МИНОБРНАУКИ РОССИИ

МИПОВЕПАУКИ ГОССИИ
Федеральное государственное автономное образовательное учреждение высшего образования
«Национальный исследовательский университет
«Московский институт электронной техники»
Институт микроприборов и систем управления
Отчет по выполнению домашнего задания
«Расчет канала ВЧ-ячейки»
по дисциплине «Моделирование СВЧ-устройств в среде ADS»
Вариант 5.6
Приемная ячейка усиления и фильтрации с детектированием мощности

Рис. 1 Базовая структурная схема.

Таблица 1 параметры

Fc, ГГц	Кр, дБ, не менее	$\Delta F_{ ext{-3dB}}$, ГГц, не менее	ΔA_{pass} , дБ, не более	
8,5	39	0,5	3	
Нижний диапазон запирания, Fs1Fs2, ГГц	Верхний диапа- зон запирания, Fs3Fs4, ГГц	ΔA_{stop} , дБ, не менее	Кш, дБ, не более	Диапазон ожидае- мых входных мощ- ностей, Ріп, дБмВт
7,37,85	9,19,6	33	3,3	-4215

Рис. 2 – Пояснение к ТЗ на АЧХ канала

Общие условия и пояснения:

1. КСВН по всем ВЧ-входам и ВЧ-выходам должен быть не более 1,5 в рабочей полосе частот.

- 2. Усилители МШУ1 и МШУ2 не обязательно должны быть одним устройством, могут являться каскадными.
- 3. Предпочтительно чтобы первым устройством был фильтр Φ 1, однако, если из-за потерь на фильтре Φ 1 невозможно удовлетворить на Кш, то первый МШУ с минимальным коэффициентом шума можно поставить первым.
- 4. Рабочий диапазон частот F_{p_1} . F_{p_2} определяется как размах ΔF_{-3dB} относительно центральной частоты F_c , т.е. $F_{p_1} = F_c$ 0,5 ΔF_{-3dB} и $F_{p_2} = F_c$ + 0,5 ΔF_{-3dB} .
- 5. Ячейка должна быть способна корректно измерять возможные значения входной мощности Pin. Это означает, что данный диапазон возможной входной мощности с учетом прохождения через канал (МШУ, ППФ, ответвление в вторичное плечо НО) должен попадать в динамический диапазон измеряемой мощности детектора мощности в рабочей полосе частот

Оглавление

Часть 1. Поиск ВЧ-компонентов	4
Выбор МШУ:	4
Выбор детектора мощности:	4
Часть 2. Проверка элементов в режиме S-параметров	4
Часть 3. Проектирование полосковых устройств и согласование компонентов	5
3.1 Проектирование ответвителя	5
2 MIIIV 1 — PMA-183PLN+	6

Часть 1. Поиск ВЧ-компонентов

Выбор МШУ:

Пусть фильтр «съедает» 5дБ и НО — 1дБ. Тогда усилители должны суммарно давать не менее 39 + 5 + 1 = 45 дБ усиления.

На роль МШУ1 возьмём <u>PMA-183PLN+</u> и на роль МШУ2 — <u>LVA-123+</u>

Выбор детектора мощности:

LTC5597

В качестве фильтра будем использовать <u>ранее разработанный</u> на подложке Rogers RO4003 0.5 oz ED 20 mil (Er = 3.38, Ur = 1, Tand = 0.0027, T = 17 мкм, H = 0.508 мм)

Часть 2. Проверка элементов в режиме S-параметров

Рис 2.1 S-параметры фильтра

Рис 2.2 S-параметры МШУ1

Рис 2.3 S-параметры МШУ2

Часть 3. Проектирование полосковых устройств и согласование компонентов

3.1 Проектирование ответвителя

Исходя из диапазона возможных входных значений, определяем ответвление в -40 дБ

Puc 3.1.1 Tlines_Ideal

Рис 3.1.2 Microstrip Ideal

Puc 3.1.3 Microstrip lines

3.2 МШУ 1 — PMA-183PLN+

Рис. 3.2.1 Размеры элемента

P = 0.25 mm K = 0.51 mm