SOUN | NN | FF : 6.6.

שאלה 1 (24 נקי)

לכל אחת מהטענות הבאות קבעו אם היא נכונה או לא.

בשאלה זו בלבד אין צורך לנמק, די לרשום בכל סעיף נכון / לא נכון.

 $\{\varnothing\}\subseteq \{l,\{\varnothing\}\} \text{ .T } \qquad \{2\}\subseteq \{l,\{l\},\{2\}\} \text{ .s } \qquad \qquad l\in \{\{l\}\} \text{ .s } \qquad \qquad l\in \{l,\{l\}\}\} \text{ .s}$

 $|\mathcal{P}(\{2,\varnothing\})| = 2 \cdot |\mathcal{P}(\{\varnothing\})|$.n $|\{I,N\}| = |\{I,2\}|$.t $\{I\} \in \{N\}$.t $\{\varnothing\} \subseteq \{\varnothing,\{I\}\}\}$.n

1 osce

10). D) . (cil
lo) 1e[]	(c) Isl
(c. (cel	12) 1c[.c
N. (GI	راع) ادل ع

שאלה 2 (24 נקי)

: יהיו הבאות קבוצות. הוכיחו את הטענות הבאות A,B,C

 $A \setminus (B \setminus C) = (A \setminus B) \cup (A \cap C)$.א

 $\mathcal{P}(A)\!\subseteq\!\mathcal{P}(B)$ אז $\{A\}\!\subseteq\!\mathcal{P}(B)$ ב. אם

 $A \subseteq A$ או $A \subseteq B$ או $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$ ג. אם

. 6150. SUU

A\(B\c)

(1820 Jevo)

(A\B)U(Anc)

2 alice

 $A \setminus (B \setminus C) = A \setminus (B \cap C^{c}) = (A \setminus B) \cup (A \setminus C^{c}) = (A \setminus B) \cup (A \cap C)$ $1.24 \quad \text{with} \quad \text$

 $P(A) \subseteq P(B) \text{ de } \{A\} \subseteq P(B) \text{ pic. } P(A) \subseteq P(B) \text{ de } \{A\} \subseteq P(B) \text{ pic. } P(A) \subseteq P(B) \text{ pic. } P(B) \text{ pic. } P(B) \text{ pic. } P(B) \text{ pic. } P(B$

שאלה 3 (24 נקי)

 \cdot יהיו את הטענות את הוכיחו $\cdot U$ אוניברסלית לקבוצה אוניברסלית קבוצות חלקיות הבאות:

- A = U אז $(A \cap B)^c \subseteq A$ או.
 - $C = B^c$ in $A^c \Delta B = A \Delta C$.
- $x \notin A \triangle B \triangle C$ אז $x \in (A \cap B) \setminus C$ ג.

A=U 36 (Anb) \subseteq A PIC. IC., , ./2 CORN 19) JUN AND, (Anb) = A^cub = , (Anb) = Acub = , ./2 CORN 19) JUN AND, ACUB = A

C=B° 36 ACAB=ADC PK.D

אנמסלים (ליחס לקבוצה אנימסלים ע) צ"פ האכתע באר האשנים (ביחס לקבוצה אנימסלים על $B=B^c=\{x\in U\mid x\notin B\}=U\setminus B\}$ באורה, בא האיבה שלא עוצאים ב-B, נייבה באשנים באפוים באפרה בר - ע

ב. פוא המיש סימרי א שני בידיו ש הנתון AD(AGB)=AD(ADC)

קימצית, ההפרט הטא קימצית, 32 אוא ב 33 אואר ב 33 אואר ב 34 אואר ב 34 אואר ב $(A\Delta A^c)\Delta B = (A\Delta A)\Delta C$

AΔAC=(AUAC)\(AnAC)

1.23 CORN 'Ol.5

 $\begin{cases} A \cup A^c = \emptyset \\ A \cap A^c = \emptyset \end{cases}$

ADAC = U/Ø = U 1.23 COONN toy 4-1 pouns , pol

 $A\triangle A=\emptyset$ 31 alide of which le wh 33) 3-1 per 3.6. Gold of the 31,4,5 for one of the $A\triangle A=\emptyset$ $A\triangle A=\emptyset$ $A\triangle A=\emptyset$ $A\triangle A=\emptyset$ $A\triangle A=\emptyset$ $A\triangle A=\emptyset$

7. Se osen cors o'h) chuir El

UDB=(UUB)\(UOB)=U\B

7-16,1 900 08.8

 $U\Delta\beta = U\setminus\beta = \beta^c = C$

(e.p)

X&ADBAC Sic Xe(AnB) C Pic . &

A (

ADBAC

(ANB) \C

. XéC Pc/ XEB Pc/ XEA you white of 1.1 (size that $X \in A$) which $X \in A$ (size that $X \in A$) when $X \in A$ (size $X \notin A \land B \land A$) and $X \notin A \land B \land A$ are only lot $X \notin A \land B$.

 $A_n=\left\{0,1,2,3,...,n\right\}$ נסמן $n\in {f N}$ לכל האוניברסלית. א היא הקבוצה היא איז ${f N}$ וו איז היא שווה או לאחת מן הקבוצות הבאות, קבעו אם היא שווה או לא לאחת הקבוצות הבאות, קבעו אם היא שווה או לא

 $\bigcup_{i=1}^\infty (A_{n+1}\cap A_n^{\ c})$. T $\bigcup_{i=1}^\infty (A_{2n}\setminus A_n)$. λ $\bigcap_{i=1}^\infty A_n^{\ c}$. λ . λ

 $\bigcup_{N=0}^{\infty} A_{n}^{C} = \left(\bigcap_{N=0}^{\infty} A_{n}\right)^{C} = \left(\left\{0\right\}\right)^{C} = N \setminus \left\{0\right\}$./ $\left\{0\right\}$

באלת החיתך אתאת גת התחום המשותף, בבאלת החיתך המינטוני קל לראות שהגיבה כאובר הייתר המינטוני קל לראות שהגיבה כאובר הייחיד המשותף לכל הוא ל ההאבה כאובן)

 $A_1 = \{0, 1\}$ $A_2 = \{0, 1, 2\}$

Mg, child of the charge contradict ecut when they: {0}/M

 $\mathcal{A}_{n}^{c} = \left(\bigcup_{n=0}^{\infty} A_{n} \right)^{c} = \left(\bigcup_{n=0}^{\infty} A_{n} \right)^{c} = \left(\bigcup_{n=0}^{\infty} A_{n} \right)^{c} = 0$

Good posen GA, estin fine numer in fore G are G are G are G.

Char, ..., AU, AU, A = G G in order and G, and G in G

 $\bigcup_{n=0}^{\infty} (A_{2n} \setminus A_n) = [N \setminus \{0,1\}]$

IEER HOOR REGIO DIN YN JACY NA MIPPIN

 $\frac{N=0}{N=1} \quad A_0 \setminus A_0 = \emptyset$ $N=1 \quad A_2 \setminus A_1 = \{0,1,2\} \setminus \{0,1\} = \{2\}$ $N=2 \quad A_4 \setminus A_2 = \{3,4\}$

Muy an equal ci d warry equier and any and A_{n} with anoth anoth anoth A_{n} and A_{n} are an array and A_{n} and A_{n} are an array and A_{n} and A_{n} and A_{n} and A_{n} and A_{n} are array and A_{n} and A_{n} and A_{n} array a

 $\bigcup_{n=0}^{\infty} \left(A_{n+1} \cap A_n^c \right) = \mathbb{N} \setminus \{0\}$ 3

N = 1 $(A_2 \cap A_1^c) = (\{0,1\} \cap N \setminus \{0,1\}) = \{1\}$ N = 1 $(A_2 \cap A_1^c) = (\{0,1,2\} \cap N \setminus \{0,1\}) = \{2\}$

May consolut, Lear or a a a and 1+1Any consolution of a any consolution of