1. A student wishes to use Newton's method to estimate the value of $\sqrt{3}$ by considering the solution of $x^2 = 3$. If the initial guess $x_0 = 2$, find the values of the next two iterates x_1 and x_2 . Fill in your answers below.

Answers:

$$x_1 =$$

$$x_2 =$$

2. Perform each of the following indefinite integrals. If substitution is needed show all steps carefully.

a.
$$\int \frac{x^3 - 10x^2 + x - 5}{x^2} dx \stackrel{?}{=}$$

b.
$$\int \frac{e^{-x} + e^{x+2}}{e^x} dx \stackrel{?}{=}$$

3. Solve the differential equation $\frac{dy}{dx} = \frac{\sqrt{\pi}}{\sqrt{x}} + \sin x$ if $y(\pi) = 3$

- 10350 Tutorial Week 15 Set 03 Nan 4. Estimate the value of $\int_{-6}^{6} f(x)dx$ using the following method.
- a. Right end-point with 6 equal subintervals.

b. Midpoint Rule with **6 equal subintervals**.

5. A particle on a straight line is moving with acceleration function

$$a(t) = \sin(t) + 12t^2 \qquad \text{m/s}^2$$

If initially the particle's velocity is 3 m/s and position is -1 m, find the velocity function and position function.

6. Given that $\int_{0}^{3} f(x)dx = -2$ and $\int_{0}^{9} f(x)dx = 10$, find

a.
$$\int_{2}^{9} f(x)dx =$$

b.
$$\int_0^3 [5-2f(x)]dx =$$