MATH 2301

* Goal: Convert any NFA into an equivalent DFA (one that recognises the same language).

** Motivating example

W= 101

* But how to fit it into the definition of a DFA?

** Removing &-arrows

Prop: Any NFA can be converted to an equivalent one without any E- arrows.

*** Example

** We won't prove this formally, but the idea is to add direct awows from

(A) $\frac{a}{b}$ (C), any time there are awows

of the form
$$(A) \xrightarrow{\varepsilon} (B) \xrightarrow{a} (C)$$
 or $(A) \xrightarrow{a} (B) \xrightarrow{\varepsilon} (C)$

* Now assume that we have an NFA that has no E-arrows. We'll try to convert this to an equivalent DFA.

** NFA - DFA

Say we have an NFA, ω / states \mathbb{Q} , start state q_{σ} , accept states $A \subseteq \mathbb{Q}$, and transition function $\Delta : \mathbb{Q} \times \mathbb{Z} \longrightarrow P(\mathbb{Q})$ we've removed ε -arrows!

We construct a new DFA M' as follows:

- Set of states of M' is P(Q) on power set of Q
- Start state of M' is: { go } on the calculation tree of M always begins
- Accept states of M' are: $\{X \in P(Q) \mid X \text{ contains at least one element of } AZ\}$
- = $\{X \subseteq P(Q) \mid X \cap A \neq \emptyset\}$ on at least one branch succeeds.
- Transition function $\delta: P(Q) \times \Sigma \longrightarrow P(Q)$ (state, symbol) \mapsto state Let $X \subseteq P(Q)$, and let $a \in \Sigma$

$$S(X, a) = \bigcup \Delta(q, a)$$
 $g \in X$

tapply transition for of

M to (q, a) , ranging

over all $q \in X$

Then take union over all

possible q

The corresponding DFA has states $P(Q) = P(\{g_0, g_1, g_2, g_3\}) \sim 16$ states (In general, it'll have 2° states.)

Start states : All subsets containing (93) 8 states

Examples of 8

$$\delta(\{g_2,g_3\},1)=\{g_3\}$$

- ** Recap : Every NFA has an equivalent DFA (ie, recognising the same (anguage)
 - => Every regex has an equivalent DFA!

 Unfortunately, this causes an exponential space blowup (n states become 2".)
- * What we'll attempt next: convert any NFA/DFA into an equivalent regular expression.

Idea: Go state-by-state and try to eliminate states

an E-arrow Connect all old accepting states to @ by E arrows, and make them reject.