

Sorbonne Université

Numerical Algorithms

Practical 2

Méline Trochon Anatole Vercelloni

Teacher : Stef Graillat

Table des matières

1	Exercise 6	2
2	Exercise 7	2
3	Exercise 8	3

1 Exercise 6

1.

FIGURE 1 - The algorithm to compute the compression of the image the clown and the algorithm for k=20

2. A good candidate to be a measure of the quality of the compression would be $\frac{\sigma_k}{\sigma_1}$. Indeed, we want to trunks all the singular values that are to small in comparison to the bigger ones.

2 Exercise 7

1. We want to solve $\min_f \|g-Kf\|_2^2$ (1). We can use the SVD-decomposition which gives $\|g-Kf\|_2^2 = \|g-U\Sigma V^t f\|_2^2$

We complete U such that [U \tilde{U}] is square orthogonal. then,

$$\|g - U\Sigma V^t f\|_2^2 = \|\begin{pmatrix} U^t \\ \tilde{U}^t \end{pmatrix} (g - U\Sigma V^t f)\|_2^2$$

(the norm doesn't change)

$$= \| \begin{pmatrix} U^t g - \Sigma V^t f \\ \tilde{U}^t g \end{pmatrix} \|_2^2$$

$$= \|\hat{U}^t g - \Sigma V^t f\|_2^2 + \|\tilde{U}^t g\|_2^2$$

The second term does not depend of f, so, we just have to solve the first one. That is to say that we are searching the solution of $U^tg - \Sigma V^tf = 0$ Which means : $f^* = \Sigma^{-1}VU^tg$.

 Σ^{-1} is a diagonal matrix with σ_i , i=1,...,n as values. We can show by identification that $\Sigma^{-1}VU^tg=\sum_{i=1}^p\frac{u_i^t}{\sigma_j}v_i$ 2.

Figure 2 – The deblurring algorithm then the best image we found with p=52

3 Exercise 8

1. A^t is a stochastic Matrix if and only if

$$\sum_{i=0}^{n} A_{i,j}^{t} = 1, i = 1, ..., n$$
 (1)

If $c_j=0,$ $A_{i,j}^t=1/n$ and (1) is verified. Let consider $c_j\neq 0$, we have

$$\sum_{i=0}^{n} \frac{pg_{i,j}}{c_j} + \delta$$

$$= \frac{p}{c_j} \sum_{j=0}^{n} g_{i,j} + \frac{n(1-p)}{n}$$

$$= \frac{pc_{i,j}}{c_{i,j}} + \frac{n(1-p)}{n} = 1$$

Therefore, A is a stochastic matrix.

In addition, if we consider the vector $v \in (R)^n$ which is composed of 1, we can remark that, thanks to the properties of a stochastic matrix, we have $Av = 1^*v$. So 1 is an eigenvalue of A.

Then, we can prove that all the eigenvalues of A are less than 1. Indeed, we know by the Gershgorin circle theorem that :

$$\lambda_k \in \bigcup_{j=1,..,n} D(A_{j,j},r_j), k=1,..,n$$

where $r_j = \sum_{i \neq j} A_{i,j}$ and we know as showed above that (1), and $A_{i,j} \geq 0, i,j = 1,...,n$ So, we can conclude that $\lambda_k \in [0,1], k = 1,...,n$

2. A is non negative, so, by the Perron-Frobenius theorem we have the result that the spectral radius $\rho(A)$ is a unique eigenvalue of A. Then, because $\rho(A)=1$ (showed previously) there exists an eigenvector associated to the eigenvalue 1 (non negative, by the theorem) . If we take $\mathbf{x}=(\frac{1}{n},..,\frac{1}{n})^t$ this verifies the equality $\sum_{i=1}^n x_i=1$

3.

Figure 3 – Algorithms to create the matrix A and compute Λ and x

And we can provide a ranking according to their page_rank by sorting the vector x.