Kernel methods and Deep Learning II

Johannes Pitz

Technische Universität München johannes.pitz@tum.de

April 24, 2020

Overview

- Motivation
- Experiment
 - Setup
 - Results
- Theoretical Bound
- 4 Adding Noise
 - Setup
 - Results on the Norm
 - Results with more Noise
- More Results
- Conclusion

Overfitting

Overfitting

- Expect drop in test performance
- However, highly over parameterized setting
 - ightarrow Overfit on training data, still get good generalization
- Recently a lot of attention in deep neural networks

Recent Work

- Understanding deep learning requires rethinking generalization. Zhang et al.(2016).
 - Trained state-of-the-art CNN's on random labels
 - → Model family/regularization techniques don't explain the small difference between training and test performance.
- Theory of Deep Learning III: explaining the non-overfitting puzzle. Poggio et al. (2017).
 - Extend the properties of SGD for linear networks to deep non linear networks
 - (1. \exists optimal early stopping, 2. classification: min norm \Longrightarrow maximum margin)

This paper

"To Understand Deep Learning We Need to Understand Kernel Learning" Mikhail Belkin, Siyuan Ma, Soumik Mandal.

- Kernel Learning == a two-layer neural network
- Check if depth is needed

Reproducing Kernel Hilbert Space ${\mathscr H}$

Let $K(\mathbf{x}, \mathbf{z}) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be positive definite. Given data $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}, \mathbf{x}_i \in \mathbb{R}^d, y_i \in \mathbb{R}$ Then there exists a RKHS \mathscr{H} of functions on \mathbb{R}^d .

$$f(\cdot) = \sum_{i=1}^{n} \alpha_{i} K(x_{i}, \cdot)$$
$$f^{*} = \underset{f \in \mathcal{H}, f(\mathbf{x}_{i}) = \mathbf{y}_{i}}{\operatorname{arg \, min}} \|f\|_{\mathcal{H}}$$

Where
$$\|f\|_{\mathscr{H}}^2 = \langle \boldsymbol{\alpha}, \mathbf{K} \boldsymbol{\alpha} \rangle = \sum_{ij} \alpha_i \mathbf{K}_{ij} \alpha_j$$
, and $\mathbf{K}_{ij} = K(x_i, x_j)$

Interpolation

By the classical representer theorem:

$$f^*(\cdot) = \sum_{i=1}^N lpha_i^* K(x_i, \cdot)$$
 where $lpha^* = \mathbf{K}^{-1} \mathbf{y}$

Note:

$$f^{*}(\mathbf{X}) = \mathbf{K}\alpha^{*}$$

$$= \mathbf{K}\mathbf{K}^{-1}\mathbf{y}$$

$$= \mathbf{y}$$

$$f^{*}(\mathbf{x}_{i}) = y_{i}$$

8 / 38

Stochastic Gradient Descent

$$f^*(\cdot) = \sum_{i=1}^N \alpha_i^* K(x_i, \cdot)$$

Minimization:

$$egin{aligned} & oldsymbol{lpha^*} = rg \min_{oldsymbol{lpha} \in \mathbb{R}} \sum_{j=1}^N I(f(x_i), y_i) \ & = rg \min_{oldsymbol{lpha} \in \mathbb{R}} \sum_{i=1}^N I(\sum_{j=1}^N lpha_i K(x_i, x_j), y_i) \end{aligned}$$

Use EigenPro Optimizer to speed up training

9 / 38

Kernel Layer

Layer (type)	Output	Shape	Param #
indexed-feat- (InputLayer)	(None,	785)	0
lambda_1 (Lambda)	(None,	784)	0
kernel_embedding_2 (KernelEm	(None,	10000)	7840000
trainable (Dense)	(None,	10)	100000
Total params: 7,940,000 Trainable params: 100,000 Non-trainable params: 7,840,0	000		

Kernels

Gauss (smooth):

$$K(x,y) = \exp\left(-\frac{\|x-y\|^2}{2\sigma^2}\right)$$

Laplace (non-smooth):

$$K(x, y) = \exp\left(-\frac{\|x - y\|}{\sigma}\right)$$

Reproduced MNIST

MNIST, 40000 Training Samples

Reproduced CIFAR-10 grey-scale

CIPHAR, 40000 Training Samples

Reproduced CIFAR-10 color

color, 40000 Training Samples

Results

Belkin et al.

Recap

- Overfit on Training Data, but still reasonable generalization
 - $\rightarrow \ \, \mathsf{Apparently} \,\, \mathsf{works} \,\, \mathsf{also} \,\, \mathsf{in} \,\, \mathsf{shallow} \,\, \mathsf{networks} \,\,$
 - → Not inherent to depth of deep neural nets
- Even more surprising:
 - → Authors show that any known generalization bound goes to infinity assuming some label noise

Theoretical Bound

$$\Omega \subset \mathbb{R}^d$$
, \mathscr{H} is RKHS

Probability measure P on $\Omega \times \{-1, 1\}$ $\{(\mathbf{x}_i, y_i), i = 1, ..., n\}$ sampled from P is a labeled dataset, with non zero label noise.

$$B_R = \{ f \in \mathscr{H}, \|f\|_{\mathscr{H}} < R \} \subset \mathscr{H}$$

 $h \in \mathscr{H}$ t-overfits the data \iff it achieves zero classification error, and $\forall_i y_i h(\mathbf{x}_i) > t > 0$

Theoretical Bound

Theorem

Any $h \in \mathcal{H}$ corresponding to a Gaussian kernel that t-overfits the data satisfies with high probability

$$\|h\|_{\mathscr{H}} > A \mathrm{e}^{Bn^{\frac{1}{d}}}$$

for some constants A, B > 0 depending on t

Johannes Pitz (TUM) Kernel methods and DL II April 24, 2020

18 / 38

Theoretical Bound - Proof

 $I(f(\mathbf{x}), y) = \max(t - yf(\mathbf{x}), 0)$ hinge loss with margin t

 $V_{\gamma}(B_R)$ be fat shattering dimension of the function space B_R with the parameter γ .

By Anthony, Bartlett in *Neural network learning: Theoretical foundation* $\exists C_1, C_2 > 0$ such that with high probability $\forall_{f \in B_R}$:

$$\left|\frac{1}{n}\sum_{i}I(f(\mathbf{x}_{i}),y_{i})-\mathbb{E}_{P}[I(f(\mathbf{x}),y)]\right|\leq C_{1}\gamma+C_{2}\sqrt{\frac{V_{\gamma}(B_{R})}{n}}$$

Theoretical Bound - Proof

$$\left|\frac{1}{n}\sum_{i}I(f(\mathbf{x}_{i}),y_{i})-\mathbb{E}_{P}[I(f(\mathbf{x}),y)]\right|\leq C_{1}\gamma+C_{2}\sqrt{\frac{V_{\gamma}(B_{R})}{n}}$$

Since y is not a deterministic function of x (label noise)

$$\mathbb{E}_P[I(f(\mathbf{x}),y)]>0$$

Now fix $\gamma > 0$ such that $C_1 \gamma < \mathbb{E}_P[I(f(\mathbf{x}), y)]$

Suppose $h \in B_R$ t-overfits the data. Then by construction $\frac{1}{n} \sum_i I(h(\mathbf{x}_i), y_i) = 0$

Theoretical Bound - Proof

$$0 < \mathbb{E}_{P}[I(f(\mathbf{x}), y)] - C_1 \gamma < C_2 \sqrt{\frac{V_{\gamma}(B_R)}{n}}$$
$$\frac{n}{C_2^2} (\mathbb{E}_{P}[I(f(\mathbf{x}), y)] - C_1 \gamma)^2 < V_{\gamma}(B_R)$$

By Belkin in Approximation beats concentration?

$$V_{\gamma}(B_R) < O(\log^d(\frac{R}{\gamma}))$$

$$\frac{n}{C_2^2}(\mathbb{E}_P[I(f(\mathbf{x}), y)] - C_1\gamma)^2 < \log^d(\frac{R}{\gamma})$$

$$Ae^{Bn^{\frac{1}{d}}} < R$$
 where $A, B > 0$

Theoretical Bound - Consequences

Most available bounds are of the form:

$$|\underbrace{\frac{1}{n}\sum_{i}I(f(\mathbf{x}_{i}),y_{i})}_{\mathsf{Train\ Loss}} - \underbrace{\mathbb{E}_{P}[I(f(\mathbf{x}),y)]}_{\mathsf{Expected\ Test\ Loss}}| \leq C_{1} + C_{2}\frac{\|f\|_{\mathscr{H}}^{\alpha}}{n^{\beta}}$$

where $C_1, C_2, \alpha, \beta \geq 0$

$$||h||_{\mathscr{H}} > Ae^{Bn^{\frac{1}{d}}}$$
 yields trivial bound

Probability Distribution

Proposition

Let P be a multiclass probability distribution on $\Omega \times \{1,...,k\}$. Let P_{ϵ} be the same distribution, with a ϵ fraction of the labels flipped at random with equal probability for all labels.

- **①** The Bayes Optimal Classifier c^* for P_ϵ is the same the Bayes Optimal Classifier for P
- The error rate is

$$P_{\epsilon}(c^*(x) \neq y) = \epsilon \frac{k-1}{k} + (1-\epsilon)P(c^*(x) \neq y)$$

Synthetic datasets

$$y \in \{0, 1\}$$
 $x_2 \sim \mathcal{U}(-1, 1), ..., x_{50} \sim \mathcal{U}(-1, 1)$

Synthetic 1, Separable classes:

$$x_1 \in \begin{cases} \mathcal{N}(0,1), & \text{if } y = 1 \\ \mathcal{N}(10,1), & \text{otherwise} \end{cases}$$

Synthetic 2, Non-Separable classes:

$$x_1 \in \begin{cases} \mathcal{N}(0,1), & \text{if } y = 1 \\ \mathcal{N}(2,1), & \text{otherwise} \end{cases}$$

Bayes Optimal Error close to 0%, around 15.9% respectively $y \in \{-1,1\}$ in the original paper

Reproduced Synthetic 1

Synthetic 2

Reproduced Synthetic 2

Extended Synthetic 2

d = 4; Synthetic 2

Reproduced MNIST

Tried also CIFAR-10

Reproduced

Tried also

Recap

- Norm increases with training data size
- Still yields reasonable generalization on test data
- Even when noise is close to 1

(Consistently) better than any known bound can guarantee

⇒ Need to find new bounds!

Early Stopping would have helped

Computational Reach

Gaussian Kernel:

Label	MNIST	CIFAR-10	Synthetic 1	Synthetic 2
Original	8	>300	1	205
Random	>300	>300	106	269

Laplaceian Kernel:

Label	MNIST	CIFAR-10	Synthetic 1	Synthetic 2
Original	3	5	1	5
Random	7	5	4	4

Bandwidth

Conclusion

Practical Considerations:

- ullet Laplace Kernel (\sim relu) often outperforms Gaussian
- Model scales with Training Data size

We have seen:

- Kernel Learning == shallow Neural Networks
- Interesting theoretical results
- Surprisings experimental results
- \rightarrow Hope for new bounds

