

### Big Picture

- 1. We use ARMA model for the conditional mean
- 2. We use ARCH model for the conditional variance
- 3. ARMA and ARCH model can be used together to describe both conditional mean and conditional variance

### Price and Return

Let  $p_t$  denote the price of a financial asset (such as a stock). Then the return of "buying yesterday and selling today" (assuming no dividend) is

$$r_t = \frac{p_t - p_{t-1}}{p_{t-1}} \approx \log(p_t) - \log(p_{t-1}).$$

The approximation works well when  $r_t$  is close to zero.

## Continuously Compounded Return

Alternatively,  $r_t$  measures the continuously compounded rate

$$r_t = \log(p_t) - \log(p_{t-1}) \tag{1}$$

$$\Rightarrow e^{r_t} = \frac{p_t}{p_{t-1}} \tag{2}$$

$$\Rightarrow p_t = e^{r_t} p_{t-1} \tag{3}$$

$$\Rightarrow p_t = \lim_{n \to \infty} \left( 1 + \frac{r_t}{n} \right)^n p_{t-1} \tag{4}$$

### Why conditional variance?

- 1. An asset is risky if its return  $r_t$  is volatile (changing a lot over time)
- 2. In statistics we use variance to measure volatility (dispersion), and so the risk
- 3. We are more interested in conditional variance, denoted by

$$var(r_t|r_{t-1},r_{t-2},\ldots) = E(r_t^2|r_{t-1},r_{t-2},\ldots),$$

because we want to use the past history to forecast the variance. The last equality holds if  $E(r_t|r_{t-1},r_{t-2},\ldots)=0$ , which is true in most cases.

### Volatility Clustering

- 1. A stylized fact about financial market is "volatility clustering".

  That is, a volatile period tends to be followed by another volatile period, or volatile periods are usually clustered.
- 2. Intuitively, the market becomes volatile whenever big news comes, and it may take several periods for the market to fully digest the news
- 3. Statistically, volatility clustering implies time-varying conditional variance: big volatility (variance) today may lead to big volatility tomorrow.
- 4. The ARCH process has the property of time-varying conditional variance, and therefore can capture the volatility clustering

### ARCH(1) Process

Consider the first order autoregressive conditional heteroskedasticity (ARCH) process

$$r_t = \sigma_t e_t \tag{5}$$

$$e_t \sim \text{white noise}(0,1)$$
 (6)

$$\sigma_t = \sqrt{\omega + \alpha_1 r_{t-1}^2} \tag{7}$$

where  $r_t$  is the return, and is assumed here to be an ARCH(1) process.  $e_t$  is a white noise with zero mean and variance of one.  $e_t$  may or may not follow normal distribution.

### ARCH(1) Process has zero mean

The conditional mean (given the past) of  $r_t$  is

$$E(r_t|r_{t-1}, r_{t-2}, \dots) = E(\sigma_t e_t | r_{t-1}, r_{t-2}, \dots)$$

$$= \sigma_t E(e_t | r_{t-1}, r_{t-2}, \dots)$$

$$= \sigma_t * 0 = 0$$

Then by the law of iterated expectation (LIE), the unconditional mean is

$$E(r_t) = E[E(r_t|r_{t-1}, r_{t-2}, \ldots)] = E[0] = 0$$

So the ARCH(1) process has zero mean.

## ARCH(1) process is serially uncorrelated

Using the LIE again we can show

$$E(r_t r_{t-1}) = E[E(r_t r_{t-1} | r_{t-1}, r_{t-2}, \dots)]$$

$$= E[r_{t-1} E(r_t | r_{t-1}, r_{t-2}, \dots)]$$

$$= E[r_{t-1} * 0] = 0$$

Therefore the covariance between  $r_t$  and  $r_{t-1}$  is

$$cov(r_t, r_{t-1}) = E(r_t r_{t-1}) - E(r_t)E(r_{t-1}) = 0$$

In a similar fashion we can show  $cov(r_t, r_{t-j}) = 0, \forall j \geq 1$ 

Because of the zero covariance,  $r_t$  cannot be predicted using its history  $(r_{t-1}, r_{t-2}, \ldots)$ . This is the evidence for the efficient market hypothesis (EMH).

# However, $r_t^2$ can be predicted

To see this, note the conditional variance of  $r_t$  is given by

$$\begin{aligned}
\operatorname{var}(r_t|r_{t-1}, r_{t-2}, \dots) &= E(r_t^2|r_{t-1}, r_{t-2}, \dots) \\
&= E(\sigma_t^2 e_t^2|r_{t-1}, r_{t-2}, \dots) \\
&= \sigma_t^2 E(e_t^2|r_{t-1}, r_{t-2}, \dots) \\
&= \sigma_t^2 * 1 = \sigma_t^2
\end{aligned}$$

So  $\sigma_t^2$  represents the conditional variance, which by definition is function of history,

$$\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$$

and so can be predicted by using history  $r_{t-1}^2$ .

### **OLS** Estimation

• Note that we have

$$E(r_t^2|r_{t-1}, r_{t-2}, \ldots) = \omega + \alpha_1 r_{t-1}^2$$
 (8)

- This implies that we can estimate  $\omega$  and  $\alpha_1$  by regressing  $r_t^2$  onto an intercept term and  $r_{t-1}^2$ .
- It also implies that  $r_t^2$  follows an AR(1) Process.

### Unconditional Variance and Stationarity

• The unconditional variance of  $r_t$  is obtained via LIE

$$var(r_t) = E(r_t^2) - [E(r_t)]^2 = E(r_t^2)$$
(9)

$$= E[E(r_t^2|r_{t-1}, r_{t-2}, \ldots)] \tag{10}$$

$$= E[\omega + \alpha_1 r_{t-1}^2] \tag{11}$$

$$= \omega + \alpha_1 E[r_{t-1}^2] \tag{12}$$

$$\Rightarrow E(r_t^2) = \frac{\omega}{1 - \alpha_1} \text{ (if } 0 < \alpha_1 < 1) \tag{13}$$

Along with the zero covariance and zero mean, this proves that the ARCH(1) process is stationary.

#### Unconditional and Conditional Variances

Let  $\sigma^2 = \text{var}(r_t)$ . We just show

$$\sigma^2 = \frac{\omega}{1 - \alpha_1}$$

which implies that

$$\omega = \sigma^2 (1 - \alpha_1)$$

Plugging this into  $\sigma_t^2 = \omega + \alpha_1 r_{t-1}^2$  we have

$$\sigma_t^2 = \sigma^2 + \alpha_1 (r_{t-1}^2 - \sigma^2)$$

So conditional variance is a combination of the unconditional variance, and the deviation of squared error from its average value.

ARCH(p) Process

We obtain the ARCH(p) process if  $r_t^2$  follows an AR(p) Process:

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i r_{t-i}^2$$

## GARCH(1,1) Process

- It is not uncommon that p needs to be very big in order to capture all the serial correlation in  $r_t^2$ .
- The generalized ARCH or GARCH model is a parsimonious alternative to an ARCH(p) model. It is given by

$$\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \tag{14}$$

where the ARCH term is  $r_{t-1}^2$  and the GARCH term is  $\sigma_{t-1}^2$ .

• In general, a GARCH(p,q) model includes p ARCH terms and q GARCH terms.

### Stationarity

• The unconditional variance for GARCH(1,1) process is

$$\mathtt{var}(r_t) = \frac{\omega}{1 - \alpha - \beta}$$

if the following stationarity condition holds

$$0 < \alpha + \beta < 1$$

• The GARCH(1,1) process is stationary if the stationarity condition holds.

#### IGARCH effect

• Most often, applying the GARCH(1,1) model to real financial time series will give

$$\alpha + \beta \approx 1$$

• This fact is called integrated-GARCH or IGARCH effect. It means that  $r_t^2$  is very persistent, and is almost like an integrated (or unit root) process

## ML Estimation for GARCH(1,1) Model (Optional)

- ARCH model can be estimated by both OLS and ML method, whereas GARCH model has to be estimated by ML method.
- Assuming  $e_t \sim i.i.d.n(0,1)$  and  $r_0^2 = \sigma_0^2 = 0$ , the likelihood can be obtained in a recursive way:

$$\begin{aligned}
\sigma_1^2 &= \omega \\
\frac{r_1}{\sigma_1} &\sim N(0,1) \\
\dots &= \dots \\
\sigma_t^2 &= \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 \\
\frac{r_t}{\sigma_t} &\sim N(0,1)
\end{aligned}$$

• ML method estimates  $\omega, \alpha, \beta$  by maximizing the product of all likelihoods.

### Warning

- Because the GARCH model requires ML method, you may get highly misleading results when the ML algorithm does not converge.
- Lesson: always check convergence occurs or not.
- You may try different sample or different model specification when there is difficulty of convergence

### Heavy-Tailed or Fat-Tailed Distribution

- Another stylized fact is that financial returns typically have "heavy-tailed" or "outlier-prone" distribution (histogram)
- Statistically heavy tail means kurtosis greater than 3
- The ARCH or GARCH model can capture part of the heavy tail
- Even better, we can allow  $e_t$  to follow a distribution with tail heavier than the normal distribution, such as Student T distribution with a very small degree of freedom

## Asymmetric GARCH

Let 1(.) be the indicator function. Consider a threshold GARCH model

$$\sigma_t^2 = \omega + \alpha r_{t-1}^2 + \beta \sigma_{t-1}^2 + \gamma r_{t-1}^2 1(r_{t-1} < 0)$$
 (15)

So the effect of previous return on conditional variance depends on its sign. It is  $\alpha$  when  $r_{t-1}$  is positive, while  $\alpha + \gamma$  when  $r_{t-1}$  is negative. We expect  $\gamma > 0$  if the respond of the market to bad news (which cause negative return) is more than the good news.

#### GARCH-in-Mean

- If investors are risk-averse, risky assets will earn higher returns (risk premium) than low-risk assets
- The GARCH-in-Mean model takes this into account:

$$r_t = \mu + \delta \sigma_{t-1}^2 + u_t \tag{16}$$

$$u_t \sim \sigma_t e_t$$
 (17)

$$\sigma_t = \sqrt{\omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2} \tag{18}$$

We expect the risk premium will be captured by a positive  $\delta$ .

#### ARMA-GARCH Model

- Finally we can combine the ARMA with the GARCH.
- For instance, consider the AR(1)-GARCH(1,1) combination

$$r_t = \phi_0 + \phi_1 r_{t-1} + u_t \tag{19}$$

$$u_t \sim \sigma_t e_t$$
 (20)

$$\sigma_t = \sqrt{\omega + \alpha u_{t-1}^2 + \beta \sigma_{t-1}^2} \tag{21}$$

Now we allow the return to be predictable, both in level and in squares.



#### Get data

- We download the daily close stock price in year 2012 and 2013 for Walmart (WMT) from Yahoo finance.
- The original data are in Excel format. We can sort the data (so the first observation is the earliest one) and resave it as (tab delimited) txt file
- The first column of the txt file is date; the second column is the daily close price

#### Generate the return

- We then generate the return by taking log of the price, and take difference of the log price
- We also generate the squared return
- The R commands are

```
p = ts(data[,2])  # price
r = diff(log(p))  # return
r2 = r^2  # squared return
```



#### Remarks

- The WMT stock price is upward-trending in this sample. The trend is a signal for nonstationarity.
- Another signal is the smoothness of the series, which means high persistence. The AR(1) model applied to the price is

```
arima(x = p, order = c(1, 0, 0))
```

#### Coefficients:

ar1 intercept

0.9964 70.7369

s.e. 0.0034 5.4126

Note that the autoregressive coefficient is 0.9964, very close to one.



#### Remarks

- One way to achieve stationarity is taking (log) difference. That is also how we obtain the return series
- The return series is not trending. Instead, it seems to be mean-reverting (choppy), which signifies stationarity.
- The sample average for daily return is almost zero

mean(r)

[1] 0.0005303126

So on average, you can not make (or lose) money by using the "buying yesterday and selling today" strategy for this stock in this period.

### Is return predictable?

• First, the Ljung-Box test indicates that the return is like a white noise, which is serially uncorrelated and unpredictable:

```
Box.test (r, lag = 1, type="Ljung")
Box-Ljung test
```

data: r

X-squared = 0.8214, df = 1, p-value = 0.3648

Note the p-value is 0.3648, greater than 0.05. So we cannot reject the null that the series is a white noise.

### Is return predictable?

• Next, the AR(1) model applied to the price is

```
arima(x = r, order = c(1, 0, 0))
```

Coefficients:

ar1 intercept

0.0404 5e-04

s.e. 0.0447 4e-04

where both the intercept and autoregressive coefficients are insignificant

• The last evidence for unpredictable return is its ACF function





#### Remarks

- We see that volatile periods are clustered; so volatility in this period will affect next period's volatility.
- The Ljung-Box test applied to squared return is

```
> Box.test (r2, lag = 1, type="Ljung")
Box-Ljung test
```

data: r2

X-squared = 10.1545, df = 1, p-value = 0.001439

Now we can reject the null hypothesis of squared return being white noise at 1% level (the p-value is 0.001439, less than 0.01)



## ACF of squared return

We can see significant autocorrelation at the first and 15th lags. This is evidence that the squared return is predictable.

### ARCH(1) Model: OLS estimation

• We first try OLS estimation of the ARCH(1) model, which essentially regresses  $r_t^2$  onto its first lag

```
> arima(x = r2, order = c(1, 0, 0), method = "CSS")
```

#### Coefficients:

ar1 intercept

0.1420 1e-04

s.e. 0.0442 0e+00

Both the intercept and arch coefficient are significant.

### ARCH(1) Model: ML estimation

```
garch(x = r, order = c(0, 1))
Coefficient(s):
   Estimate Std. Error t value Pr(>|t|)
a0 7.463e-05 3.799e-06 19.64 <2e-16 ***
a1 9.873e-02 4.592e-02 2.15 0.0315 *
Diagnostic Tests:
       Jarque Bera Test
data: Residuals
X-squared = 319.4852, df = 2, p-value < 2.2e-16
       Box-Ljung test
data: Squared.Residuals
X-squared = 0.0416, df = 1, p-value = 0.8383
```

#### Remarks

- The algorithm converges!
- The ARCH coefficient estimated by ML is 0.09873, close to the OLS estimate 0.1420
- The Jarque Bera Test rejects the null hypothesis that the conditional distribution of the return is normal distribution
- The Box-Ljung test indicates that the ARCH(1) model is dynamically adequate with white noise error.

### GARCH(1,1) Model

```
garch(x = r, order = c(1, 1))
Coefficient(s):
   Estimate Std. Error t value Pr(>|t|)
a0 5.680e-05 1.553e-05 3.658 0.000254 ***
a1 9.657e-02 4.569e-02 2.113 0.034570 *
b1 2.179e-01 2.044e-01 1.066 0.286403
Diagnostic Tests:
       Jarque Bera Test
data: Residuals
X-squared = 332.4991, df = 2, p-value < 2.2e-16
       Box-Ljung test
data: Squared.Residuals
X-squared = 0.0723, df = 1, p-value = 0.7881
```

#### Remarks

- The algorithm converges!
- The GARCH coefficient is 0.2179, and is insignificant.
- The ARCH coefficient is 0.09657, similar to the ARCH(1) model
- Because  $a1 + b1 \ll 1$  the squared return series is stationary (there is no IGARCH effect for WMT stock)
- Overall, we conclude that the return of Walmart stock price follows an ARCH(1) process.