

Tratamiento de Señales

Version 2022-I

Segmentación con Imágenes a Color

[Capítulo 2]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

1. Por canal de color

Ejemplos Similares

Otros Ejemplos

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

2. Adaptivo por umbral (idea inicial)

$$I(x,y) = k_{\rm r}R(x,y) + k_{\rm g}G(x,y) + k_{\rm b}B(x,y)$$

En conversión normal:

Los valores k_r , k_g , k_b son aprox. 1/3

Es necesario que siempre sea así?

No

$$I(x,y) = k_{\rm r}R(x,y) + k_{\rm g}G(x,y) + k_{\rm b}B(x,y)$$
Proc

$$J(x,y) = \frac{I(x,y) - I_{\min}}{I_{\max} - I_{\min}}$$

$$\sigma_J^2(k_{\rm r},k_{\rm g},k_{\rm b}) \rightarrow {\rm max}$$

Optimización: Estimar k_r, k_g, k_b tal que la varianza de J sea máxima

Solución: J es una imagen de alto contraste (High Contrast Image)

Available online at www.sciencedirect.com

JOURNAL OF FOOD ENGINEERING

Journal of Food Engineering 66 (2005) 353-360

www.elsevier.com/locate/jfoodeng

Segmentation of colour food images using a robust algorithm

Domingo Mery a,*, Franco Pedreschi b

a Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile,
 Av. Vicuña Mackenna 4860(183), Santiago de Chile, Chile
 b Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnologíca, Universidad de Santiago de Chile (USAH),
 Av. Ecuador 3769, Santiago de Chile, Chile

Received 14 October 2003; accepted 4 April 2004

Abstract

In this paper, a robust algorithm to segmenting food image from a background is presented using colour images. The proposed method has three steps: (i) computation of a high contrast grey value image from an optimal linear combination of the RGB colour components; (ii) estimation of a global threshold using a statistical approach; and (iii) morphological operation in order to fill the possible holes presented in the segmented binary image. Although the suggested threshold separates the food image from the background very well, the user can modify it in order to achieve better results. The algorithm was implemented in Matlab and tested on 45 images taken in very different conditions. The segmentation performance was assessed by computing the area A_z under the receiver operation characteristic (ROC) curve. The achieved performance was $A_z = 0.9982$.

© 2004 Eiseviel Ltd. All lights leserved.

Keywords: Image analysis; Image processing; Segmentation; Colour images

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Clustering

3. Clustering

Clustering usando k-means

Choose random K=2 points (centroids)

Assign to the nearest centroid

Compute new centroids

47

Repeat until convergence

Algorithm K-Means:

- 1. Input Data $X = \{x_1, x_2, \dots x_N\}$ and number of clusters K
- 2. Centroids $\{c_1, c_2, \dots c_K\}$ = random K points of X
- 3. For each data point x_i
- 4. Compute distance $d_{ij} = d(x_i, c_j)$ i=1,...,N, j=1,...K
- 5. Assign x_i to the nearest centroid: $y_i = \operatorname{argmin}_{i} \{d_{ij}\}$
- 6. Compute the new centroids of each cluster $c_i^* = mean(x_i)$ for $y_i^* = j$
- 7. if $c_i^* \neq c_i$ then $c_i = c_i^*$ go to step 3
- 8. Output: $\{c_1^*, c_2^*, ..., c_K^*\}$ and y_i for i=1,...,N

INPUT

OUTPUT

Tres métodos fundamentales:

- 1. Por canal de color
- 2. Adaptivo por umbrales
- 3. Usando clustering