Листочек №1 "Теория множеств"

Матмех, группы 25.Б82-мм Никитин Артем Сергеевич

Октябрь 2025

1 Задачи

Задача 1.1 [1]. Доказать, что

- а) $A \subseteq B \cap C \iff A \subseteq B$ и $A \subseteq C$;
- б) $A \subseteq B \setminus C \iff A \subseteq B$ и $A \cap C = \emptyset$.

Решение.

а) Доказательство:

- (\Rightarrow) Пусть $A\subseteq B\cap C.$ Тогда для любого $x\in A$ имеем $x\in B\cap C,$ значит $x\in B$ и $x\in C.$ Следовательно, $A\subseteq B$ и $A\subseteq C.$
- (\Leftarrow) Пусть $A\subseteq B$ и $A\subseteq C$. Тогда для любого $x\in A$ имеем $x\in B$ и $x\in C$, значит $x\in B\cap C$. Следовательно, $A\subseteq B\cap C$.

б) Доказательство:

- (⇒) Пусть $A \subseteq B \setminus C$. Тогда для любого $x \in A$ имеем $x \in B$ и $x \notin C$. Следовательно, $A \subseteq B$ и $A \cap C = \emptyset$.
- (\Leftarrow) Пусть $A\subseteq B$ и $A\cap C=\varnothing$. Тогда для любого $x\in A$ имеем $x\in B$ и $x\notin C$ (так как если бы $x\in C$, то $x\in A\cap C\neq\varnothing$). Следовательно, $x\in B\setminus C$, значит $A\subseteq B\setminus C$.

Задача 1.2 [2]. Доказать следующие равенства и включения:

- a) $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$;
- 6) $\mathcal{P}(A \cup B) \supseteq \mathcal{P}(A) \cup \mathcal{P}(B)$;
- B) $\mathcal{P}(A \setminus B) \subseteq (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\}.$

Привести примеры, когда указанные включения являются строгими.

Решение.

а) Доказательство:

- (\subseteq) Пусть $X \in \mathcal{P}(A \cap B)$, тогда $X \subseteq A \cap B \subseteq A$ и $X \subseteq A \cap B \subseteq B$, значит $X \in \mathcal{P}(A)$ и $X \in \mathcal{P}(B)$, следовательно $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$.
- (\supseteq) Пусть $X \in \mathcal{P}(A) \cap \mathcal{P}(B)$, тогда $X \subseteq A$ и $X \subseteq B$, значит $X \subseteq A \cap B$, следовательно $X \in \mathcal{P}(A \cap B)$.

б) Доказательство:

Пусть $X \in \mathcal{P}(A) \cup \mathcal{P}(B)$, тогда $X \subseteq A$ или $X \subseteq B$, значит $X \subseteq A \cup B$, следовательно $X \in \mathcal{P}(A \cup B)$.

Пример строгого включения: $A = \{1\}$, $B = \{2\}$. Тогда $\{1,2\} \in \mathcal{P}(A \cup B)$, но $\{1,2\} \notin \mathcal{P}(A) \cup \mathcal{P}(B)$, поэтому включение строгое.

в) Доказательство:

Пусть $X \in \mathcal{P}(A \setminus B)$, тогда $X \subseteq A \setminus B \subseteq A$, поэтому $X \in \mathcal{P}(A)$. Если $X \neq \emptyset$, то X содержит хотя бы один элемент из $A \setminus B$, значит $X \not\subseteq B$, поэтому $X \notin \mathcal{P}(B)$. Следовательно $X \in \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Пример строгого включения: $A = \{1, 2\}, B = \{1\}$. Тогда $\mathcal{P}(A \setminus B) = \mathcal{P}(\{2\}) = \{\emptyset, \{2\}\}, \text{ а } (\mathcal{P}(A) \setminus \mathcal{P}(B)) \cup \{\emptyset\} = \{\emptyset, \{2\}, \{1, 2\}\}.$

Задача 1.3 [3]. Пусть $A = \{a_1, \dots, a_m\}$ — конечный алфавит, A^n — множество слов длины n в алфавите A.

- (a) На A^n задано отношение R_1 : для $v = a_{i_1} \dots a_{i_n}$ и $w = a_{j_1} \dots a_{j_n}$ положим $(v, w) \in R_1 \iff i_k \leq j_k$ для всех $k = 1, \dots, n$ и $i_k < j_k$ для некоторого k. Является ли R_1 отношением частичного (линейного) порядка?
- (б) На A^* задано отношение R_2 : для $v = a_{i_1} \dots a_{i_n}$ и $w = a_{j_1} \dots a_{j_r}$ положим $(v, w) \in R_2 \iff \exists k$ от 1 до n с $i_\ell = j_\ell$ при $1 \le \ell < k$ и $i_k < j_k$, причем первые n символов w совпадают со словом v. Является ли R_2 отношением частичного (линейного) порядка?

Решение.

- (a) Нет, не является, так как отсутствует рефлексивность (требуется $i_k < j_k$ для некоторого k) и антисимметричность ($i_k \le j_k$ и $j_k \le i_k$ для всех k, значит $i_k = j_k$ для всех k, противоречие с условием $i_k < j_k$ для некоторого k).
- (б) Нет, не является. По условию, первые n символов w совпадают с первыми n символами v, но длина v равна n, поэтому слово w можно представить как слово v с последующими a_{j_k} , где k>n, но это противоречие условию $\exists k$ от 1 до n с $i_\ell=j_\ell$ при $1\leq \ell < k$ и $i_k < j_k$.

Задача 1.4 [2]. Для каждой из функций найти область значений и указать, является ли функция инъективной, сюръективной, биекцией.

- (a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 3x + 1;
- (6) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2 + 1;$
- (B) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^3 1;$
- (r) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = e^x;$
- (д) $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \sqrt{3x^2 + 1};$
- (e) $f: [-\pi/2, \pi/2] \to \mathbb{R}, \ f(x) = \sin x;$
- (ж) $f:[0,\pi] \to \mathbb{R}, f(x) = \sin x;$
- (3) $f: \mathbb{R} \to [-1, 1], \ f(x) = \sin x;$
- (и) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 \sin x$.

Решение.

- (a) Область значений: \mathbb{R} Свойства: инъективна, сюръективна, биекция
- (б) Область значений: $[1, +\infty)$ Свойства: не инъективна (f(1) = f(-1) = 2), не сюръективна
- (в) Область значений: \mathbb{R} Свойства: инъективна, сюръективна, биекция
- (г) Область значений: $(0, +\infty)$ Свойства: инъективна, не сюръективна
- (д) Область значений: $[1, +\infty)$ Свойства: не инъективна (f(1) = f(-1) = 2), не сюръективна
- (e) Область значений: [-1,1] Свойства: инъективна, не сюръективна
- (ж) Область значений: [0,1]Свойства: не инъективна $(\sin(\pi/6) = \sin(5\pi/6) = 1/2)$, не сюръективна
- (3) Область значений: [-1,1]Свойства: не инъективна $(\sin 0 = \sin \pi = 0)$, сюръективна
- (и) Область значений: \mathbb{R} Свойства: не инъективна $(f(0)=f(\pi)=0)$, сюръективна

Задача 1.5 [2]. Даны $g:A\to B$ и $f:B\to C$. Рассмотрим композицию $g\circ f:A\to C$, $(g\circ f)(x)=f(g(x))$. Определить, какие утверждения верны:

- (a) Если g инъективна, то $g \circ f$ инъективна.
- (б) Если f и q сюръективны, то $q \circ f$ сюръективна.

- (в) Если f и g биекции, то $g \circ f$ биекция.
- (г) Если $g \circ f$ инъективна, то f инъективна.
- (д) Если $g \circ f$ инъективна, то g инъективна.
- (е) Если $g \circ f$ сюръективна, то f сюръективна.

Решение.

- (a) Неверно. Например, если $A=\{1\},\ B=\{2,3\},\ C=\{4\},\ g(1)=2,$ тогда f(2)=4, f(3)=4.
- (б) Верно. Пусть $c \in C$. Так как f сюръективна, существует $b \in B$ такой что f(b) = c, так как g сюръективна, существует $a \in A$ такой что g(a) = b, тогда $(g \circ f)(a) = f(g(a)) = f(b) = c$.
- (в) Верно. Следует из (б) и того, что композиция инъективных функций инъективна.
- (г) Неверно. Например, если $A=\{1\},\,B=\{2,3\},\,C=\{4\},\,g(1)=2,$ тогда f(2)=4, f(3)=4.
- (д) Верно. Пусть $g(a_1) = g(a_2)$. Тогда $f(g(a_1)) = f(g(a_2))$, значит $(g \circ f)(a_1) = (g \circ f)(a_2)$. Так как $g \circ f$ инъективна, $a_1 = a_2$.
- (e) Верно. Пусть g(a)=b, f(b)=c, тогда $(g\circ f)(a)=f(g(a))=f(b)=c$ сюръективна.

Задача 1.6 [3]. Учащиеся одной школы часто собираются группами и ходят в кафемороженое. После такого посещения они ссорятся настолько, что никакие двое из них после этого вместе мороженое не едят. К концу года выяснилось, что в дальнейшем они могут ходить в кафе-мороженое только поодиночке. Докажите, что если число посещений было к этому времени больше 1, то оно не меньше числа учащихся в школе.

Pешение. . \square

Задача 1.7 [3]. 30 учеников одного класса решили побывать друг у друга в гостях. Известно, что ученик за вечер может сделать несколько посещений, и что в тот вечер, когда к нему кто-нибудь должен прийти, он сам никуда не уходит. Покажите, что для того, чтобы все побывали в гостях у всех,

- а) четырех вечеров недостаточно,
- б) пяти вечеров также недостаточно,
- в) а десяти вечеров достаточно,
- г) и даже семи вечеров тоже достаточно.

Решение. Пусть S — множество вечеров, в которые происходят посещения. Каждому ученику сопоставим подмножество $A \subset S$ — множество вечеров, когда он ходит в гости. Два ученика с множествами A и B могут взаимно посетить друг друга тогда и только тогда, когда $A \not\subset B$ и $B \not\subset A$. Таким образом, чтобы все 30 учеников попарно могли встретиться, нужно выбрать 30 подмножеств S, никакие два из которых не находятся в отношении включения (то есть будем искать антицепи).

Когда $|S| \leq 5$ максимальная антицепь имеет размер $\binom{5}{2} = 10$ (или $\binom{5}{3} = 10$). Так как 10 < 30, снова нельзя выбрать 30 подмножеств без включения. Следовательно, пяти вечеров и меньше не достаточно.

Когда $|S| \geq 7$, возьмем все подмножества размера 3: их не менее $\binom{7}{3} = 35$. Ни одно трехэлементное подмножество не содержится в другом трехэлементном. Так как $35 \geq 30$, можно выбрать 30 подмножеств размера 3, и все ученики смогут взаимно посетить друг друга. Следовательно, семи вечеров и больше достаточно.

Задача 1.8 [3]. У каждого из жителей города N число знакомых составляет не менее 30% населения города. Житель идет на выборы, если баллотируется хотя бы один из его знакомых. Докажите, что можно так провести выборы мэра города N из двух кандидатов, что в них примет участие не менее половины жителей.

Решение.

Задача 1.9 [3]. В Думе 1600 депутатов образовали 16000 комитетов по 80 человек в каждом. Докажите, что найдутся два комитета, имеющие не менее четырех общих членов.

Решение. Предположим, что у любых двух комитетов ≤ 3 общих членов. Всего неупорядоченных пар комитетов $\frac{16000\times15999}{2}=127\,992\,000$. Если у каждой пары комитетов ≤ 3 общих членов, то общее число ситуаций «депутат X сидит в комитетах A и B одновременно» для всех пар комитетов не больше $3\times127\,992\,000=383\,976\,000$.

Теперь подсчитаем это же число другим способом. Всего мест в комитетах: $16000 \times 80 = 1280\,000$. Среднее число комитетов на депутата $\frac{1\,280\,000}{1600} = 800$. Для депутата, который сидит в a комитетах, он является общим членом для $\frac{a(a-1)}{2}$ пар комитетов.

Найдем минимальное общее число ситуаций «депутат X сидит в комитетах A и B одновременно». Это число будет минимальным, когда количество комитетов на каждого депутата будет равно среднему числу комитетов. Если все депутаты сидят ровно в a=800 комитетах, то каждый депутат дает $\frac{800\times799}{2}=400\times799=319\,600$ пар. Тогда найдем минимальное значение «депутат X сидит в комитетах A и B одновременно»: $1600\times319\,600=511\,360\,000$.

Получаем противоречие: $511\,360\,000 > 383\,976\,000$ (минимальное больше максимального). Значит, предположение неверно, и существуют два комитета, имеющие не менее четырех общих членов.

Примечание.

Напоминание: задачи, имеющие сложность 1 должны уметь решать все. На решение этих задач дается дедлайн – две недели (на первый раз 09.10.2025).