Page 1 of 3

AT X

Class: 12MT3 Name:

Teacher:

Question 1:

Differentiate the following Œ

(12 Marks)

Marks

 $\log_e(e^{3t}+2)$

x3 cos 3x.

Fine the following indefinite integrals: Đ

 $\int_{(7x+4)^{\frac{2}{3}}}^{dx}$

 $\int \sin 6x dx$

 $\int 4xe^{x^2} dx$.

Solve for x:

©

 $\log_a 8 + \log_a 16 = x \log_a 2.$

Fine the exact value of co: 105°. ਉ (Start a New Page) (12 Marks) Question 2:

Simplify $\frac{\sin x}{\cos x - \sin x} + \frac{\sin x}{\cos x + \sin x}$ ø

Simplify $\sec x + \tan x$, in terms of l, where $l = \tan \frac{x}{2}$. 3

Use the substitution $u = x^2 - 1$ to find $x^3(x^2-1)dx$

<u>ق</u>

Consider the curve $y = \sin x$, for $0 \le x \le 2\pi$.

For what values of x is the gradient equal to $\frac{1}{2}$? ਉ

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2000 AP3

YEAR 12 HALF YEARLY HSC

MATHEMATICS

3/4 UNIT (COMMON)

Time allowed – 1.5 HOURS (plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES:

- Attempt ALL questions.
- * The value for each question is indicated
- * All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- * Standard Integrals are proviced. Approved calculators may be used.
- * Each question attempted is to be returned on a newpage clearly marked Question 1, Question 2, etc on the top of the page.

*Each page must show your class and your name.

(Start a New Page) (12 Marks) Question 3:

- The quartic expression $x^4 + \alpha x^2 + b$ has factors (x+1) and (x-2). Find the values of a and b. E
- If z = c is a double root of P(x), show that x = c is a root of P'(x). Ð
- p, q and r are the roots of the cubic equation $x^3 + 2x^2 + 3x + 5 = 0$. Evaluate:
- $p^{-1} + q^{-1} + r^{-1}$.
- first approximation and one application of Newton's Method to find a better approximation for this root. Give your answer correct to three The equation $e^x - 4x - 8 = 0$ has a root close to x = 3. Using 3 as a decimal places. ਉ

Question 4:

- (Start 1 New Page) (12 Marks)
- Find Rand α such that $2\cos\theta \sin\theta = R\cos(\theta + \alpha)$. (Note: R > 0 and $0^{\zeta} < \alpha < 90^{0}$.)
- Hence, solve $2\cos\theta = \sin\theta + 1$, for $0^{\circ} \le \theta \le 360^{\circ}$ \equiv
- The curve $y = \cos x$, from $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$, is rotated about the x-axis. Find the volume of the solid formed. Leave your answer in exact form. **e**
 - 9
- (i) Find $\frac{d}{dx}(x\log_e x)$.
- (ii) Prove that $\int_{e}^{e^{-}} \frac{1 + \log_e x}{x \log_e x} dx = 1 + \log_e 2.$

Question 5:

Marks

(Start a New Page) (9 Marks)

Marks

- Sketch $y = \sin 2x$, for $0 \le x \le 2\pi$
- By drawing a suitable straight line, state the number of values € €
 - of x, in this domain, such that $\sin 2x = \frac{x}{2\pi}$
- Can there be further solutions beyond $x = 2\pi$? Briefly justify your answer. **(ii**)
- A(t,e') and $B(-t,e^{-t})$ are points on the curve $y = e^{t}$ and t > 0. ව
- The tangents at A and B form an angle of 45° .
- Prove that $e' \frac{1}{t} = 2$.
- Solve this equation to show that $e^t = 1 + \sqrt{2}$. Œ

Question 6:

(Start a New Page) (10 Marks)

A straight line passes through the point (1,2) and meets the r and y axes at P and Q respectively, as shown. The angle OPQ is θ .

- Show that the equation of the line PQ is given by $y = \tan \theta + 2 - x \tan \theta$. E)
 - Show that the area (A) of $\triangle OPQ$ is given by Ð
 - $A = \frac{\tan \theta}{2} + 2 + \frac{2}{\tan \theta}.$
- (c) Prove that the area is a minimum when $\tan \theta = 2$ (d) Hence, find the minimum area.

End of Exam