INÉQUATIONS

I) PRÉLIMINAIRE : TABLEAU DE SIGNE

Un tableau de signe est un outil commode pour déterminer le signe d'une expression qui contient <u>une seule</u> variable.

1) Exemple : Signe de -2x + 3

$$-2x+3 \ge 0 \Leftrightarrow -2x \ge -3 \Leftrightarrow x \le \frac{3}{2}$$
$$(-2x+3 < 0 \Leftrightarrow -2x < -3 \Leftrightarrow x > \frac{3}{2})$$

Récapitulons ces résultats dans un "tableau de signe" :

X	$-\infty$	3.	/2	$+\infty$
-2x+3	+	- (<u> </u>	

2) Signe d'une expression du 1er degré

Propriété:

Dans un tableau de signe :

 $-\frac{b}{a}$ est la valeur de x qui « annule » l'expression ax + b.

A droite de cette valeur, ax + b est du signe de a.

A gauche, ax + b est du signe contraire.

Démonstration:

Soit (I):
$$x > -\frac{b}{a}$$
 $(a \neq 0)$

(I)
$$\Leftrightarrow a^2 x > -ba$$
 et $a \neq 0$

(I)
$$\Leftrightarrow a^2 x + ba > 0$$
 et $a \neq 0$

$$(I) \Leftrightarrow a(ax+b) > 0 \text{ et } a \neq 0$$

(I)
$$\Leftrightarrow$$
 a et $(ax+b)$ sont du même signe et $a \neq 0$

Bilan, pour
$$a \neq 0$$
 on a : $x > -\frac{b}{a} \iff ax + b$ est du signe de a

3) Signe d'un produit ou d'un quotient

Ex : Étudier le signe de $A(x) = \frac{x+1}{x-1}$ en fonction de x.

X	$-\infty$	-1		1	$+\infty$
x+1		ф	+		+
x-1	_		_	0	+
A(x)	+	ф	_		+

Bilan:
$$A(x) > 0 \Leftrightarrow x \in]-\infty$$
; $-1[\cup]1$; $+\infty[$
 $A(x) < 0 \Leftrightarrow x \in]-1$; $1[$
 $A(x) = 0 \Leftrightarrow x = -1$

p261:40,41,42

II) ÉQUIVALENCES

Pour être certain de résoudre les inéquations par équivalences successives, nous nous appuierons sur les propriétés suivantes :

A, B, C étant des réels quelconques, on a :

- 1) $A > B \Leftrightarrow A + C > B + C$
- $2) \quad A > B \Leftrightarrow A C > B C$
- 3) Si C > 0 alors : A > B \Leftrightarrow AC > BC Si C < 0 alors : A > B \Leftrightarrow AC < BC
- 4) Si C > 0 alors: A > B $\Leftrightarrow \frac{A}{C} > \frac{B}{C}$

Si C < 0 alors : A > B
$$\Leftrightarrow \frac{A}{C} < \frac{B}{C}$$

Remarque:

Il n'y a pas de propriété simple pour les inéquations produit ou quotient... Mais peu importe puisque nous avons les tableaux de signe! Ex: Résoudre dans \mathbb{R} , (I): $\frac{4}{r} \ge 1$

Condition : $x \neq 0$

Méthode fausse:

$$(I) \Leftrightarrow \begin{cases} 4 \geqslant x \\ x \neq 0 \end{cases}$$

$$S =]-\infty; 0[\cup]0; 4]$$

Équivalence fausse :

On a multiplié les 2 membres de (I) par *x* qui peut changer de signe!

Méthode juste :

$$(I) \Leftrightarrow \begin{cases} \frac{4}{x} - 1 \ge 0 \\ x \ne 0 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{4 - x}{x} \ge 0 \\ x \ne 0 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{4-x}{x} \ge 0 \\ x \ne 0 \end{cases}$$

cf 2)

S = [0; 4]

Inéquations:

 $p261:41 \rightarrow 46,48$

 $p262:55 \to 60$

 $p263:64 \rightarrow 75,79$

p264:81,82,83

Pb concrets:

p263:77,78

p264:85

p266: 91, 92, 94, 95

Algo:

p269: TP

III) DANS LES EXERCICES

 $(I): \quad \frac{4(x+1)}{x+2} \geqslant x+1$ **Ex** : Résoudre dans ℝ :

Conditions:

$$x+3 \neq 0 \Leftrightarrow x \neq -3$$

S'il y a des conditions, les préciser

$$(I) \Leftrightarrow \begin{cases} \frac{4(x+1)}{x+3} - (x+1) \ge 0 \\ x \ne -3 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{4(x+1) - (x+1)(x+3)}{x+3} \ge 0 \\ x \ne -3 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{(x+1)(4-x-3)}{x+3} \ge 0 \\ x \ne -3 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{(x+1)(1-x)}{x+3} \ge 0 \\ x \ne -3 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{(x+1)(4-x-3)}{x+3} \ge 0\\ x \ne -3 \end{cases}$$

$$(I) \Leftrightarrow \begin{cases} \frac{(x+1)(1-x)}{x+3} \ge 0 \\ x \ne -3 \end{cases}$$

A chaque étape, penser à écrire l'équivalence et les conditions

Factoriser en un produit ou quotient positif ou négatif, puis faire un tableau de signe

X	$-\infty$	-3		-1		1		$+\infty$
x+1			_	ø	+		+	
1-x	+		+		+	0	_	
x+3	_	•	+		+		+	
Q	+		_	0	+	0	_	

$$S =]-\infty; -3[\cup [-1; 1]$$