

Danny Webster

Table of Contents

- 1. Introduction
- 2. SSB Demo
- 3. ASK Demo
- 4. FSK Demo
- 5. NumptyText1
- 6. NumptyText2
- 7. NumptyText3

Getting started with Octave

- Install Octave 4.0.x
- Build Octave-LimeSDR
 - Windows
 - octave
 - run build.m
 - Linux
 - cd~/LimeSuite/octave/
 - make
- Copy files into each project
 - LoadLimeSuite.m
 - LimeSuite.oct
 - LimeSuite.dll (windows)

- Start Octave
 - Change directory
 - run build.m % do for each
 - run SSB.m.
 - run ASK.m
 - run FSK.m
 - run NumptyText.m
 - run NumptyText2.m
 - run NumptyText3.m

Representing Modulation in Octave

- AM, FM and PM can be represented by
- Cartesian co-ordinates {x,y}
 - In Radio, called Inphase and Quadrature
 - Real, Imaginary (Complex Numbers).
 - Programming real() imag()
 - Note i and j mean the same.
- Polar co-ordinates (Vector Modulation)
 - Natural language for describing Amplitude and Phase modulation.
 - Amplitude A, Phase φ
 - Phase is usually in radians not degrees.
 - Programming abs() arg() exp(i*)
 - Frequency is a phase that changes at a constant rate.

$$P(t) = I(t) + jQ(t) = A(t)exp(j\emptyset(t))$$

$$P(t) = A(t) \left(\cos(j\emptyset(t)) + j\sin(j\emptyset(t)) \right)$$

$$f = \frac{1}{2\pi} \frac{d\emptyset(t)}{dt}$$

Single Sideband Demo

Demonstrates

- Octave link with LimeSDR
- SSB Generation
- FFT with Hanning Window

Settings File

- .ini generated in LimeSuite
- 866MHz -50dBm for table top license exempt transmission.

Amplitude Shift Keying Demo

Demonstrates

- Octave link with LimeSDR
- ASK generation
- AM/ASK demodulation.
- Waterfall type graphs

Settings File

- .ini generated in LimeSuite
- 866MHz -5odBm for table top license exempt transmission.

Frequency Shift Keying Demo

Demonstrates

- Octave link with LimeSDR
- FSK generation
- FM/FSK demodulation.
- Waterfall type graphs

Settings File

- .ini generated in LimeSuite
- 866MHz -5odBm for table top license exempt transmission.

Demodulated FSK Waveform

Digital Modulation and Bandwidth

Data changes with time.

 Looks like sequence of square waves.

Fourier Analysis

- Complex signals are made of harmonics.
- Reducing harmonics lead to more gentle rise and fall behaviour.

Harmonics of random data

- Adjacent channel interference.
- Must be filtered.

Pulse Shaping Filters and Digital Modulation

- Pulse shaping has two purposes.
- To reduce the bandwidth of a digital signal.
 - Reduce adjacent channel interference.
 - Increase capacity of available bandwidth.
- To minimise interference from previous bits.
 - Intersymbol interference (ISI)
- Two common types
 - Gaussian (2G and Bluetooth)
 - Root Raised Cosine (3G)
 - Implemented as FIR Filters

Matched Pulse Shaping Filters

Raised Cosine filter split into two Filters

- 2x Root Raised Cosine.
- Combined have same effect as original Raised Cosine filter on the data.

RRC used before TX DAC

 Reduce noise in adjacent channels when transmitting.

RRC used after RX ADC

 Prevent receiver adding noise from adjacent channels.

NumptyText1 Demo

Demonstrates

- Transmit ASCII message from TX to RX
- ASCII /Binary conversion
- Auto Correlation Function for sync detection and phase correction
- BER Calculation
- Root Raised Cosine Filtering for pulse shaping

Variations

- Try with SMA Adapter
- Try with Antenna
- Change Antenna angle

NumptyText2 Demo

- Demonstrates
 - ASCII to Binary conversion
 - Forward Error Correction with BCH(7,4,1) code
 - Works easily with 8 bit ASCII
 - BER Calculation
 - Auto Correlation Function for sync detection and phase correction
 - Root Raised Cosine Filtering for pulse shaping

Variations

- Try with unfavourable antenna alignment
- Try with BCH(15,7,2)
 - with 7 bit ASCII
 - 2 bit errors
- Try with BCH(63,21,2)
 - With padded 7 bit ASCII
 - 2 bit errors
- Try with BCH(63,16,3)
 - With padded 8 bit ASCII
 - 3 bit errors
- Try unscrewing one antenna!!!

NumptyText3 Demo

- Demonstrates
 - ASCII to Binary conversion
 - Forward Error Correction with BCH(7,4,1) code
 - Works easily with 8 bit ASCII
 - BER Calculation
 - CDMA Type Spread Spectrum
 - Spread code unique random
 - Pilot channel orthogonal to data
 - Code spreading and despreading
 - Using ACF for Frame synchronisation.

 Root Raised Cosine Filtering for pulse shaping

Variations

- Try unscrewing both antennas!!!!
 - Alter spread factor to restore link!

