Série Nº3: Interpolation et approximation polynômiale

Exercice 1

Nous étudions trois bases de \mathbb{P}_3 . Sur [0,1], nous définissons $B_0^3(t) = (1-t)^3$, $B_1^3(t) = 3t(1-t)^2$, $B_2^3(t) = 3t^2(1-t)$, $B_3^3(t) = t^3$.

- 1. Montrer que $(B_i^3)_{i=0,1,2,3}$ forme une base de \mathbb{P}_3 . Cette base s'appelle la base de Bernstein de degré 3.
- 2. Montrer qu'on peut définir quatre fonctions polynômiale $H_i^3(t)$ interpolant les données d'Hermite au bords

$$H_0^3(0) = 1, (H_0^3)'(0) = 0, (H_0^3)'(1) = 0, H_0^3(1) = 0$$

$$H_1^3(0) = 0, (H_1^3)'(0) = 1, (H_1^3)'(1) = 0, H_1^3(1) = 0$$

$$H_2^3(0) = 0, (H_2^3)'(0) = 0, (H_2^3)'(1) = 1, H_0^3(1) = 0$$

$$H_3^3(0) = 1, (H_3^3)'(0) = 0, (H_3^3)'(1) = 0, H_3^3(1) = 1.$$

- 3. Montrer que $(H_i^3)_{i=0,1,2,3}$ forme une base de \mathbb{P}_3 . (base d'Hermite).
- 4. Déterminer l'interpolant d'Hermite des 4 données f(0), f'(0), f'(1) et f(1).
- 5. Écrire la base $(B_i^3)_{i=0,1,2,3}$ dans la base canonique sous la forme

$$\begin{pmatrix} B_0^3(t) \\ B_1^3(t) \\ B_2^3(t) \\ B_3^3(t) \end{pmatrix} = A \begin{pmatrix} 1 \\ t \\ t^2 \\ t^3 \end{pmatrix}$$

où $A \in \mathbb{R}^{4 \times 4}$. De même écrire la base $(H_i^3)_{i=0,1,2,3}$ dans la base canonique.

- 6. En déduire l'expression des polynômes H_i^3 dans la base de Bernstein.
- 7. Déterminer l'interpolant d'Hermite des quatres données f(0), f'(0), f'(1) et f(1) dans la base de Bernstein.

Exercice 2 (Changement de base)

On note P_k le polynôme d'interpolation des k+1 premières données, i.e. $(x_j, y_j), j=1$ à k+1.

- (a) Montrer que $P_k(x) P_{k-1}(x) = [y_1, \dots, y_{k+1}](x-x_1) \dots (x-x_k)$ où $[y_1, \dots, y_{k+1}]$ est le coefficient de x^k dans $P_k(x)$.
- (b) En définissant $[y_j] = y_j, j = 1$ à n + 1, montrer que $\forall k \geq 1$, on a

$$[y_1, \dots, y_{k+1}] = \frac{[y_2, \dots, y_{k+1}] - [y_1, \dots, y_k]}{x_{k+1} - x_1}$$

(c) En déduire de (a) que

$$P_n(x) = [y_1] + \sum_{k=1}^n [y_1, \dots, y_{k+1}](x - x_1) \dots (x - x_k).$$

 $\{1, x - x_1, (x - x_1)(x - x_2), \dots, (x - x_1) \dots (x - x_n)\}$ s'appelle la base de Newton. Les expressions $[y_1, \dots, y_{k+1}]$ sont les différences divisées.

(d) Exemple $x_j = -3 + j$, j = 1 à 5, $y_j = (-1)^j$. Dresser le tableau suivant

Exercice 3 (Erreur d'approximation)

On suppose que les données résultent de l'échantillonnage d'une fonction $f \in \mathcal{C}^{n+1}([a,b])$, $f(x_j) = y_j$, j = 1 à n + 1. On désigne l'erreur par e(x) = f(x) - P(x). Naturellement $e(x_i) = 0$. Si $x \neq x_i$, $i = 1, \ldots, n + 1$, on définit la fonction g par

$$g(t) = f(t) - P(t) - e(x) \prod_{j=1}^{n+1} \frac{(t - x_j)}{(x - x_j)}.$$

A noter que si f est définie en dehors de [a,b] et régulière, on peut aussi choisir x en dehors de cet intervalle.

1. Montrer que $g(x_1) = g(x_2) = \cdots = g(x_{n+1}) = 0$ et g(x) = 0. En déduire qu'il existe $x_1^1 < x_2^1 < \ldots < x_{n+1}^1$ tel que

$$g'(x_1^1) = g'(x_2^1) = \dots g'(x_{n+1}^1) = 0$$

2. Montrer qu'il existe un point $x_1^{n+1} = \xi$ tel que

$$g^{(n+1)}(\xi) = 0.$$

3. En déduire qu'il existe ξ appartenant à l'intervalle ouvert contenant x et les x_i tel que

$$e(x) = \frac{1}{(n+1)!} \prod_{j=1}^{n+1} (x - x_j) f^{(n+1)}(\xi).$$

Exercice 4

Soit $x_0 = -0.5$, $x_1 = 0.5$, $x_2 = 1$ et $x_3 = 2$. On considère une fonction f qui prend les valeurs f(0.5) = 0, f(-0.5) = 1, f(1) = 3 et f(2) = 5.

- 1. Déterminer les polynômes de Lagrange ℓ_0 , ℓ_1 , ℓ_2 et ℓ_3 . Donner l'expression générale de l'interpolateur selon la méthode de Lagrange, puis trouver l'interpolateur de f.
- 2. Donner la table et montrer les démarches à suivre puis trouver l'expression de l'interpolateur de f selon la méthode des différences divisées, puis trouver l'interpolateur de f.