

1. Take the Satisfaction with Life Scale (Diener et al., 1985), then create a mean composite score.

Strong	ly	Slightly	Neither Agree			
Disagre	ee Disagree	Disagree	nor Disagree	Slightly Agree	Agree	Strongly Agree
1	2	3	4	5	6	7
	In most ways my life is	close to my idea	al.			
	The conditions of my l	ife are excellent.				
	I am satisfied with my	life.				
	So far I have gotten th	e important thin	gs I want in life.			
	If I could live my life over, I would change almost nothing.					
	Satisfaction with Life S	core (Mean)				

2. Turn this count data into percentage data. There were 150 bees in every generation.

Number of bees bred	Percentage of bees	
in second generation	bred in second	
that have no stripes	generation that have	
	no stripes	
13		
5		
10		
2		
8		
4		

3. Create a new variable (speed) by combining two existing variables (distance and time).

Miles of Travel	Hours of Travel (Time)	Miles per Hour
(Distance)		(Speed)
356	7	
560	9	
235	3	
114	2	
389	5	
581	7	

4. Your HbA1c data is exponentially distributed. Use a natural log transformation to make it normally distributed.

HbA1c	In_HbA1c
1.34	
2.00	
0.16	
10.19	

