

Практическое занятие 2

Признаки сходимости знакопостоянных рядов. Признаки сравнения. Признак Даламбера.

Определение. Положительными называются ряды, все члены которых неотрицательны: $a_n \ge 0$.

Напомним виды рядов, сходимость которых была уже рассмотрена на лекции.

$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 - гармонический ряд — расходится

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$
 - ряд Дирихле — сходится при $\alpha > 1$;

расходится при $\alpha \le 1$

 $\sum_{n=1}^{\infty} q^n$ - при |q| < 1 бесконечно убывающая геометрическая прогрессия — сходится.

<u>Первый признак сравнения</u>. Пусть даны два положительных ряда:

$$\sum_{n=1}^{\infty} a_n, \tag{1}$$

$$\sum_{n=1}^{\infty} b_n .$$
(2)

Если для всех номеров n (или для всех номеров n, бо́льших некоторого номера N) выполнено неравенство $a_n \le b_n$, то из сходимости ряда (2) следует сходимость ряда (1), а из расходимости ряда (1) следует расходимость ряда (2).

$$3adaчa\ 1.$$
 Исследовать на сходимость ряд
$$\sum_{n=2}^{\infty} \frac{1}{\ln n}$$

Решение. Рассмотрим для сравнения гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, который, как уже было доказано, расходится. Для всех $n \ge 2$ справедливо неравенство $\frac{1}{\ln n} > \frac{1}{n}$ и, следовательно, данный ряд также расходится по первому признаку сравнения.

3ada4a 2. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{|\cos 3n|}{n^3}$

Сравним исходный ряд с рядом Дирихле $\sum_{n=1}^{\infty} \frac{1}{n^3}$. Для всех п выполняется неравенство $\frac{\left|\cos 3n\right|}{n^3} \leq \frac{1}{n^3}$. Так как $\sum_{n=1}^{\infty} \frac{1}{n^3}$ сходится (ряд Дирихле, α =3 >1), то исходный ряд сходится по первому признаку сравнения.

3адача 3. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{2^n}{n \cdot 3^n}$

Для всех п выполняется неравенство $\frac{2^n}{n \cdot 3^n} \le \left(\frac{2}{3}\right)^n$. Так как ряд $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ сходится (бесконечно убывающая геометрическая прогрессия), то исходный ряд сходится по первому признаку сравнения.

<u>Второй признак</u> <u>сравнения</u> (предельный). Пусть даны два положительных ряда:

$$\sum_{n=1}^{\infty} a_n , \qquad (1)$$

$$\sum_{n=1}^{\infty} b_n$$
, $(b_n > 0$, начиная с некоторого номера n). (2)

Если существует конечный, отличный от нуля $\lim_{n\to\infty} \frac{a_n}{b_n}$, то ряды (1) и (2) оба сходятся или оба расходятся.

Задача 4. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{5}{(2n+1)^2}$

Сравним исходный ряд с рядом Дирихле $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Рассмотрим предел

отношения общих членов этих рядов. $\lim_{n\to\infty}\frac{\frac{5}{(2n+1)^2}}{\frac{1}{n^2}}=\lim_{n\to\infty}\frac{5n^2}{(2n+1)^2}=\frac{5}{4}\neq \begin{cases} 0\\ \infty \end{cases}$

Так как $\sum_{n=1}^{\infty} \frac{1}{n^2}$ сходится (ряд Дирихле, $\alpha=2 >1$), то исходный ряд тоже сходится по предельному признаку сравнения.

Задача 5. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \sqrt{n^3 + 2} \cdot tg \, \frac{2}{5n^3 + 7}$

Найдем ряд, с которым надо сравнивать исходный ряд.

$$a_n = \sqrt{n^3 + 2 \cdot t} g \frac{2}{5n^3 + 7} \sim \sqrt{n^3 + 2} \cdot \frac{2}{5n^3 + 7} = \frac{2\sqrt{n^3 + 2}}{5n^3 + 7} \sim \frac{1}{n^{3/2}} = b_n$$

Проверим, что ряд для сравнения подобран правильно.

$$\lim_{n\to\infty} \frac{2\sqrt{n^3+2}}{\frac{5n^3+7}{n^{3/2}}} = \lim_{n\to\infty} \frac{2\sqrt{n^3+2}\cdot n^{3/2}}{5n^3+7} = \frac{2}{5} \neq \begin{cases} 0\\ \infty \end{cases}$$
 Так как
$$\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} \operatorname{сходится} \quad (\mathbf{p}\mathbf{g}\mathbf{g})$$

Дирихле, $\alpha = 3/2 > 1$), то исходный ряд тоже сходится по предельному признаку сравнения.

Задача 6. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \arcsin^2 \frac{3}{\sqrt{10n+2}}$

Рассмотрим для сравнения гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$, так как

$$a_n = \arcsin^2 \frac{3}{\sqrt{10n+2}} \sim (\frac{3}{\sqrt{10n+2}})^2 \sim \frac{1}{n} = b_n$$

$$\lim_{n\to\infty} \frac{(\frac{3}{\sqrt{10n+2}})^2}{\frac{1}{n}} = \lim_{n\to\infty} \frac{9n}{10n+2} = \frac{9}{10} \neq \begin{cases} 0 \\ \infty \end{cases}$$
 Гармонический ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ расходится,

следовательно, исходный ряд тоже расходится по предельному признаку сравнения.

Задача 7. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} n^2 \cdot (e^{1/\sqrt{n+2}} - 1)^5$

Найдем ряд, с которым надо сравнивать исходный ряд.

$$a_n = n^2 (e^{1/\sqrt{n+2}} - 1)^5 \sim \frac{n^2}{(\sqrt{n+2})^5} \sim \frac{1}{n^{1/2}} = b_n$$

Проверим, что ряд для сравнения подобран правильно.

$$\lim_{n\to\infty}\frac{\frac{n}{\sqrt{(n+2)^5}}}{\frac{1}{n^{1/2}}}=\lim_{n\to\infty}\frac{\sqrt{n}\cdot n^2}{\sqrt{(n+2)^5}}=1\neq \begin{cases} 0\\ \infty \end{cases}.\quad \Piоскольку ряд\quad \sum_{n=1}^{\infty}\frac{1}{n^{1/2}}\; расходится (ряд$$

Дирихле, $\alpha=1/2<1$), то исходный ряд тоже расходится по предельному признаку сравнения.

3.2. Признак Даламбера

Теорема. Пусть дан положительный ряд $\sum_{n=1}^{\infty} a_n$ и существует $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = D$. Если D < 1, то ряд сходится, если D > 1, то ряд расходится.

Заметим, что если D = 1, то признак ответа не дает.

Задача 8. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3n+5}{7^n}$.

Решение. Выпишем n+1-й член ряда. $a_{n+1}=\frac{3(n+1)+5}{7^{n+1}}=\frac{3n+8}{7^n\cdot 7}$

Вычислим предел отношения последующего члена ряда к предыдущему

$$\lim_{n\to\infty} \frac{\frac{3n+8}{7^n \cdot 7}}{\frac{3n+5}{7^n}} = \lim_{n\to\infty} \left(\frac{3n+8}{3n+5} \cdot \frac{1}{7} \right) = \frac{1}{7} < 1,$$

т.е. ряд сходится по признаку Даламбера.

Задача 9. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(n+1)!}{5^n}$.

Вычислим предел отношения последующего члена ряда к предыдущему

$$\lim_{n \to \infty} \frac{\frac{(n+2)!}{5^{n+1}}}{\frac{(n+1)!}{5^n}} = \lim_{n \to \infty} \left(\frac{(n+1)!(n+2)}{(n+1)!} \cdot \frac{5^n}{5^n \cdot 5} \right) = \lim_{n \to \infty} \frac{n+2}{5} = \infty$$

Следовательно, ряд расходится по признаку Даламбера.

Задача 10. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{((n)!)^2}{(2n+1)!}$.

Вычислим предел отношения последующего члена ряда к предыдущему

$$\lim_{n \to \infty} \frac{\frac{((n+1)!)^2}{(2(n+1)+1)!}}{\frac{((n)!)^2}{(2n+1)!}} = \lim_{n \to \infty} \left(\frac{((n+1)!)^2 \cdot (2n+1)!}{((n)!)^2 (2n+3)!} \right)$$

$$= \lim_{n \to \infty} \frac{(n+1)^2}{(2n+2)(2n+3)} = \frac{1}{4} < 1$$

Следовательно, ряд сходится по признаку Даламбера.

Задача 11. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{(n+3)!}{(2n)!!}$

Напомним, что (2n)!! – произведение четных чисел от 2-х до 2n, (2n+1)!! – произведение нечетных чисел до 2n+1.

Предел отношения последующего члена ряда к предыдущему

$$\lim_{n \to \infty} \frac{\frac{(n+4)!}{(2(n+1))!!}}{\frac{(n+3)!}{(2n)!!}} = \lim_{n \to \infty} \left(\frac{(n+4)!(2n)!!}{(n+3)!(2n+2)!!} \right) = \lim_{n \to \infty} \frac{n+4}{2n+2} = \frac{1}{2} < 1$$

Следовательно, ряд сходится по признаку Даламбера.

Задача 12. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^n}{2^n n!}$.

Решение. Вычислим

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \left(\frac{(n+1)^{n+1}}{2^{n+1}(n+1)!} \cdot \frac{2^n n!}{n^n} \right) = \lim_{n \to \infty} \left(\frac{(n+1)^n}{2n!} \cdot \frac{n!}{n^n} \right) = \frac{1}{2} \lim_{n \to \infty} \left(\frac{n+1}{n} \right)^n = \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = \frac{1}{2} e > 1$$

и, согласно признаку Даламбера, данный ряд расходится.