The Eaton-Kortum Model

Motoaki Takahashi

Recent Advances in International Trade at the University of Mainz

Motivation

- So far, we have mainly studied models of two-country settings.
 - Home vs Foreign.
- But, the actual world economy consists of many countries.
 - Germany, France, Switzerland, USA, China, · · · .
- Can we solve an equilibrium for a model of many countries?
 - With only paper and a pencil, no.
 - With a computer, yes.
- The Eaton-Kortum model is a static quantitaive many-country model of international trade.
 - "Quantitaive" means you can compute numerical solutions of equilibria.
 - ► Therefore, you can get a number of a welfare change induced by a change in productivity/trade costs/populations.
- An advantage is that gains from trade are expressed as widely available trade values and one key parameter: trade elasticity.

Observation: Bilateral trade

 X_{ni} : the (manufacturing) trade value from country i to country n (as of 1986)

Model features we want

- ▶ The further two countries are, the less they trade.
- Controlling for population sizes and geographic locations, large exporters tend to be rich.
 - In 1986, they were USA, Japan, and West Germany.
 - ▶ This "competitiveness" will be represented as parameters of productivity.
- ▶ In the Ricardian tradition of one-factor models, being rich means earning high real wages.

Setup

- ▶ There are *N* countries: $i, n = 1, \dots, N$.
- ▶ There is a unit continuum of varieties $j \in [0, 1]$.
- ► Consumers in country *i* have the following utility function

$$U_i = \left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma} dj\right]^{\sigma/(\sigma-1)}.$$

• σ : the parameter of the elasticity of substitution, $\sigma > 0$.

CES price index (1)

- Let $p_i(j)$ be the price of variety j in country i.
- ▶ We solve the following expenditure minimization problem

$$\min \int_0^1 p_i(j) Q_i(j) dj \tag{1}$$

subject to

$$\left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma} dj\right]^{\sigma/(\sigma-1)} \geq 1.$$

That is, you want to minimize total expenditure given that you must enjoy one unit of utility.

CES price index (2)

- ▶ We solve this problem with the Lagrangian multiplier method.
- \blacktriangleright Let L be the Lagrangian and λ be its multiplier. Then,

$$L = \int_0^1
ho_i(j) Q_i(j) dj + \lambda \left(1 - \left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma} dj
ight]^{\sigma/(\sigma-1)}
ight).$$

The first-order conditions are

$$\frac{\partial L}{\partial Q_i(j)} = p_i(j) - \lambda \frac{\sigma}{\sigma - 1} \left[\int_0^1 Q_i(j)^{\frac{\sigma - 1}{\sigma}} dj \right]^{\frac{\sigma}{\sigma - 1} - 1} \cdot \frac{\sigma - 1}{\sigma} Q_i(j)^{\frac{\sigma - 1}{\sigma} - 1} = 0 \quad (2)$$

for any $j \in [0, 1]$ and

$$\frac{\partial L}{\partial \lambda} = 1 - \left[\int_0^1 Q_i(j)^{(\sigma - 1)/\sigma} dj \right]^{\sigma/(\sigma - 1)} = 0.$$
 (3)

CES price index (3)

▶ Rewriting (2),

$$p_i(j) = \lambda \left[\int_0^1 Q_i(j)^{(\sigma-1)/\sigma} dj \right]^{1/(\sigma-1)} Q_i(j)^{-\frac{1}{\sigma}}.$$

▶ This holds for different varieties $j \neq j'$

$$\frac{p_{i}(j')}{p_{i}(j)} = \frac{Q_{i}(j')^{-\frac{1}{\sigma}}}{Q_{i}(j)^{-\frac{1}{\sigma}}} = \frac{Q_{i}(j)^{\frac{1}{\sigma}}}{Q_{i}(j')^{\frac{1}{\sigma}}}.$$

Rewriting this, we have

$$Q_i(j)^{\frac{1}{\sigma}}p_i(j)p_i(j')^{-1}=Q_i(j')^{\frac{1}{\sigma}}.$$

Raise both sides to the $\sigma-1$ power,

$$Q_i(j)^{\frac{\sigma-1}{\sigma}}p_i(j)^{\sigma-1}p_i(j')^{1-\sigma}=Q_i(j')^{\frac{\sigma-1}{\sigma}}.$$

CES price index (4)

▶ Integrate both sides with respect to j' (not j)

$$Q_i(j)^{\frac{\sigma-1}{\sigma}}p_i(j)^{\sigma-1}\int_0^1p_i(j')^{1-\sigma}dj'=\int_0^1Q_i(j')^{\frac{\sigma-1}{\sigma}}dj'.$$

Raise both sides to the $\frac{\sigma}{\sigma-1}$ power

$$Q_i(j)p_i(j)^{\sigma} \left[\int_0^1 p_i(j')^{1-\sigma} dj' \right]^{\frac{\sigma}{\sigma-1}} = \underbrace{\left[\int_0^1 Q_i(j')^{\frac{\sigma-1}{\sigma}} dj' \right]^{\frac{\sigma}{\sigma-1}}}_{=1 \text{ because of (3)}}.$$

ightharpoonup Therefore the optimal (expenditure minimizing) demand for variety j is

$$Q_i(j) = p_i(j)^{-\sigma} \left[\int_0^1 p_i(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}}. \tag{4}$$

CES price index (5)

▶ Inserting the optimal demand (4) into the objective function (1) yields

$$\int_{0}^{1} p_{i}(j)Q_{i}(j)dj$$

$$= \int_{0}^{1} p_{i}(j)^{1-\sigma} \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}} dj$$

$$= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}} \int_{0}^{1} p_{i}(j)^{1-\sigma} dj$$

$$= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{-\frac{\sigma}{\sigma-1}+1}$$

$$= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{\frac{-\sigma+(\sigma-1)}{\sigma-1}}$$

$$= \left[\int_{0}^{1} p_{i}(j')^{1-\sigma} dj' \right]^{\frac{1}{1-\sigma}}.$$

Costs given productivity

- ▶ We first discuss prices of varieties consumers face given producers' productivity.
- Within a country, many infinitisimal and identical producers produce a variety $j \in [0, 1]$.
- ▶ These producers' production exhibits constant returns to scale.
- ▶ Therefore we can treat their behavior as behavior of a representative firm.
- ▶ The cost of a bundle of inputs in country i is c_i .
- ▶ Productivity of variety j in country i is $z_i(j)$.
- ▶ The cost of producing a unit of variety j is, then, $c_i/z_i(j)$.

¹"Infinitesimal" means very small.

Iceberg trade costs and prices given productivity

- You want to ship one unit of variety from country i to country n.
- During shipment, a part of your goods shipped is lost.
 - You send salt. A part of the salt is melted to the sea.
 - Pirates can steal your computers once in ten times.
- Since Paul Samuelson, this situation is expressed as iceberg trade costs.
- \triangleright Delivering one unit from country *i* to country *n* requires producing d_{ni} in *i*.
 - For example, if $d_{ni} = 1.05$, to deliver one unit of a variety to country n, you need to ship 1.05 units from country i.
 - In this case, 5 percent of the iceberg is melted down.
- For any three countries i, k, and $n, d_{ni} \leq d_{nk} d_{ki}$.
 - This is called the triangle inequality.
 - ► Trade through a third country costs more than direct trade.

Prices given productivity

ightharpoonup Then, the price of a variety j produced in i and sold in n is

$$p_{ni}(j) = \frac{c_i d_{ni}}{z_i(j)}.$$

- ▶ Country n buys variety $j \in [0,1]$ from the country that sells it at the lowest price.
- \triangleright Therefore, the unit price country n actually pays for variety j is

$$p_n(j) = \min\{p_{ni}(j); i = 1, \cdots, N\}.$$
 (5)

Technology (1)

► The productivity of variety *j* in country *i* is drawn from the country-specific (cumulative) probability distribution

$$F_i(z) = e^{-T_i z^{-\theta}}. (6)$$

- $ightharpoonup T_i > 0$ and $\theta > 0$.
- ▶ Different varieties in country *i* draw productivity from the independent and identical distributions (6).
- ▶ Quick recap: For a real-valued random variable Z, the (cumulative) distribution function is $F(z) = Pr[Z \le z]$.
 - ▶ If $F(\cdot)$ is differentiable, f(z) = F'(z) is the probability density function.
- ▶ The probability distribution (6) is the Fréchet distribution² with the location parameter T_i and the shape parameter θ .

²Or the type-II extreme value distribution.

Technology (2)

$$F_i(z) = e^{-T_i z^{-\theta}}$$

- ightharpoonup A bigger T_i implies that a high productivity draw for variety j is more likely.
 - ▶ In this sense, T_i is often called country i's (average) productivity level.³
- ightharpoonup A bigger θ implies less variability.

 $^{^3\}mbox{This}$ governs the average, but is not the average itself.

Fréchet distribution: Example (1)

 $\theta = 4$.

Fréchet distribution: Example (2)

T = 3.

From Technology to Prices

- We assumed a probability distribution for productivity.
- Let P_{ni} be the random variable that represents the price of a variety produced in i and sold in n.
- \triangleright Then the distribution function for P_{ni} is

$$G_{ni}(p) = Pr[P_{ni} \le p]$$

= 1 - $F_i(c_i d_{ni}/p)$
= 1 - $e^{-[T_i(c_i d_{ni})^{-\theta}]p^{\theta}}$.

 \triangleright But, according to (5), what really matters for consumers in n is the distribution of

$$P_n = \min\{P_{ni}; i = 1, \cdots, N\}.$$

- Let $G_n(\cdot)$ denotes the distribution function of P_n .
 - ▶ That is, $G_n(p) = Pr[P_n \le p]$

Price distribution

$$\begin{split} G_{n}(p) &= Pr[Pn \leq p] \\ &= Pr\left[\min_{i=1,\dots,N} P_{ni} \leq p \right] \\ &= 1 - Pr\left[p \leq P_{n1} \text{ and } p \leq P_{n2} \text{ and } \cdots \text{ and } p \leq P_{nN} \right] \\ &= 1 - Pr[p \leq P_{n1}] \cdot Pr[p \leq P_{n2}] \cdot \cdots \cdot Pr[p \leq P_{nN}] \\ &= 1 - (1 - Pr[P_{n1} \leq p]) \cdot (1 - Pr[P_{n2} \leq p]) \cdot \cdots \cdot (1 - Pr[P_{nN} \leq p]) \\ &= 1 - (1 - G_{n1}(p)) \cdot (1 - G_{n2}(p)) \cdot \cdots \cdot (1 - G_{nN}(p)) \\ &= 1 - e^{-[T_{1}(c_{1}d_{n1})^{-\theta}]p^{\theta}} \cdot e^{-[T_{2}(c_{2}d_{n2})^{-\theta}]p^{\theta}} \cdot \cdots \cdot e^{-[T_{N}(c_{N}d_{nN})^{-\theta}]p^{\theta}} \\ &= 1 - e^{-\Phi_{n}p^{\theta}}, \end{split}$$

where

$$\Phi_n = \sum_{i=1}^N T_i (c_i d_{ni})^{-\theta}.$$

Trade shares (1)

- ▶ Let the set of all countries be $\mathcal{N} = \{1, 2, \dots, N\}$.
- ▶ The probability that country i serves an infinitesimal variety to country n at the lowest price is⁴

$$\pi_{ni} = Pr \left[P_{ni} \le \min_{k \in \mathcal{N} \setminus \{i\}} P_{nk} \right]$$

$$= \int_0^\infty Pr \left[\min_{k \in \mathcal{N} \setminus \{i\}} P_{nk} \ge p \right] dG_{ni}(p)$$

$$= \int_0^\infty Pr[P_{nk} \ge p \text{ for all } k \in \mathcal{N} \setminus \{i\}] dG_{ni}(p)$$

$$= \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} Pr[P_{nk} \ge p] dG_{ni}(p)$$

$$= \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} (1 - G_{nk}(p)) dG_{ni}(p).$$

⁴The following calculation follows Allen and Arkolakis' notes.

Trade shares (2)

 \triangleright The probability density function of prices produced in country i and sold in n is

$$g_{ni}(p) = \frac{dG_{ni}(p)}{dp} = e^{-T_i(c_id_{ni})^{-\theta}p^{\theta}}T_i(c_id_{ni})^{-\theta}\theta p^{\theta-1}.$$

► Then, we have

$$\pi_{ni} = \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} (1 - G_{nk}(p)) dG_{ni}(p)$$

$$= \int_0^\infty \prod_{k \in \mathcal{N} \setminus \{i\}} (1 - G_{nk}(p)) g_{ni}(p) dp$$

$$= \int_0^\infty \left(\prod_{k \in \mathcal{N} \setminus \{i\}} e^{-[T_k(c_k d_{nk})^{-\theta}]p^{\theta}} \right) e^{-T_i(c_i d_{ni})^{-\theta}p^{\theta}} T_i(c_i d_{ni})^{-\theta} \theta p^{\theta-1} dp$$

Trade shares (3)

[continued]

$$\pi_{ni} = \int_{0}^{\infty} e^{-\Phi_{n}p^{\theta}} T_{i}(c_{i}d_{ni})^{-\theta} \theta p^{\theta-1} dp$$

$$= \left(-\frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\Phi_{n}}\right) \int_{0}^{\infty} \left(-\Phi_{n}\theta p^{\theta-1} e^{-\Phi_{n}p^{\theta}}\right) dp$$

$$= \left(-\frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\Phi_{n}}\right) \int_{0}^{\infty} (e^{-\Phi_{n}p^{\theta}})' dp$$

$$= \left(-\frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\Phi_{n}}\right) \left[e^{-\Phi_{n}p^{\theta}}\right]_{0}^{\infty}$$

$$= \left(-\frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\Phi_{n}}\right) (0-1)$$

$$= \frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\Phi_{n}} = \frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_{k}(c_{k}d_{nk})^{-\theta}}.$$

Price index (1)

Remember that the price index in country i is

$$p_i = \left[\int_0^1 p_i(j)^{1-\sigma} dj \right]^{\frac{1}{1-\sigma}}$$

 \triangleright Using the distribution function of prices in i, G_i , we rewrite this

$$p_i^{1-\sigma} = \int_0^1 p_i(j)^{1-\sigma} dj$$
 $= \int_0^\infty p^{1-\sigma} dG_i(p)$
 $= \int_0^\infty p^{1-\sigma} g_i(p) dp.$

Price index (2)

ightharpoonup The probability density function of prices in country i is

$$g_i(p) = \frac{dG_i(p)}{dp} = e^{-\Phi_i p^{\theta}} \theta \Phi_i p^{\theta-1}.$$

Using this, we further compute the price index

$$p_i^{1-\sigma} = \int_0^\infty p^{1-\sigma} e^{-\Phi_i p^{\theta}} \theta \Phi_i p^{\theta-1} dp$$
$$= \int_0^\infty \theta \Phi_i p^{\theta-\sigma} e^{-\Phi_i p^{\theta}} dp.$$

Price index (3)

• We change the variable of integration from p to $x = \Phi_i p^{\theta}$.

$$\begin{array}{c|ccc} p & 0 & \to & \infty \\ \hline x & 0 & \to & \infty \end{array}$$

▶ Other relevant information about this change of the integration variable:

$$\frac{dx}{dp} = \theta \Phi_i p^{\theta-1}.$$

Therefore,

$$dp = \frac{dx}{\theta \Phi_i p^{\theta - 1}}$$

$$= \frac{dx}{\theta x p^{-1}}$$

$$= \frac{dx}{\theta x \left(\frac{x}{\Phi_i}\right)^{-\frac{1}{\theta}}}.$$

Price index (4)

▶ Then we continue the calculation of $p_i^{1-\sigma}$

$$\rho_{i}^{1-\sigma} = \int_{0}^{\infty} \theta x \left(\frac{x}{\Phi_{i}}\right)^{-\frac{\sigma}{\theta}} e^{-x} \frac{dx}{\theta x \left(\frac{x}{\Phi_{i}}\right)^{-\frac{1}{\theta}}}$$

$$= \int_{0}^{\infty} \left(\frac{x}{\Phi_{i}}\right)^{\frac{1-\sigma}{\theta}} e^{-x} dx$$

$$= \Phi_{i}^{-\frac{1-\sigma}{\theta}} \underbrace{\int_{0}^{\infty} x^{\frac{1-\sigma}{\theta}} e^{-x} dx}_{=\Gamma\left(\frac{\theta+1-\sigma}{\theta}\right)}$$

where $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ is the Gamma function.

► Therefore, the price index is

$$p_i = \gamma \Phi_i^{-\frac{1}{\theta}},$$

where γ is just a constant $\gamma = \Gamma \left(\frac{\theta + 1 - \sigma}{\theta} \right)^{1/(1 - \sigma)}$.

Closing the model (1)

- Assume that there is only one sector (manufacturing).
- Assume trade balances.
 - No trade surplus/deficit.
- Let X_i and Y_i be i's total spending and gross production, respectively.
- Let X_{ni} be the trade value from i to n.
- ► Then, we have

$$Y_i = \sum_{n=1}^N X_{ni}. (7)$$

and

$$X_i = \sum_{n=1}^N X_{in}. \tag{8}$$

Closing the model (2)

► Trade balances mean

$$\sum_{\substack{n \neq i \\ i' \text{s export value}}} X_{ni} = \sum_{\substack{n \neq i \\ i' \text{s import value}}} X_{in} .$$

Adding X_{ii} (the home purchase in i) to both sides,

$$\sum_{n=1}^{N} X_{ni} = \sum_{n=1}^{N} X_{in}.$$

► This, (7), and (8) yield

$$Y_i = X_i$$
.

Closing the model (3)

► Assume the Cobb-Douglas production function so that the cost function takes the form of

$$c_i = w_i^{\beta} p_i^{1-\beta}.$$

► This implies

$$w_i L_i = \beta Y_i = \beta X_i. \tag{9}$$

▶ Using (7) and (9), we have

$$w_{i}L_{i} = \sum_{n=1}^{N} w_{n}L_{n}\pi_{ni}$$

$$= \sum_{n=1}^{N} w_{n}L_{n}\frac{T_{i}(c_{i}d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_{k}(c_{k}d_{nk})^{-\theta}}$$

$$= \sum_{n=1}^{N} w_{n}L_{n}\frac{T_{i}(w_{i}^{\beta}p_{i}^{1-\beta}d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_{k}(w_{k}^{\beta}p_{k}^{1-\beta}d_{nk})^{-\theta}}.$$

Closing the model (4)

► We can rewrite the price index

$$p_i = \gamma \left(\sum_{n=1}^N T_n(c_n d_{in})^{-\theta}\right)^{-\frac{1}{\theta}}$$

$$= \gamma \left(\sum_{n=1}^N T_n(w_n^{\beta} p_n^{1-\beta} d_{in})^{-\theta}\right)^{-\frac{1}{\theta}}.$$

Equilibrium conditions

▶ An equilibrium is characterized by a tuple of $\{w_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$ such that

$$w_{i} = \frac{1}{L_{i}} \sum_{n=1}^{N} w_{n} L_{n} \frac{T_{i} (w_{i}^{\beta} p_{i}^{1-\beta} d_{ni})^{-\theta}}{\sum_{k=1}^{N} T_{k} (w_{k}^{\beta} p_{k}^{1-\beta} d_{nk})^{-\theta}}$$
(10)

and

$$p_i = \gamma \left(\sum_{n=1}^N T_n (w_n^{\beta} p_n^{1-\beta} d_{in})^{-\theta} \right)^{-\frac{1}{\theta}}$$
(11)

for $i = 1, \dots, N$.

- ightharpoonup This is a system of 2N equations for 2N unknowns.
- ► This does not guarantee the existence and uniqueness of an equilibrium.
- But, Alvarez and Lucas (2007) established the existence and uniqueness. No worry about them.

Let's compute it

- ▶ We'll compute an equilibrium with Julia.
- ▶ That is, we'll find a solution $\{w_i\}_{i=1}^N$ and $\{p_i\}_{i=1}^N$ for equations (10) and (11).