四元数与三维旋转

一、复数

任意一个复数 $z \in \mathbb{C}$ 都可以表示为 z = a + bi 的形式,其中 $a,b \in \mathbb{R}$ 而且 $i^2 = -1$. 我们将 a 称之为这个复数的**实部**(Real Part),b 称之为这个复数的**虚部**(Imaginary Part).

因为 z = a + bi 其实就是对于 $\{1, i\}$ 这个**基** (Basis) 的**线性组合** (Linear Combination), 我们也可以用向量来表示一个复数:

$$z = \begin{bmatrix} a \\ b \end{bmatrix}$$

两个复数 $Z_1 = a + bi, Z_2 = c + di$ 相乘:

$$Z_1Z_2=ac-bd+(bc+ad)i=egin{bmatrix} a & -b \ b & a \end{bmatrix}egin{bmatrix} c \ d \end{bmatrix}$$
 复数相乘等价于矩阵和向量乘法,前者满足交换律,后者转出

将左侧矩阵稍作变形:
$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} = \sqrt{a^2 + b^2} \begin{bmatrix} \frac{a}{\sqrt{a^2 + b^2}} & \frac{-b}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{bmatrix}$$

二、三维空间中的旋转

当 \mathbf{v}_{\perp} 正交于旋转轴 \mathbf{u} 时,旋转 θ 角度之后的 \mathbf{v}_{\perp}' 为:

$$\mathbf{v}_{\perp}' = \cos(\theta)\mathbf{v}_{\perp} + \sin(\theta)(\mathbf{u} \times \mathbf{v}_{\perp})$$

三、四元数

定义:
$$q = a + bi + cj + dk$$
, $i^2 = j^2 = k^2 = ijk = -1$

写成向量形式:
$$q = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}$$
,

也可以写为:
$$q = [a, \mathbf{v}]$$
 , $(\mathbf{v} = \begin{bmatrix} b \\ c \\ d \end{bmatrix})$

四元数模长:
$$||q|| = \sqrt{a^2 + b^2 + c^2 + d^2}$$

四元数乘法:

$$q_{1}q_{2} = (a + bi + cj + dk)(e + fi + gj + hk)$$

$$= \begin{bmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \end{bmatrix} \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix}$$

对任意四元数
$$q_1 = [s, \mathbf{v}], q_2 = [t, \mathbf{u}], q_1q_2$$
 的结果是

$$q_1q_2 = [st - \mathbf{v} \cdot \mathbf{u}, s\mathbf{u} + t\mathbf{v} + \mathbf{v} \times \mathbf{u}]$$

纯四元数: $v = [0, \mathbf{v}]$

两个纯四元数 $v = [0, \mathbf{v}], u = [0, \mathbf{u}]$ 相乘: $vu = [0 - \mathbf{v} \cdot \mathbf{u}, 0 + \mathbf{v} \times \mathbf{u}] = [-\mathbf{v} \cdot \mathbf{u}, \mathbf{v} \times \mathbf{u}]$

四元数的**逆**: q^{-1} , $qq^{-1} = q^{-1}q = 1$

四元数的**共轭**: $q^* = a - bi - cj - dk$

$$qq^* = [s, \mathbf{v}] \cdot [s, -\mathbf{v}] \qquad qq^{-1} = 1$$

$$= [s^2 + \mathbf{v} \cdot \mathbf{v}, 0] \qquad \Rightarrow q^*qq^{-1} = q^*$$

$$= s^2 + x^2 + y^2 + z^2$$

$$= ||q||^2$$

$$q^{-1} = \frac{q^*}{||q||^2}$$

四元数与3D旋转:

$$\mathbf{v}'_{\perp} = \cos(\theta) \, \mathbf{v}_{\perp} + \sin(\theta) (\mathbf{u} \times \mathbf{v}_{\perp}) \qquad ||q|| = \sqrt{\cos^{2}(\theta) + (\sin(\theta)\mathbf{u} \cdot \sin(\theta)\mathbf{u})}$$

$$v'_{\perp} = \cos(\theta) \, v_{\perp} + \sin(\theta) (\mathbf{u} \times \mathbf{v}_{\perp}) \qquad = \sqrt{\cos^{2}(\theta) + \sin^{2}(\theta) (\mathbf{u} \cdot \mathbf{u})}$$

$$v'_{\perp} = \cos(\theta) \, v_{\perp} + \sin(\theta) (uv_{\perp}) \qquad = \sqrt{\cos^{2}(\theta) + \sin^{2}(\theta) (||\mathbf{u}||^{2})}$$

$$v'_{\perp} = (\cos(\theta) + \sin(\theta) u) v_{\perp} \qquad = 1$$

$$v'_{\perp} = q v_{\perp}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$g\| = \sqrt{\cos^{2}(\theta) + (\sin(\theta)\mathbf{u} \cdot \sin(\theta)\mathbf{u})}$$

$$= \sqrt{\cos^{2}(\theta) + \sin^{2}(\theta)(\mathbf{u} \cdot \mathbf{u})}$$

$$= \sqrt{\cos^{2}(\theta) + \sin^{2}(\theta)(\|\mathbf{u}\|^{2})} \qquad (\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^{2})$$

$$= \sqrt{\cos^{2}(\theta) + \sin^{2}(\theta)} \qquad (\|\mathbf{u}\| = 1)$$

$$= 1 \qquad (三角恒等式)$$

四元数与3D旋转:

$$egin{aligned} v' &= v'_{\parallel} + v'_{\perp} \ &= v_{\parallel} + q v_{\perp} \end{aligned} \qquad (其中 \ q = [\cos(heta), \sin(heta)\mathbf{u}]) \end{aligned}$$

引理1: 如果 $q = [\cos(\theta), \sin(\theta)\mathbf{u}]$,而且 \mathbf{u} 为单位向量,那么 $q^2 = qq = [\cos(2\theta), \sin(2\theta)\mathbf{u}]$

$$v' = v_{\parallel} + qv_{\perp}$$
 $(q = [\cos(\theta), \sin(\theta)\mathbf{u}])$ $= 1 \cdot v_{\parallel} + qv_{\perp}$ $= pp^{-1}v_{\parallel} + ppv_{\perp}$ $(\Leftrightarrow q = p^2, \ \mathbb{M} \ p = \left[\cos\left(\frac{1}{2}\theta\right), \sin\left(\frac{1}{2}\theta\right)\mathbf{u}\right])$ $= pp^*v_{\parallel} + ppv_{\perp}$

引理2:

假设 $v_{\parallel} = [0, \mathbf{v}_{\parallel}]$ 是一个纯四元数,而 $q = [\alpha, \beta \mathbf{u}]$,其中 \mathbf{u} 是一个单位向量, $\alpha, \beta \in \mathbb{R}$. 在这种条件下,如果 \mathbf{v}_{\parallel} 平行于 \mathbf{u} ,那么 $qv_{\parallel} = v_{\parallel}q$ 假设 $v_{\perp} = [0, \mathbf{v}_{\perp}]$ 是一个纯四元数,而 $q = [\alpha, \beta \mathbf{u}]$,其中 \mathbf{u} 是一个单位向量, $\alpha, \beta \in \mathbb{R}$. 在这种条件下,如果 \mathbf{v}_{\perp} 正交于 \mathbf{u} ,那么 $qv_{\perp} = v_{\perp}q^*$

$$egin{aligned} v' &= pp^*v_\parallel + ppv_\perp \ &= pv_\parallel p^* + pv_\perp p^* \ &= p(v_\parallel + v_\perp) p^* \ &= pvp^* \end{aligned}$$

结论:

任意向量 v 沿着以单位向量定义的旋转轴 u 旋转 θ 度之后的 v' 可以使用四元数乘法来获得. 令 $v = [0, v], q = [\cos(\frac{1}{2}\theta), \sin(\frac{1}{2}\theta)u], 那么:$

$$v' = qvq^* = qvq^{-1}$$

四、万向节死锁:

谢谢观看