Sistema prototipo para la monitorización de sistemas de riego

Máster Online en Ingeniería Informática Universidad de Burgos

21 de septiembre de 2022

Autor: David Álvarez Castro

Tutores: Carlos Cambra Baseca y

Daniel Urda Muñoz

- 1. Introducción
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

- 1. Introducción
 - 1. Motivación
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

Motivación

- Problemas con el recurso más necesario.
- Sistemas de riego de precisión:
 - Sensorización.
 - Inteligencia artificial.
 - Optimización y gestión eficiente del agua.
- Aplicar la tecnología en la agricultura

- 1. Introducción
 - 1. Motivación
 - 2. Objetivos
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

Objetivos

- Aplicación de gestión de datos de sensores para la gestión de un sistema de cultivos.
 - Monitorizar controladores.
 - Automatizar la gestión del riego.

- 1. Introducción
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

- Sistemas
 - Microcontroladores

- Sistemas
 - Microcontroladores
 - Controlador

- Sistemas
 - Microcontroladores
 - Controlador
 - Actuador

- Sistemas
 - Microcontroladores
 - Bases de datos

- Microcontroladores
- Bases de datos
- Servicios centrales

- Microcontroladores
- Bases de datos
- Servicios centrales
 - Servicios de gestión

- Microcontroladores
- Bases de datos
- Servicios centrales
 - Servicios de gestión
 - Microservicios de gestión

- Microcontroladores
- Bases de datos
- Servicios centrales
- Comunicación asíncrona

- Microcontroladores
- Bases de datos
- Servicios centrales
- Comunicación asíncrona
- Aplicación Web

- 1. Introducción
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

• Metodología utilizada: Scrum.

- Metodología utilizada: Scrum.
- Se utilizan 3 placas de desarrollo diferentes en los microcontroladores.

- Metodología utilizada: Scrum.
- Se utilizan 3 placas de desarrollo diferentes en los microcontroladores.
- Aplicación de lógica difusa en uno de los algoritmos de procesamiento.

- · Metodología utilizada: Scrum.
- Se utilizan 3 placas de desarrollo diferentes en los microcontroladores.
- Aplicación de lógica difusa en uno de los algoritmos de procesamiento.
- Simulación de la electroválvula mediante led.

- · Metodología utilizada: Scrum.
- Se utilizan 3 placas de desarrollo diferentes en los microcontroladores.
- Aplicación de lógica difusa en uno de los algoritmos de procesamiento.
- Simulación de la electroválvula mediante led.
- Arquitectura modular: Docker.

- 1. Introducción
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

Trabajo Futuro

- Despliegue en entorno real
 - Diseñar las placas PCB para el controlador y el actuador.
 - Analizar y estudiar la periodicidad en el envío procesamiento de los datos.

Trabajo Futuro

- Despliegue en entorno real
 - Diseñar las placas PCB para el controlador y el actuador.
 - Analizar y estudiar la periodicidad en el envío y procesamiento de los datos.

Mejoras

- Utilizar Raspberry Pi Pico W en lugar de Arduino UNO.
- Utilizar un protocolo de comunicación seguro como HTTPS.
- Generalizar el algoritmo de activación para otros tipos de zonas.
- Nueva vista en la aplicación web para gestionar nuevos usuarios.

- 1. Introducción
- 2. Arquitectura
- 3. Aspectos relevantes
- 4. Trabajo futuro
- 5. Conclusiones

Conclusiones

- Diseño y desarrollo de los microcontroladores para el envío de datos de sensores y la gestión del relé.
- Diseño y desarrollo de los microservicios para la recogida y procesamiento de los datos de sensores.
- Arquitectura basada en comunicación asíncrona.
- Diseño y desarrollo de una aplicación web para la gestión de controladores y monitorización de los datos.

Sistema prototipo para la monitorización de sistemas de riego

Máster Online en Ingeniería Informática Universidad de Burgos

21 de septiembre de 2022