6.1

Question: Find the orders of the elements of U_9 and of U_10 .

Solution:

Answer

6.2

Question: Show that if l and m are positive integers with highest common factor h, then $gcd(2^{l}-1, 2^{m}-1)$ divides $2^{h}-1$.

Solution:

Answer

6.3

Question: The groups U_10 and U_12 both have order 4; show that exactly one of them is cyclic.

Solution:

Answer

6.4

Question: Find primitive roots in U_n for n = 18,23,27 and 31.

Solution:

Answer

6.5

Question: Show that if U_n has a primitive root then it has $\phi(\phi(n))$ of them.

Solution:

Answer

6.6

Question: Verify that the element 5 is a generator of U_7 (answer to problem)

6.7

Question: Find the elements of order d in U_11 , for each d dividing 10; which elements are generators? Solution:

Answer

6.8

Question: Verify that 2 is a primitive root mod(25) by calculating its powers.

Solution:

Answer

6.9

Question: Show that 2 is a primitive root mod (3^e) for all $e \ge 1$.

Solution:

Answer

6.10

Question: Find an integer which is a primitive root $mod(7^e)$ for all $e \ge 1$. Solution:

Answer

Problem 2

Question: Check that 3 is a primitive root modulo 17 by constructing an explicit isomorphism between Z/16Z and $(Z/17Z)^x$ mapping the class of 1 on the class of 3. Use this map to solve the congruence equations **Solution**:

Answer

(a)

 $z^{12} \equiv 16 \mod 17$

Solution:

Answer

(b)

 $x^{20} \equiv 13 \bmod 17$

Solution:

Answer

(c)

 $x^{48} \equiv 9 \text{ mod } 17$

Solution:

Answer

(d)

 $x^{11} \equiv 9 \mod 17$

Solution:

Answer

7.1

Question: Find all solutions in Z_{15} of the congruence $x^2 - 3x + 2 \equiv 0 \mod (15)$. Solution:

Answer

7.2

Question: What square roots do the elements 5 and 16 have in Z_{21} ? Hence find all solutions of the congruences $x^2 + 3x + 1 \equiv 0 \mod (21)$ and $x^2 + 2x - 3 \equiv 0 \mod (21)$.

Solution:

Answer