Data Mining - Introduction

AW

- Data Mining, what is it?
- 2 Terminology and Settings
- Types of Data
- 4 Views of Data

What are we trying to achieve?

GOAL:

Discover information patterns in large data sets

METHOD:

Take a sample of data objects:

- database records
- transactions
- strings (e.g. DNA)
- graphs (e.g. social networks)

and design an algorithm that does one of the following

- Assigns a category to a data object
- Assigns real value to a data object
- Groups homogeneous objects
- Finds outlier objects
- Finds non-relevant attributes of an obect

Task examples

- data = text:
 - classify texts (e.g. spam vs. not spam)
 - group (cluster) texts that are similar to each other (e.g. news that describe same events)
 - estimate number of 'likes'
- data = financial records (including stocks)
 - determine fraudulent transactions
 - estimate credit limit
 - find transaction types that usually happen together
- data = social network graphs
 - discover similar groups
 - find group leaders

Data Mining Tasks

Predictive tasks:

Use known values of some variables to predict unknown (or future) values of other variables.

Descriptive tasks:

Find human-interpretable patterns that describe the data.

Data Mining Tasks

Tasks:

- Classification [Predictive]
 assign a category to each item
- Clustering [Descriptive]
 partition data into homogenous (w.r.t. to some measure of similarity) regions
- Association Rule Discovery [Descriptive]
 Find out co-ocurences of data objects
- Regression (i.e. finding a relation between true variable(s) and observed data) [Predictive]
 predict a real value for each item
- Best representation [Desciptive]
 find the transformation of data space to another data space where interesting properties of data are more explicit
- Dimensionality reduction/Feature selection [Desciptive]
 find lower-dimensional space preserving interesting properties of the data

Objectives of Data Mining

Design algorithms:

- Efficient and accurate
- Can deal with large-scale problems
- Can handle a variety of different problems

Answer theoretical questions:

- what patterns can be discovered, under what conditions?
- are there any guarantees?
- How good are our data mining algorithms?

- Data Mining, what is it?
- Terminology and Settings
- Types of Data
- 4 Views of Data

Terminology

Instance: unlabled item/data object

Example: labeled item/object/instance of the data.

Features: attributes associated to an item, often represented as a

vector (e.g., word counts). A collection of attributes

describe an example.

Labels: category (classification) or real value (regression)

associated to an item.

Data: records, points in \mathbb{R}^n , graphs, strings

- training data (typically labeled)
- test data (labeled, but labels not seen)
- validation data (labeled, for tuning parameters)

Data Mining Scripts

Settings:

batch: learner receives full (training) sample, which he uses to make predictions for unseen points.

on-line: learner receives one sample at a time and makes a prediction for that sample.

Queries:

active: the learner can request the label of a point.

passive: the learner receives labeled points.

- 1 Data Mining, what is it?
- 2 Terminology and Settings
- Types of Data
- Views of Data

Data Matrices

- Examples (data objects) = set of values of features = tuple of attribute values
- An attribute takes values in its domain.

Domains could be:

- natural numbers or integers
- real numbers
- finite sets of symbols (letters, colors, etc.)
- strings in $\{0,1\}^*$
- . .

Such data set is an $m \times n$ matrix, where m is the number of examples (i.e. rows are examples, and n is the number of attributes (i.e. columns are attributes)

Data lists

Big number of attributes, and in examples most of the attributes are undefined - better represnt by lists.

Typical examples - transactions:

- a set of products purchased by a customer during one shopping trip
- a set of stocks sold/bought in one transaction
- changes made in resource allocations

• ...

TID	Items
1	Bread, Coke, Milk 2
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

Graphs and Ordered Data

Graphs – sets of nodes V and binary relation $E \subseteq V \times V$ (symmetric or asymmetric).

Examples: web graph, social network graph, chemical graphs (molecules)

Graphs and Ordered Data

Graphs – sets of nodes V and binary relation $E \subseteq V \times V$ (symmetric or asymmetric).

Examples: web graph, social network graph, chemical graphs (molecules)

Ordered Data - sequences of atomic symbols

Examples: DNA sequence in A,C,T,G alphabet, temperature sequences in time, space coordinates of an object in time, etc.

- 1 Data Mining, what is it?
- 2 Terminology and Settings
- Types of Data
- Views of Data

Geometric View of Data

Suggested by data matrix format: each example is a point (vector) in \mathbb{R}^n where n is the number of attributes.

Example:

/	Y_1	\boldsymbol{Y}_2	\boldsymbol{Y}_3	Y_4	Z
1	sepal length	sepal width	petal length	petal width	class
$\overline{\mathbf{x}}_1$	5.9	3.0	4.2	1.5	Iris-versicolor
$\overline{\mathbf{x}}_2$	6.9	3.1	4.9	1.5	Iris-versicolor
$\overline{\mathbf{x}}_3$	6.6	2.9	4.6	1.3	Iris-versicolor
$\overline{\mathbf{x}}_4$	4.6	3.2	1.4	0.2	Iris-setosa
$\overline{\mathbf{x}}_{5}$	6.0	2.2	4.0	1.0	Iris-versicolor
$\overline{\mathbf{x}}_{6}$	4.7	3.2	1.3	0.2	Iris-setosa
\overline{x}_7	6.5	3.0	5.8	2.2	Iris-virginica
$\overline{\mathbf{x}}_{8}$	5.8	2.7	5.1	1.9	Iris-virginica
	:		:		:
x ₁₄₉	7.7	3.8	6.7	2.2	Iris-virginica
$\overline{\mathbf{x}}_{150}$	5.1	3.4	1.5	0.2	Iris-setosa

$$\vec{x}_1 = \begin{pmatrix} 5.9 \\ 3.0 \\ 4.2 \\ 1.5 \end{pmatrix}, \vec{x}_2 = \begin{pmatrix} 6.9 \\ 3.1 \\ 4.9 \\ 1.5 \end{pmatrix}, \dots$$

Geometric View of Data

Suggested by data matrix format: each example is a point (vector) in \mathbb{R}^n where n is the number of attributes.

Example:

/	Y_1	\boldsymbol{Y}_2	\boldsymbol{Y}_3	Y_4	Z
	sepal length	sepal width	petal length	petal width	class
$\overline{\mathbf{x}}_1$	5.9	3.0	4.2	1.5	Iris-versicolor
$\overline{\mathbf{x}}_2$	6.9	3.1	4.9	1.5	Iris-versicolor
$\overline{\mathbf{x}}_3$	6.6	2.9	4.6	1.3	Iris-versicolor
\overline{x}_4	4.6	3.2	1.4	0.2	Iris-setosa
$\overline{\mathbf{x}}_{5}$	6.0	2.2	4.0	1.0	Iris-versicolor
$\overline{\mathbf{x}}_{6}$	4.7	3.2	1.3	0.2	Iris-setosa
\overline{x}_7	6.5	3.0	5.8	2.2	Iris-virginica
$\overline{\mathbf{x}}_{8}$	5.8	2.7	5.1	1.9	Iris-virginica
1 :	:	:	:	:	:
\bar{x}_{149}	7.7	3.8	6.7	2.2	Iris-virginica
\overline{x}_{150}	5.1	3.4	1.5	0.2	Iris-setosa

Spaces: input space $Y = \mathbb{R}^4$, output space $Z = \{setosa, versicolor, virginica\}$, cassifiler is a map $C: Y \to Z$.

Probabilistic View of Data

The set of all (possible, existing) examples - sample space. Events are outcomes. All events are equally probable.

Example: All irises in the world

Attribute is a random variable i.e. a map of sample space to domain of the attribute. Can be either continuous or discrete.

Example: Sepal width of an iris.

Important distinction between random variable Y_i and its value x_j^i in j^{th} example:

An attribute is a theoretical function. It has not yet been observed, but it has the potential to take different values with certain probabilities

Observed value of an attribute in an example is a sampled value from the domain of values that attribute can take

Attribute Distribution

An attribute Y is a random variable, so each of its values happen with some probability, i.e. it has a distribution.

The distribution of a random variable is the collection of possible values of random variable along with their probabilities:

Mass distribution in discrete case:

$$\Pr_{Y}(x) = \Pr(Y = x)$$

Cumulative distribution in continuous case:

$$F_{Y}(x) = \Pr(Y < x) = \int_{-\infty}^{x} f(t)d(t)$$

where f(t) is probability density function of Y.