Definition 33.7. The linear map $f \otimes g \colon E \otimes F \to E' \otimes F'$ given by Proposition 33.9 is called the *tensor product* of $f \colon E \to E'$ and $g \colon F \to F'$.

Another way to define $f \otimes g$ proceeds as follows. Given two linear maps $f: E \to E'$ and $g: F \to F'$, the map $f \times g$ is the linear map from $E \times F$ to $E' \times F'$ given by

$$(f \times g)(u, v) = (f(u), g(v)),$$
 for all $u \in E$ and all $v \in F$.

Then the map h in the proof of Proposition 33.9 is given by $h = \iota'_{\otimes} \circ (f \times g)$, and $f \otimes g$ is the unique linear map making the following diagram commute.

$$E \times F \xrightarrow{\iota_{\otimes}} E \otimes F$$

$$f \times g \downarrow \qquad \qquad \downarrow f \otimes g$$

$$E' \times F' \xrightarrow{\iota'_{\otimes}} E' \otimes F'$$

Remark: The notation $f \otimes g$ is potentially ambiguous, because $\operatorname{Hom}(E,F)$ and $\operatorname{Hom}(E',F')$ are vector spaces, so we can form the tensor product $\operatorname{Hom}(E,F) \otimes \operatorname{Hom}(E',F')$ which contains elements also denoted $f \otimes g$. To avoid confusion, the first kind of tensor product of linear maps defined in Proposition 33.9 (which yields a linear map in $\operatorname{Hom}(E \otimes F, E' \otimes F')$) can be denoted by T(f,g). If we denote the tensor product $E \otimes F$ by T(E,F), this notation makes it clearer that T is a bifunctor. If E,E' and F,F' are finite dimensional, by picking bases it is not hard to show that the map induced by $f \otimes g \mapsto T(f,g)$ is an isomorphism

$$\operatorname{Hom}(E, F) \otimes \operatorname{Hom}(E', F') \cong \operatorname{Hom}(E \otimes F, E' \otimes F').$$

Proposition 33.10. Suppose we have linear maps $f: E \to E'$, $g: F \to F'$, $f': E' \to E''$ and $g': F' \to F''$. Then the following identity holds:

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g). \tag{*}$$

Proof. We have the commutative diagram

$$\begin{array}{c|c} E\times F & \xrightarrow{\iota_{\otimes}} & E\otimes F \\ f\times g \Big| & & \Big| f\otimes g \\ E'\times F' & \xrightarrow{\iota'_{\otimes}} & E'\otimes F' \\ f'\times g' \Big| & & \Big| f'\otimes g' \\ E''\times F'' & \xrightarrow{\iota''_{\otimes}} & E''\otimes F'', \end{array}$$

and thus the commutative diagram.

$$E \times F \xrightarrow{\iota_{\otimes}} E \otimes F$$

$$(f' \times g') \circ (f \times g) \downarrow \qquad \qquad \downarrow (f' \otimes g') \circ (f \otimes g)$$

$$E'' \times F'' \xrightarrow{\iota''_{\otimes}} E'' \otimes F''$$