Ассоциативные правила

Наумов Д.А., доц. каф. КТ

Экспертные системы и искусственный интеллект, 2019

Содержание лекции

🚺 Задачи поиска ассоциативных правил

💿 Алгоритм поиска ассоциативных правил

Что такое поиск ассоциативных правил?

Поиск ассоциативных правил

поиск часто в страчающихся шаблонов, ассоциаций, корреляций или структур среди множества элементов в транзакционной базе данных

Понять покупательские привычки клиента, находя ассоциации и корреляции между различными товарами, которые клиенты размещают в их "корзину для покупок".

Практическое применение:

- анализ покупок
- кросс-маркетинг
- каталогизация
- web-анализ
- обнаружение мошеннических схем

Что такое поиск ассоциативных правил?

Ассоциативное правило

Antecedent \rightarrow Consequent

[support, confidence]

- Antecedent антецедент
- Consequent косеквент, следствие
- Support поддержка (мера интересности правила)
- Confedence значимость (мера интересности правила)

Примеры:

$$buys(x,"computer") \rightarrow buys(x,"financial managements of tware")\\ [0.5\%, 60\%]\\ age(x,"30..39")^{i}ncome(x,"42..48K") \rightarrow buys(x,"car")\\ [1\%, 75\%]$$

Немного истории

Stories - Beer and Diapers

- Diapers and Beer. Most famous example of market basket analysis for the last few years.
 If you buy diapers, you tend to buy beer.
- T. Blischok headed Terradata's Industry Consulting group.
- K. Heath ran self joins in SQL (1990), trying to find two itemsets that have baby items, which are particularly profitable.
- Found this pattern in their data of 50 stores/90 day period.
- Unlikely to be significant, but it's a nice example that explains associations well.

🛒 🚅 Ronny Kohavi 💎 ICML 1998

Как можно использовать ассоциативные правила?

• пусть правило имеет вид

$$\{Bagels,...\} \rightarrow \{Potato\ Chips\}$$

- "Potato chips": следствие продажи чего мы собираемся (можем) увеличивать
- "Bagels": антецедент какие продукты будут влиять на продажу, если объявить скидки
- "Bagels -> Potato chips": какие продукты следует размещать рядом, чтобы увеличить продажи "Potato Chips"

Практическое применение:

- оптимизировать размещение товара на полках
- формировать персональные рекомендации
- планирование промо-акции
- более эффективно управлять ценами и ассортиментом

Ассоциативные правила: основные понятия

Исходные данные

- 💶 база данных транзакций
- транзакция содержит список элементов

Результаты поиска ассоциативных правил

• все правила, которые связывают наличие одного **набора**(itemset) с другим набором элементов

Например, 98% людей, которые покупают шины и автоаксессуары, также заказывают услуги шионмонтажа.

Ассоциативные правила: поддержка и значимость

$$A \Rightarrow B[s, c]$$

Поддержка (Support): обозначает, как часто правило встречается в транзакциях.

$$support(A \Rightarrow B[s, c]) = p(A \cup B)$$

Значимость (confidence): обозначает процент транакций, содержащая **A**, которые содержат также **B**. Значимость - это оценка условной вероятности:

$$confidence(A \Rightarrow B[s, c]) = p(B|A) = sup(A, B)/sup(A)$$

Trans. Id	Purchased Items
1	A,D
2	A,C
3	A,B,C
4	B,E,F

Itemset:

A,B or B,E,F

Support of an itemset:

Sup(A,B)=1 Sup(A,C)=2

Frequent pattern:

Given min. $\sup 2$, $\{A,C\}$ is a frequent pattern

For minimum support = 50% and minimum confidence = 50%, we have the following rules

 $A \Rightarrow C$ with 50% support and 66% confidence $C \Rightarrow A$ with 50% support and 100% confidence

Математические обозначения

X — пространство объектов;

$$\mathscr{F} = \{f_1, \dots, f_n\}, \ f_j \colon X \to \{0,1\}$$
 — бинарные признаки (items); $X^\ell = \{x_1, \dots, x_\ell\} \subset X$ — обучающая выборка.

Каждому подмножеству $\varphi\subseteq\mathscr{F}$ соответствует конъюнкция

$$\varphi(x) = \bigwedge_{f \in \varphi} f(x), \quad x \in X.$$

Если $\varphi(x)=1$, то «признаки из φ совместно встречаются у x».

Частота встречаемости (поддержка, support) φ в выборке X^ℓ

$$\nu(\varphi) = \frac{1}{\ell} \sum_{i=1}^{\ell} \varphi(x_i).$$

Если $\nu(\varphi)\geqslant \delta$, то «набор φ частый» (frequent itemset). Параметр δ — минимальная поддержка, MinSupp.

К.В.Воронцов (voron@forecsys.ru)

Методы поиска ассоциативных правил

Математические обозначения

Определение

Ассоциативное правило (association rule) $\varphi \to y -$ это пара непересекающихся наборов $\varphi, y \subseteq \mathscr{F}$ таких, что:

1) наборы φ и у совместно часто встречаются,

$$\nu(\varphi \cup y) \geqslant \delta;$$

2) если встречается φ , то часто встречается также и y,

$$\nu(y|\varphi) \equiv \frac{\nu(\varphi \cup y)}{\nu(\varphi)} \geqslant \varkappa.$$

 $\nu(y|\varphi)$ — значимость (confidence) правила.

Параметр δ — минимальная поддержка, MinSupp. Параметр \varkappa — минимальная значимость, MinConf.

K. B. Воронцов (voron@forecsvs.ru)

APTOREL BONCKS SCCOUNSTABLES

4 / 30

Логические (булевые) ассоциативные правила

Each transaction is represented by a Boolean vector

Cliente	A1	A2	A3	A4	A5	A6	Α7	A8	Α9	A10	A11	A12	A13
1	- 1	1	0	0	1	0	0	0	0	0	0	0	0
2	0	0	1	0	0	- 1	0	0	0	0	0	0	0
3	1	0	1	1	1	0	0	0	0	0	0	0	0
4	1	1	1	0	1	0	0	0	0	0	0	0	0
5	0	0	1	0	0	1	0	1	- 1	- 1	0	0	0
6	0	1	0	0	0	0	0	1	0	- 1	0	0	0
7	1	0	0	0	0	0	1	1	0	1	0	1	1
8	0	1	0	0	0	0	0	1	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	1	0	- 1	0

Пример поиска ассоциативных правил

Transaction ID	Items Bought		Min. support 50% Min. confidence 5			
2000	A,B,C		Will. Confidence o	070		
1000	A,C	\vdash	Frequent Itemset	Support		
4000	A,D		{A}	75%		
5000	B,E,F	\vdash	{B}	50%		
			{ <i>C</i> }	50%		
			{A,C}	50%		
For rule $A \Rightarrow C$:						
support = support($\{A, C\}$) = 50%						
confidence = support($\{A, C\}$) / support($\{A\}$) = 66.6%						

Принцип Apriori

Поскольку $\varphi(x) = \bigwedge_{f \in \varphi} f(x)$ — конъюнкция, имеет место

свойство антимонотонности:

для любых $\psi, \varphi \subset \mathscr{F}$ из $\varphi \subset \psi$ следует $\nu(\varphi) \geqslant \nu(\psi)$.

Следствия:

- lacktriangle если ψ частый, то все его подмножества $arphi\subset\psi$ частые.
- $oldsymbol{arphi}$ если arphi не частый, то все наборы $\psi\supsetarphi$ также не частые.
- \bullet $\nu(\varphi \cup \psi) \leqslant \nu(\varphi)$ для любых φ, ψ .

Два этапа поиска ассоциативных правил:

- поиск частых наборов (многократный просмотр транзакционной базы данных).
- выделение ассоциативных правил (простая эффективная процедура в оперативной памяти).

Принцип Apriori: множество наборов

Принцип Apriori: не рассматриваемые наборы

Принцип Apriori: основная идея - поиск в ширину

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \ \varkappa = \text{MinConf};
    выход: R = \{(\varphi, y)\} — список ассоциативных правил;
 1 множество всех частых исходных признаков:
      G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
2 для всех i = 2, ..., n
3 множество всех частых наборов мощности j:
G_i := \{ \omega \cup \{f\} \mid \omega \in G_{i-1}, f \in G_1 \setminus \omega \cup \psi(\omega) \}
         G_j := \{ \varphi \cup \{f\} \mid \varphi \in G_{j-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
4 если G_j = \varnothing то выход из цикла по j;
6 R := \emptyset:
7 для всех \psi \in G_i, j = 2, ..., n
8 AssocRules (R, \psi, \emptyset);
```

Принцип Apriori: пример

Принцип Apriori: пример

Принцип Apriori: получение ассоциативных правил

```
вход: X^{\ell} — обучающая выборка; \delta = \text{MinSupp}; \varkappa = \text{MinConf};
   выход: R = \{(\varphi, y)\} — список ассоциативных правил;
1 множество всех частых исходных признаков:
     G_1 := \{ f \in \mathscr{F} \mid \nu(f) \geqslant \delta \};
2 для всех i = 2, ..., n
      множество всех частых наборов мощности і:
        G_i := \{ \varphi \cup \{f\} \mid \varphi \in G_{i-1}, \ f \in G_1 \setminus \varphi, \ \nu(\varphi \cup \{f\}) \geqslant \delta \};
4 если G_j = \varnothing то выход из цикла по j;
6 R := \emptyset:
7 для всех \psi \in G_i, j = 2, ..., n
8 AssocRules (R, \psi, \emptyset);
```

Выделение ассоциативных правил

$$confidence(A \Rightarrow B) = P(B|A) = support(A \cup B)/support(A)$$

- Для каждого частого набора элементов х сгенерировать все непустые подмножества х
- Для каждого непустого подмножества х множества s получить правило:

$$s \Rightarrow (s \setminus x)$$

$$support(x)/support(s) > min_conf$$

Выделение ассоциативных правил

Этап 2. Простой рекурсивный алгоритм, выполняемый быстро, как правило, полностью в оперативной памяти.

```
1 функция AssocRules (R, \varphi, y)
           вход: (\varphi, y) — ассоциативное правило; выход: R — список ассоциативных правил;
          для всех f \in \varphi: \mathrm{id}_f > \max_{\sigma \in V} \mathrm{id}_g (чтобы избежать повторов y)
3 \varphi' := \varphi \setminus \{f\}; \quad y' := y \cup \{f\};
4 если \nu(y'|\varphi') \geqslant \varkappa то
5 добавить ассоциативное правило (\varphi', y') в список R;
6 если |\varphi'| > 1 то
1 Assoc Rules (R, \varphi', y'):
                         AssocRules (R, \varphi', y');
    \operatorname{id}_f — порядковый номер признака f в \mathscr{F} = \{f_1, \ldots, f_n\}
```

Задан часто встречающийся набор (А, В, Е). Какие возможны ассоциативные правила?

- Q: Given frequent set {A,B,E}, what are possible association rules?
 - A => B, E
 - A, B => E
 - A, E => B
 - B => A, E
 - B, E => A
 - E => A, B
 - __ => A,B,E (empty rule), or true => A,B,E

	_
Trans-ID	Items
1	ACD
2	BCE
3	ABCE
4	BE
5	ABCE

Rule	Conf.
$\{BC\} => \{E\}$	100%
$\{BE\} => \{C\}$	75%
$\{CE\} => \{B\}$	100%
{B} =>{CE}	75%
{C} =>{BE}	75%
{E} =>{BC}	75%

Min_support: 60% Min_confidence: 75%

Frequent Itemset	Support
{BCE},{AC}	60%
{BC},{CE},{A}	60%
{BC},{CE},{A} {BE},{B},{C},{E}	80%

Упражнение

TID	Items
1	Bread, Milk, Chips, Mustard
2	Beer, Diaper, Bread, Eggs
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk, Chips
5	Coke, Bread, Diaper, Milk
6	Beer, Bread, Diaper, Milk, Mustard
7	Coke, Bread, Diaper, Milk

Упражнение

Bread	Milk	Chips	Mustard	Beer	Diaper	Eggs	Coke
1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	0
0	1	0	0	1	1	0	1
1	1	1	0	1	1	0	0
1	1	0	0	0	1	0	1
1	1	0	1	1	1	0	0
1	1	0	0	0	1	0	1

Упражнение

0.4*7=2.8

C1	
Bread	6
Milk	6
Chips	2
Mustard	2
Beer	4
Diaper	6
Eggs	1
Coke	3

6
6
4
6
3

C2	
Bread, Milk	
Bread,Beer	
Bread, Diaper	
Bread,Coke	
Milk,Beer	
Milk, Diaper	
Milk,Coke	
Beer, Diaper	
Beer,Coke	
Diaper,Coke	

L2	
Bread,Milk	5
Bread,Beer	3
Bread, Diaper	5
Milk,Beer	3
Milk, Diaper	5
Milk,Coke	3
Beer,Diaper	4
Diaper,Coke	3

C3	
Bread,Milk,Beer	2
Bread, Milk, Diaper	4
Bread,Beer,Diaper	3
Milk,Beer,Diaper	3
Milk,Beer,Coke	
Milk,Diaper,Coke	3

$$8 + C_2^8 + C_3^8 = 92 >> 24$$

Модификация алгоритма Apriori

Основные проблемы при генерации наборов:

- общее число транзакций может быть очень большим
- одна транзакция может содержать много элементов

Модификации алгоритма:

- более эффективные структуры данных для быстрого поиска
- поиск по частичной случайной выборке при пониженных поддержке и значимости с последующей проверкой на полной базе
- алгоритмы, учитывающие иерархию признаков
- поиск последовательных шаблонов
- учет информации о клиентах

Модификации алгоритма Apriori

- **Проблема**: на каждом уровне осуществляется просмотр всей базы данных транзакций
- AprioriTID:
 - генерировать набора как в алгоритме Apriori, но БД используется для вычисления поддержки всех наборов за один проход;
 - требуется значительно больше памяти;
 - вычисляются и хранятся часто встречающиеся наборы $C^{\hat{}}_k$ для каждой транзакции;
- AprioriHybrid
 - на начальном этапе используется алгоритм Apriori;
 - \bullet вычисляется размер C_k ;
 - как только C^*_k будет умещаться в памяти, переключиться на AprioriTid.

<i>C</i> ₁						L	ı
TID	Items		TID	Set-of-itemsets	1	Itemset	Support
100	134		100	{ {1},{3},{4} }	7 [{1}	2
200	235		200	{ {2},{3},{5} }	7 [{2}	3
300	1235		300	{ {1},{2},{3},{5} }		{3}	3
400	25		400	{ {2},{5} }		{5}	3
C ₂							
item	nset		TID	Set-of-itemsets	1		2
{1 2	}		100	{ {1 3} }	1	Itemset	Support
{1 3	}		200	{ {2 3},{2 5} {3 5} }	1	{1 3}	2
{1 5	}		300	{ {1 2},{1 3},{1 5},	1	{2 3}	3
{2 3	}			{2 3}, {2 5}, {3 5}}		{2 5}	3
{2 5	i}		400	{ {2 5} }	1	{3 5}	2
(3 5) C ³					•	- 1	
	$\overline{C_3}$		TID	Set-of-itemsets		L ₃	
item	_		200	{ {2 3 5} }		Itemset	Support
{2 3	5}		300	{ {2 3 5} }		{2 3 5}	2

Какие правила интересны?

- все ли найденные правила будут полезны и интересны?
- как можно измерить "интересность"правила?

Субъективные критерии:

 правило интересно, если оно неожиданно для пользователя и/или полезно (пользователь может его применить)

Объективные критерии:

- поддержка (support)
- значимость (confidence)
- поддержка (Lift, Interest, Correlation)
- убедительность (Conviction)
- влияние (Leverage, Piatetsky-Shapiro)
- покрытие (Coverage)

- Example 1: (Aggarwal & Yu, PODS98)
 - Among 5000 students
 - 3000 play basketball
 - 3750 eat cereal
 - 2000 both play basket ball and eat cereal

	basketball	not basketball	sum(row)	
cereal	2000	1750	3750	75%
not cereal	1000	250	1250	25%
sum(col.)	3000	2000	5000	
	60%	40%		

play basketball ⇒ eat cereal [40%, 66.7%]

misleading because the overall percentage of students eating cereal is 75% which is higher than 66.7%.

play basketball ⇒ not eat cereal [20%, 33.3%]

is more accurate, although with lower support and confidence

Lift (Correlation, Interest)

$$\mathsf{Lift}(\mathcal{A} \to \mathcal{B}) = \frac{\mathsf{sup}(\mathcal{A}, \mathcal{B})}{\mathsf{sup}(\mathcal{A}) \cdot \mathsf{sup}(\mathcal{B})} = \frac{P(\mathcal{B} \mid \mathcal{A})}{P(\mathcal{B})}$$

A and B negatively correlated, if the value is less than 1;
 otherwise A and B positively correlated

Χ	1	1	1	1	0	0	0	0
Υ	1	1	0	0	0	0	0	0
Z	0	1	1	1	1	1	1	1

rule	Support	Lift
X⇒Y	25%	2.00
X⇒Z	37.50%	0.86
Y⇒Z	12.50%	0.57

■ play basketball \Rightarrow eat cereal [40%, 66.7%] LIFT = $\frac{2000}{5000}$ = 0.89 $\frac{5000}{5000}$ × $\frac{3750}{5000}$ = 0.89

■play basketball \Rightarrow not eat cereal [20%, 33.3%] LIFT = $\frac{1000}{3000}$ = 1.3:

	basketball	not basketball	sum(row)
cereal	2000	1750	3750
not cereal	1000	250	1250
sum(col.)	3000	2000	5000

Note that $A \rightarrow B$ can be rewritten as $\neg (A, \neg B)$

$$Conv(A \rightarrow B) = \frac{\sup(A) \cdot \sup(\bar{B})}{\sup(A, \bar{B})} = \frac{P(A) \cdot P(\bar{B})}{P(A, \bar{B})} = \frac{P(A)(1 - P(B))}{P(A) - P(A, B)}$$

- Conviction is a measure of the implication and has value 1 if items are unrelated.
- play basketball ⇒ eat cereal [40%, 66.7%]

 $Conv = \frac{\frac{3000}{5000} \left(1 - \frac{3750}{5000}\right)}{\frac{3000}{5000} - \frac{2000}{5000}} = 0.75$

- eat cereal ⇒ play basketball conv:0.85
- play basketball ⇒ not eat cereal [20%, 33.3%]
- not eat cereal ⇒ play basketball conv:1,43

 $Conv = \frac{\frac{3000}{5000} \left(1 - \frac{1250}{5000}\right)}{\frac{3000}{5000} - \frac{1000}{5000}} = 1.125$

Leverage or Piatetsky-Shapiro

$$PS(A \rightarrow B) = \sup(A, B) - \sup(A) \cdot \sup(B)$$

- PS (or Leverage):
- is the proportion of additional elements covered by both the premise and consequence above the expected if independent.

$$coverage(A \rightarrow B) = sup(A)$$

