Chapter 1

Linear Regression

1.1 Fitting a robust regression model using RANSAC

Algorithm 1: RANdom SAmple Consensus (RANSAC) algorithm	
1 begin	
2	repeat
3	Select a random number of examples to be inliers and fit the model;
4	Test all other data points against the fitted model and add those points
	that fall within a user-given tolerance to the inliers;
5	Refit the model using all inliers;
6	Estimate the error of the fitted model versus the inliers;
7	until the performance meets a certain user-defined threshold or if a fixed
	number of iterations was reached;
8 end	

Chapter 2

Clustering

The goal of clustering is to find a natural grouping in data so that items in the same cluster are more similar to each other than to those from different clusters.

2.1 Prototype-based clustering

Prototype-based clustering means that each cluster is represented by a prototype, which is usually either the **centroid** (average) of similar points with continuous features, or the **medoid** (the most representative or the point that minimizes the distance to all other points that belong to a particular cluster) in the case of categorical features.

2.1.1 k-means clustering

Algorithm 2: The k-means algorithm 1 begin 2 Randomly pick k centroids from the examples as initial cluster centers; 3 repeat 4 Assign each example to the nearest centroid, $\mu^{(i)}, j \in \{1, \dots, k\}$; 5 Move the centroids to the center of the examples that were assigned to it; 6 until the cluster assignments do not change or a user-defined tolerance or maximum number of iterations is reached; 7 end

2.1.2 k-means++

Algorithm 3: The k-means++ algorithm

Chapter 3

Others

- 3.1 Distance
- 3.1.1 Euclidean distance