Ministerul Educației Naționale și Cercetării Științifice

Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 19 martie 2016 CLASA a VIII-a

Problema 1. Arătați că într-o piramidă patrulateră regulată două fețe laterale opuse sunt perpendiculare dacă și numai dacă unghiul dintre două fețe laterale alăturate are măsura de 120°.

Gazeta Matematică

Dacă P este piciorul perpendicularei din A pe VB (acelaşi cu piciorul perpendicularei din C pe VB), atunci obţinem echivalent $PC = PA = \frac{a\sqrt{6}}{3}$ (evaluând aria triunghiului VBC în două moduri) 2 puncte

Aceasta este echivalent cu faptul că triunghiul isoscel ACP are măsura unghiului $\angle APC$ de 120° (folosind eventual o funcție trigonometrică)...2 puncte

Problema 2. Pentru orice orice număr natural nenul n notăm cu x_n numărul numerelor naturale de n cifre, divizibile cu 4, formate cu cifrele 2, 0, 1 sau 6.

- a) Să se calculeze x_1, x_2, x_3 și x_4 .
- b) Să se găsească numărul natural n
 astfel încât

$$1 + \left[\frac{x_2}{x_1}\right] + \left[\frac{x_3}{x_2}\right] + \left[\frac{x_4}{x_3}\right] + \dots + \left[\frac{x_{n+1}}{x_n}\right] = 2016,$$

unde [a] reprezintă partea întreagă a numărului real a.

Soluție. a) $x_1 = 1$ (0 este divizibil cu 4), $x_2 = 4$ (numerele 12, 16, 20 și 60 sunt divizibile cu 4), $x_3 = 3 \cdot 5$, (pentru că prima cifră nu poate fi 0 iar ultimele două pot fi 12, 16, 20, 60 și 00), $x_4 = 3 \cdot 4 \cdot 5 = 60$ (pentru că prima cifră nu poate fi 0, pentru a 2-a avem 4 posibilități iar ultimele două pot fi

12, 16, 20, 60 şi 00) 3 puncte.

b) Dacă $n \geq 3$, un număr A care verifică condițiile din enunț este de forma $A = \overline{a_1 a_2 \dots a_{n-2} pq}$ unde prima cifră poate lua 3 valori, fiecare dintre cifrele a_2, a_3, \dots, a_{n-2} poate fi aleasă în 4 moduri iar ultimele două pot fi 12, 16, 20, 60 și 00.

Problema 3. a) Demonstrați că pentru orice număr întreg k, ecuația $x^3 - 24x + k = 0$ are cel mult o soluție întreagă.

b) Arătați că ecuația $x^3 + 24x - 2016 = 0$ are exact o soluție întreagă.

Soluție. a) Presupunem prin absurd că există două numere întregi diferite m și n astfel încât $m^3 - 24m + k = 0$ și $n^3 - 24n + k = 0$.

Prin scădere obținem $(m-n)(m^2+mn+n^2-24)=0......1$ punct $m^2+mn+n^2=24$ (m și n sunt diferite) de unde $(2m+n)^2+3n^2=96$ 1 punct

 $n^2 \le 32, n^2 \in \{0, 1, 4, 9, 16, 25\}...$ 1 punct $(2m+n)^2 \in \{96, 93, 84, 69, 48, 21\}$, contradicție 1 punct

Problema 4. Fie ABCDA'B'C'D' un paralelipiped dreptunghic şi M repectiv N picioarele perpendicularelor duse din A' şi C' pe BD. Lungimile muchiilor AB, BC şi AA' sunt egale cu $\sqrt{6}$, $\sqrt{3}$ şi respectiv $\sqrt{2}$.

- a) Demonstrați că $A'M \perp C'N$.
- b) Calculați măsura unghiului dintre planele (A'MC) și (ANC').

Soluţie.

 $Timp\ de\ lucru\ 4\ ore.$

Fiecare problemă este notată cu 7 puncte.