M1C03 Lecture 22.5 Open/closed subsets of \mathbb{R}

Jeremy Lane

Nov 8, 2021

Announcement(s)

- Test 1 results are in, they will be posted soon.
- Quiz due Friday.

Overview

Open and closed subsets of \mathbb{R} .

Reference: Lakins, 4.2, 4.3 (exercises).

Examples

$$\bullet \bigcap_{j=1}^{\infty} (-1/j, 1/j) = \{0\}.$$

$$\bullet \bigcup_{j=1}^{\infty} [1/j, 1 - 1/j] = (0, 1).$$

Open and closed sets in \mathbb{R} [Lakins, Exercise 4.2.24, 4.3.11, 4.3.12]

Definition: A set $S\subseteq\mathbb{R}$ is *open* if for all $x\in S$, there exists a real number r>0 such that $(x-r,x+r)\subseteq S$.

Definition: A set $S \subseteq \mathbb{R}$ is *closed* if $\overline{S} = \mathbb{R} - S$ is open.

Example: \mathbb{R} is an open set. $\emptyset \subset \mathbb{R}$ is a closed set.

Example

 $\emptyset \subset \mathbb{R}$ is an open set. \mathbb{R} is a closed set.

Example

The interval $(0,1)\subset\mathbb{R}$ is an open set. It is not closed.

Example

The interval $[0,1]\subset\mathbb{R}$ is a closed set. It is not open.

Warning!

Closed \neq not open. Open \neq not closed.

- ullet R and \emptyset are open and closed.
- \bullet (0,1) is open and not closed.
- \bullet [0,1] is closed and not open.
- ullet [0,1) is not open and not closed.

Exercises

Theorem (Lakins, Exercise 4.2.24)

Let J be an index set and let A_j be a family of sets indexed by J with $A_j \subset \mathbb{R}$.

- If for all $j \in J$, A_j is open, then $\bigcup_{j \in J} A_j$ is open.
- If for all $j \in J$, A_j is closed, then $\bigcap_{j \in J} A_j$ is closed.

However, the following statements are FALSE:

- If for all $j \in J$, A_j is open, then $\bigcap_{j \in J} A_j$ is open.
- ullet If for all $j\in J$, A_j is closed, then $\bigcup_{j\in J}A_j$ is closed.