Answer key:)

July 6, 2023

The following equation is the mathematical definition of the derivative of a function. Evaluate the derivative of $f(x) = x^2$ at x = 3. Take h = .0001

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$$

Answer: 6.0001

Which finite difference formula is this?

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h}.$$

Answer: Centered

The degree of precision of an integration rule is the highest degree polynomial that the rule will integrate exactly.

Which of these methods has the highest degree of precision?

Rule	Error	Degree of precision
Simple rectangles	$\frac{b-a}{n} \max f' $	0
Midpoint rule	$\frac{(b-a)^3}{24n^2} \max f'' $	1
	$\frac{(b-a)^3}{12n^2} \max f'' $	1
Simpson's rule	$\frac{(b-a)^5}{2880n^4} \max f^{(4)} $	3

Answer: Simpson

Which method is working better here?

Answer: Implicit

The Fourier series given below represents which kind of wave? You can use a graphing calculator.

$$\sin t + \frac{1}{3}\sin 3t + \frac{1}{5}\sin 5t + \frac{1}{7}\sin 7t + \dots$$

Answer: Square Wave

Using the formula for the Newton-Raphson Method. Evaluate the value of the root after the first iteration for the equation $x^{**}10-1=0$ starting at $x_0=0.5$

Example 4.6.6 Discuss the Newton-Raphson method to find the root of the equation $x^{10} - 1 = 0$ starting with $x_0 = 0.5$.

Solution. The real roots of this equation are ± 1 .

Here $f(x) = x^{10} - 1$.

Therefore,

$$x_{n+1} = x_n - \frac{x_n^{10} - 1}{10x_n^9} = \frac{9x_n^{10} + 1}{10x_n^9}.$$

When $x_0 = 0.5$ then $x_1 = \frac{9 \times (0.5)^{10} + 1}{10 \times (0.5)^9} = 51.65$, which is far away from the root 1.

This is because 0.5 was not close enough to the root x = 1.

But the sequence $\{x_n\}$ will converge to the root 1, although very slowly.

The initial root $x_0 = 0.9$ gives the first approximate root $x_1 = 1.068$, which is close to the root 1.

This example points out the role of initial approximation in Newton-Raphson method.

The 5 point stencil is used to solve which equation?

$$T_{i,j} = \frac{1}{4} \left(T_{i+1,j} + T_{i-1,j} + T_{i,j+1} + T_{i,j-1} \right)$$

Answer: Partial Differential Equation

How can we classify this iteration scheme for solving an ODE?

$$y(i+1) = y(i) + 50[\cos(t(i+1)) - y(i+1)]dt$$

Answer: Implicit Scheme

Explicit scheme:

$$y_{n+1} = y_n + hf'(x_n, y_n)$$

Implicit Scheme:

$$y_{n+1} = y_n + hf'(x_{n+1}, y_{n+1})$$

Is this matrix diagonally dominant?

$$B = \left[egin{array}{cccc} -2 & 2 & 1 \ 1 & 3 & 2 \ 1 & -2 & 0 \end{array}
ight]$$

Answer: No

is not diagonally dominant because

$$|b_{11}| < |b_{12}| + |b_{13}|$$
 since $|-2| < |+2| + |+1|$

$$|b_{22}| \geq |b_{21}| + |b_{23}|$$
 since $|+3| \geq |+1| + |+2|$

$$|b_{33}| < |b_{31}| + |b_{32}|$$
 since $|+0| < |+1| + |-2|$.

That is, the first and third rows fail to satisfy the diagonal dominance condition.

Find the value of x1 after the first iteration taking the initial guess (x1,x2,x3,x4)=(0,0,0,0). Use the Gauss-Seidel method.

$$egin{array}{llll} 10x_1 & -x_2 & +2x_3 & = 6, \\ -x_1 & +11x_2 & -x_3 & +3x_4 & = 25, \\ 2x_1 & -x_2 & +10x_3 & -x_4 & = -11, \\ 3x_2 & -x_3 & +8x_4 & = 15. \end{array}$$

Answer: 0.6

$$x_1 = x_2/10 - x_3/5 + 3/5,$$

 $x_1 = 3/5 = 0.6$

The stability diagram of the different ODE solvers depicts what?

Answer: RK4 method is more stable than Explicit Euler

Stability of the Euler method is given by the following formula. If lambda=-200 what will be the value of *h* restricted to?

$$-2 \le h\lambda \le 0$$

Answer: 0.01

Example We study how Euler's method behaves for the stable model problem above, i.e., in the case $\lambda \leq 0$. Since $f(t,y) = \lambda y(t)$ Euler's method states that

$$y_{n+1} = y_n + hf(t_n, y_n)$$

= $y_n + h\lambda y_n$
= $(1 + \lambda h)y_n$.

Therefore, by induction,

$$y_n = (1 + \lambda h)^n y_0.$$

Since the exact problem has an exponentially decaying solution for $\lambda < 0$, a stable numerical method should exhibit the same behavior. Therefore, in order to ensure stability of Euler's method we need that the so-called *growth factor* $|1 + \lambda h| < 1$. For real $\lambda < 0$ this is equivalent to

$$-2 < h\lambda < 0 \iff h < \frac{-2}{\lambda}.$$

Thus, Euler's method is only *conditionally stable*, i.e., the step size has to be chosen sufficiently small to ensure stability.

Approximate the area under $y = 2^{**}x$ from x=[-1,3] using n=5 points. Use the Trapezoid rule

Solution:

$$I_{trap} = \frac{\Delta x}{2} \left[f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + f(x_4) \right].$$

$$A \approx I_{Trap} = \frac{1}{2} \left[\frac{1}{2} + 2 \cdot 1 + 2 \cdot 2 + 2 \cdot 4 + 8 \right] = \frac{1}{2} \cdot 22 \frac{1}{2} = 11 \frac{1}{4} \approx 11.25$$

Find the fixed point of cos(x).

Start from x=2

We can visualize the fact that the fixed point of cos x is attracting by using something called a cobweb diagram.

```
from math import cos
x = 2
for i in range(20):
    x = cos(x)
    print(x)
```

Answer: 0.739

The roots of the Legendre polynomials give the abscissas for Gauss Legendre Quadrature. Determine the roots of these equations by solving for x.

Do the second equation.

$$\frac{1}{2}\left(5x^3-3x\right)$$

This is the Legendre Polynomial for n=3. Equating to zero you get the abscissae for 3 point gauss quadrature.

	0		
3	$\pm\sqrt{rac{3}{5}}$	±0.774597	

Solve this differential equation using the Explicit Euler Method. Take stepsize as h=0.2. Find the value of y at t=0.4. Note the initial value of y.

$$\begin{cases} y' = ty^2 + t \\ y(0) = .25 \\ t \in [0, 1]. \end{cases}$$

t	$\mid y$
	0.25
	$0.25 + .2(0 \cdot .25^2 + 0) = .25$
	$0.25 + .2(.2 \cdot .25^2 + .2) = .29$
0.6	$0.29 + .2(.4 \cdot .29^2 + .4) = .38$
0.8	$0.38 + .2(.6 \cdot .38^2 + .6) = .51$
1.0	$0.51 + .2(.8 \cdot .51^2 + .8) = .72$

Answer: 0.29

Find the value of this integral by 2 point Gauss-Legendre quadrature.

$$\int_0^1 \frac{1}{1+x^2} dx$$

Answer:

We need to change the limits of integration so that we can apply the general gauss quadrature

Example 7.15.1 Find the value of $\int_0^1 \frac{1}{1+x^2} dx$ by Gauss's formula for n=2,4,6. Also, calculate the absolute errors.

Solution. To apply the Gauss's formula, the limits are transferred to -1,1 by substituting $x = \frac{1}{2}u(1-0) + \frac{1}{2}(1+0) = \frac{1}{2}(u+1)$.

Then
$$I = \int_0^1 \frac{1}{1+x^2} dx = \int_{-1}^1 \frac{2du}{(u+1)^2+4} = 2\sum_{i=1}^n w_i f(u_i),$$

where
$$f(x_i) = \frac{1}{(x_i + 1)^2 + 4}$$
.

For the two-point formula (n=2)

$$x_1 = -0.57735027, x_2 = 0.57735027, w_1 = w_2 = 1.$$

Then $I = 2[1 \times 0.23931272 + 1 \times 0.15412990] = 0.78688524.$

Answer: 0.786

Determine the values of the difference table using Newton-Forward interpolation. Put the value of the first second order difference as your answer.

\boldsymbol{x}	0.61	0.62	0.63	0.64	0.65
u	1.840431	1.858928	1.877610	1.896481	1.915541

Answer: 0.000185

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0.61	1.840431			
		0.018497		
0.62	1.858928		0.000185	
		0.018682		0.000004
0.63	1.877610		0.000189	
		0.018871		0.0
0.64	1.896481		0.000189	
		0.019060		
0.65	1.915541			