(19) World Intellectual Property Organization International Bureau

CI2N

(43) International Publication Date 26 July 2001 (26,07,2001)

(51) International Patent Classification?

(10) International Publication Number WO 01/53455 A2

(~,,	International Latent	Ciassincation .	C.2.1

(21) International Application Number: PCT/US00/35017

(22) International Filing Date: 22 December 2000 (22.12.2000)

(25) Filing Language: English

(26) Publication Language:

(30) Priority Data:

23 December 1999 (23.12.1999) US 09/471,275 09/488.725 21 January 2000 (21.01.2000) US 09/552.317 25 April 2000 (25.04.2000)

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier applications:

09/488,725 (CIP) US Filed on 21 January 2000 (21.01.2000) HS 09/596,196 (CIP) Filed on 17 June 2000 (17.06.2000) US 09/653,274 (CIP) Filed on 31 August 2000 (31.08.2000)

(71) Applicant (for all designated States except US): HYSEO. INC. [US/US]; 670 Almanor Avenue, Sunnyvalle, CA 94086 (US).

(72) Inventors: and

(75) Inventors/Applicants (for US only): TANG, Y., Tom ning of each regular issue of the PCT Gazette.

[US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LIU, Chenghua [CN/US]; 1125 Ranchero Way #14, San Jose, CA 95117 (US). DRMANAC, Radoje, T. [YU/US]; 850 East Greenwich Place, Palo Alto, CA 94303 (US).

(74) Agent: ELRIFI, Ivor, R.; Mintz, Levin. Cohn. Ferris. Glovsky, and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

English (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FL GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

> (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the begin-

(54) Title: NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

(57) Abstract: The present invention provides novel nucleic acids, novel polypeptide sequences encoded by these nucleic acids and uses thereof.

NOVEL NUCLEIC ACIDS AND POLYPEPTIDES

1. TECHNICAL FIELD

The present invention provides novel polynucleotides and proteins encoded by such polynucleotides, along with uses for these polynucleotides and proteins, for example in therapeutic, diagnostic and research methods.

2. BACKGROUND

5

10

15

20

30

Technology aimed at the discovery of protein factors (including e.g., cytokines, such as lymphokines, interferons, CSFs, chemokines, and interleukins) has matured rapidly over the past decade. The now routine hybridization cloning and expression cloning techniques clone novel polynucleotides "directly" in the sense that they rely on information directly related to the discovered protein (i.e., partial DNA/amino acid sequence of the protein in the case of hybridization cloning; activity of the protein in the case of expression cloning). More recent "indirect" cloning techniques such as signal sequence cloning, which isolates DNA sequences based on the presence of a now well-recognized secretory leader sequence motif, as well as various PCR-based or low stringency hybridization-based cloning techniques, have advanced the state of the art by making available large numbers of DNA/amino acid sequences for proteins that are known to have biological activity, for example, by virtue of their secreted nature in the case of leader sequence cloning, by virtue of their cell or tissue source in the case of PCR-based techniques, or by virtue of structural similarity to other genes of known biological activity.

Identified polynucleotide and polypeptide sequences have numerous applications in, for example, diagnostics, forensics, gene mapping; identification of mutations responsible for genetic disorders or other traits, to assess biodiversity, and to produce many other types of data and products dependent on DNA and amino acid sequences.

3. SUMMARY OF THE INVENTION

The compositions of the present invention include novel isolated polypeptides, novel isolated polynucleotides encoding such polypeptides, including recombinant DNA

molecules, cloned genes or degenerate variants thereof, especially naturally occurring variants such as allelic variants, antisense polynucleotide molecules, and antibodies that specifically recognize one or more epitopes present on such polypeptides, as well as hybridomas producing such antibodies.

5

10

15

20

25

30

The compositions of the present invention additionally include vectors, including expression vectors, containing the polynucleotides of the invention, cells genetically engineered to contain such polynucleotides and cells genetically engineered to express such polynucleotides.

The present invention relates to a collection or library of at least one novel nucleic acid sequence assembled from expressed sequence tags (ESTs) isolated mainly by sequencing by hybridization (SBH), and in some cases, sequences obtained from one or more public databases. The invention relates also to the proteins encoded by such polynucleotides, along with therapeutic, diagnostic and research utilities for these polynucleotides and proteins. These nucleic acid sequences are designated as SEQ ID NO: 1-739. The polypeptides sequences are designated SEQ ID NO: 740-1478. The nucleic acids and polypeptides are provided in the Sequence Listing. In the nucleic acids provided in the Sequence Listing, A is adenosine; C is cytosine; G is guanine; T is thymine; and N is any of the four bases. In the amino acids provided in the Sequence Listing, * corresponds to the ston codon.

The nucleic acid sequences of the present invention also include, nucleic acid sequences that hybridize to the complement of SEQ ID NO:1-739 under stringent hybridization conditions; nucleic acid sequences which are allelic variants or species homologues of any of the nucleic acid sequences recited above, or nucleic acid sequences that encode a peptide comprising a specific domain or truncation of the peptides encoded by SEQ ID NO:1-739. A polynucleotide comprising a nucleotide sequence having at least 90% identity to an identifying sequence of SEQ ID NO:1-739 or a degenerate variant or fragment thereof. The identifying sequence can be 100 base pairs in length.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of SEO ID NO:1-739.

2

A collection as used in this application can be a collection of only one polynucleotide. The collection of sequence information or identifying information of each sequence can be provided on a nucleic acid array. In one embodiment, segments of sequence information is provided on a nucleic acid array to detect the polynucleotide that contains the segment. The array can be designed to detect full-match or mismatch to the polynucleotide that contains the segment. The collection can also be provided in a computer-readable format.

This invention also includes the reverse or direct complement of any of the nucleic acid sequences recited above; cloning or expression vectors containing the nucleic acid sequences; and host cells or organisms transformed with these expression vectors. Nucleic acid sequences (or their reverse or direct complements) according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology, such as use as hybridization probes, use as primers for PCR, use in an array, use in computer-readable media, use in sequencing full-length genes, use for chromosome and gene mapping, use in the recombinant production of protein, and use in the generation of anti-sense DNA or RNA, their chemical analogs and the like.

10

15

20

25

30

In a preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids of the invention are used as primers in expression assays that are well known in the art. In a particularly preferred embodiment, the nucleic acid sequences of SEQ ID NO:1-739 or novel segments or parts of the nucleic acids provided herein are used in diagnostics for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

The isolated polynucleotides of the invention include, but are not limited to, a polynucleotide comprising any one of the nucleotide sequences set forth in SEQ ID NO:1-739; a polynucleotide comprising any of the full length protein coding sequences of SEQ ID NO:1-739; and a polynucleotide comprising any of the nucleotide sequences of the mature protein coding sequences of SEQ ID NO: 1-739. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent hybridization conditions to (a) the complement of any one of the nucleotide sequences set forth in SEO ID NO: 1-739; (b) a nucleotide sequence encoding any one of the

amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotides recited above; (d) a polynucleotide which encodes a species homolog (e.g. orthologs) of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of any of the polypeptides comprising an amino acid sequence set forth in the Sequence Listing.

5

10

15

20

25

30

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising any of the amino acid sequences set forth in the Sequence Listing; or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides with biological activity that are encoded by (a) any of the polynucleotides having a nucleotide sequence set forth in SEQ ID NO:1-739; or (b) polynucleotides that hybridize to the complement of the polynucleotides of (a) under stringent hybridization conditions. Biologically or immunologically active variants of any of the polypeptide sequences in the Sequence Listing, and "substantial equivalents" thereof (e.g., with at least about 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or 99% amino acid sequence identity) that preferably retain biological activity are also contemplated. The polypeptides of the invention may be wholly or partially chemically synthesized but are preferably produced by recombinant means using the genetically engineered cells (e.g., bost cells) of the invention.

The invention also provides compositions comprising a polypeptide of the invention. Polypeptide compositions of the invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

The invention also provides host cells transformed or transfected with a polynucleotide of the invention.

The invention also relates to methods for producing a polypeptide of the invention comprising growing a culture of the host cells of the invention in a suitable culture medium under conditions permitting expression of the desired polypeptide, and purifying the polypeptide from the culture or from the host cells. Preferred embodiments include those in which the protein produced by such process is a mature form of the protein.

Polynucleotides according to the invention have numerous applications in a variety of techniques known to those skilled in the art of molecular biology. These techniques include use as hybridization probes, use as oligomers, or primers, for PCR, use for chromosome and gene mapping, use in the recombinant production of protein,

and use in generation of anti-sense DNA or RNA, their chemical analogs and the like. For example, when the expression of an mRNA is largely restricted to a particular cell or tissue type, polynucleotides of the invention can be used as hybridization probes to detect the presence of the particular cell or tissue mRNA in a sample using, e.g., in situ hybridization.

In other exemplary embodiments, the polynucleotides are used in diagnostics as expressed sequence tags for identifying expressed genes or, as well known in the art and exemplified by Vollrath et al., Science 258:52-59 (1992), as expressed sequence tags for physical mapping of the human genome.

5

10

15

20

25

30

The polypeptides according to the invention can be used in a variety of conventional procedures and methods that are currently applied to other proteins. For example, a polypeptide of the invention can be used to generate an antibody that specifically binds the polypeptide. Such antibodies, particularly monoclonal antibodies, are useful for detecting or quantitating the polypeptide in tissue. The polypeptides of the invention can also be used as molecular weight markers, and as a food supplement.

Methods are also provided for preventing, treating, or ameliorating a medical condition which comprises the step of administering to a mammalian subject a therapeutically effective amount of a composition comprising a polypeptide of the present invention and a pharmaceutically acceptable carrier.

In particular, the polypeptides and polynucleotides of the invention can be utilized, for example, in methods for the prevention and/or treatment of disorders involving aberrant protein expression or biological activity.

The present invention further relates to methods for detecting the presence of the polynucleotides or polypeptides of the invention in a sample. Such methods can, for example, be utilized as part of prognostic and diagnostic evaluation of disorders as recited herein and for the identification of subjects exhibiting a predisposition to such conditions. The invention provides a method for detecting the polynucleotides of the invention in a sample, comprising contacting the sample with a compound that binds to and forms a complex with the polynucleotide of interest for a period sufficient to form the complex and under conditions sufficient to form a complex and detecting the complex such that if a complex is detected, the polynucleotide of interest is detected. The

invention also provides a method for detecting the polypeptides of the invention in a sample comprising contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex and detecting the formation of the complex such that if a complex is formed, the polypeptide is detected.

5

10

15

20

25

30

The invention also provides kits comprising polynucleotide probes and/or monoclonal antibodies, and optionally quantitative standards, for carrying out methods of the invention. Furthermore, the invention provides methods for evaluating the efficacy of drugs, and monitoring the progress of patients, involved in clinical trials for the treatment of disorders as recited above.

The invention also provides methods for the identification of compounds that modulate (i.e., increase or decrease) the expression or activity of the polynucleotides and/or polypeptides of the invention. Such methods can be utilized, for example, for the identification of compounds that can ameliorate symptoms of disorders as recited herein. Such methods can include, but are not limited to, assays for identifying compounds and other substances that interact with (e.g., bind to) the polypeptides of the invention. The invention provides a method for identifying a compound that binds to the polypeptides of the invention comprising contacting the compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and detecting the complex by detecting the reporter gene sequence expression such that if expression of the reporter gene is detected the compound the binds to a polypeptide of the invention is identified.

The methods of the invention also provides methods for treatment which involve the administration of the polynucleotides or polypeptides of the invention to individuals exhibiting symptoms or tendencies. In addition, the invention encompasses methods for treating diseases or disorders as recited herein comprising administering compounds and other substances that modulate the overall activity of the target gene products.

Compounds and other substances can effect such modulation either on the level of target gene/protein expression or target protein activity.

The polypeptides of the present invention and the polynucleotides encoding them are also useful for the same functions known to one of skill in the art as the polypeptides and polynucleotides to which they have homology (set forth in Table 2). If no homology is set forth for a sequence, then the polypeptides and polynucleotides of the present invention are useful for a variety of applications, as described herein, including use in arrays for detection.

4. DETAILED DESCRIPTION OF THE INVENTION

10

15

20

25

30

5

4.1 DEFINITIONS

It must be noted that as used herein and in the appended claims, the singular forms "a", "an" and "the" include plural references unless the context clearly dictates otherwise.

The term "active" refers to those forms of the polypeptide which retain the biologic and/or immunologic activities of any naturally occurring polypeptide. According to the invention, the terms "biologically active" or "biological activity" refer to a protein or peptide having structural, regulatory or biochemical functions of a naturally occurring molecule. Likewise "immunologically active" or "immunological activity" refers to the capability of the natural, recombinant or synthetic polypeptide to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The term "activated cells" as used in this application are those cells which are engaged in extracellular or intracellular membrane trafficking, including the export of secretory or enzymatic molecules as part of a normal or disease process.

The terms "complementary" or "complementarity" refer to the natural binding of polynucleotides by base pairing. For example, the sequence 5'-AGT-3' binds to the complementary sequence 3'-TCA-5'. Complementarity between two single-stranded molecules may be "partial" such that only some of the nucleic acids bind or it may be "complete" such that total complementarity exists between the single stranded molecules. The degree of complementarity between the nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands.

The term "embryonic stem cells (ES)" refers to a cell that can give rise to many differentiated cell types in an embryo or an adult, including the germ cells. The term "germ line stem cells (GSCs)" refers to stem cells derived from primordial stem cells that provide a steady and continuous source of germ cells for the production of gametes. The term "primordial germ cells (PGCs)" refers to a small population of cells set aside from other cell lineages particularly from the yolk sac, mesenteries, or gonada ridges during embryogenesis that have the potential to differentiate into germ cells and other cells.

PGCs are the source from which GSCs and ES cells are derived The PGCs, the GSCs and the ES cells are capable of self-renewal. Thus these cells not only populate the germ line and give rise to a plurality of terminally differentiated cells that comprise the adult specialized organs, but are able to recenerate themselves.

The term "expression modulating fragment," EMF, means a series of nucleotides which modulates the expression of an operably linked ORF or another EMF.

10

15

20

25

30

As used herein, a sequence is said to "modulate the expression of an operably linked sequence" when the expression of the sequence is altered by the presence of the EMF. EMFs include, but are not limited to, promoters, and promoter modulating sequences (inducible elements). One class of EMFs are nucleic acid fragments which induce the expression of an operably linked ORF in response to a specific regulatory factor or physiological event.

The terms "nucleotide sequence" or "nucleic acid" or "polynucleotide" or "oligonculeotide" are used interchangeably and refer to a heteropolymer of nucleotides or the sequence of these nucleotides. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA) or to any DNA-like or RNA-like material. In the sequences herein A is adenine, C is cytosine, T is thymine, G is guanine and N is A, C, G or T (U). It is contemplated that where the polynucleotide RNA, the T (thymine) in the sequences provided herein is substituted with U (uracil). Generally, nucleic acid segments provided by this invention may be assembled from fragments of the genome and short oligonucleotide linkers, or from a series of oligonucleotides, or from individual nucleotides, to provide a synthetic nucleic acid

which is capable of being expressed in a recombinant transcriptional unit comprising regulatory elements derived from a microbial or viral operon, or a eukaryotic gene.

5

10

15

20

25

30

The terms "oligonucleotide fragment" or a "polynucleotide fragment", "portion," or "segment" or "probe" or "primer" are used interchangeably and refer to a sequence of nucleotide residues which are at least about 5 nucleotides, more preferably at least about 7 nucleotides, more preferably at least about 11 nucleotides, more preferably at least about 11 nucleotides and most preferably at least about 17 nucleotides. The fragment is preferably less than about 500 nucleotides, preferably less than about 200 nucleotides, more preferably less than about 500 nucleotides, more preferably less than about 50 nucleotides, more preferably the probe is from about 60 nucleotides to about 50 nucleotides. Preferably from about 50 nucleotides to about 200 nucleotides, preferably from about 15 to about 50 nucleotides, more preferably from about 17 to 30 nucleotides and most preferably from about 20 to 25 nucleotides. Preferably the fragments can be used in polymerase chain reaction (PCR), various hybridization procedures or microarray procedures to identify or amplify identical or related parts of mRNA or DNA molecules. A fragment or segment may uniquely identify each polynucleotide sequence of the present invention. Preferably the fragment comprises a sequence substantially similar to any one of SEQ ID NOs:1-20.

Probes may, for example, be used to determine whether specific mRNA molecules are present in a cell or tissue or to isolate similar nucleic acid sequences from chromosomal DNA as described by Walsh et al. (Walsh, P.S. et al., 1992, PCR Methods Appl 1:241-250). They may be labeled by nick translation, Klenow fill-in reaction, PCR, or other methods well known in the art. Probes of the present invention, their preparation and/or labeling are elaborated in Sambrook, J. et al., 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY; or Ausubel, F.M. et al., 1989, Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, both of which are incorporated herein by reference in their entirety.

The nucleic acid sequences of the present invention also include the sequence information from the nucleic acid sequences of SEQ ID NO:1-739. The sequence information can be a segment of any one of SEQ ID NO:1-739 that uniquely identifies or represents the sequence information of that sequence of SEQ ID NO:1-739. One such segment can be a twenty-mer nucleic acid sequence because the probability that a twenty-

mer is fully matched in the human genome is 1 in 300. In the human genome, there are three billion base pairs in one set of chromosomes. Because 4²⁰ possible twenty-mers exist, there are 300 times more twenty-mers than there are base pairs in a set of human chromosomes. Using the same analysis, the probability for a seventeen-mer to be fully matched in the human genome is approximately 1 in 5. When these segments are used in arrays for expression studies, fifteen-mer segments can be used. The probability that the fifteen-mer is fully matched in the expressed sequences is also approximately one in five because expressed sequences comprise less than approximately 5% of the entire genome sequence.

5

10

15

20

25

30

Similarly, when using sequence information for detecting a single mismatch, a segment can be a twenty-five mer. The probability that the twenty-five mer would appear in a human genome with a single mismatch is calculated by multiplying the probability for a full match $(1+4^{25})$ times the increased probability for mismatch at each nucleotide position (3×25) . The probability that an eighteen mer with a single mismatch can be detected in an array for expression studies is approximately one in five. The probability that a twenty-mer with a single mismatch can be detected in a human genome is approximately one in five.

The term "open reading frame," ORF, means a series of nucleotide triplets coding for amino acids without any termination codons and is a sequence translatable into protein.

The terms "operably linked" or "operably associated" refer to functionally related nucleic acid sequences. For example, a promoter is operably associated or operably linked with a coding sequence if the promoter controls the transcription of the coding sequence. While operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements e.g. repressor genes are not contiguously linked to the coding sequence but still control transcription/translation of the coding sequence.

The term "pluripotent" refers to the capability of a cell to differentiate into a number of differentiated cell types that are present in an adult organism. A pluripotent cell is restricted in its differentiation capability in comparison to a totipotent cell.

The terms "polypeptide" or "peptide" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide or protein sequence or fragment thereof and to

naturally occurring or synthetic molecules. A polypeptide "fragment," "portion," or
"segment" is a stretch of amino acid residues of at least about 5 amino acids, preferably at
least about 7 amino acids, more preferably at least about 9 amino acids and most
preferably at least about 17 or more amino acids. The peptide preferably is not greater
than about 200 amino acids, more preferably less than 150 amino acids and most
preferably less than 100 amino acids. Preferably the peptide is from about 5 to about 200
amino acids. To be active, any polypeptide must have sufficient length to display
biological and/or immunological activity.

5

10

15

20

25

30

The term "naturally occurring polypeptide" refers to polypeptides produced by cells that have not been genetically engineered and specifically contemplates various polypeptides arising from post-translational modifications of the polypeptide including, but not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation.

The term "translated protein coding portion" means a sequence which encodes for the full length protein which may include any leader sequence or any processing sequence.

The term "mature protein coding sequence" means a sequence which encodes a peptide or protein without a signal or leader sequence. The "mature protein portion" means that portion of the protein which does not include a signal or leader sequence. The peptide may have been produced by processing in the cell which removes any leader/signal sequence. The mature protein portion may or may not include the initial methionine residue. The methionine residue may be removed from the protein during processing in the cell. The peptide may be produced synthetically or the protein may have been produced using a polynucleotide only encoding for the mature protein coding sequence.

The term "derivative" refers to polypeptides chemically modified by such techniques as ubiquitination, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of amino acids such as ornithine, which do not normally occur in human proteins.

The term "variant" (or "analog") refers to any polypeptide differing from naturally occurring polypeptides by amino acid insertions, deletions, and substitutions, created using, e.g., recombinant DNA techniques. Guidance in determining which amino acid residues may be replaced, added or deleted without abolishing activities of interest, may be found by comparing the sequence of the particular polypeptide with that of homologous peptides and minimizing the number of amino acid sequence changes made in regions of high homology (conserved regions) or by replacing amino acids with consensus sequence.

Alternatively, recombinant variants encoding these same or similar polypeptides may be synthesized or selected by making use of the "redundancy" in the genetic code. Various codon substitutions, such as the silent changes which produce various restriction sites, may be introduced to optimize cloning into a plasmid or viral vector or expression in a particular prokaryotic or eukaryotic system. Mutations in the polynucleotide sequence may be reflected in the polypeptide or domains of other peptides added to the polypeptide to modify the properties of any part of the polypeptide, to change characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate.

10

15

20

2.5

30

Preferably, amino acid "substitutions" are the result of replacing one amino acid with another amino acid having similar structural and/or chemical properties, i.e., conservative amino acid replacements. "Conservative" amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophobicity, and/or the amphipathic nature of the residues involved. For example, nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine; polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine; positively charged (basic) amino acids include arginine, lysine, and histidine; and negatively charged (acidic) amino acids include aspartic acid and glutamic acid. "Insertions" or "deletions" are preferably in the range of about 1 to 20 amino acids, more preferably 1 to 10 amino acids. The variation allowed may be experimentally determined by systematically making insertions, deletions, or substitutions of amino acids in a polypeptide molecule using recombinant DNA techniques and assaying the resulting recombinant variants for activity.

Alternatively, where alteration of function is desired, insertions, deletions or non-conservative alterations can be engineered to produce altered polypeptides. Such alterations can, for example, alter one or more of the biological functions or biochemical characteristics of the polypeptides of the invention. For example, such alterations may change polypeptide characteristics such as ligand-binding affinities, interchain affinities, or degradation/turnover rate. Further, such alterations can be selected so as to generate polypeptides that are better suited for expression, scale up and the like in the host cells chosen for expression. For example, cysteine residues can be deleted or substituted with another amino acid residue in order to eliminate disulfide bridges.

5

10

15

20

25

30

The terms "purified" or "substantially purified" as used herein denotes that the indicated nucleic acid or polypeptide is present in the substantial absence of other biological macromolecules, e.g., polymucleotides, proteins, and the like. In one embodiment, the polynucleotide or polypeptide is purified such that it constitutes at least 95% by weight, more preferably at least 99% by weight, of the indicated biological macromolecules present (but water, buffers, and other small molecules, especially molecules having a molecular weight of less than 1000 daltons, can be present).

The term "isolated" as used herein refers to a nucleic acid or polypeptide separated from at least one other component (e.g., nucleic acid or polypeptide) present with the nucleic acid or polypeptide in its natural source. In one embodiment, the nucleic acid or polypeptide is found in the presence of (if anything) only a solvent, buffer, ion, or other component normally present in a solution of the same. The terms "isolated" and "purified" do not encompass nucleic acids or polypeptides present in their natural source.

The term "recombinant," when used herein to refer to a polypeptide or protein, means that a polypeptide or protein is derived from recombinant (e.g., microbial, insect, or mammalian) expression systems. "Microbial" refers to recombinant polypeptides or proteins made in bacterial or fungal (e.g., yeast) expression systems. As a product, "recombinant microbial" defines a polypeptide or protein essentially free of native endogenous substances and unaccompanied by associated native glycosylation.

Polypeptides or proteins expressed in most bacterial cultures, e.g., E. coli, will be free of glycosylation modifications; polypeptides or proteins expressed in yeast will have a glycosylation pattern in general different from those expressed in mammalian cells.

The term "recombinant expression vehicle or vector" refers to a plasmid or phage or virus or vector, for expressing a polypeptide from a DNA (RNA) sequence. An expression vehicle can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or coding sequence which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionine residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final product.

The term "recombinant expression system" means host cells which have stably integrated a recombinant transcriptional unit into chromosomal DNA or carry the recombinant transcriptional unit extrachromosomally. Recombinant expression systems as defined herein will express heterologous polypeptides or proteins upon induction of the regulatory elements linked to the DNA segment or synthetic gene to be expressed. This term also means host cells which have stably integrated a recombinant genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers. Recombinant expression systems as defined herein will express polypeptides or proteins endogenous to the cell upon induction of the regulatory elements linked to the endogenous DNA segment or gene to be expressed. The cells can be prokaryotic or eukaryotic.

The term "secreted" includes a protein that is transported across or through a membrane, including transport as a result of signal sequences in its amino acid sequence when it is expressed in a suitable host cell. "Secreted" proteins include without limitation proteins secreted wholly (e.g., soluble proteins) or partially (e.g., receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins that are transported across the membrane of the endoplasmic reticulum. "Secreted" proteins are also intended to include proteins containing non-typical signal sequences (e.g. Interleukin-1 Beta, see Krasney, P.A. and Young, P.R. (1992) Cytokine 4(2):134

-143) and factors released from damaged cells (e.g. Interleukin-1 Receptor Antagonist, see Arend, W.P. et. al. (1998) Annu. Rev. Immunol. 16:27-55)

Where desired, an expression vector may be designed to contain a "signal or leader sequence" which will direct the polypeptide through the membrane of a cell. Such a sequence may be naturally present on the polypeptides of the present invention or provided from heterologous protein sources by recombinant DNA techniques.

5

10

15

20

25

30

The term "stringent" is used to refer to conditions that are commonly understood in the art as stringent. Stringent conditions can include highly stringent conditions (i.e., hybridization to filter-bound DNA in 0.5 M NaHPO₄, 7% sodium dodecyl sulfate (SDS), 1 mM EDTA at 65°C, and washing in 0.1X SSC/0.1% SDS at 68°C), and moderately stringent conditions (i.e., washing in 0.2X SSC/0.1% SDS at 42°C). Other exemplary hybridization conditions are described herein in the examples.

In instances of hybridization of deoxyoligonucleotides, additional exemplary stringent hybridization conditions include washing in 6X SSC/0.05% sodium pyrophosphate at 37°C (for 14-base oligonucleotides), 48°C (for 17-base oligos), 55°C (for 20-base oligonucleotides), and 60°C (for 23-base oligonucleotides).

As used herein, "substantially equivalent" can refer both to nucleotide and amino acid sequences, for example a mutant sequence, that varies from a reference sequence by one or more substitutions, deletions, or additions, the net effect of which does not result in an adverse functional dissimilarity between the reference and subject sequences. Typically, such a substantially equivalent sequence varies from one of those listed herein by no more than about 35% (*i.e.*, the number of individual residue substitutions, additions, and/or deletions in a substantially equivalent sequence, as compared to the corresponding reference sequence, divided by the total number of residues in the substantially equivalent sequence is said to have 65% sequence identity to the listed sequence. In one embodiment, a substantially equivalent, *e.g.*, mutant, sequence of the invention varies from a listed sequence by no more than 30% (70% sequence identity); in a variation of this embodiment, by no more than 20% (80% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by no more than 10% (90% sequence identity) and in a further variation of this embodiment, by

by no more that 5% (95% sequence identity). Substantially equivalent, e.g., mutant, amino acid sequences according to the invention preferably have at least 80% sequence identity with a listed amino acid sequence, more preferably at least 90% sequence identity. Substantially equivalent nucleotide sequences of the invention can have lower percent sequence identities, taking into account, for example, the redundancy or degeneracy of the genetic code. Preferably, nucleotide sequence has at least about 65% identity, more preferably at least about 75% identity, and most preferably at least about 95% identity. For the purposes of the present invention, sequences having substantially equivalent biological activity and substantially equivalent expression characteristics are considered substantially equivalent. For the purposes of determining equivalence, truncation of the mature sequence (e.g., via a mutation which creates a spurious stop codon) should be disregarded. Sequence identity may be determined, e.g., using the Jotun Hein method (Hein, J. (1990) Methods Enzymol. 183:626-645). Identity between sequences can also be determined by other methods known in the art, e.g. by varying hybridization conditions.

5

10

15

20

2.5

30

The term "totipotent" refers to the capability of a cell to differentiate into all of the cell types of an adult organism.

The term "transformation" means introducing DNA into a suitable host cell so that the DNA is replicable, either as an extrachromosomal element, or by chromosomal integration. The term "transfection" refers to the taking up of an expression vector by a suitable host cell, whether or not any coding sequences are in fact expressed. The term "infection" refers to the introduction of nucleic acids into a suitable host cell by use of a virus or viral vector.

As used herein, an "uptake modulating fragment," UMF, means a series of nucleotides which mediate the uptake of a linked DNA fragment into a cell. UMFs can be readily identified using known UMFs as a target sequence or target motif with the computer-based systems described below. The presence and activity of a UMF can be confirmed by attaching the suspected UMF to a marker sequence. The resulting nucleic acid molecule is then incubated with an appropriate host under appropriate conditions and the uptake of the marker sequence is determined. As described above, a UMF will increase the frequency of uptake of a linked marker sequence.

Each of the above terms is meant to encompass all that is described for each, unless the context dictates otherwise.

4.2 NUCLEIC ACIDS OF THE INVENTION

5

10

15

20

25

30

Nucleotide sequences of the invention are set forth in the Sequence Listing. The isolated polynucleotides of the invention include a polynucleotide comprising the nucleotide sequences of SEQ ID NO:1-739; a polynucleotide encoding any one of the peptide sequences of SEQ ID NO:740-1478; and a polynucleotide comprising the nucleotide sequence encoding the mature protein coding sequence of the polypeptides of any one of SEQ ID NO:740-1478. The polynucleotides of the present invention also include, but are not limited to, a polynucleotide that hybridizes under stringent conditions to (a) the complement of any of the nucleotides sequences of SEQ ID NO:1-739; (b) nucleotide sequences encoding any one of the amino acid sequences set forth in the Sequence Listing; (c) a polynucleotide which is an allelic variant of any polynucleotide recited above; (d) a polynucleotide which encodes a species homolog of any of the proteins recited above; or (e) a polynucleotide that encodes a polypeptide comprising a specific domain or truncation of the polypeptides of SEQ ID NO: 740-1478. Domains of interest may depend on the nature of the encoded polypeptide; e.g., domains in receptorlike polypeptides include ligand-binding, extracellular, transmembrane, or cytoplasmic domains, or combinations thereof; domains in immunoglobulin-like proteins include the variable immunoglobulin-like domains; domains in enzyme-like polypeptides include catalytic and substrate binding domains; and domains in ligand polypeptides include receptor-binding domains.

The polynucleotides of the invention include naturally occurring or wholly or partially synthetic DNA, e.g., cDNA and genomic DNA, and RNA, e.g., mRNA. The polynucleotides may include all of the coding region of the cDNA or may represent a portion of the coding region of the cDNA.

The present invention also provides genes corresponding to the cDNA sequences disclosed herein. The corresponding genes can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include the preparation of probes or primers from the disclosed sequence information for identification

and/or amplification of genes in appropriate genomic libraries or other sources of genomic materials. Further 5' and 3' sequence can be obtained using methods known in the art. For example, full length cDNA or genomic DNA that corresponds to any of the polynucleotides of SEQ ID NO:1-739 can be obtained by screening appropriate cDNA or genomic DNA libraries under suitable hybridization conditions using any of the polynucleotides of SEQ ID NO:1-739 or a portion thereof as a probe. Alternatively, the polynucleotides of SEQ ID NO:1-739 may be used as the basis for suitable primer(s) that allow identification and/or amplification of genes in appropriate genomic DNA or cDNA libraries.

5

10

15

20

25

30

The nucleic acid sequences of the invention can be assembled from ESTs and sequences (including cDNA and genomic sequences) obtained from one or more public databases, such as dbEST, gbpri, and UniGene. The EST sequences can provide identifying sequence information, representative fragment or segment information, or novel segment information for the full-length gene.

The polynucleotides of the invention also provide polynucleotides including nucleotide sequences that are substantially equivalent to the polynucleotides recited above. Polynucleotides according to the invention can have, e.g., at least about 65%, at least about 70%, at least about 75%, at least about 80%, more typically at least about 90%, and even more typically at least about 95%, sequence identity to a polynucleotide recited above.

Included within the scope of the nucleic acid sequences of the invention are nucleic acid sequence fragments that hybridize under stringent conditions to any of the nucleotide sequences of SEQ ID NO:1-739, or complements thereof, which fragment is greater than about 5 nucleotides, preferably 7 nucleotides, more preferably greater than 9 nucleotides and most preferably greater than 17 nucleotides. Fragments of, e.g. 15, 17, or 20 nucleotides or more that are selective for (i.e. specifically hybridize to any one of the polynucleotides of the invention) are contemplated. Probes capable of specifically hybridizing to a polynucleotide can differentiate polynucleotide sequences of the invention from other polynucleotide sequences in the same family of genes or can differentiate human genes from genes of other species, and are preferably based on unique nucleotide sequences.

The sequences falling within the scope of the present invention are not limited to these specific sequences, but also include allelic and species variations thereof. Allelic and species variations can be routinely determined by comparing the sequence provided SEQ ID NO:1-739, a representative fragment thereof, or a nucleotide sequence at least 90%

identical, preferably 95% identical, to SEQ ID NO:1-739 with a sequence from another isolate of the same species. Furthermore, to accommodate codon variability, the invention includes nucleic acid molecules coding for the same amino acid sequences as do the specific ORFs disclosed herein. In other words, in the coding region of an ORF, substitution of one codon for another codon that encodes the same amino acid is expressly contemplated.

The nearest neighbor or homology result for the nucleic acids of the present invention, including SEQ ID NO:1-739, can be obtained by searching a databaseusing an algorithm or a program. Preferably, a BLAST which stands for Basic Local Alignment Search Tool is used to search for local sequence alignments (Altshul, S.F. J Mol. Evol. 36 290-300 (1993) and Altschul S.F. et al. J. Mol. Biol. 21:403-410 (1990)). Alternatively a FASTA version 3 search against Genpept, using Fastxy algorithm.

10

15

20

25

30

Species homologs (or orthologs) of the disclosed polynucleotides and proteins are also provided by the present invention. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source from the desired species.

The invention also encompasses allelic variants of the disclosed polynucleotides or proteins; that is, naturally-occurring alternative forms of the isolated polynucleotide which also encode proteins which are identical, homologous or related to that encoded by the polynucleotides.

The nucleic acid sequences of the invention are further directed to sequences which encode variants of the described nucleic acids. These amino acid sequence variants may be prepared by methods known in the art by introducing appropriate nucleotide changes into a native or variant polynucleotide. There are two variables in the construction of amino acid sequence variants: the location of the mutation and the nature of the mutation. Nucleic acids encoding the amino acid sequence variants are preferably constructed by mutating the polynucleotide to encode an amino acid sequence that does not occur in nature. These nucleic acid alterations can be made at sites that differ in the

nucleic acids from different species (variable positions) or in highly conserved regions (constant regions). Sites at such locations will typically be modified in series, e.g., by substituting first with conservative choices (e.g., hydrophobic amino acid to a different hydrophobic amino acid) and then with more distant choices (e.g., hydrophobic amino acid to a charged amino acid), and then deletions or insertions may be made at the target site. Amino acid sequence deletions generally range from about 1 to 30 residues, preferably about 1 to 10 residues, and are typically contiguous. Amino acid insertions include amino- and/or carboxyl-terminal fusions ranging in length from one to one hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Intrasequence insertions may range generally from about 1 to 10 amino residues, preferably from 1 to 5 residues. Examples of terminal insertions include the heterologous signal sequences necessary for secretion or for intracellular targeting in different host cells and sequences such as FLAG or poly-histidine sequences useful for purifying the expressed protein.

10

15

20

25

30

In a preferred method, polynucleotides encoding the novel amino acid sequences are changed via site-directed mutagenesis. This method uses oligonucleotide sequences to alter a polynucleotide to encode the desired amino acid variant, as well as sufficient adjacent nucleotides on both sides of the changed amino acid to form a stable duplex on either side of the site of being changed. In general, the techniques of site-directed mutagenesis are well known to those of skill in the art and this technique is exemplified by publications such as, Edelman et al., DNA 2:183 (1983). A versatile and efficient method for producing site-specific changes in a polynucleotide sequence was published by Zoller and Smith, Nucleic Acids Res. 10:6487-6500 (1982). PCR may also be used to create amino acid sequence variants of the novel nucleic acids. When small amounts of template DNA are used as starting material, primer(s) that differs slightly in sequence from the corresponding region in the template DNA can generate the desired amino acid variant. PCR amplification results in a population of product DNA fragments that differ from the polynucleotide template encoding the polypeptide at the position specified by the primer. The product DNA fragments replace the corresponding region in the plasmid and this gives a polynucleotide encoding the desired amino acid variant.

A further technique for generating amino acid variants is the cassette mutagenesis technique described in Wells et al., Gene 34:315 (1985); and other mutagenesis techniques well known in the art, such as, for example, the techniques in Sambrook et al., supra, and Current Protocols in Molecular Biology, Ausubel et al. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be used in the practice of the invention for the cloning and expression of these novel nucleic acids. Such DNA sequences include those which are capable of hybridizing to the appropriate novel nucleic acid sequence under stringent conditions.

Polynucleotides encoding preferred polypeptide truncations of the invention can be used to generate polynucleotides encoding chimeric or fusion proteins comprising one or more domains of the invention and heterologous protein sequences.

10

15

20

25

30

The polynucleotides of the invention additionally include the complement of any of the polynucleotides recited above. The polynucleotide can be DNA (genomic, cDNA, amplified, or synthetic) or RNA. Methods and algorithms for obtaining such polynucleotides are well known to those of skill in the art and can include, for example, methods for determining hybridization conditions that can routinely isolate polynucleotides of the desired sequence identities.

In accordance with the invention, polynucleotide sequences comprising the mature protein coding sequences corresponding to any one of SEQ ID NO:1-739, or functional equivalents thereof, may be used to generate recombinant DNA molecules that direct the expression of that nucleic acid, or a functional equivalent thereof, in appropriate host cells. Also included are the cDNA inserts of any of the clones identified herein.

A polynucleotide according to the invention can be joined to any of a variety of other nucleotide sequences by well-established recombinant DNA techniques (see Sambrook J et al. (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, NY). Useful nucleotide sequences for joining to polynucleotides include an assortment of vectors, e.g., plasmids, cosmids, lambda phage derivatives, phagemids, and the like, that are well known in the art. Accordingly, the invention also provides a vector including a polynucleotide of the invention and a host cell containing the polynucleotide.

In general, the vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and a selectable marker for the host cell.

Vectors according to the invention include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. A host cell according to the invention can be a prokaryotic or eukaryotic cell and can be a unicellular organism or part of a multicellular organism.

The present invention further provides recombinant constructs comprising a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof or any other polynucleotides of the invention. In one embodiment, the recombinant constructs of the present invention comprise a vector, such as a plasmid or viral vector, into which a nucleic acid having any of the nucleotide sequences of SEQ ID NO:1-739 or a fragment thereof is inserted, in a forward or reverse orientation. In the case of a vector comprising one of the ORFs of the present invention, the vector may further comprise regulatory sequences, including for example, a promoter, operably linked to the ORF. Large numbers of suitable vectors and promoters are known to those of skill in the art and are commercially available for generating the recombinant constructs of the present invention. The following vectors are provided by way of example. Bacterial: pBs, phagescript, PsiX174, pBluescript SK, pBs KS, pNH8a, pNH16a, pNH18a, pNH46a (Stratagene); pTrc99A, pKK223-3, pKK233-3, pDR540, pRIT5 (Pharmacia). Eukaryotic: pWLneo, pSV2cat, pOG44, PXTI, pSG (Stratagene) pSVK3, pBPV, pMSG, pSVL (Pharmacia).

The isolated polynucleotide of the invention may be operably linked to an expression control sequence such as the pMT2 or pED expression vectors disclosed in Kaufman et al., Nucleic Acids Res. 19, 4485-4490 (1991), in order to produce the protein recombinantly. Many suitable expression control sequences are known in the art. General methods of expressing recombinant proteins are also known and are exemplified in R. Kaufman, Methods in Enzymology 185, 537-566 (1990). As defined herein "operably linked" means that the isolated polynucleotide of the invention and an expression control sequence are situated within a vector or cell in such a way that the protein is expressed by a host cell which has been transformed (transfected) with the ligated polynucleotide/expression control sequence.

5

10

15

2.0

2.5

30

Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lacI, lacZ, T3, T7, gpt, lambda PR, and trc. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art. Generally, recombinant expression vectors will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence. Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), a-factor, acid phosphatase, or heat shock proteins, among others. The heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences, and preferably, a leader sequence capable of directing secretion of translated protein into the periplasmic space or extracellular medium. Optionally, the heterologous sequence can encode a fusion protein including an amino terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product. Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter. The vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and to, if desirable, provide amplification within the host. Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis, Salmonella typhimurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice

As a representative but non-limiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example.

pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM 1 (Promega Biotech, Madison, WI, USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed. Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is induced or derepressed by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.

Polynucleotides of the invention can also be used to induce immune responses. For example, as described in Fan et al., Nat. Biotech. 17:870-872 (1999), incorporated herein by reference, nucleic acid sequences encoding a polypeptide may be used to generate antibodies against the encoded polypeptide following topical administration of naked plasmid DNA or following injection, and preferably intramuscular injection of the DNA. The nucleic acid sequences are preferably inserted in a recombinant expression vector and may be in the form of naked DNA.

4.3 ANTISENSE

5

10

15

20

25

30

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1-739, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a protein of any of SEQ ID NO:740-1478 or antisense nucleic acids complementary to a nucleic acid sequence of SEQ ID NO:1-739 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence of the invention. The term "coding

region" refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues. In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence of the invention. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding a nucleic acid disclosed herein (e.g., SEQ ID NO:1-739, antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of a mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of a mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of a mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

10

15

20

25

30

Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylguanine, 2-methylguanine, 2-methylguanine, 3-methylcytosine, 5-methylguanine, 5-methylguanine, 5-methyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxyaminomethyluracil, 5-methoxyuracil,

2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine,

pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).

10

15

20

30

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a protein according to the invention to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res 15: 6625-6641). The antisense nucleic acid molecule can also comprise a

2'-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res 15: 6131-6148) or a chimeric RNA -DNA analogue (Inoue et al. (1987) FEBS Lett 215: 327-330).

4.4 RIBOZYMES AND PNA MOIETIES

5

10

15

20

In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes (described in Haselhoff and Gerlach (1988) Nature 334:585-591)) can be used to catalytically cleave a mRNA transcripts to thereby inhibit translation of a mRNA. A ribozyme having specificity for a nucleic acid of the invention can be designed based upon the nucleotide sequence of a DNA disclosed herein (i.e., SEQ ID NO:1-739). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a SECX-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, SECX mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel et al., (1993) Science 261:1411-1418.

Alternatively, gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region (e.g., promoter and/or enhancers) to form triple helical structures that prevent transcription of the gene in target cells. See generally, Helene. (1991) Anticancer Drug Des. 6: 569-84; Helene. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14: 807-15.

In various embodiments, the nucleic acids of the invention can be modified at the

25 base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability,
hybridization, or solubility of the molecule. For example, the deoxyribose phosphate
backbone of the nucleic acids can be modified to generate peptide nucleic acids (see
Hyrup et al. (1996) Bioorg Med Chem 4: 5-23). As used herein, the terms "peptide
nucleic acids" or "PNAs" refer to nucleic acid mimics, e.g., DNA mimics, in which the

30 deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the
four natural nucleobases are retained. The neutral backbone of PNAs has been shown to

allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996) above; Perry-O'Keefe et al. (1996) PNAS 93: 14670-675.

5

10

15

20

25

30

PNAs of the invention can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs of the invention can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup B. (1996) above); or as probes or primers for DNA sequence and hybridization (Hyrup et al. (1996), above; Perry-O'Keefe (1996), above).

In another embodiment, PNAs of the invention can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated that may combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNase H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996) above). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996) above and Finn et al. (1996) Nucl Acids Res 24: 3357-63. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry, and modified nucleoside analogs, e.g.,

5'-(4-methoxytrityl)amino-5'-deoxy-thymidine phosphoramidite, can be used between the PNA and the 5' end of DNA (Mag et al. (1989) Nucl Acid Res 17: 5973-88). PNA monomers are then coupled in a stepwise manner to produce a chimeric molecule with a 5' PNA segment and a 3' DNA segment (Finn et al. (1996) above). Alternatively,

chimeric molecules can be synthesized with a 5' DNA segment and a 3' PNA segment. See, Petersen et al. (1975) Bioorg Med Chem Lett 5: 1119-11124.

In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization triggered cleavage agents (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5: 539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, a hybridization triggered cross-linking agent, at transport agent, a hybridization-triggered cleavage agent, etc.

4.5 HOSTS

10

15

20

25

30

The present invention further provides host cells genetically engineered to contain the polynucleotides of the invention. For example, such host cells may contain nucleic acids of the invention introduced into the host cell using known transformation, transfection or infection methods. The present invention still further provides host cells genetically engineered to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell.

Knowledge of nucleic acid sequences allows for modification of cells to permit, or increase, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the polypeptide at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the encoding sequences. See, for example, PCT International Publication No. WO94/12650, PCT International Publication No. WO92/20808, and PCT International Publication No. WO91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If

linked to the coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

The host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, or electroporation (Davis, L. et al., *Basic Methods in Molecular Biology* (1986)). The host cells containing one of the polynucleotides of the invention, can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF) or can be used to produce a heterologous protein under the control of the EMF.

10

15

25

30

Any host/vector system can be used to express one or more of the ORFs of the present invention. These include, but are not limited to, eukaryotic hosts such as HeLa cells, Cv-1 cell, COS cells, 293 cells, and Sf9 cells, as well as prokaryotic host such as £. coli and B. subtilis. The most preferred cells are those which do not normally express the particular polypeptide or protein or which expresses the polypeptide or protein at low natural level. Mature proteins can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described by Sambrook, et al., in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor, New York (1989), the disclosure of which is hereby incorporated by reference.

Various mammalian cell culture systems can also be employed to express recombinant protein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981). Other cell lines capable of expressing a compatible vector are, for example, the C127, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells. Mammalian expression vectors will comprise an origin of replication, a

suitable promoter and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early promoter, enhancer, splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Recombinant polypeptides and proteins produced in bacterial culture are usually isolated by initial extraction from cell pellets, followed by one or more salting-out, aqueous ion exchange or size exclusion chromatography steps. Protein refolding steps can be used, as necessary, in completing configuration of the mature protein. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freeze-thaw cycling, sonication, mechanical disruption, or use of cell lysing agents.

Alternatively, it may be possible to produce the protein in lower eukaryotes such as yeast or insects or in prokaryotes such as bacteria. Potentially suitable yeast strains include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces strains, Candida, or any yeast strain capable of expressing heterologous proteins. Potentially suitable bacterial strains include Escherichia coli, Bacillus subtilis, Salmonella typhimurium, or any bacterial strain capable of expressing heterologous proteins. If the protein is made in yeast or bacteria, it may be necessary to modify the protein produced therein, for example by phosphorylation or glycosylation of the appropriate sites, in order to obtain the functional protein. Such covalent attachments may be accomplished using known chemical or enzymatic methods.

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations

of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequence include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

10

15

20

25

30

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the host cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

4.6 POLYPEPTIDES OF THE INVENTION

The isolated polypeptides of the invention include, but are not limited to, a polypeptide comprising: the amino acid sequences set forth as any one of SEO ID NO:740-1478 or an amino acid sequence encoded by any one of the nucleotide sequences SEO ID NO:1-739 or the corresponding full length or mature protein. Polypeptides of the invention also include polypeptides preferably with biological or immunological activity that are encoded by: (a) a polynucleotide having any one of the nucleotide sequences set forth in SEO ID NO:1-739 or (b) polynucleotides encoding any one of the amino acid sequences set forth as SEO ID NO:740-1478 or (c) polynucleotides that hybridize to the 10 complement of the polynucleotides of either (a) or (b) under stringent hybridization conditions. The invention also provides biologically active or immunologically active variants of any of the amino acid sequences set forth as SEQ ID NO:740-1478 or the corresponding full length or mature protein; and "substantial equivalents" thereof (e.g., 15 with at least about 65%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, typically at least about 95%, more typically at least about 98%, or most typically at least about 99% amino acid identity) that retain biological activity. Polypeptides encoded by allelic variants may have a similar, increased, or decreased activity compared to polypeptides comprising SEQ ID NO:740-20 1478.

Fragments of the proteins of the present invention which are capable of exhibiting biological activity are also encompassed by the present invention. Fragments of the protein may be in linear form or they may be cyclized using known methods, for example, as described in H. U. Saragovi, et al., Bio/Technology 10, 773-778 (1992) and in R. S. McDowell, et al., J. Amer. Chem. Soc. 114, 9245-9253 (1992), both of which are incorporated herein by reference. Such fragments may be fused to carrier molecules such as immunoglobulins for many purposes, including increasing the valency of protein binding sites.

25

30

The present invention also provides both full-length and mature forms (for example, without a signal sequence or precursor sequence) of the disclosed proteins. The protein coding sequence is identified in the sequence listing by translation of the

disclosed nucleotide sequences. The mature form of such protein may be obtained by expression of a full-length polynucleotide in a suitable mammalian cell or other host cell. The sequence of the mature form of the protein is also determinable from the amino acid sequence of the full-length form. Where proteins of the present invention are membrane bound, soluble forms of the proteins are also provided. In such forms, part or all of the regions causing the proteins to be membrane bound are deleted so that the proteins are fully secreted from the cell in which they are expressed.

Protein compositions of the present invention may further comprise an acceptable carrier, such as a hydrophilic, e.g., pharmaceutically acceptable, carrier.

10

15

20

30

The present invention further provides isolated polypeptides encoded by the nucleic acid fragments of the present invention or by degenerate variants of the nucleic acid fragments of the present invention. By "degenerate variant" is intended nucleotide fragments which differ from a nucleic acid fragment of the present invention (e.g., an ORF) by nucleotide sequence but, due to the degeneracy of the genetic code, encode an identical polypertide sequence. Preferred nucleic acid fragments of the present invention are the ORFs that encode proteins.

A variety of methodologies known in the art can be utilized to obtain any one of the isolated polypeptides or proteins of the present invention. At the simplest level, the amino acid sequence can be synthesized using commercially available peptide synthesizers. The synthetically-constructed protein sequences, by virtue of sharing primary, secondary or tertiary structural and/or conformational characteristics with proteins may possess biological properties in common therewith, including protein activity. This technique is particularly useful in producing small peptides and fragments of larger polypeptides. Fragments are useful, for example, in generating antibodies against the native polypeptide. Thus, they may be employed as biologically active or 25 immunological substitutes for natural, purified proteins in screening of therapeutic compounds and in immunological processes for the development of antibodies.

The polypeptides and proteins of the present invention can alternatively be purified from cells which have been altered to express the desired polypeptide or protein. As used herein, a cell is said to be altered to express a desired polypeptide or protein when the cell, through genetic manipulation, is made to produce a polypeptide or protein

which it normally does not produce or which the cell normally produces at a lower level.

One skilled in the art can readily adapt procedures for introducing and expressing either recombinant or synthetic sequences into eukaryotic or prokaryotic cells in order to generate a cell which produces one of the polypeptides or proteins of the present invention.

5

15

2.0

25

30

The invention also relates to methods for producing a polypeptide comprising growing a culture of host cells of the invention in a suitable culture medium, and purifying the protein from the cells or the culture in which the cells are grown. For example, the methods of the invention include a process for producing a polypeptide in which a host cell containing a suitable expression vector that includes a polynucleotide of the invention is cultured under conditions that allow expression of the encoded polypeptide. The polypeptide can be recovered from the culture, conveniently from the culture medium, or from a lysate prepared from the host cells and further purified. Preferred embodiments include those in which the protein produced by such process is a full length or mature form of the protein.

In an alternative method, the polypeptide or protein is purified from bacterial cells which naturally produce the polypeptide or protein. One skilled in the art can readily follow known methods for isolating polypeptides and proteins in order to obtain one of the isolated polypeptides or proteins of the present invention. These include, but are not limited to, immunochromatography, HPLC, size-exclusion chromatography, ion-exchange chromatography, and immuno-affinity chromatography. See, e.g., Scopes, Protein Purification: Principles and Practice, Springer-Verlag (1994); Sambrook, et al., in Molecular Cloning: A Laboratory Manual; Ausubel et al., Current Protocols in Molecular Biology. Polypeptide fragments that retain biological/immunological activity include fragments comprising greater than about 100 amino acids, or greater than about 200 amino acids, and fragments that rencode specific protein domains.

The purified polypeptides can be used in in vitro binding assays which are well known in the art to identify molecules which bind to the polypeptides. These molecules include but are not limited to, for e.g., small molecules, molecules from combinatorial libraries, antibodies or other proteins. The molecules identified in the binding assay are then tested for antagonist or agonist activity in in vivo tissue culture or animal models

that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

In addition, the peptides of the invention or molecules capable of binding to the peptides may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity of the binding molecule for SEQ ID NO:740-1478.

5

10

1.5

20

25

30

The protein of the invention may also be expressed as a product of transgenic animals, e.g., as a component of the milk of transgenic cows, goats, pigs, or sheep which are characterized by somatic or germ cells containing a nucleotide sequence encoding the protein.

The proteins provided herein also include proteins characterized by amino acid sequences similar to those of purified proteins but into which modification are naturally provided or deliberately engineered. For example, modifications, in the peptide or DNA sequence, can be made by those skilled in the art using known techniques. Modifications of interest in the protein sequences may include the alteration, substitution, replacement, insertion or deletion of a selected amino acid residue in the coding sequence. For example, one or more of the cysteine residues may be deleted or replaced with another amino acid to alter the conformation of the molecule. Techniques for such alteration, substitution, replacement, insertion or deletion are well known to those skilled in the art (see, e.g., U.S. Pat. No. 4,518,584). Preferably, such alteration, substitution, replacement, insertion or deletion retains the desired activity of the protein. Regions of the protein that are important for the protein function can be determined by various methods known in the art including the alanine-scanning method which involved systematic substitution of single or strings of amino acids with alanine, followed by testing the resulting alanine-containing variant for biological activity. This type of analysis determines the importance of the substituted amino acid(s) in biological activity. Regions of the protein that are important for protein function may be determined by the eMATRIX program.

Other fragments and derivatives of the sequences of proteins which would be expected to retain protein activity in whole or in part and are useful for screening or other

immunological methodologies may also be easily made by those skilled in the art given the disclosures herein. Such modifications are encompassed by the present invention.

The protein may also be produced by operably linking the isolated polynucleotide of the invention to suitable control sequences in one or more insect expression vectors, and employing an insect expression system. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, e.g., Invitrogen, San Diego, Calif., U.S.A. (the MaxBatTM kit), and such methods are well known in the art, as described in Summers and Smith, Texas Agricultural Experiment Station Bulletin No. 1555 (1987), incorporated herein by reference. As used herein, an insect cell capable of expressing a polynucleotide of the present invention is "transformed."

5

10

15

20

25

30

The protein of the invention may be prepared by culturing transformed host cells under culture conditions suitable to express the recombinant protein. The resulting expressed protein may then be purified from such culture (i.e., from culture medium or cell extracts) using known purification processes, such as gel filtration and ion exchange chromatography. The purification of the protein may also include an affinity column containing agents which will bind to the protein; one or more column steps over such affinity resins as concanavalin A-agarose, heparin-toyopearITM or Cibacrom blue 3GA SepharoseTM; one or more steps involving hydrophobic interaction chromatography using such resins as phenyl ether, butyl ether, or propyl ether; or immunoaffinity chromatography.

Alternatively, the protein of the invention may also be expressed in a form which will facilitate purification. For example, it may be expressed as a fusion protein, such as those of maltose binding protein (MBP), glutathione-S-transferase (GST) or thioredoxin (TRX), or as a His tag. Kits for expression and purification of such fusion proteins are commercially available from New England BioLab (Beverly, Mass.), Pharmacia (Piscataway, N.J.) and Invitrogen, respectively. The protein can also be tagged with an epitope and subsequently purified by using a specific antibody directed to such epitope. One such epitope ("FLAG®") is commercially available from Kodak (New Haven, Conn.).

Finally, one or more reverse-phase high performance liquid chromatography (RP-HPLC) steps employing hydrophobic RP-HPLC media, e.g., silica gel having pendant methyl or other aliphatic groups, can be employed to further purify the protein. Some or all of the foregoing purification steps, in various combinations, can also be employed to provide a substantially homogeneous isolated recombinant protein. The protein thus purified is substantially free of other mammalian proteins and is defined in accordance with the present invention as an "isolated protein."

The polypeptides of the invention include analogs (variants). This embraces fragments, as well as peptides in which one or more amino acids has been deleted, inserted, or substituted. Also, analogs of the polypeptides of the invention embrace fusions of the polypeptides or modifications of the polypeptides of the invention, wherein the polypeptide or analog is fused to another moiety or moieties, e.g., targeting moiety or another therapeutic agent. Such analogs may exhibit improved properties such as activity and/or stability. Examples of moieties which may be fused to the polypeptide or an analog include, for example, targeting moieties which provide for the delivery of polypeptide to pancreatic cells, e.g., antibodies to pancreatic cells, antibodies to immune cells such as T-cells, monocytes, dendritic cells, granulocytes, etc., as well as receptor and ligands expressed on pancreatic or immune cells. Other moieties which may be fused to the polypeptide include therapeutic agents which are used for treatment, for example, immunosuppressive drugs such as cyclosporin, SK506, azathioprine, CD3 antibodies and steroids. Also, polypeptides may be fused to immune modulators, and other cytokines such as alpha or beta interferon.

4.6.1 DETERMINING POLYPEPTIDE AND POLYNUCLEOTIDE

25 IDENTITY AND SIMILARITY

10

15

2.0

30

Preferred identity and/or similarity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in computer programs including, but are not limited to, the GCG program package, including GAP (Devereux, J., et al., Nucleic Acids Research 12(1):387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI), BLASTP, BLASTN, BLASTN, FASTA (Altschul, S.F. et al., J. Molec. Biol. 215:403-410 (1990), PSI-BLAST

(Altschul S.F. et al., Nucleic Acids Res. vol. 25, pp. 3389-3402, herein incorporated by reference), eMatrix software (Wu et al., J. Comp. Biol., Vol. 6, pp. 219-235 (1999), herein incorporated by reference), eMotif software (Nevill-Manning et al., ISMB-97, Vol. 4, pp. 202-209, herein incorporated by reference), pFam software (Sonnhammer et al., Nucleic Acids Res., Vol. 26(1), pp. 320-322 (1998), herein incorporated by reference) and the Kyte-Doolittle hydrophobocity prediction algorithm (J. Mol Biol, 157, pp. 105-31 (1982), incorporated herein by reference). The BLAST programs are publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul, S., et al. NCB NLM NIH Bethesda, MD 20894; Altschul, S., et al., J. Mol. Biol. 215:403-410 (1990).

4.7 CHIMERIC AND FUSION PROTEINS

10

15

20

30

The invention also provides chimeric or fusion proteins. As used herein, a "chimeric protein" or "fusion protein" comprises a polypeptide of the invention operatively linked to another polypeptide. Within a fusion protein the polypeptide according to the invention can correspond to all or a portion of a protein according to the invention. In one embodiment, a fusion protein comprises at least one biologically active portion of a protein according to the invention. In another embodiment, a fusion protein comprises at least two biologically active portions of a protein according to the invention. Within the fusion protein, the term "operatively linked" is intended to indicate that the polypeptide according to the invention and the other polypeptide are fused in-frame to each other. The polypeptide can be fused to the N-terminus or C-terminus.

For example, in one embodiment a fusion protein comprises a polypeptide according to the invention operably linked to the extracellular domain of a second protein.

25 In another embodiment, the fusion protein is a GST-fusion protein in which the polypeptide sequences of the invention are fused to the C-terminus of the GST (i.e., glutathione S-transferase) sequences.

In another embodiment, the fusion protein is an immunoglobulin fusion protein in which the polypeptide sequences according to the invention comprises one or more domains are fused to sequences derived from a member of the immunoglobulin protein family. The immunoglobulin fusion proteins of the invention can be incorporated into

pharmaceutical compositions and administered to a subject to inhibit an interaction between a ligand and a protein of the invention on the surface of a cell, to thereby suppress signal transduction in vivo. The immunoglobulin fusion proteins can be used to affect the bioavailability of a cognate ligand. Inhibition of the ligand/protein interaction may be useful therapeutically for both the treatment of proliferative and differentiative disorders, e.g., cancer as well as modulating (e.g., promoting or inhibiting) cell survival. Moreover, the immunoglobulin fusion proteins of the invention can be used as immunogens to produce antibodies in a subject, to purify ligands, and in screening assays to identify molecules that inhibit the interaction of a polypeptide of the invention with a ligand.

A chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, e.g., by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence (see, for example, Ausubel et al. (eds.) CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the protein of the invention.

4.8 GENE THERAPY

10

15

20

25

30

Mutations in the polynucleotides of the invention gene may result in loss of normal function of the encoded protein. The invention thus provides gene therapy to restore normal activity of the polypeptides of the invention; or to treat disease states

involving polypeptides of the invention. Delivery of a functional gene encoding polypeptides of the invention to appropriate cells is effected ex vivo, in situ, or in vivo by use of vectors, and more particularly viral vectors (e.g., adenovirus, adeno-associated virus, or a retrovirus), or ex vivo by use of physical DNA transfer methods (e.g., liposomes or chemical treatments). See, for example, Anderson, Nature, supplement to vol. 392, no. 6679, pp.25-20 (1998). For additional reviews of gene therapy technology see Friedmann, Science, 244: 1275-1281 (1989); Verma, Scientific American: 68-84 (1990); and Miller, Nature, 357: 455-460 (1992). Introduction of any one of the nucleotides of the present invention or a gene encoding the polypeptides of the present invention can also be accomplished with extrachromosomal substrates (transient expression) or artificial chromosomes (stable expression). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes. Alternatively, it is contemplated that in other human disease states, preventing the expression of or inhibiting the activity of polypeptides of the invention will be useful in treating the disease states. It is contemplated that antisense therapy or gene therapy could be applied to negatively regulate the expression of

5

10

15

20

25

30

polypeptides of the invention.

Other methods inhibiting expression of a protein include the introduction of antisense molecules to the nucleic acids of the present invention, their complements, or their translated RNA sequences, by methods known in the art. Further, the polypeptides of the present invention can be inhibited by using targeted deletion methods, or the insertion of a negative regulatory element such as a silencer, which is tissue specific.

The present invention still further provides cells genetically engineered in vivo to express the polynucleotides of the invention, wherein such polynucleotides are in operative association with a regulatory sequence heterologous to the host cell which drives expression of the polynucleotides in the cell. These methods can be used to increase or decrease the expression of the polynucleotides of the present invention.

Knowledge of DNA sequences provided by the invention allows for modification of cells to permit, increase, or decrease, expression of endogenous polypeptide. Cells can be modified (e.g., by homologous recombination) to provide increased polypeptide expression

by replacing, in whole or in part, the naturally occurring promoter with all or part of a heterologous promoter so that the cells express the protein at higher levels. The heterologous promoter is inserted in such a manner that it is operatively linked to the desired protein encoding sequences. See, for example, PCT International Publication No. WO 94/12650, PCT International Publication No. WO 92/20808, and PCT International Publication No. WO 91/09955. It is also contemplated that, in addition to heterologous promoter DNA, amplifiable marker DNA (e.g., ada, dhfr, and the multifunctional CAD gene which encodes carbamyl phosphate synthase, aspartate transcarbamylase, and dihydroorotase) and/or intron DNA may be inserted along with the heterologous promoter DNA. If linked to the desired protein coding sequence, amplification of the marker DNA by standard selection methods results in co-amplification of the desired protein coding sequences in the cells.

10

15

20

25

30

In another embodiment of the present invention, cells and tissues may be engineered to express an endogenous gene comprising the polynucleotides of the invention under the control of inducible regulatory elements, in which case the regulatory sequences of the endogenous gene may be replaced by homologous recombination. As described herein, gene targeting can be used to replace a gene's existing regulatory region with a regulatory sequence isolated from a different gene or a novel regulatory sequence synthesized by genetic engineering methods. Such regulatory sequences may be comprised of promoters, enhancers, scaffold-attachment regions, negative regulatory elements, transcriptional initiation sites, regulatory protein binding sites or combinations of said sequences. Alternatively, sequences which affect the structure or stability of the RNA or protein produced may be replaced, removed, added, or otherwise modified by targeting. These sequences include polyadenylation signals, mRNA stability elements, splice sites, leader sequences for enhancing or modifying transport or secretion properties of the protein, or other sequences which alter or improve the function or stability of protein or RNA molecules.

The targeting event may be a simple insertion of the regulatory sequence, placing the gene under the control of the new regulatory sequence, e.g., inserting a new promoter or enhancer or both upstream of a gene. Alternatively, the targeting event may be a simple deletion of a regulatory element, such as the deletion of a tissue-specific negative regulatory element. Alternatively, the targeting event may replace an existing element; for example, a

tissue-specific enhancer can be replaced by an enhancer that has broader or different cell-type specificity than the naturally occurring elements. Here, the naturally occurring sequences are deleted and new sequences are added. In all cases, the identification of the targeting event may be facilitated by the use of one or more selectable marker genes that are contiguous with the targeting DNA, allowing for the selection of cells in which the exogenous DNA has integrated into the cell genome. The identification of the targeting event may also be facilitated by the use of one or more marker genes exhibiting the property of negative selection, such that the negatively selectable marker is linked to the exogenous DNA, but configured such that the negatively selectable marker flanks the targeting sequence, and such that a correct homologous recombination event with sequences in the host cell genome does not result in the stable integration of the negatively selectable marker. Markers useful for this purpose include the Herpes Simplex Virus thymidine kinase (TK) gene or the bacterial xanthine-guanine phosphoribosyl-transferase (gpt) gene.

The gene targeting or gene activation techniques which can be used in accordance with this aspect of the invention are more particularly described in U.S. Patent No. 5,272,071 to Chappel; U.S. Patent No. 5,578,461 to Sherwin et al.; International Application No. PCT/US92/09627 (WO93/09222) by Selden et al.; and International Application No. PCT/US90/06436 (WO91/06667) by Skoultchi et al., each of which is incorporated by reference herein in its entirety.

20

25

30

15

10

4.9 TRANSGENIC ANIMALS

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in

disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT.

Publication No. WO94/28122, incorporated herein by reference.

5

10

15

20

25

30

Transgenic animals can be prepared wherein all or part of a promoter of the polynucleotides of the invention is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

The polynucleotides of the present invention also make possible the development, through, e.g., homologous recombination or knock out strategies, of animals that fail to express polypeptides of the invention or that express a variant polypeptide. Such animals are useful as models for studying the *in vivo* activities of polypeptide as well as for studying modulators of the polypeptides of the invention.

In preferred methods to determine biological functions of the polypeptides of the invention in vivo, one or more genes provided by the invention are either over expressed or inactivated in the germ line of animals using homologous recombination [Capecchi, Science 244:1288-1292 (1989)]. Animals in which the gene is over expressed, under the regulatory control of exogenous or endogenous promoter elements, are known as transgenic animals. Animals in which an endogenous gene has been inactivated by homologous recombination are referred to as "knockout" animals. Knockout animals, preferably non-human mammals, can be prepared as described in U.S. Patent No. 5,557,032, incorporated herein by reference. Transgenic animals are useful to determine the roles polypeptides of the invention play in biological processes, and preferably in disease states. Transgenic animals are useful as model systems to identify compounds that modulate lipid metabolism. Transgenic animals, preferably non-human mammals, are produced using methods as described in U.S. Patent No 5,489,743 and PCT Publication No. WO94/28122, incorporated herein by reference.

Transgenic animals can be prepared wherein all or part of the polynucleotides of the invention promoter is either activated or inactivated to alter the level of expression of the polypeptides of the invention. Inactivation can be carried out using homologous recombination methods described above. Activation can be achieved by supplementing or even replacing the homologous promoter to provide for increased protein expression. The homologous promoter can be supplemented by insertion of one or more heterologous enhancer elements known to confer promoter activation in a particular tissue.

4.10 USES AND BIOLOGICAL ACTIVITY

10

15

20

25

30

The polynucleotides and proteins of the present invention are expected to exhibit one or more of the uses or biological activities (including those associated with assays cited herein) identified herein. Uses or activities described for proteins of the present invention may be provided by administration or use of such proteins or of polynucleotides encoding such proteins (such as, for example, in gene therapies or vectors suitable for introduction of DNA). The mechanism underlying the particular condition or pathology will dictate whether the polypeptides of the invention, the polynucleotides of the invention or modulators (activators or inhibitors) thereof would be beneficial to the subject in need of treatment. Thus, "therapeutic compositions of the invention" include compositions comprising isolated polynucleotides (including recombinant DNA molecules, cloned genes and degenerate variants thereof) or polypeptides of the invention (including full length protein, mature protein and truncations or domains thereof), or compounds and other substances that modulate the overall activity of the target gene products, either at the level of target gene/protein expression or target protein activity. Such modulators include polypeptides, analogs, (variants), including fragments and fusion proteins, antibodies and other binding proteins; chemical compounds that directly or indirectly activate or inhibit the polypeptides of the invention (identified, e.g., via drug screening assays as described herein); antisense polynucleotides and polynucleotides suitable for triple helix formation; and in particular antibodies or other binding partners that specifically recognize one or more epitopes of the polypeptides of the invention.

The polypeptides of the present invention may likewise be involved in cellular activation or in one of the other physiological pathways described herein.

4.10.1 RESEARCH ÚSES AND UTILITIES

5

10

15

20

25

30

The polynucleotides provided by the present invention can be used by the research community for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; as a probe to "subtract-out" known sequences in the process of discovering other novel polynucleotides; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination of expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding polypeptide is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of

course, to isolate correlative receptors or ligands. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or ago of the binding interaction.

Any or all of these research utilities are capable of being developed into reager

5 grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing such methods include without limitation "Molecular Cloning: A Laboratory Manual", 2d ed., Cold Spring Harbor Laboratory Press, Sambrook, J., E. F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology: Guide to Molecular Cloning Techniques", Academic Press, Berger, S. L. and A. R. Kimmel eds., 1987.

4.10.2 NUTRITIONAL USES

10

15

20

25

30

Polynucleotides and polypeptides of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a nitrogen source and use as a source of carbohydrate. In such cases the polypeptide or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the polypeptide or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

4.10.3 CYTOKINE AND CELL PROLIFERATION/DIFFERENTIATION ACTIVITY

A polypeptide of the present invention may exhibit activity relating to cytokine, cell proliferation (either inducing or inhibiting) or cell differentiation (either inducing or inhibiting) activity or may induce production of other cytokines in certain cell populations. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor-dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of therapeutic

compositions of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B9, B9/11, BaF3, MC9/G, M+(preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7e, CMK, HUVEC, and Caco. Therapeutic compositions of the invention can be used in the following:

5

10

15

20

Assays for T-cell or thymocyte proliferation include without limitation those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 137:3494-3500, 1986; Bertagnolli et al., J. Immunol. 145:1706-1712, 1990; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Bertagnolli, et al., I. Immunol. 149:3778-3783, 1992; Bowman et al., I. Immunol. 152:1756-1761, 1994.

Assays for cytokine production and/or proliferation of spleen cells, lymph node cells or thymocytes include, without limitation, those described in: Polyclonal T cell stimulation, Kruisbeek, A. M. and Shevach, E. M. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 3.12.1-3.12.14, John Wiley and Sons, Toronto. 1994; and Measurement of mouse and human interleukin-γ, Schreiber, R. D. In Current Protocols in Immunology. J. E. e.a. Coligan eds. Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

Assays for proliferation and differentiation of hematopoietic and lymphopoietic cells include, without limitation, those described in: Measurement of Human and Murine Interleukin 2 and Interleukin 4, Bottomly, K., Davis, L. S. and Lipsky, P. E. In Current Protocols in Immunology. J. E. c.a. Coligan eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 336:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Measurement of mouse and human interleukin 6-Nordan, R. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Measurement of human Interleukin 11-Bennett, F., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology. J. E. Coligan eds. Vol 1 pp. 6.15.1 John

Wiley and Sons, Toronto, 1991; Measurement of mouse and human Interleukin 9--Ciarletta, A., Giannotti, J., Clark, S. C. and Turner, K. J. In Current Protocols in Immunology, J. E. Coligan eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

5

15

20

25

30

Assays for T-cell clone responses to antigens (which will identify, among others, proteins that affect APC-T cell interactions as well as direct T-cell effects by measuring proliferation and cytokine production) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function; Chapter 10 6. Cytokines and their cellular recentors; Chapter 7, Immunologic studies in Humans); Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Fur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol, 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

4.10.4 STEM CELL GROWTH FACTOR ACTIVITY

A polypeptide of the present invention may exhibit stem cell growth factor activity and be involved in the proliferation, differentiation and survival of pluripotent and totinotent stem cells including primordial germ cells, embryonic stem cells, hematopoietic stem cells and/or germ line stem cells. Administration of the polypeptide of the invention to stem cells in vivo or ex vivo is expected to maintain and expand cell populations in a totipotential or pluripotential state which would be useful for reengineering damaged or diseased tissues, transplantation, manufacture of biopharmaceuticals and the development of bio-sensors. The ability to produce large quantities of human cells has important working applications for the production of human proteins which currently must be obtained from non-human sources or donors. implantation of cells to treat diseases such as Parkinson's, Alzheimer's and other neurodegenerative diseases; tissues for grafting such as bone marrow, skin, cartilage, tendons, bone, muscle (including cardiac muscle), blood vessels, cornea, neural cells, gastrointestinal cells and others; and organs for transplantation such as kidney, liver, pancreas (including islet cells), heart and lung.

It is contemplated that multiple different exogenous growth factors and/or cytokines may be administered in combination with the polypeptide of the invention to achieve the desired effect, including any of the growth factors listed herein, other stem cell maintenance factors, and specifically including stem cell factor (SCF), leukemia inhibitory factor (LIF), Fit-3 ligand (Fit-3L), any of the interleukins, recombinant soluble IL-6 receptor fused to IL-6, macrophage inflammatory protein 1-alpha (MIP-1-alpha), G-CSF, GM-CSF, thrombopoietin (TPO), platelet factor 4 (PF-4), platelet-derived growth factor (PDGF), neural growth factors and basic fibroblast growth factor (bFGF).

Since totipotent stem cells can give rise to virtually any mature cell type, expansion of these cells in culture will facilitate the production of large quantities of mature cells. Techniques for culturing stem cells are known in the art and administration of polypeptides of the invention, optionally with other growth factors and/or cytokines, is expected to enhance the survival and proliferation of the stem cell populations. This can be accomplished by direct administration of the polypeptide of the invention to the culture medium. Alternatively, stroma cells transfected with a polynucleotide that encodes for the polypeptide of the invention can be used as a feeder layer for the stem cell populations in culture or in vivo. Stromal support cells for feeder layers may include embryonic bone marrow fibroblasts, bone marrow stromal cells, fetal liver cells, or cultured embryonic fibroblasts (see U.S. Patent No. 5,690,926).

10

15

20

25

30

Stem cells themselves can be transfected with a polynucleotide of the invention to induce autocrine expression of the polypeptide of the invention. This will allow for generation of undifferentiated totipotential/pluripotential stem cell lines that are useful as is or that can then be differentiated into the desired mature cell types. These stable cell lines can also serve as a source of undifferentiated totipotential/pluripotential mRNA to create cDNA libraries and templates for polymerase chain reaction experiments. These studies would allow for the isolation and identification of differentially expressed genes in stem cell populations that regulate stem cell proliferation and/or maintenance.

Expansion and maintenance of totipotent stem cell populations will be useful in the treatment of many pathological conditions. For example, polypeptides of the present invention may be used to manipulate stem cells in culture to give rise to neuroepithelial cells that can be used to augment or replace cells damaged by illness, autoimmune

disease, accidental damage or genetic disorders. The polypeptide of the invention may be useful for inducing the proliferation of neural cells and for the regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathics, as well as mechanical and traumatic disorders which involve degeneration, death or trauma to neural cells or nerve tissue. In addition, the expanded stem cell populations can also be genetically altered for gene therapy purposes and to decrease host rejection of replacement tissues after grafting or implantation.

Expression of the polypeptide of the invention and its effect on stem cells can also be manipulated to achieve controlled differentiation of the stem cells into more differentiated cell types. A broadly applicable method of obtaining pure populations of a specific differentiated cell type from undifferentiated stem cell populations involves the use of a cell-type specific promoter driving a selectable marker. The selectable marker allows only cells of the desired type to survive. For example, stem cells can be induced to differentiate into cardiomyocytes (Wobus et al., Differentiation, 48: 173-182, (1991); Klug et al., J. Clin. Invest., 98(1): 216-224, (1998)) or skeletal muscle cells (Browder, L. W. In: Principles of Tissue Engineering eds. Lanza et al., Academic Press (1997)). Alternatively, directed differentiation of stem cells can be accomplished by culturing the stem cells in the presence of a differentiation factor such as retinoic acid and an antagonist of the polypeptide of the invention which would inhibit the effects of endosenous stem cell factor activity and allow differentiation to proceed.

10

15

20

2.5

30

In vitro cultures of stem cells can be used to determine if the polypeptide of the invention exhibits stem cell growth factor activity. Stem cells are isolated from any one of various cell sources (including hematopoietic stem cells and embryonic stem cells) and cultured on a feeder layer, as described by Thompson et al. Proc. Natl. Acad. Sci., U.S.A., 92: 7844-7848 (1995), in the presence of the polypeptide of the invention alone or in combination with other growth factors or cytokines. The ability of the polypeptide of the invention to induce stem cells proliferation is determined by colony formation on semi-solid support e.g., as described by Bernstein et al., Blood, 77: 2316-2321 (1991).

4.10.5 HEMATOPOIESIS REGULATING ACTIVITY

A polypeptide of the present invention may be involved in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell disorders. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelo-suppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantation, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy.

10

15

20

25

30

Therapeutic compositions of the invention can be used in the following:

Suitable assays for proliferation and differentiation of various hematopoietic lines are cited above.

Assays for embryonic stem cell differentiation (which will identify, among others, proteins that influence embryonic differentiation hematopoiesis) include, without limitation, those described in: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

Assays for stem cell survival and differentiation (which will identify, among others, proteins that regulate lympho-hematopoiesis) include, without limitation, those described in: Methylcellulose colony forming assays, Freshney, M. G. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 265-268, Wiley-Liss, Inc., New York, N.Y. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; Primitive hematopoietic colony forming cells with high proliferative potential, McNiece, I. K. and Briddell, R. A. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, N.Y. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Cobblestone area forming cell assay, Ploemacher, R. E. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 1-21, Wiley-Liss, Inc., New York, N.Y. 1994; Long term bone marrow cultures in the presence of stromal cells, Spooncer, E., Dexter, M. and Allen, T. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 163-179, Wiley-Liss, Inc., New York, N.Y. 1994; Long term culture initiating cell assay, Sutherland, H. J. In Culture of Hematopoietic Cells. R. I. Freshney, et al. eds. Vol pp. 139-162, Wiley-Liss, Inc., New York, N.Y. 1994.

4.10.6 TISSUE GROWTH ACTIVITY

15

20

25

30

A polypeptide of the present invention also may be involved in bone, cartilage, tendon, ligament and/or nerve tissue growth or regeneration, as well as in wound healing and tissue renair and replacement, and in healing of burns, incisions and ulcers.

A polypeptide of the present invention which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and other animals. Compositions of a polypeptide, antibody, binding partner, or other modulator of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A polypeptide of this invention may also be involved in attracting bone-forming cells, stimulating growth of bone-forming cells, or inducing differentiation of progenitors of bone-forming cells. Treatment of osteoporosis, osteoarthritis, bone degenerative

disorders, or periodontal disease, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes may also be possible using the composition of the invention.

5

10

20

25

30

Another category of tissue regeneration activity that may involve the polypeptide of the present invention is tendon/ligament formation. Induction of tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The compositions of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e. for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a composition may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nervo injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease. Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager

syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a composition of the invention.

Compositions of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

5

10

15

20

30

Compositions of the present invention may also be involved in the generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring may allow normal tissue to regenerate. A polypeptide of the present invention may also exhibit angiogenic activity.

A composition of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokine damage.

A composition of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Therapeutic compositions of the invention can be used in the following:

Assays for tissue generation activity include, without limitation, those described in: International Patent Publication No. WO95/16035 (bone, cartilage, tendon);

25 International Patent Publication No. WO95/05846 (nerve, neuronal); International Patent Publication No. WO91/07491 (skin, endothelium).

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound Healing, pps. 71-112 (Maibach, H. I. and Rovee, D. T., eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

4.10.7 IMMUNE STIMULATING OR SUPPRESSING ACTIVITY

5

10

15

A polypeptide of the present invention may also exhibit immune stimulating or immune suppressing activity, including without limitation the activities for which assays are described herein. A polynucleotide of the invention can encode a polypeptide exhibiting such activities. A protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases causes by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpes viruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, proteins of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis, 20 myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein (or antagonists thereof, including antibodies) of the present invention may also to be useful in the treatment of allergic reactions and conditions (e.g., anaphylaxis, serum sickness, drug reactions, food allergies, insect venom allergies, mastocytosis, allergic rhinitis, hypersensitivity pneumonitis, urticaria, angioedema, eczema, atopic 25 dermatitis, allergic contact dermatitis, erythema multiforme, Stevens-Johnson syndrome, allergic conjunctivitis, atopic keratoconjunctivitis, venereal keratoconjunctivitis, giant papillary conjunctivitis and contact allergies), such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is 30 desired (including, for example, organ transplantation), may also be treatable using a protein (or antagonists thereof) of the present invention. The therapeutic effects of the

polypeptides or antagonists thereof on allergic reactions can be evaluated by in vivo animals models such as the cumulative contact enhancement test (Lastbom et al., Toxicology 125: 59-66, 1998), skin prick test (Hoffmann et al., Allergy 54: 446-54, 1999), guinea pig skin sensitization test (Vohr et al., Arch. Toxocol. 73: 501-9), and murine local lymph node assay (Kimber et al., J. Toxicol. Environ. Health 53: 563-79).

Using the proteins of the invention it may also be possible to modulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte antigen functions (such as, for example, B7)), e.g., preventing high level lymphockine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a therapeutic composition of the invention may prevent cytokine synthesis by immune cells, such as T cells, and thus acts as an immunosuppressant. Moreover, a lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a

subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular therapeutic compositions in preventing organ transplant rejection or GVHD can be assessed using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4Ig fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of therapeutic compositions of the invention on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate 15 activation of T cells that are reactive against self tissue and which promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block stimulation of T cells can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may 20 induce antigen-specific tolerance of autoreactive T cells which could lead to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/lpr/lpr mice or NZB 25 hybrid mice, murine autoimmune collagen arthritis, diabetes mellitus in NOD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (e.g., a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or

30

eliciting an initial immune response. For example, enhancing an immune response may be useful in cases of viral infection, including systemic viral diseases such as influenza, the common cold, and encephalitis.

5

10

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. Another method of enhancing anti-viral immune responses would be to isolate infected cells from a patient, transfect them with a nucleic acid encoding a protein of the present invention as described herein such that the cells express all or a portion of the protein on their surface, and reintroduce the transfected cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to, and thereby activate, T cells in vivo.

A polypeptide of the present invention may provide the necessary stimulation 15 signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient mounts of MHC class I or MHC class II molecules. can be transfected with nucleic acid encoding all or a portion of (e.g., a evtoplasmic-domain truncated portion) of an MHC class I alpha chain protein and B2 microglobulin protein or an MHC class II alpha chain protein and an MHC class II beta 20 chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class I or class II MHC in conjunction with a pentide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene 25 encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome 30 tumor-specific tolerance in the subject.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Suitable assays for thymocyte or splenocyte cytotoxicity include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., I. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol, 140:508-512, 1988; Bowman et al., J. 10

Virology 61:1992-1998; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

Assays for T-cell-dependent immunoglobulin responses and isotype switching (which will identify, among others, proteins that modulate T-cell dependent antibody responses and that affect Th1/Th2 profiles) include, without limitation, those described in: Maliszewski, J. Immunol, 144:3028-3033, 1990; and Assays for B cell function: In vitro antibody production, Mond, J. J. and Brunswick, M. In Current Protocols in Immunology, J. E. e.a. Coligan eds. Vol 1 pp. 3.8.1-3.8.16, John Wiley and Sons, Toronto, 1994.

15

20

Mixed lymphocyte reaction (MLR) assays (which will identify, among others, proteins that generate predominantly Th1 and CTL responses) include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 3, In Vitro assays for Mouse Lymphocyte Function 3.1-3.19; Chapter 7, Immunologic studies in Humans); Takai et al., J. Immunol. 25 137:3494-3500, 1986; Takai et al., J. Immunol, 140:508-512, 1988; Bertagnolli et al., J. Immunol, 149:3778-3783, 1992.

Dendritic cell-dependent assays (which will identify, among others, proteins expressed by dendritic cells that activate naive T-cells) include, without limitation, those described in: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology

154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

Assays for lymphocyte survival/apoptosis (which will identify, among others, proteins that prevent apoptosis after superantigen induction and proteins that regulate lymphocyte homeostasis) include, without limitation, those described in: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood

84:111-117, 1994; Fine et al., Cellular Immunology 155:111-122, 1994; Galy et al.,

Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

4.10.8 ACTIVIN/INHIBIN ACTIVITY

5

10

20

25

30

A polypeptide of the present invention may also exhibit activin- or inhibin-related activities. A polynucleotide of the invention may encode a polypeptide exhibiting such characteristics. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins and are characterized by their ability to stimulate the release of follicle stimulating hormone (FSH). Thus, a polypeptide of the present invention, alone or in heterodimers with a member of the inhibin family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals. Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the polypeptide of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, U.S. Pat. No. 4,798,885. A polypeptide of the invention may

also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as, but not limited to, cows, sheep and pigs.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods.

5

10

20

25

30

Assays for activin/inhibin activity include, without limitation, those described in: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986.

4.10.9 CHEMOTACTIC/CHEMOKINETIC ACTIVITY

A polypeptide of the present invention may be involved in chemotactic or chemokinetic activity for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Chemotactic and chemokinetic receptor activation can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic compositions (e.g. proteins, antibodies, binding partners, or modulators of the invention) provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

Therapeutic compositions of the invention can be used in the following:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the

migration of cells across a membrane as well as the ability of a protein to induce the adhesion of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Marguiles, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12, Measurement of alpha and beta Chemokines 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

10

15

20

25

30

4.10.10 HEMOSTATIC AND THROMBOLYTIC ACTIVITY

A polypeptide of the invention may also be involved in hemostatis or thrombolysis or thrombosis. A polynucleotide of the invention can encode a polypeptide exhibiting such attributes. Compositions may be useful in treatment of various coagulation disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A composition of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke).

Therapeutic compositions of the invention can be used in the following:

Assay for hemostatic and thrombolytic activity include, without limitation, those described in: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al.,
Thrombosis Res. 45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991);
Schaub. Prostaglandins 35:467-474. 1988.

4.10.11 CANCER DIAGNOSIS AND THERAPY

Polypeptides of the invention may be involved in cancer cell generation, proliferation or metastasis. Detection of the presence or amount of polynucleotides or polypeptides of the invention may be useful for the diagnosis and/or prognosis of one or more types of cancer. For example, the presence or increased expression of a

polynucleotide/polypeptide of the invention may indicate a hereditary risk of cancer, a precancerous condition, or an ongoing malignancy. Conversely, a defect in the gene or absence of the polypeptide may be associated with a cancer condition. Identification of single nucleotide polymorphisms associated with cancer or a predisposition to cancer may also be useful for diagnosis or prognosis.

5

10

15

20

25

30

Cancer treatments promote tumor regression by inhibiting tumor cell proliferation, inhibiting angiogenesis (growth of new blood vessels that is necessary to support tumor growth) and/or prohibiting metastasis by reducing tumor cell motility or invasiveness. Therapeutic compositions of the invention may be effective in adult and pediatric oncology including in solid phase tumors/malignancies, locally advanced tumors, human soft tissue sarcomas, metastatic cancer, including lymphatic metastases, blood cell malignancies including multiple myeloma, acute and chronic leukemias, and lymphomas, head and neck cancers including mouth cancer, larynx cancer and thyroid cancer, lung cancers including small cell carcinoma and non-small cell cancers, breast cancers including small cell carcinoma and ductal carcinoma, gastrointestinal cancers including esophageal cancer, stomach cancer, colon cancer, colorectal cancer and polyps associated with colorectal neoplasia, pancreatic cancers, liver cancer, urologic cancers including bladder cancer and prostate cancer, malignancies of the female genital tract including ovarian carcinoma, uterine (including endometrial) cancers, and solid tumor in the ovarian follicle, kidney cancers including renal cell carcinoma, brain cancers including intrinsic brain tumors, neuroblastoma, astrocytic brain tumors, gliomas, metastatic tumor cell invasion in the central nervous system, bone cancers including osteomas, skin cancers including malignant melanoma, tumor progression of human skin keratinocytes, squamous cell carcinoma, basal cell carcinoma, hemangiopericytoma and Karposi's sarcoma.

Polypeptides, polynucleotides, or modulators of polypeptides of the invention (including inhibitors and stimulators of the biological activity of the polypeptide of the invention) may be administered to treat cancer. Therapeutic compositions can be administered in therapeutically effective dosages alone or in combination with adjuvant cancer therapy such as surgery, chemotherapy, radiotherapy, thermotherapy, and laser therapy, and may provide a beneficial effect, e.g. reducing tumor size, slowing rate of

tumor growth, inhibiting metastasis, or otherwise improving overall clinical condition, without necessarily eradicating the cancer.

The composition can also be administered in therapeutically effective amounts as a portion of an anti-cancer cocktail. An anti-cancer cocktail is a mixture of the polypeptide or modulator of the invention with one or more anti-cancer drugs in addition to a pharmaceutically acceptable carrier for delivery. The use of anti-cancer cocktails as a cancer treatment is routine. Anti-cancer drugs that are well known in the art and can be used as a treatment in combination with the polypeptide or modulator of the invention include: Actinomycin D, Aminoglutethimide, Asparaginase, Bleomycin, Busulfan, Carboplatin, Carmustine, Chlorambucil, Cisplatin (cis-DDP), Cyclophosphamide, Cytarabine HCl (Cytosine arabinoside), Dacarbazine, Dactinomycin, Daunorubicin HCl, Doxorubicin HCl, Estramustine phosphate sodium, Etoposide (V16-213), Floxuridine, 5-Fluorouracil (5-Fu), Flutamide, Hydroxyurea (hydroxycarbamide), Ifosfamide, Interferon Alpha-2a, Interferon Alpha-2b, Leuprolide acetate (LHRH-releasing factor analog), Lomustine, Mechlorethamine HCl (nitrogen mustard), Melphalan, Mercaptopurine, 15 Mesna, Methotrexate (MTX), Mitomycin, Mitoxantrone HCl, Octreotide, Plicamycin, Procarbazine HCl, Streptozocin, Tamoxifen citrate, Thioguanine, Thiotepa, Vinblastine sulfate, Vincristine sulfate, Amsacrine, Azacitidine, Hexamethylmelamine, Interleukin-2, Mitoguazone, Pentostatin, Semustine, Teniposide, and Vindesine sulfate.

In addition, therapeutic compositions of the invention may be used for prophylactic treatment of cancer. There are hereditary conditions and/or environmental situations (e.g. exposure to carcinogens) known in the art that predispose an individual to developing cancers. Under these circumstances, it may be beneficial to treat these individuals with therapeutically effective doses of the polypeptide of the invention to reduce the risk of developing cancers.

20

25

30

In vitro models can be used to determine the effective doses of the polypeptide of the invention as a potential cancer treatment. These in vitro models include proliferation assays of cultured tumor cells, growth of cultured tumor cells in soft agar (see Freshney, (1987) Culture of Animal Cells: A Manual of Basic Technique, Wily-Liss, New York, NY Ch 18 and Ch 21), tumor systems in nude mice as described in Giovanella et al., J. Natl. Can. Inst., 52: 921-30 (1974), mobility and invasive potential of tumor cells in

Boyden Chamber assays as described in Pilkington et al., Anticancer Res., 17: 4107-9 (1997), and angiogenesis assays such as induction of vascularization of the chick chorioallantoic membrane or induction of vascular endothelial cell migration as described in Ribatta et al., Intl. J. Dev. Biol., 40: 1189-97 (1999) and Li et al., Clin. Exp. Metastasis, 17:423-9 (1999), respectively. Suitable tumor cells lines are available, e.g. from American Type Tissue Culture Collection catalogs.

4.10.12 RECEPTOR/LIGAND ACTIVITY

5

10

A polypeptide of the present invention may also demonstrate activity as receptor. receptor ligand or inhibitor or agonist of receptor/ligand interactions. A polynucleotide of the invention can encode a polypeptide exhibiting such characteristics. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands. receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion molecules (such as selectins, integrins and their ligands) and 15 receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune responses. Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of 20 receptor/ligand interactions.

The activity of a polypeptide of the invention may, among other means, be measured by the following methods:

Suitable assays for receptor-ligand activity include without limitation those 25 described in: Current Protocols in Immunology, Ed by J. E. Coligan, A. M. Kruisbeek, D. H. Margulies, E. M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley- Interscience (Chapter 7.28, Measurement of Cellular Adhesion under static conditions 7.28.1-7.28.22), Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160 1989; Stoltenborg et al., J. Immunol, Methods 175:59-68, 1994; Stitt et al., 30 Cell 80:661-670, 1995.

By way of example, the polypeptides of the invention may be used as a receptor for a ligand(s) thereby transmitting the biological activity of that ligand(s). Ligands may be identified through binding assays, affinity chromatography, dihybrid screening assays, BIAcore assays, gel overlay assays, or other methods known in the art.

Studies characterizing drugs or proteins as agonist or antagonist or partial agonists or a partial antagonist require the use of other proteins as competing ligands. The polypeptides of the present invention or ligand(s) thereof may be labeled by being coupled to radioisotopes, colorimetric molecules or a toxin molecules by conventional methods. ("Guide to Protein Purification" Murray P. Deutscher (ed) Methods in Enzymology Vol. 182 (1990) Academic Press, Inc. San Diego). Examples of radioisotopes include, but are not limited to, tritium and carbon-14. Examples of colorimetric molecules include, but are not limited to, fluorescent molecules such as fluorescamine, or rhodamine or other colorimetric molecules. Examples of toxins include, but are not limited. to ricin.

15

20

25

30

10

5.

4.10.13 DRUG SCREENING

This invention is particularly useful for screening chemical compounds by using the novel polypeptides or binding fragments thereof in any of a variety of drug screening techniques. The polypeptides or fragments employed in such a test may either be free in solution, affixed to a solid support, borne on a cell surface or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or a fragment thereof. Drugs are screened against such transformed cells in competitive binding assays. Such cells, either in viable or fixed form, can be used for standard binding assays. One may measure, for example, the formation of complexes between polypeptides of the invention or fragments and the agent being tested or examine the diminution in complex formation between the novel polypeptides and an appropriate cell line, which are well known in the art.

Sources for test compounds that may be screened for ability to bind to or modulate (i.e., increase or decrease) the activity of polypeptides of the invention include (1) inorganic and organic chemical libraries, (2) natural product libraries, and (3)

combinatorial libraries comprised of either random or mimetic peptides, oligonucleotides or organic molecules.

Chemical libraries may be readily synthesized or purchased from a number of commercial sources, and may include structural analogs of known compounds or compounds that are identified as "hits" or "leads" via natural product screening.

The sources of natural product libraries are microorganisms (including bacteria and fungi), animals, plants or other vegetation, or marine organisms, and libraries of mixtures for screening may be created by: (1) fermentation and extraction of broths from soil, plant or marine microorganisms or (2) extraction of the organisms themselves.

Natural product libraries include polyketides, non-ribosomal peptides, and (non-naturally occurring) variants thereof. For a review, see Science 282:63-68 (1998).

10

15

20

25

30

Combinatorial libraries are composed of large numbers of peptides, oligonucleotides or organic compounds and can be readily prepared by traditional automated synthesis methods, PCR, cloning or proprietary synthetic methods. Of particular interest are peptide and oligonucleotide combinatorial libraries. Still other libraries of interest include peptide, protein, peptidomimetic, multiparallel synthetic collection, recombinatorial, and polypeptide libraries. For a review of combinatorial chemistry and libraries created therefrom, see Myers, Curr. Opin. Biotechnol. 8:701-707 (1997). For reviews and examples of peptidomimetic libraries, see Al-Obeidi et al., Mol. Biotechnol. 9(3):205-23 (1998); Hruby et al., Curr Opin Chem Biol, 1(1):114-19 (1997); Dorner et al., Bioorg Med Chem, 4(5):709-15 (1996) (alkylated dipeptides).

Identification of modulators through use of the various libraries described herein permits modification of the candidate "hit" (or "lead") to optimize the capacity of the "hit" to bind a polypeptide of the invention. The molecules identified in the binding assay are then tested for antagonist or agonist activity in in vivo tissue culture or animal models that are well known in the art. In brief, the molecules are titrated into a plurality of cell cultures or animals and then tested for either cell/animal death or prolonged survival of the animal/cells.

The binding molecules thus identified may be complexed with toxins, e.g., ricin or cholera, or with other compounds that are toxic to cells such as radioisotopes. The toxin-binding molecule complex is then targeted to a tumor or other cell by the specificity

of the binding molecule for a polypeptide of the invention. Alternatively, the binding molecules may be complexed with imaging agents for targeting and imaging purposes.

4.10.14 ASSAY FOR RECEPTOR ACTIVITY

5

10

15

20

25

30

The invention also provides methods to detect specific binding of a polypeptide e.g. a ligand or a receptor. The art provides numerous assays particularly useful for identifying previously unknown binding partners for receptor polypeptides of the invention. For example, expression cloning using mammalian or bacterial cells, or dihybrid screening assays can be used to identify polynucleotides encoding binding partners. As another example, affinity chromatography with the appropriate immobilized polypeptide of the invention can be used to isolate polypeptides that recognize and bind polypeptides of the invention. There are a number of different libraries used for the identification of compounds, and in particular small molecules, that modulate (i.e., increase or decrease) biological activity of a polypeptide of the invention. Ligands for receptor polypeptides of the invention can also be identified by adding exogenous ligands, or cocktails of ligands to two cells populations that are genetically identical except for the expression of the receptor of the invention: one cell population expresses the receptor of the invention whereas the other does not. The response of the two cell populations to the addition of ligands(s) are then compared. Alternatively, an expression library can be co-expressed with the polypeptide of the invention in cells and assayed for an autocrine response to identify potential ligand(s). As still another example, BIAcore assays, gel overlay assays, or other methods known in the art can be used to identify binding partner polypeptides, including. (1) organic and inorganic chemical libraries, (2) natural product libraries, and (3) combinatorial libraries comprised of random peptides. oligonucleotides or organic molecules.

The role of downstream intracellular signaling molecules in the signaling cascade of the polypeptide of the invention can be determined. For example, a chimeric protein in which the cytoplasmic domain of the polypeptide of the invention is fused to the extracellular portion of a protein, whose ligand has been identified, is produced in a host cell. The cell is then incubated with the ligand specific for the extracellular portion of the chimeric protein, thereby activating the chimeric receptor. Known downstream proteins

involved in intracellular signaling can then be assayed for expected modifications i.e. phosphorylation. Other methods known to those in the art can also be used to identify signaling molecules involved in receptor activity.

5 4.10.15 ANTI-INFLAMMATORY ACTIVITY

10

15

20

25

Compositions of the present invention may also exhibit anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Compositions with such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation intimation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Compositions of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material. Compositions of this invention may be utilized to prevent or treat conditions such as, but not limited to, sepsis, acute pancreatitis, endotoxin shock, cytokine induced shock, rheumatoid arthritis, chronic inflammatory arthritis, pancreatic cell damage from diabetes mellitus type 1, graft versus host disease, inflammatory bowel disease, inflamation associated with pulmonary disease, other autoimmune disease or inflammatory disease, an antiproliferative agent such as for acute or chronic mylegenous leukemia or in the prevention of premature labor secondary to intrauterine infections.

4.10.16 LEUKEMIAS

Leukemias and related disorders may be treated or prevented by administration of

a therapeutic that promotes or inhibits function of the polynucleotides and/or

polypeptides of the invention. Such leukemias and related disorders include but are not

limited to acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemia, myeloblastic, promyelocytic, myelomonocytic, monocytic, erythroleukemia, chronic leukemia, chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia (for a review of such disorders, see Fishman et al., 1985, Medicine, 2d Ed., J.B. Lippincott Co., Philadelphia).

4.10.17 NERVOUS SYSTEM DISORDERS

5

10

15

20

25

30

Nervous system disorders, involving cell types which can be tested for efficacy of intervention with compounds that modulate the activity of the polynucleotides and/or polypeptides of the invention, and which can be treated upon thus observing an indication of therapeutic utility, include but are not limited to nervous system injuries, and diseases or disorders which result in either a disconnection of axons, a diminution or degeneration of neurons, or demyelination. Nervous system lesions which may be treated in a patient (including human and non-human mammalian patients) according to the invention include but are not limited to the following lesions of either the central (including spinal cord, brain) or peripheral nervous systems:

- traumatic lesions, including lesions caused by physical injury or associated with surgery, for example, lesions which sever a portion of the nervous system, or compression injuries:
- (ii) ischemic lesions, in which a lack of oxygen in a portion of the nervous system results in neuronal injury or death, including cerebral infarction or ischemia, or spinal cord infarction or ischemia;
 - (iii) infectious lesions, in which a portion of the nervous system is destroyed or injured as a result of infection, for example, by an abscess or associated with infection by human immunodeficiency virus, herpes zoster, or herpes simplex virus or with Lyme disease, tuberculosis, syphilis;
 - (iv) degenerative lesions, in which a portion of the nervous system is destroyed or injured as a result of a degenerative process including but not limited to degeneration associated with Parkinson's disease, Alzheimer's disease, Huntington's chorea, or amyotrophic lateral sclerosis;

(v) lesions associated with nutritional diseases or disorders, in which a portion of the nervous system is destroyed or injured by a nutritional disorder or disorder of metabolism including but not limited to, vitamin B12 deficiency, folic acid deficiency, Wernicke disease, tobacco-alcohol amblyopia, Marchiafava-Bignami disease (primary degeneration of the corpus callosum), and alcoholic cerebellar degeneration;

- (vi) neurological lesions associated with systemic diseases including but not limited to diabetes (diabetic neuropathy, Bell's palsy), systemic lupus erythematosus, carcinoma, or sarcoidosis;
- (vii) lesions caused by toxic substances including alcohol, lead, or particular
 neurotoxins: and

5

15

20

25

30

(viii) demyelinated lesions in which a portion of the nervous system is destroyed or injured by a demyelinating disease including but not limited to multiple sclerosis, human immunodeficiency virus-associated myelopathy, transverse myelopathy or various etiologies, progressive multifocal leukoencephalopathy, and central pontine myelinolysis.

Therapeutics which are useful according to the invention for treatment of a nervous system disorder may be selected by testing for biological activity in promoting the survival or differentiation of neurons. For example, and not by way of limitation, therapeutics which elicit any of the following effects may be useful according to the invention:

- (i) increased survival time of neurons in culture:
- (ii) increased sprouting of neurons in culture or in vivo;
- (iii) increased production of a neuron-associated molecule in culture or in vivo,
 e.g., choline acctyltransferase or acetylcholinesterase with respect to motor neurons; or
 - (iv) decreased symptoms of neuron dysfunction in vivo.

Such effects may be measured by any method known in the art. In preferred, non-limiting embodiments, increased survival of neurons may be measured by the method set forth in Arakawa et al. (1990, J. Neurosci. 10:3507-3515); increased sprouting of neurons may be detected by methods set forth in Pestronk et al. (1980, Exp. Neurol. 70:65-82) or Brown et al. (1981, Ann. Rev. Neurosci. 4:17-42); increased production of neuron-associated molecules may be measured by bioassay, enzymatic assay, antibody

binding, Northern blot assay, etc., depending on the molecule to be measured; and motor neuron dysfunction may be measured by assessing the physical manifestation of motor neuron disorder, e.g., weakness, motor neuron conduction velocity, or functional disability.

In specific embodiments, motor neuron disorders that may be treated according to the invention include but are not limited to disorders such as infarction, infection, exposure to toxin, trauma, surgical damage, degenerative disease or malignancy that may affect motor neurons as well as other components of the nervous system, as well as disorders that selectively affect neurons such as amyotrophic lateral sclerosis, and including but not limited to progressive spinal muscular atrophy, progressive bulbar palsy, primary lateral sclerosis, infantile and juvenile muscular atrophy, progressive bulbar paralysis of childhood (Fazio-Londe syndrome), poliomyelitis and the post polio syndrome, and Hereditary Motorsensory Neuropathy (Charcot-Marie-Tooth Disease).

4.10.18 OTHER ACTIVITIES

5

10

15

20

25

30

A polypeptide of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or elimination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, co-factors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related

diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

4.10.19 IDENTIFICATION OF POLYMORPHISMS

10

15

20

25

30

The demonstration of polymorphisms makes possible the identification of such polymorphisms in human subjects and the pharmacogenetic use of this information for diagnosis and treatment. Such polymorphisms may be associated with, e.g., differential predisposition or susceptibility to various disease states (such as disorders involving inflammation or immune response) or a differential response to drug administration, and this genetic information can be used to tailor preventive or therapeutic treatment appropriately. For example, the existence of a polymorphism associated with a predisposition to inflammation or autoimmune disease makes possible the diagnosis of this condition in humans by identifying the presence of the polymorphism.

Polymorphisms can be identified in a variety of ways known in the art which all generally involve obtaining a sample from a patient, analyzing DNA from the sample, optionally involving isolation or amplification of the DNA, and identifying the presence of the polymorphism in the DNA. For example, PCR may be used to amplify an appropriate fragment of genomic DNA which may then be sequenced. Alternatively, the DNA may be subjected to allele-specific oligonucleotide hybridization (in which appropriate oligonucleotides are hybridized to the DNA under conditions permitting detection of a single base mismatch) or to a single nucleotide extension assay (in which an oligonucleotide that hybridizes immediately adjacent to the position of the polymorphism is extended with one or more labeled nucleotides). In addition, traditional restriction fragment length polymorphism analysis (using restriction enzymes that provide differential digestion of the genomic DNA depending on the presence or absence of the polymorphism) may be performed. Arrays with nucleotide sequences of the present invention can be used to detect polymorphisms. The array can comprise modified nucleotide sequences of the present invention in order to detect the nucleotide sequences.

of the present invention. In the alternative, any one of the nucleotide sequences of the present invention can be placed on the array to detect changes from those sequences.

Alternatively a polymorphism resulting in a change in the amino acid sequence could also be detected by detecting a corresponding change in amino acid sequence of the protein, e.g., by an antibody specific to the variant sequence.

4.10.20 ARTHRITIS AND INFLAMMATION

The immunosuppressive effects of the compositions of the invention against rheumatoid arthritis is determined in an experimental animal model system. The experimental model system is adjuvant induced arthritis in rats, and the protocol is described by J. Holoshitz, et at., 1983, Science, 219:56, or by B. Waksman et al., 1963, Int. Arch. Allergy Appl. Immunol., 23:129. Induction of the disease can be caused by a single injection, generally intradermally, of a suspension of killed Mycobacterium tuberculosis in complete Freund's adjuvant (CFA). The route of injection can vary, but rats may be injected at the base of the tail with an adjuvant mixture. The polypeptide is administered in phosphate buffered solution (PBS) at a dose of about 1-5 mg/kg. The control consists of administering PBS only.

The procedure for testing the effects of the test compound would consist of intradermally injecting killed Mycobacterium tuberculosis in CFA followed by immediately administering the test compound and subsequent treatment every other day until day 24. At 14, 15, 18, 20, 22, and 24 days after injection of Mycobacterium CFA, an overall arthritis score may be obtained as described by J. Holoskitz above. An analysis of the data would reveal that the test compound would have a dramatic affect on the swelling of the joints as measured by a decrease of the arthritis score.

25

30

20

5

10

15

4.11 THERAPEUTIC METHODS

The compositions (including polypeptide fragments, analogs, variants and antibodies or other binding partners or modulators including antisense polynucleotides) of the invention have numerous applications in a variety of therapeutic methods. Examples of therapeutic applications include, but are not limited to, those exemplified herein.

4.11.1 EXAMPLE

One embodiment of the invention is the administration of an effective amount of the polypeptides or other composition of the invention to individuals affected by a disease or disorder that can be modulated by regulating the peptides of the invention. While the mode of administration is not particularly important, parenteral administration is preferred. An exemplary mode of administration is to deliver an intravenous bolus. The dosage of the polypeptides or other composition of the invention will normally be determined by the prescribing physician. It is to be expected that the dosage will vary according to the age, weight, condition and response of the individual patient. Typically, the amount of polypeptide administered per dose will be in the range of about 0.01µg/kg to 100 mg/kg of body weight, with the preferred dose being about 0.1µg/kg to 10 mg/kg of patient body weight. For parenteral administration, polypeptides of the invention will be formulated in an injectable form combined with a pharmaceutically acceptable parenteral vehicle. Such vehicles are well known in the art and examples include water. saline, Ringer's solution, dextrose solution, and solutions consisting of small amounts of the human serum albumin. The vehicle may contain minor amounts of additives that maintain the isotonicity and stability of the polypeptide or other active ingredient. The preparation of such solutions is within the skill of the art.

20

25

30

5

10

15

4.12 PHARMACEUTICAL FORMULATIONS AND ROUTES OF ADMINISTRATION

A protein or other composition of the present invention (from whatever source derived, including without limitation from recombinant and non-recombinant sources and including antibodies and other binding partners of the polypeptides of the invention) may be administered to a patient in need, by itself, or in pharmaceutical compositions where it is mixed with suitable carriers or excipient(s) at doses to treat or ameliorate a variety of disorders. Such a composition may optionally contain (in addition to protein or other active ingredient and a carrier) diluents, fillers, salts, buffers, stabilizers, solubilizers, and other materials well known in the art. The term "pharmaceutically acceptable" means a non-toxic material that does not interfere with the effectiveness of the biological activity

of the active ingredient(s). The characteristics of the carrier will depend on the route of administration. The pharmaceutical composition of the invention may also contain cytokines, lymphokines, or other hematopoietic factors such as M-CSF, GM-CSF, TNF, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IFN, TNF0, TNF1, TNF2, G-CSF, Meg-CSF, thrombopoietin, stem cell factor, and erythropoietin. In further compositions, proteins of the invention may be combined with other agents beneficial to the treatment of the disease or disorder in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), insulin-like growth factor (IGGF) as well as cytokines described herein.

10

15

20

25

30

The pharmaceutical composition may further contain other agents which either enhance the activity of the protein or other active ingredient or complement its activity or use in treatment. Such additional factors and/or agents may be included in the pharmaceutical composition to produce a synergistic effect with protein or other active ingredient of the invention, or to minimize side effects. Conversely, protein or other active ingredient of the present invention may be included in formulations of the particular clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent to minimize side effects of the clotting factor, cytokine, lymphokine, other hematopoietic factor, thrombolytic or anti-thrombotic factor, or anti-inflammatory agent (such as IL-1 Ra, IL-1 Hy1, IL-1 Hy2, anti-TNF, corticosteroids, immunosuppressive agents). A protein of the present invention may be active in multimers (e.g., heterodimers or homodimers) or complexes with itself or other proteins. As a result, pharmaceutical compositions of the invention may comprise a protein of the invention in such multimeric or complexed form.

As an alternative to being included in a pharmaceutical composition of the invention including a first protein, a second protein or a therapeutic agent may be concurrently administered with the first protein (e.g., at the same time, or at differing times provided that therapeutic concentrations of the combination of agents is achieved at the treatment site). Techniques for formulation and administration of the compounds of the instant application may be found in "Remington's Pharmaceutical Sciences," Mack Publishing Co., Easton, PA, latest edition. A therapeutically effective dose further refers

to that amount of the compound sufficient to result in amelioration of symptoms, e.g., treatment, healing, prevention or amelioration of the relevant medical condition, or an increase in rate of treatment, healing, prevention or amelioration of such conditions. When applied to an individual active ingredient, administered alone, a therapeutically effective dose refers to that ingredient alone. When applied to a combination, a therapeutically effective dose refers to combined amounts of the active ingredients that result in the therapeutic effect, whether administered in combination, serially or simultaneously.

In practicing the method of treatment or use of the present invention, a therapeutically effective amount of protein or other active ingredient of the present invention is administered to a mammal having a condition to be treated. Protein or other active ingredient of the present invention may be administered in accordance with the method of the invention either alone or in combination with other therapies such as treatments employing cytokines, lymphokines or other hematopoietic factors. When coadministered with one or more cytokines, lymphokines or other hematopoietic factors, protein or other active ingredient of the present invention may be administered either simultaneously with the cytokine(s), lymphokine(s), other hematopoietic factor(s), thrombolytic or anti-thrombotic factors, or sequentially. If administered sequentially, the attending physician will decide on the appropriate sequence of administering protein or other active ingredient of the present invention in combination with cytokine(s), lymphokine(s), other hematopoietic factors.

4.12.1 ROUTES OF ADMINISTRATION

10

15

20

25

30

Suitable routes of administration may, for example, include oral, rectal, transmucosal, or intestinal administration; parenteral delivery, including intramuscular, subcutaneous, intramedullary injections, as well as intrathecal, direct intraventricular, intravenous, intraperitoneal, intranasal, or intraocular injections. Administration of protein or other active ingredient of the present invention used in the pharmaceutical composition or to practice the method of the present invention can be carried out in a variety of conventional ways, such as oral ingestion, inhalation, topical application or

cutaneous, subcutaneous, intraperitoneal, parenteral or intravenous injection. Intravenous administration to the patient is preferred.

Alternately, one may administer the compound in a local rather than systemic manner, for example, via injection of the compound directly into a arthritic joints or in fibrotic tissue, often in a depot or sustained release formulation. In order to prevent the scarring process frequently occurring as complication of glaucoma surgery, the compounds may be administered topically, for example, as eye drops. Furthermore, one may administer the drug in a targeted drug delivery system, for example, in a liposome coated with a specific antibody, targeting, for example, arthritic or fibrotic tissue. The liposomes will be targeted to and taken up selectively by the afflicted tissue.

The polypeptides of the invention are administered by any route that delivers an effective dosage to the desired site of action. The determination of a suitable route of administration and an effective dosage for a particular indication is within the level of skill in the art. Preferably for wound treatment, one administers the therapeutic compound directly to the site. Suitable dosage ranges for the polypeptides of the invention can be extrapolated from these dosages or from similar studies in appropriate animal models. Dosages can then be adjusted as necessary by the clinician to provide maximal therapeutic benefit.

4.12.2 COMPOSITIONS/FORMULATIONS

10

15

20

25

30

Pharmaceutical compositions for use in accordance with the present invention thus may be formulated in a conventional manner using one or more physiologically acceptable carriers comprising excipients and auxiliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. These pharmaceutical compositions may be manufactured in a manner that is itself known, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes. Proper formulation is dependent upon the route of administration chosen. When a therapeutically effective amount of protein or other active ingredient of the present invention is administered orally, protein or other active ingredient of the present invention will be in the form of a tablet, capsule, powder, solution or clixir. When administered in tablet form, the

pharmaceutical composition of the invention may additionally contain a solid carrier such as a gelatin or an adjuvant. The tablet, capsule, and powder contain from about 5 to 95% protein or other active ingredient of the present invention, and preferably from about 25 to 90% protein or other active ingredient of the present invention. When administered in liquid form, a liquid carrier such as water, petroleum, oils of animal or plant origin such as peanut oil, mineral oil, soybean oil, or sesame oil, or synthetic oils may be added. The liquid form of the pharmaceutical composition may further contain physiological saline solution, dextrose or other saccharide solution, or glycols such as ethylene glycol, propylene glycol or polyethylene glycol. When administered in liquid form, the pharmaceutical composition contains from about 0.5 to 90% by weight of protein or other active ingredient of the present invention, and preferably from about 1 to 50% protein or other active ingredient of the present invention.

10

15

20

25

30

When a therapeutically effective amount of protein or other active ingredient of the present invention is administered by intravenous, cutaneous or subcutaneous injection, protein or other active ingredient of the present invention will be in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such parenterally acceptable protein or other active ingredient solutions, having due regard to pH, isotonicity, stability, and the like, is within the skill in the art. A preferred pharmaceutical composition for intravenous, cutaneous, or subcutaneous injection should contain, in addition to protein or other active ingredient of the present invention, an isotonic vehicle such as Sodium Chloride Injection, Ringer's Injection, Dextrose Injection, Dextrose and Sodium Chloride Injection, Lactated Ringer's Injection, or other vehicle as known in the art. The pharmaceutical composition of the present invention may also contain stabilizers, preservatives, buffers, antioxidants, or other additives known to those of skill in the art. For injection, the agents of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks's solution, Ringer's solution, or physiological saline buffer. For transmucosal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

For oral administration, the compounds can be formulated readily by combining the active compounds with pharmaceutically acceptable carriers well known in the art.

80

Such carriers enable the compounds of the invention to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions and the like, for oral ingestion by a patient to be treated. Pharmaceutical preparations for oral use can be obtained from a solid excipient, optionally grinding a resulting mixture, and processing the mixture of granules, after adding suitable auxiliaries, if desired, to obtain tablets or dragee cores. Suitable excipients are, in particular, fillers such as sugars, including lactose, sucrose, mannitol, or sorbitol; cellulose preparations such as, for example, maize starch, wheat starch, rice starch, potato starch, gelatin, gum tragacanth, methyl cellulose, hydroxypropylmethyl-cellulose, sodium carboxymethylcellulose, and/or polyvinylpyrrolidone (PVP). If desired, disintegrating agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, or alginic acid or a salt thereof such as sodium alginate. Dragee cores are provided with suitable coatings. For this purpose, concentrated sugar solutions may be used, which may optionally contain gum arabic, tale, polyvinyl pyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for identification or to characterize different combinations of active compound doses.

5

10

15

20

25

30

Pharmaccutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a plasticizer, such as glycerol or sorbitol. The push-fit capsules can contain the active ingredients in admixture with filler such as lactose, binders such as starches, and/or lubricants such as talc or magnesium stearate and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid paraffin, or liquid polyethylene glycols. In addition, stabilizers may be added. All formulations for oral administration should be in dosages suitable for such administration. For buccal administration, the compositions may take the form of tablets or lozenges formulated in conventional manner.

For administration by inhalation, the compounds for use according to the present invention are conveniently delivered in the form of an aerosol spray presentation from pressurized packs or a nebuliser, with the use of a suitable propellant, e.g., dichlorodifluoromethane, trichlorofluoromethane, dichlorotetrafluoroethane, carbon

dioxide or other suitable gas. In the case of a pressurized aerosol the dosage unit may be determined by providing a valve to deliver a metered amount. Capsules and cartridges of, e.g., gelatin for use in an inhaler or insufflator may be formulated containing a powder mix of the compound and a suitable powder base such as lactose or starch. The compounds may be formulated for parenteral administration by injection, e.g., by bolus injection or continuous infusion. Formulations for injection may be presented in unit dosage form, e.g., in ampules or in multi-dose containers, with an added preservative. The compositions may take such forms as suspensions, solutions or emulsions in oily or aqueous vehicles, and may contain formulatory agents such as suspending, stabilizing and/or dispersing agents.

10

15

20

25

30

Pharmaceutical formulations for parenteral administration include aqueous solutions of the active compounds in water-soluble form. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Optionally, the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions. Alternatively, the active ingredient may be in powder form for constitution with a suitable vehicle, e.g., sterile pyrogen-free water, before use.

The compounds may also be formulated in rectal compositions such as suppositories or retention enemas, e.g., containing conventional suppository bases such as cocoa butter or other glycerides. In addition to the formulations described previously, the compounds may also be formulated as a depot preparation. Such long acting formulations may be administered by implantation (for example subcutaneously or intramuscularly) or by intramuscular injection. Thus, for example, the compounds may be formulated with suitable polymeric or hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, or as sparingly soluble derivatives, for example, as a sparingly soluble salt.

5

10

15

20

25

30

A pharmaceutical carrier for the hydrophobic compounds of the invention is a cosolvent system comprising benzyl alcohol, a nonpolar surfactant, a water-miscible organic polymer, and an aqueous phase. The co-solvent system may be the VPD co-solvent system. VPD is a solution of 3% w/v benzyl alcohol, 8% w/v of the nonpolar surfactant polysorbate 80, and 65% w/v polyethylene glycol 300, made up to volume in absolute ethanol. The VPD co-solvent system (VPD:5W) consists of VPD diluted 1:1 with a 5% dextrose in water solution. This co-solvent system dissolves hydrophobic compounds well, and itself produces low toxicity upon systemic administration. Naturally, the proportions of a co-solvent system may be varied considerably without destroying its solubility and toxicity characteristics. Furthermore, the identity of the co-solvent components may be varied: for example, other low-toxicity nonpolar surfactants may be used instead of polysorbate 80; the fraction size of polyethylene glycol may be varied; other biocompatible polymers may replace polyethylene glycol, e.g. polyvinyl pyrrolidone; and other sugars or polysaccharides may substitute for dextrose. Alternatively, other delivery systems for hydrophobic pharmaceutical compounds may be employed. Liposomes and emulsions are well known examples of delivery vehicles or carriers for hydrophobic drugs. Certain organic solvents such as dimethylsulfoxide also may be employed, although usually at the cost of greater toxicity. Additionally, the compounds may be delivered using a sustained-release system, such as semipermeable matrices of solid hydrophobic polymers containing the therapeutic agent. Various types of sustained-release materials have been established and are well known by those skilled in the art. Sustained-release capsules may, depending on their chemical nature, release the compounds for a few weeks up to over 100 days. Depending on the chemical nature and the biological stability of the therapeutic reagent, additional strategies for protein or other active ingredient stabilization may be employed.

The pharmaceutical compositions also may comprise suitable solid or gel phase carriers or excipients. Examples of such carriers or excipients include but are not limited to calcium carbonate, calcium phosphate, various sugars, starches, cellulose derivatives, gelatin, and polymers such as polyethylene glycols. Many of the active ingredients of the invention may be provided as salts with pharmaceutically compatible counter ions. Such pharmaceutically acceptable base addition salts are those salts which retain the biological

effectiveness and properties of the free acids and which are obtained by reaction with inorganic or organic bases such as sodium hydroxide, magnesium hydroxide, ammonia, trialkylamine, dialkylamine, monoalkylamine, dibasic amino acids, sodium acetate, potassium benzoate, triethanol amine and the like.

5

10

15

20

25

30

The pharmaceutical composition of the invention may be in the form of a complex of the protein(s) or other active ingredient(s) of present invention along with protein or peptide antigens. The protein and/or peptide antigen will deliver a stimulatory signal to both B and T lymphocytes. B lymphocytes will respond to antigen through their surface immunoglobulin receptor. T lymphocytes will respond to antigen through the T cell receptor (TCR) following presentation of the antigen by MHC proteins. MHC and structurally related proteins including those encoded by class I and class II MHC genes on host cells will serve to present the peptide antigen(s) to T lymphocytes. The antigen components could also be supplied as purified MHC-peptide complexes alone or with co-stimulatory molecules that can directly signal T cells. Alternatively antibodies able to bind surface immunoglobulin and other molecules on B cells as well as antibodies able to bind the TCR and other molecules on T cells can be combined with the pharmaceutical composition of the invention.

The pharmaceutical composition of the invention may be in the form of a liposome in which protein of the present invention is combined, in addition to other pharmaceutically acceptable carriers, with amphipathic agents such as lipids which exist in aggregated form as micelles, insoluble monolayers, liquid crystals, or lamellar layers in aqueous solution. Suitable lipids for liposomal formulation include, without limitation, monoglycerides, diglycerides, sulfatides, lysolecithins, phospholipids, saponin, bile acids, and the like. Preparation of such liposomal formulations is within the level of skill in the art, as disclosed, for example, in U.S. Patent Nos. 4,235,871; 4,501,728; 4,837,028; and 4,737,323, all of which are incorporated herein by reference.

The amount of protein or other active ingredient of the present invention in the pharmaceutical composition of the present invention will depend upon the nature and severity of the condition being treated, and on the nature of prior treatments which the patient has undergone. Ultimately, the attending physician will decide the amount of protein or other active ingredient of the present invention with which to treat each

individual patient. Initially, the attending physician will administer low doses of protein or other active ingredient of the present invention and observe the patient's response. Larger doses of protein or other active ingredient of the present invention may be administered until the optimal therapeutic effect is obtained for the patient, and at that point the dosage is not increased further. It is contemplated that the various pharmaceutical compositions used to practice the method of the present invention should contain about 0.01 µg to about 100 mg (preferably about 0.1 µg to about 10 mg, more preferably about 0.1 µg to about 1 mg) of protein or other active ingredient of the present invention per kg body weight. For compositions of the present invention which are useful for bone, cartilage, tendon or ligament regeneration, the therapeutic method includes administering the composition topically, systematically, or locally as an implant or device. When administered, the therapeutic composition for use in this invention is, of course, in a pyrogen-free, physiologically acceptable form. Further, the composition may desirably be encapsulated or injected in a viscous form for delivery to the site of bone. cartilage or tissue damage. Topical administration may be suitable for wound healing and tissue repair. Therapeutically useful agents other than a protein or other active ingredient of the invention which may also optionally be included in the composition as described above, may alternatively or additionally, be administered simultaneously or sequentially with the composition in the methods of the invention. Preferably for bone and/or cartilage formation, the composition would include a matrix capable of delivering the protein-containing or other active ingredient-containing composition to the site of bone and/or cartilage damage, providing a structure for the developing bone and cartilage and optimally capable of being resorbed into the body. Such matrices may be formed of materials presently in use for other implanted medical applications.

10

15

20

25

30

The choice of matrix material is based on biocompatibility, biodegradability, mechanical properties, cosmetic appearance and interface properties. The particular application of the compositions will define the appropriate formulation. Potential matrices for the compositions may be biodegradable and chemically defined calcium sulfate, tricalcium phosphate, hydroxyapatite, polylactic acid, polyglycolic acid and polyanhydrides. Other potential materials are biodegradable and biologically well-defined, such as bone or dermal collagen. Further matrices are comprised of pure

proteins or extracellular matrix components. Other potential matrices are nonbiodegradable and chemically defined, such as sintered hydroxyapatite, bioglass, aluminates, or other ceramics. Matrices may be comprised of combinations of any of the above mentioned types of material, such as polylactic acid and hydroxyapatite or collagen and tricalcium phosphate. The bioceramics may be altered in composition, such as in calcium-aluminate-phosphate and processing to alter pore size, particle siape, and biodegradability. Presently preferred is a 50:50 (mole weight) copolymer of lactic acid and glycolic acid in the form of porous particles having diameters ranging from 150 to 800 microns. In some applications, it will be useful to utilize a sequestering agent, such as carboxymethyl cellulose or autologous blood clot, to prevent the protein compositions from disassociating from the matrix.

5

10

15

20

25

30

A preferred family of sequestering agents is cellulosic materials such as alkylcelluloses (including hydroxyalkylcelluloses), including methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropyl-methylcellulose, and carboxymethylcellulose, the most preferred being cationic salts of carboxymethylcellulose (CMC). Other preferred sequestering agents include hyaluronic acid, sodium alginate, poly(ethylene glycol), polyoxyethylene oxide, carboxyvinyl polymer and poly(vinyl alcohol). The amount of sequestering agent useful herein is 0.5-20 wt %, preferably 1-10 wt % based on total formulation weight, which represents the amount necessary to prevent desorption of the protein from the polymer matrix and to provide appropriate handling of the composition, yet not so much that the progenitor cells are prevented from infiltrating the matrix, thereby providing the protein the opportunity to assist the osteogenic activity of the progenitor cells. In further compositions, proteins or other active ingredients of the invention may be combined with other agents beneficial to the treatment of the bone and/or cartilage defect, wound, or tissue in question. These agents include various growth factors such as epidermal growth factor (EGF), platelet derived growth factor (PDGF), transforming growth factors (TGF-α and TGF-β), and insulin-like growth factor (IGF).

The therapeutic compositions are also presently valuable for veterinary applications. Particularly domestic animals and thoroughbred horses, in addition to humans, are desired patients for such treatment with proteins or other active ingredients

of the present invention. The dosage regimen of a protein-containing pharmaceutical composition to be used in tissue regeneration will be determined by the attending physician considering various factors which modify the action of the proteins, e.g., amount of tissue weight desired to be formed, the site of damage, the condition of the damaged tissue, the size of a wound, type of damaged tissue (e.g., bone), the patient's age, sex, and diet, the severity of any infection, time of administration and other clinical factors. The dosage may vary with the type of matrix used in the reconstitution and with inclusion of other proteins in the pharmaceutical composition. For example, the addition of other known growth factors, such as IGF I (insulin like growth factor I), to the final composition, may also effect the dosage. Progress can be monitored by periodic assessment of tissue/bone growth and/or repair, for example, X-rays, histomorphometric determinations and tetracycline labeling.

Polynucleotides of the present invention can also be used for gene therapy. Such polynucleotides can be introduced either in vivo or ex vivo into cells for expression in a mammalian subject. Polynucleotides of the invention may also be administered by other known methods for introduction of nucleic acid into a cell or organism (including, without limitation, in the form of viral vectors or naked DNA). Cells may also be cultured ex vivo in the presence of proteins of the present invention in order to proliferate or to produce a desired effect on or activity in such cells. Treated cells can then be introduced in vivo for therapeutic purposes.

4.12.3 EFFECTIVE DOSAGE

5

10

15

20

25

30

Pharmaceutical compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve its intended purpose. More specifically, a therapeutically effective amount means an amount effective to prevent development of or to alleviate the existing symptoms of the subject being treated. Determination of the effective amount is well within the capability of those skilled in the art, especially in light of the detailed disclosure provided herein. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from appropriate in vitro assays. For example, a dose can be formulated in animal models to achieve a circulating

concentration range that can be used to more accurately determine useful doses in humans. For example, a dose can be formulated in animal models to achieve a circulating concentration range that includes the IC_{50} as determined in cell culture (i.e., the concentration of the test compound which achieves a half-maximal inhibition of the protein's biological activity). Such information can be used to more accurately determine useful doses in humans.

A therapeutically effective dose refers to that amount of the compound that results in amelioration of symptoms or a prolongation of survival in a patient. Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED₅₀ (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio between LD₅₀ and ED₅₀. Compounds which exhibit high therapeutic indices are preferred. The data obtained from these cell culture assays and animal studies can be used in formulating a range of dosage for use in human. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. The exact formulation, route of administration and dosage can be chosen by the individual physician in view of the patient's condition. See, e.g., Fingl et al., 1975, in "The Pharmacological Basis of Therapeutics", Ch. 1 p.1. Dosage amount and interval may be adjusted individually to provide plasma levels of the active mojety which are sufficient to maintain the desired effects, or minimal effective concentration (MEC). The MEC will vary for each compound but can be estimated from in vitro data. Dosages necessary to achieve the MEC will depend on individual characteristics and route of administration. However, HPLC assays or bioassays can be used to determine plasma concentrations.

10

15

20

25

30

Dosage intervals can also be determined using MEC value. Compounds should be administered using a regimen which maintains plasma levels above the MEC for 10-90% of the time, preferably between 30-90% and most preferably between 50-90%.

In cases of local administration or selective uptake, the effective local concentration of the drug may not be related to plasma concentration.

An exemplary dosage regimen for polypeptides or other compositions of the invention will be in the range of about $0.01~\mu g/kg$ to 100~mg/kg of body weight daily, with the preferred dose being about $0.1~\mu g/kg$ to 25~mg/kg of patient body weight daily, varying in adults and children. Dosing may be once daily, or equivalent doses may be delivered at longer or shorter intervals.

The amount of composition administered will, of course, be dependent on the subject being treated, on the subject's age and weight, the severity of the affliction, the manner of administration and the judgment of the prescribing physician.

4.12.4 PACKAGING

The compositions may, if desired, be presented in a pack or dispenser device which may contain one or more unit dosage forms containing the active ingredient. The pack may, for example, comprise metal or plastic foil, such as a blister pack. The pack or dispenser device may be accompanied by instructions for administration. Compositions comprising a compound of the invention formulated in a compatible pharmaceutical carrier may also be prepared, placed in an appropriate container, and labeled for treatment of an indicated condition.

20

25

30

10

15

4.13 ANTIBODIES

Also included in the invention are antibodies to proteins, or fragments of proteins of the invention. The term "antibody" as used herein refers to immunoglobulin molecules and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, Fab, Fab and F(ab)2 fragments, and an Fab expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG1, IgG2, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain.

Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.

An isolated related protein of the invention may be intended to serve as an antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID NO: 4, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 20 amino acid residues, or at least 9 amino acid residues. Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface: commonly these are hydrobilic regions.

10

15

20

25

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of -related protein that is located on the surface of the protein, e.g., a hydrophilic region. A hydrophobicity analysis of the human related protein sequence will indicate which regions of a related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without Fourier transformation. See, e.g., Hopp and Woods, 1981, Proc. Nat. Acad. Sci. USA 78: 3824-3828; Kyte and Doolittle 1982, J. Mol. Biol. 157: 105-142, each of which is incorporated herein by reference in its entirety.

Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof (see, for example, Antibodies: A Laboratory Manual, Harlow E, and Lane D, 1988, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, incorporated herein by reference). Some of these antibodies are discussed below.

5.13.1 Polyclonal Antibodies

5

10

30

For the production of polyclonal antibodies, various suitable host animals (e.g., rabbit, goat, mouse or other mammal) may be immunized by one or more injections with the native protein, a synthetic variant thereof, or a derivative of the foregoing. An 15 appropriate immunogenic preparation can contain, for example, the naturally occurring immunogenic protein, a chemically synthesized polypeptide representing the immunogenic protein, or a recombinantly expressed immunogenic protein. Furthermore, the protein may be conjugated to a second protein known to be immunogenic in the mammal being immunized. Examples of such immunogenic proteins include but are not 20 limited to keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, and soybean trypsin inhibitor. The preparation can further include an adjuvant. Various adjuvants used to increase the immunological response include, but are not limited to, Freund's (complete and incomplete), mineral gels (e.g., aluminum hydroxide), surface active substances (e.g., lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, 25 dinitrophenol, etc.), adjuvants usable in humans such as Bacille Calmette-Guerin and Corynebacterium parvum, or similar immunostimulatory agents. Additional examples of adjuvants which can be employed include MPL-TDM adjuvant (monophosphoryl Lipid A, synthetic trehalose dicorynomycolate).

The polyclonal antibody molecules directed against the immunogenic protein can be isolated from the mammal (e.g., from the blood) and further purified by well known techniques, such as affinity chromatography using protein A or protein G, which provide

primarily the IgG fraction of immune serum. Subsequently, or alternatively, the specific antigen which is the target of the immunoglobulin sought, or an epitope thereof, may be immobilized on a column to purify the immune specific antibody by immunoaffinity chromatography. Purification of immunoglobulins is discussed, for example, by D. Wilkinson (The Scientist, published by The Scientist, Inc., Philadelphia PA, Vol. 14, No. 8 (April 17, 2000), pp. 25-28).

5.13.2 Monoclonal Antibodies

5

10

15

20

25

30

The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product. In particular, the complementarity determining regions (CDRs) of the monoclonal antibody are identical in all the molecules of the population. MAbs thus contain an antigen binding site capable of immunoreacting with a particular epitope of the antigen characterized by a unique binding affinity for it.

Monoclonal antibodies can be prepared using hybridoma methods, such as those described by Kohler and Milstein, Nature, 256:495 (1975). In a hybridoma method, a mouse, hamster, or other appropriate host animal, is typically immunized with an immunizing agent to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the immunizing agent. Alternatively, the lymphocytes can be immunized in vitro.

The immunizing agent will typically include the protein antigen, a fragment thereof or a fusion protein thereof. Generally, either peripheral blood lymphocytes are used if cells of human origin are desired, or spleen cells or lymph node cells are used if non-human mammalian sources are desired. The lymphocytes are then fused with an immortalized cell line using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell (Goding, Monoclonal Antibodies: Principles and Practice, Academic Press, (1986) pp. 59-103). Immortalized cell lines are usually transformed mammalian cells, particularly myeloma cells of rodent, bovine and human origin. Usually, rat or mouse myeloma cell lines are employed. The hybridoma cells can be cultured in a suitable culture medium that preferably contains one or more substances that inhibit the growth or

survival of the unfused, immortalized cells. For example, if the parental cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine ("HAT medium"), which substances prevent the growth of HGPRT-deficient cells.

5

10

15

20

25

Preferred immortalized cell lines are those that fuse efficiently, support stable high level expression of antibody by the selected antibody-producing cells, and are sensitive to a medium such as HAT medium. More preferred immortalized cell lines are murine myeloma lines, which can be obtained, for instance, from the Salk Institute Cell Distribution Center, San Diego, California and the American Type Culture Collection, Manassas, Virginia. Human myeloma and mouse-human heteromyeloma cell lines also have been described for the production of human monoclonal antibodies (Kozbor, J. Immunol., 132:3001 (1984); Brodeur et al., Monoclonal Antibody Production Techniques and Applications, Marcel Dekker, Inc., New York. (1987) pp. 51-63).

The culture medium in which the hybridoma cells are cultured can then be assayed for the presence of monoclonal antibodies directed against the antigen. Preferably, the binding specificity of monoclonal antibodies produced by the hybridoma cells is determined by immunoprecipitation or by an in vitro binding assay, such as radioimmunoassay (RIA) or enzyme-linked immunoabsorbent assay (ELISA). Such techniques and assays are known in the art. The binding affinity of the monoclonal antibody can, for example, be determined by the Scatchard analysis of Munson and Pollard, Anal. Biochem., 107:220 (1980). Preferably, antibodies having a high degree of specificity and a high binding affinity for the target antigen are isolated.

After the desired hybridoma cells are identified, the clones can be subcloned by limiting dilution procedures and grown by standard methods. Suitable culture media for this purpose include, for example, Dulbecco's Modified Eagle's Medium and RPMI-1640 medium. Alternatively, the hybridoma cells can be grown in vivo as ascites in a mammal.

The monoclonal antibodies secreted by the subclones can be isolated or purified from the

ulture medium or ascites fluid by conventional immunoglobulin purification procedures

such as, for example, protein A-Sepharose, hydroxylapatite chromatography, gel electrophoresis, dialysis, or affinity chromatography.

The monoclonal antibodies can also be made by recombinant DNA methods, such as those described in U.S. Patent No. 4.816,567. DNA encoding the monoclonal antibodies of the invention can be readily isolated and sequenced using conventional procedures (e.g., by using oligonucleotide probes that are capable of binding specifically to genes encoding the heavy and light chains of murine antibodies). The hybridoma cells of the invention serve as a preferred source of such DNA. Once isolated, the DNA can be placed into expression vectors, which are then transfected into host cells such as simian COS cells. Chinese hamster ovary (CHO) cells, or myeloma cells that do not otherwise produce immunoglobulin protein, to obtain the synthesis of monoclonal antibodies in the recombinant host cells. The DNA also can be modified, for example, by substituting the coding sequence for human heavy and light chain constant domains in place of the homologous murine sequences (U.S. Patent No. 4,816,567; Morrison, Nature 368, 812-13 (1994)) or by covalently joining to the immunoglobulin coding sequence all or part of the coding sequence for a non-immunoglobulin polypeptide. Such a nonimmunoglobulin polypeptide can be substituted for the constant domains of an antibody of the invention, or can be substituted for the variable domains of one antigen-combining site of an antibody of the invention to create a chimeric bivalent antibody.

20

25

30

5

10

15

5.13.2 Humanized Antibodies

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. These antibodies are suitable for administration to humans without engendering an immune response by the human against the administered immunoglobulin. Humanized forms of antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')₂ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin. Humanization can be performed following the method of Winter and co-workers (Jones et al., Nature, 321:522-525 (1986); Riechmann et al., Nature, 332:323-327 (1988); Verhoeven et al., Science, 239:1534-1536

(1988)), by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. (See also U.S. Patent No. 5,225,539.) In some instances, Fv framework residues of the human immunoglobulin are replaced by corresponding nonhuman residues. Humanized antibodies can also comprise residues which are found neither in the recipient antibody nor in the imported CDR or framework sequences. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin (Jones et al., 1986; Riechmann et al., 1988; and Presta, Curr. Op. Struct. Biol., 2:593-596 (1992)).

5.13.3 Human Antibodies

5

10

30

Fully human antibodies relate to antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Such antibodies are termed "human antibodies", or "fully human antibodies" herein. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique (see Kozbor, et al., 1983 Immunol Today 4: 72) and the EBV hybridoma technique to produce human monoclonal antibodies (see Cole, et al., 1985 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96). Human monoclonal antibodies may be utilized in the practice of the present invention and may be produced by using human hybridomas (see Cote, et al., 1983. Proc Natl Acad Sci USA 80: 2026-2030) or by transforming human B-cells with Epstein Barr Virus in vitro (see Cole, et al., 1983 In: MONOCLONAL ANTIBODIES AND CANCER THERAPY, Alan R. Liss, Inc., pp. 77-96).

In addition, human antibodies can also be produced using additional techniques, including phage display libraries (Hoogenboom and Winter, <u>J. Mol. Biol.</u>, <u>227</u>:381 (1991); Marks et al., <u>J. Mol. Biol.</u>, <u>222</u>:581 (1991)). Similarly, human antibodies can be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely

inactivated. Upon challenge, human antibody production is observed, which closely resembles that seen in humans in all respects, including gene rearrangement, assembly, and antibody repertoire. This approach is described, for example, in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; 5,625,126; 5,633,425; 5,661,016, and in Marks et al. (Bio/Technology 10, 779-783 (1992)); Lonberg et al. (Nature 368 856-859 (1994)); Morrison (Nature 368, 812-13 (1994)); Fishwild et al. (Nature Biotechnology 14, 845-51 (1996)); Neuberger (Nature Biotechnology 14, 826 (1996)); and Lonberg and Huszar (Intern. Rev. Immunol. 13 65-93 (1995)).

10

15

20

25

Human antibodies may additionally be produced using transgenic nonhuman animals which are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen. (See PCT publication WO94/02602). The endogenous genes encoding the heavy and light immunoglobulin chains in the nonhuman host have been incapacitated, and active loci encoding human heavy and light chain immunoglobulins are inserted into the host's genome. The human genes are incorporated, for example, using yeast artificial chromosomes containing the requisite human DNA segments. An animal which provides all the desired modifications is then obtained as progeny by crossbreeding intermediate transgenic animals containing fewer than the full complement of the modifications. The preferred embodiment of such a nonhuman animal is a mouse, and is termed the XenomouseTM as disclosed in PCT publications WO 96/33735 and WO 96/34096. This animal produces B cells which secrete fully human immunoglobulins. The antibodies can be obtained directly from the animal after immunization with an immunogen of interest, as, for example, a preparation of a polyclonal antibody, or alternatively from immortalized B cells derived from the animal, such as hybridomas producing monoclonal antibodies. Additionally, the genes encoding the immunoglobulins with human variable regions can be recovered and expressed to obtain the antibodies directly, or can be further modified to obtain analogs of antibodies such as, for example, single chain Fv molecules.

An example of a method of producing a nonhuman host, exemplified as a mouse, lacking expression of an endogenous immunoglobulin heavy chain is disclosed in U.S.

Patent No. 5,939,598. It can be obtained by a method including deleting the J segment genes from at least one endogenous heavy chain locus in an embryonic stem cell to

prevent rearrangement of the locus and to prevent formation of a transcript of a rearranged immunoglobulin heavy chain locus, the deletion being effected by a targeting vector containing a gene encoding a selectable marker; and producing from the embryonic stem cell a transgenic mouse whose somatic and germ cells contain the gene encoding the selectable marker.

A method for producing an antibody of interest, such as a human antibody, is disclosed in U.S. Patent No. 5,916,771. It includes introducing an expression vector that contains a nucleotide sequence encoding a heavy chain into one mammalian host cell in culture, introducing an expression vector containing a nucleotide sequence encoding a light chain into another mammalian host cell, and fusing the two cells to form a hybrid cell. The hybrid cell expresses an antibody containing the heavy chain and the light chain

In a further improvement on this procedure, a method for identifying a clinically relevant epitope on an immunogen, and a correlative method for selecting an antibody that binds immunospecifically to the relevant epitope with high affinity, are disclosed in PCT publication WO 99/53049.

5.13.4 Fab Fragments and Single Chain Antibodies

According to the invention, techniques can be adapted for the production of single-chain antibodies specific to an antigenic protein of the invention (see e.g., U.S. Patent No. 4,946,778). In addition, methods can be adapted for the construction of F_{8b} expression libraries (see e.g., Huse, et al., 1989 Science 246: 1275-1281) to allow rapid and effective identification of monoclonal F_{8b} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an F_{(8b)2} fragment produced by pepsin digestion of an antibody molecule; (ii) an F_{8b} fragment generated by reducing the disulfide bridges of an F_{(8b)2} fragment; (iii) an F_{8b} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F₀ fragments.

30

5

10

15

20

25

5.13.5 Bispecific Antibodies

Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. In the present case, one of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

5

10

15

20

25

30

Methods for making bispecific antibodies are known in the art. Traditionally, the recombinant production of bispecific antibodies is based on the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two heavy chains have different specificities (Milstein and Cuello, Nature, 305:537-539 (1983)). Because of the random assortment of immunoglobulin heavy and light chains, these hybridomas (quadromas) produce a potential mixture of ten different antibody molecules, of which only one has the correct bispecific structure. The purification of the correct molecule is usually accomplished by affinity chromatography steps. Similar procedures are disclosed in WO 93/08829, published 13 May 1993, and in Traunecker et al., 1991 EMBO J., 10:3655-3659.

Antibody variable domains with the desired binding specificities (antibodyantigen combining sites) can be fused to immunoglobulin constant domain sequences.

The fusion preferably is with an immunoglobulin heavy-chain constant domain,
comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the
first heavy-chain constant region (CH1) containing the site necessary for light-chain
binding present in at least one of the fusions. DNAs encoding the immunoglobulin
heavy-chain fusions and, if desired, the immunoglobulin light chain, are inserted into
separate expression vectors, and are co-transfected into a suitable host organism. For
further details of generating bispecific antibodies see, for example, Suresh et al., Methods
in Enzymology, 121:210 (1986).

According to another approach described in WO 96/27011, the interface between a pair of antibody molecules can be engineered to maximize the percentage of heterodimers which are recovered from recombinant cell culture. The preferred interface comprises at least a part of the CH3 region of an antibody constant domain. In this method, one or more small amino acid side chains from the interface of the first antibody molecule are replaced with larger side chains (e.g. tyrosine or tryotophan).

Compensatory "cavities" of identical or similar size to the large side chain(s) are created on the interface of the second antibody molecule by replacing large amino acid side chains with smaller ones (e.g. alanine or threonine). This provides a mechanism for increasing the yield of the heterodimer over other unwanted end-products such as homodimers.

5

10

20

25

30

Bispecific antibodies can be prepared as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies). Techniques for generating bispecific antibodies from antibody fragments have been described in the literature. For example, bispecific antibodies can be prepared using chemical linkage. Brennan et al., Science 229:81 (1985) describe a procedure wherein intact antibodies are proteolytically cleaved to generate F(ab')₂ fragments. These fragments are reduced in the presence of the dithiol complexing agent sodium arsenite to stabilize vicinal dithiols and prevent intermolecular disulfide formation. The Fab' fragments generated are then converted to thionitrobenzoate (TNB) derivatives. One of the Fab'-TNB derivatives is then reconverted to the Fab'-thiol by reduction with mercaptoethylamine and is mixed with an equimolar amount of the other Fab'-TNB derivative to form the bispecific antibody. The bispecific antibodies produced can be used as agents for the selective immobilization of enzymes.

Additionally, Fab' fragments can be directly recovered from E. coli and chemically coupled to form bispecific antibodies. Shalaby et al.; J. Exp. Med.

175:217-225 (1992) describe the production of a fully humanized bispecific antibody

F(ab')₂ molecule. Each Fab' fragment was separately secreted from E. coli and subjected to directed chemical coupling in vitro to form the bispecific antibody. The bispecific antibody thus formed was able to bind to cells overexpressing the ErbB2 receptor and normal human T cells, as well as trigger the lytic activity of human cytotoxic lymphocytes against human breast tumor targets.

Various techniques for making and isolating bispecific antibody fragments directly from recombinant cell culture have also been described. For example, bispecific antibodies have been produced using leucine zippers. Kostelny et al., <u>J. Immunol.</u> 148(5):1547-1553 (1992). The leucine zipper peptides from the Fos and Jun proteins were linked to the Fab' portions of two different antibodies by gene fusion. The antibody

homodimers were reduced at the hinge region to form monomers and then re-oxidized to form the antibody heterodimers. This method can also be utilized for the production of antibody homodimers. The "diabody" technology described by Hollinger et al., <u>Proc. Natl. Acad. Sci. USA</u> 90:6444-6448 (1993) has provided an alternative mechanism for making bispecific antibody fragments. The fragments comprise a heavy-chain variable domain (V_H) connected to a light-chain variable domain (V_L) by a linker which is too short to allow pairing between the two domains on the same chain. Accordingly, the V_H and V_L domains of one fragment are forced to pair with the complementary V_L and V_H domains of another fragment, thereby forming two antigen-binding sites. Another strategy for making bispecific antibody fragments by the use of single-chain Fv (sFv) dimers has also been reported. See, Gruber et al., <u>J. Immunol.</u> 152:5368 (1994).

Antibodies with more than two valencies are contemplated. For example, trispecific antibodies can be prepared. Tutt et al., J. Immunol. 147:60 (1991). Exemplary bispecific antibodies can bind to two different epitopes, at least one of which originates in the protein antigen of the invention. Alternatively, an anti-antigenic arm of an immunoglobulin molecule can be combined with an arm which binds to a triggering molecule on a leukocyte such as a T-cell receptor molecule (e.g. CD2, CD3, CD28, or B7), or Fc receptors for IgG (FcyR), such as FcyRI (CD64), FcyRII (CD32) and FcyRIII (CD16) so as to focus cellular defense mechanisms to the cell expressing the particular antigen. Bispecific antibodies can also be used to direct cytotoxic agents to cells which express a particular antigen. These antibodies possess an antigen-binding arm and an arm which binds a cytotoxic agent or a radionuclide chelator, such as EOTUBE, DPTA, DOTA, or TETA. Another bispecific antibody of interest binds the protein antigen described herein and further binds tissue factor (TF).

25

30

20

5

10

15

5.13.6 Heteroconjugate Antibodies

Heteroconjugate antibodies are also within the scope of the present invention. Heteroconjugate antibodies are composed of two covalently joined antibodies. Such antibodies have, for example, been proposed to target immune system cells to unwanted cells (U.S. Patent No. 4,676,980), and for treatment of HIV infection (WO 91/00360; WO 92/200373; EP 03089). It is contemplated that the antibodies can be prepared in

vitro using known methods in synthetic protein chemistry, including those involving crosslinking agents. For example, immunotoxins can be constructed using a disulfide exchange reaction or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methyl-4-mercaptobutyrimidate and those disclosed, for example, in U.S. Patent No. 4,676,980.

5.13.7 Effector Function Engineering

It can be desirable to modify the antibody of the invention with respect to effector function, so as to enhance, e.g., the effectiveness of the antibody in treating cancer. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The homodimeric antibody thus generated can have improved internalization capability and/or increased complement-mediated cell killing and antibody-dependent cellular cytotoxicity (ADCC). See Caron et al., J. Exp Med., 176: 1191-1195 (1992) and Shopes, J. Immunol., 148: 2918-2922 (1992). Homodimeric antibodies with enhanced anti-tumor activity can also be prepared using heterobifunctional cross-linkers as described in Wolff et al. Cancer Research, 53: 2560-2565 (1993). Alternatively, an antibody can be engineered that has dual Fc regions and can thereby have enhanced complement lysis and ADCC capabilities. See Stevenson et al., Anti-Cancer Drug Design, 3: 219-230 (1989).

20

25

30

5

10

15

5.13.8 Immunoconjugates

The invention also pertains to immunoconjugates comprising an antibody conjugated to a cytotoxic agent such as a chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Chemotherapeutic agents useful in the generation of such immunoconjugates have been described above. Enzymatically active toxins and fragments thereof that can be used include diphtheria A chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from Pseudomonas aeruginosa), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleurites fordii proteins, dianthin proteins, Phytolaca americana proteins (PAPI, PAPII, and PAP-S), momordica charantia inhibitor, curcin,

crotin, sapaonaria officinalis inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the tricothecenes. A variety of radionuclides are available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

Conjugates of the antibody and cytotoxic agent are made using a variety of bifunctional protein-coupling agents such as N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (such as dimethyl adipimidate HCL), active esters (such as disuccinimidyl suberate), aldehydes (such as glutareldehyde), bis-azido compounds (such as bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (such as bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (such as tolyene 2,6-diisocyanate), and bis-active fluorine compounds (such as 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science, 238: 1098 (1987). Carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) is an exemplary chelating agent for conjugation of radionucleotide to the antibody. See WO94/11026.

In another embodiment, the antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

4.14 COMPUTER READABLE SEQUENCES

5

10

15

20

25

30

In one application of this embodiment, a nucleotide sequence of the present invention can be recorded on computer readable media. As used herein, "computer readable media" refers to any medium which can be read and accessed directly by a computer. Such media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media. A skilled artisan can readily appreciate how any of the presently known computer readable mediums can be used to

create a manufacture comprising computer readable medium having recorded thereon a nucleotide sequence of the present invention. As used herein, "recorded" refers to a process for storing information on computer readable medium. A skilled artisan can readily adopt any of the presently known methods for recording information on computer readable medium to generate manufactures comprising the nucleotide sequence information of the present invention.

5

10

15

A variety of data storage structures are available to a skilled artisan for creating a computer readable medium having recorded thereon a nucleotide sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. A skilled artisan can readily adapt any number of data processor structuring formats (e.g. text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.

By providing any of the nucleotide sequences SEQ ID NO:1-739 or a

representative fragment thereof; or a nucleotide sequence at least 95% identical to any of
the nucleotide sequences of SEQ ID NO:1-739 in computer readable form, a skilled
artisan can routinely access the sequence information for a variety of purposes.

Computer software is publicly available which allows a skilled artisan to access sequence
information provided in a computer readable medium. The examples which follow

25 demonstrate how software which implements the BLAST (Altschul et al., J. Mol. Biol.
215:403-410 (1990)) and BLAZE (Brutlag et al., Comp. Chem. 17:203-207 (1993))
search algorithms on a Sybase system is used to identify open reading frames (ORFs)
within a nucleic acid sequence. Such ORFs may be protein encoding fragments and may
be useful in producing commercially important proteins such as enzymes used in
fermentation reactions and in the production of commercially useful metabolites.

As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware means of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. As stated above, the computer-based systems of the present invention comprise a data storage means having stored therein a nucleotide sequence of the present invention and the necessary hardware means and software means for supporting and implementing a search means. As used herein, "data storage means" refers to memory which can store nucleotide sequence information of the present invention, or a memory access means which can access manufactures having recorded thereon the nucleotide sequence information of the present invention.

5

10

15

20

25

30

As used herein, "search means" refers to one or more programs which are implemented on the computer-based system to compare a target sequence or target structural motif with the sequence information stored within the data storage means. Search means are used to identify fragments or regions of a known sequence which match a particular target sequence or target motif. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software includes, but is not limited to, Smith-Waterman, MacPattern (EMBL), BLASTN and BLASTA (NPOLYPEPTIDEIA). A skilled artisan can readily recognize that any one of the available algorithms or implementing software packages for conducting homology searches can be adapted for use in the present computer-based systems. As used herein, a "target sequence" can be any nucleic acid or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. The most preferred sequence length of a target sequence is from about 10 to 300 amino acids, more preferably from about 30 to 100 nucleotide residues. However, it is well recognized that searches for

commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.

As used herein, "a target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration which is formed upon the folding of the target motif. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, promoter sequences, hairpin structures and inducible expression elements (protein binding sequences).

4.15 TRIPLE HELIX FORMATION

5

10

15

20

25

30

In addition, the fragments of the present invention, as broadly described, can be used to control gene expression through triple helix formation or antisense DNA or RNA, both of which methods are based on the binding of a polynucleotide sequence to DNA or RNA. Polynucleotides suitable for use in these methods are preferably 20 to 40 bases in length and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 15241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Olmno, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide.

4.16 DIAGNOSTIC ASSAYS AND KITS

The present invention further provides methods to identify the presence or expression of one of the ORFs of the present invention, or homolog thereof, in a test sample, using a nucleic acid probe or antibodies of the present invention, optionally conjugated or otherwise associated with a suitable label.

In general, methods for detecting a polynucleotide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polynucleotide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polynucleotide of the invention is detected in the sample. Such methods can also comprise contacting a sample under stringent hybridization conditions with nucleic acid primers that anneal to a polynucleotide of the invention under such conditions, and amplifying annealed polynucleotides, so that if a polynucleotide is amplified, a polynucleotide of the invention is detected in the sample.

5

10

15

20

25

30

In general, methods for detecting a polypeptide of the invention can comprise contacting a sample with a compound that binds to and forms a complex with the polypeptide for a period sufficient to form the complex, and detecting the complex, so that if a complex is detected, a polypeptide of the invention is detected in the sample.

In detail, such methods comprise incubating a test sample with one or more of the antibodies or one or more of the nucleic acid probes of the present invention and assaying for binding of the nucleic acid probes or antibodies to components within the test sample.

Conditions for incubating a nucleic acid probe or antibody with a test sample vary. Incubation conditions depend on the format employed in the assay, the detection methods employed, and the type and nature of the nucleic acid probe or antibody used in the assay. One skilled in the art will recognize that any one of the commonly available hybridization, amplification or immunological assay formats can readily be adapted to employ the nucleic acid probes or antibodies of the present invention. Examples of such assays can be found in Chard, T., An Introduction to Radioimmunoassay and Related Techniques, Elsevier Science Publishers, Amsterdam, The Netherlands (1986); Bullock, G.R. et al., Techniques in Immunocytochemistry, Academic Press, Orlando, FL Vol. 1 (1982), Vol. 2 (1983), Vol. 3 (1985); Tijssen, P., Practice and Theory of immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands (1985). The test samples of the present invention include cells, protein or membrane extracts of cells, or biological fluids such as sputum, blood, serum, plasma, or urine. The test sample used in the above-described method will vary based on the assay format, nature of the detection method and the tissues, cells or extracts used as the sample to be assayed. Methods for preparing protein

extracts or membrane extracts of cells are well known in the art and can be readily be adapted in order to obtain a sample which is compatible with the system utilized.

In another embodiment of the present invention, kits are provided which contain the necessary reagents to carry out the assays of the present invention. Specifically, the invention provides a compartment kit to receive, in close confinement, one or more containers which comprises: (a) a first container comprising one of the probes or antibodies of the present invention; and (b) one or more other containers comprising one or more of the following: wash reagents, reagents capable of detecting presence of a bound probe or antibody.

In detail, a compartment kit includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allows one to efficiently transfer reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated, and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the test sample, a container which contains the antibodies used in the assay, containers which contain wash reagents (such as phosphate buffered saline, Tris-buffers, etc.), and containers which contain the reagents used to detect the bound antibody or probe. Types of detection reagents include labeled nucleic acid probes, labeled secondary antibodies, or in the alternative, if the primary antibody is labeled, the enzymatic, or antibody binding reagents which are capable of reacting with the labeled antibody. One skilled in the art will readily recognize that the disclosed probes and antibodies of the present invention can be readily incorporated into one of the established kit formats which are well known in the art.

25

30

20

10

15

4.17 MEDICAL IMAGING

The novel polypeptides and binding partners of the invention are useful in medical imaging of sites expressing the molecules of the invention (e.g., where the polypeptide of the invention is involved in the immune response, for imaging sites of inflammation or infection). See, e.g., Kunkel et al., U.S. Pat. NO. 5,413,778. Such methods involve chemical attachment of a labeling or imaging agent, administration of

the labeled polypeptide to a subject in a pharmaceutically acceptable carrier, and imaging the labeled polypeptide *in vivo* at the target site.

4.18 SCREENING ASSAYS

5

10

15

20

25

30

Using the isolated proteins and polynucleotides of the invention, the present invention further provides methods of obtaining and identifying agents which bind to a polypeptide encoded by an ORF corresponding to any of the nucleotide sequences set forth in SEQ ID NO:1-739, or bind to a specific domain of the polypeptide encoded by the nucleic acid. In detail, said method comprises the steps of:

- (a) contacting an agent with an isolated protein encoded by an ORF of the present invention, or nucleic acid of the invention; and
- (b) determining whether the agent binds to said protein or said nucleic acid.

 In general, therefore, such methods for identifying compounds that bind to a
 polynucleotide of the invention can comprise contacting a compound with a
 polynucleotide of the invention for a time sufficient to form a polynucleotide/compound
 complex, and detecting the complex, so that if a polynucleotide/compound complex is
 detected, a compound that binds to a polynucleotide of the invention is identified.

Likewise, in general, therefore, such methods for identifying compounds that bind to a polypeptide of the invention can comprise contacting a compound with a polypeptide of the invention for a time sufficient to form a polypeptide/compound complex, and detecting the complex, so that if a polypeptide/compound complex is detected, a compound that binds to a polypucleotide of the invention is identified.

Methods for identifying compounds that bind to a polypeptide of the invention can also comprise contacting a compound with a polypeptide of the invention in a cell for a time sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a receptor gene sequence in the cell, and detecting the complex by detecting reporter gene sequence expression, so that if a polypeptide/compound complex is detected, a compound that binds a polypeptide of the invention is identified.

Compounds identified via such methods can include compounds which modulate the activity of a polypeptide of the invention (that is, increase or decrease its activity, relative to activity observed in the absence of the compound). Alternatively, compounds

identified via such methods can include compounds which modulate the expression of a polynucleotide of the invention (that is, increase or decrease expression relative to expression levels observed in the absence of the compound). Compounds, such as compounds identified via the methods of the invention, can be tested using standard assays well known to those of skill in the art for their ability to modulate activity/expression.

The agents screened in the above assay can be, but are not limited to, peptides, carbohydrates, vitamin derivatives, or other pharmaceutical agents. The agents can be selected and screened at random or rationally selected or designed using protein modeling techniques.

10

15

20

25

30

For random screening, agents such as peptides, carbohydrates, pharmaceutical agents and the like are selected at random and are assayed for their ability to bind to the protein encoded by the ORF of the present invention. Alternatively, agents may be rationally selected or designed. As used herein, an agent is said to be "rationally selected or designed" when the agent is chosen based on the configuration of the particular protein. For example, one skilled in the art can readily adapt currently available procedures to generate peptides, pharmaceutical agents and the like, capable of binding to a specific peptide sequence, in order to generate rationally designed antipeptide peptides, for example see Hurby et al., Application of Synthetic Peptides: Antisense Peptides," In Synthetic Peptides, A User's Guide, W.H. Freeman, NY (1992), pp. 289-307, and Kaspczak et al., Biochemistry 28:9230-8 (1989), or pharmaceutical agents, or the like.

In addition to the foregoing, one class of agents of the present invention, as broadly described, can be used to control gene expression through binding to one of the ORFs or EMFs of the present invention. As described above, such agents can be randomly screened or rationally designed/selected. Targeting the ORF or EMF allows a skilled artisan to design sequence specific relement specific agents, modulating the expression of either a single ORF or multiple ORFs which rely on the same EMF for expression control. One class of DNA binding agents are agents which contain base residues which hybridize or form a triple helix formation by binding to DNA or RNA. Such agents can be based on the classic phosphodiester, ribonucleic acid backbone, or

can be a variety of sulfhydryl or polymeric derivatives which have base attachment capacity.

Agents suitable for use in these methods preferably contain 20 to 40 bases and are designed to be complementary to a region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix-formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques have been demonstrated to be effective in model systems. Information contained in the sequences of the present invention is necessary for the design of an antisense or triple helix oligonucleotide and other DNA binding agents.

Agents which bind to a protein encoded by one of the ORFs of the present invention can be used as a diagnostic agent. Agents which bind to a protein encoded by one of the ORFs of the present invention can be formulated using known techniques to generate a pharmaceutical composition.

4.19 USE OF NUCLEIC ACIDS AS PROBES

10

15

20

25

30

Another aspect of the subject invention is to provide for polypeptide-specific nucleic acid hybridization probes capable of hybridizing with naturally occurring nucleotide sequences. The hybridization probes of the subject invention may be derived from any of the nucleotide sequences SEQ ID NO:1-739. Because the corresponding gene is only expressed in a limited number of tissues, a hybridization probe derived from of any of the nucleotide sequences SEQ ID NO:1-739 can be used as an indicator of the presence of RNA of cell type of such a tissue in a sample.

Any suitable hybridization technique can be employed, such as, for example, in situ hybridization. PCR as described in US Patents Nos. 4,683,195 and 4,965,188 provides additional uses for oligonucleotides based upon the nucleotide sequences. Such probes used in PCR may be of recombinant origin, may be chemically synthesized, or a mixture of both. The probe will comprise a discrete nucleotide sequence for the detection

of identical sequences or a degenerate pool of possible sequences for identification of closely related genomic sequences.

Other means for producing specific hybridization probes for nucleic acids include the cloning of nucleic acid sequences into vectors for the production of mRNA probes. Such vectors are known in the art and are commercially available and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerase as T7 or SP6 RNA polymerase and the appropriate radioactively labeled nucleotides. The nucleotide sequences may be used to construct hybridization probes for mapping their respective genomic sequences. The nucleotide sequence provided herein may be mapped to a chromosome or specific regions of a chromosome using well known genetic and/or chromosomal mapping techniques. These techniques include in situ hybridization, linkage analysis against known chromosomal markers, hybridization screening with libraries or flow-sorted chromosomal preparations specific to known chromosomes, and the like. The technique of fluorescent in situ hybridization of chromosome spreads has been described, among other places, in Verma et al (1988) Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York NY.

10

15

25

30

Fluorescent in situ hybridization of chromosomal preparations and other physical chromosome mapping techniques may be correlated with additional genetic map data.

Examples of genetic map data can be found in the 1994 Genome Issue of Science

(265:1981f). Correlation between the location of a nucleic acid on a physical chromosomal map and a specific disease (or predisposition to a specific disease) may help delimit the region of DNA associated with that genetic disease. The nucleotide sequences of the subject invention may be used to detect differences in gene sequences between normal, carrier or affected individuals.

4.20 PREPARATION OF SUPPORT BOUND OLIGONUCLEOTIDES

Oligonucleotides, i.e., small nucleic acid segments, may be readily prepared by, for example, directly synthesizing the oligonucleotide by chemical means, as is commonly practiced using an automated oligonucleotide synthesizer.

Support bound oligonucleotides may be prepared by any of the methods known to those of skill in the art using any suitable support such as glass, polystyrene or Teflon. One strategy is to precisely spot oligonucleotides synthesized by standard synthesizers.

Immobilization can be achieved using passive adsorption (Inouye & Hondo, (1990) J. Clin. Microbiol. 28(6) 1469-72); using UV light (Nagata et al., 1985; Dahlen et al., 1987; Morrissey & Collins, (1989) Mol. Cell Probes 3(2) 189-207) or by covalent binding of base modified DNA (Keller et al., 1988; 1989); all references being specifically incorporated herein.

5

10

15

20

25

30

Another strategy that may be employed is the use of the strong biotin-streptavidin interaction as a linker. For example, Broude et al. (1994) Proc. Natl. Acad. Sci. USA 91(8) 3072-6, describe the use of biotinylated probes, although these are duplex probes, that are immobilized on streptavidin-coated magnetic beads. Streptavidin-coated beads may be purchased from Dynal, Oslo. Of course, this same linking chemistry is applicable to coating any surface with streptavidin. Biotinylated probes may be purchased from various sources, such as, e.g., Operon Technologies (Alameda, CA).

Nunc Laboratories (Naperville, IL) is also selling suitable material that could be used. Nunc Laboratories have developed a method by which DNA can be covalently bound to the microwell surface termed Covalink NH. CovaLink NH is a polystyrene surface grafted with secondary amino groups (>NH) that serve as bridge-heads for further covalent coupling. CovaLink Modules may be purchased from Nunc Laboratories. DNA molecules may be bound to CovaLink exclusively at the 5'-end by a phosphoramidate bond, allowing immobilization of more than 1 pmol of DNA (Rasmussen et al., (1991) Anal. Biochem. 198(1) 138-42).

The use of CovaLink NH strips for covalent binding of DNA molecules at the 5'-end has been described (Rasmussen et al., (1991). In this technology, a phosphoramidate bond is employed (Chu et al., (1983) Nucleic Acids Res. 11(8) 6513-29). This is beneficial as immobilization using only a single covalent bond is preferred. The phosphoramidate bond joins the DNA to the CovaLink NH secondary amino groups that are positioned at the end of spacer arms covalently grafted onto the polystyrene surface through a 2 nm long spacer arm. To link an oligonucleotide to CovaLink NH via an phosphoramidate bond, the oligonucleotide terminus must have a 5'-end phosphate group. It is, perhaps, even possible for biotin to be covalently bound to CovaLink and then streptavidin used to bind the probes.

More specifically, the linkage method includes dissolving DNA in water (7.5 ng/ul) and denaturing for 10 min. at 95°C and cooling on ice for 10 min. Ice-cold 0.1 M

1-methylimidazole, pH 7.0 (1-MeIm₇), is then added to a final concentration of 10 mM 1-MeIm₇. A ss DNA solution is then dispensed into CovaLink NH strips (75 ul/well) standing on ice.

Carbodiimide 0.2 M 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC),

dissolved in 10 mM 1-MeIm₇, is made fresh and 25 ul added per well. The strips are
incubated for 5 hours at 50°C. After incubation the strips are washed using, e.g.,
Nunc-Immuno Wash; first the wells are washed 3 times, then they are soaked with washing
solution for 5 min., and finally they are washed 3 times (where in the washing solution is 0.4
N NaOH, 0.25% SDS heated to 50°C).

10 .

15

25

30

It is contemplated that a further suitable method for use with the present invention is that described in PCT Patent Application WO 90/03382 (Southern & Maskos), incorporated herein by reference. This method of preparing an oligonucleotide bound to a support involves attaching a nucleoside 3'-reagent through the phosphate group by a covalent phosphodiester link to aliphatic hydroxyl groups carried by the support. The oligonucleotide is then synthesized on the supported nucleoside and protecting groups removed from the synthetic oligonucleotide chain under standard conditions that do not cleave the oligonucleotide from the support. Suitable reagents include nucleoside phosphoramidite and nucleoside hydrogen phosphorate.

An on-chip strategy for the preparation of DNA probe for the preparation of DNA probe arrays may be employed. For example, addressable laser-activated photodeprotection may be employed in the chemical synthesis of oligonucleotides directly on a glass surface, as described by Fodor et al. (1991) Science 251(4995) 767-73, incorporated herein by reference. Probes may also be immobilized on nylon supports as described by Van Ness et al. (1991) Nucleic Acids Res. 19(12) 3345-50; or linked to Teflon using the method of Duncan & Cavalier (1988) Anal. Biochem. 169(1) 104-8; all references being specifically incorporated herein.

To link an oligonucleotide to a nylon support, as described by Van Ness et al. (1991), requires activation of the nylon surface via alkylation and selective activation of the 5-amine of oligonucleotides with cyanuric chloride.

One particular way to prepare support bound oligonucleotides is to utilize the light-generated synthesis described by Pease et al., (1994) PNAS USA 91(11) 5022-6.

incorporated herein by reference). These authors used current photolithographic techniques to generate arrays of immobilized oligonucleotide probes (DNA chips). These methods, in which light is used to direct the synthesis of oligonucleotide probes in high-density, miniaturized arrays, utilize photolabile 5'-protected N-acyl-deoxynucleoside phosphoramidites, surface linker chemistry and versatile combinatorial synthesis strategies. A matrix of 256 spatially defined oligonucleotide probes may be generated in this manner.

4.21 PREPARATION OF NUCLEIC ACID FRAGMENTS

5

10

15

20

25

30

The nucleic acids may be obtained from any appropriate source, such as cDNAs, genomic DNA, chromosomal DNA, microdissected chromosome bands, cosmid or YAC inserts, and RNA, including mRNA without any amplification steps. For example, Sambrook et al. (1989) describes three protocols for the isolation of high molecular weight DNA from mammalian cells (p. 9.14-9.23).

DNA fragments may be prepared as clones in M13, plasmid or lambda vectors and/or prepared directly from genomic DNA or cDNA by PCR or other amplification methods. Samples may be prepared or dispensed in multiwell plates. About 100-1000 ng of DNA samples may be prepared in 2-500 ml of final volume.

The nucleic acids would then be fragmented by any of the methods known to those of skill in the art including, for example, using restriction enzymes as described at 9.24-9.28 of Sambrook et al. (1989), shearing by ultrasound and NaOH treatment.

Low pressure shearing is also appropriate, as described by Schriefer et al. (1990)

Nucleic Acids Res. 18(24) 7455-6, incorporated herein by reference). In this method, DNA
samples are passed through a small French pressure cell at a variety of low to intermediate
pressures. A lever device allows controlled application of low to intermediate pressures to
the cell. The results of these studies indicate that low-pressure shearing is a useful
alternative to sonic and enzymatic DNA fragmentation methods.

One particularly suitable way for fragmenting DNA is contemplated to be that using the two base recognition endonuclease, CviII, described by Fitzgerald et al. (1992) Nucleic Acids Res. 20(14) 3753-62. These authors described an approach for the rapid fragmentation and fractionation of DNA into particular sizes that they contemplated to be suitable for shotgum cloning and sequencing.

The restriction endonuclease CviJI normally cleaves the recognition sequence PuGCPy between the G and C to leave blunt ends. Atypical reaction conditions, which alter the specificity of this enzyme (CviJI**), yield a quasi-random distribution of DNA fragments form the small molecule pUC19 (2688 base pairs). Fitzgerald et al. (1992) quantitatively evaluated the randomness of this fragmentation strategy, using a CviJI** digest of pUC19 that was size fractionated by a rapid gel filtration method and directly ligated, without end repair, to a lac Z minus M13 cloning vector. Sequence analysis of 76 clones showed that CviJI** restricts pyGCPy and PuGCPu, in addition to PuGCPy sites, and that new sequence data is accumulated at a rate consistent with random fragmentation.

As reported in the literature, advantages of this approach compared to sonication and agarose gel fractionation include: smaller amounts of DNA are required (0.2-0.5 ug instead of 2-5 ug); and fewer steps are involved (no preligation, end repair, chemical extraction, or agarose gel electrophoresis and elution are needed

Irrespective of the manner in which the nucleic acid fragments are obtained or prepared, it is important to denature the DNA to give single stranded pieces available for hybridization. This is achieved by incubating the DNA solution for 2-5 minutes at 80-90°C. The solution is then cooled quickly to 2°C to prevent renaturation of the DNA fragments before they are contacted with the chip. Phosphate groups must also be removed from genomic DNA by methods known in the art.

4.22 PREPARATION OF DNA ARRAYS

10

15

20

25

30

Arrays may be prepared by spotting DNA samples on a support such as a nylon membrane. Spotting may be performed by using arrays of metal pins (the positions of which correspond to an array of wells in a microtiter plate) to repeated by transfer of about 20 nl of a DNA solution to a nylon membrane. By offset printing, a density of dots higher than the density of the wells is achieved. One to 25 dots may be accommodated in 1 mm², depending on the type of label used. By avoiding spotting in some preselected number of rows and columns, separate subsets (subarrays) may be formed. Samples in one subarray may be the same genomic segment of DNA (or the same gene) from different individuals, or may be different, overlapped genomic clones. Each of the subarrays may represent replica spotting of the same samples. In one example, a selected gene segment may be amplified from 64 patients. For each patient, the amplified gene segment may be in one 96-well plate

(all 96 wells containing the same sample). A plate for each of the 64 patients is prepared. By using a 96-pin device, all samples may be spotted on one 8 x 12 cm membrane. Subarrays may contain 64 samples, one from each patient. Where the 96 subarrays are identical, the dot span may be 1 mm² and there may be a 1 mm space between subarrays.

Another approach is to use membranes or plates (available from NUNC, Naperville, Illinois) which may be partitioned by physical spacers e.g. a plastic grid molded over the membrane, the grid being similar to the sort of membrane applied to the bottom of multiwell plates, or hydrophobic strips. A fixed physical spacer is not preferred for imaging by exposure to flat phosphor-storage screens or x-ray films.

The present invention is illustrated in the following examples. Upon consideration of the present disclosure, one of skill in the art will appreciate that many other embodiments and variations may be made in the scope of the present invention. Accordingly, it is intended that the broader aspects of the present invention not be limited to the disclosure of the following examples. The present invention is not to be limited in scope by the exemplified embodiments which are intended as illustrations of single aspects of the invention, and compositions and methods which are functionally equivalent are within the scope of the invention. Indeed, numerous modifications and variations in the practice of the invention are expected to occur to those skilled in the art upon consideration of the present preferred embodiments. Consequently, the only limitations which should be placed upon the scope of the invention are those which appear in the appended claims.

All references cited within the body of the instant specification are hereby incorporated by reference in their entirety.

5.0 EXAMPLES

5

10

15

20

25

30

5.1 EXAMPLE 1

Novel Nucleic Acid Sequences Obtained From Various Libraries

A plurality of novel nucleic acids were obtained from cDNA libraries prepared from various human tissues and in some cases isolated from a genomic library derived from human chromosome using standard PCR, SBH sequence signature analysis and Sanger sequencing techniques. The inserts of the library were amplified with PCR using primers specific for the vector sequences which flank the inserts. Clones from cDNA libraries were

spotted on nylon membrane filters and screened with oligonucleotide probes (e.g., 7-mers) to obtain signature sequences. The clones were clustered into groups of similar or identical sequences. Representative clones were selected for sequencing.

In some cases, the 5' sequence of the amplified inserts was then deduced using a typical Sanger sequencing protocol. PCR products were purified and subjected to fluorescent dye terminator cycle sequencing. Single pass gel sequencing was done using a 377 Applied Biosystems (ABI) sequencer to obtain the novel nucleic acid sequences. In some cases RACE (Random Amplification of cDNA Ends) was performed to further extend the sequence in the 5' direction.

10

15

20

25

30

5.2 EXAMPLE 2

Novel Contigs

The novel contigs of the invention were assembled from sequences that were obtained from a cDNA library by methods described in Example 1 above, and in some cases sequences obtained from one or more public databases. Chromatograms were base called and assembled using a software suite from University of Washington, Seattle containing three applications designated PHRED, PHRAP, and CONSED. The sequences for the resulting nucleic acid contigs are designated as SEQ ID NO: 1-739 and are provided in the attached Sequence Listing. The contigs were assembled using an EST sequence as a seed. Then a recursive algorithm was used to extend the seed EST into an extended assemblage, by pulling additional sequences from different databases (i.e., Hyseq's database containing EST sequences, dbEST version 120, gb pri 120, UniGene version 120, and Genpept 120) that belong to this assemblage. The algorithm terminated when there was no additional sequences from the above databases that would extend the assemblage. Inclusion of component sequences into the assemblage was based on a BLASTN hit to the extending assemblage with BLAST score greater than 300 and percent identity greater than 95%.

The nearest neighbor result for the assembled contig was obtained by a FASTA version 3 search against Genpept release 120, using FASTXY algorithm. FASTXY is an improved version of FASTA alignment which allows in-codon frame shifts. The nearest neighbor result showed the closest homologue for each assemblage from Genpert (and

contains the translated amino acid sequences for which the assemblage encodes). The nearest neighbor results for SEQ ID NO: 1-739 are shown in Table 2.

Tables 1, 2, and 3 follow. Table 1 shows the various tissue sources of SEQ ID NO:

1-739. Table 2 shows the nearest neighbor result for the assemblade contig. The nearest

5 neighbor result shows the closest homologue for each assemblage and contains the
translated amino acid sequences for which the assemblage encodes. Table 2 also shows
homologues with identifiable functions for SEQ ID NO: 1-739. The polypeptides were
predicted using a software program called FASTY (available from
http://fasta.bioch.virginia.edu) which selects a polypeptide based on a comparison of

10 translated novel polynucleotides to known polynucleotides (W.R. Pearson, Methods in
Enzymology, Vol. 183: pp. 63-98, (1990), herein incorporated by reference). Table 3 shows
the predicted amino acid sequence corresponding to the novel nucleic acid contig sequences.

Table 1 - Tissue Sources

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library Name	
adult brain	GIBCO	AB3001	28 46 54 62 95 117 134 175 188-189
			324 330 337 356 369 371 378 386
1			389 396 432 435-436 468 472-473
			476-477 483 486 518 538-539 543
		1	545 557 565 571 573 578 582 598
Į.			613-614 619 627 632 634 639 687
			709
adult brain	GIBCO	ABD003	5 12 46 52 57 66 79 91 97 134 144
Į.			148 150 162 164 172 175-176 181
			186 193 250 323 325-327 330 334
i .			338 362 367 369 371 378-379 386
			388-389 392 396-397 399-401 403
l			416 422 435 444 449 451 454 461
		1	463-464 468 472-473 483 486 494
			506 511 513 516 520 523-524 526
1		l	529 533 536-537 539 545 548 552
			556 558-559 562-563 565 567 569
			573-574 576 579-580 582-584 590
			593-594 598 602 606 613-614 619-
1			621 623-624 627 634 637 641 646
			648 659 675 688-689 694 696-698
			703 714 729
adult brain	Clontech	ABR001	57 162 164 227 266 316 334 356 367
			385 438 468 512 524 528 557 582
			590 621 627 631 634 689 714
adult brain	Clontech	ABR006	189 228 385 438 571 584 632 650
			677
adult brain	Clontech	ABR008	1 3 5 11-25 31-32 46-47 55-57 59

Tiesue Origin RNA Source Library Name SEQ ID NOS: Library Name 113-114 126 132 150 160 162 16 171-172 186 188-189 193 202-20 205 210-212 202 222-224 227-22 233 235-236 243-247 251-252 25 264-266 268 275 313 324 232-33 334-335 338-339 343 346-347 35 35 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 336 539-540 54 546 551-552 556-557 563 565-56	4 3 9 7 1 1 1 1 9 5 9 5 9 4
Name 61 65-67 69 75 79 91 103 108 1 113-114 126 132 150 160 162 16 171-172 186 188-189 193 202-20 206 210-212 220 222-224 227-22 233 235-236 243-247 251-252 264-266 268 275 313 324 328-33 334-335 335-336 336 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 405 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-57	4 3 9 7 1 1 1 1 9 5 9 5 9 4
61 65-67 69 75 79 91 103 108 1 113-114 126 132 150 160 162 16 171-172 186 188-189 193 202-20 206 210-212 220 222-224 227-22 233 235-236 243-247 251-252 25 264-266 268 275 313 324 328-33 334-335 338-339 343 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 423 244 437-439 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 \$2 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	4 3 9 7 1 1 1 1 9 5 9 5 9 4
113-114 126 132 150 160 162 16 171-172 186 188-189 193 202-20 206 210-212 220 222-224 227-22 233 235-236 243-247 251-252 25 264-266 268 275 313 324 328-33 334-335 338-339 343 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	4 3 9 7 1 1 1 1 9 5 9 5 9 4
171-172 186 188-189 193 202-20 206 210-212 220 222-224 227-22 233 233-236 243-247 251-252 25 264-266 268 275 313 324 328-33 334-335 338-339 343 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 422 434 437-438 442 446 488-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 \$2 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	3 9 7 1 1 1 9 6 9 5 9
206 210-212 220 222-224 227-22 232 235-226 243-247 251-252 25 264-266 268 275 313 324 328-33 334-335 338-339 333 345-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	9 7 1 1 9- 6 9 5 4
233 235-236 243-247 251-252 25 264-266 268 275 313 324 328-33 334-335 338-339 343 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 488-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 32 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	7 1 1 9- 6 9 5 9
264-266 268 275 313 324 328-33 334-335 338-339 33 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	1 1 9- 6 9 5
334-335 338-339 343 346-347 35 355 357 359-361 365 367 370-37 378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	1 9- 6 9 5
355 357 359 361 365 367 370 37 370 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437 -438 442 446 446-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	1 9- 6 9 5
378 380 382 386-389 391 396 39 400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-532-535 536 539-540 54 546 551-552 556-557 563 565-56	9- 6 9 5 9
400 402 406 413 419-420 423 42 432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 \$2 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	6 9 5 9
432 434 437-438 442 446 448-44 459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	9 5 9 4
459-460 465 468 470 472-473 47 481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	5 9 4
481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	9 4
481-483 487 489-490 495-497 49 501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	9 4
501 503-504 507-509 511 520 52 526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	4
526 528 532-533 536 539-540 54 546 551-552 556-557 563 565-56	
546 551-552 556-557 563 565-56	
584 586 590-591 593 595-597 59	
602 604 610-616 620-621 624-62	
627-628 632 634 637-638 641 64	
644 646-647 650 653-657 660-66	
668 672 675 677-678 680-681 68	
689 691 693 695-696 698 706-70	7
709 711 713-727 729 731 733-73	4
736 738-739	
adult brain Clontech ABR011 334 476 634 677	
adult brain BioChain ABR012 379 587	
adult brain Invitrogen ABR013 334 634	
adult brain Invitrogen ABT004 3 19 57 62 66 75 110 122 150 1	60
162 167 171 176 186 197 203 21	1
230 232 259 328-331 334 369 38	2
389 394 400 406 417 426 429 44	
457 472 483-484 492 511 514 52	
531 534 537 540 553 558 562 57	
580 582-584 590 604 611 613 61	
622 637 639 643-644 648 688-68	
	,
692 695	
cultured Strategene ADP001 16 37-39 66 109 120 141 144 19	
preadipo- 273 316 331 333 338 389 415 42	
cytes 442 444 464-465 475 489 501 51	
513 531 534 539-540 545-546 55	
583-584 590 596 602 607 613 61	5
619 622 629 632 634 643	
adrenal Clontech ADR002 4-5 12 48 53 57 162 164 172 18	6
gland 188 192 196 203 207 213 258 31	6
330-331 333 339 354 356-357 36	9
383 385 388 392 395 402 406 41	
415 434 454-455 465 468 473 47	
477 491 498 501 509 511 517 52	
529 532 537-539 542 545 558 56	
565 567 576-577 586 600 606 61	
621 624 627 632 634 647 653 66	U
667 683 689 696 714	

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
adult heart	GIBCO	AHR001	28 39 57 64-65 75 79 89 97-98 108
			117 134 144 157 159-160 164-166
			169 171 174 184 192-193 203 207
			220 243 256 258 266-267 281 314
			316 318 328-329 331 338-339 341
			346 348 354 356-357 366-367 369
			371 377-379 382 385-386 388 393
			395-396 399-401 403 415 420 422
			425 431-432 435-436 445 451 459
			465 472-473 477 483 486 488 490
1			496 501 503 508 515 519-520 526
			528 531 533-534 537-538 540-541
i			544 546 552 556-557 562-563 566~
			571 573 576-581 583-584 586-587
	-		594 602 606 608 611 613-615 618
			620-621 626-628 632 634 641 643
			646 648 653 659 667 676 678 687
			689 696 703-704 708 711 714 729-
			730
adult	GIBCO	AKD001	3 28-29 48 56-57 67 79 84 93 106
kidney	02000		117 134 138 140 144 156 160-164
nauno,			168-170 172 177 183 188-189 192-
	· '		193 199 203 207 235 251 257 275
			319 321-323 328-330 337 346-347
			349 354-356 360 367-369 371 375
	i	1	378-381 383-386 388-389 392 396-
			397 399 401 404 407 409 411-412
			415-416 420-422 427 432 436-437
		1	439-440 444 451-456 458-459 464-
	ł		465 468 470 472-473 477 481 483
			486-487 492 496 501 503 505-506
			508 511 513-516 518 524 526 529
			533 535 537-541 543 545-546 548
			552 557 559-560 562-563 565-569
	(572-574 576-577 579-587 589-591
	1	1	593-594 602 604-607 613-614 617-
	l		618 620-624 627-628 630 632-635
1	1	1	637-638 640-642 644-645 652 662
1	j		664 667-668 677 682 685 687 689
	l	l	694-696 698 703 716 723 728-729
			732 734
adult	Invitrogen	AKT002 ·	
kidney			353 360 367 376 378-379 386 391
1		l	402 409 423 432 449 451 477 490
1		l	494 503 526 528 531 534 538-539
1	[ĺ	541 545-546 559 566 579 584 588
1	I	l	594 602 613 621 624 632 647 652
			689
adult lung	GIBCO	ALG001	56-57 67 69 98 113 134 144 164 172
	1		191-192 270 321 328 338 369 371
		l	374 378 380 388-389 396 405 411
	1		416 424 443-444 456 473-474 482-
	I	1	483 497 508 518 529 531 534 536
	,		

Tissue RNA S	Source Hyseq	SEQ ID NOS:
Origin	Library	
Origin	Name	
	Name	540 552 556 559 563 568 573 579-
	l l	
		580 585-586 588-589 593 601-602
	l	606 612-613 618 634 662 667 685
		696 702 726 729-730
lymph node Clor	ntech ALN001	28 57 79 113 164 172 179 193 240
		325 332 367 378-379 386 388 402
		485 526 580 586 603 613-614 621-
		622 628 634 662 667 686 734
CT	BCO ALVOO1	3 24 28 54 60 117 134 137 154 160
young liver GI	.BCO MINVOI	193 196 242 273 316 328-329 334
l l		351 354 370-371 388 392 395-396
	1 '	401 406 411 415 432 435 439 448
l		454-455 477 483 486-487 495 506
	1	509 514 518 523-524 526 529 531
l i	1	534 537-538 540 544 548 566 568
	1	571 573 579 587-588 591 594 602
1 '		621 641 645 686 713 723
-3-75 14-44 7	trogen ALV002	
adult liver Invi	trogen ALV002	106 134 140 164 192 200 214 220
	l	
		232 240 242 271-272 291 313 316
1	l	328 347 349-350 353 355 357 368-
i I	1	369 371-372 378-379 381-382 385
		397 430 435 448 457 459 471-472
		475 485 487 502 505-506 511 520
		530-531 533-534 537 540-541 543
l (548 566 574-575 579 582 588 590
		612 623 640 648-649 681 687 689
	1 .	710 714
	2077000	
adult ovary Invi	trogen AOV001	
		75 79 98 127 144 154 162 164-165
		172-174 182 186 188-189 192-196
		206 213 224 234-235 241 243 248
i !		253 261 273 275 289 314 316 321-
1		322 325-327 329-331 333-334 336-
		338 340 343 345-348 354-357 367
		369 371-372 378 382 386 388 395-
1		397 399-402 404 407 411 415-416
1 1	1	419-420 425 427 429 431 435-437
1		
		441 444 451 453-459 465 468-470
1	1	472-475 481 485 490 494 496 501
1		503 509-510 513 517-518 522-524
1		526 528-529 531-534 537-542 545-
1		546 548 552 554 556-557 559-560
1 1		562-563 565 567-569 572-579 581-
		582 584-588 590-591 593-598 602-
1		604 606 611-615 618 620-623 627
1		629 631-632 635-638 643 647 652-
1		
1		654 657 659 661-662 667 674-675
		677-678 682 684 689 693 695-698
1	1	703 705-707 714 717-718 723 729
1		731 738
adult Clo	ntech APL001	. 172 224 239 363 371 392 437 531
placenta		534 622 690 696

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	-
V-1-3		Name	
placenta	Invitrogen	APL002	57 66 122 161 172 241 326 329 334
pracenca	invictogen	ALLIOUZ	369 388 407 427 429 436 459 464
			506 508 511 539 541 545 566 573
			575 590 597 637 648 690
adult	GIBCO	ASP001	28 57 65 78 93 95 117 134 156-157
spleen			172 186 188 194 214 273 314 319
			331 334 338 344 354 371 374 392
			436 457 471-473 478-479 481 483
			515 526 528-529 541 548 557 559
			563 565 569 573 585-587 603 606
1			613 615 618 621-622 627 632 634
			637 643 654 671 689 696-698 701
			712 739
testis	GIBCO	ATS001	3 67 134 160 192 235 327 329 337
			342 371 375 378 380-381 396 399
			415 431 436 441 451 472 477-478
			483 486 494 496 503 522 524 526
			531 533-534 538 541-542 546 548
		1	557 568 573 577 579 581 584 594
!			596 618 641 658 662 689 700 714
			729-730
adult	Invitrogen	BLD001	28 57 112 161 164 172 192 194 250
bladder	Invictogen	DEBUGE	334 354 370 397 404 487 513 526
Diaddel	ŀ	Ì	531 534 545 572 599 602 620 634
	ļ		651 659 672 689 713 725
bone marrow	Clontech	BMD001	10-11 28 31 54 57 62 75 78-83 88
Done marrow	CIONLECII	PMDOOT	131-133 135-137 141-143 157 159
			164 171-173 176-177 187-189 192
1		1	195 200 202 205 207 218 225 282
1		ì	314-318 325 330 334-335 337 346-
	1	}	348 367 369 372 378 383 386 388
	l		395 401 405 412-413 416 422 436
	l	l	
Į.	l	l	442-443 447 449 455 465 472 475
1	1		477 503 516 523 528-529 533-534
		l	539 545 551 556 559 563 565-567
		1	571 573-574 576 579-586 594 601-
	ł	•	602 606 613 620-623 628-629 634
1	1		638 642-643 646 656 659 666 686
		l	689 691 696 698-699 703 705 714
L		L	720 726 729
bone marrow	Clontech	BMD002	2 15 23 35 49 54 57 59 78 81 114
1	1	1	156-157 164 171-172 189-190 202
	1	1	223 240 325 334 346 357 367 379
	1	1	381-382 388 397 412 454 465 482
		1	490 509 516 526 535 537 563 566
	Į.	Į.	579 595 600 638 640-641 654-655
			676 689 714
adult colon	Invitrogen	CLN001	48. 79 94 138 162 167 189 333 368-
		1	369 375 386 404 409 414 435-436
1	1	1	455 470 525 541 548 553 567 603
	I	I	634 656 659 689 694 721
adult	BioChain	CVX001	3 28 35 54 57 79 83 95 97 113 117
cervix			154 162 164 172 176 220 235 248-
			

Tissue	I DAYA COMME	1	
Origin	RNA Source	Hyseq	SEQ ID NOS:
Origin	1	Library	
		Name	
	1		249 321 327 329 333 338 346 348
	1	ŀ	354 356 362 367-368 371 374-375
1	1	1	378-379 386 388-389 395 401-402
	1	ł	404 407 420 429 431 437 443 451
1	l .	1	459 468 475 477 479 483 485 490
	J	1	493-494 496 506 508 511 517 526
			528 531 534 544 550 552 559 566
	1		520 551 534 544 550 552 559 566
	1	l .	569 571-573 575-576 581-583 588
	İ]	590 593-594 604 606 614 622 628
	1		631-635 639 661-662 675 689 692
endothelial			695 715 718 738
	Strategene	EDT001	3 28 31 39 54 58 65-66 79 89 144
cells		l	160 173 187 189 191 193 197-199
	l .	i	207 220 230 267 273 314 324 326
1	1	ĺ	329-331 336 347 354 369 372 378-
1	I	1	379 384 386 388 391-394 396-397
1	1	1	399 401 407 420 422 429 431-432
1	1		435-437 444 449 451 455 459 465
			472 474-475 481-482 486 490 499-
1	1	ľ	501 503 506 511 513 515-517 520
Į.			501 503 506 511 513 515-517 520
	ļ		522-524 528 531-534 538-539 541
			545-546 548 550 552 557 559-560
1			563 565 567 569 571 573 577 579-
			580 583-584 587-590 593-594 596-
ļ			597 599 602 611 614-615 618 620-
			621 624 630 632-634 637-638 642-
	ĺ		643 647-648 651 675 677 680 682
			694 696-698 703 708 714 719 724-
			725 728-730 734
Genomic	Genomic	EPM001	38 41-45 118-121 164 198 292-312
clones from	DNA from		
the short	Genetic		
arm of	Research		
chromosome			
8			
Genomic	Genomic	EPM003	12 161 000
clones from	DNA from	EPM003	43 164 295
the short			
arm of	Genetic		
	Research		
chromosome	1		
8			
Genomic	Genomic	EPM004	121 164 306 482
clones from	DNA from		
the short	Genetic	1	
arm of	Research		į.
chromosome		- 1	j
8	[ı	1
Genomic	Genomic	Piparooc	
clones from		EPM006	293
	DNA from	I	
the short	Genetic	ſ	1
arm of	Research	1	
chromosome		- 1	
8		ļ	

	RNA Source	Hyseq	SEO ID NOS:
Origin		Library	_
		Name	
esophagus	BioChain	ES0002	513 526
fetal brain	Clontech	FBR001	57 468 563 634
fetal brain	Clontech	FBR004	162 186 254 265 491 582
fetal brain	Clontech	FBR006	1-2 5-6 11-12 22-23 49 57 62 73 94
Lecui Diain	CIONICCCI	LDKOOO	103 114 162 164 172 189 193 203
			218 240 244 251-252 259 279 330-
			331 334-335 346-347 351 367 378
	l		386 388-389 399 413 420 422 424
	İ		434 442 444 448 465 468 470 472-
	1		473 490 496 501 503-504 511 520
			524 528 532-533 539 544-546 548
			551 553 563 571 573 576 587 591
		İ	601 613 615-616 620-621 628 634
			641 644 648 653 657 662 672-673
			689 691 698 706 714 718 725-728
	1	i .	733 735-739
fetal brain	Clontech	FBRs03	444 587
fetal brain	Invitrogen	FBT002	17 66 157 162 164 186 190 193 250
recar brain	invitiogen	FB1002	270 324 331 334-335 338 346 354-
			355 374 382 389-390 426 429-430
			437 442 453 467 471 475 481 485
			491 507-508 513-514 526 528 532
			540 544 548 550 552-553 557-558
1			563 565-566 590 593 602 612 615
			637 641 648 654 662 672 676 692
			703
fetal heart	Invitrogen	FHR001	57 75 164 547
fetal	Clontech	FKD001	57 164 172 179 188 194 208 218 230
kidney	Caoncech	FREGUE	240 250 330 334 369 388 401 413
xxuney	i		439 454 465 529 546 550 573 576
		ŀ	581 583 594-596 602 634 648 667
	I .		676 689 698 706
1	1		
feral	Clontech	EKD003	
fetal kidnev	Clontech	FKD002	2 560
kidney			2 560
kidney fetal	Clontech	FKD002	
kidney fetal kidney	Invitrogen	FKD007	2 560 565 596-597
kidney fetal			2 560
kidney fetal kidney fetal lung	Invitrogen	FKD007	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689
kidney fetal kidney	Invitrogen	FKD007	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283
kidney fetal kidney fetal lung	Invitrogen	FKD007	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428
kidney fetal kidney fetal lung	Invitrogen	FKD007	2 550 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531
kidney fetal kidney fetal lung	Invitrogen	FKD007	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 189 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631
kidney fetal kidney fetal lung fetal lung	Invitrogen	FKD007	2 550 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531
kidney fetal kidney fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716
kidney fetal kidney fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FKD007 FLG001 FLG003	2 550 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 187 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 372 2-3 5 26 29 31 35 48 54-58 60 62
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92
kidney fetal kidney fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 550 565 596-597 75 164 355 386 428 455 513 524 528 631 639 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 69 89-80 104 1147 12-130 138 140
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-435 679 505 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 96 98-100 104 117 122-130 138 140 144-158 160 162 164 172-173 185-
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 550 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 652 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 99-80 104 117 12-130 138 140 144-158 160 162 164 172-173 185-186 188-189 192-194 196 199-200
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-435 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 96 98-100 104 117 122-130 138 140 144-158 160 162 164 172-173 185-186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-436 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 652 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 69 89-100 104 117 122-130 138 140 144-158 160 162 164 172-173 185-186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269 273 280 282 314-316 318-322 324
kidney fetal kidney fetal lung fetal lung fetal lung fetal lung fetal lung	Invitrogen Clontech Invitrogen Clontech Columbia	FLG003 FLG004	2 560 565 596-597 75 164 355 386 428 455 513 524 528 631 689 30 157 162 169 188 243 253 256 283 330 392 400-401 404 407 424 428 435-435 479 506 508 520 530-531 534 572 578 584 602 611 613 631 654 658 662 676 689 701 716 371 2-3 5 26 29 31 35 48 54-58 60 62 65 67 70 74-77 79-80 84-87 89 92 96 98-100 104 117 122-130 138 140 144-158 160 162 164 172-173 185-186 188-189 192-194 196 199-200 207 214 218-219 237-238 241 269

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin	Idili Dodinoc	Library	5-X -5 -105 .
Origin		Name	
		Ivetille	373 375 377-380 382-383 385-386
			388 394-396 399 402 409 411-412
			418 420-422 424 427 431 435-437
i			440 442 448-451 453 455 459 461
			464-465 470 472-473 475 477-478
			480-485 488-490 501 503 505-506
			509 511-513 515-518 520 522-524
			526-534 538-539 541 543-547 549-
			550 552-553 556-557 559-564 566-
			567 569 571 573 576 578-580 582-
			587 589 591-594 596-597 599-600
1		ĺ	
			602 611-615 618 620-625 627-628
		ĺ	631-636 638 641-642 646 648 651
			659-660 662-664 667-668 675-678
	,	ļ	680-681 684 689-690 696-698 709
1			714 723 738
fetal	Columbia	FLS002	15 31-32 39-40 47-49 52 56 60 65
liver-	University	FLSUUZ	69 72 75 78 84 97-98 100 104 115
	ourversicy	l *	
spleen		1	123 138 140 144 146 152-153 157
			161 164 172-173 182 188 194 196
			199 220 241-242 246 249 253 255
		!	266 273-275 280-281 288-291 314-
	1		316 318-319 321-322 324 329-331
			336-339 343 347-350 353-354 357-
			358 363 367 369-370 372 374 378-
		ļ	380 382-383 386 388-389 393-397
	i	l	399 405 407 409-410 412 421 424
		ĺ	432 435 439 448 450-451 453-457
1			459 461 464-465 470 472-475 477
		l	479-481 483 485 488 490 497 501
		1	503 506 509 511-513 516-518 520
1		1	524 527-528 531-532 534 539 541-
			546 556 559-560 565-566 569 571
			574 576 579 582-586 588 590 597-
			599 602-604 606 615 618 620-621
			623 625 627 632-634 639 641 644
	1	1	648 666-668 675-676 681 684 689-
			690 696-697 701 703 714 719 723
			734-735
fetal	Columbia	FLS003	60 79 157 190 690
liver-	University	1	
spleen		1	
fetal liver	Invitrogen	FLV001	3 27 35 48 50 56-57 66 75 92 94
1	1	1	105 157 161 164 176 189 209 220
1	1		243 272 324 328 333 335 353 369-
			370 381 392 396 429-430 435 439-
1	1	1	
			440 442 444 465 471 483 487 502
	1	1	506 513-514 519 534-535 537 548
1	1	l	554 566 568 576-577 580 582 590
			613 621 645 648-649 689
fetal liver	Clontech	FLV002	343
fetal	Invitrogen	FMS001	51 79 97 108-110 166 194 196 266
muscle			341 352 380 389 402 407 444 464
muscre	1		341 332 300 303 NOZ NOZ NOZ NOZ

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	_
02030		Name	
			475 501 513 524 546 552 554 560
			570 572 598 605 628 634 649 675
			703-704 714 737
8		FMS002	524
fetal	Invitrogen	PMS002	524
muscle			
fetal skin	Invitrogen	FSK001	31 33 35 48 57 63 67 75 112-114
			117 157 162 164 172 178 180 188
			196 220 243 254 319 324 328 330
			333-334 367 369 371 375 379-383
			386 388-389 400 404 407 412 419-
			420 429 444 455 472-473 491 499
			503 508 511 514 517 522-524 529
			531 534 537 540 542 547 552 554
		l	556-557 560 563 565 567 571-572
			574 576 579 590 596 599 616 621
			625 627 631-632 634 639-640 648
			653-654 662 689 708 714
fetal skin	Invitrogen	FSK002	501 537
fetal	BioChain	FSP001	465 729
spleen	BIOCHAIN	151001	1 403 723
umbilical	BioChain	FUC001	27-28 35 57 68 83 105 136 157 159-
cord	BIOCHAIN	FOCUUT	160 164 188 191 225 279 315-316
cora			321 328 334 363 367 369 378-379
1	1	l	
		1	383 386 388-389 392 397 406-407
		i	413 415-416 427 440 449 455 458
		1	461 464-465 468 473-475 479 485-
			486 488 490 496 514 517 522 524
			526 528-529 531 533-534 538 540
i .			546 550 552 556-558 572 582 584-
			585 587-588 594-597 602 606 613
			616 618-619 631 634 637 651 689
			696 698 706 729
fetal brain	GIBCO	HFB001	3 5 22 26 46 53 66 73 94 117 134
			139 164 172-173 188-189 212 215
			230-231 248 251 262 288-289 316
			325 329-331 334 337-338 348 352
		1	365-367 369 371 377-379 385-386
٠.,			388 392 394 396 400 403 420 422
			429 437 444-446 449 451 455 459
			461-463 466-468 472-473 475 477
1	1		481 483 485-486 488 490-491 496
		1	503-504 506 513 523-524 529 532-
			533 539-541 545 548 550 552 557-
1		1	560 563 565-566 569 571 576-577
			579-580 583-584 586 590 593-594
1		1	596-599 601-602 604 606 611 613
1		1	
			615 618 621-623 627-628 634-635
		1	637 641 643 647 662 664-665 667
		L	675 677 680 689 695-697 703 726
macrophage	Invitrogen	HMP001	97 518 532 569
infant	Columbia	IB2002	28 46 56-57 59 67 75 78 109 117
brain	University	1	122 129 144 157 162 164-165 172
		ı	176 180 190 193 212 220 226 236-
<u> </u>			

Tissue	RNA Source	Hyseq	SEO ID NOS:
Origin		Library	
02.292	1	Name	
			237 251 261-262 316 318 324 328-
			330 334-335 337 340 354-356 361
			364-365 367 369 371-373 377-380
			382 385-386 389 392 395 397 400
			411 416 421-422 429 432 436 438
			444 448 451 456 464-465 469 471-
			475 484 486 496 504-506 511 520
			524 526 529 531 533-534 537-540
			544-546 548 553 556 558 562 565
			567 576 579-580 582 584 586 589-
			590 593 597-598 602 613-614 618
			620-621 627-628 632 634 636 641
			650 654 659 662 667 683 689 721
			730
infant	Columbia	IB2003	46 54 75 109 156 164 220 244 251
brain	University		314 324-325 331 335 340 361-362
			367 369 377-379 400 408 438 442
1] .		456 460 464 469 472 496 506 523-
			524 526 529 538 540 544-545 547
			558 560-562 565 567 569 579 584
			598 602 613 615 621 627 632 634
			637 639 650 738
infant	Columbia	IBM002	262 340 432 436 438 472 531 534
brain	University		569 613 634
infant	Columbia	IBS001	162 231 283 331 369 385 438 444
brain	University		472 506 513 523 531 534 580 615
	_		636 689
lung,	Strategene	LFB001	28 54 57 65 172 188 233 321 331
fibroblast			340 347 367 369 378-379 388 401
			451 459 475 479 503 511 522 524
			532 534 559-560 573 580 583 587
1	l		597 615 632 634 638 686 689 708
lung tumor	Invitrogen	LGT002	3 7 21 24 26 28 31 54 56-57 62-63
			66 92-93 101 109 112 162 164 171-
			172 176 183 188-189 192-193 196
			201-202 223 230 235 259 273-274
		1	316 321 329-331 333-334 338 345
	1	1	347-348 356 367 369 371-372 378-
			379 381-382 386 388-390 396 399-
		l	404 406 409 416 424-425 427 429
1	1	1	432 436-437 439 451 455-456 459
		1	464-465 467 473 475 484-486 490
1		l	499 502-503 506 508 511 513-514
		1	517-518 522 524 526 528 531-532
1		l	534-535 538-539 541 543-546 553
1		i	557-559 563 567-568 571 573 575-
i	1	l	576 579-580 585-588 590-591 593-
		l	594 598 601-604 609 611-613 615
1		1	621 627-628 631-632 636-637 645
			648 651-652 654 662 667 672 677
1	1	1	681 683 689 698 701-702 714 718
		1	724 726 729 734
lymphocytes	ATCC	LPC001	4 31-32 35 57 65-66 70 110 116 156

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
		Name	
			162 164 230 243 250 282 287 326
			328-330 334 336 346-347 359 378
			386 388 397 407 414 416 419 472
			497 520 525 539 545 549 551 582
			590 606 615 618 621 631 634 686
			692 698 701 714
leukocyte	GIBCO	LUC001	4 7 9-11 23 28 31 35 39 54 65 75-
			76 79 90 97 110 117 134 152 157
			159 162 164-167 171 173 176 188
			193 199 204 207 220 244 253 255
			314 316 318 321 324 326 329-330
			337-339 346-347 352 354 356 367
			369 371 378-379 382 388-389 392
			396-397 400-402 405 415-416 420
			422 429 432 435-436 443-444 449
			454-455 457-459 465 479 481-486
			491 497 501 503-504 506 508 511
		1	514 516 520 523-525 529 532-533 535 538-539 545 548 552-554 556
			559-560 562-563 565-566 569 571-
			573 576 579 581 585-587 590 593-
			594 598 600-602 604 606-609 613-
			614 618 620-622 624 627 630 632-
			634 636 638 643 645 660-662 667
			678 682 684 686 689 691 693 696-
			698 714 726
leukocyte	Clontech	LUC003	11 54 97 152 164 330 479 546 564-
I contocy co	CIONICON	20000	565 593 613 627 634 646 696 729
melanoma	Clontech	MEL004	2 57 67 79 164 171-173 188 193 196
from cell			232 321 337 341 346 367 379-380
line ATCC			388 407 427 454 472 477 482 501
#CRL 1424		ļ	520 539 545 552 556 579 588 593
		l	598 611 621 631 648 665 714 730
mammary	Invitrogen	MMG001	3 20-21 29 31 54 56-57 63-66 79 94
gland			109 112-113 117 122 125 138 141
1 ,		l	154 160 162 164 172 176 186 189
			192 204 214 220-221 232 238 251
			255 257 273 276-278 324 326 328-
			331 333 335 337 341-343 347 354-
1		l	355 357 367-371 374-375 379 382-
			386 388-392 397 399-400 404 406-
1		1	408 410-411 425 431 435-436 444
		l	451 455 457 459 461 464-465 470-
	1	l	471 475 479 483 485 487-488 491
	1	l	501 506-508 511 513-519 523-524
	1	l	526 529 531-532 534-535 537 539-
	1	l	540 542-545 552-554 557-560 563
			56,6 569 572 577 580 584 587-588
1		l	590 597-598 602 604-605 609 611
1	1	1	613 615 624 627 631-634 637 639-
		1	640 643 648-649 654 664 669-670
	l	1	672-673 676-679 681 689 691-695
I	1	1	697-698 706 714 731 734 737
			·

Origin Library Name Name	Tissue	RNA Source	Hyseq	SEQ ID NOS:
Induced neuron cells	Origin			-
Sol \$24 \$28 - \$29 \$39 \$42 \$45 \$60 Tetinoid acid induced acid induced neuronal cells Strategene acid induced Strategene acid Strategene acid				
cells ST1 579 582 595 602 620 637 654 Fetinoid acid induced neuronal cells Strategene NTR001 S24 584 693 cells Strategene NTR001 S24 584 693 cells Strategene NTR001 36-38 120 204 331 351 354 357 386 388 399 411 442 459 516 533 539 545 565 586 606 615 622 637-638 642 646 648 714 730 Placenta Clontech PLA003 503 579 630 PRT001 15 40 65 164 187 207 229 337 348 367 375 377-378 395 406 416 428 458 468 476 511 524 526 531 534 538 555 559 563 576 584 597 613 622 624 631 642 667 672 677 684 724 734 Fetum Invitrogen REC001 57 67 164 260 331 343 370-371 380 382 384 404 409 436 444 475 485 498 513 524 526 540 542 552 554 581 615 619 624 627 634 654 659 671 689 714 Salivary Clontech SAL001 21 84 106-107 152 179 238 246 255 584 615 619 624 627 634 654 659 68kin ATCC SFB002 Fibroblast Skin ATCC SFB002 Fibroblast Skin ATCC SFB002 Skin ATCC SFB003 Skletal Clontech SIN001 35 766 11 164 172 327 363 343 362 367 379 388 397 401 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 402 417 429 433 436 496 526 528 534 566 567 570 582 584 590 606 628 631 632 687 795 582 590 606 628 631 632 687 795 582 590 606 638 399 411 442 459 516 528 638 399 411 442 459 516 533 539 582 563 566 615 622 626 325 584 566 567 570 591 573 574 589 584 565 570 571 573 -574 589 606 628 634 636 652 689 703 738 584 565 586 666 615 622 632 53 685 686 686 686 686 686 686 686 686 686	induced	Strategene	NTD001	
Strategene NTR001 S24 584 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 S24 693 693 693 S24 693 693 693 693 693 693 693 693 693 693				
Strategene NTR001 524 584 693 Strategene NTR001 S24 584 693 Strategene NTR001 S24 584 693 Strategene NTR001 S25 586 606 615 624 637 638 639 9411 442 459 516 533 539 642 565 586 606 615 624 637 638 642 546 648 714 730 S25 585 606 615 624 637 638 642 546 648 714 730 S25 585 606 615 624 637 638 642 546 648 714 730 S25 585 606 615 624 637 638 642 546 648 714 730 S25 585 606 615 624 637 638 642 546 648 714 730 S25 585 606 615 624 637 638 642 546 648 714 730 S25 585 585 586 586 606 615 624 637 638 648 648 648 714 730 S25 585 585 585 585 585 585 585 585 585 5	cells			
acid induced induced induced cells Strategene c	L			
induced neuronal cells cells Strategene colls		Strategene	NTR001	524 584 693
Neuronal cells				
cells New York neuronal colls Strategene NTU001 36-38 120 204 331 351 354 357 386 388 399 411 442 459 516 533 539 545 565 586 606 615 621 637-638 642 646 648 714 730 placenta Clontech PLA003 503 579 690 prostate Clontech PRT001 15 40 65 164 187 207 229 337 348 367 375 377-378 395 406 416 428 436 526 531 534 538 555 559 563 576 584 597 613 524 564 597 613 522 664 631 642 667 672 677 684 724 734 rectum Invitrogen REC001 57 67 164 260 331 343 370-371 380 382 384 404 409 436 444 478 485 498 513 524 526 540 542 552 554 581 615 619 624 627 634 654 659 671 689 714 salivary Clontech SAL001 21 84 106-107 152 179 238 246 255 545 571 651 573 573 737 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 570-571 573-574 589 606 628 634 636 652 689 703 738 skin ATCC SFB002 192 skin ATCC SFB003 464 fibroblast SIN001 57 66 71 98 116 150 164 172 327 33 590 606 625 689 703 738 skin ATCC SFB003 464 fibroblast SIN001 57 66 71 98 116 150 164 172 327 333 590 602 620 631 634 667 678 711 378 395 606 625 629 533 534 646 667 678 711 379 388 397 401 402 417 429 433 434 436 495 526 528 533 590 606 620 620 631 634 667 678 711 504 678 71 500 606 62			ĺ	
Reutronal calls				
Cells		Strategene	NTU001	36-38 120 204 331 351 354 357 386
Descente		Dozusegene		
Dacenta Clontech PLA003 503 579 690				545 565 586 606 615 621 637-638
PRT001				642 646 648 714 730
Selection	placenta			
## AFC SFB003 AFC SFB004 AFC SFB005 AFC SFB005 AFC SFB AFC AFC SFB AFC SFB AFC SFB AFC SFB AFC SFB AFC	prostate	Clontech	PRT001	
Salvary Clontech SAL001 21 84 106-107 152 179 238 246 255 263 164 267 676 84 178 188 186 186 186 186 186 186 186 186 18	1			
rectum Invitrogen REC001 75 f6 71 74 14 14 14 154 175 193 199 215 -216 325 334 337 69 602 616 628 631 738 85 640 641 41 41 144 164 175 193 199 215 -216 326 334 646 658 629 640 640 640 640 640 640 640 640 640 640				
rectum				
RECOUN	i_			
Salivary Clontech SAL001 21 84 106-107 152 179 238 246 255 545	· · · · · · · · · · · · · · · · · · ·	Turri t magran	PECO01	
Salivary Clontech SAL001 21.84 106-107 152 179 238 246 255 544 659 671 689 714 689 714 716 715 719 238 246 255 273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 541 548 555 570-571 573-574 588 506 622 634 636 652 689 703 738 7	rectum	Inviciogen	RECOUL	
Selicity Selicity				
salivary gland Clontech gland SAL001 21 84 106-107 152 179 238 246 255 273 287 371 378 383 401 407 420 455 475 477 509 512 515 521 541 548 565 570-571 573-574 589 606 628 634 636 652 689 703 738 skin hir clontech gland ATCC SFB002 192 fibroblast ATCC SFB003 464 skin clontech gland ATCC SFB003 464 skin clontech gland ATCC SFB003 464 skin clontech gland SIN001 36 67 67 198 116 150 164 172 327 136 337 338 397 401-402 417 429 433 436 496 526 528 333 530 602 620 631 634 667 678 711. skeletal muscle SKM001 35 766 101 164 172 256 266 325 137 38 549 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 spinal cord Clontech gland SPC001 10 54 57 66 75 100 102 114 144 164 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 689 689 691 693 695 adult gland Clontech gland SPLc01 478 572				
Skin				671 689 714
## AFCC SFB002 192 ## Skin ATCC SFB003 464 655 657	salivary	Clontech	SAL001	
Skin	gland			
Skin			ŀ	
skin fibroblast skin ATCC fibroblast small SFB003 complex 464 complex cibroblast small Clontech intestine SIN001 complex 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401- 402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711. skeletal muscle Clontech muscle SKM001 complex 3 57 66 101 164 172 256 266 325 579 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 spinal cord Clontech Clontech complex SPC001 complex 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 343 431 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 adult spleen Clontech spleen SPLc01 478 572 478 572			ŧ	
fibroolast King ATCC SPB003 464 fibroolast SIN001 57 66 71 98 116 150 164 172 327 336 343 362 367 379 388 397 401-402 417 429 433 436 495 526 528 533 590 602 620 631 634 667 678 711 skeletal muscle Clontech SKM001 3 57 66 101 164 172 256 266 325 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 spinal cord Clontech Clontech 105 520 11 628 631 738 590 506 611 628 631 738 590 506 611 628 631 738 606 421-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 616 632 634 642 644 648 659 688-689 619 639 695		1		
skin ATCC SFB003 464 fibroblast Small Clontech SIN001 7 66 71 98 116 150 164 172 327 intestine Clontech 336 343 362 367 379 388 397 401-402 417 429 433 436 496 526 528 six special content SKeletal 57 66 71 98 116 150 164 172 257 265 252 six special content SKM001 3 57 66 101 164 172 256 266 125 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 582 584 590 606 611 628 631 738 58 513 736 139 215-216 325 334 343 464 8pinal cord Clontech SPC001 10 54 57 66 75 100 102 114 144 164 475 193 199 215-216 325 334 313 414 142 144 144 144 144 144 144 144 144		AICC	SFB002	1 192
### STROOL STROOL S		ATCC	GEBUU3	464
small Clontech SIN001 57 66 71 98 116 150 164 172 327 intestine 36 343 362 367 379 388 397 401-402 417 429 433 436 496 526 528 533 590 602 620 631 634 667 678 711. skeletal Clontech SKM001 3 57 66 101 164 172 256 266 325 548 549 548 548 548 548 548 548 548 548 548 548		Aicc	512003	1 202
Skeletal Clontech SKM001 379 385 436 436 526 528 538 539 626 620 631 634 667 678 711 .		Clontech	SIN001	57 66 71 98 116 150 164 172 327
Skeletal Clontech SEM001 3 57 66 101 164 172 25c 266 235 379 368 149 468 465 487 518 552 554 566-567 570 582 584 590 606 Spinal cord Clontech SPC001 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 419 429 466 470 486 518 526 529 531 534 574 579 589 587 590 604 620-621 631-632 631 632 634 642 644 648 659 688-689 691 693 695 SPL001 478 572 SPL001 SPL001 478 572 SPL001 SPL00				
Name		1		402 417 429 433 436 496 526 528
skeletal muscle Clontech muscle SKM001 3 57 66 101 164 172 256 266 225 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 spinal cord Clontech Clontech Clontech Clontech Clontech Clontech Clontech Clontech Clontech SPL001 SPC001 3 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 adult Spleen Clontech SPL001 SPL001 478 572 478 572				533 590 602 620 631 634 667 678
muscle 379 385 449 468 485 487 518 552 554 566-567 570 582 584 590 606 611 628 631 738 8 spinal cord Clontech 5FC001 10 54 57 66 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 695 698-689 691 693 695				
Spinal cord Clontech SPC001 10 54 57 66 75 10 582 584 590 606		Clontech	SKM001	
spinal cord Clontech SPLcol 478 572 Clontech SPC001 478 572 SPC001 478 576 75 100 102 114 144 164 175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 Clontech SPLcol 478 572	muscle			
spinal cord Clontech SPC001 10 54 57 66 75 100 102 114 144 164 164 175 193 192 215-216 325 334 316 37 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 adult Clontech spleen SPLc01 478 572				
175 193 199 215-216 325 334 337 367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 adult Clontech SPLc01 478 572 spleen				
367 370 380 385-386 406 411-413 419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 adult Clontech SPLc01 478 572	spinar cord	Ciontech	SPCOOL	
419 429 466 470 486 518 526 529 531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 689 689 691 693 695 689 691 693 695 689 691 693 695				
531 534 574 579 585 587 590 604 620-621 631-632 634 642 644 648 659 688-689 691 693 695 695 695 695 695 695 695 695 695 695 695		1		
620-621 631-632 634 642 644 648 659 688-689 691 693 695 88-689 691 693 695 891 693 695 891 693 695 891 693 695 891 693 695 891 693 695 891 693 695 891 693 695 891 693 695 695 695 695 695 695 695 695 695 695		1		
659 688-689 691 693 695 adult Clontech SPLc01 478 572 spleen				
spleen				
	adult	Clontech	SPLc01	478 572
1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	spleen			
stomach Ciontech ST0001 26 90 164 218 358 369 386 468 475	stomach	Clontech	ST0001	26 90 164 218 358 369 386 468 475

Tissue	RNA Source	Hyseq	SEQ ID NOS:
Origin		Library	
=	l	Name	
			485 526 532 569 576 579 581 586
			603 631 634 677 682 689
thalamus	Clontech	THA002	17 31 57 66 109 127 164 217-218
			262 315-316 324 330 357 369 386
			388 400 406 435 456 459 464 468-
	,		469 515-516 537 540-541 556 566
			574 590 611 622 631 634 644 648
			656 677-678 680
thymus	Clontech	THM001	6 15 26 54 79 164 172 187 193 201
	,		264 291 315 329 331 351 356 367
			397-398 401 407 412 424 427 429
			435-436 443 451 474 478 482 549
			563 565 567 569 576 578 581-582
			610 615 621 631-632 634 648 662
Alternation .	Clontech	THMc02	667 669 679 689 693 696 3-6 8 11 16 18 34 58-59 67 132 149
thymus	Clontech	THMC02	162 164 167 172-173 186 188-189
	I		193 200 203 216 223 232 239 255
			263 265 319-320 331 333-334 355
			359 370 373 377-380 382 387-390
		1	393 395 398-399 402 404 408 420
			427 434 436 467 475-476 503 508
			518 524 526 532 540 560 563 565
			571-572 576-577 579 582 598 601
	i	l	603 612-613 615 621 627 632 634
	1		639 641 648 651 657 659 662 672
			677-678 684-686 689 696 699 706
			714-716 722 726-729 732
thyroid	Clontech	THR001	5 29-30 40 54 57 66 72 79 117 144
gland	1		160 164 166 170 172 176 183 188-
			189 208-209 219 230 285-286 314
			318 327 331 335 338 344 347 354
			363 367 375 377-380 382 384-386
	i	ł	388 393 397 399 401-403 419 422
	i		429 436 442 444 451 456 458-461
			464 467-468 470 472-473 476-477
			481 488 494 503 508-509 511 516
		ĺ	519-521 524 528-529 533 537-538
			543 548 557 559-560 563 565-566 571-574 576 582 585 587 590-591
		l	593-594 596-597 606 614-615 620-
	i	1	621 623-624 627 631-634 640 650-
	1		651 653 662 667 669-670 675 679
	1		689 708 712 714
trachea	Clontech	TRC001	156 164 171 240 375 378 390 400
CLUCION	Cacineteen	1	422 468 484 565 574 581 585 587
	1		631 654 689 714
uterus	Clontech	UTR001	65. 77 79 101 164 220 367 369 451
400140	0		468 526 530 533 548 554 559 562
	J		568 573 582 594 637 648 689
		<u> </u>	

Table 2 - Nearest Neighbor Results

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	opoulos		-	Identity
NO:	NO:	No.			Water	
140.	in.	1			man	
	USSN				Score	
	09/48	i i			00010	
1	1,000	75000	Mus musculus	secretory	567	85
1	1000	gi70214 84	Mus muscurus	carrier	367	65
	l	84		membrane		
	1			protein 4		
						100
2	10017	R06463	Homo sapiens	Derived	848	100
				protein of	,	
	1	1		clone ICA13	l	
				(ATCC 40553).		
3	10020	gi10659	Caenorhab-	similar to	325	36
	1	67	ditis elegans	other protein	l]
	1			phosphatases	l	
	1			1, 2A and 2B		
4	10024	G03460	Homo sapiens	Human	439	98
		1	· -	secreted		
	1 '	1		protein,	1	
5	10032	Y12505	Homo sapiens	Human 5' EST	136	87
			-	secreted	1	1
	i .	1		protein		
6	10042	Y29511	Homo sapiens	Human lung	701	100
	10012	123322	nome capacite	tumour protein		
	1			SAL-25 1st	1	
		1		predicted	1	1
	1	ı		amino acid	i	
		1		sequence.		1
7	1006	Y92324	Homo sapiens	Human alpha-	763	100
,	1 1000	172324	nomo bupiemo	2-delta-D		
	l .			polypeptide	1	
	1			from splice		
	1			variant 1.	Į.	
	1	L		Gab2	425	58
8	10064	gi45893	Homo sapiens	Gab2	425	20
		75			252	75
9	1007	gi70183	Homo sapiens		151	/5
	1	98			1005	
10	1008	g189606	Homo sapiens	protein that	1226	99
		5		is immuno-		
1		1	1	reactive with	1	1
				anti-PTH		
1	1			polyclonal		
1	1			antibodies	L	l
11	10088	gi37792	Homo sapiens	Metallo-	1512	98
		44		protease 1		
12	10089	gi29472	Homo sapiens	membrane	523	100
	1	32	1	associated		
1		1	l .	guanylate		1
1	1		1	kinase 2	1	
13	10091	gi33478	Mus musculus	cAMP-specific	223	54
1	1	63	1	cyclic		
				1	J	

Identify	tity
NO: NO:	00
In	
USSN Score	
09/48 8,725	
14 10098 gi69793 Homo sapiens cysteine-rich 1068 1 1 1 1 1 1 1 1 1	
Nuclectide phosphodi- esterase PDE8; MMPDE8	
phosphodi	
Sterase PDE8; MMPDE8	
MMDDE8	
14 10098 gi69793 Homo sapiens cysteine-rich 1068 1 repeat-containing protein S52 precursor	
11 repeat- containing protein S52 precursor 15 10102 G01395 Homo sapiens Human secreted protein, 16 10103 gi85473 Rattus casein kinase 293 3 norvegicus 1 gamma 1	
	18
protein S52 precursor	8
	8
15 10102 G01395 Homo sapiens Human 297 8 Secreted protein,	8
	, ,
protein, 16 10103 gi85473 Rattus casein kinase 293 6 3 norvegicus 1 gamma 1	
16 10103 gi85473 Rattus casein kinase 293 8 norvegicus 1 gamma 1	
3 norvegicus 1 gamma 1	34
	1.4
lisoform	
	00
17 10104 Y60017 Homo sapiens Human 154 1 endometrium	00
tumour EST	
encoded	
protein 77.	
	97
secreted	
protein, 19 10110 gi72922 Drosophila CG1271 gene 208	
19 10110 gi72922 Drosophila CG1271 gene 208 4	16
	39
20 10111 g145123 Rattus 822 8	, ,
dependent	
protein kinase	
kinase alpha,	
CaM-kinase	
kinase alpha	
	97
21 10113 141694 Nome Sapiens Ruman FR0362 033	.,
sequence.	
	9
5 norvegicus binding	
protein	
	37
23 10116 gillezse Bos caulus endozepines 337	
protein	
process	
	00
43 familiaris protein	
	.00
25 10126 199420 Hollo Saptens Hullan PRO1486 607 1	00
acid sequence	
26 1013 g180475 Homo sapiens process 614 tyrosine	73
cyrosine	73

D	SEO	SEO	Acces-	Species	Description	Smith	8
In USSN 09/48 8,725	ID	ID	sion	-	_	-	Identity
USSN 09/48 8,725 Phosphatase 9,725 Phosphatase 8,725 Phosphatase 9,725 Phosphatase 9,725 Phosphatase 8,725 Phosphatase 9,725 Phosp	NO:	NO:	No.			Water	-
09/48 8,725		in				man	
S,725		USSN				Score	
27 10136 W02105 Homo sapiens Elumn L-	1	09/48					
27 10136 W02105 Homo sapiens asparaginase. 1243 98 asparaginase. 1243 1244 124	1	8,725					
28							
28	27	10136	W02105	Homo sapiens		1243	98
human secreted protein sequence,							
	28	10142	Y35924	Homo sapiens		862	89
29	1					1	
29	1						
82 1015 G02485 Homo sapiens secreted protein,			1				
30	29	10148		Homo sapiens	R27216_1	329	98
Secreted Protein,	30	1015		Homo sapiens	Human	120	72
31					secreted	1	
31					protein,		
32	31	10154		Homo sapiens		2607	98
33 10196 gi55362 Homo sapiens profilaggrin 346 39 346 39 346 39 346 39 346 39 346 39 346							
MO0234474. MO0234474. 33 10195 gi55362 Homo sapiens profflaggrin 346 39 34 10198 gi14190 Mus musculus codorant codorant 281 53 53 10200 Y57903 Homo sapiens Human 448 100 transmembrane protein HTMPN- 27 27 27 27 27 27 27 2	32	10175	Y96864	Homo sapiens		536	100
33 10196 gi55362 Homo saplens profilaggrin 346 39 1 34 10198 gi14190 Mus musculus receptor 16 16 16 16 16 16 16 1							
1 34 10198 gil4190 Mus musculus dorant receptor 16 35 10200 Y57903 Homo sapiens Human transmembrane protein HTMPN- 27 36 10208 gi40624 Escherichia coli gi40627 Escherichia roci factor			1				
16			1	-	-		
35 10200 Y57903 Homo sapiens Human transmembrane protein HTMPN- 27.	34	10198		Mus musculus		281	53
transmembrane protein HTMPN- 27. 36 10208 gi40624 Bacherichia coli 37 10212 gi88252 Bacherichia ORF_f141 coli 38 10213 gi40627 Bacherichia ORF_f141 coli 78 coli 39 10214 gi66938 Rattus 32 norvegicus factor receptor 40 10227 G01360 Homo sapiens Human secreted protein, 41 10236 gi16512 Bacherichia 57 coli 42 10241 gi27692 Eacherichia coli 39 coli 40 10227 G01360 Homo sapiens Human secreted protein, 41 10236 gi16512 Bacherichia coli 57 coli coli 42 10241 gi27692 Eacherichia coli gene activator protein 43 10245 gi17895 Sacherichia coli hypothetical protein 44 10246 gi88249 Bacherichia ORF_0179 488 97 coli 45 10247 gi17421 Bacherichia Sn-glycerol- 323 100							
	35	10200	Y57903	Homo sapiens		448	100
27. 27. 27. 36 36 36 36 36 37 37 37	1						
36							
92 coli 37 10212 gi88252 Bacherichia ORF_f141 625 96 96 10213 gi486527 Escherichia Hypothetical 773 98 98 10214 gi68938 Rattus opioid growth 661 44 10227 G01360 Homo sapiens Human 384 100 secreted protein, 41 10236 gi16512 Bacherichia coli protein 373 100 coli 62 coli coli gine activator protein 43 10245 gi17895 Escherichia coli orf, 679 98 coli difference 44 10246 gi88249 Escherichia ORF_ol79 488 97 coli coli ORF_ol79 488 97 coli Singlycerol- 323 100 coli coli Singlycerol- 323 100 coli coli ORF_ol79 488 97 coli coli Singlycerol- 323 100 coli	36	10208	gi 40624	Escherichia	27.	505	100
9 coli 9 coli 1838 10213 78 coli 10214 gi66938 Rattus norvegicus factor receptor 10227 G01360 Homo sapiens Human secreted protein, 10236 gi16512 Racherichia coli coli gene activator protein 178 96 gi17895 Sacherichia coli coli gene activator protein 10246 gi18249 Sacherichia coli	30	10000				303	100
9 coli 9 coli 1838 10213 78 coli 10214 gi66938 Rattus norvegicus factor receptor 10227 G01360 Homo sapiens Human secreted protein, 10236 gi16512 Racherichia coli coli gene activator protein 178 96 gi17895 Sacherichia coli coli gene activator protein 10246 gi18249 Sacherichia coli	37	10212	q188252	Escherichia	ORF f141	625	96
78			9		_		
39 10214 gi66938 Rattus norvegicus factor receptor	38	10213				773	98
32 norvegicus factor receptor							
Teceptor Teceptor	39	10214				661	44
40 10227 G01360 Homo saplens Suman Secreted Secreted Protein, 373 100 41 10236 G116512 Escherichia Coli Secreted Secre	-		32	norvegicus			
1							
1 10236 gi16512 Escherichia coli	40	10227	G01360	Homo sapiens		384	100
10236 gilf512 Racherichia							
10241 gi27692 Escherichia catabolite gene activator grotein 178 96		10026	11.0510	To the second second	protein,		
42 10241 gi27692 Secherichia catabolite gene activator gene activator gi17895 Secherichia orf. orf. 679 98 orl. hypothetical protein 44 10246 gi88249 Secherichia ORF_0179 488 97 orl. 45 10247 gi17421 Secherichia Sn_glycerol 323 100 100 100 100	41	10236				373	100
62 coli gene activator protein 43 10245 gi17895 Escherichia orf, 679 98 39 coli hypothetical protein 44 10246 gi88249 Escherichia ORF_0179 488 97 coli 0247 gi17421 Escherichia Sn-glycerol- 323 100	12	10241			catabolito	170	96
2 2017 201	42	10241				1,0	"
43 10245 gi17895 Escherichia orf, 679 98			"-				
39 coli hypothetical protein 44 10246 gi88249 Escherichia ORF 0179 488 97 coli 45 10247 gi17421 Escherichia Sn-glycerol- 323 100	43	10245	gi17895	Escherichia		679	98
protein protein	1					1	
44 10246 gi88249 Bscherichia ORF_0179 486 97 coli 2 coli scherichia sn-glycerol- 323 100	1						
45 10247 gil7421 Escherichia Sn-glycerol- 323 100	44	10246	gi88249			488	97
					_		
49 coli 3-phosphate	45	10247				323	100
			49	coli	3-phosphate		

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	opcoaco	DODGELPONON	-	Identity
NO:	NO:	No.			Water	
1	in				man	
	USSN				Score	
	09/48			·	00020	
	8,725					
_				transport		
				system		
	l			permease		
i		ļ		protein UgpA.		
46	10282	Y29817	Homo sapiens	Human synapse	521	96
			_	related		
	1	i		glycoprotein	١.	
ŀ	1	1		2.	\	
47	1031	gi64351	Mus musculus	putative E1-	990	86
		30		E2 ATPase		
48	1040	gi85412	Homo sapiens	Human giant	471	63
		4		larvae		
				homologue		
49	1043	gi38822	Homo sapiens	KIAA0782	154	61
L		85		protein		
50	1051	gi17821	Homo sapiens	anion	172	100
		6		exchange	1	1
	4053	Y76748		protein 1		
51	1053	176748	Homo sapiens	Human protein kinase	180	92
	l	1				ļ
	}	ļ		homologue, PKH-1.	J	
52	1062	gi96501	Mus musculus	ADAM 4	492	65
32	1002	9196301	Mus muscurus	protein	432	63
		-	ŀ	precursor		
53	1063	gi23938	Drosophila	A-kinase	580	60
1		80	melanogaster	anchor protein		""
				DAKAP550		
54	1066	qi27467	Caenorhabditi	contains	607	35
		88	s elegans	similarity to		
			-	transacylases		l
55	107	G00357	Homo sapiens	Human	183	77
		1		secreted		
				protein,		
. 56	1071	gi91059	Xylella	Acetylgluta-	505	36
	L	37	fastidiosa	mate kinase		
57	1085	R95913	Homo sapiens	Neural thread	257	55
				protein.		l
58	1086	Y76332	Homo sapiens	Fragment of	387	58
		1		human secreted	1	1
	1	1		protein	1	1
		1	l	encoded by		1
59	1088	gi45896	Homo sapiens	gene 38. KIAA0999	873	99
29	1088	g145896 42	nomo sapiens	protein	8/3	""
60	109	qi76343	Homo sapiens	KIAA0999	360	85
00	103	1	HOWO Saprens	protein	300	
61	1095	Y94907	Homo sapiens	Human	701	97
1 01	1003	154507	TOWO Baptells	secreted	1 ,01	1 "
Ь			L			

D	SEO	SEQ	Acces-	Species	Description	Smith	- 8
NO: NO: NO:						_	
1						Water	
USSN 09/48 8,725	1.0.						
09/48 8,725							
8,725	i					DCOLE	
						i	
Cal06_19x Protein Sequence Sequence Colon cancer associated antigen Protein Sequence Seque		0,125			protein clone		
	1	1					
Sequence Sequence						1	
1102 Y07096 Homo sapiens Colon cancer 1982 100 antiqen precursor sequence.			ł.				
associated antigen precursor sequence.	- 62	1102	V07006	Homo ganiong		1002	100
antigen precursor sequence.	04	1102	10/090	nomo saprens		1302	100
Precursor sequence.	1		[ĺ	
Sequence Sequence		1	Ì			\	
1105 Y84907 Homo sapiens A human proliferation and apoptosis related protein.						ł	
Proliferation and apoptosis related protein.	-63	1105	V94007	Home geniens		002	01
and apoptosis related protein.	6.3	1105	104907	nomo saprens		903	91
related protein.	1	1	l			1	
	1	I	1	1		ĺ	
1108 gi13989 Mus musculus dependent activator protein for secretion Human 2400 99			1	i		ŀ	
03 dependent activator protein for secretion							
activator protein for secretion	64	1108		Mus musculus		1307	89
Protein for secretion	ļ	i	03			l	
Secretion Secr	1	1	Į.				
1109 Y91524 Homo sapiens Human Secreted protein sequence encoded by gene 74	1	1		ł		ł	
Secreted Protein Sequence							
Protein Protein Protein Sequence S	65	1109	Y91524	Homo sapiens		2400	99
Sequence		1					
encoded by gene 74		1		ļ		1	
Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 74 Gene 75 Gene		1					
66	1	ł				l	Į.
62						<u> </u>	
dependent	66	1113		Sus scrofa		1348	94
protein kinase	1	1	62				
Ti isoform gamma-E		i					
Gamma-E Gamma-E Ruman growth- 2831 97							
67	1	l	i	ł		l	
associated protease				i		i	
Protease inhibitor heavy chain	67	1117	Y32169	Homo sapiens		2831	97
inhibitor heavy chain precursor.				İ			
heavy chain precursor.	1	1	i				
precursor. precursor.	1.	1		1			
68 1118 gi30635 Homo sapiens 1138 98 17 69 1125 gi82482 Homo sapiens sphingosine kinase type 2 isoform 70 1132 Y94918 Homo sapiens Human 437 59 secreted protein clone dd504 18 protein sequence	1	1	1	1			
17 132 132482 Homo sapiens sphingosine 1290 98 125					precursor.		
69 1125 gi82482 Homo sapiens sphingosine kinase type 2 isoform 70 1132 Y94918 Homo sapiens Ruman 437 59 secreted protein clone dd504_18 protein sequence	68	1118		Homo sapiens		1138	98
85 kinase type 2							
70 1132 Y94918 Homo sapiens Human secreted protein clone dd504_18 protein sequence	69	1125		Homo sapiens		1290	98
70 1132 Y94918 Homo sapiens Human 437 59 secreted protein clone dd504_18 protein sequence	1	1	.85				
secreted protein clome dd504_18 protein sequence							
protein clone dd504_18 protein sequence	70	1132	Y94918	Homo sapiens		437	59
dd504_18 protein sequence	1			1		1	
protein sequence	1	1		1		1	
sequence	1	1				1	
	1						ĺ
71 1143 gi45806 Homo sapiens prepro-major 209 40							
	71	1143	gi45806	Homo sapiens	prepro-major	209	40

SEQ	SEO	Acces-	Species	Description	Smith	%
ID	ID	sion	Species	_ 200mapu=011	-	Identity
NO:	NO:	No.			Water	100110101
NO:	in	NO.			man	l
	USSN				Score	i l
	09/48				SCOLE	
	8,725	77		basic protein		
		77		homolog		
		12000		focal	131	87
72	1146	gi18239	Homo sapiens		131	87
		5		adhesion	1	
				kinase		
73	1161	W90962	Homo sapiens	Human CSGP-2	931	100
				protein.		
74	117	W69428	Homo sapiens	Human	159	93
				secreted	l .	ļ
	1	l		protein	1	1 1
	ļ	1		bp537_4.		
75	1170	gi34339	Homo sapiens		586	87
76	1175	gi79602	Homo sapiens	SNARE protein	308	100
l		43	_	kinase SNAK		į l
77	118	gi53600	Homo sapiens	NY-REN-18	178	96
		93	_	antigen		1
78	1183	gi29203	Homo sapiens	helix-loop-	361	91
		7		helix	1	
	1		l	phosphoprotein	1	
79	1193	gi18991	Rattus	polysialyltran	171	76
1 "	1175	86	norvegicus	sferase		
80	1195	gi13994	Homo sapiens	serine/threo-	208	71
00	1123	62	nomo bapieno	nine-protein	200	
		\ °2		kinase PRP4h	1	
81	1198	qi18153	Homo sapiens	defensin	150	71
9.1	1130	5	nomo saprens	precursor	150	/-
82	1201	q156689	Rattus	plasma	244	73
82	1201	35	norvegicus	membrane Ca2+	222	/ /
l	1	33	HOLVEGICUS	ATPase isoform	1	
1		1		1kb	l	1
		- 60040	******	TANK binding	716	86
83	1207	gi62248	Homo sapiens	kinase TBK1	1,10	••
L	1000	68	l	complement	242	61
84	1210	gi17964	Homo sapiens		242	P. T
		6		component Cls	296	
85	1211	gi14831	Homo sapiens	1	296	65
		87				
86	1214	gi78006	Streptococcus	PspA	121	37
	1	38	pneumoniae			
87	123	Y44810	Homo sapiens	Human	218	93
1		l		Aspartic	1	
1	1	İ		Protease-2	1	1
1				(NHAP-2).	1	
88	1259	gi21166	Homo sapiens	EAR-1r	128	70
		72		·		
89	1266	gi72431	Homo sapiens	KIAA1372	403	53
İ	1	25		protein		
90	1270	gi12894	Homo sapiens	diacylglycerol	125	96
		45	1 *	kinase epsilon	1	
		1	1	DGK		
					-	

ID	SEO	SEO	Acces-	Species	Description	Smith	9
No. No. No. No. No. No. No.				DPCCIO	Dobbergon	-	Identity
1						Water	
USSN 09/48 8,725 914293 Drosophila wbiquitin- protease protease 92 1291 Y66755 Homo sapiens Membrane-bound protein PROI185. 93 1296 9196520 Homo sapiens Scavenger receptor cryetine-rich type protein				_			
09/48 8,725 1290 914293 Drocophila ubiquitin- specific protease specific protease specific protease specific protease specific protease specific protease specific protease specific protease specific protease specific protease specific spec							
8,725 91 1290 914293 Drosophila melanogaster protease 92 1291 Y66755 Homo sapiens Membrane-bound protein PROLISS. 93 1296 9196520 Homo sapiens Scavenger receptor cysteine-rich type 1 protein 99 99 1299 9173003 Drosophila receptor cysteine-rich type 1 protein 99 131 918717 Homo sapiens C67683 gene melanogaster 120 130 1368 132 138717 Homo sapiens 120 1390 13						DCOLG	
1290 914293 Drosophila Secreted Product							
Tolerange Tole	0.1		mi14202	Drocophila	uhimuitin-	470	47
Protease Protease Protease Protein P	31	1290				1 470	4.1
1291 Y66755 Homo sapiens Homo sapiens Savenger receptor cysteine-rich type 1 protein PRO1185			/-	meranogascer			
Protein Prot							
93 1296 gi96520 Homo sapiens scavenger receptor cysteine-rich type 1 protein M160 precursor 1299 gi73003 Drosophila Go7683 gene 397 40 40 40 40 40 40 40 4	92	1291	166755	Homo sapiens		993	100
1296 gi96520 Homo sapiens scavenger receptor cysteine-rich type 1 protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein Mico protein mainogaster product protein protein mainogaster product protein mainogaster product protein pr		1					
1299 gi73003 Drosophila C76583 gene 397 40 40 40 40 40 40 40 4							
Cysteine-rich Cype Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Miso Protein Pr	93	1296		Homo sapiens		1183	99
type 1 protein		l .	87			,	
Miso Precursor							
Precursor Prec							
94 1299 9133003 Drosophila CG7683 gene 397 40 98 melanogaster product 216 100 96 132 918717 18cmo sapiens 12- 97 1330 Y12482 Bomo sapiens 12- 97 1330 Y12482 Bomo sapiens Ruman 5' EST 65 44 99 135 9110798 Homo sapiens MLTK-beta 2366 99 98 135 9145699 Homo sapiens effector cell protein 99 135 9145699 Homo sapiens effector cell 190 74 100 1356 913935 Mus musculus envelope 131 36 101 1369 9145865 Homo sapiens Glucocorticoid 596 89 102 1392 914935 Mus musculus muclear 145 59 103 1408 9131270 Rattus protein protessium 176 84 104 1408 9131270 Rattus potassium 176 84 105 1360 1360 1408 9131270 Rattus potassium 176 84 108 131270 Rattus potassium 176 84 109 131270 Rattus potassium 176 84 100 1360 131270 Rattus potassium 176 84 101 102 103 103 103 103 103 103 103 102 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 103 104 105 105 105 105 105 105 105 105 105 105 105 105 107 108 108 108 108 108 108 108 108 108 108 108 109 109 109 109 109 100 1356 109 109 109 109 100 1356 109 109 109 109 100 1356 109 109 109 109 100 1356 109 109 109 109 100 1356 109 109 109 109 100 1356 109 109 109 109 109 109 100 1356 109 109 109 109 109 109 100 1356 109		1	l		M160		
98		į.					
95	94	1299	gi73003			397	40
15							
96	95	1317	gi36951		CLIAA	216	100
1 1/10xyygenase 1 1 1 1 1 1 1 1 1				norvegicus			
97 1330 Y12482 Homo sapiens Human 5' EST 65 44 98 1336 gi10798 Homo sapiens MLTK-beta 2366 99 99 135 gi45699 Homo sapiens effector cell 190 74 90 1356 gi19305 Mus musculus envelope polyprotein 100 1356 gi19305 Homo sapiens glucocorticoid 596 89 101 1369 gi45865 Homo sapiens glucocorticoid 596 89 102 1392 gi44935 Homo sapiens glucocorticoid 596 89 103 1408 gi31270 Rattus protein protassium 176 84 103 1408 gi31270 Rattus potassium 176 84 104 1360 potassium 176 84 107 137 1408 gi31270 Rattus potassium 176 84 108 1336 Potassium Po	96	132	gi18717	Homo sapiens	12-	176	97
Secreted Protein		1	1		lipoxygenase		
98 1336 gi10798 Homo sapiens MLTK-beta 2366 99 99 135 gi45609 Homo sapiens effector cell 190 74 100 1356 gi19305 Mus musculus envelope 131 36 101 1369 gi45865 Homo sapiens plucocorticoid 596 89 102 1392 gi4435 Mus musculus muclear 145 19 103 1408 gi31270 Rattus protassium 176 84 104 1360 gi4420 Norvegicus Norvegicus Norvegicus Channel	97	1330	Y12482	Homo sapiens	Human 5' EST	65	44
98 1336 910798 Homo sapiens MLTK-beta 2366 99 99 135 914569 Homo sapiens effector cell 190 74 100 1356 919305 Mus musculus envelope envelope 131 36 101 1369 9145865 Homo sapiens glucocorticoid 596 7 102 1392 914935 Mus musculus nuclear 145 59 103 1408 9131270 Rattus protessium protessium 176 84 103 1408 9131270 Rattus potassium 176 84 104 1350 1360 1360 1360 1360 1360 1360 105 1408 9131270 Rattus potassium 176 84 106 1360 1360 1360 1360 1360 1360 1360 107 108 109 109 109 1310 1310 108 1408 9131270 Rattus potassium 176 84 108 1360 1360 1360 1360 1360 1360 1360 108 1360 1360 1360 1360 1360 1360 108 1360 1360 1360 1360 1360 1360 109 1350 1310 1310 1310 1310 1310 100 1356 1310 1310 1310 1310 1310 101 1369 1360 1310 1310 1310 102 1360 1310 1310 1310 103 1360 1310 1310 1310 104 1360 1310 1310 1310 105 1310 1310 1310 107 1310 1310 1310 108 1310 1310 1310 108 1310 1310 1310 109 1350 1310 1310 109 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 1310 100 1350 1310 100 1350 1310 1310 100 1350 1310		1	l .	_	secreted		
99 135 gi45609 Homo sapiens effector cell 190 74 protease receptor 1 100 1356 gi19305 Mus musculus envelope polyprotein precursor 101 1369 gi45865 Homo sapiens glucocorticoid receptor alpha-2 102 1392 gi84935 Mus musculus nuclear localization signal binding protein protessium 145 59 103 1408 gi31270 Rattus potassium protessium 176 84 norvegicus channel 176 176 176 176 177		1			protein	1	
99 135 gi45609 Homo sapiens effector cell 190 74 protrase receptor 1 100 1356 gi19305 Mus musculus envelope envelope polyprotein protrasor 131 36 protrasor 136 gi45865 Homo sapiens glucocorticoid 596 89 receptor 1392 gi44935 Mus musculus muclear 145 59 100 1408 19 100 1408 protein 101 1408 gi31270 Rattus protein 145 146 147 148 149 protein	98	1336	gi10798	Homo sapiens	MLTK-beta	2366	99
0			814	1 -			
Neceptor 1	99	135	gi45609	Homo sapiens	effector cell	190	74
100		1	0	_	protease	ŀ	1 1
7 polyprotein		1	İ		receptor 1	ł	
Precursor	100	1356	gi19305	Mus musculus	envelope	131	36
101 1369 gi45865 Homo sapiens glucocorticoid 596 89 receptor 102 1392 gi84935 Mus musculus muclear localization signal binding protein 103 1408 gi31270 Rattus potassium 176 84 norvegicus channel 1360 1408)	7	ļ	polyprotein	j))
7 receptor					precursor	ļ.	
alpha-2	101	1369	qi45865	Homo sapiens	glucocorticoid	596	89
102 1392 gi84935 Mus musculus nuclear 145 59		l	7	_	receptor		
102 1392 gi84935 Mus musculus nuclear 145 59		1	1		alpha-2	ĺ	1
19 localization	102	1392	g184935	Mus musculus		145	59
		1					1
protein	l			1		1	
103 1408 gi31270 Rattus · potassium 176 84 51 norvegicus channel			1			1	
51 norvegicus channel	103	1408	gi31270	Rattus .		176	84
		1				1	
I I I I I I I I I I I I I I I I I I I	l	1			regulatory	1	1
protein KChAP		1	1				[
104 141 gi64536 Mus musculus putative 204 33	100	141	gi64536	Mus musculus		204	33
13 protein kinase	104	141		mascarus		204	""
105 1424 gi29825 Homo sapiens neuropathy 769 100	105	7.434		Homo canions		769	100
01 target	105	1424		none saprens		, 63	100
target esterase	1	1	01	1			1
				 			
	106	143	W50033	nomo sapiens		1201	98
related	l			1		1	
factor.			1-1				
107 1431 gi10644 Heterodera hypothetical 133 36	107	1431	g110644	Heterodera	hypothetical	133	36

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	ppcoacs	BCB022P424	-	Identity
NO:	NO:	No.			Water	- action by
NO:	in	NO.			man	
	USSN				Score	
					score	
	09/48					
	8,725					
		565	glycines	esophageal		
	1			gland cell	ł	
	1			secretory	i	
				protein 10	l	
108	1441	q130440	Myxococcus	unknown	149	32
100	2447	86	xanthus	umminoum.		""
109	1444		Homo sapiens	adaptor	1615	97
109	1444	gi72483	Homo sapiens		1012	9/
1	l	81		protein	1	
ì	ļ.			p130Cas		
110	1447	Y65168	Homo sapiens	Human 5' EST	403	97
	l			related		
	1			polypeptide	1	Ì
111	1457	W19919	Homo sapiens	Human Ksr-1	227	77
111	123/	1	bapions	(kinase		l ''
1				suppressor of	1	ļ
1				Ras).		i
112	1471	G02532	Homo sapiens	Human	97	59
				secreted		
1				protein,		
113	1473	q160628	Homo sapiens	candidate	581	100
	1	74	-	tumor	i	
	1			suppressor		ł
	1	1		protein DICE1		ì
114	1474	Y64896	Homo sapiens	Human 5' EST	197	100
114	14/4	104030	nomo saprens	related	1	100
	1		i		1	i
				polypeptide	295	76
115	1483	gi43621	Homo sapiens	KIAA0037	295	76
		8				
116	1486	gi58528	Homo sapiens	bridging	133	64
	1	34		integrator-2		
117	149	gi33271	Homo sapiens	KIAA0674	2243	98
ł	l	62	_	protein		
118	1503	gi17367	Escherichia	i .	1270	97
1	-555	85	coli	1	1	1
119	1506	gi40622	Escherichia	YhhI protein	612	90
1119	1200	98	coli	1 THE PLOCETH	012	1 30
L						
120	1513	gi40623	Escherichia	1.	556	94
		46	coli			
121	1514	gi21660	Escherichia	PhoQ protein	661	90
	1	9	coli			
122	1523	gi57127	Rattus	calcium	1178	90
1	1	56	norvegicus	transporter	1	
		1	1	CaT1	I	1
123	1527	gi18539	Mus musculus	glucocorticoid	171	84
123	1527		rus musculus		1/1	0 **
1	1	80	1	receptor]	1
1		1	1	interacting	1	1
	1			protein 1		
124	1536	Y17227	Homo sapiens	Human	452	100
			1	secreted		1

SEQ	SEO	Acces-	Species	Description	Smith	*
ID	ID	sion	operate		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
	<u> </u>			protein (clone		
	j			ya1-1).		
125	154	gi85150	Pinus taeda	putative	81	40
		90		arabinogalacta	1	
				n protein		
126	1544	gi38799	Caenorhabditi	Similarity to	134	34
	1	33	s elegans	Xenopus F-		
1	į.	1		spondin		
	1			precursor (PIR		
	1	}		Acc. No. comes from	1	
İ				this gene	l	
127	1554	gi65238	Homo sapiens	S1R protein	255	84
127	1554	17	HOMO SAPIENS	SIR procein	255	04
128	1555	g166352	Homo sapiens	beta-	210	90
		05		ureidopropiona		
				se	,	
129	1556	Y39286	Homo sapiens	Phosphodiester	161	61
i		l		ase 10 (PDE10)		1
				clone FB93a.		
130	1564	gi89779	Streptomyces	putative	231	45
		45	coelicolor	secreted		
J	1	1	A3 (2)	serine	j	ļ
				protease		
131	1576	gi30258	Rattus	signal	183	97
		28	norvegicus	transducer and activator of		
				transcription	1	ļ
1		ł		4	ł	
132	1578	9151065	Homo sapiens	transcriptiona	758	98
132	25.0	72	Lone Lagrana	l activator		
				SRCAP		
133	1579	gi85755	Homo sapiens	toll-like	595	99
		27	-	receptor 8		
134	158	gi40605	Mus musculus	protein kinase	168	70
		8				
135	1580	gi63340	Gallus gallus	c-Rmil	231	90
136	1588	gi22179	Homo sapiens	PKU-alpha	127	92
		31				
137	1589	gi12724	Mus musculus	Phosphoinositi de 3-kinase	720	99
136	1.50		Home ganio	de 3-kinase KIAA0344	215	43
138	159	gi22246 29	Homo sapiens	KIMAU344	215	4.5
139	1600	gi10160	Rattus	neural cell	543	93
139	1000	12	norvegicus	adhesion	343	33
		1 12	l	protein BIG-2		
1	1	[precursor	1	[
140	161	gi66495	Homo sapiens	kidney and	1651	98
	1	83		liver proline		
	1					

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
}	USSN	l			Score	
	09/48				DOOLE	i
	8,725					
-	0,725			oxidase 1		
141	1612	qi40611	Rattus	protein kinase	125	89
	1022	3	norvegicus	I	1223	0,
142	1615	gi21999	Homo sapiens	phSR2	150	78
142	1013	2	nomo suprens	Priore	150	/ "
143	1620	gi57146	Homo sapiens	serine/threo-	126	71
1	1000	36		nine protein		/-
	l	""		kinase Kp78	\	
	Ì			splice variant		
				CTAK75a	Į.	
144	1644	Y13352	Homo sapiens	Amino acid	2542	100
177	2044	113332	none saprens	sequence of	2342	100
1				protein		
				PRO228.	/	
145	1647	Y99444	Homo sapiens	Human PRO1575	704	100
	100			(UNQ781) amino		
1		1		acid sequence		
146	1650	gi37897	Homo sapiens	transmembrane	271	100
140	1000	65	nomo suprems	receptor UNC5C	-/-	100
147	1663	W75258	Homo sapiens	Fragment of	163	-96
	1003	1,75250	nomo bapacina	human secreted	103	""
	1	l	1	protein	}	l
				encoded by		ŀ
1				gene 26.		ĺ
148	1665	gi10432	Homo sapiens	secreted	1428	99
1	1002	431	monito bupicino	modular	1 2220	
				calcium-		}
			1	binding		ĺ
1		1		protein	1	ļ
149	1671	q167081	Mus musculus	inositol	169	97
		69		phosphatase		
1				eSHIPD183	ł	
150	1672	Y68773	Homo sapiens	Amino acid	1030	99
1		1		sequence of a		
	1	1		human	l	
1.	1	I	}	phosphorylatio	1	
1		1	1	n effector		1
1		1	1	PHSP-5.	1	
151	1678	gi60630	Homo sapiens	tousled-like	132	86
]		17		kinase 1	1	
152	1680	gi35106	Homo sapiens	nuclear	278	80
		03	*	receptor co-	1	1
1				repressor N-		
				CoR		
153	1692	gi15460	Homo sapiens	farnesol	165	100
1		84	•	receptor HRR-1		
154	1698	gi52046	Oryctolagus	597 aa	177	94
		9	cuniculus	protein		
1	1	1	ĺ	related to	1	ĺ
				·		·

SEC	SEO	Acces-	Species	Description	Smith	6
ID	ID	sion	Species	Dencerporon	-	Identity
NO:	NO:	No.			Water	
140.	in.				man	
	USSN				Score	1
	09/48					
	8,725					
-				Na/glucose		
1				cotransporters		
155	1702	gi10432 382	Homo sapiens		519	95
156	1704	Y91668	Homo sapiens	Human	214	75
136	1704	191000	nomo Bapieno	secreted		
l		1		protein		1
				sequence	\	
		l		encoded by		
		1		gene 73		
157	1708	gi30807	Mus musculus	growth factor	457	78
1		57		independence-		
				1B		
158	1716	gi29653	Homo sapiens	putative	220	92
				oncogene		
159	173	gi34524	Rattus	serine/threo-	699	100
1		73	norvegicus	nine protein		
				kinase TAO1	774	100
160	1731	Y27581	Homo sapiens	secreted	//4	100
				protein	1	l i
1	ļ]	1	encoded by	ļ.) !
				gene No. 15.	1	
161	1732	gi96520	Homo sapiens	scavenger	1025	98
1		87		receptor	1	
			1	cysteine-rich	ļ	
				type 1 protein	ŀ	
1				M160	ļ	
				precursor		
162	174	Y35923	Homo sapiens	Extended	1691	100
1		1		human secreted	1	
		l .		protein sequence,		
163	1740	Y53014	Homo sapiens	Human	337	60
163	1/40	153014	TOUR PAPTERS	secreted	1 33,	""
1	1	i	1	protein clone	i	
			1	fn189 13	1	
1			1	protein		
				sequence		
164	1748	gi77702	Homo sapiens	PRO2822	218	93
1		37				
165	1751	gi89798 25	Homo sapiens		306	50
166	1755	R95332	Homo sapiens	Tumor	1184	62
1	1			necrosis	Į.	
1	1	1		factor	ĺ	1
				receptor 1	1	
1		1		death domain	1	1
	J		L	ligand (clone	1	

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	•	*	-	Identity
NO:	NO:	No.			Water	1
	in				man	
	USSN	1			Score	1
	09/48					
	8,725				ļ	
				3TW).		
167	1762	gi73809	Homo sapiens	Gem-	1545	99
		47		interacting		
				protein		
168	1776	gi59122	Homo sapiens	hypothetical	224	100
		65		protein		
169	1777	Y70461	Homo sapiens	Human	413	95
				membrane		
		1		channel	1	
				protein-11 (MECHP-11).		
170	1.781	R26060	Tiomsions	(MECHP-11). Growth Factor	398	98
170	1.481	K26060	Homo sapiens	Receptor Bound	398	98
l		l .		protein GRB-	i	
l	1	1		1.		
171	1796	qi10312	Homo sapiens	serine	1381	99
1,1	1756	169	nono ampiena	carboxypepti-	1301	
		100		dase 1		
1				precursor	1	
	1			protein		
172	180	gi30025	Homo sapiens	neuronal	477	61
1	l	27	-	thread protein		1
		1		AD7c-NTP		
173	182	gi73851	Homo sapiens	HBV pX	2066	82
		31		associated	1	
ļ				protein-8;		
				XAP-8		
174	1820	G03249	Homo sapiens	Human	370	97
		i	'	secreted		1 1
				protein,		
175	1822	gi47396	Oryctolagus	one of the	1048	90
	1	9	cuniculus	members of		
1		1	1	sodium-glucose		
				cotransporter family	1	
176	1829	qi10440	Homo sapiens	FLJ00012	310	96 .
176	1029	355	none saprens	protein	310	-0
177	1832	gi16565	Oryctolagus	phosphorylase	146	96
1 - ' '	1002	9116363	cuniculus	kinase beta-		~
ĺ		1		subunit		
178	1834	W75132	Homo sapiens	Human	423	47
1 -			-	secreted		'
1		1	1	protein		
1		1	1	encoded by		
1		1		gene 11 clone	1	
1				HCENJ40.	i	1
179	1837	gi60369	Saimiriine	ORF	615	71
1		1	herpesvirus 2	48~EDLF5~sim.		
1		1	1	to EBV BRRF2	1	1
	-					

No. No.	SEO	SEO	Acces-	Species	Description	Smith	8
NO: NO: NO: NO: NO: NO: NO: NO: NO: NO:				Spectros	2000x ap out on	-	
In						Water	racincacy
USEN	NO.		NO.				
09/48 8,775 1859 958986 Homo sapiens ROR2 protein 645 87 98 96 181 1880 9173408 Mus musculus Chondrolftin 275 40 47 47 48 47 48 47 48 48							
8,725 9i9896 Homo sapiens ROR2 protein 645 87						SCOLE	
185	i						
181					Dobo	645	
182 1881 9175732 Homo sapiens 298 100			96	-	•		
182 1881 9175732 Homo sapiens 298 100	181	1880		Mus musculus		275	40
182		l	47			1	
182	1						
183					se		
183 1890 gi31499 Homo sapiens STIC2 183 94 184 1899 gi21432 Homo sapiens Phosphoinositide 3-kinase 346 98 185 19 gi18085 Homo sapiens U2AF1-RS2 224 46 186 192 G03192 Homo sapiens Human 267 86 187 1922 gi48585 Mus musculus IB57-Fixed 1206 78 188 1945 gi3721 Homo sapiens Human 551 98 189 195 W67863 Homo sapiens Human 551 98 189 195 gi40673 Homo sapiens Human PRO708 975 98 190 1957 gi40673 Homo sapiens Human PRO708 975 98 191 1969 Y41701 Homo sapiens Human PRO708 975 98 192 1970 gi33798 Caenorhabditi Secuence 254 49 193 1973 G00796 Homo sapiens Ruman 365 98 194 1985 gi45586 Homo sapiens Putative Homolog of hypoxia 1420 99 195	182	1881		Homo sapiens		298	100
184 1899 gi21432 Homo sapiens Phosphoinositide 3- Kinase 19 gi18085 Homo sapiens U2AF1-R82 224 46						,	
184	183	1890		Homo sapiens	ST1C2	183	94
185 19 gil8085 Homo sapiens U2AF1-R82 224 46 186 192 G03132 Homo sapiens Secreted Protein, 187 1922 gi48585 Mus musculus IB3/5- 1206 78 188 1945 gi37261 Homo sapiens Human 1402 97 189 195 W67863 Homo sapiens Human Secreted Protein 1402 97 189 195 W67863 Homo sapiens Human Secreted Protein 1402 97 190 1957 gi40673 Homo sapiens Human F8708 98 191 1969 Y41701 Homo sapiens Shb 263 44 192 1970 gi33978 Caenorhabditi Weak Similarity to Human Tyrosine Protein Kinase CSK 193 1973 G00796 Homo sapiens Ruman Secreted Protein Kinase CSK 194 1985 gi45586 Homo sapiens Ruman Secreted Protein Ruman Secreted Protein Ruman Recreted Ruman Recreted Ruman Recreted Ruman Recreted Ruman	1						
185	184	1899	gi21432	Homo sapiens	Phosphoino-	346	98
185			60		sitide 3-		
186		ł	l		kinase		
186 192 G03192 Homo sapiens Human Secreted Protein 187 1922 gi48585 Mus musculus IB375- polypeptide 1206 78 188 1945 gi37261 Homo sapiens Human Secreted Protein 189 195 W67863 Homo sapiens Human Secreted Protein Protein Pr	185	19	qi18085	Homo sapiens	U2AF1-RS2	224	46
187 1922 g148585 Mus musculus IB3/5- 1206 78 78 78 78 78 78 78 7							
187 1922 g148585 Mus musculus IB3/5- 1206 78 78 78 78 78 78 78 7	186	192		Homo sapiens	Human	267	86
192 gi48585 Mus musculus 183/5- 1206 78 78 78 78 78 78 78 7				110.110			
187 1922 gi48585 Mus musculus polypeptide 1206 78 188 1945 gi37261 Homo sapiens 1402 97 189 195 M67863 Homo sapiens 1402 97 189 195 M67863 Homo sapiens 1402 97 196 1957 gi40673 Homo sapiens Shb 263 44 196 196 197 1969 1970 Homo sapiens Human PRO708 975 98 198 1970 198 1		1					
188 1945 gi37261 Homo sapiens 1402 97	107	1000	WI ADEDE	Mua muaculua		1206	70
188	10/	1922		Mus musculus		1200	,,,
189 195 W67863 Homo sapiens Human S51 98 Secreted Protein encoded by gene 57 clone HFREF41. 190 1957 Gi40673 Homo sapiens Shb 263 44 191 1969 V41701 Homo sapiens Shb 263 44 192 1970 Gi39798 Caenorhabditi Sequence. Sequence	100	1045		Wanna anni ana	porypeperde	7.402	07
Secreted Secreted					Thoman		
Protein Prot	189	195	W0/803	HOURD Saprens		331	96
encoded by gene 57 clone HFERF41.	1	l	l			1	
gene 57 clone		l	1			1	
190 1957 gi40673 Homo sapiens Shb 263 44		ł	1	l .		1	1
195		l .	l			l	
8 191 1969 Y41701 Homo sapiens Human PRO708 975 98 protein sequence.				l			
191 1969 V41701 Homo sapiens Human PRO708 975 98 98 975 98 98 98 98 98 98 98 9	190	1957		Homo sapiens	Shb	263	44
192 1970 gi39798 Caenorhabditi Sequence. 254 49							
192 1970 gi39798 Caemorhabditi Weak Similarity to Numan tyrosine-protein kinase CSK 193 1973 G00796 Homo sapiens Ruman Secreted Protein Ruman Secreted Protein Secreted Protein Secreted Protein Secreted Protein Secreted Secreted Protein Secreted Protein Secreted Protein Secreted Secreted Protein Secreted Protein Secreted Protein Secreted Secreted Protein Secreted Protein Secreted Protein Secreted Secreted Protein Secreted Protein Secreted Secreted Protein Secreted S	191	1969	Y41701	Homo sapiens		975	98
1970 1970 1939798 Caenorhabditi Weak Similarity to	1	ļ	1			l	
17 s elegans similarity to Human tyrosine-protein kinase CSK Ruman secreted protein. 193 1973 G00796 Homo sapiens Ruman secreted protein, 194 1985 gi45586 Homo sapiens Putative homolog of hypoxia inducible factor three alpha 1986 gi44550 Homo sapiens host cell 367 50	l					L	i
Human tyrosine-protein kinase CSK CS	192	1970				254	49
tyrosine- protein kinase CSK	1	1	17	s elegans		1	
protein kinase CSK CSK Numan 365 98 Secreted Protein Numan 365 98 Secreted Protein Numan 365 98 Secreted Protein Numan	1.		1	Į.		1	
193 1973 G00796 Homo sapiens Ruman S65 98 Secreted Protein, 194 1985 Gi45586 Homo sapiens Putative 1420 99 195 1986 Gi44550 Homo sapiens Hom	1			1		1	
193 1973 G00796 Homo sapiens Human 365 98			1				ļ
Secreted Protein, 194 1985 gi45586 Homo sapiens Putative 1420 99 Homo sapiens Putative 1420 99 Homo sapiens Hom	1	1	1	1	CSK	1	
protein,	193	1973	G00796	Homo sapiens	Human	365	98
194 1985 gi45586 Homo sapiens Dutative 1420 99 homolog of hypoxia inducible factor three alpha 195 1986 gi44550 Homo sapiens host cell 367 50	1		1				
homolog of hypoxia inducible factor three alpha 195 1986 gi44550 Homo sapiens host cell 367 50	1	1			protein,	1	
homolog of hypoxia inducible factor three alpha 195 1986 gi44550 Homo sapiens host cell 367 50	194	1985	q145586	Homo sapiens		1420	99
hypoxia inducible factor three alpha 195	1	1				1	
inducible factor three alpha 195 1986 gi44550 Homo sapiens host cell 367 50	1	1	1			1	l
factor three alpha 195 1986 gi44550 Homo sapiens host cell 367 50			1				1
alpha 195 1986 gi44550 Homo sapiens host cell 367 50	1	1	1			1	1
195 1986 gi44550 Homo sapiens host cell 367 50			1				1
	105	1000	GIAAEE?	Vomo ganiona		267	E0
15 Lactor nomotog	195	1386		nono saprens		367	30
	L		1 12	L	Lactor Homorog		l

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	·	-	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN]			Score	
	09/48					
	8,725	i				
				LCP		
196	2	G02532	Homo sapiens	Human	106	85
	1			secreted		
				protein,		
197	2004	gi10503	Homo sapiens	type A	961	100
		935		calpain-like		
				protease	1075	97
198	2023	gi16513	Escherichia	•	10/5	91
		41	coli	***	540	100
199	2025	Y71069	Homo sapiens	Human membrane	540	100
	1	1		transport		
				protein,	1	
				MTRP-14.	l	
200	2038	qi85725	Homo sapiens	membrane-	686	98
200	2030	43	nomo saprens	associated		
		1 13		lectin type-C		
201	2041	gi37400	Homo sapiens	trk-2h	228	89
201	2011	915/100	nome suprem	polypeptide		
202	2043	W75096	Homo sapiens	Human	290	38
202	2010			secreted		
		1		protein	1	1 1
	1			encoded by		
		1		gene 40 clone		
ĺ	ĺ			HNEDJ57.	1	((
203	2068	G03394	Homo sapiens	Human	595	97
				secreted	1	
1				protein,		
204	2072	gi21165	Rattus	cationic	1025	85
		52	norvegicus	amino acid		
				transporter 3	250	
205	2076	gi15740	Drosophila	fat protein	369	39
		gi10549	melanogaster Gallus gallus	cSH-PTP2	605	94
206	2078	40	Gairus gairus	CSH-PIP2	003	34
207	2084	qi96631	Homo sapiens	hypothetical	874	99
207	2004	28	nomo saprens	protein	0,1	,,,
208	2088	gi10567	Homo sapiens	sodium	609	100
208	2000	590	aprens	bicarbonate	""	
1	1	1	1	cotransporter-	1	1
			1	like protein		
209	2089	gi17890	Escherichia	putative ATP-	961	98
1 200		01	coli	binding		1
1	1	1	1	component of a	1	
1		1		transport	1	
1	1			system		1
210	2097	Y70460	Homo sapiens	Human	258	96
		1		membrane	1	1
			1	channel	<u> </u>	

SEQ	SEQ	Acces-	Species	Description	Smith	- 2
ID	ID	sion	-		-	Identity
NO:	NO:	No.			Water	
	in			1.	man	
	USSN				Score	ĺ
	09/48			1		
	8,725	1		1		
				protein-10		
				(MECHP-10).		
211	2108	gi32075	Rattus	hexokinase	767	74
		08	norvegicus			
212	2111	gi63302	Homo sapiens	KIAA1176	3710	99
		33		protein		
213	2118	W74797	Homo sapiens	Human	156	96
				secreted		
				protein		
		İ		encoded by	l	ļ
				gene 68 clone HKIXR69.		
214	2134	gi17809	Homo sapiens	branched	209	97
214	2134	91	Homo sapiens		209	97
1		91		chain acyl-CoA oxidase	1	ĺ
215	2146	qi76881	Homo sapiens	hypothetical	1038	100
215	2146	48	Homo sapiens	protein	1038	100
216	2149	qi22804	Homo sapiens	KIAA0376	917	100
216	2149	85	Homo sapiens	KIAAU376	917	100
217	2153	qi18424	Rattus	ankyrin	592	88
21/	2133	29	norvegicus	binding cell	332	""
1	1	1 2	nor regrees	adhesion		
			1	molecule		ł
İ				neurofascin		
218	2155	gi65267	Homo sapiens	Eps15R	1126	100
	1	91	_	_		
219	2161	gi73004	Drosophila	CG7709 gene	200	33
		27	melanogaster	product		
220	2163	Y52296	Homo sapiens	Human	186	91
1	1		1	isomerase		
				homologue-3		
				(HIH-3).		
221	2173	W34526	Homo sapiens	hTCP protein	164	93
				fragment.		
.222	2178	gi33605	Rattus	Citron-K	299	94
202	2100	12	norvegicus	kinase	261	
223	2180	Y74008	Homo sapiens	Human	791	41
i	İ			prostate tumor EST fragment		
i			1	derived		
1	1			protein #195.		
224	2184	gi53041	Mus musculus	procern #195.	130	41
225	2186	gi40177	Homo sapiens	ribosomal	142	64
223	2100	91401//	nomo bapiens	protein S6	142	"
		-		kinase 3		
226	2190	qi57729	Homo sapiens	The hal225	176	100
223	2170	913/729	Supremb	gene product	1.5	1
1	1	1		is related to	1	1
	1		1	human alpha-		1
			J	1		

SEO	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	- 1
	in				man	
1	USSN				Score	1
	09/48					
	8,725					
	0,723			glucosidase.		
227	2210	q120553	Rattus	transmembrane	620	90
		92	norvegicus	receptor		
				UNC5H1	1	
228	2214	gi78617	Homo sapiens	low density	1360	98
220		33	monio napatana	lipoprotein		
		1 1		receptor		
l l	Į.			related	\	i
l		1		protein-	1	
	İ			deleted in		
l	i	1		tumor	l	1
229	2223	qi79591	Homo sapiens	KIAA1464	884	99
223	2223	89	nomo Bapreno	protein		
230	223	W88627	Homo sapiens	Secreted	300	77
230	"*"	1	LOMO DAPICID	protein		1
İ	í	ł		encoded by	1	1
	l			gene 94 clone	1	
1	1			HPMBQ32.		
231	2233	gi78395	Homo sapiens	organic anion	1092	99
231	2233	87	HOMO Saprens	transporting	1032	
i i		٠,		polypeptide 14		
232	2237	gi10440	Homo sapiens	FLJ00033	1212	99
232	2237	400	nomo bapatino	protein		
233	2251	gi59237	Homo sapiens	zinc metallo-	277	44
233	2251	86	HOING SAPTELLS	protease	1 ""	
	1	00		ADAMTS6	1	ł
234	2256	W63698	Homo sapiens	Human secreted	516	100
234	2230	103030	nome papacine	protein 18.	1	
235	2259	qi46787	Homo sapiens	hypothetical	387	36
235	2259	22	nomo saprens	protein	307	""
236	2262	Y33741	Homo sapiens	Beta-	793	99
236	2262	133/41	HOMO SAPTEMS	secretase.	1 /33	''
237	2265	qi70185	Homo sapiens	hypothetical	608	94
237	2205	45	HOING SAPTERS	protein	000	/ *
238	2271	gi41861	Homo sapiens	unknown	684	53
.238	22/1	83	HOMO SAPIEMS	ulikilowii	004	33
239	2273	gi72430	Homo sapiens	KIAA1327	1031	100
239	22/3	35	nono saprens	protein	1 2031	1 -00
240	2280	gi58096	Homo sapiens	sperm membrane	342	95
240	2280	78	nono saprens	protein BS-63	342	""
0.45	2286	qi62246	Homo sapiens	Na+/sulfate	1221	99
241	2286	g162246 91	none saprens	cotransporter	1221	, ,,
1	1	91		SUT-1	1	
		100000		uromodulin	345	50
242	2291	gi20762	Rattus	uromodulin	345	50
		1	norvegicus			7.5
243	2292	gi72963	Drosophila	CG5274 gene	272	35
		04	melanogaster	product		
244	2294	Y28503	Homo sapiens	HGFH3 Human	320	98
1		ļ		Growth Factor		

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	*	*	-	Identity
NO:	NO:	No.			Water	-
	in				man	
	USSN	[Score	
	09/48					
	8,725		- 3			
				Homologue 3.		
245	2296	W88799	Homo sapiens	Polypeptide	223	86
				fragment		
	į.			encoded by	l	i
				gene 45.		
246	2303	gi71101	Homo sapiens	guanine	1212	99
		60		nucleotide	\	
	l	1		exchange factor	1	
			Mus musculus	calcium/calmod	576	84
247	2306	gi64348	Mus muscurus	ulin dependent	5/6	84
	1	/4		protein kinase	1	
	l			kinase alpha	(ł
248	2309	Y95433	Homo sapiens	Human calcium	1203	99
248	2309	195433	nomo saprens	channel SOC-	1203	, ,,
	1	ļ	1	2/CRAC-1 C-		
		l		terminal	1	}
				polypeptide.		
249	2313	gi73009	Drosophila	CG4677 gene	689	79
245	2323	43	melanogaster	product	005	,,,
250	2318	W48351	Homo sapiens	Human breast	202	59
	2520			cancer related		
1	ŀ	1		protein	1	1
1				BCRB2.	1	
251	2329	G01772	Homo sapiens	Human	311	84
			_	secreted		
1	1		1	protein,		ļ
252	2330	Y41729	Homo sapiens	Human PRO1071	886	99
1				protein		
				sequence.		
253	2342	gi37864	Caenorhabditi		268	42
		30	s elegans			
254	2350	gi93010	Homo sapiens	protein-	571	79
1)	4	1	tyrosine		1
L		1	-	phosphatase	679	99
255	2359	gi93925	Homo sapiens	CC chemokine	679	99
0.5	2265	91 Gil6666	Mus musculus	CCL28 alpha-NAC,	357	41
256	2361	g116666	mus muscurus	muscle-	35/	41
		89	1	specific form		1
		1	1	gp220		I
257	2374	G03172	Homo sapiens	Human	112	78
25/	43/4	3031/2	TOWN PURPLETIES	secreted	112	l '°
	1	1	1	protein,		1
258	2387	qi13991	Homo sapiens	pyruvate	201	85
238	230/	97	nome Daptens	dehydrogenase		1
1	1	1 -		kinase isoform		i
}	1	1	1	4		
259	2401	G01757	Homo sapiens	Human	612	99
	1	1				

SEQ	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion		-	-	Identity
NO:	NO:	No.			Water	- 1
	in				man	
	USSN				Score	
	09/48	ĺ				
	8,725					
				secreted		
				protein,		
260	2409	gi18112	Homo sapiens	cleavage	194	86
		3		signal 1	l	1
				protein	473	50
261	2431	gi70185	Homo sapiens	hypothetical protein	4/3	50
		47 qi48264	Homo sapiens	procein	327	39
262	2432	96	nomo sapiens		32/	39
263	2467	G03667	Homo sapiens	Human	640	97
203	2407	903007	nomo saprens	secreted	040	''
	1			protein,]	
264	2471	gi76881	Homo sapiens	hypothetical	1284	91
204	24/1	48	nome bapacite	protein		1 1
265	2478	gi79081	Homo sapiens	polycystic	615	90
1 200		9		kidney		'
				disease-	1	
				associated		
		1		protein		
266	2484	gi33270	Homo sapiens	KIAA0633	1747	99
ĺ		80		protein		
267	249	G03793	Homo sapiens	Human	139	65
1				secreted	1	
				protein,		
268	2490	gi64673	Homo sapiens	thyrotropin-	757	98
		71	Ì	releasing		1
l				hormone degrading		
			l .	ectoenzyme	1	
269	25	G03203	Homo sapiens	Human	137	65
209	23	903203	nomo saprens	secreted	237	"
Į			Į.	protein,		1 1
270	2504	qi40977	Homo sapiens	HBV	166	74
2		12		associated		
				factor	i	
271	2506	gi20727	Homo sapiens	Na+/nucleoside	201	95
		84		cotransporter		
272	2507	gi59240	Homo sapiens		335	38
		07				
273	2510	gi77173	Homo sapiens	beta-site	383	89
		85		APP-cleaving		
				enzyme 2, EC		
		1-5-00	ļ	3.4.23.		
274	2523	gi33970 9	Homo sapiens		150	96
275	253	gi36615	Homo sapiens	serine/threo-	391	77
	1		1	nine protein		1
1		L		kinase	1	
276	2533	gi45896	Homo sapiens	KIAA0985	191	61

SEO	SEO	Acces-	Species'	Description	Smith	8
TD	ID	sion			_	Identity
NO:	NO:	No.			Water	racincary
NO.	in			į.	man	
ł	USSN				Score	
	09/48				DCOLE	
,	8,725	ļ		}	1	
	8,725	14		protein		
277	2536	gi20886	Caenorhabditi	strong	419	55
2//	2550	85	s elegans	similarity to	417	33
1	1	**	s eredans	the CDC2/CDX		
İ				subfamily of		
1	1	l		ser/thr	ł	
	į.			protein	1	
1				kinases	\	
278	2544	gi10024	Mus musculus	YSPL-1 form 2	280	80
278	2544	25	Mus muscurus	1SPL-1 IOIM 2	280	80
279	2568	Y41738	Homo sapiens	Human PRO541	379	49
2,3	""	1	Duplens	protein	ŀ 5//5	
1	1	i		sequence.		
280	2580	qi30044	Rattus	putative	382	49
1	1	82	norvegicus	integral		
1				membrane		
1		1		transport		
			ļ	protein	ļ	
281	2593	g173000	Drosophila	CG4525 gene	582	50
202	2000	49	melanogaster	product		""
282	2600	g145304	Homo sapiens	thyroid	334	90
		37		hormone		
1	1			receptor-	Į.	
1	ļ	ļ		associated	1	
	ł			protein		
1	Į.			complex		
1				component		
1	l	ı	ì	TRAP240		
283	2625	gi80996	Homo sapiens	toll-like	761	96
		52	-	receptor 9		l .
1	1	1		form A		
284	2641	gi14801	Escherichia	tolA	692	100
		9	coli			
285	2667	gi17503	Pseudomonas	Carbamoyl-	143	76
1	1	87	aeruginosa	phosphate	[[
I.				synthetase		
1	1			large subunit		
286	2670	gi48834	Mus musculus	RNA binding	139	92
		37		protein		
287	2673	Y66656	Homo sapiens	Membrane-	1869	98
1		1		bound protein		
				PRO943.		
288	2676	gi38859	Mus musculus	mismatch-	123	88
1	1	78	l	specific		
1	1			thymine-DNA	1	
1		l	L	glycosylate	l	
289	2680	gi64534	Homo sapiens	hypothetical	465	82
L		38		protein		
290	2682	gi18417	Mus musculus	GATA-5	527	77
				•		

SEO	SEO	Acces-	Species	Description	Smith	\$
ID	ID	sion	opcozos	Doboxapuaos	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48				00020	
	8,725					
	0,7100	56	<u> </u>	cardiac		
	1	30		transcription	1	ĺ
		l .		factor	!	
291	2684	qi98449	Homo sapiens	nicotinic	294	88
291	2004	20	nomo sapremo	acetylcholine	254	""
l		20		receptor	l	ĺ
l	l .			subunit alpha	1	
	ĺ	1		10	\	
292	2695	qi17897	Escherichia	putative	879	98
232	2095	64	coli	transport	0,,,	, ,
293	2697	qi34922	Escherichia	peripheral	936	99
233	2097	9134922	coli	membrane	230	1 33
ļ	1	, ,	COLL	protein	1	
294	2698	q140621	Escherichia	procern	737	100
294	2698	94	coli	•	131	100
295	2700	qi52924	Escherichia	homoserine	578	100
295	2,00	0	coli	kinase	378	1 -00
296	2704	gi15528	Escherichia	hypothetical	420	100
230	2704	31	coli	Hypothetical	420	1 -00
297	2712	gi17896	Escherichia	putative ATP-	262	100
297	2/12	72	coli	binding	202	1 100
		/2	COLL	component of a	i	
	j	1		transport	J	ļ
		!		system		
298	2716	gi40624	Escherichia	Transmembrane	382	100
230	2/10	09	coli	protein dppC	302	1
299	2719	gi30497	Escherichia	matches	921	95
2,75	2,15	6	coli	PS00017:		""
		1 ~	5011	ATP GTP A and	1	1
i	1	1		PS00301:	ł	i
				EFACTOR GTP;	i	
				similar		
300	2724	gi14585	Escherichia	nmpC	647	97
"		6.	coli		1	1
301	2725	gi17894	Escherichia	putative	312	100
1	1	73	coli	transport	1	
	1 .	1		protein		1
302	2728	qi18055	Escherichia	-	222	97
	1	61	coli	1		1
303	2729	q143248	Escherichia		655	91
		-	coli			1
304	2744	gi39629	Escherichia	similar to E.	675	100
1	1	9	coli	coli pyruvate	1	1
	l	1		formate-lyase		
				activating	1	
		1	1	enzyme	1	i
305	2749	gi17426	Escherichia		592	100
1		48	coli		1	
306	2752	q140622	Escherichia	Sensor kinase	357	100
			·			

SEO	SEO	Acces-	Species	Description	Smith	8
ID	TD	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
1	USSN]			Score	
1	09/48					
	8,725					
	0,723	36	coli	CitA		
307	2762	gi17877	Escherichia	putative	342	100
ļ		95	coli	LACI-type	1	
i	ł	1		transcriptiona		i i
				1 regulator		
308	2764	qi17997	Escherichia	putative	151	84
1		43	coli	LACI-type		
ļ.				transcriptiona	\	
				1 regulator		
309	2768	gi40596	Escherichia	vohG	534	94
505	2.00	4	coli	•		
310	2774	gi40623	Escherichia		387	97
310	2,,,	38	coli			
311	2790	qi40623	Escherichia		420	86
311	2/30	38	coli	•	120	"
312	2800	gi17898	Escherichia	putative	572	100
7	2000	05	coli	transport		
313	2811	q153053	Mus musculus	protein	421	49
323	2022	33		kinase Myak-S		
314	2827	qi10047	Homo sapiens	KIAA1588	531	97
1	2027	251		protein		
31/5	2830	G02872	Homo sapiens	Human	185	62
1				secreted	ł	i .
	1			protein,	l .	
316	2836	gi19117	Cricetulus	cAMP-	1677	97
1	1	5	sp.	dependent	1	1
1	1		_	protein kinase	l	
1	1	1		alpha-	1	
		1		catalytic	l	
1	1	1		subunit	1	
317	2851	q155884	Homo sapiens	BCL2/adeno-	220	61
		6		virus E1B	1	
				19kD-		
	1	Į.		interacting	1	
	1			protein 3		
318	2856	gi38822	Homo sapiens	KIAA0745	232	93
		11		protein	1	1
319	2866	qi63297	Homo sapiens	KIAA1119	1331	91
	1	08		protein	1	
320	2874	gi28530	Mus musculus	tousled-like	203	82
	1	33		kinase	1	
321	2882	gi10185	Schizosacchar	hypothetical	318	42
1		134	omyces pombe	zinc-finger		
1				protein	1	1
322	2886	G03797	Homo sapiens	Human	140	69
1 322	1 2000	1		secreted	1	
	1			protein,	1	1
323	2899	gi42403	Homo sapiens	KIAA0918	170	53
1 323	1 2000	25	Tapions	protein	1	
L				1		1

Date Date	SEO	SEO	Acces-	Species	Description	Smith	8
No. No. No.				- CPCCICO		-	Identity
In USSN 09/48 8,725						Water	
09/48		in	1			man	
8,725							
324 2906		09/48					
Secreted Protein vil_1,		8,725					
	324	2906	Y94988	Homo sapiens	Human	1738	100
325 3920 394537 Homo sapiens 1926 100 326 327 2930 39413 Schistosoma 1948211 100			[
326 2925 364348 Homo sapiens CDK4-hinding protein padsE11 200 200 201 20					protein vl1_1,		
326 2925 gi64348 Homo sapiens CDK4-binding 1210 100 protein p348EII myosin 208 28 28 2934 Y31645 Homo sapiens Human 642 63 transportassociated protein-7 (TRANP-7) 642 63 myosin 208 28 2954 Myosin 208 28 28 2934 Y31645 Homo sapiens Human 642 63 transportassociated protein-7 (TRANP-7) 642 61 myosin 208 28 642 63 myosin 642 63 myosin 642 63 myosin 644 645	325	2920		Homo sapiens		1926	100
76							
327 2930 gi39413 Schistosoma p348E11 myosin 208 28	326	2925		Homo sapiens		1210	100
327 2930 919413 Schistosoma 208 28 28 2934 2934 731645 Homo sapiens Human 642 63 12 12 12 12 12 12 12 1			76			1	
20							
328 2934 Y31645 Homo sapiens Human transport-associated protein-7 (TRAND-7). Ruman 528 99	327	2930			myosin	208	28
Transport- Associated protein-7 (TRANP-7). S28 99							
	328	2934	Y31645	Homo sapiens		642	63
2955 G01165 Homo sapiens Ruman S28 99	f	1	1				1
2955 G01165 Homo sapiens Strand-7)	ļ.					1	
329		1	i				1
Secreted protein, Secreted protein, Secreted protein,	220	2055	C01165	Homo ganiong		E20	99
2967 gi72639 Homo sapiens KIAA0943 1849 94	329	2935	GOILES	nomo saprens		320	, ,,
330 2967 gi72639 Homo sapiens KIAA0943 1849 94						ĺ	
331 2980 gi48955 Homo sapiens KIAA0943 protein	330	2967	gi72639	Homo ganieng	processi	466	100
30	330	2507		sabrens		1 200	100
332 2994 G03812 Homo sapiens Human 124 61	331	2980	gi45895	Homo sapiens	KIAA0943	1849	94
Secreted Protein,				-			
2996 gi98574 Homo sapiens tumor endothelial marker 1 precursor	332	2994	G03812	Homo sapiens		124	61
333 2996 918574 Homo sapiens tumor 2666 98	1						
00 memothelial marker precursor		<u> </u>					
marker 1 precursor	333	2996		Homo sapiens		2666	98
2999 Y66697 Homo sapiens Membrane-bound protein PRO1383. 335 3 gi62890 Homo sapiens JM24 Protein 930 100 336 3008 Y45219 Homo sapiens Human CASB47 557 92 337 3013 gi52626 Homo sapiens Protein Protein 338 3041 Y73335 Homo sapiens Human CASB47 1747 100 338 3041 Y73335 Homo sapiens Protein 1717 1315 99 339 306 gi4884 Mesocricetus RK- 1867 95 340 3061 gi43333 Homo sapiens Protein 3934 94 340 3061 gi43333 Homo sapiens Protein 3934 94 340 3061 gi43333 Homo sapiens Protein 3934 94 340 3061 gi43333 Homo sapiens Protein 3934 94 340 Reference Referen			00				1
334 2999 Y66697 Homo sapiens Membrane- 2254 100 10							
REG1893 PRO1393	334	2999	Y66697	Homo sapiens		2254	100
335 3 162890 Homo sapiens JM24 protein 930 100	ļ.						
72 100	225		CO 000	*****		000	100
336 3008 Y45219 Homo sapiens Riman CASB47 557 92	335	, ,		nomo sapiens	UMZ4 protein	930	100
2013 3013 3013 3013 3013 3013 3013 3013 3014 3015	336	3008	Y45219	Homo sapiens	Human CASB47	557	92
78 protein				-	protein.		
338 3041 Y73335 Homo sapiens HTRM clone 1315 99 1850120 18	337	3013	gi52626	Homo sapiens		1747	100
1850120 1850	1			_			
protein protein	338	3041	Y73335	Homo sapiens		1315	99
Sequence. Sequ	1	1	1			l	İ
339 306 gi48684 Mesocricetus Mx- 1867 95						1	
43 auratus interacting protein kinase PRM 340 3061 gi43333 Homo sapiens protein 3934 94 tyrosine							
protein kinase	339	306				1867	95
340 3061 gi43333 Homo sapiens protein- 8 tyrosine 3934 94			43	auratus		1	İ
340 3061 gi43333 Homo sapiens protein- 8 tyrosine 3934 94	1	1	1			ĺ	(
8 tyrosine							
	340	3061		Homo sapiens		3934	94
kinase	1	1	8	[ĺ	ſ
			L		Kinase	L	L

SEO	SEO	Acces-	Species	Description	Smith	%
ID	ID	sion	opcorco	Descripcion	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725	}			ł	
341	309	Y76145	Homo sapiens	Human	1313	99
				secreted		
				protein	Į.	
		Ì		encoded by		1
				gene 22.		
342	3095	gi73001	Drosophila	CG14899 gene	190	57
		59	melanogaster	product		
343	3098	gi53205	Homo sapiens	protein-	2641	86
		6		tyrosine-	1	
				phosphatase		
344	3105	gi28598	Homo sapiens	mitochondrial outer membrane	192	71
	1	١ ′		protein 19		-
345	3118	q199299	Macaca	hypothetical	180	61
345	2118	35	fascicularis	protein	180	6.1
346	3124	qi81319	Mus musculus	transient	226	100
340	3.44	03	Mas mascaras	receptor	1 220	100
1		"		potential-		
		i		related		
		ł	ļ	protein		
347	3126	Y02370	Homo sapiens	Polypeptide	261	100
			-	identified by		
		ŀ	ĺ	the signal		
		l	!	sequence trap	i	
		l		method.		
348	3166	gi72908	Drosophila	CG1531 gene	534	42
		60	melanogaster	product		
349	3175	gi66495	Homo sapiens	kidney and	1752	95
		83		liver proline		
				oxidase 1		
350	3176	gi72084	Homo sapiens	long-chain 2-	1048	95
		38		hydroxy acid	1	[
351	3188	Y02693	Homo sapiens	oxidase HAOX2	243	
351	3188	102693	nomo sapiens	Human secreted	243	57
				protein		l l
				encoded by	1	
1	l			gene 44 clone	1	
				HTDAD22.		
352	3191	q171059	Homo sapiens	calcium	300	96
		26		channel		""
	l			alpha2-delta3		
			1	subunit	1	
353	3208	gi10334	Homo sapiens	MUCDHL-FL	613	98
L		774				
354	3226	Y87209	Homo sapiens	Human	3147	99
	l			secreted	1	
		l		protein		
				sequence		

SEO	SEO	Acces-	Species	Description	Smith	9
ID	ID	sion	5,555.00	pozon	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN	Į .			Score	
	09/48					
	8,725				i	
355	3235	q167151	Homo sapiens	Fanconi	1947	99
		35	-	anemia,	1 .	
	İ			complementatio		
				n group F		
356	3257	g154416	Canis	zinc finger	326	42
		15	familiaris	protein		
357	3282	G03002	Homo sapiens	Human	211	61
		1		secreted	`	
				protein,		
358	3289	gi32884	Homo sapiens	PI3-kinase	5832	97
		57				
359	3296	gi77701	Homo sapiens	PRO1722	293	64
Į	1	39				
360	3298	gi21988	Ambystoma	electrogenic	1278	52
	1	15	tigrinum	Na+		
	i			bicarbonate	l	
	1	1	l	cotransporter;	l	
				NBC		(
361	3303	gi40280	Homo sapiens	potassium	1881	92
		15		channel		
362	3305	gi59029	Homo sapiens	very large G-	1770	100
	1	66	[protein	[
1				coupled		
				receptor-1		
363	3308	gi21994	Homo sapiens	The first in-	3967	86
		4		frame ATG		
	1	i		codon is	1	1
		J	J	nucleotides]	ļ
	I	i		NPPase.		
364	3325	gi35102	Homo sapiens	R31237 1,	1.92	94
364	3325	34	HOMO Saprens	partial CDS	152	34
365	3341	W78899	Homo sapiens	Human UNC-5	1614	90
303	3341	1,0099	TOWN BAPTERS	homologue	1014	1
				UNC5H-1.		1
366	3342	qi14782	Mus musculus	PNG protein	341	70
1 303	1	05				1
367	3350	qi27394	Bos taurus	regulator of	2263	98
1		60		G-protein		1
]]	1	1	signaling 7		1
368	3372	gi76716	Homo sapiens		375	79
1		63	1	1		1
369	338	Y84322	Homo sapiens	A human	2606	100
1	1	1	1 -	cardiovascular	l	1
		1	1	system		
			1	associated		
1	1		I	protein	1	
				kinase-3.		
370	3383	gi10441	Homo sapiens	protein	1127	100

SEQ	SEO	Acces-	Species	Description	Smith	
ID	ID	sion			-	Identity
NO:	NO:	No.		ļ	Water	
	in				man	
	USSN				Score	
	09/48			ļ		
	8,725	l		1		1
		382		kinase		
371	3395	gi53082	Homo sapiens	epidermal	402	47
		3		growth factor		
		1		receptor		
Į.		ł		kinase	l	
372	3405	¥29332	Homo sapiens	substrate Human	1220	94
3/2	3405	129332	Homo sapiens	secreted	122,0	94
		l		protein clone		
			ŀ	pe584 2		
				protein		
				sequence.		
373	3408	gi33347	Homo sapiens	shal-type	2888	90
		41	_	potassium		
	1			channel	ĺ	
374	345	gi45395	Homo sapiens	NAALADase L	600	72
		27		protein		
375	346	Y95434	Homo sapiens	Human calcium	1802	99
			ŀ	channel SOC-		
1				3/CRAC-2 C-		
				terminal		
376				polypeptide.	277	
376	3470	gi97984	Homo sapiens	putative capacitative	277	100
	[32	1	calcium	1	
				channel		
377	3482	gi38185	Homo sapiens	cAMP-specific	2353	96
		72		phosphodiester		, ,
			l	ase 8B;		
l		1		PDE8B1; 3',5'-		
1	1	1	ļ	cyclic	1	
ļ.		!		nucleotide		
1		l		phosphodiester		
		<u> </u>		ase		
378	3492	gi16658 25	Homo sapiens		3878	99
379	3530	gi50510	Homo sapiens	KIAA0066	3637	100
3/9	3530	0	nomo sapiens	VIWWOODD	303/	100
380	3533	¥32169	Homo sapiens	Human growth-	2860	99
1	1	1		associated	1	
1	1	I	1	protease		
				inhibitor		
1			1	heavy chain	1	
				precursor.	l	
381	3545	gi66241	Homo sapiens		449	98
		33				
382	3549	gi14691	Homo sapiens	The KIAA0135	5374	99
		93		gene is related to		
			l	reraced co		

SEO	SEO	Acces-	Species	Description	Smith	9
ID	TD	sion	opecies	Description	-	Identity
NO:	NO:	No.			Water	
110.	in.				man	
	USSN	1			Score	
	09/48				50010	
	8,725					
	0,723			pim-1		
				oncogene.		
383	3595	q163301	Homo sapiens	KIAA1169	1893	100
	2020	90		protein		
384	3601	gi80891	Homo sapiens	tumor	992	99
301	3000	5		necrosis		
		"		factor		
		1		receptor type	\)
				1 associated		
				protein	i	
385	3612	gi53054	Mus musculus	SH2-B PH	1439	92
1000		48		domain		
				containing		1
		l		signaling		ì
		1		mediator 1	i	
1	ĺ	1		gamma isoform	l	1
386	3613	Y32194	Homo sapiens	Human	1438	100
			-	receptor		!
	1			molecule (REC)	1	
	I	l		encoded by	1	i
				Incyte clone		
	1			266775.	ı	
387	3621	gi89784	Mus musculus		393	68
	1	9		ubiquitinating	1	
i	ł	ľ		enzyme E2-230	ł	1 1
1		1		kDa		
388	3624	R47858	Homo sapiens	Human LDL	2895	100
1	1			receptor	[1
ļ	}	l		Domains 1 and	J	
1	1			2.	l	1
389	3625	Y57949	Homo sapiens	Human	1868	100
1		1	l .	transmembrane	1	
Į.	1	1		protein HTMPN-	1	
	l		1	73.	L	
390	3626	W69342	Homo sapiens	Secreted	442	94
	1	1		protein of	1	
	1			clone CJ424_9.		
391	3627	gi65371	Homo sapiens	putative	982	92
	1	36		organic anion	1	
1	1			transporter	L	
392	3630	Y06886	Homo sapiens	НWННJ20	1109	91.
	1			polypeptide.		
393	3642	gi48864	Homo sapiens	hypothetical	570	52
1	1	67	1	protein	L	1.
394	3645	gi95884	Homo sapiens		598	98
1		02	1			
395	3647	Y12050	Homo sapiens	Human 5' EST	517	98
	1			secreted		
	1	1	(protein		

SEO	SEO	Acces-	Species	Description	Smith	*
ID	ID	sion	Specics	Description	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48				DOOLE	
1	8,725				ļ	
396	3653	Y70018	Homo sapiens	Human	2232	99
330	3633	170010	nomo saprens	Protease and	2232	, ,,
		1		associated		
	ļ			protein-12	1	
	l			(PPRG-12).		
				Human	338	100
397	3676	W67818	Homo sapiens		338	100
				secreted		1
				protein		
	ļ			encoded by		
		1		gene 12 clone		
				HMSJJ74.		
398	3677	gi32093	Homo sapiens	HGMP07J	650	52
399	3681	Y48443	Homo sapiens	Human	803	93
İ	[prostate		
1				cancer-		
l	1			associated	1	1
1				protein 140.	i	
400	3682	gi46917	Homo sapiens	ARF GTPase-	2435	91
		26		activating		
ł	1	1		protein GIT1	ł	
401	3688	gi66938	Homo sapiens	ubiquitin-	1995	99
١.	1	24		specific	1	
			ŀ	protease	ŀ	
402	3689	Y94927	Homo sapiens	Human	530	81
				secreted		
	1			protein clone	i	
				ck213 12		i
1	1	1	Į.	protein	l	l
	l .			sequence	1	
403	3690	gi18716	Oryctolagus	ryanodine	594	95
		12	cuniculus	receptor	l	
404	3706	gi60027	Homo sapiens	membrane-type	2630	94
		14		serine	l .	l
				protease 1	1	
405	3714	qi26957	Homo sapiens	SPOP	553	81
1	1	. 08		1	1	
406	3720	9193092	Homo sapiens	asc-type	566	95
	1	93		amino acid		_
1			1	transporter 1	1	1
407	3726	gi10440	Homo sapiens	FLJ00026	1023	69
1	1 3.23	381	l suprais	protein		1
408	373	gi57146	Mus musculus	alpha 2 delta	243	95
1 200	3/3	96		calcium	-13	1 -3
1	1	1 20		channel	1	l
			1	subunit	1	
409	3788	q169112	Homo sapiens	type II	841	100
409	3/88	19	nomo saprens	membrane	041	100
1		19	Į.	serine		1
	1			protease		i
	L		L	Processe		

SEO	SEQ	Acces-	Species	Description	Smith	- 4
ID	ID	sion	Species	Descripcion	-	Identity
NO:	NO:	No.			Water	-acmorey
	in.	1.0.			man	
	USSN	1		}	Score	
	09/48					
	8,725	ļ				
410	3789	Y45023	Homo sapiens	Human sensory	1084	95
				transduction		
	ł			G-protein	l	
				coupled		
1				receptor-B3.		
411	3790	gi15240	Homo sapiens	Polio virus	1508	99
1		88		receptor		
i				protein	1	
412	3801	gi67236	Homo sapiens	mitotic	2035	99
		75	· ·	kinase-like		
		1	ļ	protein-1		
413	3803	gi96897	Homo sapiens	mitotic	332	86
1		3	-	kinase-like	1	1
1		i	1	protein-1	1	1
414	3820	gi17704	Homo sapiens	NK receptor	1988	99
		78				
415	3831	gi27813	Homo sapiens		1493	99
		86				
416	3837	gi93678	Homo sapiens	neuronal	2243	99
		40		apoptosis		
	1			inhibitory	ľ	
	İ	1		protein 2		
417	385	gi15269	Homo sapiens	ryanodine	149	96
		78		receptor 2		
418	3856	g199565	Homo sapiens	interleukin-	147	100
		4		11 receptor		
419	386	gi49600	Mus musculus	T2K protein	669	66
		38		kinase homolog		
420	3861	Y74129	Homo sapiens	Human	842	98
	ŀ			prostate tumor		
1	1	1		EST fragment	l	
1		i		derived		
421	3883	-155050	17	protein #316.	1576	100
421	3883	gi66352 05	Homo sapiens		1576	100
1	1	05		ureidopropiona se	i	I
422	3898	gi37231	Homo sapiens	DNA	8436	99
422	3028	913/231	nomo saprens	topoisomerasé	0430	, ,,,
	1			TT	1	1
423	3921	qi86488	Homo sapiens	putative	131	100
423	3321	81	none saprens	organic anion	1 232	1 200
	1	1 31		transporter	1	
424	3932	qi85757	Homo sapiens	KRAB zinc	1935	99
724	1 3332	75	Dupidio	finger protein	1	1
425	3934	gi46891	Homo sapiens	SIH003	127	92
1 -23	1 3334	28) Jupacina			1
426	3963	gi32129	Homo sapiens		339	64
1	1	96			1	1
427	3974	G03790	Homo sapiens	Human	232	63
		1		1		

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	proces	Description	-	Identity
NO:	NO:	No.			Water	raginary
NO:		NO.				İ
	in			\	man	
	USSN				Score	
1	09/48				1	
	8,725				ļ	
				secreted		
				protein,		
428	3983	qi18197	Homo sapiens	vascular	433	85
		1	•	endothelial	J	
		_		growth factor	Į.	
429	3999	gi16574	Sus scrofa	growen saccor	484	75
423	3999	64	Sus scrora	calcium/calmod	104	,,,
l		54			1	
	l			ulin-dependent		
	ì	1		protein kinase	i	1
	ł			II isoform	1	
1				gamma-G		
430	4001	gi65722	Homo sapiens		329	100
l		30	_			
431	4009	gi21432	Homo sapiens		521	99
1	1	60		phosphoinositi		
	1	1		de 3-kinase		
432	401	g165723	Homo sapiens	ac 3 killage	1372	56
432	401	79	romo sabrens		1372	36
433	4020	gi28156	Homo sapiens	tumor	1252	100
l	1	24		necrosis		
1	1			factor	1	
	1	ì		superfamily	1	i i
1	1			member LIGHT		
434	4024	Y21166	Homo sapiens	Human bcl2	84	40
	1		-	proto-oncogene		
ł	1	1		mutant protein	1	ĺ
	1			fragment 14.		
435	4040	Y57285	Homo sapiens	Human GPCR	1726	99
433	4040	137203	nomo saprens	protein	1/20	"
l	i	l		(HGPRP)	ł	l i
	Į.	1	i	sequence		
	1	l		(clone ID	i	
				2214673).		1
436	4057	W74873	Homo sapiens	Human	531	100
				secreted		
1	1	1	1	protein	1	
	1	1	1	encoded by	1	1
1		1	l	gene 145	1	
1				clone HFXHL79.		
437	4066	G03714	Homo sapiens	Human	92	70
43/	4000	303/14	"Outo patrens	secreted	""	/ /
		1			1	1
L				protein,		
438	4067	gi83317	Homo sapiens	LU1 protein	1077	92
		60				
439	4078	Y57900	Homo sapiens	Human	996	100
		1	l	transmembrane		
	1	}	}	protein HTMPN-	1	}
	1			24.	1	1
440	4120	gi18715	Homo sapiens	mitogen-	927	100
	1	1 2				

					La. 111	§
SEQ	SEQ	Acces- sion	Species	Description	Smith	Identity
NO:	NO:	No.			Water	rdenercy
NO:	in.	No.			man	
	USSN				Score	
	09/48					
	8,725	l			1	
		39		activated		
				protein kinase		·
				phosphatase 4		
441	4123	gi53601	Homo sapiens	NY-REN-58	140	100
442	4130	25 gi62890	Homo sapiens	antigen JM24 protein	604	100
442	4130	72	HOMO Sapiens	OMZ4 DIOCEIN	804	100
443	4133	qi85755	Homo sapiens	toll-like	755	100
773	4133	27	nome bapaens	receptor 8		
444	4166	q161185	Homo sapiens	DEAD-box	2512	100
		55	-	protein		
				abstrakt		
445	4167	gi38008	Rattus	putative four	615	93
	1	30	norvegicus	repeat ion	l	ì
				channel		
446	4172	gi72096	Homo sapiens	potassium channel Kv8.1	369	100
447	4185	76 q153054	Homo sapiens	Na+/H+	1769	100
44/	4185	05	nomo saprens	exchanger	1/65	100
	l	05		isoform 2	1	l
448	4197	gi28111	Xenopus	NaDC-2	524	69
		22	laevis			
449	4203	Q89840_	Homo sapiens	Human death	198	97
1	1	aal		associated	l	i
		1		protein DAP-	j	ļ
		g159014	Marmota	3. olfactory	209	92
450	4262	g159014 78	marmota	receptor	209	92
451	4276	q132456	Homo sapiens	protein-	3270	99
431	42,0	9252250	nome bapaens	tyrosine		
i			1	phosphatase	1	l
452	4283	R41231	Homo sapiens	GAT-2	477	100
1				transporter	i	ļ
				gene.		<u> </u>
.453	4331	gi31719	Homo sapiens	RAMP2	443	98
		12			1330	100
454	4340	gi81182 23	Homo sapiens	unknown	1330	100
455	4351	qi17545	Rattus		2050	92
4.55	4337	15	norvegicus	aminopeptidase	2030	1
		1		-В		
456	4354	Y57906	Homo sapiens	Human	1402	100
			1	transmembrane	1	
		1	1	protein HTMPN-		
	1	1	L	30.	L	
457	4385	gi55964	Homo sapiens	candidate	509	97
		33		tumor	1	1
			1	suppressor		
1			L	protein NOC2	L	l

SEO	SEO	Acces-	Species	Description	Smith	9
ID	TD	sion	ppecres	Descripcion	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48	1				
	8,725					
458	4388	W78140	Homo sapiens	Human	100	94
	ł			secreted	1	
	ļ.			protein	i	
		i		encoded by	ļ	
	1			gene 15 clone		
	ł			HSDES04.		
459	4405	Y48226	Homo sapiens	Human	1246	99
				prostate		
				cancer- associated		
ŀ		ł		protein 12.		ì
460	441	gi29153	Bovine	BICP4	106	35
460	441	g129153	herpesvirus 1	DICF4	100	35
461	4417	q165625	Homo sapiens	sialin	939	1.00
		33	_			
462	4419	gi18415	Homo sapiens	NG5	146	33
		55			262	94
463	4443	gi49613	Mus musculus	AMPA	262	94
	İ	9	Ì	selective glutamate	1	
	-		:	receptor		l
464	4470	qi72483	Homo sapiens	adaptor	2592	100
464	4470	81	HOMO Saprens	protein	2392	1 -00
1		0.		p130Cas		
465	4482	gi73299	Homo sapiens	apoptosis	2071	100
100	1132	79		regulator		
466	4487	gi67066	Homo sapiens		405	100
		59				
467	4491	gi98373	Homo sapiens	CamKI-like	1044	100
		41		protein kinase		
468	4492	Y42751	Homo sapiens	Human calcium	586	99
		1		binding	i	Ì
1		1	1	protein 2		1
L.	1405	gi61797	Homo sapiens	(CaBP-2).	352	37
469	4497	g161797	roug saprens	paraneoplastic	354	3'
1	1	1 40		cancer-testis-	İ	1
1	1	1	1	brain antigen	[[
470	4502	qi63297	Homo sapiens	KIAA1124	327	100
1 470	4302	42	TOILO Saptella	protein	527	1 -00
471	4519	Y99426	Homo sapiens	Human PRO1604	1563	100
1 ***		1		(UNO785) amino	1	1
1	1	1	1	acid sequence		
472	4526	Y08008	Homo sapiens	Human HLIG-1	4023	99
1				protein.		
473	4547	q145895	Homo sapiens	KIAA0959	4165	99
		62		protein	1	
474	4554	gi13810	Mus musculus		1164	77
	1	29		L		

SEQ	SEO	Acces-	Species	Description	Smith	9.
ID	ID	sion	Species	Descripcion	Juiz Cii	Identity
NO:	NO:	No.	!		Water	Identity
	in				man	
]	USSN				Score	
	09/48					
1	8,725	1			1	
475	4555	gi27923	Homo sapiens	unknown	4461	99
		66		protein IT12		
476	457	Y70551	Homo sapiens	Human latent	1825	100
2.0				transforming		
				growth	1	
	1	}		factor-beta	ł	1
				binding		
i i				protein 3 (I).	1	
477	4571	gi53601	Homo sapiens	NY-REN-45	869	100
		15		antigen		
478	4613	Y05868	Homo sapiens	Human Toll	2413	100
		1	-	protein		
ì	ŀ			PRO358.		
479	4614	Y27129	Homo sapiens	Human bone	1815	100
1				marrow-derived		
				polypeptide	İ	
1		1		(clone OAF038-		i i
ì				Leu).		
480	4622	G03789	Homo sapiens	Human	173	53
100				secreted		
				protein,		
481	4667	gi76736	Danio rerio	Dedd1	446	48
1		38		l	,	
482	4670	gi40264	Homo sapiens	c-rel	2309	100
1		9				
483	4683	Y68773	Homo sapiens	Amino acid	2234	99
1		l		sequence of a		{
	1			human		
			ľ	phosphorylatio		
ĺ	1			n effector	ſ	
				PHSP-5.		l
484	4698	Y73470	Homo sapiens	Human	746	100
1		1		secreted		
1	1			protein clone	i	
1			l	yd141_1	1	į .
1	1			protein		
<u></u>		1		sequence		
485	4724	g164568	Homo sapiens	hypothetical	1101	99
125	177.	46	l	protein		
486	4734	gi33349	Homo sapiens	R27216_1	1151	80
487	107.4	82			1348	100
487	4814	gi62744 73	Homo sapiens	pregnancy-	1348	T00
1	1	/3	[induced growth	1	[
100	107.5	Y07825		inhibitor Human	117	67
488	4819	10/825	Homo sapiens	secreted	1117	67
1	1	i			1	
1	1	1		protein		
1	1	1	1	fragment #4 encoded from	1]
L			L	Terroged trom		L

SEO	SEO	Acces-	Species	Description	Smith	*
ID	ID	sion	ppecaes		-	Identity
NO:	NO:	No.			Water	identity
1.0.	in				man	
	USSN	ļ		l .	Score	
	09/48				00000	
	8,725					
				gene 28.		
489	4821	Y81498	Homo sapiens	Human foetal	1200	100
ĺ		ĺ	_	bone-derived		
		ŀ		growth		
				factor-like		
1	ŀ			protein.		
490	4851	gi56894	Homo sapiens	KIAA1077	4364	99
		91		protein	`	
491	4872	gi59119	Homo sapiens	hypothetical	3723	99
		53		protein		ĺ
492	4902	B08917	Homo sapiens	Human	717	100
				secreted		
1				protein		
		i		sequence		
	1			encoded by	1	}
				gene 27		
493	5006	gi43577	Homo sapiens	receptor	385	100
		4		tyrosine		
	l			kinase isoform		
		1 '	1	FLT4 long,		
				FLT41 {C-		
L				terminal}		
494	5007	Y93951	Homo sapiens	Amino acid	804	100
				sequence of a		
	1			Brainiac-5	ĺ	
495	5027	qi35487	**	polypeptide.	1606	100
495	5027	91	Homo sapiens	R33590_1	1000	100
496	5029	g156895	Homo sapiens	KIAA1095	5722	99
496	5029	27	HOMO SAPIENS	protein	3/22	99
497	5033	Y14482	Homo sapiens	Fragment of	166	66
437	3033	114402	nomo sapiens	human secreted	100	
1				protein		
1		i		encoded by		
				gene 17.		
498	5040	Y95019	Homo sapiens	Human	258	92
1			Para	secreted		
1				protein vq1_1,	1	
499	5061	gi13044	Pseudorabies	EPO	85	38
1		34	virus	1	-	-
500	5081	gi40380	Homo sapiens	vascular	134	100
		81		endothelial		
1				cell growth		
i .				inhibitor	1	
501	5129	gi31691	Homo sapiens	BC269730_2	2340	99
1	1	58	-	_	l	
502	5139	gi40628	Homo sapiens	HEXIMI	293	47
		56	1 -	protein		
503	5174	gi93685	Homo sapiens	140up gene	576	90
			·	·		<u> </u>

SEO	SEO	Acces-	Species	Description	Smith	-
ID	ID	sion	opoulos	23001101	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725	ì				
		40		product		
504	524	G00329	Homo sapiens	Human	565	100
				secreted		
			**	protein, Human OXRE-	1271	0.0
505	5291	Y92515	Homo sapiens	12.	12/1	98
506	5335	qi72961	Drosophila	CG3862 gene	753	46
506	5335	58	melanogaster	product	/53	40
507	5346	Y94987	Homo sapiens	Human	849	100
507	5340	194907	nomo saprens	secreted	049	100
	1	1		protein vjl 1,	ļ	
508	5379	gi71445	Homo sapiens	cytokine-	1353	99
300	33,3	06	-10.10 Bapacilb	inducible SH2-	1	1
	1	1 -0		containing	1	
				protein		
509	5441	q180965	Homo sapiens	similar to	1516	100
		51	-	mouse Ehm2	1	
510	549	Y22113	Homo sapiens	Human ZSMF-3	294	62
		1	_	protein	1	
İ				sequence.		
511	5542	Y76267	Homo sapiens	Fragment of	1066	100
		1		human secreted	i	
1				protein		(
		1		encoded by		i
				gene 11. Human	103	36
512	5560	G03790	Homo sapiens	secreted	103	36
				protein,		
513	5696	gi79203	Homo sapiens	PTOV1	1904	91
313	3050	98	nomo suprems	11011	1504	1 32
514	5704	B08930	Homo sapiens	Human	987	100
1	1	ł		secreted		
l				protein		1
1	İ			sequence		
١.	1	l	ĺ	encoded by	ł	
	L		L	gene 2	1	
515	5758	W18878	Homo sapiens	Human protein kinase C	368	100
1	1	1		inhibitor,		
		Į.	İ	IRRC-1.		
516	5760	gi65621	Homo sapiens	hypothetical	425	100
27.0	3760	76	nono saprens	protein	4423	100
517	5763	Y41706	Homo sapiens	Human PRO381	441	100
1 51,	1 5705	/	Dapiens	protein		
		i	(sequence.	ĺ	
518	5787	¥57907	Homo sapiens	Human	952	100
1				transmembrane	1	
			1	protein HTMPN-		1
				31.		

Second S	SEQ	SEO	Acces-	Species	Description	Smith	9.
No. No. No. No. No. No. No.				Species	Description	Sitteti	Identity
In USSN 09/48 2						Water	radicity
USA 09/48 8,725 9198002 rat cytomegalovir us Maastricht meuronal 1135 52 520 5886 gi17810 37 Homo sapiens Score meuronal 1135 52 521 5924 M69221 Homo sapiens Human parotid 710 96 secretory protein 1300 99 secretory 1300 99 1300 99 1300 99 1300 99 1300 99 1300 99 1300 99 1300 99 1300 1300 99 1300 1300 99 1300 1300 99 1300	NO:		NO.				1
1974 1982							
8,725 918002 12 153 36 153 36 151 152 153 36 153 36 153 36 153 36 153 36 153 36 153 36 153 36 153 36 153 36 153 36 153 1						Deore	
Secondary Seco							
10	519		gi98002	rat	nr5	153	36
Second Second	312	3023			P=-		1
37 10 10 10 10 10 10 10 1		l					
37	520	5886	gi17810	Mus musculus	neuronal	1135	52
Characteristics					tyrosine	l	l i
		1	1		threonine	1	
Secretory		l	l		phosphatase 1		1
	521	5924	W69221	Homo sapiens	Human parotid	710	96
Second S				-	secretory		
Secreted Secreted Secreted Sequence	ĺ		1		protein.		1
Protein sequence encoded by gene 79	522	5960	Y91529	Homo sapiens		1300	99
Sequence encoded by gene 79 Sequence encoded by gene 79 Sequence encoded by gene 79 Sequence 80 Sequence		1	Į.		secreted	1	l i
		1	j		protein		
Second Second			İ				
		1					
Kinase C							
Inhibitor-like	523	5962	W69784	Homo sapiens		395	100
Protein (ITPKC-2).	l					1	
Section Sect							
Second Second	1						1
haemopoietic stem cell regulatory protein SWA13. 1808 91			1				
	524	5969	Y79141	Homo sapiens		1205	79
regulatory protein regulatory protein SCM113. SCM113. SCM113. SCM113. IRON SCM113. IRON SCM113. IRON SCM113. IRON SCM113. IRON SCM113. IRON SCM113. IRON	1						
	1	1	l	l .			
SCM113. 1808 91 1808 91 1808 1				1			1
525 5976 gi78031 Homo sapiens natural 1808 91	1						
Signature Sign		5056	-470021	Tramp ganiona		1000	01
associated transcript 4 4367 67	525	5976		HOMO BADIENS		1000	, ,,
transcript 4 transcript 4	į.		1 "	}		1	
526 6002 gi21045 Homo sapiens 4367 67	l	1	l .	l		ì	1
53 53 53 53 53 53 53 54 53 53	526	6002	gi21045	Homo saniens	Cransorapo	4367	67
527 6008 Y66765 Homo sapiens Membrane 822 100	1 320	1 0002			1	1	1
bound protein	527	6008		Homo sapiens	Membrane-	822	100
PRO184.	1		1			1	
14ke	1.	1	1	1		1	1
Fig. Fig.	528	6020	gi19115	Homo sapiens	cytochrome c-	322	50
S29 6036 W71362 Homo sapiens Human S53 S1 Cytokine/stero id receptor protein. Human Cytokine/stero id receptor Protein. Human calcium binding protein (CaBP-1) S51 6075 gi10732 Homo sapiens angiopotetin 2164 100 CaBP-1 S64 S65	1	1	48	_	like		1
S29 6036 W71362 Homo sapiens Human S53 S1 Cytokine/stero id receptor protein. Human Cytokine/stero id receptor Protein. Human calcium binding protein (CaBP-1) S51 6075 gi10732 Homo sapiens angiopotetin 2164 100 CaBP-1 S64 S65	1	1 -	1	ļ	polypeptide	1	
id receptor	529	6036	W71362	Homo sapiens	Human	353	51
protein protein	1	1			cytokine/stero	1	
530 6070 Y42750 Homo sapiens	1	1	1	1		1	
binding protein 1 (CaBP-1).	1		1				
protein 1 ((CaBP-1).	530	6070	Y42750	Homo sapiens		626	100
(CaBP-1). 531 6075 gi10732 Homo sapiens angiopoietin- 2164 100	1		1				
531 6075 gil0732 Homo sapiens angiopoietin- 2164 100	1		1			1	1
		1					
648 like protein	531	6075		Homo sapiens		2164	100
			648		like protein	1	

ID :	SEQ ID	Acces-	Species	Description	Smith	*
		sion	_	-	_	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48				SUGEE	
	8,725				ŀ	
-	0,710			PP1158	 	
532	6106	gi22179	Homo sapiens	p40	1349	96
		70	_	-		
533	6420	W82000	Homo sapiens	Human adult	929	100
				brain secreted	ļ	Ì
1				protein		
				dm26_2.	<u> </u>	
534	6434	gi10732	Homo sapiens	angiopoietin-	2164	100
		648		like protein	l	ł
				PP1158 endothelial	376	
535	6439	gi18970	Homo sapiens		376	100
		1		cell growth		1
	6463	Y41720	Homo sapiens	Human PRO792	360	82
536	6463	141720	Homo sapiens		360	82
				protein	l	
		qi48840	Homo sapiens	sequence.	538	
537	6466	84	Homo sapiens	protein	538	100
538	6508	q154420	Homo sapiens	brocern	2317	96
538	6508	30	nomo sapiens	aminopeptidase	231/	, ,,,
539	6570	q159214	Homo sapiens	чиниторередание	1591	99
333	0370	91	nomo bupieno		1 222	"
540	6719	gi31847	Homo sapiens	glypican	1625	87
541	6772	Y65432	Homo sapiens	Human 5' EST	180	53
1 1				related		
				polypeptide		
542	6789	gi53729	Homo sapiens	ICH-1L	1556	100
		2				
543	6805	gi44547	Homo sapiens	HSPC007	634 -	84
		02				
544	6833	gi18906	Homo sapiens	protein	5726	87
		60		tyrosine		
				phosphatase	1	
		İ		receptor omicron		
545	6834	gi59214	Homo sapiens	omicion	1746	88
545	6834	91	Homo sapiens		1/46	88
546	6851	gi24076	Homo sapiens	neuropilin	3968	98
346	682I	41	nomo saprens	neuropilin	3900	96
547	6868	gi67146	Drosophila	MAP kinase	218	49
		41	melanogaster	phosphatase		
548	6876	Y13138	Homo sapiens	Human	414	76
1 1				secreted		
		1		protein	1	1
1 1				encoded by 5'		1
		l		EST	1	
549	688	Y73463	Homo sapiens	Human	701	98
1 1		1		secreted	1	1
1 1				protein clone		

SEQ	SEQ	Acces-	Sp	ecies	Description	Smith	% Identity
ID NO:	ID NO:	sion No.				Water	Identity
NO:	in	NO.		ĺ		man	
	USSN					Score	
	09/48					SCOLC	
	8,725						
					yk199 1		
					protein		
					sequence		
550	6897	gi58151 80	Homo	sapiens	unknown	509	97
551	690	gi10645	Homo	sapiens	meningioma-	522	100
		186			expressed	\	
					antigen 5s	`	-
		l			splice variant		
552	6909	W78149	Homo	sapiens	Human	485	100
]			secreted		
i		i			protein encoded by		
1		1	l		gene 24 clone		
ł	1	1	}		HSVBF78.		
553	6924	Y35923	Homo	sapiens	Extended	514	99
1	1				human secreted		1
			1		protein	1	
1		Į.	Į.		sequence,	ļ	ļ
554	6937	G03798	Homo	sapiens	Human	281	70
1		1			secreted		
					protein,		
555	6951	gi51185	Homo	sapiens	prostate-	364	95
		7			specific antigen	l	
556	7008	G03200	Homo	sapiens	Human	548	98
336	7000	305200	1101110	Бартена	secreted	3.0	"
		İ			protein,	1	
557	7009	Y22213	Homo	sapiens	Human V201	856	100
			i		protein		
l					sequence.		
558	7057	gi60036	Homo	sapiens	brain	1814	100
1		54	}		specific		1
			l		membrane- anchored		
			1		protein BSMAP		
559	7098	W27291	Homo	sapiens	Human H1075-1	712	100
359	1090	1 421231	110110	Pabrens	secreted	'	1
			1		protein 5'	1	}
l			l		end.		1
560	7114	gi32121	Homo	sapiens	prefoldin	534	98
		10	1		subunit 1		
561	712	gi45586	Homo	sapiens	P85B_HUMAN;	470	74
		41	1		PTDINS-3-	1	1
1					KINASE P85-		1
-	-	-110563	**		BETA	2437	100
562	7215	gi48683	Homo	sapiens	delta-6 fatty	2437	100
1	1	00	1		desaturase		1
		J			accacutabe		

SEO	SEO	Acces-	Species	Description	Smith	8
TD	TD	sion	- Permon	2000127-2211	-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725					
563	7244	Y12445	Homo sapiens	Human 5' EST	428	100
303	/211	112113	nomo saprens	secreted	420	100
				protein		
564	7248	gi31137	Homo sapiens	Humig	633	100
564	7248	6	nomo saprens	Hulling	633	100
565	7252	gi56895	Homo sapiens	KIAA1097	5240	100
565	7252	31	nomo sapiens		5240	100
			**	protein	580	
566	7292	gi51069	Homo sapiens	HSPC040	580	100
	L	98		protein		
567	7306	Y32201	Homo sapiens	Human	1974	95
	l			receptor	1	
	l	l		molecule (REC)	1	
		1		encoded by	l	
				Incyte clone	1	
				2057886.	l	
568	7338	Y73880	Homo sapiens	Human	1566	100
				prostate tumor	l	
	l	l		EST fragment	Į.	1 1
	ŀ	1		derived		
		l		protein #67.		i !
569	736	gi10178	Homo sapiens		1468	100
		317				l i
570	737	G00851	Homo sapiens	Human	522	98
Į	ļ	į.		secreted ·	l]]
1	l			protein,	1	i i
571	740	W85610	Homo sapiens	Secreted	1115	87
1	l			protein clone	ļ.	
1	ļ			eh80 1.	l	
572	7400	Y93948	Homo sapiens	Amino acid	1982	98
	j		_	sequence of a	l]
	l	į.		lectin ss3939		
				polypeptide.	ļ	
573	7415	qi30436	Homo sapiens	KIAA0573	2392	100
	1	70		protein	1	
574	7429	Y40864	Homo sapiens	A human	1183	99
	1			glutathione-S-		_
		I		transferase		1
		l		(hGST)	1	
1	1	1		protein.	1	1
575	7458	Y53643	Homo sapiens	A bone marrow	554	99
1 5.5		1		secreted		
1	1			protein	1	l J
1		1		designated	1	[[
	1			BMS6.	1	
576	7516	gi44683	Homo sapiens		1146	99
1 3/3	,313	11	Bubrens	1	1173	"
577	7526	qi41389	Homo sapiens	promyelocytic	3571	99
1 3//	, ,,,,,	22	Louis Daprens	leukemia zinc	1 55/1	
1	I	1		finger	1	1
Ь		L		13	L	

SEO	SEO	Acces-	Species	Description	Smith	9
ID	ID	sion	species	Description	SILLCII	Identity
NO:	NO:	No.			Water	Identity
NO:	in.	NO.			man	
	USSN				Score	
- 1	09/48				DUULU	
	8,725				ì	
	0,723			protein;	 	
1		1		kruppel-like	1	
				zinc finger		i
				protein; PLZF	1	
578	7571	G02915	Homo sapiens	Human	209	100
			-	secreted		
-		1		protein,		
579	7614	W74726	Homo sapiens	Human	1879	100
1			_	secreted	ļ	
- 1				protein		
1				fg949_3.		
580	7663	gi59125	Homo sapiens		1634	100
		48				
581	7686	gi49297	Homo sapiens	CGI-121	870	100
		11		protein		
582	7714	gi38876	Homo sapiens	phospholipase	4428	99
		5		D		
583	7724	G03933	Homo sapiens	Human	570	100
				secreted	1	1
				protein,		
584	7834	gi89191	Homo sapiens	mesenchymal stem cell	1133	100
		66		protein DSC92		
585	7855	Y48505	Homo sapiens	Human breast	684	100
262	/655	140505	nous saptens	tumour-	004	100
í				associated	l	
		1		protein 50.	1	
586	7870	Y13372	Homo sapiens	Amino acid	2559	100
300				sequence of		
		ļ		protein		
		1		PRO223.		
587	7871	Y91689	Homo sapiens	Human	768	100
		1	-	secreted	l .	
	Į.	Į		protein	1	
	1	1		sequence .		
i				encoded by	1	
				gene 93		
588	7892	gi34659	Homo sapiens	macrophage	532	100
			1	inflammatory	1	
l				protein-2alpha		1
				precursor		
589	7927	gi32575	Homo sapiens		183	91
590	7944	gi16574	Sus scrofa		2744	100
		58		calcium/calmod ulin-dependent	l	1
1	1	1	l	protein kinase	1	
1	1	1	1	II isoform		
1	1	1	1	gamma-B	1	
591	7947	G01131	Homo sapiens	Human	574	96
	1 /24/	1 007707	Duptons			

Second S	SEO	SEO	Acces-	Species	Description	Smith	2:
No. No. No. No. No. No. No. No. No.				ppccrcs	Deberry	-	Identity
Secreted Score Secreted Secreted Score Secreted S						Water	
USSN 09/48 8,725						man	
8,725						Score	
8,725		09/48					
Secreted Protein, Secreted Protein, Secreted Protein, Secreted Protein, Secreted Protein, Secreted							
Section							
28							
Sec	592	800		Homo sapiens		167	68
Solid Soli		1	28				
Solid Soli							
System	593	8055		Homo sapiens		1038	100
14						77.5	100
Secretary Secr	594	8082		Homo sapiens	HSPC014	/15	100
Second	505	0127		Homo canione	twicted	905	95
Secretary Secr	293	0127		nomo saprens		303	. "
Section	1					1	1 1
Secretary Secr	596	8174	gi55322	Homo sapiens		767	100
Secretary Secr	550	0				1	
Secretary Secr	597	8178	q145305	Homo sapiens	TADA1 protein	1132	100
Secretary Secr	1	1	87	-			
From Glioblastoma	598	8215	R66278	Homo sapiens		830	100
Secretary Secr				1			
Second S	1 .	1	1	ŀ			1
Second S	1	ĺ	1				1
Prostate cancer- associated protein 68.						2000	
Cancer-associated Protein 68.	599	8263	Y48371	Homo sapiens		713	98
Associated protein 68.				j			
Secretary Secr	1		l				
Secretary Secr							
37 porcellus B Human lung 833 94	600	027	C 121723	Carria		955	73
Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman lung tumour protein Ruman Ruman lung tumour protein Rumour protein Rumour p	800	04'				-	
tumour protein SAL-82 predicted amino acid sequence. 602 8294 gi49297 Homo sapiens Gi-149 protein 603 8313 gi57714 Homo sapiens group IID secretory phospholipase A2 604 832 Y86260 Homo sapiens Human 319 78 secretory phospholipase A2 605 8357 gi41913 Mus musculus claudin-7 164 47 58 606 8373 gi19452 Homo sapiens protein phosphatase 6	601	828			Human lung	833	94
predicted amino acid sequence.	1						
amino acid sequence.	1				SAL-82		
Sequence Sequence			l	ł	predicted	i	
602 6294 gi49297 Homo sapiens CGI-149 1085 100	!			ì			1 1
603 8313 gi57714 Homo sapiens Group IID Secretory Secretory Secretory Group IID Secretory Group IID Secretory Group IID Secretory Group IID Secretory Group IID Secretory Group IID Secretory Group IID Group IID Secretory Group IID Gr	1						
603 8313 gi57714 Homo sapiens group TID secretory phospholipase A2 A2 A2 A2 A32 A34 A3	602	8294		Homo sapiens		1085	100
20							
phospholipase A2	603	8313		Homo sapiens		852	100
A2			20				
S32 Y86260 Homo sapiens Human S19 78			1			1	Į .
Secreted protein HELHN47, Gaudin-7 164 47 Gaudin-7 164 47 Gaudin-7	500	033	V06260	Home canions		219	70
protein	604	832	100200	nomo sapiens		313	'°
HBLiN47, 605 8357 gi41913 Mus musculus claudin-7 164 47 158 15			1			1	
605 8357 gi41913 Mus musculus claudin-7 164 47 58 606 8373 gi19452 Homo sapiens protein phosphatase 6	1		1				
58 58 606 8373 g119452 Homo sapiens protein 1666 100 phosphatase 6	605	8357	qi41913	Mus musculus		164	47
606 8373 gi19452 Homo sapiens protein 1666 100 phosphatase 6	1 555	1					
	606	8373		Homo sapiens		1666	100
607 8379 gi58529 Homo sapiens 1226 100	1	1			phosphatase 6	1	
	607	8379	gi58529	Homo sapiens		1226	100

	SEO	Acces-	Species	Description	Smith	8
SEQ TD	ID	sion	Species	Description	- Surcu	Identity
NO:	NO:	NO.			Water	racincacy
NO:	in.				man	
1	USSN				Score	
l.	09/48	l i				
1	8,725					
		81		cardiotrophin-		
J		l i		like cytokine		
1				CTC		
608	8380	gi34022	Homo sapiens	protein	974	100
		16				
609	8386	gi38698	Homo sapiens	oncostatin M	1297	99
		8			722	
610	8418	Y70210	Homo sapiens	Human TANGO 130 protein.	722	98
		G01895	**	Human	490	95
611	8442	G01895	Homo sapiens	secreted	430	95
		l		protein,		
612	8457	G04048	Homo sapiens	Human	450	98
614	8437	G04048	nono saprens	secreted	**50	, ,,
		i '		protein,		
613	8458	W97119	Homo sapiens	S-adenosyl-L-	1484	100
013	0430	1137223	nome bapions	methyltransfer		
	1	1		ase (SAM-MT)		
i l				protein.		
614	8469	q171597	Homo sapiens		255	100
		99	-	1-0		
615	8480	gi45895	Homo sapiens	KIAA0943	1998	100
		30		protein		
616	8521	gi57262	multiple	unknown	250	82
		35	sclerosis	protein U5/2		
		ł	associated	1	ł	
		1	retrovirus element			
617	857	q196639	Homo sapiens	cysteinyl	612	99
61/	05/	58	HOIIIO SAPIEIIS	leukotriene	012	""
l	1	30		CysLT2	ļ	ļ
l		1		receptor		i
618	8574	gi68412	Homo sapiens	HSPC305	1049	100
5-5	1	60			1	
619	8606	gi33677	Homo sapiens	scrapie .	544	100
	1	07	1	responsive	1	
				protein 1		
620	8632	G01158	Homo sapiens	Human	502	100
				secreted		
	İ			protein,	· .	' '
621	8646	gi38822	Homo sapiens	KIAA0764	2175	100
		49		protein		
622	8666	Y66196	Homo sapiens	Human bladder	1080	95
1		1	1	tumour EST		1
1		1	1	encoded protein 54.	1	ļ
623	8675	gi99639	Homo sapiens	NPD009	432	96
623	8675	08	nomo sapiens	MEDOUS	432	96
	1			I		1
624	8683	G04018	Homo sapiens	Human	469	98

SEO	SEO	Acces-	Species	Description	Smith	*
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
	8,725			secreted		
				protein,		
625	8708	qi16335	Homo sapiens	C8	364	98
623	8700	64	nomo sapiens	"	301	,,,
626	8720	gi82484	Homo sapiens		191	69
		65		hepatocellular		
				carcinoma-		l
	1	l		associated		1
				antigen 56A Human	369	97
627	8756	Y94984	Homo sapiens	secreted	369	97
				protein		
	1	1		vell 1,	1	l
628	8765	Y00346	Homo sapiens	Fragment of	1068	97
00				human secreted		
1		Į		protein		
		i		encoded by		ì
		1		gene 2.		
629	8783	Y27918	Homo sapiens	Human	1051	95
		1		secreted		1
		1	ļ	protein		
		Į.		encoded by gene No. 123.	1	
630	8804	Y25426	Homo sapiens	Human SIGIRR	887	100
830	0004	123420	nomo sapiens	protein.	""	100
631	8838	Y99409	Homo sapiens	Human PRO1343	1279	100
	1	1	-	(UNQ698) amino	1	
	1	١.		acid sequence	ł	
632	8851	W74785	Homo sapiens	Human	454	100
1		ĺ		secreted	[ĺ
1				protein	1	1
	1	1		encoded by gene 56 clone	1	1
1	İ			gene 56 clone	1	1
633	8853	W75116	Homo sapiens	Human	245	95
				secreted	l .	
1	1	1		protein	1	
		1	1	encoded by		
1		1	1	gene 60 clone		
	1	1		HILCJ01.	479	74
634	8857	gi25651 96	Homo sapiens	non- functional	479	/4
		96	1	folate binding	1	
1		1	1	protein		1
635	8859	Y02690	Homo sapiens	Human	600	100
""	""	1		secreted	1	
1		Ì	1	protein	1	
			1	encoded by		
1		1		gene 41c lone		

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion			-	Identity
NO:	NO:	No.			Water	2
	in.				man	
	USSN	1			Score	
	09/48					
	8,725			1		
	37.12			HSZAF47.		
636	8901	Y86491	Homo sapiens	Human gene	548	99
ļ				59-encoded		
		Į l		protein	Į	
				fragment,	L	
637	8907	W88745	Homo sapiens	Secreted	2004	99
				protein	\	
	l			encoded by	i `	
		Į į		gene 30 clone	ļ	
į				HTSEV09.		
638	8934	W75088	Homo sapiens	Human	421	98
1	1			secreted	l	
1	ı	Į.		protein	ĺ	
l	1			encoded by		
1	l	i	ļ	gene 32 clone	1	
				HAGBB70.	267	72
639	8960	Y02693	Homo sapiens	secreted	267	/2
			ĺ	protein		
			Į.	encoded by	Į.	
1			1	gene 44 clone		
	1	i		HTDAD22.		
640	8979	Y76143	Homo sapiens	Human	1374	98
040	6913	170143	nome suprems	secreted	20/2	30
	l	1		protein		
ł		l	-	encoded by	1	l
	l		1	gene 20.		
641	8980	Y11433	Homo sapiens	Human 5' EST	466	100
				secreted		
ĺ			Ì	protein		
642	8986	G02626	Homo sapiens	Human	306	100
1				secreted		
			1	protein,		
643	8987	G02093	Homo sapiens	Human	486	97
	1			secreted		I
1		L		protein,		
644	8995	Y12908	Homo sapiens	Human 5' EST	181	100
1	1	1	1	secreted	1	1
				protein		
645	9035	Y71108	Homo sapiens	Human	800	100
1				Hydrolase		
		I	I	protein-6	1	
			<u> </u>	(HYDRL-6).		
646	9062	gi88860	Homo sapiens	1	523	100
		05		lysophosphatid		1
1		1		ic acid		
1		1	[acyltransferas		I
-		10000	W	e-delta Human	1366	99
647	9074	Y25761	Homo sapiens	nullan	1366	1 99

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	•		-	Identity
NO:	NO:	No.			Water	
	in				man	
	USSN				Score	
	09/48					
ĺ	8,725					
	-7			secreted		
1				protein		
				encoded from		
1				gene 51.		
648	9075	Y73336	Homo sapiens	HTRM clone	1591	100
	ļ	1		1852290	1	
ì				protein		
	1			sequence.	١.	
649	9098	Y57878	Homo sapiens	Human	516	100
1	3030	13.070		transmembrane		
		,		protein HTMPN-	1	
		1		2.		
650	9109	gi23903	Homo sapiens	63kDa protein	1141	97
050	3103	9220000	nome Bupiens	kinase		
651	911	gi32456	Homo sapiens	protein-	2591	100
		3		tyrosine		
1				phosphatase	1	
652	912	qi11367	Homo sapiens	human P5	212	46
002		43				"
653	9163	Y34129	Homo sapiens	Human	377	71
000	1			potassium	1	
1	1	1	1	channel	1	1
1				K+Hnov28.		
654	9164	Y41324	Homo sapiens	Human	1083	99
1				secreted		
	1			protein	1	
	1		ł	encoded by	1	
	1			gene 17 clone		
1		1		HNFIY77.		
655	9173	gi68512	Mus musculus	protein	631	93
1		56		tyrosine	l	
		1		phosphatase-		
1		1		like protein		
1		1		PTPLB	1	
656	9187	Y66721	Homo sapiens	Membrane-	1173	95
1.	1	1	· .	bound protein		l
1			1	PRO511.		
657	9190	W40378	Homo sapiens	Human breast	792	81
1	1	1	1	cancer protein		
1		1		CH14-2a16-1		
			1	from 2.0 kB		
1		l		DNA fragment		1
1		1		#2.		
658	9194	Y02781	Homo sapiens	Human	462	70
			1	secreted	1	l
1			L	protein.		
659	9210	G02994	Homo sapiens	Human	166	80
1			1	secreted		
1				protein,		
			L	procein,		

SEO	SEO	Acces-	Species	Description	Smith	%
ID	ID	sion	Species	Description	-	Identity
NO:	NO:	No.			Water	
NO.	in.	1.0.			man	
	USSN	, ,	ì		Score	1
	09/48) !				}
1	8,725					
660	9222	G02520	Homo sapiens	Human	186	43
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			secreted		
i .				protein,		
661	9230	gi67065	Homo sapiens	inositol	1315	95
	, , , ,	54		1,4,5-		1
1	1	1		trisphosphate	ŀ	
1		1		3-kinase B	١.	[[
662	9258	q152214	Homo sapiens	B-cell growth	120	56
1	1	5		factor		((
663	9260	G04072	Homo sapiens	Human	138	51
1	1	1	_	secreted	1	1 1
İ	1	1		protein,	1	1
664	9271	gi66900	Homo sapiens	tetraspanin	317	67
1	1	95	-	protein	ł	1
665	9272	gi16304	Bos taurus	factor	444	72
1	1	2		activating	1	
	1	1		exoenzyme S	1	1
666	9275	gi40177	Homo sapiens	ribosomal	424	81
1	1	4	-	protein S6	1	
1	1			kinase 3		1
667	930	G02355	Homo sapiens	Human	167	41
	1			secreted	ł	
i		ļ		protein,		
668	9304	gi89797	Canis	Band4.1-like5	1493	93
		4.3	familiaris	protein		
669	9346	gi27389	Mus musculus	high mobility	384	89
1	ł	89	1	group protein		
				homolog HMG4		
670	9347	gi36613	Homo sapiens		199	91
1	1	1		serine/threoni	1	l
]		ſ	!	ne protein	1	J
				kinase	334	57
671	935	gi55418 70	Homo sapiens	QA79 membrane protein,	334) 57
1		70	1	allelic	1	
		1		variant airm-	1	
1	1	1	1	1b	1	1
672	9350	gi33271	Homo sapiens	KIAA0655	757	87
0/2	2350	24	nomo paprens	protein	1	1 3,
673	9351	W57260	Homo sapiens	Human	573	95
1 0.3	1 3331	1.57230	Dupions	semaphorin Y.	1	1
674	9356	gi59977	Human	tripartite	127	59
1 0 .4	1	323377	endogenous	fusion	1	
		1	retrovirus	transcript	1	1
	(1		PLA2L	1	1
675	9363	Y17834	Homo sapiens	Human PRO361	968	92
1	1 - 505	1		protein		
1	1			sequence.	1	1
676	9366	qi72431	Homo sapiens	KIAA1374	649	96
		13				

SEO I	SEQ	Acces-	Species	Description	Smith	8
ID	ID	sion	-	-	-	Identity
NO:	NO:	No.			Water	- 1
	in				man	
	USSN				Score	
	09/48					
	8,725					
		29		protein	222	69
677	9369	G03793	Homo sapiens	Human secreted	222	69
				protein,		
678	9378	gi44683	Homo sapiens	protein,	163	39
678	9378	g144683	Homo sapiens		163	39
679	9393	qi27389	Mus musculus	high mobility	384	89
013	3333	89	Hub muscurus	group protein	301	
		1		homolog HMG4		
680	9444	G01399	Homo sapiens	Human	157	93
				secreted	1	
				protein,		1
681	9467	gi44547	Homo sapiens	HSPC007	230	71
		02	_		1	
682	9486	gi10047	Homo sapiens	KIAA1584	605	93
		243		protein		
683	949	Y30895	Homo sapiens	Human	704	99
ļ		1		secreted		i i
	ı	l	ľ	protein	1	i i
	ļ	ļ	ł	fragment	1	
		l	ł	encoded from	ł	l i
684	9499	W36002	Homo sapiens	gene 25. Human Fchd531	2173	96
684	9499	W36002	Homo sapiens	gene product.	21/3	96
685	9510	gi16657	Homo sapiens		867	83
		99				
686	9523	Y53022	Homo sapiens	Human	1252	89
				secreted	1	
ļ		1		protein clone	Į	1 1
	i .			qf116_2 protein		
		Į.		sequence	1	
687	9534	¥66670	Homo sapiens	Membrane-	998	100
		1	Tome Day	bound protein	1	
	1		1	PRO1180. ·	ł	
688	9539	Y76144	Homo sapiens	Human	633	100
			_	secreted	1	
		1	Į.	protein	1	1
l	1	ł		encoded by	ł	1
				gene 21.		
689	954	G02490	Homo sapiens	Human	160	78
1				secreted	İ	1
				protein,		
690	9546	gi18112	Homo sapiens	chorionic	616	96
	1	1		somatomammotro		1
	ļ	100.000	L	pin		
691	955	gi72431 03	Homo sapiens	KIAA1361 protein	2042	100
692	9551	qi17723	Homo sapiens	ras-related	341	57
032	1 2221	1 311/123	1 TONO BUDICIES	Las reraced	741	

ID	SEO	SEO	Acces-	Species	Description	Smith	*
In USSN 09/48 8,725 45 GTP-binding protein			sion	*	_	-	Identity
USSN 09/48 8,725 45 GTP-binding protein Human adult testis secreted protein 17 papio 17 papio 18 protein 18 papio 18 protein 19 prot	NO:	NO:	No.			Water	- 1
09/48 8,725 45		in			1	man	l i
8,725 45 GTP-binding protein		USSN			1	Score	
45		09/48			Ì	ł	
		8,725					
Secretar Secretar			45				
Secreted Secreted		}					1
Secreted Protein Protein Protein	693	9558	W88403	Homo sapiens		2252	100
Protein Gas3 6.		ł				l	1
Secretar Secretar		1				1	
		;				1	
17							
Fig. Fig.	694	9561			NTR	100	30
Secreted Protein HELHM47, Secreted Protein HELHM47, Secreted Protein HELHM47, Secreted Protein HELHM47, Secreted Protein HELHM47, Secreted Protein Secreted Protein Secreted Protein P							
Protein	695	957	Y86260	Homo sapiens		319	78
Secretar Secretar							
696 9572 gi97294 Mus musculus Elf-1 806 92 92 9576 9637 9654 9639 100 820 820 9586 9586 968 9586 968 9		(1	(
10 10 10 10 10 10 10 10							
697 9576 gi32490 Homo sapiens geminin 448 98 698 9586 gi28872 Homo sapiens factor I 25 kDa subunit 699 9587 G00995 Homo sapiens Human 726 99 700 9592 gi49527 Rattus ribosomal protein 701 9595 gi77999 Homo sapiens Human 100 702 9610 Y07875 Homo sapiens Human 574 100 703 9634 Y73325 Homo sapiens Human 574 100 704 9639 G00805 Homo sapiens Human 196 73 705 9647 G03786 Homo sapiens Human 196 73 706 9653 gi38823 Homo sapiens KIAA0810 523 100 707 9654 G01924 Homo sapiens KIAA0810 523 100 707 9654 G01924 Homo sapiens Human 469 100 707 9654 G01924 Homo sapiens Human 469 100 707 708 708 Forein Forein Forein Forein 100 708 9653 gi38823 Homo sapiens KIAA0810 523 100 709	696	9572		Mus musculus	Elf-1	806	92
9586 9586 95887 1000 sapiens							
698 9586 gi22872 Homo sapiens mRNA cleavage 208 100 688	697	9576		Homo sapiens	geminin	448	98
B8						<u> </u>	l
No. Space	698	9586		Homo sapiens		208	100
699 9587 G00995 Homo sapiens Human secreted protein, 726 99 9592 g149527 Rattus ribosomal 202 78 701 9595 g177999 Homo sapiens UBASH3A 453 47 Protein 12 Protein 170 Protein 170 Protein P		1	88	ł		ł	
Secreted protein,						1	
Protein Protein	699	9587	G00995	Homo sapiens		726	99
700 9592 gi49527 Rattus ribosomal 202 78 78 78 78 78 78 78 7			1			l	}
3							
701 9595 gi77999 Homo sapiens UBASH3A 453 473 470	700	9592				202	78
12 protein							
702 9610 Y07875 Homo sapiens Human secreted protein fragment encoded from gene 24. 703 9634 Y73325 Homo sapiens HTMR dione 001106 protein sequence. 704 9639 G00805 Homo sapiens Human 155 67 705 9647 G03786 Homo sapiens Human 196 73 705 9653 gi38823 Homo sapiens KTAA0810 523 104 707 9654 G01924 Homo sapiens Human 469 100 707 707 9654 G01924 Homo sapiens Human 469 100	701	9595		Homo sapiens		453	47
Secreted Protein Fragment Protein Pr							
protein fragment	702	9610	107875	Homo sapiens		5/4	100
fragment encoded from gene 24. 703 9634 Y73325 Homo sapiens Gollo protein sequence. 704 9639 G00805 Homo sapiens Human Human 155 67 705 9647 G03786 Homo sapiens Human 196 73 706 9653 gi38823 Homo sapiens EthAoBio 523 100 707 9654 G01924 Homo sapiens Human 469 100				1			ļ
encoded from gene 24.			İ				i
9634 Y73325 Homo sapiens Hom		j.		l		ļ	i .
703 9634 Y73325 Homo sapiens HTRM clone 001106 protein sequence. 99 704 9639 G00805 Homo sapiens Human secreted protein, 155 67 705 9647 G03786 Homo sapiens Human secreted protein, 196 73 706 9653 gi38823 Homo sapiens KIAA0810 protein 523 100 707 9654 G01924 Homo sapiens Human 469 100						i	
001106 protein		0634	7577705	Trans and and		920	90
Sequence. Sequence.	703	9634	1/3325	nomo sapiens		820) "
704 9639 G00805 Homo sapiens Human 155 67							
Secreted Protein, 196 73 705 9647 G03786 Homo sapiens Human 196 73 Secreted Protein, 706 9653 gi38823 Homo sapiens KIAA0810 523 106 707 9654 G01924 Homo sapiens Human 469 101		0030	COORDE	Home garriana		100	67
protein, protein,	704	9639	G00805	Homo sapiens		155	87
705 9647 G03786 Homo sapiens Human 196 73 secreted protein, 706 9653 gi38823 Homo sapiens KIAA0810 523 106 41 protein protein 707 9654 G01924 Homo sapiens Human 469 100			1			I	
		2545	003706	Trans and and		106	
protein,	705	9647	GU3 /86	nomo sapiens		136	/3
706 9653 gi38823 Homo sapiens KIAA0810 523 106 41 protein 523 106 707 9654 G01924 Homo sapiens Human 469 100						i	
41 protein 707 9654 G01924 Homo sapiens Human 469 100		2652		Home geniena		E22	100
707 9654 G01924 Homo sapiens Human 469 100	106	9653		nomo sapiens		323	1 100
		0.554		Trama and and		160	100
	707	9654	G01924	nomo sapiens		409	1 100
protein,	l		1	1		1	1
	-	0676	V00275	Homo gamis ==		470	100
708 9678 Y99376 Homo sapiens Human PRO1244 474 100	708	96/8	1 1993/6	nomo sapiens		474	100
(ONGESE) digitio			1		(ONQUEO) AMITHO		

SEO	SEO	Acces-	Species	Description	Smith	
ID	ID	sion	opecies	Descripcion	Suizen	Identity
NO:	NO:	No.			Water	racincacy
NO.	in	1.0.			man	
	USSN	i			Score	
	09/48	Į į			DUOLU	
	8,725					
	0,723			acid sequence		
709	9709	Y11825	Homo sapiens	Human 5' EST	657	100
			_	secreted		
	ł			protein	ł	1
710	9722	gi76774	Mus musculus	GTPase Rab37	189	75
		22			ì	
711	9731	Y12424	Homo sapiens	Human 5' EST	207	100
	ĺ			secreted	`	
]	1]		protein]	
712	9742	Y57954	Homo sapiens	Human	484	100
			-	transmembrane		
1	l	1		protein HTMPN-	[1
1				78.	1	
713	9749	qi36878	Homo sapiens	hT41	386	65
1		29				
714	9755	gi20552	Homo sapiens	Similar to a	2583	100
		95		C.elegans		
1	ļ	ľ		protein in	ł	
1				cosmid C14H10	1	
715	9762	G03436	Homo sapiens	Human	176	61
i		1		secreted	1	
	1			protein,		
716	9763	gi61800	Homo sapiens	anaphase-	1016	100
		11		promoting		i
		1	l	complex	1	
				subunit 4		
717	9784	G03570	Homo sapiens	Human	401	96
i		ĺ		secreted		
				protein,		
718	9794	G00803	Homo sapiens	Human	333	69
İ	[ĺ	[secreted	I	1
				protein,		
719	9795	gi25162 42	Mus musculus	Rab33B	669	94
.720	9798	gi55859	Homo sapiens	ZID, zinc	605	96
	1	9	ĺ	finger protein		
1	1	l		with	1	
		[1	interaction		1
				domain	L	
721	9805	Y25881	Homo sapiens	Human	566	96
1	1	j	ļ	secreted	1	j l
1		1		protein		[
1		}	}	fragment		
		1	1	encoded from	1	i i
				gene 61.		
722	9816	gi53205	Homo sapiens	protein-	384	100
1		6		tyrosine-	1	
		G00857	77	phosphatase Human	520	
723	9830	G00857	Homo sapiens	numan	539	96

SEO	SEQ	Acces-	Species	Description	Smith	-
ID	ID	sion	proces	DODOL A POLON	-	Identity
NO:	NO:	No.			Water	
140.	in.				man	
	USSN				Score	
	09/48	1			Deoze	
	8,725					
	0,723			secreted		
	1	l		protein,		
724	9836	G00914	Homo sapiens	Human	527	100
/24	3030	900314	nomo saprens	secreted	ا عدا	100
ł	l			protein.	ł	
725	9837	qi26620	Homo sapiens	KIAA0409	230	67
123	3637	99	nomo saprons	MARKO 403	1 250	0,
726	984	Y29517	Homo sapiens	Human lung	833	94
120	384	129317	nomo saprens	tumour protein	033	34
ļ	1	1		SAL-82	ļ	
1	1			predicted		
	I			amino acid		
		i		sequence.	1	
727	9849	q172293	Homo sapiens	ZNF264.	140	90
127	9849	g172293	nouto sapiens	partial cds	140	90
728	9851	qi52625	Homo sapiens	hypothetical	369	64
728	9821		Homo sapiens	protein	369	04
		60 q138819			167	93
729	9859		Homo sapiens	hypothetical	167	93
L		76		protein	837	78
730	9863	g172957	Drosophila	CG15433 gene	837	78
	1	07	melanogaster	product		
731	9888	gi33196	Homo sapiens		209	72
		77	Rattus		604	92
732	989	gi45571		zinc finger	604	92
			norvegicus	protein RIN ZF		
733	9919	G01843	Homo sapiens	Human	586	100
1	1		1	secreted		
L				protein,		
734	9922	W67869	Homo sapiens	Human	551	93
1	ł	1	1	secreted		i
1		1	l .	protein		l
1	1	1	1	encoded by		[
1				gene 63 clone		l
		1,5000	L.	HHGDB72.	251	78
. 735	9947	W78239	Homo sapiens	Fragment of	251	/8
1				human secreted	1	1
1			[protein		I
1	1	1	I	encoded by	1	l
		1 10000		gene 3.	0.00	
736	9956	Y36203	Homo sapiens	Human	273	77
				secreted		I
				protein #75.		
737	9961	Y99357	Homo sapiens	Human PRO1190	650	99
			1	(UNQ604) amino		
				acid sequence		
738	9972	Y12149	Homo sapiens	Human 5' EST	284	100
	1	l .	1	secreted	1	l
				protein	l	
739	9977	gi10039	Homo sapiens	osteoblast	822	98
			•			

SEO	SEO	Acces-	Species	Description	Smith	8
ID	ID	sion	-	_	-	Identity
NO:	NO:	No.		l	Water	
1	in		ļ		man	
}	USSN)	ļ		Score	
1	09/48	i	ļ			ļ
1	8,725	j				
		439		differentiatio	,	
1	1	1	Į.	n promoting		
		1		factor		

Table 3 - Amino Acids

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Fhenylalanine, G=Glycine, H=Histidine, I=Isoleucine, H=Fissidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
1	740	2	557	FVGRLIRLGEALRLRPDPSGGCRLQPALVGETTMSEKENNFPP LDFRIPUNKDFYQMFSDEI PVEHOULVERTYPLIMMFYGATLGV NLIACLAWWIGGGSGTMFGLAFVMLLLFTFCGYVCNFFPVYKA FRADSSFNFMAFFFIFRSPVCPDRHPGDWLLRLGEVRLAVGNW LLPVQFGRCRGHA
2	741	305	838	FICAGADIFCAYLAMSSKQATSFFACAADGEDAMTQDLTSREK BEGSDQHUSAHIPHEHTMINKHESELJFTUSTIQQDADMDSV LSSQQRMESENNKLCSLYSFRNTSTSPHKPDEGSRDREIMTSV TFGTFERRRGSLADVVDTLKQKKLEEMTRTEQEDSSCMEKLLS KOWKE
3	742	12	1315	EGYLTGRPTREVANKAKSTADLEMMGRSPOFAMGHLYGYBYUL VRRCLIGENDEMTRITLCSPORSOPEGREEREEVALGHHRILPAL GRALGHSIQORATSTAKTWINDEYEBEFVGINBVERAGGKVTERS KVPMVARGIUKRAREDELBYGNAKLEVENDELDEVSKEBOSVIL LATLBERBILGERERLETAYLRARDSBERKFSLFSAAVERSHEK BERTBARBTKNISLIGSVLGALIGVAGSTVONVEVLGEKALLL EAGKGVGLORATEROASVSRQQBOLHHILMVDLRGLVBRAGD GQDSGSQAGSPPTEDREDVDLASALKENGLHSEGVHSGLGEL EQLIGGLEKTCSQMAGVVQLVKSAAHPGLVEPADGAMPSFLLEG GSMILALSDTEGRLERQVNENTIYSTLVTCVTFVATLEVLIML KKAS
4	743	112	745	NI.PPLTFOPOPELAGSGPSHWFSPUSLEVASKAPGTMAQALGE DLVQPPELQDDSSSLISSDSSELGSGPGFVQDARYGFIGSSAEP GPGHPPADLIROREMKWURMTSHWSKTWSRRYKKVKMQCRKGI PSALRARCWPLLCGAHVCQKNSPGTYQELAEAPGDDQWMGTIG RDLHROFPLHEWFVSPQGHQQGLLQVLKAYTLYRPSQG
5	744	99	265	LRGMAAAAAGPAASQRFFQSFSDALIDQDPQAALEVGEPFLLP PLPADPPPSSTA

		Predicted	Predicted	4 1 21 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110100	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ì	ĺ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	l	acid	acid	\=possible nucleotide insertion)
1	1	residue	residue	
	l	of amino acid	of amino	
1			sequence	
6	745	sequence 210	758	WACFRSAHCSRHIRNRIFMYLYWDKTRSPVCKGPALREERPOP
0	743	210	130	RLKLEDYKDRLKSGEHLNPDQLEAVEKYBEVLHNLEFAKELQK
i		i	1	TFSGLSLDLLKAOKKAORREHMLKLEAEKKKLRTILOVOYVLO
ł		1	Ì	NLTOEHVOKDFKGGLNGAVYLPSKELDYLIKFSKLTCPERNES
1				LROTLEGSTV
7	746	48	450	XAGVQMKLEFLQRKFWAATRQCSTVDGPCTQSCEDSDLDCFVI
1		l		DNNGFILISKRSRETGRFLGEVDGAVLTQLLSMGVFSQVTMYD
	1]	YQAMCKPSSHHHSAAQPLVSPISAFLTATRWLLQELVLFLLEW
1	1			SVWGSX*
8	747	1	469	CRGRLAQLEEAAVAATMSAGDAVCTGWLVKSPPERKLQRYAWR
)		1	ĺ	KRWFVLRRGRMSGNPDVLEYYRNKHSSKPIRVIDLSECAVWKH
1			i	VGPSFVRKEFQNNFVFIVKTTSRTFYLVAKTEQEMQVWVHSIS
1	1			QVCNLGHLEDGAADSMESLSYTRSYLQ
9	748	242	409	IPAVPLTSCVTVGSYSLSVRDYDPRQGDTVKHYKIRTL\DKRG
l _				FYISP\RSTFSTLQ
10	749	1	1146	KDSVLNIARGKKYGEKTKRVSSRKKPALKC/TSQKQPALKAIC
	ĺ		-	DKEDSVPNTATEKKDEQISGTVSSQKQPALKATSDKKDSVSNI
	1			PTEIKDGQQSGTVSSQKQPAWKATSVKKDSVSNIATEIKDGQI
1	1	1	(\RGTVSSQRQPALKA\TGDEKDSVSNIAREIKDGEKSGTVSPQ
1	1	1	(KQSAQKVIFKKKVSLLNIATRITGGWKSGTEYPENLPTLKATI
1	1			ENKNSVLNTATKMKDVQTSTPEQDLEMASEGEQKRLEEYENNQ PQVKNQIHSRDDLDDIIQSSQTVSEDGDSLCCNCKNVILLIDQ
1	(ì	1	HEMKCKDCVHLLKIKKTFCLCKRLTELKDNHCEOLRVKIRKLK
		1	ì	NKASVLOKELSEKEEIKSQLKHETLELEKELCSLEFAIQQ
11	750	3	892	SPLRYRAGOSGSTISSSSCAMWRCGGROGLCVLRRLSGGHAHH
1 11	1 /50	13	052	RAWRWNSNRACERALOYKLGDKIHGFTVNOVTSVPELFLTAVK
	1		1	LTHDDTGARYLHLAREDTNNLFSVQFRTTPMDSTGVPHILEHT
1	1			VLCGSOKYPCRDPFFKMLNRSLSTFMNAFTASDYTLYPFSTON
1	1		1	PKDFONLLSVYLDATFFPCLRELDFWQEGWRLEHENPSDPQTP
1	1	1	1	LVFKGVVFNEMKGAFTDNERIFSQHLQNRLLPDHTYSVVSGGD
1	1	1	1	PLCIPELTWEQLKQFHATHYHPSNARFFTYGNFPLDQH
12	751	367	856	RGAKAKSAVLPPGPPCSSILILSPPAPLTPRSPGTEATRPTAM
1	1.52	1	1	SKSLKKKSHWTSKVHESVIGRNPEGOLGFELKGGAENGOFPYL
	}	1	1	GEVKPGKVAYESGSKLVSEELLLEVNETPVAGLTIRDVLAVIK
	1	1		HCKDPLRLKCVKQGESSGLLSVLPGGGTARGAGQ
1.3	752	144	442	SHRPQPDAWRQGNAFQCVQKEKMQVSSAEVRIGPMRLTQDPIQ
1		1	1	VLLIFAKEDSQSDGFWWACDRAGYRCNIARTPESALECFLDKH
1	J	1	1	HEIIVIDHRQTQN
14	753	1	581	FRLAGCGHLLVSLLGLLLLLARSGTRALVCLPCDESKCEEPRN
1	1	1		CPGSIVQGVCGCCYTCASQRNESCGGTFGIYGTCDRGLRCVIR
1	1	1	1	PPLNGDSLTEYBAGVCEDENWTDDQLLGFKPCNENLIAGCNII
1	1	1		NGKCECNTIRTCSNPFEFPSQDMCLSALKRIEEEKPDCSKARC
	1	1	1	EVQFSPRCPEDSVLIEGYAPP

D D D D D D D D D D					
NO. NO. of coation of	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
No.					
Second Contemporary Contempora					F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Acids					K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids Acids to first amino acid residue of amino acid sequence seq					P=Proline, O=Glutamine, R=Arginine, S=Serine,
amino acid residue of armino acid residue of armino acid sequence	Acids	Acids			
acid					
					\=possible nucleotide insertion)
15		l			
REALITEOGREPKKENTPEVERVTIVFALKGS	15	754			EDMAXM/GCMEOVWKPRDLOOLOREI.DATATVI.ANPODESEOS
16	13	/54	1 -	213	
VIAM/GENER/GENERGIERIGIBGLEG/VYFGEFCSKY 756 273 574 GCCCPOH-BGYIGESKANLFASGGG/VCLYDIEGOG/IRALENT RHASRRS-PERMEVGLEVGLIKAMRICDVTFSSDGYCS ASELVKARPFYAMB 18 757 3 390 INSKODDFVSARPERPELPERREGMVVTGREEDGERODGANGSS DAEDDFLERATPTATQAGHAL/PPAAT /GSFLRIFPLTSSGLT SLIRG-HCYDRARRYCGSVGYTS-PETPEAGTSS-TEMAHTL 19 758 98 461 RALWYGGCSGEACGIGMSGLLTDPEQRAGEPRYPGFVLGLDVG SYNTRCH-YTDRARRYCGSSVGVENILYPGLGWVELDPDVLMTQ FVAV KRAVKAAGFOMMQTVGLGISTQRATFITM 10 751 100 731 GLARGCSNGSVKLMGSCSGEFFTELERREFPLTEAMEGGFAVCC ODPRABLUEVRALDVHLEERAGGEPTRINGTP-PPARABA VIPGSTSELLDARPS-LSARKLS-LQEEPAGS-VLEQAGPYATGP ASHLSFAMBERT-ISSHWA-IS-BARGCVGLANGAGPYATGP ASHLSFAMBERT-ISSHWA-IS-BARGCVGLANGAGPYATGP ASHLSFAMBERT-ISSHWA-IS-BARGCVGLANGAGPYATGP ASHLSFAMBERT-ISSHWA-IS-BARGVEVEVENEDPDV-RGS-ETV TMGENDFAVEAPFS-FRS-IG-GLDLKTS-FVARPADA-VAAQILS-LL-LL-REFFILVALI-LL-LL-LL-GLGH-PDC-SKKYRCS-SFKC LL-PLKFFILVALI-LL-LL-LL-GLGH-PDC-SKKYRCS-SFKC TELLARC-GOVSDCKDGBDERFCVR-VGG-GNALQV-FTA-SRKTM AND SLAMPGGV-TI-GKKNNOP-SEV-PDR-DLG-GVK-KGS-SFKC 1			222	F.C.2	
17	16	/55	313	562	
BWASERSPEGMEVGLPLSVUCHILKAMEICDVTFSSDGYCS					
ASELWKARPTVAGM	17	756	273	5/4	
18		İ		ļ	
DAEDDFLEPATPTATOAGHAL/PRAT/GSTELLEPTITSSIGHT SLHACPHCGATKTPCWQPCSVGGTTS PATPAGTSSTEMAHTI. ENC 19 758 98 461 RALWVGGCSGEACGIGMSGLLIDDEQRAQEPRYEGVLGLDVG SSVIRCHVYDRAARVCGSSVQKVENLYPQIGWVELDEDVIMIQ FVAVIKEAVKAAGIQMNQIVGLGISTQRATFITWN OPPARALVERVAALDVHLEERAGGEPTHERREPTITSAHEGGPAVCC OPPARALVERVAALDVHLEERAGGEPTHERREPTITSAHEGGPAVCC OPPARALVERVAALDVHLEERAGGEPTHGUDPPPARAARS VIPGSTSKLLPARPSISARKISLQERPAGSVLEAQAGPATTOP ASHISPRAWRFTITSSHHVAISDAEDCVQLAQVKLQSSIGKAA VGVVURLANNSSEDRIYAMKVLSKKLLQKYGFFRPS 22 760 2 520 FVYGKPVTLWFTISSVVPSTFLGLGBYEVEVEAEPDVXGGETV TMCGNDPDAVEAPPFSGLFGLDLALKSIVAYGVRLAGSIGKAA LLPLKFFFILVIGITALILALAGLGIHPDCSGKYRCSSFKC LELIARCOSVDCKOGBENYCVEVAGGOMALQVTPAASKKTM AKDKTTGKLHTCKKFQKRDGRVRKAARNSETGLKAVKENSIKC LUPLWFFFILVIGITALILALAGLGIHPDCSGKYRCSSFKC LELIARCOSVDCKOGBENYCVEVAGGOMALQVTPAASKKTM AKDKTTGKLHTCKKFQKRDGRVRKAARNSETGLKAVKENSIKC OLVUVVTRKEVFITELBL OLVUVVTRKEVFITELBL OPPICLIDMHLIS SHAGSWSSWCCCLIFADRYBNGGWGL EMADTTSVHETRFEAAVKVIQSLFKNGSFGFTEMFAGKFFTSFK KQATEGPCKLSFR GRUPDIGTKYKDARSSLGDMTKERMITAV EMKKIISTWHMTEKVELLENVIGPFFELVEDKKGGRSSDITS DLGMVLTSTPNAKTIVAKASSSGASSEERAGTERMATAV EMKKIISTWHMTEKVELLENVIGPFFELVEDKKGGRSSDITS DLGMVLTSTPNAKTIVAKASSSGASSEERAGGERSEDTS DLGMVLTSTPNAKTIVAKASSSGASSEERAGGERSEDTS DLGMVLTSTPNAKTIVAKASSGASSEEREA PRSGRRGCAVPSSVTKMLSFFFRTLGRSMKHAKHEKLBEAQ RAATHIPAAGDSKSITCVSCSSGASSEERAGGERSDITS SEERSGRRRGGABSGTCGLQSPSAMLAGKFHKLGEAGL OTMYHADLLESDYFCLEPMSAQVAMLDGTKSIKKQVKLGSP VCHILWVFYTSS SEERSGRRRGABGRGTCGLQSPSAMLAGAKPHWLPGLFHSPGL PLIVLVLLLALGAMAGGSEEVLLESECLLVVCESGRAAAAGGPGG VCHILWVFTYSS SEERSGRRRGABGRGTCGLQSPSAMLAGAKPHWLPGLFHSPGL PLIVLVLLLALGAMAGGSEEVLLESECLLVVCESGRAAAAGGPGG					
SLHACHGGATTTPCWQPCSVGGTTS PRTPRAGTSSTEMAHTL EMC 19 758 98 461 RALWVGCSGBAGGIGNSGLLTDPEGDAGEPRYGFTVGLDDV SSYIRCHVYDRARPVGSSVGVKUTTSPORDAGEPRYGFTVGLDDV SSYIRCHVYDRARPVGSSVGVKUTTSPORDAGEPRYGFTVGDDV 10 751 GLARGGSWGFVKUNGGGSGFFFTRLRTFLTEAMEGGPAVCC QDPRAGLYERVALDVTHLEERDGGEPTTRWTDP PPRARAS VIPGSTSKLLDARPSLARKLSIQERPAGSTLEAQAGFYATGP ASHISPAMREPTIESHHVAISDAGTVEVEVEDEDVGGFTX FOR TWO STANKLING VERFAGS FRANKLING VGFRRPP TWGENDPAUVAPFSFFSLIGDDLKISFVAPDADAVAQGILS LLPLKFFILIVOITALLILALIGIGHTPCSKKYRCKSSFKC IELLARCGGVSDCKDGEDEVRCVEVUGGNAALQVFTAASSKITM LLDLKFFILIVOITALLILALIGIGHTPCSKKYRCKSSFKC TELLARCGGVSDCKDGEDEVRCVEVUGGNAALQVFTAASSKITM LOLVDVYTRKSFFILISL 23 762 1 749 GRRFFAGLWGGGGTOGGARVFRAKAKSETGILKWYRHDLI LOLVDVYTRKSFFILISL DPLCLLDMLFISFHAGSWS GCCCLI PADRPWBOGGWKL EMDATSVHETRFRAAVKVIQSLFKWGS POPTNEMMLFYISFY KOATGOPCKISP RGWPDIGTVKINASSSLGDMTKERAMIARV EMKKI ISTMPMTEKVELLEVUGPFFEI VEDKKSGRSDITS DLGNVLITSTPNAATVNKARSSBGSGBSEEEBEAC RAATHPAAGGSSITICRVSLLOGFTUS VLDEKKARGSLED RAGGRAFGGAVPSSVTKMLSFFFRFTLGRRSMKRAKKERLEREN RAATHPAAGGSSITICRVSLLOGFTUS VLDEKKARGGSLED GIMTHLDLISDFFGLEFMSAQVAHALDGFTSITKKQVKIGGS VCHILEVFFYSS SERESGMRRGADRGTCGLQS PSAMLAGAKPHULGFISFBF	18	757	3	390	
BMC				l	
19	{	1	1	(
SSYTECHYVTRAARVCGSSVGVENILTPOLGWEIDPULMTO FVAN/TREAVRAAGIOMMOTVELGISTGARTFITM 20 759 100 731 GLAABOSMOFVKLMGGSGBFFTELRREFTPLTEMBGGPAVCT QDPARALVERVAALOVTHLBEAMOGEPTRINGPPPPPARAAS VIPOSTSELLPARPSLGARKISLOREPAGSVLEROAGPYATOF ASHLSFPAMRPTTESHHVATSDARDVCVLGVYKLOKSIGKGA VGVVPLAVNISSEDRRYAMKVLSKKKLLKOYGFRREPP 21 760 2 520 FYGKEVPTLMPTISSHVATSDARDVEVEVERSEPDVSGBETV IMGENDPAVEAPFFTSLIGHDLDLKTSFVAPDADAVAAOLUS LLPLKKPTLIVOLTALLLALLALGH JFBCSSKKYCKSSFKC IELIARCDGVSDCKDGBDEYRCVEVGGQNAALQVTPAASSKKTM LLPLKKPFILVOLTALLALLALGH JFBCSSKKYCKSFKC IELIARCDGVSDCKDGBDEYRCVEVGGQNAALQVTPAASSKKTM OLVDYFVTRKETFITLALL 23 762 1 749 GRREFPGGLVTLGDKRNYNQPSSEVTDRYDLGGVTKTEFFCSIFR AKOKTTGKLATTCKRFQKRDGRVKRAARNEIGLKGVKFBNLL OLVDYFVTRKETFITLSL UNDVFVTRKSTFITLSL DLONUNFSTRAGSSFKTRAGSSFCTRAGSRKRGKRFSSTTS KQATSGPCKLSSRGFWDPIGFKKMAANSSLGDMTKERMIAVE BEMKKI ISTMEMTERVELELRVIGLGFSSFCTGKRGSSTTS DLGNULTSTFNAKTVNGKABSSDGGASSEBEBAC 24 763 3 558 SCFKGRTGGRGSSGSSKRAKGKRFSSTTS DLGNULTSTFNAKTVNGKABSSDGGASSEBEBAC RAMTHPAAGDSST ITCRVSLLDGFUTSVDLEKKAKGGSLDFO QIMHLDLISDVFGLEFMSAQVAHALDGFTSIKKQVKTGSP VCHLEVKFYSS TECHTURENGERGARAGAGGGGSPAVLERSGKRAARAGGGGF VCHLEVKFYSS SSERSGBRRGADBGTGGLOSPSAMLGAKFHULPGD-HSPGL LPLUVLLLLAGRAGAGGSEBVLLESECLLVVCEPGRAAAGGGGF			l		
PVAVIKEAVKAAGIQMMOIVGIGISTOQRATSITVM GLABGOSMOFVKIMGGGGGFFTELRREPTPITRAMGGGAVCC ODPRAELVERVAAIDVTHLERREPTPITRAMGGGAVCC ODPRAELVERVAAIDVTHLERRAMGGGGFFTELRREPTPITRAMGGGAVCC ODPRAELVERVAAIDVTHLERRAMGGGGFTELRREPTPITRAMGGGAVACC ASHIS PRAWRRPTIESHHVALSIDAEDCVCLAVQYKLQSEIGKGA YGVVRIANNSSEDRRYAMKVLSKKKLLKQYGFPRRPPP EVTAKPVTLAFTISHTVALSIDAEDCVCLAVQYKLQSEIGKGA YGVVRIANNSSEDRRYAMKVLSKKKLLKQYGFPRRPPP LLEHRANDPAVEAPFFFRSLIGIDLKISFVARDADAVAAQILS LLEHRAFFILIVGITALLILALIGIGHTPCSKKYRCKSFKK ELLARCGVSDCKDGGBVRCVRVGGONAALQVFTAASSKITM AKDRYTGKLHTCKKFQKRDGRVRVRAAKNESTILKMVENDLL OLVDVYTRKEYFILLS ORREFFAGLMGGGGITTGGLRRIGGGGSARVPRVGERLRGHR ORREFFAGLMGGGGITTGGLRRIGGGGSARVPRVGERLRGHR EMADTSVHETRFEAAVKVIOSLFKNGSFDFTEMMLFFISFY KOATEGPCKLSPR GROPDICTRYKNGASSLGDTKERAMILAFYSFY KOATEGPCKLSPR GROPDICTRYKNGASSLGDTKERAMILAFYSFY KOATEGPCKLSPR GROPDICTRYKNGASSLGDTKERAMILAFY BMKKI IETHPMTEKVEELLRVIGPFYEIVEDKKGGRSSDITS DLGMVLTSTPMATTVMKRASSDGASSEEBEAL PRSGRRGCAVPSSYTKMLSFFARTLGRRSMKRAKKRERRRRA PRSGRRGCAVPSSYTKMLSFFARTLGRRSMKRAKKRERRRAR ANATHIPAAGGSKS ITCRVSLLGDFUTSVDLEKKAKOGSLED QIMYHLDLISDYFGLEPMSAQVAHKLDGTKSIKKQVKIGSE YCHLEVKFYSS SERERGGRRGADRGTCGLQSFSAMLGAKPHKLGFGLFBFBFBFL SERERSGRRGABRGTCGLQSFSAMLGAKPHKLGFGLFBFBFBFL SERERSGRRGABRGTCGLQSFSAMLGAKPHKLFGFLFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBFBF	19	758	98	461	
20 759 100 731 GIAABOSWOFYKIMGGGGBFTELRREFTPITEMBEGGFAVCC			1	1	
DPRABLIVERVAALDVTHLERAMGGEPTRNQUPPPRABARS VIPOSTSKLIARBPSLAGRKISLORBPSAGVLISAGAGVATOP ASHISPRAWREPTISSHWAISDARDCVOLAGVKLOSSIGKAA VOVVRLAVNISEBRIYAMKVLSKKLIKGVGFFRRSP 21 760 2 520 FVTGKPVTLWPTISSWPSTFLGLGNYEVEVEABPDVRGPEIV TMGENDPAVEAPFSFRSLIGLDLKISSVAPDADAVAAGILS LLPLKFFILIVGITALLILLAISLGHTPDCSSKTRCKSSFKC 1 158 470 SLAMPGGCVTLGBKKNYNOPSSVTDSTDLGVKTRCKSSFKC 22 761 158 470 SLAMPGGCVTLGBKKNYNOPSSVTDSTDLGVKTRSTSFKSTFLGLGVKTYAASBKIN OLVDVYTRKEYFITIEL 23 762 1 749 GRRFFAGLMGGGGTTDGLRRNGGGGSARVPRVGERLRGHR 25 POFLCLLDMHLFS HAGSWES WCCCCLIPADPRWRGGWGL EMADTSVHETRFEAAVKVIOSLFKNSFOPTNEMMLFYSSY KOATGPCKLSPR GROPDICTRKNAMSSLGDTKERAMIATV BEMKKIIETWHTEKVELLEVIGPYEIVEDKKGGRSSDITS DLGMVLTSTPMATTVMGKASSBGASSEEBEAL PRIGGRAGCAVPSSVTKMLSFFRRTLGRRSMKRAKERERARA PRIGGRAGCAVPSSVTKMLSFFRRTLGRRSMKRAKERERRAR RANTHPAAGDSS ITTCRVSLLOGTUSVDLEKKAKOGSLED GTWHLDLLISDYFGLEFMSAQVAHKLGGTKSIKKQVKIGSE VCHILEVFYSS SERERGGRRGADRGTCGLOSPSAMLAGAKPHKLGGELFBD LICHVVLFTSMATTUSVLLEGGLOVVCESORRAAAGGPGG VCHILEVFYFYS SERERGGRRGADRGTCGLOSPSAMLAGAKPHKLPGEHISPGL LPLUVLLLALGARGARGESEEVALLESGCLUVCESORRAAAGGPGG					
VIPGSTSKLIPARPSLGARKISLOERPAGSVLEROAGPYATOG ASHLSPAMERPITESHIPATISDAECVOLKOVIKLOSEGICKA YGVVRLAVINSEDRIYAMKVLSKKKLIKOYGFPRRPP 21 760 2 SPORKPYTIMPTSSISHIVATISDAECVOLKOVIKLOSEGICKA THOENDPAVEAPPSFRSLGIDDLKTSPVAPDADAVAAQILS LLPLKFPILIVOITALILALALGIDHPCSKKYKCSSFKC ILLPLKCOVSDCKOGEDRYKCVZVGGONALGVPTAASSKYM SLAMPFOCVPIJAKKNINNOPSSVTORDLGVYKTESESTER AKDKTTGKLHICKKFOKRDGRKVKRAAKNEIGILKOVKHPNIL OLIDVFVTRKEYFILLS 23 762 1 749 GRRFFAGLMGGGIGTDGLRRNGGGGSAEVPRVGERLEGHER DPIPLILLDDHFIS FHAGSWESWCCCLIPARPHOROGHWQL MANTHSVHETRFAGLAVVILOSILKOSS PQFTHEMPIKRYSFY KQATRGFCKLSRRPWDPIGTKKWDAWSSLGDWTKERMITAV EMMKT IETHMPHTEVEELIKVIGPFSTSTEEPFLSGFCSAL PRSGRRGCAVPSSVTKMLSFFRETIGRSMKRIAKKELKERAG RANTHPAAGDSSITICRVSLLDGFTDSVJOLKKKAGOSLFD OLMVLDSTDYGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDSTDYGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDSTDYGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDSTDYGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDSTDYGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDLISDVFGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDLISDVFGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDLISDVFGLFFMSAQVAHKLDGTKSIKKOKKCSLFD OLMVLDLISDVFGLFFMSAQVAHKLDGTKSIKKOKKGSLFD SERESGBRRGABGRGTCGLOSPSAMLGAKPHWLPGDLHSPGL SERESGBRRGABGRGTCGLOSPSAMLGAKPHWLPGDLHSPGL PLIVLYLLLAGAGNAGBGSEFVLLESECLLVVCEPGRRAAAGGGG	20	759	100	731	
ASHISPRAMRPTIESHHVAISDAEDCVQIANQYKLQSEIGKAG YGVVLANNSEDRIKAMAKULSKKLLKOYGFRPAPP 21 760 2 520 FVYGKEVTLMPTISSVVPSTFIGIGNYEVEVEAEDDVRGBETV IMENDEDPAURAPPFSRIANGIDLKISSVAPANAQILS LLPLKFFPIIVIGIIALILALAIGLGIHFDCSGKYRCRSFKC IELIARCDGVSDCKOGGBETVERVENGGNAALQVFTAASRKIM SLAMPFGCVTIGJRSTKYRDFSEVTDRYDLGVIKTESFCSIFR AKNKTTGKLHTCKKFQKRDGRVKKAAKNEIGILKMYKENSIL OLVDVPVTREYFILLE OLVDVPVTREYFILLE ORREFRAGINGGHGITTGLKRNGGGGSARVFRVGSELRGHER DEDELLLDMILFISHHGSWGSCARVFRVGSELRGHER EMADTISVHETRFFAAVKVIQSLFKNGSFGFTEMMLFYISFY KQATEGPCKLSRFROMDIGTKYKNASSLGDMTKERMITAV EMKKIISTMPMTEKVELLENVIGPFYELVEDKKGGRSSDITS DLGMVLTSTPNARTVNGKASSDGASSERGRAG RAATHIFAAGDSSITTSVAGAGSGSGSGSGRFRARGGRHFSASFEEPLSOPCSAL RAATHIFAAGDSSITTSVAGAGSGGGSGVAFRAKGKRERGAR RAATHIFAAGDSSITTSVAGAGSGGGGAVFRSKAKGGRLFD GTWHLDLLISDVFGLAFMSSQVAMKLDGTKSIKKQVKIGSE VCHILWVFYSS SERESGURRGABRGTCGLQSPSAMLAGAKFHKLGKAKGVKIGS SERESGURRGAADGGGSEPVLLESECLVVCESPGRAAAGGPGG			ł	l	
YGYVELAYNISEDERIYAMKYLEKKELLKOYGFPERPPP		1	[1	
21 760 2 520 EVYGKPYTLMPTTSSVPSTFLGLGMYEVEVEREPDVSGSETV	1	1	1	1	
TMGENDPANUADPES PRESIDIDIDIKTS PVAPDADAVAAQILE LIPLKPF911V011ALILALIAGI GIPHOGSKYRCKSSFKC TELLARCOGVSDCKOGRDRYRCVEVGGONALOVPTAASSKYM 22 761 158 470 SLAMPGOVPTJAKKNYNOPSSVYDEVDLGYVYKERESCSTFK AKDKTYGKLH-HCKKFOKRDRKPKRAAKNEIGILKGVKHPNIL COLVDVFVTKKYSFILLE 23 762 1 749 GRRFFAGLMGGHGILTDGLRRNGGGGSARVPKVGSELRGHRE DDFLCLLDDHIFIS PHAGSWSSKYCCCCLIFADRYDROGHWQL EMADTIS VHETRFAAVKVI.GSLBRNGSFGFTHEDGLKFYSFY KQATRGFCKKISR RGFWDP TGRYKWDAWSSLIGDHTKERMITAVY EMMKIL IETHWFHTEKVEELLRVI.GPFSIVFSTYERMSKSSDIGS DLGNULTSTFDNAKTVNGKARSSDGSARSEEERAC 24 763 3 558 SCFKGRTGGRGSGSTSKRAKGKRIFSSTSTEEPFLSGFCSAL PRSGRRGCAVPSSVYKMLSFFRETLGRSSMKRIAKKELKERJA RANTHPAAGDSKS ITCRVSLLDGFUTVSVDLEKKAKGOSLFD OIMYHLDLISDVFGLEFMDSAQVAHKLDGTKSIKKQVKTGSF VCHILEVKFYSS 55ERSGNRKGARDGRGTCGLOSPSAMLGAKPHWLDGDLHSPGL LPLUVLLLLGRGRANAGSGSEPVLLESECLLVVCESPGRAAAGGGG	1		l .	ı	
LIPLKFFFILVIGITALILALIGLGIHPDCSGKYRCRSSFKC TELLARCGWSDKKOGBBYRCVZWGGMALGVPTAASKYM 22 761 158 470 SLAMPFGCVTLGDKKNYNOPSEVTDRYDLGQVIKTEEFCEIFR AKKKTTGKLIHTCKROGKGGRVKKAARNEIGLKOWERDYL 23 762 1 749 ORREFFAGLMGGHGUTDGLRRNGGGGSARVRWGERLRGHRC DDPLCLLDDMLFIS PHIGSWES WCCCCLIPADRYDRGQHWGL EMDDTSVHETRFEAJWKVIGSLFKNSSFOPTNEMMLKFYSFY KQATEGPCKLSFR GWDPDIGTKYRDARSSLGDMTKERMITAV EMKKIIETWHPTEKVELLRVIGFFFEIVEDKKGGRSSDITE DLGMVLTSTPNAKTYNOKARSSDGASSEEFKALTAV EMKKIIETWHYTEKVELLRVIGFFEIVEDKKGGRSSDITE DLGMVLTSTPNAKTYNOKARSSDGASSEFERDFLSOPCSAL RARTHIPAAGDSKSITTCRVSLLDGTDVSVDLPKKAKQQELFD GTMYHLDLLSDVFGLFFMSSAQVAHKLDGTKSIKKQVKIGSF VCHILWVFFYSS SERESGMRGADRGTCGLQSPSAMLAGAKPHLPGDLHSPGL DLUVLLLALGAGNAGEGSEFVLLESECLVVCESPGRAAAGGPG	21	760	2	520	FVYGKPVTLWPTISSVVPSTFLGLGNYEVEVEAEPDVRGPEIV
TELLARCDGVSDCKDGEDEYRCVEVGGONALGVFTAASEKTM 22 761 158 470 SLAMPGGVTLGKKNINNDSSVTORDLGGVYKEFESCETFR AKDKTTGKLAHCKKFOKRDGREVRKAAKNEIGILKGVKHPNIL OLDVDVFVTKKFYFTLISI. 23 762 1 749 GREFFRALINGGGGGTARVGRGGGSARVFRVERLRGHKF DDELCILLDMLFLSFHAGSWESVCCCCLIFADDRDWDROGHNOL EMDITSVHETREFRAAVKVIGSLERGSFGFTNEFDFLKFVSFY KQATEGFCKLSFROFWDPIGRKWDAWSSLGDWTKERMITAVY EEMKKILETHMPHTEKVELLKVIGSLERGSDTTS DLGNVLTSTFDAAVTVGLSTKRSSDGASSEERAC 24 763 3 558 SCFKGRTGGRSSGDSSKRARGGRISTSATEEPFLSGPCSAL PRSGRRGCAVPSSVTKMLSFFRETLGRSSMKRAKERLEKERL RAGNETHPAAGDSKSITTCRVSLLDGTUSVDLEKKAKGGLEFD GIMYHLDLISDVFGLEFMDSAQVAHKLDGTKSITKQVKTGSF VCHILKVFFVSS 25 764 9 424 SSERSGRRGADRGTGGLGSPSAMLGAKPHKLPGPLHSPGL PLVLVLLLAGRGMAGDGSEFVLLESECLLVVCESPGRAAAGGPGG	l	ł	1	ł	
22 761 158 470 SLAMPFGCVTLGDKKNYNDSBVTDRYDLGGVIKTERECEIFE	Į	1	ì	l	LLPLKFFPIIVIGIIALILALAIGLGIHFDCSGKYRCRSSFKC
AKDKTTGKLHTCKKFOKRDGREVERAARKEETGILKWYKHPNIL OLDVDYVTRKEYFILEI 23 762 1 749 ORREFFAGIMGGGGTTGGLERNGGGGSAFVFRGEFLEGHEK SPECIALDMIFES PHIGSNES WCCCLI FADREWHOOGHKOL ENADTSVHETBFEAAUKVIGS LERNGS POFTNEMMIKFYSFY KQATEGPFKLS POFWDPIGTYKNDANSS LGDWTKERAMIAYV EEMKKI IETHPWTERVEELLRVI GPFFEIVEDKKGGRESD ITS DLGNWIJSTFDAKTYNGKARSD GARS EERKO 24 763 3 558 SCFKGGTGGRSGSSDSERRACGGHFSASTEEPT-SQFCSAL PRSGRRGCAVPSSVTKMLS FFRFTLGRESMKRIAEKELLERJO RAATHPAAGDSKS ITCRVSLLOPTUSVDLEKKAKGGLEPJ OIMYHLDLISDVFGLEFMDSAQVAHKLDGTKSITKQVKIGSF VCHILEVKFYSS 25 764 9 424 SSERSSGNRGABCRGTGGLGSPSAMLGAKPHWLPGD-HSPGL LPLUVLLLALGARGABCBGSEPVLLESECLLVVCESPGRAAAGGGG		1	1.	ì	IELIARCDGVSDCKDGEDEYRCVRVGGQNAALQVFTAASRKTM
OLDDVFVTRKEYFIFLEL 23 762 1 749 QRRFRAGLMGGGUSTDTDLRRNGGGGSARVPRVGERLRGHEC PDFLCLLLDMLFLS PHAGSWESWCCCCLIPADRPWDRGQHWQL EMADTISVHETRFEAAVKVIQSLERNGSFQFTNEMMLRFISSY KQATEGPCKLSRFGBWDFIGRYKNDANSSLGDTKEREMITAV EMKKIIETHPWTEKVELLRVIGPFYEIVEDKKGGRSSDITS DLGMVLTSTPNAKTNNGKABSDGARSSEEPEAL 24 763 3 558 SCFKGRTGGRSGSSGDSSRNARGGHISSASTEEPFLSOPCSAL PSGRBCAVPSSVYKMLSFFRETIGRSMKKIAKERLERAQ RAATHIPANGDKSIITCRVSLLDGTDVSVDLEKKAKGQLED QTMYHLDLLESDYFGLRFMDSAQVAHWLDGTKSIKKQVKIGSP VCHHRVKFYSS 25 764 9 424 SSERSGRRRGAEDRGTCGLQSPSAMLGAKPHWLPGPLHSPGL PLVLVLLLALGARMADGESEPVLLESECLVVCESGRAAAGGPGG	22	761	158	470	SLAMPFGCVTLGDKKNYNQPSEVTDRYDLGQVIKTEEFCEIFR
23 762 1 749 ORREFRAGINGGIGTOGLERNGGGGSARVPEVGERLRGHER DPLICILLIDMILES PHIGSNES MCCCLI FADRENDROGINGL EMADITS VHETTE PERAVEVI OS LPRINGS POPTNEMMLEFT SPY KOATEOPICKE, SPR GENDE TO REVENDE TO STREEM LEVY EMMEKI IETHEM PIESEVELLE VIGEP FEET LEDKES GRES DITS DLGNVLTS TPLANTIVNICKARS DIG AGREERERA 24 763 3 558 SCFRGRTGGRSGSSGDSEWAROGRIFFSASTEEP FLSQFCSAL PRIGREGORY SEVITANIS FERTILGRES INFRIBAKERLE REPLANTIVE AGRES IN TICRUS LLDGE TO SVOLEKKARGGELEP QIMYHLDL IESDYFGLEFMOS AQVAHKLDGTKSITKQVKI GSP YCHILEVEFYSS 25 764 9 424 SSERSGBRRGARDROTGGLOS PSAMLGARPHULFGGLIS PG PLIVILLILAGRANDEGS EPVILLESECLIV/CESPGRAAAGGPGF	Ì	1	1		AKDKTTGKLHTCKKFQKRDGRKVRKAAKNEIGILKMVKHPNIL
DDPLCILLDMLFLS FHAGSWES MCCCCLI PADRPWDROGUNDL EMADTRS VHETREPEAUVYLOG LENGUS POPTHEWMLEY SFY KQATEGPCKLSR PGFWDP IGRYKWDAWSS LGDWTKERAMIAYV EBMKKI IETHWNTEKVEELLENVIGFPFEI VEDKKEGRESDITS DLGWLYTSTPNAKTVNGKAESDBGABSEEDEAC 24 763 3 558 SCFKGRTGGRSGSSGDSSRWARGGRIFSASTEEPPLSQPCSAL PRSGREGAVPSSVYKMLSFFERTIGRSRWKHSKERELREAQ RAATHIPAAGDSKSITTCRVSLLDGTDVSVDLFKKAKGQELFP QIMYHLDLIESDYFGLRFMDSAQVAHWLDGTKSIKKGVKIGSP VCLHIRVKFYSS 25 764 9 424 SSERSGRWRGADRGTCGLQSPSAMLGAKPHWLPGDLHSPGL PLVLVLLLALGAGWAGDGSEPVLLESECLVVCESGRAAAGGPGG	Í	1	(ĺ	OLVDVFVTRKEYFIFLEL
EMADTESVIETEREAAVKVI.OSLPKNOSPOPTNEMMLKFYSSY KOATEGPCKI.SPR GWOPDIGTRYKNOASSLGDYTKEKANLTYV SEMKKI IETMENTEKVEELLENVI.GPYEI VEÜKKEGRSSDITS DLGMVLTSTPMARTVNEKASSDIG AASSEEBEA.O 24 763 3 558 SCFKGRTGGRSGSSGDSSRWARCGRIFSASTEEPPLSQPCSAL PRSGRRGCAVPSSVTKWLSFFARTLGRRSNKRAEKERILREAQ RAATHIPAAGDSSITICRVSLLDGTUSVDLEKKAKOGSLED OIMYHLDLISSDYFGLEPMDSAQVAHKLDGTKSIKKQVKI.GSP VCHILEVKFYSS 25 764 9 424 SSERSGRRGAEDRGTCGLQSPSAMLGAKPHKLPGDHISPGL PLVLVLLALGAGMAGDGSEPVLLESECLLVVCESGRAAAGGGPG	23	762	1	749	ORREFRAGLWGGHGLTDGLRRNGGCGCSARVPRVGERLRGHRC
KQATEGPCKLSPRGFWDFIGRYKMDANSSLGDWTKERAMIAYV EEMKKI IETMPMTEKVEELLRVIGFFYEIVEDKKSGRSSDITS DLGMVLTSTPNAKTVNGKAESSDGABSEEBEAC 24 763 3 558 SCFKGBTGGRSGSSGDSSRARCGRIFSASTEEPFLSOPCSAL PRSGRGCAVPSSVYKMLSFFRETIGRSRMKEINERILERAQ RAATHIPAAGDSKIITCRVSLLDGTDVSVDLEKKAKGQLEIP OINWHLDLIESDYFGLRFMDSAQVAHULDGTKSIKKQVKIGSP YCLHLRVKFYSS 25 764 9 424 SERERGBRRGAEDRGTCGLQSPSAMLGAKPHULPGFLHSPGL PLVLVLLLALGAGMAQEGSEPVLLESECLVVCESGRARAGGPGG			-		PDPLCLLLDMLFLSFHAGSWESWCCCCLIPADRPWDRGOHWOL
KQATEGPCKLSPRGFWDFIGRYKMDANSSLGDWTKERAMIAYV EEMKKI IETMPMTEKVEELLRVIGFFYEIVEDKKSGRSSDITS DLGMVLTSTPNAKTVNGKAESSDGABSEEBEAC 24 763 3 558 SCFKGBTGGRSGSSGDSSRARCGRIFSASTEEPFLSOPCSAL PRSGRGCAVPSSVYKMLSFFRETIGRSRMKEINERILERAQ RAATHIPAAGDSKIITCRVSLLDGTDVSVDLEKKAKGQLEIP OINWHLDLIESDYFGLRFMDSAQVAHULDGTKSIKKQVKIGSP YCLHLRVKFYSS 25 764 9 424 SERERGBRRGAEDRGTCGLQSPSAMLGAKPHULPGFLHSPGL PLVLVLLLALGAGMAQEGSEPVLLESECLVVCESGRARAGGPGG		1	1	1	EMADTRSVHETRFEAAVKVIOSLPKNGSFOPTNEMMLKFYSFY
PEMKKI IETMPMTEKVEELLKVIGPFYEIVEDKKSGRSSDITS DLGMVLTSTPNARTNINGKASSIGGASSEEREA 24 763 3 558 SCPFGGTYGGRSGSSGDSSRKARCGRHFSASTEEPPLSOPCSAL PRSGRRGCAVPSSVTKMLSFFRRTLGRSMKRHAEKERLREAQ RAATHI PAAGDSK IITCR VSILDGITMSVDLEVKAKOGELFD GTMYHLDLIESDYFGLEPMSAQVAHKLDGTKSIKKQVKIGSP VCHILEVEFYSS 25 764 9 424 SSRERSGNRGADRGTCGLQSPSAMLGAKPHULPGDLHSPGL PLVLVLLALGAGNAGOEGEVLLESECLVVCEPGRAAAGGPGG		1	1	1	
DLGNVLTSTPNAKTVNKKARSSDGGARSEBERAC 24 763 3 558 SCFKGRTGGRSGSSGBSRWARGGRIFSASTBEPPLSQPCSAL PRSGRRGCAVPSSVTKNLSFFRRTLGRRSMRKHAKKERLBAQ RANTHIPANGDSKIITCRVSLLDGTDVSVDLPKKAKGQLEPP QTUWYHLDLIESDYFGLRFMDSAQVAHWLDGTKSIKKQVKIGSP YCHHRVKFYSS 25 764 9 424 SSRRSGRRRGAEDGTCGLQSPSAMLGAKPHWLPGFHSPGL PLVLVLLALGAGMAQDGSEPVLLBGSECLVVCESGRAAAGGPGG		1	1	1	
24 763 3 558 SCFKGRTGGRSGSSGDSSRARCGEHFSASTEEPISOPCSAL PRSGRDGCAVPSSVYMLSFFFRTIGRSMKKHAREFLERAQ RANTHIPAAGDSKSITTCRVSLLDGTDVSVDLPKKAKQQELFD QTMYHLDLLESDYFGLEPMSAQVAHKLDGTKSIKKQVKIGSP YCHLEVEFYSS 25 764 9 424 SSERSGRRKGADRGTCGLQSPSAMLAGAKPHWLPGDLHSPGL PLVLVLLALGAGNAQBGSEPVLLEGECLVVCEPGRAAAGGPGG	Į.		1	1	
PRSGRRGCAVPSSVTKMLSFFRETLGRESMIKHAEKEELREAG RAATHIPAAGDEKSITICRVSLLDGTDVSVDLPKKAKGQELFD QIMYHLDLIESDVFGLEPMDSAQVAHWLDGTKSIKKQVKIGSP VCHHLEVKFYSS 25 764 9 424 ESRERSGNRGGAEDGTCGLQSPSAMLGAKPHWLPGFLHSPGL PLVLVVLLALGAGMAQEGSEPVLLESECLVVCKESGRAAAGGPGG	-	762	1-	550	
RAATHIPAAGDSKSITTCRVSLLDGTDVSVDLPKKAKGQLEIP QIMYHLDLIESDVFGLRFMDSAQVAHNLDGTKSIKKQVKIGSP YCLHLRVKFYSS 25 764 9 424 BSRERSGNRRGAEDRGTCGLQSPSAMLGAKPHULPGPLHSPGL PLVUVLLLALGAGNADGSEFVLLESECLVVCEPGRAAAGGPGG	24	103	1	330	
QIMYHLDLIESDYFGLRFMDSAQVAHWLDGTKSIKKQVKIGSP YCLHLRVKFYSS 25 764 9 424 ESRERSGNRGGEDGTCGLQSPSAMLGAKPHWLPGPLHSPGL PLVLVLLALGAGWAQBGSEPVLLEGECLVVCEPGRAAAGGPGG	ĺ		1		
25 764 9 424 ESRERSGHRRGAEDRGTCGLQSPSAMLGAKPHWLPGPLHSPGL PLVLVLLALGAGWAQBGSEPVLLEGECLVVCEPGRARAGGPGG	1	1	1	1	
25 764 9 424 ESRERSGNRRGAEDRGTCGLQS PSAMLGAKPHWLPGPLHSPGL PLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGG	1	1	1	-	
PLVLVLLALGAGWAQEGSEPVLLEGECLVVCEPGRAAAGGPGG		-	-	100	
	25	764	وا	424	
AALGEAPPGRVAFAAVRSHHHEPAGETGNGTSGAIYFDOVLVN	l		1	1	
	1	1	1	1	
EGGGFDRAS	1				EGGGFDRAS

ano	CEO	Predicted	Predicted	
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic		corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acius	Acids •	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
1		acid	acid	\=possible nucleotide insertion)
i		residue	residue	(-possible flucteoride flusertion)
		of amino	of amino	
		acid	acid	,
1		sequence	sequence	
26	765	2	507	EDVKSYYTVHLPOLENINSGETRTISHFHYTTWPDFGVPOSPA
	1)	1	SFLNFLFKVRESGSLNPDHGPVVIHRSAGTGRSSTFSVVHTCL
1		1		VLMEKGDDINIKQVLLNIRKFQMGLI\QTPDQLRFSYMAITEG
		1		AKCVKGDSSIQKRWKELSKE/DLPPAFDHSPNKIMTEKYNR
27	766	84	852	LNRORCGDOVLVPGTGLAAILRTLPMFHDEEHARARGLSEDTL
1 - '	1,00			VLPPASRNORILYTVLECOPLFDSSDMTIAEWVCLAOTIKRHY
1		-		BOYHGFVVIHGTDTMAFAASMLSFMLENLOKTVILTGAOVPIH
ſ	l		(ALWSDGRENLLGALLMAGQYVIPEVCLFFQNQLFRGNRATKVD
1		ļ	l	ARRFAAFCSPNLLPLATVGADITINRELVRKVDGKAGLVVHSS
l	ľ	l	ì	MEQDVGLLRLYPGIPAALVRAFLOPPLKGVVMETFGSGNG
28	767	992	210	LFRLAPGFLRSLAROGYHOIWAFPFLPSGATATWPAASRSRSL
40	100	332	210	AARSLPRSPARPGPNDALLGEHDFRGOGVRAORFRFSEEPGPG
(1	l	ł	
1	l	1		ADGAVLEVHVPQIGAGVSLPGILAAKCGAEVILSDSSELPHCL
1			1	EVCRQSCQMNNLPHLQVVGLTWGHISWDLLALPPQDIILASDV
	ŀ	1		FFEPEDFEDILATIYFLMHKNPKVQLWSTYQVRSADWSLEALL
ì)	1	}	YKWDMKCVHIPLESFDADKEDIAESTLPGRHTVEMLVISFAKD
<u> </u>	768	23	624	SL
29	768	23	624	SFIYKHTHRARFGPRAIVASPALTAGPHVSLTASCRVGMWVSC
	ĺ			SPSPFLHPTNTLVAVLERDTLGIREVRLFNAVVRWSEAECQRQ
ì				QLQVTPENRRKVLGKALGLIRFPLMTIEEFAAGNRARAQGLVW
		1		EGSGTQVGIW/CTEDSAPEFTAESLADAWHIQIGRNLACEDAS
				T/WAIC*PRPGSVPTVHTARPRLSCLSSCF
30	769	100	2	MASTQDAELAVSRXRAIALXPGXQSXXPSQKKK
31	770	158	1957	LLKSCGVLLSGVCIPCEGKGPTVLVIQTAVPQDRPTKSSMRSA
ĺ		ł	ì	AKPWNPAIRAGGHGPDRVRPLPAASSGMKSSKSSTSLAFESRL
		1	l	SRLKRASSEDTLNKPGSTAASGVVRLKKTATAGAISELTESRL
		1	ì	RSGTGAFTTTKRTGIPAPREFSVTVSRERSVPRGPSNPRKSVS
1	l l	Į.	Į.	SPTSSNTPTPTKHLRTPSTKPKQENEGGEK\VRLSPK/FRELL
ł		1	1	AEAKAKDSEINRLRSELKKYKEKRTLNAEGTDALGPNVDGTSV
1	1	1		SPGDTEPMIRALEEKNKNFQKELSDLEEENRVLKEKLIYLEHS
1	1	1	1	PNSEGAASHTGDSSCPTSITQESSFGSPTGNQLSSDIDEYKKN
1	l		1	IHGNALRTSGSSSSDVTKASLSPDASDFEHITAETPSRPLSST
1	1			SNPFKSSKCSTAGSSPNSVSELSLASLTEKIQKMEENHHSTAE
	1	1	1	ELQATLQELSDQQQMVQELTAENEKLVDEKTILETSFHQHRER
1	Į.	1		AEQLSQENEKLMNLLQERVKNEEPTTQEGKIIELEQKCTGILE
	1	1	1	QGRFEREKLLNIQQQLTCSLRKVEEENQGALEMIKRLKEENEK
İ				LNEFLELERHNNNMMAKTLEECRVTLEGLKMENGSLKSHLQG
32	771	203	514	SOMHRLIFVYTLICANFCSCRDTSATPOSASIKALRNANLRRD
1	l -			ESNHLTDLYRRDETIOVKGNGYVOSPRFPNSYPRNLLLTWRLH
	1			SOENTRIOLVFDNOFGL
		·		1 - 2

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A = Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	
				X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	}	acid	acid	\=possible nucleotide insertion)
	l	residue	residue	
		of amino	of amino	
]	acid	acid	•
		sequence	sequence	
33	772	59	713	PFKKMTDLLRSVVTVIDVFYKYTKQDGECGTLSKGELKELLEK
		i		ELHPVLKNPDDPDTVDVIMHMLDRDHDRRLDFTEFLLMIFKLT
		}	J	MACNKVLSKEYCKASGSKKHRRGHRHQEEESETEEDEEDTPGH
				KSGYRHSSWSEGEEHGYSSGHSRGTVKCRHGSNSRRLGRQGNL
	1	1	l	SSSGNQEGSQKRYHRSSCGHSWSGGKDRHGSSSVELRERINKS
		1	1	HIK
34	773	209	601	VPKISGPDHIDFIPWDOLFMASSSSVTEFLVLGFSSLGELOLV
	1	1		LFAVFLCLYLIILSGNIIIISVIHLDHSLHTPMYFFLGILSIS
	1	1	1	EIFYTTVILPKMLINLFSVFRTLSFVSCATOMFYEIVGPGTQE
	1	1	1	R
		-	987	
35	774	373	987	DHSTETPGIPAAEPVSHGTGKLERAPTLPAGAELPAPAAVPCP
		i	1	TL*VC/LYPQLLGLSVATMVTLTYFGAHFAVIRRASLEKNPYQ
	Į.	ł	1	AVHQWGTQQRLIQHPESGSEGQSLLGPLRAFSAGLSLVGLLTL
	1			GAVLSAAATVREAQGLMAGGFLCFSLAFCAQVQVVFWRLHSPT
ļ	1			QVEDAMLDTYDLVYEQAMKGTSHVRRQELAAIQ
36	775	102	466	QPGYSEYDKNRGQGMLLNMMCGRQLSAISLCLAVTFAPLFNAQ
١.	i	1	Í	ADEPEVIPGDSPVAVSEQGEALPQAQATAIMAGIQPLPEGAAE
	i	1	1	KARTOIESOLPAGYKPVYLNOLOLLYAARGISCSV
37	776	2	430	RTRAADVYVFSLTGKSRNVSSSTVRRSAVGGMSALALFDLLKP
	1	1	1	NYALATOVEFTDPEIVAEYITYPSPNGHGEVRGYLVKPAKMSG
		l .		KTPAVVVVHENRGLNPYIEDVARRVAKAGYIALAPDGLSSVGG
	1	1	1	YPGNDIKVVSAAA
38	777	106	556	VKORHGNSLLTTETKCISCRLGVPLSPORRFOAIRIEEVKLRW
30	(' ' '	1 -00	1 330	FAFLIVLLAGCSSKHDYTNPPWNAKVPVQRAMOWMPISQKAGA
	1			AWGVDPOLITAIIAIESGGNPNAVSKSNAIGLMOLKASTSGRD
	1	I	Į	
			l	VYRRMGWSGEPTTSELKNSSR
39	778	3	892	HAAGIRHEAKPKRSFYAARDLYKYRHQYPNFKDIRYQNDLSNL
1	1	1	1	RFYKNKIPFKPDGVYIEEVLSKWKGDYEKLEHNHTYIQWLFPL
1	1	1	ſ	REQGLNFYAKELTTYEIEEFKKTKEAIRRFLLAYKMMLEFFGI
l	1	1	1	KLTDKTGNVARAVNWQERFQHLNESQHNYLRITRILKSLGELG
1	1	1		YESFKSPLVKFILHEALVENTIPNIKQSALEYFVYTIRDRRER
j	1	ļ	İ	RKLLRFAQKHYTPSENFIWGPPRKEQSEGSKAQKMSSPLASSH
1	1	1	1	NSOTSMHKKAKDSKNSSSAVHLNSKTAEDKKVAPKEPV
40	779	123	395	ELOVFOPIGGMSDSGSOLGSMGSLTMKSOLOITVISAKLKENK
**	1.,,	1	1 333	KNWFGPSPYVEVTVDGOSKKTEKCNNTNSPKWKQPLTVIVTPV
1	i	1	1	SKLH
	1000	173	438	
41	780	1/3	438	TETLSFVIRNWNTHAMSKPIVMERGVKYRDADKMALIPVKNVA
1		1		TEREALLRKPEWMKIKLPADSTRIQGIKAAMRKNGLHSVCEEA
L				SC ·
42	781	287	393	PRMVLGKPQTDPTLEWFLSHCHIHKYPSKSTLIPQ
43	782	119	556	GLRISVQERIKACFTESIQTQIAAAEALPDAISRAAMTLVQSL
Į.	1	1		LNGNKILCCGNGTSAANAOHFAASMINRFETERPSLPAIALNT
1	1	1	1	DNVVLTAIANDRLHDEVYAKQVRALGHAGDVLLAISTRGNSRD
1	1	1		IVKAVEAAVTRDTTIV
	1		ــــــــــــــــــــــــــــــــــــــ	

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID JEQ	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ricias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	}	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	ì	acid	acid	\=possible nucleotide insertion)
		residue	residue	
	1	of amino	of amino	
	ł	acid	acid	•
		sequence	sequence	
44	783	248	554	KOTOHAPGMMKKYLALALIAPLLISCSTTKKGDTYNEAWVKDT
		i		NGFDILMGQFAHNIENIWGFKEVVIAGPKDYVKYTDQYQTRSH
	1	1	4	INFDDGTITIEPIPGT
45	784	77	311	TDRTALNPGQESAMNRLFSGRSDMPFALLLLAPSLLLLGGLVA
	1	ļ		WPMVSNIEISFLRLPLNPNIESTFVGVSNYVRILS
46	785	184	627	KELVDEKSERGRAMDPVSQLASAGTFRVLKEPLAFLRALELLF
	1	١.	1	AIFAFATCGGYSGGLRLSVDCVNKTESNLSIDIAFAYPFRLHQ
ĺ	1	1	1	VTFEVPTCEGKERQKLALIGDSSSSAEFFVTVAVFAFLYSLAA
i	1		1	TGRYLFFHNKNRENNRGPL
47	786	3	742	LGTVSYGADTMDEIQSHVRDSYSQMQSQAGGNNTGSTPLRKAQ
	1.22	1		SSAPKVRKSVSSRIHEAVKAIVLCHNVTPVYESRAGVTEETEF
ļ		1	ł	AEADODFSDENRTYQASSPDEVALVQWTESVGLTLVSRDLTSM
	}	i	1	OLKTPSGOVLSFCILOLFPFTSESKRMGVIVRDESTABITFYM
1	1	1	1	KGADVAMSPIVOYNDWLEEECGNMAREGLRTLVVAKKALTEEQ
l	1	1	1	YODFEVSRLPGIPSSYDGAFLTLKLVLPVFV
48	787	864	335	EGPHR\RLFQMVKA/LQEAPEDPNQILIGYSRGLVVIWDLQGS
45	/ 0 /	004	333	RVLYHFLSSQQLENIWWQRDGRLLVSCHSDGSYCQW\PVSSEA
	1	1	1	OOPEPLRSLVPYGPFPCKAITRILWLTTRQGLPFTIFQGGMPR
1	1	1	1	ASYGDRHCISVIHDGQQTAFDFTSRVIGFTVLTEADPAASRRA
	1	1	1	SGVGAOG
49	788	410	951	KOGLEVRDLHFKEITSGRALLRVACKRPSMVPGGOLORAGAGA
49	/88	410	331	OARITGLSPALWGARVHGWIPELPAGLPPGACLWPLIPACPSR
1	1	1	1	HWGWVSAPVKG/WAOAILGLALCL/RGEHRGLGAGVSKVRSLK
ſ	1	i	1	MDRKVWTETLIEVGMPLLATDTWGLPHSTAVWVSOPPPYLSDH
1	ì	ì	1	STLELERDPL
	1	L	I	
50	789	1	437	LSCNSEQALLSLVPVQRELLRRRYQSSPAKPDSSFYKGLGTCP
	1	1	1	SQLRLSEPPPTPRHLSVASVSHHMFPSHRSLCPHLPDFFAAPF
1	1	1	1	PSDNLPYTLQSPFPSPPPATPSDHALILHH\DLNGGPDDPLQQ
			I	TGQLFGGLVRDIRRRYP
51	790	1	198	SPSSKLVGMWWAGRAGSSRTTSVSLLCLP/SAPFGASNLLVNP
	1			LEPQNADKIKIKIADLGNACWVV
52	791	3	435	RVDPRVRAPRCGDKIKNHMY\KCDCGSLKDCASDRCCETSCTL
1	1	l	1	SLGSVCNTGLCCHKCKYAAPGVVCRDLGGICDLPEYCDGKKEE
1	1	1	1	CPNDIYIQDGTPCSAVSVCIRGNCSDRDMQCQALFGYQVKDGS
ł	1	1		PACYRKLNRIGNRFGT
53	792	1	728	PGRPTRPDASLAQ/DPRTTMFRIPEFKWSPMHQRLLTDLLFAL
1	1	1		ETDVHVWRS\HSTKSVMDFVNSNENIIFVHNTIHLISQMVDNI
1	1	1		IIACGGILPLLSAATSPTGSKTELENIEVTQGMSAETAVTFLS
1	1	1		RLMAMVDVLVFASSLNFSEIEAEKNMSSGGLMRQCLKLVCCVA
1	1	1		VRNCLECRORORDRGNKSSHGSSKPQEVPQSVTATAASKTPLE
1	1	1	1	NVPGNLSPIKDPDRLLQDVDINRLRAVVF

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glytone, H = Histdine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arghine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
54	793	2230	990	NSGGVKLLQALGISGGGGCHSTLHSSNDLEEAFIHFMGKGAA REFFSDKEFFTHDIAOVASEFFGAQHTVGGAALIGGKFAANS DLEVULLCOPVGPKLHERLIDDNVFVPPESLGEVDEFHILLHEVGA GEEMGQLKAHANNEPISSHDLSGGAMMLGVVFSULESFQPDL GGLSGLHMMEGQSKELGRKRLLEVVTSISDIPTGIPV\HLEIG \SMTNREHMSSIV\QQVFPANTIGLISNDGGLEHIDGSAGGFH SSLSSMNGVDVGNVSDILFWILKEHGRSKSRASDLTRIHFHT LVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTSKVS LRAPQEFMTHSEBGASSIVLMNRKVVVEWHERGISFHFTVVLV CKDPIRTVGLGDAISAGGLFYSEVHPHY DDSSGMGLGDLVVRNSLAUMPBLEGSGMISAHCNLCL/LGSD
55	794	249	3	SPASAPRVAGITDVCHHAWLVFVFLVVMGFPHVGHVGLELL
56	795	2	1176	LGBULKCOQGYSLAFALARLORMMRFUVULGLPAPTAPSGC LSPWBAKAQLAKSCYULVDALRHNAAAAVPFFGGSVLPAAEP APHASYGGIVSVETDILÖMCLESGSIPILCPIGETAARRSVIL DSLEVTASLAKALRPTKI IFLANTGGLRDS SHKJENVILPAB LDLVCNASWYSTEROÇMKILVDVLSKLPSHHSSAVITAASTLL TELFSNKGSGTLFKNAERMLRVRSLDKLDQGRLVDLVNASFGK KLEDDYLASLPPHLSIVYDESGYNAAALITHEPVLGFFYLDK FVVSSROGGGGGOMLWECLREDLQTLFWRSRVTNIPINFWYFK HSDGSFSNKQWIFFWFGLADIRDSYELVNHAKGLPDSFHKPAS DPGS
57	796	755	374	YHAPALQPGQQSKTLSQEKKNFFRPGAVAHTCNPSTLGGRGGR ITRSGDRDHPG*HGETPSLLKIQKKLAGRDGGRL*SQLLGRLR QENGVNPGGGGCSEPRLRHCTPAW*QSETISRKKRKKERKY
58	797	2	476	FRPIGIIRQALCSADGHQRRILTEREGLEVIPFEPASNLFFRV GFVVPSVGCCVMLIFGFG/ALRKHTERKKLIAAVVLGILLS/N DAERLRCAVRGGEWRSE/RAVFRGAVSVCPLSAEVRCNIGRNL AAKGNQTGAIRYHREAVSLNPKTKSSTREFRPC
59	798	3	711	IXIADFGFSNLFTBGGLLKTWCGSPPYAAPELFBGKETPGBKVD IMSLGVVLYVLVCGALPFDGSTLQNLRARVLSGKFRIPFFMST ECHELIRIMIVIDPHKELSMEGICHKUWKLGDADDNFPRLIA ECQQLKEERQVPPLHEDVLLAMEDMGLDKEGTLGSLRSDAYDH YSAIYSLLCDHKRHKTLRLGALPSMPRALGLSSTSQYP\AEQ AGTAMNIS VEQVQLINPENQIV
60	799	2	344	AREFLGHRASITWS*ARVHHRFPKAEVA*P/SLLRTDLTEDRT KCCHGDLLECADDRADLVEDIWENQDSISTILIECCEKPLLEK SHCIABVENDEMPADLPSLAADFVESKDV

CEO	PEO	Predicted	Predicted	A - 1 - 2 - 1 d
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I≈Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	ì	residue	residue	position institution)
ł	1	of amino	of amino	
1		acid	acid	,
Į.		sequence	sequence	
61	800	142	594	VPPKMKRGTSLHSRRGKPEAPKGSPOINRKSGOEMTAVMOSGR
			ĺ	PRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTAERIERL
1			Ì	EVSSLAQTSSAVASSTDGSIHTDSVDGTPDPQRTKAAIAHLQQ
	1	j	j	KILKLTEOIKIAQTARRNRRPGS*KDCTP*KCLRKSDEALNRV
	1	1	}	LOOI\RVPPKMKRGTSLHSRRGKPEAPKGSPOINRKSGOEMTA
	1	1	[VMOSGRPRSSSTTDAPTGSAMMEIACAAAAAAAACLPGEEGTA
1	į .	1	l	ERIERLEVSSLAQTSSAVASSTDGSIHTDSVDGTPDPORTKAA
1	l	1	l	IAHLOOKILKLTEOIKIAOTARRNRRPG
	801	232	1299	MOTIERLVKERDDLMSALVSVRSSLADTOOREASAYEQVKQVL
62	POT	232	1239	
1	ĺ	ĺ	1	QISEEANFEKTKALIQCDQLRKELERQAERLEKELASQQEKRA
1	l	1	ł	IEKDMMKKEITKEREYMGSKMLILSQNIAQLEAQVEKVTKEKI
1	1	ł	l	SAINQLEEIQSQLASREMDVTKVCGEMRYQLNKTNMEKDEAEK
i	1	l .	1	EHREFRAKTNRDLEIKDQEIEKLRIELDESKQHLEQEQQKAAL
	ŀ	1	1	AREECLRLTELLGESEHQLHLTRQEKDSIQQSFSKEAKAQALQ
1	1	1	ĺ	AQQREQELTQKIQQMEAQHDKTENEQYLLLTSQNTFLTKLKEE
1	i	l	ł	CCTLAKKLEQISQKTRSEIAQLSQEKRYTYDKLGKLQRRNEEL
				EEQCVQHGRST*
63	802	3	334	SYPVWWNSPLTAEVPPELLAAAGFFHTGHQDKVRCFFCYGGLQ
	İ	1	1	SWKRGDDPWTEHAKWFPSCQFLLRSKGRDFVHSVQETHSQLLG
1			i	SWDPWEEPEDAAPVAPSVPASGYPELPTPRREVQSESAQEPGG
1	1	1	1	VSPAEAQRAWWVLEPPGARDVEAQLRRLQEERTCKVCLDRAVS
1	1	ł	1	IVFVPCGHLVC\AECAPGLQLCPI\CRSPCGPLRPCLWVP
64	803	70	456	MCSYREKKAEPQELLQLDGYTVDYTDPQPGLEGGRAFFNAVKE
	1	1	1	GDTVIFASDDEQDRILWVQAMYRATGQSHKPVPPTQVQKLNAK
	1	1	i	GGNVPQLDAPISQFYADRAQKHGMDEFISSNPCNFDHASLFEM
		1		*
65	804	2	1376	KOLIVLGNKVDLLPODAPGYRORLRERLWEDCARAGLLLAPGH
1	1	1	1	QGPQRPVKDEPQDGENPNPPNWSRTVVRDVRLISAKTGYGVEE
1		1	1	LISALORSWRYRGDVYLVGATNAGKSTLFNTLLESDYCTAKGS
	1	1	1	EAIDRATISPWPGTTLNLLKFPICNPTPYRMFKRHORLKKDST
1	1	1	1	OAREDLSEOEONOLNVLKKHGYVVGRVGRTFLYSEEOKDNIPF
	1	1	1	EFDADSLAFDMENDPVMGTHKSTKQVELTAQDVKDAHWFYDTP
Į.	I	1	1	GITKENCILNLLTEKEVNIVLPTQSIVPRTFVLKPGMVLFLGA
1	1		1	IGRIDFLOGNOSAWFTVVASNILPVHITSLDRADALYOKHAGH
1	1		1	
1	i	l	1	TLLQIPMGGKERMAGFPPLVAEDIMLKEGLGASEAVADIKFSS
		1	ĺ	AGWVSVTPNFKDRLHLRGYTPEGTVLTVRPPLLPYIVNIKGQR
				IKKSVAYKTKKPPSLMYNVRKKKGKINV
66	805	1	874	STVASMMHRQETVECLRKFNARRKLKGAILTTMLVSRNFSAAK
1	1	ı		SLLNKKSDGGVKPQSNNKNSLVSPAQEPAPLQTAMEPQTTVVH
1	1	l		NATDGIKGSTESCNTTTEDEDLKAAPLRTGNGSSVPEGRSSRD
1	1	1	1	RTAPSAGMQPQPSLCSSAMRKQEIIKITEQLIEAINNGDFEAY
1	1		1	TKICDPGLTSFEPEALGNLVEGMDFHKFYFENLLSKNSKPIHT
1	1	1		TILNPHVHVIGEDAACIAYIRLTQYIDGQGRPSNPAKSEE\TR
	i	(VWH\RR\DGKWLNVHYHCSGAPCPHRCSELSHRGF

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ł		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	l	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	i	acid	acid	\=possible nucleotide insertion)
	,	residue	residue	
Ì		of amino	of amino	
ĺ	1	sequence	sequence	•
67	806	3	1714	LPKNVVFVLDSSASMVGTKLRQTKDALFTILHDLRPQDRFSII
10,	000	1	2724	GFSNRIKVWKDHLISVTPDSIRDGKVYIHHMSPTGGTDINGAL
				ORAIRLINKYVAHSGIGDRRVSLIVFLTDGKPTVGETHTLKIL
		ļ	j	NNTREAARGOVCIFTIGIGNDVDFRLLEKLSLENCGLTRRVHE
1				EEDAGSOLIGFYDEIRTPLLSDIRIDYPPSSVVOATKTLFPNY
1	1	i		FNGSEIIIAGKLVDRKLDHLHVEVTASNSKKFIILKTDVPVRP
	1	1	1	QKAGKDVTGSPRPGGDGEGDTNHIERLWSYLTTKELLSSWLOS
1	1	i	i	DDEPEKERLRORAOALAVSYRFLTPFTSMKLRGPVPRMDGLEE
			l	AHGMSAAMGPEPVVQSVRGAGTQPGPLLKKPYQPRIKISKTSV
Į			1	DGDPHFVVDFPLSRLTVCFNIDGQPGDILRLVSDHRDSGVTVN
Į	į			GELIGAPAPPNGHKKQRTYLRTITILINKPERSYLEITPSRVI
Ì			ŀ	LDGGDRLVLPCNQSVVVGSWGLEVSVSANANVTVTIQGSIAFV
1		i		ILIHLYKKPAPFQRHHLGFYIANSEGLSSNCRVFCESGILIQE
			i	LTQQSVAVAGR
68	807	2	841	FFLEQVSQYTFAMCSYREKKSEPQELMQLEGYTVDYTDPHPGL
	ł	i .	{	QGGCMFFNAVKEGDTVIFASDDEQDRILWVQANYRATGQSYKP
	ł	l	Į.	VPAIQTQKLNPKGGTLHADAQLYADRFQKHGMDEFISANPCKL
	Į	1	1	DHAFLFRILQRQTLDHRLNDSYSCLGWFSPGQVFVLDEYCARY
			1	GVRGCHRHLCYLAELMEHSENGAVIDPTLLHYSFAFCAS\HVH
	1			GNRPDGIGTVSVEEKERFEEIKERLSSLLENQISHFRYCFPFG
				RPEGALKATLSLLERVLMKDIA
69	808	2	757	DGLLHEVLNGLLDRPDWEEAVKMPVGILPCGSGNALAGAVNQH
	1			GGFEPALGLDLLLNCSLLLCRGGGHPLDLLSVTLASGSRCFSF LSVAWGFVSDVDIOSERFRALGSARFTLGTVLGLATLHTYRGR
1	1		1	LSYLPATVEPASPTPAHSLPRAKSELTLTPDPAPPMAHSPLHR
				SVSDLPLPDPALASPGSPEPLPILSLNGGGPELAGDWGGAG
				DAPLSPDPOLSSPPGSPKAALHSPV*KKAPVIPPDM
70	809	3	530	KGVPTLLMAAGSFYDILAITGFNTCLGIAFSTGSTVFNVLRGV
/ 0	803	3	330	LEVVIGVATGSVLGFFIOYFPSRDODKLVCKRTFLVLGLSVLA
	1	1	[VFSSVHFGFPGSGGLCTLVMAFLAGMGWTSEKAEVEKIIAVAW
				DIFQPLLFGLIG\AEVSI\SSLRPETVGLCVATVGI\AVLIRI
	1		1	FDYIF
71	810	228	541	LLKEVVVOASPVCKTCCSQLVRTPVTFTEVONV/CRCSAGYLI
1 "	1 320		1	SVCSYTSSDHNOCYAGTASLALLWIGGILKGCLLWKOFRWTER
	1			SHWNFGYWALWSPGNGNGC
72	811	173	404	ICTSTYLOIFPGKPSCFMCKGRLMCIYFILWYLGHYTSLHWNW
1.2		1		CRYISDPNVD/ACPDPRNAEVSMTHTVPALMELID
73	812	2	586	LESLPGFKEIVSRGVKVDYLTPDFPSLSYPNYYTLMTGRHCEV
1				HOMIGNYMWDPTTNKSFDIGVNKDSLMPLWWNGSEPLWVTLTK
				AKRKVYMYYWPGCEVEILGVRPTYCLEYKNVPTDINFANAVSD
	1		1	ALDSFKSGRADLAAIYHERIDVEGHHYGPASPORKDALKA\VD
			1	TVLKYMTKWIQERGLQDRLNVII
				<u> </u>

D	SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine.
No. nolecotide location Coat					
Face Section				nucleotide	
Acids Acid			location	location	
Acids			corre-	corre-	
to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequenc			sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
acid residue	110103	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid acid residue formition acid residue formition acid sequence seq			amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
residuc residuc of amino acid sequence sequ			acid	acid	
		1	residue	residue	Possiole nucleotide insertion)
			of amino	of amino	
		1	acid	acid	,
QVDPDAEVDAAPSTISSCGI *DSHAGS *RYLSLIGP *GPA*TC ANSMAKKLLVANLEPPD PPWKSELSDAFK		l	sequence	sequence	
	74	813	2	348	ARDFHPKQTLDFLRSDMANSKITEEVKRSIAQQYLDLTVA/LE
				1	OVDPDAEVDAAPSTTSSCGH*DSHAGS*RVLSLLGD*GPA*TG
SPRINTGERCEBIVESCHOOGHITS LILDH_*LILLUVLYGOVERCHERVOCARGEOGHITS LIPHYNICA	1	1	1	(
SPRINTGERCEBIVESCHOOGHITS LILDH_*LILLUVLYGOVERCHERVOCARGEOGHITS LIPHYNICA	75	814	2	366	KOSGDVTCNCTDGRLAPSCLTCVGHCTFGGYCTMNSKMMPRCO
	' "	022	1 -	1 500	
	1	1	1	1	
### PROMPTIAMER YLLLHILGROGFSEVYKVYYGLFWFPYTNVARF 77 816 37 428 MEEFUNMCKGCSCYV** FILISHEN/MIKJAENSHPTNINGESE*	70	015	420	601	
	/6	0.12	420	001	
		000	22	400	
IAPPLQV*PAHLRGHPSNRGQGRPWKSGKLGKCQEVLFRFA AP	77	816	37	428	
AF AF AF AF AF AF AF AF BAFAFILAN/CHDCRPMDKSAGSGHKSEFKREKWRETLLKDWKTT LSYPLONSSTGKPKTCKKKKQAFIK*VENDELANINS*LIN *KORL**A*ANIQNISCRSPSEAQLWSEADE GFMFSSSPKLKGKKNSSIVLEITKRNILEFILBRENDSVVKSS FPSSDARHSSVHR*TÖLHHÖPESHTARP*RGFMFSSPKLIG GWKINSSLVEIRKNILEFILBRENDSVVKSSFSDARHSS BO 819 85 810 819 85 810 RIDDQGELKRVT*YSQKEYTKKKLHKKCNITQADIKFDNILDE BSITILKLSDFGSAGNAUADDITPSSAGTTSAASSPETTLER V 82 82 82 83 82 84 85 81 86 87 88 88 88 88 88 88 88 88	ì	ł	l	4	
79			i .		
LSYPLONSSTGKPKTGKKSKQAPIK*VENPELANINS*LLS *KGGLK**A*ANIONSCPS*pEBAGLMSGAPDE					
KGEL*ANIONISCRP\$PBEAQL#SEAFDE	78	817	1	358	
79	ĺ	1	1		
PSEDARHSSVHR*FTOLHWGPESHTARP*RGFFFSSPRL GWKINSLVLBIRKNILFILDARDVSVVKSFPSKDARHSSV HR					
GWKINSILVEJIRKNILRFLDAERDVSVVKSSFPSKDARHSS\ HR	79	818	1	169	GFFNFSSPKLKGWKINSSLVLEIRKNILRFLDAERDVSVVKSS
IR	١.	1	l	i	FPSKDARHSSVHR*FTQLHWGPPSHTPARP*RGFFNFSSPKLK
80		i	l	l	GWKINSSLVLEIRKNILRFLDAERDVSVVKSSFPSKDARHSSV
BSITILKISPEGSASHVADBUTTPSSQCTTSAASSPERTLER 81	1	1	1	l	HR
820	80	819	55	310	RIDDOOELKRVT*YSOKEYTKKKLHKKCNIIOADIKPDNILDN
820	1		1		ESITILKLSDFGSASHVADNDITPSSSOTTSAASSPPRTLRR
V V V V V V V V V V	81	820	 	134	
PISILKFLKETGHOFMER PEEELSEDVEQ DIHADRELRRGG NIRCKGIRRLDFILDVGON 83 822 208 723 KMMLLHEFKITGLSIVPQL *CPREFFSHEATIFHELVYKOTK. 1SINGELIYEGRELVLEPGRIAQHFPKTTSENPIFVVSREPLI TIGLIYEKISLPKVHFRYDLDGDASMAKAITGVVCYACRIAST LLLVGSLARKGIRWLIELIKDDYNSTVHKKTEVVITLGFLVIS 84 823 1 314 GTRRMFPTVSPICLGFTGVGDYLNHODGLGLISGRGFKEKRER DRLKAGRSPAAG*RKWEGGRGPTVHESSEDVHKSKYTKCVD KGA*C*TDNKEPLRGCOVT 65 824 3 302 HELGNILTKSKGLVY*G*VLHGA*TAEPEASFCPERGNNGY GAGSSKMFFFFGVISSKGLGLGPP DDGPYTVYYFFHKLAMVY AASELKREHLTHL 86 825 87 422 PYPLPFPILEVCPQO*BFOSAISLTAFQVQAGASRASPGPPAI SSKFGKKAKVASPCDDEPAPPT*PEPAAAPGSESSPRPFRI RTGRRQGRAHARRAARTAPHRPSC 87 826 3 289 HEGGRRGWASASGGFLRWAFLTFFSKVRRLKGGKAFGKLPSHE DTSLTSDLGFHHKPNPNASSSKKPSGYKFALQYGTGRVDGILE EDKLTVSGL EDKLTVSGL EDKLTVSGL ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE EDKLTVSGL ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER GARG		1	-	1	
PISILKFLKETGHOFMER PEEELSEDVEQ DIHADRELRRGG NIRCKGIRRLDFILDVGON 83 822 208 723 KMMLLHEFKITGLSIVPQL *CPREFFSHEATIFHELVYKOTK. 1SINGELIYEGRELVLEPGRIAQHFPKTTSENPIFVVSREPLI TIGLIYEKISLPKVHFRYDLDGDASMAKAITGVVCYACRIAST LLLVGSLARKGIRWLIELIKDDYNSTVHKKTEVVITLGFLVIS 84 823 1 314 GTRRMFPTVSPICLGFTGVGDYLNHODGLGLISGRGFKEKRER DRLKAGRSPAAG*RKWEGGRGPTVHESSEDVHKSKYTKCVD KGA*C*TDNKEPLRGCOVT 65 824 3 302 HELGNILTKSKGLVY*G*VLHGA*TAEPEASFCPERGNNGY GAGSSKMFFFFGVISSKGLGLGPP DDGPYTVYYFFHKLAMVY AASELKREHLTHL 86 825 87 422 PYPLPFPILEVCPQO*BFOSAISLTAFQVQAGASRASPGPPAI SSKFGKKAKVASPCDDEPAPPT*PEPAAAPGSESSPRPFRI RTGRRQGRAHARRAARTAPHRPSC 87 826 3 289 HEGGRRGWASASGGFLRWAFLTFFSKVRRLKGGKAFGKLPSHE DTSLTSDLGFHHKPNPNASSSKKPSGYKFALQYGTGRVDGILE EDKLTVSGL EDKLTVSGL EDKLTVSGL ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE EDKLTVSGL ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER SERVERGRAFAKUGTGRVDGILE ETTERSTORD GARGATER GARG	92	921	107	260	1 *
NLRCKGIRLPTHIQVGQN	02	021	1 = 0 /	300	
83				l	
ISBNORLIYEGRELIVLE GELAQHE PETTERNET FTVSREPLI TIGLIYEKISLE PETHENDI FOR VISEBLE TIGLIYEKISLE PETHENDI CHARAKALITOVIC YACETAS' LLLVQELARKA IRWILEL. IRDOYMETVHKKTEVVITLOFILUS 1			-	-	
TIGLIYEKISLPKYHERYDILDGBASMAKALITOVVCYACRIAS; LLLYOSLMKKICIBNILBLIKDOVHTYHKKTEVVITLGPLVS 84 823 1	83	822	208	723	
LILYQELMRKGIRMLIELIKDOYMETVHKKTEVYITLÖFLUSS 84 823 1		l	1	l .	
84 823 1 314 GTREMSPTUS PICLEOTING DYNIAMOGDICAL EGING RTEKERDE. DRIKAGRSPAAG * RKWEBGRGDTWEESEBUVHKS KWITCYDE KQA*C*TONKRP I.R.GOT* RELENLIKS ARBYSELY*G** YLHIGA*TAEPEASFCPERGWINKO, GAAGSRMFRFBULSKR, GLEIGP POCEPTYTYTY PHILLANVI. AASELEREHLITHL 86 825 87 422 PYPLPHFILEVCPGO*BEDGSAISLITAFOVQAGASRASPGPPAI SSSKPGRKAKVASPCDEPAPPT*PEPAAAPGSESSPRPPRI RTGERQORAHAERAARTAPMESES 87 826 3 289 HEGERGWASAS GRFLRNWAFLTPSKVERLKGÇKAFCKLPSHE DTSLTSDLIGTHHEPNENASSSFKPSGTKFALQYGTGRVDGTLE EDKLITYGGL. BUTSLTSDLIGTHHEPNENASSSFKPSGTKFALQYGTGRVDGTLE EDKLITYGGL. BUTSLTSDLIGTHHEPNENASSSFKPSGTKFALQYGTGRVDGTLE EDKLITYGGL. BUTSLTSDLIGTHHEPNENASSSFKPSGTKFALQYGTGRVDGTLE EDKLITYGGL. BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFALQYGTGRVDGTLE BUTSLTSDLIGTHREPNENASSFKPSGTKFAL	1	l	1	l	
DELKAGRSPANG-RKWREGRGDFTWEESEDUHKSKWTRCVDE KGA v-TIDNKEPLERCOUT					
	84	823	11	314	
85					DRLKAGRSPAAG*RKWEPGRGDPTWEESEEDVHKSKWTRCVDE
GAAGSKMNFRPGVILSERQLGLPGPPDGPDYTVYYPFHRLAMVI AASRLEREHLTHL 86 825 87 422 PVPLPHPTLEXCPGQ*EPQSAISLTAPGVQAGASRASPGPPAI SSSKPGRKAKVASPCPDRPAPPT*PEPAAAPGSESSRPPRI RTGRGQGAHARRAAAPTAPMRPS 87 826 3 289 HSGREGMASASGRFLRWAFLTPSKVERLKGGKAFGKLPSHE DTSLTSDLGFHHRPNPNASSSFKPSGTKFALQYGTGRVDGILG EDKLTVSGL	1			L	
AASELERBHLITHI 86 825 87 422 PYPUPPPILEVCPQO*BEOGATSLITAFQVQAGASRASPGPPAI SSSKPGRKAKVASPCIDDEPAPPT*PEPAAAPGSESSPRPPRI RTGRRQQBAHARRAAARTAPHRPSC 87 826 3 289 HEGGRRKWASASQGFLRWAFLTFPSKVRLKGQKAFGKLPSHE DTSLTSDLGPHHEPNPNASSSFKPSGTKFALQYGTGRVDGILE EDKLITYSGL	85	824	3	302	HELENLIKSAHSYSLY*G*YLHGA*TAEPEASFCPRRGWNRQA
86 825 87 422 PVPLPHPILEVCPGQ*EPQSAISLTAFQVQAGASRASPGPPAI SSSKPGRRAKVASPCPDRPAPPT*PRPAAPGSESSRPPPAI RTGRGQGAHARPAAPTAPMPSC 826 3 289 ESGRRGWASASQRFLRWAFLTPSKVRLKGQKAFGKLPSH DTSLTSDLGFHHRPNPASSSFKPSGTKFAIQYGTGRVDGILS EDKLTVSGL EDK				ł	GAAGSRMNFRPGVLSSRQLGLPGPPDGPDYTVYYPFHRLAMVT
86 825 87 422 PVPLPHPILEVCPGQ*EPQSAISLTAFQVQAGASRASPGPPAI SSSKPGRRAKVASPCPDRPAPPT*PRPAAPGSESSRPPPAI RTGRGQGAHARPAAPTAPMPSC 826 3 289 ESGRRGWASASQRFLRWAFLTPSKVRLKGQKAFGKLPSH DTSLTSDLGFHHRPNPASSSFKPSGTKFAIQYGTGRVDGILS EDKLTVSGL EDK	1	[1		AASRLEREHLTHL
SSSKPGRKAKVASPCPDEP APPTT PEPAÄAPGSESSPRPPRI RTGRQQRAHARRAARTAPKRES 87 826 3 289 HEGERRKGMASASQRFLRNWAFLTPSKVRRLKGQKAFGKLPSHE DTSLTSLLGPHHEPNPNASSSFKPSGTKFALQYGTGRVDGILE EDKLTVSGL	86	825	87	422	PVPLPHPILEVCPGO*EPOSAISLTAFOVOAGASRASPGPPAP
RTGRRQQRAHARRAAARTAPMRPSC 87 826 3 289 HEGGRRGWASASQRFLRNWAFLTPSKVRRLKGQKAFGKLPSHS DTSLTEDLGFHHFPNPNASSSFKPSGTKFALQYGTGRVDGILS EDKLTVSGL	1	1	1		
87 826 3 289 HEGREROMASASORFLERWAFLTPSKVERLKGÖKAFGKLPSH DTSLTSDLGFHHRPNPASSSFKPSGTKFALQYGTGRVDGILG EDKLTVSGL	1	1	1	1	
DTSLTSDLGFHHRFNPNASSSFKPSGTKFAIQYGTGRVDGILS EDKLTVSGL	0.7	026	+	289	
EDKLTVSGL	187	020	13	203	
	1	1	1	1	
88 827 I IOI GRNIMHYPNGHAICIANGHCIIL*NSHNIKVWV		400		100	
the state of the s	88	827	L ¹	LTOI	GRNIMHIPNGHAICIANGHCIID*NSHNIKVWV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
89	828	1	535	INLIGHTCYMSIVI*ALFMATDFRRQVISINLINGCNSLMKKLOH LPAFLAHTORENAPARIFFBASRP PWFTFRSQODCSEVLRPLL DELHEEEKILKVQASHKOSEILECSETSLOEVASKAAVLTETP REDOEKTLIERWFGGKLRTHIRCLNCTSTSQKVEAFTDLSLA FWBSS
90	829	1	434	ARDDPRVRLSLSPNFF*LASKLGKQWTPLIILANSLSGTNMGE
91	830	3	782	HHRIKINDRWTFPEELDMSTFIDVEDEKSFOTESCTISGAENS GSCHSOMSNDFSNDGAVDSGICLETHSGFEEKISKSGLEKNIS IYELFSVAVHSGSAAGGHYVACIKSFEDEQWYSFNDGHVSRIT QEDIKKTHGGSSGSRGYYSSAPASSTNAYMLIYRLKDPARNAK FLEVDEYPEHIKNILYGKERLEEGERGQEEIERNTCKIKLECL HPYTQOMMED*IEVHKOKTLKEAVEMAYKNMDLEEVIFLDCCR L
92	931	2	604	SYMPUPALCLIMALAMYTRPASAAPNGOPELAQHEELTLLFHG TLQIGQALIMQYRTTEGRITKARNSIGLYGRTTELIGGUSRG RDAQELRASLLETQMEEDILQLQARATAEVLGEVAQAQKVLR DSVQRLEVQLRSAMLGPAYREFEVLKAHADKQSHILWALIYGHV QRQREWYAQQHELRQIQERLITAALPA
93	832	16	690	TTSYDPRYKKNASTGYGKINLDDVSCDGDESDLMSCRISGMGN NDCSHSEDVGVICSDASDMELRLVGGSSRCAGKVEVNVQGAVG ILCANGWGMNIASVVCRQLECGSAIRVSREPHFTERTLHILMS NSGCAGGRASLMDCIRMSWKQTACHLMMEASLICSAHROPRLV GADMPCSGRVEVKHAHTWRSVCDSDFSLHAANVLCRELNCGDA ISLSVODHFG
94	833	108	727	SNYPSSRPRVAGITGYKLGKRSIPIATACTYHKFGETNLDA VDPYLLAWSIYLAKKVEGHLETDIINNSKRYFMSGGLE LOSRFWELRDSIVOCELLMLRVLRPOVSFOHHKYLLHYLUSL QNWLNRHSWGRTPVAVTAWALLRDSYHGALCLRFCAGHLAVAV LYLALGVYGYEVRAVERA DERVGKQITAMDTEIP
95	834	118	376	RGSRHAVHGWAFGLLFINKESVVMAYLFTTFNAFQGVF1FVFH CALQKKVRSRRGPGSQPPLETFPGYPGEGGEGGGDSGAPSSPQ
96	835	3	333	ARKDDLPPNMRFHEEKRLDFEWTLKAG*EKG*PSK*NKGWEGQ E***TVRD*GIS**VKPQHLS*\ALQMALKRVYTLLSSWNCLE DFDQIFWGQKSALAGQWFPEVSIIP
97	836	740	951	GKQQRETLRRPSPTISVQRAGSPEHSSASH*HSPCPAPGQRVL PTALCTLMTSKHFHGCPLAGQGRAVTL

D		one	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: NO: Online molecules molecules molecules molecules of social or Neteix Amino Acids Aci					
Note Acids					
Martic Article Artic					
Acids Acids sponding sponding to first amino acid residue of amino acid residue residue of amino acid sequence				corre-	
T=Threadine, V=Valine, W=Typiophan, Y=Tyrosine, amino acid sold residue of amino acid sequence sequenc			sponding	sponding	
amino acid residue residue of amino acid residue of amino acid residue of amino acid sedice residue of amino acid sedice residue of amino acid sequence sequence of CVGLPRFCSSILCHYEMSLGASFVOIKFDDLQFFENCSGG SPGSVYRAKMISQDKEYAVKKLLKIEKRARILSVLSHRNITOF YGVILEPPNYGIVTEVASLGSLTDYINSNESSEMDMEHITMEN TDUAKAMHYLHMEDRYVAVIHDLKASFMVLADDGVLKICDFGA SPHENHITTHESLVGTPHWADPEVIQSLEVGETCOTYSYGVULW EMITERLYPFKGLEGIQVAMLVVEXNERLYIPSSCRSFAELLH QCWEADAKRAPSFRQIISILESKNDTSLPDKCNSFLHNKABW RCSIEATLERLKKLERDLAFFRGETLKKERDLAFFRGETLHKKLERDLAFFRGETLKKERDLAFFRGETLHKKLERDLAFFRGETLKKARGKVNNALGAVENSFRALLH QCWEADAKRAPSFRQIISILESKNDTSLPDKCNSFLHNKABW RCSIEATLERLKKLERDLAFFRGETLKKARGNAFSGMGLINDAKRASVNTSGMGLINDAKRASV TTSKRRGKKVNNALGAFDDLASGGDDDDDGDEGERFARGUNDENSE TOMARGKVANDALGAFDDLASGGDDDDDDGDDEGAFRANDENDENSE TOMARGKVANDALGAFDDLASGGDDDDDDGDDGAFRANDENSE LSQUE GMWBELRFYIPGFDVATFTGTSTGTDAFRFGFSFLKAGGGNAFGFFFLKAGG GMWBELRFYIPGFDVATFTGTSTGTDAFRFGFSFLKAGGNAFGFFFLKAGGGNAFGFFFLKAGGGAFAGAFAGAFAGAFAGAFAGAFAGAFAGAFAGAFA	Acius	Acias			T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid residue of amino acid residue of amino acid sequence					X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
residue residue of amino acid solution acid sed sequence				acid	
acid acid acid acid sequence sequence govGcLprPCGSTILCHYEMSLGASFVGIKFDDLQFFENCGGG SPGSVYRARWISQDKEYAVKKLLKIEKEARILSVLSHRNITGF YGVILEPPNYGIVTEYASLGSLTDYINSNESSEMDMDHIMTWA TDUAKAMHYLHMEDRYVEYHEDLKSSEMVVAADGUKLCDPGA SRHHNITTHISLVGTPRWAADEVIJGSLEVGETCOTYSYGVULW EMITTEYPFKGLEGIQVVAALVUKULKIEKEARILSVLSHRNITGF YGVILEPPNYGIVTEYASLGSLTDYINSNESSEMDMDHIMTWA RTDUAKAMHYLHMEDRYVIJGSLEVGETCOTYSYGVULW EMITTEYPFKGLEGIQVVAALVUKUKSHRITITYPSCNESFAELLH QCWEADAKRAPSFRQIISILLSVANDVAADGUKLCDPGA SRHHNITTHISLVGTPPWAADEVIJGSLEVGETCOTYSYGVULW RCHITEVPFKGLEGIQVVAALVUKUKSHREITITYSSCNESFAELLH QCWEADAKRAPSFRQIISILLSVANDVALDVALDVALDVALDVALDVALDVALDVALDVALDVAL	}		residue	residue	r possible lines time time time)
Sequence Sequence			of amino	of amino	
98 837 81 1503 GVGGIPPPCGSTILCHYEMSSLGASFYQIEFDDLQFFENCOGG SPGSVYPRAKHISONGRVAPKILKIEKERSILISUFSKRNITOF YGVILEPPNYGIVTEVASLGSLTDYINSNESSEMDMDHIMTWA SPHHHITTHISLVGTPPHWADEVIOSLEVSETCOTYSYGVILW EMITEVPFRIGEGIQVANULVEKERSENITIPSSCYREFAELLH QCWEADAKKRPSFKOIISILESHSINVTADGUKIKICDFGA SPHHHITTHISLVGTPPHWADEVIOSLEVSETCOTYSYGVILW RCSIEATLERIKKLERDISFREGELKERERILVWEQKLITEQS NTPLILDIAARNISSESFYESKTESENSAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSQCITATENGEGH GMPSELGAMALINGRGIFSTENSKAENSCOLTATENGEGH LEGGSAACKRIVASFYDTLSSENSAENSGCITATENGEGH MILMETGCSAACKRIVASFYDTLSSENSAENSGCITATENGEGH MILMETGCSAACKRIVASFYDTLSSENSAENSGCITATENGEGH MICHTERSTENSKAENSTATENDESTENSKAENSCOLTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTENSKAENSTATENGEGH MICHTERSTANSKAENSCAENSTATENGEGH MICHTERSTANSKAENSCAENSTATENGEGH MICHTERSTANSKAENSCAENSTATENGEGH MICHTERSTANSKAENSCAENSTATENGEGH MICHTERSTANSKAENSCAENSTATENSKAENSTATENSKAENSTATENSKAENSCAENSTATENSKAENSCAENSTATENSKAENSCAENSTATENSKAENSCAENSTATENSKAENSCAENSTATENSKAENSCAENSCAENSCAENSCAENSCAENSCAENSCAENSC			acid	acid	
SPGSVYPARMISODREVAVKILKIEKERAPLISVLSHRNITOF YGVILEPPNYGVIPTASLGSLDTVINNISSEEMBOHHIUWA TDVAKGHHILHHERAPUKVIHBULKSRNVYLAADGVLKICDFGA SEPHHRITHHSLVGFYBLGSLDTVINNISSEEMBOHHIUWA BULTEEVPFKGLEGLQVAKLVVEKRERLTIPSSCPRSFAELLH QCWEADARKEPPSTQ ITSILKSNSNDTSLDFKOSTYSVYVIN EMITEEVPFKGLEGLQVAKLVVEKRERLTIPSSCPRSFAELLH QCWEADARKEPPSTQ ITSILKSNSNDTSLDFKOSTSTANISH RCEIERTLEELKKLERDLEFFEGDELKEERERLKWEGKLITGSC NTOLIHLALARNISSESTYESTETESSKRESKOTTTSKNGGK GMIPSLQAMMLWGFGGIFSMWKAGAVMHSGMQINMQAKQNSSK TTSKRRGKKWAALGESPFDLSEGODDDDDOSEETHNDHDSS 100 839 1 348 MLWETGCSARCKVVTSTVTFATFSTROIDARWGFFFLWGQ GMSWELRFYIFDFFDVGTMFTIQKILVSNSPPKFIGFILDLGDF HFGQPPHNUDLIVPPFPLVIKUTIGKFEKTIDARWGFSFFLWGQ GMSWELRFYIFDFFDVGTMFTIQKILVSNSPPKFIGFILDLGDF HFGQPPNUDLIVPPFPPLVIKUTIGKFEKTIDARWGFSFFLWGQ ANGENSALSVANGAGGODALMTSLGTLIPFRTYSFSFFWES RSVAQAGVQ 102 841 105 354 RHTGGCGCPTHTHITHTHSHTHSHTSHSHSHTTFRCSHTGFF RSVAQAGVQ HAGAGAGGOPTMKLAHRPRIKVIKEGGMLGG 103 842 171 347 HYSLSYTLVRGLTAGTLIGKGRAGGTRIPDBSSALSF*HISGL 104 843 2 650 ATYIVDFGFSTTFREGGMLTAFCGMYPVAPERSLGGAQO*PA HAGAGAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG	1	,	sequence	sequence	
YGVILEPPNYGIVTEVASLGSLYDYINSNISSEMDMBHIMTWAN TDUAKGHHIMHENDEVAUTHDIKKSEMDVIADDUKICDFOR SRIFHRITTHISLVGTPPMADPVIJSLDVSETTOTYSYGVIJA BEMLTREVPFKGLEGLQVAMLUVEKSHENITTFSSCRSFFAELLH QCMEADAKRAPSFRQIISILLESMSNDTSLPDKCNSFLHNKABW RCSIBATLBEHLKKLERDLSFREGELKRERERLKWERGKLITGGS HTPLLIPLARARNSESFFSSTTESSSRABENSGVITATSRGSGH GMRPSLQAMMLAGRGDIFSDMSKAGAVMSSGWGINNQAKQNSSK TTSKRRGKKVNANAGSFSPDLSGGODDDDGDEGEFNTROMBUNDENSE 100 839 1 348 PTLGDQFDLHSITRASRPKLGTKRKNCHPLTITVHDPNSTQ*YY GMSWELRFYIPFGFVOMFTTOKKLUSWSPPKIGPLTDLGDP MFQKPPNKVDLTVPPPELVIKDTLGKFFKTVTHDPNSTQ*YY GMSWELRFYIPFGFVOMFTTOKKLUSWSPPKIGPLTDLGDP MFQKPPNKVDLTVPPPELVIKDTLGKFFKTVYGOASSFGAN MIGNMSAISVGVSTGGQWYMYDMTTASLSQQ*DQKFLTRNV 1PPLYGSEBMNRCGSGDDNLTSLGTLNFPGRTVSFSFEMES SVAQAGVQ RSTANDARGVG 102 841 105 354 RTOGECCPTTHIHTHTHENTISSISSHSTTPGCSHTQPP HAGAPALC*S*EDRGQFTWKLCAHRPRLKVIKSGGMLGG 103 842 171 347 NYSLSYTLVRQITAGTLAGKLGRKGTRIPDBSRLSS*RLSSL PHLIMIQVPLALQPS PHLIMIQVPLALQPS LIPYEBPL/RGDPGTICHTAGRGYMPYVAPERSLGGAC*PA ATYIVDFGFSTTFREGGMTATGGMYPYVAPERSLGGAC*PA PDLGSISVILYFFRITVGRARTIGFYS/AERSLGCKLTLTGRY HAPPLLALQLDSL/IKKLMANRCPSI*LMNSPYVKSGQKMP LIPYEBPL/RGDPGTICHAVANGFGAMISVAILERFRYIPMA TYLLLEHTKGERKGSTTRELSLPFGVFTSSPSTELSTPPLSL MRAHERPAFFRVOPPESSQ 105 844 2 777 AKGELAKHMIEDPSLLNSRPVLHHAKAGTITARGGODVSIH PTLBAGPBCTFLBISKSDFYEIMFAGPSVVSAGRKELVGENG UC*PPEPLAGGGRSDCTYTULNGRLESVIGNSAGHTVARRMSP FURGMFAIDPTTSPFSSQALYCRSERAAQAPERGGLGUVUR C*PPEPLAGGGRSDCTYTULNGRLESVIGNSAGHTVARRMSP TURAAPGTGSWARGSVVGABATPESSPFREGELGGAVFFGA TREFAGFGGRSDCTYTULNGRLESVIGNSAGHTVARRMSP TREFAGFGGRSDCTYTULNGRLESVIGNSKELVERSYG TREFAGFGGRSDCTYTULNGRLESVIGNSAGHTVARRMSP TREFAGFGGRSDCTYTULNGRLESVIGNSAGHTVARRMSP TREFAGFGGRSDCTYTH*PLAFFREDGENGTTSSTGAGARTPGA TREFAGFGGRSAGGSAGGSAGGATFTGAGARTHTCSTAGGGSKEELVGENG TREFAGFGGRSDCTTTHAMFLICHTERGEGGRSCTTPAAGW WILGTGBPAADVWINGERMSTTTGARFGGLIGGGSSGGGGGTGTTPAAGW WILGTGBPAADVWINGERMSTTTGARFGGGGGGGGGGGGGAGAAGGATGAGATHTGAGAGATTTGAGAGATHTAARMSP TREFAGFGGRSAGGGSAGGGGGGGGGGGGGGGGGGGGGGGGGG	98	837	81	1503	
TDVAKSHHTLHHERPVEVIHDLKSSNVVIADGVIKICDFGA SEPHNETTHISLIGHTPWARDEVIGGLUSVETCHTYSYGVTUM EMILTEEVPFKGLEGLQVAMLUVEKRERITIPSSCPREFAELLH OCMEADAKERPFKGLISILGSVANTSLDVEKSERTYTYSVAVIM BRITTEEVPKGLEGLQVAMLUVEKRERITIPSSCPREFAELLH RCSIERTLEELKKLERDLEFKEGELLEEERLKAWEGKLITEGS NTDLILDLARMSSESFYESTTEESKABENSCOTTATSGNGCH GMEPSLQAMMLMSPGDIFSMUKAGAVMISGWGLINGAKGNSKA TTSKRRKKWANALGFSPFDLSEGDDDDDDDDDGEEYNDUDNSE 100 839 1 348 MLWETGCSARGEVTVSFTVTFRTFSTRGIDARREFSFFLERQQ GMSWELRFYIFDFFDVGTMETIGKLINSNSPPKIGFLTDLGDP MFOKPPNKUDLIVPFPFLVIKUTLGFEKI 101 840 1 416 SLANTVILGEREKTFGCTGTGTTKGCREKGTVCQASSFGAN MIGNKWASISVHGVSTGGQWHYMDNTASLSQQ*DKKPIRN IPPIPVGSEMWRCQGSGDDMINSLGTLTMFPGRTVSFSFEMES RSVAQAGVQ 102 841 105 354 RHTQBCCCPTHIHTHTHSHTHSHTSHSHSHTTFRCSHFOFP HRQDARLC*S*EBROGYTMKLCAHRPRKKVIKSGMLGG 103 842 171 347 HYSLSYTLVKGLTAGTLGKGLARGTRIPDBSSALSS*HASSL 104 843 2 650 ATYIVDFGFSTTFREGGMLTAFCGMYPVAPERSIGGAQ*PA PHLMIQVFLALQPS LIPPEPL/RGDPGJOTMKLCAHRPRKKVIKSGMLGG 1LYPEPL/RGDPGJOLGNAMGSAMISVAITERFKYPMA TYLLEHTKGERCSTTERLSLPGVYPTSPSPSTELSTFPLSL MRAHERPFAFVVOPPESSO 105 844 2 777 AKQELAKIMELDESLLINFGVYPTSPSTELSTFPLSL MRAHERPFAFVVOPPESSO 106 845 3 709 HAGGWATTHIFFLISKGDFTEIMRAQPSVVISAAHTVARMSP FVRMDFAITMTVASGARATTCSSTRAQARROGDLGVTRP FVLMCCLHVYGRINDKAEDVCLFVAGGSKLGGRUCTGERLFTPAMM TEPAAPGTGSWARGSVVGABA PIPSSPSKASRTTGGREFTPAM TEPAAPGTGSWARGSVVGABA PIPSSPSKASRTTGGREFTPAM TEPAAPGTGSWARGSVVGABA PIPSSPSKASRTTGGFREFTGA TEPAAPGTGSWARGSVVGABA PIPSSPSKASRTTGGFREFTGA TEPAAPGTGSWARGSVVGABA PIPSSPPSKASRTTGGFREFTGA	İ				SFGSVYRAKWISQDKEVAVKKLLKIEKEAĘILSVLSHRNIIQF
SRIPHINTTHINSLIVETPPHWARDEVIOSLEVSETTCTYSYGVULU BMITTERVPREGESHQUVALUVEKRENELTITPSSCPREFAELLH QCWEADARKERPSFROIISILESMSNOTSLODKONSFLHINKARM RCSIEATLERLKKLERDLSFKEQELKERERKLOWBEQKLTEGS NTPLLIPLARARMSESSYFPSKTEESNSAENSCQITATENNESH GMFSELGAMALMSGEGIFSSNSAENSCQITATENNESH TTSKREGKUNALGSPSPDLSSGOLDDDDGDEESHAMADNES LSGG* MLMETGCSAACRUVTSPFVTFATFSTRGIDANRGOSFFLMEQG GMSWELRYPIPGFDVGTMFTIGKLUSMSPPRISTGYFY GMSWELRYPIPGFDVGTMFTIGKLUSMSPPRISTGYTGYFY GMSWELRYPIPGFDVGTMFTIGKLUSMSPPRISTGYTGYFY HORD HORD HORD HORD HORD HORD HORD HORD	İ	ĺ	l .	(YGVILEPPNYGIVTEYASLGSLYDYINSNRSEEMDMDHIMTWA
EMITEVPFKGIEGIC/VMLVVEKNERUTIPSSCPRSFAELLI QCMEADAKKPSFKGIISILESWSNITTLEDKKUSSI-HIKKAEW PCSIERTLEFLIKKLERDLEFKEGELKEBERKLIMBEGKIITEGS STELLEPLIKKLERDLEFKEGELKEBERKLIMBEGKIITEGS HTELLEPLARMSESSFYSSKTESSBARSMSTGTTASGGGH GMPSLQAMMLMGFGDIFSMIKAGAVMISGMGINVQAKONSSK TTEKREKKKUNMALGSPDDISGSGDDDDOGGEBEGFLYDKDINSE TTEKREKKUNMALGSPDDISGSGDDDOGGEBEGFLYDKDINSE 1838 185 328 MLMETGCSAACRVTVSPTVTFATFSTRGIDAMRPGPSFLWRQQ LSQG** 100 839 1 348 PTLGGDPDLHSITRASRPKLCTRKNCNPLITIVHDPNSTQ*YY GMSWELRYTIPGFDVGTMFTIQKILVSNSPPKIGFLUTDLGDP HFQKPPHKNUDLVPPPPPPIVINIDTLGFFEKI 101 840 1 416 SLNNYTLFQAKTEKDFTQCTFGVTKGGKLGFTVYQQASSPGAN MIGNKNSAISVIGNSTGGQWHYMUNTASLSQQ*DCKPIRNV IPPIPVGSEMWRCQGSGDDNITSLGTLIMPFGRTVSFSFEMES RSVAQAGVQ 102 841 105 354 RHTQGCCPFHTHITHTHSHTHSHTSHSHSHTTFRCSHTQFP HAQAGAVQ** PREMORE CONTROL CONT				l .	TDVAKGMHYLHMEAPVKVIHRDLKSRNVVIAADGVLKICDFGA
OCMEADAKKR PSFKOIISILESMINITSLEPKKNISFLHIKKAEW RCSIERTLEPLKKLEERPLKIWREGKLIEGS NTPLILIPLAARMSEESYTESIKEERRIKAEKSKUTTATSNIGGH GOMEDIOAMMLANGSOIIFEMIKAADAWISGMINIMOAKONSK TTSKRRGKKVAMALGFSDFDLSEGDDDDDDDGEEEYNDEDNSE 100 839 1 348 PTLGDQFDLSITRASRFKLCTRKIKCHPLTITVHDPNSTQ*YY GMSWELR PYIPGFDVGTMETIGKLINSWSPPKFIGFLTDLGDP MFOKPPNKVDLTVPPPFLVIKDTLOKFFKKITSPGFTFSTQ*YY GMSWELR PYIPGFDVGTMETIGKLINSWSPPKFIGFLTDLGDP MFOKPPNKVDLTVPPFLVIKDTLOKFFKKIT 101 840 1 416 SLBNYTLDAKTEKDEFJLOTFGVGTWGFKGFKGTVYCQASSPGAN MIGNKMSAISVHGVSTGGGWHYDDNTASLSQQ*DQKFIRW PFUTGGSENWRCQSGGDDLITSLTMFFGGTYSFSFMES RSVQAGVO 102 841 105 354 RPIGECCPHTHITHTHSHTISHTSHSHSHTFFGGSTQPF HAOAPALC***SEDRGQFTWKLCAHRPPLKVYLKSGGWLGG 103 842 171 347 NYSLSVYLVRGLTAGTLLOKLRAKGITHFDHSRALSE*HLSSL PHLIMIOVFLALOPS ATTIVDFGFSTTFREGGMLTAFCGMYPYVAPERSLGGACQ*PA RDTGGSSVILYFRHTVGTRAKTTFTFDHSRALSE*HLSSL PHLIMIOVFLALOPS LIPYEEPL, RGDPGTICLAWAMGFGANISVAITERFYNFPA TYLLLEHTKGBRCGTTRELSIPPGVFTSPSSTELSTFPLSL MRAHREPAFBVQDPFESQ 105 844 2 777 AKGELAKHMIEDPSLLNSKYLLHHAKAGTITLARGGDVSUL MRAHREPAFBVQDPFESQ 106 845 3 709 HRGGFTTFLTRISKBPYEDLSGACQUVSPL FTLRAGRDCTTLRISKSDFYEIMRAQPSVUSABHTVARMSP FVROMGALVGWINGHAEDVCLFVAQFGRLUGGLUVGGFLI FTLRAGRDCTTLRISKSDFYEIMRAQPSVUSABHTVARMSP FVROMGALVGWINGHAEDVCLFVAQFGRLUGGLUVGFGLI FTLRAGRDCTTLRISKSDFYEIMRAQPSVUSABHTVARMSP FVROMGALVGWINGHAEDVCLFVAQFGRLUGGLUVGGFLI FTLRAGRDCTTLRISKSDFYEIMRAQPSVUSABHTVARMSP FVROMGALVGWINGHAEDVCLFVAGGRAACAGRESGEVPGA TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVGT TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGT TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSWAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSMAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFORGSMAGGSVAGAB IPES PPSKSRSNSTTEGVAGA TREPAFAFAGAGGSTAGACDLAACH WILLGTGSPALVSETLAMSILLPGATVSKQOSGGSIGETTPAAGM WILLGTGSPALVSETLAMSILLPGATVSKQOSGGSIGETTPAAGM WILLGTGSPALVSETLAMSILLPGATVSKQOSGGSIGETTPAAGM WILLGTGSPALVSETLAMSILLPGATVSKGOSGSIGETTPAAGM WIL	1	l	i .		SRFHNHTTHMSLVGTFPWMAPEVIQSLPVSETCDTYSYGVVLW
PCSIEATLERLIKKLERDLEFKEGELKERERRLIMMEGKLITEGS NTOLLIPLARAMYSESFYESKTESSARSMISCHTATSGIGGE GMPSLQAMMLMGFGDIFSMIKAGANMISGMQINNQAKONSSK TTSKRRKKUNMAJGSPDDLSGGRUDDDDOEDERSHYMDNSE TTSKRRKKUNMAJGSPDDLSGGRUDDDDOEDERSHYMDNSE LSQG** 100 839 1 348 PTLGDQFDLSSITRASRPELCTRENKONDLITITHDEPSSTQ*YY GMSWELRFYIPOFDVOTMPTIQKILVSWSPPKPIGFLTDLGDP NFQKPPNNVDLTVPPFPLVIKDTLGKELSFYVQQASSFGAN MIGNIKASISVHGNSTGGQMYHYDNTASLSQQ*DKYERV 191FVGSEMWRCQGSGDDLITSLGTLINFPGRTVSFSFEMES RSVAQAGVQ 102 841 105 354 RHTDGECCPHTHIHTHTHSHTHSHYSHSTTHTFRCSHFRYDF RSVAQAGVQ 103 842 171 347 HYGLSYTLVSQLTASTLGKELSFYVQASSFGAN NSLSYTLVSQLTASTLGKERGRYPVSASSFSLSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS	1	I	1	1	
MITICALIPLARMISESYTESINSAEMSCOTTATISMIGGIN MIRETGERIAMMALMISEMITEMINAGANISMISMAMISMAMISMAMISMAMISMAMISMAMISMAM	1	1	1		QCWEADAKKRPSFKQIISILESMSNDTSLPDKCNSFLHNKAEW
GMMPSLQAMMLMGFGDIFSMIKAGAWHSGMQINMQAKQNSSK TTSKRRKKWNMALGSPDDLSGEDDDDDDGEDERJNDMDNSE TTSKRRKKWNMALGSPDDLSGEDDDDDDDGEDERJNDMDNSE TTSKRRKKWNMALGSPDDLSGEDDDDDDDGEDERJNDMDNSE LSQG*		1	j		RCEIEATLERLKKLERDLSFKEQELKERERRLKMWEQKLTEQS
TISKRRGKKVINALGISDPDLISGIDDDDDDGEENALDINDINS 100 839 1 348 MIMBERGSAAGRYTVSPTVTFATFSTRG IDAMRPGPSFLIKRQ LSQG* 100 839 1 348 PTIGGOPDLHSITRASRPKLCTRKKCNPLTITVHDPNSTQ*YY GMSWELRT*IPGEPDVGTMFTIQKLIVSNSPPKTIGPLTDLGDP MFQKPPNKVDLTVPFPFLVILUTIGKFEKI 101 840 1 416 SLBNYTLFDRAKTEKDFFLOTTFGYTKYCQASSPGAN MIGNKMSAISVIGVSTGGQWHYLDNITASLSQQ*DQKDIFNV IPPIPVGSEMWRGCGSGDDLINSLGTLAFPGRTYSTSFWES RSVAQAGVO 102 841 105 354 RHTDGECCPHTHIHTHTHSHTHSHSHSHTTFRCSHTQPP HAQAPALC**S*EDRQOFTWKLCAHRPRIKVYLKSGGWLGG 103 842 171 347 RYSISYVLVRQITAGTLLGKELAFKGIRPDHSRALSE*HLSSL PHLIMIQVFLALQPS LIPYEBPL, RGPQTOTLLGKELAFKGIRPDHSRALSE*HLSSL PHLIMIQVFLALQPS LIPYEBPL, RGPQTOTLLOKANGRAKISVATIERFRYFNA TYLLEHTKGBEKCSTTERLSLPFGVYPSPSPSTELSTFFLSL MPAHREPAFRVQPPESSQ MPAHREPAFRVQPPESSQ MPAHREPAFRVQPPESSQ MPAHREPAFRVQPPESSQ MPAHREPAFRVQPPESSQ UNGCLHVQRMINAEDVCLFVADGGRLGGLAVLTGEPLI FTIRAGRDCTFLRISKSDFYEIMRAQPSVUSAGHTVARMSP FVPKOMGALIVYCGMINAEDVCLFVADGGRLGGLAVLTGEPLI FTIRAGRDCTFLRISKSDFYEIMRAQPSVUSAGHTVARMSP FVPKOMGALIVYCGMINAEDVCLFVADGGRLGGLAVLTGEPLI FTIRAGRDCTFLRISKSDFYEIMRAQPSVUSAGHTVARMSP FVPKOMGALIVYCGMINAEDVCLFVADGGRLGGLGVVDF GDLIGWGANTTH*PLAFSRPUPGLITLIEGRPGSEVPCDA GDLIGWGANTTH*PLAFSRPUPGLITLIEGRPGSEVPCDA TREPARPGTGSWARGSVYGABAT FESSPESKSRSSNITTEGVADG TREPARPGTGSWARGSVYGABAT FESSPESKSRSSNITTEGVADGANG TREPARPADVMISSERMENTTKARPAGGGSGAGGLAVLTGEPLI TREPARPAGTGSWARGSVYGABAT FESSPESKSRSSNITTEGVADGANG TREPARPADVMISSERMENTTKARPEGLIEGRYTALADMANS TREPARPADVMISSERABGGGSAGGSGAGETTPAAGM WILGTGSPAMVSETLAMSILPGATVSKQOSGSIGETTPAAGM WILGTGSPAMVSETLAMSILPGATVSKQOSGSIGETTPAAGM WILGTFRAADVMILGTARADVWINITASRAGGGGSAGGADLADATOD WITHOUT FARADVMINITASRAGGGGSAGGADLADATOD WITHOUT FARADVMINITASRAGGGGSAGGADLADATOD WITHOUT FARADVMINITASRAGGGGSAGADDLANTOD WITHOUT FARADVMINITASRAGGGGSAGADDLATOD			1	1	NTPLLLPLAARMSEESYFESKTEESNSAEMSCQITATSNGEGH
99 838 185 328		1	1	1	GMNPSLQAMMLMGFGDIFSMNKAGAVMHSGMQINMQAKQNSSK
LSQG* LSQG*			j	,	TTSKRRGKKVNMALGFSDFDLSEGDDDDDDDGEEEYNDMDNSE
LIGO# LIGO# LIGO#	99	838	185	328	MLWETGCSAACRVTVSPTVTFATFSTRGIDAMRPGPSFLWRQQ
OMSWEIRFYTJEGFDVGTMFTIQKILVSNSPPRFIGPITDLGDP MPQKPPNKUDLUTPPPLVILVDTLGXFEXT		1	1		LSOG*
GMSWELRYTYPGFDVGTMFTTQKILVSNSPPRRIGHTDLGD HPOKPPRNVDLVPPPPPLVINDTLGFREX 101 840 1 416 SLNNVTLPQAKTEKDFTQLCTPGVTKQEKJGTVYCQASSPGN MIGNMKAISVHGVATGGQMYHTMATRASLQQY DKKPLRNV 102 841 105 354 PHTQECCPHTHIHTHSHTHSHTSHSHSHSHTPFCGSHTQPE BAYAQAGVQ	100	839	1	348	PTLGDOPDLHSITRASRPKLCTRKNCNPLTITVHDPNSTQ*YY
101 840 1 416 SIANYTIFORATEKDFIOLOTHGYIKQEKIGTYYCOASSPGAN MIGNKASISYHGAYSTGGQMYHYDNTYASIGQO YGKPIRNY TPIPPYGSEMWRCQGSGDDMITSLGGTINFGGRTYSFSFFMES BSVAQAGVQ PHOADALC's *BENGOOPYMKLCAHRPRIKYIKSGGNTQG HAQADALC's *BENGOPYMKLCAHRPRIKYIKSGGNTGG HAQADALC's *BENGOPYMKLCAHRPRIKYIKSGGNTGG HAQADALC's *BENGOPYMKLCAHRPRIKYIKSGGNTGG THILUTOYHIALOGO THILUTOY	1	1	1 -	1	GMSWELRFYIPGFDVGTMFTIOKILVSWSPPKPIGPLTDLGDP
MIGNMSAISVHOVSTGGGOWHYDMITASLGQ° DOKPIRNV PPIPVGSENWRCQSGDDNLTSLGTLNFPGRTVSFSFEMES RSVAQAGVQ 102 841 105 354 RHTQECRCPHTH-HTHTHHERITESHINGSHSHTFPGCSHTQPF HAGAPALC'S*EDRGQFTWKLCAHRPPLKVIKSGGWLQQ 103 842 171 347 NYSLSVYLVRQLTAGTLLQKLGAKGIRHPDHSRALSS*HLGSL PHLIMUQPLALQQP 104 843 2 690 ATYTVDFGFSTTFREGGMLTAFGGWYPYVAPERSLGQAC'PFA RDTQSLSVYLVFGFSTTFREGGMLTAFGGWYPYVAPERSLGQAC'PFA HAPPLLALQLDSL/TKLLMLNARKCPSL*MNXFPVVKSGQKNP LIPYEBPL/RGPPGTIQLAWAMFGAMISVAITERFYFYPM TYLLLEHTKGERKCSTTRELSLPFGVYDSPSPSTELSTPFLSL MRAHERPAFBVQPPGPESSQ 105 844 2 777 AKQELAKLMLTEDFSLLNSFQVTGSHSVAITERFYFYPM FYLMGCLHVYGMTNAFAVCHAFAGGTTARGGDOVSH. FTLBAQFDCTFLBTSKSDFYELMSAQPSVULSAHTVARMSP FYRMGDFALDWTAVEAGRALYCSSERAAQAPERGGLUVUEPUR C*PPRPLBQGGRSDCTYTULNRURGVIGNGSGKELVGENG TRFAAPGTGSWARGSVYGABATPSSFFGTSSTETASAGRRFGGA TRFAAPGTGSWARGSVYGABATPSSFFGLSSKSNSTTEGVBGG TRFAAPGTGSWARGSVYGABATPSSFFGLSSTETTASAGRRFFGA TRFAAPGTGSWARGSVYGABATPSSFFGLSSCSTAGDARKCT LGTIGPPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTGSPAAVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTFAADWHLGSFAANVEREAGSGSAGGSIGETTPAAGM WILGTFAADWHLGSFAANVEREAGSGSAGGSIGETTPAAGM WILGTFAADWHLGSFAANVEREAGSGSAGGSIGETTPAAGM WILGTFAADWHLGSFAANVEREAGSGSAGGSIGETTPAAGM WILGTFAADWHLGSFAANVERSCAGARSGGSAGGADAATGD	1	i	i	į.	MFOKPPNKVDLTVPPPFLVIKDTLQKFEKI
MIGNMSAISUGVSTGGGGWHYDMNTASISQC*DGKPIRNV IPPIPVGSEMWRCGSGGDMLTSLITMFPGRTYSFSFEMES BSVAQAGVO 102 841 105 354 PHYDERCPHTHIHTHTHSHTISHITHSHSHSHTPEGSHTQFP HAQARALC**9*DRGQFTWLCAHRPPLKYLKSGGMLGG 103 842 171 347 WYSLSYLVRQLTAGTLLQKLRAKGIRHPDHSRALSE*HLSSL PHLIMIGVPLALQPS 104 843 2 690 ATYIVDFGFSTTFRESGMLTAFGGWPPYVAPERSLGQAC*PA RDTQSISVILYPRATIVQRRAKTIPPYS/AEASKLGEKLITGRY HAPPLLALQLDSL/IKLIMLMARKCPSI*LMKNPAVKSSQKNP LIPYEEPI,ROPPOTIOLMVAMGFQAKISVAITERFFYPYMA TYLLLEHTKGDEKCSTIRELSLPPGVPTSPSPSTELSTPPLSL MRAHREPAFBVQPPESSQ WRAHREPAFBVQPPGSESQ WRAHREPAFBVQPGBLGARGVEKTARGGGDLGVVLP FULAQRDCTTLRISKSDFYELMRAQPSVUSABITVARMMS FURGMGFAIDMTAVSAGRALKGSVALGHAVARMMS C**PPRLAGGGRSDCTYTULMGRLRSVIQRGGKEKLVGEVGG GDLIGVVSATPTH*PLAFSRPVPRQLTRIJFGRPGSGEVPGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA TREPARAFGTSWARGSVKARSTFGTSETTRASGGRFTFGA WILGTGSPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTFRADVMILGTARADVWINGERASGGSGAGGDLANATG	1.01	840	1	416	SLNNVTLPQAKTEKDFIQLCTPGVIKQEKLGTVYCQASSPGAN
BSVAQAGVO		1	-		MIGNKMSAISVHGVSTSGGQMYHYDMNTASLSQQ*DQKPIFNV
102 841 105 354 PHYQECCPHTHINTHHSISTISSISISHTFECSHTOPE	1	}	1	ł	IPPIPVGSENWNRCQGSGDDNLTSLGTLNFPGRTVSFSFEMES
HAQĀPALC** *EDRQOPTWKLCAHRPRLKVIKSGGMLGG 103 842 171 347 NYSISVYLNGUTAGTILGKIRARGIRPLKVIKSGGMLGG 104 843 2 690 ATYIVDFGFSTTFREGGMLTAFCGMYPYVAPERSLGQACQ*PA PDLQSISVILYPRHTVGRRATTLPFYS/AEASKLGEKLITGRY HAPPLLALQLDSL/IKLLMLARRCPSI*LMNSPWYKSSQKNP LIPYERPL/RGDPGTICHAVANGFQAKSISVAITERFYSYRM TYLLLEHTKGBRCGSTIRELSLPPGVYPSPSPSTELSTPFISL MPANERPAFRVQPPESSQ 105 844 2 777 AKGELAKLMKIEDPSLLNSRVLLHHAKAGTITARQGDQVSLH FYLMGCHVYQMKINAFBVCLFYXQPGGLUGQLAVLTGEPLI FYLRAGRDCTFLRISKSDFYEIMRAQPSVUSAAHTVARMSP FVRQMPAIDWTAVSAGRAFLKSSGSFERAAQARPRGGLGVVLP C*PPRPLEQGDRSDCTYIVLNGRLRSVIQRSGKKELVGEYGR GDLIGWSARTT**DLAFSRVPDGLITTLIFGRPGSEVPDGA TRFAAPGTGSWARGSVYGAAPIPSSPTSKSSKSTTEGVSTG TRFAAPGTGSWARGSVYGAAPIPSSPTSKSSKSTTEGVSTG TRFAAPGTGSWARGSVYGAAPIPSSPTSKSGSSGSIGETTPAAGM WILGTGSPAAUVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTGSPAAUVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTFAADWHILGTAADVWINGERASGGSSAGSGLDAATGD	1	}	1	ł	
HAQAPALC*** *EDRQOFTMKLCAHRPRLKVIKSGOMLGG 103 842 171 347 NYSESYVLVRQITAGTLQKKLAKGIRPLKVIKSGOMLGG 104 843 2 690 ATYIVDFGFSTTFREQQMLTARCGMYPVJABERSLGQAQO*PA RDTQSLSVILYPRATVGRRATTDFYS/AEASKLQEKLITGRY HAPPLLALQLDSL/IKLLMLARKCPSL*LMNSPWYKSSQNDP LIPYEBPL/RGDPGTJLMVAMGFQAKISVAITERFKYPTMA TYLLLEHTKQBRCGTTRELSLPPGVPTSPSPSTELSTPFLSL MRAHREPAFRVQPDFSSQ AKQELAKLMKIEDPSLLMSRVLLHHAKAGTITARQGDQVSLH FTLRAQRDCTFLRISKSDFYELMRAQPSVUSAAHTVARMSP PVRQMFAIDWTAVSAGRALYKCSSKRAAQARPRGGLGVVUPC C*PPRDLRQGRSDCTYIVLMGRLRSVIQRSGKKELVGEVGR GDLLGWGARTTH**LAFBEVPDGITTLTIEGREPGSEVPGA TRPAAPGTGSWARGSVKACAP IPSSPSKSKSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSWARGSVKACAP IPSSPSKSKSSTTEGVSTG TRSAAFTGSAAFTGSTAAFTGSTGSKACADAFTGD TRSAAFTGSAAFTGSAAGTGSKACADAFTGD TRSAAFTGSAAGTGSTAAGDLAAGTD WILGTGSPAAJVSETLAMSILPQATVSKQOSGSIGETTPAAGM WILGTGSPAAJVSETLAMSILPQATVSKQOSGSIGETTPAAGM WILGTGSPAADVMISSERAAGSGSSAAGDLAATDD	102	841	105	354	RHTOECRCPHTHIHTHTHSHTHSHTHSHSHSHSHTTPRCSHTQPP
PHLIWIGOFIALOPS PHLIWIGOFIALOPS ATYLUPEGFSTTFREGOMITAFCGMYPYVAPERSIGGACQ*PA RDIQSLSVILYFRNTVORRARRIDFYS/ARBASILGEKLITGRY HAPPILAIGLOBL/IKLIMLNARKCPSI-LMKNYWYKSSQKNP LIPYEEPI/KROPOTIOLMVANGFQAKNISVAITERKFNYPMA TYLILEHTKGBRKGSTIRELSIPFGVPTSPSSTELSTFPISL MRAHRERAFBVQDPESSQ AKQELAKIMKIEDFSILNSRVLHHAKAGTITARQGDQVSI-L FTURAQRICCTELBYSKDFYSTHMRAQPSVVISABITVARMSP FVROMPAIDWTAWARGRAIKYCSSRAAQARPRGGIAVUTGEPLI FTURAQRICCTELBYSKGDFYSTHMRAQPSVVISABITVARMSP VENOMPAIDWTAWARGRAIKYCSSRAAQARPRGGIAVUTGEPLI GULIGWSARTTFI-DALPSRVPDGIJTITITERDRSGKELVGEVGR TREPALPGTGSWARGSVYGARA IPES PPSKRRSNITTEGVARG TREPALPGTGSWARGSVYGARA IPES PPSKRSKNITTEGVARG TRESATTRAADVSTICARMITYKAGPSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATPVSKQOSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATPVSKQOSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTRAADVMILGTARADVWINGERASGGSSAGGDAATGD		1	}	1	HAOAPALC*S*EDRGOPTWKLCAHRPRLKVIKEGGWLGG
PHLIWIGOFIALOPS PHLIWIGOFIALOPS ATYLUPEGFSTTFREGOMITAFCGMYPYVAPERSIGGACQ*PA RDIQSLSVILYFRNTVORRARRIDFYS/ARBASILGEKLITGRY HAPPILAIGLOBL/IKLIMLNARKCPSI-LMKNYWYKSSQKNP LIPYEEPI/KROPOTIOLMVANGFQAKNISVAITERKFNYPMA TYLILEHTKGBRKGSTIRELSIPFGVPTSPSSTELSTFPISL MRAHRERAFBVQDPESSQ AKQELAKIMKIEDFSILNSRVLHHAKAGTITARQGDQVSI-L FTURAQRICCTELBYSKDFYSTHMRAQPSVVISABITVARMSP FVROMPAIDWTAWARGRAIKYCSSRAAQARPRGGIAVUTGEPLI FTURAQRICCTELBYSKGDFYSTHMRAQPSVVISABITVARMSP VENOMPAIDWTAWARGRAIKYCSSRAAQARPRGGIAVUTGEPLI GULIGWSARTTFI-DALPSRVPDGIJTITITERDRSGKELVGEVGR TREPALPGTGSWARGSVYGARA IPES PPSKRRSNITTEGVARG TREPALPGTGSWARGSVYGARA IPES PPSKRSKNITTEGVARG TRESATTRAADVSTICARMITYKAGPSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATPVSKQOSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATPVSKQOSGSIGETTPAAGM WILGTGSPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTRAADVMILGTARADVWINGERASGGSSAGGDAATGD	103	842	171	347	NYSLSVYLVROLTAGTLLOKLRAKGIRNPDHSRALSE*HLSSL
BUJQSLSVILYPRITVGRRARTLEFYS ARRASKLORKILTGGY HAPPLIALQUES! (KILMIANRARCS)** MEMPRYKSGKMP LIPYEREL/RGPPQTIQLMVAMGFQAKNISVAIIERKFNYPMA TYLILLEHTKQBRKCSTITRELSIPFGVPTSPSSTELSTFPLSL MRAHERPAFRVOPPERSQ 105 844 2 777 AKQELAKIMLIEDFSLINSRVLHHAKAGTIIARQGDVSLH FVLMGCLHVYQMKINKABDVCLFVAQPGRLVGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI GULGWSAFTTH** LADFSRVPDGLTRILTERGREGSFYPGA GULGWSAFTTH** LADFSRVPDGLTRILTERGREGSFYPGA TRPAAPGTGGWARGSVKGLASIFSSPSKSRMSNTTEGVWEG TRSSVTYNRARASKGRRATTTKADFTSFETTSAEGRETPGA TRYAAPGTGGWARGSVKGLASIFSSPSKSRMSNTTEGVWEG TRSSVTYNRARASKGRRATTTKADFRPEDEIGSVRIALGAKKV LIGTIGPPALVSETLAMSILPQATFVSKQOSGSIGETTPAAGM WILGTFAADVWILGTFAADVWINISHAASGGSGAAGUDAATGD	1				PHLIWIOVFLALOPS
BUJQSLSVILYPRITVGRRARTLEFYS ARRASKLORKILTGGY HAPPLIALQUES! (KILMIANRARCS)** MEMPRYKSGKMP LIPYEREL/RGPPQTIQLMVAMGFQAKNISVAIIERKFNYPMA TYLILLEHTKQBRKCSTITRELSIPFGVPTSPSSTELSTFPLSL MRAHERPAFRVOPPERSQ 105 844 2 777 AKQELAKIMLIEDFSLINSRVLHHAKAGTIIARQGDVSLH FVLMGCLHVYQMKINKABDVCLFVAQPGRLVGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI FTLRAQRDCTFLRISKSBYFSLMSRADQARFGGLAVLTGEPLI GULGWSAFTTH** LADFSRVPDGLTRILTERGREGSFYPGA GULGWSAFTTH** LADFSRVPDGLTRILTERGREGSFYPGA TRPAAPGTGGWARGSVKGLASIFSSPSKSRMSNTTEGVWEG TRSSVTYNRARASKGRRATTTKADFTSFETTSAEGRETPGA TRYAAPGTGGWARGSVKGLASIFSSPSKSRMSNTTEGVWEG TRSSVTYNRARASKGRRATTTKADFRPEDEIGSVRIALGAKKV LIGTIGPPALVSETLAMSILPQATFVSKQOSGSIGETTPAAGM WILGTFAADVWILGTFAADVWINISHAASGGSGAAGUDAATGD	104	843	2	690	
HAPPILALQLDSI/TKILMINARKCPSI-MINYPWYKSSQKMP LIPYBEPI/RGPPQTIQUAYMAGGANISVATIERFKYPYMA TYLILBHTKQBRKCSTIRBLSI-PGVPTGPSPSTELSTPFLSL MRAHERPAFRVQPPSESQ 105 844 2 777 AKQBLAKIMETEDPSILMISKYLLHHAKAGTITARGGDQDVSLH FYLMCCLHVYQMKHAKAGTITARGGDQDVSLH FYLMCCLHVYQMKHAEDVCLFPAOGPGBLVQLAVUTGBPLI FTLRAQRDCTFIRISKSDFYEIMRAQPSLVJKSAAHTVARMSP FVR@MDFAIDWTAYSAGRALTRCSSIRARQARRGGDLGVVRP C+PFRIAQGBSDCTTTULNGRIRASVQRSGKKEVGEVGR GDLIGVVSATPTH-PLAFSRVVRQLTRITGSETARSGRRTPGA TEPAAPGTGSWARGSSVKAPAPIPSSFTSETASAGRRTPGA TEPAAPGTGSWARGSSVKAPAPIPSSFPSKSSKSNSTTEGVWRG TRSAVTNRARASKGRRTMTTKARPREDIGSVTRIALDAKKV LIGTIGPPALVSETLAMSILPQATPVSKQOSQSIGETTPAAGM WILGTFAADVWILGTPAADVWHISTERASGGSSAGSIGETTPAAGM WITGTPAADVWILGTPAADVWHISTERASGGSSAGSUGAPATG	1 -0-	1	1	1	
LIPYERPL/RQPPQTICLMVAMGPQAMXISVATIERKFYYPMA TYLLICHTKQBRKCSTIRELSLPPGVPTSPSPSTELSTFPLSL MRAHREPAFNVQPPESQ AKQELAKIMHIEDPSILINSRVLLHHAKAGTITARQGDQDVSLH FVLMGCLHVYQMKHIEDPSILINSRVLLHHAKAGTITARQGDQDVSLH FTLRAQRDCTFLRISKSDYYEIMRAQPSVUSAAHTVARWSP FVRQMPFAIDWTAVBAGRALYKCSSKRAQAAPRAGDLGVVEP C**PPRPLEQGGRSDCTTVLVLMRIRSVIQRSGKKELVGEVGR GDLIGVSAPTFF**LAFSRVPPQITTIRITENPSGKFELVGEVGR TRPAAPGTGSWAEGSVKAPAPIPESPPSKSRSMSTTEGVWEG TRSSVTNRARASKDRRMTTTKADPFREDESVRIALDAAKKV LIGTIGPPALVSETLAMBILPQATFVSKQQSQGSIGETTPAAGM WILGTTGPPADVWIGTPAADVWINTSFRASGGSSAGGLDAATGD	1		1	1	
TYLILEHTKOERKCSTIRELSLPFGVPTSPSPSTELSTPFLSL MEARREPAFRVQPPESSO 105 844 2 777 AKOELAKIMITEDPSLINSRVLISHAKAGTITARGGODVSIH. PULMGCLHVYCMRINKABUCLFVADOGSIKVGLAVUTGEPLI PTLRAGRECTELRISKSDFYEIMRAGDSVVLSAAITVARMSP FVROMDFAIDMTAVEAGRALYRCSSHEAAQARPGGLAVVAD C*PRFRAGOGNSCCTITULNGRIREVIQRSGKKELVGEYGR GDLIGVVSATPTH*PLAFSRVFRQLTRITROMSGESFFRAG TERPAAPGTGSWARGSVKADAPIPSSPTASSEGKRETPGA TERPAAPGTGSWARGSVKADAPIPSSPETASSEGKRETPGA TERPAAPGTGSWARGSVKADAPIPSSPEKISSNISHTEGVMEG TERSVINNARARSKRERMITTKARPREDIESETTALIDARKV LIGTIGPPALVSETLAMSILPGATFVSKQOSGSIGETTPAAGM WILGTFAADVWILGTPAADVWINSERASGGSSAGGEDAPATO	1	1	1	1	
MRAHREPAFNVQPPESQ 105 844 2 777			1		
105 844 2 777 AKOELAKIMITEDPSLINSRVILSHAKAGTITARGGODVSIH. PUMGCLHVYOMINKARDVILSPAQDGSILVGIAVILTGEPLI PTIRAQRINCTELRISKSDFYBIMRAQPSIVISAAITVARMSP FVROMDFAIDHTAVBAGRALYCES SKRAAQARPGGLAVURD C*PRPIRAGGDRSDCTYIVINGRIRSVIQRGSGKKELVGEYGR GDLIGVVSATPTH*PLAFSRVPRQLTIKITRNPGSGEVYGR TRPAAPGTGSWARGSVYGADA IPES PPSKSSKNSNTTEGVMEG TREPAAPGTGSWARGSVYGADA IPES PPSKSSKNSNTTEGVMEG TRSVTNRARASKGERMITTKARPREDIESUTIALDAKKV LIGTIGPPALVSETLAMBILPQATFVSKQOSGSIGETTPAAGM WILGTFAADVMILGFTAADVMILGFAASGGSSAGGDLAATGD	1	1	l	1	
PVLMGCLHVYQMNIDKABDVCLFVAQPGBLVGQLAVLTGEPLI PTLRAQRCTFLRAISSBYFYEIRBAQPSVIVSARATIVARMSP FVRQMDFAIDWTAVEAGRALYRCSSHRAAQARPRGGDLGVVRP C*PPRPLEQGGRSDCTITULNGRLRSVIQRSSGKKELVGEVGR GDLIGVVSAPTTET*PLAFSRVPRQLTRITIETISFASEGRFTPGA 106 845 3 709 HASGWTPGTTOTLGGGTAMDTVASTFGTISTTASAEGRRTPGA TEPAAPGGGSMASGVKAPAPIPSSPPSKSRSMSTTTEGVMBG TRSSVTNRARASKDRREMTTTKADRPREDIEGVRIALDAAKKV LIGTIGPPAIDVSFTLAMBILPGATVSKQGSGISETTTAMAU WILGTFAADVWILGTPAADVWISSEASSGGSAGTETTAADW	105	944	12	777	
#TILBAQRICTELRISKSDFYEIMRAQPSVULSABITVAARMSF FVRQMDFAIDWITVAGRAGRALYRCSSRAAAQRASGIGLAVURD C*PPRPLEQGORSDCTYTULMGRIRGYIQRGSGKEELVGESVGR GDLIGWVSATPTH*PLAFSRPVPRQLTRIIFQNFGSGKEELVGESVGR 106 845 3 709 HASGWTPGTTQTTAWDIVASTFGTSETTASAEGRRTPGA TRPAAPGTGSWABGGSVKARAPIPSSFPGKSESNSNTTEGVBWG TREPAAPGTGSWABGGSVKARAPIPSSFPGLESGVRILDAAKKV LIGTIGPPALVSETLAWSILPQATFVSKQOSGGIGETTPAAGW WILGTFRAADVWILGTPAADVWINSTERASGGSGAAGDLAATGD	102	044	1 2	1 '''	
PURQMOPAIDWTAVEAGRALVRCSSKRAAQARPRGGDLGVVLP C+PPRPLRQGDRSDCTYIVLNGRLRSVLQRSGKKELVGEYGR GDLIGVVSATPTH*PLAFSRPVPRQLTRIIFORPOSSEVFPGA 106 845 3 709 HASGWTPGTTQTLGQGTAMDVVASTPGTSETTASAEGRRTPGA TEPAAPGTGSMARGSVKAPAP IPS PS SPSSRSNSTTEGVMEG TRSSVTNRARASKDERENTTTKADRPRED IEQVRIALDARKV, LIGTIGPPALVSETLAMBILPQATPVSKQQSQSIGETTPAAGM WTLGTPAADVMILGTPAADVMTSMEARSGGSAAGDLDAARTGD	1	1	1	1	
c + PPRPLEQGDRSDCTYIVLNGRLESYIQRSGKKELVGEYGR GDLIGVGSAFTEH-LADERSPUPGLITRITENGSGKELVGEYGR 106 845 3 709 HASGWTPGTTQTLGQGTAWDTVASTPGTSETTASAEGRRTPGA TRPAAPGTGSWARGSVKQAPA I PES PPSKERMSNTTEGVFWBB TRSSVTNRARASKGRRMTTTKADRPREDIESVRIALDAAKKV LGTIGPPALVSETLAWBILPGATFVSKQOSGSIGETTPAAGW WILGTPAADVWHIGTPAADVWHISTBAASGGSAAGDLAATGD	1	1		1	
GDLIGVVSATPTH*PLAFSRPVPRQLTRIIGRPGSGEVPPOA 106 845 3 709 HASGWYPGTTTTLGGTANDUTASTEGTSETTASAEGRRTPGA TRPAAPGTGSWAGSVKAPAPIPSSPPSKSRSNSATTEGVWBG TRSSVTNRARASKDRRMTTKADRPREDIEGVRIALDAAKKU LIGTIGPPALVSETLANBILPQATPVSKQQSQSIGETTPAAGM WTLGTPAADVWISHEARSGBGSAAGDLDAARTGD	1	1	1	1	
106 845 3 709 HASGWTPGTTUTLGGGTAMUTVASTPGTSETTASAEGRRTPGA TRPAAPGTGSHAEGSVKAPAPIPSSPPSKSKSNSTTEGUWEG TRSSVTNRARASKOPREMITTKADRPREDIEGVRIALDAAKKV LIGTIGPPALVSETLAMBILPGATVSKGGSGSIGETTPAAGM WILGTPRAADVMILGTPAADVMISNEARSGGSAGEDLAATGD	}	1	1	1	
TRPAAPGTGSWAEGSVKAPAPIPES PPSKSRSMSNTTEGVWEG TESSVINNRAKASKORRIMITIKADRPREDIEGVRIALDAAKKV LIGHTGPPALVSETLANRILPOARTPSKQOSGGSIEGTTPAAGM WTLGTPAADVWILGTPAADVWTSMEAASGGGSAAGDLDAATGD	1	1045	-	700	
Trssvinnrarskorrantitkadrpredlegvrialdakkkv Igtigppalvsetlameilpqatpvskqosqgsigetpargm wtigtpradvmilgtpradvmsmerasgesgragdldartod	106	845	3	709	
LGTIGPPALVSETLAWEILPQATPVSKQQSQGSIGETTPAAGM WTLGTPAADVWILGTPAADVWTSMEAASGEGSAAGDLDAATGD	1				
WTLGTPAADVWILGTPAADVWTSMEAASGEGSAAGDLDAATGD	1		1	1	
	1	1	1	1	
	1			1	
WOLKWIDGELYA - LUGELA			1		RGPQATLSQTPAV*PWGPPG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 406	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidline, I = Isodeucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Artgnine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, ** = Stop Codon, ** possible nucleotide deletion, ** = possible nucleotide insertion) AGTSGTGDTGPGMNTAVSGTPVVSFGATPGAFGSSTFGEADIGN
				TSFGKSGTPTVSAASTTSSPVSKHTDAASATAVTISGSKPGTP GTPGGATSGGKITPGIA*PTLDQKSPCFSGYGGYFPVNPHQNP CADSL
108	847	1	565	RAHRCCLPLPSLSCBIQIGFS*SSIFPGG*ACPCSCCRSCRRN MCOSPRCHHPPAPCSLLLSSCLPPPLSSVRMTSGKPPSGSP AASEMRPKCSPRTSSLRGASCRGPGGSAPAAASGRCCRGCSR SPRRCSRSGCAAASPPRSQRRSPPLSPPFFFTSGTLLLKTSRF GSATER*SSFRFERP
109	848	2	987	DDVPPADDLYDVP GLRREGGGTLYDVPRERVLEFEVADGGV VDGGVVAVPPPARERAPABGKRLSASTGSTSSGGASSLEVA GPGREPLELVAVEALARLQQGVSATVAHLLDLAGSAGATGW RSPSEPQSPLVQDLQAAVAAVQSAVHELLEFARSAGRAHTS PALHAKLSKOLQMHEDVHTUAHGQALDAGRGGGGTLEDL DRLVAGSRAVPEDAXQLASFLIGNASLLFRERTKATAPGPEGGG TLHPNPTDKTSSIQSRPLPSPPKPTSQDSPDGQYENSEGGWME -DYDYVHLTGGRRSP*KTQKELLGKRAA
110	849	84	372	MATDEENVYGLEENÄQSRQESTRRLILVGRTGAGKSATGNSIL GQRRFFSRLGATSVTRACTTGSRRWDKCHVEVVDTPDIFSSQV SKTDPGCEERX*
111	850	2	47	TLGLRSLTKEGGGGDVAAFEVGTGAAASRALGQCGQLQKLIV IFIGSLCGLCTKCAVSNDLTQQEIQTPEIQQRNA*CDSRVTFT NEGGRWWG
112	851	1192	1040	FFFLVETRFHHIGQAGLELLTLSIK*SARLGLPKCWDDRREPP YLAGFMI
113	852	791	362	RRSPPPAP PPLPSPLS PPPRAPVSPASTMPTLIFLIDTSASMN QRSHLGTTYLDTAKGAVETFMKLRARDPASRGDRYMLVTFEEP PYAIKAGWKENHATPMNELKNLQAEGLTTLGQSLRTAFDLLNL NRLVTGIDNYGQVG
114	853	812	348	NCRTYVFCFVLVFRLLFLHGSFLSPSLLSRAGLLCGSAENPTF FLCGITMAAGVSLLALVVRVILSTAILCPSGASRRQRSSEVEW GTDSGVYRLYCWRVGFLGFOGELRIGLSEARGGRVWGRGEKRC RVWAVRSLRKGFGSVAALRRGIWAG
115	854	93	170	VTPTPPQYYTCSCVLGFIACSIFLQMSLKPKVMLLTVALVACL VLFNLSQCWQRDCCSQGLGNLTEPSGTNR*GPAAVSWASLPAP SSCR
116	855	1	183	GKAGGAAGLFAKQVQKKFSRAQEK*TRRFGKTCQPEERAREER QEGPEIEFGFSFFSLSLY

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	согге-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
, acido	ALIUS	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
l	l	acid	acid	\=possible nucleotide insertion)
1	1	residue	residue	
1	l	of amino	of amino	
	i	acid	acid	,
		sequence	sequence	
117	856	53	2400	PKRLFLFQDVNTLQGGGQPVVTPSVQPSLQPAHPALPQMTSQA
ł	ł	l	1	PQPSVTGLQAPSAALMQVSSLDSHSAVSGNAQSFQPYAGMQAY
1	Į.		1	AYPQASAVTSQLQPVRPLYPAPLSQPPHFQGSGDMASFLMTEA
1	1	1		RQHNTEIRMAVSKVADKMDHLMTKVEELQKHSAGNSMLIPSMS
	1			VTMETSMIMSNIQRIIQENERLKQEILEKSNRIEEQNDKISEL
1	1	1	1	IERNQRYVEQSNLMMEKRNNSLQTATENTQARVLHAEQEKAKV
1	1	1		TEELAAATAQVSHLQLKMTAHQKKETELQMQLTESLKETDLLR
1	1	1		GQLTKVQAKLSELQETSEQAQSKFKSEKQNRKQLELKVTSLEE
	1			ELTDLRVEKESLEKNLSERKKKSAQERSQAEEEIDEIRKSYQE
	1]		ELDKLRQLLKKTRVSTDQAAABQLSLVQAELQTQWEAKCEHLL
1	1	I		ASAKDEHLQQYQEVCAQRDAYQQKLVQLQEKSVCFA\CLALQA
1	1	1		QITALTKQNEQHIKELEKNKSQMSGVEAAASDPSEKVKKIMNQ
1	1			VFQSLRREFELEESYNGRTILGTİMNTIKMVTLQLLNQQEQEK
				EESSSEEEEKAEERPRRPSQEQSASASSGQPQAPLNRERPES
1	1		1	PMVPSEQVVEEAVPLPPQALTTSQDGHRRKGDSEAEALSEIKD
		1	1	GSLPPELSCIPSHRVLGPPTSIPPEPLGPVSMDSECEESLAAS
	[1		PMAAK\PDNPSGK\VCVQGK*APDGPTYKE\SSTRLFPGFQDP
	i	1	1	E\EGDPLALGLE\SPG\EPQPPQLQGKVDVH*VPPVPHKGAFQ
				EQEGRFPQFCRE
118	857	1	791	SETAQQIIDRLRVKLAKEPGANLFLMAVQDIRVGGRQSNASYQ
1	1		1	YTLLSDDLAALREWEPKIRKKLATLPELADVNSDQQDNGAEMN
1		1	1	LVYDRDTMARLGIDVQAANSLLNNAFGQRQISTIYQPMNQYKV
1	1	1	i	VMEVDPRYTQDISALEKMFVINNEGKAIPLSYFAKWQPANAPL
	1			SVNHQGLSAALTISFNLPTGKSLSDASAAIDRAMSQLGVPSTV
1	1	1	1	RGSFAGPAQVFQETMNSQVILIIAAIATVYIVLGIPYERYVHP
	1			PTILL*RPGANLFLMAVQDIRVGGRQSNASYQYTLLSDDLAAL
1	1	1	l	REWEPKIRKKLATLPELADVNSDQQDNGAEMNLVYDRDTMARL
	i		1	GIDVQAANSLLNNAFGQRQISTIYQPMNQYKVVMEVDPRYTQD
1	1	1	1	ISALEKMFVINNEGKAIPLSYFAKWQPANAPLSVNHQGLSAAL
1	1	1		TISFNLPTGKSLSDASAAIDRAMSQLGVPSTVRGSFAGPAQVF
				QETMNSQVILIIAAIATVYIVLGIPYERYVHPPTILL
119	858	3	417	IITPDAMGCQKDIABKIQKQGGDYLFAVKGNQGRLNKAFEEKF
	ì		1	PLKELNNPEHDSYAISEKSHGREEIRLHIVCDVPDELIDFTFE
1	1	1	1	WKGLKKLCVAVSFRSIIAEQKKEPEMTVRYNIS*LGIAGDISV
	l			TAISGTDD
120	859	2	373	HYLKMLTQARREVIIANAYFFPGYRFLHALRKAARRGVRIKLI
	1		1	IQGEPDMPIVRVGARLLYNYLVKGGVQVFEYRRRPLHGKVALM
1	1	1		DDHWATVGSSNLHPVS*SGNLQANVILHVLRVPTLNP
121	860	286	495	CWSKSAAFHSKLATTCIVPVCAAGHCSAAW*SLRPIEALAKEV
1	1		1	RELK*HTR*LLNPATTRELTSLGRNLNRLLKSERERYDKYRTT
1	1	1	1	LTDLTHSLKTPLAVLQSTLRSLRSEKMSVSDAEPVMLEQISRI
1	1	1	1	SQQIGYYLHRASMRGGTLLSRELHPVAPLLDNLTSALIKGKPR
1	1		1	KGGNVTVFPFTAMYRDGH

SEO	SEO	Predicted	Predicted	
ID	ID	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of.	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
	1	residue of amino	residue of amino	
1	1	acid	acid	
	ļ	sequence	sequence	<u>'</u>
122	861	2	725	GNTVMFOHLMOKRKHTOWTYGPLTSTLYDLTEIDSSGDEOSLL
1		-		ELIITTKKREARQILDQTPVKELVSLKWKRYGRPYFCMLGAIY
1		ł	ł	LLYIICFTMCCIYRPLKPRTNNRTSPRDNTLLQQKLLQEAYMT
1		1	l	PKDDIRLVGELVTVIGAIIILLVEVPDIFRMGVTRFFGQTILG
			1	GPFHVLIITYAFMVLVTMVMRLISASGEVVPMSFALVLGWCNV
ł		1	1	MYFARGFOMLGPFTIMIOKMIFGDLM
123	862	1	135	EKAAAANIDEVOKSDVSSTGOGVIDKDALGPMMLEVAHLHFSA
1220	002] ~		VF
124	863	2	364	LEVPSEVTPLGFAMOATKTLLLRTCCLOEFNIMEKNKGWALLG
		1		GKDGHLOGLFLLANALLERNOLLAOKVMYLLVPLLNRGNDKHK
1		1	1	LTSAGFFVELLRSPVAKRLPSIYSVARFKDWLQD
125	864	1	374	RPAPAPSAAPEEAPSP\GVKGRGMAKRRVPAPVWGGAGGGTKS
1	***	-		ARRAAAAPDTERSEEGGRAVKEAYPSSRQPPPPSP*PLRCARR
l	1	1	1	CHPNLAPSMPISNREGKGKRREEKIRPLSPASTHTSARA
126	865	3	364	LOGVHGSSSTFCSSLSSDFDPLEYCSPKGDPORVDMOPSVTSR
		-		PRSLDSEVPTGETOVSSHVHYHRHRHHHYKKRFORHGRKPGPE
1 .	1	l	ł	TGVPOSRPPIPRTOPOPEPPSPDOQVTRSNSAAP
127	866	2	250	MADPDPRYPRSSIEDDFNYGSSEASDTVHIRMAFLRRVYSILS
		}		LQDLLATVTSTDNLAFEDGRTDWLQRPDCVSFKIHVLPM
128	867	194	375	AGMSVVVVPPIGSSYLGLISQEHFPNEFTSGDGKKAHQDFGYF
1				YGSSYVAASDSSRTPGL
129	868	104	339	VAAALTLFPQQLSPPGAWGLGLSACFCCAEGFSRLNQQVLSSS
1				LLLLSRTNCPCKYSFLDNLKKLTPRRDVPTYPKVR
130	869	2	360	RDDACLYSPASAPEVITVGATNAQDQPVTLGTLGTNFGRCVDL
			1	FAPGEDIIGASSDCSTCFVSQSGTSQAAAHVAGIAAMMLSAEP
İ				ELTLAELRQRLIHFSAKDVINEAWFPEDQRVLT
131	870	2	105	LEIKFLEQVDQFYDDNFPMEIRHLLAQWIENQDW
132	871	2	466	EAGDADEDEADANSSDCEPEGPVEAEEPPQEDSSSQSDSVEDR
	İ		1	SEDEEDEHSEEEETSGSSASEESESEESEDAQSQSQADEEEED
	İ		I	DDFGVEYLLARDEEQSEADAGSGPPTPGPTTLGPKKEITDIAA
	1	l	1	AAESLQPKGYTLATTQVKTPIPLLL
133	872	1	354	LKNLRELLLEDNQLPQIPSGLPESLTELSLIQTNIYNITKEGI
1	1	1		SRLINLKNLYLAWNCYFNKVCEKTNIEDGVFETLTNLELLSLS
	1		1	FNSLSHVPPKLPSSLRKLFLSNTQIKYISEED
134	873	59	184	MRSQALGQSAPSLTASLKELSLPRRGSFPVCPNAGRTSPLG*
135	874	1	210	LLCVCLPVGACPSLSLLTAPLNQLMRCLRKYQSRTPSPLLHSV
				PSEIVFDFEPGPVFRGSWALLSWSTRP
136	875	131	254	QTPDKKQNDQRNRKRKAEPYETSQGSNNFVSTKVLNSNVLR
137	876	84	504	YFIIKGMVELVPASDTLRKIQVEYGVTGSFKDKPLAEWLRKYN
				PSEEEYEKASENFIYSCAGCCVATYVLGICDRHNDNIMLRSTG
1	1		1	HMFHIDFGKFLGHAQMFGSFKRDRAPFVLTSDMAYVINGGEKP
1	1	1	1	TIRFQLFVDL

000	ano	Predicted	Predicted	A - t
SEQ	SEQ ID	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	NO:	nucleotide	nucleoside	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	согге-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
l		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	}	acid	acid	\=possible nucleotide insertion)
1		residue	residue	(-possible nublectice insertion)
l		of amino	of amino	
(1	acid	acid	
į .		sequence	sequence	
138	877	3	215	PSPLPSLSLPPPVAPGGQESPSPHTAEVESEASPPPARPLPGE
				ARLAPISEEGKPQLVGRF\QVTSSK\NRLSLFPCSQHPPLSLV
[]	1	LQNLQPLSSLQRAQIQRTV/PGGGPETREALAESDRAAEGLGA
		1	1	GVEEEGDDGKEPOVGGSPOPLSHPSPVWMNYSYSSLCLSSEES
1	ì	1	1	ESSGEDEEFWAELOSLROKHLSEVETLQTLQKKEIEDLYSRLG
1	1			KOPPPGIVAPAAMLSSRORRLSKGSFPTSRRNSLORSEPPGPG
1	1			ETA/GHPASIFSLRPLSVDCFSPGPGGLPRGNRPPLPTSPFLT
	}	1	l .	*CSPSPHTAEVESEASPPPARPLPGEARLAPISEEGKPOLVGR
	}	1	}	FPSDFIOGTG
139	878	1	337	RRFVSOETGNLYIAKVEKSDVGNYTCVVTNTVTNHKVLGPPTP
139	8/6	1 -	337	LILRNDGVMGEYEPKIEVOFPETVPTAKGATVKLECFALGNPV
1	1	ł	ł	PTIIWRRADGKPIARKARRHKSRVGK
			917	MLRTCYVLCSQAGPRSRGWQSLSFDGGAFHLKGTGELTRALLV
140	879	72	917	
1		i	1	LRLCAWPPLVTHGLLLQAWSRRLLGSRLSGAFLRASVYGQFVA
1	1	1	i	GETAEEVKGCVQQLRTLSLRPLLAVPTEEEPDSAAKSGEAWYE
ĺ		1	1	GNLGAMLRCVDLSRGLLEPPSLAEASLMQLKVTALTSTRLCKE
		ł	ł	LASWVRRPGASLELSPERLAEAMDSGQNLQVSCLNAEQNQHLR
Ì	1	1	1	ASLSRLHRVAQYARAQHVRLLVDAEYTSLNPALSLLVAALAVR
l		1		WNSPGEGGPWVWNTYQACLKDTF*
141	880	219	308	PHHRIAGDTAIDKNIHQSVSEQIKKNFAK
142	881	182	317	QMTNPFFLCFTTMISNCNFFKGPPGPPGEKGDRGPTGESGPRG
	1	1	Í	FP
143	882	177	341	NGIIASFFLRTFIFCFIHIQGCQAGQTIKVQVSFDLLSLMFTF
	1	1	1	VSPCTNDLIH
144	883	3	1441	KLSVNHRRTHLTKLMHTVEQATLRISQSFQKTTEFDTNSTDIA
}	1	j	}	LKVFFFDSYNMKHIHPHMNMDGDYINIFPKRKAAYDSNGNVAV
		1		AFLYYKSIGPLLSSSDNFLLKPQNYDNSEEEERVISSVISVSM
		1 .		SSNPPTLYELEKITFTLSHRKVTDRYRSLCAFWNYSPDTMNGS
	1			WSSEGCELTYSNETHTSCRCNHLTHFAILMSSGPSIGIKDYNI
ł	1		1	LTRITQLGIIISLICLAICIFTFWFFSEIQSTRTTIHKNLCCS
	1	1	1	LFLAELVFLVGINTNTNKLFCSIIAGLLHYFFLAAFAWMCIEG
				THLYLIVVGVIYNKGFLHKNFYIFGYLSPAVVVGFSAALGYRY
	1	1	1	YGTTKVCWLSTENNFIWSFIGPACLIILVNLLAFGVIIYKVFR
1	1	1	1	HTAGLKPEVSCFENIRSCARGALALLFLLGTTWIFGVLHVVHA
1	1	1		SVVTAYLFTVSNAFOGMFIFLFLCVLSRKIOEEYYRLFKNVPC
1	1	1	1	CFGCLR
	884	1	429	GTREAAPSRFMFLLFLLTCELAAEVAAEVEKSSDGPGAAOEPT
145	884	1 1	429	
1		1		WLTDVPAAMEFIAATEVAVIGFFQDLEIPAVPILHSMVQKFPG
i	1	1	1	VSFGISTDSEVLTHYNITGNTICLFRLVDNEQLNLEDEDIESI
	1		-	DATKLSRFIEINSL
146	885	1	156	DETSGLIVREVSIEISRQQVBELFGPEDYWCQCVAWSSAGTTK
				SRKAYVRIA
147	886	1	121	GTRSIHVKLDVGKLHTQPKLAAQLRMVDDGSGKVEGLPGI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Fhenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \page 1900 possible nucleotide insertion)
148	887	128	652	XCGEDGSFTOVOCHTYTGYCMCVTPDGRS ISGSSVONKTPVCS GSYTDXLB,SQMSGREDDSSKPTFVMETOPYDGDETTAPTUM IKILLNIKOSKLANTNIENSEKVYSCDQSRQSALESAQQNPRBG IVIPBCAPGGLYKPVQCHQSTGYCMCVLVDTGRPLPGTSTRYV MPSX*
149	888	128	273	VLQLIKSQKFLNKLVILVETEKEKILRKEYVFADSKVSDSKLL KWAVR
150	889	1	948	RRISLIDLÖQJGPIGRDPPQEGGTFSPTDSGEEPQQLSPGVOFO REQNORRFSREDVSKRISLJDWDIELPOGELGCCMSSPDJDFKP LSPMSRRASISDIGFGKLETYVKLDKIGSGTYATVFKGRSKLT ENIVALKSILBEERGAPCTATREVSILKINKKANIVTHHDLI HTDRSITLVFEYLDSDLKGYLDHCGNIMSMRNVKVBPRGQGPF LHAATCPBACGODFLSPPGIRLIRKIKFBAWPSTG GTGLSALPOGGTHTVCHCLAVGIKPTLNSEHQFPSLSNGSVSY LPKCREASGERAYE
151	890	3	108	HERHEPSPTALAFGDHPIVQPKQLSFKIIQVNDN
152	891	2	208	ARGPSLLSEFHPGSDRPQERRTSYEPIHPGPSPVDHDSLESKR PRLEQASDSHYQGHITGESLPGRVH
153	892	1	116	GTRKEEFSAEENFLILTEMATNHVQVLVEFTKKLPGIF
154	893	74	661	HTHKLVAPPEGLPPTSOWPEDAGROASGGLPSLSTGPPKGPED GLAGGGPBAWLAGS PGINNSPTOGSLPPGLDLYAGALFYHTCLG WNFYLSTILTLGITALYTIAGNVPAAGRSTQGTCKGVRRPPPP TGSPEGPRIWPQGBPQKFLFVSLLPGARAPSSNLASTGRGPGC CNLEGRPADAHGGGGGCHPDNGR
155	894	55	312	MVNHSLQETSEQNVILQHTLQQQQQMLQQETIRNGELEDTQTK LEKQVSKLEQELQKQRESSAEKLRKMEEKCESAAHEADLKRQK *
156	895	38	185	VCPKWCRFLTMLGHCCYFWHVWPAS*ALSAGPTPTSRSFSPSP LRSIST
157	896	37	462	MRGPPVLLLQAAPMECPVPQGIPAGSSPEPAPDPPGPHFLRQE RSFECRMCGKAFKRSSTLSTHLLIHSDTRPYPCQFCGKRFHQK SDMKKHTYIHTGEKPHKCQTQREPTMVLSPADKTNVKAAWX*
158	897	3	175	HEQLTNNTATAPSATPVFGQVAASTAPSLFGQQTGITASTAVA TPQVISSRFINLDF
159	898	187	677	VSVERNCPMY*ICIFLTKMPCVLIT*NKF*VHKKPLQEVEIA ATTHGALQGLAYLHSHTMIHRDIKAGNILLTEPGQVKLADPGS ASMASPANSFVGTPYMWAPEVILAMDEQQYDGKVDVWSLGTTC IELAERKPPLFNMNAMSALYHIAQNESPTLQSNEW

arro	OTTO	Predicted	Predicted	Amino acid segment containing signal peptide (A = Alanine,
SEQ ID	SEQ ID	beginning	end	
	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	согте-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
}		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1	(acid	acid	\=possible nucleotide insertion)
1	1	residue	residue	
		of amino	of amino	
		acid	acid	· ·
ł	l	sequence	sequence	
160	899	2	1060	RHARPGGGGHSNQRKMSLEQEEETQPGRLLGRRDAVPAFIEPN
1	1		į.	VRFWITERQSFIRRFLQWTELLDPTNVFISVESIENSRQLLCT
1	1	ł	l	NEDVSSPASADQRIQEAWKRSLATVHPDSSNLIPKLFRPAAFL
1		l .	1	PFMAPTVFLSMTPLKGIKSVILPQVFLCAYMAAFNSINGNRSY
ļ	1	}	j.	TCKPLERSLLMAGAVASSTFLGVIPQFVQMKYGLTGPWIKRLL
	1	l	ŀ	PVIFLVQASGMNVYMSRSLESIKGIAVMDKEGNVLGHSRIAGT
	1	1		KAVRETLASRIVLFGTSALIPEVFTYFFKRTQYFRKNPGSLWI
(1	ĺ		LKLSCTVLAMGLMVPFSFSIFPQIGQIQYCSLEEKIQSPTEET
	1	1		EIFYHRGV
161	900	3	564	HASGRLEVFYNGTWGSVGRRNITTAIAGIVCRQLGCGENGVVS
	1	"	1	LAPLSKTGSGFMWVDDIOCPKTHISIWQCLSAPWERRISSPAE
1	İ	ì	1	ETWITCEDRIRVRGGDTECSGRVEIWHAGSWGTVCDDSWDLAE
l	1	l	1	AEVVCOOLGCGSALAALRDASFGQGTGTIWLDDMRCKGNESFL
1		1	i	WDCHAKPWGOSDCG
162	901	1099	2	LGDFPOPORORRPGASDLPPHLAGARQWEVRFFRHLPARTLPP
102	301	1 2035	-	SLRMPEGPELHLASOFVNEACRALVFGGCVEKSSVSRNPEVPF
1	1	1	1	ESSAYRISASARGKELRLILSPLPGAQPQQEPLALVFRFGMSG
1 '		1	1	SFOLVPREELPRHAHLRFYTAPPGPRLALCFVDIRRFGRWDLG
	i	1	j .	GKWOPGRGPCVLOEYOOFRENVLRNLADKAFDRPICEALLDOR
1)	1	ļ	FFNGIGNYLRAEILYRLKIPPFEKARSVLEALOOHRPSPELTL
1			1	SOKIRTKLONPOLLELCHSVPKEVVQLGGRGYGSESGEEDFAA
		1	į.	FRAWLRCYGMPGMSSLODRHGRTIWFQGDPGPLAPKGRKSRKK
		1	1	KSKATOLSPEDRVEDALPPSK
163	902	3	335	LTWSACYWRDILRIOLWIAADILLRMLEKALLYSEHONISNTG
103	302	3	333	LSSQGLLIFAELIPAIKRTLARLLVIIASLDYGIEKPHLGTGM
1		1		HRVIGLMLLYLIFANAESVIRVIG
	903	2	135	FFFEMESRSAAOAGVOWCNLGSLOALPPRFTPFSCLSLPSSWD
164	903	12	135	Y Y
165	904	74	645	YECEELAKKLENSORDGISRNKLALAELYEDEVKCKSSKSNRP
165	904	/4	045	
1	1	1		KATVFKSPRTPPQRFYSSEHEYSGLNIVRPSTGKIVNELFKEA
1	1	1	1	REHGAVPLNEATRASGDDKSKSFTGGGYRLGSSFCKRSEYIYG
1			1	ENQLQDVQILLKLWSNGFSLDDGELRPYNEPTNAQFLESVKRG
				VTLIACMPEIQQLMLEIF
166	905	14	1257	WPCGAAPGLTHASERMFTLTTMIQALAPVMGWDRKPLKMFSSE
1	1			EMRGHLHHHHKCLTKILKVEGQYPDLPSCLPLTDNTRMLASIL
		1	1	INMLYDDLRCDPERDHFRKICEEYITGKFDPQDMDKNLNAIQT
1	1	1	1	VSGILQGPFDLGNQLLGLKGVMEMMVALCGSERETDQLVAVEA
1	[1	1	LIHASTKLSRATFIITNGVSLLKQIYKTTKNEKIKIRTLVGLC
1	1	1		KLGSAGGTDYGLRQFAEGSTEKLAKQCRKWLCNMSIDTRTRRW
1	1	1	1	AVEGLAYLTLDADVKDDFVQDVPALQAMFELAKTSDKTILYSV
1	1	1	1	ATTLVNCTNSYDVKEVIPELVQLAKFSKQHVPEEHPKDKKDFI
	1	1		DMRVKRLLKAGVISALACMVKADSAILTDQTKELLARVFLALC
1	1	l	1	DNPKDRGTIVAQGGGKALIPLALEGTD
				<u> </u>

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
710100	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ļ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid	\=possible nucleotide insertion)
	1	residue	residue	
	l	of amino	of amino	
	1	acid	acid	•
		sequence 3	sequence	VDSVGGGSESRSLDSPTSSPGAGTROLVKASSTGTESSDDFEE
167	906	3	894	RDPDLGDGLENGLGSPFGKWTLSSAAOTHOLRRLRGPAKCREC
ĺ	1		1	EAFMVSGTECEECFLTCHKRCLETLLILCGHRRLPARTPLFGV
1	1	į.	1	DFLOLPRDFPEEVPFVVTKCTAEIEHRALDVQGIYRVSGSRVR
			1	VERLCOAFENGRALVELSGNSPHDVSSVLKRFLQELTEPVIPF
1			1	HLYDAFISLAKTLHADPGDDPGTPSPSPEVIRSLKTLLVOLPD
1	1	ſ	1	SNYNTLRHLVAHLFRVAARFMENKMSANNLGIVFGPTL
	907	1	394	GLHVISLHSADGRHWEDPLSELDSERVSAFLVTETLVFYLFCL
168	907	1 -	394	LADETVVPPDVPSYLSSOGTLSDROETVVRTEGGPOANGHIES
l	l	i	}	NGKASVTVKQSSAVTVSLGAGGGLQVFTGQVPGIRWGKLGEAH
1	ł	ł	l	AS
2.50	000	150	551	KIKHRPEEEPRWAAAGAOSAGPGAAEVAPPRPGTVAPGANGMT
169	908	179	221	DSATANGDDRDPEIELFVKAGIDGESIGNCPFSORLFMILWLK
j	ļ	1		GVVFNVTTVDLKRKPADLRNLAPGTHPPFLAFNWYVKT
170	909	1	335	LGFSDGQEARPEEIGWLNGYNETTGERGDFPGTYVEYIGRKKI
170	909	1	335	SPPTPKPRPPRPLPVAPGSSKTEADVEOOVLYKYRKKPSSSHR
1	1	1	ì	POTPHNGKSKNFLHKOGLKKKKASL
171	910	1	895	RTRGVMELALRRSPVPRWLLLLPLLLGLNAGAVIDWPTEEGKE
1 1/1	310	1	093	VWDYVTVRKDAYMFWWLYYATNSCKNFSELPLVMWLQGGPGGS
1	1	l	1	STGFGNFEEIGPLDSDLKPRKTTWLQAASLLFVDNPVGTGFSY
1	1	1	i	VNGSGAYAKDLAMVASDMMGLLKTFFSCHKEFQTVPFYIFSES
1	1			YGGKMAAGIGLELYKAIORGTIKCNFAGVALGDSWISPVDSVL
j	1	1	1	SWGPYLYSMSLLEDKGLAEVSKVAEOVLNAVNKGLYREATELW
1	1	1	1	GKAEMIIEOVKRGNTORRACLAFSGGYRAHGWCCOTWSLH
172	911	553	194	PGWSRSPDLVIRLPRPPKVLGLOYYHFFFFLRWSL/DSVAOAE
11/2	1	1 333	122	VOWHDLRSLOAPPPGFTPFSCLSLPGSWDYRCPPPRPANFLYF
1	1	1.		**RRGFTVLARMVSIS*PRDPPASASQSAGITVLSLFFFFEME
1	1	[1	SCSVAOAGVOWRYLGSLOALPPGFTPFSCLSLPSSWDYRRPPP
1			١,	RPANFFVFLVETGVSPC*PGWSRSPDLVIRLPOPPKVLGLOV
173	912	1761	1	PSMKTGELEKETAPLRKDADSSISVLEIHSOKAOIEEPDPPEM
1 - / 3	1 322	1701	_	ETSLDSSEMAKDLSSKTALSSTESCTMKGEEKSPKTKKDKRPP
1	1	1		ILECLEKLEKSKKTFLDKDAORLSPIPEEVPKSTLESEKPGSP
1	1			EAAETSPPSNIIDHCEKLASEKEVVECQSTSTVGGQSVKKVDL
1	1		1	ETLKEDSEFTKVEMDNLDNAQTSGIEEPSETKGSMQKSKFKYK
1		1		LVPEEETTASENTEITSEROKEGIKLTIRISSRKKKPDSPPKV
1	1	1		LEPENKOEKTEKREEKTNVGRTLRRSPRISRPTAKVAEIRDOK
1		1	1	ADKKRGEGEDEVEEESTALOKTDKKEILKKSEKDTNSKVSKVK
I	1	1	1	PKGKVRWTGSRTRGRWKYSSNDESEGSGSEKSSAASEEEEEKE
1	1	1	1	SEEAILADDDEPCKKCGLPNHPELILLCDSCDSGYHTALPFAP
1		1		PLMIHPQMGGW\F\CPTFCPTLNLLLEKLEDQF\QDL\DVAL
1		1		KKERALPERRK\ERLVYVGI\SIENIIPPQ\EPDFSEDQEEKK
1	1	1		KDSKKSKANLL\ERRSTRTRKCISYRFDEFDEAIDEAIEDDIK
	1	ŀ	1	EADGGGVGRGKDISTITGHRGKDISTILDEER

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 53.9	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion) RRRGSFKMAELDQLPDESSSAKALVSLKEGSLSNTWNEKYSLQKTPVWKGRNTSSAVEMPFRNSKASELFSDEDORQINTRESPKR
				NQRVAMVPQKFTATMSTPDKKASQKIGFRLRNLLKLPKAHKWC IYEWFYSNIDKPLFEGDNDFCVCLKESFPNLKTRKLTRVEWGK IRRLMG
175	914	166	635	MPEYLRKRFGGIRIPIILAVLYLFIYIFTKISVDMYAGAIFIQ QSLHIDLYLAIVGLLAITAVYTVAGGLAAVIYTDALQTLIMLI GALTLMGYSPAAVGGMEGLKEKYFLALSNRSENSSCGLPRED AFHIFRDPLTSDLPWPGVLFGMSIPSLX*
176	915	673	1025	XSASATSLTLSHCVDVVKGLLDFKKRRGHSIGGAPBQRYQIIP VMCCSLLATGGADRLIHLWNVVGSRLEANQTLEGAGGSITSVD FDPSGYQVLAATYNQVAQFWK*
177	916	3	139	QKRFPSNCGRDGKLFLWGQALHIIAKLLGKWRRLGMVFFSLLL SY
178	917	1	541	VHVCSSRMGALSTERLGYYTOSLGVRERSGHSVSLIDLWGLLV FYLLYQESHPAKLSOQGDAVGQQDPYVJTSVNYRTHLGGED FAEWCEFTPYEVGFPKYGAYVPTELFGSELFMGRLLQLQPEPR ICYLQGMWGSAFATSLDEIFLKTAGSGLSFLEWYRGSVNITDD CQRPQLEN
179	918	1	628	EFLGRPTRENAKDEGNIBEGKDEGKDEGKDEGKDEGKDEGKEER DEGKDEGKDERKDEGKDEGKDEGKDEGKDEGKDEGKDE DEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDE GKDEGKDEGKDEGKDEGKDEGKDERKDEGKDEGKDEGKDEK GKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDEGKDE
180	919	27	471	PSLRPAWHEGEDFSYGLQPYCGYSFQVYGEMTRNREVLPCPDD CPAWAYALMIEGWNEFPSRRARFKDIHSRLRAWGNLSNYNSSE QTSGGRNTTQTSSLSTSPLCNVSNAPYVGPKQKVPPFPQTQVI PMKGQIRPMVPPPQLYVP
181	920	2	454	RNSGHIPRVRWILEERKRVWGEACAKYRASSSRRAVTPRHVSR IFVBDRHRVLYCEVPKAGCSNMKRVLMVLAGLASSTADIQHNT VHYGSALKRLDTFDRQGILHRLSTYTKMLFVREPFERLVSAFR DKFEHPNSYYHPVFCWAILAR
182	921	2	378	IMYSISPANSEEGQELYVCTVKDDVNLDTVLLLPFLKEIAVSQ LDQLSPEEQLLVKCAAIIGHSFHIDLLQHLLPGWDKNKLLQVL RALVDIHVLCWSDKSQELPAEPIIMPSSIDIIDGTKEKK
183	922	181	513	GPHVVLVLRRCFLLSYFKGVEKAKAMPSPRILKTHLSTQLLPP SFWENNCKVRYQQLPVTEGKVSQPKRVLQTPTQSIRDHLCLST VSDAYQQRENIKFYIQQDIHLNSFK
184	923	32	239	FYYICRLSKEDKAFLWEKRYYCFKHPNCLPKILASAPNWKWVN LAKTYSLLHQWPALYPLIALELLDSK

oro I	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	ID I	beginning	end	
ID		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I≈Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	1—possible flucteoride insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
185	924	3	361	KMMI*GLFEIOOCPIGKHCNFLOVLRN/PNRDL/WLVSSFGKS
100	224	1	1 502	SKGRERMGHHDEYYRLRGR/HNPSPDHSYKRNGESERKRKKSH
		1	l	*HMSKSOERHNSPSRGRNSDRSGGRCSRSDNGRSRYR
	925	443	1412	PLSLFARVAGSRVEMPEPPGLGDEGRPLLHPGRREAVGSWVSA
186	925	443	1412	FAGDSTPCGPGDLSVPRREPFRLTAL*PHRSPVVRTSLIGLLL
		1	1	
				GFSVKEELRGVGWAARTPLGIR
187	926	2	917	FDKRQHEARIQQMENEIHYLQENLKSMEEIQGLTDLQLQEADE
	1	1		EKERILAQLRELEKKKKLEDAKSQEQVFGLDKELKKLKKAVAT
	1	l	ļ	SDKLATAELTIAKDQLKSLHGTVMKINQERAEELQEAERFSRK
	ł	ł	(AAQAARDLTRAEAEIELLQNLLRQKGEQFRLEMEKTGVGTGAN
	Ì	l	(SQVLEIEKLNETMERQRTEIARLQNVLYLTGSDNKGGFENVLE
				EIAELRREGSYONDYISSMADPFKRRGYWYFMPPPPSSKVSSH
1	j)	ļ	SSQATKDSGVGLKYSASTPVRKPRPGQQDGKEGSQPPPASGYW
	j .	i	ļ	VYSP
188	927	171	1082	SDASSFKTRVIVVPRPRVFPLGSAITENSLESDSQIGQFGVGF
	ĺ		l .	YSAFLVADKVIVTSKHNNDTQHIWESDSNEFSVIADPRGNTLG
١.		į.	l	RGTTITLVLKEEASDYLELDTIKNLVKKYSQFINFPIYVWSSK
	١.	1	l	TETVEEPMEEEEAAKEEKEESDDEAAVEEREEEKKPKTKKVEK
1		ŀ	Ì	TVWDWELMNDIKPIWORPSKEVREDEYKAFYKSFSKESDDPMA
Į.	1	1)	YIHFTAEGEVTFKSILFVPTSAPRGLFDEYGSKKSDYIKLYVR
l		1	ŀ	RVFITDDFHDMMPKYLNFVKGVVDSDDLPLNVSRETLQOHKLL
	1		l .	KV
189	92B	718	275	CGSWMRRALIPPCRGGPSASDRCCSCSPSGFSAGRGRCPVOGC
109	1 -20	1 -3	1	LRPHRVQLLRRWGPGSPAGQRLSKGFQLLRWWGPGSPAPEPRK
1	i	1	1	GPFPPPDPPWPVTAVTVMAGSVPSAQSVDALESPGPLALEGPS
	}		1	SPRNLLWREMSIFLPGIF
190	929	1	550	PGPTPPPRHGSPPHRLIRVETPGPPAPPADERISGPPASSDRL
190	929	1 -	350	ATLEDYADPFDVOETGEGSAGASGAPEKVPENDGYMEPYEAOK
i	1		1	
1	1	1	1	MMAEIRGSKETATQPLPLYDTPYEPEEDGATPEGEGAPWPRES
1	[1	1	RLPEDDERPPEEYDQPWEWKKERISKAFAVDIKVIKDLPWPPP
L				VGQLDSSPSLP
191	930	1	562	QFFSLFLRYQIHTGLQHSIIRPTQPNCLPLDNATLPQKLKEVG
1	1	1	1	YSTHMVGKWHLGFYRKECMPTRRGFDTFFGSLLGSGDYYTHYK
1	1	1	1	CDSPGMCGYDLYENDNAAWDYDNGIYSTQMYTQRVQQILASHN
1	1		1	PTKPIFLYIAYQAVHSPLQAPGRYFEHYRSIININRRRYAAML
1	1			SCLDEAINNVTLALK
192	931	3	580	RVRKGRGGERLQSPLRVPQKPERPPLPPKPQFLNSGAYPQKPL
1	1			RNQGVVRTLSSSAQEDIIRWFKEEQLPLRAGYQKTSDTIAPWF
1	1	1	1	HGILTLKKANELLLSTGMPGSFLIRVSERIKGYALSYLSEDGC
1	1	1	1	KHFLIDASADAYSFLGVDOLOHATLADLVEYHKEEPITSLGKE
		1		LLLYPCGOODOLPDYLELFE
1	1			

SEQ SEQ Predicted beginning nucleotide for motion of Nucleis Acids No: of Muclei Acids Aci	Z H M DH K Q
NO: molecoids of Nucleis Acids NO: multiple of Maniho Corresponding to first amino acid residue of amino acid sequence 193 3 3 1641 GSLEKALFQLLKVWGQWAEQTRRLQRLDVSLSVARVRSAGFS(QNKGDLVWEALLEGIQNKGGTRRLQRLDVSLSVARVRSAGFS(QNKGDLVWEALLEGIQNKGGTRRLQRLDVSLSVARVRSAGFS) ONCOLONG CONTROL OF THE	Z H M DH K Q
Note Note	Z H M DH K Q
Nucleis	Z H M DH K Q
Acids Acids sponding sponding to first amino acid residue of amino acid residue of amino acid sequence	Z H M DH K Q
to first amino acid residue of amino acid residue of amino acid residue of amino acid sequence sequenc	Z H M DH K Q
acid residue of amino acid sequence seq	Z H M DH K Q
residue of amino acid sequence	7 H Q H K
residue of amino acid sequence	7 H Q H K
acid acid sequence se	7 H Q H K
Sequence Sequence	7 H Q H K
193 932 3 1641 GSLEKALFOLLKVWGQWAEQTRELQFLDVSLEVARVESAGFS (ONKGLUVMEALLESCIQNRGHIGGGFLTSCERALGGLAWKGIDLM AHKKSEWBERTHALETCLKITEOERLKSLRSOLDVTHKEVGHL QOVERLEKI KOEMHEK NOEMHEN KOELKKLHEBLCILKESYEKLOKKOL REFRGNITKNHEEDRS EIERLITAKIEBFROKSLDWEKQRLILVG QVSSLBAGRKALDSGETIOAQLUNKROKLESVELSSGETOL LISKLERANDTICANELEIBRITMRVNDLUVGTSNTVLOEGQOI EEKLRSSKKLLEALGBERFELKAALGSCENLIHEARIGKEKL REVKATINTGHAVEALSLESVSATCKOLSGEIMENYSELKRHE HNNSYKABIKKLKEGILGGEGYSSALBGMNREISHITGELHE RDITIASTKGSSBURKERLERUGKRELGSLEVSFLGSIATEFLEEELER. KLENRHLSSHWMKLEIGHECSLEVVSFLGSIATEFLEEELER. HHILELDAHIEBLKRESEKTVRGFTALK HHILELDAHIEBLKRESEKTVRGVETAK 194 933 159 1053 TÖFFGGSGGSLFTSLSALFFGOVETGVUSLDGTGGDHS PIORGAPSGKUTTUNDOGSLINFFRISATLYFSGOVETGVUSLDGTGGDHS PIORGAPSGKUTTUNDOGSLINFFRIGATLAFHEPSLSEAALAA	7 H Q H K
ONKODIAMEALBOIONEGIGGGFLTSCERELORIAKOIDIM AHKKENBERTHALBTICHKIROBLEKSLISGUDTHKEVGHL OOVBEHEKIRORITHEKKOELKKIRORIDITHKEVGHL OOVBEHEKIRORITHEKKOELKKLHEELCILKRSYEKLOKKOI REFRGSTIKNIHEBDRSEITRITAKIEBPROKSILMEKOLLIVO OVSSLERORKALBOSEIIOROLIVARKOKLESVELSSOSEIO LESKLERANDIICANELEIERLIMEKVADLUGISNITULOROOJ EEKLERSEKLLEALOREERELKARALOSONILHERAIOKEKLE EKVKATNITOHAVRAISLESVSATCKOLSOEIMEKYEELKRIKE HNNEYKABIKKLEALOTLOGGGOVSSALDENKEKIEBLIKOELH RDITIASTKOSSSDMEKELRAEMOKABDKAVEHKEILODLES KLERRILSEMWIKLELGLHECSLPVSPLOSIATRIFLEEELS HHILEIDAHIEBLKRESSEKTYROPTALK 194 933 159 1053 TOFFGGSGOFSLTPTSLSALYPSOVETILAFHIPPSLESAALAA	7 H Q H K
ARKKSEWBERTHALETCIKTREGELKSLESGLDVTHKEVGML QOVERLEKT KOEMTEKYROEMKIREBICTIKREYSKLOKKOL REFEGNTKMIHEDRS EIERLITAKIERFROKSLDWEKQRLIYG QVSSLERGRKALBAGSETIOAQLUMKROKLESVELSGSETOL LSSKLERANDTICANELEIERLIMEVNDLUGTSMTVLOEGGOL EEKLRESKKLLEALGEKRELKAALGSGENIHERA KOKEKL EKVKATINTGHAVEAISLESVSATCKOLSGEIMERYSELKRHE HNNEYKABIKKLKEGILGGEGYSSALBOMNEISHLTGELH EDITIASTKGSSBUMERKELEAUGNSELSKELTLOLES KLENRILSEMYMKLEIGHECSLEVSFLOSTATEFLEEELER HHLEELDAHTEELKRESEKTVSGUVETTAKK 194 933 159 1053 TÖFFGGMSGPSLTPFSLSÄLYFSGUVETGVVLSLEGTGOHS FIGGRAPSGKUTTMODGSLTOPFILAFHEPSLSEAALAA	H CH K
QQVERIEKI KORMIMENKORLIKKHERLOILKRSYEKLOKKO REFRONTKNIHERDRS LIERLTAKIEFROKSIDMEKORLIYO QVSSLBAGRKALBOSEI IQAQLINNEKOKLESVELSSQSEIQI LSSKLERANDTICANELEI ERLITMENVADLUGTSNITULGOQQI EEKLERSEKLLEALOGERERILKARLQSENLIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALQOSELIHARALDOSELIHANDELIHARALGOSELIH	M Q H K
PEPRONTKNIHEDRSEIERLTAKIEBFROKSLDWEKORLIJYO OVSSLERORRALAGESEIIOAQUIWKROKLESVELSSOSEIO LSSKLERANDTICABELEIERLTMEVADLUGTSWTVLOEQOJ EEKLERSEKLIELALDEERFEIKAATLOSENLIHAAT TOKEKL EKVYKATNIOHAVEAISLESVSATCKOLSOELMEKYEBLKRUE HNNSYKABIKKLKROIJOEGSYSSALBOMKNEISHLTOELE KONITIASTKOSSSDMEKRELRAEMONABOKAVEHKELHOOLES KLENRHLSSHWMKLELHENGSIFVSFLOSIATEFLEEELER. HHLIELDAHIELKEKSEKTVROĞYTAK 194 933 159 1053 TÖFFGGSOGPSLYPTSLSALYPSOVETGVVLSLOGTGOHS PIORGAPSOKUTTUNDOSLOTTOGDILTAFHEPSLSSALAA	Q A
OVSSLBAORKALABOSETIOAQLIVERKOKLESVELSSOSETOJ LSSKLERANDTICANELEIBELTMEVENDLVGTSWTVLJOCQOJ EEKLRESEKLLEALOBERFELKRAALQSQENLIHBARIOKEKL EKVEATHTOHAVEATSLESVSATCKOLSOGENMEKYEELKRHE. HNNSYKABIKKLEBOLIQGEGGVSSALBOMKHEISHLTOELH ENDITIASTKGSSSDMEKELRABKOKABDKAVEHKETLODLES: KLEMPHLSEMWIKLEIGLHECSLYVSPLOSETATEFLEEELER HHILERLDAHIEBLKRESEKTVRQFTALK 194 933 159 1053 TOFFGGSGGPSLYPTSLSALYPSQVEETGVULSLEQTEGHSR PIOKAGAPSGKUTTMODSLDTPOPRILAFLHPPSLSSAALAA	K
LESKLERANDTICANELEIERLTMEVNDLUGTSNTTULGEGOU EEKURESERKLIEALDGERETELRAALDGSENLIHARATIOKEKL EKVRATNTOHAVEAISLESVSATCKOLSOELMEKYEELKENE HNNEYKAEIKKLKEOILOGEGOSYSALGENKOMEISHLTOELH- RDITIASTKOSSSDMERRIRAEMOKAEDKAVEHKEILDQLES KLERRHLSENWINCLEILGHECSLEVVSELGSIATEFLEEEELR. HHLLEIDAHLEELKEESEKTVSGOTTALK 194 933 159 1053 TÖFFGGSGGFSLTPTSLSÄLYPSGVEETLAFHEPSLSEALAA	2
EEKLRESEKLLEALQEERRELKAALQSOEMILHEARIQKEEKL ERVKAINTQHAVEAISLESVSATCKQLSQELMEKYEELKRME HNNEYKAEIKKLKEQILQGEQSYSSALEGMKNEISHITQELH RDITIASTKSGSSDMEKRLEAEMQKAEDKAVEHKEILDQLES KLEMEHLSEMMYKLEIGLHECSILVSPLOSELGEEH HHILERLDAHIEELKRESEKTVRQFTALK 194 933 159 1053 TOFFIGMSQGPSLIPTSLSALYPSQVEETGVULSLEQTEQHSR PIQKGAPSGKUTPMODSLIPTGPRILAFLEPPSLSEAALAA	2
EKVKATHTOHAVEATSLESVSATCKOLSOEIMEKYEELKRHE HNNEYKABIKKLKEDILOGGOG VSSALEMINKEISHITOELH RDITIASTKOSSSDMEKELRAEMOKABIKAVEHKEILOOLES KLERRHLSEMMIKLELGLHECSLPVSPLOSSIATRIFLEEELR HHLLERLOAHLEELKRESEKTVROFTALK 194 933 159 1053 TÖFFGGSGGFSLTPTSLSALYPSOVEETGVUSLEQTEGHSR PIORGAPSCKUTTMODSLDTOPRILAFLHPPSLSSAALAA	
HNNEYKABIKKLKEQILGEGGSYSSALEGNKMEISHLTOELH EDITIASTKGSSDMEKRLRAEMQKAEDKAVEHKEILDQLES KLENRHLSEMYMKLEIGHECSLPVSPLGSIATRFLEEBEILR HHILERIDAHIEELKRESEKTVRQFTALK 194 933 159 1053 TGFIGWSGPSLTPTSLSALYPSQVEETGVVLSLEQTEQHSR PIQRGAPSGKDTDYNPGDSLDTPGPRILAFLHPPSLSSAALAA	١l
RDITIASTRGSSSDMEKRLRARMOKAEDKAVEHKELLODLES: KLENRHLSEMVMKLELGHHEGSLPVSPLGSSLATRFLEEBELR: HHLLERLOAHLELGKRESEKTVRQFTALK 194 933 159 1053 TOFFIGMSQOPSLTPTSLSÄLTYRSQVEETGVUSLEQTEQHSR PIORGAPSCKUTTMODSLDTPOPRILAFHEPPSLSSAALAA	
KLENRHLSEMVMKLELGLHECSLPVSPLGSIATRFLEEEELR. HHILERLDAHLEELKRESEKTVRQFTALK 194 933 159 1053 TGFLGMSQGPSLTPTSLSALYPSQUEETGVVLSLEQTEQHSR PIQRGAPS(KDTNPRODSLDTPGPRILAFLHPPSLSSAALAA	2
HHILERLDAHIEBLKRESKKTVROFTALK 194 933 159 1053 TGFFGWSQFSLTPTSLSALYPSQVEETGVVLSLEQTEQHSR PIQRGAPSQKDTPMPGDSLDTFGFRIAFLHFPSLSEAALAA	ا د
194 933 159 1053 TGFLGWSQGPSLTPTSLSALYPSQVEETGVVLSLEQTEQHSR. PIQRGAPSQKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAA	3
PIQRGAPSQKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAA	
PIQRGAPSQKDTPNPGDSLDTPGPRILAFLHPPSLSEAALAA	₹
	اد
PDELPVGTENVHRLFTSGKDTEAVETDLDIAQDADALDLEML	
PYISMDDDFOLNASEOLPRAYHRPLGAVPRPRARSFHGLSPP	A
LEPSLLPRWGSDPRLSCSSPSRGDPSASSPMAGARKRTLAQS	3
KDEDEGVELLGVRPPKRSPSPEHENFLLFPLSLSFLLTG	
195 934 3 425 ELQDCFDVHDASWEEQIFWGWHNDVHIFDTKTQTWFQPEIKG	g 1
VPPOPRAAHTCAVLGNKGYIFGGRVLQTRMNDLHYLNLDTWT	w '
SGRITINGESPKHRSWHTLTPIADDKLFLCGGLNAYNMPLSD	
WIHNVTTHCWK	٠.
196 935 2 295 FFFLRTRSHSVTPRWECSDDITAHWQPQPWGSSDPLTFS/RP	5
VVVPPRHTTLCP\ANFFVFCIFCRNRISPCWPGWSRTPWAQL	
RLPRPPKVLGLOV	_
197 936 2 737 PREGQVKQGLLGDCWFLCACAALQKSRHLLDQVIPPGQPSWA	<u> </u>
QEYRGSFTCRIWQFGRWVEVTTDDRLPCLAGRLCFSRCQRED	
PWLPLLEKVYAKVHGSYEHLWAGQVADALVDLTGGLAERWNL	
GVAGSGGOODRPGRWEHRTCROLLHLKDQCLISCCVLSPRAG	
ARGOHGRAAASVPPTARPQAHCSFLCDWLHSPVRTKWEEVSL	
SRVVSSVCDLPLLSSSRGTWPFSPLTSPFH	•
	Ē-
198 937 3 638 AECLEASIARYAHRVANSRYTFDGETVTLSPSQGVNQLHGGP GFDKRRWQIVNQNDRQVLFALSSDDGDQGFPGNLGATVQYRL	
DDNRISITYRATVDKPCPVNMTNHVYFNLDGEQSDVRNHKLQ	Ť
LADEYLPVDEGGIPHDGLKSVAGTSFDFRSAKIIASEFLADD ORKVKGYDHAFLLOAKGDGKKVAAHVWSADEKLQLKVYT	U
	2.7
199 938 69 425 PLSRFLSKESQEDWGMERQSRVMSEKDEYQFQHQGAVELLVF	
FLLILTILTIWLFKNHRFRFLHETGGAMVYDKPPKFAMSREQ	
SQSCSHTAHNASLLTDAGPLSCGESRASCLFL	

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	SEQ ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	Possion Marrollan Institutos
		of amino	of amino	
		acid	acid	
		sequence	sequence	
200	939	3	435	DSKEPRLQQLGLLEEEQLRGLGFRQTRGYKSLAGCLGHGPLVL
		1		QLLSFTLLAGLLVQVSKVPSSISQEQSRQQAIYQNLTQLKAAV
	1	1		GELSEKSKLQEIYQELTQLKAAVGELPEKSKLQEIYQELTWLK
	1		1	AAVGELPEKSKMQE
201	940	657	469	MQSIAWGHRRDRGESPLGWGQESEASPSALTEAPKAAHTTRLG
	1	(l	FLAANNPNGHSQPQDSFLL*
202	941	1	714	FETLSMRGIPHMLALGPQQLLAQDEEGDTLLHLFAARGLRWAA
	1	l	1	YAAAEVLQVYRRLDIREHKGKTPLLVAAAANQPLIVEDLLNLG
	1			AEPNAADHQGRSVLHVAATYGLPGVLLAVLNSGVQVDLEARDF
	Į	1	ł	EGLTPLHTAILALNVAMRPSDLCPRVLSTQARDRLDCVHMLLQ
		1		MGANHTIQVSGDVGGQTLGDCVEWGHLDVRELQANADFASSLL
		1	ļ	RALEHVTSLLCALRVFCLFLCQL
203	942	3	479	DAWADAWYGTKMADLDSPPKLSGVQOPSEGVGGGRCSEISAEL
	1		1	IRSLTELOELEAVYERLCGEEKVVERELDALLEQQNTIESKMV
	1	į.	l	TLHRMGPNLQLIEGDAKQLAGMITFTCNLAENVSSKVRQLDLA
	1		i	KNRLYOAIORADDILDLKFCMDGVOTALR
204	943	1	706	AVEFRVPRSGSAYLYSYVTVGELWAFTTGWNLILSYVIGTASV
202	7.0	-		ARAWSSAFDNLIGNHISKTLOGSIALHVPHVLAEYPDFFALGL
1		l .	1	VLLLTGLLALGASESALVTKVFTGVNLLVLGFVMISGFVKGDV
		l	l	HNWKLTEEDYELAMAELNDTYSLGPLGSGGFVPFGFEGILRGA
	1	1		ATCFYAFVGFDCIATTGEEAONPORSIPMGIGISLSVCFLADF
1	1	Í		AVSSALTLMMPYYQLQPESP
205	944	1	852	GFHPNTTHYRARAARAGAGSFVGEVSAVDKDFGPNGEVRYSF
203	244	1	1 002	EMVOPDFELHAISGEITNTHOFDRESLMRRRGTAVFSFTVIAT
1	1 .	1	1	DOGIPOPLKDOATVHVYMKDINDNAPKFLKDFYOATISESAAN
	1	1	1	LTOVLRVSASDVDEGNNGLIHYSIIKGNEEROFAIDSTSGOVT
	1	1	1	LIGKLDYEATPAYSLVIQAVDSGTIPLNSTCTLNIDILDENDN
1	ł	1	ł	TPFF/LLNOHFFVDVLENMRIGELGASGTATDS\DSGDIADLY
i	1	1	1	YKFTGTKHPPGTFSISPKHLGVFFLAOK
206	945	3	363	GDCYDLYGGEKFATLAELVOYYMEHHGOLKEKNGDVIELKNPL
200	1 243	1	1 303	NCADPTSORWFHGHLSGKEAEKLLTEKGKHSSFLVRESOSHPG
1	l	1	1	DFVLSVCTGDDKGESNDGKSKVTHVMIHCQELK
207	946	218	717	IDSGNONGGNDDKTKNABRNYLNVLPGEFYITRHSNLSEIHVA
207	240	210	1 '-'	FHLCVDDHVKSGNITARDPAIMGLRNILKVCCTHDITTISIPL
}	1			LLVHDMSEEMTIPWCLRRAELVFKCVKGFMMEMASWDGGISRT
		1	1	VOFLVPOSISEEMFYQLSNMLPQIFRVSSTLTLTSKH
208	947	3	368	SILPALLVTILIFMDQQITAVIVNRKENKLKKAAGYHLDLFWV
208	947	13	308	GILMALCSFMGLPWYVAATVISIAHIDSLKMETETSAPGEQPQ
	1	1	1	FLGVRBORVTGIIVFILTGISVFLAPILKCIPLPV
	1			
209	948	2	575	GASRVEAGSANGMLIDGGSQIVKVQGHADGTTINKSGSQDVVQ
1	1	1	[GSLATNTTINGGRQYVEQSTVETTTIKNGGEQRVYESRALDTT
l	1	1	1	IEGGTQSLNSKSTAKNTHIYSGGTQIVDNTSTSDVIEVYSGGV
i	1	i	1	LDVRGGTATNVTQHDGAILKTNTNGTTVSGTNSEGAFSIHNHV
1	1	1	1	ADNVLLENGGHLDINAYGS

			Predicted	
SEQ	SEQ	Predicted beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid	\=possible nucleotide insertion)
	1	residue	residue	,
		of amino	of amino	
	1	acid	acid	
	}	sequence	sequence	
210	949	1	296	FFSSIQLTDDQGPVLMTTVAMPVFSKQNETRSKGILLGVVGTD
l				VPVKELLKTIPKYKVMNDLIPEIKATEMPRALFSQSSGFKLYF
				GAMFLLTTITAC
211	950	3	594	SCSGTGTNACYMEDMSNIDLVEGDEGRMCINTEWGAFGDDGAL
1	1	1		EDIRTEFDRELDLGSLNPGKQLFEKMISGLYLGELVRLILLKM
				AKAGLLFGGEKSSALHTKGKIETRHVAAMEKYKEGLANTREIL
1		l	1	VDLGLEPSEADCIAVQHVCTIVSFRSANLCAAALAAILTRLRE
i	1	ſ	1	NKKVERLRTTVGMDGTLYKIHPQY
212	951	2	2167	FVAIATNGVVPAGGSYYMISRSLGPEFGGAVGLCFYLGTTFAG
	1	1	1	AMYILGTIEILLAYLFPAMAIFKAEDASGEAAAMLNNMRVYGT
1	l	1	ĺ	CVLTCMATVVFVGVKYVNKFALVFLGCVILSILAIYAGVIKSA
1	l	1)	FDPPNFPICLLGNRTLSRHGFDVCAKLAWEGNETVTTRLWGLF
1	1	1	ł	CSSRFLNATCDEYFTRNNVTEIQGIPGAASGLIKENLWSSYLT
1	1	į.		KGVIVERSGMTSVGLADGTPIDMDHPYVFSDMTSYFTLLVGIY
j.	1	1	1	FPSVTGIMAGSNRSGDLRDAQKSIPTGTILAIATTSAVYISSV
		1	1	VLFGACIEGVVLRDKFGEAVNGNLVVGTLAWPSPWVIVIGSFF
	1		ļ	STCGAGLQSLTGAPRLLQAISRDGIVPFLQVFGHGKANGEPTW
1	į.		Į.	ALLLTACICEIGILIASLDEVAPILSMFFLMCYMFVNLACAVQ
1	1		1	TLLRTPNWRPRFRYYHWTLSFLGMSLCLALMFICSWYYALVAM
ł	1	1		LIAGLIYKYIEYRGAKKEWGDGIRGLSLSAARYALLRLEEGPP
	1	i		HTKNWRPQLLVLVRVDQDQNVVHPQLLSLTSQLKAGKGLTIVG
1	1	1	1	SVLEGTFLENHPQAQRAEESIRRLMEAEKVKGFCQVVISSNLR
	1	1	1	DGVSHLIQSGGLGGLQHNTVLVGWPRNWRQKEDHQTWRNFIEL
	1	J	1	VRETTAGHLALLVTKNVSMFPGNPERFSEGSIDRWGIGHDGGM
			İ	LMLVPFLLRHHKVWRKCKMRIFTVAQMVDMHAM
213	952	1	128	FYLRLLSFFCFQEHEKRCWSVDFNLMDPKLLASGSDDAKGTV
214	953	3	244	RNSKAMHRSSCDGPLLSLPSVGRSATHALVQAQLICSGARRGM
		L		HAFIVPIRSLQDHTPLPGKPIMLPQGTLPGGEPRWPP
215	954	2	609	CGTLILQARAYVGPHVLAVVTRTGFCTAKGGLVSSILHPRPIN
1	1			FKFYKHSMKFVAALSVLALLGTIYSIFILYRNRVPLNEIVIRA
1				LDLVTVVVPPALPAAMTVCTLYAQSRLRRQGIFCIHPLRINLG
1	1	1	1	GKLQLVCFDKTGTLTEDGLDVMGVVPLKGQAFLPLVPEPRRLP
1	1			VGPLLRALATCHALSRLQDTPVGDPMDLKM
216	955	292	855	QIEYFRSLLDEHHISYVIDEDVKSGRYMELEQRYMDLAENARF
1	1	1	1	EREQLLGVQQHLSNTLKMAEQDNKEAQEMIGALKERSHHMERI
1	1		1	IESEQKGKAALAATLEEYKATVASDQIEMNRLKAQLENEKQKV
1		1	1	AELYSIHNSGDKSDIQDLLESVRLDKEKAETLASSLQEDLAHT
	1		1	RNDANKLQDAIAKGRG
217	956	2	400	ARYRFTLSARTQVGSGEAVTEES PAPPNEATPTAAPPTLPPTT
	1		1	VGATGAVSSTDATAIAATTEATTVPIIPTVAPTTMATTTTVAT
	1	1	1	TTTTTAAATTTTESPPTTTSGTKIHESAPDEQSIWNVTVLPNS
]	1	i	1	KWA

D Note Not	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
No.					
Nucleic Amino					F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleis					K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acus of first animo anim					P=Proline, O=Glutamine, R=Arginine, S=Serine,
Amino acid residue Amino acid residue Amino acid residue Amino acid sequence A	Acids	Acids			
		1			
		1			
			residue	residue	Possible Residence Institution)
			of amino	of amino	
218 957		ļ	acid		
LTDLANLSBOYSLAREGS FOAMODPFKINKALLESNITQELHE PORTSDPFKSDPFKAGDPFKAGTANDPFRAGATISTIPPEG PEKESDPFKSBPKAGDPFKAGTKINDPFTSDPFKTDFFKAGT PEKESDPFKSBPKAGDPFKAGTKINDPFTSDPFKTNBSLPSKLI PESSDPFSSSAVSKSKSDPFGTLDPFGSGFNSAGFADFST RTRGGSGNSGOPLERGEDDFVDFNAGAKFHSTSSBSVFFTE SRTRGKSAVSHRAKKSLSHPSHSRPGPRVTPHINKAKSPGVRQI SKSSSABGCPFTGVARPTVSSGPVPRRQNGSSSSDPERISTS KKYTNDSHPSRRTVSSLPOVPRRQNGSSSSPTRIFKTT LOSSRIGHEFVSSPHELRERPVSGLPFGRVSSOPRSISGSI AGRTVSNSVPGRVVSSLPOVGTVSSGPTIFKCT 220 959 439 582 RERGITFRYHLGISDPHILLICCRVNGEVVGSSNTNOMPFKI DLIAN 221 960 230 420 VVAVYTRALCENGVSYLRKCVCSACRIGTRCAGEVAAAANNSI TVGLAFHALIGSMOJLTWM 222 961 311 490 GAPPPFVPLKSDDDTSNFDEFKKNSWVSSSPCJSPSGFS ELFVGSSYSKALGI 223 962 2 422 FVERLAHLHACAPRKVVALLEVCRVYAGLARGENODHE LTTWFGALHHLAHVQETDRAPRGLSBEARASLHONHERRIT ROHPRAQCID 224 963 385 844 FWDDYYPLNFKAPFTGSENSKGCRDSKTPSESIVAISGC LLSCKYCVLIGGOBSEDPSVGDVLNSGGRHTHVKRKVYFLU SHEREMPNILGOTTERGINVLKOC USTENSKALGHTUNGKOC 225 964 3 166 AASTAYSPFRTVENNAFWVNRFGHTQSADWGSFGGLMGFFL 226 965 1 118 GFVFLGFBFWSVGLDFSLARGHTPKKRKYTFLU CHEREMPNILGOTTERGINVLKOC 226 965 1 118 GFVFLGFBFWSVGLDFSLARGHTPKKRKYTFLU CHEREMPNILGOTTERGINVLKOC 227 966 1 390 GESCGTBLUTHKOC CHERCEMPNILGOTTERGINVLKOC 228 967 1 1777 LIVINEDHICHTRITTYCGSLCFRQDGPSPKFQLNGLRUS GESCGTBLUTHKOC LILLIVALLIVYCRKKERGLINDLKOC CHERCEMPNILGOTTERGENSKULKCITTKAGGLTDEWTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERGDHEDWINLERTINLIGHLENTERGENGLINGLKOC CHERCEMPNILGOTTERGENSKULKCITTKAGGLTDEWTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERGUNGRITTERUS HILLITIGPDLSTTTTTYQGSLCFRYGALTERUSTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERGUNGRITTERUST HILLITIGPDLSTTTTTYQGSLCFRYGALTERUSTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERGUNGRITTERUST HILLITIGPDLSTTTTTYQGSLCFRYGARSHOVALTURENTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERGUNGRITTERHAUD HENVALANDPLAGKLEFTDVSNVAKVERGUNGRITTERHAUD HNYGALANDDVARALBERDSNANDSLKCTITKAGGLTDEWTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERCOMMENTETILD HNYGALANDDVARALBERDSNANDSLKCTITKAGGLTDEWTINLIGU HENVALANDPLAGKLEFTDVSNVAKVERCOMMENTETILD HNYGALANDDVARVERCHERVOLVEROVERVOLVEROUNGRITTERHAUD HNYGALANDDVARVERCHERVOLVEROVE					
PROTEIDPRESSIPPEGADD FEGIDPEGADTS PERSON PRESSIPPEGASTIDP FEGIDPEGAS PROPED PEGASTIDPEGA PRESSIPPEGASTIDPEGASTIDPEGASTIDPEGAS PRESSIPPEGASTIDPEGASTIDPEGASTIDPEGASTISPEGAR 219 958 1 752 REGGIGNSQFSLREGHDKDVFNGAGKPHSSTSSPSVFKTE SKTQKSAVEHRAKKSLSHE SHSREGPMVTPENAKSFGVEGI SSSSAGPQFSTVSNEPVERVONGSSSSPERESISG KKPINDSHPSERTVSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFUSSTVSSFORSVSGPGRSISGSISGSI AGREVSNEPVERFUSSGPVERFUSSTVSSFORSVSGPGRSISGSISGSISGSISGSISGSISGSISGSISGSISGSI	218	957	1	662	
PEKESDPFRSSATNDFFKKOTKNDFFISDFTKINSLESKLL PESSDPFSSSAVSKSSDPGTLDPFGSGSFNSAGFADEST BORRG 219 558 1 752 RTRGGSGMSSOPBLREGEDKPVPMSAGKPHSSTSSBSVPFTS SPROKENSENHAKKSLSSPSHLERGEDKPVPMSAGKPHSSTSSBSVPFTS SPROKENSENHAKKSLSSPSHLERGEDKPVPMSAGKPHSSTSSBSVPFTS SPROKENSENHAKKSLSSPSHLERGEDKOMSSSSGPERSIGS SKRATTIDENPERTIVSGTCOPGOPASSSGPTIFKCT 220 959 439 582 RGKGTFFKTHLCISDFHILKICGKNGEVVGSSNTNOMFKTI DLIAM 221 960 230 420 VVANVTRALCEMGVSJARFHGKEVGSSNTNOMFKTI DLIAM 222 961 311 490 GAPPPFVFLKSDDDTSNFDEFKKNSWVSSSPCLSPSGFS ELEPVGPSVSKALGIL 223 962 2 422 FVERLAHLHAGAPRKVALLLEVCRDVYAGLARGENODEL 224 963 385 844 FWDFLYSDDTDSNFDEFKKNSWVSSSPCLSPSGFS LITWFGALHHLAGAPRKVALLLEVCRDVYAGLARGENODEL 225 964 3 166 ASTAVSPFCTUSENSENGCRDSKTPSESIVAISSG LISCKVOLLGSGSBEDFGLOVELSGGRHTHVKRKVTFL VTEYTISGDEDKKDFWEFFARDOCRFOKKIDETDAIGVCL/ ERBERMFNLGGTCFGLINVLKOC 225 964 3 166 ASTAVSPFCTVENNAPKVNRPGHTQSADWSSFGGLMGFFI 227 966 1 339 GSECGTDLGTCHVTTAGSGEDKGKPKVTFLT CIPLKGKEIVK 226 965 1 118 GFVFLPGMSVGLDFSLDCHTTAGSGPEDVALIVALING 227 966 1 390 GSECGTDLGTTAGSCLPRODAISFGGLMSFFI LILLUVLLUVTCKKKRGLDSDVADSSILTSGFQPVSLTKFSKA FILLUTICPDLSTTTTTYGGSLCPRODAISFFGLNTKING 228 967 1 117NEDMICWIESRESSNQLKCIQITKAGGLTDEWTINLIGUT ENDAMALDADPLAGKLFFTDVSNNAVERGOMMRTETILD HNNKALRADPLAGKLFFTDVSNNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVERGOMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVENGGROMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVENGGROMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVENGGROMMRTETILD TSCPARLALDLINNKLYVFULLDEVYNAVENGGROMMETETILD TSCPARLALDLINNKLYNGVULLDEVYNAVENGGROMMETETILD T		İ		l .	
PESSDPSSSSVSKASDPFGTLDPFGSGSPNSAEGADFST EGRRG 219 958 1 752 RTRGGSGNSOPSLREGIDKPVPNGAGKHSSTSEPSVPTT SRTQKSAVEHKAKKILSHPSHSREDPVPTRUKAKSPUSSPST SRTQKSAVEHKAKKILSHPSHSREDPVPTRUKAKSPSPSTSEPSVPTT SRTQKSAVEHKAKKILSHPSHSREDPVPTRUKAKSPSSSPSTSE LGSSRAPGGPSTSVARPTVSSGPVPRRQNGSSSGPERSISGS KKPITNDSIPSBRTVSGTCGPGGPASSSGGFGRFIGSVSSARS LGSSRAPGGPSTSVARPTVSSGPVPRRQNGSSSSGPERSISGS AGRIVSNSVPGRPVSSLDPGQTVSSSGPTLEPKCT 220 959 439 582 RRGGTFFRVHLGISDPFILKICTGRVNEVVGSSNTNOMVPKI DLIAW 221 960 230 420 VVAVYTRHLEBNGVSYLRKCVCSACRHGTRCAGEVARAANNSI TVSIAFMARIGGMSNQLTWM 222 961 311 490 GAPPFFVTLKSDDTSSMPDEFKRNSVVSSSPCQLSPSGFSC ELPFVGSSVSKALGIL 223 962 2 422 FVSELAHLBAACAPERKVALLLEVCEDVYAGLARGENGDPLK DAFLPALTEELINSPDIGDTQLDVEFLMELLDPDELRGGAG LTTWGRALHHLATVGPETDRAPRGLSSRARSLHONHERFTI ROHHFRAQCID DAFLPALTEELINSPDIGDTQLDVEFLMELLDPDELRGGAG LITWGRALHHLATVGPETDRAPRGLSSRARSLHONHERFTI ROHHFRAQCID THE STREET STREET STREET STREET LISGCYCLLGGGBSECPDSVGRDVLSGGRHTHVKRKVYFLU VTSYTISGDEDRKGPWEFFARDCGFFGKRIGETEDAIGYCL ERREEMPRILGGTCFGGLINVLKQC ERREEMPRILGGTGFGGLINVLKQC GFELKGETVK GFELKGETVK GFELKGETVK 166 AASTAYSFFGTVENNAPKVVNRFGHTGSADWSFGGLMGRFI GFELKGETVK 1777 LYNEDMICWIESSENGLKCTGTKAGGLTDEWTLNAVG LILLUVILIVYCRKKEGLDSDVARDSLITGGPPDVSTKESKA PHILITIOPDLSTTTTTYGGSLCPRQGDPSRFQLTNGHLIG GFUNGMAIDNITRINIFYDURGGRFFVCNSNGSVCVTLIDLI HNNCALANDPTAGRLEFTDVGNVAVERGCDMGNRTETITLQ HNNCALANDDVTAGRLEFTDVGNVAVERGCDMGNRTETITLD TEGPALALDLUNKLYVFVDULDDVGVDQCKREHEND TEGPALALDLUNKLYVFVDULDDVGVVDQCKREHEND					
BORRG 219 958 1 752 RTEGGSGMSGOPSLEEGHDKPVPNGAGKPHSTSSPSVPFTS SPROKSAVEHKAKKSLSHEHSREGPMVTPENIKAKSPCHED SSSSADOPSTGVARPTVSGAPVPRGMGSSSSPERES KKPTYDGNPSRTVSGTCOPGOPAGSSSGPTSGSSSAF LGSSROPGFVSSPHELRRPVSGLOPPGSVSGPGRSIGGS AGRYVSNVPGRVSSLOPGQTVSSSGPTIFFKCT 220 959 439 582 RGKGTFFKTHLCISDFNLLKICGRVNGEVVGSSNTNGMFKT DLIAM 221 960 230 420 VVAVYTRALCENGVSYLRKCVCSACRHGTRCAGEVARAANNSI TVGLAFMARIGGMGNDLTMM 222 961 311 490 GAPPFVFTLKSDDDTSNFDEFKNSWVSSSPCQLSFSGFS ELPFVGSSYSKALGIL 223 962 2 422 FVERLAHLBAGAPRKVALLLEVCRDVYAGLARGENGDFLK 224 963 385 844 FWDFLYATELISHDDTDTQTDLVEFLMSLLDPDELRGEAG LITWFGALHHLAHVQPETDRAPRGLSSRAFASLHGNHERRTI RKDHPRAQLD 225 964 3 166 ASTAYSPFGTVENNAPKVNRPGHTQSADWSSFGGLMGFF VTFYTISGDEDKKGPMEFFARDGCRFQKKIQETEDALGYCL EHREEMFNLGGTCFSGLINLKGC 225 964 3 166 ASTAYSPFGTVENNAPKVNRPGHTQSADWSSFGGLMGFF 226 965 1 118 GPVFLPGMSVGLDFSLPGMSKYVSIPSBTVATSGC CIFLKGKEIVK 227 966 1 390 GSECQFTDLGTCHDVATAGGPEDVALVYGLTAVACU HILLIVLIKURELVK GILKGKEIVK GILKGKEIVK GILKGKEIVK GILKGKEIVK HILLIVLIKURVERKGLDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC GILKGKEIVK GILKGKEIVK HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFVATSGRC HILLIVLIKURVERKGELDSIDVADSSILTSGFQFQFGTGFTGCHSTANTUR HILLIVERTERKSTROPLYNGVAURGGLTDENTINITUR HNRALANDPTARKLEPTDVANNAVERCOMMENTETIUD TGCPAALALDLIVINITAVFVANULLEURVAUVDVCAKRHRHAUD TGCPAALALDLIVINITAVFVANULLEURVAUVDVCAKRHRHAUD TGCPAALALDLIVINITAVFVOLLUTAVFVAUVDCACKRHRHAUD TGCPAALALDLIVINITAVFVOLLUTAVFVO			1		
219 958 1			1	1	
SPROKSAVEHRAKKSLSHPEHSRPOPMVTPENNAKSPORVEJ SSSSADACDPSTVANDPVSGOPVERDOKSGSSOPERSES KKRTMDENPSERTVSGTOGPGOPASSAGGPGREPISGSVSSSAD LGSSRGOPUSSPHELERPUSGLOPPERGSVSGARGESSAD LGSSRGOPUSSPHELERPUSGLOPPERGSVSGARGESSAD LGSSRGOPUSPHELERPUSGLOPPERGSVSGARGESSAD LGSSRGOPUSPHELERPUSGLOPPERGSVSGARGESSAD AGRTVSNSVVGRPVSSLOPGQTVSSSOPTICHCT REGITPRYHLCISDPHIKICCRVNGSVVQSSNTNQMVFKI 221 960 230 420 VVAVYTRHICENGVSYLRKCVCSACRHGTRCAGEVAAAANNS TVG1AFNAKIGGMSNQLTMM 222 961 311 490 GAPPPPVPILKSDDDTSNFDEFKKNSWVSSSPCQLSPSGFSC ELPFVGFGSSKALGIL 223 962 2 422 FVERLAHLBAGAPRKVALLLEVCRUVYAGLARGENQDFK DAFLFALTEELINSPIOLOTQLUVEFLMSLLDPDELRGEAG LTTWGGALHHLAKYOPETDRAPRGLSSRARSLHONHERRTI ROHPRAQLD 224 963 385 844 FNMDPYNPLNFKAPFGTSGENSKGCRDSKTPSESIVAISSC LLSCXCULGSGOBSEOPDSVGDVLSGGRHTHVKRKVFFL VTSYTISGDEDKKGPWEFFARDOCRFOKKIOPETDALGYCL EHREMPNILGOTCRFGINVLKOC EHREMPNILGOTCRFGINVLKOC GIFLKGKEIVK 225 964 3 166 AASTAYSFFOTVENNAPKVVNRPGHTQSADWSSFGGLMGRFI GIFLKGKEIVK GIFLKGKEIVK GIFLKGKEIVK GIFLKGKEIVK GIFLKGKEIVK GIFLKGKEIVK GIFLKGKEIVK LILLIVILIVYCRKKRGILDSDVADSSIITGSGPEVGIRGSLARSH HILLITIGPDLSTTTTTYQGSLCPRODGPSPKFQLNIGHLSI G BNYQCMAIDHTRILIFYDDWSDVARGSLITERGFLTDWSTINLIGUT HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSLAS G LTYNEMICKTIESRESSNQLKCTQTKAGGLITDENTINLIGUT HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSLAS G LTYNEMICKTIESRESSNQLKCTQTKAGGLITDENTINLIGUT HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSLAS G LTYNEMICKTIESRESSNQLKCTQTKAGGLITDENTINLIGUT HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSKAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSKAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSKAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGPEVGIRGSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGREATSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGREATSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGREATSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGREATSCAT G HNYKAILAUPTARKEGLIDSDVADSSIITGSGREATSCAT G HNYKAILAUPTARKEGLIDSDVADATARTUKTURG					
SSSSABGCDESTGVARPTVSSGPVPERQNGSSSSGPERSISS KKPTHOMBUSBERTVSTGGEQGPASSGGPRETISSGS LGSBGGGPVSSPHELERDVGGGPGPTSGSGGPGRTSGSSTAGEN LGSBGGGPVSSPHELERDVGGLGPPGSSVGPGRSISGS AGRTVSNSVPGRPVSSLGPQGTVSSSGPTIPEKT 221 950 230 420 VVAVTERLCENGVSYLRECVCSACRIGTECAGEVARAANNSI TVGIAFNARIGGMSNGLTWM 222 961 311 490 GAPPPFVTLKSDDTDSNFDEFKNISWVSSSPCQLSPSGFSC LPFVGFSVSKALGIL 223 962 2 422 ELPFVGFSVSKALGIL 224 963 385 844 ENDERLINGSPDIGDTGLOVEFLMSLLDPDELRGEAG LTTWENGLHHIAN/DPETDRAPRGLSSEARASLAPHHERIT RCHIPPAQQLD TRUBPHAQCLD TVEYLIGGBERKGPWEEFARDCCECKRIGETEDAIGYCL/CHECKRIGHT STREETWARP SFRENCH	219	958	11	752	
KKPITNDENPSERTVSGTGGPGGPASSGGPGRF1SGSVSGF LGSRGDGPVSSPHELERPSGLIGPGSUSGGPGRF1SGSVSGFGRS1SGGS AGRIVSNSVPGRPVSSLLEPGGYTVSSSGPTIFPKCT 220 959 439 582 REGGTTFRYHLCISDFNILKICCRVNGEVVGSSNTNGWFKT DLINA 221 960 230 420 VVAVITHULGENGVSYLRKCVCSACRHGTCAGEVAAAANNS TVGIAFMARIGGMGNGLTMM 222 961 311 490 GAPPFPVFILKSDDDTSNFDEFKNSWVSSSPCQLSPSGFSG ELFVGGPSSKGALGL 223 962 2 422 FVERLAHLBACAPRRKVALLLEVCRUVYAGLARGENGDPLK DAFLEALTEELINSPIC IDDTQLDVEFLMSLLDPDELRGEAG LITWGGALHHLAHVQPETDRAPRGLSSEARASHUGNHERRTT RKDHFRAQCLD 10 18 18 18 18 18 18 18 18 18 18 18 18 18					
LIGSBRGPGP.VSSPHRLER.PVSGLGPPGRSVSGPGRSISGS: AGRIVENSVER.PVSSLDPGPVSSSPGTIPKET	i	1	i	1	
AGRIVSNSVPGRPVSSLGPGGYVSSSGPTIFFCT		i	i		
220 959 439 582			ļ		
DILAW DILAW TVOIAFMARIGHMONLTWM TVOIAFMARIGHMONLTWM TVOIAFMARIGHMONLTWM 222 961 311 490 GAPPPPUPULSDDDTSHPDEPKINSWVSSSPQLLSPSGFSG ELPFVGFSYSKALGIL 233 962 2 422 FVERLARIERAGAPREKVALLLEVCRDVYAGLARGENQDFLK DAFLEALTEELINSPOIDTOILDVEFLMELLDDFDELRGEAG LITTWEGALHHLAHYOPETDRAPRGISSEARASHUMHERRETI RKDHERAQLD 224 963 385 844 FWWDFYNPLINFRAPFGTSGENEKGCDISKTPSESIVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGENSGEMESTVAISEG, LISCKYOLLGSGENEFORGHVARGENTONACHTON VITYYISGEDENKGPMESFANDGGEFORATIOFETDAICYYCL ERREEMBRINLGOTOFEGIANVIKOU GERGAGOTTOFTHONTONACHT					
221 960 230	220	959	439	582	
TVOLAFMAKIGGMANQLTWM					
222 961 311 490 GAPPFVPTLKSDDDTSNFDEPEKNISMVSSBFCLLSFSGFSK	221	960	230	420	
223 962 2 422 ELPYGESYSKALGIL DAFLPALTEELIWSPDIGDTQLDVEFLMELLDPDELRGEAG LTTWFGALHHLAYOFETDAEPRGISEARASHQMERKT ROHHFRAQGLD LTGWFGALHHLAYOFETDAEPRGISEARASHQMERKTI ROHHFRAQGLD LIGGCYCLLGGGGBSGCPDSYQEDVLSGGRHTHYKRKYTFLI VTEYYISGDEDRKGPWEFFARDOCRFCKRIGPETDAIGYCL ERREMPRILGOTCFGLINVLKQC ERREMPRILGOTCFGLINVLKQC 225 964 3 166 AASTAYSFFGTVENNAPKVVNRFGHTGSADWSFFGGLMGFF GIFLKGKEIVK 226 965 1 118 GFVFLPGFMSYGLDFSLGVAHTASFGADWSFFGLMGFFL 227 966 1 390 GESCGFDTLDTHATSGFDUALYVGLIAVAVC LILLUVLLIVYCRKKEGLDSDVADSSILTGGPPDVSTKSSKA PHILITIOPDLSTTTTTYGGLCPRQDGPSFKFQLTNGHLIG G 228 967 1 777 LYMEDMICWIESRESSNQLKCIQITKAGGLTDEWTINLIQ HNYQQMAIDWITRILYFVDUKORTFVCNSNGSVCVTLIDLI HNYKAIAVDPTAGKLEFTDVGNVAVERGCDMGMRTETILIQ TEOPALALDLUNKLYWVNULLDEVVOVYOCKNRHENIQU TEOPALALDLUNKLYWVNULLDEVVOVYOCKNRHENIQU					
223 962 2	222	961	311	490	
DAFLEALTERLIWSPDIGDTQLDVEFLMELLDPDELRGRAGS LTTWRQALHHIAHVQPETDRAPRGLSSEARASLHQWHERFITI RKDHPRAQQLD 224 963 385 844 FWDDYNFHAPFGTGENEKGCRDSKTPSESIVAISCI LLSCKVQLLGSGBSECPDSVQRDVLSGGRHTHVKRKYTFLI VTEYYIGGBEDKGPWEFFARDGCRFQKRIGPETDAIGYCL/ ERREMPRINLGGTCFSGLIVLKQC 225 964 3 166 AASTAYSFFGTVENNAPKVVNRPGHTGSADWSFFGLMGEFI GIFLKGKEIVK 226 965 1 118 GFVFLDFOFWSVLDFSLFGMEHVYGIPEHADNLRLKYTE 227 966 1 390 GSECGGTDLTPRICTSDLCVHTASOFBUVLYVGLLAVAVCI LLLUVLILVYCRKKEGLDSDVADSSILTSGPDPVSIKSSKAI PHLLTIQPLSTTTTYQGSLCPRQDGPSFKFQLTNGHLS; G 228 967 1 777 LYWEDWICKERSSNQLKCIQITKAGGLTDEWTINLDQ HNNCQMAIDWITKHIYPVDVLYDVSTVCSNGSVCVTLIDLI HNNCALAUDPIAGKLEFTDYGNVAVERCOMMORNETIILD TSCPAHALAUDLWIKLYVFVDVLYDVDVAVDVGCKRRHENIQG					
LITWINGALHHIAHYOPETDRAPPGILSEARAS.LIQWHERETI	223	962	2	422	
RKOHPRAÇALD					
224 963 385 844	1	1		1	
LISCENVOLIGEGOBSECPDSVQDDVLSGGRHTHVERKYVTPLI VTEYVISGGDBRKGDPEFRADGCIGCHTGKRIQETEDAIGYCL/ EHRERMPNRLQGTCFKGLNVLKQC 225 964 3 166 AASTAYSFFGTYLENNAPKVVNIRGHTQADWSSFGGLMGRFI GIFLKGKEIVK 226 965 1 118 GFVFLFGFMSVGLDFSLFGMEHVVGIPEHADNLRLKVIE 227 966 1 390 GSSCQGTDLDTWRNTSDLCVHTASGPBDVALYVGLLAVAVCI LILLAVLILVYCRKKEGLDSDVADSSILTSGFPCFVSIKPSKAI PHILLTIQPDLSTTTTTYGGSLCPRQDGPSFKFGLTNGHLLSI G 228 967 1 777 LYYMENDICWIESRESSNQLKCIQITKAGGLTDEWTINILQI HNNQQMAIDWITRILYFVDLWGDRIFVCRSNGSVCVT.IDLI HNNKAIAVDPIAGKLEFTDYGNVAKVERCDMEDMRNTETIIC TECPAJALALDLVINKLYWVDLVLDIVVOVDYGCKRHENIQU	204	262	305	044	
VTEYYISGDEDRKGPMEFFARDOCRFQKKIQETEDAIGYCL/ EHREMENNILGOTERGINVIKQC 255 964 3 166 AASTAYSFRSTVENNAPKVNNRPGHTQSADWGSFGGLMGRFi GIFLKGKEIVK 226 965 1 118 GFVFLPGFMSVGLDFSLPGMKSHVYGIPEHADNILKKYTE 227 966 1 390 GSECQTFULDTRICTSDLCVHTASGPEDVALYVGLTAVAVCI LILLIVLILVYCRKKRGLDSDVADSSILTSGFQEVSIKRSFAN FILLITIGPDISTTTTTYQGSLCFRQDGPSPKFQLNGHLLSI G 228 967 1 777 LIYMEDMICWIESRESSNQLKCIQITKAGGLTDEWTINLIQ HNNQQMAIDWITKHLFYDDWGDRIFVCNSNGSVCVTLIDLI HNNKALAUDPIAGKLEFTDYGNVAKVERCDMGMNRTETID TSCPARALADLUNKLYVWOLLIDIVYVOVDYGCKRHRHID TSCPARALADLUNKLYVWOLLIDIVYVOVDYGCKRHRHID	224	903	303	044	
EHRERMYNLIGGTCFKGLNYLKQC AASTAYSFGTVENNAPKVVNRPGHTQSADWSSFGGLWGPFI GIFLKGKEIVK. 226 965 1 118 GFVFLPGPHSYGLDFSLPGMEHVYGIPEHADNLRLKVTE 227 966 1 390 GSECGTDLDTRINCTSDLCVHTASGPBDVALYVGLLVAVACÚ LLLLVLLIVYCRKKEGLDSDVADSSILTSGFQPVSIKPSKAI PHILLIGPDLSTTTTTYGGLCPRQDGPSPKFQLTNGHLSI G 228 967 1 777 LIYMEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQI HNNCALAVDPIAGKLEFTDYGNVAKVERCDMEDWRRTEILDI TEQPALALALDLVINKLYWFULLDIVYVVDVLADVVOYDCGKRHEIDI TEQPALALALDLVINKLYWFULLDIVYVDVDYCGKRHEIDI TEQPALALALDLVINKLYWFULLDIVYVDVDYDCGKRHEIDI TEQPALALALDLVINKLYWFULLDIVYVDVDYDCGKRHEIDI			i		
225 964 3 166		1			
GIFLEGGEIVE 226 965 1 118 GFVFLDFDMSVLDTSLPGMEHVYGIPEHADNLRLKVTE 227 966 1 390 GESCQGTDLDTRNCTSDLCVHTASGFEDVALYVGLTAVAVCI LLLLVLLLVYCRKEGGLDSDVADASSILTSGFQCVSIRESKAI PHILITOPDLSTTTTTYGGSLCPRODES PERFOLTNGHLLSI G 228 967 1 777 LIYNEDMICHIESRESSNQLKCIQITRAGGLTDEWTINIIQ HNVQQMAIDWLTRNLYFVDHVGDCIFTVCNSNGSVCVTLIDLI HNVRAIAVDPIAGKLFFTDYGNVAKVERCDMDGWRTFRIITO TECPAALALDLVNRLVYWVDLLDLYVVDVDYQCKRHEHIOL TECPAALALDLVNRLVYWVDLLDLYVVVDVDQCKRHEHIOL	225	964	-	166	
226 965 1 118 GEVFLOGENSVALDFSLEGMENVYGIPERADNIKIKVTE	223	304	3	100	
227 966 1 390 GSECGGTELDTRINTSDLCWHITASGPEDVALYVGLTAVAUC LLLUVLILVYCKKEGLDSDVADSSILTSGFQPVSIKPSKAL PHILITICPPLSTTITTYGGSLCPRGDGFSFKFQLTNGHLLSI G	226	965	1	118	
LILLUVILIVYCRKEGLOSOVADSSILTGGGPCPVSIKSSKAI PHILITIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLISI g 128 967 1 777 LIYMEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQ HNNQQMAIDWITRHIYFVDHVGDRIFVCHSNGSVCVTLIDLI HNNKAIAVDPIAGKLEFTDYGNVAKVERCDMCMNRTETIUD TEQPAALALDLVNKLYVAVOLLIDVYVVOYCAKRHENIQ					
PHLLTIQPDLSTTTTTYQGSLCPRQDGPSPKFQLTNGHLLSI G 228 967 1 777 LIYMEDMICWIESRESSNQLKCIQITKAGGLTDEWTINILQI HNVQQMAIDWLTRNLYFVDRYGGRIFVCNSNGSSVCVTLIDLI HNPKAIAUDPIAGKLFFTDYGNVAKVERCDMDGMNTRIIID TEQPAALADLUNNLYFWDLYLDVGVVDVDYQCKRRHAVIQI	22/	300	1*	330	
G 1 777 LIYNEDMICHIESRESSNOLKCIQITKAGGLTDEWTINILQI HAVQQMAIDWLTRILYFVDHVGDRIFVCRSNGSVCVTLIDLI HNEKAIAVDPIAGKLEFTDYGNVAKVERCDMDGMRTETIID TEOPAALALDLVINKLYWVDLILDIVVVOVYOCKRIHEHIYQ		1	1	l .	
228 967 1 777 LIYNEDMICWIESRESSNOLKCIQITKAGGLTDEWTINILQI HNVQQMAIDWITRNIYFVDEWGRIFVCUSSNOSVCYTIDLI HNYKAIAVDPIAGKLFFTDYSNVAKVERCOMDGANRIFUT TXQPAALALDLVNKLYYWVDLYLDYVGVVDYQKRRHAVIQI		1			
HNVQQMAIDMLTRNLYFVDBVQDRIFVCNSNGSVCVTLIDLI HNFKAIAVDFIAGKLFFTDYGNVAKVBECOMDGMRHTRIF TEQPAALALDLUNKLVYWVDLYLDFVGVVDYQGKRRHAVIQ	228	967	1	777	
HNPKALAVDPLAGKLFFTDYGNVAKVERCDMDGMNRTRLID: TEQPAALALDLVNKLVYWVDLYLDYVGVVDYQGKNRHAVIQO	220	1 50 /	1	1	
TEQPAALALDLVNKLVYWVDLYLDYVGVVDYQGKNRHAVIQO		1	1	l	HNPKATAVDPIAGKLFFTDYGNVAKVERCDMDGMNRTRIIDSK
		1	1	1	
	1	1	1	1	OVRHLYGITVFEDYLYATNSDSYNIVRISRFNGTDIHSLIKIE
NAWGIRIYOKRTOPTVRSHACEVDPYGMPGGCSHICLLSSS:		1	1		NAWGIRIYOKRTOPTVRSHACEVDPYGMPGGCSHICLLSSSYT
K K	1	1	1		
	229	968	13	488	SSGNPOPGDSSGGGAGGGLPSPGEQELSRRLORLYPAVNOOET
	223	1 -30	"	1	PLPRSWSPKDKYNYIGLSOGNLRVHYKGHGKNHKDAASVRATH
		1			PIPAACGIYYFEVKIVSKGRDGYMGIGLSAOGVNMNRLPGWDK
HSYGYHGDDGHSFCSSGTGOPYGPTFTTGDVI	1				
100000000000000000000000000000000000000					

one	000	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	Amino acid segment containing signal peptide (A = Atanine,
ID		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	Sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	1-possible inicieotide insertion)
		of amino	of amino	
		acid	acid	
1	1	sequence	sequence	
230	969	1	228	FFFFKMGSRSVTOAGVOWCDVSSLQAPPPRFTLFCLSLPSSWD
250	,,,,	-		YRCVPPCPANFFVFLVETGFHRVSOYGLDLLTS
231	970	2	119	OLSLARGKVFLCALSFVYFAKALAEGYLKSTITQIERRVDIPS
231	310	-	-13	SLVGVIDGSFEIGNLLVITFVSYFGAKLHRPKIIGAGCVIMGV
		1	1	GTILIAMPOFFMEOYKYERYSPSSNSTLSISPCLLESSSOLPV
1	1	1	1	SVMEKSKSKISNECEVDTSSSMWIYVFLGNLLRGIGETPIQPL
1		1		GIAYLDDFASEDNAAFYIGCVOTVAIIGPIFGFLLGSLCAKLY
1		}	l	
l		1		VDIGFVNL/DHF*VSAQLGTRKGVLVCLVFCLLCQSIGRRLSE
				EHHHSDREKG
232	971	221	1068	QPAGRVEAFCKFHMWAEGMTSLMKAALDLTYPITSMFSGAGFN
ĺ	1	1	1	SSIFSVFKDQQIEDLWIPYFAITTDITASAMRVHTDGSLWRYV
i		1	1	RASMSLSGYMPPLCDPKDGHLLMDGGYINNLPADVARSMGAKV
		1		VIAIDVGSRDETDLTNYGDALSGWWLLWKRWNPLATKVKVLNM
1	1	i		AEIQTRLAYVCCVRQLEVVKSSDYCEYLRPPIDSYSTLDFGKF
]		Į.	l	NEICEVGYQHGRTVFDIWGRSGVLEKMLRDQQGPSKKPASAVL
1		1	1	TCPNASFTDLAEIVSRIEPAKPAM
233	972	133	635	LWVIMFVSYLILTLLHVQTAVLARPGGESIGCDDYLGSDKVVD
	1	1	1	KCGVCGGDNTGCQVVSGVFKHALTSLGYHRVVEIPEGATKINI
	1		1	TEMYKSNNYLALRSRSGRSIINGNWAIDRPGKYEGGGTMFTYK
1				RPNEISSTAGESFLAEGPTNEILDVYVSLDVSGLFFGF
234	973	1	420	ISGGTRSAGPLRRNYNFIAAVVEKVAPSVVHVQLWGRNQQWIE
		_		VVLONGARYEAVVKDIDLKLDLAVIKIESNAELPVLMLGRSSD
1				LRAGEFVVALGSPFSLONTATAGIVSTKORGGKELGMKDSDMD
		1		YVQIDATINYG
235	974	2	860	PRVRELKEILDRKGHFSENETRWIIQSLASAIAYLHNNDIVHR
233	1 3/2	1"	1 500	DLKLENIMVKSSLIDDNNEINLNIKVTDFGLAVKKOSRSEAML
1		1	1	OATCGTPIYMAPEVISAHDYSQQCDIWSIGVVMYMLLRGEPPF
1	j	1	1	LASSEEKLFELIRKGELHFENAVWNSISDCAKSVLKQLMKVDP
1		1		AHRITAKELLDNOWLTGNKLSSVRPTNVLEMMKEWKNNPESVE
1	1	1	1	ENTTEEKNKPSTEEKLKSYOPWGNVPETNYTSDEEEEKOVGRI
1	1	1	1	IAAFLPSVKYPHHTWNIFLQICLFVVSL
			100	
236	975	1	467	LSISVSDVSLSDEGQYTCSLFTMPVKTSKAYLTVLGVPEKPQI
	1	1	1	SGFSSPVMEGDLMQLTCKTSGSKPAADIRWFKNDKEIKDVKYL
1	1	j	1	KEEDANRKTFTVSSTLDFRVDRSDDGVAVICRVDHESLNATPQ
	1			VAMQVLEMHYTPSVKIIPSTPFPQEG
237	976	3	417	YNQKVDLFSLGIIFFEMSYHPMVTASERIFVLNQLRDPTSPKF
	1	1	1	PEDFDDGEHAKQKSVISWLLNHDPAKRPTATELLKSELLPPPQ
1	1	1	1	MEESELHEVLHHTLTNVDGKAYRTIDGPRSFRQRISPAIA\YT
			1	YD\SDILKGN
	-			1

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted cnd nucleotide location corresponding to first amino acid residue of amino acid sequence 740	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Trytophan, Y=Tyrosine, X=Unknown, **Stop Codon, /*possible nucleotide deletion, \ -possible nucleotide insertion) DODYKYDSTSDDSNFLNPPRGWDHTAFGHRTFETKDQPEYDST
				DGRGDWSLMSVCSVTCONGNORFTRSGGYACTATESRTCDEPN CPGIEDTFFATATEVSLLAGSEEPNARKLFSVDTGGCEBWSC KSEFLKKYMHKVMNDLPSCPCSYPTEVAYSTADIFDRIKRKDF RWKDASGEKEKLETKEPTARYCIRSMISLESTTLAAQHCCYGD NWQLITRGKGAGTPHLISTFSAELHKYDV
239	978	2	612	ESEENGESAMDSTYAKEGTNYPLVAAGPCDDEGITYSTGAKEE DEGGEDVYTSTGGANE IGHSTGTGLGESSEGVLICESSEGDS QIGTYVEHVEARAGAAIMNANENNYDSMSGTEKGSKOTDICGS AKGIVESSYTSAVSKDEVTPYPGGCEPMTSAASDQSDSQLE KVEDTTISTGLYGGSYDVLYSGGYBECEVAH
240	979	79	361	VCIICLIFSYYSFDSALQSAKSSLGGNDELSATFLEMKGHFYM YAGSLLLKMGQHGNNVQWRALSELAALCYLIAFQVSLPLGAID ISRSLDVF
241	980	2	681	ORFSGEKPOVLTPSPRKGKLNRKYRSHDOMICKCLSLSISYS ATIGGLTTIIGTSTSLIFLEHPNNQYPASEVVNFGTWFLFSFP ISLIMLVYSWFWHMLFLGCNFKETCSLSKKKKTKREGLSEKR IQEBYBKLGDISYEMVTGFFFILMTVLMFTREFGFVFOWDSF FEKKGYRTDATVSVFLGFLLFLIPAKXPCFGKKNDGENQEHSL GTEPITTWIDF
242	981	1	491	LEREGDKGTPULRGFSSYGGSWSRRWPPFLLITCLFITGTSVS PVALDPCSAYISLMEPWRNTDHQLDESQGPPLCDNHVNGEWYH FTGMAGDAMPTFCIPENHCGTHAPVWLNGSHPLEGDGIVQRQA CASFMGNCCLWNTTVEVKACPGGYYVYRLTKPSV
243	982	1	983	CGETMSDIRHSLIEPDALSAAKKULYHIDIYPSSQLQSAPLPI VUKGPVELLEEFVEQVYPKERSAQPKKINSLQELQLLEIKVYT GEQTKDSVRQIIFSSLFSPGGNKADDGRWSLIGKLVSMAVAVC RIPVLSCAASMLQRTPVVYCVRLAKALVDDYCCLVPGSIQTUK GIPSASPRCQFITSVRIYDLSSDDLIPPDALLENIYTIK EDPELLLITFINTPIAMLDIGFLEIPPLVGLIEWCVKAPLAY KRKKKPPLSNGHVSNKYTKDPGVGNDRDSHLLYSKLHLSVLQV LMTLQLHLTEKNLYGPGADPLRPHG
244	983	32	362	SACSTGPELPGRATRSLTRPANQKGCDGDRLYYDGCAMIANNG SVFAQGSQFSLDDVEVLTATLDLEDVRSYRAEISSRNLAVSAP VDTCVGCSSKTWKVAPFVRAWWRP
245	984	158	398	APLSRLCFPQVLVNEGGGFDRASGSFVAPVRGVYSFRFHVVKV YNRQTVQVTSALAPIPGSGGWGGRRGAQLTSGWTLH
246	985	2	707	PRIIGAEDDDFGTEHEQINGCSCFGGIELLKSPRAHLAVFLR HVVSQFDRATLLCYLYSDLYKHTNSKETRRIFLEFHGFFLDRS AHLKVSVPDEMSADLEKREPELIPEDLHRHYIGTMQBRWHEV QRHLEDFRQKRSMGLTLAESSLIFKLDAERDKDRLTLEKERTCA EQIVAKIESVLMTQAVEEDKSTMQVVILMYMKHLGVKVKEP RNLEHKRGRIGFLPKIKQSM

OFO I	000	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
	SEQ ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
	NO:	nucleotide	nucleotide	
NO:	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	,
		of amino	of amino	
		acid	acid	,
		sequence	sequence	
247	986	18	441	SPGTGRGFGPTSFVCLPTPQCPFIDDFILALHRKIKNEPVVFP
1 1			l	EGPEISEELKDLILKMLDKNPETRIGVPDIKLHPWVTKNGEEP
1		1	ĺ	LPSEEEHCSVVEVTEEEVKNSVRLIPSWTTVILVKSMLRKRSF
			1	GNPFEPQARMA
248	987	3	732	HASGIKIDKTSDGPKLFLTEEDQKKLHDFEEQCVEMYFNEKDD
		İ		KFHSGSEERIRVTFERVEQMCIQIKEVGDRVNYIKRSLQSLDS
1		l		QIGHLQDLSALTVDTLKTLTAQKASEASKVHNEITRELSISKH
} }				LAQNLIDDGPVRPSVWKKHGVVNTLSSSLPQGDLESNNPFHCN
		l		ILMKDDKDPQCNIFGQDLPAVPQRKEFNFPEAGSSSGALFPSA
				VSPPELRQRLHGVELLKIFNKKQKKRA
249	988	3	468	CCRWIDCFALYDQQEELVRHIEKVHIDQRKGEDFTCFWAGCPR
				RYKPFNARYKLLIHMRVHSGEKPNKCTFEGCEKAFSRLENLKI
1 1			1	HLRSHTGEKPYLCQHPGCQKAFSNSSDRAKHQRTHLDTKPYAC
1		1	Į	QIPGCTKRYTDPSSLRKHVKAHSSK
250	989	356	553	LPLLWTLSDFGGTMDQSGMEIPVTLIIKAPNQKYSDQTISCFL
				NWTVGKLKTHLSNVYPSKPVSV
251	990	1	895	AGTRMCVVAAAEELVCGA\RGLWMRRTRRPRFVLMNKMDDLNL
1	į.	1		HYRFLNWRRRIREIREVRAFRYQERFKHILVDGDTLSYHGNSG
			1	EVGCYVASRPLTKDSNYFEVSIVDSGVRGTIAVGLVPQYYSLD
	1	1		HQPGWLPDSVAYHADDGKLYNGRAKGRQFGSKCNSGDRIGCGI
1	1	l .	1	EPVSFDVQTAQIFFTKNGKRVGSTIMPMSPDGLFPAVGMHSLG
	1	Į.	1	EEVRLHLNAELGREDDSVMMVDSYEDEWGRLHDVRVCGTLLEY
		1		LGKGKSIVDVGLAQARHPLSTRSHYFEVEIVDPGEKCYIA
252	991	51	674	QQAEEHLAAYSVSDSDSGKDFSMECCRRATPGTLLLFLAFLLL
	1			SSRTARSEEDRDGLWDAWGPWSECSRTCGGGASYSLRRCLSSK
		1	1	SCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVKHHGQFYE
	1	ļ		WLPVSNDPDNPCSLKCQAKGTTLVVELAPKVLDGTRCYTESLD
	1	1		MCISGLCQVSADLFSFNLSRGFQCLCVNGLHSLTL
253	992	2	554	RLLRQELVVLCHLHHPSLISLLAAGIRPRMLVMELASKGSLDR
1	1	1	1	LLQQDKASLTRTLQHRIALHVADGLRYLHSAMIIYRDLKPHNV
1	l	1	1	LLFTLYPNAAIIAKIADYGIAQYCCRMGIKTSEGTPGFRAPEV
	1	1	1	ARGNVIYNQQADVYSFGLLLYDILTTGGRIVEGLKFPNEFDEL
1	1	1		EIQGKLPDPVKE
254	993	3	437	KASNSTHEFRIGLPEGWESEKKAVIPLGIGPPLTLICLGVLGG
	1	1	1	ILIYGRKGFOTAHFYLKDSPSPKVISTPPPPIFPISKEVGPIP
		1	1	IKHFPKHVANLHASRGFTEKFETLKKFYQEGQSCTVDLGITAN
i	1		1	SSNHPDNRHRNRSLI
				SFPDRTASLVLLSVPVGQAGMQQRGLAIVALAVCAALHASPAI
255	994	13	445	
255	994	3	445	
255	994	3	445	LPIASSCCTEVSHHISRRLLERVNMCRIQRADGDCDLAAVILH
255	994	3	445	

one	CDO.	Don't lead	Predicted	1 1 14 14 14 14 14 14 14 14 14 14 14 14
SEQ	SEQ	Predicted beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N≈Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	ĺ	residue	residue	(-possible indefeotice insertion)
	1	of amino	of amino	
1		acid	acid	
		sequence	sequence	
256	995	2	737	FEOPGNPGDPRVRTPPPWGPHFFALIPSSPKEVPATPSSRRDP
				IAPTATLLSKKTPATLAPKEALIPPAMTVPSPKKTPAIPTPKE
			1	APATPSSKEASSPPAVTPSTYKGAPSPKELLIPPAVTSPSPKE
				APTPPAVTPPSPEKGPATPAPKGTPTSPPVTPSSLKDSPTSPA
			1	SVTCKMGATVPQASKGLPAKKGPTALKEVLVAPAPESTPIITA
1	1		1	PTRKGPOTKKSSATSPPICPDPSAKNGSKG
257	996	79	3	FFLKIOGLGWARWLTPVIPVLWEAE
258	997	307	475 .	AGFGYGLPISRLYAKYFOGDLNLYSLSGYGTDAIIYLKVSLEF
230	33,	130,	1 2,5	NSKILFLKPLLLL
259	998	26	622	WMRAPMLOKQOAPRMDTPPPEERLEKQNEKLNNQEEETEFKEL
233	996	1 20	0	DGLREALANLRGLSEEERSEKAMLRSRIEEQSQLICILKRRSD
	ł	1	1	EALERCOILELLNAELEEKMMOEAEKLKAQGEYSRKLEERFMT
İ			i	LAANHELMLRFKDEYKSENIKLREENEKLRLENNSLFSOALKD
	1	l	l .	EEAKVLQLTVRCEALTGELETLKERC
260	999		241	DPGASHASVQVQVLKEQLFAGRMPSPFRSCALMGMCGSRSADN
260	999	2	241	LSCPSPLNVMEPVSFFPLKSLGKGMIOHFRHIVSLV
261	1000	1	620	VTTTTHSVGRGHELOLLNEELRNIELECONIMOAHRLOKVTDO
261	1000	1 1	620	YGDIWTLHDGGFRNYNTSIDMORGKLDDIMEHPEKSDKDSSSA
1		l		YNTAESCRSTPLTVDRSPDSSLPRVINLTNKKNLRSTMAATQS
İ				SSGOSSKESTSTKAKTTEQGCSAESKEKVLEGSKLPDQEKAVS
	1	1	1	
				EHIPYLSPYHSSSYRYANIPAHARHYQSYMQLIQ
262	1001	3	420	VWGCLATVSTHKKIQGLPFGNCLPVSDGPFNNSTGIPFFYMTA
1	1			KDPVVADLMKNPMASLMLPESEGEFCRKNIVDPEDPRCVQLTL
1.	ļ	1		TGQMIAVSPEEVEFAKQAMFSRHPGMRKWPRQYEWFFMKMRIE
		1	L	HIMTÖKMÄG
263	1002	43	441	QAANMAVARVDAALPPGEGSVVNWSGQGLQKLGPNLPCEADIH
l	1.	1		TLILDKNQIIKLENLEKCKRLIQLSVANNRLVRMMGVAKLTLL
1	1		1	RVLNLPHNSIGCVEGLKELVHLEWLNLAGNNLIAMEQINSCTA
				LQHL
264	1003	3	834	FRAAVGAVPEGAWKDTAQLHKSEEAKRVLRYYLFQGQRYIWIE
1				TQQAFYQVSLLDHGRSCDDVHRSRHGLSLQDQMERKAIYGPNV
1		1	1	ISIPVKSYPQLLVDEAFSIALWLADHYYWYALCIFLISSISIC
1	1	1 .	1	LSLYKTRKQSQTLRDMVKLSMRVCVCRPGGEEEWVDSSELVPG
		1		DCLVLSQEGGLMPCDAALVAGECMVNDSSLTGESIPVLKTALP
1		1		EGLGPYCAETHRRHTLFCGTLILHARAYVGPHVLAVVTRTGMS
1		1		REAGLERDPGSAPLKRWS
265	1004	2	670	FVGGGLHLHLCLLLCFMLPEDAAMAVLTASNHVSNVTVNYNIT
1	i			VERMNRMQGLRVSTVPAVLSPNATLALTAGVLVDSAVEVAFLW
				TFGDGEQALHQFQPPYNESFPVPDPSVAQVLVEHNVTHTYAAP
1		1		GEYVLTVLASNAFENRTQQVLIRSGRVPIVSLECVSCKAQAVY
1	1	1	1	EVSRSSYVYLEGRCLNCSSGSKRGRWAARTFSNKTLVLDETTT
1		1	1	STGSASM
				

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		to first	to first	
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		residue	residue	\=possible nucleotide insertion)
1		of amino	of amino	
	1	acid	acid ·	
	1	sequence	sequence	'
266	1005	2	1093	PEFLGRLFRGKAATLHVHSDQKPLHDGALGSQQNLVRMKEALR
				ASTMDVTVVLPSGLEKRSVLNGSHAMMDLLVELCLQNHLNPSH
	1	ŀ		HALEIRSSETQQPLSFKPNTLIGTLNVHTVFLKEKVPEEKVKP
	ŀ			GPPKVPEKSVRLVVNYLRTQKAVVRVSPEVPLQNILPVICAKC
1			1	EVSPEHVVLLRDNIAGEELELSKSLNELGIKELYAWDNRRETF
	1		1	RKSSLGNDETDKEKKKFLGFFKVNKRSNSKGCLTTPNSPSMHS
1			1	RSLTLGPSLSLGSISGVSVKSEMKKRRAPPPPGSGPPVQDKAS
		1	1	EKVSLGSQIDLQKKKRRAPAPPPPQPPPPSPLIPNRTEDKEEN
i	1			RKSTMVYCCASFPTQAKRF
267	1006	686	400	VQWHNLHSLQPLPAGFK*FLCFSLPSSWDYRCAPPLP/APFFF
1		1		YFLFLVELGFHHIG*AGLELTSTDLPASAS/ESAGITGMSHRA
	1	Į.		RPMDFFLLKIL
268	1007	1	453	GRRFRPPSDEEREPWEPWTQLRLSGHLKPLHYNLMLTAFMENF
	İ			TFSGEVNVEIACRNATRYVVLHASRVAVEKVQLAEDRAFGAVP
		1		VAGFFLYPQTQVLVVVLNRTLDAQRNYNLKIIYNALIENELLG
				FFRSSYVLHGERRFLGVTQFSP
269	1008	333	526	KELDPFYNS*RKIKYLRIYLTKEVKDLYKENYKTLLKEITDDT
		699	882	N/KKHIPSSWTGRINTVKMTIL VPHPLOAIHEOMNCKEYOEDLALRAONDAAARRPSEMFKVRLA
270	1009	699	882	OGRGLASLSSGIOSGVG
271	1010	16	148	RWNSLTCVVLTFLGHRLLKRFLVPKLRRFLKPOGHPRLLLWFK
2/1	1010	1.0	140	R
272	1011	1	659	YGEFVTYOGVAVTRSRKEGIAHNYKNETEWRANIDTVMAWFTE
2/2	1011	1	037	BDLDLVTLYFGEPDSTGHRYGPESPERREMVROVDRTVGYLRE
		ł	l	SIARNHLTDRLNLIITSDHGMTTVDKRAGDLVEFHKFPNFTFR
				DIBFELLDYGPNGMLLPKEGRLEKVYDALKDAHPKLHVYKKEA
				FPEAFHYANNPRVTPLLMYSDLGYVIHGVSRLLEAPPPGAPSP
1	ļ	l		GSGS
273	1012	146	413	RIPLLRLRSSTYRSKGFDVTVKHSHGSWTGFGGEDLATIPKGL
				NTYFLVNIATIFESKNFFLPGIKWNGILGLSYATLAKPSSSLE
	1			TFF
274	1013	3	251	IKSYSGPNGRSCQIWQRLRWGSRELLLGWKLSHSFSTCPFQFP
1			ł	DIVEFCEAMANAGKTVIVAALDGTFQRKVRRLIQVWSWD
275	1014	326	651	YCFCFDLLH*CIHRDVKPENILITKHSVIKLCDFGFARLLTGP
				SDYYTDYVATRWYRSPELPVGDTQY\GPPV\DVW\AIGCVSAE
1			1	\LLSGKCLWWPGKS/DMLDQLYLIRK
276	1015	224	435	RGWALDWIGADLSLHLQEEVETEVAWEECGHVLLSLCYSSQQG
		1		GLLVGVLRCAHLAPMDANGYSDPFVRL
277	1016	2	429	GGILAMEYAPGGTLAEFIQKRCNSLLEEETILHFFVQILLALH
1	1			HVHTHLILHRDLKTQNILLDKHRMVVKIGDFGISKILSSKSKA
1	1	1		YTVVGTPCYISPELCEGKPYNQKSDIWALGCVLYELASLKRAF
		<u></u>	L	EAANLPALVLKIM

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 262	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Trytophan, Y=Tyrosine, X=Unknown, **=Stop Codon, /*=possible nucleotide deletion, \
		_		SLVVAGLSAHREVAQFCFTHWGLALLYVSPERRGMVPSGGVWG D
279	1018	1	480	PRMTGSTHASAPSYGGSCRNNLFYREETYTPKAETDEMNEVET APIPEEHNFULGPRVMRPTKPKKTSAVNYMTQVVRCDTKMKDR CIGSTCNRYQCPAGCLMHKAKIFGSLFYESFASICRAAIHYGI LDDKGGLVDTTRNGKVPFFVKSERHGVQSLR
280	1019	271	792	VPONITCAFFCVP-CRFASTIPFWGUTLHLQHLONNVFLLQTLF GAVTLLANUAPWALINHISRIS,OMLINFILARCILIATIIFVPQ EMQTLRVVLATLGVGAASLGITCSTAQENELIPSIIRGRATGI TGNFANIGGALASLVMILSIYSRPLPWIIYGVFAILSGLVVLL LP
281	1020	2	679	TUJSRDHMKSAQOFFQLVGGSASECDTIPGRÇCKASCFFLLKQ PDDVLIYLNSFKSHFYNDDIFNFYAQAKAATGMTSEGEAFL LIQSEMKNDYIYLSWLARGYIMNKKPRLMWELYLKMETSGES FSLLQLIANDCYKMQOFYYSAKAFDVLERLDDNPEYWEGKRGA CVGIFQMILAGREPKETLREVLHLLRSTGNTQVEYMIRIMKKW AKENRYSILK
282	1021	3	359	LKVSDELVQQYQIKNQCLSAIASDAEQEPKIDPYAFVEGDEEF LFPDKKDRQNSEREAGKKHKVREITVHQRVTVDFVALHIVTLL LPQLSHFFCLRIERVIIYLEKPIFARLRWLMP
283	1022	3	538	GYPRNLPSSLEYLLISYNRIVKLAPEDLANUTALRYLDVGONC RRCHAINDROMECPHIPPOLIPDITSHLSRLESILVKDSSLSW LNASWFRGLGNLRYLDLSENFLYKCITKTKAFQGLTQLRKLNL SFNYCKRVSFAHLVSGPFFLRGSLGRPLKGAGTWHGNLSFPLH FEWGKT
284	1023	3	442	ILFAALINSS FDENTEASAGGGGSSIDA WYDSGAVVEGYKR MOSQESSAKRODEORKMKEQQAAEELREKQAAEQERLKQLEKE RLAAQBOKKQAEEAAKQAELKORQAEEAAKAAADAKAKAEAD AKAAEEAAKKAAADAKK
285	1024	1	119	AMEIVHEPROLERYMREAVKVSNDSPVLLDRFLNDAIEC
286	1025	67	227	MLSPGYDYGYVCVEFSLLEDAIGCMEANQVALYFGQMMLEGYI FLYMGREGFK
287	1026	2	1101	PEVERSGGGEDPASQOWARPEPTOPSKWERRVIARPVGSVVL KCVASGHEPPITTMMCDQALTEPRASPEKKWTLSLINLEP EDSGKYTCRVSNRAGAINATYKUDVIQRTESKPULTGTHEVE TUDPGGTTSPGCURVEDAUVELJOHKERVEGABGEHRSTIDV GQKFVULPTGDVWSRPDGSYLNKLLITRAFQDDAGMYICLGAN TMYSFRSAFLITULPDEKPGPGVASSSSKTSLEWFVJGIFA GAVFILGTLIMLCQAGKECTPAEAPPLGHEPFOFADRSG DKDLPSLAALSAGFGVGLCEEHGSPAPQHLLGPGPVAGPKLY FRLITYLJFHHTHTFEPPAN
288	1027	3	96	NFHFTGKCLFMSGLSEVQLTHMDDHTLPGY

D D D D D D D D D D	SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
NO: No: beachoids location of Nocisic Acids Acid					
of Nodeic Acids Ac				nucleotide	
Acids			location	location	
Acids Sponding sponding to first animo acid residue of amino acid residue residue of amino acid sequence sequen			corre-	согте-	
to first anino acid acid residue of amino acid sequence s			sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
acid	ricius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
acid			amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
			acid	acid	
acid acid			residue	residue	T POLICIO MATERIALION
			of amino	of amino	
1028 95			acid	acid	
BGAPILAGSYGCTPHSFPKROPHSHELLKENGFTQQVYHKYRRR CLSERRELIGTOGSQGEMMT 290 1029 1 359 PGSGGSAGGEDGSAYQGALLPREQFAAPLGERPVGTSYSATYPA YVSPDVAQSWTAGFPDGSVLALLPRGPTAPLGEPPGER ECVNCGALSTPLAREDGTGHTLCARGLYHEMA 291 1030 2 513 PDERHGALWWYSCGVLPVTVSRNEGDERNQVTTSYBTLTER TDAYLRMDPBAYGGLDAIRIPSSLVYREPIVLINKYCLS/AAP PLSYBSLDLELAVGV**SPLPTT*PGCHAALEAFPQDFSKLDS TOPLHGTPTLGYPRAQARELLGTYCVQGRCINKHKGLSAHF PLSYBSLDLELAVGV**SPLPTT*PGCHAALEAFPQDFSKLDS TOPLHGTPTLGYPRAQARELLGTYCVQGRCINKHKGLSAHF AFILGVVSGTTMSIGTFLVTQMYBGRGGSGLLFTDSFFSMAG HIPFMAPLLARSISETWWYAVAGLUVVAFLINGESPFAL CSHATKLGTASSYPSLDVVQLBTLINA MFILGVVSGTTMSIGTFLVTQMYBGRGGSGLLFTDSFFSMAG HIPFMAPLLARSISETWWYAVAGLUVVAFLINGESPFAL CSHATKLGTASSYPSLDVVQLBTLINA 293 1032 71 479 NAWGHKTEHYDPSYPHFSGGGGRGTATARGIMLDDDVTADE PUSALDVSVRAQVLBIAMADLQBEGLSYVFTSBDLSVVERITAD ENWALGRCVEKGTKQJFNNFRPHYTQALLSAFPRINDDD RERIKLSX* 294 1033 2 427 SATLERVINHDDTQARLATTLEDIVSGYSNIVLISLADSGKT VYHSPGADTREFTTDAIDTORGGGSVYLLSGPTMNFGHHG GHMEHSNNRMINLDVGGLUGGGTATATAGGRAPGAGAVAGGT SGGGPTLFALCOKPETTQALADFGARGAGAVAGGT GGGGWALARALLKUHFKVLLFDEPQARGAGAVAGTGAVAGGT SGGGPTLFALCOKPETAQRADNIGK VRRINW 295 1036 3 157 AVHYLERVLABEBTARFPGGISGGQQRVATARSLCMKPRIM 296 1037 1 217 APYDARNYAVPIGAATGTLLGLLAGYYBGN URKINW 297 1038 3 570 VPCLTADLDGTDELVDFFTVNASALNGTAGGDHEMAEDMTPL VQALVDHVPARDVDLAGFFTARALNGTAGGLENGARGAUFGLIGERKKRG KUKNNQOVTILDSBCKFTRANKGRYLGHLGGERTGLARGGE VALNTOLGELINISDTVCDTONVEALPALSVGGTIGRTKKG KVKNQOVTILDSBCKFTRANKGRYLGHLGGERTDLARGGE VALNTOLGELINISDTVCDTONVEALPALSVGGTIGGRKFTANG SPCGKEKKFTNANGKGKTCHALGAGGERTALAGGLAGHGETULAGFTURAGFT VARTOLDELINISDTVCDTONVEALPALSVGGTIGGRKFTANT SPCGKEKKFTTAGAGKGKFTRANKGRYLGHLGGERTDLARGGE VALNTOLGELINISDTVCDTONVEALPALSVGGTIGGRKFTANT SPCGKEKKFTTAGAGKGKTTARAGGAGCHPGAUSHGFTULAGGAGGE VARTOLGELINISDTVCDTONVEALPALSVGGTIGGRKFTANT SPCGKEKKFTTAGAGGKGKTRANKGGAGCHAGHGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA		ļ	sequence	sequence	
CLSERERIGIOGOSCHMIT	289	1028	95	407	SPRKRKTRHSTNPPLECHVGWVMDSRDHGPGTSSVSTSNASPS
290 1029		f	i	ł	EGAPLAGSYGCTPHSFPKFQHPSHELLKENGFTQQVYHKYRRR
VYSPDVAGSWTAGPPGSVLHGLFGRRPFFVSDFLEEPPGERR		1	1	ł	CLSERKRLGIGQSQEMNT
YVSPDVAGSWTAGPFDGSVLHGLFGRRPFFVSDFLEEFFDGERG	290	1029	1	359	PGSGGSAGGRDGSAYQGALLPREQFAAPLGRPVGTSYSATYPA
291 1030 2			ł	ł	YVSPDVAQSWTAGPFDGSVLHGLPGRRPTFVSDFLEEFPGEGR
TDAYLEMDPHAYGGLDAIR IPSSLVMRPDIJULYNKYCLS/AAD PLSYPBLOLPLANGV-SQLPT-PODSYLDS TOPLHGTPTLGYPRPAQAERLLGTYCUVGGRCINHKGLSTANH TOPLHGTPTLGYPRPAQAERLLGTYCUVGGRCINHKGLSTANH TOPLHGTPTLGYPRPAQAERLLGTYCUVGGRCINHKGLSTANH TIGNAVILMELYPLKTQLRGFGLAVVLAVAGLMSSHSLLAISSAA MFILGUVGGTTMSIGTELTVOMYEGRGROSKLIPTDSFFEMAG MIPPMARAFLLARS ERWYWYACIGLYVATFILTRGGEPFAL CSHATKLGTLASS YBSLDVVQLRTLNA PURMANURACVERGYPHYSGGGGRGAIARGLMLDPDVVIADE PVSALDVSVRAQVINIAMPDLQQELGLSYYFTSHDLSVUSHIAD EVMMYLGRCVERGYRQJINNPHPTYQALLSGATPRINPDDR RERIKLSX* RERIKLS				1	ECVNCGALSTPLWRRDGTGHYLCNACGLYHKMN
TDAYLEMDPHAYGGLDAIR IPSSLVMREDIUVLYNKYCLS/AAP PLSYPELDLELANGY** SPLPIT** PGCHAALEAFPODPSKLBS TOPLHOTPTIGYPRPAQARELLGTYCVVGGRCINKHGLSRAHP TOPLHOTPTIGYPRPAQARELLGTYCVVGGRCINKHGLSRAHP TALTGALVIVTGWANGTADYRNIPVSSMSTFFFFNAGGLTS TITLNARLMSIVPLKTQLRFGFILMVLAVAGLMFSHSLALFSAA MFILGVVGGTTMSIGTELVTQMYSGRGRGSKLFTLSFSFFSMAG MIPPHAAFLLARSIS BYWWYATGLGVYVATFLITFGGEPFAL CSHATKLGTASSYPSLDVVQLKTLNA PUSALDVSVRAQVINIAMPDLQQELGLSYYFTSHDLSVVGEILAD EVMMUNIGRCUREGTYPTFYTAGLASTREINDDOR RERIKLSX* RENTEVOLOPHETOARRAMTHEPTYTAGLASTREINDOR RERIKLSX* RENTEVAMPEDTQAREATTENFDOR RERIKLSX* RENTEVAMPEDTQAREATTENFDOR GHMSHOMENINEMINDPUGLUGKFIYTYIYALSIDFHLHYINDL MNKLIHTASVII WARYGRVSTABRARILFAQVRRQCTAHGRHAGFIHACYS ROPELAAKLMKDVTAEPYRRILLGGFRQARQAVAEIGGAVASGI SGSGPTLFALCOKPETAQRAMMGK SGSGPTLFALCOKPETAQRAMMGK GROWNLARRALLEHKPVLLFFEPELSSLDANLRRSMRRKIREL QKOPDITSLVYTHODSBAFAVSDTVLVMNKGHIMGIGSPQDLR VRRIMW POBTSAL STA	291	1030	2	513	PDHRHGALWWWYSCGVLPVTVSRNEGDERNOVLTLYLWIROEW
PLSYPELDLEAWGY**SPLPTT*PGCHAALEAFPODESKLDS TOPLHOTPTITGYPROAGRELIGTYCVOGRCINKHGSBANF TOPLHOTPTITGYPROAGRELIGTYCVOGRCINKHGSBANF TOPLHOTPTITGYPROAGRELIGTYCVOGRCINKHGSBANF YANTGALVITUNGKVAGHTADYSNIPVSSNSHTFFINGGILTS LYTIMAHABITUPLKTOLR PGILDAVLAVGINTSHIALISSAA MFILGWUSGITMSIGTFLYTOMYBGRGGSGLLFTDSFFSHAN MFILGWUSGITMSIGTFLYTOMYBGRGGSGLLFTDSFFSHAN MITHAPILARSIEWYWVYACTGLVYVAIFILTESFFSHAN MITHAPILARSIEWYWVYACTGLVYVAIFILTESFFSHAN MITHAPILARSIEWYWVYACTGLVYVAIFILTESFFSHAN EVANTALGRUSVARQVILAMBOLQQELGIGSYVFISHDSVVEHIAD EVMTWYLGRCVERGTKDGIFNPEHFYTQALLSATTERINFDDR PENKILSX* 294 1033 2 427 SATLERVINHDETQARRLMTLEDIVSGYSNVLISLADSGGT VYHSPGADDIREFTEDAIDDKDAGGGSVYLLSGFTHMYPHHEM GHMERSNNWHINLPWGPLVDGKPTYTTYIALSTDFFLHYINDL NNKLIHTASVII NNKLIHTASVII 295 1034 3 342 VLAYFGIRVSTABARATIPAOYRRQDCIAHGRHLAGFIHACYS RQPELAAKIMMCVILAFPYBRILDFRQARQAVAETGAVASGI SGSGPTLFALCORPETAQRVADNIGK RQPELAAKIMMCVILAFPYBRILDFRQARQAVAETGAVASGI QKQPOTTSLYVTHQSEAFAVSDTVLVMNKGHIMQIGSPQDLR VERINW 296 1037 1 217 APYDARNYFDYDNLANNGPSLQGHWFGVDSLGRDIFSRVLVGAQI 298 1037 1 217 APYDARNYFDYDNLANNGPSLQHWFGVDSLGRDIFSRVLVGAQI 299 1038 3 570 VFCLIADLGPTELDIVFFIVYASALNGIAGJDHEDMAEDMTPL VQALVOHVPARDVDLDGPFQMQISGLDYNSYVGVIGIGRIKKG KVKPNQOVTI LDSEGKYFNAKVGKVLCHHLGERETEDLÄARGG VAVATOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VAVATOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VAVATOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VAVATOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VAVATOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VATTOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VATTOLOFUNISTEDISTOVLCHHIGGERETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLÄNDEDFTVAMPTOVLHIJGERETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLÄNDEDFTVAMPTOVLHIJGERETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLERETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETETDLÄARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETTDLARGG VATTOLOFUNISTEDISTOVLCHTUNGHLAGETTDLARGG VATTOLOFUNISTEDISTOVLCHTUNGHLA	231	2030	. ~	5=5	
TOPLHOTPTIGYPRPAQARELLGTYCVVQGRCINHKGLSRAHP		i	1	1	
292 1031 1 595 YALIGALUTUTGWAGNIADYENLEVSSMSTFFFENAGILIS TEINAMURS IVENAGUR POFILAVILAVGIMENSHALISANA METLIGWAGITMS IGTELTYONYBERGEGSILLETDSFFENAG TEINAMURS IVENAGUR POFILAVILAVGIMENSHALISANA METLIGWAGITMS IGTELTYONYBERGEGSILLETDSFFENAGUR THE PROPERTY THE PR		l	t	ł	
TEINAMLMEIVPLKTQUERPGILMVLAVAGIMTSHBIALDESAB. MPILGWGGTMSI GTFLUTOMYSEGRGGSGLIMPSHBIALDESAB. MPILGWGGTMSI GTFLUTOMYSEGRGGSGLIMPSFBRIMGS MIPPMIAAPLLARS ENYWVYACTGLUYVAIFILTFGCEFPAL CSHATKLGTASS YESLDUVQLRTIMS PUSALDUSVRAQVIALMHOLQQELGISYYPTISHDLSVUSHIAD EVWMVLGRCVERGYROQ FINNPHEYTQALLSAFTRAINPDOR RERIKLSX* 294 1033 2 427 SATLERVINMPDETQARRIMTLEDIVSGYSNVLISLADSGGNT VYHSPGAPDIREFTDAIPBVDAQGGSVYLLSGPTMMYPEHGH GHMENNEMINLPVGPLVDGRPYTLYTALSIDFHLHYINDL NNKLIMTASVII 295 1034 3 342 VLAYPGIKVSTABARAILPAQVRRQDCIAHGEHLAGPTHACYS RQPELAAKLMKDVIAEPYRERLLPGGRQAQAVAEIGAVASGI SGGSPTLFALCONPETAQRVADMIGK RQPELAAKLMKDVIAEPYRERLLPGGRQAQAVAEIGAVASGI QQQRVALARAILLERVELLFDEFLSSILDANLRRSMRDKIREL QKOPDITSLYVTHODSBAFAYSDTVLVMNKCHIMQIGSPQDLW VRRIMW 297 1036 3 157 AVHILERVILAEHAHKPFGGISGGQQGVALARSLCMKPKIML POBETSAL 298 1037 1 21.7 APYDARNYPDVDALANGGSLGWPGVDSLGRDISGRVLVGQQI SLAAGVAVPTGAAGTATLALLAAGYYGGM 299 1038 3 570 VFCLIADLDPIDELVDFPIVYASALNGIAGLDHEMAEDMTPL VQALVDHUPARDVDLLDGPRQMGISGLDYNSYVGVIGIGRIKKG KVKPNQOVTIIDSEGKYTRANKGKYLGHLGERETBULABGGI IVALTUSLGERINISDTVCCDTQNVEALPALSVDEPTVSMFPCVNT SPFCGREGKEVTUSIGLIGHLGGRETDLABAGGI IVALTUSLGERINISDTVCCDTQNVEALPALSVDEPTVSMFPCVNT SPFCGREGKEVTUSIGLIGHLGERETBULABGGI IVALTUSLGERINISDTVCCDTQNVEALPALSVDEPTVSMFPCVNT SPFCGREGKEVTUSIG	202	1027		E06	
MFILGVUSGITMSIGTELTQMYEGRGGSSLLFTDSFFSMAG MIPPHIAPILLARS LEWYWYACIGUVYATFILTGCEPPAL CSHATKLGTASSYPELDVYQLETLINA 1032 71 479 MAKYGLKTEHYDPYEMPESGGGRQETATARGLMLDEDVYTADE EVANNYLGRCVERGTROQ IFRNPEHPYTQALLGATPRINDED EVANNYLGRCVERGTROQ IFRNPEHPYTQALLGATPRINDED ERRIKLSK* 294 1033 2 427 SATLERVINIPDETQARRLMTLEDIVSGYSINVLISALDSGGKT VYHSPGADDIREFTEDAIDPKDAGGGSVYLLSGPTMNPGHGG GHMEHSNNRMINLPVGDLVDGKPTYTTYTATSIDFHLHYINDL MNKLINTASVII 295 1034 3 342 VLAYPGIKVSTABRATLIPAQVRRQDCIAHGRHLAGFIHACYS RQDFLARAKLMKDVTAEPYRERLLPOFRQARGAVAEGTAVASGI SGSGPTLFALCDKPETAQRVADNIGK QKOPDTSIXVTHQSEAFAVSDTVLVMNKGHIMQIGSPQDLR VERINW 296 1035 2 279 GGQGVALARALLIKEVKULFDEPLSNLDANLRESWRBKIREL QKOPDTSIXVTHQSEAFAVSDTVLVMNKGHIMQIGSPQDLR VERINW 297 1036 3 157 AVHYLERVELABERAHKPPGQISGGQQRVATARSLCMKPKIML PDEPISAL 298 1037 1 217 APYDARNYFDYDNLANNGPSLQHWFGVDSIGRDIFSRVLVGQQI 299 1038 3 570 VFCLIADLDGTDELVDFPTVYRAALNGIAGLDHEDMAEDMTPL YQALVDHVPARDVDLDGFPGMQISGLDYNSYVGVIGIGRIKKG KVKNNGOVTILDISGKYRNAKUGKUCHHIGGER IPZDLARAGG VVALTDLDGTBLDTDFDLVTALANDIGSLDYNSYVGVIGIGRIKKG KVKNGOVTILDISGKYRNAKUGKUCHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYRNGVICHHIGGER IPZDLARAGG IVATTGLGERIKAG	232	1031	-	1 333	
MIPPMIAPLIARSIEWYWYACIGUVYAATILTEGCEPPAL CSHATKLGTASSYPEDUVQLETILTA		l	ł	}	
CSHATKLGTASSYPELDVYQLETINA		ł	1	l	
293 1032 71 479 NAKYGLKTEHYDRYPHWFSGGRORIALARGIMLDEDUVIALDE		1	1	ł	
PUSALDUSVRAQVIAIAMOLOĢELGISYVFISHILSVUEHIAD EWMWILGRCUERGYKNOJFNNPRHPYTQALISATPRINFDDR PERIKLSX* 294 1033 2 427 SATLERVINHODETQARRIANTLEDIVGGYSNVLISLADSGGKV VYHSPQAPDIREFTDAIPDKDAGGEVYLLSGPTMMAPGHGH GHMEHSNNRHINLPVGELVDGKFIYTLYTAISIDFHLHYINDL MNKLIMTASVII 295 1034 3 342 VLAYPGIKVSTABRATILPAQVRRQDCIAHGRHLAGFHACYS RQDFLARLIAMDVIAEPYRERLIDGFRQARQAVAEIGAVASGI SGGGPTLFALCOKPETAQRVADNIJGK QKOPDTSLYVTHOQSBAFAVSDTVLVMNKGHIMQIGSPQDLR VRRINW 296 1035 2 279 GQQGVALARALIKLEHVKVLLFDEPLSNLDANLRESMRDKIREL QKOPDTSLYVTHOQSBAFAVSDTVLVMNKGHIMQIGSPQDLR VRRINW 297 1036 3 157 AVHYLERVELABEHAHFPGQISGGQQRVAIARSLCMKPKIML PDETSAL 298 1037 1 217 APYDAENYPDDHLANGGSLGHWRYDSIJGRIFSKVLVGQQI SLANGWYAVPIGAAIGTLLGLLAGYYBGW TORTUNGANGGUENGKYDSIJGRIFSKVLVGQQI SLANGWYAVPIGAAIGTLLGLLAGYYBGW KVKNNQOVTILDISGEKYTRAKUGKYLGHLGGERIFSTLJARGGE KVKNNQOVTILDISGEKYTRAKUGKYLGHLGGERIFSTLJARGGE IVATTGLGEBINISDTVCDTQNVEALPALSVDEPTVSMFPCVNT SPFCGEGKKYVTSIG			L		
EWMWALGRCUERGTKDOIFNNPRHPYTOALLSATFRINPDDR PERIKLSK* 294 1033 2 427 SATLEVINHPDETOARRIANTLEDIUGUSGNVLISGLADSGGTK VYHBODADTREFTDAI PROKAGGGVVLLSGPHWAPGHGH GHMEHSNNRMINLPUGPLUDGKPIYTLYIALSIDFHLHYINDL NMKLHTASVII 295 1034 3 342 VLAVPGIKVSTABARAILPAOVERGDCIAHGRHLAGPIHACVS ROPELBALLMENDTLAEPURERLLPOPEQARQAVAEIGAVASGI GGGGRVALGARAILKDEPURCHLPOPEQARQAVAEIGAVASGI GGGGRVALGARAILKDEVLDEPLSHLDANLERSMEDKIREL OKOFDITSLIVIHDSBEAFAVSDTVLVMKKSHLENGIGSPODLE VERLINN 297 1036 3 157 AVHILERVRIABHAHKFPGQISGGQQOVATARSLCMKPKIML PORETSAL 298 1037 1 217 APTDBANYFDYDNLNNGPSLQMWFGVDSIGRDIFSRVLVGAQI SLAAGVFAVFIGAAIGTLLAGVYEGN 299 1038 3 570 VPCLIADLDFDIENDFPTVYASAIGTLGHEDMAEDMTPL VQALVDHVPADDVDLDGPFQMGISGLDYRSYVGVIGIGRIKKG KVKNGQVTIIDSGKFTRANKGVKLOHLIGERETEDLARAGGI IVALTGLGEBLNISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGKEKKVTSRQ	293	1032	1 1/1	479	
PERIKLSK* 294 1033 2 427 SATLERVIAMBDETQARRIAMTLEDIVSGYSNVLISLADSGGKT VYHSPGAPDIREFTDAIPDKDAQGGEVYLLSGPTWMYPGHGH GHMEHSNWRHINLPVGPLVDGKPITTLYIAISIDFHLHYINDL PRILIMTASVII 295 1034 3 342 VLAYPGIKVSTARARAILPAQYRRQDCIAHGRHLAGFHACYS RQPELARLIAMDVIAEPYRRRLLPGPRQARQAVAEIGAVASGI SGSGPTLPALCOKPSTAQRAVADMLGK QKOPDTSLYVTHQSSRAFAVSDTVLVMNKGHIMQIGSPQDLR VRRINW PORTSAL 296 1035 2 279 GQQQXVLARRAILLEHVRVLLFDEPLSNLDANLRRSMRDKIREL QKOPDTSLYVTHQSSRAFAVSDTVLVMNKGHIMQIGSPQDLR VRRINW PORTSAL 298 1037 1 217 AVHYLERVELABHAHKFPGQISGGQQQXVAIARSLCMKPKIML PORTSAL 299 1038 3 570 VPCLIADIDDTDELVDFFTVTASALMGIAGLDHEMAREDMTPL YQALVDHVPARDVDLDGFFQMQISGLYNSYVGVIGIGRIKKG KVKNRQVTILDISGKYTNAKVGKYLGHLGERIFTDLARAGE IVALTGLGELMISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKEKKVTSRQ SPFCKEKKTSRAFQ SPFCKEKTTRAKTURCH SPFCKTSRQ SPFCKEKKTSRAFQ SPFCKEKTTRAKTURCH SPFCKTSRQ SP			i	1	
294 1033 2 427 SATLEVINHOBETOARRIANTLEDIVGVGSVLISGRADSQOTT VYHODA DE PRETPUDA IPKDAGGGSVLISGPINMOPGHGH GHMSHSNNRHINLPUGPLVDGKFIYTLYIALSIDFHLHYINDL MNKLIMTASVII 295 1034 3 342 VLAYPGIKVGTABARAILPAGVERGDCIAHGRHLAGFIHACVS ROPELAALIAMDVIAEPVERKLIPOPEQARQAVABURGAVASGI SGSGPTLFALCDKPBTAGRVADMIJAK 296 1035 2 279 GOORVALARAILIKPEVULLPDEPLSNLDANLRSMEDKIREL OKOPDITSLIVTHIDGSBAFAVSDTVLVMIKGHLIKPIGTSSPODLE 297 1036 3 157 AVHILBEVRIABHAHKFPGQISGGQQOVATARSLCMKPKIML POBETSAL 298 1037 1 217 APTDBANYFDYDNLNNGPSLQMWFGVDSLGRDIFSRVLVGAQI 3 570 VPCLIADLDFDIEJANGIAGLIAGVYEGW 299 1038 3 570 VPCLIADLDFDIEJANGIAGLIAGVYEGW VQALVOHUPADDVDLDGPFQMQISGLDYNSYVGVIGIGRIKKG KVKPNQOVTIIDSBGKYTRANKGWLCHHIGBER IEDLARAGG LVALTGLIGELNISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGKEKKVTSRQ	1	1	į.	1 .	
VYHHOGA DITRETTDA I DIKDAGGGRVILLSGPTWAMPGHGHE GHMENNEMININ DYGPLVDKEM I TATALISGPTWAMPGHGHE 1034 3 342 VLAYPGIRVSTAEARAILPAGVERGYTAHGHLAGFIHACYS ROPELARAKHKUVIAEPYRERLIGGERGARGAVAEIGAVASGI SGSGPTLFALCOKPETAGRVADWIGK 296 1035 2 279 GQOGWALARAILLEKPKVLLFDEPLSNLDANLRRSMRDKIREL OKOPDITSLYVIHDOSBAPAVSDTVLVMNKGHIMQIGSPODLR VRRINN 297 1036 3 157 AVHYLERVHIAEHAHKPPGGIGGGGOGVATARSLCMKPKIML PEDETSAL 298 1037 1 217 APYDAENYPDVDHLANGPSLGHWPGVDSLGRDIFSRVLVGAGI SLAGGVPAVPGARATCHLALLAGVYRGW 299 1038 3 570 VFCLTADLDPIDELVDFPIVYASALNGIAGLDHERVAEDMTPL YQAIVDHVPARDVDLDGPFQMGISGLDYNSVVGVIGIGRIKKG KVKPNQOVTIIDSBEKKTRAKVGKVLGHLGERETBULARGGI IVAITGLGELMISDTVCCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREGKFVTSGI					
GHMEHSNNRMINLPUGPLUNGKPITTLYIALSIDFHLHYINDL MNKLIMTASVII	294	1033	2	427	
MMKLIMTASVII	1	1	į.	1	
295 1034 3 342 VLAYPGIKVSTABARAIDAQVEGODCIAHGEHLAGFIHACVS ROPELAKLMEDVIAEPVERKLIADPGARAOVAETGAVASGI ROPELAKLMEDVIAEPVERKLIADPGARAVAETGAVASGI SGSGPTLFALCDKPETAGRVADNIGK GGORVALARALTILKPKVLLFDEDEJSHLDAMKERSWERKIREL OKOPDITSLIVVHENGSBAPAVSDTVLVMMKGHIMQIGSPODLE VTRLINN VRINN VRINN VRINN VRINN PDBPTSAL 298 1037 217 APYDBANYPDYDMLNNGPSLQHWFGVDSLGRDIFSRVLVGAQI SLAAGVFAVETGAAIGTLLALAGVYEGW 299 1038 3 570 VPCLIDALDFDTEJAVDFTVYASAINAIGAGLHEDMAEDMTPL VQALVDHVPADVDLDGPFQMQISQLDYNSYVGVIGIGRIKKG KVKPMQOVTILDSBCKFTMAKVGKVLGHLGER ETDLÄRAGG LVALTGLGEKKFTMAKVGKVLGHLGER ETDLÄRAGG LVALTGLGEKKEKSTANGVGKVLGHLGER ETDLÄRAGG LVALTGLGEKGKKFTMAKVGKVLGHLGER ETDLÄRAGG LVALTGLGEKGKKFTMAKVGKVLGHLGER ETDLÄRAGG LVALTGLGEKGKKFTMAKVGKVLGHLGER ETDLÄRAGG LVALTGLGEKGKKFTANGVGKTLGHLGER ETDLÄRAGG LVALTGLGEKGKKFTANGVGKTLGHLGER ETDLÄRAGG LVALTGLGEKGKFTANGVGKTLGHLGER ETDLÄRAGG LVALTGLGEKGKFTANGVGKTGHLGEKGKTGKTGKTGKTGKTGKTGKTGKTGKTGKTGKTGKTGKT	ł	1	}	ł	
ROPELANKIMKDVTAEPYRERILIPOFROAROAVAETGAVASCI SGSOPPLFALCDEVETAORVADRILGE 296 1035 2 279 GOOGRVALARALILEPKULLFDEPLSNLDANLRRSMEDKIREL OKOPDITELYVTHODSEAFAVSDTVLVNNKKSHIMOIGSPODLE 297 1036 3 157 AVHYLERVRIAEHAHKFPGGISGGOQORVALARSLCMKPKIML FORETSAL 298 1037 1 217 APYDAENYFDUNLKNGGSLOHWFGVDSLGRDIFSKVLVGAOI SLAAGVFAVPIGAALGTTLALLARVYRGM 299 1038 3 570 VFCLIADLDPIDELVDFPTVYASALNGIAGLSHEDWALDMFTD VOATVDHVPAPDVDLLGPFQMGISGLDYNSYUGVIGIGRIKG KVKRNQOVTIIDSEKKTRNAKVGKVLGHIGLER IETDLARAGE IVALTUSLGELMISDTVCDTONVEALPALSVDEPTVSMFFCVNT SBFCGREKKVFVSGU			l		
SGSGPTLFALCDR.PETAQRVADNLGK	295	1034	3	342	
296 1035 2 279 GOOGNUALARALILEREVULLFDEPLSNLDANLARESWEDKITELL OKOFDITSLYVITHOGSEAFAVSDTVLVMNKGHIMQIGSPODLE VRRINN 297 1036 3 157 AVHYLERVRIAEHAHKFPGQISGGQQORVAIARSLCMKPKIML FDEPTSAL 1037 1 217 APYDAENYFDVDNLKNIGPSLGHWFGVDSLGRDIFSRVLVGAQI SLAAGVFAVPIGAAIGTILLALLAGYPEGM 299 1038 3 570 VPCLIADLOPIDELVOFPIVVASALNGIAGLOHEDMAEDMTPL VQAIVDHVPAPDVDLLGPPQMISOLDYNSYLGVIGIGIRIKG KVKPNQOVTIIDSBCKTRNAKVGKVLGHIGIER ISTDLARAGE IVAITGLIGELNISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYTSGT 10417GLIGELNISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGREKKVYTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKVTSGT 1057GCREKKTSGT 1057GCREKKVTSGT 1057GCREKKTSGT 1057GCREKTSGT 1057GCREKTSGT 1057GCREKTSGT 1057GCREKTSGT 1057GCREKTSGT 1057GCREKTSGT 1057GCREK	1	1	1		
OKOPDITALYVITDOSEAFAVSDIVLVMNKGHIMQIGSPODLE VVERNW 297 1036 3 157 AVHYLERVELIEHAHKPPGQISGGQQQRVAIARSLCMKPKIML PDEDTSAL 298 1037 1 217 APYDAENYFDYDNIANNGPSLQHWFGVDSLGRDIFSRVLVGAQI SLAAGYFAVFIGAAIGTLIJLLAGYTESM VPCLIADLDEPIELVDFFIVYASALNGIAGLDHEDMAEDMTPL YQAIVDHVPARDVDLDGPFQMQISGLGYASYVGVIGIGRIKKG KVKPNQOVTIIDSEGKYFNAKYGKYLGHLGEREITEDLÄRAGG IVAITGLGEIKMISDTVCDTONVEALPALSVDEPTVSMFFCVNT SPFCGKEKKVYTSG	l	1	1	1	
Verling Verl	296	1035	2	279	
297 1036 3 157 AVHYLERVELAEKAHKPPGQISGGQQQRVALARSLCMKPKIML PEDEPSAL 298 1037 1 217 APYDARNYPDUDALANGSBLQUHFGVDSLGRDIFSRVLVGAQI 299 1038 3 570 VFCLIADLDEPIELVDFPLVYASALNGIAGLDHEDMAEDMTPL			1	1	
PORPTSAL 298 1037 1 217 APYDARNYFDYDNIANGPSLQHWFGVDSLGRDIFSRVLVGAQI SLAAGVFAVFIGAAIGTILGLLAGYYEGM 299 1038 3 570 VFCLIADLOPIDELVDFFIVYASALNGIAGLDHEDMAEDMTPL YQALVOHVAPADVDLDGFFYMGISLDYNSYVGHAEDHRIKAGUKVKPNQQVTIIDSEGKTRNAKVGKVLGHLGLERIETDLARAGL IVAITGLERNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKECKKVTSRQI	1	1	1	1	
298 1037 1 217 APYDAENYPÜDMLANGSELGENFOVDSEGEDLESKVLVGAQI SLANGVAPVEGAAL GYTLALLALAVYEGN 299 1038 3 570 VFCLIADLDPIDELVDFPIVYASALNGIAGLDHEDMAEDMTPL YQALVDHVPARDVDLDGPFQMQISQLDYNSYVGVIGIGRIKKG KVKPNQOVTLIDSEGKFYRAKVGKVLGHIGGERITEDLARAGG TVATTGLGELMISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKEGKFVTSGT SPFCGKEG	297	1036	3	157	AVHYLERVRIAEHAHKFPGQISGGQQQRVAIARSLCMKPKIML
SLAAGVFAVPIGAAIGTLIGILAGYYEGW 299 1038 3 570 VFCLIADLDPIDELVDFPIVASALNGIAGLDHEDMAEDMTPL YQALVDHVPAPDVDLDGFFMGISDLYNSYUGVIGIGRIKKG KUKRNQOVTILDSBCKTFNAKVGKVJGHLGLERIETDLARAGG IVAITGLGELNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKECKFVTSRQI	1	1	1	1	
299 1038 3 570 VPCCLTADLOPTDELVDFPTVYASALNGIAGLDHEDWARDMYPD VQAIVDHVPAPDVDLDGPFQMQISQLDYNSYVGVIGIGIRIKG KVKPNQOVTIIDSBCKTRNAKVGKVLGHIGLER ISTDLARAGE IVAITGLGELMISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGREKKVFTSGL	298	1037	1	217	APYDAENYFDYDNLNNGPSLQHWFGVDSLGRDIFSRVLVGAQI
YQAIVDHVPAPDVDLDGPFQMQISQLDYNSYVGVIGIGRIKRG KVKPNQQVTIIDSBCKTFRAKVGKVLGHLGLERIETDLARAGD IVAITGLGELNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKECKFVTSRQI	l	1	1	1	SLAAGVFAVFIGAAIGTLLGLLAGYYEGW
YQAIVDHVPAPDVDLDGPFQMQISQLDYNSYVGVIGIGRIKRG KVKRNQQVTI IDSBCKTRNAKVGKVLGHLGLERIETDLARAGI IVAITGLGELNISDVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKECKFVTSRQI	299	1038	3	570	VFCLIADLDPIDELVDFPIVYASALNGIAGLDHEDMAEDMTPL
KVKENQOVFITES BEKTERNÄRVEKVLEGHLEGLER IETDLARAGE IVALTGLEGLNI SDTVCDTONVEALPALSVDE PTVSMFFCVNT SPFCGEEKKVTSRQI		1	1	1	YOATVDHVPAPDVDLDGPFOMOISOLDYNSYVGVIGIGRIKRG
IVAITGLGELNISDTVCDTQNVEALPALSVDEPTVSMFFCVNT SPFCGKEGKFVTSRQI		1	1	1	
SPFCGKEGKFVTSRQI	1	1	1	1	
	1	1	1	1	
300 1039 1 366 QCTRAESQGSSKDKTRLAFAGLKFGDYGSIDYGRNYGVAYDIG	200	1020	+	1366	OGTRAESOGSSKDKTRLAFAGLKFGDYGSIDYGRNYGVAYDIG
	300	1039	1 *	300	AWTDVLPEFGGDTWTOTDVFMTORATGVATYRNNDFFGLVDGL
NFAAQYOGKNDRSDFDNYTEGNGHGFGFSATYEYEG	1		1		
		1	ļ	1000	DTYSVSIPLGATINMAGAAITITVLTLAAVNTLGIPVDLPTAL
	301	11040	3	201	
LLSVVASLCACGASGVAGGSLL		I .			

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID.	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of .	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
	i	acid	acid	1
302	1041	sequence 1	sequence 140	ANAOOGLPSGITLKLNNLVDKGLVDRLYAASSSGVPVNLLVRG
		_		TCS ,
303	1042	2	442	ARMTLIPGTHLLENIHNIWVNGVGTNSAPFWRMLLNSFVMAFS
		1		ITLGKITVSMLSAFAIVWFRFPLRNLFFWMIFITLMLPVEVRI
	1	1	1	FPTVEVIANLQMLDSYAGLTLPLMASATATFLFRKLNMSGPDK
				VVPAARISGYGPRVRKQ
304	1043	2	403	CAKCLRDADECPSGAFERIGRDISLDALEREVMKDDIFFRTSG
1	1	1	1	GGVTLSGGEVLMQAEFATRFLQRLRLWGVSCAIETAGDAPASK
1	1	Í	1	LLPLAKLCDEVLFDLKIMDATQARDVVKMNLPRVLENLRLLVS
	1	1	1	EGVN
305	1044	1	346	YLLLFVCFLVMSLLVGLVYKFTAERAGKQSLDDLMNSSLYLMR
1	1	1	1	SELREIPPHDWGKTLKEMDLNLSFDLRVEPLSKYHLDDISMHR
	-	1	1	LRGGEIVALDDQYTFLQRIPRSHYVLAVG
306	1045	1	207	VELFLSDEGDDVVIEVADQGCGVPESLRDKIFEQGVSTRADEP
1	1	1		GEHGIGLYLIASYVTRCGGVITLEDN
307	1046	3	213	DAIIAPDANALPAAAQAAENLKNDKVAIVGFSTPNVMRPYVER
	1	1		GTVKEFGLWDVVQQGKISVYVADALQ
308	1047	1	129	YIVVTGKTHCGTPLTTVTGDATQSGYLTLNLPEMWEVSGYNRV
309	1048	271	46	XEGVEPDINASKTROQLNDVAGKMKIIEARLSALTNNOTKSLK
1			1	LNPVALPKVASQLLDELGYSLLARRADLQSAHX*
310	1049	16	253	ENIAEEYATKRYRSNVINWGMLPLQMAEVPTFEVGDYIYIPGI
1	1	l	1	KAALDNPGTTFKGYVIHEDAPVTEITLYMESQEART
311	1050	2	299	LQTEIGSMVYAVKPGDGSAREQAASCQRVIGGLANIAEEYATK
1	1	1	1	RYRSNVINWGMLPLQMAEVPTFEVGDYIYILGFKAAKYSPGTA
ļ	i	İ	1	FTVYAISGYGPRI
312	1051	1	344	TLEDLLMALDGEQHLQQQVSEKVLADNVLIAPGSVKPDATFWS
l			1	ALIQDRYNVMTCIEKDACVLVEQDLNSDGQAERILFAFNDDRV
1	1	J	1	IVYGFDSDRKEWDALDMSLLPNEITKEK
313	1052	2	630	ESNSRCRKMPGERCRGGPARLSLLLDLPTRPLPHPRQVIDFGS
l	1	1	1	ASIFSEVRYVKEPYIQSRFYRAPEILLGLPFCEKVDVWSLGCV
1	1	j	1	MDELHLGWPLYPGNNEYDQVRYICETQGLPKPHLLHAACKAHH
1	1	1	}	FFKRNPHPDAANPWQLKSSADYLAETKVRPLERRKYMLKSLDQ
1	1	i	1	IETVNGGSVASRLTFPDREALAEHADLKSMVEL/MKRLL
314	1053	1	302	RLVKKRVECROCGKAGRNOSTLKTHMRSHTGEKPYECDHCGKA
1	1	1	}	FSIGSNLNVHRRIHTGEKPYECLVCGEAFSDHSSLRSHVKTHR
1	1	1	1	GEKLFVSSVWKRLQ
315	1054	1318	730	CGPGFSLSFFFLRWSF\ALVAQAGVQWHDLGSLQPPAPGFKRF
1	1	1	1	SSLSLLSRWDYRHAHARLIFVFLVEMGFLHVGQAGLELPTSGD
1	1	1	1	PPTSASOSARITGVTTPLGTFFFLRWSFALVAQAGGQCLDLG
1	1		1	SLOLPPPGFKRLVCHFQTPQKHRCSCQAPGDCLQESFVMTGCV
1	1	1	1	LRTVSESVQRANAGAGAETVQGL
L				

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Flhenylalanine, G=Glycine, H=Histidine, I=Isoleucine, E=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Secfrine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
316	1055	2486	1429	MGNAAAAKKGSIGGSVKEFIAKAKEPILKKWESFAONTAHLOO FERIKTLOTSGPRUMLUKKEKTONHYAKKLID+GKVGKLKLID+GKVGKLKUD EHTINKKEILQAVNPPILVKLEFSFKUNSNI,YMVMSYVPGGEM FSHLRRIGRISHENHARYAAQI/ULTFRYLHSLDLITYRLIGHEN FSHLRRIGRIGHENHARYAAQI/ULTFRYLHSLDLITYRLIGHEN LLIQOGVIOVTDFGFAKRVKGRTWTLCGTPEYLAPEILISKG YNKADDWHAUGLI/UEMAAUPPFFADDIOTYEKIVGKYPE PSHFSSDLKDLIKNILQVDLTKRFGNLKXGVNDIKNHKFFATT DWIAIYQRKVEAPFIPKFKGPGDTS\NFDDYEEBEIRV\SINE KFG\KEFSER
317	1056	867	461	SSSRSSHGDSPPHSQTPCDTNRGLDTKH*/DSQSIERKDSSQS E*NRIERRKEVERILQTNSDYM*HWSN*PENILPKKFFSKHQK CTATLSWENTSIM/KKEGLF*AQFPSLLLSHLPAVGLGIYTGT HLTTSTSTF
318	1057	544	784	TFHSSLEKNILQPCR*RRA\ICLPLILL*PSVPLLAPQYFSDLR NSIVNSQPPEKQQAMHLCFENLMEGIERNLLTKNRDR
319	1058	1606	228	GTSGVQGEISRLTNENLDLEELVEKLEKNEKKLEKQLKITMKK AQDLEAQAJAGSEKRHELNEKQVTVORLEKDFOÇGMLEYHKED BALLISHLVTDLEFQMLSGTVPCLEAVILYMCIEHA-DYTNDD LKVHSLLISTINGIKKULKEKHDDPENTSFNLSMTC\RLHGLI KQYSGDEGFMTQNTAKQN\BHCLNNFDLTEYRQV\L\SDLSIG IYQQLKIKABOULGPMTVSAKMLENSTOGLGSVEPTGSGKES SMADBENSYRLEAIIRQMNAFHTVMCDGLDFEILLOVFKQLF MYINAVTLNDLLIRKDVCSSTGMLEYNISGLBEHLRGRNLH OSGAVCTMEPLICAAOLLQLKKKTOBDARACSLCTSLSTOGI VKILNLYTPINEFERNTVLAPITTOAOLLGERNDPQLLLDAK HMFPVLFPFNPSSLTMDSIHIPACLNLEFLNSV HERNTTLRABVOVPPEKVTPFARAFITFOLAVORGOTDAO
	1	1		QLACDP\YLLHYIQKLVFVSSPAGAAIASTFGVSNSCSSN
321	1060	1332	500	GTTDE INTEWARVSTTYNKEPLEATSWEDMKKGS FROTSONLE KRKCLERNIL ELNDAD PARHKKNIKKKKEYLINEDVIGPFWELF (NIS GWYHNGOL IATDSERVEREIAVALKKDERREGRELKEQJA KKNAWCEHCRKEGHGIADEPALENDOMFOLGIVEGOSTEL ITKCKAKTUPALISEPFAKCFVCGEMGHLSRSCPDINPKGLYAD GGGCKLCGSVEHLKKDCPESQWSEHWYTVGRWAKGWSADYEEI LDVERKORKTKIPKVMF
322	1061	384	102	DHVRKSLLKNRAENIVNIFKCNVVSLPNLPAFGQAQWLTPVIP ALWEAEVGGS*GQBIBTILANAVK/SPFLLKIQKKKISRAWWR AP/VSPRYSGG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Protine, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \
323	1062		777	SDAWADAWARSLSVSPSYPELHTEVPLEVLIUGLLWYFILSV CFGAGLEFVFLKRREGVSPSYPNINNLDVSSFQLOYGSYNTET HDKTDGHYYMYTPPDVUQMCQNFIYMAGBEGRDSSLLPKQGKE FQLLENLEBKEBEPATPAYTIGATELLEKQHTPEPELLXQNT AB/PSQGTS/TAQA*STITFVPYLKGGFAPSYESRRQNQDRIN KTULUGTERKCFVGQSKPNHPLLQAKPQSEPDYLEVLEKQTAT SQL
324	1063	1	1496	ALCHTAVOQOMALHHIKTOLIVILASTVVAMSAVAQLMEDEW EVILISLOGTAPFHEVGAVATVILSWIVAGOPARAETSSQV TILCTFFTVVPALYLADLTISSPCIMEKKDLGPKPALIGHRGA PMLAPEHTLMSFRKALBÇKLYGLQADITISLDGVPFLMHDTTL RETTIVNEREFPELARRASMLAWTILGRLMAGOWFLKTDFPWT ASSLSPSDHREAQNOSICSLAELLELAKONATLLLALBDPPRE HPYRSSFINTULBAVLLSGPPGHQYMMLESKQRPLJVRLVAPGE QOTSGKEAVASLRRGHLQRLALBYTOVSRGERBYASWALSV RULTVVARAWHESLLKCAGSVSTSDNSHTLSVPSELMIMSV HLTVVARAWHESLLKCAGSVSTSDNSHTLSVPSELMIMSV AVERTSRDVSINKERLIFSBLSGGVSVSDVLSVCSDNSYDTYA NSTATFVOPRGGGSITKTLIEBSGR
325	1064	1899	776	NSADYDOPDSSADDDGTERGVLDPSDPFTEVKPRILLMG LPRSGKS SIGVVFHKMS PHETLFLESTKLCREDVSNSFYN PO I WOPPOGIDFFDFYENLTRGTGALIFYIDSGDDYMEAL ARLELTVTRAKVWTDINFEVFIHKVOGISDHKISTGOR HE RANDDLADAGLEKIHLSFYLTSIYDHSIPRAFSKVVQKLIPQI PTLENLLMIFISNSGIEKAPLFDVVSKITIATDFTVMQTYE LCCDMIDVY ID SCIYGLKSGAFFFUNGVTSTATTVLYLYLKEVYKKLALVEFVRESSFEKGLIDYNFHCFKRAIHEVFEV EMKVVKSKYQNNLKKKKRATFONTOFKLI
326	1065	1181	346	BTEGENPGAGFRETANKRCCERFELIGGGMLPLESUMPLVSKM LISKGLKERKEREBEEKEPLAUDSWILDGEIGHAVAQAPPAVASKS LISKGLEKREREBEEKEPLAUDSWILDGEIGHAVAQAPPAVASKS LISKGLEKTERISTERISTERISTERISTERISTERISTERISTERIS

	000	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ	beginning	end	
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
			acid	
		acid		\=possible nucleotide insertion)
	1	residue	residue	
		of amino	of amino	
		acid	acid	
		sequence	sequence	LOEVKARRNTLHKEKDHLVNDYBQNMKLLQTKYDADINLLKQE
327	1066	1844	337	
	1	ſ	i	HALSASKASSMIEELEQNVCQLKQQLQESELQRKQQLRDQENK
	1	ł		FQMEKSHLKHIYEKKAHDLQSELDKGKEDTQKKIHKFEEALKW
	1	1	ŀ	KKWRQI*LDPN/LLREKQSKEFLWQLEDIRQRYEQQIVELKLE
	i	1	į.	HEQEKTHLLQQHNAEKDSLVRDHEREIENLEKQLRAANMEHEN
			l	QIQEFKKRDAQVIADMEAQVHKLREELINVNSQRKQQLVELGL
	1	1	}	LREEEKQRATREHEIVVNKLKAESEKMKIELKKTHAAETEMTL
	1	1	1	EKANSKLKQIEKEYTQKLAKSSQIIAELQTTISSLKEENSQQQ
1	1	1	ſ	LAAERRLODVROKFEDEKKQLIRDNDQAIKVLQDELENRSNQV
1		1	}	RCAEKKLOHKELESQEQITYIRQEYETKLKGLMPASLRQELED
1	1	l	1	TISSLKSQVNFLQKRASILQEE/RDYISRQKVQPISR*LHERM
		l	ł	ORMRISRLCCGTSSSRFEDLDIVNCEISGIF
				VINLVYLISSPRPELKPVDKESEVVMKFPDGFEKFSPPILQLD
328	1067	1149	238	
	1	ł	ł	EVDFYYDPKHVIFSRLSVSADLESRICVVGENGAGKSTMLKLL
	1	1	ŀ	LGDLAPVRGIRHAHRNLKIGYFSQHHV\EQL\DLNVQCLWELA
1	1	1	1	GHASFPG\RPEEEY\RHQLGFGMGISGEL\AMRPLCQPVLGAR
١.	1	1	1	KKPKWPFAQMDYCPAPTFYIL\DEPTN\HLGHGRAIEALGPCL
1	1	1	1	QTISGVGVILVSHE*SALSRLVCRE\LWVC*G\GGVTRVERKD
1	ł	1	1	FDQYRALLQGTVSAREGFPLGPPRLKDSPRDMGLVSQTPWGHH
1			1	VGYPLPGRG
329	1068	26	674	CSAVEVKMAARTAFGAVCRRLWQGLGNFSVNTSKGNTAKNGGL
	1	1	1	LLSTNMKWVQFSNLHVDVPKDLTKPVVTISDEPDILYKRLSVL
1	1	1	1	VKGHDKAVLDSYEYFAVLAAKELGISIKVHEPPRKIERFTLLQ
ł	1	l	1 .	SVHIYKKHRVQYEMRTLYRCLELEHLTGSTADVYLEYIQRNLP
	1	1	1 '	EGVAMEVTKFCFF1FL\TQLEQLPEH1KEP1WETLSEEKEESK
1	1	1	ł	S
	1-050	10000	1283	DFWDTAGOERFQSMHASYYHKTHACIMVFDVQRKVTHRNLSTW
330	1069	2105	1283	YTELREFRPEIPCIVVANKIDGGAIPAPGC*OFTGDLPSYISS
}	1	ł	}	
1	1	1	1	SIPRAGNLQ*LVLPPTIRYNPWLVACILPTL*RSQLSRPALFP
1	1		1	RHRSLLTELFLGPVSQSSLPIPLSGMKASSGPPLQTFFPSLDR
1	1	1	1	QTNVLPSLY\ADINVTQKSFNFAKKFSLPLYFVSAADGTNVVK
1	1	1	1	LFNDAIRLAVSYKQNSQDFMDEIFQELENFSLEQEEEDVPDQE
1	1	1	1	QSSSIETPSEEVASPHS
331	1070	1	1109	GATPLGSVGGRTGKMDAATLTYDTLRFAEFEDFPETSEPVWIL
1	1 -0.0	1		GRKYSIFTEKDEILSDVASRLWFTYRKNFPAIGGTGPTSDTGW
1	į.	1		GCMLRCGQMIFAQALVCRHLGRDWRWTQRKRQPDSYFSVLNAF
1	ł	1	1	TDRKDSYYSIHOIAOMGVGEGKSIGOWYGPNTVACVLKKLAVF
1	1			DTWSSLAVHIAMDNTVVMEEIRRLCRTSVPCAGATAFPADSDR
1	1	1	1	HCNGFPAGAEVINRPSPWRPLVLLIPLRLGLIDINEAYVETLK
1	1		1	HCFM\MPOSLGVIGGKPNSAH\YFIG*VG\EELIYLDPHTTQP
1	1		1	
1	1		1	AVEPTDGCFIPDESFHCQHPPCRMSIAELDPSIAVVRGGHLST
1	1	1	1	QAFGAECCLGMTRKTFGFLRFFFSMLG
332	1071	39	284	ALCVVPFNTFHN\DFLLLDKEGTLDPVMDSFSTHWTTIGPADM
1	1	1	1	FFS\FRQHYKNFKSHGTNPSKSVWAHATCQSCAFPNLLGW

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion) .
333	1072	2	1484	TRIABFGTRIDECAQAFCEQOCEPGAPOGYSCHCRLGFFARADD PHRCOTDEGOLIAGVCQOMEVATVAGERCYCSBGHEREADD COMENCATION OF THE CONTROL OF THE CONTR
	1073		1406	LRYKRPHILPAPPALPARRENGDRESSRAPAAFPFRFPHASPARG PAMOQAVSRIGHILMACILDWARAGVARGIYENLITIDSPA TTGAVVTISASILVAKDNOSIALPAADAHINFEHMIHTPILVITGK MEKGLSSTIRVVOHVOGEFBVSVWYTAADCHVCCPVARGEVVL PITEFLVGDLVVTQNITSILPWGSSYLIKTVILKVSFLIHDENSFL KTALPIJSWAPGGOTGOWTHEDEVVYNYHSI LITFTVIKKUVAR WEEVEPDATRAVKOKTGDFSASIKLQSTLRGIQVLGPTLIQTF QRMTVTLRFIGSPPLITVCWRILPRGCIPLBENGSCHPUSVASTAY AFPCATLITVMLAPIMYMTLRRATQGCDMVENSEPSGVRCCC QMCCGFPLIETBSBLEITERSHGLIPLYKSWKTTV
335	1074	1	866	VVERAPQLSS VSCLTVS FÖNQLATVSSCLSRÖMFLKKRILLIT TVSULTILDLANKHLGYLGYTSGLSITCHEFTUSVTYKKFQ LGCAIGHNETAMSSRALVGLPSOGLINSSCRAMFTUDSOMSYT VPINAPAPVCHEPVLDYTHICHERSERSPLOVANNS IGAMSYT YGLTATFGYLTFYSSVKARNLHUYSQKDPLILCVRLAVLLA\V TLTVPVULFPITRAJQCLLFPGKAFSWPRHVAITALILLIVINV LVICVPTITRDIFGVIGSTSAPGLIFILPSG
336	1075	3	825	GAGGKSSHWQLMILSSFYEK(PPPGLIKEDDTIPBECTFDVFG MEHARPELAHTPYKGIMBLEKKEVKVH/CTHINLSF*FDVFG KFTEKATRIKUVWSH*FTCLFFGLTRFTHDCTFF*HMSLMNK HENIITY*FFILL**HTLLIKKYFPFSLLLGHWCKWYGHRFKMY ECPFFIKDNQXLQQFRVAHEDFMYDIIRDNKQHEKHVRIQQLK QLLEDSTSGEDRSSSSSSGKERHKKKKKEKHKKRKEKKKK KKRKHKSSKSNEGSDE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Clycine, H=Histidine, l=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, O=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
337	1076	Sequence	2451	EIAGAAAENMLGSLLCLPGSGSVLLDPCTGSTISETTSEAWSV
				EVLPSDSRAPDLKOGERLOSLBSCSGIGSTSDDTDVREVSSRY STPOLSVVSGISATSSID THKTEDLRSECSSPTGGKDSVTSPD MDRITTIDPILTILDPKOHPOHIEARADWRICLSSSANDLTSPPS OGSBILLAMPDLSSHGASAVVEPRIVITARPSHPPPPPP PILEG AVGGNRARLPHFGSPMF*LDARMEAFKORHS/YTPERLVRERS A VOLTYSSVERMSDPSNIMER(VANSERSELPAARLGSTSPS A VDLYSSVERMSDPSNIMER(VANSERSELPAARLGSTSPS A VDLYSSVERMSDPSNIMER(VANSERSELPAARLGSTSPS ALONISANDLPDSRSSLDDDSSRSDRNPHWRKERVSAM PKASIPPKKEKOKENKENDLOPPRSTITUDDSPRLSAQAOVA EDILDKYRNAIKRTSPSDGAMANKSTTWKGDGSSANDSPRDE ALONISANDLPDSSASGAAHPONDSSRSTEVAKURGASANDSPRDE ALONISANDLPDSSRSCHANDLEDSSRTVCPLKVQIABAINLODK NLANGLOGTMRCVGREDKRTCKKLLASIASDTRRAPYIALIT KRRGGIGTTOAHLERLIGAVLEKREVANNA FTTVCVRLILLSK EKKLRSFIODPOKLTAADDKTAYDBLGFILGAMAQOVINGN ASEGULODQLAIERSVANDHIFKLAFTFRODDILGDKLOVLHEH IQELSKVVTANHRALGIBEVYLREAPHSSAGSEITTISAYKTP ERKVOCLENGSTIMMLISALBNEDSVEGADDTVEVLVFVLIKA MPPGLLSTVQYISSFYASCLSGESSYWMQFTAAVFFIKTIDD KR
338	1077	536	1305	WPMSLARCHGDTAASTAAPLSEEGEVYSGLOALAVEDTGGPSA SAGKAEDEGEGGREETERESGGGEERAGGEVPSAGGEPAEBE EDWCVPCSDEEVELPAADGPWMPPSSICRLYELLAAHGTLEL QAELLPRRPPTPERAGEEERSDEEPEAKEEEEKPHMPTEFDF DDEPVTPKOSLIDRRRTGSSASSCKERALDKVLSDWKRHKK LEEQILRTGRDLPSLDSEDPSPASPPLRSSGSSLFPRQRKY
339	1078	2	1771	LGRGTFGQVV-CNERGTNEIVAIKLINNHPSYARGGIEVSIL ARLSTBSADDYNFVARZECPHRINTGLVJERHLGONLYDFLKO NEFSPLPLEYIRPVLQVATALMKLKSLGLIHADLKPENIHL PPCBAIDMMSLGCVIAELFLGWPLYPGASEYDQI/RYISQTG LPASYLLSAGTKTIRFFRENDTSPTPLWFLKTPDDHARTGIK SKEARKYINTGLDDMAQVMYTDLGSGSHUNKKAVPREFIDLL KKMLSIDSVKRPSPVGSLNHPFVTWSLFLDFHSTHLVKSCFON MSICKRRWAWDTVNGSKTPFTHVASFTBLLFFHSTHLVKSCFON MSICKRRWAWDTVNGSKTPFTHVASFTBLLFFHSTHLVKSCFON GOGGLGASPSKHAGYSVKHRAVPTVTGAGAQDPLGVGDALVCPL QOAMPSGTQQILLPAMQQLTGVATTTSVGHAVUPSTMAGTQ OLADMRNTHAGSSYMP LOQPALLTGUYTLAPAQPLNVGVAH VMRQQPTSTTSSRKSKOHLYCGRARVSKIASR

SEQ IID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, H=Fisteine, H=Isoleucine, H=Isoleucine, M=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
	1079	2	2721	EFAICRYPICMSGGGIDDEDITASSGWSESTAAKYGRLDSEE GAWCELF PEPDDLKEFLOLHLTHEFTLYUGTOGRHAGGIG LERPAWKINYSRDGTRWISWRNHGKQVLDANSNYDIFLKD LERPIVARPVEIPTOTBEKHAGVLDANSNYDIFLKD AGQQFVLPGGSIIYLMDSVYDGAVGYSMTEGLGQLTDGVSGLD DFTQTHEHTWWGDTDYVGWRNSATNGYIELMFEFRIRNFTI MKYHCNNHFAKGVKIFKSVGCYFRSEASSWEBNAISFPLVLDD VNDSARFVTVPLHHRMASAIKCQYHFADTWWMFSELTTGSDAA MYNNSSAPTSMAPTTUPDMLKVDDSNTRILIGCLVAIIFIL LAIVILIWAGFWGKMLEKASRRMLDDENTVSISLESDSSNFM NNRSSAPSGOSNSTYDEIFFLRPDYGESERLIKKLPFAPGE EESGCGVVKPVGPSGPSGVPHYABADIVNLGGVTGGNTYSVF EGMEKFKDKDFALDVSANGPVLVAVKLRADANNARNDFLKE IKIMSELDDNIHLISVCTUDDLCHITFUREGDLONFJKE HEPPNSSSDURTVSTTBLKFMATGLASGMKYLSSLNFVHDDL ATRNCLVGRNYTIKLADFGMSRLVSGGVYFLGGRAVLFIKM SMSSILLGKFTTASDVARFGVYTJELFTFCGRAFTS) WREDTENRFSGSELHLLLGGJGBFECVGLAHFRERSSLQDL LDHAYATTESGHLMKLRFAGVYLDETSPFVPDSCVIKMLSC
341	1080	916	3	CSASPLRPGLLAPDLLYLPGAGOPRAPEAEPGCKPVVPTLYVT EAEAHSPALPGLSGPOPKWVEVETIEVRVKKWGPGGVSPTTE VPRSSSGKLFTLPGATTPGGDPNSNNSNNKLLAQENWAGGTAMV GVREPLVFRVDARGSVDMAASGMGSLEEGTMERAGEEGEBD DAFVTESSCOTHSLGADPRISTLINNGSMILLDALEDYVPGESE THKGGPGPGAPDDPCEVSVIQREIGEPTVG\SLCCSAWGMH WYPEALSASLGLSPMGR\HHRDPRSVALRAPPSSCGRPRLGLW AVLEG
342	1081	862	444	QGLAAEFLQVBAVTRAYTAACULTTAAVQLELLSFFQLYPNPH LVFRKFQAPFLPWALMGFSLULGNSILVDLLGIAVGHIYYFLE DVFPMQPGGKKLLQTPGFLGLQSSKAPAGSSLTINTQQSQGGP GTAGELAAPS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleoride location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, E=Flentylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Sertine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
	1082	3658		EKMALEPTVYFGMGY'ALGYPEFOGRITGYGYYLGLKKDIYWEE GIPCTLEGPHLAGLAVOA TFGDFDOYESGDPLGKFALFYWEE LODEKVLEEATOKVALHOKYRGLTAPDAEMLYMGSVERMOSY LODEKVLEEATOKVALHOKYRGLTAPDAEMLYMGSVERMOSY GESSYPAKDOSGDISTGAGLEGIFVENHUKGHEVVFRHWIDTA AMSHINSFFALELANKEETTOFOTEDMETAKYLFRLCVARIKF YRLNGCNLGYGTVTVNPIRRESSSRMSLPKPGPYVMPPPP\QII HYMGHYTEPTASSQDNLFVPNGGG\YYGGFGTSIANRAGTDFNG RIR\NASVYSAFTSLINNFQFYLQFFDSENFSITGSDVWRP DYLDSHRISANTFPSLENFDDFTVMKGLNGLWAERGSHEI RNINIGSSYAYSRPAALVYSQDEITEHAGLESPAAAHCFFSLS SYSHSSPYYPYDAERRVVAGAVSVPELTIANGLOAQDYSPRIM RTQVYRPPPYPPPRPANSTPDLGRHLYISSSNPDLITRRVHH SYGTFGEDSLYVAHSLGWSVEPLITAARHGJCAGQYSPRIM RTQVYRPPPYPPPPRANSTPDLGRHLYISSSNPDLITRRVHH SYGTFGEDSLYVAHSLGWSVEPLITAARHGJCAGQYSPRIM RTQVYRPPPYPPPRANSTPDLGRHLYISSSNPDLITRRVHH SYGTFGEDSLYVAHSLGWSVEPLITAARHGJCAGQYSPRIM RTQVYRPPPTPPPRANSTPDLGRHLYISSSNPDLITRRVHH BYGTFGEDSLYVAHKSLSDSAULHSSEEDEDFEESGARD PARARPPRFGLAQDPGCPVLLAGPLHTLEFKAHVYDAERRM MOSSPURTTARAGRPWRPGLIMPSNSSSLTTSGRYAPARING KKERVSDLLSGKKNITVSGLPFLGRHCKTSTGRYRARGH MGLSLSRYPLPDEGKWATRATNDERCKILBGRLGDLKLAL NGLSLSRYPLPDEGKWATRATNDERCKILBGRLGDWFTTY KENNTGYINASHIKVSVGGIEMDYIATQGFLONTCOGPWQNVM EGGIAIIAMTAERSGGRESFRYPWPLGSRRNTVTYGFFRIT TRFRTDSGCVATTGLKMKHLLTGGERTVHLGYTDMPENGCPE BUKKFLSTYLEEGISVPRRINSTSDPOGSPRPPLIVHCSAGVGRT GVYLLSEIMIACLERNSVLDIFRULDKLR QQRMMLVOTLCQY TTYFYNTLOYERLAPLISPOFFYGRGSGFAFTA
344	1083	6	304	RKKQKLAEE*VELSKLADLKDAEAVQKFFLEEI*L\GEEILAK GVDHLTNPSAVCGQPQWLLQVLQQTLPLPVIQMLLTKPLPVNQ RLVSAG/SLAKDDVE
345	1084	1255	635	SFCI.HEFGWIGSSPGSDHPVPALLGLGAFVHHSILGVHSSPGA GPVSPIFI.GESGSPVDBFPCVPSCAFFGLCFPILMSALFAGE LFFFVVFFFLESGSCQVARAGVRD/RDRGSLQPPPPGLKQFCL SLPSRWDERHPPPLEVPFFVFFVTVELIGFHHVQAGIKLLTLS DPPAPASISAGTTGVSGRDQPVIFIERWSCSSLVG
346	1085	116	415	EGFPGRSLSGGLCCRLRRRFPIDGYRPRRRRWSCCPSGVRPV RRMSQKSWIESTLTKRECVYIIPSSKDPHRCLPGCQICQQLVR RGFTVLARMVSIS
347	1086	918	760	QNSTCLTAQTHSLLQHQPLQLTTLLDQYIREQREKDSVMSANG KPDPDTVPDS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Pihenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
348	1087	1	750	LNIPWINACOPPCLPPLRITSLIGHHLFGSDLPSCOSEEFSVI. ASCLGILPTFYGTEHPISASCLDHFVPAFDITHKCERIKSF TERHABGGKALLIGBSKWKLPHLLQLPENYNTIFQYYHRKTCS VCTKVPKDPAVCLVCGTFVCLKGLCCKQGSVCECVLHSQNCGA GTGIFLLINSVIIIIGHFCLWGSVYLDARGBCDFLRFGK PLYICKERYKVLEQQMISHFPDHINKRWGPHYNGI.
349	1088	3	1374	KGQLVNILLPPENFPKGGSGGFRILHTCVVLCSQAGPRSRGWG SLSFDGGRFHKGTGELTRALLVLRLCAMPPLVTHGLLLQAS RRILIGSRLSGGFLRASVYGGFVAGETABEVGGCVQGLRTLSLR PLLAVPTEREBEDDAAKSGRAWYEGNLGANLGCVDLGRGLLEP SLARASIMQLKVTRALTSTELCKELASVVRPQASLSLSFBELA EAMDSQNLQVSCLHAREQNGHLRASLSFHKRAQYARAGHLRG LVDAEYTSAKPALSLLVAALAVRUNSPGBGGPWVNTYQACLK DTFERLGRDAEAAHRASLAFGVKLYGATLDXERAYAGL NRG MEDPPTQADVAATS QSYS KCLEIMLTHVARHGPMCHMVAS HNEESVRQATK\GQAGVVVYKS IPVGSLEEVI PYLIRRAQENR SVLQGARREGGELSGKLIMFLDFGCRIP
350	1089	1036	306	VVERGEMSTARAPSGLRYFOLVYHEDIOLNKOLIORVSSLGFK ALVITLDTPVCGNRRHDIRNOLRRNLTLTDLQSPKKGNAIPYF OMTFISTSLCMNDLSWFGSTTRLPILKGILTKEDAELAVKEN VQGITVSNHGGRQLDEVLASIDALTEVGARB*GMMKYYLDAGV RTGNDVOKALAGAKCIFLGRETLMGLACKGEHGVKEVLNILT NEFHTSMA\LTGCRSVAEINRNLVQFSRL
351	1090	1229	957	FFLRWSFTL\LPRLE/CQWLNLGSLQPPPPGFK*SSCLRLLSS WGLQVPTSMLG*FFCIFSREGISPCWPGWSQTPKVIHLPRPPR VLRLQA
352	1091	1145	365	LICPUTTALOS FOGELY SPENVIAL VVFLUKLGICK PASNEK KYTLUVK-S, LKLICPTKKGSCYHOPEKS SSUKFN PKNYADCLA TSCSNES FVIQOT PSSNLFNVVVDSSCLCSSVAPITNAPIETE YILLCAGPLTTTETSKGYON-GKLIGEKY-BRETISTPLLESS S BSCKCOTIETSBWQSRKKQSLETCLAYSQHNBSLKCERLKAQ KIRRPESCHGFHPERNAPECGGAPSLQACTVILLLPILLANLF SR
353	1092	1140	790	VPSPTHDPKPAEAPMPA*PAPPGPASPGGALEPPAAARAGGSP TAVRSILTKERRPEGGYKAVWFGEDIGTEADVVVLNAPTLDVD GASDSGSGDEGEGAGRGGGPYDAPGGDDSYI

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID II	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	согте-	corre-	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	
		of amino	of amino	
· '		acid	acid	•
		sequence	sequence	
354	1093	3	2293	LISLAGPTDDIQSTGPQVHALNILRALFRDTRLGENIIPYVAD
				GAKAAILGFTSPVWAVRNSSTLLFSALITRIFGVKRAKDEHSK
1	1	1	1	TNRMTGREFFSRFPELYPFLLKQLETVANTVDSDMGEPNRHPS
İ		l	1	MFLLLLVLERLYASPMDGTSSALSMGPFVPFIMRCGHSPVYHS
l	l	l	1	REMAARALVPFVMIDHIPNTIRTLLSTLPSCTDQCFRQNHIHG
1	1	l		TLLQVFHLVQAYSDSKHGTNSDFQHELTDITVCTKAKLWLAKR
1	l	ł	1	QNPCLVTRAVYIDILFLLTCCLNRSAKDNQPVLESLGFWEEVR
	1	1	1	GIISGSELITGFPWAFKVPGLPQYLQSLTRLAIAAVWAAAAKS
		1	1	GERETNVPISFSQLLESAFPEVRSLTLEALLEKFLAAASGLGE
	1	1	1	KGVPPLLCNMGEKFLLLAMKENHPECFCKILKILHCMDPGEWL
ł		1	1	POTEHCVHLTPKEFLIWTMDIASNERSEIQSVALRLASKVISH
ł	1	l		HMQTCVENRELIAAELKQWVQLVILSCEDHLPTESRLAVVEVL
1	ł	1	l	TSTTPLFLTNPHPILELODTLALWKCVLTLLQSEEQAVRDAAT
1)	l .	ETVTTAMSQENTCQSTEFAFCQVDASIALALALAVLCDLLQQW
1		1	L	DOLAPGLPILLGWLLGESDDLVACVESMHQVEEDYLFEKAEVN
1			l	FWAETLIFVKYLCKHLFCLLSKSGWRPPSPEMLCHLORMVSEO
1	1	1	[C\HLLSQFFRELPPAAEFVKTVEFTRLRIQEERTLACLRLLAF
1 .	ł	I	1	LEGKEGEDTLVLSVWDSYAESROLTLPRTEAAC
355	1094	25	1265	HAFRPIALORGVSFRGCSNQYAESRRLQGESGSRAFAHLMESL
355	1034	1 23	1203	LOHLDRESELLAVSSTTYVSTWDPATVRRALOWARYLRHIHRR
	1	1	1	FGRHGPIRTALERRLHNQWRQEGGFGRGPVPGLANFQALGHCD
1	1	1	1	VLLSLRLLENRALGDAARYHLVOOLFPGPGVRDADEETLQESL
1	i	1		
	i .	1	1	ARLARRSAVHMLRFNGYRENPNLQEDSLMKTQAELLLERLQE
	1	Į.	1 .	VGKAEAERPARFLSSLWERLPQNNFLKVIAVALLQPPLSRRPQ
	1	1	1	BELEPGIHKSPGEGSQVLVHWLLGNSEVFAAFCRALPAGLLTL
	1			VTSRHPALSPVYLGLLTDWGQRLHYDLQKGIWVGTESQDVPWE
1	1	1	1	ELHNRFQSLCQAPPPLKDKVLTALETCKAQDGDFEEPGLSIWT
1	1	J	1	DLLLALRSGAFRKRQVLGLSAGLSSV
356	1095	3 .	1027	SHLIQHQRIHT*E*AHECNECGKAFSQTSCLIQHHKMHRKEKS
	1	1	1	YECNEYEGSFSHSSDLILQQEVLTRQKAFDCDVWEKNSSQRAH
	1	1	1	LVQHQSIHTKE/K/PHECNEDGKIF/NQIQA/LIQHLRVHTRE
	1	1		K\YVCTACGKAFSHSSAIAQHQIIHTREKPSECDE*RKGISVK
1	1	1	1	LLIDSC/RIYTSEKSYKCIECGKFFMLLVFSYLSHIWRIHMGI
1		1	1	KFHCCNECEKAISQRNYLV*YQIHAMQKDYKCN/EACMCVRRF
1		1	1	SHNPTLIQHQRIYT*ENLFGCSK/C/GRSFNRSLTSLCHIRIS
1	1	1		I/RRQEFDVTQMEKLDTTFQA/STQHRNNGEKIVDYLFMKLLI
1				HSPNLFHCTKI
357	1096	2638	2867	AVTLTAKICSFTPEPSETMSPPAGTNNSRHAALRAVTLPVKVC
35/	1036	2030	2007	SFTPEPARSRTHQKEETPNTSEHQKEQTPEAPP
1			٠ــــــــــــــــــــــــــــــــــ	OF IT BENKONTINGABILITATOBIIQABQIPBAFE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Phenyilalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \ possible nucleotide insertion)
358	1097	4747	4550	HAYSMOTDPRDESHERQYEHGETLEVNOPHSSSOYSIGFPOQI VORISKIET PURSEIDENTP PYPARAMOSTIGHEMAHOLI NEFTSKSRELSWHQVSKAPALGFSBSVLEKOQNTHKECSMOSSI IGKHHGADDSR'SILAPSTISLDKINLEKELENENHYHIGFE IGKHHGADDSR'SILAPSTISLDKINLEKELENENHYHIGFE SIPPTMSSSSDFMPKEENKRSCHVMIVERSIMLIKGSLOPG MWSSTMQKNIESIGGSIQLVEVPOSSNTSLASCHNYKKIRER HAADVENBOSKIWSTTIAPSYQLESKTENHIHFIDNSTQPL HFMPCANYLVKDLIABILHFCTNDQLLPRDHILSVWGSESFLQ YLMQLLSFMHIMKVSRCCLLTILRKYDFHLKYLLKYQENVYNI IESVKKICSVLGCVETKQITDAVMELSILLKGKENKYEDSNY YLMQLLSFMHIMKVSRCCLLTILRKYDFHLKYLLKYQENVYNI IESVKKICSVLGCVETKQITDAVMELSILLKGKENFYGSSET SAKGLIEKVTTELSTSIQLINVYCNSFYADFQPWVWPKTSS AKGLIEKVTTELSTSIQLINVYCNSFYADFQPWVWPKTSS AKGLIEKVTTELSTSIQLINVYCNSFYADFQPWVPKTTSV VKLFGIACATNNANLLAWTCLPLPPKKSILGSMLESHTLQSS PPVEMITEGHAVDSQPSVTULIDFPATGMYKRFDSEENSMI VKLFGIACATNNANLLAWTCLPLPPKKSILGSMLESHTLQSS PPVEMITEGHAVDSQPSVTULIDFPATGMYKRFDSEENSMI LEBELKECIKHIARISGKOTPLLISEKKRYMFYSFYCNNEN CSIPLYLGSAPGWDERTVSENHTLIRRYTESPDLEALGLING FORGAKANDESFSEKKIKIKLEGIGEEVKSASPORQSVIKES IGRUEFFGODWITCHLPHAPALCKGIDHDACSYFTSNADLIK TETNANLMGKNISIFFAGDOLVOMVDAVTLAKHRHSGLIGPL LENTIKKWSGNHHLKADYSKALNFFYSCAMGVVTFILGVC DRHODIMITTSCHMCHOMPHDFGKFLCAQTYGGIKRDAPFIFT TKKKKSLEGFYWLMNIHITLAQMSAISPASSTSOTFPOSS LLSTESSHERATILGPSKKSSNLYLIOVTENNETSLTKSFE DKREKYQLVISHDVKLTILVKHMKNIHLPDGSRSABANDFFF DKREKYQLVISHDVKLTILVKHMKNIHLPDGSRSABANDFFF DKREKYQLVISHDVKLTILVKHMKNIHLPDGSRSABANDFF DKREKYQLVILE LEFTSSEWRERTKSVPKCTUPTYNSILVVDEVTELQGHVLMLI VESSTUFVGGANGRASLTDSFPHWHLLEDSBARSTSOTFPOSS LLSTESSERATILGPSKKSSNLYLIOVTENNETSLTKSFE DKREKYQLVISHDVKLTILVKHMKNIHLPDGSRSABANDFF DKREKYQLVILETSSPERMYHLLEDSBARSTSTOTFPOSS LLSTESSERATILGPSKKSSNLYLIOVTENNETSLTKSFE DKREKYQLVISHDVKLTILVKHMKNIHLPDGSABANDFR PROSKLISBLOORGPASLTLDSPERMWHLLEDSBARSTSTOTFPOSS LLSTTSSERATILGPSKKSSNLYLIOVTENNETSLTKSFE DKREKYQLVISHDVKLTILVKHMKNIHLPDGSABANDFR PROSKLISBLOORGPASLTLDSPERMWHLLEDSBARSTSTOTPOSS LLSTTSSERATILGPSKKSSNLYLIOVTENNETSLTKSFE DKREKYQLVISHDVKLTTILVKHMKNIHLPDGSABANDFR PROSVLISBLOORGPASLTLDSBARSTSTOTPOSS LLSTTSSERATILGPSKKSSNLYLIOVTENNET
359	1098	679	346	FFLRWSLDSVTQAGVQSHDLSSLQPPPPGFKQSSLFGLPSSWE *RWVPPCPANFFVFLVETGFRHVGQAGLELLTSNDLPVSACQS AGITGVTTVPQRKSMILYEVTICYP

SEQ ID ID ID NO: NO of of Nucleic Acids Aci	beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, E=Fehrenylalanine, G=Glycine, II=Histidine, I=Isoleucine, IE=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
360 10	99 2	1601	FVRETIGDAVPELTASEDRIRIGOPHAISPELQPTGRVSLDYL PFRIMOGIAWATELCILVANTERSULVANTETPETEGFCALISL IFTYDAVGKHAINLITHTYPIGKOGSSAYGCLCOYDGOGNSGON IFTPROKDDIVSMDIGLINABLLPPETEGFRGGHRAGGGHT VPDIAFFSLLLFLTSFFFAWALKCVKTSRFPSVVKKGLSDFS SVLALLIGCGLDAFLGLAFTKLMVPERFEKTPGGGHRAGGGHT GFHLDLFWAVIMLITSALLDFHUMOTTAVLINABSFLGGGA GFHLDLFWAVIMLITSALLDFWYSATIVISALBUSLERSF ACAGEDENHIGIERGRITGLIVVFILTGASIFILAPVLKFIFMP VLYGTFIUMWAVALSIGDIFMYKKLLIV MPAKHQPDLLLIND FRALERVFSPOGLLINDLEHUMYSTKSTPAATIFFLHLGLVGDA FRALERVFSPOGLLINDLEHUMPEERSTJERGLERSFSSFSSS DOSELMYOPKAPEINISWN-LB-BEVRETIGGAVPRITSALDR RENGPHAINSBELGPTGRONYSULTVHFHAUGHVAWATHGLVIX TEASHLVRYFFFFTERGGCALISLIFIYDAVGKMAINTHTYDI KORPSSAVGCALCOYPOPGGRESONITERFENDEDDIVSMDLATI LIPPDQCTTAGGGHPGGPGCHTYDDIAFFSLLLBLTSFFFA MALKCVKTSRFFFSVURRGISDFSSVLAILLGCGLDAFGGIN GLWYVSANGUTUSLAFBHAUGHGAGGFLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFHLDLFCVAVALLLSIL LIPPDQCTTAYTIANBEYRLOKGAGFTLDLFCVAVALLTSIL LIPPDQCTTAYTIANGENGLOFSSVLATHGCGLOKFTGGLTT GLVVYTLKGASIFLAPVLKFTBMPUKGTFALTHSCULCTUMCT GITKSTPAATIFFHALLGLUGVPKALGRVFSSPGGLLINLDEINM BEBESIDERGLEBEISFSGEDSESDELSHINDEINM

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid	Predicted end nucleotide location corre- sponding to first amino acid	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Fehrenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lystine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide heserine, V=ossible nucleotide insertine.
1		residue	residue	(-possible flucicotide hisertion)
1	1	of amino	of amino	
		acid	acid	
)		sequence	sequence	
361	1100		2636	MGIKARRAGAAGGGGGGGGGGGGGAPPAGGDRAAAGDERRKY GLARGUVSVUTLLIAGAGDKOTILLIAGGGRDGCGTGGAANPAGGDRACAG LLAKTIJGRPVKENMAKYRRIOTLIYDALERPRGWALLYH YAL VPLIVLIG, CLILLAVL, TIFREYEVTYSGDHLLLETFAFIFGA EFALRIWAAGCCCRYKGWRGRIKFARRPLCHILDIFYLIASYPV VAVNGNGGWLATLATLEKSERFLOLIANILEDFGEGGTWALLIGA LCANGAUNGLITTALTIGYGKTPTHYMGSLITAAFFELI GVSFFALDAGILGSGLALKVJSCHROCHFEKBRERDAGELGA MRYYATNERTLIJVATHVFTSSVYSFFFFKEDLEAASGOKLG LLDUVZLSNPGSSNYKGKLFTPLANVDAIESPSKERPFVGUSA MRYYATNERTLIJVATHVFTSSVSFFFFFKEDLEAASGOKLG LLDUVZLSNPGSSNYKGKLFTPLANVDAIESPSKERPFVGUSN KERFETAFBRKATAFFQSS EDDAGTDDMASDGGYGNDP JE SPRIEPTVARFRATAFFGSS EDDAGTDDMASDGGYGNDP JE SPRIEPTVARFST SSET, LDDGRT WGKEVKSLKGGV, VGLIGR KLDFLINDHMGHNERLOVQUTSYTYTKGTSSPABARKEDDRY PRGGDSSGKVQATPPSSATTYVERPTVIDITLITLIGSFVGLSS FSIEDRETVARGTSFGRFTTYVERPTVIDITLITLIGSFVGLSS FSIEDREDVARGTSFGRFTTYVERPTVIDITLITLIGSFVGLSS FSIEDREDVARGTSFGRFTTYVERPTVIDITLITLIGSFVSGES FSIEDREDVARGTSFGRFTTYFFSFTYTTIDTTLITLIGSFYSG FSIEDREDVARGTSFGRFTSFGRFTTYFFSFTYTIDTTLITLIGSFTSG FSIEDREDVARGTSFGFFFSGFFTTSFTSFTTSFTTSFTTSFTTSFTTSFT

SEQ Fredical beginning nucleoside nucleoside plants in the beginning nucleoside nucleoside nucleoside nucleoside nucleoside of shamo acid segments of the property of the pr						
No.						
location orresponding to first amino acid residue. Acids Aci						
omaide Acids						
Acids Sonding bording but for a mino and a sequence of the sequence of the sequence of the sequence of a mino acid science of the sequence of a mino acid science of the seque				corre-	corre-	
to first animo acid residue of amino acid residue of acid residue				sponding	sponding	
acid residue of amino acid residue of amino acid sequence residue of amino acid sequence sequence of amino acid sequence sequence of amino acid sequence sequence of amino acid sequence sequence of amino acid sequence of amino acid sequence of a	1		110100			T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
residue of amino acid acid scipence sequence sequence sequence sequence voirtuesprenches in such acid voirtuesprenches in such	1					
of amino acid acid scipence 362 2101 1 5433 362 2101 1 5433 363 2101 1 5433 364 2 1001 1 5433 365 2 1001 1 55433 365 2 1001 1 55433 365 2 1001 1 55433 365 2 1001 1 55433 365 2 1001 1 5555 365	ļ					\=possible nucleotide insertion)
acid acid scilence sequence se	ļ					
SEQUENCE 1 5 4 3 3 PREQUEET PROPERTY PROPERTY SET SERVED AND AND AND AND AND AND AND AND AND AN	1					'
1962 1101 1 5433 RINGITES/DEPT/REVERSIVELDIN PROTECTION TO THE PROTECTION OF THE PRO]			
KKSTFVLTCLLSPDSKGLGVLCFLNTEWAFQVH		362				OVETLIGGSTYPFOROOMSPIRISII TOOMSSEPERTEILITATATAGATURSI LUNGSTYPFOROOMSPIRISII TOOMSSEPERTEILITATATAGATURSI LUNGITITATSSEPPTITESPIRISII TOOMSSEPERTEILITATATAGATURSI LUNGITITATSSEPPTITESPIRISII TOOMSSEPERTEILITATAGATURSI WITHITATAGATURSI WITHITATAGATURSI WITHITATAGATURSI WITHITATAGATURSI WITHITATAGATURSI WITHITATAGATURSI LUNGILLITATAGATURSI LUNG

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	l	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	İ	acid	acid	\=possible nucleotide insertion)
i	1	residue	residue	, F
		of amino	of amino	
ĺ	(acid	acid	
		sequence	sequence	
363	1102	2	2855	AAGATMERDGCAGGGSRGGEGGRAPREGPAGNGRDRGRSHAAE
	1	1	l	APGDPQAAASLLAPMDVGEEPLEKAARARŢAKDPNTYKVLSLV
	ł	1		LSVCVLTTILGCIFGLKPSCAKEVKSCKGRCFERTFG\NCRCD
	ŀ	1	1	AACVELG\NCCLGLPGGTCI\EP\EHIW\TCNKFRCG\EKRLT
1	1	1		RSLCACSDDCKD\RGDCLPSNLQFLCVQGE\KSWGRKNPCESH
		1	li .	LMEP\OCP\AGFETPSLPLLIF/SLDGFRAEYLHTWGGLLPVI
	1			SKLKKCGTYTKMMRPVYPTKTFPNHYSIVTGLYPESHGIINNK
	}	1		MYDPKMNASFSLKSKEKFNPEWYKGEPIWVTAKYOGLKSGTFF
1		1		WPGSDVEINGIFPDIYKMYNGSVPFEERILAVLQWLQLPKDER
1	1	1	1	PHFYTLYLEEPDSSGHSYGPVSSEVIKALQRVDGMVGMLMDGL
		1	1	KELNLHRCLNLILISDHGMEOGSCKKYIYLNKYLGDVKNIKVI
1		1		YGPAARLRPSDVPDKYYSFNYEGIARNLSCREPNQHFKPYLKH
l		l .	1	FLPKRLHFAKSDRIEPLTFYLDPOWOLALNPSERKYCGSGFHG
	1	1	l	SDNVFSNMOALFVGYGPGFKHGIEADTFENIEVYNLMCDLLNL
1	1	1	ŀ	TPAPNNGTHGSLNHLLKNPVYTPKHPKEVHPLVOCPFTRNPRD.
	ì			NLGCSCNPSILPIEDFOTOFNLTVAEEKIIKHETLPYGRPRVL
1	1	1	1	OKENTICLLSQHQFMSGYSQDILMPLWTSYTVDRNDSFSTEDF
	1	1	l	SNCLYODFRIPLSPVHKCSFYKNNTKVSYGFLSPPQLNKNSSG
1		1	l	IYSEALLTTNIVPMYQSFQVIWRYFHDTLLRKYAEERNGVNVV
1		1		SGPVFDFDYDG\RCDSL\ENLRQKRRVHPVTQENFWIPNSTSF
			i .	Y/VVLTSC\KDTSOTPLHC\ENL\DTLGFPFCLHRDWINSETC
1		1	1	\VHG\KHDSSW\VEEFVKCLHRA\RITGC*GTSLGLSFYQQRK
	1		1	EPVSDILKLKTHLPTFSOED
	-			
364	1103	657	1	TVPPPPGGPSPAPLHPKRSPTSTGEAELKEERLPGRKASCSTA
	1	1	1	GSGSRGLPPL\SPMVSSAHNPNKAEIPERRKDSTSTPNNLPPS
1		1	1	MMTRRNTYVCTERPGAERPSLLPNGKENSSGTPRVPPASPSSH
ì		1	1	SLAPPSGERSRLARGSTIRSTFHGGQVRDRRAGGWGWFFNKHA
1	1	1	ł	LQRAPRNAGAPSLMPGHRTVLINYGGGQDLKNWETCLAAPPNK
1				HRR
365	1104	1	1313	HTLHHSSPTSEAEEFVSRLSTQNYFRSLPRGTSNMTYGTFNFL
ì	1	1	1	GGRLMIPNTGISLLIPPDAIPRGKIYEIYLTLHKPEDVRLPLA
1	1	1	1	GCQTLLSPIVSCGPPG\VLLTRPVILG\MDHCG\EPSPDSW\S
1	1	1	1	LRLKKQSCEGSWEDVLHLGEEAPSHLYYCQLEASACYVFTEQL
		l		SRYALVGEALSVAAAKRLKLLLFAPVACTSLEYNILVYCLHDT
1	1	1	1	HDALNVVVQLEKQLQGQLIQEPLVLHFKDSYHNLRLSIHDVPS
			1	SLWKSKLLVSYQEIPFYHIWNGTQRYLHCTFTLERVSPSTSDL
1		1	1	ACKLWVWQVEGDGQSFSINFNITKDTRFAELLALESEAGVPAL
1	1		1	VGPSAFKIPFLIRQKIISSLDPPCRRGADWRTLAQKLHLDSHL
1	1	1	1	SFFASKPSPTAMILNLWEARHFPNGNLSQLAAAVAGTGPAGRW
1		1	1	LLSQCSEAEC
366	1105	1	343	GSAAGOVOOOORRHOOGKVTVKYDRKELRKRLVLEEWIVEQL
1 300	1 -103	1	1	GOLYGCEEEMPEVEIDIDDLFDAYSDEQRASKLQEALVDCYK
				PTEEFIKELLSRIRGMRKLSP\PQKKSV
				1

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide location	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of		corre-	K=Lvsine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-		P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding	sponding	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ł	to first	to first	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	Į.	amino	amino	
		acid	acid	\=possible nucleotide insertion)
		residue	residue of amino	
		of amino		•
		acid	acid	•
		sequence	sequence	TMLDGRVRWLTPVISALWEARMEDVIARMODEKNGIPIRTVKS
367	1106	2	1398	FLSKIPSVFSGSDIVQWLIKNLTIEDPVEALHLGTLMAAHGYF
	ļ	l .		
1	1	1		FPISDHVLTLKDDGTFYRFQTPYFWPSNCWEPENTDYAVYLCK
1	1	ł	ł	RTMQNKARLELADYEAESLARLQRAFARKWEFIFMQAEAQAKV
1	1	1	1	DKKRDKIERKILDSQERAFWDVHRPVPGCVNTTEVDIKKSSRM
	1	1		RNPHKTRKSVYGLQNDIRSHSPTHTPTPETKPPTEDELQQQIK
1	1	ļ	1	YWQIQLDRHRLKMSKVADSLLSYTEQYLEYDPFLLPPDPSNPW
1		[1	LSDDTTFWELEASKEPSQQRVKRWGFGMDEALKDPVGREQFLK
1	1	l	i	FLESEFSSENLRFWLAVEDLKKRPIKEVPSRVQEIWQEFLAPG
1	1	ì	ì	APSAINLDSKSYDKTTQNVKEPGRYTFEDAQEHIYKLMKSDSY
		1	İ	PRFIRSSAYQELLQAKK\KGKSLTSKRLTSLAQSY
368	1107	1	461	GTRDYPRIVNHLDHTYVTAPQAFMMFQYFVKVVPTVYMKVDGE
			1	VLTTNQIYVTRHEKAAYVLMGDQGLPGVFILYELSPMMVNLTE
1			1	IHTFFSLFLTIVGA\TIGGMFFEHFVINYLTHKWGLGFYFKNE
		1		NSLOGGHRTLYGVNFFMYWSLRGGS
369	1108	2	1522	SVWWNSOROFVVRAWGCAGPCGRAVFLAFGLGLGLIEEKQAES
303	1100	1-		RRAVSACQEIQAIFTQKSKPGPDPLDTRRLQGFRLEEYLIGQS
	1	1	1	IGKGCSAAVYEATMPTLPONLEVTKSTGLLPGRGPGTSAPGEG
		1		OERAPGAPAFPLAIKMMWNISAGSSSEAILNTMSOELVPASRV
1	1	1	1	ALAGEYGAVTYRKSKRGPKQLAPHPNIIRVLRAFTSSVPLLPG
1	1	1	1	ALVDYPDVLPSRLHPEGLGHGRTLFLVMKNYPCTLROYLCVNT
	1	1	1	PSPRLAAMMLLOLLEGVDHLVOOGIAHRDLKSDNILVELDPDG
		1	1	CPWLVIADFGCCLADESIGLOLPFSSWYVDRGGNGCLMAPEVS
1		1	i	TARPGPRAVIDYSKADAWAVGAIAYEIFGLVNPFYGOGKAHLE
	i		1	
	1	1	l	SRSYQEAQLPALPESVPPDVRQLVRALLQREASKRPSARVAAN
1	ł	1	1	VLHLSLWGEHILALKNLKLDKMVGWLLQQSAATLLANRLTEKC
				CVETKMKMLFLANLECETLCQAALLLCSWRAAL
370	1109	105	1252	RPLLRLAELPDHCYRMNSSPAGTPSPQPSRANGNINLGPSANP
1	1		1	NAQPTDFDFLKVIGKGNYGKVLLAKRKSDGAFYAVKVLQKKSI
i		1	l	LKKKEQSHIMAERSVLLKNVRHPFLVGLRYSFQTPEKLYFVLD
		1		YVNGGELFFHLQRERRFLEPRARFYAAEVASAIGYLHSLNIIY
1	1	1	1	RDLKPENILLDCQGHVVLTDFGLCKEGVEPEDTTSTFCGTPEY
			1	LAPEVL\RKEPYDRAVDWWCLGAVLYEMLHGLPPFYSQDVSQM
1	1	1	1 '	YENILHOPLOIPGGRTVAACDLLQSLLHKDQRQRLGSKADFLE
		1		IKNHVFFSPINWDDLYHKRLTPPFNPNVTGPADLKHFDPEFTQ
1	1	1	1	EAVSKSIGCTPDTVASSSGASSAFLGFSYAPEDDDILDC

SEQ SEQ Predicted Pendicted Polymer September 10 D D September 10 D D September 10 D D September 10 D D September 10 D D September 10 D D September 10 D D September 10 D D September 10 D D D September 10 D D D D D D D D D D D D D D D D D D	eucine, gine,
NO: NO: mucleoted nacional for for for for for for for for for for	gine, sine,
of of Nucleic Acids Acid	gine, sine,
Nucleic Amino Corre- Acids Acids Acids Signording to first a mino acid residue of amino acid acid residue of amino acid acid acid residue of amino acid acid residue of acid acid residue of acid acid residue of acid acid residue of acid acid residue of acid acid acid acid acid acid acid acid	sine,
Acids Acids sponding sponding to first amino acid residue of amino acid acid acid acid acid acid acid acid	
to first to first amino amino acid residue of amino acid residue of amino acid residue of amino acid acid residue of amino acid acid residue of amino acid acid acid residue of amino acid acid acid residue of amino acid acid acid acid acid acid acid acid	
acid acid \=possible mucleotide insertion) residue residue of amino of amino acid acid	deletion,
residue of amino acid acid acid	
of amino acid acid .	
acid acid	
	i
sequence sequence	
371 1110 3 1608 RPQTLKGHQEKIRQRQSTLPPPQGPAPIPFQHRGGDS	
VGPQVPLSEPGFRRESQEEPRAVLAQKIEKETQILN	
EWFVARLQKAAEAFKQLNQRKKGKKKGKKAPAEGVLT	
\SEGEFIDCFQKIKLAINLLAKLQKHIQNPSAAELVE	FLFGPL
DLIVNTCSGPDIARSVSCPLLSRDAVDFLRGHLVPKE	MSLWES
LGESWMRPRSEWPREPQVPLYVPKFHSGWEPPVDVLQ	EAPWEV
EGLASAPIEEVSPVSRQSIRNSQKHSPTSEPTPPGDA	LPPVSS
PHTHRGYQPTPAMAKYVKILYDFTARNANELSVLKDE	VLEVLE
DGROWWKLRSRSGOAGYVPCNILGEARPEDAGAPFEO	AGQKYW
GPASPTHKLPPSFPGNKDELMOHMDEVNDELIRKISN	IRAOPO
RHFRVERSQPVSQPLTYESGPDEVRAWLEAKAFSPRI	VENLGI
LTGPOLFSLNKEELKKVCGEEGVRVYSQLTMQKAFLE	
BLEELMNKFHSMNORRGEDS	
372 1111 3 1046 AWHEGLVSSPAIGAYLSASYGDSLVVLVATVVALLD	CETTVA
VPESLPEKMRPVSWGAQISWKQADPFASLKKVGKDST	
ITVCLSYLPEAG\QYSSFF\LYLR\QVIGFG\SVKIA	
GILSIVAQTAFLSILMRSLGNKNTVLLGLGFQMLQLA	
QAWMMWAAGTVAAMSSITFPAISALVSRNAESDQQG	
GIRGLCNGLGPALYGFIFYMFHVELTELGPKLNSNN	
IPGPPFLFGACIVLMSFLAALFIPEYSKASGVOKHS1	
TNTPERGSDEDIEPLLODSSIWELSSFEEPGNOCTE	
GFCIRHL	J-IRQRV
	COPULL
VNVSGRRFETWKNTLDRYPDTLLGSSEKEFFYDADS	
DPDMFRHVLNFYRTGRLHCPRQECIQAFDEELAFYGI	
DCCLEEYRDRKKENAERLAEDEEAEQAGDGPALPAGS	
WRAFENPHTSTAALVFYYVTGFFIAVSVIANVVETI	
RSSREQPCGERFPQAFFCMDTACVLIFTGEYLLRLF	
FLRSVMSLIDVVAILPYYTGLLVPKNDDVSGAFVTLI	
IFKFSRHSQGLRILGYTLKSCASELGFLLFSLTMAI	
FYAEKGTNKTNFTSIPAAFWYTIVTMTTLGYGDMVP:	
FGSICSLSGVLVIALPVPVIVSNFSRIYHQNQRADKI	
RLARIRLAKSGTTNAFLQYKQNGGLEDSGSGEEQAV	
FEQQHHHLLHCLEKTTCHEFTDELTFSEALGAVSPG	
SVSSQPVGPGSLLSSCCPRRAKRRAIRLANSTASVS	
LDMLAGL\RRSHAP\QSRSSL\NAKPHDSLDLNCDS0	
IISIPTPPANTPDESQPSSPGGGGRAGSTLRNSSLG	PCLFPE
TVKISSL	
374 1113 4 664 GWGKPFKDWTTGGQDTGGEPALLVGAGEGRAPRLNC	PSGQIRS
PGPGDLSIYDNWIRYFNRSSPVYGLVP/RSKTSARI	
FDTFDYVDKFLDPGEEGDKGHPETRTGEAED*ALAL	
SSHQAVARTAGSVILRLSDSFFLPLKVSDYSETLRS	
DLGALLEOHSISLGPLVTAVEKFEAEAAALGORIST	
PLOVEML	
ENZVANII	

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion. \
375	1114	1	1147	GIBEGGSLÄSGGFGFGINSLSQRLEYLADSKWCCDLVALTCS LLAVGCRITPGLYHLGRTVLCIDFWFVTRGLHHFTVKLQLGP KITVISKMMKDVFFELFFLGVKLVAYGVATEGLLRFRDSDFS LRRFVFRPYLDIFGQ1FGDWDVALMESKNCSSEGFMAHP GAQGTCVSQYAMNLVVLLLVIFLLVANILLVNLLLAMFSYTF GKVQGNSDLWKAGRYRLTREFHSRPALAPFFIVISHLRLLER QLCRRRHSPGPSSFALBHFFKVYLSKBABRKLLTWSSVSKENFFL LARABOKRESDSERLKKTSGKVDLALKQLGHIRSTSQLKVLE REVQCCSRLGWVBABLSSRALLPFGGPPPLFGSKD
376	1115	3	329	LIKLCKSKAKSCENDLEMGMLNSKFKKTRYQAGMRNSENLTAN NTLSKPTRY/QGELKBIKQDISSLRYELLEEKSQATGELADLI QQLSEKFGKNLNKDHLRVNKGKDI
377	1116	1	2043	LPLIHAGENREFMENSSITACYNELIQIEMGGVWSCPKLPACN SVFTALDKICHAETETSDEVICYNVAPAERMWYHKEGLIGK ELADLEKSDKNRADLLDTINTCIKKGEMGGVYYARRKSGDS LONGTEPHSPRYKNRRKESIDVKSISKGCTONNKGIHKHRSDS LONGTEPHSPRYKNRRKESIDVKSISRGSDAPSLQNRRYPSM ARHSNTIEAPITKVINIINAQENSPVTVABALDEVLEILRT TELYSPGLGTTEDEDHTSDLVGGLMTDGLRELSONSTYTRNV HQSHSRLAMPITINDVPCISQLLDNESSWPNIFELBATHK PRIVVIGLKVPSSFGVGSFTLRAWFQVIERANYSSNA YHNSTHADVLHATAFFLGKERYKGSLDQLDEVAALIAATVFQL TVKDTT\CNIFKNID/RGNHYETLGALIDWLATEMTKHFBH VNKFWISINEMMABIEDSDCCNPAKHFPSNJLILKRMIC CADVANPCRPLDLCIENAGRISEYFRQTDEEKRQGLPVWFV FDRNTCSIFKSQISFIVFITMFHADAFAHLGLAMHLADN KKHWKINDLKKKSLRDLSDFVFTMFHADAFAHLGLAMHLADN KKHWKINDLKKKSLRDLSDFVFTMFHADAFAHLGLAMHLADN KKHWKINDLKKKSLRDLSDFVFTMFHADAFAHLGLAMHLADN KKHWKINDLKKKSLRDLSDFRLKFBHGGLLTDKGGCSQ

ID II NO: N of ot Nucleic A Acids A	VO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Phenylalanine, G=Glycine, H=Histidine, L=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Argnine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
378 1	1117	1	3585	AFLSKVEEDDYPSEELLEDENNINAKRISKENPONGGROFOVN LOVPORAULTHIPPPEIESESKOETSMILDSEKTSETAAKUT TGGREPNTMUEKERPLADKKAQRPPERSOFFSELSKTSTARKOVT TGGREPNTMUEKERPLADKKAQRPPERSOFFSELSKTSTARKOVT TGGREPNTMUEKERPLADKKAQRPPERSOFFSELSKTSTARKOVT TGGREPNTMUEKERPLADKKAQRPPERSOFFSELSKENEHTEKY MOTESQGSAAABBEDDSFHHTPHTSVEPGHESDKEEDLJIISS FKEQGSLQFPOKYFNVHBLEALLQEMSSKLKSAQQESLPYMME KVLDKVFRASESQILSIAEKMLDTRVAENRICAGNENNIFERA AVLDDIQDLIYEVRKYRISTABETATLVMAPPLEESIGGAMEEM POHLEDDNESEKTAELIAVOVEPEPTHLOQRVIGOTEASEVSQK PNTEKOLDOPOTTADTPHOALDANKQPETABERSVTPLEN ALLLIYSMMYLIKSLVATLDPDVQFOPDFYGLPWFVFTTAL LGIASFAIFLWRTVLVVKDRVYQVTEQQISEKLKTIMKENTEL VQKLSNYEQKIKESKKIVQDETKROMILDSBAIKYKDKIKKE KNOGLIDDTAKNLRVMLESERSQNINGGNEDBAIKYKDKIKKSTEKLKD VISHMASSFSVQIALMERALSEKVKSEKHVQEENRAKTKKK KEGLQOEIEDMSKLHABLSSDIKSFEKSQKOLEVALTHKDDNI MALTNOTIONLLECESSESSGONKGGNEDBLANGGSVGGDNEN MALTNOTIONLLECESSESSGONKGGNEDBLANGGSVGGDNEN MALTNOTIONLLECESSESSGONKGGNEDBLANGGSVGGDNE MALTNOTIONLLECESSESSGONKGGNEDBLANGGSVGGDNE MALTNOTIONLLECESSESSGONKGGNEDBLANGGSVGGDNE MALDQVKLEDDPNSLAARAGLBEDEKKTHARQVETIALBLYG KERANLERLBLDTQKMALGESPITVTPMFSKYFTYRR LEDWGELDLEDDNSLAARAGLBEDEKTHARQVETIALBLYG KERANLERHKLALDITQKMALGESPITVTPMFSKYFTYRR TESMEDEDLOKTERSFKYGGSECSPLITVEPPFFFRASHARAGS FORMUSERSFGGSGSGSSGONSGONSGOSSGOSSGONSSSSSSSSSSS

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid.
NO:	NO:	nucleotide	nucleotide	
of	of.	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	710103	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	•
		of amino	of amino	
i	1	acid	acid	!
		sequence	sequence	
379	1118	3	2946	MAADSEPESEVFEITDFTTASEWERFISKVEEVLNDWKLIGNS
		1	l	LGKPLEKGIFTSGTWEEKSDEISFADFKFSVTHHYLVQESTDK
1				EGKDELLEDVVPQSMQDLLGMNNDFPPRAHCLVRWYGLREFVV
1			1	IAPAAHSDAVLSESKCNLLLSSVSIALGNTGCQVPLFVQIHHK
1		l	l	WRRMYVGECQGPGVRTDFEMVHLRKVPNQYTHLSGLLDIFKSK
				IGCPLTPLPPVSIAIRFTYVLQDWQQYFWPQQPPDIDALVGGE
1	ļ.			VGGLEFGKLPFGACEDPISELHLATTW\PHLTEGIIVDNDVYS
		1		DLDPIQAPHWSVRVRKAENPQCLLGDFVTEFFKICRRKESTDE
			ì	ILGRSAFEEEGKETADITHALSKLTEPASVPIHKLSVSNMVHT
	l	ł	l	AKKKIRKHRGVEESPLNNDVLNTILLFLFPDAVSEKPLDGTTS
		1		TDNNNPPSESEDYNLYNQFKSAPSDSLTYKLALCLCMINFYHG
				GLKGVAHLWQEFVLEMRFRWENNFLIPGLASGPPDLRCCLLHQ
1	Ì	1	ł	KLQMLNCCIERKKARDEGKKTSASDVTNIYPGDAGKAGDQLVP
	1	[1	DNLKETDKEKGEVGKSWDSWSDSEEEFFECLSDTEELKGNGQE
			1	SGKKGGPKEMANLRPEGRLYQHGKLTLLHNGEPLYIPVTQEPA
1			1	PMTEDLLEEQSEVLAKLGTSAEGAHLRARMQSACLLSDMESFK
1.		1		AANPGCSLEDFVRWYSPRDYIEEEVIDEKGNVVLKGELSARMK
1		1		IPSNMWVEAWETAKPIPARRQRRLFDDTREAEKVLHYLAIQKP
		1	1	ADLARHLLPCVIHAAVLKVKEEESLENISSVKKIIKQIISHSS
		1		KVLHFPNPEDKKLEEIIHQITNVEALIARARSLKAKFGTEKCE
				QEEEKEDLERFVSCLLEQPEVLVTGAGRGHAGRIIHKLFVNAQ
				RAAAMTPPEEELKRMGSPEERRQNSVSDFPPPAGREFILRTTV
		l		PRPAPYSKALPQRMYSVLTKEDFRLAGAFSSDTSFF
380	1119	2333	670	SPTRTGDRSVSLIVFLTEGKPTVGETHTLKILNNTREAARGQV
				CIFTIGIGNDVDFRLLEKLSLENCGLTRRVHEEEDAGSQLIGF
	,			YDEIRTPLLSDIRIDYPPSSVVQATKTLFPNYFNGSEIIIAGK
	1	l		LVDRKLDHLHVEVTASNSKKFIILKTDVPVRPQKAGKDVTGSP
	1	l		RPGGDGEGDTNHIERLWSYLTTKELLSSWLQSDDEPEKERLRQ
	1	Į.		RAQALAVSYRFLTPFTSMKLRGPVPRMDGLEEAHGMSAAMGPE
		l		PVVQSVRGAGTQPGPLLKKPYQPRIKISKTSVDGDPHFVVDFP
		1		LSRLTVCFNIDGQPGDILRLVSDHRDSGVTVNGELIGAPAPPN
	1.	l	1	GHKKQRTYLRTITILINKPERSYLEITPSRVILDGGDRLVLPC
		1	1	NQSVVVGSWGLEVSVSANANVTVTIQGSIAFVILIHLYKKPAP
			1	FORHHLGFYIANSEGLSSNCHGLLGQFLNQDARLTEDPAGPSQ
				NLTHPLLLQVGEGPEAVLTVKGHQVPVVWKQRKIYNGEEQIDC
	1	1		WFARNNAAKLIDGEYKDYLASHPFDTGMTLGQGMSREL
381	1120	102	426	VPLESLSCSHADNWKQELTKFISPDQLPVEFGGTMTDPDGNPK
1	1			CLTKINYGGEVPKSYYLCKQVRLQYEHTRSVGRGSSLQVENEI
			1	LFPGCVLRCPEVLQHLQPGSF

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, P = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
382	1121	3	3726	PAAPEHTDPSEPRGSVSCCSLLRGLSSGMSSPLLPAPUCNENK AIFTUNAKTELBLUANDKAGGLGYSSODLJGGKLTOFFERSD SDVVBALSEBHMBADGHAAVVGTVVDIISISGEKIPVSVMK RMQGRRLCCVVVLEPVERSVWAPGSGSGVTYSCDSLFHILB GYVSGEDVAGGHTDLIPSVQLPPSGGHTPKNLKLOGSVGRAF GYPSELSLKIKSGPSSEBATTGBRAPVSGTASVWSVCTISG LITLIPDGTTHGINSISPALTLGGYGKTELLGKNITFLIPGYS MUDLANSSLQLPDLASCLIVNISGGGLETTLDPWGGDDPABG GQDPRINVLAGGHVVPRDEIRKLMSGOIFTGTGTELIAGGG LLSCLSPQAPGUPAVPSGLEVHGGALPHOQOITALGRGD LASCLSPQAPGUPAVPSGESDLWAGAAVKPOATGOLAGGD LASCLSPQAPGUPAVPSGSGDLWAGAAVKPOATGOLAGGD LASCLSPQAFGUPAVSGSGLWAGAAVKPOATGOLAGGD WCCLOCKAOLBEMGVSGPSGDLWAGAAVKPOATGOLAGD GWCLOCKAOLGEMGVSGPSGDLWAGAAVKPOATGOLAGD GWCLOCKAOLGEMGVSGPSGDLWAGAAVKPOATGOLAGD AGVENDREELQTCLIKEGLSGLBJABAUVPHAELVPTECQAVT AFVSSCDLGGRDLCGGTGSSSACYALATDLPGGLBAVEA,GEV DVNSSTSWALKELFFSDTOTGYSSXCCATSBLETTSSLAVGS DPTWSLLGGGSCVLIDDFELLLLTGTCVDLGGGRFRESCVGH DPTWSLLGGGSCVLIDDFELLLLTGTCVDLGGGRFRESCVGH DPTWSLGGGGSCVLIDDFELLLLTGTCVDLGGGRFRESCVGH DPTWSLGGGGSCVLIDDFELLLLTGTCVDLGGGRFRESCVGH DPTWSLGGGGSCVLIDDFELLLLTGTCVDLGGGRFRESCVGH DPTWSLGGGASTGVTWATAGAGGETGGGATGVTTKLDGFFRUTGAAG ESCOKYSTMSPLGSGAFGVWATAVERENKEVVVFTKKEKV LECKHEDFELGGVLLGKTLTALERVEHMAITKULDIFENGGFFC LVWEKRGSGLDLFAFIDRHFRLDBFLASYTFROYRAG\QSRLV LECKHEDFELGYLLGTALTARVEHMAITKULDIFENGGFFC LVWEKRGSGLDLFAFIDRHFRLDBFLASYTFROYRAG\QSRLV ENDFCCLBETVAAATURSKELMSLVSLLIDFGSAAYLENG SAVGVLKLKULJITHINDKSNIVLARDFTKLILDFGSAAYLENG KLYYTTCGTTLEYCAPEVLMANDYKGPSLEMMSLGVULTLTLVFE ENPFCCLBETVAAAHDVRSCHMSLGGLGFVPERRTTL EKLYTDPWYTCPVILADYTWEEVFRVNKPESGVLSAASLEMGN RSLSDVAQAGBLGGFFVPERSPNOGGCLIFPPERRTTL EKLYTDPWYTCPVILADYTWEEVFRANKEGSGVLSAASLEMGN
383	1122	177	1365	GGTSAATCRPISPYTISISPTGLCISDLVVAVNGUVILVETFM LKGGNFFSKHVPNSYLVFLTIYGVELFHLKVAGLGPVEYLSSGW NLEDPSVTVPAFIGLIALALMMEPFYFIVURFLQLLEHKLK ERYRNYLDTMFELLERMASIGUTLLIFYYSFALVGMEFFGGIV FPNCCHTSTVADAYRMMINITVORNTVVEBGYYLNMFDNILMS FVTLFELTVUNNWYLIMBGVTSOTSHWSLLYFMFFYTTWVW TITVAFILRAPVFRNNYSRKMODSBVDGGITLERETSKEBLVA VLBLYPEARGASDUTRILETLSQMERYQGISWVFLGRRSKTK SDLSLKMYQBEIQBWYBEHARBQBQQRQLSSSAAPAAQQPPGS RQRSQTVT

SEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine.
ID I	ID ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine,
Of Nucleic	OT Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Ammo	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1 1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	\=possible nucleotide insertion)
		residue	residue	v=possible nucleoride insertion)
1 1		of amino	of amino	
] }		acid	acid	
		sequence	sequence	
384	1123	1	986	LAGVGTQAPPRRPGGEMAAGQNGHEEWVGSAYLFVESSLDKVV
304	1123	-	1 200	LSDAYAHPQQKVAVYRALQAALAESGGSPDVLOMLKIHRSDPO
		1		
				LIVQLRFCGRQPCGRFLRAYREGALRAALQRSLAAALAQHSVP
1 1		ĺ	í	LQL\DLRAGAERLEALLADEERCLSCILAQQPDRLRDEELAEL
1		l	l	EDALRNLKCGSGARGGDGEVASAPLQPPVPSLSEVKPPPPPPP
		l	1	AQTFLFQGQPVVNRPLSLKDQQTFARSVGLKWRKVGRSLQRGC
				RALRDPALDSLAYEYEREGLYEQAFQLLRRFVQAEGRRATLQR
1		ł	l	LVEALEENELTSLAEDLLGLTDPNGGLA
385	1124	2409	399	SSKPKLKKRFSLRSVGRSVRGSVRGILQWRGTVDPPSSAGPLE
				TSSGPPVLGGNSNSNSSGGAGTVGRGLVSDGTSPGERWTHRFE
				RLRLSRGGGALKDGAGMVQREELLSFMGAEEAAPDPAGVGRGG
1 1		1	i	GVAGPPSGGGGOPOWOKCRLLLRSEGEGGGGSRLEFFVPPKAS
		1	l	RPRLSIPCSSITDVRTTTALEMPDRENTFVVKVEGPSEYIMET
			ļ	VDAOHVKAWVSDIOECLSPGPCPATSPRPMTLPLAPGTSFI.TR
			1	ENTDSLELSCLNHSESLPSODLLLGPSESNDRLSOGAYGGLSD
		į.		RPSASISPSSASIAASHFDSMELLPPELPPRIPIEEGPPAGTV
1		j	J	HPLSAPYPPLDTPETATGSFLFOG\EPEGGEGDOPLSGYPWFH
		1		GMLSRLKAAQLVLTGGTGSHGVFLVRQSETRRGEYVLTFNFOG
		ŀ	1	
		l		KAKHLRLSLNEEGQCRVQHLWFQSIFDMLEHFRVHPIPLESGG
1 1		ļ	l .	SSDVVLVSYVPSSQRQQGEQSRSAGEEVPVHPRSEAGSRLGAM
			l	RGCAREMDATPNASCTLMPFGASDC\EPTTSHDPPQPPEPPSW
			1	TDPPQPGEE\EASR\APGSGGQQAAAAAKERQEKEKAGG\GGV
		l		PEE\LVPVV*LVPVGELGEGHRPQAQEAQGRLGPGGDAGVPP\
				MVQLQQSPLGG\DGEEGGHPR\AI\NNQYSFV
386	1125	2204	1042	FRAPVGTAARSPQVVIRRLPPGLTKEQLEEQLRPLPAHDYFEF
1		1	1	FAADLSLYPHLYSRAYINFRNPDDILLFRDRFDGYIFLDSKDP
1		1	l	EYKKFLETYCVEEEKTSANPETLLGEMEAKTRELIARRTTPLL
		l	i	EYIKNRKLEKQRIREEKREERRRRELEKKRLREEEKRRRREEE
		l	1	RCKKKETDKOKKIAEKEVRIKLLKKPEKGEEPTTEKPKERGEE
		1	ĺ	IDTGGGKQESCAPGAVVKARPMEGSLEEPQETSHSGSDKEHRD
1		l	1	VERSQEQESEAQRYHVDDGRRHRAHHEPERLSRRSEDEQRWGK
				GPGQDRGKKGSQDSGAPGEAMERLGRAORCDDSPAPRKERLAN
		1		KDRPALQLYDPGARFRARECGGNRRICKAEGSGTGPEKREEAE
387	1126	176	800	GVWGVCVSGLLQVGSQRAQAWRAWSPMETPLTGTFLWPHIPOG
1 30,		-/-	1	LFFDDSYGFYPGQVLIGPAKIFSSVQWLSGVKPVLSTKSKFRV
1		1	I	
				VVEEVQVVELKVTWITKSFCPGGTDSVSPP/PSVITQENLGRV
		I	I	KRLGCFDHAQR/HAWGALSVCLPSQGRASQDCLGMSRKKLRPG
				GGLYGQEGEAPVEEAGCADHVMLPRHPVFPGPFHGRPR

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine.
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine.
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
	1	acid	acid	
		sequence	sequence	'
388	1127	1	2017	FRDSSPCSAFEFHCLSGECIHSSWRCDGGPDCKDKSDEENCAV
300	112/	*	2017	ATCRPDEFQCSDGNCIHGSROCDREYDCKDMSDEVGCVNVTLC
J	J	J	l	
	l	ł	1	EGPNKFKCHSGECITLDKVCNMARDCRDWSDEPIKECGTNECL
		1	i	DNNGGCSHVCNDLKIGYECLCPDGFQLVAQRRCEDIDECQDPD
	1			TCSQLCVNLEGGYKCQCEEGFQLDPHTKACKAVGSIAYLFFTN
	I	l	l	RHEVRKMTLDRSEYTSLIPNLRNVVALDTEVASNRIYWSDLSQ
		}		RMICSTQLDRAHGVSSYDTVISRDIQAPDGLAVDWIHSNIYWT
	1	1	ſ	DSVLGTVSVADTKGVKRKTLFRENGSKPRAIVVDPVHGFMYWT
				DWGTPAKIKKGGLNGVDIYSLVTENIQWPNGITLDLLSGRLYW
				VDSKLHSISSIDVNGGNRKTILEDEKRLAHPFSLAVFEDKVFW
	l	l		TDIINEAIFSANRLTGSDVNLLAENLLSPEDMVLFHNLTQPRG
	i		i	VNWCERTTLSNGGCQYLCLPAPQINPHSPKFTCACPDGMLLAR
				DMRSCLTEG\EAAVATQETSTVRLKVSSTAVRTQHTTTRPVPD
	1			TSRLPGATPGLTTVEIVTMSHQALGDVAG\RGN\EKKPSSVRA
		l		LSIVLPIV\LLVFLCLGVFLLWKNWRLKNINSINFDNPVYQKT
1			ŀ	TEDEVHICHNQDGYSYPSRQMVSLEDDVA
389	1128	2299	1148	RIPGLGPPGSPPPPPHVRGMPGCPCPGCGMAGPRLLFLTALAL
				ELLGRAGGSQPALRSRGTATACRLDNKESESWGALLSGERLDT
			i	WICSLLGSLMVGLSGVFPLLVIPLEMGTMLRSEAGAWRLKOLL
1				SFALGGLLGNVFLHLLPEAWAYTCSASPGGEGOSLOCOCOLGL
1		Į.	l	WVIAGILTFLALEKMFLDSKEEGTSQAPNKDPTAAAAALNGGH
				CLAOPAAEPGLGAVVRSIKVSGYLNLLANTIDNFTHGLAVAAS
	1		l	FLVSKKIGLLTTMAILLHEIPHEVGDFAILLRAGFDRWSAAKL
	[1	1	QLSTALGGLLGAGFAICTQSPKGVEETAAWVLPFTSGGFLYIA
				LVNVLPDLLEEEDPWRSLOOLLLLCAGIVVMVLFSLFVD
390	1129	1	523	GKVSAGQAGADRTLRRAPEPRFSOEPTGNSAYPOLRFFLDPOG
1 220	1 3	l -		RDLKPSALVPPTRSHTGRRPWLHTOPLPGPOGRAWGPTC/TPA
	1		l	CVDRVLESEEGRREYLAFPTSKSSGOKGRKELLKGNGRRIDYM
1	1	1	l	LHAEEGLCPDWKAEVEEFSFITQLSGLTDHLPVAMRLMVSSGE
		1	l	EEA
391	1130	1459	765	
132T	1130	1459	165	PCGGIRLSASEAATLFGYLVVPAGGGGTFLGGFFVNKLRLRGS
	l			AVIKFCLFCTVVSLLGILVFSLHCPSVPMAGVTASYGGSLLPE
	1			GHLNLTAPCNAACSCQPEHYSPVCGSDGLMYFSLCHAGCPAAT
1	1	1	1	ETNVDGQKVSGAAAYRPCPPLDPGKGPPCLPLVIGAIVGLPRC
	1			TETVAVSLRIFPLVLAM\HCREMHFNLSEKAPPSGFHIRCNFL
				YIPQQHSCTNGNSTMCP
392	1131	1668	962	LLRKVGAPGGARGVIRLLDWFERPDGFLLVLERPEPA\QD\LF
	1			DFITERGALDEPLARRF\FAQVLAAVRHCHSCGVVHRDIKDEN
	1			LLVDLRSGELKLIDFGSGALLKDTVYTDFDGTRVYSPPEWIRY
	1	1		HRYHGRSATVWSLGVLLYDMVCGDIPFEODEEILRGRLLFRRR
	1	1	l	VSPECQQLIRWCLSLRPSERPSLDQTAAHPWMLGADGGAPESC
	1			DLRLCTLDPDDVASTTSSSESL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 817	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, E = Phenylalanine, G = Glytcine, H = Histidine, I = Isoleucine, K = Lystine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, O = Glutamine, R = Argimie, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, *=Stop Codon, /=possible nucleotide deletion, \phi=possible nucleotide insertion) GKNSQKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEREVLG GKNSQKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEREVLG GKNSQKASPVDDEQLSVCLSGFLDEVMKKYGSLVPLSEREVLG SLKDVPNSDDFSNRKPFINNEDITNYRARHGKCNFRI FYNNSHMLD
				MDDLATLDGONWLINDQVINNYGELIMDAVPDKVHFPNSFPHRQ LYPKGYMGVKKWPKKUDLEFKSLILLIFILHBUHRGILTYTIS RIISFYDSQGIHFKFCVENIRKYLLTEAREKNR\LNLQGWQTA VTKC1PQQKMDSDCGVFVLQYCKCLAL\KQFFQFSQEDMFRVR KRYYKBLCEGIMD
394	1133	1252	628	PPGG***QSSAKHA/FP/KGYRHPALEARLGRRRTVQBRAELLR CRRAGISAPUVFPUVPASHCLYMEDISOSYTVEDYLGSTMET K\TPGGLSNLAKTIGQVLARMHDEDLHGDLTTSNMLKPPLE QLNIVLIDFGLSFISALPEDKGVDLYVLEKAFLSTHPNTETVF ZAFLKSYSTSSKRAPPULKKLDEVRLEGKKRSMYG
395	1134	2	1595	RACVFAPEDMYGGSAHFSASLIDRIIKMRKETEARKVULANGL LINVSMAGHIYTEMTGKLISSYNNYYFWENYIELALSISJEN ALFDFWRYFKYTVAPTSLVVSPGOGTLLGIKTAVVOTTPHIDL AATOIFPAPBPSIGGGSVISYSPBROFSTSKFTTGCKTHTYS PGLGGLSGGGSYSPGVTTSPVSGYNKLASFSSPSPSFYTT VGPVESSLGRSKYRSSPVTVMSPTKSENWGDYADTLKKROYQ LACRSQAPCANKDEADLSSKQAAEEVVARVARRQLIDHMOSW TAKFRWNINTILVPLVQEIESVSTQMRRMGCPELGTGSASIT SLKQALVKAPLIPTANTIVQTLDLTPNGSTLFRRIKELSGGG CMSFFANRAGDFKGRKNDTDLTDTSAITHFVGTYJLDSRLPP HPKYPDGKTFTSGHFVQTPHKPDVTNENVFCIYQSAINPPHYE
396	1135	16	1542	SSAVEFINENNSVVOVILAAGADPHAGDD FSSVYTATAEOGH SLEVLITREDPFNRLNINBASPKGCTLHAVALADDVETYTAL LOGGANPLORNEMSHTPLDVAREGEVMKLLRTSEAKYOSKORK REAEBERREPPLEGRIKEHI IGOSSAIATVGAAIREKENOWYDE BEPLVYLFLYGSSGIGKTELAKOTARYMIKDAKKGGFIRAVVLFDEVD KAHPDVLTIMLOLFDEGSLITORGKTITOLGALFINTSSVAD EIAQHALQLRQEALEMSRNRIARNIGDVQISDKITISKNFKEN VIRPILKAHFERDEFIGSINEIVEPPEPGSBLICVNKELNF WAKRAKQKHNITLLIMDRSVADVIJOGNVHYGARSIKHEVERR VONQLAANYEODLIP GGCTLRITVEDDDKQLKSPELPSPQA KRELPKILRIEI IDKOSKTRELDIRAJELIPSKVCNTI
397	1136	1848	1602	SSCDRERHGSLGMMSGSFILCLALVTRWSPQASSVPLAVYESK TRKSYRSQRDRDGKDRSQGMGLSLLVETRKLLLSANQG

			Predicted	
SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, i=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
398	1137	1497	717	HTPMA/FEL/SFLSTST/VYTFVILERMLINLISVARTISFN CCALOMFFIGAFINCLLGUNWGYDEVAAGLGHEHYPTIMSN QVCGKLAAACAIGGFLASLIVVNLVPSLPFCSTRKVNHYPCDI SAVILLACTNIDVNGFVIFICGGVLVLVVPFLEIGVSPCILRT ILKIPSABGRRKAFSTCASHLSVVIVHYGCASFIYLRPTANFV SNKDRLVTVTYTIVTPLLNPMVYSLRNKDVQLAIRKVLGKKGS LKKYN
399	1138	2	1185	EPPAARTYPEEKIKSMTSRDNYKAGSEEAA\AAAAAAVAAAAA AAAAAPYVSGARKYKLIGESDPERSDYEEGQLOEBESBAKYK SGIRQMRLFSQDECAKIEARIDEVVSRAEKGLYNEHTVDRAPL KNYYFFGBGYTYGAQLOKRGPGQBELPPEGVDEIEWYHQLV IQKLUMEHYJBGFYNSSYLINDYQPGGCTVSHVDPTHIFERPI VSVSFFSDSALCFGCKFGFFPIRVSBPVLGLYBRGSVTVLSG VAADETIHCTRPODIKERFAVIILEKTRLDAFLEFKSLSSYL LPPSYASDRLSGNNRDPALKPKRSHRKADPDAAHRPRILEMDK EENRRSVLLPTHERRGSFSSENYWEKSYESSEDCSEAAGSPAR KVMMRH
400	1139	60	1699	VTWHFFYCSDERNGHYIIPOMADRSROKCMSOSIDISELAKAA KKKLQALBNIFPELAMDVYDEVDERNDAWLATOMHSTYT BESAVPFLEVANFEYSATENGGEOKLARFNAREFATLITOILSE AKRENGGESLESFTDNIELSLERSGOBLDOHUYDSVASDEN GEPLESTGATESNRARSMDESDLESGAVT\LOEVLELKKALAT SEARVOGUMKUNSSLSDELN ERLÖREIFERT\LIKLARSHLAT SEARVOGUMKUNSSLSDELN ERLÖREIFERT\LIKLARSHLAT SEARVOGUMKUNSSLSDELN ERLÖREIFERDAATSVAVFAGLYRIR RÖYSBASVYFTPSSPLLSCSGEGSRHTSKLESKHSGASDYEN TOSGOPLIGLEGKRFLEIGKEBFHFELBDAITSVAVFAGLYRIR TOSGOPLIGLEGKRFLEIGKEBFHFELBLADLOFLDPGIFFST DVILKTEGVYTHIOTGLIRAGAFFKHDSFYCSEKIHLAVTEMA SLFPKRPALBEVESSIRLLANSAYRLOSECRKTVPERGAPVD FOLLTOGUVCAVDIAKARGVFTHTSFYCSEKIHLAVTEMA FOLLTOGUCAVDIAKARGVFTHTSFYCSEKIHLAVTEMA

SEQ	SEQ	Predicted	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
ĺ		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
1		acid	acid	\=possible nucleotide insertion)
		residue	residue	r position individual insertion,
		of amino	of amino	
		acid	acid	
		sequence	sequence	
401	1140	1	1863	RYLSYGSGPKRFPLVDVLQYALEFASSKPVCTSPVDDIDASSP
			i	PSGSIPSQTLPSTTEQQGALSSELPSTSPSSVAAISSRSVIHK
		1	[PFTQSRIPPDLPMHPAPRHITEEELSVLESCLHRWRTEIENDT
ĺ			i	RDLQESISRIHRTIELMYSDKSMIQVPYRLHAVLVHEGQANAG
			1	HYWAYIFDHRESRWMKYNDIAVTKSSWEELVRDSFGGYRNASA
	1	i .	l	YCLMYINDKAQFLIQEEFN/K/ETGQPLVGIETLPPDLRDFVE
		1		EDNORFEKELEEWDAQLAQKALQEKLLASQKLRESETSVTTAQ
1	i	i	1	AAGDPKYLEQPSRSDFSKHLKEETIQIITKASHEHEDKSPETV
				LQSAIKLEYARLVKLAQEDTPPETDYRLHHVVVYFIQNQAPKK
ì	1	1		IIEKTLLEGFGDRNLSFDERCHNIMKVAGAKLEMIKPEEVNLE
l		1	Ì	EYEEWHQDYRKFRETTMYLIIGLENFQRESYIDSLLFLICAYQ
1	ì		Į.	NNKELLSKGLYRGHDEELISHYRRECLLKLNEQAAELFESGED
			i	REVNNGLIIMNEFIVPFLPLLLVDEMEEKDILAVEDMRNRWCS
	l .	1		YLGOEMEPHLOEKLTDFLPKLLDCSMEIKSFHEPPKLPSYSTH
				ELCERFARIMLSLSRTPADGR
402	1141	1	465	AQVYVRMDSFDEDLARPSGLLAQERKLCRDLVHSNKKEQEFRS
		1		IFQHIQSAQSQRSPSELFAQHM\VPIVHHVKEHHFGSSGMTLH
1	1	1	1	ERFT\KYLKRG\TEQEAAKNKKSPEIHRRIDISPSTFRKHGLA
ł				HDEMKSPREPGYKDGHNSKNELQRVNFY
403	1142	2	369	TYTFCFSLMI\ILLTIIQGLILEAFGELRDQLDQVKEDMETKC
		1		FICGIGNDYFDTVPHGFETHTLQEHNLANYLFFLMYLINKDET
		Į.	1	EHTGQESYVWKMYQERCWEFFPAGDCFRKQYEDQLN
404	1143	3115	557	FRRKGGGGPKDFGAGLKYNSRHEKVNGLEEGVEFLPVNNVKKV
			1	EKHGPGRWVVLAAVLIGLLLVLLGIGFLVWHLOYRDVRVOKVF
		1	1	NGYMRITNENFVDAYENSNSTEFVSLASKVKDALKLLYSGVPF
1	1			LGPYHKESAVTAFSEGSVIAYYWSEFSIPQHLVEEAERVMAEE
ľ	1	1	1	RVVMLPPRARSLKSFVVTSVVAFPTDSKTVORTODNSCSFGLH
		1	1	ARGVELMRFTTPGFPDSPYPAHARCOWALRGDADSVLSLTFRS
l		l		FDLASCDERGRHLV\TVYNT\LSPMEPHA\LVQLCGTYPPSYN
i .		1	1	LTFHS\S\QNVLLITLITNTERRHPG\FEATFFQLPRMSSCGG
1	1		1	RLRKAQGTFNSPYYPGHYPPNIDCTWNIEVPNNQHVKVRFKFF
	1	1		YLLEPGVPAGTCPKDYVEINGEKYCGERSQFVVTSNSNKITVR
1	1	1		FHSDQSYTDTGFLAEYLSYDSSDPCPGQFTCRTGRCIRKELRC
1	1	1	1	DGWADCTDHSDELNCSCDAGHQFTCKNKFCKPLFWVCDSLNDC
1	1	1	1	GDNSDEOGCSCP\AOTFRCSNGKCLSKSOOCNGKDDCGDGSDE
1		1		ASCPKVNVVTCTKHTYRCLNGLCLSKGNPECDGKEDCSDGSDE
				KDCDCGLRSFTROARVVGGTDADEGEWPWQVSLHALGQGHICG
1	1	1	1	ASLISPNWLVSAAHCYIDDRGFRYSDPTOWTAFLGLHDOSORS
1	1	1		APGVOERRLKRIISHPFFNDFTFDYDIALLELEKPAEYSSMVR
	1	1		PICLPDASHVFPAGKAIWVTGWGHTQYGGTGALILQKGEIRVI
1	1	1		NOTTCENLLPOOITPRMMCVGFLSGGVDSCOGDSGGPLSSVEA
1	1	1		DGRIFQAGVVSWGDGCAQRNKPGVYTRLPLFRDWIKENTGV
				DOUTE AND A SMODGCWALTHUR AS I LUDE DE KDALVERALA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Sezine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, *=Stop Codon, /=possible nucleotide deletion, \ = possible nucleotide insertion)
405	1144	1	424	RHEEDLGMLWENTEFTTCSFFVRGQEFKAHKSVLAARSFVFNA MFEHSMESSKKNIVENIADLDEPVEKEMMFI TYTGRAPHLOKMA DNILJAADKYALERIKUMCEKALCSNISVENVADTLVLADLHS ARQLKAGALTFINGSVENGGEKOGKNMSNSQATDLMETS GKSMIOSHPHLVABAFRALASAQGFOGIPERELKOS'NIGHI WENTFFTTCSFFVRGGEFKHKSVLAARSFVENMFEHSEME KRORVEINDLDEPVFREMMFIYTGRAPNLDRWADNILLAAADK YALERIKVMCEKALCSNLSVENVADTLVLADLHSGRTVESTSH KLY
406	1145	1	1021	QRGGIFGKFQEDGGSVDWALGPFWGIFQADFGCMRFYLSAQTS DPULRM*WGD9FISHFBICLDGGGGAQGTTSGLCLQQCCPLS CPNIPSRHKRWRL*AALVAGSRGSCTLRS*R*RTPLPVTRNLF R/CHLHLHPTGDLRVHVHQBCLLHGBUPPGAALLQCGGCDLRG EAAGGLHFGGHACLRGSVHRERQOHLPV\PSRCF5GAREGH LSALLAWHHVRHCTPLPALLVC\PIKVALLIPVAYLHVFWAFLLV FSFISEHMVGGVGVIILITGVFIFFLGVFWRSKPKVVHRLTES MTHWGGELCFVVYPQDAPEEENOPCPF9LLPATDKPSKPC
407	1146	2	1280	AAALVAEVLALLEDIRHLFYGGVSFGNISSNYLESSAISDDIL SPDEBGFGSGKHFTELGLVALLEQAAYFYFMGGLYEAVHEVYK NLIPILEAHRDYKKLAAVHGKLQEAFTKIMHQSSGWERVFGTY FRVGFYGAHFGDLDBGEFVYREPSITKLAEISHRLEEFYTERF GDDVVBIKOSNEVNEKALDSGKAYLGITYVEPYFDTYELKDR VTYFDRNYGLRTFLECTFFTPGGRAHGELPBGHERKTLLSTDH AFPYIKTRIKVGRREFULTPV VEVA LEDMOKKTRELAFATEQ DPDARMLQWLLGGSVGFTVNGGPLEVAGVFLASIEDDFKLFP. HHNKLRLGFKDF*KKCEDALRKNKALIGPDQKEYHRELERNY CREREALQPLLTGREPGLHAPTPFGERNSLARASFFKADL
408	1147	55	651	GEGQQMOSTPLSPLOFTVADFLINLAWNTSAAAW*VLSGRWYEK VLPGREGSERK-GMASSAANLHSAPRALQ\SLFQQLIYGLIY HSWFQAGR*GFGGASSSPGPQSELRRLHGEGGVYD*GRPETLP GSVGGABALWALADPABABGSPETRESSCVMKQTQYYFGSVNA SYNAIIDCONGSRCWQMGGTRQQGRIL
409	1148	1855	904	VAGIPACIDN/FIRALASTACROMYSSKPTERAVSIGPDOD DVUBITENSOGLEMENSGGENGSGUSUGHLAGGSSLKPDRV VGGEGASVDSWPWQVSIQYDKQHVCGGSILDPHWVLTAAHCFR KHTDVFNNKVRASSKKGSFPSLAVAKIIILEFNPWYEXDNDI ALMKLOFPLITESTVEPICLFFPDEELTFATILMIIGWGFTKQ NGGRMSDILLQASVQVIDSTRCNADDAYQGSVTEKWMCAGIPE GGVDTCQGDSGGPLMYGSDQMHVVGIVSWGYGCGGFSTPGVYT KVSAYLNWIYNVWKAEL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
410	1149	3	964	TISTYRWNSRIGWUIGVAIGKRAV POLV\AFEBAYARADKEA PRICHKGSWEGSNOLGEGOAPMAHTMPKLAFSMSSAYJVAY AVYAVAHGLHQLLGCASGACSRGRVYFWQLLEQIHKVHFLLHK DTVARTDNRIPDLISSUNIIANDWNGPKNTFTVLGSSTWSFVQLN INSTKIQWHGKDNQVPKSVCSSDCLEGHGRVVTGFHHCCFECV FCGAGTFLNKS/SYLGKDLPENYMEAKCVTFSLLFFFVSWTAF FTTASVYDGKYLPANNWAGLSSLSSGFGGYFLPKCVVILCRP DLMSTEHFQASIQDYTRRCGST
411	1150	2	1378	VARGAFHPKNØPSPSPKPGSERLSFVSAKSSTGODTERELIGO ATLAHGHLTVEDEGNYTCEFATPPKGSVSGNYTMIRVIARPKNQ AEAGKVTFSODPITVALCISKBGRPPARISWLSSLDWERKETQ VSGTLLGGTVUTTSERTLVPSGERADOUTVICKVEHESPEBETQ DWSTTLSGTVUTTSERTLVPSGERADOUTVICKVEHESPEBETQ UNSTTSGTFPTSAVRQGSQLVIHAVDSLENTTFVCTVTNAVGM GRAEGVIIVVRETPHTRAGAGNTGGIIGGIITAAITATADA'TGIL ICROGRKGOTIGGABEDEDLEGPPSYKPPTPKAKLEAGEMPSQ LFTIGARSHSPLKTPYFPAGASCTTGEMRFYBLEPTLEERSGP LHPGATSLGSPIFVPGPPAVEDVSLOLEDDEGEBEBEEYLDKI NPIYDALSYSPBSYGVGGFYMGRAMYV
412	1151	1	1828	TTILEDININMYJAGCTEVEVISTERAFEVFRIGOKKREITAN THUNBESS RSISVPHIKUVADAPDADDADBYJCKEGUTIS SI LVDLAGSERTINFTRAEGNRIEBEAGNINGSLAFTLETCHDVLEEN OMYGTIKMYPYDRSICHTLETKYPTDEGGVURTUVCNOPRAED EELQVMRFABVTDSVEVABPUDKALGGLTPGREYENOPROP IGNEPLYTDVLOSPPPLPSCEILDINDEGTLPRLIEBLEKRH NLRQMMIDEFNKGSNAFKALLGEFDNAVLSKENINGGKLEBLEKKH KMISGKLEIERLEKKNNTIEFKIETLHEKTITJEDDKNLLQG LEITOMGLORGPSUKKRIEBARLGGWIFTTMKWEREGERVA AKGLENGWKLWYEDGKLKGLKAIVTEKTEKPERFSRAGDRWOPKK ASMANGTETVMCPHUPHALTVSVANEKALAKCEKYMLTHGELAS DGEIETKLIKGDIYKTRGGOVOFTDIETKUKGESNGRKR SSTVABAQPDGABSEWHIDVETRCSVAVEMPAGSQLGPGYQHHA OPKRKKP
413	1152	1	336	PFSSSSVSSKGSDPFGTLDPFGSGSFNSAEGFADFSQMS/KGK STPVSQLGSADFPEAPDPFQPLGADSGDPFQSKKGFGDPFSGK DPFVPSSAAKPSKASASGFADFTSVS

SEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ļ		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
]		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
,		acid	acid	\=possible nucleotide insertion)
ĺ		residue of amino	residue of amino	
		acid	acid	
		sequence	sequence	'
414	1153	1	1334	MSLMVVSMACVGLFLVQRAGPHMGGQDKPFLSAWPSAVVPRGG
424	1133	-		HVTLRCHYRHRFNNFMLYKEDRIHIPIFHGRIFQESFNMSPVT
1				TAHAGNYTCRGSHPHSPTGWSAPSNPVVIMVTGNHRKPSLLAH
			Į.	PGPLVKSGERVILQCWSDIMFEHFFLHKEGISKDPSRLVGQIH
i		ĺ		DGVSKANFSIGPMMQDLAGTYRCYGSVTHSPYQLSAPSDPLDI
1	l		l	VITGLYEKPSLSAQPGPTVLAGESVTLSCSSRSSYDMYHLSRE
1	1			GEAHERRFSAGPKVNGTFQADFPLGPATHGGTYRCFGSFRDSP
1	ļ			YEWSNSSDPLLVSVTGNPSNSWPSPTEPSSETGNPRHLHVLIG
		1	1	TSVVIILFILLLFFLLHRWCSN\KKNAAVMDQESAGNRTANSE
				DSDEQDPQEVTYTQLNHCVFTQRKITRPSQRPKTPPTDIIVYT
ļ	1			ELPNAESRSKVVSCP
415	1154	1	1570	MSLRVHTLPTLLGAVVRPGCRELLCLLMITVTVGPGASGVCPT
				ACICATDIVSCTNKNLSKVPGNLFRLIKRLDLSYNRIGLLDSE
				WIPVSFAKLNTLILRHNNITSISTGSFSTTPNLKCLDLSSNKL
				KT\VKNAVFQELKVLEVLLLYNNHISYLDPSAFGGLSQLQKLY
				LSGNFLTQFPMDLYVGRFKLAELMFLDVSYNRIPSMPMHHINL
	1			VPGKQLRGIYLHGNPFVCD\CSLVSLLVFWYRRHFSSVMDFKN
			1	DYTCRLWSDSRHSRQVLLLQDSFMNCSDSIINGSFRALGFIHE
	1		1	AQVGERLMVHCDSKTGNANTDFIWVGPDNRLLEPDKEMENFYV
				FHNGSLVIESPRFEDAGVYSCIAMNKQRLLNETVDVTINVSNF
	ı		1	TVSRSHAHEAFNTAFTTLAACVASIVLVLLYLYLTPCPCKCKT KROKNMLHOSNAHSSILSPGPASDASADERKAGAGKRVVFLEP
				LKDTAAGONGKVRLFPSEAVIAEGILKSTRGKSDSDSVNSVFS
			İ	DTPFVAST
416	1155	2	1928	ASDFIRSLDHCGYLSLEGVFSHKFDFELODVSSVNEDVLLTTG
416	11722	4	1 2 2 8	LLCKYTAQRFKPKYKFFHKSFQEYTAGRRLSSLLTSHEPEEVT
1	1	1	1	KGNGYLQKMVSISDITSTYSSLLRYTCGSSVEATRAVMKHLAA
1	1	1		VYOHGCLIGLSIAKRPLWROESLOSVKNTTEQEILKAININSF
1	1			VECGIHLYOESTSKSALSOEFEAFFOGKSLYINSGNIPDYLFD
1	1		1	FFEHLPNCASALDFIKLGFYGGAMASWEKAAEDTGGIHMEEAP
1	i	1	İ	ETYIPSRAVSLFFNWKQEFRTLEVTLRDFSKLNKQDIRYLGKI
1	1	1	1	FSSATSLRLOIKRCAGVAGSLSLVLSTCKNIYSLMVEASPLTI
1	1		1	EDERHITSVTNLKTLSIHDLONORLPGGLTDSLGNLKNLTKLI
1	1	1	1	MDNIKMNBEDAIKLAEGLKNLKKMCLFHLTHLSDIGEGMDYIV
	1			KSLSSEPCDLEEIQLVSCCLSANAVKILAQNLHNLVKLSILDL
1		1	1	SENYLEKDGNEALHELIDRMNVLEQLTALMLPWGCDVQGSLSS
	1	1		LLKHLEEVPQLVKLGLKNWRLTDTEIRILGAFFGKNPLKNFQQ
	1		1	LNLAGNRVSSDGWLAFMGVFENLKQLVFFDFSTKEFLPDPALV
	1	1	1	RKLSQVLSKLTFLQEARLVGWQFDDDDLSVITGAFKLVTA
417	1156	342	718	ASDRKVAMTCDCFWFRTMLDQHASCMEVGTERERQAG\GLVMF
	ļ	1	1	DPSGFPTGEKVLQDDEFTCDLFRFLQLLCEGHNSGL*VPGTSD
	1	1		DTKA*IMFSSQ**QEPVSSNYASF*RQQIILEHGSALGSG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \perp =possible nucleotide insertion)
418	1157	1	135	EITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVDRRP GE*DITHIVGETAAFLCPRLRLRRGGKDGSPKPGFLASVIPVD RRPGE
419	1158	173	943	SKFIFYUDSGMIFFGTPTRIKKLLIMEFCD-GGSLYTTLEEDS ANGUBESBELTULEDVGGMIHIRENGIVENDIKFGNIMEVI GBDGGSVYKLTDFGAARELEDDEGFVSLYGTEFYLHFDMYERA VLRKDHG\KKYKGAT\VDLM\SIGVTFYQKEPTGS\LAI+FB GASVANKASDGIKITTGKGLLGAIS\GVGKSKXNG\PI\DWEW EDMPVSCSPSSGVLRVPNLPFVLA\NILESRSKKKCWGF*PSF LQEN
420	1159	987	500	GSTISCERSLRSLWTAHWALPEMDSRIPYDDYPVVFLPAYEND PAWIPPHERYHHEDYNNELTOFLPRTITLKKPPGAQLGFNIRG GKASQLGIFISKVIPDSDAHRAGLQSGQVLAVNDVDFQDIEH SKAVEILKTAREISMRVRFFPYNYHRQKERTVH
421	1160	3	890	HEGVSALHRRIKAIVEVAAMGGVNI LOFQEANTMPPAGCTERE LPWTEPASSAEDPTTFFCQCKLAINHMWVVSPLERDSERGD VLNNTAVVISNSGAVLGKTEKSHIP BYGDFRESTYTMEGINLGH EVPCTOPGRIAVNICYGRHEIDINIMYSINGBEITENBSGI ALSESLWPIERARMALIANHCFTCAINEVGTEHFENEFTSGDGK KAHQDFGYFYGSSYVAAPDSSETPGLESERDGLLVAKLDLINLC QQVNDVWMFRWTGRIEBEARAYSSYYSFTIVKE

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
422	1161	5214	352	MAKSGGCAGAGGGGGGALTTVINNAAKKESSETANKNDSKK LSVERVYCKTYCLEHILLEPTYT GGSVEPLTYPFWVYDEDVGM NCSEVTFVPGLYKI FDEILVINAADNKGRIKMTC IKVSIDPES KITSTANKGKI PUVENKEVKVYPALI FGCLIFSRNYDDES KITSTANKGKI PUVENKEVKVYPALI FGCLIFSRNYDDES KITSTANKGKI PVVENKEVKYVYPALI FGCLIFSRNYDDES KYTGGRNGYGAKLCHI STKFFTVETACKEYKHSFKCTYMONDMA KTSEAKI HEPOGBOTTETTPOPLSKERKEKLIKDI VALMTRE AYDLAGSCGGYKVMTNGKKLPVNGFBSYVDLYVKDKLDETGVA LKYHHELANREWDVLILLSEKGPOQI SFVNISATTKGGREVYA VVDOVYGKLI EVVKKKKRAGVSVKEPOVKNHTWYFINCLI END TYPBGYTKENMTLOPKEP GSCKOLGEKEF FLARANGCI VISITET VKFRAGTQLAKKCSSVKYSKIKGI PKLDDANDAGGKHSLECTL ILITEGDSAKSLAVSGLGVI GRDR FGYPFLREK ILNYREASHKOG DOSHH KGLLINFIHEMPSLLKEGFLEFT FTVFT VARSAKKOG LSYSI EPBEWKKHI ENGKSTDAGSLITTSYSK KIMTHOD ODGSHH KGLLINFIHEMPSLLKEGFLEFT FTVFT VARSAKKOG LSYSI EPBEWKKHI ENGKAMKIKYYKSGLTSTSAKEASEYFA DMRRHR ILFFYAGPBDDAATTLAFSKKKIDDORSENTIFSTSAKEASEYFA DMRRHR ILFFYAGPBDDAATTLAFSKKKIDDORSENTIFSTSAKEASEYFA EGKLHGUFBOFLYGTTAKHLYNDET INKELIFESNSONRES I PSLVDOFKPGGRKVLFTCFFRIDKREDKVAQLAGSVADMSAYT HEGKQALMMTIVINLAGNIVUSNINILLOFT GOGGTRIHGGKDAA SPRYLTFINLSTLARLLFPAVDDNILKELDFDNONRYREMGGLDDH LDRYNINKGT I GELGGONGVANSGETEVVDRNTVETTELFURT FWOVYKEGVLEPMILATISTALISPKSTUDTTVKFVVMT EEKLAGABRAGLIKWFKLOTTLTCNSNVLFDIMGCLKKYETVO DILKEFFILLSYYGLREKTPALISPKSTUDTVKFVVMT EEKLAGABRAGLIKWFKLOTTLTCNSNVLFDIMGCLKKYETVO DILKEFFILLSYYGLREKTPALISPKSTUDTVKFVVMT EEKLAGABRAGLIKWFKLOTTLTCNSNVLFDIMGCLKKYETVO DILKEFFILLSYYGLREKTPALISPKSTUDTVKFVVMT EEKLAGABRAGLIKWFKLOTTLTCNSNVLFDIMGCLKKYETVO DILKEFFILLSYYGLREKULDGLEBTHEPFYGHNOAPFILLS GOKKATI KOKKULDOMLURSSPSDLWEDLAAFVEELDKVSSOGREDULA ASKKLLLKKKKOLDTAAVKVEPDESFSGLPVSGRABERDE LONSCALTKOKYGRFVKKLOLBERTHEP FORRI I TPSITTMEKE LONSCALTKOKYGRFVKKLOLBERTHEP FORRI I TPSITTMEKE EESKSEDLEETEPVVI PROSLLERTHEPSTYGALSKRYSKSDDSKRFDNA SKOKSCALTKOKYGRFVKKLOLBERTHEP FORRI I TPSITTMEKE EESKSEDLEETEPVVI PROSLLERTHEPSTYGALSKYRSKSDDLKEFTFPS PKOKKVORKSCHEDKASPTINDGLEFT PKYTTYTKOKGRGAKKEKASSE NEGGYNFRORKSSTONGGRKFFKNS NEGGYSHORGSKERKPGNSTONGSSCPSCONGRKFFKNS NEGGYSHORGSKEFFTNOARSSDDSEFGEDDUDPAMWE EESKSEDLEETEPVVI PROSLL
423	1162	1	219	KGCLAASFNCIFLYTGBLYPTMIR*VEA*WENDSLFLGKDILL CTGQTPELNQVHPSPKAPPNTHHCKAHSSH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Plentylalanine, G=Glycine, H=Histidine, I=Isoleucine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Sertine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
424	1163	1454	446	ENSFECKDCGKAPSRGYQLSHHÖKKIHYGEKPYECKECKKAFROK GNQLTNJGKKIHYGEKPYECKECKGKAFRAGSLVIHKRIHTAGE PYECKDCGKAFRRGDELTQHQRFHTGEKDYECKDCGKTFSRVY KLIQHKRIHSGEKPYECKDCGKAFICGSSLIQHKRIHTGEKPY KLIQHKRIHSGEKPYECKDGKAFICGSSLIQHKRIHTGEKPY KURGKAFITWAYLTQHQKIHTGEKPHECKECKAFRAGSSL VKHERIHTGEKPYKCTECGKAFNCGYHLTQHERIHTGETPYKC KECGKAFIYGSSLVHHERIHTGYKPYCTECGKSFEHGHQLTQ HQKTHSGAKSYECKECGKACNHLNHLREHQRIHNS
425	1164	826	407	HQYLDDLYPLHVMTILLKSHFFTMLKRPVGSSSFASLPFYHQS ILLRKNQMKRKKTQQDLTHINWTLQAVSIQTCIWLQKKPSSYF HQLPNQVL*PENSGPESCLYDLAAVVVHHGSG
426	1165	464	29	XLDPDTLPAVATLIMDVMFYSNGVKDPMATGDDGGHTRFFSFS LIEGYISLVMDVQTQQRFPSNLLFTSASGELWKMVRIGGQPLG FGPVWBSGPTGPTSPLILPVTPSSSHRQAASQVTTTKQGQWLC LKRPSARSPDHTACLG*
427	1166	649	901	EAPLTSVCFSLERRFGSSSNTTSFGTLASQNAPTFGSLSQQTS GFGTQSSGFSGFGSGTGGFSFGSNNS*VSPFLSLTLIKSIK
428	1167	3	340	EEPQGSPIWVWLAGSLTSVSCFLPFQRMRIKPHQGQYIGEMSF LQHHKGECRPQKD*ARQENPCGPCSERRKHLLGQDPKTCKCSC KNTDSRCKARPLELNERTCRCDKPRR
429	1168	355	1312	TLWAGGGLCPQSHSSSYPAPWEPHVERALETDENGGGRPLLS ASWAPAPARPLETTSPVLLVEKSRATPARPOEP*AGTFCLLSMAGGGASVVIIGSAGVLGCRWGSSGKSHSLSPSRKSNLHLLSQEP CTTVVHNATDGIKGSTESCHTTELEDLKVRKQEIIKITEGLI EAINMODERYTKICDPOLTSFEPBALGNIVEGMCPHKFYEIN REWVRADILLPAPLPLCLCLLLFSSQLPTPLFDLRAALLL CMLVPLCPDGCRQAPLKALLLSKCHSFCSCFVAVPVTTIKLT YFLPGAVAYACNENTLGG
430	1169	439	728	ERAGAGGAAACRAGTRSGATSRTPWPLHRQLSMMLMLAQSNPQ LFALMGTRAGIARELERVEQQSRLEQLSAAELQSRNQGHWADW LQAYRARLGQ
431	1170	3	440	MGTLFIMVMHIKDLVSDYKE*WL*RKPLPW*EALLLRDCFFF* VTEMGADPNPYVKTYLLPDNHKTSKRKTK1SRKTRNFTFMEML VYSGYSKFULORELQLSVLSAESLRENFFLGGVTLPLKDFNL SKETVKWYQLTAATYL

050	SEO	Predicted	Predicted	
SEQ		beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	mucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic		corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	
i	i	residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	'
432	1171	433	1824	LHRIMQLAVVVSQVLENGSSVLVCLEEGWDITAQVTSLVOLLS
434	11/1	433	1024	DPFYRTLEGFOMLVBKEWLSFGHKFSORSSLTLNCOGSGFAPV
		ì		
			l	FLQFLDCVHQVHNQYPTEFEFNLYYLKFLAFHYVSNRFKTFLL
			ł	DSDYERLEHGTLFDDKGEKHAKKGVCIWECIDRMHKRSPIFFN
1		1		YLYSPLEIBALKPNVNVSSLKKWDYYIEETLSTGPSYDWMMLT
		1	1	PKHFPSEDSDLAGEAGPRSQRRTVWPCYDDVSCTQPDALTSLF
			l	SEIEKLEHKLNQAPEKWQQLWERVTVDLKEEPRTDRSQRHLSR
	ŀ			SPGIVSTNLPSYQKRSLLHLPDSSMGEEQNSSISPSNGVERRA
1			1	ATLYSQYTSKNDENRSFEGTLYKRGALLKGWKPRWFVLDVTKH
	ļ			QLRYYDSGEDTSCKGHIDLAEVEMVIPAGPSMGAPKHTSDKAF
				FDLKTSKRVYNFCAQDGQSAQQWMDKIQSCISDA
433	1172	1714	946	EVEGPRRVSPAPETLGMEESVVRPSVFVVDGOTDIPFTRLGRS
Ì	l	l		HRROSCSVARVGLGLLLLLMGAGLAVOGWFLLOLHWRLGEMVT
1	ł			RLPDGPAGSWEOLIOERRSHEVNPAAHLTGANSSLTGSGGPLL
1				WETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVOLGGVGCPL
1	ļ	l	1	GLASTITHGLYKRTPRYPEELELLVSOOSPCGRATSSSRVWWD
1		1		SSFLGGVVHLEAGEEVVVRVLDERLVRLRDGTRSYFGAFMV
434	1173	16	367	OSAELGPRREGSRRPSCTKASKPWRRRPGGPTSGLG*GPLSP
434	11/3	10	307	GPYQCRPSLPAQLYPQSLMAAATLRTPTQVSAASSRPHTPSPT
				HVLKPSVRGACSSPRCPGSGTLRRSWVGPFF
435				
435	1174	27	1139	LWWPPLSRHAAHRQWPGPTAPRGLGHKVKGRGASPAAMWSCSW
				FNGTGLVEELPACQDLQLGLSLLSLLGLVVGVPVGLCYNALLV
		:	1	LANLHSKASMTMPDVYFVNMAVAGLVLSALAPVHLLGPPSSRW
			i	ALWSVGGEVHVALQIPFNVSSLVAMYSTALLSLDHYIERALPR
		1	l .	TYMASVYNTRHVCGFVWGGALLTSFSSLLFYICSHVSTRALEC
1			1	AKMQNAEAADATLVFIGYVVPALATLYALVLLSRVRREDTPLD
1	1			RDTGRLEPSAHRLLVATVCTQFGLWTPHYLILLGHTVIISRGK
1	1		1	PVDAHYLGLLHFVKDFSKLLAFSSSFVTPLLYRYMNQSFPSKL
1			1	QRLMKKLPCGDRHCSPDHMGVQQVLA
436	1175	322	756	SESELFTLMPSLPTTNCVHSLQMIPPLSPAPNQELVLGLCYMS
1	1		1	YLAFLYMTFDFCCLYFSTVYAPSFKYICVHTDTHICVCVCIYL
		1		SSVVSKSSAEADGVLOPRRHPASLLIVFATSISESSLLIFSFO
l		1		KTEAKLIVFAVSLAAK
437	1176	2	153	FFFLROSLTLSPRLECSGATSASPSAGITGMSHHSOPIVNFLR
137	1 10	~	1 - 3 3	ACIPISK
438	1177	1	692	
438	1177	1	692	RQHAEERGRRNPKTGLTLERVGPESSPYLLRRHQRQGQEGEHY
1	1	1	1	HSCVQLAPTRGLEES/GHGPL/SLAGGPRVGGV/AAAATEAPR
]	J	1	1	MEWKVKVRSDGTRYVAKRPVRDRLLKARALKIREERSGMTTDD
1		1		DAVSEMKMGRYWSKEERKQHLIRAREQRKRREFMMQSRLECLR
1			1	EQQNGDSKPELNIIALSHRKTMKKRNKKILDNWITIQEMLAHG
1	1	1		ARSADGKRVYNPLLSVTTV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence 2	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 616	Amino acid segment containing signal peptide (A = Alanine. C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Luccine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, E = Arginine, S = Sectine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, ** = Stop Codon, / = possible nucleotide deletion, \
				EDKHSQCKWVMGSILLLVSFVLSSGGLLGFVILLRNQVTLIGF TLMFWCEFTASFLLFLNAISGLHINSITHPWE
440	1179	2	540	QTLENLYLGSARDSANLESLAKIGIRYILMVTRNLPNFFEKNG DFHYKQIPISDHWSQNLSRFFPEALEFIDEALSQNCGULVHCL AGVSRSVTVTVAYLMQKLHLSLNDAYDLVKKKKSNISPNFNFM GQLLDFERSLRLEERHSQEQGSGGQASAASNPFSFFTTPTSDD AFELAPT.
441	1180	940	463	RKSLHENKLKELOEKVEVLEAKKEELETENGYLNROMVPPEDY TRLQKRLKDIQRRHNEFRSLILVPNMPPTASINPVSFQSSAMG SKHOTTISSSYAGGTTSKOTLSTSQKTRRTGNNTKKTTRGTWI FRRMMFLENRQIKRGEVGDSVKLDILTCGI
	1181	1	986	GRPGAGASELFFSYTTDLSVSKQNACLTCUPFVTVAVCKGFWG TOPGALSTSCTPYPLSHOGSVKARMLHMYSKOPDLLCVPLA VLLAVTLTVPVVLFPIRRALQQLLFPGKAFSWPBHVAIALILL VLNAVLVICVPTIRDIFGVIGSTSAPSLIFILPSIFYLRIVPS SVEPFLSWFKQALFGFVLGVLFMAVSLGFMASWGTGSMKS GH*SGPAGPGCAHAHGGVRAP*GFSCPTCGGGWFP*TWLSE AGDSRGCRLAHFFPPPQGQAWINALIPTPTPWEEEEEEEEE EEEEEEEEBARSWWSLCPAGSSLPPPG
443	1182	460	27	INELEYHLBESRDKNVLLCLBERDWDPGLAIIDNLMQSINGSK KTVYVLITKKYAKSWNFKTAFYLALQRLMDENMDVIIFILLEPV LQHSQYLRLRQRICKSSILQWPDNPKAEGLFWQTLRNVVLTEN DSRYNNMYVDSIKQY
444	1183	1682	230	DDPIKTSWTPPRYVLSMSERRHERVRKYHILVEGOGIPPIK \$FREMKPPALIEGLKKRGHHPFPIGIQGIFTLISGRMIGI APTGSGKTLYFTLEVIMFCLEOKEKLPPSKREGPYGLITCPSR ELARQHGITEYYCRLLQEDSSPLRCALCFGGMSVKEQMETI RIGWHHWATFGELMDLLQKKMYSLDICGYLALDEADRAIDMG FEGGIETIFSYFKGGRQTLLFSATTMFKKIQNFAKSALVKFVTI NWGRAGAASLUVTQEVEVYKERKMYVTLLECQKTPPPVLIFA RKKADUDATHSYLLLKGWRAVATHGGKOGESTKALEAFREGG KOVLVATDVASKGLDPFALGVUTNTDWBEETENVYHERGFGG SGNTGIATTFINKACDESVLMDLKALLLEAKQKVPPVLQVLHC GDESMILDIGGERGCARCGGIGHRITDCFKLEAMQTKQVSNIGR KUYLARISSNDF
445	1184	1	375	IETTQPSEDTNANSQDNSMQPETSSQQQLLSPTLSDRGGSRQD AADAGKPQRKFGQWRLPSAPKPISHSVSSVNLRFGGRTTMKSV VCKMNPMTDAASCGSEVKKWWTRQLTVESDESGDDLLDI
446	1185	2	223	NDRFSACYFTLKLKEAAVRQREALKKLTKNIATDSYISVNLRD VYARSIMEMLRLKGRERASTRSSGGDDFWF

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID SEQ	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	location	location	
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue of amino	residue of amino	
		or amino acid	acid	
		sequence	sequence	'
447	1186	2	1031	FTVFILGITIRPLVEFLDVKRSNKKQQAVSEEIYCRLFDHVKT
1 22 /	1100	-		GIEDVCGHWGHNFWRDKFKKFDDKYLRKLLIRENQPKSSIVSL
				YKKLEIKHAIEMAETGMISTVPTFASLNDCREEKIRKVTSSET
				DETRELLSRNLYOIRORTLSYNRHSLTADTSEROAKEILIRRR
			i	HSLRESIRKDSSLNREHRASTSTSRYLSLPKNTKLPEKLOKRR
	'	Ì	l	TISIADGNSSDSDADAGTTVLNLOPRARRFLPEOFSKKSPOSY
				KMEWKNEVDVDsGRDMPSTPPTPHSREKGTQTSGLLQQPLLSK
				DOSGSEREDSLTEGIPPKPPPRLVWRASEPGSRKARFGSEKP
448	1187	3	444	HEEASGLSVWMGKQMEPLHAVPPAAITLILSLLVAVFTECTSN
				VATTTLFLPIFASMSRSIGLNPLYIMLPCTLSASFAFMLPVAT
1 1	1	1	ł	PPNAIVFTYGHLKVADMVKTGVIMNIIGVFCVFLAVNTWGRAI
				FDLDHFPDWANVTHIET
449	1188	3	125	HELENNWLQHEKAPTEEGKKELLALSNANPSLLERHCAYL
450	1189	1	188	GNIIYMYMQPGARSSQDQGKFLTLFYNIVTPLLNPLIYTLRNR
				EVKGALGRILLGKRELGKE
451	1190	10	1879	PLEQRSNCRVDPRVRTHTMASDTSSLVQSHTYKKREPADVPYQ
				TGQLHPAIRVADLLQHITQMKCAEGYGFKEEYESFFEGQSAPW
	١.			DSAKKDENRMKNRYGNIIAYDHSRVRLQTIEGDTNSDYINGNY
	1		1	IDGYHRPNHYIATQGPMQETIYDFWRMVWHENTASIIMVTNLV
	1			EVGRVKCCKYWPDDTEIYKDIKVTLIETELLAEYVIRTFAVEK
	}		1	RGVHEIREIRQFHFTGWPDHGVPYHATGLLGFVRQVKSKSPPS
				AGPLVVHCSAGAGRTGCFIVIDIMLDMAEREGVVDIYNCVREL
	l	1	ĺ	RSRRVNMVQTEEQYVFIHDAILEACLCGDTSVPASQVRSLYYD
	1		ŀ	MNKLDPQTNSSQIKEEFRTLNMVTPTLRVEDCSIALLPRNHEK
1			ł	NRCMDILPPDRCLPFLITIDGESSNYINAALMDSYKQPSAFIV
				TOHPLPNTVKDFWRLVLDYHCTSVVMLNDVDPAQLCPQYWPEN GVHRHGPIOVEFVSADLEEDIISRIFRIYNAARPODGYRMVQQ
				FOFLGWPMYRDTPVSKRSFLKLIROVDKWOEEYNGGEGRTVVH
			İ	CLNGGGRSGTFCAISIVCEMLRHORTVDVFHAVKTLRNNKPNM
			ļ	VDLLDOYKFCYEVALEYLNSG
452	1191	603	342	PLTYNKKYTYPWWGDALGWLLALSSMVCIPAWSLYRLGTLKGP
452	1191	003	342	FRERIROLMCPAEDLPORNPAGPSAPATPRTSLLRLTELESHC
453	1192	120	449	TLSESGALFSLGPPPLSLKSSSAPRPYSTLRDCLEHFAELFDL
453	1132	120	1 ***	GFPNPLAERIIFETHOIHFANCSLGOPTFSDPPEDVLLAMIIA
1			1	PICLIPFLITLVVWRSKDSEAQA
454	1193	1838	1066	CEEREOEKDDVDVALLPTIVEKVILPKLTVIAENMWDPFSTTO
454	1253	1030	1000	TSRMVGITLKLINGYPSVVNAENKNTOVYLKALLLRMRRTLDD
	1		1	DVFMPLYPKNVLENKNSGPYLFFQRQFWSSVKLLGNFLQWYGI
1		1	l .	FSNKTLORI.SIDGLINRYILMAFONSEYGDDSIKKAONVINCE
				FSNKTLQELSIDGLLNRYILMAFQNSEYGDDSIKKAQNVINCF PKOWFMNLKGERTISOLENFCRYLVHLADTIYRNSIGCSDVEK
				FSNKTLQBLSIDGLLNRYILMAFQNSEYGDDSIKKAQNVINCF PKQWFMNLKGERTISQLENFCRYLVHLADTIYRNSIGCSDVEK RNARENIKOIVKLLASVRALDHAMSVASDHNVKEFKSLIEGK

	amo.	D 11 . 1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A = Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acias	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	1	residue	residue	(-possible nacicolide insertion)
		of amino	of amino	
		acid	acid	
	İ	sequence	sequence	
455	1194	112	1361	TPFCFLCSLVFRSRVWAEPCLIDAAKEEYNGVIEEFLATGEKL
		l		FGPYVWGRYDLLFMPPSFPFGGMENPCLTFVTPCLLAGDRSLA
	1	i	l	DVIIHEISHSWFGNLVTNANWGEFWLNEGFTMYAQRRISTILF
	ŧ	1		GAAYTCLEAATGRALLROHMDITGEENPLNKLRVKIEPGVDPD
		l		DTYNETPYEKGFCFVSYLAHLVGDQDQFDSFLKAYVHEFKFRS
		l		ILADDFLDFYLEYFPELKKKRVDIIPGFEFDRWLNTPGWPPYL
1	1	1	1	PDLSPGDSLMKPAEELAQLWAAEELDMKAIEAVAISPWKTYQL
1			l	VYFLDKILQKSPLPPGNVKKLGDTYPSISNARNAELRLRWGQI
		1	i	VLKNDHQEDFWKVKEFLHNQGKQKYTLPLYHAMMGGSEVAQTL
	ŀ		Į	AKETFASTASQLHSNVVNYVQQIVAPKGS
	4405	1	889	CASGSSGWRPVLWAGAFTMASAELDYTIEIPDOPCWSOKNSPS
456	1195	11	889	PGGKEAETROPVVILLGWGGCKDKNLAKYSAIYHKRGCIVIRY
1		1		
				TAPWHMVFFSESLGIPSLRVLAQKLLELLFDYEIEKEPLLFHV
1.		l l	1	FSNGGVMLYRYVLELLQTRRFCRLRVVGTIFDSAPGDSNLVGA
		1	l	LRALAAILERRAAMLRLLLLVAFALVVVLFHVLLAPITALFHT
		ì	1	HFYDRLQDAGSRWPELYLYSRADEVVLARDIERMVEARLARRV
١.			<u> </u>	LARSVDFVSSAHVSHLRDYPTYYTSLCVDFMR\NWVRC
457	1196	2	295	PRVRDRLPSTGVRDRKGDKPWKESGGSVEAPRMGFTHPPGHLS
	1	1	l	GCQSSLASGETGTGSADPPGGPRPGLTRRAPVKDTPGRAPAAD
	1			AAPAGPSSCLG
458	1197	1299	682	QGRTSCIGLYTYQRRICKYRDQYNWFFLARPTTFAIIENLKYF
	1	1	i	LLKKDPSQPFYLGHTIKSGDLEYVGMEGGIVLSVESMKRLNSL
ļ.	1	l .	l .	LNIPEKCPEQGGMIWKISEDKQLAVCLKYAGVFAENAEDADGK
ĺ		1		DVFNTKSVGLSIKEAMTYHPNQVVEGCCSDMAVTFNGLTPNQM
	1	1	1	HVMMYGVYRLRAFG\HIFNDALVFLPPNGSDND
459	1198	779	61	HEGKPTRGRGGGSLSTRGRGSEVPDSAHLAPTPLFSESGCCG
1	1	1	1	LRSRFLTDCKMEEGGNLGGLIKMVHLLVLSGAWGMQMWVTFVS
1	i	1		GFLLFRSLPRHTFGLVQSKLFPFYFHISMGCAFINLCILASQH
		1	1	AWAOLTFWEASOLYLLFLSLTLATVNARWLEPRTTAAMWALQT
1		1	1	VEKERGLGGEVPGSHQGPDPYRQLREKDPKYSALRQNFFRYHG
i .	1	1	1	LSSLCNLGCVLSNGLCLA\ALPWK
460	1199	517	815	KOLDKOLRADPSGSLPPLPPSPPPPLEAGGRPPEVP/PRGPSA
1 300	1	1 32.	1 525	VPSFPSVSGDWGGPVEAG/EGGOOGRGRARARPCSLPFLLPPS
1	1	1	1	PVCRLSGSRAPLGCDG
461	1200	1	583	RNOLSSOKSVPWVPILKSLPLWAIVVAHFSYNWTFYTLLTLLP
461	1200	1	203	TYMKEILRFNVOENGFLSSLPYLGSWLCMILSGQAADNLRAKW
1	1	1		NFSTLCVRRIFSLIGMIGPAVFLVAAGFIGCDYSLAVAFLTIS
	1	1	1	TTLGGFCSSGFSINHLDIAPSYAGILLGITNTFATIPGMVGPV
				IAKSLTPDMGISLHRPGWSAVA
462	1201	25	383	GPSGTTHASAHSGHPGSPRGSLSRHPSSQLAGPGVEGGEGTQK
1	1	1	1	PRDYIILAILSCFCPMWPVNIVAFAYAVMSRNSLQQGDVDGAQ
1				RLGRVAKLLSIVALVGGVLIIIASCVINLGVYK
463	1202	573	372	SLFLSFPPLSFKMTLNDAMRNKARLSITGSTGENGRVMTPEFP
		1		KAVHAVPYVSPGMGMNVSVTDLS

SEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cvsteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
ricius	Acius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
	1	acid	acid	\=possible nucleotide insertion)
		residue	residue	1 - possible indexectine insertion)
		of amino	of amino	
		acid	acid	l .
		sequence	sequence	
464	1203	2018	491	DDVPPPAPDLYDVPPGLRRPGPGTLYDVPRERVLPPEVADGGV
				VDSGVYAVPPPAEREAPAEGKRLSASSTGSTRSSOSASSLEVA
	ļ		1	GPGREPLELEVAVEALARLOOGVSATVAHLLDLAGSAGATGSW
ŀ	1		l	RSPSEPOEPLVODLOAAVAAVOSAVHELLEFARSAVGNAAHTS
i	1	Í	1	DRALHAKLSROLOKMEDVHOTLVAHGOALDAGRGGSGATLEDL
l		1		DRLVACSRAVPEDAKQLASFLHGNASLLFRRTKATAPGPEGGG
1	1	1		TLHPNPTDKTSSIQSRPLPSPPKFTSQDSPDGQYENSEGGWME
İ		i		DYDYVHLQGKEEFEKTQKELLEKGSITRQGKSQLELQQLKQFE
		1		RLEQEVSRPIDHDLANWTPAQPLAPGRTGGLGPSDRQLLLFYL
			1	EQCEANLTTLTNAVDAFFTAVATNQPPKIFVAHSKFVILSAHK
Ì		I		LVFIGDTLSRQAKAADVRSQVTHYSNLLCDLLRGIVATTKAAA
	1	1	1	LQYPSPSAAQDMVERVKELGHSTQQFRRVLGQLAAA
465	1204	299	189	EMBEPQKSYVNTMDLERDEPLKSTGPQISVSEFSCHCCYDILV
		Į.		NPTTLNCGHSFCRHCLALWWASSKKTECPECREKWEGFPKVSI
	Į.	İ		LLRDAIEKLFPDAIRLRFEDIQQNNDIVQSLAAFQKYGNDQIP
	i	1	i .	LAPNTGRANOOMGGGFFSGVLTALTGVAVVLLVYHWSSRESEH
	1	l	1	DLLVHKAVAKWTAEEVVLWLEQLGPWASLYRERFLSERVNGRL
		į.		LLTLTEEEFSKTPYTIENSSHRRAILMELERVKALGVKPPONL
	1	i .	1	WEYKAVNPGRSLFLLYALKSSPRLSLLYLYLFDYTDTFLPFIH
	1.	ļ	l	TICPLOEDSSGEDIVTKLLDLKEPTWKOWREFLVKYSFLPYOL
1	1	1	1	IAEFAWDWLEVHYWTSRFLIINAMLLSVLELFSFWRIWSRSEL
		1	1	K*VGFRFLRLGVAALGSVEVAGLRGVVKGERPLLYGHGAGARF
			1	PHSVLLLPVAKPLPLPLLPRGLC
466	1205	2	242	EKARMIYEDYISILSPKEVSLDSRVREVINRNLLDPNPHMYED
466	1205	2	242	
1	1.00-	-	610	AQLQIYTIMHRDSFPRFLNSQIYKSFVESTAGSSSES
467	1206	2	619	LYYSQDEESKIMISDFGLSKMEGKGDVMSTACGTPGYVAPEVL
1	1	1	1	AQKPYSKAVDCWSIGVIAYILLCGYPPFYDENDSKLFEQILKA
	1			EYEFDSPYWDDISDSAKDFIRNLMEKDPNKRYTCEQAARHPWI
1	1	1	1	AGDTALNKNIHESVSAQIRKNFAKSKWRQAFNATAVVRHMRKL
		l		HLGSSLDSSNASVSSSLSLASQKDCASGTFHAL
468	1207	1	352	RTRGGAVSFEDFIKGLSILLRGTVQEKLNWAFNLYDINKDGYI
				TKEEMLDIMKAIYDMMGKCTYPVLKEDAPRQHVETFFQKMDKN
1				KDGVVTIDEFIESCQKDENIMRSMQLFENVI
469	1208	3	1015	PRSPEHHTPAWHEGRSLGPIMASMADRNMKLFSGRVVPAQGEE
1		1		TFENWLTQVNGVLPDWNMSEEEKLKRLMKTLRGPAREVMRVLQ
1	1		ĺ	ATNPNLSVADFLRAMKLVFGESESSVTAHGKFFNTLQAQGEKA
l			1	SLYVIRLEVOLONAIOAGIIAEKDANRTRLOOLLLGGELSRDL
	1	1	1	RLRLKDFLRMYANEOERLPNFLELIKMVREEEDWDDAFIKRKR
1	1	1	l	PKRSESMVERAVSPVAFQGSPPIVIGSADCNVIEIDDTLDDSD
1				EDVILVESODPPLPSWGAPPLRDRARPODEVLVIDSPHNSRAQ
1	1		1	FPSTSGSGYKNNGPGEMRRARKRKHTIRCSYCGEE
L.		4543	1351	
470	1209	1543	1351	SVACTVPLRSMSDPDQDFDKEPDSDSTKHSTPSNSSNPSGPPS
		L		PNSPHRSQLPLEGLEQPACDT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \phi=possible nucleotide insertion)
471	1210	3	952	YSAVEFAERGSGSSGDELREDDE PYKKRGKKGRGRG PSSSD SEPEABLEREAKKSAKKPQSSSTEPARKPGKEKVRPEEKQQ AKPVKVBETRKRSBGFSMDRKVEKKEPSYBEKLOKLHSSIKF ALKVDSPDVKRCLANALELGTLOVTSGILQKNTDVVATLKKIR RYKANKDWARKABVYTRKESPULGPKIENOVKNNKAMBKEK AESKLAGSELAGEBAPOEKAENKPSTDLSAPVNGEATSGKGES AEDKEHEEGRDSEEGPRCGSSEDLHDSVREGPDLDRPGSDRQE REPARDSEALDEES
472	1211	5204	2901	LARELSSLEVURLSHNSTSHHARGAFKGLESLRVLDLDINNISG TIEDTSGRSGLDSLISKLITCHNIKTSVAKRARSGLESLEHIN LGGNALRSVOPDAFVUKKNLKELHISSDSFLCDCQLKKLPWIL LGGNALRSVOPDAFVUKKNLKELHISSDSFLCDCQLKKLPWIL LGGNALRSVOPDAFVUKKNLKELHISSDSFLCDCQLKKLPWIL TOPBITTMAMVGKDIEPTCSAASSSSSSPMTFANKKDMEVLTNAD MENFYHVHAQDGEVMEYTTILHLRQVTFGHEGRYQCVITNHFG STISHKARLITWNULSSFTKTFENDITRITTHARLBCAATCHEN PQLAMGKDGGTDFPAARERRHHIVPDDDVFFITVBLDAGVY SCTAQNSAGSISANATITULETPSLVVPLEDRVVSVGSTVALQ CKATGNPPPRITWFRGDRELSLTERHHLTPDNQLLVVQNVVAR DAGRYTCEMSNTLGTERAHSQLSVLPAAGCRKGTTVOHFTIA VVSSIVLTSLWWCIITYCTRKRSEBYSVTNTDSTVUPDVPSY UVCSCNTREDVCSKGGAPHKFWKAMKAEGTPGPHKMEHGGS UVCSCNTREDVCSKGGAPHKFWKAMKKAEGTPGPHKMEHGGS QEHSPHHQCSKTAAGSCPECQGSLYPSNTDRMLTAVKKEPMAS LDGKGDSSWTLARLYHPDSTELQPASSLTSGSPERAEAQYLLV SNGHLENACCDASPESTELTQQLPGKGRYPLLAFKS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Pinenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
473	1212	2	2466	AAAGAARKYSYECGSSGFGGRGAAGLSPADIALASEGGASCS VRAPERKLINKHLINGAKUS SIODMGESVEGGAVYHTILKRYOT QQAANKGARHLGWEGDOLP PGHTVSQVETCKLPTIKAGTLEKL VENLILTASGROMDETTIS IT PISTYRGRSSTKEVLIELLIDE VOR TSPNCEEDGSQSSSBSKWVIRNAIASILRAWLDQCAEDFREPP HFPCLQKLLDYLIFNBHOGSDPERRAQNLLEGGFQSVETTINGI TSPNTSSSLEEEBELBGGGSBEFTCFSBLUVARQLTVINDAQLFK KVVPHRCLGCIWSREDKKENKHLAFTIRATISQSTNTITKCVVS TILGGGELKYQGARIIEKWINJAHECRLKKYFSSLRATVSAL QSMSIYTELKTWAADYBORNLMFEBLSDIFSDHNNHLTSRELL MKEGTSKRANLDSSVERSGKTQRRLLQKOMGYMGOTTYGT TFILDITHLDTALODYIEGGLINFBKRRREFBVIAQIKLLGSA CNSYCHTPOKFIONFGOGGLITEBESVALGSEEBAADASTT SPKWKSWYKRIMILFLGADMTSBTPTKKGPKSTASGSGGS THSMDTINFLQCMSSLINDLSSPBSCNNIPKRIKRSVSVTSTS TVLPPVYNQQNEDTCIIRISVEDNNGHYKSIMLITSGOKTPAV LQRAMLKHLDSDPAESFELVQVISEDKELVISDSANVFYAMS SQVNFDFILRKKNSMERQVKLBSRTSLTLBRTAKRGCWSNRHS KITTL
474	1213	1	867	AREKMOSCIEAFOTTKOKRALNTERWINVONSSINRAVAKAAE TIDTKSVATALVSDAIMALODDSLYLEPOTDARAKEBUYEN EDILISPARVRALOSPERFINNTSSETILKNIERISHCTFVIEA LKSLPSDVESBERQARCIWFLDTLIKFPARHVVKRSKALDY PHIINTKLIKHFTCLTYMNGRLRMLISDSMKAKITAYVIILAL HIHDFOIDLITVLGRDIKLSEKRIMSIAKAMRIKISKRRVSVAA GSEEDIKKJTLSLPLPFAGYSDELÄKRRKI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
475	1214		2621	ISIJEGSKALGRGGARAMKAKKVGARRKASGAPAGARGGPAKA NSMPEVKVYRKOKÇIGIJGSKTEHDVÜLGEVGSRARAIKRKTOTI LKEYKROKSNYFRÜKRGESYNSIMS PERKMIKEFALBOQHHI EKKSIYNINDEBELTHYOOGOLALDIEKINIJUDISDSADERGTI SGELTAAHFOGOGGILHKKTOOGOGBEREKPKSRKELIEBLIK SKOEKBERQAGREDALBITKELDOWER COTLASHTYPSKEL LEKLEA BLANGERDBENVKEKHENSADDLINGFVLIKDER LKKLEABELBRUMGKOBBENVKKRHENSADDLINGFVLIKDER RLLSYKDGKONVEEDVÜZEGSKERADDESNEEGGDSSGGEDTE ESDSPOSILDLESNIVESSEENIKPAKEQKOTPOKKLISGKERA KANTROLEPTTAPAESSYEELESLILIGRSMEEQLLVVERIÇKK NHOSLAKONAKALBELGFILEVVOLATODPOKTUTUKLVV LIYHLYLCOYEDSASDAIKFVLIKDAMHEMBEMIETKGRAALDGL DVILITKITGLEPTSDFWEPVVTPALVCLSGLLTKCPILSQ QGSTLVHPFRALGKNSELLVVSAREDVATWOQSSLBIRNASRI RAPTSTEAMTIRLSCLAVGRIJKERCHYVSGLSFRAIMOPL RALTITHADCSHPOELOBLCOSTLTEMESOKOLCEPLICSKS KOPVELLETPTLIKVLEFGEROGSSKEBGERRILIHKHREFK GAVBERRKONGLARMOLSBIMERDAERKRIKVKQLFNSLATOG GEWKALKKKYKK
476	1215	3	961	LIFKGEDCGSIGTAMGSKCHKCPQLQYTTVQKEGPVRGEVGA DCPQGYKRLNSTHCQDINECAMPGVCRHGDCLANPGSYRCUCP PGHSLOPSRTQCIADKPERSLCFELVSPEHCQCHPLITRLTR QLCCGSVGKAMGARCQRCPTDGTAAFKEICPAGKGYHILITSHC TLTIQGESDFJLFLHEDGPKPQQLPESSPQAPPEDTEERG VTTDSPVSEERSVQQSHPTATTTPARPYPELISRPSPPTMRWF LPDLPPSRSAVELTATTQVTETDECRLMQNICGHGECVFGPPDV SCHCNPGVFSHPQHEYCV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence 3652	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence 1207	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Aspartie Acid, E= Gluramic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unkhown, **=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion) MAGGHGSFPANAAGSGETVOLNVGGTRFSTSROTIMWIPDSF
				FSSLIAGRISTLRDETGALFIDRDPAAFAPILIFLETKELDLE VSSINVLHARBERYGITPLURFLLICERLESSGGSVLHGYL PPPGIPSRKINNTVRSADSRNGLNSTEGEARGNGTOPVLSGT EETVRIGFPUDPRKVLIVAGHNNIVAAVAHFAWRTKESSG UNGVETPSFYLDWTIERVALNARVVGGPHEDKENNVAVASESSI LIMSVQDGGSGSEIGVFSLGVFVDALFFIGNGLVARISTIGKVG VNANVTQWHOVOPVTTS VDTTASSFLLGCKNGSIYYLIMQK FPLRWEDNGLLVTELYHDPSNDALTALSVYLIPKTSVSGNNIE LAYGTSGANVTVUQHEPTUSSGOQLFOFFVHSFVTKLSL EKHLMSVCADNNEVETWTVTRFRGMISTOPGSTFLASFKLISL ERTESHGSYSGNDIGPPEGSPDQAVFIGKVPTTKSFVTKLSL STGRRICELQANDCTTISFTGREGESSRMSSPRRYLFTGH TNGSIQMMOLITAMMOWNKSEDKDVGGPTEELLKLLDQCTS SMRYTESFLIAFARFTESFHSYRDFVTHNSFVTKRATYGH NGGPIGARVKYFKARSTSCHSTERSFRSFVTHSFRIKELSLELDGGLEVHKI ARGFSSKKRSSEDENENKIEFRKKGOFFGGGFLGRKVFYLA SSPSTSGGTDSSGTASGFTKTTPSFRKKKEDSSGSGFLGRKKYFYLA
478	1217	1	1379	RRPTRFILTDELFKETTGLPHLKTLILINGNKLETLSLVGCFM NTPLEHILDGONLLDHKNDHOGSWETVVNMLSTYKKJGDEVF RCLFKSIGILDIANNIGIGTVPKETTHLMALREINIAFNFLTDL PGCSHFSRLSVLMIEMBHFLISPSLDFVGSCEVETINAGNFPLFDL PGCSHFSRLSVLMIEMBHFLISPSLDFVGSCEVETINAGNFL RCTGLKOFFLOLETYSEVMAVGWSDSYTCEVFINLRGTELKDL HAHBLGCNTALLVTTVVINLVLGLAUAFCCHFDLPWYLKDML GGCTOTWHRVRKTTGEQLKENVEPHAFISYSEHDSLWVNNELI PDHLKEKDGSLILILINESYFDPGKSISSNVVSNELI SPHVVONEWCHYEFVFAHHALPHENSCHTILLILLEPIPFVCIP TRYHKLKALLEKKAYLEMFDCRRKGGLFWANLRAAINVNVLAT REMYELQTFTELNEBSRGSTISLMRTDCL
479	1218	1		PTRPPTRPPTPPLITPSWTSTGRIMSSILMRLLFWS IFSSYTCE KAVLDCEAMKTMSFPS PCLISKTKVVMKGON/SMFCSHINNSL QITSSLFRRKTHLGYDQKGEPALFNLSTTEAHESGPYKCKAQ VTSCSKYSBDESTTYDDPVSTSPVLMINVIQTTSTDRHTLHGLS VMGSLPINYTFFIRMHVAISPALSKYDBEPAERNLTKKNPGEEE EYRCEAKINLPHYATYSHPVTMPSTGGBCPFCLKLLLPGLLL LLVVIILLIABWULBYKTRKAMRNNYPBRGDTAMEVSIYAN ILBEQAKEBSYBEVGSRCVSTAQDEAKHSQELQYATFVFQEV APREQBACDSYKSGYVYSELINF
480	1219	1	293	FFFFEERRTGSHSVGHPRMEYSGVSMAHCSLNLLGSSNSPSSA SQDARTTGACQHAQLIGFFFF\VETASPQVTHAG/LKHLVSRN PSAVTSQSARIKT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E=Glutamic Acid, T=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Trytophan, Y=Tyrosine, X=Unknown, **Stop Codon, /=possible mucleotide deletion, \possible mucleotide insertion) NREGARKIONKWLRPSPRSHRYPESVSPERYSYGTSSSSKETE
481	1220	1		GSCERREQSSSANAGOGOWETGSPPTKRQRESKGPSGGAKE RERGAPAAPQQQSEPARPSSEGKVTCDIELGVRAEVCEHGL EQGVASREPQALARQLDVFGQATAVLRSRDLGSVVCDIKFSEL SYLDAFWODVLSGALLQALKGVFTLEBALEEAVGREAVRLLVSV DEADVEAGRERILLIMEEEGGREPTEAS
482	1221	1	1321	APHTAELEICKVNKKOGSVEGODEIFLLCDKVÇKDDIEVRFVL MDWEAKGIFSQADVEKOVALVKFTPPYCKATTEPVTVKVQLER PSDQBVSESHDFRYLPDEKDTYGNKAKKÇKTTLLFÇKLCQDHV ETGPRHVODOLELLTSGODPTLASGASGITVNPFERPREPUL GSIGBRYFKKEPNLFSHDAVVREMPTGVSSQASSYYPSPOPI SSGLEHHASMADLPSSSWSVAHPTPESGNTTNPLSSFSTETL SNSQGIPPFLRIPVGNDLNASNACIYNNADDIVGMEASSMPSA DLYGISDPNHLENSVNRØMTISSDSMGETDRFLLISMLENDS CNSVLDPRDLRCJHGMSSSSMSAGNANSTTYFVSQSDAFEGSD FSCADNSWINESGPSNSTNPNSHGFVQDSQYSGIGSMQNEQLS DSFPYEFFO
483	1222	1	1311	RRISLIDLOGJEJGRUPPØSCSTFSPTDSGEEFGGISPOVOF RENNGRFSEMDVSRKISLDMDIELPØSFLKKLØMSDDJEPR LSPMSRRASLSDIGFGKLETYVKLDKLGEGTYATVFKGRSKIT BINVALKEIRLEBERGAPCATEREVSLLINKHANIVTHIDLI HTDRSLTLVPFYLDSDLKØYLDHCGNIMSMRNVKIFNFOLLEG LAYCHREKILHEDLKPØLLINEGGELKADPGIARAKSVYTT YYSNEUVTLAYRPPDVLLGSTEXSTPIDMMGUGLIFSMATGR PLPGGTVKEELHKINRLLGTFPEETFBOTAFSFERTYSPC YLPQFLINHAPRLDTDGIHLLSSLLIVESKSRMSABAALSHSY FRSLGERVHQLEDTASIFSLKSIQLØXDPGYRGLAPQOPGRGK NRKQSIF
484	1223	807	356	CTPHGSSSWKIPLMPRHMSPLHSCLPVGTSTSSGPLAVPRDC FHLCCLWGQLLLISCPLACGQGCRVAGGQQHVPGQALGTLSPL VSLLTWAGPSLDWPHPGSLVTPRCPILPAVEVLVKGLGGWPPT RPSRAAPVSGPWDQLPYFPGL
485	1224	1199	370	LISPYWGNIORSESYPLPPSGIVLGGTWARGPLIALIASPHII SVINABCYLKQLIHPTSHFYDSTPPLSGNDTDGLSCOSSGSA TSTPCVSKLVTGHHLWASKNGRKVLGLIEDYRALLKOISQGS LIABMDIGTORAPSTSGSLGTKGDHPAPISSFYSSVSTAIL LERAYBRIKLIWFVSLPEDGQCPLHCRQIGEMKARVTKLHKKL PEQEKKLONTNKLLQLSKRGEKVIFDQLVVTHKILRKARGNLE LRPGGAHPGTCSPSRPGS

COTO I	oro	Predicted	Predicted	
SEQ	SEQ ID	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	\=possible nucleotide insertion)
1 1		residue	residue	\=possible nucleonue insertion)
		of amino	of amino	·
1	ł	acid	acid	,
	1	sequence	sequence	·
486	1225	2469	1660	LGLFCILPIDTLCAVLERDTLSIRESRLFGAVVRWAEAECORO
400	1225	2405	1000	OLPVTFGNKOKVLGKALSLIRFPLMTIEEFAAGPAOSGILSDR
	ŀ			EVVNLFLHFTVNPKPRVEYIDRPRCCLRGKECCINRFOOVESR
		1		
	l		1	WGYSGTSDRIRFTVNRRISIVGFGLYGSIHGPTDYQVNIQIIE
1	Ì		l	YEKKQTLGQNDTGFSCDGTANTFRVMFKEPIEILPNVCYTACA
1	1		1	TLKGPDSHYGTKGLKKVVHETPAASKTVFFFFSSPGNNNGTSI
	1			EDGQIPEIIFYT
487	1226	1193	372	SVWWNSEVKDWMQKKRRGLRNSRATAGDIAHYYRDYVVKKGLG
ĺ		l		HNFVSGAVVTAVEWGTPDPSSCGAQDSSPLFQVSGFLTRNQAQ
		ì	l	QPFSLWARNVVLATGTFDSPARLGIPGEALPFIHHELSALEAA
1		l		TRVGAVTPASDPVLIIGAGLSAADAVLYARHYNIPVIHAFRRA
		l		VDDPGLVFNQLPKMLYPEYHKVHQMMREQSILSPSPYEGYRSL
				PRHQLLCFKEDCQAVFQDLEGVEKVFGVSLVLVLIGSHPDLSF
1	1	}	ļ	LPGAG\LTLQWILTSR
488	1227	756	1016	KLRPFIFSNOSLWLHSYEGAELEKTFIKGSWATFWVKVASCWA
				CVLLYLGLLLAPLCWPPTQKPQPLILRRRRHRIISPDNKYPPV
489	1228	1	747	OLIHLSHGYOIHWTDYYNVGTGRPEFGTRAAHKSLAGAELKTL
		_		KDFVTVLAKLFPGRPPVKKLLEMLQEWLASLPLDRIPYNAVLD
	l		l	LVNNKMRISGIFLTNHIKWVGCOGSRSELRGYPCSLWKLFHTL
	l	l	l .	TVEASTHPDALVGTGFEDDPOAVLOTMRRYVHTFFGCKECGEH
	1	l	i .	FEEMAKESMDSVKTPDQAILWLWKKHNMVNGRLAGEKPLGMGG
			1	SARAEGGPGPGTARTARLPWGLSLSFAASCHPLC
490	1229	4797	2398	HGGATFINAFVTTPMCCPSRSSMLTGKYVHNHNVYTNNENCSS
450	1223	4/3/	2330	PSWOAMHEPRTFAVYLNNTGYRTAFFGKYLNEYNGSYIPPGWR
		l		EWLGLIKNSRFYNYTVCRNGIKEKHGFDYAKDYFTDLITNESI
			1	NYFKMSKRMYPHRPVMMVISHAEPHGPEDSAPOFSKLYPNASO
1	1		1	HITPSYNYAPNMDKHWIMOYTGPMLPIHMEFTNILORKRLOTL
	i	1	l	
		ŀ	i	MSVDDSVERLYNMLVETGELENTYIIYTADHGYHIGQFGLVKG
	}	1	j .	KSMPYDFDIRVPFFIRGPSVEPGSIVPQIVLNIDLAPTILDIA
1	1		1	GLDTPPDVDGKSVLKLLDPEKPGNRFRTNKKAKIWRDTFLVER
	1	l	1	GKFLRKKEESSKNIQQSNHLPKYERVKELCQQARYQTACEQPG
	İ	l	l .	QKWQCIEDTSGKLRIHKCKGPSDLLTVRQSTRNLYARGFHDKD
1	1	1	1	KECSCRESGYRASRSQRKSQRQFLRNQGTPKYKPRFVHTRQTR
	1			SLSVEFEGEIYDINLEEEEELQVLQPRNIAKRHDEGHKGPRDL
1	1	ł.	1	QASSGGNRGRMLADSSNAVGPPTTVRVTHKCFILPNDSIHCER
				ELYQSARAWKDHKAYIDEEIEALQDKIKNLREVRGHLKRRKPE
	1	1	1	ECSCSKQSYYNKEKGVKKQEKLKSHLHPFKEAAQEVDSKLQLF
1		l		KENNRRRKKERKEKRRORKGEECSLPGLTCFTHDNNHWQTAPF
1	1	1	1	WNLGSFCACTSSNNNTYWCLRTVNETHNFLFCEFATGFLEYFD
1	1	1	1	MNTDPYOLTNTVHTVERGILNQLHVOLMELRSCOGYKOCNPRP
	1			
1.				KNLDVGNKDGGSYDLHRGQLWDGWEG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleoused focation corresponding to first amino acid residue of amino acid sequence 2480	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 385	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Asparite Acid, E=Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Sertine, T=Throonine, V=Valine, W=Trytophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion) HILLIAGELADRVGEGRACWSLGNAYVSMGRPAQALTFAKKHLQ ISOB IGDEHGELTARRWNYAGLGLVLGRLTSPAASEKFDLAGYER AGGARRKTORLSSTRINGLEDERSCHEDLAGYER AGGARRKTORLSSTRINGLEDERSCHEDLAGYER AGGARRKTORLSSTRINGLEDERSCHEDLAGYER AGGARRKTORLSSTRINGLEDERSCHEDLAGYER AGGARRKTORLSSTRINGLEDERSCHEDLAGYER AGGARRKTORLSSTRINGLEGENEDLAGYER AGGARRKTORLSSTRINGLEGENEDLAGGARGHAGTARATA APTLEDRIAGDENTASPOTEBFFDLIASSOSRINDDORSULAGG PAGGRETARAPAYPARCLIRPCAHRQAHPAPTGRRSHSHSHVLLSCHEDLAGGARGHAGTAGTAGTARAFTA APTLEDRIAGDENTASPOTEBFFDLIASSOGRAGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGARGGACTHEGLAPHA LISTLESAPRAGKTOSSACRERGGARGGACTHEGLAPHA PPIQLEPAGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA
492	1231	3	398	CNSLEWAPGA NSAADLAIFALWGLKPVVYLLASSFLGLGLHPISGHFVAEHYM FIKGHETYSYYGPLMWITFRVGYHVEHHDFPSIPGYNLPLVRK IAPEYYDHLPQHHSWVKVLWDFVFEDSLGPYARVKRVYRLAKD
493	1232	1	214	GL QESGFSCKGPGQNVAVTRAHPDSQGRRRRPERGARGGQVFYNS EYGELSEPSEEDHCSPSARVTFFTDNSY
494	1233	3	443	VIVHARPIRTRASKYYIPEAVYGLPAYPAYAGGGFVLSGATL HELAGACAQVELFPIDDVFLGMCLQRLRLTPEPHPAFRTFGIP QPSAAPHLSTFDPCFYRELVVVHGLSAADIWLMWRLLHGPHGP ACAHPQPVAAGPFQWDS
495	1234	1	897	MASACSMOPIDSFELDLLFPRODAILRIVELERGRIPKDO VLNPPSDDFLSSILGSGOBLFSSILMSPEGDSGISEBLPD PODTPPRSGDAISEBLAGGERGLSVHPGNSCSTTPDG VIQQOHHLGASYLLRPGAGKOGLIVLTEDBKKLLAKSGITLPT CLPLTKYEERVLKKIRKIRKGSAGESKKKKKEYIDGIETRS CCCPLBSSSSPSALLAFTKPRALGTILLIYECSPECTTHLPT ANLIMICQAPRODAIDPRIOPEKSLGZAFGGTGASKTPT

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Flhenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
496	1235	4235	940	ARGRERDVMAASWGGREPAARERERGILATMGFELDEFDGT VOPDLKKALCHKVLEDDLTTPCGHVPCAGCVLPWVVQRGCEPA RCKGRILSAKSLANVI,PILKILLIKLDIKCAYATRGCGRVVKLQQ LPHLIBERCDRAPAGRERAGCGGVLLERDVEAHHRDACDARPVG RCQBGCGIPLTHGEGRAGSHGCCARALRAINGALQARLGALHKA LKKEALRAGKREKSIVAQLAAAQLELCMTALRVÇKKFTEYSAR LKKEALRAGKREKSIVAQLAAAQLELCMTALRVÇKKFTEYSAR SKATHDQAVAPPGGKGEFTESILTULHERSGSIGFNITGGRP VDHNDGSSSGIFVSKIVDSGPAAKGGIQHDRILEVNGRDL SKATHDQAVARPFKAKED IVVQVLKRTPETKMFTPFSSGLVD TGTQTDITFBHIMALTKMSS DSPVLDPYLLPEEHBSAHEVYD TGTQTDITFBHIMALTKMSS DSPVLDPYLLPEEHBSAHEVYD TGTQTDITFBHIMALTKMSS DSPVLDPYLLPEEHBSAHEVYD GUGLIYISBIDPNSIAAKDGIRBGGRIJCHOKTGTDD EDDIGIYISBIDPNSIAAKDGIRBGGRIJCHOKTGTDD EDDIGIYISBIDPNSIAAKDGIRBGGRIJCHOKTGTD CORDHQAMQTTASVLOKKHDENGGTDTTATILSNGEKDS URFDESTRINDESS SCRINDDDATASSNIPLAGCKKLTGGOTL GSGLDFBNKSFISPSCGAAVLGIPUDECEFFELLBLKCOV SKATPYGLYYTSGPLJAAKSDPSSVMELELLINEELUR ELLEC LSIVRAHKMQQLKEQYRSSWMLHNSGFRYNTSIDVRRRES LDENGGAGVATTARYGFBSCRSTPITLEISPDNSLRRAAGS ITELBEKSDLOSSANYTGGSCRSTPITLEISPDNSLRRAAGS LDENGGAGVAGVAGGGGVASALBSYHSPSYKHEL LDENGDLOSSANYTGGSCRSTPITLEISPDNSLRRAAGS HIPAHAGHYGSYMQLIQASKAVAGGGGVIJSMCKDISS PTP SEPRMBKVKIKISDDTSYTTIKEPVROBLLREALKIRERSGM TIDDDAVSERMAGNEWSKERERGHLYARERGRRREFFMGSRL DCLKEGQAADDREEMILBISSKROMMKKNIKKIFDDMMTIQEL LTHGTKSDDTRAVNSLTTUV
497	1236	2	157	FFFLVEMGFCHVGQGGLTLIGSSNLPASASKSAGITGVSHCAR PDFKSCVE
498	1237	1	211	LAGRKVLLFVSGYVVGWGPITWLLMSEVLPLRARGVASGLCVL ASWLTAFVLTKSFLPGGVSVQPQAPGP
499	1238	2	345	FWAPGPPGVGAAVGDASTRSLRESCPSPSFGRLRRTTAPWSSQ ARAAAPAPSSSCRGPDGASSPRDLPWRPWKILRRTPLSGDVEL SQVHPDQRILRRFILSRTCGNTIPGMAE
500	1239	1	523	MRRFLSKVYSFPMRKILIFLVFPVVRQTPTQGFRKNGFPALISEE HEIGLAFFKNMMYINKEHLIFBSGDFFJ SVGYTFRGWISES BIRQAGRPNKPDSITVVITKVTDSYPEPTQLIMGTKSVCEVGS NWFQPIYLGAMFSLQEGDKLMVNVSDISLVDYTKEDKTFFGAF LL

OFO	SEO	Predicted	Predicted	The state of the s
SEQ	ID	beginning	end	Amino acid segment containing signal peptide (A=Alanine,
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(-positive indiconde inscritory
		of amino	of amino	
		acid	acid	
		sequence	sequence	
501	1240	2	1277	FVWDEVAQRSGCEERWLVIDRKVYNISEFTRRHPGGSRVISHY
j	ļ	ļ		AGQDATDPFVAFHINKGLVKKYMNSLLIGELSPEQPSFEPTKN
	1	l		KELTDEFRELRATVERMGLMKANHVFFLLYLLHILLLDGAAWL
				TLWVFGTSFLPFLLCAVLLSAVQAQAGWLQHDFGHLSVFSTSK
	l			WNHLLHHFVIGHLKGAPASWWNHMHFQHHAKPNCFRKDPDINM
1		1		HPFFFALGKILSVELGKOKKKYMPYNHOHKYFFLIGPPALLPL
	1		l	YFOWYIFYFVIORKKWVDLAWMITFYVRFFLTYVPLLGLKAFL
1		i		GLFFIVRFLESNWFVWVTOMNHIPMHIDHDRNMDWVSTOLOAT
1	1			CNVHKSAFNDWFSGHLNFQIEHHLFPTMPRHNYHKVAPLVQSL
		1		CAKHGIEYQSKPLLSAFADIIHSLKESGQLWLDAYLHQ
502	1241	999	540	OCGGIPYNTTOFLMNDRDPEEPNLDVPHGISHPGSSGESEAGD
		1	1	SDGRGRAHGEFORKDFSETYERFHTESLOGRSKOELVRDYLEL
		1		EKRLSOAEEETRRLOOLOACTGOOSCROVEELAAEVORLRTEN
				ORLROENOMWNREGCRCDEEPGT
503	1242	1448	875	SPERSSLSVGREKAMEVPPPAPRSFLCRALCLFPRVFAAEAVT
1 303	1272	1440	10,5	ADSEVLEEROKRLPYVPEPYYPESGWDRLRELFGKD\VTGSLF
1		1	i	RINVGLRGLVAGGIIGALLGTPVGGLLMAFOKYSGETVOERKO
	1	1		KDRKALHELKLEEWKGRLQVTEHLPEKIESSLQEDEPENDAKK
		l .	i	IEALLNLPRNPSVIDKODKD
504	1243	149	1293	RSLGLAVTEMVPWVRTMGQKLKQRLRLDVGREICRQYPLFCFL
504	1243	149	1293	LLCLSAASLLLNRYIHILMIFWSFVAGVVTFYCSLGPDSLLPN
		l .	1	IFFTIKYKPKQLGLOELFPOGHSCAVCGKVKCKRHRPSLLLEN
		İ		YQPWLDLKISSKVDASLSEVLELVLENFVYPWYRDVTDDESFV
				DELRITLRFFASVLIRRIHKVDIPSIITKKLLKAAMKHIEVIV
		1		KARQKVKNTEFLQQAALEEYGPELHVALRSRRDELHYLRKLTE
	ì			LLFPYILPPKATDCRSLTLLIREILSGSVFLPSLDFLADPDTV
	1	ł		NHLLIIFIDDSPPEKATEPASPLVPFLQKFAEPRNKKPSVLKL
505	1224	2	11116	ELKQIREQQDLLFRFMNFLKQEGAVHVLHVLFDCGGI
505	1244	4	1116	QSLAEVLQQLGASSELQAVLSYIFPTYGVTPNHSAFSMHALLV
1	1	1	1	NHYMKGGFYPRGVTSEIAFHTIPVIQRAGGAVLTKATVQSVLL
1	1	1		DSAGKACGVSVKKGHELVNIYCPIVVSNAGLFNTYEHLLPGNA
1	1		1	RCLPGVKQQLGTVRPGLGMTSVFICLRGTKEDLHLPSTNYYVY
	1			YDTDMDQAMERYVSMPREEAAEHIPLLFFAFPSAKDPTWEDRF
1	1	1	1	PGRSTMIMLIPTAYEWFEEWQAELKGK\RGSDYETFKNSFVEA
1	1	1	1	SMSVVLKLFPQLEGKVESVTAGSPLTNQFYL\AAPRGACYGAD
1	1	1		HDLGRLHPCVMASLRAQSPIPNLYLTGQDIFTCGLVGALQGAL
				LCSSTILKRNLYSDLKNLDSRIRAQKKKN
506	1245	1759	873	RPQETRVLQVSCGRAHSLVLTDREGVFSMGNNSYGQCGRKVVE
1	1	1	1	NEIYSESHRVHRMQDFDGQVVQVACGQDHSLFLTDKGEVYSCG
1	1	1	1	WGADGQTGLGHYNITSSPTKLGGDLAGVNVIQVATYGDCCLAV
1	1		1	SADGGLFGWGNSEYLQLASVTDSTQVNVPRCLHFSGVGKVRQA
1	ì			ACGGTGCAVLNGEGHVFVWGYGILGKGPNLVESAVPEMIPPTL
1				FGLTEFNPEIQVSRIRCGLSHFAALTNKGELFVWGKNIRGCLG
				IGRLEDQYFPWRVTMPGEPVDVACGVDHMVTLAKSFI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenyilalanie, G = Glycine, H = Histdiffe, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Trytophan, Y = Tyrosine, X = Unknown, ** = Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
				SRARIRSSFSRTSSRRAGALYSGMLAGWPFPCFCWVLSASSSL SSQVRSLRSICSRFSHADCSWVRACCSFSTFSTYACFSRNSSS SLMTLAWALLKAWSRISMCLRWSSLAVRTAANSISNFSFSFKN
508	1247	1	1083	MOAVRATASGSISCRAPREPTOHALRAHNFPPAANVOPSHH GVARAAGTMSSAFRGEMELVSSGLLIGVEGSPFLLRSKGSHT MYLEHTSHCPHHODITAMUTPLPPRPRPLLAVERTGGPELWAPE LELPKPEMOPLPAGAFLEEVHSGTHAGTESBFWLDPBELLC LAKTFSYLRBSGHYWGSITASEARQHLOKNPEGTFLVRDSTHP SYLFILSVKTTRGSTHVRIETADSSFLDSKCISRRILAFPI VYSLVQHVASCTADTKSDS PPDAFTBALPPPKEDDAFDEPAL APPPATAVHLKLVOPFVERSSARSLGHLCRLVINRLVADVDCL PLEPRRHADYLROYPFQL
509	1248	2	841	FYDIFORWKECRGKSPAQABLSYLINKAKKLEMYGVDMHVVRG DOCRYSLGHTPTGILIFEGANIGILFWRYTKADPKKSKLTL VVVEDDDQGRSOEHTFVFRLDSARTCHLWKCAVEHHAFFRLE TROMSKSINSPOTLRIGSF PF SGRTEWOATHGSFLERTSTFER KPSKRYPSRRHSTFKASNPVIAAQLCSKTNPEVHNYQPQYHPN IHPSGPRHHPHSFWTPSFYDDRSHWKASASGDDSHFDYVHDQ MQKNLGGRQGSMYTRIKUTAL
510	1249	2	763	GGIRLÍOKLTWRSROQDEBNCAMKSKIKDEGINFIKVFYPRIN ENWFVCGINAFNIMCRYRYKVSIFVVICFF*SFIFDBLICC*S* NLSAFQ*FVLSLVOY*KNKDBILQMEF*YK*NSLAFRRAR*IDM TLATYSFYLJSTIA*VDEBSIGLARCFPBACYMOALFAGU LYSATVADFLASDAVIYRSMGDGSALRTIKYDSKWIKE/PHFL YAIK/Y/GNYVYFSFREIVAT**LG/FAVDS/RVARYEKQLVG FTV
511	1250	1555	629	ARALABERESSARADDVTLGVSA LLAVDRGGNLGSA \DGWAY LDVEVRENPAVOPGCSE SGWGSTAYGUVGPPRUSPFHAYG AVSLPRENPGPPVLGVARPCLRCVLRPE\HYEPGSHYSGFAG RDASRAFVTGDCSEAGLVDDVSDLSAABMLTLEHWILSFYERNY CVCNRTVTGRYGSDCLFPLALTQVBAATTGLEARNLCJCAG TFPCNAEWSSARGSRLWCSQKSGGVSRDWIGVPRKLYKPGAK EPRCVCVRTTGPBSGQMPDNPPHRNRGDLDHPNLAEYTGCPPL ATTCSFPL
512	1251	1100	798	YFIICRDGVLLFCPGWSQTPGAQAILLHWATQNAGMTDMSHSA QPIYLFIYLIRTRSHYVAQAGQLLDSNDSPNVASQNVGITGMS HHAWLKIVLYFCII

SEQ	SEQ	Predicted	Predicted	T
		beginning	end	Amino acid segment containing signal peptide (A=Alanine,
ID NO:	ID NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of Nucleic	of .	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
	l	acid	acid	\=possible nucleotide insertion)
		residue	residue	(=possible nucleoride hisertion)
	ļ	of amino	of amino	
	1	acid .	acid	
		sequence	sequence	'
513	1252	3	1395	PAARPPSLVRLSPSPPKPRARARAPOSVEPAAPLVARGSSPPA
1 323		-	1 2000	RPAPAMVRPRRAPYRSGAGGPLGGRGRPPRPLVVRAVRSRSWP
1				ASPRGPQPPR\IRARSAPPMEGARVFGALGPIGPSSPGLTLGG
_ ′				LAVSEHRLSNKLLAWSGVLEWQEKRRPYSDSTAKLKRTLPCOA
				YVNQGENLETDQWPQKLIMQLIPQQLLTTLGPLFRNSQLAQFH
	j	l	1	
1	l		1	FTNRDCDSLKGLCRIMGNGFAGCMLFPHISPCEVRVLMLLYSS
1	1	ĺ	1	KKKIFMGLIPYDQSGFVSAIRQVITTRKQAVGPGGVNSGPVQI
1	1			VNNKFLAWSGVMEWQEPRPEPNSRSKRWLPSHVYVNQGEILRT
	l	ļ		EQWPRKLYMQLIPQQLLTTLVPLFRNSRLVQFHFTKDLETLKS
				LCRIMDNGFAGCVHFSYKASCEIRVLMLLYSSEKKIFIGLIPH
1				DQGNFVNGIRRVIANQQQVLQRNLEQEQQQRGMGG
514	1253	320	964	GRPALGREAPPQAGLSSTPPPCSETCTMGPHSILRTVHCRPTK
	1			TPPEPSAEPHPLSLLTSSNTSLAGTSLGRDLTPGGGKPPSGQT
1			1	PRNPESPRHRLGSPRGRRWLASPTPTGSGRSGPASRGQRRLSC
	1	l.		AAQDPTSEGASVGAMEAGLGPPTAAPRGVVSEAAESLGGTLSW
			1	GAWGRPPAGPSGLAGRRSRREALRPDRKEASVMMAAVSAIQP
515	1254	704	107	PGVPTHGWPRSRVLTRVRGSRGSGKMAAAVVLAAGLRAARRAV
1 '	1		1	AATGVRGGQVRGAAGVTDGNEVAKAQQATPGGAAPTIFSRILD
1			1	KSLPADILYEDQQCLVFRDVAPQAPVHFLVIPKKPIPRISQAE
i	1	1		EEDQQ/LTYVPPLSL*LLGHLLLVAKQTAKAEGLGDGYRLVIN
1			i	DGKLGAQSVYHLHIHVLGGRQLQWPPG
516	1255	2299	924	VPNYLPSVSSAIGGEVPORYVWRFCIGLHSAPRFLVAFAYWNH
		1	ł	YLSCTSPCSCYRPLCRLNFGLNVVENLALLVLTYVSSSEDF/T
1	ì	ı	ľ	WVPG*GRSGEVFPEGTGLPLPHSDLPTSWCGHSLQCGSQSSFP
		1	l	PAIHENAFIVFIASSLGHMLLTCILWRLTKKHTVSOE\DGLSL
1			1	AGAPROPRRKSRTSVLRIRVMVRWELSSNGNPGRGVLGLGLGL
1	1	1	ł	GNKLRVVGQNLGL*HCVWVVWETGE*KRWRLQMGIE*GVASRR
		1	ļ	O*VRNSVRGLVCHNSSAPPMYMGFFSPTVFGGGVGG*LHVTFI
		1		LHPPEVEAAGIPLLLGPSLPQRQGREHIVVILAAPACAPFHDR
			l	*WEPREIRPSP*ELGLRGEPTLSYPASCRVIROPIP*DRKSYS
1	l		1	WKORLFIINFISFFSALAVYFRHNMYCEAGVYTIFAILEYTVV
1	1		1	
517	1256	3	254	LTNMAFHMTAWWDFGNKELLITSQPEEKRF
217	1256	3	254	IDLLEIRNGPRSHESFQEMDLNDDWKLSKDEVKAYLKKEFEKH
1	1	l	611	GAVVNESHHDALVEDIFDKEDEDKDGFISAREFTYKHDEL
	1000			PRVRGRVGKEGAAAKPRSLLRRFQLLSWSVCGGNKDPWVQELM
518	1257	2	1 011	
518	1257	2	011	SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP
518	1257	2	1011	SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA
518	1257	2		SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS
į				SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP AQMLLSTLQSTQRPTLEVGASSDKELTRPNRTTIHTAGHSLA AGPEAGENGKQPEKNAGPGTARTSATVPULCLLAIIFILTAALS YVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT
518	1257	1002	418	SCIDIKECGHAYSGIVAHQKHLLPTSPPIGQASGGASSDIHTP AQMLSTLGSTQRPTLPYGGSLSSDELTFRNTTHTHAGHIL AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS VVLCKRRGGSPSSPDLPVHYIPVADDSNT LIISNFLKAKQKPGSTPBLQQKKSQAKLAPDIVSASQYRKPDE
į				SCLDLKECGHAYSGIVAHQKHLLPTSPPISQASEGASSDIHTP AQMLLSTLQSTQRPTLEVGASSDKELTRPNRTTIHTAGHSLA AGPEAGENGKQPEKNAGPGTARTSATVPULCLLAIIFILTAALS YVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT
į				SCIDIKECGHAYSGIVAHQKHLLPTSPPIGQASGGASSDIHTP AQMLSTLGSTQRPTLPYGGSLSSDELTFRNTTHTHAGHIL AGPEAGENQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS VVLCKRRGGSPSSPDLPVHYIPVADDSNT LIISNFLKAKQKPGSTPBLQQKKSQAKLAPDIVSASQYRKPDE
į				SCIDLKECGHAYSGIVAHQKHLLPTSPPISQASGGASSDIHTP AQMLLSTLQSTQRPTLPVGSLSSDKELTRPNETTIHTAGHSLA AGPBAGEMQKQPEKNAGPTARTSATVPVLCLLAIIFILTAALS VVLCKRRRGQSPQSSPDLPVHYIPVAPDSNT LIISNFLKAKQKPGSTPNLQQKKSQARLAPDIVSASQYRKPDE FQTGILIYKELHIQPNPFEVRAQLBREDYRQEDLPPLPALISIYS
į				SCIDIKECGHAYSGIVARQKHLLPTSPPISQASGASSDIHTP AQMLASTLQSTQAPTLPVGGISSDELTPRINTTHTHAGHSLA AGPEAGENQKOPEKNAGPTARTSATVPVLCLLAIIFILTAALS YVLCKRRRQSPQSSPDLPVHYIPVAPDSNT LIISNELKAKQKRGSTPRILQQKKSQAKLAPDIVSASQYRKPDE FQYGILIYELLHQPMPFEVEAQLEREPYRQEDLPPLPALSLYQP PGLQQLAHLLLEADTKRIRIGRAKTVLQCLIMGPREELVYQP

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Penerylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threcoine, V=Valine, W=Tryptoplan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \perp \text{ = possible nucleotide insertion} \]
520	1259	2	2019	REGITUVKAHEMIGTÖTVTERGVALLESGTEKVILLIDGEPVE YNTSHILEAININCSKIMKRRLOODKVLITELIQHSAKHKVDI DCSQKVVVYDQSSQDVASISSDCPLTVLIGKLEKSFNSVHLLA GGFABFSKCPPGLCEGKSTLVPTCISQPCLFVANIGPTRILEN LYLGCQRDVINKEIMQQNGIGVVLNASNTCPKPDFIPSSHFIK VPVNDSFCEKILDHUDKSVDFIERÄKASNGCVLVHCLAGISRS ATIAINYMKRMMSLDBAYRVEKERPTISPHFFUGOLLDV EKKIKNGTGASGPKSKLKKLHLBERPKEPVPAVSSGGGKSETPL SPPCADSATESBAGQRPVHPAVSVSVSVSDSLEDSSPLVQAL SGHLISADRLEDSNKLKRSFSLDIKSVSYSASMASLIGFSS EDALEXYKPSTTLDGTKKLCGPSVVGLICGADSRNGS*4GG Q/PSPRSCRPPGLQTARASDCTRSEPAAVAPPROPPTLHCIEV GAWRTITTPASFSAFPP\PAAPHEVCHPQP*GLA\PDILAPQT STDSILSSWYFATESSHFYSASATYGGSASYSAYSCSQLPTCG DQVYSVRRKQKPSDRADSRRSHBESSFFKQFKRRSCQMEFGE SIMSEMRSREELKKVSGSSFSGMMEILESF
521	1260	20	803	ASSSKRVSROMMOLMKIVLLGOVLTOTSESLLDNIGEDLSNV VDKLBEVLHRGLETVDNTKRGILEKKUNVLGVJCKSSAWQLAK OKAQRAEKLIANNVISKLLPNYDDIFGLKISNSILLDVKARFID DGKGINLSFPVTANVTEAGPIIDQIIN\LRASLDLLTAVTIET DGYTHHPVAGLGBCARDPTSISLCLLDKSQTINKFVKSVINT LKSTVSSLLQKEICPLIRIFIHSLDVNVIQQVVDNPQHKYQLQ TLI
522	1261	1246	411	CSLERPESAREPDADHVPLIGILRICOLRARGOGANRPOGERA EPORLEGILLILLICLAPAESASET PERGYKAQLIGREVVDLY NGMCLIGDAGVPGROGSVGANGI POTTGT PGROGFRGEKGECI. RESFEESWTPHYKQCSWSSLNYGIDLGK IAECTFTKMRSNSAL RVLFSGSLELKCRNACCORNYFTFNGRECSGFLD IBAIT TILDO GSPEMMSTINIHETSSVEGLCSGIGAGLVDVALWVGTCSDYPK GDASTGWNSYRIITEELPK
523	1262	2009	921	HHISAMLGTTEVNLEVSDFWRYWRIVCHLVYCOSRTIGRIR.DHLIA AVVIGRGBFRITITDKKCSRGOVQLLBARCKNGYUVKUGVOWDF SIDBVVIGKDCEVKLOPGQVLHMVNBELYPYLYFFEREAKNIPGL BTHEKKERSGOSDS IERDAG,GERAGTGLBGSDSSOGCGSVIK KOKNAPIKKESLGHWSQGLKISMODPKWQVYXDEQVVVIKDKY PRAPYHWLUPHTSISSLKAVAR\BHLELIKHMITYGEKVDY PRAPYHWLUPHTSISSLKAVAR\BHLELIKHMITYGEKVD STWTEYFLESQAVIEMVGEAGRVTVRDGMPELLKLIPLRCHECQ QLLDSIPGLKHHIRKHWTQ

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine, H=Ristidine, 1=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \-possible nucleotide insertion)
524	1263	2067	198	IMBOTTESGAGITERYOAEASEKDSSNMOTTLITTONVEVEE PKASKALEVESDEVKYSKASVKATEVSTEPPAREAPATOATS KASKALEVESDEVKYSKASVKATEVSKITPPAREAPATOATS TOLDTOVILABENKSLAADTIKKONADPOÄYTIPATTIKKVSH VADTKVINTKAQETEAABPQAPADEPEPESAAAQSOENODTRYK VARKARAKVSHILDGSEDGSSDGSQASGTTGGREVSKALIASMA PRASSEPILAGWASKASVASVASVASVASVASVASVASVASVASVASVASVASVA
525	1264	1	1397	ARPDVOTGSTMSLTVVSNACVGFELLOGMWFLMGGODKFFLSA RESTUVPRGGNVALCHATRGRNMMMLYKEDRSKVPTFHGE ORSF IMGEVTPAHAGTYRCRGSEPBSLTGMSAPSINLUTMYTE ORSF IMGEVTPAHAGTYRCRGSEPBSLTGMSAPSINLUTMYTE DREALWOOLHBOUSKANESTGPMILALAGTYRCYGSVTHTEVO LSAPSDPLDIVVYTGPYRKPSLSAQPGFRVQAGESVTLSCSSRS SYMMYHLGRBGGAHERRLIPAVRKVNRTFGADFFLGFATHGGTY RCFGSFRHSFYEMSDGSDPLUSVTGDFSSWSFFFFFSSKSG NIKHHAHLIGTSVVKIPFTLLFFLLERWGSNKK\NAAWMOG PAGNR\VNSIBSDBGDGHGEVSFY LERCYFTGRRITRESGRFK TPPTDTSKYT ELDNAEPRSKYP-LERCYFTGRRITRESGRFK TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT ELDNAEPRSKYP TPPTDTSKYT EL

SEQ	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
		location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	ĺ	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid	\=possible nucleotide insertion)
1	1	residue	residue	(-possible nucleotide insertion)
		of amino	of amino	
1		acid	acid	
		sequence	sequence	
526	1265	6657	988	LHNLRERYFSGLIYTYSGLFCVVVNPYKHLPIYSEKIVDMYKG
526	1205	6657	200	KKRHEMPPHIYAIADTAYRSMLQDREDQSILCTGESGAGKTEN
	1	1	1	
1		i	l	TKKVIQYLAVVASSHKGKKDTSITGELEKQLLQANPILEAFGN
1		l .		AKTVKNDNSSRFGKFIRINFDVTGYIVGANIETYLLEKSRAIR
1		1		QARDERTFHIFYYMIAGAKEKMRSDLLLEGFNNYTFLSNGFVP
1			1	IPAAQDDEMFQETVEAMAIMGFSEEEQLSILKVVSSVLQLGNI
			1	VFKKERNTDQASMPDNTAAQKVCHLMGINVTDFTRSILTPRIK
		1		VGRDVVQKAQTKEQADFAVEALAKATYERLFRWILTRVNKALD
1	1	ł	1	KTHRQGASFLGILDIAGFEIFEVNSFEQLCINYTNEKLQQLFN
1	1	İ	1	HTMFIL\EQEEYQREGIEWNFIDFGLDLQPCIELIERPNNPPG
1		1	l	VLALLDEECWFPKATDKSFVEKLCTEQGSHPKFQKPKQLKDKT
		l	l	EFSIIHYAGKVDYNASAWLTKNMDPLNDNVTSLLNASSDKFVA
		1		DLWKDVDRIVGLDOMAKMTESSLPSASKTKKGMFRTVGOLYKE
		1	l	OLGKLMTTLRNTTPNFVRCIIPNHEKRSGKLDAFLVLEQLRCN
	1	1	l	GVLEGIRICROGFPNRIVFQEFRQRYEILAANAIPKGFMDGKQ
	1	1	1	ACILMIKALELDPNLYRIGOSKIFFRTGVLAHLEEERDLKITD
1		1	1	VIMAFQAMCRGYLARKAFAKRQQQLTAMKVIQRNCAAYIKLRN
1	1	i	1	
		1	1	WQWCRLFTKV*PLLQVTRQE*EMQAKEDELQKTKERQQKAENE
	i			LKELEQKHSQLTEEKNLLQEQLQAETELYAEAEEMRVRLAAKK
		1		QELEEILHEMEARLEEEEDRGQQLQAERKKMAQQMLDLEEQLE
ļ	1			EEEAARQKLQLEKVTAEAKIKKLEDEILVMDDQNNKLSKERKL
	1		1	LEERISDLTTNLAEEEEKAKNLTKLKNKHESMISELEVRLKKE
			1	EKSRQELEKLKRKLEGDASDFHEQIADLQAQIAELKMQLAKKE
1		1	1	EELQAALARLDDEIAQKNNALKKIRELEGHISDLQEDLDSERA
1		1	ļ	ARNKAEKQKRDLGEELEALKTELEDTLDSTATQQELRAKREQE
1	1	1		VTVLKR\ALNEETRSHEAQVQEMRQKHAQAVQSLTEQLEQ*K
		Į.	ļ	RAKANLDKNKOTLEKENTD\LAGELRVLGQA\KQEVEHRMKKL
	1	ì	1	QAQVQELQSKCSDGERARAELNDKVHK\LQNEVESVTG\MLNE
1			ļ	AEGKAIKLAKDVASLSSOL\ODTOELLQEESROKLNVST\SLR
			1	\OLEEERNSLODQLDEEMEAKQNLERHISTLNIQLSDSKKKLQ
1.	1	1	1	DFASTVEALEEGKKRFQKEIENLTQQYEEKAAAYDKLEKTKNR
				LOOELDDLVVDLDNQRQLVSNLEKKQRKFDQLLAEEKNISSKY
1		1	1	ADERDRVEAEAREKETKALSL\ARALEEALEAKEELERTNKML
1	1	1	1	KA\EMGRPGSASKD\DVGQELSHDL\EKSK\RALGDPRLEEMK
	1			
1	1	1	1	T\QLEELGRTELASPRRDA\KLRLEVNMQAPSRASFER\DLQA
		1	1	RTEQNE\ESRR\HLQRQLHEYETELEDERKQRALAAAAKIKLG
1	1		1	WDPVRTLDL*ADSAIKGRGGKAIKQLRKLQAQMKDFQRELEDA
1	1	1		\RASRDEIF\ATA\KENEKKAKSLEA\DLMQLQE\DLAAAEEG
1	1	1	1	RKQ\ADLE\KEELAEEL\ASSLSGRNALQDEKRRLEARIAQLE
		1	1	EELEEEQGNMEAMSDRVRKATQQAEQLSNELATERSTAQKNES
1	1	1]	ARQQLERQNKELRSKLHEMEGAVKSKFKSTIAALEAKIAQLEE
1	1		1	OVEOEAREKOAATKSLKQKDKKLKEILLQVEDERKMAEQYKEQ
1	1		1	AEKGNARVKOLKROLEEAEEESQRINANRRKLORELDEATESN
			1	EAMGREVNALKSKLRRGNETSFVPSRRSGGRRVIENADGSEEE
				TOTRDADFNGTKASE
				ID INDIDITION IN THE IDEA

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, **=Stop Codon, *=possible nucleotide deletion, \possible nucleotide insertion) ELHFAKSLNSELSCSTREAMODEDGYITLNIKTEKPALVSVGP
				ASSSWWRYMALILLILCVGMVVGLVALGIWSVMORNYLQDENE NRTGTLQQLAKRFCQYVVKQSELKGFFKGBKCSFCDTMRYYG DSCYQFFRHLIVMERSKQVTDMMATLLKIDNRIVEYIKAR\ THLIRWOLSRQKSNEWWKWEDGSVISENNFFFLEDGKGNNNC AYFHNGKMHPTFCENKHYL\MCE\RKAGHDPRWTQLPLMPKRW TG
528	1267	1053	424	NOGI.EDVGLCRTCLVNKIFASSILGKSHHHSLVSINGGHNAPW KAGS\LPLKAAYC\QGFSPCDCLKYG\SWDEXDLAVPQPDTH KGSYLRWISKRGKPLAVEMESGHCL\CLPLOTECLGVKP\IVH LFNSEWGEK\RPVAG\ARHYGSSAALLFFTPLRCLGGEKHKSG LRARPGIVPSLELNYDIDSFAHMFF/SVDLLLIITLLSYYIPF C
529	1268	1435	1560	MWWRLAPTQAIWRAAGCCMFFSRRSTCCCLASCIFLLYKIVR GDQPAAKRQRRRRAAPSAPPQAARLHPPPKLRRFDGVQDPAP YSWAINGKYEDVYQRPANFLRGPRGPETLSDWESQFTFKYHHV GKLLKEGEEPTVYSDEERPKDESARKND*
530	1269	705	166	GBFMAKELSODINEYKECFSLYDKQORGKIKATDLMVANRCL GASPTGEVQPRILCTHGIONGELDFSTFLTIMHOXICKGEDFK KEILLAMLMVDKEKKGYVMASDLRSKLTSLGEKLTHKEV\DDL FRE\ADIEPNGKVEYDEFIHKI/TLLEGRDLKEENGRASPGP ENLEQLIFL
531	1270	25	1396	ADPHITVLRFFPAASATKRVLPPULRVSS PRTMIPBAVDESPRI PAPPLEKRMSGAPTAGAALHICATATULLSAGGGFVGSKSFRF ASÜDENNYLAHGILLOLGGGLBEHABFTRSGLSALEBRLSAGGS ACQGTEGSTDLPLABERSUNDFBVHLSLOCHLKANDSRIGOLFH KVAQQRHLEKGHLKJGHLGSOFGLLDHKHLDHEVAKPARRKR LPEMAGPUDAHNVSRLHBLPBCCGLFFOVGERGSGLFFLOOG GS PPFLVNCKNTSDGGWTV1QRHUGGSVFFRDFNEAYKAGFBD PHGEFNIGLKKYHSTTGDRNSFRLAVQLRDNGDANBLLQFSVHL KDKNCAKSLSGGWWGTCSISSILMOGVFRSTWODHDLR KDKNCAKSLSGGWWGTCSISSILMOGVFRSIPQORCKLKKGIF WKTWRGRYYLDGATTHLIGDPMAARAAS
532	1271	1276	90	ALDEGISCOWPRODTHKOLPVLEEGIKPRKATHYTLTVPCHS PCARVERSCSYLPPWGANKEKVFTVGGANDRSFSENVITHDL GKHQWDLDTCKGLLPRYEHASFLPSCTEDBINVTGGANQSGNR NCLQVINDETRETHTPENTSPPSPRTFHTSSAGIGNQLYVFG GGERGAQPVQDTKLHVPDANTLTMSQPETLGMPPSPRHEHYMV AAGTKLFHGGLAGDRFYDDLHCIDISDMKWQKLNPFGAA\PA CGAS/HTPAVMAK\HYVI, YGGMPTAGAAPGTQCTQYHTERQH WDPCLKF\DTBSYPPGTIGTHSHVVSPPW\PVTCASEKEDS\N SLTLINHEARENDSADKVMSHSGDSHEESQTATLLCLVFGGNNT BGEIYDDCIVTVVD

SEQ ID NO:	SEQ ID NO:	Predicted beginning nucleotide location	Predicted end nucleotide location	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	\=possible nucleotide insertion)
		residue	residue	\=possible nucleotide inscritony
		of amino	of amino	
1		acid	acid	
		sequence	sequence	
533	1272	1169	639	GFSIGKATDRMDAFRKAKNRAVHHLHYIERYEDHTIFHDISLR
	i			FKRTHIKMKKQPKGYGLRCHRAIITICRLĮGIKDMYAKVSGSI
1				NMLSLTQGLFRGLSRQETHQQLADKKGLHVVEIREECGPLPIV
				VASPRGPLRKDPEPEDEVPDVKLDWEDVKTAQGMKRSVWSNLK
		1		RAAT
534	1273	25	1396	ADPHTTVIRFFPAASATKRVLPPVLRVSSPRTWNPNVPESPRI
	l		ļ	PAPRLPKRMSGAPTAGAALMLCAATAVLLSAQGGPVQSKSPRF
	1		'	ASWDEMNVLAHGLLQLGQGLREHAERTRSQLSALERRLSACGS
1	1		1	ACQGTEGSTDLPLAPESRVDPEVLHSLQTQLKAQNSRIQQLFH
	l			KVAQQQRHLEKQHLRIQHLQSQFGLLDHKHLDHEVAKPARRKR
1	1	i		LPEMAQPVDPAHNVSRLHRLPRDCQELFQVGERQSGLFEIQPQ
1				GSPPFLVNCKMTSDGGWTVIQRRHDGSVDFNRPWEAYKAGFGD
				PHGEFWLGLEKVHSITGDRNSRLAVQLRDWDGNAELLQFSVHL
1			l	GGEDTAYSLQLTAPVAGQLGATTVPPSGLSVPFSTWDQDHDLR
				RDKNCAKSLSGGWWFGTCSHSNLNGQYFRSIPQQRQKLKKGIF
				WKTWRGRYYPLQATTMLIQPMAAEAAS
535	1274	23	1102	TLRSRPAGEAGYLGWDPEQAGEGSALSRPGAMAALMTPGTGAP
		i	l	PAPGDFSGEGSQGLPDPSPEPKQLPELIRMKRDGGRLSEADIR
		1		GFVAAVVNGSAQGAQIGAWGGLGVPDPDWEVSPRDFGSLGVRR
1	ĺ	[1	CPTTSTGPRVPHRCGLPPSRVPPHTRG\MLMAIRLRGMDLEET
	١.		1	SVLTQALAQSGQQLEWPEAWRQQLVDKHSTGGVGDKVSLVLAP
	1			ALAACGCKVINHLLSRREPIPHMQQPVHPQAAPNLKPGPKPPR
	1	1		PYQGFSPPCSPAQFSPPRSPAQRLGPLWLQTRPLGAGKRSTDG
	ł		1	IQTPFPLGPQTAPPREELRTSLPLPQALFPQGQVPTSSPTDTS
				QPRKLPFHSLTSWAPL
536	1275	3	439	RALRELRERVTHGLAEAGRDREDVSTELYRALEAVRLQNSEGS
1	1	1		CEPCPTSWLPFGGSCYYFSVPKTTWAEAQGHCADASAHLA/IV
1		1		GGLGEQDFLSRDTSALEYWIGRRAVQHLRKVQGYSWVDGVPLS
	1	1		FR*/WEG/HPGETWGPQVRL
537	1276	1	564	RWPRSWPPRAGAARGAARAAMVGALCGCWFRLGGARPLIPLGP
1	1		1	TVVQTSMSRSQVALLGLSLLLMLLLYVGLPGPPEQTSCLWGDP
	1			NVTVLAGLTPGNSPIFYREVLPLNQAHRVEV\CCFMERPLTLT
	1		1	RGSSWAHCSYCHRGATGPWPLTFQVLGTRHLQRRQAQRQGGQR
		l		CWSGRCGTWRYRMPCW

SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning nucleotide	end nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino		sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	sponding to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tvrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
ļ	1	acid	acid	\=possible nucleotide insertion)
	Į.	residue	residue	
		of amino	of amino	
}	ļ	acid	acid	
		sequence	sequence	ODNOLDWAY TO DESCRIPT OF GOOD TOWN TOWN
538	1277	102	1549	QENQLEKKMKFLIFAFFGGVHLLSLCSGKAICKNGISKRTFEE
1		i		IKEBIASCGDVAKAIINLAVYGKAQNRSYERLALLVDTVGPRL
		l	l	SGSKNLEKAIQIMYQNLQQDGLEKVHLEPVRIPHWERGEESAV
1	l	1	1	MLEPRIHKIAILGLGSSIGTPPEGITAEVLVVTSFDELQRRAS
		l		BARGKIVVYNQPYINYSRTVQYRTQGAVEAAKVGALASLIRSV
		ļ.	Į.	ASFSIYSPHTGIQEYQDGVPKIPTACITVEDAEMMSRMASHGI
1]	1	KIVIQLKMGAKTYPDTDSFNTVAEITGSKYPEQVVLVSGHLDS
1	1		1	WDVGQGAMDDGGGAFISWEALSLIKDLGLRPKRTLRLVLWTAE
				EQGGVGAFQYYQLHKVNISNYSLVMESDAGTFLPTGLQFTGSE
	l .	1	1	KARAIMEEVMSLLOPLNITOVLSHGEGTDINFWIQAGVPGASL
	i	1	l .	LDDLYKYFFFHHSHGDTMTVHGIOTOMNV\AAAV\WAVVSYV\
1	1	l	l	VADMEEMLPRS
539	1278	2438	1148	TKPRKRRHOPASORORPWSSDSTGDLLARGKGRKEENKGSDRV
1 337	12,0	220		SLAPPSLRRPMMCOSEAROGPELRAAKWLHFPOLALRRRLGOL
1	J)	j	SCMSRPALKLRSWPLTVLYYLLPFGALRPLSRVGWRPVSRVAL
1		1	1	YKSVPTRLLSRAWGRLNOVELPHWLRRPVYSLYIWTFGVNMKE
		Į.	l	AAVEDLHHYRNLSEFFRRKLKPOARPVCGLHSVISPSDGRILN
		i	1	FGOVKNCEVBOVKGVTYSLESFLGPRMCTEDLPFPPAASCDSF
1			[KNOLVTREGNELYHCVIYLAPGDYHCFHSPTDWTVSHRRHFPG
	1		1	SLMSVNPGMARWIKELFCHNERVVLTGDWKHGFFSLTAVGAT\
1	1	i	l .	
1	1	L	1	NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMRK
				GEHLGEFNLGSTIVLIFEAPKDFNFQLKTGQKI\RFGEALGSL
540	1279	3	1911	LPERAFGPRTPRAPRRRRRLLLSPPPRPPPPLDREPRAPGPW
1	1	I	1	LCPSRAGTAQDPARIRERRGRVAGGAAGPAMELRARGWWLLCA
1				AAALVACARGDPASKSRSCGEVRQIYGAKGFSSS\DVPQAEIS
1			1	GEHLRI CPQGYTCCTSEMEENLANRSHAELETALRDSSRVLQA
			į.	MLATQLRSFDDHFQHLLNDSERTLQATFPGAFGELYTQNARAF
	1			RDLYSELRLYYRGANLHLEETLAEFWARLLERLFKQLHPQLLL
	1	1	1	PDDYLDCLGKQAEALRPF\GEAP\RELRLRAT\RA\FVAAR\S
1	1	1	I	FVQGLGVAS\DVVRKVAQVPLG\PEC\SRAVIEAGSYC/ALHC
1		1		VGVPGARPCPDYCRNVLKGCLANQADLDAEWRNLLDSMVLITD
1	1	I		KFWGTSGVESVIGSVHTWLARAINALQDNRDTLTAKVIQGCGN
1	1	1	1	PKVNPOGPGPREKRRRGKLAPRERPPSGTLEKLVSEAKAQLRD
		1		VODFWISLPGTLCSEKMALSTASDDRCWNGMARGRYLPEVMGD
		1	1	GLANOINNPEVEVDITKPDMTIROOIMOLKIMTNRLRSAYNGN
	1	1		DVDFODASDDGSGSGSGDGCLDDLCGRKVSRKSSSSRTPLTHA
	1	1		LPGLSEOEGOKTSAASCPOPPTFLLPLLLFLALTVARPRWR
	1000	F00	189	ATELTRAGMEASALTKSA\VTSVAKVVR\VASGSAVVLPLARI
541	1280	590	TRA	
1				ATSCD*RVGGP/VQAVPMVL\SAMGLQLRAGIASSSIAAKMMS
1				AAAIA\NGGGVSPGQPLWLLLQSLGATGL\SGLTKFILGSIGS
L		L		AIA\AVIARFY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
542	1281	41	1415	TNORFILLHHITLGVCGHIPHHOETIKKNEVVLAKQLLISELLE HILEKOITILENRELIQAKVGS FSQNVELJKLIPKERGPAZDA PCEALRETKQGHLEBMELITILSGLOHULPFLSCDYDLSLPFPV GSCOLYKKURSTDTVEHBLUNKGBVCLGVRCTPBFYQTH FQLAVILQSEPRGLALVLSNVBFTGEKELEFRSGGDVHSTLV TLFKLLGYDVHVLCDQTAQEMQEKLQNFPAQLARRYTDSCLVAL LLSHGVPGATYGVDGKLLGLQEVFQLFDRAKCPSLQNKPFMFF IQACKGGAIGSLGHLLBFTAATASLAL\STDREVQDGNKHAR RGSWYIEALAQVFSERACDMHVADMUKVNALIKDREGYAPGT EPHRCKENSEVSGTLCRHLVLFPGHPT
543	1282	862	275	VRGKZWMAALCETRAVAAESHILRVFLFFRPFRGVOTESGES GSBNAEBKFRAGGSASLERISELLOKVEDLOKSSFKNVSS ASMLERSDLOMGBAKDKLVIGRIFHIVENDL\YIDFGGKFHC VCRPEPVDGEKYOKGTUFVLUELLDELTSRFLGATTD\TTV LEANAVLLGIQESKDSRSKEEHLEKYI

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence 4503	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Fleneylalanine, G = Glycine, H = Histidine, i = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, C = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, ** = Stop Codon, ** possible nucleotide deletion, \ = possible nucleotide insertion) TPGASPAPREAPI, BLGLE, LASGWARADGGVSPVPGGGGGGDA
544			4303	PURABAGALIZELTGICAPETETPENGCTPERGSDPANYCEY SQAQYDDPONGOUTHGOTRAPALIPHGSYLMYNTGSIGHAPOGR ANUTPOSISENDTHOUPES PETTPENGCTPERGSDPANYCEY SQAQYDDPONGOUTHGOTRAPALIPHGSYLMYNTGSIGHAPOGR LGBAYWNNTGSHERGWHQAELAVSTYPPNEYQVLFEALISDDR RGYMELDILLISYPCKARSPHYSENGHSPGYLVFEALISDDR RGYMELDILLISYPCKARSHPSIKLGUSVYNAGONASPCCMAA RGODLYECVSQAPRGROFISINFAERMY/KEPPTFILAPOGLURA GPYLLIOLATNSIIGODFIVRKEIESTRARAPWASVHAVSLO TYKLMHLDPTEYSISVLIFAPDGGGTGROPPILGRTCACP MRAPKGLAFABIQARQUITLOMEPLGYBVTRGTTTVSLCYBTY LGSSHNGTI, KECVITEGGUSYFYMKHLLYBYNNHVHLVLIYIN EGRREGKSVTFGTDBOVPSGIAASSLIFTTLEDNIFIKKEEPG EPROLITOYSETSVOSIESSDPANVFOPFRISIKLRNETYBVF SNIHDFTTYLFSVRATGKGFQAALTETTTNISAPSFDYADM PSPLGSSENTITUTLERAPGGGGAFISYVGVISEEGGSRIKR EPGGGCFPVFLFFRAALARGLVDYFGAELAASSLEBAMPFTV LTRKGDHYASYSYPKOVHNKATNYNGREKTHMSAUNDRSFT DOSTLGEDERIGLSFMUTHGYSTRGDQRSGGYTEASSLIGGSP ESPSGMDATKKKNOKYGGRSEEMGLILGICAGGLAVILLLGAITV LTRKGDHYASYSYPKOVHNVANUTLGHTNGKKTAGNGYGEKTMANDRSFT DOSTLGEDERIGLSFMUTHGYSTRGDQRSGGYTEASSLIGGSP ERPCGRKGSYPTMOGLAPAVVADLLGHTNGKKTAGNGYGFKEY VESPFGRMDATKKKNOKYGGRGEPBYPADDHSVKLHPMLGDON ADYTNANYIDIERNBCHANSHIPTATOGGKEGVTHYMWO QBHOSSIVMITHLUSVGRVKGSRYPBRSDTYGDIKTMLWTTE TARSYVHETPALBRROYS ARHBYNOPHETHAWBEHOVPHIATOL LAPTREVKASTPEDHAGPTVTHCSAGTGRTGCYTULDWLLARAC CEGVUDIXTYCHTALBROYS ARHBYNOPHETHAWBEHOVPHIATOL LAPTREVKASTPEDHAGPTVTHCSAGTGRTGCYTULDWLLARAC EGGVUDIXTKENTICHEGGGSGTTGFTGCXTULDWLLARAC CEGVUDIXTKARTILDRONGSSQLTEEFFGTLINSVTTPFLDV EBCSIALLPRRODARDPTVTHCSAGTGRTGCYTULDWLLARAC CEGVUDIXTHCHUSVKTLGSBYNHOTTEGYTFTHIDAILBACCAG CEGVUDIXTHCHUSVKTLGSBYNHOTTEGYTFTHIDAILBACCAG CEGVUDIXTHCHUSVKTLGSBYNHOTTEGYTFTHIDAILBACCAG CEGVUDIXTHCHUSVKTLGGBGGTGTFCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGBGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGBGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHCCHUSVKTLGGRGGGGGTGTCA\CATVLEMTRCHBLU LNGNASHC

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence 2443	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence 1.1.52	Amino acid segnent containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, **Stop Codon, *=possible nucleotide deletion, \possible nucleotide insertion) TKPRKREHOPASGRORPWSIDSTGDLLARGKGRKEENKGSDRV SLAPPS LREPMMCOSEARGOPELRARKHLHFPOLALRRRLGOT, SCHSPRALKLESSPLTULYLLAPGALRPISGVONEPVSRVAL YKSVPTILLSRAWGRINOVELHHULREVYSLITWFFOVNMKE AAVEDLHHYMLS SPETREKLKEOARDVCLLSVSVSSPGRVALFULS SPSGRAM LAVEDLHHYMLS EFFERKLKEOARDVCLSUSVISSPSGRAM LAVEDLHHYMLS EFFERKLKEOARDVCLSUSVISSPSGRAM LAVEDLHHYMLS EFFERKLKEOARDVCLSUSVISSPSGRAM SHORD FOR AVEDLHHYMLS EFFERKLKEOARDVCLSUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSE SFERKLKEOARDVCLSUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLKEOARDVCLSUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLKEOARDVCLSUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM SHORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSTUSVISSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSKSPSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERKLEOARDVCLSTUSVISVSSPSGRAM STORD FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSEFFERK FOR AVEDLHYMLSE
546	1205	105	2057	NWGSIRIYFDRDLHTNSPRHSKGSYNDFSFVTHTNREGVPMAL RCEHLG/QSFMLGSTIVLIFEAPKDFNFQLKTGQKIRFGEALG SL
	1285	185	3057	AELGLEGSLERSSLIHFPPPERSPASACGFGERMRSGLPLLG AVLALULAPAGAFRENKCGDTTKLEBSGYLTSGYPHSTBS KCEMLIQAPDPYQRIMINFRDHFDLERDCKYDYVSYPDGENS KCEMLIQAPDPYQRIMINFRDHFDLERDCKYDYVSYPDGENS KGENLIQAPDPYQRIMINFRDHFDLERDCKYDYVSYPDGENS KHIFKORFCOKIAPPPVVSSGPFLFIKFYSDYSTHAGAFSIRY EIFKROPECSONTTTPSGYLKSPGFPEKYPNSLECTYT\VPAP HEMSIILI\DPESFDLEDSSPPEGAMCFRYDLEIBWGFPPOH HIGRYCGQKTPGRIESSSGILSMYPYTDSAIAKEGFSANYSVL KYSKINTYUNGENGEMISONTGSGYSTNYSAERSRL NYPRNOWTPGEDSYRENIQUDGLILRFVTAVOTOGALSKETKK KYYKYKTYLUDVSSNGEMUTIKERNKVUPGQNINTPTUVXY FPKPLITRFVEIKPATWSTGISMRFEVYGCTITTYFGSGMLGM YSGLIDSDGYTSSNGGDENMYDPTBLATSGGANLPPAH YSGLIDSDGYTSSNGGDENMYDTPBLATSGRANLPPH RATHGGIGLEMSLLGCKVEAPTAGPTFPNGNLVDSCDDDQAN CHSGYGDDPDLYGGTVLAGTEKPYUPSGFJGSFPTYGNFGGENG GABGNKTTCHHEIDMHVOLKNSVLDSKTGFLODHTGGRFTYS QADENGKKKVAFTLYSBYVYSGASHCHTFYNMSGGHVOTYLS EGSTGKGRIGGIAVDLSTNNIGGECANYDRIGSFTYKMSGETYS EGTGKGRIGGIAVDLSTNNIGSGECANYDRIKFFTIKS GVLLGYGTFFRENGEGEGNNISTPPONNIKTELFULDTITTAMSAL GVLLGAVGGYGTYSEA
547	1286	3	521	HEGSALTWASHYQEELNS EQSCLARWITHMADLES LRPPSAEPG GSVCGGEGLGGGBGRIMQWGAWWRGERAP*LRGSAPRS SEQEQ MEQAIRABLWKVLDVSDLSSVTSKEIRQALELRLGLPLQ/PVP *LHRQPDAAAGGTAGPSLPHLPPPLPGLRVERSKPGGAAEEQV GL
548	1287	1742	1200	MAADDRAKIDSIVIQLIGDIKEBEGKETVINARVEGGWISLA KARYAMGAKSVGPLQVASHBEQVCHIASZAPGGLQKEYVAG GVHAPEKVGPERGILEREKGPTKTPEDESSEAPGDDLANFGIL VPHSLEQAQASFRDGLQLAADIASLQHRIDWGRSQLRGLQEKL KQLEPGAA*

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Flbenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
549	1288	1	649	HSDVGAATAVLPILTAVLGVTVVTRRDTEGFGRAALVSLITGSF RQKVGTSGREGLPGLGASCAESELERETQEPRSRGRCIFGAAR WRQVPLASPQRFFLLSSGPRLHENGLPVSKAPPALMVLGCCAL LLSLWALCTACRPEDAVAPRKRARRQRARLQGSATAAEAVSA KLSRGPGWGPQGTDQPSSPPVPTEADPPLLPQQVGHQTARAAP G
550	1289	433	632	LTGPGQRLAGTTEGPERCEGSSQAPTPTWKLVDTRLCAAAPWL ASRAPGHYSQMLLVN*PCRKDWLVSKWMRTPVCGQSPAMTDRP RSEAGRDHRRAKALPGLIFGSNPNLEACGHQALCSSSVASVQG PWPLLPNASSPPTPGQPQP
551	1290	102	612	KHRLCSLEQLMTLISAAREYETEFTYAISPGLDITFSNPKEVS TLKKKLDQVSQFGCRSFALLFDDIDHNMCAADKEVFSSFAHAQ VSITNEIYQYLGEBEFTFLFCPP/EYCI*WLYI*LVFLEYITYK GPWAPFSLHFPPPLVKKSRNLFLEDIFQDPKLEKF*ELINDN
552	1291	269	565	TSALTQGLERIPDQLGYLVLSEGAVLASSGDLENDEQAASAIS ELVSTACGFRLHRGMNVPFKRLSVVFGEHTLLVTVSGQRVFVV KRQNRGREPIDV
553	1292	660	233	AKRAERTSRLQGLQHPSPPYPPATLGVTPGQDRTLQLQHQCPA GRKSRKKKSKATQLSPEDRVEDALPPSKAPSRTRRAKRDLPKR TATQPBGTSLQQDPEAPTVPKKGRRKGRQAASGHCRPRKVKA DIPSLEPEGTSAS
554	1293	590	323	RKSSWLGAVAHACNPSSLGGPGRQITRSGVRDQPGQYGETPSL LKIQTLAGRGGACL*SHILRRLRQKNRLNLGGRGCSELRSRHC APA
555	1294	1	242	AWNSARGAVSPLWVPGCFLTLSVTWIGAAPLILSRIVGGWECE KHSQPWQVLVASRGRAVCGGVLVHPQWVLTAAHCIRK
556	1295	1074	230	ABMADDIGDEWMENOPTGAGSSPEASDGGGGDTEVMQQETVP VPVPSEKTMOPKECHLOPPEERENTTKTERPERKEKTITULKS SEPEPGLEEDLQKLMKDYYGSRELVIELELALDGGCFLKAND LITHGLGSYLKEICPKWYKLRKNHSEKKSVLMLITCSSAVRALE LIRSMTAPRGGGKVIKLPACHTKVQAQVZHLEKRVVHLGVGTP GRIKELVKQGGIMLSPLKFILVPDMYWDQKLRKMMDIPEIRKE VPELLEMGVISLCKSESIKLGUF
557	1296	929	289	RPGTATWVVECENGYPIASSEGGENGHSPOPCSVAGFLEG LGNNLEINGSTWOSPOWNTALLCTIGUUSLYJALHVKARARD DDVRALCDVGTAISCSRVFSSEWNGGGUVENULGGDSILNGS NSIPGCIPYTLQLLLGCLRTRWASVIMLLSSLVSLAGSVYLAW LLPFULIDPCIVCITTAINVSLWMLSPREVQERQGKARH

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F = Phenylalanine, G = Glycine, H = Histidine, 1 = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, ** = Stop Codon, /* = possible nucleotide deletion, * = possible nucleotide insertion)
				APQLGDTQNCQLACEDRDLePQPSQAGLEGASESPYDRAVLIS ACERGCRLFSICRFVARSSKPNATQTECEAACVEAYVKEAEQQ ACSHGCMSQPASPEPEQKRKVLEAPSGALSLLDLFSTLCXDLV NSAQGFVSSTWTYYLQTDNGKVVVFQTQFIVESLGFQGGRLQ VEVTWRSSHPALEVHVDYGLDKVFKKRIVSTSSKAVE EEQDMDFLSCMSRESGLPRWILACCLFLSVLVMLWLSCSTLV TAFGGHLKFQFLTLEQHKGFNMEPDWPLYPPPSHACEDSLPFY KLKLDLTK
559	1298	2	485	PPELGTSLSAMRFLANTFLLLALSTAQAEPYQFKDGSVJÖĞV IKEVNVSPCPTQPCQLSKGQSYSVNVTFTSNIQSKSSKAVVHG ILMGVPVPFPIPEPDGCKSGINCPLQKDKTYSYLNKLPVKSEY PSIKLVVEWQLQDDKNQSLFCWEIPVQIVSHL
560	1299	1304	919	APETFRCVWRLQGLTF1AFTELQAKVIDTQQKVKLADIQIEQL NRTKKHAHLTDTEIMTLVDETNMYEGVGRMFILQSKEAIHSQL LEKQKIAEEKIKELEQKKSYLERSVKEAEDNIREMLMARRAQ
561	1300	3	799	HSILLIGTEVEDASSKIQGEVTITIKKGGNNKLGEVPHROGHYG FSPELIFGSVUDLIHNYRHESLAGVNAKLDTELLIPVSKYQOV RAGLGAREGSTWLAPGLSFLGRPDQAMHLDSFRHYSP\DQIVK EDSVEAVGAQLKVYHQQYQDKSREYDQLYEEYTRTSGELQMKR TALEAPNETIKIFEEQGGTQEKCSKEVLBERFRREGS/TYKEMQ RILLMSEKLKSRIA\EIHESPHRSWEQQLLVPRASDNKRD/ID KPH*TSLKPLI
562	1301	1772	301	AAAAAGRGKSSGERRRREPGALFALGVILGFREPPGIFETRA CSMGSUGBEPGEPGERGADGABLPTPCKBGITRAHODGOKKUT ERRUYDISRWAQRHPGGSRLIGHHGAEDATDAFRAPHODLNFV RKFLQFLISELSBEPEGOGEJKANG,USEDFALGAAEDMKI AISQAGSKCLQHDLGHASIFKKSWMNHVAQKFVKGQLKGFSAH AISQAGSKCLQHDLGHASIFKKSWMNHVAQKFVKGQLKGFSAH AASGAGSKCLQHDLGHASIFKKSWMNHVAQKFVKGQLKGFSAH AASGVARPFLSTLPFKYGVGVULFFVANFLYEKSKFVFWIGWADLLW AASGVARPFSLYLPFYGVGVULFFVANFLYESSKFVFWIGWADLLW HIPKEIGHEKKEDWYSSQLAATCNVEPSLFTNWFSGHLNFQIE HHLFPMPRHNYSRVAFLVKSLCKRHGLSYFVKPFLTALVDIV RSIKKSGOIMUDAYTHQ
563	1302	424	93	KSRATRLRESAEMTGFLLPPASRGTRRSCSRSRKRQTRRRRNP SSFVASCPTLLPFACVPGASPTTLAFPPVVLTGPSTDGIPFAL SLQRVPFVLPSPQVASLPLGHSRG
564	1303	1	414	IQYRSDLELHSITMKKSGVLFLLGIILLVLIQVQGTFVVEKGR CSCISTNQGTIHLQSLKDLKQFAPSPSCEKIEIIATLKNGVQT CLNPDSADVKELIKKWEKQVSQKKKQKNGKKHQKKKVLKVRKS QRSRQKKTT

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	heginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion.
		acid	acid	\=possible nucleotide insertion)
		residue	residue	(—possible flucteodde fisertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	' ·
565	1304	7	3007	IPGSTISCRGCCGKWPVQEADPPRAALRGRFPALLTRHCPSPR
363	1304	l ′	3007	AEKEKRSLRRCGCRPLLVELAGPAGQAVEVLPHFESLGKQEKI
			i	
			Į.	PNKMSAFRNHCPHLDSVGEITKEDLIQKSLGTCQDCKVQGPNL
1			İ	WACLENRCSYVGCGESQVDHSTIHSQETKHYLTVNLTTLRVWC
ł I		ŀ	l	YACSKEVFLDRKLGTQPSLPHVRQPHQIQENSVQDFKIPSNTT
	l			LKTPLVAVFDDLDIEADEEDELRARGLTGLKNIGNTCYMNAAL
		l		QALSNCPPLTQFFLDCGGLARTDKKPAICKSYLKLMTELWYKS
1			1	RPGSVVPTTLFQGIKTVNPTFRGYSQQDAQEFLRCLMDLLHEE
	l		ì	LKEQVMEVEEDPQTITTEETMEEDKSQSDVDFQSCESCSNSDR
)	AENENGSRCFSEDNNETTMLIQDDENNSEMSKDWQKEKMCNKI
			1	NKVNSEGEFDKDRDSISETVDLNNOETVKVOIHSRASEYITDV
				HSNDLSTPOILPSNEGVNPRLSASPPKSGNLWPGLAPPHKKAO
1				SASPKRKKQHKKYRSVISDIFDGTIISSVQCLTCDRVSVTLET
	l	•	ł	FQDLSLPIPGKEDLAKLHSSSHPTSIVKAGSCGEAYAPOGWIA
			1	FFMEYVKRFVVSCVPSWFWGPVVTLQDCLAAFFARDELKGDNM
				YSCEKCKKLRNGVKFCKVONFPEILCIHLKRFRHELMFSTKIS
			1	
1			1	THVSFPLEGLDLQPFLAKDSPAQIVTYDLLSVICHHGTASSGH
1	}	1	l	YIAYCRNNLNNLWYEFDDQSVTEVSESTVQNAEAYVLFYRKSS
		1	1	EEAQKERRRISNLLNIMEPSLLQFYISRQWLNKFKTFAEPGPI
				SNNDFLCIHGGVPPRKAGYIEDLVLMLPQNIWDNLYSRYGGGP
1		1		AVNHLYICHTCQIEAEKIEKRRKTELEIFIRLNRAFQKEDSPA
	1		1	TFYCISMQWFREWESFVKGKDGDPPGPIDNTKIAVTKCGNVML
		1		RQGADSGQISEETWNFLQSIYGGGPEVILRPPVVHVDPDILQA
1	1		1	EEKIEVETRSL
566	1305	28	450	SPSAAGGLAWVSLALGSGSRGRDHSGSGVGTAMAGALVRKAAD
1	1		1	YVRSKDFRDYLMSTHFWGPVANWGLPIAAINDMKKSPEIISGR
1	1			MTFALCCYSLTFMRFAYKVOPRNWLLFACHATNEVAOLIOGGR
1	1	1	1	LIKHEMTKTASA
567	1306	133	1292	LGSROAAGTMRGORSLLLGPARLCLRLLLLLGYRRRCPPLLRG
20.	1 2200	1		LVORWRYGKVCLRSLLYNSFGGSDTAVDAAFEPVYWLVDNVIR
		1		WFGVVFVVLVIVLTGSIVAIAYLCVLPLILRTYSVPRLCWHFF
	J	1	j	
1	1	1	1	YSHWNLILIVFHYYQAITTPPGYPPQGRNDIATVSICKKCIYP
	1	1		KPARTHHCSICNRCVLKMDHHCPWLNNCVGHYNHRYFFSFCFF
	1	1	1	MTLGCVYCSYGSWDLFREAYAAIEKMKQLDKNKLQAVANQTYH
1	l	1		QTPPPTFSFRERMTHKSLVYLWFLCSSVALALGALTVWHAVLI
				SRGETSIERHINKKERRRLQAKGRVFRNPYNYGCLDNWKVFLG
l				VDTGRHWLTRVLLPSSHLPHGNGMSWEPPPWVTAHSASVMAV
568	1307	66	962	ATRRRAABAGMAAVLQRVERLSNRVVRVLGCNPGPMTLQGTNT
1	1	1	1	YLVGTGPRRILIDTGEPAIPEYISCLKQALTEFNTAIQEIVVT
	1	l	l	HWHRDHSGGIGDICKSINNDTTYCIKKLPRNPOREEIIGNGEO
1	1			OYVYLKDGDVIKTEGATLRVLYTPGHTDDHMALLLEEENAIFS
1	1	ĺ	1	GDCILGEGTTVFEDLYDYMNSLKELLKIKADIIYPGHGPVIHN
[
		1	l	A PANTOOVI CHOMITO DOOTI JIT. PD DND DU C DULL DI TUUT TUUN
				ABAKIQQYISHRNIREQQILTLFRENFEKSFTVMELVKIIYKN TPENLHEMAKHNLLLHLKKLEKEGKIFSNTDPDKKWKAHL

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, O=Glutamine, R=Arghine, S=Sertine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \ - possible nucleotide insertion)
569	1308	96	1017	ELHEAGQVAGGARSBERESMELER TVSAALLAPVOTTLEBADL SGLDEVIFSYVLGVLEDLGPSGPSEENFDMEAFTEMMEAYVPG FAHIPRGTIGDMMQKLSGQLSDARNKENLQPGSGVQGQVPIS PEPLGREMLKEETISSAABAADTQBATGAEESLLBGVDVLL EVPPTCSVEDAQMVLAKARGDLEBAVOMLVBGKBGDFAAWEGD MQDLPRIRGGPGKDELKSFILGKYMMVDSAEDGKIHRPMAPKE APKKLIRYIDNQVVSTKGERFKDVRNPEAEEMKATYINLKPAR KYRFH
570	1309	3	526	FITGKGIVALIRCLOPNETUTELEPHNQERMLGHHABMETAR LKANNTLLKWAYFHELDGBRUVTHLLERMODKORGKEGEGER QQLKEOKKLIAMLENGLGIPPGWHELLGGPKPDSRWQEFPQP PPPRPPNPGNVPPSQRSEMMKKPSQAPKYRTDPDSFRVVKLKR IQ
	1310	3	1858	GGRAGTQCCMEAGARLRGISFSPALPEAPGLCRVRAGLARGAL GRSBAGRRERGPEVSSSPAPHEPRULCELLELFFSCHDRERGD SOPYOALKYSSKSHPSGCDHRHERKHRDAGDPSPNRMLRRSDS PENNYSDSTORHSKANWITHERVBERDGGTSYSPOENSHHALL HSNNPTFFLIPSN*POGKTPRLAPVDS\ADDW/SLEHISSSGE KYYYNCRTEVSQWAKTPESCHERGCROKERANKANNISFROED VEREWIQATATSGFASGKSTSCDKVVSHSCTTPSTSSAGGLMP TSAPTSASA\VPVSS\VPQ\SPIPPLLQDPHLLRQLL\PALE ATLQLANSHVDI\SILNEVLTCDVTQASLQTITHKCLTAGPSV FKITSLISQAAQLSTQAGANSGFSSTSTDKSVSYSPX KAHLKLNTVTQTFGFSTPVSSQFKVSTPVVKQGEVSGSATQ QPVTADKQGGHEVSBRSLQRSSGSPSFSGNHTTNSSNASN ATVVPONSARSTSCLTFALAHTSENLIKHYQGWFADHAEKQ ASSLREBAHNMGTIHMSBICTELKRLSSLVRVCEIQATLREQR LLFLRQQIKELBELKNONSFWV
572	1311	2	1165	VAPECSGAYPERAMBGTALKAVILLAVILLUGLOTATGRILSGO PUCRGGTORPOCYKUT YFBUTSRELHFERAKEACREGGGGLOG ESCHORGKILER-FIRML PSIGDEFWIGLER-PEEKCSINSTACQUL XANTOGS 150 GPRINYVUDSPSCGSEVCVWHICH GSBAPAG 1GGBY MFQWNDDRCNNKNNFICKYSDEKPAVPSREABGEBTEITTPVL PEBTQBEDAKKTFKESREALAILAYILIFSIFLILLUVTTVV CWWWICKRKREGOPDSTKCHTTUSPSTPLUKGSSDLEVVINVIR KQSEADLAETTEPLIKNISFEVCSGEATPDDMSCDYDNMAVHPS ESGFVILLVSEGSFYENDITESSPDQWGREKESGMVENIYGY

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Flhenylalanine, G=Glycine, H=Histidine, L=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, L=Isoleucine, K=Lysine, L=Lcucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
573	1312	3	1416	TEMMISGSCPGGSPLENGSRGRGAANRILKCRRLDEBSPFIT. OPRILAGSOPAUPVITOS VITHHAPKIELDIDIRGSLILLIUTW VPFPVTTEITSLDTENIDEILNNADVALVNTYADWCRFSOMLH PIEBERSUV KEEPPENROVVERVENDGHBOILGRYSISKYP TLKLFPROMMKREVROGRSVEALADVIRQOKSDPIOSIRDLA EITTLDRKSKNII GYPPOKOSDNYKVERVANIILHDDCAPLSA PGDVSKERRYSGDNII YKPPHRSAPDWYLGAMTNEPUTTINWI ODKCYPLVRRITFENGSEITEEGIPFILLFENKEDTESLEIFG ODKVELVRRITFENGSEITEEGIPFILLFENKEDTESLEIFG DSFRHNYYFODFROVLIPGKLKGVFVDLHSCKLHREPHHGDD TDTAGGGAGDVASSPPESSFCKLAPSEVTYLLRENDEJ
574	1313	928	363	LTTSWGPVFPGGPTTEPLASSF9VPLHRGSAGSQPFGFFGELT RIVSMRFGPYSHRTELUKAKDIHBUWNILKINKEBWYTTKH PFGHIVVLETSQCQLIYESVTACEYLDDAYPGRKLFPYDPYER ARQKMLLELFCVPHLIKEGLVALRCGRECTINKAALKQBFSN LEELLEYONTTFFGGTCISHIDYLLMFWFERLDVYGILDCVSH TPALRIWISAMKMDFTVCALLMDKSIFQGFLNLYFQNNPNAFD FGLC HTATNNTOPNAGTRYSVPALSVUHTSSSSFAYDREFLETLDGF
				LIVABIVLGLLVWTLIAGTEYFRVPAFGWVMFVAVFYWVLTVF FLITYITMTTTRIPQVFWTTVGLCFNGSAFVLYISAAVVDASS VSPERDSHNFNSWAASSFFAFLVTICYAGNTYFSFIAWRSRTI Q
576	1315	165	944	GLRDPFREKERLEPGVKMSNYVDDWFGSPGEKDSSTSRSG SSILSSRSSRSFSSSSSSEBSEVSSFSSSSSRSSRSKSSRSGR HQKKYRYSKSYSRSRSRSRSRYRERRYGFTRFYYRSFSRYR SERSERSSRSSRSVGRAVALIRAGQRYVGPGTTYYPSEMSRWR DRSRTFSSRTPFRLSEKDRWELLEIAKTNAKALGTTNIDLP ASLRTYPSAKETSRGIGVSSNGAKPEVSILGLSSQNFQKANCQ I

SEQ Predicted beginning not beginning no
No. molecoide location No. molecoide location No. molecoide location No. molecoide location No. molecoide No. molecoide location No. molecoide No. mol
Content Cont
Nucleic Acids Acid
Acids Acids sponding to first amino acid residue of amino acid sequence sequence 577 1316 265 2300 MEGENDALTRAGINLONG AREA (LEYAYTATIQAKARDLEDILLYARELLE LEYLESQCLIMILE) LORDINLIFATION ACID LEYAYTATIQAKARDLEDILLYARELLE LEYLESQCLIMILE LORDINLIFATION ACID LEYAYTATIQAKARDLEDILLYARELLE LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYLESQCLIMILE LORDINDITEATMANDGGAREKKORKARYLIKINT LEYKHSSESS
to first amino acid residue of amino acid sequence sequence 1316 265 2300 ARGSTHALLON ARGINETICAL WORK ARGINETICAL STATE OF ARGINETICAL
acid residue of amino acid sequence sequence 1316 265 2300 ARGSTMDLTKMGMIQLQNPNHPTGLLCKANQMRLAGTLCDVV MVDSQEFHAHRTVLACTSKMFEILEHKNSQHTLDFLSFKTF QILEYAYTATLQAKABDLDDLLXAAEILEIEVLEEQCLMMLS LQASDDDDTZETAMADGABEKKDRARAYLLANIF SKKHSSERS
residue residue of amino acid acid sequence squence squence squence squence qualification acid squence
of amino acid sequence 577 1316 265 2300 ARGSTMDLTKMGMIQLQNPNHPTGLLCKANQMRLAGTLCDVV MVDSQREHAHRTVLACTSKMFEILEHKNSQHTLDFLSPKTF Q1LEYAYTATLQAKABDLDDLLXAABTLEIETVLEEQCLMMLB LQASDDNDTEATMAGAYLLANT SKKHSSERS
acid acid sequence se
sequence sequenca Sequenca Seguenca
577 1316 265 2300 ARGSTMDLTKWGMIQLQNPNHPTGLLCKANQMRLAGTLCDVV MYDSQRFHAHRIVLAGTSKHFEILFHINSGHTTLDFLSPKTF QILEXATTATLQAKABDLDDLLYAABILEIEYLEEQCLKHILE IQADDNDTEATWADGGABEKKDRKARYLKNIFISKHSSESS
MVDGQEHAHRTVLĀCTSKMFEILFHINSGHYTLDFLSPKTF QILBYAYTATLQAKAEDLIDDLLYAAEILEIFYLEEGCKMLE IQASDDNDTEATMADGGAEEKKDKKARYLKNIFISKHSSESS
QILEYAYTATLQAKAEDLDDLLYAAEILETEYLEEQCLKMLE IQASDDNDTEATMADGGAEEKKDRKARYLKNIFISKHSSEES
IQASDDNDTEATMADGGABEKKDRKARYLKNIFISKHSSEES
YASVAGOSLPGPMVDOSPSVSTSFGLSAMSPTKAAVDSLMTT
QSLLQGTLQPPAGPEEPTLAGGGRHPGVAEVKTEMMQVDEVP
QDSPGAAESSISGGMGDKVEERGKEGPGTPTRSSVITSAREL
YGREESAEQVPPPAEAGQAPTGRPEHPAPPPEKHLGIYSVLP
HKADAVLSMPSSVTSGLHVQPALAVSMDFSTYGGLLPQGFIQ
ELFSKLGELAVGMKSESRTIGEQCSVCGVELPDNEAVEQHRK
HSGMKTYGCELCGKRFLDSLRLRMHLLAHSAGAKAFVCDQCG
QFSKEDALETHRQTHTGTDMAVFCLLCGKRFQAQSALQQHME
HAGVRSYICSECNRTFPSHTALKRHLRSHTGDHPYECEFCGS
FRDESTLKSHKRIHTGEKPYECNGCGKKFSLKHQLETHYRVH
GEKPFECKLCHQRSRDYSAMIKHLRTHNGASPYQCTICTEYC
SLSSMQKHMKGHKPEEIPPDWRIEKTYLYLCYV 578 1317 686 908 IWEAPTLIFTLAGGRALGHPPMKGGGGGALPHPLPGASLPA
1 :
PGPADHRGWECRIGGEASVFTHLFCLPHSPT 579 1318 150 1204 ASGSPAPSSSSAMAAACGPGAAGYCLLLGLHLFLLTAGPALG
NDPDRMLLRDVKALTLHYDRYTTSRRLDPIPQLKCVGGTAGC
SYTPKVIQCQNKGWDGYDVQWECKTDLDIAYKFGKTVVSCEG
ESSEDQYVLRGSCGLEYNLDYTELGLQKLKESGKQHGFASFS
YYYKWSSADSCNMSGLITIVVLLGIAFVVYKLFLSDGQYSPP
YSEYPPFSHRYQRFTNSAGPPPPGFKSEFTGPQNTGHGATSG
GSAFTGQQGYENSGPGFWTGLGTGGILGYLFGSNRAATPFSD WYYPSYPPSYPGTWNRAYSPLHGGSGSYSVCSNSDTKTRTAS
YGGTRRR YGGTWNKAYSPLHGGSGSYSVCSNSDTKTKTAS
580 1319 1208 276 GRCGAMAAGLARLILLLGLSAGGPAPAGAAKMKVVEEPNAFG
NNPFLPQASRLQAKRDPSPVSGPVHLFRLSGKCFSLVESTYK
NNPFLFQASKLQAKKDPSFVSGFVHLFKLSGKCFSLVESTYK EFCPFHNVTQHEQTFRWNAYSGILGIWHEWEIANNTFTGMWM
DGDACRSRSOSKVELACGKSNRLAHVSEPSTCVYALTFETP
VCHPHALLVYPTLPEALOROWDOVEODLADELITPOGHEKLL
TLFEDAGYLKTPEENEPTOLEGGPDSLGFETLENCRKAHKEL
KEIKRLKGLLTOHGIPYTRPTETSNLEHLGHETPRAKSPEOL
GDPGLRGSL
GDPGLRGSL GDPGLRGSL
GDPGLRGSL 581 1320 1074 132 NSFMSVLFLVQEETEVARCNAQHRLRQSRDSKPDPSFRSQPI SSISFAGSDIQPLFSFASVDGTQVGGRAERNAGPMAEATLLPG
GDPGLRGSL 581 1320 1074 132 NSFWSVLFTVVQETEVARCNAQHRLRQSRDSKPDPSFRSQPI SSISFAGSDIQPLFSFASVDGTQVGEAEENAGPWAEATLLPG GRWPPFAGLSGNWLEEDGDWPSLPEVVGFVSERELFRALG
GDPGLRGSL 581 1320 1074 132 NSFMSVLFILVØETEVARCNAQHRLRGSRDSKEDDSFRSOFI SISFAGSDIOPLFSFASVDGTVVGERAENAGPMAEATLLEG GRRMPPRAGLSGNNLEEDGUWSLEEVVGYSERELFRDALG GCGLILLCENQUIRD;DLFPEVVTLLLFFADVKAGDLRRA
581 1320 1074 132 NSFWSVLFLVQBETEVARCNAQHRLRQSRDSKPDPSFRSQPI SSISFAGSDIQPLFSFASVDGTQVGRABENAGPWAEATLLPG GNRWPPRAGISGNNLEEDGWPGLPEVVGFVSERBLFFDALG GCRILLICEMQLTHQLDLFPBCRVTLLLFKDVKNAGDLRRKA EGTIDGSLINPTVIVDPFQLIVAANKAVHLYKLGMKTRTIS
GDPGLRGSL 581 1320 1074 132 NSPWYLPFLVVDEFTEVARCNAGHRLRGSRDSKEDDSFRSOPT SSISFAGSDIQPLFSFASVDGTQVGEAEEWAGPWAEATLLPG GRRWPFRAGLSGNWLEEDGDWFSLESVYGYSERELEFDALG GCRILLICEMQLITHQLDLFFECVVTLLLFRDVKNAGDLRRA EGTIDGSLINPTVTVDPFQILVAANKAVHLYKLGRMETETLS EIIFNLSPMNNISEARLKKFGISANTSTILTVYLEEGKGYING
581 1320 1074 132 NSFWSVLFLVQBETEVARCNAQHRLRQSRDSKPDPSFRSQPI SSISFAGSDIQPLFSFASVDGTQVGRABENAGPWAEATLLPG GNRWPPRAGISGNNLEEDGWPGLPEVVGFVSERBLFFDALG GCRILLICEMQLTHQLDLFPBCRVTLLLFKDVKNAGDLRRKA EGTIDGSLINPTVIVDPFQLIVAANKAVHLYKLGMKTRTIS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end mucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, E=Penenylalanine, G=Glycine, H=Histidine, I=Isoleucine, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
582	1321	5021	7694	GRSWAGFGAGPEAGTRPPARGRREDPENVDPRRRAPOLKSOM VAMARATTATAMENLFULHUGSLCHERGSPCGISTHTETIGHE ALFELOLHUNGEVEYREILLEHODAVOAGTYPPOCFYPSICKE REFUNSESTHITPFINASVYTERNYLDENKETOTEKLANGE KFEUNSESTHITPFINASVYTERNYLDENKETOTEKLANGE UTLSGOFFRINYLARRENYLYTENYLYTENYLYTENYLYTENYLYTENYL VDCSHIGPLENYLGENLAVSKLYPTYSTKSPFLVEOPFEYFLGG LIDMAFNSTHITHLITIPHLENOTSDCNLPENFFFLAGGQONH TOGSKOMONDFHRMLTTSITESVYDRINTTESVYFSYNSHTD DSMSFTYRALENNIETHFIGSOLISKHYSSFLASVTLSFFYA ELGWAMTSALDNIDHOHDLYVGAGPYSFRÖHHHIGEVTLYTA LLEWAMTSALDNIDHOHDLYVGAGPYSFRÖHHHIGEVTLYTA DLAVGAFSVESSELTYKGAVYTYFGENGOMSSFPHITISCOD IYCHLGWTLADAVNGDSEPDLVTGSFFAPGGGKOKTVASFLY SGSLSJDEELKLNYEAANVTYNGENGFSWFSTLHGVTVDNRTL LLVGSFTWKNASKLGHLHHIRDEKKSLGRVYGYFPDNOGSMFT ISODKAMGKLYSTISSGHLYMSOLIKUTABTVDNSVA FLITVTLHGGGATHMXALTSDAOPLLLSTFSGGRFFSFGVLH LSUDDDGLISTIMADEN TADVISGLIGGEGSVYVYNGKET TLGDMTGKKKSHITPCPEKRAYVLISPEASSRFGSSLITVRS KANNOVIJAGRSSLGALHVISEBESSKYVTYNGKET TLGDMTGKKSHITPCPEKRAYVLISPEASSRFGSSLITVRS
583	1322	1	357	SLRNSARGLKMAASAARGAAALRRSINQPVAFVRRIPWTAASS QLKEHFAQFGHVRRCILPFDKETGFHRGLGWVQFSSEEGLRNA LQQENHIIDGVKVQVHTRRPKLPQTSDDEKKDF
584	1323	1205	433	GSSNIHSASTHGFCHWFSSPSTLKROKQATRFOXIRROWERAGE APPRITHEMAMOLIKYLHEEFPESWSVPRLAAGEDVSTDVLRR VLKSKFLPTLEOKLKODOKVLKKAGLAHSLOHLRGSGNITSKLL PAGHSVGGSLLMFGHEASSKDPHISTALKVIESDTHTRITTPRR RKGRNERIOLEESFVPVARJEGHPELGKYSSDSESPEGTGS GALPSQOKLEELKAEEPDNFSSKVVQRGREFFDSNGNFLYRI
585	1324	134	954	ETWKYSLELLRYQLEPTGYVGNTTMTSQPVNNSTITULPSNV INSGARENPETTGQGDSKKHIHABIKVIGTIGLICGMWVLS LGJILASASFSPNFTQVTSTLINSAYPFIGPFFFITGGSLSIA TEKRLYKLIVHSSLVGSILBALGALVGFTILSVKQATLNSL CCELDKINNI PYRSYVSYFYHDSLYTTDCYTAKASLAGTLSIML ICTLLEFCLAVLTAVLRNKQAYSDFPGSVLFLPHSYIGNSGMS SKMTHDCGYBELLTS

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID SEQ	ID	beginning	end	
NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
	110103	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
	l	residue	residue	
	1	of amino	of amino	
		acid	acid	
586	1325	sequence 106	sequence 1537	EMVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPPKGDSGOP
586	1325	106	153/	LFLTPYIEAGKIOKGRELSLVGPFPGLNMKSYAGFLTVNKTYN
	j	J	1	SNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGPYV
	1	1		VTSNMTLRDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVN
				EDDVARDLYSALIOFFOIFPEYKNNDFYVTGESYAGKYVPAIA
	1	1		HLIHSLNPVREVKINLNGIAIGDGYSDPESIIGGYAEFLYOIG
1	1]	LLDEKOKKYFOKOCHECIEHIRKONWFEAFEILDKLLDGDLTS
l				DPSYFONVTGCSNYYNFLRCTEPEDOLYYVKFLSLPEVROAIH
i	İ			VGNOTFNDGTIVEKYLREDTVOSVKPWLTEIMNNYKVLIYNGO
	1			LDIIVAAALTERSLMGMDWKGSOEYKKAEKKVWKIFKSDSEVA
		ļ.	j	GYIROAGDFHOVIIRGGGHILPYDOPLRAFDMINRFIYGKGWD
		1		PYVG
587	1226	002	541	RDERAKVPFRSTEG\GRRRRRRMEAVVFVFSLLDCCALIFLSV
587	1326	883	541	YFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLM
1	ļ	i]	SLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGOL
			1	KSHMKEAMIKLGFHLLCFFMYLYSMILALIND
588	1327	1126	732	OSPGHGAPCOLSSSHSRSNRLLSPMARATLSAAPSNPRLLRVA
300	1327	1120	/52	LLLLLLVAASRRAAGAPLATELRCOCLOTLOGIHLKNIOSVKV
		Į.		KSPGPHCAOTEVIATLKNGOKACLNPASPMVKKIIEKMLKNGK
		1	i	SN
589	1328	197	330	HPLSLVFLALNTGKEKSHPGGGGERPGLAGOGEPDHPAGARDG
1				R
590	1329	1	1575	CTPVARSMATTATCTRFTDDYOLFEELGKGAFSVVRRCVKKTS
				TQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDS
			i	ISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIHQILE
l	1		1	SVNHIHQHDIVHRDLKPENLLLASKCKGAAVKLADFGLAIEVQ
1	1	1	1	GEQQAWFGFAGTPGYLSPEVLRKDPYGKPVDIWACGVILYILL
1	1	1	1	VGYPPFWDEDQHKLYQQIKAGAYDFPSPEWDTVTPEAKNLINQ
	1	1	1	MLTINPAKRITADQALKHPWVCQRSTVASMMHRQETVECLRKF
1	i	1	1	NARRKLKGAILTTMLVSRNFSAAKSLLNKKSDGGVKPQSNNKN
ł	1	1	1	SLVSPAQEPAPLQTAMEPQTTVVHNATDGIKGSTESCNTTTED
İ		1		EDLKVRKQEIIKITEQLIEAINNGDFEAYTKICDPGLTSFEPE
	1			ALGNLVEGMDFHKFYFENLLSKNSKPIHTTILNPHVHVIGEDA
1	1	1	1	ACIAYIRLTQYIDGQGRPRTSQSEETRVWHRRDGKWLNVHYHC
1	1		1	SGAPAAPLQ
591	1330	17	636	NRRTVKMLLELSEEHKEHLAFLPQVDSAVVAEFGRIAVEFLRR
	1	1	1	GANPKIYEGAARKLNVSSDTVQHGVEGLTYLLTESSKLMISEL
1	1	1	1	DFQDSVFVLGFSEELNKLLLQLYLDNRKEIRTILSEL\APSLP
1	1	1	1	SYHNLEWRLDVQLASRSLRQQIKPAVTIKLHLNQNGDHNTKVL
		1	1	QTDPATLLHLVQQLEQALEEMKTNHCRRVVRNIK
592	1331	1	237	GTSIYLAHRVA\RAWELAQFIHHTSKKADVVLACGDSIVHPED
		1		LICCPLTGRSCLCDVHLLSSLLARLGRGYAVSLTNL

SEQ SEQ Predicted beginning nucleoide location of No: of Nucleic Acids A	leucine, agine,
NO: nolecoide for of of Amino Corresponding Acids Acid	leucine, agine,
of Nucleic Amino Acids A	agine,
Nucleid Amino Acids Acids of first of infra amino amino amino Acids of such amino am	
Acids Acids sponding to first amino amino Acids amino Acids amino Acids amino Acids	
to first amino amino T=Threonine, V=Valine, W=Tryptophan, Y=Tyre X=Unknown, *=Stop Codon, /=possible nucleotide	seine
	Jouit,
acid acid \=possible mcleotide insertion)	e deletion,
	- 1
residue residue	1
of amino of amino	
acid acid .	
sequence sequence	
593 1332 2506 1684 RGCGSCGYKPSAGPAWRPRPPPPAVSPLRHPEPAKVL	SFSSCPL
PALGRTGPSRAARAQSLTMASLFKKKTVDDVIKEQN	RELRGTQ
RAIIRDRAALEKQEKQLELEIKKMAKIGNKEACKVL	AKQLVHL
RKQKTRTFAVSSKVTSMSTQTKVMNSQMKMAGAMST	TAKTMQA
VNKKMDPQKTLQTMQNFQKENMKMEMTEEMINDTLD	DIFDGSD
DEEESQDIVNQVLDEIGIEISGKMAKAPSAARSLPS	ASTSKAT
ISDEEIERQLKALGVD	1
594 1333 905 432 STDGNGAERLFAELRKMNARGLGSELKDSIPVTELS	ASGPFES
HDLLRKGFSCVKNELLPSHPLELSEKNFQLNQDKMN	
OGLFAPLKLOMEFKAVOOVORLPFLSSSNLSLDVLR	
FEDILNDPSOSEVMGEPHLMVEYKLGLL	
595 1334 111 117 RNMKLHYVAVLTLAILMFLTWLPESLSCNKALCASD	VSKCT.TO
ELCOCRPGEGNCSCCKECMLCLGALWDECCDCVGMC	
TPPTSKSTVEELHEPI PSLFRALTEGDTOLNWNIVS	
SHHENLVSFLETVNOPHHONVSVPSNNVHAPYSSDK	
DFFHSAPSCGLSM*SIIFFEET	./E-LPIV
596 1335 817 278 VGGVPTWLEGCGSGNPSPRSGGGPGARLTLPALOMT	THE TENTE
DRNGVCLHYSEWHRKKQAGIPKEEEYKLMYGMLFSI	
SPLDMKDGFLAFOTSRYKLHYYETPTGIKVVMNTDL	
VLHHIYSALYVELVVKNPLCPLGOTVOSELFRSRLD	
FFSARAG	SIVESLE
	ran on tran
PRDLLQRYDSKPIVDLIGAMETQSEPSELELDDVVI	
ILENEDWIEDASGLMSHCIAILKICHTLTEKLVAMT	
KTSASVSDIIVVAKRISPRVDDVVKSMYPPLDPKLL	
LLSVSHLVLVTRNACHLTGGLDWIDQSLSAAEEHLE	VLREAAL
ASEPDKGLPGPEGFLQEQSAI	
598 1337 1078 594 VGMELPAVNLKVILLGHWLLTTWGCIVFSGSYANAN	
VWAVAQRDSIDAISMFLGGLLATIFLDIVHISIFYF	
GRFGVGMAILSLLKPLSCCFVYHMYRERGGELLVH	TGFLGSS
QDRSAYQTIDSAEAPADPFAVPEGRSQDARGY	
599 1338 717 116 PASRPLLGPDTGSVANIFKGLVILPEMSLVIRNLQR	
PLRSKIEIVRRILGVQKFDLGIICVDNKNIQHINRI	
TOVLSFPFHEHLKAGEFPQPDFPDDYNLGDIFLGVE	
ENEDYNDVLTVTATHGLCHLLGFTHGTEAEWQQMFQ	KEKAVLD
ELGRRTGTRLQPLTPGPLPEGAEGRVPF	
600 1339 1 804 LENALDVLHREVPRVLVNLVDFLNPTIMROVFLGNE	DKCPVQQ
	NSNYTYP
A/MLEPLGSKTETLDLRAEMPITCPTONEPFLRTPR	
	VVAALGD
A/MLEPLGSKTETLDLRAEMPITCPTQNEPFLRTPR IKPAIENWGSDFLCTEWKASNSVPTSVHQLRPADIK	
a/mleplgsktetlblraempitceptqneeppletpr ikpalenwospplctewkasnsvptsvhqlepplet slittavgarpnnssdleptswrglswsigggonlete	TTLPNIL
A/MLEPLGSKTETLDLRAEMPITCPTQNEEPLRTPR IKPAIRNMGSDFLCTEWKASNSVPTSVHQLRADIK SLTTAVQARPNNSDLPTSWRGLSWSIGGCONLETH KKPMPYLLGFSTSTWEGTAGLKVAARGARARDMPAG	TTLPNIL AWDLVER
a/mleplgsktetldlraempitcppqneppletpr ikpalenwgspflctewkasnsvptsvhqlepplet slittavgarpnnsdlptswrglswsiggornlete	TTLPNIL AWDLVER

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of.	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
1		residue	residue	
1	ļ	of amino	of amino	
		acid	acid	•
601	1340	sequence 1	sequence 860	VVEFLWSRRPSGSSDPRPRRPASKCOMMEERANLMHMMKLSIK
601	1340	1 1	860	
l		ĺ		VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
				QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
		l .		YLALMQKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
1	l	1		LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
1		1		EHERITDVLDQKNYVEELNRHLSCTVGDLQTKIDGLEKTNSKL
				QERVSAATDRICSLQEEQQQLREQNELIR
602	1341	60	762	KPEGARRVQFVMGLFGKTQEKPFKELVNEWSLKIRKEMRVVDR
	1		1	QIRDIQREEEKVKRSVKDAAKKGQKDVCIVLAKEMIRSRKAVS
			l	KLYASKAHMNSVLMGMKNQLAVLRVAGSLQKSTEVMKAMQSLV
ŀ	l	l	ì	KIPEIQATMRELSKEMMKAGIIEEMLEDTFESMDDQEEMEEEA
ŀ	İ			EMEIDRILFEITAGALGKAPSKVTDALPEPEPPGAMAASEDEE
				EEEEALEAMQSRLATLRS
603	1342	3	456	RWNSIMELALLCGLVVMAGVIPIQGGILNLNKMVKQVTGKMPI
	į.	l .	1	LSYWPYGCHCGLGGRGQPKDATDWCCQTHDCCYDHLKTQGCGI
	1			YKDYYRYNFSQGNIHCSDKGSWCEQQLCACDKEVAFCLKRNLD
				TYQKRLRFYWRPHCRGQTPGC
604	1343	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
		1		INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
	L			FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
605	1344	2	382	LPLTLLLAAPFAHLLLPPGHDQSPCWHPGPALSPGTLGPLSWA
				MANSGLQLLGYFLALGGWVGIIASTALPQWKQSSYAGDASIQL
				RSKVFVLESEWGGDSLGLPRDCGWSCLLHSAVRSEKGFWS
606	1345	2	987	DPRVRPPLLQPPPPLLPRLVILKMAPLDLDKYVEIARLCKYLP
		1		ENDLKRLCDYVCDLLLEESNVQPVSTPVTVCGDIHGQFYDLCE
				LFRTGGQVPDTNYIFMGDFVDRGYYSLETFTYLLALKAKWPDR
		ļ	ľ	ITLLRGNHESRQITQVYGFYDECQTKYGNANAWRYCTKVFDML
1	ł	l		TVAALIDEQILCVHGGLSPDIKTLDQIRTIERNQEIPHKGAFC
İ		1		DLVWSDPEDVDTWAISPRGAGWLFGAKVTNEFVHINNLKLICR
	l .	1	!	AHQLVHEGYKFMFDEKLVTVWSAPNYCYRCGNIASIMVFKDVN
1		1	1	TREPKLFRAVPDSERVIPPRTTTPYFL
607	1346	10	768	SFAGAAARPSTPPASGRGAAPGRPGPSPMDLRAGDSWGMLACL
1	1		1	CTVLWHLPAVPALNRTGDPGPGPSIQKTYDLTRYLEHQLRSLA
1		1		GTYLNYLGPPFNEPDFNPPRLGAETLPRATVDLEVWRSLNDKL
		1	ł	RLTQNYEAYSHLLCYLRGLNRQAATAELRRSLAHFCTSLQGLL
	1		1	GSIAGVMAALGYPLPQPLPGTEPTWTPGPAHSDFLQKMDDFWL
				LKELQTWLWRSAKDFNRLKKKMQPPAAAVTLHLGAHGF
608	1347	114	700	IKISLKKRSMSGISGCPFFLWGLLALLGLALVISLIFNISHYV
				EKQRODKMYSYSSDHTRVDEYYIEDTPIYGNLDDMISEPMDEN
1			1	CYEOMKARPEKSVNKMQEATPSAQATNETOMCYASLDHSVKGK
	1			RRKPRKONTHFSDKDGDEQLHAIDASVSKTTLVDSFSPESQAV
1	1	1		BENIHDDPIRLFGLIRAKREPIN
		1		

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, E = Phenylalanine, G = Glycine, H = Histdine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Theronine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
609	1348		807	VEFHPORARAGARAPSMOVLLTÖSTLLSLVLALLFPSMASMAN IGSCSKEVRYLLGOLOKOTINADTOSELDBYTRIGGLDVPL REHCRERGAFPSESTLRGLGERCFLOTLNATLGCVLHRLADL BORLPRAGDLESSGLITEBLEKLOMAPPHILGLENNIYVOML LDMSDTASPTRAGRASOPPTFTPASDAFORKLEGCRELHGYH RFMHSVGRVPSKWGESPNRSRRHSPHQALRKGVRRTRPSRKGK RLMTRGQLPR
610	1349	2	418	DFPGRRPFLVWLLJVLRLPWRVPGQLDPTTGRRPSEHKLCADDE CSMLMYRGEALEDFTGPDCRFVNFKKGDPVYVYYKLARGWPEV WAGSVGRTFGYFPKDLIQVVHEYTKEBLQVPTNETDFVCFDGG RDDFHNYNV
611	1350	823	115	SPIGKEGGEVEVKIKDANEHIVCCLCAGYFVDATTITECHT FCKSCIVKYLQTSKYCPMCNIKHHETQPLINLKLDRVMQDIVY KLYPGIQDSEEKRIREFYGSRGLDRVTQPTGEEPALSKLGLPF SSFDHSKAHYYRYDBQLMICLERLSSGKDKKKSVLQNKYVBCS VRAEVRHLRRVLCHRLMNPQHVQLLFDNEVLPDHMYMKQIWL SRWFGKPSPLLLQYSVEKRR
612	1351	9	545	LMWYSAHAAVDAMHDVFGVQFPSKVPMKNMSAEBLENQYCPSR WVVELGABEALETYSQIGIEATTRARATRKSLLHVPYGDGEG KVDIYPPDBSSEATTRARATRKSLLHVPYGDGEGEKVDIYPPD ESSEALPFFLFFHGGYWQSGRHPGPHGRPGDPQRCVCPEAVSK QQAPSW
613	1352	49	902	GVRNASRGRPBEIGGPBLFYDETBARKYYRISBMIDIQTMM GRALBLIJLPBNRCYLLDIGCGTGLGSGYLSBEIGHYWGLDI SPAMLDBAVDREIEGDLLLGDMGGGIPFKPGTPGGCISISAV HLCNANKKSBMPAKRLYCFPSALFSVIVNGSRAVLJGLYBGS QLELITTQATKAGFSGGNVVDYPNSAKAKKFYLCLFSGPSTFI PBGLSBNQDBVBPRSSVFTNEFFFLRMSRGMVRKSRAWVLEK KERHRRQGGRVRDPTGYTGGFKRYPF
614	1353	1960	871	TLICHMACCGEIDHSINNLDTHRKANBSCSNTAPSITVPECAT LOTOCHPUSPLCKHYFCLIVCWGASNIGKRCALCGGEIPED LÖKPTILLS PEELKAASRGNGEYAWYYGGRNGWOYDERTSREL EDAPSIGKRYMPEHLIAGLIVADLENNGYPRIBHGRRKIK DI TDIPKKGVAGIRLIDCDANTVALABESSADGADSVSADSGAS VOPLVSSVEPLTSVOGQLITSPATPP DABTSLEDESPAHLIGG DWTAERSHRGBGEEDHSSPSSGRVPAPDTS IEETESDASDSE DVSAVVAGHSITQGRLIVSNANGTVPDRSDRSGTDRSVAGGGT VSVSVSKBRFDGGCTVTEV

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, T=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine, H=Histidine, 1=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Unknown, *=stop Codon, /=possible nucleotide deletion, \possible nucleotide insertion)
615	1354	5653	4549	GATPLGSVGGRTGKWDAATLTYDTLRPAFFGFFBTSBEWILG GRYSIFTEKDEILDUNASLKHFYTRNIPPALGGTGFTSDGVG GCMLRCGGMTFAGALVCHHLGRDRWTORKGQPBSYFSVLNAF IDRIGSYSTHQIAGMVGGRSGTGOWYGFFVAVOLKKLYD DTWSSLAVHLAMDNTVVWEBIRRLCRTSVECAGATAFPADSDR HCNGFFAGAREVTNRPSPWRPLVLLIPLRLGLTDINEAYVETLK HCFMMFQGLGVIGGKPNSAHYFIGYVGESLIYLDFHTTGPAVE PTDGCTIDDSFHCQHPCCNSIAELDPSTAVVRGGHLSTQAF GABCCLGMTRKTTGGLRFFSMLG
616	1355	416	65	PTTSNRAITLTAWPKIPFLGICEAKNPRSENWRLATILEVACH HLGSGPPPSWELWEQGPPGNSSRYIEFLNKHTYIKGTLRVYTK KFCMLVIKSFESKSCVCVYDFDSKSSVNVTV
617	1356	2	382	PRVRFRLLHVTSIRSAWILCGIIWILIMASSIMLLDSGSEQNG SVTSCLBLNLYKIAKLQTVNYIALVVGCLLPFFTLSICYLLII RVLLKVEVPESGLRVSHRKALTTIIITLIIFFLCFLPYHT
618	1,357	3	672	GRHHIGSAQLTDGGSARKPKNAVFAALTLRESPSMKKAVSLIN ALDTGRFPRLLTRILQKLHLKAESSFSEEEEKLQAAFSLEKQ DLHLVLETISFILEQAVYHNVKPAALQQQLENHHLKQDKAEAF VNTWSSMQGTVEKFFQRILAPCKLETVGNQLNLQWAHSAQAK LKSPQAVLQLGVNNEDSKSLEKVLVEFSHKELFDFYNKLETIQ AQLDSLT
619	1358	557	208	EASSAKTKRKEEKGPKAKMKLMVLVFTIGLTLLLGVQAMPANR LSCYRKILKDHNCHNLPEGVADLTQIDVNVQDHFWDGKGCEMI CYCNFSELLCCPKDVFFGPKISFVIPCNNQ
620	1359	335	1735	KMABAVFHAPERKRRYYSTYSSPLBTPFGGDBGPLKEFKIFRA MININNYUTNRADIOEQIYKGYFGKGLISFSPRSFITIDPKL VAKKKIMKTNNFIITSKRYGHSWABELMRRQGQDGSTVRRI LKDYTFPLEHPPVKRNERAGVHENLINSGNYSMKGTTAGGERS VVNODSGKSGGVGDPEBLGCLGEGSGCHFTTSFEKSVREDA SPLPHVCCCKQDALILQRGLHHEDGSQHIGLHPGDRGDHEY VLYERAECAMSBKBAAPHBELVQRNFLICRRNPYRIFFYLQLS LEBAFFLYYALGCLSIYYEKRPLTIVKLMKAPTVVQFTRFTT MAYHYFRGKOVEKVGLKYTDLLIYKRGPPYHASYSTIEL VDDHFBGSLRRPLSMKSLAALGRVSVNVSKEIMLCVLIKPSTM TDKEMMSSPCKMKRIKVQSVLIKRWYSSRESQDDL

Ammo acid segment containing signal peptide (A = Alamine, content of the periodic of the per					
NO	SEQ	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
No. No.					
Service Serv					F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Acids Acids Acids Sponding Spondin					K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids of first amino acid residue for amino acid sender control acid residue of amino acid solutions acid solutions acid solut					
### ### ### ### ### ### ### ### ### ##	Acids	Acids			
acid					
residue of amino acid or acid or					
					\=possible nucleotide insertion)
		Ì			
ROTHERMORE ROTHERMORE ROTHERMORE ROTHER		1			•
LHOPEANKOKPPTMLDIPSEPSCLITHTIOLIONINGLENILIA TAQANOQOTGEWITESSEPLPSCHOSPPLPDDLIPLDKIPN APPOIRISDPESSEPLPSCHOSPPLPDDLIPLDKIPN APPOIRISDPESSEPLPSCHOSPPLPDDLIPLDKIPN APPOIRISDPESSEPLPSCHOSPPLPDDLIPLDKIPN APPOIRISDPESSEPVENIKSCROLLYQAVATILA HAGPOCANISVLETITUVAHRYLLKFIKLIPRAVHERARIGOT PPPDWWGOVPHEVGIGSULSQAFFRENILSVERARIGOTSWOLL SERVERTUNPERKATEDAKVENIKESPSDLTPPSVERELEDILA SCHOOLDENGVILGOSERPPSULSVERBONASSENITHSVERELEDILA ARVKHEPOESSEGNIVSGHOVLGSDVFESPMSCHERARIGOSPD DSISSYSSISTIDSINMSSSYPMORCKKRMAKI KYRHEPOESSEGNIVSGHOVLGSDVFESPMSCHERAGIPOSPD DSISSYSSISTIDSINMSSSYPMORCKKRMAKI KERCHERONIAMHSGHOVTHVERCESLINGGRAPEMEGGTOSLA RETOSHERRICKOMENVINTERSINGGAGGARAGALAHVY FLALIENNLARERASSEEVRACSDETVVADLUKKVYVYLGAIL KIFLEGONIAMHSGHOSENSCHORTWARTSCHAGAGGAGAAHAHV FLALIENNLARERASSEEVRACSDETVVADLUKKVYVYLGAIL KIFLEGONIAMHSGHOSPKORTRAKAGAGGAGAAHAHV FLALIENNLARERASSEEVRACSDETVVADLUKKVYVYLGAIL KIFLEGONIAMHSGHOSPKORTRAKAGAGGAGAAHAHV FLALIENNLARERASSEEVRACSDETVVADLUKKVYVYLGAIL KIFLEGONIAMHSGHOSPKORTRAKAGAGGAGAAHAHV FLALIENNLARERASSEEVRACSDETVVADLUKKVYVYLGAIL KIFLEGONIAMHSGHOSPKORTRAKAGAGGAGAAHAHV KORKCKMINYSTIGLISMLSPENSTGGAGGAGAAHAHV KORKCKMINYSTIGLISMLSPENSTGGAGGAGAAHAHV KORKCKMINYSTIGLISMLSPENSTGGAGGAGAAHAHV KORKCKMINYSTIGLISMLSPENSTGGAGGAGAAHAHV KORKCKMINYSTIGLISMLSPENSTGGATGGAVKEGGGG SSLHPPLPPOGGGSTYAACAYONAPKVSTLHSGGAGGAGAAHAHAH TORKPPPLLORGHAHAHAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		-060			PREMIUM OBJUGET DE CCCOMME CCERT I DE PERT MEMURES
TAQADNQOTGGVKTERSERIPSCHOSPPLIPDDLLPLOCKNIPN APPOINTSDPESS PYTEKGKEBVTELSHISCROLLYQVANTILA HAGPDCANISSVLETILTDVAHRYCLKFTKLIRFAVDREARLGQT PPPDVMSQVFHEVGIGVLSULKFYCHQUSIKOCQUTAVANTILA HAGPDCANISSVLETILTDVAHRYCLKFTKLIRFAVDREARLGQT PPPDVMSQVFHEVGIGVLSULKFYCHQUSIKOCQUTAVANTILA SERVERIVAPERATEDARPVKIKEBPVSD1TFPVSEELEADLA SGDQSLMMGVILAGSSRFVENISVASGORASAVNASFLINNI AHYMHEPQESSEGNVSGHGVLSGDVFEPMSGMSEAGETGSFD BDSSSVGSHSTDSLMGSSFVENQKCKKRHEKI RETQSHGGRQGWDATWVTRCRSSLNGGGAGGKRAGALAHHY FLALLEPNLARERESSEEVAKCSDETLOVADLLYKVYVUGAIL KIFLEGGNVLNOHSGMDIEKYSSHYQIDHSFGASDDAAGGOLA PTAQERRKEGGSGSPPCERARRAVOYDALDLYKVYVUGAIL KIFLEGGNVLNOHSGMDIEKYSSHYQIDHSFGASDDAAGGOLA PTAQERRKEGGSGSPPCERARRAVOYDALDLYKVYVUGAIL KIFLEGGNVLNOHSGMDIEKYSSHYQIDHSFGASDDAAGGOLA PTAQERRKEGGSGSPPCCRARRAVOYDALDLYKVYUGAIL KOAKCKPHHYSFIGLSMLSPENSIGCKYSVMFSETKGF KOAKCKPHHYSFIGLSMLSPENSIGCKYSVMFSETKGF KOAKCKPHHYSFIGLSMLSPENSIGCKYSVMFSETKGF SSLHPPLPPQGIGSVAACCSHAPKCAVFTFVOTGMAFGLGMF JGKFFFTLQMSLVAVAGSVVSYGVTRVESEKCINLINGFT TGRAFFTPLGMSLVAVAGSVVSYGVTRVESEKCINLINGFT TGRAFFTPLGMSLVAVAGSVVSYGVTRVESEKCINLINGFS EQLECIALKHAQDSDPRSPLCKH*GHGMOYGGGSDLGSFQLEPS ASHLYSSRASKGSOPPCLSLPHFTGYRSSPANTTHYVTSLCP ASHLYSSRASKGSOPPCLSLPHFTGYRSSPANTTHYVTSLCP FRILLPROFTROPPCLTLTOVTPDDMYAKAFLIKFNYTATGTDR FKL\RABETTDPF\TLGTDGTYFLLGGGDEINTVKSNAKKRDA *TAYVGGSNHILSGSP FNILTPAVATSSYP CGERPETKERAMKMEGTWTRDYFAEDDGEMYPTKTSTTA\ASVS LTAFLSDTKRORP PVOSGUMSGGKFFFFLLLLT FRIEDRYCKSSHFFLLDLL GERPETKERAMKMEGTWTRDYFAEDDGEMYPTKTSTTA\ASVS LTAFLSDTKRORP PVOSGUMSGGKFFFLLGLLT FYRGMTRASOPPALADER VERKEKENLELGERKLKERLGVKKOHLDKYTSDAVENSONAEL LRROFFERGOGMEHVYTELLERMMQLLGSESRLARNEARMAAL VERAEKEKCNILLEGERKGAVTKNEUDYGDOVCPOOTTSLALAGR	621	1360	5693	4435	
APFOTRISDPESDPYTRIGKGEPVTELSWHISCRQLLYQAVATILA HAGPFOCANSSVLETITUVAHEYCLKPYTLLIPRAVDREARLGOT PPPDVMCQVPHEVGIGSVLSLQKFWQHRIEDVHSYMLQISKQL SERYERIVAPERATEDARVEN KEREVBOIT PFYSEELEADLA SCOSLDMGVLGAGSERPENLEVBARPGASBAVNASPLWNI. AHVMUREDGSSEGRIVAGHOVIGSVUSDIT TEYSEELEADLA SCOSLDMGVLGAGSERPENLEVBARPGASBAVNASPLWNI. AHVMUREDGSSEGRIVAGHOVIGSVUSDIT TEYSEELEADLA SCOSLDMGVLGAGSERPENLEVBARPGASBAVNASPLWNI. AHVMUREDGSSEGRIVAGHOVIGAVERDEKT. BEGIFFIEIDPYNAGGETGPPSLESELWGGEMPERWGGTOSLA RETOGSHRGREQGWDATWYTRCRESLENGGAGAGKRAGALAHV FIANIENTLARERASSESVAKCODETVVADLUKVYYVIGAIL KIFLBEGNVLMHOGGWDIEKYSSHUJGHHSFOARDAGOGLA PTAGERRHKEGSRGSPECKRARRAVGSFOCPREVERFVERF VERV VERV VERV VERV 623 1362 1080 835 GTRGCCREGTAYAKAYGFMASHLSLGKPVSTGSISPRINALFN KQAKCKNHYSPIGLSMLSPENSTIGCKYSVWFSETKGF KQAKCKNHYSPIGLSMLSPENSTIGCKYSVWFSETKGF SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR SSLHPPLPPQGIGSTYARAYGAFVSLLHSGQVPRGGTGEAVKBEGGR GTSELLCIGRNWGGAFPPFPGLALAPTLQLLVENGSAKSVPV TPARPPPHNHLARAVADPSPSSAGILHFTTYOUSSPGPGLIARA BOLGELKHAQDSDPRSFLCKH*GHGWOGGSSLGSFQFLPPS ASHLYSSRASKGSOPCLSPHPSSAGATHTYTOVENSPGPGLARA FYANYGGSHHILSPS*FNILTPTYOVESSPGPGLARA FYANYGGSHHILSPS*FNILTPTYOVESSPGPGLARA FYANYGGSHHILSPS*FNILTPTYOVESSPGPGGGGTSLM SSLSPHUTALQGAITSTOARAPR 626 1365 36 381 PLLIPPTDIFFCLCHTIOVTPDMYARAFLIKPTATITOTTR RKIARABETTDPYTLGTDG1YELLBGRDBAITVKSNAHKRDA FYANYGGSHHILSPS*FNILTPANTISSYP GEBRPPTKERAWKMGTWTRUFFAGGGGTSLMSFFPCLLPLP GEBRPPTKERAWKMGTWTRUFFAGGGGTSLWSFFFRLLPLP GEBRPPTKERAWKMGTWTRUFFAGGASTPFRLTPLPLF GEBRPPTKERAWKMGTWTRUFFAGGASTPFRLTPLPLF GEBRPPTKERAWKMGTWTRUFFAGGASTPFRLTPLPLF GEBRPPTKERAWKMGTWTRUFFAGGASTFFRLLPLPL GEBRPPTKERAWKMGTWTRUFFAGGASTFFRLLPLPL GEBRPPTKERAWKMGTWTRUFFAGGASTFFRLLPLP QTQALAFDFRKHLDLKSENSELGLUKKATHNASONBAE LRROFFERGOGMEHVYTLLENMQLLGSESKLANKRAARMAAL URBEKKKKOLLSESKLAKKATNAMENDEGOVCPOOTTALAAGA		1	1		
HAGPDCANSSVLETLIDVAHEYCLKFTKLLEFADDERARLOGT PPPDWGCVPHEWGIGSVLSQLFFMORI EIDHEYMLGISKOL SERYERTYMPERATEDAKPVKIKESEVSDITTPYSEBELEADLA SGDQSLPMGVLGAQSBEPSBLGVKIKESEVSDITTPYSEBELEADLA SGDQSLPMGVLGAQSBEPSBLGVKSHESEVSDITTPYSEBELEADLA SGDQSLPMGVLGAQSBEPSBLGVKSHCKSHONSSASVANSPUNNI ARVKHBPQSBEGGIVSGHGVLGSDVFEEPMSCMSEAGIPQSPD BDSSSYSSHSTDSLMGSSFVFWQRCKKRHEKT RETQSHRGGRGADATWVTRCRESLINGGAGAGKRAGALAHHV FLALLENNLAREASEBEVKACSDETVADLIVKVYVLGAIL KIPLBEGNVLNQHGGMDIEKVSSHYQIEHSPGAEDDAAGGQLR PTAQERRIKEGSGRSGPFCRARRAVOVADLIVKVYVLGAIL KIPLBEGNVLNQHGGMDIEKVSSHYQIEHSPGAEDDAAGGQLR FTAQERRIKEGSGRSGPFCRARRAVOVADLIVKVYVLGAIL KIPLBEGNVLNQHGGMDIEKVSSHYQIEHSPGAEDDAAGGQLR FTAQERRIKEGSGRSGPFCRARRAVOVADLIVKVYVLGAIL KOAKCKNHNYSFIGLBMLSPENSIGCKYSVMFSETKGF KQAKCKNHNYSFIGLBMLSPENSIGCKYSVMFSETKGF SSLHPPLPPGIGGSVAACOSHAFMKQVFTVTICTMAHPGLOMP TQNEPVPLQMSILLAVVAGSVVSYGVTRVESEKCINLULFLE TQQLPKDRSTDQRS 625 1364 1 585 GTSELLCIRGNWGFAFFPRPGLALAPTLQLLVERGSAKSVPV TPARPPPRINCHLARVADPSSPLGKH*GHGMOVGOSBLGSSPQLEPS SSLHPVLPGDGLGSVAACOSHAFMKGVFTVTICTMAHPGLOMP TPARPPPRINCHLARVADPSSPLGKH*GHGMOVGOSBLGSSPQLEPS ASHL/VSSRASRCSOPPCLSLPHFGVGRSSPANTTHYVTSLCP ASHL/VSSRASRCSOPPCLSLPHFGVGRSSPANTTHYVTSLCP SPALHYTALQAGITSTSQARAPR 626 1365 36 381 FLLIFFPTDIFFCLUCTTOVTPDDMYAKAFLIKFNYTATTGTDR FKL\RADETTDPP\TLGTDQTYBLLJGKDBLNVKSNAKKRDA *TAVVSGENHILISPS FNILTPANTTISTSYP FKL\RADETTDPP\TLGTDQTYBLLJGKDBLNVKSNAKKRDA *TAVVSGENHILISPS FNILTPANTTISTSYP CGERPSTKERAMMEQTWTRDYPAEDDGMYPTSHTLA/ASVS SISSPHMLLPGGDSSRLSTFPLARGAPPPOROADROIL *SERSPHMLLPGGDSSRLSTFPLARGAPPPOROADROIL *GERPSTKERAMMEQTWTRDYPAEDDGMYPTSHTLA/ASVS LTAFLSDTKROPP PVOSQUMRSGEK/PFVQTTSLJAFEKPPQV QTQALEPFERHUNDLKKEHFSLKLLITYPLEERMQOLYEASREP LYKRYTELRVEVELSLERHLINDLKKSHFSLKLLITYPLEERMQONYEASREP LYKRYTELRVEVELSLERHLINDLKTSHLARAMAAL LRROFFERROGEMEHVYTELLERMMQLLGSESKLARNEAARMAAL VERBEKKENLELGEKKCHKENTENDELOGGOVGOVCPOVTSLALAGRO VERBEKCHLLESKEKKGKVTKNNEUDFGOVCPOVTSLALAGRO VERBEKCHLLESKEKKGKVTKNNEUDFGOVCPOOTTSLALAGRO VERBEKCHLLESKEKKGKVTKNEUDFGOVCPOOTTSLALAGRO VERBEKCHLLESKEKKGKVTKNNEUDFGOVCPOOTTSLALAGRO VERBEKCHLLESKEKKGKTENTENDELOG		1	Į.	1	
PPPDWMCOVPHEVOIGSVLSLOKFMORREIEDHSVMLOISKOL SERYERIVMPRKATEDARVEN KERSEVDITFPYSEELEADLA SCHOSLIMMGVLGAGSEPPSNLSVEASPOASSAEVNAS PLINNI. AHVMUREDGSSEGENVSGHUSVGARVEDITFYSEELEADLA SCHOSLIMMGVLGAGSEPPSNLSVEASPOASSAEVNAS PLINNI. AHVMUREDGSSEGENVSGHUSVGARVEDSTENDE DSDSSVASHSTDSLIMGSSVVENORCKKRMEKY. REQIFICIERIPTAKAGSTEVPNORCKKRMEKY. REQIFICIERIPTAKAGSEVVENORCKKRMEKY. REQIFICIERIPTAKAGSEVORCKKRMEKY. FLAHIENNLARREASSEEVAKCSDETVVADLLIVKVYVYLGAIL KIFLREGNVLANHGSGHDIEKYSSHUJGHBFGGAGDAGGIA PTAGERRHKEGSRSSPECKRARRAVGSSFOCRPRVERFVERFY VERV VERV VERV VERV 623 1362 1080 835 GTRGCCREGTAYAKAYOFMASHLSLGKPVSTGSISPENKALFN KQAKCKNHYSPIGLSMLSPENSIGCKYSVMFSETKGF KQAKCKNHYSPIGLSMLSPENSIGCKYSVMFSETKGF SSLHPPLPPQGIGSTYACAGSHAWKUVSTTVTGTMRHFGLOMF TGRFPYFLVGASLLVAVVAGSVVSYGVTRVESEKKONLMLFLE TGGLBKARDSTDGRS SSLHPPLPPQGIGSTYACAGSHAWKUVSTTVTGTGHAPHAGLOMF TGRFPYPLVGAGLIVATVAGSVVSYGVTRVESEKKONLMLFLE TGGLBKARDSTDGRS GTSELLCIGRNINGGRSPPRPGLALAPTLQLLVEMSGASKVFV TPARPPPENHHLARVADPSSSAGILHETPTGVESSPGFGLAGA SISHPYTALGGAGITSTOARAPR 626 1365 36 381 FLLIPPTDIPSCLICTUTTOVTPDMYAKAFLIKERTATITOTTR RKIA/RABETTDPP\TLATDGITSLLGKGRSBANTVKSNAHKRDA +TANTSGSNHILISPE FNINJPANNTHISSYP 627 1366 763 1003 SRCPPPLLTATTOPPAYLLGTDGITSLLGKGRDGRSTPATTATAGTTS RKIA/RABETTDPPAYLLGTDGITSLLGKGRDGRATVKSNAHKRDA +TANTSGSNHILISPE FNINJPANNTHISSYP 6ERPPSTKERAMKMGTWTRUFFAGASPPOPAQAPQRI 628 1367 296 1199 KSRCOSSIFAADARESWGGSCCLLENDFFUGGGGTSLM SSLSFHULLPOBSSRLSTFPADARESWGGSCCLLENDFFUGGGGTSLM SSLSFHULLPOBSSRLSTFPADARESWGGSCCLLENDFFUGGGGTSLM SSLSFHULLPOBSSRLSTFPADARESWGGSCCLLENDFFUGGGGTSLM TYCRNTEGORY OF CONTROL OF CONTROL OF CONTROL GEBRPPTKERAMKMGTWTRUFFAGASPPOPAQAPQRI TYCRNTEGORY OF CONTROL OF CONTROL GEBRPPTKERAMKMGTWTRUFFAGASPPOPAGAPQRI TYCRNTELKVEVESLIKRERELJOKRCHARDFFUGGVFTGOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD VERAEKKENLESSEKUKGAVTKANERUPGOVCPOOTSLAADAGD		1		1	
SERYERI VANDEKATEDAKPVIK KESPUSDIT PUSEELEADLA SGOGLEMOULAGOSER PISILORUS DASSAS VANDE PUNDI AHVMURDOSSEGIVSGHOULAGSDVERP MISSONES BAGIPQS PD DSSSYGSHSTDSILMSS SVENDRCKKRMEKI 622 1361 15 678 REQILIFIETDTNKGGSTEOPPSLSPLHGGRMPEMGGIQSLA RETOSHKORGOMDATWUTRCESILMGGRAGGRAGALAHHV FLALLERINLARER SSEGEVARCSDETVADLLVEVYUTGÄLL KIFLEGONUAMOHGOMDIEKYSHYQIÐHSPGAEDDAAGGQLR PTAGERRKEGSGRSGPFCRARRAVGYTVADLLVEVYUTGÄLL KIFLEGONUAMOHGOMDIEKYSHYQIÐHSPGAEDDAAGGQLR VARRV VARRV 623 1362 1080 835 GTRGCCKEGTAYAKAYQFMASHLSLGKPUSTGSIPRFNKALFN KQAKCKNHHYSFIGLSMLSPENFSIGCKYSUMFSETKGF 624 1363 872 441 GAGGVEVIGEGRGVADFVSLLLSGKPUSTGSIPRFNKALFN KQAKCKNHHYSFIGLSMLSPENFSIGCKYSUMFSETKGF SSI.HPPLPPGGLGSVAACOSRAFMKUSTTVIOTGMAFGLOMF TOREPPPLOMSILLVAVAGSUVSYGVTVESSEKCNILLIFLE TGGLEXDESTÖDRS 625 1364 1 585 GTSELLCIQRWINGFAFPPEPGLALAPTLOLLVEKSSAKSUPV TPARPPPRINCHLARVADORSPSAGILRTFIQUESSEPQEDPAG BQLEGLKHAQDSDPRSFLIGKA*GHOWOGGSSLGSFQLEPS ASHLYSGSNALLSGSPPCLSLPHSGYRSSPANTYHYVTSLCP ASHLYSGSNALLSGSPPCLSLPHSGYRSSPANTYHYVTSLCP **TAYVSGSNALLSGSP*KINLYPANTATSTYD** RKL\RADETTIPP\TLIFTDIYELLGKDELNTVSNARKKDA **TAYVSGSNALLSGSP*FUNLYPANTATSSYP **TAYVSGSNALLSGSP*FUNLYPANTATSSYP **TAYVSGSNALLSGSP*FUNLYPANTATSSYP **TAYVSGSNALLSGSP*FUNLYPANTATSSYP **TAYVSGSNALLSGSP*FUNLYPANTATSSYP **SSRSKSCSSLSSLSFFLERRSPPOPQAQGGTSLM **SSRSKSRSSLSFFLERRSPPOPQAQGGTSLM **SSRSKSRSSLSFFLERRSPPOPQAQGGTSLM **SSRSKSRSSLSFFLERRSPPOPQAGGTSLM **SS		1	1	1	
SCHOOLIMAGULGAGSERPESHLEVEASPOASSAEVINASPLINNI. AHYMMERDSESEGINVSGHOVIGSDIVEEPHISKIMSEASPLOSED DSDSSYSSHSTDSIMUSSEVENDRCKKRIMKKI 622 1361 15 678 REGIT,FETERPINKGSESPUNDRCKKRIMKKI RETOGHRORROCHDATHVIRCKRIMKGSGUEBERGERDENGETOGELA RETOGHRORROCHDATHVIRCKRISLINGGGGGGKRAGALAHHY FLALIEBRINLERELSESEVENCESDETVALDLIKVYVUGAIL KITLREGNVLMGHSGMDIEKYSEHYOHDHSFGAEDDAAGGOLR PTAGERRHKESGRGSPRCKRARRAVGESFGCPRRVERFVERF VERFU VERFU 623 1362 1080 835 GTEGCCEGTAYAKAYOFMASHLSLGKPVSTGSISPRNALFN KQAKCKNHYSFIGLSMISPENSIGCKYSVHFSETKGF 624 1363 872 441 GAGGVRVGIGEVGKVQAFKVSLHSGGVFRGOTGEAVKBEGGR 625 SISHPLPPOGLGSFYAACOSHAPMKVDTTVTGTMAFFGLOMF TGRFFYPLLOMSLLVAVVAGSVVSYVTRVESEKKONLMLFLE TGGLEKKRSTDORS 625 GTSELLCIGRNWGFAFPSFGLALAFTLQLLVEMSGAEKVFV TPARPPPHNEHLARVADAPSPSSAGILHFTYGVESSPOFGLFAG BOLEGLKHAGDSDPRSFLCKH*GHGWOGGSSLGSFQFLPPS ASHLYSSRASKCSOPCLSIPHFGRSSPANTYVFVYTSLCP SPALHYTALGAGIISTSOARAPR 626 1365 36 381 FLLIFPFIDFESCHCYTTOVFPDMYAKAFLKERPA **TAYAYGSRHILISSP*FNILYFAVATHSSYP** 627 1366 763 1003 SEGEPPLLTREFFTUSESSPOFGLAGA **TAYAYGSRHILISSP*FNILYFAVATHSSYP** 628 1367 296 1199 KSREGSSIFAADARENWGGKSCCLLEWRFYGRASHFPLLPLP GEBRPSTKERAWKHGTYTTRUFFAGCOGTSLM SCLEPHTLLPGGESSPANTYRAKHGTYTTTAYAFTATAGTOR GEBRPSTKERAWKHGTYTTTYPAEDDGBHFFTLPLPLP GEBRPSTKERAWKHGTYTTTYPAEDDGBWTSTHTA/ASVS ULTAFLSTOROGP WOOG OINSGEKWFFVFUTTSLAFFERDPOV QTQALRIPERHLINDLKKENFSLKLLITYFLEENOOKYEASRED IYKRYTELKVEUSLIKREHLOMGLLGSESKLAKNEAARMAAL URBEKKENLLESEKLKGVTKNEHDENGOLGSGOVFRAGKRENDAL URBEKKENLLESEKLKGVTKNEHDENGOLGSGOVFRAGKREND URBEKKENLESEKKENKEHLORKCHENGENGOVFROWTSLARARD		1	I]	
AHYMMEROSSEGMYSCHOULGSDVEEPHSCHMSEAGIRQSPD DSDSSYGNSHTDSIMUSSSPWINGKKRMEKI 622 1361 15 678 REQILFIEIRDTANGGETEOPBILSGEMBERGEGIGGLA RETOGENGRERQUMDATWYTKCRESLENGGAGGKRAGALAHAV FLALIENILARERSSEVKACSDETVVADLIVKVYVIGAIL KIFLEGGNUNDHSGMDIEKYSSHYQHDHSFGAEDDAAGGQLB PTAQERHKEGGROSPFCKRARRAVQHSSFGCTPRYBYRPR VRRV 623 1362 1080 835 GTRGCCKEGTAYAKAYQFMASHLSLGKPUSTGSIPRFNKALFN KQAKCKPHHYSFIGLSMLSPBNFSIGCKYSVMFSETKGF KQAKCKPHHYSFIGLSMLSPBNFSIGCKYSVMFSETKGF SCHPPLPPGGLGSTVAACGSHAFMKQVFTVJCTMAFGLGM LORKPYPLQMSLLVAVAGSVVYGVTVESEKCNNLWILFLE TGGLEXDESTDQRS 625 1364 1 585 GTSELLCTQRHWGBAFPPERGLALPPTLOLLVEWGSAKSVPV TPARPPHNKHLARVADPRSPAGILRTPIQUAVSGSVPVSLGCP ASHLYVAVAGSVVSGVFTVSSSPATHYVTSLCP ASHLYVAVAGSVVSGVFTVSSSPATHYVTSLCP ASHLYVAVAGSVVSGVFTVSSSPATHYVTSLCP ASHLYVAVAGSVVSGVFTVSSSPATHYVTSLCP ASHLYVAVAGSVVSGVFTVSSSPATHYVTSLCP ASHLYVAVAGSVSGVFTVSSSPATHYVTSLCP SPALHYTALQAGITSTGARAPR 626 1365 36 381 FLLIERPFIDTFCLLCVTTOVTPDDMYAKAFLIKRNYTATGTDR KKL\RADETTDPP\TLGTDQIYELLGKDBLIVVSNARKKDA *TAYVSGRNHILSPSP*NLYFAVANTSSYP 627 1366 763 1003 SKQPPDLITMYFLLSFLFILVFPRGCVNQLLISYPQGQGTSIM *SKSSPRNLYFQSSRSSFSFTLRNARSPPOPACAPGT 628 1367 296 1199 KSREGGSLFARDARESKGGKSCLLEWRFVGKASHFPRILDL GERPPTTERAKMEGGWTFNDYPALDDGWYPTSTHATA/ASVS LITAPLSDTKDRGPPVQSQIWRSGEKVPFVQTYSLRAFEKPPQV QTQALDPFRHINDLKKEHFSLKLLITYFLERROQNYEASHEPD IYKRMTELRUFEUSLKREHQDKYCHDVFDOVTSLARARDMAAL LRRQFFRENQOSMEHVYELLERMMQLLQSSKLARNRARAMAAL VERBEKKENLLEGEKKGHKEHUNGLLQSSKLARNRARAMAAL LRRQFFRENQOSMEHVYELLERMMQLLQSSKLARNRARAMAAL VERBEKKENLLEGEKKGHKEHUNGLLQSSKLARNRARARMAAL VERBEKKENLLEGEKKGHKEHUNGLLQSSKLARNRARARMAAL VERBEKKENLEGEKKGHKEHUNGLLQSSKLARNRARARMAAL VERBEKKENLLEGEKKGHKEHUNGLLQSSKLARNRARARMAAL VERBEKKENLEGEKKGHKEHUNGLLQSSKLARNRARARMAAL VERBEKKENLLEGEKKGHKENGTUNGLUGSSKLARNRARARMAAL VERBEKKENLLEGEKKGHKGAVTKNENDEVDGOVCPDOVTEALAGRD VERBEKKENLLEGEKKGHKGAVTKNENDEVDGOVCPDOVTEALAGRD			1	ļ	SEEYERIVNPEKATEDAKPVKIKEEPVSDITFPVSEELEADLA
DSDSSYGSHSTDSLMGSSFVENDRCKKRMEKT	ì	1	1		SGDQSLPMGVLGAQSERFPSNLEVEASPQASSAEVNASPLWNL
1361 15		1		1	AHVKMEPQESEEGNVSGHGVLGSDVFEEPMSGMSEAGIPQSPD
RETOSHIGGROGWDATWOTRCESSINGGGAGGKRAGALAHHU RETOSHIGGROGWDATWOTRCESSINGGAGGGKRAGALAHHU KIPLBEGNVINDHGGMDISKYSSHYODHSPGASDDAAGGOLR PTAGEBREKEGSRGSPRCKRARKAVGESPGCPRPVRPVVRPR VRPRV 623 1362 1080 835 GTRGCCREGTAYAKYCPMASHISLGKDVGTGSIBERNKALFN KQAKCKRMHYSPIGLSMISPENSTIGCKYSWPSETKOP 624 1363 872 441 GAGGWVGIGSBUGKVQAFKVSLHRSQWPRGGTGERVKEGERG SSIHPPLPPQGIGSVAFKVSLHRSQWPRGGTGERVKEGERG SSIHPPLPPQGIGSVAFKVSLHRSQWPRGGTGERVKEGERG SSIHPPLPPQGIGSVAFKVSLHRSQWPRGGTGERVKEGERG 10KFFYLDSSLLVAVVAGSVVSYGVTRVESEKKNILMIPLE 625 1364 1 585 GTSELLCIQRHWGPRFPPRFGLALAPTLQLLVEMGSAKSVPV TPARPPPRHNHLARVADPSPSAGILTRPTQVESSPQFGLPAG EQLECHKRAQDSDPRSPLCKH*GHGWOYGGSSLGSPQFLPPS ASHLYSSRARSCSPPCLSIPPRGFSSPANTYHYVTSLCP 626 1365 36 381 FLLEFFTDFPSTGALAPTLGLLVEMGSAKSVPV FRKAPPFDFPGLGLYTTOVFPDDMYAKAFLIKFNYTATGTDR FKL\RABETTDFP\TLGTDGTYBLLGGCBEANTVKSNAKKRDA *TAYVSGRNHILSPS*FNLYFNVTNISSYP 627 1366 763 1003 SEGPPPLLTAVFTLEFFTLVFPGCVNGLLSSPPGGGGTSIM SSLSPHHLLDGDGSSRLSTFPLARGSPPDPAQAPGT 628 1367 296 1199 KREQSSLFAADAERSWGGSCCLLEWEFVGKASHFPELPLP GEBREPTKERAWKMEGTWTRUTYAEDDGSWYRTSHTA/ASVS UTAFLSTOTRORGPVOSQCIWASGEKVPVCVTSLAFREPOPQ QTQALRIPERHLINDLKEBFSLKLLITYLERERMQCKSASHFPELPLP GEBREPTKERAWKMEGTWTRUTYAEDDGSWYRTSHTA/ASVS UTAFLSTOTRORGPVOSQCIWASGEKVPVCVTSLAFREPOPQ QTQALRIPERHLINDLKKEBFSLKLLITYLERERMQCKSASKERD LYKRYTELKVEVELSKRBELLQKRCHARDMAAL VERBEKKENLELSEKKRENKELGDKRCHARDMAAL VERBEKKENLELSEKKKAVYKNMEUDFGQOVEPQOYTALAGAD			i	ļ	DSDSSYGSHSTDSLMGSSFVFNQRCKKRMRKI
RETOSHGGRQGWDATWYTCRSILNRGGAGGRGRAGALAHHY FIALIERINLARERSEEVKACSDFTVADLUKVYVVGJAIL KIPLRGNVINOHGGWDIKYKSHYOJENSFGAEDDAAGGOLR KIPLRGNVINOHGGWDIKYKSHYOJENSFGAEDDAAGGOLR PTAGERRKEGGRGSPRCKRARKVGESPGCPRPVRPRVRPR VRPRV 623 1362 1080 835 GTRGCCREGTRAYKNYOFRASHISJAKVSTGS IBRINKALEN KOAKCKPNHYSPIGLGMLSPENSIGCKYSVWSSETKGF KOAKCKPNHYSPIGLGMLSPENSIGCKYSVWSSETKGF GAGGVRWITGBVGRVAPKVSLHRSGVPRGGTGERVKEEGRG SSLHPPLPPQGIGSVAFKVSLHRSGVPRGGTGERVKEEGRG SSLHPPLPPQGIGSVAFKVSLHRSGVPRGGTGERVKEEGRG SSLHPPLPPQGIGSVAFKVSLHRSGVPRGTGERKNEEGRG SSLHPPLPPQGIGSVAFKVSLHRSGVFRVTTVTTGHAFLOMF TGARPPPHINLIARVADAPSSAGATIRPTIQUESSPOPGLAPAG EOLEGLKHAQDSDPRSPLCKH*GHGWOVGOSSLGSPQLEPS ASHLYVSGRNHILSPGPCLSLPHFRGYSSSAATIVTYVTSLCP FRLYRGSRHILSPGPCLSLPHFRGYSSSAATIVTYVTSLCP SPALHYTALQAGITSTGARAPR 626 1365 36 381 FILLFPTDIPSLCLVTTOVTPDDMYAKAFLIKFNYTATGTDR FKL\RABETTDPP\TLGTDGIYSLLGGGDGATVKSNAKKRDA *TAYVSGRNHILSPS*HNIPPAVNTISSYP 627 1366 763 1003 SEGPPPLLTAVFLEFFLVFPDCVNGLLISPPGGGGTSLM SSLSPHHLLPGGBSSRLSTFELRAGSPPDPAQAPGT 628 1367 296 1199 KGREGSSLFAADAERSWGGSCCLLEWRFVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYVGKASHFPRLLPLP GEBREFTKERAWKMEGTWTRUFFALGLUKYTKAMEUNGSONGE LRROFFERGOGMEHVYTELLERNMQLLGSESKLAKNERARMAAL LRROFFERGOGMEHVYTELLERNMQLLGSESKLAKNERARMAAL VERAEKKENLLEGERKGHAKKERVTKNMEUPGGOVCPOOTTALAGAG VERAEKKENLLEGERKGHAKKOVTKNMEUPGGOVCPOOTTALAGAG VERAEKKENTLEGERUKGACKOVTKNMEUPGGOVCPOOTTALAGAG VERAEKKENTLEGERUKGACKOVTKNMEUPGGOVCPOOTTALAGAG	622	1361	1.5	678	REOILFIEIRDTAKGGETEOPPSLSPLHGGRMPEMGEGIOSLA
FLALIEPNILABERASEEVKACSDETVVADLIVKVYVVIGAIL KIPLBERNIVANGHOODIEKYSHIVOUBHSPAGADDAGGGL PTAGERRIKEGSRGSPRCKRARKAVGESFGCPRPVRPRVRP VRPRV VRPRV GPRY GPRGCCREGTAYAKAYQFMASHLSLGKPVSTGSIPFPNKALFN KQAKCKNNHYSPIGLSMLSPBNSIGCKYSVMFSETKGF GAGAVOWIGTEGVREVAPAVAGSVYSVGYPRSTKGF SILHPPLPVGIGSTYAACQSFAPMKUVTTVTOTAMAFGLOMF TQKPFVPLOMSLLVAVVAGSVVSYGVYTVESEKKONLIKIFLE GGLECHKNADGSPSPSLGKN-GGRGWOWGOSLOSSPOLPPS ASHL/YSSRASRCSQPPCLGLPMFGVRSSPADTYHVPVTSLCP SPALHTYALGGAISTSGARAFR 626 1365 36 381 PILLPRFIDIFELCYLTGVTPDDWYAKAFLIKENTATTGTDR RKL\RADETTDP\TLSTDQIYSLLDGKDGSLTVSKNARKRDA +TAYVSGRNHILSPS-HNLYPAVNISSYP 627 1366 763 1003 SRQPPPLLTWYFLLFFLTVFPGCVNOLLSTPHQOGGTSLW +TAYVSGRNHILSPS-HNLYPAVNISSYP 628 1367 296 1199 KSRCGSLFLANGAGSKSTFPLARGABFPOPAQADGTS 628 1367 296 1199 KSRCGSLFLANGAGSCCLLBWFFVGKASHFPELLPLP GERPPTKERAWHENGTWTFDVFADGGWYPTSTARATAJASVS LTAPLSDTKORPPVGNTENDERVENDOWNPTSTARAFRAPKAAL LRRGFFERQGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL LRRGFFERQGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL LRRGFFERGGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL LRRGFFERGGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL VERBEKENLELSEKLKRELIGNKGHLDKFTWANDVERNMSONRAE LRRGFFERGGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL VERBEKENLELSEKLKRELIGNKGHLDKTWADVERNMSONRAE LRRGFFERGGSMEHVYTLLERNMGLLGSESKLANKAARPMAAL VERBEKENLELSEKLKGVTKNMEUDFGOVCHOOVTERLAGARD			1		RETOSHRGRROGWDATWVTRCRESLNRGGAGAGKRAGALAHHV
KIPLREGNVINOHSGMDIEKYSSHYQIBDISPGAEDDAAGGQLR KIPLREGNVINOHSGMDIEKYSSHYQIBDISPGAEDDAAGGQLR PTAGERREKEGSRGSPRCKRARKAVGESPGCRPRVRPRVRPR VRPRV	ľ	1	ĺ	1	
PTAQUERRIKEGSRGSPRCKRARKAVGESPGCRPRVRPRVRPRVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPVRPRVPRPRVPRPRVPRPVRPRPVRP		1	1		
VPREV			1	1	
624 1363 872 441 SANTENDER STANKANOFMASHISLAKFUSTUSI DERNIKALEN KAKKKPHYSPI GLISMLS PENPSI GICKYSVWESETKISF KAKKCKPHYSPI GLISMLS PENPSI GICKYSVWESETKISF KAKKCKPHYSPI GLISMLS PENPSI GICKYSVWESETKISF SILHPPLEVOGIGEYAACOSHAPMKOVETUVIGTOMAFGLOMF LORKPYPLOMSLUVAVAGSVUS VOYSVUTVESEKKONIKUMELE TGGLEKORSTORS GISHLETORS GOTSELLCI (ORMINGRAF PPRPGLALAPTLOLLVEMSSAKSVPV TPARPPPHINKHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV TPARPPPHINKHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV TPARPPPHINKHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV TPARPPPHINKHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV TPARPPPHINKHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV SPALHYTALQAGIISTS QARAPR KILLAPTLOLLVEMSSAKSVPV TPARPPPHINHLARVADPRS PSAGILAPTLOLLVEMSSAKSVPV SPALHYTALQAGIISTS QARAPR KILLAPTLOLVENS PSALHYTALQAGIISTS QARAPR KILLAPTLOLVEMS PSALHYTALQAGIISTS QARAPR KILLAPTLOLVEMS PSALHYTALQAGIISTS PSAGILAV VENAKKALAP TATVUSGENHILISPE PSALHYTALGAGI STENDER VINLYPANNINTSSYP SSISSPHMLJPODISSESSLS FPLEARSPPOPAÇAPGT SSISSPHMLJPODISSESSLS FPLEARSPPOPAÇAPGT GERPPTKERAKMENGTWITDY PAGDEGWYPTSTHATAJASVS LTAPLSDYKRORG PVOSOTUMS GISKVPPVOTYSLAPERPOV QYQALRUPFKENDEVSKINTSCHILDLY FLERPMQOXYEASRED TYRKTHELKVEVESSLKREHLQDKKQHIDKTWADVENINSONBAE LRROFFERROLSMENTLLEVESSLKREHLQDKKQHIDKTWADVENINSONBAE LRROFFERROLSMENTLLEVESSLKREHLQDKKQHIDKTWADVENINSONBAE LRROFFERROLSMENTLLEVESSLKREHLQDKKQHIDKTWADVENINSONBAE LRROFFERROLSMENTLLEVESSLKREHLQDKKQHIDKTWADVENINSONBAE LRROFFERROLSMENTLELIKEVENSCHOOVENDOVENDOVITALAQRID VERAKEKOMLISENKLKOVYKNNEDOFFOOVENDOVITALAQRID	1		1	1	
KOAKCKPNHYSPICLSMLSPENPSIGCKYSVMPSETKGF KOAKCKPNHYSPICLSMLSPENPSIGCKYSVMPSETKGF GAGGWVGIGGGWADPVSLLLSGVPRGGTGSKYREGGG SSI.HPPLPPOGIGGWAACOSHAPKKOYFTFVIOTOMAFGLOMP LORKPFYPLQMSLLVAVVAGSVVSYGYTRVESEKCINLWLFLE TOGLPKRSTTDQRS GTSELLCIGRNWGPFPPRPGLALAPTLOLLVEMGSAKSVPV TPARPPPNNHLARVADPRSPSAGILKTPIQVESSPOPGLARA EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EQLEGLKHAQDSDPRSPLCKH*GHGMOVGGSBLGSPQFLPAG EXPLITYALGAGITSTGARAPR FILLPRFIDTPLCLUCHTOVTPDDMYAKAFLIKFNYTAITGTDR FKL\RADETTDPP\TLGTDGITSLLGGKDELNTVKSNAKKRDA *TAYVSGENHILSPS*HNLYPAUNTLSSYP 627 1366 763 1003 SEQPPPLLTHVFLLFFLFLVFPFGCVNQLLLSFPFGCGSTSL SSLSHHMLLPGGBSBLSTFLENAGSPPOPAGADFG 628 1367 296 1199 KSREGGSLFADARESWGGKSCLLEMFPVGKSHFPFLLDL GERPFSTKERAWMEGTWTRDYFAEDDGBWYPTSHTAASUS LTAFLSDTKRGPP PVQSGIMKSGEKVPFVQTTSLAFEEDPQV QTQALEDFEKHLNDLKKEHFSLKLLITYFLEREMQCNYEASERD 1YKRMTELKVEVELSLKREHQDKNCHLDKTMADVENHSONRAE LRRGFFERGQSHEHVYTELLENMQLLGSESKLANKRARMAAL VERAEKGKNILLSGEKKLGVKNMEUDFGOVCPDQVTSLALAGRD VERAEKGKNILLSGEKKGWTKNMEUDFGOVCPDQVTSLALAGRD VERAEKGKNILLSGEKKGWTKNMEUDFGOVCPDQVTSLALAGRD		-250	1000	025	
GAGGVRVSIGEVGEVQAFEVSILHESGGVPRGGTGEAVKEEGER SISHPPLPLPGGIGSTYAACOSHAPKKUTTUTTUTANFGLGMF TORKFPYPLOWSILIVAVVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVAGSVVSYGVTRVESEKCNILWIFLE TORKFPYPLOWSILIVAVAGSVVSYGVTRVESEKCNILWIFLE EDIZIALITATOR TORKFPYPLOWSILIVATION	623	1362	1080	835	
SSI.HPPLPPOGI.GBYAACOSHAPMKAUPTRVICTOMAPGLOMP SSI.HPPLPPOGI.GBYAACOSHAPMKAUPTRVICTOMAPGLOMP TORSPYPLOMSILLVAVAGSUVSYGYTVESEKCINLULIFLE TGQLPKDRSTODRS GTSELLCTORNINGPAFFPRPGLALAPTLOLLVEWGSAKSUPV TPARPPPRINCHLARVADPRSPSAGTLKTPIQVESSESPOPGLEAG EQLEGLKHAQDSDRSPLCKH*GHGNOVGOSBLGSSPQFLEPS ASHL,VSSRARSKGSPPCLSLPHFRGYSSPANITYHVTSLCP SPALHYTALQAGIISTSQARAPR 626 1365 36 381 PLLLPRFIDIPFLLCULTOVTPDDMYAKAFLIKPNTAITGTDR RKL\RADETTDPP\TLGTDQIYELLGGKDELNTVKSNAKKRDA *TAYVSGENHILISP FNLNYPANITSSYP 627 1366 763 1003 SEQPPPLLTHVFLLEFLFLVFPPGCVNQLLISYPPGGGTSIM SSISHMILPGGBSSERLSIFPLARGSPPDPAQAPGTSI SSISHMILPGGBSSERLSIFPLARGSPPDPAQAPGTSIM SSISHMILPGGBSSERLSIFPLARGSPPDPAQAPGTSIM SGERPSTKERAMKMEQTWTRDYPAEDDGBWYPTSHTA/ASVS LITAFLSDTKORGP PVQSQIMKSGEKVFPVQTTSLAFEKPPQV QTQALEDFRHLINDLKKEHFSLKLLIYFLERROQGNYEASRED IYKRMTELKVEUSLIKRELQDKKGHLDKTMADVENINSQINAE LRROFFERROGGMEHVYELLERNMQLLGSESRLANKRARAMAAL VEARKEKCNILLSEKLKGVYKNMEUDDGDVCPDQVTSLALAGRD VERARKEKNILLSEKLKGVYKNMEUDDGDVCPDQTSLALAGRD		1			
TORKFPYPLOWSILIVAVVAGSVVSYGVTRVESEKCNILWIFLE TGGLEVEDSTÖDGE 625 1364 1 585 GTSELLCIGWWINGERFPERBILALRPTLOILVENGSAKSVEV TPRAPPEPBINHLARVAPPESSAGILTERPTGVESSPOPGLRAG BOLEGLKHADGSDPESILCKIN-GRIGNOVGOGSBLGSEPGLENDA SINI-VSSRASRICSOPPICISLEWRIGHSSPANTYNYPVTSLCP SPALHYTALQAGIISTSORARP 626 1365 36 381 PILLPRIDIFCLLCYLTOVTPDDWYAKAFLKEPTRITOTTE RKIA, RADETTDPP, YTLGTTO, YELLPRIDELATVKSNAHKRDA **TATVSGENTELISEP*KNI-TPRANTISSYP 627 1366 763 1003 SEQPPILITWFILLEFFLIVFFFFGCANTOLILSYPWQGGTSLW SSLSPHMILDOSDSSRLSIFPLAGSPPOPAGAPGRI 628 1367 296 1199 KSRGSSIFARADERSWGGKSCCILEMPFVGKASFFPRILPLP GEBREPTKERAKMENGOTWTRUYFAEDDGBWYPTSHTA/ASVS LTAPLSDYKNORPVSOJ SUMSGEKVPVTVTSLEAPERPPOV QTQALRIPERHLINDLKKENFSLKLLIYFLEERROGKVEASRED IYKRNTELKVEVESLKREILOPKKGHLOKTVADVENINSONRAE LRROFFERGOSMEHVYELLERMMGLLGSESKLAKKRARAMAAL VERBEKKONLLESEKLKGVTKNNEUPDGOVEDOVETOVETALAGRD	624	1363	872	441	
TGGLEKDESTORS TGGLEKDESTOR	1	1	1	1	
625 1364 1		1	1		
TPARPPPHNHHLARVADPESSSAGILRTPIOVESSPOPCLPAG BOLGLIKHADGSDFSPLCKH-«GHGWWGGSSLOSSPOLPPS ASHL/YSSRASRCSQPPCLSLPMFGVRSSPANTYHVPVTSLCP SPALHTYTALGAGIISTSGARAPR 626 1365 36 381 PILLERFIDIFCLLCYLTTQVTPDDWYAKAFLIKPNTAITGTDR RKL\RADETTDPY\TLGTDQIYSLLDGKDELTVKSNAKKADA +TAYVSGENHLISSP SHINLYPAVNTLSSYP 627 1366 763 1003 SRQPPPLLTHVFLLEFLFLVFFPGCVNQLLLSYPMGQGTSLW SSLSYHMLLPGDBSSRLSIFPLRARGSPPDPAQADQRI 628 1367 296 1199 KSRCQSLFADARESHGGKSCCLLBWFFVGKASHFPRLLPLP GERPPTKERAWHEGTWTRDVFALDGGWPTDYTSLAFEKPGV QTQALDFFRHLNIDLKREMFSLKLITYFLERRMQKYLFASRED IYKRWTELKVEWESLKREILGDKKGHLDKTWADVERNMSQNRAE LRRQFFRRQGSMEHVYTLLERNMQLLGSSRLARNRARMAAL VERARKENNLEJGSUKGVTKNWEDDFGOVCPDOYTEALAGRD VERARKENNLEJGSUKGVTKNWEDVFGOVCPDOYTEALAGRD VERARKENNLEJGSUKGVTKNWEDVFGOVCPDOYTEALAGRD VERARKENNLEJGSUKGVTKNWEDVFGOVCPDOYTEALAGRD					
BOLEGLKHADDSDPRSPLCKRY-GHGWOVGGGSDLGSFQFLPPS ASHLYSSRASKCSDPCLSLPMSGTRSSPANTYLVPVTSLCP SPALHYTALQAGIISTSQARAPR 381 FILLSPFIDEPLICYLTOVYPDDWYAKAFLIKENTAITGTDE RKIA RABETTDPPA TLATTOLY SKLLEGKDELNIVKSNAHKRDA +TANVGGSRHILSSP SKNIN PANWTHLSSYP 627 1366 763 1003 SRQFPPLLTWYFLEFLFLVFFPGCVNQLLLSYPKQGOGTSLW SSLSYHHLLPGSDSSRLS FLADAGENFYGKASHFPRLLPLP GEBRPSTKERAWKMEQTWTRUYFAEDDGSWYRTSHTA/ASVS LTAFLSTYRKORP VOGVOGLIKWEFFYGKASHFPRLLPLP GEBRPSTKERAWKMEQTWTRUYFAEDDGSWYRTSHTA/ASVS LTAFLSTYRKORP VOGVOGLIKWEFFYGKASHFPRLLPLP GYDALRIPEKHLINDLKKENFSLKLLI YS LEERWQGXVEASKED IYKRWTELKVEVESLKRELQDKKCHIDKTWADVENINSONRAE LRRQFFERGOGMEHVYELLENMOLLGSESKLAKNRAARMAAL VEABKEKONLEJSEKLKGVYKKMEDVEGOVCPDOYTSLAAGRD VERAEKKONLEJSEKLKGVYKKMEDVEGOVCPDOYTSLAAGRD VERAEKKONLEJSEKLKGVYKKMEDVEGOVCPDOYTSLAAGRD	625	1364	1	585	
ASHL/YSSARSCSOPPCLSLPWFGWRSSPANTYHVPUTSLCP SPALHYTALQAGLISTOARAPR 626 1365 36 381 PILLPRFIDIPCLLCYLTQVTPDDWYAKAFLIKPNTALTGTDR RKL\RADETTIPP\TLGTDQ178LLPGKDEANTVKSNAHKRDA +TAYVSGENRHLSPE PKNLYPANTHLSYP 627 1366 763 1003 SRQPPPLLTWFLEEFLFLWFFPGCWNQLLLSYPWGQGGTSLW 628 1367 296 1199 KSRCGOSLFAADARSKGSKSCTLRWFFVGKASHFPRLDLPL 628 1367 296 1199 KSRCGOSLFAADARSKGGKSCTLRWFFVGKASHFPRLDLPL 628 CHARLESPERFLEARWENGGWTWTDYPAEDDEGWYPTSTHAYA,ASVS LTAPLSDTKNDGPPWGOSTUNSGGKVPFVGTYSLAPEKPDV 628 QTQALRDFFKERAWKENFSLKLLIYFLERRWQKYEASRED 1YKRYTELKVEVESLKREH.QDKKQHLDKTWADVENINSQNBAE LRRQFFERGQSMEHVYTELLERNWGLLGSESKLANKRAARMAAL VERAEKSCNLLGEKKGAVTKNNEUNGGOVEVDGVTSALAGRD VERAEKSCNLLGEKKGAVTKNNEUNGGOVEVDGOVETALAGRD VERAEKSCNLLGEKKGAVTKNNEUNGGOVEVDGOVETALAGRD	l	1	1	1	
SPALHYTALQAGIISTSQARAPR SPALHYTALQAGIISTSQARAPR	i	1	1	1	
BILLERFID FCLLCYLTOVTPODMYALAFLIKENTAITGTDE RKL\RADETTDPY\LTGTDQIYELLPGKDENILKENTAITGTDE RKL\RADETTDPY\LTGTDQIYELLPGKDENILKENTAITGTDE RKL\RADETTDPY\LTGTDQIYELLPGKDENILKENTAITGTDE RKL\RADETTDPY\LTGTDQIYELLPGKDENILKENTAITGTDE ATTAVUSGENENILSED HNINTPANTILSEYP SSLSPHLITHVFLLEFLFIVETPGCVINGLLLSPYMGQGGTSLM SSLSPHLITHVFLLEFLFIVETPGCVINGLLLSPYMGQGGTSLM SSLSPHLITHVFLLEFLFIVETPGCVINGLLSPYMGRASHFPRILPLP GERPETKERAWKMEGNTSTLSFTPQKASHFPRILPLP GERPETKERAWKMEGNTWFNDYARDGEWPFYDTYSLAFERPD QTQALRDFEKHLNDLKKENFSLKLLIYFLEERMQQKVEASHRD TYRRYTELKVETVESLKREILQDKGHLDKTWADVERIASGNBAE LRROFFERGOGMEHVYTELLENMQLLGESSILANREARPMAAL VEARKENNLEJSEKKGVYKNNEDVEDGOVEPDOTTALAGRD VEARKENNLEJSEKKGVYKNNEDVEDGOVEPDOTTALAGRD	1	1		1	
PKIA RABETTÖPPY TIGTTÖGI YELLEGKDELATVKSNÄHKRDA + TATVISGENHILISEP FKINLYPANNYILISSI P 627 1366 763 1003 SEQEPPILITAVVFILERLETIVEPPGCVINGLILIS YPPGGGGTSLM SELSPHILIPOEDSSRIS IFPILAGS PPOPAQAPQRI 628 1367 296 1199 KSREGSSI-FANDARENWGGSSCCILEWREFUGKASH PRILIPLE GEBREPTKERAWKHEGTWITHDYA AEDDGSMYRTSHITA/ASVS LITAFISOTRORGP PVOSO 1 WASGEKVP PVOTTSLIRA PERPPGV QTQALRIPERHLINDLKKENFSLKLLI YELEERMOGNYEASKED I YKRMYTELKVEVESLKERELJOKKGHLOKTVADVENINSONRAE LIRROFFERGOGMEHVYELLENMOLLOSESKLANKRAARMAAL VERAEKEKONLEJSEKLKGVYKNMEDVEGOVEPODYTETALAGAD VERAEKEKONLEJSEKLKGVYKNMEDVEGOVEPODYTETALAGAD	1	1	1	1	SPALHYTALQAGIISTSQARAPR
RKL\RADETTDPP\TILGTDGIYELLGGKDELNTVKSNÄHKRDA +TAYVSGENHILSES P*KNIYPANYNITSSYP 627 1366 763 1003 SROPPPLLTAVFILEFLFIVFPPGCVNOLLISYPPGGGGTSLM SSISSHMLLPGGBSERLSTPELRAGSPPDPRQAPGT 628 1367 296 1199 KGREQSSLFAADAERSWGGKSCCLLEWRFVGKASHPPRLLPLD GEBREFITKERAWKHEGTWITUFFAEDDGSMYRTSHTA/ASVS LTAFLSTTERROPPGVSQUSWASGKSVPVGVTSLAFREPGPV QTQALRUPERHLINDLKKENFSLKLLITYFLEERMQCKYEASRED IYKRWITELKVEVEUSLKRELQDKKYGLDKTVADVENINSONRAE LRROFFERROGEMEHVYELLENMQLLGSESKLAKNRAARMAAL VEARKEKONLEJSEKLKGVTKNMEDVEGDVCPDQVTFALAGRD VEARKEKONLEJSEKLKGVTKNMEDVEGDVCPDQTVFALAGRD	626	1365	36	381	PLLLPRFIDIPCLLCYLTQVTPDDMYAKAFLIKPNTAITGTDR
#TAYVSGRNRILSEP*KNIYPAVNTLSSYP 627 1366 763 1003 SEQPPPLLTWYFLEFLFTUVFPFGCVTOQLLSYPMQQQGTSLW SSLSYHMILPQSDSSRLSIFPLRAGSPPQPAQAPQRI 628 1367 296 1199 KSREQSSLFARDARESNGGKSCCLLRWEFVGKASHFPRILPLP GERPETTRERAWINGOVWTRIYPACHDGEWYPTVTYTALAFEK LTAFLSDTKNPGPPVQSOTWRSGEKVPFVQTYSLRAFEKPPQV QTQALAPPEKHLNIKKEMPSLALLTYPLREEMPQKYKESREN TYKRNTELKVEVESLKRELQDKKQHLDKTWADVENLNSQNEAE LRRQFERROMBENTYTELLERNMQLLGSESRLAKNRAARMAAL VEARKSCNLELSEKLKGVYKKNEDVEGDVKPQDVTEALAGRD VEARKSCNLELSEKLKGVYKKNEDVEGDVKPQDVTEALAGRD					RKL\RADETTDFP\TLGTDQIYELLPGKDELNIVKSNAHKRDA
627 1366 763 1003 SRQPPPLLTMYFLLFRLFLYFPGCYNQLLISYPPGGGGTSLW		1			
SSI,SHHMLLDOEDSSRLSIFELRAGSPFORAGAPGRI 628 1367 296 1199 KSREGSSLFÄABAERSWGKSCCLLRWEFVGKASHFPELLPLP GEBRPETKERAWKHEGYWTRDYFAEDDGEWYPRTSHTA/ASVS LTAFISDTKORGPPVOSOIWRSGEKVPFVGTYSLAFEKPGVV QTQALABPEKHINDLKKEMFSLKLITYFLEERMOCYKFASRED IYKRHTELKVEWSLKREHGJOKKOHLDKTWADVENIMSONRAE LRROFERROGEWHEHVELLENKWOLLDESSRLAKNEARARMAAL VERAEKSCNLELGSEKLKGVYKNNEDVFGDVKCPDGYTEALAGRD	627	1366	763	1003	
628 1367 296 1199 KSREQGSLFAADARESWGGKSCCILBWRFYGKASHPPELLPLP GERPETKERAMKHOCYWTRDY PARDDGWYDTSTHYA, JASVS LTAPLSDTKDRAGP PVQSCIWRSGEKVPFVQTYSLRAFEKP PQV QTQALMPFRHINDLKKERPISLKLITYFLERMQCXYEASRED IYKRWTELMVEVESLKREKLQDKXQHIDKTWADVENIMSQNRAE LRRQFFERQGSMEHVYELLENMQLLQSESKLANKRAARMAAL VEARKEKOLLSESKLAGVYKKNEDVEGDQVKPDQYTEALAGRD VEARKEKOLLSESKLAGVYKKNEDVEGDQVKPDQYTEALAGRD	027	12300	1 /03	1 2000	
GEBRPSTKERANKMEQTWTRDYFAEDDGEMVPRTSHTA/ASVS LITAFISDTKNRGPPVOSQIMRSGEKVPFVQTYSLRAFEKPPQV QTQALAUPFEKHLINDLKKENFSLKLLIYFLERENQCYKEASRED IYKRHTELKVEVESLKREILODKKQHLDKTMADVENINSQNRAE LRRQFEERQQEMEHVYELLENKMQLLQESSRLAKNEAARMAAL VERAEKSCNLELSEKLKGVYKNNEDVFGDOVKEDQYTEALAQRD	620	1262	206	7100	
LITAFI.SDTKNDGPPVQSQTWSSGEKVPFVQTYSLBAPEKPPQV QYQALADEKHLINJKKENFSLALI TYPLEERMQCYKESREN TYRRITELKVEVUSLKREILQDKKQHLDKTWADVENI.NSQNEAE LRRQFERRGOMEHVYELLENNQLLQSESRLBKNEARPMAAL VERBEKSCNLELJSEKKGVYKKNEDVSDQVEYDQYTEALAQRD	628	136/	250	1199	
QTQALRDFEKHLNDLKKENFSLKLLI YFLEERMQQKYEASRED I YKRYTELKVEVESLKRELQDKKQHLDKTWADVENLMSONRAE LRRQFEERQQEMENYELLENMQLJGESERLAKRAARDMAAL VERAEKEONLELSEKLKGVYKNWEDVPGDQVKPDQYTEALAQRD	1				
Tyrryteikuveveslikreiddikghilrytradurninsonrae Lirroferrogsmehuyeilenkmollosesrlakneaarmaal Vrabekeonleisesklkouytrineddygedoyytealaord					
LRRQFEERQQEMEHVYBLLENKMQLLQEESRLAKNEAARMAAL VEAEKECNLELSEKLKGVTKNWEDVPGDQVKPDQYTEALAQRD	1	1	1	1	
VEAEKECNLELSEKLKGVTKNWEDVPGDQVKPDQYTEALAQRD					
		1	1	1	
K					
	L				K

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
		residue	residue	\—possiole nucleoude insertion)
		of amino	of amino	
		acid	acid	
		sequence	sequence	
629	1368	191	1116	TRREGTTWRSPRPREASTSRPSTRPRGVASWPWETAGTATTGP
				GPSARTRRRAARRRRSRPRRRAHGGLSOPAGWOSLLSFTILFL
	l		1	AWLAGFSSRLFAVIRFESIIHEFDPWFNYRSTHHLASHGFYEF
1	1	ļ	1	LNWFDERAWYPLGRIVGGTVYPGLMITAGLIHWILNTLNITVH
	i	ĺ	1	IRDVCVFLAPTFSGLTSISTFLLTRELWNOGAGLLAACFIAIV
ļ			1	PGYISRSVAGSFDNEGIAIFALOFTYYLWVKSVKTGSVFWTMC
Ì	1	1	l .	CCLSYFYMVSAWGGYVFIINLIPLHAFVLVLM/O/RYSKRVYI
ł	1	ì	ł	*YSTFYIVG
630	1369	852	214	RRLIVVLSDAFLSRAWCSHSF/RVGPARGWVGPSVAPTPLTVP
1030	1307	032		PRREGLCRLLELTRRPIFITFEGORRDPAHPALRLLROHRHLV
i		1	l	TLLLWRPGSVTPSSDFWKEVQLALPRKVRYRPVEGDPQTQLOD
1		i	1	DKDPMLILRGRVPEGRALDSEVDPDPEGDLGVRGPVFGEPSAP
		1	l .	PHTSGVSLGESRSSEVDVSDLGSRNYSARTDFYCLVSKDDM
631	1370	246	1091	LSHEGWRRGREGERINSSVASLAPLCILPDLPSNMHLARLVGS
037	1370	240	1091	CSLLLLLGALSGWAASDDPIEKVIEGINRGLSNAEREVGKALD
1	1	1		GINSGITHAGREVEKVFNGLSNMGSHTGKELDKGVQGLNHGMD
1	1	}	1	KVAHEINHGIGOAGKEAEKLGHGVNNAAGQAGKEADKAVQGFH
	1	1	1	TGVHOAGKEAEKLGOGVNHAADOAGKEVEKLGOGAHHAAGOAG
1		į.		KELQNAHNGVNQASKEANQLLNGNHQSGSSSHQGGATTTPLAS
1	1	l	1	GASVNTPFINLPALWRSVANIMP
632	1371	3150	2792	SASGGLGMTVEGPEGSEREHRPPEKPPRPPRPLHLSDRSFRRK
632	13/1	3120	2/92	KDSVESHPTWVDDTRIDADAIVEKIVOSODFTDGSNTEDSNLR
1		l	1	LFVSRDGSATLSGIOLATRVSSGVYEPVVIESH
633	1372	667	993	ERSGWPQPEGTVTAQGPLFWERLSGAVTVSSGYKADMWPSFPQ
1		1		\VRVGSFLFGILFFSFGSSSLPPGLPPPASLLCCAVQWGARAL
				FLPCLKERALGMEMRNNTLSFRQ
634	1373	636	2	SSSNLRLSFLINENILGKCFRSGPSCAGPRISPLAAQYECPRP
1	1	1	1	SLLIMASVPKTNKIEPRSYSIIPSCGI\RRLGPALNTLIF\QS
1			1	KRFGPRG\HSAKSIEGAPRGKGRGRAVARLAADRPPAPKIQLR
	1	ĺ		AF*LQQL*YTLLELELPRLLAPDLPSNGSSLKDLKWTHSNYRA
1		l	1	SKESCIVIF\VTTSPGREWVICALAAFLGCGS\LSQAPSPES
635	1374	61	519	LRIINTYFCFKFLIVNYIHGTTKARKPHVLGESLISAMSRQEP
1	1		1	KMFVLLYVTSFAICASGQPRGNQLKGENYSPRYICSIPGLPGP
1	1		1	PGPPGANGSPGPHGRIGLPGRDGRDGRKGEKGEKGTAGLRGKT
1	1	1		GPLGLAGEKGDQGETGKKGPIGPE
636	1375	129	579	FASAMLGSRVDRPKLSVAPSVVLEEDQVLVSPAVDLEAGCRLR
		1		DFTEKIMNVKGKVILSMLVVSTVIIVFWEFINSTEGSFLWIYH
	1	1	1	SKNPEVDDSSAQKGWWFLSWFNNGIHNYQQGEEDIDKEKGREE
1				TKGRKMTQQSFGYGTGLIQT

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
110.00	ricius	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	\=possible nucleotide insertion)
i i		residue	residue	
		of amino	of amino	
		acid	acid	
		sequence	sequence	
637	1376	127	1376	GSHRFSLASPLDPEVGPYCDTPTMRTLFNLLWLALACSPVHTT
				LSKSDAKKAASKTLLEKSQFSDKPVQDRGLVVTDLKAESVVLE
	i	i		HRSYCSAKARDRHFAGDVLGYVTPWNSHGYDVTKVFGSKFTQI
1			1	SPVWLQLKRRGREMFEVTGLHDVDQGWMRAVRKHAKGLHIVPR
1	1	1		LLFEDWTYDDFRNVLDSEDEIEELSKTVVQVAKNQHFDGFVVE
	1	1	l	VWNQLLSQKRVGLIHMLTHLAEALHQARLLALLVIPPAITPGT
1	1		1	DQLGMFTHKEFEQLAPVLDGFSLMTYDYSTAHQPGPNAPLSWV
1	ļ	ļ	1	RACVQVLDPKSKWRSKILLGLNFYGMDYATSKDAREPVVGARY
	ì			IQTLKDHRPRMVWDSQVSEHFFEYKKSRSGRHVVFYPTLKSLQ
				VRLELARELGVGVSIWELGQGLDYFYDLL
638	1377	998	48	GREGTGWGPAMSEVTRSLLQRWGASFRRGADFDSWGQLVEAID
		ł		EYQILARHLQKBAQAQHNNSEFTEEQKKTIGKIATCLELRSAA
1		1	1	LQSTQSQEEFKLEDLKKLEPILKNILTYNKEFPFDVQPVPLRR
		ł		ILAPGEEENLEFEEDEEEGGAGAGSPDSFPARVPGTLLPRLPS
				EPGMTLLTIRIEKIGLKDAGQCINPYITVSVKDLNGIDLTPVQ
1	i	1	1	DTPVASRKEDTYVHFNVDIELQKHVEKLTKGAAIFFEFKHYKP
١.	ł	1.	ł	KKRFTSTKCFAFMEMDEIKLGPIVIELYKKPTDFKRKQLQLLT
	i			KKPLYLHLHQTLHKE
639	1378	1298	1569	GSITSEPSLDSLQPLPPGFKRFSCLSLPSSWDYRRPPPGLAYF
1	1	1	ł	CIFSRDEVSPCWPGCSPSPDLMIRLPRPPSVGITGVSHRAWPT
į.			i	IDNF
640	1379	196	1197	KMPVPWFLLSLALGRSPVVLSLERLVGPQDATHCSPGLSCRLW
			1	DSDILCLPGDIVPAPGPVLAPTHLQTELVLRCQKETDCDLCLR
l	1	1	ł	VAVHLAVHGHWEEPEDEEKFGGAADSGVEEPRNASLQAQVVLS
1	1	1		FQAYPTARCVLLEVQVPAALVQFGQSVGSVVYDCFEAALGSEV
1	1	1	1	RIWSYTQPRYEKELNHTQQLPDCRGLEVWNSIPSCWALPWLNV
	1	1		SADGDNVHLVLNVSEEQHFGLSLYWNQVQGPPKPRWHKNLVRP
1	1	1	i	PPSQVHSHCRP\CLCK\DAVPYQRGSLKRTHPKQGKIGGGTSA
1		1	l .	FLVSLTLASSSSSLSSPTSFLYLFHRLDRRSLP
641	1380	756	1110	LRLWNRNQMMHNIIVKELIVTFFLGITVVQMLISVTGLKGVEA
1	1	1	1	QNGSESEVFVGKYETLVFYWPSLLCLAFLLGRFLHMFVKALRV
				HLGWELQVEEKSVLEVHQGEHVKQLLRIPRP
642	1381	631	1278	KVNRKLRKKGKISHDKRKKSRSKAIGSDTSDIVHIWCPEGMKT
	1	1		SDIKELNIVLPEFEKTHLEHQQRIESKVCKAAIATFYVNVKEQ
1	1	1	j	FIKMLKESQMLTNLKRKNAKMISDIEKKRQRMIEVQDELLRLE
1	1	1		PQLKQLQTKYDELKERKSSLRNAAYFLSNLKQLYQDYSDVQAQ
1	1	i	1	EPNVKETYDSSSLPALLFKARTLLGAESHLRNINHQLEKLLDQ
1				G
643	1382	1167	755	VWVAMEEPPVREEE*EEGEEDEERDEVGPEGALGKSPFQLTAE
1	1	1	1	DVYDISYLLGRELMALGSDPRVTQLQFKVVRVLEMLEALVNEG
	1	1	1	SLALEELKMERDHLRKEVEGLRROSPPASGEWPDSTKRRPRRK
	1	1		KRKRCCGY
			L	

SEQ	SEQ	Predicted beginning	Predicted end	Amino acid segment containing signal peptide (A=Alanine,
ID	ID	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, O=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine.
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
		acid	acid	
		residue	residue	\=possible nucleotide insertion)
		of amino	of amino	
		acid	acid	
j .	l	sequence	sequence	
644	1383	1	271	PRNDHRLTQSRRDSSSKTRAFLVPRFLPAHAGVTSEERTAMKR
044	1303	-	2/-	EGGAAHLCSDSLPESQQQDGNHAPNFSSHGSCRRRQRRRHDKA
	ĺ	1	i	LHAR
	1204	1	100	
645	1384	1	499	THASEKSRATMSSWSRQRPKSPGGIQPHVSRTLFLLLLLAASA
	1	l	1	WGVTLSPKDCQVFRSDHGSSISCQPPAEIPGYLPADTVHLAVE
ĺ	1	1	1	FFNLTHLPANLLQGASKLQELHLSSNGLESLSPEFLRPVPQLR
			L	VLDLTRNALTGLPPGLFQASATLDTLVLKENQLEVLE
646	1385	178	675	ERPRIMDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLL
ĺ	1			WPINKQLFRKINCRLSYCISSQLVMLLEWWSGTECTIFTDPRA
1			ì	YLKYGKENAIVVLNHKF\EI\DFLCGWSLSERFGLLGVSQKCI
	i			PPCLTHFFGSAPPLVFLLLVIQNLQKNQQSFYLMKWS
647	1386	630	1499	MIVFGWAVFLASRSLGQGLLLTLEEHIAHFLGTGGAATTMGNS
1		1	Į.	CICRDDSGTDDSVDTQQQQAENSAVPTADTRSQPRDPVRPPRR
	1	1	1	GRGPHEPRRKKQNVDGLVLDTLAVIRTLVDNDQEPPYSMITLH
	į .			EMAETDEGWLDVVQSLIRVIPLEDPLGPAVITLLLDECPLPTK
	ĺ	1		DALQKLTEILNLNGEVACQDSSHPAKHRNTSAVLGCLAEKLAG
١.	1			PASIGLLSPGILEYLLQCLLQSHPTVMLFALIALEKFAQTSEN
1	l	1		KLTISESSISDRL\VTLESW\ANDPDYLKROVG
648	1387	1	962	RFGTRGLAKSKGVVLMALCALTRALRSLNLAPPTVAAPAPSLF
				PAAOMMNNGLLOOPSALMLLPCRPVLTSVALNANFVSWKSRTK
1	1	1	1	YTITPVKMRKSGGRDHTGRIRVHGIGGGHKQRYRMIDFLRFRP
	1	ł	l	EETKSGPFEEKVIQVRYDPCRSADIALVAGGSRKRWIIATENM
l		1	1	OAGDTILNSNHIGRMAVAAREGDAHPLGALPVGTLINNVESEP
ļ	1	ļ	ļ	GRGAOYIRAAGTCGVLLRKVNGTAIIOLPSKROMOVLETCVAT
ł		1		VGRVSNVDHNKRVIGKAGRNRWLGKRPNSGRWHRKGGWAGRKI
		ŀ	1	RPLPPMKSYVKLPSASAQS
649	1388	291	714	PVQGARCWLDARRNVRVFSGVCCGCGIHGYWAEPCGGCGAMEG
045	1300	1	/	LRSSVELDPELTPGKLDEEMVGLPPHDASPOVTFHSLDGKTVV
1		1	1	CPHFMGLLLGLLLLTLSVRNQLCVRGERQLAETLHSQVKEKS
	1		ŀ	OLIGKETOCRD
650	1389	874	2220	GARGRPLAETWPFLTAPVLPGOLOITEPTMAEKGDCIASVYGY
650	1389	8/4	2220	
1			ļ.	DLGGRFVDFQPLGFGVNGLVLSAVDSRACRKVAVKKIALSDAR
J	1	1	l	SMKHALREIKIIRRLDHDNIVKVYEVLGPKGTDLQGELFKFSV
1	1		1	AYIVQEYMETDLARLLEQGTLAEEHAKLFMYQLLRGLKYIHSA
	1		'	NVLHRDLKPANIFISTEDLVLKIGDFGLARIVDQHYS\HKGYL
1	1	1	1	SEGLVTKWYRSPRLLLSPNNYTKAIDMWAAGCILAEMLTGRML
	i	1		FAGAHELEQMQLILETIPVIREEDKDELLRVMPSFVSSTWEVK
				RPLRKLLPEVNSEAIDFLEKILTFNPMDRLTAEMGLQHPYMSP
1	i	1		YSCPEDEPTSQHPFRIEDEIDDIVLMAANQSQLSNWDTCSSRY
İ	1	1	1	PVSLSSDLEWRPDRCQDASEVQRDPRAGSAPLAENVQVDPRKD
		1	1	SHSSSASCQAGRNGVSRYQ

ID D beginning end uncleotide nucleotide location location C=Cysteine, D=Aspartic Acid, E= Glutamic A F=Phenylalanine, G=Glycine, H=Histidine, I=	-14
NO: NO: F=Phenylalanine, G=Glycine, H=Histidine, I=	cia,
	Isoleucine,
or or K=Lysine L=Leucine, M=Methionine, N=As	paragine,
Nucleic Amino	ine,
Acids Acids sponding sponding to first to first T=Threonine, V=Valine, W=Tryptophan, Y=	Tyrosine.
amino amino X=Unknown, *=Stop Codon, /=possible nucleo	
acid \=possible nucleotide insertion)	,
residue residue	1
of amino of amino	
acid acid	1
sequence sequence	
651 1390 1 2451 MRTLGTCLATLAGLLLTAAGETFSGGCLFDEPYS	
DDFNWEQVNTLTKPTSDPWMPSGSFMLVNASGRE	
PQLKENDTHCIDFHYFVSSKSNSPPGLLNVYVK	
WNISGDPTRTWNRAELAISTFWPNFYQVIFEVI	
DEVKVLGHPCTRTPHFLRIQNVEVNAGQFATFQ	
DRLWLQGIDVRDAPLKEIKVTSSRRFIASFNVVI	
RCMI\RTEGGVGISNYAEL\VVKEPPVPIAPPQI	
IQLNANSINGDGPIVAREVEYCTASGSWNDRQP	
LDPDTEYEISVLLTRPGEGGTGSPGPALRTRTK	
LEVVEVKSRQITIRWEPFGYNVTRCHSYNLTVH	
VREEVSWDTENSHPQHTITNLSPYTNVSVKLILI	
ELIVQTDEDLPGAVPTESIQGSTFEEKIFLQWR	
LYEITYKAVSSFDPEIDLSNQSGRVSKLGNETH	
TYSFTIRASTAKGFGPPATNQFTTKISAPSMPA	
DNTVTVMLKPAHSRGAPVSVYQIVVEEERPRRT	
PVPIHFQNASLLNSQYYFAAEFPADSLQAAQPF	
YWNTPLLPYKSYRIYFQAASRANGETKIDCVQV	
VPEPEKQTDHTVKIAGVIAGILLFVIIFLGVVL	
ASICSASGEASGSFQSWRKAKHKQACPMARAGA	
652 1391 30 459 GIRQLLQLSRASMAARKSWTALRLCATVVVLDM	
DESFKENRNDDIWLVHFYAPWCGHCKKLEPIWN	
SPVKAGKMDATSYSSIASEFGVRGYPTIKLALI	RPLPSQQMFE
HMHKRHRVFFVYV	
653 1392 168 1016 GLVIVISHFSPSPGLLPATQSPAMSDPITLNVG	
LTSFPDSMLGAMFSGKMPTKRDSQGNCFIDRDG	
RTSHLDLPEDFQEMGLLRREADFYQVQPLIEAL	
EKNAMLNITLNQRVQTVHFTVREAPQIYSLSSS	
STSCLFLKLLGSKLFYCSNGNLSSITSHLQDPN	
EGLPEEEYTKQNLKRLWVVPANKQINSFQVFVE	EVLKIALSDG
FCIDSSHPHALDFMNNKIIRLIRY	NAME OF TAXABLE
654 1393 3 927 SCADNLVAASGGCWFVLGERRAGSLLSASYGTF	
RWAIASDDLVFPGFFELVVRVLWWIGILTLYLM	
ALLSSYLIVLMILLAVVICTVSAIMCVSMRGTI	
KLLYIRLALFFPEMVWASLGAAWVADGVQCDRT	
VSWIIIAATVVSIIIVFDPLGGKMAPYSSAGPS	
LNGLKTAATSVWETRIKLLCCCIGKDDHTRVAF	
FSDTDLVPSDIAAGLALLHQQQDNIRNNQ\DLP	KWSAMPQGAP
RKLIWMQN	***
655 1394 1 716 FRAATAAAKGNGGGGGRAGAGDASGTRKKKGPG	
NVVMTAGWLVIAVGLVRAYLAKGSYHSLYYSIE	
LLEILHCAIGIVPSSVVLTSFQVMSRVFLIWAV	
DSVL\FVIAWTITEIIRYSFYTFSLLNHLPYLI	
LYPMGVSGELLTIYAALPFVRQAGLYSISLPNS	TKKIFLISQV
WWHMLAVSADAKAAEMPAVLKPGP	

SEQ SEQ ID Predicted beginning in clockoide location of Nucleic Acids Ac	cine, ie,
NO: NO: of of of Notelia Notelia No: of the Notelia No: of the Notelia	ie,
Nucleicade Acids	ie,
Neuleic Amino Acids Acids Acids a large profit of a large profit of amino o	1
Acids Acids	1
Actus of first amino acid residue of amino of am	
amino amino acid acid residue of amino of amino of amino of amino of amino lami	10
acid acid residue residue of amino of amino	
residue residue of amino of amino	eletion,
of amino of amino	
	- 1
acid acid	
sequence sequence 656 1395 72 766 MITGVGCLVSSESLSCVOCNSWEKSCVNSIASECPSHA	TTO CIT
SSSASSSLETPVRLYQNMFCSAENCSEBTHITAFTVHV	
FHFVSQCCEGKECSNTSDALDPPLKNVSSNAECPACYE	
CRGKPWKCYEBEQCVFLVABLKNDIESKSLVLKGCSNV	
QFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNV	GSKAS
LYLLALASLLLRGLLP	
657 1396 97 746 VPARRRAMEIGTEISRKIRSAIKGKLQELGAYVDEELP	DYIMV
MVANKKSQDQMTEDLSLFLGNNTIRFTVWLHGVLDKLR	SVTTE
PSSLKSSDTNIFDSNVPSNKSNFSRGDERRHEAAVPPL	\AIPS
ARPEKRDSRVSTSSOESKTTNVROTYDDGAATRIMSTV	/KPLR
EPAPSEDVIDIKPEPDDLIDEDLNFVOEKPLSOKKPTV	TLTYG
SSR	
658 1397 155 560 ASRVLAAVMGLPWGOPHLGLOMLLLALNWLRPSLSLEL	VPVTP
OITAWDLEGKVTATTFSLEOPRCVFDGLASASDTVWLV	
ASRGFONPETLADIPASPQLLTDGHYMTLPLSPDQLPC	
GSGSAP	ODITIO
659 1398 416 539 NSLNNFFFETESCCVAQAGVQWRDLGSLQAPPPGFKRF	CCT
660 1399 281 736 KSLPLQKHPKPSCQEDQGLGRGSLSGHSPLTLLTFLTS	
OOLLPPRTSGSLCOESMSEOSCOMSELRLLLLIGKCRSG	
NAILGKHVFKSKFSDQTVIKMCQRESWVLRERKVVVID	
SSIACAEDKORNIOHLLELSAP	TEDRE

RWQLSDRVEGGSPTLGLLGGSPSAQPGTGNVEAGIPSG	
LPCWDAAKDLKEPQCPPGDRVGVQPGNSRVWQGTMEKA	
RGTGVQSEGTWESQRQDSDALPSPELLPQDQDKPFLRK	
NIPAVIITDMGTQEDGALEETQGSPRGNLPLRKLSSSS	
FSSSYEDSEEDISSDPERTLDPNSAFLHTLDOOKPRVV	ESRSV
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTG	ACHHA
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTG RIIFGFLVERGFHHVGQDGLYLLIL	
TOAGYONHDIGSLOPLPP/WIQAIL/HASAFRIAGTTG RIIPGFLVERGPHHVGODGLYLLLI 662 1401 232 3 KICSSYPLRIICILOKBAQBASNILTSCDFFSPAFYFV	
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTG RIIFGFLVERGFHRVGQDGLYLLLL 662 1401 232 3 KICSSYFLRIICILQKBAQEASNLYTSCDFFSPAFYFV NFKHWPGAVARTYSPSTLGGGGRWYT-GREFM	IYRLY
TQAGYQAHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIPGFLVERGHHVQQDLYLLLL 662	IYRLY CVLIF
TQAGVQWHDIGSLQPLPP/WIQAIL/HASAFRIAGTTG RIIFGFLVERGFHRVGQDGLYLLLL 662 1401 232 3 KICSSYFLRIICILQKBAQEASNLYTSCDFFSPAFYFV NFKHWPGAVARTYSPSTLGGGGRWYT-GREFM	IYRLY CVLIF
TQAGYQAHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIPGFLVERGHHVQQDLYLLLL 662	IYRLY CVLIF
TQAGYQAHDIGSLQPLBP/WIQAIL/HASAFRIAGTTG RIIFGFLVERGFHRVQQDGIYLLILI 662 1401 232 3 KICSSYPLRIIGILQKRAQEASINIYTSCDFFSFAFYFV NFKHIWPGAVAHTYSPSTLGGRGRWIT-GREFM 663 1402 250 556 LILSLPLLYGHLKSYFFPSEHYLHLLQTFAFFNKYINV IHHKEVVPAIQGTNVGGSLEPRKLRLQQAMIVYLHFGL	IYRLY CVLIF GNRVR
TQAGYQAHDIGSLQPLPP/WTQATL/HASARTAGTTG RIIFGFLVRRGPHVQGQL/KLLLL 662 1401 232 3 KICSSYPLRIGIGLGKHAYTSCDFFSPAFYFV NFK.HWGAVAHTYSPSTLGGGRWYT*GREFY NFK.HWGAVAHTYSPSTLGGGRWYT*GREFY LILSEPLLYGHLKSYTFFBEHYLLLLGTFATPKKYLNY IHHKPVVPAIQGTNVGGSLEPRKLRLQQAMIVPLHFGI PCLKKQQQQQQQQKK	TYRLY CVLIF GNRVR TLGSY
TQAGYQAHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIFGFLVERGFHHVQQQLYLLIL 662	CVLIF GNRVR TLGSY SYILA
TQAGWQMHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIPGFLVERGFHHVQQGLYLLIL	CVLIF GNRVR TLGSY SYILA
TOAGWONHDIGSLOPLEP/WIGATL/HASAFRIATTO RITEFULVERSHWIGGOLVILLI 662	CVLIF GNRVR TLGSY SYILA
TOAGWOMHDIGSLOPLEP/WIQAIL/HASAFRIAGTO RIIFGELVERGEPHWGGOLIVLID 662 1401 232 3 KICSSYFLRIICIIQKEAQEASNLYTSCDFFSPAFYFV NFKHIMPGAVARITYSPSTLGGRGRWYT-GREFM 663 1402 250 556 LILSIPLIVGHLKAYFPFSBIRIVLLLQFFAFRKYLKV 1HHKPVVPAIQGTNVGGSLEPPRLRLQQAMIVPLHFGL PCLKKQOCQQQQQCK 664 1403 1 373 RMSTEPVITCLKTLLITYSFVFWITGVILLAGAVWGKI 1SLIAENSTYAPYVLIVTGTTIVAYPLV-FFFSYSGF VRLIAGITALVYNYIPRSSRALVRLVVLLFFLLSHES 665 1404 3 413 NARHGRWBREDLCCKAKLABHAREDDDWAACMKTVTDC NEERRILSDAHTNAV-ARRSSWMA-RIEGKTEGADTC NEERRILSDAHTNAV-ARRSSWMA-RIEGKTEGADTC	CVLIF GNRVR TLGSY SYILA GAELS
TOAGWOMHDIGSLOPLEP/WIGAIL/HASARTAGTTG RIIFGFLVERGHWUGGOLIVLLI 662	CVLIF GNRVR TLGSY SYILA GAELS
TQAGYQAHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIIFGFLVREGSHVHQQDL/LLLL 662 1401 232 3 KICSSYFLRIIGILQKBAQEASNLYTSCDFFSPAFYFV NFKHIMPGAVARITYSPTLGGRGRWYT-GREFY NFKHIMPGAVARITYSPTLGGRGRWYT-GREFY 1HHKPVVPAIQGTNVGGSLEPRKLRQQAMIVPLHFGI PCLKKQQOQQQQQOCK 664 1403 1 373 RMHTFPVITCLKTLLITYSFVFWITGVILLAGAVWGKI ISLAENSTYAPVYLIVTGTTUYPLVFVFFFYSGGF VRLIAGISLAVWYYPRSSSFALVRLVVLLYFFLISRIPS 665 1404 3 413 NARHPGMDRHDLCQKAKLAEHAERDDDMAAGMKTVTDC NEERRILISDAHTNAV-ARRSSWMGA-RIEGKTEGADTC DCREIFFATHLRDICDDVLSLLEKLLIPNASHA*SLVYY DYYRWL	CVLIF GNRVR TLGSY SYILA GAELS COMAP LHMIG
TOAGWOMHDIGSLOPLEP/WIGAIL/HASARTAGTOG RIIFGFLVERGSHWIGGOLILLIL 662 1401 232 3 KICSSYPIRITGIIQKEAGEASNIYTSCDFFSFAFFF NPKIHWGAVARIYSBTIGGGRGWHT-GREFN NPKIHWGAVARIYSBTIGGGRGWHT-GREFN NPKIHWGAVARIYSBTIGGGRGWHT-GREFN NPKIHWGAVARIYSBTIGGGRGWHT-GREFN 1HHKUVUPAIGGINVGSLEPRIRILLIQPARTHKVINV 1HHKUVUPAIGGTHVUGSLEPRIRILQQAMIVPLHFGI PCLKKQCOCCOCCOCC RHETEPVITCHETILLITYSFFWITGYILLAGAWGKL ISLIAGIALVYMYJPRSSSRAIVRLUVLLKFLISHIPS VRLIAGIALVYMYJPRSSSRAIVRLUVLLKFLISHIPS NERRILLSDAHTNAV-ARRSSWMGA-RIEGKTEGADTU DCREFFATHLRIDIEDVILLEKLLITYBASHS-SLVYY DYYRYWL 666 1405 2 334 GGGPLGKMPRAQLADPWQMMAVESPSDCADNGQQIMDE	TYRLY CVLIF GNRVR TLGSY SYILA GABLS QQMAP LHMIG
TQAGYQAHDIGSLQPLPP/WTQATL/HASAFRIAGTTG RIIFGFLVREGSHVHQQDL/LLLL 662 1401 232 3 KICSSYFLRIIGILQKBAQEASNLYTSCDFFSPAFYFV NFKHIMPGAVARITYSPTLGGRGRWYT-GREFY NFKHIMPGAVARITYSPTLGGRGRWYT-GREFY 1HHKPVVPAIQGTNVGGSLEPRKLRQQAMIVPLHFGI PCLKKQQOQQQQQOCK 664 1403 1 373 RMHTFPVITCLKTLLITYSFVFWITGVILLAGAVWGKI ISLAENSTYAPVYLIVTGTTUYPLVFVFFFYSGGF VRLIAGISLAVWYYPRSSSFALVRLVVLLYFFLISRIPS 665 1404 3 413 NARHPGMDRHDLCQKAKLAEHAERDDDMAAGMKTVTDC NEERRILISDAHTNAV-ARRSSWMGA-RIEGKTEGADTC DCREIFFATHLRDICDDVLSLLEKLLIPNASHA*SLVYY DYYRWL	TYRLY CVLIF GNRVR TLGSY SYILA GABLS QQMAP LHMIG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C=Cysteine, D=Asparite Acid, E= Glutamine Acid, F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arginine, S=Serine, T=Threonine, V=Valine, W=Trytophan, Y=Tyrosine, X=Unknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
667	1406	2	332	DAAGIRHEAHFGKLECLVQLVRAGA\SLFVSTTRYAQTPA\HI AAFGGHPQCLVWLIQAGANINKPDCEGETPIHKAARSGSLECI SALVANGAHVDNPKKGIRVLEWLFE
668	1407	242	1157	LLKLMPTARLGDYDLARBISPELVSEPFFYPTOTESMELATFEK WKEYRGOTPAQASTMYLINKAKKLEMYGVOMHUVARDGONYS GLIPTGVILVEGDTKIGLIFWPKITRLDFKKNKLTLVVVEDDD QOKKOGENTFYFRLDIPKACKHLMKCAVEHHAFFRLGFVQKSS RRIJOKKACATKPELSVHNNYSTQSNGSQQAWMESALPVSP SSISSAPVPVEIENLPQSPGTDQHDRKWLSAASDCCQRGGNQWN TRAL
669	1408	278	1	ATAPGLFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
670	1409	139	646	AEGLGSWAVWAGLGWAGRHMEAGGATGALGVGSKLPSAFCFPO SSVAMDMPGVKEKIGEGTTGVVYKAKNRETOQLVALKKIRLDL *VLGRPLSYPWATTWALDDPFPLSWSPRLTPLGAAQQPLPV LSPVHCLUTSLCRGPDCGVWNMTCGGAQVSIAGALVILWG
671	1410	3	442	LCUSVLCSFSYLONGWTASDPVHGYWFR\AGDHVSRNIFVATN NPVRAVQEETRDRPHLLGDPQNKDCTLSIRDTRESDAGTYVFC VBRGNMKWNYKYDQLSVNVTASQDLLSRYRLEVPESVTVQEGL CVSVP/WQCPLPPLQLDCL
672	1411	84	836	OLOLCONCTREGECHOVPFDTYIFKKEKKELSVLPPTELMEA RFSPINGILPWCRQDLAISISKAINTQEAPVKEKHARRIILGT HHERGAFFTWSYAIGLPLPSSSILSWKFCHVLHKULROGHENV LHDCQRYRSNTRBIGDLWGHLHDRYGGLVNVYTKLLLTKISFH LKHPQFPAGLEVTDEVLEKAAGTDVNNM-VTLHGYMASSPRLP HSFLPRLITERPHGAVGLNBSVALLVDALAPRORG
673	1412	307	664	AAPHRMPRAPHFMPLLLLLLLSPHTQAAFPQDFLPLLISDL QGTSPLSWLPSLEDDAVAA*LGLDEQRFLTLINRTLLVAARDHV FSFDLQAEEGGGLVPHKYLTWRSQDVENCAVF*KLTLINRTLL VAARDHVFSFDLQAEEGGGLVPNKYLTWRSQDVENCAVR
674	1413	24	420	HLVPKTRGRGTPSGDQSPVLTLTP*GDPFTLGFQTNÖPKEHL TNFKSGKRSFHSLLQPLLLLHPSISPFLNFGSPFLVETEET CFIHKLKTPALVTPDSLPLVFNHCGDACLIIHPHFRDVEFHHT GN

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first arnino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A=Alanine, C=Cysteine, D=Aspartic Acid, E= Glutamic Acid, P=Phenylalanine, G=Glycine, H=Histidine, i=Isoleucine, K=Lysine, L=Leucine, M=Methionine, N=Asparagine, P=Proline, Q=Glutamine, R=Arghine, S=Serine, T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine, X=Uaknown, *=Stop Codon, /=possible nucleotide deletion, \=possible nucleotide insertion)
675	1414	1	1101	CCSTKNISGBKACNIMIFDTRYTARQPNCYLFFCCMEEACPLK PARGIMSKTITTDFBSITMLPSGBLEQBGDSLIEGGPSQATTP LAHHHTDYSKPTDISWRDTISGKFGSSDHLEKLFKWIDERSQL LAYKEKGBGSGSFSSDBLAHLLBENVSALPATVAXASPHTT SATPKPATLIA\PTNASVTPSGTSQPDLA\TTAPPVTTVTSQPP TILISTVSTRAATLQMATTATUTTTFQATPTEKSSLETTL TEISNLTLATVGNVYNPTALSMSNVESSTMNKTASWBGREASPG SSSQSVPERQYGLFFKWHLIGSLLFGVLFLVTGLVLLGRIL SESLERKKYSRIDVLINGTVVDI
676	1415	178	621	TFASSGVMRLKISILKEPKHQEIJVSCVGWTTABELYSCSDDHH IVKWNLLITSETTQIVKLPDDIYPIDFHWFPKSLGVKKQTHAES FVLTSSDGKPHLISKLGRVEKSVEAHCGAVLAGRWNYEGTALV TVGEDGQI*IWSKTGMLIS
677	1416	1258	944	ARATTKRHFILLFLFFLRRC\LFLSPRMECNGAILAHCNLHLP GSSSSSASAS*VAGITDVRHHAQLILFVFLVETGFHRVGQAGL KLLTSGDLLTSASQSAGIIMGISHCAQPKKAF*TKTF
678	1417	876	1291	EAGGNDDLAT*KTGGRARPSSRSRQFGGSRVINNHRQGVRSSPGE GAGSRSPCRRHRRKHRRNVQSP*RRSRSCSRRSGRCSVALL GACPVAGHSRGKVVCRRAHAITQRRCCGFDPMVHPKEHRG*R ERSRKWSRS
679	1418	262	539	ATAPGLIFNFF*FLFQCREEHKKKNPEVPVNFAEFSKKCSGRWK TMSSKEKFKFGEMAKADEVCYDREMKDYGPAKGGKKKDPNAPK RPPSGF
680	1419	104	236	LTVNYVLVFSRDSGLRAIENLMQKKGKFDYILLETTGLADPGK K
681	1420	3	277	HEAALCRTRAVAAERHFLRVFLFFRPFRGVGTESGSESGSSKA KEPRTPSSSYGTAQYRRWPIAQEYKHCTAHNDTGTLCSELREP WRRPQ
682	1421	3	576	BGSSQANTLRSREENRINLLACIESHVLR*OFTSSHLGSLMGD NPPOPKSNSKMARLIMMEGEBELBEWGKVRWEXDDDDDEDI VGEISSSKPAISNILMPWNPSSYSRGLKNGALSRGITAAFKPT SQHYTMPTSNWPASPINMFDESRSSDSSVIGQPFSKPVSVSK TIRPAGGSIGCCLSISTY
683	1422	6	627	CFSLEDTINFFLQGFSAGLFAFYHDKDGNFLTSEFADGLFPFN YSLGLYGNSEVURKVEBLENDHVENKTVSHFTYYLLTPRVYEE ARKHFDCPVLEGMELENGGGVGTELNIMKKELLENSAMTGSHT QNRVLSRTILALMEDTGRGAMLSPYCDTLSSHPLQLICCRQDQRA VAV\CNLQKFPKPLPQEYQYFDELSGIFABDLPYYG

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corresponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alamine, C = Cysteine, D = Aspartic Acid, E = Glutamic Acid, F=Phenylalanine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = S-erine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, *=Stop Codon, /=possible nucleotide deletion, \ = possible nucleotide insertion)
684	1423	1	1272	AARRRFÖLVSRRFTABLYPRRFRSSPSARPEDVPGOGPKAAKS A PSPVQGKKSPRILLIERVITDEDREKERESEEDGSALPGEVS LA ASRPSRGWRSSRTSVSRHRDTENTRSSRSKTGSLQLICKSEPN TDQLDYDVGGEHGSPGGISSEEBEBEEBEMLISBEBISFRDDF DEDTYKPHLERETTEPPRRSGGVKEBEKEKSEKIKVEVEVEVKEB ENDIREDEEPPRKRGRRKNDDKSPRLJKKRYPLGYVRCEMS GCGTVLABPFLJCHHIKYGHLIKKKYVCHPBGGBLFELGKD LRHAKHHTDGRDYICEYCABAPKSSHNLAVERNIHTGEKPLQC EIGGFTCRGKASLNWHMKKHDADSFYGPSCNICGKKFFKKDSV VAHKAKSHPEVLIABALANNGALITSTULIGTNEPS
685	1424	56	526	MTANRLAESLLALSQQEELADLPKDYLLSESEDEGDNDGERKH QKLLEAISSLDGKNRKKLAERSEASLKVSEFNVSSEGSGEKLV LADLLEPVKTSSSLATVKKQLSRVKSKKTVELPLNKEEIERIH REVAFNKTAQVLSKWDFVVLKNRQAEQL*
686	1425	132	344	RIDFWHSSAMMSBIREPWENTHREFYCLTAILFOICICSGFS VPSSYHFTEDOGAFPVANDREFPWORELBUSVVIPLHYDLFV HPNLTSLDFVASEKIEVLVSNATOLIILISKOLEITNATLOSE EDSRYMKPGKELKVLSYPAHEOIALLVPEKLTPHLKYVAMDP QAKLGDGFEGFYKSTYRIIGGSTRILAVTDFEFTOARMAFPCF DEFLFFAMFSIKIRESRHIALSMWRVKTIELEGGLLEDHFS TTVKMSTLVANYI/DLFFPUMGNDFLGRS
687	1426	3	678	RSKIPESDPRVRTPAPAREADQKSGCPSGSTAQSMSAMDILVP LLQLLVLLLTLPHHMALLGCWQPLCKSYFPYLMAVLTPKSNR KMBSKKRELFSQIKGLTGASGKVALLELGCGTGANPQFYPPGG RYTCLDPMPHFEKFLTKSMAENRHLQYERFVVAPGEDMRQLAD GSMDVVVCTLVLCSVQSPRKVLQEVRFVLRPGGVLFFWEHVAE FYGSWAFMW
688	1427	240	641	PLOMSSIMDPKLGRMAASLLAVILLLLLERGMFSSPSPPPALL EKVFQYIDLHQDEFVQTLKEWVAIESDSVQPVPRFRQELFRMM AVAADTLQRLGARVASVDMGPQQLPDGQSLPIPPVILAELGSD PTKG
689	1428	1	116	FFFFEMESCSVTQAGVPWHDLSSLQPPPPPRFKRFSCLS
690	1429	75	511	DPKAQLPEPLEVLWTAHLWAMAPGSTTSLLLAFALLCLPPLQE AGAVQTVPLSRLFDHAMLQAHRAHQLAIDTYQBFEETYIPKDQ KYSFLHDSQTSFCFSDSIPTPSNMEETQQKSNLELLRISLLLI ESWLEPVRIIMSIVPN

Com C	ono I	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	SEQ ID	beginning	end	Amino acid segment containing signal peptide (A=Alatime,
		nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acids	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
1		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
i		residue	residue	\=possible nucleotide hisertion)
		of amino _	of amino	
l		acid	acid	
		sequence	sequence	'
691	1430	2	1364	FVKLIKKHOAAMEKEAKVMSNEEKKFOOHIOAOOKKELNSFLE
002	1430	-	2001	SOKREYKLRKEOLKEELNENOSTPKKEKQEWLSKQKENIQHFQ
			1	AEEEANLLRRQRQYLELECRRFKRRMLLGRHNLEQDLVREELN
				KROTOKDLEHAMLLROHESMQELEFRHLNTIQKMRCELIRLOH
	1	1	[QTELTNOLEYNKRRERELRRKHVMEVRQQPKSLKSKELQIKKQ
1	1		1	FODTCKIOTROYKALRNHLLETTPKSEHKAVLKRLKEEQTRKL
1	1	1		
1	1	l	1	AILAEQYDHSINEMLSTQALRLDEAQEAECQVLKMQLQQELEL
	1			LNAYQSKIKMQAEAQHDRELRELEQRVSLRRALLEQKIEEEML
ł	ŧ		l	ALQNERTERIRSLLERQAREIEAFDSESMRLGFSNMVLSNLSP
	1	1	1	EAFSHSYPGASGWSHNPTGGPGPHWGHPMGGPPQAWGHPMQGG
				PQPWGHPS\GPMQ\GVPR/GSSMGVR
692	1431	50	504	LAHGSFGVSDFPAPAAAPAHTLTSFSGSLSPQFRKPLGRAPAM
1	1	ł	l .	PLVRYRKVVILGYRCVGKTSLAHQFVEGEFSEGYDPTVENTYS
	1	l	1	KIVTLGKDEFHLHLVDTAGQDEYSILPYSFIIGVHGYVLVYSV
	į.	1	1	TSLHSFQVIESLYQKLHEGHGK
693	1432	130	1671	SSPSRELCFYGFWIASSWWSRWVGSLGPGILPSPPARGRTFAS
	1	1	l .	VSRLPPPWSAGITLTPFLICQSGSVCPGLGAGFGVRSFHHPVA
1	1	1	1	RSAVLLLPLAPAAAQDSTQASTPGSPLSPTEYERFFALLTPTW
1	1	1	l	KAETTCRLRATHGCRNPTLVQLDQYENHGLVPDGAVCSNLPYA
1	1		Į.	SWFESFCQFTHYRCSNHVYYAKRVLCSQPVSILSPNTLKEIEA
1	1	1	ł	SAEVSPTTMTSPISPHFTVTERQTFQPWPERLSNNVEELLQSS
	1	1	1	LSLGGOEOAPEHKOEOGVEHROEPTOEHKOEEGOKOEEGEEG
		l .	l	EEEGKQEEGQGTKEGREAVSQLQTDSEPKFHSESLSSNPSSFA
		1	ì	PRVREVESTPMIMENIQELIRSAQEIDEMNEIYDENSYWRNQN
1		1	i	PGSLLQLPHTEALLVLCYSIVENTCIITPTAKAWKYMEEEILG
1	1	1	J.	FGKSVCDSLGRRHMSTCALCDFCSLKLEOCHSEASLQROOCDT
		1	1	SHKTPFVSPLLASQSLSIGNQVGSPESGRFYGLDLYGGLHM
694	1433	517	578	VSWVPSKDGDVEGARRPFTRLNTSLGPGLOEGRRRTWLVPIPG
1094	1433	1 527	1 3.3	AVLPGRTOEOPRASPLY*PGAPPCOPOGLVAGPWAO*AGLRSD
1			1	GFGPWPW\RLVGTAGPREKKVQKSKCWHFRCGRHPARRSGWAG
				RHASLLATGRPCSSAPSOOPLGTAGDSRQELLRPPLV*VNGAQ
				SSAAGDWGSSPRTAQALARPHRLGHHPAAVAPAARLRTQSGHS
		1	1	
	1	1000	1.00	PRGPLCRS PGSPRRMGTWRGPAGHSHD
695	1434	249	632	KTVAEEASVGNPEGAFMKMLQARKQHMSTELTIESEAPSDSSG
	1	1	1	INLSGFGSEQLDTNDESDVSSALSYILPYLSLRNLGAESILLP
		1	1	FTEQLFSNVQDGDRLLSILKNNRKSPSQSSLLGNKFKNKIF
696	1435	333	881	GECFIMAAVVQQNDLVFEFASNVMEDERQLGDPAIFPAVIVEH
1	1	1		VPGADILNSYAGLACVEEPNDMITESSLDVAEEEIIDDDDDDI
	1			TLTVEASCHDGDETIETIEAAEALLNMDSPGPMLDEKRINNNI
1	1	1	1	FSSPEDDMVVAPVTHVSVTLDGIPEVMETQQVQEKYADSPGAS
1	1	1	1	SPEOPKRKKK
1				

COEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
SEQ	ID ID	beginning	end	
ID NO:	NO:	nucleotide	nucleotide	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
		location	location	F=Phenylalanine, G=Glycine, H=Histidine, 1=Isoleucine,
of Nucleic	of	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Amino	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
Acius	Acids	to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
l	1	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
	1	acid	acid	\=possible nucleotide insertion)
1	1	residue	residue	1-positore nucleotide insertion)
ŀ	Į.	of amino	of amino	
1		acid	acid	
	1	sequence	sequence	
697	1436	3	466	HEASGVSRALLQSAPGTPATVGISVGELWPFARCCSHSYVRSL
		1		RGLSVSTHLLCFTIYIMNPSMKQKQEEIKENIKTSSVPRRTLK
1	1	ł	l	MIQPSASGSLVGRENELSAGLSKRKHRNDHLTSTTSSPGVIVP
		Į.	1	ESSENKNLGGVTQESFDLMIKGMKK
698	1437	50	241	PLPARGKSTLPATFCSPSAPELASMSVVPPNRSOTGWPRGVTQ
1				FGNKYIQQTKPLTLERTINL
699	1438	1	422	AEGEDVPPLPTSSGDGWEKDLEEALEAGGCDLETLRNIIOGRP
1 333	1	1		LPADLRAKVWKIALNVAGKGDSLASWDGILDLPEQNTIHKDCL
1	j	l .	į.	OFIDOLSVPEEKAAELLLDIESVITFYCKSRNIKYSTSLSWIH
		l	i	LLKPLVHLQLP
700	1439	161	413	ALPKFLTHGVKSNERVVVWLFPPSFRAATMVHMNVLPDALKSI
1,00	1 1 1 1 1	101	***	NNAERRGKPOVLIRLCSKIIIWFLTVMVKYGYIGKFEPTRP
701	1440	211	977	AMAOYGHPSPLGMAAREELYSKVTPRRNROORPGTIKHGSALD
701	1440		1	VLLSMGFPRARAOKALASTGGRSVQAACDWLFSHVGDPFLDDP
1		į.	1	LPREYVLYLRPTGPLAOKLSDFWOOSKOICGKNKAHNIFPHIT
	1	1	1	LCOFFMCEDSKVDALGEALOTTVSRWKCKFSAPLPLELYTSSN
	1	1	1	FIGLFVKEDSAEVLKKFAADFAAEAASKTEVHVEPHKKOLHVT
	1		1	LAYHFOASHLPTLEKLAONIDVKLGCDWVATIFSRDIRFA
702	1441	3	408	OTRPASPRTARESVLGVSONMSFNLOSSKKLFIFLGKSLFSLL
702	1447	1 3	400	BAMIFALLPKPRKNVAGEIVLITGAGSGLGRLLALOFARLGSV
			1	LVLWDINKEGNEETCKMAREAGATRVHAYTCDCSOKEGVYRVA
1		1	1	DOVKK
703	1442	708	244	MVARKGOKSPRFRRVTCFLRLGRSTLLELEPAGRPCSGRTRHR
/03	1442	1,00	233	ALHRRLVACVTVSSRRHRKEAGRGRAESFIAVGMAAPSMKERQ
1			1	VCWGARDEYWKCLDENLEDASOCKKLRSSFESSCPOOWIKYFD
	1	1	1	KRRDYLKFKEKFEAGOFEPSETTAKS
704	1443	3	475	PAPAARSRELLKELRNGODMDTVVFEDVVVDFTLEEWALLNPA
704	1443	1 3	2/5	QRKLYRDVMLETFKHLASVDNEAQLKASGSISQQDTSGEKLSL
	1			KOKIEKFTRKNIWASLIGKNWEEHSVKDKHNTKERHLSRNPRV
1	1		1	ERPCKSSKGNKRGRTFRKTRNCNRHLRR
705	1244	276	437	CVCGFFVCFETKSCFVAOAGVOWHNLSSLOALPPGFKQFSCLS
705	1444	276	437	
705	1	2	322	LLSSWHYRRV
706	1445	14	322	GTRLRRRREAVWFEVVNMDFSRLHMYSPPQCVPENTGYTYALS
		1	1	SSYSSDALDFETEHKLDPVFDSPRMSRRSLRLATTACTLGDGE
	1		 	AVGADSGTSSAVSLKNRAAR
707	1446	123	410	DTMQAVVPLNKMTAISPEPQTLASTEQNEVPRVVTSGEQEAIL
	1		1	RGNAADAESFRORFRWFCYSEVAGPRKALSQLWELCNQWLRPD
				IHTKE\QILE
708	1447	2	384	PICLFSRPTLRPSRSKVSLIEGRGANMAARWRFWCVSVTMVVA
1		1	1	LLIVCDVPSASAQRKKEMVLSEKVSQLMEWTNKRPVIRMNGDK
	l	L		FRRLVKAPPRNYSVIVMFTALQLHRQCVVCKYELQLRFKIK

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID.	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
of.	of	location	location	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Nucleic	Amino	corre-	corre-	
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
Į i		acid	acid	\=possible nucleotide insertion)
	1	residue	residue	
		of amino	of amino	
1		acid	acid	•
	2 4 4 8	sequence	sequence 535	OMRVKDPTKALPEKAKRSKRPTVPHDEDSSDDIAVGLTCOHVS
709	1448	104	535	HAISVNHVKRAIAENLWSVCSECLKERRFYDGQLVLTSDIWLC
]	1	1	LKCGFOGCGKNSESOHSLKHFKSSRTEPHCIIINLSTWIIWWY
1	1	ł	l	EWDEKIFTPLNKKG
710	1449	116	479	AKERGEEROGEGGGWLSGSRWPLVRSAFVPAPSSLILSMCLSP GIPEAAPDSPLTASAPTP*VMLLGDTGVGKTCFLIOFKDGAFL
1			i	GIPEAAPDSPLTASAPTP*VMLIGDTGVGKTCFLTQFKDGAFL SGTFIATVGIDFRVRWLQALASSREPGLWLRHGGV
			020	FYPRSSADLPFOTTRCEFOTSVMELAHSLLLNEEALAOITEAK
711	1450	2	232	RPVFIFEWLRFLDKVLVAANKVWYCSFFPVALT
	1 4 5 7	105	393	MNMKOKSVYOOTKALLCKNFLKKWRMKRESLLEWGLSILLGLC
712	1451	102	393	IALFSSSMRNVOFPGMAPONLGRVDKFNSSSLMVVYTPISNLT
1				
	L		1	QQIMNKTAL SPOGNGCPDVTGDSVIRVPLTLLVHNLAGLTGLLHHCLSGPLP
713	1452	2	525	
	1		Į.	APSPPPAMSSSRKDHLGASSSEPLPVIIVGNGPSGICLSYLLS
1	1	l	ì	GYTPYTKPDAIHPHPLLQRKLTEAPGVSILDQDLDYLSEGLEG
1			ł	RSQSPVALLFDALLRPDTDFGGNMKSVLTWKHRKEHAIPHVVL
<u> </u>				GR
714	1453	2	1557	NRRTRAQRCQRGRSCGAREEEVEPGTARPPPAASAMDASLEKI
1		l		ADPTLAEMGKNLKEAVKMLEDSQRRTEEENGKKLISGDIPGPL
1				QGSGQDMVSILQLVQNLMHGDEDEEPQSPRIQNIGEQGHMALL
1		1		GHSLGAYISTLDKEKLRKLTTRILSDTTLWLCRIFRYENGCAY
		i	l	FHEEEREGLAKICRLAIHSRYEDFVVDGFNVLYNKKPVIYLSA
1	I	1	1	AARPGLGQYLCNQLGLPFPCLCRVPCNTVFGSQHQMDVAFLEK
1	İ		i	LIKDDIERGRLPLLLVANAGTAAVGHTDKIGRLKELCEQYGIW
1	1	1	l l	LHVEGVNLATLALGYVSSSVLAAAKCDSMTMTPGPWLGLPAVP
		i	1	AVTLYKHDDPALTLVAGLTSNKPTDKLRALPLWLSLQYLGLDG
1	l	1		FVERIKHACQLSQRLQESLKKVNYIKILVEDELSSPVVVFRFF
1	1	i		QELPGSDPVFKAVPVPNMTPSGVGRERHSCDALNRWLGEQLKQ
1	1	1	1	LVPASGLTVMDLEAEGTCLRFSPLMTAAGKPGLVDIPCFCSGA
		1	000	AG
715	1454	319	873	LCIMDTKEEKKERKQSYFARLKKKKQAKQNAETASAVATRTHT
1	1		1	GKEDNNTVVLEPDKCNIAVEEEYMTDEKKKRKSNQLKEIRRTE
1		1		LKRYYSIDDNQNKTHDKKEKKMVVQKPHGTMEYTAGNQDTLNS
		1	1	IALKFNITPNKLVELNKLFTHTIVPGQVLFVPDANSPSSTLRL
	 	-	1	SSSSPGATVSPSS
716	1455	60	681	SAGGDSCRAVPMLRFPTCFPSFRVVGEKQLPQEIIFLVWSPKR DLIALANTAGEVLLHRLASFHRVWSFPPNENTGKEVTCLAWRP
	1	1]	
1			1	DGKLLAFALADTKKIVLCDVEKPESLHSFSVEAPVSCMHWMEV
	1	,		
1		1		TVESSVLTSFYNAEDESNLLLPKLPTLPKNYSNTSKIFSEENS
			650	DEIIKLIGDVRLNILVLGGSSGFIELYAYGMFKI
717	1456	357	658	DEIIKLLGDVRLNILVLGGSSGFIELYAYGMFKI PRDPVTDRARAMPRRGLVAGPDLEYFQRHYFTPAEVAQHNRPE
717	1456	357	658	DEIIKLIGDVRLNILVLGGSSGFIELYAYGMFKI

SEO	SEO	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of.	location	location	F=Phenylalanine, G=Glycine, H=Histidine, l=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Scrine,
		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
	}	amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1		acid	acid	\=possible nucleotide insertion)
ł		residue	residue	
1	ĺ	of amino	of amino	•
[1	acid	acid	
718	1457	sequence 2	sequence 481	RIPGREFRAAFVLGSANVASSVELECSFPLSLGGPSGPAAASV
1,19	1457	4	401	ALGPAGPGRSLGRTPDTGDWEMDSVSFEDVAVAFTOEEWALLD
1	ĺ		1	PSOKNLYRDVMOEIFRNLASVGNKSEDONTODDFKNPGRNLSS
		i	}	HVVERLFEIKEGSQYGETFSQDSNLNLNKI
719	1458	6	469	SLSLSVSPFLRLSLGRVGGMAEEMESSLEASFSSSGAVSGASG
1,13	1458	,	403	FLPPARSRIFKIIVIGDSNVGKTCLTYRFCAGRFPDRTEATIG
	1	١.		VDFRERAVEIDGERIKIOLWDTAGOERFRKSMVOHYYRNVHAV
1				VFVYDMTNMASFHSLPSWIEECKQH
720	1459	82	490	RRPSPGSIVIMAAESDVLHFOFEOOGDVVLOKMNLLROONLFC
/20	1433	02	490	DVSIYINDTEFOGHKVILAACSTFMRDOFLLTQSKHVRITILO
1	ł	1	1	SAEVGRKLLLSCYTGALEVKRKELLKYLTAASYLOMVHIAEKR
				TEAFVKF
721	1460	48	708	AEGLOSAAGIRIDTKAGPPEMLKPLWKAAVAPTWPCSMPPRRP
/21	1460	40	/00	WDROAGTLOVLGALAVLWLGSVALICLLWOVPRPPTWGOVOPK
	1	İ	1	DVPRSWEHGSSPAWEPLEAEARQQRDSCQLVLVESIPQDLPSA
		1	i	AGSPSAQPLGQAWLQLLDTAQESVHVASYYWSLTGPDIGVNDS
	1	1	1	SSOLGEALLOKLOOLLGRNISLAVATSSPTLARTSTDLOVLAA
	1		İ	RGAH
722	1461	436	677	RKKKMPLPFGLKLKRTRRYTVSSKSCLVARIOLLNNEFVEFTL
1		10.	1	SVESTGOESLEAVAORLELREVTYFSLWYYNKONORR
723	1462	45	569	LOPLSSWESASEVTRSPVSPEDVKQATSNFENLOKOLARKMKL
1	1	1		PIFIADAFTARAFRGNPAAVCLLENELDEDMHQKIAREMNLSE
	1	l .	i .	TAFIRKLHPTDNFAOSSCFGLRWFTPASEVPLCGHATLASAAV
				LFHKIKNMNSTLTFVTLSGELRARRAEDGIVLDLPLYPAHPOD
	1	ł	ł	FHE*
724	1463	79	530	AADTMOSDDVIWDTLGNKOFCSFKIRTKTOSFCRNEYSLTGLC
	1	1	ł	NRSSCPLANSQYATIKEEKGQCYLYMKVIERAAFPRRLWERVR
1	1			LSKNYEKALEOIDENLIYWPRFIRHKCKORFTKITOYLIRIRK
	1	1	1	LTLKRORKLVPLSKKVERREK
725	1464	2	261	FVERGLGDPALPTLMFEEPEWAEAAPVAAGLGPVISRPPPAAS
1				SQNKVSDSREQWELFQAAKRTLVDPSAVCIAGRDTCGTVKGES
726	1465	1	860	VVEFLWSRRPSGSSDPRPRRPASKCQMMEERANLMHMMKLSIK
1	1		1	VLLQSALSLGRSLDADHAPLQQFFVVMEHCLKHGLKVKKSFIG
1	1	1	1	QNKSFFGPLELVEKLCPEASDIATSVRNLPELKTAVGRGRAWL
1	1			YLALMOKKLADYLKVLIDNKHLLSEFYEPEALMMEEEGMVIVG
1	1	J	į .	LLVGLNVLDANL\CLKGEDLDSQVGVIDFSLYLKDVQDLDGGK
		1		EHERITOVLDOKNYVEELNRHLSCTVGDLOTKIDGLEKTNSKL
1	1	1	1	QERVSAATDRICSLQEEQQQLREQNELIR
727	1466	69	452	GCYAPSPHLGGSLTPRFFPNGVFHRRLPRPRPPOPPSVSSAPT
1	1	1	1	LRPLCAHFSLGKLRLRVRKSAEVAPPRTEKGWGSAEPRHSRAP
	ļ		1	LGLOGLRMAASAOVSVTFEDVAVTFTOEEWGOLDAAQRTLY
	٠			

SEO	SEQ	Predicted	Predicted	Amino acid segment containing signal peptide (A=Alanine,
ID I	ID ID	beginning	end	C=Cysteine, D=Aspartic Acid, E= Glutamic Acid,
NO:	NO:	nucleotide	nucleotide	
of	of	location	location	F=Phenylalanine, G=Glycine, H=Histidine, I=Isoleucine,
Nucleic	Amino	corre-	corre-	K=Lysine, L=Leucine, M=Methionine, N=Asparagine,
Acids	Acids	sponding	sponding	P=Proline, Q=Glutamine, R=Arginine, S=Serine,
1		to first	to first	T=Threonine, V=Valine, W=Tryptophan, Y=Tyrosine,
		amino	amino	X=Unknown, *=Stop Codon, /=possible nucleotide deletion,
1 1		acid	acid	\≈possible nucleotide insertion)
1 1		residue	residue	
1 1		of amino	of amino	
1		acid	acid	
		sequence	sequence	
728	1467	1	439	FRGSLSSPSSLRGRRLVTGQTSPRGTWCLYPGFCRSVACAMPC
1 1			1	CSHRSCREDPGTSESREMDPVVFEDVAVNFTQEEWTLLDISQK
1 1		1		NLFREVMLETFRNLTSIGKKWSDQNIEYEYQNPRRSFRSLIEE
			l	KVNEIKEDSHCGETFTQ
729	1468	103	236	LNFANSAAFAVTMPQNEYIELHRKRYGFRLDYHEKKRKKQSRE
				A
730	1469	213	809	SGDLSPAELMMLTIGDVIKQLIEAHEQGKDIDLNKVKTKTAAK
1 1			1	YGLSAQPRLVDIIAAVPPQYRKVLMPKLKAKPIRTASGIAVVA
		l	1	VMCKPHRCPHISFTGNICVYCPGGPDSDFEYSTQSYTGYEPTS
1		1	l .	MRAIRARYDPFLQTRHRIEQLKQLGHSVDKVEFIEMGGTFMAL
1 1		l	ľ	PEEYRDYFIRNLHDALSGHTSNNIYE
731	1470	264	799	WESDVGEGLRPPPPPPPPPPRRRTQEPRARDAATVIFACPAALL
1 1		l	ł	ETLIAYGSSSPSFCKHRAARPLIFLLHRLTAEATARCPICALE
		1	l .	ARNPGRWGICASWPGMKTPFGKAAAGQRSRTGAGHGSVSVTMI
1 1	Į.	l	ł	KRKAAHKKHRSRPTSQPRGNIVGCIIQHGWKDGDEPLTQWKGT
		1	1	VLDQLL
732	1471	2	763	RDLGVALEAFQWARAGDCGSGAGRAGGEGVDAGRRVPERQHRG
		1	1	RGGGGEPGRRQRGGRRQ\RSSSRRSGGDGGDEVEGSGVGAGEG
1 1	ľ	i	i .	ETVQHFPLARPKSLMQKLQCSFQTSWLKDFPWLRYSKDTGLMS
	Į.		1	CGWCQKTPADGGSVDLPPVGHDELSRGTRNYKKTLLLRHHVST
1 1	ĺ	1	1	EHKLHEANAQESEIPSEEGYCDFNSRPNENSYCYQLLRQLNEQ
			1	RKKGILCDVSIVVSGKIFKAHKNILVAGSRFFKTLYCFS
733	1472	82	523	SLRAAAAMADVTARSLQYEYKANSNLVLQADRSLIDRTRRDEP
		1	1	TGEVLSLVGKLEGTRMGDKAQRTKPQMQEERRAKRRKRDEDRH
	l	1	1	DINKMKGYTLLSEGIDEMVGIIYKPKTKETRETYEVLLSFIQA
				ALGDQPRDILCGAADEVL
734	1473	536	110	CNSAESRMDVLFVAIFAVPLILGQEYEDEERLGEDEYYQVVYY
1	1	1	1	YTVTPSYDDFSADFTIDYSIFESEDRLNRLDKDITEAIETTIS
1	1	I	1	LETARADHPKPVTVKPVTTEPQSP\DL\NDAVSS\LRSPIPL\
		1	1	LLS\CAFVOVGMYFM
735	1474	2	557	FVRGPGEEQAPAFRKPAPGAMGAQVRLPPGEPCREGYVLSLVC
1		-	1	PNSSQAWCEITNVSQLLASPVLYTDLNYSINNLSISANVENKY
1	i	1	1	SLYVGLVLAVSSSIFIGSSFILKKKGLLOLASKGFTRAGOGGH
1	}	l	1	SYLKEWLWWVGLLSILSWNAREKVDL*NITF*PQTSCIFFTIT
	1	1		IEKSTFLSYFPTS
736	1475	127	401	ARGSCPTRPRPANGRMAETKDAAOMLVTFKDVAVTFTREEWRO
1,30	12,5	1	1 ***	LDLAORTLYREVMLETCGLLVSLGHRVPKPELVHLLKHGOELW
1	1			IVKRG
737	1476	311	790	YTMLRGTMTAWRGMRPEVTLACLLLATAGCFADLNEVPQVTVQ
1'3'	14/6	322	1,30	PASTVQKPGGTVILGCVVEPPRMNVTWRLNGKELNGSDDALGV
		1		
	1	1		LITHGTLVITALNNHTVGRYQCVARMPAGAVASVPATVTLASE SAPLPPCHGAVPPHLSHPEAPTIHAASCYS

SEQ ID NO: of Nucleic Acids	SEQ ID NO: of Amino Acids	Predicted beginning nucleotide location corre- sponding to first amino acid residue of amino acid sequence	Predicted end nucleotide location corresponding to first amino acid residue of amino acid sequence	Amino acid segment containing signal peptide (A = Alanine, C = Cysteine, D = Asparite Acid, B = Glutamic Acid, F = Phenylalamine, G = Glycine, H = Histidine, I = Isoleucine, K = Lysine, L = Leucine, M = Methionine, N = Asparagine, P = Proline, Q = Glutamine, R = Arginine, S = Serine, T = Threonine, V = Valine, W = Tryptophan, Y = Tyrosine, X = Unknown, * = Stop Codon, / = possible nucleotide deletion, \ = possible nucleotide insertion)
738	1477	2	421	WGRRRQLVSEAARAQGDPVCSTMSEEBAAQIPRSSVWEQDQQN VVQRVVALPLVRATCTAVCDVYSAAKDRHELLGSACRLAENCV CGLTTRALDHAQPLLEHLQPQLATMNSLACRGLDKLEEKLPFL QQPSETVVTS
739	1478	256	1250	AKAFTWARSPOCCS WWARCHACLYSCHWRKCPERMOTSKOCD LWGGLEITFLISLEMY, IGUILINDHAMPREIJFRRWGHMD WSLAFLLVISLLGTYASLLLVLALLLRLCRQPLHLHSLHKVLL LLTMLLVAAGLVGLIOTWOGERBLRVSL/ODCR-L*TPAVRP *EBSGEGWRRWARLTSSCPQATAPFHIGAAGIALLAWPAT TFYRHRREPKILLLLFFGVVLIVTLAPLCISSPCIMEPRDL PPKPGLUGHRGAPMLAPENTLMSLKKTAECGATVFETDVMVSS DGVPFLMRDBHLSRTTNVASVFPTKITAHS

WHAT IS CLAIMED IS:

 An isolated polymucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO:1-739, an active domain of SEQ ID NO: 1-739, and complementary sequences thereof.

- An isolated polynucleotide encoding a polyneptide with biological activity, wherein said polynucleotide hybridizes to the polynucleotide of claim 1 under stringent hybridization conditions.
- An isolated polynucleotide encoding a polypeptide with biological activity, wherein said polynucleotide has greater than about 90% sequence identity with the polynucleotide of claim 1.
- 4. The polynucleotide of claim 1 wherein said polynucleotide is DNA.
- An isolated polynucleotide of claim 1 wherein said polynucleotide comprises the complementary sequences.
- A vector comprising the polynucleotide of claim 1.
- An expression vector comprising the polynucleotide of claim 1.
- 8. A host cell genetically engineered to comprise the polynucleotide of claim 1.
- A host cell genetically engineered to comprise the polynucleotide of claim 1
 operatively associated with a regulatory sequence that modulates expression of the
 polynucleotide in the host cell.
- 10. An isolated polypeptide, wherein the polypeptide is selected from the group consisting of:

(a) a polypeptide encoded by any one of the polynucleotides of claim 1; and

- a polypeptide encoded by a polynucleotide hybridizing under stringent conditions with any one of SEO ID NO:1-739.
- 11. A composition comprising the polypeptide of claim 10 and a carrier.
- An antibody directed against the polypeptide of claim 10.
- 13. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample with a compound that binds to and forms a complex with the polynucleotide of claim 1 for a period sufficient to form the complex;
- b) detecting the complex, so that if a complex is detected, the polynucleotide of claim 1 is detected.
- 14. A method for detecting the polynucleotide of claim 1 in a sample, comprising:
- a) contacting the sample under stringent hybridization conditions with nucleic acid primers that anneal to the polynucleotide of claim 1 under such conditions:
- amplifying a product comprising at least a portion of the polynucleotide of claim 1; and
- c) detecting said product and thereby the polynucleotide of claim 1 in the sample.
- 15. The method of claim 14, wherein the polynucleotide is an RNA molecule and the method further comprises reverse transcribing an annealed RNA molecule into a cDNA polynucleotide.
- 16. A method for detecting the polypeptide of claim 10 in a sample, comprising:

 a) contacting the sample with a compound that binds to and forms a complex with the polypeptide under conditions and for a period sufficient to form the complex; and

- b) detecting formation of the complex, so that if a complex formation is detected, the polypeptide of claim 10 is detected.
- 17. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10 under conditions sufficient to form a polypeptide/compound complex; and
- b) detecting the complex, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 18. A method for identifying a compound that binds to the polypeptide of claim 10, comprising:
- a) contacting the compound with the polypeptide of claim 10, in a cell, under conditions sufficient to form a polypeptide/compound complex, wherein the complex drives expression of a reporter gene sequence in the cell; and
- b) detecting the complex by detecting reporter gene sequence expression, so that if the polypeptide/compound complex is detected, a compound that binds to the polypeptide of claim 10 is identified.
- 19. A method of producing the polypeptide of claim 10, comprising,
- a) culturing a host cell comprising a polynucleotide sequence selected from the group consisting of a polynucleotide sequence of SEQ ID NO: 1-739, a mature protein coding portion of SEQ ID NO: 1-739, an active domain of SEQ ID NO: 1-739, complementary sequences thereof and a polynucleotide sequence hybridizing under stringent conditions to SEQ ID NO: 1-739, under conditions sufficient to express the polyneptide in said cell; and
 - b) isolating the polypeptide from the cell culture or cells of step (a).

20. An isolated polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 740-1478, the mature protein portion thereof, or the active domain thereof.

- The polypeptide of claim 20 wherein the polypeptide is provided on a polypeptide array.
- A collection of polynucleotides, wherein the collection comprises the sequence information of at least one of SEO ID NO: 1-739.
- The collection of claim 22, wherein the collection is provided on a nucleic acid array.
- 24. The collection of claim 23, wherein the array detects full-matches to any one of the polynucleotides in the collection.
- 25. The collection of claim 23, wherein the array detects mismatches to any one of the polynucleotides in the collection.
- The collection of claim 22, wherein the collection is provided in a computerreadable format.
- 27. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.
- 28. A method of treatment comprising administering to a mammalian subject in need thereof a therapeutic amount of a composition comprising an antibody that specifically binds to a polypeptide of claim 10 or 20 and a pharmaceutically acceptable carrier.

SEQUENCE LISTING

	Hyseq Inc Novel Nucleic Acids an	nd Polypept	ides		
<130>	784PCT				
<140>	To be assigned				
	US09/488,725 2000-01-21				
	US09/552,317 2000-04-25				
<160>	739				
<170>	Pt_CT_1				
<210> <211> <2125 <213>	556				
<400>	1				
tttegtggge eggetgeagg etteeegeea egagateea etgegeeace ggggaeeaae gtgetggtte gtttttette	oggttgotaa gacttggoga cttcagoctg ogctggttgg ctgoccaagt tcatcoctgt gtggagcacc aggtcctggt ctcggcgtca acctcattgg tcoggcotgc ccttcgtgt oggcotgtct acaaggcctt acctttcgga gccoagtttg cggtgoggc tggctgtggg	tgaaacagag gaagcoctgo gaagaggato ctgcotggoo gotgotootg cogagoogao tootgacogt	atgtcagaaa ttctaccaga taccggctgt tggtggatcg ttcacgcctt agctccttta catccaggcq	aggagaacaa actteteega ggatgtttta geggaggete geggetaegt attteatgge attggettet	60 120 180 240 300 360 420 480 540
<210>	2				

<211> 837 <212> DNA <213> Homo sapiens

<400> 2 gagatgagtc ccagggagta cggagtcagc tctgagccga ggtcaccgca gaagggagct 60 cggtcttcgg ccaggaccgg agcagttgga acaaagggaa tgtggaaatg aaagagagag 120 ggagagagag getggeagat gtaatgagae geggtgaagg tgtaegeaga etggeaetee 180 cactectece thetgetete actgeagece tgggtaacte geaggetaac acaaacaget 240 tttetecege ageetgeeet etgteaetgt eaettteatg aatteaaagg eaatttacea 300 gtgatttctg ggtgctgggg ctgatatttt ttgtgcatat ttaagaatgt cttccaagca 360 agccacctct ccatttgcct gtgcagctga tggagaggat gcaatgaccc aggatttaac 420 etcaagggaa aaggaagagg geagtgatea acatgtggee teccatetge etetgeacce 480 cataatgcac aacaaacctc actctgagga gctaccaaca cttgtcagta ccattcaaca 540

1

agatgctgac	tgggacagcg	ttctgtcatc	tcagcaaaga	atggaatcag	agaataataa	600
gttatgttcc	ctatattcct	tccgaaatac	ctctacctca	ccacataagc	ctgacgaagg	660
gagtcgggac	cgtgagataa	tgaccagtgt	tacttttgga	accccagage	gccgcaaagg	720
gagtcttgcc	gatgtggtgg	acacactgaa	acagaagaag	cttgaggaaa	tgactcggac	780
tgaacaagag	gattcctcct	gcatggaaaa	actactttca	aaagattgga	aggaaac	837

<210> 3 <211> 1562 <212> DNA <213> Homo sapiens

cggaaccgta ggaggggtac ttaaccggac ggcctaccag gcctgtggcc gtgcgcggga 60 agagcactge agateteagg atgatgggge geagecetgg gtttgccatg cagcacateg 120 tgggtgtgcc ccacgtactg gttcggaggg gcctccttgg aagggacctc ttcatgacca 180 ggactetetg cageccagge ccaagecage ccggagagaa aagacetgag gaggtggeee 240 tggggctgca ccaccgcctc ccagcactgg gaagagccct ggggcacagc attcagcaac 300 gagogacete cacagecaag acttggtggg acagatatga agagtttgtt ggactcaacg 360 aggttcgaga ggcccaggga aaggtgacag aggctgagaa agtgttcatg gtggctcgag 420 ggettgteeg agaggetegg gaggaettgg aagtteacea ggecaagetg aaggaggtga 480 gggaccgctt ggaccgtgtc tocagggagg acagtcagta cttggaactg gctactctcg 540 agcacaggat getgeaggag gagaagagge ttegeacage etatetgegt geagaagaet 600 ctgagcgaga gaagttetee etettetetg cagetgtgeg ggaaagteat gagaaggage 660 gcacaagggc tgagaggacc aagaactggt ccctcattgg ctcagtcctg ggggccctga 720 ttggtgtggc tggctccacc tatgtgaacc gtgtgcgact acaggagctg aaggctttac 780 tcctggaggc gcagaagggg cctgtgagtc tccaagaggc cattcgagaa caqqcqtcta 840 gctactcccg ccagcagagg gacctccaca atctcatggt ggacttgagg ggcctggtac 900 atgctgctgg gccagggcag gactctgggt cacaggcagg tagtcccccq accagagaca 960 gagatgtaga tgtcctttca gctgccttga aagagcaget tagtcattcc aggcaagtcc atteatgtet agaaggetta egagageage ttgatggeet agaaaagaet tgtageeaaa tggctggggt ggttcagctt gtaaagtctg cagcacaccc aggcctggtg gaaccagcag acggggctat gcccagcttc ttgctggagc aggggagcat gatcttggca ctgtcagaca 1200 cggagcagag actagaagcc caagtcaaca ggaacaccat ctatagcacc ctggtcacct 1260 gtgtgacatt tqtgqccaca ctqcctqtqc tctacatqct attcaaaqcc agctaacccc 1320 tggcccctcc tccagagggt ctgaggcaat agctgtgaat gtggatttaa gtagagaatc 1380 gtagcaatga agcgagcctt tgggggcatg tacaacctca atctgaagga gcagtatctg 1440 tgtggctcac cagcaggcat gcttcgcttt gtagacaagg ttcatttaca ttaattatca 1500 aaactttgtg ctaatgtcca attaaaatat cctgagtttt attatttaaa acaaaaaaaa 1560

<210> 4 <211> 745 <212> DNA <213> Homo sapiens

<400> 4

1562

cctctgaccc	cgcagccagg	ccccaggctg	gccgggagtg	gcccctcaca	ctggttctcc	180
ccactttctc	tgcctgtggc	atcgaaggcc	ccgggcacca	tggcccaggc	cctgggggag	240
gacctggtgc	agcetecega	gctgcaggat	gactccagct	cettggggte	cgactcagag	300
ctcagcgggc	ctggcccata	tegecaggee	gaccgctatg	gattcattgg	gggcagetea	360
gcagagccag	ggccgggcca	cccacctgca	gacctcatcc	gccaacggga	gatgaagtgg	420
gtggagatga	cctcgcactg	ggagaaaacc	atgtcccggc	ggtacaagaa	ggtaaagatg	480
cagtgccgga	aaggcatccc	gtctgccctg	cgcgcccgat	getggeeeet	gttgtgtggg	540
geceatgtgt	gccagaagaa	cagccctggc	acctatcagg.	.agctggcaga	ggcccctgga	600
gacccacagt	ggatggagac	cattggcagg	gacctgcacc	gtcaattccc	tetgeacgag	660
atgtttgtgt	cgcctcaagg	ccacgggcag	caggggctcc	tgcaggtgct	caaggcctac	720
accctgtatc	gaccggagca	aggct				745

<210> 5 <211> 536 <212> DNA <213> Homo sapiens

<400> 5 acggaagete ggttgatgtt tetgeagaag tttteceeet tggteggtgg eggagetget 60 gagcgcgata gtagcagctc cggcggcagc aacattgact acgaggaatg gcggcggctg 120 cogcaggace tgcagcatec cagaggtttt tecagagett ctcagatget ctaategace 180 aggaccccca ggcggcgtta gaggtgggag agccttttct gcttcctcca ctcccggctg 240 accegectee ttecageace geetgattag gacteagget etagtgatge tgegteteag 300 occcagtatt gagattoteg gteteettte teteteteac ggtageegeg ttaceteaga 360 ctcctgtctt gccctttcca cttccagact cttgcattcc tgaagettet gagaaaaact 420 teetetattt attgggagea tggttggeat etgeagttgg getgaaagga ttttttttt 480 ttaatgacta aaaaagaaaa ggggactctg ggctcgatga aaattaattt tttctt 536

<210> 6 <211> 780 <212> DNA <213> Homo sapiens

<400> 6 attttatega etatteegte agaegeeete ttgeetttag tgaactgegg ggaectggee 60 tttgccggta ggggccagcg cagaaaagcc tgggagatgc gcgtccaggg ccgcgagtgc 120 ggggaagetg egggacegea gagteegete ggeageeggt agteagggeg eeggggegtt 180 aggetteaga tttaetteaa tgtteetaat gggettgett cagaagtget caetgttete 240 gccacctgag gaaccgcatt ttcatgtatt tgtattggga caagacgcgg agtccggtgt 300 gtaaagggcc tgctttgagg gaagaaaggc cgcagcccag gctcaaactg gaggattata 360 aggategeet gaaaagtgga gageatetta ateeagacea gttggaaget gtagagaaat 420 atgaagaagt gctacataat ttggaatttg ccaaggagct tcaaaaaaacc ttttctgggt 480 tgagcctaga tetaetaaaa gegcaaaaga aggcccagag aagggagcac atgetaaaac 540 ttgaggetga gaagaaaaag ettegaaeta taetteaagt teagtatgta ttgeagaaet 600 tgacacagga gcacgtacaa aaagacttca aagggggttt gaatggtgca gtgtatttgc 660 cttcaaaaga acttgactac ctcattaagt tttcaaaact gacctgccct gaaagaaatg 720 aaagtetgag acaaacaett gaaggateta etgtetaaat tgetgaacte aggetatttt 780

```
<210> 7
    <211> 654
    <212> DNA
     <213> Homo sapiens
    <220>
    <221> misc_feature
    <222> (1)...(654)
    <223> n = a.t.c or q
    <400> 7
ctcccqtct cttccctqqc cttqccctct ctctttctqc cctqtaqccq cqqqcqtcca
                                                                     60
aatqaaqctq qaattcctcc aqcqcaaatt ctqqqcqqca acqcqqcaqt qcaqcactqt
                                                                    120
ggatgggccg tgcacacaga gctgcgagga cagtgatctg gactgcttcg tcatcgacaa
                                                                    180
caacgggttc attctgatct ccaagaggtc ccgagagacg ggaagatttc tgggggaggt
                                                                    240
ggatggtget gteetgacee agetgeteag catgggggtg tteagecaag tgactatgta
                                                                    300
tgactatcag gccatgtgca aaccetegag teaccaceae agtgcagece ageceetggt
                                                                    360
cagoccaatt totqcottot tqacqqcqac caqqtqqctq ctqcaqqaqc tqqtqctqtt
                                                                    420
cctqctqqaq tqqaqtqtct qqqqctcctq qtacqacaqa qqqqccqaqq ccaaaaqttq
                                                                    480
tottocatca otoccacaaa cacaagaago aggaccogot goagcootgo gacacggagt
                                                                    540
accordight egiglaceag coeggocate egggaggoca acggggatte giggagtgog
                                                                   600
qqcccttncc aqaaaqqqta tttqttqqtq canqcaqatt ccnaacatta aact
                                                                    654
    <210> 8
    <211> 469
    <212> DNA
    <213> Homo sapiens
    <4005 B
tgccgtgggc ggctggccca gctggaggaa gcggcggtgg cggccacgat gagtgcgggc
                                                                     60
gacgcaqtgt qcaccqgctq qctcqttaaq tcqcccccq aqaqqaaqct acaqcqctac
                                                                    120
gcctqqcqca aqcqctqqtt tqtcctccqq cqaqqccqca tqaqcqqcaa ccccqatqtc
                                                                    180
ttqqaqtact acaqqaacaa qcactccaqc aagcccatcc qqqtqataqa cctcaqcqaq
                                                                    240
totocagtot ggaagcatot gggccccagc tttottcgga aggaatttca gaataatttc
                                                                    300
gtgttcattg tcaagactac ttcccgtaca ttctacctgg tggccaaaac tgagcaagaa
                                                                    360
atgcaggtgt gggtgcacag catcagtcag gtctgcaacc ttggccacct ggaggatggt
                                                                    420
gcagcagatt ccatggagag cctctcttac acgcgctcct acctgcage
                                                                    469
```

<210> 9 <211> 409 <212> DNA <213> Homo sapiens

<220>

```
<221> misc_feature
<222> (1)...(409)
<223> n = a,t,c or g
```

<400> 9

agaaacmaa cagatetgtg ggosagaaa atgittotti tecagette acagetetet gagaacggga tittagtgggga tittagtogg titaataaa getgeagaat gagacctgtg 120 aatoccacco tgetgettee tggatectge cacacoccat cagacagcaa caagocagt 180 etcgeccetg actggaacg agigggaag agiggtbag aggggtetg gagocagetg octggattg 240 aatoccaget gtgocacta coagetgtgt gactgtagga agatactet tytocgtogg agactacgat cotgogag gagataccgt gaaacattac aagatecgga octtgaaca 360 aacggggget ctaacatacca coccoagaag acettcaga cttgcagg 60 agactacgat cacaccataga coctogaag acettcaga cttgcagg 60 acggagatag 60 acggagatag 60 accoccaagaa cacttcagaa cttgcagag 60 acggagatag 60 acggagatag 60 acggagatag 60 accoccaagaa cacttcagaa 60 acggagatag 60 acggagatag 60 acggagatag 60 accoccaagaa 60 a

<210> 10 <211> 1145 <212> DNA <213> Homo sapiens

<400> 10

aaagattotg ttttgaatat agccagagga aaaaagtatg gagaaaaaac taagagagtg tottotogga aaaaaccaqo ottqaaqtqt ottotoaqaa acaaccaqoa ttqaaqqota 120 totgtgacaa ggaagattot gttocqaata cggccacgga aaaaaaggat gaacaaatat 180 ctgggacagt qtcttctcag aaacaaccag ccttgaaggc tacaagtgac aagaaagatt 240 ctqtttcqaa tatacccaca qaaataaagg atggacaaca atctggaaca gtgtcttctc 300 agaaacaacc ggcctggaag gctacaagtg tcaagaaaga ttctgtttcg aatatagcca 360 caqaaataaa qqatqqacaa ataccqtqqq acaqtqtctt ctcaqaqaca accaqccttq 420 aaggettaca ggtgatgaga aagattetgt, ttegaatata gecagagaaa taaaggatgg 480 agaaaaatct gggacagtgt ctcctcagaa acaatcggcc cagaaggtta tatttaaaaa 540 qaaaqtttct cttttgaata ttgccacaag aataacgggc ggttggaaat ctggaacaga 600 gtatcctgag aatctgccca ccttgaaqqc tacaattqaa aataaaaatt ctqttctqaa 660 tacaqccacc aaaatgaaag atgtacaaac atccacacca gaacaagact tagaaatggc 720 atcagaggga gagcaaaaga ggcttgaaga atatgaaaat aaccagccac aggtgaaaaa ccaaatacat totagggatg accttgatga cataattcag tcatctcaaa cagtctcaga 840 qqacqqtqac tcqctttqct qtaattqtaa qaatqtcata ttactcattq atcaacatqa 900 aatqaaqtqt aaaqattqtq ttcacctatt qaaaattaaa aaqacatttt qtttatqtaa 960 aagattaaca gaacttaaag ataatcactg tgagcaactt agagtaaaaa ttcgaaaact 1020 gaaaaataag gotagtgtac tacaaaagag actatotgaa aaagaagaaa taaaatogca 1080 gttaaagcat gaaacacttg aattggaaaa agaactctgt agtttgagat ttgccataca 1140 gcaag 1145

<210> 11

<211> 890

<212> DNA

<213> Homo sapiens

<400> 11 gtagtccgct gcggtaccgg gccggacaat ctgggtcgac gatttcgagc tcgtcatgcg 60 caatgtggcg ctgcggcggg cggcagggcc tgtgtgtget gaggcggctg agcggcggac 120 atgcacacca cagagogtgg cgatggaaca gtaaccgggc ttgtgagagg gctctgcagt 180 ataaactagg agacaagatc catggattca ccgtaaacca ggtgacatct gttcccgagc 240 tgttcctgac tgcagtgaag ctcacccatg atgacacagg agccaggtat ttacacctgg 300 ccagagaaga cacgaataat ctgttcagcg tgcagttccg taccactccc atqqacaqta 360 ctqqtqttcc tcacattctt gagcataccg tcctttgtgg gtctcagaaa tatccgtgca 420 gagaccettt etteaaaatg ttgaaceggt ceeteteeac gtteatgaac geetteacag 480 ctaqtqatta tactctqtat ccattttcca cacaaaatcc caaqqacttt caqaatctcc 540 totoggtgta titiggatges acctitities catgittacg cgagetggat tietoggagg 600 aaqqatqqcq qctqqaacat qaqaatccqa qcqaccccca qacqcccttq qtctttaaaq 660 gagtegtett taatgagatg aagggaget ttacagacaa tgagaggata tteteccage 720 accttcaqaa cagacttctt cctgaccaca cgtactcagt ggtctccggg ggtgacccac 780 tgtgcatccc ggagcttaca tgggaqcaqc ttaaqcaqtt tcatqccact cactatcacc 840 caagcaatgc taggttcttc acgtacggta attttccctt agaccagcat 890

<210> 12

<211> 982 <212> DNA

<213> Homo sapiens

<220>

<221> misc feature

<222> (1)...(982) <223> n = a,t,c or q

<400> 12

tttogtcaca cacgcacacg caccctgcca ctgcagccgc catggatatc agctaacaac acacaccaq qeqeqeqeq qeqtteceac teqeaceacq caqqaqtqqc ceceqqeate 120 cotaccotco ticoccacco coaccacaco egoteaccag eteggotact getegeteeg 180 gctgcgcg ccgccgcgc cgacgcacc accactgctt cctctgctgc ggggccacag 240 cettgagtgt cattcaaggg acagcacaac etcatecaag etctcetace tetgeccage 300 cgtgcctctc atcctcccca ttcctcgtcc acactccatc caaaqaaqaq qqaaaqcacc gaatagaggg gggcgaaggc aaagtctgct gttcttcccc ctqqqccccc ttqctcctcc 420 atecteatte teteaceace agececeta accesagga geceaggaac tgaggegact 480 egececactg ccatgtecaa aagettgaaa aagaaaagee actggactag caaagtecat gagagtgtca ttggcaggaa cccggagggc cagctgggct ttgaactgaa ggggggcgcc 500 gagaatggac agttccccta cctgggggag gtgaagcccg gcaaggtggc ctatgagage 660 qqcaqcaaat tqqtqtcqqa qqaqctqctq ctqqaqqtqa acqaqaccc cqtqqcqqqq 720 ctcaccatca gggacgtgct ggccgtgatc aaacactgca aggacccct ccggctcaaq 780 tgtgtcaagc aaggtgagag cagcggcttg ctcagtqttt tgccqqqcqq tqqqaccqct 840 cggggcgcag ggcaatgaaa gggtggccgc gcatgttgaa gggggtgtgt tgcgcgatga 900 tggggtgggg gccagagagc acccgcagtg caagtgagtt tcgccgggga ttcgacgaaa 960 tegtnneceg ggaatteegg ac 982

<210> 13

<211> 440

<212> DNA

<213> Homo sapiens

agggcgcca gccagtcttt atgcttttca ggcccatgag gtcagagcga ggactccaga	attcccgcgt ggagccgccc tggtaagaac gtgtgtccag actgacgcag tggcttctgg	geegeeggea tagteacaca aaagagaaaa gaeeetatte tgggeetgeg	gtggctaagg tggaccagct gacctcaacc tgcaggtgtc aggttttgct acagagctgg ttgataagca	gtactgcca tgatgcgtgg ttctgcggag gatctttgca ttatagatgc	ccgagcgcgt agacaaggaa gtgcgcatcg aaggaagata aatattgctc	60 121 188 244 300 360 420 440
<210> <211> <212> <213>	581	າຣ				
gcgcgctccg cccaggaact agccagagga ctgcgttgtg gtttgcgaag aaccttattg tgcagcaatc gaagaagaga	ccggctgcgg gcacccgggc gcccggggag acgagagctg tcatccgccc atgagaactg ctggctgcaa cctttgagtt agccagattg	gctggtctgc catcgtgcag cggcggcacc cccgctcaat gactgatgac tataatcaat tccaagtcag ctccaaggcc	gtetegetge etgecetgtg ggegtetgeg thegggatte ggegatee eaactgettg gggaaatge gatatgtge egetgtgaag geteeteetg	acgagtccaa gctgctgcta acggaacctg tcaccgagta gttttaaacc aatgtaacac tttcagettt tccagttctc	gtgcgaggag cacgtgegcc cgacegggg cgaagegggc atgcaatgaa cattcgaacc aaagagaatt	60 120 180 240 360 420 480 540 580
<210> <211> <212> <213>	693	ns				

<400>	15					
tttcgtatgg	cggccaatgt	gggatcgatg	tttcaatatt	ggaagcgctt	tgatttacag	60
cagctgcaga	gagaactcga	tgccaccgca	acggtattgg	cgaaccggca	ggatgaaagt	120
gagcagtcca	gaaagcggct	tatcgaacag	agccgggagt	tcaagaagaa	cactccagag	180
		gttcgctttg				240
ggcgacgctc	cgtgagcgtt	tcattttcat	cagatgaacg	cacggccggc	aaacaacccg	300
		cagccccatt				360
		aggttgtctg				420
		gtctgtaaga				480
ccctcgagct	catcccagac	cctgtcccat	gtcagttagc	aagccaccaa	agtccataag	540
		teegegggge				600
gtctgaaggc	tgcacgcatc	tgggcatagc	agtgcgccta	acgcttcttg	taaaacagac	660

atttogootg ctaagcettt taaatgeete tet

aatqcctc tct 693

<210> 16 <211> 562 <212> DNA <213> Homo sapiens

<400> 16

tttcgtggaa agagagaaac caccgctgcg ggtgggtaga gaagcacttg gcgcctcggg 60 gaggggaccg cgcccgcctc atttgcgcct tgcagcactg ctqqaccaqq ttacaaqatq 120 ttcacctaag attgagacct agtgactaca tttcctacgg qaacaaataa atggtttttc 180 atctcccgga gatacattac aaacaaatat qqtqctaaaa qaactcctta cctttctctq 240 actacaattt atttggacat acttttgtat tgaagagagg tatacatact gaagctactt 300 getgtactat aggagactet gteetgtagg atcatggace atcetagtag ggaaaaggat 360 gaaagacaac ggacaactaa acccatggca caaaggagtg cacactgete tegaccatet 420 ggeteeteat egteetetgg ggttettatg gtgggaccca actteagggt tggcaagaag 480 ataggatgtg ggaacttegg agageteaga ttaggtgaag gteteceaca ggtgtattac 540 tttggaccat gtgggaaata ta 562

<210> 17 <211> 899 <212> DNA <213> Homo sapiens

<400> 17

tttcgtgcgt ccccggccca accatggcgt cctccqcqqc cqqctqcqtq qtqatcqttq 60 gcaggaagtc tgaaacagca gttggagtgt agtggttaag aggaaggact caggagtcag 120 attgcttggc ttcatctcat agatccataa cttatcaccc ttgtggactt aattcctcca 180 tgcctcagtt tatcacttat gtaggcttaa ttcctccatg cctcagtttc cctacatata 240 aaatggaaat actaataaca cttatcttgt agggttgttg taaagattaa cataqtqqaq 300 tcattgggcg aagctgggcc atgctgtttg ccagtggagg cttccaqqtg aaactctatg 360 acattgagca acagcagata aggaatgccc tggaaaacat caqqtqqqcc aqccqqcqct 420 ctccagaagg aatggaagtg ggtctgtttc tctcagttgg tcttgtttgt catatcctca 480 aggetatgag gatetgtgat gteacatttt egtetgatgg etactgeagt geetetgagt 540 tggtaaaggc caggcctaca gtggctggaa tgtgaattca cactggggaa gggctcccat 600 gggggaggaa acgaccette ttgetaagag gatetgeate aagegtgagt gaetttgeag 660 gettetecag etgtttgece eggggetgga gggetggggt tteetgette catetaggea 720 ggaggaactc gcttccagca tgtgacagcc atagctgcag gggcattaca gtttaagaac 780 agaggtcctg caqcttgttt tgacctgttg atctaqtaat qgtaqqaccc aaatqaaaac 840 atcttgaatt ttagttagag gtttagcact catgtgagag gacagaactg gagctgttt 899

<210> 18 <211> 519

<212> DNA

<213> Homo sapiens

ccagagggat tgtccagctc cggggcacgc gaggggctca cagccatgtt accgagatgg ccagggagcg	18 ggtcgacgat ggtggtagtc tgacgccgaa gctgccctg cttcactaca cagtgggcgg cacacacttt tgttcgagct ggagaacatg	acggggcggg gacgactttc ctgccacagg cgcctgtcca cactacatcc ggagatgtgc gtgtacaaag	agccagacag tggagccggc agtttcctga cactgcggtg ccacggactc tgaatttcct aggcccagta	cegtegteag caegeegaeg ggttgtteee ctaegaagae egagggeegg gegeteaggg	gacggtgcca gccacgcagg cttaacatcg accatgttgg tacttcatcg gacctcccac	60 120 180 240 300 360 420 480 519
<212>	460 .	ns				
gggcegeeeg tageggagag geaggageeg etgeeaegte tetttateet tgeegtaata	19 gggccaggc gggactctgg gcgtgcggga cggtacccgg tatgaccggg caaattggct aaagaagcag acacagagag	agcattggga tegggatgte gettegtget eggegegggt gggtagaaat teaaagetge	tttgtagege ggggetgete ggggetggat etgeggetee tgateetgat aggaatacag	gccctctggg acggacccgg gtgggcagtt agcgtgcaga gttctttgga atgaatcaaa	taggeggetg agcagagage etgtgateeg aggtagaaaa ttcaatttgt	60 120 180 240 300 360 420 460
<210> <211> <212> <213>	731	ıs				
gggaggtgtg atgcaatttg agaacccct gcagagctgg ggcccagagc	20 agggctcaga ttcctggcag tgaagctgtg tgactgaagc tagaacgggt ctactagaaa gtacttcaag	aaggcacagc gtgtggctgc aatggagggg ggcagccatc cggtgtgqac	ttgtactgag agtggagagt ggtccagctg gatgtgactc ccccaccac	gcctggcagc tcccaacaag tctgctgcca acttggagga gggccagagc	agaacagagt getaegeaga ggateetegg ggeagatggt tgeetetgtg	60 120 180 240 300 360 420

480

540

600

tecetacagg ageggecage aggaagetat etggaggege aggetgggee ttatgecaeg

gggcetgeca gecacatete ecceegggee tggeggagge ccaecatega gteceaceae

gtggccatct cagatgcaga ggactgcgtg cagctgaacc agtacaagct gcagagtgag

	gtgeetaegg aagteettte a					660 720 731
<210> <211> <212> <213>	519	າຮ				
atttttggga tgaaatagtc atcgctttt tgctgcacag cattgcattg	21 gggaagccag ctcgggaatt accatgggg ggcottgatg atcottgtoca atattagcac cgctcatcot gacgggagg ttcacagtg	atgaggtaga aaaatgatcc atttgaaaat tgctgccatt tggccattgg ttaagtgtat acgagtaccg	ggtggaggcg gcctgctgtt aagtcctgtt gaagtttttt tctgggcatc cgagctgata ctgtgtccgg	gagceggatg gaageceet geaceagatg ecaatcateg eacttegaet getegatgtg	tcagaggtcc tctcattccg cagatgctgt tcattgggat gctcagggaa acggagtctc	60 120 180 240 300 360 420 480 519
<210> <211> <212> <213>	544	as				
gctcggagcg cacttcctcc tgtgactctg tttgggacag gacaggcaag agctgccaag ggtggatgtg	22 gaggtteget gattetgece etgtgaceaa ggegacaaga gtcateaaga etgeacaect aacgagatag tttgtgacec aaaatteccc	gcegtccceg ccggegctgc agaactataa ctgaggagtt gcaagaagtt gcatcctcaa gcaaggagta	gagccetegg aggttagage ceagceateg ttgtgaaate ceagaagegg gatggtgaag etttatette	egeccegetg etggcaatge gaggtgaetg tteegggeea gaeggeegea cateccaaca etggagetgt	agccogcgat cgtttgggtg acagatatga aggacaagac aggtgcggaa tcctacagct gagtgtgggt	60 120 180 240 300 360 420 480 540
<210>	23					

<212> DNA <213> Homo sapiens

<211> 749

cggaatggg caccgatgcc ggctcttggg ggccaacact geggcgtga atgatgctta aggcctggat gatatgacca actatgccaa attgtcgagg ctcacttota	23 gatttegtgc ggtgtgctg cggacccct aaagctggtg ggcagctgga aggtgatcca aattttatag ttttgggatcc aaaggaaga ttgactgaag acaaaaagg ctccaaacgc aggaagaaga	ctccgccagg ctgtcttctg ctgctgctgc gatggcggac gagtttgccg cttctataag tattggaaga catgattgca agttgaaga tggcaggagt caaaaccgtt	gtccccaggg ctagacatgc ctgattcccg acgagatccg aagaatggtt caggcaactg tataaatggg tatgttgaag ttgctgcgtg tctgatataa	tgggagagcy tctteetete cegacagace tgcacgagac cattecagec aaggacectg atgcttggag aaatgaaaaa tcataggtee cetcagatet	gctccgcggc gtttcatgca ttgggaccgg taggtttgag aacaaatgaa taaactttca ttcactgggt gattattgaa attttatgaa ttggtaatgtt	60 120 180 240 300 420 480 540 600 720 749
<210> <211> <212> <213>	556	ıs				
gggetegttg geteggetet tgetgagttt aacgaeteeg ccatcatcac aaaaagecaa gegaetattt	24 taaggggcgg tgggcgcat tcccogctct cttccgtaga agaagcacaa gtgtcgggtg aggacaaaag tggtctgaga caaaaagcaa	tteteggegt ggtegeeggg acactaggge egegeegeca tecettetgg ttgtttgate tttatggatt	ctaccgagga gctgcgccgt gtcggtctat cacatattcc atggtactga agattatgta cagcacaagt	geegeeeett eeccagetea gegtaaacat tgeagetgga tgttagtgtg ecacetggac ageacattgg	tctcagcctt gtgacaaaaa gcagagaagg gattctaagt gacttgccaa ctgattgaaa ttggatggta	60 120 180 240 300 360 420 480 540

<210> 25 <211> 422 <212> DNA

<213> Homo sapiens

<400> 25

agttttattc ctcaga

gtcggtgaga atccagggag aggagcggaa acagaagagg ggcagaagac cggggcactt 60 gtgggttgca gageceetea gecatgttgg gagecaagee acaetggeta ecaggteece 120 tacacagtcc cgggctgccc ttggttctgg tgcttctggc cctgggggcc gggtgggccc 180 aggaggggtc agagcccgtc ctgctggagg gggagtgcct ggtggtctgt gagcctggcc 240 gagetgetge aggggggece gggggageag ceetgggaga ggeaceeeet gggegagtgg 300 catttgctgc ggtccgaagc caccaccatg agccagcagg ggaaaccggc aatggcacca 360 gtggggccat ctacttcgac caggtcctgg tgaacgaggg cggtggcttt gaccgggcct 420 ct 422

556

<210>	26					
<211>	506					
<212>	DNA					
<213>	Homo sapier	ıs				
<400>	26					
		atacagtaca	tctaccacaa	ttagaaaata	t.caatagtgg	60
			tactacttgg			120
			taaaqtgaga			180
			tgcaggcact			240
			aaaaggagat			300
			tcttatctca			360
			aatgtgtaaa			420
			ccctcctgct			480
	gaaaaataca		ccccccgcc	cocgaccacc	cuccuaucau	506
aucuacgacc	gaaaaacaca	acagga				500
<210>	27					
<211>						
<212>						
	Homo sapier					
(213)	TOUG Papier	10				
<400>	27					
		anaanaanta	aggget gags	tanagetten		60
caggeetteg	Lycaaggcca	gaggaggacc	acgggtgcca	taaaccccca	cggggccaag	120
			ggcagagatg			180
			cactgcccat			240
			tggtgctacc			300
			ccctcttcga			360
			agaggcacta			
			ttgctgcctc			420
			gggcccaggt			480
			tgctcatggc			540
			ttcggggcaa			600
			acctgctgcc			660
			aggtggacgg			720
			tgcgcctcta			780
	cttcttgcag	cctcccctga	agggcgtggt	catggagacc	ttcggttcag	840
ggaacggacc						850

<210> 28 <211> 990 <212> DNA <213> Homo sapiens

<400>	28					
tttttttt	ttacttgtaa	tacgtatttt	aatttttgtt	tcatatgagt	ttaagtgttg	60
tctaggtgac	atcaaaatct	aaggcaaaca	gacttgacca	tetteagace	cactgcattc	120
tcaagctgaa	gtggtctgct	catagtttgt	gtgccaggtt	gctcatcagt	attgatactg	180
tcccagaaca	ggttgtaggt	ataattcaga	gactgtcctt	tgcaaaggaa	atgaccagca	240
tttcaactgt	atgtcttcct	ggaagggtag	attctgctat	atcttctttg	tetgeateaa	300
aagactcaag	aggaatgtgg	acacatttca	tatcccattt	gtagagtaaa	gcttcaagtg	360
accagtcage	actcctaact	tgataagtag	accacaattg	gaccttggga	ttcttgtgca	420
tcaaaaaata	tattgtagcc	aaaatgtctt	caaaatcttc	tggttcaaag	aacacatcag	480
atgcaaggat	aatatcttgt	ggtggtagag	ccagaagatc	ccaagatata	tgaccccatg	540
ttagtcctac	cacctgcaga	tgtggcaggt	tattcatttg	gcagctttgc	cgacagactt	600
ccagacagtg	aggcagttct	gagetgtetg	acagtattac	ttctgcacca	catttggcag	660
ccaaaattcc	tggaaggctc	actccagctc	caatctgcgg	gacgtggacc	tccaggacag	720
ccccgtcggc	ccccggaccc	ggctcctccg	agaatcgaaa	gcgctgggcc	eggaceccet	780
gtcctcggaa	ategtgcteg	cccagtaggg	cgtcgttggg	ccccgggcgg	gcgggggacc	840
geggaagget	eegggetgee	agactgcgcg	agcgggaagc	cgcgggccac	gtggccgtag	900
cacctgacgg	caagaagggg	aaagcccaga	tctggtgata	accetgeege	gctagegage	960
gaagaaagcc	cggagcaagg	cgaaagagac				990

<210> 29

<211> 622

<212> DNA

<213> Homo sapiens

<400> 29

ttttttttt ttgtgttgat aaagetttat ttataaacac actcacaggg ccagatttgg 60 gccacgggcc atagttgcca gcccggcttt aactgctggt cctcacgtta gtctcactgc 120 ctcctgcagg gtgggcatgt gggtgtcgtg ttcacccagc cccttcctcc accccacaaa 180 caccotggtg gotgtcotgg agegegacac actgggcate egtgaggtge ggetgttcaa 240 tgccgttgtc cgctggtccg aggccgagtg tcagcggcag cagctgcagg tgacgccaga 300 gaacaggogg aaggttotgg goaaggooot gggootcatt ogottocogo toatgaccat 360 cgaggagttc gctgcaggta acagagcteg ggctcagggg ctggtttggg aggggagtgg 420 cacacaggtg ggcatctggg taccgaggat agtgcccccg agttcactgc ggaaaqcctg 480 gcagatgcct ggcatataca gataggaaga aacctggctt gtgaggacgc gtccacaggg 540 ceatetgtta gecceggeec ggetetgtec ceaeegtgea caetgecaga cecegeetet 600 cgtgtctgtc cagctgtttt gg 622

<210> 30

<211> 181 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<222> (1)...(181)

<223> n = a,t,c or g

<400>	30					
tttttttt	ttgagacgga	gntgngctct	gtnacccagg	ntagagtgca	atggcacgnt	60
ctcggctcac	tgcaagctct	gcgtcctggg	ttgacgccat	tctcctgcct	cagcctcccg	120
agtagctggg	actacaggag	cttcgccacc	aattccagcc	tggggtggac	agagtgataa	180
g						181

<210> 31 <211> 1956 <212> DNA <213> Homo sapiens

<400> 31

aaactcogaa cacatccaaa catcagaagg aacaaactcc agacacaccg cctttaagaa ctgttacgct caccgcgagg gtccacggct tcattctcca agtcagacca agaacccacc 120 aattooggac acaaaaggog tagogtgoot cotgtgattq ttqaaqaqot qtqqtqtqct 180 getgagtgge gtgtgtatte catgtgaggg gaagggteca acagtectgg teatteagae 240 tgcagttccc caggacagac ccacgaagtc aagcatgcgg agtgcagcca agccctggaa 300 cccagccatc agagcagggg gccacggccc agaccgggtg cggcctctgc ctgcagcctc 360 ttccqqcatq aaqaqttcta aqtcttcaac ttccttqqct tttqaqtccc qactcagcag 420 gotcaagagg gocagcagtg aggacacget caacaagcca ggaagtaccg etgcateggg 480 ggtggttcgc ctgaagaaga ccgccactgc cggagccatc tcggagctca cggagagccg 540 cctgaggagc ggcacagggg cctttacaac aactaaacgg acaggcattc cagccccacg 600 ggaattttca gtaactgtct caagagagag gtctgtgcca cgtggtccct ccaaccccag 660 gaaatcagtg tocagtocaa cttoctocaa cactoccact cctacgaaac acctgaggac 720 cccttccaca aagcccaagc aagagaatga aggtggagaa aaggctgcgc ttgagtccca 780 agttogggaa cttttggcag aagccaaagc aaaagatagt gaaattaaca ggcttogaag 840 tgaactaaag aaatacaaag agaaaaggac tetgaacget gaggggactg atgetttggg 900 cccaaatgtc gatggaacat cagtctcccc aggtgacacg gaacctatga taagagctct 960 tgaggagaag aacaagaact ttcagaaaga gctttccgat ctagaggaag aaaaccgggt 1020 cctgaaggag aaactgatct atcttgagca ctccccaaat tcagaagggg cagcaagtca 1080 cactggcgac agcagctgcc caacatccat aactcaagag tcaagcttcg gaagcccaac 1140 tggaaatcag ttgtccagtg acattgatga gtataaaaaa aacatacatg gaaatgcatt 1200 acggacatca ggctcctcaa gtagcgatgt taccaaaget tetttgtege cagatgette 1260 cgactttgag cacattacag cagagacacc ctcaaggccc ctgtcctcca ccagtaaccc 1320 ctttaagagt tcaaagtgtt ctactgctgg gagttcccca aacagcgtaa gtgaattgtc 1380 cotggottoc ctcacagaga agatacaaaa gatggaagaa aaccaccata gcactgcaga 1440 agaactacag gctactctac aagaattatc agaccagcaa caaatggtac aggaattgac agotgaaaat gagaagotgg tggatgaaaa gacgatttta gagacatcot ttoatcagca 1560 tcgagagagg gcagagcagc taagtcaaga aaatgagaag ctgatgaatc ttttacaaga gogaqtaaaq aatqaaqagc ccaccactca ggaaggaaaa attattgaac tggaggagaa gtgcacaggt attottgaac agggccgctt tgaaagagag aagctactca acattcagca gcagttgacc tgtagcttgc ggaaggttga ggaagaaaac caaggagctt tagaaatgat 1800 taaacgtctg aaggaagaaa atgaaaaact gaatgagttt ctagaactgg aacggcataa 1860 taataacatg atggccaaaa ctttggaaga gtgtagagtt accttggaag ggctaaaaat 1920 ggagaatgga tetttgaagt eteatttgea gggtga 1956

<210> 32 <211> 513

<212> DNA

<213> Homo sapiens

tttggggaga gegagagege egaegetgte etgegeaaac agetttgege aagagatgag eagetacece	caaggaagtg geteggegat agggeggege tetagteget ttttgeaget aaegeeaace accatecagg aggaacetge	cgggaccac taacacagcg ggcgtcggtc gatccaaat gtcgggacac tcaggcgaga tgaaaggaaa tcctgacatg agtttggatt	accegggca cegggagcag gcaceggctc ttctgcaacc tgagagcaat eggctaegtg geggettcac	gegeagggeg aacceggett atctttgtet cegeagageg cacetcacag cagagtecta	agegeaggeg tttettggag acaetetaat catceateaa acttgtaceg gattecegaa	60 120 180 240 300 360 420 480 513
<210> <211> <212> <213>	712	ns				
cttcaaaaag atacaccaag ggagaaagag catgcatatg gatattcaag agggtcaaag ggatgaagag agaggagcat caactccagg tcagaaaaga	ttccagctct atgaccgacc caagatgggg cttcatccag ctggatcgag ctgactatgg aagcatatggc gatacaccag ggatatagtcaggcatatagtcaggcaatatagtcaggaa taccacaggt	gtagaactga tcttgagaag agtgtggcac ttctgaagaa atcatgacag cctgcaacaa gtggtcaccg gacataaatc ctgggcactc gacaaggtaa ccagctgtgg tgagagaaag	tgttgtcacc actgagcaag cccagatgat aagattggac ggtcctcagc acaccaagaa aggttacaga aaggggaact tttatccagc tcattcatgg	gtaattgatg ggtgaactaa ccagacacag tttactgagt aaagaatact gaagaaagtg cattcaagtt gtgaaatgta tctgggaacc agtggtggca	ttttctacaa aggaacttct tggatgtcat ttcttttgat gcaaagcttc aaacagaaga ggagtgagg gacatgggtc aagagggatc aagacagaca	60 120 180 240 300 420 480 540 600 660 712
<210> <211> <212> <213>	600	ıs		,		
atatcaatat attcttttt	aggtgagctc cttgaagcag ctctcccatg	agatagcaat ttttctactc cttgttgttt aattttaagt	aatttagaag ctcattcaaa	aacttctggt caagactggc	taaatttaca atagctactt	60 120 180 240

300

360

ctttattccg tgggatcaac tcttcatggc cagttcttcc tctgtcactg agttcttagt

getgggette tetageettg gggaattgea gettgteete tttgeagtet ttetetgeet

WO 01/53455					PCT/US00/3	5017
cctccacaca aactgttatt	cccatgtact	gaaacatcat tetttetagg tgettateaa tgttetaega	tattettet	atctctgaaa gtattcagga	tettetacae cacteteett	420 480 540 600
<210> <211> <212> <213>	985	ns				
gcaggcaggc cctggaggag tgccgggctc gctcactccc tgtgcgtgta aaggcctcct cacgggaccg cctgcagcag ctgtggcac cgtccctgga tccacactcc ctgcggggtt ccgtgaggag gcgcacaggt tgctgagaaa	etgtecetgt agggaccace gcctgagtgg cagggatett actccgtaga tgcgttaace ggaacactc ggaagetggcc catggtgace catggtgace gaagaaccog gagccagggg ggcccagggg ggccagggg	cctgccttg atgagcaac ggttyaggcc ctcccttcc cacaatgatc cacggaaaca gagagccca acactctga cttacctact taccaggctg agcgagggcc ttactggagg ttattggaga ttattggaga cttattggaga ctatatggag ctatatggaga cagtatatgaga cagga	cegtetetec tgggggggg tge tggcceggag agaggtetg gcctgtgagt cegggaatc accetgcceg gtctgccta tegggggcca agagetete tctgggage ggggeteet tctgggage tctgcaaagge tctgcaaagge tctgcaaagge tctgcaaagage tctgcaaagace tccaaagace	tcctgaggg tggggtggag ggtgctgga ggtgctggg tgctgggg ctgcagctga tccacagctg ctttgctgtc ggggactcag ggggactcag ggggcactc cgtgctgag gggcactc	cagcacagag gggcactggc cagggytggg gaagctgggc gtctgcagtg gcctgtctct gctccctgct ctgggcctct atccgcgag cagcgactta agggccttct gctgcagca ctggggttct gaggagttct	60 120 180 240 300 360 420 480 540 600 720 780 840 900 985
<210> <211> <212> <213>	464	s				

<400> 36 cogtatogge gtttatatac tgaagataag cotgatgagt aacaggettg ctogtcatac 60 tttcgtgagt attggcgttg tacaggcaag tcgtaaaata acagcctggc tattcagagt 120 atgataaaaa cagggggcaa gggatgttgc ttaatatgat gtgtggtcgt cagctgtcgg 180 caatcagttt gtgeetggcc gtaacatteg ctccaetgtt caatgcgcag gccgatgagc 240 ctgaagtaat ccctggcgac agcccggtgg ctgtcagtga acagggcgag gcactgccgc 300 aggegeaage caeggeaata atggegggga tecagecatt geetgaaggt geggeagaaa 360 aagcccgcac gcaaatcgaa totcaattac ccgcaggtta caagccggtt tatottaacc 420 agetteaact gttgtatgee geacgeggta ttteetgeag egtg 464

WO 01/53455	WO 01/53455				PCT/US00/35017		
<210><211><211><212><213>	429	ns					
tteeteaace geteaageea tgagtacate geeegeaaag gaateegtat	getgetgatg gtgeggegaa aattatgege aegtateett atgageggea ategaagatg	gtgcggtagg tggcgactca cgccaaatgg aaacgccagc tggcacggcg	cgggatgtcg ggtagagttt tcacggcgag cgtagtggtg agtggcgaag	gcattagogt accgaccogg gtgcggggtt gtgcatgaga gcggggtata	gaaacgtgag tgtttgattt aaattgttgc atctggtgaa atcgtggact tcgccctggc tggtatccgc	60 120 180 240 3300 360 420 429	
<210> <211> <212> <213>	556	ns					
cagogogog ggcaattoot toacetcaac tititgattg aacgogaaag gcagoctggg aatcogaacg	tagacgttat tgctgtttaa tgctgacaac ggcgattcca tgttattagc ttccggtgca gcgtcgatcc cggtgagtaa atgtttatcg	tgcagtaacc agaaacgaaa ggctataagg gggttgttca acgtgcgatg acaattgatc atcgaatgcc	cgatgggca tgtatatcat atagaagaag tcaaagcatg cagtggatgc acggcgatta attggtttga	attaagtgaa gccgcttagg tgaaattgag actatacgaa caataagcca tcgctatcga tgcagttaaa	acagagacat tgtgccgttg atggtttgcc cccgccgtgg gaaagccggt atcgggtggt agcttcaacc	60 120 180 240 300 360 420 480 540	
<210> <211> <212> <213>	890	ıs					
atttgtacaa tgagcaatct aagaagttct ttcaatggct	39 aggaattegg gtacegacae tegttittat aagtaaatgg ttteeeetg tgaggaatte	cagtacccaa aagaataaaa aaaggagatt agagaacaag	acttcaaaga ttccattcaa atgaaaaact gcttgaactt	tatccgatat gccagatggt ggagcacaac ctatgccaaa	caaaatgact gtttacattg cacacttaca gaactaacta	60 120 180 240 300 360	

WO 01/53455					PCT/US00	/35017
gggetgttaa gaateaeteg ttgtaaaatt gtgetetaga ggttegeeea aacagtegga gtcaaaette	gctagaattt ctggcaggaa tattcttaaa tattcttcat gtatttgtt gaaacactac gggaagcaaa tatgcacaaa aacagctgaa	agatttcagc agcettggtg gaagetettg tatacaatta acgeettcag geecagaaaa aaagecaagg	atetgaatga agettggata tggagaatae gagacagaag agaaetttat tgtetteece actecaaaaa	gteccagcac tgaaagtttt tatteccaat agaaaggaga ctggggaceg tetegeetec tteeteetea	aactatttaa aaatotooto attaagoaga aagotootgo cotogaaaag agtoataaca	420 480 540 600 660 720 780 840 890
<210> <211> <212> <213>	393	ns				
tgcatttcac gagaacttca caatgggtag aggaaaataa agtcaaagaa	40 atcttagtct ggtggccttg ggttttccaa cctcaccatg gaagaattgg gacagaaaaa tacccctgtg	tggagacaac cctattggtg aaatcacagc tttggaccaa tgcaacaaca	gccttaaccc gtatgtctga ttcagatcac gtccttacgt caaacagtcc	aaggaagtga cagtggatca tgtcatctca agaggtcaca	ctcaaactgt caacttggtt gcaaaactta gtagatggac	60 120 180 240 300 360 393
<210> <211> <212> <213>	437	ാട				
ccaacaacaa atactgccag gctttccttc acgcggtgtt aacagagcgc	aaagaaatgt ttttacattt tcgttaattc gtaattcgca aaataccgcg gaagccctgc atccagggca	tegegacege aaaaatagtt actggaacac atgccgataa tgegcaagcc	tttggctgct gataattaca gcacgctatg gatggccctt ggaatggatg	ttcaggtccg acaatctatt agtaaaccca atcccggtta aaaatcaagc	tttcaatgat gaattgaaac ttgtgatgga aaaacgtggc ttccagegga	60 120 180 240 300 360 420 437

<210> 42 <211> 392 <212> DNA

<213> Homo sapiens

gacetgggte gteaggatge gtgeagtaca acageggegt tggeaaaceg	42 caattttcct atgctgaagc tacagtaata gttgatagcc tatctggctc caacagacc aagagcacgc	gagccaccag cattgatgta ccttcccagg tggagaaagc cgactctcga	gagacacaaa ctgcatgtat tagcgggaag ttataacaga atggttcttg	gcgaaagcta gcaaaggacg catatttcgg ggataaccgc	tgctaaaaca tcacattacc caatccagag gcatggtgct	120 180 240 300 360 392
<210><211><211><212><213>	555	ns				
ttcaccggga tttaaggatt aattgcggcg gtctctgctc acagcatttt cattgcacta tgaagtgtat	gtcataatgg atgaggttga agcgtgcaag gcagaggcgc aatggcaaca gctgccagca aatactgata gcaaaacagg	gtggattaag aaagaattaa ttccggatgc aaatcctctg tgatcaaccg atgttgtctt tgcgggcgct	gatgcettta agettgette cateteeegt ttgtggtaat tttegaaaeg aaeggegatt gggteatgeg	atggccactc actgaaagca gcagccatga ggaacttccg gagcggccca gccaacgatc ggagatgtat	ataattaagg ttcaaactca cgctggttca ctgccaatgc gcttacctgc gcttacatga tgttagccat	600 1200 1800 2400 3000 4200 4800 5400 5555
<210> <211> <212> <213>	553	ns				
etacacaage egcaagetge gagggetata tgcataaaaa gattgegeeg etgggteaaa gaacatetgg	attacaattc taaccatget ttgagcagga cgccggaaga caaacacaac ttgetcatet gataccaacg ggcttcaaag cagacccgca	gattaatgaa gatggtcaac taaaaaataa acgcaccegg cctgttcgac gttttgatat aggtggtgat	aagaaactca tteetgtteg aaacagtgcc aatgatgaaa gaccaaaaaa tetgatgggg egetggteet	acatgatgaa agggtaaaga ggagcacgcc aaatateteg ggcgatacet caatttgecc aaggactacg	tgcegageac ggtgeatate teeggeaact egetggettt ataacgaage acaatattga tgaaatacac	60 120 180 240 300 360 420 480 540 553

<210>						
<211>						
<212>						
<213>	Homo sapier	18				
agaaaaaact caggcttttt attactgctg	45 acttcgagog ggatgaactg tcaggtcgtt ggcggtctgg ctcaatccca	atcgaacagc ccgatatgcc tggcgtggcc	actaaaccca ctttgcgctg gatggtgtcg	ggacaggaat ctgcttctcg aatatcgaaa	ccgcaatgaa cgcccagctt tcagtttttt	60 120 180 240 300 310
<210> <211> <212> <212> <213>	627	ns				
agegggtggg tggetgetee taaaaagaac etggeetetg gaattgett etgagtgtgg taeceattea eagaagetgg gtettegeet	46 cgettegett cteccegagg cgaagggget tggtggatga cgggaacet ttgcaatett actgcgtcaa ggttgcacca cattgattga tcotctactc acaaccgggg	cccctgccc tctggccctg gaagagcgag ccgggtgctg tgcatttgca caagacagaa ggtgacgttt tgactcctcg tttggctgcc	tegeegget aggaeggtgg egagggegag aaggageee acatgeggtg agtaacetea gaggtgeeca tetteageag	getecagggt tgecaagega etatggaece ttgeetteet getattetgg geategaeat eetgegaggg agttettegt	gtegeteete actteatttt tgtgagteag gegageeetg aggeetgegg agegtttgee aaaggaaegg caetgttget	60 120 180 240 300 360 420 480 540 600
<210> <211>						

4400> 47
acctgggace cgtgtcctat ggcgccgaca cgatggatga gatccagagc catgtcaggg 60
actcctactc acagatgcag tctcaagctg gtggaaacaa tactggttca actccactaa 120
gaaaagccca atcttcagct cccaagtta ggaaaagtgt cagtagtcga atccatgaag 180
ccgtgaaagc catccgtgctg tgtcacaacg tgaaccccgt gtatgagtct cgggccggg 240

<212> DNA <213> Homo sapiens

```
ttactgagga gactgagttc gcagaggctq accaagactt cagtgatgag aatcgcacct
                                                                    300
accaggette cageceggat gaggtegete tggtgcagtg gacagagagt gtgggeetea
                                                                    360
cgctggtcag cagggacctc acctccatgc agctgaagac ccccagtggc caggtcctca
                                                                    420
gettetgeat tetgeagetg tttecettea ceteggagag caageggatg ggegteateg
                                                                    480
tcagggatga atccacggca gaaatcacat tctacatgaa gggcgctgac gtgqccatgt
                                                                    540
ctcctatcgt gcagtataat gactggctgg aagaggagtg cggaaacatg gctcqcqaag
                                                                    600
gactgeggae cetegtggtt geaaagaagg egttgacaga ggagcagtae caqqaetttq
                                                                    660
aggtgagecg actoccagge atcocatect cetacgacgg tgeetteett acgetgaaat
                                                                    720
tagttettee tgtetttgta tgaaattaga getgggateg etatagteta ggagtgaagg
                                                                    780
cagetteget cageaggage atggggggat cetgtetgea titetgttte caccatttet
                                                                    840
ccagettget ggggaaggag ggttacagaa gcaaagaagt gccagtttcc ttagaattgt
                                                                    900
gettgataac teetcaatga teacaegeca geegagetga gtacacataa gagtatgtge
                                                                    960
acataggege etececetet gtececagag eccatgeg
                                                                    998
```

<211> 864 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(864) <223> n = a,t,c or g

<210> 48

<400> 48

tttttttttt ttgagacaca gtctggctat gtcacccagg ctgagtacag tagcatgatc 60 ctggttcgct gcaacctcca cctcccaggc tcaagtgatc ctcccacctc agcctcctga 120 gtagctagga ctacaggtac gtgccacaac acctggctaa ttttttatt ttttgtagag 180 acaagggtct ccctacgttg tccaggctgg acttgaactc ctgggttcaa gcgatcctac 240 caccttggcc tcccacagca ctggggttac aggcaggagc cactgcacct ggccctgtct 300 ttactgatgg tcctgcccca tgcctcccac acctaaccct gggcacccac tcccgaagct 360 ctcctactgg ctgcagggtc tgcctctgtg aggacagtga agccgatgac acgggaggtg 420 aagtegaagg cegtetgetg gecategtgg atcactgaga tgeagtggeg gteecegtag 480 etggecegtg geatgecace etggaagatg gtgaagggca acceetgeet agtggteage 540 cagaggattc tggtaatcgc tttgcaagga aagggaccgt aaggcacgag gctgcggagg 600 ggetetggtt getgggette getggacaeg ggeceaetgg cagtagetge egteagagtg 660 acagetgacg ageaggegge egtecegetg ceaccagatg ttetecagtt getggetget 720 gaggaagtgg tagagcacgc ggctgccctg taggtcccag atgacaacga ggcctcggct 780 gtagoogate aggatetggt tggggtette aggtgettee tgcatgettt caccatttng 840 aacaaacage eggtggggge cete 864

<210> 49 <211> 1327 <212> DNA <213> Homo sapiens

<400> 49 tttcgtgagc atttgagggc tgtttatgat ctatggggta aaactctctg actgactgga

tgaggaaaat	gaaatgegag	agggttgagc	ccaaggttca	ttcatctgct	caatcgaggc	12
			tggggattct			18
agcccaggtg	gtggctgtgg	gctgctggag	gtggggatcc	aggtggagga	gcaagtctag	24
			aggtgacatg			30
			tgacagtctg			360
			gggagccact			420
			cacctctggc			480
			ccagttgcag			540
			gtggggagca			600
			ctgcctgtgg			660
cagtagacac	tgggggtggg	taagtgctcc	cgtgaagggg	gggcccaggc	gattctgggt	720
			gcctgggcgc			780
gcctgaagat	ggacaggaag	gtgtggacag	aaacacttat	cgaggtgggg	atgeceetge	840
			caacagctgt			900
cctatctcag	tgaccacagc	accttggagc	tggaaagaga	ccctttgtga	taatatagtg	960
ggtggggatt	tcggaaaagc	aatttttggc	aaagtcagca	aactggccag	tgagctaaga	1020
			ttttaaagaa			1080
			aaataattac			1140
gaatttgcta	acttctgatc	taatttcact	gtcatccatt	gaatagatgt	gtaaactgag	1200
gtcctgggca	gggctgtaat	ctgcctgaga	ttaccctgta	aatgcatatt	gaccaccatc	1260
cctgcctctt	tctgtcccac	ttctgaatga	cccagggcct	tetecectae	cttgcacage	1320
ctgtatt						1327

<210> 50 <211> 436

<212> DNA

<213> Homo sapiens

<400> 50

etgtegtgea	attccgagca	ggcactgctc	agtctggtgc	ctgtgcagag	ggagctactt	60
gaaggcgct	atcagtccag	ccctgccaag	ccagactcca	gcttctacaa	gggcctaggt	120
	cccagctgag					180
gcctctgtct	cccatcacat	gttcccctct	catcgctccc	tttgcccaca	tettecagae	240
tettegeeg	ccccattccc	atcagacaat	ctcccctaca	ccctccagtc	ccetttecce	300
cacctcctc	cagctactcc	ctctgaccat	gctcttatcc	tccaccacag	acttaaatgg	360
ggcccagat	gaccctctgc	agcagacagg	ccagctcttc	gggggcctgg	tgcgtgatat	420
cggcgccgc	tacccc					436

<210> 51 <211> 481 <212> DNA

<213> Homo sapiens

<400> 51

tegectagea glaagteget tegecatege tegegeagea gegetegeag tegetegaee 60 acticagtet coctgetetg cettecocag cacategg tegetegaee cteggeae 180 ceceteggeg geceaaaate gegetegaee cacageaeg 280 ceceteggege gegeteggegeaeg 280 ceceteggege gegeteggegeaeg 280 ceceteggege gegeteggegeaeg 280 ceceteggege gegeteggegeaeg 280 ceceteggege gegeteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteggegeaeg 280 ceceteg

gaggcacagg	gccgctcttg	gggagcccta	ccccagtctg	cagtgcacgt	gaaccgtcgg	300
ctgggtgggc	actggtcctg	cccagtcaac	agcactgggg	ccatggccaa	gggcaggggc	360
cactaggaag	ggatcagcct	cagcctcaga	tcactgggcc	tgtccctctt	ggaggacetg	420
gggaccccga	ggctcacagc	aaaccccact	gagetteteg	ggtaggcgga	teggggtggg	480
g						481

<210> 52 <211> 435 <212> DNA

<213> Homo sapiens

<400> 52 ecegggtega eccaegegte egageteete gttgtggaga caagateaaa aateatatgt 6.0 atagaatgtg actgtggctc ccttaaagat tgtgccagtg atagatgttg tgagacctct 120 tgtacccttt ctcttggcag tgtttgcaat acaggacttt gctgccataa gtgtaaatat 180 getgeceetg gagtggtttg cagagacttg ggtggtatat gtgatetace ggaatactgt 240 gatgggaaaa aggaagagtg tecaaatgac atetacatec aggatggaac cecatqttca 300 gcagtatctg tttgtataag aggaaactgc agtgaccgtg atatgcagtg tcaagccctt 360 tttqqctacc aaqtqaaaqa cqqttcccca qcqtqctatc qaaaattqaa taqqattqqt 420 aaccgatttg gaacg 435

<210> 53 <211> 728 <212> DNA <213> Homo sapiens

<400> 53 cogggtogac ccacgogtec ggacgccaqt ttagcccagg tccacggact acaatgttte 60 gtatteetga gtttaaatgg tetecaatge accagegget teteaetgat ttaetatttg 120 cattagaaac tgatgtacat gtttggagga gcccattcta caaagtctgt aatggatttt 180 qtcaataqca atqaaaatat tatttttqta cataacacaa ttcacctcat ttcccaaatc 240 gtagacaaca tcatcattgc ttgtggagga attttacctt tgctctctgc tgctacatca 300 ccaactggtt ctaagacgga attggaaaat attgaagtga cacaaggcat gtcagctgag 360 acagcagtaa ctttcctcag coggetgatg getatggttg atgtacttgt gtttgcaage 420 tototaaatt ttagtgagat tgaagotgag aaaaacatgt ottotggagg tttaatgoga 480 cagtgoctaa aattagtttg ttgtgttgct gtgagaaact gtttagaatg tcggcaaaga 540 cagagagaca ggggaaataa atcttcccat ggaagcagta aacctcagga agttcctcaa 600 agtgtgactg ctacagcagc ttcgaagact ccattggaaa atgttccagg taacctttct 660 cctattaagg atccggatag acttcttcag gatgttgata tcaatcgcct tcgtgctgtt 720 atctttca 728

<210> 54 <211> 2228

<212> DNA

<213> Homo sapiens

<400>	54					
tttttttt	ttcctgaaat	gtaaattgtt	tttaatatat	ttaagagcac	acagaagtet	60
tgatttataa	aaaaataaat	atataacatg	acaaatttac	tgatgatect	ggagetetga	120
ggtcaaactc	tttaaatgat	cagtgaaaac	ataaaacatc	catgatctgt	taacacacac	180
aggagcatat	tccagttgta	aaaaacaaat	tecttgaagg	ctcagaacga	acaaaaatca	240
			aggcaatgaa			300
acctttcacc	agccagccta	taacctatgg	agccaggaca	ggaaagcatg	atccttcage	360
			gcagaatgaa			420
cagcccctgc	tgccatcata	aagcacggga	gggattgttt	tgtccttagc	ggctctgtcc	480
taaatttgag	agcaggagac	tgagaaggtt	atgctcatta	aatattgtca	ttgtaacacg	540
gaatggaaat	catgatcctt	gcccatgggc	actgagctga	aagaaagagg	aacctcacat	600
gaggetttee	tagagaccag	gatgttgggt	gagtgggcgt	gcacttctca	agtgggcaag	660
gaagaactgc	ttttctccag	ctgacatgct	ctcaggggtg	aagaagttta	gcttaaaata	720
cctgatggcg	ctgcataaac	tggggatttg	ggaactgagt	ttttagctct	gtgacacaca	780
acataaaaaa	caaaaatcca	gtctcattag	ctaaattcgg	attaaaatct	gaaatgtttt	840
tatggagttg	ccaacaggct	ggaatgtacc	tgatacaatt	taatctgctt	ttatttcttt	900
ggctgtcttc	caaaccactt	tetteetgta	attcttaagt	tggctagttc	tecttectca	960
			gtgagggtgt			1020
			agttcgaatg			1080
tggtgtgaag	tggaaggata	ttccctctct	gtgccattct	actactggct	tgtttgggtt	1140
			ggaagtcatg			1200
			ggcgcaggcc			1260
tectgcagee	acggctgcca	gctggttggc	ccagtgtcca	tccacagttg	ccaggatgtg	1320
gtagaccagc	gtgtggaaat	ggatcctggt	gagatccgag	gctctgcttt	tactcctccc	1380
			actgaccatg			1440
			ggctgactgg			1500
			aaagacctgc			1560
			tctaggtgaa			1620
			tetetteete			1680
			caggtctggc			1740
			gttggagagg			1800
			ctcctcccct			1860
			tggtggaaca			1920
			aagaagaacc			1980
			tcctacatag			2040
			ttccttatca			2100
			ttcttccaga			2160
	ttcccattcc	caggactaag	gccaagtgcc	tgcaagagct	tcacccctga	2220
ggaattca						2228

<210> 55 <211> 405

<211> 405 <212> DNA

<213> Homo sapiens

<400> 55

gcaggagtte aagaccaacg tggccaacat ggggaaagce cateactae aaaaatacaa 60 aaactagcca ggcgtggtga cacacatetg taateccage tactogagge gctgaggcag 120 gagaatacat tgaaccagga ggcaggagt gcagtgage gagatcatge cactgcacte 180 cagcctggge cacagagcaa gactecatet gacaactage tgttecage cacagcacte 240

<210> 56 <211> 1652

<212> DNA <213> Homo sapiens

<400> 56 actaggggag gtgctcaagt gccagcaggg cgtatccagt ctggcctttg ccctggcctt 60 cttgcagcgc atggacatga agccgctggt ggtcctgggg ctgccggccc ctacggctcc 120 ctcgggctgt ctttccttct gggaggccaa ggcgcagctg gccaagagct gcaaggtgct 180 ggtagacgcg cttcgacaca acgccgccgc tgctgtgcca ttttttggcg gcgqgtctgt 240 gctacgcgct qccgaqccgg ctccccatqc caqctacqqc qqcatcqtct cqqtqqaqac 300 agacotgotq cagtqqtqcc tqqaqtcqqq caqcatcccc atcotqtqcc ccatcqqqqa 360 gacggccgcg cgccgctccg tgcttctcga ctccctggag gtgaccgcgt cgctggccaa 420 ggcgctgcgg cccaccaaaa tcatcttcct caataacaca ggcggcctgc gcgacagcag 480 toataaggto otgagtaacg tgaacotgco ogcogacotg gacotggtgt gcaacgooga 540 gtgggtgagc acaaaagaac ggcagcagat gcggctcatc gtggacgtgc tcagccgcct 600 gccccaccac tecteggeeg teatcacege egetageacg etgeteactg agetetttag 660 caacaagggg tccgggaccc tgttcaagaa cgccgagcga atgctacggg tgcgcagcct 720 ggacaagotg gaccagggcc gtctagtgga cctggtcaac gccagcttcg gcaagaagct 780 cagggacgac tacctggcct cgctgcgccc gcggctgcac tccatctacg tctccgaggg 840 gtacaacgcc gccgccattc tgaccatgga gcccgtcctg gggggcaccc cgtacctgga 900 caaatttgtg gtgagctcca gccgccaggg ccaaggctcc ggccagatgc tgtgggagtg 960 cctgcggcgg gaccttcaga cacttttctg gcgctcccgg gtcaccaacc ccatcaatcc 1020 ctggtacttc aaacacagtg atggcagctt ctccaacaag cagtggatct tcttctggtt 1080 tggcctggct gatatccggg actcctatga gttggtcaac cacgccaagg gactgccaga 1140 ctcctttcac aagccagctt ctgacccagg cagctgaccc tcaccatgga cactacaggc 1200 cctggaatgg ccagggtgga ccaaaagcca tgcccagctg ggcatgaccc caggcagcca 1260 gccacaggct gaaggggct tgttggctga gtgatctgca gaggagaaag cagccccag 1320 1380 ctotgcccca gaggaggcgc tgaagtggga caagcacagg aaagaagggg accagtctag gaccccaact tgactcactc taaagctaca accaaatggc cttcgatttt caacctgggg 1440 attaggggag gggagggtgc cttccagggc tcttactcag gacttaaccc ttaagggtga 1500 gettagttte tgteetettg tgettatgtt ttgaggetee ettacceaaa ataataccee 1560 tgcctgcgtg atattctacc attcatttta attcctttgg gtcttgcagt ttttcaggag 1620 gccttgatta aaatgcaaat acttgtctga ga 1652

<210> 57 <211> 1129 <212> DNA

<213> Homo sapiens

<400> 57
ttttttttt ttgagacgga gtctcgctct gtgggccaag ctggagtgca gtggcgcgat
6
6
6
6
6
7
8
9
120
8
120
8
120
8
120
8
120
8
120
8
120
120
8
120
120
120
121
120
120
121
121
122
124
125
126
127
127
128
129
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120
120</

agacggggtt	tcaccgtgtt	agccaggatg	gtctcgatct	cctgacctcg	tgatccgccc	240
gcctcggcct	cccaaagtgc	tgggattaca	ggcgtgagcc	accgcgcccg	gcccatttac	300
taaatgttaa	gttccttata	attccatctc	tttcagcacc	caatacaggg	gtttacatag	360
aggaagtact	caatatttcc	tttcttttt	tctttttt	ctggagatag	tetegetetg	420
tcaccaggct	ggagtgcagt	ggcgtaatct	cggctcactg	caacctccac	ctcctgggtt	480
cacgccattc	tcctgcctca	gcctcccgag	tagctgggac	tacaggcgcc	caccatcacg	540
cccggctaat	tttttttgta	tttttagtag	agatggggtt	tcaccgtgtt	agccaggatg	600
gtctcgatct	cctgaccttg	tgatccgccc	geeteggeet	cccaaagtgc	tgggattaca	660
ggtgtgagcc	accgcgcccg	gcctaaaaaa	atttttttt	tettgagaca	aagtcttgct	720
ctgttgccca	ggctgaagtg	caggggcatg	atatcagctc	attgcaacct	ccacctcccg	780
ggttcaagcg	attctcctgc	ctcagcctcc	cgagtagctg	ggattacagg	tgccctccgc	840
cacgtccage	taattttctg	ttttttagta	gagacggggt.	ttcaccgtgt	tagccaggat	900
ggtctcgatc	tcctgacctc	gtgatccacc	tgcctcagcc	tcccaaagtg	ctgggattac	960
aggcgtgagc	cactgagccc	agccccattt	tatttcattt	ctctaacagc	aatgatatat	1020
		tactgatata			acacctgtgt	1080
aatcaggaaa	taaaaccctc	gtgcagcatt	ggcgtctgga	tagtcctcg		1129

<210> 58

<211> 475 <212> DNA

<213> Homo sapiens

60

120

180 240

300

360

420

475

<210> 59

<211> 711

<212> DNA

<213> Homo sapiens

<400> 59 ggaaaatagc agattttggg ttcagtaacc tcttcactcc tgggcagctg ctgaagacct 60 ggtgtggcag ccctccctat gctgcacctg aactctttga aggaaaagaa tatgatgggc 120 180 ccaaagtgga catctggagc cttggagttg teetetacgt gettgtgtge ggtgeeetge catttgatgg aagcacactg cagaatetge gggeeegegt getgagtgga aagtteegea 240 teccattttt tatgtecaca gaatgtgage atttgateeg ceatatgttg gtgttagate 300 ccaataagcg cctctccatg gagcagatct gcaagcacaa gtggatgaag ctaggggacg 360 ccgatcccaa ctttgacagg ttaatagctg aatgccaaca actaaaggaa gaaagacagg 420 480 tggaccccct gaatgaggat gtcctcttgg ccatggagga catgggactg gacaaagaac 540 agacactgca gtcattaaga tcaqatgcct atgatcacta tagtgcaatc tacagcctgc 600 tgtgtgatcg acataagaga cataaaaccc tgcgtctcgg agcacttcct agcatgcccc

WO 01/53455	;				PCT/US00/3	5017
	cettteaage tteeecaggt					660 711
<210> <211> <212> <213>	344	as				
tagatttece egcaegaagt gaggatatet eetetgttgg	60 tttttaggcc aaagctgagg gctgccatgg gggaaaatca aaaaatcca tagctgctga	ttgcataacc agatctgctt agattcaatc ctgcattgcc	cetetgetga gaatgegetg tecaetatae gaagtggaaa	ggacagatct atgacagggc tgattgaatg atgatgagat	taccgaagat agaccttgtc ctgtgaaaaa	60 120 180 240 300 344
<210> <211> <212> <213>	594	ns				
tttcctaaaa gtgtcctgca aggcggggca gagatgacag accggetctg ccaggagagg acatccagtg acaccagacc	61 gagcgacggc ggattytaca gcagattctg agccagaggc ctgttatgca ctatgatgga agggaactgc cagtggcctc ctcagcgcac aaatcaagat	ccttagaagt agtgccaccc cccaaaggga gtcaggccga aatagcttgt ggagcggatc cagtaccgat aaaggctgcc	gcttaaggaa aagatgaaga agtccccaaa cccaggtctt gctgctgctg gaacggttgg ggcagcatcc attgctcacc	gagtgatgaa gagggacaag tcaacaggaa catccacaac ctgctgctgc aagtaagcag acacagactc tgcagcagaa	gctctgaatc cttgcatagt gtctggtcag tgatgcacct tgcatgtcta ccttgcccaa tgtggatgga gatcctgaag	60 120 180 240 300 420 480 540 594
<210> <211>						

<211> 1609
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1609)
<223> n = a,t,c or g

<400>	62					
cgaagttatg	gccttcctta	taaggaaaag	gggtggattg	gaggaatege	caattgaagt	60
ttogaaggat	cgctttagct	gaatatcaga	gaaccttgtg	aagatettaa	agagcaacta	120
aagcataaag	aatttcttct	ggctgctaat	acttgtaacc	gtgttggtgg	tctttgtttg	180
aaatgtgctc	agcatgaagc	tgttctttcc	caaacccata	ctaatgttca	tatgcagacc	240
atcgaaagac	tggttaaaga	aagagatgac	ttgatgtctg	cactagtttc	cgtaaggagc	300
agcttggcag	atacgcagca	aagagaagca	agtgcttatg	aacaggtgaa	acaagttttg	360
caaatatctg	aggaagccaa	ttttgaaaaa	accaaggett	taatccagtg	tgaccagttg	420
aggaaggagc	tggagaggca	ggeggagega	cttgaaaaag	aacttgcatc	tcagcaagag	480
aaaagggcca	ttgagaaaga	catgatgaaa	aaggaaataa	cgaaagaaag	ggagtacatg	540
ggatcaaaga	tgttgatctt	gtctcagaat	attgcccaac	tggaggccca	ggtggaaaag	600
gttacaaagg	aaaagatttc	agctattaat	caactggagg	aaattcagag	ccagctggct	660
tctcgggaaa	tggatgtcac	aaaggtgtgt	ggagaaatgc	gctatcagct	gaataaaacc	720
aacatggaga	aggatgaggc	agaaaaggag	cacagagagt.	tcagagcaaa	aactaacagg	780
gatcttgaaa	ttaaagatca	ggaaatagag	aaattgagaa	tagaactgga	tgaaagcaaa	840
caacacttgg	aacaggagca	gcagaaggca	gccctggcca	gagaggagtg	cctgagacta	. 900
acagaactgc	tgggcgaatc	tgagcaccaa	ctgcacctca	ccagacagga	aaaagatagc	960
attcagcaga	gctttagcaa	ggaagcaaag	gcccaagccc	ttcaggccca	gcaaagagag	1020
caggagctga	cacagaagat	acagcaaatg	gaggcccagc	atgacaaaac	tgaaaatgaa	1080
	tgctgacctc					1140
acattagcca	agaaactgga	acaaatctct	caaaaaacca	gatctgaaat	agctcaactc	1200
agtcaagaaa	aaaggtatac	atatgataaa	ttgggaaagt	tacagagaag	aaatgaagaa	1260
ttggaggaac	agtgtgtcca	gcatgggagg	agtacatgag	acgatgaagc	aaaggctaag	1320
gcaggtggat	aagcacaggc	aggccacagc	ccaggaggtg	gtgcaggtcc	ccagaagcag	1380
gaccngcttc	ttccnggaga	gggagggnet	gtcggaagag	gtgggnccgn	cttggggncc	1440
	gnatnencaa					1500
	ggngnttttt				caacgnaccc	1560
acggcctncc	cggnntgaaa	cccccnccc	tgagggggg	ttntccccc		1609

<210> 63 <211> 615

<212> DNA <213> Homo sapiens

4400> 63
catoctatoc egistyagtgg aattogooge tgactgetag ggtgccacce gagetgetag 6
ctgetgcegg ethethecae acaggccate aggacaaggt gaggtgette ttetgetatg 120
ggggcettea gstectgaag eggtggaag acocetgaac ggacqatyce aagteggtee
ceagctgtea gttectgete eggteaaaag gaagagate tgecagagag 240
ctcactocca getgetggge tettgtggace egtgggaaga acoggaagae goagccoctg 300
tgggcccette egtectgge tettgggace ctgagtgee cacacccaga gagagaggte 360
agtctgaaag tgcccaagaag ccaggagagg teagtccage egtggaggagg 150
gggttettga gecccaagaag gcagaggagg tggaaggagg 150
gggttettga gccccaagaa gcagaggagg 480

gggttcttga gccccagga gccaggagt tggaagogca gctgcggcgg ctgcaggag 480 agaggacgtg caaggtgtgc ctggaacogc ccgtgtccat cgtctttgtg ccgtgcggc 540 acctggtctg tggctgagtg tgccccggc ctgcagctgt gccccatctg gcagaagccc 600

ccgtccogca googg 615

<210> 64 <211> 839

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(839)
<223> n = a,t,c or g
```

<400> 64 aagaatgtet ggaagagatg gaagaaaagg ttttttgtat tggtgcaqqt cattcaqtac 60 acgtttgcca tgtgcagtta tcgggagaaq aaaqcqqaqc ctcaggaact tctacaattg 120 gatggctaca ctgtggatta caccgacccc cagccaggtt tggagggtgg ccgagccttc 180 ttcaatgctg tcaaggaggg agacaccgtg atatttgcca gtgacgatga acaagaccgc 240 atcetgtggg tecaqqeeat qtateqqqee acqqqqcaqt cacacaagee tqtqccqccq 300 acccaagtee agaaactcaa cqccaagqqa qqaaatgtac ctcagctgga tgcccctate 360 teteaatttt aegeagatag ageteaaaaa eatggcatgg atgaatttat etettecaae 420 coctgtaact ttgaccacgc ttccctcttt gagatggtac aacgccttac tttggatcac 480 agacttaatg attoctattc ttgcctgggc tggttcagtc ctggccaggt gtttgtacta 540 gacgagtatt gegecegaaa tggagteegg gggtgteace gacatetetg etaceteaga 600 gacttgcttg aacgggcaga aaatggcgcc atgatcgacc ccaccettnt tcactacagc 660 tttgccttct gtgcatccca tqtccatqqq aacaqqcctq atqqaattqq qaactqttqa 720 ctgttgaaga aaaqqaacqt tttttqaaqq aaatcaaaaq aqqaqqnttc cqnaqttctq 780 ctaagaaaaa tcaggttaca acattttagg naattgettt teccatttgg gtegaacet 839

<210> 65 <211> 1678 <212> DNA <213> Homo sapiens

<400> 65 caagcagctg atcgtgctgg gaaacaaagt ggacctcctg ccccaggatg ctcctggcta 60 ceggeagagg etgegggage gaetgtggga ggaetgtgce egegeegge teetgetgge 120 ccctqqccac caagggccac aqcgccccgt caaggacgag ccacaggacg gggagaatcc 180 gaatcogceg aactggtccc gcacagtggt cagggacgtg cggctgatca gcgccaagac 240 cggctatgga gtggaagagt tgatctctgc ccttcagcgc tcctggcgct accgtgggga 300 egtetaetta gtgggegeca ecaacgeegg caaatecaet etetttaaca egeteetgga 360 gtecgattac tgcactgcca agggctccga ggccatcgac agagccacca tctccccttg 420 gccaggtact acattaaacc ttetgaagtt teetatttge aacccaacte ettacagaat 480 gtttaaaagg catcaaagac ttaaaaaaga ttcaactcaa gctqaaqaaq atcttagtqa 540 gcaagaacaa aatcagctta atgtcctcaa aaagcatggt tatgtcgtag gaagagttgg 600 aaggacatto ttgtattoag aagaacagaa ggataacatt cootttgagt ttgatgotga 660 ttcacttgcc tttgacatgg aaaatgaccc tgttatgggt acacacaaat ccaccaaaca 720 agtagaattg actgcacaag atgtgaaaga tgcccactgg ttttatgaca cccctggaat 780 tacaaaagaa aattgtattt taaatettet aacagaaaaa gaagtaaata ttgttttgcc 840 aacacagtee attgttccaa gaacttttgt gettaaacca ggaatggtte tgtttttggg 900 tgctataggc cgcatagatt tcctgcaggg aaatcagtca gcttggttta cagtcgtggc 960 ttccaacate ctccctgtge atateacete cttggacagg geagacgete tgtatcagaa 1020 gcatgcaggt catacgttac tccagattcc aatgggtgga aaagaacgaa tggcaggatt teeteetett gttgetgaag acattatgtt aaaagaagga etgggggcat etgaagcagt 1140 ggccgacatc aagttttcct ctgcaggttg ggtttcagta acacctaatt ttaaggacag 1200 actgeatete egaggetata cacetgaagg aacagttttg accgteegge eccetetett 1260 gccatatatt gttaacatca aaggacagcg catcaagaaa agtgtggcct.ataaaaccaa 1320

gaagcctcct	tcccttatgt	acaacgtgag	gaagaagaaa	ggaaagataa	atgtatgaga	1380
ccgaccttgt	tcactccaga	tattaactgt	attgaacaca	acaaaataca	ttgaatttgt	1440
attaaacata	taacgcataa	ataaagctcc	cattettace	cttaaaaata	aaaggagaat	1500
gaaaaaaaaa	gatgccaata	ggcatatacg	tggttttggg	tattccgggg	tettecegtg	1560
gtctgttcac	tttgcggtgg	tggtgatata	ttaggcagtc	ggggcgcctg	atgtacgcct	1620
tcttatagag	gtacatggtt	ggatgcagcg	tettgacgtg	ggattcgctt	tattcqcc	1678

<210> 66 <211> 1888 <212> DNA <213> Homo sapiens

<400> 66

<4002	0.0					
tccacggtgg	catccatgat	gcatcgtcag	gagactgtgg	agtgtttgcg	caagttcaat	60
gcccggagaa	aactgaaggg	tgccatcctc	acgaccatgo	ttgtctccag	gaacttctca	120
gctgccaaaa	gcctattgaa	caagaagtcg	gatggcggtg	tcaagccaca	gagcaacaac	180
aaaaacagtc	tcgtaagccc	agcccaagag	cccgcgccct	tgcagacggc	catggagcca	240
caaaccactg	tggtacacaa	cgctacagat	gggatcaagg	gctccacaga	gagetgeaac	300
accaccacag	aagatgagga	cctcaaagct	gccccgctcc	gcactgggaa	tggcagctcg	360
gtgcctgaag	gacggagctc	ccgggacaga	acagccccct	ctgcaggcat	gcagccccag	420
cettetetet	gctcctcagc	catgcgaaaa	caggagatca	ttaagattac	agaacagctg	480
attgaagcca	tcaacaatgg	ggactttgag	gcctacacga	agatttgtga	tccaggcctc	540
acttcctttg	agcctgaggc	ccttggtaac	ctcgtggagg	ggatggattt	ccataagttt	600
tactttgaga	atctcctgtc	caagaacagc	aagcctatcc	ataccaccat	cctaaaccca	660
cacgtccacg	tgattgggga	ggacgcagcg	tgcatcgcct	acatccgcct	cacccagtac	720
	agggtcggcc					780
cccgtcggga	atggcaagtg	gctcaatgtc	cactatcact	gctcaggggc	cccctgcccg	840
caccgctgca	gtgagctcag	ccacaggggc	ttttaggaga	ttccagccgg	aggtccgaac	900
cttcgcagcc	agtggctctg	gagggcctga	gtgacagcgg	ccagtcctgt	ttgtttgaag	960
gtttaaaaca	attcaattac	aaaagcggca	agcagccaat	gcacgcccct	gcatgcagcc	1020
	cccttcgtgt					1080
aaaaaaaag	aaaaaaagat	tgtttaaaaa	aaaaaggaat	ccataccatg	atgcgtttta	1140
aaaccaccga	cagcccttgg	gttggcaaga	aggcaggagt	atgtatgagg	tccatcctgg	1200
catgagcagt	ggctcaccca	ccggccttga	agaggtgagc	ttggcctctc	tggtccccat	1260
ggacttaggg	ggaccaggca	agaactctga	cagagetttg	ggggccgtga	tgtgattgca	1320
	tggcctgctt					1380
gegeetagaa	tggggctgat	gagaacatcg	tgaccatcag	acctacttgg	gagagaacgc	1440
agagetecca	gcctgctgtg	gaggcagctg	agaagtggtg	gcctcaggac	tgagageceg	1500
gacgttgctg	tactgtcttg	tttagtgtag	aagggaagag	aattggtgct	gcagaagtgt	1560
acccgccatg	aagccgatga	gaaacctcgt	gttagtctga	catgcactca	ctcatccatt	1620
tctataggat	gcacaatgca	tgtgggccct	aatattgagg	ccttatccct	gcagctagga	1680
gggggagggg	ttgttgctgc	tttgcttcgt	gttttcttct	aacctgggca	aggagagagc	1740
	gcaaggetee					1800
tggaccatct	ttgtctttgc	cttttcacgg	tagggtcccc	atgctgaccc	tcatcttggg	1860
	ttgccaaagt					1888

<210> 67 <211> 1712 <212> DNA

<213> Homo sapiens

<400> 67 ctttacccaa gaatgtggta ttcgtgcttg acagcagtgc ttctatggtg ggaaccaaac 60 teeggeagac caaggatgee etetteacaa tteteeatga ceteegacee caggacegtt 120 teagtateat tggattttee aaceggatea aagtatggaa ggaccaettg atateagtea 180 etecagacag cateagggat gggaaagtgt acatteacca tatgteacce actggaggca 240 cagacatcaa cggggccctg cagagggcca tcaggctcct caacaagtac gtggcccaca 300 gtggcattgg agaccggaga gtgtccctca tcgtcttcct gacggatggg aageccacgg 360 toggggagac gcacaccete aagateetea acaacaceeg agaggeegee egaggeeaag 420 tetgcatett caccattggc ateggcaacg acgtggactt caggetgetg gagaaactgt 480 cgctggagaa ctgtggcctc acacggcgcg tgcacgagga ggaggacgca ggctcqcagc 540 tcatcgggtt ctacgatgaa atcaggaccc cgctcctctc tgacatccgc atcgattatc 600 cccccagete agtggtgcag gccaccaaga ccctgttccc caactactte aacggctcgg 660 agatcatcat tgcggggaag ctggtggaca ggaagctgga tcacctgcac gtggaggtca 720 cegecageaa cagtaagaaa tteateatee tgaagacaga tgtgcetgtg eggceteaga 780 aggcagggaa agatgtcaca ggaagcccca ggcctggagg cgatggagag ggggacacca 840 accacatoga gogtototgg agotacotoa ccacaaagga gotgotgago tootggotgo 900 aaaqtgacga tqaaccggag aaggagcggc tgcggcagcg ggcccaggcc ctggctgtga 960 getaccgett ceteactece tteaceteca tgaagetgag ggggceggte ccaegcatgg 1020 atggcctgga ggaggcccac ggcatgtcgg ctgccatggg acccgaaccg gtggtgcaga 1080 gcgtgcgagg agctggcacg cagccaggac ctttgctcaa gaagccatac cagccaagaa 1140 ttaaaatctc taaaacatca gtggatggtg atccccactt tgttgtggat ttccccctga 1200 gcagactcac cgtgtgcttc aacattgatg ggcagcccgg ggacatcctc aggctggtct 1260 ctgatcacag ggactctggt gtcacagtga acggagagtt aattggggca cccgccctc 1320 caaatggcca caagaaacag cgcacttact tgcgcactat caccatcctc atcaacaagc 1380 cagagagate ttatetegag ateacacega geagagteat ettggatggt ggggacagae 1440 tggtgetecc ctgcaaccag agtgtggtgg tggggaqctg ggggetggag gtgtecgtgt 1500 ctgccaacge caatgtcacc gtcaccatcc agggetccat agectttgtc atcetcatcc 1560 acctetacaa aaageeggeg eeetteeage gacaceacet gggtttetac attgecaaca 1620 gegagggeet ttecagcaac tgcagggtet tetgtgagte tgqcatectq attcaggaac 1680 tgacccagca gtccgtggca gttgctggtc ga 1712

<210> 68 <211> 839 <212> DNA

<213> Homo sapiens

gtttttttctc gagcaggtta gccaatatac ctttgctatg tgcagttata gagaaaagaa gtctgaacca caagaattaa tgcagcttga aggctatact gtggattata ccgatccca 120 cccaggcett cagggtggtt gtatgttett taatgetgtt aaagaaggag atactgtaat 180 ctttgccagt gatgatgaac aggacagaat attatgggtt caagccatgt atagggccac 240 aggicaatca tataaaccag ticctgcaat tcaaacccag aaactgaatc ctaaaggagg 300 aactetecat geagatgete agetttatge agategtttt cagaaacatg gtatggatga 360 gtttatttct gcaaacccct qcaagcttga tcatqccttc ctttttagaa tactccagag 420 geagactttg gateacagae tqaatgatte etattettge ttgggatggt ttagecetqg 480 ccaagtettt gtgttagatg agtactgtge ccgttatggt gtgagagget gtcacagaca 540 tetetgetac ettgeagaac tgatggaaca tteagaaaat ggtgetgtea ttgaccetac 600 cetgetecat tacagetttg cattetgtge etetegatgt geaeggeaac aggeetgatg 660 gaattgggac tgtttcagtg gaagaaaaag aaagatttga ggagataaaa gagagactct 720 cttccctttt agaaaatcag ataagccatt tcagatactg ttttcccttt ggacgacctg 780 aaggtgetet aaaagetaca ettteattae ttgaaagggt tttaatgaaa gatattgee 839

```
<210> 69
     <211> 801
     <212> DNA
     <213> Homo sapiens
     <220s
     <221> misc feature
     <222> (1)...(801)
     \langle 223 \rangle n = a,t,c or q
     <400> 69
agacgggetg etccatgagg tgetgaacgg getectagat egecetgaet gggaggaage
                                                                      60
tgtgaagatg cctgtgggca tcctcccctg cggctcgggc aacgegetgg ccggaqcagt
                                                                     120
gaaccagcac gggggatttg agccagccct gggcctcgac ctgttgctca actgctcact
                                                                     180
gttgctgtgc cggggtggtg gccacccact ggacctgctc tecgtqacgc tgqcctcggq
                                                                     240
ctcccgctgt ttctccttcc tgtctgtggc ctggggcttc gtgtcagatg tggatatcca
                                                                     300
gagegagege tteagggeet tgggeagtge cegetteaca etgggeaegg tgetgggeet
                                                                     360
egecacactg cacacetace geggacgeet etectacete ecegecactg tggaacetge
                                                                     420
ctegeccacc cetgeccata geetgeeteg tgecaagteg gagetgaeee taaccecaga
                                                                     480
cocagococg cocatggood actoaccoct goatcqttct gtgtctgacc tgcctcttcc
                                                                     540
cotgococaq cotgocotqq cototoctqq otogocaqaa cocotqocca toctqtccct
                                                                     600
caacggtggg ggcccagagc tggctgggga ctggggtggg gctggggatg ctccactgtc
                                                                     660
cocquacca caqctqtctt cacctcctqq ctctcccaaq qcaqctctac actcacccqt
                                                                     720
ctaaaaaaag gcccccgtaa ttcccccccga catgnnnccc cgctctagag gatcaagcaa
                                                                     780
ctacqcqqcq qctcacqacq c
                                                                     807
     <210> 70
     <211> 531
     <212> DNA
     <213> Homo sapiens
     <400> 70
agaagggtgt cccaacettg ctcatggcag ctggcagett ctatgacatt ctggccatca
                                                                     60
ctggcttcaa cacatgcttg ggcatagcct tttccacagg ctctactgtc tttaatgtcc
                                                                     120
tcagaggagt tttggaggtg gtaattggtg tggcaactgg atctgttctt ggatttttca
                                                                     180
ttcagtactt tccaagccgt gaccaggaca aacttgtgtg taagagaaca ttccttgtgt
                                                                     240
tggggttgtc tgtgctagct gtgttcagca gtgtgcattt tggtttccct ggatcaggag
                                                                    300
gactgtgcac gttggtcatq gctttccttq caqqcatqqq atqqaccaqc qaaaaqqcaq
                                                                    360
aggttgaaaa gataattgca gttqcctqqq acatttttca qccccttctt tttqqactaa
                                                                    420
```

ttgggagcag aggtatetat ttgcatetet cagaccagaa actgtaggce tttgtgttgc

caccytagge atttgcagta ttgatacgaa tttttgacta cattttctga a

480

531

<210> 71 <211> 540 <212> DNA

<213> Homo sapiens

						•
<400>	71					
		ggt a a t gg a g	agga at agga	+	2 - 2 - 2 - 2 + 2 + 2 + 2	60
		ggtaatggag				
		ccttccctca				120
		ggtgttgatg				180
		tatgaatata				240
					cggacccctg	300
tgacattcac	agaagttcag	aatgtctgag	atgetetgea	ggctacctta	teteegtetg	360
cagetacace	tccagtgatc	acaatcagtg	ctacgctggc	acaqceagee	tggccctgct	420
ctggattgga	ggcatcetca	agggctgctt	actatagaag	cagtttcgct	ggaccgagag	480
gagccactgg	aattttgggt	actgggcctt	atggtcaccc	gagaatagga	atgactacta	540
3-333				3339333		
<210>	72					
<211>	428					
<212>						
	Homo sapier	0.5				
(213)	nomo sapre	.10				
<400>	72					
cqqacqcqtc	cacccacaca	teegeeeacg	catccactaa	aaatttctgt	ggaactccat	60
		tccaaactgt				120
		tttattattt				180
		ttccaggtaa				240
		tttggtactt				300
		ctaatgttga				360
agcatgacac	acacagteec	tgccctgatg	gageteatag	actagtgaag	gaatagggct	420
ctatgacc						428
<210>						
<211>						
<212>	DNA					
<213>	Homo sapier	າຣ				
	_					
<400>						
		tcaaagagat				60
		tetegtatee				120
ttgtgaagtc	catcagatga	tegggaacta	catgtqqqac	cccaccacca	acaaqtcctt	180
		acagcctaat				240
		ccaaaaggaa				300
auttanastt	ctacatata-	an again agt	streetsess	tataaaaa	taggergrad	360
		gacccaccta				
		teagegatge				420
		agcgcattga				480
tecgcagagg	aaagatgccc	tcaaggctgg	tagacactgt	cctgaagtac	atgaccaagt	540

ggatecagga geggggeetg caggacegee tgaacgteat tatt

584

<210> <211> <212> <213>	348	លខ				
gaaaatcaca ccggaacaag ggacattgag cctgcttgaa	tttcatccaa gaagaggtga tggaccctga attcacacgc	aaaggagtat tgccgaagtc tggctcctga ctccatggca	agcacaacag gatgcagccc agggtgctca gggaagttgc	tatctagatt catctaccac gtctccttgg ttttggttgc	tggctaattc tgacagtagc atcttcatgt tgattaaggt ctggctgggt	60 120 180 240 300 348
<210> <211> <212> <213>	365	ns				
gacctgegte tgaatgecag gcatcageca tetggtggee	75 ggggatgtca ggccactgca agccaccoc ggacatataa ggagtgatat atgaccaacg	tttttggegg acatgacagg cctccatcct tctgccataa	ctactgtacc gccccggtgt aatccctatg acggcgagtc	atgaacagca gaggagcacg ctgtagctgc caaggggcta	aaatgatgcc tetteagcca tgetgetggt agggetteca	60 120 180 240 300 360 365
<210> <211> <212> <213>	700	es				
tttacagtca atttctttct ccgttctgaa gatattggca	76 cagcaccaac tctcaatctc ctctctctct gagataacag cctgcaaaga gaaatcttta	tactaaaaca tttgctcctt tatagcaaca gaaacaacca	aaaatcacat gegatgagge actetgeeac gtaacaggea	ecaacatgce atteatetet tgaaateetg geageageat	acctgacacc ccttgagcct ttctctgacc cagtattaat	60 120 180 240 300 360

acagtggacc	atgcaactag	ttgaggtgga	agacaatgga	ttgtctacaa	gccttttgaa	420
cagtggagaa	tgcagggcgt	tggctttagg	aagaggcaga	aatccaggca	gaacttgaac	480
gtttggaaag	agtcagaaat	cttcacatac	gtgagctgaa	aagaataaac	aatgaagata	540
attcacagtt	caaagatcac	ccaacattaa	atgaaagata	tttattactt	catctgcttg	600
gtagaggtgg	ctttagtgaa	gtgtataagg	taatgtatgg	tttattctgg	tttttttaca	660
ctaatgtagc	aaggatatag	gagtatgtgg	ttaagaagtg			700

<210> 77

<211> 426

<212> DNA

<213> Homo sapiens

<400> 77

ttgcctagca	catggcaggg	tgcagcgcct	gtctgaatgt	gtgaagagtt	cttagtgatg	60
ggtaaagggt	gttcctgtgt	gttttagatt	ctgctcagca	atcctcagat	gtggtggtta	120
aatgattcca	atcctgaaac	cgacaaccgt	caagaaagtc	cttcccagga	aaacattgac	180
cgagtgagtg	acaggccttt	gtgccctcag	cttggacagc	ctcgggtggg	gttgcttggg	240
gtaacctggg	tgaatcaggc	agcaggactg	ggggagtccg	tgctgaaacc	ttggctccca	300
ggetecaggt	gtaacctgcc	cacctcagag	gccacccacg	cagtaacaga	gggcagggga	360
ggcctccttg	gaaagcagga	aaactgggga	agtgtcagga	agttctcttt	aggtttgctg	420
cctttg						426

<210> 78

<211> 358 <212> DNA

<213> Homo sapiens

<400> 78

tttcgtgcta	tgttcttggc	tgttcaacac	gactgcagac	ccatggacaa	gagegeagge	60
agtggccaca	agagcgagga	gaagcgagaa	aagatgaaac	ggaccctttt	aaaagattgg	120
aagacccgtt	tgagctactt	cttacaaaat	tcctctactc	ctgggaagcc	caaaaccggc	180
aaaaaagca	aacagcaagc	tttcatcaag	taagttgaga	atcctgagct	tgcaaatatc	240
aatagttagc	tgctgaactg	aaaaggggaa	ctctgatgag	cgtaagctaa	catacagaac	300
ctctcttqca	gaccttctcc	tgaggaagga	cagetgtggt.	cagaagcatt	tgacgagg	358

<210> 79

<211> 322

<212> DNA

<213> Homo sapiens

WO 01/55455					PC 1/US00	/3301/
ctagagataa aagagcagtt ctgcattggg tctgcgcaaa	atttttccag ggaagaacat ttccaagcaa gaccgccctc	acttcgtttc agacgccaga tcatactcca gccgttggga	ttagatgcag cactccagtg gccaggccgt	aaatcaattc aacgagatgt tgcaccggta gacgtgaccg cccctcgctc	gtcagtggtc gttcacccaa acctccgact	60 120 180 240 300 322
\ <210> <211> <211> <212> <213>	310	ıs				
gatgatcaac aaactccata aatgaatcca	ccagaaaaca aagaattaaa aaaaatgcaa taactattct	acgegtaaca tatcatacag aaagettage	tagtatagtc gcagatatca gattttgggt	cacaaaaata aaaaagaata agccagacaa cggcttcaca catcatcgcc	cacgaaaaag tatcctggat tgttgcggat	60 120 180 240 300 310
<210> <211> <212> <213>	134	a s				
	catgggacta gcataatacc			caggetgaae gatgetatgg		60 120 134
<210> <211> <212> <213>	358					

<400> 82
ctctgggaga gaaagactaa tgggcaggat cocattactt cattggtaaa gatagtcgga
tactctctggtaa gaaagactaa tgggcaggat cocattactt cattggtaaa gatagtcgga
tactctctaata cctttaata cattgtat tacagttyat cagattacct ttacttgata
120
tgaattattt caacaatt caactagc
180

gtttaaaatt	cctcaaagaa	actggtcatg	gaacaccaat	ggaagaaata	cctgaggagg	240
aattatcaga	ggatgttgaa	cagattgatc	acgctgatag	ggagttgcgg	cgtggccaaa	300
acttgaggtg	caaaggaatt	catagattgc	ctactcatat	acaagtaggg	caaaatcg	358

<400> 83

<210> 83 <211> 723 <212> DNA <213> Homo sapiens

tacacacaca cacacacaca cacacacact cactetetea gaggagagaa aatattaaga 60 atogtgtatt ttacacaggt atocaaacat aaaaatactt tagaattgct tactgtatgg 120 acaggitata tggaatggag titgtagtat ccacattaac aaagcaagti tatatggact 180 ggttatgata ttagggatat gaattagaaa tggatgttgt tgcactcatt taaaatattt 240 tgcctctcac tttatcccca gttatagtgt ccttttgaat ttttctcaca cagtgctact 300 atatttcatg aactggtata taaacaaacc aaaattattt cttcaaatca agaacttatc 360 tacgaagggc gacgcttagt cttagaacct ggaaggctgg cacaacattt ccctaaaact 420 actgaggaaa accctatatt tgtagtaagc cgggaacctc tgaataccat aggattaata 480 tatgaaaaaa tttccctccc taaagtacat ccacqttatg atttagacgg ggatgctagc 540 atggctaagg caataacagg ggttgtgtgtt tatgcctgca gaattgccag taccttactg 600 ctttatcagg aattaatgcg aaaggggata cgatggctga ttgaattaat taaagatgat 660 tacaatgaaa ctgttcacaa aaagacagaa gttgtgatca cattgggatt tctggtatcc 720 aga 723

<210> 84 <211> 407 <212> DNA

<213> Homo sapiens

<400> 84

ggcacqsagga aaatgggacc caccgtotot occatotyce taccaggac otggggcgac facacaactca tggatgggg octgggactg atctcaggct ggggccgac agagaaggaa 120 gatcgtgctg atcgcctcaa ggcgggggggg tcaccacgcag ctgggtaaag aaatgggaa 180 cccgggaaga gggacctac gtgggaagaa tcagaaggaag atgtacataa gagtaagtgg 300 acaagatgtg tggatsagaa ggcgcctag tgctaaacaa acaataagga accgctcagg 300 tgtggggtg cctaatgggg agacgtggaa tatgtttggt ggcacggaag aaagtctaat 360 ggataatgtg tttaagaagga ctataaggag ctaataaggag cagtotaga ttaagtag ctaataaggag tatgtgaatgtggaa tatgtttggt ggcacggaag aaagtctaat 360 ggataatgtg tttaagaagga ctatagaag ctaagaagtc ctaatggg

<210> 85

<211> 342

<212> DNA

<213> Homo sapiens

atetacaegg atagacaage ggcaaettgg ategaettge	85 cgaaaattta agcetagaca tggagetget acteceagga catggtgact atacaatgga	gccgaaccag ggctcccgga cctcctgacg gctgcctcac	aggetteett tgaattteag gteetgaeta gattggageg	ttgtccaaga acctggggtt tactgtttac tgaacacctt	agaggatgga ctcagctcca tacccgttcc	60 120 180 240 300 342
<210> <211> <212> <212> <213>	420	ns				
cccctagcgg gccctggcca gcgccagccg cgaaagtggc cagccgcacc	86 gtttagcacc ttttaaccgc gtaggagcca tgcctcacca ctcgccatgt tgggtccgag gcacgctcga	teetgaeeag caaagegega ggteeaeegg ceagaeegge teategeege	tecegttgee ttageeteae eteegageag eageteeee ggeegeeaeg	gcaccccatc tgcatttcag cagcaagccc gcctacctga gccccgcaca	ttggaagtat gtacaggeeg ggteggaaag eceegeeeeg ggaaggegge	60 120 180 240 300 360 420
<210><211><211><212><212><213>	392	ns .				
cttttctgac cctcccacag	87 gagaaggegg acceteaaag tgacacetet etcetteaag	gtcagaaggt ctgacttctg	taaaggggca acctagggtt	gaaggcattc ccaccaccgc	ggaaagetee tteaateeea	60 120 180 240

<210> 88 <211> 332

<212> DNA

<213> Homo sapiens

gcaggggctt cctgagccga tggatggggc tt

gggtagatgg aatcotgagt gaggacaago tgactgtgag tggcctttga ctccaggaag

cctcgagect gggagaaccc tgttgtotaa gatcatctgg cttagggagg ggcttgaggt

300

392

360 -

atcatcttgt ggccagtatt agcagttgga ttataaaaga	88 taatgcatta gaaatagtca gatgctattt attttatgt tgacaagtgt tctcaaatac	taacattaaa tttcccttac tgttgttcta gtgtgtttct	gtttgggtat ctatcagact ttttgtctat ttttttcttt	agtagttagc ctttcaaaga tatgaattgt	atattttcat gaaaagaggg gacaaaacca	60 120 180 240 300 332
<210> <211> <212> <213>	535	ns				
gatttcagga ttacagcatc ttctttgagg tacctcagat tcacacaagc aaagcagcag aaatgtttg	89 gaaatacatg gacaagtatt tttttgcctt cttccatgace ttctccttga cttctgaaat tactacaga gaggaaaact aagcctttac	atctttaaat tetggeecat tecatggttt caggetecat tetggaatge gacecetegt aegaaeteae	ctaaatgggt acacagaggg actcccagat gaagaagaaa agtgaaactt acaagtgacg atacgttgtt	gcaattcatt aagcatacgc cacagcaaga agatcttgaa ctttacagga gtgagaagac tgaactgcac	aatgaaaaa acctcggata ctgttctgaa agttcaggcc agtagctagt tttaatagaa gagtacctca	60 120 180 240 300 360 420 480 535
<210> <211> <212> <213>	432	ns				
agcagcgtaa gatgacttat taatttctga actagtatag tgcttttcat	90 acccacgcgt tgggctgcat ctagaataat ggttecctt tttttatttc ctttaagata aaagcagtgg	tactagtgag gtagaagaga cattcttaga agcaaattat ctaaaccttt	tteettatgt attaaacatt attetttgat aacaccattg tcactcatgg	gagtgtgega gaatgggage ttttatattg tteteaagge eaatttttt	gcatatgctg ttaaattagt aattgagaga atggaaaatg tagctagcct	60 120 180 240 300 360 420

<210> 91

atatgggaga ag

432

<211> 780 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(780) <223> n = a,t,c or g

<400> 91

ccatgcatag gattaaactg aatgatcgaa tgacatttec cgaggaacta gatatgagta 60 cttttattga tgttgaagat gagaaatctc ctcagactga aagttgcact gacagtggag 120 cagaaaatga aggtagttgt cacagtgatc agatgagcaa cgatttctcc aatgatgatg 180 gtgttgatga aggaatctgt cttgaaacca atagtggaac tgaaaagatc tcaaaatctg 240 gactigaaaa gaatteetig atetatgaac tittetetgt tatggiteat tetggqaqeq 300 ctgctggtgg tcattattat gcatgtataa agtcattcag tgatgagcag tggtacagct 360 tcaatgatca acatgtcagc aggataacac aagaggacat taagaaaaca catggtggat 420 cttcaggaag cagaggatat tattctagtg ctttcgcaag ttccacaaat gcatatatgc 480 tgatctatag actgaaggat ccaqccaqaa atqcaaaatt tctaqaagtq qatqaatacc 540 cagaacatat taaaaacttg gtgcaqaaag aqaqaqaqtt qqaaqaacaa qaaaaqaqac 600 aacgagaaat tgagcgcaat acatgcaaga taaaattatt ctgtttgcat cctacaaaac 660 aagtaatgat ggaaaantaa attgaggtto ataaggataa gacattaaag gaagcagtag 720 asatggetta taagatgatg gatttagaag aggtaatace cetggattge tgteggettg 780

<210> 92 <211> 867 <212> DNA <213> Eomo sapiens

<400> 92

ctcagtcatg ccagtgcctg ctctgtgcct gctctgggcc ctggcaatgg tgacccggcc 6 Q tgectcageg gececcatgg geggeccaga actggcacag catgaggage tgaccetget 120 cttccatggg accetgcage tgggccagge cetcaacggt gtgtacagga ccacggaggg 180 acggctgaca aaggccagga acagcctggg tetetatggc cgcacaatag aactcctggg 240 gcaggaggtc agccggggcc gggatgcagc ccaggaactt cgggcaagcc tgttggagac 300 tcagatggag gaggatattc tgcagctgca ggcagaggcc acagctgagg tgctggggga 360 ggtggcccag gcacagaagg tgctacggga cagcgtgcag cgctagaag tccagctgag 420 gagegeetgg etgggeeetg eetacegaga atttgaggte ttaaaggete acgetgacaa 480 gcagagccac atcctatggg ccctcacagg ccacqtgcag cggcagaggc gggagatggt 540 ggcacagcag categgetge gacagateca qqaqaqaete cacacageqq eqeteccage 600 ctgaatctgc ctggatggaa ctgaqqacca atcatqctqc aaggaacact tccacqcccc 660 gtgaggcccc tgtgcaggga ggagctgcct gttcactggg atcagccagg gcgccgggcc 720 ccacttttga gcacagagca gagacagacg caggegggga caaaggcaga ggatgtagcc 780 ccattgggga ggggtggagg aaggacatgt accetttcat gcccacacac ccctcattaa 840 agcagagtca aggcatctca aaaaaaa 867

<210> 93 <211> 690

<212>	DNA	
2272×	Womo	caniano

<400> 93

teggaacege cetgaattae	ctctgtcgac	ccacgcgtcc	ggggaaacgc	ttctacagga	61
tatggaaaaa tttggctcga	tgatgtttcc	tgtgatggag	atgagtcaga	tetetggtea	120
tgcaggaaca gtgggtgggg	aaataatgac	tgcagtcaca	gtgaagatgt	tggagtgatc	180
tgttctgatg catcggatat	ggagctgagg	cttgtgggtg	gaagcagcag	gtgtgctgga	240
aaagttgagg tgaatgtcca	gggtgccgtg	ggaattctgt	gtgctaatgg	ctggggaatg	300
aacattgctg aagttgtttg	caggcaactt	gaatgtgggt	ctgcaatcag	ggtctccaga	360
gagecteatt teacagaaag	aacattacac	atcttaatgt	ccaattctgg	ctgcgctgga	42
ggggaagect etetetggga	ttgtatacga	tgggagtgga	aacagactgc	gtgtcattta	480
aatatggaag caagtttgat	ctgctcagcc	cacaggcagc	ccaggctggt	tggagctgat	540
atgecetget etggaegtgt	tgaagtgaaa	catgcacaca	catggcgctc	tgtctgtgat	600
tetgatttet etetteatge	tgccaatgtg	ctgtgcagag	aattaaactg	tggagatgcc	660
atatetettt etgtgggaga	teactttggg				690

<210> 94 <211> 948

<212> DNA

<213> Homo sapiens

<400> 94

cgagtggcga ggttcatcat ggaggcagac ggagtctcgc tctgttggcc aggctggagt quaggagat gatetegget cactgcaace tecqtetece ggactaaage aattateett 120 ceteacgett cegagtaget ggaattacag gtgteaaget agggatgegg tecatteeca 180 ttgccactgc ttgcaccatt taccataagt tettttgcga gaccaacctg gacgcctatg 240 accettacet gattgecatg tetteaattt acttggeegg caaagtggaa gageageace 300 tgcggactcg tgacatcatc aatgtgtcca acaggtactt taacccaagc ggtgagcccc 360 tggaattgga etecegette tgggaaetee qggacageat egtqeagtgt qaqettetea 420 tgctgagagt tctgcgcttc caggtctcct tccagcatcc acacaagtac ctgctccact 480 acctggttte cetecagaac tggctgaacc gccacagetg gcageggacc cetgttgeeg 540 teaccgcetg ggecetgetg egggacaget accatgggge getgtgeete egettecagg 600 cccagcacat egeogtggcg gtgctctacc tggccctgca ggtctacgga gttgaggtgc 660 cogcogaggt cgaggotgag aagcogttgg gtggcagatt tatgccatgg acacagagat 720 cccctaaggt cctggcccag gcctgcccaa agagaagcca catctgcgtt tgtcctttga 780 gaggactttg actacaatac aggcatgaca tcaatgaaag gaaagtcatg aaatcgatga 840 gactgaatcc ctacggattt cttaaaaqcc agatttgtag ggagaatgaa tgtgcaacgt 900 ggctgaaatc tattttgtgt aataaaaggt gatacaagtc aaaaaaaa 948

<210> 95

<211> 541

<212> DNA

<213> Homo sapiens

11 0 01/20422					1 € 17 € 500	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				*		
<400>						
	aagaaaagac					60
ggagggggg	tgcttctggg acgccgtaca	tagatagaat	ttaggggtag	tattantan	aaggugaagg	120 180
	cctatctctt					240
	ccttacagaa					300
	ttcctgggta					360
	cccagtgagt					420
addaddada	gctcagggtt	aggaagggt	taaccacaaa	tgaagaggt	tctattaaca	480
	ccgcaaacgc					540
t				-300000000	3033093090	541
						341
<210>	96					
<211>	603					
<212>						
	Homo sapier	ıs				
	-					
<400>	96					
cagecegtaa	ggatgatcta	cctccaaata	tgagattcca	tgaggagaag	aggctggact	60
ttgaatggac	actgaaggca	gggtgagaaa	aaggctagcc	ctcgaagtga	aataaggget	120
	agaatgatga					180
	gtcctagggc					240
teetggaact	gcctagaaga	ctttgatcag	atcttctggg	gccagaagag	tgccctggct	300
ggtcagtggt	teccegaggt	ctccataatc	ccttaatggc	ccctctggat	gactcatcac	360
	cccccgtaac					420
	agaatgaaaa					480
	ttttggagaa					540
	agaacgttcg	ccagtgctgg	caggatgatg	agttgttcag	cttccctcgt	600
gcc						603
<210>	07					
<211>						
<212>						
	Homo sapier					
12237	nono saprer	10				
<400>	97					
tettteagea	aggtgggggc	aagcagaatg	cctcccagga	tttcacacct	gagecetgee	60
	gagaaaacac					120
ctcgggaaac	aaacaggatc	ttctctgccc	tgctccagtc	gagttggcct	gacccgcttg	180
gatcagtgac	catttgctgg	cagacagggg	agagcagctt	ccagcctggg	tcagaagggg	240
tgggcgagcc	cctcggcccc	tcacceteca	ggctgctgtg	agagtgtcaa	gtgtgtaagg	300
gcccaaactc	aggttcagtg	cagaaccagg	tcagcaggta	tgcccgcccg	tacgttaagg	360
gggccctcta	aaccccttgc	ctggcctcac	ctggccagct	cacccctttt	gggtgtaggg	420
gaaaagaatg	cctgaccctg	ggaaggetee	ctggtagaat	acaccacact	tttcaggttg	480

ttgcaacaca ggtcctgagt tgacctctgg ttcagccaag gaccaaagaa ggtgtgtaag

tgaagtggtt ctcagtcccc agacatgtgc ccctttgctg ctggctacca ctcttcccca

gagcagcagg ccccgagccc cttcaggccc agcactgccc cagactcgct ggcactcagt

540

600

660

teceteatet	gtaaaggtga	agggtgatgc	aggatatgcc	tgacaggaac	agtctgtgga	720
tggacatgat	cagtgctaag	gaaagcagca	gagagagacg	ctccggcgcc	ccagccccac	780
tatcagtgtc	cagcgtgctg	gttccccaga	gcacagetea	gcatcacact	gacactcacc	840
ctgccctgcc	cctggccaga	gggtactgcc	gacggcactt	tgcactctga	tgacctcaaa	900
gcactttcat	ggctgccctc	tggcagggca	gggcagggca	gtgacactgt	aggagcatag	960
caagccagga	gatggggtga	agggacacag	tcttgagctg	tccacatgca	tgtgactcct	1020
caaacctctt	ccagatttct	ctaagaatag	cacccccttc	cccattgccc	cagcttagcc	1080
tcttctccca	ggggagctac	tcaggactca	cgtagcatta	aatcagctgt	gaategteag	1140
ggggtgtctg	ctagcctcaa	cetectgggg	caggggacgc	egagaeteeg	tgggagaagc	1200
tcattcccac	atcttgccaa	gacagccttt	gtccagctgt	ccacattgag	tcagactgct	1260
cccggggaga	gagccccggc	ccccagcaca	taaagaactg	cagccttggt	actgcagagt	1320
ctgggttgta	gagaactctt	tgtaagcaat	aaagtttggg	gtgatgacaa	atgttaaaaa	1380
aaaaa						1385

<210> 98 <211> 2191

<212> DNA <213> Homo sapiens

<400> 98

accaccaccc	gtgcgggggg	atatetgage	catttctctg	tgggcttttg	tttttcaaag	60
actgggcagg	ttgttgttga	ggtgtgtgtg	ggctgccacg	attttgtgga	agtataatac	120
tttgtcatta	tgagatgtcg	tctctcggtg	cctcctttgt	gcaaattaaa	tttgatgact	180
tgcagttttt	tgaaaactgc	ggtggaggaa	gttttgggag	tgtttatcga	gccaaatgga	240
tatcacagga	caaggaggtg	gctgtaaaga	agctcctcaa	aatagagaaa	gaggcagaaa	300
tactcagtgt	cctcagtcac	agaaacatca	tccagtttta	tggagtaatt	cttgaacctc	360
ccaactatgg	cattgtcaca	gaatatgctt	ctctgggatc	actctatgat	tacattaaca	420
gtaacagaag	tgaggagatg	gatatggatc	acattatgac	ctgggccact	gatgtagcca	480
aaggaatgca	ttatttacat	atggaggete	ctgtcaaggt	gattcacaga	gacctcaagt	540
caagaaacgt	tgttatagct	gctgatggag	tattgaagat	ctgtgacttt	ggtgcctctc	600
ggttccataa	ccatacaaca	cacatgtcct	tggttggaac	tttcccatgg	atggctccag	660
	gagteteeet					720
tctgggagat	gctaacaagg	gaggtcccct	ttaaaggttt	ggaaggatta	caagtagctt	780
ggcttgtagt	ggaaaaaaac	gagagattaa	ccattccaag	cagttgcccc	agaagttttg	840
ctgaactgtt	acatcagtgt	tgggaagctg	atgccaagaa	acggccatca	ttcaagcaaa	900
	cctggagtcc					960
	caaggcggag					1020
aactagagcg	tgatctcagc	tttaaggagc	aggagettaa	agaacgagaa	agacgtttaa	1080
	gcaaaagctg					1140
	tgaggagtct					1200
tgtcatgtca	gatcacagca	acaagtaacg	gggagggcca	tggcatgaac	ccaagtctgc	1260
aggccatgat	gctgatgggc	tttggggata	tettetcaat	gaacaaagca	ggagctgtga	1320
	gatgcagata					1380
	gaagaaagtc					1440
gtgacgatga	tgatgatgat	gacggtgagg	aggagtataa	tgacatggat	aatagtgaat	1500
	agcaaagtaa					1560
tatctcagtc	tgtacaaaaa	cagtaaggag	gcagaaagcc	aagcactgca	tttttaggcc	1620
	acatgaccgt					1680
	gaattaagcc					1740
	tgtgatccta					1800
	tgaatacttt					1860
	tacattttga					1920
	catactttt					1980
	ctagtaagac					2040
gcacacacct	gtagtcccag	atacttggga	ggccaaggca	ggaggattgc	ttgagaccta	2100
gcaatcagtc	agggctgcag	tgagccatga	tggcaccact	gcactctagc	ctgggcaaga	2160

aacaagatc	ctqtctcaaa	aaacagggaa	a	2191

<210>	99
<211>	335
<21.2>	DNA
<213>	Homo sapiens
<220>	
<221>	misc_feature
<222>	(1)(335)
<223>	n = a,t,c or g

<400> 99 ggcacgaggc tgaacttcag gtggatgatg agacaaaata gaccgatagg aatcgtctgg ctatatactc cttgttgcca ctgctgagtg actagactgg cccagagatc cgcggtgcac 120 atgotggcog otcotcocto agaaaaaaggo aatggcotaa atactgttta aatgacotga 180 ctcgatgctg tgggaaactg gctgctctgc tgcatgccgt gtgactgtca gtccaaccgt tacatttgcc acgttctcca cacgggggat agacgcaatg cgcccaggtc ccagttttct ttggaggcag cagetetege agggetgaat gttgn

<210> 100 <211> 348 <212> DNA <213> Homo sapiens

<400> 100 cctactctgg gggatcaacc agatettcat tecataactc gtgcttctcg tectaaatta tgtactagaa aaaattgtaa tcctcttact ataactgtcc atgaccctaa ttcaactcag 120 tagtattatg gcatgtcatg ggaattaaga ttttatatcc caggatttga tgttgggact 180 atgttcacca tccaaaaaat cctgqtctca tggaqcccac ccaaqccaat cqqqcttta 240 actgatctag gtgaccctat gttccagaaa ccccctaaca aagttgattt aactgttcct 300 ccaccattct tagtcataaa agatacactc caaaagttcg agaaaatc 348

<210> 101 <211> 416 <212> DNA <213> Homo sapiens

<400> 101 agectcaata atgtaacact geeccaageg aaaacagaaa aagattteat ecaactetge

60

240

300

335

taattaagca	agagaaactg	ggcacagttt	actgtcaggc	aagctctcct	120
tgattggtaa	taaaatgtct	gccatttctg	ttcacggtgt	gagtacctct	180
tgtaccacta	tgacatgaat	acagcatccc	tttctcaaca	gtaggatcag	240
ttaatgtcat	cccaccaatt	cccgttggtt	ctgaaaattg	gaataggtgt	300
gagatgacaa	cttgacttcc	ttggggactc	tgaatttccc	tggtcgaacg	360
cttttgagat	ggagtctcgc	tetgtegece	aggctggagt	gcagtg	416
	tgattggtaa tgtaccacta ttaatgtcat gagatgacaa	tgattggtaa taaaatgtot tgtaccacta tgacatgaat ttaatgtcat cccaccaatt gagatgacaa cttgacttoc	tgattggtaa taaaatgtot gocatttotg tgtaccacta tgacatgaat acagcatoco ttaatgtoat cocaccaatt cocgttggtt gagatgacaa cttgacttoc ttggggacto	tgattggtaa taaaatgtot gocatttotg ttoacggtgt tgtaccacta tgacatgaat acagcatocc tttotcaaca ttaatgtoat occaccaatt occgttggtt otgaaaattg gagatgacaa ottgacttoc ttggggacto tgaatttoco	taattaagoa agagaaactg ggoacagttt actgloaggo aagototoot tgattggtaa taaaatgoot gcoatttotg tocacggtog gagtacooto tgtaccacta tgacatgaat acagcatooc ttootcaaca gtaggatcag ttaatgtoat cocacaatt cocgttggtt otgaaaattg gaataggtgt gagatgoaca ottgactooc ttoggacto tgaatttooc tggtogaacg ottttgagat gagstocog totgtogooc aggotggagt goagtg

<210> 102 <211> 352

<212> DNA

<213> Homo sapiens

<400> 102

	aaaacaac aacagatgg				60
actaattetg aa	atcaccaa tatgtatct	g tgcttgggaa	atagaggcat	acacaggaat	120
	acactcac attcacact				180
actotoacto go	acteteae actacaceg	a gatgctcaca	cactcagcct	ccccatgccc	240
	tttgttaa tcataagaa				300
cccacagacc ca	gactgaag gtgataaaa	g agggtggctg	gettggggge	tg	352

<210> 103 <211> 702 <212> DNA

<213> Homo sapiens

<400> 103

ggggaagcat tggtggtatg tgtctgtgta agggtatccg cccacctgat tcttttttga accagtcttc atcatgtatc tccggactgg	tttcctcttt agaagcagag cctggtgagg gaacccagac ctggattcaa caacttactc cagtctttat tgctttgcac aaagaatctt	cctgctgagg atgagtctgt gctaattgtc cagttgactg cactegeggg gtcttcctgg cccttctcac agttgaagtt ctcacagtcs aggggtcctc agcagagtg	ctotggtcot tacccctgc caggaaccct cactgagtga coctccaggc atgaaccca ggacactcc ctaactccag taatctaacc	catggaacaa ctccaagtag tctacaaaaa gtaacatctt ttcataatts acceteccec caggeaccet ccctgctaga ctcacatgat	aagtgggcag aattactcot ctcagagcaa toctctctc aacccataac tctacccctg tgaatttcca atatgggctc gcttcaactc	60 120 180 240 300 360 420 480 540
		gtattgcggc			tteagggatg	660 702

<210> 104 <211> 689

<212> DNA

<213> Homo sapiens

<400>	104					
ggcaacatac	attgtggact	ttggcttcag	tacaacattc	agagagggc	agatgctgac	60
agctttttgt	ggcatgtacc	cctacgtggc	cccagaacgc	tecetgggee	aggeatgeea	120
gtgacccgcc	agggacatac	aaagcctcag	tgtcatactg	tatttcagga	atacagtagg	180
tagaagggcc	aggactttgc	cettttaete	agggaagcct	ccaaacttca	agaaaaaatt	240
ctcacaggaa	gatatcatgc	cccaccactt	cttgcccttc	aacttgactc	attaaaaaat	300
tactaatgct	gaacgccagg	aagtgtcctt	cactgtaact	gatgaaaaat	ccatgggtga	360
aaagtagcca	gaagatgcca	ctgataccat	acgaagagcc	actcctggac	caccccaaac	420
aatccagctc	atggtggcca	tgggatttca	ggccaagaac	atctctgtgg	caatcataga	480
aagaaaattc	aactatccca	tggccaccta	cctcatttta	gagcacacaa	aacaagagag	540
gaagtgetee	accatcagag	aactgtccct	tecteceggg	gttcccacct	ctccttcccc	600
atccactgaa	ctttccacct	tecetetete	actgatgcgg	gctcataggg	agccagcttt	660
taacgttcag	cctcccgaag	aaagccagg				689

<210> 105 <211> 776 <212> DNA

<213> Homo sapiens

<400> 105 agcaaagcag gagctggcca agctgatgcg gattgaggac ccctccctcc tgaacagcag 60 agtettgetg caccaegeca aagetggeac catcattgec egecagggag accaggaegt 120 gageetgeae ttegtgetet ggggetgeet geaegtgtae cagegeatga tegacaagge 180 ggaggacgtg tgcctgttcg tagcgcagcc cggggaactg gtggggcagc tggcggtgct 240 cactggcgaa cctctcatct tcacactgcg agcccaacgc gactgcacct tcctgcggat 300 ctccaagtcc gacttctatg agatcatgcg cgcacagccc agtgtggtgc tgagtgcggc 360 gcacacggtg gcagccagga tgtcgccctt cgtgcgccag atggacttcg ccatcgactg 420 gactgcagtg gaggcgggac gcgcgctgta caggtgcagc tcccaccgcg ctgctcaggc 480 coggoctagg ggtggggacc tgggggtggt cagacettge tgacetecae geccacteag 540 gcagggcgac cgctccgact gcacttacat cgtgctcaat gggcggctgc gtagcgtgat 600 ccagcgaggc agtggcaaga aggagctggt gggcgagtac ggccgcggcg acetcatcgg 660 cgtggtgagc gcgaccccca cccactgacc tctggccttt tccaggccag tccctcggca 720 acteacacge ateatecegg gtaatecagg gagtggtgaa gttttteeeg gggete 776

<210> 106 <211> 707 <212> DNA <213> Homo sapiens

cocanggetbe oggategace ccaggaacca occagactt aggacaggg acagcatggg 60
acacagttg ttccartcca ggaaccagcg agactacagc ttcagctgag ggatagacgaa 120
coccaggaga aaccagcac gcagtccag ggacaggag ctgggcagag ggttctptca 184
aagcacctge tccgattcca gagagtcac cttcaaagga cagaagcatg tccaatacaa 240

```
cagaaggtgt ttgggagggc accagaaget cggtgacaaa cagggctaga gccagcaagg
acaggaggga gatgacaact accaaggetg ataggecaag ggaggacata gagggggtea
                                                                     360
ggatagetet tgatgeagee aaaaaggtee taggaaceat tgggecacea getetggtet
                                                                     420
cagaaacttt qqcctgggaa atcctcccac aagcaacgcc aqtttctaaq caacaatctc
                                                                     480
agggttccat tggagaaaca actccagctg caggcatqtq qaccttqqqa actccaqctq
                                                                     540
cagatgtgtg gatcttggga actccagctg cagatgtgtg gaccagcatg gaggcagcat
                                                                     600
ctggggaagg aagcgctgca ggggacctag atgctgccac tggagacaga ggtccccaag
                                                                     660
caacactgag ccagaccccg gcagtatgac cctggggacc ccctggg
                                                                     707
     <210> 107
     <211> 485
     <212> DNA
     <213> Homo sapiens
     <220>
     <221> misc feature
     <222> (1)...(485)
     <223> n = a,t,c or q
     <400> 107
ccgctggaac atcaggtact ggggacactg gccctqqtaa cacaqcagtc tcaqqcacac
ctgtggtatc acctgqagca actcctqqaq ctccaqqtaq caqcaccct qqqqaaqcaq
                                                                     120
acattggaaa caccaqtttt gqaaaatcaq qqaccccaac aqtatctqct qcctcaacta
                                                                     180
ccagtagccc tgtgagtaaa cacaccgatg caqcctcagc cacaqcagtg acaatctctg
                                                                     240
gaagcaaacc aggtacacct qgaacaccag gtggtgcaac tagtggaggc aaaattacac
                                                                     300
ctggaattgc atgacccacc ctggaccaaa agagcccctg cttctccggg tatggaggtt
                                                                     360
atttecetqt aaateeteae caqaaeceat qtqctqatte cetqtaatet teccacaata
                                                                     420
aatttttagc agctctgnnn nnnnnnnnn nggggcgccc gttttaaggg acccaccttt
                                                                     480
actcq
                                                                     485
     <210> 108
     <211> 565
     <212> DNA
     <213> Homo sapiens
     <400> 108
egggeteace getgetgtet eccgetecca agtetttett gtgaaateca aattggatte
                                                                     60
tettgatett ceatetttee agggeagtga gettgteett gtteetgetg cagaagttgt
                                                                     120
agaaggaact ggcctcagag cccacgctqt cctcatcatc ctcccqcacc ctqctccctq
                                                                     180
ettetgaget cetgtetgee geeteetete tettgetett ggegtggtae eteegggaag
                                                                     240
ceteettete aatetecage ageetetegt tecatgegte ecaggtgete tecgaggaca
                                                                     300
tegagtetge geggegeete etgeegtggt eegggeggtt eageteeage tgetgettea
                                                                     360
ggacccagat gtcgtggctg ctcacgctct cccaggcgct gctctcgctc agggtgcgcc
                                                                     420
geogeeteee caeegaggag ecagegtege teteeteete ttteteetee teeetteeee
                                                                     480
accteoggta coettetget aaaaacetet egtttegget etgecacteg tgaatgatee
                                                                     540
tetecacqte eteqtecteq acceq
                                                                     565
```

<210> 109 <211> 986 <212> DNA <213> Homo sapiens

<400> 109

ggatgacgtg ccgcccccgg ctcctgacct ctacgacgtg ccccctggct tgcggcgcc tggcccqqqc accetqtacq atqtqccccq tqaacqqqtg cttcctcctq agqtqqctqa 120 tggtggcgtg gtcgacagtg gtgtgtatgc ggtgcctccc ccagctgaac gtgaagcccc 180 ggcagagggc aagcgcctgt cggcctccag caccggcagc acacgcagca gccagtctgc 240 gtcctccttg gaggtggcag ggccgggccg ggaacccctg gagctggaag ttgctgtgga 300 ggccctggca cggctgcagc agggtgtgag cgccaccgtt gcccaccttc tggacctggc 360 aggcagegee ggtgegactg ggagetggeg tageceetet gagecacagg agecgetggt 420 gcaggacctg caggetgetg tggccgccgt ccagagtgcc gtccacgagc tgttggagtt 480 tgcccgcagc gcggtgggca atgctgccca cacatctgac cgtgccctgc atgccaagct 540 tagccggcag ctgcagaaga tggaggacgt gcaccagacg ctggtggcac atggtcaggc 600 cetegacget ggeegggag getetggage caccettgag gacetggace ggetggtgge 660 ctgctcgcgg gctgtgcccg aggacgccaa gcagctggcc tccttcctgc acggcaatgc 720 ctcactgctc ttcagacgga ccaaggccac tgccccgggg cctgaggggg gtggcaccct 780 qcaccccaac cccactqaca aqaccaqcaq catccaqtca cqacccctqc cctcacccc 840 taagttcacc teccaggact egecagatgg geagtacgag aacagegagg ggggetggat 900 ggaggactat gactacgtcc accttacagg gggaaggagg agtttttaga agacccagaa 960 986 ggagettetg ggaaaaaggg cageat

<210> 110 <211> 414 <212> DNA <213> Homo sapiens

<400> 110

cgaaggaaa gcag-aggtt gggcttott gtggcoaact bcagagctg bcaccaggaa 60 aggtaaggaa gggaggaag aagatgggg cagatgaaga aaatgtctat ggtttagaag 120 aggaaggaaga gcgcactggg gagctcaat cottgttggg agaacagggg 180 cogggaagaa cgccactggg aacaggaact bgggcacagtc btgaacagggg gcctgcacac ogggcaggc caggttggga aagtgcacg cgggcacgtc btgaacagg gcctgcacac ogggcacgcc gagttgggaa aagtgcacg cgggaagtcg gacactcog gacatttta gctccaagt gtccaagaca gatcctggc 1434 gtagagaag aggtcactgb tactctgctt oggcccogg acccacagc otgg

<211> 419 <212> DNA <213> Homo sapiens

<210> 111

<221> misc_feature

```
<222> (1)...(419)
<223> n = a,t,c or q
```

<400> 111

<210> 112 <211> 1191 <212> DNA <213> Homo sapiens

<400> 112

gtgcaaqgtg ctgtcactca cgtgtgccct cgaccctccc gttcacccqc agccttctca gegeetetee etgggeegga ggeeteetea ecageetace tqttgetetq qaaaaaaate 120 cogtoccog actoogtocc taccoccaqt ottoggoog ctetagecce tagagaagag 180 getgeaeggt ggaaggagge tggetatggg ceeggetgee egetgeatgt aceteeteet 240 ccacccateg cetettgeet qqqqqtaact ttqcctqqqq ctcattettt qqttaaqetq 300 aagetgeegt gggtggeeaa accqcaqatt etttqcaaat tetqaqetqq caqaqeteqe 360 agcogggago oggooggga agaggagaet tooggooge aagcogceto cetecaceet 420 getetecate tecegeteta gaagggetgg gaagetegeg geeggggtte cacetggaag 480 ctgcttgcat ggctgaaccc agcttaggtc cctgacgggg ctgctggtgg aattctcccc 540 cttcqaaqct qqqqaqqttt aqqaqqqqqa aqqcttctqt qaaqctctca aaccactaat 600 agagecect ceceaacagt gaeggeggag atgeteege ttttettagt tgacaccace 660 aggcagette etggcegttg gtaggtteet geagetgget gagggaacag ggaceggeag 720 gggactttgt taggggaggg ttgggatggg cagtgggccc ctgaaagtta atatattgga 780 acctageteg agtgtegtte tttecaatte egaaagtaga aagagtaaaa ataggggtga 840 ttggggtggg gttagtagaa tqcctctctc aqqqcqctcc cccctccccc accqttttaq 900 agagetagge cteagecagt ettgecacte ceateteagt getteetgaa gaggetgttt 960 tgagtgttga tgaaaagcaa tgcaattatg ccaaacagta ttgagcagaa taatttattt 1020 cttttttttc ttttgcttta aatcatgaat cccgccaggt acggtggctc acgcctgtca 1080 toccagoact ttgggaggcc aaggogggcg gattacttaa tacttaaggt caggagttcg 1140 agaccagcot ggccgatatg gtgaaacete gtetetacca aaaaaaaaaa a 1191

<210> 113
<211> 1240
<212> DNA
<2113> Homo sapiens
<220>
<221> misc_feature
<222> (1)...(1240)
<223> n = a,t,c or g

<400>	113					
agaacacgaa	ctagtgtctc	taagccacta	taatagttgc	acatacaaca	tgagtgtggt	6 (
gtggtaggat	gcttttcctt	ttaggtcttt	actgaacttt	caagggatta	aaaccaatgt	120
atgtcaactt	tatagcaaaa	gattcagatt	ctaatcctga	ataccaatgc	attttagagg	180
gggaaaaaat	gagggatgta	aaatatatat	agtagggtaa	gagttttgcc	tttgaacaat	240
gtgcatattc	tattttaatt	tggaatgttt	tatacttgca	tttcatgtta	tgtagttttt	300
ggactggact	gtgtttttcc	acaaaatgaa	aaatcaacta	ttttgccacc	ttattattca	360
acctacctgc	ccatagttgt	ctatgccagt	tactaatcta	tttaaattta	ataaatcaaa	420
agetgteett	agggattggc	caagagtcgt	aagtccttca	gcctgaaggt	ttttcaattc	480
attcataaac	gttgcatggt	tttctttcca	tecageettg	atagcatagg	geggetette	540
gaaagtgacc	agcatatacc	tgtctcctct	gctggcaggg	tecegggeae	ggagetteat	600
gaaggtetet	accgcgcctt	tggccgtgtc	caggtaggtg	gtgcccagat	ggctgcgctg	660
gttcatagag	gcagacgtgt	ctatcaggaa	cagtaagatg	ggcatagtgc	tggccgggga	720
caccggggcc	cgaggtggtg	gagaaagagg	agatggtaga	ggtggaggcg	ccggtggcgg	780
cgaccgccgc	tagcggggcg	ggggagcacg	gcccccggga	ggaaaacact	gtetgggtet	840
tteeteegge	tgcggggaat	tecteceeeg	atagttgaga	ggaaactccc	cagacccagt	900
geteeeegte	gtaccnccgc	ctccgcctcc	teetgeetge	ctgcccgctg	gggcgggcgc	960
ccagccgtct	gtctgtcggt	tegtececce	cgcctcgggg	gtcccgtccc	egetecegge	1020
ccctgtgtgt	gtcccagcgg	gagacgggcc	tggctcccca	ccccacccc	ggtacaggag	1080
tggggacctg	ggagetggeg	aagaggggag	tgggctgagg	gaagattggc	cctggggctg	1140
ttgggagaag	tttcagggac	teceteegea	caccggcggt	gtcaccactt	tctcagcccc	1200
tctcgcggac	gcgtgggtcg	cgccggggtt	teegeaggea			1240

<210> 114 <211> 810

<212> DNA

<213> Homo sapiens

<400> 114

aatagaattc	cgtcggcaca	cgcacgcgta	cctaggatcg	tatagagcgg	ccgcaataca	60
tgccgtcttc	ttaaatcaac	tectetetet	caaaaagcct	ttctttccgt	gtcgcgaata	120
tcatccctcc	ggtcctgtcc	cgcagcgagt	teceeggegt	tgggcttctc	tattatgccg	180
gccagcggag	tccaattggt	ctgacttcac	tgtccggaga	atcctctcgc	teccaaacet	240
ccctgagaga	cgacctttaa	ccgtgccagc	cggacctgcc	tacaaagacc	ctcctcttca	300
acctgtcccc	tgtgttactc	cacaaaacgg	acacagaagt	tcgtcaacct	gcccagatac	360
cacgcctcaa	ageggeaaca	gagccgaacc	cctttctcag	gcttcggacg	gcccagaccc	420
ggcatctctt	ttctcctctt	ccccagaccc	ttccacctct	ggcctccgag	agececagee	480
teagtteece	tecaggeest	aggaacccta	ctctccagca	gtacagtctg	tagacccccg	540
aatcagttcc	ccactcaacc	tcagaactcc	tetggegeeg	actggcccca	ctcgggcaaa	600
ggatggcggt	ggataggatg	acccgaacca	ccagagccag	caaacttacc	ccagccgcca	660
tggtgattcc	gcaaagaaag	ggggtggggt	tctcggcgct	gccgcaaagt	aagcccgccc	720
gggagagaag	ggaggggaa	agaggagagc	cgtggagaaa	cagcagccga	aaaacgagga	780
cgaaacagaa	gacatacgta	cgacagttcg				81.0

<210> 115 <211> 320 <212> DNA

<213> Homo sapiens

caagaggagg cctgcagctg caaaggtcat agtgctggca	atgetgaage tgatgatgeg tgteetggge getgetgaca	gccctgtcct ttcattgcct gtggccctgg tgcagccaag	gagtgacacc gctccatctt tggcctgtct	ggteagtget aacccetece cttgcagatg cgtgetette ceteactgag	cagtactaca agcetgaage aacetetece	60 120 180 240 300 320
<210> <211> <212> <213>	456	ns		J		•
gcccaggaga gaagaaagac tattaagccc ttagaagcat aagtggagca tttatcagca	gcggcgcggc agtagacaag aagaaggacc aacctgcctt ttggatgaac ctgctttgag	geggtttggg tgagatagag ctacaacgga agctctgctt ccctgggaag ggaatgtaga	aagacatgtc tttgggtttt gaagttttgg accaactgaa gcttaaaggc tgtagctcct	tgcagaagaa agccagaaga cettttttte ttttctaaga atatccctat aaccagctct gactttaaga	aagagcgagg tctctctctt gctgatggac tatcttctaa cccgagttga	60 120 180 240 300 360 420 456
<210> <211> <212> <213>	2398	ns				
ettgtteeta gteegteeag aceteageea tetegattee geaageetae tttgtaeeea	eggteageet thteaggatg ceetetette tetgttaetg cacteagetg gettateece geacegetet	tgaacactet ageeggeeea ggeteeagge tatetggaaa aggeatetge eteageetee	gcaaggaggt tccagcgtta accttctgct tgcccaatcc cgtcacctcc ccatttccaa	cgtacagagt gggcagcctg ccacagatga gccttaatgc tttcagccct cagctgcagc ggatcaggtg cgaatggcag	tggtgactcc cctcacaggc aagtgtcatc atgcaggtat ccgttcggcc atatggcttc	60 120 180 240 300 360 420 480

540

600

660

720

780

ggctgataaa atggatcatc tcatgactaa ggttgaagag ttacagaaac atagtgctgg

caattccatg cttattccta gcatgtcagt tacaatggaa acaagcatga ttatgagcaa

catccagcga atcattcagg aaaatgaaag attgaagcaa gagatccttg aaaagagcaa

toggatagaa gaacagaatg acaagattag tgaactaatt gaacgaaatc agaggtatgt

tgagcagagt aacctgatga tggagaagag gaacaactca cttcagacag ccacagaaaa

cacacaggca	agagtattgc	atgctgaaca	agagaaggcc	aaggtgacag	aggagttagc	840
agcggccact	gcacaggtct	ctcatctgca	gctgaaaatg	actgctcacc	aaaaaaagga	900
aacagagctg	cagatgcagc	tgacagaaag	cctgaaggag	acagatette	tcaggggcca	960
			gctccaagaa			1020
caaattcaaa	agtgaaaagc	agaaccggaa	acaactggaa	ctcaaggtga	catccctgga	1080
ggaggaactg	actgaccttc	gagttgagaa	ggagtccttg	gaaaagaacc	tctcagaaag	1140
			ggccgaggag			1200
			acagetettg			1260
agaccaagca	gctgcagagc	agctgtcttt	agtacagget	gagctacaga	cccagtggga	1320
agcaaaatgt	gaacatttgt	tggcctccgc	caaggatgag	cacctgcagc	agtaccagga	1380
ggtgtgcgca	cagagagatg	cctaccagca	gaagctggta	caacttcagg	aaaagtctgt	1440
ttgttttgca	gtgtttagcc	ctccaggccc	aaatcacagc	tctcaccaag	caaaatgaac	1500
			cccagatgtc			1560
			tgaaccaggt			1620
			ggaccattct			1680
			aacaggagca			1740
			ggccacgaag			1800
cctcagccag	ttctgggcag	cctcaagcac	ccctgaatag	ggagaggcca	gagtccccca	1860
			ctgtcccgtt			1920
			actcagaagc			1980
			gcatcccatc			2040
cgacttcaat	tccacctgag	cccctaggcc	ctgtatccat	ggactctgag	tgtgaggagt	2100
			cccgacaacc			2160
			ttacaaggaa			2220
			ccactggcct			2280
			aggttgatgt			2340
cccacaaggg	agettttcaa	gaacaggagg	gcaggtttcc	acagttttgc	agggagga	2398

<210> 118 <211> 800

<212> DNA

<213> Homo sapiens

<400> 118

agcgaaacgg	cgcagcaaat	tatcgaccgt	ctgcgcgtaa	aactggcgaa	agaaccgggg	60
		ggtacaggat				120
agctaccagt	acacgttgtt	atccgacgac	ctggcggcac	tgcgagaatg	ggagccgaaa	180
atccgcaaaa	aactggcgac	gttgccggaa	ctggcggacg	tgaactccga	tcagcaggat	240
aacggcgcgg	agatgaatct	ggtttacgac	cgcgacacca	tggcacggct	gggaatcgac	300
		gttaaataac				360
taccagccga	tgaaccagta	taaagtggtg	atggaagtgg	atccgcgcta	tacccaggac	420
atcagtgcgc	tggaaaaaat	gttcgttatc	aataacgaag	gcaaagcgat	cccgctgtca	480
tatttcgcta	aatggcaacc	ggcgaatgcc	ccactategg	tgaatcatca	gggattatcg	540
gcggccttga	ccatttcgtt	taacctgccg	accggaaaat	cgctctcgga	cgccagtgcg	600
gcgatcgatc	gcgcaatgag	ccagcttggt	gtgccttcga	cggtgcgcgg	cagttttgcc	660
ggcccggcgc	aggtgttcca	ggagaccatg	aactcgcagg	tgatcctgat	tattgccgcc	720
atcgccacgg	tgtatatcgt	gctgggaatc	ccttacgaga	ggtacgtaca	tccgccgacg	780
attetettet	gaaggggggg					800

<210> 119 <211> 427

<212> DNA

<213> Homo sapiens

agggaggtga aggaaaaatt aaaagagtca ttattgattt ggtccataat	119 acctgatgcg ttatttattc tccgctgaaa cggcagagaa cacgtttgaa agcagaacaa cgccggggat	getgtaaaag gaattaaata gaaateegte tggaaaggge aagaaagage	gaaaccaggg atccagagca ttcatattgt tgaagaaatt cagaaatgac	geggettaat tgacagttae ttgegatgte atgegtggea ggteagatae	aaagcetttg gcaatcagtg cctgatgaac gteteettte aatatcagtt	60 120 180 240 300 360 420 427
<210> <211> <212> <213>	378	ıs				
cttccccggc caaactgatc gtataactat cggcaaagtg	aaaatgctca tatcgatttt attcagggcg ctggttaaag gcattgatgg tcggggaatc	tacacgcctt aaccggatat geggegttea acgateactg	gcgtaaagcg gccgattgtc ggtttttgag ggcgacagta	gcacggegeg agagteggtg tacegeegee gggtecagta	gggtgeggat egegettget geeegeteea ateteeatee	60 120 180 240 300 360 378
<210> <211> <212> <213>	508	s				

<400> 121 ctgccgcctg gtgaagttta cgccccatcg aagccctggc aaaagaagtc cgtgaactga 60 aataacatac togttaattg ctcaatccag ccacaacgcg agaactgacc agtctgggac 120 gaaacctgaa ccgattgtta aaaagtgaac gcgaacgtta cgacaaatac cgtacgacgc 180 tcaccgacct gacccatagt ctgaaaacgc cactggcggt gctgcaaagt acgctgcgtt 240 ctctgcgtag tgaaaagatg agcgtcagtg atgctgagcc ggtaatgctg gagcaaatca 300 gccgcatttc acagcaaatt ggctactacc tgcatcgtgc cagtatgcgc ggcgggacat 360 tgeteageeg egagetgeat eeggtegeee eactgetgga eaateteaee teagegetga 420 tcaaaggcaa gccgcgtaaa gggggcaacg tcactgtttt tccattcaca gcgatgtaca 480 gggacggaca ttgaatccgt gatcagtg 508

<210> 122

<212> DNA <213> Homo sapiens

<211>	724					
<212>	DNA					
<213>	Homo sapier	ns				
<400>						
gggtaacact	gtgatgtttc	agcacctgat	gcagaagcgg	aagcacaccc	agtggacgta	60
	acctegacte					120
	gaacttatca					180
	aaggagetgg					240
	gccatatatc					300
	cccaggacca					360
	caggaageet					420
	attggggcta					480
	cgcttctttg					540
	ttcatggtgc					600
ggtggtaccc	atgtcctttg	cactcgtgct	gggctggtgc	aacgtcatgt	acttcgcccg	660
aggattccag	atgctaggcc	ccttcaccat	catgattcag	aagatgattt	ttggcgacct	720
gatq						724
33						
<210>						
<211>						
<212>	DNA					
<213>	Homo sapier	ıs				
<400>	100					
				and the back and		
	cagctgccaa					60
	tegacaagga					120
	tattttaaaa					180
atataattta	aggagaatcc	acactagtac	tagtactatg	gacctcttga	gcttgctgat	240
atgcctgtgt	gtctctatgt	atgttttggc	tcctgctgcc	agtatatgtg	tgtttgaaat	300
taacatagaa	ttaaattaac	tagattagag	tagacattgg	caaqttqtaa	ttgccagttg	360
	tgaaaaactg					420
gaaatgttct				. 5-55		435
						-255
					1	
<210>	124					
<211>	363					

<400> 124 actggaagtg cettcagagg teacceettt gggetttgee atgeaggeta caaagaetet 60

<210> 125 <211> 373

<212> DNA

<213> Homo sapiens

<400> 125

agaccgscc ogotcotta agotsgogog gagsaggage castecteg ggstsaagg 120 togggggatg gogaaggaa gagtsgoogs toogstetgtg gsgsgaagga gagsaggag 120 gaagtcogoc ogoogogog otgoogogo tsgaacacgaa oggaaggagg aaggaaggad 120 gogttsgaag saagcatcac ottocagoog togacogog ogtsgaococt 240 gogttsgooc oggogotsgo acoogaact agococtog atgcaactu caartagga 300 aggaaaaagg aaadgaagg aaggaaaat oggcogotg agtcoogot ocatcacac 360 accoctocty goc

<210> 126

<211> 362

<212> DNA

<213> Homo sapiens

<400> 126

goctacaggg ggtccatggc agcagttcta ctttctgcag ctccctaagc agtgactttg 60 accccctagg gtactccagc cotaaagggg atccccagcg agtggacatg cagcctagtg 120 tgacctctcg gcctcgttc ttggactcgg aggtgccaca agggggaacc caggttcca 2 agcagtcca ctggactcagcac accacacaa aaagcggttc cagaggactg 2 agcaggaagc tggcccatatt cctcggaaca 2 agcagcaagca

<210> 127

<211> 351

<212> DNA

<213> Homo sapiens

WO 01/53455					PCT/US00	/35017
<400>	127					
catggctgac	cccgaccccc	ggtaccctcg	ctcctcgatc	gaggacgact	tcaactatgg	60
cagcagcgag	gcctccgaca	ccgtgcacat	tegaatggce	tttctgagaa	gagtctacag	120
cattctatct	ctgcaggatc	tettagetae	tgtgacttcg	acagataatt	tagcctttga	180
ggatggacgg	actgactggc	tgcaaaggcc	tgactgtgtc	teetteaaaa	ttcatgtgct	240
gccaatgtga	cggtattaag	aggaggggcc	ttagaggggg	attagateet	gaaaggteet	300
tactttttgg	agtgacgagg	atgcatacga	tgaaagcatc	tegtagatae	g	351
<210>						
<210> <211>					•	
<211>						
	Homo sapier					
<213>	nomo sapier	18				
<400>	128					
	aaggcaccat					60
	ctcagcagga					120
	ccttaactgt					180
	tgagctggaa					240
	tcacaggagc					300
	tttggctact	tttatggctc	gagctatgtg	gcagcctctg	acagcagccg	360
gactcctggg	ctgt					374
<210>	129					
<211>						

<212> DNA

<213> Homo sapiens

<400> 129 taccaccacg cccagcccca acatatgact ttctgtgtgt tttccaagag tctagtgtga 60 ggtcagaggt cagacaggtc atcaggaatt ttgcttcaag tgagttgctg ctgccctgac 120 tetttteecc cagcaattaa gteecceegg ggettggggg ttgggtttgt cagettgett 180 ttgctgtgct gagggcttct ccagactgaa tcagcaggtc ctcagctcat ctctgctcct 240 totototagg accaactgoo cotgtaagta cagttttttg gataacctca agaagttgac 300 tectogacge gatgttccca cttaccccaa ggtaagatga gattccggcc cagaagaagc 360 tgcagctgtg tccccagccc cacgccgagc cc 392

<210> 130 <211> 359

<212> DNA

<213> Homo sapiens

WO 01/22/22 DCT/IE00/25017

WO 01/53455	,				PC 1/US00	1/3301/
<400>	130					
	geetgeetet	actccccagc	ctcagctccc	gaggtcatca	cagtaqgggc	60
caccaatgcc	caggaccagc	cggtgaccct	ggggactttg	gggaccaact	ttggccgctg	120
	tttgccccag					180
	cagagtggga					240
	gccgagccgg					300
ctctgccaaa	gatgtcatca	atgaggcctg	gttccctgag	gaccagcggg	tactgaccc	359
<210>						
<211>						
<212>						
<213>	Homo sapie	ns				
<400>	131					
gttagaaatc	aagtttttgg	agcaggtgga	tcaattctat	gatgacaact	ttcccatgga	60
	ctgttggccc					120
	ttgatgcaca					180
	tcagtagatg					240
	gaaggggaat					300
	gtgcttcttt aaatcaattg		caaaaaccca	aataatttt	catgtattaa	360 389
uauaayaayc	adaccaaccy	accyccage				389
<210> <211>						
<211>						
	Homo sapier	18				
12237	nomo sapici					
.400-	122					
<400>						
	gatgcggatg gaagcggaag					50 120
	agtgaggatg					180
	gaggaatetg					240
	gaggaagatg					300
	gcagatgcag					360
	attactgaca					420
	acccaggtaa					465

```
<210> 133
<211> 354
<212> DNA
<213> Homo sapiens
```

ttgccagagt gagggcattt aacaaagttt gagttgctat	133 taagggagtt ctttgacaga caagacttat gcgagaaaac cactatcttt tttttctgag	acttagtcta aaacttgaaa taacatagaa caattctctt	attcaaacca aatctctatt gatggagtat tcacacgtgc	atatatacaa tggcctggaa ttgaaacgct cacccaaact	cataactaaa ctgctatttt gacaaatttg gccaagetcc	60 120 180 240 300 354
<220> <221> <222>	326	re				
gegeageeag teteceeaga atgaattgee geegttttaa	134 cggngacagg gccctgggcc agaggaagtt accacattaa aggacccttg gggagccgaa	agteggegee teeetgtgtg ataaaatata ggggggeeaa	ctcgctcacc tccaaatgct tccaaagctc	gccagcctga gggagaacat nnnnnnnnn	aggagetgag cacecettgg nnnngggggg	60 120 180 240 300 326
<210> <211> <212> <213>	210	as				
ttgaaccagc cattctgtcc	135 tetgtettee tgatgegetg ceagtgaaat tttettggte	tcttcggaaa agtgtttgat	taccaatccc	ggactcccag	teccetecta	60 120 180 210

<210> 136 <211> 310 <212> DNA <213> Homo sapiens

tgtatactca aggtatttaa tgaaccatat	acacatataa etgettttee cagacteeeg gaaactagee agatagaatt	taacgtgaaa acaaaaagca aaggtagtaa	aatttaccaa gaatgatcag taatttcgta	aatgctaatt cgaaatcgga tcaacaaaag	gtgacttata aaagaaaagc tactcaattc	60 120 180 240 300 310
<210> <211> <212> <213>	502					
agagacagtt cttccgatac aaccacttgc cagagaactt gtgatcgaca ttggaaagtt ttgtgctgac	137 aatttaaaaa ttacatagct cctcaggaaa agagtggcta tatctattcc caatgacaat tttgggacat ctctgatatg tgtggacctc	taatattta atccaagtgg aggaaataca tgtgctggat ataatgcttc gcacagatgt gcatatgtca	tcattaaagg aatatggtgt atccctctga gctgtgtagc gaagcacggg ttggcagctt	catggtggag gacaggatcc agaagaatat cacctatgtt acacatgttt caaaagggat	ctggttcctg tttaaagata gaaaaggctt ttaggcatct cacattgact cgggctcctt	60 120 180 240 300 360 420 480 502
<210> <211> <212> <213>	963					
gecetteace teccagggga gttteccaag cccactetet acagaggaca gcagetgagg	138 cctccctage ccacacaget agccaggetg tgacttcate ctggttote gtgctggagg gtctggagg gccccaace	gaggtggaga gegeceatet caaggaaceg aaaacettca egggecagag tggagttgag	gtgaggeete etgaagaggg getgageete acceeteage accagggaag gaggaaggag	accacetcet aaagcegeag tteeettgea teaetteaga etetggetga atgatgggaa	gctcggcccc cttgttgggc gccaacatcc gagctcagat gagcgaccgt ggaacccaa	60 120 180 240 300 360 420 480

540

600

660

720

780

agcagcctgt gtttgagcag cgaggagtca gaaagcagtg gggaagatga ggagttctgg

getgagetge agagtetteg geagaageae ttgteagagg tggaaacaet acagacaeta

cagaaaaaag aaattgaaga tttgtacagc cggctgggga agcagccccc accgggtatt

gtggccccag ctgctatgct gtccagccgc cagcgccgcc tctccaaggg cagcttcccc

acctecegee geaacageet acagegetet gagececcag geeetggtga gactgeagte

WO 01/53455				PCT/US00/35017		
ggggtctgcc	ccgggggaat	agaccccctc	tttetgtega tececacete tgegaaggaa	ccctttcctc	acttagtgct	840 900 960 963
<220> <221> <222>	376	re				

cqccgcttttg tttctcaaga gactgggaat ctgtatattg ccaaagtaga aaaatcagat 60
gttgggaatt atacctgtgt ggttaccaat accgtgacaa accacaaggt cctggggcca 120
cctacaccac taatattgag aaatgatgga gtgatgggtg aatatgaagc caaaatagaa gtgagagtgt ccgaaacagat tccgactgaca aaaggagcaa cggtgaagtg ggaatgttt 240
gcttaggaa atcagtacc aactattat tggcgaagag ctgatggaa gccaatagca aggaaagcca gaagaacaca gtcaagagtg gggaaanntc ttgagaaac cctaaattt 376
376

<210> 140
<211> 968
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> (1) ... (968)
<223> n = a,t,c or g

<400> 140 qcaagggqca gttggtgaac ttgctgcctc cagagaattt tccctggtgt ggaggcagcc 120 agggacccag gatgctccgg acctgttacg tgctctgttc ccaagctggt ccccgctcca ggggctggca gtccctgagc tttgatggcg gggccttcca ccttaagggc acaggagagc 180 240 tgacacgggc cttgctggtt ctccggctgt gtgcctggcc cccactcgtc actcacgggc 300 tgttgctcca ggcctggtct cggcgactcc tgggctcccg gctctcaggc gcatttctcc 360 gagcatecgt ctatgggcag tttgtggctg gtgagacagc agaggaggtg aagggctgcg tgcagcaget geggaccete ageeteegae caetgetgge agtgeecaet gaggaggage 420 eggaetetge tgecaagagt ggtgaggegt ggtatgaggg gaaceteggt getatgetge 480 ggtgtgtgga cetgtcaegg ggeeteetgg ageeceecag cetggetgag gecageetea 540 tgeagetgaa ggtgaeggeg etgaeeagta eteggetetg taaggageta geetegtggg 600 tcagaaggec aggageetee ttggagetga geccegagag getggetgaa getatggaet 720 ctgggcagaa cetecaggte teetgeetea atgetgagea gaaccageae eteegggeet 780 ccctcagecg cctgcatcgg gtggcacagt atgcccgggc ccagcacgtg cggctcctgg

WO 01/53455	;				PCT/US00/	35017
tgcgctggaa	gtacacetea cagecegggt attetagegg	gaaggcgggc	cctgggtgtg	gaacacctac	caggcctgtc	840 900 960 968
<210><211><211><212><213>	306	ns		·		
gaacctgtgg atcagtaggg cagagggctc	141 aaagggaggg agaagaagtt gaagagaaaa atggagaagt agataagaat	cactggaggg gatgggcaat aggctaccca	gcattaggcc atgtatagtc ccacataacc	tegcactatg agacgagaag ccatcatagg	tatccagatc tgggatcaaa attgcaggag	60 120 180 240 300 306
<210> <211> <212> <213>	316	ns				
gtatagggca tacattctta acagatgact	atttaatata ttatattcct ttattgcaca aacccatttt cctggacccc	gaatagcaga acaaatagaa tcctatgctt	atactcctcc gactttggat tacaactatg	attcatgaag ttccttatat atcagtaact	ttcagtatta aagtaccttg gtaatttttt	60 120 180 240 300 316
<210> <211> <212> <213>	339	18				

<400> 143 gacaatacca aatgaatgaa cgtgactgtg ttccaacaaa actttattta caaaaacagg 60 gatgggccgg atgtagccag aggccataat ttgccaaccc ctgatttaga cgaagggaaag gagcagtgct tcactgcttt taaattaatt ctgtattctc acaaggccta cattgaaatg 120 180

gaattatage eteattitt gteaagetgg acagactatt cattigtaag tecatgtace	aaagttcaag	totootttga			240 300 339
--	------------	------------	--	--	-------------------

<210> 144 <211> 2018 <212> DNA <213> Homo sapiens

<400> 144 acaagttatc tgtgaatcat aggagaacac atcttacaaa actcatgcac actgttgaac 60 aagctacttt aaggatatcc cagagcttcc aaaagaccac agagtttgat acaaattcaa 120 oggatatago totcaaagtt ttottttttg attoatataa catgaaacat attoatooto 180 atatgaatat ggatggagac tacataaata tatttccaaa gagaaaagct gcatatgatt 240 caaatggcaa tgttgcagtt gcatttttat attataagag tattggtcct ttgctttcat 300 catctgacaa cttcttattg aaacctcaaa attatgataa ttctgaagag gaggaaagag 360 toatatotto agtaatttoa gtotoaatga gotoaaacco accoacatta tatgaactto 420 aaaaaataac atttacatta agtcatcgaa aggtcacaga taggtatagg agtctatgtg 480 cattttggaa ttactcacct gataccatga atggcagctg gtcttcagag ggctgtgagc 540 tgacatactc aaatgagacc cacacctcat gccgctgtaa tcacctgaca cattttgcaa 600 ttttgatgtc ctctggtcct tccattggta ttaaagatta taatattctt acaaggatca ctcaactagg aataattatt tcactgattt gtcttgccat atgcattttt accttctggt 720 tottcagtga aattcaaagc accaggacaa caattcacaa aaatctttgc tgtagcctat ttottgotga acttgttttt ottgttggga toaatacaaa tactaataag otottotgtt caatcattgc cggactgcta cactacttct ttttagctgc ttttgcatgg atgtgcattg 900 aaggcataca tototatoto attgttgtgg gtgtcatota caacaaggga tttttgcaca 960 agaattttta tatctttggc tatctaagcc cagccgtggt agttggattt tcggcagcac 1020 taggatacag atattatggc acaaccaaag tatgttggct tagcaccgaa aacaacttta 1080 tttggagttt tataggacca gcatgcctaa tcattcttgt taatctcttg gcttttggag 1140 tcatcatata caaagttttt cgtcacactg cagggttgaa accagaagtt agttgctttg 1200 agaacataag gtottgtgca agaggagccc togctottot gttocttotc ggcaccacct 1260 ggatctttgg ggttctccat gttgtgcacg catcagtggt tacagcttac ctcttcacag 1320 tcagcaatgc tttccagggg atgttcattt ttttattcct gtgtgtttta tctagaaaga 1380 ttcaagaaga atattacaga ttgttcaaaa atgtcccctg ttgttttgga tgtttaaggt 1440 aaacatagag aatggtggat aattacaact gcacaaaaat aaaaattcca agctgtggat 1500 gaccaatgta taaaaatgac toatcaaatt atocaattat taactactag acaaaaagta 1560 ttttaaatca gtttttctgt ttatgctata ggaactgtag ataataaggt aaaattatgt 1620 atcatataga tatactatgt ttttctatgt gaaataggtc ctgtccaaaa atagtattgg 1680 ccagatattt gggaaaagta aattgggttt cctcagggag tgatatcccc ttgcacccaa 1740 gggaaaagat tttctttcta acacgagaag tatatgaatg tcctgaaggg aaaccctggg 1800 cottgatatt totgtgacto gtgttgcctt tgaaactagt cocctaccac ctcqqtaatq 1860 agotocatta cagaaagtgg aacataagag aatgaagggg cagaatatca aacagtgaaa 1920 agggaatgat aagatgtatt ttgaatgaac tgttttttct gtagactagc tgagaaattg 1980 ttgacataaa ataaagaatt gaagaaacaa aaaaaaaa 2018

<210> 145 <211> 429

<212> DNA

<213> Homo sapiens

ctggctgcag gaacccacgt gctgtcatag gtgcaaaaat tacaacatca	aagetgeece aagetgetge ggeteacaga gettetteea teecaggegt etgggaacae	agaagttgag tgtcccaget ggatttagaa gtcatttggg catctgcctc	atgtteetet aaateeteag gecatggaat ataccageag ateageactg tttegeetgg gecaccaaat	atggtcctgg tcattgctgc tgcccatact attctgaggt tagacaatga	tgetgeecag caetgaggtg ccatageatg tetgacacac acaetgaat	6 12: 18: 24: 30: 36: 42: 42:
<210> <211> <212> <213>	717	ns				
gaagaactct accacaaaga ttagcagagt ggagaagcag ttggaagcag gcttttgttg agggcctaag tcacagaggg ccctaatata ccagtgagtt	ceggteteat ttggacetga geeggaagge cateagagte gaagaceagt tggaggtggt agacettgga cetttateea aggaggetgg tggettget ceatggagate	agattactgg gtatgtgege atctggetge gatgagactg gaggccagga tgtgtgatgt aggatttett gcattecttt gcattettegaat aagaatteta	gtgagcattg tgccagtgtg attgcatagg tgtgttgaga cagctatgag tttcagatat gagagaaga tcaaatgtct ctcaatactt tatattcact tatattcact tatgtacttaa acaattttct	tggcctggag aactcatgac atggaccatg agatgttaag atttaaaagt agagaaagga ttagtgaagc cgtaaaattt ttttatatct	ctcagcgggt ctgacatcca ctgggcaagg ctactgtaga agagataaca tgattttgaa cattcctgcc ttgtccatac gtgtttcatg ctcctgctta	60 120 180 24 300 360 420 480 540 600 600
<210> <211> <212> <213>	367	ns				

<400> 147					
ggcacgagat cgattcatgt	aaagctggac	gtgggcaagc	tgcacaccca	gcctaagtta	60
gcggcccagc tcaggatggt	ggacgacggc	tctgggaagg	tggagggcct	acctgggatt	120
tgaccagagt ccgcctggct	ccaggetetg	ccacccacag	gaagaagaaa	ctacactgac	180
agatgtgaga cagtgtttcc	ccttcagtct	ttgaacaggc	tttgtgtttt	ctaaatgaca	240
ctggataaaa gggaattcat	tcaagagctc	caaggettee	ctttccgccc	ggettetgtt	300
gecetggeet gageagegag	cagctgggag	gggactgaac	tgcccctaac	cagggttgtg	360
getggeg					367

WO 01/53455			PCT/US00/35017			
<210>	7.49					
<211>						
<212>						
	Homo sapie	0.0				
(213>	nomo sapre	ць				
<220>						
<221>	misc_featu	re				
	(1) (791)					
	n = a, t, c					
<400>	148					
cgagacccga	ccctgggcgt	ggtgcatcga	ggtagatgca	aagatgctgg	ccagagcaag	60
tgtcgcctgg	agcgggctca	agccctggag	caagccaaga	agcctcagga	agctgtgttt	120
gtcccagagt	gtggcgagga	tggctccttt	acccaggtgc	agtgccatac	ttacactggg	180
tactgctggt	gtgtcacccc	ggatgggaag	cccatcagtg	gctcttctgt	gcagaataaa	240
actcctgtat	gttcaggttc	agtcaccgac	aagcccttga	gccagggtaa	ctcaggaagg	300
aaagatgacg	ggtctaagcc	gacacccacg	atggagaccc	agccggtgtt	cgatggagat	360
gaaatcacag	ccccaactct	atggattaaa	cacttggtga	tcaaggactc	caaactgaac	420
aacaccaaca	taagaaattc	agagaaagtc	tattcgtgtg	accaggagag	gcagagtgcc	480
	cccagcagaa					540
ggactctata	agccagtgca	atgccaccag	tccactggct	actgctggtg	tgtgctggtg	600
gacacagggc	gcccgctgcc	tgggacctcc	acacgctacg	tgatgcccag	ttgtgagagc	660
	ccaagactac					720
tgtccagaag	ggaagaaaat	ggagtttatc	accagcctac	tggatgctct	caccactgac	780
atggntcagg	g					791

<210> 149 <211> 335 <212> DNA <213> Homo sapiens

<400> 149 ggcacgagca aactcggggc tcagcttggg gacgggagtt gatagtcagg tgcctggaac 60 ataatggaga ccgtccatat tggttgaatg agtggatgaa tgaattaatg aatttcttt 120 ctcttaagtc ctgcagctga ttaagtcaca gaaatttctg aataagttgg tgatcttggt 180 ggaaacggag aaggagaaga tootgoggaa ggaatatgtt titigotgact ccaaaqtaag 240 tgacagcaaa cttctaaagt gggctgtgag gtagggaggg gacacaagcg ttttgaggct 300 cgctgtgtgc cagggagtgt atcattagct cactc 335

<210> 150 <211> 1293 <212> DNA <213> Homo sapiens

<400>	150					
cgacgcctgt	ccctcttaga	cttgcagctc	ggtcctcttg	gcagagaccc	cccgcaggag	60
tgcagcacct	tetecccaae	agacagcggg	gaggagccgg	ggcagctctc	ccctggcgtg	120
cagttccagc	ggcggcagaa	ccagcgccgc	ttctccatgg	aggacgtcag	caagaggctc	180
tctctgccca	tggatatccg	cctgccccag	gaattcctac	agaagctaca	gatggagagc	240
ccagatctgc	ccaagccgct	cagccgcatg	tcccgccggg	cctccctgtc	agacattggc	300
tttgggaaac	tggaaacata	cgtgaaactg	gacaaactgg	gagagggcac	ctatgccaca	360
gtcttcaaag	ggcgcagcaa	actgacggag	aaccttgtgg	ccctgaaaga	gateeggetg	420
gagcacgagg	agggagcgcc	ctgcactgcc	atccgagagg	tgtctctgct	gaagaacctg	480
aagcacgcça	atattgtgac	cctgcatgac	ctcatccaca	cagatcggtc	cctcaccctg	540
gtgtttgagt	acctggacag	tgacctgaag	cagtatctgg	accactgtgg	gaacctcatg	600
agcatgcaca	acgtcaaggt	gaggcctcgg	gggcagggtc	cccccatctt	ggcagccacc	660
tgtccagaag	cccagtgtgg	ggacccactc	tcaccaccag	ggatccggct	gctgaggtgg	720
ctcaaacctt	cccacgtagg	aaagagggag	agggcaatgc	catcaacgag	tccaggaact	780
gggttgagcg	ctttacccca	agaacagaca	cacactgtct	gccactgtct	agctgttggt	840
ataaaaccca	ctctcaactc	tgaacatcag	tttcccagtc	tgtcaaatgg	gagtgtgagc	900
tacctgccaa	aatgcaggga	ggcttctggg	gaagctcggg	gttatgaatg	acctctcctg	960
gtgtttgtta	aagaatcaag	actgggcatg	gtggcccacg	cctgtaatcc	cagcactggg	1020
aggccaaggc	aggaagatgg	cttgagccca	ggagtttgag	accagcctgg	gcaacatggc	1080
aagacctcat	ctctactaaa	aattgaaaaa	ttagccgggc	acagtagcgt	gcacccatag	1140
teccagetge	ttgagaggct	gaggcaggag	ggccacttga	gcccgggagg	ttgaggctgc	1200
agtgagccat	gatcacacca	ctgcactcca	gcatgggtga	cagagtaaaa	ccctgacatg	1260
tattgcgggc	gctctagagg	ataacaagca	tac			1293

<210> 151 <211> 349 <212> DNA

<213> Homo sapiens

<400> 151 '

ggcacgagcg	gcacgagcct	tctcctactg	cattagcatt	tggggaccac	cctattgtac	60
aaccaaagca	attatccttt	aaaattattc	aggtaaatga	taattaaaat	gtttttttct	120
atggcttcta	agaaaccatt	gactaactta	ctaacaacta	agatgtctgt	ttgttttata	180
tgtagtcata	aagcagaatt	acacatcaag	aaagataact	tactaaacaa	aaacaacaga	240
atttgtagga	aggagtgaga	aactgaaaca	cacaatttac	tatcagcttt	ttaaacaacc	300
gttaacatgt	caqttctqtt	tactgattct	ttctqaactt	aatttccaq		349

<210> 152 <211> 324 <212> DNA

<213> Homo sapiens

<400> 152

ggcacgagga	ccttccttgc	tttcagaatt	tcacccaggg	tetgacagge	ctcaagaaag	60
gagaactagt	tatgaaccga	ttcatccagg	cccatcccca	gtggatcatg	attcactgga	120
atcgaagcga	ccacgtctgg	aacaggcttc	tgattctcat	tatcagggtc	acatcactgg	180
cgaatcccta	ccaggacgtg	tacactagca	gctcctcact	gtggaatctg	atgggcaatg	240

ccatggtgat tacceactat atecgtetta ecceatatgt teaaagtaaa eteggtteec 300 tagggaacet gatgecatgt tacc 324

<210> 153 <211> 377

<212> DNA

<213> Homo sapiens

<400> 153

ggcacgagaa aagaagaatt cagtgcagaa gaaaatttte teattttgac ggaaatggca 60 accaatcatg tacaggttct tgtagaatte acaaaaaagc taccaggtat tttttaaata 120 atcacagtta atatttattg agagtttaaa tatgtgcoca cagattagat tacctatttt 180 acatacggtg ttttaatttt caaaacattc otgtgagatc agectrattt teactattac 24 tttgccaagt attttcacat gtacttattt cactgctatt ctctacaata gtottgtgca 300 attgagaaag gcaggtctgt tctttgtaaa atgaaaatca tttaatact gatttaaagt 360 aactgctgcaa ctacctat

<210> 154

<211> 1224 <212> DNA

<213> Homo sapiens

<400> 154

ggtttttttt ttttttcttt tgggaaaggc attggccact ttggacttta ttagcaacag 60 taatgtcccc tgacatacgc acaagcttgt agctccacgg ccaggtcttc ccccaacctc 120 acaatogccc cotgatocao ocaoocaggc qaotogogot etecceteet tatecacaoo 180 gccaccgaaa ggcccacgag acggcttgc ccgaggtcac ccagcggagt ggcttgctgg 240 gaggeetggg aataacagte ccacacaagg ctetetecet ccgcagetgg acetgtacge 300 gggggetetg tttgtgcaca tetgeetggg etggaactte taceteteca ecatecteae 360 geteggeate acagecetgt acaccatege aggtatggtg cetgcageag ggaggtecae 420 ccaggggacg tgtaaagggg tcagaaggcc accteccet acaggcccga gggagcagcc 480 caqqaaqtqq ccccaqcaqq aqccccaqaa qttcctcccc qtqtccctcc tccctqqqqc 540 caqqqccccc tccaqcaacc ttqcttccac tqqcaqqqqq cctqqctqct qtaatctaca 600 cggacgccct gcagacgctc atcatggtgg tgggggctgt catcetgaca atcaaaggtg 660 aggacagagt ctgtggccat ggcggggctg tccccacagc gagccctttg gagtctggca 720 etgeceggca etgtgcagga ttcatgccgt tggggttctg ggtagcatcg etgggagtgg 780 gtgggttcag gaggttgagc cactaggcag teageceee tgetggeee teagggactg 840 ccctggctgg tagaggctac ccaccctgct gccccgctgt taccagctct ggccctggca 900 960 aggagetgae teaggaacte agggeeagee acaccegeat tggeteageg ettgatggtg 1020 aggtggggct gtaggegggt gtgaaggcac acaaccagga ggccataaaa ctgcctgggc agetecteca attgtttaaa ageatgtaca aaatgecaag aggtgatget aceteetgca 1080 ggacaaagge cagggaggaa agaagagage tqqqaqaqat tqqeqatact agtetggaac 1140 agataggaaa ctcacagggc tqcccgqaqa qaqcqtqaqc tcaccqtccc tggaagtatg 1200 taagcagage caggageteg tgee 1224

<210>						
<211>						
<212>						
<213>	Homo sapie	as				
<220>						
	misc_featu	re				
	(1) (345)					
	n = a,t,c					
	,-,-	3				
<400>						
	gcacgagatc					60
	ttcaagagac					120
	tgttacaaca					180
	aacaggtgtc					240
	tgagaaaaat				agcagatttg	300
aaaaggcaaa	aagtgattga	gettaetgge	actgccaggc	aagtn		345
<210>	156					
<211>	340					
<212>	DNA					
	DNA Homo sapier	ns				
		ns				
		ns				
		ns				
		ns				
<213>	Homo sapier	ns				
<213> <400>	Homo sapier		tacttgagtt	tatasaaat	ambaccat ht	60
<213> <400> ggcacgaget	Homo sapier	caggaaaggt				60
<213> <400> ggcacgaget	Homo sapier	caggaaaggt gctgctactt	ctggcacgtg	tggcctgcct	cctaggcatt	120
<400> ggcacgaget tctcactatg gtccgctggg	Homo sapier 156 tctacttgta ctgggacatt	caggaaaggt gctgctactt cttcccgcag	ctggcacgtg tttctcgcca	tggcctgcct tctcctctcc	cctaggcatt gatccatctc	120 180
<213> <400> ggcacgagct tccactate gtccgctggg tacctgacgt	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta	caggaaaggt gctgctactt cttcccgcag tatgcatgtt	ctggcacgtg tttctcgcca atgcggtcca	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240
<400> ggcacgaget teteactatg gtecgetggg gtecetgacgt cattttaget	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180
<400> ggcacgaget teteactatg gtecgetggg gtecetgacgt cattttaget	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<400> ggcacgaget teteactatg gtecgetggg gtecetgacgt cattttaget	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<400> ggcacgaget teteactatg gtecgetggg gtecetgacgt cattttaget	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<400> ggcacgaget teteactatg gtecgetggg gtecetgacgt cattttaget	Homo sapier 156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <pre> <400> ggcacgagct tctcactatg tctcactatgg taccttgaggt tactttagct tttccaggtg</pre>	156 totacttgta ctgggacatt cctacccca cataactcta tacctgccat attacttacc	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <400> ggcacgaget tetecactag gtecgetgg tacetgacgt tatttaget tttccaggtg <210>	156 bctacttgta ctgggacatt cctacccca cataactcta tacctgcat attacttacc	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<400> ggcacgagct tctcactatg gtccgctggg tacctgacgt cattttagct tttccaggtg	156 tctacttgta ctaggacatt cctacccca cataactcta tacctgcat attacttacc	caggaaaggt gctgctactt cttcccgcat tatgcatgtt caagctatac	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <400> ggcagagct totoactatg gtccgctgagg tacctgacgt tttccaggtg <210> <211> <212>	156 tctacttgta ctgggacatt cctacccca cataactcta attacttacc	caggaaaggt gctgctactt cttccgcag tatgcatgtt caaggtatac tcatctgttc	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <400> ggcagagct totoactatg gtccgctgagg tacctgacgt tttccaggtg <210> <211> <212>	156 tctacttgta ctaggacatt cctacccca cataactcta tacctgcat attacttacc	caggaaaggt gctgctactt cttccgcag tatgcatgtt caaggtatac tcatctgttc	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<4400> ggcacgaget tetcactatg gtccgctggg tacctgacgt tacctgacgt cattttagct ttccaggtg <210> <211> <212> <213>	156 tctacttgta ctgggacatt cctacccca cataactcta attacttacc	caggaaaggt gctgctactt cttccgcag tatgcatgtt caaggtatac tcatctgttc	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <400> ggcacgaget totcactaty gtccgyttgg tactttaget tttccaggtg <210> <211> <212> <213> <222> <220>	156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat attacttacc 157 478 DNA Homo sapier	caggaaaggt gctgctactt gctgctactt cttccgcag tatgcatgtt caagctatac tcatctgttc	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> 400> gg-acgaget totoactatg gtoegettigg tactttaget tttccagtg <210> <211> <212> <213> <220> <221> <221>	156 tctacttgta ctgggacatt cctacccca actacttcta tacctgccat attacttacc 157 478 DNA Homo sapier	caggaaaggt getgetaett ettecegeag tatgeatgtt caagetatac toatetgtte	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300
<213> <400> ggcacyagct tctcactaty gtccgcttgg tactttagct tttccaggtg <210- <211- <212- <213- <222- <221- <222- <221- <222-	156 tctacttgta ctgggacatt cctacccca cataactcta tacctgcat attacttacc 157 478 DNA Homo sapier	caggaaaggt gctgctactt cttcccgcag tatgcatgtt caagctatac tcatctgttc	ctggcacgtg tttctcgcca atgcggtcca atgtggaaat	tggcctgcct tctcctctcc tcttagtctt	cctaggcatt gatccatctc ctaaaaaggc	120 180 240 300

<400> 157 gagactccaa gccccagttt cacctcagag gcagagatga ggggtccccc ggtcctgctc

ctccaggccg	ccccaatgga	gtgtcctgtt	ccgcagggga	teceggeegg	gtccagtcct	120
gagcetgeae	ctgacccccc	ggggcctcat	ttcctccggc	aggagcgcag	cttcgagtgc	180
cgcatgtgcg	gcaaggcctt	caagcgctcg	tccacgctgt	ccacccacct	gctcatccac	240
tcagacacgc	ggccctaccc	ctgccagttc	tgcggcaagc	gtttccacca	gaagtccgac	300
atgaagaagc	acacctacat	ccacacaggt	gagaagccgc	acaagtgcca	ggtgtgcgga	360
aaggcettea	gccagagctc	caacctcatc	acccacagac	tcagagagaa	cccaccatgg	420
tgctgtctcc	tgccgacaag	accaacgtca	aggccgcctg	gngtaagggt	cgcqcqca	478

<210> 158 <211> 332

<212> DNA

<213> Homo sapiens

<400> 158

ggcacgagca	gctcaccaac	aacacaqcca	ctacccctc	taccacaccc	atatttaaac	60
aagtggcagc	cagcaccgca	ccaagtctgt	ttgggcagca	gactggtatc	acagccagca	120
cagcagttgc	cactccacag	gtaatcagct	caaggttcat	taatctagat	ttttagtata	180
tagtattatt	gaatatatat	aatgttttat	atattagact	ttatacttga	gacataggaa	240
ataatttatg	tataactgtt	aattaaattt	tatatttqct	agattagaaa	attetattaa	300
	aattatatct			3		332

<210> 159

<211> 868

<212> DNA

<213> Homo sapiens

<400> 159

```
cccacgcgtc cggaataaag agagaactct gttactattg tttttacatc accaaataat
tatttaatat cgttagctaa gagaagaatt ggctatgaac tgtactttaa caactgacac
                                                                    120
aactgcatac aagttataaa gtttaataat ctttatcatc ttggaaaata aatctcttct
                                                                    180
tgctaagtat cagtttttaa aaattgcccc atgtattaga tatgtatttt tttaacaaaa
                                                                    240
atgttctgtg tattaattat tttgaaataa attttaagtt cacaaaaagc cattacaaga
agtggaaata gcagcaatta cacatggtgc tcttcaggga ttagcctact tacattctca
                                                                    360
tactatgatt catagagata tcaaagcagg aaatatcctt ctgacagaac caggccaggt
                                                                    420
gaaacttgct gactttggct ctgcttccat ggcatcacct gccaattcct ttgtgggaac
                                                                    480
gccgtattgg atggccccag aagtaatttt agccatggat gaaggacaat atgatggcaa
                                                                    540
agtagatgtg tggtctcttg gaataacatg tattgaacta gcggaaagga agcctccttt
                                                                    600
atttaatatg aatgcaatga gtgccttata tcacatagcc caaaatgaat cccctacact
                                                                    660
acagtctaat gaatggtgag tattgttaat atatatattg ctcagtgttg aataaatgaa
                                                                    720
atgettttte ataatetgtt atcaaagtga tttaatttea gttaggtaaa atgtateace
                                                                    780
ttataagata ttaaaataga tgtattttac cottttaaat atatttatto tttatcatgt
                                                                    840
ttccatttca tggcatacgt ataactgg
                                                                    868
```

<210> 160

<211> 1404 <212> DNA

<213> Homo sapiens

<400> 160

```
gegecaegeg eggeetggeg geggeggeea etetaaecaq egcaaaatgt ecetggaaca
                                                                     60
ggaggaggaa acqcaacctg qqcqqctcct aqqacqcaqa qacqccqtcc ccqccttcat
                                                                    120
tgagcccaac gtgcgcttct ggatcaccga gcgccaatcc tttattcgac gatttcttca
                                                                    180
atggacagaa ttattagatc ctacaaatgt gttcatttca gttgaaagta tagaaaactc
                                                                    240
gaggcaacta ttgtgcacaa atgaagatgt ttccagccct gcctcggcgg accaaaggat
                                                                    300
acaggaaget tggaagegga gtettgeaac agtgeatece qacageagea acetgatece
                                                                    360
caagettttt cgacetgeag egtteetgee ttteatggeg cecaeggtat ttttqteaat
                                                                    420
gacgccactg asagggatca agtocgtgat tttacctcag gttttcctct gtgcctacat
                                                                    480
ggcagcgttc aacagcatca atggaaacag aagttacact tgtaagccac tagaaagatc
                                                                    540
attactaatg gogggagoog ttgcttcttc aactttctta ggagtaatcc ctcagtttgt
                                                                    600
ccagatgaag tatggcctga ctggcccttg gattaaaaga ctcttacctg tgatcttcct
                                                                    660
cgtgcaagcc agtggaatga atgtctacat gtcccgaagt cttgaatcca ttaaqqqgat
                                                                    720
tgcggtcatg gacaaggaag gcaatgtcet gggtcattcc agaattgctg ggacaaaggc
                                                                    780
tgttagagaa acgctagcat ccagaatagt gctgtttggg acctcagctc tgattcctga
                                                                    840
agtottcacc tactttttta aaaggaccca gtatttcagg aaaaacccag ggtcattgtg
                                                                    900
gattttgaaa ctgtcttgta ctgtcctggc aatgggactg atggtgccat tttcttttag
                                                                    960
tatatttcca cagattggac agatacagta ctgtagtctt gaagagaaaa ttcagtctcc
                                                                   1020
aacagaagaa acagaaatot tttatcacag aggggtgtag geegtgagtt ttaggtgaat
                                                                   1080
ttatgtggtt ccctgcttga aaacetteec cctctcccag gttcggttta gagaactttg
                                                                   1140
cccacaggtc ttctggggac cccaqaggtg tctgtgctga caaggcgact tcagattcca
                                                                   1200
tactgagatc gttcccaggc tggcgtctct ggggttttta aggctggctg gagaagacag
                                                                   1260
tgggaagggt gccccgtctg acacccctgg ggttgctgag ggaacggttg gagtggggat
                                                                   1320
cggcctgcga aaggatactg tgaaatcact aattaactaa taaacctgtc tcaagttgag
                                                                   1380
gatttqaaqa aaaaaaaaaa aaaq
                                                                   1404
```

<210> 161

<211> 562 <212> DNA

<213> Homo sapiens

<400> 161

```
cccacgcgtc cgggagattg gaagtettet ataacgggac ctggggcage gtcggcagga
                                                                     60
ggaacatcac cacagccata gcaggcattg tgtgcaggca gctgggctgt ggggagaatg
                                                                    120
gagttgtcag cctcgcccct ttatctaaga caggetctgg tttcatgtgg gtggatgaca
                                                                    180
tteagtgtee taaaaegeat ateteeatat ggeagtgeet gtetgeeeca tgggagegaa
                                                                    240
gaatotocag cocagcagaa gagacotgga toacatqtga aqataqaata aqaqtqcqtq
gaggagacac cgagtgctct qqqagagtgg agatctggca cgcaggctcc tggggcacag
                                                                    360
tgtgtgatga ctcctgggac ctggccgagg cggaagtggt gtgtcagcag ctgggctgtg
                                                                    420
getetgetet ggetgecetg agggaegett egtttggeca gggaactgga accatetggt
                                                                    480
tggatgacat gcggtgcaaa ggaaatgagt catttctatg ggactgtcac qccaaaccct
                                                                    540
gqqgacaqaq tqactqtqqa ca
                                                                    562
```

<210> 162

<211> 1812 <212> DNA <213> Homo sapiens

<400> 162 geettgettg gaggeaaage gteeteeact etgteeteag gacteagetg tgtggeettg 60 gatttetttt tgegggaett gegecetttg ggtgecaacg gtecaggate eccetggaac 120 cagatggtac ggccatgccg gtcctgcagg gagctcatgc ctggcatgcc atagcagcgc 180 agccaggete gaaaggcage aaagteetee teeeegetet etgaccegta geccetgeee 240 cccaactgga ccactteett gggcactgag tgacataget ccagcaggte tggattetge 300 agettggtee ttatettetg geteagggte ageteeggge teggeetgtg etgetgeagg 360 qcctccaqqa ccqaqcqqqc cttctcaaaq qqqqqqatct tcaqccqqta caqqatctct qcccqcaqat aqttqccaat qccattqaaq aacctctqqt ccaqqaqqqc ctcqcaqatq qqccqqtcaa aqqccttatc cqctaqqttt cqtaqcacat tctccctqaa ctqctqqtac tectocaaga cacaggeee geggeeegge tgccacttte ceccaaggte ccageggeeg aaccggcgga tgtccacgaa acatagggcg agccgggggc caggcggggc cgtgtaaaag 660 cgcaggtggg catggcgtgg cagctcctcg cggqgcacca gctgaaaaga gccggacatg 720 cogaagogga agaccagggc cagtggctcc tqttggggct gggccccagg cagagggctc 780 agtateagge geageteett geegeggget gaagetgaga tgeggtagge actgetetea 840 aagggcacct cagggttgcg gctgacagag gacttctcca cgcagccgcc gaacaccagc 900 quectquagq cottattcac asactqqetq queaqqtqca qctcqqqqcc ctcaqqcatc 960 ctgagggagg gtggcagagt cctggctggg aggtggcgga agaacctgac ttcccactgc 1020 ctggggcgg cgagatgcgg gggcaggtct gaggccccgg gtcgccgctg tctctgcggt 1080 tgggggaagt cacccagcta gcgtgggaca gggtcggcac ccccagcagg aaacagcagc 1140 gacgagecag ageggagteg ectgcagetg egegeaggae gtgcacaggt gegeggtacg 1200 cacaggeect agggaceegg tggggatett aagcaceaae gaacagteag acetaactea 1260 taaacaaaca tcatcacggc ctgccctgtc agaagcgcag ccaagcaaca acaacaacaa 1320 aaaaaggcga ggaggtagac ccacttgaga tggttctgtt gcggagagtc tctgaaatca 1380 gaaagcgcca gtccgcaaaa acgaggaaac ccgacgtgtc cggcggaagg aaccgccagt 1440 acaaaggccc tgaggcgaga aagagattgg tcactgaaag aactcaaaga agtcctgtgt 1500 ggctggagta tagctgcggg ttagtgctgg caggtgaaga cagagaagca aacccaggtc 1560 aggtccggtt gggcctcggq agggcctccq tgtggagtct gcacttcatt ctaagtgtat 1620 acctaaceca tegecacgat ttececteet teacactace etgetacgte tecttattag 1680 qcqtaataaa attatqtqqc tttqtaaqaa attqqttttt aqaqatqcat qttaaaqtat 1740 tgggtatgaa atgtcatgat ttgtctaatt tactttaaaa tacttctgcc ataataaatg 1800 aataqaatta ac 1812

<210> 163 <211> 333 <212> DNA <213> Homo sapiens

<400> 163

agctgacgtg gtctgcctgt tattggagag atatattaag aatccagttg tggattgcag 60 ctgatattet tttgcgaarg cttgaaaaag cactcotta tagtgaacac cagaacatca 120 gcaacactgg actgtcatc caaggctat tgatatttgc ggagttgatt cctgccatta agaggacgtt ggctcgctt ccgtgatca ttgcgagcct ggactatggc attgagaaac 240 cccatttagg aacaggcatg cacctgtgat ccggaactgat gcttctatac ttaatctttg 30 caaatgctga aagcgtatt agagtcattg ggg 333

<210> <211> <212> <213>	134	ns				
	gagatggagt caagetetge					60 120 134
<210> <211> <212> <213>	839	າຣ				
ttgcagaact tggcatatca atcttccaag acggttttac gaaaattgtg agccacaaga gggtagttct tcagattttg ttacaatgaa tgcatgtatg tggcagaaga tcagtgctct	165 gogagoagga taatatgaat agaaataaat tctaatagac tcaagtgaac tcagtgac tttagcttcaggtg ttttgtaagc ccttaaactgt ccttaaaatgt ccttaaaatgc caccatcca tgattttgct	gtgaagaact tggccttggc ctaaagccac atgaatacag tcaaagaggc atgataaatc ggctgaata ggagcaatgg ctcaattct agcaacttat ttagtttgaa aagaacattg	tgcaaagaa agaattgtat agtettcaag tggattaaat aagggaacat taagtcattt tatctatgga tttcagttta ggagtetgtt gttagaaate gtataaattt taacttacca	cttgaaaaca gaagatgaag agcccacgga atagttcgac ggggctgtcc acaggtggag gaaaatcagc gatgatggag aagagagggg ttttaatgtg gtgaaagtaa gctcttcttg	gccaaaggga tgaagtgcaa caccacctca cttcaactgg ctctgaatga gatacagatt tgcaagatgt aattgagacc tgactctcat gcattactgc actcagatat ctaaaggatg	60 120 180 240 300 420 480 540 600 660 720 780 839
<210> <211> <212> <213>	1256	ns			·	
gttcactctc actgaagatg gacgaagatc	166 tgatggccct acgaccatga ttttcatcag ctgaaggttg cgcatgctgg	ttcaagctct aagagatgag aggggcaggt	tgcacctgtt aggacatctt tccagatctg	atgggatggg catcatcatc ccatcctgcc	acaggaagee ataaatgtet tgeeeetgae	60 120 180 240 300

tgacccggag	cgcgatcact	tccgcaagat	ctgtgaggaa	tatatcacgg	gcaagtttga	360
ccccaggac	atggacaaga	acttgaatgc	catccagaca	gtgtcaggga	tcctgcaggg	420
cccctttgac	ctgggcaacc	agctgctggg	actgaaaggt	gtgatggaga	tgatggtggc	480
actatgtggc	tcagagcgcg	agacggacca	getggtggcc	gtggaggccc	tcatccatgc	540
ctccacgaag	ctcagccgcg	ccaccttcat	catcaccaat	ggagtgtcac	tgctcaaaca	600
gatctacaag	accaccaaaa	atgagaagat	caagatccgc	acactggtgg	gactctgtaa	660
geteggetet	gcaggtggca	cagactacgg	tctcaggcag	tttgcggaag	ggtcgacaga	720
aaaactggcc	aaacagtgtc	gcaagtggct	gtgcaatatg	tccatagaca	ctcggacccg	780
acgctgggca	gtggagggcc	tggcctacct	cacgctggac	gctgatgtga	aggacgactt	840
tgtccaggac	gtecetgeec	tgcaggccat	gtttgagctg	gccaagacca	gtgacaagac	900
catcctgtac	teggtggcca	ccaccctggt	gaactgcacc	aacagctacg	atgtcaagga	960
ggtcatccca	gagettgtee	agctcgccaa	gttctccaag	cagcatgtgc	ccgaggaaca	1020
			gcgggtgaag			1080
catctctgcc	ctggcttgca	tggtgaaagc	agatagtgcc	atcctcactg	accagaccaa	1140
ggagctgctg	gccagggtat	tectggcact	gtgtgacaac	ccaaaggacc	gaggcaccat	1200
tgtggctcaa	ggtggtggca	aggccctgat	tcccctggct	ttggagggca	cagatg	1256

<210> 167

<211> 892 <212> DNA

<213> Homo sapiens

<400> 167

atgtggacag cgtgggtggc ggcagcgagt ctcggtccct ggactcaccc acttccagcc caggogotgg cacgaggoag otggtgaagg ottogtocac aggoactgag tootcagatg actttgagga gegagaeeet gaeetgggag aegggetgga gaatgggetg ggeageeeet tegggaagtg gacactgtee agegeggete agacceacca getgeggega etgeggggee cagccaagtg cogogagtgc gaagccttca tggtcagogg gaoggagtgt gaggagtgct ttctgacctg ccacaagcgc tgcctggaga ctctcctgat cctctgtgga cacaggcggc teccageceg gacaccectt tttggggttg acttectgea getacceagg gacttecegg aggaggtacc ctttgtggtc acgaagtgca cggctgagat agaacaccgt gccctggatg tgcagggcat ttaccgggtc agcgggtccc gggtccgtgt ggagcggctg tgccaggctt togagaatgg cogagogttg gtggagotgt oggggaactc gcctcatgac gtctcgagtg tectcaageg atttetteag gageteaceg agecegtgat eccetteeac etetaegaeg cottcatete tetggetaag acettgeatg cagaccetgg ggacgaccet gggaccecca geoccagece tgaggttate egetegetga agaccetett ggtacagetg cetgacteta actacaacac cetgeggeac etggtggece atetgtteag ggtggetgea egatttatgg aaaacaagat gtotgocaac aacctgggca ttgtgtttgg gccgacactg ct

<210> 168 <211> 394

<212> DNA <213> Homo sapiens

<400> 168

gagettgaca gtgaacgtgt gtetgeattt ettgteactg agaccetggt gttetatttg ttctgtctcc ttgcagatga aaccgtcgtg ccaccagatg ttccaagcta cctctcttct

ggactccatg teatetetet geacageget gatggtegte actgggagga teceetttet

60 120 180

60

120

180

240

300 360

420 480

540

600

660

720

780

840

892

aatgggcaca	ttgagagcaa tgggtgctgg	tggtaaggee aggtggeete	gtggtcagga tcagtaaccg caggtcttta tccg	tgaagcagag	ctctgctgtg	240 300 360 394

<210> 169

<211> 550 <212> DNA

<213> Homo sapiens

<400> 169

ctgtgacacc teegggeage eeggeacttg ttgeteecac gaeetgttgt eatteectta 50 acceggettt eccegtggcc eccegcetce teceggette geteetttte atgtgageat 120 ctgggacact gateteteag accoegetge tegggetgga gaatagatgg ttttgtgaaa 180 aattaaacac cgccctgaag aggagccccg ctgggcagcg gcaggagcgc agagtgctgg 240 cecaggiget geagaggigg egecteeeeg geeegggaeg giageeeegg gegeeaaegg 300 catgacagac teggegacag etaaegggga egacagggac ecegagateg agetettigt 360 gaaggetgga ategatggag aaageategg caactgteet tteteteage geetetteat 420 gatectetgg etgaaaggag tegtgtteaa tgteaceaet gtggatetga aaagaaagee 480 agetgacetg egeaacetag ceceegqaac qeaceegee tttetggeet teaactggta 540 cqtgaagaca 550

<210> 170

<211> 422 <212> DNA

<213> Homo sapiens

<400> 170

cttggattca gtgatggaca ggaagccagg cctgaagaaa ttggctggtt aaatggctat 60 aatgaaacca caggggaaag gggggacttt ccgggaactt acgtagaata tattggaagg 120 aaaaaaatot ogootoocac accaaagooc oggocacoto ggootottoo tgttgcacca 180 ggttcttcga aaactgaagc agatgttgaa caacaagtgc tctacaagta tagaaagaag 240 cetteetett cecacegtee ccagacacca cataatggaa aaagcaagaa ttttetgeat 300 aagcaaggcc ttaaaaaaaa aaaagccagc ctctgatggg acttttttcc tgccaaaaat 360 cccactggtc cactgtcgca atttttacaa aaggccacga taaaagagta aggcccattt 420 tσ 422

<210> 171

<211> 1042

<212> DNA

<213> Homo sapiens

<400> 171 eggacgegtg gggteatgga getggeactg eggegetete eegteeeggg gtggttgetg 60 ctgctgccgc tgctgctggg cctgaacgca ggagctgtca ttgactggcc cacagaggag 120 qqcaaqqaaq tatqqqatta tqtqacqqtc cqcaaqqatq cctacatqtt ctqctqctc 180 tattatqca ccaactcctq caaqaacttc tcagaactqc ccctqqtcat qtqqcttcaq 240 ggcggtccag gcggttctag cactggattt ggaaactttg aggaaattgg gccccttgac 300 agtgatetea aaccaeggaa aaccaectgg etecaggetg ecagteteet atttgtggat 360 aatcocqtgq gcactqqqtt caqttatqtq aatqqtaqtq qtqcctatqc caaqqacctq 420 gctatggtgg cttcagacat gatgggtctc ctgaagacct tcttcagttg ccacaagaa 480 ttccagacag ttccattcta cattttctca gagtcctatg gaggaaaaat ggcagctgge 540 attggtctag agetttataa ggccattcag cgagggacca tcaagtgcaa etttgcgqgg 600 gttgccttgg gtgattcctg gatctcccct gttgattcgg tgctctcctg gggaccttac 660 ctgtacagca tgtctcttct cgaagacaaa ggtctggcag aggtgtctaa ggttgcagag 720 caagtactga atgccgtaaa taaggggctc tacagagagg ccacagagct gtgggggaaa 780 qcaqaaatga tcattqaaca qqtaaaaagq qqaaacactc aqaqqcqaqc ctqcttqqct 840 ttttctggtg ggtacagggc ccatggttgg tgttgtcaaa cttggagtct acactgaggc 900 tccccacata tctgcaaatg attgcatgct ggataataaa tctcttgggt ctaagcagtg 960 atgtagtggc tccttacaga gtcagaaagc cacccaggcc tgcaagactt gettgtectt 1020 cactaaatot aaaaattota tt 1042

<210> 172 <211> 890

<212> DNA

<213> Homo sapiens

<400> 172

60

120

180

240

300

360

420

480

540

600

660

720

780

840

890

<210> 173

<211> 1922

<212> DNA

<213> Homo sapiens

<400> 173 tttetttett catecaaaat agtagagatg tettteecac qatqacetqt qatqqtqqaq atatetttte eteggecaae teeteeteea teggettett tgatgteate tteaataget 120 teatcaattg etteatcaaa etcatcaaat etgtagetta tacattteet tgttettgtt 180 qaceteettt caaagcaagt ttgetttgga tttttttgaa tetttttet tttettettg 240 atcttcagaa aagtctggct ctttgtggag gaatgatgtt ttcaatactg gataccaaca 300 tacaccaage gttettttee tteqtteeqq caacqetett teettettta aggeaacate 360 ccaaatcctg gaaactggtc ctctaatttt tccaacaaga gcaagtttaa tgttgggcaa 420 aaggtggggc aagaacccat cctcccatct ggggatggat catcagagga ggggcgaaag 480 geagggeagt atggtateca etategeaag agteacacag aagaattage teaggatggt 540 ttggaaggcc acattttttg catggttcat catcatctgc taggatggct tcttcacttt 600 cottttcttc ctcctcttct gaagetgeag atgatttttc actgccagac ccttcacttt 660 catcattgct ggaatatttc catctgccac gtgtccgaga accagtccat cgaactttgc 720 ctttgggttt taccttgctt actttagaat ttgtatcttt ctctgatttt ttcaaaattt 780 cetttttgtc agttttttgc aaagetgttg actettette caceteatet teteetteec 840 ctctttttt atcagctttc tgatctctga tctcagccac ttttgcagtq gqtctagata 900 ttcttggaga tcttcttaaa gtacgaccca catttgtttt ctcctcttcc ttttctqtct 960 tetettgett gttttetggt tetagaactt tggqgqqaqa ateqqqette ttttteeqae 1020 ttgatatcct gattgttaat ttgatgccct ctttctgcct ttcagaggtt atctctgtat 1080 tttctgaggc agtggtttct tcttcaggaa ccaacttata tttgaatttg cttttttgca 1140 tagaaccctt tgtctcagaa ggctcctcta tgccagaggt ctgggcattg tccagattat 1200 ccatttctac ctttgtgaac tcagaatcct cttttagggt ttctaggtct actttttca 1260 cagactggcc accaacagta cttgtactct ggcattctac cacttctttt tctgaggcta 1320 gtttctcaca gtggtcaatg atattagatg gtggagaagt ttcagctgcc tcaggagagc 1380 caggetttte tgactetaga gtactetttg gaacttette tggtattgga etcaatettt 1440 gtgcgtcctt atcaagaaaa gtctttttgg acttctctaa cttttcaaga cattctagga 1500 ttggtgggcg cttatccttc ttagttttgg gagacttctc ttcacctttc atggtacacq 1560 actoggtgga agataaagca gtttttgaag agagatottt tqccatotca qaaqaatcaa gagaagtttc catttctgga ggatcggqtt cctctatttq tqctttttqa ctatqqatct 1680 ctaagactga tattgaacta tetgcatett teetcaaagg ggetgtttet ttetcaaget cacctgtttt catacttggt tatgacagaa tttaaggact ctgttccatt tccctccgtg atgatatttc tgtccttagg ggggctatag ctctcttcct ttgtctcata aaactttgtc 1860 tetacttggt tetqtettaa aatttggage taccetttea teactaactt etecattac 1920 1922

<210> 174 <211> 537 <212> DNA

<213> Homo sapiens

aaaagagggg oggctogttc aagatgggg agctogacca gttgcctgac gagagctctt 60 cagcaaaagc cottytcagt ttaaaagaag gaagcttatc taacacgtgg aatgaaaagt 120 acagttctta caagaaaaca cottyttgga aaggcaggaa tacaagctctg cyctytggaaa 180 tgcctttcag aaattcaaaa cgaagtcgac ttttttctga tgaagatgat aggcaaataa 240 acacagttgta acctaaaaga aaccagaggg ttgcaatggt tccaaggaagtgt cacagaaaca cacagataag aaagcttcac agaagattgg ttttogattc cgtaatctgc 360 caatgtcaac accagataag aaagcttcac agaagattgg tttttogatta cgtaatctgc 360 tcaagcttcc taaaggacaat aaatgatgtt tgtgatgtct aaaggaact tttccaagtt 480

537

tgaaaacaag aaagttaaca agagtagaat ggggaaaaat tcggcggctt atgggaa

```
<210> 175
<211> 659
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(659)
<223> n = a.t.c or q
```

<400> 175 totototttg ccagtaatgt tggaagtgga catttcattg gcctggcagg gtcaggtgct

gctacgggca tttctgtatc agcttatgaa cttaatggct tgttttctgt qctqatqttq geotgggtet tectacecat etacattget ggteaggtea ecacgatgee agaataceta cggaagcgct tcggtggcat cagaatcccc atcatectgg ctgtactcta cctatttatc tacatettea ceaaqatete qqtaqacatq tatqeqqqtq ceatetteat ceaqeagtet ttqcacctqq atctqtacct qqccataqtt qqqctactqq ccatcactqc tqtatacacq gttgctggtg gcctggctgc tgtgatctac acggatgccc tgcagacgct gatcatgctt ataggagege teacettgat gggetacagt ttegeegegg ttggtgggat ggaaggactg aaggagaagt acttettgge eetggetage aaceggagtg agaacagcag etgeqqgetg

cccegggaag atgcctttca tatttttcga gatccgctga catctgatct cccgtqgccq ggggtcctat ttggaatgtc catcccatcc ctctggtact qqngcacqqa tcaqqtgaa

<210> 176 <211> 1033

<212> DNA <213> Homo sapiens

<220> <221> misc feature <222> (1) ... (1033)

 $\langle 223 \rangle$ n = a,t,c or q

<400> 176

ggaaggtngg gga

cocacgcgtc cggatgtgtg ctcacacttg ggggacctga ttqqqqcttc aqacettqqq ggcctgtccg cagggtctcc tccatccttc ttgatttgcc tgtcattgag gctgcccgct ctgqqcqcca ttccccaqcc taacacctct tctcaqtctt tccttqcaqq tccctqqaqt ccaggccttg gggcagtgaa gaaaccgtgg ggaggggcat gagatgccag tccccaaagt cettgqqaqe cettqtqqqe caaqteattq taqqacacac cetetectqq qeattqctqa qqtcacccaq tqaqcctaqq ctccccctc ctcccatccc caqcctqqqq qaaccttcac egteteteet ecetqtagge eceggeteag etteceagga acttttqttq qtqqtacta gtagggtaag gcagttette ccatcatgag ggagacettg ggagacette attaccaaat ccattgctgc cccqaccttc ctqqqactqa tctqqqtcac cctqqtctcc tqatcttqqa gaagtcaagt tottatocca gacttgagag gttacaagcc tocaggtotc tggcaaagtg

tggagatgat ggacagccat ttgtacacac accagccagt cccttagcat atctctcttg gttttgtctc aggtctgcct cagccacctc cctgacgctg tcccactgtg tqqatqtggt qaaggggctt ctggatttta agaagaggag aggtcactca attgggggag cccctgagca qcgataccag atcatccctg tgtgtgtggc tgcccgactt cctacccggg ctcaggatgt getgeageet cetggeeact ggagggetg accgeetgat ceacetetgg aatgttgtgg gaagtegeet ggaggeeaac cagaccetgg agggagetgg tggcagcatc accagtgtgg

actttgaccc ctcgggctac caggttttag cagcaactta caaccaggtt gcccagtttt

60

120

180

240

300

360

420

480

540

600

660

720

60

120

180

240

300

360

420

480

540

600

659

76

<210>	177					
<211>	335					
<212>						
<213>	Homo sapier	ıs				
<400>						
	atttcctage					60
cacttcatat	catcgcaaaa	ctcctgggta	agtggagaag	attgggaatg	gtatttttt	120
ccttgttatt	aagctattag	aaataaatat	geetttgetg	gcacataata	gtactttggt	180
	atcctatgga					240
gtccattctc	atgctactaa	taaagatata	cccaagactg	ggtaatttat	aaaggaagga	300
gttttaatgg	cctcacagtt	ccgtcgacgc	gggcg			335
<210>	178					
<211>	556					
<212>						
<213>	Homo sapier	ns				
<220>						
	misc_featu					
<222>	(1)(556))				
<223>	n = a, t, c	or g				
<400>						
	gcagcagtaa					60
	gggtccggga					120
ctccttatta	agtatetect	gtaccaggag	gagaaccctg	ccaagetgte	tgaccaacag	180

gaggeggtec gccagggtea gaaccettac cccatttaca ccagtgteaa cgtccgcacc

cccaagtacg gggcttatgt tcccaccgag ctcttcggct cagaactctt catgggacga

ttgetgeage teeageetga acceeggate tgttacetge aaggtatgtg gggeagegee

tttgccacca gcctggatga gatcttccta aagaccgccg gctcgggcct cagettcctg qagtggtaca gaggcagtgt qaatatcaca gacgactgcc agaagcctca gctgcacaac

aacttgagtg gggaagattt tgcagagtgg tgcgagttca cgccctatga ggttggcttc

240

360 420

480

540

556

300

<210> 179 <211> 631 <212> DNA

nectegacge gggaat

<213> Homo sapiens

dadagaaada dadagaada dada dada dadagaada dadagaada dadagaada dadagaada dadagaada da	gtcgtcccac atgagggaaa atgagggaaa atgagggaaa atgagggaaa atgagggaaa atgagggaaa atgagggaaa atgagggaaa	ggatgagga ggatgagga ggatgagga cgatgagga ggatgagga ggatgagga ggatgagga ggatgagga	aaggatgagg aaggatgaga aaggatgagg aaggatgagg aaggatgaga aaggatgaga aaggatgaga aaggatgaga	gaaacgatga gaaaggatga gaaaggatga gaaaggatga gaaacgatga gaaacgatga gaaacgatga gaaaggatga gaaaggatga	gggaaaggat gggaaaggat gggaaaggat gggaaaggat gggaaacgat gggaaaggat gggaaaggat gggaaaggat	60 120 180 240 300 360 420 480 540 600 631
<220> <221> <222>	469	re				
acttcagcta tccggaaccg tgatcgaggg ggctccgagc gaaacaccac cctacgtggg	ntttgagacc cggcctgcag ggaggtgctg ctggaacgag ctggggcaac gcagaccagc gcccaagcag	ccctactgcg ccttgccccg ttccccagcc ctttccaact tccctgagca	ggtactcett atgactgtcc ggagggcccg acaacagctc ccagcccact cctttccaca	agettggeae ccaggttgtg cgcctgggeg ctttaaggae ggageagace gtgeaatgtg gaccaggte cgtcccgg	ggggagatga tatgcéctca atccacagcc tcggggggca agcaacgccc	60 120 180 240 300 360 420 469
<210> <211> <212> <213>	453	18				
gcaggaggcc cgtgtcccgt cggctgctcc cgacatccag ccgccagggt	gggcgccacc tgcgccaagt atcttcgtgg aattggaagc cacaacaccg atcttgcacc ctggtgtccg	accgggcgag aggaccgcca gggtgctcat tccactatgg gtctcagcac ccttccgcga	cagcagccgc cegegtgete ggtgetggee cagegetete etacaccaag caagtttgag	gaagagegea egggeegtea tactgegagg ggeetggeet aagegeetgg atgetetttg eaccceaeca	cgcccgcca tgcccaaggc cgtccactgc acaccttcga tccgcgagcc	60 120 180 240 300 360 420 453

<210>	182	
<211>	377	
<212>	DNA	
<213>	Homo	sapiens
		_

<400> 182
cataatytat agtatttoto otgocaacto tgaggaaggo oaggaactt atgtotgoac
agtcaaggat gatytgaact tggatacagt acttotcota cocttttga aagaaatago
120
agtaagcoaa otggatocaa tgagcocaga ggaacagttg otggtcaagt gtgotgoaat
120
cattggtcac tcottocata tagatttgct gcagcacto ctgoctggct gggataaaaa
240
taagctactt caggtottga gaccoatatt aatgcottoc bctatogaca toattgatgg
360
367
377

<210> 183 <211> 621 <212> DNA <213> Homo sapiens

<400> 183 ctcatcctta aagtgacaga gtaaattaac tctaaggece catccaggac tcaagctgtg 60 tgattttaca aaaatgaaaa ttatattaat aatcccattg taaaatccca aaaqaaagtc 120 aagagactag cagaaagaca ggtgggtgat gggatgtoot ggacagagco tggatcatga 180 ggtccccatg tagtgcttgt actacgcaga tgtttcctct tgagctattt taaaggtgtg 240 gaaaaagcca aagcaatgcc ctctccacgg atactaaaga ctcacctttc cactcagctg 300 ctgccaccgt ctttctggga aaacaactqc aaqqtaaqat accaacaqct ccctqtgaca 360 gaagggaaag taaqccaacc aaaqcqaqtc ctqcaqaccc caacqcaqaq cattcqtqat 420 caectttgcc tctccactgt ctctqatqct taccaqcaaa qaqaaaacat aaagttctac 480 attcagcagg acattcacct gaacagtttc aaataggaca tgaaggcagg atccagattg 540 aatgtttgga gggaactaga gacatgggga ggcagtgagt gcagtaagcg tagctqtqaa 600 atgaagggga gaagatggtg g 621

<210> 184 <211> 415 <212> DNA <213> Homo sapiens

<400> 184 accgggacga cccacgcgtc cgggaattta attetattat atatgcagac tttctaaaga

agataaagct	tttttatggg	agaaacgtta	ttattgcttc	aaacacccaa	attgtcttcc	120
taaaatatta	gcaagcgccc	caaactggaa	atgggttaat	cttgccaaaa	cttactcatt	180
gcttcaccag						240
agtcaaatac						300
agaagtattt	cctttccttt	taacatgaaa	gcaattcaat	ataatccaaa	tgtgtaaatg	360
tatatttata	caaacatatc	ttctgcattg	aagttgtcaa	taaagcattg	catgt	415

<210> 185 <211> 359

<212> DNA

<213> Homo sapiens

<400> 185

ggaaaatyat gatttgagt ttatttgaar tacaacaatg tecaatagga aaacactgca actttcttca ggtgttgaga aatccaatag agacctetgt ttgtctctcc ctttgcaag 120 agctccaagg ggagagaaga gatgggccac cacgatgaat actacaggct gegggsagg 180 ataaccctag tccaaccat tcctacaaaa gaaatgggga atccgaaagg aaaaggaaga aatccactag cacatgtca aagagccag agaggacaaa ttccaacagc agaggagaaga 330 atagtgacg cgacggggo cggtgaagc ggagtgataa cggtcggag cgttacagg 359

<210> 186

<211> 1616

<212> DNA

<213> Homo sapiens

<400> 186

ggaggttgcg gcggcggctg cggcgcagcc cggggcggcg ggtgggaaga ggactaccag aggggcctgc gggagaccca gggtcggacc cataggagtc ctgtcgtcag gacctccttg 120 atcggtcttc tgcttgggtt ctcggtgaag gaggagcttc ggggtgtcgg ctgggctgcg 180 eggaeteete ttgggateeg atgatggate eeaceeggtg ategggaatg gggttacaat 240 gcagtgaggc ggaaaggctc tcgccggggc acagaaagat ccccagggcc gcaaggcgtg 300 ctgtcgcctg caaaggcact gacccacgag cccactgcct ccctccttcc tgggtggagc 360 aggggcctgc cttcatctcc aaggeceggg ggeteeggea tetegaegeg getteeggeg 420 acacgggcaa agagagacag aggctagtcc gagccggagc cagtgtgacc acacgtggca 480 ctgacgtccc ccaagagcac atgcagtgag cctgtgtctc tgaggccgta gtgggcgacg 540 acgagacgga cagtgatgtc caggcctgcg cccgggggcc actggagacc tgcccctcaa 600 ageggaggaa aegecaaget caeetgaaaa eetgegagae agggeetgtg caegagteea 660 gtactcctac ttcgccaagt ctcagggacc catccccgag caacggtggc ggcgcagaga 720 agagcacggc gccggcgcag gtgcagagag acaggaggct gatgggggga agttgaggca 780 cctggggcag agaaaaaaat gcattgccaa gaggtttctg ggtcatctac tgacgaaaat 840 gtetteccat cagecettge getggtecce agggaecetg geateegteg ttggegeeca 900 gggtgcgcgt cgggccacta ggggtacccc aactcggaca gaaggcccat gagttgaatt 960 tgaagtttgt gggaatagag gtgaggcacc aggggcagaa aaaaaacagg agacctcgcc 1020 teagacaage ggggeetggg tececeatgg atgaaagtge etteceatta tgetgtacee 1080 tgggcagagt ggacagtgac gaccetggtt cgageccagg gtgegetteg ggaccgettg 1140 cggttaccag aaagegaaca aatggtccat gageggaagg tgaggcacct gaggcagaga 1200 aagtaaagaa acgegeegee gagaageagt geetgggtee etcaeggagg aaattgtett 1260 ctccttagcc cgttcgcttg gcagtgaggt ccctggcgtc cctggtttga tcccagggta 1320

WO 01/53455	;				PCT/US0	0/35017
cacctggggc gacgaaagtg tcgagctcag	cactagtgtt agagaaaaaa tetteccate ggtgtgeete gggaaagtaa	aaaaacttcg agtccctgca agccgctacg	ccgcaaagaa ctgggacccg tgcaccccaa	gegeggeetg gggaccetgg ggggagettt	attecceaeg tgtecetggt gggageccaa	1380 1440 1500 1560 1616
	* *					
<210> <211> <212> <213>	916	as				
gcaagaaaat agctgatgaa acttgaagat aaagaaagcc ccagctgaag gcaggaagca agaagctgag tgagatgag actgaatgag actgaatgag cctcactgga tcgacgtgaa acgaggctaa ccaaggccaac	aggcaacatg ctaaaaagta gagaaggaga gccaaatctc gtggccacct ctctaatg gagaggttca atagaactcc aaaacaggtg acaatggaac agtgcaaca ggttcttatc tggtacttta aaggactctg gggacacag	tggaggaaat gaattctggc aggagcaagt ctgataagct gaactgttat gcagaaagc tgcagaatct taggtactgg acaaggac aaggaggctt agaatgatta tgcacacc gtgttggcct	ccaaggcctt ccaactcoga ttttggttta agccacagct gaaaattaac agcacaagca cctcaggcag agcaaactca agagattgca tgaaaatgt cataagcagc accatcatca taagtactca	acagatotcc gagttagag gataaagaac gagctcacca caggagcgag gccagagatcaa agggtgcag tagactgaga ttagaagaaa atggcagat atggcagat caggtccag cagatccag	aacttcagga aaaagaagaa tgaagaaact ttgccaaaga cagaggagtt tcacccgagc agtttcgact aaattgagaa atgtactata ttgctgaact ctttcaaaag gccatagttc ctgttagaaa	600 1200 1800 3000 3600 4200 6000 6600 7200 7800 9400 916
<210> <211> <212> <213>	1080	ns				
ccatgggctc actgtgaata cttcttttaa	188 agetteatea eteaacagtt ttttttgaeg gacaagggta	tcagtcttgc agatttttaa attgtcgttc	tgctccatac ttgtatccaa cccgtcctag	ataaatagga ttcaaggtaa agtgtttcct	aagtttatga tcagatgctt cttgggtcag	60 120 180 240

attecgeett cettgtagea gataaggtta ttgteactte aaaacacaac aacgatacce 360 agcacatotg ggagtotgac tocaatgaat tttotgtaat tgotgaccca agaggaaaca 420 ctctaggacg gggaacgaca attacccttg tcttaaaaga agaagcatct gattaccttg 480 aattggatac aattaaaaat ctcgtcaaaa aatattcaca gttcataaac tttcctattt 540 atgtatggag cagcaagact gaaactgttg aggagcccat ggaggaagaa gaagcagcca 600 aagaagagaa agaagaatot gatgatgaag otgoagtaga ggaagaagaa gaagaaaaga 660 aaccaaagac taaaaaagtt gaaaaaactg tetgggactg ggaacttatg aatgatatca 720 aaccaatatg gcagagacca tcaaaagaag tagaagaaga tgaatacaaa gctttctaca 780

aatcattttc aa	aggaaagt gatgac	ccca tggcttat	at tcactttact	gctgaagggg	840
aagttacctt ca	aatcaatt ttattt	gtac ccacatct	gc tccacgtggt	ctgtttgacg	900
aatatggatc ta	aaaagage gattac	atta agetetat	gt gcgccgtgta	ttcatcacag	960
acgacttcca to	gatatgatg cctaaa	tacc tcaatttt	gt caagggtgtg	gtggactcag	1020
atgatetece et	tgaatgtt teeege	gaga ctcttcag	ca acataaactg	cttaaggtga	1080

<210> 189 <211> 1344 <212> DNA <213> Homo sapiens

-

<400> 189 tttttttttt ttgctgctgg gtcgggtttt atttcaaatg cagccacaga ggcggtttct 60 geacaggtac gtgatcegac tecacaaget cecaccaggg getececatg accegeaatg 120 acqctqtqtq qqgtcaaaqq aaaacaqqcc acaqccaqqc ccctcqatqq acqcaqqcaq 180 gggaccagga atgoggccca cgcaggggga tegggaatca ggcggaaggt gcaggtttgc 240 agctggggg aggagccagc atgccccaat ctctaaaata ttcccggtag aaaaatagac 300 atttecetee aaageagatt cetggggetg gagggteeet eeaaggeeag gggteegggt 360 gattccagag catccacget ctgcgctgaa ggcactgaac ctgccatcac tgtcacagec 420 gteaceggee aaggagggte tggaggaggg aaggggeeet tgegaggete tggtgetggt 480 gateceggee eccaccaceg gaggagetga aagecettge teagecgetg ecetgetggt 540 gaacceggee eccacegeeg gaggagetge accetgtgtg gtetgaggea gecetgeact 600 gggcagcggc cccgccccgc gctgaaccca ctaggagagc agctgcagca cctgtcggat 660 gegetgggee etecceggea gggggggate agagecetee teatecaget ecegcateag 720 ggetteegee ttetgeaceg teageteteg ggeeeggeee tgeageeeet ceaggtagge 780 cagcagggtg gagaagtgct catcgggaac cttqtcactq tcatacatqt gcaqcaggag 840 ccacqtctqc ctcqtcttct qaaacctcca qttcttqtqc ttttqqqccc atctqcaqaq 900 qtaqtccaqq qccaqttcqq ccccqaqcq cctqqcaqqc qqqtqctqqq ccacaaqqcc 960 tgcctcccgc agacgctgcc tctcctcttt cttccqttcc tttttcagct tcctttccag 1020 gaccetetge teetetgggg acagetetgg etetgegtee agecegggee tgageacage 1080 ttegecettg gageeggete ettegeeaet tggtgeagee teagggeeea geagtggee 1140 etetgetgae geettettea getttttgtt etttttetet gteactteag gaacttttet 1200 cttetgtttt gecateetge geceaeetge geceaegteg eccaeetaag egtgaacage 1260 tgogtogogg acgeegeett ceggeaggga ceegeggaeg egtgggtoga ceeggeaaaa 1320 egggtecaac etagggegte gagg 1344

<210> 190 <211> 550 <212> DNA

<213> Homo sapiens

4400> 190

cocgyaccca cgocgoccco gegocacgge teteccocac acogocttat tegggtcgag
accocggagca cocegggge goctgctgat gageggatct ceggaccca ogceagcage 180
gatagggtag otacetcaga agactatgeg gaccocgtttg atgttcagag gactggggat
ggctcagcag gagettcagg agcoccagag aaggtcoctg aaaatgatgg ctacatggag
cocttgagg ctcaaaagat gatggcogag atcoggggct coaaggaaga agcaactcag
soccttgcott tgtatgacaa acccatagag caagaggag atggggcoca cocggaagtg
360

gagtatgacc agccctggga gtggaagaa	c etgecagagg atgatgagag geceetgag g gageggattt ceaaageett tgeagttgae t ceaeetgtgg gaeagetgga eageageee	420 480 540 550
---------------------------------	--	--------------------------

<210> 191 <211> 562

<212> DNA

<213> Homo sapiens

<400> 191

caatttttt ctctttctt aaggtatcag atacacaceg gacttcaaca ttctatcata 60 agacctaccc aacccaactg tttacctctg gacaatgcca ccctacctca gaaactgaag 120 gaggttggat attcaacgca tatggtcgga aaatggcact tgggttttta cagaaaagaa 180 tgcatgccca ccagaagagg atttgatacc ttttttggtt cccttttggg aagtggggat 240 tactatacac actacaaatg tgacagtcct gggatgtgtg gctatgactt gtatgaaaac 300 gacaatgetg cetgggacta tgacaatggc atatacteca cacagatgta cacteagaga 360 gtacagcaaa tottagotto ccataaccco acaaagccta tatttttata tattgcctat 420 caagetgtte atteaceact geaageteet ggeaggtatt tegaacacta cegatecatt 480 atcaacataa acaggaggag atatgetgee atgettteet gettagatga agcaatcaac 540 aacgtgacat tggctctaaa ag 562

<210> 192 <211> 2171

<212> DNA

<213> Homo sapiens

<400> 192

cacgogtccg gaaaggaaga ggcggtgaga ggctgcaaag ccccttgcgt gttccgcaga aaccagaaag accteceett ccacccaage etcagtteet aaactcaggg geatateete 120 aaaaacctct tagaaatcag ggagtggtga ggacactgtc cagctctgcc caagaggaca 180 teateeggtg gtttaaagag gagcagetac cacttegage gggctaceag aaaaceteag 240 acaccatage eccetggtte catggaatte teacacteaa gaaagcaaat gaacttette 300 tgagcacagg catgcccggc agttttctca tccgagtcag tgaaaggatc aaaggctatg 360 ccctgtccta tctgtcggag gacggctgta aacatttcct catcgatgcc tctgcagacg 420 cctacagett cctgggcgtg gaccagetac agcatgccac cttggcggat ttggtggaat 480 atcacaagga ggaacccatc acttccctgg ggaaggagot cottctctat ccctgtggtc 540 agcaggacca getgeetgae tacetggage tgtttgagtg acagceteca teagggteat 600 cctacagect ccaageggge tttcccctgg acaaatgcca ctgcaacatt tatgtgtgaa 660 gecaaaatca ecetgeagea gagecaatae tgateaaetg aaagtateea tggagteete 720 attgacacct cttttetgca caaatactgg aattcaatgt caagagaaaa tgacctctgc 780 tcaaaaggga gaagagtoto aatttoagoa agtacetgto atgaagggta tgacettaat 840 gatgtacata aaataaaaca aatgaagaaa tggaaaactt ttagaaatta aggtgtactt 900 gaaaacgagt atctatcata tgacccctgc actccctctg tatcatctca ggaggtttca 960 ggggcetgtt gacatgaagt ttegaagttt catgttgget ttggaatggt agcaaaagce 1020 tttcctggct gagatgatgc ttaaaacaca cctcacttat tgtacatgtt ggaaccagga 1080 catgagagac atagaaaaac agaagtcatg aatgtaaatt gaatgagagg cttaacatgc 1140 atgaaaatac agatggacct gcaggaaagt gagcaaacat cgctgagttt gttttcttgt 1200

togggagaat	ggggccgggg	ctggcctggc	ctcccctgga	tatactctat	agtgcaccaa	1260
aaggataaag	catctgtaca	tgtattttt	tattttttat	cagaagtgct	tagacaagaa	1320
cagaataagc	aggctgtttg	gatgctactt	gtggttgaat	tgtgttcccc	caaaatatat	1380
ggtgaagtct	taacccccat	ccccgtgaat	gggaccttgt	ttggaaatag	ggtctttgca	1440
gatatagtca	agatgaggtc	acattggatt	agggtgggcc	ccaaatccaa	tgactggcat	1500
ccttaggaga	agagagagtt	ttggtaatag	acacaaatgc	agtgggaaga	agaccagggg	1560
acaagaggca	agttggagtg	atgcagccgg	aagggaaggg	acaccaagga	tctccggcca	1620
ccagcagaag	ccagcagaga	ggcatgggac	aggttcccca	caagccttag	aaggaagcat	1680
ggccctgact	tcagaattcc	agactccaga	actggaagaa	taaatgtctg	ttgttttaag	1740
ctgcttagtt	catgctgagt	tcatgctgac	ttgttactat	agccccagaa	agctaataca	1800
gtcgtttatg	taattacata	acctgacaca	caagatcgac	ccattcactg	ctgcccagtc	1860
caccattttc	ataatgaagt	agaaatggga	ggtaagaaaa	acattccagc	cagttctgtt	1920
tagccctggg	acacatattt	gtcccgtcag	gaatcttatg	ccctcctgga	accccccccc	1980
acctcagtcc	agtcccagtc	aggcgaacgg	cctctggaca	gggactgagg	tggctttgag	2040
ccactggaga	tcatttttct	tggaggatgg	agattggcta	gtacctctgg	cctaactgtg	2100
taggtcaata	ctcttttaca	ttgccttcta	ataaaagcag	aatgatacag	cagtgttgtt	2160
aaaaaaaaaa	a					2171

<210> 193

<211> 2095 <212> DNA

<213> Homo sapiens

<400> 193

```
ggggaagtot ggagaaggca ttgtttcaat tattaaaagt gtgggggcag tgggcggaac
                                                                     60
aaacgcgccg actacagagg ctggacgtaa gcttatcggt ggcgcgcgtg cgcagcgccg
                                                                     120
gcccgagttg ccaaaacaaa ggggatttgg tgatggaggc tttgttagaa ggaatacaaa
atogagggca tggtggggga tttttgacat cttgtgaagc agaactacag gagctcatga
                                                                     240
aacagattga cataatggtg geteataaaa aatetgaatg ggaaggaegt acacatgete
                                                                     300
tagaaacttg cttgaaaatc cgtgaacagg aacttaagag tcttaggagt cagttggatg
                                                                     360
tgacacataa ggaggttgga atgttgcatc agcaggtaga agaacatgaa aaaatcaagc
                                                                     420
aagagatgac catggaatat aagcaggagt tgaagaaact acatgaagaa ttatgcatac
                                                                     480
tgaagagaag ctatgaaaag cttcagaaaa agcaaatgag ggaattcaga ggaaatacca
                                                                     540
aaaatcacag ggaagategg tetgaaattg agaggttaac tgcaaaaata gaggaattee
                                                                     600
qtcagaaatc gctggactgg gagaagcaac gcttgattta tcagcaacag gtatcttcac
                                                                     660
tqqaqqcaca aaggaaggct ctggctgaac aatcagagat aattcaggct cagcttgtca
                                                                     720
atoggaaaca gaaattagag totgtggaac tttotagoca atcagaaatt caacacttaa
                                                                     780
gcagtaaact ggagcgggct aatgacacta tctgtgccaa tgagttggaa atagagcgcc
                                                                     840
tcaccatgag ggtcaatgac ttggttggaa ccagtatgac tgtcctacag gagcagcagc
                                                                     900
aaaaagaaga aaaattgagg gaatctgaaa aactattaga ggetetgeag gaagaaaaga
                                                                     960
gagaattgaa ggcagctctt cagtctcaag aaaatctcat acatgaggcc agaatacaaa
                                                                    1020
aggagaagtt acaagaaaaa gtaaaggcaa ctaacactca acatgctgta gaagctataa
                                                                    1080
gtttggaatc tgtgagtgca acgtgtaaac agctgagcca agaactaatg gaaaaatatg
                                                                    1140
aagaactgaa gaggatggaa gcacataaca atgaatacaa agcagagatt aagaagttga
                                                                    1200
aagaacagat tttacagggt gaacaaagtt acagttctgc actagaagga atgaagatgg
                                                                    1260
aaateteeca tetaacteag gagttacate agegagatat cactattget tecaccaaag
                                                                    1320
gttetteete agacatggaa aagegaetea gageagagat gcaaaaggea gaagacaaag
                                                                    1380
cagtagagca taaggagatt ttggatcagc tggagtcact caaattagaa aatcqtcatc
                                                                    1440
tttctgaaat ggtgatgaaa ttggaattgg gtttacatga gtgttccttg cctgtatctc
                                                                    1500
cccttggttc aatagctacc agatttttgg aagaggagga actgaggtct catcacattc
                                                                    1560
tagagegett ggatgeceat attgaagaac taaaaagaga gagtgaaaag acagtgagac
                                                                    1620
aattcacago ottaaagtag ootottaaaa aaatcacaat ottggaaata aaaataaaca
                                                                    1680
ccaaagagtt actgtcatct gaagtagcag ctctttaaaa acatgaagag ataaaattat
                                                                    1740
aaaaatgata catctaaagc agtggtgaag aaagctgaaa aactgatact tttgataggc
                                                                    1800
attttctctg cactggtttt tttaaaggac ttcttccagc aataagttga aagaataaac
                                                                    1860
cactttgcta gacttttttc tcatacgaat atttattatc ataaagtgat acttaccttg
                                                                    1920
```

WO 01/53455	;				PCT/US00/3	35017
ctgacttaaa	tgtgaatagc	tatgtactaa	ttgaaataag	gattttatga	tacatgttga	1980
aaataaagta tcaaacatac	actgcaggaa ctggatcgat	ctttctttag agactggttt	gggaaatgtg	tagaagcatg	gatttagggg	2040
	555	-335	ogoodoccao	ougoodacgg	ggeee	2095
<210>	194					
<211> <212>						
	Homo sapie	ns				
				,		
<400>	1.94					
gagaccttgt	cttaaaaaaa	taaaatgctg	tcagaataaa	aagcagtcaa	cagaaatgaa	60
accettataa	gagacaaata ttgccttctg	aatgtgggca	attattttct	gcaaaatgcc	ctccaagccc	120
aaggaccctc	cctgactccc	acctcccttt	ctgccttgta	ccccaqccaq	gtggaagaga	180 240
ccggagtggt	getgteeetg	gagcaaacgg	agcaacactc	tegeagacce	attcagcggg	300
gegeceete	tcagaaggac cttcctgcac	acccctaacc	ctggggacag	ccttgacacc	cetggeeeee	· 360 420
geegtttetg	cagccctgac	ctccgtcgcc	tcctgggacc	catcctggat	ggggcttcag	480
tagcagccac	tcccagcacc	ccgctggcca	cacggcaccc	ccaaaqtcct	ctttcqqctq	540
aagacactga	tgaactacct ggcagtggag	acagatttag	agaatgtgca	ggatgetgat	acctccggga	600 660
tggagatgct	ggccccctac	atctccatgg	atgatgactt	ccagctcaac	gccagcgagc	720
agctacccag	ggcctaccac gtcacctcca	agacctctgg	gggctgtccc	ccggccccgt	gctcggagct	780
cccggctgag	ctgctccagc	ccttccagag	gggacccctc	agcatcctct	cccatggctg	840 900
gggctcggaa	gaggaccctg	gcccagagct	caaaqqacqa	qqacqaqqqa	gtggaggtgg	960
tgggagtgag ctctcagcct	acctcccaaa gagtttcctt	aggtccccca	gcccagaaca	cgaaaacttt	ctgctcttc	1020
	5-5	0034043545	5			1031
<210>	195					
<211>	423					
<212>		_				
<213>	Homo sapier	ıs				
<400>	105					
	agactgtttt	gatgttcatg	atgcatcttg	das ausaceu	atatteteee	60
		~ 55	5	JJ A J Cu.S		

400>
 195
 Gyaadactaa ayactyttti gatgttcatg atgeatettg gyaagagag atattetggg
 60
 gatgycataa tgatgtcaa atatttgaca caaagacaca gacttggttt caaccagaaa
 120
 ttaaaggtg agttcaacca cagcacaga cogcogatac gtyctgagtt cttggaatac
 atgggttatat ctttggcgga ctggttctgg aaactaggat gaatgatttg cactatctaa
 240
 acctagacac ctggacttgg tctgggaagga ttactattaa tggagaaagc ccaaacact
 360
 gytcatggoa tactttaac
 atgcatataa
 tatgcagatt atgatggtt ggattcaa
 tytcacacaca cattgttgga
 423
 423

WO 01/53455	;				PCT/US00	0/35017
<210> <211> <212> <213>	411	ns				
catcacagct ccccaagtag ttgtatttt ggctcaactg cctgctcaac	ttgaggacaa cactggcagc ttgtgcctcc tgtagaaaca atccgcctgc caggttttat	ggteteacte ctoaaccetg taggcacaca ggattegce cteggcetec tattaagtt catattttt	gggttcaagt acactatgcc atgttggcca caaagtgctg agttaaactt	gatectetea ceggeaaatt ggetggtete ggattacagg tggatagatt	cottcagcct tttttgtatt gaacaccctg tgtgagccac gtataatata	60 120 180 240 300 360 411
<210> <211> <212> <213>	751	ns				
cgccgcgctg ctggggcgac ggtggaggtg ctgccagagg tgggtcctac cggcctggca gccaggcag gatcagctgc gctcagccagc gctacacagc cctcagtttgt	gggcaggtga cagaagagca caggagtacc accacagatg gaggatgtgt gagcacctgt gaaagatgga tgggagcaca tgggtgctca gtgccccca cctgtcagga gaccttcccc	agoagggct ggoacctoct ggggctcottoc ctggctcoc ggccgggca acctyaagg gacctattog gcccaagac ctgccaggcc ctaagtggga ggagggagg	ggaccaggtc cacctgtegc gtgccttgca cttactggaa ggtggcggat cgtagcagga gcagctgctc aggtgaggca tcaggcacac agaagtaagc ttccagaggg	attectegg atttggeagt gggagactet aaggtetaeg gcetggtgg ageggaggec cacetgaagg egtggecagg egtagettt tgtteteaa	gacagecgag ttggaegetg gttteteceg ecaaggteca acetgaecgg ageaggaeag aceagtgtet atgggaggge tatgtgaetg gggtggtgte	600 1200 1800 2400 3600 4200 4800 5400 6600 7200 7551
<210> <211> <212> <213>	636	ns				

<400> 198

gggeegagtg tetggaggee tetattgeee gatatgeeca eegtgtegee aatageegtt 60 atacctttga cggtgaaacc gtgacgcttt cgccaagtca gggcgttaac cagctgcacg 120 gcgggccgga agggttcgac aaacgtcgct ggcagattgt gaaccagaac gatcgtcagg 180 tgctgtttgc cctgagttca gatgatggtg atcagggctt cccgggtaat ctcggcgcga 240

cggtgcaata	tegtetgace	gacgataacc	gtatctccat	tacttatcgc	gccacagttg	300
ataaaccttg	cccggtgaat	atgactaatc	acgtctattt	caatcttgac	ggcgagcagt	360
ctgacgtgcg	caatcacaag	ttgcagattc	tggcggacga	atatctgccg	gttgatgaag	420
gcggcattcc	gcacgacggc	ctgaaatctg	tcgccggaac	gtcttttgat	ttccgcagcg	480
ccaaaatcat	cgccagtgag	tttcttgccg	acgacgatca	gcgcaaagtg	aaaggttacg	540
atcacgcatt	cttgttacag	gccaaaggcg	atggcaagaa	agtggcggcg	catgtctggt	600
cagcagatga	aaaattgcag	ctgaaggtct	acacca			636

<210> 199 <211> 690

<212> DNA <213> Homo sapiens

<400> 199

aaagtggcag tgtttcti	ct gaaattetea	ggcagtcaga	ctgtcttagg	caaatcttga	60
taaaatagcc cttatcca	agg tttttatcta	aggaatccca	agaagactgg	ggaatggaga	120
gacagtcaag ggttatgi	tca gaaaaggatg	agtatcagtt	tcaacatcag	ggagcggtgg	180
agctgcttgt cttcaati	tt ttgctcatcc	ttaccatttt	gacaatctgg	ttatttaaaa	240
atcatcgatt ccgcttci	ttg catgaaactg	gaggagcaat	ggtgtatgac	aagccgccga	300
aatttgccat gtcacgag	gag caaatgtcac	agtcatgttc	tcacacggca	cataatgcaa	360
gtctgttgac agatgcgg	ggt ccattgtcat	gtggggagtc	gagggggagc	tgtttgtttt	420
tgtaacgatg ttgggaag	gtg atggctctgc	agtcacaaag	agcagccttc	tctcactggc	480
tgcaccgatg aacatta	cga agttctagaa	caaacatcac	ttcaaaatgc	ctggagtaat	540
tectettata teaacta	att tcaagaagaa	aacctgcaga	aactaacccc	acccctctca	600
acgagaatat tgtgtcc	acg teetetttae	ttatacgacc	cgtctcttat	tctcttataa	660
cacaacgtca taactaa	acg agcacaacac				690

<210> 200 <211> 433 <212> DNA

<213> Homo sapiens

<400> 200

gtgactccaa	ggaaccaaga	ctgcagcagc	tgggcctcct	ggaggaggaa	cagctgagag	60
gccttggatt	ccgacagact	cgaggataca	agagettage	agggtgtctt	ggccatggtc	120
ecctggtgct	gcaactcctc	teetteaege	tcttggctgg	geteettgte	caagtgtcca	180
aggtccccag	ctccataagt	caggaacaat	ccaggcaaga	cgcgatctac	cagaacctga	240
cccagcttaa	agctgcagtg	ggtgagctct	cagagaaatc	caagetgeag	gagatetace	300
aggagetgae	ccagctgaag	gctgcagtgg	gtgagcttcc	agagaaatct	aagctgcagg	360
agatctacca	ggagetgace	tggctgaagg	ctgcagtggg	tgagcttcca	gagaaatcta	420
agatgcagga	gag					433

<210> 201 <211> 782

<212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(782) <223> n = a,t,c or g

<400> 201

gaagaagggg aaaagagget ceaggeeest tetecaatea etceetgeea ceetttetee tttggattee ttggetgett tageaggtet teetagagge taactttgat etttettget 120 granttett titgggagag ctagtragte ccacagagtg gtatcctag aagggagaag 180 taaggattgc cctcttcttt aaaatgaaag ccagctattt ttcacgccct ttaactgcag 240 gtetgeteta ttttetttte tetetetgga getgagagte agagggeet teteeteete 300 ctttcagccc ccaacactaa gotgatggat tgataaatac ctcagcccct cgcctttctc 360 aacccacctq qcaaqtcttc ttaggatetg atcccagttt tctggaaqca atcctacccc 420 ageccattet teccagagte gageettaat cetteteact tetcagtgte agageagaaa 480 tqaatcctgg ggttgactgt gtccattcgg gttattagca gctaagaagc ccagacgagt 540 agtgtgaget geettgggag ceteagtgag ggeaetggga etggeeteae tetettgeee 600 ccagcctagt gggctttctc ctctqtctct ccqqtqqccc caqqcaatcq actqcatcac 660 granggardt gagttggage ggreacgtge etgeceacea gaggtetaeg ceateatgee 720 gggctgctgg gcagcggagc cccagcaacg ccacagcatc aaggatgtgc acgcccgctg 780 ca 782

<210> 202 <211> 714 <212> DNA <213> Homo sapiens

<400> 202

ttcgagaccc tatccatgag gggaattcct cacatgctgg ctttggggcc acagcagctg 60, ctggcccagg atgaggaggg ggacacgctc cttcacctgt ttgcggctcg ggggctgcgc 120 tgggcggcat atgctgcggc tgaggtgctc caggtgtacc ggcgtcttga cattcgtgag 180 cataagggca agacccctct cctggtggcg gctgctgcca accagcccct gattgtggag 240 gatetgttga acctgggage agageccaat geogetgace atcagggacg tteggtettg 300 cacgiggeeg ctacctacgg geteccagga gitetetigg eigigetiaa eteiggggte 360 caggitgacc tggaagccag agacticgag ggcctcaccc cgctccacac ggccatcctg 420 gcccttaacg ttgctatgcg cccttccgac ctctgtcccc gggtgctgag cacacaggcc 480 cgagacaggc tggattgtgt ccacatgttg ctgcaaatgg gtgctaatca caccatccag 540 gtgagcgggg atgtgggcgg tcagaccttg ggagattqtg tggaatgggg ccacttggat 600 gtccgggagc tccaggcaaa tgctgacttt gcctcttcct tgctgcgtgc ccttgaacat 660 gttacttcac ttctctqtqc cttaaqqqtt ttttqcttqt ttctttqtca qtta 714

<210> 203 <211> 477 <212> DNA <213> Homo sapiens

agetgteagg cegetgaget tetgeggega ceattgaaag gagatgeaaa ceageaaagt	ggcggacgcg ggtgcagcag cattcgctcc ggagaaagtg taagatggtc gcagctggct tcgtcagctt	cegtetgagg ctgacagage gtggagagag actetecace ggaatgatea gacetggeca	ccaagatggc gggtgggagg tgcaggagct agctggatgc gaatgggtcc cctttacctg agaaccgcct tggatggagt	tggeegetge ggaggetgta tettttggaa taatetgeag caacetgget ctateaggee	tccgaaatct tacgaacggc cagcaaaaca ctgattgagg gagaatgtgt attcagagag	60 120 180 240 300 360 420 477
<210> <211> <212> <213>	706	ns				
ggtgaactct gccagtgtgg aagactctgc ttctttgctt tcggccctgg atctctggct ttggccatgg gtgcctttcg ggtttcgact atggcattg	teegggttee gggeetteac eegggeetg aggggteeat tgggeetegt ttaccaaagt tegttaaggg etgaacteaa gttegaggg gtattgetac ggateteact	cactggetgg gagetetget tgcactgcac gttgetgetc gttcacagge ggacgtgcac tgacacctat tattetcegt cactggagaa gtetgtetgc	teggeatate aaceteatee tttgacaace gtgececatg actggattgt gtgaacett aactggaage agettgggte ggagcacga gaagcacaga gaagcacaga cagectgaga	teteetatgt tgattgggaa teettgeaga tggetetegg tggttettgg teacagaaga etetgggete eetgttteta atceceageg attttgetgt	cattggtaca ccacatctet atatccagat ggctagtgag gttcgtcatg ggactacgaa tggaggattt tgcatttgtt ttccatcccg	60 120 180 240 300 420 480 540 600 660
<210> <211> <212> <213>	852	ns				
tegtttgtgg tattettttg aatacteate tttacagtea	ctaatacgac gcgaagtaag aaatggtgca agtttgacag tagcaacaga	tgetgtagat gecagatttt ggagtetett teaggggate	getegagegg aaagaetttg gagttgeat atgaggegga ceteageete geteceaaat	ggccaaatgg ccatcagtgg gagggactgc tcaaggatca	agaagtaagg ggaaattaca tgtgtttagc ggccactgta	60 120 180 240 300 360

gctacaatat cagaatcagc agccaatctg acacaagtgt taagagtatc tgcctcagat

gttgatgaag gtaataatgg acttattcac tattctataa taaaaggaaa tgaagaaaga

cagtttgcta tagacagtac ctctggtcag gtaacactaa ttggcaaatt agactatgaa

360

420

480.

540

gcaacacctg	cctattccct	tgtaattcaa	gcagtggatt	cagggacaat	cccctcaat	600
			gatgaaaatg			660
taaatcaaca	cttctttgtt	gatgttttgg	aaaacatgag	aattggtgaa	ctcggggcct	720
ctggtactgc	aactgattcc	cgattcaggt	gacattgctg	atttatatta	caagtttact	780
gggactaaac	accccccgg	aacttttagc	attagcccca	aacacttggg	agtattttc	840
ttggcccaaa	aa					852

<210> 206 <211> 361

<212> DNA

<213> Homo sapiens

<400> 206

ctggtgattg ctatgacctg tatggagggg agaagtttgc cactttggct gagttggtcc gagtattact ggaactcat gggcaattaa gggcaattaa aagggaagat tggaactgt attgagctt attgagctt attgagctt attgagctt attgagctt gaaaaggaagc agagaaattg ttaactgaaa aaggaaagc atagtagctt cttgtaagag 24 agagcacagag cacacctgga gattttgatt ctccgttgtg cacaggtgga gaaaaggag 300 agagcaatga cggcaagtc aagtgacata atgtaatta tcactgtcag gaactgaaat 360 c

<210> 207

<211> 2483 <212> DNA

<213> Homo sapiens

<400> 207

ataaaatgga catagtagta ggacttacct cccagggctg tggttataga ggttttgtaa 60 gaattaaatg acatcatcca tgtaaagcat atagcagaat gcctggcaca tagatgccct 120 tagtgaattt ttgctgttgt tgtgattctt ttgggagcag tcatagtaac atattctcat 180 atgttggtat gttctttcat attgcattgt cttatgaata gattctggaa accaaaatgg 240 aggaaatgat gataagacta agaatgctga gaggaactat ttaaatgttt tacctgggga 300 attttatatt acacggcatt ctaatctctc agaaatccat gttgctttcc atctctgtgt 360 ggatgaccat gtgaaatcgg gaaacatcac tgctcgtgat cctgccatta tgggactccg 420 480 asatatactc asagtttgct gtacccatga catcacaaca ataagcattc ctctcttgct 540 qgtacatgat atgtcagagg aaatgactat accetqgtgc ttaaggagag cggaacttgt 600 gttcaagtgt gtcaaaggtt tcatgatgga aatggcttca tgggatggag gaatttctag gacagtgcaa tttctagtac cacagagtat ttctgaagaa atgttttatc aacttagtaa 660 720 catgettece cagatettee gagtateate aacacteact etgacateca agcactaaac 780 cettatagat tgacatgetg geagaagatg attgttaaac tetecaggaa ettgtgetat gctgggaatc tgtcaagcaa aagatgccca gaaagagaac ttgcagctca atccacaaat 840 900 caagatacat gtgtgtgaaa cccattccaa aaatttatat actgqcacaa actggtggat 960 caacccctaa cttaaacact taaagtctct ttatgaattt ctctttttt cttctctgtg 1020 ttacctqtqq aatattaqqt aatctaaaac tttttattta ttcacacaqq qacacttqqq gggaaaggga aacttgatta tatttacatg ggagggcatt tgactttttt caaggagggc 1080 ttggacttcg tcttcaggtg gcaatcctta attaaacata caaacaaaat tttcctttta 1140 ctttctttgc caaaacaaaa tgtaaaagca ctgaaatata cattgcaagt acaaatttcc 1200 tgtgaaaatc tttttataga aacacaaatg tataagacaa atgtgcttgt tcttttaaat 1260

tctcctgttt	cagaatctct	ttttaatcta	ctcctaagga	tgtacaagtt	agagtcagaa	1320
gacgttttgg	attttttccc	teteteteat	cctcccgctg	tgcccttgca	cttgcatatt	1380
aataacattt	catggactgg	gaaatagtgt	tettttttge	aagcttgatg	tcaagttagt	1440
ctaaaccagc	acctggcagt	attttagtgc	tcatcaacat	tgtgacaatc	acacaaggaa	1500
gatcatttct	acatttctgt	cetecetgeg	ttctcagctt	gcttaaccat	tcctctacct	1560
cttgcatttt	tttgcggata	aatgtatccc	catttctgct	tetetgttte	ccctcctttt	1620
ccattgtttt	teettatggt	actactttct	caggtgctac	atatcatata	tttgtcccat	1680
ctataacata	tttaaatgct	ataagtagta	actccattaa	acaaaggcat	ttacaaaagc	1740
acacaggtgt	ttagaaaagc	aatagtttca	tcaattccaa	gttatgtgga	tattgtaact	1800
ggccacaaga	atgaaatgga	gggcatttgg	tgtcataaga	tggcatgtct	tgatgacaag	3.860
aaacaaaacg	cccttcatta	atatgcctca	gtgtaataac	tattatagaa	actgttggca	1920
agcagagtgc	tttcctataa	cagaatgtgt	cttaattttc	tacttgaggg	aaaggtttgt	1980
ccaggtaaca	acactaaaga	caaccctaag	aacacccact	ccagcagtat	gtccattaga	2040
cactaaaact	ctccaaatta	tttgtcaggg	agcctggcga	ttctgccaag	aaggcaggtg	2100
ttttgccctt	agagcctata	cagttetett	ggagaaattg	tctttcaggc	accactgtta	2160
atcactgaga	ctgattctaa	tgcaaagcag	ggaagacaga	ggcagaaacc	aggagagtgg	2220
tagatcagtg	cagcccagat	atcggaatgg	aggagcaaag	tttcattcac	ggatgtttgt	2280
tgaatgctgc	tgcccaactc	ttcctttgtc	acctctaggc	tattccacta	agttacttat	2340
aaactggtgg	ctttaactga	gggctgtgta	aaggtactat	ttggcatgtg	aagtcaggat	2400
			aactgtgtta	cagaagtagt	aaaattggaa	2460
qaatcatqtt	tatqqtqtta	cca				2483

<210> 208 <211> 366 <212> DNA

<213> Homo sapiens

<400>	208					
caagcatcct	gcccgccctg	ctggtgacca	tcctgatctt	catggaccag	cagateactg	60
ccgtcattgt	caaccggaag	gagaacaaac	tgaagaaggc	tgccggctac	catctggacc	120
tgttctgggt	gggcatcctc	atggctttgt	gctcctttat	ggggctcccc	tggtacgtgg	180
ctgccacggt	catctccatc	gcccacatcg	acagcctcaa	gatggagaca	gagaccagtg	240
cccctgggga	gcagccccag	tttctgggag	tcagggaaca	gagagtaacc	ggcatcatcg	300
tcttcatcct	gacgggaatc	tctgtcttcc	tggctcccat	cctaaagtgt	atccccctgc	360
cggtgc						366

<210> 209 <211> 574

<212> DNA

<213> Homo sapiens

c400> 209

Ggeogethca cogethagage cagecagtge gaatggaatg cteattgatg gtggtageca
gatagtaaaa gtteaaggge acgetgatgg tacaacgata aataagtetg getetcagga
120
cgtagtacaa ggaagtetgg caacgaaca caocataata gytgytogec agtatyttga
acagagcaca gtagaaacaa caaccattaa aaatggcggt gagcaaagag tatatgagag
240
ccgtycgctg gacacgacga ttgaaggcgg aactcagtet etgaatagta agtcaacgg
360
360

WU 01/55455	,				PC 1/US00.	33017
tacccagcac gaatagtgaa	gatggtgcaa ggtgcattct		taacactaac tcacgtggca	ggtacgacgg	caacaaatgt tgageggtac tgetggaaaa	420 480 540 574
<220>	383 DNA Homo sapie					
<222>	misc_featu: (1)(383 n = a,t,c)				
atgcctgtgt ggcacagatg gacctaatcc ggcttcaaac gtctttatac	ccatccagct ttagtaagca tcccagtgaa ctgaaatcaa tctactttgg	gactgatgat gaacgaaactct agaaacagag agcaacagag agcgatgttt gttatttaaa cct	agatcgaagg aagaccatcc atgcccagag ttgctcacca	gcattettet ccaaatacaa ccttgtttte ctattacage	gggagtggtt ggtaatgaat acaaagttca ctgttagctt	60 120 180 240 300 360 383
<210> <211> <212> <213>	592	ns				
tggtggaggg acggggcct acccaggaaa ggcttatctt ctctccacac aaggccttgc actgcattgc cagcagctct	aggaactggc cgacgaggc ggaggacatt gcaactgttc gctgaagatg taagggcaag taatacaaga cgtccagcat ggcggccatc	accaatgogt aggatgtgca cgcactgagt gagaagatga gccaaggctg atcgaaacac gagatcctgg gtctgtacca ctgacacgcc ggcaccctct	tcaacacaga tcgacaggga tcagtggcct gcetcetgtt ggcacgtggc tggacctggg tcgtctcctt tccgggagaa	gtgggggcc gctggacctc gtacctgggg tggtggtgag tgccatggag tctggaaccg ccgctcggcc caagaaggtg	tteggggaeg ggetetetea gagettgtea aaatettetg aagtataaag tetgaggetg aatetetgtg gaaeggetee	60 120 180 240 300 360 420 480 540

<210> 212 <211> 2166 <212> DNA

92

<213> Homo sapiens

<400> 212 tttcgttgca attgcaacga atggtgttgt gcctgctggt ggctcctact acatgatttc caggtetetg ggcccagagt ttgggggtge egtgggcete tgettetace tgggcactae 120 ctttgcagga gccatgtaca tcctgggcac catcgaaatc ctgctggctt acctcttccc 180 agccatggcc atcttcaagg cagaagatgc cagtggggag gcagcagcca tgctgaacaa 240 catgogtgtt tacggcacct gtgtgctcac ctgcatggcc actgtgqtqt ttgtgqqtqt 300 caaqtatqtc aacaaqtttq cccttgtctt cctgggttgt gtcatcctct ccatcctggc 360 catchatgct ggggtcatca agtotgcott cgacccaccc aacttcccga totgcctcct 420 gggtaaccgc acgctgtctc gccatggctt tgatgtctgt gccaagctgg cttgggaagg 480 aaatgagacg gtgaccacac ggctatgggg cettttetge teeteteget teeteaacge 540 cacctgtgat gaatacttca cccgaaacaa tgtcacagag atccagggea tccctggtge 600 tgccagtggc ctcatcaaag agaacctctg gagctcctac ctgaccaagg qcqtgattgt 660 ggagaggagt gggatgacct cggtgggcct ggccgatggc actcctatcg acatggacca 720 contratge theagtgata tgacetesta etteacett ettettee 780 ctcagtcaca gggatcatgg ctggttctaa ccgctctggg gacctgaggg atgcccagaa 840 gtcaatcccc actggcacca tectggccat cgccaccacc tetgetgtet acatcagete 900 cgttgttctg tttggggcct gcattgaggg ggtcgtcctg cgggacaagt ttggcgaagc 960 tgtgaatggc aacctcgtgg tgggcactct ggcctggcca tctccatggg taattqtcat 1020 eggateette tteteeacet gtggggetgg getgeagage etcaeggggg ceceaegeet 1080 gotgoaggoo atotogaggg atggoattgt gocottootg caggtotttg gocatggcaa 1140 ggccaatgga gagccgacet gggccetget cetgactgce tgcatetgcq agattggcat cctcattgca tccctcgacg aggtggcccc catcctctct atgttcttcc tgatgtgcta 1260 catgittigtg aatotggoot gigcaqtqca qacgotqctq aqqacaccca actgqaqqcc acgetttega tattaceact ggaccetete ettectggge atgageetet geetggeet 1380 catgiticate tgeteetggt attatgeact ggtagecatg eteatigetg gacteateta 1440 caagtacatt gagtaccgtg gggcaaagaa ggagtggggc gatgggatac gaggtctgte 1500 teteagtgeg getegetatg ceetettaeg cetggaggaa gggeececae acaccaagaa 1560 ctggaggcca cagctgctgg tgctggtgcg tgtggaccaa gaccagaatg tggtgcaccc 1620 ccagetgete teactgacet eccagetgaa ggeagggaag ggeetgacea tegtgggete 1680 tgtccttgag ggcacctttc tggaaaatca tccacaggcc caqcgggcag aagagtctat 1740 caggogoctg atggaggcag agaaggtgaa gggottotgo caggtggtga totoctocaa 1800 ettgegtgat ggegtgtece atetgateca gtetggggge etegggggge tgeageacaa 1860 cactgtgctt gttggctggc cccgcaactg gcgccagaag gaagatcatc agacgtggag 1920 gaacttcatt gagctggtcc gggaaaccac agctggccac ttagccctgc tggtcaccaa 1980 gaacgtttcc atgtttcctg ggaaccctga gcgcttctct gaaggcagca tcgaccgttg 2040 ggggattggg cacgatggag gcatgctcat gctggtgccc ttcctgctgc ggcaccacaa 2100 ggtctggcgg aagtgcaaga tgcgtatctt cactgtggcc cagatggttg acatgcatgc 2160 catgag 2166

```
<211> 392
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<222> (1)...(392)
<223> n = a,t,c or g
```

<210> 213

ttctatctga	ggctactgtc	ttttttctgc	tttcaggagc	atgagaagag	gtgttggagc	60
gttgacttta	atttgatgga	tectaaacte	ttggcttcag	gttctgatga	tgcaaaaggt	120
actgtttgaa	tetettete	agcacctcct	tetecetgge	cctcttaact	gtaattcctt	180
tcatcggcag	aaatacaaat	atttactcaa	actcatgtca	gtcctttgtg	attactgatt	240
attattattc	cccannnnn	nnnnnnnnn	nnnnnnnn	nnnnnnnnn	nnnnnnnnn	300
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nnnnnnnnnn	nnnnnnnnn	360
nnnnnnnnn	nnnnnnnnn	nnnnnnnnn	nn			392

<210> 214 <211> 425 <212> DNA

<213> Homo sapiens

<400> 214

ggcggaattc	aaaagcaatg	cacaggtett	cctgtgacgg	gccgctactc	tetetgeeet	60
cagtgggacg	gtcagccacc	catgccctgg	tccaggccca	getgatetge	tcaggagcca	120
ggcggggcat	gcacgetttt	attgtgccaa	tccggagtct	tcaggaccac	accccactgc	180
caggtaagcc	cataatgctc	cctcaaggaa	ccctgccagg	aggagagece	aggtggcctc	240
cctgacctgg	ggccccagag	ggccacagga	gtagctaaga	catgtctccc	ttgggcaggg	300
agcggtccag	ttggacagac	ttggtgctaa	ctggctaggt	gaacttgagc	aagatttagc	360
atctttctga	cctcagcttg	ttcacctgca	aaataggtac	aataatccca	gtgtcacagg	420
ctact						425

<210> 215 <211> 608 <212> DNA

<213> Homo sapiens

<400> 215

ctgcgggacc	ctcatcttgc	aggcccgggc	ctatgtggga	ccgcacgtcc	tggcagtggt	60
gacccgcaca	gggttctgca	cggcaaaagg	gggcctggtg	agctccatct	tgcacccccg	120
gcccatcaac	ttcaagttct	ataaacacag	catgaagttt	gtggctgccc	tetetgteet	180
ggeteteete	ggcaccatct	acagcatctt	catcctctac	cgaaaccggg	tgcctctgaa	240
tgagattgta	atccgggctc	tcgacctggt	gaccgtggtg	gtgccacctg	ccctgcctgc	300
tgccatgact	gtgtgcacgc	tetaegecea	gagccgactg	cggagacagg	gcattttctg	360
catccaccca	ctgcgcatca	acctgggggg	caagetgeag	ctggtgtgtt	tegacaagae	420
gggcaccctc	actgaggacg	gcttagacgt	gatgggggtg	gtgcccctga	aggggcaggc	480
attectgeec	ctggtcccag	agcctcgccg	cctgcctgtg	gggcccctgc	tccgagcact	540
ggccacctgc	catgccctca	gccggctcca	ggacaccccc	gtgggcgacc	ccatggactt	600
gaagatgt						608

<210> 216

<211> 858

<212> DNA

<213> Homo sapiens

<400>	216					
	actggccact	gtggetttgt	attectetaa	egtggetgee	aaggetgett	60
	ctcagactca					120
ctatcattte	ttgagettec	ttattgtctt	gttctgccat	tttcaaagta	ttgcttaaat	180
gctgctggac	accaagaagc	tgetceegtt	caaaacgggc	attctcageg	aggtccatgt	240
aacqttqctc	taattccata	tagegeceae	tttttacatc	ttcatctatg	acagattgaa	300
tacttccgct	ctcttctaga	tgagcatcac	atttcttatg	tcatagatga	agatgtaaaa	360
agtgggcgct	atatggaatt	agagcaacgt	tacatggacc	tegetgagaa	tgcccgtttt	420
gaacgggagc	agettettgg	tgtccagcag	catttaagca	atactttgaa	aatggcagaa	480
caagacaata	aggaagctca	agaaatgata	ggggcactca	aagaacgcag	tcaccatatg	540
gagcgaatta	ttgagtctga	gcagaaagga	aaagcagcct	tggcagccac	gttagaggaa	600
	cagtggccag					660
aatgaaaagc	agaaagtggc	agagctgtat	tetatecata	actetggaga	caaatctgat	720
attcaggacc	tcctggagag	tgtcaggctg	gacaaagaaa	aagcagagac	tttggctagt	780
agettgeagg	aagatctggc	tcatacccga	aatgatgcca	atcgattaca	ggatgccatt	840
gctaaaggta	gaggatga					858

<210> 217 <211> 399 <212> DNA <213> Homo sapiens

4400> 217

agacagetac egetttacec teagegecag gacgeaggtg ggetetgggg aageegtac 6
agaggagtea cagacacce ogaatgaage tactecaace geageteete cacasttyce 120
cecqactace gtgggttgega ogggegetg gagactace gatgetactg cacttyctge 120
cacacaccaga gecacacaag teccacaccac cecastgge foacactace catgegeca 240
cacaccaccac gtegecacaa cactacaac cactgetge geacetacac cactggeagag 300
tectocoacc accactecg ggactaagat cacagatec gecectgatg ageagtecat 360
atggaaggte acgggteete cacacagtaa atgggecaa 399

<210> 218 <211> 662 <212> DNA <213> Homo sapiens

ggagctgacc	ccttcaaagg	cgacccgttc	cagaatgacc	cctttgcaga	acagcagaca	360
acttcaacag	atccatttgg	aggggaccct	ttcaaagaaa	gtgacccatt	ccgtggctct	420
gccactgacg	acttcttcaa	gaaacagaca	aagaatgacc	catttacctc	ggatccattc	480
	cttccttacc					540
tectecagtg	tctcctcaaa	aggatcagat	ccctttggaa	ccttagatcc	cttcggaagt	600
gggtccttca	atagtgctga	aggctttgcc	gacttcagca	ctattgaagg	tcgacgcggc	660
cg						662

<210> 219 <211> 752 <212> DNA <213> Homo sapiens

<400> 219 eggacgegtg ggggatetgg caatagetee caacceteae ttegtgaggg ceacgacaaa cctqttttta atggagctgg aaagcctcat tccagcacct cttcaccaag tgtcccaaag acttetgeta geaggactea gaaatetget gttgageaca aageeaaaaa atetetgtee catectagee attecaggee tgggeecatg gteaceceae acaataagge taagagteea ggtgtcaggc agccaggcag cagctctagc tcagcccctg ggcagcccag cacaggggtt gotogaccca capttagtto togocctoto cotaggogoc agaatggcag etccagetca ggacctgagc gatcaatcag tgggtccaag aagccaacca atgactcaaa tccctctagg

120

180

240

300

360

420

480

120

180

240

eggacagtea gtggtacatg tggecetgga caacetgcaa geageteagg tggecetggg cqacccatca qtqqttcagt tagttctgca agacccttgg gcagctctcg tggccctggc 540 cqqcctqtqa qcaqtccaca tgaacttcga cgaccagtga gtggcttggg ccccccgggg 600 contetotca gtggccctgg gagatccata agtggctcaa ttccagctgg acggactgtc 660 agtaattcag teccaggaag accagtgage agettgggae etgggeaaac agttagtage 720 752

tcaggtccca ctataaaqcc taaqtqcact qt

<210> 220 <211> 582. <212> DNA

<213> Homo sapiens

<400> 220 ttattattat tttgcataga gacaagcact cactgtgtta cccaggctgg ttttgaactc ctgagettaa teagttetea cetgetttge ceteccaaag tgetatgatt acaggtgtga gocaccacqc ttqqccctqc ccaqqaqtca tttttqtatc tacaqqtatc ttcctatqct gtagacagat gccctttttc aaggcaaaaa ccctagccat ttttctcttc tccttcagag

totgcaacat cototcaact catocaagtg actactgcet ggtgctcttg gggatgcagg 300 gaggcctgag aaggccaatg tetatacaga aagttetaac atagtgcaet gagtcaatgt 360 gggcacttta aagccctttc acctgccaaq tcacqaagca cccctatagt tgtgtttgta 420 aaatactggg gggtttgaag qqqaaaaqqq ataactccaa qqtaccatct ttqcatttca 480

gatccacaca acttaaagat ctgctgtcga gtgaatgggg aagtggtcca gagcagcaac 540 accaaccaga tggtattcaa qacaqaqqac ctgatagcct qq 582

WO 01/53455	,				PCT/US0	0/35017
<210> <211> <212> <213>	440	ns				
tcaaggagat tccaaaacaa aaggaagttc gacgcgttgg caggcatggg agtcggaatt	cagtagaagt tgtccggttg tctaattaag cagaaacacc ctttgtgaga actcgctgtg	ctggagaagt ccaagatcgg	atatgaaaaa ttgccatgga acattcttca ttacttgaga ggcagccgct	taaatatgtc cagacaaagt ccactctgag aagtgtgtgt gcaaacaatt	aagaatataa gctacttggg	600 1200 1800 2400 3000 3600 4200 4400
<210> <211> <212> <213>	489	ns _.				
cegggagcat gecegecacg ggageceace egagageget gaagecetga caatittgat	egtgaggegg geageetgea gaegeeteag gegatgggea tagtaggteg ggageteete gaaccaaaga	gaggaagtgg	tgtgatgete tggtaaegtt gaetgatgga agaggatgta teccaecete ggttteatee	ggetetaact tetggegggg egagtgteea acaegeeece aagtetgaeg teteegtgee	egeetggetg gacaceceeg ceteecagae ageegggagt atgacacete agetgageee	60 120 180 240 300 360 420 480 489
<210><211><211><212><213>	493	ns				
cctcttggag cctgggggcc tggggacacg gggagaggct	egeettgege gtgtgeagag gaegeettee eagetggaeg gggtaetaee	acctccacge atgtctatge tgccggcgct tagagtttct tgaccacgtg ctccccgggg	gggcctggct gaccgaggaa tatggagctc gtttggggcg	cgaggcgaga ctcatctgga ttagatccag ctgcaccaca	accaagatcc gcccggacat atgagctgcg ttgcccacta	60 120 180 240 300 360

WO 01/53455		PCT/US00/35017			
ccagtggcac cgcaggcgga ctgaccctgg ctggtcgaag cctcgtctgc tgg					420 480 493
<210> 224 <211> 883 <212> DNA <213> Homo sapie	ns				
4400> 224 agtgacttg aaacaagttc gatggttttg atagtgatag cttcaccttt ggaactettt cacattcaga ctgctgcaagt ctgcaagt ctgatctag actagtctg ggaggagaag actgtgggaa actgtgggaa actgtgggaa cttcattctg ggagccaag aagtcattt gagcacttc cacacactg tcaaaggaa agtggtag agtgatgcaag aagtgatgcaa agtggtagt caagaacgaa agtggtagt ggagtcgcaa gaagttgat tcaaagaa gaagaatgt ttaatagact tgttgagttg ggagctgta	ctcactgtca ctgcagtgta aattgttect gaattcetce tgaattcetggaa ttaattetgg ggaaaatgag tgagtgtcac tccagactcg aaaggtaacc aggaccatgg agaagatgct ccagggaaca	gactcagacc gatccttata gaagagcctt cagtctggaa tctagtgcag atggacccct aaaggctgtc accttacttt gtacagcgtg tccttgaag gaagaatttg attggatat tggttcaaag	ttgaacaaga atcccagga ctgattcaga gccttcctga atgaagcaga acaaccttt gtgactcaaa cttgtaaggt acgttctttc aagttactga caagggatgg gcttgacatt gacttaatgt	ccctgaaggg ctttacagca gaaggatttg gacccctgag gagtcttcaa aaattttaag gaccccatct gcagctgttg tggaggaaga gtattatata atgcaggttc tgaacaggtc	60 120 180 240 300 360 420 480 540 660 720 840 883
<210> 225 <211> 389 <212> DNA <213> Homo sapie	ns				
<400> 225					

cggccgctc tacggcatat tcttttttg gaactgtgga gaatatggc ccaaaagtgg 60
ttaatcgtcc aggtcatact cagagtgctg actgggggtc ttttgggggg ttaatggga 120
ggtttgaatt tgggatttt ttaaaggga aggagttgt taagtgaggg 180
atggtaaag aactgggggt ttaatttct ttattttatg coctatgtaa taaataacca 240
aaaaacatta ttgcgtgcag tataaaagga ctatgaaatc tgttagctgc gtctatcta
accaacatta tccqctaata aagtacaaatc 360

389

<210> 226 <211> 412 <212> DNA

<213> Homo sapiens

taaagcatta atgqtqttqq qtcttttgq

gagcatgtct gtcctatggt tgggtgtgca tttggtgata tgtctgtgga	ttetteeagg atgggateee gacateagga tattggatae gaaaatttt gtggtgttag	tgagcatgca agatggaggt tctaggcaag tgagaaagga catataacgc	gacaacetga gggcaggaag catgggtcat caagaggagc agcetggggc	acttetetet ggetgaaggt gagteaggee ttettgtgte etttgettat cagttageag aatttggatg	cactgagtga tttagggaga cagaatcacc ctctcacctg cccaagtctg	60 120 180 240 300 360 412
<210> <211> <212> <213>	390	ດຮ				
cacactgctt tgcctggtcc gactcagatg cccagcaaag accacctacc accaatgggc	gccaggcac ctggctgct tgctgctgct tggctgactc cagacaaccc agggcagtct acctgctcag	ggacgtggcc tgtcctcatc gtccattctc ccatctgctc ctgtccccgg	ctctatgtgg ctcgtttatt acctcaggct accatccagc	gtaccagtga gcetcatege gccggaagaa tccagcccgt cggacctcag ccagcccaa	cgtggccgtc ggaggggctg cagcatcaag caccaccacc	60 120 180 240 300 360 390
<211> <212> <213>		വട				
aaatgtatee caateettee gtggaeeatg ctgattgate cttttettta aaccgaacaa gtcaacaaat	atgaagatat agataacaaa acaatgtgca teggtgaceg tggagettca etgaetaegg ggataattga tggtttaetg	agcaggagga acaaatggcg gatctttgtt caatcctaaa gaatgtcgcc ttcaaagaca ggtagatctt	ttaacagatg attgactggc tgtaattcca gcaatagcag aaagtggaga gagcagccag tacttggact	gagaatette aatggacaat teaetegaaa aeggttetgt tagatecaat gatgtgacat etgeaetgge atgtgggagt teagacatet	caatattott tototatttt atgtgtcacc agcaggaaaa ggatgggatg actagaccta agtggactat	60 120 180 240 300 360 420 480 540

600

660

720

777

actgtgtttg aagattattt gtatgcaacc aattctgata gctacaatat cgtaaggata

agcogattta atgggactga tattcactca ttaattaaaa ttgagaatgc ttggggaatc

cgaatttatc aaaaaagaac tcaaccaaca gtcagaagcc atgcatgtga agtcgatcca

tatggaatgc cagggggctg ttcacacate tgtetaetca gcagcagtta cacgaaa

<210> <211> <212> <213>	486	ns			- T	
cgtccctgg agcaagagac tctcccaggg cctcagtgcg agattgtcag acatgaacag	gaacccgcag ggagcaggag tccgctgccg caacctccgc tgccacccac caaaggaaga acttcctggt	cctggggact ctgagcggc cgctcctgga gtccactaca cccatacctg gatggttaca tgggacaaac actggccagc	gcttgcagcg gccccaagga aaggtcatgg ctgcctgtgg tgggaatagg attcctatgg	cctgtatccc caaatacaac caaaaatcac catttattac actctcggct ttaccatggt	gcggtcaacc tacattggtc aaagatgcgg tttgaagtga caaggcgtca gatgatggc	60 120 180 240 300 360 420 480
<210><211><211><212><213>	396	ດຮ				
gtcagetcac agetgggact aeggggtttc eteggeetce gtatgttetg	ttaagatggg tgcaagctcc acaggtgcgt accgtgttag caaaagtgct atcctcctc	gtctcgctct gcctcccagg gccaccatgc ccagtatggt gggattacag ttgaagttgc accttcactg	ttcacactat ccggctaatt cttgatctcc gtgtgagctg cttctgtggt	tctgcctcag tttttgtatt tgacctcgtg ctgcgcctgg	cctcccaagt tttagtagag atccacctgc cttatgagtc	60 120 180 240 300 360 396
<210> <211> <212> <213>	713	ns				
<400> tcagctcagc caaagcattg	ttggcacgag	gaaaggtgtt atctgaagag	cttgtgtgcc caccatcact	ttgtcttttg cagatagaga	tttactttgc gaagggttga	60 120

180

240

tatcccttct tcactggtgg gagttattga tggtagtttt gaaattggga atctcttagt

tataacattt gttagctact ttggagccaa acttcacagg ccaaaaataa ttggagcagg