Detekcja i korekcja błędów. Kody liniowe. Kody Hamminga

Kodowanie i kompresja informacji

Maciek Gębala

31 maja 2010

Kodowanie

 Macierz generująca Macierz przez którą mnożymy bity informacji aby otrzymać kod.

Kodowanie

- Macierz generująca Macierz przez którą mnożymy bity informacji aby otrzymać kod.
- Macierz parzystości Macierz przez którą mnożymy kod aby sprawdzić czy jest poprawny (wynik mnożenia daje wynik zerowy).

Kodowanie

- Macierz generująca Macierz przez którą mnożymy bity informacji aby otrzymać kod.
- Macierz parzystości Macierz przez którą mnożymy kod aby sprawdzić czy jest poprawny (wynik mnożenia daje wynik zerowy).
- Syndrom Niezerowy wynik pomnożenia przez macierz parzystości wraz z ewentualnym opisem jak skorygować powstały błąd.

Macierz generująca rozmiaru (n+1) × n

$$G = \left[egin{array}{cccccc} 1 & 0 & \cdots & \cdots & 0 \ 0 & 1 & 0 & \cdots & 0 \ dots & \ddots & \ddots & \ddots & dots \ 0 & \cdots & 0 & 1 & 0 \ 0 & \cdots & \cdots & 0 & 1 \ 1 & 1 & \cdots & 1 & 1 \end{array}
ight]$$

Macierz generująca rozmiaru (n+1) × n

$$G = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Dla wektora informacji x kod k liczymy następująco:

$$k = Gx$$

Macierz generująca rozmiaru (n+1) × n

$$G = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Dla wektora informacji x kod k liczymy następująco:

$$k = Gx$$

• Macierz parzystości rozmiaru $1 \times (n+1)$

$$H = [1 \ 1 \ \cdots \ 1]$$

Macierz generująca rozmiaru (n+1) × n

$$G = \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \\ 0 & \cdots & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$

Dla wektora informacji x kod k liczymy następująco:

$$k = Gx$$

Macierz parzystości rozmiaru 1 × (n + 1)

$$H = [1 \ 1 \ \cdots \ 1]$$

Jeden syndrom (1) oznaczający błąd w kodzie.

Kod powtórzeniowy długości 5

Macierz generująca

$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Kod powtórzeniowy długości 5

Macierz generująca

$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Macierz parzystości

$$H = \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

Kod powtórzeniowy długości 5

Macierz generująca

$$G = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Macierz parzystości

$$H = \left[\begin{array}{ccccc} 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

Korekcja na zasadzie większości.

Kod binarny K nazywamy liniowym jeśli

- Kod binarny K nazywamy liniowym jeśli
 - suma dwóch słów kodowych z K także należy do K

- Kod binarny K nazywamy liniowym jeśli
 - suma dwóch słów kodowych z K także należy do K
 - pomnożenie słowa kodowego przez skalar także należy do kodu (skalar jest równy 0 lub 1).

- Kod binarny K nazywamy liniowym jeśli
 - suma dwóch słów kodowych z K także należy do K
 - pomnożenie słowa kodowego przez skalar także należy do kodu (skalar jest równy 0 lub 1).
- Każdy kod liniowy zawiera słowo 0 . . . 0.

- Kod binarny K nazywamy liniowym jeśli
 - suma dwóch słów kodowych z K także należy do K
 - pomnożenie słowa kodowego przez skalar także należy do kodu (skalar jest równy 0 lub 1).
- Każdy kod liniowy zawiera słowo 0...0.

Waga minimalna

Wagą słowa kodowego nazywamy odległość Hamminga tego słowa od słowa 0...0. Minimalną wagą kodu K nazywamy najmniejszą wagę słowa kodowego należącego do K i różnego od 0...0.

Kody liniowe – własności

Własność

Dla binarnego kodu liniowego minimalna waga jest równa minimalnej odległości.

Kody liniowe – własności

Własność

Dla binarnego kodu liniowego minimalna waga jest równa minimalnej odległości.

Dowód

Niech d(K) - minimalna odległość i w(K) - minimalna waga. Niech a ma wagę w(K). Wtedy $w(K) = d(a, 0) \ge d(K)$.

W drugą stronę, niech a i b - słowa kodowe takie, że d(a,b)=d(K). a+b jest także słowem kodowym. Mamy w(a+b)=d(a,b), a stąd $d(K)=d(a,b)\geqslant w(K)$.

 Kod parzystości Każdy kod musi zawierać parzystą liczbę jedynek.

- Kod parzystości Każdy kod musi zawierać parzystą liczbę jedynek.
 - Suma dwóch kodów z parzystą ilością jedynek zawiera parzystą liczbę jedynek. (Dlaczego?)

- Kod parzystości Każdy kod musi zawierać parzystą liczbe jedynek.
 - Suma dwóch kodów z parzystą ilością jedynek zawiera parzystą liczbę jedynek. (Dlaczego?)
 - Słowo kodowe o minimalnej wadze musi mieć co najmniej 2 jedynki stąd waga kodu wynosi 2.

- Kod parzystości Każdy kod musi zawierać parzystą liczbe jedynek.
 - Suma dwóch kodów z parzystą ilością jedynek zawiera parzystą liczbę jedynek. (Dlaczego?)
 - Słowo kodowe o minimalnej wadze musi mieć co najmniej 2 jedynki stąd waga kodu wynosi 2.
- Kod powtórzeniowy Jest oczywiste, że jest kodem liniowym i że ma minimalną wagę równą swojej długości.

• Kody doskonałe dla korekcji jednego błędu.

- Kody doskonałe dla korekcji jednego błędu.
- Długość kodu: $n = 2^m 1$

- Kody doskonałe dla korekcji jednego błędu.
- Długość kodu: $n = 2^m 1$
- Ilość bitów informacji: $k = 2^m m 1$

- Kody doskonałe dla korekcji jednego błędu.
- Długość kodu: $n = 2^m 1$
- Ilość bitów informacji: k = 2^m − m − 1
- Minimalna odległość: d = 3

- Kody doskonałe dla korekcji jednego błędu.
- Długość kodu: $n = 2^m 1$
- Ilość bitów informacji: $k = 2^m m 1$
- Minimalna odległość: d = 3

Dlaczego kod jest doskonały?

Każde słowo kodowe jest otoczone przez dokładnie n słów z jednym błędem. Stąd dla każdego słowa kodowego mamy 2^m słów które go reprezentują. Ilość słów kodowych to $2^{2^m-m-1}=\frac{2^n}{2^m}$. Czyli nie ma ciągu który nie byłby związany z jakimś słowem kodowym.

Własność

Binarny kod liniowy *K* koryguje jeden błąd wtedy i tylko wtedy gdy każda macierz parzystości *K* ma niezerowe i parami różne kolumny.

Własność

Binarny kod liniowy K koryguje jeden błąd wtedy i tylko wtedy gdy każda macierz parzystości K ma niezerowe i parami różne kolumny.

• Dla $n = 2^m - 1$ najprostszą taką macierzą jest zawierająca jako kolumny zapis binarny liczb od 1 do $2^m - 1$. Dla m = 3

Zapisując to jako układ równań mamy

Zapisując to jako układ równań mamy

A to możemy zapisać równorzędnie jako

$$X_5 = X_2 + X_3 + X_4$$

 $X_6 = X_1 + X_3 + X_4$
 $X_7 = X_1 + X_2 + X_4$

Macierz generująca dla tego kodu

$$G = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{array} \right]$$

Macierz generująca dla tego kodu

$$G = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{array} \right]$$

 Łatwo sprawdzić, że dla tego kodu syndrom czytany jako numer kolumny oznacza który bit w kodzie poprawić.

Kody Hamminga – przykład korekty

Chcemy wysłać informację 1111.

Kody Hamminga – przykład korekty

- Chcemy wysłać informację 1111.
- Obliczamy kod

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Kody Hamminga – przykład korekty

- Chcemy wysłać informację 1111.
- Obliczamy kod

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

Wysyłamy: 1111111

Kody Hamminga – przykład korekty

Na skutek błędu otrzymujemy: 1110111

Kody Hamminga – przykład korekty

- Na skutek błędu otrzymujemy: 1110111
- Obliczamy syndrom

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Kody Hamminga – przykład korekty

- Na skutek błędu otrzymujemy: 1110111
- Obliczamy syndrom

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Czyli musimy poprawić 4 bit. Stąd informacja to 1111

Kod Hamminga długości 4

Wszystkie słowa kodowe

Informacja	Kod	Informacja	Kod
0000	0000000	1000	1000011
0001	0001111	1001	1001100
0010	0010110	1010	1010101
0011	0011001	1011	1011010
0100	0100101	1100	1100110
0101	0101010	1101	1101001
0110	0110011	1110	1110000
0111	0111100	1111	1111111

Kod Hamminga długości 4

Wszystkie słowa kodowe

Informacja	Kod	Informacja	Kod
0000	0000000	1000	1000011
0001	0001111	1001	1001100
0010	0010110	1010	1010101
0011	0011001	1011	1011010
0100	0100101	1100	1100110
0101	0101010	1101	1101001
0110	0110011	1110	1110000
0111	0111100	1111	1111111
0101 0110	0100101 0101010 0110011	1101 1110	1100110 1101001 1110000

Łatwo zauważyć że minimalna waga tego kodu to 3.

Kody Hamminga – długości

Ilość bitów informacji i długość kodu

m	n	k
	długość kodu	bity informacji
2	3	1
3	7	4
4	15	11
5	31	26
6	63	57
7	127	120

Kody Hamminga – długości

• Ilość bitów informacji i długość kodu

m	n	k
	długość kodu	bity informacji
2	3	1
3	7	4
4	15	11
5	31	26
6	63	57
7	127	120

A co zrobić jak mamy inną ilość bitów informacji?

Mamy 3 zamiast 4 bitów informacji.

```
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow
```

- Mamy 3 zamiast 4 bitów informacji.
- W macierzy *G* nie jest więc potrzebna 4 kolumna.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow$$

- Mamy 3 zamiast 4 bitów informacji.
- W macierzy G nie jest więc potrzebna 4 kolumna.
- Ale 4 wiersz zawiera same zera więc też może być usunięty.

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

Ostatecznie mamy

$$G = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

Ostatecznie mamy

$$G = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

 Macierz parzystości także modyfikujemy wykreślając 4 kolumnę (tak jak czwarty wiersz w G).

$$H = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{array} \right]$$

Ostatecznie mamy

$$G = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array} \right]$$

 Macierz parzystości także modyfikujemy wykreślając 4 kolumnę (tak jak czwarty wiersz w G).

$$H = \left[\begin{array}{ccccccc} 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \end{array} \right]$$

 Niestety syndromy już nie numerują dokładnie miejsca błędu. 110 oznacza poprawienie 5 bitu.

 Do kodów Hamminga dodajemy jeszcze jeden bit – parzystość.

- Do kodów Hamminga dodajemy jeszcze jeden bit parzystość.
- Rozszerzone kody Hamminga korygują dalej 1 błąd ale wykrywają 2 błędy.

- Do kodów Hamminga dodajemy jeszcze jeden bit parzystość.
- Rozszerzone kody Hamminga korygują dalej 1 błąd ale wykrywają 2 błędy.
- Modyfikacje macierzy generującej i parzystości są proste.

- Do kodów Hamminga dodajemy jeszcze jeden bit parzystość.
- Rozszerzone kody Hamminga korygują dalej 1 błąd ale wykrywają 2 błędy.
- Modyfikacje macierzy generującej i parzystości są proste.
- Bardziej skomplikowany opis syndromów.

Cykliczne binarne kody liniowe

Definicja

Kod liniowy nazywamy cyklicznym wtedy i tylko wtedy gdy dla każdego słowa kodowego $v_0v_1 \dots v_{n-1}$ cykliczne przesunięcie $v_{n-1}v_0v_1 \dots v_{n-2}$ też jest słowem kodowym.

Cykliczne binarne kody liniowe

Definicja

Kod liniowy nazywamy cyklicznym wtedy i tylko wtedy gdy dla każdego słowa kodowego $v_0v_1 \dots v_{n-1}$ cykliczne przesunięcie $v_{n-1}v_0v_1 \dots v_{n-2}$ też jest słowem kodowym.

Kod parzystości jest kodem cyklicznym.

Cykliczne binarne kody liniowe

Definicja

Kod liniowy nazywamy cyklicznym wtedy i tylko wtedy gdy dla każdego słowa kodowego $v_0v_1 \dots v_{n-1}$ cykliczne przesunięcie $v_{n-1}v_0v_1 \dots v_{n-2}$ też jest słowem kodowym.

- Kod parzystości jest kodem cyklicznym.
- Kod powtórzeniowy jest kodem cyklicznym.

Definicja

Kod $a_0 a_1 \dots a_{n-1}$ będziemy reprezentować jako wielomian nad ciałem Z_2 w postaci $a(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1}$.

Definicja

Kod $a_0 a_1 \dots a_{n-1}$ będziemy reprezentować jako wielomian nad ciałem Z_2 w postaci

$$a(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}.$$

 Dodawanie słów kodowych jest równoważne dodawaniu wielomianów je reprezentujących.

Definicja

Kod $a_0 a_1 \dots a_{n-1}$ będziemy reprezentować jako wielomian nad ciałem Z_2 w postaci

$$a(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}.$$

- Dodawanie słów kodowych jest równoważne dodawaniu wielomianów je reprezentujących.
- Mnożenie przez skalar również.

Definicja

Kod $a_0 a_1 \dots a_{n-1}$ będziemy reprezentować jako wielomian nad ciałem Z_2 w postaci

$$a(x) = a_0 + a_1x + a_2x^2 + \ldots + a_{n-1}x^{n-1}$$
.

- Dodawanie słów kodowych jest równoważne dodawaniu wielomianów je reprezentujących.
- Mnożenie przez skalar również.
- Dodatkowo wielomiany można mnożyć przez siebie.
 (Po pomnożeniu wielomianu a(x) przez b(x) stopień wielomianu a(x)b(x) jest równy sumie stopni wielomianów a(x) i b(x).)

Każdy cykliczny kod *K* długości *n* ma następującą własność:

$$g(x) \in K \Rightarrow q(x)g(x) \in K$$

gdzie wszystkie wielomiany q(x) są stopnia takiego że stopień wielomianu q(x)g(x) jest mniejszy niż n.

Każdy cykliczny kod *K* długości *n* ma następującą własność:

$$g(x) \in K \Rightarrow q(x)g(x) \in K$$

gdzie wszystkie wielomiany q(x) są stopnia takiego że stopień wielomianu q(x)g(x) jest mniejszy niż n.

Dowód

Niech $g(x) = g_0 + g_1x + \ldots + g_sx^s$. Dla każdego i < n - s wielomian $x^ig(x)$ odpowiada cyklicznemu przesunięciu słowa długości n o i pozycji. Pomnożenie g(x) przez q(x) odpowiada więc dodaniu do siebie przesuniętych cyklicznie kodów więc też jest słowem kodowym.

Każdy nietrywialny (n, k)-kod cykliczny (kod długości n kodujący k bitów informacji) zawiera słowo kodowe g(x) stopnia n - k. Kod ma wtedy następującą macierz generującą $(kod = informacja \cdot G)$:

$$G = \begin{bmatrix} g(x) \\ xg(x) \\ \vdots \\ x^{k-1}g(x) \end{bmatrix}$$

$$= \begin{bmatrix} g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_{n-k} & 0 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_{n-k} \end{bmatrix}$$

g(x) nazywamy wielomianem generującym kodu.

Przykład

 Kod parzystości długości n jest cykliczny (jest (n,k)=(n,n-1)-kodem). Jego wielomianem generującym jest 1 + x. Stąd mamy macierz generującą postaci

```
\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 1 & 0 \\ 0 & \cdots & & 0 & 1 & 1 \end{bmatrix}
```

Przykład

 Kod parzystości długości n jest cykliczny (jest (n,k)=(n,n-1)-kodem). Jego wielomianem generującym jest 1 + x. Stąd mamy macierz generującą postaci

$$\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 \\ 0 & 1 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 1 & 0 \\ 0 & \cdots & & 0 & 1 & 1 \end{bmatrix}$$

• Kod powtórzeniowy długości n ma wielomian generujący $g(x) = 1 + x + x^2 + ... + x^{n-1}$.

Czy każdy wielomian może być generatorem?

- Czy każdy wielomian może być generatorem?
- Zobaczmy co to jest $x^k g(x)$?

- Czy każdy wielomian może być generatorem?
- Zobaczmy co to jest $x^k g(x)$?
- $x^k g(x)$ jest stopnia n więc nie jest słowem kodowym. Ale jeśli porównamy to z operacją przesunięcia cyklicznego to powinniśmy usunąć x^n a dodać 1. Stąd $x^k g(x) (x^n + 1)$ jest słowem kodowym.

- Czy każdy wielomian może być generatorem?
- Zobaczmy co to jest $x^k g(x)$?
- $x^k g(x)$ jest stopnia n więc nie jest słowem kodowym. Ale jeśli porównamy to z operacją przesunięcia cyklicznego to powinniśmy usunąć x^n a dodać 1. Stąd $x^k g(x) (x^n + 1)$ jest słowem kodowym.

Każdy wielomian generujący kodu cyklicznego długości n dzieli wielomian x^n+1 . Stąd generatorami mogą być tylko właściwe dzielniki x^n-1 .

Dla każdego cyklicznego kodu długości n generowanego przez wielomian g(x), wielomian postaci

$$h(x) = \frac{x^n - 1}{g(x)}$$

nazywamy wielomianem parzystości tego kodu.

Dla każdego cyklicznego kodu długości n generowanego przez wielomian g(x), wielomian postaci

$$h(x) = \frac{x^n - 1}{g(x)}$$

nazywamy wielomianem parzystości tego kodu.

Dla cyklicznego kodu długości n z wielomianem parzystości $h(x) = h_0 + h_1x + \ldots + h_{k-1}x^{k-1} + x^k$ mamy następującą macierz parzystości $n \times k$

$$H = \left[\begin{array}{cccccc} 0 & \cdots & 0 & h_k & \cdots & h_0 \\ 0 & \cdots & 0 & h_k & \cdots & h_0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ h_k & \cdots & h_0 & 0 & \cdots & 0 \end{array} \right]$$

) Q (P

Przykład

• Weźmy n = 7 i $g(x) = 1 + x + x^3$.

- Weźmy n = 7 i $g(x) = 1 + x + x^3$.
- Policzmy $h(x) = (x^7 + 1)/g(x)$.

- Weźmy n = 7 i $g(x) = 1 + x + x^3$.
- Policzmy $h(x) = (x^7 + 1)/g(x)$.
- $h(x) = x^4 + x^2 + x + 1$

- Weźmy n = 7 i $g(x) = 1 + x + x^3$.
- Policzmy $h(x) = (x^7 + 1)/g(x)$.
- $h(x) = x^4 + x^2 + x + 1$
- Macierz generująca

- Weźmy n = 7 i $g(x) = 1 + x + x^3$.
- Policzmy $h(x) = (x^7 + 1)/g(x)$.
- $h(x) = x^4 + x^2 + x + 1$
- Macierz generująca

Macierz parzystości

- Weźmy n = 7 i $g(x) = 1 + x + x^3$.
- Policzmy $h(x) = (x^7 + 1)/g(x)$.
- $h(x) = x^4 + x^2 + x + 1$
- Macierz generująca

Macierz parzystości

Łatwo zauważyć, że jest to kod Hamminga.

Przykład – kody cykliczne długości 7

$(x^7 + 1) = (x + 1)(x^3 + x + 1)(x^3 + x^2 + 1)$		
g(x)	h(x)	
$\overline{x+1}$	$x^6 + x^5 + x^4$	Kod parzystości
	$+x^3 + x^2 + x + 1$	
$x^3 + x + 1$	$x^4 + x^2 + x + 1$	Kod Hamminga
$x^3 + x^2 + 1$	$x^4 + x^3 + x^2 + 1$	Kod Hamminga
$x^4 + x^3 + x^2 + 1$	$x^3 + x^2 + 1$	Kod dualny
$x^4 + x^2 + x + 1$	$x^3 + x + 1$	Kod dualny
$X^6 + X^5 + X^4$	<i>x</i> + 1	Kod
$+x^3 + x^2 + x + 1$		powtórzeniowy

Kody doskonałe

Binarny (n,k)-kod jest doskonały dla t błędów jeśli ma minimalną odległość równą 2t + 1 oraz spełniona jest równość

$$2^{n-k} = \sum_{i=0}^{t} \binom{n}{i}.$$

(Lewa strona równości odpowiada ilości ciągów n-bitowych na jedno słowo kodowe, a prawa ilości ciągów odległych od danego odpowiednio o $0, 1, \ldots, t$ w mierze Hamminga.)

Kod Golay-a ma długość 23 bity.

- Kod Golay-a ma długość 23 bity.
- Wielomianem generującym jest $g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$.

- Kod Golay-a ma długość 23 bity.
- Wielomianem generującym jest $g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$.
- Kod Golay-a ma minimalną odległość równą 7.

- Kod Golay-a ma długość 23 bity.
- Wielomianem generującym jest $g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$.
- Kod Golay-a ma minimalną odległość równą 7.
- Kod Golay-a koryguje 3 błędy.

- Kod Golay-a ma długość 23 bity.
- Wielomianem generującym jest $g(x) = 1 + x^2 + x^4 + x^5 + x^6 + x^{10} + x^{11}$.
- Kod Golay-a ma minimalną odległość równą 7.
- Kod Golay-a koryguje 3 błędy.
- Kod Golay-a jest kodem doskonałym

$$2^{23-12} = 2048 = {23 \choose 0} + {23 \choose 1} + {23 \choose 2} + {23 \choose 3} =$$

$$= 1 + 23 + \frac{23 \cdot 22}{2} + \frac{23 \cdot 22 \cdot 21}{2 \cdot 3} =$$

$$= 1 + 23 + 253 + 1771$$

Burst Errors

 Kod liniowy wykrywa t burst errors jeśli wykrywa t błędów położonych obok siebie w słowie kodowym (błędy na kolejnych t bitach, bez przerw).

Burst Errors

- Kod liniowy wykrywa t burst errors jeśli wykrywa t błędów położonych obok siebie w słowie kodowym (błędy na kolejnych t bitach, bez przerw).
- Kod liniowy koryguje t burst errors jeśli koryguje t błędów na położonych obok siebie bitach.

• Kod dualny do kodu Hamminga z wielomianem generującym $g(x) = 1 + x^2 + x^3 + x^4$ jest (7,3)-kodem korygującym 2 *burst errors*.

- Kod dualny do kodu Hamminga z wielomianem generującym $g(x) = 1 + x^2 + x^3 + x^4$ jest (7,3)-kodem korygującym 2 *burst errors*.
- Minimalną odległością tego kodu jest 4.

- Kod dualny do kodu Hamminga z wielomianem generującym $g(x) = 1 + x^2 + x^3 + x^4$ jest (7,3)-kodem korygującym 2 *burst errors*.
- Minimalną odległością tego kodu jest 4.
- Aby pokazać, że rzeczywiście jest to kod korygujący 2 burst errors wystarczy pokazać, że złożenie dwóch takich błędów nie jest słowem kodowym. Czyli słowa 1100000+0011000=1111000. 1100000+0001100=1101100. 1100000+0000110=1100110. 1100000+0000011=1100011nie sa poprawnymi kodami (łatwo sprawdzić). Pozostałe przypadki to przesuniecia cykliczne tych 4 słów.

Własność

Dla każdego (n, k)-kodu korygującego l burst errors możemy stworzyć (nj, kj)-kod korygujący lj burst errors przez przeplot j słów kodowych, tj. dla słów kodowych $a_0^1 a_1^1 \dots a_{n-1}^1, \dots, a_0^j a_1^j \dots a_{n-1}^j$ tworzymy słowo kodowe $a_0^1 a_0^2 \dots a_0^j a_1^1 a_1^2 \dots a_{n-1}^j \dots a_{n-1}^j \dots a_{n-1}^j$

Własność

Dla każdego (n, k)-kodu korygującego I burst errors możemy stworzyć (nj, kj)-kod korygujący lj burst errors przez przeplot j słów kodowych, tj. dla słów kodowych $a_0^1 a_1^1 \dots a_{n-1}^1, \dots, a_0^j a_1^j \dots a_{n-1}^j$ tworzymy słowo kodowe $a_0^1 a_0^2 \dots a_0^j a_1^1 a_1^2 \dots a_{n-1}^j \dots a_{n-1}^j \dots a_{n-1}^j$

 Kod Hamminga (7,4) jest kodem korygującym 1 błąd więc również korygującym 1 burst error.

Własność

Dla każdego (n, k)-kodu korygującego I burst errors możemy stworzyć (nj, kj)-kod korygujący lj burst errors przez przeplot j słów kodowych, tj. dla słów kodowych $a_0^1 a_1^1 \dots a_{n-1}^1, \dots, a_0^j a_1^j \dots a_{n-1}^j$ tworzymy słowo kodowe $a_0^1 a_0^2 \dots a_0^j a_1^1 a_1^2 \dots a_{n-1}^j \dots a_{n-1}^j \dots a_{n-1}^j$

- Kod Hamminga (7,4) jest kodem korygującym 1 błąd więc również korygującym 1 burst error.
- Jeśli przepleciemy 3 słowa kodowe to otrzymamy (21,12)-kod korygujący 3 burst errors.

Własność

Dla każdego (n, k)-kodu korygującego l burst errors możemy stworzyć (nj, kj)-kod korygujący lj burst errors przez przeplot j słów kodowych, tj. dla słów kodowych $a_0^1 a_1^1 \dots a_{n-1}^1, \dots, a_0^j a_1^j \dots a_{n-1}^j$ tworzymy słowo kodowe $a_0^1 a_0^2 \dots a_0^j a_1^1 a_1^2 \dots a_{n-1}^j \dots a_{n-1}^j \dots a_{n-1}^j$

- Kod Hamminga (7,4) jest kodem korygującym 1 błąd więc również korygującym 1 burst error.
- Jeśli przepleciemy 3 słowa kodowe to otrzymamy (21,12)-kod korygujący 3 burst errors.
- Oszczędzamy dwa bity w porównaniu z kodem Golay-a ((23,12)-kod korygujący 3 błędy).

