Group 1: Multivariate analysis of australian climate data

Data input

To perform the clustering analysis are used the original datasets (numeric variables) for Brisbane, Perth and Cairns.

Clustering Analysis

In order to analyze if data presents patterns of association are it is performed a clustering analysis. For this purpose, all incomplete cases remaining are removed and as a first step, the optimal number of clusters are estimated through direct methods: elbow, average silhouette and ASM to choose the most common value of optimal clusters.

```
par(mar = c(4,4,.1,.1))
fun01<-function(x){ tmp_df = listall[[x]]</pre>
                    tmp_name = names(listall)[x]
                    fviz_nbclust(tmp_df, kmeans, method = "wss") +
                    geom_vline(xintercept = 4, linetype = 2) +
                    labs(subtitle = paste("Elbow method", tmp_name))}
fun02<-function(x){ tmp_df = listall[[x]]</pre>
                    tmp_name = names(listall)[x]
                    fviz_nbclust(tmp_df, kmeans, method = "silhouette") +
                    geom_vline(xintercept = 4, linetype = 2) +
                    labs(subtitle = paste("Elbow method",tmp_name))}
fun03<-function(x){ tmp_df = listall[[x]]</pre>
                    tmp_name = names(listall)[x]
                    fviz_nbclust(tmp_df, kmeans, method = "gap_stat") +
                    geom_vline(xintercept = 4, linetype = 2) +
                    labs(subtitle = paste("Elbow method",tmp_name))}
wss<-lapply(1:length(listall),fun01)
silhouette<-lapply(1:length(listall),fun02)</pre>
silhouette
#Gaps <- lapply (1:length(listall), fun03)
```


Given the results provided by the methods, it can be concluded the clustering can be performed with 4 cluster for all the dataset, the original numerical variables and the coordinates of the performed MCA.

VizKmeans<-lapply(1:length(listall),funVizKm) VizKmeans</pre>

Warning: ggrepel: 1751 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

Warning: ggrepel: 1767 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps

Warning: ggrepel: 1771 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Warning: ggrepel: 1761 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Warning: ggrepel: 1618 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Warning: ggrepel: 1592 unlabeled data points (too many overlaps). Consider
increasing max.overlaps


```
funKm<- function(i){ tmp df = listall[[i]];</pre>
                      tmp kmeans = kmeans(x = listall[[i]], centers = 4)
                      listall[[i]]<-add_column(listall[[i]], KmeansCluster =</pre>
                                                  tmp kmeans$cluster)}
Kmeans<-lapply(1:length(listall),funKm)</pre>
names(Kmeans)<-c("Brisbane","MFACoordsBrisbane","Perth","MFACoordsPerth",</pre>
                  "Cairns", "MFACoordsCairns")
funMetrics<-function(i){ tmp_df = listall[[i]];</pre>
                      tmp_kmeans = kmeans(x = listall[[i]], centers = 4)
                      print("ClusterCenter")
                      print(tmp_kmeans$center)
                      print("Total Sum of Squares")
                      print(tmp_kmeans$totss)
                      print("Within-cluster sum of squares")
                      print(tmp_kmeans$withinss)
                      print("Total within-cluster sum of squares")
                      print(tmp_kmeans$tot.withinss)
                      print("Between-cluster sum of squares")
                      print(tmp_kmeans$betweenss)}
lapply(1:length(listall), funMetrics)
```

```
## [1] "ClusterCenter"
     WindGustSpeed WindSpeed9am WindSpeed3pm MinTemp MaxTemp TempRange Temp9am
##
## 1
          31.26821
                       8.894040
                                   12.019868 11.82517 24.44371 12.618543 18.71060
## 2
          23.31474
                       5.515936
                                    8.864542 13.12550 23.89701 10.771514 18.14004
          28.78369
                       6.666667
                                    8.968085 18.71241 24.96348 6.251064 21.62730
## 3
## 4
          31.94233
                       8.278481
                                   13.592124 19.57060 28.99887 9.428270 25.44374
##
      Temp3pm Evaporation Sunshine Cloud9am Cloud3pm
                                                        Rainfall Humidity9am
## 1 23.48344
                 5.371523 10.158609 1.705298 1.870861
                                                      0.8589404
                                                                    48.80132
## 2 22.54821
                 3.629880 7.648207 3.575697 3.886454 0.9195219
                                                                    69.37849
## 3 22.66667
                 4.023759 2.658156 7.067376 6.978723 17.7198582
                                                                    83.41135
## 4 27.05274
                 6.364838 8.908439 4.288326 4.095640 1.2585091
                                                                    61.78903
     Humidity3pm Pressure9am Pressure3pm
        33.11258
                    1018.128
                                1014.756
## 1
## 2
        52.17729
                    1021.823
                                1018.462
## 3
       78.55319
                    1015.974
                                1013.371
```

```
## 4
       56.95359
                    1015.556
                                1012.671
## [1] "Total Sum of Squares"
## [1] 1528481
## [1] "Within-cluster sum of squares"
## [1] 144878.1 153141.1 304244.6 217819.7
## [1] "Total within-cluster sum of squares"
## [1] 820083.5
## [1] "Between-cluster sum of squares"
## [1] 708397.3
## [1] "ClusterCenter"
          Dim.1
                     Dim.2
                                 Dim.3
                                            Dim.4
                                                        Dim.5
## 1 -0.4679027 1.0628077 1.07076279 0.1362153 0.07018321
## 2 2.3009142 -0.4046405 0.02016907 -0.1334548 -0.10350373
## 3 -1.0466814 -1.1543413 0.03805446 -0.1390103 -0.08686800
## 4 -0.2730182 1.0975399 -0.72408786 0.1954259 0.14755772
## [1] "Total Sum of Squares"
## [1] 11400.06
## [1] "Within-cluster sum of squares"
## [1] 1287.370 2023.041 1464.653 1283.148
## [1] "Total within-cluster sum of squares"
## [1] 6058.213
## [1] "Between-cluster sum of squares"
## [1] 5341.851
## [1] "ClusterCenter"
     WindGustSpeed WindSpeed9am WindSpeed3pm MinTemp MaxTemp TempRange Temp9am
## 1
         38.72158
                     11.978583
                                    17.74959 15.244646 26.38023 11.135585 20.76145
## 2
          26.30435
                      7.107551
                                    11.03204 7.403204 20.46133 13.058124 13.25080
          40.69968
                      10.974441
                                    15.37700 12.796805 20.29137 7.494569 16.05879
## 3
## 4
          36.31591
                     13.404545
                                    13.90682 15.762727 32.34909 16.586364 23.13932
      Temp3pm Evaporation Sunshine Cloud9am Cloud3pm
                                                       Rainfall Humidity9am
                6.799671 9.790115 3.680395 3.630972 0.85140033
## 1 24.48040
                                                                    56.24053
## 2 19.63066
                 2.689703 8.208924 2.981693 3.320366 0.96430206
                                                                    73.66133
## 3 18.30319
                3.447284 4.685623 6.012780 5.974441 7.20319489
                                                                    80.61661
                 8.867273 11.225455 2.163636 2.600000 0.03590909
## 4 30.78000
                                                                    41.70227
     Humidity3pm Pressure9am Pressure3pm
## 1
       47.47941
                   1014.771
                               1012.789
## 2
       45.91076
                    1024.166
                               1021.405
## 3
       68.70927
                    1012.915
                                1011.884
## 4
       24.95909
                    1016.649
                                1013.167
## [1] "Total Sum of Squares"
## [1] 1868453
## [1] "Within-cluster sum of squares"
## [1] 253351.5 171586.3 216609.1 194392.6
## [1] "Total within-cluster sum of squares"
## [1] 835939.6
## [1] "Between-cluster sum of squares"
## [1] 1032514
## [1] "ClusterCenter"
         Dim. 1
                     Dim.2
                                 Dim.3
                                             Dim.4
## 1 -0.3337137 -1.7020888 0.11261539 0.03317668 0.009607726
## 2 1.6583060 0.5476833 0.02635364 -0.11815647 -0.064714919
## 3 -2.5107697 1.3188696 0.58302477 -0.62322638 0.004254587
## 4 -0.5925200 0.5900040 -0.72246307 0.69861475 0.107150386
## [1] "Total Sum of Squares"
```

```
## [1] 11796.84
## [1] "Within-cluster sum of squares"
## [1] 1395.001 1394.982 1294.771 1084.667
## [1] "Total within-cluster sum of squares"
## [1] 5169.419
## [1] "Between-cluster sum of squares"
## [1] 6627.42
## [1] "ClusterCenter"
     WindGustSpeed WindSpeed9am WindSpeed3pm MinTemp MaxTemp TempRange Temp9am
## 1
                                    25.26741 19.29620 29.12136 9.825158 24.86060
          39.77215
                       18.40506
## 2
          41.64865
                       14.21622
                                    16.37838 23.35676 28.69730 5.340541 25.58649
## 3
          32.16850
                       11.48661
                                    17.36063 22.35134 30.58126 8.229921 27.11118
          40.77059
                       16.52941
                                    20.61471 22.92088 28.91471 5.993824 25.37265
      Temp3pm Evaporation Sunshine Cloud9am Cloud3pm
                                                        Rainfall Humidity9am
## 1 27.60016
                 6.545570 9.416139 3.337025 3.148734
                                                       0.5332278
                                                                     60.94462
## 2 26.97297
                 4.335135 1.172973 7.594595 7.594595 109.8486486
                                                                     88.02703
## 3 28.99669
                 5.652283 7.523780 4.725984 4.669291
                                                       1.2727559
                                                                     70.71339
## 4 26.79853
                 4.998235 3.357647 6.770588 6.691176 15.9423529
                                                                     83.47059
    Humidity3pm Pressure9am Pressure3pm
        49.46994
                    1015.952
                                1012.753
## 2
       82.62162
                    1007.789
                                1005 186
## 3
       64.85827
                    1011.756
                                1008.652
                    1012.239
                                1009.499
## 4
       77.14706
## [1] "Total Sum of Squares"
## [1] 1631837
## [1] "Within-cluster sum of squares"
## [1] 207087.4 116149.4 176327.9 238718.4
## [1] "Total within-cluster sum of squares"
## [1] 738283.2
## [1] "Between-cluster sum of squares"
## [1] 893553.5
## [1] "ClusterCenter"
##
          Dim.1
                      Dim.2
                                 Dim.3
                                            Dim.4
## 1 -0.1032490 1.25947262 0.2131545 0.3502464 0.2484787
## 2 -1.7693380 0.03153956 -0.2951626 -0.2372490 -0.1526417
## 3 2.3680252 0.43349087 -0.1065151 -0.2885750 -0.2599948
## 4 0.2584844 -1.27848780 0.2075642 0.1684881 0.1411082
## [1] "Total Sum of Squares"
## [1] 9770.433
## [1] "Within-cluster sum of squares"
## [1] 1240.271 1085.424 1030.351 1385.376
## [1] "Total within-cluster sum of squares"
## [1] 4741.422
## [1] "Between-cluster sum of squares"
## [1] 5029.011
## [[1]]
## [1] 708397.3
##
## [[2]]
## [1] 5341.851
##
## [[3]]
## [1] 1032514
```

```
##
## [[4]]
## [1] 6627.42
##
## [[5]]
## [1] 893553.5
## [[6]]
## [1] 5029.011
fun04<-function(x) print(names(x))</pre>
lapply(Kmeans, fun04)
fun05<-function(x){x[,ncol(x)]</pre>
                    x$KMCluster <- x[, ncol(x)]
                    return(x$KMCluster)}
clusters<-lapply(Kmeans,fun05)</pre>
BrisbaneClusters<-as.data.frame(cbind(originaldata[[1]],as.factor(clusters[[1]]),
                                        as.factor(clusters[[2]])))
names(BrisbaneClusters)<-c(names(originaldata[[1]]),"KmeansDF","KmeansMFA")</pre>
PerthClusters<-as.data.frame(cbind(originaldata[[2]],as.factor(clusters[[3]]),
                                     as.factor(clusters[[4]])))
names(PerthClusters)<-c(names(originaldata[[3]]),"KmeansDF","KmeansMFA")</pre>
CairnsClusters<-as.data.frame(cbind(originaldata[[3]],as.factor(clusters[[5]]),</pre>
                                      as.factor(clusters[[6]])))
names(CairnsClusters) <- c(names(originaldata[[3]]), "KmeansDF", "KmeansMFA")
DFClusters<-list(BrisbaneClusters,PerthClusters,CairnsClusters)</pre>
fun06<-function(x){tmpdf=DFClusters[[x]]</pre>
                    levels(tmpdf[,24])<-list(C1="1",C2="2",C3="3",C4="4")
                    levels(tmpdf[,25])<-list(G1="1",G2="2",G3="3",G4="4")
                    return(tmpdf)}
data<-lapply(1:length(DFClusters),fun06)</pre>
funtableKmeans<-function(x){table(x$KmeansDF,x$KmeansMFA)}</pre>
funtabseason<-function(x){table(x$KmeansDF,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansMFA,x$Season) }</pre>
funtabseason2<-function(x){table(x$KmeansMFA,x$Season) }</pre>
lapply(data, funtableKmeans)
## [[1]]
##
##
         G1 G2 G3 G4
##
     C1
        0 29 183 90
##
     C2 57 411 36 207
##
     C3 263 14 1
     C4 71 40 385
##
##
```

```
## [[2]]
##
        G1 G2 G3 G4
##
    C1 12 97 204
##
    C2 79 192 50 286
##
                 0 361
##
    C3 66 13
    C4 382 30 24
##
##
## [[3]]
##
        G1 G2 G3 G4
##
##
    C1 226 22 0 92
##
    C2 54 363 113 105
##
    СЗ
        1 92 384 155
##
    C4 37
             0 0
lapply(data,funtabseason)
## [[1]]
##
##
       autumn spring summer winter
##
    C1
           48
                 104
                        15
                               135
##
    C2
                 204
                        339
                                19
          149
##
    C3
           97
                  48
                         96
                                41
    C4
          166
                               236
##
                  99
                        1
##
## [[2]]
##
##
       autumn spring summer winter
##
    C1
           57
                  84
                         21
                               151
    C2
                                29
##
          149
                 198
                        231
##
    СЗ
          127
                  97
                        198
                                18
##
    C4
          127
                  76
                        1
                               233
##
## [[3]]
##
##
       dry wet
##
    C1 155 185
    C2 268 367
##
    C3 492 140
##
    C4 3 34
lapply(data,funtabseason2)
## [[1]]
##
##
       autumn spring summer winter
    G1
                                65
##
          142
                  71
                        113
                 124
                        250
                                 6
##
    G2
          114
          144
                 134
##
    G3
                        0
                               327
                                33
##
    G4
          60
                 126
                         88
```

[[2]]

```
##
##
       autumn spring summer winter
                 135
                               241
##
    G1
          163
                        0
##
    G2
          104
                 114
                         64
                                50
           43
                  77
                              140
##
    GЗ
                         18
##
    G4
          150
                 129
                        369
                                 0
##
## [[3]]
##
##
       dry wet
    G1 89 229
##
    G2 67 410
##
    G3 458 39
##
##
    G4 304 48
funProfile<-function(x){catdes(x, num.var=18, prob = 0.01)</pre>
                       catdes(x, num.var=19, prob = 0.01)}
#lapply(temp,funProfile)
```