Структура механической системы Динамика твёрдого тела и систем твёрдых тел

Юдинцев В. В.

Кафедра теоретической механики

27 февраля 2019 г.

Системы тел

- Системы раскрытия солнечных батарей, антенн, радиаторов, ...
- Системы отделения ступеней отработавших блоков ракет.
- Роботы-манипуляторы.

Две задачи динамики систем тел

- Прямая задача определение ускорений движения тел системы по действующим силам $f \to a$
- Обратная задача определение сил, вызывающих заданное ускорение тел системы ${f a} o {f f}$

Общий вид уравнений движения систем тел

$$\begin{aligned} M(q)\ddot{q} + C(q,\dot{q}) &= F + R \\ f(q) &= 0 \end{aligned}$$

- ullet $M(\mathsf{модель},q)$ матрица масс, зависящая от свойств системы;
- ullet $C(\mbox{модель},q,\dot{q})$ матрица коэффициентов, включающая слагаемые, не зависящие от ускорений;
- F силы и моменты;
- R реакции связей. Для идеальных связей

$$R = \left(\frac{\partial f}{\partial q}\right)^{T} \lambda$$

Абсолютные координаты

Уравнения Ньютона-Эйлера с уравнениями связи

- Положение тел определяется радиус-векторами ${f r}_i$ и выбранными параметрами o_i , описывающими ориентацию твёрдого тела: углами Эйлера, направляющими косинусами (матрицы A_i), кватернионами.
- Уравнения движения интегрируются совместно с уравнениями связей.
- В правую часть уравнений движения кроме внешних сил и моментов добавляются силы и моменты реакции.

Преимущества и недостатки

- Простые уравнения.
- Разреженная матрица коэффициентов.
- 🗶 Избыточное количество координат, описывающих систему.
- **X** Большой размер матрицы коэффициентов: $N = 6n_b + n_c$.

Шарнирные координаты

Уравнения в шарнирных координатах

- ✓ Минимальное количество уравнений.
- ✓ Уравнения движения не содержат реакций связей.
- 🗡 Сложная процедура формирования матрицы масс.

Системы с замкнутой структурой

• шарнирные координаты не независимы

Системы с замкнутой структурой

- Приведение системы к структуре дерева исключение одного или нескольких шарниров.
- Запись уравнения движения для новой приведённой системы.

Системы с замкнутой структурой

- Формируются уравнения связей для исключенных шарниров.
- Уравнения движения решаются совместно с уравнениями связей.

Исходные данные

Для полного описания системы многих тел требуются следующие группы параметров:

- количество тел системы;
- параметры, характеризующие структуру взаимосвязей тел;
- параметры, характеризующие кинематические связи;
- параметры, характеризующие расположение шарниров на телах;
- массы и моменты инерции тел.

Внешнее тело

Положение внешнего тела в инерциальном пространстве является заданной функцией времени. Внешнее тело не является частью рассматриваемой механической системы, а будет представлено подвижным базисом с известным законом движения.

Смежность / Adjacency

Два тела механической системы называются смежными тогда и только тогда, когда они непосредственно оказывают силовое воздействие друг на друга.

Шарнир / Joint (Hinge)

Шарнир – соединение между смежными телами. В шарнире объединены все силы взаимодействия между двумя смежными телами, так что каждая пара смежных тел имеет только один шарнир.

Граф / Graph

Структура механической системы описывается при помощи графов.

Граф G(S,U) – это совокупность двух множеств - не пустого множества вершин S и множества U неупорядоченных пар различных элементов множества S (множество рёбер или дуг).

Структура механической системы

Вершины: s_0, s_1, \ldots, s_n обозначают тела.

Дуги: $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ – шарниры.

Инцидентность / Incidence

Пусть \mathbf{s}_1 , \mathbf{s}_2 - вершины, а $\mathbf{u}_2=(\mathbf{s}_1,\mathbf{s}_2)$ - соединяющее их ребро. Тогда вершина \mathbf{s}_1 и ребро \mathbf{u}_2 инцидентные, вершина \mathbf{s}_2 и ребро \mathbf{u}_2 также инцидентные.

Смежность / Adjacency

Смежные дуги – ребра, инцидентные одной вершине. Смежные вершины – две вершины, инцидентные одному ребру.

Ориентированный граф / Orgraph

Ориентированный граф – граф с ориентированными дугами.

Mapшpyт / Sequence

Маршрут – чередующаяся последовательность вершин и ребер, в которой любые два соседних элемента инцидентны:

 $s_3, u_4, s_4, u_5, s_2, u_6, s_3.$

Цепь / Trail

Цепь – маршрут, у которого все ребра различны: $s_1, u_3, s_3, u_4, s_4.$

Простая цепь – маршрут, у которого все вершины (следовательно и ребра) различны

Определения

Связанность вершин

Две вершины в графе *связаны*, если существует соединяющая их простая цепь.

Связанный граф – граф, в котором все вершины связаны

Цикл – замкнутая цепь.

Дерево

Ациклический граф

Граф без циклов называется *ациклическим*.

Дерево – связанный ациклический граф.

Отношение слабого упорядочивания для вершин

$$s_1 \leq s_2, \quad s_1 \leq s_4, \quad s_2 \nleq s_4$$

Вершина \mathbf{s}_i лежит на пути от вершины \mathbf{s}_j к вершине \mathbf{s}_0 :

$$\mathrm{s}_i \leq \mathrm{s}_j$$

Вершина \mathbf{s}_i лежит на пути от вершины \mathbf{s}_j к вершине \mathbf{s}_0 , но вершина \mathbf{s}_i не совпадает \mathbf{s}_j :

$$s_i < s_j$$

Предшествующая дуга

Дуга, предшествующая вершине $s_k \quad (k \neq 0)$ – это дуга, принадлежащая пути между s_0 и s_k , которая инцидентна s_k .

- Дуга u_1 предшествует вершине s_1 .
- ullet Дуга u_4 предшествует вершине s_4 .

Предшествующая вершина

Вершина, предшествующая вершине s_k $(k \neq 0)$ – это вершина, которая связана с вершиной s_k дугой, предшествующей вершине s_k .

- Вершина s_1 предшествует вершине s_2 .
- Вершина s_3 предшествует вершине s_4 .

Правильная нумерация графа

Граф с произвольной нумерацией

Правильная нумерация графа

В графе со структурой дерева вершины и дуги можно пронумеровать так, что будут выполнены следующие условия:

- для всех вершин $s_k \; (k \neq 0)$ номер дуги, предшествующей вершине s_k , равен k;
- номер вершины, предшествующей ${\rm s}_{\rm k}$, меньше ${\rm k}.$

Построение правильной нумерации

- Определяются граничные вершины все вершины, за исключением \mathbf{s}_0 , с которыми инцидентна только одна дуга.
- Вершинам присваиваются наибольшие номера n, n-1, n-2 и т.д. Такие же номера даются соответствующим предшествующим дугам.

Построение правильной нумерации

- Пронумерованные вершины и дуги кроме ${\bf s}_0$, отсекаются от графа.
- В получившемся меньшем графе определяют граничные вершины.
- Новым граничным вершинам присваиваются наибольшие из имеющихся еще в наличии номера.

Построение правильной нумерации

 Процедура продолжается до тех пор, пока не окажутся помеченными все вершины и дуги.

Функции $i^+(\alpha), i^-(\alpha)$

Структуру графа описывается двумя целочисленными функциями:

- ullet i $^+(lpha)$ индекс тела из которого дуга lpha выходит;
- ullet ${
 m i}^-(lpha)$ индекс тела в которое дуга lpha входит.

$$S_{k\alpha} = \left\{ \begin{array}{ll} +1: & k=i^+(\alpha) \\ -1: & k=i^-(\alpha) \\ 0: & k\neq i^-(\alpha), k\neq i^+(\alpha) \end{array} \right.$$

Для графа со структурой дерева каждый столбец матрицы инцидентности содержит только один ненулевой элемент равный +1 и один элемент равный -1.

$$\mathbf{S} = \begin{bmatrix} S_{01} & S_{02} & \dots & S_{0n} \\ S_{11} & S_{12} & \dots & S_{1n} \\ \vdots & & & & \\ S_{n1} & S_{n2} & \dots & S_{nn} \end{bmatrix}.$$

$$\mathbf{S} = \begin{bmatrix} +1 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Матрицы инцидентности S_0 и S

Матрицу S можно разделить на две части: матрицу строку \mathbf{S}_0 и квадратную матрицу \mathbf{S} :

$$\mathbf{S}_0 = \begin{bmatrix} S_{01} & S_{02} & \dots & S_{0n} \end{bmatrix},$$

$$\mathbf{S} = \begin{bmatrix} S_{11} & S_{12} & \dots & S_{1n} \\ \vdots & & & \\ S_{n1} & S_{n2} & \dots & S_{nn} \end{bmatrix}.$$

$$\mathbf{S}_0 = \begin{bmatrix} +1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{S} = \begin{bmatrix} -1 & 1 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Матрица ${f T}$

$$T_{\alpha k} = \left\{ \begin{array}{ll} +1: & \alpha \in \text{ пути от } s_i \text{ к } s_0 \text{ и направлена } \textbf{к} \ s_0 \\ -1: & \alpha \in \text{ пути от } s_i \text{ к } s_0 \text{ и направлена } \textbf{от } s_0 \\ 0: & \alpha \text{ не лежит на пути от } s_i \text{ к } s_0 \end{array} \right.$$

$$\mathbf{T} = \begin{bmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Свойства матриц S, T

В матрице ${f S}_0$ отличен от нуля только первый элемент ${f S}_{01}.$

$$\mathbf{S}_0 = \begin{bmatrix} +1 & 0 & 0 & 0 \end{bmatrix}$$

Свойства матрицы ${f T}$

Все элементы первой строки матрицы ${f T}$ равны $-{
m S}_{01}.$

$$\mathbf{T} = \begin{bmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Свойства матриц \mathbf{S} , \mathbf{T}

$$\mathbf{T}^{\mathrm{T}}\mathbf{S}_{0}^{\mathrm{T}}=-\mathbf{1}_{\mathrm{n}}$$

$$\mathbf{S}_0 = \begin{bmatrix} +1 & 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} -1 & -1 & -1 & -1 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Произведение матриц ${f S}$ и ${f T}$

$$ST = TS = E$$

Рассмотрим

$$(\mathbf{TS})_{ab} = \sum_{i=1}^{n} T_{ai} S_{ib}, (a, b = 1, ..., n).$$

Т.к. $S_{ib}=+1$ для $i=i^+(b)$, $S_{ib}=-1$ для $i=i^-(b)$ и $S_{ib}=0$ во всех других случаях, следовательно

$$(TS)_{ab} = T_{ai^+(b)} - T_{ai^-(b)}.$$

$(TS)_{ab}$ при a=b

$$(TS)_{ab} = T_{ai^+(b)} - T_{ai^-(b)}$$

Для a = b:

дуга $\mathrm{u_a} = \mathrm{u_b}$ либо направлена к $\mathrm{s_0}$, либо выходит из $\mathrm{s_0}$.

Дуга направлена к s_0 :

Дуга выходит из к s_0 :

$$\begin{split} T_{ai^+(b)} &= 1, & T_{ai^+(b)} &= 0, \\ T_{ai^-(b)} &= 0; & T_{ai^-(b)} &= -1. \end{split}$$

Следовательно:

$$(\mathbf{TS})_{\mathrm{aa}} = 1$$

$(TS)_{ab}$ при $a \neq b$

$$(TS)_{ab} = T_{ai^+(b)} - T_{ai^-(b)}.$$

Для $a \neq b$ рассмотрим два пути: между s_0 и $s_{i^+(b)}$ и между s_0 и $s_{i^-(b)}$. Дуга u_a принадлежит каждому из путей, либо не принадлежит ни одному из них. В любом случае $T_{ai^+(b)}=T_{ai^-(b)}$ и, следовательно, $(\mathbf{TS})_{ab}=0$.

Задание

Для изображенного на рисунке графа запишите:

- **1** функции $i^+(\alpha)$ и $i^-(\alpha)$;
- ② матрицы S и Т.

Выполните правильную нумерацию графа. Запишите для нового графа функции $\mathbf{i}^+(\alpha)$ и $\mathbf{i}^-(\alpha)$ и матрицы \mathbf{S} и \mathbf{T} .