04_BIOS512_assignment

October 31, 2022

1 BIOS512 Assignment #4

Import the Tidyverse into your R session

```
[9]: library('tidyverse')
library('scales')

Attaching package: 'scales'

The following object is masked from 'package:purrr':
    discard

The following object is masked from 'package:readr':
    col_factor
```

In this assignment we'll be using data from the TidyTuesday Project. Specifically, we'll investigate vaccination rates at US schools. A CSV file of the data is located at:

```
https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-02-25/measles.csv
```

Get the "raw" data URL and import it into your R session using read_csv. Remember to capture the data under a variable name of your choosing!

A tibble: 6×16	index <dbl></dbl>	state <chr></chr>	year <chr></chr>	name <chr></chr>	type <chr></chr>	city <chr></chr>
	1	Arizona	2018-19	A J Mitchell Elementary	Public	Nogales
	2	Arizona	2018-19	Academy Del Sol	Charter	Tucson
	3	Arizona	2018-19	Academy Del Sol - Hope	Charter	Tucson
	4	Arizona	2018-19	Academy Of Mathematics And Science South	Charter	Phoenix
	5	Arizona	2018-19	Acclaim Academy	Charter	Phoenix
	6	Arizona	2018-19	Alfred F Garcia	Public	Phoenix

The mmr column has holds measles, mumps, rubella vaccination rates for students in each respective school. If the mmr value is not available for a school the mmr value is set to -1 in this data set.

The target mmr vaccination rate as recommended by the CDC for schools is 95%.

Calculate the fraction of schools per state that have vaccination rates greater than the CDC 95%. Capture the output as a table called df_vacc_rates.

You'll need to do use filter, group_by, and summarize.

I.e. 1. Filter out schools that don't report mmr vaccination rate (keep schools where mmr >= 0). 1. Group the data by state. 1. Summarize fraction of vaccination rates above 95%.

Remember n() stands for the number or records in a group. Also, sum(mmr >= 95, na.rm=TRUE) will count the number of values above or equal to 95.

```
[11]: # create the df_vacc_rates here
# create the df_vacc_rates here
df_vacc_rates = us_vacc |>
    filter(mmr >= 0) |>
    group_by(state) |>
    summarize(frac = sum(mmr >= 95, na.rm = TRUE) / n())
df_vacc_rates
```

	state	frac
	<chr $>$	<dbl $>$
	Arizona	0.506404782
	Arkansas	0.003527337
	California	0.888506151
	Colorado	0.623092236
	Connecticut	0.811544992
	Illinois	0.896825397
	Maine	0.473389356
	Massachusetts	0.865828092
	Minnesota	0.473948525
A tibble: 21×2	Missouri	0.680000000
	Montana	0.708812261
	New York	0.859822073
	North Dakota	0.45555556
	Ohio	0.491606715
	Oregon	0.593052109
	Pennsylvania	0.834966478
	South Dakota	0.742627346
	Texas	0.626387176
	Utah	0.679933665
	Vermont	0.683431953
	Washington	0.326592518

Which state (of those that report mmr) has the smallest fraction of schools above the CDC target vaccination rate of 95%?

```
[12]: low.state = df_vacc_rates |> slice_min(frac, n = 1)
low.state
```

```
A tibble: 1 \times 2 state frac < chr> < dbl> Arkansas 0.003527337
```

Make a ECDF plot of the school vaccination rates in North Carolina. Use the overall column which reports the "overall" vaccination rate at each school.

Remember, you can calculate the y value for ECDF charts using row_number, mutate, and arrange.

```
# x = 70, y = 60, size = 2, colour = "red")
```

ECDF of School Vaccination Rates in North Carolina

(My solution is below if you want to peek $\,$. Uncomment the code, change the cell to $\mathtt{markdown}$, and exectute it.)

Is the median vaccination rate for NC schools above the CDC recommended target?

```
[57]: nc_vacc_rates = us_vacc |>
    filter( state == 'North Carolina') |>
    select(overall) |>
    summarize(med_val = median(overall))
    nc_vacc_rates
```

A tibble:
$$1 \times 1 \frac{\text{med_val}}{<\text{dbl}>}$$

[]: