CHAPTER 3: SEARCHING IN GRAPHS

Discrete Mathematics 2

Lecturer: Nguyen Kieu Linh

Posts and Telecommunications Institute of Technology

Hanoi, 2023 http://www.ptit.edu.vn

Contents

- 1 Depth-First Search (DFS)
- 2 Breadth-First Search (BFS)
- 3 Some applications of DFS and BFS

Depth-First Search (DFS)

Input: The information of a matrix (adjacency matrix, edge list, adjacency list)

Output: Traverse all nodes in the graph.

Depth-First Search (DFS)

The algorithm starts at an arbitrary node of a graph and explores as far as possible along each branch before backtracking. The DFS algorithm consists of the following steps:

- Mark the current node as visited.
- Traverse the neighboring nodes that aren't visited and recursively call the DFS function for that node. (https://www.cs.usfca.edu/ galles/visualization/DFS.html)

Depth-First Search (DFS)

Input: The information of a matrix (adjacency matrix, edge list, adjacency list)

Output: Traverse all nodes in the graph.

```
 \textbf{DFS}(u) \{ \text{ $//u$ is the starting vertex } \\ < \text{Visit $u$>; } \\ unTraverse[u] = false; \text{ $//u$ has been traversed } \\ \textbf{for}(v \in Adj(u)) \{ \\ \textbf{if}(\text{ $unTraverse[v])$ $//if $v$ has not been traversed } \\ \textbf{DFS}(v); \text{ $//DFS$ from $v$} \}
```


DFS using Stack

Discrete Mathematics 2 -

```
DFS(u){
         Step 1: Initialize
         stack = \emptyset; // stack is empty
         push(stack, u); //push vertex u to stack
         <Visit u>; //traverse vertex u
         unTraverse[u] = false; //u has been traversed
         Step 2: Loop
         while(stack \neq \emptyset){
                   s = pop(stack); //get vertex at the top of stack
                   for(t \in Adj(s)){
                             if(unTraverse[t]){ //if t has not been traversed
                                       <Visit t>; //traverse vertex t
                                       unTraverse[t] = false; //t has been
traversed
                                       push(stack, s); //push s to stack
                                       push(stack, t); //push t to stack
                                       beak; //get only one vertex t
         Step 3: Return results
```

Computational Complexity of DFS

The computational complexity of DFS(u) depends on representation methods

- Graph representation using adjacency matrix: $O(n^2)$, n is the number of vertices
- Graph representation using edge list: O(nm), n is the number of vertices, m is the number of edges
- Graph representation using adjacency list: $O(\max(n, m))$, n is the number of vertices, m is the number of edges.

DFS Verification

Example 1: Verify DFS(1) for the graph below

DFS Verification

#	Stack	Traversed Vertices
1	1	1
2	1, 2	1, 2
3	1, 2, 4	1, 2, 4
4	1, 2, 4, 3	1, 2, 4, <mark>3</mark>
5	1, 2, 4	1, 2, 4, 3
6	1, 2, 4, 6	1, 2, 4, 3, 6
7	1, 2, 4, 6, 7	1, 2, 4, 3, 6, 7
8	1, 2, 4, 6	1, 2, 4, 3, 6, 7
9	1, 2, 4, 6, 8	1, 2, 4, 3, 6, 7, 8
10	1, 2, 4, 6, 8, 10	1, 2, 4, 3, 6, 7, 8, 10
11	1, 2, 4, 6, 8, 10, 5	1, 2, 4, 3, 6, 7, 8, 10, 5
12	1, 2, 4, 6, 8, 10, 5, 9	1, 2, 4, 3, 6, 7, 8, 10, 5, 9
13	1, 2, 4, 6, 8, 10, 5, 9, 13	1, 2, 4, 3, 6, 7, 8, 10, 5, 9, 13
14	1, 2, 4, 6, 8, 10, 5, 9, 13, 11	1, 2, 4, 3, 6, 7, 8, 10, 5, 9, 13, 11
15	1, 2, 4, 6, 8, 10, 5, 9, 13, 11, 12	1, 2, 4, 3, 6, 7, 8, 10, 5, 9, 13, 11, 12
16-	Pop vertices out of the stack	

Result: 1, 2, 4, 3, 6, 7, 8, 10, 5, 9, 13, 11, 12

DFS Verification

Given a graph with 13 vertices represented by the adjacency matrix below. Traverse the graph by applying DFS(1). Show the state of the stack and traversed vertices at each step.

0	1	1	1	0	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0	0	0	1	0
0	1	0	0	1	0	1	0	0	0	0	1	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	0	0	1	0	1	1	1
0	0	0	0	0	0	0	0	1	1	0	0	1
0	0	0	0	1	1	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0

Contents

- 1 Depth-First Search (DFS)
- 2 Breadth-First Search (BFS)
- 3 Some applications of DFS and BFS

Breadth-First Search (BFS)

Input: The information of a matrix (adjacency matrix, edge list, adjacency list)

Output: Traverse all nodes in the graph.

Breadth-First Search (BFS)

The breadth-first search (BFS) algorithm is used to search a graph data structure for a node that meets a set of criteria. It starts at a node of a graph and searches/visits all nodes at the current depth level before moving on to the nodes at the next depth level. The BFS algorithm consists of the following steps:

- To begin, move horizontally and visit all the current layer's nodes.
- Continue to the next layer.
 (https://www.cs.usfca.edu/ galles/visualization/BFS.html)

Breadth-First Search (BFS)

```
BFS(u){
          Step 1: Initialize
          queue = \emptyset; push(queue, u); unTraverse[u] = false;
          Step 2: Loop
          while(queue \neq \emptyset){
                     s = pop(queue); <Visit s>;
                     for(t \in Adj(s)){
                                if(unTraverse[t]){
                                          push(queue,t);unTraverse[t] = false;
          Step 3: Return results
          return < set of traversed vertices >;
```


Computational Complexity of BFS

The computational complexity of BFS(u) depends on representation methods

- Graph representation using adjacency matrix: $O(n^2)$, n is the number of vertices
- Graph representation using edge list: O(nm), n is the number of vertices, m is the number of edges
- Graph representation using adjacency list: $O(\max(n, m))$, n is the number of vertices, m is the number of edges.

BFS Verification

Given a graph with 13 vertices represented by the adjacency matrix below. Traverse the graph by applying BFS(1). Show the state of the queue and traversed vertices at each step.

0	1	1	1	0	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0	0	0	1	0
0	1	0	0	1	0	1	0	0	0	0	1	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	0	0	1	0	1	1	1
0	0	0	0	0	0	0	0	1	1	0	0	1
0	0	0	0	1	1	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0

BFS Verification

S#	Queue	Traversed Vertices
1	1	Ø
2	2, 3, 4	1
3	3, 4, 6	1, 2
4	4, 6, 5	1, 2, 3
5	6, 5, 7	1, 2, 3, 4
6	5, 7, 12	1, 2, 3, 4, 6
7	7, 12, 8	1, 2, 3, 4, 6, 5
8	12, 8	1, 2, 3, 4, 6, 5, 7
9	8, 10	1, 2, 3, 4, 6, 5, 7, 12
10	10	1, 2, 3, 4, 6, 5, 7, 12, 8
11	9, 11, 13	1, 2, 3, 4, 6, 5, 7, 12, 8, 10
12	11, 13	1, 2, 3, 4, 6, 5, 7, 12, 8, 10, 9
13	13	1, 2, 3, 4, 6, 5, 7, 12, 8, 10, 9, 11
14	Ø	1, 2, 3, 4, 6, 5, 7, 12, 8, 10, 9, 11, 13

Result: 1, 2, 3, 4, 6, 5, 7, 12, 8, 10, 9, 11, 13

BFS Verification

Given a graph with 13 vertices represented by the adjacency matrix below. Traverse the graph by applying BFS(1). Show the state of the stack and traversed vertices at each step.

0	1	1	1	0	0	0	0	0	0	0	0	0
1	0	1	1	0	1	0	0	0	0	0	0	0
1	1	0	1	1	0	0	0	0	0	0	0	0
1	1	1	0	0	0	1	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0	0	0	1	0
0	1	0	0	1	0	1	0	0	0	0	1	0
0	0	0	1	1	1	0	1	0	0	0	0	0
0	0	0	0	1	0	1	0	0	0	0	1	0
0	0	0	0	0	0	0	0	0	1	1	0	1
0	0	0	0	0	0	0	0	1	0	1	1	1
0	0	0	0	0	0	0	0	1	1	0	0	1
0	0	0	0	1	1	0	1	0	1	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0

NOTES

- Undirected graph: If $\mathsf{DFS}(u) = V$ or $\mathsf{BFS}(u) = V$, the graph is connected
- Directed graph: If DFS(u) = V or BFS(u) = V, the graph is weakly connected

Contents

- 1 Depth-First Search (DFS)
- 2 Breadth-First Search (BFS)
- 3 Some applications of DFS and BFS

- **Problem statement**: Given an undirected graph $G = \langle V, E \rangle$, with the set of vertices V, and the set of edges E. Determine connected components of G?
- Example:

Algorithm:


```
So dinh do thi: 13
                1
                                0
   0 0 0 0 0 0 0 0 0 0
                                0
   0 0 0 1 1
                                0
                                0
   0 0 0 0 0 0
                     1 0
                                         DFS
TP. lien thong theo DFS 1:
TP. lien thong theo DFS 2:
TP. lien thong theo DFS 3: 9 10 11 12
```

```
So dinh do thi: 13
  0 0 0 0 0 0 0 0 0 0
                             0
   0 0 1 0 1 1 0 0 0 0 0
                             0
   0 0 0 0 0 0 0 1
                                      BFS
  0 0 0 0 0 0 0 1 0 0
TP. lien thong theo BFS 1: 0 1 2 5 6 3
TP. lien thong theo BFS 2: 7
TP. lien thong theo BFS 3: 9 10 11 12
```

Exercise: Given an undirected graph represented by the adjacency matrix below. Determine connected components of the graph?

BFS(1): 1,3,5,7,11,9,13 BFS(2): 2,4,6,8,10,12

Finding paths between vertices

Exercise: Given an undirected graph represented by the adjacency matrix below. Determine connected components of the graph?

Finding paths between vertices

Problem statement: Given graph $G = \langle V, E \rangle$ (undirected or directed), with the set of vertices V and the set of edges E. Find a path from $s \in V$ to $t \in V$?

Algorithm description:

- If $t \in DFS(s)$ or $t \in BFS(s)$, there exists a path from s to t, otherwise, there is no path.
- To restore the path we use array previous[] consisting of n elements (n = |V|).
 - Initialize previous[u] = 0 for all u
 - When push $v \in Adj(u)$ to the stack (*DFS*) or queue (*BFS*) we set previous[v] = u
 - If *DFS* and *BFS* cannot reach to t, previous[t] = 0, there is no path from s to t

Finding paths between vertices using DFS

```
DFS(s){
          Step 1: Initialize
          stack = \emptyset; push(stack, s); unTraverse[s] = false;
          Step 2: Loop
         while(stack \neq \emptyset){
                   u = pop(stack);
                   for(v \in Adj(u)){
                             if(unTraverse[v]){ //v has not been traversed
                                       unTraverse[v] = false; //v has been
traversed
                                       push(stack, u); //push u to the stack
                                       push(stack, v); //push v to the stack
                                       previous[v] = u;
                                       beak; //process one vertex only
          Step 3: Return result
          return <set of traversed vertices>;
```

Finding paths between vertices using BFS

```
BFS(s){
          Step 1: Initialize
          queue = \emptyset; push(queue, s); unTraverse[s] = false;
          Step 2: Loop
          while(queue \neq \emptyset){
                    u = pop(queue);
                    for(v \in Adj(u)){
                               if( unTraverse[v]){
                                         push(queue, v);
                                         unTraverse[v] = false;
                                         previous[v] = u;
          Step 3: Return result
          return <set of traversed vertices>;
```


Finding paths between vertices

Path restore

Finding paths between vertices

Exercise: Given a graph with 13 vertices represented by the adjacency matrix below. Find a path from vertex 1 to vertex 13?

Strongly Connected Property of Directed Graph

Problem statement: Directed graph $G = \langle V, E \rangle$ is strongly connected if there exists a path between two every vertices. Given directed graph $G = \langle V, E \rangle$, check whether G is strongly connected or not?

Algorithm:

Discrete Mathematics 2 -

```
bool Strongly_Connected (G = < V, E >)(//\text{check strongly connected property of } G

Relnit(); // \forall u \in V : unTraverse[u] = true;
for(u \in V)(//\text{loop for every vertices}
if(BFS(u) \neq V) // \text{ or } DFS(u) \neq V
return \text{ false}; // \text{ not strongly connected}
else
Relnit(); // \text{ reinitialize array } unTraverse[]
}

return true; // strongly connected
```

Strongly Connected Property of Directed Graph

Exercise: Given graph $G = \langle V, E \rangle$ with 13 vertices represented by the adjacency matrix below. Check whether G is strongly connected or not?

Algorithm:

```
        0
        0
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```


Finding Cut Vertices

Problem statement: Vertex $u \in V$ of an undirected graph $G = \langle V, E \rangle$ is a cut vertex if its deletion (with its boundary edges) increases the number of connected components of the graph. Given (connected) directed graph $G = \langle V, E \rangle$, find all cut vertices of G?

Algorithm:

```
Finding_Cut_Vertices (G = \langle V, E \rangle){

ReInit(); // \forall u \in V : unTraverse[u] = true;

for(u \in V){ //for each vertex u

unTraverse[u] = false; //prohibit BFS or DFS reaching to u

if(BFS(v) \neq V \setminus \{u\}) // or DFS(v) \neq V \setminus \{u\}

< u \text{ is a cut vertex};

ReInit(); //reinitialize array unTraverse[]
```


Finding Cut Vertices

Exercise: Given graph $G = \langle V, E \rangle$ with 13 vertices represented by the adjacency matrix below. Find all cut vertices of G? **Algorithm**:

```
        0
        0
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```


Finding Bridges

Problem statement: Edge $e \in E$ of undirected graph $G = \langle V, E \rangle$ is a bridge if its deletion increases the number of connected components G. Given (connected) undirected graph $G = \langle V, E \rangle$, finding all bridges of G?

Algorithm:

```
Finding_Bridges (G = \langle V, E \rangle){

ReInit(); //\forall u \in V: unTraverse[u] = true;

for(e \in E){ //for each vertex of graph

E = E \setminus \{e\}; //remove edge e from the graph

if(BFS(1) \neq V) // or DFS(1) \neq V

< e is a bridge>;

E = E \cup \{e\}; // retrun edge e to the graph

ReInit(); //reinitialize array unTraverse[]
```


Finding Bridges

Exercise: Given graph $G = \langle V, E \rangle$ with 13 vertices represented by the adjacency matrix below. Find all bridges of G? **Algorithm**:

```
        0
        0
        0
        0
        1
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
        0
```


Graph Orientation Problem

Problem statement: **Definition**: An **orientation** of an undirected graph is an assignment of a direction to each edge, turning the initial graph into a directed graph. A strong orientation is an orientation that results in a strongly connected graph. **Example**:

Graph Orientation Problem

Theorem: For any undirected graph $G = \langle V, E \rangle$, there exists a strong orientation on G if and only if all its edges are not bridge. **Some problems**:

- Prove that there exists a strong orientation on an undirected graph
- Write a program to check whether exists a strong orientation on an undirected graph or not?

Summary

- oxdot Depth first search algorithm from vertex $u \in V, DFS(u)$
- oxdot Breadth-first search algorithm form vertex $u \in V, BFS(u)$
- \Box Applications of DFS(u) and BFS(u)
 - Traverse all the vertices of a graph
 - Determine connected components of a graph
 - Find a path from vertex s to vertex t of a graph
 - Check the strongly connected property of a directed graph
 - Find all cut vertices of a graph
 - Find all bridges of a graph
 - Check whether exists a strong orientation on an undirected graph or not.

Exercises

Exercise 1. Given an undirected graph $G = \langle V, E \rangle$ consisting of 10 vertices is represented as an adjacency matrix as follows:

- a) Using the DFS algorithm to find the number of connected components of the graph G, specifying the result at each step of the algorithm?
- b) Using the DFS algorithm find all the cut edges of the graph G, specifying the result at each step of the algorithm?

 Discrete Mathematics 2 –

Exercise 2. Given an undirected graph $G = \langle V, E \rangle$ consisting of 10 vertices is represented as an adjacency matrix as follows:

0	1	0	0	0	0	0	0	1	1	
1	0	1	1	0	0	0	1	1	1	
0	1	0		1	0	0	0	0	1	
0	1	1	0	1	1	1	1	0	0	
0	0	1	1	0	1	0	0	0	0	
0	0	0	1	1	0		0		0	
0	0	0	1	0	1		1	0	0	
0	0	0	1	0	0	1	0	1	0	
1	1	0	0	0	0	0		0	1	
1	1	1	0	0	0	0	0	1	0	

- a) Use the BFS algorithm to find a path with the least number of edges from vertex 1 to vertex 7 of the graph G, specifying the result at each step performed by the algorithm?
- b) Using the BFS algorithm find all the cut vertices of the graph G, specifying the result at each step of the algorithm?

Exercise 3. Given a directed graph $G = \langle V, E \rangle$ consisting of 10 vertices is represented as an adjacency list as follows:

$$\begin{array}{ll} \mathsf{Adj}(1) = \{2,3\} & \mathsf{Adj}(6) = \{7,8\} \\ \mathsf{Adj}(2) = \{3,4,5\} & \mathsf{Adj}(7) = \{4,8\} \\ \mathsf{Adj}(3) = \{9,10\} & \mathsf{Adj}(8) = \{1,2\} \\ \mathsf{Adj}(4) = \{6,7\} & \mathsf{Adj}(9) = \{6,10\} \\ \mathsf{Adj}(5) = \{6\} & \mathsf{Adj}(10) = \{1,2\} \end{array}$$

Use DFS to determine whether G is strongly connected, weakly connected, or disconnected? (Do not need to perform detailed steps of DFS algorithm, just write the results of execution)

Exercise 4. Given a directed graph $G = \langle V, E \rangle$ consisting of 10 vertices is represented as an adjacency matrix as follows:

Using breadth-first search to prove that G is strongly connected?

