Úkol

- 1. Ze změřeného ohybového obrazce zobrazeného na milimetrovém papíru určete mřížkovou konstantu mřížky.
- 2. Pomocí aparatury proměřte ohybové obrazce: mřížky, štěrbiny a dvojštěrbiny. Konkrétní difrakční prvky vybere vyučující. Zpracováním měření určete parametry použitých difrakčních prvků.
- 3. Okalibrujte mikroskopový okulár s použitím metody lineární regrese, odhadněte relativní chybu kalibrace.
- 4. Mikroskopem změřte parametry všech použitých difrakčních prvků.
- 5. Výsledky měření v úkolech č.1, č.2 a č.4 srovnejte a diskutujte, v kterém případě jsou spočtené parametry zatíženy nejmenší chybou.

Teorie

V tomto praktiku měříme ohyb laserového svazku způsobený difrakční mřížkou a štěrbinami. Protože použitý laser má poměrně velkou divergenci svazku, použijeme v měření spojnou čočku, viz [1].

Pro získání mřížkové konstanty a využijeme vztahu pro úhel φ mezi dvěma body maximální intenzity difrakčního obrazce

$$\varphi = \frac{\lambda}{a},\tag{1}$$

kde λ je vlnová délka použitého světla. Úhel φ získáme z rovnice

$$\varphi = \frac{x}{I},\tag{2}$$

kde x je vzdálenost dvou maxim a l vzdálenost difrakčního obrazce od spojné čočky. Předpokládáme malé úhly.

Výsledky

Vzdálenost difrakčních obrazců od čočky byla

$$l = (1,000 \pm 0,005) \,\mathrm{m}$$
.

Úkol 1

Úkol 2

Intenzita světla vynesená v grafech níže nabývá hodnot 0 - 255 a popisuje odezvu snímače na dopadající světlo.

V grafu 1 je zobrazen difrakční obrazec difrakční mřížky. Odečtením poloh peaků a použitím vzorce (1) a (2) jsme dostali mřížkovou konstantu

$$a = (5,20 \pm 0,05) \times 10^{-5} \,\mathrm{m}.$$

Obrázek 1: Difrakční obrazec mřížky

Úkol 3

Byla provedena kalibrace měřítka mikroskopu metodou postupných měření. Data byla zpracována lineární regresí, směrnice regrese je 6.10 ± 0.01 . Jeden dílek na stupnici mikroskopu tedy odpovídá $\frac{1}{6,10}$ milimetrům.

Úkol 4

Pomocí mikroskopu jsme získali rozměry použitých optických prvků, tabulka 1 obsahuje vzdálenosti deseti vrypů mřížky, tabulka 2 šířku štěrbiny na třech místech a tabulka 3 šířku a vzdálenost štěrbin na třech místech.

poloha vrypu [dílek mikroskopu]	vzdálenost od dalšího vrypu [dílek mikroskopu]	vzdálenost od dalšího vrypu [m]
3,54	0,32	$5,24 \times 10^{-5}$
3,83	$0,\!29$	$4,75 \times 10^{-5}$
4,16	0,31	$5,08 \times 10^{-5}$
$4,\!47$	$0,\!32$	$5,24 \times 10^{-5}$
4,79	0,31	$5,08 \times 10^{-5}$
5,10	$0,\!32$	$5,24 \times 10^{-5}$
$5,\!42$	0,31	$5,08 \times 10^{-5}$
5,73	$0,\!33$	$5,40 \times 10^{-5}$
6,02	0,29	$4,75 \times 10^{-5}$
6,34		

Tabulka 1: Hodnoty vzdáleností vrypů mřížky

Průměrná hodnota vzdálenosti dvou vrypů a tedy i mřížkové konstanty je

$$a = (5.09 \pm 0.07) \times 10^{-5} \,\mathrm{m}$$

poloha začátku št. poloha konce št. šířka štěrbiny šířka štěrbiny měření [dílek mikroskopu] [dílek mikroskopu] [dílek mikroskopu] [m] $2,13 \times 10^{-4}$ 1 2,50 3,80 1,30 $2,\!11\times10^{-4}$ 2 3,81 1,29 2,52 $2,03 \times 10^{-4}$ 3 2,742,74 1,24

Tabulka 2: Hodnoty šířky štěrbiny na třech místech

Průměrná hodnota šířky štěrbiny je

$$b = (2.09 \pm 0.03) \times 10^{-4} \,\mathrm{m}$$

měření	1	2	3
začátek první štěrbiny [dílek] konec první štěrbiny [dílek]	$2,08 \\ 2,75$	2,20 $2,94$	2,06 $2,80$
začátek druhé štěrbiny [dílek] konec druhé štěrbiny [dílek]	5,72 6,46	5,90 6,75	5,76 6,51
šířka první štěrbiny [dílek] šířka první štěrbiny [mm]	$0,67 \\ 0,109$	$0,74 \\ 0,121$	$0,74 \\ 0,121$
šířka druhé štěrbiny [dílek] šířka druhé štěrbiny [mm]	$0,74 \\ 0,121$	0,85 0,140	0,75 $0,123$
vzdálenost štěrbin [dílek] vzdálenost štěrbin [mm]	$3,64 \\ 0,596$	$3,70 \\ 0,606$	$3,70 \\ 0,606$

Tabulka 3: Hodnoty šířky a vzdálenosti štěrbin na třech místech

Aritmetický průměr vzdálenosti štěrbin je

$$a = (6.02 \pm 0.03) \times 10^{-4} \,\mathrm{m}.$$

Diskuse

Závěr

Reference

[1] Pokyny k měření "", dostupné z