[Intel] 엣지 AI SW 아카데미 / 인텔 AI 비전 개발

● 이윤혁

● 정희중

● 염재영

● 김지훈

● 김민정A

● 김민정B

INDEX

 $-\Box \times$

1 프로젝트 개요

² 프로젝트 팀 구성 및 역할

- 프로젝트 수행 절차 및 방법
- 4 프로젝트 수행 경과

5 자체 평가 의견

여러분은 화상 통화를 진행하셨을 때, 곤란했던 경험이 있으십니까?

1-1. 프로젝트 배경

 $-\square \times$

비대면 증가

기업 10곳 중 6곳, 코로나 이후 일하는 방식 변해!

* 코로나이후 일하는 방식 변화 여부

* 코로나이후 일하는 방식 변화 여부

* 코로나이후 일하는 방식 변화 여부

* 크로나이후 일하는 방식 변화해 600.8%

**** Saramin

코로나19 이후 비대면 수업, 재택 근무, 비대면 회의의 급증

비대면 증가

화상 회의에서 주변 환경과 사람의 노출로 사생활 침해 피로감 증가

비대면 증가

'줌 스트레스'라는 신조어 등장, 사생활 노출 문제 부각

1-2. 프로젝트 주제

- 기능 복잡성: '줌'의 가상 아바타, 가상 배경 화면 등 프라이버시 보호 기능은 찾기 어렵다
- 사용자 어려움: 중장년층이나 학생들이 복잡한 기능을 파악하고 사용하는 데 어려움
- 손 동작 제어: 다양한 프라이버시 보호 기능을 간단한 손 동작만으로 실행할 수 있는 시스템 개발 필요

■ 손쉬운 회의 제어 시스템
-> '부처핸섬' (Put your hands Up)
손 동작을 통해 다양한 프라이버시 보호 기능을 쉽게 실행할 수 있는 화상 회의 제어 시스템 개발

1-3. 프로젝트 내용

 $-\square X$

- 중장년층이나 학생들이 화상 회의 프로그램의 복잡한 기능을 파악하여 사용하는 데 어려움을 느낌
 - -> 순간적인 사생활 침해에 무방비 노출

■ 남녀노소 손 쉽고 익숙하게 만들 수 있는 여러 손동작들의 데이터를 직접 수집하여 기계학습

1-3. 프로젝트 내용

 $-\square X$

간단한 손동작 하나로 짧은 시간내에 사생활 보호 기능을 실행 가능

언어

1-4. 장비 및 리소스

python™

1-5. 프로젝트 구조

 $-\square \times$

학습 데이터 준비

캠코더를 사용하여 이미지 파일 캡쳐

데이터화

MediaPipe 사용 모델에 사용 가능한 형식으로 데이터화

모델 학습

Keras 사용하여 CNN 학습 후 모델 생성

예측 데이터 준비

캠코더를 사용하여 이미지 파일 캡쳐

동작 판단

학습된 모델을 사용해 예측된 값을 토대로 동작을 판단

모드/기능 실행

동작과 연동시킨 모드/기능 ON/OFF

2. 프로젝트 팀 구성 및 역할

 $-\Box \times$

팀원	담당업무	내용					
이윤혁	조장	총괄, 기능 구현 (블러 처리), PPT					
염재영	코드 총괄	코드 총괄, 통합, 기능 구현 (음량 관련), 발표					
김지훈	모션 인식 학습	MediaPipe 기계 학습, 발표, 코드 통합 구현					
김민정 A	기능 구현, PPT	PPT, 기능 구현 (필터, 음악)					
김민정 B	기능 구현, PPT	PPT, 기능 구현 (배경화면, 음악, 멈춤)					
정희중	기능 구현, PPT	PPT, 기능 구현 (화면 온오프)					

3. 프로젝트 수행 및 절차

번호	작업 활동	5.14	5.15	5.16	5.17	5.18	5.19	5.20	5.21
1	프로젝트 구상 및 착수								
1.1	팀빌딩								
1.2	주제 정하기								
1.3	필요한 자료 조사 및 역할 분배								
2	프로젝트 기능 구현 (모델 부)								
2.1	손동작 인식(MediaPipe) 데이터셋 구축								
2.2	손동작 인식(MediaPipe) 학습 및 모델 구축								
3	프로젝트 기능 구현 (동작 부)								
3.1	필터, 배경화면, 화면 온오프 기능 구현								
3.2	블러 처리, 음악, 볼륨 설정 기능 구현								
4	프로젝트 정리								
4.1	기능 취합 및 연계								
4.2	보고서, PPT 작성								

● 사생활 보호

● 볼륨 조절

MediaPipe

● 기타기능

프로젝트 수행 경과

1.(모션인식) Media Pipe 2.기능구현

4-1. Mediapipe (1) 정의

- -MediaPipe에서 제공해주는 손을 인식하고 구조를 파악해주는 기능을 사용
- -손에 위치한 21개의 관절의 위치를 파악하고 관절들의 좌표를 저장
- -관절의 위치 정보를 바탕으로 관절과 , 관절간의 연결을 표현해주는 기능 제공
- -저장한 정보들에 접촉하여 불러 올 수 있음

4-1. Mediapipe (2) 모션의 데이터화

 $-\Box \times$

4-1. MediaPipe (3) 데이터셋 학습

array([[[2790, 25], [7, 346]], [[2714, 100], [70, 284]], [60, 298]], [[2764, 32], [17, 355]], [[2760, 77], [100, 231]], [3, 354]], [[2777, 42], [0, 349]], [[2822, 4], [30, 312]], [[2810, 6], [22, 330]]], dtype=int64)

Model.keras

4-1. MediaPipe (4) 모델 사용하여 모션 인식

 $-\square \times$

4-2. Blur Mode

4-3. 배경 합성 Mode

4-4. 일시정지 Mode

4-5. 얼굴 필터 Mode

4-6. 노래 Mode

4-7. 볼륨 조절 Mode

< 음소거 >

< 볼륨 감소 >

< 볼륨 증가 >

< On >

< Off >

4-9. 시연 영상

GAMJADAN

 $-\square X$

● 완성도 평가

● 아쉬운 점

● 개선할점

● 느낌과 소감

자체 평가 의견

1.자체완성도평가 2.자체평가의견 3.느낀점및소감

5-1. 자체 완성도 평가

 $-\Box \times$

완성도 95 / 100

- 새로운 방식으로 의사 소통을 촉진
- 사용자 경험을 혁신적으로 개선

화상 회의 시스템에 통합하는 것이 가능

새로운 하드웨어나 소프트웨어를 구매할 필요가 없음

불안정한 감지 및 인식 과정 보완 필요

상업적 가치 창출 가능

5-2. 프로젝트 개선/보완점

 $-\square \times$

영상 처리 과정 중 손 제스처 인식 정확도 및 속도

모델 개선점

사용 기능에 적합한 제스처 연결

기능 개선점

구축한 시스템에 대한 가상 인터페이스 환경 구현

UI 개선점

5-3. 느낀 점 및 소감

 $-\Box \times$

- 이윤혁: 이정도 인원으로 프로젝트를 진행한 것은 처음이었는데, 서로 소통해가면서 코드를 완성하는 것이 즐거웠다.
- 염재영 : 팀원들 간에 소통도 잘되고, 프로젝트 진행 과정에 어려움이 없어서 즐거웠던 것 같다.
- 김지훈: 협업툴의 부족으로 효율적인 일처리가 안된 것은 아쉬웠지만 프로젝트 자체는 계획대로 잘 진행되어 만족스럽다.
- 김민정A: 강의를 정리할 수 있고, 새로운 기법도 배울 수 있는 시간이었다.
- 김민정B: 협업의 중요성을 배웠고, 강의 내용을 다시 한 번 정리할 수 있어서 너무나 값진 시간이었다.
- 정희중: 기능을 만들기 전에 팀원들과 미리 협업하고 수시로 점검 받으면서, 서로 호환이 되도록 해야한다는 것을 느꼈다.

[Intel] 엣지 AI SW 아카데미 / 인텔 AI 비전 개발

● 이윤혁

● 정희중

● 염재영

● 김지훈

● 김민정A

● 김민정B