Н. Логическое выражение

ограничение по времени на тест: 1 секунда[©] ограничение по памяти на тест: 256 мегабайт

ввод: стандартный ввод вывод: стандартный вывод

Постройте искусственную нейронную сеть, вычисляющую логическую функцию f, заданную таблицей истинности.

Входные данные

Первая строка содержит целое число M ($1 \le M \le 10$) — число аргументов f. Следующие 2^M строк содержат значения f в таблице истинности (0 — ложь, 1 — истина). Строки в таблице истинности последовательно отсортированы по аргументам функции от первого к последнему. Например:

M = 1	M = 2	M = 3
f(0)	f(0, 0)	f(0, 0, 0)
f(1)	f(1, 0)	f(1, 0, 0)
	f(0, 1)	f(0, 1, 0)
	f(1, 1)	f(1, 1, 0)
		f(0, 0, 1)
		f(1, 0, 1)
		f(0, 1, 1)
		f(1, 1, 1)

Выходные данные

В первой строке выведите целое положительное число D ($1 \le D \le 2$) — число слоёв (преобразований) в вашей сети.

На следующей строке выведите D целых положительных чисел n_i ($1 \le n_i \le 512$ и $n_D = 1$) — число искусственных нейронов на i-м слое. Предполагается, что $n_0 = M$.

Далее выведите описание D слоёв. i-й слой описывается n_i строками, описанием соответствующих искусственных нейронов на i-м слое. Каждый искусственный нейрон описывается строкой состоящей из n_{i-1} вещественных чисел с плавающей точкой w_j и одного вещественного числа b — описание линейной зависимости текущего нейрона от выходов предыдущего i-го слоя. Линейная зависимость задается по формуле: $Y = \sum w_j \cdot x_j + b$. Предполагается, что после каждого вычисления линейной $(1 \quad Y > 0)$

зависимости к её результату применяется функция ступенчатой активации $a(Y) = \left\{ egin{array}{ll} 1 & Y > 0 \\ 0 & Y < 0 \end{array} \right.$ Обратите внимание, что в нуле

данная функция не определена, и если в ходе вычисления вашей сети будет вызвана активация от нуля, вы получите ошибку.

Примеры

1 1 -0.5

ВХОДНЫЕ ДАННЫЕ 2 0 1 0 1 ВЫХОДНЫЕ ДАННЫЕ 2 2 1 1.0 -1.0 -0.5 1.0 1.0 -1.5

```
Входные данные

2
0
1
1
0

Выходные данные

Скопировать

2
2
1
1.0 -1.0 -0.5
-1.0 1.0 -0.5
1 1 -0.5
```

Примечание

Во втором примере в результате получается следующая сеть:

