	M	odule Feedback		
		Should take approximately <u>3 minute</u> s to complete		
	1	I have a better understanding of the subject after Strongly Agree Agree Not Sure Disagree Strongly Disagree completing this module.		
	2	The assessments to date were relevant to the work of _Strongly Agree _Agree _Not Sure _Disagree _Strongly Disagree the module.		
	3	I achieved the learning outcomes for this module. Strongly Agree Agree Not Sure Disagree Strongly Disagree		
0 A	4	The teaching on this module supported my learning. Strongly Agree Agree Not Sure Disagree Strongly Disagree		
UCD DUBLIN	5	Overall I am satisfied with this module. Strongly Agree Agree Not Sure Oisagree Strongly Disagree		
TW T	Your comments are very important and valued by lecturers. Please ensure that neither the language nor content will cause personal offense to any individual lecturer.			
Carlo Sp. Co.	(Identify up to three aspects of the module that most helped your learning		
1112-52-5	7	Suggest up to three changes to the module that would enhance your learning.		

Dr SABER Takfarinas
takfarinas.saber@ucd.ie

Computer Networks

IP Addressing
&
IP Routing

UCD
UCD
USDIN

IP ADDRESSING
IP ROUTING

IP ADDRESSING
IP ROUTING

IP ADDRESSING
IP ROUTING
IP ADDRESSING

Last Week

- What is IP Addressing?
 - an End-to-End addressing
- Need to identify network addresses
 - Class System old
 - CIDR new
 - Using a Netmask (two equivalent notations: Full or Slash)

- In a routing table:
 - We could aggregate routing entries
 - To reduce the size of the routing time (save memory)
 - To quicken the check for prefix match (save execution time)
 - We match an IP address to the longest prefix

Today

- Subnet design
 - If we are given an IP prefix, how do we split it our infrastructure
- Some problems with IPv4
- IP Forwarding & Routing

Subnet Design You are a network designer! You have the IP address range 192.168.0.0/23 11000000 10101000 000000000 You have to assign network addresses to 2 departments Department A has 31 computers Department B has 200 computers 100 computers

Subnet Design • Subnet 1: 192.168.1.0/26

Subnet 2: 192.168.1.64/30Subnet 3: 192.168.0.0/24

Problem with IPv4

- We are already running out of IP addresses
- Problem Fixes
 - NAT (Network Address Translation)
 - Allocates IP address freely to all internal devices
 - The outside networks only knows one IPv4 address (assigned by ISP) for a whole internal network
 - Need a device for translating messages between internal and external IPs

• IPv6:

• the IPv6 address space is 128-bits (2128) in size

Principles of end-to-end delivery of datagrams To successfully deliver an IP datagram: 1. The network prefix of an IP destination address must correspond to a unique data link layer network 2. Routers and hosts that have a common network prefix must be able to exchange IP datagrams using a data link protocol 3. Every data link layer network must be connected to at least one other data link layer network via a router

Delivery of IP datagrams

- There are two distinct processes to delivering IP datagrams:
- 1. Forwarding: How to pass a packet from an input interface to the output interface?
- 2. Routing: How to find and setup the routing tables?

- Forwarding must be done as fast as possible:
 - on routers, is often done with support of hardware
 - on PCs, is done in kernel of the operating system
- Routing is less time-critical
 - On a PC, routing is done as a background process

Type of routing table entries

- Destination addresses is a network address (e.g., 10.0.2.0/24)
- Most entries are network routes
- - Destination address is an interface address (e.g., 10.0.1.2/32)
 Used to specify a separate route for certain hosts
- Default route
 Used when no network or host route matches
 - The router that is listed as the next hop of the default route is the default gateway (for Cisco: "gateway of last resort)

- Routing table for the loopback address (127.0.0.1)
 The next hop lists the loopback (lo0) interface as outgoing interface

Routing table lookup

- · When a router or host needs to transmit an IP datagram, it performs a r **Routing Table Lookup**
- Routing table lookup: Use the IP destination address as a key to search the routing table.
- Result of the lookup is the IP address of a next hop router, and/or the name of a network interface

Routing table lookup: Longest Prefix Match

- Longest Prefix Match: Search for the routing table entry that has the longest match with the prefix of the destination IP
- 1. Search for a match on all 32 bits
- 2. Search for a match for 31 bits
- 32. Search for a match on 0 bits

Host route, loopback entry

→ 32-bit prefix match Default route is represented as 0.0.0.0/0

→ 0-bit prefix match

The longest prefix match for 128.143.71.21 is for 24 bits with entry 128.143.71.0/24 Datagram will be sent to R4

Route Aggregation

- Longest prefix match algorithm permits to aggregate prefixes with identical next hop address to a single entry
- · This contributes significantly to reducing the size of routing tables of Internet routers

Destination	Next Hop	Destination	Next Hop
10.1.0.0/24 10.1.2.0/24 10.2.1.0/24 10.3.1.0/24 192.168.0.0/24 192.168.1.0/24 192.168.255.0/	R3 direct direct R3 R2 R2 	10.1.0.0/24 10.1.2.0/24 10.2.1.0/24 10.3.1.0/24 192.168.0.0/16	R3 direct direct R3 R2

How do routing tables get updated?

- · Adding an interface:
 - Configuring an interface eth2 with 10.0.2.3/24 adds a routing table entry

Destination	Interface
10.0.2.0/24	eth2

- · Adding a default gateway:
 - Configuring 10.0.2.1 as the default gateway adds the entry

Destination	Next Hop
0.0.0.0/0	10.0.2.1

- Two ways to configure routing tables
- Static configuration of network routes or host routes
 Dynamic update of routing tables through routing protocols
- Test reachability of a host:
 - · Ping: ICMP echo request