Problem Set 1 Submission

Troy Whorten

December 19, 2017

Problem 1. Prove that log_46 is irrational.

Proof. By contradiction, let us suppose that log_46 is rational.

$$log_46 = \frac{log_36}{log_34}$$
 (base change rule)

$$= \frac{log_33 + log_32}{log_32 + log_32}$$
 (product rule)

$$= \frac{1 + log_32}{2log_32}$$

$$= \frac{1}{2log_32} + \frac{log_32}{2log_32}$$

$$= \frac{1}{2} \times \frac{1}{log_32} + \frac{1}{2}$$

$$= \frac{1}{2} \times log_23 + \frac{1}{2}.$$
 (base switch rule)

Since $\frac{1}{2}$ is rational, the last expression requires that log_23 be rational for the entire expression to be rational.

$$log_2 3 = \frac{m}{n}$$
 (m and n are integers, $n \neq 0$)
 $3 = 2^{\frac{m}{n}}$ (2 raised to power of each side)
 $3^n = 2^m$. (each side raised to power of n)

However, because 3 and 2 are prime with respect to each other (no common factors), the finally equality cannot hold, leading to a contradiction. log_23 is therefor irrational, and because it is a component of log_46 , log_46 is also irrational.

Problem 2. Prove that $n \leq 3^{n/3}$ for all nonnegative integers.

Proof. **Lemma 1.** P is true for {0, 1, 2, 3, 4}

$$n \le 3^{n/3} = n^3 \le 3^n$$
 (cube both sides)
 $0^3 \le 3^0 = 0 \le 1$ (n = 0, T)
 $1^3 \le 3^1 = 1 \le 3$ (n = 1, T)
 $2^3 \le 3^2 = 8 \le 9$ (n = 2, T)
 $3^3 \le 3^3 = 27 \le 27$ (n = 3, T)
 $4^3 \le 3^4 = 64 \le 81$ (n = 4, T)

Theorem. By contradiction. Assume that P is false, i.e. that $n^3 > 3^n$ for some n > 4. Counterexamples to P are collected in nonempty set C:

$$C ::= \{ n \in \mathbb{N} | n^3 > 3^n \land n > 4 \}$$

Because C is a nonempty set of nonnegative integers, by the Well Ordering Principle there is a minimum element that we'll call r.

By assumption, $(r-1)^3 \le 3^{r-1}$ is true, because r-1 < r and r is the minimum element in the set C.

$$(r-1)^3 \le 3^{r-1} \equiv 3(r-1)^3 \le 3^r$$
 (multiply both sides by 3)

$$\equiv 3^r - 3(r-1)^3 \ge 0$$
 (move terms to left side)

$$\equiv 3^r - 3r^3 - 9r^2 + 9r - 3 \ge 0$$
 (expand terms)

$$\equiv r^3 - 3r^3 - 9r^2 + 9r - 3 \ge 0$$
 (by assumption that $r^3 > 3^r$)

$$\equiv -2r^3 - 9r^2 \ge -9r + 3$$

$$\equiv 2r^3 + 9r^2 < 9r - 3$$

Because r is a positive integer ≥ 5 , the cubic term is at least $\frac{50}{9} \times$ larger than the 9r term in the right hand side, and the quadratic term in the left hand side is at least $5 \times$ larger. This means the inequality cannot hold, and therefore the assumption that $n^3 > 3^n$ for n > 4 leads to a contradiction.

Problem 3.

(a) Verify by truth table that (P IMPLIES Q) OR (Q IMPLIES P)

Р	Q	$ P \implies Q$	\ \	$\mid Q \implies P$
T T	Т	Т	T	T
	F	F	$\mid T \mid$	ightharpoons T
\mathbf{F}	Γ	m T	T	F
F	F	T	$\mid T \mid$	T

(b) Let P and Q be propositional formulas. Describe a single formula, R, using only ANDs, ORs, NOTs, and copies of P and Q, such that R is valid iff P and Q are equivalent.

$$R = (P \land Q) \lor (\neg P \land \neg Q)$$

(c) Explain why P is valid iff NOT(P) is not satisfiable.

In order for NOT(P) to be satisfiable, there must be some assignment of truth values to P that results in P being false, which in direct conflict with the meaning of "valid", (i.e.) a propositional formula is valid iff it *always* evaluates to true.

(d) A set of propositional formulas P1,...,Pk is consistent iff there is an environment in which they are all true. Write a formula, S, so that the set P1,...,Pk is not consistent iff S is valid.

$$P \vee \neg P$$

Problem 4.

(a) A 1-bit add1 module just has input a_0 . Write propositional formulas for its outputs c and p_0 .

$$c = a_0 \wedge 1$$

$$p_0 = a_0 \oplus 1$$

(b) Explain how to build an (n + 1)-bit parallel half-adder from an (n + 1)-bit add1 module by writing a propositional formula for the half-adder output, o_i , using only the variables a_i , p_i , and b.

(c) Write a formula for the carry, c, in terms of c_1 and c_2 .

- (d) Complete the specification of the double-size module by writing propositional formulas for the remaining outputs, p_i , for . The formula for pi should only involve the variables a_i , $r_{i-(n+1)}$, and c_i .
- (e) Parallel half-adders are exponentially faster than ripple-carry half-adders. Confirm this by determining the largest number of propositional operations required to compute any one output bit of an n-bit add module. (You may assume n is a power of 2.)