Algebra Qualifying Exam August 25, 1998

Instructions: You are given 10 problems from which you are to do 8. Please indicate those 8 problems which you would like to be graded by circling the problem numbers on the problem sheet. **Note:** All rings in this exam are associative and with 1 and all integral domains are commutative.

- 1. Let G be a group of order greater than 2. Show that G has a non-trivial automorphism.
- 2. Let G be a group acting transitively on a set Ω . Fix $\omega \in \Omega$ and let $H = \operatorname{Stab}_G(\omega)$. If we let G act on $\Omega \times \Omega$ by $g \cdot (\omega_1, \omega_2) = (g \cdot \omega_1, g \cdot \omega_2), g \in G, \omega_1, \omega_2 \in \Omega$, show that the G-orbits on $\Omega \times \Omega$ are in bijective correspondence with the H-orbits on Ω .
- 3. The group G is called a CA-group if for every $e \neq x \in G$, $C_G(x)$ is abelian. Prove that if G is a CA-group, then
 - (a) the relation $x \sim y$ if and only if xy = yx is an equivalence relation on $G^{\#}$;
 - (b) If \mathcal{C} is an equivalence class in $G^{\#}$, then $H = \{e\} \cup \mathcal{C}$ is a subgroup of G.
- 4. Let R be a u.f.d. in which every prime ideal is maximal. Prove that every prime ideal is principal.
- 5. Let p be a prime and let $R = \{\frac{a}{b} \in \mathbb{Q} | p \not\mid b\}$. If M is the principal ideal in R generated by p, prove that M is the unique maximal ideal in R. (Hint: Show that any element not in M is a unit in R.)
- 6. Let V be a vector space over the field \mathbb{F} and let $T:V\to V$ be an *idempotent* linear transformation: $T^2=T$. Prove that if $W\subseteq V$ is a T-invariant subspace of V, then there exists a T-invariant subspace $W'\subseteq V$ such that $V=W\oplus W'$.
- 7. Let $0 \to M' \xrightarrow{\mu} M \xrightarrow{\epsilon} M'' \to 0$ be a short exact sequences of R-modules, where R is a ring. If M'' is R-free, show that $M \cong \mu(M') \oplus M_0$, where $M_0 \cong_R M''$.

- 8. Compute the Galois group over the rational field \mathbb{Q} of the field $\mathbb{Q}(\zeta)$, where $\zeta = e^{2\pi i/12}$.
- 9. Compute the field extension degree $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}]$.
- 10. Let $\mathbb{F} = \mathbb{F}_q$ be the finite field of q elements, and let $\mathbb{K} = \mathbb{F}_{q^2} \supseteq \mathbb{F}$ be a quadratic extension. Define the *Frobenius automorphism* F: $\mathbb{K} \to \mathbb{K}$ by setting $F(\alpha) = \alpha^q$, $\alpha \in \mathbb{K}$. If we define $N : \mathbb{K}^\times \to \mathbb{F}^\times$ by setting $N(\alpha) = \alpha F(\alpha)$, $\alpha \in \mathbb{K}^\times$, show that N is a surjective homomorphism of groups whose kernel has order q + 1.