

COMPUTATIONAL FINANCE & RISK MANAGEMENT

UNIVERSITY of WASHINGTON

Department of Applied Mathematics

Equity Options Black-Scholes Formula

CFRM 425 (018)

R Programming for Quantitative Finance

Lecture References

- Ang Ch 9: § § 9.2 9.4 (Old CFRM 425 text)
- M Jackson & M Staunton (Old CFRM 506 text)
 - Advanced Modelling in Finance Using Excel and VBA (Wiley, 2001)
 - > Ch 9: § § 9.1, 9.2, 9.6-9.10 (Introduction)
 - > Ch 11: § § 11.1-11.4
 - > Sample spreadsheets and VBA code for equity options (CD with book)
- Peter James
 - Option Theory (Wiley, 2003)
 - General background
 - > Excellent reference book to have in your arsenal
- Wilmott, Howison, Dewynne
 - The Mathematics of Financial Derivatives, A Student Introduction (Cambridge University Press, 2002)
 - ➤ Ch 2: Asset Price Random Walks (and Ito's Lemma)
 - ➤ Ch 3: The Black-Scholes Model
 - > Ch's 2 and 3 provide a very nice mathematical derivation of Black-Scholes

Derivatives and Options

- A derivative is a financial instrument dependent on an underlying asset (eg equity, bond) or rate (eg interest rate, foreign exchange rate)
- An equity option is a derivative that gives the holder the right to buy or sell the equity at a given price (the strike price, also called the exercise price) on or before an expiration date
 - Call option: option to buy
 - Put option: option to sell
- Basic option exercise types
 - European: may only be exercised on the expiration date
 - American: may be exercised any time before or on the expiration date
 - Bermudan: may be exercised on specific dates before expiration, or on the expiration date (Bermuda lies between Europe and the US)
- We will look at the Black-Scholes option pricing formula for European options, and use the results for exercises in R
- A brief mention of American options is included at the end (a popular interview question...)

• Published in 1973

- Let
 - *S* = current equity (stock) price
 - r = risk-free rate of interest (constant)
 - X =exercise price
 - *T* = time to maturity (year fraction)
 - q = dividend rate
 - N(z) = standard normal cumulative distribution function (CDF)
- The price of a call option according to the model is

$$c = Se^{-qT}N(d_1) - Xe^{-rT}N(d_2)$$

The price of a put option according to the model is

$$p = -Se^{-qT}N(-d_1) + Xe^{-rT}N(-d_2)$$

where

$$d_1 = \frac{\left[\log\left(\frac{S}{X}\right) + (r - q + 0.5\sigma^2)T\right]}{\sigma\sqrt{T}}$$

$$d_2 = \frac{\left[\log\left(\frac{S}{X}\right) + (r - q - 0.5\sigma^2)T\right]}{\sigma\sqrt{T}}$$

- For hedging purposes, risk values also called "option Greeks" also typically need to be calculated. These are mathematical derivatives with respect to the parameters in option pricing models.
- By differentiating through the Black-Scholes formula, we conveniently arrive at closed-form formulae for these values as well
- First, rewrite the Black-Scholes formula as follows, with $\phi=1$ for a call option, and $\phi=-1$ for a put (James, § 5.4):

$$f = \phi S e^{-qT} N(\phi d_1) - \phi X e^{-rT} N(\phi d_2)$$

Famous Greek: Telly Savalas (Kojak)

• Then:

$$\Delta := \frac{\partial f}{\partial S} = \phi e^{-qT} N(\phi d_1)$$

$$\Gamma := \frac{\partial^2 f}{\partial S^2} = N(d_1) \frac{e^{-qT}}{S\sigma\sqrt{T}}$$

$$\Theta := \frac{\partial f}{\partial T} = \phi q S e^{-qT} N(\phi d_1) - \phi r X e^{-rT} N(\phi d_2) - \frac{S e^{-qT} N(d_1) \sigma}{2\sqrt{T}}$$

$$v (vega) \coloneqq \frac{\partial f}{\partial \sigma} = Xe^{-rT}N(d_2)\sqrt{T}$$

$$\rho := \frac{\partial f}{\partial r} = \phi T X e^{-rT} N(\phi d_2)$$

- Given these closed form formulae, you can now implement them them in R
- Their actual utility is in hedging portfolios with options and risk management
- The topic of hedging is in other CFRM courses on derivatives, so we will not pursue it in detail in this course
- One interesting result, however, is to write the Black-Scholes PDE in terms of the hedge values (Wilmott et al, p 43):
 - The PDE for the value of an option f(S, t) is

$$\frac{\partial f}{\partial t} + rS\frac{\partial f}{\partial S} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 f}{\partial S^2} = rf$$

Substituting in the option Greeks (risk values), we get

$$\Theta + rS\Delta + \frac{1}{2}\sigma^2 S^2 \Gamma = rf$$

• Because r and σ are assumed constant, ρ and vega are not present; however, sensitivities to these parameters are certainly considered in more advanced option modeling

Put-Call Parity (a typical interview question)

- Put-Call Parity for European options (with no dividend):
 - Let c and p be the respective prices of a call and a put option on the same underlying equity at time t=0, with expiration at time T, with no dividend paid on the underlying. S is the price of the underlying at t=0.
 - Then, by the no-arbitrage property:

$$c - p = S - Xe^{-rT}$$

• Using Black Scholes, and the identity $N(d_i) + N(-d_i) = 1$, i=1,2: $p = -SN(-d_1) + Xe^{-rT}N(d_2)$

 This will be covered in more detail in courses on options and derivatives

Mentioned here as you may also be asked about it during an interview

Should You Exercise an American Option Early?

- Another typical interview question; again assumes there is no dividend paid on the underlying equity.
- For simplicity, assume time we are at time t=0, with expiration at time T. Let V_c^{am} be the current price of the American option, and V_c^{eur} that of the European option.
- Because an American option carries the right to early exercise, we should expect it to be worth more than an otherwise equivalent European option:

$$V_c^{am} > V_c^{eur} \ge S - Xe^{-rT}$$
 (discounted value of a positive payoff at expiration)

• But,

$$S - Xe^{-rT} \ge S - X = \text{payoff at expiration}$$

• Since we would only get S-X at an early exercise date, but $V_c^{am} > S-X$, there would be no reason to exercise early.

[END]