```
In [1]:
```

import pandas as pd

In [2]:

import matplotlib.pyplot as plt
import seaborn as sns

In [3]:

import warnings
warnings.filterwarnings('ignore')

In [4]:

df = pd.read_csv('attrition_employee.csv')

In [5]:

df.head()

Out[5]:

	id	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EnvironmentSatisfaction .	
0	0	36	Travel_Frequently	599	Research & Development	24	3	Medical	1	4 .	
1	1	35	Travel_Rarely	921	Sales	8	3	Other	1	1 .	
2	2	32	Travel_Rarely	718	Sales	26	3	Marketing	1	3 .	
3	3	38	Travel_Rarely	1488	Research & Development	2	3	Medical	1	3 .	
4	4	50	Travel_Rarely	1017	Research & Development	5	4	Medical	1	2 .	

5 rows × 35 columns

In [6]:

df.tail()

Out[6]:

	id	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EnvironmentSatisfac
1672	1672	30	Travel_Rarely	945	Sales	1	3	Life Sciences	1	_
1673	1673	32	Travel_Rarely	1303	Research & Development	2	3	Life Sciences	1	
1674	1674	29	Travel_Frequently	1184	Human Resources	24	3	Human Resources	1	
1675	1675	36	Travel_Rarely	441	Sales	9	2	Marketing	1	
1676	1676	36	Travel_Rarely	1141	Research & Development	20	3	Life Sciences	1	

5 rows × 35 columns

In [7]:

df.shape

Out[7]:

(1677, 35)

In [9]:

```
df.duplicated().sum()
```

'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel',
'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance',
'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinceLastPromotion',

'YearsWithCurrManager', 'Attrition'],

Out[9]:

0

In [10]:

```
df.isnull().sum()
```

dtype='object')

Out[10]:

```
id
                             0
                             0
Age
{\tt BusinessTravel}
                             0
DailyRate
Department
                             0
DistanceFromHome
                             0
Education
                             0
EducationField
                             0
EmployeeCount
EnvironmentSatisfaction
                             0
Gender
                             0
HourlyRate
JobInvolvement
                             0
JobLevel
                             0
JobRole
JobSatisfaction
                             0
MaritalStatus
                             0
MonthlyIncome
MonthlyRate
                             0
{\tt NumCompaniesWorked}
                             0
Over18
                             0
OverTime
PercentSalaryHike
                             0
PerformanceRating
                             0
RelationshipSatisfaction
{\sf StandardHours}
StockOptionLevel
TotalWorkingYears
                             0
TrainingTimesLastYear
WorkLifeBalance
YearsAtCompany
                             0
YearsInCurrentRole
                             0
YearsSinceLastPromotion
                             a
YearsWithCurrManager
                             0
Attrition
dtype: int64
```

In [11]:

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1677 entries, 0 to 1676
Data columns (total 35 columns):

#	Columns (total 35 columns): Non-Null Count	Dtype
0	id	1677 non-null	int64
1	Age	1677 non-null	int64
2	BusinessTravel	1677 non-null	object
3	DailyRate	1677 non-null	int64
4	Department	1677 non-null	object
5	DistanceFromHome	1677 non-null	int64
6	Education	1677 non-null	int64
7	EducationField	1677 non-null	object
8	EmployeeCount	1677 non-null	int64
9	EnvironmentSatisfaction	1677 non-null	int64
10	Gender	1677 non-null	object
11	HourlyRate	1677 non-null	int64
12	JobInvolvement	1677 non-null	int64
13	JobLevel	1677 non-null	int64
14	JobRole	1677 non-null	object
15	JobSatisfaction	1677 non-null	int64
16	MaritalStatus	1677 non-null	object
17	MonthlyIncome	1677 non-null	int64
18	MonthlyRate	1677 non-null	int64
19	NumCompaniesWorked	1677 non-null	int64
20	Over18	1677 non-null	object
21	OverTime	1677 non-null	object
22	PercentSalaryHike	1677 non-null	int64
23	PerformanceRating	1677 non-null	int64
24	RelationshipSatisfaction	1677 non-null	int64
25	StandardHours	1677 non-null	int64
26	StockOptionLevel	1677 non-null	int64
27	TotalWorkingYears	1677 non-null	int64
28	TrainingTimesLastYear	1677 non-null	int64
29	WorkLifeBalance	1677 non-null	int64
30	YearsAtCompany	1677 non-null	int64
31	YearsInCurrentRole	1677 non-null	int64
32	YearsSinceLastPromotion	1677 non-null	int64
33	YearsWithCurrManager	1677 non-null	int64
34	Attrition	1677 non-null	int64
dtyne	$ac \cdot in + 61/27$ $ac \cdot in + 61/27$		

dtypes: int64(27), object(8)
memory usage: 458.7+ KB

In [12]:

df.describe()

Out[12]:

	id	Age	DailyRate	DistanceFromHome	Education	EmployeeCount	EnvironmentSatisfaction	HourlyRate	Joblnvol
count	1677.000000	1677.000000	1677.000000	1677.000000	1677.000000	1677.0	1677.000000	1677.000000	1677
mean	838.000000	36.036971	892.749553	8.683959	2.937984	1.0	2.757901	67.798450	2
std	484.252517	8.507112	374.496259	7.826143	1.039078	0.0	1.086835	19.435928	0
min	0.000000	18.000000	107.000000	1.000000	1.000000	1.0	1.000000	30.000000	1
25%	419.000000	30.000000	589.000000	2.000000	2.000000	1.0	2.000000	51.000000	2
50%	838.000000	35.000000	890.000000	7.000000	3.000000	1.0	3.000000	69.000000	3
75%	1257.000000	41.000000	1223.000000	12.000000	4.000000	1.0	4.000000	84.000000	3
max	1676.000000	60.000000	3921.000000	29.000000	15.000000	1.0	4.000000	100.000000	4

8 rows × 27 columns

•

```
In [13]:
```

```
df.nunique()
Out[13]:
id
                              1677
                                43
Age
BusinessTravel
                                 3
DailyRate
                               625
Department
                                 3
DistanceFromHome
                                29
Education
                                 6
EducationField
                                 6
EmployeeCount
EnvironmentSatisfaction
Gender
                                 2
HourlyRate
                                71
{\tt JobInvolvement}
                                 4
JobLevel
                                 6
JobRole
                                 9
{\tt JobSatisfaction}
                                 4
MaritalStatus
                                 3
MonthlyIncome
                               895
                               903
MonthlyRate
NumCompaniesWorked
                                10
Over18
                                 1
OverTime
PercentSalaryHike
                                15
PerformanceRating
{\tt RelationshipSatisfaction}
                                 4
StandardHours
                                 1
StockOptionLevel
TotalWorkingYears
                                41
TrainingTimesLastYear
                                 7
WorkLifeBalance
                                 4
YearsAtCompany
                                34
YearsInCurrentRole
                                19
YearsSinceLastPromotion
                                16
YearsWithCurrManager
                                18
Attrition
dtype: int64
In [14]:
df_new = df[['BusinessTravel', 'Department', 'Education', 'EducationField']
             'EnvironmentSatisfaction', 'Gender', 'JobInvolvement', 'JobRole', 'JobSatisfaction', 'MaritalStatus', 'NumCompaniesWorked', 'OverTime',
              'PerformanceRating', 'RelationshipSatisfaction', 'StockOptionLevel',
              'TrainingTimesLastYear', 'WorkLifeBalance', 'Attrition']]
In [15]:
for i in df_new.columns:
   print(i,':')
    print('Unique Values:', df_new[i].unique())
print('Value Counts:')
    print(df_new[i].value_counts())
    print('\n')
BusinessTravel:
Unique Values: ['Travel_Frequently' 'Travel_Rarely' 'Non-Travel']
Value Counts:
Travel_Rarely
                       1290
Travel_Frequently
                      261
                       126
Non-Travel
Name: BusinessTravel, dtype: int64
Department :
Unique Values: ['Research & Development' 'Sales' 'Human Resources']
Value Counts:
Research & Development
                            1167
                             471
Sales
Human Resources
                              39
Name: Department, dtype: int64
Education :
```

In [16]:

```
for i in df_new.columns:
    plt.figure(figsize=[15,7],)
    print('Countplot for:', i)
    sns.countplot(df_new[i], data = df_new, palette = 'hls')
    plt.xticks(rotation = 0)
    plt.show()
    print('\n')
```

Countplot for: BusinessTravel

In [17]:

```
for i in df_new.columns:
    plt.figure(figsize=[15,7],)
    print('Pieplot for:', i)
    df_new[i].value_counts().plot(kind='pie',autopct='%1.1f%%')
    plt.show()
    print('\n')
```


In [18]:

```
int_cols = [col for col in df.columns if df[col].dtype == 'int64']
print('Integer columns:', int_cols)

print('\n')

obj_cols = [col for col in df.columns if df[col].dtype == 'object']
print('Object columns:', obj_cols)
```

Integer columns: ['id', 'Age', 'DailyRate', 'DistanceFromHome', 'Education', 'EmployeeCount', 'EnvironmentSatisfact ion', 'HourlyRate', 'JobInvolvement', 'JobLevel', 'JobSatisfaction', 'MonthlyIncome', 'MonthlyRate', 'NumCompaniesW orked', 'PercentSalaryHike', 'PerformanceRating', 'RelationshipSatisfaction', 'StandardHours', 'StockOptionLevel', 'TotalWorkingYears', 'TrainingTimesLastYear', 'WorkLifeBalance', 'YearsAtCompany', 'YearsInCurrentRole', 'YearsSinc eLastPromotion', 'YearsWithCurrManager', 'Attrition']

Object columns: ['BusinessTravel', 'Department', 'EducationField', 'Gender', 'JobRole', 'MaritalStatus', 'Over18', 'OverTime']

In [19]:

```
plt.figure(figsize=[15,7],)
sns.histplot(df['Age'], kde = 'True', bins = 5, palette = 'hls')
plt.xticks(rotation = 0)
plt.show()
```


In [20]:

import plotly.express as px

In [21]:

```
fig = px.box(df, x = 'Attrition', y = 'Age')
fig.show()
```


In [22]:

```
fig = px.box(df, x = 'Attrition', y = 'DailyRate')
fig.show()
```


In [23]:

```
fig = px.box(df, x = 'Attrition', y = 'DistanceFromHome')
fig.show()
```


In [24]:

```
fig = px.box(df, x = 'Attrition', y = 'Education')
fig.show()
```


In [25]:

```
fig = px.box(df, x = 'Attrition', y = 'EnvironmentSatisfaction')
fig.show()
```


In [26]:

```
fig = px.box(df, x = 'Attrition', y = 'JobLevel')
fig.show()
```


In [27]:

```
fig = px.box(df, x = 'Attrition', y = 'JobSatisfaction')
fig.show()
```


In [28]:

```
fig = px.box(df, x = 'Attrition', y = 'MonthlyIncome')
fig.show()
```


In [29]:

```
fig = px.box(df, x = 'Attrition', y = 'PercentSalaryHike')
fig.show()
```


In [30]:

```
fig = px.box(df, x = 'Attrition', y = 'RelationshipSatisfaction')
fig.show()
```


In [31]:

```
fig = px.box(df, x = 'Attrition', y = 'TotalWorkingYears')
fig.show()
```


In [32]:

```
fig = px.box(df, x = 'Attrition', y = 'WorkLifeBalance')
fig.show()
```


In [33]:

```
fig = px.box(df, x = 'Attrition', y = 'YearsAtCompany')
fig.show()
```


In [34]:

```
fig = px.box(df, x = 'Attrition', y = 'YearsInCurrentRole')
fig.show()
```


In [35]:

```
fig = px.box(df, x = 'Attrition', y = 'YearsSinceLastPromotion')
fig.show()
```


In [36]:

```
fig = px.box(df, x = 'Attrition', y = 'YearsWithCurrManager')
fig.show()
```


In [37]:

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
df['BusinessTravel'] = le.fit_transform(df['BusinessTravel'])
df['Department'] = le.fit_transform(df['Department'])
df['EducationField'] = le.fit_transform(df['EducationField'])
df['JobRole'] = le.fit_transform(df['JobRole'])
df['Gender'] = le.fit_transform(df['Gender'])
df['MaritalStatus'] = le.fit_transform(df['MaritalStatus'])
df['Over18'] = le.fit_transform(df['Over18'])
df['OverTime'] = le.fit_transform(df['OverTime'])
```

In [38]:

df.head()

Out[38]:

	id	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	EmployeeCount	EnvironmentSatisfaction	
0	0	36	1	599	1	24	3	3	1	4	
1	1	35	2	921	2	8	3	4	1	1	
2	2	32	2	718	2	26	3	2	1	3	
3	3	38	2	1488	1	2	3	3	1	3	
4	4	50	2	1017	1	5	4	3	1	2	

5 rows × 35 columns

In [39]:

```
corr = df.corr()
```

corr

Out[40]:

	id	Age	BusinessTravel	DailyRate	Department	DistanceFromHome	Education	EducationField	Employee
id	1.000000	0.027563	-0.031831	0.003572	0.014652	0.007871	-0.015997	-0.007152	
Age	0.027563	1.000000	0.017462	0.039686	-0.014663	-0.049025	0.223545	-0.018181	
BusinessTravel	-0.031831	0.017462	1.000000	-0.015708	-0.020004	0.005933	-0.018889	0.004240	
DailyRate	0.003572	0.039686	-0.015708	1.000000	0.025107	0.024168	-0.007035	-0.021046	
Department	0.014652	-0.014663	-0.020004	0.025107	1.000000	0.029781	0.013881	-0.065715	
DistanceFromHome	0.007871	-0.049025	0.005933	0.024168	0.029781	1.000000	-0.011436	-0.023405	
Education	-0.015997	0.223545	-0.018889	-0.007035	0.013881	-0.011436	1.000000	-0.019603	
EducationField	-0.007152	-0.018181	0.004240	-0.021046	-0.065715	-0.023405	-0.019603	1.000000	
EmployeeCount	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
EnvironmentSatisfaction	0.044271	0.029557	-0.002002	0.006483	-0.000465	0.004959	-0.011189	0.028366	
Gender	0.014820	-0.031498	-0.019574	0.015338	-0.020542	-0.003123	0.027398	-0.036537	
HourlyRate	-0.018994	0.030628	0.051914	-0.001213	0.000948	0.006191	0.014862	-0.060686	
JobInvolvement	-0.016039	0.002101	0.026406	-0.026725	-0.003713	0.010035	0.052390	-0.000689	
JobLevel	0.021245	0.479015	0.002184	0.041369	0.138378	-0.051008	0.085823	-0.045207	
JobRole	-0.035070	-0.102034	-0.006113	0.006331	0.643463	0.026561	-0.002808	-0.012677	
JobSatisfaction	-0.002511	-0.009273	-0.004297	-0.037459	-0.015714	0.026309	-0.030686	-0.023946	
MaritalStatus	0.051459	-0.091312	0.030960	-0.008254	0.006123	0.002864	-0.054694	0.024995	
MonthlyIncome	-0.005224	0.470758	0.019567	0.027375	0.099545	-0.061019	0.081054	-0.034944	
MonthlyRate	0.036047	0.010959	-0.044104	-0.013332	0.037719	0.020542	0.007133	-0.018051	
NumCompaniesWorked	-0.022619	0.300044	0.007145	-0.017337	-0.020384	-0.031303	0.092789	-0.021372	
Over18	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
OverTime	-0.044391	-0.016417	0.010134	0.001339	0.005621	0.016349	-0.017772	-0.063571	
PercentSalaryHike	-0.036811	-0.060012	-0.024196	-0.020007	-0.006533	0.036970	-0.025858	-0.022959	
PerformanceRating	-0.018226	-0.021206	-0.057984	-0.045213	-0.000466	0.039206	0.010790	-0.019065	
RelationshipSatisfaction	0.018472	0.056115	-0.013382	0.001315	0.001612	-0.011868	-0.005253	0.000085	
StandardHours	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
StockOptionLevel	-0.041337	0.064863	-0.047337	0.021273	-0.005868	0.039086	0.041722	-0.016655	
TotalWorkingYears	-0.004288	0.648047	0.008332	0.058044	0.021490	-0.033573	0.153291	-0.008423	
TrainingTimesLastYear	0.010423	0.014303	0.031099	-0.023140	0.046363	-0.000239	-0.011924	0.070101	
WorkLifeBalance	-0.006236	0.034138	-0.012355	0.025152	-0.012399	-0.017184	-0.009697	0.008050	
YearsAtCompany	-0.020820	0.306628	-0.040091	0.066057	0.022345	-0.023564	0.116723	0.012349	
YearsInCurrentRole	-0.020064	0.219880	-0.079881	0.057011	0.029925	-0.006670	0.094065	0.025646	
YearsSinceLastPromotion	-0.002203	0.204357	-0.021144	0.037035	0.053127	-0.004215	0.050483	-0.001262	
YearsWithCurrManager	-0.005955	0.201601	-0.064886	0.040969	0.041859	0.013749	0.109573	-0.000790	
Attrition	-0.006598	-0.161044	0.000552	-0.022380	0.031996	0.024741	-0.084305	-0.006513	

35 rows × 35 columns

4

```
In [41]:
```

0.03598791 0.03669997 0.027918 0.03394849]

```
plt.figure(figsize=[30,20],)
sns.heatmap(corr, annot = True)
plt.show()
In [42]:
df1 = df.copy()
In [43]:
X = df1.drop(['Attrition'], axis = 1)
y = df1['Attrition']
In [44]:
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
X = scaler.fit_transform(X)
In [45]:
from sklearn.ensemble import ExtraTreesClassifier
import matplotlib.pyplot as plt
model = ExtraTreesClassifier()
model.fit(X,y)
print(model.feature_importances_)
[0.03198568 0.04044102 0.02410835 0.03375663 0.02151207 0.03273632
 0.0303788 0.02818188 0.
                                  0.03522922 0.01800049 0.03412623
 0.04250434 0.02814186 0.03392777 0.03168117 0.03413634 0.03949013
                                  0.04054669 0.03360471 0.01302054
 0.03528703 0.03095158 0.
                      0.03881399 0.03549759 0.02990741 0.03018425
 0.03729354 0.
```

```
In [46]:
X = df1.iloc[:,:-1]
In [47]:
feat_importances = pd.Series(model.feature_importances_, index=X.columns)
feat_importances.nlargest(10).plot(kind='barh')
plt.show()
         MonthlyRate
     TotalWorkingYears
       YearsAtCompany
     YearsInCurrentRole
 RelationshipSatisfaction
      StockOptionLevel
       MonthlyIncome
               Age
           OverTime
       Jobinvolvement
                 0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040
In [48]:
X_new = X[['StockOptionLevel', 'MonthlyIncome', 'JobInvolvement', 'OverTime',
           'Age', 'YearsInCurrentRole', 'YearsAtCompany', 'TotalWorkingYears', 'JobRole', 'RelationshipSatisfaction']]
In [49]:
X_new.shape
Out[49]:
(1677, 10)
In [50]:
y.shape
Out[50]:
(1677,)
In [51]:
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test= train_test_split(X_new, y, test_size= 0.30, random_state=0)
In [52]:
from sklearn.linear_model import LogisticRegression
log_r= LogisticRegression(random_state=0)
log_r.fit(X_train, y_train)
Out[52]:
          LogisticRegression
LogisticRegression(random_state=0)
In [53]:
y_pred_lr= log_r.predict(X_test)
```

In [54]:

from sklearn.metrics import accuracy_score

```
In [55]:
```

```
accuracy_score(y_test, y_pred_lr)
```

Out[55]:

0.873015873015873

In [56]:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_lr)
```

In [57]:

cm

Out[57]:

```
array([[439, 0],
        [64, 1]], dtype=int64)
```

In [58]:

```
plt.figure(figsize=[10,7],)
sns.heatmap(cm, annot = True)
plt.show()
```


In [59]:

```
from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred_lr))
```

	precision	recall	†1-score	support
0	0.87	1.00	0.93	439
1	1.00	0.02	0.03	65
accuracy			0.87	504
macro avg	0.94	0.51	0.48	504
weighted avg	0.89	0.87	0.82	504

In [60]:

```
from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier()
dt.fit(X_train, y_train)
```

Out[60]:

```
v DecisionTreeClassifier
DecisionTreeClassifier()
```

```
In [61]:
```

```
y_pred_dt= dt.predict(X_test)
```

In [62]:

```
accuracy_score(y_test, y_pred_dt)
```

Out[62]:

0.8432539682539683

In [63]:

```
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_dt)
```

In [64]:

cm

Out[64]:

In [65]:

```
plt.figure(figsize=[10,7],)
sns.heatmap(cm, annot = True)
plt.show()
```


In [66]:

print(classification_report(y_test, y_pred_dt))

support	f1-score	recall	precision	
439	0.91	0.92	0.90	0
65	0.35	0.32	0.38	1
F04	0.04			
504	0.84			accuracy
504	0.63	0.62	0.64	macro avg
504	0.84	0.84	0.83	weighted avg

```
In [67]:
```

```
from sklearn.ensemble import RandomForestClassifier
rf_c = RandomForestClassifier(n_estimators= 10, criterion="entropy")
rf_c.fit(X_train, y_train)
```

Out[67]:

```
RandomForestClassifier
RandomForestClassifier(criterion='entropy', n_estimators=10)
```

In [68]:

```
y_pred_rf_c= rf_c.predict(X_test)
```

In [69]:

```
accuracy_score(y_test, y_pred_rf_c)
```

Out[69]:

0.86111111111111112

In [70]:

```
cm= confusion_matrix(y_test, y_pred_rf_c)
```

In [71]:

cm

Out[71]:

```
array([[427, 12],
[ 58, 7]], dtype=int64)
```

In [72]:

```
plt.figure(figsize=[10,7],)
sns.heatmap(cm, annot = True)
plt.show()
```



```
In [73]:
print(classification_report(y_test, y_pred_rf_c))
              precision
                          recall f1-score support
          0
                  0.88
                            0.97
                                      0.92
                                                 439
          1
                  0.37
                            0.11
                                      0.17
                                                 65
                                      0.86
                                                 504
   accuracy
                  0.62
                            0.54
                                      0.55
   macro avg
                                                 504
                  0.81
                            0.86
                                      0.83
                                                 504
weighted avg
In [74]:
from sklearn.model_selection import StratifiedKFold
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
In [75]:
folds = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 40)
In [76]:
def grid_search(model,folds,params,scoring):
    grid_search = GridSearchCV(model,
                               cv=folds,
                               param_grid=params,
                               scoring=scoring,
                               n_jobs=-1, verbose=1)
    return grid_search
In [77]:
def print_best_score_params(model):
    print("Best Score: ", model.best_score_)
    print("Best Hyperparameters: ", model.best_params_)
In [78]:
log_reg = LogisticRegression()
'solver': ['liblinear', 'newton-cg', 'saga']
grid_search_log = grid_search(log_reg, folds, log_params, scoring=None)
grid_search_log.fit(X_train, y_train)
print_best_score_params(grid_search_log)
Fitting 5 folds for each of 18 candidates, totalling 90 fits
Best Score: 0.8934315330060011
Best Hyperparameters: {'C': 1, 'penalty': 'l2', 'solver': 'newton-cg'}
In [79]:
dtc = DecisionTreeClassifier(random state=40)
dtc_params = {
    'max_depth': [5,10,20,30],
    'min_samples_leaf': [5,10,20,30]
```

grid_search_dtc = grid_search(dtc, folds, dtc_params, scoring='roc_auc_ovr')

Fitting 5 folds for each of 16 candidates, totalling 80 fits

Best Hyperparameters: {'max_depth': 5, 'min_samples_leaf': 10}

grid_search_dtc.fit(X_train, y_train)
print_best_score_params(grid_search_dtc)

Best Score: 0.7096681152538641

```
In [80]:
rfc = RandomForestClassifier(random_state=40, n_jobs = -1,oob_score=True)
rfc_params = {'max_depth': [10,20,30,40],
        'min_samples_leaf': [5,10,15,20,30],
        'n_estimators': [100,200,500,700]
      }
grid_search_rfc = grid_search(rfc, folds, rfc_params, scoring='roc_auc_ovr')
grid_search_rfc.fit(X_train, y_train)
print('OOB SCORE :',grid_search_rfc.best_estimator_.oob_score_)
Fitting 5 folds for each of 80 candidates, totalling 400 fits
OOB SCORE: 0.896845694799659
In [81]:
from keras.models import Sequential
from keras.layers import Dense
model = Sequential()
model.add(Dense(64, input_dim=X_train.shape[1], activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
\triangleleft
In [82]:
model.fit(X_train, y_train, epochs=50, batch_size=32)
Epoch 1/50
Epoch 2/50
37/37 [===========] - 0s 1ms/step - loss: 3.1524 - accuracy: 0.8031
Epoch 3/50
Epoch 4/50
37/37 [============] - 0s 1ms/step - loss: 4.4103 - accuracy: 0.8201
Epoch 5/50
37/37 [============= ] - 0s 960us/step - loss: 3.6005 - accuracy: 0.8005
Epoch 6/50
37/37 [==========] - 0s 892us/step - loss: 3.6550 - accuracy: 0.8090
Epoch 7/50
Epoch 8/50
Epoch 9/50
Epoch 10/50
In [83]:
test_loss, test_acc = model.evaluate(X_test, y_test)
print('Test accuracy:', test_acc)
Test accuracy: 0.8710317611694336
In [84]:
df2 = pd.read_csv('employee_test.csv')
In [85]:
df2['BusinessTravel'] = le.fit_transform(df2['BusinessTravel'])
df2['Department'] = le.fit_transform(df2['Department'])
df2['EducationField'] = le.fit_transform(df2['EducationField'])
df2['JobRole'] = le.fit_transform(df2['JobRole'])
df2['Gender'] = le.fit_transform(df2['Gender'])
df2['MaritalStatus'] = le.fit_transform(df2['MaritalStatus'])
```

df2['Over18'] = le.fit_transform(df2['Over18'])
df2['OverTime'] = le.fit_transform(df2['OverTime'])

```
In [86]:
X_new = df2[['StockOptionLevel', 'MonthlyIncome', 'JobInvolvement', 'OverTime',
          'Age', 'YearsInCurrentRole', 'YearsAtCompany', 'TotalWorkingYears', 'JobRole', 'RelationshipSatisfaction']]
In [87]:
X = scaler.fit_transform(X_new)
In [88]:
y_lr = grid_search_log.predict(X)
In [89]:
y_lr
Out[89]:
array([1, 1, 1, ..., 1, 1, 1], dtype=int64)
In [90]:
y_dt = grid_search_dtc.predict(X_new)
In [91]:
y_dt
Out[91]:
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [92]:
y_rfc = grid_search_rfc.predict(X_new)
In [93]:
y_rfc
Out[93]:
array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [94]:
y_nn = model.predict(X_new)
35/35 [=======] - 0s 911us/step
In [95]:
y_nn
Out[95]:
array([[1.8085128e-04],
       [1.2094801e-09],
       [1.0392133e-05],
       [4.5603679e-10],
```

[2.9436662e-09],

[2.5529080e-04]], dtype=float32)