Problem Sets

D. Zack Garza

January 24, 2020

Contents

	1.1 1.1 a	
2	1.3*	1
3	Relevant information (?):	2

1 1.1

1.1 a

If $M \in \mathcal{O}$ and $[\lambda] = \lambda + \Lambda_r$ is any coset of $\mathfrak{h}^{\vee}/\Lambda_r$, let $M^{[\lambda]}$ be the sum of weight spaces M_{μ} for which $\mu \in [\lambda]$. Prove that $M^{[\lambda]}$ is a $U(\mathfrak{g})$ -submodule of M and that M is the direct sum of finitely many such submodules.

1.2 b

Deduce that the weights of an indecomposable module $M \in \mathcal{O}$ lie in a single coset of $\mathfrak{h}^{\vee}/\Lambda_r$.

2 1.3*

Show that $M(\lambda)$ has the following property: for any $M \in \mathcal{O}$,

$$\operatorname{Hom}_{U(\mathfrak{g})}(M(\lambda),M) = \operatorname{Hom}_{U(\mathfrak{g})}\left(\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}\mathbb{C}_{\lambda},M\right) \cong \operatorname{Hom}_{U(\mathfrak{b})}\left(\mathbb{C}_{\lambda},\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}M\right),$$

where $\operatorname{Res}_{h}^{\mathfrak{g}}$ is the restriction functor.

Hint: use the universal mapping property of tensor products.

3 Relevant information (?):

 $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C}_{\lambda}$ where $\mathfrak{b} \leq \mathfrak{g}$ is a fixed Borel subalgebra corresponding to a choice of positive roots, and C_{λ} is the 1-dimensional \mathfrak{b} -module defined for any $\lambda \in \mathfrak{h}^{\vee}$ by the fact that $\mathfrak{b}/\mathfrak{n} \cong \mathfrak{h}$ and thus $\mathfrak{n} \curvearrowright \mathfrak{h}$ can be taken to be a trivial action.

The induction functor is given by $\operatorname{Ind}_{\mathfrak{b}}^{\mathfrak{g}}(\,\cdot\,) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} (\,\cdot\,).$

The restriction functor is given by $\operatorname{Res}_{\mathfrak{b}}^{\mathfrak{g}}(\,\cdot\,)=?$

Frobenius Reciprocity for groups looks like

$$\begin{aligned} \hom_{k[G]}(k[G] \otimes_{k[H]} V, W) &\to \hom_{k[H]}(V, W) \\ \lambda &\mapsto 1 \otimes (\,\cdot\,) = (v \mapsto \lambda(1 \otimes v)) \\ (g \otimes v \mapsto g \cdot f(v)) &\longleftrightarrow f. \end{aligned}$$