Estimating a proportion

Estimating a proportion

- We are in section 8.3 of the textbook
- Suppose we want to estimate the population proportion using the sample proportion.
- The sample proportion

$$\hat{p} = \frac{r}{n}$$

is the point estimate for the population proportion.

- Rule of thumb: this method is reliable as long as n is large enough so that np > 5 and n(1-p) > 5.
- First, we choose a confidence level, usually 95% or 99%. We find the corresponding **critical value** using the a *z*-table or the chart below.

Confidence Interval Critical Values z_c	
Level of Critical Confidence c	Value of z_c
0.70, or 70%	1.04
0.75, or 75%	1.15
0.80, or 80%	1.28
0.85, or 85%	1.44
0.90, or 90%	1.645
0.95, or 95%	1.96
0.98, or 98%	2.33
0.99, or 99%	2.58

• We find the **margin of error**, E, using the formula

$$E = z_c \left(\frac{\sqrt{p(1-p)}}{\sqrt{n}} \right)$$

- If the sample proportion is \hat{p} , the confidence interval is $(\hat{p} E, \hat{p} + E)$.
- The meaning of the confidence interval is: if we repeatedly took random samples of size *n*, we would get a list of different confidence intervals. Every sample would have a different confidence interval with the same width. The confidence level tells us how often the confidence interval we get would contain the actual population proportion.

1

- 1. Suppose that we know in 500 trials there were 421 successes. What can we say about the actual proportion (percentage) of successes, which we don't know?
 - (a) What is the sample proportion of successes?
 - (b) What is the standard deviation of our sampling distribution? Use the formula $\frac{\sqrt{p(1-p)}}{\sqrt{n}}$.

- (c) What is the critical value z_c for 95% confidence? Use the table on page 1.
- (d) What is the margin of error E of our 95% confidence interval, E? Use the formula

$$E = z_c \left(\frac{\sqrt{p(1-p)}}{\sqrt{n}} \right)$$

(e) What is our confidence interval for 95% confidence? Use the formula $(\hat{p} - E, \hat{p} + E)$.

- 2. Suppose that we know in 1,050 trials there were 160 successes. What can we say about the actual proportion (percentage) of successes, which we don't know?
 - (a) What is the sample proportion of successes?
 - (b) What is the standard deviation of our sampling distribution? Use the formula $\frac{\sqrt{p(1-p)}}{\sqrt{n}}$.

- (c) What is the critical value z_c for 90% confidence? Use the table on page 1.
- (d) What is the margin of error E of our 90% confidence interval, E? Use the formula

$$E = z_c \left(\frac{\sqrt{p(1-p)}}{\sqrt{n}} \right)$$

(e) What is our confidence interval for 90% confidence? Use the formula $(\hat{p} - E, \hat{p} + E)$.

- 3. Suppose that we know in 80 trials there were 64 successes. What can we say about the actual proportion (percentage) of successes, which we don't know?
 - (a) What is the sample proportion of successes?
 - (b) What is the standard deviation of our sampling distribution? Use the formula $\frac{\sqrt{p(1-p)}}{\sqrt{n}}$.

- (c) What is the critical value z_c for 99% confidence? Use the table on page 1.
- (d) What is the margin of error E of our 99% confidence interval, E? Use the formula

$$E = z_c \left(\frac{\sqrt{p(1-p)}}{\sqrt{n}} \right)$$

(e) What is our confidence interval for 99% confidence? Use the formula $(\hat{p} - E, \hat{p} + E)$.