Sparse Function-space Representation of Neural Networks

Aidan Scannell^{*12} Riccardo Mereu^{*1} Paul Chang¹ Ella Tamir¹ Joni Pajarinen¹ Arno Solin¹

¹Aalto University ²Finnish Center for Artificial Intelligence

TL;DR

TODO: Rewrite Deep neural networks are known to lack uncertainty estimates, struggle to incorporate new data, and suffer from catastrophic forgetting. We present a method that mitigates these issues by converting neural networks from weight-space to a low-rank function-space representation, via the so-called dual parameters. In contrast to previous work, our sparse representation captures the joint distribution over the entire data set, rather than only over a subset. This offers a compact and principled way of capturing uncertainty and enables us to incorporate new data without retraining whilst retaining predictive performance. We provide proof-of-concept demonstrations with the proposed approach for quantifying uncertainty in supervised learning on UCI benchmark tasks.

Regression w/ 2-layers MLP. Left: Predictions from the trained neural network. Middle: Our approach summarizes all the training data with the help of a set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it possible to incorporate new data without retraining the model.

Regression w/ 2-layers MLP. Left: Predictions from the trained neural network. Middle: Our approach summarizes all the training data with the help of a set of inducing points. The model captures the predictive mean and uncertainty, and (right) makes it possible to incorporate new data without retraining the model.

Model & Methods

Sub-heading

- Item here
- Another item

Background

- Item here
- Another item

Another sub-heading

- Item here
- Another item

Results

model dataset	BNN	GLM	GP Subset (GP)	GP Subset (NN)	NN MAP	SFR (GP)	SFR (NN)
Glass	0.9562 ± 0.2649	0.8966 ± 0.1424	1.5108 ± 0.0367	1.1420 ± 0.0738	1.8350 ± 0.6147	1.3709 ± 0.0375	1.0922 ± 0.1363
Waveform	0.2693 ± 0.0310	0.2676 ± 0.0227	0.2702 ± 0.0192	0.2670 ± 0.0162	0.2670 ± 0.0162	0.2657 ± 0.0163	0.2670 ± 0.0162

UCI Results. Comparisons and ablations on UCI data with negative log predictive density

- Item here
- Another item

Discussion

- Item here
- Another item

References

^[1] V. Adam, P. Chang, M. E. E. Khan, and A. Solin, "Dual parameterization of sparse variational Gaussian processes," in Advances in Neural Information Processing Systems 34 (NeurIPS), pp. 11474–11486, Curran Associates, Inc., 2021.

^[2]

^[3] A. Immer, M. Korzepa, and M. Bauer, "Improving predictions of Bayesian neural nets via local linearization," in Proceedings of The 24th International Conference on Artificial Intelligence and Statistics (AISTATS), vol. 130 of Proceedings of Machine Learning Research, pp. 703–711, PMLR, 2021.