International Rectifier

IRF7530

HEXFET® Power MOSFET

- Trench Technology
- Ultra Low On-Resistance
- Dual N-Channel MOSFET
- Very Small SOIC Package
- Low Profile (<1.1mm)
- · Available in Tape & Reel

Description

New trench HEXFET® power MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The new Micro8™ package has half the footprint area of the standard SO-8. This makes the Micro8 an ideal device for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro8 will allow it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	5.4	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	4.3	A
I _{DM}	Pulsed Drain Current ①	40	
P _D @T _A = 25°C	Power Dissipation	1.3	W
P _D @T _A = 70°C	Power Dissipation	0.80	vv
	Linear Derating Factor	10	mW/°C
E _{AS}	Single Pulse Avalanche Energy®	33	mJ
V _{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	100	°C/W

IRF7530

International

TOR Rectifier

Electrical Characteristics @ T₁ = 25°C (unless otherwise specified)

	Electrical Characteristics & 1j = 25 C (amess otherwise specifica)					
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20			V	$V_{GS} = 0V, I_D = 250uA$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.030	Ω	V _{GS} = 4.5V, I _D = 5.4A ②
TVDS(on)	Static Brain to Gource On Nesistance			0.045	52	V _{GS} = 2.5V, I _D = 4.6A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g _{fs}	Forward Transconductance	13			S	$V_{DS} = 10V, I_D = 5.4A$
1	Drain to Source Leakage Current			1.0		V _{DS} = 16V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 12V
IGSS	Gate-to-Source Reverse Leakage			-100	IIA ·	V _{GS} = -12V
Qg	Total Gate Charge		18	26		I _D = 5.4A
Q _{gs}	Gate-to-Source Charge		3.4	5.1	nC	$V_{DS} = 16V$
Q _{gd}	Gate-to-Drain ("Miller") Charge		3.4	5.1		V _{GS} = 4.5V ②
t _{d(on)}	Turn-On Delay Time		8.5			$V_{DD} = 10V$
t _r	Rise Time		11		ns	$I_{D} = 1.0A$
t _{d(off)}	Turn-Off Delay Time		36		115	$R_G = 6.0\Omega$
t _f	Fall Time		16			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		1310			V _{GS} = 0V
Coss	Output Capacitance		180		pF	$V_{DS} = 15V$
C _{rss}	Reverse Transfer Capacitance		150			f = 1.0 MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			1.3		MOSFET symbol showing the
I _{SM}	Pulsed Source Current				Α	integral reverse
	(Body Diode) ①			40		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C$, $I_S = 1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		19	29	ns	$T_J = 25^{\circ}C, I_F = 1.3A$
Q _{rr}	Reverse RecoveryCharge		13	20	nC	di/dt = 100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ When mounted on 1 inch square copper board, t<10 sec
- $\begin{tabular}{ll} \Plag{0.2cm} \Plag{0.$

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

 I_D E_{AS} , Single Pulse Avalanche Energy (mJ) TOP 2.2A 4.0A BOTTOM 5.0A 60 40 0 **** 25 50 75 100 125 150 Starting T_J , Junction Temperature (°C)

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. On-Resistance Vs. Gate Voltage

Fig 13. On-Resistance Vs. Drain Current

IRF7530

MILLIMETERS

MIN MAX

0.13 0.18

0.65 BASIC

0.33 BASIC

0.91

0.25

4.78

0.41

1.11

0.20 0.10

0.36

3.05

5.03

0.66

INCHES

MIN MAX

.0256 BASIC

.0128 BASIC

.044

.008

.014

.007

.036

.116

.116

.188

0°

.016 .026

A1 .004

В .010

С .005

e1

Micro8™ Package Outline Dimensions are shown in millimeters (inches)

RECOMMENDED FOOTPRINT

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M-1982.
 CONTROLLING DIMENSION: INCH.
- 3 DIMENSIONS DO NOT INCLUDE MOLD FLASH.

Micro8™ Part Marking Information

EXAMPLE: THIS IS AN IRF7501

WW = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

LEAD ASSIGNMENTS

DATE CODE EXAMPLES: YWW = 9503 = 5C YWW = 9532 = EF	

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
1 994	4	0.4	D
1 995	5	1	1
1996	6		
1 997	7		
1 998	8	1	1
1 999	9	7	1
2000	0	24	X
		25	Υ
		26	Z

WW = (27-52) IF PRECEDED BY A LETTER

OLJ II THEOLDED DITTELL						
	YEAR	Υ	WORK WEEK	w		
	2001	Α	27	Α		
	2002	В	28	В		
	2003	С	29	С		
	1 994	D	30	D		
	1 995	Е	1	1		
	1 996	F				
	1 997	G				
	1 998	H	1	1		
	1 999	J	7	1		
	2000	K	50	X		
			51	Υ		
			52	Z		

IRF7530

International

TOR Rectifier

Micro8™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. OUTLINE CONFORMS TO EIA-481 & EIA-541.
- 2. CONTROLLING DIMENSION : MILLIMETER.

NOTES

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

This product has been designed and qualified for the consumer market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 04/04