Reti di calcolatori: Livello Rete

(Capitolo 4 Kurose-Ross)

Marco Roccetti
12 Aprile 2023

(Capitolo 4 Kurose-Ross)

Reti di calcolatori e Internet: Un approccio top-down

3ª edizione Jim Kurose, Keith Ross Pearson Education Italia ©2005

Capitolo 4: Livello di rete

Obiettivi del capitolo:

- □ Capire i principi che stanno dietro i servizi del livello di rete:
 - Instradamento (scelta del percorso)
 - Scalabilità
 - O Funzionamento di un router
 - Argomenti avanzati: IPv6, mobilità
- Implementazione in Internet

Capitolo 4: Livello di rete

4. 1 Introduzione

- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - o IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

Funzioni del Network layer

- Trasporto pacchetti da mittente a ricevente finale
- Protocolli di livello rete implementati su ogni host da mittente a destinatario

Funzioni principali:

- Trovare cammino: funzione degli algoritmi di routing
- instradamento: inoltro dei pacchetti da un input a un output di un router
- call setup: previsto da alcune tecnologie per instaurare preventivamente il cammino mittente-destinataro (VC)

Funzioni chiave del livello di rete

- ☐ Inoltro (forwarding):
 trasferisce i pacchetti
 dall'input di un router
 all'output del router
 appropriato
- Instradamento (routing):

 determina il percorso
 seguito dai pacchetti
 dall'origine alla
 destinazione
 - Algoritmi d'instradamento

Nun si perdono parchetti: lungo il percorso (prestabilito)

<u>analogia:</u>

- □ instradamento:

 processo di

 pianificazione di un

 viaggio dall'origine

 alla destinazione
- □ inoltro: processo di attraversamento di un determinato svincolo

Se il percorso s'interronge 6150 gna riiniziare a Tabella di inoltro l'iampiare 616 il perarso

- Per inoltrare i pacchetti, i router estraggono dal campo intestazione del pacchetto un valore da utilizzare come indice in una tabella di inoltro (forwarding table)
- □ Il risultato indica a quale interfaccia di collegamento del router il pacchetto debba essere diretto
- A seconda del tipo di protocollo, il valore nell'intestazione può essere un indirizzo di destinatario o un identificatore di circuito virtuale (VC)

Impostazione della connessione

- Alcune architetture di rete adottano l'idea di instaurare connessioni a livello di rete:
 - ATM, frame relay, X.25
- □ Prima che i datagrammi fluiscano, due host e i router stabiliscono una connessione virtuale
 - o i router vengono coinvolti
- □ Esistono differenze di servizio di connessione tra livello di trasporto e livello di rete:
 - O Rete: tra due host
 - Trasporto: tra due processi

Modello di servizio del livello di rete

D: Qual è il *modello di servizio* per il "canale" che trasporta i datagrammi dal mittente al destinatario?

- Servizi per un singolo datagramma:
- Consegna garantita
- □ Consegna garantita con un ritardo inferiore a 40 msec

- Servizi per un flusso di datagrammi:
- Consegna in ordine
- Minima ampiezza di banda garantita
- Restrizioni sul lasso di tempo tra la trasmissione di due pacchetti consecutivi

Capitolo 4: Livello di rete

- 4.1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - o IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento
 - in Internet
 - O RIP
 - OSPF
 - O BGP
- 4.7 Instradamento broadcast e multicast

Reti a circuito virtuale e a datagramma

- Reti a datagramma offrono solo il servizio senza connessione.
- □ Reti a circuito virtuale (VC) mettono a disposizione solo il servizio con connessione.
- □ Ci sono alcune analogie con quanto avviene a livello di trasporto ma:
 - Servizio: da host a host
 - Non si può scegliere: il livello di rete offre un servizio senza connessione o con connessione ma non entrambi
 - Le implementazioni: sono fondamentalmente diverse.

Circuito Virtuale

"il cammino mittente-destinatario funziona come una rete telefonica"

- Prestazioni minime garantite
- o configurazione preventiva tra mittente e destinatario
- call setup", e rilascio prima che i dati siano trasmessi
- Ogni pacchetto riporta nella propria intestazione identificatore del VC e non del destinatario
- Un circuito virtuale può avere un numero VC diverso su ogni collegamento.
- Ogni router sostituisce il numero VC con un nuovo numero.
- Ogni router lungo il cammino del VC mantiene lo stato di tutte le connessioni passanti
 - O Diverso rispetto al livello trasporto, curato ai soli estremi
- Le risorse del collegamento e del router sono allocate e amministrate preventivamente
 - Prestazioni: basate su banda, buffer e link riservati

Circuiti virtuali: protocolli di segnalazione

- Usati per instaurare, mantenere e chiudere VC
 - Es. Tecnologie ATM, frame-relay, X.25
- ...MA non usati in Internet!
 - Qualcosa di simile usato in Internet2

Implementazioni

Un circuito virtuale consiste in:

- 1. un percorso tra gli host origine e destinazione
- 2. numeri VC, uno per ciascun collegamento
- 3. righe nella tabella d'inoltro in ciascun router.
- Il pacchetto di un circuito virtuale ha un numero VC nella propria intestazione.
- Il numero VC del pacchetto cambia su tutti i collegamenti lungo un percorso.
 - Un nuovo numero VC viene rilevato dalla tabella d'inoltro.

Tabella di inoltro

- Supponiamo di avere host A che si connette ad host B tramite router R1 e R2 tramite circuito virtuale. R1 e R2 hanno tre interfacce di ingresso/uscita
- □ La tabella di inoltro in ogni router, ad esempio R1, includerebbe una nuova riga con dentro
- □ Interfaccia/ingresso 1, VC entrante 12, Interfaccia uscita 2, VC uscente 22

Reti a circuito virtuale: 3 fasi

- □ Impostazione: creazione del circuito con costruzione dei VC su ogni router
- Trasferimento dati: i pacchetti fluiscono attraverso il circuito virtuale, fanno tutti lo stesso percorso (+ efficiente e affidabile)
- Terminazione: alla fine il circuito va rimosso e tutte le linee con i VC nei vari router rimosse (tutti i router sono coinvolti!)

Reti a datagrammi:

- □ il modello di servizio del livello rete di Internet
- Non c'è "call setup"
- 🗖 routers: non mantengono stato delle connessioni end-to-end
 - Non esiste il concetto di "connessione di livello rete"
- Ogni pacchetto è inoltrato usando indirizzo destinatario
 - Pacchetti diversi tra mittente-destinatario possono seguire strade diverse

Reti a datagrammi

- Ad ogni datagramma ricevuto il router fa riferimento alla sua tabella di inoltro per decidere da quale interfaccia di uscita fare transitare il pacchetto
- Esempio indirizzi a 32 bit, router con 4 interfacce
- □ Il router decide l'inoltro tramite confronto con un prefisso (es. primi 21 bit)
- Cosi:

Tabella d'inoltro

4 miliardi di possibili indirizzi

Intervallo degli indirizzi di destinazione	<u>Interfaccia</u>		
da 11001000 00010111 00010000 00000000			
a 11001000 00010111 00010111 11111111	0		
da 11001000 00010111 00011000 00000000	1		
a 11001000 00010111 00011000 111111111	1		
da 11001000 00010111 00011001 00000000	2		
a 11001000 00010111 00011111 11111111	2		
altrimenti	3		

Confronta un prefisso dell'indirizzo

Corrispondenza di prefisso	<u>Interfaccia</u>	
11001000 00010111 00010	0	
11001000 00010111 00011000	1	
11001000 00010111 00011001	2	
altrimenti	3	

Esempi:

con: 11001000 00010111 00010110 10100001 Qual è l'interfaccia?

con: 11001000 00010111 00011000 10101010 Qual è l'interfaccia?

Modelli di servizi del livello di rete:

Architettura di rete		Modello di servizio	Garanzia?				Indicazione
			Banda	Consegna	Ordina- mento	Temporiz- zazione	di congestione
	Internet	best effort	nessuna	no	no	no	no
	ATM	CBR	Tasso costante garantito	sì	sì	sì	Nessuna congestione
	ATM	VBR		sì	sì	sì	Nessuna congestione
	ATM	ABR	Minima garantita	no	sì	no	sì
	ATM	UBR	nessuna	no	sì	no	no

Perché reti a circuito virtuale o a datagramma?

Internet

- Necessità di scambiare dati tra differenti calcolatori.
 - Servizi elastici, non vi sono eccessivi requisiti di tempo
- L'interconnessione è semplice (computer)
 - È adattabile, effettua controlli e recupera errori
 - Rete interna non complessa, la complessità sta agli estremi
- Svariati tipi di link
 - Caratteristiche differenti
 - Difficile uniformarne il servizio

ATM

- Deriva dal mondo della telefonia.
- Conversazione telefonica:
 - Requisiti stringenti in termini di tempo e affidabilità.
 - Necessità di servizi garantiti.
- Sistemi terminali "stupidi"
 - Telefoni.
 - La complessità sta nella rete interna.

Capitolo 4: Livello di rete

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - o IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

Architettura del router?

Due funzioni chiave:

- Far girare i protocolli/algoritmi d'instradamento (RIP, OSPF, BGP)
- Inoltro di datagrammi dai collegamenti in ingresso a quelli in uscita.

Porte d'ingresso

Livello di link:

Es. Ethernet (vedi Capitolo 5)

Commutazione decentralizzata:

- Determina la porta d'uscita dei pacchetti utilizzando le informazioni della tabella d'inoltro
- Obiettivo: completare l'elaborazione allo stesso tasso della linea
- Accodamento: se il tasso di arrivo dei datagrammi è superiore a quello di inoltro

Tre tecniche di commutazione

Commutazione in memoria

Prima generazione di router:

- □ Erano tradizionali calcolatori e la commutazione era effettuata sotto il controllo diretto della CPU.
- □ Il pacchetto veniva copiato nella memoria del processore.
- □ I pacchetti venivano trasferiti dalle porte d'ingresso a quelle d'uscita con una frequenza totale inferiore a B/2 a causa dei due accessi in memoria.

Commutazione tramite bus

- B Y + C + Z + D bus
- Le porte d'ingresso trasferiscono un pacchetto direttamente alle porte d'uscita su un bus condiviso.
- Bus condiviso → solo un pacchetto alla volta. La larghezza di banda della commutazione è limitata da quella del bus.
- □ Cisco 1900 opera con bus da 1 Gbps: è sufficiente per router che operano in reti d'accesso o in quelle aziendali

Commutazione attraverso rete d'interconnessione

- Supera il limite di banda di un singolo bus condiviso.
- Tendenza attuale: frammentazione dei pacchetti IP a lunghezza variabile in celle di lunghezza fissa.
- □ Switch Cisco 12000: usano una rete d'interconnessione che raggiunge i 60 Gbps nella struttura di commutazione.

Porte d'uscita

- Funzionalità di accodamento: quando la struttura di commutazione consegna pacchetti alla porta d'uscita a una frequenza che supera quella del collegamento uscente.
- Schedulatore di pacchetti: stabilisce in quale ordine trasmettere i pacchetti accodati.

Dove si verifica l'accodamento?

- Se la struttura di commutazione non è sufficientemente rapida nel trasferire i pacchetti, si può verificare un accodamento.
- Se le code diventano troppo lunghe, i buffer si possono saturare e quindi causare una perdita di pacchetti!

Dove si verifica l'accodamento?

- Blocco in testa alla fila (HOL): un pacchetto nella coda d'ingresso deve attendere il trasferimento (anche se la propria destinazione è libera) in quanto risulta bloccato da un altro pacchetto in testa alla fila.
- □ Se le code diventano troppo lunghe, i buffer si possono saturare e quindi causare una perdita di pacchetti!

Capitolo 4: Livello di rete

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - o IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

<u>Protocollo Internet (IP): inoltro e indirizzamento in Internet</u>

Capitolo 4: Livello di rete

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - ICMP
 - o IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

Formato dei datagrammi

IP Fragmentation & Reassembly

- network links have MTU
 (max.transfer size) largest
 possible link-level frame.
 - different link types, different MTUs
- large IP datagram divided ("fragmented") within net
 - one datagram becomes several datagrams
 - "reassembled" only at final destination
 - Fragmentation may be recursive!!
 - IP header bits used to identify, order related fragments

Figura 4.24 Frammentazione e riassemblaggio IP

Frammentazione e riassemblaggio IP

<u>Esempio</u>

- Datagramma di 4000 byte
- MTU = 1500 byte

1480 byte nel campo dati

Spiazzamento = 1480/8

Un datagramma IP grande viene frammentato in datagrammi IP più piccoli.

Lunghez.		Flag	Spiazz.
=1040	=X	=0	=3/0

Capitolo 4: Livello di rete

- 4. 1 Introduzione
- 4.2 Reti a circuito virtuale e a datagramma
- 4.3 Che cosa si trova all'interno di un router?
- 4.4 Protocollo Internet (IP)
 - Formato dei datagrammi
 - Indirizzamento IPv4
 - O ICMP
 - IPv6

- 4.5 Algoritmi di instradamento
 - Stato del collegamento
 - Vettore distanza
 - Instradamento gerarchico
- 4.6 Instradamento in Internet
 - O RIP
 - OSPF
 - BGP
- 4.7 Instradamento broadcast e multicast

Indirizzamento IPv4

- Indirizzo IP: ogni interfaccia di host e router di Internet ha un indirizzo IP globalmente univoco.
- □ Interfaccia: è il confine tra host e collegamento fisico.
 - I router devono necessariamente essere connessi ad almeno due collegamenti.
 - Un host, in genere, ha un'interfaccia
 - A ciascuna interfaccia sono associati indirizzi IP
 - 4 byte espressi in notazione dotted decimal

IP Addresses

given notion of "network", let's re-examine IP addresses:

"class-full" addressing:

IP Addresses

Suddivisione in classi troppo restrittiva, facilita l'esaurimento dei numeri IP:

27 reti di classe A con 224 host

 2^{14} reti di classe B con 2^{16} = 65534 host, sovradimensionate. Se ho 2000 host mi serve una B, grande spreco

 2^{21} reti di classe C con 2^8 - 2 = 254 host

Routing in LAN

Indirizzi IP: Notazione decimale puntata; es. 223 . 128 . 31 . 145

Nel router: un indirizzo per ogni interfaccia

4-44

IP Addressing

☐ IP address:

- network part (high order bits)
- host part (low order bits)

□ What's a network?

(from IP address perspective)

- device interfaces with same network part of IP address
- can physically reach each other without intervening router

network consisting of 3 IP networks (for IP addresses starting with 223, first 24 bits are network address, (eg 223.1.1.xxx, si scrive anche 223.1.1.0/24 = SOTTORETE)

IP Addressing

How to find the networks?

- Detach each interface from router, host
- create "islands of isolated networks
- /24 condividonotutti i primi 24 bit

Maschera di sottorete

Interconnected system consisting of six networks

Subnet/sottorete

È detta sottorete una rete isolata i cui punti terminali sono collegati all'interfaccia di un host o di un router

Posso avere segmenti Ethernet che collegano più host all'interfaccia di un router, ma anche collegamenti punto-punto

223.1.2.1

Assegnazione indirizzi Internet CIDR

CIDR: Classless InterDomain Routing

- O È la strategia di assegnazione degli indirizzi.
- Struttura dell'indirizzo: l'indirizzo IP viene diviso in due parti e mantiene la forma decimale puntata a.b.c.d/x, dove x indica il numero di bit nella prima parte dell'indirizzo o prefisso
- A organizzazione viene di solito assegnato intervallo di indirizzi con stesso prefisso
- Router esterni vedono solo il prefisso

200.23.16.0/23

Come ottenere un blocco di indirizzi

- Cosa bisogna fare per assegnare un indirizzo IP a un host?
- Configurazione manuale:
 - Wintel: control-panel->network->configuration->tcp/ip->properties
 - UNIX: /etc/rc.config
- □ DHCP: Dynamic Host Configuration Protocol: permette a un host di ottenere un indirizzo IP in modo automatico
 - "plug-and-play"(vedi il Capitolo 5)

IP addresses: how to get one?

Hosts (host portion):

- hard-coded by system admin in a file
- □ DHCP: Dynamic Host Configuration Protocol: dynamically get address: "plug-and-play"
 - host broadcasts "DHCP discover" msg
 - DHCP server responds with "DHCP offer" msg
 - o host requests IP address: "DHCP request" msg
 - DHCP server sends address: "DHCP ack" msg

Figura 4.26 **Scenario client-server DHCP**

Server (o agente=router) DHCP presente in ogni rete

Figura 4.27 Interazione client-server DHCP

Come ottenere un blocco di indirizzi

- D: Cosa deve fare un amministratore di rete per ottenere un blocco di indirizzi IP da usare in una sottorete?
- R: Supponiamo ISP abbia indirizzi con prefisso /20, lo potrebbe a sua volta dividere in 8 blocchi uguali di indirizzi contigui e darli a 8 sottorganizzazioni diverse.

Sottolineata è la parte di sottorete comune x ogni organizzazione

Blocco dell'ISP	11001000 00	0010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organizzazione 0 Organizzazione 1 Organizzazione 2	11001000 0	0010111	<u>0001001</u> 0	00000000	200.23.16.0/23 200.23.18.0/23 200.23.20.0/23
•••					
Organizzazione 7	<u>11001000</u> 00	0010111	<u>0001111</u> 0	00000000	200.23.30.0/23

Classless Interdomain Routing: CIDR

Notazione usata per subnetting (sottoreti)

Numero di rete

Numero di host

Numero di sottorete

Sottorete 0: 200.23.16.0/23 = 11001000 00010111 0001000 00000000

Sottorete 1: 200.23.18.0/23 = 11001000 00010111 0001001 000000000

Sottorete 2: 200.23.20.0/23 = 11001000 00010111 0001010 000000000

Sottorete ?: 200.23.??.0/23 = 11001000 00010111 0001 010 00000000

Sottorete 7: 200.23.30.0/23 = 11001000 00010111 00011 110 00000000

Grandezza della Sottorete

- Ogni rete IP possiede due indirizzi non assegnabili direttamente agli host
 - l'indirizzo della rete
 - nel caso "classico" (classe C) .../24 è X.X.X.0
 - l'indirizzo di broadcast
 - nel caso "classico" (classe C) .../24 è X.X.X.255
- Quando si creano delle sottoreti, ciascuna di esse ha bisogno che le venga riservata una coppia di questi indirizzi

Grandezza della Sottorete

- Quindi, suddividendo una rete in due sottoreti separate troveremo
 - o due indirizzi di rete e
 - o due indirizzi di broadcast

Grandezza della Sottorete

- Conseguenza: aumenta il numero degli indirizzi inutilizzabili per le interfacce (host)
 - o creando 4 sottoreti gli indirizzi che si perdono diventano otto, e così via.
- □ Il limite minimo nelle dimensioni di una sottorete consta di 4 indirizzi IP:
 - Due indirizzi utilizzabili per le interfacce
 - · uno per il router della rete e uno per l'unico host.
 - Un indirizzo di rete.
 - Un indirizzo di broadcast.

Esercizio

Problema: Data la rete (di classe C) 192.168.0.x/24, dividere questa rete in due sottoreti. Calcolare gli indirizzi di broadcast e di rete delle due nuove sottoreti.

- □ 192.168.0.0 è l'indirizzo di rete
 - Parte host → bit tutti a 0
- □ 192.168.0.255 è l'indirizzo di broadcast
 - Parte host → bit tutti a 1

Esercizio

- □ Per dividere la rete di classe C (/24) in due sottoreti dobbiamo prendere in prestito uno dei bit della parte host.
- Dato che le sottoreti devono essere due è sufficiente prendere un bit alla parte host.

Esercizio: Rispettive Sottoreti

- □ In questo caso le nuove sottoreti sono due
 - 192.168.0.[1{7 bit qualunque}]/25
 - 192.168.0.[0{7 bit qualunque}]/25

Dove l'ultimo byte è espresso in bit.

Indirizzo della Prima Sottorete

```
192.168.0.[1{7 bit qualunque}]/25
Bit della parte host messi a 0
=
192.168.0.128
(192.168.0.[10000000])
```

Indirizzo della prima Sottorete

Indirizzo della Seconda Sottorete

```
192.168.0.[0{7 bit qualunque}]
Bit della parte host messi a 0
=
192.168.0.0
(192.168.0.[00000000])
```

Indirizzo della seconda Sottorete

Indirizzi di Broadcast

- Gli indirizzi di bradcast sono quelli che mantenendo fissa la parte di rete e sottorete pongono i bit della parte host tutti ad uno.
- Prima Sottorete: 192.168.0.[10000000]/25
 192.168.0.[11111111] (Broadcast)
 (192.168.0.255)
- Seconda Sottorete: 192.168.0.[00000000]/25
 192.168.0.[01111111] (Broadcast)
 (192.168.0.127)

Numero di Host per Ogni Sottorete

- □ Il numero possibile di host per ciascuna sottorete é dato dal numero di combinazioni della parte host - 2 (l'indirizzo di rete e l'indirizzo di broadcast).
- □ Cioè 2ⁿ 2 <u>dove n è il numero di bit per la parte</u> <u>host</u>. Quindi

$$2^7 - 2 = 126$$

□ Il numero di host persi durante il subnetting si ottiene moltiplicando 2 * k dove k sono il numero delle sottoreti.

Raggruppare Più Sottoreti

- ☐ Finora, col metodo visto si riescono a creare 2 o + sottoreti, tutte di dimensioni uguali
- E se volessimo creare sottoreti con dimensioni diverse?
- Usando questo metodo, si può pensare di dividere la rete in più sottoreti
 - (ciascuna di dimensione uguale alla più piccola sottorete che si vuole creare)
- Una di queste sottoreti rappresenta la sottorete piccola
- Poi si raggruppano nuovamente le altre sottoreti in modo da creare una sottorete di dimensioni maggiori

Raggruppare Più Sottoreti: Esempio

- □ Facciamo l'ipotesi che si voglia suddividere la rete 192.168.1.x/24 in 4 sottoreti
 - ognuna delle quali disponga di 62 (= 2⁶ -2)
 indirizzi liberi per le interfacce
- □ Poi riaccorpiamo due di queste sottoreti per costituire un'unica rete più grande, ottenendo così fisicamente tre reti.

Raggruppare Più Sottoreti: Esempio

Network	Broadcast	Netmask	Hosts
192.168.1.0	192.168.1.63	255.255.255.192	62
192.168.1.64	192.168.1.127	255.255.255.192	62
192.168.1.128	192.168.1.255	255.255.255.128	124 (see note)

- RETE 1: 192.168.1.[00...]/26
 RETE 2: 192.168.1.[01...]/26
 RETE 3: 192.168.1.[1...]/25
 6 bit per la parte host
 7 bit per la parte host
- Nota: la ragione per la quale l'ultima rete ha soltanto 124 indirizzi utili (invece di 126 (=2⁷-2) come ci si sarebbe aspettati) sta nel fatto che essa è una "super rete" composta di due sottoreti.
- Gli host delle altre due reti interpreteranno 192.168.1.192 come indirizzo di rete della sottorete "non esistente".
- e 192.168.1.191 come <u>indirizzo di broadcast della sottorete "non</u> esistente".

4-67

Raggruppare Più Sottoreti: Esempio

- Quindi, se si utilizzasse 192.168.1.191 o 192 come indirizzi di host sulla terza rete, le macchine delle sottoreti più piccole non sarebbero in grado di comunicare con queste.
- ☐ → gli indirizzi utilizzabili sono determinati dalla sottorete più piccola in un determinato spazio di indirizzamento.

Indirizzi IP alla fonte

- D: Ma come fa un ISP, a sua volta, a ottenere un blocco di indirizzi?
- R: ICANN: Internet Corporation for Assigned Names and Numbers
 - Ha la responsabilità di allocare i blocchi di indirizzi.
 - Gestisce i server radice DNS.
 - O Assegna e risolve dispute sui nomi di dominio.

Indirizzamento gerarchico e aggregazione dei percorsi

ISP s-R-Us ha un percorso più specifico per l'Organizzazione 1

IP datagram:

misc	source	dest	ما میلا م
fields	IP addr	IP addr	data

- datagram remains unchanged, as it travels source to destination
- addr fields of interest here

routing table in A

misc	223.1.1.1	223.1.1.3	data
tields			

Starting at A, given IP datagram addressed to B:

- look up net. address of B
- find B is on same net. as A
- link layer will send datagram directly to B inside link-layer frame
 - B and A are directly connected

misc fields	223.1.1.1	223.1.2.3	data
----------------	-----------	-----------	------

Starting at A, dest. E:

- look up network address of E
- □ E on different network
 - A, E not directly attached
- routing table: next hop router to E is 223.1.1.4
- □ link layer sends datagram to router 223.1.1.4 inside linklayer frame
- datagram arrives at 223.1.1.4
- 🗖 continued.....

misc fields	223.1.1.1	223.1.2.3	data
110103			

Arriving at 223.1.4, destined for 223.1.2.2

- look up network address of E
- E on same network as router's interface 223.1.2.9
 - o router, E directly attached
- link layer sends datagram to 223.1.2.2 inside link-layer frame via interface 223.1.2.9
- datagram arrives at 223.1.2.2!!! (hooray!)

