MTAT.07.003 Cryptology II Spring 2012 / Exercise session ?? / Example Solution

Exercise (Security of encrypt-and-sign). Consider a following message transmission protocol. A sender \mathcal{P}_1 knows the public encryption key pk_2 of a receiver \mathcal{P}_2 and the receiver \mathcal{P}_2 knows the public signing key pk_1 of the sender \mathcal{P}_1 . To encrypt a message m the sender sk computes $c \leftarrow \mathsf{Enc}_{\mathsf{pk}_2}(m)$, $s \leftarrow \mathsf{Sign}_{\mathsf{sk}_1}(c)$ and sends (c,s) over unreliable channel to \mathcal{P}_2 . The receiver \mathcal{P}_2 first checks the authenticity by computing $\mathsf{Ver}_{\mathsf{pk}_1}(c,s)$ and then decrypts the message $m \leftarrow \mathsf{Dec}_{\mathsf{sk}_2}(c)$. Prove that the protocol remains secure even if the adversary gets oracle access to the receiver, i.e., it can send any tuples c,s and obtain the corresponding decryption.

Solution. Let us first formalise two games that are analog of IND-CCA2 security games... Next let us prove that the decryption queries will yield $m \neq \bot$ with small enough probability Based on this let us define trivial decryption oracle and reduce the security to IND-CPA games...