Университет ИТМО Физико-технический мегафакультет Физический факультет

Группа	P3215	К работе допущен	
Студент	Федоров Е.В.	Работа выполнена	
Преподаватель	Хвастунов Н.Н.	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.05 Исследование колебаний физического маятника

1 Цель работы

1. Изучение характеристик затухающих колебаний физического маятника

2 Задачи

- 1. Измерение периода затухающих колебаний.
- 2. Определение зависимости амплитуды затухающих колебаний физического маятника от времени.
- 3. Определение зависимости периода колебаний от момента инерции физического маятника.
- 4. Определение преобладающего типа трения.
- 5. Определение экспериментальной и теоретической приведенных длин маятника при его разных конфигурациях.

3 Объект исследования

Объект исследования - колебания физического маятника.

4 Метод экспериментального исследования

Многократное прямое измерение времени, необходимое маятнику на совершение определенного количества колебаний.

5 Рабочие формулы и исходные данные

- 1. Период колебаний $T=rac{ar{t}}{N},$ где $ar{t}$ среднее время десяти колебаний, N=10.
- 2. Расстояние центра груза от оси вращения $R = l_1 + (n-1)l_0 + b/2$, где l_1 расстояние от оси вращения до первой риски, l_0 расстояние между соседними рисками, b размер груза вдоль спицы.
- 3. Момент инерции грузов $I_{\rm rp} = m_{\rm rp} (R_{\rm верх}^2 + R_{\rm нижн}^2 + 2 R_{\rm бок}^2)$
- 4. Полный момент инерции физического маятника $I=I_{\rm rp}+I_0$, где I_0 момент инерции ступицы и крестовины, равный $8\cdot 10^{-3}~{\rm H\cdot m}$

1

- 5. Период колебаний маятника $T=2\pi\sqrt{\frac{I}{mgl}},\,T^2=4\frac{\pi^2I}{mgl}$
- 6. Приведенная длина маятника $l_{\text{пр,теор}} = I/(ml), \, l_{\text{пр,эксп.}} = (T^2 \cdot g)/(4 \cdot \pi^2)$

$N_{\overline{0}}\Pi/\Pi$	Наименование	Тип прибора	Используемый диапазон	Погрешность
1	Шкала	Аналоговый	60 °	1 °
2	Секундомер	Цифровой	300 c.	0.01 с

Таблица 1: Измерительные приборы

6 Измерительные приборы

7 Схема установки

Рис. 1: Схема установки

8 Результаты прямых измерений и их обработки

Амплитуда отклонения	25°	20°	15°	10°	5°
Время					
$t_1 = 18.56, c$	37.36	84	145	209	284
$t_2 = 18.51, c$	42.63	90	145	215	296
$t_3 = 19.67, c$	46.46	97	145	212	296
t, c	42.15	90.3	145	212	292

Таблица 2: Зависимость времени от амплитуды отклонения

Положение боковых грузов	t_1, c	t_2 , c	t_3 , c	$\langle t \rangle$, c	T, c
1 риска	16.50	16.60	16.50	16.533	1.653
2 риска	17.30	17.47	17.53	17.433	1.743
3 риска	18.64	18.58	18.48	18.566	1.857
4 риска	19.84	20.03	19.86	19.91	1.991
5 риска	21.24	21.32	21.42	21.326	2.133
6 риска	22.82	22.80	22.68	22.767	2.276

Таблица 3: Зависимость времени, необходимого на совершение 10 колебаний, от положения боковых грузов

9 Расчет результатов косвенных измерений

График зависимости амплитуды колебаний A(t) от времени представлен на рисунке 2. В затухании главную роль играет вязкое трение. График, соответствующий формуле $\ln(A/A_0) = -\beta t$ представлен на рисунке 3. Коэффициент затухания $\beta \approx 0.00638$, время затухания $\tau = 1/\beta \approx 156.77$ с.

График $T^2(I)$ представлен на рис. 4. По методу наименьших квадратов была проведена аппроксимирующая прямая. Ее угловой коэффициент $k \approx 86.70087$. Таким образом, $ml = (4\pi^2)/(kg) \approx 0.04637$.

Риски	1	2	3	4	5	6	
$R_{\rm b}$, M	0.077						
<i>R</i> _н , м	0.202						
<i>R</i> _б , м	0.077	0.102	0.127	0.152	0.177	0.202	
$I_{\rm rp}, { m H}\cdot { m M}$	0.0239	0.0276	0.0322	0.0379	0.0446	0.0524	
$I, H \cdot M$	0.0319	0.0356	0.0402	0.0459	0.0526	0.0604	
$l_{\rm np}$ эксп, м	0.6796	0.7557	0.8577	0.9860	1.1316	1.2885	
$l_{\rm пр}$ теор, м	0.6880	0.7668	0.8675	0.9903	1.1350	1.3017	

Таблица 4: Результаты вычисления I и l в зависимости от положения грузов

10 Графики

Рис. 2: График зависимости амплитуды колебаний A(t) от времени

Рис. 3: График зависимости $\ln A/A_0$ от t

Рис. 4: График зависимости T^2 от I

11 Вывод и анализ результатов работы

При выполнении работы было изучено движение физического маятника, было установлено, что преобладающим типом трения является вязкое трения. Экспериментальным и теоретическим путем были определены приведенные длины маятника при его разных конфигурациях. Оказалось, что разность длин не превосходит по модулю 0.02 м.