Demystifying ML, AI & Automation Part I

Spyros Gkezerlis

First version: Oct 2017

Current version: Apr 2018

Intro

Spyros Gkezerlis (Spi·ros Ge·zer·lis)

About

BSc Automation Engineering – Telematic Applications MSc Information Systems – Reinforcement Learning Current Research field – Applied ML, time series analysis

Experience

5 years Software Developer in Greece

8 years Engineer, Analyst & Manager in OTE

3 years Program Manager in DTAG

github.com/sgez kaggle.com/sgmtcl twitter.com/sgez

Why Lectures?

- Get a better overview of the current landscape in ML, AI & Automation, because they can potentially can help us on:
 - Reducing complexity of network
 - Improving experience by Time-to-market, Time-to-repair
 - Repetitive caused costs can be targeted and reduced
 - Forecasting, Automating, Making predictions smarter
- "Start with the problem" philosophy

Pros cons, Tools, etc. should not dictate what we should use!

- Identify what we want to solve
- Work to the algorithms & models needed
- Utilise best approach
- Start changing mindset and attitude...

Simplistic Definitions

- <u>Automation</u> Comes from ancient compound greek word which means the thing that wishes on its own or the has a will or fury by itself
- <u>Artificial Intelligence</u> is Human Intelligence Exhibited by Machines
- <u>Machine Learning</u> is a field of computer science that gives computers the ability to learn without being explicitly programmed
- <u>Deep learning</u>¹⁰ is part of a broader family of machine learning methods based on learning data representations, as opposed to task-specific algorithms.

a statement of the exact meaning of a word

Landscape overview

Landscape and focus² areas vary:

- Automation
- Statistics & Probability
- Data Mining
- Artificial Intelligence
- Machine Learning
 - Supervised Learning
 - Unsupervised Learning
 - Reinforcement Learning
- Deep Learning
- Other Areas
 - Deep Reinforcement Learning

Science behind ML

Statistics

Algebra

Calculus

Bayes Theorem

- P(AIB) ==> Probability of A given that B
 - Exercise on Bayes⁴
 Out of 3000 emails received over a certain period,
 2000 are spam and 1000 are not. The word "Rolex"
 appeared in 250 out of the 2000 which are spam and
 in 5 out of the 1000. So, if an email is received, i.e.
 email₃₀₀₁, and contains the word "Rolex", what is the
 possibility that it is a spam?

Let S be the event that the message is spam, and E be the event that the message contains the word w. Under our assumption from before, we have that:

$$P(S|E) = \frac{P(E|S)}{P(E|S) + P(E|\bar{S})}$$

Bayes Theorem exercise

• Example – Solution:
Out of 3000 emails received over a certain period, 2000 are spam and 1000 are not. The word "Rolex" appeared in 250 out of the 2000 which are spam and in 5 out of the 1000.

So, if an email is received, and contains the word "Rolex", what is the possibility that it is a spam?

$$P(S|E) = \frac{P(E|S)}{P(E|S) + P(E|\bar{S})}$$

$$P(S|E) = \frac{\frac{250}{2000}}{\frac{250}{2000} + \frac{5}{1000}} =$$

$$\frac{0.125}{0.125 + 0.005} \approx 0.962$$

Supervised Learning Decision Trees

- Decision Tree Learning
 DTL is method for approximating discrete
 valued target functions, in which the learned function is represented by a decision tree.
 (Weka example will follow)
- Example^{7a} dataset converted via algorithm to Decision tree
- Methodology⁷⁵ of is whenever a feature is able to tell us more about our class, it is selected as a node

No.	1: outlook Nominal	2: temperature Numeric	3: humidity Numeric	4: windy Nominal	5: play Nominal
1	sunny	85.0	85.0	FALSE	no
2	sunny	80.0	90.0	TRUE	no
3	overcast	83.0	86.0	FALSE	yes
4	rainy	70.0	96.0	FALSE	yes
5	rainy	68.0	80.0	FALSE	yes
6	rainy	65.0	70.0	TRUE	no
7	overcast	64.0	65.0	TRUE	yes
8	sunny	72.0	95.0	FALSE	no
9	sunny	69.0	70.0	FALSE	yes
	rainy	75.0	80.0	FALSE	yes
	sunny	75.0	70.0	TRUE	yes
	overcast	72.0	90.0	TRUE	yes
	overcast	81.0	75.0	FALSE	yes
	rainy	71.0	91.0	TRUE	no

7a Machine Learning, Mitchell, McGraw, 1997.

http://www.cs.princeton.edu/courses/archive/spr07/cos424/papers/mitchell-dectrees.pdf 7b Classification Methods, Padhye, 2017.

Markov Chains

• Statistics & Probability - Markov Chains⁵ Markov Chains is a probabilistic process, that relies on the current state to predict the next state. For Markov chains to be effective the current state has to be dependent on the previous state in some way;

For instance, from experience we know that if it looks cloudy outside, the next state we expect is rain. We can also say that when the rain starts to subside into cloudiness, the next state will most likely be sunny.

MARKOV TABLE OF PROBABILITIES

STATE	NEXT STATE	PROBABILITY	%
CLOUDY	CLOUDY	0.1	10%
CLOUDY	RAIN	0.5	50%
CLOUDY	SUNNY	0.4	40%
RAIN	CLOUDY	0.3	30%
RAIN	RAIN	0.6	60%
RAIN	SUNNY	0.1	10%
SUNNY	CLOUDY	0.4	40%
SUNNY	RAIN	0.1	10%
SUNNY	SUNNY	0.5	50%

Markov State Diagram

Current State Vector

Figure 4

Reinforcement Learning (RL)

- Reinforcement Learning[®] is learning what to do-how to map situations to actions--so as to maximise a numerical reward signal.
- Reinforcement learning is defined not by characterising learning methods, but by characterising a learning problem.

Tools – Landscape¹¹

Category	Sub-category	Description	Examples
	Statistical Software Packages	Software toolkits with a large set of implementations of ML algorithms, typically with visualization support	SAS, R, Matlab, SPSS
	Data Mining Toolkits	Software toolkits with a relatively limited set of ML algorithms, typically over a data platform, possibly with incremental maintenance	Weka, AzureML, ODM, MADlib, Mahout, Hazy-Classify
Packages of ML Implementations	Developability-oriented Frameworks	Software frameworks and systems that aim to improve developability, typically from academic research	GraphLab, Bismarck, MLBase
	SRL Frameworks	Implementations of statistical relational learning (SRL)	DeepDive
	Deep Learning Systems	Implementations of deep neural networks	Google Brain, Microsoft Adam
	Bayesian Inference Systems	Systems providing scalable inference for Bayesian ML models	SimSQL, Elementary, Tuffy
Linnan Alashua hasad	Statistical Software Packages	Systems offering an interactive statistical programming environment	SAS, R, Matlab
Linear Algebra- based Systems	R-based Analytics Systems	Systems that provide R or an R-like language for analytics, typically over a data platform, possibly with incremental maintenance	RIOT, ORE, SystemML, LINVIEW
Model Management Systems		Systems that provide querying, versioning, and deployment support	SAS, LongView, Velox
Systems for Feature Engineering		Systems that provide abstractions to make feature engineering easier	Columbus , DeepDive
Systems for Algorithm Selection		Systems that provide abstractions to make algorithm selection easier	MLBase, AzureML
		of the Existing Landscape of ML Systems, Kumar; McCann; Naughton; Patel, 27 Systems:rtleatuprayide:abstractions to make parameter tuning easier	SAS, R, MLBase, AzureML

Deep Learning Toolkits comparison¹²

Toolkit	GPU Support	Other
Caffe	Yes	JSON-like text file to describe the network architecture
Deeplearning4j	Yes	Java on Scala API
Tensorflow	Yes	Google backing, high adoption - Python
Theano		Python
Keras		Python - uses Theano or Tensorflow as backend
MXNet	Yes	C++
Lasagne		Python - uses Then
CNTK		VS for ML - developed by Microsoft
DIGITS		Nvidia - web based tool
Torch		Written in C
PyTorch	Yes	Python frontend
Pylearn2		Python
Chainer		

Choose an algorithm 10a, 10b

10a Microsoft Azure Machine Learning: Algorithm Cheat Sheet, Microsoft website, 09 Nov 2017 http://download.microsoft.com/download/A/6/1/A613E11E-8F9C-424A-B99D-65344785C288/microsoft-machine-learning-algorithm-cheat-sheet-v6.pdf

10b Scikit-Learn Algorithm selection Procedure, Scikit-learn website, 23 Oct 2017

Before-Selecting-a-Tool Checklist

- Things to consider for a toolkit/tool/ecosystem
 - ✓ Environment ease of use
 - ✓ Dev & Exec speed
 - ✓ Training Speed
 - ✓ GPU Support
 - ✓ Community support & contributors
 - ✓ License contamination
 - ✓ Language to be used

Workflow – The ML Pipeline[®]

High Level Step	Short Description	Possible Skills (actual skills & roles will vary, even from project to project!)
Define Objective	Start with the question or problem we want to solve	Analytics, Operational
Allocate proper data	Find proper data and sources, prepare data set (train/dev/test)	Data Engineering, Big Data
Prepare & Evaluate Data	Identify features, flatten data in observations per row, clean, Exploratory Data Analysis	Data Engineering, Analytics
Develop Model	Select ML algorithm suitable for selected problem	Data Science, ML
Train Model	Train, classify dataset	Data Science, ML
Analysis and Testing	Test your model for performance - errors, correct classifications	Data Science, ML, Analytics
Deploy, Monitor & Operate	Publish model in live environment	Development, Operational
Accuracy Improvement	Evaluate accuracy of predictions/forecasts	Operational, Analytics

⁹ Deep Learning Dissected: The Role of DevOps Teams and Workflows, Adel El-Hallak, 08 Nov 2017 https://thenewstack.io/deep-learning-dissected-devops-teams-workflows/

⁹ End-to-End Predictive Model in AzureML using Linear Regression, Tejaswi, 15 Nov 2014 https://blogs.msdn.microsoft.com/continuous_learning/2014/11/15/end-to-end-predictive-model-in-azureml-using-linear-regression/

⁹ The 7 Steps of Machine Learning, Yufeng G, 31 Aug 2017

Workflow – More practical view on roles

- Business Analysis role is responsible to define the problem, verify added value of results.
- Data Engineering includes tasks such as collecting data, cleaning, sanitizing and creating working & qualitative data frames and data sets.
- Data Science includes the activities needed to derive correlations, information, analysis, forecasts and set an ML / Al agent to decide on its own.
- **Implementation** takes the outcomes from the Data Scientists and verifies it with the Business Analysts to deliver as expected. Also, within the role, activities may include O&M of the Automation & ML.
 - 9 Deep Learning Dissected: The Role of DevOps Teams and Workflows, Adel El-Hallak, 08 Nov 2017 https://thenewstack.io/deep-learning-dissected-devops-teams-workflows/
 - 9 End-to-End Predictive Model in AzureML using Linear Regression, Tejaswi, 15 Nov 2014 https://blogs.msdn.microsoft.com/continuous_learning/2014/11/15/end-to-end-predictive-model-in-azureml-using-linear-regression/
 - 9 The 7 Steps of Machine Learning, Yufeng G, 31 Aug 2017

Dataset semantics for supervised learning

(we have a problem and we would like to do predictions!)

Training/Testing Workflow – simplified view

Practice (fun part :-)

- Weka Supervised Learning Decision Trees
- R Studio Basic Statistics on Large Files
- Anaconda Python Data Frames / Dask / Keras
- Orange Data Mining SL Example Predictions

on:

- bitcoin (prices, open/close in time)
- cars (values based on various features)
- flights (features for flights in US 1989-2004)
- milano_cells (Telecom Italia Milano area cell traffic)
- Maintenance_data (machine break down prediction) <<<<

Lectures & Data Sources Page https://github.com/sgez/MLAI

Important takeaways

- •Start with the problem you are doing the analysis for a reason
- •Be persistent you will have up's and down's
- •Be methodical evaluate, be critical, do not be biased

Now what?

Resources to get you up to speed!

- Data Science Portals
 - Kaggle
 - KDnuggets
- Youtube channels
 - Siraj Raval
 - Stanford
- Online Lessons
 - Coursera
 - Udacity
 - Udemy
 - Datacamp
- Important DL/ML personalities

Thank you!

