Home / My courses	/ MAD101-anhtn35@fpt.edu.vn / General / REVIEW 1502
	Westernales, 25 New years at 2020, 40.20 AM
Started on State	Wednesday, 25 November 2020, 10:38 AM Finished
	Wednesday, 25 November 2020, 11:19 AM
	41 mins 26 secs
	46.0/50.0
Grade	9.2 out of 10.0 (92 %)
Question 1 Complete Mark 1.0 out of 1.0	
[7010] Let G be a co	omplete graph with 45 edges. G has:
9 vertices.	
8 vertices.	
10 vertices.	
None of the o	thers
7 vertices.	
The correct answer	is: 10 vertices.
Question 2 Complete	
Mark 1.0 out of 1.0	
	rings of five ASCII characters contain the character @ at least once? [Note: There are 128 different ASCII characters.]
Select one: 127^4	
None	
5 * 128^4	
O 132	
128^5 - 127^	5

The correct answer is: 128⁵ – 127⁵

Question **3**Complete

Mark 0.0 out of 1.0

	a.	$(\neg p \lor q) \rightarrow r$
		$r \rightarrow s \lor t$ $\neg s \land \neg u$
		$\neg u \rightarrow \neg t$
		∴p
	Ъ.	p
		$\neg p \rightarrow q$
		$ \begin{array}{c} \neg p \to q \\ (q \land r) \to s \\ t \to r \end{array} $
		$t \rightarrow r$
[121] Which of these following statements are valid (true)?		$\therefore \neg s \rightarrow \neg t$
	c.	$p \rightarrow r$
		$r \rightarrow s$
		t∨¬s
		¬t∨u
		¬u
_		∴¬p
	d.	$p \rightarrow q$
		¬p
		∴¬q

Select one:

- O c.
- b.
- a.
- b. and d.
- d.
- a. and c.

The correct answer is: a. and c.

The correct answer is: $(2^3) * 3 * (5^3)$

Question **7**Complete

Mark 1.0 out of 1.0

[429] Encrypt the message "DY" using the function $f(p) = (p + 11) \mod 26$.

Select one:

- O OK
- None of those
- \bigcirc N
- OJ

The correct answer is: OJ

Question **8**

Complete

Mark 1.0 out of 1.0

[241] Which of the following two sets are equal?

Select one:

- \bigcirc A = {1, 2, 4} and B = {1, 2, 3}
- \bigcirc A = {1, 2, 3} and B = {2, 1, 3}
- \bigcirc A = {1, 2} and B = {1}
- \bigcirc A = {1, 2} and B = {1, 2, 3}

The correct answer is: $A = \{1, 2, 3\}$ and $B = \{2, 1, 3\}$

Question **9**Complete

Mark 1.0 out of 1.0

[427] If the function $f(p) = (p + 11) \mod 26$ is used to encrypt a message, which of the following functions can be used to decrypt the

message? (i)
$$f^{-1}(p) = (11 - p) \mod 26$$

(ii)
$$f^{-1}(p) = (p - 11) \mod 26$$

Select one:

- (i)
- (ii)
- Both
- None

The correct answer is: (ii)

Question 10

Complete

Mark 1.0 out of 1.0

[867] Which is the ARRAY of strings that can be used to BUILD the following binary search tree?

Select one:

- O "DIE JUST LOSE MEMORIES NEVER PROGRAMMERS OLD THEIR THEY"
- OLD PROGRAMMERS THEY NEVER DIE JUST LOSE THEIR MEMORIES"
- None of the others
- O "OLD PROGRAMMERS NEVER DIE THEY JUST LOSE THEIR MEMORIES"
- "NEVER JUST DIE PROGRAMMERS THEIR THEY LOSE OLD MEMORIES"

The correct answer is: "NEVER JUST DIE PROGRAMMERS THEIR THEY LOSE OLD MEMORIES"

Question 11	
Complete	
Mark 1.0 out of 1.0	

[331] Choose the correct increasing order if the functions commonly used in big-O estimates.

Select one:

- None
- $\bigcirc \ \ 1 << \log(n) << n << n \cdot \log(n) << n^2 << n! << 2^n << 3^n$
- \bigcirc 1 << log(n) << n << n•log(n) << n^2 << 2^n << 3^n << n!
- 0 1 << n << log(n) << n^2 << n•log(n) << 2^n << 3^n << n!

The correct answer is: $1 << \log(n) << n << n \cdot \log(n) << n^2 << 2^n << 3^n << n!$

Question 12

Complete

Mark 1.0 out of 1.0

[627] There are 26 characters in which there are 5 vowels. Suppose that a "word" is any string of seven letters of the alphabet, with repeated letters allowed.(i) How many words begin with R and end with T?(ii) How many words begin with A or B?

Select one:

- (i) 26^7 (ii) 2 * 26^7
- (i) 26^5 (ii) 26^7
- (i) 26^5 (ii) 2 * 26^6
- (i) 26^6 (ii) 2 * 26^5
- None

The correct answer is: (i) 26^5 (ii) 2 * 26^6

[326] Which of the following functions is $O(x^2)$?

Select one:

- h(x) = x(x+1)(x+2)
- f(x) = $100x^2 + 3$
- $k(x) = 2^x$

The correct answer is: $f(x) = 100x^2 + 3$

Question 14

Complete

Mark 1.0 out of 1.0

[7029] The adjacency matrix for K9 has ___ 1s.

Select one:

- 72
- 36
- 0 81
- O 18
- 9

The correct answer is: 72

```
Question 15
Complete
Mark 1.0 out of 1.0
```

[552] Which of the following function can be used to locate an element x in a DECREASING array by binary search method?

```
int bsearch(int a[100], int x, int dau, int cuoi)
    int giua = a[(d + c)/2];
    if (x > a[giua]) return bsearch(a, x, giua + 1, cuoi);
    if (x < a[giua]) return bsearch(a, x, dau, giua - 1);</pre>
    return giua; // x is at giua
int bsearch_1(int a[100], int x, int dau, int cuoi)
    if (dau > cuoi) return -1; // not found
    int giua = a[(d + c)/2];
    if (x > a[giua]) return bsearch_1(a, x, giua + 1, cuoi);
    if (x < a[giua]) return bsearch_1(a, x, dau, giua - 1);</pre>
    return giua; // x is at giua
int bsearch 2(int a[100], int x, int dau, int cuoi)
    if (dau > cuoi) return -1; // not found
    int giua = a[(d + c)/2];
    if (x < a[giua]) return bsearch_2(a, x, giua + 1, cuoi);</pre>
    if (x > a[giua]) return bsearch_2(a, x, dau, giua - 1);
    return giua; // x is at giua
```

Select one:

- None
- bsearch_1
- bsearch
- bsearch_2

The correct answer is: bsearch_2

Question **16**Complete
Mark 1.0 out of 1.0

[277] Determine whether rule f is a function from Z to R. (i) f(x) = 1 for all x (ii) f(x) is a number greater than x

Select one:

- (i) fuction; (ii) not a function
- (i) fuction; (ii) function
- Both (i) and (ii) are not functions
- (i) not a fuction; (ii) function

The correct answer is: (i) fuction; (ii) not a function

Complete

Mark 1.0 out of 1.0

[553] The following diagram can be used to describe the execution of the algorithm for _____. (i) Finding the maximum of an array (ii)

Select one:

- (ii)
- (i)
- All
- None

The correct answer is: All

Question 18

Complete

Mark 1.0 out of 1.0

[508] Suppose that f(n) satisfies the divide-and-conquer relation f(n) = 2*f(n/3) + 5 and f(1) = 7. What is f(81)?

Select one:

- 187
- 0 189
- 0 185
- 183

The correct answer is: 187

Complete

Mark 1.0 out of 1.0

[503] By induction hypothesis, the series 1.1 + 2.2 + 3.3 + ... + p.p can be proved equivalent to _____.

Select one:

- $(p^2 + 2)/7$
- (p * (p+1)] / 4
- [p * p * (p+1) * (p+1)] / 4
- [p * (p+1) * (2*p + 1)] / 6

The correct answer is: [p * (p+1) * (2*p + 1)] / 6

Question 20

Complete

Mark 0.0 out of 1.0

[248] Stydy the following functions: F: R --> R, F(x) = |x| G: Z --> Z, G(x) = 5x

Select one:

- Both F and G are invertible.
- None of the others
- F is not invertible and G is invertible
- F is invertible and G is not.
- Both F and G are not invertible.

The correct answer is: F is not invertible and G is invertible

The correct answer is: $O(n^2)$

Question 23	
Complete	
Mark 1.0 out of 1.0	

[7062] How many edges does a graph have if its degree sequence is 5, 5, 4, 3, 2, 2, 1?

Select one:

- 0 10
- 0 8
- 11
- None of the others
- 9

The correct answer is: 11

Question 24

Complete

Mark 0.0 out of 1.0

[510] Give a correct RECURSIVE definition of the FACTORIAL of non-negative integer n

a.	$n! = n * (n - 1), \text{ for } 1 \le n.$ n! = 1, for $n = 0$
	n! = 1 , for n = 0
Ъ.	
	$n! = n + (n - 1)$, for $1 \le n$. n! = 1, for $n = 0$
	n! = 1 , for n = 0
c.	
	$n! = (n-1) + (n-2), \text{ for } 1 \le n.$ n! = 1, for $n = 0$
	n! = 1, for $n = 0$
	a. b.

Select one:

- a.
- O c.
- b.
- None of the others

The correct answer is: a.

Question 25
Complete
Mark 1.0 out of 1.0
[866] What is the VALUE of each of the following POSTFIX expressions? 9 3 / 5 + 7 2 - *
Select one:
○ 30
20
40
O 10
The correct answer is: 40
Question 26 Complete
Mark 0.0 out of 1.0
[141] Let P(m, n) be the statement "m divides n", where m and n are positive integers. Consider the statements:(i) P(3, 12) \rightarrow P(12, 3)(ii) P(12,
3) → P(3, 19)Which one is true?
Select one:
Both of them
None of them
(i)
(ii)
The correct answer is: (ii)
Question 27 Complete
Mark 1.0 out of 1.0
[631] How many license plates can be made using one letters from {A, B,, Z} followed by four digits from {0, 1, 2,, 9}?
Select one:
26 * 40
26 * 10^4
○ 26 * 4^10
None of the others

The correct answer is: 26 * 10^4

Question 28
Complete
Mark 1.0 out of 1.0

[219] Determine whether f is a FUNCTION from Z to Z if f(x) = 2 / x.

Select one:

- O Not well-defined because there are two distinct values assigned to each x.
- None of the others
- \bigcirc Not defined for x = 0.
- Yes, f is a function from Z to Z.

The correct answer is: Not defined for x = 0.

Question 29

Complete

Mark 1.0 out of 1.0

[150] Let p denote a proposition, which one is true?(i) \neg (p \land q) \equiv (\neg p \land \neg q)(ii) p \land True \equiv True

Select one:

- None
- (i)
- (ii)
- Both

The correct answer is: None

Question 30	
Complete	
Mark 1.0 out of 1.0	

[619] Show the CORRECT RECURRENCE for counting the NUMBER OF ALL SUBSETS of a set with n elements?

a.	A(n) = 2.A(n-1), for $n > 0$
	A(n) = 1, for n = 0
	A(n) = 2.A(n-1), for all n
C.	$A(n) = 2^n$ with n times

Select one:

- onone of them
- O C.
- O b.
- a.

The correct answer is: a.

Question 31

Complete

Mark 1.0 out of 1.0

[7021] Consider the statements: (1) The adjacency matrix of a complete graph contains all 1s. (2) The graphs K2,5 and W5 have the same number of edges. Which one is true?

Select one:

- Both (1) and (2)
- (2) only
- O Neither (1) nor (2)
- (1) only

The correct answer is: (2) only

Question **32**Complete

Mark 1.0 out of 1.0

[7037] Suppose that a graph G is isomorphic to the graph K15. Which of the following statements is/are true? (i)G has 30 edges. (ii)G has a Hamilton circuit.

Select one:

- (ii)
- Both
- (i)
- Neither (i) nor (ii)

The correct answer is: (ii)

Question 33

Complete

Mark 1.0 out of 1.0

[7094] Given the graph. Which statement(s) is (are) TRUE? 3

Select one:

- An Euler circuit is 1 2 3 4 5 6 7 1
- An Euler circuit is 1 4 6 7 4 5 6 2 7 1 2 3 1
- An Euler circuit is 1 3 2 7 6 5 4 1
- The graph has no Euler circuit

The correct answer is: An Euler circuit is 1 4 6 7 4 5 6 2 7 1 2 3 1

25/2020	REVIEW 1502: Attempt review
Question 34	
Complete	
Mark 1.0 out of 1.0	
[305] Out of following which property algorithms does not share	?
Select one:	
Constancy	
Finiteness	
Input/Output	
 Generality 	
The correct answer is: Constancy	
Question 35	
Complete	
Mark 1.0 out of 1.0	
[848] Given the following prefix codes:M: 00, N: 010, T: 011, I: 100 Select one:), U: 101, A: 11.Find the word represented by 0010001001111
 None of the others 	
○ MITNA	

The correct answer is: MINTA

MIUNA MINUA MINTA

Complete

Mark 1.0 out of 1.0

[144] Write a proposition equivalent to $\neg p \rightarrow q$ using only p, q, \neg and \land (ii) $\neg (p \land \neg q)$ (iii) $\neg (\neg p \land \neg q)$ (iii) $\neg p \land q$ (iv) $\neg (q \land \neg p)$

Select one:

- (iv)
- None of the others
- (i
- (ii)
- (iii)

The correct answer is: (ii)

Question **37**

Complete

Mark 1.0 out of 1.0

[7113] Which of the directed graphs in the Figure have an Euler circuit? Of those that do not, which have an Euler path?

Select one:

- O G3 has an Euler path
- The graph G1 has an Euler circuit.
- O G2 does not have an Euler cicuit but it has an Euler path
- G2 has an Euler circuit

The correct answer is: The graph G1 has an Euler circuit.

25/2020	REVIEW 1502: Attempt review
Question 38	
Complete	
Mark 1.0 out o	f 1.0
	pose that a computer has only the memory locations 0, 1, 2,, 29. Using the hashing function h where $h(x) = (x + 5) \mod 30$ to the memory locations in which 97, 32, and 16 are stored, we have
Select one	
0 12, 7	, 16
O None	
12, 7	, 21
O 7, 2,	16
O 12, 2	, 16
The corre	ct answer is: 12, 7, 21
Question 39 Complete	
Mark 1.0 out o	f 1.0
	quence of pseudo-random numbers are generated using $X[n+1] = (3X[n] + 5) \mod 31$ with seed $X[0] = 2$. We have in order $X[1]$, $X[3]$ are
Select one	
O None	
0 8, 29	and 30
O 11, 1	and 8
0 11, 7	and 13
11, 7	and 26

The correct answer is: 11, 7 and 26

The correct answer is: 144

Question 43 Complete Mark 1.0 out of 1.0
[333] Which two of three following cases are important when evaluating the complexity of an algorithm? (i) Average-case (ii) Worst-case (iii) Best-case
Select one: (i), (ii)
○ None
(iii), (i)
(ii), (iii)
The correct answer is: (i), (ii)
Question 44 Complete Mark 1.0 out of 1.0
[521] By induction, we can prove that
Select one: 3^n < n! for any integer greater than 4
3^n > n! for any positive integer
3^n < n! for any integer greater than 6
3^n > n! for any integer greater than 3
The correct answer is: 3^n < n! for any integer greater than 6
Question 45
Complete Mark 1.0 out of 1.0
[843] Given the coding scheme a: 001, b: 0001, e: 1, r: 0000, s: 0100, t: 011, x: 01010. Find the word represented by 00010010000010011011 Select one: barsex
 None of the others.
• barseet
O bersart

The correct answer is: barseet

Complete

Mark 1.0 out of 1.0

[313] Find big-O estimate of complexity of the algorithm for finding the maximum.

Select one:

- O(n)
- O(logn) /
- O(1)
- O(n^2)

The correct answer is: O(n)

Question 47

Complete

Mark 1.0 out of 1.0

[879] Use BREADTH-first search to produce a spanning tree for the given simple graph. Choose a as the root of this spanning tree and

assume that the vertices are ordered alphabetically.

Select one:

- None
- abchglidefkjnm
- abgchlmidejnfk
- abcdefghijklmn
- abchglidefjkmn

The correct answer is: a b g c h l m i d e j n f k

Complete

Mark 1.0 out of 1.0

[7111] Given the graphs G1, G2 and H in the figure, which of the following is/are fact(s)?

Select one:

- There is a path between every pair of distinct vertices in G2.
- G1, G2 and H are all connected.
- None
- The number of connected components of G1, G2 and H are 1, 2 and 3, respectively.

The correct answer is: The number of connected components of G1, G2 and H are 1, 2 and 3, respectively.

Question 49

Complete

Mark 1.0 out of 1.0

[811] What is the value of following postfix expression: $3.4 * 5.3 - + 2.2 ^ *$

Select one:

- 37
- 56
- 9
- **12**

The correct answer is: 56

25/2020	REVIEW 1502: Attempt review	
Question 50		
Complete		
Mark 1.0 out of 1.0		
[643] The Tower of Hanoi puzzle with _	_ disks can be solved using steps.	
Select one:		
O 3, 8		
O 7, 129		
O 5, 33		
7, 127		
The correct answer is: 7, 127		
■ Course_Introduction_Discrete Matheren	ematics ematics	
Jump to		

Slide ►