Concrete Crack Detection

Authors

• Yu-Sian Lin

· 🕠 yslin0114

Department of Civil Engineering, University of Illinois

Yueh-Ti Lee

· 🕜 Yueh-Ti

Department of Civil Engineering, University of Illinois

Minjiang Zhu

· 🞧 <u>Minjiang-Zhu</u>

Department of Something, University of Illinois

Chengyou Yue

· 🖸 <u>TensorYue</u>

Department of Civil Engineering, University of Illinois

Description

In this project, we plan to use two main datasets to detect concrete crack. First, we use a dataset from Kaggle, titled "Surface Crack Detection" to make the classification of the concrete crack. Second, we use a dataset from Virginia Tech, titled "Concrete Crack Conglomerate Dataset" to make the segmentation of the concrete crack.

[Classification]

Source: Kaggle/ Surface Crack Detection.

Data Format: Images with 227*227 pixels with RGB channels.

Content: The dataset contains images of various concrete surfaces with and without crack. The image data are divided into two as negative (without crack) and positive (with crack) for image classification. Each class has 20000 images with a total of 40000 images.

Figure 1. Example of Images with and without Cracks

[Segmentation]

Source: Virginia Tech/ Concrete Crack Conglomerate Dataset

Data Format: Images with 448*448 pixels with RGB channels

Content: The dataset contains over 10,995 crack images. Each image data has its origin image and mask image for image segmentation.

Figure 2. Example of an Original Image and an Mask Image

Proposal:

In our project, we plan to train two models to detect concrete crack. First, by using the classification dataset, we plan to detect concrete crack based on convolutional neural network (CNN) to find out whether the concrete is defective. Second, by using the segmentation dataset, we plan to conduct concrete crack segmentation based on U Net to illustrate the position of the crack on concrete crack images.

Exploratory Data Analysis

In classification, the dataset consists of 20,000 images with cracks and 20,000 images without cracks. We are planning to use convolutional neural network to train a classification model. Figure 5

Figure 3. Number of Images with and without Cracks

In segmentation, we use the dataset consists of 21,996 images, splitting it into train data with 19,801 images and train data with 2,195 images. Here, we'll be applying U Net to train a model that is capable of pointing out the cracks in a concrete image. Figure 6

Figure 4. Number of Train Images and Test Images

Preliminary Predictive Modeling

Dataset:

- Concrete images with attached label 'Positive' or 'Negative'
- Concrete images and their masks

Goal:

- Concrete crack detection
- Concrete crack segmentation

Architecture:

- Concrete crack detection based on convolutional neural network (CNN)
- Concrete crack segmentation based on U-Net and improved U-Net using Inception as backbone

Concrete Crack Detection

Figure 1: Basic Convolutional Neural Network for Classification.

Modeling and training

Here we need to specify the hyperparameters of our layers: 1. Convolutional layer. Convolution is an operation that use filter to extract information that we want to detect. a. Filter size determines how many filters that would apply on the input tensor to produce the same number of channels, each filter could detect their specified geometries with colors in the given kernel size. b. Kernel size determines the size of the area the filters would apply. c. Activation function is added to achieve nonlinearity of the model, as the operation of filter is linear. 2. MaxPooling layer. MaxPooling is a down-sampling operation that allows our network to capture deeper information from original dimensions. a. Pool size and strides determine the dimensions of down-sample procedure.

In the first convolutional block, we would specify 16 filters (consider 8 straight lines and 8 curves) with 3 by 3 kernel (consider the size of crack is relatively small) and ReLu as activation function in the Conv2D layer and go deeper with pool size of 2 by 2 in the MaxPool2D layer.

And in the second convolutional block, we double the channels number to 32 with Conv2D, apply the same MaxPool2D.

Finally, we process our data input an GlobalAveragePooling2D layer (because we are focusing on the whole image, not a part of it in segmentation) and dense the tensor to 1 with Sigmoid function (As we only have 1 class of result, for multiclass classification, use SoftMax).

The result of our network would be a number in (0,1), we could treat this as a probability of crack in the image.

```
inputs = tf.keras.Input(shape=(120,120,3))
x = tf.keras.layers.Conv2D(filters=16, kernel_size=(3,3), activation='relu')(inputs)
x = tf.keras.layers.MaxPool2D(pool_size=(2,2))(x)
x = tf.keras.layers.Conv2D(filters=32, kernel_size=(3,3), activation='relu')(x)
x = tf.keras.layers.MaxPool2D(pool_size=(2,2))(x)
x = tf.keras.layers.GlobalAveragePooling2D()(x)
outputs = tf.keras.layers.Dense(1, activation='sigmoid')(x)
```

Figure 2: Model for Concrete Crack Classification using Keras.

Notice that the original images have size of (227,227,3), we would resize it into (120,120,3) in preprocess procedure.

Layer (type)	Output Shape	Param #
input_1 (InputLayer)	[(None, 120, 120, 3)]	0
conv2d (Conv2D)	(None, 118, 118, 16)	448
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 59, 59, 16)	0
conv2d_1 (Conv2D)	(None, 57, 57, 32)	4640
max_pooling2d_1 (MaxPooling 2D)	(None, 28, 28, 32)	0
global_average_pooling2d (G lobalAveragePooling2D)	(None, 32)	0
dense (Dense)	(None, 1)	33
	=======================================	=======

Figure 3: Model_Summary_and_Hyperparameters.

Trainable params: 5,121 Non-trainable params: 0

 Table 1: Hyperparameters.

training	yalidation	testing	Optimizer	Loss Function	Metrics	Epochs
3360	840	1800	Adam	Binary Crossentropy	Accuracy	100

Prediction and Analysis

We can check our trained model by inputting the testing data, below is the confusion matrix our model generated:

Figure 4: Confusion Matrix.

Figure 5: Loss Evolution.

We can see that this trained model has good performance on the testing data, it only takes 25 epochs because of our early stop condition. We can further calculate the following parameters:

$$\begin{aligned} & \operatorname{Precision} = \frac{TP}{TP + FP} \\ & \operatorname{Recall} = \frac{TP}{TP + FN} \\ & \operatorname{Score} = 2 \times \frac{\operatorname{Precision} \times \operatorname{Recall}}{\operatorname{Precision} + \operatorname{Recall}} \\ & \operatorname{MacroAvg} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Score}_{i} \end{aligned} \tag{1}$$
 WeightedAvg = $\frac{1}{n} \sum_{i=1}^{n} \operatorname{Support}_{i} \times \operatorname{Score}_{i}$

Table 2: Result Analysis

	Precision	Recall	Score	Support
Negative	0.96	0.99	0.98	917
Positive	0.99	0.96	0.97	883
Macro Avg	0.98	0.97	0.97	1800
Weighted Avg	0.97	0.97	0.97	1000

It has overall good performance.

Concrete Segmentation

The original U-Net architecture is shown below:

Figure 6: U-net Architecture.

Modeling and Training

For achieving segmentation, we have built and trained two models, one based on our own architecture, and the other based on the paper. We perform a normalization before plug in the U-Net architecture based on the range of RGB number:

```
inputs = tf.keras.layers.Input((IMG_HEIGHT, IMG_WIDTH, IMG_CHANNELS))
s = tf.keras.layers.Lambda(lambda x: x / 255)(inputs)
```

Figure 7: Input Normalization.

In the previous classification model, we have shown that the first convolutional block would only need 16 filters to perform well. We also add the random dropout in each convolution blocks to prevent the overfitting problem. Based on this experiment, we modified U-Net architecture as figure shown below.

```
# Downsampling
c1 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(s)
c1 = tf.keras.layers.Dropout(0.1)(c1)
c1 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c1)
p1 = tf.keras.layers.MaxPooling2D((2,2))(c1)
c2 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(p1)
c2 = tf.keras.layers.Dropout(0.1)(c2)
c2 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c2)
p2 = tf.keras.layers.MaxPooling2D((2,2))(c2)
c3 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(p2)
c3 = tf.keras.layers.Dropout(0.2)(c3)
c3 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c3)
p3 = tf.keras.layers.MaxPooling2D((2,2))(c3)
c4 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(p3)
c4 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c4)
c4 = tf.keras.layers.Dropout(0.2)(c4)
p4 = tf.keras.layers.MaxPooling2D((2,2))(c4)
c5 = tf.keras.layers.Conv2D(256, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(p4)
c5 = tf.keras.layers.Dropout(0.3)(c5)
c5 = tf.keras.layers.Conv2D(256, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c5)
# Upsampling
u6 = tf.keras.layers.Conv2DTranspose(128, (2,2), strides=(2,2), padding='same')(c5)
u6 = tf.keras.layers.concatenate([u6, c4])
c6 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u6)
c6 = tf.keras.layers.Dropout(0.2)(c6)
c6 = tf.keras.layers.Conv2D(128, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c6)
u7 = tf.keras.layers.Conv2DTranspose(64, (2,2), strides=(2,2), padding='same')(c6)
u7 = tf.keras.layers.concatenate([u7, c3])
c7 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u7)
c7 = tf.keras.layers.Dropout(0.2)(c7)
c7 = tf.keras.layers.Conv2D(64, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c7)
u8 = tf.keras.layers.Conv2DTranspose(32, (2,2), strides=(2,2), padding='same')(c7)
u8 = tf.keras.layers.concatenate([u8, c2])
c8 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u8)
c8 = tf.keras.layers.Dropout(0.1)(c8)
c8 = tf.keras.layers.Conv2D(32, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c8)
u9 = tf.keras.layers.Conv2DTranspose(16, (2,2), strides=(2,2), padding='same')(c8)
u9 = tf.keras.layers.concatenate([u9, c1])
c9 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(u9)
c9 = tf.keras.layers.Dropout(0.1)(c9)
c9 = tf.keras.layers.Conv2D(16, (3,3), activation='relu', kernel_initializer='he_normal', padding='same')(c9)
# Output
outputs = tf.keras.layers.Conv2D(1,(1,1), activation='sigmoid')(c9)
```

Figure 8: Modified U-Net Architecture.

Notice that the original images have size of (448,448,3), we would keep this size for this network, but there is still a resize procedure that allow this network to predict images with different size.

Layer (type)	Output Shape	Param #	Connected to	concatenate_4 (Concatenate)	(None, 56, 56, 256)	0	['conv2d_transpose_4[0][0]', 'dropout_12[0][0]']
input_2 (InputLayer)	[(None, 448, 448, 3)]		[]	conv2d_29 (Conv2D)	(None, 56, 56, 128)	295040	['concatenate_4[0][0]']
lambda_1 (Lambda)	(None, 448, 448, 3)	Ø	['input_2[0][0]']	dropout_14 (Dropout)	(None, 56, 56, 128)	0	['conv2d_29[0][0]']
conv2d_19 (Conv2D)	(None, 448, 448, 16	448	['lambda_1[0][0]']	conv2d_30 (Conv2D)	(None, 56, 56, 128)	147584	['dropout_14[0][0]']
dropout_9 (Dropout)	(None, 448, 448, 16	0	['conv2d_19[0][0]']	<pre>conv2d_transpose_5 (Conv2DTranspose)</pre>	(None, 112, 112, 64	32832	['conv2d_30[0][0]']
conv2d_20 (Conv2D)	(None, 448, 448, 16	2320	['dropout_9[0][0]']	concatenate_5 (Concatenate)	(None, 112, 112, 12 8)	0	['conv2d_transpose_5[0][0]', 'conv2d_24[0][0]']
max_pooling2d_4 (MaxPooling2D)	(None, 224, 224, 10	5 0	['conv2d_20[0][0]']	conv2d_31 (Conv2D)	(None, 112, 112, 64)	73792	['concatenate_5[0][0]']
conv2d_21 (Conv2D)	(None, 224, 224, 32	4640	['max_pooling2d_4[0][0]']	dropout_15 (Dropout)	(None, 112, 112, 64)	0	['conv2d_31[0][0]']
dropout_10 (Dropout)	(None, 224, 224, 32	0	['conv2d_21[0][0]']	conv2d_32 (Conv2D)	(None, 112, 112, 64)	36928	['dropout_15[0][0]']
conv2d_22 (Conv2D)	(None, 224, 224, 32	9248	['dropout_10[0][0]']	<pre>conv2d_transpose_6 (Conv2DTranspose)</pre>	None, 224, 224, 32	8224	['conv2d_32[0][0]']
max_pooling2d_5 (MaxPooling2D)	(None, 112, 112, 3	2 0	['conv2d_22[0][0]']	concatenate_6 (Concatenate)	(None, 224, 224, 64)	0	['conv2d_transpose_6[0][0]', 'conv2d_22[0][0]']
conv2d_23 (Conv2D)	(None, 112, 112, 64	18496	['max_pooling2d_5[0][0]']	conv2d_33 (Conv2D)	(None, 224, 224, 32)	18464	['concatenate_6[0][0]']
dropout_11 (Dropout)	(None, 112, 112, 64	0	['conv2d_23[0][0]']	dropout_16 (Dropout)	(None, 224, 224, 32)	0	['conv2d_33[0][0]']
conv2d_24 (Conv2D)	(None, 112, 112, 64	36928	['dropout_11[0][0]']	conv2d_34 (Conv2D)	(None, 224, 224, 32)	9248	['dropout_16[0][0]']
max_pooling2d_6 (MaxPooling2D)	(None, 56, 56, 64)	0	['conv2d_24[0][0]']	<pre>conv2d_transpose_7 (Conv2DTranspose)</pre>	(None, 448, 448, 16	2064	['conv2d_34[0][0]']
conv2d_25 (Conv2D)	(None, 56, 56, 128)	73856	['max_pooling2d_6[0][0]']	concatenate_7 (Concatenate)	(None, 448, 448, 32	0	['conv2d_transpose_7[0][0]', 'conv2d_20[0][0]']
conv2d_26 (Conv2D)	(None, 56, 56, 128)	147584	['conv2d_25[0][0]']	conv2d_35 (Conv2D)	(None, 448, 448, 16	4624	['concatenate_7[0][0]']
dropout_12 (Dropout)	(None, 56, 56, 128)	0	['conv2d_26[0][0]']	conv2d_55 (conv2b))	4024	[concarcinec_\[o][o]]
max_pooling2d_7 (MaxPooling2D)	(None, 28, 28, 128) 0	['dropout_12[0][0]']	dropout_17 (Dropout)	(None, 448, 448, 16	0	['conv2d_35[0][0]']
conv2d_27 (Conv2D)	(None, 28, 28, 256)	295168	['max_pooling2d_7[0][0]']	conv2d_36 (Conv2D)	(None, 448, 448, 16	2320	['dropout_17[0][0]']
dropout_13 (Dropout)	(None, 28, 28, 256)	0	['conv2d_27[0][0]']	CONV20_30 (CONV20))	2320	[aropout_t/[o][o]]
conv2d_28 (Conv2D)	(None, 28, 28, 256)	590080	['dropout_13[0][0]']	conv2d_37 (Conv2D)	(None, 448, 448, 1)	17	['conv2d_36[0][0]']
<pre>conv2d_transpose_4 (Conv2DTran spose)</pre>	(None, 56, 56, 128	131200	['conv2d_28[0][0]']	Total params: 1,941,105 Trainable params: 1,941,105 Non-trainable params: 0			

Figure 9: Model Summary.

U-Net could learn from very few numbers of dataset, so we only need to have a small dataset.

Figure 10: U-Net Loss Evaluation.

Table 3: U-Net Hyperparameters.

training	validation	testing	Optimizer	Loss Function	Metrics	Epochs
105	2	17	Adam	Binary Crossentropy	Accuracy	50

We can see that this trained model has good performance on the testing data, it only takes 30 epochs because of our early stop condition.

Prediction and Analysis

References

Surface Crack Detection | Kaggle

<u>Concrete Crack Conglomerate Dataset | Virginia Tech</u>

<u>Computer Vision-based Concrete Crack Detection using U-net Fully Convolutional Networks</u>

Network: U-Net

<u>Performance Evaluation of Deep CNN-Based Crack Detection and Localization Techniques for Concrete Structures</u>