ИССЛЕДОВАНИЕ ДЕСОРБЦИИ ЗОЛОТА (III) И ПАЛЛАДИЯ (II) С ПОВЕРХНОСТИ СОРБЕНТА НА ОСНОВЕ ПОЛИВИНИЛИМИДАЗОЛА

Цапова П.А.⁽¹⁾, *Кузнецова К.Я.*⁽¹⁾, *Петрова Ю.С.*⁽¹⁾, *Пестов А.В.*^(1,2), *Неудачина Л.К.*⁽¹⁾:

⁽¹⁾ Уральский федеральный университет 620002, г. Екатеринбург, ул. Мира, д. 19

⁽²⁾ Институт органического синтеза УрО РАН 620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Золото и палладий представляют собой ценные металлы, широко применяемые в научной и промышленной сферах благодаря их уникальным физико-химическим свойствам. Однако запасы этих металлов в земной коре ограничены, что стимулирует разработку эффективных методов их извлечения из растворов различного состава. Одним из важных аспектов в данной области является регенерация сорбентов — процесс, направленный на восстановление их сорбционной способности после насыщения целевыми веществами. Регенерация позволяет повторно использовать сорбенты, что способствует снижению затрат и минимизации отходов, делая процесс более экономически и экологически устойчивым. Таким образом, разработка и оптимизация методов регенерации сорбентов являются важными задачами в химической технологии и экологии.

Целью данной работы являлось изучение десорбции палладия (II) и золота (III) после сорбции материалом на основе поливинилимидазола (ПВИ), сшитого эпихлоргидрином со степенью кватернизации 71 %. Сорбент синтезирован в ИОС УрО РАН под руководством к. х. н. А.В. Пестова.

Предварительно проводили концентрирование палладия (II) и золота (III) из индивидуальных солянокислых растворов при рН 2, навеска сорбента составляла 0.1000 г. В динамических условиях десорбцию ионов металлов с поверхности сорбента исследовали с помощью десорбентов, представленных в таблице. Раствор, выходящий из патрона со скоростью 2 см³/мин, собирали порциями по 10.0 см³, определяли концентрацию ионов металлов в элюате методом AAC

Состав растворов для десорбции палладия (II) и золота (III) с ПВИ

$C_{\scriptscriptstyle ext{Tиомочевины}}, \ ext{моль}/\ ext{дм}^3$	1				0.5	1	2
$C_{\rm HCl}$, моль/дм ³	0.1	0.5	1	2	0.1		

Установлено, что степень десорбции ионов золота (III) и палладия (II) с использованием различных регенерантов не изменяется с увеличением концентрации соляной кислоты и тиомочевины в исходном растворе и во всех случаях является количественной. По кривым элюирования установлено, что для десорбции золота (III) и палладия (II) достаточно раствора объемом 10 см³.