МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Ярославский государственный университет им. П.Г. Демидова»

Кафедра математического моделирования

	Сдано на кафедру « » 2018 г.
	Заведующий кафедрой д. фм. н., профессор
	С.А. Кащенко
Выпускная квалификационн	ая работа
Компьютерное моделирование движени (Направление подготовки бакалавров 01.03.02 Прикла,	я физических объектов дная математика и информатика)
	Научный руководитель
	канд. ф-м. н., доцент
	И.С. Кащенко « » 2018 г.
	« // 2010 1.
	Студент группы <u>ПМИ-42БО</u>
	М.А. Погребняк
	« »2018 г.

Ярославль 2018 г.

Реферат

Содержание

В	ведение	3
1.	Постановка задачи	4
2.		5
3.	Обобщённая модель следования за лидером	6
4.	Реализация	6
За	ключение	7

Введение

Так много в математике физики, как много в физике математики, и я уже перестаю находить разницу между этими науками

– Альберт Эйнштейн

1. Постановка задачи

Прежде чем составлять, исследовать и математически описывать теорию транспортных потоков, нужно разобраться с самим понятием "транспортный поток". Транспортный поток – это количество единии транспортных средств одного вида транспорта, проследовавших определённый участок пути в течение установленного промежутка времени [1]. В качестве транспортного средства рассмотрим автомобиль и будем считать, что все транспортные средства (автомобили) следуют друг за другом. Автомобиль, за которым есть другой автомобиль будем называть лидером, а автомобиль перед которым есть другой автомобиль - преследователем. Причём один и тот же автомобиль может являться одновременно и преследователем для впереди идущего, и лидером для позади идущего рис. 1.

.----

.____

Рис. 1. Следующие друг за другом автомобили.

Теперь рассмотрим парадигму автомобиля, которая основана на очень простом правиле и уже довольно давно известна в литературе, так как автомобили следуют друг за другом, преследователь всегда пытается максимизировать свою скорость с двумя ограничениями: ограничением ускорения и ограничением безопасности. Впервые данная парадигма была высказана ещё в 1975 [2] и математически выглядит следующим образом:

$$v_f(t) = \min(v_f^d(t), v_f^s(t))$$
 (2.1)

где $v_f(t)$ - скорость преследователя в момент времени $t, v_f^d(t)$ - максимальная возможная скорость с **ограничением ускорения** (demand speed), $v_f^s(t)$ - максимальная возможная скорость с **ограничением безопасности** (supply speed).

Под ограничение ускорения стоит понимать физических ограничения скорости и ускорения транспортного средства, а также комфортные условия для водителя. Оно описывает траекторию транспортного средства, которое свободно разгоняется до максимальной желаемой скорости при отсутствии впереди идущих транспортных средств. Это не всегда постоянное значение: например, оно может зависеть от

скорости автомобиля (см. 2.1). Ограничение безопасности - это то, как траектория транспортного средства зависит от впереди транспортного средства (лидера).

3. Обобщённая модель следования за лидером

$$\ddot{x}(t) = d(\dot{x}(t-\tau) - \dot{x}(t) - \lambda).$$

$$\begin{cases} \dot{x}_0 = v_0, & x_0(0) = 0, \\ \ddot{x}_1(t) = d(\dot{x}_0(t-\tau) - \dot{x}_1(t) - \lambda), \\ \dot{x}_1(0) = 0, & x_1(0) = -\lambda, \\ \ddot{x}_2(t) = d(\dot{x}_1(t-\tau) - \dot{x}_2(t) - \lambda), \\ \dot{x}_2(0) = 0, & x_2(0) = -2\lambda, \\ \dots \\ \ddot{x}_N(t) = d(\dot{x}_{N-1}(t-\tau) - \dot{x}_N(t) - \lambda), \\ \dot{x}_N(0) = 0, & x_N(0) = -N\lambda. \end{cases}$$

$$\begin{cases} \dot{x}_0 = v_0, & x_0(0) = 0, \\ \ddot{x}_1(t) = d(\dot{x}_0(t-\tau) - \dot{x}_1(t) - \lambda), \\ \dot{x}_1(0) = 0, & x_1(0) = -\lambda, \\ \ddot{x}_2(t) = d(\dot{x}_1(t-\tau) - \dot{x}_2(t) - \lambda), \\ \dot{x}_2(0) = 0, & x_2(0) = -2\lambda, \\ \ddot{x}_3(t) = d(\dot{x}_2(t-\tau) - \dot{x}_3(t) - \lambda), \\ \dot{x}_3(0) = 0, & x_3(0) = -3\lambda. \end{cases}$$

Таблица 1. Физическое значение параметров

Параметр	Физическое значение
_	_

4. Реализация

Заключение

Список литературы

- [1] https://spravochnick.ru/logistika/logisticheskie_potoki/transportnyy_potok/
- [2] Wilson R. E. Gipps' Model of Highway Traffic. 2002.
- [3] Выгодский М.Я. Справочник по элементарной математике. 2001.
- [4] Бахвалов Н.С. Численные методы. 1975.
- [5] Мартин Ф. Рефакторинг. Улучшение существующего кода. 2008.