AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

- 1. (previously presented) A coating which has been applied to a substrate, comprising at least a first film and a second film which have been applied on top of each other the first film being applied to the substrate, and each comprise a transparent conducting oxide and an electron donor, wherein the first film has a thickness of 50-500 nm and the second film has a thickness of 300-900 nm and comprises relatively at least 10 percent less electron donor than the first film, and the first film and the second film both have a (211) dominant orientation.
 - 2. (canceled).
- 3. (previously presented) A coating according to claim 1, wherein the second film comprises relatively at least 25 percent less electron donor than the first film.
- 4. (original) A coating according to claim 3, wherein the second film comprises relatively at least 50 percent less electron donor than the first film.
- 5. (currently amended) A coating according to claim 1, wherein the electron donor is formed by oxygen deficiencies and/oror is chosen from the dopantsa dopant selected from the group consisting of fluorine, antimony, chlorine, gallium, tin, zinc, boron, niobium, and/or aluminum and mixtures thereof or the electron donor is formed by oxygen deficiencies and is a dopant selected from the group consisting of fluorine, antimony, chlorine, gallium, tin, zinc, boron, niobium and aluminum.
- 6. (currently amended) A coating according to claim 5, wherein the dopant is chosen from the group <u>consisting</u> of fluorine, chlorine, antimony, <u>and/or</u> niobium <u>and mixtures thereof</u>.
 - 7. (original) A coating according to claim 6, wherein the dopant comprises fluorine.

ZIJP et al. Appl. No. 10/574,484 November 9, 2009

- 8. (previously presented) A coating according to claim 1, wherein the electron donor is present in the second film in an amount of at most 13 atomic percent.
- 9. (previously presented) A coating according to claim 1, wherein the electron donor is present in the first film in an amount of at most 15 atomic percent.
- 10. (currently amended) A coating according to claim 1, wherein the transparent conducting oxide is chosen from the group <u>consisting</u> of tin oxide, zinc oxide, and/or indium tin oxide and mixtures thereof.
- 11. (original) A coating according to claim 10, wherein the first film and second film comprise tin oxide.
- 12. (previously presented) A coating according to claim 1, wherein, in the second film, the average particle size of the crystals of the transparent conducting oxide is 50-500 nm.
 - 13.-14. (canceled).
 - 15.-19. (canceled).
- 20. (previously presented) A coating according to claim 1, wherein the coating has a total thickness of 300-1000 nm.
- 21. (previously presented) A coating according to claim 1, wherein the substrate is made of metal, ceramic or glass or of a material which comprises one or more polymers.
 - 22. (previously presented) A solar cell comprising a coating according to claim 1.
- 23. (previously presented) A method for applying the coating to a substrate, wherein the coating comprises at least a first film and a second film which have been applied on top of each other the first film being applied to the substrate, and each comprise a transparent conducting oxide and an electron donor, wherein the first film has a thickness of 50-500 nm and the second film has a thickness of 300-900 nm and comprises relatively at least 10 percent less electron

ZIJP et al.

Appl. No. 10/574,484

November 9, 2009

donor than the first film, and the first film and the second film both have a (211) dominant

orientation, and wherein at least a first and a second mixture which each comprise one or more

precursors for a transparent conducting oxide and an electron donor are applied to the substrate,

wherein the second mixture is composed such that relatively at least 10 percent less electron

donor is incorporated in the second film.

24. (original) A method according to claim 23, wherein the first mixture is applied to the

substrate and the first film is formed, after which the second mixture is applied to the top side of

the first film and the second film is formed.

- 4 -

1553338