

planetmath.org

Math for the people, by the people.

every prime ideal is radical

Canonical name EveryPrimeIdealIsRadical

Date of creation 2013-03-22 13:56:54

Last modified on 2013-03-22 13:56:54

Owner alozano (2414)

Last modified by alozano (2414)

Numerical id 5

Author alozano (2414)
Entry type Theorem
Classification msc 13-00
Classification msc 14A05

Synonym prime ideal is radical Related topic RadicalOfAnIdeal

Related topic PrimeIdeal

Related topic HilbertsNullstellensatz

Let \mathcal{R} be a commutative ring and let \mathfrak{P} be a prime ideal of \mathcal{R} .

Proposition 1. Every prime ideal \mathfrak{P} of \mathcal{R} is a radical ideal, i.e.

$$\mathfrak{P} = \operatorname{Rad}(\mathfrak{P})$$

Proof. Recall that $\mathfrak{P} \subseteq \mathcal{R}$ is a prime ideal if and only if for any $a, b \in \mathcal{R}$

$$a \cdot b \in \mathfrak{P} \Rightarrow a \in \mathfrak{P} \text{ or } b \in \mathfrak{P}$$

Also, recall that

$$\operatorname{Rad}(\mathfrak{P}) = \{ r \in \mathcal{R} \mid \exists n \in \mathbb{N} \text{ such that } r^n \in \mathfrak{P} \}$$

Obviously, we have $\mathfrak{P} \subseteq \operatorname{Rad}(\mathfrak{P})$ (just take n = 1), so it remains to show the reverse inclusion.

Suppose $r \in \text{Rad}(\mathfrak{P})$, so there exists some $n \in \mathbb{N}$ such that $r^n \in \mathfrak{P}$. We want to prove that r must be an element of the prime ideal \mathfrak{P} . For this, we use induction on n to prove the following proposition:

For all $n \in \mathbb{N}$, for all $r \in \mathcal{R}$, $r^n \in \mathfrak{P} \Rightarrow r \in \mathfrak{P}$.

Case n = 1: This is clear, $r \in \mathfrak{P} \Rightarrow r \in \mathfrak{P}$.

Case $n \Rightarrow$ Case n+1: Suppose we have proved the proposition for the case n, so our induction hypothesis is

$$\forall r \in \mathcal{R}, \quad r^n \in \mathfrak{P} \Rightarrow r \in \mathfrak{P}$$

and suppose $r^{n+1} \in \mathfrak{P}$. Then

$$r\cdot r^n=r^{n+1}\in\mathfrak{P}$$

and since \mathfrak{P} is a prime ideal we have

$$r \in \mathfrak{P}$$
 or $r^n \in \mathfrak{P}$

Thus we conclude, either directly or using the induction hypothesis, that $r \in \mathfrak{P}$ as desired.