组合数学 08.30 思考题

提交者: 游昆霖 学号: 2020K8009926006

1. 现有 A,B 两人分一个蛋糕,A 和 B 对这个蛋糕的不同部分有自己的偏好。试问能否将这个蛋糕分成两份,A,B 各拿一份,并且要求 A 拿到的蛋糕在他自己的偏好下不少于整个蛋糕的 $\frac{\sqrt{5}-1}{2}$, B 拿到的部分在他自己的偏好下不少于整个蛋糕的 $\frac{3-\sqrt{5}}{2}$ 。

问题形式化表述如下:现有非负整数 $f_1.f_2$ 满足

$$\int_0^1 f_i(x)dx = 1(i=1,2)$$

是否存在区间 [0,1] 的子集 A,B 使得 $A \cup B = [0,1], A \cap B = \emptyset$ 且

$$\int_{A} f_1(x)dx \ge \frac{\sqrt{5} - 1}{2}, \quad \int_{B} f_2(x)dx \ge \frac{3 - \sqrt{5}}{2}?$$

试为这两人的要求设计一个算法, 或证明划分不存在。

解

首先,注意到: 黄金分割率为斐波那契数列递推关系的特征根,具体如下: 设斐波那契数列第 n 项为 F_n ,则 $F_1 = F_2 = 1$, $F_{n+1} = F_n + F_{n-1}$; 由特征根方程可得: $F_n = \alpha(\frac{1+\sqrt{5}}{2})^n + \beta(\frac{1-\sqrt{5}}{2})^n$ 结合 F_1, F_2 可确定 $\alpha = \frac{1}{\sqrt{5}}, \beta = -\frac{1}{\sqrt{5}};$ 当 $n \gg 1$ 时, β 项衰减震荡消失,即可得 $\frac{F_n}{F_{n+1}} \to \frac{\sqrt{5}-1}{2};$ 根据以上性质,可确定分蛋糕算法如下:

Algorithm 1 Divide cake by golden ratio

输入: $f_1(x)f_2(x)\setminus A$ 和 B 对应的蛋糕函数

输出: n 满足黄金分割比的分割蛋糕方法

 $\mathbf{function}\ \mathrm{Divide}\ \bigcirc$

$$F_1 \leftarrow 1, F_2 \leftarrow 1, n \leftarrow 1;$$

while true do

Let
$$0 = x_1 < x_2 < \dots < x_{F_{n+1}+1} = 1$$
,s.t. $\int_{x_1}^{x_2} f_1(x) dx = \dots = \int_{x_{F_{n+1}}}^{x_{F_{n+1}+1}} f_1(x) dx = \frac{1}{F_{n+1}}$ $\exists 0 \le x_{i_1} < \dots < x_{i_{F_{n+1}}} \le 1$, $B = \bigcup_{k=1}^{F_n} [x_{i_k}, x_{i_{k+1}}]$,s.t. $\int_B f_2(x)$ 取得最大值; \\ A 将蛋糕按自己价值标准平均分割为 F_{n+1} 块; B 取其中对自己价值较大的 F_n 块; if $\int_B f_2(x) \ge \frac{3-\sqrt{5}}{2}$ then break; \\ 若 B 所取蛋糕满足条件,跳出循环

else
$$n \leftarrow n+1, F_{n+1} \leftarrow F_n+F_{n-1}$$

end if

end while

return n

end function

注:由上述斐波那契前后两项比值趋于黄金分割比可知,该算法进行下去,最终能求得满足题意的解法。