6/janeiro/202	3
[Duração: 1^H 45 M]

LEInf

Cálculo para Engenharia – Teste 2A

Nome completo::		Número::
-----------------	--	----------

Grupo I (12 valores): Justifique convenientemente todas as suas respostas.

1. (4 valores) Calcule

(a)
$$\int y^2 e^{y^3} dy$$
. (b) $\int \operatorname{arcsen} x dx$. (c) $\int_0^3 \sqrt{9 - x^2} dx$, usando $x = 3 \operatorname{sen} t$.

2. (1 valor) Defina F, uma função real de variável real, sabendo que $x^5F'(x) + x^3 + 2x = 3$.

3. (3 valores) Considere a figura

(a) Exprima, em termos de integrais adequados, a área da região sombreada na figura.

(b) Considere a região sombreada representada à esquerda do eixo das ordenadas. Calcule a sua área.

4. (1 valor) Exprima o comprimento da curva definida por $f(x) = \ln(1-x^2)$, para $x \in \left[0, \frac{1}{2}\right]$.

Nota:: Não calcule o integral.

- **5.** (3 valores) Considere a série $\sum_{n\geq 0} \left(-\frac{1}{2}\right)^n (x-2)^n$.
 - (a) Determine s_6 , isto é, o termo de ordem 6 da sucessão das somas parciais.
 - (b) Para que valores de x converge a série?
 - (c) Qual é a soma, S, da série?
 - (d) Identifique o polinómio obtido na alínea (a), em termos de um polinómio de Taylor para a função S, no intervalo onde a série converge.

Grupo II (4 valores): Em cada uma das questões s ou falsa (F). <u>N</u> ão deve apresentar q Cada resposta certa vale 1 valor e cada	ualquer justificação.	adeira	(V)
		V	F
1. $\int_0^1 \sqrt{1+x^2} dx \ge \int_0^1 x dx$		\circ	\circ
2. Se f é uma função contínua em $\mathbb R$ e tal qu $a\in\mathbb R^+$, $\int_0^{+\infty}(a+f(x))dx$ também conve		0	0
3. $\int f(x) dx = x f'(x) - \int x f(x) dx.$		0	\circ
4. A série $\sum_{n=2}^{+\infty} \left(\frac{n+1}{n-1} \right)^n$ diverge		0	\circ
Grupo III (4 valores): Em cada uma das questões <u>N</u> ão deve apresentar qualquer j Cada resposta certa vale 1 valor e cada	ustificação.	erdadei	ra.
1. Para uma função, real de variável real, crescente nur determinado número de subdivisões, é sempre	n dado intervalo, a soma de Riemann à direi	ta, com	n um
o menor do que a soma à esquerda.	igual à soma à esquerda.		
o maior do que a soma à esquerda.	 Nenhuma das anteriores. 		
2. Se F é uma função primitiva de f e G é uma função	o, real de variável real, tal que $G(x)=F(x)$	+ 2, er	ntão
$\bigcirc \ G$ é uma função primtiva de f .	$\bigcirc \ F$ é uma função primtiva de G .		
igcup G é uma função primitiva de F .	 Nenhuma das anteriores. 		

3. Se f é uma função racional própria definida por $f(x)=\frac{p(x)}{q(x)}$, então $\int f(x)\,dx=\int \frac{A_1}{x-r_1}dx+\int \frac{A_2}{x-r_2}dx$ —com $A_1,\,A_2,\,\mathrm{e}\,r_1\neq r_2$ números reais— quando q(x) for

um produto de dois factores lineares repetidos.

Nenhuma das anteriores.

Nenhuma das anteriores.

é divergente.

O for um polinómio quadrático irredutível.

() é simplesmente convergente.

4. A série $\sum_{n=0}^{+\infty} (-1)^n \ 2^n$

 \bigcirc um produto de dois factores lineares distintos.