Препроцессинг и контроль качества моделей

Виктор Китов

victorkitov.github.io

Победитель конкурса VK среди курсов по IT

Курс поддержан фондом 'Интеллект'

Препроцессинг данных

Препроцессинг данных включает:

- заполнение пропусков
- детекцию и обработку выбросов
- кодирование признаков
- преобразование признаков
- отбор признаков / снижение размерности
- преобразование отклика

Перед работой с данными:

- визуализировать зависимость у от самых значимых признаков (график, scatter-plot с раскраской)
- визуализировать распределение в первых 2x, 3x главных компонентах (с раскраской)

Заполнение пропусков

- Самый простой способ удалить объекты с пропусками.
 - потеряем много информации, если таких много
- Заполнение:
 - для вещественных:
 - средним/медианой
 - аномально большим или малым значением (для деревьев решений)
 - для категориальных
 - самой частой категорией
 - новой категорией "пропуск"
- Более точно предсказывать пропущенные признаки, используя располагаемые.

Другие преобразования

Детекция выбросов:

- Строить распределения каждого признака, удалять объекты с аномальными значениями.
- Либо по правилу непринадлежности значения $(\mu + k\sigma, \mu + k\sigma)$, $k \sim 4$.

Преобразование отклика:

- ullet преобразуем y o g(y) и обучаем модель на $\{x_n,g(y_n)\}_n$
- ullet применяем модель, прогноз $g^{-1}(\widehat{y})$
- популярно: $g(y) = \ln y$
- для поиска $g(\cdot)$:
 - строим scatter-plot зависимости у от значимых признаков.
 - ullet либо подбираем $g(\cdot)$, чтобы $g(y) \sim \mathcal{N}(0,1)$

Содержание

- 1 Кодирование признаков
- 2 Генерация признаков
- Представление текстов
- 4 Переобучение и недообучение
- Оценка качества на тесте
- Оценка качества регрессии

Признаки

- Можно использовать вещественные признаки и бинарные.
- Вещественные можно дискретизовать
 - Пример: возраст, зарплата. По-разному обработаем каждый сегмент.
- Как представить категориальные признаки?

Признаки

- Можно использовать вещественные признаки и бинарные.
- Вещественные можно дискретизовать
 - Пример: возраст, зарплата. По-разному обработаем каждый сегмент.
- Как представить категориальные признаки?
 - номером категории (плохо)
 - счетчиком встречаемости категории
 - в виде бинарных (one-hot encoding)
 - в виде вещественных (mean value encoding, cyclic encoding)

One-hot кодирование (one-hot encoding)

Row Number	Direction
1	North
2	North-West
3	South
4	East
5	North-West
	North-West
	East
	South

One-hot кодирование (one-hot encoding)

Row Number	Direction	Row Number	Direction_N	Direction_S	Direction_W	Direction_E	Direction_N
1	North	1	1	0	0	0	0
2	North-West	2	0	0	0	0	1
3	South	3	0	1	0	0	0
4	East	4	0	0	0	1	0
5	North-West	5	0	0	0	0	1
	North-West		0	0	0	0	1
	East		0	0	0	1	0
	South		0	1	0	0	0

Какие могут быть проблемы у этого метода?

Кодирование средним (mean encoding)

- можно делать по вещественному признаку
- ullet если делаем по y, то на отдельной выборке!

id	job	job_mean	target
1	Doctor	0,50	1
2	Doctor	0,50	0
3	Doctor	0,50	1
4	Doctor	0,50	0
5	Teacher	1	1
6	Teacher	1	1
7	Engineer	0,50	0
8	Engineer	0,50	1
9	Waiter	1	1
10	Driver	0	0

Циклическое кодирование (cyclic encoding)

- Некоторые признаки принимают циклические значения
 - номер месяца, день месяца, час дня
 - для часа 0,1,2,...23. Ho $23 \approx 0!$
- Используем циклическое кодирование:

$$x o \left[\sin \left(rac{2\pi \cdot x}{\max(x)}
ight); \cos \left(rac{2\pi \cdot x}{\max(x)}
ight)
ight]$$

Первая компонента при кодировании часа в сутках.

Содержание

- 1 Кодирование признаков
- 2 Генерация признаков
- Представление текстов
- 4 Переобучение и недообучение
- 5 Оценка качества на тесте
- Оценка качества регрессии

Генерация признаков

- Генерация признаков (feature engineering) создание трансформаций из уже известных признаков.
- Хорошая новые признаки существенно повышают качество!
 - см. kaggle соревнования
- Хорошие признаки м.быть свои для каждой модели:
 - линейные трансформации для метрических методов
 - метрические признаки для линейных моделей

Пример генерации признаков

• Трансформация признаков¹:

$$(x,y) o (r,
ho)$$
 $r = \sqrt{x^2 + y^2}, \quad
ho = \arctan rac{y}{x}$

Популярные трансформации признаков

Популярные преобразования признаков.

$\phi_k(x)$	примеры
$(x^i)^2, \sqrt{x^i}, \ln x^i$	учитываем нелинейное влияние расстояния до метро
	на стоимость квартиры
$\mathbb{I}\left\{x^i\in[a,b]\right\}$	принадлежит ли клиент определенному возрасту?
	(совершеннолетний, но не пенсионер)
$x^i \mathbb{I}[x^i \le a], \ x^i \mathbb{I}[x^i > a]$	учесть изменения влияния x^i при $x^i > a$
$(x^i)(x^j)$	длина x ширина участка = площадь
x^i/x^j	стоимость квартиры/метраж = стоимость одного
	метра
$F_{x^i}(x^i)$	приводим признак к равномерному распределению
	$(F(\cdot)$ - ф-ция распределения $)$

Популярные трансформации признаков

Использование метрических признаков (метод перестаёт быть линейным, нужна численная оптимизация).

$\phi_k(x)$	примеры
$\langle x,z\rangle/(\ x\ \ z\)$	угол между объектом и репрезентативым объектом z
$ x-z ^2$	расстояние от объекта до репрезентативного
	объекта z (чаще используют близость)

Содержание

- 1 Кодирование признаков
- 2 Генерация признаков
- Представление текстов
- 4 Переобучение и недообучение
- Оценка качества на тесте
- Оценка качества регрессии

Токены в текстах

Требуется представить текст вектором $\in \mathbb{R}^D$. Пусть D - #уникальных слов.

- $x_w = \mathbb{I}[w]$ встретился в документе
- $x_w = TF_w = \#[w]$ встретился в документе]
- $x_w = TF_w IDF_w$, $IDF_w = \frac{N}{N_w}$
 - N # документов
 - N_w # документов, содержащих w хотя бы раз.

Формирование словаря уникальных слов

- в простейшем случае: все уникальные слова языка
- можно ограничить словами предметной области
- можно в разных формах или нормализованной
 - единственное число, именительный падеж, начальная форма глагола.
- убрать слишком частые слова и слишком редкие
 - с редкими осторожно, многие информативны!
- убрать неинформативные "стоп-слова" из словаря
 - а, но, если, конечно, зато, или, ...

Токены в текстах

- можно добавить биграммы/триграммы:
 - мне фильм не понравился -> 'мне фильм', 'фильм не', 'не понравился'.
 - мне фильм не понравился -> 'мне фильм не', 'фильм не понравился'.
- Но биграм/триграм много.

Токены в текстах

- можно добавить биграммы/триграммы:
 - мне фильм не понравился -> 'мне фильм', 'фильм не', 'не понравился'.
 - мне фильм не понравился -> 'мне фильм не', 'фильм не понравился'.
- Но биграм/триграм много.
- Поэтому можно добавить только коллокации (неслучайно часто совстречающиеся слова)
 - Запустили линейную регрессию. Линейная регрессия показала точность... -> 'линейная регрессия'

$$\frac{p(w_1w_2)}{p(w_1)p(w_2)} > threshold$$

Содержание

- 1 Кодирование признаков
- 2 Генерация признаков
- ③ Представление текстов
- 4 Переобучение и недообучение
- 5 Оценка качества на тесте
- Оценка качества регрессии

Проблемы недообучения и переобучения

- <u>Недообучение</u>: модель <u>слишком простая</u> для реальных данных.
 - не улавливает тонких закономерностей
- Переобучение: модель <u>слишком сложная</u> для реальных данных.
 - настраивается на шум в измерениях

Вид переобучения

Зависимость потерь от гиперпараметра

ullet например, K в K-NN, λ в регрессии.

- до *: недообучение
- после *: переобучение

Содержание

- 1 Кодирование признаков
- 2 Генерация признаков
- ③ Представление текстов
- Переобучение и недообучение
- 5 Оценка качества на тесте
 - Отдельная валидационная выборка
 - Кросс-валидация
- Оценка качества регрессии

Обучающая выборка

Обучающая выборка (training set): $(x_1, y_1), ...(x_N, y_N)$, задаётся матицей объекты-признаки (design matrix) $X \in \mathbb{R}^{N \times D}$, и вектором откликов (targets) $Y = [y_1, ... y_M]^T$.

Обучающая и тестовая выборка

- Обучающая выборка $X, Y: (x_1, y_1), ...(x_M, y_M)$
- Тестовая выборка X', Y': $(x'_1, y'_1), ...(x'_K, y'_K)$

Критерий оптимизации параметров модели

• Необходимо минимизировать теоретический риск:

$$\int \int \mathcal{L}(f_w(\mathsf{x}),y)p(\mathsf{x},y)d\mathsf{x}dy \to \min_w$$

 $^{^{2}}$ Предполагаем что объекты независимы и одинаково распределены.

Критерий оптимизации параметров модели

• Необходимо минимизировать теоретический риск:

$$\int \int \mathcal{L}(f_w(\mathsf{x}),y)p(\mathsf{x},y)d\mathsf{x}dy \to \min_w$$

 Но мы можем минимизировать только эмпирический риск²:

$$L(w|X,Y) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_w(x_n), y_n)$$

• Параметры находим из условия:

$$\widehat{w} = \arg\min_{w} L(w|X, Y)$$

 $^{^{2}}$ Предполагаем что объекты независимы и одинаково распределены.

Эмпирический риск на тестовой выборке

ullet Как связаны $L(\widehat{w}|X,Y)$ и $L(\widehat{w}|X',Y')$?

Эмпирический риск на тестовой выборке

- Как связаны $L(\widehat{w}|X,Y)$ и $L(\widehat{w}|X',Y')$?
- В типичной ситуации

$$L(\widehat{w}|X,Y) < L(\widehat{w}|X',Y')$$

- Эффект растет с ростом переобучения.
- Как получить реалистичную оценку $L(\widehat{w}|X',Y')$?

Эмпирический риск на тестовой выборке

- Как связаны $L(\widehat{w}|X,Y)$ и $L(\widehat{w}|X',Y')$?
- В типичной ситуации

$$L(\widehat{w}|X,Y) < L(\widehat{w}|X',Y')$$

- Эффект растет с ростом переобучения.
- Как получить реалистичную оценку $L(\widehat{w}|X',Y')$?
 - на отдельной валидационной выборке (hold-out)
 - кросс-проверка, кросс-валидация (cross-validation)
 - скользящий контроль (leave-one-out)

Отдельная валидационная выборка

- 5 Оценка качества на тесте
 - Отдельная валидационная выборка
 - Кросс-валидация

Отдельная валидационная выборка

- Обучающая выборка $X, Y: (x_1, y_1), ...(x_M, y_M)$
- Тестовая выборка $X',Y'\colon (\mathsf{x}_1',y_1'),...(\mathsf{x}_K',y_K')$

Отдельная валидационная выборка

Разделим обучающую выборку на ту, где будем обучать модель и оценивать случайно:

Комментарии

- I_{train}, I_{val} индексы объектов обучающей/валидационной выборки.
- Настройка параметров по

$$L(w|X_{train}, Y_{train}) = \frac{1}{|I_{train}|} \sum_{i \in I_{train}} \mathcal{L}(f_w(x_i), y_i) \rightarrow \min_{w}$$

• Оценка модели:

$$L(w|X_{val}, Y_{val}) = \frac{1}{|I_{val}|} \sum_{i \in I_{val}} \mathcal{L}(f_w(x_i), y_i)$$

Стратификация

Стратификация (stratification) - сохранение с сохранением априорного распределения классов / дискретного признака.

- 5 Оценка качества на тесте
 - Отдельная валидационная выборка
 - Кросс-валидация

Пример: 4х блоковая кросс-валидация

Разделим обучающую выборку на K частей (блоков) (K=4).

- перед разбиением важно перемешать объекты
- используется предположение независимости объектов

Кросс-валидация Пример: 4x блоковая кросс-валидация

Блоки 1,2,3 для обучения, а блок 4 - для прогнозов.

Кросс-валидация

Пример: 4х блоковая кросс-валидация

Блоки 1,2,4 для обучения, а блок 2 - для прогнозов.

Кросс-валидация

Пример: 4х блоковая кросс-валидация

Блоки 1,3,4 для обучения, а блок 2 - для прогнозов.

Кросс-валидация

Пример: 4х блоковая кросс-валидация

Блоки 2,3,4 для обучения, а блок 1 - для прогнозов.

Варианты применения

- Частный случай скользящий контроль (leave-one-out): $K = N^3$.
- Обычно K ∈ [3, 10].
- ShuffleSplit: усреднение качества на валидации при К-кратном случайном разбиении на обучение и валидацию.
- После подбора гиперпараметров мы можем
 - настраивать модель с наилучшими гиперпараметрами на всех данных
 - либо строить прогноз как усреднение по уже настроенным K моделям. (медленнее, зато получаем \widehat{y} и стд. отклонение!)
- точность 2х подходов нужно сверять эмпирически

 $^{^3}$ Для какого изученного метода его можно посчитать быстро?

Препроцессинг и контроль качества - В.В.Китов Оценка качества на тесте

Кросс-валидация

Временной ряд

 Для временного ряда качество оценивается по прогнозам только вперёд без перемешивания:

Содержание

- Кодирование признаков
- 2 Генерация признаков
- ③ Представление текстов
- 4 Переобучение и недообучение
- Оценка качества на тесте
- 6 Оценка качества регрессии

MSE, RMSE

Средне-квадратичная ошибка (mean squared error, MSE):

MSE =
$$\frac{1}{N} \sum_{n=1}^{N} (\hat{y}(x_n) - y_n)^2$$

Корень из средне-квадратичной ошибки (root mean squared error, RMSE)

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (\hat{y}(x_n) - y_n)^2}$$

RMSE лучше MSE, т.к. измеряет ошибку в той же размерности, что и y.

Коэффициент детерминации

• Коэффициент детерминации R²:

$$R^{2} = 1 - \frac{\frac{1}{N} \sum_{n=1}^{N} (\hat{y}(x_{n}) - y_{n})^{2}}{\frac{1}{N} \sum_{n=1}^{N} (y_{n} - \overline{y})^{2}}$$

- R² принимает значения
 - \bullet от $-\infty$ (худший прогноз)
 - до 1 (удеальный прогноз)
 - 0 качество прогноза равно константе

MSE

• Средняя абсолютная ошибка (mean absolute error, MAE):

MAE =
$$\frac{1}{N} \sum_{n=1}^{N} |\hat{y}(x_n) - y_n|$$

• Настройка по MAE устойчивее к выбросам, чем MSE.

MSE

• Средняя абсолютная ошибка (mean absolute error, MAE):

MAE =
$$\frac{1}{N} \sum_{n=1}^{N} |\hat{y}(x_n) - y_n|$$

- Настройка по MAE устойчивее к выбросам, чем MSE.
- Средняя процентная ошибка (mean absolute percentage error, MAPE):

$$\mathsf{MAPE} = \frac{1}{N} \sum_{n=1}^{N} \frac{|\hat{y}(x_n) - y_n|}{|y_n|}, \; \mathsf{MAPE'} = \frac{1}{N} \sum_{n=1}^{N} \frac{|\hat{y}(x_n) - y_n|}{\max{\{|y_n|, a\}}}$$

ullet a>0 - малая константа, чтобы не делить на ноль.

WAPE

 Взвешенная средняя процентная ошибка (weighted average percentage error, WAPE):

WAPE =
$$\frac{1}{N} \frac{\sum_{n=1}^{N} |\hat{y}(x_n) - y_n|}{\sum_{n=1}^{N} |y_n|}$$

- Это микроусреднение по откликам, а не макроусреднение, как в МАРЕ.
- Полезна при прогнозировании спроса на товары, когда существует много наблюдений, когда товар вообще не покупался.

Доля плохих прогнозов

• Доля плохих прогнозов:

$$\mathsf{BadFreq} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I}\{|\hat{y}(x_n) - y_n| > h\}$$

• Доля плохих относительных прогнозов:

$$\mathsf{RelBadFreq} = \frac{1}{N} \sum_{n=1}^{N} \mathbb{I} \left\{ \frac{|\hat{y}(x_n) - y_n|}{|y_n|} > h \right\}$$