

INTRODUÇÃO

Faremos uma análise do que recuperamos de informação no artigo A Systematic Review of Automatic Question Generation for Educational Purposes e do nosso andamento no projeto

Sobre nosso Primeiro Banco

Nesse projeto iniciamos tentando usar o banco de dados https://allenai.org/data/sciq . Segue uma breve descrição do que encontramos nele

- Question: Campo contendo a questão
- □ Distractors: Campo contendo as opções incorretas de respostas
- Correct Answer: Campo contendo a opção correta de resposta
- Support: Campo contendo um texto que ajuda no entendimento da resposta correta

O Banco está no formato .json e já possui uma divisão de treino e teste

As perguntas são na área de ciências e vem desse paper

Sobre nosso Segundo Banco

Após nossa primeira tentativa retornar resultados abaixo do esperado, trocamos para o banco de dados

https://rajpurkar.github.io/SQuAD-explorer/. Segue uma breve descrição dos seus principais encontramos nele

- Question: Campo contendo a questão
- Answer: Campo contendo a opção correta de resposta
- Context: Campo contendo um texto que ajuda no entendimento da resposta correta

O Banco está no formato .json e já possui uma divisão de teste e dev

As perguntas são na área de variedades e são baseadas em textos da Wiki

Geração de Perguntas

Método

Resultados

O problema em questão é a automática geração de perguntas a partir de um texto de apoio Para criar as questões seguimos os seguintes passos a passos:
Analisar banco de dados
Ajuste do banco de dados
Pré-Processamento
Analise de frequência
Seleção de palavra mais importante
Aplicação de algoritmos
Avaliação e Visualização

Os resultados que obtemos não foram muito positivos 15 tem uma média de aproximadamente 53%

Proposta

A proposta que seguimos foi a de se fixar na criação das questões, podendo ser abertas ou de múltipla escolha, através de mineração de texto e aprendizagem de maquina

Dataset

Usamos o dataset disponível no site
https://raipurkar.github.io/SQuAD-explorer/
Como podemos perceber avaliando o banco
ele possui diversos campos
mas aqui destacamos os que usaremos:
Question: A pergunta
Context: Um texto que passa um contexto
para a pergunta
Answer: A resposta correta

Conclusão

Como indicamos na seção acima os resultados
não foram tão positivos, talvez com um
processo de seleção de palavra chave diferente
traria um melhor resultado

Tipos de Geração de Perguntas

Categoria -Nível de entendimento

Nível de entendimento (Level of understanding)

A abordagem sintática não precisa entender a semântica do input, ou seja ele não precisa entender o sentido das palavras nem do texto

Um exemplo de abordagem sintática é a seleção de respostas erradas usando o POS (Part-of-Speech)

Exemplo de POS

Nível de entendimento (Level of understanding)

A Abordagem semântica precisa de um entendimento mais aprofundado do texto. Muitas vezes as informações não estão de forma explícita no input

Um exemplo da abordagem semântica é o uso de similaridade contextual (contextual similarity) para a classificação das respostas erradas

Categoria -Processo de transformação

Processo de transformação (Procedure of transformation)

As questões são geradas com o uso de templates.

Eles definem a estrutura base das questões usando texto fixo e espaços reservados que são substituídos por inputs para gerar as questões

Processo de transformação (Procedure of transformation)

As regras definem como escolher um tipo adequado de questão e como manipular o input para gerar questões

regras

02

Geração baseada

ona

estatistica

Processo de transformação (Procedure of transformation)

É nesse método que a geração de questões é aprendida a partir de dados de treinamento.

Em um exemplo o problema foi encarado como um sequence-to-sequence prediction problem

Usabilidade

- 60 Semântica
- 10 Sintaxe
- 27 Template
- 16 Regras
- 9 Estatística

Gerando Perguntas

pré-processamento

Básico

Segmentation, Sentence splitting, Tokenization, POS tagging, Coreference resolution e dependendo Entity recognition (NER) e Relation extraction (RE).

Específico

Sentence simplification, Sentence classification, Content selection

Gerando Perguntas

métodos

Stem and correct answer generation

Feedback generation

Incorrect options (i.e. distractor) generation

Controlling difficulty

Gerando Perguntas Stem and correct answer generation

Podem usar templates, regras, ou métodos estatísticos

Transforma frases afirmativas em perguntas

Determina o tipo de questão

Gerando Perguntas Incorrect options (i.e. distractor) generation

Gera opções de respostas erradas a questão

A estratégia mais usada é a baseada em similarity

Outra estratégia possível é o uso do word frequency

Gerando Perguntas Feedback generation

0

Explica o porquê a resposta da questão está certa ou errada

Apresentar materiais de apoio Normalmente esse método é deixado de lado nos artigos (apenas um artigo mencionado utilizou esse método)

Gerando Perguntas Controlling difficulty

0

Determina o quão difícil ou simples a questão está

Uma forma de determinar dificuldade é através do percentual de corretude (percentage correct) que mede quantas pessoas responderam corretamente a questão

Nossos Resultados Iniciais o

Frequência de Palavras

Resultado positivo Média de aproximadamente 0.866 Similaridade

Resultado negativo Não conseguimos observar um padrão

De olho no código

Palavra chave

Usamos a frequência da aparição das palavras no texto de apoio para escolher a palavra mais importante ou a palavra chave do texto

Retirando Ambiguidade o

https://github.com/BPYap/BERT-WSD

Gerando respostas erradas o

BART comparação

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1
BERT	84.1/90.9	79.0/81.8
UniLM	-/-	80.5/83.4
XLNet	89.0/94.5	86.1/88.8
RoBERTa	88.9/94.6	86.5/89.4
BART	88.8/94.6	86.1/89.2

Table 3: BART gives similar results to XLNet and RoBERTa on question answering.

Avaliação

Usamos a text comparetion entre o context e a pergunta gerada para avaliar a geração de perguntas, usando a similaridade do cosseno dos embeddings

Resultados

T5 (banco na área de ciência) - 66%

Resultados

T5 (área de variedades) - 53%

slidesgo