

DSCI 554

COURSE OVERVIEW, INTRODUCTION TO DATA VISUALIZATION

Dr. Luciano Nocera

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

COURSE OBJECTIVE

- Learn to design plots, infographics and dashboards
- Learn techniques to create effective visual displays
- Learn to build visualizations in notebooks and web pages

READINGS

REQUIRED

Murray S. Interactive Data
Visualization for the Web, 2nd
Edition. 2nd ed. O'Reilly Media, Inc;
2017.

Alberto Cairo. The Functional Art: An Introduction to Information Graphics and Visualization. First. New Riders; 2012.

Colin Ware. Visual Thinking: For Design. 1st ed. Morgan Kaufmann Publishers Inc; 2008.

OPTIONAL

<u>Cairo A. The Truthful Art.</u> <u>Pearson Education; 2016.</u>*

<u>Tufte ER. Envisioning</u> <u>Information . Graphics</u> Press; 1990.

Norman DA. The Design of Everyday Things . 1st Basic paperback ed. Basic Books; 2002.

Ware C. Information
Visualization Perception
for Design . 3rd ed.
Elsevier/MK; 2013.*

Most books are available online through USC Libraries

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

DATA UNITS

The byte is the unit of data: 1 byte = 8 bits or possible values

Multiples of bytes						
Decimal			Binary			
Value Metric			Value	IEC		
1000	kB	kilobyte	1024	KiB	kibibyte	
1000 ²	MB	megabyte	1024 ²	MiB	mebibyte	
1000 ³	GB	gigabyte	1024 ³	GiB	gibibyte	
1000 ⁴	ТВ	terabyte	1024 ⁴	TiB	tebibyte	
1000 ⁵	РВ	petabyte	1024 ⁵	PiB	pebibyte	
1000 ⁶	EB	exabyte	1024 ⁶	EiB	exbibyte	
1000 ⁷	ZB	zettabyte	1024 ⁷	ZiB	zebibyte	
10008	YB	yottabyte	1024 ⁸	YiB	yobibyte	

♥ Convert between metric values using powers of kilobytes (kB)

Yotta

8

DIKW MODEL [ACKOFF 1989]

WISDOM → understanding of principles

KNOWLEDGE → understanding of patterns

INFORMATION → understanding of relationships

DATA

Data, Information, Knowledge and Wisdom (DIKW) pyramid

Wisdom To go from USC Park Campus to the Griffith Observatory at this time takes 45 min with traffic.

Knowledge It is best to visit the Griffith Observatory weekdays before 4 p.m., because it is less crowded.

Information [The Griffith Observatory is open Tuesday to Friday] [during 12:00 noon - 10:00 p.m.], [admission to building and grounds is always FREE].

Data The [Griffith Observatory] is [open] [Tuesday] to [Friday] during [12:00] [noon] [-] [10:00] [p.m.], [admission] to [building] and [grounds] is [always] [FREE].

Examples of Data, Information, Knowledge and Wisdom

DATA VISUALIZATION

TOUCH

HEARING / SMELL

1250 MB/s

Same bandwidth as a computer network

Usb Key

HASTE

Nørretranders bandwidth of senses Graphic by David McCandless

Data visualization refers to the techniques used to communicate data or information by encoding it as visual objects (e.g., points, lines or bars) contained in graphics. The goal is to communicate information clearly and efficiently to users. It is one of the steps in data analysis or data science.

<u>Information visualization</u> is the study of (<u>interactive</u>) <u>visual representations</u> of <u>abstract data</u> to <u>reinforce human cognition</u>.

Wikipedia definitions

DATA VISUALIZATION

Nørretranders bandwidth of senses Graphic by David McCandless

Visual information processing:

- Only aware of 0.7% of what we experience:
 - High-res limited to central 3° of visual field
 - Finite cognitive capabilities
- Some features are better/faster to see, e.g., preattentive features
- Some features/symbols are not seen/understood by everyone, e.g., universal vs. individual features/symbols

PREATTENTIVE FEATURES

- Typically seen in less than 1/10s
- Does not require eye movements
- Does not require focused attention
- Color and boundary can be detected preattentively

Christopher G. Healey - Preattentive features and tasks

UNIVERSAL VS. INDIVIDUAL CAPABILITIES

https://en.wikipedia.org/wiki/The_dress

Universal examples:

- Some color combinations are differentiated by all
- Some symbols are understood across cultures

Individual examples:

- We interpret lighting differently
- Not everyone can differentiate certain colors
- Not everyone understands certain symbols 🚳
- Not everyone can read small text!

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

DATA VISUALIZATION IN DATA SCIENCE

Data science process flowchart

INFOVIS VS. SCIVIS

In information visualization (infovis) the representation is chosen, in scientific visualization (scivis) the representation is given

Examples Infovis

Examples Scivis

Representation

Infovis	chosen
Scivis	given

AFFORDANCES AND SIGNIFIERS IN INTERACTION DESIGN*

Affordances are properties of objects which show users the actions they can take. Affordances define what actions are possible.

Signifiers are physical signs, for example a word or a sound, that has a meaning. Signifiers specify how people discover those possibilities: signifiers are signs, perceptible signals of what can be done.

^{*} The Design of Everyday Things, Don Norman

VISUALIZATION USES

Scope	Goal	Examples
Communicate	Inform	 Presentations
Information	 Communicate 	Hand-outs
	Explain	 Instructions
		 Infographics
		 Signage

VISUALIZATION USES

Scope	Goal	Examples
Communicate Information	InformCommunicateExplain	 Presentations Hand-outs Instructions Infographics Signage
Analyze & Model Data	ExploreAnalyzeDiscoverDecide	 Spreadsheets Dashboards Notebooks Interactive graphics

CAN REPLACE COMPLEX CALCULATIONS

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)$$

CAN REVEAL COMPLEX PATTERNS, TRENDS AND OUTLIERS

CAN REVEAL COMPLEX PATTERNS, TRENDS AND OUTLIERS

CAN REVEAL FEATURES NOT OTHERWISE APPARENT

CAN SUPPORT MEMORY AND COMPREHENSION

CAN TELL A STORY

CAN INFORM AND ENGAGE MORE DIVERSE AUDIENCES

IBM Big Data & Analytics Hub - Infographics & Animations

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

INFORMATION GRAPHICS* ARE DEVICES WHOSE AIM IS TO HELP AN AUDIENCE COMPLETE CERTAIN TASKS

VISUALIZATIONS ARE MEANS TO REACH GOALS

Is It Better to Rent or Buy?

By MIKE BOSTOCK, SHAN CARTER and ARCHIE TSE

The choice between buying a home and renting one is among the biggest financial decisions that many adults make. But the costs of buying are more varied and complicated than for renting, making it hard to tell which is a better deal. To help you answer this question, our calculator takes the most important costs associated with buying a house and computes the equivalent monthly rent. RELATED ARTHUS ARTHUS.

NYT Buy rent calculator

HOW DESIGNERS ENCODE VISUAL INFORMATION FOR USERS

HOW DESIGNERS ENCODE VISUAL INFORMATION FOR USERS

DESIGNER ENCODES

USER DECODES

Information → Visual encoding

Visual Decoding → Understanding

INFORMATION DESIGNERS USE

DATA RELATED

USER RELATED

Form adapted to the nature of the information

- User familiarity with form
- User knowledge of topic
- User abilities
- Display type and size
- Context where the form is used

THE FORM SHOULD BE CONSTRAINED BY THE GOALS OF THE VISUALIZATION

Google Analytics dashboard

Form adapted to the nature of the information

FORM FOLLOWS FUNCTION

20th-century modernist architecture and industrial design principle

The shape of an object should primarily relate to its intended function or purpose

Sullivan, Louis H. (1896). "The Tall Office Building Artistically Considered". Lippincott's Magazine (March 1896).

Form adapted to the nature of the information

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

VISUALIZATION TOOLS

Adapted from [Heer 2014]

Satyanarayan, Arvind, and Jeffrey Heer. "Lyra: An interactive visualization design environment." In Computer Graphics Forum, 2014.

VISUALIZATION TOOLS

Chart Typologies

Excel, Google Sheets, Matplotlib, Seaborn

Visual Analysis Grammars

VizQL, Tableau, ggplot2, Altair

Expressiveness

Ease-of-Use

Adapted from [Heer 2014]

Satyanarayan, Arvind, and Jeffrey Heer. "Lyra: An interactive visualization design environment." In Computer Graphics Forum, 2014.

VISUALIZATION TOOLS

Chart Typologies

Excel, Google Sheets, Matplotlib, Seaborn

Visual Analysis Grammars

VizQL, Tableau, ggplot2, Altair

Visualization Grammars

Protovis, D3, Vega, Vega-Lite

Expressiveness

Adapted from [Heer 2014]

Satyanarayan, Arvind, and Jeffrey Heer. "Lyra: An interactive visualization design environment." In Computer Graphics Forum, 2014.

Ease-of-Use

VISUALIZATION TOOLS

Chart Typologies

Excel, Google Sheets, Matplotlib, Seaborn

Visual Analysis Grammars

VizQL, Tableau, ggplot2, Altair

Visualization Grammars

Protovis, D3, Vega, Vega-Lite

Component Architectures Prefuse, Flare, Improvise, VTK Expressiveness

Adapted from [Heer 2014]

Satyanarayan, Arvind, and Jeffrey Heer. "Lyra: An interactive visualization design environment." In Computer Graphics Forum, 2014.

Ease-of-Use

VISUALIZATION TOOLS

Chart Typologies

Excel, Google Sheets, Matplotlib, Seaborn

Visual Analysis Grammars

VizQL, Tableau, ggplot2, Altair

Visualization Grammars

Protovis, D3, Vega, Vega-Lite

Component Architectures Prefuse, Flare, Improvise, VTK

Graphics applications

P5.js, three.js, Mapbox, WebGL, VTK.js

Adapted from [Heer 2014]

Satyanarayan, Arvind, and Jeffrey Heer. "Lyra: An interactive visualization design environment." In Computer Graphics Forum, 2014.

Ease-of-Use

MATPLOTLIB

- https://matplotlib.org/
- Imperative (functional) programming
- Emulating the MATLAB® graphics commands

```
import matplotlib.pyplot as plt
import numpy as np

T = np.arange(0.0, 2.0, 0.01)
S = 1 + np.sin(2*np.pi*t)
plt.plot(T, S)

plt.xlabel('time (s)')
plt.ylabel('voltage (mV)')
plt.title('About as simple as it gets, folks')
plt.grid(True)
plt.savefig("test.png")
plt.show()
```


SEABORN

- http://seaborn.pydata.org
- Imperative (functional) programming
- Visualization library based on matplotlib
- High-level interface for statistical graphics
- Support for Pandas

GGPLOT2

Grammar of graphics

- Defaults
 - Data
 - Mapping
- Mapping
 - Layer
 - Data
 - Mapping
 - Geom
 - Stat
 - Position
- Scale
- Coord
- Facet

```
mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
...
```

```
library(ggplot2) #load ggplot2 library in R

#minimal plot: specify data, mapping and geometry:
#ggplot(data, mapping) + geom

ggplot(mtcars, aes(x = wt, y = mpg)) + geom_point()
```


ALTAIR

- Altair page and repository
- Declarative statistical visualization library for Python, based on Vega and Vega-Lite
- Support for Pandas

```
import altair as alt

# load a simple dataset as a pandas DataFrame
from vega_datasets import data
cars = data.cars()

alt.Chart(cars).mark_point().encode(
    x='Horsepower',
    y='Miles_per_Gallon',
    color='Origin',
).interactive()
```


TABLEAU

With data read from CSV:

Dimensions ↔ categorical visual variables **Measures** ↔ numerical visual variables

D3.JS

What it is

- Javascript client-side library
- D3 stands for Data-Driven Documents
- Uses HTML, SVG, and CSS
- Primarily made to use SVG (not raster graphics, i.e., images)

What it does

- Loads data in the browser memory
- Create elements and bind data to elements within the document
- Transform and customize elements
- Transition elements in response to user input

D3 (DATA DRIVEN DOCUMENTS)

[5, 10, 15]

D3 (DATA DRIVEN DOCUMENTS)

[5, 10, 15]

DOM: Document Object Model

D3 (DATA DRIVEN DOCUMENTS)

[5, 10, 15]

```
<ht.ml>
<body>
 <svg id="chart" height="30px"></svg>
 <script src="http://d3js.org/d3.min.js"></script>
 <script>
   var svg = d3.select('chart');
   var dataset = [5, 10, 15];
   svg.selectAll("circle")
      .data(dataset)
      .enter()
      .append("circle")
      .attr('cx', function(d, i) { return 30 * (i + 1); } )
      .attr('cy', '15')
      .attr('r', function(d) { return d; })
      .attr('fill', 'red');
 </script>
</body>
```


DOM: Document Object Model

INTERACTIVE VISUALIZATIONS WITH D3

http://www.evolutionoftheweb.com

VEGA

Vega-Lite

```
"$schema": "https://vega.github.io/schema/vega/v4.json",
"width": 400,
"height": 200,
"padding": 5,
"data": [
    "name": "table",
    "values": [
     {"category": "F", "amount": 53}, {"category": "G", "amount": 19},
      {"category": "H", "amount": 87}
],
"signals": [
    "name": "tooltip",
   "value": {},
    "on": [
     {"events": "rect:mouseover", "update": "datum"},
      {"events": "rect:mouseout", "update": "{}"}
],
"scales": [
    "name": "xscale",
   "type": "band",
    "domain": {"data": "table", "field": "category"},
   "range": "width",
    "padding": 0.05,
    "round": true
 },
```

Vega

MAPBOX

```
NEW YORKSTHATON
     or feet a nor markey! And (
style: 'markey.r'orphes/markey!ight-sid',
contact (-14.0006, -06.7530).
post light - may period to be a light - may be a li
                                                                       "source-layer" "building",
"filter": ['wo', 'setinde",
'type': 'Pyll-matrustier',
                                                                                                                           Cart Telephone
                                                                                                       Fill extractor-specify": II II
```

See also Mapbox Display buildings in 3D example

OUTLINE

- Course information
- Data visualization
- Uses and examples
- Design considerations
- Tools and software
- Sample quiz questions

Astronomers expect to be processing 10 petabytes of data every hour from the Square Kilometer Array (SKA) telescope.

- 1. How many 1TB drives would be filled in a day?
- 2. How many days would it take to collect one exabyte?
- 3. How may zettabytes would be collected in a year?
- 1. 240000 drives
- 2. About 4 days
- 3. About 0.1 ZB/year

$$1PB = 10^{15} \text{ bytes} = 10^3 \times 10^{12} \text{ bytes} = 10^3 \text{ TB}$$

 $10PB \times 24h = 24x10 \times 10^3 \text{ TB} = 240000 \times 1\text{ TB drives}$

$$24PB \times x = 1EB \Rightarrow 24 \times 10^{16} \times x = 10^{18} \Rightarrow x = 100/24 \approx 40$$

$$1ZB = 10^{21} \text{bytes}$$

Which information visualization use most relates to communicating information?

- A. Explore
- B. Analyze
- C. Explain
- D. Decide

Which information visualization use most relates to communicating information?

- A. Explore
- B. Analyze
- C. Explain ←
- D. Decide

