





#### OVERVIEW

- 1. Konsep Tree
- 2. Sifat Tree
- 3. Terminologi Tree
- 4. Pohon berakar
- 5. Pohon rentang minimum
- 6. Algoritma Prime dan Algoritma Kruskal





# DEFINISI TREE (POHON)

- Suatu graf terhubung yang setiap pasangan simpulnya hanya dapat dihubungkan oleh suatu lintasan tertentu
- Graf tak-berarah yang terhubung dan tidak memiliki sirkuit





#### LATIHAN

• Tentukan gambar dibawah ini apakah merupakan tree atau bukan.









Gl

G2

G3

G4



# FOREST (HUTAN)

- Kumpulan pohon yang saling lepas
- graf tidak terhubung yang tidak mengandung sirkuit.
- Setiap komponen di dalam graf terhubung tersebut adalah pohon











#### SIFAT-SIFAT POHON

- Misalkan G = (V, E) adalah graf tak-berarah sederhana dan jumlah simpulnya n. Maka, semua pernyataan di bawah ini adalah ekivalen:
  - G adalah pohon.
  - Setiap pasang simpul di dalam G terhubung dengan lintasan tunggal.
  - G terhubung dan memiliki m = n 1 buah sisi.
  - G tidak mengandung sirkuit dan memiliki m = n 1 buah sisi.
  - G tidak mengandung sirkuit dan penambahan satu sisi pada graf akan membuat hanya satu sirkuit.
  - G terhubung dan semua sisinya adalah jembatan





#### POHON BERAKAR

 Merupakan suatu pohon dimana ada satu titik yang dikhususkan sebagai akar dan setiap garis menjauhi akarnya



Pohon berakar T dengan akar a



Pohon berakar (subgraph dari T) dengan akar g





# TERMINOLOGI

| Istilah           | Arti                                             | Contoh dari Graf T                |
|-------------------|--------------------------------------------------|-----------------------------------|
| Akar (root)       | Titik awal (paling atas) suatu tree              | Vertex a                          |
| Internal          | Titik berderajat lebih dari 1 kecuali root       | Vertex b, c, g, h, j              |
| Daun (leaves)     | Titik berderajat l                               | Vertex d, e, f, i, k, l, m        |
| Anak (children)   | Titik di bawah titik tertentu                    | Anak dari c adalah d, e           |
| Orangtua (parent) | Titik di atas titik tertentu                     | Parent dari c adalah b            |
| Saudara (sibling) | Titik dengan parent yang sama                    | Sibling dari h adalah i dan j     |
| Ancestors         | Semua titik sebelum titik tertentu (sampai root) | Ancestor dari l adalah a, g, j    |
| Descendants       | Semua titik setelah titik tertentu (sampai leaf) | Descendants dari b adalah c, d, e |





#### **KUIS**

Apakah gambar berikut merupakan pohon berakar?



 Sebutkan terminology tree berdasarkan pohon berikut.







#### POHON BINER

- Merupakan pohon berakar yang setiap titiknya mempunya maksimal 2 anak.
- Pohon biner penuh adalah pohon biner dengan setiap titiknya (kecuali daun) mempunyai 2 anak.





Pohon biner penuh





#### POHON RENTANG

• Pohon rentang dari suatu graf terhubung G adalah subgraf yang merupakan pohon dan membuat semua titik dalam G.



Graf terhubung G



Pohon rentang dari graf G





# GRAF BERLABEL (WEIGHTED GRAPH)

 Adalah suatu graf tanpa garis paralel dimana setiap garisnya dipasangkan dengan suatu bilangan tak negatif yang menyatakan bobot garis tersebut.









#### POHON RENTANG MINIMUM

- Sebuah subgraf T dari dari graf G disebut sebuah pohon merentang dari G jika T adalah sebuah pohon dan T memnuat semua titik dalam graf G.
- Diantara semua pohon merentang dari graf G, pohon T disebut pohon rentang minimum jika T memiliki jumlah bobot yang paling minimum.
- Algoritma pencarian pohon rentang minimum.
  - Algoritma Prime
  - Algoritma Kruskal
  - Algoritma Warshall
  - Algoritma Dijkstra

Untuk graf sederhana (tak berarah)

Untuk graf berarah





#### ALGORITMA PRIME

- Langkah-Langkah untuk mencari pohon rentang minimum dari suatu graf G dengan algoritma prime.
  - Urutkan semua garis dalam G berdasarkan bobotnya dari yang terkecil ke yang terbesar
  - Pilih garis dengan bobot terkecil
  - Pada setiap Langkah pilih garis dengan bobot terkecil, tetap tidak membentuk cycle dengan garis-garis yang sudah dipilih terdahulu
  - Lakukan sampai semua titik terhubung





# CONTOH ALGORITMA PRIME (1)

Diketahui graf G sebagai berikut. Tentukan pohon rentang minimum dengan algoritma Prime.



- 1. Urutkan bobot garis: 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5
- 2. Pilih garis berbobot 1, yakni be dan cd
- 3. Pilih garis berbobot 2, yakni ab, bc, dan df
- 4. Pilih garis berbobot 3, yakni bd, cf, ef, fg.
- 5. Jika memilih bd, cf, ef maka akan terbentuk cycle, sehingga kita hanya memilih fg





# CONTOH ALGORITMA PRIME (2)

Karena semua titik sudah terhubung, maka diperoleh rentang minimum sbb.



Jumlah bobot minimum: 2+2+1+1+1+2+3 = 11





#### ALGORITMA KRUSKAL

- Langkah-Langkah untuk mencari pohon rentang minimum dari suatu graf G dengan algoritma kruskal.
  - Urutkan semua garis dalam G berdasarkan bobotnya dari yang terkecil ke yang terbesar
  - Pilih garis dengan bobot terbesar
  - Pada setiap langkah, pilih garis dengan bobot terbesar, kemudian hapus garis tersebut namun tidak membuat graf tidak terhubung (tidak ada vertex tanpa edge)
  - Lakukan sampai semua tidak ada cycle





### CONTOH ALGORITMA KRUSKAL (1)

Diketahui graf G sebagai berikut. Tentukan pohon rentang minimum dengan algoritma Prime.



- 1. Urutkan bobot garis: 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 5, 5
- 2. Pilih garis berbobot 5, yakni ac dan de
- 3. Pilih garis berbobot 4, yakni eg
- 4. Pilih garis berbobot 3, yakni bd, cf, ef, fg.
- 5. Jika memilih fg maka g tidak memiliki edge. Jadi kita memilih bd, cf, ef





### CONTOH ALGORITMA KRUSKAL (2)

Karena sudah tidak terdapat cycle, maka hapus semua garis yang sudah dipilih sehingga diperoleh pohon rentang minimum:



Jumlah bobot minimum: 2+2+1+1+1+2+3 = 11





#### CONTOH SOAL

Sebuah perusahaan ingin membangun sistem telekomunikasi yang menghubungkan 6 cabangnya. Jarak antar cabang dinyatakan dalam table berikut

|   | a  | b  | С  | d  | е  | f  |
|---|----|----|----|----|----|----|
| a | 0  | 20 | 42 | 31 | 28 | 29 |
| b | 20 | 0  | 25 | 35 | 29 | 25 |
| С | 42 | 25 | 0  | 41 | 33 | 22 |
| d | 31 | 35 | 41 | 0  | 34 | 36 |
| е | 28 | 29 | 33 | 34 | 0  | 41 |
| f | 29 | 25 | 22 | 36 | 41 | 0  |

Misalkan biaya (ribu rupiah) untuk pembuatan jaringan sebanding dengan jaraknya, tentukan jaringan termurah untuk menghubungkan 6 cabang tersebut. Berapa biaya termurahnya?





## JAWABAN SOAL (1)

Untuk menyelesaikan masalah tersebut, kita tidak perlu menggambar semua graf keseluruhan. Kita dapat menggunakan algoritma Prime dengan menggambar garis yang sudah kita pilih saja

1. Gambar 6 vertex yang melambangkan ke-6 cabang.

 $egin{array}{cccc} \bullet & & \bullet & \\ d & & e & \end{array}$ 

2. Dari table, urutkan bobot dari yang terkecil ke terbesar. Jarak dari a ke b sama dengan jarak b ke a, jadi bobotnya kita tulis 1 kali saja.

Urutannya: 20, 22, 25, 25, 28, 29, 29, 31, 33, 34, 35, 36, 41, 41, 42





# JAWABAN SOAL (2)

3. Gambarkan garis dengan bobot terkecil (20), yaitu ab



d e f



## JAWABAN SOAL (3)

Urutan: 20, 22, 25, 25, 28, 29, 29, 31, 33, 34, 35, 36, 41, 41, 42

- 4. Gambarkan garis dengan bobot 22, yaitu cf
- 5. Gambarkan garis dengan bobot 25, yaitu bc dan bf

Bobot bf juga 25 tetapi tidak kita gambar karena akan membentuk cycle.







## JAWABAN SOAL (3)

Urutan: 20, 22, 25, 25, 28, 29, 29, 31, 33, 34, 35, 36, 41, 41, 42

6. Lakukan algoritma sampai semua titik terhubung dan tidak terdapat cycle.



Diperoleh rentang minimum: 20+25+22+28+31 = 126. Biaya termurah = 126 ribu rupiah





#### LATIHAN SOAL

Jarak (dalam kilometer) dari 5 kota ditunjukkan oleh table berikut.

|   | a  | b  | С  | d  | е  |
|---|----|----|----|----|----|
| a | 0  | 10 | 12 | 16 | 22 |
| b | 10 | 0  | 7  | 21 | 13 |
| С | 12 | 7  | 0  | 11 | 27 |
| d | 16 | 21 | 11 | 0  | 31 |
| е | 22 | 13 | 27 | 31 | 0  |

Tentukan rentang minimum yang menghubungkan kota-kota tersebut. Gunakan Algoritma Prime. Berapakah jarak terpendek?



### TERIMA KASIH

