Accelerating Access to Life-Saving Treatments to Patients

pumas

Augment Workflow

DeepPumas Workshop

Prepared by: Mohamed Tarek

Pumas-Al Inc

Nov 4, 2023

Class

Classical NLME Model

Pumas Model

```
@model begin
                   @param begin
                      \theta \in VectorDomain(4, lower = zeros(4))
                      \Omega \in PSDDomain(2)
                      \Sigma \in \text{RealDomain(lower = 0.0)}
                      a ∈ RealDomain(lower = 0.0, upper = 1.0)
                    end
                    @random begin
                      η \sim MvNormal(Ω)
                    @covariates sex wt etn
                    @pre begin
                      \theta 1 := \theta[1]
                      CL = \theta[2] * ((wt / 70)^0.75) * (\theta[4]^sex) *
                       exp(η[1])
                      Vc = \theta[3] * exp(\eta[2])
y_i|\theta,\eta_i,x_i
                    end
                    @dynamics begin
                      Depot' = -Ka * Depot
                      Central' = Ka * Depot - (CL / Vc) * Central
                      Res' = Depot - Central
                    end
                    @derived begin
                      conc = @. Central / Vc
                      dv \sim Q. Normal(conc, conc * \Sigma)
                      T_{max} = maximum(t)
                    end
                    @observed begin
                      obs_cmax = maximum(dv)
                    end
                  end
```


Covariate Free Model

The NLME UDE models we have seen are covariate free!

They cannot exploit known heterogeneity in the patients to give better predictions!

In absence of observed data, their best prediction is independent of the individual under consideration.

This is far from ideal.

Covariate Free Model

However, if we could find a function mapping the covariates to the random effects of the UDE model, we could give better predictions even in absence of observed data.

Supervised Learning

Augmented Model

In short

- 1. Fit an NLME model to describe individual time courses using random effects
- 2. Extract an approximation of the posterior distribution of the random effects for each subject in the training data.
- 3. Fit a machine learning model to predict these posterior distributions from covariates
- 4. Augment the original NLME model with the machine learning prediction of the random effect value.

