(Total)
                    133.75
                              19
   F A(3,16) = MSA/MSE = 1.6328
F_A(3, 16) < F_0.05(3, 16) = 3.24 do not reject H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4
```

```
In [209]:
  In [1]:
          import plotly.plotly as py
          import plotly.graph objs as go
          from plotly.tools import FigureFactory as FF
          from io import StringIO
          %matplotlib inline
  In [4]: csv str=StringIO("""A,B,C,D
                    3,8,10,8
                    7,11,7,8
                    7, 9, 3, 5
                    3 , 7, 5 , 5
                    8 , 8, 11, 2""")
          data = pd.read_csv(csv_str)
  In [5]:
          data
  Out[5]:
             Α
                B C D
             3
                8 10 8
           1 7 11
                   7 8
           2 7
                9
                   3 5
           3 3
                7 5 5
           4 8
               8 11 2
  In [7]: data.boxplot(figsize=(12, 8));
           10
            8
            4
```

In [8]: F, p = stats.f_oneway(data['A'], data['B'], data['C'], data['D'])
F,p

Out[8]: (1.6328125, 0.22133164752533896)

```
In [9]: def onewayANOVA(data,alpha=0.05):
             s=data.shape[1]
             n=data.shape[0]*data.shape[1]
             F, p = stats.f_oneway(data['A'], data['B'], data['C'], data['D'])
             stat str="The one-way ANOVA f statistic is "
             df str=" with degrees of freedoms "
             p_str="the p-value is "
             cri_str=", critical value f is "
             f cri = stats.f.ppf(q = 1-alpha,dfn=s-1,dfd=n-s)
             if (p>alpha):
                test_str="Test: do not reject HO: there is no difference among
             else:
                test str="Test: reject H0, i.e. there is some difference amoung
             print(stat_str,F,df_str,"(",s-1,",",n-s,")","\n",p_str,p,cri_str,f]
In [10]: onewayANOVA(data)
         The one-way ANOVA f statistic is 1.6328125 with degrees of freedom
         s (3,16)
          the p-value is 0.221331647525, critical value f is 3.23887151745
          Test: do not reject HO: there is no difference among groups
In [ ]:
In [ ]:
```