

CHƯƠNG 5 HỆ THỐNG THÔNG TIN DI ĐỘNG 5G - NR

ET4330

TS. Trần Quang Vinh BM. Kỹ thuật Thông tin Viện Điện tử - Viễn thông Đại học Bách Khoa Hà Nội vinhtq@hust.edu.vn

NỘI DUNG

- KIÉN TRÚC MẠNG 5G-NR
- GIAO DIỆN VÔ TUYÉN
- CÁC CÔNG NGHỆ MỚI TRONG 5G-NR

NHU CÂU SỬ DỤNG 5G

CÁC ỨNG DỤNG CỦA 5G

- Enhanced mobile broadband (eMBB)
- Ultra-reliable and low-latency communication (URLLC)
- Massive machine-type communications (M-MTC)

ĐẶC TRƯNG CỦA 5G

- o The minimum requirements:
 - for peak data rate: Downlink: 20 Gbit/s, Uplink: 10 Gbit/s
 - for peak spectral efficiencies: Downlink: 30 bit/s/Hz, Uplink: 15 bit/s/Hz
 - user plane latency (single user, small packets): 4 ms for eMBB, 1 ms for URLLC
 - control plane latency (idle => active): 10-20ms
- Other requirements:
 - maximum aggregated system bandwidth: at least 100 MHz, up to 1GHz in higher frequency bands (above 6GHz)
 - mobility: up to 500km/h in rural eMBB

ĐẶC TRƯNG CỦA 5G

So sánh các tham số LTE, 5G TF và 3GPP 5G NR

Đặc điểm	LTE	5G TF	3GPP 5G NR
Cấu trúc khung vô	10 ms	10 ms	10 ms
tuyến			
Số khung phụ trong	10	50	10
một khung vô tuyến			
Nhóm sóng mang	5 (phiên bản Rel.	8	16
(carrier aggregation)	10)/32 (phiên bản Rel.		
ở miền tần số	12)		
Khe sóng mang phụ	15 kHz	75 kHz	Thay đổi với hệ số
(carrier spacing)			2^n. 15 kHz (n = –
			2,, 5)
Băng thông	1.4, 3, 5, 10, 15, 20	100 MHz	Thay đổi tới tối đa 400
	MHz		MHz
Tần số sóng mang	Dưới 6 GHz	28 GHz	Tới 100 GHz
(Frequency bands)			
Mức điều chế	Tới 256 QAM	QPSK, 16 QAM và 64	QPSK, 16 QAM, 64
		QAM	QAM, và 256 QAM
Công nghệ MIMO	Tới 8 × 8	Chỉ 2 × 2	Tới 8 × 8
Công nghệ mã hóa	Turbo cho mã hóa dữ	LDPC cho mã hóa dữ	NR LDPC cho mã hóa
kênh	liệu	liệu	dữ liệu

SỰ PHÁT TRIỂN CỦA MẠNG 5G

KIÉN TRÚC MẠNG 5G

- Được chuẩn hóa bởi 3GPP, tháng 12 năm 2017
- o Kiến trúc IP phẳng: giảm thành phần mạng, giảm trễ, giảm chi phí
- Mạng lõi nanocore 5G: công nghệ nano, điện toán đám mây, toàn IP

Cấu trúc trên miền thời gian của NR

- Cấu trúc trên miền thời gian tần số
 - Khối tài nguyên: 12 sóng mang con

Điều chế tín hiệu

Điều chế	Đường lên/Đường xuống	
π/2-BPSK	Chỉ có đường lên, kết hợp precoding	
QPSK	Cả 2 hướng	
16QAM	Cả 2 hướng	
64QAM	Cả 2 hướng	
256QAM	Cả 2 hướng	

Mô hình kênh vô tuyến

- Băng tần từ dưới 1 GHz lên đến 100 GHz
- Độ rộng kênh rất lớn, lên đến trên 500 MHz
- Mô hình hóa phân cực chính xác theo 3 chiều
- Nhất quán về mặt không gian
- Cùng tồn tại nhiều loại đường truyền khác nhau
- Hỗ trợ tính di động cho nhiều loại đầu cuối (D2D, V2V, trạm gốc di chuyển
- Độ phân giải không gian lớn thông qua sử dụng kỹ thuật mảng anten rất lớn, massive MIMO và beamforming

Phân Ioại	Yêu cầu phải đạt
Môi trường	Cho phép mô hình phạm vi làn truyền sóng diện rộng
Phổ – dải tần	Từ 1 GHz đến 100 GHz
Ăng ten	Cho phép mô hình hệ thống ăng ten mảng cỡ lớn
Hệ thống	Cho phép mô hình các tham số cell nhỏ, cell dịch chuyển, D2D, M2M, v2V,
	MU-MIMO,
Độ phức tạp	Có tính khả thi cho việc thực hiện

- CÔNG NGHỆ CỰC NHIỀU ĂNG TEN (MASSIVE MIMO)
 - Số lượng ăng ten thu phát: 8 × 8 đến 64 × 64 hoặc nhiều hơn
 - Tăng độ phân tập không gian lên tới tối đa
 - Điều khiển búp sóng định hướng (3D beamforming)
 - Nhược điểm:
 - Tăng độ phức tạp tính toán của các bộ thu
 - Kiến trúc ăn ten phức tạp

CÔNG NGHỆ ĐA TRUY NHẬP

- OFDMA: Công nghệ truy nhập đa sóng mang trực giao
 - Hướng xuống
- SCMA: (Sparse Code Multiple Access): lai giữa OFDM và CDMA
 - Hướng lên
- NOMA: Công nghệ đa truy nhập phi trực giao
 - Công nghệ đa truy nhập dựa trên miền công suất, trong đó các tín hiệu của người sử dụng được phát đi đồng thời ở miền thời gian và miền tần số.
 - Tín hiệu mỗi người sử dụng được tách ra thông qua công nghệ tách nhiễu lần lượt SIC (Successive Interference Cancellation).
 - Công nghệ NOMA được quan tâm cho đa truy nhập cả hướng xuống và hướng lên trong mạng 5G.

- CÔNG NGHỆ ĐA ĂNG TEN ĐA NGƯỜI DÙNG (MU-MIMO)
 - Là sự mở rộng của công nghệ SU-MIMO
 - Được đưa vào sử dụng ở chuẩn IEEE 802.11ad
 - Phục vụ đồng thời cả miền thời gian và tần số cho nhiều người sử dụng

- Software Defined Networking (SDN)
- Network Functions Virtualization (NFV)
- Network slicing