제주도 도로 교통량 예측 AI 경진대회

2022.10.24~2022.11.14

팀명 : 치타델레

주최: 제주 테크노파크, 제주특별자치도

주관: 데이콘

Introduction

EDA

Feature Engineering

Modeling

Result

Introduction

Introduction

1. 배경

제주도내 주민등록인구는 2022년 기준 약 68만명으로, 연평균 1.3%정도 매년 증가하고 있습니다. 또한 외국인과 관광객까지 고려하면 전체 상주인구는 90만명을 넘을 것으로 추정되며, 제주도민 증가와 외국인의 증가로 현재 제주도의 교통체증이 심각한 문제로 떠오르고 있습니다.

2. 주제

제주도 도로 교통량 예측 AI 알고리즘 개발

3. 설명

제주도의 교통 정보로부터 도로 교통량 회귀 예측

Introduction

4. 제공 데이터

- train.csv
 - 2021.09.01 ~ 2022.07.31
 - 4701217개의 데이터
- test.csv
 - 2022.08.01 ~ 2022.08.31
 - 291241개의 데이터

5. 외부 데이터

- 휴일 여부 데이터 사용
 - 주식 휴장일 데이터 응용
 - exchange_calendars library 사용

Introduction

6. 데이터 설명

- id : 샘플 별 아이디(ex: TRAIN_0000001)
- base_date: 날짜(ex: 20220623)
- day_of_week : 요일
- base_hour: 시간대(00시 ~ 23시)
- lane_count : 차로수(차선 개수)
- road_rating: 도로등급(국토교통부 교통체계 링크 참조. 101부터 107까지 총 7개 분류)
- multi_linked: 중용구간(2개 이상의 노선이 도로의 일정 구간을 공동으로 사용) 여부
- connect_code: 연결로 코드(국토교통부 교통체계 링크 참조. 000 ~ 108 총 9개 분류)
- maximum_speed_limit : 최고속도제한(단위: km/h)
- weight_restricted : 통과제한하중
- height_restricted : 통과제한높이
- road_type: 도로유형(국토교통부 교통체계 링크 참조. 000 ~ 004)
- start_latitude, start_longitude : 시작지점 위도, 경도
- end_latitude, end_longitude: 도착지점 위도, 경도
- start_turn_restricted, end_turn_restricted : 시작지점, 도착지점 회전제한 유무(ex: 있음, 없음)
- road_name: 도로명
- start_node_name, end_node_name: 시작지점명, 도착지점명
- vehicle_restricted : 통과제한차량
- target : 도로 위 차량의 평균속도(단위 : km/h)

EDA

1. 데이터 분포 분석

- 위·경도를 제외한 feature 중 categorical 다수 존재
- base_hour : 대체로 균등한 분포를 보임
- 위·경도: numerical 데이터
- 1개의 값을 가지는 feature 존재
 - : multi_linked, connect_code, vehicle_restricted, height_retricted

[데이터 분포 시각화]

2. 요일별 데이터 분석

- 각 요일을 수로 mapping
- 요일별 분포의 차이 작음

[일요일 데이터 분포 시각화]

3. 시간별 데이터 분석

• 시간대별 분포 차이 존재(y축 변화)

4. 월별 데이터 분석

- 4월, 8월 데이터 없음
- 7월, 11월 데이터 상대적으로 적음

200000 -60000 -150000 40000 100000 1000000 20000 50000 1.5 2.0 2.5 connect_code vehicle_restricted maximum_speed_limit 400000 200000 200000 100000 100000 0.2 0.4 0.6 0.8 -0.4 -0.2 0.0 0.2 0.4 start_latitude 400000 -400000 300000 40000 300000 300000 30000 -200000 -200000 20000 -100000 1000000 100000 0.0 0.5 1.0 1.5 2.0 2.5 3.0 33.25 33.30 33.35 33.40 33.45 33.50 33.55 0 10000 20000 30000 40000 50000 -0.4 -0.2 0.0 0.2 0.4 start_longitude end_latitude end_longitude 50000 40000 40000 -30000 30000 20000 10000 -126.2 126.4 126.6 126.8 33.25 33.30 33.35 33.40 33.45 33.50 33.55 126.4 400000 4000000 300000 300000 [6월 데이터 분포 시각화] 200000 100000 100000 5.6 5.8 6.0 6.2 6.4 2021.6 2021.8 2022.0 2022.2 2022.4

5. 요일과 시간에 따른 도로 사용 빈도 분석

- 토요일 빈도 높음
- 0~6시 빈도 높음

[요일과 시간에 따른 도로 사용 빈도 시각화]

6. 도로에 따른 사용 빈도 분석

- 일반국도 12호선 다수 사용
- 대체로 일반국도 사용 빈도 많음

[도로에 따른 사용 빈도 시각화]

7. 상관관계분석

- Pearson Correlation Coefficient (PCC)
- 대체로 feature간 상관관계 낮음
- road_type weight_restricted 높은 상관관계

[feature 상관관계 분석]

1.0

- 0.4

- 0.2

- 0,0

- ⊞0,2

Feature Engineering

1. 위ㆍ경도 차이 추가

- 끝 지점과 시작 지점의 위 · 경도 차이 사용
 - 위도 차이 = (end_latitude start_latitude)
 - 경도 차이 = (end_longitude start_longitude)

2. 휴일 여부 추가

- 해당 일자가 휴일인지 여부 사용
 - 휴일: 1, 휴일이 아닐 경우: 0
- 주식 휴장일 데이터 응용
 - exchange_calendars 라이브러리 사용

3. 연도, 월 변경

• 날짜가 속하는 연도와 월 데이터 사용

```
diff_long_lat_add(data):
  data['diff_longtitude'] = data['end_longitude'] - data['start_longitude']
  data['diff_latitude'] = data['end_latitude'] - data['start_latitude']
  return data
lef holiday_add(data):
  krx = ecals.get_calendar("XKRX")
  krx_holiday = pd.DataFrame(krx.schedule.loc["2021-01-01":"2022-12-31"])
  open_date = pd.to_datetime(krx_holiday['open'])
  open_date = open_date.dt.strftime('%Y%m%d')
  open_date = open_date.astype(int)
  open_date = list(open_date)
  data['holiday'] = data['base_date'].isin(open_date)
  holiday_exist = {True: 0, False: 1}
  data['holiday'] = data['holiday'].map(holiday_exist)
🖢 return data
ef month_year_add(data):
  data['year'] = data['base_date'].apply(lambda e: str(e)[0:4])
  data['year'] = data['year'].astype(int)
  data['month'] = data['base_date'].apply(lambda e: str(e)[4:6])
  data['month'] = data['month'].astype(int)
  return data
```

4. time quarter 추가

- 각 시간을 4개 구간으로 나누어 사용
- 시간에 따른 도로 사용 빈도 기반

5. 최고 속도 제한 단위 변경 후 추가

• 기존 속도 단위(km/h)를 변경(m/s)

6. 위ㆍ경도 거리 및 방위각 추가

- WSG84 좌표 기반 거리 및 방위각
- 전방 및 후방 방위각 사용
- pyproj 라이브러리 사용

```
time_quarter(data):
  quarter = 3
  if 6 > data >= 0:
      quarter = 0
  elif 12 > data >= 6:
      quarter = 1
  elif 18 > data >= 12:
      quarter = 2
  return quarter
 time_quarter_add(data):
  data['time_quarter'] = data['base_hour'].apply(lambda e: time_quarter(e))
  return data
 get_distance(data):
  fwd_azimuth, back_azimuth, distance_2d = g.inv(data['start_longitude'], data['start_latitude'], data['end_longitude']],
return fwd_azimuth,back_azimuth, distance_2d
  distance_azimuth_add(data):
  vector = list(data.apply(get_distance,axis=1).values)
  return data
 f meter_sec_add(data):
  data['maximum_meter_second'] = data['maximum_speed_limit'] / 3.6
  return data
```

7. scaling

- min max scaling 적용
 - standard scaling을 적용했을 때보다 향상된 성능을 나타냄

8. encoding

- Label encoder 사용
 - categorical 데이터 수치화

9. One Hot encoding 및 PCA

- 위·경도 One Hot encoding 후 2차원 PCA 적용
 - 위ㆍ경도는 지구에서 위치를 나타냄으로 PCA 적용 시 효율적이라는 가설

10. data cleansing

- 값이 1개인 feature 제거
 - multi_linked, connect_code,vehicle_restricted, height_retricted

11. feature importance

- Boosting 기반 importance
 - categorical data의 비율이 높음
 - catboost를 사용한 feature importance 추출
- Permutation importance
 - 다수의 feature를 여러 번 섞어서 importance 추출

0.3258 ± 0.0011 end_longitude 0.2604 ± 0.0002 maximum_speed_limit 0.2180 ± 0.0009 road_name 0.2079 ± 0.0004 road_rating 0.2053 ± 0.0005 start latitude 0.1983 ± 0.0008 end_latitude 0.1799 ± 0.0009 base_hour 0.1522 ± 0.0006 road_visit_count 0.1059 ± 0.0002 end_node_name 0.1006 ± 0.0002 start_longitude 0.0678 ± 0.0002 start_node_name 0.0275 ± 0.0002 lane count 0.0257 ± 0.0002 month 0.0138 ± 0.0001 road_type 0.0094 ± 0.0001 day_of_week 0.0094 ± 0.0000 holiday 0.0083 ± 0.0001 visitor 0.0031 ± 0.0000 start turn restricted 0.0025 ± 0.0000 weight_restricted 0.0018 ± 0.0000 end_turn_restricted 0 ± 0.0000 vehicle_restricted

0 ± 0.0000 height_restricted

[permutation importance 기반 시각화]

Modeling

Modeling

1. Catboost 사용

- 데이터의 수가 많으므로 deep learning 모델은 비효율적
 - 최적화 기간이 boosting 모델에 비해 상대적으로 많이 필요
- categorical 데이터의 비율이 높음
 - boosting 모델 중 Catboost 사용 적합
- 빠른 학습 시간

2. hyperparameter tuning

- Optuna를 활용한 tuning
- 데이터의 20%를 validation set으로 활용
- MAE 사용
 - 대회에서 제시하는 평가지표

```
def main():
    tuning = False

if tuning:
    sampler = TPESampler(seed=RANDOM_STATE)
    optuna_cbrm = optuna.create_study(direction='minimize', sampler=sampler)
    optuna_cbrm.optimize(cat_boost_tuning, n_trials=50)

    cbrm_trial = optuna_cbrm.best_trial
    cbrm_trial_params = cbrm_trial.params
    print('Best Trial: score {}, \nparams {}'.format(cbrm_trial.value, cbrm_trial_params))

else:
    model, label_encoders, scalers, one_hot_encoder_dict, one_hot_pca_dict = cat_boost_fit()
    test_data = test_preprocessing(label_encoders, scalers, one_hot_encoder_dict, one_hot_pca_dict)
    predict_to_csv(model, test_data)
```

```
def cat_boost_tuning(trial):
    data, encoders, scalers, one_hot_encoder_dict, pca_dict = train_preprocessing()

cbrm_param = {
        'iterations': 200000,
        'early_stopping_rounds': 100,
        'eval_metric': 'MAE',
        'learning_rate': 0.03810245233316924,
        'reg_lambda': trial.suggest_float('reg_lambda', 1e-5, 100),
        'depth': 11,
        'min_data_in_leaf': trial.suggest_int('min_data_in_leaf', 1, 30),
        'leaf_estimation_iterations': trial.suggest_int('leaf_estimation_iterations', 1, 15),
        'bagging_temperature': trial.suggest_loguniform('bagging_temperature', 0.01, 100.00),
        'devices':'0:3',
        'task_type':'GPU',
        'random_state': RANDOM_STATE,
        'random_strength': trial.suggest_int('random_strength', 0, 100),
}

evals = [(data['X_val'], data["y_val"])]
model = CatBoostRegressor(**cbrm_param)
model.fit(data["X_train"], data["y_train"], eval_set=evals, verbose=False)

return model.evals_result_['validation']['MAE'][-1]
```

Modeling

3. 사용된 hyperparameter

iterations	200000
early_stopping_rounds	100
learning_rate	0.03810245233316924
min_data_in_leaf	19
max_depth	11
eval_metric	'MAE'
task_type	"GPU"
devices	'1:2'
reg_lambda	9.485166914376475
leaf_estimation_iterations	13
bagging_temperature	0.029396564330935907
random_strength	85

Result

1. 평가지표

• MAE

2. 예측 결과

• loss: 3.1231

• 등수: 30 / 712(상위 5%)

THANK YOU 감사합니다