```
import warnings
warnings.filterwarnings("ignore")
import pandas as pd
```

Since the error "Unmatched """ when when decoding 'string' "occurs, the below line has been done to check the mistakes

• The JSONDecodeError is caused by an unterminated string in the JSON file. This could be due to a missing closing quotation mark or an invalid escape sequence.

```
!cat /content/drive/MyDrive/SlashMark/loan_approval_loan_approval_dataset.json | grep -o "\"$"
import json
with open('/content/drive/MyDrive/SlashMark/loan_approval_loan_approval_dataset.json', 'r') as f:
    data = json.load(f)

df = pd.read_json('/content/drive/MyDrive/SlashMark/loan_approval/loan_approval_dataset.json')

Start coding or generate with AI.

df.head()

Id Income Age Experience Married/Single House_Ownership Car_Ownership

0 1 1303834 23 3 single rented no Mech
```

					,			
0	1	1303834	23	3	single	rented	no	Mech
1	2	7574516	40	10	single	rented	no	Soft
2	3	3991815	66	4	married	rented	no	
3	4	6256451	41	2	single	rented	yes	Soft
4	5	5768871	47	11	single	rented	no	
4								>

Data Cleaning, Preprocessing and Visualisation

```
df.info()
<class 'pandas.core.frame.DataFrame'>
     Index: 252000 entries, 0 to 251999
     Data columns (total 13 columns):
      # Column
                               Non-Null Count
                                                   Dtype
                               252000 non-null int64
      0
          Td
                               252000 non-null
      1
          Income
                                                   int64
                               252000 non-null
                                                   int64
      3
          Experience
                               252000 non-null
                                                   int64
          Married/Single 252000 non-null object
House_Ownership 252000 non-null object
Car_Ownership 252000 non-null object
Profession 252000 non-null object
          Profession
                                252000 non-null object
                                252000 non-null object
          CITY
                                252000 non-null
          STATE
                                                   object
      10 CURRENT JOB YRS
                                252000 non-null int64
      11 CURRENT_HOUSE_YRS 252000 non-null int64
      12 Risk_Flag
                                252000 non-null int64
     dtypes: int64(7), object(6)
     memory usage: 26.9+ MB
```

df.isna().sum()

```
→ Id
                         0
    Income
                         0
    Age
    Experience
                         0
    Married/Single
                         0
    House_Ownership
                         0
    Car_Ownership
                         0
    Profession
                         0
    CITY
                         0
    STATE
    CURRENT_JOB_YRS
                         0
    CURRENT_HOUSE_YRS
                         0
    Risk_Flag
                         0
    dtype: int64
```

df.describe(include='all').T

$\overline{}$							
₹		count	unique	top	freq	mean	
	ld	252000.0	NaN	NaN	NaN	126000.5	72746
	Income	252000.0	NaN	NaN	NaN	4997116.665325	2878311
	Age	252000.0	NaN	NaN	NaN	49.954071	17
	Experience	252000.0	NaN	NaN	NaN	10.084437	
	Married/Single	252000	2	single	226272	NaN	
	House_Ownership	252000	3	rented	231898	NaN	
	Car_Ownership	252000	2	no	176000	NaN	
	Profession	252000	51	Physician	5957	NaN	
	CITY	252000	317	Vijayanagaram	1259	NaN	
	STATE	252000	29	Uttar_Pradesh	28400	NaN	
	CURRENT_JOB_YRS	252000.0	NaN	NaN	NaN	6.333877	3
	CURRENT_HOUSE_YRS	252000.0	NaN	NaN	NaN	11.997794	1
	Risk Flag	252000.0	NaN	NaN	NaN	0.123	C

df.describe().T

$\overline{\Rightarrow}$		count	mean	std	min	25%	
	ld	252000.0	1.260005e+05	7.274628e+04	1.0	63000.75	1260
	Income	252000.0	4.997117e+06	2.878311e+06	10310.0	2503015.00	5000€
	Age	252000.0	4.995407e+01	1.706385e+01	21.0	35.00	
	Experience	252000.0	1.008444e+01	6.002590e+00	0.0	5.00	
	CURRENT_JOB_YRS	252000.0	6.333877e+00	3.647053e+00	0.0	3.00	
	CURRENT_HOUSE_YRS	252000.0	1.199779e+01	1.399037e+00	10.0	11.00	
	Risk Flag	252000.0	1.230000e-01	3.284379e-01	0.0	0.00	•

df.columns

```
plt.title("Frequency of each Profession")
plt.ylabel("Profession")
plt.xlabel("Count")
for container in ax.containers:
```

ax = sns.countplot(y=df['Profession'])

ax.bar_label(container)

plt.show()

Count

Industrial_Engineer

Technology_specialist -

```
loany=df['Risk_Flag'].replace({0:'No' ,1:'Yes'}).value_counts()
```

$\overline{\Rightarrow}$

Loan Approval through Behaviour

percentage of "single/married"

df_Age =df[['Age']].value_counts()
df Age

```
35 3444
51 3397
52 3197
Name: count, dtype: int64
```

```
Age
27
\overline{\Rightarrow}
                5197
      66
      48
                4967
      33
               4921
      41
               4827
      45
               4806
      54
               4785
      68
               4772
      35
               4643
      50
               4624
```

Name: count, dtype: int64

df_age1.plot(kind ='bar')

df_CITY =df[['CITY']].value_counts().head(10)
df_CITY

```
\overline{\Rightarrow}
     CITY
     Vijayanagaram
                        1259
                        1208
     Bhopal
     Bulandshahr
                        1185
                        1180
     Saharsa[29]
     Vijayawada
                        1172
     Srinagar
                        1136
     Indore
                        1130
     New_Delhi
                        1098
     Hajipur[31]
                        1098
     Satara
                        1096
     Name: count, dtype: int64
```

df_CITY.plot(kind ='pie')

→ <Axes: ylabel='count'>

df_owner_ship =df[['House_Ownership']].value_counts().head(10)
df_owner_ship

→ House_Ownership

rented 231898 owned 12918 norent_noown 7184 Name: count, dtype: int64

df_owner_ship.plot(kind ='bar')

df_experience =df[['Experience']].value_counts().head(10)
df_experience

_	Experi	ience		
	6		13158	
	9		12936	
	12		12800	
	18		12601	
	10		12503	
	5		12441	
	14		12369	
	19		12287	
	17		12131	
	16		12106	
	Name:	count,	dtype:	int64

df_experience.plot(kind ='line')

correlation_matrix = df.corr(numeric_only=True)

Plot heatmap
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt='.2f', square=True)
plt.title('Correlation Matrix')
plt.show()

#Top Highly correlated features with the target variable
correlation_matrix['Risk_Flag'].sort_values(ascending=False)

Risk_Flag 1.000000

Id 0.032153

Income -0.003091

CURRENT_HOUSE_YRS -0.004375

CURRENT_JOB_YRS -0.016942

Age -0.021809

Experience -0.034523

Name: Risk_Flag, dtype: float64

Start coding or generate with AI.

Insights

1.singles are seeking loans mostly and the rate of risk is also low.

2.people with rented rooms and no cars are applying for loans more compared to others.

3.people with house or car are less risky.

4.all profession people are applying for loans at nearly same rate.

5.people from uttarpradesh and maharashtra are applying more for loans.

```
from sklearn.preprocessing import StandardScaler

df["Income"]=StandardScaler().fit_transform(df[["Income"]])

df["Married/Single"]=df["Married/Single"].replace({'single':0,'married':1}).astype(int)

df["Car_Ownership"]=df["Car_Ownership"].replace({'no':0,'yes':1}).astype(int)

from sklearn.preprocessing import LabelEncoder

df["House_Ownership"]= LabelEncoder().fit_transform(df[["House_Ownership"]])

df["Profession"]= LabelEncoder().fit_transform(df[["Profession"]])

df["STATE"]= LabelEncoder().fit_transform(df[["STATE"]])

df["CITY"]= LabelEncoder().fit_transform(df[["CITY"]])

Start coding or generate with AI.
```

Feature Engineering and model development

With the help of heatmap of correlation matrix, these are the factors affecting the target column: age, exp, martial status, car, house, current job

```
# Separate features and target variable
X = df.drop(columns=['Id', 'Risk_Flag'])
y = df['Risk_Flag']
# Split the data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Standardize the features for models that require scaling
scaler = StandardScaler()
X train scaled = scaler.fit transform(X train)
X_test_scaled = scaler.transform(X_test)
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.svm import SVC
from \ sklearn.metrics \ import \ classification\_report, \ roc\_auc\_score, \ roc\_curve, \ confusion\_matrix, \ ConfusionMatrixDisplay
# Initialize models
models = {
    "Logistic Regression": LogisticRegression(),
    "Decision Tree": DecisionTreeClassifier(),
    "Random Forest": RandomForestClassifier(n_estimators=100),
    "XGBoost": XGBClassifier(use_label_encoder=False, eval_metric='logloss')
# Train and evaluate models
for name, model in models.items():
   if name in ["Logistic Regression", "SVM"]:
       model.fit(X train scaled, y train)
        y_pred = model.predict(X_test_scaled)
       y_proba = model.predict_proba(X_test_scaled)[:, 1]
   else:
       model.fit(X_train, y_train)
       y_pred = model.predict(X_test)
        y_proba = model.predict_proba(X_test)[:, 1]
    print(f"Model: {name}")
    \verb|print(classification_report(y_test, y_pred))|\\
    print(f"AUC-ROC: {roc_auc_score(y_test, y_proba)}")
    print("-" * 40)
→ Model: Logistic Regression
                  precision
                              recall f1-score
                                                   support
                        0.88
                                  1.00
                                            0.93
                                                     6253
                        0.00
                                  0.00
                                            0.00
                                                     50400
        accuracy
                                            0.88
                        0.44
                                  0.50
                                            0.47
                                                     50400
        macro avg
     weighted avg
                        0.77
                                  0.88
                                            0.82
                                                     50400
     AUC-ROC: 0.55135175453744
     Model: Decision Tree
                  precision
                              recall f1-score
                                                  support
                                  0.92
                                            0.93
                                                     44147
                        0.52
                                  0.57
                                            0.54
                                                      6253
               1
                                            0.88
                                                     50400
        accuracy
                                  0.75
        macro avg
                        0.73
                                            0.74
                                                     50400
     weighted avg
                        0.89
                                  0.88
                                            0.88
                                                     50400
     AUC-ROC: 0.8505028330053463
     Model: Random Forest
                  precision
                              recall f1-score
                                                   support
                                 0.95
                                            0.94
               0
                        0.94
                                                     44147
               1
                        0.61
                                  0.54
                                            0.57
                                                      6253
                                            0.90
                                                     50400
         accuracy
        macro avg
                        0.77
                                  0.74
                                            0.76
                                                     50400
     weighted avg
                        0.89
                                  0.90
                                            0.90
                                                     50400
     AUC-ROC: 0.9375357540116536
```
