An Experience with Text Classification in *Datadays 2019*

Majid Hajiheidari Amirmohammad Asadi

April. 2019

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Asadi

Divar Posts Dataset

- Released for DataDays 2019
- ► One million posts

دوحرخه مریدا BIG 7-300سال ۲۰۱۷ ۲ ساعت بیش دوحرخه/اسكيت/اسكوتر دستهبندي تهان مبدان آزادی فروشي نوع آگھی oleni Arkensee

با سلام یک دستگاه دوجرخه مریدا BIG 7-300سال ۲۰۱۷ در حد آک آک سایز 27/5 تنه 18/5یا کمک باد ست اوازم دنده=طبق و

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Asadi

Introduction: Divar Dataset

Columns

- ▶ id
- archive_by_user
- published_at
- ► cat1
- cat2
- ► cat3
- city
- title

- desc
- price
- image_count
- platform
- mileage
- brand
- year
- type

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

The Problem: Categorization

Feature Extract

Count Vectorizer Tf-idf Vectorizer Embedding

lassification lgorithms

laive Bayes NN

inear SVM

Passive Aggressive Classi

among Models

Ensemble Learning

Comparison

The Problem: Categorization

- ▶ We need to categorize posts based on other posts features:
- ▶ We only use text features(title & description)!

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Asadi

The Problem: Categorization

Features

Cat3	Cat2	Cat1	Desc	Title
fridge-and- freezer	utensils-and- appliances	for-the-home	يخچال ارج كاملا سالم	يخچال ارج
nan	childrens- clothing-and- shoe	personal	دونه ای 28 سن 7تا 9 تقریبا رنگ مناسب دختر وپسر میباشد مقطوووووع پیامک پاسخگو نیستم	تعدادی کاپشن درحدنو
stereo- surround	audio-video	electronic- devices	سالم وباصدای فوق العاده فوی و باکیفید. میخوره یه ضبط دوتیکه LG آمپیلی دار هم دارم که داخله عکس مشخصه اونم تقدیم میکنم.یاعلی	سینماخانگی
light	cars	vehicles	همه امکانات رو داره	خودرو پژو۴۰۵
mobile- phones	mobile-tablet	Electronic- devices	بدون ضربه خوردگی و تعمیر	ایفون 6گری ۶۴گیگ

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

The Problem: Categorization

eature Extraction

Tf-idf Vectorizer
Embedding

Classification Algorithms

Naive Bayes CNN

CNN Linear SVM

Passive Aggressive Cl

A Comparison

Ensemble Learning

The East

No. of Classes

▶ We concatenate three category columns into one; for example:

cat1	cat2	cat3	concatenate
vehicles	cars	light	vehicles::cars::light

▶ Then, we have 83 unique combinations of categories, eg. 83 classes in our classification task.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

The Problem: Categorization

Feature Extraction

Feature extraction is a dimensionality reduction process, where an initial set of raw variables is reduced to more manageable groups (features) for processing, while still accurately and completely describing the original data set.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Feature Extraction

Vectorizing the Text: Count Vectorizer

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:
Divar Dataset

The Problem:

eature Ext

Count Vectorizer

f-idf Vectorizer

mbedding

lassification lgorithms

ive Bayes

ve Bayes N

inear SVM

Passive Aggres

mong Models

The End

- 1. Hello, how are you!
- 2. Win money, win from home.
- 3. Call me now
- 4. Hello, Call you tomorrow?

An example: We want to vectorize these 4 sentences¹:

¹Example from Rahul Vasaikar

Vectorizing the Text: Count Vectorizer

1. We first build a vocabulary:

{ are, call, from, hello, home, how, me, money, now, tomorrow, win, you}

2. Then, we vectorize each sentence based on the occurness of each word:

	are	call	from	hello	home	how	me	money	now	tom	win	you
1	1	0	0	1	0	1	0	0	0	0	0	1
2	0	0	1	0	1	0	0	1	0	0	2	0
3		1	0	0	0	0	1	0	1	0	0	0
4	0	1	0	1	0	0	0	0	0	1	0	1

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Count Vectorizer

Tf-idf Vectoizer

- ► Tf-idf stands for term frequency-inverse document frequency
- ▶ a statistical measure used to evaluate how important a word is to a document in a collection or corpus
- ▶ the tf-idf weight is composed by two terms:

TF Term Frequency, which measures how frequently a term occurs in a document.

$$\mathit{TF}(t) = rac{\mathit{Number\ of\ times\ term\ t\ appears\ in\ a\ document}}{\mathit{Total\ number\ of\ terms\ in\ the\ document}}$$

IDF Inverse Document Frequency, which measures how important a term is

$$IDF(t) = \ln \frac{Total\ number\ of\ documents}{Number\ of\ documents\ with\ term\ t\ in\ it}$$

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

ntroduction: Divar Dataset

Categorization

Count Vectorizer
Tf-idf Vectorizer

Tf-idf Vectorizer Embedding

Classification Algorithms

laive Bayes NN

near SVM

Passive Aggressive Classifie

A Comparison among Models

Ensemble Learning

The End

Tf-idf Vectorizer: An Example

Consider a document containing 100 words wherein the word cat appears 3 times. The term frequency (i.e., tf) for cat is then $tf(cat) = \frac{3}{100} = 0.03$. Now, assume we have 10 million documents and the word cat appears in one thousand of these. Then, the inverse document frequency (i.e., idf) is calculated as $idf(cat) = \ln \frac{10,000,000}{1,000} = 4$. Thus, the Tf-idf weight is the product of these quantities: tf - idf(cat) = 0.03 * 4 = 0.12.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Tf-idf Vectorizer

Word Embedding

... when the input to a neural network contains symbolic categorical features (e.g., features that take one of k distinct symbols, such as words from a closed vocabulary), it is common to associate each possible feature value (i.e., each word in the vocabulary) with a d-dimensional vector for some d. These vectors are then considered parameters of the model, and are trained jointly with the other parameters.

— Page 49, Neural Network Methods in Natural Language Processing, 2017.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Embedding

Word Embedding

It requires that document text be cleaned and prepared such that each word is one-hot encoded. The size of the vector space is specified as part of the model, such as 50, 100, or 300 dimensions. The vectors are initialized with small random numbers. The embedding layer is used on the front end of a neural network and is fit in a supervised way using the Backpropagation algorithm.²

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

Categorization

Feature Extraction

Count Vectorizer
Tf-idf Vectorizer

Embedding

ssification corithms

orithms ve Bayes

ve Bayes V

ssive Aggressiv

mong Models
Ensemble Learning

he End

²From the article What Are Word Embeddings for Text?

One-Hot Encoding for Word Embedding

- 1. Hello, how are you!
- 2. Win money, win from home.
- 3. Call me now
- 4. Hello, Call you tomorrow?

vocabulary = { are, call, from, hello, home, how, me, money, now, tomorrow, win, you} Word are call from hello home how me money now tomorrow win you Value 3 6 8 10 11 12 g Sentence 6 12 0 Hello, how are vou! Win money, win from home. 11 11 Call me now Hello. Call you tomorrow? 4 12 10 0

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

ntroduction:

The Proble

Feature Extraction

Embedding

Classification Algorithms Naive Bayes

NN

ssive Aggressive Classifi

A Comparison

Imong Models

Ensemble Learning

. .

Number of Parameters

Let's say that we want to embed sentences(or words) into a \mathbb{R}^n vector space. If m is the size of vocabulary, our Embedding layer has m * n parameters that can be fitted in a supervised way using the Backpropagation.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Embedding

Classification Algorithms

We used different classifiers and applied different models on the data. The classifiers we tested are:

- Naive Bayes
- Linear Support Vector Machine(SVM)
- Passive Aggressive Classifier
- Convolutional Neural Network(CNN)

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Classification Algorithms

Naive Bayes Classifier

Photo by Matt Buck

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Asadi

Bayes Classifier: Naive One!

It is possible to show that accuracy is minimized, on average, by a very simple classifier that assigns each observation to the most likely class, given its predictor values. In other words, we should simply assign a test observation with predictor vector x_0 to the class i for which

$$P(Y=j \mid \mathbf{X} = \mathbf{x})$$

is largest.

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Bayes Classifier: Naive One!

We make two assumptions:

- 1. $X_1, X_2, \ldots, and X_m$ are independent from each other;
- 2. $X_1, X_2, ..., X_m \mid Y \sim MN(\cdot, p_1, p_2, ..., p_m)$

$$P(Y=j \mid \mathbf{X} = (x_1, x_2, ..., x_m)) = \frac{P(\mathbf{X} = (x_1, x_2, ..., x_m) \mid Y=j) \cdot P(Y=j)}{P(\mathbf{X} = \mathbf{x})}$$

$$= \frac{P(X_1 = x_1 \mid Y=j) \cdot ... \cdot P(X_m = x_m \mid Y=j) \cdot P(Y=j)}{P(\mathbf{X} = \mathbf{x})}.$$

$$\hat{y} = \underset{j \in \textit{classes}}{\text{arg max}} \frac{P(X_1 = x_1 \mid Y = j) \cdot \ldots \cdot P(X_m = x_m \mid Y = j) \cdot P(Y = j)}{P(\mathbf{X} = \mathbf{x})}$$

$$= \underset{j \in \textit{classes}}{\text{arg max}} P(X_1 = x_1 \mid Y = j) \cdot \ldots \cdot P(X_m = x_m \mid Y = j) \cdot P(Y = j).$$

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

Categorization

Feature Extraction

ount Vectorizer

Embedding

Classification Algorithms

Naive Bayes

nine Buyes

near SVM

assive Aggressive Classifier

A Comparison

Ensemble Learning

Hyperparameters

Two important hyperparameters:

- 1. Size of the vocabulary;
- 2. Laplace/Lidstone smoothing parameter(α).
- 3. Prior

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Asadi

Size of Vocabulary

We can determine the size of our vocabulary.

It is convex!

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:

Categorization

Feature Extraction

Count Vectorizer
Tf-idf Vectorizer

Classification

Algorithms
Naive Baves

laive Bayes

NN

assive Aggressive Clas

Passive Aggressive Classii

among Models
Ensemble Learning

Laplace/ Lidstone Smoothing Parameter(α)

It is convex! (to be completed)

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:

Categorization

Feature Extraction

Count Vectorizer
Tf-idf Vectorizer

Classification

Algorithms

Naive Bayes

NN

Passive Aggressive Cla

A Consequence

among Models
Ensemble Learning

Whether Use Prior or Not.

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \dots \times P(x_n \mid c) \times P(c)$$

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Whether Use Prior or Not.

According to the dataset webpage, distribution of dataset posts in different groups does not resemble the actual distributions. So, if we fit a prior our accuracy with cross-validation increases, but it doesn't mean that our model is good; because model fits a wrong prior.

So we should not fit a prior(e.g. use an uninformative one).

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Bayes Classifier: Naive One!

Let's dive into code!

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

CNN Over Embedding Layer

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:

The Problem: Categorization

Feature Extrac

Count Vectorizer
Tf-idf Vectorizer

Classification

Algorithms

CNN

ineer CV

Passive Aggressive Classifie

A Compar among Mo

Ensemble Learning

companison

CNN Over Embedding Layer

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:

The Problem: Categorization

Feature Extractio

Tf-idf Vectorize

Embedding

Classification Algorithms

Naive Bayes

CNN

near SVM

Passive Aggressive Classifier

A Comparison among Models

Comparison

CNN Over Embedding Layer

	سامسونگ	سـونى	لوستر	پراید
سامسونگ	0	1.9844	6.6001	4.9251
سـونى	1.9844	0	6.3962	4.8678
لوستر	6.6001	6.3962	0	5.8193
پراید	4.9251	4.8678	5.8193	0

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

CNN

Support Vector Machines

SVM constructs a hyperplane in multidimensional space to separate different classes. SVM generates optimal hyperplane in an iterative manner, which is used to minimize an error. The core idea of SVM is to find a maximum marginal hyperplane(MMH) that best divides the dataset into classes.

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

The Problem Categorization

Feature Extraction

Tf-idf Vectorize

assification gorithms aive Bayes

CNN

Linear SVM

Passive Aggressive Classifi

A Comparison among Models
Ensemble Learning

How does SVM work?

The main objective is to segregate the given dataset in the best possible way. The distance between the either nearest points is known as the margin. The objective is to select a hyperplane with the maximum possible margin between support vectors in the given dataset. SVM searches for the maximum marginal hyperplane in the following steps:

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Linear SVM

How does SVM work?

1. Generate hyperplanes which segregates the classes in the best way. Left-hand side figure showing three hyperplanes black, blue and orange. Here, the blue and orange have higher classification error, but the black is separating the two classes correctly.

2. Select the right hyperplane with the maximum segregation from the either nearest data points as shown in the right-hand side figure.

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction:

The Proble

Feature Extraction

Count Vectorizer
Tf-idf Vectorizer

lassification lgorithms

CNN Linear SVM

Passive Aggressive Clas

A Comparison

A Comparison among Models
Ensemble Learning

Passive Aggressive

- A margin based online learning algorithm
- ▶ Perfect for classifying massive streams
- ► Easy to implement and very fast
- ▶ Passive: if correct classification, keep the model;
- ► **Aggressive**: if incorrect classification, update to adjust to this misclassified example
- See http://koaning.io/passive-agressive-algorithms.html for further reading

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

Categorization

Feature Extraction
Count Vectorizer

Embedding

assification gorithms

ive Bayes IN

ear SVM

Passive Aggressive Classifier

A Comparison
among Models
Ensemble Learning
Comparison

Passive Aggressive

Let's dive into code!

An Experience with Text Classification in Datadays 2019

Majid Hajiheidari, Amirmohammad Asadi

Introduction: Divar Dataset

The Problem: Categorization

eature Extra

ınt Vectorizer

f-idf Vectorizer

mbedding

Classification Algorithms

aive Bayes NN

IN near SVM

Passive Aggressive Classifier

A Comparison among Models
Ensemble Learning

The Foot

Ensemble Learning

- CountVectorizer + MutinomialNB
- TfidfVectorizer + MutinomialNB
- CountVectorizer + ComplementNB
- TfidfVectorizer + ComplementNB
- CountVectorizer + SVM(Hinge)
- CountVectorizer + SVM(HingeSq.)
- ► TfidfVectorizer + SVM(Hinge)

► TfidfVectorizer + SVM(HingeSq.)

PCA(100PC) +Structured data

5-Layer Perceptron

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi

Ensemble Learning

Models Comparison

Name	Accuracy	Vectorizer	Classifier	Text Strategy	
SVM	93.78	Tf-ldf	SVM	Dual Vectorizers	
Ensemble	93.19	Count + Tf-Idf	Various!	Concat Text	
P-A	92.80	Count	Passive-Agressive	Concat Text	
CNN ³	90.50	Embedding	CNN	Dual CNN	

Majid Hajiheidari, Amirmohammad Asadi

Comparison

An Experience with Text Classification in Datadays 2019

³Trained with 80% of data!

Thanks for your attention!

- Codes and slides(in MLSP GitHub): https://github.com/ut-mlsp/Text-classification-crash-course
- Divar posts dataset: https://research.cafebazaar.ir/visage/divar datasets/
- ► Any questions?

An Experience with Text Classification in Datadays 2019

Maiid Haiiheidari. Amirmohammad Δsadi