

WORK FLOW

Exploratory Data Analysis: Finding Insights from Data

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

CORRELATION AMONG FEATURES

- Plot demonstrates very high correlation (>0.9) between Tg, Tx and Tl.
- So Tx and Tl are dropped and only Tg is kept in the final dataset

Principle Component Analysis (PCA)

- Visualize the variation of Target variable with 2 Principle Component variables formed from 7 features.
- Useful for dealing with high dimensional data patterns

Exploratory Data Analysis: Finding Insights from Data

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

IMPORTANCE OF FEATURES

• This Pie Chart shows the percentage importance of all the feature in predicting the output(Dmax).

VARIATION OF FEATURES WITH DMAX

Preprocessing: Enhance the Dataset

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

Normalisation

Min-Max Normalisation technique used to scale the values of all the features between 0 and 1 which is evident from the before and after plots

Missing Values

No missing values in the datset

Outliers

Outliers present which should not be removed for this given dataset. Outliers handled using data augmentation

Data Augmentation: Artificially expand dataset

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

Data augmentation is a technique used to artificially expand a dataset by creating new, modified versions of existing data samples. The goal is to improve the model's generalization, robustness, and performance on unseen data by introducing variations and reducing overfitting.

How is Data Augmented?

- > Adding Noise: Introduce random noise to the input features to create variations in the data.
- SMOTE(Synthetic Minority Over-sampling Technique): Oversampling technique used to balance the class distribution of a dataset by creating synthetic minority class samples.

The plots shows that the augmented dataset closely resembles the original dataset(Only 1 feature shown here)

Data Augmentation: Artificially expand dataset

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

Why Data Augmentation is so necessary in this Dataset?

• Original Dataset is very small with discontinuous data points(which may seem like outliers), for higher values of Dmax which is evident from the plot

 Skewed Dataset with high number of readings for lower values of Dmax and very low number of readings for higher values of Dmax

 Problem of Overfitting due to small dataset print(f"Mean Squared Error on Train : {mse_train} ")
print(f"Mean Squared Error on Test : {mse_test} ")

Mean Squared Error on Train : 5.4583263476

Mean Squared Error on Test : 26.1548621468

Regression: Machine Learning Algorithm

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

Models Used

- Linear Regression
- Polynomial Regression
- Ridge Regression
- SVR
- XGBoost

Evaluation Metrices

- MSE: Mean Squared Error
- RMSE: Root Mean Squared Error
- MAPE: Mean Absolute Percentage Error
- MAE: Mean Absolute Error
- R Squared Score(R2)

We see from the plot that XGBoost model gives the lowest MSE on the original data. We finally apply XGBoost on the Augmented + Resampled Dataset.

Regression: Machine Learning Algorithm

XGBoost(Extreme Gradient Boosting)

XGBoost is an ensemble learning algorithm that uses decision trees in a boosting framework whose optimized architecture speeds up training and improves accuracy. Using gradient boosting, it adds trees sequentially to correct errors. XGBoost includes regularization like L1/L2 to prevent overfitting and parallelized processing for efficiency, making it versatile and powerful for diverse machine learning tasks.

Cache awareness and out-of-core computing avoiding overfitting

XGBoost

Tree pruning using depth-first approach

Parallelized tree building Efficient handling of missing data

In-built crossvalidation capability

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

The table shows the relevant metrices after training 10 times with a random Training-Testing Partition

	Train set					Test set				
	MSE	RMSE	MAE	MAPE	R2 Score	MSE	RMSE	MAE	MAPE	R2 Score
0	0.325242	0.570300	0.281052	12.363061	0.995860	0.971014	0.985400	0.452339	18.807370	0.987435
1	0.325914	0.570889	0.280248	12.247030	0.995769	0.782781	0.884749	0.423567	19.584313	0.990601
2	0.277191	0.526489	0.258191	10.632884	0.996419	1.151015	1.072854	0.429620	15.586003	0.985924
3	0.283964	0.532883	0.262205	10.848112	0.996327	0.863412	0.929200	0.403254	17.013611	0.989499
4	0.252485	0.502479	0.245185	10.655187	0.996774	1.265778	1.125068	0.446711	18.715560	0.983877
5	0.260214	0.510111	0.256306	11.174609	0.996704	0.761704	0.872757	0.398819	14.499320	0.989941
6	0.254259	0.504241	0.247580	10.604155	0.996756	1.006739	1.003364	0.432181	16.762689	0.987086
7	0.286041	0.534828	0.262496	10.472476	0.996361	0.794834	0.891534	0.392265	15.548265	0.989691
8	0.320173	0.565839	0.285391	12.441978	0.995947	0.985231	0.992588	0.436168	18.754417	0.986928
9	0.362345	0.601951	0.301905	12.915238	0.995367	1.200229	1.095550	0.443859	17.199800	0.984748

This plot shows the correspondence of the real and predicted values of the target variable Dmax

Avg MSE of 10 performances = **0.978274** Std deviation of 10 performances = **0.180935**

Summary

EXPLORATORY DATA ANALYSIS

PREPROCESSING

AUGMENTATION

REGRESSION

TESTING

SUMMARY

THANKYOU

