Day 1(30-07-2025): Dataset Preparation

Goal: Prepare high-quality balanced and imbalanced datasets from the raw dataset.

Tasks:

Load the original dataset (607448 reviews)

- Preprocess the text:
 - o Lowercase, remove punctuation
 - o Remove null values, duplicates etc

Create 2 datasets for intial training and prototyping.

- Balanced Dataset:
 - o 100.000 reviews
 - 20,000 samples for each star rating (1–5)
 - Used for training Model A
- **Imbalanced Dataset** (remaining 100,000):
 - o Distributed according to a realistic rating distribution
 - Used for training Model B
 - o Rating distribution:

 - \checkmark $4 \rightarrow 30\% \rightarrow 30,000$
 - $5 \rightarrow 20\% \rightarrow 20,000$
- Save: deep_balanced_dataset.csv, deep_imbalanced_dataset.csv

Steps:

- 1. Balanced dataset creation:
 - o Use .groupby('Rating').sample(n=16000)
 - o Save this 100k dataset for Model A
- 2. Imbalanced dataset creation:
 - o Drop balanced dataset rows (.drop(balanced df.index))
 - o Use .groupby('Rating').sample(n=X) with values per class from the table
- 3. **Ensure no overlap** between both sets

Output:

- Cleaned datasets ready for modeling
- Notebook: deep_dataset_preparation.ipynb

Day 2(31-07-2025): Model Training (Model A & Model B)

Goal: Train and save two separate deep learning models and document the training process of balanced model.

Tasks:

- Split both datasets into **Train** (80%) / **Test** (20%)
- Tokenize and pad sequences using Tokenizer
- Train:
 - \circ **Model A** \rightarrow Trained on balanced data
 - \circ **Model B** \rightarrow Trained on imbalanced data
- Model architecture: choose one
 - o Simple LSTM / Bi-LSTM
 - o RNN
 - o GRU
- Save models:
 - o deep model A.h5, deep_model B.h5
 - o deep_tokenizer.pkl
- Document the balanced model training process.

Output:

- Two trained models (A & B)
- Notebook:

deep balanced model training.ipynb, deep imbalanced model training.ipynb

• Pdf: deep_balanced_model_training.pdf

Day 3(01-07-2025): Evaluation & Cross-Testing

Goal: Test both models across both test sets to compare fairness and generalization and document the imbalanced training process

Tasks:

- Evaluate Model A on:
 - o Balanced test set
 - o Imbalanced test set
- Evaluate Model B on:
 - Imbalanced test set
 - o Balanced test set
- Report:
 - o Accuracy, precision, recall, F1-score (macro/weighted)
 - Confusion matrices (save visuals)
 - o Class-wise performance comparison
- Document model behaviors, strengths, and weaknesses
- Document imbalanced training process.

Output:

- Notebook: deep evaluation and cross test.ipynb
- Plots: Confusion matrices, score tables
- Summary: evaluation_report.pdf, deep_balanced_model_training.pdf

Day 4(02-08-2025): Flask UI Development

Goal: Build a simple Flask web app that accepts review input and shows predictions from both models.

Tasks:

- Create folder: ui/
- File: app.py
 - o Load both .h5 models and tokenizer
 - o Preprocess user input
 - Predict with both models
- Template: templates/index.html
 - Text input
 - o Two prediction outputs (Model A & B)
- Test locally (flask run)
- Add screenshot for documentation

Output:

- Flask app with functional UI
- Folder: ui/
- Screenshot: flask ui.png

Day 5(03-08-2025): Documentation & GitHub Push

Goal: Finalize all documentation and push code + reports to GitHub.

Tasks:

- Write README.md:
 - Project intro
 - o Dataset creation
 - Preprocessing
 - Model architectures
 - o Evaluation results
 - o UI instructions
 - o Screenshot of UI
- Create PDFs:
 - Model A report
 - o Model B report
 - Balanced training report
 - o Imbalanced training report

- o Cross test summary
- o UI design flow + deep learning summary
- Folder structure:

Output:

- Fully documented project
- Live local Flask UIRepo ready for submission