Задача №4

Расчет толстостенных цилиндров

Составной цилиндр, образованный из двух длинных цилиндров посадкой с натягом Δ , подвергается действию внутреннего давления p_1 . Размеры цилиндров: r_1 — радиус внутренней поверхности составного цилиндра; r_C — радиус поверхности сопряжения внутреннего и наружного цилиндров;

r₂ – радиус наружной поверхности составного цилиндра. Допускаемое напряжение для материала цилиндров $[\sigma]$ = 300*MПа*, модуль продольной упругости E=2*10⁵МПа, коэффициент поперечной деформации μ = 0,3.

Определить оптимальную величину натяга Δ и допускаемую величину внутреннего давления [p1]. Определить также допускаемую величину внутреннего давления [рг] для сплошного однослойного цилиндра с внутренним радиусом г1 и наружным радиусом г2 и сравнить с допускаемым внутренним давлением для составного цилиндра. Построить эпюры радиального, окружного и продольного нормальных напряжений в составном и сплошном цилиндрах при большем из допускаемых внутренних давлений [p1].

Дано: r₁=30мм; r_C=40мм; r₂=55мм; гипотеза предельного состояния IV.

1. Радиальное и окружное напряжения вычисляются по формуле

$$\sigma_{r,t} = \frac{p_B r_B^2 - p_H r_H^2}{r_H^2 - r_B^2} \mp \frac{r_B^2 r_H^2 (p_B - p_H)}{r^2 (r_H^2 - r_B^2)},\tag{1}$$

где р_в и р_н – внутреннее и наружное давления; г_в и г_н – внутренний и наружный радиусы; г – радиус-вектор точки, в которой определяются напряжения. Знак (–) соответствует напряжению σ_r , знак (+) соответствует

Напряжения в составном цилиндре определяются суммированием напряжений ($\sigma_r^{/}, \sigma_t^{/}$) в цилиндре с радиусами r_1 и r_2 от действия внутреннего давления p_1 и напряжений ($\sigma_r^{\prime\prime}$, $\sigma_t^{\prime\prime}$) в цилиндре с радиусами r_1 и r_C от действия

назна рс.
$$\sigma_{r} = \sigma_{r}^{I} \binom{r=r_{1}, p_{B}=p_{1}, p_{H}=0,}{r_{R}^{I}=r_{1}, r_{H}=r_{C}} + \sigma_{r}^{II} \binom{r=r_{1}, p_{B}=0, p_{H}=p_{C},}{r_{R}^{I}=r_{1}, r_{H}=r_{C}}$$
(2)
$$\sigma_{t} = \sigma_{t}^{I} \binom{r=r_{1}, p_{B}=p_{1}, p_{H}=0,}{r_{R}^{I}=r_{1}, r_{H}=r_{C}} + \sigma_{t}^{II} \binom{r=r_{1}, p_{B}=0, p_{H}=p_{C},}{r_{R}=r_{1}, r_{H}=r_{2}}$$
(3). Продольное напряжение:
$$\sigma_{Z} = \mu(\sigma_{r} + \sigma_{t})$$
. (4)

Подставим значения в уравнения (1)...(4).

$$\sigma_{t}' = \frac{p_{1} * 30^{2}}{55^{2} - 30^{2}} + \frac{30^{2} * 55^{2} * p_{1}}{30^{2} * (55^{2} - 30^{2})} = 1,85p_{1}; \quad \sigma_{t}'' = \frac{-p_{C} * 40^{2}}{40^{2} - 30^{2}} + \frac{30^{2} * 40^{2} * (-p_{C})}{30^{2} * (40^{2} - 30^{2})} = -4,57p_{C}; \quad \sigma_{t} = 1,85p_{1} - 4,57p_{C} = \sigma_{1};$$

$$\sigma_{r}' = \frac{p_{1} * 30^{2}}{55^{2} - 30^{2}} - \frac{30^{2} * 55^{2} * p_{1}}{30^{2} * (55^{2} - 30^{2})} = -p_{1}; \quad \sigma_{r}'' = \frac{-p_{C} * 40^{2}}{40^{2} - 30^{2}} - \frac{30^{2} * 40^{2} * (-p_{C})}{30^{2} * (40^{2} - 30^{2})} = 0; \quad \sigma_{r} = -p_{1} = \sigma_{3};$$

$$\sigma_{Z} = 0,3 * (-p_{1} + 1,85p_{t} - 4,57p_{C}) = 0,26p_{1} - 1,37p_{C} = \sigma_{2};$$
(5)

Эквивалентное напряжение в опасной точке внутреннего цилиндра по ІV-й гипотезе предельного состояния:

$$\sigma_{I_{386}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$$

$$= \sqrt{(1,85p_1 - 4,57p_C)^2 + (0,26p_1 - 1,37p_C)^2 + (-p_1)^2 - (1,85p_1 - 4,57p_C)(0,26p_1 - 1,37p_C) - (0,26p_1 - 1,37p_C)(-p_1) - (-p_1)(1,85p_1 - 4,57p_C)} =$$

$$= \sqrt{6,12p_1^2 - 19,84p_1p_C + 16,50p_C^2}.$$
(6)

2. Вычисляем напряжения в опасной точке наружного цилиндра (при r=rc).

$$\sigma'_{t} = \frac{p_{1} * 30^{2}}{55^{2} - 30^{2}} + \frac{30^{2} * 55^{2} * p_{1}}{40^{2} * (55^{2} - 30^{2})} = 1,22p_{1}; \quad \sigma'_{t} = \frac{p_{C} * 40^{2}}{55^{2} - 40^{2}} + \frac{40^{2} * 55^{2} * p_{C}}{40^{2} * (55^{2} - 40^{2})} = 3,25p_{C}; \quad \sigma_{t} = 1,22p_{1} + 3,25p_{C} = \sigma_{1};$$

$$\sigma'_{r} = \frac{p_{1} * 30^{2}}{55^{2} - 30^{2}} - \frac{30^{2} * 55^{2} * p_{1}}{40^{2} * (55^{2} - 30^{2})} = -0,38p_{1}; \quad \sigma''_{r} = \frac{p_{C} * 40^{2}}{55^{2} - 40^{2}} - \frac{40^{2} * 55^{2} * p_{C}}{40^{2} * (55^{2} - 40^{2})} = -p_{C}; \quad \sigma_{r} = -0,38p_{1} - p_{C} = \sigma_{3};$$

$$\sigma_{Z} = 0,3 * (-0,38p_{1} - p_{C} + 1,22p_{t} + 3,25p_{C}) = 0,25p_{1} + 0,68p_{C} = \sigma_{2}. \quad (7)$$

					КР_ММиК_2022_06			
Изм	Лист	№ докум	Подпись	Дата		_	_	_
Разраб		Богданов И.В.				Литера	Лист	Листов
Пров	3	Кирилюк С.И.			Васист толотополи	У		
H. Контр. Утв					Расчет толстостенных цилиндров	ГГТУ им.П.О.Сухо. гр.К-21		•

Эквивалентное напряжение в опасной точке наружного цилиндра по IV-й гипотезе предельного состояния: $\sigma_{H_{\text{and}}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$ $=\sqrt{(1,22p_1+3,25p_2)^2+(0.25p_1+0.68p_2)^2+(-0.38p_1-p_2)^2-(1,22p_1+3,25p_2)(0.25p_1+0.68p_2)-(0.25p_1+0.68p_2)-(0.25p_1+0.68p_2)-(-0.38p_1-p_2)-(-0.38p_1-p_2)(1,22p_1+3,25p_2)}=$ $=\sqrt{1,94p_1^2+10,36p_1p_C+13,74p_C^2}$. 3. Согласно условию равнопрочности внутреннего и наружного цилиндров приравняем выражения (6) и (8): $\sigma_{I_{986}} = \sigma_{II_{986}}, \ \sqrt{6,12\,{p_1}^2 - 19,84\,{p_1}{p_C} + 16,50\,{p_C}^2} = \sqrt{1,94\,{p_1}^2 + 10,36\,{p_1}{p_C} + 13,74\,{p_C}^2} \ ,$ $4,18{p_1}^2-30,20{p_1}{p_C}+2,76{p_C}^2=0\;,\;\;{p_1}^2-7,22{p_1}{p_C}+0,66{p_C}^2=0\;,\;$ откуда $p_1 = 3.61 p_C + \sqrt{(3.61 p_C)^2 - 0.66 p_C^2} = 7.13 p_C$ 4. Оптимальную величину давления натяга находим из условия $\sigma_{l_{286}}$ = $[\sigma]$, подставив $p_{\rm l}$ = 7,13 p_{C} в $\sigma_{l_{286}}$: $\sqrt{6,12\,{p_1}^2-19,84\,{p_1}{p_C}+16,50\,{p_C}^2}=[\sigma]\,,\;\sqrt{6,12\,{}^*(7,13\,{p_C})^2-19,84\,{}^*7,13\,{p_C}{p_C}+16,50\,{p_C}^2}=[\sigma]\,\,,\;\;13,6p_C=300,\;\text{откуда}$ $p_{\rm C}=22{\rm M}\Pi a$. При этом допускаемое внутреннее давление будет равно $[p_{\rm I}]=7,13*22=157{\rm M}\Pi a$. 5. Величину натяга находим из формулы Гадолина (при $E_1 = E_2 = E$ и $\mu_1 = \mu_2 = \mu$): $\frac{1}{2r_{C}\left[\frac{1}{F_{C}}\left(\frac{r_{C}^{2}+r_{1}^{2}}{r_{c}^{2}-r_{c}^{2}}-\mu_{1}\right)+\frac{1}{F_{C}}\left(\frac{r_{2}^{2}+r_{C}^{2}}{r_{c}^{2}-r_{c}^{2}}+\mu_{2}\right)\right]}$ $\Delta = \frac{2p_Cr_C}{E} \left(\frac{r_C^2 + r_1^2}{r_C^2 - r_1^2} + \frac{r_2^2 + r_C^2}{r_2^2 - r_C^2} \right) = \frac{2*22*40}{2*10^5} \left(\frac{40^2 + 30^2}{40^2 - 30^2} + \frac{55^2 + 40^2}{55^2 - 40^2} \right) = 0,060 \text{mm}.$ Напряжения в опасной точке при r=r₁=30мм: $\sigma_r^f = \frac{p_1*30^2}{55^2-30^2} - \frac{30^2*55^2*p_1}{30^2*(55^2-30^2)} = -p_1$; $\sigma_t^{\prime} = \frac{p_1 * 30^2}{55^2 - 30^2} + \frac{30^2 * 55^2 * p_1}{30^2 * (55^2 - 30^2)} = 1,85p_1, \quad \sigma_Z = \mu(\sigma_r^{\prime} + \sigma_t^{\prime}) = 0,3 * (-1 + 1,85)p_1 = 0,26p_1.$ Определяем [p₁]: $\sigma_{I_{9KS}} = \sqrt{\sigma_t^2 + \sigma_z^2 + \sigma_r^2 - \sigma_t \sigma_z - \sigma_z \sigma_r - \sigma_r \sigma_t} =$ $=\sqrt{(1,85p_1)^2+(0,26p_1)^2+(-p_1)^2-(1,85p_1)(0,26p_1)-(0,26p_1)(-p_1)-(-p_1)(1,85p_1)}=2,47p_1; \ \sigma_{I_{SKB}}=[\sigma] \ , \ 2,47p_1=300;$ Величина допускаемого давления в сплошном цилиндре оказалась меньше, чем в составном в $n = \frac{157}{121} = 1,3$ раза. 7. Для построения эшор напряжений вычисляем их значения для точек с $r=r_1$, $r=r_C$ и $r=r_2$ при $[p_1]=157$ МПа. Напряжения во внутреннем цилиндре при $r=r_1$ находим по выражениям (5). $\sigma_t = 1.85*157 - 4.57*22 = 190 M\Pi a; \quad \sigma_r = -p_1 = -157 M\Pi a; \quad \sigma_Z = 0.3*(-157+190) = 10 M\Pi a.$ Напряжения во внутреннем цилиндре при r=rc рави $\sigma_{r} = \sigma_{r \binom{r = r_{C}, p_{B} = p_{1}, p_{H} = 0,}{r \binom{r = r_{C}, p_{B} = 0, p_{H} = p_{C},}{r \binom{r = r_{C}, p_{B} = 0, p_{H} = 0, p_{C},}{r \binom{r = r_{C}, p_{B} = 0, p_{C},}{r \binom{r = r_{C}, p_{C},}{r \binom{r = r_{C}, p_{C},}{r \binom{r = r_{C}, p_{C},}{r \binom{r = r_{C}, p_{C},}{r \binom{r = r_{C$ $=-0.38p_1-p_2=-0.38*157-22=-82M\Pi a$: $\sigma_t = \sigma_{t\binom{r=r_C, p_B=p_1, p_H=0,}{r_B=r_1, r_H=r_2}}^{/} + \sigma_{t\binom{r=r_C, p_B=0, p_H=p_C,}{r_B=r_1, r_H=r_C}}^{/} = \frac{p_1*30^2}{55^2-30^2} + \frac{30^2*55^2*p_1}{40^2*(55^2-30^2)} + \frac{-p_C*40^2}{40^2-30^2} + \frac{30^2*40^2*(-p_C)}{40^2*(40^2-30^2)} = \frac{p_1*30^2}{40^2*(55^2-30^2)} + \frac{p_C*40^2}{40^2-30^2} + \frac{p_C*40^2}{40^2-3$ =1,22 p_1 -3,57 p_C =1,22*157-3,57*22=113 $M\Pi a$; $\sigma_Z = 0,3*(-82+113)=10M\Pi a$. Напряжения в наружном цилиндре при r=rc определяем по формулам (7): $\sigma_r = -0.38 p_1 - p_C = -0.38*157 - 22 = -82 \text{M}\Pi \text{a}; \quad \sigma_t = 1.22 p_1 + 3.25 p_C = 1.22*157 + 3.25*22 = 263 \text{M}\Pi \text{a};$ $\sigma_Z = 0.3*(-82+263)=55$ M Π a.

Изм.	Лист	№ докум.	Подпись	Дата

Напряжения в наружном цилиндре при $r=r_2$: $\sigma_{r(r=r_2)}=0$;

$$\sigma_t = \sigma_{t\binom{r=r_2, p_B=p_1, p_H=0,}{r_B=r_1, r_H=r_2}}^{/} + \sigma_{t\binom{r=r_2, p_B=p_C, p_H=0,}{r_B=r_C, r_H=r_2}}^{/} = \frac{p_1*30^2}{55^2-30^2} + \frac{30^2*55^2*p_1}{55^2*(55^2-30^2)} + \frac{p_C*40^2}{55^2-40^2} + \frac{40^2*55^2*p_C}{55^2*(55^2-40^2)} = \frac{p_1*30^2}{55^2*(55^2-30^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} = \frac{p_1*30^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} = \frac{p_1*30^2}{55^2*(55^2-30^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} = \frac{p_1*30^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{55^2*(55^2-40^2)} + \frac{p_C*40^2}{$$

=0,85p₁+2,25p_C=0,85*157+2,25*22=183MΠa; σ_Z = 0,3*(0+183)=55MΠa.

Напряжения в сплошном цилиндре определяем по формулам (1) и (4) при
$$r_B=r_1$$
, $r_H=r_2$, $p_B=p_1$, $p_H=0$. Для $r=r_1$: $\sigma_r=\frac{157*30^2}{55^2-30^2}-\frac{30^2*55^2*157}{30^2*(55^2-30^2)}=-157$ МПа; $\sigma_t=\frac{157*30^2}{55^2-30^2}+\frac{30^2*55^2*157}{30^2*(55^2-30^2)}=290$ МПа;

 $\sigma_Z = 0.3*(-157+290)=40$ MT

Для
$$r=r_2$$
: $\sigma_r = \frac{157*30^2}{55^2-30^2} - \frac{30^2*55^2*157}{55^2*(55^2-30^2)} = 0$; $\sigma_t = \frac{157*30^2}{55^2-30^2} + \frac{30^2*55^2*157}{55^2*(55^2-30^2)} = 133 M\Pi a$;

 $\sigma_Z = 0.3*(0+133)=40$ M Π a.

Строим эпюры окружных, радиальных и продольных напряжений

Изм.	Лист	№ докум.	Подпись	Дата