Matrix Realization of Spectral Bounds

Chih-wen Weng

Department of Applied Mathematics, National Yang Ming Chiao Tung University

Algebraic Graph Theory (2024 Fall)

Outline

- Motivation
- 2 Main theorem
- 3 Spectral bound via a same size matrix
- 4 The case $P = I_n$ and $Q = I_n + \sum_{i=1}^{n-1} e_{in}$
- 6 Rooted matrices
- 6 Spectral bound via a smaller size matrix

Motivation

Theorem (Stanley, 1987)

If Γ is a graph of size m with spectral radius $\rho(A)$, then

$$\rho(A) \le \frac{-1 + \sqrt{1 + 8m}}{2}.$$

Proof.

The *i*-th rowsum of $4A^2 + 4A$ satisfies

$$r_{i}(4A^{2}+4A) = (4A^{2}+4A)_{ii} + \sum_{\partial(j,i)=1} (4A^{2}+4A)_{ij} + \sum_{\partial(j,i)=2} (4A^{2}+4A)_{ij}$$
$$=4|\Gamma_{1}(i)| + (8|E\Gamma_{1}(i)| + 4|\Gamma_{1}(i)|) + 4|E(\Gamma_{1}(i),\Gamma_{2}(i))| \leq 8m.$$

By a property we proved earlier that positive eigenvector matters, the eigenvalue $4\rho(A)^2+4\rho(A)$ of $4A^2+4A$ is at most 8m to have the result.

Further results

Let Γ be a graph of order n and size m with degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$. Recall that $2m = d_1 + d_2 + \cdots + d_n$. Let A be the adjacency matrix of Γ with spectral radius $\rho(A)$. The following are extensions of

$$\rho(A) \le \frac{-1 + \sqrt{1 + 8m}}{2}.$$

- (Hong, 1998) $\rho(A) \le \sqrt{2m-n+1}$.
- (Hong, Shu, Fang, 2001) $\rho(A) \leq \frac{d_n 1 + \sqrt{(d_n + 1)^2 + 4(2m nd_n)}}{2}$.
- (Shu, Wu, 2004) $\rho(A) \leq \frac{d_{\ell}-1+\sqrt{(d_{\ell}+1)^2+4(\ell-1)(d_1-d_{\ell})}}{2}$.
- (Liu, Weng, 2013) $\rho(A) \leq \frac{d_\ell 1 + \sqrt{(d_\ell + 1)^2 + 4\sum_{i=1}^{\ell-1}(d_i d_\ell)}}{2}$.

Matrix realizations

$$\rho \begin{pmatrix} 0 & 1 & \cdots & 1 & d_1 - (n-2) \\ 1 & 0 & \ddots & \vdots & \ddots & \vdots \\ \vdots & \ddots & & \ddots & 1 & d_1 - (n-2) \\ \vdots & \ddots & & \ddots & 1 & d_1 - (n-2) \\ \vdots & \ddots & \ddots & & 1 & d_\ell - (n-2) \\ \vdots & \ddots & \ddots & & 1 & d_\ell - (n-2) \\ 1 & \cdots & & 1 & 0 & d_\ell - (n-2) \\ 1 & \cdots & & 1 & 1 & d_1 - (n-2) \\ 1 & 0 & \ddots & & \vdots & d_2 - (n-2) \\ \vdots & \ddots & \ddots & & \vdots & \vdots \\ & & & 1 & d_\ell - (n-2) \\ \vdots & \ddots & \ddots & & \vdots \\ & & & 0 & 1 & \vdots \\ & & & & 1 & 0 & d_\ell - (n-2) \\ 1 & \cdots & & & 1 & 1 & d_\ell - (n-1) \end{pmatrix} = \frac{d_\ell - 1 + \sqrt{(d_\ell + 1)^2 + 4(\ell - 1)(d_1 - d_\ell)}}{2}.$$

Main theorem

Rooted vectors

A vector (v_1, v_2, \dots, v_n) is called **rooted** if $v_i \ge v_n \ge 0$ for $1 \le i \le n - 1$.

Main Theorem (Cheng, -)

Let $M=(m_{ab})$ be an $\ell \times \ell$ matrix whose first $\ell-1$ columns and row-sum vector are all rooted. If $C=(c_{ij})$ is an $n \times n$ nonnegative matrix and there exists a partition $\Pi=(\pi_1,\pi_2,\ldots,\pi_\ell)$ of $[n]:=\{1,2,\ldots,n\}$ such that

$$\max_{i \in \pi_a} \sum_{j \in \pi_b} c_{ij} \leq m_{ab} \quad \text{and} \quad \max_{i \in \pi_a} \sum_{j=1}^n c_{ij} \leq \sum_{c=1}^\ell m_{ac}$$

for $1 \le a \le \ell$ and $1 \le b \le \ell - 1$, then $\rho(C) \le \rho_r(M)$.

Before we prove this theorem, we will see some example first.

Example

If $\ell=n$, $\Pi=\{\{1\},\{2\},\ldots,\{n\}\}$, and $|c_{ij}|\leq m_{ij}$, then $\rho(C)\leq \rho(M)$ by an application of Perron-Frobenius Theorem. In this case, we don't need the rooted assumption of M.

If
$$\ell = 1$$
, $C \ge 0$, $\Pi = \{[n]\}$, and $m_{11} = \max_{i \in [n]} \sum_{j=1}^{n} c_{ij}$, then $\rho(C) \le \rho(M)$.

If
$$\ell = n = 2$$
, $\Pi = \{\{1\}, \{2\}\}$, and

$$C = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}, \quad M = \begin{pmatrix} 5 & 2 \\ 4 & -1 \end{pmatrix},$$

then

$$3 + 2\sqrt{2} = \rho(\mathit{C}) \le \rho(\mathit{M}) = 2 + \sqrt{17}.$$

Remark

The above matrix M is rooted, since $5 \ge 4 \ge$ and $5 + 2 \ge 4 + (-1) \ge 0$. The last column of M is unrelated.

With n=7, $\ell=3$, $\Pi=\{\{1,2,3\},\{4,5\},\{6,7\}\}$, and

$$C = \begin{pmatrix} 2 & 1 & 3 & 3 & 3 & 12 & 0 \\ 4 & 2 & 1 & 4 & 2 & 6 & 4 \\ 2 & 3 & 1 & 4 & 1 & 8 & 3 \\ \hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\ 5 & 6 & 1 & 1 & 0 & 3 & 3 \\ \hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 4 \end{pmatrix}, \quad M = \begin{pmatrix} 7 & 6 & 11 \\ 12 & 2 & 6 \\ 4 & 4 & 5 \end{pmatrix},$$

where the row-sum vectors of C and M are

$$(24, 23, 22|20, 19|13, 12), (24, 20, 13),$$

respectively, we have $\rho(\mathit{C}) \leq \rho_{\mathit{r}}(\mathit{M}) \approx 18.6936$.

Spectral bound via a same size matrix

Lemma

Let C, C, P and Q be $n \times n$ matrices. Assume that (i) $PCQ \leq PCQ$; (ii) $C'Qu = \lambda'Qu$ for some column vector $0 \neq u \geq 0$ and $\lambda' \in \mathbb{R}$; (iii) $v^TPC = \lambda v^TP$ for some row vector $0 \neq v^T \geq 0$ and $\lambda \in \mathbb{R}$; and (iv) $v^TPQu > 0$. Then $\lambda \leq \lambda'$.

Proof.

$$PCQ \leq PC'Q$$

$$\Rightarrow PCQu \leq PC'Qu = \lambda'PQu$$

$$\Rightarrow \lambda v^T PQu = v^T PCQu \leq v^T PC'Qu = \lambda' v^T PQu$$

$$\Rightarrow \lambda \leq \lambda'.$$

Remark

If P=Q=I, C' is irreducible, $0\leq C\leq C'$, u>0 is λ' -eigenvector of C' and $v^T\geq 0$ is left λ -eigenvector of C, then the assumption (iv) $v^Tu>0$ in the previous lemma holds and the conclusion $\lambda\leq \lambda'$ holds. Indeed this is an application of Perron-Frobenius Theorem.

Lemma

Let C, C, P and Q be $n \times n$ matrices. Assume that (i) $PCQ \ge PCQ$; (ii) $C'Qu = \lambda'Qu$ for some column vector $0 \ne u \ge 0$ and $\lambda' \in \mathbb{R}$; (iii) $v^TPC = \lambda v^TP$ for some row vector $0 \ne v^T \ge 0$ and $\lambda \in \mathbb{R}$; and (iv) $v^TPQu > 0$. Then $\lambda \ge \lambda'$.

Proof.

$$PCQ \ge PC'Q$$

$$\Rightarrow PCQu \ge PC'Qu = \lambda'PQu$$

$$\Rightarrow \lambda v^T PQu = v^T PCQu \ge v^T PC'Qu = \lambda' v^T PQu$$

$$\Rightarrow \lambda \ge \lambda'.$$

The case
$$P = I_n$$
 and $Q = I_n + \sum_{i=1}^{n-1} e_{in}$

The matrix $Q = I_n + \sum_{i=1}^{n-1} e_{in}$

We will apply the previous two lemmas by letting $P = I_n$ and

$$Q = I_n + \sum_{i=1}^{n-1} e_{in} = \begin{pmatrix} I_{n-1} & J_{(n-1)\times 1} \\ O_{1\times (n-1)} & 1 \end{pmatrix}.$$

Hence

$$C'Q = \left(\begin{array}{c|c} C'[n|n-1] & r'_1 \\ c'_2 & \vdots \\ c'_n \end{array} \right),$$

where C'[n|n-1] is the submatrix of C on the first n-1 columns and where $(\mathbf{r}_1',\mathbf{r}_2',\ldots,\mathbf{r}_n')$ is the row-sum vector of C'.

Lemma

Let $Q = I_n + \sum_{i=1}^{n-1} e_{in}$ and u be a column vector. Then Qu is rooted if and only if u is nonnegative.

Proof.

This follows from the definition of rooted vector and using

$$Qu = \begin{pmatrix} u_1 + u_n & u_2 + u_n & \cdots & u_{n-1} + u_n & u_n \end{pmatrix}.$$

Theorem

Let C and C' be $n \times n$ matrices. Assume that

- (i) $C[n|n-1] \le C'[n|n-1]$ and $(r_1, r_2, \dots, r_n) \le (r'_1, r'_2, \dots, r'_n)$;
- (ii) $C'w = \lambda'w$ for some column rooted vector $0 \neq w \geq 0$ and $\lambda' \in \mathbb{R}$;
- (iii) $v_{\underline{\ }}^T C = \lambda v^T$ for some row vector $0 \neq v^T \geq 0$ and $\lambda \in \mathbb{R}$; and
- (iv) $v^T w > 0$.

Then $\lambda \leq \lambda'$.

Proof.

Applying the lemma in the previous section with $P = I_n$,

 $Q = I_n + \sum_{i=1}^{n-1} e_{in} \ w = Qu$, and noticing that u is nonnegative if and only if w is rooted, we immediately have the theorem.

Theorem

Let C and C' be $n \times n$ matrices. Assume that

- (i) $C[n|n-1] \ge C'[n|n-1]$ and $(r_1, r_2, \dots, r_n) \ge (r'_1, r'_2, \dots, r'_n)$;
- (ii) $C'w = \lambda'w$ for some column rooted vector $0 \neq w \geq 0$ and $\lambda' \in \mathbb{R}$;
- (iii) $v_T^T C = \lambda v^T$ for some row vector $0 \neq v^T \geq 0$ and $\lambda \in \mathbb{R}$; and
- (iv) $v^T w > 0$.

Then $\lambda \geq \lambda'$.

Proof.

Applying the lower bound lemma in the previous section with $P = I_n$, $Q = I_n + \sum_{i=1}^{n-1} e_{in} \ w = Qu$, and noticing that u is nonnegative if and only if w is rooted, we immediately have the theorem.

Consider the following three matrices

$$C'_{\ell} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \quad C'_{r} = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

with $C_{\ell}[3|2] \leq C[3|2] \leq C_{r}[3|2]$, and the same row-sum vector (5,3,3). Note that C_{ℓ} has a rooted 3-eigenvector $w_{\ell} = (1,0,0)^{T}$, and C_{r} has a rooted 4-eigenvector $r_{r} = (2,1,1)^{T}$. Since C is irreducible, it has a positive left $\rho(C)$ -eigenvector (v_{1},v_{2},v_{3}) . Hence

$$3 \le \rho(C) \le 4$$
.

Rooted matrices

Rooted matrices

- An $n \times n$ real matrix $C' = (c'_{ij})$ is called **rooted** if there is a constant d such that the first n-1 columns and the row-sum vector of $C' + dI_n$ are all rooted.
- If C' has no real eigenvalue, set $\rho_r(C') = \infty$; otherwise let $\rho_r(C')$ denote the largest real eigenvalue of C'.

The following three matrices

$$C'_{\ell} = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}, \quad C = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \end{pmatrix}, \quad C'_{r} = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 2 & 0 \\ 1 & 2 & 0 \end{pmatrix}$$

are all rooted.

Remark

•

$$Q = I_{n} + \sum_{i=1}^{n-1} e_{in} = \begin{pmatrix} I_{n-1} & J_{(n-1)\times 1} \\ O_{1\times(n-1)} & 1 \end{pmatrix}$$

$$\Rightarrow Q^{-1} = I_{n} - \sum_{i=1}^{n-1} e_{in} = \begin{pmatrix} I_{n-1} & -J_{(n-1)\times 1} \\ O_{1\times(n-1)} & 1 \end{pmatrix}$$

$$Q^{-1}C'Q = Q^{-1} \begin{pmatrix} c'_{11} & c'_{12} & \cdots & c'_{1} & -1 & t'_{1} \\ c'_{21} & c'_{22} & \cdots & c'_{2} & -1 & t'_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c'_{n-1} & 1 & c'_{n-1} & 2 & \cdots & c'_{n-1} & -1 & t'_{n-1} \\ c'_{n1} & c'_{n2} & \cdots & c'_{nn-1} & t'_{n} \end{pmatrix}.$$

• $Q^{-1}(C' + dI_n)Q \ge 0$ for some $d \in \mathbb{R}$ if and only if C' is rooted.

If C is an $n \times n$ rooted matrix, then $\rho_r(C') < \infty$, and C has a rooted eigenvector $\mathbf{v} = (\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)^T$ for $\rho_r(C)$. Moreover, if the row vector $(c'_{n1}, c'_{n2}, \dots, c'_{nn-1})$ is positive then $\sqrt{c'_{n1}}$ is positive.

Proof.

Let $Q = I_n + \sum_{i=1}^{n-1} e_{in}$. Since $Q^{-1}(C' + dI_n)Q \ge 0$ for some $d \in \mathbb{R}$, there is a η -eigenvector $u \geq 0$, where $\eta = \rho(C' + dI_n) \in \mathbb{R}$. Since $\rho(C' + dI_n) = \rho_r(C') + d$, V = Qu is a rooted $\rho_r(C')$ -eigenvector. This proves the first statement. Suppose $(c'_{n1}, c'_{n2}, \dots, c'_{nn-1}) > 0$. If $u_n > 0$ then $\sqrt{\ }$ is clear to be positive. Suppose $u_n=0$. Then $\sqrt{\ }_n=0$ and $\sum_{i=1}^{n-1} c'_{ni} v'_i = \sum_{i=1}^n c'_{ni} v'_i = (C'v')_n = \rho_r(C') v'_n = 0$. Hence $v'_i = 0$ for $1 \le i \le n-1$. Thus v is a zero vector, a contradiction.

Theorem

Let C and C be $n \times n$ matrices such that C > 0, C is rooted, $0 \le C[n|n-1] \le C'[n|n-1]$ and $(r_1, r_2, \dots, r_n) \le (r'_1, r'_2, \dots, r'_n)$. Then $\rho(C) < \rho_r(C')$.

Proof.

We assume first $(c_{n1}, c_{n2}, \dots, c_{nn-1}) > 0$. By the previous lemma, C' has a positive rooted $\rho_r(C')$ -eigenvector V. By Perron-Frobenius Theorem, C has a nonnegative $\rho(C)$ -eigenvector v. Since $v^T v' > 0$, we have $\rho(C) < \rho_r(C')$ by the upper bound theorem in the previous section.

In general let $\epsilon > 0$ and $C_{\epsilon} := C' + \epsilon J_n$. By the argument above we have $\rho(C) < \rho_r(C_c)$. Hence

$$\rho(C) \leq \lim_{\epsilon \to 0^+} \rho_r(C'_{\epsilon}) = \rho_r(C').$$

Theorem

Let C and C be $n \times n$ matrices such that C > 0, C is rooted, $0 \le C'[n|n-1] \le C[n|n-1]$ and $(r'_1, r'_2, \dots, r'_n) \le (r_1, r_2, \dots, r_n)$. Then $\rho(C) \leq \rho_r(C')$.

Proof.

We assume first $(c_{n1}, c_{n2}, \dots, c_{nn-1}) > 0$. By the previous lemma, C' has a positive rooted $\rho_r(C')$ -eigenvector V. By Perron-Frobenius Theorem, C has a nonnegative $\rho(C)$ -eigenvector v. Since $v^T v' > 0$, we have $\rho(C) > \rho_r(C')$ by the lower bound theorem in the previous section.

In general let $\epsilon > 0$ and $C_{\epsilon} := C' + \epsilon J_n$. By the argument above we have $\rho(C) > \rho_r(C_c)$. Hence

$$\rho(C) \ge \lim_{\epsilon \to 0^+} \rho_r(C'_{\epsilon}) = \rho_r(C').$$

Remark

The condition 'C' is a rooted matrix' can be replaced by 'C' has a rooted $\rho_r(C')$ -eigenvector in the above two theorems with almost the same proofs.

Spectral bound via a smaller size matrix

Motivation

For

$$C = \begin{pmatrix} 2 & 1 & 3 & 3 & 3 & 12 & 0 \\ 4 & 2 & 1 & 4 & 2 & 6 & 4 \\ 2 & 3 & 1 & 4 & 1 & 8 & 3 \\ 3 & 5 & 3 & 1 & 1 & 3 & 4 \\ 5 & 6 & 1 & 1 & 0 & 3 & 3 \\ 0 & 2 & 1 & 2 & 2 & 6 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 4 \end{pmatrix}, C' = \begin{pmatrix} 2 & 2 & 3 & 3 & 3 & 12 & -1 \\ 4 & 2 & 1 & 4 & 2 & 6 & 5 \\ 2 & 3 & 2 & 4 & 2 & 8 & 3 \\ 4 & 5 & 3 & 1 & 1 & 3 & 3 \\ 5 & 6 & 1 & 1 & 1 & 3 & 3 \\ 1 & 2 & 1 & 2 & 2 & 6 & -1 \\ 2 & 2 & 0 & 2 & 2 & 1 & 4 \end{pmatrix}$$

with $C[9|6] \le C'[7|6]$ and corresponding row-sum vectors,

$$(24, 23, 22, 20, 19, 13, 12) \le (24, 24, 24, 20, 20, 13, 13),$$

we still can't apply the upper bound theorem in the previous section to conclude $\rho(C) \leq \rho_r(C')$. This is because C' is not a rooted matrix, since $c'_{61} = 0 < 1 = c'_{71}$.

Observation

For

$$C' = \begin{pmatrix} 2 & 2 & 3 & 3 & 3 & 12 & -1 \\ 4 & 2 & 1 & 4 & 2 & 6 & 5 \\ 2 & 3 & 2 & 4 & 2 & 8 & 3 \\ \hline 4 & 5 & 3 & 1 & 1 & 3 & 3 \\ 5 & 6 & 1 & 1 & 1 & 3 & 3 \\ \hline 1 & 2 & 1 & 2 & 2 & 6 & -1 \\ 2 & 2 & 0 & 2 & 2 & 1 & 4 \end{pmatrix}, M = \begin{pmatrix} 7 & 6 & 11 \\ 12 & 2 & 6 \\ 4 & 4 & 5 \end{pmatrix},$$

the rooted matrix M is an equitable quotient matrix of C with respect to the partition $\Pi = \{\{1,2,3\},\{4,5\},\{6,7\}\}$ of [7].

• To have $\rho_r(C') = \rho(M)$, the $\rho_r(C')$ -eigenvector of C' needs to be extended from the $\rho(M)$ -eigenvector of M.

Lemma

If C' is an $n \times n$ matrix, $\Pi = \{\pi_1, \dots, \pi_\ell\}$ is an equitable partition of C' with $n \in \pi_\ell$ and $\Pi(C')$ is a rooted matrix, then C' has a rooted eigenvector Su for $\rho_r(\Pi(C'))$, where S is the incident matrix of Π and u is a rooted eigenvector of $\Pi(C')$ for $\rho_r(C')$.

Proof.

Since u is rooted and $n \in \pi_{\ell}$, Su is rooted. Note that

$$C'Su = S\Pi(C')u = \rho_r(C')Su.$$

Main Theorem

Let $M=(m_{ab})$ be an $\ell \times \ell$ matrix whose first $\ell-1$ columns and row-sum vector are all rooted. If $C=(c_{ij})$ is an $n \times n$ nonnegative matrix and there exists a partition $\Pi=(\pi_1,\pi_2,\ldots,\pi_\ell)$ of $[n]:=\{1,2,\ldots,n\}$ such that

$$\max_{i \in \pi_a} \sum_{j \in \pi_b} c_{ij} \le m_{ab} \quad \text{and} \quad \max_{i \in \pi_a} \sum_{j=1}^n c_{ij} \le \sum_{c=1}^\ell m_{ac}$$

for $1 \le a \le \ell$ and $1 \le b \le \ell - 1$, then $\rho(C) \le \rho_r(M)$.

Proof. Rearranging the indices of C if necessary, we might assume $n \in \pi_{\ell}$. We first consider the case that $(m_{\ell 1}, m_{\ell 2}, \ldots, m_{\ell \ell - 1}) > 0$. We construct an $n \times n$ matrix C such that $C[n|n-1] \leq C'[n|n-1]$, $(r_1, r_2, \ldots, r_n) \leq (r'_1, r'_2, \ldots, r'_n)$, and $\Pi(C') = M$ is an equitable partition of C'.

Continue the proof

Since M has a positive rooted $\rho_r(M)$ -eigenvector, by the previous lemma, C' has a positive rooted $\rho_r(M)$ -eigenvector. By Perron-Frobenius Theorem, C has a nonnegative $\rho(C)$ -eigenvector v. Since $v^Tv'>0$, we have $\rho(C) \leq \rho_r(M) \leq \rho_r(C')$ by the upper bound theorem.

In general let $\epsilon>0$ and $M_\epsilon:=M+\epsilon J_\ell$. By the argument above we have $\rho(\mathcal{C})\leq \rho_r(M_\epsilon)$. Hence

$$\rho(\mathit{C}) \leq \lim_{\epsilon \to 0^+} \rho_{\mathit{r}}(\mathit{M}_{\epsilon}) = \rho_{\mathit{r}}(\mathit{M}).$$

Main Theorem

Let $M=(m_{ab})$ be an $\ell \times \ell$ matrix whose first $\ell-1$ columns and row-sum vector are all rooted. If $C=(c_{ij})$ is an $n \times n$ nonnegative matrix and there exists a partition $\Pi=(\pi_1,\pi_2,\ldots,\pi_\ell)$ of $[n]:=\{1,2,\ldots,n\}$ such that

$$\max_{i \in \pi_a} \sum_{j \in \pi_b} c_{ij} \geq m_{ab} \quad \text{and} \quad \max_{i \in \pi_a} \sum_{j=1}^n c_{ij} \geq \sum_{c=1}^\ell m_{ac}$$

for $1 \le a \le \ell$ and $1 \le b \le \ell - 1$, then $\rho(C) \ge \rho_r(M)$.

Proof.

This is by a dual proof.

For

$$C = \begin{pmatrix} 2 & 1 & 3 & 3 & 3 & 12 & 0 \\ 4 & 2 & 1 & 4 & 2 & 6 & 4 \\ 2 & 3 & 1 & 4 & 1 & 8 & 3 \\ \hline 3 & 5 & 3 & 1 & 1 & 3 & 4 \\ 5 & 6 & 1 & 1 & 0 & 3 & 3 \\ \hline 0 & 2 & 1 & 2 & 2 & 6 & 0 \\ 2 & 2 & 0 & 2 & 1 & 1 & 4 \end{pmatrix}, M = \begin{pmatrix} 7 & 6 & 11 \\ 12 & 2 & 6 \\ 4 & 4 & 5 \end{pmatrix},$$

with corresponding row-sum vectors

$$(24, 23, 22|20, 19|13, 12), (24, 20, 13),$$

we have $\rho(C) \leq \rho_r(M) \approx 18.6936$.

