Intuitionistic epistemic logic categorically and algebraically

Daniel Rogozin UCL

PPLV seminar The 24th of March 2023

Introduction

Intuitionistic modal logic: the big picture

- As it is well known, modal logic extends classical logic with modal operators.
- Applications: topology, proof theory, formal verification, ontologies, etc.
- Intuitionistic modal logic is a version of modal logic where the underlying logic is the intuitionistic one.
- · Possible topics where intuitionistic modal logic is of interest:
 - Constructive necessity, provability in intuitionistic arithmetic, intuitionistic knowledge, etc.
 - Model theory: the finite model property, canonicity à la Salqvist, definability à la Thomason-Goldblatt, etc.
 - · Representation theory: general descriptive frames, Esakia duality, etc.

Intuitionistic modal logic: the big picture

- As it is well known, modal logic extends classical logic with modal operators.
- Applications: topology, proof theory, formal verification, ontologies, etc.
- Intuitionistic modal logic is a version of modal logic where the underlying logic is the intuitionistic one.
- · Possible topics where intuitionistic modal logic is of interest:
 - Constructive necessity, provability in intuitionistic arithmetic, intuitionistic knowledge, etc.
 - Model theory: the finite model property, canonicity à la Salqvist, definability à la Thomason-Goldblatt, etc.
 - · Representation theory: general descriptive frames, Esakia duality, etc.

See this summary paper to have the big picture in more detail

• Frank Wolter and Michael Zakharyaschev. Intuitionistic Modal Logic, 1999.

Modalities type theoretically

- Type theory deals with a computation every value in which is annotated with the corresponding data type. Type theory is closely connected with intuitionistic logic and constructive proofs through the Curry-Howard correspondence.
- One can extend Curry-Howard to intuitionistic modal logic and study modal operators within the "types-as-formulas" and "proofs-as-terms" paradigm.
- Here we think of modal types as abstract data types of action, which is of interest for functional programming.

Modalities type theoretically

- Type theory deals with a computation every value in which is annotated with the corresponding data type. Type theory is closely connected with intuitionistic logic and constructive proofs through the Curry-Howard correspondence.
- One can extend Curry-Howard to intuitionistic modal logic and study modal operators within the "types-as-formulas" and "proofs-as-terms" paradigm.
- Here we think of modal types as abstract data types of action, which is of interest for functional programming.

See the following:

- Gianluigi Bellin, Valeria De Paiva and Eike Ritter. Extended Curry-Howard Correspondence for a Basic Constructive Modal Logic, 2003
- Frank Pfenning and Rowan Davies. A Judgmental Reconstruction of Modal Logic, 2000.
- Peter Nicholas Benton, Gavin M. Bierman, Valeria de Paiva. Computational types from a logical perspective, 1998.
- David Corfield. Modal homotopy type theory: The prospect of a new logic for philosophy, 2020.

Modal type theory based on IEL-

Bridges with functional programming

Strong normalisation

The Church-Rosser property

Categorical completeness

Category theory

Now I am going to be like the guy from the right.

General concepts: Category

Recall that a category ${\mathcal C}$ consists of:

- A class of objects $Ob(C) = \{A, B, C, \dots\}$,
- A class of morphisms $\mathcal{C}(A,B)$ for each $A,B\in \mathsf{Ob}(\mathcal{C})$, where $f:A\to B$ iff $f\in \mathcal{C}(A,B)$,
- For $f:A\to B$ and $g:B\to C$, then $g\circ f:A\to C$ and $h\circ (g\circ f)=(h\circ g)\circ f$ for each f,g,h having an appropriate domain and codomain,
- For each $A, B \in \mathsf{Ob}(\mathcal{C})$ we have identity morphisms such that for each $f: A \to B$ $f \circ id_A = f$ and $id_B \circ g = g$.

Some examples:

- Set, the category of all sets and all functions betweem them,
- **Top**, the category of all topological spaces and continuous maps,
- \mathbf{Vect}_k , the category of vector spaces over a field k and linear maps,
- (P, \leq) , any poset where $a \rightarrow b$ exists iff $a \leq b$,
- Any monoid (as well as a group) is a category, where $\mathsf{Ob}(\mathcal{C})$ is a singleton set (Cayley's theorem).
- · etc.

General concepts: Functor

Intuitively, a functor is a morphism of category. Rigorously, let $\mathcal C$ and $\mathcal D$ be categories, a functor $F:\mathcal C\to\mathcal D$ is a "function" such that:

- Each $A \in Ob(\mathcal{C})$ maps to $FA \in Ob(\mathcal{D})$,
- Each $f: A \rightarrow B$ in C maps to $Ff: FA \rightarrow FB$ in D,
- $F(g \circ f) = Fg \circ Ff$ for each f and g.

Some examples:

- The powerset functor $\mathcal{P}:$ **Set** \to **Set** such that $\mathcal{P}:$ A \mapsto 2^A,
- The abelianisation functor $Ab: \textbf{Group} \rightarrow \textbf{Ab}$ such that $Ab: G \mapsto G/[G,G]$,
- The spectrum functor Spec : $\mathbf{Ring}^{op} \to \mathbf{Top}$ that maps every commutative ring to its Zariski space,
- **Field** \rightarrow **Ring** such that $k \mapsto k[X]$,
- π_1 : **Top*** \to **Group** maps every topological space with a base point to its fundamental group, for example, $\pi_1(S) = \mathbb{Z}$ (up to isomorphism).
- · etc.

General concepts: Natural transformation

A natural transformation is a functor morphism. Let \mathcal{C},\mathcal{D} be categories and $F,G:\mathcal{C}\to\mathcal{D}$ functors. A natural tranformation $\theta:F\Rightarrow G$ is a collection of morphisms $\theta_A:FA\to GA$ in \mathcal{D} making the following square commute for each $f:A\to B$ and $A,B\in \mathsf{Ob}(\mathcal{C})$:

General concepts: Natural transformation

A natural transformation is a functor morphism. Let \mathcal{C},\mathcal{D} be categories and $F,G:\mathcal{C}\to\mathcal{D}$ functors. A natural tranformation $\theta:F\Rightarrow G$ is a collection of morphisms $\theta_A:FA\to GA$ in \mathcal{D} making the following square commute for each $f:A\to B$ and $A,B\in \mathsf{Ob}(\mathcal{C})$:

An example:

Let det_M be the determinant of the $n \times n$ matrix $M \in GL_n$ k with entries from a field k and k^* is the multiplicative group of k. Both GL_n and * are functors from the category of fields to the category of groups, and $det_M : GL_n$ $k \to k^*$ is a morphism of groups and it is natural:

Cartesian closed categories

A category is *cartesian closed* is there are objects $\mathbb{1}$, B^A and $A \times B$ such that:

- |C(A, 1)| = 1 for each $A \in Ob(A)$,
- The following diagrams commute:

The second diagram can be reformulated as (compare with the definition of implication in Heyting algebras):

$$\mathcal{C}(A \times B, C) \simeq \mathcal{C}(A, C^B)$$

Cartesian closed categories

A category is *cartesian closed* is there are objects $\mathbb{1}$, B^A and $A \times B$ such that:

- |C(A, 1)| = 1 for each $A \in Ob(A)$,
- · The following diagrams commute:

The second diagram can be reformulated as (compare with the definition of implication in Heyting algebras):

$$\mathcal{C}(A\times B,C)\simeq \mathcal{C}(A,C^B)$$

Some examples:

- · Set,
- · Every Heyting algebra,
- The category of G-sets for a group G (the category of group actions),
- The category of simplicial sets (which are also contravariant functors $\Delta:\omega\to\mathbf{Set}$).

Typed lambda calculi type-theoretically

Cartesian closed categories allow interpreting intuitionistic type theories using the following scheme:

 $\Gamma \models M : A \text{ iff there exists an arrow } \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket.$

Typed lambda calculi type-theoretically

Cartesian closed categories allow interpreting intuitionistic type theories using the following scheme:

$$\Gamma \models M : A \text{ iff there exists an arrow } \llbracket M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket.$$

In particular, simply typed lambda calculus with types \to and \times has the following interpretation in CCCs.

Monoidal endofunctors as modalities

We are interested in how to interpret \Box -like modality categorically. Recall that one reformulate the **K** axioms of \Box the following way:

(The multiplicativity axiom)

$$\Box(p \land q) \leftrightarrow \Box p \land \Box q$$

(The normality axiom)

$$\Box \top \leftrightarrow \top$$

• (The monotonicity rule)

From
$$\varphi \to \psi$$
 infer $\Box \varphi \to \Box \psi$

Monoidal endofunctors as modalities

We are interested in how to interpret \Box -like modality categorically. Recall that one reformulate the **K** axioms of \Box the following way:

(The multiplicativity axiom)

$$\Box(p \land q) \leftrightarrow \Box p \land \Box q$$

(The normality axiom)

$$\Box \top \leftrightarrow \top$$

• (The monotonicity rule)

From
$$\varphi \to \psi$$
 infer $\Box \varphi \to \Box \psi$

Categorically, we have an endofunctor $F: \mathcal{C} \to \mathcal{C}$ with the following natural isomorphisms (this is a *strong monoidal endofunctor*):

- $m_{A,B}: F(A \times B) \cong FA \times FB$
- $u: F\mathbb{1} \cong \mathbb{1}$

Monoidal endofunctors as modalities

We are interested in how to interpret \Box -like modality categorically. Recall that one reformulate the **K** axioms of \Box the following way:

(The multiplicativity axiom)

$$\Box(p \land q) \leftrightarrow \Box p \land \Box q$$

(The normality axiom)

$$\Box \top \leftrightarrow \top$$

• (The monotonicity rule)

From
$$\varphi \to \psi$$
 infer $\Box \varphi \to \Box \psi$

Categorically, we have an endofunctor $F:\mathcal{C}\to\mathcal{C}$ with the following natural isomorphisms (this is a *strong monoidal endofunctor*):

- $m_{A,B}: F(A \times B) \cong FA \times FB$
- $u: F\mathbb{1} \cong \mathbb{1}$

The modal lambda calculus Curry-Howard isomorphic to the intuitionstic modal logic \mathbf{K} with \square is known to sound and complete w.r.t. CCCs with strong monoidal endofunctors.

See

- Gianluigi Bellin, Valeria De Paiva and Eike Ritter. Extended Curry-Howard Correspondence for a Basic Constructive Modal Logic, 2003
- Y. Kakutani. Call-by-name and call-by-value in normal modal logic, 2007.

IEL as a natural transformation

To interpret the **IEL** $^-$ we need the natural transformation $\eta: Id_{\mathcal{C}} \Rightarrow \mathbf{F}$, where \mathcal{C} is a CCC and F is a strong monoidal endofunction with the additional principles:

- 1. $u = \eta_1$
- 2. For each $A, B \in Ob(\mathcal{C})$:

IEL as a natural transformation

To interpret the **IEL**⁻ we need the natural transformation $\eta: Id_{\mathcal{C}} \Rightarrow \mathbf{F}$, where \mathcal{C} is a CCC and F is a strong monoidal endofunction with the additional principles:

- 1. $u = \eta_1$
- 2. For each $A, B \in Ob(\mathcal{C})$:

An \mathbf{IEL}^- -category is a triple $(\mathcal{C}, \mathbf{F}, \eta)$, where \mathcal{C} is a CCC, \mathbf{F} is a strong monoidal endofunctor and $\eta: Id_{\mathcal{C}} \Rightarrow \mathbf{F}$ is a natural transformation with the additional extra-principles as above.

IEL as a natural transformation

To interpret the **IEL**⁻ we need the natural transformation $\eta: Id_{\mathcal{C}} \Rightarrow \mathbf{F}$, where \mathcal{C} is a CCC and F is a strong monoidal endofunction with the additional principles:

- 1. $u = \eta_1$
- 2. For each $A, B \in Ob(\mathcal{C})$:

An **IEL**⁻-category is a triple $(\mathcal{C}, \mathbf{F}, \eta)$, where \mathcal{C} is a CCC, \mathbf{F} is a strong monoidal endofunctor and $\eta: Id_{\mathcal{C}} \Rightarrow \mathbf{F}$ is a natural transformation with the additional extra-principles as above.

Theorem (D. R. 2018)

If M and N are well-typed and M $=_{\beta}$ N, then [M] = [N]. That is, $\lambda_{\text{IEL}-}$ is sound and complete w.r.t. IEL $^-$ -categories.

Categorical semantics

We skip the complete argument, but we just show how to interpret the modal inference rules in ${\bf IEL}^-$ -categories:

Some background: Heyting algebras and locales

Recall that a Heyting algebra is a bounded distributive lattice $\mathcal{H}=(H,\wedge,\vee,\rightarrow,0,1)$ with the operation \rightarrow satisfying for all $a,b,c\in H$:

$$a \land b \le c \text{ iff } a \le b \rightarrow c$$

A locale is a complete lattice $\mathcal{L} = (L, \wedge, \bigvee)$ satisfying for all $a \in L$ and for each indexed family $(a_i)_{i \in I}$:

$$a \wedge \bigvee_{i \in I} a_i = \bigvee_{i \in I} (a \wedge a_i)$$

Some background: Heyting algebras and locales

Recall that a Heyting algebra is a bounded distributive lattice $\mathcal{H}=(H,\wedge,\vee,\rightarrow,0,1)$ with the operation \rightarrow satisfying for all $a,b,c\in H$:

$$a \land b \le c \text{ iff } a \le b \to c$$

A locale is a complete lattice $\mathcal{L} = (L, \wedge, \bigvee)$ satisfying for all $a \in L$ and for each indexed family $(a_i)_{i \in I}$:

$$a \wedge \bigvee_{i \in I} a_i = \bigvee_{i \in I} (a \wedge a_i)$$

Heyting algebras and locales are about:

- Heyting algebras provide algebraic semantics for intuitionistic and intermediate logics,
- Locales are a lattice-theoretic approximation of a topological spaces,
- Subobject algebras in topoi

Some background: Heyting algebras and locales

Recall that a Heyting algebra is a bounded distributive lattice $\mathcal{H}=(H,\wedge,\vee,\to,0,1)$ with the operation \to satisfying for all $a,b,c\in\mathcal{H}$:

$$a \wedge b \leq c \text{ iff } a \leq b \rightarrow c$$

A locale is a complete lattice $\mathcal{L}=(L,\wedge,\bigvee)$ satisfying for all $a\in L$ and for each indexed family $(a_i)_{i\in I}$:

$$a \wedge \bigvee_{i \in I} a_i = \bigvee_{i \in I} (a \wedge a_i)$$

Heyting algebras and locales are about:

- Heyting algebras provide algebraic semantics for intuitionistic and intermediate logics,
- · Locales are a lattice-theoretic approximation of a topological spaces,
- · Subobject algebras in topoi

Some references:

- Andre Joyal and Myles Tierney. An extension of the Galois theory of Grothendieck, 1984.
- Francis Borceux. Handbook of Categorical Algebra: Volume 3, Sheaf Theory, 1994.
- Peter Johnstone. Stone spaces, 1984.
- Leo Esakia. Heyting algebras: Duality theory, 2019.

Cover systems

Some background: nuclei and prenuclei

