

Improving the operation of a vinyl chloride monomer (VCM) purification plant

Massimiliano Barolo

CAPE-Lab – Computer-Aided Process Engineering Laboratory

Department of Chemical Engineering Principles and Practice University of Padova Italy

E-mail: max.barolo@unipd.it

URL: http://www.capelab.dipic.unipd.it

VCM production in Porto Marghera (Italy)

VCM purification train (section 500)

Objectives of the project

- Improving the plant understanding
- Improving the plant operating conditions
 - can throughput be increased?
- Evaluating the approach to equipment hydraulic limits
 - current operating conditions are quite different from the design ones

- Assessing the performance of the current control system
 - any improvements in the control system performance?
 - switching to minimum plant capacity currently performed manually
- Evaluating the plant dynamic response to abnormal operating conditions
 - oxy-chlorination reactors may run out of service

safety issues

The simulation path

1. System thermodynamics

- how many components?
- which thermodynamic model(s)?
- any parameters lacking?

2. Steady state simulation

- set up the process flow diagram (PFD)
- validate the steady state model

3. Improving plant performance at steady state

- evaluate equipment loads
- change operating conditions (sensitivity studies)
- change PFD configuration

4. Dynamic simulation

- which level of detail on the equipment modeling?
- validate the dynamic model

5. Control system performance

- control configurations OK?
- tunings OK?
- any improvements possible? devise alternative control configurations

6. Safety issues

- handling abnormal events
- hazard analysis

Components in the feed

- Keep the number of components as low as possible (but not too low)
- ♦ Always discuss your choice with the plant engineers
- Lump components together whenever possible
- Include trace components (they are useful for model validation)
 - discuss with plant personnel

Component

hydrogen chloride
vinyl chloride
ethylene 1,1-dichloride
ethylene 1,2-dichloride
1,3 butadiene
benzene
ethyl chloride
methyl chloride
acetylene
tetrachloroethylene
trichloroethylene
carbon tetrachloride

Model validation (steady state) 1/2

- Several checks can be carried out, depending on the measurements available from the plant
- 1. Temperature profiles inside the columns (where the ΔT between bottom and top is large enough)

Model validation (steady state) 2/2

2. Reboiler/condenser duties

- this is and indirect verification of the closure of energy balances
- taking into account measurement inaccuracies, a match within ~10% is enough

3. Reflux rates

4. Trace components

Interaction with the plant operators is of paramount importance

They can:

- guide you through the analysis of process data sheets
- highlight which measurements can be trusted and which cannot
- show you their 'tricks' to make the plant perform better

Improving the plant performance 1/3

- How far are the columns being operated from flooding or weeping?
 - the plant is run at operating conditions quite different from the original design ones

- The separation performance is severely reduced in the presence of tray weeping
- Solution: lock some valves to increase the vapor velocity

Improving the plant performance 2/3

More on flooding/weeping

- top C-503 trays may suffer from flooding is the load is increased
- Solution: change top trays (originally they were sieve trays)

Can the operating conditions be changed to save energy?

- sensitivity study: C-502 reflux ratio can be slightly decreased (from 0.5 to 0.4)
- no changes in the separation performance (number of trays is large enough)
- energy consumption was reduce by an amount equivalent to a saving of ~50,000 €/year (year 2000; ~63,000 €/y in 2008)

Improving the plant performance 3/3

- Other results from the steady state simulation
 - the throughput can be increased: from 250,000 tons_{VCM}/year to 291,000 tons_{VMC}/year (provided that the top C-503 trays are changed)
 - the feed tray of C-503 should be shifted down
 - EDC purity increases and energy consumption decreases

Dynamic simulation

- ◆ The basis is the steady state PFD; however, a number of parameters need to be specified to run the model in dynamic mode
 - actual size of columns and ancillary equipment
 - hold-ups (they affect the dynamic response very markedly)
- ◆ A balance must be struck between the level of detail included in the model and the model speed of running
 - too detailed a model may be impractical or even impossible to run in a reasonable time at the plant level
 - pressure losses due to pipe friction can be omitted in a first instance, as well as pump characteristic equations
 - pipe holdups can be neglected (if reaction does not occur)
- The specification of the tuning constants of the control loops is critical
 - use the same values as in the plant but double check the unit dimensions of gains, integral times and derivative times
 - errors may arise from incorrect evaluation of transmitter spans and valve gains
 - check valve actuation (direct or reverse acting)

Handling abnormal events

- Plant capacity is sometimes switched to the minimum (e.g. for maintenance; strikes)
 - the feed to the cracking furnaces and the conversion through the furnaces change dramatically
- The switching was carried out manually, because the control system "doesn't work" in automatic mode

What happens?

1. Switching to minimum capacity

- ♦ The HCl losses from the bottom of C-501 markedly increase
- ◆ The HCl "travels" along the train, and eventually reaches C-504, and pressure increases in this column
 - after 4 hours the pressure is unacceptably high, and the VCM product is contaminated

Results after dynamic simulation

(1. Switching to minimum plant capacity)

- The new control configuration is able to:
 - automate the switchover to minimum plant capacity
 - keep the process production within specification at nominal plant capacity too

2. Hazard analysis

- Plant data cannot be obtained by pushing the plant close to unsafe operating conditions!
- **Dynamic simulation** can be exploited to:
 - verify how the plant responds to "heavy" disturbances
 - assess (and possibly improve) the effectiveness of installed safety procedures
 - estimate the plant characteristic response times to foresee the time available for intervention before a breakdown appears
- A load reduction/breakdown on the downstream oxy-chlorination reactors was simulated
 - how does the control systems work? which is the rationale?
 - how effective is the control system?
 - how safe is the plant?

Back to the control system

(2. Hazard analysis)

What happens if R-101A breaks down?

Breakdown in one oxy reactor

(2. Hazard analysis)

- The condenser duty may be not enough!
- Safety can be improved by using a larger condenser

Concluding remarks

- Main benefits from steady-state simulation
 - a plant representation consistent with the actual one, and ready to be used directly by the plant engineers as a part of their daily routine
 - assessment of process equipment performance
 - evaluation of production capacity
 - improvement of process operating conditions
 - quick evaluation of potential benefits and pitfalls of modified plant setups
- Main benefits from dynamic simulation
 - assessment of the control system performance
 - design of alternative control configurations for automating specific operating procedures
 - hazard analysis to evaluate the plant dynamics and the control system response in the case of abnormal events

Acknowledgements

- Thanks to all the coworkers that have contributed to the success of this project
 - Undergraduate and graduate students
 - Ing. Flavio Munaretti
 - Mr. Ciro Favro
 - Mr. Roberto Bernardi
 - Post-doc research assistant
 - Dr. Ing. Fabrizio Bezzo
 - People from the Company
 - Ing. Marco Finco
 - Mr. Giancarlo Cremonese