Capillary forces and CO₂ trapping

• Capillary forces (interfacial tension) play an important role in trapping of CO₂:

 Both at the caprock interface (structural trapping)

And as residual CO₂ (as the plume migrates upwards)

Basic Trap behaviour

The thickness of a gas or oil column, Z_g , that can be retained against gravity by the capillary entry pressure of the sealing rock is given by:

$$z_g = \frac{2\gamma \cos\theta (1/r_{cap} - 1/r_{res})}{g(\rho_w - \rho_g)}$$

 r_{cap} and r_{res} are the pore throat radii in the cap rock and reservoir γ is the interfacial tension, θ is the fluid contact angle ρ_w and ρ_g are the densities of water and gas.

Analytical petroleum trap models (from Ringrose et al. 2000):

- A. Filled petroleum trap with leaky fault and tight caprock (leaking via spill point);
- B. Filled petroleum trap leaking through caprock $(P > P_{critical})$