Form Approved

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining it 8 data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215-13efferson Davis Hishway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

1. REPORT DATE (DE	D-MM-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - To)	٦
4. TITLE AND SUBTIT	'LE	Technical Papers		5a. CONTRACT NUMBER	\dashv
				5b. GRANT NUMBER	4
				SD. GITART NOMBER	
	Pleas	e se	e \	5c. PROGRAM ELEMENT NUMBER	1
6. AUTHOR(S)	1		, ,	5d. PROJECT NUMBER	٦
	. ,	allad		5e. TASK NUMBER	\dashv
		of all			
				5f. WORK UNIT NUMBER	ヿ
7. DEDECOMING OD	ANIZATION NAME	C) AND ADDDECC/EC)		345709 8. PERFORMING ORGANIZATION	_
7. PERFORMING ORG	JANIZATION NAME(S) AND ADDRESS(ES)		REPORT	
Air Force Research	Laboratory (AFMC	()			
AFRL/PRS					
5 Pollux Drive Edwards AFB CA	93524-7048				-
Lawards Air D CA	75524 7040				
9. SPONSORING / MC	NITORING AGENCY	NAME(S) AND ADDRE	SS(ES)	10. SPONSOR/MONITOR'S	\dashv
]				ACRONYM(S)	
Air Force Research	Laboratory (AFMC				
AFRL/PRS				11. SPONSOR/MONITOR'S	٦
5 Pollux Drive	2524 7049			NUMBER(S)	-
Edwards AFB CA 9				Please sel attach	4
12. DISTRIBUTION / A	WAILABILITY STATE	EMENT			
Approved for public	release; distributio	n unlimited.			
13. SUPPLEMENTAR	VNOTES				4
13. SUPPLEMENTAR	TNOTES				
14 40070407					4
14. ABSTRACT					
			•)	
			- (20030130 152	ŀ
			-	10000100 172	
					\bot
15. SUBJECT TERMS					
	<u></u>				_
16. SECURITY CLASS	SIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER 19a. NAME OF RESPONSIBLE OF PAGES PERSON	
			OF ABSTRACT	Leilani Richardson	
a. REPORT	b. ABSTRACT	c. THIS PAGE		19b. TELEPHONE NUMBER	\dashv
Unclassified	Unclassified	Unclassified	(A)	(include area code) (661) 275-5015	

MEMORANDUM FOR PRS (In-House/Contractor Publication)

FROM: PROI (STINFO)

19 Apr 2001

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-AB-2001-103

Jerry Boatz; Don Thompson and Dan Sorescu (Oklahoma State Univ.), "Bond Dissociation Energies of Energetic Compounds: A Comparison of Theoretical Methods"

AFOSR Contractors Meeting (Irvine, CA, 21-23 May 2001) (Deadline: 18 May 01)

(Statement A)

b.) military/national critical technology,d.) appropriateness for release to a foreign	Foreign Disclosure Office for: a.) appropriateness of distribution statement c.) export controls or distribution restrictions, gn nation, and e.) technical sensitivity and/or economic sensitivity.
Comments:	
Signature	Date
and/or b) possible higher headquarters re Comments:	
Signature	Date
b) appropriateness of references, if appli	e STINFO for: a.) changes if approved as amended, icable; and c.) format and completion of meeting clearance form if required
Signature	Date
appropriateness of distribution statemen national critical technology, and f.) data	R for: a.) technical accuracy, b.) appropriateness for audience, c.) t, d.) technical sensitivity and economic sensitivity, e.) military/ rights and patentability
	APPROVED/APPROVED AS AMENDED/DISAPPROVEI
	PHILIP A. KESSEL Date Technical Advisor

Space and Missile Propulsion Division

Bond Dissociation Energies of Energetic Compounds: A Comparison of **Theoretical Methods**

Propulsion Sciences and Advanced Concepts Division Air Force Research Laboratory, AFRL/PRSP Edwards AFB, CA 93524 Jerry A. Boatz

Dan Sorescu and Donald L. Thompson Oklahoma State University Department of Chemistry Stillwater, OK 74078 AFOSR Molecular Dynamics/Theoretical Chemistry Contractors Conference May 21-23, 2001 Irvine, CA

Outline

- Overview of AFRL Propulsion Directorate
- High Energy Density Materials (HEDM) for rocket propulsion
- Specific impulse as an assessment of energy density
- dinitroethylene ("FOX-7") and prototypes C-N bond energies of 1,1-diamino-2,2-
- III. Results
- IV. Summary and Conclusions

Why is the Air Force interested in HEDM?

The performance limits of current propellants have been reached

- The constituents of current propellants have been known for decades
- New missions require higher-performing propulsion systems

A revolutionary

- Fusion, antimatter, and beamed energy are tantalizing but distant prospects
- Chemical propulsion will remain the method of choice for many applications
- Novel chemical propellants offer great potential for near-term improvements

HEDM Program Objective

propellants for rocket propulsion applications

Identify and develop advanced chemical

Liquid & solid oxidizers for boost and upper stages

Hydrocarbons for liquid boosters

Monopropellants for upper stages and satellites

Cryogenic propellants for upper stages

Breaking the performance barrier

Assessment of energy density: Specific Impulse (I_{sp})

propellant burned/second); similar to mpg. pounds of delivered thrust / (pounds of

=> highly exothermic reactions AND combustion products with small masses are required

 $\sim 50\%$ of liquid H₂ in SSME is not burned!)

Specific impulse values of currently used propellants

powder/hydroxy-terminated polybutadiene (HTPB) Solid propellant: Ammonium perchlorate(AP)/Al

$$l_{sp} = 267 sec$$

Liquid propellant: RP-1/LOX

$$I_{\rm sp} = 300~{\rm sec}$$

Monopropellant: Hydrazine (N₂H₄)

$$l_{\rm sp} = 230 \, {\rm sec}$$

Cryogenic propellants: LH₂/LOX

$$I_{so} = 390 \, \text{sec}$$

HEDIM Propellant Payoffs

- Larger payloads, smaller vehicles, and lower launch costs
- Greater capability to access and exploit space

Payload Mass (lb) With 10% Isp Increase	15,600 (+25%)	68,000 (+70%)	110 (+49%)
Payload Mass (lb)	12,500	40,000	74
Takeoff Mass (lb)	360,000	1,900,000	1,847
Propellant	RP-1/LOX (Isp = 295 s) // LH2/LOX (Isp = 455 s)	LH2/LOX (Isp = 455 s)	HTPB/AI/HMX (Isp = 270 s)
Baseline Vehicle	Atlas II // Centaur D-1A	Lockheed SSTO	Boost- Phase Interceptor
Vehicle Type	Two-stage ELV	SSTO RLV	Missile Defense Interceptor

Our research is aimed at increasing propellant Isp by 5 to 50%

important role in identification and Computational chemistry plays an characterization of HEDM

Experimental synthesis and characterization is difficult

- Little or no intuition to guide synthesis of new molecules.
- thermodynamically (and often kinetically) unstable. Energetic compounds are
- Synthesis is time-consuming, expensive, high-risk.

Energetic compounds present several challenges to theory

Exotic electronic structures

- single configuration methods may not be applicable. Large non-dynamical correlation effects =>
- lying triplet state(s) often intersect the lowest singlet Multiple potential energy surfaces (e.g., lowstate.)
- Nonadiabatic interactions (e.g., spin-orbit coupling, radiationless transitions

Which theoretical method(s) give reliable predictions?

Density Functional Theory

- Widely used due to its efficiency and accuracy (generally comparable to MP2.)

Single-configuration correlated methods

- MPn, CC, QCI, G2

Multiconfigurational methods

- MCSCF, MCQDPT, MRCI, MRCC

FOX-7: A prototypical energetic compound

l_{sp} = 254 sec (calculated) ∆H_t = -9.5 kcal/mol (G2(MP2))

Advantages:

- Chemically balanced
 wrt decomposition
 products (2CO + 2H₂O + 2N₂)
- Lower impact/shock sensitivity than other $C_nH_{2n}O_{2n}N_{2n}$ compounds (e.g., RDX and HMX).

Recent Studies of FOX-7

Experimental X-ray structure

U. Bemm and H. Östmark, Acta Cryst. C54, 1997(1998).

Structures and C-N bond energies (B3P86/6-31+G(d,p))

P.Politzer, M.C.Concha, M.E.Grice, J.S.Murray, P.Lane, and D.Habibollazadeh Theochem, 452, 75(1998)

Decomposition mechanisms (B3P86/6-31+G(d,p), B3LYP/6-31+G(d,p))

A.Gindulyte, L.Massa, L.Huang, and J.Karl, J. Phys. Chem. A, 103, 11045(1999)

FOX-7: A "Push-Pull" Ethylene

=> good testbed for SOTA single-reference methods have high degree of multiconfigurational character Multiple Lewis structures suggest that FOX-7 may and DFT.

DFT Geometries

 $C-NO_2$

C-NH₂ C=C1.331*

1.340* NO_2 NO2 H₂C CH₂ H_2N H_2N H_2N

	1.459*	1.424* 1.432** 1.438 (1.399, 1.
1.386*		1.339* 1.345** 1.345 (1.319, 1.325)
1.340*	1.326* 1.322	1.426* 1.428** 1.421 (1.456)

^{*} P.Politzer, M.C.Concha, M.E.Grice, J.S.Murray, P.Lane, and D.Habibollazadeh Theochem, 452, 75(1998)

.426)

^{**} A.Gindulyte, L.Massa, L.Huang, and J.Karl, J. Phys. Chem. A, 103, 11045(1999) () U. Bemm and H. Östmark, Acta Cryst. C54, 1997(1998).

Approach

- (MCQDPT(2)//CASSCF). 6-311G(d,p) used throughout. energies of FOX-7 and simpler prototypes using DFT (B3LYP), single-reference methods (MP2, G2(MP2), 1. Compute C-NH₂ and C-NO₂ bond dissociation CCSDT//MP2), and a multireference method
- 2. Assess degree of multiconfigurational character via calculation of natural orbital occupation numbers (MP2, CCSD(T), MCSCF).
- indicative of significant degree of multiconfigurational character - MP2 and CCSD(T) "non-physical" occupation numbers

M.S. Gordon, M.W. Schmidt, G.M. Chaban, K. R. Glaesemann, W.J. Stevens, and C. Gonzalez, J. Chem. Phys., 110, 4199 (1999).

Bond Dissociation Reactions

Z = H, NO₂C-NO₂ BDEs: $X,Y = H, NH_2$;

 $Z = H, NH_2$ C-NH₂ BDEs: $X,Y = H, NO_2$

Choice of CASSCF Active Space

"Push-pull" Lewis structures suggest that delocalization of π electrons account for the most important nondynamical correlation.

Structures of FOX-7

and	
', P.Lane, and	
ray, P	
I.S.Mur	(866)
_	2, 75(1998
A.E.Grice	m, 452
, M.C.Concha, M.	eocher
C.Con	eh Th€
_	llazade
* P.Politzer	abibol
صَ *	D.H

** A.Gindulyte, L.Massa, L.Huang, and J.Karl, J. Phys. Chem. A, 103, 11045(1999)

() U. Bemm and H. Östmark, Acta Cryst. C54, 1997(1998).

Level of theory B3P86/6-31+G(d,p) B3LYP/6-31+G(d,p)	B3LYP/6-311G(d,p)	MP2/6-311G(d,p)	CASSCF/6-311G(d,p)
---	-------------------	-----------------	--------------------

C-NC	1.42	1.43	1.43	1.44
	6* 1.339*	8** 1.345**	1.345	1.359
) 	1.426*	1.428**	1.421	1.392

9	9
7	
,	_
	120/
	ō

(1.399)	(1.426)
(1.319)	(1.325)
.456)	

Natural Orbital Occupation Numbers (closed shell species)

HC CH2

MP2: none

CCSD(T): none

 H_2N

MP2: -0.001

 H_2N

CCSD(T): none

(----- MCSCF (6e,50) --0.079 0.020 1.980 1.994 1.927 b C-NH₂ NH₂ lp

MCSCF (8e,70) -0.023 0.0190.068 * 6 1.940 1.995 1.978 1.981 b NH₂ lp C-NH2 C=C

Natural Orbital Occupation Numbers (closed shell species)

NO₂

MP2: 2.00001, -0.00009

CCSD(T): none

NO₂

MP2: -0.001

CCSD(T): none

>		MCSCF (8e,70)	(8e,70) -	\
	C=C	Ħ	*1	
· en		1.914	0.077	
	NO_2	ĸ	n.b.	π*
		1.983	1.897	0.130
	C-NO ₂	ь	*6	
		1.977	0.023	

$$\langle ----- MCSCF (14e,12o) ------ \rangle$$

$$C=C \qquad \pi \qquad \pi^*$$

$$1.915 \qquad 0.077$$

$$NO_2 \qquad \pi \qquad \text{n.b.} \qquad \pi^*$$

$$1.984 \qquad 1.889 \qquad 0.132$$

$$1.984 \qquad 1.883 \qquad 0.137$$

$$C-NO_2 \qquad \sigma \qquad \sigma^*$$

$$1.977 \qquad 0.030$$

$$1.977 \qquad 0.030$$

Natural Orbital Occupation Numbers (closed shell species)

CCSD(T): none

/	MCSCF (12e,10o)	12e,10o)	\\\
C=C	н	π^*	
	1.950	0.059	
NO_2	Ħ	n.b.	π*π
	1.983	1.914	0.108
C-NH ₂	ь	*6	
-	1.981	0.019	
C-NO2	ь	*6	
	1.978	0.023	
NH ₂ lp	1.987		

MCSCF (18e,14o) π
π
1.986
ь
1.982 1.978
ь
n/a -
1 988(7)

(closed shell species)

MP2: -0.0002(2), -0.00001 **CCSD(T):** none

 $\langle ----- MCSCF (16e,13o) -----$ $C=C \pi \pi^*$ 1.962 0.050

 π^* (----- MCSCF (18e,150) n.b. ¥¥ *6 *6 TBD TBD TBD TBD TBD ĸ b 6 C-NO₂ NH₂ lp C-NH2 C=C NO₂

0.018

1.982

*6

b

C-NH2

1.921

1.983

n.b.

H

 NO_2

0.024

1.979

C-NO₂

1.990

1.994

NH₂ lp

(open shell species)

 \bullet NH₂

MP2: none

MP2: 2.00001

 \bullet NO₂

CCSD(T): none

CCSD(T): none

MCSCF (3e,20) --

1.000

N rad.

 NH_2 lp 2.000

-- MCSCF (5e,40) -----

 NO_2

0.078 1.937

n.b.

1.986

1.000 N rad.

MP2: 2.07575, -0.08353 CCSD(T): none

HCH

MCSCF -

CEC

 $1.899 \quad 0.101$

C rad.

1.000

(open shell species)

MP2: 2.06629,

CCSD(T): none

-0.08353

(----- MCSCF (7e,60) 0.0940.021086.1 1.0001.995 NH₂ lp C-NH2 C rad. C=C

----- MCSCF (7e,60) 0.019 0.0841.918 1.981 1.993 b NH₂ lp C-NH₂ C=C

1.006

C rad.

(open shell species)

2.00001, -0.06203, CCSD(T): none MP2: 2.04703,

NH₂ lp

(open shell species)

MP2: 2.09302, 2.00001, -0.00008, -0.10792

CCSD(T): TBD

>	MCSCF (9e,80)	(9e, 80)	
C=C	H	*#	
	1.904	0.083	
NO2	Ħ	n.b.	*#
	1.983	1.900	0.134
C-NO ₂	ь	*b	
	1.975	0.025	
C rad.	1.000		

>	MCSCF (9e,80)	(9e, 80)	\
C=C	Ħ	*#	
	1.896	0.000	
NO2	μ	n.b.	*#
	1.983	1.891	0.141
C-NO2	ь	*6	
	1.977	0.023	
C rad.	1.000		

Natural Orbital Occupation Numbers (open shell species)

NO₂ NO₂

MP2: 2.08603, 2.00001(2), -0.10207, -0.00003

CCSD(T): TBD

H₂N NO₂

MP2: 2.00001(2), -0.0013, -0.00055

CCSD(T): none

·>	C=C	,	NO2		C-NO ₂		C-NH ₂		NH ₂ lp	C rad.
MCSCF	K	1.976	н	1.989	Ь	II	ь	1.981	, ·	
MCSCF (15e,120)	*#	0.043	n.b.	1.905	ه*	n/a	*6	0.020	1.974	000
\ (a			π^*	0.114	·					
ŀ										

(open shell species)

MP2: 2.05145, 2.00001, -0.00014, -0.06755

CCSD(T): TBD

MP2: 2.00001, -0.00002, -0.00015, -0.01124

CCSD(T): TBD

1.923 0.079

 π n.b.

NO₂

1.983 1.906 0.119

 $C-NO_2$ σ

 $C-NH_2$ σ

0.019

1.979

0.024

1.977

 NH_2 lp 1.990

C rad. 1.001

_		,	
	くい	_	

---- MCSCF (13e,110) -----

1.938 0.064

C=C

 NO_2 π n.b.

 $C-NO_2$ σ σ^*

0.112

1.911

1.982

1.976 0.025

C-NH₂ o

1.980 0.019

 NH_2 lp 1.987

C rad. 1.006

C-NH₂ Bond Dissociation Energies (kcal/mol)

* P.Politzer, M.C.Concha, M.E.Grice, J.S.Murray, P.Lane, and D.Habibollazadeh Theochem, 452, 75(1998). Values in () include ZPE corrections.

R.D. Levin, W.G.Mallard, J. Phys. Chem. Ref. Data 17 † S.G.Lias, J.E.Bartmess, J.F. Liebman, J.L.Holmes,

1.980 0.020 --- MCSCF(6e,50) ---1.927 1.994 NH₂ lp C-NH₂ C=C NH,CH=CH2 ----- Non-physical NOONS ----CCSD(T)

MBPT(2)

none

C-NO₂ Bond Dissociation Energies (kcal/mol)

* P.Politzer, M.C.Concha, M.E.Grice, J.S.Murray, ---- P.Lane, and D.Habibollazadeh Theochem, 452, MI 75(1998).

† Does not include ZPE corrections.

H=CH ₂	MCSCF(8e,7o)	C=C π π*	1.914 0.077	NO ₂ π n.b. π^*	1.983 1.897 0.130	C-NO ₂ G G*	0000
NO ₂ CH=CH ₂	Non-physical NOONS	IBPT(2) CCSD(T)	.00001 none	60000	.00004		-

C-NO₂ Bond Dissociation Energies (kcal/mol)

* P.Politzer, M.C.Concha, M.E.Grice, J.S.Murray, P.Lane, and D.Habibollazadeh Theochem, 452, 75(1998).

[†] Does not include ZPE corrections.

CH-NT,	MCSCF(12e,10o)	$C=C$ π π^*	1.950 0.059	NO ₂ π n.b. π^*	1.983 1.914 0.108	NH, lo 1.987
NO,CH=CH-NH,	Non-physical NOONS	MBPT(2) CCSD(T)	2.00001 TBD	60000.0-	-0.00004	

000.

2.06629

-0.08353 -0.00001

C rad. NH₂ lp

C-NH₂ Bond Dissociation Energies (kcal/mol)

Summary and Conclusions

- methods (MP2, G2(MP2), CCSD(T)//MP2), and a multireference (MR) method prototypes have been computed using DFT (B3LYP), single-reference (SR) 1. The C-NH₂ and C-NO₂ bond dissociation energies of FOX-7 and simpler (MCQDPT(2)//CASSCF).
- and radical species considered in this study have non-physical NOONs at the MP2 2. With the exception of aminoethylene and amino radical, all of the closed shell
- 3. CCSD(T) is better able to "capture" non-dynamical correlation than MP2.
- 4. Species containing a nitro group generally have a higher degree of multiconfigurational character than those without NO₂.
- 5. The DFT BDEs generally are in better agreement with the SR methods (MP2, G2(MP2), CCSD(T)) than with MCQPDT(2)), particularly for C-NO₂.
- 6. The MCQDPT(2) BDEs are lower than those of the SR methods. The difference between the SR and MR predictions is greater for C-NO₂ than C-NH₂.
- 7. The most stringent comparison of these methods will likely be the C-NO, BDE for (NH₂)₂C=C(NO₂)₂, for which the radical (NH₂)₂C=C-NO₂ is exceptionally MR in

Future Directions

- 1. Include additional MR methods (MRCI, MRCC).
- 2. For the smaller systems, try larger basis sets (cc-pVTZ).
- 3. Replace UHF reference with ROHF for MP2, CCSD(T).

Acknowledgements

DoD High Performance Computing Program

- Aeronautical Systems Center MSRC
- Army Research Laboratory MSRC
- Army High Performance Computing Research Center

Air Force Research Laboratory

AFOSR

Dr. Jeff Sheehy