Flat	Bedrooms	Size	Central	Floor	Elevator	Pets	Garden	Price
a_1	1	50	yes	1	no	yes	0	300
a_2	2	45	yes	0	no	yes	0	335
a_3	2	65	no	2	no	yes	0	350
a_4	2	55	no	1	yes	no	15	330
a_5	3	55	yes	0	no	yes	15	350
a_6	2	60	yes	3	no	no	0	370
a_7	3	65	yes	1	no	yes	12	375

Table 5.1: Available apartments

If we match Carlos's requirements and the available apartments, we see that

- flat a_1 is not acceptable because it has one bedroom only (rule r_2);
- flats a_4 and a_6 are unacceptable because pets are not allowed (rule r_4);
- for a_2 , Carlos is willing to pay \$300, but the price is higher (rules r_7 and r_9);
- flats a_3 , a_5 , and a_7 are acceptable (rule r_1).

5.10.3 Selecting an Apartment

 $r_{12}: cheapest(X) \Rightarrow largestGarden(X)$

So far, we have identified the apartments acceptable to Carlos. This selection is valuable in itself because it reduces the focus to relevant flats, which may then be physically inspected. But it is also possible to reduce the number further, even down to a single apartment, by taking further preferences into account. Carlos's preferences are based on price, garden size, and size, in that order. We represent them as follows:

```
r_{10}: acceptable(X) \Rightarrow cheapest(X)

r_{11}: acceptable(X), price(X, Z), acceptable(Y), price(Y, W),

W < Z \Rightarrow \neg cheapest(X)
```