Betrifft: Höllisches Klavier

Chuck Norris war in der Hölle. Der Teufel ist vor Angst gestorben.

Siehe den Anhang A für Indikatoridentifikationsreferenz Siehe den Anhang B für Batterienidentifikationsreferenz. Siehe den Anhang C für Anschlussidentifikationsreferenz. Siehe die dritte Seite für Musiktheorie.

- Ein höllisches Klavier wird oben 4 musikalische Symbole anzeigen. Darunter hat es ein 12-tastiges Klavier um die Lösung einzugeben.
- Jede Regel beinhaltet ein oder mehrere benötigte musikalische Symbole und weitere Anforderungen.
- Folge der Liste der Regeln in der Tabelle 2 bis eine alle Kriterien erfüllt hat.
- Dann benutze den Referenzwert um die Prim 12-Ton Sequenz in der Tabelle 1 herauszufinden.
- Wende die Transformation von Table 2 auf die 12-Tonreihe an und spiele die finale Sequenz.
- Ein Fehler wird die eingegebene Sequenz zurücksetzen.

Tabelle 1

<u>#</u>	Prim 12-Ton Sequenz	<u>#</u>	Prim 12-Ton Sequenz
0	F D F# G# C B A# C# G E D# A	5	C D# F# D F C# B A G A# E G#
1	A [#] A C E C [#] D D [#] G B F [#] G [#] F	6	G [#] C A [#] C [#] E G B D [#] A D F F [#]
2	F# B A G# D C G C# F D# E A#	7	E A C [#] B G G [#] A [#] D [#] F [#] F C D
3	E D [#] D F [#] F A [#] G [#] C [#] C B G A	8	G [#] D [#] D E A [#] C [#] F [#] G F A C B
4	D E A A [#] C B C [#] G [#] F F [#] D [#] G	9	D# G# C B D C# F# A# F G A E

Tabelle 2

Benötigte(s) Symbol(e)	<u>Weitere</u> <u>Vorraussetzungen</u>	Referenzwert	Transformation
⊙ und ∾	2 oder mehr Indikatoren	Die erste Zahl in der Seriennummer	RI
# oder ×	Eine leere Anschlussplatte	Anzahl an Batteriehaltern*	P, transponiere 'x' mal herunter, wobei 'x' die verbleibende Zeit in Minuten ist.
∩ oder ⊓	2 oder mehr von einem einzelnen Anschlusstyp	Eintel der Anzahl der gelösten Module.	I
3 und γ	2 oder mehr Anschlussplatten	9 minus die Anzahl der abgeschaltenen Indikatoren [†]	R
¢ oder C	Seriennummer beinhaltet einen Vokal	Eintel der Anzahl der Fehler	R, 3 nach unten transponieren
¢ oder ₩	Gerade Anzahl an Batterien	DVI-D präsent: 7 Ansonsten: 3	P, 'x' nach oben Transponieren, wobei 'x' = Anzahl Anschlüsse [‡]
oder }	Ein vokalloser Indikator	8	I
⊓ oder ¾	Weniger als 2 Anschlüsse [‡]	4	R
oder ×	(Keine weitere Anforderungen)	5	P

Wenn keine Regeln zutreffen, die Anleitung vom Klavier verwenden.

Notizen:

^{*:} Wenn die Anzahl von Batteriehaltern höher als 9 ist, 10 subtrahieren bis die Zahl zwischen 0 und 9 ist.

^{†:} Wenn das Resulat negativ ist, 10 addieren bis die Zahl positiv ist.

^{†:} Der RCA-Anschluss ist nur ein Anschluss.

<u>Musiktheorie</u>

Um dies zu klarifizieren, die Note unter C würde ein B sein, und ähnlich, die Note nach Bist ein C. Die 12 Töne vom Klavier wiederholen sich unendlich.

Die Primsequenz (oder kurz 'P'), ist die unveränderte Sequenz.

Die <u>Retrogradsequenz</u> (oder kurz 'R'), nimmt die <u>Primsequenz</u>, dreht sie aber um. Das heisst, dass A B C D E nach der R-Veränderung E D C B A wäre.

Die Inverssequenz (oder kurz 'T'), nimmt die Primsequenz, aber die Abstände zwischen den Noten werden invertiert. Nehmen wir den Abstand zwischen den Noten A und B; der Abstand ist +2 Halbtöne, weil es 2 Halbtöne zwischen A und B (Nach A kommt A^{\sharp} und dann B). Die Inversion dieses Abstandes wird -2 Halbtöne sein. Also wäre die Sequenz A und dann G, weil G 2 Halbtöne von A (Nach A kommt G^{\sharp} und dann G).

Als ein erweitertes Beispiel, die Inversion der Primreihe A B C D E würde A G F[#] E Dsein; die erste Note ist immer die Gleiche und alle anderen Noten werden relativ zu der Note invertiert.

die <u>Retrograde Inverssequenz</u> (oder kurz '**RI**'), nimmt die <u>Inverssequenz</u> in den Retrograde. Zum Beispiel, die Retrograde Inverssequenz von der Primzeihe A B C D E würde zuerst den Invers generieren (der A G F E D ist) und dann ist der Retrograde Invers dieser Sequenz D E F G A.

<u>Transpositionen</u> wenden eine Übersetzung der Tonreihe darüber oder darunter an. Die "Sprache" ist in Halbtönen angegeben. Zum Beispiel, die Primreihe A B C D E l Halbton nach unten Transponiert ist A^{\sharp} C C^{\sharp} D^{\sharp} F.