

FIG. 1

2/29

FIG. 2A

FIG. 2B

PHOSPHOCELLULOSE

FRACTION: 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

-PolIII_L

FIG. 2D

FIG. 3

NICKEL COLUMN

FIG. 4B

FIG. 4C

FIG. 5A

	1	2	3	4		5	6	RFII
							1. A	-ssDNA
S. aur Pol III ₁	+	+	_	+	-	-	-	
S. aur β	+	+	_	_	4	-	_	
E. coli Pol III CORE	_	_	-	-	4	-	+	
E. coli β			+	+	_	-	+	
E. coli γ COMPLEX	-	+	+	+	4	-	+	
DNA SYNTHESIS (pmoi)	4.5	5.5	3.9	58	4.	4	109	

FIG. 6

8/29

AGAROSE GEL

FIG. 8A

DNA SYNTHESIS

	DNA SYNTHESIS (PMOI) Peak				
ADDITION	PEAK 1	PEAK 2	PEAK 3	PEAK 4	
NONE	22.7	70.6	146.1	4.7	_
E coli β , γ COMPLEX	72.9	61.2	71.4	25.9	

FIG. 8B

9/29

KIWRATCIWNCDFRSSACKAVAKDVGRIMGFDEVTLNEISSLIPHKLGITLDEAYQID-D MYGRDAVSQIITFGTMAAKAVIRDVGRVLGHPYGFVDRISKLIPPDPGMTLAKAFEAEPQ MYGRDAVSQIITFGTMAAKAVIRDVGRVLGHPYGFVDRISKLVPPDPGMTLAKAFEAEPQ	FKKFVHRNHRHORWFSICKKLEGLPRHTSTHAAGILINDHPLYEYAPLTKGDTGLLTQ LPEIYEADEEVKALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ LPEIYEADEEVRALIDMARKLEGVTRNAGKHAGGVVIAPTKITDFAPLYCDEEGKHPVTQ	WTWTEAERIGILKIDFLGLRNLSIIHQILTRVEKDLGFNIDIEKIPFDDOKVFELL FDKSDVEYAGLVKFDFLGLRTLTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML FDKSDVEYAGLVKFDFLGLRTLTIINWALEMINKRRAKNGEPPLDIAAIPLDDKKSFDML	SQGDTTGIFQLESDGVRSVLKKLKPEHFEDIVAVTSLYRPGPMEEIPTYITRHDPS- QRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREE QRSETTAVFQLESRGMKDLIKRLQPDCFEDMIALVALFRPGPLQSGMVDNFIDRKHGREE	KVQYLHPHLEPILKNTYGVIIYQEQIMQIASTFANFSYGEADILRRAMSKKNRAVL ISYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM LSYPDVQWQHESLKPVLEPTYGIILYQEQVMQIAQVLSGYTLGGADMLRRAMGKKKPEEM ** * * * * * * * * * * * * * * * * * *	ERDAQHFIEGTKQNGYHEDISKQIFDLIAKQRSVPAEGAEKNGINAELAMKIFDLVEKFAGYGFNKSHSAAYALVSYQTLWLKAHYPA AKQRSVFEEGAKKNGIDGELAMKIFDLVEKFAGYGFNKSHSAAYALVSYQTLWLKAHYPA * ** **
S.aureus	S.aureus	S.aureus	S.aureus	S.aureus	S.aureus
E.coli	E.coli	E.coli	E.coli	E.coli	E.coli
Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ	Sal.typ

10/29

SIAKVFAKAINCLNSTDGEPCNECHICKGITQGTNSDVIEIDAASNNGVDEIRNIRDKVKYA SAAKIFAKAVNCEHAPVDEPCNECAACKGITNGSISDVIEIDAASNNGVDEIRDIRDKVKFA ----SHAYLFSGPRGTGKT SIARLLAKGLNCETGITATPCGVCDNCREIEQGRFVDLIEIDAASRTKVEDTRDLLDNVQYA ATP site PSESKYKVYIIDEVHMLTTGAFNALLKTLEEPPAHAIFILATTEPHKIPPTIISRA PSAVTYKVYIIDEVHMLSIGAFNALLKTLEEPPEHCIFILATTEPHKIPLTIISRC PARGRFKVYLIDEVHMLSRHSFNALLKTLEEPPEHVKFLLATTDPQKLPVTILSRC ** ** * * * * * * * * * ****** MKGYCLWRCNLDYQALFVVPTP-KFEDVVGQEHSEDCAMG--* ******** Zn++ finger *** *** *** S.aureus B.sub E.coli S.aureus S.aureus B. sub E. coli B.sub. E.coli

11/29

ALNIANKLERMKIYLAVGIFSLEMGADQLITRMICSSGNVDSNRLRTGTMTEEDWSRFTI ALNIAQNVA-TKTDFSVAIFSLFMGAEQLVMRMLCAEGNINAQNLRTGNLTEEDWGKLTM AMNLVENAA-MLQDKPVLIFSLEMPSEQIMMRSLASLSRVDQTKIRTGQLDDEDWARISG AMNLCENAA-MLQDKPVLIFSLEMPGEQIMMRMLASLSRVDQTRIRTGQLDDEDWARISG * * * * * * * * * * * * * * * * * * *	AVGKLS-RTKIFIDDTPGIPINDLRSKCRRLKQEHG-LYVIVIDYLQLIPGVGSRASDNR AMGSLS-NSGIYIDDIPGIRVSEIRAKCRRLKQESG-LGMILIDYLQLIQGSG-RSKDNR TWGILLEKRNIYIDDSSGLTPTEVRSRARRIAREHGGIGLIMIDYLQLMRVPALSDNR TWGILLEKRNMYIDDSSGLTPTEVRSRARRIFREHGGLSLIMIDYLQLMRVPSLSDNR ************************************	QQEVSEISRTLKALARELECPVIADSQLSPALPPRRATRPDLPRH
S.aureus	S.aureus	S.aureus
B.sub	B.sub	B.sub
E.coli	E.coli	E.coli
Sal.typ	Sal.typ	Sal.typ

12/29

B.sub.yqeN E.c.delta	MYFDVWKSLKKGE-VHPVYCLYGKETYLLGETVBRIRGTVVDQETRDPNLSVFDLEED MIRLYPEGLRAGINEGLRAAYLLLGNDPLLLGESQDAVRQVAAAQGFEEHHTFSIDPNTD *: :.*: .* :: * *::. ****: . :** * :!.: ! * !	59
B.s.yqaN E.c.delta	PLDQAIADAETFPFMGERRLVIVMPYFLTGEKKKEKIEHHVSALESYIQSPAPYTVFVL -WHAIFSLCQAMSLFASRQTLLLLLPENGPHAAINEQLLTLTGLHDDILLIVR : :: .:::::: * .* : *!.:::* . ::. ::*	117
B.s.yqeN E.c.delta	Lapyeklderkkltkalkkhafischakelhakettdftvnlakteoktigteaaehlvll Gnklskagenaavftalanksvqvtcqtpeqaqlprwvaarakqlnlelddaanqvlcyc .*!***!!!!!!!!!!!!!!!!!!!!!!!!!!!!	125
B.s.yqeN E.c.delta	VNGHLSSIFQEIQKLCTFIGDREEITLDDVKMLVARSLEQNIFELINKIVNRKRTESLQI YEGNLLALAQALERLSLLWPDGK-LTLPRVEQAVMDAAHFTPFHWVDALLMGKSKRALHI !*!* :	235
B.s.yqeN E.c.delta	FYDLLKQHEEPIKIMALISHQFRLILQTKYFAEQGYGQKQIASHLKVHPFRVKLAHDQAR LQQLRLEGSEPVILLRTLQRELLLLVNLKRQSAHTPLR-ALFDKHRVWQNRRGMGHALN : : * :**: :: * : : : : : * : : : . : : * : :	291
B.s.yqab E.c.delta	LFSEELRLIIEQLAVMDYEMKTGKKDKQLLLELFLLQLLKRMEKNDPHY RLSQTQLRQAVQLLTRTELTLKQDYGQSVWAELEGLSLLLCHKPLADVFIDG	343

FIG. 12A

B.s.yqeN S.p. delta	-nvydvwkslkkgevhyvyclygketyllqetvsrir-qtvvdqetkdfmlsvydleedp miaiekieklskemiglitlvtgddigqysqlksrlmeqiaydkddlaysyydmseaa	59
	1.11 1.4.4 11 1 1 4.1 441 4 41 41 4 441.4 .	
Baub.yqeN	LDQAIADAETFPFMGERRLVIVKHPYFLTGEKKKEKIEHEVSALESYIQSPAPYTVFVLL	117
S.p.delta	YQDAEMDLVSLPFFAEQKVVIFDHILDITTNKKSFLKEKDLKAFEAYLENPLETTRLIIF	
Bsub.yqeN	Apyerlderekltkalkkhaphmeakelhakettdftvhlakteoktioteaaehlvllv	125
8.p.delta	AP-GKLDSKRRLVKLLKRDALVLEANPLKEAELRTYPQKYSHQLGLGFFSGAFDQLLL	
Baub, your	MGHLSSIFQEIQKLCTFIGDREEITLDDVKMLVARSLEQNIFELIKKIVHRKRTESL	235
S.p.delta	KSNDDFSQIMRNMAFLKAYKKTONISLTDIRQAIPKSLQDNIFD-VTRLVLRGKIDAA	
Bsub.ygeN	Q-ifydllaqheepikinalisnqfrlilqtkypaeqqygqaqanlkyhpfr	291
S.p.delta	RDLIHDLRLSGEDDIKLIAINLGGFKLFLGLTILARDVKNEGGLVISLSDILGRRVNFYG	
Baub.yqeN	VKLAMDQARLFSEEELRLIIEQLAVMDYEMKTGRKDKQLLLELFLLQLLKRMEKNDPHY	343
S.p.delta	VKYALKDSRTLSLAFLTGAVKTLIETDYQIKTGLYEKSYLVDIALLKIMTHSQK	343

FIG. 13

FIG. 14

15/29

SUPEROSE 6

FIG. 15A

FIG. 15B

FIG. 15C

FIG. 16E

17/29

FIG. 17A

24 26 28 30 32 34 36 38 40 42 44 46 48

FIG. 17B

24 26 28 30 32 34 36 38 40 42 44 46 48

FIG. 17C

18/29

SUPEROSE 6

6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

FIG. 18

19/29

 α Lτδδ" + β /DNA

3:1

10:1

RFII

SS

TIME (SEC)

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

20/29

FIG. 20A

21/29

FIG. 20B

FIG. 20C

FIG. 20D

FIG. 20E

FIG. 20F

26/29

FIG. 20G

FIG. 20H

FIG. 201

