

Decision Tree Implementation

11/11/2019

Decision Tree

Implement Decision Tree algorithm as follows:

DTree(records, attributes) returns a tree the best feature to split

If stopping criterion is met, return a leaf node with the assigned class.

Else pick an *attribute* F based on Gini Index and create a node R for it

For each possible value *v* of *F*:

Let Sv be the subset of records that have value v for F call $\underline{DTree}(Sv, attributes - \{F\})$ and attach the resulting tree as the subtree to the current node.

Return the subtree.

- Golf dataset
 - 4 features
 - Label: yes/no
- We use multi-way
 Split in this assignment

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain of gini

indexes

If Feature = Outlook

Gini=
$$1 - \left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.46$$

Outlook = Rainy

gini =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain of gini

indexes

If Feature = Outlook

Gini=
$$1 - \left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.46$$

Outlook = Rainy

gini =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Outlook = overcast

$$gini=1-\left(\frac{4}{4}\right)^2=0$$

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain of gini

If Feature = Outlook

Gini=1
$$-\left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.46$$

Outlook = Rainy

gini =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Outlook = overcast

$$gini=1-\left(\frac{4}{4}\right)^2=0$$

Outlook = sunny

gini=
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Gain =
$$0.46 - (\frac{5}{14} * 0.48 + \frac{4}{14} * 0)$$

$$+\frac{5}{14}*0.48)=0.117$$

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain
 - If Feature = Temperature, follow the same procedure to obtain the gain value
 - After the calculation for each feature on the dataset, we obtain

Gain(outlook) = 0.117

Gain(temperature)=0.018

Gain(humidity)=0.092

Gain(windy)=0.031

So Outlook is the best feature to split

Split the dataset
 splitData function (has been provided)

Outlook	Temperature	Humidity	Windy	Label	
Rainy	Hot	High	FALSE	No	
Rainy	Hot	High	TRUE	No	
Overcast	Hot	High	FALSE	Yes	
Sunny	Mild	High	FALSE	Yes	
Sunny	Cool	Normal	FALSE	Yes	
Sunny	Cool	Normal	TRUE	No	
Overcast	Cool	Normal	TRUE	Yes	
Rainy	Mild	High	FALSE	No	
Rainy	Cool	Normal	FALSE	Yes	
Sunny	Mild	Normal	FALSE	Yes	
Rainy	Mild	Normal	TRUE	Yes	
Overcast	Mild	High	TRUE	Yes	
Overcast	Hot	Normal	FALSE	Yes	
Sunny	Mild	High	TRUE	No	

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

 Find best split on sub-dataset (outlook=sunny)

follow the same procedure

Gain(temperature)=0.0133

Gain(Humidity)=0.0133

Gain(windy)=0.48

So windy is the best feature to split on

the sub-dataset (when outlook='sunny')

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

Iterate until stopping criteria satisfied

Windy = False
$$\rightarrow$$
 Yes

Windy = True
$$\rightarrow$$
 No

(outlook=sunny)

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

- Follow the same procedure for overcast and Rainy
 - Outlook = overcast → label=yes

(outlook=Overcast)

Outlook	Temperature	Humidity	Windy	Label
Overcast	Hot	High	FALSE	Yes
Overcast	Cool	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes

 Follow the same procedure for overcast and Rainy (outlook=Rainy)

– Outlook = Rainy

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Gain(temperature)=0.28 Gain(Humidity)=0.48 Gain(windy)=0.013

Humidity = High \rightarrow No Humidity = Normal \rightarrow Yes

Pseudocode

Find best split feature

```
chooseBestFeature(dataset)

for each feature i in the dataset

calculate gini index on dataset

for each value of the feature

subset = splitData(dataset, i, value)

calculate gini index on the subset

calculate Gain for feature i

Find the bestGain and the corresponding feature id
```


Pseudocode

Stopping criteria

```
stopCriteria(dataset)
  assignedLabel = None
  if all class labels are the same
      assignedLabel = label
  else if no more features to split
      assignedLabel = majority(labels)
```