一、 (15 分)设有 两类 正态 分布 的样本 集, 第一类 均值 为 $\stackrel{\square}{\vdash}_1 = (2,0)^T$, 方 差

$$\overline{\Sigma}_{1} = \begin{bmatrix}
1 & 1/2 \\
1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{2} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{2} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{3} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \mathbf{\Sigma}_{4} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}, \hat{\mathbf{x}} = \begin{bmatrix}
1 & -1/2 \\
-1/2 & 1
\end{bmatrix}$$

 $p(\omega_1) = p(\omega_2)$, 试求基于最小错误率的贝叶斯决策分界面。

解 根据后验概率公式
$$p(\omega_i|x) = \frac{p(x|\omega_i)p(\omega_i)}{p(x)}$$
 , (2 ')

及正态密度函数
$$p(x|\omega_i) = \frac{1}{\sqrt[n]{2\pi}|\Sigma_i|^{1/2}} exp[-(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)/2]$$
 , $i = 1,2$ 。 (2 ')

基于最小错误率的分界面为 $p(x|\omega_1)p(\omega_1) = p(x|\omega_2)p(\omega_2)$, (2 ')

两边去对数,并代入密度函数,得

$$-(x - \underline{\mu}_1)^{\mathsf{T}} \overline{\Sigma}_1^{\perp} (x - \underline{\mu}_1) / 2 - \ln \overline{\Sigma}_1 = -(x - \underline{\mu}_2)^{\mathsf{T}} \overline{\Sigma}_2^{\perp} (x - \underline{\mu}_2) / 2 - \ln |\overline{\Sigma}_2|$$
 (1) (2')

由已知条件可得
$$\left| \overline{\Sigma}_{1} \right| = \left| \overline{\Sigma}_{2} \right|$$
 , $\overline{\Sigma}_{1}^{1} = \begin{bmatrix} 4/3 & -2/3 \\ -2/3 & 4/3 \end{bmatrix}$, $\overline{\Sigma}_{2}^{1} = \begin{bmatrix} 4/3 & 2/3 \\ 2/3 & 4/3 \end{bmatrix}$, **(2** ')

设 $X = (X_1, X_2)^T$, 把已知条件代入式 (1) , 经整理得

$$x_1x_2 - 4x_2 - x_1 + 4 = 0$$
, (5 ')

二、 (15分)设两类样本的类内离散矩阵分别为 S_i = 1/2 1/2 1

$$S_2 = \begin{bmatrix} 1 & -1/2 \\ -1/2 & 1 \end{bmatrix}$$
, 各类样本均值分别为 $L_1 = (1,0)^T$, $L_2 = (3,2)^T$, 试用 fisher 准

则求其决策面方程,并判断样本 $x = (2,2)^T$ 的类别。

解:
$$S = S_1 + S_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
 (2 ')

投影方向为
$$w^* = S^{-4}(\underline{\mu}_1 - \underline{\mu}_2) = \begin{bmatrix} 1/2 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$
 (6 ')

阈值为
$$y_0 = w^{*T} (L_1 + L_2) / 2 = [1 -1] [2] = -3$$
 (4 ')

给定样本的投影为
$$y = w^{*T} x = \begin{bmatrix} 2 \\ -1 \end{bmatrix} = -4 < y_0$$
 , 属于第二类 **(3**)

三、 (15分)给定如下的训练样例

实例	x0	x1	x2	t(真实输出)
1	1	1	1	1
2	1	2	0	1
3	1	0	1	-1
4	1	1	2	-1

用感知器训练法则求感知器的权值,设初始化权值为 $w_0 = w_1 = w_2 = 0$;

1 第 1 次迭代

	w			$\mathbf{x}^{(p)}$		t ^(p)	y ^(p)		$\Delta \mathbf{w}$	
0	0	0	1	1	1	1	1	0	0	0
0	0	0	1	2	0	1	1	0	0	0
0	0	0	1	0	1	-1	1	-1	0	-1
-1	0	-1	1	1	2	-1	-1	0	0	0
										(4')

2 第 2 次迭代

-1	0	-1	1	1	1	1	-1	1	1	1
0	1	0	1	2	0	1	1	0	0	0
0	1	0	1	0	1	-1	1	-1	0	-1
-1	1	-1	1	1	2	-1	-1	0	0	0
									()	2 ')

3 第 3 和 4 次迭代

オ	J J TH 4	人区し									
	-1	1	-1	1	1	1	1	-1	1	1	1
	0	2	0	1	2	0	1	1	0	0	0
	0	2	0	1	0	1	-1	1	-1	0	-1
	-1	2	-1	1	1	2	-1	-1	0	0	0
	-1	2	-1	1	1	1	1	1	0	0	0
	-1	2	-1	1	2	0	1	1	0	0	0
	-1	2	-1	1	0	1	-1	-1	0	0	0

四、 (15分)

- i. 推导正态分布下的最大似然估计;
- ii. 根据上步的结论,假设给出如下正态分布下的样本 {1,1.1,1.01,}Q,估针,该部分的值和方差两个参数。
- 1 设样本为 K= {x1, x2, ...xN} ,

正态密度函数
$$p(x|\omega_i) = \frac{1}{\sqrt[n]{2\pi}|\Sigma_i|^{1/2}} exp[-(x-\mu_i)^T\overline{\Sigma_i}^1(x-\mu_i)/2]$$
 (2 ')

则似然函数为

$$I() = p(K |) = p(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N |)$$

$$= \prod_{k \neq 1}^{N} p(\mathbf{x}_k |)$$

$$(2 ')$$

对数似然函数
$$H() = \sum_{k=1}^{N} \ln p(\mathbf{x}_k |)$$
 (2 ')

最大似然估计

?_{ML} = argmax I()
= argmax
$$\sum_{k=1}^{n}$$
 In p(\mathbf{x}_k |)

对于正态分布
$$P_{ML} = \frac{1}{N} \sum_{k=1}^{N} x_k$$
 , $Q_{ML}^2 = \frac{1}{N} \sum_{k=1}^{N} (x_k - P)^2$ (2 ')

2 根据 1 中的结果
$$\underset{ML}{P_{ML}} = \frac{1}{N} \sum_{k=1}^{N} x_k = 1$$
 , $\underset{ML}{Q_{ML}} = \frac{1}{N} \sum_{k=1}^{N} (x_k - P_k)^2 = 0.00404$ (5 ')

五、 (15分) 给定样本数据如下: (-6,-6) , (6,6) ,

- (1) 对其进行 PCA 变换
- (2) 用(1)的结果对样本数据做一维数据压缩

解(1) PCA 变换

2 求协方差矩阵 R=[(-6,-6) (-6,-6) +(6,6) +(6,6) (6,6)]/2 =
$$\begin{bmatrix} 36 & 36 \\ 36 & 36 \end{bmatrix}$$
 (2 ')

3 求特征根,令
$$\begin{vmatrix} 36-\lambda & 36 \\ 36 & 36-\lambda \end{vmatrix} = 0$$
,得 $\lambda_1 = 72$, $\lambda_2 = 0$ 。 (1')

由
$$R^{\mathbf{Q}_i} = \lambda_i^{\mathbf{Q}_i}$$
 , 得特征向量 $\mathbf{Q}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} / \sqrt{2}$, $\mathbf{Q}_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix} / \sqrt{2}$ **(2**)

则 PCA 为
$$\begin{bmatrix} \Phi_1, \Phi_2 \end{bmatrix} \begin{bmatrix} -6 \\ -6 \end{bmatrix} = \begin{bmatrix} -6\sqrt{2} \\ -6\sqrt{2} \end{bmatrix}$$
, $\begin{bmatrix} \Phi_1, \Phi_2 \end{bmatrix} \begin{bmatrix} 6 \\ 6 \end{bmatrix} = \begin{bmatrix} 6\sqrt{2} \\ 6\sqrt{2} \end{bmatrix}$ (5 ')

(2)要做一维压缩,就是向最大特征根对应的特征向量做投影,得

$$-6\sqrt{2}$$
 , $6\sqrt{2}$ **(5**,)

六、 (10 分) 已知 4 个二维样本 : $x_1 = (0,0)^T$, $x_2 = (0,1)^T$, $x_3 = (1,2)^T$,

 $x_4 = (4,3)^T$ 。试用层次聚类把样本分成 2类。

解:1 初始将每一个样本视为一类,得 $G_1^0=\{x_1\}$, $G_2^0=\{x_2\}$, $G_3^0=\{x_3\}$, $G_4^0=\{x_4\}$

计算各类间的距离,得到距离矩阵 D°, (2°)

D°	$G_1^0 = \{x_1\}$	$G_2^0 = \{x_2\}$	$G_3^0 = \{ x_3 \}$	$G_4^0 = \{ x_4 \}$
$G_1^0 = \{ x_1 \}$	0	1	√ 5	5
$G_2^0 = \{ x_2 \}$	1	0	√2	2√5
$G_3^0 = \{ x_3 \}$	√5	√2	0	√10
$G_4^0 = \{ x_4 \}$	5	2√5	√10	0

2 将最短距离 1 对应的类 $G_1^0 = \{x_1\}$, $G_2^0 = \{x_2\}$ 合并为一类 , 得到新的分类 : **(4** ')

$$G_{12}^1 = \{G_1^0, G_2^0\}$$
 , $G_3^1 = \{G_3^0\}$, $G_4^1 = \{G_4^0\}$

计算各类间的欧式距离,得到距离矩阵 D¹ (2)

D ¹	$G_{12}^1 = \{G_1^0, G_2^0\}$	$G_3^1 = \{G_3^0\}$	$G_4^1 = \{ G_4^0 \}$
$G_{12}^1 = \{G_1^0, G_2^0\}$	0	√2	2√5
$G_3^1 = \{G_3^0\}$	√2	0	√10
$G_4^1 = \{ G_4^0 \}$	2√5	√10	0

3 将距离最小两类 $G_{12}^1 = \{G_1^0, G_2^0\}$ 和 $G_3^1 = \{G_3^0\}$ 合并为一类,得到新的分类

$$G_{123}^2 = \{G_1^0, G_2^0, G_3^0\}, G_4^2 = \{G_4^0\}$$

聚类结束,结果为

$$\omega_1 = \{ x_1, x_2, x_3 \}, \quad \omega_2 = \{ x_4 \}$$
 (2 ')

解:

1 K=3 , 初始化聚类中心 ,
$$Z_1(1) = X_1 = (0,0)^T$$
 , $Z_2(1) = X_3 = (6,4)^T$, $Z_3(1) = X_5 = (10,9)^T$ (2 ')

2 根据中心进行分类,得
$$\omega_1 = \{x_1, x_2\}$$
, $\omega_2 = \{x_3, x_4\}$, $\omega_3 = \{x_5\}$ (2 ')

3 更新聚类中心,
$$z_1(2) = (x_1 + x_2)/2 = (1/2,0)^T$$
, $z_2(2) = (x_3 + x_4)/2 = (6,4)^T + (7,5)^T = (13/2,9/2)^T$, $z_3(2) = x_5 = (10,9)^T$

4 根据新的中心进行分类,得 $\omega_1 = \{x_1, x_2\}$, $\omega_2 = \{x_3, x_4\}$, $\omega_3 = \{x_5\}$, 分类已经 不再变化, 因此最后的分类结果为 $\omega_1 = \{x_1, x_2\}$, $\omega_2 = \{x_3, x_4\}$, $\omega_3 = \{x_5\}$ (2 ')

$$R = \begin{bmatrix} 1 & 0.8 & 0.8 & 0.2 \\ 0.8 & 1 & 0.85 & 0.2 \\ 0.8 & 0.85 & 1 & 0.2 \\ 0.2 & 0.2 & 0.2 & 1 \end{bmatrix}$$

- (1) 判断该模糊矩阵式模糊相似矩阵还是模糊等价矩阵
- (2) 按不同的置信水平 $\lambda = 0.9, 0.8$ 给出分类结果

$$(2) \ \mathsf{R}_{0.9} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ \mathbb{\texttt{RZ4}} \\ \mathbb{\texttt{RZ4}} \\$$

$$R_{0..8} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, 聚类结果为 {x1, x2, x3},{x4} (2 ')$$