

Institut für Algebra und Geometrie Dr. Rafael Dahmen Martin Günther, M. Sc.

Lineare Algebra II

Sommersemester 2021

Übungsblatt 7 07.06.21

Aufgabe 1 (Selbstadjungierte Endomorphismen)

(10 Punkte)

Es sei V ein endlichdimensionaler euklidischer Vektorraum. Beweisen Sie:

- a) Die Menge der selbstadjungierten Endomorphismen von V ist ein Untervektorraum von End(V).
- b) Gilt für zwei selbstadjungierte Endomorphismen $\varphi, \psi \in \text{End}(V)$ die Gleichung

$$\forall v \in V \colon \langle \varphi(v), v \rangle = \langle \psi(v), v \rangle,$$

dann gilt schon $\varphi = \psi$.

Aufgabe 2 (Adjungiertheit bezüglich verschiedener Skalarprodukte) (10 Punkte)

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$ und $\theta \colon V \to V$ eine lineare Abbildung. Wir definieren außerdem die Abbildung

$$\langle\!\langle \cdot, \cdot \rangle\!\rangle \colon V \times V \to \mathbb{R}$$

 $(x, y) \mapsto \langle\!\langle x, y \rangle\!\rangle \coloneqq \langle \theta(x), y \rangle$

Beweisen Sie die folgenden Aussgagen:

- a) Die Abbildung $\langle \langle \cdot, \cdot \rangle \rangle$ ist genau dann ein Skalarprodukt, wenn θ selbstadjungiert bzgl. $\langle \cdot, \cdot \rangle$ ist und nur positive reelle Eigenwerte hat.
- b) Falls $\langle \langle \cdot, \cdot \rangle \rangle$ ein Skalarprodukt ist, ist θ auch selbstadjungiert bzgl. $\langle \langle \cdot, \cdot \rangle \rangle$.
- c) Der Endomorphismus $\psi \colon V \to V$ ist genau dann adjungiert zum Endomorphismus $\varphi \colon V \to V$ bzgl. des Skalarproduktes $\langle \langle \cdot, \cdot \rangle \rangle$, wenn $\psi = \theta^{-1} \circ \varphi^* \circ \theta$ gilt.

Hinweis: Die Abbildung φ^* ist bzgl. $\langle \cdot, \cdot \rangle$ zu φ adjungiert (nicht bzgl. $\langle \cdot, \cdot \rangle$!). Sie dürfen ohne Beweis verwenden, dass $(\varphi^*)^{-1} = (\varphi^{-1})^*$ für alle invertierbaren Endomorphismen φ gilt.

Abgabe bis Montag, den 14.06.21 um 18:00 Uhr. Bitte verfassen Sie Ihre Lösung handschriftlich und versehen Sie sie mit Ihren Namen, Ihren Matrikelnummern und E-Mail-Adressen aller Teilnehmenden ihrer Lerngruppe. Laden Sie sie dann als eine pdf-Datei in den entsprechenden Postkasten im ILIAS-Kurs hoch.