

Licence d'Informatique 3,

AD Programmeur (C5–160512-INFO)

TD 3 – Clustering (Apprentissage Non Supervisé)

Carl FRÉLICOT – Dpt Info / Lab MIA

logiciel

Blue

Blue

Yellow

Green

sans

2.0

2.0

11.0

16.0

amel.

4.0

16.0

7.0

11.0

amel.+

10.0

2.0

5.0

19.0

0. Tableaux de Données

On a testé deux logiciels (Blue et Yellow) de Machine Learning et leur association Green sur 10 apprenants à qui on a demandé de graduer sur une échelle de 0 à 20 leur ressenti en termes d'effet potentiel sur leur compréhension du Machine Learning :

- sans effet (sans),
- amélioration (amel.) et
- amélioration significative (amel.+).

1

- (H
- (H)

Les résultats sont donnés dans le tableau ci-contre.		Yello	w	19.0	4.0	4.0
		Green		3.0	13.0	17.0
1. Distances	7	Yello	W	12.0	6.0	11.0
	8	Gree	n	10.0	14.0	20.0
1-1) Calculez les distances de Manhattan et de Chebychev entre les apprenants 6 et 7. HW) De même entre les deux premiers, ainsi que leur distance euclidienne.	9	Blue		1.0	14.0	2.0
1-2) Calculez la distance Cosinus entre les variables amel. et amel.+.		Blue		7.0	15.0	9.0
HW) Calculez leur distance corrélation.				8.3	10.4	9.9
			s	6.0	4.45	6.49
Pour la suite, considérons le tableau T de données limité aux cinq derniers individus renommés x,y,z,t et $u.$						

2. Algorithme *C-means*

Comme il y a 3 modalités d'utilisation des logiciels, on a exécuté trois itérations des C-means sur T, avec c=3 et la distance euclidienne usuelle.

2-1) Faites les calculs (ou les déductions!) permettant de compléter les tableaux ci-dessous.

	$d^2(\overline{x}_j, x_i)$	x	y	z	t	u
$\left[\overline{x}_1 = (, ,) \right]$	\overline{x}_1	57.5	158.5	174.5	57.5	27.5
$Y^{(0)} = [1, 2, 3, 1, 2] \rightarrow V^{(1)} = \begin{bmatrix} \overline{x}_1 = (, ,) \\ \overline{x}_2 = (9.5, 10.5, 10), \\ \overline{x}_3 = (10, 14, 20) \end{bmatrix} \rightarrow$	\overline{x}_2	97.5	27.5	112.5	148.5	
$\left\lfloor \overline{x}_3 = (10, 14, 20) \right\rfloor$	\overline{x}_3	59	149		405	131
	$Y^{(1)}$	1	2		1	1
	$d^2(\overline{x}_j, x_i)$	x	y	z	t	u
$\overline{x}_1 = (, ,), $	\overline{x}_1	60.22	136.22	2 153.8	89 60.8	9 12.22
$ \rightarrow V^{(2)} = \begin{vmatrix} \overline{x}_1 = (& , &), \\ \overline{x}_2 = (12, 6, 11), & \\ \overline{x}_3 = (& . & . &) \end{vmatrix} \rightarrow $	\overline{x}_2	166		149	266	110
$\lfloor \overline{x}_3 = (, ,) $	\overline{x}_3	59	149		405	131
	$Y^{(2)}$	3			1	1
	$d^2(\overline{x}_j, x_i)$	x	y	z	t	u
$\rightarrow V^{(3)} = \begin{bmatrix} \overline{x}_1 = (4, 14.5, 5.5), \\ \overline{x}_2 = (,,,), \\ \overline{x}_3 = (6.5, 13.5, 18.5) \end{bmatrix} \rightarrow$	\overline{x}_1	135.5	166.5	246.5	21.5	
$\rightarrow V^{(3)} = \overline{x}_2 = (, ,), \rightarrow$	\overline{x}_2	166	0	149	266	110
$[\overline{x}_3 = (6.5, 13.5, 18.5)]$	\overline{x}_3	14.75	142.75	14.75	302.7	5 92.75
2-2) Eût-il été judicieux d'itérer davantage ?	$Y^{(3)}$					

3. Autour d'une Partition

On donne ci-contre la matrice de covariance et le centre des données du tableau T, et on s'intéresse à la partition finale $Y^{(3)}$ dont les centres sont dans $V^{(3)}$.

	17.04	-7.84	11.72				
V =	-7.84	10.64	-0.32				
	11.72	-0.32	39.76				
$\overline{x} = (6.6, 12.4, 11.8)$							

- 3-1) On rappelle que le critère optimisé par l'algorithme C-means est l'inertie intra-clusters $\mathcal{D}(U,V) = \frac{1}{n} \sum_{i=1}^{c} \sum_{x_k \in C_i} d_2^2(x_k, \overline{x}_i)$. Calculez $\mathcal{D}(Y^{(3)}, V^{(3)})$.
- 3-2) Calculez, à partir de $V^{(3)}$, le tableau G' des centroids centrés.
- 3-3) Posez le calcul de la matrice de covariance de ces centroids, mais n'en calculez que les termes diagonaux.
- 3-4) Comment appelle-t-on cette matrice de covariance?
- 3-5) La trace d'une matrice carrée est la somme de ses termes diagonaux ; par exemple ici trace(V) = 67.44. C'est un opérateur linéaire, c'est-à-dire que : $trace(\alpha A + \beta B) = \alpha trace(A) + \beta trace(B)$. Calculez astucieusement la trace de la matrice de covariance intra-clusters W. Que retrouvez-vous?

3-6) Calculez l'indice de Dunn (dont la formule est rappelée ci-desous) de la partition $Y^{(3)}=(3,2,3,1,1)$.

$$DI = \frac{min_{1 \leq i < i' \leq c} d(\overline{x}_i, \overline{x}_{i'})}{max_{j=1, c} \Delta_j} \text{ où } \Delta_j = max_{x_k, x_l \in C_j} d(x_k, x_l) \text{ est le } diamètre \text{ du } cluster C_j.$$
 min ou max ?

On donne les carrés des distances entre points : $[166.\ 59.\ 230.\ 84.\ 149.\ 266.\ 110.\ 405.\ 131.\ 86.]$ et ceux entre barycentres : $[166.5\ 176.25\ 142.75]$. squareform

(HW) Calculez les indices de Dunn des partitions $Y^{(1)}$ et Y' = (1, 1, 1, 2, 2) obtenue à la suite d'une autre exécution de l'algorithme *C-means*. Quelle est la meilleure des trois ?

4. Autour des Partitions

4-1) Rappelez pourquoi l'algorithme C-means ne produit pas toujours la même partition finale.

Il est donc légitime de vouloir comparer des partitions. Il existe pour cela des mesures ou indices dits relatifs. Soient $P(n \times c)$ et $Q(n \times c')$ deux (matrices de) partition stricte en respectivement c et c' clusters, on définit la matrice d'accord $N(P,Q) = {}^tPQ$ de dimension $(c \times c')$. Si on note :

-
$$t = \sum_{i=1}^{c} \sum_{j=1}^{c'} n_{ij}^{2} - n$$

- $u = \sum_{i=1}^{c} n_{i\bullet}^{2} - n$, où $n_{i\bullet} = \sum_{i=1}^{c'} n_{ij}$
- $v = \sum_{j=1}^{c'} n_{\bullet j}^{2} - n$, où $n_{\bullet j} = \sum_{j=1}^{c} n_{ij}$

alors l'accord entre les partition P et Q peut être mesuré par l'indice de Rand défini par : $RI(P,Q)=\frac{2\,t-(u+v)}{n\,(n-1)}+1.$

$$RI(P,Q) \in [0,1]$$
 et bien sûr, $R(P,P) = RI(Q,Q) = 1$.

- 4-2) Soient la partition finale $Y^{(3)} = (3, 2, 3, 1, 1)$ et une autre Y' = (1, 1, 1, 2, 2) obtenue à la suite d'une autre exécution de l'algorithme *C-means*. Donnez les matrices de partition stricte $P^{(3)}$ et P' correspondantes.
- 4-3) Calculez $R(P^{(3)}, P')$, puis interprétez le résultat.
- (HW) Calculez $R(P^{(3)}, P^{(1)})$ où $P^{(1)}$ est la matrice partition associée à $Y^{(1)}$.