

PRODUCTION OF HYDRAULIC COMPOSITION AND CURED PRODUCT

Publication number: JP4260645

Publication date: 1992-09-16

Inventor: NAKAMURA NOBUYUKI; KAMURA HISAYA;
KATAYAMA HARUO

Applicant: NIPPON KOKAN KK

Classification:

- International: C04B14/42; C04B16/06; C04B18/14; C04B20/00;
C04B28/04; C04B28/08; C04B40/02; C04B14/38;
C04B16/00; C04B18/04; C04B20/00; C04B28/00;
C04B40/02; (IPC1-7): C04B14/42; C04B16/06;
C04B18/14; C04B20/00; C04B28/04; C04B28/08;
C04B40/02

- European:

Application number: JP19910018776 19910212

Priority number(s): JP19910018776 19910212

[Report a data error here](#)

Abstract of JP4260645

PURPOSE: To provide a composition giving extruded products excellent in flexural strengths and impact resistance by adding an organic thickener, (in)organic fibers, etc., to a mixture of blast furnace slag powder having a relatively coarse particle distribution with a cement. CONSTITUTION: A hydraulic composition comprises 70-10wt.% of a cement (e.g. Portland cement) and 30-90wt.% of a blast furnace glassy slag powder comprising 0-30wt.% of particles having the maximum size of <=500μm and a size of 100-500μm, 15-50wt.% of particles having a size of >=50μm, 65-85wt.% of particles having a size of >=10μm, 80-90wt.% of particles having a size of 5μm and 90-99wt.% of particles having a size of >=1μm as shown in the oblique line region of the figure. 100 pts.wt. of the hydraulic composition is compounded with 0.1-5 pts.wt. of an organic thickening agent (e.g. methyl cellulose) and, if necessary, with 0.001-5.26 pts.wt. of inorganic or organic fibers having a diameter of 1-100μm and a length of 1-20mm to provide the composition for extrusion.

English Translation-in-part of
Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Production of hydraulic inorganic hardened molded form

[Detailed description of the invention]

[0001]

[Technical field of the invention]

This invention is concerning about the production of hydraulic inorganic hardened molded form. For more detail, this invention is concerning about the new manufacturing method of cement-based inorganic hardened molded form which has high flowability, uniformed filling property, shortened molding time

English Translation-in-part of
Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Production of hydraulic composition and cured product

[Claim 2]

A hydraulic composition according to Claim 1, comprises a blast furnace glassy slag powder comprising 0-30wt.% of particles having the maximum size of <=500μm and a size of 100-500μm, 15-50wt.% of particles having a size of >=50μm, 65-85wt.% of particles having a size of >=10μm, 80-90wt.% of particles having a size of 5μm and 90-99wt.% of particles having a size of >=1μm.

(Claim 7)

A method for manufacturing the cured product according to Claim 1, 2, 3, 4 or 5, containing a curing process by autoclave at 150-210 degree centigrade under the saturated vapor pressure.

English Translation-in-part of
Japanese Unexamined Patent Publication No. 260645/1992

[Title of the Invention]

Formed body of hydraulic composition

[Claim 4]

A formed body of hydraulic composition according to Claims 1-3, comprises a metal coating or a metal compound which are formed by the wet thin coating, thermal spray thin coating, vacuum deposition, spattering, chemical deposition, ion plating, and activated reactive deposition method.

(19) 日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11) 特許出願公開番号

特開平4-260645

(43) 公開日 平成4年(1992)9月16日

(51) Int.Cl.*	識別記号	序内整理番号	F I	技術表示箇所
C 0 4 B	28/04	2102-4G		
	14/42	B 2102-4G		
	16/08	B 2102-4G		
	18/14	A 2102-4G		
	20/00	B 2102-4G		

審査請求 未請求 請求項の数7(全6頁) 最終頁に続く

(21) 出願番号	特願平3-18776	(71) 出願人	000004123 日本钢管株式会社 東京都千代田区丸の内一丁目1番2号
(22) 出願日	平成3年(1991)2月12日	(72) 発明者	中村 信行 東京都千代田区丸の内一丁目1番2号 日本钢管株式会社内
		(72) 発明者	加村 久哉 東京都千代田区丸の内一丁目1番2号 日本钢管株式会社内
		(72) 発明者	片山 治男 東京都千代田区丸の内一丁目1番2号 日本钢管株式会社内
		(74) 代理人	弁理士 田中 政浩

(54) 【発明の名称】 水硬性組成物及び硬化体の製造方法

(57) 【要約】

【構成】粒径が50μm以上のものが高炉スラグ粉末の15～50重量%、5μm未満のものが10～20重量%、そして残余の粒径が50μm未満5μm以上であるガラス質の高炉スラグ粉末とセメントからなる水硬性組成物。

【効果】従来セメント用等に用いられていたガラス質の高炉スラグ粉末及びそれよりも粗いスラグ粉末を大量に使用することができ、それにもかかわらず硬化体の強度を高めることができる。セメントの使用量を水硬性組成物の10～50重量%に節減でき、全体として安価で高強度品が得られる。

1

【特許請求の範囲】

【請求項1】 粒径が $50\mu\text{m}$ 以上のものが高炉スラグ粉末の15~50重量%、 $5\mu\text{m}$ 未満のものが10~20重量%、そして残余の粒径が $50\mu\text{m}$ 未満 $5\mu\text{m}$ 以上であるガラス質の高炉スラグ粉末とセメントからなる水硬性組成物

【請求項2】 ガラス質の高炉スラグ粉末の最大粒径が $500\mu\text{m}$ 以下であって、粒径が $100\mu\text{m}$ 以上 $500\mu\text{m}$ 以下のものが高炉スラグ粉末の0~30重量%、 $50\mu\text{m}$ 以上のものが15~50重量%、 $10\mu\text{m}$ 以上のものが65~85重量%、 $5\mu\text{m}$ 以上のものが80~90重量%、そして $1\mu\text{m}$ 以上のものが90~99重量%である請求項1に記載の水硬性組成物

【請求項3】 ガラス質の高炉スラグ粉末が水硬性組成物の30~90重量%で残部がセメントである請求項1に記載の水硬性組成物

【請求項4】 請求項1に記載の水硬性組成物に有機質増粘剤と水を配合してなる水硬性の押出成形用組成物

【請求項5】 少なくとも無機短繊維又は有機短繊維を含有してなる請求項4に記載の水硬性の押出成形用組成物

【請求項6】 請求項1、2、3、4、5に記載の組成物を40~80°Cにおいて飽和水蒸気下で硬化養生させる硬化体の製造方法

【請求項7】 請求項1、2、3、4、5に記載の組成物を150~210°Cの飽和水蒸気下でのオートクレーブ養生してなる硬化体の製造方法

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は土木、建築用に使用するガラス質の高炉スラグ粉末を含む水硬性組成物およびその硬化方法に関するものである。

【0002】

【従来の技術】 ガラス質の高炉スラグ粉末は、本来潜在的に水硬性を有し、従来からセメント、石こう等と混和して高炉セメントとして製造、市販されている。またセメント、ガラス質の高炉スラグ粉末、その他混和材、骨材等をそれぞれパッチャーブラントにて計量し混合、混練して目的に合わせた特別なコンクリートを製造する場合もある。これらに使用されるガラス質の高炉スラグ粉末は、一般にプレーン比表面積で $4,000\sim4,500\text{cm}^2/\text{g}$ 程度のものが使われている。さらに最近、水碎スラグ粉末を分級手段等により微粒化してプレーン比表面積で $8,000\text{cm}^2/\text{g}$ 程度の微粉末とし、これを高強度等を得る目的で従来のスラグ粉末の代わりに使われる場合がある(「第8回コンクリート工学年次講演会論文集」、1986、pp289~292)。

【0003】

【発明が解決しようとする課題】 通常のプレーン値 $4,500\text{cm}^2/\text{g}$ 程度のスラグ粉末は、水硬性があるとはいえた普通ボルトランドセメントに対し高強度が得にくいという欠

点があった。一方、上記のガラス質の高炉スラグ粉末を分級して得られる微粉末は高強度が得られるものの分級の手間に加えて分級した粗粒を別途処分しなければならず、その結果コストが高くなるという欠点があった。

【0004】 本発明は、かかる問題点を解決して通常のガラス質の高炉スラグ粉末を使用して高強度の硬化体を得られる手段を提供することを目的としている。

【0005】

【課題を解決するための手段】 上記課題は、通常の高炉スラグ粉末にそれより粗粒のスラグ粉末及びそれより微粒のスラグ粉末を一定割合で混合して、微小粒子から粗大粒子までを巾広く含む特定の粒度分布になるように配合したガラス質の高炉スラグを用いることによって解決される。

【0006】 すなわち、本発明は粒径が $50\mu\text{m}$ 以上のものが高炉スラグ粉末の15~50重量%、 $5\mu\text{m}$ 未満のものが10~20重量%、そして残余の粒径が $50\mu\text{m}$ 未満 $5\mu\text{m}$ 以上であるガラス質の高炉スラグ粉末とセメントからなる水硬性組成物及び微細組成物を硬化させて硬化体を製造する方法に関するものである。

【0007】 本発明の水硬性組成物は、主成分であるガラス質の高炉スラグ粉末の粒度分布に最大の特徴がある。これは、粗粒と中粒と微粒を適当な割合になるよう組合せるのである。具体的には、粒径が $50\mu\text{m}$ 以上の粗粒が15~50重量%、好ましくは25~40重量%、粒径が $5\mu\text{m}$ 未満の微粒が10~20重量%、そして残余を粒径が $5\mu\text{m}$ 以上 $50\mu\text{m}$ 未満の中粒とするのである。好ましい粒度分布は、最大粒径が $500\mu\text{m}$ 以下であって粒径が $100\mu\text{m}$ 以上 $500\mu\text{m}$ 以下のものが0~30重量%、好ましくは10~25重量%、粒径が $50\mu\text{m}$ 以上のものが15~50重量%、好ましくは25~40重量%、 $10\mu\text{m}$ 以上のものが65~85重量%、好ましくは70~80重量%、 $5\mu\text{m}$ 以上のものが80~90重量%、そして $1\mu\text{m}$ 以上のものが90~99重量%である。この好ましい粒度分布を図1に斜線で示す。

最大粒径が $100\mu\text{m}$ で最密充填を達成させる粒度分布の理論値(4種の粒径のものを使用した場合)を図1に2点鎖線で示す。また、プレーン値 $4,500\text{cm}^2/\text{g}$ の通常のガラス質の高炉スラグ粉末の粒度分布を実線で、そしてプレーン値が $8,000\text{cm}^2/\text{g}$ ものを1点鎖線でそれぞれ図1に示す。同図に示すように、本発明のガラス質の高炉スラグの粒度分布は、粒径 $5\mu\text{m}$ 以上のものの割合を最密充填と通常のガラス質の高炉スラグ粉末の中間に位置させ、 $5\mu\text{m}$ 未満の微粒の割合を最密充填及び通常のスラグ粉末のいずれよりも多くしている。このような粒度分布のものは、粉碎度の異なる2種以上のガラス質の高炉スラグ粉末を配合することによって取得することができるのである。セメント用として使用されているガラス質の高炉スラグ粉末は、プレーン比表面積で $4,000\sim4,500\text{cm}^2/\text{g}$ (平均粒径 $10\sim20\mu\text{m}$)であり、これを原料として用いる場合にはそれより粗粒品、平均粒径で $30\sim200\mu\text{m}$ 程度、好

3

ましくは50~150μm程度のものと、微粒品、平均粒径で1~5μm程度のものを組合せた3種を適当な割合で配合することによって取得することができる。そのほか、平均粒径30~70μm、好ましくは40~60μmのものと1~5μmのものの2種の配合でも本発明の粒度分布品を取得できる場合がある。上記粒径のガラス質の高炉スラグ粉末は必要によりスラグ製造条件を適宜調整し、さらに公知の粉碎機を用いることによって取得することができます。

【0008】セメントはそれ自身が水和組織を形成するとともに、スラグ粉に対するアルカリ刺激作用をするものであり、具体的にはポルトランドセメント又は少なくともポルトランドセメントを30%以上含む混合セメントである。

【0009】ガラス質の高炉スラグ粉末とセメントとの割合は、ガラス質の高炉スラグ粉末が30~90重量%、好ましくは50~70重量%、従ってセメントが70~10重量%、好ましくは50~30重量%である。10重量%より少なければスラグの反応刺激材としての役目が果たせないし、70重量%を越えるとスラグの最適充填の役割が減ってしまうためである。割合は対象物により適宜変化させうるべきで、そのたびごとに粒度を変える煩雑さをかけるためである。なお、この水硬性組成物には粉末の無水、半水、二水等の石膏を15重量%以下の量で添加してもよいし、他のフライアッシュ等の混和材を高炉スラグ粉末の残部にセメントとともに添加してもよい。

【0010】本発明の水硬性組成物は密実な押出成形品を製造することでその特徴を最大限に發揮することができる。押出成形をするためには適度な粘度と押出された製品の保形性が必要である。そのため、この押出成形用組成物としては前述の水硬性組成物に加えて水と有機質増粘剤が必要である。有機質増粘剤としてはメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース及びそれらの変成品、ポリビニルアルコール及びそれらの変成品などが使用できる。配合割合としては水硬性組成物100重量部に対し、有機質増粘剤0.1~5重量部程度、好ましくは0.5~2重量部程度、そして水15~40重量部程度、好ましくは20~30重量部程度である。さらにこの押出成形用組成物には骨材として川砂、砕砂、シャモット粉末、タイル粉末等を加えることもできる。骨材の配合割合は水硬性組成物100重量部に*

*に対して0~100重量部程度が適当である。

【0011】上記の押出成形組成物の曲げ強度の向上や耐衝撃性、韧性向上のために無機あるいは有機の短繊維、もしくはその両方の短繊維を混入することができる。ここで無機繊維としては石綿が代表的ではあるが、石綿がじん肺症などとの関連から段々と使われなくなっている現状では無石綿建材としてガラス繊維、ワラストナイト等も有効である。ガラス繊維は、アルカリ性の混和物の中で使用するため耐アルカリガラス繊維が適し、径1~100μm、長さ1~20mm、添加量は水硬性組成物に対して0.1~5.0重量%が適する。有機繊維としてはビニロン、ポリプロピレン、ポリエステル、塩化ビニル、塩化ビニリデン、ポリエチレン、ナイロン等が用いられ、形状は長さ1~20mm、径1~100μm、添加量は粉体混合物に対して0.1~3.0重量%が適する。

【0012】本発明の水硬性組成物は、有機質増粘剤及び水等を加えて押出成形用組成物として、あるいは単に水等を加えて型枠等に流し込んで硬化させる。これらの含水組成物の養生は温空中、水中での20℃前後の常温養生でも強度が発現するが、より早く強度を得るために40℃~80℃、好ましくは50~70℃での水蒸気養生が適する。この水蒸気養生は、饱和水蒸気の存在下で前記の温度で行なうものであり、具体的には饱和水蒸気を保つために成型された含水組成物を密室内に置くとかビニールで包むなどして飽和水蒸気状態を養生中維持させる。養生時間は2時間~24時間が適当で、最適には4~12時間程度が経済的な面から考えても適する。

【0013】

【作用】一般に粉体の最適充填の目的は密充填、セグレーションの防止、添加剤の低下、レオロジーの諸現象の改善などがあるが、高強度を得るために最密充填性の確保が必要である。そこで単に最密充填を得るために、

$$P = (\pi/d)^{1/2} \sim 1/3$$

ここにP: ある粒子径d以下の含有量(%)

d: 最大粒子径

を満足するようにすればよい。この式による粒子径と充填密度との関係を表1に示す。

【0014】

【表1】

表1 粒子の最大充填度

粒子径の比率	粒子の割合 (wt%)	最大充填密度 (%)
d	100	74
d, 1/7d	85: 15	86
d, 1/7d, 1/49d	75: 14: 11	95
d, 1/7d, 1/49d, 1/343d	73: 14: 10: 3	98

【0015】しかし、スラグ粉末の場合、最密充填配合よりも微粉の割合を一定程度増したほうが硬化体の強度

が高まるこことを本発明者らは見出した。その理由は次の通りであると思われる。すなわち、表1による粒子がス

5

ラグ粉末と考えた場合、その反応性はその粒子表面積の総和と考えられるが、この最密充填配合では水硬反応の観点から表面積が不足していると思われる。一方、図1に実線で示すような従来のガラス質の高炉スラグ粉末の場合、粒度分布の幅が狭く最適な粒度分布にないため空隙を生じて高強度が得られない。

【0016】本発明のガラス質の高炉スラグ粉末において粗粒を加えたのは、ガラス質の高炉スラグ粒子そのものに反応性があるため通常より大きい粒子でも反応が可能である。また、大きい粒子を入れることにより密充填に近くなることが期待でき、コスト的にも原料の水碎スラグ粒子25mmからの粉碎において粉碎コストが安くなる。 $5\mu\text{m}$ 以下の細かい領域で通常のガラス質の高炉スラグ粉末より多く粒子を存在させたのは、反応が早い微粒分を確保させるためである。

【0017】本水硬性組成物は、セメントを混和することが必須要件であるがこれはスラグの反応刺激材の役目とセメント自身の水硬性を必要とするためである。

【0018】

【実施例】実施例1

本発明のガラス質の高炉スラグ粉末は、以下の手順によって作成した。平均粒径1.2mmの原料の水碎スラグをボールミルにて平均粒径 $100\mu\text{m}$ とした粉末をx1、同じく水碎スラグを粉碎し、通常使用の粒度ブレーン値4,50*

	実施例1	比較例1	比較例2
本発明スラグ粉末	10	—	—
ブレーン値 $4,500\text{cm}^2/\text{g}$ スラグ粉末	—	10	—
ブレーン値 $8,000\text{cm}^2/\text{g}$ スラグ粉末	—	—	10
普通ポルトランドセメント	5	5	5
増粘剤（メチルセルロース）	0.1	0.1	0.1
水	2.5	2.5	2.5
曲げ強度 (kN/cm^2)	280	200	250

【0022】実施例2、3

実施例1と同じガラス質の高炉スラグ粉末10重量部に、普通ポルトランドセメント5重量部、増粘剤としてメチルセルロース0.1重量部、減水剤0.1重量部、水2.8重量部、 $\phi 19\mu\text{m} \times 6\text{mm}$ のガラス繊維0.3重量部、 $\phi 6\mu\text{m} \times 6\text{mm}$ のビニロン繊維0.1重量部及びウラストナイト1.5重量部を混合して押出成形用組成物を得た。

【0023】比較のために上記のガラス質の高炉スラグ粉末の代わりにブレーン値 $4,500\text{cm}^2/\text{g}$ のスラグ粉末を用い、普通ポルトランドセメント5重量部、増粘剤としてメチルセルロース0.1重量部、減水剤0.1重量部及び水2.3重量部を混合して押出成形用組成物の比較例品を

6

* $0\text{cm}^2/\text{g}$ （平均粒径 $10.5\mu\text{m}$ ）としたものをx2、x2を分級手段によりブレーン値 $12,000\text{cm}^2/\text{g}$ （平均粒径 $2.6\mu\text{m}$ ）としたものをx3とし、x1:x2:x3=10:9:1の重量比率で混合した。その粒度分布を図1に点線で示すが、本発明の粒度範囲の中間程度に位置したガラス質の高炉スラグ粉末が得られた。

【0019】上記のガラス質の高炉スラグ粉末10重量部に対し、普通ポルトランドセメント5重量部を混合して水硬性組成物を得た。

【0020】この水硬性組成物に増粘剤としてメチルセルロース0.1重量部と水2.5重量部を加えて押出成形用組成物を得た。比較のために上記のガラス質の高炉スラグ粉末の代わりにブレーン値 $4,500\text{cm}^2/\text{g}$ のスラグ粉末又はそれを分級して得たブレーン値 $8,000\text{cm}^2/\text{g}$ のスラグ粉末を用い、いずれも10重量部に対し実施例1と同じ普通ポルトランドセメント5重量部、増粘剤としてメチルセルロース0.1重量部及び水2.5重量部を加えて押出成形用組成物の比較例品を得た。各実施例品及び比較例品をいずれも押出成形して $4\text{cm} \times 4\text{cm} \times 20\text{cm}$ の直方体とし、 20°C で28日間養生して硬化させた。各硬化体の曲げ強度を測定した結果を表2に示す。

【0021】

【表2】

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
997
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1097
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557

	実施例2	比較例3	実施例3
本発明スラグ粉末	10	—	10
ブレーン値4,500cm ³ /gスラグ	—	10	—
普通ポルトランドセメント	5	5	5
増粘剤(メチルセルロース)	0.1	0.1	0.1
減水剤	0.1	0.1	0.1
水	2.8	2.8	2.8
ガラス繊維(Φ19μm×6mm)	0.3	—	0.3
ビニロン繊維(Φ6μm×6mm)	0.1	—	0.1
ワラストナイト	1.5	—	1.5
曲げ強度(kgf/cm ²)	320	210	350
耐衝撃エネルギー(kgf·cm)	100	20	100
養生温度×時間	20°C×28日	20°C×28日	60°C水蒸気 12時間7日 放置乾燥

【0026】

【発明の効果】以上のように、この発明によればガラス質の高炉スラグ粉末の粒度分布を広げたので、従来セメント用等に用いられていたスラグ粉末より粗い粒径が50μm以上のものを15~50重量%使用することができ、それにもかかわらず硬化体の強度を高めることができる。セメントの使用量を水硬性組成物の10~50重量%に節減でき、全体として安価で高強度品が得られる効果がある。本発明の水硬性組成物を用いて得られる硬化体は緻密性が高い。この水硬性組成物を用いた押出成形用組成物に繊維を配合することにより曲げ強度、耐衝撃性等を大幅に増加させることができる。また、この水硬性組成

物を硬化させる際の養生方法として、水蒸気養生法を用いることによりスラグ粉末の反応を効果的に進行させることができる。

【図面の簡単な説明】

【図1】本発明の水硬性組成物で使用されるガラス質の高炉スラグ粉末の粒度分布を示すグラフである。

【符号の説明】

- 1…実施例で用いたスラグ粉末
- 2…ブレーン値4,500cm³/gの従来のスラグ粉末
- 3…ブレーン値8,000cm³/gの従来のスラグ粉末
- 4…密充填粉末例

【図1】

フロントページの続き

(51) Int.Cl. ³	識別記号	序内整理番号	F I	技術表示箇所
C 0 4 B 28/08		2102-4G		
40/02		7351-4G		
//(C 0 4 B 28/04				
14:02		2102-4G		
14:42		2102-4G		
16:06		2102-4G		
20:00		2102-4G		
24:00		2102-4G		
24:38	B	2102-4G		
18:14)		2102-4G		