

دانشکده مهندسی کامپیوتر

انتقال داده ها ۹۸۵۲۲۰۹۴ نیکی نزاکتی پروژه نهایی

۱ پروژه صوت

.1.1

خواندن صوت و به دست آوردن اندازه آن توسط کد زیر انجام شد که خروجی اندازه آن [206784,1] بود.

۰ الفبای منبع در حالت ذکر شده چیست؟ همان طور که در تصویر مشخص است، y از اعداد اعشاری تا ۱۵ رقم اعشار تشکیل شده است.

	or – sound.m				2
y - 206	×				
_ 200	1	2	3	4	5
564	6.1035e			-	
565	9.1553e				
566	9.1553e				
567	9.1553e				
568	6.1035e				
569	6.1035e				
570	6.1035e				
571	6.1035e				
572	6.1035e				
573	6.1035e				
574	3.0518e				
575	3.0518e				
576	3.0518e				
577	3.0518e				
578	3.0518e				
579	3.0518e				
580	3.0518e				
581	3.0518e				
582	3.0518e				
583	3.0518e				
584	3.0518e				
585	6.1035e				

۰ سرعت تولید سمبل ۲۰۶۸۷۴ و زمان شندین صدا ۳.۴ است که به صورت زیر به دست می آید:

```
14 l=length(y) %speed
15
16 t=l/Fs %time
17
```


١.٢.

- نحوه محاسبه سیگنال به نویز در متلب به این صورت است : $\mathbf{r} = \mathrm{snr}(\mathrm{xi}, \mathrm{y})$ که این نسبت را برای سیگنال xi و نویز y محاسبه می کند.
- $0~{
 m dB}$ به صورت زیر به فایل صوتی نویز سفید اضافه می کنیم. زمانی که نسبت سیگنال به نویز $10~{
 m dB}$ است یعنی نسبت نویز با خود سیگنال برابر است و به اندازه صدا نویز می شنویم. در حالت $10~{
 m dB}$ سیگنال اصلی بیشتر قابل تشخیص است.

```
zeronois awgn(y,0)
audiowrite('zero_noise.wav',zeronois,Fs);

tennois awgn(y,10)
audiowrite('ten_noise.wav',tennois,Fs);
```

· برای بدست آوردن صدای اولیه از فیلتر دهی استفاده می کنیم. سنجیدن معیار عملکرد از مقایسه باند و همچنین اندازه دو سیگنال و محاسبات بین آن ها به صورت زیر به دست می آید:

Workspace		ூ
Name 🛎	Value	
<mark>⊞</mark> b	1x801 double	
⊞ c1	[1,-0.0057;-0.00	
⊞ c2	[1,-0.0057;-0.00	
H filteredAudio	206784x1 double	
⊞ Fs	48000	
 fsx	48000	
⊞ fsy	48000	
⊞ fsz	48000	
1	206784	
<mark>⊞</mark> N	[206784,1]	
mx	206784	
H ny	206784	
⊞ nz	206784	
🔟 player	1x1 audioplayer	
t	4.3080	
ten_denoise	206784x1 double	
tennois	206784x1 double	
 x	206784x1 double	
⊞ xCrop	206784x1 double	
den xden	206784x1 double	
XPad	206784x1 double	
u y	206784x1 double	
y Crop	206784x1 double	
y Pad	206784x1 double	
Z Z	206784x1 double	
 zCrop	206784x1 double	
zero_denoise	206784x1 double	
zeronois	206784x1 double	
 zPad	206784x1 double	

۲.۱.

- · ابتدا مقادیر unique موجود در y را به دست می آوریم، سپس با استفاده از هیستوگرام تعداد هر کدام را به دست می آوریم و در نهایت احتمال هر کدام را محاسبه می کنیم.در نهایت کد هافمن را تست می کنیم و با توجه به کد زیر به درستی آن پی می بریم.
- محاسبه کنید که برای انتقال این فایل ریک لینک مخابراتی با سرعت 64 ه مقدار زمان کازم است؟ ابتدا کد هافمن به دست آمده را به فایل تبدیل می کنیم. حجم این فایل 634 شد و اگر این مقدار را تقسیم بر 64 کنیم، عدد 80 ه دست می آید.

· ما برای انتقال اطلاعات معمولا نیازمند فشرده سازی بیشتری می باشیم. در نتیجه مجبور هستیم به سراغ کد کننده های با اتلاف برویم.