Task 01: Please conduct multiple Protein-Ligand Docking and provide the top 10 results in the following table.

	Ligands	Binding Affinity	Rmsd/ub	Rmsd/ib
		J		
01	Petunidin	-9.1	0	0
02	Epigallocatechin	-8.5	0	0
03	(-)-Epicatechin	-8.3	0	0
04	Retinol	-8.2	0	0
05	Riboflavin	-8.1	0	0
06	Resveratrol	-7.9	0	0
07	Thiamine	-6.4	0	0
08	beta-Bisabolene	-6.2	0	0
09	1-Hexanol	-4.3	0	0
10	1,3-Propanediol	-3.7	0	0

Task 02: Please perform ADME analysis on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below.

ADME Analysis						Pharmacokineti cs		Drug likeness	Medicina 1 Chemistr		
Nam e	CI D ID	Canonical SMILES	Molecula r weight	Nu m. H- bon d acce ptor s	Num. H- bond donor s	Lipophilici ty (iLOGP)	Water Solubilit y (Log S (SILICOS -IT))	GI absorption	BBB permean t	Lipinski	PAINS
Pet	44	COc1cc(cc(c1O)									
uni	17	O)c1[o+]c2cc(O						_			
din	74)cc(c2cc1O)O	317.27	7	5	-2.01	-2.77	High	No	0	1
Epi gall ocat echi n	72 27 7	Oc1cc2O[C@H] (c3cc(O)c(c(c3) O)O)[C@@H](C c2c(c1)O)O	306.27	7	6	0.98	-1.56	High	No	1	1
(-)- Epi	72 27	Oc1cc2O[C@H] (c3ccc(c(c3)O)O)[C@@H](Cc2c(
cate	6	c1)O)O	290.27	6	5	1.47	-2.14	High	No	0	1

	1		1	ı		1	1				1
chi											
n											
		OC/C=C(/C=C									
	44	/C=C(/C=C/C									
Reti	53	1=C(C)CCCC1(
nol	54	C)C)\C)\C	286.45	1	1	1.47	-2.14	High	No	0	1
		OC[C@H]([C@									
		H]([C@H](Cn1c									
Rib	49	2cc(C)c(cc2nc2c									
ofla	35	1nc(=O)[nH]c2									
vin	70	=O)C)O)O)O	376.36	8	5	1.63	-2.62	Low	No	0	0
Res											
ver	44	Oc1ccc(cc1)/C=									
atro	51	C/c1cc(O)cc(c1)									
1	54	О	228.24	3	3	1.71	-3.29	High	Yes	0	0
	10										
Thi	10	CC(=CCCC(=C									
ami	43)[C@H]1CCC(=									
ne	70	CC1)C)C	204.35	0	0	3.67	-3.58	Low	No	1	0
bet		, ,									
a-											
Bisa		OCCc1sc[n+](c									
bol	11	1C)Cc1cnc(nc1									
ene	30	N)C	265.35	3	2	-1.6	-3.3	High	No	0	0
1-		,									
Hex											
ano	81										
1	03	ccccco	102.17	1	1	2.03	-1.64	High	Yes	0	0
1,3-											
Pro											
pan	10										
edi	44										
ol	2	occco	76.09	2	2	1.02	0.18	High	No	0	0
	l .			Ь	l			. 0		I	

Task 03: Perform Toxicity Prediction on the 10 compounds obtained from the Protein-Ligand Docking and provide the results in the table below.

Toxicity Prediction

Name	CID	Canonical SMILES	Hepatotoxicit	Carcinoge	Immunoto	Mutagenicit	Cytotoxicit
	ID		у	nicity	xicity	y	y
Petunid	4417	COc1cc(cc(c1O)O)c1[o+]c2	Inactive	Active	Active	Inactive	Inactive
in	74	cc(O)cc(c2cc1O)O					
Epigall		Oc1cc2O[C@H](c3cc(O)c(c	Inactive	Inactive	Inactive	Inactive	Inactive
ocatech	7227	(c3)O)O)[C@@H](Cc2c(c1)					
in	7	0)0					

(-)-			Inactive	Inactive	Inactive	Inactive	Inactive
Epicate	7227	Oc1cc2O[C@H](c3ccc(c(c3)					
chin	6	O)O)[C@@H](Cc2c(c1)O)O					
		OC/C=C(/C=C/C=C(/C=	Inactive	Inactive	Inactive	Active	Inactive
	4453	C/C1=C(C)CCCC1(C)C)\					
Retinol	54	C)\C					
		OC[C@H]([C@H]([C@H](Inactive	Inactive	Inactive	Inactive	Inactive
Ribofla	4935	Cn1c2cc(C)c(cc2nc2c1nc(=					
vin	70	O)[nH]c2=O)C)O)O)O					
Resvera	4451	Oc1ccc(cc1)/C=C/c1cc(O)	Inactive	Inactive	Inactive	Inactive	Inactive
trol	54	cc(c1)O					
Thiami	1010	CC(=CCCC(=C)[C@H]1C	Inactive	Inactive	Active	Inactive	Inactive
ne	4370	CC(=CC1)C)C					
beta-			Inactive	Inactive	Inactive	Inactive	Inactive
Bisabol		OCCc1sc[n+](c1C)Cc1cnc(
ene	1130	nc1N)C					
1-			Inactive	Inactive	Inactive	Inactive	Inactive
Hexano							
1	8103	CCCCCCO					
1,3-			Inactive	Inactive	Inactive	Inactive	Inactive
Propan	1044						
ediol	2	OCCCO					

Task 04: Identify the highest-ranking Protein – ligand complex and input the corresponding figures into the table below.

Figure Name	Sample Figure	Input your Docking Figure	
Figure 01		AND MAIS	
Figure 02		OFFICE STREET	
Figure 03	Control of the Contro	24	

Task 05: Identify the highest-ranking Protein – ligand complex and input the Interaction details into the table below.

Name	Distance	Category	Types
N:UNK1:H -			Conventional Hydrogen
A:SER145:OG	2.45525	Hydrogen Bond	Bond
N:UNK1 - A:PHE28	4.86738	Hydrophobic	Pi-Pi T-shaped
N:UNK1 - A:ALA18	5.36973	Hydrophobic	Pi-Alkyl
N:UNK1 - A:LYS117	3.96965	Hydrophobic	Pi-Alkyl
N:UNK1 - A:ALA146	4.34331	Hydrophobic	Pi-Alkyl
N:UNK1 - A:LYS147	5.08459	Hydrophobic	Pi-Alkyl