Упражнение 03

Вградени типове данни, дефиниране на променливи, условни изрази

Вградени типове данни

Променливите и константите са блокове памет, които имат някакво име и съдържат някакви данни. Данните се съхраняват, за да могат да се използват в последващи изчисления.

Тип данни	Размер	Граници ¹	
		signed	unsigned
char (символ)	1B	от -27 до 27 - 1	от 0 до 28 - 1
short (цяло число)	2B	от -2 ¹⁵ до 2 ¹⁵ - 1	от 0 до 2 ¹⁶ - 1
int (цяло число)	4B	от -2 ³¹ до 2 ³¹ - 1	от 0 до 2 ³² - 1
float (реално число)	4B	от -3.4 x 10 ³⁸	до 3.4 x 10 ³⁸
double (реално число)	8B	от -1.7 x 10 ³⁰⁸	до 1.7 x 10 ³⁰⁸
bool (булева стойност)	1B	true, f	Talse

Деклариране на променлива, инициализация и оператор за присвояване

Деклариране на променлива се състои от две части:

- тип на данните, които ще бъдат съхранявани в променливата;
- името, с което тези данни могат да бъдат достъпени.

```
int number;
```

На променливата може да се присвои (даде) стойност в момента на нейното деклариране. Тогава променливата е **инициализирана** с начална стойност.

Дефиниране на константи

Дефиницията на една константа се състои от:

- ключовата дума const;
- типа на данните, които ще се съхраняват в константата;
- името, с което може да бъде достъпена тази стойност;
- стойността, с която се свързва константата.

```
const double RATE = 1.95583;
```

За разлика от променливите, съдържанието на константите не може да бъде променено.

Оператор за присвояване

За да се даде стойност на променливата (или константата) при първоначалната инициализация или да се промени стойността на променливата в хода на програмата се използва операторът =. Той се нарича *оператор за присвояване*.

```
int number; // неинициализирана променлива
int number = 123; // инициализирана променлива

// използва се операторът за присвояване,
// за да се промени стойността на променливата
number = 23;
```

 $^{^{1}}$ Посочените интервали от допустими стойности на вградените типове данни могат да се различават, в зависимост от компилатора...

Операторът за присвояване е бинарен, инфиксен. Изпълнява се от дясно наляво.

```
a = b = c = 0;
```

Оценката на израза c = 0 е стойността 0, след това тази стойност се присвоява на b и накрая и на променливата a.

Каква е оцената на следния израз?

```
number = number - 1;

// може да се замени с оператора --, едноаргументен

number --;
```

Кратък преглед на операциите в С++

Категория	Операции	
Аритметични	+, -, *, /, % ++,	
Логически	&&, , !	
За сравнение	>, >=, <, <=, !=, ==	
Артиметични + присвояване	+=, -=, *=, /=,	

Внимание! Много често срещана грешка е използването на оператор за присвояване = вместо оператор за сравнение ==.

Операциите, включващи присвояване е дясноасоциативна.

Операциите ++, -- са унарни. Могат да бъдат както префиксни, така и постфиксни.

Целочислено делене (/) и делене с остатък (%)

Операцията / е бинарна, инфиксна и лявоасоциативна. Когато и **двата** аргумента на деленето са цели числа, делето съще е *целочислено*.

Ако поне един от операндите на деленето е реално число, операцията връща реален резултат.

```
float A = 4 / 5;
float B = 4. / 5;
float C = 4 / 5.;
float D = 4. / 5.;

cout << "A( " << A << " ) "; // A( 0 )
cout << "B( " << B << " ) "; // B( 0.8 )
cout << "C( " << C << " ) "; // C( 0.8 )
cout << "D( " << D << " ) "; // D( 0.8 )</pre>
```

Операцията % може да се прилага единствено върху целочислени аргументи.

```
cout << "4 % 5 = " << 4 % 5 << endl; // 4 % 5 = 0
```

Условни изрази, разклонени програми

Изразите, в които се използват аритметични операции са **числови**, защото имат стойност число. Изразите, в които се включват операции за сравнение, както и логически операции имат стойност *истина* или *лъжа*. Наричат се още *булеви изрази*.

Пример: Как можем да запишем условието, което проверява дали дадено цяло число е четно?

```
number % 2 == 0
```

Оценка на изразите А && В и А | | В

Когато се оценява изразът А & В, изразът В се оценява само, когато А е истина.

Когато се оценява изразът А | | В, изразът В се оценява само, когато А е лъжа.

Конструкция іf

Накратко да се разгледа конструкцията...

Синтаксисът на конструкцията е следният:

<условие> е булев израз, който се оценява. Ако стойността му е истина, се изпълнява <оператор $_1>$. В противен случай, ако съществува блок else, се изпълнява <оператор $_2>$. Конструкцията else не е задължителна.

Ако трябва да бъде изпълнен повече от един оператор в тялото на if-a, операциите трябва да бъдат оградени във фигурни скоби {}.

Задачи

Задача 1

Да се напише програма, която намира средно квадратичното на три реални числа.

```
double a, b, c;
double saverage = ( a * a + b * b + c * c ) / 3;
```

Задача 2

Да се напише програма, която намира разтоянието между две точки по техните координати.

```
double x1, y1, x2, y2;
double distance = sqrt((x1-x2)*(x1-x2) + (y1-y2)*(y1-y2));
```

Задача 3

Да се напише програма, която намира колко от въведените три цели числа са положителни.

```
int countPositive = 0;
if (a > 0)
{
    ++countPositive;
}
```

Задача 4

Да се напише програма, която намира най-голямото от три цели числа.

Временна променлива тах.

Задача 5

Да се запише булев израз, който да има стойност истина, ако посовеното условие е вярно и стойност лъжа в противен случай.

- а) поне едно от числата а, b и с е положително;
- b) цялото число се дели на 4 или на 7;
- с) уравнението $a. x^2 + b. x + c = 0, a \ne 0$ няма реални корени.
- d) х принадлежи на интервала [0; 1];

- е) х е извън интервала [0; 1];
- f) цифрата 7 влиза в записа на трицифрено число;
- g) поне две от цифрите на трицифрено число са равни помежду си;
- h) средната цифра на трицифреното число a е нечетна и е най-голяма или най-малка измежду цифрите на това число, напр. 154 и 212 удовлетворяват условието, докато 234 не;

Задача 6

Да се напише програма, която по зададени коорднати на точка (x; y), определя дали тя принадлежи поне на един от полукръговете, включително контура им.

Уравнение на окръжност:
$$(x - x_0)^2 + (y - y_0)^2 = r^2$$

Уравнение на права: ax + by = c

Центърът на лявата окръжност е точката (-0.5; 0), а радиусът е 0.5. Следователно уравнението на окръжността може да се запише по следния начин:

```
onLeftCircle = ((x + 0.5)*(x + 0.5) + y*y == 0.25); // без да се включва контура insideLeftCircle = ((x + 0.5)*(x + 0.5) + y*y < 0.25); onTheLine = (y == 0); // без контур, под линията belowTheLine = (y < 0); insideLeftSemiCircle = ((x + 0.5)*(x + 0.5) + y*y <= 0.25) && <math>(y <= 0);
```

Задача 7

Да се напише програма, която по зададени коорднати на точка (х; у), определя дали тя принадлежи във вътрешността и контура на фигурата.