

美团外卖广告模型演进之路

谢乾龙

2018.11

外卖广告

品牌广告

推荐广告

搜索广告

营销广告

CPM CPC CPS

风险由商户向平台转移

业界模型发展历程

• 优点:精度高,表达能力强

• 缺点:性能,可解释性

• 优点:非线性,可解释性

• 缺点:不能online,高维离散特征

树模型:

GBDT

XGBoost

LightGBM

神经网络模型

DNN

Wide&Deep

FNN

DeepFM

DCN

. . .

• 优点:简单高效

• 缺点:线性,表达能力弱

线性模型:

LR (LBFGS, OWLQN)

Online-LR (SGD, FTRL)

FM

FFM

外卖广告模型演进

目录

树模型

- XGBoost
- LightGBM

神经网络

- DNN
- MTL

强化学习

• DQN

目录

树模型

- XGBoost
- LightGBM

神经网络

- DNN
- MTL

强化学习

• DQN

GBDT & XGBoost

O 1 GBDT: Gradient Boosting Decision Tree

2 XGBoost: eXtreme Gradient Boosting

XGBoost是GBDT的一种实现

XGBoost

- ●XGBoost的实现方式
 - 1,二阶泰勒展开:损失函数更精准,收敛速度更快
 - 2,引入正则项:防止过拟合
 - 3,缺失值处理:自动学习特征缺失值的分裂方向
 - 4,直方图算法:如右图

histogram

LightGBM

◆LightGBM改进

• Leaf-wise分裂

- 样本采样 (GOSS)
- 特征合并(EFB)
- 分布式通信优化

易用性

- 支持类别特征
- 支持忽略特征

LightGBM一性能优化

GOSS (Gradient-based One-Side Sampling)

保留梯度大的样本,采样梯度小的样本,并提高 其权重

●优点

既减少了数据量,又能有效保持精度

N instance sort by Gradient DESC

LightGBM一性能优化

EFB (Exclusive Feature Bundling)

建立直方图的时间复杂度可以由O(#data * #feature) 减小到 O(#data * #bundle)

LightGBM一并行化

● LightGBM中的并行

LightGBM一并行化

02 建立特征直方图

- 1. 建立本地直方图
- 2.合并全局直方图
- AllReduce:对所有计算节点上的数值进行归约操作
- ReduceScatter:只保留归约后的部分结果

LightGBM一并行化

ReduceScatter

XGBoost->AllReduce
LightGBM->Recursive Halving

优点:大大减少通信数据量

缺陷:只适用于2^k worker情况

外卖广告实践—Yarn-LightGBM

- ●支持yarn环境
- ●支持HDFS文件

架构图

外卖广告实践—Yarn-LightGBM

●优化非2k个worker时的通信时间

执行步骤	XGBoost 64workers	LightGBM 64workers	LightGBM 65workers	Yarn-LightGBM 65workers
建立本地直方图	2.032276s	1.134293s	1.962546s	1.812981s
对所有直方图加和	13.681048s	2.097936s	28.615881s	3.19341s
同步分裂属性	19.017187s	0.907549s	3.051622s	1.851814s
分裂叶子	0.259526s	0.084525s	0.177973s	0.09139s
Trained a tree	35.272322s	4.436463s	34.086826s	6.949595s

优化: Virtual Rank + Recursive Halving

Step 1 Step 2

外卖广告实践—Yarn-LightGBM

≫总结:

LightGBM

- 1. 只支持MPI/Socket
- 2. 只能读本地数据
- 3. 性能不稳定
- 4. 效果不稳定

Yarn-LightGBM

- 1. 通过yarn,支持Spark集群
- 2. 通过dmlc-core, 支持HDFS文件
- 3. 分布式通信算法改进
- 4. 训练代码优化
- 5. 易用性优化

≫效果:

✓以上特性已经被合并到github开源版本中

- 训练速度比XGBoost提升2倍
- 线上效果正向
- 目前在集团内部多个团队应用,性能提升1-3倍

目录

树模型

- XGBoost
- LightGBM

神经网络

- DNN
- MTL

强化学习

• DQN

神经网络

MTL-背景

整体预估:不够灵活

拆分预估:误差大,样本稀疏

问题特点

- ✓ 输入几乎相同
- ✓ 任务高度相关

解决方案

Multi-Task Learning

- ✓ 同时学习和预测多个目标(DNN多输出)
- ✓ 解决CVR, PRICE样本稀疏问题

MTL-技术选型

业内解决方案

经典MTL方案

- ✓ CTR、CVR loss线性加权
- ✓ Joint/Alternate training
- ✓ 共享隐层

阿里ESMM

- ✓ CTR, CXR loss加权
- ✓ CVR作为中间结果
- ✓ 共享Embedding特征表达

外卖广告解决方案

同时学习CTR和CVR

共性

- ✓ loss线性加权
- ✓ Joint training
- ✓ 共享隐层

PRICE怎么办?

特性

- ✓ 样本更加稀疏
- ✓ label的scale

迭代路径

MTL-阶段一

✓样本

✓曝光

√Label

√点击、成单

效果(对比DNN)

✓ CTR和CXR均比单目标DNN 有所提升

MTL-阶段二

改进 加入CVR Layer

挑战

样本不均

应对

Loss加权

物理含义 Loss约束 Ctr Layer

*......

单个Batch的样本分布片段

CXR

CXR=CTR*CVR

效果(对比DNN)

- ✓ CTR和CVR均比单目标DNN 有所提升
- ✓ 线上业务指标正向

MTL-阶段三

改进 加入Price Layer

挑战

样本不均

应对

Loss加权

• 无法同时收敛

MTL-阶段三

挑战样本不均

Loss冲突

应对

网络拆分

共享Embedding

效果

- ✔ 同时收敛
- ✓ CTR, CVR AUC持平
- ✓ PRICE MAE正向

目录

树模型

- XGBoost
- LightGBM

神经网络

- DNN
- MTL

强化学习

• DQN

用户体验(UEQ)

- √ 为何要关注用户体验?
 - 影响对资源位入口的认知
 - 影响用户留存,平台的长期发展

- ✓ 用户体验如何定义?
 - 平台复购率
 - 用户活跃度
 - 推荐多样性

业务场景

- ✓ 为什么用强化学习?
 - 长期指标,全局最优
 - 多目标(复购+活跃度)
 - 探索产生多样性

系统框架

强化学习的5大要素:

• environment:用户集和广告集

• state:用户的特征表达

• agent: 推荐系统

• action:推荐的广告商家

• reward:复购率+活跃度

reorder + activiness

要点详解

➤ state:用户的特征表达

• 用户历史浏览/点击序列

• 用户画像特征:性别,年龄,历史单均价等

• 地理位置,时间

➤ action:推荐的广告商家

• 广告历史统计特征

• 广告ID类特征

➤ reward:复购率+活跃度

$$r = \begin{cases} 1 & \text{在平台下单} \\ 0 & \text{未下单} \end{cases}$$

 $r = r * \frac{1}{T}$ 其中T为距上一次下单的天数,间隔越小reward越大

> agent : DQN->Double DQN->Dueling DQN

Explore (多样性)

- > e-greedy
 - 一定概率随机推荐,获取充分丰富的样本。

代价大,效果有损

> UCB(Upper Confidence Bound)

在目前输出Q value的基础上,乘以一个系数: $Q*(1+\sqrt{\frac{1}{n+1}})$

其中n为广告历史展现的次数,倾向于曝光少的广告

效果优于 e-greedy,但仍 然不够准确

Explore (多样性)

➤ DBGD(Dueling Bandit Gradient Descent)

1,对模型参数随机 扰动,倾向选择当前 策略推荐的item附 近的候选集,效果损 失最小 2,可以对模型进行 实时更新

