CHEMISTRY

SECTION A.

1. The figure below shows a set of the apparatus that is used for separating a mixture of water and kerosene.

(a).	Identify liquids A and B
	(i). A(1/2 mark)
	(ii). B(½ mark)
(b)	(i) State why liquid A forms the upper layer
(c)	State why the two liquids form a liquid function as shown in the figure
	(2mks)

2. The diagram below shows how states of matter can change under different conditions

(a) Name the change of state of matter represented by	(a) Name the	change o	if state of	matter	represented by	V (½	each)
---	--------------	----------	-------------	--------	----------------	------	-------

A	 	 	
B	 	 	
C	 	 	
D	 	 	
E	 	 	

(b) Name two substances which can undergo the change of state represented by **E**

(c) State one condition other than temperature that can bring about the change of state represented by **D** (½ mark)

.....

3. Anhydrous Iron (III) chloride was prepared using the set up of the apparatus shown in the figure below

	(ii) R		(1/2 ma (1mar eading to formatio		de.(1½
(c)	(i) State what w	ould be observed	if Iron (III) chlorid	e is exposed to air. ((1marl
					•••••
	(ii) Give a reasor	n for your answer	in (c) (i) above.	(1mark)	
					••••••
	mber of particles	-	ons and neutrons)	in atoms, Q , T, W,)	∢ and
		-			(and
		-		in atoms, Q , T, W,) of particles Neutrons	(and
	own in the table	below.	Number o	of particles	(and
	own in the table Atoms	Protons	Number of Electrons	of particles Neutrons	(and
	Atoms Q	Protons 1	Number of Electrons	of particles Neutrons 0	(and
	Atoms Q T	Protons 1 8	Number of Electrons 1 8	of particles Neutrons 0 8	(and
are sho	Atoms Q T W X	Protons 1 8 12 1	Number of Electrons 1 8 12	Neutrons 0 8 12 1	(and
are sho	Atoms Q T W X	Protons 1 8 12 1	Number of Electrons 1 8 12	Neutrons 0 8 12	(and

(iii). Atoms that are isotopes

(½ mark)

(b).	Identify the atoms that belong to elements in the same group of the periodic
table	
	(1mark)
(c).	Write the structural formula of the compound that can be formed when Q combines with T. (1mark
	(i). State one property of the compound formed between T and W . (1mark)
	(ii). Give a reason for your answer in (d) (i) above. (1mark)
	5. (a) (i) State the conditions under which sium can react with water.(1mark)
	(ii). Write the equation for the reaction that takes place in (a) (i). (1½ marks)
	The product from (a) above was shaken with water. State what was observed.
(c).	Dilute hydrochloric acid was added to the product in (b) above. Write an equation for the reaction that took place. (1½ marks)

6. Part of the periodic table is shown below;

I							VIII
	II	Ш	IV	V	VI	VII	
			W		V		Z
	Y	Т				Q	

(a).	Stat	e;	
	(i).	The most reactive metal.	(½ mark)
	(ii).	The most reactive non-metal	(½ mark)
		The atom that forms the largest anion.	(½ mark)
		The most non-reactive element.	(½ mark)
(b).		te the formulae of the compounds formed between the follo ments and in each case state the type of bonding	owing pairs of
	(i).	W and Q:	(1mark)
		Type of bonding.	
		T and V .	(1mark)
		Type of bonding	

- 7. (a) Chlorine can be prepared from concentrated hydrochloric acid
 - (i). Name a substance that can react with hydrochloric acid to produce

		chlorine.	(1mark)
	(ii). Write equation for the reaction.	(1½ marks)
	(b). (Chlorine gas was passed through cold dilute sodium hydro	oxide solution
		i). State what was observed.	(1mark)
••••	(ii). Write the equation for the reaction that took place.	(1½ marks)
8.	When h	ydrogen peroxide was exposed to sunlight, a gas was forr	ned
	(a).	(i) Name the gas.	(½ mark)
••••		(ii). State how the gas could be identified.	(½ mark)
••••	11/	(iii). Write an equation for the reaction leading to the for $^{\prime}\!$	mation of the gas
••••		Name one reagent that can be used to speed up the rate gas.	(1 mark)
9.	_	the manufacture of chlorine in the laboratory, the gas may nd concentrated sulphuric acid before collection;	
	(a). St	ate the use of:	
	(i)	. Water.	(½ mark)
••••	(ii). Concentrated sulphuric acid.	(½ mark)
(b). Chlo	rine is a bleaching agent when in the presence of water.	

Write an equation for the reaction between chlorine and water. (1½ marks)

(i).

	(ii).	Using eq	uations, e	explain the blo	eaching action o	of chlorine.	(2½ marks)
		e what w sulphate s		observed if ch	lorine was bubl	oled through a s	solution of Iron (1 mark)
10.	Use the	data in th	ne table b	pelow to answ	er the question	s that follow	
	Sub- stance	M.pt /°C	B.pt /°C	Solubility in water	Electrical conductance	Electrical conductance	Density at room temperature
					Solid form	Molten form	
	Α	714	1418	V	None	Good	2.3g/cm ³
	В	-95	56	V	None	None	0.8g/cm ³
	С	1083	2580	I	Good	Good	8.9g/cm ³
	D	-101	-34	V	None	None	2.55g/cm ³
	E	-23	77	I	None	None	1.6g/cm ³
	F	-219	-183	S	None	None	1.33g/cm ³
				ightly soluble			
	(a). (i)	Name tw	o substa	nces that are	liquids that are	liquids at room	temperature. ½
	(ii)	. Which	of the tv	vo is more vo	latile?		(½ mark)
		nich subs ution by;		ould dissolve i	n water and cou	uld be separated	d from the
	(i).	Fractio	nal distil	lation.			½ mark)

(ii). Evaporation of the water. (½ mark)

(c).	Whic	ch of the substance A to F ,	
		(i).	Has a structure consisting of ions?	(½ mark)
		(ii).	Is a metal?	(½ mark)
		(iii).	Is a liquid which from separate layer with water, would tabove or below?	he water, be (1mark)
(c	d).	Whi	ch substance is a gas which.	
		(i).	Would not be collected efficiently over water?	(½ mark)
	•••••	(ii).	Would be collected efficiently over water?	(½ mark)
	•••••			

SECTION B:

(Attempt any two questions from this section)

- 11. (a) Describe how a dry sample of hydrogen chloride can be prepared from a named chloride.(No diagram is required). Your answer should include the following;
 - Conditions for the reaction
 - Name of the drying agent
 - Method of collection
 - Equation for the reaction
 - (b) Name the substance that is formed when hydrogen chloride is passed through water.
 - (c) (i) Name one reagent that can be used to test for the presence of chloride ion
 - (ii) State what would be observed if the reagent was added to the chloride solution
 - (iii). Write an equation of reaction that would take place.
 - (c) A solution of hydrogen chloride in water conducts electricity while a solution of hydrogen chloride in methylbenzene does not. Explain this observation; writing appropriate equations where applicable.

12. (a) Define the terms;

(i). Solute. (2½ marks)

(ii). Saturated solution. (2½ marks).

(b) The Solubilities of potassium chloride and potassium nitrate at certain temperatures are shown in the table below.

Temperature /°C	0	11	15	30	40	50	57
Solubility of chloride per	27.9	31.0	32.0	36.5	40.0	43.0	43.0
100g of water							
Solubility of nitrate per 100g	14.0	21.5	25.0	43.0	63.0	84.0	102.0
of water							

- (i). Plot on the same axes a graph of solubility against temperature for the solubility of potassium chloride and potassium nitrate ($5\frac{1}{2}$ marks)
- (ii). State which one of the two salts has a solubility which increases less rapidly with increase in temperature.
- (iii). Determine the temperature at which the Solubilities of the two salts are equal. (½ mark)
- (c). A saturated solution of potassium nitrate at 30°C was cooled to 5°C. Calculate the amount of potassium nitrate crystals in grams formed. (3marks)
- 13. (a) (i). Describe with the aid of a well labelled diagram how a dry sample of chlorine can be prepared in the laboratory starting with manganese (IV) oxide (7marks)
 - (ii) Write an equation for the reaction that takes place $(1\frac{1}{2} \text{ marks})$
 - (iii). State any three uses of chlorine (2½ marks)
 - (b). State with the aid of equations what would be observed if chlorine was added to;
 - (i). Iron (II) chloride solution. (1½ marks)
 - (ii). Potassium iodide solution. (1½ marks)
 - (c). Burning Sodium was plunged with a jar of chlorine.
 - (i). State and explain what was observed (1mark)
 - (ii). Write the equation for the reaction (1mark)
- 14. Explain each of the following observations to support your explanations where applicable:
 - (a) Isotopes of an element have the same atomic numbers but different mass numbers. They however exhibit the same chemical properties (3marks)
 - (b). Chlorine gas turns moist blue litmus paper first to red and then bleaches it but

- dry chlorine gas has no effect on dry blue litmus paper. (4marks)
- (c). When magnesium powder is added to a solution of copper (II) sulphate, its colour changes from blue to colourless and a red brown solid is formed but when pieces of silver metal are added to copper (II) sulphate, the solution retains its colour. (4marks)
- (d). Solid sodium chloride does not conduct electricity yet an aqueous solution or molten sodium chloride conducts electricity. (4marks)

END