Roll No: 20PH20014

Name: Jessica John Britto

Optics Lab PH29204

EXPERIMENT-5

Verification of Malus Law

Aim: To verify Malus Law.

Apparatus: A diode laser, a polarizer-analyzer pair, photodetector, detector output measuring unit (microammeter), dial fitted to the polarizer, and an optical bench.

Theory: A polarizer only allows light that is vibrating in a particular plane to pass through it. This plane forms the "axis" of polarization. Unpolarized light vibrates in all planes perpendicular to the direction of propagation. If unpolarized light is incident upon an "ideal" polarizer, only half will be transmitted through the polarizer. Since in reality, no polarizer is "ideal" less than half the light will be transmitted. The transmitted light is polarized in one plane. If this polarized light is incident upon a second polarizer, the axis of which is oriented such that it is perpendicular to the plane of polarization of the incident light, no light will be transmitted through the second polarizer. However, if the second polarizer is oriented at an angle so that it is not perpendicular to the first polarizer, there will be some component of the electric field of the polarized light that lies in the same direction as the axis of the second polarizer, thus some light will be transmitted through the second polarizer (see the bottom figure). The component, E, of the polarized electric field, E₀, is found by:

$$E - E_0 cos\theta$$

Since the intensity of the light varies as the square of the electric field, the light intensity transmitted through the second filter is given by:

$$I = I_0 \cos^2 \theta$$

where I_0 is the intensity of the light passing through the first filter and θ is the angle between the polarization axes of the two filters.

Experimental setup

Working Formula-

The intensity of the transmitted light is given by

$$I = A_t^2$$

$$I = A_0^2 \cos^2 \theta$$

$$I = I_0 \cos^2 \theta$$

where

 I_t is the intensity of light transmitted through the analyzer I_0 is the intensity of the incident plane-polarized light and θ is the angle between the axis of the polarizer and analyzer

Observations:

Table-1

Position of polarization axis or transmission axis of 1st polarizer $\phi_0 = 85^{\circ}$ and $I_0 = 18$ mA,

 $L.C = 2^{\circ}$

L.C =				
SI.	φ	$\theta = (\phi - \phi_0)^\circ$	I	2. 1
No.	(Degree)		(mA)	$\cos^2\theta = \frac{I}{I_0}$
01	0	-85	0.0	0
02	5	-80	0.0	0
03	10	-75	0.2	0.01
04	15	-70	0.7	0.04
05	20	-65	1.6	0.09
06	25	-60	2.8	0.15
07	30	-55	4.3	0.23
08	35	-50	6.1	0.33
09	40	-45	7.7	0.42
10	45	-40	9.6	0.52
11	50	-35	11.3	0.61
12	55	-30	12.9	0.70
13	60	-25	14.6	0.79
14	65	-20	16.1	0.88
15	70	-15	17.3	0.94
16	75	-10	17.8	0.97

17	80	-5	18.2	0.99
18	85	0	18.4	1.0
19	90	5	18.2	0.99
20	95	10	18.2	0.99
21	100	15	18.2	0.99
22	105	20	18.1	0.97
23	110	25	17.8	0.96
24	115	30	17.0	0.92
25	120	35	15.7	0.85
26	125	40	14.5	0.79
27	130	45	13.3	0.72
28	135	50	11.6	0.63
29	140	55	9.7	0.53
30	145	60	7.9	0.43
31	150	65	6.1	0.33
32	155	70	4.6	0.25
33	160	75	3.0	0.16
34	165	80	1.4	0.1
35	170	85	1.0	0.05
36	175	90	0.3	0.01
37	180	95	0.0	0
38	185	100	0.0	0
39	190	105	0.3	0.01
40	195	110	0.8	0.04
41	200	115	1.7	0.09
42	205	120	2.6	0.14
43	210	125	4.2	0.23
44	215	130	5.7	0.31
45	220	135	7.3	0.39
46	225	140	9.4	0.50
47	230	145	11.1	0.60
48	235	150	12.8	0.69
49	240	155	14.2	0.77
50	245	160	15.5	0.84
51	250	165	17.0	0.92
52	255	170	17.6	0.96
53	260	175	18.0	0.98
54	265	180	18.3	0.99
55	270	185	18.3	0.99
56	275	190	18.4	1.0
57	280	195	18.4	1.0
58	285	200	18.4	1.0
59	290	205	18.2	0.99
		240	17.0	0.97
60	295	210	17.9	0.97
61	295 300	210	16.9	0.92

63	310	225	14.4	0.78
64	315	230	12.7	0.68
65	320	235	11.0	0.58
66	325	240	8.7	0.47
67	330	245	7.6	0.42
68	335	250	5.2	0.28
69	340	255	3.7	0.20
70	345	260	2.3	0.12
71	350	265	1.2	0.06
72	355	270	0.5	0.03
73	360	275	0.1	0.01

Graph:

Plot of I(mA) vs θ :

Graph-1

Scale:

X-axis: 1 unit = 50° Y-axis: 1 unit = 5 mA

Plot of I (in mA) $vs cos^2\theta$:

I (in mA) vs cos²θ

_____Graph-2

Scale:

X-axis: 1 unit = 0.25 units Y-axis: 1 unit = 5 mA

Plot of $\frac{I}{I_0}$ vs $\cos^2\theta$:

Table-2: Verifying Malus Law-

$\cos^2\theta = \frac{I}{I_0}$	$\frac{I}{I_0}$
0	0
0	0
0.01	0.0111111111
0.04	0.0388888889
0.09	0.088888889
0.15	0.155555556
0.23	0.2388888889
0.33	0.338888889
0.42	0.427777778
0.52	0.533333333
0.61	0.627777778
0.7	0.7166666667

0.79	0.811111111
0.88	0.894444444
0.94	0.9611111111
0.97	0.988888889
0.99	1.01111111
1	1.02222222
0.99	1.01111111
0.99	1.01111111
0.99	1.01111111
0.97	1.00555556
0.96	0.988888889
0.92	0.94444444
0.85	0.872222222
0.79	0.805555556
0.72	0.738888889
0.63	0.64444444
0.53	0.5388888889
0.43	0.438888889
0.33	0.338888889
0.25	0.25555556
0.16	0.166666667
0.1	0.0777777778
0.05	0.055555556
0.01	0.01666666667
0	0
0	0
0.01	0.01666666667
0.04	0.0444444444
0.09	0.0944444444
0.14	0.144444444
0.23	0.233333333
0.31	0.316666667
0.39	0.405555556
0.5	0.522222222
0.6	0.616666667
0.69	0.7111111111
0.77	0.788888889

0.84	0.8611111111
0.92	0.94444444
0.96	0.977777778
0.98	1
0.99	1.016666667
0.99	1.01666667
1	1.02222222
1	1.02222222
1	1.02222222
0.99	1.011111111
0.97	0.994444444
0.92	0.938888889
0.86	0.877777778
0.78	0.8
0.68	0.705555556
0.58	0.6111111111
0.47	0.483333333
0.42	0.422222222
0.28	0.288888889
0.2	0.205555556
0.12	0.127777778
0.06	0.0666666667
0.03	0.0277777778
0.01	0.0055555556

Clearly from table-2, $\frac{I}{I_0} \approx cos^2\theta$, hence, we can say that Malus Law has been verified.

Therefore, we get the following graph of $\frac{I}{I_0}$ vs $\cos^2\theta$ -

I / I₀ vs cos²θ

Graph-3

Scale:

X-axis: 1 unit = 0.25 units Y-axis: 1 unit = 0.25 units

Slope of graph-3 is 1.023409639

Error Analysis:

Working Formula-

$$I = I_0 \cos^2 \theta$$

On taking log on both sides and differentiating the above equation, we get -

$$\frac{\Delta I}{I} = \frac{\Delta I_0}{I_0} + 2 \tan \theta \cdot \frac{\Delta \theta}{\theta}$$

$$\Delta I_0 = 0.1 mA$$
, $\Delta \theta = 2^{\circ} = 0.0349$ radians

$$\frac{\Delta I}{I} = \frac{0.1}{18} + 2tan(45^{\circ}) \cdot 0.0349 = 0.075$$

$$\Delta I = 13.3 \cdot 0.075 = 0.997 \, mA$$

Percentage error in I is 7.5%

Results:

1. Clearly, from graph-3, Malus Law has been verified since $\frac{I}{I_0} \approx cos^2\theta$. Hence,

Malus Law has been verified.

2. The intensity measured is I = (13.300 + 0.997) mA

Precaution:

- 1. Analyzer and Polarizer should be at the same horizontal level.
- 2. The analyzer must be rotated by small angles (50- 100). Changing values abruptly may cause errors.
- 3. The experiment should be performed in dark room.
- 4. The photodetector is a very sensitive device. It should be adjusted well (at appropriate height) to receive maximum current.
- 5. Zero error must be noted in the measuring instruments.
- 6. To reduce statistical error in measurements, at least 3-5 readings must be taken.
- 7. Parallax and back-lash errors during measurement must be avoided.

Discussion:

- 1. The current (proportional to light intensity), noted for different angles of rotation of the analyzer, follows a cosine curve for 360° of rotation, indicating the validity of equation-2. The experimentally measured current (I_{expt}) and (I_{theo}) that were calculated using the equation $I_{theo} = I_{max} \cos^2\theta$ agree within the limits of the experimental error.
- 2. The relative intensity of the light emerging from the analyzer is maximum at 0° and 180° and it attains minimum value at 90° and 270°. In between, it varies as a Cosine function as indicated by the graph.
- 3. The light intensity I_{expt} versus $\cos^2\theta$ curve is a straight line, as expected, with a unit slope indicating the correctness of Malus's law.