Examples for 02/03/2022

Birth and death Markov chain:

$$P(x,y) = \begin{cases} q_x & y = x - 1 \\ r_x & y = x \\ p_x & y = x + 1 \end{cases} \qquad q_0 = 0$$

$$0 \le x \le d$$

$$0 \le$$

OR

$$P(x,y) = \begin{cases} q_x & y = x - 1 \\ r_x & y = x \\ p_x & y = x + 1 \end{cases} \qquad q_0 = 0$$

$$x \ge 0$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad \cdots$$

$$0 \quad r_0 \quad p_0 \quad 0 \quad 0 \quad 0 \quad \cdots$$

$$1 \quad q_1 \quad r_1 \quad p_1 \quad 0 \quad 0 \quad \cdots$$

$$2 \quad 0 \quad q_2 \quad r_2 \quad p_2 \quad 0 \quad \cdots$$

$$3 \quad 0 \quad 0 \quad q_3 \quad r_3 \quad p_3 \quad \cdots$$

$$\cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots$$

$$q_x + r_x + p_x = 1, x \in S.$$

$$a, b \in S$$
 $a < b$

$$u(x) = P_x(T_a < T_b) \qquad a < x < b$$

$$u(a) = 1 \qquad u(b) = 0$$

$$\Rightarrow u(y) = q_y \cdot u(y-1) + r_y \cdot u(y) + p_y \cdot u(y+1) \qquad a < y < b$$

Set
$$\gamma_0 = 1.$$
 $\gamma_y = \frac{q_1 \dots q_y}{p_1 \dots p_y}, \quad y \ge 1.$

$$\Rightarrow u(x) = P_x(T_a < T_b) = \frac{\sum_{y=x}^{b-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}, \qquad P_x(T_a > T_b) = \frac{\sum_{y=a}^{x-1} \gamma_y}{\sum_{y=a}^{b-1} \gamma_y}.$$

Gambler's ruin chain: $S = \{0, 1, 2, ..., d\}$ OR $S = \{0, 1, 2, 3, ...\}$.

$$q_x = q$$
 (lose a bet), $r_x = 0$, $p_x = p$ (win a bet).

Then $\gamma_y = \frac{q_1 \dots q_y}{p_1 \dots p_y} = \left(\frac{q}{p}\right)^y, \quad y \in S.$

$$p_0 = 0$$
 0 is an absorbing state.

The probability of winning d-x dollars before losing x dollars $(0 \le x \le d)$

$$\begin{split} \mathbf{P}_{x}(\mathbf{T}_{0} > \mathbf{T}_{d}) &= \frac{\sum\limits_{y=0}^{x-1} \gamma_{y}}{\sum\limits_{y=0}^{d-1} \gamma_{y}} = \frac{\sum\limits_{y=0}^{x-1} \left(\frac{q}{p}\right)^{y}}{\sum\limits_{y=0}^{d-1} \left(\frac{q}{p}\right)^{y}} \\ &= \frac{x}{d}, \quad \text{if } p = q. \qquad \qquad = \frac{\left(\frac{q}{p}\right)^{x} - 1}{\left(\frac{q}{p}\right)^{d} - 1}, \quad \text{if } p \neq q. \end{split}$$

Example 1:

Jack wants to buy his girlfriend Jill a 3'World's Softest Bear from VermontTeddyBear.com for Valentine's Day. The teddy bear costs \$100. Unfortunately, Jack only has \$60.

a) Jack will bet \$1 on coin tosses until he either wins \$40 he need to buy the bear, or loses \$60 he has. Find $P_{60}(T_0 > T_{100})$.

b) Craps is a dice game in which the players make wagers on the outcome of the roll, or a series of rolls, of a pair of dice.

Pass Line bet:

- If the come-out roll is 7 or 11, the bet wins.
- If the come-out roll is 2, 3 or 12, the bet loses (known as "crapping out").
- If the roll is any other value, it establishes a *point*.
 - If, with a point established, that point is rolled again before a 7, the bet wins.
 - If, with a point established, a 7 is rolled before the point is rolled again ("seven out"), the bet loses.

$$P(\text{win}) = \left[\frac{6}{36} + \frac{2}{36}\right] + \left(\frac{3}{36} \cdot \frac{3}{9}\right) + \left(\frac{4}{36} \cdot \frac{4}{10}\right) + \left(\frac{5}{36} \cdot \frac{5}{11}\right) + \left(\frac{5}{36} \cdot \frac{5}{11}\right) + \left(\frac{4}{36} \cdot \frac{4}{10}\right) + \left(\frac{3}{36} \cdot \frac{3}{9}\right)$$
$$= \frac{244}{495} = 0.4929\overline{29}.$$

Jack will bet \$1 on Pass Line bets until he either wins \$40 he need to buy the bear, or loses \$60 he has. Find $P_{60}(T_0 > T_{100})$.

- c) Jack will bet \$1 on Red in European Roulette until he either wins \$40 he need to buy the bear, or loses \$60 he has. Find $P_{60}(T_0 > T_{100})$.
- d) Jack will bet \$1 on Red in American Roulette until he either wins \$40 he need to buy the bear, or loses \$60 he has. Find $P_{60}(T_0 > T_{100})$.

If
$$S = \{0, 1, 2, ..., d\}$$
, if birth and death Markov chain is irreducible, then it is recurrent.

Suppose $S = \{0, 1, 2, 3, \dots\}.$

$$\mathsf{P}_1(\mathsf{T}_0 < \mathsf{T}_n) = 1 - \frac{1}{\sum_{y=0}^{n-1} \gamma_y}. \qquad \Rightarrow \qquad \mathsf{P}_1(\mathsf{T}_0 < \infty) = 1 - \frac{1}{\sum_{y=0}^{\infty} \gamma_y}.$$

$$P_0(T_0 < \infty) = P(0,0) + P(0,1) \cdot P_1(T_0 < \infty).$$

Irreducible birth and death Markov chain is recurrent if and only if $\sum_{y=0}^{\infty} \gamma_y = \infty$.

Intuition:
$$\sum_{y=0}^{\infty} \gamma_y < \infty \quad \Leftrightarrow \quad \text{there are a lot of "births" and not a lot of "deaths"}$$
 (we may never return to 0)

$$\sum_{y=0}^{\infty} \gamma_y = \infty \quad \Leftrightarrow \quad \text{there are enough "deaths" to guarantee return to 0}$$

Example 2:

Determine whether the following birth and death chains are recurrent or transient.

a)
$$P(0,0) = r_0 = 0.8, \qquad P(0,1) = p_0 = 0.2,$$

$$P(x,x-1) = q_x = 0.3,$$

$$P(x,x) = r_x = 0.5, \qquad x \ge 1.$$

$$P(x,x+1) = p_x = 0.2,$$

b)
$$P(0,0) = r_0 = 0.7, \qquad P(0,1) = p_0 = 0.3,$$

$$P(x,x-1) = q_x = 0.2,$$

$$P(x,x) = r_x = 0.5, \qquad x \ge 1.$$

$$P(x,x+1) = p_x = 0.3,$$

c)
$$P(0,0) = r_0 = 0.7$$
, $P(0,1) = p_0 = 0.3$,
$$P(x,x-1) = q_x = 0.2$$
,
$$P(x,x) = r_x = 0.5$$
,
$$1 \le x \le 99$$
.
$$P(x,x+1) = p_x = 0.3$$
,
$$P(100,100) = r_{100} = 0.8$$
, $P(100,99) = q_{100} = 0.2$,

Consider the birth and death chain on $\{0, 1, 2, ...\}$ defined by $p_x = (x+2)/(2x+2)$ and $q_x = x/(2x+2)$, $x \ge 0$ (i.e., there is a little bias to the right). Any state leads to any other state, so this chain is irreducible. (\sim Example 13, p. 33 HPS)

e) Consider the birth and death chain on $\{0, 1, 2, ...\}$ defined by $p_x = (x+1)/(2x+1)$ and $q_x = x/(2x+1)$, $x \ge 0$ (i.e., there is a little bias to the right). Any state leads to any other state, so this chain is irreducible.