

Nome:

Mecânica Clássica

Ano letivo 2020/21 2º Semestre

Data: 9 de Julho 2021

Hora: 9h30 Duração: 1h 30m Cotação: I – 8 valores II - 6 valores

Nº mec:

	I
Assina	le a opção correta (x):
1.	Considere a figura abaixo. Assumindo que o antebraço tem uma massa de 2,8 kg e o seu centro de massa está a 12 cm do pivô da articulação do cotovelo, quanta força deve o músculo extensor exercer no antebraço para segurar uma esfera de 7,5 kg?
	2.5 cm 30.0 cm pivô músculo extensor
	1000 N
	1500 N
	100 N
	500 N
2.	"O momento angular total de um sistema de partículas em relação ao centro de massa muda quando uma força externa resultante não nula atua sobre o sistema". Esta afirmação é:
	às vezes verdadeira. Depende da magnitude da força.
	às vezes verdadeira. Depende do ponto de aplicação da força.
	sempre verdadeira.
	sempre falsa.

3. Uma patinadora de gelo faz uma pirueta (uma volta rápida) puxando os seus braços estendidos para perto do seu corpo. O que acontece ao seu momento angular e ao momento de inércia em relação ao eixo de rotação?

] C) momento angu	lar não	varia,	mas o	momento	de	inércia	varia.
--	-----	----------------	---------	--------	-------	---------	----	---------	--------

O momento angular varia, mas o momento de inércia não varia.

A 1	~	
Ambos	nao	variam.

Ambos aumentam.

Ambos diminuem.

4. Uma massa pequena colide com uma massa grande, seguindo juntas depois da colisão. Que massa sofre a maior variação de momento linear?

A maior massa.

Ambos as massas sofrem a mesma magnitude de variação de momento linear.

Não é possível responder a partir das informações dadas.

A menor massa.

5. Considere duas massas iguais de 1 kg que oscilam presas a três molas de constante de força k, 2k e k, como mostra a figura.

Quando o sistema oscila no seu modo normal de oscilação em oposição de fase, o ponto médio da mola de constante 2*k* não oscila. A frequência deste modo normal é:

$$\omega = \sqrt{6k}$$

$$\omega = \sqrt{k}$$

$$\omega = \sqrt{3k}$$

$$\omega = \sqrt{5k}$$

Um objecto de massa m = 1 kg oscila preso a uma mola de constante $k = 4.0 \times 10^2$ N/m. O efeito da resistência do ar dá origem a uma constante de amortecimento b = 3.0 N.s/m.

- a) Determine a frequência de oscilação deste sistema.
- b) Indique se o oscilador é subamortecido, amortecido criticamente ou sobreamortecido.
- c) Determine o intervalo de tempo necessário para a energia mecânica do oscilador decair para 5% do seu valor inicial.
- d) Assuma que o oscilador é accionado por uma força sinusoidal de valor máximo
 5 N e frequência angular de 5 rad.s⁻¹.
 - i) Qual é a frequência das oscilações?
 - ii) Se a frequência da força motriz se alterar, para que valor de frequência ocorrerá a ressonância?
 - iii) Determine a amplitude das vibrações na ressonância.

Ш

Um bloco de massa m está pendurado por um fio sem massa como mostra a figura à direita. O fio está enrolado numa roldana de massa M e raio R, que pode rodar livremente em torno do seu eixo.

- a) Determine a aceleração do bloco.
- Assumindo que o sistema está inicialmente em repouso, relacione a velocidade angular da roldana com o espaço percorrido pelo bloco usando considerações energéticas.
- c) Assuma que a roldana é perfurada, ficando com um buraco de raio *R*/2, como mostra a figura à direita.
 - i. Qual o novo momento de inércia em relação ao eixo de rotação?
 - ii. Com a perfuração, o eixo de rotação da roldana deixa de ser um eixo principal de inércia. É possível mesmo assim determinar a aceleração do bloco, seguindo os mesmos passos da alínea (a)? Justifique a sua resposta.

Formulário

$$x = \rho \cos(\phi)$$

$$x = \rho \cos(\phi)$$

$$x = Ae^{-rt} \cos(\omega t - \phi)$$

$$x = r\sin(\theta)\cos(\phi)$$

$$y = r\sin(\theta)\sin(\phi)$$

$$z = r\cos(\theta)$$

$$\bar{v} = \bar{v}' + \bar{w} \times \bar{v}'$$

$$\bar{a}' = \bar{a} - 2\bar{\omega} \times \bar{v}' - \bar{\omega} \times (\bar{\omega} \times \bar{r}) - \bar{\alpha} \times \bar{r}$$

$$\bar{a} = (\bar{p} - p + \phi^2) \hat{e}_p + (p + \phi + 2\bar{p} + \phi) \hat{e}_p + \bar{z} \hat{e}_z$$

$$= \rho \hat{e}_p + p + \phi \hat{e}_p + \hat{z} \hat{e}_z$$

$$= \rho \hat{e}_p + p + \phi \hat{e}_p + \hat{z} \hat{e}_z$$

$$= \rho \hat{e}_p + p + \phi \hat{e}_p + \hat{z} \hat{e}_z$$

$$= \rho \hat{e}_p + p + \phi \hat{e}_p + \hat{z} \hat{e}_z$$

$$= \rho \hat{e}_p + p + \phi \hat{e}_p + \hat{z} \hat{e}_z$$

$$= \frac{b}{2m}$$

$$Mdv = -v_c dM$$

$$= \sqrt{\omega_0^2 - 2\gamma^2}$$

$$\delta = \arctan \frac{2\gamma \omega}{\omega_0^2 - \omega^2}$$

$$\epsilon = \frac{k}{2} I \omega^2$$

$$T = \frac{1}{2} MV^2 + \sum_i \frac{1}{2} m_i v_i^2$$

$$I_c = \frac{ML^2}{12} \qquad I_{CM} = \frac{1}{2} MR^2$$

$$I_c = \frac{ML^2}{12} \qquad I_{CM} = \frac{1}{2} MR^2$$

$$V^2 = v_0^2 - 2a\Delta x$$

$$I = I_{CM} + Md^2$$

$$V(x) = (\tan \theta_0) x - \left(\frac{g}{2v_0^2 \cos^2 \theta_0}\right) x^2$$

$$\bar{r} = \bar{r}_0 + \bar{v}_0 (t - t_0) + \frac{1}{2} \bar{g} (t - t_0)^2$$