Robotic arm simulating human arm muscle movement

ECE 478 Dmitrii Fotin

Concept

Forearm design

Specifications

- 1 ft elbow length, 1 ft forearm length
- Load of up to 1 lb
- 180 degree movement in elbow, 180 degree movement in wrist

Calculations

Elbow:

 $0.15 \text{ m} \times 0.5 \text{ kg} \times 9.8 \text{ m/s} + 0.3 \text{ m} \times 0.5 \text{ kg} \times 9.8 \text{ m/s} =$ **2.21 Nm**Wrist:

 $0.15 \text{ m} \times 0.25 \text{ kg} \times 9.8 \text{ m/s} = 0.37 \text{ Nm}$

Servos

The 12 kg×cm torque at 6V can be converted to 1.17 Nm. Given the the 2.21 Nm, two servos are required to rotate the forearm up and down.

3D Model

Circuit

Results

- 3D model improvements:
 - Unobstructed elbow movement
 - Constraints for the wrist to follow the expected path
 - Adjustments to prevent wrist strings from pulling the forearm up/down
 - Fanned out ribbon/string attachment for more surface area pull/less stress on critical points

- Code improvements

- Smoother movement (ease in/out)
- More granular control

Circuit improvements

- Remove servo jitter
- Increase and stabilize power supply and ensure sufficient current for required torque