

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicant:

Donald C. Abbott, et al

Art Unit:

3729

Application No.: 09/514,762

Examiner:

Chang, Rick Kiltae

Filed:

02/28/2000

Docket:

TI-26904

For:

DOUBLE SIDED FLEXIBLE CIRCUIT FOR INTEGRATED CIRCUIT PACKAGES AND METHOD OF MANUFACTURE

AMENDMENT 37 CFR 1.115

May 30, 2002

Assistant Commissioner

for Patents

Washington, D.C. 20231

MAILING CERTIFICATE UNDER 37 C.F.R.1.8(A)

I hereby certify that the above correspondence is being deposited with the U.S. Postal Service as First Class Mail bearing sufficient postage in an envelope addressed to: Assistant Commissioner for Patents,

Washington, D.C. 20231 on May 30, 2002

Sir:

Responsive to the Office Action of January 30, 2002, please amend the application as follows:

Change the tile to read:

METHOD OF FABRICATING FLEXIBLE CIRCUITS FOR INTEGRFATED **CIRCUIT INTERCONNECTIONS**

Please substitute the enclosed Abstract for the original abstract.

Amend Claims 16 and 18, as follows:

- A method of manufacturing an intermediate base structure for a 16. (Amended) flex circuit including the steps of:
- [forming a plurality of apertures corresponding to a pattern of conductive vias in providing a flexible base polymer film having first and second surfaces and a layer of copper on the first surface; [by mating].

- b) providing a metal matrix embossing tool [as described in claim 10 to the second surface,] comprising a copper film having a plurality of transverse study integral therewith; placing said tool study in contact with said second surface;
- c) applying a force to said metal matrix so that the stude of the tool punch through the copper coated polymer film, thereby creating a plurality of vias filled with the stude, and attaching the film matrix to the second side of the flex film.
- d) electroplating a thin film of copper onto both sides of the copper clad flex film.
- 18. (Amended) A method of manufacturing a flex circuit on a flexible base polymer <u>film</u> including the steps of:
- a) superimposing an embossing tool having <u>raised areas comprising</u> a pattern of conductors and vias corresponding to a circuit design, wherein, said raised areas are coated with a thin layer of metal, comprising copper,
- b) applying heat and pressure to simultaneously emboss the film and to transfer said thin metal layer from the embossing tool to the [dielectric] polymer film,
 - [b] \underline{c}) removing the embossing tool,
- [c] d) embossing a pattern corresponding to that of the second surface of a flex circuit, and simultaneously transferring a thin layer of metal into the embossed pattern,
 - [d] e) physically removing the embossing tool,
- [e] \underline{f}) plating a layer of copper to fill the vias and conductor patterns on both sides of the film, [and]
 - [f] g) plating a layer of nickel and gold onto the exposed copper patterns[.], and
- [g] \underline{h}) applying a solder mask on the surface of the film surrounding the solder ball contact pads.