Welcome to Introduction to Python!

(We start at 9am)

Python on Google Colab

https://bit.ly/3kV6Cyo

Interactive polls (*no account needed*)

pollev.com/lc928

Slides

https://bit.ly/3kYEv1s

No Colab? Download Anaconda and code from

www.anaconda.com/products/individual
www.stanford.edu/~lcambier/pc/code_data.zip

Open Python.ipynb in Jupyter (Anaconda Navigator → Jupyter → Select file)

Introduction to Python

Léopold Cambier
lcambier@stanford.edu

ICME Summer Workshops
Fundamentals of Data Science

August 18, 2020

First and Foremost

- Workshop <u>is</u> recorded (audio & video)
 Office-hours (1pm-2pm) <u>will not</u> be recorded.
- 2. If you are OK, turn on your camera :-)
- 3. Ask questions in chat. Ryan our awesome TA is answering.
- 4. Stay muted unless you are actively talking

Some questions for you first!

- Mandatory to participate :-)
- Laptop or phone (keep the tab open for later)
- No account needed, anonymous
- The more the better.

Some info about me

- 5th year PhD in ICME

- Numerical linear algebra (very big sparse "Ax=b")

- Parallel computing (big computers)

"Python" you said?

"Python" you said?

Monty Python and the Holy Grail

Python

A very popular programming language

- Web applications
- Scientific computing
- Data science and machine learning
- General purpose applications

Python www.tiobe.com

Jul 2020	Jul 2019	Change	Programming Language	Ratings	Change
1	2	^	С	16.45%	+2.24%
2	1	•	Java	15.10%	+0.04%
3	3		Python	9.09%	-0.17%
4	4		C++	6.21%	-0.49%
5	5		C#	5.25%	+0.88%
6	6		Visual Basic	5.23%	+1.03%
7	7		JavaScript	2.48%	+0.18%
8	20	*	R	2.41%	+1.57%
9	8	•	PHP	1.90%	-0.27%
10	13	^	Swift	1.43%	+0.31%

Python www.tiobe.com

TIOBE Programming Community Index

Source: www.tiobe.com

The class

- Python
 - Variables, control-flow, containers, I/O
 - Functions, iterables
 - (Maybe) References, modules
- Numpy + Matplotlib
- Pandas
- Scikit-learn

9:00-10:30	Pasia Dython
10:45-12:00	Basic Python
1:00-2:00	Q&A (optional)
2:00-3:15	Numpy, Pandas,
	Scikit-learn
3:30-4:45	(more applied)

The class

- We will go through code together.
- Ask questions in the chat
- Many exercises.
- Goal:
 - Good enough basic Python knowledge to explore on your own.
 - Exposure to various tools used in science. Won't be an expert.

Python

- High-level
- Portable
- Interpreted
- Extensible
- Object-oriented
- Dynamically typed
- Garbage collected

<u>PYTHON</u>

JAVA

ASSEMBLY

C

This is great, but you forgot to add a null terminator. Now I'm just reading garbage.

Python 2 vs Python 3

Really no reasons to learn Python 2 in 2020 :-)

How to use Python?

Scripts and Python text files (in a text editor, offline, usually)

Notebooks (text + viz + code) (in web browser, online or offline)

Running on your laptop

Download Anaconda

https://www.anaconda.com/products/individual

Comes with all you need

- Many modules preinstalled
- Can use for scripts from terminal
- Can use for Jupyter notebooks from browser

MY PYTHON ENVIRONMENT HAS BECOME SO DEGRADED THAT MY LAPTOP HAS BEEN DECLARED A SUPERFUND SITE.

Let's open the first Notebook!

Strings indexing

s = "abcdefgh"

0	1	2	3	4	5	6	7
a	b	С	d	е	f	g	h
-8	- 7	-6	- 5	-4	-3	- 2	-1

Dictionaries

Everything is a reference (1)

```
a = 2
```

$$a = 3$$

Everything is a reference (2)

```
a = "Stanford"
b = a
a = "ICME"
print(b)
```

Everything is a reference (3)

```
a = [1, 2, 3]
b = a
a[0] = "ICME"
print(b)
```

Everything is a reference (4)

```
a = [1, 2]
t = (a, 1, "String")
a[0] = [3, 4]
print(t)
```

Everything is a reference (5)

```
def fun(x):
   \# same as x = a
a = # Something
fun (a)
```

Quizzes!

PollEv.com/lc928

Numpy

bit.ly/3h844uz

Pandas

bit.ly/3kYEVoy

Sklearn

bit.ly/3280RF8

Open link in web browser

Ready

No Colab? Download code from

www.stanford.edu/~lcambier/pc/code_data.zip
Open Python.ipynb in Jupyter (Anaconda Navigator → Jupyter → Select file)

SciPy

- An ecosystem for Scientific Computing and Data science in Python
- Includes many packages

Numpy: arrays

1-D array

2-D array

3+-D array

Reshaping

.reshape((2, 10)) =

Broadcasting

+

2-array (vector)

3 x 2-array

3 x 2-array

а	b
а	b
а	b

Axis

a.mean(axis=0)

Plotting Ecosystem

Bokeh

Seaborn

Scipy

SciPy

- -Linear Algebra (scipy.linalg)
- -Optimization (scipy.optimize)
- -Statistics (scipy.stats)

Many more

Pandas

- Open-source, high-performances & easy-to-use data structures
- DataFrame objects
- Aggregation, grouping, reductions, statistics, etc.
- Powerful dates support
- All kinds of read/write functions (csv, HDF5, etc.)

Accessing a DataFrame

By Labels

```
    df[column] # Get one column
    df[rows] # Get multiple rows
    df.loc[cols,rows] # End-points INCLUDED
```

By position

```
• df.iloc[cols,rows] # End-points NOT INCLUDED w/ ::
```

Groupby

	Name	Location	Num Customers	Revenue
0	Tom's Pizza	NYC	5	32.6
1	Leo's Taqueria	SF	3	54.6
2	John's Burgers	WDC	8	43.8
3	Cindy's Peluqueria	SF	4	43.6
4	Sergio's Tacos	SF	6	32.6
5	Bazyli's Pub	NYC	8	97.5

Transform

Group NYC

Num Customers 6.50 Revenue 65.05 dtype: float64

Group SF

Num Customers 4.333333
Revenue 43.600000
dtype: float64
----Group WDC

Num Customers 8.0 Revenue 43.8

dtype: float64

Group NYC

	Name	Location	Num Customers	Revenue
0	Tom's Pizza	NYC	5	32.6
5	Bazyli's Pub	NYC	8	97.5

Group SF

		Name	Location	Num Customers	Revenue
	1	Leo's Taqueria	SF	3	54.6
	3	Cindy's Peluqueria	SF	4	43.6
V	4	Sergio's Tacos	SF	6	32.6

Group WDC

		Name	Location	Num	Customers	Revenue
2	John's	Burgers	WDC		8	43.8

df.groupby('Location').mean()

Num Customers Revenue

Location

NYC	6.500000	65.05
SF	4.333333	43.60
WDC	8.000000	43.80

()
combitte

df.pivot	(index='date'	columns='crypto'	values='price')

	date	crypto	price	exchange
0	2020-01-01	втс	8192	Coinbase
1	2020-01-01	ETH	350	Bitconnect
•	2020-01-01	L111	550	Ditconnect
2	2020-02-01	ETH	405	Bitconnect
3	2020-02-01	втс	9510	Bitconnect

Scikit-learn

learn

- A package for machine learning
- Supervised learning
 - Classification
 - Regression
- Unsupervised

Scikit-learn

A typical supervised learning problem

Given a dataset

$$S = \{x_i, y_i\}$$

Learns a function (mapping)

$$y = F(x)$$

Lots of kinds of models!

- https://scikit-learn.org/stable/supervised_learning.html
- https://scikit-learn.org/stable/unsupervised learning.html
- https://scikit-learn.org/stable/model_selection.html
- ... https://scikit-learn.org/stable/user_guide.html

Scikit-learn


```
# Pick a model
from sklearn import model
m = model.somemodel
# Train
m.fit(X train, y train)
# Predict
y pred = m.predict(X pred)
```

Recap

import antigravity
Try it on your laptop,
In a Python interpreter

(https://xkcd.com/353/)

More easter eggs

Try those in a Python interpreter

```
>> from __future__ import braces
```

- >> import this
- >> import __hello__

Recap: What did we learn?

- Basic Python
- Numpy for arrays
- Scipy for linear algebra, optimization, statistics
- Matplotlib for simple plotting
- Pandas for data analytics
- Scikit-learn for machine learning

The Python Ecosystem (a tiny subset)

Seaborn

And many, many more (mpi4py, numba, joblib, ...)

References

Python

- Google & Stackoverflow
- https://docs.python.org/3/
- https://developers.google.com/edu/python/
- https://www.learnpython.org
- http://www.practicepython.org/
- https://dabeaz-course.github.io/practical-python/Notes/Contents.html

Numpy & Scipy

• https://docs.scipy.org/doc/numpy/user/quickstart.html

Pandas

- https://pandas.pydata.org/pandas-docs/stable/10min.html
- https://github.com/jvns/pandas-cookbook

• Scikit-learn

• http://scikit-learn.org/stable/tutorial/basic/tutorial.html

At Stanford

- CME211
 - Software Development for Scientists and Engineers
- CS106AP
 - Programming Methodology in Python
- CS102, CS131, CS230, CS231N, CS375: Machine Learning (using Python)
- CME302: Numerical Linear Algebra (using Python)

 Best class at Stanford! Really!

Any question after the class?

lcambier@stanford.edu

-> Stanford Continued Education