

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2023

PRÁCTICA 3 - Relaciones, Funciones y Operaciones

Relaciones

- 1. Si $U = \mathbb{N}$, $A = \{1, 2, 3, 4\}$, $B = \{2, 5\}$ y $C = \{3, 4, 7\}$, determinar los siguientes conjuntos, graficarlos como subconjuntos del plano y hallar dominio e imagen:
 - a) $A \times B$

- c) $(A \times A) \cup (B \times C)$
- e) $(A \times C) \cup (B \times C)$

b) $B \times A$

- d) $(A \cup B) \times C$
- 2. Sean $U=\mathbb{R}$, A=[1,2), B=[2,3], $C=(\frac{3}{2},3)\subseteq\mathbb{R}$. Determinar gráficamente en \mathbb{R}^2 :
 - a) $A \times C$

- c) $(A \cup B) \times C$
- e) $(A \cap C) \times C$

b) $B \times C$

d) $(A \times C) \cup (B \times C)$

En cada caso determinar un punto del plano que pertenezca al conjunto dado y uno que no.

- 3. Sean A, B, C, D subconjuntos no vacíos de un universo U. Demostrar que
 - a) $A \times (B C) = (A \times B) (A \times C)$.
 - b) $A \times B \subseteq C \times D$ si y sólo si $A \subseteq C$ y $B \subseteq D$.
- a) ¿Para qué conjuntos $A, B \subseteq U$ se verifica $A \times B = B \times A$?
 - b) ¿Existe alguna relación entre $P(A \times B)$ y $P(A) \times P(B)$?
- 5. Si $A = \{1, 2, 3\}$, $B = \{2, 4, 5\}$ dar ejemplos de:
 - a) Tres relaciones binarias no vacías de A en B. Graficar $A \times B$ y las tres relaciones como subconjuntos del plano.
 - b) Tres relaciones binarias no vacías en A. Graficar $A^2 = A \times A$ y las tres relaciones como subconjuntos del plano.
- 6. Sean $A = \{0, 1, 2, 3, 4\}$, $B = \{3, 4, 5, 6\}$, expresar por extensión el subconjunto R de $A \times B$ definido por:
 - a) $(x,y) \in R$ si y sólo si x+y es múltiplo de 3. b) xRy si y sólo si y-x es primo.
- 7. Sea $A = \{1, 2, 3, 4, 5\}$. Expresar por extensión el subconjunto R de $A \times A$ definido por las relaciones siguientes:
 - a) $(x, y) \in R \text{ si } x + y \le 6.$

- b) x R y si x = y 1.
- 8. Esbozar la gráfica de cada una de las relaciones siguientes de A en B y determinar su imagen.
 - a) $\{(x,y)/x < y \le 0\}$ $A = \mathbb{R}$ $B = \mathbb{R}$.

- b) $\{(2,1),(3,4),(1,4),(2,1),(4,4)\}$ $A = \{1,2,3,4,5\}$ $B = \{1,2,3,4\}.$
- c) $\{(x,y)/0 \le x < 1, y \ge x\}$ $A = \mathbb{R}$ $B = \mathbb{R}$.
- d) $\{(x,y)/x \in \mathbb{N}, y = \sqrt{x}\}$ $A = \mathbb{R}$ $B = \mathbb{R}$.
- e) $\{(x,y)/x \in \mathbb{N}, y = \sqrt{x}\}$ $A = \mathbb{N}$ $B = \mathbb{R}$.
- f) $\{(x,\sqrt{x}), x \in \mathbb{R}\}$ $A = \mathbb{R}$ $B = \mathbb{R}_0^+$.
- 9. Para cada una de las relaciones de los ejercicios 6 y 7 determinar R(1), R(3), $R^{-1}(4)$, $R^{-1}(5)$.
- 10. Con referencia a las relaciones del ejercicio 8, hallar:
 - a) En (a), $R((-1,\frac{1}{2}))$, R([-3,5]), $R(\mathbb{Z})$, $R^{-1}([-4,2])$, $R^{-1}(\{-7\})$, $R^{-1}(\mathbb{N})$.
 - b) En (b), $R(\{5\})$, $R(\{2,3,5\})$, R(), $R^{-1}(\{1,3\})$, $R^{-1}(\{1\})$, $R^{-1}()$.
 - c) En (d), R((5,6)), R([3,5]), R((3,5)), $R^{-1}(\mathbb{R}^+_0)$, $R^{-1}((-4,4])$, $R^{-1}((1,\frac{12}{10}))$.
- 11. Sean A, B y C conjuntos, R una relación de A en B y S una relación de B en C. Hallar, en cada caso $S \circ R$ y $R^{-1} \circ S^{-1}$ sus dominios e imágenes.
 - a) $A=\{1,2,3\},\ B=\{1,2,3,4\}$ y $C=\{0,1,2\}.$ $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\},\ S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}$
 - b) $A=\{1,2,3\}$, $B=\{2,4,6,8\}$ y $C=\{s,t,u\}$. $R=\{(1,2),(1,6),(2,4),(3,4),(3,6),(3,8)\}$, $S=\{(2,u),(4,s),(4,t),(6,t),(8,u)\}$
 - c) $A = \{a, b, c, d\}$, $B = \{s, t, u, v\}$ y $C = \{1, 2, 3, 4, 5\}$. $R = \{(a, s), (a, t), (c, v), (d, u)\}$, $S = \{(s, 2), (t, 1), (t, 4), (u, 3)\}$
- 12. Sean $A=\{1,2,4\}$, $B=\{1,3,4\}$ y sean $R=\{(1,3),(1,4),(4,4)\}$ una relación de A en B y $S=\{(1,1),(3,4),(3,2)\}$ una relación de B en A. Hallar:
 - a) $S \circ R$

d) $Dom(R \circ S)$

b) $R \circ S$

e) $Im(S \circ R)$

c) $Dom(S \circ R)$

f) $Im(R \circ S)$

Relaciones en un conjunto

- 13. En cada uno de los siguientes casos, determinar si la relación R definida en \mathbb{Z} es reflexiva, simétrica, transitiva o antisimétrica. Para los casos a, b, c, d y e determinar R(1) y $R^{-1}(1)$.
 - a) $(x,y) \in R \text{ si } x = y^2$;
- d) $(x,y) \in R$ si x+y es par;
- f) $(x,y) \in R$ si $x^3 + y^3$ es

- b) $(x,y) \in R \text{ si } x > y$;
- e) $(x,y) \in R$ si x-y es im-
- par.

- c) $(x,y) \in R \text{ si } x \geq y$;
- par;
- 14. Sea $A = \{1, 2, 3, 4\}$. Proporcionar ejemplos de relaciones en A que tengan las propiedades especificadas en cada caso.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2023

- a) Reflexiva, simétrica y no transitiva.
- c) Reflexiva, antisimétrica y no transitiva.
- b) Reflexiva, no simétrica y no antisimétrica.
- d) No reflexiva, simétrica y transitiva.
- 15. Sean R_1 y R_2 relaciones reflexivas en un conjunto A. Determinar si cada una de las siguientes proposiciones son verdaderas o falsas justificando adecuadamente la respuesta:
 - a) $R_1 \cup R_2$ es reflexiva;

c) $R_1 \circ R_2$ es reflexiva.

- b) $R_1 \cap R_2$ es reflexiva;
- 16. Repetir el ejercicio anterior cambiando "reflexiva" por simétrica, antisimétrica o transitiva.
- 17. Sea A un conjunto finito no vacío con |A|=n. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.
 - a) Si R es una relación reflexiva sobra A, entonces $|R| \ge n$.
 - b) Si R_1 y R_2 son relaciones en A y $R_1 \subseteq R_2$ entonces, si R_1 es reflexiva (simétrica, antisimétria o transitiva), entonces R_2 es reflexiva (resp. simétrica, antisimétria o transitiva).
 - c) Si R_1 y R_2 son relaciones en A y $R_1 \subseteq R_2$ entonces, si R_2 es reflexiva (simétrica, antisimétria o transitiva), entonces R_1 es reflexiva (resp. simétrica, antisimétria o transitiva).

Relaciones de orden

- 18. Determinar el diagrama de Hasse para el conjunto parcialmente ordenado $(P(X),\subseteq)$, con $X=\{1,2,3,4\}$.
- 19. Sea $A = \{1, 2, 3, 6, 9, 18\}$ y R la relación en A dada por x R y si x divide a y. Mostrar que es una relación de orden y trazar el diagrama de Hasse correspondiente.
- 20. Los siguientes son diagramas de Hasse correspondientes a un conjunto parcialmente ordenado (A,R). Determinar A y R en cada caso.

- 21. Definimos en $\mathbb C$ la relación z_1Rz_2 si $|z_1|\leq |z_2|$. ¿Es una relación de orden? Determinar sus propiedades. Dado z_0 fijo, determinar geométricamente el conjunto $B_1=\{z\in\mathbb C:z_0\ R\ z_0\}$ y $B_2=\{z\in\mathbb C:z_0\ R\ z\}$.
- 22. Determinar los elementos maximales, minimales, máximos y mínimos de cada una de las relaciones de los ejercicios 18, 19 y 20.
- 23. Sea $X = \{1, 2, 3, 4\}$ y consideremos el conjunto parcialmente ordenado (A, \subseteq) , con $A = \mathcal{P}(X)$. Para cada uno de los siguientes subconjuntos B de A, determine el ínfimo y el supremo de B.

- a) $B = \{\{1\}, \{2\}\};$ d) $B = \{\{1\}, \{1, 2\}, \{1, 3\}, \{1, 2, 3\}\};$
- b) $B = \{\{1\}, \{2\}, \{3\}, \{1, 2\}\};$ e) $B = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\};$
- c) $B = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\};$ f) $B = \{\{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$
- 24. Definimos en \mathbb{Z} la relación \mathbb{R} por x R y si x-y es un entero par no negativo. Probar que R es un orden parcial en \mathbb{Z} . ¿Es un orden total?
- 25. Dados dos conjuntos X_1 y X_2 , sean R_1 un orden parcial en X_1 y R_2 un orden parcial sobre X_2 . Probar que R es un orden parcial en $X_1 \times X_2$, donde

$$(x_1, x_2) R (y_1, y_2)$$
 si $x_1 R_1 y_1$ y $x_2 R_2 y_2$.

- 26. Probar que (\mathbb{R}, \leq) es totalmente ordenado. ¿Lo es (\mathbb{R}^2, R) , donde R es la relación definida en el ejercicio 25?
- 27. Sea (X,R) un conjunto parcialmente ordenado y $B\subseteq X$.
 - a) Mostrar que $R_B = (B \times B) \cap R$ define un orden parcial en B.
 - b) Mostrar que si (X,R) es totalmente ordenado, entonces (B,R_B) es totalmente ordenado.
 - c) Si (X,R) no es totalmente ordenado, ¿implica esto que (B,R_B) no es totalmente ordenado?
- 28. Sea (A,R) un conjunto parcialmente ordenado. Decimos que (A,R) es un *retículo* si dados $x,y\in A$ cualesquiera, $\sup\{x,y\}$ e $\inf\{x,y\}$ existen en A.
 - a) Mostrar que (\mathbb{R}, \leq) , (\mathbb{Q}, \leq) , (\mathbb{N}, \leq) son retículos.
 - b) Mostrar que si $X \neq \emptyset$, $(\mathcal{P}(X), \subseteq)$ es un retículo.
 - c) Determinar si los conjuntos parcialmente ordenados del ejercicio 20 son retículos.
 - d) Probar que todo orden total es un retículo. ¿Es un retículo un conjunto totalmente ordenado?
- 29. Sean (X_1, R_1) , (X_2, R_2) conjuntos parcialmente ordenados y consideremos el conjunto parcialmente ordenado $(X_1 \times X_2, R)$ definido en el ejercicio 25. Determinar si las siguientes afirmaciones son verdaderas o falsas justificando adecuadamente la respuesta.
 - a) Si x_0 es un elemento maximal (o minimal) para (X_1,R_1) e y_0 es un elemento maximal (o minimal) para (X_2,R_2) entonces (x_0,y_0) es un elemento maximal (o minimal) para $(X_1 \times X_2,R)$.
 - b) Si x_0 es máximo (o mínimo) para (X_1,R_1) e y_0 es un máximo (o mínimo) para (X_2,R_2) entonces (x_0,y_0) es un máximo (o mínimo) para $(X_1\times X_2,R)$.
 - c) Si (X_1, R_1) y (X_2, R_2) son totalmente ordenados, entonces $(X_1 \times X_2, R)$ es totalmente ordenado.
 - d) Sean $B_1 \subset X_1$ y $B_2 \subset X_2$. Si b_1 es cota superior (o inferior) de B_1 y b_2 es cota superior (o inferior) de $B_1 \times B_2$.
 - e) Sean $B_1 \subset X_1$ y $B_2 \subset X_2$. Si b_1 es supremo (o ínfimo) de B_1 y b_2 es supremo (o ínfimo) de B_2 , entonces (b_1, b_2) es supremo (o ínfimo) de $B_1 \times B_2$.
 - f) Si (X_1, R_1) y (X_2, R_2) son retículos, entonces $(X_1 \times X_2, R)$ es un retículo.
- 30. Sea (A,R) un conjunto totalmente ordenado. Se dice que (A,R) está bien ordenado si para todo $B\subseteq A$, con $B\neq\emptyset$, el conjunto totalmente ordenado (B,R_B) definido en el ejercicio 27 tiene un elemento mínimo. Determinar si los siguientes conjuntos totalmente ordenados están bien ordenados.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2023

- a) (\mathbb{N}, \leq) ;
- b) (\mathbb{Z}, \leq) ;
- c) $(\mathbb{Q}, \leq);$
- d) (P, \leq) , donde P es el conjunto de todos los primos;
- e) (A, \leq) , donde A es un subconjunto no vacío de \mathbb{N} ;
- f) (A, \leq) , donde A es un subconjunto no vacío finito de \mathbb{Z} .

Relaciones de equivalencia

- 31. Determinar si cada una de las colecciones dadas a continuación es o no una partición del conjunto A dado. Justificar por qué.
 - a) $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, A_1 = \{4, 5, 6\}, A_2 = \{1, 8\}, A_3 = \{2, 3, 7\}.$
 - b) $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, A_1 = \{1, 3, 4, 7\}, A_2 = \{2, 6\}, A_3 = \{5, 8\}.$
 - c) $A = \mathbb{Z}$, $A_n = \{-n, n\}$, $n \in \mathbb{Z}$.
 - d) $A = \mathbb{Z}, A_n = \{-n, n\}, n \in \mathbb{N}_0$
 - e) $A = \mathbb{R}$, $A_n = (n, n^2)$, $n \in \mathbb{Z}$.
 - f) $A = \mathbb{R}$, $B = \mathbb{Z}$, $A_n = (n, n+1)$, $n \in \mathbb{Z}$, $\mathcal{P} = \{B\} \cup \{A_n\}_{n \in \mathbb{Z}}$
 - g) $A = \mathbb{C}$, $A_n = \{z \in \mathbb{C} : n 1 < z \le n\}$, $n \in \mathbb{N}$.
- 32. Analizar, en cada caso, si la relación dada en el conjunto A indicado es de equivalencia. En caso de serlo, describir su conjunto cociente.
 - a) $A = \mathbb{R}, xRy \Leftrightarrow x y \in \mathbb{Q}$
 - b) $A = \mathbb{Z}$, $xRy \Leftrightarrow x y$ es un entero par.
 - c) $A = \mathbb{Z}, p \in \mathbb{N}$ fijo, $xRy \Leftrightarrow \exists k \in \mathbb{Z}/x y = kp$.
 - d) $A = \mathbb{R}, xRy \Leftrightarrow xy > 0.$
 - e) $A = \mathbb{R}, xRy \Leftrightarrow xy > 0$.
 - f) $A = \{1, 2, 3, 4, 5, 6\}, xRy \Leftrightarrow x = y \circ x + y = 5.$
- 33. Sea $A=\{1,2,3,4,5\}$, y R la relación de equivalencia en A que induce la partición $A=\{1,2\}\cup\{3,4\}\cup\{5\}$. Dar R por extensión y determinar R(1), $R^{-1}(1)$.
- 34. En $A = \{1, 2, 3, 4, 5, 6\}$ tenemos la relación de equivalencia

$$R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4), (4,5), (5,4), (5,5), (6,6)\}.$$

- a) Determinar [1], [2] y [3].
- b) Determinar la partición de A que induce R.
- c) Determinar R(1) y $R^{-1}(2)$.
- 35. Mostrar que para una relación de equivalencia R en A, para cada $x \in A$ $R(x) = R^{-1}(x) = [x]$.
- 36. Si $A = A_1 \cup A_2 \cup A_3$, donde $A_1 = \{1, 2\}$, $A_2 = \{2, 3, 4\}$ y $A_3 = \{5\}$, definimos la relación R en A por

x R y si están en el mismo subconjunto A_i , para algún $i \in \{1, 2, 3\}$.

¿Es R una relación de equivalencia?

- 37. Para $A = \mathbb{R}^2$ definimos R en A por (x_1, y_1) R (x_2, y_2) si $x_1 = x_2$.
 - a) Verificar que R es una relación de equivalencia en A.
 - b) Describir geométricamente las clases de equivalencia y la partición de A inducida por R.
- 38. Definimos la relación R en $\mathbb N$ por x R y si $x/y = 2^n$ para algún $n \in \mathbb Z$.
 - a) Verificar que R es una relación de equivalencia.
 - b) ¿Cuántas clases distintas encontramos entre [1], [2], [3] y [4]?
- 39. Considerar en $\mathbb Z$ la relación de congruencia módulo n, esto es, $x \ R \ y$ si x-y es múltiplo de n.
 - a) Mostrar que R es una relación de equivalencia.
 - b) Mostrar que R induce la partición $\mathbb{Z}=[0]\cup[1]\cup\cdots\cup[n-1]=\cup_{i=0}^{n-1}[i].$

Funciones

- 1. Determinar si cada una de las siguientes relaciones es una función. En caso de que lo sea, determinar su imagen:
 - a) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{Z}; y = x^2 + 7\}, \mathcal{R}$ es una relación de \mathbb{Z} en \mathbb{Z} .
 - b) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{R}; y^2 = x\}, \mathcal{R}$ es una relación de \mathbb{R} en \mathbb{R} .
 - c) $\mathcal{R}=\{(x,y):\ x,y\in\mathbb{R};\ y=3x+1\},\mathcal{R}$ es una relación de \mathbb{R} en $\mathbb{R}.$
 - d) $\mathcal{R} = \{(x,y) : x,y \in \mathbb{Q}; x^2 + y^2 = 1\}, \mathcal{R}$ es una relación de \mathbb{Q} en \mathbb{Q} .
- 2. Sean $A=\{1,2,3,4,5,6,7\}$ y $B=\{2,4,6,8,10,12\}$. Sea $f:A\to B$ la función dada por

$$f = \{(1,2), (2,6), (3,6), (4,8), (5,6), (6,8), (7,12)\}.$$

Determinar la preimagen de B_1 mediante f en cada uno de los siguientes casos:

a) $B_1 = \{2\}$

- c) $B_1 = \{6, 8\}$
- e) $B_1 = \{6, 8, 10, 12\}$

b) $B_1 = \{6\}$

- d) $B_1 = \{6, 8, 10\}$
- f) $B_1 = \{10, 12\}$
- 3. Para cada una de las siguientes funciones, determinar Im(f), f(A) y $f^{-1}(B)$ para los subconjuntos A y B indicados:
 - a) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x + 1, $A = \{1, 2, 3\}$, $B = \{7, 8, 9\}$.
 - b) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 x$, $A = \{-2, -1, 0, 1, 2\}$, $B = \{-5, -4, -3\}$.
 - c) $f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to \mathbb{R}, f(x) = \text{sen}(x), A = \left[0, \frac{\pi}{2}\right], B = [-1, 0].$
 - $\textit{d)} \ \ f: \mathbb{Q} \to \mathbb{Q}, \ f(x) = 2x, \ A = \{2^{-n} \ : \ n \in \mathbb{N}\}, \ B = \{4^n \ : \ n \in \mathbb{N}\}.$
 - e) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, $A = [1, +\infty)$, B = [4, 9].
- 4. Sea $f:\mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x + 7, & x \le 0 \\ -2x + 5, & 0 < x < 3 \\ x - 1, & x \ge 3. \end{cases}$$

Determinar la preimagen mediante f de cada uno de los siguientes intervalos

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Álgebra y Geometría Analítica I- PM - LM - LCC - PF - LF - 2023

a) [-5,-1], b) [-5,0], c) [-2,4], d) (5,10),

e) [11, 17).

- 5. Dar un ejemplo de una función f:A o B y de dos subconjuntos A_1,A_2 de A de modo que $f(A_1 \cap A_2) \neq f(A_1) \cap f(A_2).$
- 6. Dar, en cada caso, un ejemplo de conjuntos finitos A y B con $|A|, |B| \ge 4$ y una función f tal que
 - a) f no sea inyectiva ni sobre.
 - b) f sea inyectiva pero no sobre.
 - c) f sea sobre pero no inyectiva.
 - d) f sea sobre e inyectiva.
- 7. Sea f:A o B una función y sean $A_1,A_2\subseteq A$. Demostrar que si f es inyectiva, entonces $f(A_1 \cap A_2) = f(A_1) \cap f(A_2).$
- 8. Determinar si cada una de las funciones $f: \mathbb{Z} \to \mathbb{Z}$ es inyectiva y/o sobreyectiva. En caso de que no sea sobre, determinar su imagen.

a) f(x) = x + 7,

c) f(x) = 2x - 3, e) $f(x) = x^2 + x$,

b) $f(x) = x^2$,

d) f(x) = -x + 5,

 $f(x) = x^3$.

- 9. Sea f:A o B una función y $A_1\subseteq A$. Se denomina *restricción* de f a A_1 a la función $f_{|A_1}:A_1 o B$ definida por $f_{|A_1}(x) = f(x)$ para cada $x \in A_1$.
 - a) Sea $f:\mathbb{R} o \mathbb{Z}, \ f(x) = \lfloor x \rfloor$ la función parte entera. Probar que $f_{|\mathbb{Z}} = 1_{\mathbb{Z}}$ donde $1_{\mathbb{Z}}$ es la función identidad en \mathbb{Z} .
 - b) Sea $f: \mathbb{R} \to \mathbb{R}, \ f(x) = \cos(2\pi x)$. Probar que $f_{|\mathbb{Z}}$ es la función constante igual a 1.
- 10. Sea $f:A\to B$ una función y $A_1\subseteq A$. Determinar si las siguientes afirmaciones son verdaderas o falsas, justificando adecuadamente su respuesta.
 - a) Si f es inyectiva, entonces $f_{|A_1}$ es inyectiva.
 - b) Si $f_{|A_1}$ es inyectiva, entonces f es inyectiva.
 - c) Si f es sobre, entonces $f_{|A_1}$ es sobre.
 - d) Si $f_{|A_1}$ es sobre, entonces f es sobre.
- 11. Si $f: A \to B$ y $g: C \to D$ son funciones, definitions $h: A \times C \to B \times D$ por h(a, c) = (f(a), g(c)). Demostrar que h es biyectiva si y sólo si f y g son biyectivas.
- 12. Sean $f,g,h:\mathbb{Z} \to \mathbb{Z}$ definidas por $f(x)=x-1,\,g(x)=3x$ y

$$h(x) = \begin{cases} 0 & \text{si } x \text{ es par,} \\ 1 & \text{si } x \text{ es impar.} \end{cases}$$

Determinar

a) $f \circ g$, b) $g \circ f$, c) $g \circ h$, d) $f \circ (g \circ h)$, e) $(f \circ g) \circ h$.

13. Sea $g:\mathbb{N}\to\mathbb{N}$ definida por g(n)=2n. Si $A=\{1,2,3,4\}$ y $f:A\to\mathbb{N}$ es la función dada por $f = \{(1,2), (2,3), (3,5), (4,7)\}, \text{ encontrar } g \circ f.$

14. Sean S y T conjuntos (fijos) en el universo $\mathcal U$ dado. Se define

$$g: \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U}) \text{ por } g(A) = T \cap (S \cup A).$$

Demostrar que $g \circ g = g$.

- 15. Para cada una de las siguientes funciones $f:\mathbb{R}\to\mathbb{R}$, determinar si f es invertible y, si lo es, determinar f^{-1}
 - a) $f = \{(x, y) : 2x + 3y = 7\},\$
 - b) $f = \{(x, y) : y = x^3\},\$
 - c) $f = \{(x, y) : y = x^4 + x\}.$
- 16. Sean $f:\mathbb{R}^+_0 \to \mathbb{R}, \ f(x)=\sqrt{x}, \ g:\mathbb{R} \to \mathbb{R}^+_0, \ g(x)=x^2.$ Demostrar que $g\circ f=1_\mathbb{R}.$ Es $g=f^{-1}$?
- 17. Demostrar que $f: \mathbb{R}^+_0 \to \mathbb{R}^+_0, \ f(x) = \sqrt{x}$ es invertible y hallar su inversa.
- 18. Sea $f: \mathbb{Z} \to \mathbb{N}$ definida por

$$f(x) = \begin{cases} 2x - 1, & x > 0, \\ -2x, & x \le 0. \end{cases}$$

Demostrar que f es biyectiva y hallar su inversa.

- 19. Sean $f:A\to B$ y $g:B\to C$. Demostrar que:
 - a) $g \circ f : A \to C$ sobre \Rightarrow g sobre.
 - b) $g \circ f : A \to C$ invectiva \Rightarrow f invectiva.

Operaciones

1. Para $A = \{a, b, c\}$, sea $f: A \times A \to A$ la operación binaria cerrada dada en la siguiente tabla:

\overline{f}	a	b	c
a	b	a	c
b	a	c	b
c	c	b	a

Dé un ejemplo para mostrar que f no es asociativa.

- 2. Defina la operación binaria cerrada $h:\mathbb{Q}^+\times\mathbb{Q}^+\to\mathbb{Q}^+$ dada por $h(a,b)=\frac{a}{h}$.
 - a) Muestre que h no es conmutativa ni asociativa.
 - b) Determine si h tiene algún elemento neutro.
- 3. Cada una de las siguientes funciones $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ es una operación binaria cerrada en \mathbb{Z} . Determine los casos en los que f es conmutativa o asociativa.
 - a) f(x,y) = x + y xy
 - b) $f(x,y) = \max\{x,y\}$, el máximo entre x e y
 - c) $f(x,y) = x^{|y|}$
 - d) f(x,y) = x + y 3

- 4. Determine y justifique cuáles de las operaciones binarias cerradas del ejercicio anterior tienen elemento neutro.
- 5. Para $\emptyset \neq A \subseteq \mathbb{N}$, sean $f,g:A\times A\to A$ las operaciones binarias cerradas dadas por $f(x,y)=\min\{x,y\}$ y $g(x,y)=\max\{x,y\}$.
 - a) Determine si f tiene elemento neutro.
 - b) Determine si g tiene elemento neutro.
- 6. Sean $A=B=\mathbb{R}$. Determine $\pi_A(D)$ y $\pi_B(D)$ para cada uno de los conjuntos siguientes $D\subseteq A\times B$.
 - a) $D = \{(x, y) : x = y^2\}$
 - b) $D = \{(x, y) : y = sen(x)\}$
 - c) $D = \{(x,y) : x^2 + y^2 = 1\}$