

[SWE2015-41] Introduction to Data Structures (자료구조개론)

Introduction to Data Structures & Algorithms

Department of Computer Science and Engineering

Instructor: Hankook Lee (이한국)

What is a Good Program?

- A good program should run correctly, reliably, and efficiently as expected
- Example: Autonomous Driving
 - Detect traffic conditions and obstacles in real-time
 - Figure out the optimal driving route

What is a Good Code?

- A good code should be ...
 - Simple Simple solution, Efficiency, ...
 - Readable Clear naming, Clear formatting, Comments, Documentation, ...
 - Maintainable Modularity, Reusability, Portability, ...
 - Reliable Error handling, Testing, Security, ...

THE ONLY VALID MEASUREMENT OF CODE QUALITY: WTFS/MINUTE

Problem Solving

- A problem is formulated by a goal and requirements
 - Goal: produce the desired outcome (e.g., shortest path between two places)
 - Requirements: time/memory limits, data/information access, devices, ...

Path Finding

Face Recognition

Problem Solving

- A problem is formulated by a goal and requirements
 - Goal: produce the desired outcome (e.g., shortest path between two places)
 - Requirements: time/memory limits, data/information access, devices, ...
- Build an efficient program that can solve the problem:

Problem Solving

- A problem is formulated by a goal and requirements
 - Goal: produce the desired outcome (e.g., shortest path between two places)
 - Requirements: time/memory limits, data/information access, devices, ...
- Build an efficient program that can solve the problem:

Problem Solving - Sub-sequential Sum

• **Problem:** calculate the sum between a-th and b-th integers (inclusive)

```
int main() {
   int arr[5] = { 2, 1, 4, 3, 0 }, a, b;
   scanf("%d %d\n", &a, &b);

int sum = 0;
   for (int i = a; i <= b; i ++) {
       sum += arr[i];
   }
   return 0;
}</pre>
Algorithm
```

Problem Solving - Sub-sequential Sum

• **Problem:** calculate the sum between a-th and b-th integers (inclusive)

```
int main() {
   int arr[5] = { 2, 1, 4, 3, 0 }, a, b;
   scanf("%d %d\n", &a, &b);

int sum = 0;
   for (int i = a; i <= b; i ++) {
       sum += arr[i];
   }
   return 0;
}</pre>
Algorithm
```

- (Q) Is this the best algorithm?
 - Scenario #1: Given multiple queries, how to efficiently calculate?
 - Scenario #2: If data modification is available, how to efficiently calculate?

Data Structures

- A data structure is designed for efficient operations on a specific data type
 - Operations: addition, deletion, search, sorting, ...
 - Example: find the maximum value among one million integers
- Types of data structures

Primitive types: characters (char), integers (int), floating-point numbers (float)

Non-primitive types:

- Linear: arrays, linked lists, stacks, queues, ...
- Non-linear: trees, graphs, ...

Linear Structure (Linked List)

Non-linear Structure (Binary Tree)

- Binary Search Tree (BST) is designed for efficient search
 - Property: left sub-tree < current node < right sub-tree

- Binary Search Tree (BST) is designed for efficient search
 - Property: left sub-tree < current node < right sub-tree

- Binary Search Tree (BST) is designed for efficient search
 - Property: left sub-tree < current node < right sub-tree

- Binary Search Tree (BST) is designed for efficient search
 - Property: left sub-tree < current node < right sub-tree
 - You can search a specific value (e.g., 13) efficiently using the property

- Algorithm: a formally defined procedure for performing some calculation
 - It can be implemented using a programming language (e.g., C, Python, ...)
 - It provides a blueprint to write a program to solve a particular problem
 - A well-defined algorithm always provides an answer and is guaranteed to terminate

- Algorithm: a formally defined procedure for performing some calculation
 - It can be implemented using a programming language (e.g., C, Python, ...)
 - It provides a blueprint to write a program to solve a particular problem
 - A well-defined algorithm always provides an answer and is guaranteed to terminate

- Well-known algorithms
 - **Sort:** Bubble Sort, Insertion Sort, Quick Sort, ...
 - **Search**: Binary Search, Depth-First Search (DFS), Breadth-First Search (BFS)
 - Graph: Matching, Shortest Path, Minimum Spanning Tree
 - Dynamic Programming

- How to describe an algorithm?
 - Inputs → A set of formally-defined instructions → Outputs
 - Instructions can be written by a specific programing language or pseudo code
 - An example: Bubble Sort
 - This first (i) compares adjacent elements and then (ii) swap them if reversed

- How to describe an algorithm?
 - Inputs → A set of formally-defined instructions → Outputs
 - Instructions can be written by a specific programing language or pseudo code
 - An example: Bubble Sort
 - This first (i) compares adjacent elements and then (ii) swap them if reversed

- How to describe an algorithm?
 - Inputs → A set of formally-defined instructions → Outputs
 - Instructions can be written by a specific programing language or pseudo code
 - An example: Bubble Sort
 - This first (i) compares adjacent elements and then (ii) swap them if reversed

```
BubbleSort(arr[], n):
1: FOR i ← 0 to n-1
2: FOR j ← n-1 to i+1
3: IF arr[j-1] > arr[j]
4: swap arr[j-1] and arr[j]
```

- Pseudo code is more readable and simpler
- There is no ground rule for pseudo code syntax/style, so recommend to refer someone's one

Algorithm Performance Analysis

- How to evaluate performance of an algorithm?
 - Correctness Whether the algorithm is accurate
 - **Efficiency** How efficient the algorithm is

Algorithm Performance Analysis

- How to evaluate performance of an algorithm?
 - Correctness Whether the algorithm is accurate
 - Efficiency How efficient the algorithm is
- Efficiency is the important metric for comparison between algorithms
 - Time efficiency How long does the algorithm take?
 - Memory efficiency How much memory does the algorithm occupy?

Algorithm Performance Analysis

- How to evaluate performance of an algorithm?
 - Correctness Whether the algorithm is accurate
 - Efficiency How efficient the algorithm is
- Efficiency is the important metric for comparison between algorithms
 - Time efficiency How long does the algorithm take?
 - Memory efficiency How much memory does the algorithm occupy?
- Complexity is a machine-independent metric for efficiency comparison
 - Time complexity the number of machine instructions used in the algorithm
 - Space complexity the number of primitive variables used in the algorithm
 - They are expressed by input sizes (e.g., the number of integers, n)

- Consider $f(n) = n^2 + 10n + \log_{10} n$
- If *n* is large enough, which term is more important?

n	n^2	10n	$\log_{10} n$	f(n)
1	1	10	0	11
10	100	100	1	201
100	10000	1000	2	11002
1000	1000000	10000	3	1010003
10000	100000000	100000	4	100100004

- When $n \to \infty$, one can roughly say ...
 - $f(n) \approx n^2$
 - g(n) = 100n is increasing slower than f(n)
 - $g(n) = 2^n$ is increasing faster than f(n)

• **Big-O notation** $O(\cdot)$ - Asymptotic Upper Bound

$$f(n) = O(g(n))$$
 if $\exists c > 0, \exists n_0 \in \mathbb{N}$ such that $f(n) \leq cg(n)$ for all $n \geq n_0$ $f(n)$ is not increasing faster than $g(n)$

- Examples
 - $n^2 + 10n = O(n^2)$
 - $n^2 + 10n = O(n^3)$
 - $n^3 + n + 5 \neq O(n^2)$
- Exercises
 - Prove $n = O(2^n)$ and $\log n = O(n)$
 - Prove f(n) = O(h(n)) when f(n) = O(g(n)) and g(n) = O(h(n)).

• Omega notation $\Omega(\cdot)$ - Asymptotic Lower Bound

$$f(n) = \Omega(g(n))$$
 if $\exists c > 0, \exists n_0 \in \mathbb{N}$ such that $f(n) \ge cg(n)$ for all $n \ge n_0$ $f(n)$ is not increasing slower than $g(n)$

- Examples
 - $n^2 + 10n = \Omega(n^2)$
 - $n^2 + 10n = \Omega(n)$
 - $n^3 + n + 5 \neq \Omega(n^4)$
- Exercises
 - Prove $n! = n \times (n-1) \times \cdots \times 1 = \Omega(2^n)$
 - Prove $f(n) = \Omega(h(n))$ when $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$.

• Theta notation $\Theta(\cdot)$ - Asymptotic Tight Bound

$$f(n) = \Theta(g(n))$$
 if $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
 $f(n)$ is equally increasing to $g(n)$

- Examples
 - $n^2 + 10n = \Theta(n^2)$
 - $n^3 + n + 5 = \Theta(n^3)$
 - $n^3 + 2^n = \Theta(2^n)$
- Exercises
 - Prove $\log_2 n = \Theta(\log_3 n)$
 - Prove $2^n \neq \Theta(3^n)$

- Asymptotic notations
 - **Big-O notation** $O(\cdot)$ Asymptotic Upper Bound
 - Omega notation $\Omega(\cdot)$ Asymptotic Lower Bound
 - Theta notation $\Theta(\cdot)$ Asymptotic Tight Bound
 - They allow us to calculate and compare time/space complexities easier
- Big-O notation (as tight as possible) is commonly used
 - This is because it is hard to compute the tight bound
 - Lower bound is often not informative for algorithm performance analysis
 - E.g., say $n^2 + 10n = O(n^2)$ rather than $n^2 + 10n = O(n^3)$

Time Complexity

- Constant-time operations $\rightarrow O(1)$
 - Arithmetic operations: addition, subtraction, multiplication, division, ...
 - Comparison: equality, inequality, ...
 - Variable declaration and assignments

```
void constant_operations() {
   int a = 16, b = 2, c;
   c = a/4 + b*2 + 3;
   if (c > 10) c -= 10;
}
```

Time Complexity

• Linear-time complexity $\rightarrow O(n)$

```
int sum(int n) {
   int sum = 0;
   for (int i = 0; i < n; i ++)
        sum += i;
   return sum;
}</pre>
```

- 1. [int sum = 0;] $\rightarrow O(1) \rightarrow c_1$ time complexity
- 2. [int i = 0; i < n; i ++] $\rightarrow O(1) \rightarrow c_2$ time complexity
- 3. [sum += i;] $\rightarrow O(1) \rightarrow c_3$ time complexity
- 4. [2] and [3] are repeated n times
- Therefore, the total time complexity is $(c_2 + c_3) \times n + c_1 = O(n)$

Time Complexity - Exercise

• Exercise - Print n-by-n identity matrix

```
void print_identity_matrix(int n) {
    int i, j;
    for (i = 0; i < n; i ++) {
        for (j = 0; j < n; j ++) {
            if (i == j) printf("%d ", 1);
            else printf("%d ", 0);
        }
        printf("\n");
    }
}</pre>
```

Time Complexity - Exercise

Exercise - Compute the bit length of an integer n

```
int bit_length(int n) {
   int length = 0;
   while (n > 0) {
      length += 1
      n /= 2;
   }
   return length;
}

n bits bit_length(n)
4 = 100 3
5 = 101 3
10 = 1010 4
127 = 1111111 7
```

• When compute all bit lengths from 1 to N, what is the time complexity?

```
for (int i = 1; i <= N; i ++)
    printf("%d\n", bit_length(i));</pre>
```

Space Complexity

- One primitive variable \rightarrow 1~8 bytes (char, int, double, ...) \rightarrow O(1)
- An array of n variables $\rightarrow O(n)$

- This uses 12 + 4n = O(n) bytes
- (Q) Can we reduce the memory usage to O(1) bytes?

Space Complexity

- One primitive variable $\rightarrow O(1)$
- An array of n variables $\rightarrow O(n)$

• This uses only 18 = O(1) bytes!

Algorithm Comparison

- Which algorithm is better?
 - Average-case The expected complexity when the input is randomly drawn
 - Worst-case The complexity w.r.t. the worst-possible case of the input instance

Sort Algorithm	Time Complexity (Average)	Time Complexity (Worst)	Space Complexity (without input array)
Insertion Sort	$O(n^2)$	$O(n^2)$	0(1)
Bubble Sort	$O(n^2)$	$O(n^2)$	0(1)
Quick Sort	$O(n \log n)$	$O(n^2)$	$O(\log n)$
Merge Sort	$O(n \log n)$	$O(n \log n)$	O(n)

• Note. Running time requirements are more critical than memory requirements

Any Questions?

