## 不确定性与风险分析

#### 蔚林巍

清华大学经济管理学院

010-62771203 010-62789952 Tel.:

010-62784544 Fax:

Email: weilw@tsinghua.edu.cn

#### 学习目标

- 1. 在项目投资决策的风险分析中是如何考虑风 险的;了解其他风险分析方法的应用:有关 风险度量问题和处理办法
- 2. 运用盈亏平衡分析和敏感性分析进行项目的 不确定性分析
- 3. 项目风险的分析处理方法: 风险调整折现率 法和等价现金流法
- 4. 运用概率分析进行项目风险决策
- 5. 运用随机模拟进行风险分析。



#### 常见的项目风险因素

- 信用风险 项目参与方的信用及能力
- 建设和开发风险
  - 自然资源和人力资源项目生产能力和效率

  - 投资成本
  - 竣工延期 不可抗力
- 市场和运营风险
  - 市场竞争
  - 市场准入
  - 市场变化
  - 技术变化
  - 经营决策失误

- 金融风险
  - 汇率、利率变动 通货膨胀

  - 贸易保护
- 政治风险
  - 体制变化
  - 政策变化
- 法律法规变化
- 法律风险
  - 有关法律法规不完善 对有关法律法规不熟悉
  - 法律纠纷及争议难以解决
- 环境风险

### 常用的项目风险分析方法

- 风险识别与分析
- 基于规则的定性分析方法

外部风险指与外部融资有关的风险。

- 核对表
- 打分法
- 基于概率定量分析计算方法
  - 需要概率为已知
  - 需要较多的信息



### 项目现金流量水平的可能分布



#### 投资项目不确定性分析

#### 常用分析方法:

- 盈亏平衡分析确定盈利与亏损的临界点、杠杆分析
- 一敏感性分析分析不确定因素可能导致的后果
- 概率分析 对项目风险作直观的定量判断

#### 销售收入及成本与产量之间的关系

销售收入(B)、产品价格(P)与产品产量(Q)之间的关系

 $\begin{array}{c|c}
B & B = PQ \\
\hline
0 & Q
\end{array}$ 

总成本(C)、固定成本 ( $C_f$ )、单位产品变动成本 ( $C_v$ )和产品产量(Q)之间的 关系



#### 静态盈亏平衡分析图

• 销售收入、总成本和产品产量之间的关系



### 静态盈亏平衡分析

由 S=C 即  $PQ=C_f+C_vQ$  可导出:

盈亏平衡产量

 $Q^* = \frac{C_f}{P - C_v}$ 

盈亏平衡价格

 $P^* = \frac{C_f}{Q} + C_v$ 

 $C_v^* = P - \frac{C_f}{Q}$  盈亏平衡单位产品变动成本

### 静态盈亏平衡分析例

某项目生产能力3万件/年,产品售价3000元/件,总成本费用7800万元,其中固定成本3000万元,成本与产量呈线性关系。

单位产品变动成本  $C_v = \frac{7800 - 3000}{3} = 1600 元/4$ 

盈亏平衡产量

 $Q^* = \frac{3000 \times 10^4}{3000 - 1600} = 21400 \,\text{#}$ 

盈亏平衡价格

 $P^* = 1600 + \frac{3000 \times 10^4}{3 \times 10^4} = 2600$ 元/件

盈亏平衡单位产品变动成本

 $C_{v}^{*} = 3000 - \frac{3000 \times 10^{4}}{3 \times 10^{4}} = 2000 \, \vec{\pi} \, / \, \text{#}$ 

#### 盈亏平衡分析的扩展 (根据NPV=0,或备选方案的无差异点)

例如:某项目的NPV可由下式计算,项目 寿命期为不确定因素

$$NPV = -150 + 30(P/A,15\%, x)$$

当NPV=0时,有:

$$(P/A,15\%,x) = \frac{1.15^x - 1}{0.15 \times 1.15^x} = \frac{150}{30} = 5$$

解得:使NPV≥ 0 的项目寿命期的临界值约为10 年



### 成本结构和经营风险的关系

- 企业固定成本在总成本中所占比例会影响 企业的息前和税前收入EBIT。
- 通常将企业在无负债状况下,未来EBIT的 不确定性称为经营风险。
- 对照:
- 企业在负债状况下,未来税后收益(一般采用EPS)的不确定性称为财务风险。

#### 经营风险 vs. 经营杠杆

设项目固定成本占总成本的比例为R,则

固定成本 
$$C_f = C \cdot R$$

营业利润 
$$II = PQ - CR - \frac{C(1-R)}{Q_s}Q$$

$$\frac{dII}{dQ} = P - \frac{C(1-R)}{Q_c} = P - \frac{C}{Q_c} + \frac{CR}{Q_c}$$

当销售量变化时,R越大,利润变化率越大。

#### 例:

|                   | 甲公司   | 乙公司   |
|-------------------|-------|-------|
| 价格P元              | 2     | 2     |
| 固定成本FC元           | 20000 | 60000 |
| 单位变动成本VC元         | 1.5   | 1.0   |
| 设计生产能力Q。件         | 80000 | 80000 |
| 盈亏平衡产销量 Q*件       | 40000 | 60000 |
| Q*/Q <sub>0</sub> | 50%   | 75%   |
| FC/TC             | 14.3% | 42.8% |

## 经营杠杆度DOL的概念 (degree of operating Leverage)

表示在某一销售水平上,销售量变动所引起的息前税前收益EBIT的变动。

DOL=(  $\triangle$  EBIT/EBIT) / (  $\triangle$  Q/Q )

解之得:

DOL=Q(P-VC)/[Q(P-VC)-FC]

或:

DOL = (EBIT + FC) / EBIT

Ital

|             | 甲公司   | 乙公司   |
|-------------|-------|-------|
| 价格 p 元      | 2     | 2     |
| 固定成本 FC 元   | 20000 | 60000 |
| 单位变动成本 VC 元 | 1.5   | 1.0   |
| 设计生产能力 Qo件  | 80000 | 80000 |
| 盈亏平衡产销量 Q*件 | 40000 | 60000 |
| Q*/Qo       | 50%   | 75%   |
| FC/TC       | 14.3% | 42.8% |
| EBIT =      | 20000 | 20000 |
| DOL=        | 2     | 4     |

#### 影响企业经营风险的其他因素:

- 企业产品销售对经济波动的敏感性
- 企业的规模和市场占有率
- 投入物价格的的稳定性
- 企业随投入物价格变动调整产品销售 价格的能力

### 投资项目风险的处理方法 风险调整贴现率法

- 风险调整贴现率法的基本原理是按风险与收益 匹配的原则调整项目的贴现率,这也就是 CAPM模型的基本原则。
- 风险和收益之间的关系。



#### 风险调整贴现率法实际应用时,通常对项目 进行风险分类,设定不同的贴现率。

例:一家公司总体上所要求的收益率为12%, 针对不同项目采用如下的收益率标准进行资 本预算分析:

| 1 32(2) 23 1/14 |        |
|-----------------|--------|
| 项目类别            | 要求的收益率 |
| 重置决策            | 12%    |
| 改建扩建现有生产线       | 15%    |
| 与当前业务无关的项       | 目 18%  |
| 研究开发项目          | 25%    |

### 资本-资产定价模型(CAPM)

资产定价模型(CAPM):一种描述风险与期望(需求) 收益率之间关系的模型。在这一模型中,某种证券的期望(需求)收益率就是无风险收益率加上这 种证券的系统风险溢价。

$$\overline{R}_j = R_f + (\overline{R}_m - R_f)\beta_j$$

- 该模型是由诺贝尔奖获得者威廉姆·夏普(William Sharpe)建立的,它产生于20世纪60年代,自从那时起,它就对财务学有重要的启示作用。
- 尽管其他模型或许能够更好地描述市场行为,但CAPM 仍是一个概念简单, 贴近现实的模型。

### 证券市场线

 $\overline{R}_i = R_f + (\overline{R}_m - R_f)\beta_i$ • SML:



#### 投资项目风险的处理方法: 等价现金流法

- 在等价现金流法中,财务经理根据实际 经验把资本预算分析中那些有风险的未 来预期现金流替换成他认为与之等价的 无风险现金流。这样,原来有风险的现 金流被一系列无风险的现金流所替代, 而这两种现金流对财务经理来说是等价的。
- 缺点: 等价分析的任意性很大

例 1 某公司所要求的收益率为10%,无风险收益率为6%。公司计划建造一个预期寿命5年的项目,初始投入为120000美元,预期现金流入和等价系数αt如下

| 年份 | 預期现金流(\$) | 等价系数 a. |
|----|-----------|---------|
| 1  | 10 000    | 0.95    |
| 2  | 20 000    | 0.90    |
| 3  | 40 000    | 0.85    |
| 4  | 80 000    | 0.75    |
| 5  | 80 000    | 0, 65   |

• 等价现金流法解答过程如下:

#### 1 把预期现金流乘以相应的等价系数,得到等价的无风险 现金流。如下表所示:

| 預期現金流(\$) | 等价系数 a | 等价无风险现金流(\$) |
|-----------|--------|--------------|
| 10 000    | 0. 95  | 9 500        |
| 20 000    | 0. 90  | 18 000       |
| 40 000    | 0.85   | 34 000       |
| 80 000    | 0.75   | 60 000       |
| 80 000    | 0.65   | 52 000       |

2. 用无风险收益率贴现等价的无风险现金流。如下表所示:

| 年份                 | 等价无风险现金流(\$)           | 贴现因子(i=6%)             | 现值(\$)   |
|--------------------|------------------------|------------------------|----------|
| 1                  | 9 500                  | 0.943                  | 8 959.50 |
| 2                  | 18 000                 | 0.890                  | 16 020   |
| 3                  | 34 000                 | 0.840                  | 28 560   |
| 4                  | 60 000                 | 0.792                  | 47 520   |
| 5                  | 52 000                 | 0.747                  | 38 844   |
| NPV =- \$ 120 000+ | 8959.50+16 020+28 560+ | 47 520+38 844= \$19 90 | 2. 50    |

• 按资本预算决策标准,此项目的净现值大于零,项目有利可图。

# 概率分析法:

#### 期望项目净现值和方差

假定A、B、C是影响项目现金流的不确定因素,它们分别有l、m、n 种可能出现的状态,且相互独立,则项目现金流有  $k=l\times m\times n$  种可能的状态。根据各种状态所对应的现金流,可计算出相应的净现值。设在第j 种状态下项目的净现值为 NPV  $^{\circlearrowleft}$  ,第j 种状态发生的概率为  $P_j$  ,则项目净现值的期望值与方差分别为:

$$E(NPV) = \sum_{j=1}^{k} NPV^{(j)} \cdot P_{j}$$

$$D(NPV) = \sum_{j=1}^{k} \left[ NPV^{(j)} - E(NPV) \right]^{2} \cdot P_{j}$$

### 概率分析举例

#### 不确定因素状态及其发生概率

| 产品市场状态 | 畅销( <sub>θA1</sub> ) | 一般( <sub>θA2</sub> ) | 滞销( <sub>θA3</sub> ) |
|--------|----------------------|----------------------|----------------------|
| 发生概率   | $P_{A1} = 0.2$       | $P_{A2} = 0.6$       | $P_{A3} = 0.2$       |
| 原料价格水平 | 高( <sub>Өв1</sub> )  | 中 ( <sub>0B2</sub> ) | 低 ( <sub>θB3</sub> ) |
| 发生概率   | $P_{B1} = 0.4$       | $P_{B2} = 0.4$       | $P_{B3} = 0.2$       |

### 决策(概率)树法

两种不确定因素影响项目现金流的概率树



#### 各种状态组合的净现金流量及发生概率 现金流量(万元) **NPV** <sup>()</sup> 状态组合 发生概率 P 0年 1-5年 (i=12%) 351.88 $\theta_{A1} \cap \theta_{B1}$ 0.08 622.15 $\theta_{A1} \cap \, \theta_{B2}$ 0.04 510 $\theta_{A1} \cap \, \theta_{B3}$ 838.44 $\theta_{A2} \cap \theta_{B1}$ 0.24 117.48 $\theta_{A2} \cap \ \theta_{B2}$ 0.24 $\theta_{A2} \cap \ \theta_{B3}$ 0.12 405.86

0.08

0.04

 $\theta_{A3} \cap \, \theta_{B1}$ 

 $\theta_{A3} \cap \ \theta_{B2}$ 

 $\theta_{A3} \cap \, \theta_{B3}$ 

9

230

-170.90

-98.81

### 投资项目风险估计

上例中项目净现值的期望值及标准差

$$E(NPV) = \sum_{j=1}^{9} NPV^{(j)} \cdot P_j = 228.51$$

$$D(NPV) = \sum_{j=1}^{9} [NPV^{(j)} - 228.51]^{2} \cdot P_{j} = 59430.12$$

$$\sigma(NPV) = \sqrt{D(NPV)} = \sqrt{59430.12} = 243.78$$

假定项目净现值服从正态分布,可求出 该项目净现值大于或等于0的概率为

$$P(NPV \ge 0) = 0.83$$







#### 模拟分析法:一种新药项目的模拟分析实例

首先确定所有影响项目收益的变量及概率分布。在这个例子中,假设有9个变量:

- 1. 市场容量
- 2. 销售价格
- 3. 市场增长速度
- 4. 市场份额(它决定了实际的销售量)
- 5. 所需的投资规模
- 6. 项目的残值
- 7. 经营成本
- 8. 固定成本
- 9. 设备的使用寿命





#### 投资风险控制

投资风险控制的主要方法是多元化经营和多角 筹资。

- 近代企业大多采用多角经营的方针,主要原因是它能分散风险。多经营几个品种,它们景气程度不同,盈利和亏损可以相互补充,减少风险。
- 从统计学上可以证明,几种商品的利润率和风险是独立的或是不完全相关的。
- 在这种情况下,企业的总利润率的风险能够因多种经营而减少。
- •注意: 需要防止滥用多元化经营.

#### 风险分散原理举例:

例: W 和 M 股票在证券组合中各占 50%,其各年收益率如下:

| 年     | 股票W<br>(KW) | 股票 M<br>(Km) | 股票组合<br>( <sub>Kp</sub> ) |
|-------|-------------|--------------|---------------------------|
| 0     | 40%         | -10%         | 15%                       |
| 1     | -10%        | 40%          | 15%                       |
| 2     | 35%         | -5%          | 15%                       |
| 3     | -5%         | 35%          | 15%                       |
| 4     | 15%         | 15%          | 15%                       |
| 平均收益率 | 15%         | 15%          | 15%                       |
| 标准差   | 22.6%       | 22.6%        | 0.0%                      |

