NOTES ON THE GEOMETRY OF HYPERTORIC VARIETIES

XIAOLONG LIU

ABSTRACT. In this note we will introduce the basic theory of hypertoric varieties.

Contents

1.	Introduction	1
1.1.	. Background/Motivation	1
1.2.	. Related works and some future direction	1
1.3.	. Notations and remarks	1
2.	Recollection of the basic theory of toric varieties	1
3.	Basic theories of hypertoric varieties	1
3.1.	. About symplectic varieties and symplectic resolutions	1
3.2.	. Algebraic symplectic quotients and hypertoric varieties	2
3.3.	. Symplectic resolutions of hypertoric varieties	3
3.4.	. Hypertoric varieties with hyperplane arrangements	4
3.5.	. The cores and homotopy models	5
4.	Universal Poisson structure of hypertoric varieties	5
5.	Wall-crossing structures and Mukai flops	5
References		5

1. Introduction

- 1.1. Background/Motivation.
- 1.2. Related works and some future direction. Need to add.
- 1.3. Notations and remarks. We work over \mathbb{C} .
 - 2. Recollection of the basic theory of toric varieties

We will follows [Ful93], [CLS11] and [Tel22] to recollect something we need.

- 3. Basic theories of hypertoric varieties
- 3.1. About symplectic varieties and symplectic resolutions. Here we give an introduction of these and we refer [Bea00] and [Fu06] for more details.

Definition 3.1. Let Y_0 be a normal variety.

- A pair (Y₀, ω₀) of the normal algebraic variety Y₀ and a 2-form ω₀ on the smooth locus (Y₀)_{sm} is called a symplectic variety if ω₀ is symplectic and there exists (or equivalently, for any) a resolution π : Y → Y₀ such that the pull-back of ω₀ by π extends to a holomorphic 2-form ω on Y.
- The resolution $\pi: Y \to Y_0$ is called symplectic if ω is also symplectic.

Some basic properties:

Proposition 3.2 (Prop.1.6 in [Fu06]). Let W be a symplectic variety with a resolution $\pi: Z \to W$, then the following statements are equivalent:

Date: October 20, 2024.

 $^{2020\} Mathematics\ Subject\ Classification.\quad 14M25,\ 14J42\ .$

Key words and phrases. hypertoric varieties, GIT quotient.

- (1) π is crepant;
- (2) π is symplectic;
- (3) K_Z is trivial.

Next, we now care about the following special case:

Definition 3.3. An affine symplectic variety $(Y_0 = \operatorname{Spec} R, \omega_0)$ with \mathbb{C}^* -action (called conical \mathbb{C}^* -action) is called a conical symplectic variety if it satisfies:

- The grading induced from the \mathbb{C}^* -action to the coordinate ring R is positive, i.e., $R = \bigoplus_{i>0} R_i$ and $R_0 = \mathbb{C}$.
- ω_0 is homogeneous with respect to the \mathbb{C}^* -action, i.e., there exists $\ell \in \mathbb{Z}$ (the weight of ω_0) such that $t^*\omega_0 = t^\ell\omega_0$ ($t \in \mathbb{C}^*$).

Remark 3.4. We can show that the weight ℓ is always positive.

3.2. Algebraic symplectic quotients and hypertoric varieties. Note that hypertoric varieties are examples of symplectic varieties.

Consider the exact sequence

$$0 \to \mathbb{Z}^{n-d} \xrightarrow{B} \mathbb{Z}^n \xrightarrow{A} \mathbb{Z}^d \to 0$$

where $A = [\boldsymbol{a}_1,...,\boldsymbol{a}_n] \in M_{d \times n}(\mathbb{Z})$ and $B^T = [\boldsymbol{b}_1,...,\boldsymbol{b}_n] \in M_{(n-d) \times n}(\mathbb{Z})$ (the Gale duality of $\{\boldsymbol{a}_1,...,\boldsymbol{a}_n\}$). Acting $\operatorname{Hom}(-,\mathbb{C}^*)$ we get

$$1 \to \mathbb{T}^d \overset{A^T}{\to} \mathbb{T}^n \overset{B^T}{\to} \mathbb{T}^{n-d} \to 1$$

an exact sequence of algebraic tori.

Via the natural action of \mathbb{T}^n on $T^*\mathbb{C}^n \cong \mathbb{C}^{2n}$, we have the action of \mathbb{T}^d on $T^*\mathbb{C}^n \cong \mathbb{C}^{2n}$ as

$$t \cdot (z_1, ..., z_n, w_1, ..., w_n) = (t^{a_1} z_1, ..., t^{a_n} z_n, t^{-a_1} w_1, ..., t^{-a_n} w_n)$$

where $t^{a_i} := t_1^{a_{1,i}} \cdots t_d^{a_{d,i}}$. The moment map of this given by

$$\mu: T^*C^n \to \mathfrak{t}_d^* = \mathbb{C}^d, \quad (z_1, ..., z_n, w_1, ..., w_n) \mapsto \sum_{i=1}^n a_i z_i w_i.$$

Definition 3.5. Fix a character $\alpha \in \mathbb{Z}^d = \text{Hom}(\mathbb{T}^d, \mathbb{C}^*)$ and a point $\xi \in \mathbb{C}^d$.

• We define the Lawrence toric variety as

$$X(A, \alpha) := (\mathbb{C}^{2n})^{\alpha - ss} / \!\!/ \mathbb{T}^d = \operatorname{Proj} \left(\bigoplus_{k \geqslant 0} \mathbb{C}[z_i, w_j]^{\mathbb{T}^d, k\alpha} \right)$$

where $(\mathbb{C}^{2n})^{\alpha\text{-ss}} = \{u \in \mathbb{C}^{2n} : \text{there exists } f \in \mathbb{C}[z_i, w_j] \text{ such that } f(u) \neq 0 \text{ and } \sigma(f) = \alpha^*(t)^k \otimes f \text{ for } k > 0\} \text{ where } \mathbb{C}^* = \operatorname{Spec} \mathbb{C}[t, 1/t] \text{ and coaction morphism } \sigma : \mathbb{C}[z_i, w_j] \to \Gamma(\mathscr{O}_{\mathbb{T}^d}) \otimes \mathbb{C}[z_i, w_j]. \text{ Note that } \mathbb{C}[z_i, w_j]^{\mathbb{T}^d, k\alpha} = \{f \in \mathbb{C}[z_i, w_j] : \sigma(f) = \alpha^*(t)^k \otimes f\}.$

• We define the hypertoric variety (or toric hyperkähler variety) as

$$Y(A, \alpha, \xi) := \mu^{-1}(\xi)^{\alpha - ss} / / \mathbb{T}^d = \operatorname{Proj} \left(\bigoplus_{k \ge 0} \mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d, k\alpha} \right)$$

similar as above.

Remark 3.6. We can write the semistable locus as follows:

$$(\mathbb{C}^{2n})^{\alpha \text{-}ss} = \left\{ (z_i, w_j) \in \mathbb{C}^{2n} : \alpha \in \sum_{i: z_i \neq 0} \mathbb{Q}_{\geqslant 0} \boldsymbol{a}_i + \sum_{j: w_j \neq 0} \mathbb{Q}_{\geqslant 0} (-\boldsymbol{a}_j) \right\}$$

and $\mu^{-1}(\xi)^{\alpha - ss} = \mu^{-1}(\xi) \cap (\mathbb{C}^{2n})^{\alpha - ss}$.

Remark 3.7. Note that we have a natural morphism $\Pi: X(A,\alpha) \to X(A,0)$ and $\pi: Y(A,\alpha,\xi) \to Y(A,0,\xi)$ with the same reason. Indeed, we consider the case of hypertoric varieties. Note that

$$Y(A,0,\xi) = \operatorname{Proj}\left(\bigoplus_{k\geqslant 0} \mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d,k\cdot 0}\right) = \operatorname{Spec}\mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d}.$$

Then inclusion $\mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d} \subset \bigoplus_{k \geqslant 0} \mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d,k\alpha}$ induce $\operatorname{Spec} \bigoplus_{k \geqslant 0} \mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d,k\alpha} \to \operatorname{Spec} \mathbb{C}[\mu^{-1}(\xi)]^{\mathbb{T}^d}$. Since the grade induced by \mathbb{C}^* -action and this morphism is \mathbb{C}^* -invariant, then we get $\pi: Y(A,\alpha,\xi) \to Y(A,0,\xi)$. Note moreover that $\mu^{-1}(\xi)^{\alpha-ss} \subset \mu^{-1}(\xi) = \mu^{-1}(\xi)^{0-ss}$.

Remark 3.8. The hypertoric varieties are the special case of the following general contruction.

Consider a reductive group G and a representation V. Then we form $T^*V = V \oplus V^*$ which comes with a moment map $\Phi: T^*V \to \mathfrak{g}^*$ given by cup of $T_xV^* \to \mathfrak{g}^*$ as $T_eG \to T_x(Gx) \subset T_xV$. We fix a character $\chi: G \to \mathbb{C}^\times$ and form the GIT quotient

$$\Phi^{-1}(\xi) /\!/_{\chi} G := \Phi^{-1}(\xi)^{\chi - ss} /\!/_{G} = \operatorname{Proj}\left(\bigoplus_{n \geq 0} \mathbb{C}[\Phi^{-1}(\xi)]^{G, n\chi} \right).$$

We have a natural projective morphism as before

$$\pi: Y := \Phi^{-1}(\xi) /\!\!/_{_{Y}} G \to X := \Phi^{-1}(\xi) /\!\!/_{_{0}} G = \operatorname{Spec} \mathbb{C}[\Phi^{-1}(0)]^{G}$$

carry Poisson structures coming from the usual symplectic structure on T^*V . This construction will not usually give a symplectic resolution; for example, Y may not be smooth and $Y \to X$ might not be birational. Here in the physics literature, Y is called the Higgs branch of the 3d supersymmetric gauge theory defined by G,V. G is called the gauge group and N is called the matter.

There is a conical \mathbb{C}^{\times} action on Y coming from its scaling action of T^*V . In order to define a Hamiltonian torus action, we need one piece of data. We choose an extension $1 \to G \to \widetilde{G} \to T \to 1$, where T is the flavor torus, and an action of \widetilde{G} on V, extending the action of G. Then we obtain a residual Hamiltonian action of T on T and T. In general, this action does not have finitely many fixed points.

Example 3.9. Another special case, we introduce the Nakajima quiver varieties, first introduced by Nakajima. We fix a finite directed graph Q = (I, E), with head and tail maps $h, t : E \to I$. Also, we fix two dimension vectors $\mathbf{v}, \mathbf{w} \in \mathbb{N}^I$. For $i \in I$, let $V_i = \mathbb{C}^{u_i}$, $W_i = \mathbb{C}^{w_i}$ and consider the space of representations of the quiver Q on the vector space $\oplus V_i$ framed by $\oplus W_i$.

$$N = \bigoplus_{e \in E} \operatorname{Hom}(V_{t(e)}, V_{h(e)}) \oplus \bigoplus_{i \in I} \operatorname{Hom}(V_i, W_i).$$

This big vector space N has a natural action of $G = \prod_i \operatorname{GL}(V_i)$. We form the cotangent bundle T^*N and take the Hamiltonian reduction by the action of G. The resulting space $Y = \Phi^{-1}(0)//\chi G$ is called a Nakajima quiver variety. Here we choose $\chi: G \to \mathbb{C}^\times$ to be given by the product of the determinants. On Y, we have a Hamiltonian action of $T = \prod_i (\mathbb{C}^\times)^{w_i}$ inherited from its action on $\oplus W_i$. (In other words, we take $\widetilde{G} = G \times T$.)

Note that the space Y is always smooth but $\pi: Y \to X$ is not always birational. Also, the Hamiltonian torus action does not always have finitely many fixed points.

Here we give two examples of Nakajima quiver varieties.

• Consider a linearly oriented type A_{n-1} -quiver with $\mathbf{v} = (1, ..., n-1), \mathbf{w} = (0, ..., 0, n)$:

$$\bullet(V_1) \longrightarrow \bullet(V_2) \longrightarrow \cdots \longrightarrow \bullet(V_{n-1}) \longrightarrow \blacksquare(\mathbb{C}^n)$$

Then $N = \bigoplus_{i=1}^{n-1} \operatorname{Hom}(\mathbb{C}^i, \mathbb{C}^{i+1})$ with $G = \prod_{i=1}^{n-1} \operatorname{GL}_i$. Then $Y \cong T^* \operatorname{Fl}_n$ with $X = \mathcal{N}_{\mathfrak{sl}_n}$.

• Another important example is a quiver with one vertex and one self-loop with $V = \mathbb{C}^n$ and $W = \mathbb{C}^r$.

$$\bullet(\mathbb{C}^n) \longrightarrow \blacksquare(\mathbb{C}^r)$$

In this case, Y is the moduli space of rank r, torsion-free sheaves on \mathbb{P}^2 , framed at ∞ with second Chern class n.

3.3. Symplectic resolutions of hypertoric varieties. We will consider when $\pi: Y(A, \alpha, \xi) \to Y(A, 0, \xi)$ will be a symplectic resolution. So we need to consider the condition that $\mu^{-1}(\xi)^{\alpha-\text{ss}} = \mu^{-1}(\xi)^{\alpha-\text{st}}$. First we will compute their stabilizer group.

Let $(\boldsymbol{z}, \boldsymbol{w}) \in \mathbb{C}^{2n}$ and set $J_{\boldsymbol{z}, \boldsymbol{w}} := \{j \in \{1, ..., n\} : z_j \neq 0 \text{ or } w_j \neq 0\}$, then we have

$$\operatorname{Stab}_{\boldsymbol{z},\boldsymbol{w}} \mathbb{T}^d = \ker(\mathbb{T}^d \overset{A_{J_{\boldsymbol{z},\boldsymbol{w}}}^T}{\longrightarrow} \mathbb{T}^{|J_{\boldsymbol{z},\boldsymbol{w}}|}).$$

Hence by some linear algebra we have

Corollary 3.10 (Coro.2.7 in [Nag21]). We have:

- (1) Stab_{**z**,**w**} \mathbb{T}^d is finite if and only if $\sum_{i \in J_{\mathbf{z},\mathbf{w}}} \mathbb{Q} \mathbf{a}_i = \mathbb{Q}^d$;
- (2) Stab_{**z**,**w**} $\mathbb{T}^d = 1$ if and only if $\sum_{j \in J_{\mathbf{z},\mathbf{w}}} \mathbb{Z} \mathbf{a}_j = \mathbb{Z}^d$.

Definition 3.11. In this setting, we call A is unimodular if all $d \times d$ -minors of A are 0 or ± 1 .

Remark 3.12. Note that A is unimodular if and only if B is.

Hence for a unimodular A, we have $\sum_{j\in J}\mathbb{Q}\boldsymbol{a}_j=\mathbb{Q}^d$ iff $\sum_{j\in J}\mathbb{Z}\boldsymbol{a}_j=\mathbb{Z}^d$ for $J\subset\{1,...,n\}$.

Let A is a unimodular matrix and we define $\mathcal{H}_A := \{ H \subset \mathbb{R}^d : H \text{ is generated by some of the } \mathbf{a}_j \text{ and of codimension} = 1$. We say α generic if $\alpha \notin \bigcup_{H \in \mathcal{H}_A} H$.

Lemma 3.13 (Lem.2.10 and Coro.2.11 in [Nag21]). In the case, for any $\alpha \in \mathbb{Z}^d$ and $\xi \in \mathbb{C}^d$, we have $(\mu^{-1}(\xi))^{\alpha-ss} \neq \emptyset$. If α generic, then $(\mu^{-1}(\xi))^{\alpha-ss} = (\mu^{-1}(\xi))^{\alpha-st}$ with free action by \mathbb{T}^d . In particular, if α generic then $X(A,\alpha)$ is 2n-d-dimensional smooth Poisson variety and for any ξ , $Y(A,\alpha,\xi)$ is a 2n-2d-dimensional smooth symplectic variety.

Theorem 3.14 (Thm.2.16 in [Nag21]). For a unimodular A and generic α and any $\xi \in \mathbb{C}^d$, the morphism

$$\pi_{\xi}: Y(A, \alpha, \xi) \to Y(A, 0, \xi)$$

is a projective symplectic resolution and if $\xi = 0$, then it is conical.

Sketch. First, by $\mu: \mathbb{C}^{2n} \xrightarrow{\Psi} \mathbb{C}^n \xrightarrow{A} \mathbb{C}^d$ with $\Psi: (\boldsymbol{z}, \boldsymbol{w}) \mapsto \sum_j z_j w_j \boldsymbol{e}_j$ is flat. Then from dimension counting we get $\mu^{-1}(\xi)$ is of equidimension 2n-d. As it define by d polynomials, we know that $\mu^{-1}(\xi) \in \mathbb{C}^{2d}$ is a complete intersection and hence Cohen-Macaulay. After showing that the codimension of singular locus ≥ 2 , then $\mu^{-1}(\xi)$ is normal by Serre's condition. Finally we can construct an open subset and show that π_{ξ} is identity over it which force it is birational. Moreover, the result follows from Lemma 3.13 and the following easy fact (see Proposition 2.15 in [Nag21]):

• If $\pi: Y \to Y_0$ is projective birational morphism with Y is a nonsingular sympectric variety, then π is a symplectic resolution.

Well done. \Box

Remark 3.15. Note that we have the more general results. In [Bel23] Lemma 2.4 and Proposition 2.5, without assuming A is unimodular, shows that if we choose α, α' such that $\mu^{-1}(\xi)^{\alpha'-ss} \subset \mu^{-1}(\xi)^{\alpha-ss}$, then there exists a projective birational Poisson morphism $Y(A, \alpha', \xi) \to Y(A, \alpha, \xi)$. Moreover, any hypertoric variety $Y(A, \alpha, \xi)$ has symplectic singularities.

3.4. Hypertoric varieties with hyperplane arrangements. Here we consider the case $\xi = 0$. Then we define $Y(A, \alpha) := Y(A, \alpha, 0)$. It defined by

$$0 \to \mathbb{Z}^{n-d} \stackrel{B}{\to} \mathbb{Z}^n \stackrel{A}{\to} \mathbb{Z}^d \to 0$$

where $A = [\boldsymbol{a}_1,...,\boldsymbol{a}_n] \in M_{d \times n}(\mathbb{Z})$ and $B^T = [\boldsymbol{b}_1,...,\boldsymbol{b}_n] \in M_{(n-d) \times n}(\mathbb{Z})$.

Then we can define $H_i := \{x \in \mathbb{R}^{n-d} : x \cdot \boldsymbol{b}_i + r_i = 0\}$ for i = 1, ..., n where $\boldsymbol{r} = (r_1, ..., r_n) \in \mathbb{Z}^n$ be a lifting of α along A. This defines a hyperplane arrangement $A := \{H_1, ..., H_n\}$. Here we can denote $Y(A) := Y(A, \alpha)$.

Definition 3.16. In this setting, for such hyperplane arrangement A:

- we call A is simple if for any subset of m hyperplanes with nonempty intersections, they intersect of codimension m.
- we call \mathcal{A} is unimodular if for any n-d linear independent $\{\boldsymbol{b}_{i_1},...,\boldsymbol{b}_{i_{n-d}}\}$ spans \mathbb{C}^{n-d} over \mathbb{Z} .
- ullet we call $\mathcal A$ is smooth if it is simple and unimodular.

Remark 3.17. Note that A is unimodular if and only if B is unimodular if and only if A is unimodular.

Proposition 3.18 (3.2/3.3 in [BD00]). The hypertoric variety Y(A) has at worst orbifold (finite quotient) singularities if and only if A is simple, and is smooth if and only if A is smooth.

Note that $\mathcal{A} = \{H_1, ..., H_n\}$ be a central arrangement, meaning that $r_i = 0$ for all i, so that all of the hyperplanes pass through the origin. Then we have the following result:

Corollary 3.19. For any central arrangement A, there exists a simplification $\widetilde{A} = \{\widetilde{H}_1, ..., \widetilde{H}_n\}$ of A by which we mean an arrangement defined by the same vectors $\{b_i\}$, but with a different choice of α , r such that \widetilde{A} is simple. This will give us an equivariant orbifold resolution $Y(\widetilde{A}) \to Y(A)$. When A is unimodular, this will give us a resolution of singularities which recover the special case of Theorem 3.14.

3.5. The cores and homotopy models. Consider again $\xi = 0$. Then we have an equivariant orbifold resolution

$$\pi: Y(\widetilde{\mathcal{A}}) \to Y(\mathcal{A})$$

where $\mathcal{A} = \{H_1, ..., H_n\}$ be a central arrangement with simplification $\widetilde{\mathcal{A}} = \{\widetilde{H}_1, ..., \widetilde{H}_n\}$.

Definition 3.20. In this case, we call $\mathfrak{c}(\widetilde{A}) := \pi^{-1}(0)$ the core of $Y(\widetilde{A})$.

Now we will give a toric interpretation of the core $\mathfrak{c}(\widetilde{\mathcal{A}})$. For any $J \subset \{1,...,n\}$, define the polyhedron

$$P_J := \{ x \in \mathbb{R}^{n-d} : x \cdot \boldsymbol{b}_i + r_i \ge 0 \text{ if } i \in J \text{ and } x \cdot \boldsymbol{b}_i + r_i \le 0 \text{ if } i \notin J \}.$$

Define

$$\mathfrak{E}_J := \{ (\boldsymbol{z}, \boldsymbol{w}) \in T^* \mathbb{C}^n : w_i = 0 \text{ if } i \in J \text{ and } z_i = 0 \text{ if } i \notin J \}$$

and define $\mathfrak{X}_J := \mathfrak{E}_J /\!\!/_{\alpha} \mathbb{T}^d$, which induce the inclusion

$$\mathfrak{X}_J \hookrightarrow \mu^{-1}(0) /\!\!/_{\alpha} \mathbb{T}^d = Y(\widetilde{\mathcal{A}}).$$

Theorem 3.21 (Section 6 in [BD00]/ section 3.2 in [Pro04]). In this setting, we have:

- (1) the scheme \mathfrak{X}_J is isomorphic to the toric variety correspond to the weighted polytope P_J ;
- (2) we have $\mathfrak{c}(\widetilde{A}) = \bigcup_{J:P_J \text{ bounded}} \mathfrak{X}_J$, hence $\mathfrak{c}(\widetilde{A})$ is a union of compact toric varieties glued together along toric subvarieties as prescribed by the combinatorics of the polytopes P_J and their intersections in \mathbb{R}^{n-d} .

Sketch. Note that (1) follows from the surjectivity real moment maps and some classification theorems, see Lemma 3.8 in [Pro04]. For (2), see Proposition 3.11 in [Pro04]. \Box

Remark 3.22. This is right even for \widetilde{A} is not simple.

Finally we consider some homotopy results.

Theorem 3.23 (6.5 in [BD00] and section 6 in [HS02]). In this setting, we have:

- (1) the core $\mathfrak{c}(\widetilde{\mathcal{A}})$ is a deformation retract of $Y(\widetilde{\mathcal{A}})$;
- (2) the inclusion

$$Y(\widetilde{\mathcal{A}}) = \mu^{-1}(0) /\!\!/_{\alpha} \mathbb{T}^d \hookrightarrow T^*\mathbb{C}^n /\!\!/_{\alpha} \mathbb{T}^d = X(\widetilde{\mathcal{A}})$$

is a homotopy equivalence where $X(\widetilde{A})$ is the corresponding Lawrence toric variety.

- 4. Universal Poisson structure of hypertoric varieties
 - 5. Wall-crossing structures and Mukai flops

REFERENCES

- [BD00] Roger Bielawski and Andrew Dancer. The geometry and topology of toric hyperkähler manifolds. Comm. Anal. Geom., pages 727–760, 2000.
- [Bea00] Arnaud Beauville. Symplectic singularities. Invent. Math., pages 541–549, 2000.
- [Bel23] Gwyn Bellamy. Coulomb branches have symplectic singularities. https://arxiv.org/abs/2304.09213, 2023.
- [CLS11] David Cox, John Little, and Hal Schenck. Toric Varieties. American Mathematical Society, 2011.
- [Fu06] Baohua Fu. A survey on symplectic singularities and symplectic resolutions. Ann. Math. Blaise Pascal, pages 209–236, 2006.
- [Ful93] William Fulton. Introduction to Toric Varieties. Princeton University Press, 1993.
- [HS02] Tamás Hausel and Bernd Sturmfels. Toric hyperkähler varieties. Doc. Math., pages 495–534, 2002.
- [Nag21] Takahiro Nagaoka. The universal poisson deformation of hypertoric varieties and some classification results. Pacific Journal of Mathematics, pages 459–508, 2021.

[Pro04] Nicholas Proudfoot. Hyperkähler analogues of kähler quotients. Ph.D. Thesis, https://arxiv.org/abs/math/0405233v1, 2004.

[Tel22] Simon Telen. Introduction to toric geometry. https://arxiv.org/abs/2203.01690, 2022.

Institute of Mathematics, AMSS, Chinese Academy of Sciences, 55 Zhongguancun East Road, Beijing, 100190, China

 $Email\ address: {\tt liuxiaolong@amss.ac.cn}$