Mission statement

Schematic representation

Analysis

T1. Measure turnover between two communities.

Calculate Δy (e.g., Jaccard or Sørensen).

T2. Model turnover between two communities along an environmental factor or gradient.

Linear or non-linear regression of $\Delta y \ vs \ x$.

T3. Model pair-wise dissimilarities in communities as a function of pair-wise spatial, temporal or environmental distances.

Linear or non-linear regression of $\Delta y \ vs \ \Delta x$.

The Mantel test:

test of the null hypothesis of no relationship between two distance matrices. Examine relationship at a series of distance classes: Mantel correlogram.

T4. Estimate the rate of turnover along a spatial, temporal or environmental gradient.

Linear or non-linear model of $(1 - \Delta y) vs \Delta x$.

Rate $(\partial y / \partial x)$ is the estimated slope of a distance-decay model.

T5. Compare rates of turnover along one gradient for different groups of species or taxa.

Compare slope (and r^2) values obtained for two different groups ($\partial \mathbf{y}_1/\partial \mathbf{x}$) and ($\partial \mathbf{y}_2/\partial \mathbf{x}$).

T6. Model the rate of turnover along one gradient (A) across the levels of a factor or along a second gradient (B).

Linear or non-linear regression of $(\partial \mathbf{y}/\partial \mathbf{x}_{\scriptscriptstyle{A}}) \ \textit{vs} \ \mathbf{x}_{\scriptscriptstyle{B}}.$