A/B Testing

Daniel Shang

```
# Load the necessary packages
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
##
      intersect, setdiff, setequal, union
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 4.0.3
library(ggthemes)
## Warning: package 'ggthemes' was built under R version 4.0.3
# Import the data and show the first 10 lines
data = read.csv('test_data.csv')
head(data, 10)
                         group email open click purch chard sav_blanc syrah
##
     user_id
               cpgn_id
## 1 1000001 1901Email
                          ctrl FALSE
                                                  0.00
                                                         0.00
                                                                   0.00 33.94
## 2 1000002 1901Email email B TRUE
                                                  0.00
                                                                   0.00 16.23
                                              0
                                                         0.00
                                        1
## 3 1000003 1901Email email_A TRUE
                                              1 200.51 516.39
                                                                   0.00 16.63
                                        1
## 4 1000004 1901Email email_A TRUE
                                                  0.00
                                                         0.00
                                                                   0.00
                                                                          0.00
                                        1
## 5 1000005 1901Email email_A TRUE
                                              1 158.30 426.53
                                                                1222.48
                                                                          0.00
                                        1
## 6 1000006 1901Email email_B
                                TRUE
                                        1
                                                  0.00
                                                         0.00
                                                                   0.00
                                                                          0.00
                                                                   0.00 124.31
## 7 1000007 1901Email email_B TRUE
                                        1
                                              1 26.52
                                                         0.00
## 8 1000008 1901Email email_B TRUE
                                              0.00
                                                         0.00
                                                                   0.00 32.12
## 9 1000009 1901Email
                          ctrl FALSE
                                              0.00
                                                         0.00
                                                                   0.00 148.59
## 10 1000010 1901Email email_A TRUE
                                              0.00
                                                         0.00
                                                                   0.00
                                                                        0.00
##
       cab past_purch days_since visits
## 1
      0.00
                33.94
                             119
## 2 76.31
                92.54
                              60
                                      3
```

```
0.00
## 3
                533.02
## 4 41.21
                 41.21
                               195
                                        6
      0.00
               1649.01
## 5
                                48
                                        9
## 6
     0.00
                  0.00
                                        6
                               149
## 7 58.19
                182.50
                               118
                                        8
## 8 62.67
                 94.79
                               125
                                        7
## 9
      0.00
                148.59
                               100
                                        7
## 10 0.00
                  0.00
                                        6
                                50
```

Summarize the data. The 'user_id' uniquely identifies each row, and each row is
a customer in the CRM database. The 'cpgn_id' is the same of each row, as the
whole data set represents a single campaign. The 'group' variable tells if the
customer is in the control group (receive no email), email group A (receive email
version A), or email group B (receive email version B). The 'email' means if the
customer receives the email or not. The 'open' means if the pictures in the email
are downloaded. 'Click' indicates if the customer click through the link in the
email. 'Purchase' indicates the amount of purchase the customer made. 'Chard,'
'sav_blanc,' 'syrah,' and 'cab' are product categories names. They indicate the
amount of purchase customers made before under each product category. 'Past_purch'
is the total amount of past purchases. 'Days_since' indicates the
number of days past since the last purchase, and 'visits' indicates the number
of time the customers visited the website.
summary(data)

```
##
       user_id
                        cpgn_id
                                           group
                                                             email
   Min.
          :1000001
                     Length: 123988
                                        Length: 123988
                                                           Mode :logical
   1st Qu.:1030998
                     Class : character
                                        Class : character
                                                           FALSE: 41330
   Median: 1061995
                     Mode :character
                                        Mode :character
                                                           TRUE: 82658
##
   Mean
          :1061995
   3rd Qu.:1092991
          :1123988
   Max.
##
                                          purch
##
        open
                        click
                                                            chard
##
   Min.
          :0.0000
                    Min.
                           :0.00000
                                      Min.
                                           :
                                                 0.00
                                                        Min.
                                                                   0.00
   1st Qu.:0.0000
                    1st Qu.:0.00000
                                      1st Qu.:
                                                 0.00
                                                        1st Qu.:
                                                                   0.00
   Median :0.0000
                    Median :0.00000
##
                                      Median:
                                                 0.00
                                                        Median :
                                                                   0.00
                                            : 21.30
                                                              : 73.31
   Mean
         :0.4567
                    Mean
                           :0.07503
                                      Mean
                                                        Mean
##
   3rd Qu.:1.0000
                     3rd Qu.:0.00000
                                      3rd Qu.: 21.86
                                                        3rd Qu.: 54.06
##
   Max.
          :1.0000
                    Max.
                           :1.00000
                                      Max.
                                             :1607.40
                                                        Max.
                                                               :9636.92
##
      sav_blanc
                         syrah
                                             cab
                                                           past_purch
##
              0.00
                                0.00
                                                  0.00
                                                         Min. :
                                                                    0.00
   Min. :
                     Min. :
                                       Min.
                                                                    0.00
   1st Qu.:
              0.00
                     1st Qu.:
                                0.00
                                       1st Qu.:
                                                  0.00
                                                         1st Qu.:
   Median: 0.00
                                0.00
                                       Median :
                                                  0.00
                                                         Median: 91.22
##
                     Median :
   Mean
         : 72.45
                     Mean : 26.68
                                       Mean
                                             : 16.35
                                                         Mean : 188.79
##
   3rd Qu.: 57.42
                     3rd Qu.: 20.91
                                       3rd Qu.: 12.96
                                                         3rd Qu.: 246.87
##
   Max.
          :6609.92
                     Max.
                            :2880.15
                                       Max.
                                             :2365.90
                                                         Max.
                                                                :9636.92
                        visits
##
      days_since
   Min. : 0.00
                          : 0.000
##
                    Min.
##
   1st Qu.: 26.00
                    1st Qu.: 4.000
   Median : 63.00
                    Median: 6.000
  Mean : 89.98
                    Mean
                          : 5.946
   3rd Qu.:125.00
                    3rd Qu.: 7.000
## Max. :992.00
                    Max.
                           :51.000
```

```
# Shows the structure of the data set
str(data)
## 'data.frame':
                   123988 obs. of 14 variables:
   $ user_id : int 1000001 1000002 1000003 1000004 1000005 1000006 1000007 1000008 1000009 1000010
                      "1901Email" "1901Email" "1901Email" "1901Email" ...
## $ cpgn_id : chr
             : chr "ctrl" "email_B" "email_A" "email_A" ...
## $ group
              : logi FALSE TRUE TRUE TRUE TRUE TRUE ...
## $ email
## $ open
              : int 0 1 1 1 1 1 1 1 0 1 ...
               : int 0010101000...
## $ click
              : num 0 0 201 0 158 ...
## $ purch
## $ chard
              : num 0 0 516 0 427 ...
## $ sav_blanc : num 0 0 0 0 1222 ...
## $ syrah
               : num 33.9 16.2 16.6 0 0 ...
## $ cab
               : num 0 76.3 0 41.2 0 ...
## $ past_purch: num 33.9 92.5 533 41.2 1649 ...
## $ days_since: int 119 60 9 195 48 149 118 125 100 50 ...
             : int 11 3 9 6 9 6 8 7 7 6 ...
# These are the three treatment groups. The number of occurrence of each group
## is, and should be, roughly the same.
table(data$group)
##
##
     ctrl email_A email_B
##
    41330
           41329
                    41329
# Check the means of different variables within each group. One critical piece
## of A/B Testing a valid randomization. Given a large enough sample size, we would
## expect the data within each baseline variables to be similar. Here, we can see that
## the three variables have roughly the same average. Thus, the randomization used
## when assigning groups is valid.
data %>% group_by(group) %>% summarize(mean(days_since), mean(visits), mean(past_purch))
## # A tibble: 3 x 4
   group
           'mean(days_since)' 'mean(visits)' 'mean(past_purch)'
## * <chr>
                                        <dbl>
                         <dbl>
                                                          <dbl>
## 1 ctrl
                          90.0
                                         5.95
                                                           188.
                                         5.95
## 2 email A
                          90.2
                                                           188.
## 3 email B
                          89.8
                                         5.94
                                                           190.
# Similarly, the portion of customers who have purchase history within each group
## is roughly the same.
data %>% group_by(group) %>% summarize(mean(past_purch > 0))
## # A tibble: 3 x 2
   group
           'mean(past_purch > 0)'
## * <chr>
                             <dbl>
## 1 ctrl
                             0.744
## 2 email_A
                             0.741
```

0.741

3 email_B

```
# We can also visualize the distribution of 'past_purch' of each group to verify
## if the randomization is valid. Since they have a very similar distribution,
## the randomization was properly conducted.
data %>% filter(past_purch > 0) %>%
    ggplot(aes(x = past_purch, fill = group)) +
    geom_histogram(binwidth = 30, alpha = 0.3, position = 'identity') +
    xlim(0, 2500) +
    labs(title = 'Distribution of past purchase for each group') +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_hc()
```

- ## Warning: Removed 225 rows containing non-finite values (stat_bin).
- ## Warning: Removed 6 rows containing missing values (geom_bar).

Distribution of past purchase for each group


```
# Check the distribution of 'days_since' for each group
data %>%
    ggplot(aes(x = days_since, fill = group)) +
    geom_histogram(binwidth = 20, alpha = 0.3, position = 'identity') +
    xlim(0, 800) +
    labs(title = 'Distribution of days_since for each group') +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_hc()
```

Warning: Removed 18 rows containing non-finite values (stat_bin).

Warning: Removed 6 rows containing missing values (geom_bar).

Distribution of days_since for each group

- ## Warning: Removed 25 rows containing non-finite values (stat_bin).
- ## Warning: Removed 6 rows containing missing values (geom_bar).

Distribution of number of visits for each group


```
# Next, I would like to compare the effect of different emails in terms of customers'

## response and purchasing behavior. We can see that, on average, the possibility

## that customers who received email A downloaded the pictures in the email is 71.8%,

## while the possibility for customers who received email B is 65.2%. Additionally,

## the click through rates for customers who received email A and B are 13.2% and

## 9.3%, respectively. However, it seems that the higher opening and click through

## rates of email A does not convert to more purchase.

data %>% group_by(group) %>% summarize(mean(open), mean(click), mean(purch))
```

```
## # A tibble: 3 x 4
              'mean(open)' 'mean(click)' 'mean(purch)'
     group
## * <chr>
                     <dbl>
                                    <dbl>
                                                   <dbl>
## 1 ctrl
                                                    12.4
                                                    25.6
## 2 email_A
                     0.718
                                   0.132
## 3 email_B
                     0.652
                                  0.0934
                                                    25.9
```

```
# Since we are more interested in the effect difference between email A and email
## B, we remove 'ctrl' from the group. Then, we switch the position of values of
## 'open' field for easier comparison.

# Although we know from the previous table that customers who received email A are
## more likely to open the email, we want to know whether that difference is statistically
## significant. To do that, we use the prop.test function. The null hypothesis of
## this test is that the proportions in the two groups are the same.
data_noctrl = data[data[, 'group'] != 'ctrl', ]
table(data_noctrl$group, data_noctrl$open)[, 2:1]
```

```
##
##
##
     email_A 29686 11643
     email_B 26934 14395
# A two-sided test returns a p-value of 2.2 * 10 ^{\circ} -16, a value much less than 0.05.
## Therefore, we have strong evidence to reject the null hypothesis and conclude
## that the proportions of the two groups are different. In addition, we get a
## 95% confidence interval of the percentage difference, meaning that we are 95%
## confident that the difference between the two proportions will fall into that
## interval. Thus, we know that email A convert to a higher open rate than email B.
prop.test(table(data_noctrl$group, data_noctrl$open)[, 2:1], alternative = 'two.sided')
##
## 2-sample test for equality of proportions with continuity correction
##
## data: table(data_noctrl$group, data_noctrl$open)[, 2:1]
## X-squared = 424.32, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.06024628 0.07292897
## sample estimates:
     prop 1
                prop 2
## 0.7182850 0.6516974
# Visualize the two groups to show the difference between their open rates
data %>% filter(group != 'ctrl') %>%
  ggplot(aes(x = group, fill = factor(open))) +
  geom_bar(width = 0.5, alpha = 0.7, position = 'fill', color = 'white') +
  scale_y_continuous(labels = scales::percent) +
  labs(title = 'Open percentage of email A/B') +
  theme(plot.title = element_text(hjust = 0.7)) +
  theme_hc()
```

Open percentage of email A/B


```
# Similarly, we build a table and run a test to show if email A does a better job
## at boosting click rate than email B, and whether the difference is statistically
## different
table(data_noctrl$group, data_noctrl$click)[, 2:1]
```

```
##
## 1 0
## email_A 5442 35887
## email_B 3861 37468

# The test result returns a p-value small enough that we can reject the null
## hypothesis and conclude that the click rate of email A and email B is different.
## Specifically, we are 95% confident that the difference between the click rate
## falls in the range from 0.034 to 0.043.
prop.test(table(data_noctrl$group, data_noctrl$click)[, 2:1], alternative = 'two.sided')
```

```
##
## 2-sample test for equality of proportions with continuity correction
##
## data: table(data_noctrl$group, data_noctrl$click)[, 2:1]
## X-squared = 302.38, df = 1, p-value < 2.2e-16
## alternative hypothesis: two.sided
## 95 percent confidence interval:
## 0.03392871 0.04257931
## sample estimates:</pre>
```

```
## prop 1 prop 2
## 0.13167509 0.09342108
```

```
# Visualize the data for better understanding
data %>% filter(group != 'ctrl') %>%
    ggplot(aes(x = group, fill = factor(click))) +
    geom_bar(width = 0.5, alpha = 0.7, position = 'fill', color = 'white') +
    scale_y_continuous(labels = scales::percent) +
    labs(title = 'Open percentage of email A/B') +
    theme(plot.title = element_text(hjust = 0.7)) +
    theme_hc()
```

Open percentage of email A/B


```
# Next, we look at the purchase made by customers after they received either email
## A or email B. Since the purchase amount shows some outliers, we use the log
## transformation to condense the plot. The box plots of both groups are similar
## to each other.
data_noctrl %>%
    ggplot(aes(x = group, y = log(purch), fill = group)) +
    geom_boxplot(alpha = 0.7) +
    labs(title = 'Distribution of purchase on log scale in each group') +
    theme(plot.title = element_text(hjust = 0.5)) +
    theme_hc()
```

Warning: Removed 51719 rows containing non-finite values (stat_boxplot).

Distribution of purchase on log scale in each group


```
# To verify that the purchase amounts are similar between the two groups, we run a
## two sample t-test. Since the p-value is large and the 95% confidence interval
## includes 0, we do not have enough evidence to reject the null hypothesis and
## hence conclude that the mean purchases of the two groups are not significantly
## different.
t.test(purch ~ group, data = data_noctrl)
```

```
##
## Welch Two Sample t-test
##
## data: purch by group
## t = -0.59169, df = 82644, p-value = 0.5541
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -1.0498820  0.5629813
## sample estimates:
## mean in group email_A mean in group email_B
## 25.62284  25.86629
```

```
# Knowing the difference between the two email versions, I would like to know more ## about the email and no email group. To do that, I visualized the data and found ## that those customers who were sent an email were constantly making more purchases ## than those who did not receive email at all. Therefore, I would recommend the ## company to design a marketing campaign that sends email to promote sales. data \%\%
```

```
ggplot(aes(x = purch, fill = email)) +
geom_histogram(binwidth = 5, alpha = 0.5, position = 'identity') +
xlim(0, 500) +
ylim(0, 3500) +
labs(title = 'Distribution of purchase by email') +
theme(plot.title = element_text(hjust = 0.5)) +
theme_hc()
```

Warning: Removed 214 rows containing non-finite values (stat_bin).

Warning: Removed 4 rows containing missing values (geom_bar).

Distribution of purchase by email


```
# As a verification, I used a t-test to check if the purchase amount difference
## between email and non-email group is significant. A p-value much smaller than 0.05
## shows that the difference is statistically. Thus, we have strong evidence to
## reject the null hypothesis that the mean purchase amounts between the two groups
## are the same.

t.test(purch ~ email, data = data)
```

```
##
## Welch Two Sample t-test
##
## data: purch by email
## t = -44.823, df = 107015, p-value < 2.2e-16</pre>
```

```
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -13.90691 -12.74164
## sample estimates:
## mean in group FALSE mean in group TRUE
## 12.42029 25.74456
```