Structure is all you need learning compressed RL policies via gradient sensing

UNIVERSITY OF CAMBRIDGE

Google Brain Robotics: Krzysztof Choromanski, Vikas Sindhwani

University of Cambridge and Alan Turing Institute: Mark Rowland, Richard E. Turner, Adrian Weller

INNOVATION + ASSI

$$\mathbf{P} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$\mathbf{G}_{\text{ort}} = \begin{pmatrix} g_{1,1}^{\text{ort}} & g_{1,2}^{\text{ort}} & \dots & g_{1,n}^{\text{ort}} \\ g_{2,1}^{\text{ort}} & g_{2,2}^{\text{ort}} & \dots & g_{2,n}^{\text{ort}} \\ \dots & \dots & \dots & \dots \\ g_{m,1}^{\text{ort}} & g_{m,n}^{\text{ort}} & \dots & g_{m,n}^{\text{ort}} \end{pmatrix}$$

$$\mathbf{G} = \begin{pmatrix} g_{1,1} & g_{1,2} & \dots & g_{1,n} \\ g_{2,1} & g_{2,2} & \dots & g_{2,n} \\ \dots & \dots & \dots & \dots \\ g_{m,1} & g_{m,n} & \dots & g_{m,n} \end{pmatrix}$$

$F: \mathbb{R}^d \to \mathbb{R}$

Towards smooth relaxations

$$\max_{\mu \in \mathcal{P}(\mathbb{R}^d)} \mathbb{E}_{\theta \sim \mu}[F(\theta)]$$

family of probabilistic distributions on \mathbb{R}^d

Gaussian smoothings

 $\max_{\theta \in \mathbb{R}^d} J(\theta) = \mathbb{E}_{\phi \sim N(\theta, \sigma^2 I)} \left[F(\phi) \right]$

- infinitely differentiable objective (Nesterov & Spokoiny, 2017)
- optimal value lower-bounds
 That of the original problem

ES-style gradient estimator (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers, no control variate}$$

Gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i) \qquad \text{used for variance reduction}$$

FD-style gradient estimator:

samples

$$\widehat{\nabla}_{\overline{N}}J(\theta) = \frac{1}{N\sigma}\sum_{i=1}^{N}(F(\theta+\sigma\epsilon_i)\epsilon_i - F(\theta)\epsilon_i)$$
 randomized version of a standard finite difference method

ES-style gradient estimator (Salimans et al. 2017):
$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many evolutionary strategies papers no control variate} \\ \widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used for variance}$$

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i)$$

FD-style gradient estimator:

samples

$$\widehat{\nabla}_{\overline{N}}J(\theta) = \frac{1}{N\sigma}\sum_{i=1}^{N}(F(\theta+\sigma\epsilon_i)\epsilon_i - F(\theta)\epsilon_i)$$
 randomized version of a standard finite difference method

randomized version

reduction

used for variance

ES-style gradient estimator (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{used in many strategies papers no control variate}$$

Gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{evolutionary strategies papers no control variate}$$

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad \text{evolutionary strategies papers no control variate}$$

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i \qquad F(\theta - \sigma \epsilon_i) \epsilon_i \qquad \text{used for variance}$$

used for variance

$$egin{aligned}
abla_N^{ ext{ort}} J(heta) \ \{\epsilon_1^{ ext{ort}},...,\epsilon_N^{ ext{ort}}\} \end{aligned}$$

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i)$$

used for variance reduction

FD-style gradient estimator:

samples

$$\widehat{\nabla}_{\overline{N}}J(\theta) = \frac{1}{N\sigma}\sum_{i=1}^{N}(F(\theta+\sigma\epsilon_i)\epsilon_i - F(\theta)\epsilon_i)$$
 randomized version of a standard finite difference method

randomized version

ES-style gradient estimator (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i$$

Gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i)$$

FD-style gradient estimator:

samples

$$\widehat{\nabla}_{\overline{N}}J(\theta) = \frac{1}{N\sigma}\sum_{i=1}^{N}(F(\theta+\sigma\epsilon_i)\epsilon_i - \underline{F(\theta)\epsilon_i})$$
 number of

- all three estimators are unbiased
- empirically tested that none of them dominates the others
- how to learn optimal control variates?

INNOVATION + ASSISTANC

ES-style gradient estimator (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i$$

Gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i)$$

FD-style gradient estimator:

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta) \epsilon_i)$$

Some recent success stories of structured random estimators (very biased selection!):

- "Initialization matters: Orthogonal Predictive State Recurrent Neural Networks", Choromanski, Downey, Boots (to appear at ICLR'18)
- "Optimizing Simulations with Noise-Tolerant Structured Exploration", Choromanski, Iscen, Sindhwani, Tan, Coumans (to appear at ICRA'18)
- "The Geometry of Random Features", Choromanski, Rowland, Sarlos, Sindhwani, *Turner, Weller* (to appear at AISTATS'18)
- "The Unreasonable Effectiveness of Structured Random Orthogonal Embeddings", Choromanski, Rowland, Weller (NIPS'17)
- "Structured adaptive and random spinners for fast machine learning computations", Bojarski, Choromanska, Choromanski, Fagan, Gouy-Pailler, Morvan, Sakr, Sarlos, Atif (AISTATS'17)
- "Orthogonal Random Features", Yu, Suresh, Choromanski, Holtmann-Rice, Kumar (NIPS'16) "Recycling Randomness with Structure for
- Sindhwani (ICML'16) "Binary embeddings with structured hashed projections", Choromanska, Choromanski, Bojarski, Jebara, Kumar, LeCun (ICML'16)

Sublinear time Kernel Expansion", *Choromanski*,

ES-style gradient estimator (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N F(\theta + \sigma \epsilon_i) \epsilon_i$$

Gradient estimator with antithetic pairs (Salimans et al. 2017):

$$\widehat{\nabla}_N J(\theta) = \frac{1}{2N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta - \sigma \epsilon_i) \epsilon_i)$$

FD-style gradient estimator:

$$\widehat{\nabla}_N J(\theta) = \frac{1}{N\sigma} \sum_{i=1}^N (F(\theta + \sigma \epsilon_i) \epsilon_i - F(\theta) \epsilon_i)$$

Theorem (Choromanski, Rowland, Sindhwani, Turner, Weller'18)

The orthogonal gradient estimator $\widehat{\nabla}_N^{\mathrm{ort}} J(\theta)$ is unbiased and yields lower MSE than the unstructured estimator $\widehat{\nabla}_N J(\theta)$, namely:

$$MSE(\widehat{\nabla}_N^{\mathrm{ort}}J(\theta)) =$$

$$MSE(\widehat{\nabla}_N J(\theta)) - \frac{N-1}{N} \|\nabla J(\theta)\|_2^2.$$

INNOVATION + ASSISTAN

for gradient sensing

for gradient sensing

for gradient sensing

for gradient sensing - discrete space sensing

$$\mathbf{M}_{\mathbf{S}\mathcal{R}}^{(k)} = \prod_{i=1}^{n} \mathbf{S} \mathbf{D}_{i}^{(\mathcal{R})} o |\lambda_{i}| = 0$$

 $\lambda_i \sim Unif\{-1,+1\}$

Efficiency of the orthogonal space exploration for gradient sensing - structured neural networks

Structured Matrices: Toeplitz

- $\blacktriangleright n \times n$ matrix parameterized by 2n-1 numbers: constant diagonal values
- $ightharpoonup O(n \log n)$ matrix-vector products, Linear Systems
- Applications
 - Implements One-dimensional Linear Convolutions
 - Arises naturally in time series analysis and dynamical systems.
 - Related matrix: Hankel antidiagonals are constant

gradient sensing - structured neural networks

Sylvester Displacement and Unit-Circulants

► The Sylvester displacement operator is defined by,

$$\nabla_{\mathbf{A},\mathbf{B}}[\mathbf{M}] = \mathbf{A}\mathbf{M} - \mathbf{M}\mathbf{B}$$

where $\mathbf{A} \in \mathbb{R}^{m \times m}$, $\mathbf{B} \in \mathbb{R}^{n \times n}$ are fixed operator matrices.

- Design displacement operators by carefully choosing A, B.
- ► Shift-and-Scale matrices are called *f*-unit Circulant matrices:

$$\mathbf{Z}_f = \left[egin{array}{cccc} 0 & 0 & \dots & f \ 1 & 0 & \dots & 0 \ dots & dots & dots & dots \ 0 & \dots & 1 & 0 \end{array}
ight], \quad \mathbf{Z}_f \left(egin{array}{c} v_1 \ v_2 \ v_3 \ dots \ v_n \end{array}
ight) = \left(egin{array}{c} f v_n \ v_1 \ v_2 \ dots \ v_{n-1} \end{array}
ight)$$

- $egin{aligned} &- \mathbf{Z}_f^n = f \mathbf{I} \ &- ext{ Upshifts with } \mathbf{Z}_f^T \ &- \mathbf{Z}_f^{-1} = \mathbf{Z}_{f-1}^T \end{aligned}$

Efficiency of the orthogonal space exploration for gradient sensing - structured neural networks

Very Low-displacement Rank Property

Structured Matrix ${f M}$	A	В	$rank(abla_{\mathbf{A},\mathbf{B}}[\mathbf{M}])$
Toeplitz and its inverse	\mathbf{Z}_1	\mathbf{Z}_{-1}	≤ 2
Hankel and its inverse	\mathbf{Z}_1	\mathbf{Z}_0^T	≤ 2
${\sf Toeplitz} + {\sf Hankel}$	$\mathbf{Z}_0 + \mathbf{Z}_0^T$	$\mathbf{Z}_0 + \mathbf{Z}_0^T$	≤ 4
Vandermonde $V(\mathbf{v})$	$diag(\mathbf{v})$	\mathbf{Z}_0	≤ 1
Inverse of Vandermonde i.e. $V(\mathbf{v})^{-1}$	\mathbf{Z}_0	$diag(\mathbf{v})$	≤ 1
Transpose of Vandermonde i.e. $V(\mathbf{v})^T$	\mathbf{Z}_0^T	$diag(\mathbf{v})$	≤ 1
Cauchy $\mathbf{C}(\mathbf{s},\mathbf{t})$	$diag(\mathbf{s})$	$diag(\mathbf{t})$	≤ 1
Inverse of Cauchy i.e. $\mathbf{C}(\mathbf{s},\mathbf{t})^{-1}$	$diag(\mathbf{t})$	$diag(\mathbf{s})$	≤ 1

Experimental results: orthogonal blackbox

DFO benchmarking suite, More & Wild (2009)

gradient sensing for low-dimensional problems

53 different optimization problems, four settings:

- stochastic
- deterministic noise
- smooth problems
- non-differentiable problems

- we compute average ranking of the methods against each other in terms of quality of final objective value in each optimisation task
- we then compare these average rankings using multiple hypothesis testing as described in **Demsar (2006)**

Experimental results: orthogonal blackbox

DFO benchmarking suite, More & Wild (2009)

gradient sensing for low-dimensional problems

53 different optimization problems, four settings:

- stochastic
- deterministic noise
- smooth problems
- non-differentiable problems

- we compute average ranking of the methods against each other in terms of quality of final objective value in each optimisation task
- we then compare these average rankings using multiple hypothesis testing as described in **Demsar (2006)**

Experimental results: learning compressed

policies for RL tasks

Optimization setting:

- AdamOptimizer with $\alpha=0.01$ and $\sigma=0.02$
- no heuristics used (e.g no fitness shaping)
- Base compressed setting: two hidden layers of size h=41

Tested variants:

- structured architectures + structured exploration (STST)
- structured architectures + unstructured exploration (STUN)
- unstructured architectures + unstructured exploration (UNUN)

Structured space exploration strategies:

- Gaussian orthogonal matrices
- matrices HD (k=1); 256- or
 512-dimensional parameter vectors

Tested environments:

- Swimmer
- Ant
- HalfCheetah
- Hopper
- Humanoid
- Walker2d
- Pusher
- Reacher
- Striker
- Thrower
- ContMountainCar
- Pendulum
- Minitaur walking

Experimental results: learning compressed

policies for RL tasks

Optimization setting:

- AdamOptimizer with $\alpha = 0.01$ and $\sigma = 0.02$
- no heuristics used (e.g no fitness shaping)
- Base compressed setting: two hidden layers of size h=41, Toeplitz matrices

Tested variants:

Learns reward

1842

- structured architectures + structured exploration (STST)
- structured architectures + unstructured exploration (STUN)
- unstructured architectures + unstructured exploration (**UNUN**)

Structured space exploration strategies:

- Gaussian orthogonal matrices
- matrices HD (k=1); 256- or **512**-dimensional parameter vectors

Tested environments:

- Swimmer
- Ant
- HalfCheetah
- Hopper
- Humanoid
- Walker2d
- Pusher
- Reacher
- Striker
- Thrower
- ContMountainCar
- Pendulum
- Minitaur walking

Distributed TF training on at most 400 machines

	GaussOrt	Hadamard	baseline			
Swimmer	253	253	1408			
Ant	362	254	4896			
HalfCheetah	266	254	2174			
Hopper	257	254	1536			
Humanoid	636	510	13664			
Walker2d	266	254	1824			
Pusher	273	255	2048			
Reacher	256	256	1189			
Striker	273	255	2048			
Thrower	273	255	2048			
ContMountCar	246	246	1184			
Pendulum	247	247	1216			
Minitaur	279	256	2240			

279-dimensional neural network learns reward **4.83** for rollouts of length

500

Experimental results: learning compressed policies for RL tasks

Experimental results: learning curves - Ant

Experimental results: learning curves - Cont. Mountain Car

Experimental results: learning curves - HalfCheetah

Experimental results: learning curves - Hopper

Experimental results: learning curves - Humanoid

Experimental results: learning curves - Pendulum

Experimental results: learning curves - Pusher

Experimental results: learning curves - Reacher

Experimental results: learning curves - Striker

Experimental results: learning curves - Swimmer

Experimental results: learning curves - Thrower

Experimental results: learning curves - Walker2d

Success stories - teaching "Smoky" to walk (ICRA'18)

joint work with: Atil Iscen, Vikas Sindhwani, Jie Tan and Erwin Coumans

