The basic idea for generating a well-defined Poisson bracket on \mathcal{A} -coordinates is to start with some seed (in terms of \mathcal{A} -coordinates) with standard adjacency matrix B written as a $n \times k$ matrix (this the case when you have n total nodes with k mutable). Then find some skew-symmetric $n \times n$ matrix Ω such that

$$\Omega B = \begin{pmatrix} \mathbb{1}_{k \times k} \\ \mathbb{0}_{(n-k) \times k} \end{pmatrix} \tag{1}$$

Then the claim is that the entries ω_{ij} form a Poisson bracket on \mathcal{A} -coordinates, i.e.

$$\{A_i, A_j\} = \omega_{ij}A_iA_j \Rightarrow \{\bar{A}_i, \bar{A}_j\} = \bar{\omega_{ij}}\bar{A}_i\bar{A}_j$$
 (2)

where $\bar{}$ indicates mutation. The interesting feature here is that imposing eq. (1) does not entirely constrain Ω . For example, let's take a seed from Gr(2,5):

$$\begin{array}{c|c}
\hline
\langle 12 \rangle \\
\hline
\langle 13 \rangle \longrightarrow \langle 14 \rangle \longrightarrow \overline{\langle 15 \rangle} \\
\hline
\langle 23 \rangle \overline{\langle 34 \rangle} \overline{\langle 45 \rangle}
\end{array} (3)$$

Associating $\langle 13 \rangle$ and $\langle 14 \rangle$ with nodes 1 and 2, resp., and then $\langle 12 \rangle, \ldots, \langle 15 \rangle$ with nodes $3, \ldots, 7$ we have

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \\ 1 & 0 \\ -1 & 0 \\ 1 & -1 \\ 0 & 0 \\ 0 & -1 \end{pmatrix} \tag{4}$$

in which case Ω takes the form

The c_{ij} are arbitrary, and I guess we really only care about the 2×2 entries in the upper left corner but I present the full matrix for completion's sake.

The overall point here is that any choice of the c_{ij} defines a Poisson bracket on the A-coordinates, and this Poisson bracket then satisfies all of the properties that the normal

 \mathcal{X} -coordinate Poisson bracket does (invariant under mutation¹, etc). The tradeoff is straightforward: in \mathcal{X} -coordinate language one has a single Poisson bracket, but there is no single representation of a symbol in terms of \mathcal{X} -coordinates. In contrast, there is a single representation of a symbol in terms of \mathcal{A} -coordinates but there is not a single Poisson bracket on \mathcal{A} -coordinates. This of course jives with the fact that \mathcal{A} -coordinates can appear together in different clusters with different b_{ij} elements.

I believe then that the Sklyanin bracket is just one of the many possible Poisson brackets one can define on \mathcal{A} -coordinates , but I do not believe it is "priviledged" in any way. It is also worth emphasizing that one can evaluate the Sklyanin bracket directly on \mathcal{A} -coordinates , i.e. no need to dress them in to DCI cross-ratios.

¹Unfortunately each Poisson bracket on A-coordinates has a different set of mutation rules that one just has to work out. Gekhtman said that this is, in principle, not very illuminating. I have not tried it myself.