Aim: Build a gradient boosting model with 3 decision tree weak learner & implement the final prediction.

Steps:

- 1. Create a primary model(avg of target column)
- 2. Now, calculate the pseudo residual
- 3. Create a secondary model with independent column & dependent column as pseudo residual of primary model.
- 4. Now make prediction using secondary model & find the pseudo residuals secondary model.
- 5. Make final prediction as, final_pred = m1_pred + m2_pred. To reduce the overfitting multiply secondary model with learning rate factor(0.1)

```
import pandas as pd
from sklearn.tree import DecisionTreeRegressor, plot_tree
df = pd.DataFrame({
    'age': [20, 23, 35, 45, 28],
    'exp': [1.0, 1.5, 3.0, 5.0, 2.0],
    'sal': [25, 30, 45, 60, 35]
})
df
        age exp sal
         20
              1.0
                   25
         23
              1.5
                   30
     2
         35
             3.0
                   45
     3
         45
             5.0
                   60
     4
         28 2.0
                   35
# model1 prediction
df['m1_pred'] = df.sal.mean()
df['m1_residual'] = df.sal - df.sal.mean()
df
```

	age	exp	sal	m1_pred	m1_residual	17:	ıl.
0	20	1.0	25	39.0	-14.0		
1	23	1.5	30	39.0	-9.0		
2	35	3.0	45	39.0	6.0		
3	45	5.0	60	39.0	21.0		
4	28	2.0	35	39.0	-4.0		

```
# model2 prediction
dt = DecisionTreeRegressor()
plot_tree(dt.fit(df[['age', 'exp']], df['m1_residual']))
df['m2_pred'] = dt.m1_predict(df[['age', 'exp']])
df['m2_pred'] = df.m1_pred + (0.1 * df.m2_pred)
df['m2_residual'] = df.sal - df.m2_pred
df.
```

	age	exp	sal	m1_pred	m1_residual	m2_pred	m2_residual	17:	ılı
0	20	1.0	25	39.0	-14.0	37.6	-12.6		
1	23	1.5	30	39.0	-9.0	38.1	-8.1		
2	35	3.0	45	39.0	6.0	39.6	5.4		
3	45	5.0	60	39.0	21.0	41.1	18.9		
4	28	2.0	35	39.0	-4.0	38.6	-3.6		

x[1] <= 2.5 squared_error = 154.0 samples = 5 value = 0.0

```
dt = DecisionTreeRegressor()
plot_tree(dt.fit(df[['age', 'exp']], df['m2_residual']))
df['m3_pred'] = dt.predict(df[['age', 'exp']])
df['m3_pred'] = df.m2_pred + (0.1 * df.m3_pred)
df['m3_residual'] = df.sal - df.m3_pred
df
```

[>		age	exp	sal	m1_pred	m1_residual	m2_pred	m2_residual	m3_pred	m3_residual	100	
	0	20	1.0	25	39.0	-14.0	37.6	-12.6	36.34	-11.34		
	1	23	1.5	30	39.0	-9.0	38.1	-8.1	37.29	-7.29		
	2	35	3.0	45	39.0	6.0	39.6	5.4	40.14	4.86		
	3	45	5.0	60	39.0	21.0	41.1	18.9	42.99	17.01		
	4	28	2.0	35	39.0	-4.0	38.6	-3.6	38.24	-3.24		

df