Statistical Foundations of Learning

Debarghya Ghoshdastidar

School of Computation, Information and Technology Technical University of Munich Hierarchical clustering

Outline

- Introduction to hierarchical clustering (agglomerative/divisive)
- \bullet Approximation guarantee of hierarchical clustering based on induced k-clustering
- Hierarchical clustering as an optimisation problem, and its approximation guarantee

Hierarchical clustering

- ullet Aim: Group data $\mathcal X$ at different levels of granularity
 - Hierarchy of clusters
 - \bullet One can derive k large clusters or many small clusters
- Dendrogram: Binary tree depicting hierarchy of clusters

Clusters at different levels

Agglomerative vs divisive clustering

- Agglomerative clustering
 - Initialisation: $|\mathcal{X}|$ number of clusters, each containing a single element
 - Recursion: Merge most similar clusters at each level
 - Example: Average linkage; Single linkage
- Divisive clustering
 - Initialisation: Entire set \mathcal{X} is a single cluster
 - Recursion: Split each cluster into smaller clusters
 - Example: Repeated 2-means; Divisive Analysis (DIANA)

Average and single linkage (based on distances)

- Linkage function (distance) between two clusters C, C':
 - Average linkage: $d_{avg}(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x, x')$
 - Single linkage: $d_{sin}(C, C') = \min_{x \in C, x' \in C'} d(x, x')$
- Average linkage clustering algorithm:
 - 1. Start with m singleton clusters, $C_i = \{x_i\}$
 - 2. Merge clusters C_i, C_j that have smallest linkage $d_{avg}(C_i, C_j)$
 - 3. Repeat step-2 till all clusters merged

Analysing hierarchical clustering

- T = tree / dendrogram retuned by algorithm A
- How can we measure goodness of output T?
 - There is no inherent optimisation problem / notion of cost
- Approach 1: Cost of induced k-clustering
 - $G_k(\cdot)$ = clustering cost, defined for each k
 - $C_k = k$ -way clustering, obtained from T
 - Is C_k optimal k-clustering for every k?
- Approach 2: Define new cost / value function for the tree T

Cannot have optimal k-clustering for every k

•
$$\mathcal{X} = \{1, 2, 3, 4, 5, 6\} \subset \mathbb{R}$$

- $G_k(\cdot) = k$ -means cost
- Optimal 2-means clusters: $\{1, 2, 3\}$ and $\{4, 5, 6\}$
- Optimal 3-means clusters: $\{1,2\}$, $\{3,4\}$ and $\{5,6\}$
- Above two clusterings cannot be obtained from same tree

Digression: k-center problem

- k-means problem: $\min_{\boldsymbol{\mu}=(\mu_1,\dots,\mu_k)} \sum_{x\in\mathcal{X}} d(x,\boldsymbol{\mu})^2$ $d(x,\boldsymbol{\mu}) = \min_{j=1,\dots,k} \|x-\mu_j\|$
- k-center problem: minimise $\max_{\mu} d(x, \mu)$
- There is a simple 2-approximation algorithm for k-center problem
 - The algorithm is based on farthest first traversal
 - If $P \neq NP$, then there is no poly-time algorithm for k-center problem with approximation ratio < 2

Farthest first traversal

- Input: Data $\mathcal{X} = \{x_1, \dots, x_m\}$ and distance $d(\cdot, \cdot)$
- Relabel points and draw spanning tree:
 - Denote farthest two points as 1,2
 - For $i=3,\dots,m$ Use i to denote point in $\mathcal X$ farthest from $\{1,\dots,i-1\}$

• k-center solution: Choose relabeled points $\{1, \ldots, k\}$ as the k centers

 $({\bf prove \ this \ gives \ a \ 2\text{-}factor \ approx})$

Divisive algorithm based on farthest first traversal

- Add edge (1, 2)
- For i = 3, ..., m: Add edge (i, j) where $j \in \{1, ..., i-1\}$ is closest to i
- Root of T:
 - Entire set \mathcal{X}
- Recursions: At each stage,
 - Delete longest edge
 - This splits a cluster (subgraph split into two connected components)

Constant factor approximation of induced k clusterings

Theorem Hier.1 (O(1)-approximation algorithm for cost-induced clustering)

 $Consider\ k$ -center clustering cost

$$G(\mu) = \max_{x \in \mathcal{X}} d(x, \mu)$$
 ... $\mu = set of k centers$

- $G_k(T) = cost \ of \ k$ -center clustering obtained from hierarchical tree T
- $G_{opt,k} = optimal \ k$ -center clustering cost for \mathcal{X}

There is a divisive algorithm such that for any X and every k

$$G_k(T) \leq 8 \cdot G_{opt,k}$$

Proof skipped, but we will see the algorithm

The algorithm

- Connecting i to its closest point in $\{1, \ldots, i-1\}$ can lead to long chains (bad for induced k-center cost)
- Idea: Any path from root must have edge lengths of geometrically decreasing length
- Modified algorithm (assuming points relabelled):

• Let
$$R_i = \min_{j \in \{1, ..., i-1\}} d(x_i, x_j)$$

- Let $S_0 = \{1\}$ and $S_j = \{i : R_2/2^j < R_i \le R_2/2^{j-1}\}$
- Connect $i \in S_j$ to its closest point in S_0, \ldots, S_{j-1} ... call this neighbour $\pi(i)$

Outline

- Introduction to hierarchical clustering (agglomerative/divisive)
- \bullet Approximation guarantee of hierarchical clustering based on induced k-clustering
- Hierarchical clustering as an optimisation problem, and its approximation guarantee

Formulating hierarchical clustering as optimisation problem

- \bullet N = node in tree = corresponding cluster = sub-tree rooted at N
 - $N_1, N_2 = \text{children of } N \text{ (or corresponding clusters)}$
 - Distance between two nodes = sum of pairwise distances between elements

$$d(N_1, N_2) = \sum_{x \in N_1} \sum_{x' \in N_2} d(x, x')$$

Value of dendrogram (Cohen-Addad et al, Journal of the ACM, 2019)

- Notation: Let points be indexed as x_1, \ldots, x_n
- \bullet Value function for T

$$value(T) = \sum_{N \in T} d(N_1, N_2) \cdot |N|$$
$$= \sum_{i < j} d(x_i, x_j) \cdot |lca(x_i, x_j)|$$

- lca(x, x') = smallest cluster / node containing both x, x' (least common ancestor)
- High value(T) if
 - whenever d(x, x') high, merge x, x' later ... both d(x, x') and |lca(x, x')| large
 - hence, merge closer x, x' earlier

Hierarchical clustering as optimisation

• Formal hierarchical clustering problem (version 1)

$$\underset{T}{\operatorname{maximise}} \ \operatorname{value}(T)$$

 \bullet Maximisation over all binary trees T

Theorem Hier.2 (Approximation guarantee for average linkage)

If \widehat{T} = tree obtained from average linkage, then

$$value(\widehat{T}) \geq \frac{1}{2} \cdot \underbrace{\max_{T} \ value(T)}_{optimal \ value}$$

Proof: Recap average linkage based on distances

• Average linkage between two clusters C, C'

$$d_{avg}(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} d(x, x')$$

- 1. Start with m singleton clusters, $C_i = \{x_i\}$
- 2. Merge clusters C_i, C_j that have smallest distance $d_{avg}(C_i, C_j)$
- 3. Repeat step-2 till all clusters merged

Proof: Warm up

- Exercise:
 - For any tree T, $value(T) \leq m \cdot \sum_{i < j} d(x_i, x_j)$
 - $\sum_{N \in T} d(N_1, N_2) = \sum_{i < j} d(x_i, x_j)$ (hint: every x_i, x_j is merged exactly once in the tree)

In particular, setting
$$d(x, x') = 1$$
, we get $\sum_{N \in T} |N_1| \cdot |N_2| = \binom{m}{2}$

• (bounds on ratio of sums) If $a_1, \ldots, a_k, b_1, \ldots, b_k > 0$ are positive scalars. Then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i} a_i}{\sum_{i} b_i} \le \max_{i} \frac{a_i}{b_i}$$

• Will show: $value(\widehat{T}) \geq \frac{m}{2} \sum_{i \leq j} d(x_i, x_j)$, which implies $value(\widehat{T}) \geq \frac{1}{2} \cdot value(T_{optimal})$

Proof: By induction

- Notation: Let N be root of tree T. We use term $d(T) := d(N) := \sum_{i,j \in N: i < j} d(x_i, x_j)$
- Inductive hypothesis: If T is constructed by average linkage on m points, then $value(T) \ge \frac{m}{2}d(T)$
 - Holds for base case m=2
 - Assume it holds for all m' < m. Need to show it holds for m.
- Observe: If N is root of T with children N_1, N_2 ($T_i = \text{sub-tree}$ rooted at N_i)
 - $value(T) = m \cdot d(N_1, N_2) + value(T_1) + value(T_2)$
 - $d(T) = d(N) = d(N_1, N_2) + d(N_1) + d(N_2) = d(N_1, N_2) + d(T_1) + d(T_2)$

Proof: Lower bound for value(T)

$$value(T) = m \cdot d(N_1, N_2) + value(T_1) + value(T_2)$$

$$\geq m \cdot d(N_1, N_2) + \frac{|T_1| \cdot d(T_1)|}{2} + \frac{|T_2| \cdot d(T_2)|}{2}$$

$$= \frac{m}{2} \cdot d(N_1, N_2) + \frac{m(d(T) - d(T_1) - d(T_2))}{2}$$

$$+ \frac{|T_1| \cdot d(T_1)|}{2} + \frac{|T_2| \cdot d(T_2)|}{2}$$

$$= \frac{m}{2} \cdot d(T)$$

$$+ \underbrace{\frac{m \cdot d(N_1, N_2)|}{2} - \frac{|T_2| \cdot d(T_1)|}{2} - \frac{|T_1| \cdot d(T_2)|}{2}}_{2}$$

$$\frac{m}{2|N_1| \cdot |N_2|} \underbrace{\left(\frac{d(N_1, N_2)|}{|N_1| \cdot |N_2|} - \frac{d(N_1)|}{m \cdot |N_1|} - \frac{d(N_2)|}{m \cdot |N_2|}\right)}_{m \cdot |N_2|}$$

... T_1, T_2 have < m leaves

 $\dots m = |T_1| + |T_2|$

suffices to show this ≥ 0

Proof: Using a claim

• Claim (★):

Let A be any node in the tree T obtained from average linkage algorithm with children A_1, A_2 . Then

$$\frac{d(A_1, A_2)}{|A_1| \cdot |A_2|} \ge \frac{d(A_1)}{\binom{|A_1|}{2}} \quad \text{and} \quad \frac{d(A_1, A_2)}{|A_1| \cdot |A_2|} \ge \frac{d(A_2)}{\binom{|A_2|}{2}}.$$

• Using claim (\star) in previous slide:

$$\frac{d(N_1)}{m \cdot |N_1|} + \frac{d(N_2)}{m \cdot |N_2|} \le \frac{d(N_1)}{|N_1|(|N_1| - 1)} + \frac{d(N_2)}{|N_2|(|N_2| - 1)}$$

$$\le \frac{1}{2} \left(\frac{d(N_1)}{\binom{|N_1|}{2}} + \frac{d(N_2)}{\binom{|N_2|}{2}} \right) \le \frac{d(N_1, N_2)}{|N_1| \cdot |N_2|} \quad \text{proves Theorem}$$

Proof of Claim (\star)

• Let T_1, T_2 be trees rooted at A_1, A_2

• By ratio of sums bound:
$$\frac{d(A_1)}{\binom{|A_1|}{2}} = \frac{\sum\limits_{N \in T_1} d(N_1, N_2)}{\sum\limits_{N \in T_1} |N_1| \cdot |N_2|} \leq \max_{N \in T_1} \frac{d(N_1, N_2)}{|N_1| \cdot |N_2|}$$

- Above means that there are $N_1, N_2 \subset A_1$ such that $\frac{d(A_1)}{\binom{|A_1|}{2}} \leq \frac{d(N_1, N_2)}{|N_1| \cdot |N_2|}$
 - Consider stage where N_1, N_2 were merged
 - Suppose, at that stage A_1,A_2 comprised of clusters $A_1=\bigcup\limits_{i=1}^kN_i$ and $A_2=\bigcup\limits_{j=1}^lM_j$
 - Since N_1, N_2 was merged, its average linkage $\frac{d(N_1, N_2)}{|N_1| \cdot |N_2|}$ was lower than other pairs

Proof of Claim (\star)

Bound for A_2 proved similarly

Hierarchical clustering with similarities

- Instead of distance d(x, x'), assume we have similarity w(x, x')
- Average linkage of clusters C, C'

$$w_{avg}(C, C') = \frac{1}{|C| \cdot |C'|} \sum_{x \in C, x' \in C'} w(x, x')$$

- Recursion: Merge C, C' with largest linkage $w_{avg}(C, C')$
- How do we incorporate w in an optimisation formulation?

Cost of hierarchical tree (Dasgupta, STOC, 2016)

 \bullet Dasgupta's cost for T

$$cost(T) = \sum_{N \in T} w(N_1, N_2) \cdot |N| \qquad \dots w(N_1, N_2) = \sum_{\substack{x \in N_1 \\ x' \in N_2}} w(x, x')$$

$$= \sum_{x \neq x'} w(x, x') \cdot |lca(x, x')|$$

Hierarchical clustering as cost minimisation

• Formal hierarchical clustering problem (version 2)

$$\underset{T}{\operatorname{minimise}} \ \operatorname{cost}(T)$$

- Minimisation over all trees T, not only binary trees
- Interesting results:
 - Tree with minimum cost is binary
 - There is divisive algorithm with $\cos t(\widehat{T}) \leq O(\sqrt{\ln m}) \cdot \min_{T} \cot(T)$
- Open problem: Can average linkage be analysed under Dasgupta's cost?