# Fundamentals of Molecular Ecology I:

Heredity & The Nature of Heritable Information





Lecture credit: Dr. Christopher E. Bird



## Learning Objectives

- Describe the structure of proteins
- Describe the organization of DNA and its connection to heritable traits, evolution
  - Coding vs noncoding
  - Somatic vs germline mutations
  - Independent assortment & genetic recombination
- Describe mechanisms of gene expression
  - Role of environment
- Discuss complex relationship between phenotype and genotype

## Central Dogma of Biology



# Proteins are chains of <u>amino acids</u>

- Cells mostly composed of proteins
- Critical components of life's chemical reactions
- 100,000 proteins in humans
  - Made from how many amino acids?
- Amino acid sequence determines structure and function



## Human protein-coding genes and gene feature statistics in 2019 (Piovesan et al 2019)

|               | Protein-coding genes <sup>a</sup> | mRNAs <sup>b</sup>              |  |  |  |  |
|---------------|-----------------------------------|---------------------------------|--|--|--|--|
| Number        |                                   |                                 |  |  |  |  |
| Total entries | 19,116                            | 49,632                          |  |  |  |  |
| Median        | N/A                               | N/A                             |  |  |  |  |
| Mean          | Per chr: 797                      | N/A                             |  |  |  |  |
| SD            | N/A                               | N/A                             |  |  |  |  |
| Min           | chrY: 47<br>chr21: 228            | N/A                             |  |  |  |  |
| Max           | chr1: 1952                        | N/A                             |  |  |  |  |
| Length        |                                   |                                 |  |  |  |  |
| Median        | 26,018 bp                         | 2938 bp                         |  |  |  |  |
| Mean          | 66,646 bp                         | 3522 bp                         |  |  |  |  |
| SD            | 131,781 bp                        | 2557 bp                         |  |  |  |  |
| Shortest      | 189 bp ( <i>KRTAP6-2</i> , chr21) | 186 bp ( <i>DEFB133</i> , chr6) |  |  |  |  |
| Longest       | 2,473,592 bp (RBFOX1, chr16)      | 109,224 bp ( <i>TTN</i> , chr2) |  |  |  |  |
| Total         | 1,274,002,474 bp                  | 174,797,813 bp                  |  |  |  |  |



## Amino acid sequences encoded in DNA

- DNA composed of nucleotide chains
  - Phosphate Backbone
  - Bases encode information
    - ATGC
- Double Helix

Adenine

- AT-GC rule
- All life uses DNA, except some viruses
  - SARS-CoV-2



### **DNA Replication:**

# Passing on heritable information

- DNA sequence replicated during cell division
  - template strand
- Mutation: any change to the genomic sequence
  - Can occur during DNA replication

# Eukaryotic DNA is organized into chromosomes



# In diploids, chromosomes come in homologous pairs



#### Ploidy: Number of copies of unique chromosomes in a cell



## Central Dogma of Biology



1.2% of human genome is composed of genes

Proteins are encoded in genes

**DNA Polymerase** 

- make up small portion of most eukaryotic genomes
- DNA must be transcribed to RNA before the RNA is translated to a Protein
  - Thymine is transcribed to Uracil

## Gene Regulation: process that modulates frequency, rate, or extent of gene expression

- Most genes are not continuously expressed
  - expression:conversion of genes into a product
  - all cells in organism have same genome but can have different form and function due to gene expression



# Several proteins are necessary for RNA transcription, any one could regulate transcription



### Ribosomes translate mRNA into protein

|                   |   | 2nd base in Codon        |                          |                            |                                  |                  |                   |
|-------------------|---|--------------------------|--------------------------|----------------------------|----------------------------------|------------------|-------------------|
|                   |   | U                        | С                        | Α                          | G                                |                  |                   |
| 1st base in Codon | U | Phe<br>Phe<br>Leu<br>Leu | Ser<br>Ser<br>Ser<br>Ser | Tyr<br>Tyr<br>STOP<br>STOP | Cys<br>Cys<br><b>STOP</b><br>Trp | U C A G          |                   |
|                   | C | Leu<br>Leu<br>Leu<br>Leu | Pro<br>Pro<br>Pro<br>Pro | His<br>His<br>Gln<br>Gln   | Arg<br>Arg<br>Arg<br>Arg         | U C A G          | 3rd base in Codon |
|                   | A | lle<br>lle<br>lle<br>Met | Thr<br>Thr<br>Thr<br>Thr | Asn<br>Asn<br>Lys<br>Lys   | Ser<br>Ser<br>Arg<br>Arg         | U<br>C<br>A<br>G | 3rd base          |
|                   | G | Val<br>Val<br>Val<br>Val | Ala<br>Ala<br>Ala<br>Ala | Asp<br>Asp<br>Glu<br>Glu   | Gly<br>Gly<br>Gly<br>Gly         | U<br>C<br>A<br>G |                   |

RNA codons
encode particular
amino acids within
3 ribonucleotides



# Alternative RNA splicing can result in multiple proteins from a single gene



# Genomes vary in size and complexity

**TABLE 5.2** Variation in Genome Size and Complexity

| Organism                         | Number of Chromosomes | Megabases in Genome | Approximate Number of<br>Protein-Coding Genes |
|----------------------------------|-----------------------|---------------------|-----------------------------------------------|
| N. deltocephalinicola (bacteria) | 1                     | 0.112               | 137                                           |
| E. coli (bacteria)               | 1                     | 4.6                 | 4300                                          |
| S. cerevisiae (yeast)            | 16                    | 12.1                | 6700                                          |
| C. elegans (nematode)            | 6                     | 100                 | 20,000                                        |
| A. thaliana (Thale cress)        | 5                     | 120                 | 27,000                                        |
| D. melanogaster (fly)            | 4                     | 180                 | 14,000                                        |
| N. vectensis (sea anemone)       | 15                    | 450                 | 27,000                                        |
| C. familiaris (dog)              | 39                    | 2400                | 20,000                                        |
| M. musculus (mouse)              | 20                    | 2600                | 19,900                                        |
| H. sapiens (humans)              | 23                    | 3000                | 20,000                                        |
| P. abies (Norway spruce)         | 12                    | 20,000              | 28,300                                        |
| A. mexicanum (axolatl)           | 14                    | 32,000              | 23,251                                        |
| N. forsteri (lungfish)           | 17                    | 43,000              | 31,120                                        |

Most variation in size is due to differences in mobile genetic elements: DNA segments that can move (ex: transposons) and replicate themselves within genome

## Key Concepts

- Proteins have diverse functions and changes that can affect
  - Cell structure
  - Ability to catalyze enzymatic reactions
  - Cell-cell signaling
  - Ability to respond to other molecules
- Because of its stability, DNA forms the basis of a system that encodes and replicates information essential for life

## Key Concepts

Mutations to DNA can alter the structure of proteins

 Genomes typically contain a diversity of noncoding elements that reflect the evolutionary history of the organism





# MUTATIONS CREATE VARIATION

## **Key Concepts**

- Germ-line mutations are rare, but accumulate in populations over time
  - These mutations are the raw material for evolution
- In diploids, deleterious mutations may be masked by the presence of a functional copy of the gene on the other chromosome
- Changes in gene expression affect where, when, and how much a gene is transcribed
- Changes in gene expression add another component to heritable genetic variation

## Types of mutation

#### **Point mutation**

TGCATTGCGTAGGC

TGCATTCCGTAGGC



#### Insertion

TGCATTTAGGC
TGCATTCCGTAGGC



#### **Deletion**

TGCATTTAGGC





# Point mutations can affect phenotype



### Germ line mutations are heritable

- Somatic mutations: affect cells in the body of an organism; not heritable
- Germ-line mutations: affect gametes; heritable and relevant to evolution



## Mutations arise at different rates









## **HEREDITY**

## Key Concepts

- Meiosis generates considerable genetic variation
  - Recombination
  - Independent assortment
- Fusion of egg and sperm results in great genetic diversity among offspring

# Recombination causes novel combinations of alleles among loci





# Independent assortment ensures novel combinations of alleles among loci



In humans, there are 2<sup>23</sup> different possible combinations of chromosomes in the offspring of two parents



## Learning Objectives

- Describe the structure of proteins
- Describe the organization of DNA and its connection to heritable traits, evolution
  - Coding vs noncoding
  - Somatic vs germline mutations
  - Independent assortment & genetic recombination
- Describe mechanisms of gene expression
  - Role of environment
- Discuss complex relationship between phenotype and genotype

## Linking genotype and phenotype

 Genotype: the genetic make-up of an individual



Phenotype: an observable measurable characteristic of an organism

# Sometimes a single genotype can produce multiple phenotypes



Polyphenic trait: single genotype produces multiple phenotypes depending on environment



#### Phenotypic Plasticity:

phenotypic changes in response to a unique environment

Horn length affected by nutrition in beetles

# Quantitative traits influenced by genes and the environment



Francis Galton (1822-1911)



Quantitative traits influenced by multiple genes; generate a normal distribution

### Human height has genetic component



# Human height also has environmental component (nutrition)

- Children of more affluent families are taller
  - GuatemalanLadino (tall & rich)and Maya (short & poor)
  - American Maya10cm taller



## So What Does All of this Have to do With Evolution?

- Heritability is a key component of evolutionary theory
- A correlation between genotype and phenotype is required for evolution to be a viable theory
  - Natural selection can drive phenotypic changes but the phenotypes are not directly heritable
  - Natural selection can drive genotypic changes
- While Darwin had no specific knowledge of the laws of heritability, his theory of evolution via natural selection is consistent with these laws



# DNA Preservation & Stabilization

John Whalen

Lecture credit: Dr. Christopher E. Bird





## Sample Collection & Preservation Should Be Planned

- Minimize time between collection/tissue death & preservation
- Test effectiveness of different preservation methods



# Collection Methods For DNA or RNA analysis

#### Fish:

- Electrofishing
- Nets: Seine, dip, gill
- Rotenone
- Trawling
- Line fishing
- Blast fishing
- Market collections







## We Can Enrich for Long Strands of DNA

**DNA Extraction: Separate Ligations** 



## We Can Enrich for Long Strands of DNA

SPRI - Select Beads-based Size Selection

But it would be better if we didn't have to rescue a sample



## **Causes of DNA Degredation**

- Autolysis
  - DNases
    - Exonucleases
    - Endonucleases
- Microbes





# DNA Degrades Following Death

- DNA extracted following euthanasia
- Degradation increases with time



 When in doubt, get tissue into preservative as soon as possible



#### **DNA Size Matters**

- Preservation solution: DESS > EtOH
- DNA degrades following death



# Common Preservation Methods for Marine Animals

- Extract Live Tissue
- Liquid Nitrogen
- Ethanol (95% or higher)
- DIY RNA Later
- DIY Salt-saturated DMSO
- Commercial products
- Guanidine







- Field Extraction of Live Tissue
  - Pros:
    - It works
  - Cons:
    - Cumbersome equipment transport
    - Silica membrane clogs with vacuum
    - Generally inconvenient to collect and extract in same day

- Equipment List
  - Thermomixer
  - Vacuum pump & manifold
  - Pipettors
- Supplies & Reagents
  - Tips
  - Gloves
  - Extraction kit

- DIY RNA Later
  - Pros:
    - Works with everything
    - Very inexpensive
    - Components are common
    - Not flammable
  - Cons:
    - Must be frozen (-20C) after 24hrs
    - It takes a while to make
    - Tissue gets soft

- Liquid Nitrogen
  - Pros:
    - Doesn't introduce chemicals
    - Works for everything
  - Cons:
    - Bulky dewars
    - Expensive
    - Samples very sensitive to temperature changes
    - Accidental exposure
    - Looks like a bomb

- Commercial Preservatives
  - Pros:
    - They work
    - Not flammable

- Cons:
  - Expensive

- 4M GuHCI / Qiagen Buffer AL
  - Pros:
    - Works with everything
    - Not flammable
    - Denatures proteins
  - Cons:
    - Dissolves tissue
    - I'm not sure how long samples can be preserved, I figured out that this works by mistake

- Ethanol
  - Pros:
    - Good for fish
    - Common
    - Not too expensive
  - Cons:
    - Flammable
    - Not great for most inverts

- DESS (DMSO, EDTA, saturated salt)
  - Pros:
    - Works with everything
    - Inexpensive
    - Components are common
    - Not flammable
  - Cons:
    - Takes time to make
    - Tissue turns to mush

**Extraction Tips** 

- Clean workstation/tools with bleach, DNase, DI
  - Ethanol kills microbes but preserves DNA
- Rinse tissue before digestion
- Use Proteinase K and RNase A for digestion
- Use a thermomixer or equivalent to incubate tissue digest
- Minimize digestion time
  - Incubate at temp, >1000rpm, until tissue is dissolved
- Separate Elutions
- Save and freeze columns



### Recipes Available Online

#### Salt-Saturated DMSO Buffer

- 1L 0.5M EDTA:
  - 900 ml nanopure H20
  - EDTA (FW 292.24) 146.12 g
  - NaOH pellets to pH EDTA to 8.0
  - Bring final volume to 1L
- Then for the salt saturated DMSO:
  - 0.5M disodium EDTA 1L
  - Dimethyl Sulfoxide (DMSO) 400mL
  - Nanopure water 500mL
  - NaCl Enough to saturate the solution.

#### **RNA-Later-Like Buffer**

- For 1.5 liters:
  - 935 ml of autoclaved, MilliQ water
  - 700 g Ammonium sulfate
  - Stir until dissolved
  - Add 25 ml of 1 M Sodium Citrate
  - And 40 ml of 0.5 M EDTA
  - Adjust to pH 5.2 using concentrated H2SO4 (about 20 drops= 1 ml)
  - Store at RT

## Happy Fil-Am Friendship Day!



**JULY 4** 

