Q: Recursion

1. Problem Understanding

- Recursion is when a function calls itself directly or indirectly to solve a smaller instance of the same problem.
- Goal:
- Break a big problem into smaller subproblems until reaching a base case, then combine results on the way back.

• Essential Components of Recursion

- Base Case (Stopping Condition):
 - Prevents infinite recursion.
 - Represents the simplest subproblem whose answer is known directly.
 - Example:
 - if (n == 0) return;
- Recursive Case:
 - The function calls itself on smaller input.
 - Example:
 - recursion(n 1);
- Work Before / After Recursive Call:
 - Decides output order (e.g., pre-order, post-order).
 - Example:
 - System.out.println(n); // before → descending
 - recursion(n 1);
 - System.out.println(n); // after → ascending

How Recursion Works Internally

- Every function call is pushed onto the call stack.
- When the base case is reached, functions start returning one by one (stack unwinds).
- Think of recursion as stack behavior (LIFO Last In, First Out).

• Types of Recursion

- Direct Recursion
 - Function calls itself directly.
 - void fun() { fun(); }
- Indirect Recursion
 - Function A calls B, and B calls A.
 - void A() { B(); }
 - void B() { A(); }
- Tail Recursion
 - The recursive call is the last statement in the function.

- No computation after the recursive call.
- Can be optimized to iteration.
- void print(int n) {
 - if (n == 0) return;
 - System.out.println(n);
 - print(n 1); // tail call
- **.** }
- Non-Tail Recursion
 - Some work remains after the recursive call returns.
 - void print(int n) {
 - if (n == 0) return;
 - print(n 1);
 - System.out.println(n);
 - **-** }
- Multiple Recursion
 - More than one recursive call inside the same function.
 - int fib(int n) {
 - if (n <= 1) return n;
 - return fib(n 1) + fib(n 2);
 - **-** }

• Important Recursion Concepts

- Recursive Tree
 - Used to visualize how recursion unfolds.
 - Helps understand time complexity.
 - Each recursive call forms a branch in the tree.
- Recurrence Relation
 - Mathematical equation that defines the runtime of recursion.
 - Example:
 - For factorial \rightarrow T(n) = T(n-1) + O(1)
 - For merge sort \rightarrow T(n) = 2T(n/2) + O(n)
- Master Theorem (for Divide and Conquer)
 - Used to find complexity of recursive relations like:
 - T(n) = aT(n/b) + f(n)
 - Then:
 - If $f(n) = O(n^{(\log_b a \epsilon)}) \rightarrow T(n) = O(n^{(\log_b a)})$
 - If $f(n) = \Theta(n^{(\log_b a)}) \rightarrow T(n) = \Theta(n^{(\log_b a)} \log n)$
 - If $f(n) = \Omega(n^{(\log_b a + \epsilon)}) \rightarrow T(n) = \Theta(f(n))$
 - Example:
 - Merge Sort \rightarrow T(n) = 2T(n/2) + O(n) \rightarrow O(n log n)

• Base Case Design Tips

- Always handle smallest input first (n=0, empty array, single node, etc.)
- Prevent calls like recursion(-1) or infinite loops.
- For counting/returning recursion, base case usually returns a constant (0 or 1).

Tricks for Recursion

- o Break problems into "smaller same-type subproblems".
- Always define what your function means "What does recursion(n) represent?"
- o Work backwards from base case to build logic.
- Use recursion when:
 - You can define the solution in terms of smaller subproblems.
 - Problem naturally follows divide & conquer or backtracking.
- Convert recursion → iteration for optimization if required.

Common Mistakes

- Missing base case (infinite recursion).
- Wrong return statement (losing result of recursive call).
- Forgetting to reduce input (no progress toward base case).
- Confusing pre/post recursion output.
- o Ignoring stack overflow for large inputs.

Recursion vs Iteration

- Recursion: Uses function call stack; may lead to stack overflow if not optimized.
- Iteration: Uses loops and variables; usually more space-efficient.

• Time & Space Complexity

- Time Complexity: Number of recursive calls × time per call.
- Space Complexity: Due to the recursion call stack (O(depth of recursion)).

• Tips & Tricks

- Always define a clear base case.
- o Reduce problem size in each recursive step.
- Visualize recursion using the call stack.
- o Use memoization to optimize repeated calls.
- Tail recursion can be optimized to avoid stack overflow.

Q3: Recursion with Backtracking

1. Problem Understanding

• Recursion

- A function that calls itself to solve smaller subproblems.
- Components:
 - Base case: Stops recursion.
 - Recursive case: Calls function with smaller input.
- Usually computes one solution.
- Examples: Factorial, Fibonacci, GCD.

Backtracking

- A special type of recursion for exploring all possible solutions.
- o Follows "try → check → undo" pattern.
- o Steps:
 - Choose a possibility.
 - Explore recursively.
 - Check if it leads to a valid solution.
 - Undo / Backtrack to try other possibilities.
- o Examples: N-Queens, Sudoku, Maze solving, Permutations/Combinations.

• Key Differences between Recursion and Backtracking

- Recursion solves a problem; backtracking explores all solutions.
- Recursion doesn't need to undo choices; backtracking does.
- Recursion often finds one solution, backtracking finds all valid solutions.

• Characteristics of Backtracking

- Decision-making at each step.
- Recursive exploration of choices.
- Undoing invalid choices to explore alternatives.
- Prunes invalid paths to save computation.

• Backtracking Template:

• When to Use Backtracking

- o Combinatorial problems: subsets, permutations, combinations.
- o Constraint satisfaction problems: Sudoku, N-Queens, crossword puzzles.
- o Path-finding problems: Maze solving, word search in a grid.

• Important Notes:

- All backtracking problems are recursive, but not all recursion is backtracking.
- Backtracking systematically explores all paths and prunes invalid branches.