OBH 2017/6 (5d1).

Supontha que exista xe Zp tal que
$$a = x + x^{-1}$$
 en Zp.

 $a^3 - 3a + 1 = (x + x^{-1})^3 - 3(x + x^{-1}) + 1$
 $= x^3 + x^{-3} + 1 = 0$
 $\Rightarrow Q_g(x) = 0$
 $\Rightarrow \text{ ord}_p x = 9$
 $\Rightarrow \text{ ord}_p x = 9$
 $\Rightarrow 9|_{p-1} = 9|_{p^2-1}$

Se not existe x com tol propriedole jentos $a = x + x^{-1}$ not tem soluçõe em Zp $x^2 - ax + L = 0$ not tem soluçõe em Zp $(2x-a)^2 = a^2 - 4$ not tem soluçõe em Zp

Vormos expandir o corpo \mathbb{Z}_p em $\mathbb{Z}_p\mathbb{Z}_j\mathbb{I}$, adicionando um elemento \mathbb{Z}_p que é raiz de x^2 (a^2 -4) = 0.

Agoro, em $\mathbb{Z}_p[j]$, $x=2^{-1}(a\pm j)$ é soluçõe de $(2x-a)^2=a^2-4$. To os possos (x) son verologle em $\mathbb{Z}_p[j]$ => ord x=9. Has, $(\mathbb{Z}_p[j])^{\times}$ tem p^2-1 elementos= p^2-1

(+) Considere o supprepode apris, H= < x>. Como (Zp[i]) e' comutativo, a H=Ha, Voelep[i]) x => H gero classes de equivalência de mesmo tarmanho

=> 141 | (Zp []) => ord x | p2-1.

OBH 2017/6. (50/2)

Varmos achar as soluções em R pero:

 $x^3 - 3x + 1 = 0$.

Com certa espertezas posemos a substituição x → 20050:

$$\cos 3\theta = -\frac{1}{2} = \cos \left(\frac{2\pi}{3} \right)$$