

Home Search Collections Journals About Contact us My IOPscience

FORMAL RELATIONS BETWEEN ANALYTIC FUNCTIONS

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1973 Math. USSR Izv. 7 1056

(http://iopscience.iop.org/0025-5726/7/5/A05)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 128.111.121.42

This content was downloaded on 10/09/2015 at 10:45

Please note that terms and conditions apply.

FORMAL RELATIONS BETWEEN ANALYTIC FUNCTIONS

UDC 513.88

A. M. GABRIÈLOV

Abstract. In this paper we give conditions under which the completion of the kernel of a homomorphism of analytic rings $\phi\colon A\longrightarrow B$ coincides with the kernel of the corresponding homomorphism of the completions $\hat{\phi}\colon \hat{A}\longrightarrow \hat{B}_{\bullet}$.

Introduction

Let $y_1(x), \dots, y_n(x)$ be analytic functions defined in a neighborhood of the origin in C^m . A formal relation between the functions $y_i(x)$ will be a formal power series $F(y_1, \dots, y_n)$ that vanishes if we put $y_i = y_i(x)$. If F is a convergent series, then it is called an analytic relation between the functions $y_i(x)$.

In [2] M. Artin posed the following question. Assume that there is a (nontrivial) formal relation between the analytic functions $y_i(x)$. Does there exist an analytic relation between these functions? This question can be reformulated as follows. Consider the homomorphisms of rings $\phi \colon \mathbb{C}\{y\} \to \mathbb{C}\{x\}$ and $\hat{\phi} \colon \mathbb{C}[[y]] \to \mathbb{C}[[x]]$, defined by putting $y_i = y_i(x) \cdot (1)$ Assume that ϕ is injective. Will $\hat{\phi}$ be injective? In a more general situation, suppose that A and B are analytic rings, (2) $\phi \colon A \to B$ a ring homomorphism, and $\hat{\phi} \colon \hat{A} \to \hat{B}$ the corresponding homomorphism of the completions. Assume that ϕ is injective. Is $\hat{\phi}$ injective? In this form the question was stated by Grothendieck [6].

In [12] the author constructed an example that gave a negative answer to these questions: he showed four functions of two variables between which no nontrivial analytic relations exist, but a formal relation does exist.

However, it turns out that if "sufficiently many" formal relations exist between the analytic functions $y_i(x)$, then all of these are induced by analytic relations. Let $J \subset \mathbb{C}[[y]]$ be the ideal of all formal relations between the functions $y_i(x)$, and $I \subset \mathbb{C}[y]$ the ideal of all analytic relations. Put $r_1 = \text{rank}(\partial y_i(x)/\partial x_j)$, $r_2 = \dim \mathbb{C}[[y]]/J$, $r_3 = \dim \mathbb{C}[y]/I$, where dim denotes the Krull dimension. It is easy to show that $r_1 \leq r_2 \leq r_3$. In this paper we prove the following assertion (Theorem 4.8):

If $r_1 = r_2$, then $r_2 = r_3$ and $J = I \cdot \mathbb{C}[[y]]$. (Note that in the example of [12], $r_1 = 2$, $r_2 = 3$ and $r_3 = 4$.)

AMS (MOS) subject classifications (1970). Primary 14B10, 32B05; Secondary 58C25, 13J10.

⁽¹⁾ Here C[x] and [[x]] are the rings of convergent and formal power series, respectively.

⁽²⁾ Recall that an analytic ring is a ring of the form $C\{x\}/I$, where I is an ideal in $C\{x\}$.

This theorem is then applied to study the connection between homomorphisms $\phi \colon A \to B$ of analytic rings, and the corresponding homomorphisms $\hat{\phi} \colon \hat{A} \to \hat{B}$ of the completions of these rings. If B is an integral domain, we obtain conditions under which

$$\ker \widehat{\varphi} \simeq \ker \varphi \otimes_{\mathbf{A}} \widehat{\mathbf{A}} \tag{1}$$

(Theorem 5.2 and the corollary to it) and

$$\hat{\varphi}(\hat{A}) \cap B \simeq \varphi(A) \tag{2}$$

(Theorem 5.5). The case when B is an arbitrary analytic ring without nilpotent elements easily reduces to the case when B is an integral domain (Proposition 5.6). In particular, the isomorphism (1) occurs if B is a ring without nilpotents and dim $A \le 3$ (Theorem 5.7). The example given at the end of the paper shows that each situation can arise if B contains nilpotent elements.

The author thanks V. P. Palamodov for calling his attention to this subject.

§1. Convergence of formal series that depend algebraically on a parameter

Lemma 1.1. Let K be a field, R a K-algebra (commutative with identity) and x an independent variable. Let

$$f = \sum_{n=0}^{\infty} f_n x^n \in R[[x]].$$

If f is integral over K[[x]], then all the f_{ν} are algebraic over K.

The proof is trivial.

Lemma 1.2. Let A be an integral domain, B an A-algebra,

$$f(x) = \sum_{v=0}^{\infty} f_v x^v \in B[[x]],$$

$$P(x, z) = z^{p} + \sum_{i=1}^{p} c_{i}(x) z^{p-i} \in A[[x]][z], \quad c_{i} = \sum_{i=0}^{\infty} c_{i,i} x^{i}.$$

Assume that P(x, f(x)) = 0 and $P'_z(x, f(x)) \neq 0$ in B[[x]]. Put

$$P'_{z}(x, f(x)) = \sum_{l=0}^{\infty} g_{l}x^{l}, \quad g_{l} \in B$$

(we shall also consider g_l as polynomials of c_{ij} and l_v with integral coefficients). Let l_0 be the minimal index such that $g_{l_0} \neq 0$ in B. Put $g = g_{l_0}$. For every $l > l_0$ we have

$$f_{l} = G_{l}/g^{2(l-l_{0})-1}, (1.1)$$

where G_l is a polynomial of C_{ij} ($i \leq l + l_0$), f_{ν} ($\nu \leq l_0$) and g with integral coefficients,

whose degree in g does not exceed $2(l-l_0-1)$, and in c_{ii} and f_{ν} does not exceed $2p(l-l_0)-p$. Moreover, if we assume c_{ij} and f_{ν} to be homogeneous of degree i and ν respectively, then the generalized degree of G_1 in c_{ij} and f_{ν} does not exceed $(2l_0 + 1)(l - l_0).$

Proof. We write P(x, f(x)) in the form $P(x, f(x)) = \sum_{k=0}^{\infty} P_k x^k$, where the P_k are polynomials in c_{ij} and f_{ν} with integral coefficients. Let $\mu, \nu \in \mathbb{N}, \mu \leq \nu$. Then the polynomial $P_{\nu+\mu}$ depends linearly on f_{ν} . Moreover, $P_{\nu+\mu} = g_{\mu}f_{\nu} + Q_{\nu,\mu}$, where $Q_{\nu,\mu}$ does not depend on f_{ν} . In particular, if $\mu \le l_0$, then $g_{\mu} = 0$ and $P_{\nu + \mu}$ does not depend on f_{ν} . Now suppose $l > l_{0}$. Then $P_{l+l_{0}}$ does not depend on f_{ν} , if $\nu > l$, since

$$l_0+l=\mu+\nu$$
, $\nu>l\Rightarrow \mu< l_0$.
+ Q_{l_1,l_0} . From the equality $P_{l+l_0}=0$ we get

Furthermore, $P_{l+l_0} = gl_l + Q_{l,l_0}$. From the equality $P_{l+l_0} = 0$ we get $f_l = -Q_{l,l}/g.$

(1.2)

We note that \mathcal{Q}_{l,l_0} is a polynomial of c_{ij} $(i \leq l+l_0)$ and f_{ν} $(\nu \leq l)$ of degree at most p and generalized degree $l + l_0$.

Replacing in turn on the right side of (1.2) l_{l-i} $(1 \le i \le l-l_0)$ by $Q_{l-i,l_0}/g$, we obtain the following expression for /;:

$$f_l = G_l/g^{m_1(l)}, (1.3)$$

where G_l is a polynomial of C_{ij} $(i \leq l + l_0)$, l_{ν} $(\nu \leq l_0)$ and g, whose degree in g is at most $m_1(l) - 1$, in c_{ij} and f_{ν} is equal to $m_2(l)$, and whose generalized degree in c_{ij} and f_{ν} is equal to $m_3(l)$. We shall show that

$$m_1(l) \leq 2(l-l_0)-1,$$

 $m_2(l) \leq 2p(l-l_0)-p,$
 $m_3(l) \leq (2l_0+1)(l-l_0).$ (1.4)

We use induction on l. For $l=l_0+1$ we have $m_1(l)=1$, $m_2(l) \le p$ and $m_3(l)=2l_0+1$, and the inequalities (1.4) hold. We assume that they are true for all l, $l_0 < l < l_1$. Obviously $G_{l_1}/g^{m_1(l_1)}$ is obtained from $-Q_{l_1,l_0}/g$ after substituting $f_l = m_1(l)$ $G_l/g^{m_1(l)}$ in Q_{l_1,l_0} . Let Q be some homogeneous polynomial Q_{l_1,l_0} . We consider three cases.

- 1. Q does not depend on f_l ($l_0 \le l \le l_1$). Then the term -Q/g in the expression (1.3) for l_1 has g^1 in the denominator, degree p and generalized degree $l_1 + l_0$, so that the inequalities (1.4) hold for it (granting that $l_1 \ge l_0 + 1$).
- 2. $Q = f_{\nu} \cdot Q'$, where Q' does not depend on f_l ($l_0 \le l \le l_1$). Substituting f_{ν} = $G_{\nu}/g^{m_1(\nu)}$, in the expression for f_{l_1} we will get a term whose denominator is $g^{m_1(\nu)+1}$, whose degree is at most $p-1+m_2(\nu)$, and whose generalized degree is equal to $l_1 + l_0 - \nu + m_3(\nu)$. Since $\nu \le l_1 - 1$, inequalities (1.4) also hold for this term.
 - 3. $Q = Q' \cdot \prod_{i=1}^{i_0} f_{\nu_i}$ $(l_0 < \nu_i < l_1)$, where Q' does not depend on f_l $(l_0 < l < l_1)$,

and the ν_i are not necessarily different where $i_0 \ge 2$. After the substitution $f_{\nu_i} = G_{\nu_i}/g^{m_1(\nu_i)}$, granting (1.4) we get

$$m_1(l_1) \leqslant 1 + \sum_{i=1}^{l_0} (2(v_i - l_0) - 1) \leqslant 1 + 2\sum_{i=1}^{l_0} v_i - 4l_0 - 2.$$

Since the generalized degree of Q is equal to $l_1 + l_0$, it follows that $\sum_{i=1}^{i_0} \nu_i \leq l_1 + l_0$, from which we have $m_1(l_1) \leq 2(l_1 - l_0) - 1$. Further,

$$m_{2}(l_{1}) \leq p - l_{0} + \sum_{i=1}^{l_{0}} (2p(v_{i} - l_{0}) - p) \leq p + 2p \sum_{i=1}^{l_{0}} v_{i} - 4pl_{0} - 2p$$

$$\leq p + 2p(l_{1} + l_{0}) - 4pl_{0} - 2p = 2p(l_{1} - l_{0}) - p.$$

Finally,

$$m_{3}(l_{1}) \leq l_{1} + l_{0} - \sum_{i=1}^{l_{0}} v_{i} + \sum_{i=1}^{l_{0}} (2l_{0} + 1) (v_{i} - l_{0})$$

$$\leq l_{1} + l_{0} + 2l_{0} \sum_{i=1}^{l_{0}} v_{i} - 2 (2l_{0} + 1) l_{0}$$

$$\leq (2l_{0} + 1) (l_{1} + l_{0}) - 2 (2l_{0} + 1) l_{0} = (2l_{0} + 1) (l_{1} - l_{0}).$$

The lemma is proved.

Definition 1.3. We denote by $\mathfrak{A}_{x,t}$ the subring of $\mathbb{C}[t][[x]]$ formed by the series

$$c(x, t) = \sum_{i=0}^{\infty} c_i(t) x^i$$

satisfying the following condition:

$$\exists k_1, k_2 : \deg c_i(t) \leqslant k_1 i + k_2 \quad \forall i. \tag{1.5}$$

Lemma 1.4. The ring & is integrally closed.

Proof. Let f be integral over $\mathfrak{A}_{x,t}$ and f = g/h, where g and h belong to $\mathfrak{A}_{x,t}$. Since $\mathfrak{A}_{x,t} \subset \mathbb{C}[t][[x]]$, and $\mathbb{C}[t][[x]]$ is integrally closed, we have $f \in \mathbb{C}[t][[x]]$. We write f in the form

$$f = \sum_{i=0}^{\infty} f_i(t) x^i, \quad f_i(t) \in \mathbb{C}[t].$$

Let $P = z^p + \sum_{j=1}^p c_j(x, t) z^{p-j} \in \mathcal{Q}_{x,t}[z]$ be a polynomial annihilating f. Let

$$g = \sum_{i=0}^{\infty} g_i(t) x^i, \quad h = \sum_{i=0}^{\infty} h_i(t) x^i, \quad c_i = \sum_{i=0}^{\infty} c_{ij}(t) x^i.$$

We put $d_i = \max(\deg g_i(t), \deg h_i(t), \deg c_{ij}(t))$. By definition of the ring $\mathcal{L}_{\mathbf{x},t}$ there exist constants k_1 and k_2 such that $d_i \leq k_1 i + k_2$ for all i. We assume that this is

not so. Then f(x, t) contains a monomial of the form $ax^{\lambda}t^{\mu}$, where $a \in \mathbb{C}$, $a \neq 0$ and $\mu > k_1\lambda + k_2$. By the change $x = u^{k_1}$ the problem reduces to the case $k_1 = 1$. Finally, replacing f by $u^{k_2}f$, g by $u^{2k_2}g$, h by $v^{k_2}h$ and c_j by $u^{jk_2}c_j$, we are reduced to the case $k_2 = 0$.

Let a be the subring of $\mathfrak{A}_{x,t}$ consisting of all the series satisfying the condition (1.5) with $k_1 = 1$ and $k_2 = 0$. Then f is integral over a and belongs to the field of fractions of a, but does not belong to a. Therefore it suffices to prove that a is integrally closed. But the mapping $(u, t) \to (v, y)$, defined by the formula v = u, y = ut, establishes an isomorphism $\mathbb{C}[[v, y]] \to a$, and since $\mathbb{C}[[v, y]]$ is integrally closed, the lemma is proved.

Lemma 1.5. Let T(t) be a polynomial of degree n and ϵ an arbitrary positive number. Then for all $\tau \in \mathbb{C}^m$

$$|T(\tau)| \leq \left(\frac{|\tau|}{\varepsilon} + 1\right)^n \sup_{|t| \leq \varepsilon} |T(t)|.$$

Proof. Let $\alpha_i \in \mathbb{C}$ $(i = 0, \dots, n)$ be (n + 1)th roots of unity $(\alpha_0 = 1)$. Then

$$T(\tau) = \sum_{i=0}^{n} T(\epsilon \alpha_{i}) \prod_{i:i \neq i} \frac{\frac{\tau}{\epsilon} - \alpha_{i}}{\alpha_{i} - \alpha_{i}}.$$

But

$$\left|\prod_{i:j\neq i} (\alpha_i - \alpha_j)\right| = |(n+1)\alpha_i^n| = n+1,$$

$$\left| \prod_{j:j\neq i} \left(\frac{\tau}{\varepsilon} - \alpha_j \right) \right| = \left| \alpha_i^n \prod_{j\neq 0} \left(\frac{\tau}{\varepsilon \alpha_i} - \alpha_j \right) \right|$$

$$= \left| \alpha_i^n \sum_{j=0}^n \left(\frac{\tau}{\varepsilon \alpha_j} \right)^j \right| \leq \left(\frac{|\tau|}{\varepsilon} + 1 \right)^n,$$

and therefore

$$|T(\tau)| \leq \left(\frac{|\tau|}{\varepsilon} + 1\right)^n \max_i |T(\varepsilon \alpha_i)|,$$

from which the assertion of our lemma follows.

Lemma 1.6. Let $c(x, t) = \sum_{0}^{\infty} c_i(t) x^i \in \mathcal{A}_{x,t}$. If for each t_0 of some open set $U \subset \mathbb{C}^1_t$ the series $c(x, t_0)$ converges, then the series c(x, t) converges in a neighborhood of any point $(0, \tau) \in \mathbb{C}^2_{x,t}$.

Proof. For each $t \in U$ there exists a constant M_t such that $|c_i(t)| \le M_t^i$ for all i > 0. For $j \in \mathbb{N}$ we put $\Lambda_j = \{t \in U : M_t \le j\}$. Since $U = \bigcup_j \Lambda_j$, there exists a j_0 such that Λ_j is not nowhere dense. Hence Λ_j is everywhere dense in some disc. $|t - t_0| \le \epsilon$. Furthermore, since $c(x, t) \in \mathfrak{A}_{x,t}$, there exist numbers k_1 and k_2 such that deg $c_i(t) \le k_1 i + k_2$. Applying Lemma 1.5, we get

$$\begin{aligned} |c_{i}(\tau)| & \leqslant \left(1 + \frac{|\tau - t_{0}|}{\varepsilon}\right)^{k_{1}i + k_{2}} \sup_{|t - t_{0}| \leqslant \varepsilon} |c_{i}(t)| \\ & \leqslant \left(1 + \frac{|\tau - t_{0}|}{\varepsilon}\right)^{k_{1}i + k_{2}} \sup_{\Lambda_{i}} |c_{i}(t)| \leqslant j_{0}^{i} \left(1 + \frac{|\tau - t_{0}|}{\varepsilon}\right)^{k_{1}i + k_{2}}, \end{aligned}$$

from which the assertion of the lemma follows.

Lemma 1.7. Let T(t) be a polynomial of degree n, and let ϵ and R be positive constants, $\epsilon < \frac{1}{2}$. Then the diameter of each connected component of the set

$$M = \{t : |t| \leq R, |T(t)| \leq |T(0)| \varepsilon^n \}$$

does not exceed 8Re.

Proof. Let $T(t) = a \prod_{j=1}^{n} (t-t_j)$, and let $|t_j| \le 2R$ for $j \le n_1$ and $|t_j| > 2R$ for $n_1 \le j \le n$. Then $\prod_{j \le n_1} |t_j| \le (2R)^{n_1}$, and since

$$|T(0)| = \left(\prod_{i \leq n_1} |t_i|\right) \left(|a| \prod_{i \geq n_1} |t_i|\right)$$

we have

$$|a| \prod_{i > n} |t_i| > |T(0)|/(2R)^{n_i}$$

If $t \in M$, then

$$\left|\prod_{j\leqslant n_1}(t-t_j)\right| = \frac{|T(t)|}{|a|\prod_{j>n_1}|t-t_j|} \leqslant \frac{2^{n-n_1}|T(t)|}{|a|\prod_{j>n_1}|t_j|} \leqslant \varepsilon^n 2^n R^{n_1} \leqslant (2R\varepsilon)^{n_1}.$$

Therefore it suffices to prove that the diameter of each connected component of the set

$$M_1 = \left\{ t : \left| \prod_{i \leq n} (t - t_i) \right| \leq (2R\varepsilon)^{n_1} \right\}$$

does not exceed 8Re.

Assume that the set M_1 has a connected component Λ of diameter $d>8R\epsilon$. We may assume that the projection of Λ onto the real axis is a segment l of length d. We consider the polynomial $T_1=\Pi_{j\leq n_1}(t-\operatorname{Re} t_j)$. Since $|\operatorname{Re} t-\operatorname{Re} t_j|\leq |t-t_j|$, the polynomial T_1 on the segment l does not exceed $(2R\epsilon)^{n_1}<(d/4)^{n_1}$ in modulus, which contradicts the theorem on the polynomials deviating the least from zero.

Lemma 1.8 (Malgrange [3], Chapter IV, Lemma 2.3). Let z and c_1, \dots, c_p be complex numbers, with

$$z^p + \sum_{j=1}^p c_j z^{p-j} = 0.$$

Then $|z| \leq 2\max |c_j|^{1/j}$.

Lemma 1.9. Let
$$P_i = z^p + \sum_{1}^{p} c_i^{(i)} z^{p-j}$$
 (i = 1, 2) be polynomials, $z_{\nu}^{(i)}$ ($\nu = 1, \dots, p$)

their roots. Let $|c_j^{(i)}| \le K^j$ and $|c_j^{(1)} - c_j^{(2)}| \le K^j \delta$. Then we can renumber the $z_v^{(i)}$ so that for each v

$$|z_{\nu}^{(1)}-z_{\nu}^{(2)}| \leq 4\rho K \delta^{1/\rho}$$
.

The proof is easily obtained from Lemmas 2.4 and 2.5 of Chapter IV of Malgrange's book [3].

Lemma 1.10. Let $P=z^p+\sum_1^p c_j z^{p-j}$ be a polynomial, z_ν its roots. Let $|c_j|< K^j$ for $1\leq j\leq j_0$, $|c_{j_0}|=K^{j_0}\alpha$, and $|c_j|\leq K^j\delta$ for $j>j_0$, where $\alpha\leq 1$ and $\delta^{1/p}<\alpha/16p$. Then the z_ν can be renumbered so that

$$\max_{\nu>j_0}|z_\nu|<\min_{\nu\leqslant j_0}|z_\nu|.$$

Proof. Let

$$P_1 = z^p + \sum_{j=1}^{l_0} c_j z^{p-j}, \quad Q = z^{j_0} + \sum_{j=1}^{l_0} c_j z^{j_0-j}.$$

Then the roots $z_{\nu}^{(1)}$ of the polynomial P_1 can be numbered so that $z_{\nu}^{(1)} = 0$ for $\nu > j_0$ and $Q(z_{\nu}^{(1)}) = 0$ for $\nu \le j_0$. Let $\nu \le j_0$ and $\omega_{\nu} = 1/z_{\nu}^{(1)}$. Then

$$\omega_{v}^{i_{0}} + \sum_{j=1}^{i_{0}} \frac{c_{j_{0}-j}}{c_{j_{0}}} \omega_{v}^{i_{0}-j} = 0$$

(here $c_0=1$). Since $|c_{j_0-j}/c_{j_0}| \leq 1/\alpha K^j \leq 1/(K\alpha)^j$, from Lemma 1.8 it follows that $|\omega_{\nu}| \leq 2/K\alpha$, i.e. $|z_{\nu}^{(1)}| \geq K\alpha/2$ for $\nu \leq j_0$. We now apply Lemma 1.9 to P_1 and $P_2=P$. We can renumber the z_{ν} so that

$$|z_{\nu}| \leqslant 4pK\delta^{1/p}$$
 for $\nu > j_0$, $|z_{\nu}| \geqslant \frac{K\alpha}{2} - 4pK\delta^{1/p}$ for $\nu \leqslant j_0$,

from which the assertion of the lemma follows.

Definition 1.11. Let

$$P = z^{p} + \sum_{i=1}^{p} c_{i}(x) z^{p-i}, S = z^{s} + \sum_{i=1}^{s} b_{i}(x) z^{s-i}$$

be unitary pseudopolynomials. Let $z_{\nu}(x)$ be the roots of S and $\sigma_{S}^{(k)}$ the standard symmetric function of degree k of S variables. We put

$$R_k(P, S) = \sigma_s^k(P(z_1(x)), \dots, P(z_s(x))).$$

The set $(R_k(P, S))_{1 \le k \le s}$ is called the *complete resultant* of the pseudopolynomials P and S.

Remark. It is not hard to prove that $R_k(P, S)$ is a polynomial in c_j and b_j with integral coefficients.

Theorem 1.12. Let $\psi(t)$ be an analytic function in a neighborhood of zero, and suppose that there exists an irreducible polynomial

$$S(t,z) = z^s + \sum_{\kappa=0}^{s-1} d_{\kappa}(t) z^{\kappa} \quad (d_{\kappa}(t) \in \mathbb{C}[t]),$$

such that $S(t, \psi(t)) \equiv 0$. Let

$$f(x, t) = \sum_{i=0}^{\infty} f_i(t) x^i \in \mathbb{C} \{x, t\} \quad and \quad f(x, t) = \sum_{i=0}^{s-1} f_i(x, t) \psi(t)^i,$$

where $f_{\kappa} = \sum_{i=0}^{\infty} f_{i}^{(\kappa)}(t) x^{i} \in \mathcal{U}_{x,t}$. Then $f_{\kappa}(x, t) \in \mathbb{C}\{x, t\}$.

Proof. Since $f \in \mathbb{C}[x, t]$, there exist constants t and M_1 such that

$$\sup_{|t| \leqslant \tau} |f_i(t)| \leqslant M_1^t. \tag{1.6}$$

We may assume that $\tau < 1$. We shall show that

$$\sup_{|t| \leqslant \tau} |f_i^{(n)}| \leqslant M_2^i$$

for some constant M_2 . Assume that this is not so. Set

$$N_i^{(n)} = \sup_{|t| \le \tau} f_i^{(n)}(t), \quad N_i = \max_{n} N_i^{(n)}.$$

There exists a sequence of indices i_n such that

$$\lim_{n\to\infty}N_{i_n}^{1/i_n}=\infty$$

Let κ_0 be the largest number such that

$$\overline{\lim_{n\to\infty}}\left(\frac{N_{i_n}^{(\mathbf{w}_0)}}{N_{i_n}}\right)^{1/i_n}>0.$$

We may assume that the sequence i_n is chosen such that

- 1) $N_{i_{n}}^{1/i_{n}} \to \infty;$ 2) $N_{i_{n}}^{i} < M_{3}^{i_{n}} N_{i_{n}}^{(\kappa_{0})};$ 3) $(N_{i_{n}}^{(\kappa)})^{1/i_{n}} = o(N_{i_{n}}^{1/i_{n}})$ for all $\kappa > \kappa_{0}$.

Moreover, since the case $\kappa_0 = 0$ is trivial, it can be assumed that $\kappa_0 \ge 1$.

Consider the κ_0 -sheeted analytic function $z = \phi_i(t)$, defined by the equation

$$Q_{l}(t,z)=z^{\varkappa_{0}}+\sum_{k=0}^{\varkappa_{0}-1}(f_{l}^{(\varkappa_{0})})^{\varkappa_{0}-\varkappa-1}f_{l}^{(\varkappa)}z^{\varkappa}=0.$$

Let $\phi_{i\mu}(t)$ $(\mu = 1, \dots, \kappa_0)$ be the values of this function, enumerated in an arbitrary fashion. Then by Lemma 1.8

$$\max_{\mu} |\varphi_{i\mu}(t)| \leqslant 2 \max_{\varkappa < \varkappa_0} |(f_i^{(\varkappa_0)}(t))^{\varkappa_0 - \varkappa - 1} f_i^{(\varkappa)}(t)|^{\frac{1}{\varkappa_0 - \varkappa}},$$

and therefore

$$\max_{\mu} \sup_{|t| \leqslant \tau} |\varphi_{t\mu}(t)| \leqslant 2N_t. \tag{1.7}$$

Furthermore, we have

$$\prod_{\mu} \left(f_{i}^{(\varkappa_{0})} \psi\left(t\right) - \varphi_{i\mu}\left(t\right) \right) = \left(f_{i}^{(\varkappa_{0})}\left(t\right) \right)^{\varkappa_{0}-1} \sum_{\varkappa=0}^{\varkappa_{0}} f_{i}^{(\varkappa)}\left(t\right) \psi\left(t\right)^{\varkappa}$$

$$= \left(f_{i}^{(\varkappa_{0})}\left(t\right) \right)^{\varkappa_{0}-1} \left(f_{i}\left(t\right) - \sum_{\varkappa=\varkappa_{0}+1}^{s-1} f_{i}^{(\varkappa)} \psi\left(t\right)^{\varkappa} \right),$$

and from (1.6) and property 3) of the sequence i_n it follows that

$$\sup_{|t| \leqslant \tau} \left| \prod_{\mu} \left(f_{i_n}^{(\varkappa_0)}(t) \, \psi(t) - \varphi_{i\mu}(t) \right|^{1/i_n} = o(N_{i_n}^{\varkappa_0/i_n}).$$
 (1.8)

Let t, be the roots of the discriminant $\Delta(t)$ of the polynomial S(t, z). Put

$$R_1 = \min_{\substack{t_l \neq t_k}} |t_l - t_k|, \quad R_2 = \max |t_l|,$$

$$K = \{t \in \mathbb{C} : |t| \leq 2R_2, |t - t_l| > R_1/4 \ \forall l\}.$$

Then K is a connected compact set, $\pi_1(K)$ generates $\pi_1(C_t \setminus \{\Delta(t) = 0\})$ and there exists a constant c > 0 such that for all $t \in K$ we have

$$\min_{\mu \neq \nu} |z_{\mu}(t) - z_{\nu}(t)| \geqslant c. \tag{1.9}$$

Here $z_{\nu}(t)$ are the roots of the polynomial S(t, z). Moreover, let C > 0 be chosen so that

$$\sup_{|t|\leqslant 2R_z} \max_{v} |z_v(t)| \leqslant C. \tag{1.10}$$

Let

$$S_i = z^s + \sum_{\varkappa=0}^{s-1} \left(f_i^{(\varkappa_0)}(t)\right)^{s-\varkappa-1} d_\varkappa(t) z^\varkappa.$$

We note that S_i is an irreducible polynomial and its roots are $z_{\nu}(t) \cdot \int_{i}^{(\kappa_0)}(t)$. Let $(R_{ik}(t))_{k=1,\dots,s}$ be the complete resultant of the polynomials Q_i and S_i . By definition

$$R_{ik}(t) = \sigma_s^{(k)} \left(\prod_{\mu=1}^{\kappa_0} (f_i^{(\kappa_0)}(t) z_{\nu}(t) - \varphi_{i\mu}(t)) \right) \quad (\nu = 1, \ldots, s),$$

and, using (1.7) and (1.10), we obtain

$$\sup_{|t| \leqslant \tau} |R_{ik}(t)| \leqslant M_{\bullet} N_i^{k \kappa_{\bullet}}. \tag{1.11}$$

Further, let $z_{\nu}(t)$ be numbered so that $z_{1}(t) = \psi(t)$ for $|t| \le \tau$. Then

$$R_{ls}(t) = \left[\prod_{\mu=1}^{\kappa_0} (f_l^{(\kappa_0)}(t) \psi(t) - \varphi_{l\mu}(t))\right] \left[\prod_{\nu=2}^{s} \prod_{\mu=1}^{\kappa_0} (f_l^{(\kappa_0)}(t) z_{\nu}(t) - \varphi_{l\mu}(t))\right].$$

Using (1.7) and (1.8), we deduce

$$\sup_{|t| \le \tau} |R_{l_n s}(t)|^{1/l_n} = o(N_{l_n}^{\frac{s \kappa_0}{l_n}}). \tag{1.12}$$

Let k_0 be the largest number such that

$$\overline{\lim_{n\to\infty}}\left(\frac{\sup\limits_{|t|<\tau}|R_{i_nk_0}(t)|}{N_{i_n}^{k_0k_0}}\right)^{\frac{1}{i_n}}>0.$$

(If no such number exists, put $k_0 = 0$.) From (1.12) it follows that $k_0 \le s$. We may assume that the sequence i_n is chosen so that

4)
$$N_{l_n}^{k_0 \kappa_0} < M_{\epsilon}^{l_n} \sup_{|t| \le \tau} |R_{l_n k_0}(t)|;$$

5)
$$\sup_{|t| \leqslant \tau} |R_{i_n k}(t)|^{1/l_n} = o(N_{i_n}^{k \kappa_0 / l_n}) \text{ for all } k > k_0.$$

Since $f^{(\kappa)} \in \mathfrak{A}_{x,t}$, and the R_{ik} are polynomials in $f_i^{(\kappa)}$ and d_{κ} whose degrees do not depend on i, there exist constants k_1 and k_2 such that

$$\max (\deg f_i^{(x)}, \deg R_{ik}) \leq k_1 i + k_2.$$
 (1.13)

From (1.11) and Lemma 1.5 it follows then that

$$\sup_{|t| \leqslant 2R_0} |R_{ik}(t)| \leqslant M_7^i N_i^{k\kappa_0}. \tag{1.14}$$

Further, from property 5) of the sequence i_n and Lemma 1.5 it follows that for $k > k_0$ we have

$$\sup_{|t| \leqslant 2R_1} |R_{i_n k}(t)|^{1/l_n} = o(N_{i_n}^{k_{k_0}/l_n}). \tag{1.15}$$

Finally from property 4) of the sequence i_n and Lemma 1.7 it follows that we can choose $\epsilon_1 > 0$ (not depending on i) such that the diameter of each connected component of the set

$$K_n = \{ |t| \leqslant 2R_2, |R_{l_n k_0}(t)| < \epsilon_1^{l_n} N_{l_n}^{k_0 x_0} \}$$

does not exceed $R_1/4$. In particular, $\pi_1(K \setminus K_n)$ generates $\pi_1(K)$.

Consider the polynomial

$$P_{i_n}(t,z) = z^s + \sum_{k=1}^{s} R_{i_n k}(t) z^{s-k}.$$

Its roots are Q_i $(t, f_i^{(\kappa_0)} \cdot z_{\nu})$. From (1.14), (1.15) and Lemma 1.10 it follows that if n is sufficiently large, then the roots of the polynomial P_i (z, t), $t \in K \setminus K_n$, can be ordered so that

$$\max_{\mathbf{v} > k} |Q_{i_n}(t, f_{i_n}^{(\mathbf{x}_0)} \mathbf{z}_v)| < \min_{\mathbf{v} \leq k} |Q_{i_n}(t, f_{i_n}^{(\mathbf{x}_0)} \cdot \mathbf{z}_v)|. \tag{1.16}$$

If $k_0 > 0$, then (1.16) for each $t \in K \setminus K_n$ defines a nontrivial partition of the set

 $S_{in}(t,z)=0$, depending continuously on t, and hence also a partition of the set S(t,z)=0, which contradicts the irreducibility of the set S(t,z)=0, since $\pi_1(K\setminus K_n)$ generates $\pi_1(K\setminus \{\Delta(t)=0\})$.

Suppose $k_0 = 0$. From (1.13), property 2) of the sequence i_n and Lemma 1.7 it follows that we can choose $\epsilon_2 > 0$ (not depending on i) so that the diameter of each connected component of the set

$$L_n = \{ |t| \leqslant 2R_2, |f_{i_n}^{(\kappa_0)}(t)| < \varepsilon_2^{i_n} N_{i_n} \}$$

does not exceed $R_1/4$. In particular, $K \setminus L_n$ is nonempty. Further, from (1.15) and Lemma 1.8, applied to P_i (t, z), it follows that

$$\sup_{|t| \leq 2R_1} \max_{v} (Q_{i_n}(t, f_{i_n}^{(\kappa_0)} \cdot z_v))^{1/i_n} = o(N_{i_n}^{\kappa_0/i_n}).$$

Since

$$Q_{i}\left(t,f_{i}^{(\mathbf{x}_{0})}\cdot z_{v}\right)=\prod_{\nu=1}^{\mathbf{x}_{0}}(f^{(\mathbf{x}_{0})}z_{v}-\varphi_{i\mu}),$$

it follows that

$$\sup_{|t| \leq 2R_1} \max_{v} \min_{\mu} \left(f_{l_n}^{(N_0)}(t) \mathbf{z}_v(t) - \phi_{l_n \mu}(t) \right)^{1/l_n} = o(N_{l_n}^{1/l_n}).$$

Hence

$$\sup_{t \in K \setminus L_n} \max_{v} \min_{\mu} \left(z_v(t) - \frac{\varphi_{l_n \mu}(t)}{f_{l_n}^{(w_0)}(t)} \right)^{1/l_n} = o(1),$$

and since $\kappa_0 \le S$, we are led to a contradiction with (1.9). The theorem is proved.

Theorem 1.13. Let $P(x, t, z) \in \mathcal{U}_{x,t}[z]$ be a unitary pseudopolynomial, and let $f(x, t) \in \mathbb{C}[x, t]$ and P(x, t, f(x, t)) = 0. Then there exist an irreducible polynomial

$$S(t,z) = z^{s} + \sum_{i=1}^{s} d_{i}(t)z^{s-i} \in \mathbb{C}[t,z],$$

polynomials F(t), $\Delta(t) \in \mathbb{C}[t]$, not identically equal to zero, and functions $f_{\kappa}(x, t) \in \mathbb{C}[x, t]$, such that

$$\Delta(t) f(x, t) = \sum_{\kappa=0}^{s-1} f_{\kappa} \left(\frac{x}{F(t)}, t \right) \psi(t)^{\kappa},$$

where $\psi(t) \in \mathbb{C}[t]$ and $S(t, \psi(t)) \equiv 0$.

Proof. Since the ring $\mathfrak{A}_{x,t}$ is integrally closed, on eliminating the multiple factors we may assume that $\Delta_z(P) \neq 0$. In particular, $P_z'(x, t, f(x, t)) \neq 0$. Since $f = \sum f_{\nu}(t)x^{\nu}$ is integral over C[t][[x]], it follows from Lemma 1.1 that all the $f_{\nu}(t)$ are algebraic over C(t). We now apply Lemma 1.2, setting A = C[t] and B = C[t][[x]]. Since g is a polynomial of $f_{\nu}(t)$ ($\nu \leq l_0$) and $c_{ij}(t)$ ($i \leq l_0$) of degree at most p-1 and generalized degree at most l_0 (we use the notation of Lemma 1.2), (1.1) can be rewritten in the form

$$f_l(t) = H_l/g(t)^{2(l-l_0)-1} \quad (l > l_0),$$
 (1.17)

where H_l is a polynomial with integral coefficients of the c_{ij} $(i \le l + l_0)$ and the f_{ν} $(\nu \le l_0)$ of degree at most $(4p-2)(l-l_0-1)+p$ and generalized degree at most $(4l_0+1)(l-l_0)-2l_0$.

Since the $f_{\nu}(t)$ are algebraic over C(t), and g(t) is a polynomial of the f_{ν} and the c_{ij} , we see that g is algebraic over C(t). Hence so is g^{-1} . Therefore there exists a polynomial a(t) such that $\phi_{\nu}(t) = a(t)f_{\nu}(t)$ for $\nu \leq l_0$ and $\chi(t) = a(t)g^{-1}(t)$ are integral over C[t]. Since the ring C[t] is integrally closed, it follows that $\chi(t) \in C[t]$. Further, there exists a function $\psi(t) \in C[t]$, integral over C[t], such that

$$\Delta_1(t) \Phi_{\mathbf{v}}(t) = Q_{\mathbf{v}}(t, \mathbf{\psi}(t)), \quad \Delta_1(t) \chi(t) = Q(t, \mathbf{\psi}(t)),$$

where $\Delta_{,}(t) \in \mathbb{C}[t]$ is the discriminant of the minimal polynomial

$$S(t,z) = z^{s} + \sum_{j=1}^{s} d_{j}(t) z^{s-j} \in \mathbb{C}[t,z]$$

of the function $\psi(t)$, and Q_{ν} and Q are polynomials of t and ψ with complex coefficients of degree at most s-1 in ψ . Substituting $g(t)^{-1}=\chi(t)/a(t)$ and $f_{\nu}(t)=\phi_{\nu}(t)/a(t)$ in the right side of (1.17), and then

$$\varphi_{\mathbf{v}}(t) = Q_{\mathbf{v}}(t, \psi(t))/\Delta_{\mathbf{l}}(t), \ \chi(t) = Q(t, \psi(t))/\Delta_{\mathbf{l}}(t)$$

and finally $\psi(t)^s = -\sum_{i=1}^{s} d_i(t) z^{s-j}$, we obtain the expression

$$f_1(t) = \sum_{n=0}^{s-1} f_1^{(n)}(t) \psi(t)^n, \qquad (1.18)$$

where

$$f_l^{(x)}(t) = T_{lx}/a(t)^{d_1(l)} \Delta_1(t)^{d_2(l)}, \qquad (1.19)$$

and $T_{l\kappa}$ are polynomials of t and c_{ij} $(i \leq l+l_0)$ of degree at most $d_3(l)$ and generalized degree in c_{ij} at most $d_4(l)$ $(d_1(l), \cdots, d_4(l))$ are certain linear functions of l). Since $f_{\nu}(t) = \phi_{\nu}(t)/a(t)$ for $\nu \leq l_0$, we may assume that (1.18)–(1.19) holds for all l. Since $P \in \mathfrak{A}_{x,t}[z]$ by hypothesis, there exist constants k_1 and k_2 such that deg $c_{ij} \leq k_1 i + k_2$. Substituting $c_{ij} = c_{ij}(t)$ in the numerator of the right-hand side of (1.19), we obtain

$$f_l^{(x)}(t) = S_{lx}(t)/a(t)^{d_1(l)} \Delta_i(t)^{d_2(l)}, \qquad (1.20)$$

where S_{lK} is a polynomial of t of degree at most D(l) (D(l) is a linear function of l). Let $d_1(l) = d_1'l + d_1''$ and $d_2(l) = d_2'l + d_2''$. We may assume that d_1'' , $d_2'' \ge 0$. We put

$$\Delta(t) = a(t)^{d_1'} \Delta_1(t)^{d_2'}, \quad F(t) = a(t)^{d_1'} \Delta_1(t)^{d_2'}$$

Then the function $f_*(x, t) = \Delta(t) f(xF(t), t)$ belongs to C(x, t). On the other hand, from (1.18) and (1.20) it follows that

$$f_{\bullet}(x, t) = \sum_{\kappa=0}^{s-1} \psi(t)^{\kappa} f_{\kappa}(x, t), \qquad (1.21)$$

where

$$f_{\kappa}(x, t) = \sum_{l=0}^{\infty} T_{l\kappa}(t) x^{l}.$$

From the estimate of the degree of $T_{lK}(t)$ it follows that $f_K(x, t) \in \mathfrak{A}_{x,t}$. By Theorem 1.12 it follows that $f_K(x, t) \in \mathfrak{A}_{x,t} \cap \mathbb{C}[x, t]$. Therefore (1.21) gives the desired extension of f.

Corollary 1.14. Suppose the conditions of Theorem 1.13 hold. Then the function f(x, t) can be analytically continued along any path in

$$0_x \times (\mathbf{C}_t \setminus \{F(t) \Delta(t) \Delta_1(t) = 0\})$$

(here $\Delta_1(t)$ is the discriminant of S(t, z)).

For the proof it suffices to apply Lemma 1.6 to the expansion of the function f(x, t).

Corollary 1.15. Let $P(x, t, z) \in \mathfrak{U}_{x,t}[z]$ and

$$Q(x, t, z) = z^{q} + \sum_{j=1}^{q} b_{j}(x, t) z^{q-j} \in \mathbb{C}\{x, t\} [z]$$

be unitary pseudopolynomials, and let P : Q in C[[x, t]][z]. Then there exists an irreducible pseudopolynomial

$$S(t,z)=z^{s}+\sum_{j=1}^{s}d_{j}(t)z^{s-j} \in \mathbb{C}[t,z],$$

polynomials F(t) and $\Delta(t)$, and functions $b_j^{(\kappa)}(x, t) \in \mathcal{U}_{x,t} \cap \mathbb{C}[x, t]$ such that for $j = 1, \dots, q$

$$\Delta(t) b_j(x, t) = \sum_{\kappa=0}^{s-1} b_j^{(\kappa)} \left(\frac{x}{F(t)}, t \right) \psi(t)^{\kappa},$$

where $\psi(t) \in \mathbb{C}\{t\}$ and $S(t, \psi(t)) \equiv 0$.

For the proof it suffices to note that the $b_j(x, t)$ are integral over $\mathcal{U}_{x,t}$, and to apply Theorem 1.13.

Remark. The assertion of Theorem 1.13 remains true if $x = (x_1, \dots, x_n)$ and $t = (t_1, \dots, t_m)$ have an arbitrary number of variables. However, in order to keep the proofs simple we have restricted ourselves here to the case $x = x_1$, $t = t_1$, which is the only case that we shall need later.

§2. Branching of analytic functions

2.1. Notation. Let $x=(x_1,\cdots,x_n)$, and let $\Phi(x)$ be an analytic function in a neighborhood of zero in \mathbb{C}^n . The multiplicity of Φ at zero is the largest number k such that $\Phi \in \mathbb{R}^k$. The multiplicity at zero of the set $\{x: \Phi(x) = 0\}$ will be the multiplicity of the generating ideal of this set. Let $x=(x',x_n)$, where $x'=(x_1,\cdots,x_{n-1})$, and let $Q=x_n^q+\sum_{i=1}^q d_i(x')x_n^{q-i}$ be a unitary pseudopolynomial. The discriminant $(\text{in } x_n)$ of Q will be denoted by $\Delta(Q)$. The decomposition of Q into irreducible factors

will be the representation of Q in the form $Q = \Pi Q_j^{\mu_j}$, where the Q_j are irreducible (in the ring $\mathbb{C}\{x\}$) unitary pseudopolynomials. We put $Q^{(0)} = \Pi Q_j$. We call $\Delta(Q^{(0)})$ the reduced discriminant $\Delta^0(Q)$ of the pseudopolynomial Q. Obviously, $\Delta^0(Q) \not\equiv 0$ for any Q.

Lemma 2.2. Let $P = z^p + \sum_{1}^{p} c_i z^{p-i}$ be a polynomial, z_j $(j = 1, \dots, k)$ its distinct roots (k > 1), $\Delta^0 = \Delta^0(P)$ and $M = 2 \max |z_j|$. Then

$$\min_{i \neq i} |z_i - z_j| > \sqrt{|\Delta^0|/M^{\frac{k(k-1)}{2}-1}}.$$

The proof is trivial.

Lemma 2.3. Let $x=(x_1,\cdots,x_n)$; let $P=z^p+\sum_{i=1}^p c_i(x)z^{p-i}$ be a distinguished pseudopolynomial, $\Delta^0(x)$ its reduced discriminant, and α an arbitrary positive number. Let $z_1(x),\cdots,z_k(x)$ be distinct roots of P. For each $i\in\mathbb{N}$ there exists an $m=m(p,l)\in\mathbb{N}$ such that for sufficiently small x

$$|\Delta^{0}(x)| > a |x|^{l}, \quad |P(x,z)| < |x|^{m}$$

$$\Rightarrow \exists i: |z-z_{i}(x)| < \frac{1}{2} \min_{i \neq i} |z_{i}(x)-z_{i}(x)|.$$

Proof. Since P is a distinguished pseudopolynomial, we have $\max |c_i(x)|^{1/i} \le 4\alpha |x|^{1/p}$, if x is sufficiently small. Therefore, by Lemma 1.8, $2 \max |z_j| \le 4\alpha |x|^{1/p}$. Hence, by Lemma 2.2,

$$\varepsilon(x) = \min_{i \neq j} |z_i(x) - z_j(x)| > \frac{\sqrt{\Delta^0(x)}}{(4\alpha |x|^{1/p})^{\frac{k(k-1)}{2} - 1}} > c_1 |x|^{\frac{l}{2} - \frac{k(k-1) - 2}{2p}}.$$

Now we assume that z does not belong to an $\epsilon(x)/2$ -neighborhood of the points $z_i(x)$. Then

$$|P(x, z)| \geqslant (\varepsilon(x)/2)^p \geqslant c_2 |x|^{\frac{l_L}{2}} - \frac{k(k-1)-2}{2}.$$

Since $k(k-1) \ge 2$, we can put m = (lp + 1)/2.

Lemma 2.4. (Abhyankar [4], (39.7)). Let

$$P(x, z) = z^{p} + \sum_{i=1}^{p} c_{i}(x)z^{p-i}$$

be a unitary pseudopolynomial, $\Delta(x)$ its discriminant, $\Delta \neq 0$. Assume that all the $c_j(x)$ are defined in a polycylinder $D \in \mathbb{C}_x^n$, and let Z be a disc in \mathbb{C}_x such that the set

$$V = \{(x, z) \in D \times \mathbb{C}_z : P(x, z) = 0\}$$

is contained in $D \times Z$. Let $x_0 \in D$ and $\Delta(x_0) \neq 0$. Then

$$\pi_1(\{x_0\}\times Z\setminus V) \rightarrow \pi_1(D\times Z\setminus V)$$

is an epimorphism.

Lemma 2.5. Let $Q=x_n^q+\sum_{i=1}^q d_i(x')x_n^{q-i}$ be a distinguished pseudopolynomial, $\Delta^0(x')$ its reduced discriminant, and κ the multiplicity of Δ^0 at zero. Let $\epsilon=(\epsilon',\epsilon_n)\in \mathbf{R}_+^n$, and let D_ϵ be a polycylinder in \mathbf{C}^n with center at zero and polyradius ϵ such that

all the $d_i(x')$ are defined in the polycylinder $D_{\epsilon'} \subset C_{x'}^{n-1}$ and $Q(x', x_n) \neq 0$ for $x' \in D_{\epsilon'}$, $|x_n| = \epsilon_n$. Then there exists an $m = m(q, \kappa)$ such that the mapping

$$\pi_1\left(\left\{x \in D_{\varepsilon}, |Q(x)| > |x|^m\right\}\right) \to \pi_1\left(\left\{x \in D_{\varepsilon}, Q(x) \neq 0\right\}\right)$$

is surjective.

Proof. We choose a > 0 such that the set $A = \{x' : |\Delta^0(x')| > a|x'|^K\}$ ajoins zero. From Lemma 2.3 applied to Q it follows that for sufficiently small $x'_0 \in A$ and $m = m(q, \kappa)$ the mapping

$$\pi_{1}(\{x_{n}: |x_{n}| < \varepsilon_{n}, |Q(x_{0}', x_{n})| > |(x_{0}', x_{n})|^{m}\})$$

$$\rightarrow \pi_{1}(\{x_{n}: |x_{n}| < \varepsilon_{n}, |Q(x_{0}', x_{n}) \neq 0\})$$

is surjective. If, moreover, $x'_0 \in D_{\epsilon'}$, then the mapping

$$\pi_1(\lbrace x_n: |x_n| < \varepsilon_n, Q(x_0', x_n) \neq 0 \rbrace) \rightarrow \pi_1(\lbrace x \in D_{\varepsilon}, Q(x) \neq 0 \rbrace)$$

is surjective by Lemma 2.4 applied to $Q^{(0)}$, from which the assertion of the lemma follows.

Definition 2.6. A distinguished pseudopolynomial $Q = x_n^q + \sum_{i=1}^q d_i(x')x_n^{q-i}$ is said to be regular if its multiplicity at zero is equal to q.

Lemma 2.7. Let $\Delta(x)$ be an analytic function in a neighborhood of zero in \mathbb{C}^n , and let $Q=x_n^q+\sum_{1}^q d_i(x')x_n^{q-i}$ be a distinguished pseudopolynomial equivalent to Δ . Assume that Q is regular. Let $\Delta_1(x)\in\mathbb{C}\{x\}$ and $\Delta_1(x)-\Delta(x)\in\mathbb{m}^r$, r>q, and let Q_1 be a distinguished pseudopolynomial equivalent to Δ_1 . Then $Q-Q_1\in\mathbb{m}^r$.

The proof is trivial.

Lemma 2.8. Let $\Delta(x)$ and $\Phi(x)$ be analytic functions in a neighborhood of zero in \mathbb{C}^n , q the multiplicity of $\Delta(x)$ at zero, m > q, and $A = \{x : |\Delta(x)| > |x|^m\}$. If for some C > 0 we have $|\Phi(x)| < C|x|^r$ for some sufficiently small $x \in A$, then $\Phi(x) \in \mathbb{R}^r$.

The proof is trivial.

We fix the following notation:

 $P = z^p + \sum_{i=1}^{p} c_i(x) z^{p-i}$ is a distinguished pseudopolynomial without multiple factors;

 $\Delta(x)$ is the discriminant of P;

q is the multiplicity of Δ at zero;

 (x', x_n) is a basis of \mathbb{C}^n such that $\Delta(0, x_n) \sim x_n^q$.

 $Q = x_n^q + \sum_{i=1}^q d_i(x')x_n^{q-i}$ is a regular pseudopolynomial equivalent to Δ ;

 D_{ϵ} is a polycylinder in \mathbb{C}^n satisfying the conditions of Lemma 2.5;

 $\Delta^{0}(x')$ is the reduced discriminant of Q;

 κ is the multiplicity of Δ^0 at zero;

 $\rho: \mathbb{C}^{n+1}_{x,z} \to \mathbb{C}^n_x$ is the projection.

Theorem 2.9. Let $F = z^p + \sum_{i=1}^{p} f_i(x) z^{p-i}$ and $S = z^s + \sum_{i=1}^{s} b_i(x) z^{s-i}$ be distinguished

pseudopolynomials, $\Delta_1(x)$ the discriminant of F, and $\{R_j(F,S)\}$ the complete resultant of F and S (cf. Definition 1.11). There exist numbers $r_0 = r_0(p,q,\kappa)$ and $r_1 = r_1(p,q,\kappa)$ satisfying the following conditions:

- a) If $F P \in \mathbb{M}^r$ $(r \ge r_0)$ and $R_j(F, S) \in \mathbb{M}^{jr}$ for $j = 1, \dots, s$, then there exists a distinguished pseudopolynomial T such that $P : T^{(0)}$ and $T S \in \mathbb{M}[(r p + 1)/p]$.
- b) If $F P \in \mathfrak{m}^r$ $(r \ge r_1)$ and the multiplicaties at zero of the sets $\{\Delta = 0\}$ and $\{\Delta_1 = 0\}$ coincide, then there exist decompositions $P = \prod P_j$ and $F = \prod F_j$ into irreducible factors such that $P_j F_j \in \mathfrak{m}[(r p + 1)/p]$ for all j.

Proof. Apply Lemma 2.5 to the pseudopolynomial Q. We obtain a number $m_1 = m_1(q, \kappa)$ and a set $U = \{x \in D_{\epsilon}, |Q(x)| > |x|^{m_1}\}$ such that $\pi_1(U)$ generates $\pi_1(\{x \in D_{\epsilon}, Q(x) \neq 0\})$.

Now we apply Lemma 2.3 to the pseudopolynomial P, its discriminant $\Delta = \Delta^0(P)$ and the number $l = \max(m_1, q + 1)$ such that the set

$$A = \{x : |\Delta(x)| > a |x|^{l}\}$$

contains U. We obtain a number $m_2 = m_2(p, q, m_1)$ such that for every point (x, z) of the set $B \cap \rho^{-1}(A)$, where

$$B = \{(x, z) : |P(x, z)| < |x|^{m_2}\},\$$

the root $(x, \phi(x, z))$ of the pseudopolynomial P "close to it" is uniquely determined. Obviously the function $\phi(x, z)$ is continuous in $B \cap \rho^{-1}(A)$.

Suppose the condition of a) holds. Put $r_0 = m_2 + p$. Consider the polynomial $t^s + \sum_{j=1}^{s} R_j(F, S) t^{s-j}$. By Lemma 1.8 its roots (i.e. the values of F on the roots of S) are bounded in modulus by $2 \max_{j} |R_j(F, S)|^{1/j} < \alpha |x|^r$ (as always it is assumed that x is sufficiently small). But if $|F(x, z)| < |x|^r$, then

$$|P(x,z)| \le |F(x,z)| + |\sum_{i} (c_i - f_i) z^{p-i}| < \beta |x|^{p-p+1}$$
 (2.1)

(since $c_i(x) - f_i(x) \in \mathbb{R}^{r-p+i}$, $i = 1, \dots, p$). Therefore $|P(x, z)| < |x|^{m/2}$ on the roots of S (since $m_2 = r_0 - p < r - p + 1$). Hence the set $\{S = 0\}$ is contained in B, and we can define a continuous map

$$\tilde{\varphi}: (\{S=0\} \cap \rho^{-1}(A)) \to (\{P=0\} \cap \rho^{-1}(A)),$$

where $\check{\phi}(x,z)=(x,\phi(x,z))$. Put $V=A\cap\{\Delta^0(S)\neq 0\}$. Then $\{S=0\}\cap\rho^{-1}(V)$ and $\{P=0\}\cap\rho^{-1}(V)$ are coverings of V, and $\check{\phi}$ is a continuous mapping of the coverings. Let L be the image of the mapping $\check{\phi}$. Then L is also a covering of V. Furthermore, $\pi_1(V)$ generates $\pi_1(\{\Delta\neq 0\})$, since $\pi_1(U)$ generates $\pi_1(\{\Delta\neq 0\})$, $U\subset A$, $V=A\setminus\{\Delta^0(S)=0\}$, and $\operatorname{codim}_C\{\Delta^0(S)=0\}=1$. Therefore the set $L\subset\{P=0\}$ is invariant under the action of $\pi_1(\{\Delta\neq 0\})$ on the roots of P. From this, as is well known, it follows that there exists a distinguished pseudopolynomial without multiple factors $T^{(0)}$ such that $P:T^{(0)}$ and

$$\{T^{(0)}=0\} \cap \rho^{-1}(V)=L.$$

Let $T^{(0)} = \Pi T_j^{(0)}$ be a decomposition of $T^{(0)}$ into multiple factors, and let $L_j = \{T_j^{(0)} = 0\} \cap \rho^{-1}(V)$. Let W_{jl} be the connected components of the cover $\check{\phi}^{-1}(L_j)$. Then we can define the multiplicity ν_{jl} of the mapping $\check{\phi} \colon W_{jl} \to L_j$ and the multiplicity μ_{jl} of the pseudopolynomial S at the points $(x, z) \in W_{jl}$. Put $T = \prod_{j,l} T_j^{\mu_{jl}\nu_{jl}}$. Obviously, deg T = s. For the proof of a) it remains to show that $S - T \in \mathfrak{m}^{\lfloor (r-p+1)/p \rfloor}$.

Let $x \in V$ and let $z_j(x)$ and $z_j'(x)$ be the roots (counting multiplicities) of the polynomials S(x, z) and T(x, z) respectively. We may assume that $z_j'(x) = \phi(x, z_j(x))$. Furthermore, it follows from (2.1) that $|P(x, z)| \le \beta |x|^{r-p+1}$ on the roots of S. Therefore

$$\max \operatorname{dist}(z_j(x), \{P=0\} \cap \rho^{-1}(x)) \leqslant \gamma |x|^{\frac{r-p+1}{p}}.$$

But, since z_i' is the root of P closest to $z_i(x)$,

$$|z_j(x) - z_j(x)| \leqslant \gamma |x|^{\frac{p-p+1}{p}}. \tag{2.2}$$

Therefore for $x \in V$ and $|z| \le 1$ we have

$$|S(x,z)-T(x,z)| \leqslant c|x|^{\frac{r-p+1}{p}}.$$

By continuity this inequality is also true for all $x \in A$. Since l > q, it follows from Lemma 2.8 that $S - T \in \mathfrak{m}^{\lfloor (r-p+1)/p \rfloor}$.

Suppose the condition of b) holds. Put $r_1 = \max(r_0, p + q\kappa, l + p)$. Since f_i , $c_i \in \mathbb{R}^{r-p+i}$, and the discriminant is a polynomial of the coefficients, it follows that $\Delta_1 - \Delta \in \mathbb{R}^{r-p+i}$. Since $r-p+1 > r_0-p \ge q$ and Q is a regular pseudopolynomial, by Lemma 2.7

$$\Delta_1(x) \sim Q_1(x', x_n) = x_n^q + \sum_{i=1}^q d_i^{(1)}(x') x_n^{q-i},$$

where $Q_1 - Q \in \mathbb{m}^{r-p+1}$. In particular, Q_1 is also a regular pseudopolynomial. Therefore d_i , $d_i^{(1)} \in \mathbb{m}^i$. Since, moreover, $d_i - d_i^{(1)} \in \mathbb{m}^{r-p+1-q+i}$, there exists a constant c_1 such that

$$|d_i(x')| < (c_1|x'|)^l$$
, $|d_i^{(1)}(x')| < (c_1|x'|)^l$,
 $|d_i(x') - d_i^{(1)}(x')| < (c_1|x'|)^l |x'|^{r-p+1-q}$

for sufficiently small x' and $i=1,\dots,q$. Put $K(x')=c_1|x'|$ and $\delta(x')=|x'|^{r-p+1-q}$. From Lemma 1.9 it follows that for each x' the roots $y_{\nu}(x')$ and $y_{\nu}^{(1)}(x')$ of the polynomials $Q(x',x_n)$ and $Q_1(x',x_n)$ can be numbered so that

$$|y_{\mathbf{v}}(x') - y_{\mathbf{v}}^{(1)}(x')| < c_2 |x'|^{\frac{r-p+1}{q}}.$$
 (2.3)

Furthermore, since Q and Q_1 are regular pseudopolynomials, the line $\{x'=0\}$

does not belong to the tangent cone of the sets $\{Q=0\}$ and $\{Q_1=0\}$. Therefore the pseudopolynomials $Q^{(0)}$ and $Q_1^{(0)}$ are also regular, and, since the multiplicities at zero of the sets $\{Q=0\}$ and $\{Q_1=0\}$ coincide, $\deg Q^{(0)}=\deg Q_1^{(0)}$. Since the sets of roots of the polynomials $Q^{(0)}$ and $Q_1^{(0)}$ coincide with the sets of roots of Q and Q_1 respectively, it follows from (2.3) that

$$|\Delta^{0} - \Delta^{0}(Q_{1})| = |\Delta(Q^{(0)}) - \Delta(Q_{1}^{(0)})| < c_{3} |x'|^{\frac{r-p+1}{q}}.$$
 (2.4)

But since $r \ge r_1 \ge p + q\kappa$, it follows from this that the multiplicity of $\Delta^0(Q_1)$ at zero is equal to κ .

We now turn to the start of the proof of the theorem. Applying Lemma 2.4 to Q_1 , we obtain a set $U_1 = \{x \in D_\epsilon, |Q_1(x)| > |x|^{m_1} \}$, whose fundamental group generates $\pi_1(\{x \in D_\epsilon, Q_1(x) \neq 0\})$. Furthermore, since $\Delta_1 - \Delta \in \mathfrak{m}^{r-p+1}$ and $r \geq r_1 \geq l+p$, we may assume that the set A contains U_1 . Now we act as in the proof of part a), taking S = F. We obtain a mapping

$$\widetilde{\varphi}: (\{F=0\} \cap \rho^{-1}(V)) \to (\{P=0\} \cap \rho^{-1}(V)).$$

Let $(x, z) \in \{F = 0\} \cap \rho^{-1}(U_1)$. Since $P(x, \phi(x, z)) = 0$, we have

$$|F(x, \varphi(x, z))| \le c|x|^{r-p+1} < |x|^{m_z}$$

(this estimate is obtained in the same way as (2.1)). From Lemma 2.3 applied to F it follows that

$$|z-\varphi(x,z)| < \frac{1}{2} \min_{i\neq j} |z_i(x)-z_j(x)|,$$

if $x \in U_1$ is sufficiently small. (Here $z_i(x)$ are the roots of the polynomial F(x,z).) Therefore the mapping $\check{\phi}$ is an isomorphism of coverings over U_1 , and hence also over V. Since $\pi_1(V)$ generates $\pi_1(\{\Delta \neq 0\})$ and $\pi_1(\{\Delta_1 \neq 0\})$, the mapping $\check{\phi}$ establishes a one-to-one correspondence between the irreducible factors F_j of the pseudopolynomial F and the irreducible factors P_j of the pseudopolynomial P. From (2.2) it follows that $F_j - P_j \in \mathfrak{m}^{\lfloor (r-p+1)/p \rfloor}$.

The theorem is proved.

§3. Branching of formal series

We shall use the notation of $\S 2.1$, which extends in a natural way to formal power series.

Lemma 3.1. Let $\overline{P}=z^p+\sum_1^p\overline{c}_i(x)z^{p-i}$ be a formal (i.e. $\overline{c}_i(x)\in C[[x]]$) disting-guished pseudopolynomial without multiple factors, $\overline{\Delta}(x)$ its discriminant. There exists a sequence of analytic pseudopolynomials $P_j=z^p+\sum_1^pc_{ij}z^{p-i}$ converging to \overline{P} in the Krull topology and satisfying the following condition:

Let $x = (x', x_n)$ be a basis of \mathbb{C}^n such that

$$\overline{\Delta}(x) \sim \overline{Q}(x', x_n) = x_n^q + \sum_{i=1}^q \overline{d}_i(x') x_n^{q-i},$$

where \overline{Q} is a regular pseudopolynomial. Then for sufficiently large j the discriminants $\Delta_j(x)$ of the pseudopolynomials P_j are equivalent to the regular pseudopolynomials $Q_j(x',x_n)=x_n^q+\sum_{1}^q d_{ij}(x')x_n^{q-i}$, and the sequence $Q_j^{(0)}$ converges to $\overline{Q}^{(0)}$ in the Krull topology.

Proof. We write $\overline{\Delta}(x)$ as a polynomial in the coefficients of \overline{P} :

$$\overline{\Delta}(x) = \Delta(\overline{c_i}(x)).$$

Furthermore, let $\overline{\Delta}(x) = \Pi(\overline{\Delta}_{\nu}(x))^{\mu_{\nu}}$ be a decomposition of $\overline{\Delta}$ into irreducible factors. Consider the equality

$$\Delta\left(c_{i}\right) = \prod_{v} \Delta_{v}^{\mu_{v}} \tag{3.1}$$

as an equation in the unknowns c_i and Δ_{ν} , whose formal solution is $(\overline{c}_i(x), \overline{\Delta}_{\nu}(x))$. By Artin's theorem on the approximation of formal solutions by analytic ones [1], there exists a sequence $(c_{ij}(x), \Delta_{\nu j}(x))_{j \in \mathbb{N}}$ of analytic solutions of the equation (3.1), converging to $(\overline{c}_i(x), \overline{\Delta}_{\nu}(x))$ in the Krull topology. Put $P_j = z^p + \sum_{1}^p c_{ij}(x) z^{p-i}$. From (3.1) it then follows that $\Delta_i(x) = \prod_{\nu} (\Delta_{\nu i}(x))^{\mu \nu}$ is the discriminant of P_i .

Since $\overline{\Delta}(x) \sim \overline{Q}(x', x_n)$, where \overline{Q} is a regular pseudopolynomial, we have $\overline{\Delta}_{\nu}(x) \sim \overline{Q}_{\nu}(x', x_n)$, where \overline{Q}_{ν} are regular pseudopolynomials. From Lemma 2.7 (which is of course also true for formal series) it follows that for sufficiently large j

$$\Delta_{\nu j} \sim Q_{\nu j}(x', x_n),$$

where $Q_{\nu j}$ are regular pseudopolynomials, and $Q_{\nu j} \to \overline{Q}_{\nu}$ in the Krull topology. But since \overline{Q}_{ν} is an irreducible pseudopolynomial, $\Delta(\overline{Q}_{\nu}) \not\equiv 0$. Therefore $\Delta(Q_{\nu j}) \not\equiv 0$ for sufficiently large j. Hence $Q_{\nu j}$ (and hence also $\Delta_{\nu j}$) does not contain multiple factors. Since $\Delta_{j} \sim Q_{j} = \Pi_{\nu} Q_{\nu j}^{\ \mu \nu}$, it follows from this that

$$Q_j^{(0)} = \prod_{\nu} Q_{\nu j} \rightarrow \prod_{\nu} \overline{Q}_{\nu} = \overline{Q}^{(0)},$$

as required.

Theorem 3.2. Let $P_j = z^p + \sum_{1}^p c_{ij}(x)z^{p-i}$ be a sequence of analytic pseudopolynomials convergent to a formal pseudopolynomial \overline{P} without multiple factors and satisfying the condition of Lemma 3.1, and let $\overline{P} = \Pi \overline{P}_l$ be a decomposition of \overline{P} into irreducible factors. Then for sufficiently large j there exist decompositions $P_j = \Pi P_{jl}$ of the P_j into irreducible factors such that $P_{il} \to \overline{P}_l$ in the Krull topology.

Proof. Since $Q_i^{(0)}$ converges to $\overline{Q}^{(0)}$ in the Krull topology,

$$\Delta^{0}(Q_{i}) = \Delta(Q_{i}^{(0)}) \to \Delta(\overline{Q}^{(0)}) = \Delta^{0}(\overline{Q}).$$

Let κ be the multiplicity of $\Delta^0(\overline{Q})$. Then for sufficiently large j the multiplicities of all the $\Delta^0(Q_j)$ are equal to κ .

Let j_0 be an index such that for all $j \ge j_0$ the multiplicity of $\Delta^0(Q_j)$ is equal to κ and $P_j - \overline{P} \in \mathfrak{m}^{r_1(p,q,\kappa)}$ (cf. Theorem 2.9), and let j and l be $\ge j_0$. From Theorem

2.9b) applied to $P=P_j$ and $F=P_l$ it then follows that if $P_j-P_l\in m'$, then there exist decompositions into irreducible factors $P_j=\prod P_{jk}$ and $P_l=\prod P_{lk}$ such that $P_{jk}-P_{lk}\in m^{\lfloor (r-p+1)/p\rfloor}$. Therefore the decompositions into factors of the pseudopolynomials P_j converge in the Krull topology to some decomposition $\overline{P}=\prod \overline{P}_k$ of \overline{P} . Moreover, if $P_j-\overline{P}\in m'$, we may assume that $P_{jk}-\overline{P}_k\in m^{\lfloor (r-p+1)/p\rfloor}$. To prove the theorem it remains to show that the \overline{P}_k are irreducible. Assume that for some k there exists a nontrivial decomposition into factors $\overline{P}_k=\overline{S}_1\overline{S}_2$, where \overline{S}_1 and \overline{S}_2 are distinguished pseudopolynomials. Let j be an index such that the multiplicity of $\Delta^0(Q_j)$ equals κ and $\overline{P}_{jk}-\overline{P}_k\in m^{r_0(p,q,\kappa)}$. Since P_{jk} is a divisor of P_j , $\Delta(P_{jk})$ is a divisor of Δ_j . Therefore the multiplicity of $\Delta(P_{jk})$ does not exceed q. Furthermore, since Q_j is a regular pseudopolynomial, the line $\{x'=0\}$ does not belong to the tangent cone of the set $\{\Delta_j(x)=0\}$, and hence it also does not belong to the tangent cone of the set $\{\Delta_j(x)=0\}$. Therefore $\Delta(P_{jk})\sim Q_{jk}$, where Q_j is a regular pseudopolynomial of degree at most q. Since Q_j is a divisor of Q_j , $\Delta^0(Q_j)$ is a divisor of $\Delta^0(Q_j)$. Therefore the multiplicity of $\Delta^0(Q_j)$ is at most κ .

Now we apply Theorem 2.9a) to $P = P_{jk}$, $F = \tilde{S}_1 \tilde{S}_2$ and $S = \tilde{S}_1$, where the \tilde{S}_i (i = 1, 2) are pseudopolynomials with coefficients in C[x],

$$\tilde{S}_i \equiv \overline{S}_i \mod \mathbf{m}^{r_\bullet(\rho,q,\mathbf{x})}$$
.

(Obviously $P_{jk} - \check{S}_1 \check{S}_2 \in \mathfrak{m}^{r_0}$ and $R_1(\check{S}_1 \check{S}_2, \check{S}_1) \equiv 0$ for $l = 1, \cdots, \deg \check{S}_1$.) We obtain a distinguished pseudopolynomial T such that $P_{jk} : T^{(0)}$ and $\deg T = \deg \check{S}_1$. But $\deg \check{S}_1 = \deg \bar{S}_1$; therefore $0 \leq \det T \leq \deg \bar{P}_k = \deg P_{jk}$. Thus $T^{(0)}$ is a nontrivial divisor of P_{jk} , and we are led to a contradiction with the nonirreducibility of P_{jk} .

§4. Formal relations between analytic functions

Lemma 4.1. Let $P=z^p+\sum_1^p c_i(x_1,x_2)z^{p-i}$ be a unitary analytic pseudopolynomial. Assume that $\Delta(P)\sim x_1^{\mu_1}x_2^{\mu_2}$. Let V be an open set in \mathbb{C}^2 , containing some deleted neighborhood of zero $\{0<|x_1|<\epsilon\}$ in the set $\{x_2=0\}$, and for $(x_1,x_2)\in V$ let

$$P(x_1, x_2, z) = T(x_1, x_2, z) \cdot H(x_1, x_2, z),$$

where T and H are unitary pseudopolynomials whose coefficients are analytic in V. Then there exist analytic pseudopolynomials \check{T} and \check{H} such that $P=\check{T}\cdot\check{H}$ and $\check{T}\big|_V=T$, $\check{H}\big|_V=H$.

Proof. Let $D = \{|x_1| < \epsilon_1, |x_2| < \epsilon_2\}$ be a bicylinder such that $D \cap \{x_2 = 0\} \subset V$, all the coefficients of P are defined and analytic in D and $\Delta(P) = x_1^{\mu_1} x_2^{\mu_2} G(x_1, x_2)$, where $G(x_1, x_2) \neq 0$ in D. If ϵ_2 is small enough, then the circles $\gamma_1 = \{|x_1| = \epsilon_1/2, x_2 = \epsilon_2/2\}$ and $\gamma_2 = \{x_1 = \epsilon_1/2, |x_2| = \epsilon_2/2\}$ are contained in V. The assertion of the lemma now follows from the fact that γ_1 and γ_2 are generators of the group $\pi_1(D \setminus \{\Delta(P) = 0\})$.

Lemma 4.2. Let $x = (x_1, \dots, x_m)$ and $y = (y_1, \dots, y_n)$, and let $\phi : \mathbb{C}[[y]] \to \mathbb{C}[[x]]$ be a homomorphism of rings, $\phi(y_i) = f_i(x)$. If the rank (in the ring $\mathbb{C}[[x]]$) of the matrix $J_{\phi} = (\partial_{i}(x)/\partial x_{i})$ equals n, then ϕ is a closed imbedding in the Krull topology.

Proof. It suffices to show that ϕ is an imbedding, since the closedness follows from the linear compactness of the ring C[[y]] (cf. [5], Chapter III, §2). Assume that $\ker \phi \neq 0$. Let k be the greatest number such that $\ker \phi \in \mathfrak{m}^k$. Then there exists a formal series $P(y) \in \ker \phi$, not belonging to \mathfrak{m}^{k+1} . We may assume that $\partial P/\partial y_1 \notin \mathfrak{m}^k$, and so $\phi(\partial P/\partial y_1) \neq 0$ in C[[x]]. We define a ring homomorphism $\psi \colon C[[x]] \to C[[y]]$ according to the formula $\psi(z_1) = P(y), \psi(z_i) = y_i$ ($i = 2, \cdots, n$). Since $\phi \psi(z_1) = 0$, the first row of the matrix $J_{\phi\psi}$ is zero, and in particular the rank of $J_{\phi\psi}$ is less than n. On the other hand, $J_{\phi\psi} = \phi(J_{\psi}) \cdot J_{\phi}$ (cf. [5], Chapter III, §4). Since $\det \phi(J_{\psi}) = \phi(\partial P/\partial y_1) \neq 0$, we have rank $J_{\phi} = \operatorname{rank} J_{\phi\psi} \leq n$, which contradicts the hypothesis.

Let $f: \mathbb{C}^m_x \to \mathbb{C}^n_y$ be an analytic map. Denote by f^* the ring homomorphism $\mathbb{C}[y] \to \mathbb{C}[x]$ defined by the map f, and by \hat{f}^* the corresponding homomorphism $\mathbb{C}[[y]] \to \mathbb{C}[[x]]$.

Lemma 4.3. Let $f: \mathbb{C}_x^2 \to \mathbb{C}_y^2$ be an analytic map defined by the formula $y_1 = x_1 F(x_2)$, $y_2 = x_2$, where F(0) = 0. Let $\overline{P}(y, z)$ be a formal pseudopolynomial (in z) without multiple factors, and $P_j(y, z)$ a sequence of analytic pseudopolynomials converging to \overline{P} and satisfying the hypothesis of Lemma 3.1. Then the sequence $P_j(f(x), z)$, converging to $\overline{P}(f(x), z)$, satisfies the condition of Lemma 3.1.

Proof. By hypothesis there exists a basis of C_y^2 in which the discriminants $\overline{\Delta}(y)$ and $\Delta_j(y)$ of the pseudopolynomials $\overline{P}(y,z)$ and $P_j(y,z)$ are equivalent to regular pseudopolynomials $\overline{Q}(y)$ and $Q_j(y)$, and $Q_j^{(0)} \to \overline{Q}^{(0)}$ in the Krull topology (here and later on it is assumed that j is sufficiently large). Hence $\int_j^* Q_j^{(0)} \to \int_j^* \overline{Q}^{(0)}$ in the (x_2) -adic topology. Let $\int_j^* \overline{Q}^{(0)} = x_2^k \overline{\psi}(x)$, where $\overline{\psi}(x) \notin (x_2)$. Then $\int_j^* Q_j^{(0)} = x_2^k \psi_j(x)$, where $\psi_j(x) \notin (x_2)$, and $\psi_j \to \overline{\psi}$. We shall show that $\overline{\psi}$ does not contain multiple factors.

Since $\overline{Q}^{(0)}$ is a formal series without multiple factors, the ideal $(\partial \overline{Q}^{(0)}/\partial y_1, \partial \overline{Q}^{(0)}/\partial y_2)$ contains some power of the maximal ideal. Hence the ideal $(f^*(\partial \overline{Q}^{(0)}/\partial y_1), f^*(\partial \overline{Q}^{(0)}/\partial y_2))$ contains some power of the ideal (x_2) . From the formula for the derivatives of the function $f^*(\overline{Q}^{(0)})$ it then follows that the ideal

$$\left(\frac{\partial}{\partial x_1}(f^{\bullet}\overline{Q}^{(0)}), \frac{\partial}{\partial x_2}(f^{\bullet}\overline{Q}^{(0)})\right)$$

contains some power of the ideal (x_2) . Therefore the derivatives of the function $\int_{0}^{*} \overline{Q}^{(0)}$ cannot have a common factor that is not divisible by x_2 , from which it follows that $\overline{\psi}$ does not contain multiple factors.

Now let (x_1', x_2) be a basis in C_x^2 in which $f^*\overline{\Delta} \sim \overline{R}(x_1', x_2)$, where \overline{R} is a regular pseudopolynomial (in x_2). Since $f^*\overline{\Delta} : \overline{\psi}$, it follows that $\overline{\psi} \sim \overline{T}(x_1', x_2)$, where \overline{T} is a regular pseudopolynomial. Since $\overline{\psi}$ contains no multiple factors and is not divisible by x_2 , we have $\overline{R}^{(0)} = x_2 \overline{T}$. Furthermore, from Lemma 2.7 it follows that $f^*\Delta_j \sim$

 $R_j(x_1',x_2)$ and $\psi_j \sim T_j(x_1',x_2)$, where R_j and T_j are regular pseudopolynomials, where $T_j \to \overline{T}$. Since \overline{T} is a pseudopolynomial without multiple factors, $\Delta(\overline{T}) \not\equiv 0$. Since $\Delta(T_j) \to \Delta(\overline{T})$, we have $\Delta(T_j) \not\equiv 0$, i.e. the T_j are pseudopolynomials without multiple factors. But since $\overline{T} \not\in (x_2)$ and $T_j \to \overline{T}$, we see that $T_j \not\in (x_2)$. Therefore $R_j^{(0)} = x_2 T_j$, and hence $R_j^{(0)} \to \overline{R}^{(0)}$, as required.

Theorem 4.4. Let $f: C_{x,t}^2 \to C_{y_1,y_2,z}^3$ be the mapping defined by the formula $y_1 = x$, $y_2 = xt$, z = f(x, t), where $f(x, t) \in C\{x, t\}$, $f(0, t) \equiv 0$; and let $\overline{P}(y, z) = z^p + \sum_{1}^{p} \overline{c}_i(y) z^{p-i}$ be a formal distinguished pseudopolynomial belonging to ket \hat{f}^* . Then there exists an analytic distinguished pseudopolynomial of degree at most p belonging to ket f^* .

Proof. 1. If $\overline{P} \in \ker \widehat{f}^*$, then also $\overline{P}^{(0)} \in \ker \widehat{f}^*$. Therefore we may assume that \overline{P} is a pseudopolynomial without multiple factors and its discriminant $\overline{\Delta}(y)$ is different from zero in $\mathbb{C}[[y]]$.

As is well known, the singularities of the ideal can be resolved by a finite number of σ -processes with centers at points. More precisely, we have the following assertion.

There exists a finite sequence of complex algebraic varieties X_{ν} $(0 \le \nu \le N)$ and regular maps $\phi_{\nu}: X_{\nu+1} \to X_{\nu}$ $(0 \le \nu \le N-1)$ satisfying the following conditions:

- 1) $X_0 = \mathbb{C}_{\nu}^2$, and $\phi_0^{-1}: \mathbb{C}_{\nu}^2 \to X_1$ is a σ -process with center at zero.
- 2) Each map $\phi_{\nu}^{-1}: X_{\nu} \to X_{\nu+1}$ $(1 \le \nu \le N-1)$ is a σ -process with center at the point $y_{\nu} \in X_{\nu}$, $\phi_0 \cdots \phi_{\nu-1}(y_{\nu}) = 0$.
- 3) Put $X = X_N$ and $\phi = \phi_0 \cdots \phi_{N-1}$. At each point $x \in X$ there exist formal coordinates (x_1, x_2) such that $\widehat{\phi}^*(\overline{\Delta}) \sim x_1^{\mu_1} x_2^{\mu_2}$.

Obviously ϕ is a proper map, $\phi^{-1}(0)$ is a connected "graph" of the projective lines W_{ν} pasted in under the σ -processes ϕ_{ν}^{-1} , and the mapping $\phi: X \setminus \phi^{-1}(0) \to \mathbb{C}^2_{\nu} \setminus \{0\}$ is biregular.

We consider the map $\phi_0: X_1 \to \mathbb{C}^2_y$. The variety X_1 is a subvariety of $\mathbb{C}P^1 \times \mathbb{C}^2$ and is defined by the equation $t_1y_1 = t_0y_2$ (here (t_0, t_1) are homogeneous coordinates in $\mathbb{C}P^1$, and (y_1, y_2) are coordinates in \mathbb{C}^2). Put $U = X_1 \setminus \{t_0 = 0\}$. Then U is an affine variety with coordinates $(x' = y_1, t' = t_1/t_0)$ and $\phi_0|_{U} = (x', t'x')$.

Consider the formal pseudopolynomial

$$\hat{\varphi}_0^* \overline{P}(x',t',z) = z^{\rho} + \sum_{i=1}^{\rho} \hat{\varphi}_0^*(\overline{c}_i) z^{\rho-i}.$$

Obviously

$$\widehat{\varphi}_{\mathbf{e}}^{\star}\overline{P}\left(\mathbf{x}',t',f\left(\mathbf{x}',t'\right)\right)=\widehat{\mathbf{f}}^{\star}\overline{P}\equiv0. \tag{4.1}$$

Furthermore, for every series $\overline{c}(y) = \sum_{i,j} y_1^i y_2^j \in \mathbb{C}[[y]]$ the series $\hat{\phi}_0^* \overline{c} =$

 $\sum_{i,j} x'^{i+j} t'^{j}$ belongs to $\mathfrak{U}_{x',t'}$. Therefore $\hat{\phi}_{0}^{*} \overline{P}(x',t',z) \in \mathfrak{U}_{x',t'}[z]$.

Analogously one can show that if $y \in \phi^{-1}(0)$ is an arbitrary point, $y \in W_{\nu}$, and $V \cong \mathbb{C}^1$ is an affine neighborhood of the point y in W_{ν} , then there exist an affine neighborhood $U \cong \mathbb{C}^2$ of y in X and coordinates (x, t) in U such that

$$V = \{(x,t) \subset U, x = 0\} \text{ and } \hat{\varphi}^* \bar{P}|_{U} \subset \mathfrak{U}_{x,t}[z]. \tag{4.2}$$

2. Put $\check{f} = \phi_{N-1}^* \cdots \phi_1^* f$ (we assume that f(x', t') is defined in an open set in X_1). Then \check{f} is analytic in a neighborhood U_0 of some point $y \in W_0$.

Let $V \subset W_0$ and $U \subseteq X$ be affine neighborhoods of the point y, and let (x, t) be coordinates in U satisfying the conditions (4.2). From (4.1) it follows that $\hat{\phi}^* \overline{P}(x, t, \check{f}(x, t)) \equiv 0$.

We apply Theorem 1.13. We obtain an analytic function $\psi(t)$ in an open set $V_0 \subset U_0$, an irreducible polynomial in $\mathbb{C}[t,z]$

$$S(t,z)=z^{s}+\sum_{i=1}^{s}d_{i}(t)z^{s-i},$$

annihilating $\psi(t)$, polynomials F(t) and $\Delta(t)$ and functions $f_{\kappa}(x, t) \in \mathcal{X}_{x,t} \cap \mathbb{C}[x, t]$ such that

$$\check{f}(x,t) = \sum_{k=0}^{s-1} \frac{f_{\kappa}(x/F(t),t)}{\Delta(t)} \psi(t)^{\kappa}.$$
(4.3)

From the condition of the theorem it follows that $f\Big|_{\phi_0^{-1}(0)} \equiv 0$. Therefore also $\check{f}\Big|_{\phi^{-1}(0)} \equiv 0$. Hence $\check{f}(0, t) \equiv 0$. From the uniqueness of the decomposition

$$\Delta(t)\,\check{f}(0,t)=\sum_{\aleph=0}^{s-1}f_{\aleph}(0,t)\,\psi(t)^{\aleph}$$

it follows that $f_{\kappa}(0, t) \equiv 0$ for all κ , i.e.

$$f_{\kappa}(x,t) = \sum_{\nu > 0} f_{\kappa\nu}(t) x^{\nu}.$$

We put

$$f_{\varkappa}(x,t) = \sum_{v \geq 0} f_{\varkappa v}(t) \cdot \Delta(t)^{v-1} x^{v}.$$

Then

$$f_{\mathbf{x}}(\mathbf{x},t) \in \mathfrak{A}_{\mathbf{x},t} \cap \mathbb{C}\{\mathbf{x},t\} \text{ and } \check{f}(\mathbf{x},t) = \sum_{\mathbf{x}=0}^{s-1} f_{\mathbf{x}}' \left(\frac{\mathbf{x}}{F(t) \Delta(t)},t\right).$$

Replacing $F(t) \cup_{V} F(t)\Delta(t)$ and f_{κ} by f'_{κ} , we may assume that

$$\check{f}(x,t) = \sum_{\kappa=0}^{s-1} f_{\kappa} \left(\frac{x}{F(t)}, t \right) \psi(t)^{\kappa}.$$
(4.3')

Consider the mapping $\eta: \mathbb{C}^2_{\xi,\tau} \to \mathbb{C}^2_{x,t}$, defined by the formula $x = \xi F(\tau)$, $t = \tau$.

The formal pseudopolynomial $\overline{Q}(\xi, \tau, z) = \hat{\eta}^* \hat{\phi}^* \overline{P}$ vanishes when we substitute

$$z = Z(\xi, \tau) = \sum_{\kappa=0}^{s-1} f_{\kappa}(\xi, \tau) \psi(\tau)^{\kappa}.$$

Let $t_0 \in V_0 \cap V$ be a point such that $\Delta(S)(t_0) \neq 0$, and let $\psi_{\nu}(t) \in \mathbb{C}[t]$ $(\nu = 1, \dots, s)$ be the roots of S in a neighborhood of the point t_0 . We may assume $t_0 = 0$. Put

$$\mathcal{Z}_{\nu}(\xi,\tau) = \sum_{\varkappa=0}^{s-1} f_{\varkappa}(\xi,\tau) \, \psi_{\nu}(\tau)^{\varkappa}.$$

Let $Q^{(n)}(\xi, \tau, z) \in \mathbb{C}[\xi, \tau, z], Q^{(n)} \equiv \overline{Q} \mod(\xi^n)$, be unitary pseudopolynomials in z of degree p. Since $Q^{(n)} \to \overline{Q}$ in the (ξ) -adic topology, the sequence of analytic functions $Q^{(n)}(\xi, \tau, Z(\xi, \tau))$ converges to zero in the (ξ) -adic topology. Since S is an irreducible polynomial, for each ν there exists a closed path λ_{ν} in the set $\{t: \Delta(S)(t) \neq 0\}$, after a circuit of which $\psi(t)$ goes into $\psi_{\nu}(t)$. Analytically continuing the functions $Q^{(n)}(\xi, \tau, Z(\xi, \tau))$ along λ_{ν} (cf. Corollary 1.14), we obtain that the sequence $Q^{(n)}(\xi, \tau, Z_{\nu}(\xi, \tau))$ converges to zero in the (ξ) -adic topology. Hence

$$\overline{Q}(\xi, \tau, Z_{\nu}(\xi, \tau)) = 0 \tag{4.4}$$

for all v. Let

$$T' = \prod_{v} (z - Z_{v}(\xi, \tau)) \in \mathbb{C} \{\xi, \tau\} [z].$$

Obviously $T' \in \mathfrak{A}_{\xi,r}[z]$ (since its coefficients are expressed by d_i and f_{κ}). Since $\mathfrak{A}_{\xi,r}$ is integrally closed (Lemma 1.4), $T = T'^{(0)}$ also belongs to $\mathfrak{A}_{\xi,r}[z]$.

From (4.4) it follows that \overline{Q} : T in $\mathbb{C}[[\xi, \tau]][z]$, and since \overline{Q} and T belong to $\mathfrak{U}_{\xi,\tau}[z]$, then $\overline{Q} = T \cdot \overline{H}$, where \overline{H} is a unitary pseudopolynomial belonging to $\mathfrak{U}_{\xi,\tau}[z]$, and the decomposition $\overline{Q} = T \cdot \overline{H}$ occurs at every point $(0, \tau)$.

Let
$$T = z^k + \sum_{j=1}^k v_j(\xi, \tau) z^{k-j}$$
. Put

$$\eta_{\bullet}T = z^{k} + \sum_{l=1}^{k} v_{l}(x/F(l), t)z^{k-l}.$$

We wish to prove that all the coefficients of the pseudopolynomial η_*T are analytically continued into a neighborhood of the set $\{x=0\}$ and at every point $(0, t_0)$ we have that $\hat{\phi}^*\overline{P} : \eta_*T$ in the ring $\mathbb{C}[[x, t]][z]$.

Let $P_j(y,z) = z^p + \sum c_{ji}(y)z^{p-i}$ be a sequence of analytic pseudopolynomials converging to \overline{P} and satisfying the conditions of Lemma 3.1. From Lemma 4.3 it follows that the sequence $\hat{\phi}^*P_j$, converging to $\phi^*\overline{P}$, also satisfies the conditions of Lemma 3.1. Now let t_0 be an arbitrary point in V. Replacing t by $t-t_0$, we may assume $t_0=0$. If $F(0)\neq 0$, then η_*T is obviously analytic at t_0 .

Suppose F(0) = 0. From Lemma 4.3 it follows that the sequence $Q_j = \hat{\eta}^* \hat{\phi}^* P_j$, converging to \overline{Q} , satisfies the conditions of Lemma 3.1. We apply Theorem 3.2. Since

 $\overline{Q} = T\overline{H}$, there exist sequences of unitary pseudopolynomials $\{T_j\}$ and $\{H_j\}$, convergent to T and \overline{H} respectively, such that $Q_j = T_j \cdot H_j$. Let

$$T_{j} = z^{k} + \sum_{l=1}^{k} v_{jl}(\xi, \tau) z^{k-l}, \quad H_{j} = z^{l} + \sum_{l=1}^{l} \omega_{jl}(\xi, \tau) z^{l-l},$$

where v_{ji} and w_{ji} are analytic on the set $\{|\xi| \leq \epsilon_j, |\tau| \leq \epsilon_j\}$. Put

$$\eta_{\bullet}T_{i}=z^{k}+\sum_{i=1}^{k}v_{ii}\left(\frac{x}{F(t)},t\right)z^{k-i},$$

$$\eta_{\bullet}H_{j}=z^{i}+\sum_{i=1}^{l}v_{ji}\left(\frac{x}{F(t)},t\right)z^{l-i}.$$

Then the coefficients of $\eta_* T_j$ and $\eta_* H_j$ are analytic in the open set $\{|t| < \epsilon_j, |x| < \epsilon_j |F(t)|\}$, containing the set $\{|x| = 0, 0 < |t| < \epsilon_j\}$, if ϵ_j is sufficiently small. We shall show that we can apply Lemma 4.1 to $\phi^* P_j = \eta_* T_j \cdot \eta_* H_j$.

By property 3) of the mapping ϕ there exist formal coordinates (x_1, x_2) in which $\hat{\phi}^*\overline{\Delta} \sim x_1^{\mu_1}x_2^{\mu_2}$. If $\overline{\Delta}(0) \neq 0$, then $\Delta(\phi^*P_j)(0) \neq 0$ for sufficiently large j and the conditions of Lemma 4.1 trivially hold for ϕ^*P_j . But if $\overline{\Delta}(0) = 0$, then $\overline{\phi}^*\overline{\Delta}$: t, and hence we may assume that $x_2 = t$. Since the sequence ϕ^*P_j satisfies the conditions of Lemma 3.1 and $\phi^*\Delta(P_j)$: t, it is not hard to show that for sufficiently large j there exist analytic coordinates $(x_{(j)}, t)$ such that $\phi^*\Delta(P_j) \sim x_{(j)}^{\mu_1}t^{\mu_2}$. Hence also in this case ϕ^*P_j satisfy the conditions of Lemma 4.1, i.e. all the coefficients of η_*T_j and η_*H_j are analytically continued into a neighborhood of zero. Further, since $\eta^*(\eta_*T_j) = T_j$ converges to T, and $\eta^*(\eta_*H_j)$ to \overline{H} , it then follows from Lemma 4.2 that η_*T_j and η_*H_j converge to formal pseudopolynomials R_1 and R_2 such that $\widehat{\eta}^*R_1 = T$ and $\widehat{\eta}^*R_2 = \overline{H}$.

We shall show that R_1 is an analytic pseudopolynomial. Since $\hat{\eta}^* R_1 = T$ is an analytic pseudopolynomial, it suffices to prove that

$$\hat{\eta}^{\bullet-1}(C\{\xi,\tau\}) = C\{x,t\}.$$
 (4.5)

Let $F(t) = G(t) \cdot t^{\nu}$, where $G(0) \neq 0$. Replacing t and r by $G(t)^{1/\nu}t$ and $G(r)^{1/\nu}\tau$, we reduce the mapping η to the form $x = \xi r^{\nu}$, t = r, for which assertion (4.5) is trivial.

Since $\eta^*(R_1) = T$, R_1 is an analytic continuation of η_*T in a neighborhood of zero. Since this argument applies at any point $t_0 \in T$, η_*T can be analytically continued into a neighborhood of the set $\{x = 0\}$, as required.

3. Now let $W_{\nu} = V_{\nu_1} \cup V_{\nu_2}$ be an affine cover of the projective line W_{ν} and $U_{\nu_j} \subset X$ ($\nu = 0, \cdots, N-1; j=1, 2$) be affine sets with the coefficients $(x_{(\nu_j)}, t_{(\nu_j)})$, satisfying condition (4.2) $(U_{\nu_j} \cap W_{\nu} = V_{\nu_j})$. Assume that in a neighborhood of V_{ν_j} a unitary analytic pseudopolynomial T is defined such that $\hat{\phi}^* \overline{P} : T$ in $\mathbb{C}[[x_{(\nu_j)}, t_{(\nu_j)}]]$ at every point of V_{ν_j} . Let $y \in V_{\nu_j} \cap V_{\nu'_j}$. Acting as in part 2 of the proof (with the difference that Corollary 1.15 must be used instead of Theorem 1.13), we obtain a pseudopolynomial T', analytic in a neighborhood of $V_{\nu'_j}$, such that T' : T in a

neighborhood of y and $\hat{\phi}^*\overline{P}$: T' at all points of $V_{v'j'}$. Since $\phi^{-1}(0)$ is a connected set and V_{vj} is a finite cover of $\phi^{-1}(0)$, and the degree of the pseudopolynomial does not exceed the degree of \overline{P} , after a finite number of such analytic continuations we obtain a unitary pseudopolynomial T satisfying the following conditions:

- 1) T is analytic in a neighborhood of $\phi^{-1}(0)$.
- 2) $\hat{\phi}^*P : T$ at each point of $\phi^{-1}(0)$.
- 3) T: (z-i).

Since ϕ is a proper map, it follows from 1) that there exists a unitary analytic pseudopolynomial $\phi_*T \in \mathbb{C}[y_1, y_2][z]$ such that $T = \phi^*(\phi_*T)$. It follows from 2) that $\deg T < \deg P$. It follows from 3) that

$$\varphi_{N-1}^* \cdots \varphi_1^* (\varphi_n T(x, xt, f(x, t)) \equiv 0$$

and, by Lemma 4.2, $\phi_*T(x, xt, f(x, t)) \equiv 0$, i.e. $\phi_*T \in \ker f^*$. The theorem is proved.

Definition 4.5. Let $\phi: A \to B$ be a homomorphism of local rings, and $\phi: \hat{A} \to \hat{B}$ the corresponding homomorphism of the completions. The homomorphism ϕ is called analytically regular if

$$\ker \hat{\varphi} = \hat{A} \otimes_A \ker \varphi$$
.

Lemma 4.6. Assume that A and B are analytic rings, B an integral domain. A homomorphism $\phi: A \to B$ is analytically regular if and only if

$$\dim \hat{A}/\ker \hat{\varphi} = \dim A/\ker \varphi. \tag{4.6}$$

Proof. Since $(A/\ker \phi)^{\hat{}} = \hat{A}/\hat{A} \otimes \ker \phi$, and the dimension does not change under completion, condition (4.6) is necessary for ϕ to be analytically regular.

Conversely, suppose (4.6) holds. Then

$$\coth \hat{A} \otimes \ker \varphi = \coth \ker \varphi = \coth \ker \hat{\varphi}. \tag{4.7}$$

Since $A/\ker \phi$ is an integral domain, from the theorem of Zariski and Nagata [10], Theorem 44.1) it follows that $(A/\ker \phi)$ is an integral domain, i.e. $\hat{A} \otimes \ker \phi$ is a prime ideal. Since $\hat{A} \otimes \ker \phi \subseteq \ker \hat{\phi}$, it follows from (4.7) that these ideals coincide.

Lemma 4.7. Let $\phi: A \to B$ and $\psi: B \to C$ be homomorphisms of analytic rings, C an integral domain, B integral over A. For the homomorphism $\psi \circ \phi$ to be analytically regular it is necessary and sufficient that the homomorphism ψ be analytically regular.

Proof. In fact, $B/\ker\psi$ is an integral extension of the ring $A/\ker(\psi \circ \phi)$, and $\hat{B}/\ker\hat{\psi}$ is an integral extension of $\hat{A}/\ker(\hat{\psi} \circ \hat{\phi})$. From the Cohen-Seidenberg theorem (cf. [8], Chapter III) it follows that

$$\dim A/\ker(\psi\circ\varphi)=\dim B/\ker\psi,$$

$$\dim \hat{A}/\ker(\hat{\psi} \circ \hat{\varphi}) = \dim \hat{B}/\ker \hat{\psi}.$$

Lemma 4.7 now follows from Lemma 4.6.

Theorem 4.8. Let $g: \mathbb{C}_x^m \to \mathbb{C}_y^n$ be an analytic map, J(g) its Jacobian. Assume that $\dim \mathbb{C}[[y]]/\ker \hat{g}^* = \operatorname{rank} J(g)$.

Then g* is an analytically regular homomorphism.

Proof. By a sequence of reductions we shall reduce the assertion of Theorem 4.8 to that of Theorem 4.4.

1. Reduction to the case corank J(g) = 1. Let

rank
$$J(g) = \dim \mathbb{C}[[y]]/\ker \hat{g}^* = r$$
.

By Lemma 4.6 it suffices to prove that dim $C\{y\}/\ker g^* = r$. Assume that dim $C\{y\}/\ker g^* \ge r+1$. Making a linear change of coordinates in C_y^n if necessary, we may make the following assumptions:

- 1) $\ker \hat{g}^* \cap \mathbb{C}[[y_1, \dots, y_{r+1}]] \neq 0$ (we assume that $\mathbb{C}[[y_1, \dots, y_{r+1}]]$ is embedded in $\mathbb{C}[[y]]$ as the subring of the series independent of y_{r+2}, \dots, y_n).
 - 2) ker $g^* \cap C\{y_1, \dots, y_{r+1}\} = 0$.
 - 3) The rank of the matrix $(\partial g_i/\partial x_j)$ $(i=1,\dots,r+1;\ j=1,\dots,m)$ is equal to r.

We put $y' = (y_1, \dots, y_{r+1})$ and $g' = (g_1, \dots, g_{r+1})$: $C_x^m \to C_y^{r+1}$. We have corank J(g') = 1, ker $g'^* = 0$ and ker $\hat{g}'^* \neq 0$. Thus the assertion of the theorem reduces to the following:

corank
$$J(g) = 1$$
, $\ker \hat{g}^* \neq 0 \Rightarrow \ker g^* \neq 0$.

- 2. Reduction to the case m=n-1. Let the rank of J(g) equal n-1, and $\ker \hat{g}^* \neq 0$. There obviously exists a nonsingular (n-1)-dimensional surface $L \subset \mathbb{C}_x^m$ such that the rank of $J(g|_L)$ remains equal to n-1. Put $g'=g|_L$. Obviously $\ker \hat{g}'^* \supset \ker \hat{g}^*$. Therefore $\ker \hat{g}'^* \neq 0$. We shall show that $\ker g'^* \subset \ker g^*$. In fact, let $\phi \in \ker g'^*$. There exists a point $x_0 \in L$ satisfying the following conditions:
- 1) The function ϕ is defined and analytic in a neighborhood of the point $g(x_0)$ in $\mathbb{C}^n_{\mathbf{v}}$.
- 2) The function $g^*\phi$ is defined and analytic in a connected neighborhood of zero $U \subset \mathbb{C}_x^m$ containing x_0 .
 - 3) The rank of the matrix $J(g')(x_0)$ equals n-1.
 - 4) $g^*\phi|_L = g^{\prime *}\phi \equiv 0$ in a neighborhood of x_0 in L.

By the theorem on rank, in a neighborhood of x_0 the space C_x^m is a fibration with fiber $\{g = \text{const}\}$ and base L. Since $g^*\phi|_L \equiv 0$, it follows that $g^*\phi \equiv 0$ in a neighborhood of x_0 in C_x^m , and, since U is a connected open set containing x_0 , $g^*\phi \equiv 0$ in U. Hence $\phi \in \ker g^*$.

Thus ker $g'^* \subset \ker g^*$. In particular, if ker $g'^* \neq 0$, then also ker $g^* \neq 0$. Therefore it suffices to prove the assertion of the theorem for g', i.e. for m = n - 1.

- 3. Reduction to the case $n \leq 3$.
- 3.1. Since C[[y]] is a regular ring of dimension n, since $\ker \hat{g}^*$ is a prime ideal and since coht $\ker \hat{g}^* = n 1$, it follows that $\ker \hat{g}^*$ is a principal ideal and its

generator is an irreducible formal series \overline{P} . By making a linear change of coordinates and multiplying through by an invertible formal series, we may assume that

$$\overline{P} = y_n^p + \sum_{i=1}^p \overline{c_i}(y_1, \ldots, y_{n-1}) y_n^{p-i}$$

is a distinguished formal pseudopolynomial. If ker $g^* = 0$, \overline{P} is a divergent series.

Conversely, suppose ker \hat{g}^* contains a divergent irreducible distinguished pseudo-polynomial. We shall show that then ker $g^* = 0$. In fact, let $g^* \neq 0$. Then dim $\mathbb{C}\{y\}/\ker g^* \leq n$; and, since

$$n-1 = \dim \mathbb{C}[[y]]/\ker \hat{g}^{\bullet} \leq \dim \mathbb{C}\{y\}/\ker g^{\bullet},$$

we have dim $\mathbb{C}[y]/\ker g^* = n-1$, i.e. $\ker g^*$ is a principal ideal. Let Φ be its generator. From Lemma 4.5 it follows that $\overline{P} \in \Phi \cdot \mathbb{C}[[y]]$. Since \overline{P} is irreducible, $\overline{P} \sim \Phi$ in $\mathbb{C}[[y]]$. Since \overline{P} is a distinguished pseudopolynomial, from the uniqueness in the Weierstrass preparation theorem it follows that $\overline{P} \in \mathbb{C}[y]$; but this contradicts the assumption of the divergence of P.

3.2. We may assume that all the functions $g_i(x)$ are divisible by x_1 and 0 is a nonsingular point of the set $\{g_1(x) = 0\}$. In fact, we replace g by $g \circ f_{v_0}$, where $f_0: \mathbb{C}_v^{n-1} \to \mathbb{C}_x^{n-1}$ is the mapping given by the formula

$$x_1 = v_1, x_2 = v_1 (v_2 + v_2^0), \ldots, x_{n-1} = v_1 (v_{n-1} + v_{n-1}^0)$$

(here $v^0 = (0, v_2^0, \dots, v_{n-1}^0)$ is some point in $\{v_1 = 0\}$). Since $\det f(f_{v_0}) = v_1^{n-2} \neq 0$ in $\mathbb{C}\{v\}$, from Lemma 4.2 it follows that $\ker \hat{f}_{v_0}^* = 0$. Therefore it suffices to prove the assertion for $g \circ f_{v_0}$. On the other hand, all the functions $f_{v_0}^*(g_i)$ are divisible by v_1 ; and if v^0 is a nonsingular point of $\{f_0^*(g_1) = 0\}$, then 0 is a nonsingular point of $\{f_0^*(g_1) = 0\}$.

3.3. Since $g_1(x) : x_1$ and 0 is a nonsingular point of $\{g_1(x) = 0\}$, we have $g_1(x) \sim x_1^k$. Therefore there exists an analytic function $g_1'(x)$ such that $g_1(x) = g_1'(x)^k$. Obviously $g_1'(x) \sim x_1$. Consider the mappings

$$g' = (g_1, g_2, \ldots, g_n) : \mathbb{C}_x^{n-1} \to \mathbb{C}_z^n \text{ and } h = (z_1, z_2, \ldots, z_n) : \mathbb{C}_z^n \to \mathbb{C}_y^n$$

Since $g^* = g'^* \circ h^*$, from Lemma 4.6 applied to $\mathbb{C}\{y\} \xrightarrow{h^*} \mathbb{C}\{z\} \xrightarrow{g^*} \mathbb{C}\{x\}$ we see that it suffices to prove the assertion of the theorem for g'. Thus we may assume that $g_1(x) \sim x_1$. But then by a nondegenerate change of coordinates $(x_1, \dots, x_{n-1}) \rightsquigarrow (g_1(x), x_2, \dots, x_{n-1})$ we can reduce to the case $g_1(x) = x_1$.

3.4. Let $g_2 = \sum_{j=1}^{\infty} G_j(x_2, \dots, x_{n-1}) x_1^j$, and let j_0 be the smallest index for which $G_{j_0} \not\equiv \text{const}$ (such an index exists since otherwise $g_2 = \phi(g_1)$, and $y_2 - \phi(y_1) \in \text{ker } g^*$). By making the change of variables

$$y_2 \leadsto y_2 - \sum_{j=1}^{j_0-1} G_j y_1^j - a y_1^{j_0},$$

in C_y^n , where a is some constant, we may assume that $g_2 = x_1^{j_0}G(x)$, where $G(x)|_{x_1=0} \neq 0$ const and $G(0) \neq 0$. As was done in 3.3 for g_1 , we can reduce the problem to the case $g_0=1$. Furthermore, making the change $g_2 \leftrightarrow g_2 - G(0)g_1$ in G_y^n , we may assume that G(0)=0. Finally, replacing g by $g_1 \circ g_2 \circ g_3 \circ g_4 \circ g_4 \circ g_5 \circ g_5 \circ g_6 \circ$

$$g_1(x) = x_1^2, \quad g_2(x) = x_1G(x),$$

where G(0) = 0, $G|_{x_1 = 0} \neq \text{const.}$

3.5. Let n > 3 and ker $g^* = 0$, and let \overline{P} be an irreducible divergent distinguished pseudopolynomial (in y_n) belonging to ker \hat{g}^* . In C_y^n consider the linear system of hyperplanes $L_c = \{cy_1 - y_2 = 0\}$, $c \in \mathbb{C}$. From the local Bertini's theorem (cf. [9]) it follows that $P|_{L_c}$ is an irreducible formal series for all values of c except for perhaps a finite number.

We shall show that the set of those c for which the series $\overline{P}|_{L_c}$ diverges is everywhere dense in C. For this we consider the mapping $\sigma: C^n_{\xi, \tau} \to C^n_y$ $(\xi = (\xi_2, \cdots, \xi_n))$ defined by the formula

$$y_1 = \xi_2, y_2 = \tau \xi_2, y_3 = \xi_3, \ldots, y_n = \xi_n.$$

Then $\overline{P}|_{L_c} = \widehat{\sigma}^* \overline{P}|_{\tau=c}$. Obviously $\widehat{\sigma}^* \overline{P} \in \mathfrak{A}_{\xi,\tau}$. From Lemma 1.6 it follows that the set of those points c for which $\widehat{\sigma}^* \overline{P}|_{\tau=c}$ diverges is either everywhere dense or empty, where in the second case $\widehat{\sigma}^* \overline{P}$ is an analytic function. But then it is obvious that \overline{P} is also an analytic function, which contradicts the assumption $\ker g^* = 0$.

Consider the sets $g^{-1}(L_c)$. They are given by the equations $0 = cg_1 - g_2 = x_1(cx_1 - G(x))$. Therefore $g^{-1}(L_c) = \{x_1 = 0\} \cup M_c$, where $M_c = \{cx_1 - G(x) = 0\}$. The variety M_c is of dimension n-2 and nonsingular, if $c \neq (\partial G/\partial x_1)(0)$. Furthermore, for all c, except perhaps a finite number,

$$M_c \subset \{x : \operatorname{rank} J(g)(x) < n-1\},$$

and hence rank $J(g|_{M}) = n - 2$.

Thus there exists a $c \in \mathbb{C}$ satisfying the following conditions:

- 1) M_c is a nonsingular (n-2)-dimensional variety in a neighborhood of zero in C_x^{n-1} .
 - 2) rank $J(g|_{M_{c}}) = n 2$.
- 3) If $g': M_c \to L_c$ is a map induced by g, then $\overline{P}|_{L_c} \in \ker \hat{g}'^*$ is an irreducible divergent formal series.
- 4) If the system of coordinates (y_1, y_3, \dots, y_n) is introduced on L_c , then $\overline{P}|_{L_c}$ is a distinguished pseudopolynomial in the variable y_n .

As is shown in 3.1, it follows from this that ker g'*=0. Therefore it suffices to prove the assertion of the theorem for g', i.e. for the mapping $\mathbb{C}^{n-2} \to \mathbb{C}^{n-1}$.

4. Reduction to Theorem 4.4. Let $g: \mathbb{C}^2_{\underline{x}} \to \mathbb{C}^3_{\underline{y}}$ (if $n \le 3$, we may use the functions $g_i = x_i$), rank J(g) = 2 and ker $\hat{g}^* \ne 0$. Let \overline{P} be a generator of ker \hat{g}^* . We may assume that \overline{P} is a distinguished pseudopolynomial in y_2 .

As in 3.2, we replace g by $g \circ f_0$, but in choosing the point v^0 we require additionally that $f_0^*g_2$ in a neighborhood of v^0 will be equal to $v_1^l \cdot G(v)$, where $(\partial G/\partial v_2)(v^0) \neq 0$. Then the problem reduces to the case $g_1 = x_1^k$, $g_2 = x_1^l \cdot G(x)$, where $(\partial G/\partial x_2)(0) \neq 0$ and $g_3 : x_1$. Furthermore, as in 3.3 and 3.4, the problem reduces to the case $g_1 = x_1$, $g_2 = x_1G(x)$, where G(0) = 0 and $(\partial G/\partial x_2)(0) \neq 0$. By a nondegenerate change of coordinates $(x_1, x_2) \leadsto (x_1, G(x))$ the problem reduces to the case $g_1 = x_1$, $g_2 = x_1x_2$, i.e. to Theorem 4.4.

§5. Homomorphisms of analytic rings

Let $\phi\colon A\to B$ be a homomorphism of analytic rings. As is known [7], there exist analytic spaces $(X,\,\mathbb{C}_X)$ and $(Y,\,\mathbb{C}_Y)$ such that $A=\mathbb{O}_{Y,y_0}$ and $B=\mathbb{O}_{X,x_0}$ (here y_0 and x_0 are points in Y and X respectively) and the homomorphism ϕ is induced by the morphism $(f,\,\Phi)\colon (X,\,\mathbb{C}_X)\to (Y,\,\mathbb{C}_Y)$ taking x_0 to y_0 .

Definition 5.1. The geometric rank $r(\phi)$ of the homomorphism ϕ is the maximum of the numbers r such that the closure in X of the set $\{x \in X \setminus \sin g(X)\}$, the rank of the map f at the point x is equal to r? contains x_0 .

Theorem 5.2. Let $\phi: A \to B$ be a homomorphism of analytic rings, and B an integral domain. If $\dim \hat{A}/\ker \hat{\phi} = r(\phi)$, then ϕ is an analytically regular homomorphism.

Proof. By Hironaka's theorem on the resolution of singularities [11], there exists an imbedding $\psi \colon B \to \mathbb{C}$, where \mathbb{C} is a regular analytic ring, such that $r(\psi) = \dim B$. Furthermore, by the definition of an analytic ring there exists an epimorphism $\chi \colon D \to A$, where D is a regular analytic ring. Consider the composite map $\eta = \psi \circ \phi \circ \chi$. Obviously $r(\eta) = r(\phi)$ and $A/\ker \phi \simeq D/\ker \eta$. Furthermore, $\dim \widehat{D}/\ker \widehat{\eta} \le \dim \widehat{A}/\ker \widehat{\phi} = r(\eta)$. On the other hand, from Lemma 4.2 it is not hard to deduce that $\dim \widehat{D}/\ker \widehat{\eta} \ge r(\eta)$. Therefore $\dim \widehat{D}/\ker \widehat{\eta} = r(\eta)$, and the assertion of the theorem reduces to the case of regular rings, i.e. to Theorem 4.8.

Corollary 5.3. Let $\phi: A \to B$ be a homomorphism of analytic rings, B an integral domain, and dim $A \le r(\phi) + 1$. Then ϕ is an analytically regular homomorphism.

Proof. If $\dim \hat{A}/\ker \hat{\phi} = r(\phi)$, then the assertion follows from Theorem 5.2. But if $\dim \hat{A}/\ker \hat{\phi} > r(\phi)$, then $\dim \hat{A}/\ker \hat{\phi} = \dim A$, and the assertion follows from Lemma 4.6.

Corollary 5.4. Let $g = (g_1(x), \dots, g_n(x))$ be a mapping $C_x^m \to C_y^n$ satisfying the condition of Theorem 4.8, and h(x) an arbitrary analytic function. Define a map g': $C_x^m \to C_{y,z}^{n+1}$ by the formula y = g(x), z = h(x). Then the homomorphism g'^* is analytically regular.

Proof. By Theorem 4.8, dim $C\{y\}/\ker g^* = r(g^*)$. Hence

dim
$$C\{y, z\}/\ker g^* \cdot C\{y, z\} = r(g^*) + 1$$
,

and so dim $C\{y, z\}/\ker g'^* \le r(g^*) + 1$. Since $r(g^*) \le r(g'^*)$, it suffices to apply Corollary 5.3 to the homomorphism $C\{y, z\}/\ker g'^* \to C\{x\}$.

Theorem 5.5. Let $\phi: A \to B$ be a homomorphism of analytic rings, B an integral domain, and dim $\hat{A}/\ker \hat{\phi} = r(\phi)$. Then $\hat{\phi}(\hat{A}) \cap B = \phi(A)$.

Proof. Let $B = \mathbb{C}\{x\}/I$ and $A = \mathbb{C}\{y\}/J$, and let $\overline{H}(y) \in \widehat{A}$ and $\widehat{\phi}(\overline{H}) = h(x) \in B$. Put $A' = \mathbb{C}\{y, z\}/J \cdot \mathbb{C}\{y, z\}$, and consider the homomorphism $\phi' : A' \to B$ defined by the formula

$$\sum f_i(y) z^i \mapsto \sum \varphi(f_i) h(x)^i.$$

The imbeddings $C\{y\} \to C\{y, z\}$ and $C[[y]] \to C[[y, z]]$ induce imbeddings $A \to A'$ and $\hat{A} \to \hat{A}'$. Here $A \cap \ker \phi' = \ker \phi$ and $\hat{A} \cap \ker \hat{\phi}' = \ker \hat{\phi}$. Hence we have imbeddings

$$\rho: A/\ker \varphi \rightarrow A'/\ker \varphi'$$

and

$$\hat{\rho}: \hat{A}/\ker \hat{\varphi} \rightarrow \hat{A}'/\ker \hat{\varphi}'.$$

Since $z - \overline{H}(y) \in \ker \hat{\phi}'$, $\hat{\rho}$ is an isomorphism. In particular, $\dim \hat{A}' / \ker \hat{\phi}' = r(\phi)$. Since $\dim \hat{A}' / \ker \hat{\phi}' \ge r(\phi') \ge r(\phi)$, it follows that $\dim \hat{A}' / \ker \hat{\phi}' = r(\phi')$. From Theorem 5.2 it now follows that

$$\hat{A}'/\ker \hat{\varphi}' = (A'/\ker \varphi')$$
 .

Since, moreover, $\hat{A}/\ker \hat{\phi} = (A/\ker \phi)$, we see that

$$\hat{\rho}: (A/\ker \varphi)^{\hat{}} \rightarrow (A'/\ker \varphi')^{\hat{}}$$

is an isomorphism. Hence (cf. [7]) ρ is also an isomorphism.

Let $H(y) \in A$ and $H(y) = \rho^{-1}(z)$. Then $\hat{\rho}(H(y) - \overline{H}(y)) = 0$, and hence $H(y) - \overline{H}(y) \in \ker \hat{\phi}$, i.e. $h(x) = \phi(H(y))$, as required.

Proposition 5.6. Let $\phi: A \to B$ be a homomorphism of analytic rings, B a ring without nilpotents, \mathfrak{p}_i minimal prime ideals of the ring B, and $\pi_i: B \to B/\mathfrak{p}_i$ the natural projections.

- a) If for each i the homomorphism $\pi_i \circ \phi$ is analytically regular, then ϕ is an analytically regular homomorphism.
 - b) If, moreover, for each i

$$\hat{\pi}_i \circ \hat{\varphi}(\hat{A}) \cap B/\mathfrak{p}_i = \pi_i \circ \varphi(A),$$

then $\hat{\phi}(\hat{A}) \cap B = \phi(A)$.

Proof. a) The assertion follows from the fact that

$$\ker \varphi = \bigcap \ker (\pi_l \circ \varphi)$$
 and $\ker \varphi = \bigcap \ker (\pi_l \circ \varphi)$.

b) Let $q_i = \phi^{-1}(p_i)$. Since $\pi_i \circ \phi$ are analytically regular, we have $\hat{\phi}^{-1}(\hat{p}_i) = \hat{q}_i$. We consider the finite A-module $M = \bigoplus A/q_i$ and the natural maps $\rho \colon A \to M$ and $\hat{\rho} \colon \hat{A} \to \hat{M} = \bigoplus \hat{A}/\hat{q}_i$. Let $\overline{F} \in \hat{A}$ and $\hat{\phi}(\overline{F}) \in B$. By the hypothesis, for each i there exists a function $F_i \in A$ such that $\hat{\phi}(\overline{F} - F_i) \in \hat{p}_i$, i.e. $\overline{F} - F_i \in \hat{q}_i$. Hence

$$\hat{\rho}(\overline{F}) = (F_i \mod \hat{q_i}) \subset \hat{\rho}(\widehat{A}) \cap M = \rho(A).$$

Therefore there exists a function $F \subseteq A$ such that $\hat{\rho}(\overline{F} - F) = 0$, i.e. $\overline{F} - F \in \bigcap \hat{q}_i = \ker \hat{\phi}$, as required.

Theorem 5.7. Let $\phi: A \to B$ be a homomorphism of analytic rings, B a ring without nilpotents, and dim $A \le 3$. Then ϕ is analytically regular.

Proof. By Proposition 5.6a) it suffices to consider the case when B is an integral domain. If $r(\phi) = 1$, the assertion reduces easily to the case dim B = 1 (as in part 2 of the proof of Theorem 4.8). But then ϕ is a finite homomorphism, and the assertion follows from Lemma 4.7. But if $r(\phi) \ge 2$, it suffices to apply Corollary 5.3.

If B contains nilpotents, the situation is considerably more complicated, as the following example shows.

Example 5.8. Let

$$A = \mathbb{C}\{t_1, ..., t_4, y\}/(y, t_3, t_4)^2, \quad B = \mathbb{C}\{x_1, x_2, v\}/(v^2).$$

We define a homomorphism $\phi: A \to B$ by the formula

$$\varphi(y) = v, \qquad \varphi(t_1) = x_1, \qquad \varphi(t_2) = x_1 x_2,$$

 $\varphi(t_3) = v x_1 x_2 e^{x_3}, \qquad \varphi(t_4) = v \cdot \Phi(x),$

where

$$\Phi(x) = \sum_{k=1}^{\infty} \sum_{j=0}^{\infty} \frac{k!}{(k+j)!} x_1^k x_2^{k+j+1}.$$

We note that

$$A/\Re(A) = \mathbb{C}\{t_1, t_2\}, \quad B/\Re(B) = \mathbb{C}\{x_1, x_2\}$$

and a homomorphism $\phi: A/\Re(A) \to B/\Re(B)$ is given by the formula

$$\varphi(t_1) = x_1, \quad \varphi(t_2) = x_1 x_2.$$

We shall show that ker $\phi = 0$. In fact, let

$$H(t, y) = H_1(t_1, t_2) + H_2(t_1, t_2) y + H_3(t_1, t_2) t_3 + H_4(t_1, t_2) t_4$$

belong to ker ϕ . Then $H_1(x_1, x_1x_2) \equiv 0$, and hence $H_1(t_1, t_2) \equiv 0$. Furthermore,

$$H_2(x_1, x_1x_2) + H_3(x_1, x_1x_2) \cdot x_1x_2e^{x_2} + H_4(x_1, x_1x_2) \Phi(x) = 0.$$

Hence $z(t) = H_2(t_1, t_2) + H_3(t_1, t_2)t_3 + H_4(t_1, t_2)t_4$ belongs to the kernel of the map constructed in [12] (counterexample (1)). As was shown in [12], it follows from this that $z(t) \equiv 0$. Thus $H(t, y) \equiv 0$, i.e. ker $\phi = 0$. On the other hand, it is easy to verify that

$$\bar{z}(t) = t_4 - t_3 \sum_{k=1}^{\infty} k! \ t_1^{k-1} + y \sum_{k=1}^{\infty} \sum_{i=1}^{k} \frac{k!}{(i-1)!} t_1^{k-i} t_2^{i}$$

belongs to the kernel of $\hat{\phi}$. Hence ϕ is not analytically regular.

Received 7/DEC/72

BIBLIOGRAPHY

- 1. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291. MR 38 #344.
- 2. _____, Algebraic spaces, Math. Monographs, no. 3, Yale Univ. Press, New Haven, Conn., 1971.
- 3. B. Malgrange, Ideals of differentiable functions, Tata Inst. of Fundamental Research Studies in Math., no. 3, Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967. MR 35 #3446.
- 4. S. S. Abhyankar, Local analytic geometry, Pure and Appl. Math., vol. 14, Academic Press, New York, 1964. MR 31 #173.
- 5. N. Bourbaki, Éléments de mathématique. Algèbre commutative. Chaps. 1-7, Actualités Sci. Indust., nos. 1290, 1293, 1308, 1314, Hermann, Paris, 1961, 1964, 1965. MR 30 #2027; 33 #2660; 36 #146; 41 #5339.
- 6. A. Grothendieck, Techniques de construction en géométrie analytique, Séminaire II. Cartan 13ième année: 1960/61, Exposés 7-14, fasc. 1, Secrétariat mathématique, Paris, 1962. MR 26 #3562.
- 7. C. Houzel, Géométrie analytique locale, Séminaire H. Cartan 13ième année: 1960/61, Exposés 18-21. MR 26 #3562.
- 8. J.-P. Serre, Algèbre locale-multiplicités, 2nd rev. ed., Lecture Notes in Math., no. 11, Springer Verlag, Berlin and New York, 1965. MR 34 #1352.
- 9. W.-L. Chow, On the theorem of Bertini for local domains, Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 580-584. MR 20 #3150.
- 10. M. Nagata, Local rings, Interscience Tracts in Pure and Appl. Math., no. 13, Interscience, New York, 1962. MR 27 #5790.
- 11. II. Hironaka, Resolution of singularities of algebraic varieties over fields of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109-203, 205-326. MR 33 #7333.
- 12. A. M. Gabrièlov, The formal relations between analytic functions, Funkcional. Anal. i Priložen. 5 (1971), no. 4, 64-65 = Functional Anal. Appl. 5 (1971), 318-319. MR 46 #2073.

Translated by J. S. JOEL