

Langley Research Center Hampton, Virginia 23665

NOZZLE PERFORMANCE CALIBRATION AND TRUBOMACHINERY OPERATIONAL ANALYSIS OF TURBO-POWERED SIMULATORS (TPS) FOR THE NASA-LANGLEY EET PROPULSION AIRFRAME INTEGRATION INVESTIGATION

By

R. Kevin Rowe

General Electric Company

Aircraft Engine Business Group

Prepared for National Aeronautics and Space Administration

NASA Langley Research Center NAS1-15345

	•							
•								
				•				
1. Report No.	2. Government Accessio	n No.	3. Recipient's Catalo	g No.				
NASA CR-165949								
4. Title and Subtitle			5. Report Date					
NOZZLE PERFORMANCE CALIBRATI			August 1982					
ANALYSIS OF TURBOPOWERED SIME EET PROPULSION/AIRFRAME INTE			6. Performing Organi	ization Code				
7. Author(s)			8. Performing Organi	zation Report No.				
R. Kevin Rowe			R82AEB436					
	 		10. Work Unit No.					
9. Performing Organization Name and Addre								
General Electric Company Aircraft Engine Business Group 11. Contract or Grant N								
Advanced Technology Operation	NAS1-15345							
Cincinnati, Ohio 45215 13. Type of Report and Period Covered								
2. Sponsoring Agency Name and Address								
National Aeronautics and Spa		Contractor Re						
Washington, D.C. 20546								
15. Supplementary Notes								
Langley Technical Monitor;	J.C. Patterson, Jr:							
Final Report								
16. Abstract								
Calibration tests were conducted at the Boeing Flight Simulator Chamber facility in January 1979 for use in the NASA-Langley Engergy Efficient Transport (EET) Propulsion/Airframe Inte-								
gration Investigation.	grey Engergy Efficien	t Italisport (EEI)	r topulsion/Alli	ame inte-				
_								
Two turbopowered simulators Two nacelle configurations w								
nozzle pressure ratio range	encountered in a one	atmosphere total p	ressure wind tur	nnel operating				
over a Mach number range fro	m 0.70 to 0.90 Mach.	,						
The configurations tested ar	e 6% scale model vers	ione of the CF6-50	Short Core and	Iong Core				
seperate flow nacelles, the	CF6-50 Long Duct Mixe	d Flow nacelle, an	d a 6.2855% scal	le model of				
the Energy Efficient Engine								
in the form of velocity and while the TPS is operating i		s used in determin	ing the simulato	or thrust				
while the 113 Is operating I	n the wind tunner.							
÷								
•								
		•						
	•							
•								
7. Key Words (Suggested by Author(s))	1	8. Distribution Statement	·· <u>·</u>					
Turbopowered Simulator, Cali	ŀ							
Nozzle Coefficients, Wind Tu		Subject Categor	y 07					
Turbomachinery Operation								
9. Security Classif. (of this report)	20. Security Classif. (of	this page)	21. No. of Pages	22. Price*				
Unclassified	Unclassified		124	i				

√ .

ķ

1

Page intentionally left blank

Page intentionally left blank

TABLE OF CONTENTS

Section		Page
1.0	SUMMARY	1
2.0	INTRODUCTION	2
3.0	MODEL DESCRIPTION	3
	3.1 Turbo-Powered Simulators 3.2 Nacelles 3.3 TPS Instrumentation	3 3 3
4.0	CALIBRATION FACILITY DESCRIPTION	13
5.0	ASME VALIDATION TEST	17
6.0	DISCUSSION OF CALIBRATION TEST	20
	6.1 General6.2 Test Procedure6.3 Flow Suppression6.4 Test Anomalies	20 20 21 24
7.0	CALIBRATION TEST RESULTS	28
8.0	WIND TUNNEL THRUST ACCOUNTING DATA REDUCTION EQUATIONS	43
	8.1 Hand Calculation Checkcase	45
9.0	TPS CHARACTERISTIC PARAMETER WIND TUNNEL CHECKOUT	47
	REFERENCES	91
	APPENDIX - NACELLE CONTOURS	93

LIST OF ILLUSTRATIONS

Figure		Page
1.	CF6-50 Short Core Nacelle Installed in Flight Calibration Chamber.	4
2.	CF6-50 Short and Long Core Nacelle Stations.	6
3.	CF6-50 LDMF and E^3 Nacelle Stations.	7
4.	${\tt E}^3$ Extended and ${\tt E}^3$ Separate Flow Nacelle Stations.	8
5.	Engine Station Designation.	9
6.	E ³ TPS Inlet Modification.	10
7.	Fan Exit Rake Instrumentation.	11
8.	Primary Exit Rake Instrumentation.	12
9.	TPS Unit with Bellmouth in Flight Calibration Chamber.	14
10.	Calibration Facility Tank Assembly.	15
11.	ASME Nozzle Installed in Flight Simulation Chamber.	18
12.	Calibration Facility Checkout with ASME Nozzle.	19
13.	Typical TPS Operating Envelope.	22
14.	Fan Map For Typical Turbo-Powered Simulator Model TD-441.	26
15.	Ice Buildup on the CF6-50 LDMF Primary Nozzle.	27
16.	Primary Nozzle Velocity Coefficients.	29
17.	CF6-50 Short Core Velocity and Discharge Coefficients.	31
18.	CF6-50 Long Core Velocity and Discharge Coefficients.	32
19.	CF6-50 LDMF Velocity and Discharge Coefficients.	33
20.	E ³ Velocity and Discharge Coefficients.	34
21.	E ³ Extended Nacelle Velocity and Discharge Coefficients.	35
22.	E ³ Separate Flow Velocity and Discharge Coefficients.	36

LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
23.	Short Core Turbomachinery Characteristics.	48
24.	Long Core Turbomachinery Characteristics.	54
25.	LDMF Turbomachinery Characteristics.	60
26.	E ³ Turbomachinery Characteristics.	68
27.	E ³ Extended Nacelle Turbomachinery Characteristics.	72
28.	E ³ Separate Flow Turbomachinery Characteristics.	78
29.	Short Core Fan Rake Pressure Profiles.	85
30.	Long Core Fan Rake Pressure Profiles.	86
31.	LDMF Fan Rake Pressure Profiles.	87
32.	E ³ Fan Rake Pressure Profiles.	88
33.	E ³ Extended Nacelle Fan Rake Pressure Profiles.	89
34.	E ³ Separate Flow Fan Rake Pressure Profiles.	90

LIST OF TABLES

Table		Page
I.	Important Nacelle Dimensions.	5
II.	Results of Primary Thrust Investigation (at $M = 0.82$).	25
III.	CF6-50 Short Core $C_{ extsf{D}}$ and $C_{ extsf{V}}$ Curve Fit Equations.	37
IV.	CF6-50 Long Core $C_{ extsf{D}}$ and $C_{ extsf{V}}$ Curve Fit Equations.	38
v.	CF6-50 LDMF $C_{ extsf{D}}$ and $C_{ extsf{V}}$ Curve Fit Equations.	39
VI.	${ t E}^3$ ${ t C}_{ t D}$ and ${ t C}_{ t V}$ Curve Fit Equations.	40
VII.	${ t E}^3$ Extended Nacelle C $_{ t D}$ and C $_{ t V}$ Curve Fit Equations.	41
VIII.	${ t E}^3$ Separate Flow C $_{ t D}$ and C $_{ t V}$ Curve Fit Equations.	42

NOMENCLATURE

Symbol .	<u>si</u>	nits (British)	Definition
A ₈	_m 2	(in. ²)	Primary Nozzle Exit Flow Area
A ₁₈	_m 2	(in. ²)	Fan Nozzle Exit Flow Area
c _{D8}	-	-	Primary Nozzle Discharge Coefficient
$c_{D_{18}}$	-	-	Fan Nozzle Discharge Coefficient
$^{\mathtt{C}_{\mathtt{f}_{\mathtt{g}}}}$	-	-	Thrust Coefficient
c_L	-		Airplane Lift Coefficient
c _{v9}	-	· -	Primary Nozzle Velocity Coefficient
$c_{v_{19}}$	-	-	Fan Nozzle Velocity Coefficient
F _{g9}	N	(1b)	Actual Primary Gross Thrust
Fg9i	N	(1b)	Ideal Primary Gross Thrust
Fg19	Ņ .	(1b)	Actual Fan Gross Thrust
$^{\mathtt{F}_{\mathtt{g}_{19}}}_{\mathtt{i}}$	N .	(1b)	Ideal Fan Gross Thrust
$^{\mathtt{F}_{\mathtt{g}_{\mathtt{T}}}}$	N	(1b)	Total Simulator Gross Thrust
$\mathbf{F}_{\mathbf{N}}$	N	(1b)	Simulator Net Thrust
$\mathbf{F}_{\mathbf{R}}$	N	(1b)	Simulator Ram Drag
g	m/\sec^2	(ft/sec ²)	Acceleration of Gravity, 9.8067 m/sec ²
M_{∞}	-	-	Tunnel Freestream Mach Number
≣8	$\sqrt{\frac{m-Kmole-K}{sec^2-J}}$	$\left(\sqrt{\frac{1bm-^{\circ}R}{1bf-sec^2}}\right)$	Core Flow Function
[™] 18	$\sqrt{\frac{m-Kmole-K}{sec^2-J}}$	$\left(\sqrt{\frac{1bm^{\circ} R}{1bf-sec^2}}\right)$	Fan Flow Function

	<u>Units</u>	3	
Symbol Symbol	<u>SI</u>	(British)	Definition
$N_{\mathbf{F}}$	rad/sec	(rpm)	Physical Fan Speed
$N_{\mathbf{F}}/\sqrt{\theta}_{\mathbf{F}}$	rad/sec	(rpm)	Corrected Fan Speed
P _∞	N/m^2	(1b/in. ²)	Tunnel Ambient Pressure
P _{S8}	N/m^2	$(1b/in.^2)$	Primary Exit Static Pressure
$P_{\mathbf{T_N}}$	N/m^2	$(1b/in.^2)$	ASME Nozzle Total Pressure
$P_{\mathbf{T_{\infty}}}$	N/m^2	(1b/in. ²)	Tunnel Total Pressure
P_{T_4}	N/m^2	(1b/in. ²)	Turbine Inlet Pressure
P _{T5}	N/m^2	(1b/in. ²)	Average Turbine Discharge Pressure
P _{T8}	N/m^2	(1b/in. ²)	Core Exit Total Pressure
P _{T15}	N/m^2	(1b/in. ²)	Average Fan Discharge Pressure
P_{T_4}/P_{T_5}	-	-	Turbine Pressure Ratio
P_{T_5}/P_{∞}	-	-	Core Nozzle Pressure Ratio
$P_{T_{15}}/P_{\infty}$	-	-	Fan Nozzle Pressure Ratio
$P_{T_{15}}/P_{T_{\infty}}$	-	-	Fan Pressure Ratio
R	J Kmole-K	$\left(\frac{\text{ft-1bf}}{\text{1bm-}^{\circ} R}\right)$	Gas constant for air, $8314.34 \frac{J}{\text{Kmole-K}}$
rpm/√0	Rad/sec	(rpm)	TPS rpm Corrected to Ambient Total Temperature
$\mathtt{T}_{\mathtt{T}_{oldsymbol{\infty}}}$	K	(° R)	Tunnel Total Temperature
T _{T4}	K	(° R)	Turbine Inlet Temperature
T _{T5}	K	(° R)	Average Turbine Discharge Temperature
T _{T15}	K	(° R)	Average Fan Discharge Temperature
T_{T_4}/T_{T_5}	-	-	Turbine Temperature Ratio
$T_{T_{15}}/T_{T_{\infty}}$	-	-	Fan Temperature Ratio

٢.

Symbol	<u>Units</u> SI	(British)	Definition
V _∞	m/sec	(ft/sec)	Tunnel Freestream Velocity
v ₈ ;	m/sec	(ft/sec)	Ideal Core Exit Velocity
v ₉ i	m/sec	(ft/sec)	Ideal Fully Expanded Core Flow Velocity
v ₁₉ ;	m/sec	(ft/sec)	Ideal Fully Expanded Fan Flow Velocity
W ₅	kg/sec	(lb/sec)	Simulator Drive Weight Flow
w ₈	kg/sec	(lb/sec)	Actual Core Weight Flow
W8i	kg/sec	(1b/sec)	Ideal Core Weight Flow
W ₁₈	kg/sec	(lb/sec)	Actual Fan Weight Flow
W ₁₈	kg/sec	(lb/sec)	Ideal Fan Weight Flow
W5√OT/8T	kg/sec	(lb/sec)	Corrected Turbine Weight Flow
$W_{18}\sqrt{\theta_{\rm F}}/\delta_{\rm F}$	kg/sec	(1b/sec)	Corrected Fan Weight Flow
α	rad	(deg)	Fuselage Angle of Attack
α _{EI}	rad	(deg)	Engine Incidence Angle w.r.t. Fuselage
$\gamma_{\mathbf{F}}$	-	-	Ratio of Specific Heats for Fan Air
ΥŢ			Ratio of Specific Heats for Turbine Air
δ _F		-	Pressure Correction Factor $(P_{T_{\infty}}/14.696)$
δ _T	-	-	Pressure Correction Factor (P _{T5} /14.696)
$\theta_{\mathbf{F}}$	-	-	Temperature Correction Factor $(T_{T_{\infty}}/518.7)$
θ _T	-	-	Temperature Correction Factor (T _{T5} /518.7)
$\Psi_{\mathbf{E}}$	-	-	Engine Cant Angle (Toe In)

1.0 SUMMARY

A turbo-powered simulator calibration test was conducted at the Boeing Company's Flight Simulation Chamber in conjunction with the NASA-Langley EET Propulsion/Airframe Integration Investigation wind tunnel test. The objectives of this test were to accurately determine the thrust and weight flow characteristics of the powered simulators with six nacelle configurations for use in the wind tunnel data reduction program and then to assure proper operation of the powered simulators in the wind tunnel.

This report presents the fan velocity and discharge coefficients derived from the calibration test data which were used in the wind tunnel test data reduction program. Also presented are the characteristic turbomachinery plots for each of the six nacelle configurations. These plots were used to check the turbo-powered simulator performance in the wind tunnel and make corrections to the final data as necessary.

2.0 INTRODUCTION

It has long been recognized that the proper installation of the propulsion system on an aircraft is a critical factor in achieving the desired level of aircraft performance. With the continuing advancement of both aircraft and propulsion technology, installation aerodynamics has become an even more important factor in achieving optimum aircraft performance. In the past, the standard methods of simulating the engine installation were by means of a flow-through nacelle or a blowing nacelle. The disadvantages of these methods are that the flow-through nacelle does not accurately simulate the geometry or exhaust effects of the real engine, and the blowing nacelle does not simulate the inlet effects on the installation. Recent developments have allowed the integration of the turbo-powered simulator (TPS) with conventional wind tunnel models to achieve a more realistic simulation of the installed engine effects on the airplane drag characteristics.

In order to measure and evaluate these installation effects, it is first necessary to know the thrust and airflow characteristics of the turbo-powered simulator. Since it is impractical to measure the thrust of the simulator while operating installed in the wind tunnel, the thrust is calculated from engine parameters that can be measured more easily. It is, therefore, necessary to calibrate the turbo-powered simulators in a test simulated static environment where the thrust can be measured directly and related to the quantities measured in the wind tunnel. This calibration was performed at the Boeing Flight Simulation Chamber facility. TPS calibration in this type of facility provides the means to statically calibrate the powered simulator over the complete range of inlet/exhaust pressure ratios that occur in an atmospheric total pressure wind tunnel.

This report documents the procedures, results, and data reduction methodology of the calibration of two TPS units with six nacelle configurations for use in the NASA-Langley EET Propulsion/Airframe Integration Wind Tunnel Test. The six nacelle configurations calibrated are:

- CF6-50 Long Core Nozzle
- CF6-50 Short Core Nozzle
- CF6-50 Long Duct Mixed Flow preliminary design
- Energy Efficient Engine (E³) preliminary design
- E³ Extended Nacelle
- E³ Separate Flow.

In addition, this report presents comparison of the calibration data and the subsequent wind tunnel test data to verify the proper and consistent operation of the TPS units during the wind tunnel test.

3.0 MODEL DESCRIPTION

3.1 TURBO-POWERED SIMULATORS

The two turbo-powered simulators used in this test are model TD-441's manufactured at Tech Development, Inc., Dayton, Ohio. The TD-441 is a two-stage fan, three-stage turbine-powered simulator that operates at a design speed of 45,000 rpm and fan pressure ratio of 1.60.

3.2 NACELLES

The CF6-50 long core, short core, and long duct mixed flow nacelles are 6% scale models. Figure 1 shows the CF6-50 short core nacelle installed in the flight calibration chamber. The three E³ nacelles are 6.2855% scale models. The nacelle contours for the six configurations tested are presented in the Appendix. Important parameters for the six nacelles are presented in Table I and Figures 2, 3, and 4. The engine station designation for all the nacelles is shown in Figure 5.

Because the TPS units receive their primary air from an external source (instead of through the fan as in the full scale engine), the E^3 model inlet (common to all three E^3 nacelles) was modified from the scaled production inlet contours in order to simulate the full scale mass flow ratio. This was done by reducing the inlet highlight area. In addition, the E^3 model inlet was lengthened slightly to prevent excessive internal diffuser angles (Figure 6). The CF6-50 TPS inlet, however, was designed by Boeing to simulate the full scale external nacelle pressure profiles rather than simulating the correct mass flow ratio. Therefore, care must be taken to assure that any spillage drag be accounted for in the wind tunnel data reduction.

3.3 TPS INSTRUMENTATION

The TPS units are instrumented with two rake assemblies. Both rakes are instrumented to measure total pressures and total temperatures. The rakes were located directly behind the fan and the turbine discharge. The fan rake is common to all six nacelles and consists of 54 total pressure probes which are manifolded in threes to give 18 total pressure readings. Figure 7 shows the location of the probes in the rake and the order of manifolding. The fan rake also contains six thermocouples to give six discreet total temperature readings. There are two primary rakes, one for the three CF6-50 nacelles and the $\rm E^3$ separate flow nacelle and an integral rake in the $\rm E^3$ core nozzles. Both primary rakes contain 16 total pressure probes which are not manifolded and four thermocouples for total temperature measurement. Figure 8 shows the primary rake assembly and instrumentation.

No nacelle static pressure/instrumentation was connected for the calibration.

Figure 1. CF6-50 Short Core Nacelle Installed in Flight Calibration Chamber.

Table I. Important Nacelle Dimensions.

	700		1 03 500		2 740		-	.3	P.3 E.	F 3 E	r3 6-	
Dimensions	cm ² , cm	m ² , cm in. ² , in.	cm ² , cm	m ² , cm in. ² , in.	cm ² , cm	cm in. 2, in.	cm ² , cm	in.2, in.	cm ² , cm	in. 2, in.	cm ² , cm in. ² , ir	in. 2, in.
Fan Exit Flow Area	51.774	8.025	51.774	8.025	53.684	8.321(2)	907.79	8.433	57.258	8.875	53.729	8.328
Core Exit Flow Area	20.477	3.174	19.981	3.097	20.058	3.109	20.735	3.214	20.735	3.214	18.019	2.793
Max. Nacelle Diameter	17.475	6.880	17.475	6.880	17.475	6.880	15.646	6.160	15.646	6.160	15.646	6.160
Inlet Highlight Diameter	12.695	4.998	12.695	4.998	12.695	4.998	12.202	4.804	12.202	4.804	12.202	4.804
Inlet Throat Diameter	11.372	4.477	11.372	4.477	11.372	4.477	10.932	4.304	10.932	4.304	10.932	4.304
Fan Forebody Length	15.062	5.930	15.062	5.930	15.062	5.930	12.949	5.098	12.949	5.098	12.949	5.098
Fan Afterbody Length	12.482	4.914	12.482	4.914	33.147	13.050	27.478	10.818	29.073	11.446	16.657	6.558
Total Fan Cowl Length(1)	27.544	10.844	27.544	10.844	48.209	18.980	40.427	15.916	42.022	16.544	29.606	11.656
Total Nacelle Length ⁽¹⁾	45.136	17.710	46.700	18.386	48.946	19.270	42.131	16.587	42.131	16.587	49.538	19.503

(1)Along engine top centerline (inlet is drooped 4*)

 $^{(2)}$ This is the design exit area for the LDMF nacelle. In the data reduction programs, it was changed to 55.226 cm² (8.560 in.²) to account for damage incurred by the model.

CF6-50 Short Core Nacelle

CF6-50 Long Core Nacelle

Figure 2. CF6-50 Short and Long Core Nacelle Stations.

CF6-50 LDMF Nacelle

Figure 3. CF6-50 LDMF and E^3 Nacelle Stations.

Figure 4. ${\tt E}^3$ Extended and ${\tt E}^3$ Separate Flow Nacelle Stations.

- 4 5 8 8 11 11 11 11 11
- Turbine Inlet
 Primary Rake Charging Station
 Primary Nozzle Exit
 Fully Expanded Primary Flow
 Fan Rake Charging Station
 Fan Nozzle Exit
 Fan Nozzle Exit

Engine Station Designation. Figure 5.

Figure 6. E^3 TPS Inlet Modification.

CF6-50 AND E³ FAN EXIT RAKE

	PRESSUR		ORIENTA'					
RADIUS	MANIFO 3 PRO 43°-95°	BES		FOLI ROBES 265°-	S	•		
1.724 1.869 2.003 2.128 2.246 2.358 2.166 2.568 2.667	20 P _{T15} 21 22 23 24 25 26 27 28	- 1 2 3 4 5 6 7 8	29 P. 30 31 32 33 34 35 36 37	r15 -	10 11 12 13 14 15 16 17	270° daft looking		
2,007	TEMPERATURE PROBES							
RADIUS	60°	112°	163	0	197°	2480	300°	
2,175	84	85	86		87	88	89	

Figure 7. Fan Exit Rake Instrumentation.

	_3 _	ssure Tube N			Orientation
	E Pre	ssure Tube N	umbers		top vertical 🧲
Radius	0°	90°	180°	270°	0
0.908 1.087 1.240 1.376	300 301 302 303	304 305 306 307	308 309 310 311	312 313 314 315	270°
	Теп	perature Pro	bes		
Radius	45°	135°	225°	315°	180°
1.130	320	321	322	323	aft looking forward

					Orientation
	CF6-50 I	Pressure Tube	Numbers		top vertical &
Radius	0°	90°	180°	270°	
0.875 1.070 1.233 1.377	40 41 42 43	44 45 46 47	48 49 50 51	52 53 54 55	270°
	Tem				
Radius	45°	135°	225°	315°	180°
1.150	56	57	58	59	aft looking forward

Figure 8. Primary Exit Rake Instrumentation.

4.0 CALIBRATION FACILITY DESCRIPTION

The Boeing Flight Simulation Chamber (Figure 9) was used to calibrate turbo-powered simulators for this test. The Flight Simulation Chamber consists of five major components:

- Force balance assembly
- Vacuum tank assembly
- High pressure multiple critical venturi (MCV)
- Low pressure multiple critical venturi (MCV)
- Air ejector suction system.

The force balance assembly is mounted at the upstream end of the vacuum tank and consists of a dual balance rig utilizing two six-component strain gage balances for thrust measurement. The high pressure air line used to provide the simulator drive air is brought across a series of three bellows flexures in order to eliminate momentum tares on the balance. Phenolic spacers are used to isolate the balance from the tank assembly in order to eliminate thermal transients being transmitted to the balance. These transients are produced in the model support frame and tank assembly by the airflow to the model, and the work of compression in the powered simulator fan.

The vacuum tank assembly provides the exhaust environment for the TPS thereby simulating the stream conditions for the various test Mach numbers (Figure 10). The interior of the tank is fitted with a series of screens to:

- Minimize recirculation effects on the exhaust nozzle
- Prevent the direct impact of the exhaust jet on the inlets to the low pressure multiple critical venturi
- Provide thermal mixing of the fan and primary flow.

A high pressure multiple critical venturi (MCV) is used to meter the powered simulator primary drive air. By changing combinations of the six individual venturi's in the MCV (i.e., setting an MCV code), a range of air-flows can be measured to within an accuracy of $\pm 0.1\%$.

At the exhaust end of the vacuum tank assembly is the low pressure multiple critical venturi used to measure the total powered simulator airflow (Figure 10). As with the high pressure MCV, the low pressure MCV utilizes eight individual critical venturis to provide a range of nozzle back pressures for complete performance mapping over the ranges of nozzle pressure ratios experienced in the wind tunnel.

Figure 9. TPS Unit with Bellmouth in Flight Calibration Chamber.

Figure 10. Calibration Facility Tank Assembly.

Two air ejectors are used to exhaust the flow from the downstream end of the vacuum tank to provide the desired tank pressure and assure critical flow in the MCV.

The Boeing Flight Simulation Chamber provides an excellent means for accurately calibrating TPS units over the required range of Mach number, rpm, and nozzle pressure ratio.

5.0 ASME VALIDATION TEST

The accuracy of the Boeing Flight Simulation Chamber is verified by using a 3.004-inch ASME long-radius flow nozzle (Figure 11). The use of this nozzle verifies the accuracy of both the force balance system and the exhaust airflow metering system. This test was scheduled to be run at the beginning and end of the calibration test. Unfortunately, the air ejector system compressor became inoperative at the end of the test; therefore, the second ASME nozzle run was not obtained. The data for the first ASME nozzle test are presented in the form of thrust and flow coefficients in Figure 12. It is compared against the General Electric - FluiDyne predicted values of velocity and discharge coefficient. The data above a choked nozzle condition shows good correlation with the predicted values verifying the accuracy of the facility.

Figure 11. ASME Nozzle Installed in Flight Simulation Chamber.

Figure 12. Calibration Facility Checkout with ASME Nozzle.

6.0 DISCUSSION OF CALIBRATION TEST

6.1 GENERAL

Six nacelle configurations were calibrated at the Boeing Flight Simulation Chamber for subsequent use in the Propulsion/Airframe Integration Wind Tunnel Test to be conducted at the NASA-Langley Research Center in the 8 Foot Transonic Pressure Tunnel. The configurations tested are:

- CF6-50 Long Core
- CF6-50 Short Core (primary reverser removed)
- CF6-50 Long Duct Mixed Flow (LDMF)
- Energy Efficient Engine (E³)
- E³ Extended Nacelle
- E³ Separate Flow.

6.2 TEST PROCEDURE

For reasons mentioned previously, it is necessary to calibrate the simulators over the range of equivalent Mach numbers, rpm, and nozzle pressure ratios that will be encountered in the wind tunnel test. For this particular wind tunnel test, it was intended that the simulators be run at the following conditions:

- 1. Windmilling no drive air to the turbine
- 2. Flow Through simulate a flow through nacelle by running at a fan pressure ratio of 1.0
- 3. Max. Cruise simulate the inlet/exhaust effects by running the TPS at the cruise nozzle pressure ratios of the full scale engine.

In order to run these conditions in the wind tunnel, it was necessary to calibrate the simulators over the following ranges:

- 1. Equivalent Mach number 0.5 to 0.9
- 2. Rpm 12,000 to 45,000
- 3. Nozzle Pressure Ratio 1.4 to 2.6

This is accomplished by setting an MCV-Code with the venturis and running the TPS through an rpm sweep. Data points were taken at intervals of between 500 and 1000 rpm. The data recorded at each point included all the rake pressures and temperatures, the balance forces and moments, ambient and tank conditions, TPS plenum conditions, primary and total airflows, and engine rpm. This is repeated until the complete TPS operating envelope is tested. This procedure is shown graphically in Figure 13 (obtained from Reference 1). This was done for the six nacelle configurations installed on their respective TPS unit.

6.3 FLOW SUPPRESSION

There was concern during the course of this test that flow suppression experienced in the wind tunnel, due to the external flow which is not present in the calibration test, would introduce an error into the TPS thrust calculation. Test data have shown that flow suppression is negligible if the nozzle is choked. Since the fan nozzle is choked when operating at maximum rpm (the area of primary interest) but the primary nozzle is unchoked, the following discussion centers on the primary nozzle and the possible error introduced in the thrust calculation when flow suppression is present.

The present method for finding the TPS thrust while operating in the wind tunnel is to calculate the momentum term based on ambient static pressure (P_{∞}) , and neglect the pressure-area term. The more rigorous way of calculating the thrust is to calculate the exit momentum based on the exit static pressure (P_S) and add to it the pressure-area term as depicted below:

Flow supprssion affects the value of thrust by changing the rate of mass flow through the nozzle and by changing the exit static pressure (P_S) . Since the mass flow rate is measured in the wind tunnel, any error in the thrust would be introduced by neglecting the pressure-area term as is done in the present method of thrust calculation. To assess the accuracy of using the present method of calculating thrust and find whether any error is introduced when flow suppression is present, two runs were chosen for analysis from each of the following:

- Calibration Test at Boeing-static
- Wind Tunnel Test isolated nacelle, wind on
- Wind Tunnel Test installed nacelle, wind on.

Figure 13. Typical TPS Operating Envelope.

The runs were chosen so that they were reasonably close to the same operating condition (M = 0.82, max. rpm). In order to negate the effects of slightly different temperatures and pressures, the comparisons were made in terms of coefficients. The present method for calculating thrust uses the coefficient C_{V_9} as defined in Section 8.0. In order to assess the effect of flow suppression, a thrust coefficient C_{f_g} which is based on P_S will be used. This thrust coefficient is defined as:

$$c_{fg} = \frac{F_{gact}}{F_{ggi}}$$

where:

$$F_{gact}$$
 = Actual Primary Thrust
= $W_8 C_{V_9} V_{8i} + (P_{S8} - P_{\infty}) A_8$

$$F_{g_{9i}}$$
 = Ideal Primary Thrust
= $W_8 V_{9i}$

giving:

$$c_{f_g} = \frac{W_8 C_{V_9} V_{8i} + (P_{S8} - P_{\infty}) A_8}{W_8 V_{9i}}$$

where: Wg is the measured primary weight flow.

The ideal velocities are defined as:

$$v_{8i} = \left(\frac{c_{2g\gamma R}}{\gamma^{-1}}\right)^{1/2} \left[1 - \left(c_{88/P_{T_8}}\right)^{\frac{\gamma-1}{\gamma}}\right]^{1/2}$$

and

$$v_{9i} = \left(\frac{r_{T_5}}{2g\gamma R}\right)^{1/2} \left[1 - \left(\frac{P_{\infty}}{P_{T_5}}\right)^{\frac{\gamma-1}{\gamma}}\right]^{1/2}$$

Since the nozzle exit static pressure (P_{S_8}) was not measured in the test, it must be calculated using the mass flow function:

$$\overline{m}_8 = \frac{\overline{W}_8 \sqrt{T_{5}}}{P_{T_8} A_8}$$
 and $P_{S_8} = f(M_8) = f(\overline{m}_8)$

where W₈ and T_{T5} are measured and P_{T8} can be found from the measured quantity P_{T5} and analytically applying duct losses.

The difference between the calculated values of C_{fg} and C_{Vg} will be the error in the present method of calculating thrust while operating in the wind tunnel. Table II presents the results of this study. As can be seen from the table, the errors in the thrust calculation are negligible (less than 0.1% in total thrust). Therefore, the present method for calculating thrust is accurate even in the case where a small amount of primary flow suppression is present.

6.4 TEST ANOMALIES

Two incidences encountered while calibrating the simulators are worth discussing for consideration in future tests. The first was compressor stall at high rpm (above approximately 40,000 rpm) on the separate flow nacelles. This was caused by a fan exit area which was undersized for the mass flow requirements of this TPS model. This is shown on the fan map for the Model TD-441 turbo-powered simulator in Figure 14. The fan exit flow area for the separate flow nacelles (CF6-50 Long and Short Core) is 51.977 cm^2 (8.05 in.²) which lies outside the area of demonstrated good calibration characteristics. The impact of this on the wind tunnel test was to limit the maximum nozzle pressure ratio that was attainable. At the highest rpm attainable without experiencing compressor stall, the maximum fan pressure ratio was $P_{T_{15}}/P_{T_{\infty}}$ = 1.49 This is lower than the nominal full scale engine fan pressure ratio but was determinied to be adequate for the purposes of this test. Although the CF6-50 LDMF and the three E^3 nacelles encountered no compressor stall (because of their larger fan exit areas), they were also run at this limited fan pressure ratio for consistency and comparison with the seperated flow nacelles.

The second incidence encountered in the course of calibrating these nacelles was ice buildup on the core nozzle and plug. Figure 15 shows the ice that formed on the CF6-50 LDMF nacelle during calibration testing. This is a common problem caused by the very cold core nozzle air freezing the moisture in the room air flowing through the fan. One proposed solution to this problem is to use a nonconducting material to fabricate the core nozzle. Unfortunately, this eliminates the option of having pressure instrumentation on the core nozzle, and there is also some concern about the ability of the material to hold its contours under stress. For this test, the problem was alleviated by bringing the TPS down to low rpm between short test runs to warm up and dry off the core nozzle. This was time consuming but worked effectively.

Results of Primary Thrust Investigation (at M=0.82), CF6-50 Long Core Nacelle. Table II.

			PS8,				ΔF.89	Correction to W.T. Test
Test	Run	PNT	(1b/in. ²)	$^{\mathrm{c}_{\mathrm{f}_{\mathrm{g}}}}$	c _{v9}	Cfg-Cv9	(1b)	(1b)
Calibration	143	12	64,472.8 (9.351)	0.98279	0.98173	0.00106	0.13	-
	143	11	64,279.8 (9.323)	0.98275	0.98137	0.00138	0.13	!
Isolated	540	19	72,332.9 (10.491)	0.98824	0.98256	0.00568	0.71 (0.16)	0.58 (0.13)
Wind Tunnel	523	22	72,312.2 (10.488)	0.98828	0.98275	0.00553	0.71 (0.16)	0.58 (0.13)
Installed	338	25	70,705.7 (10.255)	89986.0	0.98263	0.00405	0.53 (0.12)	07.0
Wind Tunnel	340	21	70,105.9 (10.168)	0.98608	0.98244	0.00364	0.44 (0.10)	0.31

Fan Map for Typical Turbo-Powered Simulator Model TD-441. Figure 14.

Figure 15. Ice Buildup on the CF6-50 LDMF Primary Nozzle.

7.0 CALIBRATION TEST RESULTS

The results of the calibration test are in the form of fan velocity and fan discharge coefficients. These coefficients are defined as follows:

Fan Velocity Coefficient $\equiv C_{V_{19}} = \frac{\text{Measured Fan Thrust}}{\text{Ideal Fan Thrust}}$

Fan Discharge Coefficient = $C_{D_{18}} = \frac{\text{Measured Fan Weight Flow}}{\text{Ideal Fan Weight Flow}}$

where the ideal fan thrust and ideal fan weight flow are defined in Section 8.0. The measured fan thrust is derived from estimating analytically the core thrust and subtracting it from the total thrust force measured on the calibration balance. The analytical core thrust is calculated using the velocity coefficients in Figure 16 as follows:

Core Thrust $\equiv F_{g_9} = C_{V_9} W_5 V_{g_i}$

where W_5 and V_{9i} are defined in Section 8.0 and $C_{V_{19}}$ is the core thrust coefficient. The C_{V_9} estimates are obtained by calculating the internal core nozzle friction drag, pressure and temperature rake and strut drag and estimating the external plug scrubbing drag. Since the total thrust is measured in the calibration chamber, any errors in estimating C_{V_9} are accounted for in the fan thrust coefficient $C_{V_{19}}$ thus giving an accurate value for the total thrust in the wind tunnel.

The measured fan weight flow is calculated by taking the total airflow measured by the venturis at the downstream end of the tank and subtracting the measured core drive airflow. Since the core drive airflow is measured in both the calibration test and the wind tunnel test, no core discharge coefficient is necessary.

The final fan velocity and discharge coefficients are presented versus fan nozzle pressure ratio in Figures 17 through 22 for the six nacelle configurations. Tables III through VIII present these curves in equation form.

Caution must be observed in trying to compare the levels of ${\rm C_{V}}_{19}$ and ${\rm C_{D}}_{18}$ for the six configurations since two TPS units were used, each having different characteristics. In addition, the exit of the CF6-50 long duct mixed flow nacelle was damaged prior to testing and the exit flow area could only be estimated. Since the same numerical value of area is used in both the calibration test and the wind tunnel test, this problem did not affect the thrust calculation. However, it does affect the level of the fan discharge coefficient.

The use of these coefficients in the wind tunnel data reduction is explained in Section 8.0.

Figure 16a. Primary Nozzle Velocity Coefficients.

Figure 16b. Primary Nozzle Velocity Coefficient.

CF6-50 Short Core Velocity and Discharge Coefficients. Figure 17.

Figure 18. CF6-50 Long Core Velocity and Discharge Coefficients.

Figure 19. CF6-50 LDMF Velocity and Discharge Coefficients.

Figure 20. ${\tt E}^3$ Velocity and Discharge Coefficients.

Figure 21. E^3 Extended Nacelle Velocity and Discharge Coefficients.

Figure 22. \mathbf{E}^3 Separate Flow Velocity and Discharge Coefficients.

Table III. CF6-50 Short Core C_{D} and C_{V} Curve Fit Equations.

 $c_{D_{18}} = A (P_{T_{15}}/P_{\omega})^3 + B(P_{T_{15}}/P_{\omega})^2 + C(P_{T_{15}}/P_{\omega}) + D$ $c_{V_{19}} = E(P_{T_{15}}/P_{\omega})^3 + F(P_{T_{15}}/P_{\omega})^2 + C(P_{T_{15}}/P_{\omega}) + H$

rpm/√0	A	В	С	D	3	F	Э	Ħ
16000	-0.69030	3.28625	-5.19133	3.66699	0.12402	-0.61818	1.04518	0.36228
20000	-0.09354	0.47724	-0.78384	1.35846	0.10125	-0.49514	0.82833	0.48659
24 000	-0.09019	0.46417	0.46417 -0.76217	1.34109	-0.01676	0.08208	-0.10951	0.99156
28000	-0.04061	0.19316	-0.26763	1.03787	-0.00533	0.01829	0.00896	0.91733
34000	-0.00310	-0.01305	0.10624	0.81181	0.08220	-0.51259	1.07388	0.20870
38000	0.02926	-0.21767	0.54032	0.50110	0.05933	-0.37801	0.80639	0.38555
41000	-0.00139	-0.01412	0.09597	0.81817	0.01104	-0.05464	0.08533	0.91704
43000	0.03456	-0.26851	0.69406	0.35008	-0.02164	0.17135	-0.43491	1.31244

Table IV. CF6-50 Long Core $\ensuremath{C_D}$ and $\ensuremath{C_V}$ Curve Fit Equations.

$$c_{D_{18}} = A (P_{T_{15}}/P_{\infty})^3 + B(P_{T_{15}}/P_{\infty})^2 + C(P_{T_{15}}/P_{\infty}) + D$$

$$c_{V_{19}} = E(P_{T_{15}}/P_{\infty})^3 + F(P_{T_{15}}/P_{\infty})^2 + G(P_{T_{15}}/P_{\infty}) + H$$

rpm/√0	А	В	C	Q	ы	स	Ð	н
16000	0.00531	0.00622	-0.02253	0.94589	0.01247	-0.05102	0.08026	0.90261
18000	0.02620	-0.10822	0.17522	0.83432	97000.0	-0.00521	0.02807	0.91714
20000	0.00586	-0.01711	0.03669	0.90439	0.00239	-0.01387	0.04405	0.90438
22000			!	1	0.00135	-0.01614	0.06390	0.88098
32000	0.00451	-0.04896	0.16140	0.79007	0.03532	-0.23719	0.53321	0.55133
34000	0.01433	-0.11290	0.29944	0.69003	0.08844	-0.55666	1.17442	0.11911
36000	0.02579	-0.18118	0.43648	0.59547	0.09482	-0.61820	1.34784	-0.03594
38000	0.02790	-0.20617	0.51732	0.51511	0.11897	-0.78903	1.74398	-0.34255
40000	0.03342	-0.25601	0.66112	0.38006	0.11065	-0.76452	1.75467	-0.39969
42000	0.04148	-0.32103	0.83601	0.22229	0.08031	-0.57020	1.33996	-0.10983

Table V. CF6-50 LDMF $\ensuremath{C_D}$ and $\ensuremath{C_V}$ Curve Fit Equations.

$$c_{D_{18}} = A (P_{T_{15}}/P_{\infty})^3 + B(P_{T_{15}}/P_{\infty})^2 + C(P_{T_{15}}/P_{\infty}) + D$$

$$c_{V_{19}} = E(P_{T_{15}}/P_{\infty})^3 + F(P_{T_{15}}/P_{\infty})^2 + G(P_{T_{15}}/P_{\infty}) + H$$

rpm/√ 0	A	В	2	Q	ম	Œ.	9	н
16000	0.10477	-0.48644	95981.0	0.53974	-0.10938	0.49224	-0.71331	1.28898
18000	-0.00666	0.01494	0.04669	0.89403	-		{	!
20000	-0.00636	0.00828	0.06779	0.87371	-0.05060	0.22067	-0.29415	1.07176
24000	-0.03573	0.14771	-0.15134	0.98424	0.02630	-0.14788	0.29768	0.75140
28000	-0.05082	0.20628	-0.21216	0.99026	0.03299	-0.19494	0.40516	0.66975
32000	0.06592	-0.42505	0.92607	0.30231	0.04226	-0.26487	0.57406	0.53627
36000	0.08092	-0.53372	1.18352	0.09701	0.02944	-0.20140	0.47698	0.57754
38000	0.09423	-0.62869	1.40442	-0.07522	0.03558	-0.24727	0.58724	0.49082
00007	0.08214	-0.56682	1.30609	-0.03408	0.01853	-0.14037	0.36503	0.64304
42000	0.05500	-0.39586	0.95011	0.20585	0.05711	-0.40418	0.96213	0.19346
44000	0.05423	-0.40607	1.00937	0.12779	0.05815	-0.42210	1.03027	0.11629

Table VI. E^3 c_D and c_V Curve Fit Equations.

$$c_{D_{18}} = A (P_{T_{15}}/P_{\omega})^3 + B(P_{T_{15}}/P_{\omega})^2 + C(P_{T_{15}}/P_{\omega}) + D$$

$$C_{V_{19}} = E(P_{T_{15}}/P_{\omega})^3 + F(P_{T_{15}}/P_{\omega})^2 + G(P_{T_{15}}/P_{\omega}) + H$$

rpm/√θ	A	В	ວ	O.	되	Ţ	9	H
00091	0.00012	-0.02049	0.12363	0.82283	-0.02635	0.11854	-0.15851	1.00477
18000	0.02332	-0.12995	0.30170	0.71883				
20000	0.01603	-0.09331	0.23688	0.75588	-	.	 	!
24000	0.01954	-0.11574	0.27806	0.72982	-0.00002	-0.01490	0.06835	0.87328
30000	-0.03993	0.21079	-0.31936	1.09042	-	-	-	
34000	-0.00198	0.00734	0.04002	0.87229	0.15868	-0.94565	1.89235	-0.32238
36000	0.01353	-0.09898	0.27851	0.69062			!	
38000	0.05062	-0.34780	0.83302	0.27282	0.02039	-0.12223	0.26314	0.74362
00007	0.13676	-0.97531	2.33206	-0.91174	-0.00002	0.00727	-0.00615	0.92085
41000	0.09927	-0.73279	1.81640	-0.55592	1	-		;
42000	0.11141	-0.82940	2.06797	-0.77454	0.00275	-0.01179	0.03656	0.88268
43000	0.12016	-0.90286	2.26674	-0.95241	-			
44000	0.15466	-1.16411	2.91767	-1.48946	0.00565	-0.03420	0.09060	0.83340

Table VII. E^3 Extended c_D and c_V Curve Fit Equations.

$$c_{D_{18}} = A(P_{T_{15}/P^{\infty}})^3 + B(P_{T_{15}/P^{\infty}})^2 + C(P_{T_{15}/P^{\infty}}) + D$$

+
$G(P_{T15}/P_{\infty})$
$F(P_{T_{15}/P^{\omega}})^2 + \epsilon$
$= E(P_{T_{15}/P^{\infty}})^3 + 1$
c_{V19}

Н	1.16551	0.88879	1.55188		0.73556	1	1.16735	0.61941	0.91156
9	0.47699	0.05683	-1.16364		0.24279	-	-0.22689	0.53325	0.01755
ম	0.32580	-0.01782	0.73013	1	-0.08161	-	0.06781	-0.28101	0.00485
ਬ	-0.07101	0.00309	-0.14909	-	0.008102	-	0.00300	0.05000	-0.00068
D	-0.02914	-0.18611		0.66957	0.30686	0.88014	2.34086	0.87287	0.91980
С	1.66666	1.98885	!	0.33875	0.98873	0.14146	-1.98597	0.04473	0.0
В	-0.94878	-1.17269	ŀ	-0.11984	-0.51428	-0.10153	0.92772	-0.00997	0.0
А	0.18126	0.23267		0.00828	0.08804	0.02133	-0.14433	0.0	0.0
r pm/√θ	18,000	20,000	24,000	25,000	30,000	34,000	36,000	38,000	40,000

Table VIII. $\, {
m E}^3$ Separate Flow C $_{
m D}$ and C $_{
m V}$ Curve Fit Equations.

$$C_{D18} = A(P_{T15}/P^{\omega})^3 + B(P_{T15}/P^{\omega})^2 + C(P_{T15}/P^{\omega}) + D$$

 $c_{V_{19}} = E(P_{T_{15}}/P_{\infty})^3 + F(P_{T_{15}}/P_{\infty})^2 + G(P_{T_{15}}/P_{\infty}) + H$

r pm/√6	А	В	ວ	Q	妇	Œ	IJ	#
16,000	-0.00863	-0.12072	0.38441	0.68282	96697.0	-2.03438	2.93571	-0.46053
20,000	-0.28670	1.19706	-1.65105	1.70281			1	:
24,000	0.48852	-2.53083	4.36212	-1.55380	-0.18024	0.89986	-1.47939	1.75400
28,000	-0.12129	0.66499	-1.20468	1.66782	-0.00119	0.00636	0.00862	0.92567
34,000	09990.0	-0.37388	0.71717	0.47758	0.13327	-0.78536	1.55683	-0.08285
38,000	0.04675	-0.34792	0.86997	0.22571	0.08379	-0.49602	0.97925	0.30878
42,000	-0.07213	0.47599	-1.03323	1.68840	0.03897	-0.25108	0.55853	0.51933
45,000	0.01505	-0.10982	0.26570	0.73601	-0.41786	3.06824	-7.47910	7.00033
			-					

8.0 WIND TUNNEL THRUST ACCOUNTING DATA REDUCTION EQUATIONS

The following section presents the equations and data logic that are used with the wind tunnel data reduction program to calculate the powered simulator thrust for the appropriate operating condition. The values for the velocity and discharge coefficients are provided from the calibration test and the remaining variables are measured in the wind tunnel. The definitions for the variables contained in this section are presented in the Nomenclature section.

The following measurements are obtained from the TPS instrumentation rakes and are averaged to give one reading:

$$P_{T_{15}} = \frac{\sum_{i=1}^{18} P_{T_{15i}}}{18}$$
 (Average of 18 $P_{T_{15}}$ readings)
$$T_{T_{15}} = \frac{\sum_{i=1}^{6} T_{T_{15i}}}{6}$$
 (Average of 6 $T_{T_{15}}$ readings)
$$P_{T_{5}} = \frac{\sum_{i=1}^{16} P_{T_{5i}}}{16}$$
 (Average of 16 $P_{T_{5}}$ readings)
$$T_{T_{5}} = \frac{\sum_{i=1}^{4} T_{T_{5i}}}{4}$$
 (Average of 4 $T_{T_{5}}$ readings)

The fan airflow is calculated using:

$$\begin{split} & \text{if, } P_{\text{T15}}/P^{\infty} \leq 1.893 \colon \\ & \tilde{m}_{18} = \left(\frac{P^{\infty}}{P_{\text{T15}}}\right)^{\frac{1}{\gamma_{F}}} \left\{ \frac{2g}{R} \left(\frac{\gamma_{F}}{\gamma_{F}-1}\right) \left[1 - \left(\frac{P^{\infty}}{P_{\text{T15}}}\right)^{\frac{\gamma_{F}-1}{\gamma_{F}}}\right] \right\}^{1/2} \\ & \text{if, } P_{\text{T15}}/P^{\infty} \geq 1.893 \colon \\ & \tilde{m}_{18} = \left\lceil \frac{2g}{R} \left(\frac{\gamma_{F}}{\gamma_{F}+1}\right) \right\rceil^{1/2} \left(\frac{2}{\gamma_{F}+1}\right)^{\frac{1}{\gamma_{F}-1}} \end{split}$$

Then,

$$w_{18i} = \bar{m}_{18} P_{T_{15}} A_{18} / \sqrt{T_{T15}}$$

$$w_{18} = c_{D_{18}} w_{18i}$$

where $c_{D_{\scriptsize 18}}$ is provided from the calibration test and γ_F is a function of $^T r_{\scriptsize 15}$

The primary discharge coefficient can be found from:

if, $P_{T_5}/P_{\infty} < 1.893$:

$$\bar{m}_8 = \left(\frac{P_{\infty}}{P_{T_5}}\right)^{\frac{1}{\gamma_T}} \left\{ \frac{2g}{R} \left(\frac{\gamma_T}{\gamma_{T}-1}\right) \left[1 - \left(\frac{P_{\infty}}{P_{T_5}}\right)^{\frac{\gamma_T-1}{\gamma_T}}\right] \right\}^{1/2}$$

if, $P_{T_5}/P_{\infty} \ge 1.893$:

$$\bar{m}_8 = \left[\frac{2g}{R} \quad \left(\frac{\gamma_T}{\gamma_T + 1}\right)\right]^{1/2} \left(\frac{2}{\gamma_T + 1}\right)^{\frac{1}{\gamma_T - 1}}$$

Then,

$$W_{8i} = \overline{m}_8 P_{T_5} A_8 / \sqrt{T_{T_5}}$$

$$c_{D_8} = w_5/w_{8i}$$

where W_5 is measured primary drive airflow and γ_T is a function of T_{T_5} .

The core gross thrust is then:

$$v_{9i} = \left(\frac{2g \gamma_{T} R T_{T5}}{\gamma_{T-1}}\right)^{1/2} \left\{1 - \left(\frac{P_{\infty}}{P_{T5}}\right)^{\frac{\gamma_{T}-1}{\gamma_{T}}}\right\}^{1/2}$$

$$F_{89i} = W_{5} V_{9i}$$

$$F_{g9} = C_{V9} F_{g9i}$$

And the fan gross thrust is:

$$v_{19i} = \left(\frac{2g \ \gamma_{F} \ R \ T_{T15}}{\gamma_{F} - 1}\right)^{1/2} \left\{1 - \left(\frac{P_{\infty}}{P_{T15}}\right)^{\frac{\gamma_{F}-1}{\gamma_{F}}}\right\}^{1/2}$$

$$F_{g_{1}g_{1}} = W_{18} V_{1}g_{1}$$

$$F_{g_{19}} = C_{V_{19}} F_{g_{19}i}$$

Giving the total simulator gross thrust of:

$$F_{g_T} = F_{g_9} + F_{g_{19}}$$

The ram drag on the simulator is:

$$F_R = W_{18} V_{\infty}$$

Finally, the net simulator thrust in the freestream direction is found from:

$$F_N = F_{g_T} \cos (\alpha + \alpha_{ei}) \cos (\psi_e) - F_R$$

where:

 α = Fuselage angle of attack

 α_{ei} = Engine incidence (angle of attack) w.r.t. the fuselage reference line

 ψ_e = Engine cant angle (+ for engine toed outboard)

8.1 HAND CALCULATION CHECKCASE

The following case was arbitrarily taken from the calibration data in order to check the validity of the thrust accounting data reduction equations. The measured TPS thrust will be compared to the value of thrust computed from the quantities that will be measured in the wind tunnel.

Given from Calibration Test

Run 160 Test Point 11 (Picked at random)

$$M = 0.828$$

$$rpm = 39.950$$

$$P_{T_{15}}/P_{\infty} \approx 2.4061$$

$$P_{T_5}/P_{\infty} = 1.7526$$

$$W_5 = 0.668569 \text{ kg/sec}$$

$$T_{T_{\infty}} = 291.95 \text{ K}$$

$$T_{T_{15}} = 334.04 \text{ K}$$
 $T_{T_5} = 163.69 \text{ K}$
 $F_{g_9} = 148.98 \text{ N}$
 $F_{g_{19}} = 664.39 \text{ N}$
 $F_{g_T} = 813.36 \text{ N}$

From the Calibration $C_{\mbox{\scriptsize V}}$ and $C_{\mbox{\scriptsize D}}$ Curves

Using the equations given in Section 8.0 for calculating the thrust and the above data:

This compares with the actual measured thrust of 813.36 N. The difference (0.5%) is due to some scatter in the calibration data.

This comparison shows excellent agreement between the measured and computed values of thrust verifying the data reduction methodology and the accuracy of the calibration coefficients.

9.0 TPS CHARACTERISTIC PARAMETER WIND TUNNEL CHECKOUT

This section presents plots of the characteristic parameters reflecting the turbomachinery performance, Figures 23 through 28. A comparison is made between the calibration test and the wind tunnel test to assure consistent operation between the two tests. Any discrepancy between the calibration and wind tunnel test in these characteristics would require that an adjustment be made to assure correct thrust calculation in the wind tunnel. These characteristic plots are:

- Fan pressure ratio $(P_{T_{15}}/P_{T_{\infty}})$ versus corrected rpm $(rpm/\sqrt{\theta})$
- ullet Fan temperature ratio $(T_{T_{15}}/T_{T_{\infty}})$ versus corrected rpm
- Fan temperature ratio $(T_{T_{15}}/T_{T_{\infty}})$ versus fan pressure ratio
- Fan corrected airflow $(W_{18}\sqrt{\theta F}/\delta_F)$ versus corrected rpm
- Turbine temperature ratio (T_{T_4}/T_{T_5}) versus turbine pressure ratio (P_{T_4}/P_{T_5})
- Turbine corrected airflow $(W_5\sqrt{\theta T}/\delta_T)$ versus turbine pressure ratio.

The calibration data are presented as a mean data line with dotted lines defining the total data scatter bands. Wind tunnel data are shown plotted as points for comparison with the calibration lines. The wind tunnel data points were taken from runs at a pressure ratio of $P_{T_{15}}/P_{T_{\infty}}=1.49-1.50$ (area of primary interest) and from the limited number of power sweeps run. The plotted data reflect the turbomachinery operation at the beginning, middle, and end of each configuration.

With a few exceptions, the data show good correlation between the calibration test data and the wind tunnel test data. The discrepancies noted are as follows:

- o CF6-50 long core fan rake total temperatures $(T_{T_{15}})$ appear too low as compared to the calibration data (Figures 24b and c). At the high pressure ratios, the error in $T_{T_{15}}$ is 0.8%. This discrepancy introduces an error in the ram drag calculation which affects the final drag value. The error in airplane drag caused by a 0.8% error in $T_{T_{15}}$ is approximately 1.5 drag counts. This error is significant enough to require adjusting the wind tunnel data to eliminate the discrepancy in $T_{T_{15}}$.
- The core airflow measurement (W₅) appears to be in error at the high pressure ratios for the three CF6-50 nacelle configurations, the E³ extended and the E³ separate flow nacelles.

Figure 23a. Short Core Turbomachinery Characteristics.

Figure 23b. Short Core Turbomachinery Characteristics.

Figure 23c. Short Core Turbomachinery Characteristics.

Figure 23d. Short Core Turbomachinery Characteristics.

Figure 23e. Short Core Turbomachinery Characteristics.

Figure 23f. Short Core Turbomachinery Characteristics.

Figure 24a. Long Core Turbomachinery Characteristics.

Figure 24b. Long Core Turbomachinery Characteristics.

Figure 24c. Long Core Turbomachinery Characteristics.

Figure 24d. Long Core Turbomachinery Characteristics.

Figure 24e. Long Core Turbomachinery Characteristics.

Figure 24f. Long Core Turbomachinery Characteristics.

Figure 25a. LDMF Turbomachinery Characteristics.

Figure 25b. LDMF Turbomachinery Characteristics.

Figure 25c. LDMF Turbomachinery Characteristics.

Figure 25d. LDMF Turbomachinery Characteristics.

Figure 25e. LDMF Turbomachinery Characteristics.

Figure 25f. LDMF Turbomachinery Characteristics.

Figure 26a. E³ Turbomachinery Characteristics.

Figure 26b. E^3 Turbomachinery Characteristics.

Figure 26c. E³ Turbomachinery Characteristics.

Figure 26d. E^3 Turbomachinery Characteristics.

Figure 26e. E³ Turbomachinery Characteristics.

Figure 26f. E³ Turbomachinery Characteristics.

 ${\bf E}^3$ Extended Nacelle Turbomachinery Characteristics. Figure 27a.

Figure 27b. 3 Extended Nacelle Turbomachinery Characteristics.

Figure 27c. Extended Nacelle Turbomachinery Characteristics.

 ${f E}^3$ Extended Nacelle Turbomachinery Characteristics. Figure 27d.

Figure 27e. E³ Extended Nacelle Turbomachinery Characteristics.

Figure 27f. E^3 Extended Nacelle Turbomachinery Characteristics.

Figure 28b, \mathbf{E}^3 Separate Flow Turbomachinery Characteristics.

Figure 28c. Separate Flow Turbomachinery Characteristics.

Fan Pressure Ratio, P.

Figure 28d. ${
m E}^3$ Separate Flow Turbomachinery Characteristics.

Figure 28e. E Separate Flow Thromachinery Characteristics.

Figure 28f. E³ Separate Flow Turbomachinery Characteristics.

The core weight flow measurement in the wind tunnel test is high relative to the calibration test (Figures 23f, 24f, 25f, 27f, and 28f).

The wind tunnel data differ as follows:

- CF6-50 Short Core core weight flow high by 3.0%
- CF6-50 Long Core core weight flow high by 1.5%
- CF65-50 LDMF core weight flow high by 1.0%
- E³ extended core weight flow high by 3.0%
- E³ separate flow weight flow high by 3.0%.

A possible cause for this error could be a bias in the wind tunnel facility flow measuring system.

The fan rake total pressure profiles from the calibration test were normalized and plotted for one condition (M = 0.82, Fan Pressure Ratio = 1.5) to be used in checking the fan rake operation during the wind tunnel test. In addition, these profiles were used as dummy readings in case of a failure of a rake tube during wind tunnel operation. Figures 29 through 34 show the calibration profiles with a sample wind tunnel run plotted for comparison. This check on the rake profiles was done periodically to assure accurate pressure probe readings.

Figure 29. Short Core Fan Rake Pressure Profiles.

Figure 30. Long Core Fan Rake Pressure Profiles.

Figure 31. LDMF Fan Rake Pressure Profiles.

Figure 32. E^3 Fan Rake Pressure Profiles.

Figure 33. E^3 Extended Nacelle Fan Rake Pressure Profiles.

Figure 34. E³ Separation Flow Fan Rake Pressure Profiles.

REFERENCES

1. Fromm, Eugene H., The Boeing Flight Simulation Chamber for Static Calibrations of Engine Simulators, Presentation at the 45th Meeting of the Supersonic Tunnel Association, April 13, 1976.

Page intentionally left blank

Page intentionally left blank

APPENDIX

NACELLE CONTOURS

R1 - Fan Cowl Inlet Contours
R2 - Fan Cowl External Contours
R3 - Outer Fan Duct Contours
R4 - Inner Fan Duct Contours
R5 - Outer Primary Duct Contours
R6 - Inner Primary Duct Contours

Nacelle Contour Definition.

FAN COWL INLET CONTOURS (R1)

CF6-50 LONG CORE, SHORT CORE AND LDMF

KEEL		SIDE		CROWN	
Station	R1	Station	R1	Station	R1
4.862	2.730	4.688	2.499	4.513	2.255
4.862	2.706	4.689	2.475	4.517	2.232
4.863	2.697	4.691	2.465	4.519	2.222
4.864	2.692	4.692	2.460	4.521	2.217
4.865	2.685	4.694	2.456	4.523	2.211
4.868	2.677	4.697	2.446	4.527	2.203
4.873	2.663	4.709	2.422	4.533	2.190
4.878	2.652	4.721	2.405	4.540	2.180
4.883	2.643	4.733	2.392	4.547	2.172
4.894	2.627	4.745	2.380	4.553	2.164
4.906	2.614	4.757	2.370	4.560	2.158
4.917	2.602	4.793	2.346	4.566	2.152
4.922	2.597	4.853	2.316	4.573	2.146
4.928	2.592	4.883	2.304	4.585	2.136
4.957	2.570	4.943	2.285	4.598	2.129
4.985	2.552	5.002	2.270	4.660	2.096
5.014	2.536	5.062	2.259	4.722	2.075
5.043	2.522	5.122	2.251	4.844	2.049
5.102	2.499	5.182	2.245	4.906	2.042
5.161	2.480	5.242	2.241	4.965	2.038
5.220	2.465	5.272	2.240	5.025	2.037
5.279	2.452	5.302	2.239	5.085	2.037
5.339	2.442	5.332	2.238	5.116	2.038
5.398	2.434	5.362	2.238	5.145	2.039
5.428	2.431	5.400	2.239	5.175	2.041
5.458	2.428	5.460	2.241	5.205	2.043
5.488	2.425	5.520	2.244	5.235	2.045
5.518	2.423	5.580	2.249	5.281	2.051
5.565	2.420	5.640	2.256	5.328	2.058
5.639	2.416	5.760	2.271	5.376	2.067
5.784	2.413	5.880	2.291	5.425	2.078
5.925	2.413	6.000	2.312	5.475	2.091
6.063	2.416 2.422	6.120 6.240	2.334	5.526	2.104
6.197			2.358	5•577 5•630	2.119
6.327	2.430 2.438	6.360	2.380 2.402	5.630	2.135 2.168
6.453	2.447	6.480	2.422	5.738 5.850	2.100
6.574	2.456	6.600 6.720	2.441	5.966	2.241
6.691	2.465	6.840	2.457	6.026	2.259
6.804	2.473	6.960	2.470	6.149	2.296
6.911	2.480	7.080	2.482	6.277	2.331
7.014	2.486	7.200	2.489	6.409	2.365
7.111	2.491	7.260 7.260	2.409	6.547	2.396
7.203	2.495	7.200 7.320	2.496	6.689	2.424
7.290	2.497	7.380	2.498	6.837	2.448
7.372 7.449	2.499	7.440	2.499	6.913	2.459
7.449 7.485	2.500	7.500	2.500	7.068	2.477
7.521	2.500	7.548	2.500	7.229	2.490
9.000	2.500	9.000	2.500	7.311	2.494
			-	• • •	/-

FAN COWL INLET CONTOURS (CONT.)

CROWN

Station	<u>R1</u>
7 • 395	2.498
7.479	2.500
7.548	2.500
9.000	2.500

FAN COWL EXTERNAL CONTOURS (R2)

CF6-50 LONG AND SHORT CORE

<u>Keel</u>		Side		Crown	
Station	R2	Station	R2	Station	R2
4.862	-2.730	4.688	2.499	4.513	2.255
4.863	-2.741	4.689	2.508	4.514	2.265
4.865	-2.748	4.693	2.524	4.517	2.281
4.866	-2.753	4.697	2.532	4.520	2.289
4.867	-2.758	4.701	2.538	4.524	2.295
4.868	-2.762	4.705	2.543	4.527	2.301
4.870	-2.766	4.708	2.548	4.531	2.306
4.871	-2.769	4.716	2.556	4.537	2.314
4.874	-2.775	4.723	2.563	4.544	2.322
4.876	-2.781	4.730	2.569	4.551	2.329
4.879	-2.786	4.737	2.575	4.557	2.335
4.881	-2.791	4.751	2.585	4.571	2.346
4.884	-2.795	4.758	2.590	4.576	2.351
4.887	-2.799	4.772	2.599	4.591	2.361
4.890	-2.805	4.807	2.619	4.624	2.383
4.894	-2.810	4.842	2.636	4.658	2.403
4.898	-2.815	4.876	2.651	4.691	2.421
4.912	-2.830	4.910	2.666	4.724	2.437
4.923	-2.842	4.945	2.679	4.758	2.453
4.943	-2.859	• 4.977	2.691	4.791	2.468
4.963	-2.874	5.114	2.736	4.928	2.522
4.983	-2.888	5.249	2.773	5.066	2.568
5.022	-2.912	5.385	2.807	5.203	2.611
5.056	-2.930	5.520	2.837	5.340	2.651
5.089	-2.947	5.655	2.865	5.478	2.687
5.122	-2.962	5.684	2.871	5.508	2.695
5.188	-2.991	5.721	2.879	5.545	2.705
5.253	-3.018	5.786	2.891	5.611	2.721
5.317	-3.043	5.850	2.904	5.677	2.738
5.382	-3.067	5.915	2.915	5.743	2.753
5.511	-3.111	6.044	2.938	5.875	2.784
5.639	-3.152	6.173	2.959	6.007	2.812
5.704	-3.171	6.302	2.979	6.139	2.839
6.031	-3.256	6.430	2.997	6.271	2.865
6.435	-3.342	6.559	3.015	6.403	2.889
6.704	-3.391	6.687	3.031	6.534	2.912
7.108	-3.456	6.944	3.061	6.798	2.955
7.378	-3.494	7.136	3.081	6.996	2.985
7.647	-3.528	7.264	3.093	7.128	3.003
7.917	-3.559	7.392	3. 105	7.260	3.020
8.052	-3.572	7.584	7.457	7.4 57	3.045
8.321	-3.598	7.775	3.135	7.655	3.067
8.591	-3.619	7•773 7•903	3.144	7.787	3.081
8.726	-3.629	8.222	3.163	8.117	3.111
8.995	-3.645	8.542	3.179	8.447	3.137
9.265	-3.658	8.860	3.179 3.190	8.776	3.158
	-3.663	9.179	3.198	9.106	3.174
9•399 9•669	-3.671	9.179 9.498		9.436	3.186
	-3.675	9.496 9:817	3.203 3.204	9.766	3.192
9.938				10.096	3.196
10.073	-3.676	10.135	3.203	10.090	7.170

FAN COWL EXTERNAL CONTOURS (CONT.)

CF6-50 LONG AND SHORT CORE

<u>Keel</u>		Side		Crown	
Station	R2	Station	R2	Station	R2
10.343	-3.673	10.454	3.200	10.426	3.196
10.612	-3.665	10.773	3.195	10.756	3.193
10.747	-3.660	11.091	3.188	11.086	3.188
11.016	-3.646	11.219	3.185	11.218	3.185
11.280	-3.626	11.221	3.185	11.400	3.179
11.400	-3.615	11.340	3.181	11.700	3.169
11.640	~3.58	11.400	3.179	12.000	3.157
11.880	-3.559	11.700	3.1 69	12.180	3.149
12.000	-3-543	12.000	3.1 57	12.300	3.144
12.240	-3.506	12.180	3.1 49	12.360	3.142
12.366	-3.484	12.300	3.144	12.600	3.131
12.600	-3.441	12.366	3.142	12.900	3.117
12.900	-3.380	12.600	3.131	13.200	3.101
13.200	-3.315	12.900	3.117	13.500	3.082
13.500	-3.248	13.200	3.101	13.800	3.057
13.800	-3.180	13.500	3.082	14.100	3.026
14.100	-3.111	13.800	3.057	14.400	2.988
14.400	-3.043	14.100	3.026	14.700	2.944
14.700	-2.974	14.400	2.988	15.000	2.897
15.000	-2.905	14.700	2.944	15.120	2.878
15.120	-2.878	15.000	2.897	15.240	2.859
15.240	-2.859	15.120	2.878	15.354	2.840
15.354	-2.840	15.240	2.859		
		15.354	2.840		

FAN COWL EXTERNAL CONTOURS (R2)

CF6-50 LDMF

	KEEL	CROWN
Station	R2	R2
	_	
	Same As CF6	-50 Long Core
		•
10.440	3.670	3.214 - Blended into existing
11.040	3.648	3.207 inlet
11.640	3. 588	3 . 186
12.240	3.4 86	3. 1 58
12.840	3.372	3.125
13.440	3. 270	3.125
14.040	3.174	3.053
14.640	3.084	3.018
15.240	3.012	. 2.983
15.840	2.945	2.940
16.440	2.886	2.889
17.040	2.832	2.834
17.640	2.779	2.778
18.240	2.722	2.721
18.840	2.659	2.660
19.440	2.593	2.595
20.040	2.526	2.527
20.640	2.454	2.453
21.240	2.370	2.370
21.840	2.274	2.274
22.440	2.166	2.166
23.040	2.048	2.048
23.490	1.950	1.950

For Further Definition, Reference G.E. Drawing No's 4013237-726,727,744 & 774

OUTER FAN DUCT CONTOURS (R3)

ng Core	CF6-50 Short Core	CF6-50	LDMF
<u>R3</u>	Station R3	Station	R3
2.712		12.600	2.780
2.750		13.200	2.780
2.780		13.800	2.780
2.805		13.800	2.780
2.823		15.000	2.780
2.840	o	15.600	2.780
2.856	0	16.200	2.773
2.860		16.800	2.746
2.884	on C	17.400	2.704
2.884	ž	18.000	2.651
2.885	<u> </u>	18.600	2.592
2.886		19.200	2.528
2.876	ž –	19.800	2.456
2.869	v.	20.400	2.374
2.862	•	21.000	2.291
2.855	•	21.600	2.210
2.847		22.200	2.127
2.840	•	22.800	2.044
2.831		23.490	1.946
2.825			
2.825			
	R3 2.712 2.750 2.780 2.805 2.823 2.840 2.856 2.860 2.884 2.885 2.886 2.876 2.869 2.869 2.862 2.855 2.847 2.840 2.831 2.825	R3 Station R3 2.712 2.750 2.780 2.805 2.823 2.840 2.856 2.860 2.884 2.884 2.885 2.886 2.876 2.869 2.862 2.855 2.847 2.840 2.831 2.825	R3 Station R3 Station 2.712 12.600 2.750 13.200 2.780 13.800 2.805 13.800 2.823 15.000 2.840 2.856 2.860 16.200 2.884 2.884 2.885 8 2.886 19.200 2.876 8 2.869 20.400 2.862 21.000 2.847 22.200 2.840 22.800 2.831 23.490

INNER FAN DUCT CONTOURS (R4)

CF6-50 Los	ng Core	CF6-50 Sho	ort Core	CF6-50 LD	<u>·F</u>
Station	<u>R4</u>	Station	<u>R4</u>	Station	<u>R4</u>
12.550	1.647			12.600	1.825
12.900	1.740			13.200	1.825
13.200	1.825			13.800	1.825
13.380	1.870			14.400	1.825
13.500	1.901	•		15.000	1.825
13.680	1.952			15.600	1.825
13.800	1.986			16.200	1.821
13.980	2.039			16.800	1.812
14.100	2.075			17.400	1.795
14.280	2.133	6)		18.000	1.767
14.400	2.171	Core		18.600	1.718
14.580	2.222	ပ		19.200	1.655
14.700	2.250	ıg		19.800	1.584
14.880	2.279	Long		20.400	1.506
15.000	2.289			21.000	1.421
15.060	2.291	Ass		21.600	1.331 .
15.120	2.290	Ѕате	•	22.200	1.240
15.180	2.289	šan		22.800	1.149
15.240	2.286	O ₂		23.400	1.059
15.300	2.282			23.780	1.006
15.360	2.277				
15.420	2.272		•		
15.480	2.267				
15.540	2.262				
15.600	2.257				
15.660	2.251				
15.720	2.245				
15.780	2.240				
15.840	2.234	15.840	2.234		
15.900	2.227	15.867	2.231		
16.200	2.196	15.900	2:227		
16.500	2.163	16.200	2.192		
16.800	2.127	16.500	2.150		
17.100	2.088	16.800	2.102		
17.400	2.046	17.100	2.048		
17.700	2.000	17.400	1.989		
18.000	1.952	17.700	1.925		
18.300	1.900	18.000	1.857		
18.600	1.845	18.300	1.786		
18.900	1.787	18.600	1.712		
19.200	1.725	18.900	1.635		
19.500	1.661	19.200	1.557		
19.800	1.596	19.500	1.477		
20.100	1.527	19.596	1.451		
20.400	1.458	19.716	1.419		
20.700	1.388	19.836	1.387		
21.000	1.319	19.896	1.371		
£1.000	1 • J ↑ 7	<u> </u>	1.711,		•

INNER FAN DUCT (R4) (CONT.)

CF6-50	Long	Core
--------	------	------

Station	<u>R4</u>
21.120	1.291
21.240	1.264
21.360	1.236
21.480	1.215
21.600	1.203
21.660	1.196
21.720	1.190
21.751	1.186
21.761	1.186
21.792	1.183

Station	<u>R4</u>
19.956	1.355
20.016	1.338
20.077	1.322
20.137	1.306
20.197	1.290
20.257	1.274
20.317	1.258
20.340	1.252

OUTER PRIMARY DUCT CONTOURS (R5)

CF6-50 Lor	ng Core	CF6-50 Sho	rt Core	CF6-50 LD	<u>·F</u>
Station	<u>R5</u>	Station	<u>R5</u>	Station	<u>R5</u>
18.190	1.500	18.190	1.500	18.000	1.478
18.500	1.512	18.500	1.512	18.600	1.487
18.780	1.486	18.780	1.486	19.200	1.466
18.900	1.465	18.900	1.465	19.800	1.422
19.200	1.413	19.200	1.412	20.400	1.369
19.500	1.405	19.500	1.374	21.000	1.311
19.800	1.397	19.560	1.364	21.600	1.248
20.100	1.388	19.680	1.345	22.200	1.180
20.400	1.367	19.800	1.325	22.800	1.107
20.700	1.335	19.920	1.302	23.400	1.039
21.000	1.285	20.040	1.277	23.780	1.002
21.120	1.257	20.100	1.263	- '	
21.240	1.230	20.160	1.252		
21.360	1.203	20.220	1.244		
21.480	1.185	20.280	1.238		
21.600	1.175	20.340	1.236 .		
21.660	1.171				
21.720	1.168				
21.791	1.167				

INNER PRIMARY DUCT AND PLUG CONTOURS (R6)

CF6-50 Lo	ng Core	CF6-50 Shor	rt Core	CF6-50 I	DMF
Station	<u>R6</u>	Station	<u>R6</u>	Station	<u>R6</u>
18.290	0.805	18.290	0.805	18.000	0.793
18.500	0.810	18.500	0.810	18.600	0.796
18.780	0.816	18.780	0.816	19.200	0.736
18.900	0.813	18.900	0.813	19.800	0.630
19.200	0.801	19.200	0.801	20.400	0.506
19.500	0.816	19.500	0.814	21.000	0.372
19.800	0.832	19.560	0.812	21.600	0.176
20.100	0.817	19.680	0.824	22.200	0.0
20.400	0.794	19.800	0.823		
20.700	0.765	19.920 .	0.807		
20.760	0.758	20.040	0.780		
20.880	0.744	20.100	0.764		
21.000	0.727				
21.120	0.710				
21.240	0.691		•		
21.360	0.671	v			
21.480	0.650	cone			
21.600	0.628				
21.720	0.605	. 150			
21.840	0.580				
21.960	0.552			•	
22.080	0.523				
22,200	0.490	22.280	0.180		
22.500	0.392				
22,800	0.253				
22.860	0.212				
22.896	0.183				
			•		

FAN COWL INLET CONTOURS (R1)

E3

KE	EL	CROWN	
Station	<u>R1</u>	Station	<u>R1</u>
5.3346	2.5223	4.9994	2.2700
5 3351	2.5016	5.0031	2.2496
5.3398	2.4807	5.0112	2.2296
5.3485	2.4598	5.0237	2.2102
5.3613	2.4390	5.0405	2.1915
5.3778	2.4186	5.0614	2.1737
5.3982	2.3986	5.0864	2.1567
5.4224	2.3792	5.1152	2.1410
5.4499	2.3604	5.1477	2.1262
5.4808	2.3426	5.1836	2.1129
5.5148	2.3257	5.2226	2.1009
5.5516	2.3099	5.2646	2.0902
5.5912	2.2953	5.3 092	2.0811
5.6329	2.2820	5 . 3561	2.0734
5.6768	2.2702	5.4050	2.0675
5.7225	2.2597	5•4557	2.0630
5.7696	2.2509	5.5076	2.0603
5.8177	2.2438	5 . 5605	2.0593
5.8667	2.2384	5.6141	2.0600
5.9161	2.2346	5 . 6679	2.0622
6.1072	2.2284	5.8750	2.0782
6.2987	2.2309	6.0818	2.1014
6.4909	2.2410	6.2884	2.1307
6.6822	2.2574	6.4949	2.1647
6.8739	2.2789	6.7014	2.2023
7.0655	2.3042	6. 9081	2.2421
7.2570	2.3320	7.1149	2.2830
7.4482	2.3613	7.3220	2.3238
7.6391	2.3907	7.5293	2.3631
7.8297	2.4189	7.7370	2.3998
8.0200	2.4448	7.9449	2.4325
8.2100	2.4671	8.1532	2.4602
8.3998	2.4845	8.3616	2.4815
8.5895	2.4959	8. 5703	2.4952
8.7790	2.5000	8. 7790	2.5000

FAN COWL EXTERNAL CONTOURS (R2)

$\underline{\mathbf{E}^3}$

	KEEL	<u>CF</u>	ROWN
Station	<u>R2</u>	Station	<u>R2</u>
5.3346	2.5223	4.9994	2.2700
5-3359	2.5313	4.9996	2.2792
5.3411	2.5458	5.0032	2.2943
5-3453	2.5532	5.0066	2.3022
5-3492	2.5589	5.0101	2.3084
5.3530	2.5636	5.0135	2.3136
5.3567	2.5679	5.0169	2.3183
5-3639	2.5751	5.0237	2.3266
5.3710	2.5814	5.0305	2.3338
5-3780	2.5870	5.0373	2.3404
5.3848	2.5921	5.0441	2.3464
5-3984	2.6012	5.0576	2.3574
5-4052	2.6053	5.0644	2.3624
5.4186	2.6130	5.0779	2.3719
5.4517	2.6296	5.1116	2.3931
5-4844	2.6439	5.1454	2.4119
5.5168	2.6567	5 . 1 791	2.4291
5.5491	2.6684	5.2128	2.4451
5.5812	2.6792	5.2465	2.4603
5.6120	2.6890	5.2789	2.4742
5.7391	2.7236	5.4138	2.5253
5.8650	2.7522	5 . 5 4 87	2.5697
5-9903	2.7771	5.6838	2.6098
6.1151	2.7996	5.8189	2.6468
6.2395	2,8201	5.9541	2.6810
6.2661	2.8243	5.9832	2.6881
6.3001	2.8297	6.0202	2.6972
6.3595	2.8389	6.0851	2.7126
6.4189	2.8478	6.1500	2.7276
6.4782	2.8564	6.2149	2.7420
6.5965	2.8726	6.3447	2.7696
6.7144	2.8877	6.4744	2.7955
6.8321	2.9018	6.6042	2.8197
6.9496	2.9151	6.7340	2.8426
7.0668	2.9276	6.8638	2.8640
7.1838	2.9393	6.9936	2.8841
7.4173	2.9619	7 • 2533	2.9207
7.5920 7.7083	2.9758	7.4480	2.9452
7•7083 7•8245	2.9850	7 - 5779	2.9601
7.9985	2.9938	7.7077	2.9739
8.1723	3. 0061 3 . 0175	7.9025 8.0073	2.9928
8.2881	3.0247	8.0973 8.2272	3.0095
0.2001	J. U24/	0.22/2	3.0194

FAN COWL EXTERNAL CONTOURS (CONT.)

	KEEL		CROWN
Station	<u>R2</u>	Station	<u>R2</u>
8.5771 8.8712 9.1777 9.4841 9.7904 10.0970 12.9510 13.5000 14.0000 14.5000 15.5000 16.0000 17.0000 17.5000 18.0000 18.4837 19.0000 19.5000 20.0000 20.5000 20.9150	3.0411 3.0554 3.0666 3.0743 3.0800 3.0800 3.0800 3.0744 3.0595 3.0353 3.0017 2.9587 2.9062 2.8443 2.7728 2.6916 2.6007 2.5034 2.3946 2.2892 2.1838 2.0785 1.9910	8.5519 Radius = 26.83122 Conical	Same As Keel

FAN DUCT CONTOURS (R3 & R4)

E 3

Outer Fan Duct (R3)		Inner Fan Duct (R4)
Station	<u>R3</u>	<u>R4</u>
13.828	2.720	1.750
14.457	2.720	1.751
15.085	2.720	1.754
15.714	2.715	1.752
16.342	2.694	1.739
16.971	2.647	1.709
17.599	2.569	1.661
18.228	2.466	1.593
18.856	2.351	1.502
19.485	2.236	. 1.384
20.114	2.124	1.261
20.742	2.009	1.138
20.915	1.979	1.102
21.100		1.069

PRIMARY DUCT CONTOURS (R5 & R6)

E^3

Outer Primary Duct (R5)		Inner Primary Duct (R6)	
Station	<u>R5</u>	<u>R6</u>	
18,228	1.440	0.8100	
18.856	1.407	0.7740	
19.485	1.325	0.6984	
20.114	1.220	0.5840	
20.742	1.116	0.4220	
20.915	1.087	0.3600	
21.100	1.057	0.2840	
21.586		0.000	

FAN COWL EXTERNAL CONTOURS

E³ EXTENDED NACELLE

Station	<u>R2</u>	
Same as E ³	forward of Station 11.	6640
11.6640	3.0800}	Cylinder
12.9510	3.0800	
13.0	3.0799	
13.2	3.0788	
13.4	3.0762	
13.6	3.0721	
13.8	3.0666	
14.0	3.0595	
14.2	3.0509	
14.4	3.0408	
14.6	3.0293	
14.8	3.0162	
15.0	3.0017	Radius = 26.83122 in.
15.2	2.9856	
15.4	2.9680	
15.6	2.9489	
15.8	2.9283	
16.0	2.9062	
16.2	2.8826	
16.4	2.8574	
16.6	2.8307	
16.8	2.8025	
17.0	2.7728	
17.2	2.7414	
17.5315	2.6861	•
18.0	2.6050	
18.5	2.5183	
19.0	2.4317	Conical
19.5	2.3451	y = 5.7236 - 0.17326 X
20.0	2.2584	
20.5	2.1718	
21.0	2.0852	
21.5436	1.9910	

FAN DUCT CONTOURS (R3 and R4)

E3 EXTENDED NACELLE

Station	<u>R3</u>		<u>R4</u>
10.745	0.7007	S	Same as E3
13.765	2.720	Cylinder	
15.085	2.720	•	
15.714	2.715		
16.342	2.694		
16.971	2.647		
17.599	2.569		
17.8	2.538	·	
18.0	2.505		
18.2	2.472		
18.4	2.438		
18.6	2.404		
18.8	2.371		
19.0	2.338		
19.2	2.303		
19.4	2.270		
19.6	2.237		
19.8	2.202		•
20.0	2.168		
20.2	2.134		
20.4	2.101		
20.6	2.067		
20.8	2.033		
21.0	2.002		
21.2	1.979		
21.4	1.967		
21.5436	1.966	•	

PRIMARY DUCT CONTOURS (R5 and R6)

FAN COWL EXTERNAL CONTOURS (R2)

E³ SEPARATE FLOW

<u>R2</u>	
forward of Station	11.664
3.0807	01
3.080	Cylinder
3.079	
3.075	
3.067	
3.057	
3.045	
3.033	
3.019	
3.004	
2.985	
2.959	
2.926	
2.886	
2.842	
2.796	
2.767	
	3.080 3.080 3.080 3.079 3.075 3.067 3.057 3.045 3.033 3.019 3.004 2.985 2.959 2.926 2.886 2.842 2.796

FAN DUCT OUTER CONTOUR (R3)

E³ SEPARATE FLOW

Station	<u>R3</u>	
13.765 14.600 14.800 15.000 15.200 15.400 15.600 15.667 15.900 16.045 16.190	2.720 2.720 2.722 2.728 2.742 2.756 2.766 2.766 2.769 2.781 2.786	Cylinder
16.365 16.500 16.655	2.778 2.761 2.741	Straight Line θ = -7.15886°

FAN DUCT INNER WALL (R4)

E3 SEPARATE FLOW

Station	<u>R4</u>	
13.6	1.6500	•
13.8	1.7040	
14.0	1.7311	Straight Line
15.0	1.8667	$\theta = 7.7197^{\circ}$
15.6	1.9480_	
15.7200	1.9800	
15.7837	2.0113	
15.8128	2.0279	
15.8418	2.0460	
15.8709	2.0656_	
15.8999	2.0866	
15.9581	2.1249	
16.0162	2.1544	
16.0743	2.1766	Radius = 0.600807
16.1324	2.1922	Rad1d5 0.000007
16.1905	2.2018	
16.2486	2.2056	
16.3067	2.2038	·
16.3576	2.1976	
16.4205	2.1871	
17.0	2.0908	
17.5	2.0076	
18.0	1.9245	
18.5	1.8414	Straight Line
19.0	1.7582	$\theta = -9.43996^{\circ}$
19.5	1.6751	
20.0	1.5920	
20.5	1.5088	
21.0	1.4257	
21.5	1.3426	
21.7440	1.3020_	

PRIMARY DUCT CONTOURS (R5 and R6)

E3 SEPARATE FLOW

Station	<u>R5</u>	<u>R6</u>	
19.403	1.498		
19.419	1.500		
19.503		0.802	
19.519		0.805	
19.6	1.510	0.811	,
19.7	1.512	0.818	
19.8	1.510	0.823	
19.9	1.508	0.829_	
20.0	1.503	0.830	
20.1	1.496	0.830	
20.2	1.488	0.830	
20.3	1.479	0.830	
20.4	1.469	0.830	Cylinder
20.5	1.458	0.830	
20.6	1.447	0.830	
20.7	1.435	0.830	
20.8	1.422	0.830	
20.9	1.409	0.833	
21.0	1.394	0.852	
21.1	1.378	0.879	
21.2	1.363	0.903	•
21.3	1.347	0.913	
21.4	1.330	0.911	
21.5	1.312	0.900	
21.6	1.293	0.880	
21.7	1.274	0.856	•
21.744	1.265		
21.8		0.826	
22.0		0.765	
22.5		0.612	Straight Line
23.0		0.459	$\theta = -17.00^{\circ}$
23.5		0.306	
24.0		0.153	
24.502		0.0	

NASA Contractor Report 165949 Distribution List NAS1-15345

	No. Copies
NASA Langley Research Center	
Hampton, VA 23665	
Attn: Report and Manuscript Control Office, M/S 180A James C. Patterson, Jr., M/S 280	1 40
NASA Ames Research Center	
Moffett Field, CA 94035	
Attn: Library, Mail Stop 202-3	
NASA Dryden Flight Research Center P. O. Box 273	
Edwards, CA 93523	
Attn: Library	1
NASA Goddard Space Flight Center	
Greenbelt, MD 20771	
Attn: Library	1
NASA Lyndon B. Johnson Space Center	
2101 Webster Seabrook Road	
Houston, TX 77058	•
Attn: JM6/Library	1
NASA Marshall Space Flight Center	
Marshall Space Flight Center, AL 35812	
Attn: Library, AS24L	1
Jet Propulsion Laboratory	
4800 Oak Grove Drive	
Pasadena, CA 91103	_
Attn: Library, Mail Code 111-113	1
NASA Lewis Research Center	•
21000 Brookpark Road	•
Cleveland, OH 44135	_
Attn: Library, Mail Stop 60-3	1
NASA John F. Kennedy Space Center	
Kennedy Space Center, FL 32899	
Attn: Library, NWSI-D	1
National Aeronautics and Space Administration	
Washington, DC 20546	
Attn: RJT-2	1
Scientific and Technical Information Facility	
6571 Elkridge Landing Road	
Linthicum Heights, MD 21090	25 plus original