1830

Доцент К2, к.т.н.

Министерство науки и высшего образования Российской Федерации Мытищинский филиал

Федерального государственного автономного образовательного учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МФ МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	космический	
КАФЕДРА	<u>K-2</u>	
	отчет	
	ПО ЛАБОРАТОРЬ	ЮЙ РАБОТЕ
	№ 4	
	по дисци	ПЛИНЕ
«	Конструкторско-те	ХНОЛОГИЧЕСКОЕ
	ОБЕСПЕЧЕНИЕ ПРОИЗ	вводства ЭВМ»
Студент К3-66Б		<u>Чернов В.Д.</u>

Удалов М.Е.

Вариант №21

Цель работы: получить навыки работы в EasyEDA по созданию изображений печатных плат и подготовке фотошаблонов.

Задание: создать изображение экономичного импульсного стабилизатора напряжения (Рис. №1.) в программной среде EasyEDA.

Рис. №1. экономичный импульсный стабилизатор напряжения на микросхеме К140УД12.

Набор элементов:

- R1 R11 резисторы
- С1 С7 конденсаторы
- Микросхема DA1 К140УД12
- VD1 стабилитрон
- VD2 диод
- VT1 VT5 транзисторы
- L1 дроссель

Выполнение лабораторной работы

После преобразования схемы в печатную плату открывается окно с посадочными местами и линиями связи, перемещаю посадочные места коннекторов ближе к краю печатной и платы добавляю крепежные отверстия (Рис. №2, №3):

Рис. №2. Печатная плата

Рис. №2. Печатная плата с крепежными отверстиями

Запускаю автотрассировку на обоих слоях (Рис. №4, №5):

Рис. №4. Запуск автотрассировки на обоих слоях

Рис. №5. Результаты трассировки на обоих слоях

После трассировки, печатная плата выглядит следующим образом (Рис. №6):

Рис. №6 Печатная плата с трассировкой

2) Для представления печатной платы в 3D виде выполняю команды Вид → 3D (Рис. №7):

Puc. №7 Команды Bud o 3D

Ниже представлен 3D вид печатной платы (Рис. №8):

Рис. №8 3D вид печатной платы

3)Для получения файла для производства (Gerber) выполняю команды Производство → Файл для производства (Gerber) (Рис. №9):

Рис. №9 Команды Производство — Файл для производства (Gerber)

Ниже представлен файл для производства (Gerber), DRC ошибок не найдено (Рис. №10):

Рис. №10 Файл для производства (Gerber)

4) Для получения файла Материалы (BOM) выполняю команды Производство → Материалы (BOM) (Рис. №11):

Рис. №11 Команды Производство → Материалы (ВОМ)

Ниже представлен файл Материалы (ВОМ) (Рис. №12):

Рис. №12 Материалы (ВОМ)

Вывод: в работе показаны построение изображения печатной платы экономичного импульсного стабилизатора напряжения в EasyEDA, проверка изображения печатной платы на ошибки и получение фотошаблонов для производства печатной платы экономичного импульсного стабилизатора напряжения.

Список источников

1. Учебное пособие. Базовые навыки Easy EDA.

URL: https://docs.easyeda.com/en/Introduction/Basic-Skill/index.html

(дата обращения: 14.03.2025)