八、區間估計

Chapter 8 Interval Estimation

目錄

八 ·	、區間估計	1
	8.1 母體平均值區間估計:大量樣本數	3
	8.1.1 母體變異數已知	3
	8.1.2 母體變異數未知	10
	8.2 母體平均值區間估計:小量樣本數	14
	8.2.1 母體屬常態分布和母體變異數已知	14
	8.2.2 母體屬常態分布和母體變異數末知	15
	8.2.2.1 <i>t</i> 分布	15
	8.2.2.2 <i>t</i> 分布性質	16
	8.2.2.3 利用 <i>t</i> 分布推估母體平均值的信賴區間	17
	8.2.3 母體分布不確定和母體變異數已知	23
	8.2.4 母體分布不確定和母體變異數末知	24
	8.3 母體比例區間估計	24
	8.3.1 母體比例區間估計:大量樣本數	24
	8.3.2 母體比例區間估計:小量樣本數【選擇教材】	27
	8.4 決定樣本數量	27
	8.4.1 估計母體平均值時,需要樣本數量	27
	8.4.2 估計母體比例時,需要樣本數量	28
	8.5 母體變異數區間估計	29
	8.5.1 卡方分布	30
	8.5.2 卡方分布性質	32
	8.5.3 利用卡方分布推估母體變異數的信賴區間	32
	8.6 單尾區間估計	34
	8.6.1 母體平均值單尾區間估計	35
	8.6.2 母體比例單尾區間估計	37
	討論議題	39
	香點整 理	40

學習目標

知識(認知)

- 1.可以描述在推論統計中,區間估計的意涵。
- 2.可以說明各種情境下,信賴區間的意涵。
- 3.分辨信賴係數與顯著水準之間的差異性。
- 4.評價各種情境下,信賴區間的使用價值。

技能

- 1.能夠計算各種信賴水準下的信賴區間。
- 2.能夠計算各種情況下所需要的樣本數量。
- 3.綜合所學,能夠計算實務領域中,於特定情境下的信賴區間。

態度(情意)

- 1.意識到在日常生活或未來工作環境中,信賴區間資訊的重要性。
- 2.在各種信賴區間的資訊中,接受信賴區間所傳達的意涵。

教學使用時間:6小時

推論是依據現有資訊、數值和資料提出研究調查結論的一種嚴謹程序。統計推論(statistical inference) 是依據樣本資料(統計值)所提供的訊息,對母體參數提出結論的一種嚴謹程序。統計推論(結論)並非 100 %確定,因樣本無法完全代表整個母體,故運用統計推論時,除了提出統計結論外,尚須利用機率估算此統計結論的可靠程度或信賴程度。

母體平均值 μ 和母體比率p的區間估計,利用抽樣分布中的樣本平均值 \bar{x} 和樣本比率 \bar{p} ,分別進行母體平均值 μ 和母體比率p的區間估計。對未知的母體參數(parameter)標示出具有上下限之區間,並估算出在此區間中母體參數機率、可靠度和信賴度。

本章節是針對單一母體特定研究變數分布推論其母體參數(母數)的信賴區間。在經營一家餐廳或旅館時,經常面臨碰到抽樣調查產品品質、服務品質、消費者滿意度、消費者意見等,欲在特定信賴水準(推論成功機率)推論全部產品或消費者的相關參數的信賴區間,不確定性的問題與挑戰,就必須具體地善用區間估計的概念,清楚的呈現不確定性問題的信賴區間範圍,以便於管理者採取適當的方式因應。

章節結構圖

8.1 母體平均值區間估計:大量樣本數

大量樣本數為 $n \ge 30$ 的情況,利用樣本統計值(statistic)—樣本平均值 \bar{x} 推估母體參數(母數)(parameter)—母體平均值 μ 的信賴區間(interval estimator or confidence interval)。

8.1.1 母體變異數已知

當母體變異數和標準(偏)差已知時,其母體平均值信賴區間的估算。

範例 8.1 台灣外食人口中,每人每週外食消費金額之分布屬於常態分布(Normal distribution),平均值 NT\$ 800 元,標準(偏)差 NT\$ 200 元,在隨機抽樣中獲得樣本中每人每週消費金額之平均值 \bar{x} 。 試計算樣本數量 n 為 100 時,每人每週消費金額之平均值 \bar{x} 抽樣分布的平均值 $\mu_{\bar{x}}$ 和標準(偏)差 $\sigma_{\bar{x}}$ 。

題解:隨機變數 X 代表每人每週外食消費金額,母體平均值 $\mu=$ NT\$ 800 元,母體標準(偏)差 $\sigma=$ NT\$ 200 元,樣本數量 n=100。

樣本平均值 \bar{x} 抽樣分布的母體平均值 $\mu_{\bar{x}} = \mu = NT$ \$ 800 元

樣本平均值 \bar{x} 抽樣分布的母體標準(偏)差 $\sigma_{\bar{x}} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}} = \frac{200}{\sqrt{100}} = \frac{200}{10} = \text{NT} \$ 20.0 \ \overline{\Box}$

答案:樣本平均值 \bar{x} 抽樣分布的母體平均值:NT\$ 800 元;母體標準(偏)差:NT\$ 20.0 元

在實務領域中·母體平均值 μ 通常無法獲得·樣本平均值 \bar{x} 在各種隨機抽樣中的分布情況·會是以原始資料分布母體平均值 μ 為中心的常態分布·其母體標準(偏)差 $\sigma_{\bar{x}}=NT\$20.0$ 元。

從標準常態分布累積機率表,可以發現 $P(Z \le -1.96) = 0.025 \cdot P(Z \le 1.96) = 0.975$,綜合前述內容 $P(-1.96 \le Z \le 1.96) = P(Z \le 1.96) - P(Z \le -1.96) = 0.975 - 0.025 = 0.950$ 。代表樣本平均值 \bar{x} 介在標準化 Z值 ± 1.96 範圍內機率是 0.950。

從母體特定觀測變數,其平均值 μ ·標準(偏)差為 σ 的常態分布中,隨機抽取出 n 的觀測值為樣本,其樣本平均值 \bar{x} 可統計獲得,以推估一般情況下未知母體平均值 μ 的信賴區間。

$$P(-1.96 \leq Z \leq 1.96) = 0.95$$

$$P(-1.96 \leq \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} \leq 1.96) = 0.95$$

$$P(-1.96 \times \sigma_{\bar{x}} \leq \bar{x} - \mu \leq 1.96 \times \sigma_{\bar{x}}) = 0.95$$

$$P(-1.96 \times \sigma_{\bar{x}} - \bar{x} \leq -\mu \leq 1.96 \times \sigma_{\bar{x}} - \bar{x}) = 0.95$$

$$P(1.96 \times \sigma_{\bar{x}} + \bar{x} \geq \mu \geq -1.96 \times \sigma_{\bar{x}} + \bar{x}) = 0.95$$

$$P(\bar{x} - 1.96 \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + 1.96 \times \sigma_{\bar{x}}) = 0.95$$

$$1.96 \times \sigma_{\bar{x}}$$

$$p = 0.025$$

故在樣本平均值 \bar{x} 為中心點的區間 $\bar{x}\pm 1.96\times \sigma_{\bar{x}}$ 中,存在母體平均值 μ 機率為 0.95。以樣本平均值 \bar{x} 為中心點, $\pm 1.96\times \sigma_{\bar{x}}$ 的區間範圍中,母體平均值 μ 數值落在此區間機率為 0.95。

利用隨機抽樣獲得樣本估計值,假設沒有非抽樣誤差時,抽樣誤差可以表示為:

抽樣誤差(margin of error) = $|\overline{x} - \mu|$

一般情況下,無法獲知母體平均值 и 的真實數值,故無法利用上式直接估算抽樣誤差。

$$P(-1.96 \times \sigma_{\bar{x}} \leq \bar{x} - \mu \leq 1.96 \times \sigma_{\bar{x}}) = 0.95$$

$$P(\mu - 1.96 \times \sigma_{\bar{x}} \leq \bar{x} \leq \mu + 1.96 \times \sigma_{\bar{x}}) = 0.95$$

<u>範例 8.2</u> 台灣外食人口中,每人每週外食消費金額為常態分布(Normal distribution),平均值 NT\$800 元,標準(偏)差 NT\$200 元,在隨機抽樣中獲得樣本中每人每週消費金額之平均值 \bar{x} 。試計算樣本數量 n 為 100 時,每人每週消費金額之平均值 \bar{x} 分布的 95 %信賴區間。

題解:隨機變數 X 代表每人每週外食消費金額,信賴水準 $1-\alpha=95$ %,顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。母體平均值 $\mu=$ NT\$800 元,標準(偏)差 $\sigma=$ NT\$200 元,樣本數量 n=100。樣品平均值分布之母體標準(偏)差 $\sigma_{\bar{\chi}}=\frac{\sigma}{\sqrt{n}}=\frac{200}{\sqrt{100}}=\frac{200}{10}=$ NT\$20.0 元。

信賴區間 $\mu - z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} \le \bar{x} \le \mu + z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} \rightarrow 800 - 1.96 \times 20 \le \bar{x} \le 800 + 1.96 \times 20 \rightarrow 800 - 39.2 \le \bar{x} \le 800 + 39.2 \rightarrow 760.8 \le \bar{x} \le 839.2$

答案:每人每週消費金額之平均值 \bar{x} 分布的 95 %信賴區間 μ – 39.2 $\leq \bar{x} \leq \mu$ + 39.2 即 760.8 $\leq \bar{x} \leq$ 839.2

透過樣本獲得的樣本平均值 \bar{x} ,當作母體平均值 μ 的最佳點估計(point estimation),惟通常母體平均值 μ 未知,如何得知此樣本平均值 \bar{x} 是否可靠與準確,在<u>點估計</u>的過程中,並無法回答此問題。區間估計 (Interval estimation)為採用樣本資料計算出一個區間以估計母體參數(parameter),並說明其可靠度的一種程序。

在母體平均值 μ 左右(上下)範圍內,必須包含95%樣本平均值 \bar{x} 的樣本才能代表母體。

若以 a 及 b 分別代表最小及最大樣本平均值 \bar{x} ,符合 $P(\bar{x}_{min} = a \le \mu \le \bar{x}_{max} = b) = P(a \le \mu \le b) = 0.95$ 。

區間(a, b)稱為信賴區間(confidence interval: CI)或信賴限界(confidence limit, C.L.) · a 代表下限 (lower limit)或信賴下界(lower confidence limit) · b 代表上限(upper limit)或信賴上界(upper confidence limit) · 而 b-a 之區間範圍為樣本估值精密度(precision)或可靠度(reliability)之測定值。上列公式中機 率數值 0.95 稱為信賴係數(confidence coefficient)。

信賴係數(confidence coefficient)是指在從一母體中透過隨機抽樣計算獲得的特定信賴區間(confidence interval)中,包含和出現母體參數(parameter)機率、信心、可靠度和信賴度。信賴水準通常以 $1-\alpha$ 符號表示。其中 α 是可能發生錯誤機率, α 亦稱為信賴區間的顯著水準(level of significance)。

信賴係數(confidence coefficient) + 顯著水準(level of significance) = 1

95 %信賴區間或 0.95 信賴區間(95 % confidence interval or 0.95 confidence interval)是依據樣本資料估算出一個特定區間,確認在所有可能的樣本組合中,有 95 %的機會將母體參數估算(包含)在此區間中。

信賴係數(confidence coefficient) = 信賴水準(confidence level; level of confidence) = 信賴度(degree of confidence, β) = 推論成功機率 = $1 - \alpha$

顯著水準(level of significance) = 推論失敗機率 = α

若有 n 個隨機抽樣的樣本 · 分別以 x_1 , x_2 , x_3 ,..., x_n 符號代表 · 欲利用樣本平均值 \bar{x} 來推算母體平均值 μ 的 95 %信賴區間 · 利用標準常態分布累積機率表在 0(標準常態分布平均值)左右範圍內佔有 95 %之標準常態變值 $Z \cdot z_{0.025} = -1.96$ 及 $z_{0.975} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) · 母體平均值 μ 的信賴區間為:

其中 $z_{\underline{\alpha}}$:右尾機率為 $\frac{\alpha}{2}$ 的標準常態化值;臨界值(critical value):在特定信賴水準 $(1-\alpha)$ 下的標準化值。

 $\frac{\alpha}{2}$: 為雙尾機率, 雙尾機率之和 $\frac{\alpha}{2} + \frac{\alpha}{2} = \alpha$ 。

 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$:標準誤(差)(standard error) · 即為點估計值(樣本平均值)的標準(偏)差(standard deviation) · 代表樣本平均值 \bar{x} 抽樣分布的分散(離散)程度 · 可以評量樣本平均值 \bar{x} 抽樣誤差的大小尺度 ·

 $ar{x}-z_{rac{lpha}{2}} imes\sigma_{ar{x}}$:為信賴區間下限 a ; $ar{x}+z_{rac{lpha}{2}} imes\sigma_{ar{x}}$:為信賴區間上限 b

 $z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$:為抽樣誤差(sampling error)、誤差界限、誤差範圍(margin of error)、最大誤差或可能機誤。 臨界值 × 標準誤(差)。

 $2 \times z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$: 為信賴區間的寬度(width)或長度。

母體平均值 μ 在信賴水準為 95 % 之信賴區間

$$P(\bar{x}-1.96\times\sigma_{\bar{x}} \leq \mu \leq \bar{x}+1.96\times\sigma_{\bar{x}}) = 0.95$$

同理,母體平均值 μ 在信賴水準為 99 % 之信賴區間

$$P(\bar{x} - 2.576 \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + 2.576 \times \sigma_{\bar{x}}) = 0.99$$

同理·母體平均值 μ 在信賴水準為 90 % 之信賴區間

$$P(\bar{x} - 1.645 \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + 1.645 \times \sigma_{\bar{x}}) = 0.90$$

在常態分布下,母體平均值 μ 的信賴區間通式

點估計值 ± 誤差範圍(margin of error) 點估計值 ± 臨界值 × 標準誤(差)

$$\bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \sigma_{\bar{\chi}}$$
 $\bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

理想的信賴區間需要具備之條件:

A.信賴區間必須具有高的信賴水準(confidence level)。

B.信賴區間需要具有窄的寬度(範圍)。

 $\frac{$ 範例 8.3 美味海產店過去一年每日營業額符合常態分布,上個月 31 天營業日平均日營業額 $\bar{x}=12000$ 元,過去經驗獲得營業額的標準(偏)差 $\sigma=1000$ 元,試求每日營業額平均值 μ 之 95 %信賴區間?

題解:隨機變數 X 代表每日營業額,信賴水準 95 %,顯著水準 $\alpha=0.05$,右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{\frac{0.05}{2}}=z_{\frac{0.025}{2}}=z_{$

下限: $\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 12000 - 1.96 \times \frac{1000}{\sqrt{31}} = 12000 - 352 = 11648 \, \overline{\pi}$

上限: $\bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 12000 + 1.96 \times \frac{1000}{\sqrt{31}} = 12000 + 352 = 12352$ 元

故每日營業額平均值 μ 之 95 %信賴區間(CI)為 $11648 \le \mu \le 12352$ 元。表示上個月 31 天營業日營業額.所有可能樣本平均值在(11648, 12352)區間有 95 %的機會.將每日營業額平均值 μ 包含在內。

答案:每日營業額平均值 μ 之 95 %信賴區間為 11648 到 12352 元

<u>練習 8.1</u> 請依據下列的顯著水準 α 數值·查表獲得 $z_{\frac{\alpha}{2}}$ 數值(z 值有效位數四捨五入取到小數點後第 4 位;z 值取正值)

題解:

當您發現本教材錯誤時、盡速通知老師修改、教學才會進步。 9/25/2023 6:47:12 AM

 $a.\alpha = 0.10$ $\rightarrow z_{\frac{\alpha}{2}} = z_{\frac{0.10}{2}} = z_{0.05} = 1.6450$ (代表在標準化 Z 分布中,雙尾機率 $\alpha = 0.10$,右尾機率 0.05,左尾 機率 = 1 – 右尾機率 = 1 – 0.05 = 0.95。使用 Excel 軟體 NORM.S.INV 函數查詢獲得。使用 NORM.S.INV 函數需要輸入右尾機率)

$$b.\alpha = 0.01 \rightarrow z_{\frac{\alpha}{2}} = z_{\frac{0.01}{2}} = z_{0.005} = 2.5750$$

 $c.\alpha = 0.05$ $\rightarrow z_{\frac{\alpha}{2}} = z_{0.05} = z_{0.025} = 1.9600$ (代表在標準化 Z 分布中·雙尾機率 $\alpha = 0.05$ ·右尾機率 0.025·左 尾機率 = 1 - 右尾機率 = 1 - 0.025 = 0.975。使用 Excel 軟體 NORM.S.INV 函數查詢獲得。使用 NORM.S.INV 函數需要輸入右尾機率)

$$d.\alpha = 0.20 \rightarrow z_{\frac{\alpha}{2}} = z_{\frac{0.20}{2}} = z_{0.10} = 1.2817$$

$$e.\alpha = 0.02 \rightarrow z\underline{\alpha} = z_{\underline{0.02}} = z_{0.01} = 2.3267$$

$$f.\alpha = 0.04 \rightarrow z_{\frac{\alpha}{2}} = z_{0.04} = z_{0.02} = 2.0540$$

$$\lceil z_{\frac{\alpha=0.20}{2}} = z_{0.10} = 1.2817 \, \rfloor \, < \, \lceil z_{\frac{\alpha=0.10}{2}} = z_{0.05} = 1.6450 \, \rfloor \, < \, \lceil z_{\frac{\alpha=0.05}{2}} = z_{0.025} = 1.9600 \, \rfloor \, < \, \lceil z_{\frac{\alpha=0.04}{2}} = z_{0.02} = 1.000 \, \rfloor$$

$$|z_{0.0540}| < |z_{0.01}| = |z_{0.01}| = |z_{0.01}| = |z_{0.01}| = |z_{0.005}| = |z_{0.005}| = |z_{0.005}| = |z_{0.005}| = |z_{0.005}|$$
。由此練習顯示「**顯著水準** α 數值愈

大,獲得的對應標準化 ${f Z}$ 值數值愈小」。 ${f D}$ 之,「顯著水準 ${f lpha}$ 數值愈小,獲得的對應標準化 ${f Z}$ 值數值愈 大」。

練習 8.2 請依據下列信賴水準(confidence level),找出其對應的顯著水準 α 數值:

- a. 85 %信賴水準
- b. 90 %信賴水準 c. 95 %信賴水準 d. 99 %信賴水準

題解:

a.信賴水準 =
$$1 - \alpha = 85\%$$
 $\rightarrow \alpha = 1 - 信賴水準 = 1 - (1 - \alpha) = 1 - 0.85 = 0.15$

b.信賴水準 =
$$1 - \alpha = 90\%$$
 $\rightarrow \alpha = 1 - 信賴水準 = 1 - (1 - \alpha) = 1 - 0.90 = 0.10$

c.信賴水準 =
$$1 - \alpha = 95\%$$
 $\rightarrow \alpha = 1 - 信賴水準 = 1 - (1 - \alpha) = 1 - 0.95 = 0.05$

d.信賴水準 =
$$1 - \alpha = 99\%$$
 $\rightarrow \alpha = 1 - 信賴水準 = 1 - (1 - \alpha) = 1 - 0.99 = 0.01$

答案: 各信賴水準對應的顯著水準分別為 $a. \alpha = 0.15$, $b. \alpha = 0.10$, $c. \alpha = 0.05$, $d. \alpha = 0.01$

練習 8.3 從一個標準(偏)差為 σ 的母體中,隨機抽出樣本數量 n。請列出母體平均值 90×95 和 99 %的 信賴區間。

請敘述信賴區間想要達到的兩個特性。 練習 8.4

Α.

В.

從一平均值 26.2 與標準(偏)差 4.1 的母體中,獲得 70 個隨機樣本。(信賴區間數值有效位數四 練習 8.5 捨五入取到小數點後第2位)

- a.請計算母體平均值 μ 的 95 %信賴區間
- b.請問信賴係數(confidence coefficient)等於 0.95 的意涵?
- c.請計算母體平均值 µ 的 99 %信賴區間

d.在固定樣本數量的情況下,當信賴細數增加時,信賴區間會發生何種狀況?

題解:

- a. 26.2 ± 0.96
- b. 在重複性的抽樣過程中,有 95 %的機會信賴區間會包含母體平均值 μ
- c. 26.2 ± 1.26
- d. 增加

練習 8.6 由於全球景氣與經營環境的關係,造成全球性失業潮。學術機構為提供政府相關決策的參考,欲調查失業居民的年齡分布情況。現今針對失業居民進行隨機抽樣獲得 30 份樣本,失業居民的年齡資料(單位:歲)如下表所示。假設母體失業居民的年齡分布標準(偏)差為 15.2 歲。(a)試估算在 95 %信賴水準下,失業居民年齡平均值之信賴區間;(b)試估算在 90 %信賴水準下,失業居民年齡平均值之信賴區間。(答案有效位數四捨五入取到小數點後第 1 位)

25	65	54	25	35	45	46	48	52	53
56	51	28	35	45	42	41	25	29	28
29	26	33	44	54	56	48	47	45	23

題解:隨機變數 X 代表每位失業居民的年齡、樣本數量 n=30、樣本平均值 $\bar{x}=41.1$ 歲、母體標準(偏)差 $\sigma=15.2$ 歲。

(a) Step 1:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{0.05} = z_{0.025} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

Step 2:母體平均值信賴區間:
$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 41.1 \pm 1.96 \times \frac{15.2}{\sqrt{30}} = 41.1 \pm 5.44$$
 歲

(b) Step 1:信賴水準 90 % · 顯著水準 $\alpha = 0.10$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.10}{2}} = z_{0.05} = 1.645$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)

Step 2:母體平均值信賴區間:
$$\bar{x}\pm z_{\frac{\alpha}{2}}\times \frac{\sigma}{\sqrt{n}}=41.1\pm 1.645\times \frac{15.2}{\sqrt{30}}=41.1\pm 4.75$$
 歲

答案: (a)95 %信賴水準失業居民年齡平均值之信賴區間 35.7 到 46.5 歲; (b)90 %信賴水準失業居民年齡平均值之信賴區間 36.4 到 45.9 歲

練習 8.7 由於全球景氣與經營環境的關係,造成全球性失業潮。學術機構為提供政府相關決策的參考,欲調查失業居民的年齡分布情況。現今針對失業居民進行隨機抽樣獲得 50 份樣本,失業居民的年齡資料(單位:歲)如下表所示。假設母體失業居民的年齡分布標準(偏)差為 15.2 歲。(a)試估算在 95 %信賴水準下,失業居民年齡平均值之信賴區間;(b)試估算在 90 %信賴水準

下,失業居民年齡平均值之信賴區間。(答案有效位數四捨五入取到小數點後第1位)

25	65	54	25	35	45	46	48	52	53
56	51	28	35	45	42	41	25	29	28
29	26	33	44	54	56	48	47	45	23
28	35	56	54	51	28	34	56	35	34
61	58	43	44	41	46	48	45	41	34

題解:

(a)Step 1:95 % confidence level · 顯著水準 $\alpha = 0.05$ · $z_{\frac{\alpha}{2}} = z_{0.025} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

Step 2 the confidence interval for μ is from $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

$$n = 50$$
 $\bar{x} = 42.1$ \bar{m} $\sigma = 15.2$ \bar{m}

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 42.1 \pm 1.96 \times \frac{15.2}{\sqrt{50}} = 42.1 \pm 4.2$$
 \bar{m}

(b)Step 1:90 % confidence level,顯著水準 $\alpha = 0.10$, $z_{\frac{\alpha}{2}} = z_{0.10} = z_{0.05} = 1.645$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

Step 2 the confidence interval for
$$\mu$$
 is from $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

$$n = 50$$
 $\bar{x} = 42.1$ 歳 $\sigma = 15.2$ 歳

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 42.1 \pm 1.645 \times \frac{15.2}{\sqrt{50}} = 42.1 \pm 3.5 \ \overline{\text{m}}$$

答案:(a)95 %信賴水準失業居民年齡平均值之信賴區間 37.9 到 46.3 歲;(b)90 %信賴水準失業居民年齡平均值之信賴區間 38.6 到 45.6 歲

練習 8.10 管理學院大一學生統計學的成績呈現 $N(\mu, 12.50)$ · 從學生中隨機抽取 65 位當作樣本 · 其平均分數為 65.25 分 · 試估算管理學院大一學生統計學平均分數之 · (a)點估計值;(b)95 %信賴水準的最大誤差;(c)99 %信賴水準的最大誤差;(d)95 %信賴水準的信賴區間;(e)99 %信賴水準的信賴區間。(答案有效位數四捨五入取到小數點後第 2 位)

答案:(a)平均分數的點估計值 = 65.25 分;(b)信賴水準 95 % · 顯著水準 α = 0.05 · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{0.05} = z_{0.025} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。最大誤差 $z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 1.96 \times \frac{\sqrt{12.50}}{\sqrt{65}} = 0.86$ 分;(c)信賴水準 99 % · 顯著水準 α = 0.01 · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{0.01} = z_{0.005} = 2.576$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。最大誤差 $z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 2.576 \times \frac{\sqrt{12.50}}{\sqrt{65}} = 1.13$ 分;(d) $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 65.25 \pm 1.96 \times \frac{\sqrt{12.50}}{\sqrt{65}} = 65.25 \pm 0.86$ 信賴區間(64.39~66.11 分);(e) $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 65.25 \pm 2.576 \times \frac{\sqrt{12.50}}{\sqrt{65}} = 65.25 \pm 1.13$ 信賴區間(64.12~66.38 分)

信賴區間 Excel 函數

利用 Excel 軟體中插入(\underline{I})→函數(\underline{F})…→在插入函數對話方塊中選取類別(\underline{C}): 統計,選取函數(\underline{N}): CONFIDENCE→確定。在函數引數對話視窗中,Alpha 方塊輸入:欲推估信賴區間的顯著水準 α ; Standard_dev 方塊輸入:母體標準(偏)差 σ ; Size 方塊輸入:樣本數量 n。確定。即會在原先選定的儲存格中出現信賴區間的 $z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}}$ 數值。CONFIDENCE(alpha,standard_dev,size)。若將樣本平均值 \bar{x} 設為中心點左右分別 $z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}}$ 距離內區間為信賴區間。

當信賴區間的寬度 $2 \times z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} = 2 \times z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$ 愈小,表示區間估計的精準度(precision 準確度)愈高。故信賴區間寬度受其**顯著水準 \alpha** 的標準化 z 值、母體標準(偏)差 σ 和樣本數量 n 三個數值的影響。因為「顯著水準 α 數值愈大,獲得的對應標準化 z 值數值愈小」,在相同的樣本數量中,信賴水準(confidence level) $1-\alpha$ 下降(信賴區間的顯著水準 α 提高)會使精準度提高。母體標準差 σ 愈大,因母體標準差在分子,信賴區間寬度愈大,精準度愈低。樣本數量 n 愈大,因樣本數量在分母,信賴區間寬度愈小,精準度愈大。

8.1.2 母體變異數未知

在實際調查環境中,通常對於母體的參數未知,故,母體平均值 μ 、變異數 σ^2 和標準(偏)差 σ 皆無法獲得明確的數值。在大量樣本數量($n \ge 30$)的情況下,使用樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$ 作為母體標準(偏)差 σ 的點估計值。進行母體參數(parameter)區間估計時,可以利用樣本標準(偏)差 σ 取代母體標準(偏)差 σ 、大量樣本數量($n \ge 30$),變異數 σ^2 和標準(偏)差 σ 未知時,母體平均值 μ 的信賴區間(**獲得近似數值,使用** t 分布進行運算比較精準)【點估計值±誤差範圍(臨界值×標準誤)】為

$$\bar{\chi} \pm Z \frac{\alpha}{2} \times \frac{S}{\sqrt{n}} \ = \ \bar{\chi} \pm Z \frac{\alpha}{2} \times \frac{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}{\sqrt{n}} \ = \ \bar{\chi} \pm Z \frac{\alpha}{2} \times \frac{\sqrt{\sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}}}{n-1}}{\sqrt{n}}$$

<u>範例 8.4</u> 奇遇海產店每日營業額分布情況趨近於常態分布·上個月 31 天營業日·每日營業額列於下表·試求每日營業額平均值 μ 之 95 % 信賴區間? (信賴區間有效位數取到小數 0 位)

題解:

				_				
營業日	營業額 x_i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$		營業日	營業額 xi	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	16000	-500	250000		17	15000	-1500	2250000
2	15900	-600	360000		18	12000	-4500	20250000
3	17800	1300	1690000		19	15000	-1500	2250000
4	16600	100	10000		20	17000	500	250000
5	12000	-4500	20250000		21	16000	-500	250000
6	15000	-1500	2250000		22	15200	-1300	1690000
7	17000	500	250000		23	12000	-4500	20250000
8	16000	-500	250000		24	15000	-1500	2250000
9	15200	-1300	1690000		25	17000	500	250000
10	16500	0	0		26	16000	-500	250000
11	17500	1000	1000000		27	15200	-1300	1690000
12	18000	1500	2250000		28	16500	0	0
13	20000	3500	12250000		29	17500	1000	1000000
14	26000	9500	90250000		30	18000	1500	2250000
15	16000	-500	250000		31	18100	1600	2560000
16	20500	4000	16000000	_	合計	511500		206440000

樣本平均值 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{511500}{31} = 16500$ 。

使用 Z 分布運算**近似**信賴區間:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025}$ = 1.96(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$ar{x} \pm z_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}} = ar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sqrt{\frac{\sum_{i=1}^{n} (x_i - ar{x})^2}{n-1}}}{\sqrt{n}} = 16500 \pm 1.96 \times \frac{\sqrt{\frac{206440000}{31-1}}}{\sqrt{31}} = 16500 \pm 1.96 \times \frac{2623.2296}{5.5678} = 16500 \pm 923$$

近似信賴區間 15577~17423 元

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=31-1=30 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v}=t_{\frac{0.05}{2},30}=t_{0.025,30}=2.0423$ (使用 Excel 軟體 T.INV 函數查詢獲得) 。

$$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} = 16500 \pm 2.0423 \times \frac{2623.2296}{\sqrt{31}} = 16500 \pm 962.2084 \rightarrow 精準信賴區間 15537.79~17462.21 元$$

答案:每日營業額平均值 μ 之 95 %信賴區間(CI)近似值為 15577 $\leq \mu \leq$ 17423 元;精準值為 15538 $\leq \mu \leq$ 17462 元

練習 8.11 奇遇海產店每日販售清蒸鱸魚數量(尾)分布情況趨近於常態分布·上個月 31 天營業日·每日 販售清蒸鱸魚數量(尾)x_i列於下表·試求每日販售清蒸鱸魚數量平均值 μ 之 95 %信賴區間?(答 案有效位數四捨五入取到小數點後第 1 位)

題解:

營業日	數量 x _i	$x_i - \bar{x}$	$(x_i-\bar{x})^2$	營業日	數量 x _i	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	22	-7.7742	60.4381	17	35	5.2258	27.3091
2	21	-8.7742	76.9865	18	38	8.2258	67.6639
3	16	-13.7742	189.7284	19	39	9.2258	85.1155
4	25	-4.7742	22.7929	20	42	12.2258	149.4703
5	18	-11.7742	138.6316	21	26	-3.7742	14.2445
6	21	-8.7742	76.9865	22	26	-3.7742	14.2445
7	25	-4.7742	22.7929	23	28	-1.7742	3.1478
8	22	-7.7742	60.4381	24	30	0.2258	0.0510
9	22	-7.7742	60.4381	25	29	-0.7742	0.5994
10	55	25.2258	636.3413	26	34	4.2258	17.8574
11	24	-5.7742	33.3413	27	35	5.2258	27.3091
12	26	-3.7742	14.2445	28	32	2.2258	4.9542
13	41	11.2258	126.0187	29	31	1.2258	1.5026
14	40	10.2258	104.5671	30	36	6.2258	38.7607
15	33	3.2258	10.4058	31	25	-4.7742	22.7929
16	26	-3.7742	14.2445	合計	•	•	2123.4194

樣本平均值 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{923}{31} = 29.7742$ 。

使用 Z 分布運算**近似**信賴區間:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025}$ = 1.96(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}} = \bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}}{\sqrt{n}} = 29.7742 \pm 1.96 \times \frac{\sqrt{\frac{2123.4194}{31-1}}}{\sqrt{31}} = 29.7742 \pm 1.96 \times \frac{8.4131}{5.5678} = 29.7742 \pm 2.9616$$
 \rightarrow 近似信賴區間 26.8126~32.7358 尾

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=31-1=30 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v}=t_{\frac{0.05}{2},30}=t_{0.025,30}=2.0423$ (使用 Excel 軟體 T.INV 函數查詢獲得) 。

 $ar{x}\pm t_{\frac{\alpha}{2},\nu} imes \frac{s}{\sqrt{n}} = 29.7742\pm 2.0423 imes \frac{8.4131}{\sqrt{31}} = 29.7742\pm 3.0860 o 精準信賴區間 26.6883~32.8601 尾答案:每日販售清蒸鱸魚數量平均值 <math>\mu$ 之 95 %近似信賴區間(CI)為 $26.8 \le \mu \le 32.7$ 尾;精準信賴區間(CI)為 $26.7 \le \mu \le 32.9$ 尾

練習 8.12 全球經歷金融海嘯·失業率攀升·依據「純純大學」調查 120 位失業勞工·結果顯示失業者平均花 30.5 週才找到下一份工作·樣本標準(偏)差 4.2 週。(A)請建構 95 %信賴水準下·失業者尋找下一份工作·需要之平均時間的信賴區間。(B)若說失業者尋找下一份工作·需要之平均時間為 27.8 週·是否合理?請論述。

題解:題目提供樣本數 n=120。樣本平均值 $\bar{x}=30.5$ 週,樣本標準(偏)差 S=4.2 週

使用Z分布運算**近似**信賴區間:信賴水準95%,顯著水準 $\alpha=0.05$,右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\underline{0.05}}=z_{0.025}$

= 1.96(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 30.5 \pm 1.96 \times \frac{4.2}{\sqrt{120}} = 30.5 \pm 0.75 \rightarrow$$
 近似信賴區間 29.7~31.3 週

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=120-1=119,信賴水準 $1-\alpha=0.95$,顯著水準 $\alpha=0.05$,

$$t_{\frac{\alpha}{2},\nu} = t_{\frac{0.05}{2},119} = t_{0.025,119} = 1.9801$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} \pm t_{\frac{\sigma}{7},\nu} \times \frac{s}{\sqrt{n}} = 30.5 \pm 1.9801 \times \frac{4.2}{\sqrt{120}} = 30.5 \pm 0.7592$$
 → 精準信賴區間 29.7408~ 31.2592 元

- 答案:(A)近似和精準運算信賴區間 29.7~31.3 週;(B)若 \bar{x} = 27.8 週不屬於信賴區間中‧明顯低於 95 %信賴水準之信賴區間下限值‧其出現機率很低‧若隨機抽取的樣本具有代表性‧數值正確‧可推測其原因可能是金融海嘯已經慢慢遠離‧尋找下一份工作的間隔時間‧才會有縮短的現象。
- 練習 8.13 從一個樣本平均值 60 和樣本標準(偏)差 10 的母體中獲得 50 個觀測值的隨機樣本。(A)請提供母體平均值 90 %的信賴區間;(B)請提供母體平均值 95 %的信賴區間;(C)請提供母體平均值 99 %的信賴區間。(答案有效位數四捨五入取到小數點後第 1 位)

題解:題目提供樣本數 n = 50。樣本平均值 $\bar{x} = 60$,樣本標準(偏)差 S = 10

(A)使用 Z 分布運算**近似**信賴區間:信賴水準 90 % · 顯著水準 $\alpha = 0.10$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.10}{2}} = z_{\frac{0.05}{2}} = 1.6449$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 60 \pm 1.6449 \times \frac{10}{\sqrt{50}} = 60 \pm 2.3262 \rightarrow$$
 近似信賴區間 57.6738~62.3262

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=50-1=49 · 信賴水準 $1-\alpha=0.90$ · 顯著水準 $\alpha=0.10$ ·

$$t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.10}{2},50-1} = t_{0.05,49} = 1.6766$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} = 60 \pm 1.6766 \times \frac{10}{\sqrt{50}} = 60 \pm 2.3710$$
 → 精準信賴區間 57.6290~62.3710

(B)使用 Z 分布運算**近似**信賴區間:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{\frac{0.025}{2}} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 60 \pm 1.96 \times \frac{10}{\sqrt{50}} = 60 \pm 2.7718 \rightarrow$$
 近似信賴區間 57.2282~62.7718

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=50-1=49,信賴水準 $1-\alpha=0.95$.顯著水準 $\alpha=0.05$,

$$t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.05}{2},50-1} = t_{0.025,49} = 2.0096$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} = 60 \pm 2.0096 \times \frac{10}{\sqrt{50}} = 60 \pm 2.8420$$
 → 精準信賴區間 57.1580~62.8420

(C)使用 Z 分布運算**近似**信賴區間:信賴水準 99 % · 顯著水準 $\alpha = 0.01$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.01}{2}} = z_{0.005} = 2.5758$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=50-1=49 · 信賴水準 $1-\alpha=0.99$ · 顯著水準 $\alpha=0.01$ ·

$$t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.01}{2},50-1} = t_{0.005,49} = 2.6800$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。

- 答案:(A)近似信賴區間 57.67~62.33 · 精準信賴區間 57.63~62.37;(B)近似信賴區間 57.23~62.77 · 精準信賴區間 57.16~62.84;(C)近似信賴區間 56.36~63.64 · 精準信賴區間 56.21~63.79
- 練習 8.14 從一個樣本平均值 50 和樣本標準(偏)差 12 的母體中獲得 55 個觀測值的隨機樣本。(A)請計算樣本平均值的標準(偏)差 $\sigma_{\bar{x}}$?(B)在 90 %信賴區間中·請計算誤差範圍(margin of error)?(答案有效位數四捨五入取到小數點後第 1 位)

題解:題目提供樣本數 n=55。樣本平均值 $\bar{x}=50$ 、樣本標準(偏)差 S=12

樣本平均值的標準(偏)差 $\sigma_{\bar{x}} = \frac{s}{\sqrt{n}} = \frac{12}{\sqrt{55}} = 1.6181$

當您發現本教材錯誤時,盡速通知老師修改,教學才會進步。 9/25/2023 6:47:12 AM

使用 Z 分布運算**近似**誤差範圍:信賴水準 90%,顯著水準 $\alpha=0.10$,右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.10}{2}}=z_{0.05}$

= 1.6449(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。誤差範圍 = $z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 1.6449 \times \frac{12}{\sqrt{55}} = 2.6615$

使用 t 分布運算**精準**誤差範圍:自由度 v=n-1=55-1=54 · 信賴水準 $1-\alpha=0.90$ · 顯著水準 $\alpha=0.10$ ·

$$t_{\frac{\alpha}{2},v=n-1}=t_{\frac{0.10}{2},55-1}=t_{0.05,54}=1.6737$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。誤差範圍 = $t_{\frac{\alpha}{2},v}\times\frac{S}{\sqrt{n}}=1.6737\times\frac{12}{\sqrt{55}}=2.7080$

答案:(A)樣本平均值的標準(偏)差 $\sigma_{\bar{x}}=1.6181$;(B)使用 Z分布運算**近似**誤差範圍 = 2.6615,使用 t 分布運 算**精準**誤差範圍 = 2.7080

練習 8.15 奇遇速食餐廳提供購餐車道服務,若服務人員訓練合格,對於購餐車道的消費者服務時間會 趨近於常態分布。現今隨機抽取 30 輛進入購餐車道的車輛‧測量服務人員的服務時間如下表 所示(單位:秒)。(A)請計算母體平均值90%信賴區間;(B)請計算母體平均值95%信賴區間; (C)請計算母體平均值 99 %信賴區間; (D)在 95 %信賴區間中,請計算誤差範圍(margin of error)?(答案有效位數四捨五入取到小數點後第1位)

55	68	45	78	150	241	162	156	182	125
75	89	91	95	92	65	75	85	95	105
132	120	142	110	111	130	128	130	108	109

題解:樣本數量 n=30,樣本平均值 $\bar{x}=111.6333$,樣本標準(偏)差 S=40.8575

(A)使用 Z 分布運算**近似**信賴區間:信賴水準 90 %,顯著水準 $\alpha=0.10$,右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10}{2}=z_{\frac{0.10$ $z_{0.05} = 1.6449$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

 $ar{x} \pm z_{\frac{\alpha}{2}} imes \frac{S}{\sqrt{n}} = 111.6333 \pm 1.6449 imes \frac{40.8575}{\sqrt{30}} = 111.6333 \pm 12.2668 o 近似信賴區間 99.3665~123.9001$ 使用 t 分布運算**精準**信賴區間:自由度 v = n - 1 = 30 - 1 = 29 · 信賴水準 $1 - \alpha = 0.90$ · 顯著水準 $\alpha = 0.10$ ·

 $t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.10}{2},30-1} = t_{0.05,29} = 1.6991$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} \pm t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} = 111.6333 \pm 1.6991 \times \frac{40.8575}{\sqrt{30}} = 111.6333 \pm 12.6716$$
 → 精準信頼區間 98.9618~124.3049

(B)使用 Z 分布運算**近似**信賴區間:信賴水準 95 % · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=$ z_{0.025} = 1.9600(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

 $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 111.6333 \pm 1.9600 \times \frac{40.8575}{\sqrt{30}} = 111.6333 \pm 14.6168$ → 近似信頼區間 97.0165~126.2501 使用 t 分布運算**精準**信賴區間:自由度 v = n - 1 = 30 - 1 = 29 · 信賴水準 $1 - \alpha = 0.95$ · 顯著水準 $\alpha = 0.05$ ·

 $t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.05}{2},30-1} = t_{0.025,29} = 2.0452$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

(C)使用 Z 分布運算**近似**信賴區間:信賴水準 99 % · 顯著水準 $\alpha=0.01$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.01}{2}=z_{\frac{0.01}{2}}=z_{\frac{0.01}{2}}=z_{\frac{0.01}{2}}=z_{\frac{0.01}{2}$

z_{0.005} = 2.5758(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

 $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 111.6333 \pm 2.5758 \times \frac{40.8575}{\sqrt{30}} = 111.6333 \pm 19.2097 \rightarrow 近似信賴區間 92.4236~130.8431$

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=30-1=29 · 信賴水準 $1-\alpha=0.99$ · 顯著水準 $\alpha=0.01$ · $t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.01}{2},30-1} = t_{0.005,29} = 2.7564$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

(D)使用 Z 分布運算**近似**誤差範圍:信賴水準 95 %,顯著水準 $\alpha=0.05$,右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}=z_{\frac{0.05}{2}=z_{\frac{0.0$ $z_{0.025} = 1.9600$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。近似誤差範圍 = $z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 1.9600 \times \frac{40.8575}{\sqrt{30}}$

= 14.6168

使用 t 分布運算**精準**誤差範圍:自由度 v=n-1=30-1=29 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v=n-1}=t_{\frac{0.05}{2},30-1}=t_{0.025,29}=2.0452$ (使用 Excel 軟體 T.INV 函數查詢獲得)。精準誤差範圍 = $t_{\frac{\alpha}{2},v=n-1}\times\frac{S}{\sqrt{n}}=2.0452\times\frac{40.8575}{\sqrt{30}}=15.2527$

答案: (A)近似信賴區間 99.37~123.90 · 精準信賴區間 98.96~124.30; (B)近似信賴區間 97.02~126.25 · 精準信賴區間 96.38~126.89; (C)近似信賴區間 92.42~130.84 · 精準信賴區間 91.08~132.19; (D)近似誤差範圍 = 14.62 · 精準誤差範圍 = 15.25

題解:樣本數量 n = 50 · 樣本平均值 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1320}{50} = 26.4$ 秒 · 樣本變異數 $S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1} = \frac{\sum_{i=1}^{n} x_i^2 - \frac{(\sum_{i=1}^{n} x_i)^2}{n}}{n-1} = \frac{35820 - \frac{1320^2}{50}}{50 - 1} = \frac{35820 - \frac{34848}{49}}{49} = \frac{972}{49} = 19.8367$ · 樣本標準(偏)差 $S = \sqrt{S^2} = \sqrt{19.8367} = 4.4538$ 秒 °

使用 Z 分布運算**近似**信賴區間:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{\frac{0.05}{2}} = z_{0.025}$ = 1.9600(使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

使用 t 分布運算**精準**信賴區間:自由度 v=n-1=50-1=49,信賴水準 $1-\alpha=0.95$.顯著水準 $\alpha=0.05$.

$$t_{\frac{\alpha}{2},v=n-1} = t_{\frac{0.05}{2},50-1} = t_{0.025,49} = 2.0096$$
(使用 Excel 軟體 T.INV 函數查詢獲得)。

答案:服務購餐車道每一輛車平均時間的 95 5 %近似信賴區間 25.17~27.63 秒·精準信賴區間 25.13~27.67 秒

8.2 母體平均值區間估計:小量樣本數

小量樣本數為 n < 30 的情況‧利用樣本統計值(statistic)—樣本平均值 \bar{x} 推估母體參數(母數)(parameter)—母體平均值 μ 的信賴區間(interval estimator or confidence interval)。

8.2.1 母體屬常態分布和母體變異數已知

母體屬於常態分布時,樣本平均值 \bar{x} 的抽樣分布亦是趨近於常態分布。故, $\bar{x} \sim N(\mu, \frac{\sigma^2}{n})$ 。依據標準化常態分布 z 值,推估母體平均值 μ 在 $1-\alpha$ 的信賴水準下之信賴區間:

$$\begin{split} P(-z_{\frac{\alpha}{2}} &\leq \frac{\bar{x}-\mu}{\sigma_{\bar{x}}} \leq z_{\frac{\alpha}{2}}) = 1 - \alpha \\ P(\bar{x} - z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} &\leq \mu \leq \bar{x} + z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}}) = 1 - \alpha \\ P(\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha \end{split}$$

因此,在母體屬於常態分布,而樣本數量較少 n < 30,母體變異數 σ^2 和標準(偏)差 σ 已知的情況下,母體平均值 μ 的信賴區間【點估計值±誤差範圍(臨界值×標準誤)】為:

$$\bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \sigma_{\bar{\chi}} = \bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$

當您發現本教材錯誤時、盡速通知老師修改、教學才會進步。 9/25/2023 6:47:12 AM

題解:信賴水準 95 % · 顯著水準 $\alpha = 0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}} = z_{0.05} = z_{0.025} = 1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。母體平均值信賴區間: $\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

下限:
$$\bar{x} - z_{\underline{\alpha}} \times \frac{\sigma}{\sqrt{n}} = 12000 - 1.96 \times \frac{1000}{\sqrt{7}} = 12000 - 740.8 = 11259.2 \, \overline{\pi}$$

下限:
$$\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 12000 - 1.96 \times \frac{1000}{\sqrt{7}} = 12000 - 740.8 = 11259.2$$
 元
上限: $\bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} = 12000 + 1.96 \times \frac{1000}{\sqrt{7}} = 12000 + 740.8 = 12740.8$ 元

每日營業額平均值 μ 之 95 %信賴區間(CI)為 $11259.2 \le \mu \le 12740.8$ 元。表示上週七天營業日營業額,所有 可能樣本平均值在(11259.2, 12740.8)區間有 95 %的機會包含母體平均值 μ 在內。

由一常態分布母體 $N(\mu_x, 7^2)$ 隨機獲得 $x_1, x_2, x_3, ..., x_{10}$ 樣本,再由另一常態分布母體 $N(\mu_y, 5^2)$ 隨 機獲得 $y_1, y_2, y_3, ..., y_{12}$ 樣本 · x_i 與 y_j 相互獨立 。則 $\bar{x} = \frac{\sum_{i=1}^{10} x_i}{10}$ 與 $\bar{y} = \frac{\sum_{i=1}^{12} y_i}{12}$ 。(A)請寫出 $\bar{x} - \bar{y}$ 之抽樣 分布;(B)若 $\bar{x}=60$ 與 $\bar{y}=50$ · 計算 $\mu_x-\mu_y$ 之 90 %信賴區間 · 並解釋其意涵。(答案有效位數四 捨五入取到小數點後第2位)

題解: $X\sim N(\mu_x,7^2)$ · $n_x=10$ · 樣本平均值 $\bar{x}\sim N(\mu_x,\frac{7^2}{10})$ · $Y\sim N(\mu_y,5^2)$ · $n_y=12$ · 樣本平均值 $\bar{y}\sim N(\mu_y,\frac{5^2}{12})$ ° (A) $\bar{x} - \bar{y} \sim N(\mu_x - \mu_y, \frac{7^2}{10} + \frac{5^2}{12})$

(B) 90 %信賴區間公式為
$$(\bar{x} - \bar{y}) - 1.645 \times \sigma_{\bar{x} - \bar{y}} \leq \mu_x - \mu_y \leq (\bar{x} - \bar{y}) + 1.645 \times \sigma_{\bar{x} - \bar{y}}$$

下限:
$$(\bar{x}-\bar{y})-1.645\times\sigma_{\bar{x}-\bar{y}}=(60-50)-1.645\times\sqrt{\frac{7^2}{10}+\frac{5^2}{12}}=10-4.3471=5.5629$$

上限:
$$(\bar{x} - \bar{y}) + 1.645 \times \sigma_{\bar{x} - \bar{y}} = (60 - 50) + 1.645 \times \sqrt{\frac{7^2}{10} + \frac{5^2}{12}} = 10 + 4.3471 = 14.3471$$

 $\mu_x - \mu_y$ 之 90 %信賴區間(CI)為 $5.5629 \le \mu_x - \mu_y \le 14.3471$ · 表示有 90 %信心水準相信 $\mu_x - \mu_y$ 會位在 5.56 到 14.35 區間範圍內。

8.2.2 母體屬常態分布和母體變異數未知

母體屬於常態分布時,在母體變異數 σ^2 和標準(偏)差 σ 未知的情況下,樣本數量大時($n \ge 30$),可以利 用樣本標準(偏)差 S 取代母體標準(偏)差 σ · 而估算母體平均值 μ 的信賴區間為 $\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}}$ 。在樣本數量較 $\psi(n<30)$ 時,其標準化 z 值 $z=\frac{\bar{x}-\mu}{\underline{s}}$ 的分布並不近似標準常態分布(Standard normal distribution),而是適用

於自由度(degree of freedom, df) $n-1 \ge t$ 分布(t distribution)。母體屬於常態分布,而樣本數量較少 n < 30, 母體變異數 σ^2 和標準(偏)差 σ 未知的情況下,應以 t 分布估算母體平均值 μ 的信賴區間。

8.2.2.1 t 分布

母體屬於常態分布(Normal distribution)時,其樣本平均值 \bar{x} 的抽樣分布亦趨近於常態分布, $\bar{x} \sim N(\mu, \frac{\sigma^2}{n})$ 。將樣本平均值 \bar{x} 標準化,標準常態分布為:

$$z = \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$$

在實際應用上母體變異數(變方) σ^2 或標準(偏)差 σ 經常未能獲知・利用樣本標準(偏)差S代替母體標準 (偏)差 σ · 可獲得自由度(degree of freedom, df) $n-1 \ge t$ 分布(t distribution, t statistic or t score) °

Gosset 稱為 t 值:t 值與 z 值同屬於無因次單位

$$t = \frac{\bar{x} - \mu}{S_{\bar{x}}} = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

此分布又稱為學生氏 *t* 分布(Student's *t*-distribution)。 *t* 分布之密度函數(density function)

$$f(t) = \frac{k}{\left(\frac{1+\frac{t^2}{v}\times(v+1)}{v}\right)} \cdot \not\sqsubseteq \psi - \infty < t < \infty$$

 ν (英文讀音 nu)為樣本變異數(S^2)的自由度 $\nu = n - 1 \cdot k$ 為一常數(constant)。

8.2.2.2 t 分布性質

f(t)式之 t 值分布為一理論抽樣分布(theoretical sampling distribution)。設常態分布之母體大小為 N.從 此母體隨機抽取 n 個觀測值為樣本.所有可能樣本有 N^n 個(組合).可求得 N^n 個(組合)t 值.即為 t 分布。

<u>範例 8.8</u> 一母體為 $2 \cdot 4$ 和 6 即基本單位數量 $N = 3 \cdot$ 從此母體隨機抽取 2 個觀測值(n = 2)為一樣本 · 所有可能樣本組合有 $3^2 = 9$ 個 · 可計算獲得 9 個 t 值

樣本		平均值 $ar{x}$	均值 \bar{x} S^2 樣本標準(偏)差 S		平均值 \bar{x} S^2 樣本標準(偏)差 S		<i>t</i> 值
2	2	2	0	0.0000	∞		
2	4	3	2	1.4142	-1		
2	6	4	8	2.8284	0		
4	2	3	2	1.4142	-1		
4	4	4	0	0.0000	0		
4	6	5	2	1.4142	1		
6	2	4	8	2.8284	0		
6	4	5	2	1.4142	1		
6	6	6	0	0.0000	$+\infty$		

母體平均值 $\mu = 4$

t 值次數分布表

t 值	∞	-1	0	1	+∞
次數	1	2	3	2	1
1414 527	1	2	3	2	1
機率	9	9	9	9	- 9

t值的期望值 E(t)為 0

$$E(t) = \frac{-\infty - 1 + 0 - 1 + 0 + 1 + 0 + 1 + \infty}{9} = 0$$

t 值分布之平均值為 0 · 以此為中心左右對稱 · 當母體基本單位數量 N 很大 · 樣本數量 n 也夠大時 · t 值分布會非常接近標準常態分布之型態 。

t分布的變異數 V(t)

$$V(t) = \frac{v}{v-2}$$

t分布的標準(偏)差 σ_t

$$\sigma_t = \sqrt{V(t)} = \sqrt{\frac{v}{v-2}}$$

當自由度 v > 2 或樣本數量 n > 3 時 $\cdot V(t) > 1$ · 故一般情況下 · 樣本數量 n 大於 3 時 · t 分布的變異數皆會大於 1 。當樣本數量 n 很大(n > 31)時 · 自由度 v = n - 1 亦會變大 · t 分布的變異數會接近 1 · 即 V(t) = 1 · 與標準常態分布 N(0,1)的變異數 V(z) = 1 接近 。故當樣本數量大量增加(n > 31)時 · t 分布的平均值會趨近於標準常態分布的平均值 0 ; t 分布的變異數會趨近於標準常態分布的變異數 1 。因此 · 在樣本數量大量增加(n > 31)時 · t 分布會趨近於標準常態分布。因此 · 故當樣本數量高於 31(n > 31)時 · 自由度 v > 30 · 可以利用標準常態分布取代 t 分布。

樣本數量 n 不同,因此 t 分布並非如標準化值 Z 為唯一曲線分布,而是一組曲線分布。樣本變異數 S^2 的自由度為 v=n-1,所以 t 分布曲線隨自由度 v 數值而異,通常皆以 t_v 代表 t 分布曲線。

自由度

以樣本的統計量(值)來估計母體參數時,樣本中獨立或能自由變化的資料之個數,稱為該統計量(值)的自由度(degree of freedom, df)。例如:在估算樣本變異數 $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ 或樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$ 時,必須先計算樣本平均值 \bar{x} ,在獲得樣本平均值之後,在所有n個觀測值中,只要確定n-1個觀測值的

數值·即可透過樣本平均值和 n-1 個觀測值的數值·即可獲得剩下 1 個觀測值的數值。從此情況而論·可以自由調整的觀測值僅有 n-1 個觀測值·故·<mark>樣本變異數</mark> S^2 的自由度為 v=n-1。

 $t_{\frac{\alpha}{2}}$ 表示 t 分布<mark>右</mark>尾(標示文字在<mark>右</mark>下角)機率(面積)為 $\frac{\alpha}{2}$ 的 t 值。 $t_{\frac{\alpha}{2},v}$ 代表在 t 分布中,自由度 v=n-1 時,右尾機率(面積)為 $\frac{\alpha}{2}$ 的 t 值。因此,從 $t_{\frac{\alpha}{2},v}$ 到+∞機率為 $\frac{\alpha}{2}$,亦可表示為 $P(t>t_{\frac{\alpha}{2},v})=\frac{\alpha}{2}$ 。

標準常態分布與 t 分布圖形比較

t 分布圖形與標準常態分布圖形相似

都具有對稱於零、單峰及鐘形的特性

t分布圖形散佈(spread)比標準常態分布圖形大·t分布圖形尾端(tails)具有較高機率

以 $\frac{s}{\sqrt{n}}$ 替代 $\frac{\sigma}{\sqrt{n}}$ 標準化,使得 t 分布有較大的變異性。

t 分布自由度 v 愈大時·t 分布圖形愈趨近標準常態分布圖形

樣本數 n 越大,樣本標準(偏)差 s 估計母體標準(偏)差 σ 越準,估計值造成的額外變異性越少。

練習 8.16 t 分布出現極端值機率比常態分布出現極端值機率大還是小?為什麼?

t分布 Excel 函數

利用 Excel 軟體中插入(\underline{I})→函數(\underline{F})…→在插入函數對話方塊中選取類別(\underline{C}): **統計** · 選取函數(\underline{N}): **TDIST**→確定 。在函數引數對話視窗中 · x 方塊輸入:欲推估 t 分布的數值間 x ; Deg_freedom 方塊輸入:自由度 v ; Tails 方塊輸入:分布尾數個數 · 1 代表單尾分布;2 代表雙尾分布。確定。即會在原先選定的儲存格中出現 t 分布機率數值。TDIST(x,deg_freedom,tails)。

利用 Excel 軟體中插入(\underline{I}) →函數(\underline{F})... →在插入函數對話方塊中選取類別(\underline{C}): **統計** · 選取函數(\underline{N}): **TINV** →確定 。在函數引數對話視窗中 · Probability 方塊輸入 : **雙尾** t 分布機率數值 α ; Deg_freedom 方塊輸入 : 自由度 v 。確定 。即會在原先選定的儲存格中出現 t 分布的 t 數值 。TINV(probability,deg_freedom)。

8.2.2.3 利用 t 分布推估母體平均值的信賴區間

母體資料屬於常態分布,母體變異數和標準差未知,都可以使用 t 分布進行信賴區間精準估算。樣本數高於 30,使用標準化 Z 值可以獲得信賴區間近似數值。樣本數量少於 30 時,若使用標準化 Z 值進行信賴區間估算,誤差量會比較大。

故 · 樣本數量少(n < 30) · 母體屬於常態分布 · 母體變異數 σ^2 和標準(偏)差 σ 未知時 · 母體平均值 μ 的信賴區間【點估計值±誤差範圍(臨界值×標準誤)】:

$$\overline{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$$

其中 $1-\alpha$:信賴係數 α :信賴區間的顯著水準。

 $t_{\frac{\alpha}{2},v}$: 在自由度 v = n - 1 · **右**尾(文字標示於**右**下角)機率(面積)為 $\frac{\alpha}{2}$ 的 t 值。

S: 樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}$ 。

 \bar{x} : 樣本平均值。

v: 自由度(degree of freedom, df)是在計算 $\sum_{i=1}^{n}(x_i-\bar{x})^2$ 時,樣本所需提供的獨立資料的個數。 在計算 $\sum_{i=1}^{n}(x_i-\bar{x})^2$ 時需要 n 個觀測值(資料)個數,包括 $x_1-\bar{x}, x_2-\bar{x}, x_3-\bar{x}, ..., x_n-\bar{x}$ 。另外可知

 $\sum_{i=1}^{n}(x_i-\bar{x})=0$ · 故只有 n-1 個資料是屬於獨立性質。因此,只要預先知道 n-1 個 $x_i-\bar{x}$ 的數值,最後一個 $x_i-\bar{x}$ 數值可以透過 $\sum_{i=1}^{n}(x_i-\bar{x})=0$ 推估獲得。於是:樣本變異數 S^2 的自由度為 v=n-1 。

 $t_{\frac{\alpha}{2}, \nu} imes \frac{s}{\sqrt{n}}$:為抽樣誤差(sampling error)、誤差界限、誤差範圍(margin of error)、最大誤差或可能機誤。 臨界值 × 標準誤(差)。

 $2 \times t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}}$: 為信賴區間的寬度(width)、長度。

<u>範例 8.9</u> 在自由度 10 的 t 分布中·請找出 $t_{0.05,10}$ 數值·該點在 t 分布右尾機率 p=0.05。(答案有效位數 四括五入取到小數點後第 4 位)

題解:P(t > 1.8125) = 0.05(使用 Excel 軟體 T.INV 函數輸入左尾機率 0.95 自由度 10 查詢獲得;使用 TINV 函數輸入雙尾機率 0.10 自由度 10 查詢獲得)

答案:t_{0.05.10} = 1.8125

<u>範例 8.10</u> 在自由度 10 的 t 分布中·請找出 t 數值·該點在 t 分布左尾機率 p=0.05。(答案有效位數四括五入取到小數點後第 4 位)

題解:P(t < -1.8125) = 0.05(使用 Excel 軟體 T.INV 函數輸入左尾機率 0.05 自由度 10 查詢獲得;使用 TINV 函數輸入雙尾機率 0.10 自由度 10 查詢後再加上-號獲得)

答案: $t_{0.95,10} = -t_{0.05,10} = -1.8125$

<u>練習 8.17</u> 在自由度 10 的 t 分布中·請找出 $t_{0.975,10}$ 和 $t_{0.025,10}$ 數值·前述兩點屬於左右兩側機率皆為 p=0.025。(答案有效位數四捨五入取到小數點後第 4 位)

題解: $P(t < -2.2281) = 0.025 \cdot P(t > 2.2281) = 0.025$ (使用 Excel 軟體 T.INV 函數查詢獲得;或 T.INV.2T 函數輸入雙尾機率獲得正值 t 值)

答案: $t_{0.975,10} = -t_{0.025,10} = -2.2281$; $t_{0.025,10} = 2.2281$

範例 8.11 在自由度 26 的 t 分布中,請找出 $t_{0.01,26}$ 數值,該點在 t 分布右尾機率 0.01。

題解:P(t > 2.4786) = 0.01(使用 Excel 軟體 T.INV 函數輸入左尾機率 0.99 自由度 26 查詢獲得使用 TINV 函數輸入雙尾機率 0.02 自由度 26 查詢獲得)

答案:t_{0.01.26} = 2.4786

範例 8.12 奇遇海產店依據過去的資料分析顯示每日營業額(新台幣:元)符合常態分布·上星期 7 天營業日每日營業額如下表所示·試求每日營業額平均值 μ 之 95 %信賴區間?(答案有效位數四捨五入取到小數點後第1位)

題解:

營業日 營業額
$$x_i$$
 $x_i - \bar{x}$ $(x_i - \bar{x})^2$

1 16000 0 0
2 18000 2000 4000000

第18頁 共 42 頁

當您發現本教材錯誤時,盡速通知老師修改,教學才會進步。 9/25/2023 6:47:12 AM

營業日	營業額 xi	$x_i - \bar{x}$	$(x_i-\bar{x})^2$
3	17500	1500	2250000
4	16500	500	250000
5	12000	-4000	16000000
6	15000	-1000	1000000
7	17000	1000	1000000
合計	112000	0	24500000

自由度 v=n-1=7-1=6 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v}=t_{\frac{0.05}{2},7-1}=t_{0.025,6}=2.4469$ (使

用 Excel 軟體 T.INV 函數查詢獲得)。

母體平均值信賴區間: $\bar{x} - t_{\frac{\alpha}{2},\nu} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2},\nu} \times \frac{s}{\sqrt{n}}$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}, v} \times \frac{s}{\sqrt{n}} = 16000 - 2.4469 \times \frac{2020.7}{\sqrt{7}} = 16000 - 1868.8 = 14131.2 { 元}$$

故每日營業額平均值 μ 之 95 %信賴區間(CI)為 $14131.2 \le \mu \le 17868.8$ 元。表示上週七天營業日營業額,所 有可能樣本平均值在(14131.2, 17868.8)區間有 95 %的機會包含(母體)每日營業額平均值 μ 在內。

練習 8.18 阿文連鎖飲料店聲稱其珍珠奶茶每杯容量體積皆為 650 ml,容量分布屬於常態分布。現從其產 品中隨機抽取 8 件樣本,測量其體積分別為 620、655、670、635、665、648、641 和 642 ml。 請估算每杯珍珠奶茶平均容量的95%信賴區間。(答案有效位數四捨五入取到小數點後第1位)

題解:樣本平均值 $\bar{x}=647.00~ ext{ml}$,樣本標準(偏)差 $S=16.27~ ext{ml}$ 。自由度 v=n-1=8-1=7,信賴水準 1-1 $\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v=n-1}=t_{\frac{0.05}{2},8-1}=t_{0.025,7}=2.3646$ (使用 Excel 軟體 T.INV 函數查詢獲

得)。母體平均值信賴區間:
$$\bar{x} - t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}, v} \times \frac{s}{\sqrt{n}} = 647 - 2.3646 \times \frac{16.27}{\sqrt{8}} = 647 - 13.6 = 633.4 \text{ ml}$$

上限:
$$\bar{x} + t_{\frac{\alpha}{2},\nu} \times \frac{s}{\sqrt{n}} = 647 + 2.3646 \times \frac{16.27}{\sqrt{8}} = 647 + 13.6 = 660.6 \text{ ml}$$

答案:每杯珍珠奶茶平均容量之95%信賴區間(CI)為633.4 < u < 660.6 ml

練習 8.19 阿文連鎖飲料店聲稱其珍珠奶茶每杯容量體積皆為 600 ml·容量分布屬於常態分布。現從其產 品中隨機抽取 25 件樣本,測量其平均體積為 586.6 ml,標準(偏)差為 35.7 ml。請估算每杯珍 珠奶茶平均容量的 95 %信賴區間。(答案有效位數四捨五入取到小數點後第 1 位)

題解:樣本平均值 $\bar{x}=586.6 \text{ ml}$,樣本標準(偏)差 S=35.7 ml,自由度 v=n-1=25-1=24,信賴水準 1-1=1lpha=0.95 · 顯著水準 lpha=0.05 · $t_{\frac{\alpha}{2}, \nu=n-1}^{\alpha}=t_{\frac{0.05}{2}, 25-1}^{\alpha}=t_{0.025, 24}=2.0639$ (使用 Excel 軟體 T.INV 函數查詢獲

得)。母體平均值信賴區間:
$$\bar{x} - t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$$

下限:
$$\bar{x} - t_{\frac{\alpha}{12}} \times \frac{s}{\sqrt{s}} = 586.6 - 2.0639 \times \frac{35.7}{\sqrt{s}} = 586.6 - 14.74 = 571.9 \text{ ml}$$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} = 586.6 - 2.0639 \times \frac{\frac{2}{35.7}}{\sqrt{25}} = 586.6 - 14.74 = 571.9 \text{ ml}$$

上限: $\bar{x} + t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} = 586.6 + 2.0639 \times \frac{35.7}{\sqrt{25}} = 586.6 + 14.74 = 601.3 \text{ ml}$

答案:每杯珍珠奶茶平均容量之95%信賴區間(CI)為 $571.9 \le \mu \le 601.3$ ml

練習 8.20 奇遇海產店依據過去的資料分析顯示每日營業額(新台幣:元)符合常態分布,前 14 天營業日 每日營業額如下表所示,(a)試求每日營業額平均值 μ 之 95 %信賴區間 ?(b)試求每日營業額平 均值 μ 之 90 %信賴區間?(答案有效位數四捨五入取到小數點後第 1 位)

題解:

9/25/2023 6:47:12 AM

當您發現本教材錯誤時,盡速通知老師修改,教學才會進步。

營業日	營業額 xi	$x_i - \bar{x}$	$(x_i - \bar{x})^2$
1	16000	250	62500
2	18000	2250	5062500
3	17500	1750	3062500
4	16500	750	562500
5	12000	-3750	14062500
6	14000	-1750	3062500
7	15200	-550	302500
8	15200	-550	302500
9	12000	-3750	14062500
10	18000	2250	5062500
11	15600	-150	22500
12	17000	1250	1562500
13	16500	750	562500
14	17000	1250	1562500
合計			

樣本平均值 $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{220500}{14} = 15750$ · 樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{49315000}{14-1}} = 1947.6811$ · 自由度 v= n - 1 = 14 - 1 = 13°

(a)信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},\nu=n-1}=t_{\frac{0.05}{2},14-1}=t_{0.025,13}=2.1604$ (使用 Excel 軟體 T.INV 函數查詢獲得)。母體平均值信賴區間: $\bar{x} - t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}}$

上限:
$$\bar{x} + t_{\frac{\alpha}{2}, y} \times \frac{s}{\sqrt{n}} = 15750 + 2.1604 \times \frac{1947.6811}{\sqrt{14}} = 15750 + 1124.6 = 16874.6$$
 元

故每日營業額 μ 之 95 %信賴區間(CI)為 $14625.4 \le \mu \le 16874.6$ 元。表示上週七天營業日營業額,所有 可能樣本平均值在(14625.4, 16874.6)區間有 95 %的機會包含(母體)每日營業額平均值 μ 在內。

(b)信賴水準 $1-\alpha=0.90$ · 顯著水準 $\alpha=0.10$ · $t_{\frac{\alpha}{2},\nu=n-1}=t_{\frac{0.10}{2},14-1}=t_{0.05,13}=1.7709$ (使用 Excel 軟體 T.INV 函 數查詢獲得)。母體平均值信賴區間: $\bar{x} - t_{\frac{\alpha}{2'}v} \times \frac{S}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2},v} \times \frac{S}{\sqrt{n}}$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}\nu} \times \frac{s}{\sqrt{n}} = 15750 - 1.7709 \times \frac{1947.6811}{\sqrt{14}} = 15750 - 921.8 = 14828.2 \, \overline{\pi}$$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} = 15750 - 1.7709 \times \frac{1947.6811}{\sqrt{14}} = 15750 - 921.8 = 14828.2 \, \overline{\pi}$$

上限: $\bar{x} + t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} = 15750 + 1.7709 \times \frac{1947.6811}{\sqrt{14}} = 15750 + 921.8 = 16671.8 \, \overline{\pi}$

故每日營業額 μ 之 90 %信賴區間(CI)為 $14828.2 \le \mu \le 16671.8$ 元。表示上週七天營業日營業額,所有 可能樣本平均值在(14828.2, 16671.8)區間有 90 %的機會包含(母體)每日營業額平均值 μ 在內。

練習 8.21 請依據下列自由度數值,找出 t分布中右尾機率 0.05 的 t 值: (a) 5; (b) 10; (c) 15; (d) 20; (e) 25 °

練習 8.22 在標準常態分布中有 95 %機率介於 $-z_{0.025} = -1.96$ 和 $z_{0.025} = 1.96$ 之間。請下列自由度中,找出 其對應的 t 值(即,找出 $-t_{0.025}$ 和 $t_{0.025}$ 數值): (a) 5; (b) 10; (c) 15; (d) 20; (e) 25。

練習 8.23 在自由度 df = 10 的 t 分布曲線中,請使用 t 值表格找出下列的 t 值:(a) $t_{0.01}$; (b) $t_{0.025}$; (c) $t_{0.05}$; (d) t_{0.10} °

練習 8.24 深水大學對其學生每週外食次數(屬於常態分布)進行調查。透過隨機抽樣 120 位學生為樣本, 其每週外食平均次數 8.50 次,標準(偏)差 2.50 次。請建立每週學生外食次數平均值 98 %的信賴區間。(答案有效位數四捨五入取到小數點後第 2 位)

題解:樣本數量 n=120 · 信賴水準 $1-\alpha=0.98$ · 顯著水準 $\alpha=0.02$ · $z_{\frac{\alpha}{2}}=z_{0.01}=2.3264$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) · 母體平均值信賴區間: $\bar{x}-t_{\frac{\alpha}{2},\nu}\times\frac{s}{\sqrt{n}}\leq\mu\leq\bar{x}+t_{\frac{\alpha}{2},\nu}\times\frac{s}{\sqrt{n}}$

下限:
$$\bar{x} - z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 8.50 - 2.3264 \times \frac{2.5}{\sqrt{120}} = 8.50 - 0.53 = 7.97$$

上限: $\bar{x} + z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} = 8.50 + 2.3264 \times \frac{2.5}{\sqrt{120}} = 8.50 + 0.53 = 9.03$

每週學生外食次數平均值 98 %的信賴區間(CI)為 $7.97 \le \mu \le 9.03$ 次

練習 8.25 隨機抽取台灣國際觀光旅館經理級主管 12 位 · 調查其年薪(屬於常態分布) · 結果顯示平均年薪為新台幣 1890000 元 · 標準(偏)差為新台幣 560000 元 · 試估算(A)台灣國際觀光旅館經理級主管平均年薪之 95 %信賴區間; (B)台灣國際觀光旅館經理級主管平均年薪之 99 %信賴區間; (C)在 99 %信賴水準下抽樣誤差; (D)台灣國際觀光旅館經理級主管平均年薪信賴水準 99 %的信賴區間寬度?(答案有效位數取到個位數)

題解:

(A) 樣本數量 n=12 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},v=n-1}=t_{\frac{0.05}{2},12-1}=t_{0.025,11}=2.2010$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

(B)樣本數量 n=12,信賴水準 $1-\alpha=0.99$,顯著水準 $\alpha=0.01$, $t_{\frac{\alpha}{2},v=n-1}=t_{\frac{0.01}{2},12-1}=t_{0.005,11}=3.1058$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

(C)99 %信賴水準下抽樣誤差 $t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}} = 3.1058 \times \frac{560000}{\sqrt{12}} = 502078$ 元

(D)信賴水準 99 %的信賴區間寬度 $2 \times t_{\frac{\alpha}{2}\nu} \times \frac{s}{\sqrt{n}} = 2 \times 3.1058 \times \frac{560000}{\sqrt{12}} = 1004155$ 元

答案:(A)95 %信賴區間 1534191 $\leq \mu \leq 2245809$ 元;(B)99 %信賴區間 1387922 $\leq \mu \leq 2392078$ 元;(C)99 %信賴水準下抽樣誤差 = 502078 元;(D)信賴水準 99 %的信賴區間寬度 1004155 元

<u>範例 8.13</u> 由常態分布 $N(\mu,\sigma^2)$ 母體中隨機抽出 $x_1 \times x_2 \times x_3 \times x_4$ 和 x_5 五個變量・請計算母體平均值的 95 % 信賴區間(A)母體變異數 σ^2 已知; (B)母體變異數 σ^2 未知。(信賴區間有效位數取到個位數)

題解:樣本平均值 $\bar{x}=rac{x_1+x_2+x_3+x_4+x_5}{5}$,樣本平均值亦趨近於常態分布 $\bar{x}\sim N(\mu,rac{\sigma^2}{5})$

樣本變異數
$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$
 · 樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$

(A)母體變異數 σ^2 已知

95 %信賴區間公式為
$$\bar{x} - 1.96 \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + 1.96 \times \sigma_{\bar{x}}$$
 $\bar{x} - 1.96 \times \frac{\sigma}{\sqrt{5}} \leq \mu \leq \bar{x} + 1.96 \times \frac{\sigma}{\sqrt{5}}$ $\bar{x} - 0.8765 \times \sigma \leq \mu \leq \bar{x} + 0.8765 \times \sigma$

(B)母體變異數 σ^2 未知,利用樣本變異數 S^2 取代母體變異數 σ^2 推估信賴區間。

95%信賴區間公式為 $\bar{x} - t_{\frac{\alpha}{2}, v} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, v} \times \frac{s}{\sqrt{n}} \cdot t_{\frac{\alpha}{2}, v} = t_{\frac{\alpha}{2}, n-1} = t_{\frac{0.05}{2}, 5-1} = 2.7764$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} - 2.7764 \times \frac{s}{\sqrt{5}} \le \mu \le \bar{x} + 2.7764 \times \frac{s}{\sqrt{5}}$$

 $\bar{x} - 1.2416 \times S \le \mu \le \bar{x} + 1.2416 \times S$

答案:(A) $\bar{x} - 0.8765 \times \sigma \le \mu \le \bar{x} + 0.8765 \times \sigma$;(B) $\bar{x} - 1.2416 \times S \le \mu \le \bar{x} + 1.2416 \times S$

- 練習 8.26 從一個樣本平均值 250.0 和樣本標準(偏)差 15.5 的母體中獲得 15 個隨機觀測值。(a)請計算母體平均值 90 %信賴區間;(b)母體平均值 95 %信賴區間;(c)母體平均值 99 %信賴區間;(d)假設樣本數量達 150 · 請重複前述 a · b 和 c 計算。
- 練習 8.27 一位台北市旅館總經理想要決定旅館中經理階層的平均年薪水準。隨機調查台北市 20 為旅館 經理年薪獲得平均值 $\bar{x}=NT$ \$75600 和標準(偏)差 S=NT\$15600。請計算台北市旅館經理階層平均年薪在下列信賴水準下的信賴區間: (a) 90 %; (b) 95 %; (c) 99 %
- 練習 8.28 假設有一隨機變數 X · 可獲得其 26 個隨機樣本數 · 以估算母體平均值和標準(偏)差 。下列三個母體平均值的信賴區間中 · 請分別列出信賴水準(confidence level) ? (a) $\bar{x} \pm 2.0595 \times \frac{s}{\sqrt{n}}$; (b) $\bar{x} \pm 2.4851 \times \frac{s}{\sqrt{n}}$; (c) $\bar{x} \pm 1.7081 \times \frac{s}{\sqrt{n}}$ 。

答案:(a)95%;(b)98%;(c)90%

- 練習 8.29 假設從 101 個觀測值組成的隨機樣本中,獲得樣本平均值 $\bar{x} = NT\$7000$ 和樣本標準(偏)差 S = NT\$600,假設原來母體屬於常態,使用t分布進行推估時,理論上正確,因為樣本數量大,故可以使用標準常態分布運算,即使母體變異數未知。請分別使用t分布和標準常態分布運算母體平均值 95 %信賴區間。(答案有效位數四捨五入取到小數點後第 2 位)
- 題解:母體平均值信賴區間: $\bar{x} t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}}$ $7000 1.9840 \times \frac{600}{\sqrt{101}} \le \mu \le 7000 + 1.9840 \times \frac{600}{\sqrt{101}} \rightarrow 6881.55 \le \mu \le 7118.45$ $\bar{x} z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$ $7000 1.960 \times \frac{600}{\sqrt{101}} \le \mu \le 7000 + 1.960 \times \frac{600}{\sqrt{101}} \rightarrow 6882.98 \le \mu \le 7117.02$

答案:t分布 6881.55 $\leq \mu \leq$ 7118.45;標準常態分布 6882.98 $\leq \mu \leq$ 7117.02

題解:

- 練習 8.31 修讀本班統計學人數有 60 人,此次期中考試成績符合常態分布,透過隨機抽查 8 位學生成績分別為 65、75、88、95、68、80、85 和 92。請計算修讀本班統計學學生期中考試平均成績之95%信賴區間。(答案有效位數四捨五入取到小數點後第 2 位)
- 題解:母體總數 N=60 · 樣本數量 n=8 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\frac{\alpha}{2},\nu=n-1}=t_{\frac{0.05}{2},8-1}=t_{0.025,7}=2.3646$ (使用 Excel 軟體 T.INV 函數查詢獲得) · 樣本平均值 $\bar{x}=81.0$ 分 · 樣本標準(偏)差 S=10.9805 分 。母體平均值信賴區間: $\bar{x}-t_{\frac{\alpha}{2},\nu}\times\frac{S}{\sqrt{n}}\leq\mu\leq\bar{x}+t_{\frac{\alpha}{2},\nu}\times\frac{S}{\sqrt{n}}$

在有限母體中樣本平均值的抽樣分布,樣本平均值的變異數 $\sigma_{\bar{x}}^2 = \frac{\sigma^2}{n} \times \frac{N-n}{N-1}$

當您發現本教材錯誤時、盡速通知老師修改、教學才會進步。 9/25/2023 6:47:12 AM

母體變異數未知 · 使用樣本變異數取代 $V(\bar{x}) = \frac{S^2}{n} \times \frac{N-n}{N-1}$

下限:
$$\bar{x} - t_{\frac{\alpha}{2}, v} \times \frac{s}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} = 81.0 - 2.3646 \times \frac{10.9805}{\sqrt{8}} \times \sqrt{\frac{60-8}{60-1}} = 81.0 - 8.6182 = 72.38 分$$

上限:
$$\bar{x} + t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}} \times \sqrt{\frac{N-n}{N-1}} = 81.0 + 2.3646 \times \frac{10.9805}{\sqrt{8}} \times \sqrt{\frac{60-8}{60-1}} = 81.0 + 8.6182 = 89.62 分$$

答案:修讀本班統計學學生期中考試平均成績之 95 %信賴區間(CI)為 $72.38 \le \mu \le 89.62$ 分

8.2.3 母體分布不確定和母體變異數已知

母體的分布型態無法確定時,在母體變異數 σ^2 和標準(偏)差 σ 已知的情況下,樣本數量少(n < 30),可 以利用柴比氏定理(Chebyshev's theorem, Bienayme-Chebyshev rule)進行母體平均值 μ 的信賴區間估算。在 任何觀測值的分布資料中·至少有 $(1-\frac{1}{k^2})$ 比率或 $(1-\frac{1}{k^2}) \times 100$ %的資料·分布在算術平均值為中心·±k個 標準(偏)差 S 的範圍內;樣本資料分布在 $\bar{x} \pm k \times S$ 區間內,母體資料分布在 $\mu \pm k \times \sigma$ 區間內。

$$\begin{split} P(|\bar{x}-\mu| & \leq k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2}) \\ P(-k \times \sigma_{\bar{x}} & \leq \bar{x}-\mu \leq k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2}) \\ P(-\bar{x}-k \times \sigma_{\bar{x}} & \leq -\mu \leq -\bar{x}+k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2}) \\ P(\bar{x}+k \times \sigma_{\bar{x}} & \geq \mu \geq \bar{x}-k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2}) \\ P(\bar{x}-k \times \sigma_{\bar{x}} & \leq \mu \leq \bar{x}+k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2}) \\ P(\bar{x}-k \times \frac{\sigma}{\sqrt{n}} & \leq \mu \leq \bar{x}+k \times \frac{\sigma}{\sqrt{n}}) \geq (1-\frac{1}{k^2}) \end{split}$$

範例 8.14 奇遇海產店每日營業額分布情況不清楚,上星期7天營業日平均日營業額新台幣 $\bar{x}=12000$ 元, 過去經驗獲得營業額的標準(偏)差為新台幣 $\sigma=1000$ 元,試求每日營業額平均值 μ 之 95 % 信賴 區間?(答案有效位數四捨五入取到小數點後第1位)

題解:樣本數量 n=7,樣本平均值 $\bar{x}=12000$ 元,母體標準(偏)差 $\sigma=1000$ 元。

$$1 - \frac{1}{k^2} = 0.95 \rightarrow \frac{-1}{k^2} = 0.95 - 1 = -0.05 \rightarrow \frac{1}{k^2} = 0.05 \rightarrow \frac{1}{0.05} = 20 = k^2 \rightarrow k = \sqrt{k^2} = \sqrt{20} = 4.4721$$
 計學平均值佳報區問: $\bar{x} - k \times \frac{\sigma}{k} < \mu < \bar{x} + k \times \frac{\sigma}{k}$

母體平均值信賴區間: $\bar{x}-k imes \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x}+k imes \frac{\sigma}{\sqrt{n}}$ 下限: $\bar{x}-k imes \frac{\sigma}{\sqrt{n}}=12000-4.4721 imes \frac{1000}{\sqrt{7}}=12000-1690.3=10309.7$ 元

上限: $\bar{x} + k \times \frac{\sigma}{\sqrt{n}} = 12000 + 4.4721 \times \frac{1000}{\sqrt{7}} = 12000 + 1690.3 = 13690.3 元$

故每日營業額平均值 μ 之 95 %信賴區間(CI)為 $10309.7 \le \mu \le 13690.3$ 元。表示上週七天營業日營業額,所 有可能樣本平均值在(10309.7, 13690.3)區間有 95 %的機會包含每日營業額平均值 μ 在內。

答案:每日營業額平均值 μ 之 95 %信賴區間(CI)為 10309.7 $\leq \mu \leq$ 13690.3 元

練習 8.32 觀光系產學攜手專班今年共有 345 人報名甄選,將錄取 25 名。若所有考生甄試成績非常態分 布,其平均成績 76分,標準(偏)差6分。若林小萱甄試成績82分,請估算其是否錄取?

題解:欲達錄取標準需在分布之達右側 $\frac{25}{345}$ = 0.0725 機率以下,樣本數量少,在非常態分布中運用柴比氏 定理推估母體平均值信賴區間

$$P(|x - \mu| \le k \times \sigma) \ge (1 - \frac{1}{k^2}) = 1 - 0.0725 \times 2 = 0.8551 \rightarrow k = 2.6268$$

 $P(-k \times \sigma \le x - \mu \le k \times \sigma) \ge (1 - \frac{1}{k^2})$

 $P(\mu - k \times \sigma \le x \le \mu + k \times \sigma) \ge (1 - \frac{1}{k^2})$

 $\mu + k \times \sigma = 76 + 2.6268 \times 6 = 91.76 > 82$

答案:依據柴比氏定理推估林小萱成績在信賴區間內,故沒有錄取

8.2.4 母體分布不確定和母體變異數未知

母體的分布型態無法確定時,在母體變異數 σ^2 和標準(偏)差 σ 未知的情況下,樣本數量少(n<30),無法利用柴比氏定理(Chebyshev's theorem, Bienayme-Chebyshev rule)進行母體平均值 μ 的信賴區間估算,必須使用無母數統計的方法進行估算。

母體屬性	條件	母體平均值信賴區間【點估計值±誤差範圍(臨界值×標準誤)】			
24 4F (2 + 12 Trb 2)	母體變異數 σ^2 已知	$ar{\chi}\pm Z_{rac{lpha}{2}} imesrac{\sigma}{\sqrt{n}}$			
常態分布或不確定 樣本數 <i>n</i> ≥ 30	母體變異數 σ² 未知	$\bar{x} \pm z_{\frac{\alpha}{2}} \times \frac{s}{\sqrt{n}}$ (近似)			
		$ar{x} \pm t_{\frac{\alpha}{2}, v=n-1} imes rac{S}{\sqrt{n}} (精準)$			
常態分布	母體變異數 σ^2 已知	$ar{\chi} \pm Z_{rac{lpha}{2}} imes rac{\sigma}{\sqrt{n}}$			
樣本數 n < 30	母體變異數 σ² 未知	$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$			
分布不確定	母體變異數 σ^2 已知	$ar{x}\pm k imesrac{\sigma}{\sqrt{n}}$			
樣本數 n < 30	母體變異數 σ^2 未知	無母數統計的方法			

表 母體平均值 μ 之信賴區間

在無法確定是否符合常態分布時‧若樣本數量小於 30 個(n < 30)‧一般管理上都是期望以<mark>再增加</mark>樣本數量 n‧來達到樣本數量多 $(n \ge 30)$ 時‧利用標準常態分布的方式推估信賴區間。

8.3 母體比例區間估計

利用抽樣分布中的樣本比率 \bar{p} .進行母體比率 p 的區間估計。在推估母體比率 p 的信賴區間時.必須先獲得樣本比率 \bar{p} 的抽樣分布。樣本比率 \bar{p} 的抽樣分布可以區分為大量樣本數 $(n \ge 30)$ 和小量樣本數(n < 30)兩類。

8.3.1 母體比例區間估計:大量樣本數

樣本數量多 $(n \ge 30)$ 時 $\cdot n \times p \ge 5$ 同時必須 $n \times (1-p) \ge 5$ · 樣本比率p的抽樣分布會接近於常態分布 · 即為

樣本比率
$$\bar{p} \sim N(p, \frac{p \times q}{n}) = N(p, \frac{p \times (1-p)}{n})$$

可以利用標準常態分布 \mathbf{z} 值,估算抽樣誤差 $|\bar{p}-p|$ 在 $\mathbf{z}_{\frac{\alpha}{2}} \times \sigma_{\bar{p}}$ 範圍內機率為 $\mathbf{1}-\alpha$,則

$$\begin{split} P(|\bar{p}-p| \leq z_{\frac{\alpha}{2}} \times \sigma_{\bar{p}}) &= P(|\bar{p}-p| \leq z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = P(|\bar{p}-p| \leq z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}) = 1 - \alpha \\ P(-z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \leq \bar{p} - p \leq z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha \\ P(-\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \leq -p \leq -\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha \\ P(\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \geq p \geq \bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha \\ P(\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \leq p \leq \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha \end{split}$$

在信賴係數和信賴水準(信賴度)為 $1-\alpha$ ·在信賴區間的顯著水準為 α ·母體比例p的信賴區間為

$$ar{p} \pm z_{\frac{\alpha}{2}} \times \sigma_{ar{p}} = ar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = ar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}$$

其中 $1-\alpha$: 信賴係數。 α : 信賴區間的顯著水準。

 $z_{\frac{\alpha}{2}}$:標準常態分布右尾機率(面積)為 $\frac{\alpha}{2}$ 的標準化z值。

$$\sigma_{\bar{p}} = \sqrt{\frac{p \times (1-p)}{n}}$$
: 為點估計值(樣本比率)抽樣分布的母體標準(偏)差。
$$z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}$$
: 為抽樣誤差(sampling error)、誤差界限、誤差範圍(margin of error)或最大誤差。
$$2 \times z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}$$
: 為信賴區間的寬度或長度。

若母體比例 p 值未知時,可以利用樣本比例 \bar{p} 取代母體比例 p 、以推估母體比例 p 的信賴區間【點估計值±誤差範圍(臨界值×標準誤)】:

$$\bar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}}$$

若母體比例 p 值未知時,可以將母體比例 p 設為 0.50,以推估母體比例 p 的信賴區間,惟若設定 p=0.50 所獲得的信賴區間較大,也較保守:

$$\bar{p} \pm Z_{\frac{\alpha}{2}} \times \sqrt{\frac{0.50 \times 0.50}{n}}$$

題解:樣本比例 $\bar{p}=0.56$ · 母體比例 p=0.4 · 樣本數量 n=300 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\underline{0.025}}=z_{\underline{0.025}}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。母體比例

信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}$$
下限: $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.56 - 1.96 \times \sqrt{\frac{0.4 \times (1-0.4)}{300}} = 0.56 - 0.0554 = 0.5046$
上限: $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.56 + 1.96 \times \sqrt{\frac{0.4 \times (1-0.4)}{300}} = 0.56 + 0.0554 = 0.6154$

故支持有機飲食比率 $p \ge 95$ %信賴區間(CI)為 $0.5046 \le p \le 0.6154$

若質疑以往對有機飲食的研究數值·不採用先前調查獲知的母體比例 p=0.4·而以樣本比例 $\bar{p}=0.56$ 取代母體比例 p 以進行對母體比例 p 的信賴區間推估:

母體比例信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}}$$
下限: $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} = 0.56 - 1.96 \times \sqrt{\frac{0.56 \times (1 - 0.56)}{300}} = 0.56 - 0.0562 = 0.5038$
上限: $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} = 0.56 + 1.96 \times \sqrt{\frac{0.56 \times (1 - 0.56)}{300}} = 0.56 + 0.0562 = 0.6162$

故支持有機飲食比率 $p \ge 95$ %信賴區間(CI)為 $0.5038 \le p \le 0.6162$ · 信賴區間變大。

若質疑以往對有機飲食的研究數值·不值得信賴·不採用先前調查獲知的母體比例 p=0.4·而以 0.50 取代母體比例 p 以進行對母體比例 p 的信賴區間推估:

母體比例信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{0.50 \times 0.50}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{0.50 \times 0.50}{n}}$$
 下限: $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{0.5 \times 0.5}{n}} = 0.56 - 1.96 \times \sqrt{\frac{0.5 \times 0.5}{300}} = 0.56 - 0.0566 = 0.5034$ 上限: $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{0.5 \times 0.5}{n}} = 0.56 + 1.96 \times \sqrt{\frac{0.5 \times 0.5}{300}} = 0.56 + 0.0566 = 0.6166$

故支持有機飲食比率 $p \ge 95$ %信賴區間(CI)為 $0.5034 \le p \le 0.6166$ · 信賴區間再變大。

比較不同估算情況下的信賴區間大小。

練習 8.33 提供信賴區間,計算信賴水準

題解:樣本支持比例 $\bar{p}=\frac{263}{560}=0.4696$ · 樣本數量 n=560 · 信賴水準 $1-\alpha=0.99$ · 顯著水準 $\alpha=0.01$ · $z_{\frac{\alpha}{2}}=z_{0.005}=z_{0.005}=2.5758$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) ·

母體比例信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}$$
下限: $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.4696 - 2.5758 \times \sqrt{\frac{0.4696 \times (1-0.4696)}{560}} = 0.4696 - 0.0543 = 0.4153$ 上限: $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.4696 + 2.5758 \times \sqrt{\frac{0.4696 \times (1-0.4696)}{560}} = 0.4696 + 0.0543 = 0.5240$

答案:故支持跨港纜車比率 p 之 99 %信賴區間(CI)為 $0.4153 \le p \le 0.5240$

練習 8.35 阿文連鎖速食餐廳欲對其消費者進行服務滿意度調查,受訪消費者只有兩個選項分別為「滿意」和「不滿意」,隨機抽樣調查結果顯示 650 位消費者中有 210 位表示滿意其服務。試估算 (A)滿意該連鎖速食餐廳消費者的比例之點估計值;(B)滿意該連鎖速食餐廳消費者的比例,在 95 %信賴水準下的最大誤差;(C)滿意該連鎖速食餐廳消費者的比例,在 95 %信賴水準下的信賴區間及區間長度。(答案有效位數四捨五入取到小數點後第 4 位)

題解: 樣本數量 n = 650

- (A)樣本滿意比例 $\bar{p} = \frac{210}{650} = 0.3231 = 滿意該連鎖速食餐廳消費者的比例之點估計值$
- (B)95 %信賴水準下的最大誤差 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $z_{\frac{\alpha}{2}}=z_{0.025}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

$$z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 1.96 \times \sqrt{\frac{0.3231 \times (1-0.3231)}{650}} = 1.96 \times 0.0183 = 0.0360$$

(C)信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $z_{\frac{\alpha}{2}}=z_{0.025}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查 詢獲得) 。

母體比例信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}$$
 下限: $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.3231 - 1.96 \times \sqrt{\frac{0.3231 \times (1-0.3231)}{650}} = 0.3231 - 0.0360 = 0.2871$ 上限: $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 0.3231 + 1.96 \times \sqrt{\frac{0.3231 \times (1-0.3231)}{650}} = 0.3231 + 0.0360 = 0.3590$

滿意該連鎖速食餐廳消費者的比例,在95%信賴水準下的信賴區間(CI)為 $0.2871 \le p \le 0.3590$

滿意該連鎖速食餐廳消費者的比例·在 95 %信賴水準下的區間長度: $2 \times z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = 2 \times 1.96 \times \sqrt{\frac{0.3231 \times (1-0.3231)}{650}} = 2 \times 1.96 \times 0.0183 = 0.0719$

答案:(A) 點估計值 = 0.3231;(B) 最大誤差 = 0.0360;(C) 信賴區間(CI)為 $0.2871 \le p \le 0.3590$;區間長度 = 0.0719

- 練習 8.36 依據以往的調查顯示,在五年內國內飯店經理級主管跳槽的比率為 25 %,期望估計誤差在 3 %以內,採用 95 %信賴水準。試估算(a)從新估算此比率時,需要隨機抽取多少經理級主管調查?(b)若沒有以前的調查資料,需要隨機抽取多少經理級主管調查?
- 練習 8.37 深水研究機構欲調查台灣家庭年所得低於 NT\$ 400000 的比例。從 650 家庭的隨機樣本中估算,有 250 個家庭的年收入低於 NT\$400000。請計算家庭年所得低於 NT\$ 400000 比例的 95 % 信賴區間。(答案有效位數四捨五入取到小數點後第 4 位)
- <u>練習 8.38</u> 隨機抽樣高雄市大樓住戶 120 戶 · 發現有 100 戶裝設第四台 · 請估算高雄市大樓住戶第四台裝設率 95 %信賴區間。(答案有效位數四捨五入取到小數點後第 4 位)

題解:樣本之第四台裝設率 $\frac{100}{120}$ = 0.8333 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\underline{0.025}}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) ·

母體比例信賴區間:
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}}$$
下限 $\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}} = 0.8333 - 1.96 \times \sqrt{\frac{0.8333 \times (1-0.8333)}{120}} = 0.8333 - 0.0667 = 0.7667$
上限 $\bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}} = 0.8333 + 1.96 \times \sqrt{\frac{0.8333 \times (1-0.8333)}{120}} = 0.8333 + 0.0667 = 0.9000$

答案:高雄市大樓住戶第四台裝設率 95%信賴區間(CI)為 $0.7667 \le p \le 0.9000$

8.3.2 母體比例區間估計:小量樣本數【選擇教材】

樣本數量少(n < 30)時,於母體基本單位總數 N 為無窮大 $(N = \infty)$,樣本比率 \bar{p} 的抽樣分布會接近於二項分布,即為

$$\bar{p}\sim$$
二項分布 $B(n,p)$

樣本數量少(n < 30)時·於母體基本單位總數N為有限數值·樣本比率p的抽樣分布會接近於超幾何分布·即為

$$\bar{p}$$
~超幾何分布 Hypergeometric(N, r, n)

在樣本數量比較少的時候,無法使用簡單的公式推估(計算)信賴區間,可以使用查圖的方式粗略估計母體比例p 信賴區間。

8.4 決定樣本數量

樣本數量 n 愈多,獲得有關母體參數(parameter)的資訊愈多,樣本的點估計值(point estimation)與原本母體參數(parameter)的數值愈接近,估計誤差愈小。惟研究調查實務上,樣本數量 n 愈多,抽樣(研究執行)成本愈高與時間耗費愈多。故在有限的經費和時效中,獲取誤差最小(可容忍誤差)的估計值,兩者折衷的平衡點,即必須考量抽樣樣本數量 n。

8.4.1 估計母體平均值時,需要樣本數量

當母體參數(parameter)分布趨近於<u>常態分布</u>。以樣本平均值 \bar{x} 估計母體平均值 μ .欲將估計誤差設定小於 A 值(與觀測值和平均值單位相同).即估計誤差 = $|\bar{x} - \mu| \le A$ 。設定在 $100 \times (1 - \alpha)$ %的信賴水準下.母

當您發現本教材錯誤時、盡速通知老師修改、教學才會進步。 9/25/2023 6:47:12 AM

體變異數 σ^2 和標準(偏)差 σ 已知 · 母體平均值 μ 落於 $\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$ 區間內 · 即 $|\bar{x} - \mu| \le z_{\frac{\alpha}{2}} \times z_{\frac{\alpha}{2}}$ $\frac{\sigma}{\sqrt{n}} \circ \ddot{\pi} z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \le A \text{ 成立} \cdot \mathbb{D}|\bar{x} - \mu| \le z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \le A \text{ 亦可成立} \cdot \underline{\mathbf{G}} + \underline{\mathbf{G}} +$

一般母體變異數 σ^2 未知,可以利用過去的樣本資料計算出樣本變異數 S^2 代替;或抽取少量樣本資料 計算樣本變異數 S^2 代替。亦可利用 $\frac{R}{6} < \sigma < \frac{R}{4}$ [R 為母體全距或母體全距的估計值],若以 $\frac{R}{4}$ 取代 σ ,所獲得的 樣本數量大小為最寬限量。

範例 8.16 為調查深水大學學生每週餐飲消費金額分布情況,希望估計誤差有 0.95 機率不超過新台幣 5 元,應從該大學學生中隨機抽取多少位學生為樣本?依據過去的研究調查資料顯示,大學生 每週餐飲消費金額的標準(偏)差 σ 為新台幣 50 元。

題解:信賴水準 $1-\alpha=0.95$.顯著水準 $\alpha=0.05$.右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\underline{0.05}}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得),估計誤差 A = 5 元。

樣本數量 $n \ge \frac{z_{\alpha}^2 \times \sigma^2}{A^2} = \frac{1.96^2 \times 50^2}{5^2} = \frac{9604}{25} = 384.2$ 。非整數時,請採用無條件進位法,取到個位數 385,才能達 到「估計誤差有 0.95 機率不超過新台幣 5 元」標準。

故應從該大學學生中抽取 385 位學生當成樣本,方能達成估計誤差 0.95 機率不超過新台幣 5 元的設定條 件。

答案:需要隨機抽出385位學生當樣本

練習 8.39 一位總經理欲估算特定區域的家庭年收入。假設母體標準(偏)差為 NT\$ 10000。此總經理想要 樣本平均值與母體平均值的誤差在 NT\$ 1200 有 0.95 機率。需要多少的樣本數量?

題解:信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

樣本數量 $n \ge \frac{z_\alpha^2 \times \sigma^2}{A^2} = \frac{1.96^2 \times 10000^2}{1200^2} = \frac{384160000}{1440000} = 266.777$ 。非整數時,請採用無條件進位法,取到個位數 267 · 才能達到「誤差在 NT\$ 1200 有 0.95 機率」標準。

答案: 267 位

8.4.2 估計母體比例時,需要樣本數量

以樣本比例p估計母體比例 p·欲將估計誤差設定小於 A 值(與觀測值和平均值單位相同·皆屬於無因 次單位),即估計誤差 = $|\bar{p}-p| \le A$ 。設定在 $100 \times (1-\alpha)$ %的信賴水準下,母體的比例落於 $\bar{p}-z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}$ $\leq p \leq ar{p} + z_{\frac{\alpha}{2}} imes \sqrt{\frac{p imes (1-p)}{n}}$ 區間內 · 即 $|ar{p} - p| \leq z_{\frac{\alpha}{2}} imes \sqrt{\frac{p imes (1-p)}{n}}$ 。若 $z_{\frac{\alpha}{2}} imes \sqrt{\frac{p imes (1-p)}{n}} \leq A$ 成立 · 即 $|ar{p} - p| \leq z_{\frac{\alpha}{2}} imes \sqrt{\frac{p imes (1-p)}{n}}$ $\sqrt{\frac{p \times (1-p)}{n}} \le A$ 亦可成立、樣本數量需達 $n \ge \frac{z_{\underline{\alpha}}^2 \times p \times (1-p)}{A^2}$ 。

 $|\bar{p}-p| \leq z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \leq A \quad \rightarrow \quad z_{\frac{\alpha}{2}} \times \frac{\sqrt{p \times (1-p)}}{\sqrt{n}} \leq A \quad \rightarrow \quad z_{\frac{\alpha}{2}} \times \frac{\sqrt{p \times (1-p)}}{A} \leq \sqrt{n} \quad \rightarrow \quad z_{\frac{\alpha}{2}} \times p \times (1-p) \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq n \quad \rightarrow \quad n \geq \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} \leq$

一般母體比例 p 未知,可以利用過去的樣本資料計算出樣本比例 \bar{p} 代替;或抽取少量樣本資料計算樣 本比例p代替。亦可 0.5 代替 p,惟此可能造成所得樣本數量高於原始需求數量。

<u>範例 8.17</u> 為調查高雄市消費者對有機飲食的支持比例‧希望估計誤差有 95 %機率小於 0.005‧應從高雄市消費者中隨機抽取多少位消費者為樣本?若過去未有相關研究調查資料‧故以保守估計 0.5 代替母體比例 p。

題解:信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $z_{\frac{\alpha}{2}}=z_{\frac{0.05}{2}}=z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) · 估計誤差 A=0.005 。

樣本數量 $n \ge \frac{z_{\frac{\alpha}{2}}^2 \times p \times (1-p)}{A^2} = \frac{1.96^2 \times 0.5 \times 0.5}{0.005^2} = \frac{0.9604}{0.000025} = 38414.59$ 。非整數時,請採用無條件進位法,取到個位數 38415,才能達到「誤差有 95 %機率小於 0.005」標準。

故應從高雄市消費者中抽取 38415 位消費者當成樣本·方能達成估計誤差 95 %機率不超過 0.005 的設定條件。

答案:需要隨機抽出 38415 位消費者當樣本

<u>練習 8.40</u> 某民調機構希望預測特定候選人的得票比例。期望在 95 %的信賴水準下達到誤差在 0.05 以 內·需要多少的樣本數量?

題解:信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 右尾機率 $\frac{\alpha}{2}$ 標準常態值 $Z_{\frac{\alpha}{2}}=Z_{\frac{0.05}{2}}=Z_{0.025}=1.96$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得) · 誤差 A=0.05 。

樣本數量 $n \ge \frac{z_{\alpha}^2 \times p \times (1-p)}{2} = \frac{1.96^2 \times 0.5 \times 0.5}{0.05^2} = \frac{0.9604}{0.0025} = 384.16$ 。非整數時,請採用無條件進位法,取到個位數 385,才能達到「95%的信賴水準下達到誤差在 0.05 以內」標準。

答案:385位

<u>練習 8.41</u> 在某次總統大選前之民調抽樣數量 1000 人·在 95 %信心水準下·最大抽樣誤差 2 %·若抽樣 數量增加到 2000 人·請計算最大抽樣誤差?

題解:抽樣數量 1000 人時的抽樣誤差 $A_{1000} = 0.02$

樣本數量
$$n \ge \frac{z_{\alpha}^2 \times p \times (1-p)}{A_{1000}^2} = \frac{z_{\alpha}^2 \times p \times (1-p)}{\frac{2}{0.02^2}} = 1000 \rightarrow z_{\frac{\alpha}{2}}^2 \times p \times (1-p) = 1000 \times 0.02^2 = 0.4$$

抽樣數量 2000 人時的抽樣誤差 A2000

$$\frac{z_{\alpha}^2 \times p \times (1-p)}{\frac{2}{A_{2000}^2}} = \frac{0.4}{A_{2000}^2} = 2000 \rightarrow A_{2000}^2 = \frac{0.4}{2000} = 0.0002 \rightarrow A_{2000} = \sqrt{A_{2000}^2} = \sqrt{0.0002} = 0.01414$$

答案:最大抽樣誤差為 1.414 %

<u>練習 8.42</u> 在某次選舉前·抽樣調查某位候選人的支持率。在 95 %信心水準下·想要達到不超過 0.05 的估計誤差·至少需要多大的樣本?(A)385;(B)384;(C)271;(D)270。(99年初等考試統計學大意)

8.5 母體變異數區間估計

餐廳、旅館或旅行社投資報酬率的變異數(variance)·亦代表獲利(經營)過程必須承擔的風險程度。餐廳每天營業額的變異數亦代表營運必須準備的備用食材之數量·然而備用食材準備太多·容易造成不新鮮及耗損;食材準備太少·無法滿足消費者的消費需求。因此·估算母體變異數 σ^2 之信賴區間就相當重要。

估算母體變異數 σ^2 的信賴區間,必須透過樣本變異數 S^2 的抽樣分布,即是屬於卡方分布(chi-square distribution),利用 χ^2 分布標示。

8.5.1 卡方分布

卡方分布(Chi-square distribution)是將所有樣本之觀測值利用標準常態分布之標準化 z 值的平方和獲得。從母體中,有 N 個基本單位,分別為 $x_1, x_2, x_3, ..., x_N$,其母體平均值 $\mu = \frac{\sum_{i=1}^N x_i}{N}$,母體變異數 $\sigma^2 = \frac{\sum_{i=1}^N (x_i - \mu)^2}{N}$,標準化 z 值為

$$z_i = \frac{x_i - \mu}{\sigma}$$
 → 等號兩邊皆取平方後為 $z_i^2 = \frac{(x_i - \mu)^2}{\sigma^2}$

若母體中·隨機抽出n個樣本·分別為 $x_1, x_2, x_3, ..., x_n$ ·其<u>標準化z值</u>的平方<u>和</u>為自由度v = n的卡方值。此卡方分布·具有自由度v = n·可以利用 $\chi^2 \sim \chi^2(n)$ 或 χ^2_n 符號表示。卡方值屬於無因次單位。

$$\sum_{i=1}^{n} z_i^2 = \sum_{i=1}^{n} \frac{(x_i - \mu)^2}{\sigma^2} = \frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma^2} = \chi_n^2$$

若從 N 個基本單位的母體中,<mark>隨機</mark>抽出 n 個基本單位為樣本,可能的樣本組合為 N^n 種,即可獲得 N^n 個卡方值,統計各種卡方值的分布次數,即可獲得卡方分布曲線(x 軸為卡方值,y 軸為分布次數或頻率)。與 t 分布類同,當樣本數量 n 不同時,可獲得不同的卡方分布曲線。

<u>範例 8.18</u> 從 3 個基本單位分別為 $1 \cdot 2$ 和 3 的母體中 · 隨機抽出 2 個基本單位為樣本 · 會產生 $N^n = 3^2 = 9$ 種不同的樣本組合 · 亦可獲得 9 個卡方值 y^2

			· · - //		
樣本	平均值 <i>x</i>	$\sum_{i=1}^{n} (x_i - \mu)^2$	$\frac{\sum_{i=1}^{n}(x_i-\mu)^2}{\sigma^2}$	$\sum_{i=1}^{n} (x_i - \bar{x})^2$	$\frac{\sum_{i=1}^{n}(x_i-\bar{x})^2}{\sigma^2}$
1, 1	1.0	2	3.0	0.0	0.00
1, 2	1.5	1	1.5	0.5	0.75
1, 3	2.0	2	3.0	2.0	3.00
2, 1	1.5	1	1.5	0.5	0.75
2, 2	2.0	0	0.0	0.0	0.00
2, 3	2.5	1	1.5	0.5	0.75
3, 1	2.0	2	3.0	2.0	3.00
3, 2	2.5	1	1.5	0.5	0.75
3, 3	3.0	2	3.0	0.0	0.00

母體基本單位總數 N=3 · 樣本數量 n=2 · 母體平均值 $\mu=\frac{1+2+3}{3}=2$ °

母體變異數
$$\sigma^2 = \frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N} = \frac{2}{3} = 0.6667 \cdot 卡方值\frac{\sum_{i=1}^{n} (x_i - \mu)^2}{\sigma^2} = \chi_2^2$$
 。

χ22卡方值	次數	相對次數
0.0	1	0.1111
1.5	4	0.4444
3.0	4	0.4444

當母體基本單位數量 N 很多,在不同的樣本數量 n 下,其卡方的分布情況如下圖所示,自由度大於 1 時,皆會產生波峰,波峰的最高點(中心點)即在卡方值小於其自由度的鄰近位置。

卡方分布機率密度函數 $f(x) = \frac{\frac{1}{2}}{\Gamma(\frac{\nu}{2})} \times x^{\frac{\nu}{2}-1} \times e^{\frac{-x}{2}}$ · 其中 $x \ge 0$ · 若 x < 0 時 · f(x) = 0 ° Γ 為 Gamma 函數 $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx \, , \, \alpha > 0 \, °$

圖 卡方分布曲線

故卡方值χ²的期望值為

$$E(\chi_n^2) = E\left[\frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma^2}\right] = \frac{E\left[\sum_{i=1}^n (x_i - \mu)^2\right]}{\sigma^2} = \frac{n \times E\left[\frac{\sum_{i=1}^n (x_i - \mu)^2}{n}\right]}{\sigma^2} = \frac{n \times \sigma^2}{\sigma^2} = n$$

$$Var(\chi_n^2) = V(\chi_n^2) = V\left[\frac{\sum_{i=1}^n (x_i - \mu)^2}{\sigma^2}\right] = 2n$$

從母體所有基本單位中,隨機抽出n個基本單位為樣本,分別為 $x_1, x_2, x_3, ..., x_n$,樣本變異數 S^2 為:

$$S^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

 $S^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$ 若母體屬於(趨近於)常態分布,其母體平均值 μ ,變異數 $\sigma^2 \cdot x \sim N(\mu, \sigma^2)$,將樣本變異數 S^2 乘以 $\frac{n-1}{\sigma^2}$,樣 本變異數成為自由度 v = n - 1 的卡方統計量或卡方分布,標示為 χ_{n-1}^2 或 χ_v^2 。

$$\chi_{n-1}^2 = \chi_{\nu=n-1}^2 = S^2 \times \frac{n-1}{\sigma^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1} \times \frac{n-1}{\sigma^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sigma^2}$$

若母體某特定變數之觀測值的平均值 μ 無法獲得時,利用樣本平均值 \bar{x} 取代,卡方值以 χ_{n-1}^2 標記,其 自由度 df = v = n - 1。

$$\frac{(n-1)\times S^2}{\sigma^2} = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sigma^2} = \chi_{n-1}^2 = \chi_{\nu=n-1}^2$$

$$E(\chi_{n-1}^2) = E\left[\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sigma^2}\right] = \frac{E[(n-1)\times S^2]}{\sigma^2} = \frac{(n-1)\times E(S^2)}{\sigma^2} = \frac{(n-1)\times \sigma^2}{\sigma^2} = n-1$$

$$Var(\chi_{n-1}^2) = V(\chi_{n-1}^2) = V\left[\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\sigma^2}\right] = 2\times (n-1)$$

卡方分布 Excel 函數

利用 Excel 軟體中插入(I) \rightarrow 函數(F)... \rightarrow 在插入函數對話方塊中選取類別 (\underline{C}) : 統計,選取函數 (\underline{N}) : $CHIDIST \rightarrow$ 確定。在函數引數對話視窗中,x 方塊輸入:欲推估卡方分布的數值間 x; $Deg_freedom$ 方塊 輸入:自由度 ν 。確定。即會在原先選定的儲存格中出現卡方分布機率數值。CHIDIST(x,deg freedom)。

利用 Excel 軟體中插入(I) →函數(F)... →在插入函數對話方塊中選取類別(C): 統計,選取函數(N): $\mathbf{CHIINV} o$ 確定。在函數引數對話視窗中,Probability 方塊輸入:單尾分布機率數值 α ; $\mathbf{Deg_freedom}$ 方塊 輸入:自由度 ν。確定。即會在原先選定的儲存格中出現卡方分布的卡方數值。 CHIINV(probability,deg_freedom) °

8.5.2 卡方分布性質

在卡方分布中,所有卡方值皆為正值 $(\gamma^2 > 0)$ 。

卡方分布屬於右偏分布。不同自由度有不同的卡方分布曲線。

當樣本數量n增加,致自由度df增加時,卡方分布曲線會趨近於左右對稱,當樣本數量n趨近於無窮 大(∞)時,卡方分布會接近常態分布。 $\chi_{v}^{2} \sim N(v, 2v)$ 。

8.5.3 利用卡方分布推估母體變異數的信賴區間

在卡方分布中,母體特定變數之觀測值的平均值 μ 無法獲得,僅以抽出 n 個基本單位的樣本平均值 \bar{x} 取代,在自由度 df = v = n - 1 的環境,利用卡方值 χ_{n-1}^2 推估母體變異數的信賴區間:

$$P(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq \chi^{2} \leq \chi_{\frac{\alpha}{2},n-1}^{2}) = 1 - \alpha$$

$$P(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\sigma^{2}} \leq \chi_{\frac{\alpha}{2},n-1}^{2}) = 1 - \alpha$$

其中 $\chi^2_{1-rac{lpha}{2},n-1}$: 代表在自由度 df=v=n-1 · 右尾機率為 $1-rac{lpha}{2}$ 所對應的卡方值。

 $\chi^2_{\frac{\alpha}{\alpha},n-1}$: 代表在自由度 df = v = n-1 · 右尾機率為 $\frac{\alpha}{2}$ 所對應的卡方值。

$$P(\chi_{1-\frac{\alpha}{2},n-1}^{2} \leq \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\sigma^{2}} \leq \chi_{\frac{\alpha}{2},n-1}^{2}) = 1-\alpha$$

$$P(\frac{\chi_{1-\frac{\alpha}{2},n-1}^{2}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} \leq \frac{1}{\sigma^{2}} \leq \frac{\chi_{\frac{\alpha}{2},n-1}^{2}}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}) = P(\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}} \geq \sigma^{2} \geq \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}}) = 1-\alpha$$

$$P(\frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}} \leq \sigma^{2} \leq \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}) = 1-\alpha$$

$$S^{2} = \frac{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}}{n-1} \Leftrightarrow \mathbb{R} \overline{\mathbb{R}} \mathbb{E} \mathbb{E} \mathbb{R} \mathbb{W} \ n-1 \Leftrightarrow S^{2} \times (n-1) = \sum_{i=1}^{n}(x_{i}-\bar{x})^{2}$$

$$P(\frac{S^{2} \times (n-1)}{\chi_{\frac{\alpha}{2},n-1}^{2}} \leq \sigma^{2} \leq \frac{S^{2} \times (n-1)}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}) = 1-\alpha$$

當您發現本教材錯誤時,盡速通知老師修改,教學才會進步。 9/25/2023 6:47:12 AM

母體變異數 σ^2 在信賴水準 $1-\alpha$ 的信賴區間為 :

$$\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} \leq \sigma^2 \leq \frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$
$$\frac{\sum_{l=1}^n (x_l - \bar{x})^2}{\chi^2_{\frac{\alpha}{2},n-1}} \leq \sigma^2 \leq \frac{\sum_{l=1}^n (x_l - \bar{x})^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

母體標準(偏)差 σ 在信賴水準 $1-\alpha$ 的信賴區間為:

$$\sqrt{\frac{S^{2} \times (n-1)}{\chi_{\frac{\alpha}{2},n-1}^{2}}} \leq \sigma \leq \sqrt{\frac{S^{2} \times (n-1)}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}}
\sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\chi_{\frac{\alpha}{2},n-1}^{2}}} \leq \sigma \leq \sqrt{\frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{\chi_{1-\frac{\alpha}{2},n-1}^{2}}}$$

範例 8.19 假設有一自由度 19 的卡方值。請找出下列右尾機率的卡方值 χ^2 : (a) 0.005; (b)0.010; (c)0.050; (d)0.100。(答案有效數值取到小數點後四位)

題解:可以查詢卡方分布臨界值表、運用 Excel 軟體 CHISQ.INV.RT(右尾機率)或 CHIINV 函數第一個參數 輸入右尾機率,第二個參數輸入自由度即可獲得或 CHISO.INV 函數第一個參數輸入左尾機率,第二 個參數輸入自由度亦可獲得。

答案: (a) $\chi^2_{0.005,19} = 38.5823$; (b) $\chi^2_{0.010,19} = 36.1909$; (c) $\chi^2_{0.050,19} = 30.1435$; (d) $\chi^2_{0.100,19} = 27.2036$

範例 8.20 假設有一自由度 19 的卡方值。請找出下列左尾機率的卡方值 χ^2 : (a) 0.005; (b)0.010; (c)0.050; (d)0.100。(答案有效數值取到小數點後四位)

題解:可以查詢卡方分布臨界值表,或運用 Excel 軟體 CHISO.INV.RT(右尾機率)函數第一個參數輸入右 尾機率(此題目提供的是左尾機率,可以利用 1 - 左尾機率就可以獲得右尾機率,輸入前述函數),第 二個參數輸入自由度即可獲得。

答案:(a) $\chi^2_{1-0.005,19} = 6.8440$; (b) $\chi^2_{1-0.010,19} = 7.6327$; (c) $\chi^2_{1-0.050,19} = 10.1170$; (d) $\chi^2_{1-0.100,19} = 11.6509$

練習 8.43 假設 χ_0^2 為一特定的卡方值 χ^2 。請找出下列條件下的卡方值 χ_0^2 :(a) $P(\chi^2 \ge \chi_0^2) = 0.01$,樣本數量 n= 15; (b) $P(\chi^2 \ge \chi_0^2) = 0.05$,樣本數量 n = 20; (c) $P(\chi^2 \ge \chi_0^2) = 0.10$,樣本數量 n = 25。(答案有效 數值取到小數點後四位)

題解:可以查詢卡方分布臨界值表,或運用 Excel 軟體 CHISQ.INV.RT(右尾機率)函數第一個參數輸入右 尾機率 { 例如: $P(\chi^2 \ge \chi_0^2) = 0.01$ · 右尾機率就是 0.01 } · 第二個參數輸入自由度(n-1)即可獲得。

答案:(a) $\chi_0^2 = 29.1412$; (b) $\chi_0^2 = 30.1435$; (c) $\chi_0^2 = 33.1962$

範例 8.21 奇遇海產店每日營業額屬於常態分布,上星期 7 天營業日每日營業額之標準(偏)差 S=1200元·試求每日營業額變異數 σ^2 在 95 %信賴水準下的信賴區間?(答案有效位數四捨五入取到小 數點後第1位)

題解:樣本數量 n=7 · 自由度 df=v=n-1=7-1=6 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 樣本 標準(偏)差 S=1200 元 · $\chi^2_{1-\frac{\alpha}{2},n-1}=\chi^2_{1-\frac{0.05}{2},7-1}=\chi^2_{0.975,6}=1.2373$ · $\chi^2_{\frac{\alpha}{2},n-1}=\chi^2_{\frac{0.05}{2},7-1}=\chi^2_{0.025,6}=1.2373$ 14.4494[運用 Excel 軟體 CHISQ.INV.RT(右尾機率)函數獲得]。

母體變異數信賴區間公式為 $\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}}$ 母體變異數信賴區間下限: $\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} = \frac{1200^2 \times (7-1)}{14.4494} = \frac{8640000}{14.4494} = 597948.7 元 ^2$

當您發現本教材錯誤時,盡速通知老師修改,教學才會進步。 9/25/2023 6:47:12 AM

母體變異數信賴區間上限:
$$\frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}} = \frac{1200^2 \times (7-1)}{1.2373} = \frac{8640000}{1.2373} = 6982946.7 imes 2$$

每日營業額變異數 σ^2 之 95 %信賴區間(CI)為 597948.7 $\leq \sigma^2 \leq 6982946.7$ 元 2 。每日營業額標準(偏)差 σ 之 95 %信賴區間(CI)為 773.3 ≤ σ ≤ 2642.5 元

練習 8.44 奇遇海產店每日營業額屬於常態分布,上星期 7天營業日每日營業額如下表所示,試求每日營 業額變異數 σ^2 在 95 %信賴水準下的信賴區間?(答案有效位數四捨五入取到小數點後第 1 位)

營業日	營業額 x _i	$x_i - \bar{x}$	$(x_i-\bar{x})^2$
1	16000	0	0
2	18000	2000	4000000
3	17500	1500	2250000
4	16500	500	250000
5	12000	-4000	16000000
6	15000	-1000	1000000
7	17000	1000	1000000
合計	112000		24500000

題解:樣本數量 n=7 · 自由度 df=v=n-1=7-1=6 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · 樣本 標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{24500000}{7-1}} = 2020.726 \cdot \chi_{1-\frac{\alpha}{2},n-1}^2 = \chi_{1-\frac{0.05}{2},7-1}^2 = \chi_{0.975,6}^2 = 1.2373 \cdot \chi_{\frac{\alpha}{2},n-1}^2 = \chi_{0.975,6}^2 = \chi_{0.975,6}^2$ $\chi^2_{\frac{0.05}{2},7-1} = \chi^2_{0.025,7} = 14.4494$ [運用 Excel 軟體 CHISQ.INV.RT(右尾機率)函數獲得]。

母體變異數信賴區間公式為
$$\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

下限:
$$\frac{S^2 \times (n-1)}{\chi_{\underline{\alpha}_{n-1}}^2} = \frac{2020.7^2 \times (7-1)}{14.4494} = \frac{24500000}{14.4494} = 1695572.1 \, \overline{\pi}^2$$

下限:
$$\frac{S^2 \times (n-1)}{\chi_{\frac{\alpha}{2},n-1}^2} = \frac{2020.7^2 \times (7-1)}{14.4494} = \frac{24500000}{14.4494} = 1695572.1 \, \overline{\pi}^2$$
上限: $\frac{S^2 \times (n-1)}{\chi_{1-\frac{\alpha}{2},n-1}^2} = \frac{2020.7^2 \times (7-1)}{1.2373} = \frac{24500000}{1.2373} = 19801180.0 \, \overline{\pi}^2$

故每日營業額變異數 σ^2 之 95 %信賴區間(CI)為 $1695572.1 \le \sigma^2 \le 19801180.0$ 元 2 。每日營業額標準(偏)差 σ 之 95 %信賴區間(CI)為 1302.1 < σ < 4449.9 元

練習 8.45 阿文連鎖飲料店聲稱其珍珠奶茶每杯容量體積皆為 650 ml。現從其產品中隨機抽取 7 件樣本, 測量其體積分別為 620、655、670、635、665、648 和 641 ml。若珍珠奶茶每杯容積呈現常態 分布 $N(\mu, \sigma^2)$ 。請估算(A) σ^2 點估計值。(B)95 %信賴水準下, σ^2 的信賴區間。(答案有效位數四 捨五入取到小數點後第1位)

題解:樣本數量 n=7.自由度 df=v=n-1=7-1=6.信賴水準 1-lpha=0.95.顯著水準 lpha=0.05.樣本 標準(偏)差 S=17.4329,樣本變異數 $S^2=303.9048$, $\chi^2_{1-\frac{\alpha}{2},n-1}=\chi^2_{1-\frac{0.05}{2},7-1}=\chi^2_{0.975,6}=1.2373$, $\chi^2_{\frac{\alpha}{2},n-1}=\chi^2_{0.975,6}=1.2373$ $\chi^2_{\frac{0.05}{2},7-1} = \chi^2_{0.025,6} = 14.4494$ [運用 Excel 軟體 CHISQ.INV.RT(右尾機率)函數獲得]。

母體變異數信賴區間公式為
$$\frac{S^2 \times (n-1)}{\chi_{\alpha_{n-1}}^2} \le \sigma^2 \le \frac{S^2 \times (n-1)}{\chi_{\alpha_{n-1}}^2}$$

下限:
$$\frac{S^2 \times (n-1)}{\chi_{\alpha}^2} = \frac{7.4329^2 \times (7-1)}{14.4494} = \frac{1823.429}{14.4494} = 126.19 \text{ ml}^2$$

母體變異數信賴區間公式為
$$\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$
下限: $\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} = \frac{7.4329^2 \times (7-1)}{14.4494} = \frac{1823.429}{14.4494} = 126.19 \text{ ml}^2$
上限: $\frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}} = \frac{7.4329^2 \times (7-1)}{1.2373} = \frac{1823.429}{1.2373} = 1473.72 \text{ ml}^2$

故每日營業額變異數 σ^2 之 95 %信賴區間(CI)為 $126.2 \le \sigma^2 \le 1473.7 \text{ ml}^2$

答案: (A) σ^2 點估計值 = 303.9048 ml²; (B)信賴區間 126.2 $\leq \sigma^2 \leq$ 1473.7 ml²

8.6 單尾區間估計

前述的區間估計皆是假設母體參數(parameter)皆有可能比樣本統計值(statistic)高或低,故在信賴水準為 $1-\alpha$,可能發生錯誤機率 α ,平均分布於左右兩側。若欲將錯誤機率 α ,全部放置在左側或右側,屬於單尾區間估計或單側區間估計。

8.6.1 母體平均值單尾區間估計

在<u>雙尾區間估計</u>時 · 母體變異數 σ^2 和標準(偏)差 σ 已知 · 抽樣樣本數量較多 $(n \ge 30)$ · 推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(\bar{x} - z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}}) = 1 - \alpha$$

其中 $z_{\frac{\alpha}{2}}$: 為右尾機率為 $\frac{\alpha}{2}$ 的標準常態化值。

 $\frac{\alpha}{2}$: 為雙尾機率,雙尾機率和 $\frac{\alpha}{2} + \frac{\alpha}{2} = \alpha = 0.05$ 。

 $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$: 為樣本平均值分布的標準(偏)差。

 $ar{x}-z_{rac{lpha}{2}} imes\sigma_{ar{x}}$:為信賴區間下限 a; $ar{x}+z_{rac{lpha}{2}} imes\sigma_{ar{x}}$:為信賴區間上限 b。

在右單尾區間估計時 · 母體變異數 σ^2 和標準(偏)差 σ 已知 · 所有可能發生錯誤機率 α · 皆在右側 · 推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為

$$P(\mu \leq \bar{x} + z_{\alpha} \times \sigma_{\bar{x}}) = P(\mu \leq \bar{x} + z_{\alpha} \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

若母體變異數 σ^2 和標準(偏)差 σ 未知 · 利用樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$ 取代母體標準(偏)差 σ · 推估母體平均值 μ 在信賴水準 $1 - \alpha$ 下的信賴區間為

$$P(\mu \leq \bar{x} + z_{\alpha} \times \frac{s}{\sqrt{n}}) = 1 - \alpha$$

在左單尾區間估計時 · 母體變異數 σ^2 和標準(偏)差 σ 已知 · 所有可能發生錯誤機率 α · 皆在左側 · 推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為

$$P(\bar{x} - z_{\alpha} \times \sigma_{\bar{x}} \leq \mu) = P(\bar{x} - z_{\alpha} \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$$

若母體變異數 σ^2 和標準(偏)差 σ 未知 · 利用樣本標準(偏)差 $S=\sqrt{\frac{\sum_{l=1}^n(x_l-\bar{x})^2}{n-1}}$ 取代母體標準(偏)差 σ · 推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為

$$P(\bar{x} - z_{\alpha} \times \frac{s}{\sqrt{n}} \le \mu) = 1 - \alpha$$

在<u>雙尾區間估計</u>時、樣本數量 $\underline{\nu}(n < 30)$ 、母體屬於常態分布、母體變異數 σ^2 和標準(偏)差 σ 未知時、母體平均值 μ 的信賴區間:

$$\bar{x} \pm t_{\frac{\alpha}{2},v} \times \frac{s}{\sqrt{n}}$$

其中 $1-\alpha$:信賴係數 α :信賴區間的顯著水準 α

 $t_{\frac{\alpha}{2},v}^{\alpha}$: 在自由度 v=n-1 · 右尾機率(面積)為 $\frac{\alpha}{2}$ 的 t 值。

S: 樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^{n}(x_i - \bar{x})^2}{n-1}}$ 。

 \bar{x} : 樣本平均值。

v: 自由度(degree of freedom, df)是在計算 $\sum_{i=1}^{n}(x_i-\bar{x})^2$ 時,樣本所需提供的獨立資料的個數。

在計算 $\sum_{i=1}^{n}(x_i-\bar{x})^2$ 時需要 n 個觀測值(資料)個數 · 包括 $x_1-\bar{x}, x_2-\bar{x}, x_3-\bar{x},..., x_n-\bar{x}$ 。另外可知 $\sum_{i=1}^{n}(x_i-\bar{x})=0$ · 故只有 n-1 個資料是屬於獨立性質 。因此 · 只要預先知道 n-1 個 $x_i-\bar{x}$ 的數值 · 最後一個 $x_i-\bar{x}$ 數值可以透過 $\sum_{i=1}^{n}(x_i-\bar{x})=0$ 推估獲得 。於是:樣本變異數 S^2 的自由度為 v=n-1 。

 $t_{\frac{\alpha}{2},\nu} \times \frac{s}{\sqrt{n}}$:為抽樣誤差(sampling error)、誤差界限、誤差範圍(margin of error)、最大誤差或可能機誤。 臨界值 × 標準誤(差)。

 $2 \times t_{\frac{\alpha}{2}, \nu} \times \frac{s}{\sqrt{n}}$: 為信賴區間的寬度(width)、長度。

在右單尾區間估計時,母體變異數 σ^2 和標準(偏)差 σ 未知,利用樣本標準(偏)差 $S = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}}$ 取代母體標準(偏)差 σ ,推估母體平均值 μ 在信賴水準 $1 - \alpha$ 下的信賴區間為

$$P(\mu \leq \bar{x} + t_{\alpha,\nu} \times \frac{s}{\sqrt{n}}) = 1 - \alpha$$

在左單尾區間估計時,母體變異數 σ^2 和標準(偏)差 σ 未知,利用樣本標準(偏)差 $S=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}$ 取代母體標準(偏)差 σ ,推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為

$$P(\bar{x} - t_{\alpha,v} \times \frac{s}{\sqrt{n}} \leq \mu) = 1 - \alpha$$

母體屬性 條件 單尾母體平均值信賴區間 母體變異數 σ^2 已知 母體變異數 σ^2 未知 $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\mu \leq \bar{x} + z_\alpha \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$ $P(\bar{x} - z_\alpha \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$

表 單尾母體平均值 μ 之信賴區間

題解:樣本數量 n = 31 · 信賴水準 $1 - \alpha = 0.95$ 。樣本平均值 $\bar{x} = 150$ 個 · 樣本標準(偏)差 S = 20 個 。

使用標準化 Z 分布近似算法:顯著水準 $\alpha=0.05$ · $z_{\alpha}=z_{0.05}=1.645$ (使用 Excel 軟體 NORM.S.INV 函數查詢 獲得)。每日至少要準備的澳洲生蠔數量,將所有可能犯錯機率全放在右側,屬於右單尾區間估計,則 $P(\mu \leq \bar{x} + z_{\alpha} \times \frac{s}{\sqrt{n}}) = 1 - \alpha = 0.95$ 。

上限: $\bar{x} + z_{\alpha} \times \frac{s}{\sqrt{n}} = 150 + 1.645 \times \frac{20}{\sqrt{31}} = 150 + 5.9 = 155.9$ 個(需要無條件進位到個位數)。故每日至少準備生蠔數量為 156 個,才能應付 95 %的情況。因此,每日販售澳洲生蠔數量在 0~156 個,佔有 95 %機率。

使用 t 分布精準算法:自由度 v=n-1=31-1=30.顯著水準 $\alpha=0.05$. $t_{\alpha,v}=t_{0.05,30}=1.6973$ (使用 Excel 軟體 T.INV 函數查詢獲得)。每日至少要準備的澳洲生蠔數量.將所有可能犯錯機率全放在右側.屬於右單尾區間估計.則 $P(\mu \leq \bar{x} + t_{\alpha,v} \times \frac{s}{\sqrt{n}}) = 1 - \alpha = 0.95$ 。

上限: $\bar{x} + t_{a,v} \times \frac{s}{\sqrt{n}} = 150 + 1.6973 \times \frac{20}{\sqrt{31}} = 150 + 6.1 = 156.1$ 個(需要無條件進位到個位數)。故每日至少準備生蠔數量為 157 個.才能應付 95 %的情況。因此.每日販售澳洲生蠔數量在 0~157 個.佔有 95 %機率。

答案:至少要準備 156(近似)和 157(精準)個生蠔才能達到 95 %的信賴水準

題解:樣本數量 n=7 · 在樣本數量少和未知母體標準(偏)差的情況下 · 比照雙尾信賴區間的運算模式 · 運用 $t_{\alpha,\nu}$ 取代 z_{α} 運算信賴區間 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\alpha,\nu}=t_{\alpha,n-1}=t_{0.05,7-1}=1.9432$ (使用 Excel 軟體 T.INV 函數查詢獲得) · 樣本平均值 $\bar{x}=150$ 個 · 樣本標準(偏)差 S=20 個 ·

每日至少要準備的澳洲生蠔數量,將所有可能犯錯機率全放在右側、屬於右單尾區間估計,則

$$P(\mu \leq \bar{x} + t_{\alpha,v} \times \frac{s}{\sqrt{n}}) = 1 - \alpha = 0.95$$

上限: $\bar{x} + t_{a,v} \times \frac{s}{\sqrt{n}} = 150 + 1.9432 \times \frac{20}{\sqrt{7}} = 150 + 14.69 = 164.69$ 個

故每日至少準備生蠔數量為 165 個·才能應付 95 %的情況。因此·每日販售澳洲生蠔數量在 0~165 個· 佔有 95 %機率。

練習 8.46 奇遇海產店販售澳洲生蠔數量屬於(趨近於)常態分布,上星期 7 天營業日每日販售澳洲生蠔數量如下表所示,試求在 95 %的信賴水準下,每日至少要準備多少澳洲生蠔?

營業日	販售生蠔數量 x _i	$x_i - \bar{x}$	$(x_i-\bar{x})^2$
1	25	-3	9
2	21	-7	49
3	27	-1	1
4	26	-2	4
5	32	4	16
6	28	0	0
7	37	9	81
合計	196		160

題解:樣本數 n=7 · 自由度 df=v=n-1=7-1=6 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{a,v}=t_{a,n-1}=t_{0.05,7-1}=1.9432$ (使用 Excel 軟體 T.INV 函數查詢獲得) · 樣本平均值 $\bar{x}=\frac{196}{7}=28$ 個 · 樣本標準(偏)差 $S=\sqrt{\frac{\sum_{i=1}^n(x_i-\bar{x})^2}{n-1}}=\sqrt{\frac{160}{7-1}}=5.1640$ 個 。

每日至少要準備的澳洲生蠔數量,將所有可能犯錯機率全放在右側,屬於右單尾區間估計,則

$$P(\mu \le \bar{x} + t_{\alpha,\nu} \times \frac{s}{\sqrt{n}}) = 1 - \alpha = 0.95$$

上限: $\bar{x} + t_{a,v} \times \frac{s}{\sqrt{n}} = 28 + 1.9432 \times \frac{5.1640}{\sqrt{7}} = 28 + 3.79 = 31.79$ 個

故每日至少準備生蠔數量為 32 個 · 才能應付 95 %的情況 。因此 · 每日販售澳洲生蠔數量在 0~32 個 · 佔有 95 %機率 。

練習 8.47 假設有一組樣本數量 n=15 觀測值的隨機樣本。母體標準(偏)差未知。假設樣本平均值 $\bar{x}=15.0$ 和樣本標準(偏)差 S=5.0。請計算母體平均值 μ 在 95 %左尾的信賴區間。(答案有效位數四捨五入取到小數點後第 2 位)

題解:信賴係數為 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $t_{\alpha,n-1}=t_{0.05,15-1}=1.7613$ (使用 Excel 軟體 T.INV 函數查詢獲得)。

$$\bar{x} - t_{\alpha, n-1} \times \frac{s}{\sqrt{n}} \le \mu$$
 \rightarrow $15.0 - 1.7613 \times \frac{5.0}{\sqrt{15}} \le \mu$ \rightarrow $12.73 \le \mu$

答案:12.73≤*µ*

8.6.2 母體比例單尾區間估計

雙尾區間估計時 · 樣本數量多 $(n \ge 30)$ · $n \times p \ge 5$ 同時必須 $n \times (1-p) \ge 5$ · 在信賴係數為 $1-\alpha$ · 信賴區間的顯著水準為 α · 母體比例 p 的信賴區間為:

$$P(\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha$$

$$\bar{p} \pm z_{\frac{\alpha}{2}} \times \sigma_{\bar{p}} = \bar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = \bar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}$$

其中 $1-\alpha$:信賴係數

 α :信賴區間的顯著水準

 $z_{\frac{\alpha}{2}}$:標準常態分布右尾機率(面積)為 $\frac{\alpha}{2}$ 的標準化 z 值

在右單尾區間估計時,母體比例 p 已知,所有可能發生錯誤機率 α ,皆在右側,推估(估算)母體比例 p 在信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(p \leq \bar{p} + z_{\alpha} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha$$

若母體比例 p 值未知時,可以利用樣本比例 \bar{p} 取代母體比例 p 、以推估(估算) 母體比例的信賴區間:

$$P(p \leq \bar{p} + z_{\alpha} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}}) = 1 - \alpha$$

若母體比例 p 值未知時,可以將母體比例 p 設為 0.5 以推估(估算)母體比例的信賴區間,惟若設定 p = 0.5 所獲得的信賴區間較大,也較保守。

在左單尾區間估計時,母體比例 p 已知,所有可能發生錯誤機率 α ,皆在左側,推估(估算)母體比例 p 在信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(\bar{p} - z_{\alpha} \times \sqrt{\frac{p \times (1-p)}{n}} \le p) = 1 - \alpha$$

若母體比例 p 值未知時,可以利用樣本比例 \bar{p} 取代母體比例 p · 以推估(估算)母體比例的信賴區間:

$$P(\bar{p} - z_{\alpha} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} \le p) = 1 - \alpha$$

若母體比例 p 值未知時,可以將母體比例 p 設為 0.5,以推估母體比例的信賴區間,惟若設定 p=0.5 所獲得的信賴區間較大,也較保守。

題解:樣本比例 $\bar{p}=0.65$ · 樣本數量 n=300 · 信賴水準 $1-\alpha=0.95$ · 顯著水準 $\alpha=0.05$ · $z_{\alpha}=z_{0.05}=1.645$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

題目需欲估計在信賴水準 95 %下支持比率信賴區間的最低值·因此·判斷屬於左尾區間估計·母體 比例 p 值未知時·利用樣本比例 \bar{p} 取代母體比例 p · 故下限值為 \bar{p} $-z_{\alpha}$ × $\sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}}$

$$\bar{p} - z_{\alpha} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} = 0.65 - 1.645 \times \sqrt{\frac{0.65 \times 0.35}{300}} = 0.65 - 0.0453 = 0.6047$$

答案:支持比率信賴區間的最低值 p > 0.6047

練習 8.48 為調查高雄市消費者對有機咖啡的支持比例,從高雄市消費者中隨機抽取 350 位消費者為樣本,統計其對有機咖啡的支持人數為 200 位。為保守估計有機咖啡的需求量,欲估計在信賴水準 99 %下接受率最低值的信賴區間?(答案有效位數四捨五入取到小數點後第 4 位)

題解:樣本比例 $\bar{p} = \frac{200}{350} = 0.5714$ · 樣本數 $n = 350 \cdot 1 - \alpha = 0.99 \cdot \alpha = 0.01 \cdot z_{\alpha} = z_{0.01} = 2.3267$ (使用 Excel 軟體 NORM.S.INV 函數查詢獲得)。

題目需欲估計在信賴水準 99 %下接受率最低值的信賴區間·因此·判斷屬於左尾區間估計·母體比例 p 值未知時·利用樣本比例 \bar{p} 取代母體比例 p . 故下限值為 $\bar{p} - z_{\alpha} \times \sqrt{\frac{\bar{p} \times (1-\bar{p})}{n}}$ 。

$$\bar{p} - z_{\alpha} \times \sqrt{\frac{\bar{p} \times (1 - \bar{p})}{n}} = 0.5714 - 2.3267 \times \sqrt{\frac{0.5714 \times 0.4286}{350}} = 0.5714 - 0.0615 = 0.5099$$

答案:最低值的信賴區間 p > 0.5099

討論議題

1.師牛非同步討論議題:統計裡的信賴

各位同學請利用時間閱讀附加檔案中的【統計裡的信賴】pdf 檔案,此檔案是由高雄雄大學黃文 璋老師所撰寫,嘗試從更完整的角度去理解信賴區間的意涵。第一回合請於 D+3 日中午 1200 點以前從「議題討論」區【張貼】標題:「信賴」,本文:請您詮釋一下【信賴】在統計學上的意涵(20 個字以上詮釋)。期望可以透過學習運用效益的交流,相互激勵,提升學習效益。

待有 35 篇第一回合【張貼】回應或第一回合【張貼】時間結束後,檢視其他同學的回應內容。 第二回合【張貼】標題:「最佳詮釋」,本文:自己靜下心來,集思廣益,思考一下,哪一位同學 詮釋得最好,其理由(10 個字以上)。第二回合【張貼】截止時間就是本議題在平台上的關閉時間。

2.師生非同步討論議題:信賴區間與信心水準的解讀

各位同學請利用時間閱讀附加檔案中的【信賴區間與信心水準】pdf 檔案·此檔案是由台灣大學研究生林柏佐同學所撰寫·特別要閱讀第三頁【信賴區間與信心水準】的單元內容·針對選舉的民調,推估母體比例的過程·詳細的閱讀瀏覽·期望同學可以更完整的理解母體比例信賴區間的推估

第一回合請於 D+3 日中午 1200 點以前從「議題討論」區【張貼】標題:「信心水準」,本文:請您詮釋一下在選舉民調中【信心水準】的意涵(20 個字以上詮釋)。期望可以透過學習運用效益的交流,相互激勵,提升學習效益。

待有 35 篇第一回合【張貼】回應或第一回合【張貼】時間結束後,檢視其他同學的回應內容。 第二回合【張貼】標題:「最佳詮釋」,本文:自己靜下心來,集思廣益,思考一下,哪一位同學 詮釋得最好,其理由(10 個字以上詮釋)。第二回合【張貼】截止時間就是本議題在平台上的關閉時間

3.學習者間同步教學討論議題:關書平常考體驗

第一回合請於 D 日早上 0955 以前從「議題討論」區【張貼】標題:「考試心得」,本文:上大學第一學期最後一週期末考前進行關書平常考,經過實際關書平常考體驗後,請分享一下自己準備考試的得分關鍵(10 個字以上詮釋)。期望可以透過應考準備經驗的分享學習與相互交流,相互激勵,提升學習效益。

待有 35 篇第一回合【張貼】回應或第一回合【張貼】時間結束後、檢視其他同學的回應內容。即可開始張貼第二回合【張貼】標題:「領悟」,本文:自己靜下心來,集思廣益,思考一下,在

準備考試的技巧上,論述給自己最大領悟(10 個字以上)。透過同學間分享與討論,可以提升學習效益。加油!第二回合【張貼】截止時間就是本議題在平台上的關閉時間。

4.師生非同步討論議題:期末考後的檢討分析

第一回合請於 D+2 日中午 1200 點以前從「議題討論」區【張貼】標題:「檢討分析」·本文: 上大學第一學期第一次挑戰鑑別度最高的期末考試題·經過一個學期的嚴謹教育洗禮後·寒假與未來精進學習的方向·請分享一下自己的檢討、分析與精進【最多 20 個字詮釋】。期望可以透過檢討、分析與精進的分享學習·相互激勵·提升學習效益。

待有 35 篇第一回合【張貼】回應或第一回合【張貼】時間結束後、檢視其他同學的回應內容。即可開始張貼第二回合【張貼】標題:「精進作為」、本文:自己靜下心來、集思廣益、思考一下、請論述在寒假和未來學習生涯上的精進具體作為【最多 20 個字詮釋】。第二回合【張貼】截止時間就是本議題在平台上的關閉時間。

5.師生非同步討論議題:期末精進學習

上大學第一學期已經到了第 17 週期末,統計學課程上經歷牛刀小試、來賓考試、上課練習、平常考、期中考試、議題討論等務實學習歷程,如何達到最佳的學習效益,已經有深入的體驗。第一回合請於 D+2 日中午 1200 點以前從「議題討論」區【張貼】標題:「最佳學習策略」,本文:詮釋一下自己認為最佳的學習策略【15 個字以上詮釋】。期望可以透過檢討、分析與精進的分享學習,相互激勵,提升學習效益。

待有 35 篇第一回合【張貼】回應或第一回合【張貼】時間結束後,檢視其他同學的回應內容。即可開始張貼第二回合【張貼】標題:「最後補強」,本文:自己靜下心來,集思廣益,思考一下,請論述接下來自己需要再精進補強之處【10 個字以上詮釋】。第二回合【張貼】截止時間就是本議題在平台上的關閉時間。

重點整理

Excel 函數彙整

Excel 函數	統計功能	輸入資料	輸出資料
T.INV	T分布	左尾機率・自由度	t 值
TINV	T分布	雙尾機率,自由度(舊版函數)	t 值(正值)
T.INV.2T	T分布	雙尾機率・自由度	t 值(正值)
T.DIST	T分布	X 值,自由度,累積運算	左尾機率(從-∞累積到 X 值機率)
TDIST	T分布	X 值,自由度,單尾/雙尾	右尾機率(從 X 值累積到∞機率)
T.DIST.2T	T分布	X 值,自由度	雙尾機率
T.DIST.RT	T分布	X 值,自由度	右尾機率(從 X 值累積到∞機率)
CHISQ.INV	卡方分布	左尾機率・自由度	卡方值
CHISQ.INV.RT	卡方分布	右尾機率・自由度	卡方值
CHIINV	卡方分布	右尾機率・自由度	卡方值

信賴係數(confidence coefficient) = 信賴水準(confidence level; level of confidence) = 信賴度(degree of

confidence,
$$\beta$$
) = 推論成功機率 = $1 - \alpha$

顯著水準(level of significance) = 推論失敗機率 = α

$$\begin{split} P(-z_{\frac{\alpha}{2}} &\leq \frac{\bar{x} - \mu}{\sigma_{\bar{x}}} \leq z_{\frac{\alpha}{2}}) = 1 - \alpha \\ P(\bar{x} - z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}} \leq \mu \leq \bar{x} + z_{\frac{\alpha}{2}} \times \sigma_{\bar{x}}) = 1 - \alpha \\ P(\bar{x} - z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha \end{split}$$

在常態分布下,母體平均值 μ 的信賴區間**通式**

點估計值 ± 誤差範圍(margin of error)

$$\bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \sigma_{\bar{\chi}}$$
 $\bar{\chi} \pm Z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$

母體變異數 σ^2 和標準(偏)差 σ 未知

大量樣本數量 $(n \ge 30)$ · 變異數 σ^2 和標準(偏)差 σ 未知時 · 母體平均值 μ 的信賴區間為

$$\bar{X} \pm Z \frac{\alpha}{2} \times \frac{S}{\sqrt{n}} \ = \ \bar{X} \pm Z \frac{\alpha}{2} \times \frac{\sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}}{\sqrt{n}} \ = \ \bar{X} \pm Z \frac{\alpha}{2} \times \frac{\sqrt{\frac{\sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}{n-1}}}{\sqrt{n}}$$

母體屬於常態分布·而樣本數量較少 n < 30·母體變異數 σ^2 和標準(偏)差 σ 未知的情況下·應以 t 分布估算母體平均值 μ 的信賴區間。

樣本數量少(n < 30) · 母體屬於常態分布 · 母體變異數 σ^2 和標準(偏)差 σ 未知時 · 母體平均值 μ 的信賴區間 $\bar{x} + t_{\sigma} \times \frac{s}{2}$

 $ar{x}\pm t_{\frac{\alpha}{2}} imes \frac{s}{\sqrt{n}}$ 母體的分布型態無法確定時,在母體變異數 σ^2 和標準(偏)差 σ 已知的情況下,樣本數量少(n<30),可以

利用柴比氏定理(Chebyshev's theorem, Bienayme-Chebyshev rule)進行母體平均值 μ 的信賴區間估算。 $P(|\bar{x}-\mu| \leq k \times \sigma_{\bar{x}}) \geq (1-\frac{1}{k^2})$

$$P(|\bar{x} - \mu| \le k \times \sigma_{\bar{x}}) \ge (1 - \frac{1}{k^2})$$

$$P(\bar{x} - k \times \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + k \times \frac{\sigma}{\sqrt{n}}) \ge (1 - \frac{1}{k^2})$$

在信賴係數和信賴水準(信賴度)為 $1-\alpha$ ·在信賴區間的顯著水準為 α ·母體比例p的信賴區間為

$$ar{p} \pm z_{\frac{\alpha}{2}} \times \sigma_{ar{p}} = ar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} = ar{p} \pm z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times q}{n}}$$

樣本數量少(n < 30)時·於母體總數N為無窮大 $(N = \infty)$ ·樣本比率 \bar{p} 的抽樣分布會接近於二項分布·即為

$$\bar{p}$$
~二項分布 $(p, \frac{p \times (1-p)}{n}) =$ 二項分布 $(p, \frac{p \times q}{n})$

樣本數量少(n < 30)時,於母體總數N為有限數值,樣本比率 \bar{p} 的抽樣分布會接近於超幾何分布,即為

$$\bar{p}$$
~超幾何分布 $(p, \frac{p \times (1-p)}{n} \times \frac{N-n}{N-1}) =$ 超幾何分布 $(p, \frac{p \times q}{n} \times \frac{N-n}{N-1})$

以樣本平均值 \bar{x} 估計母體平均值 μ 、欲將估計誤差設定小於 A 值(與觀測值和平均值單位相同),即 $|\bar{x}-\mu| \le$

A。設定在 $100 \times (1-\alpha)\%$ 的信賴水準下,母體變異數 σ^2 和標準(偏)差 σ 已知,母體平均值 μ 落於 \bar{x} —

$$z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}} \le \mu \le \bar{x} + z_{\frac{\alpha}{2}} \times \frac{\sigma}{\sqrt{n}}$$
區間內 · 隨機抽樣的樣本數量需達 $n \ge \frac{z_{\alpha}^2 \times \sigma^2}{A^2}$ 。

以樣本比例 \bar{p} 估計母體比例p·欲將估計誤差設定小於A值,即 $|\bar{p}-p| \le A$ 。設定在 $100 \times (1-\alpha)$ %的信賴水

準下,母體的比例落於
$$\bar{p} - z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}} \le p \le \bar{p} + z_{\frac{\alpha}{2}} \times \sqrt{\frac{p \times (1-p)}{n}}$$
區間內,樣本數量需達 $n \ge z_{\frac{\alpha}{2} \times p \times (1-p)}$

利用卡方分布推估母體變異數的信賴區間

在卡方分布中·母體特定變數之觀測值的平均值 μ 無法獲得·僅以抽出 n 個基本單位的樣本平均值 \bar{x} 取代·在自由度 df=v=n-1 的環境中·利用卡方值 χ^2_{n-1} 推估母體變異數的信賴區間:

$$P(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \chi^2 \leq \chi_{\frac{\alpha}{2},n-1}^2) = 1-\alpha$$

$$P(\chi_{1-\frac{\alpha}{2},n-1}^2 \leq \frac{\sum_{i=1}^n (x_i-\bar{x})^2}{\sigma^2} \leq \chi_{\frac{\alpha}{2},n-1}^2) = 1-\alpha$$

母體變異數 σ^2 在信賴水準 $1-\alpha$ 的信賴區間為:

$$\frac{S^2 \times (n-1)}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{S^2 \times (n-1)}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$
$$\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\chi^2_{\frac{\alpha}{2},n-1}} \le \sigma^2 \le \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{\chi^2_{1-\frac{\alpha}{2},n-1}}$$

在右單尾區間估計時,母體變異數 σ^2 和標準(偏)差 σ 已知,所有可能發生錯誤機率 α ,皆在右側,推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(\mu \le \bar{x} + z_{\alpha} \times \sigma_{\bar{x}}) = P(\mu \le \bar{x} + z_{\alpha} \times \frac{\sigma}{\sqrt{n}}) = 1 - \alpha$$

在左單尾區間估計時,母體變異數 σ^2 和標準(偏)差 σ 已知,所有可能發生錯誤機率 α ,皆在左側,推估母體平均值 μ 在信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(\bar{x} - z_{\alpha} \times \sigma_{\bar{x}} \leq \mu) = P(\bar{x} - z_{\alpha} \times \frac{\sigma}{\sqrt{n}} \leq \mu) = 1 - \alpha$$

在**右單尾區間估計**時·母體比例 p 已知·所有可能發生錯誤機率 α ·皆在右側·推估(估算)母體比例 p 在 信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(p \leq \bar{p} + z_{\alpha} \times \sqrt{\frac{p \times (1-p)}{n}}) = 1 - \alpha$$

在**左單尾區間估計**時·母體比例 p 已知·所有可能發生錯誤機率 α ·皆在左側·推估(估算)母體比例 p 在 信賴水準 $1-\alpha$ 下的信賴區間為:

$$P(\bar{p} - z_{\alpha} \times \sqrt{\frac{p \times (1-p)}{n}} \le p) = 1 - \alpha$$