Nachiketa Mishra IIITDM Kancheepuram, Chennai

An $m \times m$ matrix is said to be an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

An $m \times m$ matrix is said to be an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

Example:

$$I = \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right]$$

An $m \times m$ matrix is said to be an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

Example:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $(e: R_1 \longleftarrow cR_1, c \neq 0)$

An $m \times m$ matrix is said to be an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

Example:

$$I = \left[egin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array}
ight] \quad (e:R_1 \longleftarrow cR_1, \quad c
eq 0)$$

$$E = e(I) = \left[\begin{array}{cc} c & 0 \\ 0 & 1 \end{array} \right]$$

An $m \times m$ matrix is said to be an elementary matrix if it can be obtained from the $m \times m$ identity matrix by means of a single elementary row operation.

Example:

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$E = e(I) = \begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}$$
 (E is an elementary matrix)

$$\left[\begin{array}{cc} c & 0 \\ 0 & 1 \end{array}\right], \quad \left[\begin{array}{cc} 1 & 0 \\ 0 & c \end{array}\right] \ \ (\textit{Using Type } 1, \ \ c \neq 0)$$

$$\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix} \quad (Using Type 1, c \neq 0)$$
$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \quad (Using Type 2)$$

$$\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix} \quad (Using Type 1, c \neq 0)$$

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \quad (Using Type 2)$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad (Using Type 3)$$

$$\begin{bmatrix} c & 0 \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ 0 & c \end{bmatrix} \quad (Using Type 1, c \neq 0)$$

$$\begin{bmatrix} 1 & c \\ 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 \\ c & 1 \end{bmatrix} \quad (Using Type 2)$$

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad (Using Type 3)$$

Find all 3×3 elementary matrices. (Assignment)

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

Type 1

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 =$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_{1} = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_{1} = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify),
$$E_1E = I$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \left(e : R_1 \longleftarrow cR_1, \ c \neq 0, e_1 : R_1 \longleftarrow \frac{1}{c}R_1 \right)$$

$$E = e(I) = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_{1} = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{c} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify),
$$E_1E = I = EE_1$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) = \begin{bmatrix} cA_{11} & cA_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) = \left[egin{array}{ccc} cA_{11} & cA_{12} \ A_{21} & A_{22} \ A_{31} & A_{32} \end{array}
ight]$$

$$e(I)A =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) = \left[\begin{array}{cc} cA_{11} & cA_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{array} \right]$$

$$e(I)A = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) = \left[egin{array}{ccc} cA_{11} & cA_{12} \ A_{21} & A_{22} \ A_{31} & A_{32} \end{array}
ight]$$

$$e(I)A = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} cA_{11} & cA_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = e(A)$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow cR_1, c \neq 0)$

$$e(A) = \left[\begin{array}{cc} cA_{11} & cA_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{array} \right]$$

$$e(I)A = \begin{bmatrix} c & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} cA_{11} & cA_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = e(A)$$

$$e(I)A = e(A)$$

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 =$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \left[egin{array}{ccc} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[egin{array}{ccc} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify),
$$E_1E = I$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftarrow R_1 + cR_2, e_1: R_1 \longleftarrow R_1 - cR_2)$$

$$E = e(I) = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify),
$$E_1E = I = EE_1$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftarrow R_1 + cR_2)$

$$e(A) = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \begin{bmatrix} 1 & c & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} A_{11} + cA_{21} & A_{12} + cA_{22} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = e(A)$$

$$I = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E = e(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$I = \left| \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right| \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E = e(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 =$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E=e(I)=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right], \quad E_1=e_1(I)=\left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right]$$

$$EE_1 = \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E = e(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Type 3

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E = e(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify), $E_1E = I$

$$I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad (e: R_1 \longleftrightarrow R_2, e_1: R_1 \longleftrightarrow R_2)$$

$$E = e(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_1 = e_1(I) = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$EE_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$$

Similarly (verify),
$$E_1E = I = EE_1$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \left[egin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right] \left[egin{array}{ccc} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{array} \right] =$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

Let
$$A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix}$$
, $(e: R_1 \longleftrightarrow R_2)$

$$e(A) = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \\ A_{31} & A_{32} \end{bmatrix} = \begin{bmatrix} A_{21} & A_{22} \\ A_{11} & A_{12} \\ A_{31} & A_{32} \end{bmatrix}$$

$$e(I)A = e(A)$$

8

Theorem 9

Let e be an elementary row operation and l be the $m \times m$ identity matrix. Then for every $m \times n$ matrix A,

$$e(I)A = e(A)$$

Theorem 9

Let e be an elementary row operation and l be the $m \times m$ identity matrix. Then for every $m \times n$ matrix A,

$$e(I)A = e(A)$$

Proof: Assignment

9

Theorem 9

Let e be an elementary row operation and l be the $m \times m$ identity matrix. Then for every $m \times n$ matrix A,

$$e(I)A = e(A)$$

Proof: Assignment

Note: For every elementary row operation e, there exists an inverse elementary operation of the same type e_1 such that

$$e(I)e_1(I) = I = e_1(I)e(I)$$
 $(EE_1 = I = E_1E)$

g

Let A and B be $m \times n$ matrices over the field F.

Let A and B be $m \times n$ matrices over the field F. Then B is row-equivalent to A if and only if B = PA where P is a product of $m \times m$ elementary matrices.

Let A and B be $m \times n$ matrices over the field F. Then B is row-equivalent to A if and only if B = PA where P is a product of $m \times m$ elementary matrices.

Proof:

Case 1: Suppose that *B* is row-equivalent to *A*.

Let A and B be $m \times n$ matrices over the field F. Then B is row-equivalent to A if and only if B = PA where P is a product of $m \times m$ elementary matrices.

Proof:

Case 1: Suppose that *B* is row-equivalent to *A*.

Then B can be obtained from A by a finite sequence of elementary row operations, say

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \ldots \longrightarrow A_{k-1} \longrightarrow A_k = B$$

where $e_i(A_{i-1}) = A_i$, e_i is an elementary row operation for $1 \le i \le k$.

Let A and B be $m \times n$ matrices over the field F. Then B is row-equivalent to A if and only if B = PA where P is a product of $m \times m$ elementary matrices.

Proof:

Case 1: Suppose that B is row-equivalent to A.

Then B can be obtained from A by a finite sequence of elementary row operations, say

$$A = A_0 \longrightarrow A_1 \longrightarrow A_2 \longrightarrow \ldots \longrightarrow A_{k-1} \longrightarrow A_k = B$$

where $e_i(A_{i-1}) = A_i$, e_i is an elementary row operation for $1 \le i \le k$.

Note that $e_i(A_{i-1}) = e_i(I)A_{i-1}$, by Theorem 9 and $e_i(I)$ is an $m \times m$ elementary matrix.

Clearly,
$$A_1=e_1(A)=e_1(I)A$$
 ,

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1$

Clearly,
$$A_1=e_1(A)=e_1(I)A$$
 , $A_2=e_2(A_1)=e_2(I)A_1$ $\Longrightarrow A_2=e_2(I)e_1(I)A$

Clearly,
$$A_1=e_1(A)=e_1(I)A$$
 , $A_2=e_2(A_1)=e_2(I)A_1$ $\Longrightarrow A_2=e_2(I)e_1(I)A$ Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A$$

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1$ $\implies A_2 = e_2(I)e_1(I)A$

Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A = PA$$

where $P = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)$ is a product of $m \times m$ elementary matrices.

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1$ $\implies A_2 = e_2(I)e_1(I)A$

Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I)\dots e_2(I)e_1(I)A = PA$$

where $P = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)$ is a product of $m \times m$ elementary matrices.

Case 2 : Suppose that B = PA, where P is a product of $m \times m$ elementary matrices.

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1 \implies A_2 = e_2(I)e_1(I)A$

Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A = PA$$

where $P = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)$ is a product of $m \times m$ elementary matrices.

Case 2 : Suppose that B = PA, where P is a product of $m \times m$ elementary matrices.

Let $P = E_k E_{k-1} \dots E_2 E_1$ where E_i is an $m \times m$ elementary matrix for $1 \le i \le k$.

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1$ $\implies A_2 = e_2(I)e_1(I)A$

Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A = PA$$

where $P = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)$ is a product of $m \times m$ elementary matrices.

Case 2 : Suppose that B = PA, where P is a product of $m \times m$ elementary matrices.

Let $P = E_k E_{k-1} \dots E_2 E_1$ where E_i is an $m \times m$ elementary matrix for $1 \le i \le k$. Since E_i is an elementary matrix, there exists an elementary row operation e_i such that $E_i = e_i(I)$.

Clearly,
$$A_1 = e_1(A) = e_1(I)A$$
 , $A_2 = e_2(A_1) = e_2(I)A_1$ $\implies A_2 = e_2(I)e_1(I)A$

Using similar arguments,

$$B = A_k = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A = PA$$

where $P = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)$ is a product of $m \times m$ elementary matrices.

Case 2 : Suppose that B = PA, where P is a product of $m \times m$ elementary matrices.

Let $P = E_k E_{k-1} \dots E_2 E_1$ where E_i is an $m \times m$ elementary matrix for $1 \le i \le k$. Since E_i is an elementary matrix, there exists an elementary row operation e_i such that $E_i = e_i(I)$.

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(A)$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(I)A$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(I)e_1(A)$$

$$B = PA = e_k(I)e_{k-1}(I) \dots e_2(e_1(A))$$

Hence B can be obtained from A by a finite sequence of elementary row operations e_1, e_2, \ldots, e_k .

Hence B can be obtained from A by a finite sequence of elementary row operations e_1, e_2, \ldots, e_k . Then B is row-equivalent to A.

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let e_1 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A))$$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A)) = e_2(e_1(I)A)$$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A)) = e_2(e_1(I)A) = e_2(I)e_1(I)A$$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A)) = e_2(e_1(I)A) = e_2(I)e_1(I)A = PA$$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A)) = e_2(e_1(I)A) = e_2(I)e_1(I)A = PA$$

$$P = e_2(I)e_1(I) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Show that
$$A=\begin{bmatrix}1&2\\3&4\\5&6\end{bmatrix}$$
 and $B=\begin{bmatrix}3&4\\1&2\\8&10\end{bmatrix}$ are row-equivalent. Find a 3×3 matrix P such that $B=PA$

Solution : Let
$$e_1$$
 : $R_1 \longleftrightarrow R_2$ and e_2 : $R_3 \longleftarrow R_3 + R_1$

Clearly,
$$B = e_2(e_1(A)) = e_2(e_1(I)A) = e_2(I)e_1(I)A = PA$$

$$P = e_2(I)e_1(I) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$