Marker-Free Direct-Write Patterning of Transmon Chip

Onri Jay Benally
University of Minnesota
Department of Electrical & Computer Engineering
Principal Investigator: Prof. Jian-Ping Wang

Background

- Conventional optical lithography = ultraviolet photon exposure.
- Electron beam lithography = electron beam exposure.
- Ultimately, the wavelength of the energy being applied to a resist coating determines the feature size.
- It's possible to obtain 3-5 nm resolution with electron-beam lithography
 - Depends on your <u>skill level</u> (abstract).

Maskless Ultraviolet Lithography

Maskless Extreme
Ultraviolet
Lithography

- 1. Venturi, PhD Thesis (2017)
- 2. Taken from: thumbs.gfy.com
- 3. Taken from: Wikimedia Commons

Bonus: Basic Operating Principle of Electron-Beam-Based Technology

. Taken from: Wikimedia Commons

2. Taken from: makeagif.com

Equipment Advantages & Disadvantages

Advantages:

- Relatively high-resolution lithography.
- Maskless procedure allows for indirectly importing AutoCAD drawings.
- Fast design modification.
- Vacuum environment leads to better control of contamination.
- Markers can be avoided.

Disadvantages:

- Vacuum environment required.
- Charge build-up, even during SEM inspection.
- Low throughput.
- Proximity effects.

E-Beam vs. 3D Printing vs. CNC Machining

• Similarities:

• Uses of a type of **G-CODE** or coordinate system.

• Initial preparation procedure (pick reference points).

• CAD DWG → DXF → "the G-CODE".

*3D = 3 Dimensional

*E-Beam = Electron-Beam

Design Process Flow to Test Pattern Quality

• Design file conversion is a bit extensive.

Maskless Direct Writing Using "Joyplus"

- Doses:
 - For relatively larger features (pads & stripes): $450 \mu C/cm^2$.
 - For smaller features (pillars & junctions): 825-875 μ C/cm².
- Basically:

carbon tape

Conductive

• Locate 4 Points - SEM-Aided 'Marker' Location - Record Final Marker Position - &

Write!

Confirm

joyplus >> follow prompt tTerminals desired marker locations on SEM window.
pg move (coordinates, e.g. 85754.200,121167.850) - (remember to press Enter and not q).

job OJB_400_Qubits.job 3 0 83174.000,49980.000 101201.000,49980.000 83174.000,31948.000 #this is an example.

Basic Flow Summary of "Joyplus" for E-Beam

- Enter relative coordinates >> locate desired marker reference points >> record real coordinates found >> enter (pg move position) of real coordinates >> type (joyplus) >> confirm real coordinates of marker locations by inspecting SEM scan >> press Enter.
- You may now continue with job file locations and other parameters for stage selection >> copy-paste job command into teminal >> press Enter >> watch 1st few steps of exposure >> Done!

Stack Composition

E-Beam Resist

Hardmask (15 nm)

Metal Stack (X nm)

Substrate

Sample can contain any stack (deposited on substrate) for hardmask testing purposes

Hardmask layer can help reduce dimension size or increase the density of device drive lines & other fine features as needed.

Generic E-Beam Patterning Flow for Tunnel Junction

Here, the seed layer doubles as an adhesion layer

PR: Photoresist EBR: Electron-Beam Resist Ω: Resistance 1165: Strong Solvent

^{*} For more details on basics of thin films for quantum chips, see "Onri's Quantum Hardware Tutorial Part 2 of 5" on GitHub.

Results

On the sample holder, conductive carbon tape is used to stick sample to grounded metal to prevent charge build-up. Charge build-up deflects the electron-beam & causes undesired patterns on the chip.

Results (Continued)

