Zombie Apocalypse: An Epidemic Model

Overview

- Our interest
- Zombie basics
- Epidemic (SIR) model
- Munz et al., 2009
- Modifications

In: Infectious Disease Modelling Research Progress ISBN 978-1-60741-347-9 Editors: J.M. Tchuenche and C. Chiyaka, pp. 133-150 2009 Nova Science Publishers, Inc.

Chapter 4

WHEN ZOMBIES ATTACK!: MATHEMATICAL MODELLING OF AN OUTBREAK OF ZOMBIE INFECTION

Philip Munz¹*, Ioan Hudea¹†, Joe Imad²‡, Robert J. Smith?^{3§}

¹School of Mathematics and Statistics, Carleton University,

1125 Colonel By Drive, Ottawa, ON K1S 5B6, Canada

²Department of Mathematics, The University of Ottawa,

585 King Edward Ave, Ottawa ON K1N 6N5, Canada

²Department of Mathematics and Faculty of Medicine, The University of Ottawa,

585 King Edward Ave, Ottawa ON K1N 6N5, Canada

What is a zombie?

- "Undead"
- Eat human flesh
- Infect healthy
- Difficult to kill (destroy brain)

What is a zombie?

Main dynamics:

- 1. How you become a zombie Sick, Bitten, Die
- 2. How you get rid of zombies Cure, Death

/sste

model

Loglinear Models Using Capture–Recapture Methods to Estimate the Size of a Measles Epidemic

ANI

Available online at www.sciencedirect.com

Mathematical Biosciences 208 (2007) 76–97

Mathematical **Biosciences**

www.elsevier.com/locate/mbs

Stability and bifurcation incidence and treatment

Xue-Zhi Li a,*, Wen-Sheng Li a,b

- a Department of Mathematics, Xinyang Normal Univ
- ^b Fugou Middle School, Fugou 461300, Henan Provin
- ^cSchool of Mathematics and Computer Application,

Some properties of a simple stochastic epidemic model of SIR type

Henry C. Tuckwell ^{a,*}, Ruth J. Williams ^b

^a Max Planck Institute for Mathematics in the Sciences Inselstr. 22, Leipzig D-04103, Germany ^b Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA

lympho

GIODAI STADIIITY AIIAIYSIS WITH A HISCIPTIZATIOH APPIOACH IOF AH age-structured multigroup SIR epidemic model

A Bayesiar David D. Ho Toshikazu Kuniya *.1

Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba Meguro-ku, Tokyo 153-8914, Japan

Aaron Diamond AIDS Research Center, NYU School of Medicine, 455 First Avenue, New York, New York 10016, USA

- * Santa Fe Institute, Santa Fe, New Mexico 87501, USA
- † Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- ‡ Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA

Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil

Received 27 May 2005; received in revised form 1 May 2006; accepted 20 September 2006 Rap Available online 11 October 2006

OPEN @ ACCESS Freely a

Dynamica

Flávio Codeço Coe

1 Instituto Gulbenkian de Ciêr

Susceptible Infected Recovered S + I + R = Pop

(change in quantity S)= -(constant)

(change in quantity S)= -(constant)
S' =
$$-\theta$$

(change in quantity S)= -(constant)

$$S' = -\theta$$

$$I' = +\theta$$

$$I' = -\zeta I$$

$$R' = +\zeta I$$

$$S \longrightarrow I$$

$$S' = -\beta SI$$

$$I' = +\beta SI$$

$$S \longrightarrow I \longrightarrow R$$

$$S' = -\beta SI$$

$$I' = +\beta SI - \zeta I$$

$$R' = +\zeta I$$

Example of SIR dynamics for influenza

Sebastian Bonhoeffer, SIR models of epidemics

Modifications

- Death rates
- Latent periods (SEIS)
- Ability to recover (SEIR)
- •Ability to become susceptible again (SIRS)

"When Zombies Attack!: Mathematical Modelling of an Outbreak Zombie Infection" Munz, Hudea, Imad, Smith (2009)

Goals:

- Model a zombie attack, using biological assumptions based on popular zombie movies
- •Determine equilibria and their stability
- •Illustrate the outcome with numerical solutions
- •Introduce epidemic modeling with fun example

"When Zombies Attack!: Mathematical Modelling of an Outbreak Zombie Infection" Munz, Hudea, Imad, Smith (2009)

Conclusions:

- Disastrous outbreak unless aggressive tactics
- Collapse of civilization

"When Zombies Attack!: Mathematical Modelling of an Outbreak Zombie Infection" Munz, Hudea, Imad, Smith (2009)

Great idea, but...

- •Models don't match any film
- •All results depend on poor model assumptions
- •No data is used
- •Wrong parameters given

Munz Model

Susceptible
$$S' = -\beta SZ$$

Zombie $Z' = \beta SZ + \zeta R$

Removed $R' = -\zeta R$

Munz Model

Zombies **never** die

If zombies are killed, they are soon recycled into the zombie population

Munz Model αSZ

We can find \underline{no} movies where the ζR term is a reasonable assumption

Reproduce results

- Before starting our models, replicate theirs
- Parameters are drastically wrong

Based on paper: Based on model:
$$\beta = .0095 \longrightarrow \beta = .0028$$
 $\rho = .005 \longrightarrow \rho = 5$
 $\zeta = .0001 \longrightarrow \zeta = 5$

Latent Outbreak

Latent Outbreak

Quarantine

Quarantine

Upgrades

Shaun of the Dead Walking Dead Zombieland 28 Days Later Resident Evil

Upgrades

Night of the Living Dead Dawn of the Dead Day of the Dead

Data Collection

- Watch films, pause to take population count whenever zombies are in the scene
- Record time (within film's world) versus population increase

Shaun of the Dead

Shaun of the Dead

Night of the Living Dead

Night of the Living Dead

Night of the Living Dead

50000 Simulations

Joint Distribution

 α

Conclusions

• Zombie infection would <u>likely</u> be disastrous, but <u>not inevitable</u> as Munz et al. (2009) suggestions

• <u>Data</u> are necessary to make reasonable models and parameter estimations