Exercise 0. (The Fermat point of a set of points)

Given set of points $y_1,...,y_m$ in the plane, we want to find a point x^* whose sum of weighted distances to the given set of points is minimized. Mathematically, the problem is

$$\min \sum_{i=1}^{m} w_i \|\boldsymbol{x}^* - \boldsymbol{y}_i\|, \quad subject \ to \ \boldsymbol{x}^* \in \mathbb{R}^2,$$

where $w_1,...,w_m$ are given positive real numbers.

1. Show that there exists a global minimum for this problem, and that it can be realized by means of the mechanical model shown in the following figure:

- 2. Is the optimal solution always unique?
- 3. Show that an optimal solution minimizes the potential energy of the mechanical model defined as

$$\sum_{i=1}^{m} w_i h_i,$$

where h_i is the height of the *i*-th weight measured from some reference level.

Solution

1. Let us see first that the function to be minimized is

$$f(x) = \sum_{i=1}^{m} w_i ||x - y_i||, \quad w_i \ge 0.$$

Since $f(x) \ge 0$ for all $x \in \mathbb{R}^2$, if we find a point x^* such that $f(x^*) = 0$, it will be a minimum of f(x).

If x^* is an equilibrium point of the system displayed in the figure, the sum of the forces made by the weights w_i at each point y_i must be zero, this is

$$\sum_{i=1}^{m} w_i \| \boldsymbol{x}^* - \boldsymbol{y}_i \| = 0.$$

So, we need to find a point x^* such that the above equlity holds and, according to what has already been said, it will be a minimum of f(x).

Note that the function f(x) is convex, because the norm is a convex function, and f(x) is the weighted sum of convex functions. Since the function is convex, if there is a local minimum it will be a global one. (See Lecture 2 for the above claims.)

Instead of using the function f(x), we will use

$$F(x) = \sum_{i=1}^{m} w_i ||x - y_i||^2.$$

Note that if x^* minimizes F(x) it also minimizes f(x). Let us see that F(x) achieves its minimum at

$$\boldsymbol{x}^* = \frac{\sum_{i=1}^m w_i \boldsymbol{y}_i}{\sum_{i=1}^m},$$

this is

$$\nabla F(\boldsymbol{x}^*) = 0$$
, $\nabla^2 F(\boldsymbol{x}^*)$ is positive definite.

Introducing coordinates $\boldsymbol{x}=(x^1,x^2)^T$ and $\boldsymbol{y}_i=(y_i^1,y_i^2)^T$, we can write

$$\frac{\partial F}{\partial x_j}(\boldsymbol{x}) = \sum_{i=1}^m w_i \frac{\partial g}{\partial x_j} \|\boldsymbol{x} - \boldsymbol{y}_i\|^2 = 2 \sum_{i=1}^m w_i (x^j - y_i^j), \quad j = 1, 2,$$

$$\frac{\partial F}{\partial x_i}(\boldsymbol{x}^*) = 2 \sum_{i=1}^m w_i (x^{*j} - y_i^j), \quad j = 1, 2,$$

and, since $\sum_{i=1}^{m} w_i \| \boldsymbol{x}^* - \boldsymbol{y}_i \| = 0$, it follows that

$$\nabla F(\boldsymbol{x}^*) = \left(\frac{\partial g}{\partial x_j}(\boldsymbol{x}^*), \frac{\partial g}{\partial x_j}(\boldsymbol{x}^*)\right)^T = 0.$$

Furthermore

$$\begin{split} \frac{\partial^2 F}{\partial x^j \partial x^j}(\boldsymbol{x}) &= 2 \sum_{i=1}^m w_i > 0, \quad j = 1, 2, \\ \frac{\partial^2 F}{\partial x^1 \partial x^2}(\boldsymbol{x}) &= 0, \end{split}$$

so, the Hessian of F(x) is a positive defined matrix at any point $x \in \mathbb{R}^2$, so x^* is a local minimum, and since the function is convex it is also global one.

2. Consider the case with only two points y_1 and y_2 with the same weight $w_1 = w_2 = w$. Then, all the points in the segment between y_1 and y_2 minimize the function under consideration, since if x is a point in this segment

$$f(x) = w(||x - y_1|| + ||x - y_2||) = w||y_1 - y_2|| = constant.$$

3. We take the plane defined by the points y_i as the z = 0 plane, and fix the potential for all the points in this plane equal to zero (reference lebel), so the potential of the system is

$$\sum_{i=1}^m w_i h_i(\boldsymbol{x}).$$

For any point x in the convex hull defined by $y_1, ..., y_m$, the length of the line that joins x with the weight w_i is equal to a certain constant value l_i , and since $h_i(x) < 0$ is the height of w_i , we can write

$$l_i = ||\boldsymbol{x} - \boldsymbol{y}_i|| - h_i(\boldsymbol{x}).$$

According to this equality

$$\sum_{i=1}^{m} w_i h_i(\boldsymbol{x}) = \sum_{i=1}^{m} w_i (\|\boldsymbol{x} - \boldsymbol{y}_i\| - l_i) = \sum_{i=1}^{m} w_i \|\boldsymbol{x} - \boldsymbol{y}_i\| - \sum_{i=1}^{m} w_i l_i.$$

The first term of the potential has a minimum at \boldsymbol{x}^* , and $\sum_{i=1}^m w_i l_i$ is constant, so \boldsymbol{x}^* minimizes the potential $\sum_{i=1}^m w_i h_i(\boldsymbol{x})$.