Hypothesis Tests

Gitakrishnan Ramadurai

Example

• Is the average height of students in our class 5' 7"?

Students in 117 Madras ~ 10 k studes 7 20 k online. Sample: $56 \Rightarrow M = 517 2$. $26 6 - 91 \Rightarrow M = 517 ?$ Comprehence (1-x)

Agrothesis tests.

Apporthesis tests.

How to use these sampling distributions to draw conclusion?

- Hypothesis testing
 - Concerned with two distinct choices:
 - Null Hypothesis (H₀) V
 - Alternate hypothesis (H₁)
 - Test whether to accept or reject H₀ using various test statistics.
 - Two types of errors:

1	1	ſ
	not	reject
	V 10 -	

N. N.

Two possibilities	Decision		
	Accept H ₀	Reject H ₀	
H ₀ True	Correct!	Type I error	
H _I True	Type II error	Correct!	
	P (sye 11 error)		

2- significance level.

P(type lervor) = 2 r

(2) 251., 501.

Testing the hypothesis

• One tail or two tail? **

- Confidence level: $1-\alpha$: probability that the computed estimate will lie in the acceptance region
- Level of significance: α :probability that the computed estimate will lie in the rejection region

- Que.No.1: The spot speed at a particular location in an expressway are known to be normally distributed with a mean of 80km/hr. and std. dev. of 15km/hr. A new radar speed meter was bought by traffic dept. and a set of 100 observations were taken. The mean speed observed was 77.3km/hr. Is there any evidence to prove that:
 - (i) the new speed meter might have been faulty
 - (ii) the new speed meter is showing lesser speed than actual. Assume 5% level of significance.

Solution to Ques.No.1(i)

Here we have to test:

 H_0 :

The speedometer is not faulty (μ =80km/hr.)

against

 H_1 :

The speedometer is faulty ($\mu \neq 80$ km/hr. i.e either >80 or <80)

Given $\alpha = 5\%$

n=100, large sample

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} = \frac{77.3 - 80}{15 / \sqrt{100}} = -1.8$$

Inference: The speedometer is not faulty

Solution to Ques.No.1(ii)

Here we have to test: H₀: μ =80km/hr. against H_1 : μ<80 Given $\alpha = 5\%$ One tailed n=100, large sample Acceptance region Rejection region 0.05 0.95 -1.64 Reject H₀

Inference: The new speedometer is showing lesser speed than actual

• Que. No. 2: The mean spot speed of 15 vehicles observed on a Sunday at a particular roadway was 81.2km/hr. The mean speeds of all vehicles at this location as per previous records was 75.5 km/hr. and std. dev. 10.2km/hr. Is there sufficient evidence to show that the speeds of vehicles on that Sunday was higher than the average speed? Take level of significance as 5%

Solution to Ques.No.2

Here we have to test:

$$H_0$$
: $\mu = 75.5 \text{km/hr}$.

against

$$H_1$$
: $\mu > 75.5 \text{km/hr}$.

t-stat

2-stat

instead of 2-stat

E-distination

Given
$$\alpha = 5\%$$

n=15, small sample

Also sample std. dev. is given, hence use t-statistics

$$t = \frac{\overline{X} - \mu}{s / \sqrt{n}} = \frac{75.5 - 81.2}{10.2 / \sqrt{15}} = 2.164$$

Inference: The speeds of vehicles on that Sunday is higher than the average speed

• Ques. No.3: Two samples of speed data collected are as follows:

For sample 1, mean speed is 74.3km/hr. and std. dev. is 7km/hr. $(n_1=120)$

For sample 2, mean speed is 72.5km/hr. and std. dev. is 8km/hr. $(n_2=120)$

Is there any evidence to prove that the mean speed reduced by more than 0.5km/hr. when using these samples? Assume level of significance as 10%.

Solution to Ques.No.3

Two samples and hence concerned with two means μ_1 and μ_2

Given $\alpha = 10\%$ $n_1 = n_2 = 120$, large sample

For test concerning two means, z-statistics is given by,

$$z = \frac{(X_1 - X_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$$

$$z = \frac{(74.3 - 72.5) - (0.5)}{\sqrt{\frac{7^2}{120} + \frac{8^2}{120}}} = 1.34$$

Inference: the mean speed reduced by more than 0.5km/hr.

• Que.No.4:For a given vehicle speed data sample of size 20, the standard deviation observed was 12.5km/hr and speeds were assumed to follow normal distribution. The data can be used only if the standard deviation is less than or equal to 10km/hr. Check whether the data can be accepted at 5% level of significance.

Solution to Ques.No.4

Problem is related to the sampling distribution of variance

Have to test:

H₀:

6 = 10 km/hr.

against

 H_1 : 6 > 10km/hr.

Given $\alpha = 5\%$

Degrees of freedom = sample size-1 =19

 χ^2 statistics for variance is:

$$\chi^{2} = \frac{(n-1)s^{2}}{\sigma^{2}}$$
$$= \frac{(20-1)12.5^{2}}{10^{2}} = 29.69$$

Accept H₀

Inference: The given speed data can be accepted

• Que.No.6: Every minute vehicle count data was collected for a period of 65 minutes. Determine at 95% confidence level, whether the data follows a Poisson distribution.

No. of arrival	Observed frequency
0//	2
	6
2	7
3	12
4	13
5	9
6	9
7	4
8	2
9	I

To test the fit of data to a particular distribution,

'GOODNESS OF FIT' test

Solution to Que.No.6

'If Poisson is correct ê; 20i

H₀: Data follows poisson distribution

H₁: Data not follows poisson distribution

O_i: Observed frequency

E_i: Expected frequency

Poisson probability:

v = mean number of arrival = 260/65 = 4

Arrival (x _i)	Obsv. fi	req	Total no. of veh.	Prob. p(x _i)	(prob.*	65)
0	2		0	0.018	1.17	(
1	6		6	.0733	4.76	
2	7		14	0.1465	9.52	
3	12		36	0.1954	12.7	
4	13		52	0.1954	12.7	
5	9		45	0.1563	10.16	
6	9		54	0.1042	6.77	
7	4		28	0.0595	3.87	
8	2		16	0.0298	1.94	
9		X_{i}	9	0.0132	0.858	

∑ =260

Goodness of fit – solution to Que.No.6

At least 5 groups and at least 5 nos. in each group

$$\chi^{2} = \sum_{i} \frac{\left(O_{i} - E_{i}\right)^{2}}{E_{i}}$$

$$= 2.31$$

Degrees of freedom = N-I-g = 5

g - no. of statistics used to calculate E_i ; here only v

$$\chi^2_{0.05,5} = 11.07 > 2.31$$
Accept H_0

No. of arrival	Observed frequency (mintute), O _i	Expected frequency (E _i)	$(O_i-E_i)^2/E_i$
o 2	2 8 1	1.17 5.93	0.7189
	6	4.76	
2	7	9.52	0.6671
3	12	12.7	0.0386
4	13 4	12.7	0.007
5	9 5	10.16	0.132
6	9 6	6.77	0.7345
777	4	3.87	
8	2 - 7 7	1.94	0.0165
9		0.858	
,	N=7		$\Sigma = 2.31$

Inference: The given data follows poisson distribution

TEST STATISTICS

 H_1

Reject H₀ if

Hint: μ_0 = population mean 6_0 = population std. dev.

Large sample – concerning mean

$$H_0: \mu = \mu_0$$

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

$$\mu < \mu_0$$

$$z < -z^{\alpha}$$

$$\mu > \mu_0$$

$$z > z_{\alpha}$$

$$\mu \neq \mu_0$$

$$z < -z_{\alpha/2}$$
 or $z > z_{\alpha/2}$

Small sample – concerning mean

$$H_0: \mu = \mu_0$$

$$t = \frac{\overline{X} - \mu}{\sqrt[s]{\sqrt{n}}}$$

$$\mu < \mu_0$$

$$t < -t$$

$$\mu > \mu_0$$

$$\mu \neq \mu_0$$

$$t > t_{\alpha}$$

$$t < -t_{\alpha}$$

$$t > t_{\alpha}$$

$$t < -t_{\frac{\alpha}{2}} \text{ or } t > t_{\frac{\alpha}{2}}$$

TEST STATISTICS

 H_1

Reject H₀ if

Hint: μ_0 = population mean 6_0 = population std. dev.

Comparison of sample mean

$$H_0: \mu_1 - \mu_2 = \delta$$

$$z = \frac{(\overline{X}_{1} - \overline{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$

$$\mu_1 - \mu_2 < \delta$$

$$z < -z^{\alpha}$$

$$\mu_1 - \mu_2 > \delta$$

$$\mu_1 - \mu_2 \neq \delta$$

$$z > z_{\alpha}$$

$$\mu_1 - \mu_2 \neq \delta$$

$$z < -z_{\alpha/2}$$
 or $z > z_{\alpha/2}$

One variance

$$H_0: \sigma^2 = \sigma_0^2$$

$$\chi^2 = \frac{(n-1)s^2}{\sigma^2}$$

$$\sigma^2 > \sigma_0^2$$

$$\chi^2 > \chi_\alpha^2$$

$$\sigma^2 < \sigma_0^2$$

$$\chi^2 > \chi^2_{1-\alpha}$$

$$\sigma^2 \neq \sigma_0^2$$

$$\chi^2 < \chi^2_{1-\alpha/2}$$
 or $\chi^2 > \chi^2_{\alpha/2}$

TEST STATISTICS

Hint: μ_0 = population mean δ_0 = population std. dev.

Reject H₀ if

Two variance

$$H_0: \sigma_1^2 = \sigma_2^2$$

F

$1/s_2^2$	
1 37	
_	$\boldsymbol{\sigma}$

$$\sigma_1^2 > \sigma_2^2$$

 H_1

$$F > F_{\alpha, n_1 - 1, n_2 - 1}$$

$$s_2^2/s_1^2$$

$$\sigma_1^2 < \sigma_2^2$$

$$\sigma_1^2 \neq \sigma_2^2$$

$$F > F_{\alpha,n_2-1,n_1-1}$$

$$F > F_{\alpha,n_{large}-1,n_{small}-1}$$

Underlying distribution

H₀: Data follows given distribution

$$\chi^2 = \sum_{i} \frac{\left(O_i - E_i\right)^2}{E_i}$$

Data not follows given distribution

$$\chi^2 > \chi_\alpha^2$$