

Unità T1: Rappresentazione dei dati

by Unknown Author is licensed under CC BY-SA

Come contiamo?

- Il sistema di numerazione del mondo occidentale (sistema indo-arabo) è:
 - decimale
 - posizionale

252 =

Come contiamo?

- Il sistema di numerazione del mondo occidentale (sistema indo-arabo) è:
 - o decimale
 - posizionale

$$252 = 2 \times 100 + 5 \times 10 + 2 \times 1$$
$$= 2 \times 10^{2} + 5 \times 10^{1} + 2 \times 10^{0}$$

Sistemi di numerazione

- Non posizionali (additivi):
 - egiziano
 - o romano
 - o greco
- Posizionali:
 - babilonese (2 cifre, sessagesimale)
 - inuit, selti, maya (ventesimale)
 - indo-arabo (decimale)
- Ibridi:
 - cinese

Sistema di numerazione posizionale

- Occorre definire la base B da cui discendono varie caratteristiche:
 - o cifre = { 0, 1, 2, ..., B-1 }
 - o peso della cifra i-esima = Bi
 - o rappresentazione (numeri naturali) su N cifre
 - $a_{N-1} a_{N-2} \dots a_3 a_2 a_1 a_0$

$$\mathbf{A} = \sum_{i=0}^{N-1} a_i \cdot \mathbf{B}^i$$

Il sistema binario

- Base = 2
- Cifre = { 0, 1 }
- BIT = BInary DigiT

Esempio:

$$101_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= 1 × 4 + 1 × 1
= 5₁₀

Binario e Decimale

ALCUNI NUMERI BINARI

0 0		1000 8
1 1		10019
10 2		101010
11 3		101111
100	4	110012
101	5	110113
110	6	111014
111	7	111115

ALCUNE POTENZE DI DUE

201	2 ⁹	512
2 ¹ 2	2 ¹⁰	1024
224	2 ¹¹	2048
238	2 ¹²	4096
2416	2 ¹³	8192
2 ⁵ 32	2 ¹⁴	16384
2 ⁶ 64	2 ¹⁵	32768
2 ⁷ 128	2 ¹⁶	65536
28256		

Conversione di numeri naturali da binario a decimale

Si applica direttamente la definizione effettuando la somma pesata delle cifre binarie:

$$1101_{2} = 1 \times 2^{3} + 1 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0}$$

$$= 8 + 4 + 0 + 1$$

$$= 13_{10}$$

Conversione da sistema decimale a binario

Dall'interpretazione della codifica binaria

- Regola pratica:
 - Divisioni successive per due
 - Si prendono i resti in ordine inverso

Limiti del sistema binario (rappresentazione naturale)

- Consideriamo numeri naturali in binario:
 - 1 bit ~ 2 numeri ~ { 0, 1 }₂ ~ [0 ... 1]₁₀
 - 2 bit ~ 4 numeri ~ { 00, 01, 10, 11}₂ ~ [0...3]₁₀
- Quindi in generale per numeri naturali a N bit:
 - o combinazioni distinte: 2^N
 - o intervallo di valori

```
0 \le x \le 2^{N} - 1 [ base 10 ] (000...0) \le x \le (111...1) [ base 2 ]
```

Terminologia

- Bit rappresenta una singola cifra
- Aggregazioni di bit rilevanti:
 - Byte = 8 bit
- Word = aggregazione di byte
 - 0 1,2,4,8
 - Utilizzate per le celle di memoria
- Dato un qualunque numero di bit

Limiti del sistema binario (rappresentazione naturale)

Bit	Simboli	Min ₁₀	Max ₁₀
4	16	0	15
8	256	0	255
16	65 536	0	65 535
32	4 294 967 296	0	4 294 967 295

Somma in binario

Regole base:

```
0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 (carry = 1)
```

Si effettuano le somme parziali tra i bit dello stesso peso, propagando gli eventuali riporti:

Sottrazione in binario

Regole base:

```
0 - 0 = 0

0 - 1 = 1 (borrow = 1)

1 - 0 = 1

1 - 1 = 0
```

Sottrazione in binario

Si effettuano le differenze parziali tra i bit dello stesso peso, gestendo gli eventuali prestiti:

	1			
1	0	0	1	-
0	1	1	0	=
0	0	1	1	

Overflow

Si usa il termine overflow per indicare l'errore che si verifica in un sistema di calcolo automatico quando il risultato di un'operazione non è rappresentabile con la medesima codifica e numero di bit degli operandi.

- L'overflow è una condizione "dinamica"
 - Esiste solo come risultato di un'operazione

Overflow

- Nella somma in binario puro si ha overflow quando:
 - o si lavora con numero fisso di bit
 - o si ha carry sul MSB
- Esempio: numeri da 4 bit codificati in binario puro

Overflow e linguaggi di programmazione

- In generale nei linguaggi di programmazione questi limiti sono reali
- Per esempio in C, dove gli interi occupano in genere 32 bit
 - Il massimo numero positivo rappresentabile è 2³¹-1 = 2147483647
 - Qualsiasi operazione che ecceda questo valore 'riparte da zero'

```
• Esempio:

x = 2^{31}-1

x = x + 1 # fa ZERO !!!
```

- Python usa invece una rappresentazione degli interi a precisione arbitraria
 - NON SI HA MAI OVERFLOW TRA INTERI!!!!

Il sistema ottale

- base = 8 (talvolta indicata con Q per Octal)
 - o cifre = { 0, 1, 2, 3, 4, 5, 6, 7 }
 - o utile per scrivere in modo compatto i numeri binari (3:1)

Il sistema esadecimale

- base = 16 (talvolta indicata con H per Hexadecimal)
 - o cifre = { 0, 1, ..., 9, A, B, C, D, E, F }
 - o utile per scrivere in modo compatto i numeri binari (4:1)

Rappresentazione dei numeri relativi

I numeri con segno

Il segno dei numeri può essere solo di due tipi:

```
positivo (+)negativo (-)
```

- È quindi facile rappresentarlo in binario ... ma non sempre la soluzione più semplice è quella migliore!
- Varie soluzioni, le più usate sono
 - Modulo e segno
 - Complemento a due

Codifica "modulo e segno"

- un bit per il segno (tipicamente il MSB):
 - \circ 0 = segno positivo (+)
 - \circ 1 = segno negativo ()

N-1 bit per il valore assoluto (anche detto modulo)

Modulo e segno: esempi

Usando una codifica su quattro bit:

Modulo e segno

- Svantaggi:
 - doppio zero (+ 0, 0)
 - o operazioni complesse
 - o es. somma A+B

$$A > 0$$
 $A < 0$
 $B > 0$ $A + B$ $B - |A|$
 $B < 0$ $A - |B|$ $-(|A| + |B|)$

Modulo e segno: limiti

In una rappresentazione M&S su N bit:

$$-(2^{N-1}-1) \le x \le +(2^{N-1}-1)$$

Esempi:

```
    8 bit = [-127 ... +127]
    16 bit = [-32 767 ... +32 767]
```

Codifica in complemento a due

- In questa codifica per un numero a N bit:
 - o il MSB ha peso negativo (pari a -2^{N-1})
 - gli altri bit hanno peso positivo

Ne consegue che MSB indica sempre il segno:

Complemento a due (esempio)

I numeri con segno

- Il segno dei numeri può essere solo di due tipi:
 - o positivo (+)
 - negativo ()
- Abbiamo visto due opzioni
 - Modulo e segno
 - Semplice da 'vedere', poco pratico per le operazioni
 - Complemento a due
 - Pratico per le operazioni
 - Usato da (praticamente) tutti i calcolatori

Da decimale a complemento a 2

 L'idea del complemento a due e' quella di evitare la netta separazione tra segno e modulo del M&S e fare in modo che l'intero valore binario sia posizionale

Chiave: il MSB va considerato con segno negativo !!!

Complemento a due (esempio)

Dati N bit, il MSB ha peso -2^{N-1}

Da decimale a complemento a 2

- Per convertire un numero decimale in complemento a 2:
- Se positivo, si effettua la solita conversione
- Se negativo:
 - Si converte il modulo in binario
 - Si complementa ogni bit (0->1, 1->0)
 - Si somma 1 (sul corrispondente numero di bit)

Da decimale a complemento a 2

Esempio

```
• +15 su 5 bit in c.a.2 \Rightarrow +15 = 01111<sub>2</sub> \Rightarrow 01111
```

```
■ -12 su 5 bit in c.a.2 \Rightarrow +12 = 01100<sub>2</sub> complementiamo i bit \Rightarrow 10011 sommiamo +1 (su 5 bit) \Rightarrow 10001 = 10100
```

Complemento a 2 e operazioni

- La rappresentazione in complemento a due è oggi la più diffusa perché semplifica la realizzazione dei circuiti per eseguire le operazioni aritmetiche
- Possono essere applicate le regole binarie a tutti i bit, segno compreso!

- La somma e sottrazione si effettuano direttamente, senza badare ai segni degli operandi
- La sottrazione si può effettuare sommando al minuendo il CA2 del sottraendo

Somma in CA2 - esempio

00100110 + 11001011

verifica: 38 + (-53) = -15

Sottrazione in CA2 - esempio

00100110 - 11001011

00100110 -11001011 = 01011011

verifica: 38 - (-53) = 91

Overflow nella somma in CA2

Operandi con segno discorde: non si può mai verificare overflow.

 Operandi con segno concorde: c'è overflow quando il risultato ha segno discorde.

In ogni caso, si trascura sempre il carry sul MSB.

Complemento a 2: limiti

In una rappresentazione c.a 2 su N bit:

$$-(2^{N-1}) \le x \le +(2^{N-1}-1)$$

Esempi:

```
\circ 8 bit = [-128 ... +127]
```

○ 16 bit = [-32 768 ... +32 767]

Riepilogo e Limiti della rappresentazione

Codifica	Valore minimo	Valore massimo	-1	0	+1	Overflow
Binario puro	000000	2 ^N -1 111111	N/A	000000	000001	Carry o Borrow sull'MSB
Modulo e Segno	-(2 ^{N-1} -1) 111111	2 ^{N-1} -1 0 11111	100001	000000 100000	000001	It's complicated
Complemento a 2	-2 ^{N-1} 100000	2 ^{N-1} -1 0 11111	111111	000000	000001	Coerenza del segno del risultato con i segni degli addendi

Rappresentazione di numeri reali

Rappresentazione di numeri reali

- Due opzioni:
 - 1. Dati N bit disponibili riservarne M per la parte frazionaria e N-M per la parte intera (VIRGOLA FISSA)

Implementare negli N bit la notazione esponenziale ("scientifica")
 (VIRGOLA MOBILE)

Perché virgola mobile?

- Virgola fissa = si riserva un numero di posizioni (bit) predefinite alla parte intera ed alla parte frazionaria
 - Precisione fissa
- NOTA: I bit della parte frazionaria hanno peso 2⁻ⁱ
 - E' sempre posizionale!
 - Esempio:

```
(1.23)_{10}= 1*10<sup>0</sup> + 2*10<sup>-1</sup> + 3*10<sup>-2</sup>
Allo stesso modo.
11.011 = 2<sup>1</sup>+ 2<sup>0</sup>+ 2<sup>-2</sup>+ 2<sup>-3</sup>= 2 +1 + 0.25+ 0.125 = 3.375
```

- Virgola mobile = precisione variabile
 - Nella stessa rappresentazione possiamo rappresentare sia numeri molto grandi (esponenti grandi) sia molto piccoli (esponenti piccoli)

Rappresentazione in virgola mobile (Floating Point)

Nella memoria del calcolatore si memorizzano:

- Segno
- Esponente (con il suo segno)
- Mantissa

 $X = \pm M \times 2^{E}$

Formato IEEE-754

- Mantissa nella forma '1,...' (valore max < 2)</p>
- Base dell'esponente pari a 2
- IEEE 754 SP: (float)

• IEEE 754 DP: (double)

Esempi

https://float.exposed/

half bfloat float double	
Value	
10.0	
Bit Pattern	
${\color{red} \underline{01000001} 0010000000000000000000000000000000000$	
Sign Raw Hexadecimal Integer Value	
0 0x41200000 =	
Exponent Raw Decimal Integer Value 130 1092616192	
Significand Hexadecimal Form ("Nat")	
2097152 0x1.4p+3	
Position within Significand-Exponent Flange 0 274-1	
1	
254 255	
Evaluation in Base-2	
(-1) °×10 (1000010 - 0111111) ×1. 0100000000000000000000	
Evaluation in Base-10	
1×2 ³ ×1.25	
Exact Base 10 Value	
1.0×10 ¹	
Delta to Next Previous Representable Value	
±9.5367431640625×10 ⁻⁷	
Copyright 0 2019 - Barbos Chechanowold	

Floating point ed approssimazioni

 La limitatezza della precisione porta ad avere problemi con le operazioni aritmetiche

- Alcuni numeri NON sono rappresentabili in modo esatto
 - E non sono numeri 'strani'...
 - Valori quali 0.1, 0.6 sono approssimati

IEEE-754 SP: intervallo di valori

Floating point ed approssimazioni

- La limitatezza della precisione porta ad avere problemi con le operazioni aritmetiche
- Esempio: in FP, la somma NON e' associativa!!!
 - x+(y+z) puo' essere diverso da (x+y)+z!
- Esempio:
 - $x = -1.5_{10} * 10^{38}$
 - $y = +1.5_{10} * 10^{38}$
 - $z = 1.0_{10}$
 - Eseguendo su calcolatore
 - $x+(y+z) = -1.5_{10} * 10^{38} + (1.5_{10} * 10^{38} + 1) =$ = $-1.5_{10} * 10^{38} + 1.5_{10} * 10^{38} = \mathbf{0}$
 - $(x+y)+z = (-1.5_{10} * 10^{38} + 1.5_{10} * 10^{38}) + 1 = 1$

Floating point e linguaggi di programmazione

- Diversamente dai numeri interi, lo standard dei numeri reali
 IMPONE I limiti di rappresentazione dello standard stesso
 - Tutti i linguaggi principali si adeguano a questo
- In Python, float = doppia precisione
 - O VALORI max RAPPRESENTABILI

±1.7976931348623157e308

- Fuori da questi range, diventa ±inf
- VALORI min RAPPRESENTABILI

± 2.2250738585072014e-308

Fuori da questi range, diventa 0

Rappresentazione di dati non numerici

Elaborazione dell'informazione non numerica

Informazione non numerica

- Il calcolatore è in grado di manipolare SOLO numeri!
- Per gestire dati non numerici l'unica possibilità è creare una corrispondenza tra oggetti e numeri
 - Ad ogni oggetto si assegna un codice univoco
 - Questo codice diventa la rappresentazione dell'oggetto
 - Nel calcolatore, il codice sara' binario...

Oggetti e numeri

- Assumendo di assegnare codici binari, dati N bit si possono codificare 2N «oggetti» distinti
- Esempio (3 bit):

Codici binari	000	001	010	011	100	101	110	111
oggetti	0	1	2	3	4	5	6	7

- Se viceversa ho M oggetti, per codificarli tutti dovrò usare un numero di bit N pari a N = log2 M
 - \circ In pratica, la prima potenza di 2 tale che $2^{N} > M$

Codifica dei caratteri: codice ASCII

- Occorre una codifica standard perché è il genere di informazione più scambiata:
 - codice ASCII (American Standard Code for Information Interchange)
- Usa 8 bit (originariamente 7 bit per US-ASCII) per rappresentare:
 - 52 caratteri alfabetici (a...z A...Z)
 - 10 cifre (0...9)
 - segni di interpunzione (,;!?...)
 - o caratteri di controllo

Codice ASCII

Dec	H	Oct	Cha	r	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html	Chr	Dec	Нх	Oct	Html Cl	nr
0	0	000	NUL	(null)	32	20	040		Space	64	40	100	@	0	96	60	140	`	*
1				(start of heading)				!			41	101	A	A	97	61	141	a	a
2				(start of text)	34	22	042	a#34;	**	66	42	102	a#66;	В	98	62	142	6#98;	b
3	3	003	ETX	(end of text)	35	23	043	@#35;	#	67	43	103	C	С	99	63	143	6#99;	C
4	4	004	EOT	(end of transmission)				\$	-				«#68;					d	
5	5	005	ENQ	(enquiry)				%		69			E					e	
6				(acknowledge)				6#38;		70			6#70;					6#102;	
7	7	007	BEL		39			'		71			G					@#103;	
8		010		(backspace)	40			(72			H					@#104;	
9				(horizontal tab))					6#73;					i	
10			$_{ m LF}$	(NL line feed, new line)				6#42;					6#74;					@#106;	
11		013		(vertical tab)				+	+				K					k	
12		014		(NP form feed, new page)				,					L					l	
13		015		(carriage return)				6#45;					6#77;					m	
14		016		(shift out)				a#46;					6#78;					n	
15		017		(shift in)	-			6#47;	-				6#79;					o	
			DLE					£#48;					P					p	
		021		(device control 1)				6#49;		81			4#81;					6#113;	
			DC2					6#50;					R					6#114;	
				(device control 3)				3					S					s	
				(device control 4)				4					 4 ;					t	
				(negative acknowledge)				6#53;					6#85;					6#117;	
				(synchronous idle)				 4 ;					V					6#118;	
				(end of trans. block)				7					W					6#119;	
				(cancel)				8					4#88;					6#120;	
		031		(end of medium)				6#57;					6#89;					6#121;	
		032		(substitute)				:					Z					6#122;	
			ESC	(escape)				;					[_				{	
		034		(file separator)				4#60;					6#92;					6#12 4 ;	
		035		(group separator)				=					6#93;	_				6#125;	
		036		(record separator)				>					4 ;					~	
31	1F	037	US	(unit separator)	63	ЗF	077	?	?	95	5F	137	_	_	127	7F	177	6#127;	DEL
													_						

Caratteri di controllo

```
CR (13) Carriage Return
LF, NL (10) New Line, Line Feed
FF, NP (12) New Page, Form Feed
   HT (9) Horizontal Tab
   VT (11) Vertical Tab
   NUL (0) Null
   BEL (7) Bell
   EOT (4) End-Of-Transmission
```

UNICODE e UTF-8

- Unicode utilizza 21 bit per carattere ed esprime tutti i caratteri di tutte le lingue del mondo (più di un milione), oltre agli emoji 🥳.
- È il codice usato per rappresentare i caratteri in Python
- UTF-8 è la codifica di Unicode su file più usata:
 - 1 byte per caratteri US-ASCII (MSB=0)
 - 2 byte per caratteri Latini con simboli diacritici, Greco, Cirillico, Armeno, Ebraico, Arabo, Siriano e Maldiviano
 - 3 byte per altre lingue di uso comune
 - 4 byte per caratteri rarissima
 - o raccomandata da IETF per e-mail

https://home.unicode.org/
https://unicode-table.com/it/

Codifiche o formati di testo/stampa

- Non confondere il formato di un file word, con il codice ASCII!!
- Un testo può essere memorizzato in due formati
 - Formattato: sono memorizzate sequenze di byte che definiscono l'aspetto del testo (e.g., font, spaziatura)
 - Non formattato: sono memorizzati unicamente i caratteri che compongono il testo

Codifiche audio, video, ...

- Molto più articolate, ma basate sul solito principio di associazione oggetti <-> codici
 - Per es: I colori sono codificati su 8 bit per canale (R,G,B), quindi fino a 256 sfumature di colore per canale

Oggetto di corsi più avanzati...