

Roll your own vulnerabilities

@barsteward,
BSides London 2024

An introduction to fault-injection for exploiting bug-free code in embedded systems.

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

:~\$ whoami

@barsteward

Bluesky: @barsteward.bsky.social Mastodon: @barsteward@infosec.exchange

RIP Twitter: @barsteward

I'm employed to torture silicon chips until they give up their secrets, or agree that they work for me now.

Hardware penetration testing of claims about

- Secure Boot
- Flash Read Protection
- Debug Protection
- (and side-channel analysis resistance)

This talk does not represent the views of my employer!

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

What The F(I)?

What is Fault Injection anyway?

What is Fault Injection (FI)?

Fault Injection (FI) is a class of hardware attacks in which the device is stressed in an unusual way to make it malfunction.

Extremes of

- Voltage
- Electromagnetic fields
- Clock speed
- Temperature
- Light
- Ionizing radiation...

What we'll cover

- Who am I?
- What is fault injection?
- **>>**
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

VFI: Glitch Parameters

VFI: Glitch Parameter Narrowing

Electro-Magnetic Fault Injection (EMFI)

An EM pulse is delivered from a coil close to the chip

NewAE ChipSHOUTER (CW520) ~£3.5K

Riscure EMFI Transient Probe *much* more expensive

Homemade circuitry/coil <£100 but high voltages involved, so not advised!

Generates wide range of glitch effects in target device; a real life "magic wand":

Corruption of reads/write values, program flow alteration, influencing of compare operations...

occasional release of magic smoke and chip self-destruct!

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

Why The F(I)?

Why use Fault Injection anyway?

Secure Boot Bypass for arbitrary code execution

```
result =
VerifySignature(&image);
if (result == true)
         run(&image);
else
         Error("Abort Boot");
```


Secure Boot Bypass

Lennert Wouters: Glitched on Earth by Humans: A Black-Box Security

Evaluation of the SpaceX Starlink User Terminal

https://github.com/KULeuven-COSIC/Starlink-FI

https://www.youtube.com/watch?v=NXqLMmGwJm0

Secure Boot Bypass

Nintendo Switch modchip for running custom firmware https://www.retrosix.wiki/picofly-hwfly-rp2040-nintendo-switch https://www.youtube.com/watch?v=NXqLMmGwJmo

Read Protection Bypass
Yifan Lu was successful in
dumping (reading) the ROM
of the Playstation Vita using
the NewAE ChipWhisperer to
perform voltage fault
injection.

Injecting Software Vulnerabilities with Voltage Glitching, Yifan Lu https://arxiv.org/abs/1903.08102

Read Protection Bypass

Joe Grand recovered \$2m of THETA cryptocurrency from a Trezor One hardware wallet, using voltage FI https://www.youtube.com/watch?v=dT9y-KQbqi4

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

How The F(I)?

How does Fault Injection cause security violations?

How FI affects a device

Affects program flow, security settings and internal variables. Mainly a transient effect, but can lead to permanent data changes too.

- Instruction skipping...
 - Most prevalent effect
- Data in flight corruption...
 - Misread of stored value, address/data bus corruption
- Out of order operation...
 - Read operation may complete early, before data fetch is complete
- Op Code Corruption...
 - Use of incorrect register
 - The "Jungle Jump" program counter gets set to incorrect address and execution continues from there!

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

Voltage FI Demo: FIreFIght

This demo will (hopefully!) show a Pi Pico 2 performing voltage glitching on another Pi Pico 2, with the aid of a MOSFET (crowbar glitching the 1.1V internal regulator output)

On the left side we have the "Control" board, and on the right, the "Victim" board.

All PCB gerber/production files and source code for this are available on github: https://github.com/barsteward-bsides/FireFight (Thanks to AsFaBw for the PCB design work)

Voltage FI Demo: FIreFight

https://github.com/barsteward-bsides/FireFight

Voltage FI Demo: FIreFight DFA

Just causing an instruction skip, or a misread didn't seem to have enough jeopardy for a live conference demo, so instead let's try something a bit more tricky...

<u>Differential Fault Analysis (DFA)</u> to try to recover the AES key by analysing the faulty ciphertext outputs

Round 8	Sta	rt o	f ro	und		After SubBytes					er si	niftR	lows	After MixColumns						Rou	nd Ke	ey Va	lue	EAD27321B58DBAD2312BF5607F8D292F
80	5A	19	АЗ	7A		BE	D4	ØA	DA	BE	D4	ØA	DA		00	B1	54	FA		EA	B5	31	7F	
80	41	49	EØ	8C		83	38	E1	64	3B	E1	64	83		51	C8	76	1B		D2	8D	2B	8D	
80	42	DC	19	04		2C	86	D4	F2	D4	F2	2C	86		2F	89	6D	99		73	BA	F5	29	
80	В1	1F	65	ØC		C8	CØ	4D	FE	FE	C8	C0	4D		D1	FF	CD	EA		21	D2	60	2F	
Round 9	Start of round					After SubBytes				After ShiftRows				After MixColumns						Rou	nd Ke	ey Va	lue	AC7766F319FADC2128D12941575C006E
1B	EΑ	04	65	85		87	F2	4D	97	87	F2	4D	97		47	40	A3	4C		AC	19	28	57	
1B	83	45	5D	96		EC	6E	4C	90	6E	4C	90	EC		37	D4	70	9F		77	FA	D1	5C	
1B	5C	33	98	В0		4A	С3	46	E7	46	E7	4A	С3		94	E4	ЗА	42		66	DC	29	00	
1B	FØ	2D	AD	C5		8C	D8	95	A6	A6	8C	D8	95		ED	A5	A6	ВС		F3	21	41	6E	
Round 10 Start of round							After SubBytes					niftR	lows	After MixColumns					Rou	nd Ke	ey Va	lue	D014F9A8C9EE2589E13F0CC8B6630CA6	
36	ЕВ	59	8B	1B		E9	СВ	3D	AF	E9	СВ	3D	AF		E9	СВ	3D	AF		DØ	C9	E1	В6	
36	40	2E	A1	С3		09	31	32	2E	31	32	2E	09		31	32	2E	09		14	EE	3F	63	
36	F2	38	13	42		89	07	7D	2C	7D	2C	89	07		7D	2C	89	07		F9	25	0C	0C	
36	1E	84	E7	D2		72	5F	94	B5	B5	72	5F	94		B5	72	5F	94		A8	89	C8	Α6	
	Outp	ut ci	ipher	text																				
	39	02	DC	19																				
	25	DC	11	6A																				
	84	09	85	0B																				
	1D	1D FB 97 32 3925841D02DC09FBDC118597196A0B32																						
		57 52 552504150250531550115357130A0532																						

Voltage FI Demo: FIreFight DFA

Just causing an instruction skip, or a misread didn't seem to have enough jeopardy for a live conference demo, so instead let's try something a bit more tricky...

<u>Differential Fault Analysis (DFA)</u> to try to recover the AES key by analysing the faulty ciphertext outputs

Round 8	Sta	rt of	f roi	ınd	After SubBytes						After ShiftRows						After MixColumns					nd K	v Va	lue		EAD27321B58DBAD2312BF5607F8D292F						
		art of round			_												EA	ound Key Va A B5 31		7F		CHUZIJZ	10000		21201	5007	. 002.	-21				
80	5A	19	A3	7A		BE	D4	ØA	DA	-	BE	D4	0A	DA		00	B1	54	FA			-		8D								
80	41	49	EØ	8C		83	3B	E1	64	_	3B	E1	64	83		50	C8	76	1B		D2	8D	2B									
80	42	DC	19	04		2C	86	D4	F2	_	D4	F2	2C	86		2F	89	6D	99		73	BA	F5	29								
80	B1	1F	65	ØC		C8	CØ	4D	FE		FE	C8	C0	4D		D1	FF	CD	EA		21	D2	60	2F								
Round 9	Start of round			After SubBytes					After ShiftRows					After MixColumns					Round Key Value					AC7766F	319FA	DC21	28D12	29415	75C00	36E		
1B	EA	04	65	85		87	F2	4D	97		87	F2	4D	97		47	40	A3	56		AC	19	28	57								
1B	82	45	5D	96		13	6E	4C	90		6E	4C	90	13		37	D4	70	7A		77	FA	D1	5C								
1B	5C	$\overline{}$	98	В0		4A	С3	46	E7		46	E7	4A	С3		94	E4	ЗА	BD		66	DC	29	00								
1B	FØ	2D	AD	C5		_	D8	95	A6		A6	8C	D8	95		ED	A5	A6	43		F3	21	41	6E								
		20	710		-	0.0	50		70		70	0.0	50				7.5	7.0	-10													
Round 10	c+=	rt o	E poi	ınd		A.E.+.	an C	ubByt	-00		۸£+،	an Ch	niftR	Oute		۸£+۵	n Mi	xCol	ımne		Pou	nd V	ey Va	lue		DØ14F9A	SCOFE	2580	E13E0	accse	66300	- 16
										_						FO	CD	20				C9	E1	B6		D0141 3A	OCSEL	2365	21316	OCCOD	00560	LAO
36	EB	$\overline{}$	8B	01		E9	CB	3D	7C	-	E9	CB		7C		E9	CD	50	7C		DØ	-		-								
36	40	2E	A1	26	_	09	31	32	F7	_	31	32	F7	09		31	32	F7	09		14	EE	3F	63								
36	F2	$\overline{}$	13	BD		_	07	7D	7A	_	7D	7A	89	07		7D	7A	89	07		F9	25	0C	0C								
36	1E	84	E7	2D		72	5F	94	D8		D8	72	5F	94		D8	72	5F	94		8A	89	C8	A6								
	Outpu	ıt Ci	pher	text																												
	39	02	DC	CA																												
	25	DC	C8	6A																												
	84		85	0B																												
	70		97	32		3025	2/7/	2020	C5FFE	RDCC	SSE	9764	610	222																		
	70	r D	57	32	-	3923	0470	00ZD	COLLE	שטכנ	.665	37 CF	OHO	332																		

Voltage FI Demo: FIreFIght

Live Demo

```
This is not a new attack and it heavily
 relies upon open source libraries such
                                (4253494445534c4f4e444f4e32303234)
```

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation
- Other attacks

Mitigation Techniques

To protect the security goals of a system, numerous mitigation techniques can be employed:

- Software hardening techniques
 - Fail-safe default initialised values
 - Avoid trivial values for constants such as 0 and 1; maximise hamming distance
 - Repeated checks for comparisons
 - Checks that loops completed the correct number of iterations
 - Randomised timing delays, to make repeatability and attack parameter narrowing harder
 - Control flow integrity checks
 - ... See Riscure's "Fault Mitigation Patterns" whitepaper for more details: https://www.riscure.com/publication/fault-mitigation-patterns/

It's really tricky to write code that will fail safe during a hardware attack

Mitigation Techniques

To protect the security goals of a system, numerous mitigation techniques can be employed:

- Hardware techniques
 - Glitch resistant internal power circuitry
 - Glitch detectors
 - Voltage monitoring circuitry
 - Oscillator disturbance detection
 - Honeypot logic paths
 - Memory Protection Units to prevent code execution in restricted areas
 - Shielding
 - Control flow integrity mechanisms

The RP2350 chip used for the Pi Pico 2 includes a configurable glitch detector, and there's a \$10,000 \$20,000 bug bounty for bypassing the chip security features and recovering a secret stored in the OTP flash memory

https://www.raspberrypi.com/news/30000-badges-and-still-no-hack/

Can you hack our new chip?

16th Aug 2024 Chris Boross 2 comments

We think RP2350, our new high-performance, secure microcontroller, is pretty safe and sturdy. Care to test that theory? (We fully admit that everything is hackable given enough time and resources.)

Challenge Accepted!

Before we launched <u>RP2350</u> and <u>Raspberry Pi Pico 2</u>, we wanted to do some testing on the security features of the chip and software, so we worked with some of the best names in the security testing game: Thomas Roth and Colin O'Flynn.

10.9. Glitch Detector

The glitch detector detects loss of setup and hold margin in the system clock domain, which may be caused by deliberate external manipulation of the system clock or core supply voltage. When it detects loss, the glitch detector triggers a system reset rather than allowing software to continue to execute in a possibly undefined state. It responds within one system clock cycle, unlike the brownout detector, which has much more limited analog bandwidth.

The glitch detector is disabled by default, and can be armed by setting the GLITCH_DETECTOR_ENABLE flag in OTP. For debugging purposes, you can also enable the glitch detector via the ARM register. This is not recommended in security-sensitive applications, as the system is vulnerable until the point that software can enable the detectors.

10.9.1. Theory of Operation

The glitch detector is comprised of four identical detector circuits, based on a pair of D flip-flops. These detector circuits are each placed in different, physically distant locations within the core voltage domain.

Figure 42. Glitch detector trigger circuit. Two flops each toggle on every system clock cycle. One has a programmable delay line in its feedback path, the other does not. Loss of setup or hold margin causes one of the flops to fail to toggle, so the flops values differ, setting the trigger output.

https://datasheets.raspberrypi.com/rp2350/rp2350-datasheet.pdf

So how effective is the glitch detector?

This is an EMFI scan I did before enabling the glitch detector, on a simple nested for loop counter...

Red = Successful glitch Green = Expected response Blue = Device reboot Cyan = Corrupted response

So how effective is the glitch detector?

And with the glitch detector enabled...

Yellow = Glitch Detected Green = Expected response Red = Successful glitch

(1mm Coil, lower power, plus a week of trying)

However... on Dec 27th at 38C3, there's a talk claiming to have defeated the challenge

Aedan Cullen

Most of what I do is related to embedded systems, robotics, or efficient computing. Other fields, like security research, are just a byproduct of always learning how things work:)

Session

12-27

Hacking the RP2350

23:00

Aedan Cullen

60min

Raspberry Pi's RP2350 microcontroller introduced a multitude of new hardware security features over the RP2040, and included a Hacking Challenge which began at DEF CON to encourage researchers to find bugs. The challenge has been defeated and the chip is indeed vulnerable (in at least one way). This talk will cover the process of discovering this vulnerability, the method of exploiting it, and avenues for deducing more about the relevant low-level hardware behavior.

Security

Saal ZIGZAG

Standards and certifications

Standards and certification schemes are influencing things:

- Common Criteria (ISO/IEC 15408:2022) is the certification standard for Smart Cards and high security devices, but this is very expensive to comply with.
- NIST FIPS 140-3
- Automotive standard <u>ISO/SAE 21434:2021</u> has forced automotive manufacturers to consider these types of attacks
- Certification schemes such as <u>ARM PSA</u> and <u>SESIP</u> have a number of levels, some of which require resistance to FI attacks
- The <u>EU Cyber Resilience Act</u> will enforce strict incident reporting rules, which may also influence product security decisions.

What we'll cover

- Who am I?
- What is fault injection?
- Types of fault injection attacks
- Why/where are fault injection attacks used?
- How can fault injection compromise security goals?
- Voltage FI Demo / How you can try this yourself
- Mitigation techniques & standardisation

Other attacks

Invasive attacks(if time!)

- Decapsulation and optical read of ROM
- Micro-probing to connect to internal signals or to connect/disconnect internal lines
- Body Bias Injection: voltage glitch to the ground plane inside the chip this raises the Gnd voltage and can cause localised data misreads due to the reduced potential difference between Gnd and core voltage.

Side Channel Analysis (if time!)

- Detection of tiny data dependant fluctuations in timing, power or electromagnetic emissions.
- It can be possible to fully recover a cryptographic key that's in use, by capturing and analysing the EM emmissions from the chip, by placing a near-field microprobe close to the chip surface.

https://www.langer-emv.de/en/product/near-field-microprobe-sets-icr-hh-h-field/26/icr-hh100-27-set-near-field-microprobe-1-5-mhz-6-ghz/768/icr-hh100-27-near-field-microprobe-1-5-mhz-to-6-ghz/101

Conclusions

- It's hard (and costly) to protect against physical attacks on hardware if people can get access to the chip.
- These attacks are becoming more widely known/exploited and the tools are getting cheaper.
- Glitch detectors (and other mitigations) can make a huge difference to the difficulty and repeatability of a fault injection attack, but they're not perfect.
- There is more effort going into hardware and software protection mechanisms now too.
- System design that avoids storage of secrets is a great defence, but not always practical

Code Credit

FIreFIght control interface, including PIO glitch control: @barsteward https://github.com/barsteward-bsides/FireFight

DFA Key recovery library phoenixAES: Philippe Teuwen @doegox

https://github.com/SideChannelMarvels/JeanGrey/tree/master/phoenixAES

AES key schedule library aeskeyschedule: Marcel Nageler @fanoster

https://github.com/fanosta/aeskeyschedule

Other Credits

PCB Design: AsFaBw https://github.com/AsFaBw

ChipSHOUTER EMFI probe: Colin O'Flynn @oflynn.com (NewAE)

https://www.newae.com/ (Check out the ChipWhisperer too)

Incredible patience: My wife

Fortunately, no link!

Image Credits

- Morph image used under licence: https://creativecommons.org/licenses/by/4.0/
 Science Museum Group. Model of 'Morph'. 1999-5162 Science Museum Group Collection Online. https://collection.sciencemuseumgroup.org.uk/objects/co8180635/model-of-morph
- AI image of chip torture https://deepai.org/
- Homer Simpson light switch https://giphy.com/gifs/season-3-the-simpsons-3x24-xT5LMWOExnRmXt2vFS
- MAX4619 image under fair usage from https://www.analog.com/media/en/technical-documentation/data-sheets/MAX4617-MAX4619.pdf
- Starlink Dish image <u>https://commons.wikimedia.org/wiki/File:A Bright New Day for Broadband %E2%80%94 Starlink (51016637753).jpg</u> Steve Jurvetson from Los Altos, USA, <u>Creative Commons</u> Attribution 2.0
- Starlink Modchip image used with permission from Lennert Wouters modchip.jpg: https://github.com/KULeuven-COSIC/Starlink-FI
- Joe Grand screenshot from YouTube used under fair usage <u>https://www.youtube.com/watch?v=dT9y-KQbqi4</u>
- Nintendo Switch image by <u>PantheraLeo1359531</u>:
 https://upload.wikimedia.org/wikipedia/commons/7/70/Nintendo Switch OLED-Modell %28BeatEmUps%29 20211001 08.png
 Licensed under the <u>Creative Commons Attribution 3.0 Unported license</u>
- All other images and clipart unrestricted or included under fair usage

These slides, along with the FIreFIght PCB design files, and the embedded FIreFIght code for the DFA demo are available at:

https://github.com/barsteward-bsides/FireFight
(Definitely not a Rick-Roll)

This presentation copyright @barsteward 2024 Released under CC BY 4.0

https://creativecommons.org/licenses/by/4.0/

- Bluesky: @barsteward.bsky.social
- Mastodon: @barsteward@infosec.exchange
- RIP Twitter: @barsteward

