Backprop

CS 3244 Machine Learning

Perceptron

NUS CS3244: Machine Learning

Perceptron Learning Algorithm

- 1. Initialize weights w
 - Could be all zero, or random small values
- 2. For each instance i with features $x^{(i)}$
 - Classify $\hat{y}^{(i)} = \operatorname{sgn}(\boldsymbol{w}^{\mathsf{T}}\boldsymbol{x}^{(i)})$
- 3. Select one misclassified instance
 - Update weights: $w \leftarrow w + \eta (y \hat{y})x$
- 4. Iterate steps 2 to 3 until
 - Convergence (classification error < threshold), or
 - Maximum number of iterations

NUS CS3244: Machine Learning

Differentiable Activation Functions

NUS CS3244: Machine Learning

Multi-Layer Perceptron (Neural Network)

Chain Rule

Consider composite function

$$g(x) = g\big(f(x)\big)$$

$$g=g(f), f=f(x)$$

$$g'(x) = \frac{dg}{dx} = \frac{dg}{df} \frac{df}{dx}$$

Intuition

Rate of change of g relative to x is the product of

- rates of change of g relative to f and
- rates of change of f relative to \boldsymbol{x}

"If

- a car travels 2x fast as a bicycle and
- · the bicycle is 4x as fast as a walking man,

then the car travels $2 \times 4 = 8$ times as fast as the man."

then the car travers 2 × 4 = 8 times as just as the man.

– George F. Simmons, Calculus with Analytic Geometry (1985)

NUS CS3244: Machine Learning

achine Learning

Week 09B: Lecture Outline

- 1. Perceptron
- 2. Perceptron Learning Algorithm (PLA)
- 3. Activation Functions
- 4. Gradient Descent
- 5. Neural Networks
- Math Notation Primer
- 6. Backpropagation

Math Primer

Notation

n = Number of features in xm = Number of instances in dataset

• Scalar: not bolded, lower case

 χ

• Vector: bolded, lower case

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Matrix: bolded, upper case

$$\boldsymbol{X} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

Functions with Vectors and Matrices

- Scalar-by-scalar:
 - y(x) = wx for scaling input
- Scalar-by-vector:

•
$$y(x) = \mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathsf{T}} \mathbf{x} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = w_1 x_1 + w_2 x_2$$
 for weighted sum

Vector-by-vector:

•
$$y(x) = wx = w {x_1 \choose x_2} = {wx_1 \choose wx_2}$$
 for scaled outputs (same weight)

•
$$\sigma(z) = \frac{e^z}{1^T(1+e^z)}$$
 for softmax

Functions with Vectors and Matrices

- Matrix-by-matrix:
 - Using Hadamard product of for element-wise multiplication

•
$$\mathbf{y}(\mathbf{X}) = \mathbf{W} \circ \mathbf{X} = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} = \begin{pmatrix} w_{11}x_{11} & w_{12}x_{12} \\ w_{21}x_{21} & w_{22}x_{22} \end{pmatrix}$$

Using Convolution operator * for element-wise multiplication then sum [W08b]

•
$$Y(X) = W * X = \begin{pmatrix} w_{11} & w_{12} \\ w_{21} & w_{22} \end{pmatrix} \begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix}$$

$$= \begin{pmatrix} w_{11}x_{11} + w_{12}x_{12} + w_{21}x_{21} + w_{22}x_{22} & w_{11}x_{12} + w_{12}x_{13} + w_{21}x_{22} + w_{22}x_{23} \\ w_{11}x_{21} + w_{12}x_{22} + w_{21}x_{31} + w_{22}x_{32} & w_{11}x_{22} + w_{12}x_{23} + w_{21}x_{32} + w_{22}x_{33} \end{pmatrix}$$

For computer vision filters (kernels)

1D Vectors, and 2D Matrices and ≥2D Tensors are for convenient notation of multiple similar calculations.

Weighted Sum

Summation Series = Scalar

$$\sum_{r=0}^{n} w_n x_r$$

$$w_1 x_1 + \dots + w_r x_r + \dots + w_n x_n$$

Vector Dot Product = Scalar

$$\boldsymbol{w} \cdot \boldsymbol{x} = \begin{pmatrix} w_1 \\ \vdots \\ w_r \\ \vdots \\ w_n \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{pmatrix}$$

Transposed Vector Multiplication = Scalar

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} = (w_1 \quad \cdots \quad w_r \quad \cdots \quad w_n) \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{pmatrix}$$

Transposed Matrix Multiplication = Vector

$$\boldsymbol{W}^{\mathsf{T}}\boldsymbol{x} = \begin{pmatrix} w_{11} & \cdots & w_{1r} & \cdots & w_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{r1} & \cdots & w_{rr} & \cdots & w_{rn} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ w_{n1} & \cdots & w_{nr} & \cdots & w_{nn} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} x_1 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{pmatrix}$$

Gradient

- Derivative: d
 - $\frac{dy}{dx}$ is the derivative of y relative to x
- Partial derivative: ∂
 - $\frac{\partial y}{\partial x_1}$ is the derivative of y relative to x_1
 - But y also depends on other variables (e.g., x_2 so, we can also calculate $\frac{\partial y}{\partial x_2}$)
- Gradient: ∇
 - To calculate the derivative relative to all x_1 and x_2 together
 - $\nabla y(x)$ is the gradient of y relative to all variables $x = (x_1, ..., x_n)^T$

Vector in denominator means
Derivative for each variable is
put in separate, corresponding

$$\nabla y(\mathbf{x}) = \frac{dy}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{pmatrix} = \begin{pmatrix} \frac{\partial y}{\partial x_1} & \cdots & \frac{\partial y}{\partial x_n} \end{pmatrix}^{\mathsf{T}}$$

variable days unimes Cartesian coordinates (linear, orthogonal)

Matrix Calculus

Scalar-by-Vector (1D Vector)

$$\frac{dy}{dx} = \begin{pmatrix} \frac{\partial y}{\partial x_1} \\ \vdots \\ \frac{\partial y}{\partial x_n} \end{pmatrix}$$

Vector-by-Vector (2D Matrix) – not in exam

$$\frac{d\mathbf{y}}{d\mathbf{x}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \cdots & \frac{\partial y_N}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_n} & \cdots & \frac{\partial y_N}{\partial x_n} \end{pmatrix}$$

n =Number of features in x

m = Number of instances in dataset

N = Number of y prediction tasks

Scalar-by-Matrix (2D Matrix)

$$\frac{dy}{dX} = \begin{pmatrix} \frac{\partial y}{\partial x_{11}} & \cdots & \frac{\partial y}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y}{\partial x_{n1}} & \cdots & \frac{\partial y}{\partial x_{nm}} \end{pmatrix}$$

Vector-by-Matrix (3D Tensor) – not in exam

$$\frac{d\mathbf{y}}{d\mathbf{X}} = \begin{pmatrix} \frac{\partial y_1}{\partial x_{11}} & \cdots & \frac{\partial y_1}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_{n1}} & \cdots & \frac{\partial y_1}{\partial x_{nm}} \end{pmatrix} \quad \cdot \quad \begin{pmatrix} \frac{\partial y_N}{\partial x_{11}} & \cdots & \frac{\partial y_N}{\partial x_{1m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_N}{\partial x_{n1}} & \cdots & \frac{\partial y_N}{\partial x_{nm}} \end{pmatrix}$$

Along 3rd dimension

This math informs what matrix **shapes** you need to implement

Neural Network (recap)

Single-Layer Perceptron

Single-Layer Perceptron

Neural Network

Layer Activation

$$a = g(f(x)), f(x) = \mathbf{w}^{\mathsf{T}} x$$

Single-Layer Perceptron

Gradient Descent Weight Update (Single Neuron)

Gradient of error

$$abla_{\varepsilon} = \frac{d\varepsilon}{dw} = \begin{pmatrix} \partial \varepsilon / \partial w_1 \\ \vdots \\ \partial \varepsilon / \partial w_r \\ \vdots \\ \partial \varepsilon / \partial w_n \end{pmatrix}$$

Gradient Descent Weight Update (Neural Network)

$$\frac{d\varepsilon}{d\mathbf{W}^{[l]}} = \frac{d\varepsilon}{d\hat{y}} \left(\frac{\bar{d}\hat{y}}{d\mathbf{W}^{[l]}} \right)$$

Gradient of error

$$\nabla \varepsilon = \frac{d\varepsilon}{dW} = \begin{pmatrix} \partial \varepsilon / \partial W^{[1]} \\ \vdots \\ \partial \varepsilon / \partial W^{[l]} \\ \vdots \\ \partial \varepsilon / \partial W^{[L]} \end{pmatrix}$$

$$\frac{d\boldsymbol{\varepsilon}}{d\boldsymbol{W}^{[l]}} = \begin{pmatrix} \frac{\partial \boldsymbol{\varepsilon}}{\partial w_{11}^{[l]}} & \cdots & \frac{\partial \boldsymbol{\varepsilon}}{\partial w_{1m}^{[l]}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \boldsymbol{\varepsilon}}{\partial w_{n1}^{[l]}} & \cdots & \frac{\partial \boldsymbol{\varepsilon}}{\partial w_{nm}^{[l]}} \end{pmatrix}$$

Gradient Descent for Neural Networks Backpropagation

Backpropagation

Backpropagation efficiently computes the gradient by

- Avoiding duplicate calculations
- Not computing unnecessary intermediate values,
- Computing the gradient of each layer

Specifically, the gradient of the weighted input of each layer is calculated from back [l+1] to front [l]:

$$\frac{d\hat{y}}{d\boldsymbol{W}^{[l]}} = \boldsymbol{a}^{[l-1]} (\boldsymbol{\delta}^{[l]})^{\mathsf{T}} \qquad \boldsymbol{\delta}^{[l]} = \left(\frac{d\boldsymbol{g}^{[l]}}{d\boldsymbol{f}^{[l]}}\right) (\boldsymbol{W}^{[l+1]} \boldsymbol{\delta}^{[l+1]})$$

Adapted from: https://en.wikipedia.org/wiki/Backpropagation

Forward Propagation

Forward Propagation (Reverse Polish Notation)

$$(x^{[0]}, \mathbf{W}^{[1]}) f^{[1]} g^{[1]} \cdots f^{[l]} g^{[l]} \cdots f^{[L-2]} g^{[L-2]} f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

Forward Propagation (Reverse Polish Notation)

$$(x^{[0]}, \mathbf{W}^{[1]}) f^{[1]} g^{[1]} \cdots f^{[l]} g^{[l]} \cdots f^{[L-2]} g^{[L-2]} f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$(a^{[L-1]}, W^{[L]})f^{[L]}g^{[L]} = \hat{y}$$

$$(a^{[L-2]}, \mathbf{W}^{[L-1]})f^{[L-1]}g^{[L-1]}f^{[L]}g^{[L]} = \hat{y}$$

$$(a^{[L-3]}, \mathbf{W}^{[L-2]})f^{[L-2]}g^{[L-2]}f^{[L-1]}g^{[L-1]}f^{[L]}g^{[L]} = \hat{y}$$

Gradients of Layer Weights (Backwards)

$$(x^{[0]}, \boldsymbol{W^{[1]}}) f^{[1]} g^{[1]} \cdots f^{[l]} g^{[l]} \cdots f^{[L-2]} g^{[L-2]} f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$(a^{[L-1]}, \mathbf{W}^{[L]}) f^{[L]} g^{[L]} = \hat{y}$$

$$\frac{df^{[L]}}{d\mathbf{W}^{[L]}} \frac{dg^{[L]}}{df^{[L]}} = \frac{\partial \hat{y}}{\partial \mathbf{W}^{[L]}}$$

$$(a^{[L-2]}, \mathbf{W}^{[L-1]}) f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$\frac{df^{[L-1]}}{d\mathbf{W}^{[L-1]}} \frac{dg^{[L-1]}}{df^{[L-1]}} \frac{df^{[L]}}{df^{[L]}} = \frac{\partial \hat{y}}{\partial \mathbf{W}^{[L-1]}}$$

$$(a^{[L-3]}, W^{[L-2]}) f^{[L-2]} g^{[L-2]} f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$\frac{df^{[L-2]}}{dW^{[L-2]}} \frac{dg^{[L-2]}}{df^{[L-2]}} \frac{df^{[L-1]}}{df^{[L-1]}} \frac{df^{[L]}}{df^{[L-1]}} \frac{dg^{[L]}}{df^{[L]}} = \frac{\partial \hat{y}}{\partial W^{[L-2]}}$$

Gradients of Layer Weights (Backwards)

$$(x^{[0]}, \boldsymbol{W^{[1]}}) f^{[1]} g^{[1]} \cdots f^{[l]} g^{[l]} \cdots f^{[L-2]} g^{[L-2]} f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$(a^{[L-1]}, W^{[L]})f^{[L]}g^{[L]} = \hat{y}$$

$$\frac{df^{[L]}}{dW^{[L]}}\delta^{[L]} = \frac{\partial \hat{y}}{\partial W^{[L]}}$$

$$(a^{[L-2]}, W^{[L-1]}) f^{[L-1]} g^{[L-1]} f^{[L]} g^{[L]} = \hat{y}$$

$$\frac{df^{[L-1]}}{dW^{[L-1]}} \delta^{[L-1]} = \frac{\partial \hat{y}}{\partial W^{[L-1]}}$$

Recursive Gradients of Layer Weights

$$\frac{\partial \hat{y}}{\partial W^{[l]}} = \frac{df^{[l]}}{dW^{[l]}} \frac{dg^{[l]}}{df^{[l]}} \frac{dg^{[l+1]}}{dg^{[l]}} \cdots \frac{df^{[l]}}{dg^{[l-1]}} \frac{dg^{[l]}}{df^{[l]}}$$

$$\frac{\partial \hat{y}}{\partial W^{[l]}} = \frac{df^{[l]}}{dW^{[l]}} \frac{dg^{[l]}}{df^{[l]}} \frac{df^{[l+1]}}{dg^{[l]}} \delta^{[l+1]}$$

$$\frac{\partial \hat{y}}{\partial W^{[l]}} = \frac{df^{[l]}}{dW^{[l]}} \delta^{[l]}$$

$$\frac{df^{[l]}}{dW^{[l]}} = \frac{d\left(\left(W^{[l]}\right)^{\mathsf{T}} a^{[l-1]}\right)}{dW^{[l]}} = a^{[l-1]} \delta^{[l]} \frac{df^{[l+1]}}{dg^{[l]}} \delta^{[l+1]}$$

$$\frac{df^{[l+1]}}{dg^{[l]}} = \frac{df^{[l+1]}}{da^{[l]}} = W^{[l+1]}$$

$$\frac{\partial \hat{y}}{\partial W^{[l]}} = a^{[l-1]} \delta^{[l]} \delta^{[l]} = \frac{dg^{[l]}}{df^{[l]}} W^{[l+1]} \delta^{[l+1]}$$
Recursive

Matrix multiplication to match shape (not in exam)

Backward Propagation

Backpropagation

Backpropagation efficiently computes the gradient by

- Avoiding duplicate calculations
- Not computing unnecessary intermediate values,
- Computing the gradient of each layer

Specifically, the gradient of the weighted input of each layer is calculated from back [l+1] to front [l]:

$$\frac{d\hat{y}}{d\boldsymbol{W}^{[l]}} = \boldsymbol{a}^{[l-1]} (\boldsymbol{\delta}^{[l]})^{\mathsf{T}} \qquad \boldsymbol{\delta}^{[l]} = \left(\frac{d\boldsymbol{g}^{[l]}}{d\boldsymbol{f}^{[l]}}\right) (\boldsymbol{W}^{[l+1]} \boldsymbol{\delta}^{[l+1]})$$

Adapted from: https://en.wikipedia.org/wiki/Backpropagation

Backprop Explainer Quick Start

https://xnought.github.io/backprop-explainer/

- 1. Press to start training
- 2. Then press CLICK TO ANIMATE EPOCH # to see forward propagation, backward propagation, and update animation at the epoch #
- 3. To go back to fitting mode click operations of the state of the sta

Click on 60 to reveal extra descriptions

Insert Web Page

This app allows you to insert secure web pages starting with https:// into the slide deck. Non-secure web pages are not supported for security reasons.

Please enter the URL below.

https://

xnought.github.io/backprop-explainer/

Note: Many popular websites allow secure access. Please click on the preview button to ensure the web page is accessible.

Practice Backprop during tutorial

CS3244, Solution to Tutorial 07—Perceptrons and Neural Networks

1

National University of Singapore School of Computing CS3244: Machine Learning Solution to Tutorial 07

Perceptrons and Neural Networks

Colab Notebook: Perceptrons and Neural Networks

1. Backpropagation algorithm. In this question, we're going to use a neural network with a

NUS CS3244: Machine Learning

Resources for self-study

- What is backpropagation really doing?, Backpropagation calculus 3Blue1Brown
- A worked example of backpropagation Alexander Schiendorfer
- TensorFlow Playground

Auto Differentiation for Backprop

- Even with backprop, implementing the gradients is tedious
- Deep learning APIs have automated differentiation.
 - Tensor Flow <u>autodiff</u>
 - PyTorch <u>autograd</u>
 - Implement derivatives of many common functions
 - You just need to implement your layers and neurons; API will handle gradients

Caution

- If you want to implement custom functions/layers (not simple weighted sum)
- They need to be differentiable to be able to calculate their gradients
- Otherwise, backprop cannot update weights accurately

Wrapping Up

What did we learn?

W10 Pre-Lecture Task (due before next Mon)

Watch

Who Invented A.I.? - The Pioneers of Our Future by ColdFusion

Play

- https://distill.pub/2018/building-blocks/
 - Don't worry about reading the whole article

Discuss

- 1. <u>Identify</u> what is strange, funny, or erroneous in the deep learning model in Building-Blocks
- 2. <u>Take a screenshot</u> of the issue and share with your tutorial mates
- 3. Try to explain why the model was behaving as identified
- 3. Post a 2-3 sentence description to the topic in your tutorial group: #tg-xx