Subarray Sum of Cyclic Array

Input file: standard input
Output file: standard output

Time limit: 2 seconds

Memory limit: 1024 megabytes

bribritt has an infinitely long array!

You know that $A_i = A_{i+N}$ for all integers i. In addition, you are given $A_0, A_1, ..., A_{N-1}$.

Now, bribritt has Q queries. For each query, you need to find $A_l + A_{l+1} + \cdots + A_r$.

Help him answer the Q queries!

Input

The first line contains two integers, N and Q.

The next line contains N integers, A_0 to A_{N-1} .

The next Q lines contain two integers each, l and r.

Output

Output Q lines, the answer for the queries.

Scoring

For all testcases,

- $1 \le N, Q \le 2 \times 10^5$
- $0 \le A_i \le 10^9$
- $0 \le l \le r \le 10^9$

Subtask	Score	Additional constraints
1	10	l and $r+1$ are multiples of N
2	10	$r, Q \le 2 \times 10^3$
3	20	$r \le 2 \times 10^5$
4	30	Q = 1
5	30	No additional constraints
6	0	Sample test cases

Example

standard output
13
24

Note

For the first query, the answer is $A_1 + A_2 = 6 + 7 = 13$.

For the second query, the answer is

$$A_2 + A_3 + A_4 + A_5 + A_6 = A_2 + A_0 + A_1 + A_2 + A_3$$

$$= A_2 + A_0 + A_1 + A_2 + A_0$$

$$= 7 + 2 + 6 + 7 + 2$$

$$= 24$$