COMPUTER ORGANIZATION AND ARCHITECTURE

Course Code: CSE 2151

Credits: 04

MODULE 3

ARITHMETIC AND LOGIC UNIT

Figure 10.1 ALU Inputs and Outputs

ADDITION AND SUBTRACTION

OVERFLOW RULE:

• If two numbers are added, and they are both positive or both negative, then overflow occurs if and only if the result has the opposite sign.

SUBTRACTION RULE:

• To subtract one number (subtrahend) from another (minuend), take the twos complement (negation) of the subtrahend and add it to the minuend.

ADDITION AND SUBTRACTION: HARDWARE

OF = Overflow bit

SW = Switch (select addition or subtraction)

Figure 10.6 Block Diagram of Hardware for Addition and Subtraction

Figure 10.7 Multiplication of Unsigned Binary Integers

- Perform immediate addition to eliminate the need for additional registers to store the partial products
- Save time:
 - 1 multiplier: add and shift operation
 - 0 multiplier: shift operation

Figure 10.9 Flowchart for Unsigned Binary Multiplication

C	A	Q	M	Initial values
0	0000	1101	1011	
0	1011	1101	1011	Add } First
	0101	1110	1011	Shift & cycle
0	0010	1111	1011	Shift } Second cycle
0	1101	1111	1011	Add } Third
	0110	1111	1011	Shift & cycle
1 0	0001	1111	1011	Add } Fourth
	1000	1111	1011	Shift & cycle

(b) Example from Figure 10.7 (product in A, Q)

• 45 (101101) X 33 (100001)=1485

C	A	Q	M	
0	000000	100001	101101	
	<u>101101</u>			
0	101101	100001	101101	Add First Cycle
0	010110	110000		Shift
0	001011	011000	101101	Shift 2 nd Cycle
0	000101	101100	101101	Shift 3 rd cycle
0	000010	110110	101101	Shift 4 th cycle
0	000001	011011	101101	Shift 5 th cycle
	<u>101101</u>			
0	101110	011011	101101	Add
0	010111	001101	101101	Shift 6 th cycle
	Product			

MULTIPLICATION: SIGNED INTEGERS- 2'S COMPLEMENT

-5 (1011) X -3 (1101) = -113 (10001111)

Figure 10.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result

MULTIPLICATION: NEGATIVE MULTIPLICAND

-13 (10011) X +11 (01011) = -143 (1101110001)

Figure 9.8 Sign extension of negative multiplicand.

MULTIPLICATION: UNSIGNED V/S SIGNED

(a) Unsigned integers

(b) Twos complement integers

Figure 10.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

READ FROM....

• Go through examples given in Section 2.12 and 2.15 of the Reference Book (textbook 1)

TOPICS COVERED FROM

- Textbook 2:
 - Chapter 10: 10.3