PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Burgatt

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : C12Q 1/34, C12N 11/00, C07K 7/06	Al	(11) International Publication Number: (43) International Publication Date:	WO 98/20156
(21) International Application Number: PCT/CA9 (22) International Filing Date: 3 November 1997 (0 (30) Priority Data: 60/030,408 4 November 1996 (04.11.96))3.11.9°) U	Anthony [CA/CA]; 16711 Trans land, Quebec H9H 3L1 (CA). (74) Agent: MURPHY, Kevin, P.; Swab 1600, 1981 McGill College, Mor (CA). (81) Designated States: CA, JP, US, Euro	Canada Highway, Kirk- ey Ogilvy Renault, Suite ureal, Quebec H3A 2Y3
 (71) Applicant (for all designated States except US): FROSST CANADA INC. [CA/CA]; 16711 Trans Highway, Kirkland, Quebec H9H 3L1 (CA). (72) Inventors; and (75) Inventors/Applicants (for US only): DESMARAIS [CA/CA]; 16711 Trans Canada Highway, Kirklan bec H9H 3L1 (CA). FRIESEN, Richard [CA/CA] Trans Canada Highway, Kirkland, Quebec H9H 3L GRESSER, Michael [US/CA]; 16711 Trans Canad way, Kirkland, Quebec H9H 3L1 (CA). KENNED [CA/CA]; 16711 Trans Canada Highway, Kirklan bec H9H 3L1 (CA). NICHOLSON, Don [CA/CA] Trans Canada Highway, Kirkland, Quebec H9H 3L RAMACHANDRAN, Chidambaran [CA/CA]; 167 Canada Highway, Kirkland, Quebec H9H 3L1 (CA) REY, Kathryn [CA/CA]; 16711 Trans Canada Kirkland, Quebec H9H 3L1 (CA). FORD-HUTCH 	S. Sylv nd, Qu .]; 167 L1 (CA da Hig DY, Bri nd, Qu .]; 167 L1 (CA TI Tra A), SKO Highwa	Published With international search report. Before the expiration of the time claims and to be republished in to amendments. han e- to be the expiration of the time claims and to be republished in to amendments. han e- to be the expiration of the time claims and to be republished in to amendments.	e limit for amending the

(54) Title: HYDROLASE BINDING ASSAY

(57) Abstract

Disclosed is a binding assay for proteases and phosphatases, which contain cysteine in their binding sites or as a necessary structural component for enzymatic binding. The sulfhydryl group of cysteine is the nucleophilic group in the enzyme's mechanistic proteolytic and hydrolytic properties. The assay can be used to determine the ability of new, unknown ligands and mixtures of compounds to competitively bind with the enzyme versus a known binding agent for the enzyme, e.g., a known enzyme inhibitor. By the use of a mutant form of the natural or native wild-type enzyme, in which serine, or another amino acid, e.g., alanine, replaces cysteine, the problem of interference from extraneous oxidizing and alkylating agents in the assay procedure is overcome. The interference arises because of oxidation or alkylation of the sulfhydryl, -SH (or -S⁻), in the cysteine, which then adversely affects the binding ability of the enzyme. Specifically disclosed is an assay for tyrosine phosphatases and cysteine proteases, including capsases and cathepsins, e.g., Cathepsin K(O2), utilizing scintillation proximity assay (SPA) technology. The assay has important applications in the discovery of compouds for the treatment and study of, for example, diabetes, immunosuppression, cancer, Alzheimer's disease and osteoporosis. The novel feature of the use of a mutant enzyme can be extended to its use in a wide variety of conventional colorimetric, photometric, spectrophotometric, radioimmunoassay and ligand-binding competitive assays.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Słovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
Bŀ	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
ВJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	H	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	ľľ	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbahwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Po land		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU:	Russian Federation		
DF	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

TITLE OF THE INVENTION
HYDROLASE BINDING ASSAY

5

10

20

FIELD OF THE INVENTION

This invention relates to the use of mutant phosphatase and protease enzymes in a competitive binding assay. Specific examples are the enzymes, tyrosine phosphatase and cysteine protease, e.g. Cathepsin K, and the assay specifically described is a scintillation proximity assay using a radioactive inhibitor to induce scintillation.

15 BACKGROUND OF THE INVENTION

The use of the scintillation proximity assay (SPA) to study enzyme binding and interactions is a new type of radioimmunoassay and is well known in the art. The advantage of SPA technology over more conventional radioimmunoassay or ligand-binding assays, is that it eliminates the need to separate unbound ligand from bound ligand prior to ligand measurement. See for example, Nature, Vol. 341, pp. 167-178 entitled "Scintillation Proximity Assay" by N. Bosworth and P. Towers, Anal. Biochem. Vol. 217, pp. 139-147 (1994) entitled "Biotinylated and Cysteine-Modified Peptides as Useful Reagents For Studying the Inhibition of Cathersin G" by A.M. Brown, et al., Anal. Biochem. Vol. 223, pp. 259-265 (1994) entitled "Direct Measurement of the Binding of RAS to Neurofibromin Using Scintillation Proximity Assay" by R. H. Skinner et al. and Anal. Biochem. Vol. 230, pp. 101-107(1995) entitled "Scintillation Proximity Assay to Measure Binding of Soluble

Fibronectin to Antibody-Captured alpha5ß1 Integrin" by J. A. Pachter *et al*.

The basic principle of the assay lies in the use of a solid support containing a scintillation agent, wherein a target enzyme is attached to the support through, e.g., a second enzyme-antienzyme linkage. A known tritiated or I¹²⁵ iodinated binding agent, i.e., radioligand inhibitor ligand for the target enzyme is utilized as a control, which when bound to the active site in the target enzyme, is in close proximity to the scintillation agent to induce a scintillation signal, e.g., photon emission, which can be measured by conventional scintillation/radiographic techniques. The unbound tritiated (hot) ligand is too far removed from the scintillation agent to cause an interfering measurable scintillation signal and therefore does not need to be separated, e.g., filtration, as in conventional ligand-binding assays.

10

15

20

25

30

The binding of an unknown or potential new ligand (cold, being non-radioactive) can then be determined in a competitive assay versus the known radioligand, by measuring the resulting change in the scintillation signal which will significantly decrease when the unknown ligand also possesses good binding properties.

However, a problem arises when utilizing a target enzyme containing a cysteine group, having a free thiol linkage, - SH,(or present as -S⁻) which is in the active site region or is closely associated with the active site and is important for enzyme-ligand binding. If the unknown ligand or mixture, e.g. natural product extracts, human body fluids, cellular fluids, etc. contain reagents which can alkylate, oxidize or chemically interfere with the cysteine thiol group such that normal enzyme-ligand binding is disrupted, then false readings will occur in the assay.

What is needed in the art is a method to circumvent and avoid the problem of cysteine interference in the scintillation proximity assay (SPA) procedure in enzyme binding studies.

SUMMARY OF THE INVENTION

We have discovered that by substituting serine for cysteine in a target enzyme, where the cysteine plays an active role in the wild-type enzyme-natural ligand binding process, usually as the catalytic nucleophile in the active binding site, a mutant is formed which can be successfully employed in a scintillation proximity assay without any active site cysteine interference.

This discovery can be utilized for any enzyme which contains cysteine groups important or essential for binding and/or catalytic activity as proteases or hydrolases and includes phosphatases, e.g., tyrosine phosphatases and proteases, e.g. cysteine proteases, including the cathepsins, i.e., Cathepsin K (O2) and the capsases.

Further, use of the mutant enzyme is not limited to the scintillation proximity assay, but can be used in a wide variety of known assays including colorimetric, spectrophotometric, ligand-binding assays, radioimmunoassays and the like.

We have furthermore discovered a new method of amplifying the effect of a binding agent ligand, e.g., radioactive inhibitor, useful in the assay by replacing two or more phosphotyrosine residues with 4-phosphono(difluoromethyl) phenylalanine (F2Pmp) moieties. The resulting inhibitor exhibits a greater and more hydrolytically stable binding affinity for the target enzyme and a stronger scintillation signal.

By this invention there is provided a process for determining the binding ability of a ligand to a cysteine-containing wild-type enzyme comprising the steps of:

(a) contacting a complex with the ligand, the complex comprising a mutant form of the wild-type enzyme, in which cysteine, at the active site, is replaced with serine, in the presence of a known binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable signal.

35

30

5

10

15

20

25

Further provided is a process for determining the binding ability of a ligand, preferably a non-radioactive (cold) ligand, to an active site cysteine-containing wild-type tyrosine phosphatase comprising the steps of:

comprising a mutant form of the wild-type enzyme, the mutant enzyme being PTP1B, containing the same amino acid sequence 1-320 as the wild type enzyme, except at position 215, in which cysteine is replaced with serine in the mutant enzyme, in the presence of a known radioligand binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable beta radiation-induced scintillation signal.

Also provided is a new class of peptide binding agents selected from the group consisting of:

N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH₂), where E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl; N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;

N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-

25 phosphono(difluoromethyl)]-L-phenylalanine amide;

L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;

L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;

30 L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;

L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide; and

L-I soleucinyl-[4-phosphono (difluoromethyl)]-L-phenylalanyl-[4-phosphono-phono-phono (difluoromethyl)]-L-phenylalanyl-[4-phosphono (difluoromethyl)]-L-phenyl

(difluoromethyl)]-L-phenylalanine amide; and their tritiated and 1¹²⁵ iodinated derivatives.

Further provided is a novel tritiated peptide, tritiated BzN-EJJ-CONH₂, being N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono-(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide, wherein E as used herein is glutamic acid and J, as used herein, is the (F₂Pmp) moiety, (4-phosphono(difluoromethyl)-phenylalanyl).

Furthermore there is provided a process for increasing the binding affinity of a ligand for a tyrosine phosphatase or cysteine protease comprising introducing into the ligand two or more 4-phosphono(difluoromethyl)-phenylalanine groups; also provided is the resulting disubstituted ligand.

In addition there is provided a complex comprised of:

- (a) a mutant form of a wild-type enzyme, in which cysteine, necessary for activity in the active site, is replaced with serine and is attached to:
- (b) a solid support.

BRIEF DESCRIPTION OF THE DRAWINGS

5

10

15

30

35

FIGURE 1 illustrates the main elements of the invention including the scintillation agent 1, the supporting (fluomicrosphere) bead 5, the surface binding Protein A 10, the linking anti-GST enzyme 15, the fused enzyme construct 20, the GST enzyme 25, the mutant enzyme 30, the tritiated peptide inhibitor 35, the beta radiation emission 40 from the radioactive peptide inhibitor 35 and the emitted light 45 from the induced scintillation.

FIGURE 2 (A and B) illustrates the DNA and amino acid sequences for PTP1B tyrosine phosphatase enzyme, truncated to amino acid positions 1-320. (Active site cysteine at position 215 is in bold and underlined).

FIGURE 3 (A, B and C) illustrates the DNA and amino acid sequences for Cathepsin K. The upper nucleotide sequence represents the cathepsin K cDNA sequence which encodes the cathepsin K preproenzyme (indicated by the corresponding three letter amino acid codes). Numbering indicates the cDNA nucleotide

position. The underlined amino acid is the active site Cys¹³⁹ residue that was mutated to either Ser or Ala.

FIGURE 4 (A and B) illustrates the DNA and amino acid sequences for the capsase, apopain. The upper nucleotide sequence represents the apopain (CPP32) cDNA sequence which encodes the apopain proenzyme (indicated by the corresponding three letter amino acid codes). Numbering indicates the cDNA nucleotide position. The underlined amino acid is the active site Cys ¹⁶³ residue that was mutated to Ser.

DETAILED DESCRIPTION OF THE INVENTION

5

10

15

20

25

30

35

The theory underlying the main embodiment of the invention can be readily seen and understood by reference to FIGURE 1.

Scintillation agent <u>1</u> is incorporated into small (yttrium silicate or PVT fluomicro-spheres, AMERSHAM) beads 5 that contain on their surface immunosorbent protein A 10. The protein A coated bead $\underline{5}$ binds the GST fused enzyme construct $\underline{20}$, containing GST enzyme 25 and PTP1B mutant enzyme 30, via anti-GST enzyme antibody 15. When the radioactive e.g., tritiated, peptide 35 is bound to the mutant phosphatase enzyme 30, it is in close enough proximity to the bead $\underline{5}$ for its beta emission $\underline{40}$ (or Auger electron emission in the case of I^{125}) to stimulate the scintillation agent 1 to emit light (photon emission) 45. This light 45 is measured as counts in a beta plate counter. When the tritiated peptide 35 is unbound it is too distant from the scintillation agent 1 and the energy is dissipated before reaching the bead <u>5</u>, resulting in low measured counts. Nonradioactive ligands which compete with the tritiated peptide 35 for the same binding site on the mutant phosphatase enzyme 30 will remove and/or replace the tritiated peptide <u>35</u> from the mutant enzyme <u>30</u> resulting in lower counts from the uncompeted peptide control. By varying the concentration of the unknown ligand and measuring the resulting lower counts, the inhibition at 50%(IC50) for ligand binding to the mutant enzyme 30 can be obtained. This then is a measure of

the binding ability of the ligand to the mutant enzyme and the wildtype enzyme.

The term "complex" as used herein refers to the assembly containing the mutant enzyme. In its simplest embodiment, the complex is a solid support with the mutant enzyme attached to the surface of the support. A linker can also be employed. As illustrated in FIGURE 1, the complex can further comprise a bead (fluopolymer), anti-enzyme GST/enzyme GST-mutant enzyme-PTP1 linking construct, immunosorbent protein A, and scintillation agent. In general, the complex requires a solid support (beads, immunoassay column of e.g., Al₂O₃, or silica gel) to which the mutant enzyme can be anchored or tethered by attachment through a suitable linker, e.g., an immunosorbent (e.g., Protein A, Protein G, anti-mouse, anti-rabbit, anti-sheep) and a linking assembly, including an enzyme/anti-enzyme construct attached to the solid support.

10

15

20

25

30

35

The term "cysteine-containing wild-type enzyme", as used herein, includes all native or natural enzymes, e.g., phosphatases, cysteine proteases, which contain cysteine in the active site as the active nucleophile, or contain cysteine clearly associated with the active site that is important in binding activity.

The term "binding agent" as used herein includes all ligands (compounds) which are known to be able to bind with the wild-type enzyme and usually act as enzyme inhibitors. The binding agent carries a signal producing agent , e.g., radionuclide, to initiate the measurable signal. In the SPA assay the binding agent is a radioligand.

The term "measurable signal" as used herein includes any type of generated signal, e.g., radioactive, colorimetric, photometric, spectrophotometric, scintillation, which is produced when binding of the radioligand binding agent to the mutant enzyme.

The present invention assay further overcomes problems encountered in the past, where compounds were evaluated by their ability to affect the reaction rate of the enzyme in the phosphatase activity assay. However this did not give direct evidence that compounds were actually binding at the active site of the enzyme. The herein described invention binding assay using a substrate

PCT/CA97/00825 WO 98/20156

analog can determine directly whether the mixtures of natural products can irreversibly modify the active site cysteine in the target enzyme resulting in inhibition of the enzymatic activity. To overcome inhibition by these contaminates in the phosphatase assay, a mutated Cys(215) to Ser(215) form of the tyrosine phosphatase PTP1B was cloned and expressed resulting in a catalytically inactive enzyme. In general, replacement of cysteine by serine will lead to a catalytically inactive or substantially reduced activity mutant enzyme.

5

35

10 PTP1B is the first protein tyrosine phosphatase to be purified to near homogeneity (Tonks et al. JBC 263, 6731-6737 (1988)) and sequenced by Charbonneau et al. PNAS 85, 7182-7186 (1988). The sequence of the enzyme showed substantial homology to a duplicated domain of an abundant protein present in hematopoietic cells 15 variously referred to as LCA or CD45. This protein was shown to possess tyrosine phosphatase activity (Tonks et al. Biochemistry 27, 8695-8701 (1988). Protein tyrosine phosphatases have been known to be sensitive to thiol oxidizing agents and alignment of the sequence of PTP1B with subsequently cloned Drosophila and mammalian 20 tyrosine phosphatases pointed to the conservation of a Cysteine residue (M. Strueli et al. Proc. Nat'l Acad USA, Vol. 86, pp. 8698-7602 (1989)) which when mutated to Ser inactivated the catalytic activity of the enzymes. Guan et al.(1991) {J.B.C. Vol. 266, 17926-17030, 1991} cloned the rat homologue of PTP1B, expressed a truncated version of the protein in bacteria, purified and showed the Cys at position 215 is 25 the active site residue. Mutation of the Cvs^{215} to Ser^{215} resulted in loss of catalytic activity. Human PTP1B was cloned by Chernoff et al. Proc. Natl. Acad. Sci. USA 87, 2735-2739 (1990).

Work leading up to the development of the substrate analog BzN-EJJ-CONH2 for PTP1B was published by T. Burke et al. 30 Biochem. Biophys. Res. Comm. 205, pp. 129-134 (1994) with the synthesis of the hexamer peptide containing the phosphotyrosyl mimetic F₂Pmp. We have incorporated the (F₂Pmp) moiety (4phosphono-(difluoromethyl)phenylalanyl) into various peptides that led to the discovery of BzN-EJJ-CONH2, (where E is glutamic acid and J as used herein is the F₂Pmp moiety) an active (5 nM) inhibitor

of PTP1B. This was subsequently tritiated giving the radioactive substrate analog required for the binding assay.

5

10

15

20

25

30

35

The mutated enzyme, as the truncated version, containing amino acids 1-320 (see FIGURE 2), has been demonstrated to bind the substrate analog Bz-NEJJ-CONH2 with high affinity for the first time. The mutated enzyme is less sensitive to oxidizing agents than the wild-type enzyme and provides an opportunity to identify novel inhibitors for this family of enzymes. The use of a mutated enzyme to eliminate interfering contaminates during drug screening is not restricted to the tyrosine phosphatases and can be used for other enzyme binding assays as well.

Other binding assays exist in the art in which the basic principle of this invention can be utilized, namely, using a mutant enzyme in which an important and reactive cysteine important for activity can modified to serine (or a less reactive amino acid) and render the enzyme more stable to cysteine modifying reagents, such as alkylating and oxidizing agents. These other ligand-binding assays include, for example, colorimetric and spectrophotometric assays, e.g. measurement of produced color or fluorescence, phosphorescence (e.g. ELISA, solid absorbant assays) and other radioimmunoassays in which short or long wave light radiation is produced, including ultraviolet and gamma radiation).

Further, the scintillation proximity assay can also be practiced without the fluopolymer support beads (AMERSHAM) as illustrated in FIGURE 1. For example, Scintistrips® are commercially available (Wallac Oy, Finland) and can also be employed as the scintillant-containing solid support for the mutant enzyme complex as well as other solid supports which are conventional in the art.

The invention assay described herein is applicable to a variety of cysteine-containing enzymes including protein phosphatases, proteases, lipases, hydrolases, and the like.

The cysteine to serine transformation in the target enzyme can readily be accomplished by analogous use of the molecular cloning technique for Cys²¹⁵ to Ser²¹⁵ described in the below-cited reference by M. Strueli *et al.*, for PTP1B and is hereby incorporated by reference for this particular purpose.

A particularly useful class of phosphatases is the tyrosine phosphatases since they are important in cell function. Examples of this class are: PTP1B, LCA, LAR, DLAR, DPTP(See Strueli et al., below). Ligands discovered by this assay using, for example, PTP1B can be useful, for example, in the treatment of diabetes and immunosuppression.

5

10

25

30

A useful species is PTP1B, described in *Proc. Nat'l Acad USA*, Vol. 86, pp. 8698-7602 by M. Strueli *et al.* and *Proc. Nat'l Acad Sci. USA*, Vol 87, pp. 2735-2739 by J. Chernoff *et al.*

Another useful class of enzymes is the proteases, including cysteine proteases (thiol proteases), cathepsins and capsases.

The cathepsin class of cysteine proteases is important since Cathepsin K (also termed Cathepsin O2, see *Biol. Chem. Hoppe-*

- 15 Seyler, Vol. 376 pp. 379-384, June 1995 by D. Bromme et al.) is primarily expressed in human osteoclasts and therefore this invention assay is useful in the study and treatment of osteoporosis. See US Patent 5,501,969 (1996) to Human Genome Sciences for the sequence, cloning and isolation of Cathepsin K (O2). See also J. Biol.
- 20 Chem. Vol. <u>271</u>, No. 21, pp. 12511-12516 (1996) by F. Drake et al. and Biol. Chem. Hoppe-Seyler, Vol. <u>376</u>, pp. 379-384(1985) by D. Bromme et al., supra.

Examples of the cathepsins include Cathepsin B, Cathepsin G, Cathepsin J, Cathepsin K(O2), Cathesin L, Cathepsin M, Cathepsin S.

The capsase family of cysteine proteases are other examples where the SPA technology and the use of mutated enzymes can be used to determine the ability of unknown compounds and mixtures of compounds to compete with a radioactive inhibitor of the enzyme. An active site mutant of Human Apopain CPP32 (capsase-3) has been prepared. The active site thiol mutated enzymes are less sensitive to oxidizing agents and provide an opportunity to identify novel inhibitors for this family of enzymes.

Examples of the capsase family include: capsase-1(ICE), 35 capsase-2 (ICH-1), capsase-3 (CPP32, human apopain, Yama), capsase-4(ICE_{rel}-11, TX, ICH-2), capsase-5(ICE_{rel}-111, TY), capsase-

6(Mch2), capsase-7(Mch3, ICE-LAP3, CMH-1), capsase-8(FLICE, MACH, Mch5), capsase-9 (ICE-LAP6, Mch6) and capsase-10(Mch4).

Substitution of the cysteine by serine (or by any other amino acid which lowers the activity to oxidizing and alkylating agents, e.g., alanine) does not alter the binding ability of the mutant enzyme to natural ligands. The degree of binding, i.e., binding constant, may be increased or decreased. The catalytic activity of the mutant enzyme will, however, be substantially decreased or even completely eliminated. Thus, natural and synthetic ligands which bind to the natural wild-type enzyme will also bind to the mutant enzyme.

5

10

15

20

25

30

35

Substitution by serine for cysteine also leads to the mutant enzyme which has the same qualititative binding ability as the natural enzyme but is significantly reduced in catalytically activity. Thus, this invention assay is actually measuring the true binding ability of the test ligand.

The test ligand described herein is a new ligand potentially useful in drug screening purposes and its mode of action is to generally function as an inhibitor for the enzyme.

The binding agent usually is a known ligand used as a control and is capable of binding to the natural wild-type enzyme and the mutant enzyme employed in the assay and is usually chosen as a known peptide inhibitor for the enzyme.

The binding agent also contains a known signal-producing agent to cause or induce the signal in the assay and can be an agent inducing e.g., phosphorescence or fluorescence (ELISA), color reaction or a scintillation signal.

In the instant embodiment, where the assay is a scintillation assay, the signal agent is a radionuclide, i.e., tritium, I¹²⁵, which induces the scintillant in the solid support to emit measurable light radiation, i.e., photon emission, which can be measured by using conventional scintillation and beta radiation counters.

We have also discovered that introducing two or more 4-phosphonodifluoromethyl phenylalanine (F₂Pmp) groups into a known binding agent greatly enhances the binding affinity of the

binding agent to the enzyme and improves its stability by rendering the resulting complex less susceptible to hydrolytic cleavage.

A method for introducing one F2Pmp moiety into a ligand is known in the art and is described in detail in *Biochem*.

5 Biophys. Res. Comm. Vol. <u>204</u>, pp. 129-134 (1994) hereby incorporated by reference for this particular purpose.

As a result of this technology we discovered a new class of ligands having extremely good binding affinity for PTP1B. These include:

- N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-
- phosphono(difluoromethyl)]-L-phenylalanine amide, L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
- 2() L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, and L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide.
- A useful ligand in the series is Bz-NEJJ-CONH2, whose chemical name is: N-Benzoyl-L-glutamyl-[4-phosphono(difluoro-methyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenyl-alanineamide, and its tritiated form, N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-difluoromethyl)]-L-phenylalanineamide.

Synthesis of both cold and hot ligands is described in the Examples.

The following Examples are illustrative of carrying out the invention and should not be construed as being limitations on the scope or spirit of the instant invention.

35

EXAMPLES

1. Preparation of PTP1B Truncate (Amino Acid Sequence from 1-320) and Fused GST-PTP1B Construct

An *E. coli* culture carrying a PET plasmid expressing the full length PTP1B protein was disclosed in J. Chernoff *et al. Proc Natl. Acad. Sci. USA*, 87, pp. 2735-2739, (1990). This was modified to a truncated PTP1B enzyme complex containing the active site with amino acids 1-320 inclusive, by the following procedure:

10

15

20

The full length human PTP-1B cDNA sequence (published in J. Chernoff et al., PNAS, USA, supra) cloned into a PET vector was obtained from Dr. Raymond Erickson (Harvard University). The PTP-1B cDNA sequence encoding amino acids 1-320 (Seq. ID No. 1) was amplified by PCR using the full length sequence as template. The 5' primer used for the amplification included a Bam HI site at the 5' end and the 3' primer had an Eco RI site at the 3' end. The amplified fragment was cloned into pCR2 (Invitrogen) and sequenced to insure that no sequence errors had been introduced by Taq polymerase during the amplification. This sequence was released from pCR2 by a Bam HI/Eco RI digest and the PTP-1B cDNA fragment ligated into the GST fusion vector pGEX-2T (Pharmacia) that had been digested with the same enzymes. The GST-PTP-1B fusion protein expressed in E. Coli has an active protein tyrosine phosphatase activity. This same 1-320 PTP-1B sequence (Seq. ID No.

1) was then cloned into the expression vector pFLAG-2, where FLAG is the octa-peptide AspTyrLysAspAspAspAspLys. This was done by releasing the PTP-1B sequence from the pGEX-2T vector by Nco I/Eco RI digest, filling in the ends of this fragment by Klenow and bluntend ligating into the blunted Eco RI site of pFLAG2. Site-directed mutagenesis was performed on pFLAG2-PTP-1B plasmid using the Chameleon (Stratagene) double-stranded mutagenesis kit from

mutagenesis was performed on pFLAG2-PTP-1B plasmid using the Chameleon (Stratagene) double-stranded mutagenesis kit from Stratagene, to replaced the active-site Cys-215 with serine. The mutagenesis was carried out essentially as described by the manufacturer and mutants identifed by DNA sequencing. The

35 FLAG-PTP-1B Cys215Ser mutant (Seq. ID No. 7) was expressed, purified and found not to have any phosphatase activity. The GST-

PTP-1B Cys²¹⁵Ser mutant was made using the mutated Cys²¹⁵Ser sequence of PTP-1B already cloned into pFLAG2, as follows. The pFLAG2- PTP-1B Cys²¹⁵Ser plasmid (Seq. ID No. 7) was digested with Sal I (3' end of PTP-1B sequence), filled in using Klenow

- polymerase (New England Biolabs), the enzymes were heat inactivated and the DNA redigested with Bgl II. The 500 bp 3' PTP-1B cDNA fragment which is released and contains the mutated active site was recovered. The pGEX-2T-PTP-1B plasmid was digested with Eco RI (3' end of PTP-1B sequence), filled in by Klenow,
- phenol/chloroform extracted and ethanol precipitated. This DNA was then digested with Bgl II, producing two DNA fragments a 500 bp 3' PTP-1B cDNA fragment that contains the active site and a 5.5 Kb fragment containing the pGEX-2T vector plus the 5' end of PTP-1B. The 5.5 Kb pGEX-2T 5' PTP-1B fragment was recovered and ligated with the 500 bp Bgl II/Sal I fragment containing the mutated active site. The ligation was transformed into bacteria (type DH5α, G) and

with the 500 bp Bgl II/Sal I fragment containing the mutated active site. The ligation was transformed into bacteria (type DH5α, G) and clones containing the mutated active site sequence identified by sequencing. The GST-PTP-1B Cys²¹⁵Ser mutant was overexpressed, purified and found not to have any phosphatase activity.

20

30

2. <u>Preparation of Tritiated Bz-NEJJ-CONH2</u>

This compound can be prepared as outlined in Scheme 1, below, and by following the procedures:

25 Synthesis of N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-ÇONH2)

1.0 g of TentaGel® S RAM resin (RAPP polymer, ~ 0.2 mmol/g) as represented by the shaded bead in Scheme 1, was treated with piperidine (3 mL) in DMF (5 mL) for 30 min. The resin (symbolized by the circular P, containing the remainder of the organic molecule except the amino group) was washed successively with DMF (3 x 10 mL) and CH₂Cl₂ (10 mL) and air dried. A solution of DMF (5 mL), N^{∞} -Fmoc-4-[diethylphosphono-(difluoromethyl)]-L-

phenylalanine (350 mg) , where Fmoc is 9-fluorenylmethoxycarbonyl, and O-(7-azabenzotriazol-1-yl)-1,1,3,3-tetramethyluranium hexafluorphosphate,(acronym being HATU, 228 mg) was treated with diisopropyl-ethylamine (0.21 mL) and, after 15 min., was added to the resin in 3 mL of DMF. After 1 h, the resin was washed successively with DMF (3x10 mL) and CH2Cl2 (10 mL) and air dried. The sequence was repeated two times, first using N°-Fmoc-4-[diethylphosphono-(difluoromethyl)]-L-phenylalamine and then using N-Fmoc-L-glutamic acid gamma-t-butyl ester. After the final coupling, the resin bound tripeptide was treated with a mixture of piperidine (3 mL) in DMF (5mL) for 30 min. and was then washed successively with DMF (3x10 mL) and CH2Cl2 (10 mL) and air dried.

5

10

15

20

25

30

To a solution of benzoic acid (61 mg) and HATU (190 mg) in DMF (1 mL) was added disopropylethylamine (0.17 mL) and, after 15 min. the mixture was added to a portion of the resin prepared above (290 mg) in 1 mL DMF. After 90 min. the resin was washed successively with DMF (3 x 10 mL) and CH₂Cl₂ (10 mL) and air dried. The resin was treated with 2 mL of a mixture of TFA: water (9:1) and 0.05 mL of triisopropylsilane (TIPS-H) for 1 h. The resin was filtered off and the filtrate was diluted with water (2 mL) and concentrated in vacuo at 35°C. The residue was treated with 2.5 mL of a mixture of TFA:DMS:TMSOTf (5:3:1) and 0.05 mL of TIPS-H, and stirred at 25°C for 15 h. (TFA is trifluoroacetic acid, DMS is dimethyl sulfate, TMSOTf is trimethylsilyl trifluoromethanesulfonate).

The desired tripeptide, the title compound, was purified by reverse phase HPLC (C18 column, 25 x 100 mm) using a mobile phase gradient from 0.2% TFA in water to 50/50 acetonitrile/0.2% TFA in water over 40 min. and monitoring at 230 nm. The fraction eluting at approximately 14.3 min. was collected, concentrated and lyophylized to yield the title compound as a white foam.

Synthesis of N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(dilfuoromethyl)]-L-phenylalanineamide

- The above procedure described for the preparation of BzN-EJJ-CONH2 was repeated, but substituting 3,5-dibromobenzoic acid for benzoic acid. After HPLC purification as before, except using a gradient over 30 min. and collecting the fraction at approximately 18.3 min., the dibromo containing tripeptide was obtained as a white foam.
- A portion of this material (2 mg) was dissolved in methanol/triethylamine (0.5 mL, 4/1), 10% Pd-C (2 mg) was added, and the mixture stirred under an atmosphere of tritium gas for 24 h. The mixture was filtered through celite, washing with methanol and the filtrate was concentrated. The title compound was obtained after purification by semi-preparative HPLC using a C18 column and an isocratic mobile phase of acetonitrile/0.2% TFA in water (15:100). The fraction eluting at approximately 5 min. was collected and concentrated *in vacuo*. The title compound was dissolved in 10 mL of methanol/water (9:1) to provide a 0.1 mg/mL solution of specific activity 39.4 Ci/mmol.

20

SCHEME 1

TentaGel® S RAM polymer

HATU, $(i\text{-Pr})_2\text{NEt}$, DMF 2. piperidine, DMF

PCT/CA97/00825 WO 98/20156

SCHEME 1 CONT'D

1.
$$CO_2(t\text{-Bu})$$

HATU, $(i\text{-Pr})_2\text{NEt}$, DMF

2. piperidine, DMF

(EtO) $_2\text{OP}$

(EtO) $_2\text{OP}$

(EtO) $_2\text{OP}$

(EtO) $_2\text{OP}$

(EtO) $_2\text{OP}$

(EtO) $_2\text{OP}$

1. $(X = H \text{ or Br})$

HATU, $(\dot{F}Pr)_2NEt$, DMF 2. piperidine, DMF

$$(EtO)_2OP \longrightarrow H \longrightarrow H \longrightarrow X$$

$$(EtO)_2OP \longrightarrow H \longrightarrow CO_2(t-Bu)$$

$$F F$$

SCHEME 1 CONT'D

1. TFA-H₂O (9:1)

2. TFA-DMS-TMSOTf-TIPSH

3. HPLC purification

4. for X = Br: T₂ (g), 10% Pd-C MeOH, Et₃N; HPLC purification

By following the above described procedure for BzN-EJJ-CONH₂, the following other peptide inhibitors were also similarly

5 prepared:

N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,

1() L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide,
L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-

phosphono(difluoromethyl)]-L-phenylalanine amide, L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide, and

L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide.

4. Phosphatase Assay Protocol

5

I()

15

20

Materials:

EDTA - ethylenediaminetetraacetic acid (Sigma)

DMH - N,N'-dimethyl-N,N'-bis(mercaptoacetyl)hydrazine (synthesis published in *J. Org. Chem.* 56, pp. 23322337,(1991) by R. Singh and G.M. Whitesides and can be substituted with DTT - dithiothreitol Bistris - 2,2-bis(hydroxymethyl)2,2',2"nitrilotriethanol-(Sigma) Triton X-100 - octylphenolpoly(ethyleneglycolether) 10 (Pierce) Antibody: Anti-glutathione S-transferase rabbit (H and L) fraction (Molecular Probes) Enzyme: Human recombinant PTP1B, containing amino acids 1-320, (Seq. ID No. 1) fused to GST enzyme (glutathione S-transferase) purified by affinity chromatography. Wild type (Seq. ID No. 1) contains active site cysteine(215), whereas mutant (Seq. ID No. 7) contains active site serine(215).

Tritiated peptide: Bz-NEJJ-CONH₂, Mwt. 808, empirical formula, C₃₂H₃₂T₂O₁₂P₂F₄

Stock Solutions

25 (10X) Assay Buffer

500 mM Bistris (Sigma), pH 6.2,

MW=209.2

20mM EDTA (GIBCO/BRL)

Store at 4° C.

Prepare fresh daily:

30

Assay Buffer (1X) 50 mM Bistris (room temp.) 2 mM EDTA

5 mM DMH (MW=208)

Enzyme Dilution

Buffer (keep on ice)

50 mM Bistris

 $2~\mathrm{mM}$ EDTA

5 mM DMH

20% Glycerol (Sigma)

0.01 mg/ml Triton X-100 (Pierce)

Antibody Dilution

Buffer (keep on ice)

50 mM Bistris

2 mM EDTA

10

15

30

5

IC50 Binding Assay Protocol:

Compounds (ligands) which potentially inhibit the binding of a radioactive ligand to the specific phosphatase are screened in a 96-well plate format as follows:

To each well is added the following solutions @ $25^{\circ}\mathrm{C}$ in the following chronological order:

1. 110 ul of assay buffer.

2() 2. 10 μ l. of 50 nM tritiated BzN-EJJ-CONH2 in assay buffer (1X) @ 25°C.

- 3. 10 μ l. of testing compound in DMSO at 10 different concentrations in serial dilution (final DMSO, about 5% v/v) in duplicate @ 25°C.
- 4. 10 μ l. of 3.75 μ g/ml purified human recombinant GST-PTP1B in enzyme dilution buffer.
 - 5. The plate is shaken for 2 minutes.
 - 6. 10 µl. of 0.3 µg/ml anti-glutathione S-transferase (anti-GST) rabbit IgG (Molecular Probes) diluted in antibody dilution buffer @ 25° C.
 - 7. The plate is shaken for 2 minutes.
 - $_{\rm 8.}$ $_{\rm 50~\mu l.}$ of protein A-PVT SPA beads (Amersham) @ 25°C.
- 9. The plate is shaken for 5 minutes. The binding signal is quantified on a Microbeta 96-well plate counter.
 - 10. The non-specific signal is defined as the enzymeligand binding in the absence of anti-GST antibody.

11. 100% binding activity is defined as the enzymeligand binding in the presence of anti-GST antibody, but in the absence of the testing ligands with the non-specific binding subtracted.

5

12. Percentage of inhibition is calculated accordingly.

- 13. IC50 value is approximated from the non-linear regression fit with the 4-parameter/multiple sites equation (described in: "Robust Statistics", New York, Wiley, by P.J. Huber (1981) and reported in nM units.
- 10 Test ligands (compounds) with larger than 90% inhibition at $10~\mu M$ are defined as actives.

The following Table I illustrates typical assay results of examples of known compounds which competitively inhibit the binding of the binding agent, BzN-EJJ-CONH2.

Non- Mutated Mutated	14 nM 8 nM	400 nM 100 nM	
Compound Structure	Control: Tripeptide(F2PMP)2	DADE(F2PMP)L hexapeptide (T. Burke et al, Biochem. Biophys. Res. Comm. 204, 129, (1994))	

TABLE I (Cont'd.)

SH-specific binding: Vanadate	·=-	2 μM	>100 uM
Insulin Receptor Peptide	$Asp \longrightarrow Asp$ $Asp \longrightarrow Tyr$ $O = S = O$	17 µМ	70 µМ
Potential Oxidizing agents: Hydrogen peroxide Quirione	H2O2	90% at 83 µM 4 µM	0% at 83 μΜ >100 μΜ
Potential Alkylating agents: Imine		67% at 2 µM	10% at 2 µМ

TABLE II

Raw Data Counts (dpm) (duplicates)

	ou	annbody			conc. B	conc. BzN-EJJ-CONH2, nM	NH2, nM					
	antibody					_	_	_	_	_	_	-
	(-control)	(+ control)	250	125	62.5	125 62.5 31.25 15.625		7.813	3.906	3.906 1.953		0.977 0.488
dom	252	5652	288	873	757	1550	2775	3367	4743	5220	5454	5384
fundi	304	0389	273	588	1109	1337	2525	4165	4838	4838 5581 5781	5781	6211

no	antibody			conc. B	conc. Bz-EJJ-CONH2, nM	1H2, nM					
antibody			u		_	_	_	_	_	_	
(-control)	(+control)	250	125	62.5	31.25	250 125 62.5 31.25 15.625	7.813	3.906 1.953	1.953	0.977 0.488	0.488
100	5	100	100 90 92	92	78	56	45	21	12	. 8	6
100	∞-	100	100 95 85	85	81	09	30	119	9	<u></u>	-5

Preparation of Cathepsin K(O2) Mutant (CAT-K Mutant)

5

10

35

Cathepsin K is a prominent cysteine protease in human osteoclasts and is believed to play a key role in osteoclast-mediated bone resorption. Inhibitors of cathepsin K will be useful for the treatment of bone disorders (such as osteoporosis) where excessive bone resorption occurs. Cathepsin K is synthesized as a dormant preproenzyme (Seq. ID No. 4). Both the pre-domain (Met ¹-Ala ¹⁵) and the prodomain (Leu ¹⁶-Arg ¹¹⁴) must be removed for full catalytic activity. The mature form of the protease (Ala ¹¹⁵-Met ³²⁹) contains the active site Cys residue (Cys ¹³⁹).

The mature form of cathepsin K is engineered for expression in bacteria and other recombinant systems as a Met Ala¹¹⁵-Met³²⁹ construct by PCR-directed template modification of a clone that is identified. Epitope-tagged variants are also generated: 15 (Met[FLAG]Ala¹¹⁵-Met³²⁹ and Met Ala¹¹⁵-Met³²⁹[FLAG]; where FLAG is the octa-peptide AspTyrLysAspAspAspAspLys). For the purpose of establishing a binding assay, several other constructs are generated including Met[FLAG]Ala 115 -[Cys 139 to Ser 139]-Met 329 and Met Ala 115 -[Cys 139 to Ser 139]-Met 329 [FLAG] (where the active site 20 Cys is mutated to a Ser residue), and $\text{Met}[\text{FLAG}]\text{Ala}^{115}\text{-}[\text{Cys}^{139}$ to ${\rm Ala^{139}}$]- ${\rm Met^{329}}$ and ${\rm Met~Ala^{115}}$ -[Cys¹³⁹ to ${\rm Ala^{139}}$]- ${\rm Met^{329}}$ [FLAG] (where the active site Cys is mutated to an Ala residue). In all cases, the resulting re-engineered polypeptides can be used in a binding assay by tethering the mutated enzymes to SPA beads via specific 25 anti-FLAG antibodies that are commercially available (IDI-KODAK). Other epitope tags, GST and other fusions can also be used for this purpose and binding assay formats other than SPA can also be used. Ligands based on the prefered substrate for cathepsin K (e.g. Ac-P2-P₁, Ac-P₂-P₁-aldehydes, Ac-P₂-P₁-ketones; where P₁ is an amino 30 acid with a hydrophilic side chain, preferably Arg or Lys, and P2 is

P₁, Ac-P₂-P₁-aldehydes, Ac-P₂-P₁-ketones; where P₁ is an amino acid with a hydrophilic side chain, preferably Arg or Lys, and P₂ is an amino acid with a small hydrophobic side chain, preferably Leu, Val or Phe) are suitable in their radiolabeled (tritiated) forms for SPA-based binding assays. Similar binding assays can also be established for other cathepsin family members.

Preparation of Apopain (capsase-3) Mutant

5

10

15

20

25

30

Apopain is the active form of a cysteine protease belonging to the capsase superfamily of ICE/CED-3 like enzymes. It is derived from a catalytically dormant proenzyme that contains both the 17 kDa large subunit (p17) and 12 kDa (p12) small subunit of the catalytically active enzyme within a 32 kDa proenzyme polypeptide (p32). Apopain is a key mediator in the effector mechanism of apoptotic cell death and modulators of the activity of this enzyme, or structurally-related isoforms, will be useful for the therapeutic treatment of diseases where inappropriate apoptosis is prominent, e.g., Alzheimer's disease.

The method used for production of apopain involves folding of active enzyme from its constituent p17 and p12 subunits which are expressed separately in *E. coli*. The apopain p17 subunit $(\mathrm{Ser}^{29}\text{-}\mathrm{Asp}^{175})$ and p12 subunit $(\mathrm{Ser}^{176}\text{-}\mathrm{His}^{277})$ are engineered for expression as MetSer²⁹-Asp¹⁷⁵ and MetSer¹⁷⁶-His²⁷⁷ constructs. respectively, by PCR-directed template modification. For the purpose of establishing a binding assay, several other constructs are generated, including a MetSer²⁹-[Cys¹⁶³ to Ser¹⁶³]-Asp¹⁷⁵ large subunit and a Met 1-[Cys 163 to Ser 163]-His 277 proenzyme. In the former case, the active site Cys residue in the large subunit (p17) is replaced with a Ser residue by site-directed mutagenesis. This large subunit is then re-folded with the recombinant p12 subunit to generate the mature form of the enzyme except with the active site Cys mutated to a Ser. In the latter case, the same Cys 163 to Ser 163 mutation is made, except that the entire proenzyme is expressed. In both cases, the resulting re-engineered polypeptides can be used in a binding assay by tethering the mutated enzymes to SPA beads via specific antibodies that are generated to recognize apopain (antibodies against the prodomain, the large p17 subunit, the small p12 subunit and the entire p17:p12 active enzyme have been generated). Epitope tags or GST and other fusions could also be used for this purpose and binding assay formats other than SPA can also be used.

Ligands based on the prefered substrate for apopain

(varients of AspGluValAsp), such as Ac- AspGluValAsp, AcAspGluValAsp-aldehydes, Ac-AspGluValAsp-ketones are suitable

in their radiolabeled forms for SPA-based binding assays. Similar binding assays can also be established for other capsase family members.

5 DESCRIPTION OF THE SEQUENCE LISTINGS

15

30

35

- SEQ ID NO. 1 is the top sense DNA strand of Figures 2A and 2B for the PTP1B tyrosine phosphatase enzyme.
- I() SEQ ID NO. 2 is the amino acid sequence of Figures 2A and 2B for the PTP1B tyrosine phosphatase enzyme.
 - SEQ ID NO. 3 is the top sense cDNA strand of Figures 3A, 3B and 3C for the Cathepsin K preproenzyme.
 - SEQ ID NO. 4 is the amino acid sequence of Figures $3A,\,3B$ and 3C for the Cathepsin K preproenzyme.
- SEQ ID NO. 5 is the top sense cDNA strand of Figures 4A and 4B 20 for the CPP32 apopain proenzyme.
 - SEQ ID NO. 6 is the amino acid sequence of Figures 4A and 4B for the CPP32 apopain proenzyme.
- 25 SEQ ID NO. 7 is the cDNA sequence of the human PTP-1B₁₋₃₂₀ Ser mutant.
 - SEQ ID NO. 8 is the amino acid sequence of the human PTP-1B₁₋₃₂₀ Ser mutant.
 - SEQ ID NO. 9 is the cDNA sequence for apopain C163S mutant.
 - SEQ ID NO. 10 is the amino acid sequence for the apopain C163S mutant.
 - SEQ ID NO. 11 is the large subunit of the heterodimeric amino acid sequence for the apopain C163S mutant.

SEQ ID NO. 12 is the cDNA sequence for the Cathepsin K C139S mutant.

- 5 SEQ ID NO. 13 is the cDNA sequence for the Cathepsin K C139A mutant.
 - SEQ ID NO. 14 is the amino acid sequence for the Cathepsin K C139S mutant.
- SEQ ID NO. 15 is the amino acid sequence for the Cathepsin K C139A mutant.

(()

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- I) APPLICANT: DESMARAIS, SYLVIE
 FRIESEN, RICHARD
 GRESSEF, MICHAEL
 KENNEDY, BRIAN
 NICHOLSON, DONALD

RAMACHANDRAN, CHIDAMBARAN

SKOREY, KATHRYN

FORD-HUTCHINSON, ANTHONY

- (11) TITLE OF THE INVENTION: PHOSPHATASE BINDING ASSAY
- (111) NUMBER OF SEQUENCES: 15
- (11) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ROBERT J. NORTH MERCK & CO., INC.
 - (B) STREET: 126 EAST LINCOLN AVENUE P.O. BOX 2000
 - (C) CITY: RAHWAY
 - (D) STATE: NJ
 - (E) COUNTRY: USA
 - (F) ZIP: 07065
- TV: COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWAFE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER: net known
 - (B) FILING DATE: (4-NOV-1996
 - (C) CLASSIFICATION:
- (vii) PRIOF APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: NORTH, ROBERT J
 - (E) REGISTRATION NUMBER: 27,366
 - (C) REFERENCE/DOCKET NUMBER: 19824 PCT
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 732-594-7262
 - (B) TELEFAX: 732-594-4720
 - (C) TELEX:
 - (2) INFORMATION FOR SEQ ID NO:1:
 - : SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - D) TOPOLOGY: linear

- 11 MODESULE TYPE: SEMA
- we deprend description deprim Note:

	CGAGCAGATC	GACAAGTCCG	GGAGCTGGGC	GGCCATTTAC	÷û
CAGGATATOO GACATGAAGO	CAGTGACTTC	CCATGTAGAG	TGGCCAAGCT	TOCTAAGAAC	120
AAAAACCGAA ATAGGTACAG	AGACGTCAGT	COUTTTGACC	ATAGTEGGAT	TAAACTACAT	180
CAAGAAGATA ATGACTATAT	CAACGCTAGT	TTGATAAAAA	TGGAAGAAGC	CCAAAGGAGT	240
TAGATTOTTA COCAGGGCC	TTTGCCTAAC	ACATGOGGTO	ACTTTTGGGA	GATGGTGTGG	300
GAGCAGAAAA GCAGGGGTGT	CGTCATGCTC	AACAGAGTGA	TGGAGAAA 3G	TTCGTTAAAA	360
TGCGCACAAT ACTGGCCACA	AAAAGAAGAA	AAAGAGATGA	TOTTTGAAGA	CACAAATTTG	420
AAATTAACAT TGATOTOTGA	AGATATOAAG	TCATATTATA	CAGTGCGACA	GCTAGAATTG	480
GAAAACCTTA CAACCCAAGA	AACTOGAGAG	ATCTTACATT	TOCACTATAC	CACATGGCCT	540
GACTTTGGAG TOOCTGAATO	ACCAGC ITCA	TTOTTGAACT	TTCTTTTCAA	AGTOCGAGAG	600
TCAGGGTCAC TCAGCCCGGA	GCACGGG CCC	GTTGTGGTGC	ACTGCAGTGC	AGGCATCGGC	660
AGGTOTGGAA COTTOTGTOT	GGCTGATACC	TGCCTCCTGC	TGATGGACAA	GAGGAAAGAC	720
COTTOTTOGG TTGATATCAA	GAAAGTGOTG	TTAGAAATGA	GBAAGTTTOG	GATGGGGTTG	780
ATCCAGACAG COGACCAGCT	JOGETT STEE	TACCTGGCTG	TGATCGAAGG	TGCCAAATTC	840
ATCATGGGG ACTOTTCCGT	GCAGGATCAG	TGGAAGGAGC	TTTCCCACGA	GGACCTGGAG	900
COCCOACCC AGCATATICC	CCCACCTCCC	CGGCCACCCA	AACGAATCCT	GGAGCCACAC	960
TGA					963

(2) INFORMATION FOR SEQ ID NO:2:

- SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 320 amino arids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

 Met
 Glu
 Lys
 Glu
 Phe
 Glu
 Glu
 Glu
 Ser
 Trp

 1
 1
 5
 1
 4
 10
 1
 5
 15
 15

 Ala
 Ala
 1le
 Tyr
 Glu
 Asp
 1le
 Asp
 His
 Glu
 Ala
 Ser
 Asp
 Phe
 Pro
 Cys

 Arg
 Val
 Ala
 Lys
 Leu
 Pro
 Lys
 Asp
 Lys
 Asp
 Arg
 Tyr
 Arg
 Arg

	Met		1.00					105					110		
	Met	15					120					125			
	Glu 130	Lys				135					140				
145	Ser				150					155					TPO
	Asn			165					170					1/5	
	Thr		180					185					190		
	Phe	195					200					205			
	Pro 210	Val				215					220				
225	Cys				230					235					240
Pro	Ser			245					250					255	
	Met		260					265					270		
	Vāl	275					280					285			
	Gln 290	Trp	Lys			295					300				
His	Ile	Pro	Pro	Pro	Pro 310		Pro	Pro	Lys	Arg 315	Ile	Leu	Glu	Pro	His 320

(2) INFORMATION FCF. SEQ ID NO:3:

- 11. SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1669 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TCFOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GAAACAAGCA	CTGGATTCCA	TATCCCACTG	CCAAAACCGC	ATGGTTCAGA	TTATCGCTAT	60
TGCAGCTTTC	ATCATAATAC	ACACCTTTGC	TGCCGAAACG	AAGCCAGAGA	ACAGATTTCC	120
ATCAGCAGGA	TGTGGGGGTT	CAAGGTTCTG	CTGCTACCTG	TGGTGAGCTT	TGCTCTGTAC	180
CCTGAGGAGA	TACTGGACAC	CCACTGGGAG	CTATGGAAGA	AGACCCACAG	GAAGCAATAT	240
AACAACAAGG	TGGATGAAAT	CTCTCGGCGT	TTAATTTGGG	AAAAAACCT	GAAGTATATT	300
TOCATCCATA	ACCTTGAGGC	TTCTCTTGGT	GTCCATACAT	ATGAACTGGC	TATGAACCAC	360
CTGGGGGACA	TGACCAGTGA	AGA-GGTGGTT	CAGAAGATGA	CTGGACTCAA	AGTACCCCTG	420
TOTCATTOOC	GCAGTAATGA	CACCOTTTAT	ATCCCAGAAT	GGGAAGGTAG	AGCCCCAGAC	480
TOTGTOGACT	ATCGAAAGAA	AGGATATGTT	ACTCCTGTCA	AAAATEAGGG	TCABTGTGGT	540
TOOTGTTGGG	CTTTTAGCTC	TGTGGGTGCC	CTGGAGGGCG	AACTCAAGAA	GAAAACTGGC	600
AAACTOTTAA	ATCTGAGTCC	CCAGAACCTA	GTGGATTGTG	TGTCTGAGAA	TGATGGCTGT	660

03 A 3333337	ATATUACCAA	TGCCTTCCAA	TATOTOCAGA	AGAACCGGGG	TATTGACTOT	720
SAASATS: ET	ACCOAMAMGM	GGGACAGGAA	SAGASTTSTA	TOTACATO	AACAGGGAAG	-ô
TARRATE	GCAGAGGGTA	CAGAGAGATC	CCCGAGGGGA	ATGAGAAAGC	CCTGAAGAGG	546
SCACTACT.	GAGTGGGACL	TGTGTGTGTG	GOCATTGATG	CAAGCOTGAC	CTCCTTCCAG	306
TTTTACAGCA	AAGGTGTGTA	TTATGATGAA	AGCTGCAATA	GOGATAATOT	GAACCATGCG	360
STTTTGGCAG	TGGGATATGG	AATOCAGAAG	GGAAACAAGC	ACTGGATAAT	TAAAAACAGG	1020
TGGGGAGAAA	ACTGGGGAAA	CAAAGGATAT	ATCCTCATGG	CTCGAAATAA	GAACAAOGOO	1080
TGTGGGATTG	CCAACCTGGC	CAGCTTCCCC	AA GATGTGAC	TOCAGOCAGO	CAAATCCATC	1146
ongonomed	ATTTCTTCCA	CGATGGTGCA	GTGTAACGAT	GCACTTTGGA	AGGGAGTTGG	1200
TGTGCTATTT	TTGAAGCAGA	TGTGGTGATA	CTGAGATTGT	CTGTTCAGTT	TOCCOATTTG	1260
TTTGTGGTTC	AAATGATOOT	TOOTAOTTTG	CTTCTCTCCA	CCCATGACCT	TTTTCACTGT	1320
GGCCATCAGU	ACTITICCITG	ACAGOTOTGT	ACTOTTAGGO	TAAGAGATGT	GACTACAGCC	1380
TGCCCCTGAC	TGTGTTGTCC	CAGGGCTGAT	GCTGTACAGG	TACAGGCTGG	AGATTTTCAC	1440
ATAGGTTAGA	TTSTCATTCA	CGGGACTAGT	TAGCTTTAAG	CACCCTAGAG	GACTAGGGTA	1500
ATCTGACTTC	TCACTTCCTA	AGTTOCOTTC	TATATCCTCA	AGGTAGAAAT	GTCTATGTTT	1560
TCTACTCCAA	TTGATAAAT©	TATTCATAAG	TCTTTGGTAC	AAGTTTACAT	GATAAAAAGA	1620
AATGTGATTT	GTGTTGCCTT	CTTTGCACTT	TTGAAATAAA	GTATTTATC		1669

12 INFORMATION FOR SEQ ID NO:4:

- Hi SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TCPOLOGY: linear
- 11 MOLECULE TYPE: peptide
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Met Trp Gly Leu Lys Val Leu Leu Pro Val Val Ser Phe Ala Leu 10 Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr 20 25 30 His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu IIe Ser Arg Arg Leu 35 40 45 Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala
 50
 60 Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Ash His Leu Gly Asp 65 70 75 80 75 70 Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro 85 9.0 Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 100 105 Gly Ard Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr 115 120 125 Fro Val Lys Ash Gln Gly Gln Cys Glv Ser Cys Trp Ala Ph- Ser Ser

PCT/CA97/00825 WO 98/20156

3.4.5					Gly 150					155					150
Asn	Leu	Ser	Pro	31m 165	Asn	Leu	Val	Asp	Cys 170	Val	Ser	Glu	Asn	Asp 175	Gly
			180	T;::	Met			185					190		
		195	Asp		Glu		200					205			
	1.0	Met			Pro	215					220				
225	Glu				31y 230					235					240
Arg				245	Ser				250					∠>>	
			260		Gly			265					270		
		275			Val		280					285			
	290	His			Ile	295					300				
⊥уs 305	$G1_T$	Tyu	Ile	Leu	Met 310	Ala	Arg	Asn	∟уз	Asn 315	As::	Ala	Эуѕ	Gly	Ile 320
		Leu	Ala	Ser 325	Fhe	Pro	Lys	Met							

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1001 base pairs
 (B) TYFE: nucleic acid

 - (C) STRANDEDNESS: single
 - (D) TCPOLCGY: linear
- (11) MCLECULE TYPE: cDNA
- (xi: SEQUENCE DESCRIPTION: SEQ ID NO:5:

CTGCAGGAAT TCGGCACGAG GGGTGCTATT GTGAGGGGGT TGTAGAAGTT AA	TAAAGGTA 60
TCCATGGAGA ACACTBAAAA CTCAGTGGAT TCAAAATCCA TTAAAAATTT GG	AACCAAAG 120
ATCATACATG GAAGCGAATC AATGGACTCT GGAATATCCC TGGACAACAG TT	ATAAAATG 180
GATTATCCTG AGATGGGTTT ATGTATAATA ATTAATAATA AGAATTTTCA TA	AGAGCACT 240
GGAATGACAT CTCGGTCTGG TACAGATGTC GATGCAGCAA ACCTCAGGGA AA	CATTCAGA 300
AACTTGAART ATGAAGTCAG GAATAAAAAT GATCTTACAC GTGAAGAAAT TG	
ATGCGTGATG TTTCTAAAGA AGATCACAGC AAAAGGAGCA GTTTTGTTTG TG	
AGCCATGGTS AAGAAGGAAT AATTTTTGGA ACAAATGGAC CTGTTGACCT GA	
ACAAACTTTT TCACAGGGGA TCGTTGTAGA AGTCTAACTG GAAAACCCAA AC	
ATTCAGGCCT GCCGTGSTAC AGAACTGGAC TGTGGCATTG AGACAGACAG TO	
GATSACATGS CSTGTCATAA AATACCAGTS GAGGCCGACT TCTTSTATGC AT	
GCACCTGGTT ATTATTCTTG GCGAAATTCA AAGGATGGCT CCTGGTTCAT CC	
TGTGCCATGU TGAAACAGTA TGCCGACAAG CTTGAATTTA TGCACATTCT TA	

AA TIGAAAGG TEGCAACAGA ATTTEAGTES TITTESTITE ASSITACTIT TOATECAAAG 541

AAANSAGATI, CATETATTET TICCATESTE ACAAAAGAAC TOTATITITA TIASTAAAGA

AATGETISST TIGTEGETITT TITTAGTITE TATECCAAGT GAGAAGATES TATATITEST 940

ACTITATITIS CONTECATIT TEGCCTACTS TOATESTEGA G 1801

(2) INFORMATION FOR SEQ ID NO:6:

1 SEQUENCE CHARACTERISTICS:

A: LENGTH: 277 amino acids

E: TYPE: amino acid

C: STRANDEDNESS: single

D) TOPOLOGY: linear

11 MOLECULE TYPE: peptide

xx: SEQUENCE DESCRIPTION: SEQ ID NO:6:

Mot Glu Ash Thr Glu Ash Ser Val Asp Ser Lys Ser Ile Lys Ash Leu 10 1 🗉 Glu Pro Lys Ile lle His Gly Ser Glu Ser Met Asp Ser Gly Ile Ser 20 25 Leu Asp Asn Ser Tyr Lys Met Asp Tyr Pro Glu Met Gly Leu Cys Ile 45 Ile Ile Asn Asn Lys Asn Phe His Lys Ser Thr Gly Met Thr Ser Arg 5**5** 60 Ser Gly Thr Asp Val Asp Ala Ala Asn Leu Arg Glu Thr Phe Arg Asn 7:0 75 Leu Lys Tyr Glu Val Arg Asn Lys Asn Asp Leu Thr Arg Glu Glu Ile 85 9.0 Val Glu Leu Met Arg Asp Val Ser Lys Glu Asp His Ser Lys Arg Ser 105 Ser Phe Val Cys Val Leu Leu Ser His Gly Glu Glu Gly Ile Ile Phe 120 115 Gly Thr Asn Gly Pro Val Asp Leu Lys Lys Ile Thr Asn Phe Phe Arg 131 135 140 Gly Asp Arg Cys Arg Ser Leu Thr Gly Lys Pro Lys Leu Phe Ile Ile 145 150 1**5**5 Gin Ala Cys Arg Gly Thr Glu Leu Asp Cys Gly Ile Glu Thr Asp Ser 165 170 175 Gly Val Asp Asp Asp Met Ala Cys His Lys Ile Pro Val Glu Ala Asp 180 185 Pho Leu Tyr Ala Tyr Ser Thr Ala Pro Gly Tyr Tyr Ser Trp Arg Asn 195 200 205 Ser Lys Asp Gly Ser Trp Phe Ile Gln Ser Leu Cys Ala Met Leu Lys 2.10 215 220 Gln Tyr Ala Asp Lys Leu Glu Phe Met His Ile Leu Thr Arg Val Asn 235 230 Arg Lys Val Ala Thr Glu Phe Glu Ser Phe Ser Phe Asp Ala Thr Phe 250 255 245 His Ala Lys Lys Gln Ile Pro Cys Ile Val Ser Met Leu Thr Lys Glu 265 260 Leu Tyr Phe Tyr His

:2: INFORMATION FOR SEQ ID NO:7:

- : SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 963 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOFOLOGY: linear
- (ii) MCLECULE TYPE: cDNA
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:7:

						c 0
ATGGAGATGG	S AAAAGGAGTT	CGAGCAGATC	GACAAGTCCG	GGAGCTGGGC	GGCCATTTAC	60
CAGGATATO	GACATGAAGC	CAGTGACTTC	CCATGTAGAG	TGGCCAAGCT	TCCTAAGAAC	120
AAAAACCGA	ATAGGTACAG	AGACGTCAGT	CCCTTTGACC	ATAGTCGGAT	TAAACTACAT	180
CAAGAAGAT	A TGACTATAT	CAACGCTAGT	TTGATAAAAA	TGGAAGAAGC	CCAAAGGAGT	240
TACATTOTT	N COCAGGGGCC	TTTGCCTAAC	ACATGCGGTC	ACTTTTGGGA	GATGGTGTGG	300
GAGCAGAAA	S ĞDAGGGGTUT	CGTCATGCTC	AACAGAGTGA	TGGAGAAAGG	TTCGTTAAAA	360
TGCGCACAA	r Actugodada	AAAAGAAGAA	AAAGAGATGA	TCTTTGAAGA	CACAAATTTG	420
AAATTAACA	TGATCTCTGA	AGATATCAAG	TCATATTATA	CAGTGCGACA	GCTAGAATTG	480
SAAAACOTT	A CAAGCCAAGA	AACTCGAGAG	ATCTTACATT	TCCACTATAC	CACATGGCCT	540
GACTTTGJA	g TOCOTGAATO	ACCAGCCTCA	TTCTTGAACT	TTCTTTTCAA	AGTCCGAGAG	600
TCAGGGTCA	o Toagooogga	. GCACGGGCCC	GTTGTGGTGC	ACAGCAGTGC	AGGCATCGGC	660
AGGTOTGBA	A COTTOTSTOT	GGCTGATACC	TGCCTCCTGC	TGATGGACAA	GAGGAAAGAC	720
CCTTCTTCC	G TTSATATCAA	GAANGTGCTG	TTAGAAATGA	GGAAGTTTCG	GATGGGGTTG	730
ATCCAGACA	G COGACCAGOI	GCGCTTCTCC	TACCTGGCTG	TGATCGAAGG	TGCCAAATTC	810
ATCATGGGG	G ACTOTTCCGT	GCAGGATCAG	TGGAAGGAGC	TTTCCCACGA	GGACCTGGAG	900
	G AGCATATCCC				GGAGCCACAC	960
TGA						963

(2) INFORMATION FOR SEQ ID NO:8:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 322 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- ii) MOLECULE TYPE: peptide
- (x1 SEQUENCE DESCRIPTION: SEQ ID NO:8:

Val	36 r 50	Fro	Phe	Asp	His	Ser 55	Arg	Ile	Lys	Leu	His 60	Gln	Glu	AFF	Asr.
A3; :5	77:	Ile	Asn	Alu	301 75	L+ 11	110	Lys	Me'	31u 75	Glu	Ala	Gln	Ara	20 361.
Tyr	Il-	L=u	Thr	Glr. 85	gly	Pro	Leu	Pro	Asn 30	Thr	Cys	Gl;	His	Prie	Trp
Glu	Met	Val	Trp 100	Glu	Gln	Lys	Ser	Arg 105	Зlу	Val	Val	Met	Leu 110	Asn	Arg
Val	Me∙t	Glu 115	Lys	Gly	Ser	Leu	Lys 120	Cys	Ala	Gln	Tyr	Trp 125	Pro	Gln	Lys
Glu	Glu 130	Lys	Glu	Met	Ile	Phe 135	Glu	Asp	Thr	Asn	Leu 140	Lys	Leu	Thr	Leu
Ile 145	Ser	Glu	Asp	Ile	Lys 150	Ser	Тут	Tyr	Thr	Val 155	Arg	Gln	Leu	Glu	Leu 160
Glu	Asn	Leu	Thr	Thr 165	Gln	Glu	Thr	Arg	31u 170	Ile	Leu	His	Phe	His 175	Tyr
Thr	Thr	Trp	Pro 180	Asp	Fhe	Gly	Val	Pro 185	Glu	Ser	Pro	Ala	Ser 190	Phe	Leu
Asn	Fh.e	Leu 195	Pho	Lys	Val	Arg	Glu 200	ser	Gly	Ser	Leu	Ser 205	Pro	Glu	Hıs
Gly	Pro 210	Val	Val	Val	His	Ser 215	Ser	Ala	Gly	Ile	Gly 220	Thr	Суз	Gly	Arg
Ser 225	Gly	Thr	Phe	Cys	Leu 230	Alā	Asp	Thr	Суѕ	Leu 235	Leu	Leu	Met	Asp	Lys 240
Arg	Lys	Asp	Pro	Ser 245	Ser	Val	Asp	Ile	Lys 250	Lys	Val	Leu	Leu	Glu 255	Met
Arg	Lys	Phe	Arg 260	Met	Gly	Leu	Ile	Gln 265	Thr	Ala	Asp	Gln	Leu 270	Arg	Phe
Ser	Туг	Leu 275	Alā	Vāl	Ile	Glu	Gly 280	Ala	Lys	Phe	Ile	Met 285	Gly	Asp	Ser
Ser	Val 290	Gln	Asp	Gln	Trp	Lys 295	Glu	Leu	Ser	Hıs	Glu 300	Asp	Leu	Glu	Pro
Pro 305	Pro	Glu	His	Ile	Pro 310	Pro	Pro	Pro	Arg	Pro 315	Pro	Lys	Arg	Ile	Leu 320
Glu	Pro														

(2) INFORMATION FOR SEQ ID NO:9:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1001 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

60	AATAAAGGTA	TGTAGAAGTT	GTGAGGCGGT	GGGTGCTATT	TOGGCACGAG	CTGCAGGAAT
120	GGAACCAAAG	TTAAAAATTT	TCAAAATCCA	CTCAGTGGAT	ACACTGAAAA	TCCATGGAGA
180	TTATAAAATG	TGGACAACAG	GGAATATCCC	AATGGACTCT	GAAGCGAATC	ATCATACATG
240	TAAGAGCACT	AGAATTTTCA	ATTAATAATA	ATGTATAATA	AGATGGGTTT	GATTATCCTG
:00	AACATTCAGA	ACCTCAGGGA	GATGCAGCAA	TACAGATGTC	CTCGGTCTGG	GGAATGACAT
360	TSTGGAATTG	GTGAAGAAAT	GATOTTACAC	GAATAAAAAT	ATGAAGTSAG	AACTTGAAAT

ATGCGTGATG	TTTCTAAAGA	AGATCACAGC	AAAAGGAĞCA	GTTTTGTTTG	TGTGCTTCTG	420
AGCCATGGTG	AAGAAGGAAT	AATTTTTGGA	ACAAATGGAC	CTGTTGACCT	GAAAAAAATA	180
ACAAACTTTT	TCAGAGGGGA	TOGTTGTAGA	AGTCTAACTG	GAAAAJCCAA	ACTTTTCATT	540
ATTCAGGCCT	CCCGTGGTAC	AGAACTGGAC	TGTGGCATTG	AGACAGACAG	TGGTGTTGAT	€00
GATGACATGG	CGTGTCATAA	AATACCAGTG	GAGGCCGACT	TCTTGTATGC	ATACTCCACA	660
GCACCTGGTT	ATTATTCTTG	GCGAAATTCA	AAGGATGGCT	CCTGGTTCAT	CCAGTCGCTT	720
TGTGCCATGC	TGAAACAGTA	TGCCGACAAG	CTTGAATTTA	TGCACATTCT	TACCCGGGTT	780
AACCGAAAGG	TEGCAACAGA	ATTTGAGTCS	TTTTCCTTTG	ACGCTACTTT	TCATGCAAAG	840
AAACAGATTC	CATGTATTGT	TTCCATGCTC	ACAAAAGAAC	TCTATTTTTA	TCACTAAAGA	900
AATGGTTGGT	TGGTGGTTTT	TTTTAGTTTG	TATGCCAAGT	GAGAAGATGG	TATATTTGGT	960
ACTGTATTC	COTOTOATTT	TGACCTACTC	TCATGCTGCA	G		1001

(2) INFORMATION FOR SEQ ID NO:10:

- (1) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 277 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (x1) SECUENCE DESCRIPTION: SEQ ID NO:10:

Met Glu Asn Thr Glu Asn Ser Val Asp Ser Lys Ser Ile Lys Asn Leu 1.0 Glu Pro Lys Ile Ile His Gly Ser Glu Ser Met Asp Ser Gly Ile Ser 25 Leu Asp Asn Ser Tyr Lys Met Asp Tyr Pro Glu Met Gly Leu Cys Ile 45 3.5 40 Ile Ile Asn Asn Lys Asn Phe His Lys Ser Thr Gly Met Thr Ser Arg 55 50 Ser Gly Thr Asp Val Asp Ala Ala Asn Leu Arg Glu Thr Phe Arg Asn 75 65 70 Leu Lys Tyr Glu Val Arg Asn Lys Asn Asp Leu Thr Arg Glu Glu Ile 90 Val Glu Leu Met Arg Asp Val Ser Lys Glu Asp His Jer Lys Arg Ser 110 105 100 Ser Phe Val Cys Val Leu Leu Ser His Gly Glu Glu 3ly Ile Ile Phe 125 120 Gly Thr Asn Gly Pro Val Asp Leu Lys Lys Ile Thr Asn Phe Phe Arg 140 135 Gly Asp Arg Cys Arg Ser Leu Thr Gly Lys Pro Lys Leu Phe Ile Ile 155 150 145 Gln Ala Ser Arg Gly Thr Glu beu Asp Cys Gly Ile Glu Thr Asp Ser 170 165 Gly Val Asp Asp Asp Met Ala Cys His Lys Ile Pro Val Glu Ala Asp 190 185 180 Phe Leu Tyr Ala Tyr Ser Thr Ala Pro Gly Tyr Tyr Ser Trp Arg Asn 205 200 195 Ser Lys Asp Gly Ser Trp Phe Ile Gln Ser Leu Cys Ala Met Leu Lys 215 220 210

PCT/CA97/00825 WO 98/20156

```
Sin Tyr Ala Asp Lys Len Glu Phe Met His Ile Löu Thi Aig Va. Ash
                                          235
Arg Lyc Val Ala Thr Glu Phe Glu Ser The Ger Phe Asp Ala Thr Phe 245 256
245 251 255
His Ala Lys Lys Gin Ile Pro Cys Ile Val Ser Met Leu Thr Lys Glu
                               265
            2 € 0
Leu Tyr Phe Tyr His
        275
```

-- 2. INFOFMATION FOR SEQ ID NO:11:

ii sequence characteristics:

- (A) LENGTH: 277 amino acids
- (B) TYPE: amino acid
- (C) STRAMDEDNESS: single
- (D) TOPOLOGY: linear

'11 MOLECULE TYPE: peptide

(X1) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met 1	Glu	Asn	Thr	Glu 5	Asn	Ser	Val	Asp	Ser 10	Lys	Ser	Ile	Lys	Asn 15	Leu
Glu	Pro	Lys	Ile 20	He	His	Gly	Ser	Glu 25	Ser	Met	Asp	Ser	Gly 30	Ile	Ser
Leu	Asp	Asn 35	Ser	Тут	Lys	Met	Asp 40	Tyr	Pro	Glu	Met	Gly 4 5	Leu	Cys	Ile
	5 C					55		Lys			60				
65	_				70			Asn		75					8.0
		_		85				Asn	90					95	
			100					Lys 105					110		
		115					120	His				125			
	130					135		Lys			140				
145	_			_	150			Gly		155					160
				165				Asp	170					175	
			180	_				His 185					190		
		195		_			200	Pro				205			
	210					215		Gln			220				
225					230					235					Asn 240
				245				Ser	250					255	
His	Ala	Lys	Lys 260	Gln	Ile	Pro	CAs	11e 265		Ser	Met	Leu	Thr 270	Lyε	Glu
Leu	<u> </u>	Phe 175	Tyr	His											

(2) INFORMATION FOR SET ID NO:12:

- 1' SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 990 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRAMDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (X1) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGTGGGGGC	TCAAGGTTOT	GCTGCTACCT	GTGGTGAGCT	TTGCTCTGTA	CCCTGAGGAG	60
ATACTGGACA	CCCACTGGGA	GCTATGGAAG	AAGACCCACA	GGAAGCAATA	TAACAACAAG	120
GTGGATGAAA	TCTCTCGGGG	TTTAATTTGG	GAAAAAAACC	TGAAGTATAT	TTCCATCCAT	180
AACCTTGAGG	CTTCTCTT3G	TGTCCATACA	TATGAACTGG	CTATGAACCA	CCTGGGGGAC	240
ATGACCAGTG	AAGAGGTGGT	TCAGAAGATG	ACTGGACTCA	AAGTACCCCT	GTCTCATTCC	300
CGCAGTAATG	ACACCOTTTA	TATCCCAGAA	TGGGAAGGTA	GAGCCCCAGA	CTCTGTCGAC	360
TATCGAAAGA	AAGGATATGT	TACTCCTGTC	AAAAATCAGG	STCASTGTGG	TTCCTCTTGG	420
GCTTTTAGCT	CTGTGGGTGC	CCTGGAGGGC	CAACTCAAGA	AGAAAACTGG	CAAACTCTTA	480
AATCTGAGTC	CCCAGAACCT	AGTGGATTGT	GTGTCTGA:GA	ATGATGGCTG	TGGAGGGGGC	540
TACATGACCA	ATGCCTTCCA	ATATGTGCAG	AAGAACCGGG	GTATTGACTC	TGAAGATGCC	600
TACCCATATG	TGGGACAGGA	AGAGAGTTGT	ATGTACAACC	CAACAGGCAA	GGCAGCTAAA	660
TGCAGAGGGT	ACAGAGAGAT	CCCCGAGGGG	AATGAGAAAG	CCCTGAAGAG	GGCAGTGGCC	720
CGAGTGGGAC	CTGTCTCTGT	GGCCATTGAT	GCAAGCCTGA	CCTCCTTCCA	GTTTTACAGC	780
AAAGGTGTGT	ATTATGATGA	AAGCTGCAAT	AGCGATAATC	TGAACCATGC	GGTTTTGGCA	840
GTGGGATATG	GAATCCAGAA	GGGAAACAAG	CACTGGATAA	TTAAAAACAG	CTGGGGAGAA	900
AACTGGGGAA	ACAAAGGATA	TATCCTCATG	GCTCGAAATA	AGAACAACGC	CTGTGGCATT	960
GCCAACCTGG	CCAGCTTCCC	CAAGATGTGA				990

(2) INFOFMATION FOR SEQ ID NC:13:

- :) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 990 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (11) MOLECULE TYPE: CDNA
- (X1) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATGTGGGGGC	TCAA GGTTGT	GOTGOTACCT	GTGGTGAGCT	TTGCTCTGTA	CCCTGAGGAG	60
ATACTGGACA	CCCACTGGGA	GOTATGGAAG	AAGACCCACA	GGAAGCAATA	TAACAACAAG	120
GTGGATGAAA	TOTOTOGGGG	TTTAATTTGG	GAAAAAACC	TGAAGTATAT	TTCCATCCAT	180

AACCTTGAGG		TOTE!ATA!A	TATOAACTGG	CTATGAACCA	00 7 03663 A 0	140
AMGA JOA JMG	AA GAGGTGGT	TTAGAANATG	ACT FIRETY	AARTARCOOT	JTCTCATTOC	11.5
JUCAGTAATG	ACACCCTTTA	TATOCCAGAA	TGGGAAGGTA	GAGCCCCAGA	CTCTGTCGAC	3.0
TATOGAAAGA	AAGGATATGT	TACTOCTGTC	AAAAATSAGG	STCAGTGTGG	TTCCGCTTGG	420
GOTTTTAGOT	CTGTGGGTGG	COTGGAGGGC	CAACTCAAGA	AGAAAACTGG	CAAAGTOTTA	480
AATCTGAGTC	CCCAGAACCT	AGTGGATTGT	GTGTCTGAGA	ATGATGGCTG	TGGAGGGGGC	540
TACATGACCA	ATGCCTTCCA	ATATGTGCAG	AAGAACCGGG	GTATTGACTC	TGAAGATGCC	500
TACCOATATG	TGGGACAGGA	AGAGAGTTGT	ATGTACAACC	CAACAGGIAA	GGCAGCTAAA	56C
TGCAGAGGGT	ACAGAGAGAT	CCCCGAGGGG	AATGAGAAAG	CCCTGAAGAG	GGCAGTGGCC	720
CGAGTGGGAC	CTGTCTCTGT	GGCCATTGAT	GCAAGCCTGA	COTCCTTCCA	GTTTTACAGC	78€
AAAGGTGTGT	ATTATGATGA	AAGITGCAAT	AGCGATAATC	TGAACCATGC	GGTTTTGGCA	8 4 0
GTGGGATATG	GAATCIAGAA	GGGAAACAAG	CACTGGATAA	TTAAAAACAG	CTGGGGAGAA	900
AACTGGGGAA	ACAAAGGATA	TATCCTCATG	GCTCGAAATA	AGAACAACGC	CTGTGGCATT	960
CCCX ACCTOS	CC ACOMMOSS	CARRATOTA				990

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (x1) SEQUENCE DESCRIPTION: SEQ ID NO:14:
- Met Trp Gly Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu 10 Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr 2.0 25 His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu 35 40 Ile Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala
 50 60 Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp 65 70 75 80 Met Thr Ser Glu Glu Val Val Glm Lys Met Thr Gly Leu Lys Val Pro 9.0 85 Leu Ser His Ser Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 105 Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr 115 120 125 115 120 Pro Val Lys Ash Gln Gly Gln Cys Gly Ser Ser Trp Ala Phe Ser Ser 135 140 130 Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Lys Thr Gly Lys Leu Leu 155 150 Ash Leu Ser Pro Gln Ash Leu Val Asp Cys Val Ser Glu Ash Asp Gly 165

```
Cys Gly Gly Gly Tyr Met Thr Ach Ala Phe Gln Tyr Val Gln Lys Asn
         1 20
               185
Arg Gly Ile Amp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu
       198 200
Ser Cys Met Tyr Asn Pro Thr Gly Lys Ala Ala Lys Cys Arg Gly Tyr
   210 215
                             220
Arg Glu Ile Pro Glu Gly Ash Glu Lys Ala Leu Lys Arg Ala Val Ala
                            235
              230
Arg Val Gly Pr: Val Ser Val Ala Ile Asp Ala Ser Leu Thr Ser Phe
             245
                              250
Gln Phe Tyr Ser Lys Gly Val Tyr Tyr Asp Glu Ser Cys Asn Ser Asp
                    265
          260
Asn Leu Asn His Ala Val Leu Ala Val Gly Tyr Gly Ile Gln Lys Gly 275 280 285
   275
Asn Lys His Trp Ile Ile Lys Asn Ser Trp Gly Glu Asn Trp Gly Asn 290 295 300
Lys Gly Tyr Ile Leu Met Ala Arg Asn Lys Asn Asn Ala Cys Gly Ile
        310 315
3.05
Ala Asn Leu Ala Ser Phe Pro Lys Met
           3.25
```

(2) INFORMATION FOR SEQ ID NO:15:

- (i: SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 329 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (x1: SEQUENCE DESCRIPTION: SEQ ID NO:15:
- Met Trp Gly Leu Lys Val Leu Leu Leu Pro Val Val Ser Phe Ala Leu 10 Tyr Pro Glu Glu Ile Leu Asp Thr His Trp Glu Leu Trp Lys Lys Thr 20 25 His Arg Lys Gln Tyr Asn Asn Lys Val Asp Glu Ile Ser Arg Arg Leu 45 40 lle Trp Glu Lys Asn Leu Lys Tyr Ile Ser Ile His Asn Leu Glu Ala 60 55 Ser Leu Gly Val His Thr Tyr Glu Leu Ala Met Asn His Leu Gly Asp 75 70 Met Thr Ser Glu Glu Val Val Gln Lys Met Thr Gly Leu Lys Val Pro 90 85 Leu Ser His 3er Arg Ser Asn Asp Thr Leu Tyr Ile Pro Glu Trp Glu 100 105 110 Gly Arg Ala Pro Asp Ser Val Asp Tyr Arg Lys Lys Gly Tyr Val Thr 115 120 125 Pro Val Lys Asn Gln Gly Gln Cys Gly Ser Ala Trp Ala Phe Ser Ser 140 135 130 Val Gly Ala Leu Glu Gly Gln Leu Lys Lys Lys Thr Gly Lys Leu Leu 145 150 155 160 Asn Leu Ser Pro Gln Asn Leu Val Asp Cys Val Ser Glu Asn Asp Gly 175 176 Cys Gly Gly Gly Tyr Met Thr Asn Ala Phe Gln Tyr Val Gln Lys Asn 185 190 Arg Gly Ile Asp Ser Glu Asp Ala Tyr Pro Tyr Val Gly Gln Glu Glu 200

Ser	7ys 210	Met	Tyr	Aan	Pro	Tr.:	317	Lyn	Ala	Ala	19a 226	Суз	Aig	Gly	Tyn
Arg 215	314	110		S. :	GL_{Y}	Acn	3111	27.5	$A_{+}a$	Leu	ء بريا				
			$F(\Sigma \odot$	$\nabla a 1$	Jer	Val	Ala	Ile	Asp	Ala	Ser	Len	$T :: \Gamma$	Ser	
Gln	Phe		3er 260											Ser	Asp
Asn			His										Gln	Lys	Gly
	390		Trp			295				-	300		-		
Lys 305	Gly	Tyr	Ile	Leu	M⊕t 310						Asn				11e 320
Ala	Asn	Leu	Ala	Ser 325	Phe	Pro	Lys	Met							

WHAT IS CLAIMED:

10

20

1. A process for determining the binding ability of a ligand to a cysteine-containing wild-type enzyme comprising the steps of:

contacting a complex with the ligand, the complex comprising a mutant form of the wild-type enzyme, in which cysteine, at the active site, is replaced with serine, in the presence of a known binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable signal.

- 2. The process of Claim 1 further comprising, the step of contacting the complex with the binding agent, in the absence of the ligand, to produce a first measurable signal.
 - 3. The process of Claim 1 wherein the signal is a colorimetric, photometric, spectrophotometric or radioactive signal.

4. The process of Claim 3 wherein the signal is a beta radiation-induced scintillation.

5. The process of Claim 1 wherein the known binding agent is an inhibitor for the wild-type enzyme and contains a radionuclide to induce scintillation upon contact with the mutant enzyme.

- 6. The process of Claim 1 wherein the complex 30 further comprises a solid support, a scintillation agent, and a fused enzyme linking construct.
 - 7. The process of Claim 6 wherein the complex is further comprised of:
- a fluopolymer bead containing a scintillation agent and Protein A, which is attached via Protein A to;

(b) an anti-GST antibody, which is further attached to the GST end of:

(c) a fused enzyme linking construct comprised of GST enzyme fused with the mutant enzyme.

5

- 8. The process of Claim 1 wherein the wild-type enzyme is selected from the group consisting of proteases, phosphatases, lipases, hydrolases and kinases.
- 10 9. The process of Claim 8 wherein the wild-type enzyme is selected from the group consisting of tyrosine phosphatases and cysteine proteases.
- 10. The process of Claim 9 wherein the tyrosinephosphatase is selected from the group consisting of PTP1B, LCA, LAR, DLAR and DPTP.
- 11. The process of Claim 11 wherein the tyrosine phosphatase is PTP1B which contains serine in place of cysteine at 20 position 215.
 - 12. The process of Claim 11 wherein the PTP1B phosphatase is present in a truncated form comprising amino acids 1-320 and containing the active binding site.

- 13. The process of Claim 9 wherein the cysteine protease is a Cathepsin or capsase.
- 14. The process of Claim 13 wherein the cathepsin is selected from the group consisting of Cathepsin B, Cathepsin G, Cathepsin J, Cathepsin K(O2), Cathepsin L, Cathepsin M and Cathepsin S.
- The process of Claim 14 wherein the cathepsin is 35 Cathepsin K(O2).

16. The process of Claim 11 wherein the capsase is selected from the group consisting of : capsase-1(ICE), capsase-2 (ICH-1), capsase-3 (CPP32, human apopain, Yama), capsase-4(ICErel-11, TX, ICH-2), capsase-5(ICErel-111, TY), capsase-6(Mch2), capsase-7(Mch3, ICE-LAP3, CMH-1), capsase-8(FLICE, MACH, Mch5), capsase-9 (ICE-LAP6, Mch6) and capsase-10(Mch4).

17. The process of Claim 16 wherein the capsase is human apopain CPP32.

10

18. The process of Claim 11 wherein the tyrosine phosphatase is PTP1B and the binding agent is a peptide selected from the group consisting of:

N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-

- phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH₂), where E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl; N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide; N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl]-L-phenylalanyl-[4-phosphono(difluoromethyl]-L-phenylalanyl-[4-phos
- N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
- phosphono(difluoromethyl)]-L-phenylalanine amide; L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;
 - L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;
- 25 L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;
 - L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and
- L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-30 (difluoromethyl)]-L-phenylalanine amide.
 - 19. The process of Claim 18 wherein the peptide is in tritiated form.

20. The process of Claim 18 wherein the peptide is tritiated N-(3.5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenyl-alanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide, being tritiated Bz-NEJJ-CONH2, wherein E as used herein is glutamic acid and J, as used herein, is the (F2Pmp) moiety, (4-phosphono-(difluoromethyl)phenylalanyl).

21. A process for determining the binding ability of a ligand to a cysteine-containing wild-type tyrosine phosphatase comprising the steps of:

5

- 10 (a) contacting a complex with the ligand, the complex comprising a mutant form of the wild-type enzyme, the mutant enzyme being PTP1B, containing the same amino acid sequence 1-320 as the wild type enzyme, except at position 215, in which cysteine is replaced with serine in the mutant enzyme, in the presence of a known radioligand binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable beta radiation-induced scintillation signal.
 - 22. The process of Claim 21 further comprising before step (a), the step of contacting the complex with the binding agent in the absence of the ligand to produce a first measurable beta radiation-induced scintillation signal.
- 23. The process of Claim 21 wherein the binding agent is a peptide selected from the group consisting of:

 N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH2), where E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl;

 N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;

 N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;

 L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;

L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;

- L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;
- L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide.
- 1() 24. The process of Claim 23 wherein the peptide is in tritiated or 1¹²⁵ iodinated form.
 - 25. The process of Claim 24 wherein the peptide is tritiated N-(3,5-Ditritio)benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-
- phenylalanyl-[4-phosphono(dilfuoromethyl)]-L-phenylalanineamide, being tritiated Bz-NEJJ-CONH2, wherein E as used herein is glutamic acid and J, as used herein, is the (F2Pmp) moiety, (4-phosphono-(difluoromethyl)phenylalanyl).
 - 26. A complex comprised of:

- (a) a mutant form of a wild-type enzyme, in which cysteine, necessarty for activity in the active site, is replaced with serine and is attached to:
- (b) a solid support.
- 27. The complex of Claim 26 further comprising: a binding agent for the mutant enzyme, wherein the binding agent is capable of binding with the mutant enzyme to produce a measurable signal.

28. A peptide selected from the group consisting of:

N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanineamide (BzN-EJJ-CONH2), where E is glutamic acid and J is 4-phosphono(difluoro-methyl)]-L-phenylalanyl;

- N-Benzoyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
 - N-Acetyl-L-glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
 - L-Glutamyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide;
- (difluoromethyl)]-L-phenylalanine amide;L-Lysinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-

mutant enzyme.

- (difluoromethyl)]-L-phenylalanine amide;
- L-Serinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono(difluoromethyl)]-L-phenylalanine amide;
- L-Prolinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide; and L-Isoleucinyl-[4-phosphono(difluoromethyl)]-L-phenylalanyl-[4-phosphono-(difluoromethyl)]-L-phenylalanine amide, for use as a binding agent for a

GAGATGGAAAAGGAGTTCGAGCAGATCGACAAGTCCGGGAGCTGGGCGGCCATTTAC
TETACSTTTTCCTCAAGCTGGTCTAGGTGTCAGGGCCTGGAGCCGCCGGTAAATG SluMetGluLysGluPheGluGlnIleAspLysSerGlySerTrpAlaAlaIleTyr
CATATOCGACATGAAGOCAGTGACTTOCCATGTAGAGTGGCCAAGCTTCCTAAGAAC
CTATAGGCTGTAGTTCGGTCACTGAAGGGTACATCTGAGGGTTCGAAGGATTCTTG AspIleAngHisGluAlaSenAspPhePnoCysAngValAlaLysLeuPnoLysAsn
AACOGAAATAGGTACAGAGACGTCAGTCCCTTTGACCATAGTCGGATTAAACTACAT
TTGGCTTTATCCATGTCTCTGCAGTCAGGGAAACTGGTATCAGCCTAATTTGATGTA AsnArgAsnArgTyrArgAspValSerProPheAspHisSerArgIleLysLeuHis
GAAGATAATGACTATATCAACGCTAGTTTGATAAAAATGGAAGAAGCCCAAAGGAGT
CTTCTATTACTGATATAGTTGCGATCAAACTATTTTTACCTTCTTCGGGTTTCCTCA GluAspAsnAspTyrlleAsnAlaSerLeuIleLysMetGluGluAlaGlnArgSer
ATTOTTACCCAGGGCCCTTTGCCTAACACATGCGGTCACTTTTGGGAGATGGTGTGG
TAAGAATGGGT600GGGAAACGGATTGTGTACG60AGTGAAAACCCT3TACCACACC TleLeuThrGlnGlyProLeuProAsnThrCysGlyHisPheTrpGluMetValTrp
CAGAAAAGCAGGGGTGTCGTCATGCTCAACAGAGTGATGGAGAAAGGTTCGTTAAAA
GTCTTTTCGTCCCCACAGCAGTACGAGTTGTCTCACTACCTCTTTCCAAGCAATTTT GlnLysSerArcGlyValValMetLeuAsnArgValMetGluLysGlySerLeuLys
CGCACAATACTGGCCACAAAAAGAAGAAAAAGAGATGATCTTTGAAGACACAAAATTTG
uCGTGTTATGACCGGTGTTTTTCTTCTTTTTCTCTACTAGAAACTTCTGTGTTTAAAC :AlaGlnTyrTrpProGlnLysGluGluLysGluMetIlePheGluAspThrAsnLeu
ATTAACATTGATCTCTGAAGATATCAAGTCATATTATACAGTGCGACAGCTAGAATTG
TAATTGTAACTAGAGACTTCTATAGTTCAGTATAATATGTCACGCTGTCGATCTTAAC GLeuThrLeuIleSerGluAspIleLysSerTyrTyrThrValArgGlnLeuGluLeu
AAACCTTACAACCCAAGAAACTEGAGAGATCTTACATT.TCCACTATACCACATGGCCT
ITTGGAATGTTGGGTTCTTTGAGCTCTCTAGAATGTAAAGGTGATATGGTGTACCGGA uAsnLeuThrThrGlnGluïhrArgGluIleLeuHisPheHisTyrThrThrTrpPro

FIG.2A

SUBSTITUTE SHEET (RULE 26)

GACTITGGAGTCCCTGAATCACCAGCCTCATTCTTGAACTTTCTTT	500
CTGAAACCTCAGGGACTTAGTGGTCGGAGTAAGAACTTGAAAGAAA	200
	000
AGTCCCAGTGAGTCGGGCCTCGTGCCCGGGCAACACCACGTGACGTCACGTCCGTAGCCG SerGlySerLeuSerProGluHisGlyProValValValHis <u>Cys</u> SerAlaGlyIleGly	2220
	.''?0
TCCAGACCTTGGAAGACAGACCGACTATGGACGGAGGACGACTACCTGTTCTCTG ArgserGlyThrPheCysLeuAlaAspThrCysLeuLeuLeuMetAspLysArgLysAsp	240
CCT: CTTCCGTTGATATCAAGAAAGTGCTGTTAGAAATGAGGAAGTTTCGGATGGGGTTG	<i>1</i> 80
GGAAGAAGGCAACTATAGTTCTTTCACGACAATCTTTACTCCTTCAAAGCCTACCCCAAC ProSerSerValAspIleLysLysValLeuLeuGluMetArgLysPheArgMetGlyLeu	260
ATCCAGACAGCCGACCAGCTGCGCTTCTCCTACCTGGCTGTGATCGAAGGTGCCAAATTC	840
TAGGTCTGTCGGCTGGTCGACGCGAAGAGGATGGACCGACACTAGCTTCCACGGTTTAAG IleGlnThrAlaAspGlnLeuArgPheSerTyrLeuAlaVallleGluGlyAlaLysPhe	
ATCA!GGGGGACTCTTCCGTGCAGGATCAGTGGAAGGAGCTTTCCCACGAGGACCTGGAG	900
TAGTACCCCCTGAGAAGGCACGTCCTAGTCACCTTCCTCGAAAGGGTGCTCCTGGACCTC IleMetGlyAspSerSerValGlnAspGlnTrpLysGluLeuSerHisGluAspLeuGlu	
CCCCCACCCGAGCATATCCCCCCCACCTCCCCGGCCACCCAAACGAATCCTGGAGCCACACTGA	960
GGGGGTGGGCTCGTATAGGGGGGTGGAGGGCCGGTGGGTTTGCTTAGGACCTCGGTGTGACT ProProProGluHisIleProProProProArgProProLysArgIleLeuGluProHisEnd	320
	CTGAAACCTCAGGGACTIAGTGGTCGGAGIAAGAACTTGAAAGAAAAGTTTCAGGCTCTC ASpPheGlyValProGluSerProAlaSerPheLeuAsnPheLeuPheLysValArgGlu TCAGGGTCAGTCAGCCCGGAGCACGGGCCCGTTGTGGTGCACTGCAGTGCAGGCATCGGC AGTCCCAGTGAGTCGGGCCTCGTGCCCGGGCAACACCACCGTGACGTCAGGTCAGGCATAGCCG SerGlySerLeuSerProGluHisGlyProValValHisCysSerAlaGlyIleGly AGGTCTGGAACCTTCTGTCTGGCTGATACCTGCCTCCTGCTGATGGACAAGAGGAAAGAC TCCAGACCTTGGAAGACAGACCGACTATGGACGGAGGACGACTACCTGTTCTCCTTTCTG ArgSerGlyihrPheCysLeuAlaAspThrCysLeuLeuLeuHetAspLysArgLysAsp CCTTCTTCCGTTGATATCAAGAAAGTGCTGTTAGAAATGAGGAAGTTTCGGATGGGGTTG GGAAGAAGGCAACTATAGTTCTTTCACGACAATCTTTACTCCTTCAAAGCCTACCCCAAC ProSerSerValAspIleLysLysValLeuLeuGluMetArgLysPheArgMetGlyLeu ATCCAGACAGCCGACCAGCTGCGCTTCTCCTACCTGGCTGG

FIG.2B

	SAAACAAGCACTGGATTCCATATCCCACTGCCAAAACCGCATGGTTCAGATTATCGCTAT	ŧĪ(°
ļ	CITICULTOG GACCTAAGGTATAGGGTGACGGTLTIGGGGTACCAAGTCIAATAGCGATA	! !
	TGCAGCTTTCATCATAATACACACCTTTGCTGCCGAAACGAAGCCAGACAACAGATTTCC	12
61	ACGT CGAAAGTAGTAT TATGTGTGGAAACGACGGCTTTGCTTCGGTCTGTTGTCTAAAGG	1.6
	ATCAGCAGGATGTGGGGGCTCAAGGTTCTGCTGCTACCTGTGGTGAGCTTTGCTGTAC	18
121	TAGTOGTCCTACACCCCCGAGTTCCAAGACGACGACGACGACCACTCGAAACGAGACATG MetTroGlyLeuLysValLeuLeuLeuFroValValSerPheAlaLeuTyr	<u> </u>
	CCTGAGGAGATACTGGACACCCACTGGGAGCTATGGAAGAAGACCCACAGGAAGCAATAT	20
181	GGACTCCTCTATGACCTGTGGGTGACCCTCGATACCTTCTTCTGGGTGTCCTTCGTTATA ProGluGluIleLeuAspThrHisTrpGluLeuTrpLycLysThrHisArgLysGlnTyr	۷, -
D. 4.1	AACAACAAGGTGGATGAAATCTCTCGGCGTTTAATTTGGGAAAAAAACCTGAAGTATATT	3(
241	TTGTTGTTCCACCTACTTTAGACAGCCGCAAATTAAACCCTTTTTTTT	()(
(2) (3.4	TCCATCCATAACCTTGAGGCTTCTCTTGGTGTCCATACATA	31
301	AGGTAGGTATTGGAACTCCGAAGAGAACCACAGGTATGTAT	Ö,
0.51	CTGGGGGACATGACCAGTGAAGAGGTGGTTCAGAAGATGACTGGACTCAAAGTACCCCTG	4,
361	GACCCCCTGTACTGGTCACTTCTCCACCAAGTCTTCTACTGACCTGACCTGAGTTTCATGGGGAC LeuGlyAspMetThrSerGluGluValValGlnLysMetThrGlyLeuLysValProLeu	-+ .
4.5.1	TOTCATTOCOGCAGTAATGACACCOTTTATATOCCAGAATGGGAAGGTAGAGCCCCAGAC	4
421	AGAGTAAGGGCGTCATTACTGTGGGAAATATAGGGTCTTACCCTTCCATCTCGGGGTCTG SerHisSerArgSerAsnAspThrLeuTyrIleProGluTrpGluGlyArgAlaProAsp	41
4.0.1	TOTGTCGACTATCGAAAGAAAGGATATGTTACTCCTGTCAAAAATCAGGGTCAGTGTGGT	5
481	AGACAGCTGATAGCTTTCTTTCCTATACAATGAGGACAGTTTTTAGTCCCAGTCACACCA SerValAspTyrArgLysLysGlyTyrValThrProValLysAsnGlnGlyGlnCysGly	:)•

FIG.3A

	TCCTGTTGGGCTTTTAGCTCTGTGGGTGCCCTGGAGGGCCAACTCAAGAAGAAAACTGGC	60
541	AGGACAACCCGAAAATCGAGACACCCACGGGACSTCCCGGGTTGAGTTCTTTTTGACCG Ser <u>Cys</u> TrpAlaPheSerSerValGlyAla_euGluGlyGlnLeuLysLysThrGly 139	
	AAACTCTTAAATCTGAGTCCCCAGAACCTAGTGGATTGTGTGTG	6
601	TTTGAGAATTTAGACTCAGGGGTCTTGGATCACCTAACACACAGACTCTTACTACCGACA LysLeuLeuAsnLeuSerProGlnAsnLeuValAspCysValSerGluAsnAspGlyCys	
661	GGAGGGGGCTACATGACCAATGCCTTCCAATATGTGCAGAAGAACCGGGGTATTGACTCT	-/
	CCTCCCCCGATGTACTGGTTACGGAAGGTTATACACGTCTTCTTGGCCCCATAACTGAGA GlyGlyGlyTyrMetThrAsnAlaPheGlnTyrValGlnLysAsnArgGlyIleAspSer	•
721	GAAGATGCCTACCCATATGTGGGACAGGAAGAGAGATTGTATGTA	
	CTTCTACGGATGGGTATACACCCTGTCCTTCTCTCAACATACAT	•
	GCAGCTAAATGCAGAGGGTACAGAGAGAGATCCCCGGAGGGGAATGAGAAAGCCCTGAAGAGG	
731	CGTCGATTTACGTCTCCCATGTCTCTCTAGGGGCTCCCCTTACTCTTTCGGGACTTCTCC AlaAlaLysCysArgGlyTyrArgGluIleProGluGlyAsnGluLysAlaLeuLysArg	
	GCAGTGGCCCGAGTGGGACCTGTCTCTGTGGCCATTGATGCAAGCCTGACCTCCTTCCAG	
841	CGTCACCGGGCTCACCCTGGACAGAGACACCGGTAACTACGTTCUGACTGGAGGAAGGTC AlaValAlaArgValGlyProValSerValAlaIleAspAlaSerLeuThrSerPheGln	
	TTTTACAGCAAAGGTGTGTATTATGATGAAAGCTGCAATAGCGATAATCTGAACCATGCG	
901	AAAATGTCGTTTCCACACATAATACTACTTTCGACGTTATCGCTATTAGACTTGGTACGC PheTyrSerLysGlyValTyrTyrAspGluSerCysAsnSerAspAsnLeuAsnHisAla	
	GTTTTGGCAGTGGGATATGGAATCCAGAAGGGAAACAAGCACTGGATAATTAAAAAACAGC	1
961	CAAAACCGTCACCCTATACCTTAGGTCTTCCCTTTGTTCGTGACCTATAATTTTTGTCG ValLeuAlaValGlyTyrGlyIleGlnLysGlyAsnLysHisTrpIleIleLysAsnSer	1
	TGGGGAGAAAACTGGGGAAACAAAGGATATATCCTCATGGCTCGAAATAAGAACAACGCC	1
1023	ACCCCTCTTTTGACCCCTTTGTTTCCTATATAGGAGTACCGAGCTTTATTCTTGTTGCGG TrpGlyGluAsnTrpGlyAsnLysGlyTyrIleLeuMetAlaArgAsnLysAsnAsnAla	

FIG.3B

SUBSTITUTE SHEET (RULE 26)

1681	TGTGGCATTGCCAACCTGGCCAGCTTCCCCAAGATLLGACTCCAGCCAGCCAAATCTATC	1 [17)	
	ACAFCGTAAGGTTGGACCGGTEGAAGGGGTTTTACACTGAGGTCGGTTGGGTAGGTAG CysclyIleAlaAsnLeuAlaSerPheFroLyEMetEnd		
1141 1201 1261	CTGCTCTTCCATTTCTTCCAC ATGGTGCAGTGTAACGATGCACTTTG AAGGGAGTTGG	1200	
	GACGAGAAGGTAAAGAAGGTGCTACCACGTCACATTGCTACGTGAAACCTTCCCTCAACC	11200	
	TGTGCTATT TTTGAAGCAGATGTGGTGATACTGAGATTGTCTGTTCAGTTCCCCCATTTG	1260	
	ACAUGATAAAAACTTCGTCTACAD ACTATGACTCTAACAGACAAGTCAAAAGGGGTAAAC	17.50	
	ETTGTGCTTCAAATGATCCTTCCTACTTTGCTTCTCTC+ACCCATGACCTTTTTCACTGT	1320	
	AAACACGAAGTTTACTAGGAAGGATGAAACGAAGAGAGGTGGGTACTGGAAAAAGTGACA	13.10	
	GGCCATCAGGACTTTCCCTGACAGTTGTGTACTCTTAGGCTAAGAGATGTGACTACAGCC	1380	
1321	CCGGTAGTCCTGAAAGGGACTGTC .ACACATGAGAATCCGATTCTCTATACTGATGTCGG	1990	
	TGCCCCTGACTGTTGTTGTCCCAGGGCTGATGCTGTACAGGTACAGGCTGGAGATTTTCAC	1.1.10	
1381	ACGGGGACTGACACACAGGGTCCCGGACTACGACATGTCCATGTCCGACCTCTAAAAGTG	1440	
	ATAGGTTAGATTCTCATTCACGGGACTAGTTAGCTTTAAGCATCCTAGAGGACTAGGGTA	1500	
1441	TATCCAATCTAAGAGTAAGTGCCCTGATCAATCGAAATTCGTGGGATCTCCTGATCCCAT	1500	
	ATC TGACTTCTCACTTCCTAAGTTCCCTTCTATATCCTCAAGGTAGAAATGTCTATGTTT	1570	
1501	TAGACTGAAGAGTGAAGGATTCAAGGGAAGATATAGGAGTTCCATCTTTACAGATACAAA	1560	
	TCTACTCCAATTCATAAATCTATTCATAAGTCTTTGGTACAAGTTTACATGATAAAAAAGA	1.000	
1561	AGATGAGGIIAAGIAI CIAGATAAGTATTCAGAAACCATGTTCAAATGTACTATTTTTCT	1620	
1521	AATGTGATTTGTCTTCCCTTCTTTGCACTTTTGAAATAAAGTATTTATC		
	TTACACTAAACAGAAGGGAAGAAGGTGAAAACTTTATTTCATAAATAG		

FIG.3C

1	CTGCAGGAATTCGGCACGAGGGGTGCTATTGTGAGGCGGTTGTAGAAGTTAATAAAGGTA
	GACGTCCTTAAGCCGTGCTCCCCACGATAACACTCCCCCSAACATCTTCAATTATTCCAT
51	TOGAT GGAGAACAC TGAAAACT CAGTGGATTCAAAAAT CGATTAAAAATTTGGAACCAAAAC
	AGGTACCTCTTGTGACTTTTGAGTCACCTAAGTTTTAAGGTAATTTTTAAACCTTGGTTTC MetGluAsnThrGluAsnSerValAspSerLysSerIleLysAsnLeuGluDnoLys
.21	ATCATACATGGAAG(GAATCAATGGACTCTGGAATATCCCTGGACAACAGTTATAAAATG
	TAGTATGTACCTTCLCTTAGTTACCTGAGACCTTATAGGGACCTGTTGTCAATATTTTACITETTeHisGlySerGluSerMetAspSerGlyIleSerLeuAspAsnSerTyrLvsMet
31	GATTATCCTGAGATGGGTTTATGTATAATAATTAATAATAATAAGAATTTTCATAAGAGCACT
	CTAATAGGACTCTACCCAAATACATATTATTAATTATTATTCTAAAAAGTATTCTCGTGA AspTyrProGluMetGlyLeuCvslleIleIleAsnAunLysAsnPheHisLysSerThr
-1	GGAATGACATCTCGGTCTGGTACAGATGTCGATGCAGUAAACCTCAGGGAAACATTCAGA
	CCTTACTGTAGAGCCAGACCATGTCTACAGCTACGTCGTTTGGAGTCCCTTTGTAAGTCTGTyMetThrSerArgSerGlyThrAspValAspAlaAlaAsnLeuArgGluThrPheArg
	AACTTGAAATATGAAGTCAGGAATAAAAA GATCTTATACGTGAAGAAATTGTCGAATTG
	TTGAACTTTATACTTCAGTCCTTATTTTTACTAGAATGTGCACTTCTTTAACACCTTAACACCTTAACASnLeuLysTyrGluValArgAsnLysAsnAspLeuThrArgGluGluIleValGluLeu
	ATGCGTGATGTTTCTAAAGAAGATCACAGCAAAAGGAGCAGTTTTGTTTG
	TACGCACTACAAAGATTTCTTCTAGTGTCGTTTTCCTCGTCAAAACAAAC
	AGCCATGGTGAAGAAGGAATAATTTTTGGAACAAATGGACCTGTTGACCTGAAAAAAAA
121	TCGGTACCACTTCTTCCTTATTAAAAACCTTGTTTACCTGGACAACTGGACTTTTTTTAT SerHisGlyGluGluGlyIleIlePheGlyThrAsnGlyProValAspLeuLysLysIle
	ACAAACTTTTTCAGAGGGATCGTTGTAGAAGTCTAACTGGAAAACCCAAACTTTTCATT
1	TGTTTGAAAAAGTGTGCCCTAGCAACATCTTCAGATTGACCTTTTTGGCTTTGAAAAAGTAA ThrAsnPhePheAraGlyAspAraCysArqSerLeuThrGlyLysProLysLeuPheIle

FIG.4A

6-6

;	ITT CAGGCCTGCCGTGGTACAGAACTGGACTGTGGCAT TGAGACAGACAGTGGTGTTGAT
	AAG CCGGACGGCATGTCTTGACCTGACACGTAACTCTGTCTGT
e	ATGACATGGCTTGTTATAAAATACCAGTGUAGGCCGACTTCTTGTATGCATACTCCACA
	CTACTGTACCGCACACTALCTTATUGTCACCTCCGGCTGAAGAACATACGTATGAGGTGT kspAspMetAlgCysHisLysIleProValGluAlaAspPheLeuTvrAlaTyrSerThr
(SCACETGGTTATTATTCTTGGCGAAATTCAAAGGATGGCTCCTGGTTCATCCAGTCGCTT
	CGTGGACCAATAATAAGAACCGCTTTAAGTTTCCTACCGAUGACCAAGTAGGTCAGCGAA AlaPnoGlyTynTynSenTnpArgAsnSenLysAspGlySerTnpPheIleGlsSenLeu
Ţ	CGTGCCATGCTGAAACAGTATGCCGACAAGCTTGAATTTATGCACATTCTTACCCGGGTT
	ACACGGTACGACTTTGTCATACGGCTGTTCGAACTTAAATACGTGTAAGAATGGGCCCAA CysAlaMetLeuLysGlnTynAlaAspLysLeuGluPheMetHisIleLeuIhrArgVal
ļ	AACCGAAAGSTGGCAACAGAATTTGAGTCCTTTTCCTTTCACGCTACTTTTCATGCAAAG
1	TTGGCTTTCCACCGTTGTCTTAAACTCAGGAAAAGGAAACTGCGATGAAAAGTACGTTTC AsnAngLysVaTATaThnGluPheGluSerPheSerPheAspAlaThnPheHisAlaLys
1	AAACAGATICCATGTATTGTTTCCATGCTCACAAAAGAACTCTATTTTTATCACTAAAGA
	TTTGTCTAAGGTACATAACAAAGGTACGAGTGTTTTCTTGAGATAAAAATAGTGATTTCT _ysGlnIlePrcCysIleValSerMetLeuThrLysGluLeuTyrPheTyrHisEnd
Þ	AATGGTTGGTTGGTTGTTTTTTTAGTTTGTATGCCAAGTGAGAAGATGGTATATTTGGT
-	rtaccaaccaaccaccaaaaaaaaatcaaacatacggttcactcttctaccatataaacca
ļ	ACTGTATTTCCCTCTCATTTTGACCTACTCTCATGCTGCAG
	++++++1001

FIG.4B

INTERNATIONAL SEARCH REPORT

Ir. rational Application No PCT/CA 97/00825

A CLASSIFICATION OF SUBJECT MATTER IPC 6 C1201/34 C12N11/00 C07K7/06				
According to International Patent Classification (IPC) or to both national classification and IPC				
B. FIELDS				
IPC 6	cumentation searched (classification system for owed by classific C120 C12N C07K			
	ion searched other than minimum documentation to the extent tha			
Electronic di	ata base consulted during the international search (name of data	base and, where practical, search terms used		
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		1	
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.	
А	WO 95 20039 A (CALSBERG A S) 27 see the whole document	⁷ July 1995	1,21,26	
A	EP 0 571 939 A (BOEHRINGER MANNHEIM GMBH) 1,21 1 December 1993 see the whole document			
A	EP 0 313 244 A (ONCOGEN) 26 Appropriate the whole document	ril 1989	1,21	
A	T YOSHIMURA ET AL.: "Substitution of S-(beta-aminoethyl)-cysteine for active-site lysine of thermostable aspartate aminotransferase." JOURNAL OF BIOCHEMISTRY, vol. 108, no. 5, November 1990, pages 699-700, XP002057018 see the whole document			
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed	t in annex.	
° Special c	ategories of cited documents		e-notional filing data	
"A" docum	nent defining the general state of the art which is not idered to be of particular relevance or document but published on or after the international	T" later document published after the int or priority date and not in conflict wit cited to understand the principle or t invention	h the application but heory underlying the	
filing "L" docum		"X" document of particular relevance; the cannot be considered novel or can involve an inventive step when the c "Y" document of particular relevance; the	ot be considered to locument is taken alone I claimed invention	
citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document is combined with one or more other such document is combined with one or more other such document is combined being obvious to a person skilled in the art.				
	nent published prior to the international filing date but than the priority date claimed	&" document member of the same pater	nt family	
Date of the	e actual completion of theinternational search	Date of mailing of the international se	earch report	
	26 February 1998	06/03/1998		
Name and	d mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer		
	NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epoint. Fax: (+31-70) 340-3016	Moreno, C		

INTERNATIONAL SEARCH REPORT

In Itonal Application No
PCT/CA 97/00825

	PCT/CA 97/00825	
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to craim No
A	T. R. BURKE ET AL: "Potent inhibition of insulin receptor dephosphorylation by a hexamer peptide containing the phosphotyrosyl mimetic F2Pmp." BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, vol. 204, no. 1, 14 October 1994, ORLANDO, FL US, pages 129-134, XP002057019 cited in the application see the whole document	28

INTERNATIONAL SEARCH REPORT

information on patent family members

In: :tional Application No PCT/CA 97/00825

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9520039 A	27-07-95	AU 679861 B AU 2651395 A CA 2174525 A EP 0723585 A JP 9504438 T	10-07-97 08-08-95 27-07-95 31-07-96 06-05-97
EP 0571939 A	01-12-93	DE 4217474 A JP 2603422 B JP 6046893 A US 5434054 A	02-12-93 23-04-97 22-02-94 18-07-95
EP 0313244 A	26-04-89	AT 123148 T DE 3853866 D DE 3853866 T ES 2073402 T JP 1237454 A US 5646002 A	15-06-95 29-06-95 21-09-95 16-08-95 21-09-89 08-07-97

•