Adopted Levels, Gammas

	Туре		Author	History Citation	Literature Cutoff Date						
		Full Eva	luation	M. S. Basunia	NDS 110, 999 (2009)	1-Nov-2008					
$Q(\beta^{-})=-8607 \ 17; \ S(n)=8370 \ 14; \ S(p)=208\times10^{1} \ 18; \ Q(\alpha)=6395 \ 6$ 2003Au03											
150 142	: Gd(⁴⁰ Ar,8n) Sm(⁴⁰ Ca,3n) Nd(⁴⁸ Ti,3n) Ag(⁸⁴ Kr,p3n	ex M	cit (1 Tass Spe	(1972Ga27, 197 1980Sc09, 1975 ectrometer (19 ectrometer (19	Ca06), 80Sc09, 1981Mi12),						
Cross Reference (XREF) Flags											
A 191 Po α decay (22 ms) B 191 Po α decay (93 ms) C 155 Gd(36 Ar,4n γ)											
E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF		(Comments					
0.0	(3/2-)	15.2 s 3	ABC	$%\alpha$ =9.5 20 $%\varepsilon$ + $%\beta$ ⁺ =90.5 20 $%\alpha$: From 2002An19, Other: 7 2 (1999An36). $%\varepsilon$ + $%\beta$ ⁺ : 100%- $%\alpha$. $J^{π}$: (v p _{3/2})⊗ $π$ (0p−0h) configuration suggested in 1999An10. From systematics of g.s. $Jπ$ in 189 Pb, 193 Pb, 195 Pb, 197 Pb, and 199 Pb, the low-spin isomer is expected to be the ground state. $T_{1/2}$: measurement of 1981Mi12. $Δ(^{187}$ Pb, 208 Pb)=−0.993 10 fm² (2007De09).							
33 [@] 13	(13/2+)	18.3 s <i>3</i>	ABC	$%\alpha$ =12 2 (1999An36); $%\varepsilon$ +% $β$ ⁺ =88 2 Additional information 1. $%\alpha$: From 1999An36. $%\alpha$ =2.0 estimated by 1974Le02 from comparison of I α (6073) with the ¹⁹⁶ Po α produced by ¹⁶⁴ Dy(⁴⁰ Ar,8n) reaction. $%\alpha$ =0.7 was estimated by 1972Ga27 from comparison of cross sections for the formation of Pb and Po nuclides by ¹⁵⁵ Gd(⁴⁰ Ar,xn) and ¹⁶⁴ Dy(⁴⁰ Ar,xn) reactions. E(level): From ¹⁸⁷ Pb and ¹⁸⁷ Pb ^m mass measurements by 2005We11. 2 keV <i>15</i> is established in ¹⁹¹ Po α decay (22 ms). 19 keV <i>10</i> in 2012Wa38-AME. J ^π : analogous to high-spin isomers of ¹⁹³ Pb, ¹⁹⁵ Pb, ¹⁹⁷ Pb; (v i _{13/2})⊗ π (0p−0h) configuration suggested in 1999An10. T _{1/2} : measurement of 1981Mi12. Other measured values: 17.5 s <i>36</i> (1972Ga27), 17 s 4 (1974Le02). Δ <r<sup>2>(¹⁸⁷Pb, ²⁰⁸Pb)=−1.025 <i>10</i> fm² (2007De09).</r<sup>							
375.0 10	(3/2-)	<10 [#] ns	A	E(level): Relative to the 33 keV level. For absolute energy ΔE=13 keV of the 33 keV level should be considered in propagation. J ^π : (ν p _{3/2})⊗π(2p−2h) configuration suggested in 1999An10.							
505.0 10	$(9/2^+)$		В	J^{π} : from 472 γ (E2) to (13/2 ⁺) and HF of the 6909 α decay (2002An19).							
527.0 10	(13/2+)	<10 [#] ns	В	J^{π} : from 494 γ (M1) to (13/2 ⁺), HF, and the J^{π} of the parent nucleus (2002An19). Possible configuration (ν i _{13/2}) $\otimes \pi$ (2p-2h). $T_{1/2}$: based on observation of 6888 α and 494 γ in prompt coincidence (1999An10).							
607 <i>15</i> 627.0? <i>10</i>	$(9/2^+)$		В	J^{π} : Based on the $J\pi$ =(13/2 ⁺) of 527 keV level and the (80 γ) (E2).							
864 [@]	$(17/2^+)$	B C									
1280 [@]	$(21/2^+)$										
1756 [@]	(25/2+)		С								

Adopted Levels, Gammas (continued)

¹⁸⁷Pb Levels (continued)

[@] Band(A): π =+ yrast states (1998Ba88). Possible configuration is (ν i_{13/2}) – weakly coupled to near-spherical ¹⁸⁶Pb core states.

γ(187	Pb)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.	α &	Comments
375.0	(3/2-)	375 [‡] 1	100	0.0	(3/2-)	(E0+M1+E2)	≈1.1	Mult.: From $\alpha(K)\exp=0.88\ 30\ (2002An19)$. α : Estimated by the evaluator from $\alpha(K)\exp=0.88$.
505.0	$(9/2^+)$	472 [§] 1	100	33	$(13/2^+)$	(E2)	0.0338	Mult.: from $\alpha(K)\exp \le 0.06$.
527.0	$(13/2^+)$	494 [§] 1	100	33	$(13/2^+)$	(M1)	0.1115	B(M1)(W.u.)>1.6×10 ⁻⁵ Mult.: from α (K)exp 0.076 20.
607	$(9/2^+)$	(80 15)	100	527.0	$(13/2^+)$	(E2)	$2.\times10^{1} \ 3$	Mult., α : From α , $\alpha \ge 10$ (2002An19).
627.0?		594 <mark>§@</mark> 1	100	33	$(13/2^+)$			
864	$(17/2^+)$	831	100	33	$(13/2^+)$			
1280	$(21/2^+)$	416	100	864	$(17/2^+)$			
1756	$(25/2^+)$	476	100	1280	$(21/2^+)$			

 $^{^{\}dagger}$ From ($^{36}{\rm Ar},\!4{\rm n}\gamma$), except otherwise noted. ‡ From $^{191}{\rm Po}~\alpha$ decay (22 ms).

[†] From G-ray energies.

 $^{^{\}ddagger}$ Values given without comment are from (36 Ar, 4 n γ), based on analogy with heavier odd-A Pb isotopes in which a sequence of three stretched Q transitions connect the yrast 25/2+ state to a low-energy 13/2+ isomer.

[#] Limit deduced from observation of $\alpha\gamma$ prompt coincidence in ¹⁹¹Po α decay.

 $[\]S$ From $^{191}\text{Po}~\alpha$ decay (93 ms).

[&]amp; Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[@] Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Adopted Levels, Gammas

$$^{187}_{\ 82}\mathrm{Pb}_{105}$$