平面图

平面图 Plane Graph

在实际应用中,如高速公路设计、印刷电路设计,都要求线路不交叉,一个图能否画在一个平面上,且任何边都不交叉,这就是图的平面化问题.近些年来,特别是大规模集成电路的发展进一步促进了平面图的研究.

定义 一个图G, 若可以将它画在平面上, 使它的边仅在顶点上才能相交, 则称图G为可平面图 (planar graph)。图的这种平面画法称为平面嵌入 (plane embedding)

说明: 一个可平面图与其平面嵌入图拓扑同构, 因此我们将一个可平面图的平面嵌入也称为平面 图。 例如右图. 就是可平面化图. 下面是两个重要的非平面图:

K₅和K_{3,3}

Jordan曲线

Jordan曲线 平面上的简单闭曲线(自身不相交封闭曲线)

▶若将平面看成一片任意变形的橡胶,图形保持什么性质?

平面上的一条简单闭曲线恰好将平面上的点分围两类:分为两个区域:曲线内部的int J,曲线外部的ext I,使得同一

类中的任意一对点能用 一个不与 J 相交的曲线 相连,而连接一对属于 不同类点的任意曲线必 须与 J 相交。

Jordan曲线定理: Jordan曲线把平面分为2部分, 连接内部与外部点的任意曲线必然与Jordan曲线 相交.

▶说明: 该定理看似无可置疑的明显结论。

该定理是 C. Jordan (1838-1933) 首先提出, 并给出了(长而复杂又有缺陷)的证明,但后来 发现Jordan的证明有缺陷。

第一个严格的证明相当复杂,对于训练有素的数学家来说,也是很难理解的。

对于多边形的Jordan曲线,证明是简单的。

定理: K5是非可平面图

证明: 反证法

若G是与K5对应的平面图, v_1, v_2, v_3, v_4, v_5 是G 的顶点, 因为G是完全图,任意两点邻接, 所以 回路 $C = v_1 v_2 v_3 v_1$ 是一个Jordan曲线,则 $v_4 \in int C$ 或 $v_4 \in extC$ 。

设 $v_4 \in \text{int } C$, $(v_4 \in \text{ext} C \ | \text{ 同理})$,那么边 $(v_4, v_1), (v_4, v_2), (v_4, v_3)$ 将 $\text{int } C \cap \mathcal{C}$ 我 $\text{3割区域: int } C_1$, $\text{int } C_2$, $\text{int } C_3$ 这里 $C_1 = v_1 v_4 v_2 v_1$, $C_2 = v_2 v_4 v_3 v_2$, $C_3 = v_3 v_4 v_1 v_3$ $v_5 - \text{定在4} \wedge \text{区域中的-} \wedge \text{区域内,如果} \quad v_5 \in \text{ext} C$ 那么因为 $v_4 \in \text{int } C$ 根据 Jordan 定理,边 (v_4, v_5) 一定与C 相交, 这就与G是平面图的假设矛盾,对于 $v_5 \in \text{int } C_i$ 可以按照同样的方法处理。

球极投影 Stereographic Projection

曲面嵌入

(imbeddable on surface):

画在曲面上使得边与边不 在非顶点处相交,如环面嵌入

球极投影 Stereographic projection

将一球S置于平面P上, 球与平面的接触点称为球的南极, 通过南极的直径的另一端称为北极记为 Z 将平面P 的任意点与 Z 相连, 连线一定与球面有且仅有一个交点。

定义映射 $\pi: \mathbf{S} \setminus \{z\} \to \mathbf{P}$ $\pi(s) = p$ 当且仅当 z, s, p 是共线的,该映射称为投影中心为 z 的球极投影

定理: 图G 是可平面嵌入⇔图G是可球面嵌入 证明:

设 G 在球上的嵌入图为 G₁,选择 G₁ 外的球面上的点作为球极投影的投影中心 Z ,则 G₁ 在球极投影的下的图像是 G 的平面嵌入图,反之也成立.

欧拉公式

一个平面图G将平面分割成若干个连通区域,称这些区域的闭包为图G的面.

有限面与无限面:面的面积有限称为有限面,反之称为无限面. 所有平面图的外侧都有一个无限面.

A plane graph with six faces $f_1, f_2, f_3, f_4, f_5, f_6$

面的边界: 围成一个面r的所有边构成的回路, 称之为这个f面的边界. 此回路中的边数, 称之为f面的次数, 记作deg(f).

 f_1 : 边界: ABCDFDA $deg(f_1) = 6$

 f_2 : 边界: ABCA deg(f2)=3

 f_3 : 边界: ACDA $deg(f_3)=3$

 f_4 : 边界: ADA deg(f4)=2

欧拉公式

定理4.2 G是个连通的平面图,设n、m、r分别表示G中结点数、边数、面数,则有 n-m+r=2. 称此式为欧拉公式.证明: (对面数r归纳证明)

(1) 设r = 1 (一个面),则图不含回路,图又是连通的,故必然是一棵树,根据树的性质. 有n-1=m ,因而

n-m+r=n-(n-1)+1=2于是结论成立.

(2) 假设当G有r≤k-1个面时,结论成立. 。 。

(3) 当G有r=k 个面且是连通图时,当 $k \ge 2$ 时,至少有一个回路,所以去掉此回路中的一条边后得到子图G',G'中有k-1个面,结点数同G中结点数,由(2)得n-(m-1)+(k-1)=2整理得 n-m+k=2 即 n-m+r=2 定理得证.

推论(必要条件)设G是有n个结点、m条边的连通简单平面图,若n≥3,则m≤3n-6.

证明 因为G是简单图, 所以每个面至少由三条边围成, 由于每条边在两个面的边界中出现, 所以

$$\sum_{i=1}^{r} \deg(f_i) = 2m \ge 3r$$

由欧拉公式: $n-m+r\stackrel{i=1}{=}2$ 代人上面不等式即得 $m \leq 3n-6$

用此定理可以判定一个图不是平面图,

证明K₅不是平面图: K₅中有n=5 m=10 3n-6=3 × 5-6=9 不满足m≤3n-6, 所以K₅不是平面图.

上面定理是判定平面图的必要条件,而不是充分条件. 即如果一个图 满足m \leq 3n-6,它不一定是平面图. 例如, $K_{3,3}$ 中n=6 m=9 $9 \leq 3 \times 6-6$ 满足m \leq 3n-6, 1 $0 \leq 3 \leq 5$ 但它不一定是平面图.

推论: 若G是简单连通平面图,则G至少有一个结点它的次数小于等于5 ($\delta \leq 5$)

证:用反证法,设G的所有结点的次数都大于等于6,则结点次数和 $\sum_{\deg(v)=2m\geq 6n}$

即 $m \ge 3n$,与定理(欧拉公式)矛盾,G不可能所有结点的次数都在G以上,即至少有一结点的次数小于等于G。

下面要介绍一个判定一个平面图的 充分且必要条件,即Kuratowski(库拉托斯基)定理.在 此之前先介绍一个新概念----在2度结点内同构(同胚). 在一个图中有2次结点,则这些结点不影响平面的面数.

例如下面两个图:

我们称这两个图是在2次结点内同构的图.

定义:如果G₁和G₂是同构的,或者通过反复插入或删去度数为2的结点,使得它们变成同构的图,称G₁和G₂是在2次结点内同构.

例如右边3个图就是 在2度结点内同构.

定理4.7 (Kuratowski定理)一个图是平面图的充分且必要条件是它不含有任何与 K_5 、 $K_{3,3}$ 在2次结点内同构的子图. (此定理证明略.) 判断下面彼得森 (Petersen) 图:

对偶图

对偶图的定义:

给定平面图 $G=\langle V, E \rangle$, 具有面 $F_1, F_2, F_3, ..., F_n$. 如果有图 $G*=\langle V*, E* \rangle$, 满足下面条件:

- (1)对于G的任意面 F_i 的内部有且仅有一个结点 $v_i* \in V*$.
- (2)对于图G的面 F_i 与 F_j 的公共边界 e_k ,有且仅有一条边 $e_k*\in E*$,使得 $e_k*=(v_i*,v_j*)$, 且 e_k* 与 e_k 相交. $(v_i*在F_i$ 内, $v_i*在F_i$ 内)
- (3)当且仅当 e_k 只是一个面 F_i 的 边界时, v_i *上有且仅有一个环 e_k * \in E* 且与 e_k 相交.则称图 G*是G的对偶图.可见G*中的 结点数等于G中的面数.

对偶图的特征:

- 任何平面图的对偶图G*必然是连通图。(平面图只有一个无限面,所以有限面中的结点与各有限面中的结点必然是连通的。)
- G和G *都是平面图。

当G是连通平面图时,G和G*互为对偶图。

若n, m, r分别表示G中的结点数、边数和面数, 而 n*, m*, r* 别表示G*中对应的各数, 则

m=m*, n=r*, r=n*

- G中回路的边在G*中的对应边构成G*的割集,而G的割 集在G*中的对应边构成 G* 的回路,反之亦然,且对 应的割集和回路所含的边数相同。
- 一个给定的可平面图可以有不同的平面表示法,这些平面表示图都是拓朴等价的,即彼此都是同构的,然而按照构造它们的对偶图,各对偶图却不是同构的。

定理4.13 一个图有对偶的充分必要条件是它是平面图。

定义 如果平面 G与它的对偶图G* 同构,则称G为自 对偶.

自对偶图特点

- (1) 自对偶图的结点数与面数相等即 n=r
- (2) 自对偶图的结点数与边数的关系为 m = 2(n-1)
- (3) 自对偶图如有自环和悬挂边,则它们的数目相等。
- (4) 自对偶图如有平行边和串联边则它们一一对应

9.1.1 证明 $K_{3,3}$ 是非可平面图。

证明: 今C表示图(1) 中基本回路 $v_1u_1v_2u_2v_1$ 在平面上的表示,如图(2),显然C是平面 上的一条Jordan曲线, 设 $v_3 \in \text{int } C$,于是 $(u_1, v_3), (u_2, v_3)$ 连同C将 平面分成三个两两不 相交的的区域,而 u_3 应落入这三个区域中的 某一个区域,不妨假设 $u_3 \in extC$,则由定理 知 (u_3,v_3) 必须与C相交,故 $K_{3,3}$ 是非可平面图。

D是个连通的平面图, D的所有平面嵌入图的面数相等

D是个连通的平面图, D的所有平面嵌入图的面数相等

证明:设G,H是D的两个平面嵌入图,其中 ν ϵ $-\Phi$ 分别表示结点数、边数、面数,

$$G \cong H$$
, $\nu(G) = \nu(H)$ and $\varepsilon(G) = \varepsilon(H)$.

根据欧拉定理

$$\phi(G) = \varepsilon(G) - \nu(G) + 2 = \varepsilon(H) - \nu(H) + 2 = \phi(H)$$

若 G是一个平面图,利用对偶图的特征,证明 Σ d(f)=2ε ,其中 F是G面的集合

若 G是一个平面图,利用对偶图的特征,证明 Σ d(f)=2ε 其中 F是 G 面的集合

证明:

若 G* 是平面图 G 的对偶图,则

$$\sum_{\mathbf{f} \in \mathbf{F}(\mathbf{G})} d(\mathbf{f}) = \sum_{\mathbf{f}^* \in \mathbf{V}(\mathbf{G}^*)} d(\mathbf{f}^*)$$
$$= 2\varepsilon(\mathbf{G}^*)$$
$$= 2\varepsilon(\mathbf{G})$$

9.2.10 举例说明下列命题: "平面图G有度数为1 的顶点,则其对偶图G*含有环;若G有度数为2的顶点,则G*含有重边。"的逆命题不真。

9.2.10 举例说明下列命题: "平面图G有度数为1 的顶点,则其对偶图G*含有环;若G有度数为2的顶点,则G*含有重边。"的逆命题不真。

提示: 它的对偶图既含环又含重边。

