Real Analysis

Aamod Varma

MATH - 4317, Fall 2025

Contents

1	Intr	duction	
	1.1	Logic and proofs	2
	1.2	Real Numbers	3
	1.3	Consequences of Completeness	4
	1.4	Density of \mathbb{Q} in \mathbb{R}	5
	1.5	Cardinality	6

Chapter 1

Introduction

1.1 Logic and proofs

Types of proofs,

- 1. Direct proof
- 2. Argument by contradiction
- 3. Induction
- 4. Contrapositive (we show $\neg B \Rightarrow \neg A$)

Theorem 1.1. $a = b \Leftrightarrow \forall \varepsilon > 0, |a - b| < \varepsilon$

Proof. 1. To show, $a = b \Rightarrow \forall \varepsilon > 0, |a - b| < \varepsilon$.

Suppose a = b so |a - b| = 0. We have $\forall \varepsilon > 0$ so $|a - b| = 0 < \varepsilon$

2. To show, $\forall \varepsilon > 0, |a - b| < \varepsilon \Rightarrow a = b$

Now assume this is not true, or that $a \neq b$ so $a - b \neq 0$ this means that there is a non-zero number k such that $|a - b| = \varepsilon_0$. Now take $\varepsilon = \frac{\varepsilon_0}{2}$. This gives us, $|a - b| = \varepsilon_0 > \varepsilon$ which contradicts the statement. Hence our assumption is false and we prove the results.

Example (Induction). $x_1 = 1$ and $x_{n+1} = \frac{1}{2}x_n + 1, \forall n \in \mathbb{Z}$. Show $x_{n+1} \ge x_n \forall n \in \mathbb{N}$

Define $S = \{n \in \mathbb{N}, s.t.x_{n+1} \ge x_n\}$ clearly, $S \subseteq N$.

 $x_1 = 1$ and $x_2 = \frac{x_1}{2} + 1 = 1.5$. This gives us $x_2 > x_1$ so $1 \in S$

Suppose $n \in S$ and $x_{n+1} \ge x_n$. Note that,

$$x_{n+2} = \frac{1}{2}x_{n+1} + 1$$

$$x_{n+1} = \frac{1}{2}x_n + 1$$

Then $x_{n+2}=\frac{1}{2}x_{n+1}+1\geq\frac{1}{2}x_n+1=x_{n+1}$ or $x_{n+2}\geq x_{n+1}$ which means $n+1\in S$. So by induction we have S=N and $x_{n+1}\geq x_n, \forall n\in\mathbb{N}$

1.2 Real Numbers

Number systems,

1. Natural numbers \mathbb{N}

 $1, 2, 3, \dots$

Can't do subtraction

2. Integers \mathbb{Z}

$$\ldots, -3, -2, -1, 0, 1, 2, 3 \ldots$$

Can't do division

3. Rationals \mathbb{R}

 $\{\frac{p}{q} \text{ where } p, q \in \mathbb{Z} \text{ but } q \neq 0\}$

Now we have $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{R}$

But other numbers are still not captured,

Example. $\sqrt{2}$ is not defined in \mathbb{R} . However if we define $x_1 = 2$, $x_{n+1} = \frac{1}{2}(x_n + \frac{2}{x_n})$. We know $x_{n+1} \in \mathbb{R}, \forall n \in \mathbb{N}$ (we can then show that $x_n \to \sqrt{2}$).

Theorem 1.2. $\sqrt{2}$ is not rational

Proof. Argue by contradiction

4. Real numbers \mathbb{R}

We will define \mathbb{R} as \mathbb{Q} with the gaps filled in.

Definition (Axiom of completeness). Every non-empty subset of \mathbb{R} that is bounded above has a least upper bound called the supremum.

Let $S \subseteq \mathbb{R}$ and S is bounded above. If there is $u \in \mathbb{R}$ such that $s \leq u, \forall s \in S$ then S is bounded above by u (Similar for bounded below)

Definition (Least upper bound or supremum). We say $u \in \mathbb{R}$ is the least upper bound for S if,

- 1. If u is an upper bound for S
- 2. $u \leq v$ for any other upperbound v of S.

Similar for greatest lower bound or infimum

Example. $S = \{1, \frac{1}{2}, \frac{1}{3}, \dots\}$ where $S \subseteq R$ and $S \neq \phi$. Here S is bounded above by $1.1, 1.2, 2, 3, 4, \dots$ By AoC, sup S exists (in this case is 1). Similarly S is bounded below as well and can also be shown that $\inf S = 0$

Note. Here, $1 \in S$ but $0 \notin S$. So sup or inf may or may not be in the set.

Definition. $S \subseteq \mathbb{R}$ then we say a real numbers $m \in S$ is a maximum if $\forall s \in S$ we have

$$s \leq m$$

Similar for minimum

Note. Following are true,

1. $m \in S$

2. m might not exist, consider,

$$S = [0, 1)$$

This does not have a maximum element but $\sup S = 1$

It does have a minimum element which is also equal to the infinium, $\inf S = 0$

Note. Following are true of AoC,

- 1. AoC doesn't hold for \mathbb{Q}
- 2. AoC will be basic to take limits.

Example. Consider $\phi \neq A \subseteq R$, and is bounded above. Let $c \in \mathbb{R}$. Define

$$A + c = \{a + c, a \in A\}$$

We show that $\sup(A) + c = \sup(A + c)$

Proof. Denote $s = \sup A$, so we have $s \ge a, \forall a \in A$.

- 1. To show s+c is an upper bound. Above definition gives us, $s+c \ge a+c, \forall a \in A$. By definition we have s+c is an upper bound of A+c.
- 2. To show s+c is the smallest upper bound of A+c. Let b be an arbitrary upper bound of A+c. So $a+c \le b, \forall a \in A$. Therefore $a \le b-c, \forall a \in A$ where b-c is an upper bound of A. But s is the least upper bound which means that $s \le b-c$ or that $s+c \le b$. So we showed that b must be greater than or equal to s+c. Hence, s+c is the least upper bound. So $s+c=\sup(A+c)$

Lemma 1.3. Assume $s \in \mathbb{R}$ is an upperbound for a set $A \subseteq R$ and $A \neq \phi$. Then $s = \sup(A)$ if and only if $\forall \varepsilon, \exists a \in A, s.t \ a > s - \varepsilon$

Proof. $(1) \Rightarrow (2)$

Assume $s = \sup(A)$, given $\varepsilon > 0$ we have $s - \varepsilon < a$. So $s - \varepsilon$ cannot be an upper bound of A. This means that $\exists a \in A$ such that $a > s - \varepsilon$.

$$(2) \Rightarrow (1)$$

We have s such that $s - \varepsilon < a$ for some $a \in A$ and $\forall \varepsilon$. We need to show that s is the least upperbound. Let b be an arbitrary upperbound. Suppose b < s so we have $\varepsilon = s - b > 0$ and $b = s - \varepsilon$ however we have some $a \in A$ such that $a > s - \varepsilon = b$ so a > b which makes b not an upperbound and hence breaks our assumption. So $s \le b$

1.3 Consequences of Completeness

Theorem 1.4 (Nested Interval property). For any $n \in \mathbb{N}$, assume that we are given interval $I_n = [a_n, b_n] = \{x \in \mathbb{R} | a_n \le x \le b_n\}$ where $a_n \le b_n$ Assume that $I_n \supseteq I_{n+1}, \forall n \in \mathbb{N}$ such that,

$$\dots I_3 \subseteq I_2 \subseteq I_1$$

Then,

$$\bigcap_{n=1}^{\infty} I_n \neq \phi$$

Note. This means that for any $I_n, I_{n'}$ we have either $I_n \subseteq I_{n'}$ or $I_{n'} \subseteq I_n$

4

Proof. Take $A = \{a_n, n \in N\}$ we have $A \neq \phi$ and $A \subseteq \mathbb{R}$. A is bounded above as we have $a_1 \leq a_2 \ldots a_n \leq \ldots$ and $b_1 \geq b_2 \ldots b_n \geq \ldots$

So for every n, $a_n \leq b_1 \leq b_1$. So b_1 is an upper bound for A. By AoC we have $\sup(A) = x \in \mathbb{R}$ exist.

Now we show that $x \in I_n, \forall n$.

Note that $\forall n, b_n$ is an upper bound for A.

 $\forall m \in \mathbb{N}, a_m \in A \text{ and if,}$

 $m \ge n$ then $a_m \le b_m \le b_n$

m < n then $a_m \le a_n < b_n$

As $\sup A = x$ then we have $x \leq b_n$ and as x is an upperbound of A we have, $a_n \leq x$ for all $n \in \mathbb{N}$. So $x \in I_n$ hence proving the above statement.

1.4 Density of \mathbb{Q} in \mathbb{R}

Theorem 1.5 (Archimedean properties). The following are true,

- 1. Given any $x \in \mathbb{R}$, there exists $n \in \mathbb{N}$ such that n > x
- 2. Given any $y \in \mathbb{R}, y > 0, \exists n \in \mathbb{N} \text{ s..t } y > \frac{1}{n}$

Proof. (2) follows by (1) by setting $x = \frac{1}{y}$.

For (1) lets assume that there is no n for some $x \in \mathbb{R}$ that satisfies the condition. So $\exists x_0 \in \mathbb{R}$ such that $\forall n \in \mathbb{N}, n \leq x_0$. So N is bounded above by x_0 . So by AoC let $\alpha = \sup N$. Now, $\alpha - 1$ is not an upperbound for \mathbb{N} . So $\exists n_0 \in \mathbb{N}$ such that $n > \alpha - 1$. So $\alpha < n_0 + 1 \in \mathbb{N}$. This is a contradiction, so (1) holds.

Theorem 1.6. $\forall a, b \in R \ (a < b), \exists r \in \mathbb{Q} \ \text{such that} \ a < r < b.$

Proof. It suffices to find $m, n \in \mathbb{Z}$ such that,

$$a < \frac{m}{n} < b$$

Step 1: find n.

Note that b-a>0 and $b-a\in R$. By (2) we have n s.t. $b-a>\frac{1}{n}$. Now fix such an n.

Step 2. find m for the fixed n.

Without loss of generality take na > 0 and by (1), $m_0 \in \mathbb{N}$ s.t. $M_0 > na$. Then consider a finite set $\{0, 1, \ldots, M_0\}$. Now take k in this set and compare with na. Take m to be the smallest one such that m > na.

So we have $m > na \ge m-1$

Step 3: Check if m, n work,

We have,

$$m>na\geq m-1$$

$$\frac{m}{n}>a \text{ and } \frac{m}{n}\leq a+\frac{1}{n}$$

But we have $b-a>\frac{1}{n}$ so $b>a+\frac{1}{n}$ which gives us,

$$a < \frac{m}{n} \le a + \frac{1}{n} < b$$

Theorem 1.7. $\exists s \in R \text{ such that } s^2 = 2$

Proof. Let $A = \{x > 0, x \in \mathbb{R}, s.t.x^2 < 2\}$. Clearly $A \subseteq \mathbb{R}$ and is nonempty. We have A is bounded above as 2 is an upper bound.

By AoC sup $A \in \mathbb{R}$ exists and set $s = \sup A$. Claim $s^2 = 2$.

Now we will prove this by contradiction by showing it cannot be the case that $s^2 < 2$ or $s^2 > 2$.

Now assume that $s^2 < 2$ and let $0 < \delta = 2 - s^2$. We will show that there is some $\varepsilon > 0$ such that $(s + \varepsilon)^2 < 2$ (i.e. s cannot be a supremum)

Scratchwork

We want to find ε to satisfy the $(s+\varepsilon)^2 < 2$, for this we work backwards.

$$(s+\varepsilon)^2 < 2$$
$$s^2 + \varepsilon^2 + 2s\varepsilon < 2$$

We have $s < s^2 < 2$ (as s is definitely greater than 1). So 2s < 4 to get,

$$s^2 + \varepsilon^2 + 2s\varepsilon < s^2 + \varepsilon^2 + 4\varepsilon < 2$$

Now let's assume that $\varepsilon < 1$ as if ≥ 1 works then trivially $\varepsilon < 1$ works as well. So we have $\varepsilon^2 < \varepsilon$ so,

$$s^{2} + 5\varepsilon < 2$$

$$5\varepsilon < 2 - s^{2}$$

$$\varepsilon < \frac{\delta}{5}$$

Now we can take $\varepsilon = \min\{\frac{\delta}{10}, 1\}.$

If we take $\varepsilon = \min\{1, \frac{\delta}{10}\}$ then we have,

$$(s+\varepsilon)^2 = s^2 + \varepsilon^2 + 2s\varepsilon$$
$$(s+\varepsilon)^2 \le s^2 + \varepsilon^2 + 2s\varepsilon \le s^2 + \delta < 2$$

Exercise. Show $s^2 > 2$ is impossible. We similarly show that we can find an ε such that $(s-\varepsilon)^2 > 2$

1.5 Cardinality

Definition. We say that two sets A and B have the same cardinality if there is a bijective function $f:A\to B$. We write $A\sim B$

Remark. Types,

- 1. We say A is finite if $A \sim \{1, 2, ..., n\}$ for some $n \in N$
- 2. We say A is countable (countably infinite) then $A \sim N$

П

3. An infinite set that is not countable is called unountable.

Example. $E = \{2, 4, \dots\}$, we show $E \sim N$.

Take
$$f: N \to E$$
 defined as $f(n) = 2n$.

Example. $N \sim Z$

Take
$$f: N \to Z$$
 s.t. $f(n) = \frac{n-1}{2}$ if n is odd else $-\frac{n}{2}$.

Example. $(-1,1) \sim \mathbb{R}$

Take
$$f(x) = \frac{x}{x^2 - 1}$$

Theorem 1.8. Following are true,

- 1. \mathbb{Q} is countable
- 2. \mathbb{R} is uncountable

Proof. For \mathbb{Q} define $A_1 = \{0\}$ and

$$A_n = \{\pm \frac{p}{q} : p + q = n, p, q \in \mathbb{N} \text{ and } p, q \text{ coprime}\}$$

Note that A_n is finite and $\forall x \in \mathbb{Q}$ we can find a unique $n \in \mathbb{N}$ s.t. $x \in A_n$

Now map elements of A_0, A_1, \ldots iterative with $1, 2, 3, \ldots$. So by construction, any element from A_n will be listed. So there is a bijection between \mathbb{Q} and \mathbb{N} since $\mathbb{Q} = \bigcup_{n=1}^{\infty} A_n$ and A_n 's are disjoint, so $\mathbb{Q} \sim \mathbb{N}$

Now we show the reals are not countable. Assume that \mathbb{R} is countable and suppose there is a bijective function $f: \mathbb{N} \to \mathbb{R}$. Let $x_1 = f(1), x_2 = f(2), \ldots$

Then $\mathbb{R} = \{x_1, x_2, \ldots, \}$. Let I be a closed interval $I_1 \subseteq \mathbb{R}$ s.t. $x_1 \notin I_1$ and similarly find $I_2 \subseteq I_1$ such that $x_2 \notin I_2$. Similarly define for all n such that $I_{n+1} \subseteq I_n$ closed interval such that $x_n \notin I_{n+1}$.

Since $\forall n_0 \in N$ we have $x_{n_0} \notin I_{n_0}$ so $x_{n_0} \notin \bigcap_{n=1}^{\infty} I_n$. But $R = \{x_1, x_2, \ldots\}$ so we have $\bigcap_{n=1}^{\infty} I_n = \phi$. However, this is a contradiction with the nested interval property.

Theorem 1.9. Following are true,

- 1. $A \subseteq B$ if B is countable them A is either countable or finite.
- 2. If A_n is countable $\forall n \in \mathbb{N}$ then $\bigcup_{n=1}^{\infty} A_n$ is countable.