Lab 3 Report

310511082 王品棠

Block Diagram

Describe Operation

How to receive data-in (axi-write) and tap parameters and place into SRAM

- When signal "awvalid" raises, raise "awready" and check the "awaddr" is 12'h00, 12'h10 or address equal or larger than 12'h20, determining the operation.
- If address is 12'h00, write the data to reg: ap_signals, if the address is 12'h10, write data to reg: length
- If the address is equal or larger than 12'h20, write the data to reg:
 write_buf(connected to tap_Di), write the mapped address to
 addr_buf(connected with tap_A) and raise the enable registers of tap_EN
 and tap_WE, then the tap parameters will be written into tapRAM in the
 next cycle.
- In this process, the signal "wready" is raised while the tap parameters are written into the SRAM, then the next tap parameter will be able to be received.

How to access shiftRam and tapRAM to do computation

- As shown in the following state diagram, the input data from axi-Stream will be stored into the shiftRAM (dataRAM) in the INIT 0 or INIT 1.
- The next state INIT_2, the enable signal and the address of shiftRAM and tapRAM will be calculated and assign to the register connected to their address signal wire.
- The next state COEF_10, the oldest data will be read from the shiftRAM and be multiplied by the last coef[10] that is read from tapRAM, and store the result in the reg: Addln_buf.
- The following states, from COEF_9 to COEF_0, the same operation as COEF_10 is conducted but also accumulate the AddIn_buf to the accumulator "acc".
- The next state OUTPUT, accumulate the AddIn_buf with the reg: acc for the last time of this output data, and assign the result to the register "sm_tdata_bug" (connected to sm_tdata). And also raise the signal sm_tvalid.
- In the program, the input data received via axi-Stream will be first stored in the shiftRAM in the first cycle, then the following 12 cycles are calculating the corresponding FIR output of this input data.
- Since we can design with only one multiplier and one adder for FIR
 calculation, I think the method I applied is the most efficient way analyzed
 with asymptotic analysis.

How ap_done is generated.

 The signal ap_done is generated after the last data is calculated and transferred.

Resource usage: including FF, LUT, BRAM

- From the synthesis log file, the following cell usage shows the FF and LUT usage.
- There are 263 LUTs and 315 FFs in total.

Report Cell Usage:		
+		
1	Cell	Count
++		
1	BUFG	1
2	CARRY4	33
3	DSP48E1	3
5	LUT1	25
6	LUT2	87
7	LUT3	20
8	LUT4	37
9	LUT5	43
10	LUT6	51
11	FDCE	133
12	FDPE	1
13	FDRE	181
14	IBUF	159
15	OBUF	168
16	OBUFT	1
·		

Timing Report

Try to synthesize the design with maximum frequency

 The minimum period achieved by the design is 5.228ns, with the corresponding maximum frequency of 191MHz.

Report timing on longest path, slack

- The longest path is from cnt_reg[3] to cnt_reg{29}, which is the counter register used to accumulate how many data have already received.
- Since the carrier bit signal has to transmit through lots of bit in the register, the critical path may be long.
- With the maximum frequency, the slack for this maximum delay path is 0.001ns, still a positive number.

```
Max Delay Paths
Slack (MET) :
                                       0.001ns (required time - arrival time)
                                  genblk1.cnt_reg[3]/C (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@2.614ns period=5.228ns})
genblk1.cnt_reg[29]/D
   Source:
  Destination:
                                      (rising edge-triggered cell FDCE clocked by axis_clk {rise@0.000ns fall@2.614ns period=5.228ns}) axis_clk
  Path Group: axis_clk
Path Type: Setup (Max at Slow Process Corner)
Requirement: 5.228ns (axis_clk rise@5.228ns - axis_clk rise@0.000ns)
Data Path Delay: 5.123ns (logic 3.592ns (70.115%) route 1.531ns (29.885%))
Logic Levels: 13 (CARRY4=11 LUT1=1 LUT6=1)
Clock Path Skew: -0.145ns (DCD - SCD + CPR)
Destination Clock Delay (DCD): 2.128ns = (7.356 - 5.228)
Source Clock Delay (SCD): 2.456ns
                                           (SCD): 2.128hs
(SCD): 2.456hs
      Source Clock Delav
      Clock Pessimism Rémoval (CPR):
                                                   : 0.184ns
((TSJ^2 + TIJ^2)^1/2 + DJ) / 2 + PE
   Clock Uncertainty:
                                       0.035ns
     Total System Jitter
Total Input Jitter
                                         (TSJ):
                                                          0.071ns
     Discrete Jitter
                                                          0.000ns
     Phase Error
                                          (PE):
                                                         0.000ns
                                                                             Incr(ns) Path(ns)
     Location
                                     Delay type
                                                                                                               Netlist Resource(s)
                                      (clock axis_clk rise edge)
                                                                                  0.000
                                                                                                  0.000 г
                                                                                                  0.000 r axis_clk (IN)
0.000 axis_clk
r axis_clk_IBUF_inst/I
                                      net (fo=0)
                                                                                  0.000
                                                                                                               axis_clk_IBUF_inst/O
axis_clk_IBUF
axis_clk_IBUF_BUFG_inst/I
                                     IBUF (Prop_ibuf_I_0)
net (fo=1, unplaced)
                                                                                  0.972
                                                                                                 0.972 г
                                                                                                 0.5,_
1.771
r
                                                                                  0.800
                                                                                                 1.872 r
                                      BUFG (Prop_bufg_I_0)
net (fo=317, unplaced)
                                                                                  0.101
0.584
                                                                                                               axis_clk_IBUF_BUFG_inst/0
axis_clk_IBUF_BUFG
                                                                                                 2.456
                                                                                                r genblk1.cnt_reg[3]/C
                                      FDCE
                                                                                  0.478 2.934 r
0.983 3.917
                                      FDCE (Prop_fdce_C_Q)
                                                                                                 2.934 r genblk1.cnt_reg[3]/Q
                                                                                                               genblk1.cnt_reg[3]
genblk1.ap_signals[2]_i_14/I0
genblk1.ap_signals[2]_i_14/0
genblk1.ap_signals[2]_i_14_n_0
                                      net (fo=3, unplaced)
                                                                                                 4.212 r
                                                                                  0.295
                                     LUT6 (Prop_lut6_I0_0)
net (fo=1, unplaced)
                                                                                  0.000
                                                                                                  4.212
```

```
4.212 r genblk1.ap_signals[2]_i_14/0
4.212 genblk1.ap_signals[2]_i_14_n_0
                                 0.295
LUT6 (Prop lut6 I0 0)
net (fo=1, unplaced)
                                 0.000
                                                   r genblk1.ap_signals_reg[2]_i_7/S[1]
CARRY4 (Prop_carry4_S[1]_C0[3])
                                            4.745 r genblk1.ap_signals_reg[2]_i_7/C0[3]
4.754 genblk1.ap_signals_reg[2]_i_7_n_0
                                 0.533
net (fo=1, unplaced)
                                 0.009
                                                   r genblk1.ap_signals_reg[2]_i_3/CI
CARRY4 (Prop_carry4_CI_CO[3])
                                            4.871 r genblk1.ap_signals_reg[2]_i_3/CO[3]
4.871 genblk1.ap_signals_reg[2]_i_3_n_0
r genblk1.ap_signals_reg[2]_i_2/CI
                                 0.117
net (fo=1, unplaced)
                                 0.000
CARRY4 (Prop_carry4_CI_CO[2])
                                 0.252
                                             5.123 f genblk1.ap_signals_reg[2]_i_2/CO[2]
net (fo=42, unplaced)
                                 0.530
                                             5.653
                                                       genblk1.ap_signals_reg[2]_i_2_n_1
                                                   f genblk1.cnt[0]_i_3/I0
LUT1 (Prop_lut1_I0_0)
                                 0.302
                                             5.955 r genblk1.cnt[0]_i_3/0
net (fo=1, unplaced)
                                 0.000
                                             5.955
                                                       genblk1.cnt[0]_i_3_n_0
                                                      genblk1.cnt_reg[0]_i_2/DI[0]
CARRY4 (Prop carry4 DI[0] CO[3])
                                            6.531 r genblk1.cnt_reg[0]_i_2/C0[3]
6.540 genblk1.cnt_reg[0]_i_2_n_0
                                 0.576
net (fo=1, unplaced)
                                 0.009
                                                   r genblk1.cnt_reg[4]_i_1/CI
CARRY4 (Prop_carry4_CI_CO[3])
                                 0.117
                                             6.657 r genblk1.cnt_reg[4]_i_1/C0[3]
net (fo=1, unplaced)
                                                       genblk1.cnt_reg[4]_i_1_n_0
                                 0.000
                                             6.657
                                                       genblk1.cnt_reg[8]_i_1/CI
CARRY4 (Prop_carry4_CI_CO[3])
                                            6.774 r genblk1.cnt_reg[8]_i_1/C0[3]
6.774 genblk1.cnt_reg[8]_i_1_n_0
r genblk1.cnt_reg[12]_i_1/CI
                                 0.117
net (fo=1, unplaced)
                                 0.000
CARRY4 (Prop_carry4_CI_CO[3])
                                 0.117
                                             6.891 r genblk1.cnt_reg[12]_i_1/C0[3]
net (fo=1, unplaced)
                                 0.000
                                             6.891
                                                       genblk1.cnt_reg[12]_i_1_n_0
                                                   r genblk1.cnt_reg[16]_i_1/CI
CARRY4 (Prop_carry4_CI_CO[3])
                                             7.008 r genblk1.cnt reg[16] i 1/C0[3]
                                                   genblk1.cnt_reg[16]_i_1_n_0
r genblk1.cnt_reg[20]_i_1/CI
                                             7.008
net (fo=1, unplaced)
                                 0.000
CARRY4 (Prop_carry4_CI_CO[3])
                                 0.117
                                             7.125 r genblk1.cnt_reg[20]_i_1/C0[3]
net (fo=1, unplaced)
                                 0.000
                                             7.125
                                                       genblk1.cnt_reg[20]_i_1_n_0
                                                  r aenblk1.cnt rea[24] i 1/CI
    CARRY4 (Prop_carry4_CI_CO[3])
                                                7.125 r genblk1.cnt_reg[20]_i_1/C0[3]
7.125 genblk1.cnt_reg[20]_i_1_n_0
r genblk1.cnt_reg[24]_i_1/CI
                                     0.117
    net (fo=1, unplaced)
                                     0.000
    CARRY4 (Prop_carry4_CI_CO[3])
                                     0.117
                                                7.242 r genblk1.cnt_reg[24]_i_1/C0[3]
                                                           genblk1.cnt_reg[24]_i_1_n_0
genblk1.cnt_reg[28]_i_1/CI
    net (fo=1, unplaced)
                                     0.000
                                                 7.242
    CARRY4 (Prop_carry4_CI_0[1])
                                     0.337
                                                7.579 г
                                                           genblk1.cnt_reg[28]_i_1/0[1]
                                                7.579
    net (fo=1, unplaced)
                                     0.000
                                                           genblk1.cnt_reg[28]_i_1_n_6
    FDCE
                                                      Г
                                                           genblk1.cnt_reg[29]/D
    (clock axis_clk rise edge)
                                     5.228
                                                5.228 r
                                                           axis_clk (IN)
                                                5.228 r
                                     0.000
    net (fo=0)
                                                           axis_clk
                                     0.000
                                                 5,228
                                                           axis_clk_IBUF_inst/I
                                                6.066 г
                                                           axis_clk_IBUF_inst/0
    IBUF (Prop_ibuf_I_0)
                                     0.838
    net (fo=1, unplaced)
                                     0.760
                                                6.826
                                                           axis_clk_IBUF
                                                           axis_clk_IBUF_BUFG_inst/I
    BUFG (Prop_bufg_I_0)
                                     0.091
                                                 6.917 r
                                                           axis_clk_IBUF_BUFG_inst/0
    net (fo=317, unplaced)
                                                           axis_clk_IBUF_BUFG
                                     0.439
                                                 7.356
    FDCE
                                                       г
                                                           genblk1.cnt_reg[29]/C
   clock pessimism
                                     0.184
                                                 7.539
    clock uncertainty
                                                 7.504
                                    -0.035
    FDCE (Setup_fdce_C_D)
                                     0.076
                                                7.580
                                                           genblk1.cnt_reg[29]
    required time
                                                7.580
    arrival time
                                               -7.579
    slack
                                                0.001
```

Simulation Waveform

Coefficient program, and read back

Receive tap parameters from axi-write and write to tapRAM

Read tap parameters from tapRAM and send to testbench via axi-read

Data-in stream-in

Data-out stream-out

RAM access control

Tap RAM

Data RAM

FSM

