Quick Sort

A sorting algorithm based on the divide-and-conquer paradigm

- Divide: pick a pivot element x and partition S into
 - L elements less than x
 - E elements equal to x
 - -G elements greater than x
- Recur: sort L and G
- Conquer: join *L*, *E* and *G*

The choice of the pivot affects the algorithm's performance.

Partition

- 1. Remove each element *y* from *S*
- 2. Insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insert/remove takes O(1) time.
- Thus, the partition step of quick-sort takes O(n) time.

```
S
```

```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
    while \neg S.isEmpty()
       v \leftarrow S.remove(S.first())
        if y < x
            L.insertLast(y)
        else if y = x
            E.insertLast(y)
        else \{y > x\}
            G.insertLast(y)
    return L, E, G
```

Partition

- 1. Remove each element *y* from *S*
- 2. Insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insert/remove takes O(1) time.
- Thus, the partition step of quick-sort takes O(n) time.


```
Algorithm partition(S, p)
    Input sequence S, position p of pivot
    Output subsequences L, E, G
   L, E, G \leftarrow empty sequences
   x \leftarrow S.remove(p)
    while \neg S.isEmpty()
       v \leftarrow S.remove(S.first())
        if y < x
            L.insertLast(y)
        else if y = x
            E.insertLast(y)
        else \{y > x\}
            G.insertLast(y)
    return L, E, G
```

The choice of the pivot affects the performance of Quick Sort.

Quick-Sort Tree

An execution of quick-sort depicted by a binary tree

- Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
- The root is the initial call
- The leaves are calls on subsequences of size 0 or 1

• Strategy: Select the last element as the pivot

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

• Strategy: Select the last element as the pivot

• Select pivot, partition, recursive call

• Strategy: Select the last element as the pivot

Join

• Strategy: Select the last element as the pivot

• Strategy: Select the last element as the pivot

• Strategy: Select the last element as the pivot

• Strategy: Select the last element as the pivot

• Strategy: Select the last element as the pivot

Worst-case Running Time

Occurs when the pivot is the unique minimum or maximum element

- One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum: n + (n-1) + ... + 2 + 1
- If we use the strategy of selecting the **last element** as the pivot, this happens when the list is already sorted!

Thus, the worst-case running time of quick-sort is $O(n^2)$

15

Randomized Quick Sort

Pivot selection strategy: choose a random element as the pivot

- Still has worst-case running time $O(n^2)$
 - Due to random selection, this case is highly unlikely
- Expected running time is $O(n \log n)$

Expected Running Time

Consider a recursive call of quick-sort on a sequence of size s

- Good call: the sizes of L and G are each less than 3s/4
- **Bad call:** one of L and G has size greater than 3s/4

A call is good with probability 1/2

• 1/2 of the possible pivots cause good calls:

Expected Running Time (continued)

Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k.

For a node of depth *i*, we expect

- *i/2* ancestors are good calls
- size of the input sequence for the current call is at most $(3/4)^{i/2}n$

For a node of depth $2\log_{4/3} n$

- the expected input size is one
- the expected height of the quick-sort tree is $O(\log n)$

The amount of work done at the nodes of the same depth is O(n)

Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

In-Place Quick-Sort

During the partition step, use replace operations to rearrange elements of the input sequences such that:

- elements less than pivot have rank < h
- elements equal to pivot have rank between [h, k]
- elements greater than pivot have rank > k

```
Algorithm inPlaceQuickSort(S, l, r)
   Input sequence S, ranks l and r
   Output sequence S with the
        elements of rank between l and r
       rearranged in increasing order
    if l > r
        return
   i \leftarrow a random integer between l and r
   x \leftarrow S.elemAtRank(i)
   (h, k) \leftarrow inPlacePartition(x)
   inPlaceQuickSort(S, l, h - 1)
   inPlaceQuickSort(S, k + 1, r)
```

In-Place Partition

Performs a partitioning using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

Repeat until *h* and *k* cross:

- Scan h to the right until it finds an element $\geq x$
- Scan k to the left until it finds an element < x
- Swap elements at indices *h* and *k*

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-place, not stableslow (good for small inputs)
insertion-sort	$O(n^2)$	in-place, stableslow (good for small inputs)
quick-sort	O(n log n) expected	 in-place, not stable randomized fastest (good for large inputs)
heap-sort	$O(n \log n)$	in-place, not stablefast (good for large inputs)
merge-sort	$O(n \log n)$	 not in-place, stable sequential data access fast (good for huge inputs)

Other: Nuts and Bolts

You are given a collection of *n* bolts of different widths, and *n* corresponding nuts.

- You can test whether a given nut and bolt fit together, from which you learn whether the nut is too large, too small, or an exact match for the bolt.
- The differences in size between pairs of nuts or bolts are too small to see by eye, so you cannot compare the sizes of two nuts or two bolts directly.
- You are to match each bolt to each nut.

Give an efficient algorithm to solve the nuts and bolts problem.