

d-one.ai

Track 3:
Analytic Innovations

Databricks brick-by-brick: Data, Analytics and ML in one platform

After this session, you will have a holistic overview of the Databricks capabilities in the Data & Al space.

You will work with hands-on examples that you can reuse for your own data projects.

Your Hosts:

Spyros Cavadias

Robert Yousif robert.yousif@done.ai

Agenda

- Introducing the Databricks Lakehouse
- Data capabilities:
 - Databricks Workspace
 - Delta + Unity Catalog
 - Medallion Architecture & Workflow Orchestration
- ML capabilities:
 - ML Development
 - ML Operations

D ONE and Databricks

- Swiss Partner of the Year
 2023
- First Champion in Switzerland
- Databricks Expert Group (20+ professionals)

Introduction

What is a data platform?

A data platform is an **integrated set of technologies** that collectively meets an organization's end-to-end data needs.

Data platforms encompass a range of elements required to support the data management cycle.

A data analytics platform is an **ecosystem of services and technologies** that needs to perform analysis on voluminous, complex and dynamic data

that allows you to retrieve, combine, interact with, explore, and visualize data from the various sources a company might have.

What do you need from a data platform?

- Warehouse
 - BI & Reporting
 - Structured Data
- Data Lake
 - Data Science & Machine Learning
 - Unstructured Data
- Others
 - Infrastructure
 - Governance
 - Operations

Why the Lakehouse?

Databricks Lakehouse

What is Databricks

A unified set of tools for building, deploying, sharing and maintaining enterprise-grade data solutions at scale.

Combining

- Data Engineering
- Machine Learning, Al & Data Science
- Data Warehousing, analytics & Bl
- Data Governance and Secure Data Sharing

Platform Integrations, services/technologies

Delta + Unity Catalog

Delta Lake

ACID Transactions

Protect your data with serializability, the strongest level of isolation

Unified Batch/Streaming

Exactly once semantics ingestion to backfill to interactive queries

Scalable Metadata

Handle petabyte-scale tables with billions of partitions and files with ease

Schema Evolution / Enforcement

Prevent bad data from causing data

Time Travel

Access/revert to earlier versions of data for audits, rollbacks, or reproduce

Audit History

Delta Lake log all change details providing a fill audit trail

Open Source

Community driven, open standards, open protocol, open discussions

DML Operations

SQL, Scala/Java and Python APIs to merge, update and delete datasets

Unity Catalog

databricks Lakehouse Platform Data Data Data Data Control Data Science and ML Unity Catalog Fine-grained governance for data and Al Delta Lake Data reliability and performance Cloud Data Lake All structured and unstructured data Microsoft Azure Geogle Cloud

Without Unity Catalog

With Unity Catalog

Unity Catalog - Structure

Demo - Workspace, Unity & Delta

Exercise

- Get to know Databricks:
 - O 1. Navigate your workspace
 - O 2. Clone from the repository: https://github.com/d-one/brick-by-brick
 - O 3. Create own cluster
 - 4. Read the data and display it using the Delta + Unity Catalog Notebook

LINKS:

- Github <u>Repository</u>
- Databricks <u>Workspace</u>

Medallion Architecture & Workflow Orchestration

Databricks Workflows

- Orchestrate & Automate end-to-end data pipelines
- GUI & API for defining and managing complex workflows
- Supports multiple task types
 - Python Script/Wheel file
 - Notebooks
 - o dbt & dlt
 - Databricks SQL Queries

Demo - Workflow orchestration and Medallion Architecture

ML & MLOps in Databricks

Databricks Lakehouse AI capabilities

- Tracking Experiments
- Model Registry
- Model Serving
- AutoML
- Feature Store
- LLMs and GenAl

Machine Learning Pipeline

mlflow and databricks

- Open source
- Runs the same way everywhere (locally or in the cloud)
- Useful from 1 developer to 100+ developers
- Design philosophy:
 - API-First
 - 2. Integration with popular libraries
 - 3. Modular design (can use DISTINCT components separately)

MLflow Components

Useful links:

MLflow Tracking

Record and query experiments: code, data, config, and results

Read more

Model Registry

Store, annotate, discover, and manage models in a central repository

Read more

- www.mlflow.org
- www.github.com/mlflow

www.databricks.com/mlflow

MLflow Tracking

What do we track?

- Parameters: inputs to our code mlflow.log param()...
- Metrics: numeric values to access our models mlflow.log metric()...
- Tags/Notes: info about the run mlflow.set_tag()...
- Artifacts: files, data and models produced mlflow.log artifact(), mlflow.log artifacts()...
- Source: what code run
- Version: what version of the code run (github)
- Run: the particular code instance (id) captured by MLflow mlflow.start_run()...
- Experiment: the set of runs mlflow.create_experiment(), mlflow.set_experiment()...

More on: https://www.mlflow.org/docs/latest/tracking.html

MLflow Tracking

Demo - Experiments

MLflow Model

```
# in MLmodel file
# Directory written by
                                             time_created:
mlflow.sklearn.save_model(model,
                                             2021-10-25T17:28:53.35
"my_model")
                                             flavors:
my_model/
                                               sklearn:
    MLmodel
                                                 sklearn_version: 0.24.1
    model.pkl
                                                 pickled_model: model.pkl
    conda.yaml
                                               python_function
    requirements.txt
                                                 loader_module: mlflow.sklearn
```


MLflow Model Registry

It enables:

- model lineage
- model versioning
- stage transitions
- annotations

You register a model through:

- API Workflow
- UI Workflow


```
# register model
res = mlflow.register_model(my_model_uri, "my_model")
```


Demo - Model Registry

Deployment

Batch Prediction

Online Prediction

Model Serving

Artifact Storage — mlflow Registry

Client Serverless

Demo - Model Serving

Enter GenAl

What are the game changing elements of GenAl

Interaction via natural language

Generating content

Based on existing content: natural language, visuals, code

Zero shot learning

Foundational model fits all kind of different questions without dedicated training

... and everyone has already used it in consequence

Lakehouse AI — optimized for Generative AI

Recap

Recap

- Introducing the Databricks Lakehouse
- Data capabilities:
 - Databricks Workspace
 - Delta + Unity Catalog
 - Medallion Architecture & Workflow Orchestration
- ML capabilities:
 - ML Development
 - ML Operations

D ONE Databricks Expert Group

At D ONE we have profound knowledge & experience on solving real problems leveraging data platform best practices. The Databricks expert group consists of Solution Architect Champions and professionals with extensive ecosystem experience.

- Brick-by-brick (Swiss Data Science Conference 2023)
- <u>Streamline Data Pipelines with Databricks</u> (Medium)
- Metadata driven Lakehouse Data Pipelines (Lakehouse Days 2023)
- <u>Databricks Workspace Migration</u> (Medium)

Upcoming:

- Data & Al World Tour Zurich (November 23rd 2023)
- Applied Machine Learning Days (March 2024)

Get in touch: databricks@d-one.ai

43

Q & A

Track 2:
Analytics Innovations

Databricks brick-by-brick: Data, Analytics and ML in one platform

Your thoughts are important to us! Would you give us feedback?

Exercise (optional)

- Data Engineering and Unity Catalog:
 - O 1. Run bronze, silver and gold notebooks, setting the parameters so you write to your personal catalogs
 - 2. Link the 3 notebooks together with a workflow as described in https://github.com/d-one/brick-by-brick#3-creating-a-workflow-job

LINKS: Github <u>Repository</u>, Databricks <u>Workspace</u>

Exercise (optional)

- Machine Learning:
 - 1. Run the ML Preprocessing notebook in your catalog to create the features table
 - 2. Move on to the ML MLflow Tracking notebook and walk through the steps to understand how to interact with MLflow experiments inside the Databricks workspace
 - 3. Move on to the ML Model Registry notebook and walk through the steps to understand how to interact with the model registry via python APIs or via the directly using the UI
 - 4. Tie steps 1-3 together by creating a new ML workflow! See the results of the workflow run in the UI.
 - 5. Finally move on to the AutoML notebook and see for yourself how easy it is to use databricks
 AutoML as a quick way to create baseline models.
- LINKS: Github <u>Repository</u>, Databricks <u>Workspace</u>

d-one.ai

DATA DRIVEN VALUE CREATION

DATA SCIENCE & ANALYTICS | DATA MANAGEMENT | VISUALIZATION & DATA EXPERIENCE

Appendix

Titel: Helvetica Neue Light 28 (min. 24)

Font size:

- 18 for the slide content
- 16 for the slide content
- 14 for the slide content
- 12 minimum size content
- 8 can be used for diagrams, notes and references

Font type: Helvetica Neue Light

 Helvetica Neue Bold can be used to highlight an element in a text or as a text box title

Font color:

- Dark grey 3 from D ONE 12-2022 color pallette
- another color can be used to highlight an element in a text, red "Accent 1"

ONE SINGLE COLOR PER SLIDE

Tabelle

Method	Description	Example for "Peter"	Example for 42	Limitation
Create synthetic data	Generates artificial(fake) data that resembles the original dataset.	Peter	17	Difficult to mimic the noise of "normal" data.
Pseudonymization	Replaces the identifying fields by pseudonyms(fictional identifiers).	Dalerf	21	as above
Data Masking/Data Obfuscation	Replaces some attributes with similar values; keep relationships and statistical distribution.			
Generalization	Substitutes an original value with a more abstract one.	A*	40-50	Loss of granularity
Shuffling	Randomizes the existing values vertically across a data set.	Thomas	57	
Removing/Nulling	Replaces the sensitive values with a generic value (e.g. '*', 'X').	NULL	XXX	Loss of information; possibly makes data unusable for testing.
Hashing / Tokenization	Replaces the sensitive values with a hash value.	2b348a84	90e2a5170	Not suitable for testing purposes.

Kacheln

Job 1

4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt

Job 1

3 Zeilen: 12pt 3 Zeilen: 12pt 3 Zeilen: 12pt

Job 1

4 Zeilen: 11pt - Einzug1 - Einzug2

- Einzug 3

Job 2

4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt

Job 2

3 Zeilen: 12pt 3 Zeilen: 12pt 3 Zeilen: 12pt

Job 2

4 Zeilen: 11pt - Einzug1 Einzug2 Einzug 3

Job 3

4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt

Job 4

4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt 4 Zeilen: 11pt

Job 3

3 Zeilen: 12pt 3 Zeilen: 12pt 3 Zeilen: 12pt

Job 4

3 Zeilen: 12pt 3 Zeilen: 12pt 3 Zeilen: 12pt

Job 3

4 Zeilen: 11pt - Einzug1 - Einzug2 - Einzug 3

Job 4

4 Zeilen: 11pt - Einzug1 - Einzug2 - Einzug 3

3 Box Grid

Zeile 1 - Einzug1 - Einzug2 - Einzug 3

Zeile 2

- Einzug1
- Einzug2
- Einzug 3

Zeile 3

- Einzug1
- Einzug2
- Einzug 3

Text/Image ½ Seite

Zeile 1 Zeile 1 - Einzug1 - Einzug2 - Einzug 3 - Einzug 3 Zeile 1 Zeile 1 - Einzug1 - Einzug1 - Einzug2 - Einzug2 - Einzug 3 - Einzug 3

Bullet points formatting

Formatting details if case needed: modify the indentation parameters in the Text Fitting section and the text size as follows

- Hyphen color set to red "Accent 1", always (dark red in D ONE color palette)
- "By" set to **0.34** cm always (this is the distance between the hyphen and the text)
- First Level, 18pt "Left" set to **0.24** cm (this is to define the hyphen location)
 - First Second Level, 16pt, "Left" set to 1.41 cm
 - First Third Level, 14pt, "Left" set to 2.47 cm
 - First Fourth Level, 14pt, "Left" set to **3.45** cm

d-one.ai

DATA DRIVEN VALUE CREATION

DATA SCIENCE & ANALYTICS | DATA MANAGEMENT | VISUALIZATION & DATA EXPERIENCE