Moment Generating Function

Ganesh Bombatkar-CS20BTECH11016

May 24, 2021

Problem

Suppose X_1, X_2, X_3, X_4 are i.i.d random variables taking values 1 and -1 with probability 1/2 each. Then $E(X_1 + X_2 + X_3 + X_4)^4$ equals

- **4**0
- **2** 76
- **3** 16
- **4** 12

Solution

 X_i , for $i \in \{1..4\}$ are i.i.d random variables with

$$Pr(X_i = +1) = \frac{1}{2}$$

$$Pr(X_i = -1) = \frac{1}{2}$$
(2)

$$\Pr\left(X_{i} = -1\right) = \frac{1}{2} \tag{2}$$

Let
$$Y = X_1 + X_2 + X_3 + X_4$$

		-4				4
p	$\gamma(k)$	1/16	1/4	3/8	1/4	1/16

Table: pmf Y

Expectation

Expectation of discrete random variable X denoted with E(X)

$$E(x) = \sum_{k} k \times p_X(k) \tag{3}$$

$$E(X^n) = \sum_{k} k^n \times p_X(k) \tag{4}$$

$$E(Y^4) = \sum_{k} k^4 \times \rho_X(k) \tag{5}$$

$$=256 \times \frac{1}{16} + 16 \times \frac{1}{4} + 0 \times \frac{3}{8} + 16 \times \frac{1}{4} + 256 \times \frac{1}{16}$$
 (6)

$$E\left(Y^{4}\right) = 40\tag{7}$$

Moment Generating Function

Definition (Moment)

 n^{th} Moment of a random variable X is $E(X^n)$

Moments are useful in describing shape of any distribution

- First moment represent mean.
- Second represents variance.
- Third represent skewness, indicates any asymmetric 'leaning' to either left or right.

Moment Generating Function

Definition (Moment generating function)

Moment Generating Function (MGF) of a random variable X is a function $M_X(t)$ defined as

$$M_X(t) = E\left(e^{tX}\right) \tag{8}$$

 $M_X(t)$ exist, if there exists a positive constant a such that $M_X(t)$ is finite for all $t \in [-a, a]$

If X is a discrete random variable

$$M_X(t) = \sum_{k=-\infty}^{\infty} e^{tk} \times p_X(k)$$
 (9)

Taylor series

Taylor series for e^x

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \dots = \sum_{k=0}^{\infty} \frac{x^{k}}{k!}.$$
 (10)

Theorem

 n^{th} Moment of X ($E(X^n)$) is coefficient of $\frac{t^n}{n!}$ in Taylor expansion of $M_X(t)$

Proof.

Taylor series of e^{tX}

$$e^{tX} = \sum_{k=0}^{\infty} \frac{X^k t^k}{k!} \tag{11}$$

Taking expectation on both side

$$E\left(e^{tX}\right) = \sum_{k=0}^{\infty} E\left(X^{k}\right) \frac{t^{k}}{k!} \tag{12}$$

 \therefore $E\left(X^{n}
ight)$ is coefficient of $rac{t^{n}}{n!}$ in Taylor expansion of $M_{X}(t)\equiv E\left(e^{tX}
ight)$

Solution using MGF

 X_i are i.i.d random variable for $i \in \{1, 2, 3, 4\}$ with,

$$Pr(X_i = +1) = \frac{1}{2}$$

$$Pr(X_i = -1) = \frac{1}{2}$$
(13)

$$\Pr\left(X_{i} = -1\right) = \frac{1}{2} \tag{14}$$

By defining Moment generating function of X_i

$$M_{X_i}(t) = \frac{1}{2} \times e^{-t} + \frac{1}{2} \times e^t = \frac{e^t + e^{-t}}{2}$$
 (15)

Let $Y = \sum_{i=0}^{4} X_i$, then by convolution

$$M_Y(t) = \prod_{i=1}^4 M_{X_i}(t)$$
 (16)

$$M_Y(t) = \left(\frac{e^t + e^{-t}}{2}\right)^4 \tag{17}$$

$$M_Y(t) = \frac{e^{4t} + 4e^{2t} + 6 + 4e^{-2t} + e^{-4t}}{16}$$
 (18)

By using Taylor expansion of e^{4t} , e^{2t} , e^{-2t} and e^{-4t}

$$M_Y(t) = 1 + \frac{1}{16} \left(\sum_{k=1}^{\infty} \left(4^k + 4(2)^k + 4(-2)^k + (-4)^k \right) \frac{t^k}{k!} \right)$$
(19)

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ○・

By Theorem 3 and eqn: (19)

$$E(Y^n) = \frac{4^n + 4(2)^n + 4(-2)^n + (-4)^n}{16}$$
 (20)

$$E(Y^4) = \frac{4^4 + 4(2)^4 + 4(-2)^4 + (-4)^4}{16}$$

$$E(Y^4) = \frac{640}{16} = 40$$
(21)

$$E(Y^4) = \frac{640}{16} = 40 (22)$$

$$\therefore E(X_1 + X_2 + X_3 + X_4)^4 = 40$$