Modeling Proportions and Probabilities: The beta distribution is your friend

Paul Teetor William Blair & Co.

ASA Conference on Statistical Practice Jacksonville, FL February 2017

This talk is all about modeling data on the unit interval

- Proportions (muggle: percentages)
- Probabilities
- ► Continuous ranking (0.0, ..., 1.0)
- ► Rates, concentrations, etc.

The binomial distribution is a weak model of unit data

The beta distribution adds expressive power

The beta distribution has two parameters

- α : weight on x (for $x \in [0,1]$)
- \triangleright β : weight on 1-x
- Richer density function than one-parameter binomial model

$$Beta(x|\alpha,\beta) \sim \frac{1}{B(\alpha,\beta)} x^{\alpha-1} (1-x)^{\beta-1}$$

where B is the beta function, providing the normalizing constant

An alternative parameterization uses mean and precision

- Precision is reciprocal of variance = $1/\sigma^2$
- \blacktriangleright Simple transformation between α and β versus mean (μ) and precision (ϕ)

$$\mu = \alpha/(\alpha + \beta)$$
$$\phi = \alpha + \beta$$

Alternative parameterization simplifies regression math

How do we estimate the parameters from sample data?

These are the method of moments estimators.

$$\hat{\alpha} = \bar{x} \left(\frac{\bar{x}(1-\bar{x})}{\bar{v}} - 1 \right)$$

$$(\bar{x}(1-\bar{x}))$$

$$\hat{\beta} = (1 - \bar{x}) \left(\frac{\bar{x}(1 - \bar{x})}{\bar{v}} - 1 \right)$$

For data, let's use the Chicago Cubs historical record

```
## Season PrWin
## 1 1874 0.475
## 2 1875 0.448
## 3 1876 0.788
## 4 1877 0.441
```


Parameter estimation on Cubs data

[1] 15.04555

[1] 14.10103

```
M = mean(cubs$PrWin); V = var(cubs$PrWin)
alpha = M * ((M * (1 - M)) / V - 1)
beta = (1 - M) * ((M * (1 - M)) / V - 1)
print(alpha); print(beta)
```

The estimated parameters give a parametric density

The parametric density nicely echos the non-parametric density shown earlier.

Beyond simple fit: Regressors

What if we had a predictor? How would that influence the distribution?

Beta regression models responses with beta distributions

- Response has beta distribution, not normal
- ▶ Transform responses from (0,1) to $(-\infty, +\infty)$

$$p_i' = logit(p_i)$$

where $logit(x) = log(\frac{x}{1-x})$

▶ Then regress on p'_i

$$p_i' = \beta_0 + \beta_1 x_i + \varepsilon_i$$

► A form of *generalized linear model* (GLM), usually expressed like this

$$logit(p_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

The *logit* function mediates between predictors and dependent variable

- ▶ Linear predictors range over $(-\infty, +\infty)$
- ▶ Dependent variable ranges over bounded (0, 1)
- ▶ Logit link function "expands" dependent into $(-\infty, +\infty)$

Beta regression: the Cubs data

- Could this year's success predict next year's success?
- Add column to data: next year's PrWin

```
## Season PrWin PrWinNext
## 1 1874 0.475 0.448
## 2 1875 0.448 0.788
## 3 1876 0.788 0.441
## 4 1877 0.441 0.500
## 5 1878 0.500 0.582
```

Beta regression in R is pretty easy

```
install.packages("betareg") # One-time install
```

```
library(betareg)
```

This example takes the data from the cubs data frame.

```
m = betareg(PrWinNext ~ PrWin, data=cubs)
```

The returned model, m, includes β_0 and β_1 .

Beta regression: the Cubs data

```
library(betareg)
m = betareg(PrWinNext ~ PrWin, data=cubs)
print(m)
##
## Call:
## betareg(formula = PrWinNext ~ PrWin, data = cubs)
##
  Coefficients (mean model with logit link):
## (Intercept)
                      PrWin
       -1.059
                   2.191
##
##
## Phi coefficients (precision model with identity link):
## (phi)
## 39.76
```

In typical R fashion, summary gives the details (1/2)

summary(m)

```
##
## Call:
## betareg(formula = PrWinNext ~ PrWin, data = cubs)
##
## Standardized weighted residuals 2:
            10 Median
                              30
##
      Min
                                    Max
## -2.8089 -0.6272 -0.1244 0.6003 4.3545
##
## Coefficients (mean model with logit link):
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.0589 0.1546 -6.847 7.53e-12
          2.1912 0.2964 7.393 1.43e-13
## PrWin
```

summary (2/2)

```
## PrWin
            ***
##
## Phi coefficients (precision model with identity link):
        Estimate Std. Error z value Pr(>|z|)
##
## (phi) 39.758 4.661 8.531 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.3
##
## Type of estimator: ML (maximum likelihood)
## Log-likelihood: 161.1 on 3 Df
## Pseudo R-squared: 0.2792
## Number of iterations: 15 (BFGS) + 3 (Fisher scoring)
```

Forecast from the model using predict

- ► Create a data frame, pred, containing the new predictor values.
- Use predict to feed new predictors into model.
- The type argument controls what's returned

predict handles details of link transformation.

Let's forecast 2017 performance using predict

```
# Record for 2016
pred = data.frame(PrWin = 0.640)
predict(m, newdata=pred)
                                  # Expectation for 2017
##
## 0.585039
sqrt(predict(m, newdata=pred, type="variance"))
##
## 0.07717715
```

Let's forecast 2017 performance using predict (con't)

```
## q_0.025 q_0.975
## [1,] 0.4306028 0.731366
```

The regression yields a conditioned beta distribution

The betareg package provides other functions, too

```
methods(class="betareg")
```

Methods for tidy, augment, and glance available from broom package

Way cool: We can model precision, too

- ▶ Recall that precision is inverse of variance $(1/\sigma^2)$
- ▶ Model the precision parameter (ϕ) with a second GLM
- ightharpoonup Example: suppose z_i predicts variance of p_i

$$logit(\mu_i) = x_i^{\top} \beta$$
$$log(\phi_i) = z_i^{\top} \gamma$$

- ▶ Incorporates heteroskedasticity into your model
- Small downside: Residuals will be heteroskedastic, so use standardized weight residuals

Typical case: Heteroskedasticity at extremes of the unit interval

- In my experience, variance can change from midpoint to end-points
- ▶ Suggests modeling ϕ_i
- ▶ Select z_i best able to model precision, ϕ_i

Heteroskedasticity illustration

So, why doesn't the binomial model work?

- ▶ Using a simple point estimate of p in Binom(N, p) is naive.
- ▶ Does not reflect the uncertainty of the estimate.
- ▶ Tails of distr. too small

For 2017: Binom(N=162, p=0.64) / 162

Improve the model by acknowledging the undercertainty

- ▶ Model p as a random variable, imperfect estimate
- ▶ Still parameter of binomial distribution, but now stochastic
- ▶ The result is called a *Beta-Binomial* model

$$PrWin \sim Binom(N, p)$$

where

$$p \sim Beta(\alpha, \beta)$$

Q: What's the distribution of p?

- ▶ Remember, p has a beta distribution.
- Let's estimate mean of p from 2017 record (0.64)
- ► Estimate variance of *p* from full history (0.008284)
- **ightharpoonup** From mean and variance, calculate α and β of beta distr.

Beta-binomial distribution for 2017 is more realistic

```
N = 10000
prob = rbeta(N, alpha, beta)
sampWins = rbinom(N, size=SIZE, prob=prob)
sampProbs = sampWins / SIZE
```

For 2017: Binom(162, p) / 162 where p \sim Beta(17.16, 9.65)

The gamlss package can fit a beta-binomial model

```
install.packages("gamlss")
```

Beta-binomial model with two predictors, pred1 and pred2:

Add a variance predictor, pred3 (for heteroskedasticity):

Which is better?

Beta regression:

- Easy. Hey, there's an R package!
- Resembles familiar linear regression
- ► Tools to compare models: log-likelihood, pseudo R²

Beta-binomial:

- Bayesian, so you get explicit probability distributions, credible intervals
- gamlss package does the heavy lifting
- Straight-forward simulation or Monte Carlo

Links to resources

- betareg package: https://cran.r-project.org/package=betareg
- betareg vignette: https://cran.rproject.org/web/packages/betareg/vignettes/betareg.pdf
- ► gamlss package: https://cran.r-project.org/package=gamlss
- Dave Robinson's excellent beta-binomial tutorial: http://varianceexplained.org/r/beta_binomial_baseball/