Spatial Reading Group Optional Subtitle

February 13, 2017

Outline

First Main Section
First Subsection
Second Subsection

Extension - Preferential Sampling

Outline

First Main Section
First Subsection
Second Subsection

Extension - Preferential Sampling

First Slide Title

Optional Subtitle

- My first point.
- My second point.

Outline

First Main Section
First Subsection
Second Subsection

Extension - Preferential Sampling

► First item.

- ► First item.
- Second item.

- ► First item.
- Second item.
- ► Third item.

- First item.
- Second item.
- ► Third item.
- ► Fourth item.

- ► First item.
- Second item.
- ► Third item.
- ► Fourth item.
- Fifth item.

- First item.
- Second item.
- ► Third item.
- ► Fourth item.
- ▶ Fifth item. Extra text in the fifth item.

Preferential Sampling

The Problem

- So far we have assumed the sampling locations X are fixed, or assumed known.
- What if the sampling locations depend on the underlying field S?

Example

- Pollution data from measuring stations
- Ocean temperature data from marine mammals
- ► Lead concentration in Galicia (to be shown)

Preferential Sampling

Figure: Example of a single realisation of S and corresponding 100 sampling locations selected using a spatial Poisson Process with intensity $\lambda(x) = \exp(\beta S(x))$.

Maximum Likelihood Estimation

Gaussian model

$$Y \sim N(D\beta, \sigma^2 R(\phi) + \tau^2 I)$$

with covariates matrix $D_{n \times p}$, regression coefficients β , covariance of a parametric model for S(x), and nugget variance τ^2 .

The log-likelihood function is

$$L(\beta, \tau^2, \sigma^2, \phi) = -0.5\{n\log(2\pi) + \log\{|(\sigma^2 R(\phi) + \tau^2 I)|\} + (y - D\beta)^T(\sigma^2 R(\phi) + \tau^2 I)^{-1}(y - D\beta)\}$$

▶ Let $\nu^2 = (\tau^2/\sigma^2)$, $V = R(\phi) + \nu I$, then $L(\beta, \tau^2, \sigma^2, \phi)$ is maximized at

$$\hat{\beta}(V) = (D^T V^{-1} D)^{-1} D^T V^{-1} y \tag{1}$$

$$\hat{\sigma}^{2}(V) = n^{-1} \{ y - D\hat{\beta}(V) \}^{T} V^{-1} \{ y - D\hat{\beta}(V) \}$$
 (2)

Maximum Likelihood Estimation

- ▶ Plug (1) and (2) into $L(\beta, \tau^2, \sigma^2, \phi)$ and obtain the concentrated log-likelihood: $L_0(\nu^2, \phi) = -0.5\{n\log(2\pi) + n\log\hat{\sigma}^2(V) + \log|V| + n\}$
- Optimize $L_0(\nu^2, \phi)$ numerically with respect to ν and ϕ ; back substitution to obtain $\hat{\sigma}^2$ and $\hat{\beta}$
- ▶ Re-parameterisation of V can be used to obtain more stable estimation, e.g the ratio σ^2/ϕ is more stable than σ^2 and ϕ
- ► Computational tool: profile log-likelihood: Assume a model with parameters (α, ψ) ,

$$\mathit{L}_{\mathit{p}}(\alpha) = \mathit{L}(\alpha, \hat{\psi}(\alpha)) = \max_{\psi}(\mathit{L}(\alpha, \psi))$$

Maximum Likelihood Estimation

- ► Non-Gaussian data:
 - (1): transformation to Gaussian (2) generalized linear model
- ▶ (1) E.g. Box-Cox transformation; denote the transformed responses $Y^* = (Y_1^*, ..., Y_n^*)$, and fit a Gaussian model

$$Y^* \sim N(D\beta, \sigma^2\{R(\phi) + \tau^2 I\})$$

Computationally demanding, transformation may impede scientific interpretation

▶ (2) Generalized linear model

$$L(\theta|S) = \prod_{i=1}^{n} f_i(y_i|S,\theta)$$

$$L(\theta,\phi) = \int_{S} \prod_{i=1}^{n} f_i(y_i|s,\theta)g(s|\phi)ds$$

Involve high dimensional integration; need MCMC/Hierarchical likelihood/Generalized estimating equations

Maximum Likelihood Estimation (An Example)

Model with constant mean							
Model	$\hat{m{\mu}}$	$\hat{\sigma}^2$	$\hat{\phi}$	$\hat{ au}^2$	logL		
$\kappa = 0.5$	863.71	4087.6	6.12	0	-244.6		
$\kappa = 1.5$	848.32	3510.1	1.2	48.16	-242.1		
$\kappa = 2.5$	844.63	3206.9	0.74	70.82	-242.33		

Model with linear trend								
Model	$\hat{oldsymbol{eta}}_0$	$\hat{\boldsymbol{\beta}}_1$	$\hat{\boldsymbol{\beta}_2}$	$\hat{\sigma}^2$	$\hat{\phi}$	$\hat{ au}^2$	logL	
$\kappa = 0.5$	919.1	-5.58	-15.52	1731.8	2.49	0	-242.71	
$\kappa = 1.5$	912.49	-4.99	-16.46	1693.1	0.81	34.9	-240.08	
$\kappa=2.5$	912.14	-4.81	-17.11	1595.1	0.54	54.72	-239.75	

Preferential Sampling

Solution

▶ We must account for the dependence between *X* and *S*.

$$L(\theta) = \int [X, Y, S] dS.$$
 (3)

- ▶ Diggle et al. 2010 Monte Carlo
- Integrated Nested Laplace Approximation (INLA) Joe
- Template Model Builder Danny

Preferential Sampling

Results

Model	Parameter	Standard MLE	TMB
Preferential	Bias	(0.77, 1.36)	(0.41, 0.94)
Preferential	Root-mean-square error	(0.86, 1.40)	(0.60, 1.05)

Table: Comparison of approximate 95% confidence intervals for the root-mean-square errors and bias between standard MLE and TMB over 50 independent simulations for preferential ($\beta=2$) at location $x_0=(0.49,0.49)$.

Summary

- ► The first main message of your talk in one or two lines.
- ▶ The second main message of your talk in one or two lines.
- Perhaps a third message, but not more than that.
- Outlook
 - Something you haven't solved.
 - Something else you haven't solved.

For Further Reading I

A. Author.

Handbook of Everything.

Some Press, 1990.

S. Someone.

On this and that.

Journal of This and That, 2(1):50-100, 2000.