Coronavirus in the US

ERROR(CONFIRMED + DEATHS) = ?

GRAD 2

Team Members:

- Ali Al-Ghaithi
- Bikram Maharjan
- Dongqi Lai
- Mohammad H Hasan

Model Considerations

- Time Series Models
 - ARIMA winner!
- Regression Models:
 - Linear Regression
 - Logistic Regression
 - Random Forest regression
 - Polynomial Regression
 - Exponential Regression

Design Matrix

Model	Other notes	Error
Regression	Ntree = 400Density of the county (predictors) +1	Confirmed Cases: Error (Random Forest): 5.4 Million Error (Linear Regression): 4.2 Million
Time Series		Total Error (Confirmed + Deaths): 304k

Design Matrix

If Time Series:

- Delete the last 7 days
- For 3144 counties

```
covid_confirmed_usafacts1 #target <- c("Statewide Unallocated", "Washington")
covid_confirmed_usafacts2 <- covid_confirmed_usafacts1 %>% filter(County.Name != "Statewide Unallocated" & County.Name != "Washington")
```

For the 51 Unallocated States

```
target <- c("Statewide Unallocated", "Washington")
covid_confirmed_usafacts2<- covid_confirmed_usafacts1 %>% filter(County.Name %in%target)
```

- Converted from Wide to Long
- Cleaning the date column


```
2020-03-20
2020-03-21
2020-03-22
2020-03-23
2020-03-24
2020-03-25
2020-03-26
2020-03-27
2020-03-28
2020-03-29
2020-03-30
2020-03-31
2020-04-01
2020-04-02
2020-04-03
2020-04-04
             10
2020-04-05
```

f ∧ ×

What is ARIMA Models?

ARIMA Models

The Idea

Capture autocorrelation in the series by modeling it directly

Uses

Forecasting

Advantages: Strong underlying theory,

Flexible

Key concepts: order, differencing

Autoregressive Model: AR(p)

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + ... + \beta_p Y_{t-p} + \varepsilon_t$$

Autoregressive Moving Average Model: ARMA(p,q)

$$\begin{aligned} Y_t &= \beta_0 + \beta_1 Y_{t-1} + ... + \beta_p Y_{t-p} \\ &+ \varepsilon_t + \theta_1 \varepsilon_{t-1} + ... + \theta_q \varepsilon_{t-q} \end{aligned}$$

The future is "similar" to the past (in a probabilistic sense)

Autoregressive Integrated Moving Average Model: ARIMA(p,d,q)

- 1. First apply differencing (order d)
- differencing
 Seasonal
 differencing

2. Then fit ARMA(p,q):

$$Y_t = \beta_0 + \beta_1 Y_{t-1} + ... + \beta_p Y_{t-p}$$
$$+ \varepsilon_t + \theta_I \varepsilon_{t-1} + ... + \theta_q \varepsilon_{t-q}$$

Seasonal ARIMA(p,d,q)(P,D,Q)

$$y_t - y_{t-1}$$

Used for removing trend

Seasonal (lag-M) differencing:

$$y_t - y_{t-M}$$

Used for removing seasonality

Major Assumption: *Stationarity*

No trend/seasonality
Constant level, variance &
autocorrelations

Model Development

- Using Auto.Arima models
- Each county is a time series

Create a function that will 3144 counties

- 1. Filter data using countyFIPS
- 2. Use xts function to convert to Time Series
- 3. Apply Auto. Arima function
- 4. Forecast 7 days ahead

for 51 States

- 1. Filter data using stateFIPS
- 2. Use xts function to convert Time Series
- 3. Apply Auto. Arima function
- 4. Forecast 7 days ahead

```
r for ( i in 1:3144) {
    countyFIPS_IN = countyFIPS_vc[i]
    new_data_Abbeville <- new_data %>% filter(countyFIPS == countyFIPS_IN)

library(xts) |
    new_data_Abbeville_ts <- xts(new_data_Abbeville$count, order.by=new_data_Abbeville$dates)
    new_data_Abbeville_ts
    library(forecast)

new_data_Abbeville_ts_model <- auto.arima(new_data_Abbeville_ts)
futurVal <- forecast(new_data_Abbeville_ts_model,h=7)
    pred_out[i] = round(as.data.frame(futurVal)[7,1])
}</pre>
```

Model Validation - (Find the test/validation error):

total error = case error + death error
=
$$\sum_{i=1}^{n} w_i (c_i - \hat{c}_i)^2 + \sum_{i=1}^{n} w_i (d_i - \hat{d}_i)^2$$

Total error= 3144 counties cases error + 51 unallocated states cases error + 3144 counties deaths error+51 unallocated states deaths error

Traditional cross validation cannot be applied for time-series problems (data is temporally dependent)

Model Comparison (Progress over time):

Time Series models:	Regression Models:
Good: - We Lose a lot of information - Help us understand important days during the pandemic	Good: - More information - Better Validation
 Bad: Need to convert data from Wide -> Long We do not have many days to disguise More complex CV methods. For eg: Nested CV. 	Bad: - High error margin - Not all regression model works - Logistic [family = "bernoulli"] does not run - Hard to find predictors for county level

Time Series model worked much better than Regression

We are **GRAD 2 Team**

