Discrete Event Simulation of Continuous Review (Q,R) Inventory Policy

By

Kedar Wagholikar

Roadmap

- Problem Statement
- Objective
- Explain Simulation
- Steps
- Output
- Key Takeaways & Managerial Insights

Problem

- The objective of inventory is to achieve satisfactory levels of customer service while keeping inventory costs within reasonable bounds.
- This is called Inventory optimization which is critical in supply chain management
- But the complexity of real-world multi-echelon inventory systems under uncertainties results in a challenging optimization problem, too complicated to solve by conventional mathematical models.

Objective

- We propose a novel simulation-based optimization framework for optimizing inventory systems that operate on multi-period inventory management with continuous review (Q, R) inventory policy.
- 2. The objective is to minimize the inventory cost while maintaining acceptable service levels.

Multi Period Inventory Management ... 1

- The inventory system operates continuously with many repeating periods or cycles.
- 2. The lead time (L) for a new order is a random variable in general, reflecting the variation of delivery time.
- 3. The daily demand is Di (i = 1, ..., L) within the lead time, where the D0 are also random variables, reflecting the variation of demand over time.
- 4. Inventory can be carried from one period to the next.

Multi Period Inventory Management ... 2

- 1. New orders can be placed based on one of the following two basic classes of reorder policies:
 - a. **Event-driven:** These are reorder policies that are driven by reorder point (ROP) **continuous review policy:** in which inventory is reviewed every day and a decision is made about whether and how much to order.
 - b. **Time-driven:** These are reorder policies that are driven by time **periodic review policy:** in which inventory is reviewed at regular intervals and an appropriate quantity is ordered after each review.

Continuous Review (Q, R) Inventory Policy

- 1. Whenever the inventory level reaches the reorder point R, place an order of Q to bring the inventory position to the order-up-to level R + Q.
- 2. Two decision to be made in the policy:
 - a. Decide the reorder level R when-to-order
 - b. Decide the reorder quantity Q and hence the order-up-to level how much to-order.

3. The two decision should be made based on the simulation results, to find the optimal Q, by minimizing the total inventory cost with the constraint of service level at 95%.

1. Assumptions

- a. Continuous Review (Q, R) inventory control policy
- b. There is an inventory holding cost (m.u./unit/day)
- c. There is fixed order cost (m.u./order)
- d. No backorders: when there is a stockout, the order is lost
- e. Random customer order demands
- f. Random order lead times

Given

- a. Unit holding cost and unit reorder cost
- b. Probability distributions for the random parameters

Determine

a. Reorder point and optimal order quantity

4. Objective of the Simulation

- a. To minimize the inventory cost (= holding cost + reorder cost)
- b. To maintain service level no less than the minimum desired values

Benefits of a simulation model

- Basic models such as the EOQ model assume that the demand for each period is constant and the lead time is not fluctuating. Further they fail to consider lost sales.
- Simulation has the capacity of drawing samples through the creation of artificial observations that behave like random events in the real system.
- Simulation can be used to investigate quickly the effects of a change in a real life situation that takes place over several years and thus can be used to study complex systems.

Discrete Event Simulation(DES) Model

Main reasons to use DES are:

- 1. Possibility to include dynamics
- 2. Simplicity of modelling

DES model follows a set of rules about the actual operations-

Algorithmic: Includes set of steps for algorithm

Mathematical: Includes a set of equations for variable relationships

Logical: Includes a set of conditions that define the control of the system dynamics

Steps(1/3)

- Step 1 Create vector values for **Q** and **R**
- Step 2 Create a numeric variable : CurrentInventory
 - Set it to initial estimated value
- Step 3 Create a logical variable : Ordered
 - Set the initial value to False
- Step 4 Create a numerical value: Lead
 - Set initial value to zero
- Step 5 Create a numerical variable: Missed
 - Set initial value to Zero

Steps(2/3)

For given value of Q and R,

- Step 6 Calculate Lead Time using condition:
 - IF **Ordered** = TRUE & Lead > 0, Reduce Lead by 1
- Step 7 Receive Delivery using the condition
 - IF Ordered = TRUE & Lead = 0,
 - Increment CurrentInventory by Q & Set Ordered = FALSE
- Step8 Use Inventory: Randomly generate Demand from demand data
 - - Reduce **CurrentInventory** by the **Demand** quantity
 - 8.2 IF CurrentInventory < Demand
 - CurrentInventory to zero
 - Augment Missed difference in **Demand** and **CurrentInventory**

Steps(3/3)

Step 9: Order Inventory:

- IF CurrentInventory <= R
 - Set **Ordered** = TRUE.
 - Randomly assign a sampled value lead-time distributions to Lead
 - Compute Total Ordering cost by adding variable cost

Step 10: Compute inventory holding cost

- Add to a variable having total Inventory holding cost

Step 11: Compute Total missed opportunities & Service level

ServiceLevel = (sum(D) - Miss)/sum(D)

Step 12: Repeat steps 6 through the previous step for all values of Q and R

Advantages & Challenges of DES Model

Major Advantages

- Study new designs without interrupting real systems & understand existing
- Provides decision frameworks that are realistic and robust
- Visualize and understand system dynamics
- Uses actual system level logical or mathematical models and minimizes artificial assumptions or usage of stylized models
- Perform What-if kind of analysis for decision framework

Challenges:

- Validation of Supply Chain could be difficult with lack of data
- Missing support for logistics process in simulation

Different Views of Cost Profiles for Different Q and R Combinations

Different Views of Service Levels for Different Q and R Combinations

Optimal Q & R for given service level and minimum cost level

Service Level	Minimum CostLevel		Optimal Q	Optimal R
0.99	\$	93,202	10500	1100
0.98	\$	90,224	10000	900
0.97	\$	90,893	10000	1100
0.96	\$	89,109	9000	1100
0.95	\$	88,441	9000	900

Plot of Cost and Service Level

Inventory Profile for Q = 11000, R=1500

Key Takeaways

- Inventory Decision Questions How Much? When? are answered
- EOQ under this model acts as good approximation

- Inventory optimization model can be used to find optimal inventory levels on safety stock targets
- > Implementing simulation in inventory optimization, retailers and supermarkets can understand shelf-life, lead time, and replenishment rules

THANK YOU