



#### Algebra Linear Computacional

### SVD e Aproximação de Matrizes

#### Erickson e Fabricio

Slides parcialmente baseados em J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Data Sets





## Objetivos de Aprendizagem

- Entender fundamentos da aplicação do SVD para sistemas de recomendação
- 2. Calcular representação latente de usuários e filmes
- 3. Saber fazer a compressão de imagens usando SVD
- Entender a relação entre qualidade da imagem comprimida e seu espectro (conjunto de valores singulares)
- 5. Saber encontrar aproximação de matrizes (ou de elementos específicos) usando SVD truncado
- 6. Conhecer e entender o Teorema de Eckart-Young



### Referências Adicionais

#### YouTube

- Jure Leskovec: SVD for Recommender Systems <a href="https://youtu.be/K38wVcdNuFc">https://youtu.be/K38wVcdNuFc</a>
- Steve Brunton: SVD for Image Compression (Python)
   <a href="https://youtu.be/H7qMMudo3e8">https://youtu.be/H7qMMudo3e8</a>



### $AV=U\Sigma$

$$A \begin{bmatrix} v_1 & v_2 & \dots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & u_2 & \dots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r \end{bmatrix}$$

$$A v_i = \sigma_i M_i$$

Nota: Estas dimensões correspondem ao SVD reduzido.

Retificando a explicação: precisamos transformar U e V em matrizes **quadradas**.





## Tornando V quadrada

Se o espaço coluna C(A) tem dimensão r, existem r vetores  $\sigma_i u_i$  independentes que podem ser escritos como  $Av_i$ .

Sabemos ainda que o espaço nulo N(A) tem dimensão n-r. Logo, existem vetores n-r vetores  $v_j$  independentes tais que  $Av_j$  = 0. Esses vetores são ortogonais a  $v_1$ , ...,  $v_r$ . Concatenando-os





## Tornando U quadrada

Como os vetores ui estão no Rm, existem m-r vetores independentes u<sub>i</sub> ortogonais a u<sub>1</sub>, ..., u<sub>r</sub>. Logo, podemos concatená-los a U, desde que sejam adicionadas m-r linhas

nulas em Σ:

nulas em 
$$\Sigma$$
:
$$A \begin{bmatrix} | & \dots & | & | & \dots & | \\ v_1 & \dots & v_r & v_{r+1} & \dots & v_n \\ | & \dots & | & | & \dots & | \end{bmatrix} = \begin{bmatrix} | & \dots & | & | & \dots & | \\ u_1 & \dots & u_r & u_{r+1} & \dots & u_m \\ | & \dots & | & | & \dots & | \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

$$\begin{bmatrix} \sigma_1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \sigma_r & 0 & \dots & 0 \\ 0 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{bmatrix}$$

 $m \times n$ 

Nota: Estas dimensões correspondem ao SVD completo.



# Do SVD completo ao reduzido

#### SVD Completo

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times m} \underbrace{\Sigma}_{m \times n} \underbrace{V}^{\top}_{n \times n}$$

Como apenas os r primeiros elementos da diagonal de Σ são não-nulos, podemos tomar esta submatriz, descartando as colunas r+1,...,m de U e as linhas r+1,...,n de V<sup>T</sup>. O resultado, denotado pelas mesmas letras, é

SVD Reduzido

$$\underbrace{A}_{m \times n} = \underbrace{U}_{m \times r} \underbrace{\sum_{r \times r} \underbrace{V}_{r \times n}}_{V \times n}$$



# Exemplo de uma matriz tall-thin







### Aprendendo sobre espaço latente







### Usuário e conceito







### Filme e conceito







### Peso de um conceito





# Exemplo um pouco mais real

Note que existem usuários que vão assistir filmes de vários tipos (isso pode ser apenas ruído)





DCC

### Exemplo um pouco mais real

```
      0.56
      0.59
      0.56
      0.09
      0.09

      -0.12
      0.02
      -0.12
      0.69
      0.69

      0.40
      -0.80
      0.40
      0.09
      0.09
```



## nnles

### Um sistema de recomendação simples

- Temos k perfis de usuários
  - Cada usuário será o resultado da combinação linear desses perfis (comédia, drama, ação)
  - A matrix "verdadeira" então terá posto k!
- Pergunta
  - Como recomendar um filme para um determinado usuário?



### Um sistema de recomendação simples





### Um sistema de recomendação simples

#### Como estamos supondo termos k=2 perfis

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ \mathbf{0} & 3 & 3 & 0 & 0 \\ 4 & 4 & \mathbf{0} & 0 & 0 \\ 5 & 5 & 5 & 0 & 0 \\ 0 & 2 & 0 & 4 & 4 \\ 0 & 0 & 0 & 5 & 5 \\ 0 & 1 & 0 & 2 & 2 \end{bmatrix} \stackrel{\textbf{0.14}}{=} \begin{array}{c} -0.06 & -0.04 \\ 0.30 & -0.11 & -0.61 \\ 0.43 & -0.16 & 0.76 \\ 0.74 & -0.31 & -0.18 \\ 0.15 & \textbf{0.53} & 0.02 \\ 0.07 & \textbf{0.70} & -0.03 \\ 0.07 & \textbf{0.27} & 0.01 \end{bmatrix}$$



### Um sistema de recomendação simples

Ao realizar a multiplicação (após remover o menor valor singular)

```
      0.96
      1.14
      0.82
      -0.01
      -0.01

      1.94
      2.32
      1.66
      0.07
      0.07

      2.77
      3.32
      2.37
      0.08
      0.08

      4.84
      5.74
      4.14
      -0.08
      0.08

      0.40
      1.42
      0.33
      4.06
      4.06

      -0.42
      0.63
      -0.38
      4.92
      4.92

      0.20
      0.71
      0.16
      2.03
      2.03
```







~80% da internet é imagem!







Dimensão: 3024 x 4032

Número de bytes: 12.192.768 x 3 (considerando cor)







Podemos tentar aproximar a matriz A que representa a imagem por A<sub>k</sub>

$$A_k = \sigma_1 u_1 v_1^T + \dots + \sigma_k u_k v_k^T$$

$$A = \sigma_1 u_1 \sigma_1^T + \sigma_2 u_1 \sigma_2^T + \dots + \sigma_r u_r \sigma_r^T$$

$$\sigma_1 > \sigma_2 > \dots > \sigma_k > \sigma_{k-1} > \dots > \sigma_r \sigma_r$$





```
(3024, )
U, sigma, Vt = np.linalg.svd(img_gray)
  elementes de disconel
     de 5
                                             sigma = mp. diaz (sigma)
```

- U.shape: 3024 x 3024
- Vt.shape: 4032 x 4032
- sigma.shape: 3024 x 3024 (sendo apenas 3024 valores diferentes de zero)

3024×3024





A primeira aproximação seria: A<sub>1</sub> = 5, 2, 5, 5,







Ficou bom?

$$\underline{RMSE} = \sqrt{\frac{1}{MN} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \left( \underline{I1}(m,n) - \underline{I2}(m,n) \right)^2} \ .$$

MSE: 2486.98







Uma aproximação seria usar mais valores

singulares: A<sub>5</sub>







### Até quando precisamos ir?







## Até quando precisamos ir?

Regra do dedão: cortar de maneira a mantar entre 80-90% da "energia"

$$t = \frac{\sum_{i=1}^{k} \sigma^{2}}{\sum_{i=1}^{n} \sigma^{2}} = 80\%$$





### n=100 já temos uma ótima aproximação







### O quanto estamos usando de espaço?

$$Tx = \frac{(100*3024 + 100 + 100*4032)}{(3024*4032)}$$

$$Tx = 5.7\%$$

$$100 \text{ almosts de U } 3024 \times 3024$$

$$100 \text{ elmosts de U } 3024 \times 4032$$

$$100 \text{ elmosts de U} 4032 \times 4032$$

Razão de compressão:

$$(3024*4032)/(100*3024 + 100 + 100*4032) = 17 \text{ vezes!}$$





## Aproximação da matriz A

É possível encontrar uma matriz B com posto k que seja mais próxima de A e que não seja A<sub>k</sub>?





## Aproximação de matriz

Eckart-Young: Suponha B uma matriz de posto k. Então B será uma aproximação no máximo tão boa quanto  $A_k$ 

$$A_k = \sigma_1 u_1 v_1^T + \dots + \sigma_k u_k v_k^T$$





## Aproximação de matriz

IICIIz é o maior velor singular.

Se B tem posto k, então

$$||A - B||_{2} \ge ||A - A_{k}||_{2} = \sigma_{k+1}$$

Norma de Frobenius:

$$||A||_F = \sqrt{|a_{11}|^2 + |a_{12}|^2 + \dots + |a_{mn}|^2}$$

$$||A||_F > ||A||_2$$

