		Preen	chido pelo Alun	0	
Nome: Gutemb	perg Saraiva de Araujo		•		
					Data 07/05/2021
Disciplina (Código: Nome)			Curso		
Cálculo	•				
Professor (a)			Período		Turno
Wagner da Silva Zanco					Noite
		Preench	ido pelo Profes	sor	
Nota	Nota por extenso	Visto Professor (a)	Nota revista	Nota por extenso	Visto Professor (a)

Prova AV1

INSTRUÇÕES

- Leia com atenção cada questão antes de responder. Retire as dúvidas no momento da leitura da prova feita pelo Professor;
- Responda somente com caneta preta ou azul (questões respondidas a lápis não serão consideradas);
- Mediante ocorrência de "colas", o aluno ficará com zero na PR correspondente;
- Telefones celulares devem ser desligados;
- Critérios de correção: VIDE PONTUAÇÃO AO LADO DA QUESTAO;
- A prova não poderá ser feita com consulta.
- Dada a função y = f(x), cujo gráfico é mostrado abaixo. Determine f(1) e $\lim_{x \to -4} f(x)$. (1,0 ponto)

$$f(1) = 2;$$

$$\lim_{x \to -4} f(x) = 0;$$

2) Calcule
$$\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$$
 (2,0 pontos)

a)
$$f(x) = 7x^2 + 12$$

$$f(x+h) = 7(x+h)^2 + 12$$

$$f(x+h) = 7(x^2 + 2xh + h^2) + 12$$

$$f(x+h) = 7x^2 + 14xh + 7h^2 + 12$$

$$f(x+h) - f(x) = 7x^2 + 14xh + 7h^2 + 12 - (7x^2 + 12)$$

$$f(x+h) - f(x) = \frac{7x^{2}}{h} + \frac{14xh}{h} + \frac{7h^{2}}{h} + \frac{12}{h^{2}} - \frac{12}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{14xh}{h} + \frac{7h^{2}}{h}}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{\frac{h(14x+7h)}{h}}{h}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{14x+7h}{h}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{14x+7h}{h}$$

$$\lim_{h \to 0} \frac{14x + 7h}{h} = \frac{14x+7h}{h}$$

$$\lim_{h \to 0} 14x + 7h = \frac{14x+7h}{h}$$

b)
$$f(x) = 2\sqrt{x}$$

$$f(x+h) = 2\sqrt{(x+h)}$$

$$f(x+h) - f(x) = 2\sqrt{(x+h)} + 2\sqrt{x}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{2\sqrt{(x+h)} - 2\sqrt{x}}{h} \cdot \frac{2\sqrt{(x+h)} + 2\sqrt{x}}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \cdot \frac{\left(2\sqrt{(x+h)}\right)^2 - \left(2\sqrt{x}\right)^2}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \cdot \frac{4(x+h) - 4x}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \cdot \frac{4x + 4h - 4x}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{1}{h} \cdot \frac{4h}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h) - f(x)}{h} = \frac{4}{2\sqrt{(x+h)} + 2\sqrt{x}}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{4}{2(\sqrt{(x+h)}+\sqrt{x})}$$

$$\frac{f(x+h)-f(x)}{h} = \frac{2}{\sqrt{(x+h)} + \sqrt{x}}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2}{\sqrt{(x+0)} + \sqrt{x}}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2}{x^{\frac{1}{2}} + x^{\frac{1}{2}}}$$

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \frac{2}{2(x^{\frac{1}{2}})} = \sqrt{x^{-1}}$$

3) Calcule os limites, se existirem. (2,0 pontos)

a)
$$\lim_{x \to 3} \frac{x^2 - 9}{x - 3}$$

$$\lim_{x \to 3} \frac{(x-3)(x+3)}{x-3} = \lim_{x \to 3} x + 3 = 3+3 = 6$$

b)
$$\lim_{x \to 0} \frac{\sin 20x}{\sin 301x}$$
$$\lim_{x \to 0} \frac{\sin 20x}{\sin 301x} \cdot \frac{20x}{20x} = \lim_{x \to 0} \frac{\sin 20x}{20x} \cdot \frac{20x}{\sin 301x} =$$

$$\lim_{x \to 0} 1 \cdot \frac{20x}{\sin 301x} \cdot \frac{301x}{301x} = \lim_{x \to 0} \frac{301x}{\sin 301x} \cdot \frac{20x}{301x} =$$

$$\lim_{x \to 0} \frac{1}{\frac{\sin 301x}{301x}} \cdot \frac{20x}{301x} = \lim_{x \to 0} \frac{1}{1} \cdot \frac{20x}{301x} = \frac{20}{301}$$

Seja a função, f(x) determine o limite de: (2,0 pontos)

a)
$$\lim_{x \to -\infty} \left(\frac{4x^2 + x - 5}{2x^2 + 10} \right) = \lim_{x \to -\infty} \left(\frac{\frac{4x^2 + x - 5}{x^2}}{\frac{2x^2 + 10}{x^2}} \right) = \lim_{x \to -\infty} \left(\frac{4 + \frac{1}{x} - \frac{5}{x^2}}{2 + \frac{10}{x^2}} \right) =$$

$$\lim_{\substack{x \to -\infty \\ x \to -\infty}} 4 + \frac{1}{x} - \frac{5}{x^2} = \frac{4 + \frac{1}{-\infty} - \frac{5}{(-\infty)^2}}{2 + \frac{10}{(-\infty)^2}} = \frac{4 - 0 + 0}{2 + 0} = 2$$

b)
$$\lim_{x \to -\infty} (-2x^5 + 23x^3 + 5x^2 + 1) =$$

$$-2(-\infty)^5 + 23(-\infty)^3 + 5(-\infty)^2 + 1$$

$$-2(-\infty) + 23(-\infty) + 5(+\infty) + 1$$

$$+\infty - \infty + \infty + 1 = +\infty$$

Encontre a equação reduzida da reta normal ao gráfico de $y = x^3 + 2$, no ponto em que x = 1. (1,5 ponto).

$$dy'= 3x^2 f(3) = (1)^3 + 2 f(3) = 3$$

$$m1 = 3(1)^2$$

$$m1 = 3 y = mx + b 3 = 3(1) + b b = 3 - 3 b = 0$$

Equação da reta tangente y = 3x

M=-1

M=m1.m2
$$-1=3.m2$$
 $m2 = -\frac{1}{3}$

$$y = mx + b$$
 $3 = -\frac{1}{3}(1) + b$ $b = 3 + \frac{1}{3}$ $b = \frac{10}{3}$

Equação da reta normal $y = -\frac{1}{3}x + \frac{10}{3}$

6) Calcule $\lim_{x\to 0} \frac{\sqrt{x^2(x^2+1)}}{x}$. (1,5 ponto)

$$\lim_{x \to 0} \frac{\sqrt{x^2(x^2 + 1)}}{x} = \lim_{x \to 0} \frac{\sqrt{x^2(x^2 + 1)}}{x} \cdot \frac{\sqrt{x^2(x^2 + 1)}}{\sqrt{x^2(x^2 + 1)}} =$$

$$\lim_{x \to 0} \frac{1}{x} \cdot \frac{x^{2}(x^{2} + 1)}{\sqrt{x^{2}(x^{2} + 1)}} = \lim_{x \to 0} \frac{x(x^{2} + 1)}{\sqrt{x^{2}(x^{2} + 1)}} = \lim_{x \to 0} \frac{x(x^{2} + 1)}{\sqrt{x^{2}(x^{2} + 1)}} = \frac{0}{\sqrt{1}} = 0$$