ECEN 350 - Equation Sheet 1 (9/09/2024)

Capacitor Impedance: $Z_C = X_C \angle (-90^\circ) = -jX_C$, with $X_C = 1/\omega C = 1/2\pi fC$.

Inductor Impedance: $Z_L = X_L \angle 90^\circ = jX_L$, with $X_L = \omega L = 2\pi fL$.

Power $P = VI = I^2R = V^2/R$. Average AC Power $P = V_{rms}I_{rms}\cos(\theta)$.

Shockley Diode Equation: $I_D = I_S(e^{V_D/nV_T} - 1)A$, where I_S is the reverse saturation current, V_D is applied voltage across the Diode, V_T is referred to as the thermal voltage, and n is an ideality factor ranging from 1 - 2. Assume n = 1 for ECEN 350.

Thermal Voltage: $V_T = \frac{kT_k}{q}$, where $k=1.38\times 10^{-23}$ J/K is Boltzmann's constant, T_K is the temperature in Kelvin, and $q=1.6\times 10^{-19}$ C is the magnitude of the charge of an electron or proton. $V_T\approx 25$ mV @ 20 °C.

Junction Temperature: $T_J = T_A + \Delta T_J = T_A + PR_{\theta JA}$. $T_J = T_A + PR_{\theta JA}$, where T_A is the ambient temperature, P is the power dissipated, and $R_{\theta IA}$ is the thermal resistance in °C/W.

Diode DC Forward Resistance, $R_F = \frac{V_D}{I_D}$. Diode Bulk Resistance, $R_B = \frac{\Delta V_D}{\Delta I_D}$.

The Above Full-Wave Rectified Waveform has the Following Values:

 $V_{avg} = 0.637(V_{peak})$. $V_{rms} = 0.707(V_{peak})$.

The ripple frequency $f_R = 1/T_R$, is twice the frequency (half the period) of the non-rectified input waveform.

