CS1026 - Digital Logic Design

Feedback Circuits

Shane Sheehan ¹

¹ADAPT Trinity College Dublin

February 14, 2017

Today's Overview

- 1 Introduction
- 2 SR Flip FLops
- 3 Async Issues
- 4 Circuit Analysis

A quick recap.. I

Last time we looked at a SR Latch:

- A multivibrator
- Used to store an input value

Real World Use

Often we want to react to what has happened

The SR Flip Flop [Kojima, 2013] I

Set and Reset inputs

The SR Flip Flop [Kojima, 2013] II

 Q^+ defines the next output state (Q_{next})

- Q⁺ dependent on:
 - Inputs S and R
 - Current state: Q

The SR Flip Flop [Kojima, 2013] III

Characteristic Table				Excitation Table			
S	R	Q_{next}	Action	Q	Q_{next}	S	R
0	0	Q	Hold State	0	0	0	Х
0	1	0	Reset	0	1	1	0
1	0	1	Set	1	0	0	1
1	1	Χ	Now allowed	1	1	Χ	0

Table: Characteristic and Exciation Table

You can think of this as the sequential circuit equivalent to a combination circuit's truth table

The SR Flip Flop [Kojima, 2013] IV

S	R	Q^+
0	0	Q
0	1	0
1	0	1
1	1	Χ

If we feel lazy:

- Write down the Compressed Characteristic Table
- We almost have a truth table

The SR Flip Flop [Kojima, 2013] V

We can also do a K-Map

- But remember states (mid-terms) 3, 4 and 7
 - These define unstable states (i.e. don't go there)
 - lacksquare Δ time needed for flip flop to respond

The SR Flip Flop [Kojima, 2013] VI

The K-Map works too!

$$Q^+(S, R, Q) = QR' + S$$

SR Flip-Flop Issues I

SR Flip Flop denotes a Latch:

- No Clock to sync signals
 - ... We have an async circuit

SR Flip-Flop Issues II

This becomes problematic in circuit design:

- A race condition exists:
 - $\{S, R, Q\} = 0$
 - $S \implies 1 \implies \{S, R, Q\} = 100$ (Unstable state!!) \implies $Q^+ = 1 \implies \{S, R, Q\} = 101$
 - After ΔT

SR Flip-Flop Issues III

If the S and R inputs change quickly before the output settles into a new stable state:

- The input provides a race condition
- Each trying to change the output first). If the output becomes a predictable stable state
 - then we have a non-critical race

SR Flip-Flop Issues IV

A critical race occurs if the circuit output ends in an *unpredictable* stable state.

- For Example
 - S, R, Q = 110
 - SR becomes 00
 - S changes first $-\{S, R, Q\} = 010 \implies Q^+ = 0$
 - R changes first $\{S, R, Q\} = 100 \implies Q^+ = 1$

SR Flip-Flop Issues V

Note that depending on if *S* changed first or *R* changed first:

- Final state will be different
- This means we have a critical race.

Finite State Machines I

We can draw the relation between states in the SR Flip FLop

Finite State Machines II

A completely specified state machine is one for which all input conditions specify each next state condition:

- \blacksquare $\sum = 1$ Rule
- For state 0 in SR Flip Flop:

$$(S' + R) + SR' = 1$$

Finite State Machines III

In the case of incomplete state machines:

We can consider those states as don't cares

Finite State Machines IV

Algorithmic State Machine (ASM) help us out even more!

■ Basically a *Flowchart*

Finite State Machines V

Chart uses three symbols:

- Rectangle State Box
- Diamond Decision Box
 - If true take "1" path
 - Else take "0" path
- Oval Output box

References (Homework) I

Kojima, S. (2013). Sr flip-flop. US Patent 8,497,722.