Lecture 11:

Even More Curves

Last Time

- Basis Functions
- Quadratic Interpolation
- Cubics and Hermite Forms
- Cardinal Splines (Catmull-Rom)
- Bézier Curves
- Bézier Properties
- Geometric Constructions

Today

Review with The Train

- Why cardinals?
- Why Béziers?
- Why Arc-Length?

Going beyond The Train

- C(2) curves
- Other Cardinals
- Subdivision Curves

BSplines

The Train!

- "Optional" This Year
- Only for Advanced Points

Good for showing curve ideas!

- 3D Demo (2014)
- 2D Demo (2019)

What's Good About Cardinals?

- 1. C(1)
- 2. Local
- 3. Interpolating

Sketching Cardinals (approximate s=.5)

A technical detail of G(1)

Is s = 0 still C(1)? (maybe demo)

5=.5 Catual Rom

How to draw a cardinal?

- 1. try a bunch of u values
- 2. convert to a Bézier (draw with the API)

3=

How far does the cardinal go?

It goes outside of its points.

Convert to Bézier!

Arc Length?

- ullet equal steps in u
- equal steps in distance

(demo)

How to implement Arc Length?

Hard to do analytically

Approximate numerically (make a table, solve, ...)

Fancier Cardinals: TCB curves

- tension
- continuity
- bias

Used by animators to get more control

What's Good About Béziers?

- 1. Interpolate end-points, stay in Convex Hull
- 2. Tangents at ends based on points
- 3. Good algorithms (geometric and algebraic)
- 4. Variation-Diminishing (limited wiggles), Affine Invariance
- 5. General (any degree)
- 6. And other properties...

What's not good about Béziers

- 1. Not **projective** invariant
- 2. Polynomial can't represent conics
 - no exact circles!
- 3. Hard to get better than C(1)/G(1)
- 4. Sometimes we want interpolation

Projective Invariance

Béziers are affine invariant

Projection (e.g., general homogeneous coords) requires division

Limited Shapes

Polynomials (like Béziers) can't represent some shapes

Exact circles (and other conic sections)

Rational Polynomial Curves

Represent a curve as the **ratio** of two polynomials

$$f(u) = rac{\sum a_i u^i}{\sum b_i u^i}$$

Allows for projective invariance
Allows for more shapes (circles, conic sections, ...)

Very complicated - and usually not used in Computer Graphics Used in mechanical design where exact shapes are required

Better than C(1)/G(1)

requires aligning multiple points

Note:

If we want a very smooth curve, we can make a high degree Bézier

What about Interpolation?

1. Cardinal Splines C(1) 2. High-Order Polynomials (smooth) 3. Natural Splines C(2) (demo) n points = intopolate w/ legree n-1

Natural Splines (Cubics)

- Models a "draftsmans spline" (stiff piece of metal)
- C[2]
- second derivative is zero at the ends

- requires solving a linear system to compute coefficients from points
- not local

B-Splines

This should be a big topic - but we will scratch the surface

A general way to think about piecewise polynomials.

A lot of history here at Wisconsin

Algebraic and Geometric Constructions Incredibly General

Thinking in terms of chains of points...

We have points $\mathbf{p_0}, \mathbf{p_1}, \cdots, \mathbf{p_n}$

Each point is the beginning of a segment (except at end)

• (d=1) line segments $[\mathbf{p_0}, \mathbf{p_1}], [\mathbf{p_1}, \mathbf{p_2}], \cdots [\mathbf{p_{n-1}}, \mathbf{p_n}]$

Even with higher order...

We have points $\mathbf{p_0}, \mathbf{p_1}, \cdots, \mathbf{p_n}$

Each point is the beginning of a segment (except at end)

- (d=1) line segments $[\mathbf{p_0}, \mathbf{p_1}], [\mathbf{p_1}, \mathbf{p_2}], \cdots [\mathbf{p_{n-1}}, \mathbf{p_n}]$
- (d=2) quadratics $[\mathbf{p_0}, \mathbf{p_1}, \mathbf{p_2}], [\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}], \cdots [\mathbf{p_{n-2}}, \mathbf{p_{n-1}}, \mathbf{p_n}]$

Each segment is $[\mathbf{p_i}, \mathbf{p_{i+1}}, \cdots, \mathbf{p_{i+d}}]$

Thinking in terms of Basis Functions

Consider connecting line segments

$$\mathbf{f}(u) = (1-u) \; \mathbf{p_i} + u \; \mathbf{p_{i+1}}$$

Beware.

Po is also part
of segment -1

What about these Basis Functions?

- They are piecewise polynomials
- They have the same continuity
- They repeat (except ends)

 If you have one, you'd have them all

The Linear Basis Functions

$$b_i(t) = egin{array}{l} ext{if } t < i ext{ then } 0 \ ext{elif } t < i + 1 ext{ then } t - i \ ext{elif } t < i + 1 ext{ then } i + 2 - t \ ext{else } 0 \end{array}$$

On a chain of points? (lines)

At any parameter value, 2 control points are active One in each "phase"

Higher-degree basis functions

Only linear interpolates (like Beziers)

Degree $\underline{\underline{d}}$ has $\underline{\underline{d+1}}$ segments, meet with $\underline{C(d-1)}$ continuity

t=i+1

t=i

Cubic

t=i+3

29

t=i+4

t=i+2

The Simplest B-Splines

- Uniform
- Low order Polynomial (d=2 or 3 in graphics)
- Chains of points are chains of polynomials

Cubic B-Splines

- 4 points influence a curve segment
- neighboring segments share 3 points
- each segment is a cubic polynomial

(demo)

Why B-Splines?

- ullet Curves of any degree d
- ullet Locality: each control point influences d+1 segments
- Continuity: curve is C(d-1)
- Stays with the Convex Hull
- Symmetric
- Affine Invariant
- Variation Diminishing
- not interpolating (except d=1)

Geometric Intuition for B-Splines

or

A More Interesting Subdivision Curve

A Geometric Approach: Chakin Corner Cutting

Subdivide each line segment:

- Mark 1/4 and 3/4
- Cut it there

Each iteration gets smoother

In the limit it will be smooth

Notice:

does not interpolate its "control points"

What to learn from that?

- Practical? (might need a lot of iterations)
- Subdivision: in the limit, it is a piecewise quadratic
- It converges to a B-Spline
- Approximating curve: it does not interpolate its (initial) points

What to do with these?

Use cubic B-Splines if you want C(2) curves

Even though the do not interpolate, they "behave nicely"

Look up the blending functions if you need them

Train Demo

See how nice B-Splines Are?

The Train Assigment

Are Curves different in 3d?

Curves are not Surfaces!

Dimensions are independent (just 3 numbers per vector) Equations are the same

Tangent vector - normal plane (perpendicular to vector)

Curve Summary

- Use parametric curves
- Use piecewise representations, connect with continuity
- Use polynomial segments, usually quadratics or cubics
- Use Hemite or Cardinal interpolation (if you need interpolation)
- Use Bézier curves for good control (and API compatibility)
- Use **B-Splines** to get very smooth curves

Get ready for 3D!

