

Pandora: Principled Symbolic Validation of Intel SGX Enclave Runtimes

Fritz Alder¹, Lesly-Ann Daniel¹, David Oswald², Frank Piessens¹, <u>Jo Van Bulck¹</u>

45th IEEE Symposium on Security and Privacy (S&P) - May 22, 2024

¹DistriNet, KU Leuven, Belgium ²University of Birmingham, UK

Besieging the SGX Fortress: Software Interface Attacks

Challenge: Diverse Intel SGX Software Ecosystem

• **Ecosystem:** Diverse programming paradigms & abstractions

Challenge: Diverse Intel SGX Software Ecosystem

- Ecosystem: Diverse programming paradigms & abstractions
- Prior work: Selected applications on Intel SDK (e.g., NULL pointers)

Challenge: Diverse Intel SGX Software Ecosystem

- Ecosystem: Diverse programming paradigms & abstractions
- Prior work: Selected applications on Intel SDK (e.g., NULL pointers)
- Pandora: Runtime-agnostic & truthful symbolic execution
 - 1. Exact attested memory binary
 - 2. Vulnerability detection plugins

1. Truthful Symbolic Execution

Pandora: Runtime-Agnostic Enclave Loading

Pandora: Runtime-Agnostic Enclave Loading

Pandora: Runtime-Agnostic Enclave Loading

2. Pluggable Vulnerability Detection

Pandora: Principled Symbolic Validation?

- 1. Extend angr with enclave-aware breakpoints
- 2. Validate **software invariants** during symbolic exploration!
- 3. Aggregate violations in human-readable rich HTML reports

Pandora: Principled Symbolic Validation?

- 1. Extend angr with enclave-aware breakpoints
- 2. Validate **software invariants** during symbolic exploration!
- 3. Aggregate violations in human-readable rich HTML reports

Challenge: Understanding attacks + specifying adequate invariants:

- API: Tainted *pointers*
- Control flow: Tainted jumps

- ABI: Tainted CPU control registers
- MMIO/ÆPIC: Cleansing + alignment

Experimental Results: > 200 **New Vulnerable Code Locations**

Runtime	Version	Prod	Src	Plugin	Instances
EnclaveOS	3.28	~	x †	ABISan	1
EnclaveOS	3.28	~	×	PTRSan	15
EnclaveOS	3.28	~	׆	ÆPICSan	33
EnclaveOS	3.28	~	׆	CFSan	2
GoTEE	b35f	×	~	PTRSan	31
GoTEE	b35f	×	~	ÆPICSan	18
GoTEE	b35f	×	~	CFSan	1
Gramine	1.4	~	~	ABISan	1
Intel SDK	2.15.1	~	~	PTRSan	2
Intel SDK	2.19	~	~	ÆPICSan	22
\hookrightarrow Occlum	0.29.4	~	~	ÆPICSan	11
Open Enclave	0.19.0	~	~	ABISan	2
Rust EDP	1.71	~	~	ABISan	1

Runtime	Version	Prod	Src	Plugin	Instances
Linux selftest	5.18	×	~	ABISan	1
$\hookrightarrow DCAP$	1.16	~	~	ABISan	1
\hookrightarrow Inclavare	0.6.2	×	~	ABISan	1
Linux selftest	5.18	×	~	PTRSan	5
$\hookrightarrow DCAP$	1.16	~	~	PTRSan	17
\hookrightarrow Inclavare	0.6.2	×	~	PTRSan	2
Linux selftest	5.18	×	~	CFSan	1
\hookrightarrow Inclavare	0.6.2	×	~	CFSan	1
SCONE	5.7 / 5.8	~	×	ABISan	2/1
SCONE	5.7 / 5.8	~	×	PTRSan	10/3
SCONE	5.7 / 5.8	~	×	ÆPICSan	11/3
SCONE	5.8	~	×	CFSan	1

Conclusions and Outlook

github.com/
pandora-tee

Truthful: Runtime-agnostic enclave memory model

→ Exact attested memory layout (MRENCLAVE)

Extensible: Validate vulnerability invariants via plugins

→ ABISan, PTRSan, ÆPICSan, CFSan

Evaluation: > 200 instances; 7 CVEs; 11 SGX runtimes

→ Including low-level initialization & relocation logic!