- 33. (2 points) Alice and Bob have agreed to meet between 1 PM and 2 PM. Both arrive independently at some random time, uniformly distributed. Let X_A be the arrival time of Alice, in minutes after 1PM, and let X_B be the corresponding arrival time of Bob. Then the waiting time for Alice is $W_A = \max(X_B - X_A, 0)$. Use a suitable simulation to generate 1000 random samples of W_A , find its mean, and make an empirical cumulative distribution function.
- **34.** (2 points) Suppose X has an exponential distribution with parameter λ and Y|X=x has a Poisson distribution with parameter x. For $\lambda=1$, generate at least 1000 random samples from the conditional distribution of X|Y=2 and make a histogram.
- **35.** (2 points) Suppose X and Y have standard normal distributions. Make at least 1,000 random samples from $Z = Y | (X + Y \ge 1)$. Do you think that Z has a normal distribution? What are its approximate mean and standard deviation?
- **36.** (2 points) Suppose X is a real valued random variable (discrete or continuous) and Y = aX + b + Z, where a, b are real numbers and Z is an "error" term that is independent of X and that satisfies $\mathcal{E}(Z) = 0$. Show that $\mathcal{E}(Y|X) = aX + b$.
- 37. (5 points) Rejection Sampling (J. v. Neumann 1951). We want to generate random samples from some discrete distribution over a finite range \mathcal{R} , with pmf p(x) for $x \in \mathcal{R}$. However, we don't know p(x) exactly. Instead we only know some function $\ell(x)$ that is a constant multiple of p(x), i.e. $\ell(x) = cp(x)$, with unknown c. Of course $c = \sum_{x \in \mathcal{R}} \ell(x)$, but if the range \mathcal{R} is very large and/or the function $\ell(x)$ is expensive to evaluate, this may be hard to compute. We must also know some number $M \ge \max_{cx \in \mathcal{R}} \ell(x)$ and N, the number of elements in \mathcal{R} .

In rejection sampling, one repeats the following steps until enough samples have been generated.

- a) Generate a random sample $y \in \mathcal{R}$ from the uniform distribution Y on \mathcal{R} , i.e. $\mathcal{P}(Y=y)=\frac{1}{N}$ for all $y\in\mathcal{R}$. b) Generate a random sample $U\sim U(0,1)$ from the uniform distribution on
- (0,1), independent of Y.
- c) If $U < \frac{\ell(y)}{M}$, accept the point y and set X = y. Otherwise reject the point and try again. Let A be the event that a point Y that is generated in step a) is accepted.

Show that X has the pmf p(x), i.e. $\mathcal{P}(X=x)=p(x)$ for all x, using the following steps. Let $x \in \mathcal{R}$ be arbitrary.

- a) Explain in one sentence why $\mathcal{P}(X=x) = \mathcal{P}(Y=x|\mathcal{A})$.
- b) Determine $\mathcal{P}(A|Y=x)$ (easy!).
- c) Use the law of total probability formula to show that $\mathcal{P}(\mathcal{A}) = \frac{c}{MN}$.
- d) Compute P(X = x) = P(Y = x | A) by reversing the conditioning in b). Use a) and c) for this step.
- **38.** (5 points) Suppose that X has a Poisson distribution with parameter $\lambda = 50$, U has a uniform U(0,1) distribution, and Y|X = x, U = p has a B(x,p)distribution.
- a) Use a simulation to make a histogram of the distribution of Y.

- b) Use a simulation to make a histogram of the conditional distribution of X|Y=25.
- **39.** (5 points) Mixtures. Let Y_1 and Y_2 be two random variables which have the same range \mathcal{R} , and let w_1, w_2 probabilities with $w_1 + w_2 = 1$. Then the mixture Y of Y_1 and Y_2 is defined as follows:
 - a) Select $X \in \{1, 2\}$ at random, with $\mathcal{P}(X = 1) = w_1$, $\mathcal{P}(X = 2) = w_2$.
 - b) If X = 1, draw a sample Y_1 and set $Y = Y_1$. Otherwise, draw a sample Y_2 and set $Y = Y_2$.
 - 1. Suppose $E(Y_1) = \mu_1$ and $E(Y_2) = \mu_2$. What is E(Y|X=1)? What is E(Y|X=2)? What is E(Y)?
 - 2. Suppose $var(Y_1) = \sigma_1^2$ and $var(Y_2) = \sigma_2^2$. What is $E(Y^2|X=1)$? What is $E(Y^2|X=2)$? What is var(Y)? Careful!
 - 3. Generate a sample of size 10,000 from $Y_1 \sim N(-2,1)$, $Y_2 \sim N(1,2)$, $w_1 = \frac{1}{5}$, $w_2 = \frac{4}{5}$ and make a probability histogram. Clearly this is not a normal distribution, and a mixture is not a sum!
- 40. (2 points) Problem 4.4 #6 in Chihara/Hesterberg. First use the Central Limit Theorem to find the approximate distribution of the mean height of random samples of 30 boys, then use dnorm().