Shashank and List

Shashank is a newbie to mathematics, and he is very excited after knowing that a given I of cardinality N has $(2^N - 1)$ non-empty sublist. He writes down all the non-empty sublists for a given set A. For each sublist, he calculates sublist_sum, which is the sum of elements and denotes them by S_1 , S_2 , S_3 , ..., $S_{(2^N-1)}$.

He then defines a special_sum, P.

```
P = 2^{S_1} + 2^{S_2} + 2^{S_3} \dots + 2^{S_{(2^{N-1})}} and reports P % (10<sup>9</sup> + 7).
```

Input Format

The first line contains an integer N, i.e., the size of list A.

The next line will contain N integers, each representing an element of list A.

Output Format

Print special_sum, P $modulo (10^9 + 7)$.

Constraints

```
1 \le N \le 10^5
 0 \le a_i \le 10^{10} \text{ , where } i \in [1 .. N]
```

Sample Input

```
3
1 1 2
```

Sample Output

44

Explanation

For given list, sublist and calculations are given below

- 1. $\{1\}$ and $2^1 = 2$
- 2. $\{1\}$ and $2^1 = 2$
- 3. $\{2\}$ and $2^2 = 4$
- 4. $\{1,1\}$ and $2^2 = 4$
- 5. $\{1,2\}$ and $2^3 = 8$
- 6. $\{1,2\}$ and $2^3 = 8$
- 7. $\{1,1,2\}$ and $2^4 = 16$

So total sum will be 44.