Minimization of FSA

Data Structures and Algorithms for Comp (ISCL-BA-07) nal Linguistics III

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

Winter Semester 2020/21

Finding equivalent states

Their right languages are the same

Minimization by partitioning

- Accepting & non-accep partition
- If any two nodes go to different sets for any of the symbols split
- $\bullet \ \ Q_1=\{0,3\}, Q_2=\{1\}, Q_3=\{2\}, Q_2=\{4,5\}$
- Stop when we cannot split any of the sets, merge the indistinguishable states

Minimization by partitioning

* Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

Minimization by partitioning

• Create a state-by-state table, mark distinguishal pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

• Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x \in \Sigma$

DFA minimization

- · For any regular language, there is a unique minimal DFA By finding the minimal DFA, we can also prove equivalence (or not) of different FSA and the languages they recognize
- · In general the idea is:
- in goatest acte acted to consider states (easy)
 Merge equivalent states
 There are two well-known algorithms for minimization:
 There are two well-known algorithms for minimization:
 Hopcord's algorithms find and eliminate equivalent states by partitioning the set of states
 Bizzazowski's algorithms: (double reversal)

Finding equivalent states

Minimization by partitioning

* Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in\Sigma$

Minimization by partitioning

* Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

Minimization by partitioning

• Create a state-by-state table, mark distinguishab pairs: (q_1, q_2) such that $(\Delta(q_1, x), \Delta(q_2, x))$ is a distinguishable pair for any $x \in \Sigma$

Minimization by partitioning

* Create a state-by-state table, mark distinguishable pairs: $(q_1,\,q_2)$ such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

Minimization by partitioning

* Create a state-by-state table, mark distinguisher pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

Minimization by partitioning

Minimization by partitioning

* Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

Minimization by partitioning

* Create a state-by-state table, mark distinguisher pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

* Create a state-by-state table, mark distinguishab pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

* Create a state-by-state table, mark distinguishable pairs: (q_1,q_2) such that $(\Delta(q_1,x),\Delta(q_2,x))$ is a distinguishable pair for any $x\in \Sigma$

- The algorithm can cell to visit carefully

Brzozowski's algorithm

An exercise

Minimization algorithms

- There are many versions of the 'partitioning' algorithm. Gene form equivalence classes based on right-language of each state. Partitioning algorithm has O(n log n) complexity
- · 'Double reversal' algorithm has exponential worst-time complexity Double reversal algorithm can also be used with NFAs (resulting in the minimal equivalent DFA – NFA minimization is intractable)
- In practice, there is no clear winner, different algorithms run faster on rent input
- Reading suggestion: Martin (2009, Ch. 2) : Hopcroft and Ullman (1979, Ch. 2&3), Jurafsky and
- PSA determinization, minimization

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science and
- Languages, and Computation. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. user 9902011205889. Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: As Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. user: 978-013-304198-3.

