Алгоритмы и модели вычислений.

Задание 5: сложность вычислений: классы P, NP, co-NP II

Сергей Володин, 272 гр.

задано 2014.03.13

Задача 1

Задача 2

См. (каноническое) 21

Задача 3

- 1. $\mathcal{C} \supset \mathsf{NP} \cup \mathsf{co}\text{-}\mathsf{NP}$.
 - (а) Пусть $L \in \mathsf{NP}$. Тогда (семинар) $L \leqslant_m^p \mathsf{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in L \Leftrightarrow f(x) \in \mathsf{SAT}), \ f$ вычислима за полиномиальное время. Определим M_{SAT} : вычисляем за полиномиальное время (определение сводимости) f(x) (x вход), спрашиваем оракула $f(x) \in \mathsf{SAT}$ за O(1). Ответ ответ оракула (корректно из определения сводимости). Время работы полиномиально: $T(|x|) = \mathsf{poly}(|x|) + O(1) = \mathsf{poly}(|x|)$.
 - (b) Пусть $L \in \text{co-NP}$. Тогда $\overline{L} \leqslant_m^p \text{SAT} \Leftrightarrow \exists f \colon \Sigma^* \to \Sigma^* \colon \forall x (x \in \overline{L} \Leftrightarrow f(x) \in \text{SAT}) \Leftrightarrow \forall x (x \in L \Leftrightarrow f(x) \notin \text{SAT}),$ f вычислима за полиномиальное время. Определим M_{SAT} : вычисляем за полиномиальное время (определение сводимости) f(x) (x вход), спрашиваем оракула $f(x) \in \text{SAT}$ за O(1). Ответ противоположный ответу оракула (корректно из определения сводимости). Время работы полиномиально: T(|x|) = poly(|x|) + O(1) = poly(|x|).
- 2. $\mathcal{C} \subset \mathsf{NP} \cup \mathsf{co}\text{-}\mathsf{NP}$

(каноническое) Задача 21

(каноническое) Задача 23

- 1. $\Psi(x_1,x_2) \stackrel{\text{def}}{=} (\urcorner x_1 \lor x_2)$. Базовое множество $(n=2) \ \{x_1,x_2, \urcorner x_1, \urcorner x_2\}$. Семейство подмножеств $A_{\Psi} = \{\{x_1, \urcorner x_1\}, \{x_2, \urcorner x_2\}, \{ \urcorner x_1, x_2\} \}$. $\not A \stackrel{\text{def}}{=} \{x_1, x_2\}$. Получаем $A \cap \{x_1, \urcorner x_1\} \ni x_1, A \cap \{x_2, \urcorner x_2\} \ni x_2, A \cap \{ \urcorner x_1, x_2\} \ni x_2$. Значит, A протыкающее множество для A_{Ψ} , и |A| = 2.
- 2. $\chi(x_1, x_2, x_3) \stackrel{\text{def}}{=} (x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2) \land (x_1 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_3) \land \neg x_3$. Семейство подмножеств (n=3) $A_\chi = \{\{x_1, \neg x_1\}, \{x_2, \neg x_2\}, \{x_3, \neg x_3\}, \{x_1, x_2, x_3\}, \{\neg x_1, \neg x_2\}, \{x_1, \neg x_2\}, \{\neg x_1, x_2, x_3\}, \{\neg x_3\}\}$. Пусть A протыкающее множество. Тогда $A \cap \{\neg x_3\} \neq \emptyset \Rightarrow A \ni \neg x_3$. Также $A \cap \{x_1, \neg x_1\} \neq \emptyset$, поэтому A содержит x_1 или $\neg x_1$. Аналогично $x_2 \in A$ или $\neg x_2 \in A$. Получаем, что A содержит не менее трех элементов. Предположим, что их ровно 3. Рассмотрим все возможные 4 случая (или×или раньше по тексту):
 - (a) $A = \{x_1, x_2, \neg x_3\}$. Тогда $A \cap \{\neg x_1, \neg x_2\} = \emptyset$ противоречие.
 - (b) $A = \{x_1, \neg x_2, \neg x_3\}$. Тогда $A \cap \{\neg x_1, x_2, x_3\} = \emptyset$ противоречие.
 - (c) $A = \{ \exists x_1, x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, \exists x_2 \} = \emptyset$ противоречие.
 - (d) $A = \{ \exists x_1, \exists x_2, \exists x_3 \}$. Тогда $A \cap \{x_1, x_2, x_3\} = \emptyset$ противоречие.

Получаем, что A содержит более трех элементов