(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2002 年11 月7 日 (07.11.2002)

PCT

(10) 国際公開番号 WO 02/087334 A1

(51) 国際特許分類⁷: A01N 37/24, 37/28, 37/34, 41/10, 43/28, 43/40, 43/56, 43/58, 43/88, 47/02, 51/00, 57/22

(21) 国際出願番号:

PCT/JP02/03780

(22) 国際出願日:

2002 年4 月16 日 (16.04.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-118840 2001年4月17日(17.04.2001) JP 特願2001-129588 2001年4月26日(26.04.2001) JP

(71) 出願人 /米国を除く全ての指定国について): 日本農薬 株式会社 (NIHON NOHYAKU CO., LTD.) [JP/JP]; 〒 103-8236 東京都 中央区 日本橋 1 丁目 2番 5 号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 坂田 和之 (SAKATA,Kazuyuki) [JP/JP]; 〒 586-0022 大阪府 河内長野市 本多町5-6-301 Osaka (JP). 森本 雅之 (MORIMOTO,Masayuki) [JP/JP]; 〒 596-0024 大阪府 河内長野市 西之山町1-28-305 Osaka (JP). 児玉 洋 (KODAMA,Hiroshi) [JP/JP]; 〒 648-0063 和歌山県橋 本市 原田103-6 Wakayama (JP). 西松 哲義 (NISHI-MATSU,Tetsuyosi) [JP/JP]; 〒586-0094 大阪府 河内長野市小山田町580-1-903 Osaka (JP).

- (74) 代理人: 浅村 皓 , 外(ASAMURA, Kiyoshi et al.); 〒 100-0004 東京都 千代田区 大手町2丁目2番1号 新大手町ピル331 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特 許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

-- 国際調査報告書

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: PEST CONTROL AGENT COMPOSITION AND METHOD OF USING THE SAME

(54) 発明の名称: 有害生物防除剤組成物及びその使用方法

 $\begin{array}{c|c} x_n & z^1 \\ \vdots & \vdots & \vdots \\ c-N(R^1)R^2 & y_m \\ \vdots & \vdots & \vdots \\ z^2 & & \end{array}$

each represents oxygen or sulfur.

(57) Abstract: A pest control agent composition having a synergistic effect which contains as the active ingredients one or more compounds selected among phthalamide derivatives represented by the general formula (I), which are useful as an insecticide or acaricide, and one or more compounds selected among compounds having insecticidal activity, acaricidal activity, or nematicidal activity. (I) In the formula (I), R¹, R², and R³ may be the same or different and each represents hydrogen, C₃₋₆ cycloalkyl, -A¹-Qp, etc.; X and Y may be the same or different and each represents hydrogen, halogeno, etc.; n is an integer of 1 to 4; m is an integer of 1 to 5; and Z₁ and Z₂

(57) 要約:

本発明は、殺虫剤又は殺ダニ剤として有用な一般式(I)で表されるフタルアミド誘導体から選択される1種又は2種以上の化合物と、殺虫活性、殺ダニ活性又は殺線虫活性を有する化合物から選択される1種又は2種以上の化合物とを有効成分として含有する、相乗効果を有する有害生物防除剤組成物及びその使用方法に関する:

$$\begin{array}{c|c} \mathbf{Xn} & \mathbf{Z}^1 \\ \mathbf{II} & \mathbf{C-N} (\mathbf{R}^1) \, \mathbf{R}^2 \\ \mathbf{C-N} (\mathbf{R}^3) & \mathbf{C-N} (\mathbf{R}^3) \end{array} \tag{1}$$

(式(I)中、R 1 、R 2 及びR 3 は同一又は異なっても良く、水素原子、C $_3$ - C $_6$ シクロアルキル、-A 1 - Q $_1$ 9等を示し;X及びYはそれぞれ、同一又は異なっても良く、水素原子、ハロゲン原子等を示し;nは1から4、mは1から5の整数を示し; Z_1 及び Z_2 はそれぞれO又はSを示す)。

1

明 細 書

有害生物防除剤組成物及びその使用方法

5 技術分野

本発明は殺虫剤又は殺ダニ剤として有用な一般式 (I) で表されるフタルアミド誘導体と殺虫活性、殺ダニ活性又は殺線虫活性を有する化合物から選択される 1種又は2種以上の化合物を含有する、相乗効果を有する有害生物防除剤組成物及びその使用方法に関するものである。

10 背景技術

本発明の一般式(I) で表されるフタルアミド誘導体は特開平11-24085 7号公報及び特開2001-131141号公報記載の公知化合物であり、殺虫 活性又は殺ダニ活性を有することが記載されている。

また、本発明における第2の有効成分化合物である殺虫活性、殺ダニ活性又は 15 殺線虫活性を有する化合物は、それぞれペスチサイドマニュアル (The Pesticide Manual Eleventh Edition 1997) 等に記載の文献公知化合物である。 発明の開示

本願の一般式(I) で表されるフタルアミド誘導体、及び殺虫活性又は殺ダニ活性若しくは殺線虫活性を有する化合物の、各々単独では防除不可能な又は困難な 20 有害生物が存在する。従って、このような有害生物を効率的に防除するための手段及び方法を見出すことが、作物の一層の効率的生産につながるものと期待されている。

本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、一般式(I) で表されるフタルアミド誘導体から選択される1種又は2種以上の化合物と、殺虫、

25 殺ダニ又は殺線虫剤から選択される1種又は2種以上の化合物とを併用すること により、複数の有害生物を効率的に防除することができることを見出し、本発明 を完成させたものである。

本発明は一般式(I)

$$\begin{array}{c|c}
Xn & Z^1 \\
 & \parallel \\
 & C-N(R^1)R^2
\end{array}$$

$$\begin{array}{c}
C-N(R^3) & \longrightarrow \\
 & \parallel \\
 & Z^2
\end{array}$$
(1)

 ${\rm Theorem 1} {\rm Theorem 2} {\rm Theorem 2} {\rm Theorem 3} {\rm Theorem 2} {\rm Theorem 3} {\rm Theorem 3$ シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基又は $-A^1$ - Q_p (式中、 A^1 は C_1 - C_8 アルキレン基、 C_3 - C_6 アルケニレン基又は C_3 - C_6 アルキニレン基を 5 示し、Qは水素原子、ハロゲン原子、シアノ基、ニトロ基、ハロ C₁-C₆アルキ ル基、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアルキル基、 C₁-C₆アル コキシカルボニル基、同一又は異なっても良いジ C₁-C₆アルコキシホスホリル 基、同一又は異なっても良いジ C1-C6アルコキシチオホスホリル基、ジフェニ ルホスフィノ基、ジフェニルホスホノ基、フェニル基、同一又は異なっても良く、 10 ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキ ルチオ基、 C1-C6アルキルスルフィニル基、ハロ C1-C6アルキルスルフィニ ル基、 C1-C6アルキルスルホニル基又はハロ C1-C6アルキルスルホニル基か ら選択される1以上の置換基を有する置換フェニル基、複素環基(複素環基とは 15 ピリジル基、ピリジン-N-オキシド基、ピリミジニル基、フリル基、テトラヒ ドロフリル基、チエニル基、テトラヒドロチエニル基、テトラヒドロピラニル基、 テトラヒドロチオピラニル基、オキサゾリル基、イソキサゾリル基、オキサジア ゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、イミダゾリル 基、トリアゾリル基又はピラゾリル基を示す。)、同一又は異なっても良く、ハ 20 ロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ 基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキル チオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C1-C6アルキルスルホニル基又はハロ C1-C6アルキルスルホニル基から

- 25 ニル基から選択される 1 以上の置換基を有する置換フェニル基、フェニル C_1 C_4 アルキル基、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル

基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基、複素環基(複素環基は前記に同じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、

5 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル 基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(前記に同じ。)を示す。)を示す。 p は 1 \sim 4 の整数を示す。)を示す。又、 R^1 及び R^2 は互いに結合して 1 \sim 3 個の同一又は異なっても良い 酸素原子、硫黄原子又は窒素原子により中断されても良い 4 \sim 7 員環を形成することもできる。

Xは同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、ニトロ基、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアルキル基、フェニル基、同一又 は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル 15 基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 ア ルキルスルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキ ルスルホニル基から選択される1以上の置換基を有する置換フェニル基、複素環 基(前記に同じ。)、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキ 20 ル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ 基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルス ルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスルホ ニル基又はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換基を 有する複素環基(複素環基は前記に同じ。)又は $-A^2-R^6$ (式中、 A^2 は-25 O-, -S-, -SO-, -SO₂-, -C (=O) -, -C (=NOR 7)-(式中、 R^7 は水素原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、ハロ C_3 - C_6 アルケニル基、 C_3 - C_6 アルキニル基、シクロ C_3 - C_6 アルキル基、フェニル C_1 - C_4 アルキル基又は同一又は異なっても良く、 ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ

シ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基を 示す。)、 C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_2 - C_6 アルケニレン基、ハロ C_2 - C_6 アルケニレン基、ハロ C_2 - C_6 アルケニレン基、ハロ C_2 - C_6 アルケニレン基、 C_2 - C_6 アルケニレン基を示し、

(1) A^2 が-O-、-S-、-SO-又は $-SO_2-$ を示す場合、 R^6 はハロ C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアルケニル基、フェニル基、同一 10 又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキ ル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ 基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、C₁-C₆アルキルスルホニル基又はハロC₁-C₆ア ルキルスルホニル基から選択される1以上の置換基を有する置換フェニル基、複 15 素環基(複素環基は前記に同じ。)、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 ア ルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基から選択される1以 20 上の置換基を有する複素環基(複素環基は前記に同じ。) 又は-A³-R⁸ (式 中、 A^3 は C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_3 - C_6 アルケニ レン基、ハロ C₃-C₆アルケニレン基、 C₃-C₆アルキニレン基又はハロ C₃-C₆ アルキニレン基を示し、R 8 は水素原子、ハロゲン原子、 C_3 - C_6 シクロアルキ ル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシカルボニル基、フェ 25 ニル基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、ハロ C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル 基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又は

ハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換基を有する置換

フェニル基又は $-A^4-R^9$ (式中、 A^4 は-O-、-S-、-SO-、 $-SO_2$ -又は-C (=O) を示し、 R^9 は C_1-C_6 アルキル基、ハロ C_1-C_6 アルキル基、 C_3-C_6 アルケニル基、ハロ C_3-C_6 アルケニル基、 C_3-C_6 シクロアルキル基、 C_3-C_6 シクロアルキル基、フェニル基、同一又は異なっても良く、ハロゲ シ原子、 C_1-C_6 アルキル基、ハロ C_1-C_6 アルキル基、 C_1-C_6 アルキシ基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルコキシ基、 C_1-C_6 アルキルスルフィニル基、 C_1-C_6 アルキルスルフィニル基、 C_1-C_6 アルキルスルフィニル基、 C_1-C_6 アルキルスルカフィニル基、 C_1-C_6 アルキルスルホニル基とは C_1-C_6 アルキルスルホニル基から選択される 1以上の置換基を有する置換フェニル基、 複素環基は前記に同

- 10 じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、 ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィール基、 C_1 - C_6 アルキルスルフィール基、 C_1 - C_6 アルキルスルカフィール基、 C_1 - C_6 アルキルスルホール 基又はハロ C_1 - C_6 アルキルスルホール基から選択される 1以上の置換基を有す る複素環基(複素環基は前記に同じ。)を示す。)を示し、
- (2) A^2 が-C (=O) -又は-C ($=NOR^7$)- (式中、 R^7 は前記に同じ。)を示す場合、 R^6 は C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_2 - C_6 アルケニル基、 C_1 - C_6 アルケニル基、 C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルケニル基、 C_1 - C_6 アルキルチオ基、モ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミノ基、フェニル基、同一又は異なっても良く、 C_1 - C_6 アルキル 基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカフィニル基、 C_1 - C_6 アルキルスルカフィニル基、 C_1 - C_6 アルキルスルカフィニル基、 C_1 - C_6 アルキルスルカロのででは異なっても良く、 C_1 - C_6 アルキルスルカニルスルホニル基から選択される C_1 - C_6 アルキルスルホニルスルホニルストロのでは異なっても良く、 C_1 - C_6 アルキルスルホニルストロのでは異なっても良く、 C_1 - C_1 -C
 - 基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する置換フェニル基、フェニルアミノ基、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 ア

ルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を環上に有する置換フェニルアミノ基、複素環基(複素環基は前記に同じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、

- 5 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(複素環基は前記に同じ。)を示し、
- (3) A^2 が C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_2 - C_6 アルケニ 10 レン基、ハロ C_2 - C_6 アルケニレン基、 C_2 - C_6 アルキニレン基又はハロ C_3 - C_6 アルキニレン基を示す場合、 R^6 は水素原子、ハロゲン原子、 C_3 - C_6 シクロア ルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシカルボニル基、 フェニル基、同一又は異なっても良く、ハロゲン原子、 C1-C6アルキル基、ハ ロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁ 15 $-C_6$ アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニ ル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又 はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換基を有する置 換フェニル基、複素環基(複素環基は前記に同じ。)、同一又は異なっても良く、 ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ 20 シ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキ ルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニ ル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基か ら選択される1以上の置換基を有する複素環基(複素環基は前記に同じ。) 又は $-A^{5}-R^{10}$ (式中、 A^{5} は-O-、-S-、-SO-又は $-SO_{2}$ -を示し、
- R^{10} は C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、フェニル基、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキル チオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 -

C₆アルキルスルホニル基から選択される1以上の置換基を有する置換フェニル 基、複素環基(複素環基は前記に同じ。)、同一又は異なっても良く、ハロゲン 原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハ ロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 5 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 -C6アルキルスルホニル基又はハロ C1-C6アルキルスルホニル基から選択される 1以上の置換基を有する複素環基(複素環基は前記に同じ。)又は-A⁶-R¹¹ (式中、 A^6 は C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_2 - C_6 アル ケニレン基、ハロ C_2 - C_6 アルケニレン基、 C_2 - C_6 アルキニレン基又はハロ C_3 10 $-C_6$ アルキニレン基を示し、R¹¹は水素原子、ハロゲン原子、 C_3 - C_6 シクロア ルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1-C_6 アルキルチオ基、ハロ C_1-C_6 アルキルチオ基、 C_1-C_6 アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アル キルスルホニル基、ハロ C₁-C₆アルキルスルホニル基、フェニル基、同一又は 15 異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハ ロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アル キルスルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキル スルホニル基から選択される1以上の置換基を有する置換フェニル基、フェノキ 20 シ基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁- C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 ア ルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換基を有する置換フェ 25 ノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、 C1-C6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アル コキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アル キルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキル スルホニル基又はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置

換基を有する置換フェニルチオ基、複素環基(複素環基は前記に同じ)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される1以上の置換基を有する複素環基(複素環基は前記に同じ)示す。)を示す。

nは1~4の整数を示す。又、Xはフェニル環上の隣り合った炭素原子と一緒 になって縮合環(縮合環とはナフタレン、テトラヒドロナフタレン、インデン、 10 インダン、キノリン、キナゾリン、クロマン、イソクロマン、インドール、イン ドリン、ベンゾジオキサン、ベンゾジオキソール、ベンゾフラン、ジヒドロベン ゾフラン、ベンゾチオフェン、ジヒドロベンゾチオフェン、ベンゾオキサゾール、 ベンゾチアゾール、ベンズイミダゾール又はインダゾールを示す。)を形成する ことができ、該縮合環は同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アル 15 キル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキ シ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキル スルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスル ホニル基、ハロ C_1 - C_6 アルキルスルホニル基、フェニル基、同一又は異なって も良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 20 アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスル フィニル基、 C1-C6アルキルスルホニル基又はハロ C1-C6アルキルスルホニ ル基から選択される1以上の置換基を有する置換フェニル基、複素環基(複素環 基は前記に同じ) 又は同一若しくは異なっても良く、ハロゲン原子、 C1-C6ア 25 ルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコ キシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキ ルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルス ルホニル基又はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換 基を有する複素環基(複素環基は前記に同じ。) から選択される1以上の置換基

を有することもできる。

WO 02/087334

10 C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1以上の置換基を有する複素環基(複素環基は前記に同じ。)又は $-A^2$ - R^6 (式中、 A^2 及び R^6 は前記 に同じ。)を示し、mは 1 \sim 5 0 整数を示す。

アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1以上の置換基を有する複素環基(複素環基は前記に同じ。)から選択される 1以上の置換基を有することもできる。

 Z^{1} 及び Z^{2} は酸素原子又は硫黄原子を示す。}

で表されるフタルアミド誘導体から選択される1種又は2種以上の化合物と殺虫 活性、殺ダニ活性又は殺線虫活性を有する化合物から選択される1種又は2種以 上の化合物とを有効成分として含有することを特徴とする有害生物防除剤組成物 及びその使用方法に関するものである。

10 本発明の有害生物防除剤は、各々単剤では十分な効果が得られ無かった薬量で も顕著な効果を発揮し、単剤では防除できなかった有害生物及び薬剤抵抗性等を 示す有害生物類等に対しても顕著な防除効果を有するものである。

発明を実施するための形態

本発明のフタルアミド誘導体の一般式(I)の定義において「ハロゲン原子」とは塩素原子、臭素原子、沃素原子又はフッ素原子を示し、「 C_1 - C_6 アルキル」とは、例えばメチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、n-ペンチル、n-ヘキシル等の直鎖又は分枝状の炭素原子数 1 ~ 6 個のアルキル基を示し、「ハロ C_1 - C_6 アルキル」とは、同一又は異なっても良い 1 以上のハロゲン原子により置換された直鎖又は分枝状の炭素原子数 1 ~ 6 個のアルキル基を示し、「 C_1 - C_8 アルキレン」はメチレン、エチレン、プロピレン、トリメチレン、ジメチルメチレン、テトラメチレン、イソブチレン、ジメチルエチレン、オクタメチレン等の直鎖又は分枝状の炭素原子数 1 ~ 8 個のアルキレン基を示す。

R¹ 及びR² が互いに結合して形成する、「1から3個の同一又は異なって も良い酸素原子、硫黄原子又は窒素原子により中断されても良い4~7員環」としては、例えばアゼチジン環、ピロリジン環、ピロリン環、ピペリジン環、イミダゾリジン環、イミダゾリン環、オキサゾリジン環、チアゾリジン環、イソキサゾリジン環、イソチアゾリジン環、テトラヒドロピリジン環、ピペラジン環、モルホリン環、チオモルホリン環、ジオキサジン環、ジチアジン環等を例示するこ

とができる。

本発明の一般式(I) で表されるフタルアミド誘導体は、その構造式中に不斉炭素原子又は不斉中心を含む場合があり、2種の光学異性体が存在する場合もあり、本発明は各々の光学異性体及びそれらが任意の割合で含まれる混合物をも全て包含するものである。又、場合によりこれらの化合物の塩、水和物等も含むものである。

一般式(I)で表されるフタルアミド誘導体は、特開平11-240857号 公報及び特開 2001-131141号 公報に開示されている化合物及び製造方法により得られる。

- 一般式(I) で表される化合物のうち、好ましい化合物として R^1 が水素原子 10 を示し、 R^2 が C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ C_1 - C_6 アルキル基、 C_1 - C_6 アルキルスルフィニル C_1 - C_6 アルキル基又は C_1 - C_6 アルキルスルホニル C_1 - C_6 アルキル基を示し、 R^3 が水素原子を示し、X がハロゲン原子を示し、n が 1を示し、 Z^{1} 及び Z^{2} が酸素原子を示し、Yが同一又は異なっても良く、ハロ 15 ゲン原子、C₁-C₆アルキル基、ハロC₁-C₆アルキル基又はハロC₁-C₆アルコキ シ基を示し、mが2又は3を示すものが挙げられ、特に好ましい化合物として {2-メチルー4- [1, 2, 2, 2-テトラフルオロー1-(トリフルオロメ チル) エチル] フェニル} フタルアミド、 $N^2 - (1, 1 - ジメチル-2 - メ$ 2, 2-テトラフルオロー1- (トリフルオロメチル) エチル] フェニル} フタ ルアミド、又は N^2 - (1、1-ジメチル-2-メチルスルフィニルエチル) -1-(トリフルオロメチル)エチル]フェニル}フタルアミドが挙げられる。 第1表に代表的な化合物を例示するが、本発明はこれらに限定されるものでは 25
- 25 第1表に代表的な化合物を例示するが、本発明はこれらに限定されるものではなく、特開平11-240857号公報及び特開2001-131141号公報に開示されている化合物を例示することができる。

一般式(I)

第1表($Z^1 = Z^2 = O$)

							物性
5	No	R^1	R ²	R ³	Xn	Ym	融点℃
•					0.10	0.01.5.01	100.151
	1	CH ₃	H	п	3-NO2	2-CH ₃ -5-C1	169-171
	2	C_2H_5	Н	Н	3-C1	2-CH ₃ -4-OCHF ₂	179-180
	3	C_2H_5	H	Н	3-NO ₂	2-CH ₃ -5-C1	175–177
10	4	n-C ₃ H ₇	Н	Н	3-NO ₂	2-CH ₃ -4-0CHF ₂	184-186
	5	$i-C_3H_7$	Н	Н	3~C1	$4-C_4H_9-n$	169-171
	6	i-C ₃ H ₇	Н	Н	3-C1	$4-C_4H_9-t$	224-226
	7	i-C ₃ H ₇	Н	Н	3-C1	4-CF (CF ₃) ₂	198-200
	8	i-C ₃ H ₇	Н	Н	3-C1	4-CF ₂ CF ₂ CF ₃	203-204
15	9	i-C ₃ H ₇	Н	Н	3-C1	4-(CF ₂) ₃ CF ₃	176-178
	10	i-C₃H₁	Н	Н	3-C1	4-OCF ₂ CHFOC ₃ F ₇ -n	169-171
	11	i-C ₃ H ₇	Н	Н	6-C1	4-SCH ₃	193-195
	12	i-C ₃ H ₇	Н	Н	3-C1	4-SO ₂ CH ₃	208-210
	13	i-C ₃ H ₇	Н	Н	3-C1	4-SCHF ₂	220-222
20							

第1表 (続き)

	No R ¹		D2	\mathbb{R}^3	Хn	Ym	物性
E	NO K		Λ	K	VII	1111	配点℃
5 ~	14 i-C ₃ l	l ₇	Н	Н	3-C1	4-SCF ₂ CHF ₂	198-200
	15 i-C ₃ l	l ₇	Н	Н	3-C1	4-SO ₂ CF ₂ CHF ₂	227-230
	16 i-C ₃ l	l ₇	Н	Н	3-C1 .	4-COCH ₃	217-219
	17 i-C ₃ F	l ₇	Н	Н	3-C1	4-Ph	215-217
0	18 i−C₃ŀ	I ₇	Н	Н	3-C1	2-CH ₃ -4-0CH ₃	191-192
	19 i-C ₃ l	l ₇	Н	Н	3-C1	2-CH ₃ -4-CF ₂ CF ₃	199-200
	20 i-C ₃ l	l ₇	Н	Н	3-C1	2-CH ₃ -4-0CF ₃	199-201
	21 i-C ₃ l	[₇	Н	Н	3, 6-Cl ₂	2-CH ₃ -4-0CHF ₂	221-222
	22 i-C ₃ F	l ₇	Н	Н	3-Br	4-0CF ₃	208-210
5	23 i-C ₃ F	l ₇	Н	Н	3-Br	2-CH ₃ -4-CF ₂ CF ₃	201-202
	24 i-C ₃ F	i ₇	Н	Н	3-Br	2-CH ₃ -4-CF (CF ₃) ₂	222-224
	25 i-C ₃ F	I ₇	Н	Н	3-Br	2-CH ₃ -4-SCH ₃	215-217
	26 i-C ₃ F	I ₇	Н	Н	3-Br	2-CH ₃ -4-(3-CF ₃ -Ph0)	156-158
	27 i-C ₃ F	[7	Н	Н	3-Br	2-CH ₃ -4-(5-CF ₃ -	182-184
0						2-Pyi-0)	
	28 i-C ₃ H	7	Н	Н	3-Br	-3-0CH ₂ 0-4-	195-198
	29 i-C ₃ H	7	H	Н	6-Br	2-CH ₃ -4-OCF ₂ CHFCF ₃	212-213
	30 i-C ₃ H	7	Н	Н	6-Br	2-CH ₃ -4-OCF ₂ CHC1F	211-213
	31 i-C ₃ H	7	Н	Н	6-Br	2-CH ₃ -4-OCF ₂ CHF ₂	214-215
5	32 i-C ₃ H	7	Н	Н	5, 6-Br ₂	2-CH ₃ -4-OCHF ₂	208-210
	33 i-C ₃ H	,]	Н	H	3-I	4-CF ₂ CF ₂ CF ₃	217-219
	34 i-C ₃ H	7	Н	Н	3-I	4-CF (CF ₃) ₂	209-211

第1表 (続き)

-	-				物性
	No R ⁱ	$R^2 R^3$	Xn	Ym	融点℃
	35 i-C ₃ H ₇	н н	3-I	4-SCH ₂ CHF ₂	195–197
	36 i-C ₃ H ₇	н н	3-I	4-SCHF ₂	204-206
	37 i-C ₃ H ₇	н н	3-I	$4-S(CF_2)_3CF_3$	185–187
	38 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-C1	215-217
0	39 i-C ₃ H ₇	н н	3-I	2-C1-4-CF ₃	170-171
	40 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-CF ₃	202-203
	41 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-CF ₂ CF ₃	195–196
	42 i-C ₃ H ₇	н н	3-I	$2\text{CH}_34\text{CF}_2\text{CF}_2\text{CF}_3$	193-195
	43 i-C ₃ H ₇	н н	3-I	2 -CH $_3$ -4-CF (CF $_3$) $_2$	211-213
5	44 i-C ₃ H ₇	$\mathbf{H} \leftarrow \mathbf{H}$	3-I	2-CH ₃ -4-OCF ₃	214-216
	45 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-OCHF ₂	207-209
	46 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-OCH ₂ CF ₂ CHF ₂	229-231
	47 i-C ₃ H ₇	н н	3-I	2-CH ₃ -4-OCF ₂ CHFCF ₃	213-214
	48 i-C ₃ H ₇	н н	3-I	2-C1-4-OCF ₃	173-175
0	49 i-C ₃ H ₇	н н	6-I	4-SCF (CF ₃) ₂	216-218
	50 i-C ₃ H ₇	н н	6-I	2-C1-4-CF ₃	195-196
	51 i-C ₃ H ₇	н н	6-I	2-CH ₃ -4-CF (CF ₃) ₂	237-239
	52 i-C ₃ H ₇	н н	6-I	2-C1-4-CF ₂ CF ₂ CF ₃	199-200
	53 i-C ₃ H ₇	н н	3-F	2 -CH $_3$ - 4 -CF (CF $_3$) $_2$	241-243
5	54 i-C ₃ H ₇	н н	3-F	2-CH ₃ -4-OCF ₃	183-184
	55 i-C ₃ H ₇	н н	3-NO ₂	3-F	228-230
	56 i-C ₃ H ₇	н н	3-NO ₂	2-CH ₃ -4-OCHF ₂	186-188

第1表 (続き)

							物性
5	No	R ¹	R²	R ³	Xn	Ym	融点℃
Ð	57	n−C₄H ₉	Н	Н	3-NO ₂	2-CH ₃ -5-C1	172-174
	58	$s-C_4H_9$	Н	Н	6-C1	2-CH ₃ -4-OCHF ₂	213-215
	59	$t-C_4H_9$	H	Н	3-NO ₂	2-CH ₃ -4-OCHF ₂	172-173
	60	$c-C_3H_5$	Н	Н	3-C1	2-CH ₃ -4-OCHF ₂	156-158
10	61	$c-C_4H_7$	Н	Н	3-NO ₂	2-CH ₃ -5-C1	206-208
	62	$c-C_5H_9$	Н	Н	$3-N0_2$	2-CH ₃ -5-C1	200-202
	63	$c-C_6H_{11}$	Н	H	$3-N0_{2}$	2-CH ₃ -5-C1	225-227
	64	$CH_2C_3H_5-c$	Н	H	3-NO ₂	2-CH ₃ -5-F	190-192
	65	CH ₂ CH ₂ Cl	Н	Н	$3-N0_{2}$	2-CH ₃ -5-F	179–181
15	66	CH ₂ CH=CH ₂	Н	Н	3-NO ₂	2 -CH $_3$ - 4 -OCHF $_2$	194-195
	67	CH ₂ C≡CH	Н	Н	3-NO ₂	2-CH ₃ -4-OCHF ₂	190-191
	68	$i-C_3H_7$	H	Н	3-C1	4-CH=CBr ₂	209. 8-214. 8
	69	$i-C_3H_7$	Н	Н	6-C1	4-CH=CCl ₂	199. 7
	70	$i-C_3H_7$	Н	Н	3-I	4 -CH=C (C1) CF $_3$	196. 6
20	71	$i-C_3H_7$	Н	Н	6-I	4 -CH=C(C1)CF $_3$	203. 3
	72	$t-C_4H_9$	Н	Н	3-I	2-CH ₃ -4-CF ₂ CF ₃	205-207
	73	$t-C_4H_9$	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	216-217
	74	n-C ₄ H ₉	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	181. 8-187. 7
	75	$n-C_5H_{11}$	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	168. 7-171. 3
25	76	i-C ₃ H ₇	Н	Н	6-CH ₃	2-CH ₃ -4-CF ₂ CF ₃	177-179
	. 77	$\mathrm{CH_2CH_2OC_2H_5}$	Н	Н	3-I	2-CH ₃ -4-CF ₂ CF ₃	146. 5-150. 3
	78	CH ₂ CH ₂ OC ₂ H ₅	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	157. 3-160. 4

第1表(続き)

_	No	R ¹	R²	R³	Xn ·	Ym	物 性 融点℃
	79	c-C ₅ H ₉	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	205. 2
	80	c-C ₆ H ₁₁	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	239. 0-244. 4
	81	$i-C_3H_7$	Н	Н	3-1	4-SCF ₃	226-227
	82	$i-C_3H_7$	Н	Н	3-NO ₂	4-SOCF ₃	202-205
	83	$i-C_3H_7$	Н	Н	3-C1	4-SOCF ₃	242-244
	84	$i-C_4H_9$	Н	Н	3-I	2-CH ₃ -4-CF ₂ CF ₃	200. 4-206. 8
	85	s-C ₄ H ₉	Н	H	6-I	2-CH ₃ -4-CF ₂ CF ₃	216. 1-218.
	86	CH (C ₂ H ₅) -	Н	Н	3-1	2-CH ₃ -4-CF ₂ CF ₃	177
		−CH ₂ OCH ₃					
	88	$CH(C_2H_5)-$	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	198. 3-201.
		-CH ₂ OCH ₃					
	89	CH ₂ CF ₃	Н	Н	6-I	2-CH ₃ -4-CF ₂ CF ₃	184. 7-202.
	90	$i-C_3H_7$	H	Н	3-I	3-N=C (CF ₂ CF ₃) 0-4	214-216
	91	$t-C_4H_9$	Н	Н	3-I	3-N=C (CF ₂ CF ₃) 0-4	253-254
	92	$i-C_3H_7$	Н	Н	3-C1	2-F-4-0CF ₃	126-128
	93	$i-C_3H_7$	Н	H	3-I	2-F-4-0CF ₃	220-222
	94	$i-C_3H_7$	Н	Н	3-I	$2-C_2H_5-4-0CF_3$	241-243
	95	t−C₄H ₉	Н	Н	3-I	2-C ₂ H ₅ -4-0CF ₃	224-225
	96	i-C ₃ H ₇	Н	Н	3-C1-4-F	2-CH ₃ -4-OCF ₃	184-186
	97	i-C ₃ H ₇	H	Н	3-C1-4-F	2 –CH $_3$ –4–CF (CF $_3$) $_2$	200-201
	98	i−C ₃ H ₇	Н	Н	5-I	2-CH ₃ -4-OCF ₂ CHF ₂	203-204
	99	i−C ₃ H ₇	Н	Н	4-I	2-CH ₃ -4-CF(CF ₃) ₂	215-216

第1表 (続き)

							
	No	R^1	R²	R³	Xn	Ym	物 性 融点℃
5 -	100	i-C ₃ H ₇	Н	Н	3-I	2-CH ₃ -4-C≡C-	205
						C_4H_9 -t	
	101	$i-C_3H_7$	Н	Н	3-C1	2-CH ₃ -4-CN	230
	102	i-C ₃ H ₇	Н	Н	3-I	$2-F-4-C_2F_5$	190
LO	103	$i-C_3H_7$	Н	Н	3-I	$2-C1-4-C_2F_5$	200
	104	$i-C_3H_7$	Н	Н	3-I	2-CF ₃ -4-C ₂ F ₅	255
	105	$i-C_3H_7$	Н	H'	3-I	2-OCH ₃ -4-C ₂ F ₅	152
	106	2-TetFur	Н	Н	3-C1	2 - CH_3 - 4 - C_2F_5	153
	107	2-TetFur	Н	Н	6-C1	2 - CH_3 - 4 - C_2F_5	130
15	108	CH ₂ -4-Pyi	Н	Н	3-C1	2-CH ₃ -4-C ₂ F ₅	88
	109	CH ₂ -4-Pyi	Н	Н	6-C1	2 -CH $_3$ -4-C $_2$ F $_5$	ペースト
	110	$i-C_3H_7$	H	Н	3-I	$2-C_2F_5-4-C_2F_5$	245
	111	$i-C_3H_7$	Н	Н	H	4-0-(2-Pym)	246
	112	C (CH ₃) ₂ CH ₂ CH ₃	Н	Н	3-I	2-CH ₃ -4-C ₂ F ₅	193
20	113	C (CH ₃) ₂ CH ₂ CH ₃	Н	H	3-I	2-CH ₃ -4-OCF ₃	180
	114	C (CH ₃) ₂ CH ₂ CH ₃	Н	Н	3-I	2-CH ₃ -4-OCHF ₂	176-177
	115	i-C ₃ H ₇	Н	Н	3-I	2-C1-4-0CF ₂ 0-5	226
	116	i-C ₃ H ₇	Н	Н	3-I	2-C1-3-0CF ₂ CF ₂ 0-4	219
	117	C(CH ₃) ₂ CH ₂ C1	Н	Н	3-I	2-CH ₃ -4-C ₂ F ₅	168-169
25	118	i-C ₃ H ₇	Н	Н	3-I	4-(2-CH ₃ -4-Thz)	2ì7
	119	i-C ₃ H ₇	Н	H	3-I	4-(2-CH ₃ -4-0xa)	212
	120	i-C ₃ H ₇	Н	Н	3-I	4-(2- i-C ₃ H ₇ -4-Thz)	199

第1表 (続き)

No	R^1	R ²	R³	Xn	Ym	物 性 融点℃
	IV.				1111	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
121	CH(CH ₃)-2-Pyi	Н	Н	3-I	2-CH ₃ -4-OCF ₃	158-161
122	N (Ph) COCF ₃	Н	Н	3-I	2-CH ₃ -4-C ₂ F ₅	239-241
123	$CH(CH_3)-2-Fur$	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	191
124	$CH(CH_3)-2-Thi$	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	159
125	$i-C_3H_7$	Н	Н	3-CF ₃ S0	$2-CH_3-4-C_3F_7-i$	211-213
126	$t-C_4H_9$	Н	Н	3-I	2-N=C (CF ₃) 0-3	120
127	i-C ₃ H ₇	Н	Н	3-I	$2-CH_3-4-C(CH_3)=$	NOCH ₃ 218
128	t-C4H9	Н	H	6-CF ₃ S	$2-CH_3-4-C_3F_7-i$	245-247
129	C (CH ₃) ₂ CH ₂ SCH ₃	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	205-206
130	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Н	Н	3-I	2 -CH $_3$ -4-C $_3$ F $_7$ -i	90-95
131	C (CH ₃) ₂ CH ₂ SOCH ₃	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	88-90
132	CH (CH ₃) CH ₂ SCH ₃	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	197-199
133	CH (CH ₃) CH ₂ SO ₂ CH ₃	Н	Н	3-I	2 -CH $_3$ -4-C $_3$ F $_7$ -i	82
134	CH (CH ₃) CH ₂ SOCH ₃	Н	Н	3-I	$2-CH_3-4-C_3F_7-i$	134
135	C (CH ₃) ₂ CH ₂ SCH ₃	Н	Н	3-I	2-C1-4-OCF ₃	166
136	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Н	Н	3-I	2-C1-4-OCF ₃	141
137	C (CH ₃) ₂ CH ₂ SO ₂ CH ₃	Н	Н	3-Br	2-C1-4-OCF ₃	133
138	$C (CH_3)_2 CH_2 SC_2 H_5$	Н	H	3-I	2 - CH_3 - 4 - C_2F_5	188-189
139	C (CH ₃) ₂ CH ₂ SO ₂ C ₂ H ₅	Н	Н	3-I	2 - CH_3 - 4 - C_2 F_5	120-122
140	C (CH ₃) ₂ CH ₂ SOC ₂ H ₅	Н	Н	3-I	2-CH ₃ -4-C ₂ F ₅	125-126
141	C (CH ₃) ₂ CH ₂ SCH ₃	Н	Н	3-C1	2 - CH_3 - 4 - C_3F_7 - i	199-200
149	Cit (Cit) Cit CCit	11	11	о т	2-Cl-4-C ₃ F ₇ -i	190

第1表中、「Ph」はフェニル基、「c」は脂環式炭化水素基、「Pyi」はピリジル基、「Pym」はピリミジニル基、「Fur」はフリル基、「TetFur」はテトラヒドロフリル基、「Thi」はチエニル基、「Thz」はチアゾリル基及び「Oxa」はオキサゾリル基を示す。

- 5 本発明の有害生物防除剤組成物が含有する殺虫活性、殺ダニ活性又は殺線虫活性を有する化合物としては、クロロニコチニル系化合物、カーバメート系化合物、ピレスロイド系化合物、マクロライド系化合物、燐剤系などの殺虫剤が挙げられ、例えば以下に一般名で示す化合物を例示することができるが、本発明はこれらに限定されるものではない。
- 10 アセタミプリド(acetamiprid)、ピメトロジン(pymetrozine)、フェニトロチオン(fenitrothion)、アセフェート(acephate)、カルバリル(carbaryl)、メソミル(methomyl)、カルタップ(cartap)、シハロトリン(cyhalothrine)、エトフェンプロックス(ethofenprox)、テフルベンズロン(teflubenzuron)、フルフェノクスロン(flufenoxuron)、テブフェノジド(tebufenozide)、フェンピロキシメート
- 15 (fenpyroximate)、ピリダベン(pyridaben)、イミダクロプリド(imidacloprid)、ブプロフェジン(buprofezin)、BPMC(fenobucarb)、マラチオン(malathion)、メチダチオン(methidathion)、フェンチオン(fenthion)、ダイアジノン(diazinon)、オキシデプロホス(oxydeprofos)、バミドチオン(vamidothion)、エチオフェンカルブ(ethiophencarbe)、ピリミカーブ(pirimicarb)、ペルメトリ
- 20 ン(permethrin)、シペルメトリン(cypermethrin)、ビフェントリン(bifenthrin)、ハルフェンプロックス(halfenprox)、シラフルオフェン(silafluofen)、ニテンピラム(nitenpyram)、クロルフルアズロン(chlorfluazuron)、メトキシフェノジド(methoxyfenozide)、テブフェンピラド(tebufenpyrad)、ピリミジフェン(pyrimidifen)、ジコホル(dicofol)、プロパルギット(propargite)、ヘキシチ
- 25 アゾクス(hexythiazox)、クロフェンテジン(clofentezine)、スピノサッド (spinosad)、ミルベメクチン(milbemectin)、BT(bacillus thuringiensis)、インドキサカーブ(indoxacarb)、クロルフェナピル(chlorfenapyr)、フィプロニル(fipronil)、エトキサゾール(etoxazole)、アセキノシル(acequinocyl)、ピリミホスメチル(pirimiphos-methyl)、アクリナトリン(acrinathrin)、キノメ

WO 02/087334 PCT/JP02/03780

チオネート(quinomethionate)、クロルピリホス(chlorpyriphos)、アバメクチ ン(avermectin)、エマメクチン安息香酸エステル(emamectin-benzoate)、酸化フ ェンブタスズ(fenbutatin oxide)、テルプホス(terbufos)、エトプロホス (ethoprophos)、カズサホス(cadusafos)、フェナミフォス(fenamiphos)、フェ 5 ンスルフォチオン (fensulfothion) 、DSP、ジクロフェンチオン (dichlofenthion)、ホスチアゼート(fosthiazate)、オキサミル(oxamyl)、イサ ミドホス(isamidofos)、ホスチエタン(fosthietan)、イサゾホス(isazofos)、チ オナジン(thionazin)、ベンフラカルブ(benfuracarb)、スピロジクロフェン (spirodiclofen) エチオフェンカルブ(ethiofencarb) 、アジンホス・メチル (azinphos-methyl)、ジスルホトン(disulfoton)、メチオカルブ(methiocarb)、 10 オキシジメトン・メチル(oxydemeton-methyl)、パラチオン(parathions)、シフ ルトリン(cyfluthrin)、ベータ・シフルトリン(beta-cyfluthrin)、テブピリー ムホス(tebupirimfos)、スピロメシフェン(spiromesifen)、エンドスルファン (endosulfan)、アミトラズ(amitraz)、トラロメトリン(tralomethrin)、アセト プロール(acetoprole)、エチプロール(ethiprole)等を例示することができる。 15 又、以下の一般名、化学名、特許公開公報等により記載した殺虫剤、殺ダニ剤 及び殺線虫剤と混用することも可能である。

エチオン(ethion)、トリクロルホン(trichlorfon, DEP)、メタミドホス (metamidophos)、ジクロルボス(dichlorvos, DDVP)、メビンホス(mevinphos)、20 モノクロトホス(monocrotophos)、ジメトエート(dimethoate)、ホルモチオン (formothion)、メカルバム(mecarbam)、チオメトン(thiometon)、ジスルホトン (disulfoton)、ナレッド(naled, BRP)、メチルパラチオン(methylparathion)、シアノホス(cyanophos)、ジアミダホス(diamidafos)、アルベンダゾール (albendazole)、オキシベンダゾール(oxibendazole)、フェンベンダゾール (fenbendazole)、オクスフェンダゾール (oxfendazole)、プロパホス (propaphos)、スルプロホス(sulprofos)、プロチオホス(prothiofos)、プロフェノホス(profenofos)、イソフェンホス(isofenphos)、テメホス(temephos)、フェントエート(phenthoate)、ジメチルビンホス(dimethylvinphos)、クロルフェビンホス(chlorfevinphos)、テトラクロルビンホス(tetrachlorvinphos)、ホキ

WO 02/087334 PCT/JP02/03780

シム (phoxim)、イソキサチオン (isoxathion)、ピラクロホス (pyraclofos)、クロ ルピリホスーメチル(chlorpyrifos-methyl)、ピリダフェンチオン (pyridafenthion)、ホサロン(phosalone)、ホスメット(phosmet)、ジオキサベ ングホス(dioxabenzofos)、キナルホス(quinalphos)、ピレトリン(pyrethrins)、 5 アレスリン(allethrin)、プラレトリン(prallethrin)、レスメトリン (resmethrin)、ペルメトリン(permethrin)、テフルトリン(tefluthrin)、フェン プロパトリン(fenpropathrin)、アルファシペルメトリン(alpha-cypermethrin)、 ラムダ・シハルトリン(lambda-cyhalothrin)、デルタメトリン(deltamethrin)、 フェンバレレート(fenvalerate)、エスフェンバレレート(esfenvalerate)、フ 10 ルシトリネート(flucythrinate)、フルバリネート(fluvalinate)、シクロプロ トリン(cycloprothrin)、チオジカルブ(thiodicarb)、アルジカルブ(aldicarb)、 アラニカルブ(alanycarb)、メトルカルブ(metolcarb)、キシリカルブ (xylycarb)、プロポキスル(propoxur)、フェノキシカルブ(fenoxycarb)、フェノ チオカルブ(fenothiocarb)、ビフェナゼート(bifenazate)、カルボフラン (carbofuran)、カルボスルファン(carbosulfan)、フラチオカルブ 15 (furathiocarb)、ジアフェンチウロン(diafenthiuron)、ジフルベンズロン (diflubenzuron)、ヘキサフルムロン(hexaflumuron)、ノバルロン(novaluron)、 ルフェヌロン(lufenuron)、クロルフルアズロン(chlorfluazuron)、水酸化トリ シクロヘキシルスズ(cyhexatin) 、オレイン酸ナトリウム(Oleic acid sodium salt)、オレイン酸カリウム(Potassium oleate)、メトプレン(methoprene)、ハ イドロプレン(hydroprene)、ビナパクリル(binapacryl)、アミトラズ(amitraz)、 クロルベンジレート(chlorbenzilate)、フェニソブロモレート (phenisobromolate)、テトラジホン(tetradifon)、ベンスルタップ(bensultap)、 ベンゾメート(benzomate) 、クロマフェノジド(chromafenozide)、エンドスルフ ァン (endosulfan)、ジオフェノラン (diofenolan)、トルフェンピラド 25 (tolfenpyrad) 、トリアザメート(triazamate)、硫酸ニコチン(nicotinesulfate)、チアクロプリド(thiacloprid)、チアメトキサム(thiamethoxam)、ク ロチアニジン(clothianidin)、ジノテフラン(dinotefuran, MT I-446)、フルア ジナム(fluazinam)、ピリプロキシフェン(pyriproxyfen)、ヒドラメチルノン

WO 02/087334 PCT/JP02/03780

(hydramethylnon)、シロマジン(cyromazine)、TPIC

(tripropylisocyanurate)、チオシクラム(thiocyclam)、フェナザキン (fenazaquin)、ポリナクチン複合体(polynactins)、アザディラクチン (azadirachtin)、ロテノン(rotenone)、ヒドロキシプロピルデンプン (Hydroxy 5 propyl starch)、メスルフェンホス(mesulfenfos)、ホスホカルブ (phosphocarb) 、イソアミドホス(isoamidofos) 、アルドキシカルブ (aldoxycarb)、メタム・ナトリウム(metam-sodium)、酒石酸モランテル (morantel tartrate)、ダゾメット(dazomet)、塩酸レバミゾール(levamisol)、 トリクラミド(trichlamide)、ピリダリル(pyridalyl)、2ー〔2ー(4ーシア 10 ノフェニル) - 1 - (3 - トリフルオロメチルフェニル) エチリデン] - N-(4-トリフルオロメトキシフェニル) ヒドラジンカルボキサミド及びそのE体 又は2体並びにE体及び2体の任意の割合の混合物、特開平8-325239号 公報及び特願第2000-334700号明細書に記載の置換アミノキナゾリノ

本発明の特定のフタル酸ジアミドと第2の有効成分化合物である殺虫活性、殺 15 ダニ活性又は殺線虫活性を有する化合物から選択される1種又は2種以上の化合 物とを組み合わせて有害生物防除剤組成物として使用する場合、該組成物100 重量部中の有効成分化合物の添加量は0.1重量部~50重量部の範囲から適宜 選択して使用すれば良く、好ましくは1重量部~20重量部の範囲である。又、 20 有効成分化合物中の特定のフタル酸ジアミドと殺虫活性、殺ダニ活性又は殺線虫 活性を有する化合物から選択される1種又は2種以上の化合物の添加割合は、特 定のフタル酸ジアミドが1重量部に対して殺虫活性、殺ダニ活性又は殺線虫活性 を有する化合物から選択される1種又は2種以上の化合物を0.05重量部〜2

ン(チオン)誘導体又はその塩等を例示することができる。

100重量部の範囲である。

本発明の有害生物防除剤組成物を使用する場合、農薬製剤上の常法に従って適 当な固体、液体又は粉体などの形態であり、必要に応じて補助剤等を適当な割合 に配合して融解、懸濁、混合、含浸、吸着若しくは付着させ、使用目的に応じて 適当な剤形、例えば乳剤、粉剤、粒剤、水和剤又はフロアブル剤などに調剤して

000重量部の範囲から適宜選択して使用すれば良く、好ましくは10重量部~

使用する。

本発明の有害生物防除剤組成物は水稲、野菜、果樹、その他の花卉等を加害す る各種農林、園芸、貯穀害虫や衛生害虫あるいは線虫等の害虫防除に適しており、 例えば半翅目(Hemiptera) の異翅類(Heteroptera) 、マルカメムシ(Megacopta 5 punctatissimum)、オオトゲシラホシカメムシ(Eysarcoris lewisi)、トゲシラ ホシカメムシ(Eysarcoris parvus)、ミナミアオカメムシ(Nezara viridula)、 チャバネアオカメムシ(Plautia stali)、ホソハリカメムシ(Cletus punctiger)、 クモヘリカメムシ(Leptocorisa chinensis)、ホソヘリカメムシ(Riptortus clavatus)、コバネヒョウタンナガカメムシ(Togo hemipterus)、ナシグンバイ (Stephanitis nashi)、ツツジグンバイ(Stephanitis pyrioides)、ウスミドリ 10 メクラガメ(Apolygus spinolai)、アカスジメクラガメ(Stenotus rubrovittalus)、アカヒゲホソミドリメクラガメ(Trigonotylus coelestialium) 等、同翅類(Homoptera)、フタテンヒメヨコバイ(Arboridia apicalis)、チャノ ミドリヒメヨコバイ(Empoasca onukii)、ツマグロヨコバイ(Nephotettix 15 cincticeps)、タイワンツマグロヨコバイ(Nephotettix virescens)、ヒメトビ ウンカ(Laodelphax striatellus)、トビイロウンカ(Nilaparvata lugens)、セジ ロウンカ(Sogatella furcifera)、ミカンキジラミ(Diaphorina citri)、ミカン トゲコナジラミ (Aleurocanthus spiniferus)、シルバーリーフコナジラミ (Bemisia argentifolii)、タバココナジラミ(Bemisia tabaci)、ミカンコナジラ ミ(Dialeurodes citri)、オンシツコナジラミ(Trialeurodes vaporariorum)、 20 ブドウネアブラムシ(Viteus vitifolii)、リンゴワタムシ(Eriosoma lanigerum)、 ユキヤナギアブラムシ(Aphis citricola)、マメアブラムシ(Aphis craccivora)、 ワタアブラムシ(Aphis gossypii)、ジャガイモヒゲナガアブラムシ(Aulacorthum solani)、ダイコンアブラムシ(Brevicoryne brassicae)、チューリップヒゲナ ガアプラムシ(Macrosiphum euphorbiae)、モモアカアプラムシ(Myzus persicae)、 25 ムギクビレアプラムシ(Rhopalosiphum padi)、ムギヒゲナガアブラムシ (Sitobion akebiae)、クワコナカイガラムシ(Pseudococcus comstocki)、ツノロ ウムシ(Ceroplastes ceriferus)、アカマルカイガラムシ(Aonidiella aurantii)、ナシマルカイガラムシ(Comstockaspis perniciosa)、クワシロカイ

ガラムシ(Pseudaulacaspis pentagoa)、ヤノネカイガラムシ(Unaspis yanonensis) 等、鱗翅目(Lepidoptera) から、リンゴコカクモンハマキ (Adoxophyes orana fasciata)、チャノコカクモンハマキ(Adoxophyes honmai)、 ミダレカクモンハマキ(Archips fuscocupreanus)、モモシンクイガ(Carposina niponensis)、ナシヒメシンクイ(Grapholita molesta)、チャハマキ(Homona magnanima)、チャノホソガ(Caloptilia theivora)、ヨモギエダシャク(Ascotis selenaria)、グレイプベリーモス(Endopiza viteana)、コドリンガ (Laspeyresia pomonella) 、キンモンホソガ(Phyllonorycter ringoniella)、ギ ンモンハモグリガ(Lyonetia prunifoliella malinella)、ミカンハモグリガ (Phyllocnistis citrella)、コナガ(Plutella xylostella)、ワタアカミムシ 10 (Pectinophora gossypiella)、モモシンクイガ(Carposina niponensis)、ニカメ イガ(Chilo suppressalis)、サンカメイガ(Scirpophaga incertulas)、コブノメ イガ(Cnaphalocrocis medinalis)、ハイマダラノメイガ(Hellulla undalis)、ア ゲハ(Papilio xuthus)、モンシロチョウ(Pieris rapae crucivora)、オビカレハ (Malacosoma neustria testacea)、アメリカシロヒトリ(Hyphantria cunea)、シ 15 バツトガ(Parapediasia teterrella) 、オオタバコガ(Helicoverpa armigera)、 ヘリオチス種(Heliothis spp.)、カブラヤガ(Agrotis segetum)、タマナギンウ ワバ(Autographa nigrisigna)、ヨトウガ(Mamestra brassicae)、シロイチモジ ヨトウ(Spodoptera exigua) 、ハスモンヨトウ(Spodoptera litura) 等、鞘翅目 (Coleoptera)から、ドウガネブイブイ(Anomala cuprea)、マメコガネ(Popillia 20 japonica)、ヒラタキクイムシ(Lyctus brunneus)、ヒラタコクヌストモドキ (Tribolium confusum)、ニジュウヤホシテントウ(Epilachna vigintioctopunctata)、ゴマダラカミキリ(Anoplophora malasiaca) 、マツノ マダラカミキリ(Monochamus alternatus)、アズキゾウムシ(Callosobruchus chinensis)、ウリハムシ(Aulacophora femoralis)、ルートワーム種 25 (Diabrotica spp.) 、ワタミゾウムシ(Anthonomus gradis grandis) 、メキシカ ンピートル(Epilachna varivestis)、コロラドハムシ(Leptinotarsa decemlineata)、イネミズゾウムシ(Lissorhoptrus oryzophilus)、イネドロオ イムシ(Oulema oryzae) 、シバオサゾウムシ(Sphenophrus venatus vestitus)

膜翅目 (Hymenoptera) から、カブラハバチ(Athalia rosae ruficornis)、チュ ウレンジハバチ(Arge pagana)、クロヤマアリ(Formica japonica)、双翅目 (Diptera) から、イネハモグリバエ(Agromyza oryzae)、イネミギワバエ (Hydrellia griseola)、マメハモグリバエ(Liriomyza trifolii)、タマネギバエ 5 (Delia antiqua) 、イエバエ(Musca domestica) 、チカイエカ(Culex pipiens molestus)、アカイエカ (Culex pipiens pallens)、アザミウマ目 (Thysanoptera)から、チャノキイロアザミウマ(Scirtothrips dorsalis)、ミナ ミキイロアザミウマ(Thrips palmi)、ネギアザミウマ(Thrips tabaci) 、ミカン キイロアザミウマ(Frankliniella occidentalis)、シロアリ目(Isoptera)から、 10 イエシロアリ(Coptotermes formosanus)、ヤマトシロアリ(Reticulitermes speratus)、チャタテムシ(Psocoptera)、ヒラタチャタテ(Liposcelis bostrychophilus)、直翅目(Orthoptera)から、コバネイナゴ(Oxya vezoensis)、 ケラ(Gryllotalpa sp.)、ワモンゴキブリ(Periplaneta americana)、チャバネ ゴキブリ(Blattella germanica)、ダニ目(Acarina) から、ミカンハダニ (Panonychus citri)、リンゴハダニ (Panonychus ulmi)、ナミハダニ (Tetranychus urticae) 、カンザワハダニ(Tetranychus kanzawai)、ミナミヒメ ハダニ(Brevipalpus phoenicis)、クローバーハダニ(Bryobia praetiosa)、ミ カンサビダニ(Aculops pelekassi)、ニセナシサビダニ(Eriophyes chibaensis)、 チャノホコリダニ(Polyphagotarsonemus latus)、ロビンネダニ(Rhizoglyphus 20 robini)、ケナガコナダニ(Tyrophagus putrescentiae)、ハリセンチュウ目 (Tylenchida)から、ミナミネグサレセンチュウ(Pratylenchus coffeae)、キタネ グサレセンチュウ(Pratylenchus penetrans)、ジャガイモシストセンチュウ (Globodera rostochiensis)、サツマイモネコブセンチュウ(Meloidogyne incognita) 、ニセハリセンチュウ目(Dorylaimida) から、ナガハリセンチュウ (Longidorus sp.)、軟体動物門腹足網(Gastropoda)から、ナメクジ(Incilaria bilineata)等を例示することができる。

本発明の有害生物防除剤組成物を使用できる有用植物は特に限定されるものではないが、例えば穀類(例えば、稲、大麦、小麦、ライ麦、オート麦、トウモロコシ等)、豆類(大豆、小豆、そら豆、えんどう豆、インゲン豆、落花生等)

果樹・果実類(林檎、柑橘類、梨、葡萄、桃、梅、桜桃、胡桃、栗、アーモンドバナナ、イチゴ等)、葉・果菜類(キャベツ、トマト、ホウレンソウ、ブロッコリー、レタス、タマネギ、ネギ、ピーマン、ナス、ペッパー等)、根菜類(ニンジン、馬鈴薯、サツマイモ、サトイモ、大根、蓮根、カブ、ゴボウ、ニンニク等)、加工用作物(棉、麻、ビート、ホップ、サトウキビ、テンサイ、オリーブ、ゴム、コーヒー、タバコ茶等)、ウリ類(カボチャ、キュウリ、マクワウリ、スイカ、メロン等)、牧草類(オーチャードグラス、ソルガム、チモシー、クローバー、アルファルファ等)、芝類(高麗芝、ベントグラス等)、香料等鑑賞用作物(ラベンダー、ローズマリー、タイム、パセリ、胡椒、生姜等)、花卉類(キク、バラ、カーネーション、蘭等)、庭木(イチョウ、サクラ類、アオキ等)、林木(トドマツ類、エゾマツ類、松類、ヒバ、杉、桧等)等の植物を例示することができる。

本発明の有害生物防除剤組成物は各種病害虫を防除するためにそのまま、又は水等で適宜希釈し、若しくは懸濁させた形で有害生物防除に有効な量を有害生物の発生が予測される植物に使用すればよく、例えば果樹、穀類、野菜等において発生する有害生物に対しては茎葉部に散布する他に、種子の薬剤への浸漬、種子粉衣、カルパー処理等の種子処理、土壌全層混和、作条施用、床土混和、セル苗処理、植え穴処理、株元処理、トップドレス、イネの箱処理、水面施用等、土壌等に処理して根から吸収させて使用することもできる。加えて、養液(水耕)栽20 培における養液への施用、くん煙あるいは樹幹注入等による使用もできる。

更に、例えば貯穀害虫、家屋害虫、衛生害虫、森林害虫等に散布する他に、家 屋建材への塗布、くん煙、ベイト等としての使用することもできる。

種子処理の方法としては、例えば、液状又は固体状の製剤を希釈又は希釈せず して液体状態にて種子を浸漬して薬剤を浸透させる方法、固形製剤又は液状製剤 を種子と混和、粉衣処理して種子の表面に付着させる方法、樹脂、ポリマー等の 付着性の担体と混和して種子にコーティングする方法、植え付けと同時に種子付 近に散布する方法等が挙げられる。

当該種子処理を行う「種子」とは、植物の繁殖に用いられる栽培初期の植物体を意味し、例えば、種子の他、球根、塊茎、種芋、株芽、むかご、鱗茎又は挿し

木栽培用の栄養繁殖用の植物体を挙げることができる。

本発明の使用方法を実施する場合の植物の「土壌」又は「栽培担体」とは、作物を栽培するための支持体、特に根を生えさせる支持体を示すものであり、材質は特に制限されないが、植物が生育しうる材質であれば良く、いわゆる土壌、育苗マット、水等であっても良く、具体的な素材としては例えば、砂、軽石、バーミキュライト、珪藻土、寒天、ゲル状物質、高分子物質、ロックウール、グラスウール、木材チップ、バーク等であっても良い。

. 作物茎葉部あるいは貯穀害虫、家屋害虫、衛生害虫、森林害虫等への散布方法 としては、乳剤、フロアブル剤等の液体製剤又は水和剤もしくは顆粒水和剤等の 10 固形製剤を水で適宜希釈し、散布する方法、粉剤を散布する方法又はくん煙等が 挙げられる。

土壌への施用方法としては、例えば、液体製剤を水に希釈又は希釈せずして植物体の株元又は育苗用苗床等に施用する方法、粒剤を植物体の株元又は育苗のための苗床等に散布する方法、播種前又は移植前に粉剤、水和剤、顆粒水和剤、粒15 剤等を散布し土壌全体と混和する方法、播種前又は植物体を植える前に植え穴、作条等に粉剤、水和剤、顆粒水和剤、粒剤等を散布する方法等が挙げられる。

水稲の育苗箱への施用方法としては、剤型は、例えば播種時施用、緑化期施用、 移植時施用などの施用時期により異なる場合もあるが、粉剤、顆粒水和剤、粒剤 等の剤型で施用すれば良い。培土との混和によっても施用することができ、培土 と粉剤、顆粒水和剤又は粒剤等との混和、例えば、床土混和、覆土混和、培土全 体への混和等することができ、単に、培土と各種製剤を交互に層状にして施用し てもよい。

水田への施用方法としては、ジャンボ剤、パック剤、粒剤、顆粒水和剤等の固 形製剤、フロアブル、乳剤等の液体状製剤を、通常は、湛水状態の水田に散布す る。その他、田植え時には、適当な製剤をそのまま又は肥料等に混和して土壌に 散布、注入することもできる。又、水口や灌漑装置等の水田への水の流入元に乳 剤、フロアブル等の薬液を利用することにより、水の供給に伴い省力的に施用す ることもできる。

畑作物においては、播種から育苗期において、種子又は植物体に近接する栽培

担体等へ処理ができる。畑に直接播種する植物においては、種子への直接処理の 他、栽培中の植物の株元への処理が好適である。粒剤を用いて散布処理又は水に 希釈又は希釈しない薬剤を液状にて潅注処理を行うことができる。粒剤を播種前 の栽培担体と混和させた後、播種するのも好ましい処理である。

5 移植を行う栽培植物の播種、育苗期の処理としては、種子への直接処理の他、 育苗用苗床への、液状とした薬剤の潅注処理又は粒剤の散布処理が好ましい。又、 定植時に粒剤を植え穴に処理したり、移植場所近辺の栽培担体に混和することも 好ましい処理である。

本発明の有害生物防除剤組成物は通常の剤型、例えば乳剤、水和剤、顆粒水和 利、フロアブル剤、液剤、粒剤、粉剤、葉煙剤等の剤型に製剤して使用すればよ く、その施用量は、有効成分の配合割合、気象条件、製剤形態、施用時期、施用 方法、施用場所、防除対象有害生物、対象作物等により異なるが、通常1アール 当たり有効成分として0.1g~1000gの範囲から適宜選択して施用すれば 良く、好ましくは1g~500gの範囲が良い。種子への処理においては種子重 量との比較で、有効成分として0.01%~50%の範囲で使用することが可能 であり、好ましくは0.1%~10%の範囲である。乳剤、水和剤等を水等で希 釈して施用する場合、その施用濃度は0.00001~0.1%であり、粒剤、 粉剤あるいは種子に処理する場合の液剤等は、通常希釈することなくそのまま施 用すれば良い。

20 又、本発明の有害生物防除剤組成物の使用時期に同時に発生する病害及び/又は雑草を防除するために、他方の有効成分である殺虫活性、殺ダニ活性又は殺線虫活性を有する化合物にかえて殺菌活性又は除草活性を有する化合物と混合して使用することにより、防除対象病害虫の拡大、薬量の低減、除草剤等においても相乗効果が期待できるものであり、本発明の有害生物防除剤組成物に加えて、更に殺菌活性又は除草活性を有する化合物を加えて用いても、同様の効果が期待できる。

このような殺菌活性又は除草活性を有する化合物としては、殺菌活性を有する 化合物として、例えば、アゾキシストロビン(azoxystrobin)、ジクロシメット (diclocymet)、ピロキロン(pyroquilon)、カスガマイシン(kasugamycin)、IB

P(iprobenfos)、ヒメキサゾール(hymexazol)、メプロニル(mepronil)、トリシ クラゾール(tricyclazole)、エディフェンホス(edifenphos)、イソプロチオラン (isoprothiolane)、ブラストサイジン(blasticidin)、フルトラニル (flutolanil)、ジクロメジン(diclomezine)、ペンシクロン(pencycuron)、カル 5 ベンダジム(carbendazim)、ドジン(dodine)、プロパモカルブ(propamocarb)、 ピリメタニル(pyrimethanil)、フルキンコナゾール(fluguinconazole)、ホセ チル・アルミニウム(fosetyl-AL)、ブロムコナゾール(bromuconazole)、トリチ コナゾール(triticonazole)、フルメットーバー(flumetover)、フェナミドン (fenamidone)、トリルフルアニド(tolylfluanid)、ジクロフルアニド (dichlofluanid)、トリフロキシストロビン(trifloxystrobin)、トリアジメノー 10 ル (triadimenol)、スピロキサミン(spiroxamine)、フェンヘキサミド (fenhexamid)、イプロバリカルブ(iprovalicarb)、フサライド(fthalide)、イ プロジオン(iprodione)、チオファネート(thiophanate)、ベノミル(benomy1)、 トリフルミゾール(triflumizole)、フルアジナム(fluazinam)、ジネブ(zineb)、 キャプタン(captan)、マンゼブ(manzeb)、フェナリモル(fenarimol) 、石灰硫黄 合剤(calcium polysulfide) 、トリアジメホン(triadimefon) 、ビンクロゾリン (vinclozolin)、ジチアノン(dithianon)、ビテルタノール(bitertanol)、ポリ カーバメート(polycarbamate) 、イミノクタジン・アルベシル酸塩 (iminoctadine-DBS)、ペブレート(pebulate)、ポリオキシンB(polyoxin-B)、プ 20 ロピネブ(propineb)、キノメチオネート(chinomethionat)、ジクロフルアニド (dichlofluanid)、クロロタロニル(chlorothalonil)、ジフェノコナゾール (difenoconazole)、フルオルイミド(fluoroimide) 、トリホリン(triforine) 、 ·オキサジキシル(oxadixyl)、ストレプトマイシン(streptomycin)、マンコゼブ (mancozeb)、オキソリニック酸(oxolinic acid)、メプロニル(mepronil)、メタ ラキシル(metalaxyl)、プロピコナゾール(propiconazole)、ヘキサコナゾール (hexaconazole)、硫黄(sulfur)、ピリフェノックス(pyrifenox)、塩基性硫酸銅 (basic copper sulfate)、ピリメタニル(pyrimethanil)、イプロベンホス (iprobenfos)、トルクロホスーメチル(tolclofos-methyl)、マンネブ(maneb)、 チオファネートメチル(thiophanate-methyl)、チフルザミド(thifluzamide)、フ

ラメトピル(furametpyr)、フルスルファミド(flusulfamide)、クレソキシムーメ チル(kresoxim-methyl)、カルプロパミド(carpropamid)、ヒドロキシイソキサ ゾール(hydroxyioxazole)、エクロメゾール(echlomezole)、プロシミドン (procymidone)、ビンクロゾリン(vinclozolin)、イプコナゾール(ipconazole)、 フルコナゾール(furconazole)、ミクロブタニル(myclobutanil)、テトラコナゾ ール(tetraconazole)、テブコナゾール(tebuconazole)、イミベンコナゾール (imibenconazole)、プロクロラズ(prochloraz)、ペフラゾエート(pefurazoate)、 シプロコナゾール(cyproconazole)、メパニピリム(mepanipyrim)、チアジアジ ン(thiadiazin)、プロベナゾール(probenazole)、アシベンゾラルーS-メチル (acibenzolar-S-methyl)、バリダマイシン(validamycin(-A))、フェノキサニル 10 3-チアジアゾールー5-カルボキサミド等の殺菌剤を例示することができる。 次いで、除草活性を有する化合物として、例えばベンスルフロンーメチル (bensulfuron-methyl)、アジムスルフロン(azimsulfuron)、シノスルフロン (cinosulfuron)、シクロスルファムロン(cyclosulfamuron)、ピラゾスルフロン 15 エチル(pyrazosulfuron-ethyl)、イマゾスルフロン(imazosulfuron)、インダノ ファン(indanofan)、シハロホップブチル(cyhalofop-butyl)、テニルクロル (thenylchlor)、エスプロカルブ(esprocarb)、エトベンザニド(etobenzanid)、 カフェンストロール(cafenstrole)、クロメプロップ(clomeprop) ジメタメトリ ン(dimethametryn)、ダイムロン(daimuron)、ビフェノックス(bifenox)、ピリ 20 ブチカルブ(pyributicarb)、ピリミノバック(pyriminobac-methyl)、プレチラク ロール (pretilachlor)、ブロモブチド (bromobutide) 、ベンゾフェナップ (benzofenap)、ベンチオカーブ(benthiocarb)、ベントキサゾン(bentoxazone)、 ベンフレセート(benfuresate)、メフェナセット(mefenacet)、フェノキサプロ ップ・P・エチル(fenoxaprop-P-ethyl)、フェンメディファム(phenmedipham)、 25 ジクロホップ・メチル(diclofop-methyl)、デスメディファム(desmedipham)、 エトフメセート(ethofumesate)、イソプロツロン(isoproturon)、アミドスル フロン (amidosulfuron)、アニロホス (anilofos)、ベンフレセート (benfuresate)、エトキシスルフロン(ethoxysulfuron)、ヨードスルフロン

(iodosulfuron)、イソキサジフェン(isoxadifen)、ホラムスルフロン(foramsulfuron)、ピラクロニル(pyraclonil)、メソスルフロン(mesosulfuron)、ジウロン(diuron)、ネブロン(neburon)、ジノテルブ(dinoterb)、カルベタミド(carbetamide)、プロモキシニル(bromoxynil)、オキ サジアゾン(oxadiazon)、ジメフロン(dimefuron)、ジフルフェニカン(diflufenican)、アクロニフェン(aclonifen)、ベンゾフェナップ(benzofenap)、オキサジクロメホン(oxaziclomefone)、イソキサフルトール(isoxaflutole)、オキサジアルギル(oxadiargyl)、フルルタモン(flurtamone)、メトリブジン(metribuzin)、メタベンズチアズロン(methabenzthiazuron)、トリブホス (tribufos)、メタミトロン(metamitron)、エチオジン(ethiozin)、フルフェナセット(flufenacet)、スルコトリオン(sulcotrion)、フェントラザミド(fentrazamide)、プロポキシカルバゾン(propoxycarbazone)、フルカルバゾン(flucarbazone)、メトスラム(metosulam)、アミカルバゾン(amicarbazone)等の除草剤を例示することができる。

15 又、以下の一般名により記載した除草剤を混合することも可能である。 グリホサート・イソピルアミン塩(glyphosate-isopropyl amine)、グリホサー ト・トリメシウム塩(glyphosate-trimesium)、グルホシネート(glufosinateammonium)、ビアラホス(bialaphos)、ブタミホス(butamifos)、プロスルホカ ルブ(prosulfocarb)、アシュラム(asulam)、リニュロン(linuron) 、過酸化カル シウム(calcium peroxide)、アラクロール(alachlor)、ペンディメタリン (pendimethalin)、アシフルオフェン(acifluofen-sodium)、ラクトフェン (lactofen)、アイオキシニル(ioxynil-octanoate)、アロキシジム(alloxydim)、 セトキシジム(sethoxydim)、ナプロパミド(napropamide)、ピラゾレート (pyrazolate)、ピラフルフェンーエチル (pyraflufen-ethyl)、イマザピル (imazapyr)、スルフェントラゾン(sulfentrazone)、オキサゾアゾン 25 (oxadiazon) 、パラコート(paraquat) 、ジクワット(diquat) 、シマジン (simazine)、アトラジン(atrazine)、フルチアセットーメチル(fluthiace tmethyl) 、ギザロホップーエチル(quizalofop-ethyl)、ベンタゾン(bentazone, BAS-3510-H) 、トリアジフラム(triaziflam)。又、植物成長調節作用を有するチ

ジアズロン(thidiazuron)、メフェンピル(mefenpyr)、エテホン(ethephon)、シクラニリド(cyclanilide)等と混合して使用することもできる。

本発明は生物農薬として、例えば核多角体ウイルス (Nuclear polyhedrosis virus 、NPV)、顆粒病ウイルス (Granulosis virus 、GV) 、細胞質多角体病ウイ ルス (Cytoplasmic polyhedrosis virus 、CPV) 、昆虫ポックスウイルス (Entomopox virus、EPV)等のウイルス製剤、モノクロスポリウム・フィマトパガム (Monacrosporium phymatophagum)、スタイナーネマ・カーポカプサエ (Steinernema carpocapsae)、スタイナーネマ・クシダエ(Steinernema kushidai)、パスツーリア・ペネトランス (Pasteuria penetrans)等の殺虫又は 殺線虫剤として利用される微生物農薬、トリコデルマ・リグノラン (Trichoderma lignorum)、アグロバクテリウウム・ラジオバクター (Agrobacterium radiobactor)、非病原性エルビニア・カロトボーラ (Erwinia carotovora)、バチルス・ズブチリス (Bacillus subtilis)、モナクロスポリウム・フィマトパガム等の殺菌剤として使用される微生物農薬、ザントモナス・キャンペストリス (Xanthomonas campestris)等の除草剤として利用される生物農薬等と混合して使用することにより、同様の効果が期待できる。

更に、生物農薬として、例えばオンシツツヤコバチ(Encarsia formosa)、コレマンアブラバチ(Aphidius colemani)、ショクガタマバエ(Aphidoletes aphidimyza)、イサエアヒメコバチ(Diglyphus isaea)、ハモグリコマユバチ (Dacnusa sibirica)、チリカブリダニ(Phytoseiulus persimilis)、ククメリスカブリダニ(Amblyseius cucumeris)、ナミヒメハナカメムシ(Orius sauteri)等の天敵生物、ボーベリア・ブロンニアティ(Beauveria brongniartii)等の微生物農薬、(Z)-10- テトラデセニル=アセタート、(E, Z)-4, 10- テトラデカジニエル=アセタート、(Z)-8-ドデセニル=アセタート、(Z)-11- テトラデセニル=アセタート、(Z)-11- テトラデセニル=アセタート、(Z)-11- テトラデセニル=アセタート、(Z)-11- テトラデセニル=アセタート、(Z)-11- テトラデセニル=アセタート、(Z)-11- オク

実施例

以下に本発明の代表的な実施例及び試験例を例示するが、本発明はこれらに限

タデセン等のフェロモン剤と併用することも可能である。

定されるものではない。尚、実施例中、部とあるのは重量部を示す。

実施例1

WO 02/087334

第1表記載の化合物 5部 フェンピロキシメート 10部 5 含水珪酸 30部 ハイテノールN 0 8 (第一工業製薬製) 5部 リグニンスルホン酸カルシウム 3部 水和剤クレー 47部

有効成分化合物を含水珪酸に含浸させた後、他の成分と均一に混合して水和剤

10 とする。

	実施例2	
	第1表記載の化合物	10部
	テブフェンピラド	10部
	ソルポール3105(東邦薬品工業製)	5 部
15	プロピレングリコール	5 部
	ロドポール23(ローヌ・プーラン社製)	2部
	水	68部
	以上を均一に混合し、水に分散させてフロアブルを	削とする。
	実施例3	
20	第1表記載の化合物	10部
	イソプロチオラン	20部
	SP-3005X(東邦化学製)	15部
	キシレン	3 5 部
	N-メチルピロリドン	20部
25	以上を均一に混合融解して乳剤とする。	
	実施例4	
	Administração do Admini	

第1表記載の化合物	10部
テプフェノジド	20部
ソルポール3105	5 部

	プロピレングリコール	2部
	ロドポール23	1 部
	水	6 2 部
	以上を均一に混合し、水に分散させ	てフロアブル剤とする。
5	実施例5	•
	第1表記載の化合物	10部
	ブプロフェジン	5 部
	含水珪酸	3 4 部
	ハイテノールN08	3 部
10	デモールT	2部
	炭酸カルシウム粉末	4 6 部
	有効成分化合物を含水珪酸に含浸さ	せた後、他の成分と均一に混合して水和剤
	とする。	
	実施例 6	
15	第1表記載の化合物	10部
	ピリダベン	1 5部
	SP-3005X	15部
	キシレン	4 0部
	Nーメチルピロリドン	20部
20	以上を均一に混合融解して乳剤とす	る。
	実施例7	
	第1表記載の化合物	10部
	ピラフルフェンエチル	2 0 部
	ソルポール3105	5部
25	プロピレングリコール	2部
	ロドポール23	0. 5部
	水	62. 5部
	以上を均一に混合し、水に分散させ	てフロアブル剤とする。

実施例8

	第1表記載の化合物	1	0部
	アセタミプリド		5部
	ソルポール3105		5部
	プロピレングリコール		3部
5	ロドポール23		2部
	水	7	5部
	以上を均一に混合し、水に分散させてフロアブル剤	ع	する。
	実施例9		
	第1表記載の化合物	1	0部
10	イミダクロプリド	1	O部
	SP-3005X	1	5部
	キシレン	4	5部
	N-メチルピロリドン	2	0部
	以上を均一に混合融解して乳剤とする。		
15	実施例10		
	第1表記載の化合物		5部
	クロルフェナピル	1	0部
	ソルポール3105		5部
	プロピレングリコール		3部
20	ロドポール23		2部
	水	7	5部
	以上を均一に混合し、水に分散させてフロアブル剤	لح	する。
	実施例11		
	第1表記載の化合物		5部
25	ピメトロジン	1	0部
	ソルポール3105		5部
	プロピレングリコール		3部
	ロドポール23		2部
	水	7	5部

WO 02/087334 PCT/JP02/03780

37

以上を均一に混合し、水に分散させてフロアブル剤とする。

試験例1. チャノコカクモンハマキに対する殺虫試験

所定濃度に希釈調製した薬液にチャ葉を30秒間浸漬し、風乾後直径9cmのプ 5 ラスチック製シャーレに入れ、チャノコカクモンハマキ4令を各10頭接種し、 25℃の恒温室内に静置した。処理4、7日後に生存虫数を調査し、死虫率を算 出した(1区10頭2連制)。結果を第2表に示す。

第2表

		濃 度	死虫	率(%)
供試薬剤		(ppm)	4日後	7日後
化合物19	十クロルヒ゜リホス	0. 3+1	3 5	7 5
	十クロルフルアス゛ロン	0. 3+1	3 5	9 5
	十クロルフェナヒ゜ル	0.3+1	3 0	7 5
	+エマメクチン安息香酸塩	0. 3+0. 1	2 5	8 5
	+ メトキシフェノジド	0.3+0.1	7 5	9 5
	十イント゛キサカルフ゛	0. 3+1	5 5	9 5
	十フェンピロキシメート	0.3+50	3 0	8 5
化合物20	十クロルヒ。リホス	0. 3+1	2 0	4 5
	十クロルフルアス゛ロン	0.3+1	2 5	8 5
	+クロルフェナピル	0.3+1	2 0	7 5
	+エマメクチン安息香酸塩	0.3+0.1	2 5	7 5
	+ メトキシフェノジド	0.3+0.1	4 5	8 5
	十イント。キサカルフ。	0. 3+1	4 5	7 5
	+フェンピロキシメート	0.3 + 50	3 0	8 0
化合物39	十クロルヒ。リホス	0.3+1	1 5	4 5
	十クロルフルアス゛ロン	0.3+1	2 0	7 5
	+クロルフェナヒ [®] ル	0. 3+1	1 5	7 0
	+エマメクチン安息香酸塩	0.3+0.1	2 0	7 0
	+ メトキシフェノジド	0.3+0.1	4 0	8 0
	+イント [*] キサカルフ [*]	0.3+1	4 0	7 0
	十フェンヒ゜ロキシメート	0.3+50	2 5	7 5

39

第2表 (続き)

		濃 度	死虫	中率(%)
供試薬剤		(ppm)	4日後	7 日 1
化合物40	十クロルヒ [®] リホス	0. 3+1	2 0	4 5
	十クロルフルアス゜ロン	0. 3+1	2 5	8 0
	十クロルフェナヒ [®] ル	0.3+1	1 5	7 0
	+エマメクチン安息香酸塩	0.3+0.1	2 0	7 0
	+ メトキシフェノジド	0.3+0.1	3 5	8 5
	十 イント゛キサカルフ゛	0. 3+1	3 5	7 5
	+フェンピロキシメート	0.3+50	2 0	7 0
化合物41	十クロルヒ゜リホス	0.3+1	4 0	8 0
	十クロルアルアス゜ロン	0.3+1	3 5	9 5
	十 クロルフェナヒ゜ル	0.3+1	3 0	7 5
	+ エマメクチン安息香酸塩	0.3+0.1	3 0	1 0 0
	+ メトキシフェノジド	0.3+0.1	7 5	9 5
	十 イント゛キサカルフ゛	0. 3+1	5 5	9 5
	+フェンヒ [・] ロキシメート	0.3+50	3 5	9 0
化合物42	十クロルヒ゜リホス	0.3+1	4 5	8 5
	. 十クロルフルアス ロン	0. 3+1	3 5	100
	十クロルフェナヒ [®] ル	0.3+1	3 0	8 5
	+ エマメクチン安息香酸塩	0.3+0.1	.30	1 0 0
	+ メトキシフェノシ*ト*	0.3+0.1	7 5	9 5
	十イント。キサカルフ。	0. 3+1	5 5	9 5
	十フェンピロキシメート	0. 3+50	3 0	8 5

第2表 (続き)

		濃 度	死虫	率(%)
供試薬剤		(ppm)	4日後	7 日包
化合物43	十クロルヒ゜リホス	0. 3+1	4 5	8 5
	十クロルフルアス゛ロン	0.3+1	3 5	9 5
	十クロルフェナヒ゜ル	0. 3+1	3 0	8 5
	+エマメクチン安息香酸塩	0. 3+0. 1	3 0	100
	+ メトキシフェノジド	0.3+0.1	7 5	9 5
	+ イント゛キサカルフ゛	0. 3+1	5 0	9 5
	+フェンヒ [®] ロキシメート	0.3 + 50	3 5	9 0
化合物44	十クロルヒ [®] リホス	0.3+1	2 5	6 5
	十クロルフルアス゜ロン	0.3+1	3 0	8 5
	十クロルフェナヒ゜ル	0.3+1	2 5	8 0
	+ エマメクチン安息香酸塩	0.3+0.1	2 5	7 5
	+	0.3+0.1	4 5	9 0
	+ インドキサカルブ	0.3 + 1	4 5	8 0
化合物45	十クロルヒ。リホス	0. 3+1	3 0	7 5
	十クロルフルアス゛ロン	0. 3+1	2 5	9 0
	十クロルフェナヒ゜ル	0.3+1	2 0	7 5
	+エマメクチン安息香酸塩	0.3+0.1	3 0	8 0
	+ メトキシフェノジド	0.3+0.1	3 5	8 5
	ナイント*キサカルフ*	0.3 + 1	3 5	7 5

第2表 (続き)

		濃 度	死!	虫率(%)
供試薬剤		(ppm)	4日後	7日往
化合物46	十クロルヒ゜リホス	0. 3+1	2 0	6 5
	十クロルフルアス゜ロン	0. 3+1	3 5	8 0
	十クロルフェナヒ゜ル	0.3+1	2 0	7 5
	+エマメクチン安息香酸塩	0.3+0.1	2 5	8 5
	+	0.3+0.1	3 5	8 5
	+イント*キサカルフ*	0.3+1	4 0	7 5
化合物47	十クロルヒ [®] リホス	0. 3+1	4 0	8 0
•	十クロルフルアス・ロン	0.3+1	4 0	9 5
	十クロルフェナヒ [®] ル	0.3+1	3 5.	9 5
	+ エマメクチン安息香酸塩	0.3+0.1	4 0	9 5
	+ メトキシフェノジド	0.3+0.1	7 5	100
	+ イント゛キサカルフ゛	0. 3+1	4 5	9 0
	十フェンヒ゜ロキシメート	0.3+50	3 5	9 5
化合物48	十クロルヒ。リホス	0.3 + 1	2 5	7 5
	十クロルフルアス・ロン	0.3+1	3 5	8 5
	+クロルフェナヒ [®] ル	0.3+1	3 5	8 0
	+エマメクチン安息香酸塩	0.3+0.1	3 0	9 0
	+ メトキシフェノジド	0.3+0.1	4 0	7 5
	+ イント"キサカルフ"	0. 3+1	3 5	. 8 0

第2表 (続き)

		濃 度	死虫	率(%)
供試薬剤		(ppm)	4日後	7日後
化合物54	+クロルヒ [®] リホス	0.3+1	3 0	8 0
	十クロルフルアス゛ロン	0.3 + 1	2 5	8 5
	十クロルフェナヒ [®] ル	0.3 + 1	3 0	. 85
	+エマメクチン安息香酸塩	0.3+0.1	3 0	9 5
	+ メトキシフェノジド	0.3+0.1	3 5	8 0
	+ イント゛キサカルフ゛	0. 3 + 1	3 0	8 5
化合物129	十クロルヒ゜リホス	0.1 + 1	3 5	7 5
	十クロルフルアス・ロン	0.1 + 1	3 5	9 5
	十クロルフェナヒ゜ル	0.1 + 1	3 0	7 5
	+エマメクチン安息香酸塩	0.1+0.1	2 5	8 5
	+ メトキシフェノジド	0.1+0.1	7 5	9 5
	+ イント゛キサカルフ゛	0.1 + 1	55	9 5
•	十フェンピ。ロキシメート	0.1+50	3 0	8 5
化合物130	十クロルヒ・リホス	0.1 + 1	3 5	7 5
-	十クロルフルアス゛ロン	0.1+1	3 5	9 5
	十クロルフェナヒ゜ル	0.1+1	3 0	7 5
	+エマメクチン安息香酸塩	0.1+0.1	2 5	8 5
	+ メトキシフェノジド	0.1+0.1	7 5	9 5
	+ インドキサカルブ	0.1+1	5 5	9 5
	十フェンヒ゜ロキシメート	0.1 + 50	3 0	8 5

第2表 (続き)

			濃度		死虫率	ß (%)
供試薬剤			(ppm)	4	l 日後	7日往
化合物131	十クロルヒ [®] リホス	0.	1+1	3	3 5	7 5
	十クロルフルアス゛ロン	0.	1+1	3	3 5	9 5
	十クロルフェナヒ゜ル	0.	1+1	3	3 0	7 5
	+エマメクチン安息香酸塩	ίΟ.	1 + 0.	1 2	2 5	8 5
	+メトキシフェノシ゛ド	0.	1+0.	1 .7	5	9 5
	+ イント゛キサカルフ゛	0.	1+1	5	5 5	9 5
	+フェンピロキシメート	0.	1+50	3	0	8 5
化合物19			0. 3	_	0	3 0
化合物20			0.3		0 .	2 5
化合物39			0.3		0	2 0
化合物40			0.3		0	2 5
化合物41			0.3		0	3 0
化合物42			0.3		0	3 0
化合物43			0.3		0	3 5
化合物44			0.3		0	2 0
化合物45		*	0.3		0	2 5
化合物46			0.3		0	1 5
化合物47			0.3		0	3 0
化合物48			0.3		0	2 5
化合物54			0.3		0	2 5
化合物129			0. 1	1	0	3 0

第2表 (続き)

	濃度	死虫	、率 (%)
供試薬剤	(ppm)	4日後	7日後
化合物130	0. 1	10	2 5
化合物131	0. 1	5	20
クロルヒ [®] リホス	1	10	10
クロルフルアス・ロン	1	1 0	3 0
クロルフェナヒ [®] ル	1	0	0
エマメクチン安息香酸塩	0. 1	10	4 5
メトキシフェノシ ゙ ト゛	0. 1	0	5 0
イント゛キサカルフ゛	1	1 0	4 0
フェンヒ゜ロキシメート	5 0	0	0
for the season			
無処理区	_	0	0

試験例2. モモアカアブラムシに対する殺虫試験

20 直径8cm、高さ8cmのプラスチックポットにハクサイ(品種:愛知)を植え、 モモアカアブラムシを繁殖させた後、所定濃度に希釈調製した薬液を茎葉部に十 分散布した。風乾後、ポットを温室内に静置し、散布6日後に各ハクサイに寄生 しているアブラムシ数を調査し、下記の基準に従って防除価を算出した(1区1 ポット2連制)。

25 防除価=100-{(Ta×Cb)/(Tb×Ca)}×100

Ta: 処理区の散布後寄生虫数

Tb: 処理区の散布前寄生虫数

Ca:無処理区の散布後寄生虫数

Cb:無処理区の散布前寄生虫数

結果を第3表に示す。

第3表

供試薬剤	•	濃度(ppm)	防除価(%)
化合物19	+7セフェート	100+10	8 1
	+ イミダクロプリド	100+0.1	100
	十 ビフェントリン	100+0.1	1 0 0
	十フルフェノクスロン	100+50	4 3
	+ ピリダベン	100+10	9 2
	+ ミルベメクチン	100+1	100
化合物20	+ アセフェート	100+10	8 1
	+イミダクロプリド	1 0 0 + 0. 1	100
	十ビフェントリン	100+0.1	100
	十フルフェノクスロン	100+50	5 2
	十ピりダベン	100+10	9 2
	+ ミルベ メクチン	100+1	9 4
化合物39	+7セフェート	100+10	8 3
	+ イミダクロプリド	100+0.1	9 7
	+ビフェントリン ⁻	100+0.1	100
	十フルフェノクスロン	100+50	48
	+ ピリダペン	100+10	9 2
	+ ミルベ メクチン	100+1	9 4

第3表 (続き)

供試薬剤		濃度(ppm)	防除価(%)
化合物40	+アセフェート	100+10	8 6
	十イミタ゛クロフ゜リト゛	100+0.1	100
	+ ビフェントリン	100+0.1	100
•	十フルフェノクスロン	100+50	4 8
	+ ピリダベン	100+10	9 2
	十 ミルヘ゛ メクチン	100+1	.100
化合物41	+アセフェート	100+10	9 5
	十イミタ゛クロフ゜リト゛	100+0.1	100
	+ ビフェントリン	100+0.1	100
	十フルフェノクスロン	100+50	6 0
	十ピリダベン	100+10	8 8
	+ ミルベメクチン	100+1	9 8
化合物42	+アセフェート	100+0	9 5
	十イミタ゛クロプリト゛	100+0.1	100
	十ピ、フェントリン	100+0.1	100
	十フルフェノクスロン	100+50	5 5
	+ ピリダペン	100+10	9 0
	十 ミルヘ* メクチン	100+1	1 0 0

第3表 (続き)

供試薬剤		濃度(ppm)	防除価(%)
化合物43	+7セフェート	100+10	9 0
	十イミタ゛クロフ゜リト゛	100+0.1	9 5
	十ビフェントリン	100+0.1	100
	十フルフェノクスロン	1 0 0 + 5 0	6 0
	+ ピリダベン	100+10	8 5
	+ ミルヘ* メクチン	100+1	100
化合物44	十アセフェート	100+10	7 5
	+1ミダクロプリト゚	100+0.1	8 0
	十ビフェントリン	100+0.1	9 5
	十フルフェノクスロン	100+50	5 5
	十ピリダベン	100+10	7 3
	十 ミルヘ* メクチン	100+1	9 3
化合物45	+アセフェート	100+10	7 0
	+ イミダクロプリド	100+0.1	7 8
	+ ビフェントリン	100+0.1	9 3
	十フルフェノクスロン	100+50	6 1
	+ t° 99* ^* >	100+10	7 8
	十ミルヘ゛メクチン	100+1	98

第3表(続き)

供試薬剤		濃度(ppm)	防除価(%)
化合物46	+アセフェート	100+10	6 5
	· +イミダクロプリド	100+0.1	7 5
,	十ビフェントリン	100+0.1	. 94
	十フルフェノクスロン	100+50	5 5
	+ ピリダベン	1 0 0 + 1 0	6 8
	+ ミルベメクチン	100+1	9 5
化合物47	+アセフェート	100+10	7 8
	十イミタ゛クロフ゜リト゛	100+0.1	8 8
	十ビフェントリン	100+0.1	9 4
	十フルフェノクスロン	100+50	. 58
	+ ピリダベン	100+10	7 5
	+ ミルベメクチン	100+1	9 4
化合物48	+7セフェート	100+10	6 6
	十イミタ* クロプ リト*	100+0.1	93
	十と、フェントリン	100+0.1	9 6
	十フルフェノクスロン	100+50	, 48
	+ ピリダベン	100+10	7 5
	+ ミルペメクチン	100+1	9 0

第3表 (続き)

供試薬剤	ij	濃度(ppm)	防除価(%)
化合物54	1 +7t7z-h	100+10	6 5
	+ イミダクロプリド	100+0.1	9 2
	+ ビフェントリン	100+0.1	8 9
	十フルフェノクスロン	100+50	5 5
	+t° リダベン	100+10	7 3
	+ ミルベメクチン	100+1	9 5
化合物129	29 + アセフェート	100+10	8 5
	+イミダクロプリト ゙	100+0.1	100
	十ビフェントリン	100+0.1	100
	十フルフェノクスロン	100+50	4 5
	十ピリダンベン	100+10	9 0
	十ミルベーメクチン	100+1	100
化合物130	30 +7セフェート	1 0 0 + 1 0	8 7
	+1ミダクロプリド	100+0.1	100
	十ピプテントリン	100+0.1	100
	十フルフェノクスロン	100+50	5 4
	+ ピリタ゚ペ ン	100+10	9 6
	十ミルヘ゛メクチン	1 0 0 + 1	9 5
化合物13	31 +アセフェート	100+10	8 1
	十 <i>イミタ</i> * クロフ * リト *	100+0.1	9 9
	+ ビフェントリン	100+0.1	9 7

第3表(続き)

供試薬剤	濃度(ppm)	· 防除価(%)
化合物19	100	0
化合物20	1 0 0	. 0
化合物39	100	0
化合物40	100	0 .
化合物41	100	. 0
化合物42	100	0
化合物43	100	0
化合物44	100	0
化合物45	1 0 0	0
化合物46	100	0
化合物47	100	0
化合物48	100	O
化合物54	100	0
化合物129	1 0 0	5
化合物130	100	1 0
化合物131	1 0 0	0
アセフェート	1 0	4 8
イミタ゛クロフ゜リト゛	0.1	6 9
ヒ、フェントリン	0.1	8 0
フルフェノクスロン	5 0	1 1
ピ リタ゛ヘ゛ン	1 0	4 3
ミルヘ・メクチン	1	8 2

試験例3. トビイロウンカに対する殺虫試験

所定濃度に希釈調製した薬液にイネ実生(品種:日本晴)を30秒間浸漬し、 風乾後ガラス製試験管(直径1.8cm、高さ20cm)に入れ、トビイロウンカ3 令を10頭ずつ接種した後、綿栓をした。処理1、4日後に生存数を調査し、死 5 虫率を算出した(1区10頭2連制)。

結果を第4表に示す。

第4表

供試薬剤		濃 度	死虫	率(%)
		(p p m)	1日後	5日往
化合物19	十ブプロフェジン	100+0.3	1 5	7 :
	+ ピメトロジン	100+100	2 0	8 9
•	十シラフルオフェン	1 0 0 + 1	9 5	100
	+ 159 * 107 ° 11	100+0.1	8 5	100
化合物20	十ブプロフェジン	100+0.3	1 0	8 (
	十ピメトロジン	100+100	2 5	9 (
	十 シラフルオフェン	100+1	8 5	9 (
	+ イミダクロプリド	100+0.1	6 5	9 5
化合物39	十プププロフェジン	100+0.3	1 5	7 (
	+ t°	100+100	3 0	8 5
	十シラフルオフェン	1 0 0 + 1	8 5	8 5
	+ イミダクロプリド	100+0.1	6 5	9 5
化合物40	十ププロフェジン	100+0.3	2 0	7 5
	.+ ピメトロジン .	100+100	2 5	9 C
	十シラフルオフェン	100+1	9 0	9 5

第4表(続き)

供試薬剤		濃 度	死虫	.率(%)
	·	(p p m)	1日後	5 目 1
化合物40	+ イミダクロプリド	100+0. 1	7 5	9
化合物41	十ブブ゚ロフェジン	100+0. 3	1 5	10
	十七。オトロシ、ス	100+100	3 0	9,
	十シラフルオフェン	1 0 0 + 1	8 5	9 :
	+ イミダクロプリド	100+0.1	8 5	10
化合物42	十ブプロフェジン	100+0.3	2 5	10
	+ t°	100+100	3 5	9 :
	十シラフルオフェン	100+1	8 5	9
	+1<9* クロプ リド	100+0.1	9 0	10
化合物43	十ププロフェジン	100+0.3	3 0	10
	+ピメトロジン	100+100	4 0	9
	十シラフルオフェン	100+1	9 0	10
	+ <i>イミダクロプ</i> リド	100+0. 1	9 0	10
化合物44	十ブブ。ロフェジン	100+0.3	1 5	9
	+ ピメトロジン	100+100	2 5	9
	十シラフルオフェン	1 0 0 + 1	7 5	8
	+ イミダクロプリド	100+0.1	8 0	9
化合物45	十ブブ゚ロフェジン	100+0.3	2 0	9 :
	十ピ。メトロシ、ン	100+100	3 0	10
	十シラフルオフェン	100+1	8 0	8 (
	+ イミダクロプリド	100+0. 1	8 5	9 (
化合物46	十ブプロフェジン	100+0. 3	1 5	8 (

第4表 (続き)

供試薬剤		濃 度	死虫	率 (%)
		(ppm)	1日後	5 日包
化合物46	+ ኒ	100+100	2 5	9 (
	+ シラフ <i>ル</i> オフェン	1 0 0 + 1	7 5	7 5
	+ イミダクロプリド	100+0.1	7 0	7 5
化合物47	十ブプロフェジン	100+0.3	2 0	7 5
	ተ ቲ° ሃ ነ ነ ነ	100+100	3 0	8 5
	十シラフルオフェン	1 0 0 + 1	6 5	7 (
	+1ミダクロプリド	100+0.1	7 0	8 5
化合物48	+ブプロフェジン	100+0.3	2 5	- 8 5
	+ t° メトロジン	100+100	3 5	9 0
	+シラフルオフェン	100+1	7 0	7 5
	十イミタ * クロフ * リト *	100+0.1	7 5	8 0
化合物54	十ブプロフェジン	100+0.3	1 5	7 5
	+ピメトロジン	100+100	3 0	7 5
	十シラフルオフェン	100+1	6 5	6 5
	十イミタ [*] クロフ [*] リト [*]	100+0.1	8 0	8 8
化合物129	十ブプロフェジン	100+0.3	1 5	8 0
	+ピメトロジン	100+100	1 5	9 0
	十シラフルオフェン	1 0 0 + 1	9 0	100
	+ イミダクロプリド	100+0.1	8 5	100

第4表 (続き)

供試薬剤	濃度	死虫	率(%)
	(ppm)	1日後	5 日後
化合物130 +ブプロフェジン	100+0.3	2 0	8 5
+ ピメトロジン	100+100	2 5	9 (
十シラフルオフェン	100+1	9 0	9 5
十イミタ゛クロフ゜リト゛	100+0.1	9 0	9 5
化合物131 +ブプロフェジン	100+0.3	2 5	8 5
十ピ。メトロシ、ソ	100+100	2 0	8 5
十シラフルオフェン	100+1	9 5	100
+ イミダクロプリド	100+0.1	8 5	100
化合物19	100	0	C
化合物20	100	0	C
化合物39	100	0	
化合物40	100	0	C
化合物41	100	0	C
化合物42	100	0	· c
化合物43	100	0	C
化合物44	100	0	C
化合物45	100	0	. 0
化合物46	100	. 0	. 0
化合物47	100	0	0
化合物48	100	0	0

第4表 (続き)

供試薬剤	濃度	死虫	率(%)
	(ppm)	1日後	5 日後
化合物54	100	0	0
化合物129	100	. 0	0
化合物130	100	0	0
化合物131	100	0	0
ブ゛フ゜ ¤フェシ゜ン	0.3	0	4 5
ピメトロジン	100	1 0	4 0
シラフルオフェン	1	3 0	3 0
	0. 1	3 5	3 5

試験例4. 抵抗性ナミハダニに対する殺虫試験

20 直径 8 cmのプラスチック製カップに水を満たし、直径1cm の穴のある蓋をし、 蓋の上部に一部切れ込みのある濾紙を置き、蓋から水中に懸垂させて毛細管現象 で濾紙が常時湿っている状態とした。

インゲン初生葉(品種:トップクロップ)で直径2cmのリーフディスクを作成して上記濾紙上に置き、そこへ抵抗性ナミハダニ雌成虫10頭を接種し、ターン テーブル上で所定濃度に希釈調製した薬液50mlを均一に散布し、散布後25℃の恒温室に静置した。

処理2日後に生存虫数を調査し、死虫率を算出した(1区10頭2連制)。結果を第5表に示す。

第5表

供試薬剤		濃度(ppm)	死虫率(%)
化合物19	十テフ゛フェンピラド	100+100	9 5
	+酸化フェンブタスズ	100+100	9 0
	十ハルフェンフ゜ロックス	100+100	8 5
化合物20	+テブフ ェ ンピラド	100+100	9 0
	+酸化フェンブタスズ	100+100	8 5
	十ハルフェンフ゜ロックス	100+100	9 0
化合物39	++ テブフェンピラド	100+100	8 5
	+酸化フェンブタスズ	100+100	7 5
	十ハルフェンフ゜ロックス	100+100	9 0
化合物40	+テプフェンピラド	100+100	8 5
	+酸化フェンブタスズ	100+100	9 0
	十ハルフェンフ゜ロックス	100+100	9 5
化合物41	+ テブフェンピラド	100+100	9 0
	+酸化フェンブタスズ	100+100	9 5
	十ハルフェンフ゜ロックス	100+100	8 5
化合物42	+テブフェンピラド	100+100	9 5
	+酸化フェンブタスズ	100+100	9 0
	十ハルフェンフ゜ロックス	100+100	9 0
化合物43	+ <i>テ</i> ブフェンピラド	100+100	9 5
	+酸化フェンブタスズ	100+100	9 0
	十ハルフェンフ゜ロックス	100+100	9 5

第5表(続き)

供試薬剤		濃度(ppm)	死虫率(%)
化合物44	+テブフェンピラド	1 0 0 + 1 0 0	8 5
	+酸化フェンブタスズ	100+100	9 5
	十ハルフェンフ゜ロックス	100+100	9 0
化合物45	+テブフェンピラド	100+100	7 5
	+酸化フェンブタスズ	100+100	8 0
	十ハルフェンフ゜ロックス	100+100	7 5
化合物46	+テブフェンピラド	100+100	9 5
	+酸化フェンブタスズ	100+100	9 0
	十ハルフェンフ゜ロックス	100+100	8 0
化合物47	+テブフェ ンピラド	100+100	8 5
	+酸化フェンブタスズ	100+100	8 5
	十ハルフェンフ゜ロックス	100+100	7 5
化合物48	+ <i>テ</i> ブフェンピラド	100+100	9 0
	+酸化フェンブタスズ	100+100	8 5
	十ハルフェンフ゜ロックス	100+100	9 5
化合物54	+ <i>テ</i> プフェンピラド	100+100	8 0
	+酸化フェンブタスズ	1 0 0 + 1 0 0	8 5
	十ハルフェンフ゜ロックス	100+100	9 0
化合物129	+ <i>テ</i> ブフェンピラド	100+100	9 5
	+酸化フェンプタスズ	100+100	8 5
	十ハルフェンフ゜ロックス	1 0 0 + 1 0 0	8 5
	十スピロジクロフェン	100+10	9 0

第5表(続き)

供試薬剤		濃度(ppm)	死虫率(%
化合物130	+ テフ゛フェンピ ラド	100+100	9 0
	+酸化フェンブタスズ	100+100	9 5
	十ハルフェンフ゜ロックス	100+100	8 0
	十スピロジク ロフェン	100+10	7 5
化合物131	十テフ゛フェンピ ラト ゙	100+100	9 5
	+酸化フェンブタスズ	100+100	8 5
	十ハルフェンフ゜ロックス	100+100	9 0
	十スピ。ロシ、クロフェン	100+10	8 5
化合物19		100	0
化合物20		100	0
化合物39		100	0
化合物40		100	0
化合物41		100	0
化合物42		100	0
化合物43		100	0
化合物44		100	0
化合物45		100	. 0
化合物46		100	0
化合物47		100	0
化合物48		100	0
化合物54		100	0
化合物129		100	5

第5表(続き)

供試薬剤	. 濃度(ppm)	死虫率(%)
5 化合物130	100	1 0
化合物131	1 0 0	5
テフ [*] フェンヒ [®] ラト [*]	1 0 0	6 0
酸化フェンブタスズ	100	5 0
0 ハルフェンフ゜ロックス	1 0 0	3 5
無処理区	_	0

15 試験例 5. サツマイモネコブセンチュウに対する効果試験

2kgのネコブセンチュウ汚染土壌と所定薬量の粒剤を混和処理し、1/5000 a (アール)のワグネルポットに充填し、メロン種子を播種し、処理後、温室に静置した。処理60日後に土壌25gを採取し、ベルマン法でセンチュウを分離し、48時間後に調査した(1区1ポット2連制)。

20 結果を第6表に示す。また、以下の表中、aiは有効成分を意味する。

第6表

供試薬剤	Ú .	薬量 (g ai/10a)	線虫数/25g採取土壌
化合物1	Э 十オキサミル	3 0 0 + 3 0 0	3
	+	300+300	. 1
化合物20) +オキサミル	300+300	4
	+	300+300	2
化合物39	9 十井北	3 0 0 + 3 0 0	5
	+ ホスチアゼート	300+300	1
化合物4	つ ナキサミル	300+300	4
	+ \$zf?t*-\	300+300	3
化合物4	1 ナオサシル	300+300	3
	+ \$257t*-h	300+300	2
化合物4	2 + オキサミル	300+300	7
	+ ホスチアゼート	300+300	5
化合物4	3 +オキサミル	300+300	6
	+ ホスチアゼート	300+300	2
化合物4	4 + オキサミル	300+300	5
	+	300+300	5
化合物4	5 +オキサミル	300+300	4
	十ホスチアセ゛ート	300+300	2
化合物4	6 十オキサミル	300+300	1
	+	300+300	3
化合物4	7 十オキサミル	300+300	5
	+ ホスチアゼート	3 0 0 + 3 0 0	· 3

第6表(続き)

供試薬剤		薬量 (g ai/10a)	線虫数/25g採取土壌
化合物48	十オキサミル	3 0 0 + 3 0 0	4
	+	3 0 0 + 3 0 0	2
化合物54	+ オキサミル	300+300	4
	+*xチアゼート	300+300	2
化合物129	十才計小	300+300	8
	+	3 0 0 + 3 0 0	2
化合物130	+ オキサミル	300+300	5
	+	3 0 0 + 3 0 0	1
化合物131	+オキサミル	300+300	6
	+	300+300	3
化合物19		3 0 0	3 6
化合物20		3 0 0	2 8
化合物39		3 0 0	3 4
化合物40	,	3 0 0	3 3
化合物41		300	3 1
化合物42		3 0 0	2 8
化合物43		3 0 0	3 6
化合物44		3 0 0	2 9
化合物45		3 0 0	3 0
化合物46		3 0 0	3 6
化合物47		300	2 7
化合物48		300	3 3

第6表(続き)

供試薬剤	薬量 (g ai/10a)	線虫数/25g採取土壌
化合物54	3 0 0	3 2
化合物129	300	4 5
化合物130	3 0 0	4 0
化合物131	3 0 0	4 1
オキサミル	3 0 0	1 3
ホスチアセ゛ート	3 0 0	7
無処理区	_	3 3

15

試験例6.水稲の育苗箱施用によるイネミズゾウムシ及びいもち病防除試験

育苗箱で栽培したイネ(品種:コシヒカリ)に、粒剤を箱当たり50g処理した後、当日に本田へ移植した(5月中旬)。イネミズゾウムシに対する防除効果は移植21日後に各区100株について被害程度別株数を調査し被害度を算出した。イネいもち病に対する効果は移植60日後に病斑面積率を調査し判定した。被害度={(4A+3B+2C+D)/(4×N)}×100

A:被害葉率91%以上

B:被害葉率61~90%

C:被害葉率31~60%

25 D:被害葉率1~30%

N:調査株数

結果を第7表に示す。

第7表

5	供試薬剤	- •	量 ai/箱)	被害度			率(%) 3後
	化合物19 +イミダクロプリド+カルプロパミド	0.	5+1+2	3.	5	0.	4
	化合物20 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	2.	3	0.	3
	化合物39 +イミダクロプリド+カルプロパミド	0.	5+1+2	1.	5	0.	1
	化合物40 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	2.	5	0.	6
10	化合物41 +イミダクロプリド+カルプロパミド	0.	5+1+2	1.	3	0.	2
	化合物42 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	2.	5	0.	2
	化合物43 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	1.	3	0.	1
	化合物44 +イミダクロプリド+カルプロパミド	0.	5+1+2	3.	8	0.	4
	化合物45 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	2.	2	0.	3
15	化合物46 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	1.	8	0.	4
	化合物47 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	2.	8	0.	2
	化合物48 +イミダクロプリド+カルプロパミド	0.	5 + 1 + 2	1.	9	0.	5
	化合物54 +イミダクロプリド+カルプロパミド	0.	5+1+2	1.	3	0.	6
	化合物129 +イミダクロプリド +カルプロパミド	0.	5+1+2	3.	5	0.	5
20	化合物130 +イミダクロプリド +カルプロパミド	0.	5+1+2	2.	9	0.	4
	化合物131 +イミダクロプリド +カルプロパミド	0.	5+1+2	3.	2	0.	3
	化合物19	0.	5	38.	9	8.	3
	化合物20	0.	5	3 7.	4	8.	1
25	化合物39	0.	5	38.	9	8.	2
	化合物40	0.	5	39.	0	7.	9

第7表(続き)

	薬量	被害度	病斑	面積	率
供試薬剤	(g ai/箱)	21日後		60日	後
化合物41	0. 5	43.	2	8.	
化合物42	0. 5	39.	5	8.	;
化合物43	0.5	44.	3	8.	ç
化合物44	0.5	45.	9	9.	
化合物45	0.5	38.	8	8.	:
化合物46	0.5	42.	7	8.	į
化合物47	0.5	40.	9	7.	į
化合物48	0.5	39.	8	7.	4
化合物54	0. 5	41.	7	9.	(
化合物129	0.5	40.	3	9.	
化合物130	0.5	39.	0	8.	;
化合物131	0.5	41.	2	8.	•
イミタ゛クロフ゜リト゛ + カルフ゜ロハ゜ ミト゛	1 + 2	5.	8	1.	2
無処理区	-	4 5.	6	8.	

試験例7. 水稲の育苗箱施用によるヒメトビウンカ及びコブノメイガ防除試験 育苗箱で栽培したイネ(品種:日本晴)に、粒剤を箱当たり50g処理した後、 25 本田に移植した(5月中旬)。ヒメトビウンカに対する防除効果は移植40日、 60日後に各区30株について寄生虫数を調査し、コブノメイガに対する防除効 果は移植50日後に各区100株について被害葉数を調査し、被害葉率を算出した。

結果を第8表に示す。

第8表

供試薬剤		薬量	ウンカ寄生数	数/30 株	被害葉率(
		(g ai/箱)	40日後	60日後	50日後
化合物19	+ イミダクロプリド	0.5 + 1	. 0	4	0.03
	十ベンフラカルブ	0.5 + 2.5	17	48	0. 07
化合物20	+ イミダクロプリド	0.5 + 1	0	7	0. 05
	十ベンフラカルブ	0.5 + 2.5	2 2	5 5	0, 08
化合物39	十イミタ゛クロプ リト゛	0.5 + 1	0	9	0. 04
	十ベンフラカルブ	0.5 +2.5	2 4	4 5	0.07
化合物40	+1ミダクロプリド	0.5 + 1	0	1 0	0.02
	十ベンフラカルブ	0.5 + 2.5	17	5 4	0.08
化合物41	十イミダクロプリド	0.5 + 1	0	6	0. 04
	十ベンフラカルブ	0.5 + 2.5	3 3	3 4	0.06
化合物42	十イミダクロプリド	0.5 + 1	0	7	0.03
	十ベンフラカルブ	0.5 +2.5	3 1	6 5	0.08
化合物43	+1ミダクロプリド	0.5 + 1	0	9	0. 02
	十ベンフラカルブ	0.5 + 2.5	1 4	3 3	0.06
化合物44	+ イミダクロプリド	0.5 + 1	0	3	0.03
	十ベンフラカルブ	0.5 + 2.5	18	53.	0.08
化合物45	+イミダクロプリド	0.5 + 1	0	4	0. 02
	十ベンフラカルプ	0.5 + 2.5	2 5	2 3	0.08
化合物46	+ イミダクロプリド	0.5 + 1	0	7	0. 05
	十ベンフラカルブ	0.5 + 2.5	13	5 4	0. 09

第8表 (続き)

供試薬剤		薬 量 :	フンカ寄生数	女/30 株	被害葉率
		(g ai/箱)	40日後	60日後	50日後
化合物47	+イミダクロプリド	0.5 + 1	0	7	0. C
	十ベンフラカルブ	0.5 + 2.5	1 6	3 6	0. 0
化合物48	+ イミダクロプリド	0.5 + 1	0	6	0. 0
	十ベンフラカルブ	0.5 + 2.5	3 3	28	0. 0
化合物54	+ イミダクロプリド	0.5 + 1	0	9	0. 0
•	十ベンフラカルブ	0.5 + 2.5	3 1	4 5	0. 0
化合物129	十 <i>イミタ</i> * クロヒ * リト *	0.5 +1	0	7	0. 0
	十ベンフラカルブ	0.5 + 2.5	1 5	5 7	0. 0
化合物130	十イミダクロピリド	0.5 +1	0	6	0. 0
	十ベンフラカルブ	0.5 + 2.5	18	6 1	0. 0
化合物131	十一个5月"10日"1115	0.5 + 1	0	8	0. 0
	+ベンフラカ <i>ル</i> ブ	0.5 +2.5	2 0	4 9	0. 0
化合物19		0. 5	3 2 5	3 8 9	0. 1
化合物20		0.5	315	3 5 4	0. 1
化合物39		0.5	3 4 3	372	0. 2
化合物40		0.5	3 2 2	3 5 8	0. 3
化合物41		0.5	3 3 3	3 8 5	0. 3
化合物42		0.5	3 4 5	3 8 9	0. 2
化合物43		0.5	309	3 3 4	0. 1
化合物44		0.5	3 2 3	3 5 8	0. 2
化合物45		0. 5	353	3 9 5	0. 1

第8表 (続き)

供試薬剤	薬量	ウンカ寄生	数/30 株	被害葉率
·	(g ai/箱)	40日後	60日後	50日後
化合物46	0. 5	3 4 9	387	0. 18
化合物47	0.5	3 2 8	365	0. 10
化合物48	0. 5	3 4 5	383	0.33
化合物54	0. 5	3 2 8	3 3 4	0. 25
化合物129	0.5	3 2 3	390	0.13
化合物130	0.5	3 3 1	382	0.16
化合物131	0. 5	3 4 2	3 9 1	0.14
イミタ゛クロフ゜リト゛	1	0	2 9	1. 63
ヘ゛ンフラカルフ゛	25	7 8	244	1. 13
無処理区	_	3 5 5	388	1. 54

20 試験例8. カンランの土壌処理によるコナガ及びアブラムシ防除試験

粒剤を床土混和した土をセル苗箱に充填しカンラン(品種:YR睛徳)を播種、 又はセル苗植えカンランの本葉抽出期に処理、又は定植直前に処理、又は定植時 に植え穴処理、又は定植後に株元処理した。移植21日後にコナガは30株あた りアブラムシは10株あたりの寄生虫数を調査した(6月下旬)。

25 結果を第9表に示す。

第9表

		薬量		寄生数	女/30株
供試薬剤		(mg ai/株)	処理方法	コナガ	アブラムシ
化合物19	+1<59° 0¤7° リド	5+20	定植直前処理	0	0
		5 + 20	植え穴処理	0	0
	•	5 + 20	株元処理	0	. 0
化合物20	+ イミダクロプリド	5+20	定植直前処理	0	0
		5+20	植え穴処理	0	0
		5+20	株元処理	0	0
化合物39	+イミダクロプリド	5+20	定植直前処理	0	0
		5 + 20	植え穴処理	0	0
		5+20	株元処理	0	0
化合物40	+ イミダクロプリド	5+20	定植直前処理	0	0
		5+20.	植え穴処理	0	0
		5+20	株元処理	0	0
化合物41	+ イミダクロプリド	5+20	定植直前処理	0	0
		5 + 2 0	植え穴処理	0	0
		5+20	株元処理	0	0
化合物42	+ イミダクロプリド	5+20	定植直前処理	0	0
		5+20	植え穴処理	0	0
		5+20	株元処理	0	0
化合物43	+1ミダクロプリド	5 + 2 0	定植直前処理	0	0
		5+20	植え穴処理	0	0
		5+20	株元処理	0	0

第9表 (続き)

		薬量		寄生数	女/30株
供試薬剤		(mg ai/株)	処理方法	コナガ	アブラムシ
化合物44	+ イミダクロプリド	5+20	定植直前処理	0	0
		5 + 20	植え穴処理	0	0
		5 + 20	株元処理	0	0
化合物45	+1ミダクロプリド	5 + 20	定植直前処理	0	0
		5 + 20	植え穴処理	0	0
		5 + 20	株元処理	0	0
化合物46	+ イミタ゛クロプ リト゛	5 + 20	定植直前処理	0	0
		5 + 20	植え穴処理	0	0
		5 + 20	株元処理	0	0
化合物47	十イミタ゛クロプ゚リト゛	5 + 20	定植直前処理	. 0	0
		5 + 20	植え穴処理	0	0
		5+20	株元処理	0	0
化合物48	十イミダクロプリド	5+20	定植直前処理	. 0	0
		5 + 20	植え穴処理	0	0
		5+20	株元処理	0	0
化合物54	+ イミダクロプリド	5+20	定植直前処理	! 0	0
		5 + 20	植え穴処理	0	0
		5 + 20	株元処理	0	0
化合物12	9 ナイミダ クロブ りト	5+20	定植直前処理	! 0	0
		5 + 2 0	植え穴処理	0	0
		5 + 20	株元処理	0	0

第9表(続き)

	薬量	. f	寄生数/	30株
供試薬剤	(mg ai/株)	処理方法	ナガア	ブラム
化合物130 +イミダクロプリド	5+20	定植直前処理	0	
	5 + 2 0	植え穴処理	0	
	5 + 20	株元処理	0	
化合物131 +イミダクロプリド	5 + 20	定植直前処理	0	
	5 + 20	植え穴処理	0	
	5+20	株元処理	0	
化合物19	5	床土混和	1	4 4
	5	本葉抽出期処理	2	4 5
	5	定植直前処理	1	3 9
	5	植え穴処理	1	4 6
	5	株元処理	2	4 8
化合物20	5	床土混和	4	5 1
	5	本葉抽出期処理	2	4 9
·	5	定植直前処理	6	4 7
	5	植え穴処理	3	4 9
	5	株元処理	5	5 0
化合物39	5	床土混和	3	5 1
	5	本葉抽出期処理	2	4 8
	5	定植直前処理	4	4 5
	5	植え穴処理	3	4 3
	5	株元処理	2	4 5

第9表(続き)

	薬量	寄	生数/	30株
供試薬剤	(mg ai/株)	処理方法 コナ	ガア	ブラム
化合物40	5	床土混和	2	4 7
	5	本葉抽出期処理	1	5 1
•	5	定植直前処理	. 1	47
	. 5	植え穴処理	1	48
	5	株元処理	3	47
化合物41	5	床土混和	3	4 5
	5	本葉抽出期処理	2	4 9
	5	定植直前処理	1	4 5
	5	植え穴処理	2	5 1
	5	株元処理	2	4 5
化合物42	5	床土混和	3	47
	5	本葉抽出期処理	2	4 8
	5	定植直前処理	3	4 3
	5	植え穴処理	1	47
	5	株元処理	3	4 9
化合物43	5	床土混和	2	5 0
	5	本葉抽出期処理	2	4 4
	5	定植直前処理	3	4 8
	5	植え穴処理	1	44
	5	株元処理	2	4 6

第9表(続き)

第9表 (続き)

	薬量	寄	生数/	3 0 棋
供試薬剤	(mg ai/株)	処理方法 コナ	ガア	ブラム
化合物48	5	床土混和	5	5 0
	5	本葉抽出期処理	2	4 4
	5	定植直前処理	5	4 7
	5	植え穴処理〉	1	4 9
	5	株元処理	4	4 5
化合物54	5	床土混和	1	4 7
	5	本葉抽出期処理	3	4 5
	5	定植直前処理	1	4 8
	5	植え穴処理	3	4 9
	5	株元処理	2	4 6
化合物129	5	床土混和	2	4 5
	5	本葉抽出期処理	1	4 5
	5	定植直前処理	2	4 0
	5	植え穴処理	3	3 9
	5	株元処理	1	4 8
化合物130	5	床土混和	1	4 5
	5	本葉抽出期処理	1	3 9
	5	定植直前処理	1	4 2
	5	植え穴処理	2	4 6
	5	株元処理	1	4 9

第9表(続き)

	薬量		寄生数	/30株
供試薬剤	(mg ai/株)	処理方法	コナガ	アブラムシ
化合物131	5 .	床土混和	1	432
	5	本葉抽出期処理	里 1	465
	5	定植直前処理	2	4 2 8
	5	植え穴処理	2	3 9 1
	5	株元処理	1	486
イミタ゛クロフ゜リト゛	2 0	定植直前処理	3 5	1 C
	2 0	植え穴処理	4 0	1 6
	20	株元処理	3 8	1 3
無処理区	_		4 1	479

(注) 床土混和、本葉抽出期のイミダクロプリド単用及び混用区は薬害の影響で効果判定できなかった。

試験例9. ビートのヨトウに対する効果試験

ペーパーポット植えのビート (品種:モノエースS) に、所定濃度に希釈調製した薬液を $3\,L/m^2$ 潅注処理し、直後に定植した。定植後、所定日に $1\,$ 区につき $1\,0\,0$ 株当たりの被害株数を調査した($1\,$ 区 $8\,$ 0 m^2 2連制)。

25 結果を第10表に示す。

20

第10表

		薬量	被領	害株数/1	00株
供試薬剤		(g ai/10a)	60日後	90日後	120日後
化合物19	+ アセフェート	15+50	0	3	11
化合物20	+ アセフェート	15+50	0	4	1 0
化合物39	+ アセフェート	15+50	0	2	8
化合物40	+ アセフェート	15+50	. 0	1	7
化合物41	+ アセフェート	15+50	0	5	9
化合物42	+ アセフュート	15+50	0	4	1 0
化合物43	+ アセフェート	15+50	0	2	6
化合物44	+ アセフェート	15+50	0	3	8
化合物45	+ アセフェート	15+50	0	1	5
化合物46	+ アセフェート	15+50	0	4	1 1
化合物47	+ アセフェート	15+50	0	5	1 2
化合物48	+ アセフェート	15+50	0	2	5
化合物54	+ アセフェート	15+50	0	2	6
化合物129	+ アセフュート	15 + 50	0	3	1 4
化合物130	+ アセフュート	15+50	0	2	9
化合物131	+ アセフェート	15+50	0	5	1 2
化合物19		1 5	0	8	2 1
化合物20		1 5	0	7	2 0
化合物39		1 5	0	6	1 7
化合物40		1 5	0	9	23
化合物41		1 5	0	7	2 1

第10表(続き)

供試薬剤	薬量	被領	害株数/1	100株
	(g ai/10a)	60日後	90日後	120日後
化合物42	1 5	0	8	2 2
化合物43	1 5	0	6	19
化合物44	1 5	0	7	2.0
化合物45	1 5	0	9	23
化合物46	1 5	0	8	2 0
化合物47	1 5	0	9	2 1
化合物48	1 5	0	7	18
化合物54	1 5	0	8	1 9
化合物129	1 5	0	1 0	2 2
化合物130	1 5	0	7	19
化合物131	1 5	0	8	2 1
アセフェート	5 0	2	1 4	2 4
無処理区		. 6	2 6	3 0

試験例10. 天敵農薬との併用によるナスのミカンキイロアザミウマに対する防 除試験

25 ビニールハウス内のミカンキイロアザミウマの発生したナス(千両2号)に所 定濃度に希釈調製した薬液を肩掛け散布機で散布し、風乾後にククメリスカブリ ダニを株当たり100頭放虫した。処理14日、21日、28日後に上位20葉 当たりのアザミウマおよびククメリスカブリダニ数を調査した(6月上旬)。

結果を第11表に示す。

第11表

		処理量		寄生	数/20	葉
供試薬剤		(ppm or頭数	τ)	14日後	21日後	28日後
化合物19	+ ククメリスカフ゛リタ゛ニ	100ppm+100	頭/株	2	0	3
化合物20	十 <i>クク</i> メリスカフ゛リタ゛ニ	100ppm+100	頭/株	3	0	2
化合物39	+ ククメリスカブリダニ	100ppm+100	頭/株	1	0	1
化合物40	十ククメリスカフ゛リタ゛ニ	100ppm+100	頭/株	4	0	4 .
化合物41	十 <i>ク</i> クメリスカフ゛リタ゛ニ	100ppm + 100	頭/株	5	. 1	6
化合物42	+ <i>ククメリスカブリダ</i> ニ	100ppm+100	頭/株	3	0	4
化合物43	十 ククメリスカフ゛リタ゛ニ	100ppm+100	頭/株	1	0	2
化合物44	十ククメリスカフ゛リタ゛ニ	100ppm+100	頭/株	1	0	1
化合物45	十ククメリスカフ゛リタ゛ ニ	100ppm + 100	頭/株	2 .	0	4
化合物46	+/クメリスカブリダ=	100ppm+100	頭/株	4	1	6
化合物47	+ ククメリスカブリダ=	100ppm+100	頭/株	1	0	2
化合物48	+ ククメリスカブリダ=	100ppm+100	頭/株	3	1	5
化合物54	+ ククメリスカブリダニ	100ppm+100	頭/株	2	0	2
化合物129	+ ククメリスカブリダニ	100ppm+100	頭/株	2	0	3
化合物130	十 ククメリスカフ゛リタ゛ニ	100ppm+100	頭/株	4	0	2
化合物131	+ ククメリスカブリダニ	100ppm+100	頭/株	3	0	4
化合物19	1	00ppm		2 0	2 7	5 5
化合物20	1	00ppm	9	2 1	2 8	49
化合物39	1	00ppm		1 9	3 2	5 8
化合物40	. 1	00ppm		2 2	3 1	5 2

第11表 (続き)

	処理量	寄生	数/20	葉
供試薬剤	(ppm or頭数)	14日後	21日後	28日後
化合物41	100ppm	18	2 9	5 9
化合物42	100ppm	1 9	2 5	5 0
化合物43	100ppm	2 3	3 1	5 7
化合物44	100ppm	2 5	3 3	5 3
化合物45	100ppm	1 8	2 9	5 9
化合物46	100ppm	2 0	3 4	5 7
化合物47	100ppm	2 1	2 7	5 2
化合物48	100ppm	1 9	3 1	5 9
化合物54	100ppm	18	2 5	6 1
化合物129	100ppm	1 9	2 9	5 1
化合物130	100ppm	2 1	28	5 0
化合物131	100ppm	2 3	3 0	5 4
ククメリスカフ゛リタ゛ニ	100 頭/株	8	5	1 5
無処理区	_	2 2	3 2	5 8

試験例11. 水稲の本田水面施用によるコブノメイガ、いもち病およびイヌビエ、 25 ホタルイ防除試験

移植(5月中旬)10日後に粒剤を本田水面施用した。コブメイガに対する防除効果は移植50日後に各区100株について被害葉数を調査し被害葉率を算出した。イネいもち病に対する効果は移植60日後に病斑面積率を調査し判定した。イヌビエ、ホタルイについては、処理4週間後に、除草効果を肉眼判定(0:効

果なし~10:完全枯死)により行った。尚、イネ薬害についても除草効果と同 時に判定した(0:影響なし)。

結果を第12表に示す。

第12表

供試達	区割
JT 11 7 3	モハリ

	供試薬剤							
	薬	量	被害葉率(%)	病斑面積	率(%) 除草	効果	薬害	
	(g	ai/10a)	50 F	3後 60日	後 似	*エ ホタル	イ イネ	
10	化合物129	+ピロキロン+ベ	[、] ンスルフロンメチル+イ	ンタ゛ノファン				
	10. 0+15	0. 0+5. 0+15.	0. 1	3 0.5	10	10	0	
	化合物129	+フェノキサニル+/	ヾ`ソスルフロンメチル+	インダ゛ノファン				
	10. 0+25	0. 0+5. 0+15.	0.1	2 0.4	10	10	0	
	化合物130	+ピロキロン+ベ	`ンスルフロンメチル+イ	ンダ゛ノファン				
15	10. 0+15	0. 0+5. 0+15.	0.1	0.3	10	10	0	
	化合物130	+フェノキサニル+・	ベンスルフロンメチル+	インダ゛ノファン				
	10. 0+25	0. 0+5. 0+15.	. 0 0. 1	5 0.5	10	10	0	
	化合物131	+ピロキロン+ベ	`ソスルフロンメチル+イ	ンタ゛ノファン				
	10. 0+15	0. 0+5. 0+15.	0.1	3 0.3	10	10	0	
20	化合物131	+フェノキサニル+/	ベンスルフロンメチル+	インタ゛ノファン				
	10. 0+25	0. 0+5. 0+15.	0 0.1	4 0.4	10	10	0	
	化合物129	10. 0	0. 1	5 8.1	0	0	0	
	化合物130	10. 0	0. 1	3 7.9	. 0	0	0	
¹ 25	化合物131	10.0	0. 1	6 8.3	0	0	0	

第12表 (続き)

	供試薬剤					
	薬量	被害葉率(%)病境	班面積率(%)	除草郊	婐	薬害
5	(g ai/10a)	50日後	60日後	イヌと゛	エ ホタル	1 17
	ピロキロン+ベンスルフロンメチル+インダノ	לד. לד				
	250. 0+5. 0+15. 0	1.56	0.6	10	10	0
	フェノキサニル+ベンスルフロンメチル+インダ	ノファン				
10	250. 0+5. 0+15. 0	1. 63	0.8	10	10	0
	無処理区 一	1. 66	8. 2	0	0	0

請求の範囲

1. 一般式(I)

$$\begin{array}{c|c} x_n & z^1 \\ \vdots \\ c-N(R^1)R^2 \\ y_m \\ \vdots \\ z^2 \end{array}$$

 ${ {\rm C}_3-C_6 }$ シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基又は $-A^1$ - Q_p (式中、 A^1 は C_1 - C_8 アルキレン基、 C_3 - C_6 アルケニレン基又は C_3 - C_6 アルキニレン基を 示し、Qは水素原子、ハロゲン原子、シアノ基、ニトロ基、ハロ C1-C6アルキ ル基、 C₃-C₆シクロアルキル基、ハロ C₃-C₆シクロアルキル基、 C₁-C₆アル 10 コキシカルボニル基、同一又は異なっても良いジ C₁-C₆アルコキシホスホリル 基、同一又は異なっても良いジ C1-C6アルコキシチオホスホリル基、ジフェニ ルホスフィノ基、ジフェニルホスホノ基、フェニル基、同一又は異なっても良く、 ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキ シ基、ハロ C1-C6アルコキシ基、 C1-C6アルキルチオ基、ハロ C1-C6アルキ 15 ルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニ ル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基か ら選択される1以上の置換基を有する置換フェニル基、複素環基(複素環基とは ピリジル基、ピリジンーN-オキシド基、ピリミジニル基、フリル基、テトラヒ ドロフリル基、チエニル基、テトラヒドロチエニル基、テトラヒドロピラニル基、 20 テトラヒドロチオピラニル基、オキサゾリル基、イソキサゾリル基、オキサジア ゾリル基、チアゾリル基、イソチアゾリル基、チアジアゾリル基、イミダゾリル 基、トリアゾリル基又はピラゾリル基を示す。)、同一又は異なっても良く、ハ ロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ

基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキル チオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基から 選択される1以上の置換基を有する複素環基(前記に同じ。)又は-Z 3 -R 4 R^5 は水素原子、 C_1 - C_6 アルキルカルボニル基、ハロ C_1 - C_6 アルキルカルボニ ル基、 C₁-C₆アルコキシカルボニル基、フェニルカルボニル基、同一又は異な っても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁ -C₆アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ 10 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキ ルスルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキルス ルホニル基から選択される1以上の置換基を有する置換フェニルカルボニル基、 フェニル C1-C1アルコキシカルボニル基又は同一若しくは異なっても良く、ハ ロゲン原子、 C_1-C_6 アルキル基、ハロ C_1-C_6 アルキル基、 C_1-C_6 アルコキシ 15 基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキル チオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル 基、 C1-C6アルキルスルホニル基又はハロ C1-C6アルキルスルホニル基から 選択される1以上の置換基を環上に有する置換フェニル C₁-C₄アルコキシカル ボニル基を示す。)を示し、 R^4 は水素原子、 C_1 - C_6 アルキル基、ハロ C_1 -20 C₆アルキル基、 C₃-C₆アルケニル基、ハロ C₃-C₆アルケニル基、 C₃-C₆ア ルキニル基、ハロ C₃-C₆アルキニル基、 C₃-C₆シクロアルキル基、ハロ C₃- C_6 シクロアルキル基、 C_1 - C_6 アルキルカルボニル基、ハロ C_1 - C_6 アルキルカ ルボニル基、 C₁-C₆アルコキシカルボニル基、フェニル基、同一又は異なって も良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆ 25 アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルス ルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホ ニル基から選択される1以上の置換基を有する置換フェニル基、フェニル C1-C₄アルキル基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、

又、 R^1 及び R^2 は互いに結合して $1\sim3$ 個の同一又は異なっても良く、酸素原子、硫黄原子又は窒素原子により中断されても良い $4\sim7$ 員環を形成することもできる。

Xは同一又は異なっても良く、水素原子、ハロゲン原子、シアノ基、ニトロ基、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、フェニル基、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルカルチオ基、 C_1 - C_6 アルカルカンイニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する置換フェニル基、 複素環基 (前記に同じ。)、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルカルチンと C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルカルチンと C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルカルチンスルカースール基、 C_1 - C_6 アルキルスルカースール基、 C_1 - C_6 アルキルスルカースール基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(複素環基は前記に同じ。)又は一 A^2 - A^2 は一O-、 A^2 、 A^2 は A^2 は A^2 に A^2 の一、 A^2 、 A^2 は A^2 の一、 A^2 の一、 A^2 、 A^2 は A^2 の一、 A^2 、 A^2 に A^2 の一、 A^2 の一、 A^2 、 A^2 に A^2 の一、 A^2 のー、 A^2 のー A^2 のー、 A^2 のー $A^$

(式中、 R^7 は水素原子、 C_1 - C_6 アルキル基、 C_3 - C_6 アルケニル基、 C_3 - C_6 アルケニル基、 C_3 - C_6 アルケニル基、 C_3 - C_6 アルケニル基、 C_3 - C_6 アルキル基、 C_3 - C_6 アルキル基、 C_3 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカニル基から選択される 1以上の置換基を環上に有する置換フェニル C_1 - C_4 アルキル基を示す。)、 C_1 - C_6 アルキレン基、 C_1 - C_6 アルキレン基、 C_2 - C_6 アルキーン基又はハロ C_3 - C_6 アルキニレン基を示し、 C_2 - C_6 アルケニレン基、 C_2 - C_6 アルケニレン基、 C_2 - C_6 アルケニレン基、 C_2 - C_6 アルキニレン基を示し、 C_3 - C_6 アルキニレン基を示し、 C_3 - C_6

(1) A^2 が-O-、-S-、-SO-又は $-SO_2-$ を示す場合、 R^6 はハロ C_3-C_6 シクロアルキル基、ハロ C_3-C_6 シクロアルケニル基、フェニル基、同一 又は異なっても良く、ハロゲン原子、 C_1-C_6 アルキル基、ハロ C_1-C_6 アルキ ル基、 C_1-C_6 アルコキシ基、ハロ C_1-C_6 アルコキシ基、 C_1-C_6 アルキルチオ 基、ハロ C_1-C_6 アルキルチオ 基、ハロ C_1-C_6 アルキルチオ 基、 C_1-C_6 アルキルチオ 基、 C_1-C_6 アルキルスルフィニル基、ハロ C_1-C_6 アルキルスルフィニル基、 C_1-C_6 アルキルスルホニル基又はハロ C_1-C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する置換フェニル基、複素環基(複素環基は前記に同じ。)、同一又は異なっても良く、ハロゲン原子、

20 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-

 C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(複素環基は前記に同じ。)又は $-A^3$ - R^8 (式 00 中、01 は 02 に03 に04 に05 に05 に06 アルキニレン基を示し、07 に05 に07 に07 に07 に07 に08 に08 に09 に0

 C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又は ハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する置換 フェニル基又は $-A^4$ - $-R^9$ (式中、 $-A^4$ は-O-、-S-、-SO-、 $-SO_2$ --又は-C(-S--S) を示し、-S--S0 は -S--S0 を示し、-S--S0 を示し、-S0 を示し、-S1 は -S2 を示し、-S3 を示し、-S4 は -S3 に -S4 に -S5 を示し、-S5 に -S6 を示し、-S7 に -S7 に -S7 に -S7 に -S8 に -S9 に

- 10 ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する置換フェニル基、複素環基(複素環基は前記に同じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、
- 15 ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(複素環基は前記に同じ。)を示す。)を示し、
- 20 (2) A^2 が-C (=O) -又は-C ($=NOR^7$)- (式中、 R^7 は前記に同じ。)を示す場合、 R^6 は C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_2 - C_6 アルケニル基、ハロ C_2 - C_6 アルケニル基、 C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、モノ C_1 - C_6 アルキルアミノ基、同一又は異なっても良いジ C_1 - C_6 アルキルアミ

る置換フェニル基、フェニルアミノ基、同一又は異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を環上に有する置換フェニルアミノ基、複素環基(複素環基は前記に同じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキル基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフ イニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルオニル 基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置換基を有する複素環基(複素環基は前記に同じ。)を示し、

(3) A^2 が C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_2 - C_6 アルケニ レン基、ハロ Co-C6アルケニレン基、 Co-C6アルキニレン基又はハロ Co-C6 15 アルキニレン基を示す場合、 R^6 は水素原子、ハロゲン原子、 C_3 - C_6 シクロア ルキル基、ハロ C₃-C₆シクロアルキル基、 C₁-C₆アルコキシカルボニル基、 フェニル基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハ ロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 $-C_6$ アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニ 20 ル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又 はハロ C₁-C₆アルキルスルホニル基から選択される1以上の置換基を有する置 換フェニル基、複素環基(複素環基は前記に同じ。)、同一又は異なっても良く、 ハロゲン原子、 C_1-C_6 アルキル基、ハロ C_1-C_6 アルキル基、 C_1-C_6 アルコキ シ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキ 25 ルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニ ル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基か ら選択される1以上の置換基を有する複素環基(複素環基は前記に同じ。)又は $-A^{5}-R^{10}$ (式中、 A^{5} は-O-、-S-、-SO-又は $-SO_{2}$ -を示し、 R^{10} は C_3 - C_6 シクロアルキル基、ハロ C_3 - C_6 シクロアルキル基、フェニル基、

同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆ア ルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキル チオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-5 C₆アルキルスルホニル基から選択される1以上の置換基を有する置換フェニル 基、複素環基(複素環基は前記に同じ。)、同一又は異なっても良く、ハロゲン 原子、 C_1-C_6 アルキル基、ハロ C_1-C_6 アルキル基、 C_1-C_6 アルコキシ基、ハ ロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C_1-C_6 アルキルスルフィニル基、ハロ C_1-C_6 アルキルスルフィニル基、 C_1-C_6 10 C₆アルキルスルホニル基又はハロ C₁-C₆アルキルスルホニル基から選択される 1以上の置換基を有する複素環基(複素環基は前記に同じ。)又は $-A^6-R^{11}$ (式中、 A^6 は C_1 - C_6 アルキレン基、ハロ C_1 - C_6 アルキレン基、 C_9 - C_6 アル ケニレン基、ハロ C2-C6アルケニレン基、 C2-C6アルキニレン基又はハロ C3 $-C_6$ アルキニレン基を示し、R¹¹は水素原子、ハロゲン原子、 C_3 - C_6 シクロア 15 ルキル基、ハロ C_3 - C_6 シクロアルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アル キルスルホニル基、ハロ C₁-C₆アルキルスルホニル基、フェニル基、同一又は 異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-C₆アルキル基、 20 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆アルキルチオ基、ハ ロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アル キルスルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキル スルホニル基から選択される1以上の置換基を有する置換フェニル基、フェノキ シ基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆アルキル基、ハロ C₁-25 C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキシ基、 C₁-C₆ア ルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、 ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ

C₁-C₆アルキルスルホニル基から選択される1以上の置換基を有する置換フェ

ノキシ基、フェニルチオ基、同一又は異なっても良く、ハロゲン原子、 C₁-C₆

アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルチルティニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される 1 以上の置 換基を有する置換フェニルチオ基、複素環基(複素環基は前記に同じ)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルカコィニル基、 C_1 - C_6 アルキルスルカカコル基、 C_1 - C_6 アルキルスルカコィニル基、 C_1 - C_6 アルキルスルカコール基、 C_1 - C_6 アルキルスルカコール基、 C_1 - C_6 アルキルスルカコール基、 C_1 - C_6 アルキルスルカコール基、 C_1 - C_6 アルキルスルカコール基)(複

10 C₆アルキルスルホニル基から選択される1以上の置換基を有する複素環基(複素環基は前記に同じ)示す。)を示す。

nは1~4の整数を示す。又、Xはフェニル環上の隣り合った炭素原子と一緒 になって縮合環(縮合環とはナフタレン、テトラヒドロナフタレン、インデン、 インダン、キノリン、キナゾリン、クロマン、イソクロマン、インドール、イン ドリン、ベンゾジオキサン、ベンゾジオキソール、ベングフラン、ジヒドロベン 15 ゾフラン、ベンゾチオフェン、ジヒドロベンゾチオフェン、ベンゾオキサゾール、 ベンゾチアゾール、ベンズイミダゾール又はインダゾールを示す。)を形成する ことができ、該縮合環は同一又は異なっても良く、ハロゲン原子、 C₁-C₆アル . キル基、ハロ C₁-C₆アルキル基、 C₁-C₆アルコキシ基、ハロ C₁-C₆アルコキ 20 シ基、 C₁-C₆アルキルチオ基、ハロ C₁-C₆アルキルチオ基、 C₁-C₆アルキル スルフィニル基、ハロ C₁-C₆アルキルスルフィニル基、 C₁-C₆アルキルスル ホニル基、ハロ C1-C6アルキルスルホニル基、フェニル基、同一又は異なって も良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 -25 C₆アルキルチオ基、 C₁-C₆アルキルスルフィニル基、ハロ C₁-C₆アルキルス ルフィニル基、 C₁-C₆アルキルスルホニル基又はハロ C₁-C₆アルキルスルホ ニル基から選択される1以上の置換基を有する置換フェニル基、複素環基(複素 環基は前記に同じ)又は同一若しくは異なっても良く、ハロゲン原子、 C1-C6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アル

コキシ基、 C_1 - C_6 アルキルチオ基、ハロ C_1 - C_6 アルキルチオ基、 C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、 C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される1以上の置換基を有する複素環基(複素環基は前記に同じ。)から選択される1以上の置換 基を有することもできる。

又、Yはフェニル環上の隣り合った炭素原子と一緒になって縮合環(縮合環は前記に同じ。)を形成することができ、該縮合環は同一又は異なっても良く、ハロゲン原子、 C1-C6アルキル基、ハロ C1-C6アルキル基、 C1-C6アルコキシ基、ハロ C1-C6アルコキシ基、ハロ C1-C6アルコキシ基、 C1-C6アルキルチオ基、ハロ C1-C6アルキルチオ基、ハロ C1-C6アルキルスルフィニル基、ハロ C1-C6アルキルスルフィニル
 基、 C1-C6アルキルスルフィニル基、ハロ C1-C6アルキルスルカーニル
 基、 C1-C6アルキルスルホニル基、ハロ C1-C6アルキルスルホニル基、フェニル基、同一又は異なっても良く、ハロゲン原子、 C1-C6アルキル基、ハロ C1-C6アルキル基、ハロ C1-C6アルキル基、 C1-C6アルキナシ基、 C1-C6アルキルスルフィニル基、ハロ C1-C6アルキルスルフィニル

ハロ C_1 - C_6 アルキルスルホニル基から選択される1以上の置換基を有する置換フェニル基、複素環基(複素環基は前記に同じ。)又は同一若しくは異なっても良く、ハロゲン原子、 C_1 - C_6 アルキル基、ハロ C_1 - C_6 アルキル基、 C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルコキシ基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルフィニル基、ハロ C_1 - C_6 アルキルスルホニル基又はハロ C_1 - C_6 アルキルスルホニル基から選択される1以上の置換基を有する複素環基(複素環基は前記に同じ。)から選択される1以上の置換基を有することもできる。

2¹ 及び2² は酸素原子又は硫黄原子を示す。}

- 10 で表されるフタルアミド誘導体から選択される1種又は2種以上の化合物と殺虫 活性、殺ダニ活性又は殺線虫活性を有する化合物から選択される1種又は2種以 上の化合物とを有効成分として含有することを特徴とする有害生物防除剤組成物。
- 20 3. 一般式 (I) で表されるフタルアミド誘導体が、 $N^2 (1, 1-i)$ メチルー2-メチルチオエチル)-3-3ード-N $^1 {2-$ メチルー4-{1, 2, 2, 2-テトラフルオロー1-(トリフルオロメチル)エチル〕フェニル} フタルアミド、 $N^2 (1, 1-i)$ メチルー2-メチルスルホニルエチル)-3-3ード-N $^1 {2-}$ メチルー4-[1, 2, 2, 2-テトラフル オロー1-(トリフルオロメチル)エチル〕フェニル} フタルアミド、又は $N^2 (1, 1-i)$ メチルー2-メチルスルフィニルエチル)-3-3ード-N $^1 {2-}$ メチルー4-[1, 2, 2, 2-テトラフルオロー1-(トリフルオロメチル)エチル〕フェニル} フタルアミドである請求項2記載の有害生物防除剤組成物。

- 4. 殺虫活性、殺ダニ活性又は殺線虫活性を有する化合物がアセタミプリド、ピメトロジン、フェニトロチオン、カルバリル、メソミル、カルタップ、シハロトリン、エトフェンプロックス、テフルベンズロン、フルフェノクスロン、テブフェノジド、フェンピロキシメート、ピリダベン、イミダクロプリド、ブプロフェジン、RDMC、マラチオン、メチダチオン、フェンチオン、ダイアジノン
- 5 ェジン、BPMC、マラチオン、メチダチオン、フェンチオン、ダイアジノン、アセフェート、オキシデプロホス、バミドチオン、エチオフェンカルブ、ピリミカーブ、ペルメトリン、シペルメトリン、ビフェントリン、ハルフェンプロックス、シラフルオフェン、ニテンピラム、クロルフルアズロン、メトキシフェノジド、テブフェンピラド、ピリミジフェン、ジコホル、プロパルギット、ヘキシチ
- 10 アゾックス、クロフェンテジン、スピノサッド、ミルベメクチン、バチルスチューリンゲシス、インドキサカルブ、クロルフェナピル、フィプロニル、エトキサゾール、アセキノシル、ピリミホスメチル、アクリナトリン、キノメチオネート、クロリピリホス、アバメクチン、エマメクチン安息香酸塩、酸化フェンブタスズ、テルブホス、エトプロホス、カズサホス、フェナミフォス、フェンスルフォチオ
- 15 ン、DSP、ジクロフェンチオン、ホスチアゼート、オキサミル、イソアミドホス、ホスチエタン、イサゾホス、チオナジン、ベンフラカルブ又はスピロジクロフェンから選択される1種又は2種以上の化合物である請求項1乃至3いずれか1項記載の有害生物防除剤組成物。
- 5. フタルアミド誘導体1重量部に対して、殺虫活性、殺ダニ活性又は殺線 20 虫活性を有する化合物から選択される1種又は2種以上の化合物が0.05~2 000重量部の割合である請求項1乃至4いずれか1項記載の有害生物防除剤組 成物。
- 6. 有害生物から有用植物を保護するために、請求項1乃至5いずれか1項 記載の有害生物防除剤組成物の有効量を対象有害生物、対象有用植物、対象有用 25 植物の種子、土壌又は栽培担体に処理することを特徴とする有害生物防除剤組成 物の使用方法。

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/03780

		<u> </u>	
A CLASSI Int.	FICATION OF SUBJECT MATTER Cl ⁷ A01N37/24, 37/28, 37/34, 4 43/58, 43/88, 47/02, 51/00		1N43/56,
According to	o International Patent Classification (IPC) or to both na	tional classification and IPC	
	SEARCHED		
Minimum d Int.	ocumentation searched (classification system followed to C1 ⁷ A01N37/24, 37/28, 37/34, 443/58, 43/88, 47/02, 51/00	11/10, 43/28, 43/40, A0	1N43/56,
	tion searched other than minimum documentation to the		
	lata base consulted during the international search (name	e of data base and, where practicable, sea	rch terms used)
C. DOCUM	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
X Y	EP 919542 A2 (Nihon Nohyaku 02 June, 1999 (02.06.99), Particularly, Claims; Par. No & JP 11-240857 A		1-3,5,6 . 4
Y	JP 2001-64268 A (Nihon Nohya 13 March, 2001 (13.03.01), (Family: none)	4	
P,X	JP 2001-131141 A (Nihon Nohy 15 May, 2001 (15.05.01), (Family: none)	aku Co., Ltd.),	1-6
P,X	JP 2001-158764 A. (Nihon Nohy 12 June, 2001 (21.06.01), (Family: none)	zaku Co., Ltd.),	1-6
× Furthe	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" docum considere "E" earlier date "L" docum cited to special "O" docum means "P" docum than th	tent published prior to the international filing date but later ne priority date claimed	"T" later document published after the interpriority date and not in conflict with the understand the principle or theory and document of particular relevance; the considered novel or cannot be considered to example taken allowed document of particular relevance; the considered to involve an inventive stee combined with one or more other such combination being obvious to a person document member of the same patent	he application but cited to lerlying the invention claimed invention cannot be red to involve an inventive claimed invention cannot be p when the document is n documents, such n skilled in the art family
24 3	actual completion of the international search June, 2002 (24.06.02)	Date of mailing of the international sear 09 July, 2002 (09.0	
	nailing address of the ISA/	Authorized officer	
Facsimile N	ło.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP02/03780

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
P,X	JP 2001-240580 A (Nihon Nohyaku Co., Ltd.), 04 September, 2001 (04.09.01), (Family: none)	1-6

A. 発明の原 Int. C	はする分野の分類(国際特許分類(IPC)) 1' A01N37/24, 37/28, 37/ A01N43/56, 43/58, 43/	/34, 41/10, 43/28, 43, /88, 47/02, 51/00, 57,	/40, /22
B. 調査を行った分野			
調査を行った最小限資料(国際特許分類(IPC))			
Int. Cl ⁷ A01N37/24, 37/28, 37/34, 41/10, 43/28, 43/40, A01N43/56, 43/58, 43/88, 47/02, 51/00, 57/22			
最小限資料以外の資料で調査を行った分野に含まれるもの			
	1	* · · · · · · · · · · · · · · · · · · ·	
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)			
·			
C. 関連すると認められる文献			
引用文献の			関連する
カテゴリー*			請求の範囲の番号
X Y	EP 919542 A2(NIHON NOHYAKU CO.,LT ム、[0100]参照 & JP 11-240857 A	D.)1999.06.02 特に、クレー	1-3, 5, 6 4
Υ.	JP 2001-64268 A(日本農薬株式会社)2001.03.13(ファミリーなし)		4
P, X	JP 2001-131141 A(日本農薬株式会社)2001.05.15(ファミリーなし)		1-6
. P, X	JP 2001-158764 A(日本農薬株式会社)2001.06.12(ファミリーなし)		1-6
P, X	JP 2001-240580 A(日本農薬株式会社)2001.09.04(ファミリーなし)	1-6
□ C欄の続きにも文献が列挙されている。 □ パテントファミリーに関する別紙を参照。			
* 引用文献のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」国際出願日前の出願または特許であるが、国際出願日以後に公表されたもの 「L」優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を確立するために引用する文献(理由を付す) 「O」口頭による開示、使用、展示等に言及する文献「P」国際出願日前で、かつ優先権の主張の基礎となる出願		の日の後に公表された文献 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの 「&」同一パテントファミリー文献	
国際調査を完了した日 24.06.02		国際調査報告の発送日 いらの7.02	
日本国特許庁(ISA/JP)		特許庁審査官(権限のある職員) 穴 吹 智 子 (2)5月	4H 8413
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号		電話番号 03-3581-1101	内線 3443