Paper Reading: Area Attention

Yang Li, Lukasz Kaiser, Samy Bengio, Si Si

Google Research

Motivation

- Existing attention mechanisms, are mostly item-based in that a model is designed to attend to a single item in a collection of items (the memory).
- ► An area in the memory that may contain multiple items can be worth attending to.
- ▶ Area attention: a way to attend to an area of the memory.

Area-Based Attention Mechanisms

- ▶ 1-dimensional case
- 2-dimensional case

1-dimensional case

Figure 1: An illustration of area attention for the 1-dimensional case. In this example, the memory is a 4-item sequence and the maximum size of an area allowed is 3.

The number of areas: |R| = (L - S)S + (S + 1)S/2. Here, S is the maximum size of an area and L is the length of the sequence.

2-dimensional case

Figure 2: An illustration of area attention for the 2-dimensional case. In this example, the memory is a 3x3 grid and the dimension allowed for an area is 2x2.

Define Key and Value for each area

Mean as Key:

$$\mu_i = \frac{1}{|r_i|} \sum_{j=1}^{|r_i|} k_{i,j}$$

Sum as Value:

$$v_i^{r_i} = \sum_{i=1}^{|r_i|} v_{i,j}$$

Where $|r_i|$ is the size of the area r_i .

Combining Area Features

Standard deviation:

$$\sigma_i = \sqrt{\frac{1}{|r_i|} \sum_{l=1}^{|r_i|} (k_{i,l} - \mu_i)^2}$$

Height and width of each area:

$$e_i^h = 1(h_i)E^h$$
, $e_i^w = 1(w_i)E^w$, $e_i = [e_i^h, e_i^w]$.

Combination:

$$k_i^r = \phi(\mu_i W_\mu + \sigma_i W_\sigma + e_i W_e) W_d \tag{9}$$

where ϕ is a nonlinear transformation such as ReLU, and $W_{\mu} \in \mathbb{R}^{D \times D}$, $W_{\sigma} \in \mathbb{R}^{D \times D}$, $W_{e} \in \mathbb{R}^{2S \times D}$ and $W_{d} \in \mathbb{R}^{D \times D}$. $W_{\mu}, W_{\sigma}, W_{e}$ and W_{d} are trainable parameters.

Experiments on Machine Translation

Set up:

Configuration	#Hidden Layers	Hidden Size	Filter Size	#Attention Heads
Tiny	2	128	512	4
Small	2	256	1024	4
Base	6	512	2048	8

Character-level translation tasks:

 $Table\ 1:\ The\ BLEU\ scores\ on\ character-level\ translation\ tasks\ for\ the\ Transformer-based\ architecture\ with\ varying\ model\ capacities.$

Model Configuration	Regular Attention		Area Attention (Eq.3 and 4)	
Wioder Configuration	EN-DE	EN-FR	EN-DE	EN-FR
Tiny	6.97	9.47	7.39	11.79
Small	12.18	18.75	13.44	21.24
Base	24.65	32.80	25.03	33.69

Token-level translation tasks:

Table 2: The BLEU scores on token-level translation tasks for the variations of the Transformer-based architecture.

Model Configuration	Regular Attention		Area Attention (Eq.3 and 4)	
Woder Configuration	EN-DE	EN-FR	EN-DE	EN-FR
Tiny	18.60	27.07	18.80	27.29
Small	22.80	31.91	22.80	32.28
Base	27.96	39.10	28.17	39.22

Experiments on Image caption

Table 5: Test accuracy of image captioning models that are trained on COCO and tested on Flickr. See the previous results of the benchmark model at the row "T2T8x8 COCO" in Table 7 of (Sharma et al., 2018).

Self & Enc-Dec Attention on Image	Self-Attention on Caption	ROUGE-L	CIDEr
Regular	Regular	0.409	0.355
$2 \times 2 \text{ Eq. } 3$ $3 \times 3^* \text{ Eq. } 9$	Regular	0.410	0.359
$3 \times 3^*$ Eq. 9	Regular	0.419	0.367
$3 \times 3^*$ Eq. 9	2* Eq. 9	0.421	0.365

Reviewer Comments

- Some important related studies are missing.
- ► The experimental setting for NMT looks unnormal: Character-level translation
- ► Motivation: Why we need to attend multiple (adjacent) items to boost the performance?
- Influence on different size of area?

Area Attention and Phrase-Based Attention

- ▶ Both: attend n grams span.
- ▶ Both: do not have solid experimental results.
- **...**

- ► Area: 1-D, 2-D; Phrase-based: 1-D
- Area: mean as key, sum as value; Phrased-based: convolution
- **-** ...

Open question: How to evaluate the performance of phrase attention?

Conclusion

- A new way for calculating attention by attending to whole areas.
- ▶ Interpretability: For example, whether the relative improvement from phrasal attention grows/shrinks as a function of the encoder's depth?