ndvar Documentation

ndvar Development Team

Chapter 1

Optimum interpolation

$$\left(\overrightarrow{H} \stackrel{\longleftrightarrow}{B}\right)_{i,j} = \sum_{k=1}^{M} \stackrel{\longleftrightarrow}{H}_{i,k} \stackrel{\longleftrightarrow}{B}_{k,j}. \tag{1.1}$$

In the special case, where \overrightarrow{B} has diagonal form, this reduces to

$$\left(\overrightarrow{H} \stackrel{\longleftrightarrow}{B}\right)_{i,j} = \sum_{k=1}^{M} \stackrel{\longleftrightarrow}{H}_{i,k} \stackrel{\longleftrightarrow}{B}_{k,j} \delta_{k,j} = \sum_{k=1}^{M} \stackrel{\longleftrightarrow}{H}_{i,k} \stackrel{\longleftrightarrow}{B}_{j,j} \delta_{k,j} = \stackrel{\longleftrightarrow}{H}_{i,j} \stackrel{\longleftrightarrow}{B}_{j,j}.$$
(1.2)

For $\overrightarrow{H} \stackrel{\longleftrightarrow}{B} \stackrel{\longleftrightarrow}{H}^T$, one obtains

$$\left(\overrightarrow{H} \overset{\longleftrightarrow}{B} \overset{\longleftrightarrow}{H}^T \right)_{i,j} = \left[\left(\overset{\longleftrightarrow}{H} \overset{\longleftrightarrow}{B} \right) \overset{\longleftrightarrow}{H}^T \right]_{i,j} = \sum_{k=1}^M \left(\overset{\longleftrightarrow}{H} \overset{\longleftrightarrow}{B} \right)_{i,k} \overset{\longleftrightarrow}{H}_{k,j}^T = \sum_{k=1}^M \left(\overset{\longleftrightarrow}{H} \overset{\longleftrightarrow}{B} \right)_{i,k} \overset{\longleftrightarrow}{H}_{j,k} = \sum_{k=1}^M \left(\overset{\longleftrightarrow}{H} \overset{\longleftrightarrow}{B} \right)_{i,k} \overset{\longleftrightarrow}{H}_{i,l} \overset{\longleftrightarrow}{B}_{l,k} \overset{\longleftrightarrow}{H}_{i,l} \overset{\longleftrightarrow}{B}_{l,k} \overset{\longleftrightarrow}{H}_{i,l} \overset{\longleftrightarrow}{B}_{l,k} \overset{\longleftrightarrow}{H}_{j,k}.$$
 (1.3)

In the special case, where \overleftrightarrow{B} has diagonal form, this reduces to

$$\left(\overrightarrow{H} \stackrel{\longleftrightarrow}{B} \stackrel{\longleftrightarrow}{H}^{T}\right)_{i,j} = \sum_{k=1}^{M} \stackrel{\longleftrightarrow}{H}_{i,k} \stackrel{\longleftrightarrow}{B}_{k,k} \stackrel{\longleftrightarrow}{H}_{j,k} = \sum_{k=1}^{M} \stackrel{\longleftrightarrow}{B}_{k,k} \left(\stackrel{\longleftrightarrow}{H}_{i,k} \stackrel{\longleftrightarrow}{H}_{j,k}\right). \tag{1.4}$$

Chapter 2

3D-Var

2.1 Technicalities

The observations used come from a time window $\left[-\frac{T}{2},\frac{T}{2}\right]$ around the analysis time and are all taken to be valid at the analysis time. T=3 h is a typical value..

Chapter 3

4D-Var

3.1 Technicalities

The observations used come from a time window $\left[-\frac{T}{2},\frac{T}{2}\right]$ around the analysis time and are taken to be valid at individual time steps $n\Delta t$. T=6 h and $\Delta t=15$ min are typical values.