MA202 Complex Analysis, Final Exam Name: ID:

Problem 1. [15 pts]

(i) What is the definition of a meromorphic function on a domain $\Omega \subseteq \mathbb{C}$?
(ii) State the Riemann

(ii) State the Riemann mapping theorem.

Problem 2. [10 pts] Calculate the integral $\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + a^2} dx$, $a \in \mathbb{R}^{\times}$.

Problem 3. [10 pts] Calculate the integral $\int_0^\infty \frac{\sin x}{x} dx$.

Problem 4. [15 pts] Calculate the integral

$$\int_0^{2\pi} \log|1 - ae^{i\theta}| d\theta, \quad |a| \neq 1$$

Problem 5. [15 pts] Find an infinite product formula of the function $\cos z$ in terms of its zeros of its zeros.

Problem 6. [15 pts] Let f(z) be an entire function and n a non-negative integer.

Show that if f(z) to f(z)Show that if $\lim_{z\to\infty} \frac{f(z)}{z^n}$ exists and is nonzero, then f(z) is a polynomial of degree n.

Problem 7. [10 pts] Let \mathbb{D} denote the open unit disk and f be a holomorphic function on D. Show that the diameter

$$d = \sup_{z,w \in \mathbb{D}} |f(z) - f(w)|$$

satisfies the inequality $d \ge 2|f'(0)|$.

Problem 8. Suppose f and g are holomorphic in a region containing the disc $|z| \leq 1$. Suppose that f has a simple zero at z=0 and vanishes nowhere else in $|z| \leq 1$. Let 本是

$$f_{\epsilon}(z) = f(z) + \epsilon g(z).$$

Show the following:

- (i) [5pts] $f_{\epsilon}(z)$ has a unique zero z_{ϵ} in $|z| \leq 1$ if ϵ is sufficiently small.
- (ii) [5pts] The map $\epsilon \to z_{\epsilon}$ is holomorphic when ϵ is sufficiently smally.