

European Project n° 613817

Workshop - Brussels

Yield forecasts at EU level

Valentina Pagani, Tommaso Guarneri, Ermes Movedi, Roberto Confalonieri (Cassandra lab, University of Milan)

Tommy Klein, Pierluigi Calanca (WBF-Agroscope) (

Davide Fumagalli (EC JRC, MARS Unit, Agri4Cast)

September 20, 2016

Introduction

- There's an increasing demand for crop yield forecasting systems in both developed and developing countries
- ➤ Early warnings in case of poor crop harvests allow indeed governments and other stakeholders to
 - assure food imports
 - regulate agricultural markets
- ➤ The projected increase in the frequency and intensity of extreme weather events is threatening the reliability of forecasting services

Objectives

- Quantifying the reliability of crop yield forecasts produced using
 - Modelling solutions currently implemented in CGMS
 - Improved (for extreme events) solutions based on
 - Process based models
 - (agro-)climatic indicators
- Define country- and crop-specific workflows for yield forecast

General evaluation methodology

- Spatial level for analysis (on aggregated data):
 - NUTSO
- Post processing:
 - Something is not explicitly considered by the system
 - This generates uncertainty and specific system behaviour under specific conditions (assumption)
 - The same system behaviour will be reproduced under similar conditions
- "forecasts" unsupervised
- Cross-validation using the available historical series

**** * * ***

General evaluation methodology

- De-trending historical yield statistics
- Multiple linear regression (stepwise, max. 4 regr.)

Agro-climatic indicators

- > Selected agro-climatic indicators:
 - Heat
 - Tmaxcr (# days with Tmax > threshold)
 - Frost
 - Tmincr (# days with Tmin < threshold)
 - Drought
 - ARIDmean (mean Agricultural Reference Index [ARID;
 Woli et al., 2012] for drought)
 - ARIDcr (# days with ARID higher than a threshold)
 - Fu (Fu drought index; Fu, 1981)

Agro-climatic indicators

> Savenpalle rressullts: (wheat)

- Best results achieved for:
 - Wheat and barley in Spain (82% and 85% of variability explained)
 - Sunflower in Bulgaria and sugar beet in Croatia (81% and 74%)

Process-based crop models

Improved modelling solution include the approaches for the simulation of the impact of extreme weather events developed within the MODEXTREME project

Process-based crop models

The comparison between standard (CMGS) and improved (MODEXTREME) solutions allowed splitting results in five main categories:

Category	R ² of the standard modelling solution	MODEXTREME improvement for R ²	Examples
'	> 0.60	No improvement	Spring barley in Spain (forecast at the 14 th 10-day period), maize in France (23 rd 10-day period).
II	> 0.60	< 0.20	Maize in Germany (24 th 10-day period), soft wheat in Spain (15 th 10-day period)
III	< 0.60	No improvement	Potato in Poland, spring barley in Denmark
IV	< 0.60	< 0.20	Spring barley in UK (20 th 10-day period), durum wheat in Spain (19 th 10-day period)
V	< 0.60	> 0.20	Spring barley in Poland (20 th 10-day period), soft wheat in Romania (12 th 10-day period)

e.g., Durum Wheat– ES – maturity

Standard modelling solution

Indicators selected

(independent variables in the regression)

- LAI_{WL}
- WC,

R²(TOT):0.40

- WR,
- DVS

Indicators selected

(independent variables in the regression)

- LAI_{WL}
- fHEAT,

R²(TOT):0.59

- fCOLD,
- T_{MAX}CROP

Process-based crop models

➤ The comparison between standard (CMGS) and improved (MODEXTREME) solutions allowed splitting results in five main categories:

Category	R ² of the standard modelling solution	MODEXTREME improvement for R ²	Examples
'	> 0.60	No improvement	Spring barley in Spain (forecast at the 14 th 10-day period), maize in France (23 rd 10-day period).
II .	> 0.60	< 0.20	Maize in Germany (24 th 10-day period), soft wheat in Spain (15 th 10-day period)
III	< 0.60	No improvement	Potato in Poland, spring barley in Denmark
IV	< 0.60	< 0.20	Spring barley in UK (20 th 10-day period), durum wheat in Spain (19 th 10-day period)
V	< 0.60	> 0.20	Spring barley in Poland (20 th 10-day period), soft wheat in Romania (12 th 10-day period)

e.g., Spring Barley-PL-ripening

Standard modelling solution

Indicators selected

(independent variables in the regression)

- **FSM**
- AGB_{WI},

R²(TOT):0.22

- YIELD_{WI},
- AGB_{Pot}

Indicators selected

(independent variables in the regression)

- LAI_{WL,}
- DVS,

R²(TOT):0.66

- YIELD_{Pot.}
- AGB_{FF}

Hybrid solutions

AGRO-CLIMATIC INDICATORS

- STATE VARIABLES, simulated under potential and water limited conditions
- SOIL-WATER-PLANT indicators

- STATE VARIABLES, influenced by extreme events
- RESPONSE FUNCTIONS to extreme events
- CROP TEMPERATURE

Variables	INDICATORS	STANDARD	IMPROVED	HYBRID
Tmaxcr	\checkmark			✓
Tmincr	\checkmark			✓
ARIDmean	\checkmark			✓
ARIDcr	✓			✓
Fu	\checkmark			✓
AGBPot		✓	✓	✓
AGBWL		\checkmark	\checkmark	✓
YIELDPot		\checkmark	\checkmark	✓
YIELDWL		\checkmark	\checkmark	✓
LAIPot		\checkmark	\checkmark	✓
LAIWL		\checkmark	\checkmark	✓
DVS		\checkmark	\checkmark	✓
WC		\checkmark	\checkmark	✓
WR		\checkmark	\checkmark	✓
FSM		\checkmark	\checkmark	\checkmark
AGBEE			\checkmark	\checkmark
YIELDEE			\checkmark	\checkmark
LAIEE			\checkmark	\checkmark
fHEAT			\checkmark	\checkmark
TMAXCrop			\checkmark	\checkmark
fCOLD			\checkmark	\checkmark
TMINCrop			\checkmark	\checkmark
fWS			\checkmark	\checkmark

e.g., Potato – PL – maturity

R²: 0.71

**** * * *_{**}*

e.g., Durum wheat – IT – ripening

Improved MODEXTREME system

R²: 0.57

Hybrid system

R²: 0.82

Rice (e.g., Spain – maturity)

Adm. level: NUTS0 (Spain) Crop: rice

Adm. level: NUTSO (Spain) Crop: rice

ERMES

Adm. level: NUTS2 (Valencia) Crop: rice - Japonica type

 $R^2 = 0.40$ R^2 (technological trend) = 0.33

 $R^2 = 0.61$ R^2 (technological trend) = 0.33

 $R^2 = 0.74$ R^2 (technological trend) = 0.33

5.0

e.g., Maize workflows

ID	10-day period	Selected system
France	19th	MODEXTREME system
	23th	CGMS system
	28th	HYBRID system
Romany	19th	MODEXTREME system
	23th	MODEXTREME system
	28th	MODEXTREME system
Italy	19th	MODEXTREME system
	23th	HYBRID system
	28th	MODEXTREME system
Hungary	20th	MODEXTREME system
	24th	MODEXTREME system
	29th	CGMS system
Spain	19th	HYBRID system
	23th	MODEXTREME system
	28th	HYBRID system
Germany	20th	MODEXTREME system
	24th	MODEXTREME system
	29th	MODEXTREME system

e.g., Soft wheat workflows

ID	10-day period	Selected system
France	12th	MODEXTREME system
	15th	MODEXTREME system
	19th	MODEXTREME system
Germany	15th	MODEXTREME system
	19th	MODEXTREME system
	22th	HYBRID system
Italy	12th	MODEXTREME system
	15th	HYBRID system
	19th	HYBRID system
Romany	12th	MODEXTREME system
	15th	HYBRID system
	19th	MODEXTREME system
Spain	12th	MODEXTREME system
	15th	HYBRID system
	19th	HYBRID system

e.g., Potato workflows

ID	10-day period	Selected system
Poland	16th	AGRO-CLIMATIC system
	21th	HYBRID system
	26th	HYBRID system
Germany	16th	AGRO-CLIMATIC system
	21th	HYBRID system
	26th	HYBRID system
Netherland	16th	HYBRID system
	21th	MODEXTREME system
	26th	HYBRID system
France	14th	MODEXTREME system
	19th	MODEXTREME system
	25th	HYBRID system
United Kingdom	16th	HYBRID system
	21th	HYBRID system
	26th	HYBRID system

Conclusions

- The inclusion of **MODEXTREME impact models** led to **improve** the forecasting reliability in **70% of the combinations** crop × country × forecasting moment (within the crop cycle).
- The integrated use of the four forecasting systems (hybrid) allowed to improve CGMS performances in 87% of the combinations crop × country × forecasting moment.
- Most of the improvement in the forecasting reliability was due to the MODEXTREME impact models (improved solutions).
- The addition of **agro-climatic indicators** to those provided by the improved solutions led to a **slight improvement** of forecasting performance in **24% of the cases**.
- Results for rice fully satisfactory only in Spain and Italy (despite the overall improvement compared to the CGMS system)... The EU-FP7 ERMES project could be a solution.

Acknowledgement

"The research leading to these results has received funding from the European Community's Seventh Framework Programme – FP7 (KBBE.2013.1.4-09) under Grant Agreement No. 613817, 2013-2016"

