Length of a Plane Curve (Arc Length)

SUGGESTED REFERENCE MATERIAL:

As you work through the problems listed below, you should reference Chapter 6.4 of the recommended textbook (or the equivalent chapter in your alternative textbook/online resource) and your lecture notes.

EXPECTED SKILLS:

• Be able to find the arc length of a smooth curve in the plane described as a function of x or as a function of y.

PRACTICE PROBLEMS:

For problems 1-3, compute the exact arc length of the curve over the given interval.

1.
$$y = 4x^{\frac{3}{2}} - 1$$
 from $x = \frac{1}{12}$ to $x = \frac{2}{9}$

2.
$$y = \frac{x^2}{2} - \frac{\ln(x)}{4}$$
 for $2 \le x \le 4$

3.
$$y = \frac{2}{3}(x^2 - 1)^{3/2}$$
 for $1 \le x \le 3$

4. Consider the curve defined by $y = \sqrt{4 - x^2}$ for $0 \le x \le 2$.

- (a) Compute the arc length on the interval [0,t] for $0 \le t < 2$. (Your arc length will depend on t.)
- (b) Use your answer from part (a) to compute the arc length on the interval [0,2]. (Hint: You will need to introduce a limit.)
- (c) Confirm your answer from part (b) by using geometry.

5. Consider
$$F(x) = \int_1^x \sqrt{t^2 - 1} dt$$
. Compute the arc length on [1, 3]

6. Consider the curve defined by $f(x) = \ln x$ on $[1, e^3]$

- (a) Set up but do not evaluate an integral which represents the length of the curve by integrating with respect to x.
- (b) Set up but do not evaluate an integral which represents the length of the curve by integrating with respect to y.

- 7. Consider the curve defined by $f(x) = \tan x$ on $\left[-\frac{\pi}{3}, \frac{\pi}{4} \right]$
 - (a) Set up but do not evaluate an integral which represents the length of the curve by integrating with respect to x.
 - (b) Set up but do not evaluate an integral which represents the length of the curve by integrating with respect to y.
- 8. Consider the curve defined by $y = \sin x$ for $0 \le x \le \pi$.
 - (a) Set up but do not evaluate an integral which represents the length of the curve.
 - (b) Estimate the value of your integral from part (a) by using a Midpoint Approximation with three rectangles of equal width.
- 9. Recall the definitions of Hyperbolic Sine & Hyperbolic Cosine from Math 121:

Hyperbolic Cosine

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

The sketches of $y = \cosh x$ and $y = \sinh x$ are shown below. The dashed curves are called "Curvilinear Asymptotes," which describe the end behavior of the functions.

- (a) Show that $\cosh^2 x \sinh^2 x = 1$
- (b) Verify that $f(x) = \sinh x$ is an odd function. (**Hint:** Recall an odd function satisfies the identity f(-x) = -f(x).)
- (c) Show that $\frac{d}{dx}(\sinh x) = \cosh x$ and deduce that $\int \cosh x \, dx = \sinh x + C$.
- (d) Show that $\frac{d}{dx}(\cosh x) = \sinh x$ and deduce that $\int \sinh x \, dx = \cosh x + C$.
- (e) A telephone wire which is supported only by two telephone poles will sag under its own weight and form the shape of a **catenary** as shown below.

Consider a telephone wire that is supported by two poles (one at x = b and the other at x = -b), as in the diagram below.

The shape of the sagging wire can be modeled by $y = a \cosh\left(\frac{x}{a}\right)$, where a > 0 and $-b \le x \le b$. What is the length of the wire?