Matemática Computacional

Prof. MSc. Luis Gonzaga de Paulo

Sistemas de Numeração

- Os sistemas de numeração:
 - Decimal
 - Octal
 - Binário
 - Hexadecimal
- A conversão entre os sistemas de numeração
- Erros de representação e de conversão

Você sabe?

- Como o computador faz os cálculos?
- Como ele armazena os números? E as letras? E as imagens?
- O que é o Bit? E o Byte?
- Qual o limite de cálculo de um computador?
- Quanta informação ele pode armazenar?

Sistema de Numeração Decimal

- Sistema numérico padrão para representar quantidades;
- Comum na comunicação entre as pessoas;
- Sistema de Numeração "Base 10" (β = 10);
- Dez símbolos (algarismos ou dígitos): 0, 1, 2, 3, 4, 5,
 6, 7, 8, 9;
- Posicional: cada digito representa um valor, que é multiplicado pela base com o expoente relativo à posição;

Sistema de Numeração Decimal

$$(153)_{10} = (1x10^2) + (5x10^1) + (3x10^0)$$

$$(32,37)_{10} =$$
 $(3x10^{1})+(2x10^{0})+(3x10^{-1})+(7x10^{-2})$

Sistema de Numeração Octal

- Sistema numérico alternativo ao binário;
- Comum na programação em linguagem de máquina;
- Sistema de Numeração "Base 8" (β = 8);
- Oito símbolos (algarismos ou dígitos): 0, 1, 2, 3, 4,
 5, 6, 7;
- Também é posicional;

Sistema de Numeração Octal

$$(153)_8 = (1x8^2) + (5x8^1) + (3x8^0) = 64 + 40 + 3 = (107)_{10};$$

$$(32,37)_8 = (3x8^1) + (2x8^0) + (3x8^{-1}) + (7x8^{-2}) = 24 + 2 + 0,375 + 0,109375 = (26,484375)_{10}$$

- Sistema numérico padrão dos computadores;
- Utilizado na comunicação digital;
- Sistema de Numeração "Base 2" (β = 2);
- Dois símbolos (algarismos ou dígitos): 0, 1;
- Também é posicional: cada digito representa um valor que é multiplicado pela base com o expoente relativo à posição;

$$(1001)_2 = (1x2^3) + (0x2^2) + (0x2^1) + (1x2^0) = (9)_{10}$$

$$(10,11)_2 =$$

 $(1x2^1)+(0x2^0)+(1x2^{-1})+(1x2^{-2})=(2,75)_{10}$

Recapitulando:

$$2^{-1} = \frac{1}{2^1} = \frac{1}{2} = 0,5$$

$$2^{-2} = \frac{1}{2^2} = \frac{1}{4} = 0,25$$

$$2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0,125$$

Bit (de Binary digIT) é um dígito binário;

- **Byte** é um conjunto de oito bits, também chamado de octeto ou palavra (word), os quais podem representar 256 valores no intervalo de 0000000_2 (ou 0_{10}) a 11111111_2 (ou 255_{10});

1	0	
Ligado	Desligado	
Verdadeiro	Falso	
Presente	Ausente	
Aceso	Apagado	

Sistema de Numeração Hexadecimal

- Sistema numérico alternativo ao binário;
- Comum na programação em linguagens de primeira à terceira geração;
- Sistema de Numeração "Base 16" (β = 16);
- Símbolos (algarismos ou dígitos): 0, 1, 2, 3, 4, 5, 6,
 7, 8, 9, A, B, C, D, E, F;
- Também é posicional;
- Geralmente é identificado com 0xNNNN, NNNNh ou #NNNN, onde "N" é um dígito hexadecimal.

Sistema de Numeração Hexadecimal

Importante:

$$-A_{16} = 10_{10}$$
 $B_{16} = 11_{10}$ $C_{16} = 12_{10}$

$$D_{16} = 13_{10}$$
 $E_{16} = 14_{10}$ $F_{16} = 15_{10}$

$$(CF5)_{16} = (Cx16^2) + (Fx16^1) + (5x16^0) = 3072 + 240 + 5 = 3317_{10};$$

$$(32,37)_{16} = (3x16^{1}) + (2x16^{0}) + (3x16^{-1}) + (7x16^{-2}) = 48 + 2 + 0,1875 + 0,02734375 = 50,21484375_{10}$$

- Utilizamos o sistema decimal "Base 10" (β = 10);
- É necessário converter PARA a base β e DA base β;
- O processo de conversão pode gerar imprecisões e erros em função das limitações da representação;
- A conversão de uma base qualquer para a base 10 faz uso da fatoração, como já mostrado:

$$(abc,de)_{\beta} = (a.\,\beta^2 + b.\,\beta^1 + c.\,\beta^0 + d.\,\beta^{-1} + e.\,\beta^{-2})_{10}$$

$$(101,1)_2 = (1.2^2 + 0.2^1 + 1.2^0 + 1.2^{-1})_{10} = (5,5)_{10}$$

$$(27,4)_8 = (2.8^1 + 7.8^0 + 4.8^{-1})_{10} = (23,5)_{10}$$

$$(1A, B)_{16} = (1.16^{1} + 10.16^{0} + 11.16^{-1})_{10} = (26,6875)_{10}$$

 A conversão da base 10 para uma base β qualquer é obtida pelo quociente e resto de divisões sucessivas por β.

24

$$(24)_{10} = (?)_2$$

$$(24)_{10} = (11000)_2$$

$$(342)_{10} = (?)_8$$

$$(342)_{10} = (526)_8$$

$$(342)_{10} = (?)_{16}$$

$$(342)_{10} = (156)_{16}$$

 A conversão da parte decimal de uma base 10 para uma base β qualquer é obtida pelos inteiros de multiplicações sucessivas por β, até a obtenção de um número apenas inteiro.

$$(0.828125)_{10} = (?)_2$$

 $0.828125 \times 2 = 1.65625$
 $0.65625 \times 2 = 1.3125$
 $0.3125 \times 2 = 0.625$
 $0.625 \times 2 = 1.25$
 $0.25 \times 2 = 0.50$
 $0.50 \times 2 = 1$
 $(0.828125)_{10} = (0.110101)_2$

- É possível fazer a substituição direta no caso da conversão de Octal para Binário (e vice-versa) ou de Hexadecimal para Binário (e vice-versa);
- Isto se deve ao fato de que oito (Octal) e dezesseis (hexadecimal) são potências de dois;
- Nestes casos, basta usar três dígitos binários para cada dígito octal, já que 2^3 = 8, e quatro dígitos binários para cada digito hexadecimal, uma vez que 2^4 = 16.

- $-517_8 = 101\ 001\ 111_2$
- $-1274_8 = 001\ 010\ 111\ 100_2$
- $-70C_{16} = 0111\ 0000\ 1100_2$
- $CCE2_{16} = 1100 \ 1100 \ 1110 \ 0010_2$
- $100010110111_2 = 100\ 010\ 110\ 111 = 4267_8$
- $10111000110_2 = 010111000110 = 5C6_{16}$

Erros

- No processo de conversão entre sistemas podem ocorrer erros de dois tipos:
- Os erros de **PRECISÃO**, que decorrem da limitação da quantidade de dígitos para representar o número, a qual é geralmente pré-definida, como no caso das variáveis em programas de computador;
- Os erros de **EXATIDÃO**, decorrem da aproximação, do arredondamento ou da ocorrência de dízimas periódicas.

Aplicação

DECIMAL	BINÁRIO	OCTAL	HEXADECIMAL
10	2	8	16
0,000001	0,00000000000000000000000000000000001	0,00000020615736405536	0,00000103067572026573
0,00001	0,0000000000000001010	0,00000247613261070664	0,00001237055304332100
0,0001	0,000000000001101000	0,00003215561353070414	0,00015066705654342062
0,001	0,000000010000011000	0,00040611156457065177	0,00203044672274324774
0,01	0,00000010100011110101	0,00507534121727024366	0,02436560507534121730
0,1	0,0001100110011001	0,06314631463146314640	0,19463146314631463200
1	1	1	1
10	1010	12	А
100	1100100	144	64
1.000	1111101000	1750	3E8
10.000	10011100010000	23420	2710
100.000	11000011010100000	303240	186A0
1.000.000	11110100001001000000	3641100	F4240
10.000.000	100110001001011010000000	46113200	989680
100.000.000	101111101011110000100000000	575360400	5F5E100
1.000.000.000	111011100110101100101000000000	7346545000	3B9ACA00
10.000.000.000	1001010100000010111110010000000000	112402762000	2540BE400

Aplicação

- Os números, as letras, os gráficos e as imagens são armazenadas e manipuladas pelo computador na forma de Bits;
- Os bits são organizados em grupos de 8 denominados Bytes, octetos ou palavras (words);
- Os valores representados em binário tornam-se complexos, extensos e difíceis de entender. Por isso são expressos em Decimal ou Hexadecimal;
- Valores em hexadecimal geralmente são precedidos por "0x" ou "#", ou seguidos de um "h".

Síntese

- Nesta aula estudamos os sistemas de numeração Decimal, Binário, Octal e Hexadecimal;
- Também vimos as formas de conversão de valores entre os sistemas de numeração estudados;
- Vimos uma noção dos erros e sua implicação nos cálculos;
- Conhecemos algumas aplicações dos sistemas de numeração estudados.