Statement Problem Fibonacci Bugs

Bug colonies have been the center of attention of scientists for a long time.

Through some technological advancements, we are now able to describe a bug colony using a number known as the *degree* of the colony.

A colony of degree 0 represents a male bug and on of degree 1 represents a female bug.

A colony of degree i > 1 is obtained by merging a colony of degree i - 1 together with a colony of degree i - 2.

As such, the first few colonies are as follows:

Colony 0: a male

Colony 1: a female

Colony 2: a male and a female

Colony 3: a male and two females

You are the owner of the biggest bug farm in the world, having at your disposal a virtually infinite amount of colonies of any degree.

Each day you receive N offers, each described by two numbers A_i and B_i , meaning that you can sell as many colonies of type A_i as you want and get B_i money for each colony of that type.

Unfortunately, the antitrust laws on the bug trading market forbid you to sell more than K bugs in a single day (selling a colony is equivalent to selling all the bugs in that colony).

Given the description of T days, if you optimally choose which offers to accept, what is the maximum amount of money you can obtain in each day?

Input

From stdin you will read on the first line, the number of days T.

The first line of each day contains the number of bugs N and the most bugs you can sell that day K.

The next N lines of each day contain the pair of numbers A_i and B_i .

Output

In stdin you will print T lines, the i^{th} one containing the answer for the i^{th} day.

Restrictions

- $1 \le T$, N, K, $A_i \le 10^5$
- $\bullet \ \sum_{i=1}^{T} N_i \le 10^5$
- $1 \le B_i \le 10^9$
- For tests worth 50 points: $1 \le N, \ K \le 5.500 \ \text{and} \ 1 \le A_i \le 11.000.$

Example

stdin	stdout
1	56
5 11	
1 2	
2 2	
3 5	
4 9	
5 50	

Explanation

It is optimal to choose the 5^{th} offer once and the 1^{st} one 3 times.