DECODER

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Decoder.
- 3. Mendesain rangkaian Decoder

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Decoder.
- Mahasiswa dapat membuat dan mendesain rangkaian Decoder
- Mahasiswa dapat membedakan antara rangkaian Decoder Dan rangkaian bukan Decoder

BINARY DECODING

- Mengkonversi sebuah n-bit code ke dalam sebuah 1 (satu) output yang aktif (low/high)
- Rangkaiannya dapat dibentuk menggunakan AND atau OR gate.
- Jumlah masukan (input) < Jumlah Keluaran (Output)

- n input dan 2ⁿ output
- Hanya satu output yang aktif(low/high) dari banyak input yang diberikan

1-to-2 Binary Decoder

Tabel 1 to 2

Α	Y ₀	Y ₁
0	1	0
1	0	1

$$\begin{array}{c|c}
 & Y0 = \overline{A} \\
 & Y1 = A
\end{array}$$

2-to-4 Binary Decoder

Tabel Kebenaran:

X	\mathbf{Y}	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$
0	0	1 0 0 0	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

Dari tabel kebenaran 2 to 4 diperoleh persamaan :
 2-variable minterm (X'Y', X'Y, XY', XY)

Rangkaian 2-to-4 Binary Decoder

3-to-8 Binary Decoder

Tabel Kebenaran

X	y	Z	$\mathbf{F_0}$	$\mathbf{F_1}$	$\mathbf{F_2}$	$\mathbf{F_3}$	$\mathbf{F_4}$	$\mathbf{F_5}$	$\mathbf{F_6}$	\mathbf{F}_{7}
0	0		1							0
0			0							0
			0							0
			0							0
			0						0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0					0	1	0
1	1	1	0	0	0	0	0	0	0	1

Rangkaian 3-to-8 Binary Decoder

Rangkaian penghasil output '3' (active HIGH) untuk input 0 1 1

Implementasi Decoder untuk Full Adder

Tabel Kebenaran

X	y	Z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S(x, y, z) = \Sigma (1,2,4,7)$$

$$C(x, y, z) = \Sigma (3,5,6,7)$$

Catatan:

untuk Output aktif 'High' menggunakan Gate AND dan untuk Output aktif 'Low' menggunakan Gate NAND.

Binary to Octal Decoding

Tabel kebenaran Active **High** output 3-Bit Biner to Octal Decoder

	Input	t				Out	put	ut				
2 2	2 1	2 0	0	1	2	3	4	5	6	7		
0	0	0	1	0	0	0	0	0	0	0		
0	0	1	0	1	0	0	0	0	0	0		
0	1	0	0	0	1	0	0	0	0	0		
0	1	1	0	0	0	1	0	0	0	0		
1	0	0	0	0	0	0	1	0	0	0		
1	0	1	0	0	0	0	0	1	0	0		
1	1	0	0	0	0	0	0	0	1	0		
1	1	1	0	0	0	0	0	0	0	1		

Aktif High menggunakan AND

Tabel kebenaran Active **Low** output 3-Bit Biner to Octal Decoder

	Input	t		Output							
2 2	2 1	2 2	0	1	2	3	4	5	6	7	
0	0	0	0	1	1	1	1	1	1	1	
0	0	1	1	0	1	1	1	1	1	1	
0	1	0	1	1	0	1	1	1	1	1	
0	1	1	1	1	1	0	1	1	1	1	
1	0	0	1	1	1	1	0	1	1	1	
1	0	1	1	1	1	1	1	0	1	1	
1	1	0	1	1	1	1	1	1	0	1	
1	1	1	1	1	1	1	1	1	1	0	

Aktif Low menggunakan NAND

2 to 4 Decoder dengan Enable Input

Tabel Kebenaran:

E	A	B	D_0	D_1	D_2	D_3
1	X	X	1	1	1	1
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0 .

Diagram Logic:

Menggunakan 2 buah decoder 3 to 8 untuk membuat decoder 4 to 16

- Enable dapat bernilai 'active high'
- Pada contoh dibawah, hanya 1 decoder dapat aktif setiap saat.
- Input x, y, z dipilih lewat w untuk memilih decoder yang mana yang aktif.

Contoh Standard MSI Binary Decoders

IC 74138 adalah sebuah octal decoder (3-line to 8-line)

Logic Diagram IC 74138

Tabel Fungsi IC 74138

		INF	UT						OUT	PUT	-		
Ē1	Ē2	E ₃	A ₀	A ₁	A ₂	0	1	2	3	4	5	6	7
Н	Χ	Χ	Χ	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	Н	Χ	Χ	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	L	Χ	Х	Х	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	L	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н
L	L	Н	Н	Н	L	Н	Н	Н	L	Н	Н	Н	Н
L	L	Н	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	L	Η	Н	Н	Н	Н	Н	Н	Н	Η	Н	Η	L

NOTES

H = HIGH voltage level

L = LOW voltage level

X = Don't care

Type IC DECODER yang lain

Device number	er Function
74138	1-of-8 octal decoder (3 line-to-8 line)
7442	1-of-8 BCD decoder (4 line-to-10 line)
74154	1-of-16 hex decoder (4 line-to-16 line)
7447	BCD-to-seven segment decoder

ENCODER

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Encoder.
- 3. Mendesain rangkaian Encoder

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Encoder.
- Mahasiswa dapat membuat dan mendesain rangkaian Enecoder
- Mahasiswa dapat membedakan antara rangkaian Encoder Dan rangkaian bukan Encoder

Encoding

- Adalah proses kebalikan dari Decoding
- Bila sebuah Decoder mempunyai bit-bit output lebih sedikit dari bitbit input, perangkat seperti itu biasanya disebut sebagai Encoder.

Saluran Masukan > Saluran Keluaran

BINARY ENCODING

- Mengkonversi 2ⁿ input dan dikeluarkan ke dalam bentuk n bit output
- Banyak digunakan untuk kompresi data.
- Dapat dibangun menggunakan AND atau OR Gate
- Jumlah masukan (input) > Jumlah Keluaran (Output)

8-to-3 Binary Encoder

Pada setiap (satu) waktu hanya ada 1 input line yang mempunyai nilai '1'.

Tabel Kebenaran

		Outputs						
I_0	I_1	I 2	I 3	I 4	I 5	I 6	I 7	y_2 y_1 y_0
1	0	0	0	0	0	0	0	0 0 0
0	1	0	0	0	0	0	0	0 0 1
0	0	1	0	0	0	0	0	0 1 0
0	0	0	1	0	0	0	0	0 1 1
0	0	0	0	1	0	0	0	1 0 0
0	0	0	0	0	1	0	0	1 0 1
0	0	0	0	0	0	1	0	1 1 0
0	0	0	0	0	0	0	1	1 1 1

Blok Diagram
Octal to Biner Encoder

Rangkaian 8-to-3 Binary Encoder

Desimal to BCD Encoder

Tabel kebenaran

Decimal		BCD	output	
Input	D	С	В	Α
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1

Blok Diagram
Desimal to BCD Encoder

Rangkaian Desimal to BCD Encoder

Decimal to BCD Encoder

IC 74147 adalah sebuah decimal to BCD encoder (10-line to 4-line)

	INPUT										PUT	
Ī ₁	\overline{I}_2	\overline{I}_3	$\overline{I_{4}}$	\overline{I}_{5}	$\overline{I_{6}}$	\overline{I}_7	Ī ₈	\overline{I}_9	\overline{A}_3	\overline{A}_2	\overline{A}_1	\overline{A}_0
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	Χ	Χ	Χ	Χ	Χ	Χ	Χ	L	L	Н	Н	L
X	Χ	Χ	Χ	Χ	Χ	Χ	L	Н	L	Н	Н	Н
X	Χ	Χ	Χ	Χ	Χ	L	Н	Н	Н	L	L	L
X	Χ	Χ	Χ	Χ	L	Н	Н	Н	Н	L	L	Н
X	Χ	Χ	Χ	L	Н	Н	Н	Н	Н	L	Н	L
X	Χ	Χ	L	Н	Н	Н	Н	Н	Н	L	Н	Н
X	Χ	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
X	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Η	Ι	Η	Η	Ι	Η	Η	Ι	Η	Н	Η	L

H = HIGH voltage level

L = LOW voltage level

X = Don't care

8-to-3 Priority Encoder

Tabel Kebenaran

Inputs							Outputs				
Ιο	I 1	I 2	I 3	I 4	I 5	I 6	I 7	\mathbf{y}_2	$\mathbf{y_1}$	$\mathbf{y_0}$	Idle
0	0	0	0	0	0	0	0	X	X	X	1
1	0	0	0	0	0	0	0	0	0	0	0
X	1	0	0	0	0	0	0	0	0	1	0
X	X	1	0	0	0	0	0	0	1	0	0
X	X	X	1	0	0	0	0	0	1	1	0
X	X	X	X	1	0	0	0	1	0	0	0
X	X	X	X	X	1	0	0	1	0	1	0
X	X	X	X	X	X	1	0	1	1	0	0
X	X	X	X	X	X	X	1	1	1	1	0

Idle indicator bahwa tidak ada input bernilai 1.

Perbandingan Priority Encoder dengan Encoder 8 to 3

Priority Encoder :

```
H7=I7 (Highest Priority)
H6=I6.I7'
H5=I5.I6'.I7'
H4=I4.I5'.I6'.I7'
H3=I3.I4'.I5'.I6'.I7'
H2=I2.I3'.I4'.I5'.I6'.I7'
H1=I1. I2'.I3'.I4'.I5'.I6'.I7'
H0=I0.I1'. I2'.I3'.I4'.I5'.I6'.I7'
IDLE= I0'.I1'. I2'.I3'.I4'.I5'.I6'.I7'
```

Encoder

$$Y0 = 11 + 13 + 15 + 17$$

 $Y1 = 12 + 13 + 16 + 17$
 $Y2 = 14 + 15 + 16 + 17$

Priority encoder Priority Circuit Binary encoder 10 H₀ 10 10 11 H1 11 11 12 H2 Y0 12 12 Y0 13 H3 Y1 13 13 Y1 14 Y2 14 H4 14 Y2 15 15 H5 15 16 16 H6 16 17 17 H7 17 **IDLE IDLE**

Blok Diagram
Priority Encoder (8 to 3 encoder)

IMPEMENTASI 4-TO-2 ENCODER dgn V indikator

Tabel Kebenaran

0	1	2	3	SI	S0	V
0	0	0	0	0	0	0
1	0	0	0	0	0	1
0	1	0	0	0	1	1
0	0	1	0	1	0	1
0	0	0	1	1	1	1

Encoder Application (Monitoring Unit)

COMPARATOR

Pokok Bahasan :

- 1. Pendahuluan
- 2. Dasar-dasar rangkaian Comparator
- 3. Mendesain rangkaian Comparator

Tujuan Instruksional Khusus:

- Mahasiswa dapat menerangkan dan memahami rangkaian Comparator
- Mahasiswa dapat membuat dan mendesain rangkaian Comparator

Code Comparator

- Sebuah rangkaian *Comparator* berfungsi membandingkan dua buah bilangan input / kode.
- Jika digunakan untuk membandingkan dua input dan kemudian menyatakan apakah kedua input tersebut sama, lebih besar atau lebih kecil, maka rangkaian tersebut dinamakan *Magnitude Comparator*.

Tabel Kebenaran

Xi	Yi	X >Y	X = Y	X < Y
0	0	0	1	0
0	1	0	0	1
1	0	1	0	0
1	1	0	1	0

Rangkaian Comparator 2 input X dan Y

Comparator 2 input 2-bit

Tabel Kebenaran

	INP	UT		OUTPUT				
(/	4)	(E	3)	(A <b)< th=""><th>(A=B)</th><th>(A>B)</th></b)<>	(A=B)	(A>B)		
A1	A2	B1	B2	L	Е	G		
0	0	0	0	0	1	0		
0	0	0	1	1	0	0		
0	0	1	0	1	0	0		
0	0	1	1	1	0	0		
0	1	0	0	0	0	1		
0	1	0	1	0	1	0		
0	1	1	0	1	0	0		
0	1	1	1	1	0	0		
1	0	0	0	0	0	1		
1	0	0	1	0	0	1		
1	0	1	0	0	1	0		
1	0	1	1	1	0	0		
1	1	0	0	0	0	1		
1	1	0	1	0	0	1		
1	1	1	0	0	0	1		
1	1	1	1	0	1	0		

Blok Diagram

Dari Tabel Kebenaran, didapatkan persamaan masing-masing output

$$L = \overline{A_1}B_1 + \overline{A_1}\overline{A_2}B_2 + \overline{A_2}B_1B_2$$

$$G = A_1\overline{B_1} + A_1A_2\overline{B_2} + A_2\overline{B_1}\overline{B_2}$$

$$E = \overline{A_1}\overline{A_2}\overline{B_1}\overline{B_2} + \overline{A_1}A_2\overline{B_1}B_2 + A_1\overline{A_2}B_1\overline{B_2} + A_1A_2B_1B_2$$

Rangkaian Comparator untuk 2 buah input 2-bit

Soal Latihan

- 1. Dengan Decoder 4 to 16, buat rangkaian yang akan memberikan output HIGH saat 4 bit inputnya bernilai lebih besar dari 12.
- 2. Dengan menggunakan IC 74138 (3 to 8 Decoder), carilah niai output decoder tersebut jika diketahui input-inputnya adalah sebagai berikut :

$$E_3=\overline{E}_2=1$$
, $\overline{E}_1=0$, $A_2=A_1=1$, $A_0=0$
 $E_3=1$, $E_2=\overline{E}_1=0$, $A_2=0$, $A_1=A_0=1$
Semua input = 0
Semua input = 0, kecuali E3 = 1

- 3. Dengan menggunakan Priority Encoder:
 - jika ada 2 bilangan desimal berbeda diinputkan, mana yang akan diencode kan? _ _ _
 - diinputkan $\overline{I_1} = \overline{I_2} = \overline{I_3} = LOW$ dan $\overline{I_4} = \overline{I_5} = \overline{I_6} = \overline{I_7} = \overline{I_8} = \overline{I_9} = HIGH$. Berapa nilai $\overline{A_0}, \overline{A_1}, \overline{A_2}$ dan $\overline{A_3}$?