Symbols for the Scattering Equations

Hao Feng

March 22, 2006

1 Wavefunction

emw: $\psi_{\gamma}(\tau, \vec{r}, \sigma; R_{\alpha})$; full wavefunction of electron + molecule

ew: Φ ; target electronic wavefunction

ewa: $\Phi_{(n\Lambda)_{\gamma}}(\bar{1};R_{\alpha})$

ewaa: $\Phi_{\gamma}(\bar{1};R_{\alpha})$

ewah: $\Phi_{\gamma}(2,3;R)$

ewahs: $\Phi_{\gamma}(\vec{r}_2, \vec{r}_3; R)$

ewb: $\Phi_{(n\Lambda)_{\gamma}}(\overline{N+1};R_{\alpha})$

ewc: $\Phi_{\gamma}(\overline{N+1};R_{\alpha})$

ewd: $\Phi_{\gamma}^*(\overline{N+1};R_{\alpha})$

ewn: $\Phi_{(n\Lambda)_{\gamma}}$

ewh: $\Phi_{\gamma}^{*}(1,2;R)$

ewhs: $\Phi_{\gamma}^*(\vec{r}_1, \vec{r}_2; R)$

ewt: $\Phi_{(n\Lambda)_{\gamma}}(\tau;R_{\alpha})$

 \mathbf{mw} : \mathbf{X} ; molecular wavefunction

mwg: $\mathbf{X}_{\gamma'}(1,2,\cdots,N;R_{\alpha})$

mwga: $\mathbf{X}_{\gamma'}(1, 2, \cdots, i-1, i+1, \cdots, N+1; R_{\alpha})$

mwgb: $\mathbf{X}_{\gamma'}(\bar{i}; R_{\alpha})$; convenient denotation of mwga

mwgg: $\mathbf{X}_{\gamma''}(\overline{N+1}; R_{\alpha})$

mwgn: $\mathbf{X}_{\gamma'}(\overline{N+1}; R_{\alpha})$

ow: ϕ ; orbital wavefunction

owa: ϕ_{α}

scf: $\bar{F}_{\gamma'}^{\gamma}(i)$; scattering function including the spin dependence

scfa: $\bar{F}_{\gamma'}^{\gamma}(1)$

scfaa: $\bar{F}^{\gamma}_{\gamma^{\prime\prime}}(1)$

scfael: $\bar{F}^{(\gamma)}(1)$

scfb: $\bar{F}_{\gamma'}^{\gamma}(2)$

scfc: $\bar{F}_{\gamma'}^{\gamma}(3)$

scfj: $\bar{F}_{\gamma'}^{\gamma}(j)$

scfn: $\bar{F}_{\gamma'}^{\gamma}(N+1)$

sof: $F_{\gamma'}^{(\gamma)}(\vec{r_i})$; spatial scattering function

sofn: $F_{\gamma'}^{(\gamma)}(\vec{r}_{N+1})$

sofnel: $F^{(\gamma)}(\vec{r}_{N+1})$

sow: $\bar{\phi}$; spin-orbital target wavefunction

sowa: $\bar{\phi}_{\alpha}$

sowb: $\bar{\phi}_{\beta}$

sowp: $\bar{\phi}_{\pi}$

srf: $\mathcal{Y}_{\gamma'}^{(\gamma)}(r)$; radial scattering function

srfn: $\mathcal{Y}_{\ell'm'}^{(\gamma)}(r_{N+1})$

srfna: $\mathcal{Y}_{\ell'm'}^{(\gamma)}(r_1)$

srfnb: $\mathcal{Y}_{\ell''m'}^{(\gamma)}(r_{N+1})$

srfnc: $\mathcal{Y}_{\ell''m'}^{(\gamma)}(r_1)$

srfnd: $\mathcal{Y}_{\ell''}^{(m')}(r_1)$

srfh: $\mathcal{Y}_{\ell'\ell_0}^{(m')}(r_3);$ radial scattering function of $e\text{-H}_2$

sshf: $Y_{\ell_{\gamma'}}^{m_{\gamma'}}(\hat{r})$; angular scattering function

sshfn: $Y_{\ell'}^{m'}(\hat{r}_{N+1})$

sshfna: $Y_{\ell'}^{m'}(\hat{r}_1)$

sshfnb: $Y_{\ell''}^{m'*}(\hat{r}_{N+1})$

sshfnc: $Y_{\ell'}^{m'*}(\hat{r}_{N+1})$

sshfnd: $Y_{\ell''}^{m'}(\hat{r}_1)$

sshfnh: $Y_{\ell'}^{m'*}(\hat{r}_3)$

sw: χ ; orbital spin wavefunction

swa: $\chi_{m_s}^{\alpha}(\sigma_i)$; spin wavefunction of the bound electron

swg: $\chi_{m_s}^{\gamma}(\sigma_i)$; spin wavefunction of the scattering electron

swga: $\chi_{m_s}^{\gamma'}(\sigma_{N+1})$

swgb: $\chi_{m_s}^{\gamma}(\sigma_{N+1})$

swgc: $\chi_{m_s}^{\gamma}(\sigma_1)$

swgd: $\chi_{m_s}^{\gamma*}(\sigma_{N+1})$

swgg: $\chi_{m_s}^{\gamma''}(\sigma_{N+1})$

swgh: $\chi_{m_s}^{\gamma *}(\sigma_3)$

tsw: $\bar{\delta}$; total spin wavefunction

tswh: $\bar{\delta}(\sigma_1\sigma_2)$

vw: χ ; vibrational wavefunction

2 Operator

dgg: $\delta_{\gamma'\gamma''}$; Delta operator

Escr: \mathcal{E} ;

Ham: $\hat{\mathcal{H}}$; Hamiltonian

Hscr: \mathcal{H} ;

LC: ϵ ; Levi-Civita density

lap: ∇^2 ; Laplace operator

Kex: $K^{(m')}(\ell'\ell''|r_1r_{N+1})$; Exchange kernel

Kexh: $K^{(m')}(\ell'\ell''|r_1r_3)$; Exchange kernel of H_2

 \mathbf{T} : \mathbf{T} ; kinetic

Th: $\hat{\mathbf{T}}$

The: $\hat{\mathbf{T}}_e$

Ther: $\hat{\mathbf{T}}_e(\vec{r})$; kinetic operator of the scattering electron

Vint: V_{int} ; potential operator between the scattering and bound electrons

vl: v_{λ} ; single-center expansion coefficients of potential

vls: v_{λ}^{st}

vln: v_{λ}^{nuc}

vle: v_{λ}^{el}

vst: $V_{\gamma'\gamma''}^{st}$; static potential

vstee: $V^{el,st}_{\gamma^{\prime\prime}\gamma^{\prime}}$

vsteea: $V^{st,el}_{\gamma'\gamma''}$

vsten: $V_{\gamma^{\prime\prime}\gamma^{\prime}}^{nuc,st}$

vstena: $V_{\gamma'\gamma''}^{st,nuc}$

vstr: $V_{\gamma'\gamma''}^{st}(\vec{r}_{N+1})$

vsteer: $V^{el,st}_{\gamma^{\prime\prime}\gamma^{\prime}}(\vec{r}_{N+1})$

vstlm: $V_{\ell'\ell''}^{(m')}$

vstrel: $V_{st}(\vec{r}_{N+1})$

3 Coordinates

abp: $\alpha\beta\cdots\pi$

abpi: $\alpha_i \beta_i \cdots \pi_i$

nl: $n\Lambda$

nlg: $(n\Lambda)_{\gamma}$

nlv: $n\Lambda v$

nlvg: $(n\Lambda v)_{\gamma}$

Ra: R_{α} ; nuclear coordinates collectively

ran: $r_{\alpha,N+1}$; distance between the scattering electron and the nuclear

rjn: $r_{j,N+1}$; distance between the scattering and the bound electrons

rln: $r_{1,N+1}$

rlh: $r_{1,3}$

vR: \vec{R} ; spatial nuclear coordinates

vRa: \vec{R}_{α}

vRb: \vec{R}_{β}

ver: \vec{r} ; spatial scattering electron coordinates

vri: \vec{r}_i ; spatial target electron coordiantes

vrj: \vec{r}_j

Za: Z_{α} ; nuclear charge

Zb: Z_{β}