Optimization Methods In Machine Learning

Lecture 3: Empirical Risk Minimization and Structure Risk Minimization

Professor Katya Scheinberg

Lehigh University

Spring 2016

Outline

Empirical Risk Minimization (ERM)

Incorrect Argument for ERM Post-hoc Guarantees Relative Learning Guarantees

Structure Risk Minimization (SRM)

Overfitting Structure Risk Minimization Choosing a Complexity Level

This lecture is taken from a short course at UT Austin taught by N. Srebro and K. Scheinberg in 2011.

Outline

Empirical Risk Minimization (ERM)
Incorrect Argument for ERM
Post-hoc Guarantees
Relative Learning Guarantees

Structure Risk Minimization (SRM)

Overfitting Structure Risk Minimization Choosing a Complexity Level

Empirical Risk Minimization (ERM)

Incorrect Argument for ERM

- Recall examples of complexity of hypothesis class from the previous lecture:
 - ▶ $\mathcal{H}_b = \{\text{"predictors based only on month and day of birthdate"}\}, |\mathcal{H}_b| = 2^{365}$. ▶ $\mathcal{H}_n = \{\text{"predictors based only on nationality"}\}, |\mathcal{H}_n| = 2^n, n \text{ is the number}$
 - ▶ $\mathcal{H}_n = \{\text{"predictors based only on nationality"}\}, |\mathcal{H}_n| = 2^n, n \text{ is the number of countries.}$
 - ▶ $\mathcal{H}_h = \{\text{"predictors based only on short or long hair"}\}, |\mathcal{H}_h| = 2^2.$
 - ▶ $\mathcal{H}_p = \{$ " predictors based only on last four digits of phone number" $\}$, $|\mathcal{H}_p| = 2^{10000}$.

Incorrect Argument for ERM

Empirical Risk Minimization (ERM)

Correcting Argument for justifying ERM

▶ Recall our re-interpretation of Hoeffding's inequality:

$$|R_{01}(h) - \hat{R}_{s,01}(h)| \le \sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$
 with probability at least $(1 - \delta)$.

Then recall from our previous lecture that

$$R_{01}(\hat{h}) \le \hat{R}_{s,01}(\hat{h}) + \sqrt{\frac{\log \frac{2}{\delta}}{2m}} \le \hat{R}_{s,01}(h^*) + \sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$
$$\le R_{01}(h^*) + 2\sqrt{\frac{\log \frac{2}{\delta}}{2m}}$$

▶ What is flawed in the above argument? Reason: the problem is that Hoeffding's inequality holds for each h separately but does **NOT** hold for all $h \in \mathcal{H}$. We neglected the complexity of the hypothesis class in our previous argument.

Incorrect Argument for ERM

Empirical Risk Minimization (ERM)

Correcting Argument for justifying ERM

▶ Recall the knowledge of the union bound from probability theory

Theorem (Boole's inequality, also known as the union bound)

For a countable set of different events A_1, A_2, \ldots , we have

$$\mathbb{P}(\bigcup_{i} A_{i}) \leq \sum_{i} \mathbb{P}(A_{i}).$$

 Correct the flaw by using the union bound, we should have the following inequality hold,

Theorem

$$\mathbb{P}\{\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| \le \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}\} \ge 1 - \delta_{bad}.$$

Incorrect Argument for ERM

Empirical Risk Minimization (ERM)

Correcting Argument for justifying ERM

Proof Considering the union bound, let event A_i = "hypothesis h_i looks misleadingly good", i.e. " h_i is cheating, explicitly written out as $|R_{01}(h_i) - \hat{R}_{s,01}(h_i)| \ge \epsilon$. Then $\bigcup_{i \in \mathcal{H}} A_i$ = "at least one hypothesis from \mathcal{H} is cheating". So the following inequality holds,

$$\begin{split} &\mathbb{P}(\text{all hypotheses from }\mathcal{H} \text{ "behave well"})\\ &= 1 - \mathbb{P}(\text{at least one hypothesis from }\mathcal{H} \text{ is cheating})\\ &= 1 - \mathbb{P}(\bigcup_{i \in \mathcal{H}} A_i) \geq 1 - \sum_{i \in \mathcal{H}} \mathbb{P}(A_i)\\ &= 1 - \sum_{i \in \mathcal{H}} \mathbb{P}\{|R_{01}(h_i) - \hat{R}_{s,01}(h_i)| \geq \epsilon\} \end{split}$$

Incorrect Argument for ERM

0000000

Empirical Risk Minimization (ERM)

Correcting Argument for justifying ERM

► Event "all hypotheses from H' behave well' " can be explicitly written as " $\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| < \epsilon$. Then

$$\mathbb{P}\{\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| \leq \epsilon\}$$

$$\geq 1 - \sum_{i \in \mathcal{H}} \mathbb{P}\{|R_{01}(h_i) - \hat{R}_{s,01}(h_i)| \geq \epsilon\}$$

Recall from our previous lecture $\mathbb{P}\{|R_{01}(h) - \hat{R}_{s,01}(h)| \ge \epsilon\} \le 2e^{-2\epsilon^2 m}$ for any $h \in \mathcal{H}$, the above inequality is equivalent to

$$\mathbb{P}\{\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| \le \epsilon\} \ge 1 - 2|\mathcal{H}|e^{-2\epsilon^2 m}$$

Incorrect Argument for ERM

Empirical Risk Minimization (ERM)

Example

▶ By letting $\delta_{bad} = 2|\mathcal{H}|e^{-2\epsilon^2 m}$, we have $\epsilon = \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}$. Thus,

$$\mathbb{P}\{\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| \le \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}\} \ge 1 - \delta_{bad}$$

Proof is finished here.

Example (3.1)

Suppose we have an hypothesis class of size $|\mathcal{H}|=10000$, and we want the probability of there being some "possibly misleading" hypothesis in \mathcal{H} (such that its sample date set performance differs from its source distribution performance by more than $\epsilon=0.01$) to be no higher than $\delta_{bad}=e^{-7}$. How many samples do we need?

Solution:
$$\epsilon = 0.01 \le sqrt \frac{\log 10000 + \log 2/e^{-7}}{2m} \Longrightarrow m \ge \frac{2}{17} \cdot 10^4 \approx 1200.$$

000000

Empirical Risk Minimization (ERM)

 \triangleright Similar as previous lectures, let $h^* := \arg\min_{h \in \mathcal{H}} R_{01}(h)$, $\hat{h} := \arg\min_{h \in \mathcal{H}} \hat{R}_{s,01}(h)$. From the inequality

$$\mathbb{P}\{\forall h \in \mathcal{H}, |\hat{R}_{s,01}(h) - R_{01}(h)| \le \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}\} \ge 1 - \delta_{bad},$$

we have: with probability at least $(1 - \delta_{bad})$,

$$R_{01}(\hat{h}) \leq \hat{R}_{s,01}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}$$

$$\leq \hat{R}_{s,01}(h^*) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}$$

$$\leq R_{01}(h^*) + 2\sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}.$$

Post-hoc Guarantees

Empirical Risk Minimization (ERM)

Post-hoc Guarantees

▶ With probability at least $(1 - \delta_{bad})$, we will have gotten a sample set realization s for which the **post-hoc generalization guarantee** holds:

$$R_{01}(\hat{h}) \le \hat{R}_{s,01}(\hat{h}) + \sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}.$$

Relative Learning Guarantees

Empirical Risk Minimization (ERM)

Relative Learning Guarantees

• With probability at least $(1 - \delta_{bad})$, we will have the (relative) learning guarantee

$$R_{01}(\hat{h}) \le R_{01}(h^*) + 2\sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}.$$

Relative Learning Guarantees

Empirical Risk Minimization (ERM)

Examples

0

Example (3.2)

Suppose for hypothesis class \mathcal{H} , $h(x) = \{x_i \geq \theta, i = 1, 2\}$. (Assume the machine is 64-bit.)

▶ For θ , there 2^{64} possible values, we have 2 hypotheses for each θ in 2-dimensional space. So the complexity of hypothesis class

$$|\mathcal{H}| = 2^{64} + 2^{64} = 2^{65} \Rightarrow \log |\mathcal{H}| \approx 45.$$

Example (3.3)

$$h(x) = \{w^T x + b \ge 0\}, \mathcal{H} = \{h_{w,b} | w \in \mathbb{R}^d, b \in \mathbb{R}\}.$$
 (Assume the machine is 64-bit.)

▶ Similarly, the complexity of hypothesis class (D := d + 1)

$$|\mathcal{H}| = 2^{64D} + 2^{64D} = 2^{65D} \Rightarrow \log |\mathcal{H}| \approx 45D(\frac{linear!}{}).$$

Outline

Empirical Risk Minimization (ERM)
Incorrect Argument for ERM
Post-hoc Guarantees
Relative Learning Guarantees

Structure Risk Minimization (SRM)
Overfitting
Structure Risk Minimization
Choosing a Complexity Level

Structure Risk Minimization (SRM) \bullet

Overfitting

Structure Risk Minimization (SRM)

Overfitting

Example (3.4)

 $x \in \mathbb{R}, y = \{+1, -1\}$. Given a series of data samples (x_i, y_i) .

Figure: Given data samples

 $\mathcal{H}=\{x\to \mathrm{sign}[\sin(wx+\theta)]\;|w\in\mathbb{R},\theta\in\mathbb{R}\}$ can overfit any data when w is sufficiently large.

Figure: Example of overfitting

•00

Structure Risk Minimization

Structure Risk Minimization (SRM)

▶ Recall from our previous slide of relative learning guarantee, with probability at least $(1 - \delta_{bad})$,

$$R_{01}(\hat{h}) \le R_{01}(h^*) + 2\sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}},$$

where $R_{01}(h^*)$ is called approximation error and $R_{01}(\hat{h}) - R_{01}(h^*)$ is the estimation error which is bounded by $2\sqrt{\frac{\log |\mathcal{H}| + \log \frac{2}{\delta_{bad}}}{2m}}$.

Structure Risk Minimization

Structure Risk Minimization (SRM)

▶ If we are optimizing $R_{01}(h_k^*)(h_k^* \in \mathcal{H}_k)$ over a hierarchy of hypothesis classes $\mathcal{H}_0 \subseteq \mathcal{H}_5 \subseteq \mathcal{H}_{10} \subseteq \mathcal{H}_{15} \subseteq \ldots, R_{01}(h_k^*)$ will get smaller as more complexity parameters can make better model by fitting the data.

Structure Risk Minimization (SRM) $^{\circ}$ $^{\circ}$ $^{\circ}$

Structure Risk Minimization

Structure Risk Minimization (SRM)

▶ However, the bound of estimation error $2\sqrt{\frac{\log |\mathcal{H}| + \log \frac{\delta}{\delta_{bad}}}{2m}}$ is increasing as complexity parameter value increases. SRM principle aims to balance the model's complexity against its success at fitting the data.

Figure: Behaviors of different errors over a hierarchy of classes

000

Choosing a Complexity Level

Structure Risk Minimization (SRM)

Choosing a Complexity Level

- ► There is a trade-off between the approximation error and the estimation error, so how do we know which class of hypothesis is better?
 - Sample again! And test the predictors on the new sample, compare their behaviors.
 - Cross-validation: Partition a sample set into complementary subsets, perform analysis on one subset (training set) and validate the analysis on the other subset (testing set). Can do this multiple times with different partitions.