textbfMultiple face recognition in images

Presentation on Convolutional Neural Networks, 2018

Simone Caldarella

IEEE Student Branch Brescia University of Brescia

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

- Introduction
 - Motivation
 - Target
- 2 Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- 4 Summary
 - Conclusion
 - Future implementation
 - Best bugs

Motivation

- Create a ground for recognition problems
- Show the power of retraining

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- 4 Summary
 - Conclusion
 - Future implementation
 - Best bugs

Target

- Detect and recognize different faces in photos
- Use a computer vision's framework (OpenCv) and a machine learning framework (Tensorflow)

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- 3 Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- 4 Summary
 - Conclusion
 - Future implementation
 - Best bugs

What does machine learning means?

▶ Is this a **neural network** or a **graph**?

What does machine learning means?

- ► The concept of training:
 - input and output;
 - inference and loss function;
 - gradient descent and weights update.
- ► The importance of a large and well organized dataset:
 - common problems;
 - cognitive bias.

Training and gradient descent

Schematic of gradient descent.

A more complex gradient descent loss

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Tensorflow and OpenCv

Tensorflow and computational graph concept

Tensorflow

- Why Tensorflow?
 - Tensors and use of computational graph;
 - different levels of abstraction.
- Low level and high level API:
 - Tensorflow functions;
 - Keras and tflearn.

OpenCV

- Why OpenCV?
 - Very fast;
 - lots of library and algorithm at the state-of-art.
- OpenCv detection algorithm:
 - HaarCascadeClassifier:
 - Dlib library for facial features detection.

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposa
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Convolutional Neural Network

Convolutional layers

► Convolutional matrix (Kernel)

- ▶ 3x3, 5x5, or 7x7, why only odd numbers?
- Edge detection:
 - Similarity with human vision;
 - From simple to complex forms.

Pooling layers

 Reducing number of information: best way to avoiding overfitting and decreasing computation complexity

Fully connected layers and dropout

- Fully connected layers are the last layer of the CNN
- Once the high-level features are recognized, they deal with classifications
- Dropout regolarization

(a) Standard Neural Net

(b) After applying dropout.

Activation functions

► ReLU

Softmax

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposa
 - Obtain image
 - Training (or retraining)
 - Inference
- 4 Summary
 - Conclusion
 - Future implementation
 - Best bugs

Dataset

- The perfect dataset should be:
 - made with hundreds of images;
 - different images with different colors to help the network classify them better.

Background images hard to suppress

Random background image patches

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain image
 - Training (or retraining)
 - Inference
- 4 Summary
 - Conclusion
 - Future implementation
 - Best bugs

ImageNet Challenge

- ► The ImageNet project:
 - large visual database designed for visual object recognition software research;
 - it contains over 20 thousand categories ("balloon", "strawberry", etc...);
 - all the images are labelled.
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC):
 - is a competition where research teams evaluate their algorithms on the given data set(ImageNet);
 - they compete to achieve higher accuracy on several visual recognition tasks.

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- 3 Proposa
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Inception network

 Inception networks analize images with different kernel size (in the same conv layer)

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- 3 Proposa
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Tensorflow and retraining

- Concept of retraining
- ► Tensorflow-hub: the key to create your own classifier with good result and without a Tesla k80

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Obtain images

- It use some OpenCv functions to get hundreds of photos in less than 30 seconds;
- after that, it crops them keeping only the faces(using a face detection algorithm) and it saves them;
- this is made to avoid the recognition of unwanted features as background color without the need of hundreds of images taken in different places.

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Training

- The algorithm takes the cropped pics and use them as dataset for the training;
 - in fact only the fully connected layers are trained;
- relatively fast.

- Introduction
 - Motivation
 - Target
- 2 Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Inference

- Choose a pic with multiple faces that you want to recognize/classify;
- select the graph you want to use for inference;
- you should obtain the original photo with multiple boxes around all the faces and, under each of them, the name of the most probable person.

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Conclusion

- Create your own machine learning program using another pre-trained model can help you to build something useful without the need of a workstation or cloud computing
- This project is only a small example of the potentiality of Tensorflow and the machine learning approach

- Introduction
 - Motivation
 - Target
- 2 Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Future implementation

- ▶ Let the users to choose beetwen more pre-trained models
- ► Find the best way to recognize an unknown person (someone who does not have photos yet)

- Introduction
 - Motivation
 - Target
- Background
 - Machine learning
 - Tensorflow and OpenCv
 - Convolutional Neural Network
 - Dataset
 - ImageNet

- Inception V3 by Google
- Tensorflow and retraining
- 3 Proposal
 - Obtain images
 - Training (or retraining)
 - Inference
- Summary
 - Conclusion
 - Future implementation
 - Best bugs

Best bugs

- OpenCv imshow freezing bug on unix like system
- Tensorflow-hub requires a tensorflow version that could not work with lots of processors(precompiled with AVX activation) (Link to issue)

Useful links

- ► Project repository: Link to repo
- Tensorflow: Link to Tensorflow page
- OpenCv: Link to OpenCv project
- Convolutional Neural Network example: GoogleNet
- ► Tensorflow retrain: tensorflow retraining