Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Solutions for Tutorial Sheet 6

1. (a)
$$\sin x = 1 - \frac{(x - \frac{\pi}{2})^2}{2!} + \frac{(x - \frac{\pi}{2})^4}{4!}$$

(b)
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5}$$
.

2. Remainder term here is $\frac{x^4 \sin c}{4!}$. So find δ such that $\left|\frac{x^4}{4!}\right| < 5 \times 10^{-4}$ in $|x| < \delta$. As for $|x| < \frac{3}{10}$, $\left|\frac{x^4}{4!}\right| < 5 \times 10^{-4}$, thus $\frac{3}{10}$ is the required δ .

3.
$$|R_n(x)| = \left| \frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1} \right| < \frac{x^4}{4!} < \frac{1}{2^4 4!}$$

4.
$$|R_1(x)| = \left| \frac{f^{(2)}(c)}{2!} x^2 \right| < \frac{x^2}{2! \times 4(1+c)^{\frac{3}{2}}} < \frac{(0.01)^2}{8}.$$

- 5. (a) R = 1 and interval of convergence=(1, 3].
 - (b) $R = 5^{\frac{2}{3}}$ and interval of convergence= $(-2 5^{\frac{2}{3}}, -2 + 5^{\frac{2}{3}})$.
 - (c) $R = \frac{1}{2}$ and interval of convergence= $(-\frac{1}{2}, \frac{1}{2})$.

6. (a)
$$\frac{1}{1+x} = \frac{d}{dx}\log(1+x) = \frac{d}{dx}(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots) = 1 - x + x^2 - x^3 + \cdots$$
. Also $R = 1$.

- (b) $\sinh x = \frac{d}{dx} \left(\frac{e^x + e^{-x}}{2} \right)$. Now write down the series of $\frac{e^x + e^{-x}}{2}$ and differentiate.
- (c) $\cos^{-1} x = \int \frac{-1}{\sqrt{(1-x^2)}} dx$. Then write down the series of $\frac{-1}{\sqrt{(1-x^2)}}$ and integrate.