Homework 6

CSC 445-01: Theory of Computation

Matthew Mabrey, Luke Kurlandski April 17, 2021

4.3

Construct a TM S that will decide $ALL_{DFA} = \{\langle A \rangle \mid A \text{ is a DFA and } L(A) = \Sigma^* \}$. Inside S the machine will check:

- 1. If all states of the input DFA $\langle A \rangle$ are final (e.g. Q = F), ACCEPT!
- 2. Else, REJECT!

On any input the constructed TM S now correctly:

- 1. Halts because Q is defined as a finite set of states and $F \subseteq Q$ so our machine will never halt as it doesn't run any input and just checks equivalence of two finite sets.
- 2. Accepts on Q = F since the DFA will accept all strings (Σ^*) .
- 3. Rejects on $Q \neq F$ because there would be a non-accepting state the DFA could end in which would produce an unaccepted string, meaning it does not produce Σ^* .

Thus the constructed TM S decides ALL_{DFA} because it correctly accepts or rejects and never halts on any input.

4.4

Construct a TM S that will decide $A\varepsilon_{CFG} = \{\langle G \rangle \mid G \text{ is a CFG that generates } \varepsilon \}$. Inside S the machine will:

- 1. Convert input CFG $\langle G \rangle$ to a CNF
- 2. If the new CNF grammar's start state has a transition $S_0 > \epsilon$, then accept
- 3. Else, reject

4.11

Construct a TM S that will decide $INFINITE_{PDA} = \{\langle M \rangle \mid M \text{ is a PDA and } L(M) \text{ is infinite } \}$. Inside S the machine will:

- 1. Non-deterministic search towards all final states
- 2. If there is a loop transition AND every path that has a loop transition that includes pushing a symbol to stack has a counterpart loop that pops these characters, Accept?
- 3. Else reject

5.1

Given a TM R that we assume decides EQ_{CFG} we can construct a TM S that decides A_{TM} . Inside S the machine will:

- 1. Construct a CFG G that generates $\overline{L_x}$ given A_{TM} 's input $\langle M, w \rangle = x$ ($\overline{L_x} = \Sigma^*$ iff M doesn't accept w)
- 2. Construct a CFG H that generates Σ^*
- 3. Feed $\langle G, H \rangle$ as input to the machine R
 - \bullet If R accepts, then S rejects
 - \bullet If R rejects, then S accepts

We have created a machine that decides A_{TM} , which is undecidable, using the assumed decidability of R. This is a contradiction so R must be undecidable.

5.4

```
(Not sure about answer) A = \{0^n 1^n \mid n \ge 0\} B = \{0^n \mid n \ge 0\} f(x) = \text{divide string in two, use first half } A \text{ is not regular, } B \text{ is regular } A \le_m B
```

5.9

- 1. Construct a TM T that decides $A = \{\langle M \rangle \mid w^R \text{ is accepted if w is accepted} \}$ inside a TM S used to decide A_{TM} .
- 2. Inside S, construct a new TM M_1 from input $\langle \langle M \rangle, w \rangle$. Using input w_1 :
 - If $w_1 = w^R$, Accept
 - Else if $w_1 = w$, Run M on w_1
 - Else, Reject
- 3. Feed M_1 into TM T, if it accepts then M must accept w since T only accepts M if both w^R and w are accepted and we can guarantee w^R is accepted because we constructed M_1 to accept it.

Thus we can use TM T to decide A_{TM} , which is undecidable, so T must also be undecidable.

5.22

We let M be the recognizer of A_{TM} and f be the reduction from A to A_{TM} . We describe a recognizer N for A as follows:

- 1. N = "On input w:
 - Compute f(w)
 - Run M on f(w) and output M's outputs"

Clearly, if $w \in A$ then $f(w) \in A_{TM}$ because f is a reduction from A to A_{TM} . Thus, M accepts f(w) whenever $w \in A$. Therefore, N recognizes A.