

Generative Multi-View Human Action Recognition

Lichen Wang wanglichenxj@gmail.com

Zhengming Ding zd2@iu.edu

Zhiqiang Tao zgtao@ece.neu.edu

Yunyu LiuLiu.yuny@husky.neu.edu

Yun Fu
yunfu@ece.neu.edu

SMILE Lab
Electrical & Computer Engineering
Northeastern University

Introduction

Topic:

Multi-view Action Recognition

Setting:

- Input: Multi-view action sequences(e.g., RGB + Depth)
- Output: Action prediction

Challenges:

- Heterogeneous multi-view feature domains
- Incomplete/missing view sequences
- Inconsistent view-specific predictions

Concept of multi-view action recognition

Motivation

Generative Multi-View Human Action Recognition (GMVAR)

Three major components to solve the challenges:

- 1. View-specific Encoders
- Cross-view Adversarial Generation
- 3. View Correlation Discovery Network (VCDN)

1. View-specific Encoders

Mapping original feature to more distinctive subspaces

- Seek distinctive action representations in subspaces
- Label information + triplet loss objective:

2. Cross-view Adversarial Generation

Generate one view conditioning on the other view

- Increase cross-view representation diversity
- Enhance model robustness
- Address missing/incomplete view sequences

$$\begin{bmatrix} L_{G_1d} = -E_{z \sim p_z(z)} \log \left(1 - D_1 \left(G_1(z | E_1(X_{tr}^1)) \right) \right) \\ L_{G_1s} = E_{z \sim p_z(z)} \left(\| G_1(z | E_1(X_{tr}^1)) - E_2(X_{tr}^2) \|_F^2 \right) \\ L_{D_1} = E_{X \sim p_X(X)} \log D_1 \left(E_2(X_{tr}^2) \right) \\ + E_{z \sim p_z(z)} \log \left(1 - D_1 \left(G_1(z | E_1(X_{tr}^1)) \right) \right) \end{bmatrix}$$

3. View Correlation Discovery Network (VCDN)

Explore high-level label correlations across different views

- View-specific initial classification is firstly obtained
- Pair-wise label correlation matrix is generated
- VCDN fully explore the latent high-level label correlation for higher performance

Our model

Generative Multi-View Human Action Recognition (GMVAR)

- Three components work together
- Jointly trained in end-to-end manner

Framework of Generative Multi-view Action Recognition

Experiments

Action recognition:

- Datasets: UWA[1], MHAD[2], and DHA[3]
- Multi-view action recognition
- Missing/incomplete multi-view (i.e., single-view) action recognition

Method	RGB	$R \rightarrow D$	Depth	$D \rightarrow R$	R+D	Method	RGB	$R{\rightarrow}D$	Depth	$D \rightarrow R$	R+D	Method	RGB	$R{\rightarrow}D$	Depth	$D \rightarrow R$	R+D
LSR	67.59	69.17	45.45	37.73	68.77	LSR	96.46	97.17	47.63	42.51	97.17	LSR	65.02	65.43	82.30	48.56	77.36
SVM [36]	69.44	68.53	34.92	34.33	72.72	SVM [36]	96.09	96.80	45.39	45.13	96.80	SVM [36]	66.11	70.24	78.92	78.18	83.47
VLAD [14]	71.54	-	-	-	-	VLAD [14]	97.17	-	-	-	-	VLAD [14]	67.13	-	-	-	-
TSN [51]	71.01	-	-	-	-	TSN [51]	97.31	-	-	-	-	TSN [51]	67.85	-	-	-	-
WDMM [1]	-	-	46.58	-	-	WDMM [1]	-	-	66.41	-	-	WDMM [1]	-	-	81.05	-	-
AMGL [30]	69.17	71.54	39.92	35.96	68.53	AMGL [30]	96.46	97.11	30.03	29.96	94.70	AMGL [30]	64.61	59.05	72.84	67.33	74.89
MLAN [29]	67.19	67.19	33.28	33.61	66.64	MLAN [29]	96.05	96.10	41.48	41.25	96.46	MLAN [29]	67.91	67.91	72.96	72.83	76.13
PM-GANs [49]	-	71.36	-	49.01	-	PM-GANs [49]	-	96.76	-	66.84	-	PM-GANs [49]	_	68.72	-	76.02	-
Ours	-	73.53	-	50.35	76.28	Ours	-	98.23	-	68.32	98.94	Ours	_	69.72	-	83.48	88.72

UWA MHAD DHA

Performance on three multi-view action datasets

^[2] Ferda Ofli, et al. Berkeley mhad: A comprehensive mul-timodal human action database. In Proc. IEEE WACV, pages53-60, 2013.

^[3] Yan-Ching Lin, et al. Human action recog-nition and retrieval using sole depth information. In Proc.ACM MM, pages 1053–1056, 2012.

Experiments

Ablation Study for GAN:

- Performance with/without generative model
- t-SNE^[1] visualization of real and fake samples

Experiments

Ablation Study for VCDN:

- VCDN compared with different label fusion/correlation learning models
 - Feature/label concatenation & label average/weighted fusion
- VCDN compared with regular

neural networks

Dataset UWA MHAD

DHA

					~
1-layer	2-layer	3-layer	4-layer	VCDN	
74.31	74.70	73.52	75.10	76.28	
97.83	97.88	96.47	95.76	98.94	
86.01	87.24	85.19	82.72	88.72	

0.8	ľ	•	•			ستنشر		بيباب	سيهي	يسييس
0.7			7				_		بينجي	
0.6	-									-
0.5 کے	H		/	سنبر	سيب					
Accuracy 0.4 0.3	\mathbf{H}				_		GB epth			-
ĕ _{0.3}	-				_	— F	ea-En-0			-
0.2					_	La	ea-Ori-0 ab-Con	Jon		-
0.1	M				_		ab-Ave CDN (C	Ours)		-
	Y 7									
•	0	20	40	60	80 Iterat	100 t ion E l	120 poch	140	160	180 200

Setting	UWA	MHAD	DHA
$RGB\text{-}C_1$	69.18	96.42	68.15
Depth- C_2	45.28	63.05	79.79
RGBD-Fea-En-Con	68.78	96.82	70.85
RGBD-Fea-Ori-Con	69.22	97.32	70.83
RGBD-Lab-Con	70.38	96.28	80.95
RGBD-Lab-Ave	71.84	97.56	83.28
RGBD-Lab-Wei	71.15	97.17	83.95
RGBD-VCDN (Ours)	74.07	98.06	84.32

Classification performance of VCDN compared with simple NN.

Performance with different label fusion modules

Performance with different label fusion modules

Summary

Generative Multi-View Human Action Recognition:

- VCDN
 — Explore view correlations in high-level label space

Conclusion:

- Proposed modules are effective
- Obtain considerable classification improvements

Thank you!

Poster #25: Oct. 31, 15:30, Poster 3.2 (Hall B)

Please contact: wanglichenxj@gmail.com for questions.

SMILE Lab
Electrical & Computer Engineering
Northeastern University