Autonomous Intelligent Systems, Institute for Computer Science VI, University of Bonn

Dr. N. Goerke
Friedrich-Hirzebruch-Allee 8, 53115 Bonn, Tel: (0228) 73-4167
E-Mail: goerke@ais.uni-bonn.de
www.ais.uni-bonn.de

Exercises for Artificial Life (MA-INF 4201), SS24

Exercises sheet 9, till: Mon 16. June, 2025

2.6.2025

Assignment 57 (2 Points)

Derive a formula that calculates the probability ω_i for an individual i to be chosen as parent. The rank of the individual i shall be r(i), the size of the population is P.

The selection shall be probabilistic, fitness dependent, rank depending using the Wheel-of-Fortune method.

Assignment 58 (2 Points)

Within an Evolutionary Algorithm the probabilistic, rank based parent selection selects $\rho=4$ parents from the population of P=32 individuals.

The method shall be *Tournament selection* (as described in the lecture) starting with 16 different individuals, chosen randomly from the population.

Calculate the probability ω_T that the best individual from the population (P=32) is among the $\rho=4$ selected parents.

Assignment 59 (2 Points)

Within an Evolutionary Algorithm the probabilistic, rank based parent selection selects $\rho = 4$ parents from the population of P = 32 individuals.

The method shall be Wheel-of-Fortune (as described in the lecture).

Calculate the probability ω_F that the best individual from the population (P=32) is among the $\rho=4$ selected parents.

Assignment 60 (2 Points)

Explain in a few words some necessary/desirable properties of fitness functions in the context of Evolutionary Algorithms. As a hint: explain why a binary fitness function yielding only 0 or 1 is inappropriate for Evolutionary Algorithms.

Assignment 61 (2 Points)

Someone told me, that the process of generating pseudo random numbers is rather time consuming. Since random numbers are necessary in a lot of EA steps, this would be a severe drawback.

Can you help me to check if this is true or not?

Please cite scientific literature if possible.

Assignment 62 (1 Point)

The distribution of the fitness value f(g) for a population of P individuals within an evolutionary algorithm happens to be (almost) a normal distribution around a rather bad fitness value \overline{f} , with a standard deviation σ . The best fitness value within the population shall be f^* , with $f^* \geq \overline{f} + 4\sigma$.

The stochastic, fitness proportional selection process is selecting μ individuals to be the pool of parents. Explain the resulting distribution of fitness values within the pool of parents. Depict the distribution; a sketch is sufficient.

Assignment 63 (2 Points)

Make two proposals how to avoid *Super-Individuals* in an Evolutionary Algorithm and describe them.

Assignment 2^6 (2 Points)

Propose an inheritance operator (recombination, k = 2 parents) and a mutation operator for tree-based genetic/evolutionary programming genomes. Explain the functionality of the proposed operators using a little example. Support your explanation with a sketch or a diagram.