ঢাকা রেসিডেনসিয়াল মডেল কলেজ

বার্ষিক পরীক্ষার বিষয়ভিত্তিক নমুনা প্রশ্নের উত্তর শ্রেণিঃ নবম, বিষয়ঃ বিজ্ঞান (অধ্যায়-১ ও ২)

পদার্থ অংশঃ

সংক্ষিপ্ত প্রশ্নের উত্তরঃ (প্রতি উত্তরে নম্বর ২)

১) স্থিতি জড়তা কি?

উত্তরঃ স্থির বস্তু স্থির হয়ে থাকতে চাওয়ার প্রবণতাকে স্থিতি জড়তা বলে।

২) নিউটনের প্রথম সূত্র বিবৃতি কর।

উত্তরঃ বাইরে থেকে বল প্রয়োগ করা না হলে স্থির বস্তু সবসময় স্থির থাকবে এবং সরলরেখায় সমবেগে চলমান বস্তু সরলরেখায় সমবেগে চলতে থাকবে।

৩) বল কাকে বলে?

উত্তরঃ যে বাহ্যিক কারণের জন্য বস্তুর জাড্য ধর্মের পরিবর্তন হয় অথবা বস্তুর আকৃতির পরিবর্তন হয় কিংবা গতিশীল বস্তুর গতির অভিমুখের পরিবর্তন হয় নতুবা পরিবর্তন হওয়ার উপক্রম হয়, তাকে বল বলে/ ভরবেগের পরিবর্তনের হারকে বল বলে/ যা স্থির বস্তুর ওপর ক্রিয়া করে তাকে গতিশীল করে বা করতে চায় বা যা গতিশীল বস্তুর ওপর করে তার গতির পরিবর্তন করে বা করতে চায় তাকে বল (Force) বলে।

8) এক নিউটন বল বলতে কি বুঝ?

উত্তরঃ যে পরিমাণ বল ১ কেজি ভরের কোনো বস্তুর উপর ক্রিয়া করে ঐ বস্তুতে ১ মি/সেকেন্ড স্কয়ার ত্বরণ সৃষ্টি করে তাকে ১ নিউটন বল বলে/ ১ কেজি ভরের বস্তুকে ১ মিটার/সেকেন্ড স্কয়ার তরণে গতিশীল করতে যে পরিমাণ বল প্রয়োজন হয় তাকে এক নিউটন বল বলে।

৫) নিউটনের মহাকর্ষীয় সূত্রের বিবৃতি কর।

উত্তরঃ মহাবিশ্বের প্রতিটি বস্তু কণা একে অপরকে নিজের দিকে আকর্ষণ করে এবং এ আকর্ষণ বলের মান বস্তুকণাদ্বয়ের ভরের গুণফলের সমানুপাতিক এবং এদের দূরত্বের বর্গের ব্যস্তানুপাতিক এবং এ বল যে বস্তুকণাদ্বয়ের সংযোজক সরলরেখা বরাবর ক্রিয়া করে।

৬) গতিশক্তি কাকে বলে?

উত্তরঃ গতির কারণে যে কাজ হয় তাকে গতিশক্তি বলে/ কোন বস্তুকে স্থির অবস্থা থেকে কোন নির্দিষ্ট বেগে ত্বরিত করতে যে পরিমাণ কাজ করতে হয় তাকে গতিশক্তি বলে/ কোন বস্তুর গতির কারণে কাজ করার যে সামর্থ্য লাভ করে তাকে গতিশক্তি বলে।

৭) দৈর্ঘ্য প্রসারণ সহগ কাকে বলে?

উত্তরঃ ১ মিটার দৈর্ঘ্যের কোনো পদার্থের তাপমাত্রা ১ কেলভিন বৃদ্ধির ফলে যতটুকু দৈর্ঘ্য বৃদ্ধি পায় তাকে দৈর্ঘ্য প্রসারণ সহগ বলে।

৮) তাপ গতিবিদ্যার দ্বিতীয় সূত্র বিবৃতি কর। উত্তরঃ যখন শক্তিকে এক রূপ থেকে অন্য রূপে পরিবর্তন করা হয় তখন সব সময়ই খানিকটা শক্তি ব্যবহারের অযোগ্য হয়ে যায়।

রফিকুল ইসলাম স্যার (RIP) মাবাইল নামারঃ ০১৯২২০০১৯৮৫

দৃশ্যপটবিহীন (রচনামূলক) প্রশ্নের উত্তরঃ

১) ভর বেগের সংরক্ষণ সূত্র বিবৃতি কর এবং নিউটনের তৃতীয় সূত্র হতে ভরবেগের সংরক্ষণ সূত্রের প্রমাণ কর। উত্তরঃ

ভরবেগের সংরক্ষণ সূত্রঃ একাধিক বস্তুর মধ্যে ক্রিয়া-প্রতিক্রিয়া ছাড়া অন্য কোন বল কাজ না করলে কোন নির্দিষ্ট দিকে তাদের মোট ভরবেগের কোন পরিবর্তন ঘটে না।

ধরি, m_1 ভরের বস্তু u_1 ও m_2 ভরের বস্তু u_2 বেগে গতিশীল। $u_1>u_2$ হলে t সময় পর তাদের মধ্যে সংঘর্ষ ঘটবে। এরপর বস্তুদ্বয় যথাক্রমে v_1 ও v_2 বেগে গতিশীল হবে।

নিউটনের তৃতীয় সূত্র অনুসারে, দুটি বস্তুর মধ্যকার ক্রিয়া ও প্রতিক্রিয়া বল সমান।

$$: F_1 = -F_2$$

বা, $m_1 a_1 = -m_2 a_2$

 $\overline{1}$, $m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$

বা, মোট আদিবেগ = মোট শেষবেগ [প্রমাণিত]

২) ত্বরণ কি? নিউটনের দ্বিতীয় সূত্র হতে $\mathbf{F} = \mathbf{ma}$ এর প্রমাণ কর।

উত্তরঃ ত্বরণঃ সময়ের সাথে বস্তুর বেগ বৃদ্ধির হারকে ত্বরণ বলে।

F = ma এর প্রমাণঃ নিউটনের দ্বিতীয় সূত্র হতে প্রাপ্ত, কোন বস্তুর ভরবেগের পরিবর্তনের হার বস্তুর উপর প্রযুক্ত বলের সমানুপাতিক এবং ভরবেগের পরিবর্তন বল যে দিকে কাজ করে, ভরবেগের পরিবর্তনও সেদিকেই হয়ে থাকে। ধরি. m ভরের ১টি বস্তুর আদিভরবেগ = mu এবং শেষ ভরবেগ = mv

∴ ভরবেগের পরিবর্তনঃ = mv – mu

 \pm t সময় পর ভরবেগের পরিবর্তনের হার = $\frac{mv-mu}{t}$ = $m(\frac{v-u}{t})$ = ma [যেহেতু, $a=\frac{v-u}{t}$] নিউটনের দ্বিতীয় সূত্র অনুসারে, $F \propto ma$

বা,
$$F = kma$$

বা, $F = ma [k = 1 ধরা হয়]$

[প্রমাণিত]

ত) চাপ কি? তরলের অভ্যন্তরে চাপের রাশিমালা নির্ণয় কর।

উত্তরঃ চাপঃ কোনো বস্তুর একক ক্ষেত্রফলের উপর লম্বভাবে প্রযুক্ত বলকে চাপ বলে। ধরি, তরলের পৃষ্ঠতল থেকে Α ক্ষেত্র পর্যন্ত উচ্চতা = h, V= আয়তন, ρ= ঘনত্ব, A= ক্ষেত্রফল আমরা জানি, m = Vρ

আবার, V = Ah

$$\div m = Ah\rho$$

অর্থাৎ, তরলের A ক্ষেত্রফলের উপরে পৃষ্ঠতল পর্যন্ত উচ্চতায় মোট পানির ওজন, m=Ah
ho

আবার, চাপ, $ho=rac{F}{A}=rac{mg}{A}=rac{Ah
ho g}{A}=h
ho g$. অর্থাৎ, তরলের ভিতরে নির্দিষ্ট গভীরতায় চাপ নির্ভর করবে তরলের ঘনত্বের ওপর।

8) দৈর্ঘ্য প্রসারণ, ক্ষেত্র প্রসারণ, আয়তন প্রসারণ কি? তাদের রাশিমালা বিবৃতি/প্রতিপাদন করো।

উত্তরঃ দৈর্ঘ্য প্রসারণঃ কোন বস্তু দৈর্ঘ্য বরাবর প্রসারিত হলে তাকে দৈর্ঘ্য প্রসারণ বলে।

ক্ষেত্র প্রসারণঃ কোন বস্তুর ক্ষেত্রফল বরাবর প্রসারিত হলে তাকে ক্ষেত্রফল প্রসারণ বলে।

আয়তন প্রসারণঃ কোন বস্তুর আয়তন প্রসারিত হলে তাকে আয়তন প্রসারণ বলে।

দৈর্ঘ্য প্রসারণের রাশিমালাঃ

ধরি, T_1 তাপমাত্রায় একটি কঠিন বস্তুর দৈর্ঘ্য L_1 এবং তাপমাত্রা বৃদ্ধি করে T_1 থেকে T_2 করাই দৈর্ঘ্য হয়েছে L_2 । দৈর্ঘ্যের মোট পরিবর্তন হয়েছে = L_2-L_1

দৈৰ্ঘ্যের কত অংশ পরিবর্তন হয়েছে = $\frac{L_2-L_1}{L_1}$.

প্রতি ডিগ্রি তাপমাত্রা বৃদ্ধির জন্য দৈর্ঘ্য এর কত অংশ পরিবর্তন হয়েছেঃ $rac{L_2-L_1}{L_1(T_2-T_1)}$

অর্থাৎ, $\alpha=\frac{L_2-L_1}{L_1(T_2-T_1)}$. T_1 তাপমাত্রায় একটি কঠিন বস্তুর দৈর্ঘ্য L_1 এবং তার তাপমাত্রা বৃদ্ধি করে T_2 করা হলে বস্তুটির দৈর্ঘ্য হবে L_2 , $L_2=L_1+\alpha\,L_1(T_2-T_1)$

ক্ষেত্র প্রসারণের রাশিমালাঃ ক্ষেত্রফল মোট পরিবর্তন হয়েছে = ${
m A}_2-{
m A}_1$

ক্ষেত্রফল কত অংশ পরিবর্তন হয়েছে = $\frac{A_2-A_1}{A_1}$

প্রতি ডিগ্রি তাপমাত্রা বৃদ্ধির জন্য ক্ষেত্রফলের কত অংশ পরিবর্তন হয়েছেঃ $\frac{A_2-A_1}{A_1(T_2-T_1)}$

অর্থাৎ,
$$\beta = \frac{A_2 - A_1}{A_1(T_2 - T_1)}$$

পরিবর্তিত ক্ষেত্রফলঃ $A_2 = A_1 + \beta \, A_1 (T_2 - T_1)$

আয়তন প্রসারণের রাশিমালাঃ আয়তন মোট পরিবর্তন হয়েছে = $V_2 - V_1$

প্রতি ডিগ্রি তাপমাত্রা বৃদ্ধির জন্য আয়তনের কত অংশ পরিবর্তন হয়েছেঃ $rac{V_2-V_1}{V_1(T_2-T_1)}$

অর্থাৎ,
$$\gamma = \frac{V_{2-}V_1}{V_1(T_2-T_1)}$$

পরিবর্তিত আয়তনঃ $V_2 = V_1 + \gamma \ V_1 (T_2 - T_1)$

সংক্ষিপ্ত প্রশ্নের উত্তরঃ (প্রতি উত্তরে নম্বর ২)

রসায়নঃ

১) ধাতু কীভাবে বিদ্যুৎ পরিবহন করে? ব্যাখ্যা কর। উত্তরঃ ধাতু বিদ্যুৎ পরিবহন করতে পারে কারণ যখন ধাতব পরমাণু ধাতব বন্ধনে আবদ্ধ হয় তখন তাদের শেষ কক্ষপথের ইলেকট্রনগুলোর প্রতি নিউক্লিয়াসের আকর্ষণ কমে যায় ফলে তারা পজিটিভ আয়নে পরিণত থাকে যাকে বলা হয় Atomic core. Atomic core এর মধ্যে ইলেকট্রনগুলো মুক্তভাবে চলাচল করতে পারে। এই ইলেকট্রনের প্রবাহের কারণে ধাতু বিদ্যুৎ পরিবহন করে/ ইলেকট্রনের চলাচলই বিদ্যুৎ। যেহেতু শেষ শক্তিস্তরের ইলেকট্রনের সাথে ধাতব পরমাণুর নিউক্লিয়াসের আকর্ষণ খুবই দুর্বল, তাই ধাতুগুলোর শেষ শক্তিস্তরের ইলেকট্রন গুলো উত্তেজিত অবস্থায় এক পরমাণু থেকে আর এক পরমাণুতে চলে যেতে পারে। তাই ধাতু বিদ্যুৎ পরিবহন করে।

২) গ্যালেনা খনিজ ও আকরিক উভয়ই-ব্যাখ্যা কর।

উত্তরঃ গ্যালেনা হলো একটি খনিজ কারণ এটির কেমিক্যাল ফর্মুলা (PbS) থেকে বোঝা যায় যে এটি লেড (Pb) ও সালফার (S) দ্বারা এবং এগুলো সংগ্রহ করা যায় আবার গ্যালেনা একটি আকরিক কারণ এটি থেকে লাভজনকভাবে লেড নিষ্কাশন করা যায়।

৩) পানি পোলার যৌগ কেন? ব্যাখ্যা কর।

উত্তরঃ পানি হলো পোলার যৌগ কারণ অক্সিজেনের ইলেকট্রন তড়িৎ ঋণাত্মকতা হাইড্রোজেন এর চেয়ে বেশি অর্থাৎ যখন এ দুটি মৌল একটি সমযোজী বন্ধনে আবদ্ধ হয় তখন অক্সিজেন এর দিকে শেয়ার করা দুইটি ইলেকট্রন সরে যায়। যার ফলে অক্সিজেন পরমাণু আংশিক ঋণাত্মক চার্জ প্রাপ্ত হয়। অন্যদিকে, হাইড্রোজেন পরমাণু থেকে ইলেকট্রনগুলো সরে যাওয়ার কারণে সেগুলো আংশিক ধনাত্মক চার্জ প্রাপ্ত হয়। তাই পানি হলো পোলার যৌগ।

8) নিয়নকে নিষ্ক্রিয় গ্যাস বলা হয় কেন?

উত্তরঃ নিয়নকে নিদ্রিয় গ্যাস বলা হয় কারণ এর শেষ কক্ষপথে ৮টি ইলেকট্রন আছে।

 $Ne(10) \rightarrow 1s^2 2s^2 2p^6$

যখন কোন মৌলের শেষ কক্ষপথ পূর্ণ থাকে বা কক্ষপথে ৮টি ইলেকট্রন থাকে তখন সেই মৌলটি নিচ্জিয় বা স্থিতিশীল হয়। নিয়নের ক্ষেত্রেও একই জিনিস দেখা যায়। তাই নিয়ন একটি নিচ্জিয় গ্যাস।

৫) সালফারের যোজ্যতা ইলেকট্রন ও যোজনী ভিন্ন কেন?

উত্তরঃ সালফারের ইলেকট্রন বিন্যাস নিম্নে দেওয়া হলোঃ

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$

ইলেকট্রন বিন্যাস থেকে দেখা যাচ্ছে সালফারের যোজ্যতা ইলেকট্রন কারণ এর শেষ কক্ষপথে ৬টি ইলেকট্রন আছে এবং এর যোজনী ২ কারণ সালফার ২টি ইলেকট্রন গ্রহণ করলে সেটি স্থিতিশীল হবে। যেমনঃ SO_2 , H_2SO_4 ইত্যাদি। এইজন্য সালফারের যোজ্যতা ইলেকট্রন ও যোজনী ভিন্ন।

৬) অরবিট ও অরবিটাল বলতে কি বুঝো?

উত্তরঃ অরবিট হলো এমন একটি নির্দিষ্ট পথ যেই পথে ইলেকট্রন নিউক্লিয়াসকে প্রদক্ষণ করে। অরবিটাল হচ্ছে একটি ত্রিমাত্রিক স্থান যেখানে একটি ইলেকট্রন পাওয়ার সম্ভাবনা বেশি (সাধারণত ৯০ থেকে ৯৫ শতাংশ)। অরবিট হলো দ্বিমাত্রিক আকৃতি থাকে কিন্তু অরবিটাল বিভিন্ন জটিল আকৃতিতে থাকতে পারে (যেমনঃ s, p, d, f)

9) Ba কে মৃৎক্ষার ধাতু বলা হয় কেন? ব্যাখ্যা কর। উত্তরঃ $Ba(56) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2$

আমরা Ba এর ইলেকট্রন বিন্যাস থেকে দেখতে পাচ্ছি যে এর শেষ অরবিটাল হলো s এবং এই অরবিটালে দুইটি ইলেকট্রন আছে তাই এর গ্রুপ নাম্বার ২। আমরা জানি যে এর মৃৎক্ষার ধাতু ২ নাম্বার গ্রুপে থাকে। তাই Ba মৃৎক্ষার ধাতু।

৮) $\mathrm{H_2SO_4}$ এর আপেক্ষিক আণবিক ভর নির্ণয় করো।

উত্তরঃ আমরা জানি, হাইড্রোজেন, সালফার ও অক্সিজেনের আণবিক ভর যথাক্রমে, H=1, S=32, O=16 অতএব, H_2SO_4 এর আপেক্ষিক আণবিক ভর = $H_2SO_4=(1\times 2)$ + 32 + (4×16) = 98

[উত্তর]

দৃশ্যপটবিহীন (রচনামূলক) প্রশ্নের উত্তরঃ

১) পর্যায় সারণীর মূল ভিত্তি ইলেকট্রন বিন্যাস- ব্যাখ্যা করো।

উত্তরঃ 'পর্যায় সারণির মূল ভিত্তি ইলেকট্রন বিন্যাস' উক্তিটি যথার্থ।

ইলেকট্রন বিন্যাসের মাধ্যমে জানা যায় কোন মৌলের অবস্থান কোন পর্যায়ের কোন গ্রুপে আবার যে সকল মৌলের বাইরের প্রধান শক্তিস্তরের ইলেকট্রন বিন্যাস একই রকম তারা একই গ্রুপে অবস্থান করে এবং যে সকল মৌলের প্রধান শক্তিস্তরের ইলেকট্রন বিন্যাস ভিন্ন তারা ভিন্ন গ্রুপে অবস্থান করে। এছাড়াও, যে সকল মৌলের প্রধান শক্তিস্তর একই তারা একই পর্যায়ে থাকে এবং ভিন্ন হলে ভিন্ন পর্যায়ে থাকে। ইলেকট্রন বিন্যাসের মাধ্যমে পরমাণুর ধর্ম সম্পর্কে জানা যায়। যেমনঃ কোন মৌল ইলেকট্রন গ্রহণ করবে, কে ত্যাগ করবে, কারা ধাতু, কারা অধাতু, কারা অপধাতু, পরমাণুর আকার কেমন হবে, আয়নিকরণ শক্তি বা ইলেকট্রন আসক্তির মান কত হবে, তড়িং ঋণাত্মকতা কত হবে, যোজনী কত হবে......ইত্যাদি জানা যায় ইলেকট্রন বিন্যাসেই পর্যায় সারণির মূল ভিত্তি।

২) Na, Ca, Cl, Si, B মৌলগুলোকে আকারের ক্রমানুসারে সাজাও এবং সাজানোর কারণ ব্যাখ্যা কর।

উত্তরঃ Na, Ca, Cl, Si, B মৌলগুলোর ইলেকট্রন বিন্যাস করে পাই,

Na(11)→ 1s²2s²2p⁶3s¹, পর্যায়ঃ 8, গ্রুপঃ 1

Ca(20))→ 1s²2s²2p⁶3s²3p⁶4s², পর্যায়ঃ ৪, গ্রুপঃ ২

Cl(17) → 1s²2s²2p⁶3s²3p⁵, প্যায়ঃ 3, গ্রুপঃ ২ + ৫ + ১০ = ১৭

 $Si(14) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^2$, পর্যায়ঃ 3, গ্রুপঃ ২ + ২ + ১০ = ১৪

B→ 1s²2s²2p¹, পর্যায়ঃ ২, গ্রুপঃ ২ + ১ + ১০ = ১৩

আমরা জানি, একই পর্যায়ের বাম থেকে ডানে গেলে শক্তিস্তরের সংখ্যা বৃদ্ধি পায় না কিন্তু ইলেকট্রন ও প্রোটন সংখ্যা বৃদ্ধি পায়। যার ফলে আকর্ষণ বৃদ্ধি পায় এবং পরমাণুর আকার ছোট হয়ে যায়। আবার, একই গ্রুপের উপর থেকে নিচে গেলে ইলেকট্রন, প্রোটন সংখ্যা বাড়লেও এর ফলে পরমাণুর আকার যতটুকু কমে যায় একটি নতুন শক্তিস্তর যুক্ত হবার ফলে তার চেয়েও বেশি আকার বৃদ্ধি পায়। সুতরাং, এই তথ্যানুযায়ী পরমাণুর আকারের উর্ধ্বক্রম অনুসারে পরমাণুগুলোকে সাজালে পাই, B < Cl < Si < Na < Ca.

৩) Si, P, Cl মৌল তিনটির মধ্যে কার ইলেকট্রন আসক্তির মান বেশি? যুক্তিসহ বিশ্লেষণ কর।

উত্তরঃ গ্যাসীয় অবস্থায় কোন মৌলের পরমাণুতে একটি বাড়তি ইলেকট্রন সংযুক্ত করে ঋণাত্মক আয়নে পরিণত করা হলে যে পরিমাণ শক্তি নির্গত হয় সেটি হচ্ছে ঐ মৌলের ইলেকট্রন আসক্তি। আমরা জানি পর্যায় সারণির বাম থেকে ডানে গেলে এবং নিচ থেকে উপরে গেলে পরমাণু ব্যাসার্ধ কমে। পরমাণুর ব্যাসার্ধ বৃদ্ধি পেলে ইলেকট্রন আসক্তির মান হ্রাস পায়। কারণ, ব্যাসার্ধ বৃদ্ধি পেলে সর্ববহিঃস্থ শক্তিস্তর এবং নিউক্লিয়াসের মধ্যকার দূরত্ব বেড়ে যায়। ফলে নতুন করে আসা ইলেকট্রনকে ধরে রাখার

ক্ষমতা হ্রাস পায় ফলে ইলেকট্রন আসক্তির মানও হ্রাস পায়। এই কারণে পরমাণুর ব্যাসার্ধ কমলে ইলেকট্রন আসক্তির মান বাড়ে।

Si(14)→ 1s²2s²2p⁶3s²3p² প্যায়ঃ ৩, গ্ৰুপঃ ২ + ২ + ১০ = ১৪

P(15)→ 1s²2s²2p⁶3s²3p³ পর্যায়ঃ ৩, গ্রুপঃ ২ + ৩ + ১০ = ১৫

Cl(17)→ 1s²2s²2p⁶3s²3p⁵ পর্যায়ঃ ৩, গ্রুপঃ ২ + ৫ + ১০ = ১৭

এখানে দেখা যাচ্ছে, তিনটি মৌল একই পর্যায়ে রয়েছে এবং এদের মধ্যে সর্ব ডানে রয়েছে Si, তারপর P এবং সর্ব বামে Cl. সুতরাং পরমাণুবিক ব্যাসার্ধের উর্ধ্বক্রম অনুসারে সাজালে পাই, Cl>P>Si. যেহেতু, পারমাণবিক ব্যাসার্ধ কমলে ইলেকট্রন আসক্তির মান বাড়ে, তাই ইলেকট্রন আসক্তির মান সবচেয়ে বেশি Cl এরপর P এবং সবচেয়ে কম Si-এর।

৪) রাদার্ফোডের মডেল ও তার সীমাবদ্ধতা আলোচনা কর।

উত্তরঃ আর্নেস্ট রাদারফোর্ড ছিলেন নিউজিল্যান্ডের একজন পারমাণবিক পদার্থবিদ। যিনি ১৯১১ সালে প্রাথমিক আধুনিক পারমাণবিক মডেল আবিষ্কার করেছিলেন। নিম্নে তার পারমাণবিক মডেলের বৈশিষ্ট্য দেওয়া হলোঃ

i. একটি পরমাণুর ধনাত্মক চার্জ এবং পরমাণুটির অধিকাংশ ভর কেন্দ্রীয় পুঞ্জীভূত থাকে যাকে নিউক্লিয়াস বলে। নিউক্লিয়াস ভেতরে প্রোটন ও নিউক্লিয়াসের বাইরে ইলেকট্রন থাকে। যেহেতু আপেক্ষিকভাবে ইলেকট্রনের ভর অত্যন্ত কম, তাই নিউক্লিয়াসের অভ্যন্তরে অবস্থিত প্রোটন ও নিউট্রনের ভরই পরমাণুর ভর হিসেবে বিবেচনা করা হয়।

- ii. নিউক্লিয়াস অত্যন্ত ক্ষুদ্র এবং পরমাণু অভ্যন্তরে অধিকাংশ জায়গাই ফাঁকা।
- iii. কেন্দ্রের ধনাত্মক বা পজিটিভ চার্জের চারদিকে তার আকর্ষণ বলের কারণের জ্ঞাত্মক বা নেগেটিভ চার্জ বিশিষ্ট ইলেকট্রন ঘূর্ণায়মান থাকে। নিউক্লিয়াসকে কেন্দ্র করে ইলেকট্রনের এইভাবে ঘূর্ণনকে তিনি সৌরজগতে সূর্যের চারদিকে গ্রহগুলোর ঘূর্ণায়মান অবস্থার সঙ্গে তুলনা করেন। অর্থাৎ, ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে বিভিন্ন কক্ষপথে ঘুরছে।

সীমাবদ্ধতাঃ পরমাণুর কেন্দ্রে অত্যন্ত ক্ষুদ্র একটি নিউক্লিয়াসের অন্তিত্বের ধারণাটি পরমাণুর গঠনের একটি যুগান্তকারী পদক্ষেপ হলেও সেটি পূর্ণাঙ্গভাবে পরমাণুর গঠন ব্যাখ্যা করতে পারেনি। তখন পর্যন্ত কোয়ান্টাম মেকানিক্স গড়ে উঠেনি বলে তার মডেল পরমাণুর স্থিতিশীলতা ব্যাখ্যা করতে পারেনি। এই মডেলে ধরে নেওয়া হয়েছে যে নিউক্লিয়াসকে ঘিরে ইলেকট্রন ঘূর্ণায়মান থাকে কিন্তু ম্যাক্সওয়েলের তত্ত্ব (Maxwell's theory) অনুযায়ী ইলেকট্রন নিউক্লিয়াসকে কেন্দ্র করে ঘূর্ণনের সময় ক্রমাণত শক্তি হারাতে থাকবে। ফলে ইলেকট্রনের ঘূর্ণনপথও ছোটো হতে থাকবে এবং এক সময় সেটি নিউক্লিয়াসে পড়ে যাবে।

৫) বোর মডেল ও তার সীমাবদ্ধতা লিখ।

উত্তরঃ ১৯১৩ খ্রিষ্টাব্দে বিজ্ঞানী নীলস বোর (Niels Bohr) রাদারফোর্ড পরমাণু মডেলের সীমাবদ্ধতাগুলো সমাধান করে একটি পরমাণু মডেল প্রস্তাব করেছিলেন। তখন কোরান্টাম মেকানিক্সের প্রাথমিক ধারণাগুলো বিজ্ঞানীরা জানতে শুরু করেছিলেন এবং সেগুলো ব্যবহার করে এই মডেলটি দেওয়া হয়েছিল। বোরের পরমাণু মডেলের প্রধান বৈশিষ্ট্যগুলো হলোঃ

- i. পরমাণুতে থাকা ইলেকট্রনগুলো নিউক্লিয়াসকে কেন্দ্র করে ইচ্ছেমতো যে কোনো কক্ষপথে ঘুরতে পারে না, শুধু নির্দিষ্ট ব্যাসার্ধের কতগুলো অনুমোদিত বৃত্তাকার কক্ষপথে ঘুরে থাকে। এই স্থিতিশীল কক্ষপথে ঘোরার সময় ইলেকট্রনগুলো কোনো শক্তি শোষণ বা বিকিরণ করে না।
- ii. এই স্থিতিশীল কক্ষপথকে n সংখ্যা দিয়ে প্রকাশ করা হয়, যেখানে n -এর মান 1, 2, 3, 4... ইত্যাদি। এই কক্ষপথগুলাকে K, L, M, N শেল (shell) হিসেবেও বলা বলা হয় (চিত্র ৫.৩)। এগুলোকে কক্ষপথ বা শক্তিস্তর হিসেবেও ব্যাখ্যা করা হয়। উল্লেখ্য যে, শক্তিস্তরে n -এর মান কম সেটিকে নিম্ন শক্তিস্তর বলা হয়। আর n-এর মান বেশি হলে সেটি উচ্চ শক্তিস্তর হিসেবে পরিচিত।

iii. কোনো প্রধান শক্তিস্তরে ইলেকট্রনের ঘূর্ণনের সময় কোনো শক্তি শোষিত বা বিকিরিত হয় না। বাইরে থেকে শক্তি প্রদান করা হলে সেই শক্তি শোষণ করে ইলেকট্রন নিম্ন শক্তিস্তর থেকে উচ্চ শক্তিস্তরে যায় (চিত্র ৫.৪)। আবার যদি ইলেকট্রন উচ্চ শক্তিস্তর থেকে নিম্ন শক্তিস্তরে যায়, তখন শক্তি বিকিরিত হয়। এই শোষিত বা বিকিরিত শক্তির পরিমাণ (ΔE) যেটি দুটি শক্তিস্তরের (E_1, E_2) শক্তির মধ্যে পার্থক্যের সমান এবং এটি প্লাঙ্কের সমীকরণ দ্বারা নির্ধারিত হয়। সমীকরণটি এরকমঃ $\Delta E = E_2 - E_1 = hv$. এখানে, ΔE হচ্ছে শোষিত বা নির্গত শক্তি, h হচ্ছে প্লাঙ্কের ধ্রুবক $6.626 \times 10^{-34} \, \mathrm{m}^2 \mathrm{kg/s}$), v হচ্ছে নির্গত বা শোষিত ইলেট্রোম্যাগনেটিক বিকিরণের ফ্রিকোয়েন্সি।

সীমাবদ্ধতাঃ বোর পরমাণু মডেলের অসামান্য সাফল্য থাকলেও তার কিছু সীমাবদ্ধতা ছিল। এটি এক ইলেকট্রন বিশিষ্ট পরমাণুর পারমাণবিক বর্ণালি ব্যাখ্যা করতে পারলেও একাধিক ইলেকট্রন বিশিষ্ট পরমাণুর ক্ষেত্রে পারমাণবিক বর্ণালি ব্যাখ্যা করতে পারছিল না। বোরের পরমাণু মডেল অনুযায়ী ইলেকট্রন যদি এক শক্তিস্তর থেকে অন্য আরেকটি শক্তিস্তরে গমন করে, তাহলে নির্দিষ্ট পরিমাণ শক্তির কারণে পারমাণবিক বর্ণালিতে একটিমাত্র রেখা পাওয়ার কথা কিন্তু পরীক্ষা করে দেখা যায় যে, প্রত্যেকটি রেখা আসলে অনেকগুলো ক্ষুদ্র ক্ষুদ্র রেখার সমষ্টি, অর্থাৎ একটি মাত্র নির্গত শক্তি না থেকে কাছাকাছি ভিন্ন ভিন্ন কিছু শক্তি রয়েছে যার কোনো ব্যাখ্যা নেই।

৬) নাইট্রোজেন কীভাবে একক বন্ধন, দ্বি-বন্ধন ও ত্রি-বন্ধন তৈরি করতে পারে? বন্ধন গঠন দেখিয়ে ব্যাখ্যা কর। উত্তরঃ নাইট্রোজেনের একক বন্ধন, দ্বি-বন্ধন ও ত্রি-বন্ধন বন্ধনের উদাহরণগুলো যথাক্রমে NH_3 , NO_2 ও $N\equiv N$.

নাইট্রোজেনের একক বন্ধনঃ NH3 (অ্যামোনিয়া) এর মধ্যে হাইড্রোজেন পরমাণুসমূহ নাইট্রোজেন এর সাথে এক বন্ধন বা একক বন্ধন গঠন করেছে। এটি হলো একটি একক সমযোজী বন্ধন। যখন দুই বা ততোধিক মৌল ইলেকট্রন ভাগাভাগি করে যৌগ গঠন করে তখন তাকে সমযোজী বন্ধন বলে। এখানে তিনটি হাইড্রোজেন পরমাণু নাইট্রোজেনের শেষ কক্ষপথের ইলেকট্রনের মধ্যে ইলেকট্রন ভাগাভাগি করে হিলিয়ামের মত ইলেকট্রন বিন্যাস অর্জন করে স্থিতিশীল হতে চায়। অন্যদিকে,

নাইট্রোজেন তিনটি হাইড্রোজেনের তিনটি ইলেকট্রন ভাগাভাগি করে সে স্থিতিশীলতা অর্জন করে। ফলে NH_3 (অ্যামোনিয়া) তৈরি হয়। নাইট্রোজেনের দ্বি-বন্ধনঃ নাইট্রোজেন (N) ও অক্সিজেন (O) পরমাণুর মধ্যে সিরবেশ (covalent bond) সমযোজী (coordinate covalent) বন্ধন গঠিত হতে পারে। নাইট্রোজেনের শেষ কক্ষপথে মোট পাঁচটি ইলেকট্রন থাকে। যখন নাইট্রোজেন অক্সিজেনের সাথে বন্ধন গঠন করে, তখন অক্সিজেন তার ইলেকট্রনের সাহায্যে নাইট্রোজেনের সঙ্গে শেয়ার করে। অক্সিজেনের একে অপরের সঙ্গে যুক্ত হওয়ার জন্য,

নাইট্রোজেন দুটি ইলেকট্রন শেয়ার করে এবং অক্সিজেনের পরমাণু দুটি ইলেকট্রন শেয়ার করে। এটি একটি ডবল বন্ধন (দিবন্ধন/ double bond) গঠন করে, যেখানে একটি পরমাণু দুটি ইলেকট্রন ভাগাভাগি করে অন্য পরমাণুর সঙ্গে। এর ফলে, দুইটি অক্সিজেন পরমাণু এবং একটি নাইট্রোজেন পরমাণু একে অপরের সাথে শক্তিশালী বন্ধনে আবদ্ধ হয়।

আরেকটি গুরুত্বপূর্ণ দিক হল যে, সমযোজী বন্ধনে এক বা একাধিক পরমাণু তাদের ইলেকট্রন শেয়ার করে, এবং একে অপরের মধ্যে একটি স্থিতিশীল কণিকা তৈরি করে।

নাইট্রোজেনের ত্রি-বন্ধনঃ যখন কোনো মৌল বন্ধনে অংশগ্রহণকারী দুটি পরমাণুর প্রত্যেকটি থেকে তিনটি করে ইলেকট্রন মিলে মোট তিনটি ইলেকট্রন জোড় সৃষ্টি করে তখন তাকে ত্রি-বন্ধন বলে। এইজন্য নাইট্রোজেন ত্রি-বন্ধন ।

দৃশ্যপটনির্ভর (রচনামূলক) প্রশ্নের উত্তরঃ

(د

ক) Y ও P যৌগদ্বয় উভয়ে কী পানিতে দ্রবীভূত হবে? পানিযোজন দেখিয়ে ব্যাখ্যা কর। উত্তরঃ

$$_{20}Z$$
, $_{6}R$

$$Y = Z + Cl_2$$

$$P = R + H_2$$

আমরা জানি, Ca এর পারমাণবিক সংখ্যা = 20 এবং C এর পারমাণবিক সংখ্যা = 6

$$\therefore {}_{20}Z = Ca$$
 এবং $C = {}_{6}R$

 \therefore Y হলো Ca ও Cl_2 এর যৌগ, Y \rightarrow $Ca+Cl_2$ এবং P হলো C ও H_2 এর যৌগ, $P=C+2H_2=CH_4$

 ${
m CaCl_2}$ এবং ${
m CH_4}$ যৌগ দুটি তাদের রাসায়নিক প্রকৃতির কারণে পানিতে ভিন্নভাবে দ্রবীভূত হয়। ${
m CaCl_2}$ একটি আয়নিক যৌগ, যা ${
m Ca^{2+}}$ ও ${
m Cl^{-}}$ আয়নের সমন্বয়ে গঠিত। পানিতে দ্রবীভূত হলে, ${
m CaCl_2}$ আয়নে বিভক্ত হয়ে যায় এবং পানির মতো মেরু অণুগুলো আয়নসমূহের চারপাশে পানিযোজন স্তর তৈরি করে। অন্যদিকে, ${
m CH_4}$ একটি অমেরু যৌগ এবং এতে পানির মতো মেরু দ্রাবকের সাথে আকর্ষণ সৃষ্টি করার ক্ষমতা নেই। পানির মেরু অণুগুলো মিথেনের অমেরু অণুগুলোর প্রতি আকৃষ্ট না হওয়ায় ${
m CH_4}$ পানিতে দ্রবীভূত হয় না। সুতরাং, ${
m CaCl_2}$ পানিতে দ্রবীভূত হবে কারণ এটি আয়নিক যৌগ এবং মেরু দ্রাবকের সাথে শক্তিশালী আকর্ষণ গঠন করতে পারে। বিপরীতে, ${
m CH_4}$ একটি অমেরু যৌগ হওয়ায় পানির সাথে এমন কোনো আকর্ষণ গঠন করতে পারে না এবং দ্রবীভূত হয় না।

খ) উদ্দীপকের X ও Q যৌগদ্বয়ের বন্ধন গঠনের মধ্যে কোন পার্থক্য আছে কী? যুক্তিসহ বিশ্লেষণ কর।

উত্তরঃ 'ক' হতে পাই, Z অবস্থানের মৌলটি Ca এবং R অবস্থানের মৌলটি C.

চিত্রমতে,
$$X \rightarrow Z + H_2 = Ca + H_2 = CaH_2$$
 এবং $Q \rightarrow R + O_2 = C + O_2 = CO_2$

 ${
m CaH_2}$ এবং ${
m CO_2}$ যৌগ দুইটির বন্ধন গঠনের মধ্যে পার্থক্য রয়েছে। ${
m CaH_2}$ একটি আয়নিক যৌগ, যেখানে, ধাতু হিসেবে ইলেক্ট্রন হারিয়ে ${
m Ca^{2+}}$ এবং ${
m H}$ সেই ইলেক্ট্রন গ্রহণ করে ${
m H^-}$ আয়ন গঠন করে। এই আয়ন গুলোর মধ্যে বৈদ্যুতিক আকর্ষণ শক্তিশালী আয়নিক বন্ধন গঠন করে, যা ${
m CaH_2}$ এর স্থিতিশীলতায় সহায়তা করে। অন্যদিকে, ${
m CO_2}$ একটি সমযোজী যৌগ। এখানে ${
m C}$ ও ${
m O}$ পরমাণুগুলো তাদের শেষ কক্ষপথের ইলেক্ট্রন ভাগ করে নেয়। কার্বন ও অক্সিজেনের পরমাণুগুলোর মধ্যে দিবন্ধন গঠিত হয়। এই বন্ধনগুলো ইলেক্ট্রন ভাগাভাগি করে গঠিত হয়, তাই এটি আয়নিক বন্ধন নয়। সুতরাং, ${
m CaH_2}$ আয়নিক ও ${
m CO_2}$ সমযোজী বন্ধন দারা গঠিত। এই পার্থক্যের কারণে তাদের বিভিন্ন বৈশিষ্ট্য (যেমন-দ্রবণীয়তা, গলনাংক) ভিন্ন হয়।

ক) D আয়নিক ও সমযোজী উভয় ধরনের যৌগ গঠন করলেও B কখনও আয়নিক বন্ধন গঠন করে না- যুক্তিসহ ব্যাখ্যা কর।

উত্তরঃ আমরা জানি, 9 পারমাণবিক সংখ্যাবিশিষ্ট মৌল হলো ফ্লোরিন এবং 6 পারমাণবিক সংখ্যাবিশিষ্ট মৌল হলো কার্বন।

: D হলো ফ্লোরিন এবং B হলো কার্বন।

ফ্লোরিন আয়নিক ও সমযোজী উভয় ধরণের যৌগ গঠন করতে পারে, কারণ এতে সাতটি বাহ্যিক ইলেক্ট্রন থাকে এবং একটি ইলেক্ট্রন গ্রহণ করে এটি স্থিতিশীল হতে পারে। ধাতুর সাথে ফ্লোরিন আয়নিক বন্ধন (যেমনঃ NaF) গঠন করতে পারে। আবার, অধাতুর সাথে ইলেক্ট্রন ভাগাভাগি করে সমযোজী বন্ধন (যেমনঃ F_2) গঠন করতে পারে।

বিপরীতদিকে, কার্বন আয়নিক বন্ধন গঠন করতে অক্ষম। কেননা, কার্বনের শেষ কক্ষপথে ৪টি ইলেক্ট্রন বিদ্যমান, যা হারানো বা গ্রহণ করা সহজ ব্যাপার নয়। ৪টি ইলেক্ট্রন হারালে কার্বন বেশ অস্থিতিশীলতায় পরে যাবে এবং ৪টি ইলেক্ট্রন গ্রহণ করলেও সে সমস্যার সম্মুখীন হবে। এ কারণেও কার্বন সাধারণত শুধুমাত্র সমযোজী বন্ধন গঠন করে। সুতরাং, কার্বনের ইলেক্ট্রন বিন্যাসের কারণে এটি শুধুমাত্র সমযোজী বন্ধন গঠন করে। F এর ক্ষেত্রে ইলেক্ট্রন গ্রহণ ও শেয়ার উভয়ই সম্ভব হওয়ায় এটি দুই ধরনের যৌগ গঠন করতে পারে।

খ) BC_2 ও AC_2 অণুর গঠন ব্যাখ্যায় দুই এর নিয়ম এবং অষ্টকের নিয়ম বিশ্লেষণ কর।

উত্তরঃ আমরা জানি, 1 পারমাণবিক সংখ্যাবিশিষ্ট মৌল হলো হাইড্রোজেন, 6 পারমাণবিক সংখ্যাবিশিষ্ট মৌল হলো কার্বন, 8 পারমাণবিক সংখ্যাবিশিষ্ট মৌল হলো অক্সিজেন। ∴ A হলো H (হাইড্রোজেন), B হলো C (কার্বন) এবং C হলো O (অক্সিজেন)।

 ${
m CO}_2$ এবং ${
m H}_2{
m O}$ অণুর গঠন ব্যাখ্যায় 'দুই এর নিয়ম' ও 'অষ্টকের নিয়ম' গুরুত্বপূর্ণ। দুইয়ের নিয়ম ${
m H}$ -এর ক্ষেতে প্রযোজ্য, যেখানে এটি একটি বন্ধনে দুটি ইলেক্ট্রন পেয়ে স্থিতিশীল হয়। ${
m CO}_2$ ও ${
m H}_2{
m O}$ উভয়ই এই নিয়ম অনুযায়ী ইলেক্ট্রন ভাগাভাগি করে স্থিতিশীলতা অর্জন করে।

অন্যদিকে অষ্টকের নিয়ম অনুসারে অধিকাংশ পরমাণু তাদের বাইরের কক্ষপথে ৮টি ইলেক্ট্রন নিয়ে স্থিতিশীল হতে চায়। H_2O অণুতে O চারটি বন্ধনী ইলেক্ট্রন পায় এবং স্থিতিশীলতা অর্জন করে। CO_2 অণুতে কার্বন পরমাণুও অষ্টকের সূত্র অনুসরণ করতে চায়। কিন্তু এই নির্দিষ্ট ক্ষেত্রে দুটি O যুক্ত থাকে, তবুও অন্য যৌগগুলোর মাধ্যমে কার্বন অষ্টক পূরণ করতে সক্ষম হয়।

৩) মনে কর X, Y, Z হলো তিনটি মৌল যার পারমাণবিক সংখ্যা যথাক্রমে ২৬, ২০ এবং ১৬।

ক) ইলেকট্রনিক কনফিগারেশন ব্যবহার করে পর্যায় সারণিতে X, Y এবং Z মৌলের অবস্থান নির্ণয় কর।

উত্তরঃ আমরা জানি, 26 পারমাণবিক সংখ্যা হলো Fe-এর, 20 পারমাণবিক সংখ্যা হলো Ca-এর এবং 16 পারমাণবিক সংখ্যা হলো S-এর।∴ X = Fe, Y = Ca এবং Z = S. এখন, ইলেক্ট্রন বিন্যাস করে পাই,

 $S(16) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^4$

 $\text{Ca(20)} \rightarrow 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^2, \ \text{Fe(26)} \rightarrow 1\text{s}^22\text{s}^22\text{p}^63\text{s}^23\text{p}^64\text{s}^23\text{d}^6$

কোনো মৌলের শেষ কক্ষপথের সংখ্যা দ্বারা নির্ধারিত হয় সেই পর্যায়। সুতরাং, S ৩য় পর্যায়ের ও Ca এবং Fe ৪র্থ পর্যায়ে অবস্থিত।

কোনো মৌলের ইলেক্ট্রন বিন্যাসের শেষে শুধু অরবিটাল s থাকলে ঐ অরবিটালের ইলেক্ট্রন সংখ্যাই ওই মৌলের গ্রুপ সংখ্যা। সুতরাং, Ca ২য় গ্রুপের।

কোনো মৌলের ইলেট্রন বিন্যাসের শেষে s ও p অরবিটাল থাকলে এ দুটির সংখ্যার সমষ্টির সাথে 10 যোগ করলে সে মৌলের গ্রুপ সংখ্যা পাওয়া যায়। সুতরাং, S-এর অবস্থান = ২ + 8 + ১০ = ১৬ তম গ্রুপে।

এবং s অরবিটালের আগে d অরবিটাল থাকলে এ দুটির ইলেক্ট্রন সংখ্যার সমষ্টিই এর গ্রুপ নির্ধারণ করে। .. Fe-এর = ২ + ৬ = ৮ম গ্রুপে।

খ) উপরের মৌলগুলোর আয়নীকরণ শক্তি তুলনা করে যুক্তিসহ ব্যাখ্যা কর।

উত্তরঃ Fe, Ca ও S মৌলগুলোর আয়নীকরণ শক্তি তাদের ইলেক্ট্রন বিন্যাস ও পর্যায় সারণিতে অবস্থানের উপর ভিত্তি করে এবং তাদের মধ্যে পার্থক্য রয়েছে। আয়নীকরণ শক্তি হলো সেই শক্তি যা একটি নিরপেক্ষ পরমাণু থেকে ১টি ইলেক্ট্রন অপসারণ করতে প্রয়োজন হয়। S অধাতু এবং তৃতীয় পর্যায়ে এর অবস্থান। অধাতু হওয়ায় এর শেষ কক্ষপথে বেশী ইলেক্ট্রন থাকে এবং

তাই ইলেক্ট্রন অপসারণ করতে বেশী শক্তির প্রয়োজন হয়। Ca (২য় গ্রুপে অবস্থিত) ধাতব মৌল হওয়ায় এর আয়নিকরণ শক্তি কম। কেননা ইলেক্ট্রন দূরে থাকায় নিউক্লিয়াসের আকর্ষণ কমে যায় এবং Fe অবস্থান্তর মৌল হওয়ায় তা এদের মধ্যে অবস্থান করে। সূতরাং, আয়নীকরণ শক্তি অনুক্রম হলোঃ S>Fe>Ca

- 8) একটি মৌলে ১৯ টি প্রোটন, ২০ টি নিউট্রন এবং ১৯ টি ইলেকট্রন রয়েছে।
- ক) মৌলটির সর্বশেষ ইলেকট্রনটি 3d তে প্রবেশ না করে 4s এ প্রবেশ করে কেন?

উত্তরঃ ১৯ পারমাণবিক সংখ্যা হলো K-এর। এর ইলেক্ট্রন বিন্যাস, $K(19) o 1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^1$

এখানে, সর্বশেষ ইলেক্ট্রন 3d অরবিটালে না গিয়ে 4s এ প্রবেশ করে। এর প্রধান কারণ হলো 4s অরবিটালের শক্তিস্তর 3d এর চেয়ে কম। শক্তির কম অবস্থানে থাকার কারণে ইলেক্ট্রনের প্রথমে 4s-এ প্রবেশ ঘটে। ইলেক্ট্রন সবসময় কম শক্তির অবস্থানে স্থিতিশীল থাকার চেষ্টা করে, তাই 3d এর পরিবর্তে 4s অরবিটাল পূরণ হয়।

খ) মৌলটির পারমাণবিক ভর এবং আপেক্ষিক পারমাণবিক ভর নির্ণয় কর।

উত্তরঃ ?

- ৫) 35 X, 37 X ও 39 X হলো X মৌলের তিনটি আইসোটোপ। 37 X আইসোটোপটির শতকরা পর্যাপ্ততা 24% এবং X মৌলটির আপেক্ষিক পারমানবিক ভর 35.5। অন্য তিনটি মৌল হলো 29 A, 24 B ও 30 C ।
- ক) উদ্দীপকের 35 X ও 39 X আইসোটোপ দুটির শতকরা পর্যাপ্ততা নির্ণয় কর।

উত্তরঃ দেওয়া আছে, আপেক্ষিক পারমাণবিক = 35.5 u, ³⁷X আইসোটোপের শতকরা পর্যাপ্ততা = 24%

ধরি, 35 X আইসোটোপের শতকরা পর্যাপ্ততা = x% এবং 39 X আইসোটোপের শতকরা পর্যাপ্ততা = (100 - x - 24)% = (76-x)%

আমরা জানি, আপেক্ষিক পারমাণবিক ভর =
$$\frac{35x+37\times24+39(76-x)}{100}$$
 \Rightarrow $35.5 = \frac{-4x+3852}{100}$ \Rightarrow $-4x = -302$ \Rightarrow $x = 75.5$

∴ ³⁵X আইসোটোপের শতকরা পর্যাপ্ততা = 75.5% এবং ³⁹X আইসোটোপের শতকরা পর্যাপ্ততা = (76-75.5)% = 0.5%

খ) উদ্দীপকের কোন গুলোর ইলেকট্রণ বিন্যাস স্বাভাবিক নিয়মে করা যায় না- যুক্তিসহ বিশ্লেষণ কর।

উত্তরঃ ²⁹A = Cu, ²⁴B = Cr, ³⁰C = Zn. এখানে, Cu ও Cr এর ইলেকট্রন বিন্যাসে কিছু ব্যাতিক্রম ঘটে। এই মৌলগুলোর ইলেকট্রন বিন্যাস নিম্নে দেওয়া হলোঃ

স্বাভাবিক নিয়মে, Cr(24)→ 1s²2s²2p63s²3p64s²3d4

প্রকৃতপক্ষে, $Cr(24) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^5$

স্বাভাবিক নিয়মে, Cu(29)→ 1s²2s²2p63s²3p64s²3d9

প্রকৃতপক্ষে, $Cu(29) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1 3d^{10}$

 $Zn(30) \rightarrow 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}$

Cr-এর ক্ষেতে অরবিটালগুলো অর্থ-পূর্ণ হয়ে যায়, কেননা এটি একটি স্থিতিশীল কনফিগারেশন হিসেবে বিবেচিত। এই অর্ধ-পূর্ণ বিন্যাস শক্তি কমিয়ে আরও স্থিতিশীল অবস্থা তৈরি করে।

Cu-এর ক্ষেত্রে 3d পূর্ণ হয়েছে, কেননা এটি বেশি স্থিতিশীল। তাই, 4_S অরবিটালের ইলেক্ট্রন 3d তে যায় এবং সেটি পূর্ণ হয়ে স্থিতিশীলতা বাড়ায়। এজন্য Cu-এর ইলেক্ট্রন বিন্যাসেও পরিবর্তন ঘটে।

অপরদিকে, Zn একটি নিজ্ঞিয় মৌল। এ- কারণে এটি পূর্ণ, স্থিতিশীল ও এর ইলেক্ট্রন বিন্যাসে কোনো ব্যতিক্রম নেই। সুতরাং, Cu ও Cr স্থিতিশীলতার জন্য ব্যতিক্রম ঘটায়, কিন্তু Zn নিজ্ঞিয় হওয়ায় কোনো ব্যতিক্রম ঘটে না।

সংক্ষিপ্ত প্রশ্নের উত্তরঃ (প্রতি উত্তরে নম্বর ২)

জীববিজ্ঞান অংশঃ

১) বংশগতি ও জিনতত্ব বলতে কি বুঝায়?

উত্তরঃ এক প্রজন্ম থেকে আরেক প্রজন্মে মাতা-পিতার বৈশিষ্ট্য স্থানান্তরের প্রক্রিয়া বংশগতি নামে পরিচিত বংশগতির মৌলিক একক হলো জিন।

বিজ্ঞানের যে শাখায় জ্বীনের গঠন নিয়ন্ত্রণ প্রকাশ কার্য পদ্ধতি ও তার বংশানুক্রমিক সঞ্চালক পদ্ধতি ও ফলাফল নিয়ে আলোচনা করা হয় তাকে জিনতত্ব বলে।

২) অ্যালিল বলতে কি বুঝায়?

উত্তরঃ প্রতিটি স্বতন্ত্র উদ্ভিদের প্রত্যেকটি জিনের দুটি করে প্রতিরূপ আছে যার একটি পিতা এবং অন্যটি মাতার কাছ থেকে আসে এবং জিনের এই প্রতিরূপ দুটিকে অ্যালিল বলে।

৩) প্রকট ও প্রচ্ছন্ন জিন বলতে কি বুঝায়?

উত্তরঃ হেটারোজাইগাস জীবের ভিন্ন অ্যালাইল দুটির যে অ্যালাইলটির বৈশিষ্ট্য প্রকাশিত হয় (অর্থাৎ ফিনোটাইপে প্রাধান্য বিস্তার করে) সেটি প্রকট জিন বলে।

যে জিনটি জীবের বাহ্যিক বৈশিষ্ট্যে (বা ফিনোটাইপে) প্রকাশিত হয় না তাকে প্রচ্ছন্ন জিন বলে।

8) জিনাটাইপ ও ফিনোটাইপ বলতে কি বুঝায়?

উত্তরঃ কোনো নির্দিষ্ট জীবের অ্যালিলগুলোকে তার জিনোটাইপ এবং দৃশ্যমান বাহ্যিক বৈশিষ্ট্যগুলোকে তার ফিনোটাইপ বলে।

ক্যাট ও তেল একই পদার্থের ভিন্নরূপ- ব্যাখ্যা কর।

উত্তরঃ ফ্যাট ও তেল উভয়ই লিপিড জাতীয় পদার্থ। স্বাভাবিক তাপমাত্রার কিছু লিপিড কঠিন এবং কিছু লিপিড তরল অবস্থায় থাকে। ফ্যাট স্বাভাবিক তাপমাত্রায় কঠিন অবস্থায় থাকে। অন্যদিকে, তেল স্বাভাবিক তাপমাত্রায় তরল অবস্থায় থাকে। সুতরাং বলা যায়, ফ্যাট ও তেল একই পদার্থের ভিন্নরূপ।

৬) কার্বনকে পৃথিবীতে জীবনের ভিত্তি বলা হয় কেন? উত্তরঃ আমরা জানি, ২৫টিরও বেশি মৌলিক পদার্থ নিয়ে জৈব অণু গঠিত হয়। এদের মধ্যে কার্বন, হাইড্রোজেন, নাইট্রোজেন, অক্সিজেন, ফসফরাস ও সালফার এই ছয়টি সাধারণ উপাদান হিসেবে বিবেচিত। এই সাধারণ উপাদানের ৬টি পরমাণুর মধ্যে কার্বন পরমাণু সবচেয়ে গুরুত্বপূর্ণ। তাই কার্বনকে পৃথিবীতে জীবনের ভিত্তি বলা হয়।

৭) পেপটাইড বন্ড কিভাবে গঠিত হয়? উত্তরঃ একটি অ্যামিনো অ্যাসিডের কার্বোক্সিল গ্রুপ পরবর্তী অ্যামিনো অ্যাসিডের আলফা অ্যামিনো গ্রুপের সঙ্গে যুক্ত হয়ে পেপটাইড বন্ড তৈরি করে।

৮) মানুষ ঘাস হজম করতে পারে না কেন?

উত্তরঃ মানুষ সরাসরি ঘাস হজম করতে পারে না কারণ আমাদের পরিপাকতন্ত্রে সেলুলোজ ভাঙ্গার জন্য প্রয়োজনীয় এনজাইমের অভাব রয়েছে, যা উদ্ভিদ কোষের বদয়ালের প্রধান উপাদান এবং ঘাসের একটি প্রধান উপাদান। সেলুলোজ হলো একটি জটিল কার্বাহাইড্রেট যার জন্য বিশেষ এনজাইমের প্রয়োজন হয়, যা সাধারণত গরু এবং অন্যান্য তৃণভোজী প্রাণীদের মধ্যে পাওয়া যায়, যাতে এটি সহজ শর্করাতে ভেঙে যায়।

দৃশ্যপটবিহীন (রচনামূলক) প্রশ্নের উত্তরঃ

১) মেভেলের প্রথম সূত্র ব্যাখ্যা কর।

উত্তরঃ মেন্ডেলের গবেষণার পুনরাবিষ্কার প্রকাশ করার মধ্য দিয়ে কার্ল করেন্স মেন্ডেলের আবিষ্কারকে বংশগতির দুটি সূত্র হিসেবে উপস্থাপনের যোগ্য বলে প্রচার করেন। সূত্রদুটি মেন্ডেপের গবেষণার উপর ভিত্তি করে রচিত হওয়ায় সূত্রদুটি মেন্ডেলের দুটি সূত্র নামে পরিচিত। নিচে মেডেলের প্রথম সূত্র ব্যাখ্যা করা হলো।

সূত্রঃ সংকর জীবে বিপরীত লক্ষণের ফ্যাক্টরগুলো (জিনগুলো) মিশ্রিত বা পরিবর্তিত না হয়ে পাশাপাশি অবস্থান করে এবং জননকোষ সৃষ্টির সময় পরক্ষার থেকে পৃথক হয়ে যায়।

ব্যাখ্যাঃ মনেকরি, লম্বা মটরশুঁটির জন্য দায়ী জিন হচ্ছে T এবং খাঁটো মটরশুঁটির জন্য দায়ী জিন হচ্ছে t. কাজেই বিশুদ্ধ লম্বা মটরশুঁটি গাছের অ্যালিল দুটি হবে TT এবং বিশুদ্ধ খাঁটো মটরশুঁটি গাছের অ্যালিল দুটি হবে tt। এই দুটি অ্যালিল একই রকম হওয়ায় এগুলো হোমোজাইগাস। F_1 হচ্ছে প্রথম প্রজন্ম এবং F_2 হচ্ছে দ্বিতীয় প্রজন্ম।

বিশুদ্ধ সম্বন্ধ মটরশুঁটি গাছের সঙ্গে বিশুদ্ধ খাটো মটরশুটি গাছের সংকরায়ণ করলে দুটি গাছের পরাগায়নের সময় লম্বা গাছের T অ্যালিল খাটো গাছের t অ্যালিলের সঙ্গে যুক্ত হয়ে অপত্য গাছের অ্যালিল দুটি হবে Tt এবং আর কিছু হওয়া সম্ভব নয়। যেহেতু লম্বা গাছের অ্যালিল T প্রকট শুণসম্পন্ন তাই F_1 , বংশধরের সকল অপত্য মটরশুঁটি গাছের কাণ্ড হবে লম্বা। উভয় জিন দীর্ঘকাল একসঙ্গে থাকলেও বিনম্ভ বা একীভূত হয়ে যায় না বরং স্বকীয়তা বজায় রেখে অক্ষুপ্ন থাকে।

 F_1 প্রজন্মের গাছগুলো নিজেদের ভেতর পরাগায়ন করা হলে F_2 , প্রজন্মের সম্ভাব্য জিনোটাইপগুলো হবে 2 TT, Tt, tT, tt. T প্রকট অ্যালিল হওয়ার কারণে TT, Tt, tT গাছগুলো হবে লম্বা এবং tt গাছটি হবে খাটো। অন্যভাবে বলা যায় প্রকাশিত বৈশিষ্ট্য বা ফিনোটাইপের ভিত্তিতে F_2 প্রজন্মের মাঝে লম্বা এবং খাটো গাছের অনুপাত যথাক্রমে 3:1।

২) কার্বহাইড্রেড কি? এর শ্রেণিবিন্যাস ও এর শারীরবৃত্তীয় ভূমিকা বর্ণনা কর।

উত্তরঃ কার্বোহাইড্রেট হলো এমন জৈব যৌগ, যা মূলত কার্বন, হাইড্রোজেন এবং অক্সিজেন দ্বারা গঠিত। সাধারণত এর সাধারণ সূত্র $(CH_2O)_n$ দ্বারা প্রকাশিত হয়, যেখানে n এক বা একাধিক হতে পারে। এটি জীবদের মধ্যে প্রধানত শক্তি সরবরাহকারী খাদ্য হিসেবে পরিচিত।

কার্বোহাইড্রেটের শ্রেণিবিন্যাসঃ

কার্বোহাইড্রেটকে প্রধানত তিনটি শ্রেণিতে ভাগ করা যায়ঃ

i. মোনোস্যাকারাইডস (Monosaccharides):

- একক কার্বোহাইড্রেট অণু যা সরল শর্করা হিসেবে পরিচিত।
- উদাহরণ: গ্লুকোজ, ফ্রুক্টোজ, গ্যালাক্টোজ।
- মিষ্টি স্বাদযুক্ত এবং দ্রবণীয়।

ii. ডাইস্যাকারাইডস (Disaccharides):

- দুটি মোনোস্যাকারাইড অণুর মধ্যে গঠিত।
- উদাহরণ: সুক্রোজ (গ্লুকোজ + ফ্রুক্টোজ), ল্যাক্টোজ (গ্লুকোজ + গ্যালাক্টোজ), মল্টোজ (গ্লুকোজ + গ্লুকোজ)।
- সাধারণত মিষ্টি স্বাদযুক্ত।

iii. পলিস্যাকারাইডস (Polysaccharides):

- বহু মোনোস্যাকারাইড অণু একত্রিত হয়ে গঠিত জটিল শর্করা।
- উদাহরণ: স্টার্চ, সেলুলোজ, গ্লাইকোজেন।
- সাধারণত অবিশ্লেষণীয় এবং শক্তির দীর্ঘস্থায়ী উৎস হিসেবে কাজ করে।

কার্বোহাইড্রেটের শারীরবৃত্তীয় ভূমিকাঃ

- শক্তি সরবরাহঃ কার্বোহাইড্রেট খাদ্যের প্রধান উৎস হিসেবে কাজ করে এবং এর বিপাকের মাধ্যমে দ্রুত শক্তি সরবরাহ
 করে। গ্লকোজকে কোষে শক্তি উৎপাদনের প্রধান মাধ্যম হিসেবে ব্যবহার করা হয়।
- 2. শাক্তির সঞ্চয়ঃ লিভার এবং পেশিতে গ্লাইকোজেন হিসেবে কার্বোহাইড্রেট সঞ্চিত থাকে, যা পরবর্তীতে শক্তির প্রয়োজন হলে ব্যবহৃত হয়।
- 3. কোষ গঠনে সহায়কঃ সেলুলোজ উদ্ভিদের কোষ প্রাচীরের গঠন উপাদান হিসেবে কাজ করে, যা উদ্ভিদের কাঠামোকে শক্তিশালী করে তোলে।
- 4. জল নিয়ন্ত্রণঃ কার্বোহাইড্রেটের একটি বৈশিষ্ট্য হলো জল ধরে রাখা। এটি শরীরের জলীয় ভারসাম্য রক্ষা করে এবং কোষের গঠন ও স্থায়িত্ব বজায় রাখতে সাহায্য করে।

- 5. প্রাণী দেহে ইমিউন প্রতিক্রিয়ায় অংশগ্রহণঃ কিছু কার্বোহাইড্রেট অণু রোগ প্রতিরোধ ক্ষমতায় ভূমিকা রাখে এবং শরীরকে বিভিন্ন সংক্রমণ থেকে রক্ষা করে।
- 6. মস্তিষ্ক ও স্নায়্তন্ত্রের কার্যকারিতাঃ গ্লুকোজ হলো মস্তিষ্কের প্রধান শক্তি উৎস, যা মানসিক সচেতনতা এবং স্নায়্তন্ত্রের কার্যক্রমে গুরুত্বপূর্ণ ভূমিকা রাখে।

৩) রাইবোজ ও ডিঅক্সিরাইবোজ সুগারের মধ্যে পার্থক্য লিখ। উত্তরঃ রাইবোজ এবং ডিঅক্সিরাইবোজ উভয়ই পেন্টোজ শর্করা (পাঁচ কার্বনযুক্ত) তবে তারা কিছু কাঠামোগত পার্থক্যের কারণে ভিন্ন ভিন্ন ভূমিকা পালন করে।

রাইবোজ ও ডিঅক্সিরাইবোজের মধ্যে পার্থক্য নিম্নে উল্লেখ করা হলোঃ

বৈশিষ্ট্য	রাইবোজ (Ribose)	ডিঅক্সিরাইবোজ (Deoxyribose)
রাসায়নিক সূত্র	$C_5H_{10}O_5$	$C_5H_{10}O_4$
অণুর কাঠামো	রাইবোজ অণুর দ্বিতীয় কার্বনে (C ₂)	ডিঅক্সিরাইবোজ অণুর দ্বিতীয় কার্বনে
	একটি হাইড্রোক্সিল গ্রুপ (-0H)	(C ₂) একটি হাইড্রোজেন (H) থাকে
	থাকে।	এবং হাইড্রোক্সিল গ্রুপ (-OH)
		অনুপস্থিত।
সংশ্লিষ্ট নিউক্লিক অ্যাসিড	RNA (Ribonucleic Acid)	DNA (Deoxyribonucleic Acid)
উপস্থিতি	RNA-র গঠন উপাদান হিসেবে থাকে।	DNA-র গঠন উপাদান হিসেবে থাকে।
স্থায়িত্ব	রাইবোজের উপস্থিতিতে RNA	ডিঅক্সিরাইবোজ DNA-তে বেশি স্থায়িত্ব
	তুলনামূলকভাবে কম স্থিতিশীল।	প্রদান করে।

8) প্রোটিন সংশ্লেষণের প্রবাহ চিত্র ব্যাখ্যা কর।

উত্তরঃ প্রোটিন সংশ্লেষণ একটি জটিল প্রক্রিয়া, যা জীবকোষে ডিএনএ (DNA) থেকে প্রোটিন তৈরি করে। এটি দুটি প্রধান ধাপে ঘটেঃ ট্রান্সক্রিপশন এবং ট্রান্সলেশন। এই প্রক্রিয়াটির প্রবাহ চিত্রটি সাধারণত নিচের মতো হয়ঃ

১. ট্রান্সক্রিপশন (Transcription):

এই ধাপে ডিএনএ থেকে একটি ম্যাসেঞ্জার আরএনএ (mRNA) কপি তৈরি হয়।

- **ডিএনএ পরিপাকঃ** ডিএনএ এর ডবল হেলিক্স খুলে যায় এবং একটি স্ট্র্যান্ড (ডিএনএ এর একটি শাখা) ম্যাসেঞ্জার আরএনএ তৈরি করার জন্য ব্যবহার করা হয়।
- **আরএনএ পলিমিরেজঃ** আরএনএ পলিমিরেজ একটি এনজাইম, যা ডিএনএ স্ট্র্যান্ডের সাথে সংযুক্ত হয়ে mRNA তৈরি করে। এটি ডিএনএ এর কোড অনুযায়ী নিউক্লিওটাইড যোগ করে mRNA তৈরি করে।

- mRNA প্রস্তুতিঃ mRNA একটি কপি হয়ে সাইটোপ্লাজমে চলে যায়, যেখানে এটি ট্রান্সলেশন প্রক্রিয়ার জন্য ব্যবহৃত হয়।

২. ট্রান্সলেশন (Translation):

এই ধাপে mRNA এর কোড অনুসারে অ্যামিনো অ্যাসিড গুলি একত্রিত হয়ে প্রোটিন তৈরি হয়।

- **রিবোসোমঃ** রিবোসোম হল একটি প্রোটিন এবং র RNA এর কমপ্লেক্স যা সাইটোপ্লাজমে থাকে। এটি mRNA এর কোড পড়তে থাকে।
- trna (ট্রাঙ্গফার আরএনএ): trna এর মধ্যে বিভিন্ন অ্যামিনো অ্যাসিড থাকে। প্রতিটি trna একটি নির্দিষ্ট অ্যামিনো অ্যাসিড বহন করে এবং mrna এর কোড অনুসারে সেগুলি যথাস্থানে নিয়ে আসে।
- কোডন এবং অ্যান্টিকোডনঃ mRNA এর কোডন (তিনটি নিউক্লিওটাইডের একটি গ্রুপ) tRNA এর অ্যান্টিকোডনের সাথে মিলে যায়, এবং tRNA সংশ্লিষ্ট অ্যামিনো অ্যাসিড রিবোসোমে পৌঁছায়।
- অ্যামিনো অ্যাসিড যোগ হওয়াঃ প্রতিটি অ্যামিনো অ্যাসিড একটি পেপটাইড বন্ধন তৈরি করে পূর্বের অ্যামিনো অ্যাসিডের সাথে যুক্ত হয়, এবং এইভাবে প্রোটিনের পলিপেন্টাইড চেইন তৈরি হয়।

৩. প্রোটিন ফোল্ডিং এবং পরবর্তী প্রক্রিয়াঃ

- পলিপেপ্টাইড চেইন তৈরি হওয়া শেষ হলে, এটি একে অপরের সাথে যোগাযোগ করে তার তিন-মাত্রিক গঠন (প্রোটিন ফোল্ডিং) গ্রহণ করে।

- ফোল্ডিংয়ের পরে প্রোটিনটির কার্যক্ষমতা (functionality) পাওয়া যায়, এবং এটি পরবর্তী কাজ বা কোষের প্রয়োজন অনুযায়ী ব্যবহার করা হয় (যেমন এনজাইম হিসেবে, গঠনগত উপাদান হিসেবে ইত্যাদি)।

প্রবাহ চিত্রঃ

ডিএনএ o (ট্রান্সক্রিপশন) o mRNA o (ট্রান্সলেশন) o রিবোসোম o tRNA o অ্যামিনো অ্যাসিড o পেপটাইড চেইন o প্রোটিন ফোল্ডিং o কার্যকর প্রোটিন

এইভাবে, ডিএনএ থেকে প্রোটিন তৈরি করার পুরো প্রক্রিয়াটি কোষে সংঘটিত হয়।

দৃশ্যপটনির্ভর (রচনামূলক) প্রশ্নের উত্তরঃ

7)

<u> </u>	
গ্ৰুপ-ক	গ্ৰুপ-খ
মটরশুটির ৭ জোড়া বিপরীত বৈশিষ্ট্য	অনুপাত- ৯:৩:৩:১

ক) উদ্দীপকে উল্লিখিত গ্রুপ-ক এর ব্যাখ্যা কর।

উত্তরঃ মেন্ডেল ১৮৫৬ সালে মটরশুঁটি গাছ নিয়ে গবেষণা করেছিলেন এবং এ গবেষণা সাত বছর ধরে করেছিলেন। মটরশুঁটি গাছের সাত জোড়া বিপরীত বৈশিষ্ট্য নিয়ে গবেষণা থেকে তিনি বংশগতির সিদ্ধান্তে উপনীত হন। নিচে মেন্ডেলের ৭ জোড়া বিপরীত বৈশিষ্ট্য সচিত্র ব্যাখ্যা করা হলোঃ

বৈশিষ্ট্য	প্রকট	প্রচছন্ন
১) কান্ডের উচ্চতা	লম্বা	খাঁটো
২) ফুলের রঙ	বেগুনি	সাদা
৩) ফলের গঠন	বৃত্তাকার	সংকুচিত
8) ফলের রঙ	হলুদ	সবুজ
৫) শুঁটির রঙ	হলুদ	সবুজ
৬) শুঁটির গঠন	ক্ষীত	সংকুচিত
৭) ফুলের অবস্থান	অক্ষীয়	প্রান্তীয়

কান্ডের উচ্চতা, ফুলের রঙ, ফলের গঠন, ফলের রঙ, শুঁটির রঙ, শুঁটির গঠন, ফুলের অবস্থান এই সাতটি বৈশিষ্ট্যের প্রত্যেকটির জন্য দুটি করে বিপরীত লক্ষণযুক্ত মোট ১৪টি খাঁটি উদ্ভিদ নির্বাচন করেন। উদ্ভিদগুলোর পরাগায়নের মাধ্যমে মেডেল এইসব বৈশিষ্ট্যের বংশগত পরিবহন দেখান।

২)

ক) উদ্দীপকে উল্লিখিত A ও B এর পার্থক্য লিখ। উত্তরঃ উদ্দীপকে উল্লিখিত A হলো DNA এবং B হলো RNA. নিমে উদ্দীপকে উল্লিখিত DNA এবং RNA-এর পার্থক্য উল্লেখ করা হলোঃ

বৈশিষ্ট্য	DNA	RNA
পূর্ণরূপ	ডিঅক্সিরাইবো নিউক্লিক অ্যাসিড	রাইবো নিউক্লিক অ্যাসিড
সুগারের ধরন	ডিঅক্সিরাইবোজ	রাইবোজ
স্ট্র্যান্ড সংখ্যা	দিস্তরযুক্ত (ডাবল হেলিক্স)	একক স্তরযুক্ত (সিঙ্গল স্ট্র্যান্ডেড)
ক্ষারক গঠনের পার্থক্য	অ্যাডেনিন (A), থাইমিন (T), গুয়ানিন	অ্যাডেনিন (A), ইউরাসিল (U),
	(G), সাইটোসিন (C)	গুয়ানিন (G), সাইটোসিন (C)
ক্ষারক জোড়া	A-T এবং G-C	A-U এবং G-C
কার্যক্ষেত্র	কোষের নিউক্লিয়াসে থাকে	নিউক্লিয়াস, সাইটোপ্লাজম এবং
		রাইবোসোমে পাওয়া যায়
কার্যকরী ভূমিকা	জেনেটিক তথ্য সংরক্ষণ করে এবং	প্রোটিন সংশ্লেষণের জন্য DNA থেকে
	উত্তরাধিকার হিসেবে পরবর্তী প্রজন্মে	তথ্য গ্রহণ ও প্রোটিন তৈরিতে সাহায্য
	স্থানান্তর করে	করে
স্থায়িত্ব	তুলনামূলকভাবে বেশি স্থিতিশীল	কম স্থিতিশীল এবং সহজেই ভেঙে
		যায়
প্রকারভেদ	এক প্রকার (DNA একক রূপে থাকে)	তিন প্রকার: mRNA, tRNA, rRNA

খ) উদ্দীপকে উল্লিখিত A এর গঠন বিশ্লেষণ কর।

উত্তরঃ ডিএনএ (DNA বা ডিঅক্সিরাইবো নিউক্লিক অ্যাসিড) হলো জীবিত কোষের প্রধান জেনেটিক উপাদান, যা জেনেটিক তথ্য সংরক্ষণ করে এবং পরবর্তী প্রজন্মে স্থানান্তর করে। DNA একটি দ্বিস্তরযুক্ত (ডাবল হেলিক্স) কাঠামোতে গঠিত, যা অতি সুনিপুণভাবে গড়ে ওঠে। নিচে এর গঠন বিশ্লেষণ করা হলো।

DNA-এর গঠনঃ

- 1) **ডাবল হেলিক্স (Double Helix):** DNA-এর অণু দুটি স্ট্র্যান্ড নিয়ে গঠিত যা একটি কুণ্ডলিত সিঁড়ির মতো একটি ডাবল হেলিক্স গঠন তৈরি করে। এটি জেমস ওয়াটসন এবং ফ্রান্সিস ক্রিক প্রথম আবিষ্কার করেন। এই হেলিক্সের দুটি স্ট্র্যান্ড বিপরীতমুখী (antiparallel) অর্থাৎ একটি স্ট্র্যান্ড 5' থেকে 3' দিকে এবং অন্যটি 3' থেকে 5' দিকে থাকে।
- 2) **নিউক্লিওটাইড (Nucleotide):** DNA-এর মৌলিক একক হলো নিউক্লিওটাইড, যা তিনটি উপাদান নিয়ে গঠিত:
- 1. ফসফেট গ্রুপ (Phosphate Group): এটি DNA-এর স্ট্র্যান্ডের বাইরের কন্ধালের (backbone) অংশ হিসেবে কাজ করে। 2. পেন্টোজ শর্করা (Deoxyribose Sugar): এটি পাঁচ-কার্বনযুক্ত শর্করা যা নিউক্লিওটাইডের কেন্দ্রভাগে থাকে।
- 3. **ক্ষারক (Nitrogenous Base):** চার প্রকার ক্ষারক রয়েছে: অ্যাডেনিন (A), থাইমিন (T), গুয়ানিন (G), এবং সাইটোসিন (C)।

3) **ক্ষারক জোড়া (Base Pairing):** DNA-এর দুটি স্ট্র্যান্ডের মধ্যে ক্ষারকগুলি নির্দিষ্ট নিয়মে জোড়া গঠন করেঃ 1. অ্যাডেনিন (A) সবসময় থাইমিন (T)-এর সাথে জোড়া গঠন করে (A-T)। 2. গুয়ানিন (G) সবসময় সাইটোসিন (C)- এর সাথে জোড়া গঠন করে (G-C). 3. এই ক্ষারক জোড়া হাইড্রোজেন বন্ধনের মাধ্যমে সংযুক্ত থাকে, যা DNA-এর

গঠনকে স্থিতিশীল করে।

- 4) **ফসফোডাইএস্টার বন্ড (**Phosphodiester Bond): নিউক্লিওটাইডগুলিকে ফসফোডাইএস্টার বন্ড দ্বারা যুক্ত করা হয়, যা DNA-এর শর্করা-ফসফেট কঙ্কাল গঠনে সাহায্য করে।
- 5) **এন্টিপ্যারালাল স্ট্র্যান্ড (Antiparallel Strands):** DNA-এর দুটি স্ট্র্যান্ড বিপরীতমুখী অর্থাৎ একটি স্ট্র্যান্ডের শেষ অংশে 5'-ফসফেট এবং অন্যটির শেষ অংশে 3'-হাইড্রক্সিল গ্রুপ থাকে।
- 6) **জিনের অবস্থান (Genes):** DNA-এর মধ্যে ছোট ছোট নির্দিষ্ট অংশকে জিন বলা হয়, যা প্রোটিন তৈরির জন্য বিশেষ নির্দেশনা বহন করে। এই জিনগুলিই জীবের গঠন ও বৈশিষ্ট্যের জন্য দায়ী।

DNA হলো ডাবল হেলিক্সের মতো একটি দীর্ঘ জেনেটিক অণু, যা ক্ষারক জোড়া, ডিঅক্সিরাইবোজ শর্করা, এবং ফসফেট গ্রুপ নিয়ে গঠিত। ক্ষারকগুলির সুনির্দিষ্ট জোড়া এবং স্ট্র্যান্ডের বিপরীতমুখী অবস্থান DNA-এর স্থিতিশীলতা ও সঠিকভাবে জেনেটিক তথ্য সংরক্ষণে সাহায্য করে।

৩) P = ২০১৯-২০২২ এ সৃষ্ট মহামারী জন্য দায়ী জীবাণু।

ক) উল্লেখিত রোগের লক্ষণ লিখ।

উত্তরঃ করোনা (COVID-19) রোগের সাধারণ লক্ষণগুলো হলোঃ

- i. শরীরে তাপমাত্রা (জুর)
- ii. কাশি (শুকনো বা তরল)
- iii. শ্বাসকষ্ট বা শ্বাসের সমস্যা
- iv. মাথাব্যথা
- v. থাকানো বা গলাব্যথা
- vi. শক্তি হীনতা বা ক্লান্তি
- vii. স্বাদ বা গন্ধ না পাওয়া (anosmia)
- viii. সর্দি, নাক বন্ধ হওয়া
- ix. পেটের সমস্যা (ডায়রিয়া, বমি)
- x. শরীরের ব্যথা বা গা ব্যথা

8)

ক) জীবদেহে Y এর পাঁচটি গুরুত্ব লিখো।

উত্তরঃ জীবদেহে Y মানে নিউক্লিক এসিড (ডিএনএ এবং আরএনএ) অত্যন্ত গুরুত্বপূর্ণ ভূমিকা পালন করে। নিচে নিউক্লিক এসিডের পাঁচটি প্রধান গুরুত্ব তুলে ধরা হলোঃ

- 1. জেনেটিক তথ্য সংরক্ষণঃ ডিএনএ জীবের জেনেটিক বা বংশগত তথ্য সংরক্ষণ করে। এটি জীবের গঠন, বৃদ্ধি, উন্নয়ন এবং বিভিন্ন কার্যকলাপ নিয়ন্ত্রণ করে, যা পরবর্তী প্রজন্মে বংশগতভাবে স্থানান্তরিত হয়।
- 2. প্রোটিন সংশ্লেষণে সাহায্যঃ ডিএনএ এর নির্দেশনা অনুযায়ী প্রোটিন তৈরি হয়। mRNA, tRNA, এবং রাইবোসোমাল আরএনএ (rRNA) এর মাধ্যমে ডিএনএ-এর জেনেটিক কোড প্রোটিন সংশ্লেষণে রূপান্তরিত হয়।
- 3. বংশগত বৈচিত্র্যঃ নিউক্লিক এসিডের মাধ্যমে জেনেটিক বৈচিত্র্য সৃষ্টি হয়। ডিএনএ-এর পরিবর্তন বা মিউটেশন নতুন বৈশিষ্ট্য সৃষ্টি করতে পারে, যা জীবের অভিযোজন এবং বিবর্তনে গুরুত্বপূর্ণ ভূমিকা পালন করে।

- 4. কোষ বিভাজন ও পুনরুৎপাদনঃ কোষ বিভাজনের সময় ডিএনএ প্রতিলিপি হয় এবং সমানভাবে দুই নতুন কোষে বিতরণ হয়। এর ফলে জীবের বৃদ্ধি ও পুনরুৎপাদন সম্ভব হয়।
- 5. সেলুলার নিয়ন্ত্রণঃ নিউক্লিক এসিড কোষের বিভিন্ন কার্যক্রম নিয়ন্ত্রণ করে। বিশেষ করে, আরএনএ কোষের মধ্যে বিভিন্ন প্রোটিন এবং এনজাইম তৈরিতে গুরুত্বপূর্ণ ভূমিকা পালন করে, যা জীবের স্বাভাবিক কাজের জন্য প্রয়োজনীয়।

এভাবে, নিউক্লিক এসিড জীবের জীবনের ধারাবাহিকতা এবং কার্যকারিতা রক্ষা করে।