Big O Notation

Big O Notation is used to describe the upper bound of an algorithm's running time. It focuses on the worst-case scenario and gives an idea of the algorithm's efficiency as the input size grows.

Common Rates of Growth

$$O(\log Consta n)$$
nt:
 $O(1)$ Linear:
 $O(n)$ Logarit
hmic:
LinearithmicExponential
 \vdots $O(n \log n) O(2)^n$
Quadratic: Factorial:
 $O(n)^2$ $O(n!)$
Cubic:
 $O(n)^3$

Table of Algorithms, Time, and Space Complexities:

Algorithm	Time Complexity	Space Complexity	Use Case
Sorting Algorithms			
Bubble Sort	$O(n)^2$	O(1)	Simple but inefficient; use for small datasets.
Merge Sort	O(n log n)	<i>O</i> (<i>n</i>)	Efficient sorting for large datasets.
Quick Sort	O(n log n) (Average)	O(log n)	Fast sorting; worst-case $O(n)^2$

Heap Sort	O(n log n)	O(1)	In-place, reliable sorting algorithm.
Insertion Sort	$O(n)^2$	O(1)	Efficient for small or nearly sorted arrays.
Searching Algorithms			
Linear Search	O(n)	O(1)	Simple search in unsorted data.
Binary Search	O(log n)	O(1)	Fast search in sorted data.
Graph Algorithms			
Depth-First Search (DFS)	O(V + E)	O(V)	Exploring all vertices in a graph.
Breadth-First Search (BFS)	O(V + E)	O(V)	Shortest path in unweighted graphs.
Dijkstra's Algorithm	O((V + E)log V)	O(V)	Shortest path in weighted graphs.
Bellman-Ford Algorithm	$O(V \times E)$	O(V)	Shortest path with negative weights.
Floyd-Warshall Algorithm	$O(V)^3$	$O(V)^2$	All-pairs shortest paths.

Algorithm	Time Complexity	Space Complexity	Use Case
Tree Traversal Algorithms			
Inorder Traversal	O(n)	O(h)	Traverse BST in non decreasing order.
Preorder Traversal	O(n)	O(h)	Traverse tree in root-first order.

Postorder Traversal	<i>O</i> (<i>n</i>)	O(h)	Traverse tree in child-first order.
Level Order Traversal (BFS)	O(n)	O(w)	Traverse level by level.
Dynamic Programming			
Longest Common Subsequence (LCS)	O(m × n)	<i>O</i> (<i>m</i> × <i>n</i>)	Sequence alignment.
Longest Increasing Subsequence (LIS)	, O(n) ² O(n log n)	<i>O</i> (<i>n</i>)	Finding the longest increasing subsequence.
Knapsack Problem	$O(n \times W)$	O(n × W)	Optimal selection of items.
Fibonacci Series (Top Down)	O(n)	O(n)	Compute Fibonacci numbers efficiently.
Matrix Chain Multiplication	$O(n)^3$	$O(n)^2$	Optimal parenthesization of matrix products.
Advanced Algorithms			
Segment Tree	O(log <i>n</i>) (query/update)	O(n)	Efficient range queries and updates.
Fenwick Tree (Binary Indexed Tree)	O(log <i>n</i>) (query/update)	O(n)	Efficient prefix sum queries.
Mo's Algorithm	O((n+q)n)	O(n)	Efficient range query processing.

Algorithm	Time Complexity	Space Complexity	Use Case
Kruskal's Algorithm (MST)	O(E log E)	O(V)	Minimum spanning tree in a graph.
Prim's Algorithm (MST)	O(E log V)	O(V)	Minimum spanning tree in a graph.

Union-Find (Disjoint Set)	$O(\alpha(n))$	O(n)	Efficient set operations.
Trie (Prefix Tree)	O(L) (insert/search)	$O(L \times n)$	Fast retrieval of strings.
Rabin-Karp Algorithm (String Matching)	O(n + m) (average)	O(1)	Pattern searching in a string.

This table provides a structured overview of the algorithms, their complexities, and typical use cases, making it easier to reference the information quickly.

Data Structures

Arrays

Search O(1)Search Insert: O(n) O(n)Looku O(n) O(n)Space O(n)

Complexity: Fast lookups

O(*n*)

Fast push/pop operations
Ordered

Cons:

Slow inserts and deletes

Fixed size (if using static array)

Linked Lists

Prepen d:

O(1) Lookup

: O(n) O(1) Delete: O(n) O(n)

Insert:

Space Pros:

Complexity: O(n)

Fast insertion and deletion

Flexible size

Cons:

Slow lookup

More memory overhead due to pointers

Doubly Linked Lists

Prepen O(1)

d: O(1)

Appen O(n)

d: O(1)

Lookup

:

Delete: (once the node is found)

Space Pros:

Complexity: O(n)

Fast insertions/deletions from both ends

Can traverse in both directions

Cons:

More memory usage due to extra pointer Slower lookups

Stacks (LIFO)

Push: O(1) O(1) O(1) O(1)Pop:

Looku Pros:

p:

O(n) Fast

Space operations

ComplO(n)

exity:

Simple and easy to implement

Cons:

Slow lookup

Queues (FIFO)

e:

Enqueu O(1)

e: O(1)

Dequeu

Peek: *O*(1)

Looku Space

p:

O(n) Compl

exity: d

Pros: Cons:

 $\begin{array}{cc} {\sf Fast} & {\sf Slow} \\ {\sf operati} & {\sf lookup} \\ {\sf ons} & {\it O(n)} \end{array}$

Ordere

Priority Queues (using Binary Heap)

n)

Insert: O(log

Delete (Extract Complexity:

Max/Min):

 $O(\log n)$ Pros:

Peek (Find

Max/Min): O(n)

O(1) Space

Fast access to highest/lowest priority element

Cons:

Slower operations than simple queues

Hash Tables

Searc O(1)

h:

Insert O(1)

:

Delete: O(1) O(n)

O(1)

Lookup: (Average Case) or (Worst Case, if collisions are high)

Space Pros:

Complexity: O(n)

Extremely fast lookups, inserts, and deletes

Flexible keys

Cons:

Unordered

Performance depends on a good hash function

Potential for hash collisions, leading to O(n) operations in the worst case

Binary Search Trees (BST)

 $O(\log n) O(n)$

Search: (Average Case), (Worst Case, if unbalanced) $O(\log n)$ O(n)

Insert: (Average Case), (Worst Case)

 $O(\log n) O(n)$

Delete: (Average Case), (Worst Case)

Space Ordered

structure

Complexity: O(n)

Pros:

Cons:

Can become unbalanced, leading to poor performance

Balanced Binary Search Trees (e.g., AVL, Red-Black Tree)

Space Search:

O(log Complex

n)

Insert: ity:

O(log

n) Pros:

Delete: $O(\log O(n))$

n)

 $O(\log n)$

Guaranteed operations

Self-balancing

Cons:

More complex to implement

Higher memory overhead

Heaps (Min-Heap, Max-Heap)

n)

Insert:

O(log

Delete (Extract Space

Max/Min):

 $O(\log n)$ Complexity:

Peek (Find

Max/Min): Pros:

O(1)

Efficient for priority queue operations
Easy to implement

Cons:

Not suitable for searching specific elements Not sorted

Fenwick Tree (Binary Indexed Tree)

Space

Update: Complex

 $O(\log n)$ ity:

Prefix Pros: Sum O(log

Query: n) O(n)

Efficient for cumulative frequency tables
Easy to implement

Cons:

Limited to operations like range sum, not general-purpose

Segment Tree

Range Space Query:

 $O(\log n)$ Complexity

Update:

 $O(\log n)$: Pros:

Handles range queries efficiently

Flexible for various operations (sum, min, max)

Cons:

Complex implementation

Higher memory usage compared to Fenwick Tree

Graphs

Adjacency List Representation:

Space O(V + E)Complexity: O(V + E)

Search: using DFS/BFS Adjacency

Matrix Representation:

Space $O(V)^2$

Complexity:

 $O(V)^2$

Search: using DFS/BFS

Pros:

Useful for modeling relationships between entities

Cons:

High space complexity, especially with adjacency matrix

Algorithms

Sorting Algorithms

1. Bubble Sort

Time Complexity:

Complexity: $O(n)^2$

 $O(n)^2$ Space

Space Complexity: Complexity: 3. Insertion

2. Selection Sort O(1)

O(1)

Time

$$O(n) O(n)^2$$

Time Complexity: (Best Case), (Worst Case)

Space Complexity: $O(n \log n)$

4. Merge Sort Space

O(1) Complexity:

5. Quick Sort

O(n)

Time

$$O(n \log n) O(n)^2$$

Time Complexity: (Average Case), (Worst Case)

Space Complexity:

Complexity: 7. Counting Sort

6. Heap Sort O(1)

 $O(\log n)$

Time Complexity:

Time Complexity: O(n + k)

 $O(n \log n)$ O(k) k

Space

Space Complexity: (where is the range of input values) 8.

Radix Sort

Time Complexity: (where is the number of digits)

Space

Complexity: Time Complexity:

9. Bucket Sort O(n + k)O(n + k) Space Complexity: $O(\log n)$

Space

Complexity:

2. Linear Search

Search O(1)

Algorithms 1.

Time Complexity:

Binary Search

O(*n*)

Space

O(n + k) Complexity:

O(1)

Time Complexity:

3. Breadth-First Search (BFS)

Time Space

Complexity: Complexity:

O(V + E) O(V)

4. Depth-First Search (DFS)

Time Complexity:

Complexity: 5. Dijkstra's O(V + E) Algorithm

Space O(V)

 $O((V + E)\log V)$

Time Complexity:

Space O(V)

Complexity:

6. A Search*

$$O((V + E)\log V)$$

Time Complexity:

Space O(V)

Complexity:

7. Bellman-Ford Algorithm

Time $O(V \times E)$

Complexity:

Space Complexity: (

8. Floyd-Warshall Algorithm

Time Space

Complexity: Complexity:

 $O(V)^3$

 $O(V)^2$

Tree Traversal Algorithms

1. Inorder Traversal

Time

O(h)h

Complexity:

O(n)

Space Complexity: (where is the height of the tree) 2.

Preorder Traversal

Time

Complexity: Time

O(n)

Complexity:

Space

O(n)

Complexity: Space

3.

Complexity:

Postorder

O(h)

Traversal

O(h)

4. Level Order Traversal (BFS)

Time Complexity:

O(w) w

O(n)

Space Complexity: (where is the maximum width of the tree)

Dynamic Programming

1. Longest Common Subsequence (LCS)

Time

Space

Complexity:

Complexity:

 $O(m \times n)$

 $O(m \times n)$

2. Longest Increasing Subsequence (LIS)

$$O(n)^2 O(n \log n)$$

Time Complexity: (or with a binary search approach)

Space Complexity: Problem O(n)

3. Knapsack

$$O(n \times W) W$$

Time Complexity: (where is the capacity of the knapsack)

Space

 $O(n \times W)$

Complexity:

4. Fibonacci Series (Top-Down Approach)

Time

Space

Complexity: Complexity:

O(n)

O(n)

5. Matrix Chain Multiplication

Time

Space

Complexity: Complexity:

 $O(n)^3$ $O(n)^2$

Other Advanced Algorithms

1. Segment Tree

Range

Space

Query:

Complexity

 $O(\log n)$

Update:

O(n)

 $O(\log n)$

Use Case: Efficient range queries and updates (sum, min, max).

2. Fenwick Tree (Binary Indexed Tree)

Update: Space

O(log Complex

n) ity:

Prefix O(log

Sum n) O(n)

Query:

Use Case: Efficient range sum queries.

3. Mo's Algorithm

$$O((n+q) n) q$$

Time Complexity: (where is the number of queries)

Space

O(n)

Complexity:

Use Case: Efficient answering of range queries offline.

4. Kruskal's Algorithm (Minimum Spanning Tree)

Time Complexity:

Complexity: O(V)

 $O(E \log E)$

Space

Use Case: Finding a minimum spanning tree in a graph.

5. Prim's Algorithm (Minimum Spanning Tree)

Time Complexity:

Complexity: O(V)

 $O(E \log V)$

Space

Use Case: Finding a minimum spanning tree in a graph.

6. Union-Find (Disjoint Set)

 $O(\alpha(n))$

Find: (Inverse Ackermann function)

Union: Comple $O(\alpha(n))$ xity: O(n)

Space

Use Case: Efficient set operations.

7. Trie (Prefix Tree)

O(L) L

Insert: (where is the length of the word)

Search O(L)

:

Space $O(L \times n)$

Complexity:

Use Case: Fast retrieval of keys in a large dataset of strings.

8. Rabin-Karp Algorithm (String Matching)

$$O(n + m)$$

Time Complexity: (Average Case)

Space O(1)

Complexity:

Use Case: Pattern searching in a string.