

BEST AVAILABLE COPY

Constitutively Active Receptors

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP I					
MSHR_mouse	melanocyte-stimulating hormone	TMII	92 VSIIVL G TILL K	adenylyl cyclase activity/ HEK293, stably transfected	(Robbins, Nadeau et al. 1993)
CLASS A GROUP II	MSH				
SHB_human	5-hydroxytryptamine _{1B}	C-terminus of IC3	313 RERKATKTLGI K,R,Q	binding of [³⁵ S]GTP[S] / CHO-KI	(Pauwels, Gouble 1999)
SH2A_human	5-hydroxytryptamine _{2A}	C-terminus of IC3	322 NEQKACKVLGI K	IP production / COS-7	(Egan, Herrick-Davis et al. 1998)
2H2C_rat	5-hydroxytryptamine _{2C}	C-terminus of IC3	312 NEDDASKVLGI L	PI hydrolysis / COS-7	(Herrick-Davis, Egan et al. 1997)

Figure 1. (Page 1 of 15)

CLASS A GROUP II				
α1AB_human	α_{1B} -adrenergic alpha 1B-AR	TMDI junction between TMDIII and IC2	63 FAIVGNILVIL A 142 CAISIDRYIGV A	IP / COS-7 (Scheer, Fanelli et al. 1997)
α1AB_human	α_{1B} -adrenergic alpha 1B-AR	TMDI junction between TMDIII and IC2	143 CARISIDRYIGV K 128 AVDVLLCTASI F	IP / COS-7 (Scheer, Costa et al. 2000)
α1AB_human	α_{1B} -adrenergic	carboxyl end of IC3 TMV	293 REKKAAKKTTLGI E 204 EFPFYALFSSLG V	IP / COS-1 (Perez, Hwa et al. 1999)
α1AB_human	α_{1B} -adrenergic	C-terminal IC3	293 SREKKAAKKT X=19 different substitutions K H L	IP / COS-7 (Hwa, Gaivin et al. 1997)
α1AB_human	α_{1B} -adrenergic	C-terminus IC3	288 293 KFSREKKAAKKTTLGI K H L	PI / COS-7 (Kjelsberg, Coletchchia et al. 1992)
A2AA_human	α_2 C10-adrenergic alpha-2AAR	C-terminal IC3 loop	373 (348?) EKRFTFVLAV X=F,A,C,E;K 360 SLVKEKKAAARTLS A	PI hydrolysis / rat fibroblast adenylyl cyclase inhibition / HEK293 (Ren, Kurose et al. 1993)
ACM1_human	muscarinic M1	C-terminal IC3 loop junction	390 KKVTRTILA 1-4 A inserted	(Högger, Shockley et al. 1995)
ACM2-human	muscarinic acetylcholine M2	junction of IC3 and TMV	IP production, inhibition of cAMP production / COS-7 (Liu, Blin et al. 1996)	

Figure 1 (Page 2 of 15)

CLASS A GROUP II				
ACM3_rat	m3 muscarinic (rat)	TMVI	507 TWT ^S PYNNIMVLVNT	IP / COS-7 (Blümli, Mutschler et al. 1994)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	N-terminus to TMII	chimera composed of m2 1-69 m5 77-445 m2 391-466	β-gal / NIH 3T3 (Burstein, Spalding et al. 1996)
ACM5_human	m5 muscarinic muscarinic acetylcholine M5	TMVI	451 AILLA ^M FIITW ^L TPYNI ^H MVLV ^S T ^C T ^F	β-gal; radioligand binding / NIH-3T3 (Spalding, Burstein et al. 1998)
ACMS_human	m5 muscarinic muscarinic acetylcholine M5	junction of TMVI and EC3	465 YNIMVLV ^S TFCDKCV X=V,F,R,K,+more	β-gal; radioligand binding / NIH-3T3 (Spalding, Burstein et al. 1997)
B1AR_human	β ₁ -adrenergic	C-terminus	389 RKAFQGLLCA ^R	adenylyl cyclase; agonist binding / CHW (Mason, Moore et al. 1999)
B2AR_human	β ₂ -adrenergic beta-2AR	C-terminal IC3 loop	266 272 FCLKEH ^I KAL ^K TKLGI ^A SR K A	adenylyl cyclase activation; agonist binding affinity / COS-7 or CHO (Samama, Cotecchia et al. 1993); (Leffkowitz, Cotecchia et al. 1993)
DADR_human	dopamine D1A	carboxyl terminal IC3	264 SFKMS ^I EKKR ^K ETKV ^A LKT 288 from D1B receptor APDTSIKKETKV ^L KT	adenylyl cyclase; cAMP accumulation / HEK293 (Charpentier, Jarvie et al. 1996)
DADR_human	dopamine D1	TMVI	286 FVCCWL ^A PFFFIL	cAMP accumulation / COS-7 (Cho, Taylor et al. 1996)
HH2R_rat	histamine H ₂	IC2	115 FMISLD ^N RYCAV ^A	cAMP production / HEK-293 (Alewijse, Timmerman et al. 2000)

Figure 1 (Page 3 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP III					
OPSD_human	opsin	TMII	90 FVNLLGGFTSTLY	transducin;	(Rim and Oprian 1995)
	rhodopsin	TMIII	D 113 GCNLEGFFAT	phosphorylation by rhodopsin kinase / COS	
		TMVII	Q 292 296 MTIPIAFFAKSAAIY		
			E G, E, M		
			²⁹² Ala neutral a.a converted to carboxylate and competes with ¹¹³ Glu for salt bridge with ²⁹⁶ Lys		
OPSD_human	opsin	TMII	134 VVLAI E RYVVV I, Q, S	transducin; radioligand binding / COS	(Acharya and Karnik 1996)
	rhodopsin	TMIV	257 RMVIIIMVIAFL Y, N	transducin, GTP-S uptake / COS	(Han, Smith et al. 1998)
OPSD_human	opsin	TMVI	plus TM3 296 PAFFAKSAIY G	transducin; radioligand binding / COS	(Govardhan and Oprian 1994); (Cohen, Yang et al. 1993)
	rhodopsin		X=E,M natural mutants + 10 different a.a. substitutions		
			disrupts critical salt bridge between ²⁹⁶ Lys(TMVII) and ¹¹³ Glu(TMIII)		
		IC2	134 VVLAI E RYVVV Q		(Cohen, Yang et al. 1993)

Figure 1 (Page 4 of 15)

Figure 1 (Page 5 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP IV					
BRB2_human	bradykinin B, B2 bradykinin BK-2	TMII TMI	113 A I I S M A Y S S I A 256 L L F I I C W L P P Q I F	IP production / COS-7	(Marie, Koch et al. 1999)

Figure 1 (Page 6 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS A GROUP V					
AG2R_rat	AT _{1A}	TMII	111 ASVSPNLVASY	phospholipase C, IP production / COS-7	(Groblewski; Magret et al. 1997)
	Type 1A angiotensin II		A disrupts Asn (TMII)- Tyr (TMVII) interaction.		
AG2R_rat	AT _{1A}	C-terminus of TM7	305 LFYCFGLKKEK	IP production / HEK- 293; intracellular Ca ²⁺ mobilization / CHO	(Pannier, Bardin et al. 2000)
	Type 1A angiotensin II	other multiple mutations	Q 51 LVIVWAGFERNATITITISYKAVAA LWVWVTAFAEKRTINAFLNLAVA (K above conflicts with SWISS-PROT database)	PI production; phospholipase C stimulation / COS-7	(Amatudia, Draga Graonic et al. 1995)
FMLR_human	formy(methionyl)leucylphenylalanine (FMLPR)	IC1	138 ACISVDRYIAIVH V	IP production; Ca ²⁺ mobilization and actin polymerization / NIH 3T3	(Burger, Burger et al. 1999)
IL8B_human	interleukin-8 receptor B	IC2	564 MATNKDTKIAKK G	cAMP production / HEK293	(Kudo, Osuga et al. 1996)
CXCR-2 chemokine		IC3	578 ILLIFTDFTCMAG	cAMP production / COS-7	(Shenker, Lue et al. 1993)
LSHR_human	luteinizing hormone (LH)	TMVI	571-577 KIAKKMATTIILIFTDFCM I I I	cAMP production / COS-7	(Kosugi, Van Dop et al. 1995)
LSHR_human	luteinizing hormone (LH)	TM6	556 ILIFTDFTCMAG G, Y	cAMP production / HEK 293T	(Bradbury, Kawate et al. 1997; Bradbury and Menon 1999)
LSHR_rat	luteinizing hormone / human chorionic gonadotropin (LH/hCG)	TMVI	128 KVLSTIDYXNMP A, K, H	adenylyl cyclase inhibition / COS-7	(Cavalli; Babey et al. 1999)
OPRD_mouse	delta opioid receptor	TM3	137 LMSLDDECLAC A	IP production / COS-7	(Fanelli, Barbour et al. 1999)
OXYR_human	oxytocin	IC2			

Figure 1 (Page 7 of 15)

PAFR_human	platelet-activating factor (PAF)	C-terminal of IC3	231 EVKRRALWWVCTVLAV R	IP production / COS-7	(Parent, Le G uill et al. 1996)
PAFR_human	platelet-activating factor (PAF)	TMIII	100 CLFFINTYCSV A	arachidonate release, IP production, adenylyl cyclase inhibition / CHO	(Ishii, Izumi et al. 1997)
PE23_human	prostaglandin E ₃ , EP3III, EP3IV	C-terminal tail	360 FCQEEFWGN FCQMRKRRLRQQEEFWGN ↑truncated	inhibition of adenylyl cyclase / CHO-K1	(Jin, Mao et al. 1997)
PE23_mouse	prostaglandin E ₃ , EP3	carboxyl-terminal tail	336 KILLRKFCQIRDHT MNNHL ↑truncated	inhibition of adenylyl cyclase / CHO, stably expressed	(Hasegawa, Negishi et al. 1996)
THRH_human	thrombin	EC2 loop	259 CHDVLNNETLLEGKAYY DLKD KDF I	⁴⁵ Ca ²⁺ efflux, PI hydrolysis, reporter gene induction / COS-7	(Nanevicz, Wang et al. 1996)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	EC1 EC2	486 YYNHAIIDWQTC F,M 568 YAKVSICLPMID T	inositol phosphate-- diacylglycerol cascade / COS-7	(Parma, Van Sande et al. 1995)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMIII TMVII	509 A S E L S Y V T I L T V A 672 Y P L N S C A N P F L Y	adenylyl cyclase activation / COS-7	(Duprez, Parma et al. 1994)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMV	597 V A F V I Y C C C H V L	cAMP formation / COS-7 cells	(Esapa, Duprez et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	TMVII	677 C A N P F L Y A I F T V	cAMP formation / CHO cells	(Russo, Wong et al. 1999)
TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	IC3	613 621 V R N P Q O Y N P G D K D I K A K deletion	cAMP formation / COS-7	(Wonenow, Schoneberg et al. 1998)

Figure 1 (Page 8 of 15)

TSHR_human	thyrotropin (TSHR) thyroid stimulating hormone	IC3 / TMVI IC2	623 632 KDTKIAKRMMAVLIFIDPFICM V I 136 LAMTLDQRHRAI A	cAMP activation / COS-7 cAMP formation / COS-7	(Paschke, Tonacchera et al. 1994) (Morin, Cotte et al. 1998)
------------	---	-------------------	--	---	---

Figure 1 (Page 9 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS B GROUP I CALR_human	human calcitonin hCTR-1 hCTR-2	wild type (native) protein		adenylyl cyclase cAMP production / COS-1	(Cohen, Thaw et al. 1997)
CLASS B GROUP II PTRK_human	parathyroid hormone PTH / PTH-related peptide	junction of IC1 and TMII	223 TRNYIHMHLFL R,K	cAMP accumulation / COS-7	(Schipani, Jensen et al. 1997)
		junction of IC3 and TMVI	410 KLIKSTLVLMPC C,others		
CLASS B GROUP III GIPR_human	glucose-dependent insulinotropic peptide (GIP-R)	TMVI	340 VFAPVTEEQAR P	cAMP production / L293	(Tseng and Lin 1997)
GLR_rat	glucagon	junction of IC loop1 and TMII	178 TRNYIHGNLFA R	cAMP accumulation / COS-7	(Hjorth, Orskov et al. 1998)
		IC end of TMVI	352 RLARSTLILP A		
VIPR_human	vasoactive intestinal peptide 1 (VIP)	junction of IC loop 1 and TMII	178 RNYYIHMHLFFI R	cAMP production / COS-7 or CHO	(Gaudin, Maoret et al. 1998)
		junction of IC loop 3 and TMVI	343 LARSTLILP X= K,P		(Gaudin, Rouyer-Fessard et al. 1998)

Figure 1 (Page 10 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS_C			TLSFVAQNKPSIANDRRCNCSEHIT		
CASR_human	calcium-sensing N-terminal EC	various substitutions, in multiple combinations	IP / tsA	(Jensen, Spalding et al. 2000)	

Figure 1 (Page 11 of 15)

File Name	Receptor	Mutation Site	Sequence	Assay / Cells	Reference
CLASS_D	pheromone	TM6	229 PLSAYQIVLGT P	heterologous yeast assay	(Olesnický, Brown et al. 1999)
RCB2					
C_cinerarius					
STE2_yeast	pheromone α -factor	TM6	258 QSLIVVPSIIFI LL	<i>lacZ</i> reporter gene	(Konopka, Margarit et al. 1996)
STE2_yeast	pheromone α -factor	double mutations TM5 and TM6	223 MSFVLYVKILAIR C C 247 251 DSFHILLIICOSLL CC CC	<i>lacZ</i> reporter gene / yeast	(Dube, DeCostanzo et al. 2000)
			double mutations		
			double mutations		
STE3_yeast	pheromone α -factor	IC3	194 DVRDLILACTNS Q	β -galactosidase	(Boone, Davis et al. 1993)
STE2_yeast	pheromone α -factor	TM6	253 258 LIMSCQSLIVVPSIIFI L L P	β -galactosidase	(Sommers, Martin et al. 2000)

Figure 1 (Page 12 of 15)

Bibliography

- Acharya, S. and S. S. Karnik (1996). "Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin." *J Biol Chem* 271(41): 25406-11.
- Alewigae, A. E., H. Timmerman, et al. (2000). "The Effect of Mutations in the DRY Motif on the Constitutive Activity and Structural Instability of the Histamine H(2) Receptor." *Mol Pharmacol* 57(5): 890-898.
- Allen, L. F., R. J. Lefkowitz, et al. (1991). "G-protein-coupled receptor genes as protooncogenes: constitutively activating mutation of the alpha 1B-adrenergic receptor enhances mitogenesis and tumorigenicity." *Proc Natl Acad Sci U S A* 88(24): 11354-8.
- Anastasi, T. T., 3rd, S. Dragas-Graonic, et al. (1995). "Signal transduction by the formyl peptide receptor. Studies using chimeric receptors and site-directed mutagenesis define a novel domain for interaction with G-proteins." *J Biol Chem* 270(47): 28010-3.
- Pilmi, K., E. Mutschler, et al. (1994). "Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors." *J Biol Chem* 269(29): 18870-6.
- Boone, C., N. G. Davis, et al. (1995). "Mutations that alter the third cytoplasmic loop of the α -factor receptor lead to a constitutive and hypersensitive phenotype." *Proc Natl Acad Sci USA* 90(21): 9921-5.
- Bradbury, F. A., N. Kawate, et al. (1997). "Post-translational processing in the Golgi plays a critical role in the trafficking of the luteinizing hormone/human chorionic gonadotropin receptor to the cell surface." *J Biol Chem* 272(9): 5921-6.
- Bradbury, F. A. and K. M. Menon (1999). "Evidence that constitutively active luteinizing hormone/human chorionic gonadotropin receptors are rapidly internalized." *Biochemistry* 38(27): 8703-12.
- Burger, M., J. A. Burger, et al. (1999). "Point mutation causing constitutive signaling of CXCR2 leads to transforming activity similar to Kaposi's sarcoma herpesvirus-G protein-coupled receptor." *J Immunol* 163(4): 2017-22.
- Burstein, E. S., T. A. Spalding, et al. (1996). "Constitutive activation of chimeric m2/m5 muscarinic receptors and delineation of G-protein coupling selectivity domains." *Biochem Pharmacol* 51(4): 539-44.
- Cavalli, A., A. M. Babey, et al. (1999). "Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor." *Neuroscience* 93(3): 1025-31.
- Charpentier, S., K. R. Jarvie, et al. (1996). "Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties." *J Biol Chem* 271(45): 28071-6.
- Cho, W., L. P. Taylor, et al. (1996). "Mutagenesis of residues adjacent to transmembrane prolines alters D1 dopamine receptor binding and signal transduction." *Mol Pharmacol* 50(5): 1338-45.
- Lohren, D. P., C. N. Thaw, et al. (1997). "Human calcitonin receptors exhibit agonist-independent (constitutive) signaling activity." *Endocrinology* 138(4): 1400-5.
- Cohen, G. B., T. Yang, et al. (1993). "Constitutive activation of opsin: influence of charge at position 134 and size at position 296." *Biochemistry* 32(23): 6111-5.
- Dube, P., A. DeCostanzo, et al. (2000). "Interaction between transmembrane domains five and six of the alpha -factor receptor." *J Biol Chem* 275(34): 26492-9.
- Duprez, L., J. Parma, et al. (1994). "Germline mutations in the thyrotropin receptor gene cause non- autoimmune autosomal dominant hyperthyroidism." *Nat Genet* 7(3): 396-401.
- Egan, C. T., K. Herrick-Davis, et al. (1998). "Creation of a constitutively activated state of the 5-hydroxytryptamine2A receptor by site-directed mutagenesis: inverse agonist activity of antipsychotic drugs." *J Pharmacol Exp Ther* 286(1): 85-90.
- Esapa, C. T., L. Duprez, et al. (1999). "A novel thyrotropin receptor mutation in an infant with severe thyrotoxicosis." *Thyroid* 9(10): 1005-10.
- Fanelli, F., P. Barbier, et al. (1999). "Activation mechanism of human oxytocin receptor: a combined study of experimental and computer-simulated mutagenesis." *Mol Pharmacol* 56(1): 214-25.
- Gaudin, P., I. I. Maoret, et al. (1998). "Constitutive activation of the human vasoactive intestinal peptide 1 receptor, a member of the new class II family of G protein-coupled receptors." *J Biol Chem* 273(9): 4990-6.
- Gaudin, P., C. Rouyer-Fessard, et al. (1998). "Constitutive activation of the human VIP1 receptor." *Ann NY Acad Sci* 865: 382-5.

- Govardhan, C. P. and D. D. Oprian (1994). "Active site-directed inactivation of constitutively active mutants of rhodopsin." *J Biol Chem* 269(9): 6524-7.
- Groblewski, T., B. Maigret, et al. (1997). "Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation." *J Biol Chem* 272(3): 1822-6.
- Han, M., S. Q. Smith, et al. (1998). "Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6." *Biochemistry* 37(22): 8253-61.
- Hasegawa, H., M. Negishi, et al. (1996). "Two isoforms of the prostaglandin E receptor EP3 subtype different in agonist-independent constitutive activity." *J Biol Chem* 271(4): 1857-60.
- Herrick-Davis, K., C. Egan, et al. (1997). "Activating mutations of the serotonin 5-HT2C receptor." *J Neurochem* 69(3): 1138-44.
- Hjorth, S. A., C. Orskov, et al. (1998). "Constitutive activity of glucagon receptor mutants." *Mol Endocrinol* 12(1): 78-86.
- Högger, P., M. S. Shockley, et al. (1995). "Activating and inactivating mutations in N- and C-terminal i3 loop junctions of muscarinic acetylcholine M₁ receptors." *J Biol Chem* 270(13): 7405-10.
- Hwa, J., R. Gaivin, et al. (1997). "Synergism of constitutive activity in alpha 1-adrenergic receptor activation." *Biochemistry* 36(3): 633-9.
- Ishii, I., T. Izumi, et al. (1997). "Alanine exchanges of polar amino acids in the transmembrane domains of a platelet-activating factor receptor generate both constitutively active and inactive mutants." *J Biol Chem* 272(12): 7846-54.
- Jensen, A. A., T. A. Spalding, et al. (2000). "Functional importance of the Ala116-Pro136 region in the calcium-sensing receptor. CONSTITUTIVE ACTIVITY AND INVERSE AGONISM IN A FAMILY OF G-PROTEIN-COUPLED RECEPTOR [In Process Citation]." *J Biol Chem* 275(38): 29547-55.
- Jin, J., G. F. Mao, et al. (1997). "Constitutive activity of human prostaglandin E receptor EP3 isoforms." *British J Pharmacol* 121: 317-23.
- Kjelsberg, M. A., S. Cotecchia, et al. (1992). "Constitutive activation of the alpha 1B-adrenergic receptor by all amino acid substitutions at a single site. Evidence for a region which constrains receptor activation." *J Biol Chem* 267(3): 1430-3.
- Konopka, J. B., S. M. Margarit, et al. (1996). "Mutation of Pro-258 in transmembrane domain 6 constitutively activates the G protein-coupled alpha-factor receptor." *Proc Natl Acad Sci U S A* 93(13): 6764-9.
- Kosugi, S., C. Van Dop, et al. (1995). "Characterization of heterogeneous mutations causing constitutive activation of the luteinizing hormone receptor in familial male precocious puberty." *Hum Mol Genet* 4(2): 183-8.
- Kudo, M., Y. Osuga, et al. (1996). "Transmembrane regions V and VI of the human luteinizing hormone receptor are required for constitutive activation by a mutation in the third intracellular loop." *J Biol Chem* 271(37): 22470-8.
- Lefkowitz, R. J., S. Cotecchia, et al. (1993). "Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins." *Trends Pharmacol Sci* 14(8): 303-7.
- Liu, J., N. Blin, et al. (1996). "Molecular mechanisms involved in muscarinic acetylcholine receptor-mediated G protein activation studied by insertion mutagenesis." *J Biol Chem* 271(11): 6172-8.
- Marie, J., C. Koch, et al. (1999). "Constitutive activation of the human bradykinin B2 receptor induced by mutations in transmembrane helices III and VI." *Mol Pharmacol* 55(1): 12-101.
- Mason, D. A., J. D. Moore, et al. (1999). "A gain-of-function polymorphism in a G-protein coupling domain of the human beta1-adrenergic receptor." *J Biol Chem* 274(18): 12670-4.
- Matus-Leibovitch, N., D. R. Nussenzveig, et al. (1995). "Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in *Xenopus* oocytes and AT20 cells." *J Biol Chem* 270(3): 10417.
- Morin, D., N. Cotte, et al. (1998). "The D136A mutation of the V2 vasopressin receptor induces a constitutive activity which permits discrimination between antagonists with partial agonist and inverse agonist activities." *FEBS Lett* 441(3): 470-5.
- Nanevitz, T., L. Wang, et al. (1996). "Thrombin receptor activating mutations. Alteration of an extracellular agonist recognition domain causes constitutive signalling." *J Biol Chem* 271(2): 702-6.
- Olesnicky, N. S., A. J. Brown, et al. (1999). "A constitutively active G-protein-coupled receptor causes mating self-compatibility in the mushroom *Coprinus*." *Embo J* 18(10): 2756-63.
- Parent, J. L., C. Le Gouill, et al. (1996). "Mutations of two adjacent amino acids generate inactive and constitutively active forms of the human platelet-activating factor receptor." *J Biol Chem* 271(14): 7949-55.

- Parma, J., J. Van Sande, et al. (1995). "Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3',5'-monophosphate and inositol phosphate-Ca²⁺ cascades." *Mol Endocrinol* 9(6): 725-33.
- Parnot, C., S. Bardin, et al. (2000). "Systematic identification of mutations that constitutively activate the angiotensin II type 1A receptor by screening a randomly mutated cDNA library with an original pharmacological bioassay." *Proc Natl Acad Sci U S A* 97(13): 7615-20.
- Paschke, R., M. Tonacchera, et al. (1994). "Identification and functional characterization of two new somatic mutations causing constitutive activation of the thyrotropin receptor in hyperfunctioning autonomous adenomas of the thyroid." *J Clin Endocrinol Metab* 139(6): 1785-9.
- Pauwels, P., J. A. Gouble, et al. (1999). "Activation of constitutive 5-hydroxytryptamine 1B receptor by a series of mutations in the BBXXB motif: positioning of the third intracellular loop distal junction and its goalpha protein interactions [In Process Citation]." *Biochem J* 343 Pt 2: 435-42.
- Perez, D. M., J. Hwa, et al. (1996). "Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor." *Mol Pharmacol* 49(1): 112-22.
- Ren, Q., H. Kurose, et al. (1993). "Constitutively active mutants of the alpha 2-adrenergic receptor [published erratum appears in J Biol Chem 1994 Jan 14;269(2):1566]." *J Biol Chem* 268(22): 16483-7.
- Rim, J. and D. D. Oprian (1995). "Constitutive activation of opsin: interaction of mutants with rhodopsin kinase and arrestin." *Biochemistry* 34(37): 11938-45.
- Robbins, L. S., J. H. Nadeau, et al. (1993). "Pigmentation phenotypes of variant extension locus alleles result from point mutations that alter MSH receptor function." *Cell* 72(6): 827-34.
- Russo, D., M. G. Wong, et al. (1999). "A Val 677 activating mutation of the thyrotropin receptor in a Hurthle cell thyroid carcinoma associated with thyrotoxicosis." *Thyroid* 9(1): 13-7.
- Samama, P., S. Cotecchia, et al. (1993). "A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model." *Journal of Biological Chemistry* 268(7): 4625-36.
- Scheer, A., T. Costa, et al. (2000). "Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation." *Mol Pharmacol* 57(2): 219-31.
- Scheer, A., F. Fanelli, et al. (1997). "The activation process of the alpha 1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate." *Proc Natl Acad Sci U S A* 94(3): 808-13.
- Schipani, E., G. S. Jensen, et al. (1997). "Constitutive activation of the cyclic adenosine 3',5'-monophosphate signaling pathway by parathyroid hormone (PTH)/PTH-related peptide receptors mutated at the two loci for Jansen's metaphyseal chondrodysplasia." *Mol Endocrinol* 11(7): 851-8.
- Shenker, A., L. Laue, et al. (1993). "A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty [see comments]."
Nature 365(6447): 652-4.
- Sommers, C. M., N. P. Martin, et al. (2000). "A limited spectrum of mutations causes constitutive activation of the yeast alpha-factor receptor." *Biochemistry* 39(23): 6898-909.
- Spalding, T. A., E. S. Burstein, et al. (1998). "Identification of a ligand-dependent switch within a muscarinic receptor." *J Biol Chem* 273(34): 21563-8.
- Spalding, T. A., E. S. Burstein, et al. (1997). "Constitutive activation of the m5 muscarinic receptor by a series of mutations at the extracellular end of transmembrane 6." *Biochemistry* 36(33): 10109-16.
- Tseng, C. C. and L. Lin (1997). "A point mutation in the glucose-dependent insulinotropic peptide receptor confers constitutive activity." *Biochem Biophys Res Commun* 232(1): 96-100.
- Wonerow, P., T. Schoneberg, et al. (1998). "Deletions in the third intracellular loop of the thyrotropin receptor. A new mechanism for constitutive activation." *J Biol Chem* 273(14): 7900-5.

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

Figure 2

TOSONT™ SILENT™
Light Emission Induced by the WT CCK-BR
vs. a Constitutively Active Mutant

Figure 3

A Point Mutation Confers Constitutive Activity to the Rat μ Opiod Receptor

Figure 4

Forskolin Stimulated HEK293 Cells Transfected With pcDNA1 and a CRE-luc Construct

Figure 5

The Rat μ Opioid Receptor Signals Through G α i

Figure 6

T O S 2 0 T " C H 0 6 E O G T

A Point Mutation Confers Constitutive Activity to the Rat μ Opioid Receptor

Figure 7

Target Residues Within Class I GPCRs

Figure 8

F O S S I L " C H A S E D "

TMD III Asn (-14 from DRY) is a Target for Mutation Induced Constitutive Activity

Figure 9

mu opioid
bradykinin B2
angiotensin II AT1A

The 'DRY' Motif is a Target for Mutation Induced Constitutive Activity

Figure 10

"R0520T" 5426E00T

A Point Mutation Enhances MC-4 Receptor Constitutive Activity

Figure 11

The -13 Position is a Target for Mutation Induced Constitutive Activity

Figure 12

Figure 13

Luciferase Activity (% maximum stimulation)

Figure 15

TO S E T " S H I G E O O T

An Intracellular Point Mutation Results in Loss of Ligand-Induced Function

IP Production / ^3H Inositol incorporation

Figure 16

Figure 17

