Chapter: 30. STATISTICS

Exercise: 30A

Question: 1

Find the mean dev

Solution:

We have, 7, 8, 4, 13, 9, 5, 16, 18

Mean of the given data is

$$\overline{x} = \frac{7 + 8 + 4 + 13 + 9 + 5 + 16 + 18}{8} = \frac{80}{8} = 10$$

The respective absolute values of the deviations from the mean , i.e., $|\mathbf{x}_i - \overline{\mathbf{x}}|$ are

3, 2, 6, 3, 1, 5, 6, 8

Thus, the required mean deviation about the mean is

$$\begin{split} \text{M.D.}\left(\overline{x}\right) &= \frac{\sum_{i=1}^{8}\left|x_{i} - \overline{x}\right|}{8} \\ &= \frac{3+2+6+3+1+5+6+8}{8} = \frac{34}{8} = 4.25 \end{split}$$

Question: 2

Find the mean dev

Solution:

We have, 39, 72, 48, 41, 43, 55, 60, 45, 54, 43

Mean of the given data is

$$\overline{x} = \frac{39 + 72 + 48 + 41 + 43 + 55 + 60 + 45 + 54 + 43}{10} = \frac{500}{10} = 50$$

The respective absolute values of the deviations from mean , i.e, $|x_i - \overline{x}|$ are

Thus, the required mean deviation about the mean is

$$\begin{split} \text{M.D.}\left(\overline{x}\right) &= \frac{\sum_{i=1}^{10} |x_i - \overline{x}|}{10} \\ &= \frac{11 + 22 + 2 + 9 + 7 + 5 + 10 + 5 + 4 + 7}{10} = \frac{82}{10} = 8.2 \end{split}$$

Question: 3

Find the mean dev

Solution:

We have, 17, 20, 12, 13, 15, 16, 12, 18, 15, 19, 12, 11

Mean of the given data is

$$\overline{x} = \frac{17 + 20 + 12 + 13 + 15 + 16 + 12 + 18 + 15 + 19 + 12 + 11}{12}$$

$$\overline{x} = \frac{180}{12} = 15$$

The respective absolute values of the deviations from the mean , i.e., $|x_i - \overline{x}|$ are

Thus, the required mean deviation about the mean is

$$\begin{split} &M.\,D.\,(\overline{x}) = \frac{\sum_{i=1}^{12} |x_i - \overline{x}|}{12} \\ &= \frac{2+5+3+2+0+1+3+3+0+4+3+4}{12} = \frac{30}{12} = 2.5 \end{split}$$

Question: 4

Find the mean dev

Solution:

Here the number of observations is 9 which is odd.

Arranging the data into ascending order, we have 5, 6, 8, 10, 11, 12, 13, 14, 17

Now, Median(M) =
$$\left(\frac{9+1}{2}\right)^{th}$$
 or 5th observation = 11

The respective absolute values of the deviations from median , i.e., $|\mathbf{x}_i - \mathbf{M}|$ are

Thus, the required mean deviation about the median is

M.D.
$$(\bar{x}) = \frac{\sum_{i=1}^{9} |x_i - M|}{9}$$

= $\frac{6+5+3+1+0+1+2+3+6}{9} = \frac{27}{9} = 3$

Question: 5

Find the mean dev

Solution:

Here the number of observations is 11 which is odd.

Arranging the data into ascending order, we have 4, 6, 7, 8, 9, 11, 13, 15, 19, 21, 25

Now, Median(M) =
$$\left(\frac{11+1}{2}\right)^{\text{th}}$$
 or 6^{th} observation = 11

The respective absolute values of the deviations from median , i.e., $|\mathbf{x}_i - \mathbf{M}|$ are

Thus, the required mean deviation about the median is

$$\begin{aligned} \text{M.D.} \left(\overline{\mathbf{x}} \right) &= \frac{\sum_{i=1}^{11} |\mathbf{x}_i - \mathbf{M}|}{11} \\ &= \frac{7 + 5 + 4 + 3 + 2 + 0 + 2 + 4 + 8 + 10 + 14}{11} = \frac{59}{11} = 5.3 \end{aligned}$$

Question: 6

Find the mean dev

Solution:

Here the number of observations is 10 which is odd.

Arranging the data into ascending order, we have 23, 28, 32, 34, 35, 37, 40, 44, 46, 50

Now, Median(M) =
$$\left(\frac{5^{\text{th observation}+6^{\text{th observation}}}{2}\right) = \frac{35+37}{2} = 36$$

The respective absolute values of the deviations from median , i.e., $|\mathbf{x}_i - \mathbf{M}|$ are

Thus, the required mean deviation about the median is

$$\begin{split} \text{M.D.}\left(\overline{x}\right) &= \frac{\sum_{i=1}^{10} |x_i - M|}{10} \\ &= \frac{13 + 8 + 4 + 2 + 1 + 1 + 4 + 8 + 10 + 14}{10} = \frac{65}{10} = 6.5 \end{split}$$

Question: 7

Find the mean dev

Solution:

Here the number of observations is 12 which is odd.

Arranging the data into ascending order, we have 34, 42, 45, 48, 50, 54, 56, 63, 65, 67, 70, 78

Now, Median(M) =
$$\left(\frac{6^{\text{th observation}+7^{\text{th observation}}}{2}\right) = \frac{54+56}{2} = 55$$

The respective absolute values of the deviations from median , i.e, $|\mathbf{x_i} - \mathbf{M}|$ are

Thus, the required mean deviation about the median is

$$\begin{split} &M.D.\left(\overline{x}\right) = \frac{\sum_{i=1}^{12}|x_i - M|}{12} \\ &= \frac{21+13+10+7+5+1+1+8+10+12+15+23}{12} = \frac{126}{12} = 10.5 \end{split}$$

Question: 8

Find the mean dev

Solution:

	xi	f_i	f _i x _i
	6	5	30
	12	4	48
We have,	18	11	198
we have,	24	6	144
	30	4	120
	36	6	216
		36	756

Therefore,
$$\bar{x}=\frac{\sum_{i=1}^6f_i\,x_i}{\sum_{i=1}^6f_i}=\,\frac{756}{36}=21$$

Now,

xi	f_i	f _i x _i	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i-\overline{x} $
6	5	30	15	75
12	4	48	9	36
18	11	198	3	33
24	6	144	3	18
30	4	120	9	36
36	6	216	15	90
	36	756		288

Thus, the required mean deviation about the mean is

$$\overline{x} = \frac{\sum_{i=1}^{6} f_{i} |x_{i} - \overline{x}|}{\sum_{i=1}^{6} f_{i}} = \frac{288}{36} = 8$$

Question: 9

Find the mean dev

Solution:

	xi	f_i	f _i x _i
	2	2	4
	5	8	40
We have,	6	10	60
we have,	8	7	56
	10	8	80
	12	5	60
		40	300

Therefore,
$$\overline{x} = \frac{\sum_{i=1}^6 f_i \, x_i}{\sum_{i=1}^6 f_i} = \, \frac{300}{40} = 7.5$$

Now,

xi	f_i	f _i x _i	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i-\overline{x} $
2	2	4	5.5	11
5	8	40	2.5	20
6	10	60	1.5	15
8	7	56	0.5	3.5
10	8	80	2.5	20
12	5	60	4.5	22.5
	40	300		92

Thus, the required mean deviation about the mean is

$$\overline{x} = \frac{\sum_{i=1}^{6} f_i |x_i - \overline{x}|}{\sum_{i=1}^{6} f_i} = \frac{92}{40} = 2.3$$

Question: 10

Find the mean dev

Solution:

	xi	f_i	f _i x _i
	3	6	18
	5	8	40
We have,	7	15	105
we have,	9	25	225
	11	8	88
	13	4	52
		66	528

Therefore,
$$\overline{x} = \frac{\sum_{i=1}^6 f_i \; x_i}{\sum_{i=1}^6 f_i} = \frac{528}{66} = 8$$

Now,

xi	f_i	f _i x _i	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i-\overline{x} $
3	6	18	5	30
5	8	40	3	24
7	15	105	1	15
9	25	225	1	25
11	8	88	3	24
13	4	52	5	20
	66	528		138

Thus, the required mean deviation about the mean is

$$\text{M.D}(\overline{x}) = \frac{\sum_{i=1}^{6} f_i |x_i - \overline{x}|}{\sum_{i=1}^{6} f_i} = \frac{138}{66} = 2.09$$

Question: 11

Find the mean dev

Solution:

The given observations are in ascending order. Adding a row corresponding to cumulative

frequencies to the given data, we get,

x _i	15	21	27	30	35
f_i	3	5	6	7	8
c.f	3	8	14	21	29

Now, N=29 which is odd.

Since, 15^{th} observation lie in the cumulative frequency 21, for which the corresponding observation is 30.

$$Median(M) = \left(\frac{29+1}{2}\right)^{th} or 15^{th} observation = 30$$

Now, absolute values of the deviations from the median,

x _i -M	15	9	3	0	5
f_i	3	5	6	7	8
$f_i x_i$ -M	45	45	18	0	40

We have, $\sum_{i=1}^5 f_i = 29$ and $\sum_{i=1}^5 f_i |x_i - M| = 148$

$$\label{eq:matter_matter} \therefore \ M.\, D\left(M\right) = \frac{\sum_{i=1}^{5} f_i |x_i - M|}{\sum_{i=1}^{5} f_i}$$

$$=\frac{148}{29}=5.10$$

Question: 12

Find the mean dev

Solution:

The given observations are in ascending order. Adding a row corresponding to cumulative

c.f

frequencies to the given data, we get,

Now, N=50 which is even.

Median is the mean of the 25^{th} observation and 26^{th} observation. Both of these observations lie in the cumulative frequency 30, for which the corresponding observation is 13.

$$Median(M) = \frac{25^{th} \ observation + 26^{th} \ observation}{2} = \frac{13 + 13}{2} = 13$$

Now, absolute values of the deviations from the median,

x _i -M	8	6	4	2	0	2	4
$\mathbf{f_i}$	2	4	6	8	10	12	8
f _i x _i -M	16	24	24	16	0	24	32

We have, $\sum_{i=1}^5 f_i = 50$ and $\sum_{i=1}^5 f_i |x_i - M| = 136$

$$\label{eq:matter_matter} \therefore \ M.\, D\left(M\right) = \frac{\sum_{i=1}^{5} f_i |x_i - M|}{\sum_{i=1}^{5} f_i}$$

$$=\frac{136}{50}=2.72$$

Question: 13

Find the mean dev

Solution:

The given observations are in ascending order. Adding a row corresponding to cumulative

frequencies to the given data, we get,

xi	10	15	20	25	30	35	40	45
f_i	7	3	8	5	6	8	4	9
c.f	7	10	18	23	29	37	41	50

Now, N=50 which is even.

Median is the mean of the 25^{th} observation and 26^{th} observation. Both of these observations lie in the cumulative frequency 29, for which the corresponding observation is 30.

$$Median(M) = \frac{25^{th} \ observation + 26^{th} \ observation}{2} = \frac{30 + 30}{2} = 30$$

Now, absolute values of the deviations from the median,

x _i -M	20	15	10	5	0	5	10	15
f_i	7	3	8	5	6	8	4	9
$f_i x_i$ -M	140	45	80	25	0	40	40	135

We have, $\sum_{i=1}^5 f_i = 50$ and $\sum_{i=1}^5 f_i |x_i - M| = 505$

$$\label{eq:matter_matter} \therefore \text{ M.D (M)} = \frac{\sum_{i=1}^{5} f_i |x_i - M|}{\sum_{i=1}^{5} f_i}$$

$$=\frac{505}{50}=10.1$$

Question: 14

Find the mean dev

Solution:

we make the following table from the given data:

Mark	Number of Students	Mid-points	$f_i x_i$
	$\mathbf{f_i}$	Xi	
0-10	6	5	30
10-20	8	15	120
20-30	14	25	350
30-40	16	35	560
40-50	4	45	180
50-60	2	55	110
	50		1350

Therefore,
$$\overline{x}=\frac{\sum_{i=1}^{6}f_{i}\;x_{i}}{\sum_{i=1}^{6}f_{i}}=\frac{1350}{50}=27$$

Mark	Number of Students	Mid-points	$f_i x_i$	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i-\bar{x }$
	$\mathbf{f_i}$	Xi			
0-10	6	5	30	22	132
10-20	8	15	120	12	96
20-30	14	25	350	2	28
30-40	16	35	560	8	128
40-50	4	45	180	18	72
50-60	2	55	110	28	56
	50		1350		512

Thus, the required mean deviation about the mean is

$$\text{M.D}(\overline{x}) = \frac{\sum_{i=1}^{6} f_{i} |x_{i} - \overline{x}|}{\sum_{i=1}^{6} f_{i}} = \frac{512}{50} = 10.24$$

Question: 15

Find the mean dev

Solution:

we make the following table from the given data:

Height (in cm)	Number of boys	Mid-points	$f_i x_i$
	$\mathbf{f_i}$	x _i	
95-105	9	100	900
105-115	16	110	1760
115-125	23	120	2760
125-135	30	130	3900
135-145	12	140	1680
145-155	10	150	1500
	100		12500

Therefore,
$$\bar{\textbf{x}}=\frac{\sum_{i=1}^{6}f_{i}\;\textbf{x}_{i}}{\sum_{i=1}^{6}f_{i}}=\,\frac{12500}{100}=\,125$$

Height (in cm)	Number of boys	Mid-points	$f_i x_i$	$ \mathbf{x_i} - \overline{\mathbf{x_i}} $	$f_i x_i-\overline{x} $
	$\mathbf{f_i}$	Xi			
95-105	9	100	900	25	225
105-115	16	110	1760	15	240
115-125	23	120	2760	5	115
125-135	30	130	3900	5	150
135-145	12	140	1680	15	180
145-155	10	150	1500	25	250
	100		12500		1160

Thus, the required mean deviation about the mean is

$$\text{M.D}(\overline{x}) = \frac{\sum_{i=1}^{6} f_i |x_i - \overline{x}|}{\sum_{i=1}^{6} f_i} = \frac{1160}{100} = 11.6$$

Question: 16

Find the mean dev

Solution:

class	Frequency	Mid-points	$f_i x_i$
	f_i	Xi	
30-40	3	35	105
40-50	7	45	315
50-60	12	55	660
60-70	15	65	975
70-80	8	75	600
80-90	3	85	255
90-100	2	95	190
	50		3100

we make the following table from the given data:

Therefore,
$$\overline{x}=\frac{\sum_{i=1}^7 f_i \; x_i}{\sum_{i=1}^7 f_i} = \frac{3100}{50} = 62$$

class	Frequency	Mid-points	$f_i x_i$	$ \mathbf{x_i} - \overline{\mathbf{x}} $	$f_i x_i-\overline{x} $
	f_i	Xi			
30-40	3	35	105	27	81
40-50	7	45	315	17	119
50-60	12	55	660	7	84
60-70	15	65	975	3	45
70-80	8	75	600	13	104
80-90	3	85	255	23	69
90-100	2	95	190	33	66
	50		3100		568

Thus, the required mean deviation about the mean is

$$M.D(\overline{x}) = \frac{\sum_{i=1}^{7} f_i |x_i - \overline{x}|}{\sum_{i=1}^{7} f_i} = \frac{568}{50} = 11.36$$

Question: 17

Find the mean dev

Solution:

we make the following table from the given data:

class	Frequency	Cumulative frequency	Mid-points
	f_i	c.f	x _i
0-10	6	6	5
10-20	7	13	15
20-30	15	28	25
30-40	16	44	35
40-50	4	48	45
50-60	2	50	55
	50		

The class interval containing $\frac{N^{th}}{2}$ or 25th item is 20-30. Therefore, 20-30 is the median class. We know that

$$Median = 1 + \frac{\frac{N}{2} - C}{f} \times h$$

Here,
$$l = 20$$
, $C = 13$, $f = 15$, $h = 10$ and $N = 50$

Therefore, Median =
$$20 + \frac{\frac{50}{2} - 13}{15} \times 10 = 20 + 8 = 28$$

Now,

class	Frequency	Cumulative frequency	Mid-points	x _i -M	f _i x _i -M
	f_i	c.f	Xi		
0-10	6	6	5	23	138
10-20	7	13	15	13	91
20-30	15	28	25	3	45
30-40	16	44	35	7	112
40-50	4	48	45	17	68
50-60	2	50	55	27	54
	50				508

We have, $\sum_{i=1}^6 f_i = 50$ and $\sum_{i=1}^6 f_i |x_i - M| = 508$

$$\label{eq:matter_matter} \therefore \ M.\, D\left(M\right) = \frac{\sum_{i=1}^{6} f_i |x_i - M|}{\sum_{i=1}^{6} f_i}$$

$$=\frac{508}{50}=10.16$$

Question: 18

Find the mean dev

Solution:

we make the following table from the given data:

class	Frequency	Cumulative frequency	Mid-points
	f_i	c.f	x_i
0-10	6	6	5
10-20	8	14	15
20-30	11	25	25
30-40	18	43	35
40-50	5	48	45
50-60	2	50	55
	50		

The class interval containing $\frac{N}{2}^{th}$ or 25th item is 20-30. Therefore, 20-30 is the median class. We know that

$$Median = 1 + \frac{\frac{N}{2} - C}{f} \times h$$

Here,
$$l = 20$$
, $C = 14$, $f = 11$, $h = 10$ and $N = 50$

Therefore, Median =
$$20 + \frac{\frac{50}{2} - 14}{11} \times 10 = 20 + 10 = 30$$

Now,

class	Frequency	Cumulative frequency	Mid-points	x _i -M	f _i x _i -M
	f_i	c.f	Xi		
0-10	6	6	5	25	150
10-20	8	14	15	15	120
20-30	11	25	25	5	55
30-40	18	43	35	5	90
40-50	5	48	45	15	75
50-60	2	50	55	25	50
	50				540

We have, $\sum_{i=1}^6 f_i = 50$ and $\sum_{i=1}^6 f_i |x_i - M| = 540$

$$\label{eq:matter_matter} \therefore \ M.\,D\left(M\right) = \frac{\sum_{i=1}^{6} f_i |x_i - M|}{\sum_{i=1}^{6} f_i}$$

$$=\frac{540}{50}=10.8$$

Exercise: 30B

Question: 1

Find the mean, va

Solution:

Given data: 4, 6, 10, 12, 7, 8, 13, 12

To find: MEAN We know that,

 $\text{Mean } (\overline{x}) = \frac{\text{Sum of observations}}{\text{Total number of observations}}$

$$\frac{4+6+10+12+7+8+13+12}{}$$

8

$$=\frac{72}{8}$$

$$\overline{x} = 9$$

To find: VARIANCE

xi	$\mathbf{x_i} - \overline{\mathbf{x}}$	$(x_i - \overline{x})^2$
4	4 - 9 = -5	$(-5)^2 = 25$
6	6 - 9 = -3	$(-3)^2 = 9$
10	10 - 9 = 1	$(1)^2 = 1$
12	12 - 9 = 3	$(3)^2 = 9$
7	7 - 9 = -2	$(-2)^2 = 4$
8	8 - 9 = -1	$(-1)^2 = 1$
13	13 - 9 = 4	$(4)^2 = 16$
12	12 - 9 = 3	$(3)^2 = 9$
		$\sum (x_i - \bar{x})^2 = 74$

Variance,
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$=\frac{74}{8}$$

$$= 9.25$$

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{9.25}$$

= 3.04

Question: 2

Find the mean, va

Solution:

Odd natural numbers = 1, 3, 5, 7, 9, ...

First Six Odd Natural Numbers = 1, 3, 5, 7, 9, 11

To find: MEAN

We know that,

$$\text{Mean } (\overline{x}) = \frac{\text{Sum of observations}}{\text{Total number of observations}}$$

$$=\frac{1+3+5+7+9+11}{6}$$

$$=\frac{36}{6}$$

$$\overline{x} = 6$$

To find: VARIANCE

xi	$\mathbf{x_i} - \overline{\mathbf{x}}$	$(x_i - \bar{x})^2$
1	1 - 6 = -5	$(-5)^2 = 25$
3	3 - 6 = -3	$(-3)^2 = 9$
5	5 - 6 = -1	$(-1)^2 = 1$
7	7 - 6 = 1	$(1)^2 = 1$
9	9 - 6 = 3	$(3)^2 = 9$
11	11 - 6 = 5	$(5)^2 = 25$
		$\sum (x_i - \overline{x})^2 = 70$

$$\text{Variance, } \sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$=\frac{70}{6}$$

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{\text{Variance}}$

$$=\sqrt{11.67}$$

$$= 3.41$$

Question: 3

Using short cut m

Solution:

To find: MEAN

(x _i)	(f _i)	$x_i f_i$
4	3	12
8	5	40
11	9	99
17	5	85
20	4	80
24	3	72
32	1	32
Total	$\sum f_i = 30$	$\sum f_i x_i = 420$

Now, Mean
$$(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

$$=\frac{420}{30}$$

=14

To find: VARIANCE

(x _i)	(f _i)	$x_i - \bar{x}$	$(x_i - \overline{x})^2$	$f_i(x_i - \bar{x})^2$
4	3	4 - 14 = -10	$(-10)^2 = 100$	3 × 100 = 300
8	5	8 - 14 = -6	$(-6)^2 = 36$	5 × 36 = 180
11	9	11 - 14 = -3	$(-3)^2 = 9$	9 × 9 = 81
17	5	17 - 14 = 3	$(3)^2 = 9$	5 × 9 = 45
20	4	20 - 14 = 6	$(6)^2 = 36$	4 × 36 = 144
24	3	24 - 14 = 10	$(10)^2 = 100$	3 × 100 = 300
32	1	32 - 14 = 18	$(18)^2 = 324$	1 × 324 = 324
	N = 30			$\sum f_i(x_i - \overline{x})^2 = 1374$

$$\text{Variance, } \sigma^2 = \frac{\sum f_i(x_i - \overline{x})^2}{N}$$

$$=\frac{1374}{30}$$

= 45.8

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{45.8}$$

$$= 6.77$$

Question: 4

Using short cut m

Solution:

To find: MEAN

(x _i)	(f _i)	$x_i f_i$
6	2	12
10	4	40
14	7	98
18	12	216
24	8	192
28	4	112
30	3	90
Total	$\sum f_i = 40$	$\sum f_i x_i = 760$

Now, Mean
$$(\overline{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

$$=\frac{760}{40}$$

=19

To find: VARIANCE

(x _i)	(f _i)	$\mathbf{x_i} - \mathbf{\bar{x}}$	$(x_i - \bar{x})^2$	$f_i(x_i-\bar{x})^2$
6	2	6 - 19 = -13	$(-13)^2 = 169$	2 × 169 = 338
10	4	10 - 19 = -9	$(-9)^2 = 81$	4 × 81 = 324
14	7	14 - 19 = -5	$(-5)^2 = 25$	7 × 25 = 175
18	12	18 - 19 = -1	$(-1)^2 = 1$	12 × 1 = 12
24	8	24 - 19 = 5	$(5)^2 = 25$	8 × 25 = 200
28	4	28 - 19 = 9	$(9)^2 = 81$	4 × 81 = 324
30	3	30 - 19 = 11	$(11)^2 = 121$	3 × 121 = 363
Total	N = 40			$\sum f_i(x_i - \overline{x})^2 = 1736$

$$\text{Variance,} \sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$

$$=\frac{1736}{40}$$

= 43.4

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{43.4}$$

= 6.58

Question: 5

Using short cut m

Solution:

To find: MEAN

(x _i)	(f _i)	$x_i f_i$
10	3	30
15	2	30
18	5	90
20	8	160
25	2	50
Total	$\sum f_i = 20$	$\sum f_i x_i = 390$

Now, Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

$$=\frac{390}{20}$$

To find: VARIANCE

(x _i)	(f _i)	$\mathbf{x_i} - \overline{\mathbf{x}}$	$(\mathbf{x_i} - \overline{\mathbf{x}})^2$	$f_i(x_i-\bar{x})^2$
10	3	10 - 19.5	(-9.5) ²	3 × 90.25 = 270.75
		= -9.5	= 90.25	
15	2	15 - 19.5	(-4.5) ²	$2 \times 20.25 = 40.5$
		= -4.5	= 20.25	
18	5	18 - 19.5	(-1.5) ²	5 × 2.25 = 11.25
		= -1.5	= 2.25	
20	8	20 - 19.5	$(0.5)^2$	8 × 0.25 = 2
		= 0.5	= 0.25	
25	2	25 - 19.5	$(5.5)^2$	$2 \times 30.25 = 60.5$
		= 5.5	= 30.25	
Total	N = 20			$\sum f_i(x_i - \overline{x})^2 = 385$

$$\text{Variance, } \sigma^2 = \frac{\sum f_i (x_i - \overline{x})^2}{N}$$

$$=\frac{385}{20}$$

= 19.25

To find: STANDARD DEVIATION

Standard Deviation $(\sigma) = \sqrt{Variance}$

$$=\sqrt{19.25}$$

= 4.39

Question: 6

Using short cut m

Solution:

To find: MEAN

(x _i)	(f _i)	$x_i f_i$
92	3	276
93	2	186
97	3	291
98	2	196
102	6	612
104	3	312
109	3	327
Total	$\sum f_i = 22$	$\sum f_i x_i = 2200$

Now, Mean
$$(\bar{x}) = \frac{\sum f_i x_i}{\sum f_i}$$

$$=\frac{2200}{22}$$

=100

To find: VARIANCE

(x _i)	(f _i)	$\mathbf{x_i} - \mathbf{\bar{x}}$	$(x_i - \bar{x})^2$	$f_i(x_i - \overline{x})^2$
92	3	92 - 100 = -8	$(-8)^2 = 64$	3 × 64 = 192
93	2	93 - 100 = -7	$(-7)^2 = 49$	2 × 49 = 98
97	3	97 - 100 = -3	$(-3)^2 = 9$	3 × 9 = 27
98	2	98 - 100 = -2	$(-2)^2 = 4$	2 × 4 = 8
102	6	102 - 100 = 2	$(2)^2 = 4$	6 × 4 = 24
104	3	104 - 100 = 4	$(4)^2 = 16$	3 × 16 = 48
109	3	109 - 100 = 9	$(9)^2 = 81$	3 × 81 = 243
Total	$\sum f_i = 22$			$\sum f_i(x_i - \overline{x})^2 = 640$

$$\text{Variance, } \sigma^2 = \frac{\sum f_i(x_i - \overline{x})^2}{N}$$

$$=\frac{640}{22}$$

= 29.09

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{29.09}$$

= 5.39

Question: 7

Using short cut m

Solution:

Here, we apply the step deviation method with A=25 and h=10

To find: MEAN

Class	(f _i)	Class Mark (x _i)	$d_i = x_i - A$	$y_i = \frac{d_i}{10}$	f_iy_i
0 - 10	5	5	5 - 25 = -20	-2	-10
10 - 20	8	15	15 - 25 = -10	-1	-8
20 - 30	15	25 = A	0	0	0
30 - 40	16	35	35 - 25 = 10	1	16
40 - 50	6	45	45 - 25 = 20	2	12
Total	$\sum f_i = 50$				$\sum f_i y_i = 10$

Now, Mean
$$(\bar{x}) = a + h \left(\frac{\sum f_i y_i}{\sum f_i} \right)$$

$$\Rightarrow \overline{x} = 25 + 10 \left(\frac{10}{50}\right)$$

$$\Rightarrow \overline{x} = 25 + \frac{100}{50}$$

$$\Rightarrow \bar{x} = 25 + 2$$

$$\Rightarrow \overline{x} = 27$$

To find: VARIANCE

(f _i)	(x _i)	y _i	y_i^2	$f_i y_i$	$f_i y_i^2$
5	5	-2	$(-2)^2 = 4$	-10	20
8	15	-1	$(-1)^2 = 1$	-8	8
15	25 = A	0	0	0	0
16	35	1	$(1)^2 = 1$	16	16
6	45	2	$(2)^2 = 4$	12	24
N=50				$\sum f_i y_i = 10$	$\sum f_i y_i^2 = 68$

$$\text{Variance, } \sigma^2 = \frac{h^2}{N^2} \Big[N \sum f_i y_i^2 - \left(\sum f_i y_i \right)^2 \Big]$$

$$=\frac{(10)^2}{(50)^2}[50\times 68-(10)^2]$$

$$=\frac{100}{50\times 50}[3400-100]$$

$$=\frac{1}{25}[3300]$$

= 132

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{132}$$

= 11.49

Question: 8

Using short cut m

Solution:

Here, we apply the step deviation method with A=65 and h=10

To find: MEAN

Class	(f _i)	Class Mark (x _i)	$d_i = x_i - A$	$y_i = \frac{d_i}{10}$	f_iy_i
30 - 40	3	35	35 - 65 = -30	-3	-9
40 - 50	7	45	45 - 65 = -20	-2	-14
50 - 60	12	55	55 - 65 = -10	-1	-12
60 - 70	15	65 = A	0	0	0
70 - 80	8	75	75 - 65 = 10	1	8
80 - 90	3	85	85 - 65 = 20	2	6
90-100	2	95	95 - 65 = 30	3	6
Total	$\sum f_i = 50$				$\sum f_i y_i = -15$

Now, Mean $(\overline{x}) = a + h \left(\frac{\sum f_i y_i}{\sum f_i} \right)$

$$\Rightarrow \overline{x} = 65 + 10 \left(\frac{-15}{50} \right)$$

$$\Rightarrow \overline{x} = 65 - \frac{150}{50}$$

$$\Rightarrow \; \tilde{x} = \; 65 - 3$$

$$\Rightarrow \overline{x} = 62$$

To find: VARIANCE

(f _i)	(x _i)	y _i	y _i ²	f_iy_i	$f_i y_i^2$
3	35	-3	$(-3)^2 = 9$	-9	27
7	45	-2	$(-2)^2 = 4$	-14	28
12	55	-1	$(-1)^2 = 1$	-12	12
15	65 = A	0	0	0	0
8	75	1	$(1)^2 = 1$	8	8
3	85	2	$(2)^2 = 4$	6	12
2	95	3	$(3)^2 = 9$	6	18
N= 50				$\sum f_i y_i = -15$	$\sum f_i y_i^2 = 105$

Variance,
$$\sigma^2 = \frac{h^2}{N^2} \Big[N \sum f_i y_i^2 - \left(\sum f_i y_i \right)^2 \Big]$$

$$=\frac{(10)^2}{(50)^2}[50\times105-(-15)^2]$$

$$=\frac{100}{50\times 50}[5250-225]$$

$$=\frac{1}{25}[5025]$$

= 201

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

$$=\sqrt{201}$$

= 14.17

Question: 9

Using short cut m

Solution:

Here, we apply the step deviation method with A=50 and h=10

To find: MEAN

Class	(f _i)	Class Mark (x _i)	$d_i = x_i - A$	$y_i = \frac{d_i}{10}$	$f_i y_i$
			$d_i = x_i - 50$		
25 - 35	3	30	30 - 50 = -20	-2	-6
35 - 45	7	40	40 - 50 = -10	-1	-7
45 - 55	12	50 = A	0	0	0
55 - 65	15	60	60 - 50 = 10	1	15
65 - 75	8	70	70 - 50 = 20	2	16
Total	$\sum f_i = 45$				$\sum f_i y_i = 18$

Now, Mean $(\overline{x}) = a + h \left(\frac{\sum f_i y_i}{\sum f_i} \right)$

$$\Rightarrow \overline{x} = 50 + 10 \left(\frac{18}{45}\right)$$

$$\Rightarrow \overline{x} = 50 + \frac{2 \times 18}{9}$$

$$\Rightarrow \bar{x} = 50 + 4$$

$$\Rightarrow \overline{x} = 54$$

To find: VARIANCE

(f _i)	(x _i)	y _i	y _i ²	f_iy_i	$f_i y_i^2$
3	30	-2	$(-2)^2 = 4$	-6	12
7	40	-1	$(-1)^2 = 1$	-7	7
12	50 = A	0	0	0	0
15	60	1	$(1)^2 = 1$	15	15
8	70	2	$(2)^2 = 4$	16	32
$\sum f_i = 45$				$\sum f_i y_i = 18$	$\sum f_i y_i^2 = 66$

$$\text{Variance,} \sigma^2 = \frac{h^2}{N^2} \Big[N \sum f_i y_i^2 - \left(\sum f_i y_i \right)^2 \Big]$$

$$=\frac{(10)^2}{(45)^2}[45\times 66-(18)^2]$$

$$= \frac{10 \times 10}{45 \times 45} [2970 - 324]$$

$$=\frac{4}{81}[2646]$$

= 130.67

To find: STANDARD DEVIATION

Standard Deviation (σ) = $\sqrt{Variance}$

 $=\sqrt{130.67}$

= 11.43

Exercise: 30C

Question: 1

If the standard d

Solution:

Given: Standard Deviation, $\sigma = 3.5$

and Numbers are 2, 3, 2x, 11

We know that,

$$Mean (\overline{x}) = \frac{Sum \text{ of observations}}{Total \text{ number of observations}}$$

$$=\frac{2+3+2x+11}{4}$$

$$=\frac{16+2x}{4}$$

$$\bar{x} = \frac{8+x}{2}$$

$$x_{i} \quad x_{i} - \overline{x}$$

$$2 \quad 2 - \frac{8+x}{2} = \frac{4-8-x}{2} = \frac{-4-x}{2}$$

$$3 \quad 3 - \frac{8+x}{2} = \frac{6-8-x}{2} = \frac{-2-x}{2}$$

$$2x \quad 2x - \frac{8+x}{2} = \frac{4x-8-x}{2} = \frac{3x-8}{2}$$

$$3x - \frac{4x-x}{2} = \frac{4x-4x-x}{2} =$$

Variance,
$$\sigma^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

$$(3.5)^2 = \frac{1}{4} \left[\frac{16 + 8x + x^2}{4} + \frac{4 + 4x + x^2}{4} + \frac{64 - 48x + 9x^2}{4} + \frac{9 - 6x + x^2}{4} \right]$$

$$\Rightarrow 12.25 = \frac{1}{16} [16 + 8x + x^2 + 4 + 4x + x^2 + 64 - 48x + 9x^2 + 196 - 28x + x^2]$$

$$\Rightarrow 12.25 \times 16 = 280 - 64x + 12x^2$$

$$\Rightarrow 196 = 280 - 64x + 12x^2$$

$$\Rightarrow 12x^2 - 64x + 280 - 196 = 0$$

$$\Rightarrow 12x^2 - 64x + 84 = 0$$

$$\Rightarrow 3x^2 - 16x + 21 = 0$$

$$\Rightarrow 3x^2 - 9x - 7x + 21 = 0$$

$$\Rightarrow 3x(x-3) - 7(x-3) = 0$$

$$\Rightarrow (3x - 7)(x - 3) = 0$$

Putting both the factors equal to 0, we get

$$3x - 7 = 0$$
 and $x - 3 = 0$

$$\Rightarrow$$
 3x = 7 and x = 3

$$\Rightarrow x = \frac{7}{3}$$

Hence, the possible values of x are $\frac{7}{3}$ & 3

Question: 2

The variance of 1

Solution:

Let the observations are $x_1,\,x_2,\,x_3,\,x_4,\,...,\,x_{15}$

and Let mean
$$= \bar{x}$$

Given: Variance = 6 and n = 15

We know that,

$$\text{Variance,}\, \sigma^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

Putting the given values, we get

$$6 = \frac{1}{15} \sum (\mathbf{x_i} - \overline{\mathbf{x}})^2$$

$$\Rightarrow 6\times 15 = \sum (x_{\rm i} - \overline{x})^2$$

$$\Rightarrow 90 = \sum_{i} (x_i - \overline{x})^2$$

or
$$\sum (x_i - \bar{x})^2 = 90$$
 ...(i)

It is given that each observation is increased by 8, we get new observations

Let the new observation be y_1 , y_2 , y_3 , ..., y_{15}

where
$$y_i = x_i + 8 ...(ii)$$

or
$$x_i = y_i - 8 ...(iii)$$

Now, we find the variance of new observations

i. e. New Variance
$$=\frac{1}{n}\sum (y_i - \overline{y})^2$$

Now, we calculate the value of \overline{y}

We know that,

$$Mean = \frac{Sum \ of \ observations}{Total \ number \ of \ observations}$$

$$\Rightarrow \overline{y} = \frac{\sum_{i=1}^n y_i}{n}$$

$$\Rightarrow \bar{y} = \frac{\sum_{i=1}^{15} x_i + 8}{15}$$
 [from eq. (ii)]

$$\Rightarrow \overline{y} = \left(\frac{1}{15}\right) \left\{ \sum_{i=1}^{15} (x_i + 8) \right\}$$

$$\Rightarrow \overline{y} = \frac{1}{15} \left[\sum_{i=1}^{15} x_i + 8 \sum_{i=1}^{15} 1 \right]$$

$$\Rightarrow \overline{y} = \frac{1}{15} \sum_{i=1}^{15} x_i + 8 \times \frac{15}{15}$$

$$\Rightarrow \overline{y} = \overline{x} + 8$$

$$\Rightarrow \overline{x} = \overline{y} - 8 \dots (iv)$$

Putting the value of eq. (iii) and (iv) in eq. (i), we get

$$\sum_{i} (x_i - \overline{x})^2 = 90$$

$$\sum (y_i - 8 - (\bar{y} - 8))^2 = 90$$

$$\Rightarrow \sum (y_i - 8 - \overline{y} + 8)^2 = 90$$

$$\Rightarrow \sum (y_i - \overline{y})^2 = 90$$

So,

New Variance
$$=\frac{1}{n}\sum (y_i - \overline{y})^2$$

$$=\frac{1}{15} \times 90$$

Question: 3

The variance of 2

Solution:

Let the observations are x_1 , x_2 , x_3 , x_4 , ..., x_{20}

and Let mean $= \overline{x}$

Given: Variance = 5 and n = 20

We know that,

Variance,
$$\sigma^2 = \frac{1}{n} \sum (x_i - \overline{x})^2$$

Putting the given values, we get

$$5 = \frac{1}{20} \sum_{i} (x_i - \bar{x})^2$$

$$\Rightarrow 5 \times 20 = \sum (x_i - \overline{x})^2$$

$$\Rightarrow 100 = \sum_{i} (x_i - \overline{x})^2$$

or
$$\sum (x_i - \bar{x})^2 = 100 ...(i)$$

It is given that each observation is multiplied by 2, we get new observations

Let the new observation be y_1 , y_2 , y_3 , ..., y_{20}

where
$$y_i = 2(x_i)$$
 ...(ii)

or
$$x_i = \frac{1}{2}y_i$$
 ...(iii)

Now, we find the variance of new observations

i. e. New Variance
$$=\frac{1}{n}\sum(y_i-\overline{y})^2$$

Now, we calculate the value of \overline{y}

We know that,

$$Mean = \frac{Sum \ of \ observations}{Total \ number \ of \ observations}$$

$$\Rightarrow \overline{y} = \frac{\sum y_i}{n}$$

$$\Rightarrow \bar{y} = \frac{\sum (2x_i)}{20}$$
 [from eq. (ii)]

$$\Rightarrow \overline{y} = 2\left(\frac{\sum x_i}{20}\right)$$

$$\Rightarrow \overline{y} = 2\overline{x}$$

$$\Rightarrow \overline{x} = \frac{1}{2}\overline{y}$$
 ...(iv)

Putting the value of eq. (iii) and (iv) in eq. (i), we get

$$\sum (x_i - \overline{x})^2 = 100$$

$$\sum \left(\frac{1}{2}y_i - \frac{1}{2}\overline{y}\right)^2 = 100$$

$$\Rightarrow \sum \left(\frac{1}{2}\right)^2 (y_i - \overline{y})^2 = 100$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 \sum (y_i - \overline{y})^2 = 100$$

$$\Rightarrow \sum (y_i - \overline{y})^2 = 100 \times 4$$

$$\Rightarrow \sum (y_i - \overline{y})^2 = 400$$

So,

New Variance
$$=\frac{1}{n}\sum (y_i - \overline{y})^2$$

$$=\frac{1}{20} \times 400$$

$$= 20$$

Question: 4

The mean and vari

Solution:

Given: Mean of 5 observations = 6

and Variance of 5 observations = 4

Let the other two observations be \boldsymbol{x} and \boldsymbol{y}

 \therefore , our observations are 5, 7, 9, x and y

Now, we know that,

 $Mean (\overline{x}) = \frac{Sum \ of \ observations}{Total \ number \ of \ observations}$

$$6 = \frac{5 + 7 + 9 + x + y}{5}$$

$$\Rightarrow$$
 6 × 5 = 21 + x + y

$$\Rightarrow 30 - 21 = x + y$$

$$\Rightarrow 9 = x + y$$

or
$$x + y = 9 ...(i)$$

Also,

Variance = 4

$$\text{Variance, } \sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

xi	$\mathbf{x_i} - \overline{\mathbf{x}} = \mathbf{x_i} - 6$	$(x_i - \overline{x})^2$
5	5 - 6 = -1	$(-1)^2 = 1$
7	7 - 6 = 1	$(1)^2 = 1$
9	9 - 6 = 3	$(3)^2 = 9$
x	x - 6	$(x - 6)^2$
у	y - 6	$(y - 6)^2$
		$\sum (x_i - \overline{x})^2 = 11 + (x - 6)^2 + (y - 6)^2$

So

$$\text{Variance,}\, \sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$4 = \frac{11 + (x - 6)^2 + (y - 6)^2}{5}$$

$$\Rightarrow$$
 20 = 11 + (x² + 36 - 12x) + (y² + 36 - 12y)

$$\Rightarrow$$
 20 - 11 = x^2 + 36 - 12 x + y^2 + 36 - 12 y

$$\Rightarrow 9 = x^2 + y^2 + 72 - 12(x + y)$$

$$\Rightarrow$$
 x² + y² + 72 - 12(9) - 9 = 0 [from (i)]

$$\Rightarrow$$
 x² + y² + 63 - 108 = 0

$$\Rightarrow x^2 + v^2 - 45 = 0$$

$$\Rightarrow$$
 x² + v² = 45 ...(ii)

From eq. (i)

$$x + y = 9$$

Squaring both the sides, we get

$$(x + y)^2 = (9)^2$$

$$\Rightarrow x^2 + y^2 + 2xy = 81$$

$$\Rightarrow$$
 45 + 2xy = 81 [from (ii)]

$$\Rightarrow 2xy = 81 - 45$$

$$\Rightarrow 2xy = 36$$

$$\Rightarrow xy = 18$$

$$\Rightarrow x = \frac{18}{v}$$
...(iii)

Putting the value of x in eq. (i), we get

$$x + y = 9$$

$$\Rightarrow \frac{18}{y} + y = 9$$

$$\Rightarrow \frac{18 + y^2}{v} = 9$$

$$\Rightarrow y^2 + 18 = 9y$$

$$\Rightarrow y^2 - 9y + 18 = 0$$

$$\Rightarrow$$
 y² - 6y - 3y + 18 = 0

$$\Rightarrow$$
 v(v - 6) - 3(v - 6)= 0

$$\Rightarrow (y - 3)(y - 6) = 0$$

$$\Rightarrow$$
 y - 3 = 0 and y - 6 = 0

$$\Rightarrow$$
 y = 3 and y = 6

For
$$y = 3$$

$$x = \frac{18}{v} = \frac{18}{3} = 6$$

Hence, x = 6, y = 3 are the remaining two observations

For
$$y = 6$$

$$x = \frac{18}{y} = \frac{18}{6} = 3$$

Hence, x = 3, y = 6 are the remaining two observations

Thus, remaining two observations are 3 and 6.

Question: 5

The mean and vari

Solution:

Given: Mean of 5 observations = 4.4

and Variance of 5 observations = 8.24

Let the other two observations be \boldsymbol{x} and \boldsymbol{y}

 \therefore , our observations are 1, 2, 6, x and y

Now, we know that,

$$Mean (\overline{x}) = \frac{Sum \ of \ observations}{Total \ number \ of \ observations}$$

$$4.4 = \frac{1+2+6+x+y}{5}$$

$$\Rightarrow 5 \times 4.4 = 9 + x + y$$

$$\Rightarrow$$
 22 - 9= x + y

$$\Rightarrow 13 = x + y$$

or
$$x + y = 13 ...(i)$$

Also,

Variance = 8.24

$$\text{Variance, } \sigma^2 = \frac{\sum (x_i - \bar{x})^2}{n}$$

So,

Variance,
$$\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{n}$$

$$8.24 = \frac{19.88 + (x - 4.4)^2 + (y - 4.4)^2}{5}$$

$$\Rightarrow$$
 41.2 = 19.88 + (x² + 19.36 - 8.8x) + (y² + 19.36 - 8.8y)

$$\Rightarrow$$
 41.2 - 19.88 = x^2 + 19.36 - 8.8 x + y^2 + 19.36 - 8.8 y

$$\Rightarrow 21.32 = x^2 + y^2 + 38.72 - 8.8(x + y)$$

$$\Rightarrow$$
 x² + y² + 38.72 - 8.8(13) - 21.32 = 0 [from (i)]

$$\Rightarrow x^2 + y^2 + 17.4 - 114.4 = 0$$

$$\Rightarrow x^2 + y^2 - 97 = 0$$

$$\Rightarrow x^2 + y^2 = 97 ...(ii)$$

From eq. (i)

$$x + y = 17.4$$

Squaring both the sides, we get

$$(x + y)^2 = (13)^2$$

$$\Rightarrow x^2 + y^2 + 2xy = 169$$

$$\Rightarrow$$
 97 + 2xy = 169 [from (ii)]

$$\Rightarrow 2xy = 169 - 97$$

$$\Rightarrow 2xy = 72$$

$$\Rightarrow xy = 36$$

$$\Rightarrow x = \frac{36}{v}$$
...(iii)

Putting the value of x in eq. (i), we get

$$x + y = 13$$

$$\Rightarrow \frac{36}{v} + y = 13$$

$$\Rightarrow \frac{36 + y^2}{y} = 13$$

$$\Rightarrow y^2 + 36 = 13y$$

$$\Rightarrow$$
 v² - 13v + 36 = 0

$$\Rightarrow$$
 y² - 4y - 9y + 36 = 0

$$\Rightarrow$$
 y(y - 4) - 9(y - 4)= 0

$$\Rightarrow (y - 4)(y - 9) = 0$$

$$\Rightarrow y - 4 = 0 \text{ and } y - 9 = 0$$

$$\Rightarrow$$
 y = 4 and y = 9

For
$$y = 4$$

$$x = \frac{36}{v} = \frac{36}{4} = 9$$

Hence, x = 9, y = 4 are the remaining two observations

For
$$y = 9$$

$$x = \frac{36}{v} = \frac{36}{9} = 4$$

Hence, x = 4, y = 9 are the remaining two observations

Thus, remaining two observations are 4 and 9.

Question: 6

The mean and stan

Solution:

Given that number of observations (n) = 18

Incorrect Mean
$$(\bar{x}) = 7$$

and Incorrect Standard deviation, $(\sigma) = 4$

We know that,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Rightarrow 7 = \frac{1}{18} \sum_{i=1}^{18} x_i$$

$$\Rightarrow 7 \times 18 = \sum_{i=1}^{18} x_i$$

$$\Rightarrow 126 = \sum_{i=1}^{18} x_i$$

$$\Rightarrow \textstyle \sum_{i=1}^{18} x_i = 126 \dots (i)$$

: Incorrect sum of observations = 126

Finding correct sum of observations, 12 was misread as 21

So, Correct sum of observations = Incorrect Sum - 21 + 12

$$= 126 - 21 + 12$$

$$= 117$$

Hence.

$$Correct \, Mean = \frac{Correct \, Sum \, of \, Observations}{Total \, number \, of \, observations}$$

$$=\frac{117}{18}$$

$$= 6.5$$

Now, Incorrect Standard Deviation (σ)

$$= \frac{1}{N} \sqrt{N \times \left(Incorrect \sum x_i^2\right) - (Incorrect \sum x_i)^2}$$

$$4 = \frac{1}{18} \sqrt{18 \times \left(\text{Incorrect} \sum_{i=1}^{2} x_{i}^{2} \right) - (126)^{2}}$$

$$4 \times 18 = \sqrt{18 \times \left(\text{Incorrect} \sum_{i=1}^{2} x_{i}^{2}\right) - (126)^{2}}$$

$$72 = \sqrt{18 \times \left(\text{Incorrect} \sum_{i} x_{i}^{2}\right) - (126)^{2}}$$

Squaring both the sides, we get

$$(72)^2 = 18 \times \left(Incorrect \sum x_i^2 \right) - (126)^2$$

$$\Rightarrow 5184 = 18 \times \left(\text{Incorrect} \sum x_i^2 \right) - 15876$$

$$\Rightarrow 5184 + 15876 = 18 \times Incorrect \sum x_i^2$$

$$\Rightarrow$$
 21060 = 18 × Incorrect $\sum x_i^2$

$$\Rightarrow \frac{21060}{18} = Incorrect \sum x_i^2$$

$$\Rightarrow 1170 = Incorrect \sum x_i^2$$

Since, 12 was misread as 21

So,

Correct
$$\sum_{i=1}^{18} x_i^2 = 1170 - (21)^2 + (12)^2$$

$$= 1170 - 441 + 144$$

= 873

Now,

Correct Standard Deviation

$$\begin{split} &= \sqrt{\frac{(\text{Correct}\sum x_i^2)}{N}} - \left(\frac{\text{Correct}\sum x_i}{N}\right)^2 \\ &= \sqrt{\frac{873}{18} - (6.5)^2} \left[\because \overline{x} = \frac{\text{Correct}\sum x_i}{N} = 6.5\right] \\ &= \sqrt{48.5 - 42.25} \\ &= \sqrt{6.25} \end{split}$$

Hence, Correct Mean = 6.5

and Correct Standard Deviation = 2.5

Question: 7

= 2.5

For a group of 20

Solution:

Given that number of observations (n) = 200

Incorrect Mean $(\bar{x}) = 40$

and Incorrect Standard deviation, $(\sigma) = 15$

We know that,

$$\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$$

$$\Rightarrow 40 = \frac{1}{200} \sum x_i$$

$$\Rightarrow 40 \times 200 = \sum x_i$$

$$\Rightarrow 8000 = \sum x_i$$

$$\Rightarrow \sum x_i = 8000 \dots (i)$$

: Incorrect sum of observations = 8000

Finding correct sum of observations, 43 was misread as 34

So, Correct sum of observations = Incorrect Sum - 34 + 43

$$= 8000 - 34 + 43$$

$$= 8009$$

Hence,

$$Correct \, Mean = \frac{Correct \, Sum \, of \, Observations}{Total \, number \, of \, observations}$$

$$=\frac{8009}{200}$$

$$= 40.045$$

Now, Incorrect Standard Deviation (σ)

$$= \frac{1}{N} \sqrt{N \times \left(Incorrect \sum x_i^2\right) - (Incorrect \sum x_i)^2}$$

$$15 = \frac{1}{200} \sqrt{200 \times \left(\text{Incorrect} \sum_{i} x_{i}^{2} \right) - (8000)^{2}}$$

$$15 \times 200 = \sqrt{200 \times \left(Incorrect \sum x_i^2\right) - 64000000}$$

$$3000 = \sqrt{200 \times \left(Incorrect \sum x_i^2\right) - 64000000}$$

Squaring both the sides, we get

$$(3000)^2 = 200 \times \left(Incorrect \sum_{i} x_i^2 \right) - 64000000$$

$$\Rightarrow 9000000 = 200 \times \left(Incorrect \sum_{i} x_i^2 \right) - 64000000$$

$$\Rightarrow 9000000 + 64000000 = 200 \times \left(Incorrect \sum x_i^2 \right)$$

$$\Rightarrow 73000000 = 200 \times \left(Incorrect \sum x_i^2 \right)$$

$$\Rightarrow \frac{73000000}{200} = \left(\text{Incorrect} \sum_{i=1}^{\infty} x_{i}^{2}\right)$$

$$\Rightarrow$$
 365000 = $\left(\text{Incorrect}\sum_{i} x_{i}^{2}\right)$

Since, 43 was misread as 34

So,

Correct
$$\sum x_i^2 = 365000 - (34)^2 + (43)^2$$

$$= 365000 - 1156 + 1849$$

$$= 365693$$

Now,

Correct Standard Deviation

$$= \sqrt{\frac{(\text{Correct} \sum x_i^2)}{N} - \left(\frac{\text{Correct} \; \sum x_i}{N}\right)^2}$$

$$=\sqrt{\frac{365693}{200}-(40.045)^2}$$

$$\left[\because \overline{x} = \frac{Correct \ \sum x_i}{N} = 40.045\right]$$

$$= \sqrt{1828.465 - 1603.602025}$$

$$=\sqrt{224.862975}$$

Hence, Correct Mean = 40.045

and Correct Standard Deviation = 14.995

Question: 8

The mean and stan

Solution:

Given that number of observations (n) = 100

Incorrect Mean
$$(\bar{x}) = 20$$

and Incorrect Standard deviation, $(\sigma) = 3$

We know that,

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\Rightarrow 20 = \frac{1}{100} \sum x_i$$

$$\Rightarrow 20 \times 100 = \sum x_i$$

$$\Rightarrow 2000 = \sum x_i$$

$$\Rightarrow \sum x_i = 2000 \dots (i)$$

: Incorrect sum of observations = 2000

Finding correct sum of observations, incorrect observations 21, 12 and 18 are removed

So, Correct sum of observations = Incorrect Sum - 21 - 12 - 18

$$= 2000 - 51$$

$$= 1949$$

Hence,

 $Correct\,Mean = \frac{Correct\,Sum\,of\,Observations}{Total\,number\,of\,observations}$

$$=\frac{1949}{100}$$

$$=\frac{1949}{97}$$

$$= 20.09$$

Now, Incorrect Standard Deviation (σ)

$$= \frac{1}{N} \sqrt{N \times \left(Incorrect \sum x_i^2 \right) - (Incorrect \sum x_i)^2}$$

$$3 = \frac{1}{100} \sqrt{100 \times \left(Incorrect \sum_{i} x_{i}^{2}\right) - (2000)^{2}}$$

$$3 \times 100 = \sqrt{100 \times \left(Incorrect \sum x_i^2\right) - 4000000}$$

$$300 = \sqrt{100 \times \left(Incorrect \sum x_i^2\right) - 4000000}$$

Squaring both the sides, we get

$$(300)^2 = 100 \times \left(Incorrect \sum_{i} x_i^2 \right) - 4000000$$

$$\Rightarrow 90000 = 100 \times \left(Incorrect \sum x_i^2 \right) - 4000000$$

$$\Rightarrow 90000 + 4000000 = 100 \times \left(Incorrect \sum x_i^2 \right)$$

$$\Rightarrow 4090000 = 100 \times \left(Incorrect \sum x_i^2 \right)$$

$$\Rightarrow \frac{4090000}{100} = \left(\text{Incorrect } \sum_{i} x_{i}^{2} \right)$$

$$\Rightarrow 40900 = \left(Incorrect \sum x_i^2 \right)$$

Since, 21, 12 and 18 are removed

So,

Correct
$$\sum x_i^2 = 40900 - (21)^2 - (12)^2 - (18)^2$$

$$=40900 - 909$$

$$= 39991$$

Now,

Correct Standard Deviation

$$= \sqrt{\frac{(\text{Correct } \sum x_i^2)}{N} - \left(\frac{\text{Correct } \sum x_i}{N}\right)^2}$$
$$= \sqrt{\frac{39991}{97} - (20.09)^2}$$

$$=\sqrt{412.27-403.60}$$

$$=\sqrt{8.67}$$

Hence, Correct Mean = 20.09

and Correct Standard Deviation = 2.94

Exercise: 30D

Question: 1

The following res

Solution:

Mean wages of both the factories are the same, i.e., Rs. 5300.

To compare variation, we need to find out the coefficient of variation (CV).

We know, CV =
$$\frac{SD}{Mean} \times 100$$
 , where SD is the standard deviation.

The variance of factory A is 100 and the variance of factory B is 81.

Now, SD of factory A =
$$\sqrt{100} = 10$$

And, SD of factory
$$B = \sqrt{81} = 9$$

Therefore,

The CV of factory A =
$$\frac{10}{5300} \times 100 = 0.189$$

The CV of factory B =
$$\frac{9}{5300} \times 100 = 0.169$$

Here, the CV of factory A is greater than the CV of factory B.

Hence, factory A has more variation.

Question: 2

Coefficient of va

Solution:

Given: Coefficient of variation of two distributions are 60% and 80% respectively, and their standard deviations are 21 and 16 respectively.

Need to find: Arithmetic means of the distributions.

For the first distribution,

Coefficient of variation (CV) is 60%, and the standard deviation (SD) is 21.

We know that,

$$\Rightarrow$$
 CV = $\frac{SD}{Mean} \times 100$

$$\Rightarrow$$
 Mean = $\frac{SD}{CV} \times 100$

$$\Rightarrow$$
 Mean = $\frac{21}{60} \times 100$

$$\Rightarrow$$
 Mean = 35

For the first distribution,

Coefficient of variation (CV) is 80%, and the standard deviation (SD) is 16.

We know that,

$$\Rightarrow$$
 CV = $\frac{SD}{Mean} \times 100$

$$\Rightarrow$$
 Mean = $\frac{SD}{CV} \times 100$

$$\Rightarrow Mean = \frac{16}{80} \times 100$$

Therefore, the arithmetic mean of 1^{st} distribution is 35 and the arithmetic mean of 2^{nd} distribution is 20.

Question: 3

The mean and vari

Solution:

In case of heights,

Mean = 63.2 inches and SD = 11.5 inches.

So, the coefficient of variation,

$$CV = \frac{SD}{Mean} \times 100$$

$$\Rightarrow$$
 CV = $\frac{11.5}{63.2} \times 100 = 18.196$

In case of weights,

Mean = 63.2 inches and SD = 5.6 inches.

So, the coefficient of variation,

$$CV = \frac{SD}{Mean} \times 100$$

$$\Rightarrow$$
 CV = $\frac{5.6}{63.2} \times 100 = 8.86$

CV of heights > CV of weights

So, heights show more variability.

Question: 4

The following res

Solution:

(i) Both the factories pay the same mean monthly wages.

For factory A there are 560 workers. And for factory B there are 650 workers.

So, factory A totally pays as monthly wage = (5460×560) Rs.

= 3057600 Rs.

Factory B totally pays as monthly wage = (5460×650) Rs.

= 3549000 Rs.

That means, factory B pays a larger amount as monthly wages.

(ii) Mean wages of both the factories are the same, i.e., Rs. 5460.

To compare variation, we need to find out the coefficient of variation (CV).

We know, CV = $\frac{SD}{Mean} \times 100$, where SD is the standard deviation.

The variance of factory A is 100 and the variance of factory B is 121.

Now, SD of factory A =
$$\sqrt{100} = 10$$

And, SD of factory B =
$$\sqrt{121} = 11$$

Therefore,

The CV of factory A =
$$\frac{10}{5460} \times 100 = .183$$

The CV of factory B =
$$\frac{11}{5460} \times 100 = .201$$

Here, the CV of factory B is greater than the CV of factory A.

Hence, factory B shows greater variability.

Question: 5

The sum and the s

Solution:

To find the more variable, we again need to compare the coefficients of variation (CV).

Here the number of products are n = 50 for length and weight both.

For length,

$$Mean = \frac{\sum x_i}{n} = \frac{212}{50} = 4.24$$

Variance =
$$\frac{1}{n^2} [n \sum x_i^2 - (\sum x_i)^2]$$

$$= \frac{1}{50^2} [(50 \times 902.8) - (212)^2]$$

$$=\frac{1}{2500}[45140-44944]$$

$$=\frac{196}{2500}=0.0784$$

So, standard deviation, SD =
$$\sqrt{\text{Variance}} = \sqrt{0.0784} = 0.28$$

Therefore, the coefficient of variation of length,

$$CV_{L} = \frac{0.28}{4.24} \times 100 = 6.603$$

For weight.

Mean =
$$\frac{\sum y_i}{n} = \frac{261}{50} = 5.22$$

Variance =
$$\frac{1}{n^2} [n \sum y_i^2 - (\sum y_i)^2]$$

$$= \frac{1}{50^2} [(50 \times 1457.6) - (261)^2]$$

$$= \frac{1}{2500} [72880 - 68121]$$

$$= \frac{4759}{2500} = 1.9036$$

So, standard deviation, SD =
$$\sqrt{\text{Variance}} = \sqrt{1.9036} = 1.37$$

Therefore, the coefficient of variation of length,

$$CV_W = \frac{1.37}{5.22} \times 100 = 26.245$$

Now,
$$CV_W > CV_L$$

Therefore, the weight is more variable than height.