Projeto MC536 - Etapa Final

Centro de Pesquisas Asdrúbal (CPA)

Grupo: André Luis Romão Gouvêa Lucas B. A. Farias René F. Jallais

Tópicos:

- Comentários sucintos da Etapa 02
- Apresentação do que foi realizado nas Etapa 03 & 04
 - Resultados obtidos e análises posteriores

Descrição

Nosso Projeto teve como objetivo o estudo da Alimentação/Nutrição e sua correlação com as Doenças e transtornos Mentais/Depressão.

Artigos da internet tratando sobre o assunto

Modelagem Conceitual

Arquivos com dados utilizados

Título da Base	Arquivo		
Transtornos(1)	Esquizofrenia		
Transtornos(2)	Ansiedade		
Transtornos(3)	Depressão		
Instalações	Instalações		
Peso 2	Sobrepeso/Subnutrição		
Dieta	Dieta Simplificada		

Arquivos .csv disponíveis no repositório do GitHub

Setup Inicial

```
[3]: DROP TABLE IF EXISTS Esquizofrenia;
     DROP TABLE IF EXISTS TabelaDatabase2;
     CREATE TABLE Esquizofrenia(
         nomePais VARCHAR(52),
         anoPesquisa int,
         porcentagemHomens FLOAT,
         porcentagemMulheres FLOAT,
         PRIMARY KEY(nomePais, anoPesquisa)
      ) AS SELECT
         Entity,
         Year,
         MaleSchizophreniaPerCent.
         FemaleSchizophreniaPerCent
     FROM CSVREAD('../data/databasse5 prevalence-of-schizophrenia-in-males-vs-femalesv3.csv');
     CREATE TABLE TabelaDatabase2(
         nomePais VARCHAR(52) NOT NULL,
         categoria VARCHAR(50) NOT NULL,
         indicador VARCHAR(85) NOT NULL,
         anoPesquisa VARCHAR(9),
         porcentagem VARCHAR(8),
         PRIMARY KEY(nomePais, indicador, anoPesquisa)
       AS SELECT
         Country.
         Category,
         Indicator,
         Year.
         Value
     FROM CSVREAD('../data/database2 overweight underweight.csv');
```

Relacionamento entre tabelas

```
DROP TABLE IF EXISTS Juncao;

CREATE TABLE Juncao(
    nomePais VARCHAR(52) NOT NULL,
    anoPesquisa int,
    categoria VARCHAR(50) NOT NULL,
    indicador VARCHAR(85) NOT NULL,
    porcentagem VARCHAR(8),
    porcentagemHomensEsq FLOAT,
    porcentagemMulheresEsq FLOAT
);
```

[7]: INSERT INTO Juncao (nomePais, anoPesquisa, categoria, indicador, porcentagem, porcentagemHomensEsq, porcentagemMulheresEsq)

SELECT TB2.nomePais, E.anoPesquisa, TB2.categoria, TB2.indicador, TB2.porcentagem, E.porcentagemHomens, E.porcentagemMulheres

FROM TabelaDatabase2 TB2, Esquizofrenia E WHERE TB2.nomePais = E.nomePais AND CAST(SUBSTRING(TB2.anoPesquisa, 1, 4) AS INT) = E.anoPesquisa;

Relacionamento entre tabelas

```
[8]: DROP VIEW IF EXISTS Teste01;

CREATE VIEW TESTE01 AS

SELECT nomePais, anoPesquisa, CAST(porcentagem AS FLOAT) overweightPercentage, ROUND(porcentagemHomensEsq, 3) AS HomensEsqPercent, ROUND(porcentagemHomensEsq, 3) AS HomensEsqPercentagemHomensEsq, ROUND(porcentagemHomensEsq, 3) AS HomensEsqPercent, ROUND(porcentagemHomens
```

Iindex	NOMEPAIS	ANOPESQUISA	OVERWEIGHTPERCENTAGE	HOMENSESQPERCENT	MULHERESESQPERCENT
0	Libya	2014	29.6	0.2	0.193
1	Montenegro	2013	22.3	0.201	0.203
2	Australia	2017	22	0.382	0.345
3	Australia	2014	17.9	0.385	0.345
4	Bosnia and Herzegovina	2011	17.4	0.198	0.201
5	Tonga	2012	17.3	0.244	0.227
6	South Africa	2012	17.2	0.183	0.179
7	Albania	2017	16.4	0.2	0.202
8	Egypt	2014	15.7	0.191	0.183
9	Tunisia	2011	14.3	0.201	0.194
10	Azerbaijan	2013	14.1	0.198	0.197

Primeiras Análises

```
[36]: DROP TABLE IF EXISTS Caso01:
      CREATE TABLE Caso01(
          nomeRange VARCHAR(25),
          porcentagemOWMedia DOUBLE,
          porcentagemEsqHomemMedia DOUBLE.
          porcentagemEsaMulherMedia DOUBLE
      --Nesta primeira relação entre tabelas, após explorar as tabelas individualmente, mostra que já podemos ver uma pequena relação entre
      --a porcentagem de crianças com sobrepeso e a quantidade de casos de esquizofrenia em homens/mulheres:
      INSERT INTO Caso01 (porcentagemOwlMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
      SELECT ROUND(AVG(T01, overweightPercentage), 4), ROUND(AVG(T01. HomensEsqPercent), 4), ROUND(AVG(T01. MulheresEsqPercent), 4) FROM Teste01 T01
      WHERE T01.overweightPercentage > 10;
      UPDATE Caso01 SET nomeRange = 'High Child Overweight' WHERE porcentagemOWMedia > 10;
      INSERT INTO Caso01 (porcentagemOWMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
      SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
      WHERE T01.overweightPercentage > 5 AND T01.overweightPercentage < 10:
      UPDATE Caso01 SET nomeRange = 'Medium Child Overweight' WHERE porcentagemOWMedia > 5 AND porcentagemOWMedia < 10:</pre>
      INSERT INTO Caso01 (porcentagemOwlMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
      SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
      WHERE T01.overweightPercentage < 5;
      UPDATE Caso01 SET nomeRange = 'Low Child Overweight' WHERE porcentagemOWMedia < 5;</pre>
```

Overweight in children (0 - 59 months) (%)

```
[11]: SELECT * FROM Caso01;
```

! index	NOMERANGE	PORCENTAGEMOWMEDIA	PORCENTAGEMESQHOMEMMEDIA	PORCENTAGEMESQMULHERMEDIA
0	High Child Overweight	14.1367	0.2176	0.2058
1	Medium Child Overweight	7.2145	0.2032	0.1897
2	Low Child Overweight	2.4452	0.1903	0.1834

Low birth weight (%)

```
[15]: SELECT * FROM Caso02;
```

I index	NOMERANGE	PORCENTAGEMUWMEDIA	PORCENTAGEMESQHOMEMMEDIA	PORCENTAGEMESQMULHERMEDIA
0	High Child Underweight	23.376	0.2216	0.199
1	Medium Child Underweight	13.455	0.1969	0.185
2	Low Child Underweight	6.6594	0.2349	0.2223

Underweight in children (0 - 59 years) (%)

```
[19]: SELECT * FROM Caso03;
```

! index	NOMERANGE	PORCENTAGEMUW2MEDIA	PORCENTAGEMESQHOMEMMEDIA	PORCENTAGEMESQMULHERMEDIA
0	High Child Underweight	29.6763	0.2085	0.1914
1	Medium Child Underweight	15.3671	0.1793	0.1772
2	Low Child Underweight	4.1947	0.2073	0.1943

Overweight in adolescents (5 - 19 years) (%)

```
23]: SELECT * FROM Caso04;
```

I index	NOMERANGE	PORCENTAGEMOV2MEDIA	PORCENTAGEMESQHOMEMMEDIA	PORCENTAGEMESQMULHERMEDIA
0	High Child Underweight	42.0769	0.2466	0.227
1	Medium Child Underweight	27.0898	0.2309	0.2137
2	Low Child Underweight	11.9149	0.1902	0.1843

Investigando mais a fundo o primeiro caso (Overweight in children)

```
[138]: --Nesta primeira relação entre tabelas, após explorar as tabelas individualmente, mostra que já podemos ver uma pequena relação entre
       --a porcentagem de criancas com sobrepeso e a quantidade de casos de esquizofrenia em homens/mulheres:
       INSERT INTO Caso01 (porcentagemOwMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
       SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
       WHERE T01.overweightPercentage > 10;
       UPDATE Caso01 SET nomeRange = 'High Child OW' WHERE porcentagemOWMedia > 10;
       INSERT INTO Caso01 (porcentagemOWMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
       SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
       WHERE T01.overweightPercentage > 7.2 AND T01.overweightPercentage < 10.1;
       UPDATE Caso01 SET nomeRange = 'Medium High Child OW' WHERE porcentagemOWMedia > 7.2 AND porcentagemOWMedia < 10.1:</pre>
       INSERT INTO Caso01 (porcentagemOwMedia, porcentagemEsgHomemMedia, porcentagemEsgMulherMedia)
       SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
       WHERE T01.overweightPercentage > 4.4 AND T01.overweightPercentage < 7.3:
       UPDATE Case 1 SET nomeRange = 'Medium Child OW' WHERE porcentagemOWMedia > 4.4 AND porcentagemOWMedia < 7.3:</pre>
       INSERT INTO Caso01 (porcentagemOWMedia, porcentagemEsgHomemMedia, porcentagemEsgMulherMedia)
       SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
       WHERE T01.overweightPercentage > 2.1 AND T01.overweightPercentage <= 4.5:
       UPDATE Caso01 SET nomeRange = 'Medium Low Child OW' WHERE porcentagemOWMedia > 2.1 AND porcentagemOWMedia < 4.5;
       INSERT INTO Caso01 (porcentagemOwlMedia, porcentagemEsqHomemMedia, porcentagemEsqMulherMedia)
       SELECT ROUND(AVG(T01.overweightPercentage), 4), ROUND(AVG(T01.HomensEsqPercent), 4), ROUND(AVG(T01.MulheresEsqPercent), 4) FROM Teste01 T01
       WHERE T01.overweightPercentage < 2.2;
       UPDATE Caso01 SET nomeRange = 'Low Child OW' WHERE porcentagemOWMedia < 2.2;
```

Investigando mais a fundo o primeiro caso (Overweight in children)

```
[139]: SELECT * FROM Caso01;
```

index	NOMERANGE	PORCENTAGEMOWMEDIA	PORCENTAGEMESQHOMEMMEDIA	PORCENTAGEMESQMULHERMEDIA
0	High Child OW	14.1367	0.2176	0.2058
1	Medium High Child OW	8.329	0.2074	0.1925
2	Medium Child OW	5.79	0.201	0.1886
3	Medium Low Child OW	3.2465	0.1905	0.1828
4	Low Child OW	1.3477	0.1877	0.183

```
[4]: DROP TABLE IF EXISTS Ansiedade;
     DROP TABLE IF EXISTS Depressao:
     DROP TABLE IF EXISTS MentalFacilities:
     CREATE TABLE Depressao(
         nomePais VARCHAR(52),
         anoPesquisa varchar(16).
         população bigint.
         porcentagemHomens FLOAT,
         porcentagemMulheres FLOAT,
      ) AS SELECT
         Entity.
         Year.
         Population,
         Prevalence Depressive Disorders Male,
         Prevalence Depressive Disorders Female
     FROM CSVREAD('../data/depression mh.csv');
     CREATE TABLE MentalFacilities(
         nomePais VARCHAR(52),
         anoPesquisa VARCHAR(16),
         hospitais FLOAT.
         servicos de saude FLOAT.
         servicos_de_saude_nao_gov FLOAT,
         servicos de saude day threat FLOAT,
         comunidade residencial FLOAT
       AS SELECT
         Country.
         Year,
         Mental hospitals,
         Mental health units,
         Mental health outpatient,
         Mental_health_day_treatment,
         Community residential facilities
     FROM CSVREAD('../data/mental_health_facilities_gho.csv');
```

```
[6]: UPDATE MentalFacilities SET hospitais = 0 WHERE hospitais IS NULL;
    UPDATE MentalFacilities SET servicos_de_saude = 0 WHERE servicos_de_saude IS NULL;
    UPDATE MentalFacilities SET servicos_de_saude_nao_gov = 0 WHERE servicos_de_saude_nao_gov IS NULL;
    UPDATE MentalFacilities SET servicos_de_saude_day_threat = 0 WHERE servicos_de_saude_day_threat IS NULL;
    UPDATE MentalFacilities SET comunidade_residencial = 0 WHERE comunidade_residencial IS NULL;
    SELECT * FROM MentalFacilities;
```

▲ index	NOMEPAIS	ANOPESQUISA	HOSPITAIS	SERVICOS_DE_SAUDE	SERVICOS_DE_SAUDE_NAO_GOV	SERVICOS_DE_SAUDE_DAY	COMUNIDADE_RESIDENCIAL
0	Austria	2015	0.092	0.265	3.457	2.616	4.448
1	Azerbaijan	2016	0.114	0.021	0.156	0.094	0.031
2	Bulgaria	2016	0.167	0.307	0.307	5.935	1.783
3	Chile	2016	0.023	0.175	0.839	0.315	1.171
4	CostaRica	2016	0.042	0.042	1.706	0.125	0.042
5	Cuba	2016	0.166	0.148	2.932	0.445	1.213
6	Estonia	2016	0.152	0.684	14.82	17.176	3.496
7	Ghana	2016	0.011	1.095	2.378	0.018	0.015
8	Greece	2016	0.027	0.33	1.346	1.319	6.178
9	India	2016	0.01	0.03	0.176	0.023	0.017
10	Iran(IslamicRepu	2017	0.049	0.2	5.089	0.281	0.224
11	Ireland	2016	0.617	0.617	3.83	0.085	4.468
12	Jamaica	2015	0.035	0.07	6.093	0.174	2.994
		2242		0.45	7 000	0.750	0.000

```
[63]: DROP TABLE IF EXISTS Caso01:
      CREATE TABLE Caso01(
          nomeRange VARCHAR(52),
          porcentagemDMedia DOUBLE.
          porcentagemIMedia DOUBLE
      INSERT INTO Caso01 (porcentagemDMedia, porcentagemIMedia)
      SELECT ROUND(AVG(J.porcentagemHomens + J.porcentagemMulheres), 4), ROUND(AVG(J.porcentagemInstalacoes), 4)
      FROM Juncao J WHERE J.porcentagemInstalacoes > 8;
      UPDATE Caso01 SET nomeRange = 'High Facilities Percentage' WHERE porcentagemIMedia > 8:
      INSERT INTO Caso01 (porcentagemDMedia, porcentagemIMedia)
      SELECT ROUND(AVG(J.porcentagemHomens + J.porcentagemMulheres), 4), ROUND(AVG(J.porcentagemInstalacoes), 4)
      FROM Juncao J WHERE J.porcentagemInstalacoes < 8 AND J.porcentagemInstalacoes > 1.9;
      UPDATE Caso01 SET nomeRange = 'Medium Facilities Percentage' WHERE porcentagemIMedia < 8 AND porcentagemIMedia > 1.9;
      INSERT INTO Caso01 (porcentagemDMedia, porcentagemIMedia)
      SELECT ROUND(AVG(J.porcentagemHomens + J.porcentagemMulheres), 4), ROUND(AVG(J.porcentagemInstalacoes), 4)
      FROM Juncao J WHERE J.porcentagemInstalacoes < 1.9:
      UPDATE Caso01 SET nomeRange = 'Low Facilities Percentage' WHERE porcentagemIMedia < 1.9;
```

Resultados (Depressão x Und. de Tratamento)

[64]: SELECT * FROM CASO01;

index:	NOMERANGE	PORCENTAGEMDMEDIA	PORCENTAGEMIMEDIA
0	High Facilities Percentage	6.5987	17.8862
- 1	Medium Facilities Percentage	6.7426	3.7278
2	Low Facilities Percentage	6.8551	0.6226

[65]: SELECT ROUND(SUM(porcentagemHomens)/124 , 4) as homens, ROUND(SUM(porcentagemMulheres)/124 ,4) as mulheres FROM Juncao;

I index	Key	Value
0	HOMENS	2.748
1	MULHERES	4.0489

Análise das dietas

A partir de tabelas contendo informações sobre as dietas de cada país do mundo criar "comunidades" de países que possuem dietas parecidas com o intuito de facilitar e possibilitar futuras relações alimentação x saúde mental de forma mais abrangente, já que será possível analisar grandes grupos de países ao invés de analisá-los individualmente.

Modelo Utilizado

Uma vez que estamos buscando formar "comunidades", é natural que o modelo que demos preferência nesta etapa foi o modelo de grafos, já que este além de possuir esta intimidade com redes complexas, também permite uma visualização mais clara dos resultados.

Banco utilizado

Através do site

https://www.globaldietaryatabase.org/gdd-20 15-beta-version pegamos tabelas com informações sobre o consumo de diversos tipos de alimentos por país, esta fonte de dados foi a escolhida por já conter um índice calculado em relação aos outros países no mundo, o que facilitou bastante a análise.

Default_to	Diet Facto	Unit	Country	Média de	Média de n	egzscore
dietary ca	dietary ca	mg/day	Afghanist	612	0	
dietary ca	dietary ca	mg/day	Albania	681	0	
dietary ca	dietary ca	mg/day	Algeria	705	0	
dietary ca	dietary ca	mg/day	Andorra	940	1	
dietary ca	dietary ca	mg/day	Angola	550	0	
dietary ca	dietary ca	mg/day	Antigua ar	955	1	
dietary ca	dietary ca	mg/day	Argentina	577	0	
dietary ca	dietary ca	mg/day	Armenia	701	0	
dietary ca	dietary ca	mg/day	Australia	788	1	
dietary ca	dietary ca	mg/day	Austria	827	1	
dietary ca	dietary ca	mg/day	Azerbaijar	668	0	
dietary ca	dietary ca	mg/day	Bahamas	873	1	
dietary ca	dietary ca	mg/day	Bahrain	694	0	
dietary ca	dietary ca	mg/day	Banglades	368	-1	
dietary ca	dietary ca	mg/day	Barbados	702	0	
dietary ca	dietary ca	mg/day	Belarus	796	1	
dietary ca	dietary ca	mg/day	Belgium	814	1	
dietary ca	dietary ca	mg/day	Belize	873	1	

Ferramenta utilizada

para esta etapa foi utilizado o Neo4j (Cypher) para a análise de dados e o Cytoscape para visualizar os dados finais.

Primeiramente Unificamos todos os dados do banco em uma só tabela que contém o nome dos 188 países e seus índices para cada um dos 8 tipos diferentes de alimentos.

Country	calcio	colestero	fibra	fruta	Legumes	leite	carneVerr	vegetais	graos
Afghanist	0	0.5	-0.47	-0.7	0.3	-0.4	0.9	0.3	-0.3
Albania	0	-0.1	0.57	-0.3	-0.5	0.8	0.2	-0.1	-0.4
Algeria	0	-3.1	-0.03	-0.4	-0.5	1	-1.9	0.4	-0.3
Andorra	1	-0.6	-0.34	0.9	-0.6	0.4	-0.5	0.1	-0.4
Angola	0	0	0.8	-0.5	0.9	0.4	-1.3	-0.5	-0.4
Antigua ar	1	-1.2	-0.95	1.3	-0.6	1.2	0.3	-0.4	-0.4
Argentina	0	-0.4	-1.28	-0.4	-0.7	-0.1	-1.7	-0.4	-0.5
Armenia	0	-0.7	-1.19	-0.8	-0.7	-0.3	0.8	-1.1	-0.5
Australia	1	-0.8	0.2	0.4	-0.3	0.4	-1.2	-0.2	-0.4
Austria	1	-1.6	-0.29	1.1	-0.7	-0.2	-0.6	0.1	-0.4

A seguir, criamos um nó "País" para cada item na tabela e para cada índice de alimento fizemos uma comparação entre todos os itens e para aqueles países que possuíam índices com valores próximos foi criado uma ligação "parece" entre eles (em caso dessa ligação já existir, o atributo "weight" da ligação era acrescentado em 1 unidade.

LOAD CSV WITH HEADERS FROM 'https://raw.githubusercontent.com/lucasF/Centro-de-Pesquisas-Asdrubal/main/stage04/data/raw/.csv' AS line

CREATE (:Pais {nome: line. Country, calcio: line.calcio, colesterol: line.colesterol, fibra: line.fibra, fruta: line.fruta, legumes: line.legumes, leite: line.leite, carneVermelha: line.carneVermelha, vegetais: line.vegetais, graos: line.graos})

CREATE INDEX ON :Pais(nome)

MATCH (p1:Pais)

MATCH (p2:Pais)

WHERE toFloat(p1.calcio) - toFloat(p2.calcio) < 0.5 AND p1.nome <> p2.nome

MERGE (p1)-[p:parece]->(p2)

ON CREATE SET p.weight=1

ON MATCH SET p.weight=p.weight+1

Então foi feita uma análise sobre o grafo em questão e para cada aresta "parece" com o valor de "weight" máximo (8) foi criado uma aresta "semelhante" ligando os mesmos nós, e então apagadas todas as relações "parece", para que no final tivéssemos apenas as relações mais fortes estabelecidas (em que os países envolvidos possuíam todos os índices de consumo alimentares médios semelhantes).

MATCH (p1)-[l:parece]->(p2)

WHERE I.weight > 7

CREATE (p1)-[:semelhante]->(p2)

MATCH (p1)-[l:parece]->(p2)

DELETE I

Enfim com o grafo resultante foi possível utilizar uma função do Neo4j para separar os países em 4 comunidades distintas que possuem países com dietas semelhantes.


```
CALL gds.graph.create(
  'relacaoDieta',
  'Pais',
     semelhante: {
          orientation: 'UNDIRECTED'
CALL gds.louvain.stream('relacaoDieta')
YIELD nodeId, communityId
RETURN qds.util.asNode(nodeId).nome AS name, communityId
ORDER BY communityId ASC
```

Resultado no Cytoscape


```
[1]: %defaultDatasource idbc:h2:mem:db
[3]: DROP TABLE IF EXISTS IDH;
     DROP TABLE IF EXISTS Dietas:
     CREATE TABLE IDH(
         nomePais VARCHAR(52),
         IDH VARCHAR(15)
       AS SELECT
         pais.
         paises IDH
     FROM CSVREAD('../data/paises idh.csv');
     CREATE TABLE Dietas(
         nomePais VARCHAR(52) NOT NULL,
         nomeGrupo VARCHAR(50) NOT NULL,
       AS SELECT
         name,
         communityId
     FROM CSVREAD('../data/comunidade dietas.csv');
```

[8]: SELECT * FROM Dietas;

index	▲NOMEPAIS	NOMEGRUPO 4
150	Afghanistan	183
99	Albania	134
100	Algeria	134
101	Andorra	134
102	Angola	134
64	Antigua and Barbuda	50
103	Argentina	134
65	Armenia	50
104	Australia	134
105	Austria	134
66	Azerbaijan	50
106	Bahamas	134
151	Bahrain	183
0	Bangladesh	27

[10]: SELECT * FROM Juncao;

index	NOMEPAIS	IDH	NOMEGRUPO
0	Bangladesh	0.632	27
1	Benin	0.545	27
2	Bhutan	0.654	27
3	Botswana	0.735	27
4	Burkina Faso	0.452	27
5	Burundi	0.433	27
6	Cambodia	0.594	27
7	Cameroon	0.563	27
8	Central African Republic	0.397	27
9	Chad	0.398	27
10	China	0.761	27
11	Comoros	0.554	27
12	Congo	0.574	27
13	Djibouti	0.524	27
14	Equatorial Guinea	0.592	27
15	Eritrea	0.459	27
16	Ethiopia	0.485	27

```
[13]: SELECT nomeGrupo, ROUND(AVG(IDH), 4) as idh_medio
FROM Juncao
GROUP BY nomeGrupo;
```

index!	NOMEGRUPO	IDH_MEDIO
0	134	0.8304
1	50	0.7696
2	183	0.7753
3	27	0.5711

Outras Análises (IDH x Und. Tratamento)

[19]: SELECT * FROM Juncao2;

index	NOMEPAIS	ANOPESQUISA	PORCENTAGEMHOMENS	PORCENTAGEMMULHERES	PORCENTAGEMINSTALACOES	IDH
0	Austria	2015	2.2169	4.2668	10.878	0.922
1	Azerbaijan	2016	1.9855	3.0869	0.416	0.756
2	Bulgaria	2016	2.012	3.0086	8.499	0.816
3	Chile	2016	3.0049	5.0298	2.523	0.851
4	Cuba	2016	2.7501	3.8638	4.904	0.783
5	Estonia	2016	2.9609	4.5895	36.328	0.892
6	Ghana	2016	2.861	3.8522	3.517	0.611
7	Greece	2016	2.9313	5.4367	9.2	0.888
8	India	2016	2.9544	4.0851	0.256	0.645
9	Ireland	2016	3.2889	5.1937	9.617	0.955
10	Jamaica	2015	2.056	3.0706	9.366	0.734

Outras Análises (IDH x Und. Tratamento)

[25]: SELECT * FROM Caso02;

] index	NOMERANGE	PORCENTAGEMDMEDIA	PORCENTAGEMIMEDIA	IDH
0	High Facilities Percentage	6.5987	17.8862	0.8658
1	Medium Facilities Percentage	6.7426	3.7278	0.8174
2	Low Facilities Percentage	6.8304	0.6327	0.6685

Outras Análises (Comunidade Dietas x Depressão)

[29]: SELECT * FROM Juncao3;

index	NOMEPAIS	ANOPESQUISA	PORCENTAGEMHOMENS	PORCENTAGEMMULHERES	▼ NOMEGRUPO
2	Bulgaria	2016	2.012	3.0086	183
3	Chile	2016	3.0049	5.0298	183
11	Japan	2016	2.5923	3.9802	183
12	Lebanon	2015	2.8667	4.5345	183
15	Morocco	2016	4.4815	6.4378	183
20	Qatar	2016	3.2179	4.363	183
28	Maldives	2017	2.5813	3.7956	183
29	Bahrain	2017	3.4544	4.5944	183
30	Seychelles	2016	2.5482	3.2338	183
36	Barbados	2015	2.2661	3.1993	183
44	Turkey	2016	2.8018	4.6005	183
50	Israel	2016	2.9001	4.8035	183

Outras Análises (Comunidade Dietas x Depressão)

```
[28]: SELECT nomeGrupo, ROUND(AVG(porcentagemHomens), 4) as depressao_homens, ROUND(AVG(porcentagemMulheres), 4) as depressao_mulheres FROM Juncao3
GROUP BY nomeGrupo;
```

! index	NOMEGRUPO	DEPRESSAO_HOMENS	*DEPRESSAO_MULHERES
2	134	2.6616	4.1843
3	183	2.8824	4.1733
1	27	2.8563	4.0836
0	50	2.4875	3.6466

Conclusão

Não dá para se afirmar que existe uma relação de causa-efeito (precisaria de análises mais profundas, com métodos mais complexos de Ciência de Dados)

Mas grande parte dos dados apresentam relações Diretas

Bancos de dados Saúde mental

- Instalações para tratamento de problemas mentais por país: (JSON)
 https://apps.who.int/gho/data/node.main.MHFAC
- Transtornos mentais por país (CSV): https://ourworldindata.org/mental-health
- Dados sobre Suicídio e níveis de felicidade por país (CSV):
 https://www.kaggle.com/rblcoder/mental-health-happiness-economics-human-freedom/notebook

Bancos de dados Nutrição/Alimentação

- Dados de obesidade, subnutrição entre outros (CSV) https://data.unicef.org/dv_index/ e https://www.who.int/data/nutrition/nlis/data-search
- Dados de dieta (especifica tipos de alimento) por país (CSV) : https://www.globaldietarydatabase.org/gdd-2015-beta-version

Bancos de dados Outros

- Dados diversos relacionados à saúde, além de dados sobre índices de suicídio e de obesidade (CSV): https://data.oecd.org/searchresults/?q=mental+health
- Dados geográficos gerais de países (JSON):
 https://data.world/badosa/uneces-country-overview
- Dados gerais de países (grafo): https://wiki.dbpedia.org/

Gratos pela atenção!

André Luis Romão Gouvêa - a213037@dac.unicamp.br

Lucas B. A. Farias - I220650@dac.unicamp.br

René F. Jallais - r224070@dac.unicamp.br

Projeto no GitHub: https://github.com/lucasF/Centro-de-Pesquisas-Asdrubal