Week 10 Lecture 1

Jared Brannan

November 3, 2021

1 Administrative drivel

- Last day to pick up exams
- Lecture images through respiration are posted
- The review sheet through respiration has been posted to be updated up till wednesday
- Those with 100% on the term papers, submit without revision

2 Defence and repair – immune system

- Chemical barriers review
 - Oils
 - Salts
 - Saliva lysozyme
 - * Dodgs have a lot of lysozyme, so getting licked can be beneficial

• More chemical barriers

- Acid secreted by the stomach
 - * Hydrochloric acid chemically rips apart pathogens
 - · Cells in the walls produce this acid
 - also assists with digestion
 - · Allows pepsidogen to be broken into pepsin beginning of protien digestion, then finished in the small/large intestin
 - \cdot the stomach also mechanically breaks the food down
 - The stomach mainly functions for the storage of food (so you don't have to eat constantly exposing you to danger), and
 - · the high acid level kills contaminants in food
 - * pH = 2 (between lemon juice and battery acid)
- **Helpers** beneficial bacteria and fungi "probiotics"
 - * Large populations in the gut outcompete pathogens
 - · makes it harder for outsiders to get a foothold
 - * Glycogen secreted within the vagina promotes *Lactobacillus* bacteria, which consume glycogen and convert it back to lactic acid
- Oh no the barrier is breached
 - Damage to the skin give pathogens acces to your insides
 - Need to builid the walls back up

- Wound repair: what needs to happen
 - Stop blood loss
 - * Clotting does this
 - Remove damaged and dead cells
 - Destroy any pathogens that got in
 - * battle.
 - Reconstruct the barrier
 - * epidermis grows back in along with some scar tissue
- Stop blood loss:
 - 1. Vasoconstriction
 - * min continuing blood loss
 - 2 **Platelet** activation
 - * Platelets stick to the injury site
 - * platelets change shape, becoming sticky
 - * platelets trigger clotting protiens
 - * clotting proteins activate fbrin to form a net over the wound

- 3. Clot formation

- * Red blood cells get caught in the net
- * this clot (scab) plgs the wound, blocking further blood loss
- Remove damaged and dead cells
 - Inflammatory response brings in clean-up cells
 - * mostly white blood cells
 - * fight infection and remove damaged or dead cells
- Inflamation:
 - 1. Damaged cells release chemical messengers
 - 2. this signals other cells (mast cells) which send a response (histamines)
 - 3. Which leads to vasodialation (the sweeling of the capilaries)
 - \ast This allows larger gaps in the wall to form, allowing white blood cells and fluid into the surrounding tissue to do battle
 - * The fluid that gets out of the capilaries causes swelling
 - 4. More signals from the damaged cells triger Phagoccytes
 - * macrophages, neutrophils white blood cells
- Phagocytes: type of white blood cell
 - Macrophages and neutrophils (phagocytes) can get out of the capillaries near the injury site and into the damaged tissue they can move on their own!
 - * each attack and kill in specific ways
 - * macrophages are the most numerous, and engulf many pathogens into an internal vesicle, bring digestive enzymes in a seperate vesicle to them, and digest them
 - * neutrophils are suicide bombers, ingulfing the pathogen and killing themselves, releasing chemicals that kill nearby cells

- 1. Mast cells detect injury to nearby cells and release histamine, initiating inflamatory response
- 2. Histamine increases blood flow to the wound sites, bringing in phagoocytes and other immune cells that neutralize pathogens.
- Phagocytes die, turning into pus
- pimple == dead phagocytes after fighting a bacterial infection of an oil gland in a hair folicle
- Bacteria are evereywhere in the environment, so generally some enter in a wound, thus, usually some to kill off.
- Reconstruct the barrier
 - Reconnect the vasculature
 - * remaining capillaries grow toward the wound site, and toward each other
 - Rebuild the physical structure
 - * epidermal cells reconnect under the scab
 - * extracellular collagen protein gets deposited into the wound site under the epidermis
 - * repair collagen is slightly different in structure and arrangement than normal skin collagen scar