

Reti Logiche A AA 2004/2005

Forme canoniche e trasformazioni con De Morgan

Docente: prof. William FORNACIARI

fornacia@elet.polimi.it www.elet.polimi.it/people/fornacia

Definizioni: Mintermini e Maxtermini

Mintermine

- espressione prodotto che contiene in modo affermato o negato tutte le variabili di una funzione
- ► esempio: $m_3 = \overline{X} \cdot y \cdot z$

$$3 = 011$$

- non è mintermine di funzione a tre var: x y, xz, ...
- Maxtermine
 - espressione somma che contiene in modo affermato o negato tutte le variabili di una funzione
 - esempio: $M_3 = x + \overline{y} + \overline{z}$
 - ▶ non è Maxtermine di funzione a tre var: x+y, x, ...

Forme canoniche

- A partire dalla tabella di verità, ogni funzione logica può essere espressa univocamente in
 - Prima Forma canonica (SOP)
 - sommatoria di tutti i mintermini relativi alle configurazioni di ingresso che generano uscita 1
 - Seconda Forma canonica (POS)
 - produttoria di tutti i maxtermini relativi a configurazioni di ingresso corrispondenti agli 0 della funzione di uscita
- Tale possibilità è conseguenza del teorema di espansione di Shannon
 - $f(x_1, x_2, ...x_n) = \overline{x}_1 f(0, x_2, ...x_n) + x_1 f(1, x_2, ...x_n)$
 - $f(x_1, x_2, ...x_n) = (\overline{x}_1 + f(1, x_2, ...x_n)) (x_1 + f(0, x_2, ...x_n))$

Esempio: somma binaria

Riporto	1110	
Addendo	1011+	
Addendo	0 1 1 1 =	
Somma	10010	

X_0	\mathbf{Y}_{0}	\mathbf{C}_{0}	S_0	C_1
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Esempio: Prima Forma canonica

$$C_1 = 1$$
 se $\chi_0 \quad \chi_0 \quad C_0$
 $0 \quad 1 \quad 1 \quad \chi_0 \chi_0 C_0 + 1$
 $1 \quad 0 \quad 1 \quad \chi_0 \chi_0 C_0 + 1$
 $1 \quad 1 \quad 1 \quad \chi_0 \chi_0 C_0 + 1$
 $1 \quad 1 \quad 1 \quad \chi_0 \chi_0 C_0$

•
$$C_1(x,y,c_0) = m_3+m_5+m_6+m_7=\Sigma(3,5,6,7)$$

Esempio: Seconda Forma canonica

$$C_1 = 0$$
 se x_0 y_0 C_0
 0 0 0 $(x_0 + y_0 + C_0)$
 0 0 1 $(x_0 + y_0 + \overline{C_0})$
 0 1 0 $(x_0 + y_0 + \overline{C_0})$
 1 0 0 $(x_0 + y_0 + C_0)$

$$C_1(x,y,c_0) = M_0 M_1 M_2 M_4 = \Pi(0,1,2,4)$$

Sintesi SOP o POS

- Le RC corrispondenti alle forme canoniche sono sempre a due livelli
- In generale una qualunque espressione POS o SOP può essere realizzata con RC a due livelli di logica
 - Esempio: U = (A+B)(A+B+C)

Equivalenze: leggi di De Morgan

□ II teorema di De Morgan afferma

$$A \bullet B = A + B$$

che corrisponde all'equivalenza circuitale

□ Le relazioni di equivalenza dell'algebra booleana sono interpretate a livello circuitale come relazioni di equivalenza fra moduli logici

Equivalenze

La possibilità di rappresentare in modo diverso le stesse funzioni logiche consente di effettuare trasformazioni circuitali basandosi su proprietà algebriche

