

Advanced Algorithmic Differentiation: Higher-order Derivatives

Andrea Walther and Sri Tadinada Institut für Mathematik Humboldt-Universität zu Berlin

CWI Autumn School 2025 Artificial Intelligence in Natural Sciences

Outline

- Higher-Order Derivatives
- Calculation of Derivatives for PINNs
- Summary

Second-order Derivatives

Use forward and reverse mode AD together!

$$y = F(x)$$
 $\bar{x} = \bar{y}^{\top} F'(x)$

Second-order Derivatives

Use forward and reverse mode AD together!

$$y = F(x)$$
 $\overline{x} = \overline{y}^{\top} F'(x)$

$$\bar{x} = \bar{y}F'(x)$$
 \rightarrow $\dot{\bar{x}} = \bar{y}^{\top}F''(x)\dot{x} + \dot{\bar{y}}F'(x)$

Second-order Derivatives

Use forward and reverse mode AD together!

$$y = F(x)$$
 $\bar{x} = \bar{y}^{\top} F'(x)$

$$\bar{x} = \bar{y}F'(x)$$
 \rightarrow $\dot{\bar{x}} = \bar{y}^{\top}F''(x)\dot{x} + \dot{\bar{y}}F'(x)$

For scalar-valued function $F, \bar{y} = 1, \dot{\bar{y}} = 0$, and \dot{x} one has

$$\dot{\bar{x}} = F''(x)\dot{x} = \text{Hessian-vector product}$$

Complexity (Second-order Adjoints)

grad	С	±	*	ψ
MOVES	2 + 2	12 + 6	11 + 11	7 + 7
ADDS	0	3 + 3	2 + 5	1 + 2
MULTS	0	0	3 + 6	1 + 4
NLOPS	0	0	0	2 + 2

$$\mathsf{OPS}(\bar{y}^{\top}F''(x)\dot{x}) \leq c \; \mathsf{OPS}(F(x))$$
 $\mathsf{MEM}(\bar{y}^{\top}F''(x)\dot{x}) \sim \mathsf{OPS}(F(x))$

with $c \in [7, 10]$ platform dependent

Higher-order Derivatives I

Think in Taylor polynomials!

Let x be the path

$$x(t) \equiv \sum_{j=0}^{d} x_j t^j : \mathbb{R} \mapsto \mathbb{R}^n \quad \text{with} \quad x_j = \frac{1}{j!} \frac{\partial^j}{\partial t^j} x(t) \Big|_{t=0}$$

Higher-order Derivatives I

Think in Taylor polynomials!

Let x be the path

$$x(t) \equiv \sum_{j=0}^{d} x_j t^j : \mathbb{R} \mapsto \mathbb{R}^n \quad \text{with} \quad x_j = \frac{1}{j!} \frac{\partial^j}{\partial t^j} x(t) \Big|_{t=0}$$

Hence

$$x_i$$
 is scaled derivative at $t=0$ \Rightarrow x_1 = tangent, x_2 = curvature

NO BERLIN

Higher-order Derivatives I

Think in Taylor polynomials!

Let x be the path

$$x(t) \equiv \sum_{j=0}^{d} x_j t^j : \mathbb{R} \mapsto \mathbb{R}^n \quad \text{with} \quad x_j = \frac{1}{j!} \left. \frac{\partial^j}{\partial t^j} x(t) \right|_{t=0}$$

Hence

$$x_j$$
 is scaled derivative at $t=0$ \Rightarrow x_1 = tangent, x_2 = curvature

Now:

Consider $F: \mathbb{R}^n \to \mathbb{R}^m$, d times continuously differentiable $\Rightarrow y(t) \equiv F(x(t)) : \mathbb{R} \mapsto \mathbb{R}^m$ is smooth (chain rule!)

Higher-order Derivatives II

There exist Taylor coefficients $y_i \in \mathbb{R}^m$, $0 \le j \le d$, with

$$y(t) = \sum_{j=0}^{d} y_j t^j + O(t^{d+1}).$$

Higher-order Derivatives II

There exist Taylor coefficients $y_j \in \mathbb{R}^m$, $0 \le j \le d$, with

$$y(t) = \sum_{j=0}^{d} y_j t^j + O(t^{d+1}).$$

Using the chain rule, one obtains:

$$y_{0} = F(x_{0})$$

$$y_{1} = F'(x_{0}) x_{1}$$

$$y_{2} = F'(x_{0}) x_{2} + \frac{1}{2} F''(x_{0}) x_{1} x_{1}$$

$$y_{3} = F'(x_{0}) x_{3} + F''(x_{0}) x_{1} x_{2} + \frac{1}{6} F'''(x_{0}) x_{1} x_{1} x_{1}$$
...

OT-UNIDAR SITA

Higher-order Derivatives II

There exist Taylor coefficients $y_j \in \mathbb{R}^m$, $0 \le j \le d$, with

$$y(t) = \sum_{j=0}^{d} y_j t^j + O(t^{d+1}).$$

Using the chain rule, one obtains:

$$y_{0} = F(x_{0})$$

$$y_{1} = F'(x_{0}) x_{1}$$

$$y_{2} = F'(x_{0}) x_{2} + \frac{1}{2}F''(x_{0}) x_{1}x_{1}$$

$$y_{3} = F'(x_{0}) x_{3} + F''(x_{0}) x_{1}x_{2} + \frac{1}{6}F'''(x_{0}) x_{1}x_{1}x_{1}$$

⇒ directional derivatives of high order (forward mode)

Univariate Taylor Mode of AD

The propagation of

$$x_0,\ldots,x_d\to y_0,\ldots,y_d$$

is called univariate Taylor mode of AD

Univariate Taylor Mode of AD

The propagation of

$$x_0,\ldots,x_d\to y_0,\ldots,y_d$$

is called univariate Taylor mode of AD

Implementation?

- naive way: qubic computational cost in highest degree d
- Faà Di Bruno (1857!) proposed adapted approach with quadratic computational cost in highest degree d

6 / 13

Univariate Taylor Mode of AD

The propagation of

$$x_0,\ldots,x_d\to y_0,\ldots,y_d$$

is called univariate Taylor mode of AD

Implementation?

- naive way: qubic computational cost in highest degree d
- Faà Di Bruno (1857!) proposed adapted approach with quadratic computational cost in highest degree *d*

Hence:

$$\mathsf{OPS}(x_0,\ldots,x_d\to y_0,\ldots,y_d)\sim d^2\,\mathsf{OPS}(x_0\to y_0)$$

using suitable Taylor arithmetic

Univariate Taylor Mode: Example

From

$$y_{0} = F(x_{0})$$

$$y_{1} = F'(x_{0})x_{1}$$

$$y_{2} = F'(x_{0})x_{2} + \frac{1}{2}F''(x_{0})x_{1}x_{1}$$

$$y_{3} = F'(x_{0})x_{3} + F''(x_{0})x_{1}x_{2} + \frac{1}{6}F'''(x_{0})x_{1}x_{1}x_{1}$$

it follows for $x_1 = 1, x_2 = 0, x_3 = 0$ that

$$y_0 = F(x_0)$$

$$y_1 = F'(x_0) x_1$$

$$y_2 = \frac{1}{2} F''(x_0) x_1 x_1$$

$$y_3 = \frac{1}{6} F'''(x_0) x_1 x_1 x_1$$

i.e., scaled Taylor coefficients of F!

Physics-Informed Neural Networks (PINNs)

Idea:

PINNs integrate physical laws (e.g. PDEs) into the training process of neural networks.

Goal:

Approximate a solution $u_{\theta}(x,t)$ of a PDE $\mathcal{N}[u_{\theta}(x,t)] = 0$, by minimizing

$$\mathcal{L} = \mathcal{L}_{\text{data}} + \mathcal{L}_{\text{PDE}}.$$

Physics-Informed Neural Networks (PINNs)

Idea:

PINNs integrate physical laws (e.g. PDEs) into the training process of neural networks.

Goal:

Approximate a solution $u_{\theta}(x,t)$ of a PDE $\mathcal{N}[u_{\theta}(x,t)] = 0$, by minimizing

$$\mathcal{L} = \mathcal{L}_{\text{data}} + \mathcal{L}_{\text{PDE}}.$$

Key advantage: Leverages known physics to reduce data demand and improve generalization.

A. Walther and S. Tadinada Advanced AD: HOD 8/13 October 31, 2025

PINNs need spatial/temporal derivatives to inserted them into the PDE operator ${\cal N}$

$$\mathcal{N}[u_{\theta}] = \frac{\partial u_{\theta}}{\partial t} - \nu \frac{\partial^2 u_{\theta}}{\partial x^2} + u_{\theta} \frac{\partial u_{\theta}}{\partial x} = 0$$

TTIN TO BERLIA

Derivatives for PINNs II

Hence

• calculation of derivatives for PDE (higher order!)

then

Hence

- calculation of derivatives for PDE (higher order!) approaches:
 - nested AD
 - univariate Taylor approach (sketched before)
 - multivariate Taylor approach

then

10 / 13

October 31, 2025

Hence

- calculation of derivatives for PDE (higher order!) approaches:
 - nested AD exponential complexity
 - univariate Taylor approach (sketched before)
 - multivariate Taylor approach

then

10 / 13

October 31 2025

Hence

- calculation of derivatives for PDE (higher order!) approaches:
 - nested AD exponential complexity
 - univariate Taylor approach (sketched before)
 complexity grows quadratically in the degree of the PDE
 - multivariate Taylor approach

then

Hence

- calculation of derivatives for PDE (higher order!) approaches:
 - nested AD exponential complexity
 - univariate Taylor approach (sketched before)
 complexity grows quadratically in the degree of the PDE
 - multivariate Taylor approach object of current research

then

Hence

- calculation of derivatives for PDE (higher order!) approaches:
 - nested AD exponential complexity
 - univariate Taylor approach (sketched before)
 complexity grows quadratically in the degree of the PDE
 - multivariate Taylor approach object of current research

then

② backpropagation (=reverse mode AD) applied to these derivatives \Rightarrow order = order of PDE + 1!

Collapsed Taylor Mode

F. Dangel, T. Siebert, M. Zeinhofer, A. Walther: Collapsing Taylor Mode Automatic Differentiation (to appear in NEURIPS proceedings 2025)

Observation: PDE operators often contain sum of derivatives, e.g., Laplacian

Collapsed Taylor Mode

F. Dangel, T. Siebert, M. Zeinhofer, A. Walther:

Collapsing Taylor Mode Automatic Differentiation (to appear in NEURIPS proceedings 2025)

Observation: PDE operators often contain sum of derivatives, e.g., Laplacian

Idea: Exploit linearity in highest derivative,

i.e., propagate sum, instead of summing up at the end!

Then: Trace is cheaper than complete Hessian

Collapsed Taylor Mode

F. Dangel, T. Siebert, M. Zeinhofer, A. Walther:

Collapsing Taylor Mode Automatic Differentiation (to appear in NEURIPS proceedings 2025)

Observation: PDE operators often contain sum of derivatives, e.g., Laplacian

Idea: Exploit linearity in highest derivative,

i.e., propagate sum, instead of summing up at the end!

Then: Trace is cheaper than complete Hessian

Computational complexity for space dimension n:

univariate: 1 + n + n vectors collapsed: 1 + n + 1 vectors

Collapsed Taylor Mode (Example)

- Nested 1st-order
- Standard Taylor
- Collapsed (ours)

Laplacian

Summary

- Higher-order derivatives important for PINNS and Variational Monte Carlo Simulations
- Various approaches:
 - Nesting (Collapsed) Taylor mode multivariate method
- PyTorch implementation of collpased Taylor mode available at https://github.com/f-dangel/torch-jet

