### § 5 Work-Energy Theorem for a Rigid Body



- Work done by a torque
  - → For a fixed axis rotation of a rigid body, the work done by a force can appear in the form of torque —— work done by a torque.

$$W = \int_{1}^{2} \overrightarrow{F} \cdot d\overrightarrow{l} = \int_{1}^{2} F_{tan} dl = \int_{1}^{2} F_{tan} R d\theta = \int_{\theta_{1}}^{\theta_{2}} \tau d\theta$$

The Power of a torque

$$P = \frac{dW}{dt} = \tau \frac{d\theta}{dt} = \tau \omega$$

- Rotational Kinetic Energy
  - For a fixed axis rotation of a rigid body, the kinetic energy can appear in another form:

$$K = \sum_{i} \left( \frac{1}{2} m_{i} v_{i}^{2} \right) = \sum_{i} \left( \frac{1}{2} m_{i} R_{i}^{2} \omega^{2} \right) = \frac{1}{2} \sum_{i} \left( m_{i} R_{i}^{2} \right) \omega^{2} = \frac{1}{2} I \omega^{2}$$



# 4

### Work-Energy Theorem for a Rigid Body



- Work-kinetic energy theorem for a body rotating about a fixed axis
  - Starting from the rotational form of Newton's II law.

$$\tau_{\text{net}} = I\alpha = I\frac{d\omega}{dt} = I\frac{d\omega}{d\theta}\frac{d\theta}{dt} = I\omega\frac{d\omega}{d\theta}$$

$$W_{\text{net}} = \int_{\theta_1}^{\theta_2} \tau_{\text{net}} d\theta = \int_{\omega_1}^{\omega_2} I \omega d\omega = \frac{1}{2} I \omega_2^2 - \frac{1}{2} I \omega_1^2$$

>The work done in rotating a body through an angle  $\theta_2$ - $\theta_1$  is equal to the change in rotational kinetic energy of the body.



Two blocks of masses  $m_A$  and  $m_B$  are connected by a light cord running over a pulley. The pulley are considered as a uniform cylindrical disk of mass  $m_C$  and radius R. There is no sliding between the pulley and the cord. Find the acceleration of two blocks.



Solution (II): conservation of mechanical energy

$$0 = -m_B g h + \frac{1}{2} m_A v_A^2 + \frac{1}{2} m_B v_B^2 + \frac{1}{2} I_C \omega_C^2 , I_C = \frac{1}{2} m_C R^2, v_A = v_B = \omega R$$

$$\omega = \frac{1}{R} \sqrt{\frac{2m_B gh}{m_A + m_B + \frac{1}{2} m_C}}, \quad a = \frac{dv}{dt} = \frac{d(\omega R)}{dt} = \frac{m_B g}{m_A + m_B + \frac{1}{2} m_C}$$



A uniform rod of mass m and length l can pivot freely (no friction on the pivot) about a hinge to the ceiling. The rod is held horizontally and released. Determine the angular acceleration and angular velocity of the rod as the function of  $\theta$ .



### **Solution:**

## conservation of mechanical energy

$$0 = \frac{1}{2} \left( \frac{1}{3} m l^2 \right) \omega^2 + \left( -mg \frac{l}{2} \sin \theta \right),$$

$$\omega = \sqrt{\frac{3g}{l}}\sin\theta$$

$$\alpha = \frac{d\omega}{dt} = \frac{d}{d\theta} \left( \sqrt{\frac{3g}{l}} \sin \theta \right) \frac{d\theta}{dt} = \sqrt{\frac{3g}{l}} \frac{\cos \theta}{2\sqrt{\sin \theta}} \sqrt{\frac{3g}{l}} \sin \theta = \frac{3g}{2l} \cos \theta$$



A heavy steel chain of mass *m* and length *l* passes over a pulley of mass  $m_0$  and radius r. The pulley is fixed with a frictionless pivot O. There is no slide between the chain and pulley. At beginning, the chain passes over the pulley with the lengths of both side equal. And then with a small perturbation, the chain slides to the left. Find the velocity and acceleration of the chain when the height difference of two end is s.



### Solution



Take the chain, the pulley and the Earth as a system, the mechanical energy of the system is conserved.

$$0 = -\left(\frac{m}{l}\frac{s}{2}\right)g\frac{s}{2} + \frac{1}{2}mv^2 + \frac{1}{2}\left(\frac{1}{2}m_0r^2\right)\omega^2$$

$$v = \omega r$$

$$v = \omega r$$
, 
$$v = \sqrt{\frac{mgs^2}{2\left(m + \frac{1}{2}m_0\right)l}}$$

**The acceleration:**  $a = \frac{dv}{dt} = \frac{dv}{ds} \frac{ds}{dt} = 2v \frac{dv}{ds}$ 

$$=2\sqrt{\frac{mgs^{2}}{2\left(m+\frac{1}{2}m_{0}\right)l}}\cdot\sqrt{\frac{mg}{2\left(m+\frac{1}{2}m_{0}\right)l}}=\frac{mgs}{\left(m+\frac{1}{2}m_{0}\right)l}$$

## 4

## § 6 Angular Momentum for a Rigid Body (P281)



The total angular momentum L is the vector sum of  $l_i$  for each particle of the rigid body.

$$l_{i\omega} = \Delta m_i \nu_i R_i = \Delta m_i R_i^2 \omega$$

Sum over all the particles:

$$L_{\omega} = \sum_{i} l_{i\omega} = \left(\sum_{i} \Delta m_{i} R_{i}^{2}\right) \omega = I \omega$$



(about a fixed axis)

### **Angular Momentum for a Rigid Body**



- Rotational Form of Newton's II Law
  - Starting from the Torque-angular momentum theorem.

$$\sum \vec{\tau} = \frac{d\vec{L}}{dt} \qquad \Longrightarrow \qquad \sum \tau_{\text{ext-axis}} = \frac{dL_{\omega}}{dt} = \frac{d}{dt} (I\omega) = I\alpha$$

- ➤ The Rotational Form of Newton's II Law can be considered as a special case of Torque-angular momentum theorem for a rigid body rotation about a fixed axis.
- The Conservation of Angular Momentum for Rigid Body
  - → The total angular momentum of rotating body remains constant if the net external torque acting on it is zero.

If 
$$\sum \tau_{\text{ext-axis}} = 0$$

$$I\omega = I_0\omega_0$$





A circular platform of mass  $m_0$  and radius *R* rotates friction-free about an axis through its center. A woman standing on the platform a distance R/2 from the center. At beginning, the system of platform and woman rotates at the angular velocity  $\omega_0$ about the axis. The woman starts to walk to the edge of the platform. **Determine the final angular velocity o** of the system when the woman arrives at the edge.



### Solution



In the whole process that the woman walk to the edge of platform, the external torque is zero. Using the conservation of angular momentum of the system:

### **Initial state:**

$$L_0 = \left(\frac{1}{2}m_0R^2\right)\omega_0 + m\left(\frac{R}{2}\right)^2\omega_0$$

### **Final state:**

$$L = \left(\frac{1}{2}m_0R^2\right)\omega + mR^2\omega$$

$$L_0 = L \implies$$

$$L_0 = L \implies \omega = \frac{2m_0 + m}{2m_0 + 4m}\omega_0$$



A rod of mass m' and length l can rotate about pivot O freely, a bullet of mass m and speed  $v_0$  is shot into the lower end of the rod and embedded in the rod. What is the angle  $\theta$  when the rod swings to its highest position?



### Solution



The external forces: the constraint force exerted by the pivot; gravity. They go through the origin O. So the external torque about O is zero, and the angular momentum of the system should be conserved in the process of shouting.

$$lmv_0 = \left(\frac{1}{3}m'l^2 + ml^2\right)\omega \qquad \omega = \frac{3mv_0}{(m'+3m)l}$$

$$\omega = \frac{3mv_0}{(m'+3m)l}$$



(ii) Take the bullet, the rod and the Earth as a system. In the process of the system swinging up, the mechanical energy is conserved.

$$\frac{1}{2} \left( \frac{1}{3} m' l^2 + m l^2 \right) \omega^2 = mgl(1 - \cos \theta) + m' g \frac{l}{2} (1 - \cos \theta)$$

$$\cos \theta = 1 - \frac{3m^2}{(m' + 3m)(m' + 2m)} \frac{v_0^2}{gl}$$





§ 5 Work-Energy Theorem for a Rigid Body

Ch10: 65

§ 6 Angular Momentum for a Rigid Body (P281)

Ch10: 60, 68