Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

1 Principal Schematic for HTPA8x8d:

Pin Assignment- Bottom View:

Figure 1: pin-allocation

Pin	Symbol	Description
1	SDA	Digital I/O, Open Drain, 100k PU, Serial Data
2	SCL	Digital I/O, Open Drain, 100k PU, Serial Clock
3	VDD	Positive supply voltage
4	VSS	Negative supply voltage / Ground (0V) (connected to housing)

Optical Orientation:

HEIMANN Sensor GmbH Maria-Reiche-Str. 1

Contact / Customer Support Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

4 Order Code Example

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

Characteristics: 5

5.1 Common Specifications:

Technology n-poly/p-poly Si **Element Resistance** approx. 300 kOhms

Sensitivity approx. 450 V/W without optics and filter

Thermal pixel time constant Digital Interface I²C **Analog Output** No

selectable Clock 1 to 13 MHz **EEPROM** size 256x16 Bit

90 µm Pitch Absorber size 44 µm Max. Framerate 88 Hz

(maximum I²C and sensor clock speed with full ADC-resolution)

64 sensitive elements

5.2 Optical characteristics:

2.1 mm ("L" equals the focal length of the lens) Focal length:

F-Number:

Field of view: 23 x 23 deg LWP-coating 5.0 Lens coating:

Cut On (Tr. 5%): 5.0 μ m \pm 0.3 μ m

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

5.3 Electric Specifications:

Absolute Maximum Ratings:

10001444 1/14/114/114/11/60/											
Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit					
Supply Voltage	V_{DD}		-0.3		3.6	V					
Voltage at All inputs and outputs	V_{IO}		-0.3		V _{DD} +0.3	V					
Storage Temperature	T _{STG}		-40		85	Deg. C					

Operating Conditions:

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Supply Voltage	V_{DD}		3.3	3.35	3.6	V
Supply Current	I_{DD}			1.7	4.5	mA
Standby Current	I_{SBY}				10	μΑ
Operation Temperature	T_{A}		-20		85	Deg. C
ESD-Protection		Human body model 100pF + 1k5Ohm	1.5			kV

Electrical Characteristics

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Digital Input						
Internal Clock	F _{CLK}	/	1	5	13	MHz
frequency						
Internal I ² C Pull up	R_{PU}		1	100	100	kOhm
Bias current	I_{BIAS}		1	5	13	μΑ
BPA current	I_{BPA}		0.2	1.5	4.0	μΑ
Input voltage high	V_{IH}		$0.7xV_{DD}$			V
Input voltage low	V_{IL}				$0.3xV_{DD}$	V
PTAT						
Temperature range			0		85	Deg. C
PTAT gradient			TBD	174	TBD	K/V

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

Preamplifier / ADC

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Chopper frequency	F_{CHP}			20		kHz
Preamplifier Noise	N_{PA}	at 20 kHz		72		$nV/HZ^{1/2}$
Frame rate	FR1		7.5	37	88	Hz
ADC pos. Reference	V_{REFP}			1.6		V
ADC neg. Reference	V_{REFN}			0.9		V
ADC resolution	ADC_{LSB}	at 16 Bit		21		μV

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
I ² C clock frequency	F _{CLK}			400	1000	kHz
low pulse duration	T _{CLK,lo}		0.50			μs
high pulse duration	$T_{\text{CLK,hi}}$		0.26			μs
data set up time	$T_{SU,data}$	7	0.05			μs
data hold time	T _{hd,data}		0.00			μs
start setup time	$T_{ m SU,start}$		0.26			μs
start hold time	T _{hd,start}		0.26			μs
stop setup time	$T_{SU,stop}$		0.26			μs
stop hold time	$T_{hd,stop}$		0.26			μs
time between	T_{buf}		0.50			μs
STOP / START						

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

7 I²C Communication:

The chip uses the 7-bit I²C address 0x1A for configuration and sensor data and the address 0x1B to access the internal EEPROM followed by 1-bit of read/write command. The address byte is followed by an 8-bit command.

7.1 Write Command:

In case of a write access to an internal register the command is followed by the data byte. The chip acknowledges each byte with a low active ACK bit.

7.2 Read Command:

To read data from the chip first the address and command must be sent. After the last ACK a new start-bit (repeated start) and the address with a set read-flag initiates the read sequence. There can be bytes read as many as required. The last byte must be denoted by a not-acknowledge. The shown example below can be used e.g. to get the status register.

7.3 Sensor Commands:

The sensor has several registers that can be written and read, they are listed below.

Configuration register (write only)

Addr / CMD	0x1A/0	x 01						
Config Reg	7	6	5	4	3	2	1	0
Name		RI	FU		START	RFU	BLIND	WAKEUP
Default	0	O	0	0	0	0	0	0

The WAKEUP bit is used to switch on / off the chip and must be set prior all other operations. After the START bit is set the chip starts a conversion of the array or blind elements and enters the idle state (not sleep!) when finished.

If the BLIND bit is set the electrical offsets are sampled instead of the active pixel. RFU means reserved for future use and can be subject to change.

Status Register (read only)

Addr / CMD	0x1A / 0x	0x1A / 0x02								
Status Reg	7	6	5	4	3	2	1	0		
Name		RFU EOC								
Default	0	0	0	0	0	0	0	0		

If the EOC flag is set a previous started conversion has been finished.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

Trim Register 1 (write only)

Addr / CMD	0x1A/0x	0x1A / 0x03								
Trim Reg 1	7	6	5	4	3	2	1	0		
Name		RFU MB						T TRIM		
Default	0	0	0	0	1	1	0	0		

MBIT_TRIM: m = 4 to $12 \implies (m+4)$ bit as ADC resolution

(Default: m=12)

Trim Register 2 (write only)

Addr / CMD	0x1A/0x	0x1A / 0x04										
Trim Reg 2	7	6	5	4	3	2	1	0				
Name		RFU BIAS TRIM TOP										
Default	0	0	0	0	1	1	0	0				

BIAS_TRIM_TOP: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 5µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 3 (write only)

	VJ)							
Addr / CMD	0x1A/0	x1A / 0x05						
Trim Reg 3	7	6	5	4	3	2	1	0
Name		RFU		BIAS TRIM BOT				
Default	0	0	0	0	1	1	0	0

BIAS_TRIM_BOT: 0 to 31 \Rightarrow 1 μ A to 13 μ A

(Default: 5µA)

This setting is used to adjust the bias current of the ADC. A faster clock frequency requires a higher bias current setting.

Trim Register 4 (write only)

Addr / CMD	0x1A/0	x06							
Trim Reg 4	7	6	5	4	3	2	1	0	
Name	RI	FU	CLK TRIM						
Default	0	0	0	1	0	1	0	1	

CLK_TRIM: 0 to 63 \Rightarrow 1MHz to 13MHz

(Default: 5MHz)

NOTE: The measure time depends on the clock frequency settings. One quarter frame takes about:

$$t_{FR4} = \frac{32 \cdot (2^{MBIT} + 4)}{F_{CLK}} \approx 27 ms @ 5MHz$$

Trim Register 5 (write only)

Trini Register 5 (write (mi Register 5 (write only)								
Addr / CMD	0x1A/0	0x1A / 0x07							
Trim Reg 5	7	6	5	4	3	2	1	0	
Name		RFU			BPA TRIM TOP				
Default	0	0	0	0	1	1	0	0	

BPA_TRIM_TOP: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

Datasheet HTPA8x8dR1L2.1/0.8F5.0HiC[Si] Page 9 of 21

HTPA8x8dR1L2.1/0.8F5.0HiC[Si]

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

Trim Register 6 (write only)

Addr / CMD	0x1A/0x	x1A / 0x08							
Trim Reg 6	7	7 6 5 4 3 2 1 0						0	
Name		RFU			BPA TRIM BOT				
Default	0	0	0	0	1	1	0	0	

BPA_TRIM_BOT: 0 to 31 \Rightarrow 0.2 μ A to 4.0 μ A

(Default: 1.5µA)

This setting is used to adjust the common mode voltage of the preamplifier.

Trim Register 7 (write only)

Addr / CMD	0x1A/0x	x1A / 0x09							
Trim Reg 7	7	7 6 5 4				2	1	0	
Name		PU SDA TRIM				PU SCL TRIM			
Default	1	0	0	0	1	0	0	0	

PU SDA TRIM: select internal pull up resistor on SDA (Default: 100kOhm) (Default: 100kOhm) select internal pull up resistor on SCL PU_SCL_TRIM:

"1000" = 100 kOhm; "0100" = 50 kOhm; "0010" = 10 kOhm; "0001" = 1 kOhm

Read Data 1 Command (Top Half of Array)

Read Data 1 Command	(TOP Hun	OI TITLE	,,					
Addr / CMD	0x1A / 0x	.0A						
Read Data	7	6	5	4	3	2	1	0
1. Byte / 2. Byte		PTAT MSB / LSB						
3. Byte / 4. Byte		Pixel 0 MSB / LSB						
5. Byte / 6. Byte				Pixel 1 MS	SB / LSB			
129. Byte / 130. Byte				Pixel 63 M	SB / LSE	3		

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

HEIMANN Sensor GmbH Maria-Reiche-Str. 1

Contact / Customer Support Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Internet

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

If the bit for the electrical offsets (Bit 1 in Config 0x01) is set the electrical offsets are sampled and can be read similar to the active pixel:

Read Data electrical offsets (Top Half of Array)

Addr / CMD	0x1A / 0x0	0x1A / 0x0A							
Read Data	7	6	5	4	3	2	1	0	
1. Byte / 2. Byte		PTAT MSB / LSB							
3. Byte / 4. Byte		electrical offset (0) MSB / LSB							
5. Byte / 6. Byte			elect	rical offset	(1) MSB /	LSB			
129. Byte / 130. Byte		electrical offset (63) MSB / LSB							

The complete sensor data must be read at once. If the communication fails somewhere in between, all successive data will be corrupted. The readout can be stopped anywhere by pausing the clock. A new initialized readout proceeds at this stopped byte by continuing the clock, but the index is reset when a new conversion has been started.

7.4 EEPROM Commands:

To read/write data from/to the internal EEPROM the I2C address 0x1B is used.

EEPROM Commands

Name	CMD	Read / Write	Comment
Standby	0x00	W	
			releases all signals to default state
Active	0x01	W	wait for 15µs when wake up from standby
Normal Erase	0x02	W	program pulse width 5ms
Normal Write	0x03	W	program pulse width 5ms
Block Erase	0x04	W	program pulse width 5ms
Block Write	0x05	W	program pulse width 5ms
Normal Read	0x06	W	
Set Data	0x0A	W	16 bit data, MSB first
Get Data	0x0B	R	16 bit data, MSB first

Note: The EEPROM must be activated (wake up from standby) prior being used. The active command also initializes the EEPROM to its default state.

Note: Each word must be erased before it can be written, a write command stores only a "1" to the EEPROM cell.

Note: The commands "SET_DATA" / "GET_DATA" will increment the address pointer, except for the first execution after "SET_ADDR".

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

7.5 I²C Example Sequences – EEPROM Wakeup / Standby

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

		ADDR	R/W	EEPROM_STANDBY	
5	6	0x1B	0	0x00	Р

7.6 I²C Example Sequences – EEPROM Block Erase / Block Write

	ADDR	R/W	BLOCK_ERASE	
S	0x1B	0	0x04	Р

WAIT 5ms

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

	ADDR	R/W	SET_DATA	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0A	DATA	DATA	Р

	ADDR	R/W	BLOCK_WRITE	
s	0x1B	0	0x05	Р

WAIT 5ms

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

7.7 I²C Example Sequences – EEPROM Sequential Erase / Write

	ADDR	R/W	SET_ADDR	EEP_ADDR	
s	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	NORMAL_ERASE	
s	0x1B	0	0x02	Р

WAIT 5ms

	ADDR	R/W	SET_DATA	DATA_MSB	DATA_LSB	
s	0x1B	0	0x0A	DATA	DATA	Р

	ADDR	R/W	NORMAL_WRITE	
s	0x1B	0	0x03	Р

WAIT 5ms

	ADDR	R/W	SET_ADDR	EEP_ADDR	
s	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	R/W NORMAL_ERASE	
s	0x1B	0	0x02	Р

WAIT 5ms

	ADDR	R/W	/W SET_DATA DATA_I		DATA_LSB	
s	0x1B	0	0x0A	DATA	DATA	Р

	ADDR	R/W	NORMAL_WRITE	
s	0x1B	0	0x03	Р

WAIT 5ms

	ADDR	R/W	SET_ADDR	EEP_ADDR	
s	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	R/W NORMAL_ERASE	
S	0x1B	0	0x02	Р

WAIT 5ms

	ADDR	R/W	SET_DATA	DATA_MSB	DATA_LSB	
s	0x1B	0	0x0A	DATA	DATA	Р

	ADDR	R/W	NORMAL_WRITE	
S	0x1B	0	0x03	Р

WAIT 5ms

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

www.heimannsensor.com mail: info@heimannsensor.com Datasheet HTPA8x8dR1L2.1/0.8F5.0HiC[Si] Page 12 of 21

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

7.8 I2C Example Sequence – EEPROM Continuous Erase

	ADDR	R/W	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	NORMAL_ERASE	
s	0x1B	0	0x02	Р

WAIT 5ms

	ADDR	R/W	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	NORMAL_ERASE	
S	0x1B	0	0x02	Р

WAIT 5ms

	ADDR	R/W	EEPROM_ACTIVE	
S	0x1B	0	0x01	Р

7.9 I2C Example Sequence – EEPROM Continuous Write

	ADDR	R/W	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	SET_DATA	DATA_MSB	DATA_LSB	
s	0x1B	0	0x0A	DATA	DATA	Р

·	ADDR R/W		NORMAL_WRITE	
s	0x1B	0	0x03	Р

WAIT 5ms

	ADDR	R/W	SET_DATA	DATA_MSB	DATA_LSB	
s	0x1B	0	0x0A	DATA	DATA	Р

ı	ADDR	R/W	NORMAL_WRITE	
s	0x1B	0	0x03	Р

WAIT 5ms

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

7.10 I2C Example Sequence – EEPROM Sequential Read

	ADDR	R/W	SET_ADDR	EEP_ADDR	
s	0x1B	0	0x09	ADDR	Р

	ADDR R/W		NORMAL_READ	
S	0x1B	0	0x06	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR	R/W	SET_ADDR	EEP_ADDR	
S	0x1B	0	0x09	ADDR	Р

	ADDR R/W NORMAL_READ			
S	0x1B	0	0x06	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR R/W		EEPROM_ACTIVE	
S	0x1B	0	0x01	Р

7.11 I2C Example Sequence – EEPROM Continuous Read

	ADDR	R/W	SET_ADDR	EEP_ADDR	
s	0x1B	0	0x09	ADDR	Р

	ADDR	R/W	NORMAL_READ	
s	0x1B	0	0x06	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
s	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
S	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR	R/W	GET_DATA		ADDR	R/W	DATA_MSB	DATA_LSB	
\$ 6	0x1B	0	0x0B	Sr	0x1B	1	??	??	Р

	ADDR	R/W	EEPROM_ACTIVE	
s	0x1B	0	0x01	Р

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

7.12 I2C Example Sequence – Init and Read Thermopile Array

	ADDR	R/W	CONFIG_REG	WAKEUP	
s	0x1A	0	0x01	0x01	Р

	ADDR	R/W	TRIM_REG1	MBIT_TRIM	
s	0x1A	0	0x03	0x0C	Р

	ADDR	R/W	TRIM_REG2	BIAS_TRIML	
S	0x1A	0	0x04	0x0C	Р

	ADDR	R/W	TRIM_REG3	BIAS_TRIMR	
s	0x1A	0	0x05	0x0C	Р

	ADDR	R/W	TRIM_REG4	CLK_TRIM	
s	0x1A	0	0x06	0x14	Р

	ADDR	R/W	TRIM_REG5	BPA_TRIML	
s	0x1A	0	0x07	0x0C	Р

	ADDR	R/W	TRIM_REG6	BPA_TRIMR	
s	0x1A	0	0x08	0x0C	Р

	ADDR	R/W	TRIM_REG7	PU_TRIM	
s	0x1A	0	0x09	0x88	Р

	ADDR	R/W	CONFIG_REG	START WAKEUP	
s	0x1A	0	0x01	0x09	Р

	ADDR	R/W	STATUS_REG		ADDR	R/W	STATUS	
S	0x1A	0	0x02	Sr	0x1A	1	??	Р

WAIT 30ms

	ADDR	R/W	STATUS_REG		ADDR	R/W	STATUS	
S	0x1A	0	0x02	Sr	0x1A	1	??	Р

	ADDR	R/W	READ_DATA1		ADDR	R/W	PTAT1 MSB	PTAT1 LSB	P0,0 MSB	P0,0 LSB	 Px,y MSB	Px,y LSB	
S	0x1A	0	0x0A	Sr	0x1A	1	??	??	??	??	 ??	??	Р

	ADDR R/W		CONFIG_REG	SLEEP		
s	0x1A	0	0x01	0x00	Р	

Datasheet HTPA8x8dR1L2.1/0.8F5.0HiC[Si] Page 16 of 21

HTPA8x8dR1L2.1/0.8F5.0HiC[Si]

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

8 Temperature calculation:

The object and ambient temperature can be calculated from the sensor output and the stored calibration data. The table below is showing an overview of the EEPROM.

8x8d	0x00	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	0x09	0x0A	0x0B	0x0C	0x0D	0x0E	0x0F
0x00	PixCmi	n [float]	PixCma	x [float]					gradScale	GlobalGain			TN	epsilon		
0x10											MBIT(PixC)	BIAS(PixC)	CLK(PixC)	BPA(PixC)	PU(PixC)	
0x20	MBIT(user)	BIAS(user)	CLK(user)	BPA(user)	PU(user)											
0x30					PTAT-grad	dient (float)	PTAT-off:	set (float)			Device I	D [32 bit]				
0x40																
0x50							ThGrad:	etorod ac	16 hit cian	nd values						
0x60		ThGrad _{ii} stored as 16 bit signed values														
0x70																
0x80																
0x90							ThOffcot:	etorod ac	16 bit sign	ad values						
0xA0							HOlisen	Sitileti as	TO DIT SIGIT	eu values						
0xB0																
0xC0																
0xD0		Pijstored as 16 bit unsigned values														
0xE0							r ij Store	su as 10 D	n unsigned	values						
0xF0																

All values are stored as unsigned 16 bit values in the little endian format unless they are specified otherwise. Grey marked areas are used during calibration or for future use and are Heimann Sensor reserved.

MBIT(calib), BIAS(calib), CLK(calib), BPA(calib) and PU(calib) are the settings for the registers that have been used during calibration (see chapter 7.3 on how to set them). MBIT(user), BIAS(user), CLK(user), BPA(user) and PU(user) are free to be set by the user. The temperature calculation is only valid if the same settings are used that have been set during calibration!

8.1 Ambient Temperature:

The ambient temperature (Ta) is calculated from the measured PTAT value, the PTAT gradient and the PTAT offset.

 $Ta = PTAT \cdot PTAT_{gradient} + PTAT_{offset}$ (Value is given back in dK)

where:

PTAT_{gradient} is the gradient of the PTAT stored in the EEPROM as a float value

PTAT stored in the EEPROM as a float value

8.2 Thermal Offset:

The thermal offset of the sensor needs to be substracted for each pixel to compensate for any thermal drifts.

$$V_{ij_Comp} = V_{ij} - \frac{ThGrad_{ij} \cdot Ta}{2^{gradScale}} - ThOffset_{ij}$$

where:

ij represents the row and column of the pixel

 $V_{ii Comp}$ is the offset compensated voltage

 V_{ii} is the raw pixel data (digital), readout from the RAM

 $ThGrad_{ij}$ is the thermal gradient, stored in the EEPROM from 0x40 to 0x7F $ThOffset_{ii}$ is the thermal offset, stored in the EEPROM from 0x80 to 0xBF

HEIMANN Sensor GmbH Contact / Customer Support Internet

Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 <u>www.heimannsensor.com</u> D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 <u>www.heimannsensor.com</u> mail: info@heimannsensor.com

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

gradScale is the scaling coefficient for the thermal gradient

8.3 Electrical Offset

The electrical offset is used to compensate changes in the supply voltage. This compensation is only a substraction so it can be done before or after the thermal offset compensation (here done afterwards).

The compensation for is done by using the following formula:

$$V_{ij_Comp}$$
* = V_{ij_Comp} - $elOffset_{ij}$

where:

ij represents the row (i) and column (j) of the pixel and electrical offset

 V_{ij_Comp} * is the electrical offset compensated voltage V_{ii_Comp} is the thermal offset compensated voltage

elOffset; is the electrical offset belonging to Pixel ij and read from the RAM

8.4 Object Temperature:

The calculation of the object temperature is done by using a look-up table and doing a bilinear interpolation, the matching table is given by the tablenumber (TN). The table is supplied in a separate file named "Table.c".

The sensitivity coefficients ($PixC_{ii}$) are calculated in the following way:

$$PixC_{ij} = \left(\frac{P_{ij} \cdot \left(PixC_{\max} - PixC_{\min}\right)}{65535} + PixC_{\min}\right) \cdot \underbrace{\frac{epsilon}{1000}}_{1000} \cdot \underbrace{\frac{GlobalGain}{10000}}_{10000}$$

where:

 $PixC_{ii}$ is the sensitivity coefficient for each pixel

 P_{ii} is the stored sensitivity coefficient scaled to 16 bit

 $PixC_{min}$ is the minimum sensitivity coefficient, used for scaling $PixC_{max}$ is the maximum sensitivity coefficient, used for scaling

epsilon is the emissivity factor

Leading to a compensation of the pixel voltage

$$V_{ij_PixC} = \frac{V_{ij_Comp}^* \cdot PCSCALEVAL}{PixC_{ij}}$$

where:

 V_{ij_PixC} is the sensitivity compensated IR voltage PCSCALEVAL is a scaling coefficient, typically $1 \cdot 10^8$

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

8.5 Example calculation:

Example values:

$$PTAT = 32357 \ Digits$$

$$PTAT_{gradient} = 0.046 \, dK \, / \, Digit$$

$$PTAT_{offset} = 1511.6 \ dK$$

$$V_{00} = 34435 \ Digits$$

$$gradScale = 15$$

$$ThGrad_{00} = 56693 \longrightarrow -8842$$

$$ThOffset_{00} = 44$$

$$elOffset_{00} = 35000$$

$$PixC_{00} = 1.1 \cdot 10^8$$

$$PCSCALEVAL = 1 \cdot 10^8$$

$$Ta = PTAT \cdot PTAT_{gradient} + PTAT_{offset} = 32357 \cdot 0.046 + 1511.6 \, dK = 3000 \, dK$$

Compensation of thermal offset:

$$V_{00_Comp} = V_{00} - \frac{ThGrad_{00} \cdot Ta}{2^{gradScale}} - ThOffset_{00} = 34435 - \frac{8842 \cdot 3000}{2^{15}} - 44 = 35200$$

Compensation of electrical offset:

$$V_{00_Comp}$$
* = V_{00_Comp} - $elOffset_{00}$ = 35200 - 35000 = 200

Thermopile Array With Lens Optics

Rev.5: 2017.06.12 Schnorr

Example look-up table:

TA[dK]/dig	2882	3032	3182	3332
-64	1494	2128	2491	2775
-32	2466	2692	2898	3091
0	2882	3032	3182	3332
32	3170	3285	3406	3530
64	3396	3491	3592	3699
96	3584	3665	3754	3848
128	3746	3818	3897	3981
160	3890	3954	4025	4102
192	4019	4078	4143	4214
224	4137	4191	4251	4317
256	4246	4296	4351	4413
288	4347	4393	4445	4503
320	4441	4485	4534	4588

$$V_{00_PixC} = \frac{200 \cdot 1 \cdot 10^8}{1.1 \cdot 10^8} = 182$$

Ta was calculated before to 3000 dK.

The matching region in the look-up table is already marked yellow, the bi-linear interpolation is leading to an object temperature of 3941 dK = 120.9 °C.

Thermopile Array With Lens Optics Rev.5: 2017.06.12 Schnorr

8.6 Look-up Table

The matching look-up table has to be taken from the Table.c file. Here is just shown an exemplary data for one optics.

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet

9 Outer Dimensions:

HEIMANN Sensor GmbH Contact / Customer Support Maria-Reiche-Str. 1 Phone 49 (0) 6123 60 50 30 D-01109 Dresden / Germany Fax 49 (0) 6123 60 50 39 Internet