Documentación del Dataset

Este dataset se obtuvo directamente de la base de datos del sistema utilizado para realizar estudios de Presurometría en un consultorio médico.

Limpieza de datos

Se lleva a cabo la limpieza de datos en archivos CSV para para facilitar el análisis asegurar la integridad y precisión de la información.

Este informe detalla el proceso de limpieza realizado en los archivos de datos obtenidos, específicamente en el archivo **Completos test.csv.** y **Test CSV** Aunque se ha llevado a cabo una limpieza inicial con la herramienta Excel, se ha decidido realizar una revisión adicional utilizando bibliotecas de Python para garantizar la integridad y precisión de los datos.

Mejora de la Calidad del Conjunto de Datos

Al abordar los siguientes problemas, se mejorará la calidad del conjunto de datos, facilitando decisiones basadas en información confiable:

Valores Faltantes: Identificar y manejar datos ausentes.

Duplicados: Eliminar registros duplicados que distorsionan el análisis.

Errores de Formato: Corregir tipos de datos y formateo inadecuado.

Valores Erróneos: Detectar y corregir valores fuera de rango.

Inconsistencias: Asegurar coherencia entre columnas (ej. edad y fecha de nacimiento).

Datos Irrelevantes: Eliminar columnas o registros que no aportan valor.

Normalización: Ajustar datos a un rango común.

Transformaciones: Modificar variables para mejorar su utilidad.

Se han importado las siguientes bibliotecas de Python para facilitar la manipulación y análisis de los datos:

Posterior a la carga del archivo de datos, se procede a verificar las variables presentes en el DataFrame, clasificándolas en variables categóricas y variables numéricas. Este paso es fundamental para asegurar que los datos estén en el formato correcto y sean aptos para el análisis posterior.

```
Cotejamos las variables categoricas y numericas
   df.info()
→ <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 3148 entries, 0 to 3147
    Data columns (total 9 columns):
     # Column Non-Null Count Dtype
     0 TestId
                   3148 non-null object
     1 RawDataId 3148 non-null object
     2 Date 3148 non-null object
3 Time 3148 non-null object
     4 Systolic 3148 non-null int64
5 Diastolic 3148 non-null int64
     6 MAP 3148 non-null int64
     6 ...
7 HR
                   3148 non-null int64
                    3148 non-null int64
    dtypes: int64(5), object(4)
    memory usage: 221.5+ KB
Jaz doblo elie (o ingresa) para edita
```

```
cantidad de registros y columnas

[20] df.shape

(3148, 9)
```

A continuación, se procede a identificar y eliminar las filas duplicadas. Este proceso asegura que cada registro en el DataFrame sea único, lo cual es crucial para un análisis preciso.

Este proceso garantiza que el conjunto de datos esté limpio y listo para el análisis posterior

Este proceso permite detectar y corregir inconsistencias, mejorando así la calidad de los datos

Se revisa la columna de edad para asegurarse de que los valores sean razonables y estén dentro de un rango esperado. Se buscarán inconsistencias como: Edades negativas.

Edades excesivamente altas (por ejemplo, mayores a 100 años).

```
Se verifica las fechas de edades calculando el cumpleaños con la fecha actual ,para encontrar
inconsistencias.
                                                              1 to 🔳 💠 🖺
    # Verificar inconsistencias entre edad y fecha de nacimiento
    df['Calculated Age'] = (pd.to datetime('today') - pd.to datetime(df['BirthDate'])).d
    inconsistent_ages = df[df['Age'] != df['Calculated_Age']]
    print("Inconsistencias en la edad:")
    print(inconsistent_ages)
    373
                      124
    374
    375
                       76
    376
                       56
    377
    378
                       59
    379
                      124
    380
                       79
```

El objetivo de esta etapa es mejorar la calidad de los datos eliminando registros que indiquen una edad imposible o poco razonable, específicamente aquellos que superan los 100 años.

```
Se filtra los registros erroneos mayores a 100 años y se eliminan

[49] # Mostrar el número de filas antes de eliminar
print(f"Número de filas antes de eliminar: {df.shape[0]}")

# Filtrar el DataFrame para eliminar filas donde la edad es mayor a 100
df = df[df['Age'] <= 100]

# Mostrar el número de filas después de eliminar
print(f"Número de filas después de eliminar: {df.shape[0]}")

Número de filas antes de eliminar: 1752
Número de filas después de eliminar: 1739
```

Archivos CSV "Completos test" y "Test"

Descripción de Columnas DF Nº1 "Completos test CSV"

Registros:3148 Columnas:24

Columna: TestId

Tipo de dato: Carácter

Valores posibles: Cadenas alfanuméricas únicas.

Ejemplos: "83E62D41-079A-4CEF-808D-00283FC49150"

• Descripción: Identificador único de cada prueba.

Columna: PatientId

• Tipo de dato: Carácter

• Valores posibles: Cadenas alfanuméricas únicas.

Ejemplos: "A0D6DF20-52D5-4B3A-B74B-116F142D54AF"

Descripción: Identificador único del paciente.

Columna: Interpretation

Tipo de dato: Carácter

• Valores posibles: Cadenas de texto descriptivas.

• Ejemplos: "Presento hipertensión sistólica en horas de sueño. Valor promedio diurno 125/70."

• Descripción: Interpretación médica de los resultados.

Columna: HookupStartTime

Tipo de dato: Fecha y Hora

Valores posibles:

• Formato: AAAA-MM-DD HH:MM:SS.mmm

• Ejemplos: "2023-06-12 10:33:00.000"

• Descripción: Fecha y hora de inicio de la monitorización.

Columna: HookupEndTime

Tipo de dato: Fecha y Hora

Valores posibles:

Formato: AAAA-MM-DD HH:MM:SS.mmm

Ejemplos: "2023-06-13 09:53:00.000"

Descripción: Fecha y hora de finalización de la monitorización.

Columna: SystolicMax

Tipo de dato: Numérico (Entero)

Valores posibles: Valores enteros.

• Ejemplos: 240

• Descripción: Presión sistólica máxima registrada

Columna: SystolicMin

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 70
- Descripción: Presión sistólica mínima registrada.

Columna: DiastolicMax

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 150
- Descripción: Presión diastólica máxima registrada.

Columna: DiastolicMin

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 40
- Descripción: Presión diastólica mínima registrada.

Columna: MAPMax

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 200
- Descripción: Presión arterial media máxima registrada.

Columna: MAPMin

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 40
- Descripción: Presión arterial media mínima registrada.

Columna: PPMax

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 150
- Descripción: Presión del pulso máxima registrada.

Columna: PPMin

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 20
- Descripción: Presión del pulso mínima registrada.

Columna: HRMax

- Tipo de dato: Numérico (Entero)Valores posibles: Valores enteros.
- Ejemplos: 200
- Descripción: Frecuencia cardíaca máxima registrada.

Columna: HRMin

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 20
- Descripción: Frecuencia cardíaca mínima registrada.

Columna: Duration

- Tipo de dato: Carácter
- Valores posibles: Cadenas de texto en formato HH: MM.
- Ejemplos: "23:20"
- Descripción: Duración de la monitorización.

Columna: SuccessfullReading

- Tipo de dato: Numérico (Entero)
- Valores posibles: Valores enteros.
- Ejemplos: 64
- Descripción: Número de lecturas exitosas.

Columna: PercentSuccessfullReading

- Tipo de dato: Carácter
- Valores posibles: Cadenas de texto que representan porcentajes.
- Ejemplos: "100%"
- Descripción: Porcentaje de lecturas exitosas.

Columna: SysDipping

- Tipo de dato: Numérico (Decimal)
- Valores posibles: Valores decimales.
- Ejemplos: 1.650.000
- Descripción: Valor de reducción de la presión sistólica.

Columna: DiaDipping

- Tipo de dato: Numérico (Decimal)
- Valores posibles: Valores decimales.
- Ejemplos: 0.050000
- Descripción: Valor de reducción de la presión diastólica.

Columna: MapDipping

Tipo de dato: Numérico (Decimal)Valores posibles: Valores decimales.

• Ejemplos: 0.050000

• Descripción: Valor de reducción de la presión arterial media.

Columna: Age

• Tipo de dato: Numérico (Entero)

• Valores posibles: Valores enteros que representan la edad en años.

• Ejemplos: 67, 71, 78

• Descripción: Edad del paciente.

Columna: Genderld

Tipo de dato: Numérico (Entero)

• Valores posibles: Valores enteros que representan el género.

Ejemplos: 2

• Descripción: Identificador del género del paciente.

Columna: BirthDate

• Tipo de dato: Fecha y Hora

Valores posibles:

• Formato: AAAA-MM-DD HH:MM:SS.mmm

• Ejemplos: "1956-05-15 00:00:00.000"

• Descripción: Fecha de nacimiento del paciente.

4	A	В	С	D	E	F	G	Н	1	J	K	L	М	N	0	р	(
1	TestId	PatientId	Interpretation	: HookupStart	HookupEnd1	SystolicMax			DiastolicMin	MAPMax		PPMax	PPMin	HRMax	HRMin	Duration	Succe
2	83E62D41-07	A0D6DF20-5	Presento	2023-06-12 1	2023-06-13 0	240	70	150	40	200	40	150	20	200	20	23:20	
3	6063F63A-69	45910F80-CC	Presento hip	2017-06-14 1	2017-06-15 0	240	70	150	40	200	40	150	20	200	20	20:09	
4	1B8028F6-03	B15844CB-88	VALORES PR	2019-09-09 1	2019-09-10 1	240	70	150	40	200	40	150	20	200	20	23:39	
5	3A8ED937-52	759BC417-A9	Presento hip	2019-04-09 1	2019-04-10 0	240	70	150	40	200	40	150	20	200	20	23:32	
6	3C97CD99-84	3EC79126-F1	Presento hip	2016-07-14 1	2016-07-15 0	240	70	150	40	200	40	150	20	200	20	23:39	
7	C57C4658-1F	CA8A2848-78	Valores	2022-08-08 1	2022-08-09 0	240	70	150	40	200	40	150	20	200	20	23:18	
8	D4B7A458-75	E3A9A18D-9	Presento hip	2016-06-27 1	2016-06-28 0	240	70	150	40	200	40	150	20	200	20	21:54	
9	E8C4B592-48	51DC08C5-B0	Presento	2020-07-28 1	2020-07-29 1	240	70	150	40	200	40	150	20	200	20	23:36	
10	3A4C99B3-2E	E34970A2-93	Presento hip	2016-07-180	2016-07-191	240	70	150	40	200	40	150	20	200	20	25:19:00	
11	5892EB63-87	7B7BC8B5-0A	Valores pror	2016-11-14 1	2016-11-15 0	240	70	150	40	200	40	150	20	200	20	22:51	
					2018-10-040		70	150	40	200	40	150	20	200	20	22:37	
13	E084684E-3F	60332DBB-D	Presento	2020-06-16 1	2020-06-170	240	70	150	40	200	40	150	20	200	20	23:16	
14	0A5E0459-08	C8AADAB0-3	Presento hip	2017-06-15 1	2017-06-16 0	240	70	150	40	200	40	150	20	200	20	23:34	
15	A1D7BC6D-3	17AFFE6E-3B	Valores	2023-05-24 1	2023-05-25 0	240	70	150	40	200	40	150	20	200	20	22:58	
16	5CF414A7-04	F7AB3480-A0	Valores	2022-08-18 1	2022-08-191	240	70	150	40	200	40	150	20	200	20	23:01	
17	2DAE95DB-3(A5262D2E-A	Valores	2019-10-08 1	2019-10-09 0	240	70	150	40	200	40	150	20	200	20	21:54	
18	9AE45B3A-D	20DE6770-AE	Presento	2023-06-08 1	2023-06-09 0	240	70	150	40	200	40	150	20	200	20	23:19	
19	A4089C84-B6	162A2DFF-37	Presento hip	2017-06-09 1	2017-06-10 0	240	70	150	40	200	40	150	20	200	20	23:10	
20	71B5AD57-71	45453206-E7	Presento hip	2018-03-12 1	2018-03-13 0	240	70	150	40	200	40	150	20	200	20	23:19	
21	38C8F0E7-05	3055B51B-75	Valores	2023-01-191	2023-01-20 0	240	70	150	40	200	40	150	20	200	20	23:18	
22	699C4356-0F	68A4EA51-8A	Presento	2023-03-08 1	2023-03-09 0	240	70	150	40	200	40	150	20	200	20	23:19	
23	3BC4CFCD-8	4FAF160F-D9	Presento	2019-06-13 1	2019-06-14 0	240	70	150	40	200	40	150	20	200	20	23:19	
	()	Completos	test (+)							1						Þ

Descripción de Columnas DF Nº2

"Test CSV"
Registros:314
Columnas:9

Columna: TestId

- Tipo de dato:
- Valores posibles: Cadenas alfanuméricas únicas...
- Ejemplos: "83EA-GH4566GFDNJ87"
- Descripción: Identificador único de cada prueba

Columna: RawDataId

- Tipo de dato: Carácter
- Valores posibles: Cadenas alfanuméricas únicas.
- Ejemplos:
- Descripción: Identificador único de cada registro de datos en bruto.

Columna: Date

- Tipo de dato: Fecha
- Valores posibles: Fechas en formato YYYY-MM-DD.
- Ejemplos: "2023-09-15"
- Descripción: Fecha en la que se registraron los datos.

Columna: Time

- Tipo de dato: Tiempo
- Valores posibles: Tiempos en formato HH:MM:SS.
- Eiemplos: "14:30:00"
- Descripción: Hora exacta en la que se registraron los datos.

Columna: Systolic

- Tipo de dato: Numérico
- Valores posibles: Números enteros o decimales.
- Ejemplos: 120, 135.5
- Descripción: Valor de presión arterial sistólica, medido en mmHg.

Columna: Diastolic

- Tipo de dato: Numérico
- Valores posibles: Números enteros o decimales.
- Ejemplos: 80, 90.5
- Descripción: Valor de presión arterial diastólica, medido en mmHg.

Columna: MAP

- Tipo de dato: Numérico
- Valores posibles: Números enteros o decimales.
- Ejemplos: 93.4, 88
- Descripción: Presión arterial media, un indicador del flujo sanguíneo, medido en mmHg.

Columna: HR

Tipo de dato: Numérico

• Valores posibles: Números enteros.

Ejemplos: 70, 85

• Descripción: Frecuencia cardíaca, medida en latidos por minuto.

Columna: PP

Tipo de dato: Numérico

• Valores posibles: Números enteros o decimales.

• Ejemplos: 40, 50.2

 Descripción: Presión de pulso, calculada como la diferencia entre la presión sistólica y diastólica, medida en mmHg

1	Testid	RawDataId	Date	Time	Systolic	Diastolic	MAP	HR	PP	
2	35C77615-22AE-4A58-A5F0-07C761F9A787	B3E82F30-394E-4103-AAA9-0007A9EB4616	7/5/2024	13:05:00	144	79	99	64	65	
3	35C77615-22AE-4A58-A5F0-07C761F9A787	11E05A98-BA56-4E2B-AE21-0AFC4F2CA8E3	7/5/2024	14:48:00	151	79	100	81	72	
4	35C77615-22AE-4A58-A5F0-07C761F9A787	EFCC5840-98F3-4FB4-8EA5-0E602021BB46	7/5/2024	12:45:00	139	89	106	67	50	
5	35C77615-22AE-4A58-A5F0-07C761F9A787	094722B3-CAC3-4E11-B1C0-108E63E20F39	7/5/2024	11:05:00	135	76	97	63	59	
6	35C77615-22AE-4A58-A5F0-07C761F9A787	D7E8F986-9FBB-4B4A-A271-10D998F5C0D5	7/5/2024	12:25:00	145	82	106	67	63	
7	35C77615-22AE-4A58-A5F0-07C761F9A787	799E706D-C3C4-4F5F-898F-1438CE93FBCD	7/5/2024	21:25:00	156	84	104	80	72	
8	35C77615-22AE-4A58-A5F0-07C761F9A787	4346C340-40D4-484B-8459-16C6898B05CA	7/5/2024	14:25:00	145	86	103	71	59	
9	35C77615-22AE-4A58-A5F0-07C761F9A787	25B9EC8D-F4A5-4C8D-8BA6-182B92C849CC	7/5/2024	21:45:00	151	82	109	85	69	
10	35C77615-22AE-4A58-A5F0-07C761F9A787	32BEDDD9-6C4A-4295-8522-1DC7B40D2A02	7/5/2024	20:05:00	140	90	106	74	50	
11	35C77615-22AE-4A58-A5F0-07C761F9A787	09E5F571-B32D-42B7-A3E5-2533B7B219B8	8/5/2024	04:35:00	127	79	95	62	48	
12	35C77615-22AE-4A58-A5F0-07C761F9A787	26DDF24E-A2FD-49D1-AA38-296F3AEFFF0A	7/5/2024	19:45:00	138	83	101	75	55	
13	35C77615-22AE-4A58-A5F0-07C761F9A787	47422977-778C-4510-8E15-2C8699C9B00B	8/5/2024	01:35:00	128	77	97	63	51	
14	35C77615-22AE-4A58-A5F0-07C761F9A787	144FF207-315C-4160-9EEE-42AFCDD87993	7/5/2024	20:25:00	151	101	105	84	50	
15	35C77615-22AE-4A58-A5F0-07C761F9A787	ADF3F3EF-090D-4EB5-8E1F-437C093442D1	7/5/2024	18:05:00	148	82	102	81	66	
16	35C77615-22AE-4A58-A5F0-07C761F9A787	6476EF82-FCFA-4D11-8FE2-4405E6F9AF47	8/5/2024	07:08:00	135	81	100	71	54	
17	35C77615-22AE-4A58-A5F0-07C761F9A787	6075F981-0C13-46A5-AA16-4414FEFA8DF5	7/5/2024	15:25:00	135	76	93	82	59	
18	35C77615-22AE-4A58-A5F0-07C761F9A787	E6E4B447-3435-44B9-BB05-468C85F2BC94	8/5/2024	05:35:00	130	65	87	60	65	
19	35C77615-22AE-4A58-A5F0-07C761F9A787	034AE3C7-6D59-471E-8CD1-4804C19FB6A5	8/5/2024	09:25:00	139	76	98	76	63	
20	35C77615-22AE-4A58-A5F0-07C761F9A787	456CA1EC-B3CE-48D5-BFB5-4C31C500E3D8	8/5/2024	02:05:00	137	81	101	58	56	
21	35C77615-22AE-4A58-A5F0-07C761F9A787	9BAB3F81-B93C-4B52-A032-4E344997DA63	7/5/2024	17:05:00	154	99	119	78	55	
22	35C77615-22AE-4A58-A5F0-07C761F9A787	F8E2EAB0-A126-4DB7-9C45-5209C9DD2E42	7/5/2024	17:45:00	158	88	111	82	70	
23	35C77615-22AF-4A58-A5F0-07C761F9A787	45F3B342-4CF6-4A1F-99A2-59597F3D7491	7/5/2024	13:27:00	140	87	108	77	53	
- 4	Toete (4)			: 4						

Conclusión

Una vez realizados los procedimientos de limpieza y verificación de datos, se puede proceder a manipular los archivos de manera efectiva. Este proceso incluye diversas operaciones que permiten trabajar con los datos de forma más precisa y útil para el análisis Filtrado, análisis y visualización