Homework-4

October 10, 2024

- 1. Prove the following 3 isomorphic theorems of rings:
- (1). For a ring homomorphism $\varphi: R_1 \to R_2, R_1/\ker \varphi \simeq \operatorname{Im} \varphi \leqslant R_2$.
- (2). Let $I \triangleleft R$ s.t. $\pi: R \to R/I: r \mapsto r+I$, natural homomorphism. Then:
 - 1. The ideal(subring) of R containing I and ideal(subring) of R/I are in one-to-one correspondence;
 - 2. If $I \triangleleft J \triangleleft R$ then $J/I \triangleleft R/I$ and $R/J \simeq \frac{R}{I}/\frac{J}{I}$.
- (3). Let $I \triangleleft R$, $S \leqslant R$. Then I + S is a subring of R, and:
 - 1. $S \cap I \triangleleft S$ and $I \triangleleft I + S$;
 - 2. $(I+S)/I \simeq S/S \cap I$
- 2. Let $F = \mathbb{F}_3 = \{0, 1, 2\}$ be a field. Let $p(x) = x^2 + 1$, check that p(x) is irreducible over F. This means that $F[x]/(x^2 + 1)$ is a field. Find a basis for $F[x]/(x^2 + 1)$ as a vector space over F.
- 3. Let $G = \mathbb{Z}/n\mathbb{Z} \oplus \mathbb{Z}/n\mathbb{Z}$, show End(G).
- 4. Let R be a finite ring with identity, $a, b \in R$ and ab = 1. Prove that ba = 1.
- 5. Let R be a ring, $a \in R$. If there exist a positive number n s.t. $a^n = 0$, then a is called a nilpotent element. Prove that if a is a nilpotent element of a ring R with identity, then 1 a is invertible.
- 6. Prove: in a commutative ring R all nilpotent element form an ideal. (Called the nilpotent ideal of R)
- 7. Prove that the addition and multiplication of ideals in a ring R with identity are compatible. i.e. for all ideals I, J, K in a ring R with identity, they satisfy:
- (1). (I + J)K = IK + JK;
- (2). K(I + J) = KI + KJ.
- 8. Prove that the matrix ring $M_n(K)$ over field K has no non-trivial ideal. (Those kind of rings are called simple rings).
- 9. Let R be a non-zero commutative ring with identity. Prove that R is a simple ring if and only if R is a field.
- 10. Let K be a field, R be a ring, $\varphi : K \to R$ be a ring homomorphism. Prove that $\varphi(K) = 0$ or φ is injective.

- 11. Prove that all finite integral domains are fields.
- 12. Prove that the subset $\{\pm 1, \pm i, \pm j, \pm k\}$ of quaternion ring \mathbb{H} is a group under the multiplication which is called quaternion group, denoted by Q_8 . Prove that every subgroup of Q_8 is normal subgroup, but Q_8 is non-abelian.
- 13. Let L be a skew field, $a, b \in L$ and $ab \neq 0, 1$. Prove Hua's identity:

$$a - (a^{-1} + (b^{-1} - a)^{-1})^{-1} = aba$$

14. Let F be a field with $\operatorname{Char} F = p > 0$. Prove:

$$(a+b)^p = a^p + b^p, \ \forall a, b \in F$$