

EEEE1002 Applied Engineering Design

Session 4 Introduction

Very Important: Module Engagement

- The purpose of the module is to acquire practical engineering skills
- Engagement is a compulsory requirement to pass the module
- When scheduled to be in a lab
 - Be in the lab by 09:00 and finish at 17:00
 - Lunch break should be limited to 1 hour maximum, between 12:00 and 14:00
 - Attendance will be monitored throughout the day
- Non engagement may be penalised, unless supported by an EC claim & tutor informed
- This module needs to be passed. It can only be resat in attendance the following year i.e. it will add a year to the duration of your degree

What is EEEE1002?

- It is a practical 'hands on' engineering design module.
- It is worth 40 credits, rule of thumb...
 - 1 Credit = 10 hours of effort : 40 credits = 400 hours
 - You will spend approximately 200 hours in the lab
 - Therefore significant effort required outside the lab
 - 200 hours in the lab, 200 hours outside the lab
- Non-engagement will attract a penalty
- It must be passed to progress to Year 2
- The module can only be re-taken in attendance i.e. failing the module will delay your progression by one year

Module Aims

- Further develop your knowledge by putting into practise concepts covered in the lectures
- Develop Skills Required by Employers
 - Develops practical skills
 - Develops engineering ways of thinking
 - Develop effective approaches to project management
- Develop the ability to work independently
- Develop the ability to work effectively as a team

Support throughout the module

- 3 x Academic staff running the module, offering in-lab and remote support:
 - Steve Greedy, Sergiy Korposh and Adam Walker
- 4 x Teaching Assistants offering in-lab and remote support:
 - Ahmed Aldabbagh, Richard Davies, Nat Dacombe, David Dewar
- Technical staff as required
 - Mark Birkin and Alex Ottway

Lots of support available, however

- This is not an 'Instructional' module
- No advance information (maybe a few hints...)
- We will help guide you in an Engineering approach
- We will not provide solutions

Project Session Schedule

Project Session: First Week					Project Session: First Week					
Practical Labs: Groups A and B – 09:00 to 17:00					Practical Labs: Groups C and D – 09:00 to 17:00					
М	Т	W	Т	F	М	Т	W	Т	F	
am	am	am	am	am	am	am	am	am	am	
pm	pm		pm	pm	pm	pm		pm	pm	
Self direc	ted study: (Groups C a	nd D (plan	for 32hrs)	Self directed study: Groups A and B (plan for 32hrs)					
 Background research for EEEE1002 1-2-1 Personal tutorials Revisit all modules: learning material and coursework requirements 					 Background research for EEEE1002 1-2-1 Personal tutorials Revisit all modules: learning material and coursework requirements 					

- Project sessions span two weeks. One of these weeks will be spent on practical work and one will be spent attending face-to-face technical tutorials
- Groups A and B will have practical work in the first week of the two week sessions.
- Groups C and D will have practical work in the second week of the two week sessions
- During a practical week you will spend 4.5 days in the lab
- In the non-lab based week you should devote this to self directed study for an equivalent amount of time (~32 hours).

Changes for this year

- The platform is again a 3 wheel, 2WD vehicle
- Individual and group work
- Introduction of an IoT approach to enable vehicle to anything communications V2X
- We will have a group photo

The end game remains the same

Ultimate Goal: Development of an autonomous vehicle utilising computer vision to navigate

SAE (Society of Automotive Engineers) Levels of automation:

SAE Level	Name		Execution of steering and acceleration/ deceleration	Monitoring of driving environment	
Human	driver monitors the	driving environment			
0	No Automation	The full-time performance by the human driver of all aspects of the dynamic driving task, even with	Human driver	Human driver	
1	Driver Assistance	The driving mode-specific execution by a driver assistance system of "either steering or acceleration/deceleration"	using information about the driving environment and with the expectation that the human driver performs all remaining		
2	Partial Automation	The driving mode-specific execution by one or more driver assistance systems of both steering and acceleration/deceleration	aspects of the dynamic driving task	System	
Automa	ited driving system	monitors the driving environment			A.
3	Conditional Automation	The driving mode-specific performance by an automated driving system of all aspects of the	with the expectation that the human driver will respond appropriately to a request to intervene	System	System
4	High Automation	dynamic driving task	even if a human driver does not respond appropriately to a request to intervene		
5	Full Automation		under all roadway and environmental conditions that can be managed by a human driver		

https://en.wikipedia.org/wiki/Self-driving_car

 We will aim for SAE level 4 i.e. your vehicle should complete a course without human intervention

On the route to autonomy: Sessions & Subsystems

- 1. Intro to test & measurement principles for electrical and electronic engineering and basic motion
- 2. Sensors & serial communications
- 3. Optical line following
- 4. Vehicle to anything (V2X) communications
- 5. Intro to computer vision
- 6. Big track challenge incorporate one or more sub-systems to navigate a given route and complete technical challenges
- Specific detail will be provided on the 1st Monday of each project session.
 Generic technical detail will be covered in the Monday seminars

Assessment:

- Following session 4:
 - 20%: Individual report on detailing work undertaken in sessions 3 and 4
 - 5%: Group poster detailing technical design of vehicle
- Final coursework descriptions/requirements released on the 25th February 2022
 - Keep a detailed log book!
- Coursework submission dates:
 - Poster: 3rd March 2022 at 15:00
 - Report: 10th March 2022 at 15:00

Project Log (Session 2 onwards)

- Throughout this module you will be required to produce technical reports on the work you have undertaken
- It is therefore even more important from now on that you keep a log of the work you undertake, information to log can include:
 - Written notes that capture your approach/thinking
 - Circuit diagrams
 - Measurement data
 - Screen shots (hint: use PRINTSCRN or ALT+PRINTSCRN to capture screen shots or the active window and paste into a document, or paste into Paint and save as an image)
 - Photos
 - Key references (web links, .PDFs etc)

Vehicle to Anything (V2X)

- Describes communication between a vehicle and everything that it may need to interact with, to:
 - Operate safely
 - Operate efficiently
 - Maximise traffic flow
- Relies on wireless communications to provide:
 - vehicle to vehicle (V2V)
 - vehicle to infrastructure (V2I)
 - vehicle to network (V2N)
 - Vehicle to Anything (V2X)

Hans-J. Brehm, CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)

Introduction to Session 4

- Session 4: Implementation of a communications system to:
 - gather data from sensors on the EEEBot
 - gather data from sensors off the EEEBot
 - send control data to the EEEBot
 - Work as a group to send and receive data to/from up to 4 EEEBots using a single remote terminal with a graphical user interface (GUI)
- Appropriate background information will be provided, but we are now starting to move away from guided work in preference to posing problems to be solved – many solutions to a single problem!

Elements of a 'EEEBot V2X' System

A Robot

 A microcontroller that can interface with other microprocessors and sensors (our EEEBot is ESP32 based with an Arduino NANO)

A Central Controller for the Network

A Raspberry Pi 3 Model A+ (R-Pi)

A Communications Protocol

Message Queuing Telemetry Transport, or simply, MQTT

A Central Controller & Graphical User Interface (GUI)

- Mosquitto MQTT running on the Raspberry Pi
- Node-RED Dashboard

A Very Brief Overview of MQTT

- Messaging protocol to exchange data between multiple devices
- Devices on a network subscribe to topics
- Devices on the network publish messages related to a topic
- Any device subscribed to the topic receives the message

Example Overview of the EEEBot V2X System

The list of example published/subscribed data is by no means limited to what is shown

Example Node-RED Dashboard GUI

Example Node-RED Dashboard GUI

- An example dashboard follows that illustrates both subscribed data and published data
- A range of components and sensors were used in this example some of which you won't have on your EEEBot, be creative with what you do have!
- Additional GUI elements can be included such as buttons, titles, page sections, toggle switches, pictures and much more – there is plenty of tutorials on how to include these on the internet

Example Node-RED Dashboard GUI

Example Node-RED Dashboard GUI

Overview of the V2X System Requirements

- You will need to work as a group
- Each member of the group will be responsible for
 - equipping their own vehicle with a sensor that can send data to the central controller to be displayed via a GUI. Each vehicle in the group must use a different sensor
 - equipping their vehicle with a device that can be controlled from the central controller's GUI. The device can be the same for all vehicles in the group
- Successful completion of the above is worth 70% of session 4

Overview of the V2X System

- A further 30% is available if:
- At the end of the session the group presents a single vehicle equipped with a number of sensors and is capable of line following that sends/receives data to/from the central controller that can:
 - Display status of each IR sensor
 - Display the weighted average
 - Vary the PID constants
- Each of the above is worth 10%

Lots of Resources and Examples on the Web

- [1] https://divi0t.com/microcontroller-to-raspberry-pi-wifi-mqtt-communication/
- [2] https://randomnerdtutorials.com/esp32-mqtt-publish-subscribe-arduino-ide/
- [3] https://www.instructables.com/How-to-Use-MQTT-With-the-Raspberry-Pi-and-ESP8266/

These are just a few from the 1st page of a Google search

A Spanner in the works...

- The underlying network can make use of a wide area network (WAN) to support communications i.e. the EPS32 communicates with the R-Pi via the network router
- However, Eduroam isn't overly friendly when trying to connect all manner of devices. Therefore, once the R-Pi is configured as required we will use it as an access point so the ESP32 device communicates directly with the R-Pi
- You can switch between the above if, for example, you are using a network router you have more control over
- The above will be covered in more detail in the notes released for the start of the session

Session 3 Optical Line Following

How to succeed....

- Engage
- Make use of any support
- Pay attention to and use Moodle and the Teams site
 - Please use the Teams site to ask questions
- Talk to other students
- Above all have fun!

End of Session 3 Introduction