MAT257 RSG 4

Rishibh Prakash

17 October, 2021

- 1. What one would like to say is that if $A \subset \mathbb{R}^n$ and $f: A \to \mathbb{R}^m$ is continuous and injective then f^{-1} (on the appropriate domain) is also continuous. This unfortunately does not hold true in general.
 - (a) Give an example of some A and f where $f:A\to\mathbb{R}^m$ is continuous but f^{-1} is not.
 - (b) Show that if A is compact, then the assertion is in fact true. That is, show that if $A \subset \mathbb{R}^n$ is compact and $f: A \to \mathbb{R}^m$ is continuous and injective, then f^{-1} (on the appropriate domain) is continuous.
- 2. Show that a sequence $(a_n)_{n\in\mathbb{N}}$ in \mathbb{R}^m is convergent if and only if it is Cauchy (you may assume this is true for m=1). (Bonus: Use this to conclude that every finite dimensional real inner product subspace is closed).
- 3. (Adapted from Munkres' Analysis on Manifolds). In lecture, we prove the fact that if $A \subset \mathbb{R}^n$ is open and $f: A \to \mathbb{R}$ is of class C^{∞} then $D_i D_j f(a) = D_j D_i f(a)$ for all $1 \leq i, j \leq n$ and all $a \in A$. Unfortunately we never proved it, so let us do that now.
 - (a) We need only prove the case for n = 2 (Why?). Let $R = [a, a + h] \times [b, b + k]$ be a rectangle contained in A. Define

$$\lambda(h,k) = f(a,b) - f(a+h,b) + f(a+h,b+k) - f(a,b+k)$$

Show there exist points $p, q \in R$ such that

$$\lambda(h, k) = D_1 D_2 f(p) \cdot hk$$
$$\lambda(h, k) = D_2 D_1 f(q) \cdot hk$$

(*Hint*: Use the Mean Value Theorem)

- (b) Use the above fact to conclude that $D_1D_2f(a,b)=D_2D_1f(a,b).$ Just for fun
- 4. Let \mathcal{H} be a possibly infinite dimensional real inner product space, such that that a sequence converges in \mathcal{H} if and only if it is Cauchy.
 - (a) Let S be any subset of \mathcal{H} . Let $S^{\perp} := \{ v \in \mathcal{H} : \forall u \in S \langle v, u \rangle = 0 \}$. Show that S^{\perp} is a closed, linear subspace of \mathcal{H} .
 - (b) Show that $(S^{\perp})^{\perp} = \overline{S}.^*$
 - (c) Show that if K is a closed linear subspace of $\mathcal H$ then $K\oplus K^\perp=\mathcal H.^*$