

## Lahore University of Management Sciences EE340+L - Devices and Electronics + Lab

Fall 2015 - 16

| Instructor          | Wasif Tanveer Khan and Hassan Abbas Khan          |
|---------------------|---------------------------------------------------|
| Room No.            | L301, 9-347A                                      |
| Office Hours        | TBA                                               |
| Email               | Wasif.tanveer@lums.edu.pk hassan.khan@lums.edu.pk |
| Telephone           | X8471; X8356                                      |
| TA                  | TBA                                               |
| TA Office Hours     | TBA                                               |
| Course URL (if any) |                                                   |

| Course Basics         |                        |   |          |                 |
|-----------------------|------------------------|---|----------|-----------------|
| Credit Hours          | 3+1                    |   |          |                 |
| Lecture(s)            | Nbr of Lec(s) Per Week | 2 | Duration | 75 minutes each |
| Recitation (per week) | Nbr of Lec(s) Per Week | 0 | Duration | N/A             |
| Lab (per week)        | Nbr of Lec(s) Per Week | 1 | Duration | 150 minutes     |

| Course Distribution        |                                 |  |
|----------------------------|---------------------------------|--|
| Core                       | Υ                               |  |
| Elective                   | N                               |  |
| Open for Student Category  | Electrical Engineering, Physics |  |
| Close for Student Category |                                 |  |

#### COURSE DESCRIPTION

This course lays down the foundations for the design of electronic devices and systems for a variety of applications. This includes the construction, characteristics and working of diodes, bipolar junction transistors (BJT) and field effect transistors (FET). It will cover topics on modeling of microelectronic devices, basic microelectronic circuit analysis and design, physical electronics of semiconductor junction and MOS devices, development of circuit models, and understanding the uses and limitations of various models. The semiconductor fundamentals, doping and carrier densities, carrier transport and generation-recombination, and the "semiconductor equations," which provide a mathematical description of electrons and holes in semiconductors will be covered. The course will use incremental and large-signal techniques to analyze and design bipolar and field effect transistor circuits as well as an overview of multistage amplifiers. The small signal behavior of BJT and FET transistors is studied along with appropriate mathematical models and frequency response. The course also provides an introduction to the design of power amplifiers and switching circuits.

| COURSE PREREQUISITE | :(S)                                                                      |
|---------------------|---------------------------------------------------------------------------|
| • EE240             | Circuits I (required)                                                     |
| • EE242             | Electricity and magnetism (May be waived through Instructor's permission) |

| COURSE OBJECTIVES                                                                                                                                                                                                                          |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1. To introduce the students to the fundamentals of semiconductors and semiconductor devices.                                                                                                                                              |  |  |
| <ol> <li>Study the structure, characteristics and behavior of fundamental set of discrete electronic devices.</li> <li>Develop skills needed for analysis and design of electronic circuits and systems using these components.</li> </ol> |  |  |

|        | Course Learning Outcomes                                                                                                                                    |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EE340: | The students should be able to:                                                                                                                             |
| CLO1:  | Develop an understanding of the semiconductor bonding and energy band models, semiconductor carrier properties and statistics, and carrier action.          |
| CLO2:  | An ability to apply standard device models to explain/calculate critical internal parameters and standard terminal characteristics of the pn-junction diode |
| CLO3:  | Understand the diode circuit models and analyze different application circuits using these models                                                           |



## **Lahore University of Management Sciences**

Understand the transistor circuit models for MOSFETs and analyze different application circuits

using these models

Understand the transistor circuit models for BJTS and analyze different application circuits using

these models

Apply the knowledge in lab environment working as a group

Relation to EE Program Outcomes

| EE-352 CLOs | Related PLOs                                       | Levels of learning                                  | Teaching Methods                           | CLO Attainment checked in |
|-------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------|---------------------------|
| CLO1        | PLO1                                               | Cog 3 Instruction, Tutorial, Assignments            |                                            | Midterm, Final            |
| CLO2        | LO2 PLO2 Cog 4 Instruction, Tutorial, Assignments  |                                                     | Midterm, Final                             |                           |
| CLO3        | PLO2                                               | Cog 3 Instruction, Tutorial, Assignments Midterm, F |                                            | Midterm, Final            |
| CLO4        | PLO2                                               | Cog 3                                               | Instruction, Tutorial, Assignments         |                           |
| CLO5        | CLO5 PLO2 Cog 3 Instruction, Tutorial, Assignments |                                                     | Final                                      |                           |
| CLO6        | PLO5                                               | Psycho 3                                            | no 3 Instruction, Labs Lab Reports + Proje |                           |

### **Grading Breakup and Policy**

Assignment(s): Home Work: → 5% Quiz(s): 6-8 → 10% Class Participation: N/A Attendance: N/A

Labs + Projects: 15%+10% Midterm Examination: 01 → 25%

Project: N/A

CLO4:

CLO5:

CLO6:

Final Examination: Comprehensive → 35%

| Examination De  | Examination Detail                                                                                                                                                                              |  |  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Midterm<br>Exam | Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Preferred Date: During Mid-week Exam Specifications: Closed book, closed notes, 1 A4 double sided, hand written help sheet, calculators |  |  |
| Final Exam      | Yes/No: Yes Combine/Separate: Combined Duration: 03 hrs Exam Specifications: Closed book, closed notes, 2 A4 double sided, hand written help sheets, calculators                                |  |  |

| COURSE OVERVIEW |                                                           |                      |                                    |  |  |  |
|-----------------|-----------------------------------------------------------|----------------------|------------------------------------|--|--|--|
| Lecture         | Topics                                                    | Recommended Readings | Related CLOs &  Additional Remarks |  |  |  |
| 1.              | Semiconductors – General Introduction                     | SDF: Ch. 1           | CLO1                               |  |  |  |
| 2.              | Material properties – Crystal lattices and energy bands   | SDF: Ch. 1, 2        | CLO1                               |  |  |  |
| 3.              | Carrier Modeling: Carrier densities, Doping               | SDF: Ch. 2           | CLO1                               |  |  |  |
| 4.              | Density of States, Fermi Energy, Carrier distributions    | SDF: Ch. 2           | CLO1                               |  |  |  |
| 5.              | Transport mechanism                                       | SDF: Ch. 3           | CLO1                               |  |  |  |
| 6.              | Drift and Diffusion Currents                              | SDF: Ch. 3           | CLO1                               |  |  |  |
| 7.              | Recombination/Generation                                  | SDF: Ch. 3           | CLO1                               |  |  |  |
| 8.              | pn Junction structure and electrostatics                  | SDF: Ch. 5           | CLO2                               |  |  |  |
| 9.              | Electrostatics and Junction I-V characteristics           | SDF: Ch. 5, 6        | CLO2                               |  |  |  |
| 10.             | I-V characteristics, Small signal admittance              | SDF: Ch. 6, 7        | CLO2                               |  |  |  |
| 11.             | Junction capacitance, diffusion admittance                | SDF: Ch. 7           | CLO2                               |  |  |  |
| 12.             | Introduction to circuit analysis with non-linear elements | S&S: Ch. 4           | CLO3                               |  |  |  |
| 13.             | Diode circuits – models                                   | S&S: Ch. 4           | CLO3                               |  |  |  |
| 14.             | Diode circuits – analysis and applications                | S&S: Ch. 4           | CLO3                               |  |  |  |



# **Lahore University of Management Sciences**

| 15. | Diode circuits – analysis and applications            | S&S: Ch. 4  | CLO3 |
|-----|-------------------------------------------------------|-------------|------|
| 16. | Midterm                                               |             |      |
| 17. | MOSFET – Structure and physical operation             | S&S: Ch. 5  | CLO4 |
| 18. | MOSFET – device operation and models                  | S&S: Ch. 5  | CLO4 |
| 19. | MOSFET – Biasing and DC analysis                      | S&S: Ch. 5  | CLO4 |
| 20. | MOSFET – Small signal models and analysis             | S&S: Ch. 5  | CLO4 |
| 21. | MOSFET – Amplifier configurations and characteristics | S&S: Ch. 5  | CLO4 |
| 22. | MOSFET – Amplifier configurations and characteristics | S&S: Ch. 5  | CLO4 |
| 23. | Transistor Switch and Inverter                        | S&S: Ch. 13 | CLO4 |
| 24. | BJT – Structure and physical operation                | S&S: Ch. 6  | CLO5 |
| 25. | BJT – device operation and models                     | S&S: Ch. 6  | CLO5 |
| 26. | BJT – Biasing and DC analysis                         | S&S: Ch. 6  | CLO5 |
| 27. | BJT – Small signal models and analysis                | S&S: Ch. 6  | CLO5 |
| 28. | BJT – Amplifier configurations and characteristics    | S&S: Ch. 6  | CLO5 |

## Textbook(s)/Supplementary Readings

### Textbook:

Semiconductor Device Fundamentals (SDF) by Robert Pierret, Addison Wesley, 1996 Microelectronic Circuits by Sedra and Smith, 6th Edition, Oxford University Press, 2010

### **Supplementary Reading:**

Microelectronic Devices & Circuits by Clifton Fonstad, 2006 Electronic Edition, <a href="http://dspace.mit.edu/handle/1721.1/34219">http://dspace.mit.edu/handle/1721.1/34219</a>

|     | Labs                                                                                                                                                                                      |        |      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 1.  | Session 1: Lab No. 1: Diode characteristics - Characteristics of different semiconductor diodes and understand the parameters used to model their behavior.                               | 1 week | CLO6 |
| 2.  | Session 2: Lab No. 1: Diode characteristics  - Characteristics of different semiconductor diodes and understand the parameters used to model their behavior.                              | 1 week | CLO6 |
| 3.  | Session 3: Lab No. 2: Diode applications  - Use of diode as a rectifier, ripple reduction with capacitor filter, regulation using a zener diode, clamping circuit and voltage multipliers | 1 week | CLO6 |
| 4.  | Session 4: Lab No. 2: Diode applications  - Use of diode as a rectifier, ripple reduction with capacitor filter, regulation using a zener diode, clamping circuit and voltage multipliers | 1 week | CLO6 |
| 5.  | Session 5: Lab No. 3: MOSFET Characteristics - Characteristics of a MOSFET device and understanding the parameters used to model its behavior.                                            | 1 week | CLO6 |
| 6.  | Session 6: Lab No. 4: Transistor as an amplifier  - Biasing schemes and amplification characteristics of a single stage common source MOSFET amplifier.                                   | 1 week | CLO6 |
| 7.  | Session 7: Lab No. 4: Transistor as an amplifier  - Biasing schemes and amplification characteristics of a single stage common source MOSFET amplifier.                                   | 1 week | CLO6 |
| 8.  | Session 8: Lab No. 5: Common Drain and Common Gate Amplifiers  - Biasing and amplification characteristics of a common gate and common drain MOSFET amplifiers                            | 1 week | CLO6 |
| 9.  | Session 9: Lab No. 6: Frequency Response  - High frequency and low frequency response of a common source MOSFET amplifier                                                                 | 1 week | CLO6 |
| 10. | Session 10: Lab No. 7: CMOS Digital Logic Inverter - Voltage transfer characteristics and dynamic operation of CMOS digital logic                                                         | 1 week | CLO6 |



**Lahore University of Management Sciences** 

|     | inverter                                                                                                                                                 |        |      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------|
| 11. | Session 11: Lab No. 8: Switching Circuits and Timers  - Design and working of discrete component multi-vibrators with BJTs and applications of 555 timer | 1 week | CLO6 |
| 12. | Sessions 12 – 14: Final Project: Group project (4 members maximum) - Proposal to be submitted in week 10.                                                | 1 week | CLO6 |