```
In [1]: import matplotlib.pyplot as plt
   import pandas as pd
   import numpy as np
   import seaborn as sns
   % matplotlob inline

UsageError: Line magic function `%` not found.
```

```
In [8]: print(cancer['DESCR'])
    print(cancer['target_names'])
```

.. _breast_cancer_dataset:

Breast cancer wisconsin (diagnostic) dataset

Data Set Characteristics:

:Number of Instances: 569

:Number of Attributes: 30 numeric, predictive attributes and the class

:Attribute Information:

- radius (mean of distances from center to points on the perimeter)
- texture (standard deviation of gray-scale values)
- perimeter
- area
- smoothness (local variation in radius lengths)
- compactness (perimeter^2 / area 1.0)
- concavity (severity of concave portions of the contour)

Out[9]:

	mean radius	mean texture	mean perimeter	mean area	mean smoothness	mean compactness	mean concavity	mean concave points	mean symmetry
0	17.99	10.38	122.80	1001.0	0.11840	0.27760	0.3001	0.14710	0.2419
1	20.57	17.77	132.90	1326.0	0.08474	0.07864	0.0869	0.07017	0.1812
2	19.69	21.25	130.00	1203.0	0.10960	0.15990	0.1974	0.12790	0.2069
3	11.42	20.38	77.58	386.1	0.14250	0.28390	0.2414	0.10520	0.2597
4	20.29	14.34	135.10	1297.0	0.10030	0.13280	0.1980	0.10430	0.1809

5 rows × 30 columns

1 of 3 8/7/2023, 3:22 PM

```
from sklearn.preprocessing import StandardScaler
In [17]:
          Scaler=StandardScaler()
          Scaler.fit(df)
          Scaled_data=Scaler.transform(df)
In [18]: from sklearn.decomposition import PCA
          pca=PCA(n_components=2)
          pca.fit(Scaled_data)
Out[18]: PCA(n_components=2)
In [20]: x_pca=pca.transform(Scaled_data)
          print(Scaled_data.shape)
          print(x_pca.shape)
          (569, 30)
          (569, 2)
In [21]:
          plt.figure(figsize=(8,6))
          plt.scatter(x_pca[:,0],x_pca[:,1],c=cancer['target'],cmap='plasma')
          plt.xlabel('first principal component')
          plt.ylabel('second principal component')
Out[21]: Text(0, 0.5, 'second principal component')
              12.5
              10.0
               7.5
           second principal component
               5.0
               2.5
               0.0
```

2 of 3 8/7/2023, 3:22 PM

first principal component

10

15

0

-2.5

-5.0

-7.5

-5

```
In [22]:
         pca.components_
Out[22]: array([[ 0.21890244,
                                0.10372458,
                                             0.22753729,
                                                           0.22099499,
                                                                        0.14258969,
                   0.23928535,
                                0.25840048,
                                             0.26085376,
                                                           0.13816696,
                                                                        0.06436335,
                                                           0.20286964,
                   0.20597878,
                                0.01742803,
                                             0.21132592,
                                                                        0.01453145,
                   0.17039345,
                                             0.1834174 ,
                                                                        0.10256832,
                                0.15358979,
                                                           0.04249842,
                   0.22799663,
                                0.10446933,
                                             0.23663968,
                                                           0.22487053,
                                                                        0.12795256,
                   0.21009588,
                                0.22876753,
                                             0.25088597,
                                                           0.12290456,
                                                                        0.13178394],
                 [-0.23385713, -0.05970609, -0.21518136, -0.23107671,
                                                                        0.18611302,
                                0.06016536, -0.0347675 ,
                   0.15189161,
                                                           0.19034877,
                                                                        0.36657547,
                  -0.10555215,
                                0.08997968, -0.08945723, -0.15229263,
                                                                        0.20443045,
                                0.19720728,
                                                                        0.28009203,
                   0.2327159 ,
                                             0.13032156,
                                                           0.183848
                  -0.21986638, -0.0454673, -0.19987843, -0.21935186,
                                                                        0.17230435,
                   0.14359317, 0.09796411, -0.00825724, 0.14188335,
                                                                        0.27533947]])
In [26]:
         df_comp=pd.DataFrame(pca.components_,columns=cancer['feature_names'])
         plt.figure(figsize=(12,6))
         sns.heatmap(df_comp,cmap='plasma',)
```

Out[26]: <AxesSubplot:>

3 of 3