MATRICES AND CALCULUS

UNIT – I MATRICES

S.NO	Questions	BT	CO	PO
	Part – A(Short answer questions)			
1	Define rank of a matrix and give one example	L1	CO1	PO1
2	Define Hermitian and skew - Hermitian matrices.	L1	CO1	PO1
3	Find the value of k such that the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10 \end{bmatrix}$ is 2.	L2	CO1	PO2
4	State the different conditions in non - homogeneous system of equations.	L2	CO1	PO1
5	Find the rank of the matrix $A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$ by reducing to echelon form.	L2	CO1	PO2
6	Define symmetric matrix and give a suitable example.	L1	CO1	PO1
7	Define an orthogonal matrix and give one example.	L1	CO1	PO1
8	Prove that $\frac{1}{2}\begin{bmatrix} 1+i & -1+i \\ 1+i & 1-i \end{bmatrix}$ is aunitary matrix.	L2	CO1	PO2
9	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 5 & 6 \end{bmatrix}$	L2	CO1	PO2
10	Prove that the transpose of a unitary matrix is unitary.	L2	CO1	PO1

S.NO	Part –B (Long answer questions)	BT	CO	PO
1(a)	Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 2 & 4 & 3 & 4 \\ 3 & 7 & 5 & 6 \end{bmatrix}$, by reducing it to the normal form.	L2	CO1	PO2

1(b)	Find the Inverse of a matrix $A = \begin{bmatrix} 4 & -1 & 1 \\ 2 & 0 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ by using Gauss-Jordan method.	L3	CO1	PO2
2 (a)	Reduce the Matrix $A = \begin{bmatrix} 2 & -4 & 3 & -1 & 0 \\ 1 & -2 & -1 & -4 & 2 \\ 0 & 1 & -1 & 3 & 1 \\ 4 & -7 & 4 & -4 & 5 \end{bmatrix}$ into Echelon form. Hence find its Rank.	L2	CO1	PO2
2(b)	Examine for what values of p and q, so that the equations $2x+3y+5z = 9$, $7x+3y+2z=8$, $2x+3y+pz=q$ have (i) No solution (ii) Unique solution (iii) Infinitely many solutions.	L4	CO1	PO2
3(a)	Solve system of equations $x+y+w=0$, $y+z=0$, $x+y+z+w=0$, $x+y+2z=0$.	L3	CO1	PO1
3(b)	Solve the equations 3x+y+2z=3, 2x-3y-z=-3, x+2y+z=4 using gauss elimination method.	L3	CO1	PO1
4	Solve the system of equations by gauss seidel method 20x+y-2z=17, 3x+20y-z=-18, 2x-3y+20z=25.	L4	CO1	PO3
5(a)	Find the rank of the value of k , if the rank of the matrix A is $ 2 \text{ , where A=} \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & k & 0 \end{bmatrix} $	L2	CO1	PO1
5(b)	Show that the equations $x+2y-z=3$, $3x-y+2z=1$, $2x-2y+3z=2$, $x-y+z=-1$ are consistent and solve them.	L2	CO1	PO1
6	Solve $2x - 7y + 4z = 9$, $x + 9y - 6z = 1$, $-3x + 8y + 5z = 6$ by LU-decomposition method.	L3	CO1	PO3

UNIT-2: Eigen values-Eigen vectors and Quadratic forms

S.NO	Questions	BT	CO	PO
	Part – A(Short answer questions)			
1	Define model and spectral matrices.	L1	CO2	PO1
2	Find the sum and product of the Eigen values of	L2	CO2	PO1

3	$A = \begin{bmatrix} 2 & 3 & -2 \\ -2 & 1 & 1 \\ 1 & 0 & 2 \end{bmatrix}$ Using Cayley Hamilton theorem find A ⁸ , if $A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$.	L2	CO2	PO2
4	Find the Eigen values of A ⁻¹ where A= $\begin{bmatrix} 2 & 3 & 4 \\ 0 & 4 & 2 \\ 0 & 0 & 3 \end{bmatrix}$	L2	CO2	PO1
5	Find the symmetric matrix corresponding to the quadratic form $x^2 + 6xy + 5y^2$.	L1	CO2	PO2
6	Find the characteristic roots of the matrix $A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$	L2	CO2	PO1
7	Compute the Eigen values and Eigen vectors of $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$	L2	CO2	PO1
8	Prove that zero is eigen value of a matrix iff it is singular.	L2	CO2	PO1
9	Find the Eigen values of the matrix $\begin{bmatrix} 2 & 3+4i \\ 3-4i & 2 \end{bmatrix}$	L2	CO2	PO2
10	State Cayley – Hamilton theorem.	L1	CO2	PO1

S.NO	Part-B (Long answer questions)	BT	CO	PO
1	Find the Eigen values and Eigen vectors of a Matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$	L3	CO2	PO2
2(a)	Show that the matrix $A = \begin{bmatrix} 1 & -2 & 2 \\ 1 & -2 & 3 \\ 0 & -1 & 2 \end{bmatrix}$ satisfies its characteristic equation hence find A^{-1} .	L2	CO2	PO2
2(b)	Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$	L3	CO2	PO1
3(a)	Find the Eigen values of $3A^3 + 5A^2 - 6A + 2I$ for the matrix $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{bmatrix}$	L2	CO2	PO1
3(b)	Verify Cayley Hamilton theorem for the matrix	L3	CO2	PO1

	$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{bmatrix} $ and hence find A^4 .			
4	Diagonalize the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$	L3	CO2	PO3
5	Reduce the Quadratic form $3x_1^2 + 3x_2^2 + 3x_3^2 + 2x_1x_2 + 2x_1x_3 - 2x_2x_3$ into Canonical form and hence state nature, rank, index and signature of the Quadratic form.	L4	CO2	PO3
6	Diagonalize the matrix $A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{bmatrix}$ by Orthogonal Reduction.	L4	CO2	PO3

UNIT-III

CALCULUS

S.NO	Questions	BT	СО	PO
	Part – A(Short answer questions)			
1	Verify Rolle's theorem for $f(x) = 2x^3 + x^2 - 4x - 2$ in $[-\sqrt{3}, \sqrt{3}]$.	L2	CO4	PO1
2	Verify Lagrange's mean value theorem for $f(x) = \log_e x$ in [1,e].	L2	CO4	PO2
3	Define beta and gamma functions.	L1	CO4	PO1
4	Find the value of $\Gamma(\frac{1}{2})$	L2	CO4	PO1
5	Evaluate $\int_{0}^{1} x^{5} (1-x)^{3} dx$	L1	CO4	PO1
6	Find c of Cauchy's mean value theorem for $f(x)=\sqrt{x}$ and $g(x)=\frac{1}{\sqrt{x}}$ in [a,b] where 0 <a<b.< td=""><td>L2</td><td>CO4</td><td>PO2</td></a<b.<>	L2	CO4	PO2
7	Using Rolles theorem show that $g(x) = 8x^3-6x^2-2x+1$ has a zero between 0 and 1.	L1	CO4	PO2
8	Prove that $\int_0^1 \frac{x}{\sqrt{1-x^5}} dx = \frac{1}{5} B(\frac{2}{5}, \frac{1}{2})$	L1	CO4	PO2
9	Find the value of $\Gamma(\frac{5}{2})$	L1	CO4	PO2
10	Compute $\int_0^\infty e^{-x} x^3 dx$	L1	CO4	PO2

S.NO	Part-B(Long answer questions)	BT	СО	PO
1(a)	Verify Rolle's theorem for $f(x) = (x - a)^m (x - b)^n$ where m, n are positive integers in [a , b].	L3	CO4	PO2
1(b)	Prove that $\frac{\pi}{3} - \frac{1}{5\sqrt{3}} > \cos^{-1}\left(\frac{3}{5}\right) > \frac{\pi}{3} - \frac{1}{8}$ using Lagrange's mean value theorem.	L3	CO4	PO2
2(a)	Verify generalized mean value theorem for $f(x) = e^x$, $g(x) = e^{-x}$ in [3,7] and find the value of c.	L3	CO4	PO2
2(b)	Prove that β (m,n) = β (m + 1, n) + β (m, n + 1).	L3	CO4	PO3
3(a)	Evaluate $\int_0^1 \frac{x^2}{\sqrt{1-x^5}} dx$ in terms of Beta function.	L3	CO4	PO2
3(b)	Evaluate $\int_0^1 x^7 (1-x)^5 dx by$ using β - Γ functions.	L2	CO4	PO2
4(a)	Evaluate $\int_0^{\frac{\pi}{2}} Sin^6 \theta \ Cos^7 \theta \ d\theta$ using β - Γ functions.	L2	CO4	PO2
4(b)	Show that $\Gamma(n) = \int_0^1 (\log \frac{1}{x})^{n-1} dx$, $n > 0$.	L2	CO4	PO2
5	Establish the relation between Beta and Gamma functions .	L3	CO4	PO2
6(a)	Show that $4 \int_0^\infty \frac{x^2}{1+x^4} dx = \sqrt{2} \pi$.	L4	CO4	PO2
6(b)	Evaluate $\int_0^1 x^3 \sqrt{(1-x)} dx$ using β - Γ functions.	L4	CO4	PO2

UNIT-IV

Multi variable Calculus (Partial Differentiation and Applications)

S.NO	Questions	BT	CO	PO
	Part – A(Short answer questions)			
1	State Euler's theorem for homogeneous function in x and y.	L1	CO5	PO1
2	Determine whether the functions $u = e^x$ siny , $v = e^x$ cosy are functionally dependent or not.	L2	CO5	PO2
3	If x=u(1+v), y=v(1+u) then prove that $\frac{\partial(x,y)}{\partial(u,v)}$ = 1+u+v.	L2	CO5	PO2

4	Write the working rule to find the maximum and minimum values of f(x,y).	L2	CO5	PO1
5	Verify $\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ for the function $u = \tan^{-1} \frac{x}{y}$.	L2	CO5	PO2
6	Find the first and second order partial derivatives of x^3+y^3-3 axy and verify $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$	L2	CO5	PO2
7	Verify Euler's theorem for the function xy+yz+zx .	L1	CO5	PO2
8	If $u=x^2-2y$, $v=x+y+z$, $w=x-2y+3z$ find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$	L1	CO5	PO2
9	Verify if u= 2x-y+3z, v= 2x-y-z, w=2x-y+z are functionally dependent and if, so find the relation between them.	L2	CO5	PO2
10	Find the maximum an minimum values of $f(x,y)=x^3+3xy^2-3x^2-3y^2+4$	L2	CO5	PO2

S.NO	Part-B(Long answer questions)	BT	CO	PO
1(a)	If $z = \log(e^x + e^y)$ show that $rt - s^2 = 0$, where $r = \frac{\partial^2 z}{\partial x^2}$, $t = \frac{\partial^2 z}{\partial y^2}$, $s = \frac{\partial^2 z}{\partial x \partial y}$	L3	CO5	PO2
1(b)	If $\sin u = \frac{x^2y^2}{x^2+y^2}$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = Sin2u$.	L3	CO5	PO2
2(a)	If $u=x+y+z$, $y+z=uv$, $z=uvw$ show that $\frac{\partial(x,y,z)}{\partial(u,v,w)}=u^2v$.	L3	CO5	PO2
2(b)	If $u=x^2-y^2$, $v=2xy$ where $x=r\cos\theta$, $y=r\sin\theta$ show that $\frac{\partial(u,v)}{\partial(r,\theta)}=4r^3.$	L2	CO5	PO2
3(a)	If $x = \frac{u^2}{v}$, $y = \frac{v^2}{u}$ find $\frac{\partial(u,v)}{\partial(x,y)}$.	L2	CO5	PO2
3(b)	If $x=u\sqrt{(1-v^2)}+v\sqrt{(1-u^2)}$ and $y=\sin^{-1}u+\sin^{-1}v$ then show that x and y are functionally related , also find the relationship.	L3	CO5	PO3
4	Find the maximum and minimum values of the function $f(x,y) = 3x^4 - 2x^3 - 6x^2 + 6x + 1.$	L4	CO5	PO1
5(a)	Find the maximum and minimum values of the function $f(x, y) = x^3y^2(1 - x - y)$.	L4	CO5	PO2
5(b)	Find the maximum and minimum values of x+y+z subject to $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 1$ by Lagrange's method of undetermined multipliers.	L3	CO5	PO3

6	Find the dimensions of the rectangular parallelepiped box open	L4	CO5	PO3
	at top of max capacity whose surface area is 256 sq. inches.			

UNIT-V

S.	No	o Questions		СО	PO	
Part – A (Short Answer Questions)						
1		Evaluate $\int_0^2 \int_0^3 xy dx dy$	L1	СОЗ	PO1	
2		Evaluate $\int_0^2 \int_0^x y dx dy$	L2	CO3	PO2	
	Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$		L1	CO3	PO1	
4		Evaluate $\int_0^\pi \int_0^{asin\theta} r dr d\theta$	L1	СОЗ	PO1	
5		Write the limits after changing the order of integration $\int_0^a \int_{\frac{x^2}{a}}^{2a-x} xy^2 dy dx$	L3	CO3	PO2	
(6	Find $\int_{-1}^{1} \int_{-2}^{2} \int_{-3}^{3} dx dy dz$		СОЗ	PO2	
7		Find $\int_0^1 \int_1^2 \int_2^3 xyz dx dy dz$		CO3	PO1	
8	8	Find $\int_0^1 \int_1^2 \int_2^3 (x + y + z) dx dy dz$	L3	CO3	PO2	
9		Shade the region bounded by the $y = x^2$ and $x = y^2$.	L3	CO3	PO2	
10		Evaluate $\int_0^1 \int_0^2 y^2 dx dy$	L3	CO3	PO2	
Part – B (Long Answer Questions)						
11	a)	Evaluate $\int_0^1 \int_x^{\sqrt{x}} (x^2 + y^2) dx dy$	L4,L5	СОЗ	PO3	
	b)	Evaluate $\oiint y^2 dx dy$ where R is the region bounded by the parabolas $y^2 = 4x$ and $x^2 = 4y$.	L3	CO3	PO2	
12	a)	Evaluate $\iint (x^2 + y^2) dxdy$ in the positive quadrant for which $x+y \le 1$.	L3	CO3	PO2	
	b)	Evaluate $\int_0^\pi \int_0^{a sin \theta} r dr d\theta$.	L3	CO3	PO2	

13	a)	Evaluate $\iint r^3 dr d\theta$ over the area included between the circles $r=2\sin\theta$ and $r=4\sin\theta$.		CO3	PO3
	b)	Evaluate $\int_0^1 \int_{x^2}^{2-x} xy dy dx$ by change of order of integration.	L3	CO3	PO2
14	a)	Evaluate $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dx dy dz$.	L3	CO3	PO2
15		Evaluate $\iiint xyzdxdydz$ over the positive octant of the sphere $x^2 + y^2 + z^2 = a^2$.	L2,L3	CO3	PO2
16		Find the volume of the greatest rectangular parallelopiped that can be inscribed in an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$	L2,L3	CO3	PO2

^{*}Blooms Taxonomy Level(BT) (L1-Remembering; L2- Understanding:L3-Applying;L4- Analyzing;L5-Evaluating;L6-Creating)

Course Outcomes(CO)

Program Outcomes(PO).