Notes on Sree's paper

Ziquan Yang

May 30, 2014

Theorem 0.1. Consider a binary linear code C of length $n=2^m-1$, distance d=6, and locality r=2. Suppose $m \geq 2$ is even. Suppose [n] can be divided into n/3 groups $\{g_i\}$ and the dual code has a codeword of Hamming weight 3 supported by the coordinates in each g_i . Then we have

 $k \le \frac{2}{3}(2^m - 1) - m$

Proof. Suppose $\mathbf{x} = (x_1, x_2, \dots, x_n) \in C$. Let \mathbf{c}_i denote the parity check supported by g_i . Then since $\mathbf{x} \cdot \mathbf{c}_i = 0$, we see that the projection of \mathbf{x} onto g_i could only be one of $\{000, 011, 101, 110\}$. Call this projection map p_i and identify the set $\{000, 011, 101, 110\}$ with the \mathbb{F}_4 we can identify \mathbf{x} with $\mathbb{F}_4^{(2^m-1)/3}$ by:

$$\varphi: x \mapsto (p_1(\mathbf{x}), p_2(\mathbf{x}), \cdots, p_{(2^m-1)/3}(\mathbf{x}))$$

. Denote the weight of \mathbf{x} by $wt(\mathbf{x})$. Since we see that \mathbf{x} intersects with g_i at at most two points, exactly $\frac{wt(\mathbf{x})}{2}$ $p_i(\mathbf{x}) \neq 0$. This shows that

$$wt(\varphi(\mathbf{x})) = \frac{wt(\mathbf{x})}{2}$$

. Thus we see that the image of C in $\mathbb{F}_4^{(2^m-1)/3}$ has minimum distance 3. We only need to show that the dimension for its image k' is bounded by

$$k' \le \frac{2^m - 1}{3} - \frac{m}{2}$$

To prove the above inequality, we show that there exists a set of coordinates T, |T| = m/2, such that dim $C = \dim C^T$, where C^T denotes the punctured code. Thus by singleton bound, we see that

$$\dim C = \dim C^T \le \frac{2^m - 1}{3} - \frac{m}{2}$$

It suffices to find a set T such that the canonical projection map $\pi: C \mapsto C^T$ has trivial kernel. We can construct this set inductively. Since $d' \geq 3$, we can take any set T_2 , where $|T_2| = 2$, and we see that the corresponding $\ker \pi_2 = 0$. Now we show that given a set T_u , $|T_u| = u$, $\ker \pi_u = 0$, where $4^u < n' - u$, there exists coordinate i_{u+1} such that the union $T_{u+1} = T_u \cup \{i_{u+1}\}$ satisfies $\ker \pi_{u+1} = 0$.

Consider the collection of all possible $T = T_u \cup \{j\}$, where $j \in [n'] - T_u$. Suppose for each T, we have the coresponding $\ker \pi_T \neq 0$, then for each T we can pick a non-zero vector $\mathbf{x}_T \in \ker \pi_T$. Note that by assumption we have

$$\#\{\pi_u(\mathbf{x}_T)\} = n' - u > 4^u \ge |\mathrm{I} m \pi_u|$$

there exists T and T' such that $\pi_u(\mathbf{x}_T) = \pi_u(\mathbf{x}_{T'})$. Note that we have $wt(\mathbf{x}_T - \mathbf{x}_{T'}) \leq 2$, contradicting with d' = 3. Thus there must exist a T, such that ker T = 0. Then we can let

the corresponding $j = i_{u+1}$ and $T = T_{u+1}$. The maximum possible u is m/2 - 1, so we can construct T_{u+1} up to u = m/2 - 1 and the required T is found.

Theorem 0.2. Consider a binary linear code C of length $n = 2^m - 1$, distance $d \ge 10$, and locality r = 2. Suppose $m \ge 2$ is even. Suppose [n] can be divided into n/3 groups $\{g_i\}$ and the dual code has a codeword of Hamming weight 3 supported by the coordinates in each g_i . Then we have

$$k \le \frac{2}{3}(2^m - 1) - 2m + 1$$

, and if k is even, then

$$k \le \frac{2}{3}(2^m - 1) - 2m$$

.

Proof. This is easily done by sphere packing. Again we map C to $\mathbb{F}_2^{n'}$, where n' = n/3. $d' \geq 5$ this time, so balls centered at codewords of radius 2 do not intersect with each other, thus we have

$$4^{n'} \ge |C|(1+3n'+\frac{9n'(n'-1)}{2})$$

Take \log_2 on both sides, we have

$$k \le \frac{2n}{3} + 1 - 2m$$

for any even m > 2.

Theorem 0.3. Consider a binary linear code C of length $n = 2^m - 1$, distance d = 6, and locality r = 2. If $2 \mid m$ and m > 8, then the upper bound on the dimension of C:

$$k \le \frac{2}{3}(2^m - 1) - m$$

continues to hold.

Proof. Let $Q = \{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_b\}$ be a set of linearly independent parity checks of weight 3 that cover [n]. Assume that Q is the minimal set that satisfies the condition. Suppose

$$b = \frac{1}{3}(2^m - 1) + t$$

where $0 \le t \le m$. $t \ge 0$ since at least $(2^m - 1)/3$ parity checks of weight 3 are needed to cover [n], and when $t \ge (m+1)$ the conclusion follows directly from

$$k \le n - b \le \frac{2}{3}(2^m - 1) - m - 1 < \frac{2}{3}(2^m - 1) - m$$

Let P_m be the maximal set of pairwise disjoint parity checks of weight 3 in Q. Let $|P_m| = N$. Reorder Q if needed, we suppose $P_m = \{\mathbf{q}_1, \mathbf{q}_2, \cdots, \mathbf{q}_N\}$. For each $\mathbf{q}_k \notin P_m$, if

$$\operatorname{supp}(\mathbf{q}_k) \cap \bigcup_{i=1}^N \operatorname{supp}(\mathbf{q}_i) = \emptyset$$

then $P_m \bigcup \{\mathbf{q}_k\}$ is also pairwise disjoint, contradicting with the maximality of P_m , i.e. each $\mathbf{q}_k \notin P_m$ covers at most 2 more coordinates not in $\bigcup_{i=1}^N \operatorname{supp}(\mathbf{q}_i)$. By inclusion-exclusion principle we have

$$3N - 2(b - N) > n$$

thus

$$N \ge \frac{2^m - 1}{3} - 2m$$

On the other hand, if

$$\operatorname{supp}(\mathbf{q}_k) \subset \bigcup_{i=1}^N \operatorname{supp}(\mathbf{q}_i)$$

then we can remove \mathbf{q}_k from Q the the rest still covers [n], contradicting with the minimality of Q. Thus each $\mathbf{q}_k \notin P_m$ intersects with at most 2 parity checks in P_m . Hence at most 6m parity checks in P_m have an non-empty intersection with some parity checks in $Q - P_m$, the remaining N^* parity checks in P_m intersect with neither other parity checks in P_m nor any parity checks in $Q - P_m$ and we have

$$N^* \ge \frac{2^m - 1}{3} - 8m$$

 $N^*>0$ when m>8. Reorder P_m if needed, then we can assume $\mathrm{supp}(\mathbf{q}_i)\cap\mathrm{supp}(\mathbf{q}_j)=\varnothing$ for $1\leq i\leq N^*, N^*+1\leq j\leq b$. Now let

$$C_N = \{\mathbf{x} \in \mathbb{F}_2^n \mid \operatorname{supp}(\mathbf{x}) \subset \bigcup_{i=1}^{N^*} \operatorname{supp}(\mathbf{q}_i), \mathbf{x} \cdot \mathbf{q}_i = 0, 1 \leq i \leq N^* \}$$

Cleary $\mathbf{x} \cdot \mathbf{q}_i = 0$ if and only if its $|\operatorname{supp}(\mathbf{x}) \cap \operatorname{supp}(\mathbf{q}_i)| = 2$ for $\mathbf{x} \neq 0$. Moreover, if $\mathbf{x} \in C_N$ and $wt(\mathbf{x}) = 2$, then $\mathbf{x} \cdot \mathbf{q}_i = 0$ for each $1 \leq i \leq b$ if and only if $\operatorname{supp}(\mathbf{x}) \subset \operatorname{supp}(\mathbf{q}_k)$ for some $1 \leq k \leq N^*$. Similarly if instead $wt(\mathbf{x}) = 4$, then it must be the sum of two codewords in C_N of weight 2. In order to exclude those \mathbf{x} with weight 2 or 4, we need to add more parity checks. Let M be the minimal matrix formed by such parity checks. We need for $\mathbf{c}_1 \neq \mathbf{c}_2$ to have $\mathbf{c}_1 + \ker M \neq \mathbf{c}_2 + \ker M$. Thus we must have

$$2^{b'} = |\text{I}mM| = |M/\ker M| \ge 1 + 3N^* \ge 2^m - 24m$$

. This gives $b' \geq m$, thus we conclude that

$$n - k \ge b + b' \ge \frac{2^m - 1}{3} + m$$

My Improvement

The above theorem shows that the assumption on disjoint locality parity checks leads to no loss in optimality in Theorem 0.1. Actually, Theorem 0.2 can be generalized in a similar manner. In the above proof again we consider vectors of even weight in C_N . To enforce the minimum distance of 10, we need to impose parity checks to rule out vectors in C_N with weight 2, 4, 6, 8. We have seen that each vector in C_N with weight 4 is the sum of two vectors with weight 2. Furthermore, we observe that given two vectors \mathbf{x}_1 , \mathbf{x}_2 of weight 4, we have

$$wt(\mathbf{x}_1 + \mathbf{x}_2) = |\operatorname{supp}(\mathbf{x}_1 + \mathbf{x}_2)| = \begin{cases} 2, & \text{if } |\operatorname{supp}(\mathbf{x}_1) \cap \operatorname{supp}(\mathbf{x}_2)| = 3\\ 4, & \text{if } |\operatorname{supp}(\mathbf{x}_1) \cap \operatorname{supp}(\mathbf{x}_2)| = 2\\ 6, & \text{if } |\operatorname{supp}(\mathbf{x}_1) \cap \operatorname{supp}(\mathbf{x}_2)| = 1\\ 8, & \text{if } |\operatorname{supp}(\mathbf{x}_1) \cap \operatorname{supp}(\mathbf{x}_2)| = 0 \end{cases}$$

3

The converse is also clearly true: each vector $\mathbf{x} \in C_N$ of weight 2, 4, 6, or 8 can be written as the sum of some \mathbf{x}_1 and \mathbf{x}_2 , both of weight 4. Thus we have

$$M\mathbf{x} \neq 0 \Leftrightarrow \mathbf{x}_i + \ker M \neq \mathbf{x}_j + \ker M$$
, for all \mathbf{x}_i and \mathbf{x}_j of weigth 4

A unique vector of weight 4 is constructed by selecting two vectors of weight 2. Thus we have

$$2^{b'} \geq {3N^* \choose 2}$$

which requires $b' \geq 2m-1$ when $m \geq 10$.