Virtualização no Kubernetes com **KubeVirt**

[Online] Cloud Native São Paulo - Meetup #16

Davi Garcia

Cloud Solutions Architect

Através de APIs e runtimes, habilitar o Kubernetes a executar e gerenciar máquinas virtuais

KubeVirt

Sandbox Project na Cloud Native Computing Foundation (CNCF) https://kubevirt.io

Princípios Orientadores

VMs ficam em pods

VMs consomem recursos de onde o Kubernetes está fornecendo – pods.

Sem sobrecarga ou modificação de APIs

VMs têm sua funcionalidade específica, portanto, uma API dedicada para expô-las através do K8S

Prioridade na experiência Kubernetes-native

Para usabilidade, as funcionalidades da virtualização devem ser feitas seguindo filosofia do Kubernetes.

VMs baseadas em KVM (em container)

- **KVM** é parte do kernel Linux
- QEMU usa KVM para executar máquinas virtuais (VMs)
- **libvirt** provê camada de abstração para gerenciamento
- Arquitetura que reutiliza experiência e componentes de outros projetos, como oVirt e OpenStack

Conteinerização do KVM

VM em um pod

Containers para um modelo de recursos unificado

Recursos Kubernetes

Toda VM é executada em um "launcher pod". O launcher vai supervisionar, usando **libvirt**, e provendo integração com o ambiente do pod.

Componentes Maduros

Libvirt, qemu e KVM são maduros, performáticos, proveem abstrações estáveis, e possuem overhead mínimo.

Segurança

Pode aproveitar boas práticas do mundo Linux para proteger as cargas de trabalho virtualizadas (SELinux MCS, SO Imutáveis, Isolamento KVM, etc).

VM em um pod

... é como qualquer outro processo para o Kubernetes

Máquinas Virtuais Conteinerizadas

Herdam funções e funcionalidades do Kubernetes

 Escalonamento, alta disponibilidade, mapeamento de recursos (attach/detach)

Possuem as mesmas limitações das não-conteinerizadas

- CPU, RAM, etc. limitações ditadas pelo libvirt e QEMU
- Sistemas operacionais guests como Linux e Windows

Armazenamento

- Usam Persistent Volumes Claims (PVCs) para os discos
- Containerized Data Importer (CDI)

Conectividade

- Herda a rede do pod por padrão
- Multus (CNI) habilita conexão externa direta

Visão Arquitetural de Alto Nível

Containerized Data Importer

- Forma preferencial para mapear os discos das VMs
 - Fornece APIs mais explícitas e automações complementares
- Componente usado para importar, carregar e clonar imagens para o KubeVirt (KVM)
 - Abstração em cima de PersistentVolumeClaim (PVC)
 - Fornece o recurso DataVolume
- Capaz de manipular diversos formatos e convertê-los em IMG:
 - tar, gzip, xz, raw, iso e qcow2
- E de importar de diversas fontes:
 - o http(s), docker, local

Adicionando virtualização ao Kubernetes

Como criar novas APIs no Kubernetes

CRD e Aggregated API Servers

Estas são as maneiras usadas para estender a API Kubernetes para oferecer suporte a novas entidades.

Para os usuários, as novas entidades são indistinguíveis dos recursos nativos.

Única API para todas as cargas de trabalho

Todas as cargas de trabalho (contêineres, VMs e funções) são gerenciadas por meio de uma única API.

Operators

Simplificam a instalação, utilização e manutenção dos componentes envolvidos.

∨m.yaml

```
apiVersion: kubevirt.io/v1alpha3
     kind: VirtualMachine
    metadata:
 3
       name: testvm
 4
 5
     spec:
       running: false
 6
       template:
         metadata:
 8
           labels:
 9
             team: Tiger
10
11
         spec:
12
           domain:
             devices:
13
               disks:
14
15
                - disk:
16
                    bus: virtio
17
                 name: rootfs
               interfaces:
18
                - name: default
19
20
             resources:
               requests:
22
                 memory: 1GB
```

Uma API Dedicada à Virtualização

Para reconhecer as diferenças e atender às expectativas

Declarativa

Como tudo no Kubernetes, a API do KubeVirt é declarativa e segue as convenções da API Kubernetes.

Específica de Domínio

As VMs são definitivamente diferente dos contêineres. Reutilizar a API do pod não seria explícito o suficiente para todos os detalhes necessários.

Dividir e Conquistar

Devido à API dedicada, é simples adicionar funcionalidades específicas de virtualização, como migração ao vivo e acesso ao console gráfico.

Containerized Data Importer

Demonstração!

Ou pelo menos tentativa de uma...

https://github.com/davivcgarcia/demo-kubevirt

Obrigado!

GitHub/LinkedIn/Twitter: @davivcgarcia

- in linkedin.com/company/red-hat
- youtube.com/user/RedHatVideos
- f facebook.com/redhatinc
- twitter.com/RedHat

