Copyright Notice

This presentation is intended to be used only by the participants who attended the TDD session conducted by Prakash Badhe.

Sharing/selling of this presentation in any form is NOT permitted.

Others found using this presentation or violation Of above terms is considered as legal offence.

Agile Software Development with TDD

Prakash Badhe

Mail: prakash.badhe@vishwasoft.in

About Me: Prakash Badhe

- ✓ Technologies Consultant-Trainer for 20+ years
- ✓ Passion for technologies and frameworks
- ✓ Promoting Agile Technical Practices
- ✓ Skilled in application frameworks
- ✓ Working with JavaEE, Spring, Hibernate, JUnit, EJB3.x components.
- ✓ Developed applications in enterprise domain.
- ✓ Proficient with web services, Html5, Ajax, XML standards
- ✓ Working with client side Web Technologies

Pre-Requisites

- Experience in Java application development
- Experience with Eclipse and JUnit
- Exposure to Unit testing
- Role in team : Developer/Tester/Admin

Setup

- ➤ Windows 10 or Linux 7 64 bit
- **>JDK 1.8**
- ➤ Eclipse-2020
- ➤ Google Chrome or Mozilla Firefox Web browser
- ➤ Adobe PDF Reader
- ➤ Live Internet Connection

Agenda

- ➤ Agile Introduction
- ➤ Agile Practices
- ➤ The Test Driven Development Process
- ➤ Unit testing Java code with JUnit
- ➤ Testing with mock objects
- ➤ Code refactoring process
- ➤ TDD Pros and challenges
- ➤ Develop application by following TDD practice.

Let's Get Started...

SDLC in Waterfall Manner

Waterfall model Drawbacks

- Dependencies on sequential stages
- Entire process repeats for change management.
- Testing the application ONLY at the last stage
- In case of issues/bugs revert back the process to starting stage again.
- Tedious to accommodate change
- Islands (isolated)of information

Agile Model of Development

Fig. Agile Model

Agile means able to move quickly and easily.

What is Agile?

- Agile process is the set of guidelines for software development and application life cycle management.
- Goal of agile process is to make quick and frequent delivery of software applications.
- The agile process replaces initial high-level design with frequent redesign in software application development which is required by change in requirements.
- Being Agile means the division of tasks into short phases of work and frequent re-assessment and adaptation of plans.

How to be Agile?

- Understand Agile Manifesto by agile groups
- Apply Extreme Programming Practices
- Small and cross functional team
- Iterative and incremental development
- Pair Programming
- Continuous Testing
- Continuous integration and continuous delivery
- Coding Practices and standards
- Code Review and analysis
- Coder discipline
- Code ownership and involvement
- Customer involvement from beginning

Agile Methodologies and practices

- Scrum
- Kanban
- SAFe Agile
- Lean Agile
- DevOps tools and practices

Actions in Agile

- Frequent delivery of Minimum Viable Product (MVP)
- MVP is a product with just enough features to satisfy early customers, and to provide feedback for future product developments.
- Coding in iteration and small steps
- Smaller increments in delivery (feature wise)
- Continuous testing and continuous integration
- Automate the process as much as possible.
- Everyone is aware and involved in the process.

Benefits of being Agile

- Ability to quickly respond to changes.
- Reduced bugs in the product.
- Developer confidence
- Team involvement
- Customer focused approach
- Manage changes with less efforts
- Easier and flexible for maintenance and upgrade
- Smooth troubleshooting

MVP-Minimum Viable Product

- Think about incrementally developing the software only if we can break it into smallest possible, valuable pieces.
- The smallest possible increment to a product that can be implemented giving business value is called as Minimum Viable Product (MVP) e.g. Initial prototype and next on-going additions applied in delivery stages.

Incremental versus "All at once" development

The incremental development allows us to remove the risks associated with

- 1. Changes in the requirements
- 2. Misunderstanding the expected behavior of the system

It is better to grow the system than planning for it upfront at all levels of details.

What is needed for Incremental Development?

- Definition of Architecture
- Definition of MVP
- Environment for automated tests
- Environment for Continuous integration
- Development Practices like TDD.

Traditional Design Process

- Understand the requirements or specifications as an input.
- Produce a abstract structure of the individual classes or components and/or their combinations.
- The above structure is implemented with a programming language in an environment.

Testing Process

- Traditional use of testing (post development testing) is an attempt to show correctness of the code.
- Another approach: testing to detect change-Regression testing
- The tests can act as a 'vise' to keep most of the behavior fixed changing only what you intend to do.

Write the Test code

- Create the object/s
- Invoke the functions
- Verify the results
- If the results are not matching , modify the class code and again run the function.
- Proceed with more test functions with combinations of inputs and variables.

Test object sharing

- For all the test methods in a single test class i.e. testFixture) a single instance of the Test class is created and maintained by the framework for all the test methods.
- The setup and teardown logics control the life cycle of every test method.

Test Fixture

- A fixture is a known set of methods that serves as a base for a set of test cases.
- Fixtures come in very handy when you are
- testing as you develop
- Fixture allows to share and reuse common values across the tests.
- TestFixture::setUp()
- -- to initialize the variables
- TestFixture::tearDown()
- -- to release any permanent resources allocated in the setUp()

Test Result verifications

The results of the test execution are verified by Asserting/comparing the results by the test framework.

- ✓ Assert. AreEqual
- ✓ Assert.AreNotEqual
- ✓ Assert.AreNotSame
- ✓ Assert.AreSame
- ✓ Assert.Fail
- ✓ Assert.Greater
- ✓ Assert.Ignore
- ✓ Assert.IsEmpty
- ✓ Assert.IsFalse
- ✓ Assert.IsTrue
- ✓ Assert.NotNull
- ✓ Assert.IsNull

If any of those Assert statements return false, the test failure is detected.

Test Runner

- Executing the TestRunner will run the tests.
- If all the tests pass, you'll get an informative message.
- If any fail, you'll get the following information:
- The name of the test case that failed
- The name of the source file that contains the test
- The line number where the failure occurred

Errors and Failures

- The test results distinguishes between failures and errors.
- A failure is anticipated and checked for with assertions.
- Errors are unanticipated problems, like compiler error, division by zero and other exceptions thrown by the runtime or the code.

Testing Framework

- The testing framework automates the testing process.
- Allows to write test methods as test cases
- Executes the test cases
- Verify/Assert the test results
- Combine multiple test cases
- Generate the test results.
- Specific to the programming language

Traditional Testing

Exercise the system/subsystem/component/class or unit to verify if it works as per its specification after the development.

Types of Testing...

Testing phases

- Unit testing : white box testing
- Integration testing : black box testing
- Acceptance testing : end to end product specification testing(verification).

Unit testing

- Testing/verification of units of the code
 - In procedural codes: units are functions
 - In OO code: units are classes.
- White box testing

Integration Testing

- The application release is tested in integration phase where more number of units developed by different teams are combined and integrated together.
- During integration testing compatibility, interfacing, connection problems are identified and to be resolved at each module stage and then integrated and tested again.
- Mix of white and black box testing

Acceptance Testing

- Testing conducted on the final product released by the development team in production environment.
- Requirements matching, customer's understanding about the product is verified here and in in case of issues it is resolved at integration as well as module stages and tested again after the build stage in deployment.
- Black box testing

Importance of Testing

Gotchas in Post Development Test

- Tends to verify the logic and not the actual requirement.
- Extra code(other than required for logic) is not verified and remains unused.(dead code)
- Code coverage gets reduced.
- Since the whole code is tested at once, difficult for troubleshooting.
- Prone to introduce more bugs in the code.
- Difficult to manage the change and in case of change added, the whole process has to be repeated again!

How to reduce the application bugs..?

- Follow proper coding guidelines
- Code review
- Testing at every stage
- Regression testing
- Ensure that the product follows the requirements..

Effect of Testing

- Only Finished product testing : More severe bugs
- Integration Testing: The communication/understanding/unknown/integra tion issues, can be reduced overall.
- Testing of individual blocks : bugs easily controlled at group/tester level.
- Unit Testing
 - The bugs easily detected and controlled at developer level.
 - Bugs mainly because of requirements understanding.

Effect of Unit Testing

How to unit test the code...

- Units are functions, classes, files, blocks etc.
- How to test the units...
 - Function testing in procedural programming
 - Class testing in object oriented programming
- Should we test the class after it is developed completely...
- Should we test it one by one functions of the class after it is written...
- Some units developed may not be used in actual requirements.
- How to ensure that the units follow the requirements and nothing more and nothing less..?

Process of Unit Testing

- Understand the requirements in steps and not in complete.
- Focus on developing one small part of the requirements.
- Understand the requirement clearly and the code has to match the requirement.

How Big the Test should be?

- 1. Error localization: work involved to locate errors is large in case of large tests, in case of unit tests it is smaller.
- 2. Execution Time: More for larger tests
- 3. Coverage: Hard to determine coverage when new code is added.

The test should be ideally small and testing only one feature of the unit under test.

Qualities of good unit test

- Should verify only one functionality on the unit under test.
- It should not depend on other tests.
- It should run fast: A unit test that takes 1/10th
 of a second to run is a slow unit test.
- It should help in localizing problems
- When done, It should clear the test data created for the test.

How to ensure that the requirements are fulfilled by the code..?

Match the requirements...

- -- to test cases.
- Unit test verifies and ensures that the requirement has either fulfilled or failed by the unit.
- The unit test should be written as per the requirement and NOT as per the code.
- Who should write the unit test..?
 - Tester/Developer
- When should be the unit test run and verify..?
 - The test needs the code!

First Chicken or First Egg..?

- Which should be first...
- Code or Test..?

Effects of code first and then test...

- Test after the unit has been designed/coded.
- Tests tend to verify implemented features in the code and NOT what is required in the code.
- The designed code may not match the requirements.
- The designed code is tested and designed code may have more features than required to pass Unit testing and other features may not get exposed/tested/utilized.

More cons for code first approach..

- Difficult to diagnose the defects/side effects in the designed code even after successful testing
- The test may not cover all the features of test code.
- Testing the code after the designing phase is more towards waterfall model and difficult to manage change in the designed code, once it is tested.

Test before coding ..?

- Unit test is written to verify the requirements and NOT the code features.
- Unit test should be written before coding
- Which code this unit test will verify ..?
- The unit test is going to fail for the first time...because there is no unit code!

Discussion point: Test First Approach

- Are there any problems with Design First approach?
- Are there any advantages of Test-First Approach?
- Design-by evolution or by creation?

Success or Failure of Unit Test..?

The success of unit test

- The Unit code has to make the unit test success!
- That means the unit code should implement the required logic to make the test success.
- The unit code should follow the unit test.
- The unit code is driven by unit test.

Test Drives The Code!

- The code should be written just to make the test success and nothing more or nothing less.
- The test matches the requirement and the code indirectly matches the requirements, since it makes the unit test success.

Effects of Test First approach...

- The designed code is just to make the test succeed and will NOT have more features than required to pass the Unit test!.
- Easier to diagnose the defects/side effects in the designed code if any, after successful testing
- The unit test exactly verifies the requirements.
- Easier to manage change in the requirements since the scope of code is small.

Driving the Code=>

- Which factor/item should drive the code development ..?
- Requirements
- Developer skills
- Programming Platform
- Requirements get mapped to test cases.
- The implementation code is written to satisfy the test cases.
- Tests Drive the Code.

Test Driven Development

- NOT a build and test approach..
- We don't start to write the implementation code initially.
- Write test first approach...
- The test first approach
 - The tests are governed by the requirements.
 - The tests govern the implementation code.
- Write the only needed code to succeed the test,no more..no less..

Goals of TDD

- The primary goal of TDD is not testing in itself, but rather code design and evolution.
- TDD is an iterative process where iterations are typically short and always start by writing a unit test which describes some specific behavior.

Focus in TDD

- By starting with the test (or "spec"), the programmer is encouraged to focus on the behavior of the system rather than the implementation.
- The implementation comes second, and is typically changed frequently as the system grows through refactoring.
- Because the system is always approached through unit tests, the resulting code is inherently testable and usually loosely coupled, which can be a hard goal to reach when developing software the traditional way.

TDD: A style

- TDD is a programming strategy.
- Just writing the tests does not make a whole lot of sense to be doing it unless the code is actually written to make the test success.

Get Started with TDD

Unit-testing Process

- The steps involved in unit-testing
 - Create the object under test
 - Invoke the method
 - Verify the results/return of method
 - If the results/output are not matching ,test fails;
 - modify the code and again test the method.
 - Proceed with more test methods

Unit-Test Framework

- The unit-testing framework automates the testing process.
 - Allows to write test methods as test cases
 - By writing test methods
 - Marked with annotations
 - Executes the test cases
 - Verify/Assert the test results
 - Combine multiple test cases
 - Generate the test results.

Enter xUnit standard

- The frameworks based on a design by Kent Beck.
- The xUnit frameworks allow testing of different elements (units) of software, such as functions and classes.
- provide an automated solution to execute the same tests many times, and no need to remember what should be the result of each test.

Unit testing frameworks

- Junit : Java code testing
- CppUnit: C++ code testing
- Nunit : MS.Net code testing
- TestNG: Extension of JUnit

Enter xUnit

- The frameworks based on a design by Kent Beck.
- The xUnit frameworks allow testing of different elements (units) of software, such as functions and classes.
- provide an automated solution to execute the same tests many times, and no need to remember what should be the result of each test.

JUnit

- JUnit originally written by Erich Gamma and Kent Beck.(junit.org)
- JUnit is an open source Java testing framework used to write and run repeatable tests. It is an instance of the xUnit architecture for unit testing frameworks.

CppUnit

- The CppUnit is porting of JUnit for the C++ platform.
- The CppUnit is also open source and freely available as downloadable source code from sourceforge.net web site.

NUnit

- Nunit is the test framework for MS.Net platforms.
- The Nunit is also open source and freely available as downloadable source code as well as installable from nunit.org web site.
- NUnit is directly usable inside Visual studio as well as integrated with Visual studio add on as TestDriven.Net

JUnit as xUnit Framework

- JUnit originally written by Erich Gamma and Kent Beck.(junit.org)
- JUnit is an open source unit-testing framework for java used to write and run repeatable tests.
- It follows the xUnit architecture for unit testing frameworks.

JUnit Features

The JUnit features include:

- Define the test cases by extending the TestCase class or decorating test methods with annotations
- Provide test fixture to execute the test cases
- The Test fixtures for sharing common test data
- Supports the assertions for testing/verifying expected results
- Test suites for easily organizing and running tests
- Graphical and textual Test Runners

Test Case class in JUnit3.x

- In Junit3.x,the test is standardized as Test interface.
- The Test has two abstract methods
- public void **run**(TestResult result) :
 - Used by framework to run a test and collects its result in a TestResult instance.
- public int countTestCases()
 - This counts the number of test case megthods that will be run by this test.

Test implementations

TestCase class

- TestCase is the helper class that we can extend to write testcase classes.
- It defines the test fixture to run multiple tests.
- Supports fixture initialization and closedown with two methods
- protected void setUp() and protected void tearDown() that can be overridden in sub classes to provide your own mechanism of sharing data.
- The run is implemented to execute the test case and collects the results in TestResult.
- The framework invokes the run method.

Test Success or Failure

- The success or failure of a test method is defined by the outcome of a comparison method that compares(asserts) the results.
- If the comparison (assertion) returns false, an AssertionFailedError exception is thrown which indicates the failure of the test.
- If no exception occurs in test method it is treated as success.

A set of assertions

- The comparison of test results is done by a set of assert methods that returns the result
- The class Assert provides a set of static methods to assert the values of different types.
- Messages are displayed only when an assert fails.

Assert methods

- assertEquals(boolean expected, boolean actual)
- assertEquals(java.lang.String message, byte expected, byte actual)
- assertNotNull(java.lang.Object object)
- assertSame(java.lang.Object expected, java.lang.Object actual)
- assertNotSame(java.lang.Object expected, java.lang.Object actual)

TestSuite class

- The TestSuite is a container of TestCase methods and TestCase objects and other testSuite instances.
- It runs a collection of test cases.
- The run method is invoked by the framework

Test Runner class

- The test runner classes are provided in framework to invoke the test methods via run method in any Test implementations.(i.e. Test,TestCase or TestSuite).
- Two test runners are supported
- The junit.textui.TestRunner to run and produce only the test result.
- The junit.swingui.TestRunner class to run tests in GUI environment and produce graphical report of test executions.

Test Case in JUnit4.0 onwards

- The JUnit4 recognizes any test method decorated with '@Test' annotation as test case in any class.
- You can write multiple test methods in single test class.
- Inside each test method the test case result can be verified with assertions supported by JUnit.

Annotated test-case

```
public class AccountTest {
```

```
@Test
public void testAccountDeposit()
{
   Account ac= new Account(12000);
   ac.deposit(1000);
   Assert.assertEquals(11000, ac.getBalance());
}
```

If the assert method throws exception it is treated as test failure otherwise success.

Assertions

- Assert methods include:
 - assertEquals(expected,actual)
 - assertTrue(boolean)
 - assertFalse (boolean)
 - assertNull(object)
 - assertNotNull(object)
 - assertSame(firstObject, secondObject)
 - assertNotSame(firstObject, secondObject)
 - assertArrayEquals(expecteds, actuals)

Test Fixture methods

```
public class AccountTest {
 @Test
 public void testAccountDeposit()
 { .....//some code to test }
  @BeforeClass
  public static void initClass()
   { //class level setup code }
  @AfterClass
 public static void closeTestClass()
  { //class level close }
  @Before
  public void initTestSetUp()
  { //set up for test}
  @After
  public void tearDown()
  { //close test setup }
```

Fixtures in the test case

• Test Setup:

 Use the @Before annotation on a method containing code to run before each test case.

Test Teardown:

- Use the @After annotation on a method containing code to run after each test case.
- These methods will run even if exceptions are thrown in the test case or an assertion fails.
- It is allowed to have any number of these annotations.
 - All methods annotated with @Before will be run before each test case, but they may be run in any order.

Static Fixtures at class level

- Test Class Setup:
 - Use the @BeforeClass annotation on a method containing code to run once before when the test class starts running the tests.
- Test Class Teardown:
 - Use the @ AfterClass annotation on a method containing code to run after all the test cases have been finished.

Test Suite annotation

```
@RunWith(Suite.class)
//Add multiple test implementations here to run
@SuiteClasses({com.data.test.TestBackupFirst.class,com.data.test.UserTest.class,c
   om.data.test.TestBackupSecond.class})
public class RunAllTests {
public static Test suite() {
TestSuite suite = new TestSuite("Test for com.data.test AllTests");
return suite;
```

Test Configuration

To specify the test timeout specify with the annotation as

```
@Test(timeout=1000)
public void runLongTest() {....}
```

To expect an exception in the test method

```
@Test(expected=ArrayIndexOutOfBoundsException.class)
public void testBounds() {
new ArrayList<Object>().get(1);
}
```

• If the method doesn't throw an exception of this type or if it throws a different exception than the one declared, the test is treated as failure.

Ignore the tests

- To temporarily disable a test or a group of tests use ignore annotation.
- Methods annotated with Test and @Ignore will not be executed as tests.
- A class containing test methods can also be annotate d with @Ignore and none of the containing tests will be executed.
- @Ignore @Test public void notYetRun() { ...}
- @Ignore public class TryNotMe {..}

Explicitly fail the test

- Static method : class org.junit.Assert.fail():
 Fails a test with no message.
- Static method : class org.junit.Assert.fail(String errorMessage): Fails a test with given message.

Golden Rule of TDD

Never write a new functionality without a failing test.

TDD cycle

Vishwasoft Technologies

Fundamental TDD Cycle-Red, Green Refactor

Inner and Outer feedback loops in TDD

User Story for Saving Account

As a user I should be able to

- Deposit amount in SavingAccount
- Verify the amount with balance
- Withdraw amount from the SavingAccount
- Verify the amount with balance

To Do

SavingAccount – deposit amount and verify the balance

Getting Started...

Create new Java project 'BankApp' with Eclipse Photon -> Project Wizard support

Project Reference – JUnit library

Add to the project the reference of the JUnit ver5.0 library with the project class-path settings.

Project Explorer view ,Right click on the project and select

BuildPath -> Configiure Build Path

Add a new Java Test Class

Vishwasoft Technologies

Java Test class 'TestSavingAccount'

The Test case class: The Test Fixture

```
package com.server.test;

public class TestSavingAccount {
}
```

Add the first Test method to Test class

```
package com.server.test;
import org.junit.Test;
public class TestSavingAccount {
@Test
public void checkSavingAccountDeposit()
                                   test method
```

Add the test code

```
package com.server.test;
import junit.framework.Assert;
import org.junit.Test;
public class TestSavingAccount {
@Test
public void checkSavingAccountDeposit()
//Compiler errors..fix it
SavingAccount obj= new SavingAccount();
obj.deposit(1000);
int amount = obj.balance;
Assert.assertEquals(1000, amount);
                  Verify that the obj balance is equal to amount
```

package com.server.bank;

```
public class SavingAccount
{
```

}

Add deposit method in SavingAccount

Write the minimum required code ...

```
package com.server.bank;

public class SavingAccount {

public void deposit(int amount) {
 }
}
```

Add the balance variable in SavingAccount

```
package com.server.bank;
public class SavingAccount {
public int balance;
public void deposit(int amount) {
```

Run the Test

Congrats! Your First Test FAILED!

Test Failure description

java.lang.AssertionError: expected:<1000> but was:<0>

The first test as failure and NOT Success!

- The failure is most easy to implement!
 - Do Nothing!!
- We know the cause of failure.
- Incase if the test fails in a way not as we expected, something is wrong..fix it and correct it..helps to correct the errors easily..
- Helps to isolate the problems at actual failures

•

An Unstable System

The Symptom of an Unstable System is that there is no single obvious place to look at when there is failure in the system.

To make the Test succeed...

- In SavingAccount class initialize the balance variable value to 1000.
- Run the Test..

Modified SavingAccount

```
package com.bank.server;
public class SavingAccount {
public int balance =1000;
public void deposit(int i) {
```

Your First GREEN Bar of SUCCESS!

111

Test for the amount deposited..

- How to verify the amount that is deposited number of times in SavingAccount?
- Add another test function 'VerifyDepositsOnSavingAccount' in Test class to verify the amount deposited...
- Inside the test function create the SavingAccount object, call the deposit function two times with different amount values and verify the balance on the SavingAccount object with assertion.

The test

```
@Test
public void VerifyDepositsOnSavingAccount()
    SavingAccount obj = new SavingAccount();
    obj.deposit(1000);
    obj.deposit(2400);
   //verify the final balance value
    Assert.assertEquals(3400, obj.balance);
```

Run the test..

junit.framework.AssertionFailedError: expected:<3700> but was:<1000>

Why the test failed?

- We have earlier faked the balance value with fixed value..
- Now we will have modify the SavingAccount with minimum code required to update the balance added by the deposit method.

SavingAccount Deposit

```
public class SavingAccount {
public int balance;
public void deposit(int amount) {
balance+= amount;
```

Run the Test

All other tests?

Vishwasoft Technologies

What is done?

- Defined balance variable in SavingAccount class and exposed it to the user.
- Update the balance of SavingAccount by deposit method.

Is it a good Design?

By exposing the balance of SavingAccount we are increasing the possibility of modifying the balance of SavingAccount without depositing the amount to it!!

Correct it..

- Limit the access of balance in SavingAccount to outside world by making it private.
- But to share the balance add a public method getBalance in SavingAccount class.
- In the test class instead of using the balance directly change it to call getBalance on SavingAccount object.

SavingAccount Revised

```
public class SavingAccount {
   private int balance;
   public void deposit(int amount) { }
   public int getBalance()
        return balance;
```

Passing the test-Going Green

- Fake it
- Triangulation
- Obvious Implementation

Fake the results...

- Sometimes during development, in absence of actual code/objects/files the output results can be faked/hard coded with fixed values to return dummy data just to make the test success.
- This test has to be replaced later with real objects.
- It is Not recommended to use fake objects in production code.

Fake it (Until you implement it)

Benefits:

- 2. it has psychological benefits for some, which can aid in stress reduction through taking small steps, receiving positive feedback, and providing momentum.
- 3. it facilitates a "safety net" which can be used to provide rapid feedback if you go off course during a refactoring effort.

Triangulation

 If I get stuck and I don't know how a complex algorithm should work I'll write a test for an error case. Then I'll write a test for the simplest non-error case I can think of and return a hard coded value. Then I'll write another test case and see if I can figure out the algorithm at that point. In doing so I gain some momentum and perhaps some insight in how the algorithm should behave on an edge case and a few normal cases.

Triangulation

 This is called triangulation and it was used in celestial navigation for thousands of years. It is easier to see you are moving when you compare your position to two or more points on the horizon rather than just one. The same applies to coding; it is often easier to figure out the behaviour of an algorithm by examining a couple of test cases instead of just one.

Obvious Implementation

 Write the actual implementation for the behavior expected by the test case while exercising the system.

Call getBalance in Test Class

```
@Test
public void VerifySavingAccountBalance() {
    SavingAccount obj = new SavingAccount();
     obj.deposit(1200);
     Assert.assertEquals(1200, obj.getBalance());
@Test
public void VerifySavingAccountMultipleDeposits(){
    SavingAccount obj = new SavingAccount();
    obj.deposit(1000);
    obj.deposit(2400);
    Assert.assertEquals(3400, obj.getBalance());//verify the balance
```

Run all the tests

All the tests have succeeded Vishwasoft Technologies

Technical Foundations to grow a system

- To grow system reliably by coping with unanticipated changes; we need
- 1. constant testing to catch regression errors so we can add new features without breaking existing ones. To perform constant tests, we need to automate testing.
- 2. constant refactoring to keep code as <u>simple</u> as possible so it is easier to understand and modify.

What if

- The SavingAccount implementation described here is for Indian banking environment where Rupee is the default currency..
- What if an NRI person wants to remit the amount in US Dollars to the corresponding Indian SavingAccount?
- How this US Dollars amount will be accommodated here?
- Obviously the US Dollars amount need to be first converted to Indian Rupees and then transacted...

The deposit Dollar test method

```
@Test
  public void testSavingAccountDollarTransfer()
    obj = new SavingAccount();
    obj.deposit(1000);
    obj.deposit(100);
   //Compiler Errors Fix it
    Dollar usCurrency = new Dollar(100);
    obj.deposit(usCurrency);
    double amount = Dollar.getRupeesConvresionRate() *
   usCurrency.getCurrencyValue();
    //verify the current balance
    Assert.assertEquals( 1000+amount, obj.getBalance());
```

Overloaded Deposit methods

```
public void deposit(int amount) {
balance+=amount;
public void deposit(Dollar dollarAmount) {
 int dollarValue = dollarAmount.getCurrencyValue();
 int rupeeRate =
  dollarAmount.getRupeesConvresionRate();
 int amount = dollarValue * rupeeRate;
 balance+=amount;
```

The Dollar Class

```
package com.bank.server;
public class Dollar {
private int currencyValue;
public Dollar(int value){
  this.currencyValue = value;
int getCurrencyValue() {
 return currencyValue;
 private static int rupeesConvresionRate = 48;
 static int getRupeesConvresionRate() {
   return rupeesConvresionRate;
```

Run test

The taste of success!

Run all the Tests

One more Currency..

What if the user wants to transfer the Euro currency to this SavingAccount?

add a test method

```
@Test
public void VerifyEuroDepositToSavingAccount()
SavingAccount obj= new SavingAccount();
Euro euroAmount = new Euro(60);
obj.deposit(euroAmount);
Assert.assertEquals(1320, obj.getBalance());
```

Evolve the Euro class

- Define the Euro class to be used as a ValueObject to make the transactions.
- The attributes required for Dollar
 - currencyValue
 - rupeesConvresionRate for converting to Indian Rupees.

Euro class

```
package com.bank.server;
public class Euro {
private int currencyValue;
public Euro(int value){
  this.currencyValue = value;
int getCurrencyValue() {
 return currencyValue;
 private static int rupeesConvresionRate = 22;
static int getRupeesConvresionRate() {
 return rupeesConvresionRate;
                           Vishwasoft Technologies
```

Overloaded deposits

```
public void deposit(Dollar dollarAmount) {
int dollarValue = dollarAmount.getCurrencyValue();
int rupeeRate = dollarAmount.getRupeesConvresionRate();
int amount = dollarValue * rupeeRate;
balance+=amount;
public void deposit(Euro euroAmount) {
int euroValue = euroAmount.getCurrencyValue();
int euroRate = euroAmount.getRupeesConvresionRate();
int amount = euroValue * euroRate;
balance+=amount;
```

Run the Test

```
Java - BankAccounts/src/com/bank/test/TestSavingAccount.java - Eclipse
<u>File Edit Run Source Navigate Search Project Refactor Window Help</u>
 9 ▼ ₩ > ♥ → ▼
Package Explorer  JUnit ⋈

☐ TestSavingAccount.ja ☒ ☐ SavingAccount.java

                                                                                                      🗓 Dollai
                                Finished after 0.015 seconds
                                                                  SavingAccount obj= new SavingAccount();
                                                                  Dollar dollarAmount = new Dollar(100);
                                 ■ Failures: 0
                 Errors: 0
 Runs: 4/4
                                                                  obj.deposit(dollarAmount);
                                                                  Assert.assertEquals(4800, obj.getBalance());
 ▶ 🛍 com.bank.test.TestSavingAccount [Runner: JUnit 4] (0
                                                             @Test
                                                             public void VerifyEuroDepositToSavingAccount()
                                                                  SavingAccount obj= new SavingAccount();
                                                                  Euro euroAmount = new Euro(60);
                                                                  obj.deposit(euroAmount);
                                                                  Assert.assertEquals(1320, obj.getBalance());
                       Ш
■ Failure Trace
```

Run All the Tests

Is TDD process slower..?

- In TDD we take tiny/small steps..during initial stages of development.
- These are also called as baby steps.
- Each step may take its own time.
- Multiple steps may also present similar/common behavior. In that case these can be combined as common steps and reused.
- When tested common behavior for one module, for another module, same code can be reused.

Baby Steps in TDD

- How small or large the baby step can be ..?
- When you are NOT sure about the outcome of testing of complex code implementation ,go by small steps.
- When you are sure about the obvious outcome of test results and expect known behavior, you may take large jump also.

Testing with Mock

Dependent objects

- Individual unit testing of every class in isolation should be possible.
- When certain objects/classes depend on other objects/classes for certain methods invocation, how to test those depending parent classes in absence of dependent child classes.
- When development in team, each team is isolated and tasked with certain development of classes.
- How to test those individual items developed by independent teams.?

Dependency on environment..

- The classes/objects running in servlet web applications inside web containers.
- The database DAO classes in absence of service objects/database should be able to be tested outside those containers or in absence of those services.

Simulate the dependencies...

- The environment which is able to simulate/mock/present the behavior expected from dependent objects is the mock objects.
 - Configure the mock objects to simulate the required behavior.
 - Pass the mock objects to the parent units as real dependent objects in absence of dependent objects
 - Invoke the behavior from parent units on the mock objects
 - Verify the results expected as in real cases.

Mock objects are NOT Real

- Set of mock objects that are not real.
- The general term is test double. It includes dummy, fake, stub and mock objects.
- Dummy objects are passed around but never actually used; they are just used to fill parameter lists.
- **Fake** objects actually have working implementations, but usually take some shortcut or dummy values which makes them not suitable for production (an in memory database is a good example).

How Mock Objects work..?

- The mock object is created to present dynamic implementation behavior of interfaces/parent classes/helpers to those depending on it.
- The mock object is first configured to present some expected behavior/output values based on certain input data values.
- This configuration process is called as recording.
- The mock object is passed to the calling/dependent objects as real representation of absent object.

The output of mock objects

- The mock objects present expected output/return values from methods when invoked from dependent objects.
- This process is called as mock playback.
- The output/return values from mock object invocation is compared with assertion and indicates success or failure.
- Later we can verify whether there was a actual call on mock objects and how many times it was called on the mock is also verified.
- This is assertion of mock behavior.

Mock as Test Double

- During testing it is common to use objects that look and behave like their production equivalents, but are actually dummy and simple.
- This reduces complexity and allows to verify code independently from the rest of the system.
- Sometimes it is even necessary to execute self validating tests at all.
- A Test Double is a generic term used for these objects.

Test Doubles

Mock as Fake objects

- Fakes are objects that have working implementations, but not same as production one.
- Usually they take some shortcut and have simplified version of production code.

Fake Usage

- This can be an in-memory implementation of Data Access Object or Repository.
- This fake implementation will not engage database, but will use a simple collection to store data.
- This allows to do integration test of services without starting up a database and performing time consuming requests.

Fake for Prototype

- The fake implementation are useful for prototyping and spikes.
- We can quickly implement and run our system with in-memory store, deferring decisions about database design.
- Another example can be also a fake payment system, that will always return successful payments.

Mock as Stub Object

- Stub is an object that holds predefined data and uses it to answer calls during tests.
- It is used when we cannot or don't want to involve objects that would answer with real data or have undesirable side effects.

Stub Usage

- An example can be an object that needs to grab some data from the database to respond to a method call.
- Instead of the real object, introduced a stub and define what data should be returned.

Stub

Mock Usage

- Mocks are objects that register calls they receive.
 In test assertion we can verify on Mocks that all expected actions were performed.
- Use mocks when we don't want to invoke production code or when there is no easy way to verify, that intended code was executed.
- There is no return value and no easy way to check system state change.
- An example can be a functionality that calls e-mail sending service.
- We don't want to send e-mails each time we run a test. Moreover, it is not easy to verify
 in tests that a right email was send. Only thing we can do is to verify the outputs of the
 functionality that is exercised in our test. In other worlds, verify that e-mail sending
 service was called.

Mock

Stud vs. Mock

- **Stubs** provides canned answers to calls made during the test, usually not responding at all to anything outside what's programmed in for the test.
- Stubs may also record information about calls, such as an email gateway stub that remembers the messages it 'sent', or maybe only how many messages it 'sent'.
- **Mocks** are what we are talking about here: objects preprogrammed with expectations which form a specification of the calls they are expected to receive.
- Mocks vs Stubs = Behavioral testing vs State testing

Testing with Stub object

- Test lifecycle with stubs:
- Setup Prepare object that is being tested and its stubs collaborators.
- Exercise Test the functionality.
- Verify state Use asserts to check object's state.
- Teardown Clean up resources.
- The stub methods return hard-coded values.

Test with Mock

- Test lifecycle with mocks:
- Setup data Prepare object that is being tested.
- Setup expectations Prepare expectations in mock that is being used by dependent object.
- Exercise Test the functionality.
- Verify expectations Verify that correct methods has been invoked in mock.
- Verify state Use asserts to check object's state.
- Teardown Clean up resources.

Mock vs. stub

- Mock is very similar to Stub but interactionbased rather than state-based.
- This means you don't expect from Mock to return some value, but to assume that specific order of method calls are made.

Extensions to TDD

Levels of testing in TDD

- Acceptance: Does the whole system work?
- Integration: Does our code work against code we can't change?
- Unit: Do our objects do the right thing, are they convenient to work with?

TDD: The Micro-Cycle of Agile Development Process

"Build The Right System"

TDD: The Micro-Cycle of Agile Development Process

Acceptance in TDD

- Acceptance test should exercise the system end-to-end.
- Acceptance test may generally mean " functional test", "customer test" or" system test".
- For TDD, acceptance test helps us, with the domain experts, understand and agree on what we are going to build next.

Integration test in TDD

 It is to refer to the tests that check how some of our code works with code from outside the team that we can't change.

Impact of TDD

TDD gives feedback

 TDD gives us the feedback on both, implementation ("Does it work?") and design ("Is it well-structured?")

Benefits of TDD

Writing tests:

- 1. Makes us clarify the acceptance criteria for the next piece of work-we have to ask ourselves how we can tell when we are done (design)
- Encourages us to write loosely coupled components so they can be easily tested in isolation, at higher levels, combined together (design)
- 3. Adds an executable description of what the code does (design); and
- 4. Adds to a complete regression suite.

Benefits of TDD...

Running tests:

- 1. Detects errors while the context is still fresh in our mind (implementation) and
- Lets us know when we've done enough, discouraging "gold-plating" and unnecessary features (design)

How to get the Quality..?

External Quality:

How well the system meets the needs of its customers and users. (is it functional, reliable, available, responsive etc.) It is usually a part of the contract to build.

Internal Quality:

How well the system meets the needs of is developers and administrators (Is it easy to understand, easy to change etc.)

Testing and Quality in TDD

- Running end-to-end tests gives us the confidence on external quality and writing tells us how well we understand the domain. But it doesn't tell us about code quality.
- Writing unit tests gives us a lot of feedback of quality of our code and running unit tests tells us that we haven't broken any classes. But they don't give us confidence that the system as a whole works.
- Integration test falls in between.

Quality and testing in TDD

Listening to tests

- For Unit testing, an object needs to be created, provide with its dependencies, interact with it and check that it behaved as expected.
- So, for a class to be unit-testable, it must have explicit dependencies that can be easily substituted and clear responsibilities that can be invoked and verified.
- For this, the code must be loosely coupled and highly cohesive.
- If such a test cannot be written for a class, then we need to investigate the reasons why it is hard to write a test and refactor to improve its structure.
- This is called as "Listening to tests".

Approach of TDD for Legacy systems

Add a Change in the software

To mitigate the risks behind adding changes in the software

- 1. What changes do we have to make?
- 2. How will we know the we have done them correctly?
- 3. How will we know that we haven't broken anything?

Changing the software

- We avoid change, conservative approach.
- Why add a method, I'll add code in the existing one.
- If it is not broke, don't fix it.

We can't minimize software problems by avoiding them.

Approaches to make change

Edit and pray

- Working with care
- Study the system, make the changes, see if the changes are working, see if something else is broken, pray for everything to be alright.
- Unfortunately, safety is not solely the function of care

Cover and modify

- Working with Safety net
- Covering software means covering it with tests.
- We do apply care, but we add feedback from tests to do it more carefully.
- If changing software means uncertainty, then uncertainty can be removed by
- 1. Doing little at a time
- 2. Taking feedback every time.

The Legacy code change algorithm

- 1. Identify change points
- 2. Find test points
- 3. Break dependencies
- 4. Write tests
- 5. Make changes and refactor

Refactoring of Code

What is Refactoring?

- Refactoring is a disciplined technique for restructuring an existing body of code, altering its internal structure without changing its external behavior.
- Refactoring is a series of small transformations while preserving the behavior of code.
- Refactoring is a powerful Agile technique for improving existing software.

Retrospect..

- Duplicate code across the functions of SavingAccount class.
- What if we change the strategy to deal with negative values in deposit and withdraw methods?
- Are we going to modify all the three functions again in the SavingAccount class?

Need of refactoring

Refactoring is code restructuring

- Each transformation (called a 'Refactoring') does little, but a sequence of transformations can produce a significant restructuring.
- The system is also kept fully working after each small Refactoring, reducing the chances that a system can get seriously broken during the restructuring.

Why to refactor?

- Having source code that is understandable helps ensure a system is maintainable and extensible.
- Improves the design of the software.
- Easier to maintain and understand.
- Easier to facilitate change.
- More flexibility.
- Increased reusability.
- To help find bugs

Preserve and verify with Tests

- Refactoring simply means "improving the design of existing code without changing its extrenal behavior".
- The behavior of code **should not** get changed after refactoring.
- The tests execution before and after the refactoring stage should ensure that the behavior of the code is **NOT** changed.
- When changing a lot of the code at one time it is possible that bugs get introduced. But when and where these bug were created may no longer reproducible.
- Hence the refactoring is to be done with smaller steps followed by rigorous testing, before and after the refactoring stage.

Small change with refactoring

- If a change is implemented in small steps with tests running after each step, the bug likely surfaces in the test run immediately after introducing it into the system.
- Then the step could be examined or, after undoing the step, it could be split in even smaller steps which can be applied afterwards.

Testing after Refactoring

The benefit of comprehensive unit tests in a system, as advocated by Extreme Programming techniques.

These tests, give the developers and management confidence that the refactoring has not broken the system, the code behaves the same way as it behaved before.

Why Do we refactor?

- Improves the design of the software.
- Easier to maintain and understand.
- Easier to facilitate change.
- More flexibility.
- Increased reusability.
- To help find and locate the bugs

When to refactor?

- Duplicate code.
- Large class
- Class with multiple different unrelated behavior
- Large switch-case blocks makes it difficult to add one more case block
- Long methods.
- Long parameter list for methods.
- Large no of local variables
- Dead code(un used)
- Hard coupling between classes
- Improper naming of variables/classes/methods.

What to refactor?

- Programs that are hard to read (hard to modify).
- Programs that have duplicate logic(hard to modify)
- Programs that require additional behavior that requires you to change running code(hard to modify.)
- Programs with complex conditional logic(hard to modify.)

Refactoring Steps..

Each transformation (called a 'Refactoring') does little, but a sequence of transformations can produce a significant restructuring.

The system is also kept fully working after each small refactoring, reducing the chances that a system can get seriously broken during the restructuring.

Refactor and go GREEN!..

- Extract the functions out of existing duplicate code.
- Remove duplications without changing the external behaviors of functions.. All the tests must succeed.
- Run all the tests again...
- It must be GREEN bar always...

Refactoring advantage

- The development tasks, maintenance and enhancement, often conflict since new features, especially those that do not fit cleanly within the original design, result in an increased maintenance effort.
- The refactoring process aims to reduce this conflict, by aiding non destructive changes to the structure of the source code, in order to increase code clarity and maintainability.

Benefits of refactoring

- For the well structured code, new requirements can be introduced more efficiently and with less problems.
- However people are hesitant to use refactoring Because of the amount of effort required for even a minor change, and a fear of introducing bugs.
- These problems can be solved by using an automated refactoring tool and well defined set of test cases to ensure re-testing of re-factored code again and again.

Code Clarity after refactoring

When system's source code is easily understandable, the system is more maintainable, leading to reduced costs and allowing precious development resources to be used elsewhere.

Refactoring in TDD Cycle

Refactoring techniques

- Extract method
- Inline method
- Extract variable
- Extract class
- Extract super class
- Extract interface
- Rename
- Move class in related packages
- Replace Conditional with Polymorphism

Refactoring to patterns

- Replace state altering conditionals with state pattern e.g. door close/open
- Move creation knowledge to Factory
- Extract Composite
- And on and on.....

Refactoring with tools

- The automated tools are available to enhance code quality by safely performing refactoring tasks.
- If refactoring are carried out manually, one needs to frequently rebuild the system and run tests.
- Manual refactoring is applicable the following conditions hold:
- The system, of which the refactored code is a part, can be rebuilt quickly.
- There are automated "regression" tests that can be frequently run to verify the impact of refactoring.

Addition to the case study

Currency abstraction

- Extract the top level abstract class as Currency from Dollar and Euro classes and override the required methods
- Currency as top level abstract class with required abstract methods.
- Define Dollar and Euro classes extending and overriding the currency conversion and value methods.

The Currency Parent

```
package com.server.bank;
abstract class Currency {
abstract double getRupeesConvresionRate();
abstract int getCurrencyValue();
```

The Dollar revised

```
package com.server.bank;
public class Dollar extends Currency {
private int currency Value;
int getCurrencyValue() {
   return currencyValue;
private static int rupeesConvresionRate = 48.6;
Int getRupeesConvresionRate() {
   return rupeesConvresionRate;
public Dollar(int currentValue) {
   this.currencyValue = currentValue;
                             Vishwasoft Technologies
```

Revised Euro Class

Vishwasoft Technologies

```
package com.server.bank;
public class Euro extends Currency {
 private int currencyValue;
 private static int rupeesConvresionRate = 25;
Euro(int currentValue) {
  this.currencyValue = currentValue;
Int getRupeesConvresionRate() {
  return rupeesConvresionRate;
public int getCurrencyValue() {
  return currencyValue;
```

Modify the SavingAccount

```
public class SavingAccount {
private int balance;
public void deposit(int amount) {
balance+= amount;
 public void deposit(Currency currencyType) {
  double amount = currencyType.getRupeesConvresionRate() *
  currencyType.getCurrencyValue();
  balance+= amount;
```

Update the test method code

```
@Test
 public void testSavingAccountDollarTransfer()
   obj = new SavingAccount();
   obj.deposit(1000);
   Currency usCurrency = new Dollar(100);
   obj.deposit(usCurrency);
  int amount = (int) (usCurrency.getRupeesConvresionRate() *
  usCurrency.getCurrencyValue());
 //verify the current balance
   Assert.assertEquals( 1000+amount, obj.getBalance());
```

Run the test

Run all the Tests

```
Java - BankAccounts/src/com/server/test/TestSavingAccount.java - Eclipse
<u>File Edit Refactor Run Source Navigate Search Project Window Help</u>
 知 ▼ 智 ▼ 🌣 🗘 ▼
🔽 Navigator ြ Project Explorer 😈 JUnit 🖾

☑ TestSavingAccount.ja 
☒ 

                                                                            SavingAccount.java
                                                                                                   🗓 Eu
                                                              ASSERT.assertEquals(1500, amount);//verity T
                          Finished after 0.015 seconds
                                                           @Test

■ Failures: 0

 Runs: 7/7

■ Frrors: 0

                                                           public void testSavingAccountDollarTransfer()
                                                              obj = new SavingAccount();
 ▲ lacom.server.test.TestSavingAccount [Runner: JUnit 4] (0
                                                              obj.deposit(1000);
                                                              Currency usCurrency = new Dollar(100);
    testSavingAccountObject (0.000 s)
                                                              obj.deposit(usCurrency);//Compiler Error Fix
    verifyavingAccountDeposit (0.000 s)

☑ VerifySavingAccountBalance (0.000 s)

                                                              int amount = (int) (usCurrency.getRupeesConv
    VerifySavingAccountMultipleDeposits (0.000 s)
                                                              Assert.assertEquals( 1000+amount, obj.getBal
    testSavingAccountInitBalance (0.000 s)
                                                           @Before
    testSavingAccountInitBalanceDeposit (0.000 s)
                                                           public void setUp() throws Exception {
    # tectSavingAccountDollarTransfer (0 000 c)
```

Next User story

SavingAccount – withdraw amount from account balance and verify with getBalance.

TestCase for the withdraw

In the test class add another test function TestSavingAccountWithdraw

TestSavingAccountWithdraw

```
@Test
public void TestSavingAccountWithdraw()
{
    SavingAccount obj = new SavingAccount(2000);
    obj.withdraw(1000); //Compiler Error..Fix It!
    int amount = obj.getBalance();
    Assert.assertEquals(1000, amount);
}
```

SavingAccount - withdraw

```
public void withdraw(int amount)
    {
        //obvious implementation
        balance-= amount;
}
```

Run the Test

Cheers! We implemented successful function right at first..

Run all the tests ...

Huryo!!! All the tests have sheen successful..

What if

- If I invoke withdraw after deposit, I must get the cumulative balance added by deposit and subtracted by withdraw..
- Add another test function
 TestSavingAccountDepositAndWithdraw in
 Test class.

```
@Test
public void TestSavingAccountDepositAndWithdraw()
  obj.deposit(2000);
  obj.withdraw(2000);
  int amount = obj.getBalance();
  Assert.AreEqual(1000, amount);
```

Run the Test

```
Java - BankAccounts/src/com/server/test/TestSavingAccount.java - Eclipse
<u>File Edit Refactor Run Source Navigate Search Project Window Help</u>
☑ ▼ 않 개 않 ☆ ▼ ◎ ▼ № ▼
9 ▼ ₩ > ♥ > ▼
🔽 Navigator 陷 Project Explorer 🜆 JUnit 🖾

    □ TestSavingAccount.ja 
    □ SavingAccount.java

                                                         obj.withdraw(1000);
Finished after 0.015 seconds
                                                          int amount = obj.getBalance();
                                                         Assert.assertEquals(1000, amount);
Runs: 9/9
               Errors: 0

■ Failures: 0

                                                      @Test
                                                      public void TestSavingAccountDepositAndWithdraw
  void com.server.test.TestSavingAccount.TestSaving
                                                   @Test
                                                          Assert.assertEquals(1000, amount);
```

Run all the tests...

What If

- If I try to withdraw more amount than the balance amount, I should get error WithDrawAmountMoreThanBalance and balance intact..
- Add another test function TestSavingAccountWithdrawMoreAmount in TestSavingAccount class.
- Define new class
 WithDrawAmountMoreThanBalance.

TestSavingAccountWithdrawMore_ Amount

```
@Test(expected=com.server.bank.WithDrawAmountMoreThanB
alance.class)
  public void TestSavingAccountWithdrawMoreAmount()
      SavingAccount obj = new SavingAccount();
      obj.deposit(1000);
      obj.withdraw(3000);
      int amount = obj.getBalance();
      Assert.assertEquals(2000, amount);
```

The Exception class

```
package com.server.bank;
public class WithDrawAmountMoreThanBalance
  extends RuntimeException {
public WithDrawAmountMoreThanBalance(String error)
  super(error);
```

Run the Test..Let it fail!

The test failed..expected exception not thrown..

Modify withdraw

Run The Test

```
Java - BankAccounts/src/com/server/test/TestSavingAccount.java - Eclipse
<u> Elle Edit Refactor Run Source Navigate Search Project Window Help</u>
8 ▼ 👸 🖺 🗹 ▼ 👺 🔐 🏇 ▼ 🔘 ▼ 💁 🖝 👚 🚱 🗁 🖋 ▼
9 ▼ 2 ▼ 4 ← 4 → ▼
💺 Navigator 陷 Project Explorer 🗗 JUnit 🛭

☐ TestSavingAccount.ja 
☐ SavingAccount.java

                                                                                                TestSavin
                                                             Assert.assertEquals(1000, amount);
                              Finished after 0.015 seconds
Runs: 1/1
                Errors: 0
                                ■ Failures: 0
                                                         @Test(expected=com.server.bank.WithDrawAmountMoreThank
                                                         public void TestSavingAccountWithdrawMoreAmount()

■ TestSavingAccountWithdrawMoreAmount [Runner: JU]

                                                                SavingAccount obj = new SavingAccount();
                                                                 obj.deposit(1000);
                                                                 obj.withdraw(3000);
                                                                 int amount = obj.getBalance();
                                                                 Assert.assertEquals(2000, amount);
```

Run All the Tests

How much we wrote?

- Total 10 test functions to test on SavingAccount class.
- Evolved 5 functions on SavingAccount class.
 - SavingAccount default constructor
 - SavingAccount int parameterized constructor
 - deposit(int amount);
 - withdraw(int amount);
 - getBalance(void);

What if...

- What if I want to have initial balance for SavingAccount?
- Define another test function testSavingAccountInitBalance in the TestSavingAccount class.

The Test code

```
@Test
public void testSavingAccountInitBalance()
    {
        SavingAccount obj = new SavingAccount(1000);//Compiler
        Error..Fix it
        int amount = obj.getBalance();
        Assert .assertEquals(1000, amount);//verify the current balance
     }
```

- Add the parameterized constructor in SavingAccount class
- You will be also required to add the definition of default constructor for the SavingAccount class!

SavingAccount with Initial Balance

```
package com.server.bank;
  public class SavingAccount
     private int balance;
     //parameterized constructor
    public SavingAccount(int amount)
    //default constructor
    public SavingAccount()
                        Vishwasoft Technologies
```

Run the Test

The test failed...

 What is the obvious implementation to make this test success? public SavingAccount(int amount) this.balance = amount; We know the obvious code..Not necessary to

fake it here...

Run the Test

The obvious way to Success!

Run all the Tests..

Test with Initial balance and Deposit

- Add another test function in TestSavingAccount class 'testSavingAccountInitBalanceDeposit' and verify result with getBalance on SavingAccount object..
- @Test
- public void testSavingAccountInitBalanceDeposit()

```
SavingAccount obj = new SavingAccount(1000);
obj.deposit(500);
int amount = obj.getBalance();
Assert .assertEquals(1500, amount);//verify the current balance
}
```

Rebuild the test and run the tests...

Test result...

Run all the tests again..

Relax!

- Now we have successfully implemented deposit and getBalance functionality in SavingAccount and also tested it..
- We have written couple of test methods and accordingly added required minimum code into the domain class SavingAccount..It is the TDD Approach!

Sharing common object across the tests..

- Can we share the single object of SavingAccount to all the test methods instead of creating a new one every time?
- Define a private Saving Account object variable in Test class, initialize in the TestClass constructor and use the same object across all the test methods..
- Rebuild the Test and run all the tests again..

Run all the tests again....

TDD Mantra for Final Success

- Fake the result in code->Test the code >Implement the obvious code ->Test it again >Fail ->Modify->Test->Success->Modify->Test >Failure->Update->Test Final->Success...
- Learn from our own Success and Failures!!!

Observation

- When we run all the tests, the deposit amount passed in every test method was different..
- But still our all the tests have verified successfully their own balances even though there was a common shared SavingAccount object across all the test methods..
- How this is possible ?

Analyze..

- In TestSavingAccount class add the default constructor with console print statement and run all the tests again and watch the console.
- public TestSavingAccount()

```
{
System.out.println("TestSavingAccount.constructor..");
}
```

Console view

Test objects in JUnit Framework

- For every test case methods the framework has created a new instance of the test class...
- This is the default behavior...

Common shared methods for every testa?

```
public class TestSavingAccount {
private SavingAccount obj;
@Before
public void InitObjects() throws Exception {
System.out.println("TestAccount.setUp()");
obj = new SavingAccount();
@After
public void closeObjects() {
System.out.println("TestAccount.tearDown()");
obj = null;
                   Vishwasoft Technologies
```

Run All the tests..

Next User Story

- As a user I should be able to execute following operations on the LoanAccount
- deposit- the amount deposited should get subtracted from current balance.
- getBalance the amount returned reflects the current LoanAccount balance.
- Withdraw the amount to withdraw should get subtracted from current balance.

Evolve the logic for LoanAccount

- Define another Test class TestLoanAccount with test functions one by one and get evolved the functions for LoanAccount to succeed the TestLoanAccount test functions same way as earlier done for SavingAccount...
 - Write the test...
 - First time fake the functionality and run the test and observe GREEN Bar!
 - Write the obvious implementation code to replace fake code and run the test and observe GREEN Bar!

New Project_Refactored

- Create new project BankAccounts_Refactored to define new versions of Loan and Saving Account functionalities.
- Add the SavingAccount and LoanAccount classes along with their corresponding test classes here in new project.

Account restructuring

Now We have two Account classes

- SavingAccount
- LoanAccount
- We have duplicate code scattered across both the above classes.
- To minimize the this code duplication we need to define a class hierarchy through which common code can be shared.

Evolve Account

- Extract/Design the class Account as base class for both
- To standardize the common functions we push the deposit and withdraw functions as abstract in base class.
- Push the getBalance implementation in base class Account.
- Push the balance variable as protected in base class Account.
- Push the ValidateAccountBalance function as protected to base class Account.

Class Account

```
public abstract class Account
   protected int balance;
   public abstract void deposit(int amount);
   public abstract void withdraw(int amount);
   public int getBalance()
   protected boolean ValidateAccountBalance()
```

Account Functions

```
public int getBalance()
    //if (balance < 0)
    // balance = 0;
    if (!ValidateAccountBalance())
       return 0;
    return balance;
  protected boolean ValidateAccountBalance()
    if (balance < 0)
       return false;
    else return true;
                    Vishwasoft Technologies
```

Restructured SavingAccount

```
public class SavingAccount extends Account
{ //parameterized constructor
  public SavingAccount(int amount)
  //default constructor
  public SavingAccount()
  public override void deposit(int amount)
  public override void withdraw(int amount)
```

LoanAccount-deposit

```
public override void deposit(int amount)
      if (!ValidateAccountBalance())
        return;
      if (amount < 0)
        throw new NegativeDepositException();
      balance -= amount;
```

New Behavior

- In this application we are allowing the users to create the objects of SavingAccount and LoanAccount classes and calling their individual functions.(e.g. in TestSavingAccount and TestLoanAccount classes).
- We want to isolate the object creation and usage behaviors so that objects can be managed independent of usage and functions used independent of creation process.

New Project

- Define Java project Factory_BankApp as windows Forms application
- Add LoanAccount and SavingAccount classes from previous project with their dependencies except the test classes to this new project.

Factory to manage objects

- To isolate the creation and usage of objects we decide to use a factory class to manage the Account objects.
- To specify the type of object to be created by the factory we define 'enum AccountType ' to specify possible types.
- The factory will be responsible for creating the specific type of Account and sharing it to clients.

Test the Factory

- Add test class TestAccountFactory to test the and build/evolve the functionality of AccountFactory class.
- Add test function TestGetLoanAccountObject to test the LoanAccount type object returned from AccountFactory.

TestGetLoanAccountObject

```
public class TestAccountFactory
   @Test
   public void TestGetLoanAccountObject()
     Account loanAccountObject=
              AccountFactory.getAccountObject(Loan);
     //Compiler error ..Fix it
     Assert.IsNotNull(loanAccountObject);
```

AccountFactory class

- Define class AccountFactory with static function as 'getAccountObject(AccountType mode)'
- Fake the implementation right now with returning the NULL.

The factory and the enum AccountType

```
public enum AccountType
   Saving,
   Loan
 public class TestAccountFactory
```

The factory ::getAccountObject

```
Public Account getAccountObject(AccountType mode)
{
    return NULL;
}
```

AccountFactory getAccountObject

```
public static Account getAccountObject(AccountType acType)
      Account obj = null;
      switch (acType)
     case AccountType.Loan: obj = new LoanAccount(1000);
           break;
      case AccountType.Saving: obj = new SavingAccount();
           break;
      return obj;
```

Test for SavingAccount object

 Add test function TestGetSavingAccountObject to test the SavingAccount type object returned from AccountFactory.

TestGetSavingAccountObject

```
@Test
    public void TestGetSavingAccountObject()
      Account savingAccountObject =
         AccountFactory.getAccountObject(AccountType.Saving);
      Assert.IsNotNull(savingAccountObject);
System.out.println(savingAccountObject.GetType().FullName);
```

LoanAccount deposit Test

```
@Test
    public void TestLoanAccountDeposit()
      Account loanAccountObject =
AccountFactory.getAccountObject(AccountType.Loan);
       loanAccountObject.deposit(500);
       int balAmount = loanAccountObject.getBalance();
      Assert.AreEqual(500, balAmount);
```

SavingAccount deposit test

```
@Test
    public void TestSavingAccountDeposit()
      Account savingAccountObject =
AccountFactory.getAccountObject(AccountType.Saving);
       savingAccountObject.deposit(500);
       int balAmount = savingAccountObject.getBalance();
      Assert.AreEqual(500, balAmount);
```

Kudos to TDD and Refactoring!!

Thank You!