

Composition

Main constituents (300 km): 78% **O**, 21% **N**₂,1% **O**₂,**He**, **H**

Major Species Density Structure of the Atmosphere

→ Molecular diffusion

Barometric height equation:

$$n_{i}(h) = n_{i}(h_{0}) \frac{T(h_{0})}{T(h)} \exp\left\{-\int_{h_{0}}^{h} \frac{dz}{H_{i}(z)}\right\},\$$

$$H_{i}(h) = \frac{kT(h)}{m_{i}g(h)}$$

Hydrostatic Equation:

$$\sum_{i} \frac{dp_{i}}{dz} = -\sum_{i} n_{i} m_{i} g$$

Image: Catling & Kasting (2017) after Banks and Kockarts (1973)

Thermal structure

https://doi.org/10.1036/1097-8542.722200

Thermal structure

Approximation: Bates' temperature profile

•
$$T(h) = T_{\infty} - (T_{\infty} - T(h_0))e^{-s(h-h_0)}$$

Kockarts (1981):

• $T_{\infty} = a + b\overline{F} + c(F - \overline{F}) + \Delta T + f(t)$

- h_0 , $T(h_0)$: constants
- T_{∞} : exospheric temperature
- \bar{F} : solar decimetric flux averaged over several solar rotations, usually three
- F: F10.7 taken one day before the day to which T_{∞} corresponds
 - ΔT : correction for geomagnetic effects (particle precipitation or Joule heating)
 - f(t): semi-annual variation expressed in function of the day count in the year

Kockarts (1981)

Thermal structure

Fig. 2. Isopleths of daily averaged thermopause temperature for $F_{10.7} = \vec{F}_{10.7} = 150 \times 10^{-20} \text{ Wm}^{-2} \text{ Hz}^{-1}$ and $K_n = 0$.

- Thermopause temperature varies in an annual cyle
- This depends on the solar insolation

Kockarts (1981)

Thermosphere energy sources and sinks

Energy Source	Energy Sink
Absorption of UV (120-200 nm) dissociating O ₂	Thermal downward conduction into the mesosphere
Absorption of EUV (20 -100 nm) O, O ₂ , N ₂	IR cooling by NO and CO ₂ (after geomagnetic storms only)
Joule Heating by Auroral electrical currents	
Particle precipitation from magnetosphere	
Internal redistribution from advection and adiabatic heating (Dissipation of upward propagating waves: tides, planetary waves, gravity waves)	Internal redistribution from advection and adiabatic cooling

Absorption of solar energy

Three factors determine the rate of solar radiation absorption per volume,

$$Q = \frac{dN_{ph}}{dVdt}\Big|_{h}$$

- $\Phi^{Ph}(h)$: No. of photons (photon flux)
- n(h): No. of absorbing atoms/ molecules,
- σ_A : cross-section, (Efficiency of absorption)

Energy absorption processes

- Process producing new charged particles
- Reaction force comes from within the atom
- $O_2 + h\nu \rightarrow O_2^+ + e^*$

Ionisation

- Atoms absorb energy without ionisation
- The orbital electrons are raised to the next energy level
- $0 + h\nu \rightarrow 0^*$

Excitation

- Separation of charged particles which already exist in a compound
- $N_2 + h\nu \rightarrow N + N$

Dissociation

Thermosphere heating

Primary absorption processes in the thermosphere

Photodissociation ($\lambda \leq 242 \text{ nm}$)

• O_2 + Photon ($\lambda \le 242 \ nm$) $\rightarrow 0 + 0$

Photoionisation ($\lambda \le 103$ nm)

- $0 + Photon (\lambda \leq 91 nm) \rightarrow 0^+ + e$
- $N_2 + Photon (\lambda \le 80 nm) \rightarrow N_2^+ + e$
- O_2 + Photon ($\lambda \le 103 \text{ nm}$) $\rightarrow O_2^+ + e$

Dissociative photoionisation ($\lambda \le 72$ nm)

• $N_2 + Photon (\lambda \le 49 nm) \rightarrow N^+ + N + e$

- Collision between photon and gas particle depends on collision cross section
- Each species and absorption process has own absorption cross section
- The absorption cross section depends on the energy of the photon

Primary absorption processes in the thermosphere

Photodissociation ($\lambda \leq 242 \text{ nm}$)

• O_2 + Photon ($\lambda \le 242 \text{ nm}$) $\rightarrow 0 + 0$

Photoionisation ($\lambda \le 103$ nm)

- $0 + Photon (\lambda \le 91 nm) \rightarrow 0^+ + e$
- $N_2 + Photon (\lambda \le 80 nm) \rightarrow N_2^+ + e$
- O_2 + Photon ($\lambda \le 103 \text{ nm}$) $\rightarrow O_2^+ + e$

Dissociative photoionisation ($\lambda \le 72$ nm)

• N_2 + Photon ($\lambda \le 49 \text{ nm}$) $\rightarrow N^+ + N + e$

O₂ absorption cross

Chapman function

- describes the attenuation of solar radiation by an exponential atmosphere.
- $q^{E}(h) = E_{Ph}Q(h)$ = $(\frac{h_{p}c_{0}}{\lambda})\sigma_{A}n(h)\Phi^{Ph}(h)$
- $q^E(h) = \sigma_A n(h) \Phi^E_{\infty} e^{-\tau(h)}$
- $q^{E}(h) = q^{*} \exp\{1 z^{*} \sec \chi e^{-z^{*}}\},$ $z^{*} = \frac{h h^{*}_{max}}{H}$

Figure 1.5. The Chapman production function. (After T. E. VanZandt and R. W. Knecht, in *Space Physics* (eds. LeGalley and Rosen). Wiley, 1964.)

Particle Heating

- Mainly electron precipitation causes heating
- Heating due to proton precipitation is smaller because of less power
- Localized source of heating, which is highly variable
- Dissociative recombination

$$N_2 + e^* \rightarrow N + N(^4S,^2D,^2P) + e$$

Dissociative ionisation

$$e + N_2 \rightarrow N^+ + N + 2e$$

Fig. 1. Flow chart of sources and processes leading to neutral gas heating.

Rees et al. (1983)

Joule/ Frictional Heating

- $q_I = \sigma_P(\mathcal{E} u_n \times B)^2$
- roughly proportional to the Pedersen conductance at high latitudes
- High latitude phenomenon
- Energy deposition from the magnetosphere
- Correlation with geomagnetic perturbations

JH(GW)=64.6+1.6Kp3.10

Fig. 7 Height-integrated Joule heating rate compared with simultaneous magnetic variations. (After [18].)

Joule heating vs. precipitation

- Both are Auroral processes
- Joule heating is more intensive than particle heating
- Joule heating large scale
- Particle heating small scale

Thermosphere heating

- Heating efficiency (h≥300 km)
- $\bullet \quad \eta^W = \frac{q^W}{q^E} = \frac{q^W}{\sigma^A n \Phi^E_{\infty}}$
 - Transformation of first law of thermodynamics yields temperature increase per time
- $\frac{\Delta T}{\Delta t} = \frac{q^W}{nk(1 + \frac{f}{2})} = \frac{\eta^W \sigma^A \Phi^E_{\infty}}{k(1 + \frac{f}{2})}$

- Calculating the temperature change with normal thermosphere condition parameters results in a significantly higher value than observed
- →There must be efficient processes reducing the temperature

Molecular heat transfer

Conduction

 The heat flux is proportional to the temperature gradient

$$\vec{\phi}^W = -\kappa \nabla T$$

- κ: thermal conductivity
- Heat flux is in the direction of decreasing temperature (basis for minus sign)
- The heat flux causes change of heat in a volume in a certain time

$$d^W = -\nabla \vec{\phi}^W$$

Conduction and Radiative Cooling

- Thermal conduction (molecular and turbulent) removes heat from the thermosphere to the mesosphere
- During quiet conditions, radiative cooling is small in the upper thermosphere
- Molecular conduction determines the thermosphere temperature profile shape
- During storms, NO cooling can increase by two orders of magnitude

Radiative cooling

- Heat is converted into IR radiation
- Counteractive to heating processes
- efficient radiative cooler for the thermosphere:
 - NO 5.3 μm (emission maximizes between 100 and 200 km and mostly occurs at high latitudes)
 - CO₂ 15 μ m (mainly below 130 km)
 - 0 63 μm
- Evident seasonal variation in the CO₂ cooling rate
- Spikes associated with storms

Lu et al. (2010)

Heat equation

•
$$\rho c_p \frac{\partial T}{\partial t} \cong q^w - l^w + d^w$$

= $\eta^w q^E - l^w - \operatorname{div} \vec{\phi}^w$

- {Temp. Change}={Heating}-{Cooling}-{Conduction}
- Partial, non-linear differential equation
- Depends on composition
- Can be solved only numerically