Algorithmik zur Optimierung in neuronalen Netzwerken

Gradient Descent und Backpropagation

Tim Hilt

Date: tbd

Hochschule Esslingen — University of Applied Sciences

Gliederung

Supervised Learning

Künstliche Neuronale Netze

Training

Loss-Funktion

Gradient Descent

Backpropagation

Supervised Learning

Machine Learning Workflow

Abbildung 1: Machine Learning Workflow [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Supervised Learning

Abbildung 2: Struktur der Daten bei Supervised Learning [1]

Definition Supervised Learning

"In supervised learning, the dataset is the collection of labeled examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$. Each element \mathbf{x}_i among N is called a feature vector. A feature vector is a vector in which each dimension $j=1,\ldots,D$ contains a value that describes the example somehow [...]. The goal of a supervised learning algorithm is to use the dataset to produce a model, that takes a feature vector \mathbf{x} as input and outputs information that allow deducing the label \hat{y} for this feature vector." [2]

Beispiel: Datensatz für Supervised Learning

Beispiel: Datensatz für Supervised Learning

- · Insgesamt 70000 Bilder
- · Bildgröße: 28 × 28 Pixel

- 150

- 100

- · Abgebildet: Kleidungsstücke
- · Ouelle: Zalando Research [4]

Label	Description
0	T-shirt/top
1	Trouser
2	Pullover
3	Dress
4	Coat
5	Sandal
6	Shirt
7	Sneaker
8	Bag
9	Ankle boot

Künstliche Neuronale Netze

Künstliches Neuron

Künstliches Neuron

Künstliches Neuron

$$z = \sum_{i} x_i w_i + b = \mathbf{x} \mathbf{w} + b$$

 $\Rightarrow z$ wird für spätere Parameteroptimierung benötigt

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Aktivierungsfunktion $\sigma(x)$

⇒ Es gibt eine Vielzahl verschiedener Aktivierungsfunktionen für unterschiedliche Problemstellungen, für uns soll jedoch lediglich die **Sigmoid-Funktion** relevant sein:

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Architektur eines Neuronalen Netzwerks

Architektur eines Neuronalen Netzwerks

Deep Neural Network

Target-Architektur zur Klassifikation von MNIST

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Vektorisierung der Gewichte \boldsymbol{w} und der Biases \boldsymbol{b}

Training

Loss-Funktion/ Cost-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss- oder Cost-Funktionen, wir betrachten hier die "Quadratic Cost/ Mean Squared Error (MSE)":

$$C(w,b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

Loss-Funktion/ Cost-Funktion

- · Dient zur Berechnung des Fehlers während dem Training
- Trainingsfehler soll minimiert werden
- → wir suchen den Punkt, an dem die Ableitung der Loss-Funktion 0 wird, der Fehler also nicht mehr abnimmt
- Es gibt eine Vielzahl an Loss- oder Cost-Funktionen, wir betrachten hier die "Quadratic Cost/ Mean Squared Error (MSE)":

$$C(w, b) = \frac{1}{2n} \sum_{x} ||y(x) - a||^2$$

C(w, b)	Cost in Abhängigkeit von $\it w$ und $\it b$
n	Anzahl der Trainingsinstanzen
y(x)	Label wenn x Input ist
a	Output des Netzwerkes, bei \boldsymbol{w} und \boldsymbol{b}

Gradient Descent

Backpropagation

Es werden vier Gleichungen benötigt:

Error im Output-Layer:

Error einzelner Neuronen:

$$\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma' \left(z_j^L \right)$$

Vektorisiert:

$$\delta^L = \nabla_a C \odot \sigma'(z^L)$$

Aufgelöst, wenn MSE benutzt:

$$\delta^L = (a^L - y) \odot \sigma'(z^L)$$

Backpropagation

Error im Layer l hinsichtlich Error im nächsten Layer δ^{l+1}

$$\delta^{l} = \left(\left(w^{l+1}\right)^{T} \delta^{l+1}\right) \odot \sigma'\left(z^{l}\right)$$

- · Rekursive Definition durch Verwendung von δ^l in Abhängigkeit von δ^{l+1}
- \cdot Wenn anfangs δ^L in die Gleichung gegeben wird kann der Error rekursiv für jeden vorhergehenden Layer berechnet werden

Backpropagation

$$\begin{split} \delta^L &= \nabla_a C \odot \sigma' \left(z^L \right) \\ \delta^l &= \left(\left(w^{l+1} \right)^T \delta^{l+1} \right) \odot \sigma' \left(z^l \right) \\ \frac{\partial C}{\partial b^l_j} &= \delta^l_j \\ \\ \frac{\partial C}{\partial w^l_{jk}} &= a^{l-1}_k \delta^l_j \end{split}$$

Beispiel

Pass

- GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media. 2019.
- BURKOV, Andriy. The hundred-page machine learning book. Andriy Burkov Quebec City, Can., 2019.
- LECUN, Yann; BOTTOU, Léon; BENGIO, Yoshua; HAFFNER, Patrick. Gradient-based learning applied to document recognition. *Proceedings of the IEEE*. 1998, Jg. 86, Nr. 11, S. 2278–2324.
- XIAO, Han; RASUL, Kashif; VOLLGRAF, Roland. Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. *arXiv preprint arXiv:1708.07747*. 2017.