Math 106: Problem Set 8

Owen Jones

March 12, 2024

- **10.4.1** The Taylor series of $\frac{\sin \sqrt{x}}{\sqrt{x}} = 1 \frac{x}{3!} + \frac{x^2}{5!} \frac{x^3}{7!} \dots$ is a polynomial with roots at $\pi^2 k^2$ for $k \in \mathbb{N}$. Using Descartes's factor theorem, we can write $\frac{\sin \sqrt{x}}{\sqrt{x}} = (1 \frac{x}{\pi^2})(1 \frac{x}{4\pi^2})(1 \frac{x}{9\pi^2}) \dots$ as a product of its roots. Using the composition of functions, $\frac{\sin \sqrt{x^2}}{\sqrt{x^2}} = (1 \frac{x^2}{\pi^2})(1 \frac{x^2}{4\pi^2})(1 \frac{x^2}{9\pi^2}) \dots$ $\frac{\sin |x|}{|x|} = \frac{\sin x}{x}$ by properties of odd and even functions (Consider casewise x < 0 and $x \ge 0$). Multiplying by x, we obtain $\sin x = x \prod_{k \in \mathbb{N}} (1 \frac{x^2}{\pi^2 k^2})$.
- $\textbf{10.4.2} \ \sin \tfrac{\pi}{2} = 1. \ \text{Thus, } 1 = \frac{\pi}{2} \prod_{k \in \mathbb{N}} (\frac{4k^2 1}{4k^2}) \Rightarrow \frac{2}{\pi} = \prod_{k \in \mathbb{N}} \frac{2k 1}{2k} \frac{2k + 1}{2k}. \ \text{Taking the reciprocal and dividing by two, we obtain } \frac{\pi}{4} = \frac{1}{2} \prod_{k \in \mathbb{N}} \frac{2k}{2k 1} \frac{2k}{2k + 1}.$
- $\begin{aligned} \textbf{10.6.1} & \lim_{n \to \infty} \frac{F_{n+1}}{F_n} \ = \ \lim_{n \to \infty} \frac{\frac{1}{\sqrt{5}} (\phi^{n+1} (1-\phi)^{n+1})}{\frac{1}{\sqrt{5}} (\phi^n (1-\phi)^n)} \ = \lim_{n \to \infty} \frac{\phi^{n+1} (1-\phi)^{n+1}}{\phi^n (1-\phi)^n}. \\ & \text{Observe} \ |1-\phi| < 1 \Rightarrow \lim_{n \to \infty} (1-\phi)^n = 0. \ \text{Thus,} \ \lim_{n \to \infty} \frac{\phi^{n+1} (1-\phi)^{n+1}}{\phi^n (1-\phi)^n} = \\ & \lim_{n \to \infty} \frac{\phi^{n+1}}{\phi^n} = \phi = \frac{1+\sqrt{5}}{2} \end{aligned}$
- **10.7.1** Suppose there are finitely many primes p_1, p_2, \ldots, p_n . The Euler product is defined to be a generating formula for $\zeta(s)$.

$$\zeta(1) = \prod_{k=1}^{n} \frac{1}{1 - \frac{1}{p_k}} = \prod_{k=1}^{n} \sum_{m=0}^{\infty} \frac{1}{p_k^m} = 1 + \sum \frac{1}{p_1^{m_1} p_2^{m_2} \dots p_n^{m_n}} = \sum_{n=1}^{\infty} \frac{1}{n}$$

To derive a contradiction, we show the two series are not equal. Trivially, every term of the series $1+\sum \frac{1}{p_1^{m_1}p_2^{m_2}\dots p_n^{m_n}}$ is the reciprocal of a natural number. Thus, it suffices to show $1+\sum \frac{1}{p_1^{m_1}p_2^{m_2}\dots p_n^{m_n}}$ is missing terms of the harmonic series. Consider $\frac{1}{p_1p_2\dots p_n+1}$. $p_1p_2\dots p_n+1$ is a natural number, so clearly, $\frac{1}{p_1p_2\dots p_n+1}$ is a term of the harmonic series.

However, $p_1p_2...p_n + 1$ is not divisible by any of $p_1, p_2, ..., p_n$. Thus, $1 + \sum \frac{1}{p_1^{m_1}p_2^{m_2}...p_n^{m_n}}$ is missing the term $\frac{1}{p_1p_2...p_n+1}$. Hence, we obtain a contradiction because the Euler product cannot be a generating function for the $\zeta(s)$ if we have finitely many primes.