

STAGE: APPROCHES NLP POUR L'ENRICHISSEMENT DE MÉTA-DONNÉES DANS UN DATA LAKE

Stage co-encadré par Zeenea et LIP6

Tuteurs de stage:

Julien Buret (Zeenea)

Bernd Amann (LIP6)

AKNOUCHE ANIS

Référent de stage :

Laure Soulier (LIP6)

Master 2 DAC 2021/2022

Sommaire

- 1. INTRODUCTION
- 2. PROBLÉMATIQUE
- 3. MÉTHODOLOGIES
- 4. EXPÉRIMENTATIONS
- 5. CAS D'USAGE
- 6. ÉVALUATION
- 7. DÉPLOIEMENT
- 8. CONCLUSION
- 9. PERSPECTIVES

1. INTRODUCTION

Concepts du Data Catalogue :

- Data process
- Visualization
- Fileds
- Dataset
- Category
- Business-Item

Patrimoine de données :

- Databases
- Datasets
- Tables
- Documents

1.1 OUTILS ZEENEA

Faciliter l'exploration des données

Faciliter la gestion de la documentation

Métadonnées:

- -Schéma de BDD
- -Noms de tables
- -Noms de colonnes
- -Documentations

Liens entre les concepts du catalogue de données et les objets du patrimoine de données

Enrichir un graphe de connaissances

2. PROBLÉMATIQUE

• Inférer des suggestions de linked-items entre les business-items et les colonnes du patrimoine de données selon la similarité sémantique :

Business-item:

- Nom
- Description textuelle
- Cas d'usage spécifique

Colonne:

- -Nom
- -Description textuelle (Optionnelle)

3. METHODOLOGIES

Description du business-Item

<0.4, -0.2, ..., 0.012>

Calcul de la similarité sémantique

3.1 APPROCHE 1 (NOM COLONNE + DESCRIPTION)

- Clustering des Colonnes avec les noms de colonnes concaténés avec les

descriptions textuelles (Optionnelles):

3.2 APPROCHE 2

1- Clustering des colonnes avec descriptions textuelles :

2- Clustering incrémental des colonnes sans descriptions textuelles :

3.3 GÉNÉRATION DE REPRÉSENTATIONS TEXTUELLES DES CLUSTERS

Cluster-based TF-IDF:

$$W_{t,c} = tf_{t,c} * log(1 + \frac{A}{tf_t})$$

 $tf_{t,c}^{}$: Fréquence de t dans le cluster c .

 ${\it A}\,$: Moyenne du nombre de mots dans tous les clusters .

 $tf_{_{t}}$: Fréquence de t tout le corpus de données .

(Implémentée dans BertTopic)

3.4 MÉTRIQUES DE MESURE DE LA QUALITÉ DES CLUSTERS :

Forme des clusters:

- Homogénéité des clusters : score d'inertie intra-cluster
- Séparabilité des clusters : score d'inertie inter-cluster
- Rapport d'inertie : Inertie intra-cluster / Inertie inter-cluster

Taux d'outliers:

Représente le taux de données classées comme étant des données aberrantes ou du bruit.

4. EXPÉRIMENTATIONS

4.1 DATASET

Données utilisées:

Métadonnées issues de BigQuery

Table 1 : Métadonnées issue de BigQuery. (Schéma de la table Chicago_taxi_trips))

Statistiques sur les données issues de BigQuery

Après suppression des doublons
et des champs vides
et nettoyage du texte

Suppression des stops words
Suppression des stops words
Suppression des caractères spéciaux
Mise en minuscule
Lemmatization

Après suppression des doublons
et des champs vides
et nettoyage du texte

12524 colonnes avec descriptions textuelles

12524 colonnes sans descriptions textuelles

4.2 APPROCHE 1 (NOM + DESCRIPTION)

4.2.1 CHOIX DU MODÈLE DE LANGUE

	Rapport d'inertie					
Modèles de génération d'embeddings	Sans réentraînement MLM	Avec réentraînement MLM				
all-mpnet-base-v2	1.78	1.9				
all-distillroberta-v1	1.83	1.63				
all-MiniLM-L12-v2	1.73	1.68				
paraphrase-multilingual-MiniLM-L12-v2	1.73	1.34				

Table 2 : Rapport d'inertie des partitionnements générés avec HDBSCAN après une réduction de dimensions avec UMAP (5 dimensions) et en utilisant différents modèles de langue (Avec et sans réentraînement MLM sur les descriptions textuelles des colonnes).

4.2.2 RÉSULTATS DES DIFFÉRENTS MODÈLES DE L'APPROCHE 1

Taux de colonnes **avec** descriptions textuelles : **30**% Taux de colonnes **sans** descriptions textuelles : **70**%

Modèles	EMBEDDINGS	Modèle de réduction de dimensions	Dimensions	Clustering	Inertie Intra- cluster	Inertie Inter- cluster	Taux d'outliers	Nombre de clusters
KMEANS (ELBOW)	Doc2Vec (PV-DM)	/	384	KMEANS	0.68	0.52	/	24
LDA	BagOfWords	/	/	LDA	0.42	0.16	/	200
CONFIG 1	all-mpnet + MLM	UMAP	6	HDBSCAN	0.71	0.38	30%	250
CONFIG 2	all-mpnet + MLM	PCA	700	HDBSCAN	0.84	0.32	69%	67
CONFIG 3	all-mpnet + MLM	ISOMAP	300	HDBSCAN	0.82	0.37	79%	96
CONFIG 4	all-mpnet + MLM	/	768	HDBSCAN	0.84	0.33	71%	65

Table 3 : Résultats de l'approche 1 (Mesures de qualité des partitionnements générés).

4.3 APPROCHE 2

4.3.1 RÉSULTATS DE L'APPROCHE 2

1- Clustering des descriptions textuelles : Taux de colonnes avec descriptions textuelles : 100%

Modèles	Génération d'embeddings	Modèle de réduction de dimensions	Dimensions	Clustering	Inertie Intra- cluster	Inertie Inter- cluster	Taux d'outliers	Nombre de clusters
CONFIG 1	all-mpnet + MLM	UMAP	4	HDBSCAN	0.71	0.40	23%	98
CONFIG 2	all-mpnet + MLM	PCA	600	HDBSCAN	0.83	0.37	78%	31
CONFIG 3	all-mpnet + MLM	ISOMAP	400	HDBSCAN	0.82	0.41	81%	27
CONFIG 4	all-mpnet + MLM	/	768	HDBSCAN	0.83	0.37	78%	30

Table 4 : Résultats de l'approche 2 (Mesures de qualités des partitionnements générés sur les descriptions des colonnes).

2- Clustering incrémental des colonnes sans descriptions textuelles :

Taux de colonnes **avec** descriptions textuelles : **30**%

Taux de colonnes **sans** descriptions textuelles : **70**%

Modèles	Génération d'embeddings	Dimensions	Méthode de clustering incrémental	Inertie Intra- cluster	Inertie Inter- cluster	Taux d'outliers	Nombre de clusters
CONFIG 1	all-mpnet + MLM	768	KNN	0.56	0.48	44%	98
CONFIG 1	all-mpnet + MLM	768	Nearest Centroid	0.54	0.51	11%	98

Table 5 : Clustering incrémental des colonnes sans descriptions textuelles (Mesures de qualités des partitionnements générés)

5. CAS D'USAGE

Approche 2 avec Nearest Centroid (NC)

Le business-item : Le business-item fait référence à une position géographique ainsi qu'à des informations financières et institutionnelles.

Les 3 topics les plus proches :

Topic 118 (0.47)

Topic 162 (0.33)

Topic 164 (0.32)

Figure 3 : Les wordClouds des 3 topics les plus similaires au business-item (Avec le score de similarité cosinus).

Les 10 colonnes les plus similaires avec le business-item dans chaque topic (Avec le score de similarité cosinus):

- 1. institution_class: 0.47
- 2. bank_charter_class: 0.47
- 3. insured_commercial_bank: 0.43
- 4. iba: 0.42
- 5. chartering_agency: 0.40
- 6. insured_savings_institute: 0.40
- 7. qbp_region: 0.40
- 8. federal_charter: 0.39
- 9. top_holder: 0.38
- 10. docket: 0.38

- 1. Actor1Geo_ADM1Code: 0.34
- 2. ActionGeo_ADM1Code: 0.32
- 3. Actor2Geo_Type: 0.32
- 4. Actor1Geo_Type: 0.31
- 5. Actor2Geo_ADM1Code: 0.30
- 6. ActionGeo_FullName: 0.24
- 7. ActionGeo_CountryCode: 0.24
- 8. Actor2Geo_CountryCode: 0.23
- 9. Actor1Geo_CountryCode: 0.21
- 10. Actor2Geo_FullName: 0.20

- 1. facility_sub_region_2: 0.35
- 2. sub_region_3: 0.34
- 3. state_province_inc: 0.33
- 4. country_subdivision_secondary: 0.32
- 5. facility_country_region_code: 0.30
- 6. facility_sub_region_1: 0.30
- 7. country_subdivision_primary: 0.29
- 8. country_iso_code_2: 0.29
- 9. province_abbreviation: 0.29
- 10. countries_and_territories: 0.27

6. ÉVALUATION

Simuler un utilisateur :

- 1000 colonnes avec descriptions textuelles (Business-items)
- Chaque business-item contient 25 liens vers des colonnes qui sont similaires sémantiquement.
- Pour un nombre de topic N allant de 2 à 10
- Pour un nombre de colonnes M allant de 2 à 15

Approches	Précision	Rappel	F1-score
Approche 1	0.19	0.72	0.298
Approche 2 (KNN)	0.27	0.73	0.392
Approche 2 (NC)	0.28	0.79	0.410

Table 6 : Moyenne des scores de précision, rappel et f1-score selon le nombre de topics et le nombre de colonnes pour chaque approche.

7. DÉPLOIEMENT :

Environnement de développement : Elastic Compute Cloud (EC2) d'AWS

Bucket S3 du client

Base de données (JSON)

Container 1:

- -Chargement des données, nettoyage et structuration
- -Entraînement du modèle de langue (MLM)

Stockage Local

- Données nettoyées et structurées
- Modèle entraîné

Container 2:

- -Trouver les meilleurs hyperparamètres pour faire une réduction de dimension et faire du clustering
- -Génération des représentations de topics
- -Inférence des linked-items entre les colonnes du catalogue de données et les business-items

Bucket S3 Stockage

- Restitution des résultats (Mesures de qualité des clusters et précision, rappel et f1-score entre les linked-items suggérés et les linked-items existants.

Prochaine étape : Mise en production

8. CONCLUSION

- La première approche donne de bons résultats dans le cas où on mélange les colonnes ayant des descriptions textuelles et les colonnes sans descriptions textuelles et les résultats sont meilleurs en utilisant uniquement des colonnes avec descriptions textuelles.
- La deuxième approche permet de couvrir plus de données, en revanche elle est très sensible au biais des descriptions textuelles lors de la génération des clusters.

9. PERSPECTIVES

- Inférer des suggestions de linked-items entre les autres concepts du catalogue de données et les différents objets (tables, datasets, etc) du patrimoine de données
- Générer et enrichir les descriptions textuelles des différents concepts du catalogue de données

MERCIPOUR VOTRE ATTENTION!

Annexe

APPROCHE 1

CLUSTERING AVEC LE K-MEANS

inter_cluster_inertia_cosine selon le nombre de clusters

Avec un nombre de clusters de 500 :

- score d'inertie intra-cluster 0.85
- score d'inertie inter-cluster 0.31

Figure 1 : Évolution des scores d'inertie intra-cluster et inter-cluster selon un nombre de clusters allant de 2 à 500.

Topic 45 (18 éléments))

Figure 2 : WordCloud de deux topics.

CLUSTERING AVEC LE K-MEANS

En utilisant la méthode de l'ELBOW:

Figure 3 : Évolution du score de distorsion et du temps d'exécution du KMeans selon un nombre de clusters allant de 2 à 500 clusters.

Inertie Intra -cluster : 0.68 Inertie inter-cluster : 0.52 Nombre de clusters : 24

LATENT DIRECHLET ALLOCATION (LDA)

Nombre de clusters : 200 Score intra-cluster : 0.42 Score inter-cluster : 0.16

Figure 3 : Évolution des scores d'inertie intra-cluster et inter-cluster selon un nombre de clusters allant de 2 à 500 clusters.

Topic 2

Figure 4: WordCloud de deux topics.

BERTOPIC

Schéma du modèle BerTopic :

Uniform Manifold Approximation and Projection for Dimension Reduction

UMAP (5 DIMENSIONS)

Embeddings des noms de colonnes concaténés avec leurs descriptions textuelles si elles sont disponible.

BERTOPIC:

Figure 5 : Rapport d'inertie des clusters générés par un partitionnement avec HDBSCAN en utilisant différents modèles de langue (Avec et sans domaine adaptation) pour la génération des vecteurs embeddings.

RÉDUCTION DE DIMENSIONS AVEC (UMAP, PCA, ISOMAP) SUIVIE D'UN D'UN CLUSTERING AVEC HDBSCAN

Figure 8 : Rapports inertiels et taux d'outliers des partitionnements générés par HDBSCAN avec différentes réductions de dimensions des vecteurs embeddings.

RÉSULTATS DE L'APPROCHE 2 (CLUSTERING INCRÉMENTAL DES COLONNES SANS DESCRIPTIONS TEXTUELLES)

Figure 9 : Clustering incrémental des colonnes sans descriptions textuelles.

RÉDUCTION DE DIMENSIONS (UMAP ET TSNE) DES EMBEDDINGS SUIVIE D'UN CLUSTERING AVEC HDBSCAN

Figure 1 : Réduction de dimensions (UMAP, T-SNE) et mesure de la qualité des partitionnements générés avec HDBSCAN. (Dataset de taille 2K)

ÉVOLUTION DU TEMPS D'EXÉCUTION DE DIFFÉRENTS MODÈLES DE RÉDUCTION DE DIMENSIONS

Figure 2 : Évolution du temps d'exécution des modèles de réduction de dimensions (UMAP, T-SNE, PCA, ISOMAP)