

Enhancing CubeSat design through ARCADIA and Capella: a concrete application

Presenter:

Mr. Paolo Minacapilli

Authors:

Mr. Paolo Minacapilli Prof. Michèle Lavagna

November 17, 2021

Assessed benefits of MBSE Repulsion by engineers who feel comfortable with text-based procedures

NEED OF **IMPROVING MODEL-BASED SYSTEMS ENGINEERING (MBSE) MATURITY** THROUGH PRACTICAL APPLICATIONS, TO BETTER RIDE THE **NEW SPACE ECONOMY WAVE**

Low maturity of MBSE in the context of small satellites design

INCOSE MBSE Roadmap^[1]

^[1] International Council on Systems Engineering. Systems Engineering Vision 2020. INCOSE Technical Operations, Seattle, WA, 2007

Increased awareness of MBSE potential in the last years

"Classic" MBSE with SysML

SysML is just a language ——— Needs a tool and a methodology that implement it

Object-oriented nature —— Difficult to understand by non-software background engineers

No distinction between functions and components Semantically confusing

ARCADIA (ARChitecture Analysis & Design Integrated Approach)

- Embeds methodology and language
- DomainSpecific Modeling Language (DSML)
- Does not requires modelling experts
- Less steep learning curve

Perfectly integrated by the tool **Example 1**

- Open-source
- Intuitive
- Customizable

- Phase 0 Mission analysis/needs identification: understand customer needs, propose mission/system concepts
- Phase A Feasibility: propose system solutions to meet the customer expectations
- Phase B Preliminary Definition: preliminary define the system solution
- Phase C **Detailed Definition**: establish the system detailed definition
- Phase D Qualification and Production: finalizes the development of the system, prepare for operations
- Phase E **Utilization**: operate the system, support to anomaly investigations and resolutions
- Phase F **Disposal**: safely dispose all products launched into space as well as ground segment

12U CubeSat

High Level Mission Goal: Carry out a close-up visual inspection of a European space debris.

- Understand the debris **status** at the time of flight
- Validate **GNC sensors** to be used for a next capture of the debris
- Reduce risks of future **Active Debris Removal** (ADR) missions

METHOD-EMBEDDED DEVELOPED TASKS

- ✓ Requirements
- ✓ Phases and Modes
- ✓ Concept of Operations

+ dedicated AIV/AIT plan development diagrams

Perform Relative GNC

- Estimate Relative State
- Execute Relative Maneuvers
- Perform Attitude Target Tracking

Estimate Relative State

- On Board Image Processing
- Estimate Relative State Out of Eclipse
- Estimate Relative State During Eclipse
- Sensor Fusion for Enhanced Estimation

F-GNC-0079:

The GNC subsystem shall guarantee 3-axis relative position and velocity states estimation

Traceability between requirements and model elements is managed through the **Capella Requirements Viewpoint** which provides a graphical output too

Requirements trees are generated once internal relations are defined

Customization of Operational Architecture Blank diagrams

Example: Requirement M-0011 Internal Link

Outputs: High Level Objectives, Involved Stakeholders and Responsibilities

Example: Operational Architecture Blank diagram @Operational Analysis

System Analysis

Outputs: System Capabilities, External Functional Analysis

Example:

L: Mission Capabilities Blank diagram

R: OBDH Data Flow Diagram @System Analysis

Logical Architecture

Outputs: Subsystems Modeling, Internal Functional Analysis, Functional Interfaces

Outputs: Physical Components, Physical Interfaces, Mass and Cost Budgets, Product Tree

Example: OBDH - GNC interfaces

Modes are characterized by several **functions** already modeled in the previous analysis.

Example:

LEOP Phase – System Modes

Subsystems Modes are exploited to easily define System ones

Saved time in developing State Machine Diagrams

Concept of Operations

Satellites are operated relying on detailed **Concept of Operations** which are part of the system design.

Scenario Diagrams are exploited for this purpose.

- Describe logic structures in a very compact and concise manner
- Rely on **already modeled elements**
- Force to think about system utilization solutions

AIV/AIT plan definition is at a different level of modeling with respect to the system design. However, it is **inherently connected** with system functioning and architecture.

Example: EPS testing activities

- Ad-hoc functionalities define **AIV/AIT activities**
- Bridge with model elements which provide guidance to the plan development

Each activity is further described by a set of procedures which can be assigned to team members, monitoring the progress status.

Example: Functional tests of Solar Arrays -**Procedures**

Progress Status:

TO_BE_REVIEWED

REVIEWED OK DRAFT

UNDER REWORK

Review:

- Logical temporal and sequence of procedures can be used in the operational context
- Design changes are easily traced and related AIV/AIT activities and procedures promptly updated
- Improved standardization of AIV/AIT concepts
- Some ARCADIA rules have been violated, need of a formalization of the approach integration and Capella

- Solid, Effective and Efficient **approach** to manage satellites complexity
- System lifecycle further enhanced by dedicated AIV/AIT plan modeling

FUTURE STEPS

- Risk analysis
- Class diagrams
- Formalization of AIV/AIT syntax and semantics
- Overall model refinement toward Phase B design

Thank you for the attention!

Questions?

linkedin.com/in/paolo-minacapilli/

paolo.minacapilli@yahoo.com