

MECHANICAL PROPERTIES MAPPING OF CAST BIMETALLIC WORK ROLL SHELL MATERIAL BY NANOINDENTATION

ICEM 2018 - July 1-5, Brussels, Belgium

D. Mercier¹, S. Flament¹, G. Walmag¹,

G. Esser¹, X. Vanden Eynde¹, M. Sinnaeve², M. Caruso¹

¹CRM Group, Liège, Belgium ²Marichal Ketin, Liège, Belgium

→ BEWARE FELLOWSHIPS programs co-financed by the COFUND program of the European Union (FP7 - Marie Curie Actions).

Rolls for the hot rolling mill

- Roll requirements: Good wear resistance and hardness at high T
- □ Cast bimetallic work roll material commonly used in hot strip mills.

Hot strip mill

Bimetallic rolls production by vertical spin casting: a) casting of shell material; b) casting of core and barrel material. (from www.mkb.be)

Work rolls development

- □ Core: spheroidal graphite
- Shell materials

Material	Application	Composition (wt %)				
		С	Cr	W eq.(=W+2Mo)	Nb + V	
High Chromium Iron	HSM Roughing StandsHSM Finishing Stands	2.5 - 3.5	15 - 22	6 - 10	< 0.5	
HSS (High Speed Steel)	 HSM Finishing Stands 	1.5 - 2	3 - 6	6 - 10	4 - 8	
Semi-HSS	 HSM Roughing Stands 	0.6 - 1	6 - 10	4 - 8	0.5 - 2	

Typical microstructure

Microstructural characterization by SEM

→ HSS Steel sample with clusters of micrometric carbides

Sample description

□ Chemical analysis by EDS

→ Micrometric and complex shaped carbides

Sample description

Chemical analysis by EDS

- → Micrometric and complex shaped carbides
 - → Cr rich (dark grey)
 - → Mo rich (white)
 - → Nb rich (white)

Problematic and Objectives

- → Roll performance influenced by carbides (type, size, chemical composition..)
 - → Ex. Too hard carbides comparing to matrix may act as spikes making scratches on the roll matrix
- Importance of characterization of carbides distribution and mechanical properties

STRATEGY

- → Microhardness experiments
- → Nanoindentation maps
 - → Mechanical property mapping
 - → Mechanical property histograms
- → Quantitative correlation of the mechanical maps with the microstructural map

Vickers microhardness

■ Matrix (100g) ~ 500-700HV

- □ Carbides (20g)
 - White ~ 800-1000HV
 - Dark grey ~ 900-1000HV

→ Use of nanoindentation?

Nanoindentation mapping

- □ Grid technique^{1,2}
- MTS G200 XP Berkovich (CSM mode)
- 25x25 = 625 indents $/ \Delta X = \Delta Y = 2\mu m$
- Maximum indentation depth = 100nm
- @ room T and strain rate = 0.05s⁻¹

Indent Size ~0.7μm→ Much lower than carbides size...

→ Phase constituents

¹Constantinides G. et al., Materials Science and Engineering: A, 430(1-2), 2006. ²Randall N. X. et al., J. Mater. Res., 24(3), 2009.

Nanoindentation mapping

- □ 3D mechanical properties maps
- → Automatic and parametrized Matlab toolbox/GUI. Full access on Github → "TriDiMap"
- → Interpolation and smoothing steps.... Different types of plots (surface, isocontour...)

¹Mercier D. et al, "Microstructural and mechanical characterisation of electroplated nickel matrix composite coatings", Surface Engineering (2018).

Nanoindentation mapping

- Qualitative comparison
- → Mechanical properties calculated at max indentation depth.
- → Interpolated (x2 or x4) maps = better resolution

Mechanical properties distribution

- Generation and fit of histograms.
- → Automatic and parametrized Matlab toolbox/GUI. Full access on Github → "TriDiMap"¹
- → Based on code of J. Němeček^{2,3} = Multi-modal Gaussian distribution + deconvolution.
- Minimization process of the error between experimental and theoretical PDFs

- Estimation of bin size ? → No specific rule...
- Bi-modal or tri-modal statistical distribution? Interface properties⁶?

¹Mercier D. et al, "Microstructural and mechanical characterisation of electroplated nickel matrix composite coatings", Surface Engineering (2018).

²Němeček J., PhD thesis, , Czech Technical University, 2009.

3Personal webpage of J. Němeček.

⁴Vandamme M., PhD thesis, MIT, 2008.

⁵Randall N. X. et al., Journal of Materials Research, 24(3), 2009, pp. 679-690.

⁶de Vasconcelos, L. S. et al., Extreme Mechanics Letters, 2016.

Mechanical property-microstructure correlation

- Image correlation analysis
- → Automatic and parametrized Matlab toolbox/GUI. Full access on Github → "TriDiMap"¹
- Loading and comparison of binarized mechanical and microstructural maps

¹Mercier D. et al, "Microstructural and mechanical characterisation of electroplated nickel matrix composite coatings", Surface Engineering (2018).

Mechanical property-microstructure correlation

Principle of the image correlation analysis, with thresholding and binarization steps.

Mechanical property-microstructure correlation

Principle of the image correlation analysis, with thresholding and binarization steps.

→ Extraction of <u>corrected</u> average hardness and elastic modulus of carbides and matrix

Application of the image correlation analysis

Sample	E map	H map	µstruct map	Correlation map	Mean E	Mean H
Semi- HSS				E-H difference map specific operations of the control of the cont	E(matrix) = (252 ± 32)GPa E(carbides) = (380 ± 84)GPa	H(matrix) = (9.5 ± 2.0)GPa H(carbides) = (17.6 ± 2.1)GPa
High Cr Iron				E-H difference map	E(matrix) = (241 ± 11)GPa E(carbides) = (266 ± 11)GPa	H(matrix) = (8.3 ± 1.5)GPa H(carbides) = (16.7 ± 3.0)GPa
HSS			. 8	E-H difference map 150 50 0 50 0 50 X coordinates (µm)	E(matrix) = (243 ± 19)GPa E(carbides) = (348 ± 27)GPa	H(matrix) = (9.1 ± 1.6)GPa H(carbides) = (22.8 ± 3.5)GPa
	Flastic modulus (GPa)	Hardness (GPa)	50 μm	No matchSoft match	Hardness values 1.5 to 3x higher than	

those obtained by Vickers tests

Stiff/Hard match

Conclusion

- Microstructural and mechanical characterization of cast bimetallic work roll with a high-speed steel (HSS) shell material
- Use of nanoindentation mapping
- Development of Matlab toolbox / GUI = TriDiMap (free on Github)
- Extraction of mean mechanical properties of matrix and carbides based on image correlation analysis

<u>Outlook</u>

→ Perform image correlation analysis between mechanical property maps with EDS maps...

Thanks for you attention. Question?

Author would like to thank for the financial support of the BEWARE FELLOWSHIPS programs co-financed by the COFUND program of the European Union (FP7 - Marie Curie Actions).

Indentation 2018 in Liège

Indentat 2018

http://www.aimontefiore.org/INDENTATION2018/

September 11-14 2018

Exèdre Dick Annegarn B8 Quartier Agora, l'Agora 1 Liège, 4000 BELGIUM

