Tutorial 5

Database Design

COMP3278C Introduction to Database Management Systems

Dr. CHEN, Yi

Email: chenyi1@hku.hk

School of Computing & Data Science, The University of Hong Kong

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$ 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{C\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to <math>result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{C\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma \text{ in F} {}
if (\beta \subseteq result) {}
result = result \cup \gamma
}
}
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma
```

3. Augmentation - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$

4. Union - if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

5. Decomposition - if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$

6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C\}
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta and \alpha \to \gamma

6. Pseudo-transitivity - if \alpha \to \beta and \gamma \to \beta, then \alpha \to \delta
```

```
result = \alpha
\text{while (changes to } result) \{
\text{for each } \beta \rightarrow \gamma \text{ in F} \{
\text{if } (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to <math>result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C\}
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, E\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F {
        if (\beta \subseteq result) \{
            result = result \cup \gamma
        }
      }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma
```

5. Decomposition - if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$ 6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma \beta \to \delta$, then $\alpha \gamma \to \delta$

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma

6. Pseudo-transitivity - if \gamma \to \beta \gamma and \gamma \to \gamma \gamma
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, D, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma

6. Pseudo-transitivity - if \gamma \to \beta \gamma and \gamma \to \gamma \gamma
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, D, E\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
            result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, D, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma

6. Pseudo-transitivity - if \gamma \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
\text{while (changes to } result) \{
\text{for each } \beta \rightarrow \gamma \text{ in F} \{
\text{if } (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
result = \{A, B, C, D, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) {
        result = result \cup \gamma
        }
    }
}
```

- R = (A, B, C, D, E)
- $F = \{A \rightarrow E, BCE \rightarrow D, CD \rightarrow BE, C \rightarrow AB, BD \rightarrow AC\}$
- Please calculate C^+

```
C^+ = \{A, B, C, D, E\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

• Since $BC \to AD, BC \to D$ by Decomposition

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

• Since BC o AD, BC o D by Decomposition

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

• Since $BC \to AD, BC \to D$ by Decomposition

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

• Since $BC \to AD, BC \to D$ by Decomposition

• Since $AB \rightarrow C, AB \rightarrow BC$ by Augmentation

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?

• Since $BC \to AD, BC \to D$ by Decomposition

Armstrong's axioms

1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$

2. Transitivity - if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$

5. Decomposition - if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$

6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

3. Augmentation - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$

4. Union - if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

• Since $AB \rightarrow C, AB \rightarrow BC$ by Augmentation

- Prove
 - Since $AB \rightarrow C, AB \rightarrow BC$ by Augmentation
 - Since $BC \to AD, BC \to D$ by Decomposition
 - Since $AB \to BC, BC \to D, AB \to D$ by Transitivity

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

```
result = \{A, B\}
```

```
Armstrong's axioms
```

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result){
   for each \beta \rightarrow \gamma in F{
       if (\beta \subseteq result){
          result = result \cup \gamma
```

- $R = (A, B, C, D, E, F), F = \{AB \to C, BC \to AD, D \to E, CF \to B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

```
result = \{A, B\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta and \alpha \to \gamma

6. Pseudo-transitivity - if \alpha \to \beta and \gamma \to \beta, then \alpha \to \delta
```

 $result = \alpha$ $\text{while (changes to } result) \{$ $\text{for each } \beta \rightarrow \gamma \text{ in F} \{$ $\text{if } (\beta \subseteq result) \{$ $result = result \cup \gamma$ $\}$ $\}$ $\}$

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

```
result = \{A, B\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

 $result = \alpha$ while (changes to <math>result) { $for each \beta \rightarrow \gamma \text{ in F} \{$ $if (\beta \subseteq result) \{$ $result = result \cup \gamma$ $\}$ $\}$ }

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \to D$

```
result = \{A, B\}
```

6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

 $result = \alpha$ $while (changes to result) {
 for each <math>\beta \rightarrow \gamma$ in F {
 if $(\beta \subseteq result) \{$ result = $result \cup \gamma$ }
 }
}

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

 $result = \alpha$ $while (changes to result) {
 for each <math>\beta \rightarrow \gamma$ in F {
 if $(\beta \subseteq result) \{$ result = $result \cup \gamma$ }
 }
}

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

 $result = \alpha$ $while (changes to result) {
 for each <math>\beta \rightarrow \gamma$ in F{
 if $(\beta \subseteq result) \{$ result = result $\cup \gamma$ }
 }
}

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

1 2 D C D C A D D D C C

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C, D\}
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \to \gamma \to \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \to \beta \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
      }
    }
}
```

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

```
• If D \subseteq \{AB\}^+, AB \to D
result = \{A, B, C, D\}
```

Use Armstrong's axioms to prove

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```


- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \rightarrow D$ $result = \{A, B, C, D\}$
- Use Armstrong's axioms to prove

$$AB$$
 $\longrightarrow L$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

 $result = \alpha$ $while (changes to result) \{$ $for each \beta \rightarrow \gamma \text{ in F} \{$ $if (\beta \subseteq result) \{$ $result = result \cup \gamma$ $\}$ $\}$ $\}$

- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?
- If $D \subseteq \{AB\}^+, AB \rightarrow D$ $result = \{A, B, C, D\}$
- Use Armstrong's axioms to prove

```
AB
BC
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \to \gamma \to \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \to \beta \gamma
```

```
result = \alpha
while (changes to result) \{
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```


- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

• If
$$D \subseteq \{AB\}^+, AB \rightarrow D$$

$$result = \{A, B, C, D\}$$

Use Armstrong's axioms to prove

```
AB
BC
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \to \gamma \to \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \to \beta \gamma
```

```
result = \alpha
while (changes to result) \{
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```


- $R = (A, B, C, D, E, F), F = \{AB \rightarrow C, BC \rightarrow AD, D \rightarrow E, CF \rightarrow B\}$
- Does $AB \rightarrow D$ holds?

• If
$$D \subseteq \{AB\}^+, AB \to D$$

$$result = \{A, B, C, D\}$$

Use Armstrong's axioms to prove

- Prove
 - Since $AB \rightarrow C, AB \rightarrow BC$ by Augmentation
 - Since $BC \to AD, BC \to D$ by Decomposition
 - Since $AB \to BC, BC \to D, AB \to D$ by Transitivity

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \alpha \to \gamma

6. Pseudo-transitivity - if \alpha \to \beta and \gamma \to \beta, then \alpha \to \beta
```

```
result = \alpha
while (changes to result) \{
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```


- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

• Make $ACF \rightarrow ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

Armstrong's axioms

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

• Make $ACF \rightarrow ?$

- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- Armstrong's axioms 1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- **,**
 - Make $ACF \rightarrow ?$
 - Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
 - Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- Armstrong's axioms

 1 Reflexivity if $\beta \subset \alpha$ then α -
- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- Armstrong's axioms

 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- - Make $ACF \rightarrow ?$
 - Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
 - Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
 - Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- Make $ACF \rightarrow ?$
- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

C

- Armstrong's axioms
- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- Armstrong's axioms 1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ 3. Augmentation - if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
- Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
- Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$

- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \rightarrow \beta$, then $\gamma \alpha \rightarrow \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Make $ACF \rightarrow ?$
- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
- Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
- Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Prove
 - Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
 - Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

Armstrong's axioms

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

Prove

- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Prove
 - Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
 - Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
 - Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
 - Since $ACF \rightarrow DEF, DEF \rightarrow D, ACF \rightarrow D$ by Transitivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- Armstrong's axioms

 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

Prove

- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
- Since $ACF \rightarrow DEF, DEF \rightarrow D, ACF \rightarrow D$ by Transitivity
- Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
- Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$

Armstrong's axioms

- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

Prove

- Since $A \to B, BC \to DE, AC \to DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
- Since ACF o DEF, DEF o D, ACF o D by Transitivity
- Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
- Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- Prove
 - Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
 - Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
 - Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
 - Since $ACF \rightarrow DEF, DEF \rightarrow D, ACF \rightarrow D$ by Transitivity
 - Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
 - Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition
 - Since $ACF \rightarrow AEF, AEF \rightarrow G, ACF \rightarrow G$ by Transitivity

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?

Armstrong's axioms

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

Prove

- Since $A \rightarrow B, BC \rightarrow DE, AC \rightarrow DE$ by Pseudo-transitivity
- Since $AC \rightarrow DE, ACF \rightarrow DEF$ by Augmentation
- Since $D \subseteq DEF, DEF \rightarrow D$ by Reflexivity
- Since $ACF \rightarrow DEF, DEF \rightarrow D, ACF \rightarrow D$ by Transitivity
- Since $ACF \rightarrow DEF, ACF \rightarrow ACDEF$ by Augmentation
- Since $ACF \rightarrow ACDEF, ACF \rightarrow AEF$ by Decomposition
- Since $ACF \rightarrow AEF, AEF \rightarrow G, ACF \rightarrow G$ by Transitivity
- Since $ACF \rightarrow D, ACF \rightarrow G, ACF \rightarrow DG$ by Union

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$

```
result = \alpha
while (changes to result){
  for each \beta \rightarrow \gamma in F{
    if (\beta \subseteq result){
      result = result \cup \gamma
    }
  }
}
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$
- $result = \{A, C, F\}$

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$
- $result = \{A, C, F\}$

Armstrong's axioms 1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ 2. Transitivity - if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ 3. Augmentation - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ 4. Union - if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$ 5. Decomposition - if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$

6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
            result = result \cup \gamma
        }
    }
}
```

1

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$
- $result = \{A, C, F\}$

Armstrong's axioms 1 Reflexivity - if $\beta \subset \alpha$ then $\alpha \to \beta$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to <math>result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```

1

- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$
- $result = \{A, C, F\}$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma
```

6. Pseudo-transitivity - if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```

• $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$

• Does $ACF \rightarrow DG$ holds?

```
• If \{DG\} \subseteq \{ACF\}^+, ACF \to DG
```

• $result = \{A, B, C, F\}$

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```

• $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$

• Does $ACF \rightarrow DG$ holds?

```
• If \{DG\} \subseteq \{ACF\}^+, ACF \to DG
```

• $result = \{A, B, C, F\}$

```
result = \alpha
while (changes to <math>result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$
- $result = \{A, B, C, F\}$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma

6. Pseudo-transitivity - if \gamma \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```

```
• R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}
```

• Does $ACF \rightarrow DG$ holds?

```
• If \{DG\} \subseteq \{ACF\}^+, ACF \to DG
```

• $result = \{A, B, C, F\}$

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```

```
1
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$ 1 2 2
- $result = \{A, B, C, D, E, F\}$

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```

```
1
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$ 1 2 2
- $result = \{A, B, C, D, E, F\}$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma

6. Pseudo-transitivity - if \gamma \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to <math>result) {
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
}
```

```
• R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}
```

- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$ 1 2 2
- $result = \{A, B, C, D, E, F\}$

Armstrong's axioms 1. Reflexivity - if $\beta \subseteq \alpha$, then $\alpha \to \beta$ 2. Transitivity - if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$ 3. Augmentation - if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$ 4. Union - if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$

```
5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta and \alpha \to \gamma
6. Pseudo-transitivity - if \alpha \to \beta and \gamma \beta \to \delta, then \alpha \gamma \to \delta
```

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma \text{ in F} {}
if (\beta \subseteq result) {}
result = result \cup \gamma
}
}
}
```

```
• R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}
```

- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \to DG$ 1 2 2
- $result = \{A, B, C, D, E, F\}$

```
result = \alpha
while (changes to <math>result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
}
```

```
• R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}
```

- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```

- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F {
        if (\beta \subseteq result) {
            result = result \cup \gamma }
        }
    }
}
```


- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove

$$ACF$$
 $\longrightarrow L$

```
ACF \longrightarrow G
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
    for each <math>\beta \rightarrow \gamma in F{
        if (\beta \subseteq result) \{
        result = result \cup \gamma
        }
    }
}
```


- 1 2 3
- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
ACF \longrightarrow G
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha while (changes to result) { for each \beta \rightarrow \gamma in F{ if (\beta \subseteq result) { result = result \cup \gamma } } }
```


- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
ACF \rightarrow G
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```


- 1 2 3
- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove

- Since $A \rightarrow B, AC \rightarrow BC$ by Augmentation
- Since $BC \to DE, BC \to D$ by Decomposition
- Since $AC \to BC, BC \to D, AC \to D$ by Transitivity
- Since $AC \rightarrow D, ACF \rightarrow DF$ by Augmentation
- Since $ACF \rightarrow DF, ACF \rightarrow D$ by Decomposition

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```


- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) {
for each <math>\beta \rightarrow \gamma in F{
if (\beta \subseteq result) {
result = result \cup \gamma
}
}
}
```


- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result){
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
}
```


- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) \{
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```


- $R = (A, B, C, D, E, F, G), F = \{A \to B, BC \to DE, AEF \to G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove


```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha while (changes to result){
    for each \beta \rightarrow \gamma in F{
        if (\beta \subseteq result){
            result = result \cup \gamma
        }
      }
}
```


- $R = (A, B, C, D, E, F, G), F = \{A \rightarrow B, BC \rightarrow DE, AEF \rightarrow G\}$
- Does $ACF \rightarrow DG$ holds?
- If $\{DG\} \subseteq \{ACF\}^+, ACF \rightarrow DG$ 1 2 2 3
- $result = \{A, B, C, D, E, F, G\}$
- Use Armstrong's axioms to prove

```
ACF
\downarrow
\downarrow
BC
```

```
ACF
AEF
ABCF
Prov
```

```
Armstrong's axioms

1. Reflexivity - if \beta \subseteq \alpha, then \alpha \to \beta

2. Transitivity - if \alpha \to \beta and \beta \to \gamma, then \alpha \to \gamma

3. Augmentation - if \alpha \to \beta, then \gamma \alpha \to \gamma \beta

4. Union - if \alpha \to \beta and \alpha \to \gamma, then \alpha \to \beta \gamma

5. Decomposition - if \alpha \to \beta \gamma, then \alpha \to \beta \gamma and \gamma \to \gamma \gamma
```

```
result = \alpha
while (changes to result) \{
for each \beta \rightarrow \gamma \text{ in F} \{
if (\beta \subseteq result) \{
result = result \cup \gamma
\}
\}
\}
```

Prove by your self

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is *B* a superkey?
 - $\{B\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is *B* a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is *B* a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is C a superkey?
 - $\{C\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is *B* a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is C a superkey?
 - $\{C\}^+ = \{A, C, D\} \neq R$
 - B is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is C a superkey?
 - $\{C\}^+ = \{A, C, D\} \neq R$
 - B is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is C a superkey?
 - $\{C\}^+ = \{A, C, D\} \neq R$
 - B is NOT a super key
- Is D a superkey?
 - $\{D\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is *C* a superkey?
 - $\{C\}^+ = \{A, C, D\} \neq R$
 - B is NOT a super key
- Is D a superkey?
 - $\{D\}^+ = \{A, D\} \neq R$
 - D is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of *R*.
- Is A a superkey?
 - To test whether $\{A\}^+ = R$
 - $\{A\}^+ = \{A\} \neq R$
 - A is NOT a super key
- Is B a superkey?
 - $\{B\}^+ = \{B\} \neq R$
 - B is NOT a super key
- Is *C* a superkey?
 - $\{C\}^+ = \{A, C, D\} \neq R$
 - B is NOT a super key
- Is D a superkey?
 - $\{D\}^+ = \{A, D\} \neq R$
 - D is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = \{A, C, D\} \neq R$
 - AC is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = \{A, C, D\} \neq R$
 - AC is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = \{A, C, D\} \neq R$
 - AC is NOT a super key
- Is AD a super key?
 - $\bullet \{AD\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = \{A, C, D\} \neq R$
 - AC is NOT a super key
- Is AD a super key?
 - $\{AD\}^+ = \{A, D\} \neq R$
 - AD is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is AB a superkey?
 - $\{AB\}^+ = \{A, B, C, D\} = R$
 - A is a super key
 - Since both $\{A\}$ and $\{B\}$ are NOT super key, $\{AB\}$ is minimum, it is a candidate key
- Is AC a super key?
 - $\{AC\}^+ = \{A, C, D\} \neq R$
 - AC is NOT a super key
- Is AD a super key?
 - $\{AD\}^+ = \{A, D\} \neq R$
 - AD is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - *BC* is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - *BC* is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is *BC* a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key
 - Since both $\{B\}$ and $\{D\}$ are NOT super key, $\{BD\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - BC is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key
 - Since both $\{B\}$ and $\{D\}$ are NOT super key, $\{BD\}$ is minimum, it is a candidate key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is BC a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - *BC* is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key
 - Since both $\{B\}$ and $\{D\}$ are NOT super key, $\{BD\}$ is minimum, it is a candidate key
- Is *CD* a super key?
 - $\{CD\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is *BC* a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - *BC* is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key
 - Since both $\{B\}$ and $\{D\}$ are NOT super key, $\{BD\}$ is minimum, it is a candidate key
- Is *CD* a super key?
 - $\{CD\}^+ = \{A, C, D\} \neq R$
 - CD is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is *BC* a super key?
 - $\{BC\}^+ = \{A, B, C, D\} = R$
 - *BC* is a super key
 - Since both $\{B\}$ and $\{C\}$ are NOT super key, $\{BC\}$ is minimum, it is a candidate key
- Is BD a super key?
 - $\{BD\}^+ = \{A, B, C, D\} = R$
 - BD is a super key
 - Since both $\{B\}$ and $\{D\}$ are NOT super key, $\{BD\}$ is minimum, it is a candidate key
- Is *CD* a super key?
 - $\{CD\}^+ = \{A, C, D\} \neq R$
 - CD is NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is ACD a super key?
 - $\{ACD\}^+ = ?$

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is ACD a super key?
 - $\{ACD\}^+ = \{A, C, D\} \neq R$
 - *ACD* s NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is ACD a super key?
 - $\{ACD\}^+ = \{A, C, D\} \neq R$
 - *ACD* s NOT a super key

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{AB \to C, C \to D, D \to A\}$
- List all candidate keys of R.
- Is ACD a super key?
 - $\{ACD\}^+ = \{A, C, D\} \neq R$
 - *ACD* s NOT a super key
- Candidate keys of R
 - *AB*
 - *BC*
 - *BD*

- 1. Reflexivity if $\beta \subseteq \alpha$, then $\alpha \to \beta$
- 2. Transitivity if $\alpha \to \beta$ and $\beta \to \gamma$, then $\alpha \to \gamma$
- 3. Augmentation if $\alpha \to \beta$, then $\gamma \alpha \to \gamma \beta$
- 4. Union if $\alpha \to \beta$ and $\alpha \to \gamma$, then $\alpha \to \beta \gamma$
- 5. Decomposition if $\alpha \to \beta \gamma$, then $\alpha \to \beta$ and $\alpha \to \gamma$
- 6. Pseudo-transitivity if $\alpha \to \beta$ and $\gamma\beta \to \delta$, then $\alpha\gamma \to \delta$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- If *R* does not satisfy BCNF, perform a BCNF decomposition of *R*. The decomposition must meet the following requirements:
 - The resulting relations form a lossless-join decomposition.
 - The original functional dependencies are all preserved (dependency preservation).
 - Every decomposed relation is in BCNF.
- If a decomposed relation still violates BCNF, further decompose it until every subrelation is in BCNF.

• $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is *R* in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is *R* in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $A \rightarrow B$
 - $R_1(A,B)$
 - $R_2(A, C, D)$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is *R* in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $A \rightarrow B$
 - $R_1(A,B)$ Is R_1 in BCNF?
 - $R_2(A, C, D)$
 - Is R_2 in BCNF?

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $A \rightarrow B$
 - $R_1(A,B)$ Is R_1 in BCNF?
 - $R_2(A, C, D)$
 - Is R_2 in BCNF?
 - $F_2 = \{trivials\}$
 - R_2 is in BCNF

- - $F_1 = \{A \rightarrow B, trivials\}$
 - Since $\{A\}^+ = \{A, B\} = R_1, R_1$ is in BCNF

1. R in BCNF? - $\{\alpha\}^+$ covers R

2. BCNF decomposition - $result = (result - R_i) \cup (\alpha\beta) \cup (R_i - \beta)$

3. Decomposition dependency preserving? - $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $A \rightarrow B$
 - $R_1(A,B)$ Is R_1 in BCNF?
 - $R_2(A, C, D)$ • Is R_2 in BCNF?
 - $F_2 = \{trivials\}$
 - R_2 is in BCNF
- Dependency preserving?

- 1. R in BCNF? $\{\alpha\}^+$ covers R2. BCNF decomposition - $result = (result - R_i) \cup (\alpha\beta) \cup (R_i - \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

In D in DONE

• $F_1 = \{A \rightarrow B, trivials\}$

• Since $\{A\}^+ = \{A, B\} = R_1, R_1$ is in BCNF

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A, B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $A \rightarrow B$
 - $R_1(A,B)$ Is R_1 in BCNF?
 - $R_2(A, C, D)$ • Is R_2 in BCNF?
 - $F_2 = \{trivials\}$
 - R_2 is in BCNF

- - $F_1 = \{A \rightarrow B, trivials\}$
 - Since $\{A\}^+ = \{A, B\} = R_1, R_1$ is in BCNF

- Dependency preserving?
 - Since $BC \to D$ disappear, $(F_1 \cup F_2)^+ \neq F^+$, this decomposition is NOT dependency preserving

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B, C, D)$
 - $R_2(B, C, A)$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A, B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B,C,D)$ Is R_1 in BCNF?
 - $R_2(B,C,A)$
 - Is R_2 in BCNF?

- - $F_1 = \{BC \rightarrow D, trivials\}$
 - Since $\{BC\}^+ = \{B, C, D\} = R_1, R_1$ is in BCNF
- $F_2 = \{A \rightarrow B, trivials\}$
- Since $\{A\}^+ = \{A, B\} \neq R_2, R_2$ is NOT in BCNF

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is *R* in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B,C,D)$ Is R_1 in BCNF?
 - $R_2(B,C,A)$
 - Is R_2 in BCNF?
 - $F_2 = \{A \rightarrow B, trivials\}$
 - Since $\{A\}^+ = \{A, B\} \neq R_2, R_2$ is NOT in BCNF
 - Decompose R_2

- - $F_1 = \{BC \rightarrow D, trivials\}$
 - Since $\{BC\}^+ = \{B, C, D\} = R_1, R_1$ is in BCNF

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B,C,D)$ Is R_1 in BCNF?
 - $R_2(B, C, A)$
 - Is R_2 in BCNF?

- - $F_1 = \{BC \rightarrow D, trivials\}$
 - Since $\{BC\}^+ = \{B, C, D\} = R_1, R_1$ is in BCNF
- $F_2 = \{A \rightarrow B, trivials\}$
- Since $\{A\}^+ = \{A, B\} \neq R_2, R_2$ is NOT in BCNF
- Decompose R_2
 - Let's use $A \rightarrow B$
 - $R_3 = \{A, B\}$
 - $R_4 = \{A, C\}$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B,C,D)$ Is R_1 in BCNF?
 - - $F_1 = \{BC \rightarrow D, trivials\}$

• $R_2(B,C,A)$ • Is R_2 in BCNF?

• Since $\{BC\}^+ = \{B, C, D\} = R_1, R_1$ is in BCNF

Is R_3 in BCNF?

- $F_2 = \{A \rightarrow B, trivials\}$
- Since $\{A\}^+ = \{A, B\} \neq R_2, R_2$ is NOT in BCNF
- Decompose R_2
 - Let's use $A \rightarrow B$

 - $R_4 = \{A, C\}$
- $R_3 = \{A, B\}$ Is R_4 in BCNF?

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - Let's use $BC \rightarrow D$
 - $R_1(B,C,D)$ Is R_1 in BCNF?
 - $R_2(B,C,A)$
 - Is R_2 in BCNF?

- - $F_1 = \{BC \rightarrow D, trivials\}$
 - Since $\{BC\}^+ = \{B, C, D\} = R_1, R_1$ is in BCNF
- $F_2 = \{A \rightarrow B, trivials\}$
- Since $\{A\}^+ = \{A, B\} \neq R_2, R_2$ is NOT in BCNF
- Decompose R_2
 - Let's use $A \rightarrow B$
 - $R_3 = \{A, B\}$
 - $R_4 = \{A, C\}$
- Is R_4 in BCNF?
 - $F_4 = \{trivials\}$
 - R_4 is in BCNF

- Is R_3 in BCNF?
 - $F_3 = \{A \rightarrow B, trivials\}$
 - Since $\{A\}^+ = \{A, B\} = R_3, R_3$ is in BCNF

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - $R_1(B, C, D), F_1 = \{BC \to D, trivials\}$
 - $R_3 = \{A, B\}, F_3 = \{A \rightarrow B, trivials\}$
 - $R_4 = \{A, C\}, F_4 = \{trivials\}$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- 1. R in BCNF? $\{\alpha\}^+$ covers R
- 2. BCNF decomposition $result = (result R_i) \cup (\alpha\beta) \cup (R_i \beta)$
- 3. Decomposition dependency preserving? $(F_1 \cup F_2)^+ = F^+$

- $R = (A, B, C, D), F = \{A \rightarrow B, BC \rightarrow D\}$
- Is R in BCNF?
 - Since $\{A\}^+ = \{A,B\} \neq R$, R is NOT in BCNF, $A \rightarrow B$ violates BCNF
 - Since $\{BC\}^+ = \{B, C, D\} \neq R$, R is NOT in BCNF, $BC \rightarrow D$ violates BCNF
- Decompose R
 - $R_1(B, C, D), F_1 = \{BC \to D, trivials\}$
 - $R_3 = \{A, B\}, F_3 = \{A \to B, trivials\}$
 - $R_4 = \{A, C\}, F_4 = \{trivials\}$
- Dependency preserving?
 - Since $F_1=\{BC\to D\}$, $F_3=\{A\to B\}$, $F_1\cup F_3=F$
 - Since $F_1 \cup F_3 = F$, $F_4 = \{trivials\}$, $(F_1 \cup F_3 \cup F_4)^+ = F^+$
 - This decomposition is dependency preserving

Tutorial 5

END

COMP3278C Introduction to Database Management Systems

Dr. CHEN, Yi

Email: chenyi1@hku.hk

School of Computing & Data Science, The University of Hong Kong