QUALITY CONTROL OF PROTEOMICS DATA FROM LIQUID CHROMATOGRAPHY - MASS SPECTROMETER

Submitted by

Kishore Tumarada

Table of Contents

1.	ABSTRACT	3
2.	INTRODUCTION (BACKGROUND OF THE INTERNSHIP PROJECT, AND THE MOTIVATION OF THE STUDY)	3
3.	DATA AND METHODS	5
4.	RESULTS AND DISCUSSION	9
5.	CONCLUSION	21
6.	REFERENCES	21
7.	TABLE AND FIGURES OF DATA ANALYSIS	22
8.	APPENDIX – PYTHON CODE	24

1. Abstract

1.1. Quality control of Liquid Chromatography - Mass Spectrometer system is essential for appropriate statistical analysis of output data. To monitor the system performance, a set of standard peptides and fragment ions have been extracted based on conditions of maximum intensity, uniformly sampled across whole retention time, and lowest retention time CV. In particular, a total of 21 peptides have been extracted along with 5 fragment ions with non-neutral losses. These standards are used as the basis for analyzing successive LC-MS outputs for different Raw files over a period of time. Finally, visualizations of various parameters - m/z, intensity, resolution, reduced mobility, ccs, retention time, retention length (FWHM), ion mobility index length (FWHM), fragment ion intensities - have been created to see the pattern of peptides and monitor the performance of the LC-MS system.

2. Introduction (background of the internship project, and the motivation of the study)

- 2.1. Proteomics refers to the large-scale experimental analysis of proteins and proteomes. It has enabled identification of ever-increasing number of proteins. It covers exploration of proteomes from overall level of protein composition, structure, and activity.
- 2.2. It is a crucial domain in modern biological and biomedical research. Presently, Liquid chromatography (LC) followed by Mass spectrometry (MS) is the preferred method to identify and quantify complex protein samples. The importance of these techniques is demonstrated by their use in large-scale research initiatives, such as the ongoing Human Proteome Project (HPP).

Figure 1 Workflow of LC-MS system

2.3. Figure 1 shows the workflow of LC-MS system. Firstly, proteins in a biological sample are digested into peptides by tryptic digestion. In the next stage, peptides are separated based on retention time and ion mobility. In the last stage, based on spectrum match scoring and database search, proteins are identified.

Figure 2. A diagram highlighting some of the major sources of variability in each of the stages of an LC-MS experiment.

- 2.4. However, the results of an experiment can still be subject to significant variability. This variability can originate from multiple sources as shown in Figure 2. Hence quality control is key for proteomic workflow.
- 2.5. Goals of this project are three-fold. Firstly, extract a series of peptides to serve as standards. Secondly, extract information only for this group of peptides from QC (Quality control) runs obtained periodically. Lastly, visualize the parameters of each of these standard peptides for subsequent QC runs overtime to monitor the performance of this system.

3. Data and methods

- 3.1. LC-MS output Raw data is high-resolution data without data labeling. MaxQuant, a quantitative proteomics software package, is used for analyzing and data labeling the raw data. The output is used as input for this project.
- 3.2. The following datasets from MaxQuant output are considered for creating benchmark peptides:

3.2.1. **Allpeptides file** - all detected LC-MS features (feature characteristics; can be e.g. used to plot all features against the ones targeted for MS/MS and identified ones)

	Raw file	Charge	m/z	Mass	Resolution	Number of data points	Number of frames	Number of isotopic peaks	Isotope correlation	Mass fractional part	
0	HeLa-iRT-200ng- 90min_Slot1-3_01_63	1	368.42412	367.41684	23132.500394	91	5	2	0.998080	0.416839	
1	HeLa-iRT-200ng- 90min_Slot1-3_01_63	1	367.18877	366.18150	22788.935224	2394	20	2	0.998260	0.181498	
2	HeLa-iRT-200ng- 90min_Slot1-3_01_63	1	369.18406	368.17679	20780.897048	726	13	2	0.993305	0.176788	
3	HeLa-iRT-200ng- 90min_Slot1-3_01_63	1	339.15809	338.15082	23096.147644	389	10	2	0.993477	0.150818	
4	HeLa-iRT-200ng- 90min_Slot1-3_01_63	1	351.37303	350.36576	22956.937759	258	7	2	0.999412	0.365758	

5 rows × 24 columns

	Min frame index	Max frame index	lon mobility index	lon mobility index length	Ion mobility index length (FWHM)	Intensity	Intensities	Number of pasef MS/MS	Pasef MS/MS IDs	MS/MS scan number
	4965	4969	654	18	15	1498.6	NaN	0	NaN	NaN
	5088	5107	669	33	24	17524.0	NaN	0	NaN	NaN
	5089	5101	669	27	18	7609.5	NaN	0	NaN	NaN
	4959	4968	714	30	21	8555.6	NaN	0	NaN	NaN
	4765	4771	717	24	18	6640.4	NaN	0	NaN	NaN

Table 1. Top 10 rows of Allpeptides dataset

3.2.2. Msms file: identified MS/MS events

	Raw file	Scan number	Scan index	s	equence	Length	Missed cleavages	Modifications		N	/lodified	sequence	Oxio Probab	dation (M) pilities	Oxidation (M Score diffs) e
0	HeLa-iRT-200ng- 90min_Slot1-3_01_63	26150	26150	AAAAAAAA	GAAGGR	16	0	Acetyl (Protein N-term)	N-term))	AAA		yl (Protein AGAAGGR_		NaN	Nah	۷
1	HeLa-iRT-200ng- 90min_Slot1-3_01_64	24634	24634	AAAAAAAAA	GAAGGR	16	0	Acetyl (Protein N-term)	N-term))	AAA		tyl (Protein AGAAGGR_		NaN	Nah	٧
2	HeLa-iRT-200ng- 90min_Slot1-3_01_65	24700	24700	AAAAAAAA	GAAGGR	16	0	Acetyl (Protein N-term)	N-term))	AAA		yl (Protein \GAAGGR_		NaN	Nah	۷
3	HeLa-iRT-100ng- 90min_Slot1-3_01_61	17560	17560	AAAAAAAAA	GAAGGR	16	0	Acetyl (Protein N-term)	N-term))	AAA		yl (Protein \GAAGGR_		NaN	Nat	N
4	HeLa-iRT-100ng- 90min_Slot1-3_01_62	18039	18039	AAAAAAAA	GAAGGR	16	0	Acetyl (Protein N-term)	N-term))	AAA		yl (Protein AGAAGGR_		NaN	Nat	۷
5 ro	ws × 63 columns															
			,	All sequences		All mod	lified sequen	ces Reporter	Reporter fraction	id	Protein group IDs	Peptide ID	Mod. peptide ID	Eviden	Oxida ce (M)	tion site IDs
	AAAAAAAAAGAAGGF	R;AAAAAET		All COIDCEAND	N-term))A		_(Acetyl (Pro	tein NaM			group		peptide		ID (M)	site
	AAAAAAAAAAAGAAGG		PEVLR;PI	NLSGIPGESNR		AAAAAA	_(Acetyl (Pro	tein NaN	fraction	id	group IDs	ID	peptide ID		(M)	site IDs
		GR;AAAAAI	PEVLR;PI	NLSGIPGESNR QPSRQSERPR	N-term))A	.AAAAAA	_(Acetyl (Pro AAGAAGGR_; _(Acetyl (Pro	tein NaN Lein NaN Lei	fraction NaN	0	group IDs 2479	0	peptide ID		0 1	site IDs NaN
	AAAAAAAAAGAAG	GR;AAAAAI GR;AAAAAE	PEVLR;PI ETPEVLR;	NLSGIPGESNR QPSRQSERPR IQRATQEPVAK	N-term))A	AAAAAA AAAAAA	_(Acetyl (Pro AAGAAGGR_; _(Acetyl (Pro AAGAAGGR_;	tein NaN tein NaN tein NaN tein NaN	NaN NaN	0 1	2479 2479	0	peptide ID 0		0 (M)	NaN

Table 2. Top 10 rows of msms dataset

3.2.3. **Evidence file**: all identified LC-MS-features, identified by MS/MS or by matching between runs, MS/MS events per identified feature, scores, mass deviation, feature information, useful table also for troubleshooting.

:	Sequence Length Modifications		Modified sequence	Oxidation (M) Probabilities	Oxidation (M) Score Diffs	Acetyl (Protein N-term)	Oxidation (M)	Missed cleavages	Proteins	F	
	O AAAAAAAAAAGAAGGR	16	Acetyl (Protein N-term)	_(Acetyl (Protein N-term))AAAAAAAAAAAGAAGGR_	NaN	NaN	1	0	0	Q86U42;Q86U42-2	
	1 AAAAAAAAAAGAAGGR	16	Acetyl (Protein N-term)	_(Acetyl (Protein N-term))AAAAAAAAAAAGAAGGR_	NaN	NaN	1	0	0	Q86U42;Q86U42-2	
:	2 AAAAAAAAAAGAAGGR	16	Acetyl (Protein N-term)	_(Acetyl (Protein N-term))AAAAAAAAAAAGAAGGR_	NaN	NaN	1	0	0	Q86U42;Q86U42-2	
:	3 AAAAAAAAAAGAAGGR	16	Acetyl (Protein N-term)	_(Acetyl (Protein N-term))AAAAAAAAAAAGAAGGR_	NaN	NaN	1	0	0	Q86U42;Q86U42-2	
	4 AAAAAAAAAAGAAGGR	16	Acetyl (Protein N-term)	_(Acetyl (Protein N-term))AAAAAAAAAAGAAGGR_	NaN	NaN	1	0	0	Q86U42;Q86U42-2	

5 rows × 71 columns

 Reporter fraction	Reverse	Potential contaminant	id	Protein group IDs	Peptide ID	Mod. peptide ID	MS/MS IDs	Best MS/MS	Oxidation (M) site IDs
 NaN	NaN	NaN	0	2479	0	0	0	0	NaN
 NaN	NaN	NaN	1	2479	0	0	1	1	NaN
 NaN	NaN	NaN	2	2479	0	0	2	2	NaN
 NaN	NaN	NaN	3	2479	0	0	3	3	NaN
 NaN	NaN	NaN	4	2479	0	0	4	4	NaN

Table 3 Top 10 rows of Evidence dataset

4. Results and discussion

4.1. Part 1 – Extraction of standard peptides

4.1.1. General principles for extracting Peptide sequences:

To pick these standard peptides, we need to generate a pool of suitable ones. Following are the general principles adopted to extract data:

- 4.1.1.1. Limit peptides with a charge of 2. Column "charge" in both msms.txt and evidence.txt.
- 4.1.1.2. Standard peptides should be uniformly distributed along the entire gradient, i.e., across total retention time taken by a solute to pass through the liquid chromatography column. For example, if the gradient is 120 minutes, we can choose peptide every 5 minutes, which corresponds to at least 24 peptides. The following figure shows the histogram for retention time across the entire data

Figure 3 Histogram of Retention time of all Raw files

- 4.1.1.3. As the same peptide can be found multiple times in multiple files, the retention time has a bit of variation. For this, we have evaluated the Coefficient of Variations (CV) and decide a proper CV value to filter the peptides. (The coefficient of variation (CV), which is calculated by dividing the standard deviation of peptide profiles by the mean, is reported as percentages.)
- 4.1.1.4. Peptides need to be present in every sample or Raw file. For instance, in the present data, MQ output is generated from 6 raw files. Table 4 shows the number of peptide sequences present in each raw file.

Table 4 number of peptide sequences across each raw file

- 4.1.1.5. Peptides need to have good signal intensity.
- 4.1.2. Based on these principles, out of all peptide sequences in every 5 minutes interval, peptides present in all raw files are filtered. From these peptides, those with the highest intensity and lowest Retention time CV is selected. As a result, a maximum of 24 peptides for 120 minutes retention time interval can be obtained.
- 4.1.3. However, in the selected MQ output, only 21 peptides met the conditions. Table 5 shows the distribution of these peptides across raw files:

: Raw file	HeLa-iRT-100ng- 90min_Slot1-3_01_61	HeLa-iRT-100ng- 90min_Slot1-3_01_62	HeLa-iRT-100ng- 90min_Slot1-3_01_66	HeLa-iRT-200ng- 90min_Slot1-3_01_63	HeLa-iRT-200ng- 90min_Slot1-3_01_64	HeLa-iRT-200ng- 90min_Slot1-3_01_65
Sequence						
AAGVNVEPFWPGLFAK	1	1	1	1	1	1
APNTPASGANGDGSMSQTQSGSTVK	3	2	2	2	2	3
EHALLAYTLGVK	1	1	1	1	1	2
EILVGDVGQTVDDPYATFVK	1	3	3	4	4	2
ESTLHLVLR	1	2	1	2	2	2
FHVEEEGK	1	1	1	1	1	1
FMQISEDSTR	2	2	1	1	1	3
GTFIIDPAAVIR	4	5	2	3	4	2
GYSFTTTAER	4	4	2	2	3	4
IINEPTAAAIAYGLDK	3	5	4	4	7	6
ISVYYNEATGGK	1	3	1	1	2	1
LIAPVAEEEATVPNNK	1	4	1	2	3	3
MSVQPTVSLGGFEITPPVVLR	2	2	2	2	2	2
NHEEEMNALR	2	1	1	1	1	3
NTGIICTIGPASR	1	1	3	2	2	2
QADTVYFLPITPQFVTEVIK	1	2	2	1	1	1
QGGLGPMNIPLVSDPK	3	6	3	3	6	4
TIGGGDDSFNTFFSETGAGK	5	3	5	4	5	7
VFLENVIR	5	9	5	11	11	9
VHGPGIQSGTTNKPNK	1	1	1	1	1	1
YPIEHGIITNWDDMEK	1	1	1	1	2	1

Table 5. Distribution of peptides across all raw files

4.1.4. General principles for fragment ions extraction:

These standard Peptides need to have good fragmentation ion signals (also called MS2 signals).

- 4.1.4.1. This info on fragmentation ions can be found in columns "Matches", "Intensities", and "Masses" in file msms file. Column "Matches" contains the types of fragmented ions, and column "Intensities" and "Masses" contain the intensity and mass of each ion in the column "Matches", respectively.
- 4.1.4.2. Only list the type, intensity, and mass of the fragment ions above a certain intensity value, for example 200.
- 4.1.4.3. Also eliminate those with neutral losses, such as y5-H2O, or y3-NH3, etc. only include those ions with types in the form of a letter (y or b) with a number (single or double digits).

4.1.5. Table 6 shows the top 5 rows of msms data, after filtering for standard peptides:

id	Sequence	Raw file	Matches	Intensities	Masses
742	AAGVNVEPFWPGLFAK	HeLa-iRT-200ng- 90min_Slot1-3_01_63	y2;y3;y6;y7;y9;y10;y11;y12;y13;y14;y10- H2O;y13	20;1000;8000;2000;20000;9000;2000;400;200;20;1	218.155605126463;365.218184501103;632.37397515
743	AAGVNVEPFWPGLFAK	HeLa-iRT-200ng- 90min_Slot1-3_01_64	y2;y3;y6;y7;y8;y9;y10;y11;y12;y13;y14;y10- H2O;	30;700;7000;2000;2000;10000;6000;2000;2000;100;	218.152568074812;365.217331549252;632.37104926
744	AAGVNVEPFWPGLFAK	HeLa-iRT-200ng- 90min_Slot1-3_01_65	y2;y3;y5;y6;y7;y8;y9;y7-NH3;y9- NH3;b3;b4;b5;b6	10;700;400;8000;2000;300;500;200;100;4;700;200	218.154799944179;365.217327494956;535.31939018
745	AAGVNVEPFWPGLFAK	HeLa-iRT-100ng- 90min_Slot1-3_01_61	y3;y5;y6;y7;y8;y9;y10;y11;y12;y14;y10- H20;y12	90;50;1000;300;70;2000;1000;100;500;4;100;4;10	365.21733850014;535.318608615786;632.371543281
746	AAGVNVEPFWPGLFAK	HeLa-iRT-100ng- 90min_Slot1-3_01_62	y3;y5;y6;y7;y8;y9;y10;y11;y12;y13;y14;y10- H20;	300;200;3000;800;300;7000;3000;900;1000;20;5;4	365.218363026717;535.322899774525;632.37385499

Table 6. Top 5 rows of msms data after filtering standard peptides

4.1.6. From the Filtered msms data, Top 5 fragment ions with highest intensities, without non-neutral losses, for each of 21 peptide sequences have been extracted. Table 7 shows the top 10 rows of the final fragment ions table.

	Sequence	matches	intensities	masses
4	AAGVNVEPFWPGLFAK	у9	20000	1062.573312
5	AAGVNVEPFWPGLFAK	y10	9000	1191.617494
2	AAGVNVEPFWPGLFAK	у6	8000	632.373975
12	AAGVNVEPFWPGLFAK	b7	4000	641.322338
11	AAGVNVEPFWPGLFAK	b6	4000	512.280951
39	APNTPASGANGDGSMSQTQSGSTVK	y21	1000	1966.860105
22	APNTPASGANGDGSMSQTQSGSTVK	b12	700	1053.454106
9	APNTPASGANGDGSMSQTQSGSTVK	y13	500	1297.600408
43	APNTPASGANGDGSMSQTQSGSTVK	b4	400	384.186522
160	APNTPASGANGDGSMSQTQSGSTVK	y23	400	2181.947540

Table 7. Top 10 rows of Processed msms data with 5 fragment ions for each standard peptide

4.1.7. Table 8 shows the final data for standard peptides, after extracting Retention length and Ion mobility index length (FWHM) from all peptides file.

	Sequence	mean_retention_time	cv_retention_time	mean_intensity	cv_intensity	mean_mz	mean_masserror_ppm
0	AAGVNVEPFWPGLFAK	94.475500	0.059395	540880.000000	65.552959	851.951215	0.451648
1	AAGVNVEPFWPGLFAK	94.475500	0.059395	540880.000000	65.552959	851.951215	0.451648
2	AAGVNVEPFWPGLFAK	94.475500	0.059395	540880.000000	65.552959	851.951215	0.451648
3	AAGVNVEPFWPGLFAK	94.475500	0.059395	540880.000000	65.552959	851.951215	0.451648
4	AAGVNVEPFWPGLFAK	94.475500	0.059395	540880.000000	65.552959	851.951215	0.451648
5	APNTPASGANGDGSMSQTQSGSTVK	21.221071	17.391118	923627.428571	68.465606	1178.959899	-0.188700
6	APNTPASGANGDGSMSQTQSGSTVK	21.221071	17.391118	923627.428571	68.465606	1178.959899	-0.188700
7	APNTPASGANGDGSMSQTQSGSTVK	21.221071	17.391118	923627.428571	68.465606	1178.959899	-0.188700
8	APNTPASGANGDGSMSQTQSGSTVK	21.221071	17.391118	923627.428571	68.465606	1178.959899	-0.188700
9	APNTPASGANGDGSMSQTQSGSTVK	21.221071	17.391118	923627.428571	68.465606	1178.959899	-0.188700

mean_resolution	mean_1_k0	mean_ccs	matches	intensities	masses	Retention length (FWHM)	lon mobility index length (FWHM)
22968.064642	1.005164	405.855600	у9	20000	1062.573312	0.124333	36.000000
22968.064642	1.005164	405.855600	y10	9000	1191.617494	0.124333	36.000000
22968.064642	1.005164	405.855600	у6	8000	632.373975	0.124333	36.000000
22968.064642	1.005164	405.855600	b7	4000	641.322338	0.124333	36.000000
22968.064642	1.005164	405.855600	b6	4000	512.280951	0.124333	36.000000
23535.742750	1.121327	451.742764	y21	1000	1966.860105	0.214357	43.071429
23535.742750	1.121327	451.742764	b12	700	1053.454106	0.214357	43.071429
23535.742750	1.121327	451.742764	y13	500	1297.600408	0.214357	43.071429
23535.742750	1.121327	451.742764	b4	400	384.186522	0.214357	43.071429
23535.742750	1.121327	451.742764	y23	400	2181.947540	0.214357	43.071429

Table 8. Top 10 rows of dataset with standard peptides and their fragment ions

4.1.8. Following are histograms of CV for Retention time and Intensities:

Figure 4 Histogram of CV for Retention time

Figure 4 shows that highest frequency of CV of Retention time (in %) is less than 3%.

Figure 5 Histogram of CV of intensity

Figure 5 shows that highest frequency of CV of intensity (in %) is just less than 100%, which indicates that there is very high variation in intensity for peptides.

4.2. Part 2 – Processing of QC run files based on standard peptides

4.2.1. In the second part of the project, the goal is to extract data related to each peptide and its corresponding 5 fragment ions for every date (encoded form), which is extracted from raw file name. Table 9 shows the top 10 rows related to standard peptides.

	sequence	date_extracted	m/z	mass error [ppm]	intensity	resolution	1/k0	ccs	retention time	retention length (fwhm)	ion mobility index length (fwhm)
0	AAGVNVEPFWPGLFAK	2901	851.951215	1.627200	2598200.00	23450.621678	1.063992	429.608425	94.056000	0.117000	39.00
1	AAGVNVEPFWPGLFAK	2917	851.951215	2.324400	3687700.00	24007.566346	1.074078	433.681027	97.584000	0.077200	42.00
2	AAGVNVEPFWPGLFAK	2924	851.951215	0.739230	492210.00	23746.773100	1.063992	429.608424	97.630000	0.077200	39.00
3	APNTPASGANGDGSMSQTQSGSTVK	2901	983.110501	-0.221770	574315.00	22900.649950	1.093244	540.128871	18.865000	0.195000	39.00
4	APNTPASGANGDGSMSQTQSGSTVK	2917	983.110501	0.444375	983192.50	22987.426177	1.091559	539.110465	26.571000	0.174000	39.00
5	APNTPASGANGDGSMSQTQSGSTVK	2924	983.110501	1.673482	404172.75	22932.699314	1.096592	541.477693	26.621000	0.178750	49.50
6	APNTPASGANGDGSMSQTQSGSTVK	2937	983.110501	1.511998	801507.50	22928.193979	1.087289	536.619982	27.238500	0.178750	39.75
7	EHALLAYTLGVK	2901	657.874445	2.083200	2729500.00	24488.932846	0.959590	388.376985	56.616000	0.253000	39.00
8	EHALLAYTLGVK	2917	584.889204	-13.786267	2512370.00	24162.673736	0.891936	412.260072	64.845333	0.161333	28.00
9	EHALLAYTLGVK	2924	548.396584	-1.822527	296831.50	24374.728500	0.861493	425.914839	64.743000	0.135000	24.00

Table 9. Top 10 rows of standard peptides info extracted cumulatively from successive QC runs data

4.2.2. Similarly, data related to fragment ions, with highest intensities, of each standard peptide for each date (encoded form) has also been extracted as shown in Table 10.

	sequence	date_extracted	matches	intensities	masses
0	AAGVNVEPFWPGLFAK	2901	у6	5000	632.376515
1	AAGVNVEPFWPGLFAK	2901	у9	2000	1062.579134
2	AAGVNVEPFWPGLFAK	2901	y10	200	1191.623330
3	AAGVNVEPFWPGLFAK	2901	b6	2000	512.281990
4	AAGVNVEPFWPGLFAK	2901	b7	2000	641.324449
5	AAGVNVEPFWPGLFAK	2917	у6	4000	632.369478
6	AAGVNVEPFWPGLFAK	2917	у9	1000	1062.564936
7	AAGVNVEPFWPGLFAK	2917	y10	100	1191.609416
8	AAGVNVEPFWPGLFAK	2917	b6	2000	512.277118
9	AAGVNVEPFWPGLFAK	2917	b7	1000	641.318439

Table 10. Top 10 rows of fragment ions info of standard peptides extracted cumulatively from successive QC runs data

4.3. Part 3 – Visualization of QC runs data

- 4.3.1. In the last part, data is visualized to identify the changes in parameters over a period of time. For illustration, we have taken 3 peptide sequences to measure the change in parameters over a period of time.
- 4.3.2. Figure 6 shows that mass-over-charge ratio vs date for different peptides. It shows that m/z remains constant over a period of time for all 3 peptides.

Figure 6 Line plot of date vs mass-to-charge ratio

4.3.3. Figure 7 shows that ion mobility index length increasing on 3rd day and then falling for all 3 peptides.

Figure 7 Line plot of date vs ion mobility index length

4.3.4. Figure 8 shows that retention length decreases on the second day but again increases on next day. However, GYS-peptide (blue line) does not reach its previous length.

Figure 8 Line plot of date vs retention length

4.3.5. Figure 9 shows that retention time increases for all peptides. Ideally, if we use the same experimental conditions, the sample's retention time should not change significantly.

Figure 9 Line plot of date vs retention time

4.3.6. Figures 10 and 11 show that ion mobility (1 / K0) and CCS (Collision Cross Section) of all three peptides have stable values.

Figure 10 Line plot of date vs inverse reduced mobility

Figure 11. Line plot of date vs ccs

4.3.7. Figure 12 shows that the resolution of APN-peptide is almost stable, whereas the resolution of GYS-peptide has very high variation over time.

Figure 12. Line plot of date vs resolution

4.3.8. Figures 13 and 14 also show that intensity and mass errors of GYS-peptide also have very high variation compared to the other two peptides.

Figure 13. Line plot of date vs intensity

Figure 14. Line plot of date vs mass error

4.3.9. Figures 15-17 show changes in intensities for the top 5 fragment ions (based on standard peptides data) for each of these peptides. For APN-peptide, only 4 out of 5 fragment ions are present in QC runs. Out of these intensities of b4 and b12 ions increase over time. In the case of GYS-peptide, intensities of all 5 ions fall on 2nd date and again raise after that. However, in the case of last NHE-peptide, ion intensities increase on the same day and decrease later.

date vs fragment ion intensities for GYSFTITAER

60k
40k
50k
40k
20k
10k
2920
2930
date

Figure 15. Line plot of date vs fragment ions intensities for a selected peptide

Figure 16. Line plot of date vs fragment ions intensities for a selected peptide

Figure 17. Line plot of date vs fragment ions intensities for a selected peptide

- 4.4. In this way, we can look at the patterns of any of extracted standard peptides, and their corresponding fragment ions of all QC Runs data obtained by Mass spectrometer.
- 4.5. In summary, this whole workflow effectively monitors the performance of LC-MS system through the lens of selected standard peptides and aids in tuning the system for best performance.

5. Conclusion

5.1. LC-MS system is prone to many variabilities, which decrease the reliability of the system in identifying the proteins. To control the quality of the system, a series of peptides and fragment ions have been chosen as standards, and various parameters such as intensities, m/z, ion mobilities have been monitored for these standards across successive runs of the system. This would help in tuning different parameters of the LC-MS system to improve quality.

6. References

- 6.1. Quality control in mass spectrometry-based proteomics by Wout Bittremieux, David Tabb et al.
- 6.2. *pmartR*: Quality Control and Statistics for Mass Spectrometry-Based Biological DataKelly G. Stratton, Bobbie-Jo M. Webb-Robertson et al.

7. Table and figures of data analysis

7.1. <u>List of Figures:</u>

Title	Page
Figure 1. Workflow of LC-MS system	4
Figure 2. A diagram highlighting some of the major sources of variability in each of the stages of an LC-MS experiment.	4
Figure 3. Histogram of Retention time of all Raw files	9
Figure 4. Histogram of CV for Retention time	14
Figure 5. Histogram of CV of intensity	14
Figure 6. Line plot of date vs mass-to-charge ratio	16
Figure 7. Line plot of date vs ion mobility index length	17
Figure 8. Line plot of date vs retention length	17
Figure 9. Line plot of date vs retention time	18
Figure 10. Line plot of date vs inverse reduced mobility	18
Figure 11. Line plot of date vs ccs	18
Figure 12. Line plot of date vs resolution	19
Figure 13. Line plot of date vs intensity	19
Figure 14. Line plot of date vs mass error	19
Figure 15. Line plot of date vs fragment ions intensities for a selected peptide	20
Figure 16. Line plot of date vs fragment ions intensities for a selected peptide	20
Figure 17. Line plot of date vs fragment ions intensities for a selected peptide	20

7.2. <u>List of tables</u>

Title	Page
Table 1. Top 10 rows of Allpeptides dataset	6
Table 2. Top 10 rows of msms dataset	7
Table 3 Top 10 rows of Evidence dataset	8
Table 4 number of peptide sequences across each raw file	10
Table 5. Distribution of peptides across all raw files	11
Table 6. Top 5 rows of msms data after filtering standard peptides	12
Table 7. Top 10 rows of Processed msms data with 5 fragment ions for each standard peptide	12
Table 8. Top 10 rows of dataset with standard peptides and their fragment ions	13
Table 9. Top 10 rows of standard peptides info extracted cumulatively from successive QC runs data	15
Table 10. Top 10 rows of fragment ions info of standard peptides extracted cumulatively from successive QC runs data	15