Группа: 410

Студент: Лапин Александр

1 Постановка задачи

Требуется найти численное решение следующей задачи оптимального управления

$$\int_0^{\frac{\pi}{2}} u^2 dt + x^2(0) \to inf,$$

$$\dot{x}(0) = x(\pi/2) = 0, \dot{x}(\pi/2) = 1, \ddot{x} + x \exp(-\alpha x) = u, \alpha \in [0.0, 25.0]$$

2 Алгоритм решения

2.1 Сведение задачи к системе ОДУ с краевыми условиями

После сведения задачи к системе ОДУ с краевыми условиями, получаем следующую систему:

$$\dot{x}_1 = x_2$$

$$\dot{x}_2 = u - x_1 e^{-\alpha x_1}$$

$$\dot{p}_1 = e^{-\alpha x_1} (1 - \alpha x_1) \cdot p_2$$

$$\dot{p}_2 = -p_1$$

$$p_1(0) = x_1(0)$$

$$p_2 = u$$

$$x_2(0) = 0$$

$$x_1(\frac{\pi}{2}) = 0$$

$$x_2(\frac{\pi}{2}) = 1$$

2.2 Алгорим численного решения полученной системы

Неизвестных функций в системе 4 штуки, при этом на концах известно только два краевых условия из 4-х. Следовательно надо найти два недостающих краевых условия. Для определённости искать их будем в начале отрезка в 0. Итак, пусть:

$$\begin{cases} p_1(0) = a_1, \\ p_2(0) = a_2. \end{cases}$$

Найдём параметры a_1 и a_2 с помощью модифицированного алгоритма Ньютона с использованием нормировки Федоренко. Для решения нам нужны следующие параметры:

- 1. ϵ требуемая точность решения.
- 2. δ приращение аргумента для поиска производной.
- 3. au длина шага в алгоритме Рунге-Кутты.

Алгоритм выполняется в несколько этапов. Пусть номер итерации задаёт чисто k.

1. k=0 Возьмём за начальное приближение параметров a_1 и a_2 данные, полученные при подстановке $T=2\pi$. Получаем начальное приближение $a_1^0=1, a_2^0=0$. С помощью алгоритма Рунге-Кутта, использовав наше приближение, найдём $c_1^0=x_1(T)$ и $c_2^0=x_2(T)$. Получаем вектор невязки:

$$X^0 = (c_1^0, c_2^0 - 1).$$

Для всех итераций вектор невязки выглядит так:

$$X^k = (c_1^k, c_2^k - 1).$$

Посчитаем невязку: $S^0 = ||X||_2 = \sqrt{(X_1^0)^2 + (X_2^0)^2}$

Если $S^0 < \epsilon$, то заканчиваем выполнение алгоритма, так как мы нашли подходящие краевые условия. Если нет, переходим к следующей итерации алгоритма.

2. k > 0

Пусть текущее приближение краевых условий $a^k=(a_1^k,a_2^k)$, вектор невязки $X^k=(c_1^k,c_2^k-1)$, $\gamma_k=1$. Найдём следующее приближение краевых условий с помощью реккурентной формулы:

$$a^{k+1} = (a^k)^T - \gamma_k (\dot{X}^k)^{-1} (X^k)^T$$

где (\dot{X}^k) — матрица Якоби, частные производные ищутся по формуле:

$$\frac{dX_i^k}{da_i^k} = \frac{X_i^k(a_1^k, ..., a_j^k + \delta, ...) - X_i^k(a_1^k, ..., a_j^k, ...)}{\delta}$$

Дальше считаем невязку с нормой Федоренко. Нормировочные множители такие:

$$k_1^2 = j_{11}^2 + j_{12}^2,$$

 $k_2^2 = j_{21}^2 + j_{22}^2,$

где (j_{il}) - только что найденная матрица Якоби. После этого считаем норму

$$||X^{k+1}||_{\Phi} = \sqrt{(\frac{X_1^{k+1}}{k_1})^2 + (\frac{X_2^{k+1}}{k_2})^2}$$

Если $||X^{k+1}||_{\Phi} < \epsilon$, то заканчиваем алгоритм, ответ мы нашли. Если $||X^{k+1}||_{\Phi} < X^k||_{\Phi}$, то переходим к следующей итерации алгоритма. Если $||X^{k+1}||_{\Phi} \ge X^k||_{\Phi}$, то уменьшаем γ_k в двое и пересчитываем всю итерацию. Начальные приближения находились перебором.

2.3 Поиск значения функционала

Значение функционала будем искать с помощью формулы Симпсона. h_simp — шаг разбиения итеграла на сумму интегралов:

$$\int_0^{\pi/2} u^2 dt = \sum_k \int_{x_k}^{x_{k+1}} u^2 dt$$
$$\int_{x_k}^{x_{k+1}} u^2 dt \approx \frac{h_simp}{6} (u^2(x_k) + 4u^2(\frac{x_k + x_{k+1}}{2}) + u^2(x_{k+1}))$$

3 Численные результаты

Во всех приведённых в таблице результатах $\epsilon < 1e-7, \delta = 1e-5$

α	au	h_{sim}	$p_1(0)$	$p_2(0)$	result
0	1e-2	1e-2	-0.6816222	-0.4339341	0.21701335789
5	1e-2	1e-2	-0.0550866	-1.224772669	1.051751810209
10	1e-2	1e-2	0.14338431	-0.727341818	0.7684414831
15	1e-2	1e-2	0.2333231563	-0.5793537491	0.7335585168
20	1e-2	1e-2	0.2932859841	-0.5102745366	0.723388841
25	1e-2	1e-2	0.334583262	-0.461841896	0.71827762311