Proximity Effect

Jianwei Xu

Solving the BdG Equation

BdG Equation

$$\frac{\partial u}{\partial x} = i(\pi \xi_0 \Delta_\infty)^{-1} [Eu - \Delta(x)v]$$
$$\frac{\partial v}{\partial x} = -i(\pi \xi_0 \Delta_\infty)^{-1} [Ev - \Delta(x)u]$$

"Far-Superconducting Region"

First We give the form of the "farsuperconducting" solution

$$\varphi_1 = \left(\begin{array}{c} u_0 \\ v_0 \end{array}\right) e^{i(k_F + k_S)x}$$

Region Divided

We divide the tunnelling axis into four regions, which are, far superconducting, reduced, induced and far normal regions

Reduced Region

We generate the initial conditions for the solutions of this region,

$$u_{a1}(x_S) = u_0 e^{ik_S x_S}$$
$$u_{b1}(x_S) = 0$$

The solution for this region could be written,

$$\varphi = \begin{pmatrix} u_a \\ v_a \end{pmatrix} e^{ik_F x} + \begin{pmatrix} u_b \\ v_b \end{pmatrix} e^{-ik_F x}$$

Induced Region

- Analogously, another initial conditions are obtained from the reduced region solution
- The form of the induced region solution is identical to that of reduced region solution

$$\varphi = \begin{pmatrix} u_a \\ v_a \end{pmatrix} e^{ik_F x} + \begin{pmatrix} u_b \\ v_b \end{pmatrix} e^{-ik_F x}$$

The Transmission Probability

The transmission formula is

$$T = 1 + A - B = 1 + |a_e|^2 - |b_e|^2$$

where

$$a_e = \frac{(1+Z^2)u_a v_a - Z^2 u_b v_b}{(1+Z^2)u_a^2 - Z^2 u_b^2} e^{-2ik_N x_N}$$

$$b_e = \frac{iZ(1 - iZ)(u_b v_a - u_a v_b)}{(1 + Z^2)u_a^2 - Z^2 u_b^2} e^{-2ik_N x_N}$$

0

BTK

Thicker Proximity Region

Raw Result for D-wave

