

Problemas Circuitos Aritméticos. Curso 2017-2018

Problema 1:

Dado A= 111001010_2 y B= $+32_{10}$:

- a) Representar A en sistema decimal, octal, hexadecimal y BCD. Asuma que A es un número sin signo.
- b) Obtenga el valor entero de A asumiendo que A es un número con complemento a 2 con signo.
- c) Represente B usando el método de complemento a 2. Utilice el mínimo número de bits
- d) Realice la operación A-B teniendo en cuenta que A y B son números representados en complemento a 2. Muestre si existe overflow en la operación.
 - a) $A=458_{10}=1CA_{16}=712_8=0100\ 0101\ 1000_{BCD}$
 - b) $A = -1.2^8 + 1.2^7 + 1.2^6 + 1.2^3 + 1.2^1 = -54_{10}$
 - c) $32_{10}=0100000_{CA2}$
 - d) A-B=A+(-B)11001010 (-54) +11100000(-32)

0101010 -> Número positivo, es necesario utilizar 8 bits para evitar overflow

Problema 2:

- 1. Convertir 633₁₀ a binario natural, hexadecimal, octal y BCD
- 2. Dados A= 11100001 y B=01100100.
 - a) Suponga que A y B representan números sin signo.
 - Determine los valores de A y B en decimal y lleve a cabo la operación A+B. Indique si se produce desbordamiento al realizar la operación anterior.
 - Represente el resultado según la norma IEEE-754.
 - b) Suponga que A y B representan números en CA2.
 - Determine los valores de A y B en decimal y lleve a cabo la operación A+B. Indique si se produce desbordamiento al realizar la operación anterior.
 - Represente el resultado según la norma IEEE-754.
 - 1. $633_{10} = 0010011111001_2 = 279_{16} = 1171_8$
 - 2. a) A=225 B=100 A+B=325=> desbordamiento, solo se puede representar hasta 28 -1

B=100 A+B=69 => No desbordamientob) A=-31

http://dte.uc3m.es

Problemas Circuitos Aritméticos. Curso 2017-2018

Problema 3:

Se necesita un circuito que realice la operación complemento a 2 de números positivos entre 0 y 9 . Se pide:

- a) Tabla de verdad del circuito. Tomar como entradas E3...E0, y como salidas S4...S0.
- b) Implementar S0 mediante un multiplexor de 8 entradas y el mínimo número de puertas adicionales.

	`
വ	١
а	. ,

	١)								
E4	E3	E2	E1	E0	S4	s3	s2	s1	s0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	1	1	1	1	1
0	0	0	1	0	1	1	1	1	0
0	0	0	1	1	1	1	1	0	1
0	0	1	0	0	1	1	1	0	0
0	0	1	0	1	1	1	0	1	1
0	0	1	1	0	1	1	0	1	0
0	0	1	1	1	1	1	0	0	1
0	1	0	0	0	1	1	0	0	0
0	1	0	0	1	1	0	1	1	1
_	_	1	_	_	X	X	X	X	X
1	1	1	1	1	X	X	X	X	X

b)

Problemas Circuitos Aritméticos. Curso 2017-2018

Problema 4:

Rellene la tabla de verdad para el circuito de entradas a, b, c, d y salidas s0, s1, s2 y s3:

а	b	e	d	s3	s2	s1	s0
0	0	0	0	1	0	1	4
0	0	0	1	0	0	1	1
0	0	1	0	0	0	0	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	1	0	0	0
0	1	1	0	1	0	1	1
0	1	1	1	0	0	1	1
1	0	0	0	1	1	1	T.
1	0	0	1	1	1	1	1
1	0	1	0	0	1	0	0
. 1	0	1	1	1	1	0	0
1	1	0	0	0	1	0	0
1	1	0	1	1	1	0	0
1	1	1	0	1	1	1	1
1	1	1	1	1	1	1	- 1