```
In [22]:
           import pandas as pd
           import numpy as np
           import sklearn
           import matplotlib.pyplot as plt
In [23]:
           data = pd.read_csv('Thyroid_Diff.csv')
           data.head()
In [24]:
Out[24]:
                                             Hx
                                                           Hx
                                                                 Thyroid
                                                                               Physical
              Age Gender Smoking
                                                                                        Adenopathy
                                                                                                         Patholog
                                       Smoking
                                                                Function
                                                                          Examination
                                                 Radiothreapy
                                                                                 Single
           0
                27
                          F
                                  No
                                             No
                                                           No
                                                                Euthyroid
                                                                               nodular
                                                                                                      Micropapillar
                                                                             goiter-left
                                                                           Multinodular
                          F
                34
                                                                Euthyroid
                                                                                                      Micropapillar
                                   No
                                             Yes
                                                                                 goiter
                                                                                 Single
                          F
                                  No
           2
                30
                                                           No Euthyroid
                                                                               nodular
                                                                                                      Micropapillar
                                             No
                                                                            goiter-right
                                                                                 Single
           3
                62
                          F
                                  No
                                             No
                                                           No Euthyroid
                                                                               nodular
                                                                                                      Micropapillar
                                                                            goiter-right
                                                                           Multinodular
                          F
                62
                                  No
                                             No
                                                           No Euthyroid
                                                                                                      Micropapillar
                                                                                 goiter
```

Data Preprocessing

Data Cleaning

```
In [25]: data.info()
  #No null values found
  #Preprocess object into integer/float
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 383 entries, 0 to 382
         Data columns (total 17 columns):
              Column
                                    Non-Null Count Dtype
              ----
                                    -----
          0
              Age
                                    383 non-null
                                                    int64
          1
                                                    object
              Gender
                                    383 non-null
          2
              Smoking
                                    383 non-null
                                                    object
          3
              Hx Smoking
                                                    object
                                    383 non-null
          4
              Hx Radiothreapy
                                    383 non-null
                                                    object
              Thyroid Function
                                    383 non-null
                                                    object
          6
              Physical Examination 383 non-null
                                                    object
          7
              Adenopathy
                                    383 non-null
                                                    object
          8
                                                    object
              Pathology
                                    383 non-null
          9
              Focality
                                    383 non-null
                                                    object
          10
             Risk
                                    383 non-null
                                                    object
          11 T
                                    383 non-null
                                                    object
          12 N
                                    383 non-null
                                                    object
          13
              Μ
                                    383 non-null
                                                    object
          14 Stage
                                    383 non-null
                                                    object
                                    383 non-null
                                                    object
          15 Response
          16 Recurred
                                    383 non-null
                                                    object
         dtypes: int64(1), object(16)
         memory usage: 51.0+ KB
         data.isnull().values.any()
In [26]:
         False
Out[26]:
         data.describe().T
In [27]:
Out[27]:
              count
                       mean
                                   std min 25% 50% 75% max
              383.0 40.866841 15.134494 15.0
                                            29.0
                                                 37.0
                                                      51.0
                                                           82.0
         # extra code - the next 5 lines define the default font sizes
In [28]:
         plt.rc('font', size=14)
         plt.rc('axes', labelsize=14, titlesize=14)
         plt.rc('legend', fontsize=14)
         plt.rc('xtick', labelsize=10)
         plt.rc('ytick', labelsize=10)
         data.hist(bins=50, figsize=(12,8))
         plt.show()
```



```
In [29]: # Replace values
data['Recurred'] = data['Recurred'].replace({'Yes': '1', 'No': '0'})

# Write the modified DataFrame back to CSV
data.to_csv('modified_thyroid.csv', index=False)
In [30]: df = pd.read_csv('modified_thyroid.csv')
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
         RangeIndex: 383 entries, 0 to 382
         Data columns (total 17 columns):
             Column
                                  Non-Null Count Dtype
             -----
                                  -----
         0
             Age
                                  383 non-null
                                                 int64
         1
                                 383 non-null object
             Gender
         2
             Smoking
                                 383 non-null object
         3
                                 383 non-null object
             Hx Smoking
                                383 non-null object
         4
             Hx Radiothreapy
             Thyroid Function
                                383 non-null object
         6
             Physical Examination 383 non-null object
         7
             Adenopathy
                                383 non-null object
         8
             Pathology
                                383 non-null object
                                383 non-null object
         9
             Focality
         10 Risk
                                  383 non-null object
         11 T
                                 383 non-null object
         12 N
                                 383 non-null object
         13 M
                                  383 non-null
                                                 object
         14 Stage
                                  383 non-null object
         15 Response
                                 383 non-null
                                                 object
         16 Recurred
                                  383 non-null
                                                 int64
         dtypes: int64(2), object(15)
         memory usage: 51.0+ KB
         recurrence= df.drop('Recurred', axis=1)
In [31]:
         recurrence_labels = df[['Recurred']].copy()
         from sklearn.impute import SimpleImputer
In [32]:
         imputer = SimpleImputer(strategy='median') #impute using the median value
         #Select the numerical varibles
In [33]:
         recurrence_num = recurrence.select_dtypes(include=[np.number])
         imputer.fit(recurrence_num)
In [34]:
Out[34]:
                   SimpleImputer
         SimpleImputer(strategy='median')
         #show the median values for each variable
In [35]:
         imputer.statistics_
         array([37.])
Out[35]:
In [36]:
         X = imputer.transform(recurrence_num)
In [37]:
         imputer.feature_names_in_
         array(['Age'], dtype=object)
Out[37]:
        from sklearn import set_config
In [38]:
         set_config(transform_output='pandas') #scikit-learn >= 1.2
```

```
In [39]: #Dropping outliers
    from sklearn.ensemble import IsolationForest
    isolation_forest = IsolationForest(random_state=42)
    outlier_pred = isolation_forest.fit_predict(X)
In [40]: pd.Series(outlier_pred).value_counts()
```

1 222

Out[40]: 1 232 -1 151

Name: count, dtype: int64

Encode Features

Out[41]:		Gender	Smoking	Hx Smoking	Hx Radiothreapy	Thyroid Function	Physical Examination	Adenopathy	Pathology	For
	0	F	No	No	No	Euthyroid	Single nodular goiter-left	No	Micropapillary	
	1	F	No	Yes	No	Euthyroid	Multinodular goiter	No	Micropapillary	
	2	F	No	No	No	Euthyroid	Single nodular goiter-right	No	Micropapillary	
	3	F	No	No	No	Euthyroid	Single nodular goiter-right	No	Micropapillary	
	4	F	No	No	No	Euthyroid	Multinodular goiter	No	Micropapillary	١

```
In [42]: recurrence_cat_oneHot = recurrence[['Thyroid Function', 'Physical Examination', 'Pathor recurrence_cat_ordinal = recurrence[['Gender', 'Smoking', 'Hx Smoking', 'Hx Radiothrea
```

```
In [43]: from sklearn.preprocessing import OneHotEncoder, LabelEncoder
    cat_encoder = OneHotEncoder(sparse_output=False, handle_unknown='ignore')
    recurrence_cat_1hot = cat_encoder.fit_transform(recurrence_cat_oneHot)
    recurrence_cat_1hot
```

Out[43]:

	Thyroid Function_Clinical Hyperthyroidism	Thyroid Function_Clinical Hypothyroidism	Thyroid Function_Euthyroid	Thyroid Function_Subclinical Hyperthyroidism	Thyroid Function_Subclinical Hypothyroidism
0	0.0	0.0	1.0	0.0	0.0
1	0.0	0.0	1.0	0.0	0.0
2	0.0	0.0	1.0	0.0	0.0
3	0.0	0.0	1.0	0.0	0.0
4	0.0	0.0	1.0	0.0	0.0
•••					
378	0.0	0.0	1.0	0.0	0.0
379	0.0	0.0	1.0	0.0	0.0
380	0.0	0.0	1.0	0.0	0.0
381	1.0	0.0	0.0	0.0	0.0
382	0.0	0.0	1.0	0.0	0.0

383 rows × 46 columns

In [44]: recurrence_cat_ordinal

_			-
() i	ıtı	7171	
Vι	オレエ		1 .

	Gender	Smoking	Hx Smoking	Hx Radiothreapy
0	F	No	No	No
1	F	No	Yes	No
2	F	No	No	No
3	F	No	No	No
4	F	No	No	No
•••				
378	М	Yes	Yes	Yes
379	М	Yes	No	Yes
380	М	Yes	Yes	No
381	М	Yes	Yes	Yes
382	М	Yes	No	No

383 rows × 4 columns

Encode Target

In [45]: recurrence_tar_ordinal = df[['Recurred']]

Out[46]:

```
In [46]: recurrence_tar_ordinal
```

```
      Recurred

      0
      0

      1
      0

      2
      0

      3
      0

      4
      0

      ...
      ...

      378
      1

      379
      1

      380
      1

      381
      1

      382
      1
```

383 rows × 1 columns

```
In [47]:
         cat_encoder.categories_
         [array(['Clinical Hyperthyroidism', 'Clinical Hypothyroidism', 'Euthyroid',
Out[47]:
                  'Subclinical Hyperthyroidism', 'Subclinical Hypothyroidism'],
                dtype=object),
          array(['Diffuse goiter', 'Multinodular goiter', 'Normal',
                  'Single nodular goiter-left', 'Single nodular goiter-right'],
                dtype=object),
          array(['Follicular', 'Hurthel cell', 'Micropapillary', 'Papillary'],
                dtype=object),
          array(['Multi-Focal', 'Uni-Focal'], dtype=object),
          array(['High', 'Intermediate', 'Low'], dtype=object),
          array(['T1a', 'T1b', 'T2', 'T3a', 'T3b', 'T4a', 'T4b'], dtype=object),
          array(['N0', 'N1a', 'N1b'], dtype=object),
          array(['M0', 'M1'], dtype=object),
          array(['I', 'II', 'III', 'IVA', 'IVB'], dtype=object),
          array(['Biochemical Incomplete', 'Excellent', 'Indeterminate',
                  'Structural Incomplete'], dtype=object),
          array(['Bilateral', 'Extensive', 'Left', 'No', 'Posterior', 'Right'],
                dtype=object)]
```

Feature Scaling

```
In [48]: from sklearn.preprocessing import StandardScaler
    std_scaler = StandardScaler()
    recurrence_scaled = std_scaler.fit_transform(recurrence_num)

In [49]: recurrence_num.columns
Out[49]: Index(['Age'], dtype='object')
```

Transformation Pipeline

```
In [50]:
          from sklearn.pipeline import Pipeline
          num_pipeline = Pipeline([
              ("impute", SimpleImputer(strategy='median')),
              ('standardize', StandardScaler())
          ])
In [51]:
          set_config(display='diagram')
          num_pipeline
                Pipeline
Out[51]:
            ▶ SimpleImputer
           ▶ StandardScaler
          recurrence_prepared = num_pipeline.fit_transform(recurrence_num)
In [52]:
          recurrence_prepared.head()
Out[52]:
                 Age
          0 -0.917439
          1 -0.454315
          2 -0.718957
             1.398184
             1.398184
          recurrence_prepared.describe()
In [53]:
Out[53]:
                         Age
          count
                 3.830000e+02
                 -1.855203e-17
          mean
                 1.001308e+00
            std
                -1.711367e+00
           min
           25%
                -7.851180e-01
           50%
                -2.558327e-01
           75%
                 6.704165e-01
                 2.721397e+00
           max
          recurrence_cat_oneHot.columns
In [54]:
```

```
In [61]: recurrence.info()
```

▶ OrdinalEncoder

▶ OneHotEncoder

StandardScaler

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 383 entries, 0 to 382
Data columns (total 16 columns):

#	Column	Non-Null Count	Dtype
0	Age	383 non-null	int64
1	Gender	383 non-null	object
2	Smoking	383 non-null	object
3	Hx Smoking	383 non-null	object
4	Hx Radiothreapy	383 non-null	object
5	Thyroid Function	383 non-null	object
6	Physical Examination	383 non-null	object
7	Adenopathy	383 non-null	object
8	Pathology	383 non-null	object
9	Focality	383 non-null	object
10	Risk	383 non-null	object
11	T	383 non-null	object
12	N	383 non-null	object
13	M	383 non-null	object
14	Stage	383 non-null	object
15	Response	383 non-null	object
		- ·	

dtypes: int64(1), object(15)
memory usage: 48.0+ KB

```
In [62]: recurrence_prepared = f_preprocessing.fit_transform(recurrence)
```

In [63]: recurrence_prepared.head()

Out[63]:		num_Age	1hot_Thyroid Function_Clinical Hyperthyroidism	1hot_Thyroid Function_Clinical Hypothyroidism	1hot_Thyroid Function_Euthyroid	1hotThyroid Function_Subclinical Hyperthyroidism	1hot Function_S Hypoth
	0	-0.917439	0.0	0.0	1.0	0.0	
	1	-0.454315	0.0	0.0	1.0	0.0	
	2	-0.718957	0.0	0.0	1.0	0.0	
	3	1.398184	0.0	0.0	1.0	0.0	
	4	1.398184	0.0	0.0	1.0	0.0	

5 rows × 51 columns

SMOTE Oversampling

```
In [64]: X = recurrence_prepared
Y = recurrence_labels

In [65]: from sklearn.model_selection import train_test_split
# Split data into train and test set

X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify = Y,)

In [66]: from imblearn.over_sampling import SMOTE
smote = SMOTE(sampling_strategy="minority")
```

```
X_train_SMOTE.shape, y_train_SMOTE.shape
         ((440, 51), (440, 1))
Out[66]:
In [67]: import matplotlib.pyplot as plt
         #Helper function for data distribution
         #Visualize proportion of Terminated Vs. Active
         def show_recurrence_distrib(data):
           count = ""
           if isinstance(data, pd.DataFrame):
              count = data['Recurred'].value_counts()
           else:
              count = data.value_counts()
           count.plot(kind="pie", explode= [0, 0.1], figsize=(6,6), autopct = "%1.1f%%", shadow
           plt.ylabel("Recurrence: Yes or No")
           plt.legend(["No", "Yes"])
           plt.show()
         #Visualize the proportion of borrowers
         show_recurrence_distrib(Y_train)
```



```
In [68]: show_recurrence_distrib(y_train_SMOTE)
```


Supervised Learning

Logistic Regression

Logistic Regression with SMOTE

```
C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1143: DataConver
sionWarning: A column-vector y was passed when a 1d array was expected. Please change
the shape of y to (n_samples, ), for example using ravel().
  y = column_or_1d(y, warn=True)
```

Out[53]:

Pipeline

preprocessing: ColumnTransformer

num

1hot

Feat_ordinal

SimpleImputer

SimpleImputer

SimpleImputer

OneHotEncoder

SMOTE

LogisticRegression

```
y_pred = logReg_s.predict(X_test)
In [257...
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          P = np.sum(Y_test.values)
          N = len(Y_test) - P
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Logistic Regression with SMOTE")
          print("-----
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Logistic Regression with SMOTE
```

Precision: 1.0 Accuracy: 0.974025974025974

Accuracy: 0.974025974025974
Recall: 0.909090909090909091

True positive rate: 0.9090909090909091

False positive rate: 0.0 F1-score: 0.9523809523809523

Logistic Regression with SMOTE and Stratified K-Folds

In [259... from sklearn.model selection import StratifiedKFold from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score import warnings from sklearn.exceptions import DataConversionWarning # Suppress DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) skf = StratifiedKFold(n_splits=5) # Tell the function which column we are going to use as the target # Use loc() function to extract the data of that column target = df.loc[:, 'Recurred'] print("Logistic Regression with SMOTE - Stratified K-Folds") print("----") # Define a function to train the model and evaluate on each fold def train_model(train, test, fold_no): X = recurrence y = recurrence_labels X_train = X.loc[train] y_train = y.loc[train] $X_{\text{test}} = X.loc[test]$ y_test = y.loc[test] # Train the model logReg_s.fit(X_train, y_train) # Make predictions y_pred = logReg_s.predict(X_test) # Print evaluation metrics print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred)) print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred)) print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred)) print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred)) print() # Perform cross-validation fold no = 1for train_index, test_index in skf.split(df, target): # Use the indices provided by split function to extract the corresponding # train data & test data train_model(train_index, test_index, fold_no) $fold_no += 1$

```
Logistic Regression with SMOTE - Stratified K-Folds
Fold 1 Accuracy: 0.961038961038961
Fold 1 Precision: 1.0
Fold 1 Recall: 0.8636363636363636
Fold 1 F1 Score: 0.9268292682926829
Fold 2 Accuracy: 0.935064935064935
Fold 2 Precision: 0.9473684210526315
Fold 2 Recall: 0.81818181818182
Fold 2 F1 Score: 0.8780487804878049
Fold 3 Accuracy: 0.948051948051948
Fold 3 Precision: 1.0
Fold 3 Recall: 0.81818181818182
Fold 3 F1 Score: 0.9
Fold 4 Accuracy: 0.868421052631579
Fold 4 Precision: 0.6896551724137931
Fold 4 Recall: 0.9523809523809523
Fold 5 Accuracy: 0.7763157894736842
Fold 5 Precision: 0.5526315789473685
Fold 5 Recall: 1.0
Fold 5 F1 Score: 0.711864406779661
```

Logistic Regression with SMOTE - Grid Search

```
from sklearn.model_selection import GridSearchCV
In [261...
          from sklearn.linear model import LogisticRegression
          # Define the parameter grid
          param_grid = {
              'logistic_C': [0.1, 1, 10], # Regularization parameter
              'logistic__penalty': ['l1', 'l2'] # Penalty term
          # Perform grid search
          grid_search = GridSearchCV(logReg_s, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("Logistic Regression with SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
```

```
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
# Print metrics
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
Logistic Regression with SMOTE - Grid Search
Best parameters found: {'logistic__C': 1, 'logistic__penalty': 'l1'}
Best F1-score on validation data: 0.9325421396628826
Precision: 1.0
Accuracy: 0.974025974025974
Recall: 0.9090909090909091
True positive rate: 0.9090909090909091
False positive rate: 0.0
F1-score: 0.9523809523809523
```

Logistic Regression with SMOTE and PCA

```
from sklearn.decomposition import PCA
In [263...
          logReg s = imbpipeline(steps=[
               ["preprocessing", f_preprocessing],
               ["pca", PCA(n_components=0.95)], # Specify the desired explained variance ratio
               ["SMOTE", SMOTE(random_state=42, sampling_strategy='minority')],
               ["logistic", LogisticRegression(solver='saga', random_state=42, C=1, penalty='l1',
          ])
          logReg_s.fit(X_train, Y_train)
          y_pred = logReg_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          P = np.sum(Y_test.values)
          N = len(Y_test) - P
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Logistic Regression with SMOTE - PCA")
          print("Precision:", precision)
```

Logistic Regression without SMOTE

```
from imblearn.pipeline import Pipeline as imbpipeline
In [54]:
         from sklearn.linear_model import LogisticRegression
         # Define the logistic regression pipeline with SMOTE
         logReg = imbpipeline(steps=[
             ["preprocessing", f_preprocessing],
             ["logistic", LogisticRegression(solver='saga', random_state=42, C=10, penalty='12'
         1)
         X = recurrence
         Y = recurrence_labels
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, r
In [55]: logReg.fit(X_train, Y_train)
         C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\utils\validation.py:1143: DataConver
         sionWarning: A column-vector y was passed when a 1d array was expected. Please change
         the shape of y to (n_samples, ), for example using ravel().
          y = column_or_1d(y, warn=True)
                                    Pipeline
Out[55]:
                       preprocessing: ColumnTransformer
                                      1hot
                                                     feat_ordinal
                    num
             SimpleImputer
                                                   ▶ SimpleImputer
                                SimpleImputer
            StandardScaler
                                ▶ OneHotEncoder
                                                  ▶ OrdinalEncoder
                             ▶ LogisticRegression
```

```
In [308... y_pred = logReg.predict(X_test)

confusion_matrix_result = confusion_matrix(Y_test, y_pred)
P = np.sum(Y_test.values)
N = len(Y_test) - P
```

```
tn, fp, fn, tp = confusion_matrix_result.ravel()
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true positive rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
print("Logistic Regression without SMOTE")
print("----")
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

Logistic Regression without SMOTE

Precision: 0.9523809523809523 Accuracy: 0.961038961038961 Recall: 0.9090909090909091

True positive rate: 0.9090909090909091 False positive rate: 0.018181818181818

F1-score: 0.9302325581395349

Logistic Regression without SMOTE - Stratified K-Folds

```
from sklearn.model_selection import StratifiedKFold
In [309...
          from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
          skf = StratifiedKFold(n_splits=5)
          # Tell the function which column we are going to use as the target
          # Use loc() function to extract the data of that column
          target = df.loc[:, 'Recurred']
          print("Logistic Regression without SMOTE - Stratified K-Folds")
          print("----")
          # Define a function to train the model and evaluate on each fold
          def train_model(train, test, fold_no):
              X = recurrence
              y = recurrence_labels
              X_train = X.loc[train]
              y_train = y.loc[train]
              X_test = X.loc[test]
              y_test = y.loc[test]
              # Train the model
              logReg.fit(X_train, y_train)
              # Make predictions
              y_pred = logReg.predict(X_test)
              # Print evaluation metrics
```

```
print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
print()

# Perform cross-validation
fold_no = 1
for train_index, test_index in skf.split(df, target):
    # Use the indices provided by split function to extract the corresponding
    # train data & test data
    train_model(train_index, test_index, fold_no)
    fold_no += 1
```

```
Logistic Regression without SMOTE - Stratified K-Folds
______
Fold 1 Accuracy: 0.948051948051948
Fold 1 Precision: 1.0
Fold 1 Recall: 0.81818181818182
Fold 1 F1 Score: 0.9
Fold 2 Accuracy: 0.922077922077922
Fold 2 Precision: 0.9
Fold 2 Recall: 0.81818181818182
Fold 2 F1 Score: 0.8571428571428572
Fold 3 Accuracy: 0.948051948051948
Fold 3 Precision: 1.0
Fold 3 Recall: 0.81818181818182
Fold 3 F1 Score: 0.9
Fold 4 Accuracy: 0.8289473684210527
Fold 4 Recall: 0.7619047619047619
Fold 4 F1 Score: 0.7111111111111111
Fold 5 Accuracy: 0.7368421052631579
Fold 5 Precision: 0.5121951219512195
Fold 5 Recall: 1.0
Fold 5 F1 Score: 0.6774193548387097
```

Logistic Regression without SMOTE - Grid Search

```
In [310...
    from sklearn.model_selection import GridSearchCV
    from sklearn.linear_model import LogisticRegression

# Define the parameter grid
param_grid = {
        'logistic__C': [0.1, 1, 10], # Regularization parameter
        'logistic__penalty': ['ll', 'l2'] # Penalty term
}

# Perform grid search
grid_search = GridSearchCV(logReg, param_grid, cv=5, scoring='f1')
grid_search.fit(X_train, Y_train)

print("Logistic Regression without SMOTE - Grid Search")
```

```
print("-----")
# Print best parameters and best score
print("Best parameters found:", grid_search.best_params_)
print("Best F1-score on validation data:", grid_search.best_score_)
# Evaluate the best model on test data
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
# Compute confusion matrix and other metrics
confusion_matrix_result = confusion_matrix(Y_test, y_pred)
tn, fp, fn, tp = confusion_matrix_result.ravel()
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
# Print metrics
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
Logistic Regression without SMOTE - Grid Search
Best parameters found: {'logistic__C': 10, 'logistic__penalty': '12'}
Best F1-score on validation data: 0.9404634581105169
Precision: 0.9523809523809523
Accuracy: 0.961038961038961
Recall: 0.9090909090909091
True positive rate: 0.9090909090909091
False positive rate: 0.01818181818181818
F1-score: 0.9302325581395349
```

Logistic Regression without SMOTE, with PCA

```
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N

f1 = 2 * (precision * recall) / (precision + recall)

print("Logistic Regression without SMOTE - PCA")
print("------")

print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

Logistic Regression without SMOTE - PCA

Precision: 0.95

Accuracy: 0.948051948051948 Recall: 0.86363636363636

F1-score: 0.9047619047619048

KNN

with SMOTE

```
Out[56]:

Pipeline

preprocessing: ColumnTransformer

num

1hot

Feat_ordinal

SimpleImputer

SimpleImputer

OneHotEncoder

StandardScaler

OneHotEncoder

SMOTE

KNeighborsClassifier
```

```
In [57]: X = recurrence
Y = recurrence_labels
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, r
knn_classifier_s.fit(X_train, Y_train)
```

C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\neighbors_classification.py:215: Da
taConversionWarning: A column-vector y was passed when a 1d array was expected. Pleas
e change the shape of y to (n_samples,), for example using ravel().
 return self._fit(X, y)

Out[57]:

```
Pipeline

preprocessing: ColumnTransformer

num

1hot

Feat_ordinal

SimpleImputer

SimpleImputer

SimpleImputer

StandardScaler

OneHotEncoder

SMOTE

KNeighborsClassifier
```

```
In [347... y_pred = knn_classifier_s.predict(X_test)

confusion_matrix_result = confusion_matrix(Y_test, y_pred)
P = np.sum(Y_test.values)
N = len(Y_test) - P

tn, fp, fn, tp = confusion_matrix_result.ravel()

precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N
```

```
f1 = 2 * (precision * recall) / (precision + recall)
print("KNN with SMOTE")
print("----")
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
KNN with SMOTE
Precision: 0.9523809523809523
Accuracy: 0.961038961038961
Recall: 0.9090909090909091
True positive rate: 0.9090909090909091
False positive rate: 0.01818181818181818
F1-score: 0.9302325581395349
```

KNN with SMOTE - Stratified-K Folds

```
from sklearn.model_selection import StratifiedKFold
In [348...
          from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
          skf = StratifiedKFold(n_splits=5)
          # Tell the function which column we are going to use as the target
          # Use loc() function to extract the data of that column
          target = df.loc[:, 'Recurred']
          print("KNN with SMOTE - Stratified K-Folds")
          print("----")
          # Define a function to train the model and evaluate on each fold
          def train_model(train, test, fold_no):
              X = recurrence
              y = recurrence_labels
              X_train = X.loc[train]
              y_train = y.loc[train]
              X_{\text{test}} = X.loc[test]
              y_test = y.loc[test]
              # Train the model
              knn_classifier_s.fit(X_train, y_train)
              # Make predictions
              y_pred = knn_classifier_s.predict(X_test)
              # Print evaluation metrics
              print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
              print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
              print()
          # Perform cross-validation
          fold_no = 1
```

```
for train_index, test_index in skf.split(df, target):
    # Use the indices provided by split function to extract the corresponding
    # train data & test data
    train_model(train_index, test_index, fold_no)
    fold_no += 1
KNN with SMOTE - Stratified K-Folds
```

```
Fold 1 Accuracy: 0.8831168831168831
Fold 1 Precision: 1.0
Fold 1 Recall: 0.5909090909090909
Fold 1 F1 Score: 0.7428571428571429
Fold 2 Accuracy: 0.8961038961038961
Fold 2 Recall: 0.72727272727273
Fold 3 Accuracy: 0.9090909090909091
Fold 3 Precision: 1.0
Fold 3 Recall: 0.6818181818181818
Fold 3 F1 Score: 0.8108108108109
Fold 4 Accuracy: 0.8421052631578947
Fold 4 Precision: 0.6551724137931034
Fold 4 Recall: 0.9047619047619048
Fold 5 Accuracy: 0.7105263157894737
Fold 5 Precision: 0.4878048780487805
Fold 5 Recall: 0.9523809523809523
Fold 5 F1 Score: 0.6451612903225806
```

KNN with SMOTE - Grid Search

```
In [349...
          from sklearn.model_selection import GridSearchCV
          from sklearn.neighbors import KNeighborsClassifier
          # Define the parameter grid
          param_grid = {
              'knn__n_neighbors': [1,2,3,4,5,6,7,8,9], # Test different number of neighbors
              'knn_weights': ['uniform', 'distance'] # Test different weighting schemes
          }
          # Perform grid search
          grid_search = GridSearchCV(knn_classifier_s, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("KNN with SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
```

```
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
# Compute confusion matrix and other metrics
confusion_matrix_result = confusion_matrix(Y_test, y_pred)
tn, fp, fn, tp = confusion_matrix_result.ravel()
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true positive rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
# Print metrics
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
KNN with SMOTE - Grid Search
Best parameters found: {'knn__n_neighbors': 2, 'knn__weights': 'uniform'}
Best F1-score on validation data: 0.8582983193277312
Precision: 0.9523809523809523
Accuracy: 0.961038961038961
Recall: 0.9090909090909091
True positive rate: 0.9090909090909091
False positive rate: 0.01818181818181818
F1-score: 0.9302325581395349
```

KNN with SMOTE and PCA

```
In [358...
          from sklearn.decomposition import PCA
          knn_classifier_s = imbpipeline(steps = [
                                               ["preprocessing", f_preprocessing],
                                           ["pca", PCA(n_components=0.95)],
                                           ["SMOTE", SMOTE(random_state=42, sampling_strategy='mi
                                           ['knn', KNeighborsClassifier(n_neighbors=3, weights='u
          knn_classifier_s.fit(X_train, Y_train)
          y_pred = knn_classifier_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          P = np.sum(Y test.values)
          N = len(Y_test) - P
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
```

```
f1 = 2 * (precision * recall) / (precision + recall)
print("KNN with SMOTE - PCA")
print("-----
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

KNN with SMOTE - PCA

Precision: 0.875

Accuracy: 0.948051948051948 Recall: 0.9545454545454546

True positive rate: 0.9545454545454546 False positive rate: 0.05454545454545454

F1-score: 0.9130434782608695

KNN without SMOTE

```
In [58]: | from sklearn.neighbors import KNeighborsClassifier
         from sklearn.metrics import classification_report, accuracy_score, confusion_matrix
         knn_classifier = imbpipeline(steps = [
                                              ["preprocessing", f_preprocessing],
                                          ['knn', KNeighborsClassifier(n_neighbors=4, weights='c
         knn classifier
```

```
Pipeline
Out[58]:
                     preprocessing: ColumnTransformer
                  num
                                    1hot
                                                  feat_ordinal
            ▶ SimpleImputer
                              ▶ SimpleImputer
                                                SimpleImputer
           StandardScaler
                              OneHotEncoder
                                               OrdinalEncoder
                          KNeighborsClassifier
```

```
In [59]: X = recurrence
         Y = recurrence_labels
         X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, r
         knn_classifier.fit(X_train, Y_train)
```

C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\neighbors_classification.py:215: Da taConversionWarning: A column-vector y was passed when a 1d array was expected. Pleas e change the shape of y to (n_samples,), for example using ravel(). return self._fit(X, y)

```
y_pred = knn_classifier.predict(X_test)
In [368...
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          P = np.sum(Y_test.values)
          N = len(Y_test) - P
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("KNN without SMOTE")
          print("-----
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
```

KNN without SMOTE

Precision: 0.9090909090909091 Accuracy: 0.948051948051948 Recall: 0.9090909090909091

True positive rate: 0.9090909090909091 False positive rate: 0.036363636363636363

F1-score: 0.9090909090909091

KNN without SMOTE - Stratified-K folds

```
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

skf = StratifiedKFold(n_splits=5)

# Tell the function which column we are going to use as the target
# Use loc() function to extract the data of that column
```

```
target = df.loc[:, 'Recurred']
print("KNN without SMOTE - Stratified K-Folds")
print("----")
# Define a function to train the model and evaluate on each fold
def train_model(train, test, fold_no):
   X = recurrence
   y = recurrence_labels
   X_train = X.loc[train]
   y_train = y.loc[train]
   X_{\text{test}} = X.loc[test]
   y_test = y.loc[test]
   # Train the model
    knn_classifier.fit(X_train, y_train)
   # Make predictions
   y_pred = knn_classifier.predict(X_test)
    # Print evaluation metrics
    print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
    print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
    print()
# Perform cross-validation
fold_no = 1
for train_index, test_index in skf.split(df, target):
   # Use the indices provided by split function to extract the corresponding
    # train data & test data
   train_model(train_index, test_index, fold_no)
    fold no += 1
```

```
KNN without SMOTE - Stratified K-Folds
Fold 1 Accuracy: 0.8701298701298701
Fold 1 Precision: 1.0
Fold 1 Recall: 0.5454545454545454
Fold 1 F1 Score: 0.7058823529411764
Fold 2 Accuracy: 0.8571428571428571
Fold 2 Precision: 0.9230769230769231
Fold 2 Recall: 0.5454545454545454
Fold 2 F1 Score: 0.6857142857142856
Fold 3 Accuracy: 0.9090909090909091
Fold 3 Precision: 1.0
Fold 3 Recall: 0.6818181818181818
Fold 3 F1 Score: 0.8108108108108109
Fold 4 Accuracy: 0.8421052631578947
Fold 4 Precision: 0.6551724137931034
Fold 4 Recall: 0.9047619047619048
Fold 5 Accuracy: 0.75
Fold 5 Precision: 0.5263157894736842
Fold 5 Recall: 0.9523809523809523
Fold 5 F1 Score: 0.6779661016949152
```

KNN without SMOTE - Grid Search

```
from sklearn.model_selection import GridSearchCV
In [370...
          from sklearn.neighbors import KNeighborsClassifier
          # Define the parameter grid
          param_grid = {
              'knn_n_neighbors': [1,2,3,4,5,6,7,8,9], # Test different number of neighbors
              'knn_weights': ['uniform', 'distance'] # Test different weighting schemes
          # Perform grid search
          grid_search = GridSearchCV(knn_classifier, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("KNN without SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
```

```
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
# Print metrics
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
KNN without SMOTE - Grid Search
Best parameters found: {'knn__n_neighbors': 4, 'knn__weights': 'distance'}
Best F1-score on validation data: 0.866474583563833
Precision: 0.9090909090909091
Accuracy: 0.948051948051948
Recall: 0.9090909090909091
True positive rate: 0.9090909090909091
False positive rate: 0.0363636363636363636
F1-score: 0.9090909090909091
```

KNN without SMOTE, with PCA

```
In [376...
          from sklearn.decomposition import PCA
          knn_classifier = imbpipeline(steps = [
                                             ["preprocessing", f_preprocessing],
                                         ["pca", PCA(n_components=0.95)],
                                         ['knn', KNeighborsClassifier(n_neighbors=4, weights='c
          knn_classifier.fit(X_train, Y_train)
          y_pred = knn_classifier.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("KNN without SMOTE - PCA")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
```

Decision Tree

with SMOTE

```
In [419...
          from sklearn.tree import DecisionTreeClassifier
          # Define your pipeline
          decision_tree_s = imbpipeline([
              ['preprocessing', f_preprocessing],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['decision_tree', DecisionTreeClassifier(criterion='entropy', max_depth=10, min_sa
          ])
In [420...
         X = recurrence
          Y = recurrence_labels
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, r
         # Train the model
In [421...
          decision_tree_s.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = decision_tree_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Decision Tree with SMOTE")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
```

True positive rate: 0.863636363636363636

False positive rate: 0.0 F1-score: 0.9268292682926829

Decision Tree with SMOTE - Stratified K Folds

```
In [422...
          from sklearn.model_selection import StratifiedKFold
          from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
          skf = StratifiedKFold(n_splits=5)
          # Tell the function which column we are going to use as the target
          # Use loc() function to extract the data of that column
          target = df.loc[:, 'Recurred']
          print("Decision Tree with SMOTE - Stratified K-Folds")
          print("-----")
          # Define a function to train the model and evaluate on each fold
          def train_model(train, test, fold_no):
              X = recurrence
              y = recurrence_labels
              X_train = X.loc[train]
              y_train = y.loc[train]
              X_{\text{test}} = X.loc[test]
              y_test = y.loc[test]
              # Train the model
              decision_tree_s.fit(X_train, y_train)
              # Make predictions
              y_pred = decision_tree_s.predict(X_test)
              # Print evaluation metrics
              print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
              print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
              print()
          # Perform cross-validation
          fold no = 1
          for train_index, test_index in skf.split(df, target):
              # Use the indices provided by split function to extract the corresponding
              # train data & test data
              train_model(train_index, test_index, fold_no)
              fold_no += 1
```

```
Decision Tree with SMOTE - Stratified K-Folds
Fold 1 Accuracy: 0.961038961038961
Fold 1 Precision: 1.0
Fold 1 Recall: 0.8636363636363636
Fold 1 F1 Score: 0.9268292682926829
Fold 2 Accuracy: 0.922077922077922
Fold 2 Recall: 0.77272727272727
Fold 2 F1 Score: 0.85
Fold 3 Accuracy: 0.935064935064935
Fold 3 Precision: 0.9473684210526315
Fold 3 Recall: 0.81818181818182
Fold 3 F1 Score: 0.8780487804878049
Fold 4 Accuracy: 0.8421052631578947
Fold 4 Precision: 0.6551724137931034
Fold 4 Recall: 0.9047619047619048
Fold 5 Accuracy: 0.7105263157894737
Fold 5 Precision: 0.48717948717948717
Fold 5 Recall: 0.9047619047619048
```

Decision Tree with SMOTE - Grid Search

```
from sklearn.model_selection import GridSearchCV
In [423...
          # Define the parameter grid
          param_grid = {
              'decision_tree__max_depth': [None, 10, 20],
              'decision_tree__min_samples_split': [2, 5, 10],
              'decision_tree__min_samples_leaf': [1, 2, 4]
          # Perform grid search
          grid_search = GridSearchCV(decision_tree_s, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("Decision Tree with SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          # Calculate TP, FP, TN, FN, precision, accuracy, recall, true positive rate, false pos
          # Print metrics
```

Decision Tree with SMOTE and PCA

```
In [425...
         from sklearn.decomposition import PCA
          decision_tree_s = imbpipeline([
             ['preprocessing', f_preprocessing],
             ["pca", PCA(n_components=0.95)],
             ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
             ['classifier', DecisionTreeClassifier(criterion='entropy', max_depth=10, min_sampl
          ])
          decision_tree_s.fit(X_train, Y_train)
          y_pred = decision_tree_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Decision Tree with SMOTE - PCA")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
         Decision Tree with SMOTE - PCA
          -----
          Accuracy: 0.8961038961038961
          Recall: 0.8636363636363636
         True positive rate: 0.863636363636363636
          False positive rate: 0.09090909090909091
          F1-score: 0.8260869565217391
```

Decision Tree without SMOTE

```
In [459... from sklearn.tree import DecisionTreeClassifier

# Define your pipeline
decision_tree = imbpipeline([
```

```
['preprocessing', f_preprocessing],
              ['classifier', DecisionTreeClassifier(criterion='entropy', min_samples_leaf=1, min
          ])
         X = recurrence
In [460...
          Y = recurrence_labels
          X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, stratify=Y, r
         # Train the model
In [465...
          decision_tree.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = decision_tree.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Decision Tree without SMOTE")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Decision Tree without SMOTE
          Precision: 0.95
          Accuracy: 0.948051948051948
          Recall: 0.8636363636363636
          True positive rate: 0.8636363636363636
          False positive rate: 0.01818181818181818
          F1-score: 0.9047619047619048
```

Decision Tree without SMOTE - Stratified K Folds

```
In [466...
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

skf = StratifiedKFold(n_splits=5)

# Tell the function which column we are going to use as the target
# Use loc() function to extract the data of that column
target = df.loc[:, 'Recurred']

print("Decision Tree wit0hout SMOTE - Stratified K-Folds")
print("-----")
```

```
# Define a function to train the model and evaluate on each fold
def train_model(train, test, fold_no):
    X = recurrence
    y = recurrence_labels
    X_train = X.loc[train]
    y_train = y.loc[train]
    X_{\text{test}} = X.loc[test]
    y_test = y.loc[test]
    # Train the model
    decision_tree.fit(X_train, y_train)
    # Make predictions
    y_pred = decision_tree.predict(X_test)
    # Print evaluation metrics
    print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
    print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
    print()
# Perform cross-validation
fold no = 1
for train_index, test_index in skf.split(df, target):
    # Use the indices provided by split function to extract the corresponding
    # train data & test data
    train_model(train_index, test_index, fold no)
    fold_no += 1
Decision Tree wit0hout SMOTE - Stratified K-Folds
-----
Fold 1 Accuracy: 0.961038961038961
Fold 1 Precision: 1.0
Fold 1 Recall: 0.8636363636363636
Fold 1 F1 Score: 0.9268292682926829
Fold 2 Accuracy: 0.935064935064935
Fold 2 Precision: 0.9473684210526315
Fold 2 Recall: 0.81818181818182
Fold 2 F1 Score: 0.8780487804878049
Fold 3 Accuracy: 0.935064935064935
```

```
Fold 3 Precision: 0.9473684210526315
Fold 3 Recall: 0.81818181818182
Fold 3 F1 Score: 0.8780487804878049
Fold 4 Accuracy: 0.9473684210526315
Fold 4 Precision: 0.9047619047619048
Fold 4 Recall: 0.9047619047619048
Fold 4 F1 Score: 0.9047619047619048
Fold 5 Accuracy: 0.7368421052631579
Fold 5 Precision: 0.5128205128205128
Fold 5 Recall: 0.9523809523809523
```

Decision Tree without SMOTE - Grid Search

```
In [475...
          from sklearn.model selection import GridSearchCV
          # Define the parameter grid
          param grid = {
              'classifier__max_depth': [None, 10, 20],
              'classifier__min_samples_split': [2, 5, 10],
              'classifier__min_samples_leaf': [1, 2, 4]
          }
          # Perform grid search
          grid_search = GridSearchCV(decision_tree, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("Decision Tree without SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          # Calculate TP, FP, TN, FN, precision, accuracy, recall, true positive rate, false pos
          # Print metrics
          Decision Tree without SMOTE - Grid Search
          Best parameters found: {'classifier__max_depth': 20, 'classifier__min_samples_leaf':
          4, 'classifier__min_samples_split': 10}
          Best F1-score on validation data: 0.8189851616322205
```

Decision Tree without SMOTE, with PCA

```
from sklearn.decomposition import PCA
In [473...
          decision_tree = imbpipeline([
               ['preprocessing', f_preprocessing],
               ["pca", PCA(n components=0.98)],
               ['classifier', DecisionTreeClassifier(criterion='entropy', min_samples_leaf=1, min
          ])
          decision_tree.fit(X_train, Y_train)
          y_pred = decision_tree.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
```

```
f1 = 2 * (precision * recall) / (precision + recall)

print("Decision Tree without SMOTE - PCA")
print("------")

print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

Decision Tree without SMOTE - PCA

Precision: 0.782608695652174 Accuracy: 0.8831168831168831 Recall: 0.81818181818182

True positive rate: 0.81818181818182 False positive rate: 0.09090909090909091

F1-score: 0.8

Regression Tree

with SMOTE

```
from sklearn.tree import DecisionTreeRegressor
In [477...
          from sklearn.metrics import mean_squared_error
          # Define your pipeline
          regression_s = imbpipeline([
              ['preprocessing', f_preprocessing],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['regressor', DecisionTreeRegressor()] # Regression tree
          ])
          # Train the model
          regression_s.fit(X_train, Y_train)
          y_pred = regression_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Regression Tree with SMOTE")
          print("----")
```

```
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

Regression Tree with SMOTE

Precision: 0.9523809523809523 Accuracy: 0.961038961038961 Recall: 0.9090909090909091

True positive rate: 0.9090909090909091 False positive rate: 0.01818181818181818

F1-score: 0.9302325581395349

Regression Tree with SMOTE - Stratified K Folds

```
from sklearn.model_selection import StratifiedKFold
In [483...
          from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
          skf = StratifiedKFold(n_splits=5)
          # Tell the function which column we are going to use as the target
          # Use loc() function to extract the data of that column
          target = df.loc[:, 'Recurred']
          print("Regression Tree with SMOTE - Stratified K-Folds")
          print("----")
          # Define a function to train the model and evaluate on each fold
          def train_model(train, test, fold_no):
              X = recurrence
              y = recurrence_labels
              X_train = X.loc[train]
              y_train = y.loc[train]
              X_{\text{test}} = X.loc[test]
              y_test = y.loc[test]
              # Train the model
              regression_s.fit(X_train, y_train)
              # Make predictions
              y_pred = regression_s.predict(X_test)
              # Print evaluation metrics
              print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
              print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
              print()
          # Perform cross-validation
          fold no = 1
          for train_index, test_index in skf.split(df, target):
              # Use the indices provided by split function to extract the corresponding
              # train data & test data
              train_model(train_index, test_index, fold_no)
              fold no += 1
```

```
Fold 1 Accuracy: 0.8441558441558441
Fold 1 Precision: 1.0
Fold 1 Recall: 0.45454545454545453
Fold 1 F1 Score: 0.625
Fold 2 Accuracy: 0.8311688311688312
Fold 2 Precision: 0.7142857142857143
Fold 2 Recall: 0.6818181818181818
Fold 2 F1 Score: 0.6976744186046512
Fold 3 Accuracy: 0.8961038961038961
Fold 3 Recall: 0.72727272727273
Fold 4 Accuracy: 0.7105263157894737
Fold 4 Precision: 0.4838709677419355
Fold 4 Recall: 0.7142857142857143
Fold 4 F1 Score: 0.5769230769230769
Fold 5 Accuracy: 0.7763157894736842
Fold 5 Precision: 0.55555555555556
Fold 5 Recall: 0.9523809523809523
Fold 5 F1 Score: 0.7017543859649122
```

Regression Tree with SMOTE - Stratified K-Folds

Regression Tree with SMOTE - Grid Search

```
from sklearn.model_selection import GridSearchCV
In [485...
          from sklearn.metrics import mean squared error
          from sklearn.tree import DecisionTreeRegressor
          # Define the parameter grid
          param_grid = {
              'regressor__max_depth': [None, 10, 20],
              'regressor__min_samples_split': [2, 5, 10],
              'regressor__min_samples_leaf': [1, 2, 4]
          # Perform grid search
          grid_search = GridSearchCV(regression_s, param_grid, cv=5, scoring='neg_mean_squared_e
          grid_search.fit(X_train, Y_train)
          print("Regression Tree with SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best negative mean squared error on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute evaluation metrics
          mse = mean_squared_error(Y_test, y_pred)
          print("Mean Squared Error on test data:", mse)
```

```
Regression Tree with SMOTE - Grid Search
Best parameters found: {'regressor__max_depth': 10, 'regressor__min_samples_leaf': 4,
'regressor min samples split': 10}
Best negative mean squared error on validation data: -0.10672136360468938
Mean Squared Error on test data: 0.06757976591309925
```

Regression Tree with SMOTE and PCA

```
In [479...
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.metrics import mean_squared_error
          # Define your pipeline
          regression_s = imbpipeline([
              ['preprocessing', f_preprocessing],
              ["pca", PCA(n_components=0.98)],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['regressor', DecisionTreeRegressor()] # Regression tree
          1)
          # Train the model
          regression_s.fit(X_train, Y_train)
          y pred = regression s.predict(X test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Regression Tree with SMOTE - PCA")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Regression Tree with SMOTE - PCA
```

Precision: 0.8095238095238095 Accuracy: 0.8831168831168831 Recall: 0.7727272727272727

True positive rate: 0.77272727272727 False positive rate: 0.07272727272727272

F1-score: 0.7906976744186046

without SMOTE

```
from sklearn.tree import DecisionTreeRegressor
In [186...
          from sklearn.metrics import mean_squared_error
          # Define your pipeline
          regression = imbpipeline([
               ['preprocessing', f preprocessing],
              ['regressor', DecisionTreeRegressor()] # Regression tree
          ])
          # Train the model
          regression.fit(X_train, Y_train)
          y_pred = regression.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Precision: 0.9473684210526315
          Accuracy: 0.935064935064935
```

Recall: 0.8181818181818182

True positive rate: 0.81818181818182 False positive rate: 0.018181818181818

F1-score: 0.8780487804878049

without SMOTE, with PCA

```
In [187...
          from sklearn.tree import DecisionTreeRegressor
          from sklearn.metrics import mean squared error
          # Define your pipeline
          regression = imbpipeline([
               ['preprocessing', f preprocessing],
               ["pca", PCA(n_components=0.95)],
               ['regressor', DecisionTreeRegressor()] # Regression tree
           ])
          # Train the model
          regression.fit(X_train, Y_train)
          y_pred = regression.predict(X_test)
```

```
confusion_matrix_result = confusion_matrix(Y_test, y_pred)

tn, fp, fn, tp = confusion_matrix_result.ravel()

precision = tp / (tp + fp)
    accuracy = (tp + tn) / (tp + tn + fp + fn)
    recall = tp / (tp + fn)
    true_positive_rate = tp / P
    false_positive_rate = fp / N

f1 = 2 * (precision * recall) / (precision + recall)

print("Precision:", precision)
    print("Accuracy:", accuracy)
    print("Recall:", recall)
    print("True positive rate:", true_positive_rate)
    print("False positive rate:", false_positive_rate)
    print("F1-score:", f1)
```

Precision: 0.85

Accuracy: 0.8961038961038961 Recall: 0.77272727272727

True positive rate: 0.7727272727272727 False positive rate: 0.0545454545454545454

F1-score: 0.8095238095238095

Naive Bayes

with SMOTE

```
In [533...
          from sklearn.naive_bayes import BernoulliNB
          \# Create a pipeline with preprocessing, SMOTE, scaling (if necessary), and Bernoulli \mathbb N
          naive_s = imbpipeline([
               ['preprocessing', f_preprocessing],
               ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
               ['naive_bayes', BernoulliNB(alpha=0.1)] # Bernoulli Naive Bayes classifier
          1)
          # Fit the model
          naive_s.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = naive_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
```

Naive Bayes with SMOTE - Stratified K Folds

```
In [519...
          from sklearn.model selection import StratifiedKFold
          from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
          skf = StratifiedKFold(n splits=5)
          # Tell the function which column we are going to use as the target
          # Use loc() function to extract the data of that column
          target = df.loc[:, 'Recurred']
          print("Naive Bayes with SMOTE - Stratified K-Folds")
          print("----")
          # Define a function to train the model and evaluate on each fold
          def train_model(train, test, fold_no):
              X = recurrence
              y = recurrence_labels
              X_train = X.loc[train]
              y_train = y.loc[train]
              X_{\text{test}} = X.loc[test]
              y_test = y.loc[test]
              # Train the model
              naive_s.fit(X_train, y_train)
              # Make predictions
              y_pred = naive_s.predict(X_test)
              # Print evaluation metrics
              print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
              print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
              print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
              print()
          # Perform cross-validation
          fold_no = 1
          for train_index, test_index in skf.split(df, target):
```

```
# Use the indices provided by split function to extract the corresponding
# train data & test data
train_model(train_index, test_index, fold_no)
fold_no += 1
```

```
Naive Bayes with SMOTE - Stratified K-Folds
-----
Fold 1 Accuracy: 0.8701298701298701
Fold 1 Precision: 0.9285714285714286
Fold 1 Recall: 0.5909090909090909
Fold 1 F1 Score: 0.72222222222223
Fold 2 Accuracy: 0.9090909090909091
Fold 2 Precision: 1.0
Fold 2 Recall: 0.6818181818181818
Fold 2 F1 Score: 0.8108108108109
Fold 3 Accuracy: 0.974025974025974
Fold 3 Precision: 1.0
Fold 3 Recall: 0.9090909090909091
Fold 3 F1 Score: 0.9523809523809523
Fold 4 Accuracy: 0.8289473684210527
Fold 4 Precision: 0.625
Fold 4 Recall: 0.9523809523809523
Fold 4 F1 Score: 0.7547169811320755
Fold 5 Accuracy: 0.7236842105263158
Fold 5 Precision: 0.5
Fold 5 Recall: 1.0
Fold 5 F1 Score: 0.666666666666666
```

Naive Bayes with SMOTE - Grid Search

```
from sklearn.model selection import GridSearchCV
In [520...
          # Define the parameter grid
          param_grid = {
              'naive_bayes__alpha': [0.1, 0.5, 1.0],  # Smoothing parameter
              'naive_bayes__binarize': [0.0, 0.5, 1.0] # Binarization threshold
          # Perform grid search
          grid_search = GridSearchCV(naive_s, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("Naive Bayes with SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score )
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
```

Naive Bayes with SMOTE - PCA

```
from sklearn.decomposition import PCA
In [527...
          naive_s = imbpipeline([
              ['preprocessing', f_preprocessing],
              ["pca", PCA(n_components=0.98)],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['naive_bayes', BernoulliNB(alpha=0.1)] # Bernoulli Naive Bayes classifier
          ])
          naive_s.fit(X_train, Y_train)
          y_pred = naive_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Naive Bayes with SMOTE - PCA")
          print("-----
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Naive Bayes with SMOTE - PCA
          _____
          Precision: 0.72727272727273
          Accuracy: 0.8831168831168831
          Recall: 0.8421052631578947
          True positive rate: 0.72727272727273
          False positive rate: 0.10909090909090909
          F1-score: 0.7804878048780488
```

Naive Bayes without SMOTE

```
In [522...
          from sklearn.naive bayes import BernoulliNB
          \# Create a pipeline with preprocessing, SMOTE, scaling (if necessary), and Bernoulli \mathbb N
          naive = imbpipeline([
              ['preprocessing', f_preprocessing],
              ['naive_bayes', BernoulliNB(alpha=0.1)] # Bernoulli Naive Bayes classifier
          ])
          # Fit the model
          naive.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = naive.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("Naive Bayes without SMOTE")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          Naive Bayes without SMOTE
          Precision: 0.9411764705882353
          Accuracy: 0.948051948051948
          Recall: 0.8421052631578947
          True positive rate: 0.72727272727273
          False positive rate: 0.018181818181818
```

Naive Bayes without SMOTE - Stratified K Folds

```
In [523... from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

skf = StratifiedKFold(n_splits=5)

# Tell the function which column we are going to use as the target
# Use loc() function to extract the data of that column
target = df.loc[:, 'Recurred']

print("Naive Bayes without SMOTE - Stratified K-Folds")
print("-----")
```

```
# Define a function to train the model and evaluate on each fold
def train_model(train, test, fold_no):
   X = recurrence
    y = recurrence_labels
   X_train = X.loc[train]
    y_train = y.loc[train]
   X_{\text{test}} = X.loc[test]
   y_test = y.loc[test]
    # Train the model
    naive.fit(X_train, y_train)
    # Make predictions
   y_pred = naive.predict(X_test)
    # Print evaluation metrics
    print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
    print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
    print()
# Perform cross-validation
fold no = 1
for train_index, test_index in skf.split(df, target):
    # Use the indices provided by split function to extract the corresponding
    # train data & test data
    train_model(train_index, test_index, fold_no)
    fold no += 1
```

Naive Bayes without SMOTE - Stratified K-Folds -----Fold 1 Accuracy: 0.8701298701298701 Fold 1 Precision: 0.9285714285714286 Fold 1 Recall: 0.5909090909090909 Fold 1 F1 Score: 0.72222222222223 Fold 2 Accuracy: 0.9090909090909091 Fold 2 Precision: 1.0 Fold 2 Recall: 0.6818181818181818 Fold 2 F1 Score: 0.8108108108109 Fold 3 Accuracy: 0.974025974025974 Fold 3 Precision: 1.0 Fold 3 Recall: 0.9090909090909091 Fold 3 F1 Score: 0.9523809523809523 Fold 4 Accuracy: 0.8289473684210527 Fold 4 Precision: 0.625 Fold 4 Recall: 0.9523809523809523 Fold 4 F1 Score: 0.7547169811320755 Fold 5 Accuracy: 0.6973684210526315 Fold 5 Precision: 0.47727272727273 Fold 5 Recall: 1.0 Fold 5 F1 Score: 0.6461538461538462

Naive Bayes without SMOTE -Grid Search

```
from sklearn.model selection import GridSearchCV
In [526...
          # Define the parameter grid
          param_grid = {
              'naive_bayes__alpha': [0.1, 0.5, 1.0],  # Smoothing parameter
              'naive_bayes__binarize': [0.0, 0.5, 1.0] # Binarization threshold
          # Perform grid search
          grid_search = GridSearchCV(naive, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("Naive Bayes without SMOTE - Grid Search")
          print("----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          # Calculate TP, FP, TN, FN, precision, accuracy, recall, true positive rate, false pos
          # Print metrics
         Naive Bayes without SMOTE - Grid Search
          -----
          Best parameters found: {'naive_bayes__alpha': 0.1, 'naive_bayes__binarize': 0.0}
          Best F1-score on validation data: 0.8223035327686491
```

Naive Bayes without SMOTE - PCA

```
In [531...
          from sklearn.decomposition import PCA
          naive = imbpipeline([
               ['preprocessing', f_preprocessing],
               ["pca", PCA(n_components=0.98)],
              ['naive_bayes', BernoulliNB(alpha=0.1)]
          ])
          naive_s.fit(X_train, Y_train)
          y_pred = naive_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
```

```
f1 = 2 * (precision * recall) / (precision + recall)
print("Naive Bayes without SMOTE - PCA")
print("----")
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
Naive Bayes without SMOTE - PCA
-----
Precision: 0.72727272727273
Accuracy: 0.8831168831168831
Recall: 0.8421052631578947
True positive rate: 0.72727272727273
False positive rate: 0.10909090909090909
F1-score: 0.7804878048780488
```

LDA

with SMOTE

```
In [534...
          from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
          lda_s = imbpipeline([
                      ['preprocessing', f_preprocessing],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['lda', LinearDiscriminantAnalysis()] # LDA classifier
          ])
          # Train the model on the SMOTE training data
          lda_s.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = lda_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("LDA with SMOTE")
          print("----")
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
```

LDA with SMOTE - Stratified K Folds

```
from sklearn.model_selection import StratifiedKFold
In [536...
           from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
           skf = StratifiedKFold(n_splits=5)
           # Tell the function which column we are going to use as the target
           # Use loc() function to extract the data of that column
           target = df.loc[:, 'Recurred']
           print("LDA with SMOTE - Stratified K-Folds")
           print("----")
           # Define a function to train the model and evaluate on each fold
           def train_model(train, test, fold_no):
               X = recurrence
               y = recurrence labels
               X_train = X.loc[train]
               y_train = y.loc[train]
               X_{\text{test}} = X.loc[test]
               y_test = y.loc[test]
               # Train the model
               lda_s.fit(X_train, y_train)
               # Make predictions
               y_pred = lda_s.predict(X_test)
               # Print evaluation metrics
               print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
               print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
               print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
               print()
           # Perform cross-validation
           fold no = 1
           for train_index, test_index in skf.split(df, target):
               # Use the indices provided by split function to extract the corresponding
               # train data & test data
               train_model(train_index, test_index, fold_no)
               fold_no += 1
```

```
LDA with SMOTE - Stratified K-Folds
Fold 1 Accuracy: 0.961038961038961
Fold 1 Precision: 1.0
Fold 1 Recall: 0.8636363636363636
Fold 1 F1 Score: 0.9268292682926829
Fold 2 Accuracy: 0.935064935064935
Fold 2 Precision: 0.9473684210526315
Fold 2 Recall: 0.81818181818182
Fold 2 F1 Score: 0.8780487804878049
Fold 3 Accuracy: 0.8961038961038961
Fold 3 Precision: 0.81818181818182
Fold 3 Recall: 0.81818181818182
Fold 3 F1 Score: 0.81818181818182
Fold 4 Accuracy: 0.7631578947368421
Fold 4 Precision: 0.6153846153846154
Fold 4 Recall: 0.38095238095238093
Fold 4 F1 Score: 0.47058823529411764
Fold 5 Accuracy: 0.8157894736842105
Fold 5 Precision: 0.6
Fold 5 Recall: 1.0
```

LDA with SMOTE - Grid Search

```
from sklearn.model_selection import GridSearchCV
In [545...
          # Define the parameter grid
          param_grid = {
              'lda__n_components': [None, 1, min(X_train.shape[1], len(np.unique(Y_train))) - 1]
          # Perform grid search
          grid_search = GridSearchCV(lda_s, param_grid, cv=5, scoring='f1')
          grid_search.fit(X_train, Y_train)
          print("LDA with SMOTE - Grid Search")
          print("-----")
          # Print best parameters and best score
          print("Best parameters found:", grid_search.best_params_)
          print("Best F1-score on validation data:", grid_search.best_score_)
          # Evaluate the best model on test data
          best_model = grid_search.best_estimator_
          y_pred = best_model.predict(X_test)
          # Compute confusion matrix and other metrics
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          # Calculate TP, FP, TN, FN, precision, accuracy, recall, true positive rate, false pos
          # Print metrics
```

```
LDA with SMOTE - Grid Search
------
Best parameters found: {'lda_n_components': None}
Best F1-score on validation data: 0.8911976911976913
```

LDA with SMOTE and PCA

```
In [544...
          from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
          lda_s = imbpipeline([
                      ['preprocessing', f_preprocessing],
              ["pca", PCA(n_components=0.95)],
              ['smote', SMOTE(random_state=42, sampling_strategy='minority')],
              ['lda', LinearDiscriminantAnalysis()] # LDA classifier
          ])
          # Train the model on the SMOTE training data
          lda_s.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = lda_s.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("LDA with SMOTE - PCA")
          print("-----
          print("Precision:", precision)
          print("Accuracy:", accuracy)
          print("Recall:", recall)
          print("True positive rate:", true_positive_rate)
          print("False positive rate:", false_positive_rate)
          print("F1-score:", f1)
          LDA with SMOTE - PCA
          Precision: 1.0
          Accuracy: 0.974025974025974
          Recall: 0.8947368421052632
          True positive rate: 0.7727272727272727
          False positive rate: 0.0
          F1-score: 0.9444444444444444
```

LDA without SMOTE

```
In [546... from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    lda = imbpipeline([
```

```
['preprocessing', f_preprocessing],
    ['lda', LinearDiscriminantAnalysis()] # LDA classifier
])
# Train the model on the SMOTE training data
lda.fit(X_train, Y_train)
# Predictions on the test set
y_pred = lda.predict(X_test)
confusion_matrix_result = confusion_matrix(Y_test, y_pred)
tn, fp, fn, tp = confusion_matrix_result.ravel()
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
recall = tp / (tp + fn)
true_positive_rate = tp / P
false_positive_rate = fp / N
f1 = 2 * (precision * recall) / (precision + recall)
print("LDA without SMOTE")
print("----")
print("Precision:", precision)
print("Accuracy:", accuracy)
print("Recall:", recall)
print("True positive rate:", true_positive_rate)
print("False positive rate:", false_positive_rate)
print("F1-score:", f1)
```

LDA without SMOTE

Precision: 1.0

Accuracy: 0.961038961038961 Recall: 0.8421052631578947

True positive rate: 0.72727272727273

False positive rate: 0.0 F1-score: 0.9142857142857143

LDA without SMOTE - Stratified K Folds

```
In [548...
from sklearn.model_selection import StratifiedKFold
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

skf = StratifiedKFold(n_splits=5)

# Tell the function which column we are going to use as the target
# Use loc() function to extract the data of that column
target = df.loc[:, 'Recurred']

print("LDA without SMOTE - Stratified K-Folds")
print("-----")

# Define a function to train the model and evaluate on each fold
def train_model(train, test, fold_no):
    X = recurrence
    y = recurrence_labels
```

```
X_train = X.loc[train]
    y_train = y.loc[train]
   X_{\text{test}} = X.loc[test]
   y_test = y.loc[test]
    # Train the model
    lda.fit(X_train, y_train)
    # Make predictions
   y_pred = lda.predict(X_test)
    # Print evaluation metrics
    print('Fold', str(fold_no), 'Accuracy:', accuracy_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Precision:', precision_score(y_test, y_pred))
    print('Fold', str(fold_no), 'Recall:', recall_score(y_test, y_pred))
    print('Fold', str(fold_no), 'F1 Score:', f1_score(y_test, y_pred))
    print()
# Perform cross-validation
fold no = 1
for train_index, test_index in skf.split(df, target):
    # Use the indices provided by split function to extract the corresponding
    # train data & test data
    train_model(train_index, test_index, fold_no)
    fold_no += 1
```

```
LDA without SMOTE - Stratified K-Folds
-----
Fold 1 Accuracy: 0.961038961038961
Fold 1 Precision: 1.0
Fold 1 Recall: 0.8636363636363636
Fold 1 F1 Score: 0.9268292682926829
Fold 2 Accuracy: 0.948051948051948
Fold 2 Precision: 1.0
Fold 2 Recall: 0.81818181818182
Fold 2 F1 Score: 0.9
Fold 3 Accuracy: 0.922077922077922
Fold 3 Precision: 1.0
Fold 3 Recall: 0.72727272727273
Fold 3 F1 Score: 0.8421052631578948
Fold 4 Accuracy: 0.9605263157894737
Fold 4 Precision: 0.9090909090909091
Fold 4 Recall: 0.9523809523809523
Fold 4 F1 Score: 0.9302325581395349
Fold 5 Accuracy: 0.75
Fold 5 Precision: 0.525
Fold 5 Recall: 1.0
Fold 5 F1 Score: 0.6885245901639345
```

LDA without SMOTE - Grid Search

```
In [551... from sklearn.model_selection import GridSearchCV
# Define the parameter grid
```

```
param_grid = {
    'lda__n_components': [None, 1, min(X_train.shape[1], len(np.unique(Y_train))) - 1
# Perform grid search
grid_search = GridSearchCV(lda, param_grid, cv=5, scoring='f1')
grid_search.fit(X_train, Y_train)
print("LDA without SMOTE - Grid Search")
print("-----")
# Print best parameters and best score
print("Best parameters found:", grid_search.best_params_)
print("Best F1-score on validation data:", grid_search.best score )
# Evaluate the best model on test data
best_model = grid_search.best_estimator_
y_pred = best_model.predict(X_test)
# Compute confusion matrix and other metrics
confusion_matrix_result = confusion_matrix(Y_test, y_pred)
# Calculate TP, FP, TN, FN, precision, accuracy, recall, true positive rate, false pos
# Print metrics
LDA without SMOTE - Grid Search
Best parameters found: {'lda__n_components': None}
```

LDA without SMOTE, with PCA

Best F1-score on validation data: 0.9090467276710161

```
In [552...
          from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
          lda = imbpipeline([
                       ['preprocessing', f_preprocessing],
               ["pca", PCA(n_components=0.95)],
              ['lda', LinearDiscriminantAnalysis()] # LDA classifier
          ])
          # Train the model on the SMOTE training data
          lda.fit(X_train, Y_train)
          # Predictions on the test set
          y_pred = lda.predict(X_test)
          confusion_matrix_result = confusion_matrix(Y_test, y_pred)
          tn, fp, fn, tp = confusion_matrix_result.ravel()
          precision = tp / (tp + fp)
          accuracy = (tp + tn) / (tp + tn + fp + fn)
          recall = tp / (tp + fn)
          true_positive_rate = tp / P
          false_positive_rate = fp / N
          f1 = 2 * (precision * recall) / (precision + recall)
          print("LDA without SMOTE - PCA")
```

Unsupervised Learning

Hierachical Clustering

```
In [195...
          from sklearn.datasets import make_blobs
          from sklearn.pipeline import Pipeline
          from sklearn.preprocessing import StandardScaler
          from scipy.cluster.hierarchy import linkage, dendrogram
          import matplotlib.pyplot as plt
          # Generate synthetic data
          X, _ = make_blobs(n_samples=100, centers=5, random_state=42)
          # Define the pipeline (although not necessary for hierarchical clustering)
          pipeline = Pipeline([
               ('scaler', StandardScaler()), # Scale features if necessary
          ])
          # Fit the pipeline
          X1 = pipeline.fit_transform(X)
          # Perform hierarchical clustering
          Z1 = linkage(X1, method='single', metric='euclidean')
          #Z2 = linkage(X1, method='complete', metric='euclidean')
          #Z3 = linkage(X1, method='average', metric='euclidean')
          #Z4 = linkage(X1, method='ward', metric='euclidean')
          plt.figure(figsize=(25, 10))
          plt.subplot(2,2,1), dendrogram(Z1), plt.title('Single')
          #plt.subplot(3,2,2), dendrogram(Z2), plt.title('Complete')
          #plt.subplot(2,2,3), dendrogram(Z3), plt.title('Average')
          #plt.subplot(2,2,4), dendrogram(Z4), plt.title('Ward')
          plt.show()
```


K-Means Clustering

```
from sklearn.datasets import make_blobs
In [71]:
         from sklearn.pipeline import Pipeline
         from sklearn.preprocessing import StandardScaler
         from sklearn.cluster import KMeans
         import matplotlib.pyplot as plt
         # Generate synthetic data
         X, _ = make_blobs(n_samples=100, centers=5, random_state=42)
         # Define the pipeline
         pipeline = Pipeline([
             ('scaler', StandardScaler()),
             ('kmeans', KMeans(n_clusters=5, random_state=42))
         ])
         # Fit the pipeline
         pipeline.fit(X)
         # Obtain cluster labels
         cluster_labels = pipeline.predict(X)
         # Plot the original data
         plt.figure(figsize=(8, 6))
         plt.scatter(X[:, 0], X[:, 1], c='blue', s=30, label='Data Points')
         plt.title('Original Data')
         plt.xlabel('Feature 1')
         plt.ylabel('Feature 2')
         plt.legend()
         plt.show()
```

C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:870: FutureWarnin
g: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value
of `n_init` explicitly to suppress the warning
 warnings.warn(
C:\Users\CKY\anaconda3\Lib\site-packages\sklearn\cluster_kmeans.py:1382: UserWarnin
g: KMeans is known to have a memory leak on Windows with MKL, when there are less chu
nks than available threads. You can avoid it by setting the environment variable OMP_

warnings.warn(

NUM_THREADS=1.

Clustered Data

In []: