

Demand Analysis and Forecasting - Rothman Retail

Can Yang, Haode Sun, Kangtong Guo, Xinyu Jia, Xujia Zhang

Demand Analysis and Forecasting-Rossmann

Background

Opportunity

- Leverage customer and store data to support decision making
- Discuss how to better improve business performance

Rossmann

- Rossmann is the first German brand to introduce discount health and beauty retail concept to the nation
- Rossmann had progressed rapidly and became the market leader in northern Germany with 100 stores.

Common Types of Forecasting

- Qualitative techniques: used in new technology areas
- Time series analysis: suitable for predict with clear and stable trends.
- Causal models: with historical data and sufficient analysis

Approach and Methods

- Train
- Test
- **Store**

- state_names
- store_states

Train

Halli									
	Store	DayOfWeek	Date	Sales	Customers	Open	Promo	StateHoliday	SchoolHoliday
0	1	5	2015-07-31	5263	555	1	- 1	0	1
1	2	5	2015-07-31	6064	625	1	1	0	1
2	3	5	2015-07-31	8314	821	1	1	0	1
3	4	5	2015-07-31	13995	1498	1	21	0	
4	5	5	2015-07-31	4822	559	3	- 1	0	1

	Te	st			Figure 1			
			DayOfWeek	Date	Open	Promo	StateHoliday	SchoolHoliday
0	1	1	4	2015-09-17	1.0	1	0	0
1	2	3	4	2015-09-17	1.0	1	0	0
2	3	7	4	2015-09-17	1.0	1	0	0
3	4	8	4	2015-09-17	1.0	1	0	0
4	5	9	4	2015-09-17	1.0	1	0	0

	1	2	TI	ľ.
	2	3	NW	,
	3	4	BE	23
	4	б	SN.	1
Σto	ore_na	imes		State
S T(C1-4
0	BadenWu	erttem	berg	BW
1		Вя	yern	BY
2		В	lorlin	BE
3	В	anden	burg	BE
		Orn	-	LIII.

Store_states

Store State

Figure 2 Figure 4

Data Analysis-data processing

1.Find and remove outliers

Figure 5

3.Delete last month two columns

4.Add variable Promo2SinceWeeks

5.Delete Promo2SinceWeek', 'Promo2SinceYear

6.Discard samples with stores closed and zero turnover

2. Fill in missing values and do logarithmic changes

Data Analysis-Data Overview

Element heatmap

Changes in sales and number of customers per year

Effects of Promotions on Different Types of Stores

Sales volume of different types of stores on working days and non-working days

Impact of school holidays on sales of different types of stores

Impact of stateholidays on sales of different types of stores

Data Analysis-spatial analysis of sales volume

Spatial Distribution of Sales in Different Types of Stores

Uneven distribution

Stores a, c, and d are not distributed in 4 districts, and store b is not distributed in 8 districts

sales rankings

Different types of stores have different sales rankings in different regions

Figure 15

Data Analysis- why we choose store 'a'?

- The total number of stores, total sales and customers in store a are far higher than those in other stores
- The average sales and average number of customers of store a are similar to those of other stores
- The number of stores a is the largest, and the basic type stores are far more than other stores

Forecast Analysis—Prophet

- The plot above represents the visualization data of store A's weekly sales from January 2013 to July 2015.
- Almost every year around December sales reach a peak.

- The plot below represents the prediction of sales with the prophet model.
- A slow downward trend from August 2015 -November 2015, followed by a rise, peaking around December, before falling again and eventually levelling off.

Forecast Analysis—Plotting the forecasted components

 The first plot shows that the weekly volume of sales has been linearly increasing over time.

 The second plot shows that the largest sales occurs during the months of February and December.

Figure 21

Forecast Modeling—Machine Learning Method (cross_val_score)

model	0	1	2	3	4	mean	std
Lr_model	0.569101	0.569961	0.570956	0.568883	0.569902	0.569760	0.000734
Tree_model	0.611801	0.608037	0.615249	0.610808	0.609766	0.611132	0.002406
Rfr_model	0.689484	0.687019	0.692625	0.687995	0.687995	0.688970	0.001996
Gbdt_model	0.646806	0.649195	0.646593	0.647646	0.647646	0.647739	0.000982

Forecast Analysis-Conclusion

	MSE	R ²
Lr_model	6.727429e+06	0.570969
Tree_model	5.998547e+06	0.617453
Rfr_model	4.869550e+06	0.689452
Gbdt_model	5.499765e+06	0.649262

Sheet 2

Forecast Modeling

Sales 1.000000 0.658507 0pen Promo 0.461796 StateHoliday_0 0.251995 DayOfWeek 1 0.224626 0.152107 DayOfWeek_2 Assortment_1 0.111187 StateName_2 0.096848 DayOfWeek_3 0.095561 DayOfWeek_5 0.093995 Name: Sales, dtype: float64

after prediction

200

Figure 22

Future work

Select more —
 predictive models to test
 in order to get the
 optimal model.

 Optimising the model by adjusting the parameters

Limitation

Does not take into account the characteristics of consumers in different regions and cannot make targeted recommendations

There is no universality in analysing just one typr shop and making predictions.

References

- A.S. Watson Group World's largest international health & beauty retailer, leader in O+O retail. (2015). Rossmann. [online] Available at: https://www.aswatson.com/our-brands/health-beauty/rossmann/.
- Brownlee, J. (2017). *Introduction to time series forecasting with python: how to prepare data and develop models to predict the future*. Machine Learning Mastery.
- Catal, C., Ece, K., Arslan, B. & Akbulut, A. (2019). Benchmarking of Regression
 Algorithms and Time Series Analysis Techniques for Sales Forecasting. Balkan Journal of
 Electrical and Computer Engineering, 7 (1), 20-26. DOI: 10.17694/bajece.494920
- kaggle.com. (n.d.). *Tutorial: Time Series Forecasting with Prophet*. [online] Available at: https://www.kaggle.com/code/prashant111/tutorial-time-series-forecasting-with-prophet.

Thank you!

Can Yang, Haode Sun, Kangtong Guo, Xinyu Jia, Xujia Zhang