Scenario Description

- WVCorp: the company you (the data scientist) work for
 - WVCorp has user forums and discussion boards for each of their products, where customers can discuss issues and features.
 - "Buzz": when a topic on the user forum has a very high activity level -- considered an indication of user interest in that topic.
- eRead:WVCorp's ebook reader product
- TimeWrangler: WVCorp's time-management app
- BookBits: A competitor's ebook reader product
- GCal: a third-party cloud-based calendar infrastructure that TimeWrangler can integrate with

Predicting Buzz on User Forums

WVCorp Data Science Team Notional Peer Presentation

Buzz is Information

- Buzz: Topics in a user forum with high activity -topics that users are interested in.
 - Features customers want
 - Existing features users have trouble with
 - Persistent buzz: real, ongoing customer need
 - not ephemeral or trendy issues
- Goal: Predict which topics on our product forums will have persistent buzz

Related Work

- Predicting movie success through social network and sentiment analysis
 - Krauss, Nann, et.al. European Conference on Information Systems, 2008
 - IMDB forums, Box Office Mojo website
 - Variables: discussion intensity, positivity
- Predicting asset value (stock prices, etc) through Twitter Buzz
 - Zhang, Fuehres, Gloor, Advances in Collective Intelligence, 2011
 - Time series analysis on pre-chosen keywords

Pilot Study

- Collected three weeks of data from forum
 - 7900 topics, 96 variables
 - 791 topics held out for model evaluation
 - 22% of topics in Week I of the data set buzzed in Weeks 2/3
- Trained Random Forest on Week I to identify which topics will buzz in Weeks 2/3
 - Buzz = Sustained increase of 500+ active discussions in topic/day, relative to Week I, Day I
- Feedback from team of five product managers -- how useful were the results?

Model Variables

- We started with metrics already monitored by system.
 - #Authors/topic
 - #Discussions/topic
 - #Displays of topic to forum users
 - Average #contributors to a discussion in the topic
 - Average discussion length in a topic
 - How often a discussion in a topic is forwarded to social media

- Obviously problematic -- only point measurements
 - Ideally, we want to measure evolution
 - Are, e.g. the number of authors increasing/ decreasing? How fast?
 - Time-series analysis
 - How well can we do with what we have?

Random Forest Model

- Efficient on large data, large number of input variables
- Few prior assumptions on variable distribution/ interactions
- We limited complexity to reduce overfit
 - 100 nodes/tree maximum
 - Minimum node size 20
 - More data would eliminate the need for these steps

Results

- 84% recall, 83% precision
- Reduced manual scan of forums by over a factor of 4
 - From 791 to 184 topics to inspect
- PMs: 75% of identified topics produced "valuable insight"

	Predicted No Buzz	Predicted Buzz	
No Buzz	579	35	614
Buzz	28	149	177
Total	607	184	791

Variable Importance

- Key inputs:
 - # times topic is displayed to user (num.displays)
 - # authors contributing to topic (attention.level.author)
- Velocity variables for these two inputs could improve model

Example Discovery

- Topic: TimeWrangler →GCal Integration
 - # discussions up since GCal v. 7 release
 - GCal events not consistently showing up; mislabeled.
 - TimeWrangler tasks going to wrong GCalendar
 - Hot on forums before hot in customer support logs
 - Forum activity triggered the model two days after GCal update
 - Customer support didn't notice for a week

Future Work

- Better input variables
 - Shape and velocity variables
 - How quickly #authors grows/shrinks
 - How much #topic displays increases/decreases
 - Information about new forum visitors
 - What questions do first-time visitors come to ask?
- Research optimal model retraining schedule

Thank You