Apellidos Nombre

Ejercicio 1.- (3,5 puntos) A) Responde a las siguientes cuestiones:

- 1. Tenemos un sistema homogéneo en las variables $x_1, ..., x_n$, pero en todas las ecuaciones el coeficiente de x_n es 0. Estudia la existencia y unicidad de soluciones del sistema.
- 2. Define qué es un sistema generador de un k-espacio vectorial V.
- 3. Define qué son las coordenadas de un vector \underline{u} con respecto a una base B de un k-espacio vectorial V.
- B) En el espacio vectorial $V = \mathbb{Q}[X]_3$ de polinomios con grado menor o igual que 3, consideramos la base $\mathcal{B} = \{1, x, x^2, x^3\}$ de V respecto de la cual se recomienda tomar coordenadas y los subespacios

$$L_1 = \langle 1 + x^2 - x^3, x + x^3 \rangle$$
 $L_2 = \langle 1 + x, x^2 \rangle$

Se pide:

- 1. Hallar un sistema de generadores de $L_1 \cap L_2$.
- 2. Dar una base de V/L_1 . ¿Es $\{(1+x)+L_1, x^2+L_1\}$ base de V/L_1 ?

Ejercicio 2.- (3,5 puntos) A) 1) Sean V, W espacios vectoriales, $f: V \to W$ un homomorfismo, $L' \subset W$ un subespacio. Definir $f^{-1}(L')$ y probar que es un subespacio vectorial de V.

- 2) Sean V un espacio vectorial, $L \subset V$ un subespacio, $f: V \to V$ un homomorfismo. Demostrar que $dim(L) = dim(L \cap ker(f)) + dim(f(L))$.
- B) Sean $f: \mathbf{R}^3 \to \mathbf{R}^3$ un endomorfismo cuya matriz, respecto de la base canónica, es

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 0 \end{array}\right)$$

y el subespacio vectorial L de ecuación respecto de la base canónica L : x+y+z=0. Hallar $\ker(f),\,f(L)$ y $f^{-1}(L)$.

Ejercicio 3.- (3 puntos) A) Responde a las siguientes cuestiones

- 1. Sea A una matriz 4×4 de rango 2. ¿Podemos asegurar que 0 sea una autovalor? En caso afirmativo, ¿cuál es su multiplicidad geométrica?
- 2. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ un homomorfismo tal que el rango de M_f , la matriz del homomorfismo, es 2, y

$$f((1,1,1,1)^t) = (1,1,1,1)^t, f((1,-1,1,-1)^t) = -(1,-1,1,-1)^t.$$

¿Es M_f diagonalizable? En caso afirmativo, demostrarlo y dar una matriz diagonal equivalente a M_f . En caso contrario, dar un contraejemplo.

B) Sea
$$A = \begin{pmatrix} 1 & 1 & -1 & 2 \\ 0 & 2 & 0 & 0 \\ 1 & 3 & -1 & 2 \\ 1 & 3 & -1 & 2 \end{pmatrix}$$

- 1. Demostrar que el polinomio característico de A es $(x-2)^2x^2$.
- 2. Dar una lista de los autovalores de A, junto con su multiplicidad algebraica.
- 3. Para cada autovalor hallar una base de autovectores del espacio propio correspondiente, y calcular su multiplicidad geométrica.
- 4. ¿Es A una matriz diagonalizable?