Prüfungvorbereitung Biodiversität und Ökosystemfunktionen (WS 2016/17)

Quelle: Vorlesungsunterlagen

Inhaltsverzeichnis

1	DS1	_		1
	1.1	Defini	tion Biodiversität	1
	1.2	Facett	ten der Biodiversität	2
	1.3	Entwi	cklung der Biodiversität	2
2	DS2	2		4
	2.1	Breite	engradient	4
	2.2	Übers	icht der Erklärungsmuster	5
		2.2.1	Art-Areal-Beziehung	5
		2.2.2	Mehr-Individuen-Hypothese	6
		2.2.3	Metabolische Theorie der Diversität	7
		2.2.4	Evolutionsbasierte Hypothesen	8
3	DS3	3		9
		3.0.5	Biotische Interaktionen	11
		3.0.6	Toleranz-Hypothese	11
		3.0.7	Nischenkonservatismus	12
		3.0.8	Out of the tropics (OTT)	12
4	DS4	Į.		13
	4.1	Arten	reichtum messen	13
	4.2	Indivi	duen/Module zählen	14
	4.3	Maße	für Artendiversität	16
5	DS5	5		18
		5.0.1	$\alpha \beta \gamma$ Diversität	19
		5.0.2	Funktionelle Diversität	21
6	DS6	6		22
		6.0.3	Wie komme ich von BD zu EF?	24
		6.0.4	Funktionelle Merkmale bei Pflanzen	25
7	DS7	,		28
		7.0.5	"Response" und "Effekt"	30
8	DS8	3		31
9	DS9)		33
-	0		Mark Westoby's LHS-System	33

1.1 Definition Biodiversität

Erste Nennung: "National Forum of BioDiversity" (Name einer Tagung 1986 in Washington, USA)

Biodiversität = Information

Components of biodiversity [nach Noss (1990)]

- Compositional
 - Genes
 - Species, populations
 - Communities/ecosystems
 - Landscape type
- Structural
 - Landscape patterns
 - Physiognomy/habitat structure
 - Population structure
 - Genetic structure
- Functional
 - Gentic process
 - Demographis process
 - Interspecific interactions
 - Landscape process/disturbances

http://www.fao.org/docrep/006/y5187e/y5187e12.jpg

1.2 Facetten der Biodiversität

- Molekulare Vielfalt, z. B. Variation zwischen Proteinen (Isoenzyme)
- Chemische Vielfalt: z. B. Vielfalt der sekundären Inhaltsstoffe
- Genetische Vielfalt: z. B. Genotypen innerhalb einer Art
- Phylogenetische Vielfalt: Repräsentanz des "tree of life"
- Artenvielfalt: Anzahl und relative Abundanz von Arten
- Funktionelle Vielfalt: z. B. physiologische, anatomische, morphologische, demographische, ethologische Vielfalt
- Interaktionsvielfalt: z. B. Vielfalt der trophischen Beziehungen sowie aller Sym-, Pro- oder Antibiosen
- Ökosystemvielfalt: z. B. Vielfalt der Ökosysteme und Ökosystemprozesse in der Landschaft

1.3 Entwicklung der Biodiversität

Diversifizerungsmechanismen v.a. Meso-/Känozoische Radiation:

- Nach Landgang in Silur zunehmende Nährstoffeinträge vom Land durch organische Partikel
- Auseinander brechen von Pangäa erhöht Klimagradienten, Nischenraum und schafft Verbreitungshindernisse, die die Entstehung von Endemismen begünstigen
- Zunehmen ausdifferenzierte Baupläne ermöglichen immer größere Spezialisierung und Ausnutzen ökologischer Nischen

Sixth Mass Extinction: ???

Differentielle Entwicklung in Großtaxa: Die jeweils neu entwickelten Taxa machen rasch die größte Diversität aus

Suche nach Asymptote: Anzahl der beschriebenen Arten über Jahre keine Asymptote \rightarrow Warum?

Umso höher die Taxa umso weniger asymptotisch (Mora et al. 2011)

Wer ist wie häufig? (beschriebene Arten)

- 1.: Insekten > 1 Mio.
- 2.: Pflanze ~ 300000
- 12.: Vögel ca. 9950
- 18.: Amphibien ca. 4950
- 19.: Säugetiere ca. 4630

Pionier der Diversitätsforschung: Alexander von Humbolt beschreibt großräumige Diversitätsgradienten

erste globale Diversitätskarte: pflanzlichen Diversität nach Wulff (1935), aktualisiert von Mutke & Barthlott (2005)

Die Biodiversitätskarten zeigen: Taxonomische Diversität (Artenreichtum) pro Region steigt an:

- Von den Polen zum Äquator
- Von Gegenden mit ungünstigen Wachstumsbedingungen (zu kalt, zu trocken) hin zu Gegenden mit günstigeren Bedingungen (konstant warm und feucht)

2.1 Breitengradient

- Es existiert eine starke Korrelation zwischen geographischer Breite und Artenvielfalt (hier Pflanzenarten) vor allem dort, wo die Klimagradienten besonders stark ausgeprägt sind (siehe Mutke & Barthlott (2005))
- Breitengradienten existieren nicht nur bei Pflanzen (z.B. Termiten, Vögel, Säugetiere)
- Ausnahmen: Gymnospermen, parasitoide Hymenoptera,

Was verbirgt sich hinter der Breite? Viele Faktoren variieren mit der Breite:

- Mittlere Temperatur ↓ (Die mittlere Jahresmitteltemperatur folgt der Einstrahlungsintensität, d.h. Nordpol ↓ Äquator ↑ Südpol ↓)
- Mittlere Niederschlag ↓
- Variabilität (T, NS) ↑
- Netto-Primärproduktion¹ ↓
- Glazialgeschichte, Evol. Zeit ↓
- Fläche (↓↑)

¹Produktion organischer Substanz durch Photosynthese oder Chemosynthese, abzüglich des Verlustes durch Gesamt-Atmung (Tages- und Nachtatmung aller grünen und nicht-grünen Pflanzenteile)

http://www.spektrum.de/lexikon/biologie/nettoprimaerproduktion/46072

2.2 Übersicht der Erklärungsmuster

- Art-Areal-Beziehung
- Energie-basierte Hypothesen
 - Mehr-Individuen-Hypothese (u.a. Hutchinson 1959, Srivastava 1998)
 - Metabolische Theorie der Diversität (Allen et al. 2002)
- Toleranz-Hypothese
- Evolutionsbasierte Hypothesen
 - Speziationshypothese
 - Nischenkonservativismus-Hypothese

2.2.1 Art-Areal-Beziehung

- Generelles Prinzip in der Ökologie
- $S = c \cdot A^z$ mit S: Artenzahl, A: Fläche, z, c: Parameter, z (Exponent/Steigung) $\approx 0.25 0.30$
- logarithmische Kurve: 50% Habitatverlust $\sim 10\%$ Artenverlust, 90% Habitatverlust $\sim 50\%$ Artenverlust, 99% Habitatverlust $\sim 75\%$ Artenverlust

Mechanismen

- Artefakt?: Auf größeren Flächen können insgesamt mehr Individuen gesammelt warden als auf kleinen. Daher ist die Wahrscheinlichkeit größer, mehr Arten zu finden.
- Habitatdiversität: Größere Flächen sind topographisch/edaphisch diverser
 → mehr Habitate → mehr Möglichkeiten für unterschiedliche Arten zu existieren
- Artbildung/Extinktionsdynamik: größere Fläche → größeres potentielles Areal von Arten → größere Wahrscheinlichkeit der Artbildung (mehr Barrieren) und kleinere Wahrscheinlichkeit des Aussterbens (mehr Individuen)

Fazit: Art-Areal und Diversitätsgradient

- Rezente Verteilung der Landmassen nicht kompatibel mit den globalen Mustern
- Logarithmischer Zusammenhang könnte selbst bei entsprechender Landverteilung den starken Anstieg zu den Tropen nicht erklären

2.2.2 Mehr-Individuen-Hypothese

- Produktivität (NPP = Netto-Primärproduktion) limitiert die Anzahl der Individuen
- In tropischen Gebieten ist es wärmer und feuchter, NPP ist höher in den Tropen, ss ist Platz für mehr Individuen
- Wenn die Populationsgrößen nicht mit NPP variieren, dann ist Platz für mehr Arten!
- Mehr Energie, höhere NPP
- Es gibt einen positiven Zusammenhang zwischen NPP und Individuendichte
- Es gibt einen positiven Zusammenhang zwischen Individuendichte und Artenreichtum

Zusammenhang:

Sollte der Pfad über die Dichte/Individuenzahl den Mechanismus erklären, so müssten die "proximaten" Zusammenhänge (also ε vs. ρ /I und ρ /I vs. S) stärker sein als der distale (ε vs. S) **Dies ist nicht der Fall!**

Fazit: Mehr-Individuen-Hypothese

Angesichts der Datenlage eher nicht wahrscheinlich

- Verbindung zwischen Energie und Dichte/Individuenanzahl eher schwach
- Änderungen der Dichte mit der Breite nicht in der richtigen Größenordnung (zu schnell)

2.2.3 Metabolische Theorie der Diversität

- Körpertemperatur = Umgebungstemperatur
- \bullet Wärmer \rightarrow mehr metabolische Energie pro Individuum
- \bullet Annahme, dass Energienutzung durch Population konstant: wärmer \to kleinere Populationen und/oder kleinere Individuen
- \bullet Individuenzahl pro Gemeinschaft variiert nicht geographisch \to höhere Diversität

Fazit: Metabolische Theorie der Diversität

passt auch nicht... warum???

2.2.4 Evolutionsbasierte Hypothesen

Sind die Tropen die "Wiege" oder das "Museum" der Diversität?

• Evolutionszeit (=,,Museum")

- Tropische Regionen sind erdgeschichtlich älter, viele Taxa haben Ursprung in den Tropen
- Verbreitung aus den Tropen heraus ist limitiert

• Diversifizierungraten (=,,Cradle")

- Genetische Drift in kleineren Populationen hat h\u00f6here Artbildungsraten zur Folge (Federov 1966)
- Klimavariabilität hat in den Tropen höhere Artbildungsrate zur Folge (Haffer 1969)
- Höhere Wahrscheinlichkeit von parapatrischer (Moritz 2000) und sympatrischer Artbildung (Gentry 1989)
- Größere Fläche bewirkt größere Wahrscheinlichkeit von Isolation (Terborgh 1973)
- Geringere physiologische Toleranzen erschweren die Verbreitung und fördern die Isolation (Janzen 1967)
- Höhere Temperaturen bedingen höhere Mutationsraten und damit Artbildungsraten (Rohde 1992)
- Stärkere biotische Interaktionen führen zu höherer Spezialisierung und höherer Artbildungsrate (Dobzhansky 1950, Fischer 1960)

• Extinktionsraten

- Geringere Klimavariabilität reduziert Extinktionsrisiko (Darwin 1859)
- Größere Fläche, höhere Populationsgrößen, reduziertes Extinktionsrisiko (Rosenzweig 1995)

Das Argument "Zeit": die Tropen sind älter und konnten daher eine größere Anzahl von Arten akkumulieren ("fair chance"). Die nördlicheren Regionen sind durch Klimavariabilität, v.a. Eiszeiten, stärker in Mitleidenschaft gezogen worden → jedoch sehr unterschiedlich (Vergleich USA, Europa, Asien)

$3 \quad DS3$

Fazit aus Montoya et al.:

- Modelle, die neben dem aktuellen Klima auch die Zeit seit der Vereisung beinhalten, erklären die rezenten Diversitätsmuster besser
- Unterstützt die Museumstheorie
- Problem:
 - Differenziert nicht zwischen Artneubildung und Einwanderung
 - Erklärt nicht den Breitengradienten der Diversität (nur Glazialgeschichte)

Zeit X Fläche: Ein Test mit Bäumen

- Grundannahme: Zeit und Fläche haben jeweils eigene Erklärungkraft
- Problem:
 - Evolution über viele Millionen Jahre
 - Heutige Flächenverteilung der Biome nicht repräsentativ
- Lösung: Errechnen des Integrals der verfügbaren Fläche über die geologische Zeit als Prädiktor für Artenreichtum

Wie hoch ist die Baumdiversität wo?

Biom	$\mid \#$ Baumarten
north american boreal	61
eurasien boreal	100
north am. eastern temp.	300
north am. western temp	115
europ. temp.	124
east asien temp.	729
south am. temp.	84
australien temp.	310
neutropics	22500
asian tropics	14000
african tropics	6500
	•

Korrelationsanalyse

- Keine Korrelation zwischen Artenreichtum und rezenter Biomverteilung!
- Bei vier der fünf Biomrekonstruktionen ergeben sich signifikante Effekte mit einer erklärten Varianz von bis zu 60%.
- Legt nahe, dass Zeit und Fläche beide wichtig sind

• Sagt aber wenig über die eigentlichen Mechanismen aus (Speziation, Extinktion?)

Zwischenstand: Zeit / Fläche

- Es gibt Hinweise dafür, dass die verfügbare Zeit "ungestörter Evolution" (nicht unterbrochen durch Massenextinktionen) positiv mit der Diversität korrelliert.
 - Diese Effekte sind besonders stark ausgeprägt für die jüngere Erdgeschichte (Eiszeiten)
 - Aber es gab auch vorher schon deutliche Breitengradienten der Diversität!
- Die Ergebnisse schließen das gleichzeitige Vorhandensein der Effekte von Unterschieden in den Netto-Speziationsraten nicht aus

Speziationsraten: Sind die Netto-Speziationsraten in den Tropen höher? Diverse Hypothesen:

- Genetic Drift: Kleine Population \to Genetische Drift $\uparrow \to$ Artbildung \uparrow Zirkulär / schwer zu testen
- Klimavariabilität: Milankovich-Zyklen in Tropen $\downarrow \rightarrow$ Vagilität $\uparrow \rightarrow$ Artbildung \downarrow Kaum Daten
- Sympatrische Artbildung † Kaum Daten
- Metabolismus: Temperatur $\uparrow \rightarrow$ Metabolismus $\uparrow \rightarrow$ Mutation \uparrow Siehe später
- Fläche: Fläche ↑→ Wahrscheinlichkeit der reproduktiven Isolation ↑ Siehe z.B. Fine & Rees (oben)
- Toleranzhypothese: Toleranz in den Tropen ↓→ Wahrscheinlichkeit der repr. Isolation ↑ Plausibel, aber wenig Daten
- Biotische Interaktion: biotische Nischen ↑→ ungerichtete Selektion ↑→ Wahrscheinlichkeit der Divergenz ↑ Siehe unten

Wie alt sind Taxa? Frage: Seit wann haben sich zwei nächstverwandte Vogelund Säugetierarten getrennt \rightarrow ergibt eine Altersverteilung; Arten höherer Breiten haben sich später getrennt!

Fazit: Speziationshypothese

- es gibt Hinweise darauf, dass die molekulare Uhr bei höherer Temperatur "schneller tickt" (höhere Substitutionsraten).
- Diverse Probleme:

- Das erklärt nicht, warum der Breitengradient der Diversität auch für homoitherme gilt
- Es ist noch unklar, inwieweit die Substitutionsraten ein guter Indikator für Artbildung sind

3.0.5 Biotische Interaktionen

- Temperate Zone: Abiotischer Selektionsdruck (z.B. Spätfrost) ist omnipresent und führt zu gleichgerichteten Anpassungen (targeted Evolution)
- In milden Klimaten überwiegt biotischer Selektionsdruck. Dieser ist kleinräumig variabel und unvorhersehbar. Daher sind die Selektionsdrücke entsprechend divers → schnellere Divergenz (Evolution with moving target)

Short-cut: Biotische Interaktion

- Es gibt einige Hinweise auf stärkere Interaktionen in den Tropen (aber auch Gegenbeispiele)
- Es gibt Hinweise darauf, dass sich Merkmale, die biotische Interaktion widerspiegeln, schneller evoluieren (z. B. Bestäubungsmodi)

3.0.6 Toleranz-Hypothese

- Tropische Organismen besitzen engere Klimanischen: Höhenzüge wirken daher eher als Barrieren
- \bullet Die Folge: Schnellere geographische und damit reproduktive Isolierung \to Divergenz
- Der Artenreichtum wird durch die Anzahl von Arten limitiert, die die Umweltbedingungen tolerieren können
- Die Umweltbedingungen werden mit der Breite ungünstiger
- Zwei Fälle:
 - Extremfall: Die Artbildungsrate ist überall gleich (bzw. die Verbreitung ist prinzipiell unlimitiert). Dann ergibt sich die Diversität rein aus der Toleranz (bzw. der differentiellen Extinktion)
 - Wenn Arten in tropischen Gebieten entstanden sind (oder übrig geblieben sind), müssten sie für eine Ausbreitung polwärts erst Toleranzen entwickeln. Dieser Prozess dauert lange Zeit.

3.0.7 Nischenkonservatismus

- Wenn die Artbildungsrate in den Tropen höher und die Extinktionsraten niedriger sind, warum verbreiten sich die tropischen Arten dann nicht nach Norden aus?
- Nischenkonservatismus: Die Anpassungen, die ein Vordringen in kältere Regionen erlauben, sind komplex und werden "selten" erfunden.

3.0.8 Out of the tropics (OTT)

- Diese Theorie bildet einen Kompromiss. Der Breitengradient hat mehrere Ursachen:
 - Höhere Speziationsraten in den Tropen
 - Geringere Extinktionsraten in Tropen
- Gleichzeitig wird davon ausgegangen, dass die hohe Diversität auch in die Extratropen "überschwappt" (Immigration in den Extratropen hoch).

Fazit

- Die evolutionsbasierten Theorien schließen sich nicht gegenseitig aus!
- Sie sind allesamt wahrscheinlicher als die energiebasierten Theorien
- Die Evolutionshistorie spielt allgemein ein große Rolle.
- Eine synthetische Theorie wie die OTT ist erfolgversprechend.

4.1 Artenreichtum messen

Was wir selten(st) schaffen

- Wir erfassen fast nie alle Organismen des untersuchten Systems (schon gar nicht einer Region)
- Wir erfassen so gut wie nie alle Taxa eines Systems (oft nur ausgewählte Gruppen)
- Die Erfassungsmethode richtet sich selten nach den Taxa / Arten, die am schwierigsten zu erfassen sind

Welche Taxa / Arten sind schwierig zu erfassen?

- Generell: Seltene Arten
- Arten in schwer zugänglichen Bereichen des Ökosystems (tiefe Bodenschichten, Kronendach, ...)
- Arten in schwer bestimmbaren Zwischenstadien (Sporen, Samen, Nymphen)
- Arten, die sich auch als Adulte nur schwer bestimmen lassen
- Arten mit zeitlich sehr variabler Präsenz
- Arten mit räumlich sehr heterogener Präsenz (stark aggregiert an bestimmten Mikrostandorten)

Problem: Was ist ein Individuum?

- Bei unitaren Organismen eindeutig: Form deterministisch
- Bei modularen Organismen nicht
 - Bäume, Korallen, Schwämme
 - Oft verzweigte, sich selbst wiederholende Strukturen
 - Entwicklungsprogramm nicht vorhersagbar indeterminiertes Wachstum
- Modulare Organismen sind sehr häufig (Wälder, Grünländer, Korallenriffe, Moore)

Genet vs. Modul

- Genet:
 - Genetisches Individuum; Produkt einer Zygote
 - kann aus vielen Modulen bestehen (Polykormon)
 - Beispiel: Nähnadel Gottes
- Modul, z. B. bei Pflanzen:
 - vegetatives Modul: Blatt, Knospe (in Blattachsel) und Internodium (fundamentales Modul = Phytomer)
 - Generatives Modul: Blüte
 - -Äste: "kleine Bäumchen, die in einem großen Baum wurzeln
- Ramet: Module, die sich vom Genet getrennt haben und m.o.w. unabhängig geworden sind

4.2 Individuen/Module zählen

- Sessile Organismen:
 - Plot abstecken und zählen
 - Transekte
 - "plotless sampling methods"
 - Luftbilder (v.a. Bäume)
 - Fernerkundung (v.a. Bäume oder Vegetationsstrukturen)
- Bewegliche Organismen
 - Diverse Fallen
 - Fang-Wiederfang Methoden
 - Sichtzählung / Transekte
 - Akustische Kartierung
 - Luftbilder
 - Jagd- und Fangstatistiken

Transektmethoden

- Schnitt-Transekte
 - Sehr günstig bei Polykormonen
 - Liefert: Anzahl, mittlere Kormongröße, Deckung
- Lineare Transektplots
 - Günstig bei kleinen "punktförmigen" z. B. Grasrameten
 - Liefert: Anzahl

over pin frame

- v.a. im Grünland
- Gezählt werden die Berührungen von Organen (Blättern, Stengel, Blüte)
- Trennung nach Individuen nicht möglich
- Höhe der Berührung gibt auch Auskunft über vertikale Struktur
- Dauert lange, ist aber objektiver als Deckungsschätzungen

Plot-less

- Viele plot-less Methoden sind ein Mischung aus einer Zufallsauswahl und Distanzmessungen, z. B.
 - 1. Auwahl zufälliger Organismen \rightarrow Messung der Distanz zum nächsten Nachbarn
 - 2. Auswahl zufälliger Orte \rightarrow Messung der Distanz zu nächsten Organismus (s. Abbildung)
- Probleme:
 - 1. Auswahl von zufälligen Individuen ist sehr schwierig
 - 2. Methode 2 wird sehr stark von isolierten Individuen beeinflusst.
 - 3. Lösung: z. B. T-Sampling (siehe Vorlesung)

Point-Quarter

- Zufallspunkte i als Zentrum eines Kreuzes. Ingesamt n Zufallspunkte.
- Jeweils Distanz d zum nächsten Nachbar in Quadrant j messen.
- Vorteil: Man braucht weniger Zufallspunkte. Sehr effizient.
- Nachteil: Empfindlich gegenüber Abweichungen von der Zufallsverteilung.

weitere Verfahren:

- Imaging: z. B. Laser Scanner, Spektralkamera, RGB Kamera, Thermokamera
- Multispektralaufnahme vom Flugzeug
- Akustisches Monitoring

Ideale für Biodiversitätssampling

- Verschiedene Skalen für verschieden große Organismen
- Plots sind so klein, dass alle darin vorhandenen Arten und Individuen erfasst werden können
- Plots sind so zahlreich, dass alle vorkommenden Arten erfasst werden.
- Grundannahme: Alle Arten sind gleich gut detektierbar

Whittaker-Plot

- Tastet Artenreichtum über verschiedene Skalen hinweg ab
- Abwandlungen:
 - nested quadrat
 - Long-Thin Plot
 - modified whittaker plot
 - ncvs Protokoll (siehe Vorlesung)

4.3 Maße für Artendiversität

- Artenreichtum (species richness)
 - "richness"
 - Chaos Schätzer
- Artendiversität (species diversity)
 - Shannon-Wiener Diversität
 - Simpson Index
- Arten-Gleichverteilung (eveness)

Arten-Akkumulationskurven

- Individuum-based
 - Ein Individuum nach dem anderen sammeln
 - Wenn ein neues dabei ist, Zähler eins höher setzen.
 - Irgendwann wird man kaum noch neue Arten finden
- Sample-based
 - Ein Probe (mit potentiell mehreren Individuen) nach der anderen sammeln (oft Probeflächen)
 - etc. siehe oben

Fragen (siehe Vorlesung)

- Ein Altwald und ein nachgewachsener Wald im Vergleich Warum sind die Kurven glatt? (rarefaction curve)
- Warum besteht einmal der Unterschied (individual-based) und einmal nicht (sample-based)?
- Warum ist die individual-based Kurve der Altwälder kürzer?

Chao's Schätzer

- Schätzt die "wahre" Artenvielfalt
- Gleiche Datenstruktur wie vorher
- Die Gesamtartenzahl in der Probe wird extrapoliert

Überlegung zur Artenvielfalt: Welche Gemeinschaft ist diverser? Warum?

Shannon-Wiener Diversität

- Artenzahl S ("species richness"): Gesamtartenzahl, pro Fläche
- Shannon-Wiener-Diversität (H oder D Shannon): Diversität abh. von Artenzahl und deren Häufigkeit (Rechenbeispiel siehe Vorlesung)

Gini-Simpson's Diversitäts-Index D: beschreibt die Wahrscheinlichkeit, mit der zwei zufällig ausgewählte Organismen der gleichen Art angehören (= Varianzmaß)

Zwischen welchen Werten schwankt der Simpson-Index?

Was das Maß können sollte

- 1. Bei konstanter Artenzahl, Abundanz und Gleichverteilung (Eveness) aber variabler Anteile einzelner Arten, soll das Maß auch konstant bleiben
- 2. Wenn die Gesamtabundanz abnimmt, wird das Maß kleiner
- 3. Wenn nur die Gleichverteilung abnimmt (Abundanz, Artenzahl konstant), wird das Maß kleiner
- 4. Wenn nur die Artenzahl abnimmt (Abundanz, Gleichverteilung konstant), wird das Maß kleiner
- 5. Der Erwartungswert des Maßes sollte unabhängig von der Probenmenge sein
- 6. Der Erwartungswert sollte einfach und präzise quantifizierbar sein

Fazit bezüglich Shannon-Wiener und Simpson: Befriedigen alle Kriterien bis auf F2, d.h. wenn alle Arten (Artenzahl und Eveness konstant) in der Abundanz abnehmen, bleiben beide Indizes konstant!

Eveness (= Gleichverteilung)

Eveness ist ein Maß dafür, wie sich die vorkommenden Arten in ihren Abundanzen unterscheiden

(Shannon-) Eveness

Wird typischerweise indirekt ausgerechnet:

- Diversitätsmaß ist eine Mischung ist aus Artenzahl und Gleichverteilung (= Eveness)
- Wenn man die Artenzahl heraus rechnet, isoliert man die Eveness

2 Schritte:

- 1. Shannon-Diversität für maximale Gleichverteilung: $D_{Shannon\ max} = ln(S)$
- 2. Verhältnis der gemessenen zur maximalen Diversität = Gleichverteilung: $E = \frac{D_{Shannon}}{D_{Shannon \ max}}$

5.0.1 $\alpha \beta \gamma$ Diversität

- α -Diversität: Diversität innerhalb der einzelnen Untersuchungseinheit (z. B. Plot, eine Falle usw.)
- \bullet β -Diversität: Diversität zwischen den Untersuchungseinheit
- \bullet γ -Diversity: Diversität der Gesamtheit aller Untersuchungseinheiten (oft eine Landschaft)

Partitionierung

- Bezogen auf Artenreichtum: $\alpha \cdot \beta = \gamma$
- Bezogen auf $D_{Shannon}$: $\alpha + \beta = \gamma$
- Bezogen auf $D_{Gini-Simpson}$: $\alpha + \beta \alpha \cdot \beta = \gamma$

Was damit machen?

- Es ist einfach α und γ zu berechnen
- β -Diversität wird aus α und γ errechnet, wobei α_{av} der Mittelwert über alle Plots ist: $\beta = \gamma \alpha_{av}$
- \bullet $\beta\text{-Diversit"at}$ wird auch als Maß für "species turnover" verwendet

β -Diversität

- ist ein Maß für die Unterschiedlichkeit der Artenausstattung
- Wird häufig auch direkt mit multivariaten Vergleichen über Ähnlichkeitsmaße errechnet (Multiple assemblage overlap measures: Morisita-Horn-Index, C_{qN} -Index)

Ihre Einschätzung: Welche Prozesse befördern β -Diversität? Wo ist welche Diversitätskomponente wie hoch?

- Moore?
- Borealer Wald?
- Fynbos (Kapensis)?
- Tropischer Regenwald?
- Inselarchipele?

5.0.2 Funktionelle Diversität

Kontinuierliche Maße der funktionellen Diversität basieren auf Ähnlichkeit der Arten bzgl. Ihrer Eigenschaften

Facetten der Funktionellen Diversität

- Funktionelle Identität: Wo befindet sich die Gemeinschaft im Merkmalsraum?
- Facetten der funktionellen Diversität
 - <u>Functional Richness:</u> Wie groß ist der Merkmalsraum, der von der Gemeinschaft eingenommen wird?
 - Functional Diversity/Divergence/Dispersion: Wie unterschiedlich sind die Arten im Mittel?
 - <u>Functional Eveness:</u> Wie gleichmäßig sind die Abundanzen der Arten im Merkmalsraum verteilt
 - <u>Functional Distinctiveness</u>: Wie weit ist eine Art im Merkmalsraum von allen anderen entfernt? (Wie "besonders" ist sie?)

Funktionelle Identität (FI)

- Mittelwert der Merkmale über alle Arten
- Besser: Mittelwert 1 über alle Arten gewichtet mit deren Bedeutung in der Gemeinschaft (Abundanz, Biomasse, Deckung,...)

Functional richness (FR)

- Merkmalsraum, den die Gemeinschaft einnimmt
- FR Masszahlen
 - Nur ein Merkmal: Spanne zwischen dem kleinsten und dem größten Wert (engl. range)
 - Zwei und mehrere Merkmale: Fläche des "Convex hull volume (CVH)":
 Fläche, die durch eine umhüllende Linie gebildet wird. Die "Eck"Arten heißen auch Vortex-Arten. Linie darf nicht "nach innen knicken".
- Bemerkung zu FR
 - Wird sehr stark durch extreme Arten bestimmt
 - Für die Vergleichbarkeit wird üblicherweise durch die Gesamtspanne (-fläche, -volumen,...) aller Gemeinschaften geteilt. Dann variieren die Werte'zwischen 0 und 1

Functional Eveness

Wie bei der Artendiversität reduziert eine Ungleichverteilung der Abundanzen auch die funktionelle Vielfalt

- 3 Schritte zur Berechnung:
 - 1. Minimum Spanning Tree ausrechnen
 - 2. Normieren mit Gesamtlänge
 - 3. Index (0 bis 1) = Vergleich mit dem Idealszenario: PEW_l bei ungleichen EW_l immer kleiner als $\frac{1}{(S-1)}$
 - 4. Beispiel siehe Vorlesung

Functional Dispersion

• Muss:

- Muss mit mehreren Merkmalen funktionieren
- Darf nicht kleiner werden, wenn eine Art dazu kommt (monotonicity)
- Darf nicht größer werden, wenn eine Art gedoppelt wird (twinning principle)

• Soll:

- Unabhängig von Artenzahl
- Unabhängig von Functional Richness
- Sollte Abundanzverteilungen berücksichtigen

• Wäre schön:

- Kann alle Datentypen nutzen
- Funktioniert mit fehlenden Daten

Rao's Q

- "Rao's Quadratic Entropy", "Varianz der Distanzen zwischen Arten"
- mittlere funktionelle Ungleichheit zwischen zwei zufällig ausgewählten Individuen

• Vorteile:

- Berücksichtigt Abundanz
- arbeitet mit multiplen traits (multivariat)

• Nachteile:

- Wenn alle Arten gleich abundant sind (unwahrscheinlich), dann ist FD Q beeinflusst durch die Merkmalsverteilungen und die Kovarianz zwischen den Merkmalen
- wenn viele traits zum gleichen Merkmalssyndrom gehören (z. B. tradeoffs), dann wird diese Funktion überbewertet.

FDiv

- 1. Auswahl aller Vortex-Arten V
- 2. Berechnung des Zentroids (Schwerpunkts) nur (!) der Vortex-Arten
- 3. Koordinaten des Zentroids: $(g_1, g_2, g_3, ..., g_k)$
- 4. Ausrechnen der euklidischen Distanz zwischen jeder Art und dem Zentroid
- 5. Ausrechnen der mittleren Distanz
- 6. Abweichungen vom Ring mit Radius dG nach innen und nach außen. Abundanz gewichtet

FDis von Laliberté und Legendre

- 1. Zentroid aller Arten ausrechnen 1
- 2. Distanz zum Zentroid für jede Art ausrechnen
- 3. FDis ist der Mittelwert dieser Distanzen

Die Auswirkung der Abundanzen ist:

- dass sich das Zentroid zu den häufigen Arten hin verschiebt
- dass die Abstände zu häufigen Arten ein höheres Gewicht bekommen

Wo ist die Biologie? Ein Wort der Vorsicht!

Man sollte die Merkmale verstehen, die man benutzt und Fragen stellen:

- Welche Rolle spielen sie in Bezug auf Nischendifferenzierung?
- Welchen Mechanismus repräsentieren Sie? (z. B. Licht-, Wasser-, Nährstoffakquise?)
- Habe ich irgendeine Hypothese, warum Diversität oder Eveness bezüglich der Merkmale für meinen Prozess (Koexistenz, Produktivität, etc.) relevant sein könnte?

6.0.3 Wie komme ich von BD zu EF?

"Y" = Ökosystemfunktionen (*="Ökosystem-Dienstleistungen")

- Biomasse produzieren *
- Feuergefahr hervorrufen
- Stabilität gewährleisten *
- Kohlenstoff festlegen *
- Erosion verhindern *
- Luftstickstoff fixieren *
- Wasser verdunsten

Was ist das "X" genau?

- Ein Artname
- Ein Liste von Arten die gemeinsam vorkommen
- manchmal mit relativen Häufigkeiten

Arten versus Arteigenschaften?

Was passiert?

```
Ökosystemfunktion = f(Name_i)
Ökosystemfunktion = f(\Sigma Namen_i)
```

Warum passiert es?

```
\ddot{O}kosystemfunktion = f(Wachstumsrate<sub>i</sub>)
\ddot{O}kosystemfunktion = f(D Wurzeltiefe<sub>ij</sub>)
```

Biodiversität (X) & Ökosystemfunktionen (Y)

- Auch kurz "BD-EF" oder "BEF" genannt
- Was hat das mit Merkmalen zu tun?
 - Funktionelle Merkmale spielen eine wichtige Rolle bei der Übersetzung von Information (BD) in ökologische Prozesse (EF)
 - Oder anders: Die Merkmale bestimmen im Wesentlichen, wie sich die Anwesenheit einer Art auf die Prozesse im Ökosystem auswirkt
 - Zugespitzt:
 - * Wüsste man alle relevanten Merkmale bräuchte man die Artzugehörigkeit nicht wissen.
 - * Kennt man sie nicht alle, wird es immer residuale "Arteffekte" geben.

Facetten von FD und deren Bedeutung

Vorhersagekraft für Ökosystemfunktionen gibt Hinweis auf Mechanismus

	\rightarrow		Merkmalswert	\rightarrow
	Mittelwert		Verteilung	Spanne
Functional Identity			Functional Dispersion	Functional Richness
	Mittlere	Merkmals-	Varianz bestimmt EF	Extreme sind wichtig
	ausprägung	bestimmt		
	EF			
	Mass ratio hyp	oothesis, Se-	Komplementarität,	Functionelles Potential ist
	lection effect		Insurance-Hypothese	wichtig
	Art der wichtig	en Merkmal		
	geben Hinweis	auf Mecha-		
	nismus			

- Abundanzverteilungen sind wichtig
- Funktioniert mit vielen Merkmalen (multivariat)

6.0.4 Funktionelle Merkmale bei Pflanzen

- Physiologie
- Morphologie
- Demographie
- Ökosystem

Auf welche Merkmale trifft man?

- Angaben aus der taxonomischen Literatur
 - z. B. Blattlänge, maximale Höhe, Samengröße, ...
 - ursprünglich nur zu Unterscheidungszwecken ausgewählt
- Einfache ökologische Gruppierungsmerkmale
 - z. B. Winderverbreitung: ja/nein, Schattentoleranzklasse: 1-5, ...
 - Oft sind Gruppen nur eine Vereinfachung, weil die Erfassung eines quantitativen Masses viel zu aufwendig wäre
- Gezielte vergleichende Studien der funktionellen Ökologie
 - z. B. SLA, Gefäßdurchmesser, N-Gehalte, Blattlebensdauer,
 - Funktionelle Bedeutung a priori relativ klar (nicht immer), oft vergleichender Natur
- Diverse Prozessstudien aus der Botanik, Pflanzenphysiologie, Agrarwissenschaften, usw.
 - Sehr pezifische Merkmale: Quantum-Use-Efficiency, Ammoniumaufnahmekinetik, ...
 - I.d.R nur wenige Arten, oft Nutzpflanzen

Dateneigenschaften

• Beschreibung

- Beispiel: "Art bildet auf nassen Standorten häufig ein Flachwurzelsystem aus"
- Kategoriale Variablen (Kategorien)
 - Feuertoleranz (ja/nein oder 1/0, Blütenfarbe (grün, gelb, rot, blau,...)

• Ordinale Variablen

- Beispiele: Überflutungstoleranz (1-5), Wachstumsrate (gering, mittel, hoch oder 1,2,3)
- Eigenschaft: 2 ist mehr als 1, aber nicht doppelt so viel; nie negativ

• Ganzzahlige Variablen

- Anzahlen: Chromosomen, Griffel, Samen pro Kapsel
- Eigenschaften: nie negativ, keine Dezimalstelle

• Kontinuierliche Variablen

- $\text{ SLA } (97.5 \text{ cm}^2 \text{ g}_d w^{-1})$
- $-\,$ Eigenschaft: 2 ist doppelt so viel wie 1, kann positiv oder negativ sein

Spezifische Probleme

Beschreibung: Übersetzung in Variablen?

• Kategoriale Variablen:

- n Kategorien müssen in n-1 Variablen (0-1-codiert) umgesetzt werden.
 Das verbraucht Freiheitsgrade und ist umständlich.
- Zwei Wissenschaftler, zwei Kategoriesysteme, Vereinheitlichung ist schwierig.
- Ordinale Variablen: Häufig sehr subjektiv ("Försterlatein")
- Kontinuierliche Variablen:
 - Einheiten und Definitionen (Beispiel SLA: ein- oder zweiseitig)
 - Oft pseudo-metrisch, z. B. Maximal Alter von Bäumen (400 Jahre)

Sonstige Probleme mit Merkmalsdaten

- Taxonomie: Fehlbestimmungen, Synonyme, Tippfehler, Subspezies
- Datenbeschreibungen (Meta-Daten) in den Quellen:
 - Fehlerangaben ja oder nein?
 - Welche Methode wurde verwendet?
 - Wie wurde aggregiert? (Mittelwert von Blättern einer Pflanze, von Blättern mehrere Pflanzen, usw.)
 - Skalen: Wann, über welchen Zeitraum, auf welcher Fläche etc.
- Es fehlen Daten ("missing data")

Was ist überhaupt ein Merkmal?

- Alles was man an einem Organismus messen kann? Öffnungsweite der Stomata oder bei Tieren Blutzuckerspiegel? Merkmal?
- Alles was man messen kann und wenig variabel ist?
- Nur die Größen, die invariabel sind?

Grade von Variabilität

- Fester Wert
 - z.B. Ausschlagfähigkeit, Anz. Chromosomen
 - $-Y_i$: Wert, Klasse
- Intrinsisch variabel
 - Samengewicht, Ligningehalt Borke %
 - $-\overline{Y_i}$: Mittelwert (\pm Fehler)
- Umweltgesteuert
 - Respirationsrate, V_{cmax} , Zersetzungsrate
 - $-\theta_i^*$: Parameter (\pm Fehler)

Reduktionistische Ansatz der Merkmalsbasierten Forschung?

Plastizität ist lebensnotwendig

Fazit

- Phänotypische Plastizität ist kein Problem wenn Ausmaß und Sensitivität der Reaktion ungefähr gleich ist zwischen den Arten
- Phenotypische Plastizität ist ein Problen wenn sich die Reihenfolgen ändern

Neue Klasse:

- Merkmal = f(Umwelt)
- Plastizität = f(Merkmale)

Merkmale: Breite der Anwendung

- Zur Artenbestimmung
- Merkmalsevolution, komparative, merkmalsbasierte phylogenetische Analysen
- Nischenanalyse (Rosenzweig's Nische; 1987)
- Ableitung von Pflanzenstrategien; Einteilung von funktionellen Gruppen
- Klimaproxy in paläoökologischen Studien
- Prädiktor für Pflanzenperformanz; Züchtungsmarker (traits, states & rates)
- BD-EF Analysen (Diversitäts- und Identitätsfragen)
- Parameter in Modellen

7.0.5 "Response" und "Effekt"

Wichtige Schlüsselfragen

- Welche Merkmale sind beides (response und effect)?
- Inwiefern sind response und effect traits miteinander korreliert?
- Kann ich über ein Verbindung von response und effect traits sowohl die Entstehung von Biodiversität als auch die Effekte von Biodiversität erklären?

Zuordnung

- Welches Merkmal ist für welche Funktion bedeutsam? (nächste Stunden)
- Wird eine Funktion durch mehrere Merkmale gesteuert?
- Kann ein Merkmal mehrere Funktionen steuern?
- Kennen wir alle relevanten Merkmale?

Ökologische Filter

- Verbreitungsfilter: Samenquelle, Verbreitungsvektoren
- Abiotischer Filter: Bodeneigenschaften, Klima, Störungen
- Biotischer Filter: Konkurrenz, Herbivorie, Pathogene

Zwei Beispiele

- Auf welcher Integrationsebene (innerhalb der Hierarchie) wirkt ein Merkmal?
- Welche Einfluss hat der Merkmalseinfluss auf Teilprozesse für den Gesamtprozesse (Komplexität: Viele Merkmale x viele Prozesse)

Fazit

- Merkmal beeinflussen im Beispiel die Ökosystemfunktion Monokulturbiomasse über unterschiedliche Pfade
- \bullet Staturmerkmale wirken über die individuelle Performanz (\to ecosystem volume capture)
- Blatt- und Wurzelmerkmale wirken direkt (\rightarrow biotische Interaktionen?)
- Die Merkmale wirken eher nicht über den Pfad der Populationsdichte, wenn dann die Wurzelmerkmale (→ Packungsdichte evt. weniger wichtig)

Merkmale in einer Gemeinschaft - Filter, Nischen, Koexistenz

- In einer Pflanzengemeinschaft koexistieren Arten mit unterschiedlichen Eigenschaften
- Was könnte wichtig sein?
 - Mittlere Ausprägung des Merkmals
 - Vorhandensein eines bestimmten Merkmals
 - Das Ausmaß der Unterschiedlichkeit von Merkmalen (Gesamtspanne, Abdecken der Spanne etc.)

Was kann man daraus lernen? (Assembly rules)

- Wirken Filtermechanismen?
 - Hohe Gleichartigkeit von Merkmalen \rightarrow Starke Filter wirken
 - Welche Merkmale sind besonders gleichartig? \rightarrow Rückschlüsse auf Art des Filters
 - Welche mittlere Ausprägung haben Merkmale \rightarrow Ebenfalls Rückschlüsse auf Art des Filters
- Wirken Nischenmechanismen?
 - Hohe Verschiedenheit → Nutzung unterschiedlicher Nischen (Räume, Zeiten, Resourcen etc.)
- Beide Mechanismen können gleichzeitig wirken, dann aber für unterschiedliche Merkmale

Nischenkonzepte und Merkmale

<u>Umweltnische:</u> a region in a multi-dimensional space of environmental factors that affect the welfare of a species (Hutchinson, 1957)

<u>Merkmalsnische:</u> a region in a multi-dimensional trait space that affect the welfare of a species in a particular environment (Rosenzweig, 1987)

Abiotischer Filter ≈ Identität

Biotischer Filter ("begrenzte Ähnlichkeit", "Nischenprozesse") ≈ Diversität

Beispiel: Nischen im Regenwald

- Kraft et al. (2008): Von 150.000 Bäumen 1000 x zufällig Individuen ziehen und kleine virtuelle 20 x 20 m Plots herstellen → Verteilung von Merkmalen anschauen (Spanne, Standardabweichung usw.)
- Dann Vergleich mit den gemessenen Verteilungen
 - Verteilung breiter → Nischenprozesse (benachbarte Arten sind sich unähnlicher als eine zufällige Nachbarschaft)
 - -Ist die Verteilung enger \to Umweltfilter macht Bäume ähnlicher als bei einer zufälligen Nachbarschaft

Das Prinzip

- SD Nullmodell = SD Beobachtet?
- Spanne Nullmodell = Spanne Beobachtet?

Funktionelle Merkmale

- Wie setzen sich pflanzliche Merkmale in Pflanzenfitness und Ökosystemfunktionen um?
- Was ist die Biologie hinter den Indizes und den Statistiken?

9.0.6 Mark Westoby's LHS-System

Konzept:

- Drei "Leader"-Merkmale bilden drei voneinander unabhängige Achsen der Variabilität.
- Diese Achsen repräsentieren sogenannte "tradeoffs" (d. h. unausweichliche Kompromisse)

Die drei "tradeoffs" Eine Pflanze kann nicht...

- \bullet ...dauerhafte Blätter haben, die gleichzeitig billig sind (\to Spezifische Blattfläche L=leaf)
- ...Blätter hoch über dem Boden positionieren, ohne vorher einen stabilen Stamm zu wachsen (→ maximale Höhe – H = height)
- ...schwere Samen (mit hohem Startkapital) prozieren und gleichzeitig davon auch noch viele pro eingesetztem C-Kapital (\rightarrow Samengewicht S = Seed)
- Die drei Merkmale (L + H + S) sind mit diversen anderen eng korreliert (sie repräsentieren jeweils einen ganzen Syndromgradienten)
- Sie sind untereinander aber nicht korreliert (na, ja, siehe später)
- Vorteile des LHS Systems
 - Quantitativ und merkmalsbasiert
 - Tradeoffs sind real
 - Die drei Merkmale sind diejenigen, für die die meisten Daten vorhanden sind.

Potentiell zusätzliche Achsen

- \bullet Wurzeln: Wurzeltiefe, Wurzelarchitektur, Feinwurzelmerkmale
- Blatt- und Zweigverhältnisse: Größen, Architektur, Zweiginvestition pro Blattfläche
- Hydraulik: Leitfähigkeit, Embolieresistenz, Anatomie
- Störungsresistenzen: thermisch: Feuer, mechanisch: Wind, Schneebruch, biotisch: Herbivorie, etc.)
- Kommunikation: Allelopathie ...usw.

Reproduktive Allokation (S)

- Arten mit kleinen Samen produzieren mehr davon (bei gleicher Allokation in Samen)
- Arten mit großen Samen sind als Sämlinge sehr konkurrenzkräftig

Spezifische Blattfläche SLA (specific leaf area) $SLA = \frac{Blattflaeche}{Blatttrockengewicht} = \frac{1}{LMA} \text{ (LMA=?)}$

$$SLA = \frac{Blattflaeche}{Blatttrockengewicht} = \frac{1}{LMA} \text{ (LMA=?)}$$

Nachteile von hohem SLA

- Geringerer Schutz gegen mechanische Belastung (Wind, Eiskristalle, Sand, Tritt, etc.)
- \bullet Hält nur geringe Wasserspannungen aus \rightarrow empfindlich gegen Austrocknung
- ullet Wenig verholzt o hohe Palatabilität (Nährwert für Herbivore hoch)
- Korreliert mit Kurzlebigkeit

LMA und Relative Wachstumsrate

Definition: Änderung der Biomasse über einen meist kleinen Zeitschritt im Verhältnis zu bestehenden Biomasse

$$RGR = \frac{dW}{dt} \frac{1}{W}$$

Normierung bez. bestehende Biomasse günstig für Vergleichbarkeit zwischen Organismen

SLA vs. mechanische Belastbarkeit ("leaf toughness")

- Relevant für z. B.
 - Herbivorie
 - Abrasionsfestigkeit (Sand, Eiskristalle)
 - Trittfestigkeit
- Messen als Kraft, die benötigt wird zum
 - Auseinanderreißen (Zugfestigkeit)
 - Punktieren (Punktationsfestigkeit)
 - Durchschneiden (Schneidfestigkeit)

Mögliche Bestimmungsfaktoren

- Blattdicke
- Dichte und Anordnung der Blattnervatur
- Verstärkung der Blattnerven durch Sklerenchymfasern (lignifizierte Holzfasern, die die Gefäße umgeben)
- Einlagerung von Silikaten (v.a. bei Gräsern)

Wovon es nicht abhing...

- $\bullet\,$ Spezifische Blattfläche
- Blattdicke
- Kutikuladicke (oder Dicke von Parenchymen)
- Wassergehalt
- Blattdichte

Blattnervatur war der entscheidende Faktor!