

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

1. Datos Generales de la asignatura

Nombre de la asignatura: Estática y Dinámica

Clave de la asignatura: | ERF-1011

SATCA¹: | 3-2-5 |

Carrera: | Ingeniería en Energías Renovables

2. Presentación

Caracterización de la asignatura

Esta asignatura aporta al perfil del Ingeniero en energías renovables conocimientos base que contribuyen para desarrollar su capacidad de diseño e implementación de sistemas energéticos renovables para promover la competitividad de los sectores productivos.

Estática y dinámica permite que el estudiante aplique los conceptos de cálculo integral en el cálculo de momento de área y que posteriormente en mecánica de fluidos se requieran para cálculo de fuerzas hidrostáticas, estos conceptos de momento de área se requieren en resistencia de materiales. En la sección de dinámica se estudian los conceptos de trabajo y energía, los cuáles son la base de las asignaturas de termodinámica y de energía eólica. Los temas de análisis de una partícula y de cuerpo rígido serán la base para realizar diagramas que permitan determinar esfuerzo, la flexión y la tensión en vigas y otros elementos de una estructura en la asignatura de resistencia de los materiales.

Debido a las relaciones son distintas asignaturas, ésta es un elemento clave para el proceso de diseño de sistemas de energías renovables.

Es necesario enfatizar la importancia que reviste, que el alumno previamente utilice recursos obtenidos en trigonometría, geometría y álgebra.

Esta materia es importante porque se aplican los conceptos básicos, leyes y principios fundamentales de la estática, la cinemática y la cinética en la solución de problemas, mediante el análisis, síntesis y modelado del problema que se presenten en el ámbito profesional.

Intención didáctica

Se organiza el temario, en 4 temas, en las cuales se desarrollan las leyes de newton con su aplicación en el mundo científico y tecnológico, siempre reiterando lo importante de conocer la física para que los alumnos sean capaces de hacer ingeniería en el marco de su contexto

El tema 1 comprende el análisis de la partícula. En ésta el estudiante aplica el método de descomposición de fuerzas para resolver problemas bidimensionales y tridimensionales en equilibrio para poner en prácticas sus habilidades de trigonometrías, conversión de unidades, conceptualizar vectores y de álgebra.

En tema 2 se desarrolla el análisis del cuerpo rígido, en este apartado se recomienda que el estudiante resuelva problemas en los cuales el concepto de momento de una fuerza y descomposición de un fuerza y un par aplicando el principio de transmisibilidad

¹ Sistema de Asignación y Transferencia de Créditos Académicos

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

y procurando que el estudiante desarrolle su habilidad de lógica y comprensión. Se calculan los centroides y momentos de inercia tanto por integración o cálculo directo utilizando ecuaciones ya deducidas. El docente pondrá énfasis en el cálculo de primer y segundo momento de área de algún cuerpo compuesto empleando formulas ya establecidas.

En el tema 3 se estudia el movimiento cuyas características esenciales son: el desplazamiento, velocidad y aceleración, sin analizar aún las causas. El estudiante debe ser capaz de resolver problemas aplicando las fórmulas necesarias para el cálculo de las características del movimiento.

En el tema 4 se definen los conceptos de trabajo y energía, la relación que hay entre ambos conceptos y la importancia que tiene en las aplicaciones.

Se requiere que el estudiante trabaje de forma autónoma en solución de problemas extraclase.

3. Participantes en el diseño y seguimiento curricular del programa

Lugar y fecha de elaboración o revisión	Participantes	Evento
Instituto Tecnológico Superior de Puerto Vallarta del 10 al 14 de agosto de 2009.	Representantes de los Institutos Tecnológicos de: Chihuahua, Chihuahua II, Chilpancingo, Durango, La Laguna, La Piedad, León, Mexicali, Milpa Alta, Minatitlán, Orizaba, Saltillo, Toluca, Veracruz y Villahermosa.	Reunión Nacional de Diseño e Innovación Curricular para el Desarrollo y Formación de Competencias Profesionales de las Carreras de Ingeniería en Tecnologías de la Información y Comunicaciones, Ingeniería en Energías Renovables, Ingeniería Petrolera y Gastronomía.
Instituto Tecnológico de Villahermosa del 24 al 28 de mayo de 2010.	Representantes de los Institutos Tecnológicos de: Chihuahua, La Laguna, León, Mexicali, Milpa Alta, Minatitlán, Toluca, Veracruz y Villahermosa.	Reunión Nacional de Consolidación de los Programas en Competencias Profesionales de las Carreras de Ingeniería en Geociencias, Ingeniería en Energías Renovables, Ingeniería en Tecnologías de la Información y Comunicaciones, y Gastronomía.

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

		Reunión Nacional de
		Seguimiento Curricular de
	Representantes de los	las Carreras de Ingeniería
Instituto Tecnológico de	Institutos Tecnológicos de:	en Energías Renovables,
Cd. Victoria, del 24 al 27 de	Cd. Victoria, Cintalapa,	Ingenierías en Geociencias,
junio de 2013.	Huichapan, Mexicali,	Ingeniería en Materiales y
	Motúl, Progreso y Tequila.	Licenciatura en Biología del
		Sistema Nacional de
		Institutos Tecnológicos.
Instituto Tecnológico de	Representantes de los	Reunión de Seguimiento
Toluca, del 10 al 13 de	Institutos Tecnológicos de:	Curricular de los Programas
febrero de 2014.	Progreso.	Educativos de Ingenierías,
		Licenciaturas y Asignaturas
		Comunes del SNIT.

4. Competencia(s) a desarrollar

Competencia(s)específica(s)de la asignatura

Aplica los conceptos básicos, leyes y principios fundamentales de la estática y la dinámica para solución de problemas, mediante el análisis de los fenómenos físicos relacionados con la mecánica que se presenten en el ámbito profesional.

5. Competencias previas

Plantea y soluciona integrales para resolver problemas de cálculo de áreas y centroides. Plantea y soluciona sistemas de ecuaciones líneas para resolver problemas de alguna aplicación.

6. Temario

No.	Temas	Subtemas
1	Análisis de la partícula	1.1 Conceptos de vector, fuerza
		1.2 Sistemas de unidades
		1.3 Descomposición de fuerzas
		1.4 Diagrama fuerzas sobre una partícula.
		1.5 Sistema de fuerzas concurrentes.
		1.6 Equilibrio de una partícula
2	Análisis de cuerpo rígido	2.1 Diagrama de cuerpo libre.
		2.2 Momento de una fuerza.
		2.3 Descomposición de una fuerza en una
		fuerza y un par.
		2.4 Sistemas equivalentes de fuerzas.
		2.5 Fuerzas coplanares.
		2.6 Reacción en apoyos.
		2.7 Equilibrio en cuerpos rígidos sujetos a
		sistemas de fuerzas.

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

		2.8 Centroides, centros de gravedad y momentos de inercia.
3	Cinemática de la partícula	3.1 Movimiento de una partícula 3.2 Velocidad promedio 3.3 Velocidad instantánea 3.4 Aceleración lineal 3.5 Caída libre de los cuerpos 3.6 Movimiento de un proyectil 3.7 Movimiento circular uniforme 3.8 Fuerzas de rozamiento 3.9 Dinámica del movimiento circular 3.10 Velocidad y aceleración angular
4	Trabajo y Energía.	 4.1 Definición de; Trabajo y energía. 4.2 Energías cinética y potencial. 4.3 Potencia 4.4 Conservación de la energía mecánica.

7. Actividades de aprendizaje de los temas

Análisis de	la partícula
Competencias	Actividades de aprendizaje
Específica(s):	*Investigación documental de la
Aplica el método de descomposición de	clasificación de la física y ubicación de la
fuerzas en sus componentes rectangulares	estática y dinámica en ésta
para resolver problemas que involucren	*Realizar una investigación sobre los
equilibrio de una partícula sobre la que	diferentes sistemas de unidades
actúan fuerzas concurrentes.	*Realizar conversiones de cantidades en
	diferentes sistemas de unidades.
Genéricas:	*Resolver problemas de conversiones de
Capacidad para identificar, plantear y	unidades.
resolver problemas.	*Identificar la diferencia entre partícula y
-	cuerpo rígido.
	*Clasificar cantidades físicas en escalares y
	vectoriales.
	*Dibujar el plano cartesiano y expresar una
	fuerza en función de vectores unitarios con
	sus correspondientes cosenos senos
	*Resolver problemas para determinar la
	resultante de un sistema de fuerzas
	concurrentes.
	*Realizar un experimento donde observe el
	equilibrio de una partícula en el espacio.
	*Resolver problemas de equilibrio extra
	clase y discutirlos en grupos de trabajo.
	_

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

Análisis de cuerpo rígido		
Competencias	Actividades de aprendizaje	
Específica(s):	*Explicar las diferencias entre cargas y sus	
Aplica el método de descomposición de	tipos, reacciones y esfuerzos.	
fuerza en una fuerza y un par para la	*Aplicar el principio de transmisibilidad de	
resolución de problemas que impliquen el	fuerzas.	
equilibrio de un cuerpo rígido sujetos a un	*Describir y calcular el momento de una	
sistema de fuerzas.	fuerza con respecto a un punto con respecto	
	al eje.	
Genéricas:	*Resolver problemas de pares de fuerzas.	
Capacidad para identificar, plantear y	*Resolver problemas donde se transforme	
resolver problemas	una fuerza a un sistema fuerza-par.	
	*Resolver problemas donde se transforme	
Habilidad para trabajar en forma autónoma	un sistema de fuerzas a un sistema equivalente.	
	*Elaborar diagramas de cuerpo libre.	
	*Analizar situaciones de posibles	
	movimientos y determinar sus reacciones	
	aplicando las condiciones de equilibrio.	
	*Determinar las reacciones por medio de	
	sistemas equivalentes.	
Cinemática d	e la partícula	
Competencias	Actividades de aprendizaje	
Específica(s):	*Definir la cinemática de una partícula	
Reconoce e identifica las variables físicas	*Estructurar ejemplos de desplazamiento.	
que intervienen en el movimiento para la	*Definir velocidad media	
resolución de problemas que involucren	*Resolver problemas reales que utilicen	
movimientos rectilíneos, de proyectos y	velocidad media.	
circular uniforme.	*Definir la velocidad instantánea	
	*Resolver problemas que evidencien el	
Genéricas:	carácter vectorial de la velocidad.	
Capacidad de abstracción, análisis y síntesis	*Resolver problemas que involucren la	
	rapidez como la magnitud de la velocidad.	
Capacidad para identificar, plantear y	*Definir aceleración lineal y su naturaleza	
resolver problemas	vectorial.	
	*Resolver problemas donde la aceleración	
	es uniforme.	
	*Resolver problemas de caída libre	
	*Estudiar el movimiento de proyectiles (tiro	
	parabólico) *Passalver problemas de tira parabólico)	
	*Resolver problemas de tiro parabólico)	
	*Estudiar las definiciones de: Periodo,	
	frecuencia y velocidad angular.	
	*Calcular la aceleración centrípeta de una	
	partícula girando, sujeta a una cuerda,	
	alrededor de un eje.	

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

Trabajo y Energía.		
Competencias	Actividades de aprendizaje	
Específica(s):	*Definir el concepto de trabajo.	
	*Resolver problemas de trabajo.	
Comprende el concepto de conservación de	*Definir el concepto de energía.	
energía mecánica y aplica las fórmulas de	*Definir la energía cinética.	
trabajo y energía para la resolución de	*Calcular el trabajo y la energía de una	
problemas en los cuales sea necesario	partícula moviéndose en una dimensión	
calcular el trabajo total, energía cinética o	bajo la acción de una fuerza constante.	
potencial.	*Calcular el trabajo de fuerzas variables.	
	*Definir la energía potencial.	
Genérica	*Establecer el teorema de trabajo – energía.	
	*Resolver problemas con el teorema de	
Habilidad para trabajar en forma autónoma	trabajo - energía.	
	*Definir potencia.	
Conocimientos sobre el área de estudio y la	*Definir las fuerzas conservativas y el	
profesión	teorema de conservación de la energía.	
	*Analizar la conversión de energía cinética	
Capacidad para identificar, plantear y	a potencial y viceversa.	
resolver problemas	*Definir las fuerzas no conservativas	
	*Analizar la disipación de energía debido a	
	las fuerzas no conservativas.	

8. Práctica(s)

- 1. Elaborar prototipos didácticos simples para demostrar las leyes de la estática.
- 2. Realizar ejercicios con módulos didácticos.
- 3. Cálculo de posición y velocidad en el movimiento rectilíneo
- 4. Cálculo de posición y velocidad en el movimiento curvilíneo
- 5. Simulación de la posición, velocidad y aceleración de un cuerpo en caída libre
- 6. Simulación de la posición, velocidad y aceleración de un cuerpo en tiro parabólico.
- 7. Obtención de gráficas de velocidad y aceleración de una partícula en trayectoria lineal.
- 8. Comprobación de la velocidad y aceleración del movimiento dependiente entre partículas.

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

9. Proyecto de asignatura

El objetivo del proyecto que planteé el docente que imparta esta asignatura, es demostrar el desarrollo y alcance de la(s) competencia(s) de la asignatura, considerando las siguientes fases:

- Fundamentación: marco referencial (teórico, conceptual, contextual, legal) en el cual se fundamenta el proyecto de acuerdo con un diagnóstico realizado, mismo que permite a los estudiantes lograr la comprensión de la realidad o situación objeto de estudio para definir un proceso de intervención o hacer el diseño de un modelo.
- Planeación: con base en el diagnóstico en esta fase se realiza el diseño del proyecto por parte de los estudiantes con asesoría del docente; implica planificar un proceso: de intervención empresarial, social o comunitario, el diseño de un modelo, entre otros, según el tipo de proyecto, las actividades a realizar los recursos requeridos y el cronograma de trabajo.
- **Ejecución:** consiste en el desarrollo de la planeación del proyecto realizada por parte de los estudiantes con asesoría del docente, es decir en la intervención (social, empresarial), o construcción del modelo propuesto según el tipo de proyecto, es la fase de mayor duración que implica el desempeño de las competencias genéricas y especificas a desarrollar.
- Evaluación: es la fase final que aplica un juicio de valor en el contexto laboralprofesión, social e investigativo, ésta se debe realizar a través del reconocimiento de logros y aspectos a mejorar se estará promoviendo el concepto de "evaluación para la mejora continua", la metacognición, el desarrollo del pensamiento crítico y reflexivo en los estudiantes.

10. Evaluación por competencias

La evaluación debe ser continua y formativa por lo que se debe considerar el desempeño en cada una de las actividades de aprendizaje, haciendo especial énfasis en:

Reportes escrito

Solución de ejercicios extra clase,

Actividades de investigación,

Elaboración de modelos o prototipos,

Análisis y discusión grupal.

Resolución de problemas con apoyo de software.

Ejercicios en clase.

Exámenes escritos.

Secretaría Académica, de Investigación e Innovación

Dirección de Docencia e Innovación Educativa

11. Fuentes de información

1. Hibbeler R.C (2013) Ingeniería mecánica: estática: para cursos con enfoque por competencias. México: Pearson.

2. Beer, F.P. y Johnston E.R. Jr. (2010) *Mecánica Vectorial para Ingenieros, Dinámica*. México: Mc Graw Hill

3. Beer, F.P. y Johnston E.R. Jr. (2010) *Mecánica Vectorial para Ingenieros, Estática*. México :Mc Graw Hill

4. Hibbeler R.C.,(2010) Ingeniería Mecánica, Dinámica, México: Pearson

5. Hibbeler R.C.,(2010) Ingeniería Mecánica Estática, México: Pearson.