I. C	ONFIGURATION BASIC	3
1.	Desactiver le Firewall	3
2.	Modifier les paramètres TCP/IP	3
c	a. Changer les paramètres IP	
Ł	b. Vérifier les paramètres IP	3
3.	Le nom de la machine (Hostname)	6
c	a. Modifier le nom de la machine	6
Ł	b. afficher le nom de la machine	6
	Revue de chapitre :	7
II. F	DISK TOOL	8
1.	Creation des partitions	8
2.	Formater / Monter les partitions	9
3.	Les commandes de verifications	10
III. I	RAID	11
1.	RAID 0	
2.	RAID 1 (mirroring, shadowing ou duplexing)	11
3.	RAID 5	
4.	Créer un RAID 1	
5.	Vérifier la création de RAID	13
6.	Supprimer le RAID1	14
IV.	LVM (LOGICAL VOLUME MANAGER)	15
1.	La création d'un volume Logique	
2.	Examen Des Informations Sur L'état LVM	
c	a. Volumes Physique (Pvs)	
Ł	b. Volumes Groupes (VG)	16
c	c. Volume Logiques (LVs)	16
3.	Snapshot d'un volume logique (LV)	16
4.	Etendre un Volume Groupe (VG)	17
5.	Etendre Un Volume Logique (LV)	17
6.	Réduire La Taille D'un Volume Groupe (VG)	17
7.	Reduire La Taille D'un Volume Logique (LV)	17
8.	Comment supprimer un Groupe de Volumes (LVM)	17
	RESUME DE TOUTE LES COMMANDES LVM	

V . (QUOTA	19
1.	Definition	19
2.	TP Quota Linux	19
VI.	LISTE DES CONTROLE D'ACCEES (ACL)	21
VII.	GESTION DES PACKAGES	22
1.	Les commande RPM	22
2.	Les commandes YUM	22
	Apres l'installation d'un package	22
VIII	. DHCP	24
	SERVER	24
	CLIENT	24

I. CONFIGURATION BASIC

1. Desactiver le Firewall

Il y a deux types de firewall sur Linux, Firewalld et SElinux.

EXEMPLE 1: desactiver le firewalld:

```
~]# systemctl stop firewalld

~]# systemctl disable firewalld

EXEMPLE 2: desactiver le SElinux:

~]# vi /etc/sysconfig/selinux
```

Changer **SELINUX**=disabled, cliquer **ESC** et :x ou :wq pour sauvegarder.

2. Modifier les paramètres TCP/IP

a. Changer les paramètres IP

Vous pouvez changer l'addresse IP par 5 méthodes

```
~]# nmtui
~]# nmcli connection mod eno1 ipv4.add 10.10.10.10/24 ipv4.gateway 10.10.10.1 ipv4.dns 8.8.8.8
ipv4.method manual
~]# ip addr add 10.10.10.10/24 dev eno1
~]# vi /etc/sysconfig/network-scripts/ifcfg-eno1
~]# ifconfig eno1 10.10.10.10 netmask 255.255.255.0
```

b. Vérifier les paramètres IP

Pour afficher l'addresse IP d'un machine linux, il y a plusieurs méthodes :

EXEMPLE 4: commande nmcli device show

```
~] # nmcli device show [wlan0]
GENERAL.DEVICE:
                                         wlan0
GENERAL.TYPE:
                                         wifi
GENERAL.HWADDR:
                                         00:1A:2B:3C:4D:5E
GENERAL.MTU:
                                         1500
GENERAL.STATE:
                                         100 (connected)
GENERAL.CONNECTION:
                                         MyWiFiNetwork
GENERAL.CON-PATH:
                                         /org/freedesktop/NetworkManager/ActiveConnection/1
                                         192.168.1.101/24
IP4.ADDRESS[1]:
                                         192.168.1.1
IP4.GATEWAY:
IP4.ROUTE[1]:
                                         dst = 0.0.0.0/0, nh = 192.168.1.1, mt = 600
                                         8.8.8.8
IP4.DNS[1]:
                                         8.8.4.4
IP4.DNS[2]:
```

Cet exemple montre les détails d'une interface wifi (wlan0) qui est connectée à un réseau appelé MyWiFiNetwork. Elle a une adresse IP (192.168.1.101) avec un masque de sous-réseau de 24. Le routeur (gateway) est à 192.168.1.1 et les serveurs DNS sont 8.8.8.8 et 8.8.4.4.

EXEMPLE 5: commande ifconfig wlan0

```
~]# ifconfig wlan0
wlan0: flags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
inet 192.168.1.101 netmask 255.255.255.0 broadcast 192.168.1.255
inet6 fe80::21a:2bff:fe3c:4d5e prefixlen 64 scopeid 0x20<link>
ether 00:1A:2B:3C:4D:5E txqueuelen 1000 (Ethernet)

RX packets 123456 bytes 78901234 (78.9 MB)

RX errors 0 dropped 0 overruns 0 frame 0

TX packets 234567 bytes 12345678 (12.3 MB)

TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Dans cet exemple, wlan0 est l'interface sans fil. Voici quelques informations clés :

- inet indique **l'adresse IP** attribuée à cette interface (192.168.1.101).
- Netmask spécifie le masque de sous-réseau (255.255.255.0).
- Broadcast est l'adresse de **diffusion** (192.168.1.255).

- Ether donne l'adresse MAC de l'interface (00:1A:2B:3C:4D:5E).
- Les statistiques de paquets RX (réception) et TX (transmission) sont également fournies.

EXEMPLE 6: contenu de fichier /etc/sysconfig/network-scripts/ifcfg-eno1

EXEMPLE 7: cammande ip addr

```
"]# ip addr"

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
    link/loopback 00:00:00:00:00 brd 00:00:00:00:00
    inet 127.0.0.1/8 scope host lo
        valid_lft forever preferred_lft forever

2: enol: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group default qlen
    100 link/ether 52:54:00:8c:62:44 brd ff:ff:ff:ff:
    inet 192.168.1.101/24 brd 192.168.1.1 scope global dynamic eth0
        valid_lft 2900sec preferred_lft 2900sec
    inet6 fe80::5054:ff:fe8c:6244/64 scope link
        valid_lft forever preferred_lft forever
```

En résumé:

Il y a 5 commandes pour afficher l'adresse IP d'une machine linux :

```
~]# nmcli device show [wlan0]

~]# ifconfig [wlan0]

~]# cat /etc/sysconfig/network-scripts/ifcfg-eno1

~]# ip addr

~]# hostname - I
```

- Il ne reste plus qu'une seule étape, rafraîchir le service réseau avec la commande suivant :
- \sim] # systemctl restart NetworkManager
 - Activer les carte réseaux avec les trois commandes :
- ~]# ifup eno1
 ~]# nmcli connection up eno1

~] # ifconfig eno1 up

3. Le nom de la machine (Hostname)

a. Modifier le nom de la machine

Vous pouvez changer le nom de la machine avec l'outil 'nmtui', 'nmcli' et 'hostnamectl'.

EXEMPLE 8: nmtui tool:

Lorsque vous tapez la commande nmtui, l'écran suivant apparaîtra :

Figure 2/ nmtui command

Figure 1/ modifier le nom de la machine linux

Voici les 4 commandes pour changer le Hostanme :

- ~]# nmtui
 ~]# nmcli general hostname 'linux1'
 ~]# hostnamectl set-hostname linux1
 ~]# vi /etc/hostname
 - b. afficher le nom de la machine
 - Il ya 3 commandes pour afficher le Hostname :
- ~]# cat /etc/hostname

 ~]# nmcli general hostname

 ~]# hostnamectl status

Pour lister toutes les connexions disponibles :

Pour afficher l'état des périphériques disponible :

~] # nmcli device stat	cus		
DEVICE	TYPE	STATE	CONNECTION
eth0	ethernet	connected	eth0
virbr0	bridge	disconnected	
eth1	ethernet	connected	eth1
eth2	ethernet	connected	eth2
10	loopback	unmanaged	
virbr0-nic	tun	unmanaged	

Revue de chapitre :

- ✓ Désactiver le firewall. (firewalld et SElinux)
- ✓ Changer les paramètres TCP/IP. (5 commandes)
- ✓ Vérifier les paramètres TCP/IP. (5 commandes)
- ✓ Changer le Hostname. (4 commandes)
- ✓ Afficher le Hostname. (4 commandes)

II. FDISK TOOL

Disque de 40 GB

Figure 3 disque 2 de 40 GO 'sdb'

Vous pouvez voir votre partition de disque avec les commandes suivantes :

```
~]# ls /dev/sd*

/dev/sda /dev/sda1 /dev/sda2 /dev/sda3
```

Si vous ajoutez un autre disque dur SATA ou SCSI, le disque sera étiqueté sdb:

```
~]# ls /dev/sd*

/dev/sda /dev/sda1 /dev/sda2 /dev/sda3 /dev/sdb
```

- sda: le 1^{er} disque
 - o **sda1**: le premier partition
 - o sda2: le deuxième partition
 - o sda3: le troisième partition
- **sdb**: le 2^{eme} disque <u>(40 GB)</u>
- **sd(x)**: etc...

Figure 4 Isblk command example

1. Creation des partitions

- 1er étape : Ajouter un disque /dev/sdb (40 GB):
- 2^{eme} étape : Créer une partition <u>principale</u> de 20 GB :

EXEMPLE 9: command fdisk /dev/sdb

```
~]# fdisk /dev/sdb
Command (m for help): n _____ (n = new partition)
Partition type:
    p primary (0 primary, 0 extended, 4 free)
    e extended
select (default p): p
partition number (1-4, default 1): 1
Last sector, +sectors or +size{K,M,G} (1026048-2097151, default 2097151): +20G
```

```
Created a new partition 1 of type 'linux' and size 20 Gib
```

Une fois la partition créée, utilisez 'n' à nouveau, puis choisissez le type 'p' pour principale et spécifiez la taille (20G).

3eme étape : Créer une partition <u>étendue</u> de 20 GB

```
Command (m for help): n

Partition type:

p primary (1 primary, 0 extended, 3 free)

e extended (container for logical partitions)

select (default p): e

partition number (2-4, default 2): 2

Last sector, +sectors or +size{K,M,G} (1026048-2097151, default 2097151): +20G
```

sdb:

Device Size Type

/dev/sdb1 20G Linux

/dev/sdb2 20G Extended

4^{eme} étape : créer une partition <u>logique</u> (sda5 et sda6)

À l'intérieur de la partition étendue, créez les lecteurs logiques de **15G** (sdb5) et **5G** (sdb6) à l'aide de **'n'** et en spécifiant les tailles appropriées, utilisez **'w'** pour enregistrer les modifications et quitter.

2. Formater / Monter les partitions

3. Les commandes de verifications

EXEMPLE 10: Commande fdisk-l

~]# fdisk -1 /dev/sdb						
Disk /dev/sd	b: 20 GB,	20000000000 bytes				
255 heads, 6	3 sectors	/track, 77541 cyli	nders			
Units = cyli	nders of	16065 * 512 = 8225	280 bytes			
Device	Boot	Start	End	Block	Id	System
/dev/sda1	*	1	13	104391	83	Linux
/dev/sda2		14	2624	20972857+	5	Linux
/dev/sda3		4583	5887	10482381	83	Linux

EXEMPLE 11: La commande df-h

~]# df -h						
Filesystem on	512-blocks	free	%used	Iused	%Iused	Mounted
/dev/hd4	20480	13780	32%	805	13%	/
/dev/hd2	385024	15772	95%	27715	28%	/usr
/dev/hd9var	40960	38988	4%	115	1%	/var
/dev/hd3	20480	18972	7%	81	1%	/tmp
/dev/hd1	4096	3724	9%	44	4%	/home

Les commandes ~] # mount , ~] # df -h , ~] # lsblk affiche les points de montage

III. RAID

1. RAID 0

- Les disques travaillent simultanément.
- Meilleure performance.
- Répartissant les données sur les disques

Figure 5 RAID 0

2. RAID 1 (mirroring, shadowing ou duplexing)

- Duplication des données sur les deux disques.
- La tolérance aux pannes.
- Pas d'amélioration des performances

Figure 6 RAID 1

3. RAID 5

- Une partie pour le calcule.
- Tolérance aux pannes assurées.
- Performance élevée.

4. Créer un RAID 1

- Ajoute 4 disques chacun de '10 GO'
- Créer les partitions principales
- Changer le type de partitions
 - Sur fdisk tapez 't' pour changer le type
 - o Tapez 'fd' → RAID auto detect
- Créer un ensemble RAID 1 avec deux disques (2 commandes):
- \sim]# mdadm -Cv /dev/md0 -1 1 -n 2 /dev/sdb1 /dev/sdc1
- ~] # mdadm --create /dev/md0 --verbose --level 1 --raid-devices 2 /dev/sdb1 /dev/sdc1

-Cv : signifie "créer" et "vérifier". Cette option permet de créer l'ensemble RAID 1 et de vérifier que les disques sont compatibles.

/dev/md0 : est le nom de l'ensemble RAID.

- -I 1 : signifie "niveau 1". Cette option définit le niveau RAID de l'ensemble.
- -n 2 : signifie "nombre de disques". Cette option indique que l'ensemble RAID est composé de deux disques.

/dev/sdb1: est le premier disque de l'ensemble RAID.

/dev/sdc1 : est le deuxième disque de l'ensemble RAID.

Formater la partition md0 avec un système de fichier

```
~] # mkfs.ext3 /dev/md0
```

Monter md0 sur un dossier :

```
~] # mount /dev/md0 /mnt/raid1
```

Modifier le fichier /etc/fstab

```
~]# vi /etc/fstab
/dev/md0 /mnt/raid1 ext4 defaults 0 0
```

Déclarer la partition pour un montage automatique

Chaque ligne du fichier décrit une partition qui doit être monté au démarrage du système.

/mnt/raid1 est le point de montage de volume /dev/md0.

5. Vérifier la création de RAID

EXEMPLE 12: Mdadm --detail

```
"]# mdadm --detail /dev/md0
/dev/md0: Version : 1.2

Creation Time : Thu Sep 29 17:07:10 2022

Raid Level : raidl

Array Size : 209582080 (4.99 GiB 5.36 GB)

Used Dev Size : 104791040 (4.99 GiB 5.36 GB)

Raid Devices : 2

Total Devices : 2

Persistence : Superblock is persistent

Number Major Minor RaidDevice State

1 8 16 1 active sync set-B /dev/sdb1
2 8 32 2 active sync set-A /dev/sdc1
```

- ~] # **df -hT**
- ~] # ls /dev/ | grep md

EXEMPLE 13: Cat /proc/mdstat

```
~]# cat /proc/mdstat

md0 : active raid1 sdc1[1] sdb1[0]

103872512 blocks super 1.2 [2/2] [UU]
```

6. Supprimer le RAID1

```
~]# umount /dev/md0

~]# mdadm --stop /dev/md0

~]# mdadm --remove /dev/md0
```

IV. LVM (LOGICAL VOLUME MANAGER)

RAID:

 Permet de combiner plusieurs disques durs pour améliorer la performance, la redondance.

LVM:

 Combine plusieurs disques physiques pour augmenter la capacité de stockage.

Les termes de LVM:

- Volumes physiques (PVs): Des disques physiques divisés en petits blocs de données.
- Groupes de volumes (VGs): Un ou plusieurs PVs regroupés pour former un pool de stockage.
- Volumes logiques (LVs): Des segments de VGs utilisés par les applications et le système d'exploitation.

1. La création d'un volume Logique

1er étape : la création des volumes physiques (PVs)

```
~]# pvcreate /dev/sdb
~]# pvcreate /dev/sdc
~]# pvcreate /dev/sdd
~]# pvcreate /dev/sde
```

- 2^{eme} étape : la création de volume Groupe (VG)
- ~]# vgcreate vg1 /dev/sdb /dev/sdc /dev/sdd /dev/sde
- 3eme étape : la création des volumes Logiques (LVs)

```
~]# lvcreate -L 10G --name 1v1 vg1
~]# lvcreate -L 10G --name 1v2 vg1
```

4eme étape : Formater/Monter les LVs

```
~]# mkfs.ext3 /dev/vg1/lv1

~]# mkfs.ext3 /dev/vg1/lv2

~]# mount /dev/vg1/lv1 /mnt/lv1
```

2. Examen Des Informations Sur L'état LVM

a. Volumes Physique (Pvs)

```
~ ] # pvscan
```

- ~] # pvs
- ~]# pvdisplay [/dev/sdb]
 - b. Volumes Groupes (VG)
- ~] # vgs
- ~]# vgdisplay [/dev/vg1]
 - c. Volume Logiques (LVs)
- ◆ ~]# lvs
- ~]# lvdisplay [/dev/vg1/lv1]

3. Snapshot d'un volume logique (LV)

/dev/vg1/lv1 ____Snapshot 01 ___Now

Un **instantané**¹ d'un volume logique est une image du **volume logique** à un moment donné. Il est créé en prenant une copie des données du **volume logique** et en les stockant dans un nouveau **volume logique**.

Les instantanés peuvent être utilisés pour Sauvegarder, restaurer, tester

Créer un snapshot avec la commande suivante :

```
\sim] # lvcreate -s -L 5G -n snap01 /dev/vg1/lv1
```

Vérifier la création de snapshot avec les commandes :

```
1. ~] # ls /dev/vg1/ | grep snap01
```

- 2. ~] # df -hT | grep snap01
- 3. ~] # lvdisplay /dev/vg1/snap01

4. Etendre un Volume Groupe (VG)

- ➤ Ajouter un disque (sde1 : 10 Gib)
 - ▼ ~] # pvcreate /dev/sde1
- Augmenter la taille de 'vg1' avec la commande suivante :
 - vgextend vg1 /dev/sde1

5. Etendre Un Volume Logique (LV)

- ▼ Si l'espace de **Volume Groupe** est vide, vous pouvez augmenter la taille du **LV**
- ▼ Utilise la commande suivante pour augmenter la taille du LV
 - \[~] # lvextend -L +3G /dev/vg1/lv1
- ▼ Mettre à jour le système de fichiers pour les systèmes de fichiers XFS
 - x ~] # xfs_growfs /dev/vg1/lv1
- ▼ Mettre à jour le système de fichiers pour les autres systèmes de fichiers
 - * ~] # resize2fs /dev/vg1/lv1
- Ou utilise la commande lvextend avec l'option -r (refresh)
 - | * | * | lvextend -r -L +3G /dev/vg1/lv1

6. Réduire La Taille D'un Volume Groupe (VG)

- ▼ Utilise les commandes pour réduire la taille d'un **VG**
 - ▼ ~] # pvmove /dev/sde1
 - ▼ ~]# vgreduce vg1 /dev/sde1

7. Reduire La Taille D'un Volume Logique (LV)

- Utilise les commandes pour réduire la taille d'un **LV**
 - ▼ ~]# umount /dev/vg1/lv1
 - * ~]# lvreduce -L 1G /dev/vg1/lv1

8. Comment supprimer un Groupe de Volumes (LVM)

Pour supprimer un groupe de volumes **LVM**, vous devez d'abord supprimer tous les **volumes logiques** qui lui sont associés. Vous pouvez utiliser la commande *lvremove* pour supprimer un **volume logique**.

Une fois que tous les **volumes logiques** ont été supprimés, vous pouvez supprimer le groupe de volumes **LVM** à l'aide de la commande *vgremove*.

Voici les étapes :

- ~] # umount /dev/vg1/lv[1-2]
- ▼ ~]# lvremove /dev/vg1/lv[1-2]

- ▼ ~] # vgremove /dev/vg1
- v ~] # pvremove /dev/sdb /dev/sdc /dev/sdd /dev/sde

RESUME DE TOUTE LES COMMANDES LVM

Commandes pour gérer les volumes physiques

- **pvcreate** : crée un volume physique
- **pvremove**: supprime un volume physique
- **pvdisplay**: affiche les informations sur un volume physique
- **pvscan**: scanne les disques pour trouver des volumes physiques

Commandes pour gérer les groupes de volumes

- **vgcreate** : crée un groupe de volumes
- **vgremove** : supprime un groupe de volumes
- **vgdisplay**: affiche les informations sur un groupe de volumes
- **vgscan** : scanne les disques pour trouver des groupes de volumes

Commandes pour gérer les volumes logiques

- ➤ **lvcreate** : crée un volume logique
- ➤ Ivremove : supprime un volume logique
- ▼ Ivdisplay : affiche les informations sur un volume logique
- ➤ **Ivextend** : étend un volume logique
- ▼ Ivreduce : réduit un volume logique

Commandes supplémentaires

- ▼ fdisk: permet de partitionner des disques durs
- **mkfs**: permet de créer des systèmes de fichiers

➤ Voici quelques exemples de commandes LVM :

- **pvcreate /dev/sda** : crée un volume physique sur le disque /dev/sda
- ▼ vgcreate vg1 /dev/sda : crée un groupe de volumes vg1 à partir du volume physique /dev/sda
- ▼ lvcreate -L 10G -n lv1 vg1 : crée un volume logique lv1 de 10 Go dans le groupe de volumes vg1
- ▼ Ivdisplay /dev/vg1/lv1 : affiche les informations sur le volume logique lv1
- ▼ Ivextend -L +5G /dev/vg1/Iv1 : étend le volume logique Iv1 de 5 Go
- ▼ Ivreduce -L -3G /dev/vg1/lv1 : réduit le volume logique lv1 de 3 Go

V. QUOTA

1. Definition

Quota Linux permet de limiter l'espace utilise par un utilisateur ou un groupe.

Ces **Quotas** peuvent être définis en termes de nombres de **blocs** ou de nombre **d'inodes**

Quota	Soft / Souple	Hard / strict	Délai de grasse
USER 1	4	8	5 jours

Le Délai de Grasse et la periode pendant laquelle les utilisateurs sont autorisés à écrire sur le system de fichier ~]# edquota -t

2. TP Quota Linux

- 1. Partitionner le disque.
- 2. Monter le disque avec la prise en charge de quota linux.
 - ~] # mount -o usrquota, grpquota /dev/sdb1 /mnt/data

Ou sur le fichier /etc/fstab (defaults, usrquota, grpquota)

3. Créer des fichiers de quotas.

~] # quotachek -aug

-a : Vérifie tous les systèmes de fichiers montés localement avec quotas activés.

-u : Vérifie les informations du quota de disques de l'utilisateur.

-g : Vérifie les informations du quota de disques de groupe.

4. Allouer les quotas par utilisateur

~]# edquota USER1 ~]# edquota -g GROUP1 (pour les groupes)

Filesystem	blocks	soft	hard	inodes	soft	hard
/dev/sdb1	0	0	0	0	4	8

5. Activer quota

- 🗷 actier les quotas d'utilisateur et de groupe pour tous les systèmes de fichiers
- ~]# **quotaon** -aug
- 💌 activer les quotas pour un système de fichiers particulier, tel que /home
- ~]# quotaon -ug /mnt/data
- 6. Vérifier les quotas crée
 - ~]# **repquota** -a
 - ~]# repquota /home

VI. LISTE DES CONTROLE D'ACCEES (ACL)

ACL pour les Utilisateurs et les Groupes

- ~] # setfacl -m d:u:USER1:rwx ./data
- ~] # setfacl -m d:g:GROUPE1:rx ./data

Autre exemple (sur un seul ligne):

- ~] # setfacl -m d:u:USER2:rwx,d:g:GROUPE2:rx ./data
- -m: Modifie

 u: Utilisateur

 g: Groupe

 USER1: Le nom d'utilisateur

 r: Read

 w: Write

 x: Exécute
- <mark>d:</mark> Héritage
 - Supprimer l'ACL pour une seule utilisateur
 - Supprimer toute les ACLs sur un fichier ou un dossier
- -R: Pour toute l'arborescence

Supprimer les droits pour une seul Utilisateur/Groupe

~] # setfacl -x u:USER1,g:GROUPE1 ./file

Supprimer les ACL pour un dossier/fichier

~] # **setfacl** -b ./data

Supprimer les ACL pour toutes l'arborescence

~] # setfacl -R -b ./data

Les commandes de vérification

Afficher les ACLs sur un dossier/fichier

~]# **getfacl** ./data

Pour toutes l'arborescence

~]# **getfacl** -R ./data

Restaurer les ACL

- 1. Envoyer les ACLs d'un dossier/fichier sur un nouveau fichier '/home/USER1/acl.txt'
- ~] # getfacl /dossier > /home/USER1/acl.txt
- 2. Restaurer les ACL
- ~] # setfacl --restore /home/USER1/acl.txt

VII. GESTION DES PACKAGES

1. Les commande RPM

Command:

~]# rpm -qa | grep dhcpd
Packages]# rpm -ivh <dhcpd_.rpm>
~]# rpm -e dhcpd

~]# rpm -al dhcpd

~]# rpm -af /etc/dhcp/dhcpd.conf

Task:

Vérifier si un package est installes

Installer le package dhcpd

Désinstaller le package dhopd (erase)

Lister les fichiers d'un packages

Afficher le package qui a installé le fichier dhcpd.conf

2. Les commandes YUM

Command:

~]# yum serch httpd

~]# yum install httpd

~]# yum remove httpd

Task:

Rechercher un package sur internet

Installer le package httpd

Désinstaller la package httpd

Apres l'installation d'un package

★ Afficher l'état d'un package (2 commandes)

```
~]# systemctl is-active dhcpd
~]# systemctl status dhcpd
```

Recharger le fichier de configuration de package

```
~] # systemctl reload dhcpd
```

▼ Lister toutes les services active

```
~]# systemctl list-units --type=service
```

▼ Afficher le runlevel

```
~] # systemctl get-default
```

▼ Changer le runlevel

```
~] # systemctl set-default multi-user.target
```

Les runlevel sous linux

Runlevel	Description
0	Arrêt du système
1	Mono-utilisateur
2	
3	Multi-utilisateur avec CLI (multi-user.target)
4	
5	Multi-utilisateur avec GUI (graphical.target)
6	Redémarrage du système

En résumé, les runlevels contrôlent les services qui sont démarrés ou arrêtés lors du démarrage ou de l'arrêt du système.

Les runlevels 0, 1 et 6 sont utilisés pour l'arrêt, le démarrage ou le redémarrage du système.

Les runlevels 2, 3, 4 et 5 sont utilisés pour démarrer le système en mode multi-utilisateur, avec ou sans réseau et avec ou sans services de sécurité.

Le runlevel par défaut est généralement défini sur 5.

VIII. DHCP

SERVER

- ▼ Installer dhcp avec la commande ~]# yum -y install dhcpd
- ▼ Modifier le fichier /etc/dhcp/dhcpd.conf

```
Sunbnet 192.168.1.0 netmask 255.255.255.0 {
    range 192.168.1.10 192.168.1.30;
    option routers 192.168.1.1;
    option domain-name-servers 8.8.8.8, 4.4.4.4;
    option domain-name "idors.ma";
    option broadcast-address 192.168.1.255;
    default-lease-time 600;
    max-lease-time 7200;
}
```

▼ Démarrer le service dhcpd ~]# systemctl start dhcpd

CLIENT

- ▼ Tapez la commande suivante : ~]# nmcli con mod eth0 ipv4.method dhcp
 - Ou sur le fichier /etc/sysconfig/network-scripts/ifcfg-eth0 modifier BOOTPROTO =none **DOOTPROTO=dhcp**
- Désactiver le carte réseau ~]# nmcli con down eth0
- ★ Activer ~]# nmcli con up eth0

Afficher la liste des adresses IP et des informations associées qui ont été attribuées par le serveur DHCP.

```
~ [# cat /var/lib/dhcpd/dhcp.leases
```

Reservation dhcp

```
~]# vi /etc/dhcp/dhcpd.conf
host win7-pc {
    hardware ethernet 00:11:33:EC:AB:FF
    fixed-address 192.168.1.122
}
```

IX. REINSTALLER LE MOT DE PASSE CENTOS

- ➤ Accéder au mode mono-utilisateur (runlevel 1) avec la touche 'e'
- ▼ Remplacez 'ro' → rw init=/sysroot/bin/bash puis ctrl + x pour redémarrer
- ▼ Tapez les commandes suivantes :

```
/# chroot /sysroot

/# passwd root

New password: *****

/# touch /.autorelabel

Redémarrer la machine
```