Introduction to Formal Language, Fall 2017

23-Mar-2017 (Thursday)

Homework 2 Solutions

Instructor: Prof. Wen-Guey Tzeng Scribe: Yi-Ruei Chen, Amir Rezapour

1. Find all strings in $L((a+b)^*b(a+ab)^*)$ of length less than four.

Answer.

The strings with length 1: $\{\lambda b\lambda\} = \{b\}$;

The strings with length 2: $\{ab\lambda, bb\lambda, \lambda ba\} = \{ab, bb, ba\};$

The strings with length 3: $\{(aa)b\lambda, (ab)b\lambda, (ba)b\lambda, (bb)b\lambda, (a)b(a), (b)b(a), \lambda b(ab)\} = \{aab, abb, bab, bbb, aba, bba, bab\}.$

2. Find a regular expression for the set $\{a^nb^m : (n+m) \text{ is odd}\}.$

Answer.

There are two cases:

- n is even and m is odd: $(aa)^*b(bb)^*$;
- n is odd and m is even: $a(aa)^*(bb)^*$;

Thus, a regular expression for the set $\{a^nb^m : (n+m) \text{ is } odd\}$ is $(aa)^*b(bb)^* + a(aa)^*(bb)^*$.

3. Give regular expression for the complement of $L_1 = \{a^n b^m, n \geq 3, m \leq 4\}$.

Answer.

 $\overline{L}_1 = \overline{\{a^n b^m, n \ge 3, m \le 4\}} = \{a^n b^m, n < 3\} \cup \{a^n b^m, m > 4\}.$

The regular expression for $\{a^nb^m, n < 3\}$ is $b^* + ab^* + aab^*$ and the regular expression for $\{a^nb^m, m > 4\}$ is a^*bbbbb^* .

Thus, the regular expression for \overline{L}_1 is $(b^* + ab^* + aab^*) + a^*bbbbb^*$.

4. Find a regular expression for $L = \{w \in \{0,1\}^* : w \text{ has exactly one pair of consecutive zeros.} \}$

Answer.

The cases for two occurrences of 00 are 000 and 0011*00.

Thus, the regular expression for L is 000 + 0011*00.

5. Find a regular expression over $\{0,1\}$ for the all strings not ending in 10.

Answer.

The cases for the desired regular expressions are (0+1)*00, (0+1)*01, and (0+1)*11. The regular expression over $\{0,1\}$ for the all strings not ending in 10 is (0+1)*(00+01+11).

- 6. Determine whether or not the following claim is true for all regular expressions r_1 and r_2 . The symbol \equiv stands for equivalence regular expressions in the sense that both expressions denote the same language.
 - (a) $(r_1^*)^* \equiv r_1^*$.
 - (b) $r_1^*(r_1+r_2)^* \equiv (r_1+r_2)^*$.
 - (c) $(r_1 + r_2)^* \equiv (r_1 r_2)^*$.
 - (d) $(r_1r_2)^* \equiv r_1^*r_2^*$.

Answer.

- (a) Yes. $L((r_1^*)^*) = (L(r_1^*))^* = ((L(r_1))^*)^* = (L(r_1))^* = L(r_1^*)$.
- (b) Yes. : Since $L(r_1^*(r_1+r_2)^*) \subseteq L((r_1+r_2)^*(r_1+r_2)^*) = L((r_1+r_2)^*)$ and $L((r_1+r_2)^*) = L(\lambda(r_1+r_2)^*) \subseteq L(r_1^*(r_1+r_2)^*)$, they are equivalent.
- (c) No. : $(r_1+r_2)^* = (\lambda + r_1 + r_2 + r_1 r_2 + \dots)^*$ and $(r_1r_2)^* = (\lambda + r_1 r_2 + r_1 r_2 r_1 r_2 + \dots)^*$. Therefore, $(r_1r_2)^* \subset (r_1+r_2)^*$ but $(r_1+r_2)^* \not\subset (r_1r_2)^*$.
- (d) No. : $(r_1r_2)^* = (\lambda + r_1r_2 + r_1r_2r_1r_2 + \dots)^*$ and $r_1^*r_2^* = (\lambda + r_1 + r_2 + r_1r_1 + \dots, r_1^nr_2^m)^*$.

7. Use the construction in Theorem 3.1 to find an nfa that accepts the language $L(ab^*aa+bba^*ab)$.

Answer.

By Theorem 3.1, the automata for L(a) is

By Theorem 3.1, the automata for $L(a^*)$ is

The automata for L(b) and $L(b^*)$ can be constructed in a similar way.

Then by Theorem 3.1, the automata for $L(ab^*aa)$ is

Then by Theorem 3.1, the automata for $L(bba^*ab)$ is Thus, by Theorem 3.1, the automata for $L(ab^*aa + bba^*ab)$ is

8. Find an nfa that accepts the language $L((abab)^* + (aaa^* + b)^*)$. Answer.

Similar to the steps in Question 7, an nfa that accepts the language $L((abab)^* + (aaa^* + b)^*)$ is as follows.

9. Find the minimal dfa that accepts $L(abb)^* \cup L(a^*bb^*)$. Answer.

The following is an nfa that accepts $L(abb)^* \cup L(a^*bb^*)$.

The following is the corresponding dfa that accepts $L(abb)^* \cup L(a^*bb^*)$.

Using Theorem 2.4 the corresponding minimized DFA is as follows. As shown in the table, in the first iteration (marked in red), we mark distinguishable states. For example, q_1 and q_0 are distinguishable since q_1 is final and q_0 is non-final state.

Next, we iterate over the remaining parts and check if they are distinguishable or not. For example, $\delta(q_2, a) = q_4 \notin F, \delta(q_0, a) = q_2 \notin F$ and $\delta(q_2, b) = q_3 \in F, \delta(q_0, b) = q_1 \in F$, hence so far they are indistinguishable. On the other hand, since $\delta(q_6, a) = q_9 \notin F, \delta(q_0, a) = q_2 \notin F$ and $\delta(q_6, b) = q_7 \notin F, \delta(q_0, b) = q_1 \in F$, q_0 and q_6 are distinguishable and marked with orange.

In the third iteration (marked in yellow), For all pairs (p,q) and $a \in \Sigma$, compute $\delta(p,a) = p_a$ and $\delta(q,a) = q_a$. If (p_a,q_a) is distinguishable, then mark (p,q) as distinguishable. For example, (q_2,q_7) are distinguishable since $(\delta(q_2,a) = q_4, \delta(q_7,a) = q_9)$ and (q_5,q_9) are distinguishable.

Finally, since all of the states are distinguishable, our designed dfa is already minimized. $\hfill\Box$

10. What language is accepted by the following automata.

Answer. We first convert the given nfa to a complete GTG in the left-hand-side figure. Next, we reduce the state q_1 to obtain a two states one(Right-hand-side). Finally, we obtain a regular expression: $(a^*((a^*+b+c)+(a(a+b)^*(a+b)))+(a+b^*))$

11. Find regular expression for the language accepted by the following automata. **Answer.** We first convert the given nfa to a complete GTG in the left-hand-side figure. Next, we reduce the state q_1 to obtain a two states one(Right-hand-side). Finally, we obtain a regular expression: $(a^*(b+ba)((a+b^*)+ba)^*)$

- 12. Write a regular expression for the set of all C real numbers.
 - Answer.

Let d = 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9.

A regular expression for the set of all C real numbers is $r=('+'+'-'+\lambda)dd^*(.dd*+\lambda)(Exp('+'+'-'+\lambda)dd^*+\lambda)$

13. Construct a dfa that accepts the language generated by the grammar

$$S \to abS|A$$
,

$$A \rightarrow baB$$
,

$$B \to aA|bb$$
.

The dfa is constructed as follows, where q_x corresponds to variable $x, x \in \{S, A, B\}$. Answer.

14. Construct right- and left-linear grammars for the language $L=\{a^nb^m:n\geq 3, m\geq 2\}.$ Answer.

The right-grammar $G_R = (S, A, B, \{a, b\}, S, P)$ with productions $S \to aaaA, A \to aA|bB, B \to bB|b$.

The left-grammar $G_L=(S,A,B,\{a,b\},S,P)$ with productions $S\to Bbb,\ B\to Bb|Aaa,\ A\to Aa|a.$

15. Use the construction suggested by the above exercises to construct a left-linear grammar for the nfa bellow.

Answer.

Notice that the language of the nfa is $L(M) = \{(10)^n : n \geq 0\}$. Therefore, the left-grammar $G_L = (S, \{0, 1\}, S, P)$ with productions $S \to \lambda | S10$.

16. User the construction in Theorem 4.1 to find nfa that accept $L=((ab)^*a^*)\cap L(baa^*)$. Answer.

Let $L_1 = L((ab)^*a^*)$ and $L_2 = L(baa^*)$. We begin by designing a nfa for M_1 and M_2 as follows. Next, we simultaneously run $M_1 \times M_2$ to find an nfa $L_1 \cap L_2$. Since

there is no common transition from the initial states of M_1 and M_2 , $L = \{\}$. That is, $L_1 = L((ab)^*a^*)$ and $L_2 = L(baa^*)$ have no intersection.

17. The symmetric difference of two sets S_1 and S_2 is defined as

$$S_1 \ominus S_2 = \{x : x \in S_1 \text{ or } x \in S_2, \text{ but } x \text{ is not in both } S_1 \text{ and } S_2\}.$$

Show that the family of regular languages is closed under symmetric difference. ${\bf Answer.}$

From the definition of symmetric difference of two sets, we have that $S_1 \ominus S_2 = (S_1 \cap \overline{S}_2) \cup (S_2 \cap \overline{S}_1)$. Because of the closure of regular languages under intersection (\cap) , complementation (\overline{L}) , and union (\cup) , the family of regular languages is closed under symmetric difference.

18. The tail of a language is defined as the set of all suffices of its strings, that is,

$$tail(L) = \{ y : xy \in L \text{ for some } x \in \Sigma^* \}$$
 (1)

Show that if L is regular, so is tail(L).

Answer.

Assume that dfa $M = (Q, \Sigma, \delta, q_0, F)$ accepts L and every state q in Q is reachable from q_0 .

For every state q, there is string x with $\delta^*(q_0, x) = q$ (string x takes M from q_0 to q). Therefore, any string that takes M from q to a final state is in tail(L) since xy is accepted with $\delta^*(q_0, xy) = \delta^*(\delta^*(q_0, x), y) \in F$. Thus, we add a new initial state q'_0 and λ -transitions from q'_0 to every state in M to form a new nfa M' so that L(M') = tail(L), where M' is formally constructed as: $M' = (Q \cup \{q'_0\}, \Sigma, \delta', q'_0, F), \delta'(q'_0, \lambda) = \{q : q \in Q\}$ and $\delta'(q, \sigma) = \delta(q, \sigma) \forall q \in Q \text{ and } \sigma \in \Sigma$.

19. For a string $a_1a_2\cdots a_n$ define the operation shift as

$$shift(a_1a_2\cdots a_n)=a_2\cdots a_na_1.$$

From this, we can define the operation on a language as

$$shift(L) = \{v : v = shift(w) \text{ for some } w \in L\}.$$

Show that the regularity is preserved under the shift operation.

Answer.

Assume that the language L is given in DFA $M=(Q,\Sigma,\delta,q_0,F)$. We construct an NFA $N=(Q',\Sigma,\delta',q_s,\{q_f\})$ satisfies that shift(L)=L(N) with $Q'=Q\times\Sigma\cup\{q_s,q_f\}$ and δ' as follows. (Note that $Q\times\Sigma=\{[q,\sigma]:q\in Q,\sigma\in\Sigma\}$, where $[q,\sigma]$ is a state for the first symbol of the string in L to be σ .)

- $\delta'(q_s, \lambda) = \{ [\delta(q_0, \sigma), \sigma] : \sigma \in \Sigma \}$ (here we guess the first symbol to be σ , we will verify this guess "in the end" when the last symbol appears);
- $\delta'([q, \sigma], \sigma') = \{ [\delta(q, \sigma'), \sigma] \}, \forall q \in Q, \forall \sigma, \sigma' \in \Sigma;$
- Add q_f to $\delta'([r, \sigma], \sigma), \forall r \in F, \forall \sigma \in \Sigma$;

For example, the following is a DFA M such that L = L(M). The construction of the

NFA N satisfies that shift(L) = L(N) is shown as follows.

Thus, the regularity is preserved under the shift operation.

20. Show that the following language is not regular. $L = \{a^n b^k c^n : n \ge 0, k \ge n\}$. Answer.

Let m be the constant in the pumping lemma. We choose $w = a^m b^m c^m \in L$, $|w| \ge m$. For all possible x, y, z with w = xyz, $|xy| \le m$, $|y| \ge 1$, there are following cases:

• Case 1: $x = a^{m-r}$, $y = a^r$, $z = b^\ell a^m$, $r \ge 1$. We let i = 0. $xy^0z = a^{m-r}b^\ell a^m \notin L$, because $m - r \ne m$.

• Case 2: no other cases.

Thus, L is not regular.

21. Show that the following language is not regular. $L = \{w : n_a(w) = n_b(w)\}$. Is L^* regular?

Answer.

Let m be the constant in the pumping lemma. We choose $w = a^m b^m \in L$, $|w| \ge m$. For all possible x, y, z with w = xyz, $|xy| \le m$, $|y| \ge 1$, there are following cases:

- Case 1: $x=a^{m-r}, y=a^r, z=b^m, r\geq 1$. We let i=0. $xy^0z=a^{m-r}b^m\notin L$, because $m-r\neq m$.
- Case 2: no other cases.

Thus, L is not regular. L^* is non-regular since $L^* = L$, which is shown to be non-regular.

22. Determine whether or not the following language on $\Sigma = \{a\}$ is regular

$$L = \{a^n : n = 2^k \text{ for some } k \ge 0\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w=a^{2^m}\in L, |w|=2^m\geq m$. For all possible x,y,z with $w=xyz, |xy|\leq m, |y|\geq 1$, there are following cases:

• Case 1: $x = a^r, y = a^s, z = a^{2^m - r - s}, r + s \le m, s \ge 1$. We let i = 2. $xy^2z = a^r(b^s)^2z = a^{2^m + s} \notin L$, because

$$2^m < 2^m + s \le 2^m + m < 2^m + 2^m = 2^{m+1}, 2^m + s \ne 2^k$$
 for any k

• Case 2: no other cases.

Thus, L is not regular.

23. Make a conjecture whether or not the following language is regular. Then prove your conjecture.

$$L = \{a^n b^l a^k : n > 5, l > 3, k \le l\}.$$

Answer.

Let m be the constant in the pumping lemma. We choose $w=a^6b^ma^m\in L,\, m>3,$ $|w|=2m+6\geq m.$ For all possible x,y,z with $w=xyz,\, |xy|\leq m,\, |y|\geq 1,$ there are following cases:

- Case 1: $x = a^r$, $y = a^s$, $z = a^{6-r-s}b^ma^m$, $r + s \le 6$, $s \ge 1$. Let i = 0, $xy^0z \notin L$ since less than 6 a's in the beginning.
- Case 2: $x = a^6b^r$, $y = b^s$, $z = b^{m-r-s}a^m$, $s \ge 1$. Let i = 0, $xy^0z = a^6b^{m-s}a^m \notin L$ since the number of b's is less than the number of a's in the end.
- Case 3: y cannot contain both a's and b's since xy^2z is not in L.

Thus, L is not regular.

24. Let L_1 and L_2 be regular languages. Is the language $L=\{w:w\in L_1,w^R\in L_2\}$ necessarily regular?

Answer.

Yes, L is regular.

 $L = \{w : w \in L_1, w^R \in L_2\} = \{w : w \in L_1\} \cap \{w : w^R \in L_2\}, \text{ i.e., } L = L_1 \cap L_2^R.$

Because of the closure of regular languages under intersection and reverse (proved by Question 14 in HW1), L is regular.

25. Is the following language regular? $L = \{uww^Rv : u, v, w \in \{a, b\}^+\}$

Answer.

You can choose ww^R to be in the form 00 and 11. Hence, for any given string you can check to see if the middle substring is in the form of 00 and 11. Therefore, L is regular and can be expressed as $(a+b)(a+b)^*(aa+bb)(a+b)^*(a+b)$. For example, $abab\underline{aa}bbba \in L$.