Lecture 8: Comparison Among Means

• 8. 1 What if *F* is significant?

- Rejection of H_0 is good to know, but not very informative
 - The null hypothesis could be false in many different ways

$$H_0$$
: $\mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5$
 $\mu_1 \neq (\mu_2 = \mu_3) \neq (\mu_4 = \mu_5)$
 $(\mu_1 = \mu_2) \neq (\mu_3 = \mu_4) \neq \mu_5$

- F is non-directional. We don't know which groups are different
- F is an omnibus test. The F tells us that something is going on...but it doesn't say where the effect is
 - We need more focused comparisons
- A solution: t tests?
 - If $\alpha = .05$, about 1 out of every 20 t-tests might result in a significant effect even if there is no effect in the population
 - Every t-test has its associated chance of a Type I error
 - With comparisons, we have a family of tests on the same data. Want to know the probability of at least 1 Type I error in the family of tests. Such a probability is called familywise error rate
 - Therefore, *many t*-tests can have a large *familywise error rate*
 - For independent comparisons

$$\alpha_{\rm FW} = 1 - (1 - \alpha')^{\rm c}$$

c = number of comparisons

- For
$$J = 3$$
, $\alpha_{FW} = 1 - (1 - \alpha^2)^c = 1 - (1 - .05)^3 = .143$

- For
$$J = 10$$
, $\alpha_{\text{FW}} = 1 - (1 - \alpha^2)^c = 1 - (1 - .05)^{10} = .40$

- Alternatives: Planned Comparisons or Post Hoc tests

- Planned Comparisons or Contrasts
 - Planned before the study; can be used instead of overall F test
 - Based on α
 - Orthogonal planned contrasts
 - Trend analysis
- Post Hoc or Incidental tests
 - Based on α_{FW}
 - Use after significant overall F test to investigate specific means...no specific plan before study
 - Post hoc tests involve comparing every mean to every other mean, so they tend to have alpha inflation problems
 - The Bonferroni procedure
 - Fisher's least significant difference (LSD) test
 - Tukey's *honestly significant difference* (HSD) test (pairwise)
 - Scheffe (complex comparisons)

• 8.2 Planned Comparisons

- Based on α
- A contrast is a weighted linear combination of means

$$\Psi = c_1 \mu_1 + c_2 \mu_2 + \dots + c_i \mu_i = \sum c_i \mu_i$$

- Contrasts will be orthogonal and independent from the grand mean if

$$\sum c_j c'_j = c_1 c'_1 + c_2 c'_2 + \dots + c_j c'_j = 0$$

and the sum of all weights must equal zero; $\Sigma c_i = 0$

- Estimate of a contrast

$$\hat{\psi} = \sum c_j \overline{X}_j = c_1 \overline{X}_1 + c_2 \overline{X}_2 + \dots + c_j \overline{X}_j$$

- Example (J=3)
 - Simple contrast (comparing 2 means)

$$\hat{\psi} = \sum c_i \overline{X}_i = (1) \overline{X}_1 + (-1) \overline{X}_2 + (0) \overline{X}_3 = \overline{X}_1 - \overline{X}_2$$

- Complex contrast (comparing \overline{X}_1 with \overline{X}_2 and \overline{X}_3 ; e.g., control vs. 2 treatment groups)

$$\hat{\psi} = \sum c_j \overline{X}_j = (1) \overline{X}_1 + (-1/2) \overline{X}_2 + (-1/2) \overline{X}_3 = \overline{X}_1 - (\overline{X}_2 + \overline{X}_3) / 2$$

Example -- Data

	A_1	A_2	A_3	A_4
	22	26	28	21
	15	27	31	21
	17	24	27	26
	18	23	26	20
\overline{X}_{j}	18	25	28	22

Example – Contrasts (3 possible comparisons)

	A_1	A_2	A_3	A_4
c_1	1/2	1/2	-1/2	-1/2
c_2	1	-1	0	0
c_3	0	0	1	-1

$$\Psi_1 = (.5 \times 18) + (.5 \times 25) - (.5 \times 28) - (.5 \times 22) = -3.5$$

 $\Psi_2 = (1 \times 18) - (1 \times 25) = -7$
 $\Psi_3 = (0 \times 18) + (0 \times 25) + (1 \times 28) - (1 \times 22) = 6$

- Sampling Variance of Planned Comparisons
- The sample comparison is an unbiased estimate of the population comparison

$$E(\hat{\Psi}) = \Psi$$

- The variance of the sampling distribution of the comparison

$$Var(\hat{\psi}) = \sum_{i} c_{i}^{2} \operatorname{var}(\overline{Y}_{i}) = \sigma_{e}^{2} \sum_{i} \frac{c_{i}^{2}}{n_{i}}$$

- Sampling variance will be large when within cells variance is large, the weights are large, and the number of people in each cell is small. Estimated by:

est.
$$Var(\hat{\psi}) = (MS_W) \sum_{j} \frac{c_j^2}{n_j}$$
 (substitute MS_W for σ_e^2)

- Standard error of a contrast

$$SE_{\Psi} = \sqrt{MSw \left(\frac{c_1^2}{n_1} + \frac{c_2^2}{n_2} + ... \frac{c_j^2}{n_j}\right)} = \sqrt{MSw \left(\frac{\Sigma c_j^2}{n_j}\right)}$$

t-ratio
$$(df = N - J)$$

$$t = \frac{\hat{\Psi}}{S\Psi}$$

- Point estimate: ψ̂

- Interval Estimate: $\hat{\Psi} \pm (t_{\text{conf}}) s_{\Psi}$

- Significance Test (from example)

Source	SS	df	MS	F
Between	219	3	73	12.17
Within	72	12	6	
Total	291	15		

- For the 1st comparison

$$\hat{\Psi}_1 = (.5 \times 18) + (.5 \times 25) - (.5 \times 28) - (.5 \times 22) = -3.5$$

est. var(
$$\hat{\Psi}$$
) = $6 \frac{.5^2 + .5^2 + (-.5)^2 + (-.5)^2}{4} = \frac{3}{2}$

$$est.SE(\hat{\Psi}) = \sqrt{\frac{3}{2}} = 1.2247$$

$$t = \frac{\hat{\Psi}}{\sqrt{est. var(\hat{\Psi})}} = \frac{-3.5}{1.2247} = -2.86$$

$$df = N - J$$
; $16 - 4 = 12$

$$t_{(crit,\alpha=.05, df=12)} = 2.18$$

$$t(12) = -2.86, p < .05$$

95% CI =
$$-3.5 \pm 2.18$$
 (1.2247) = (-6.17, -.83)

- For the 2nd comparison

$$\hat{\Psi}_2 = (1 \times 18) - (1 \times 25) + (0 \times 28) + (0 \times 22) = -7$$

$$est. var(\hat{\Psi}) = 3$$
; $est. SE(\hat{\Psi}) = 1.7321$

$$t = \frac{\hat{\Psi}}{\sqrt{est. var(\hat{\Psi})}} = \frac{-7}{1.7321} = -4.04$$

95% CI =
$$-7 \pm 2.18 (1.7321) = (-10.77, -3.23)$$

- For the 3rd comparison

$$\hat{\Psi}_3 = (0 \times 18) + (0 \times 25) + (1 \times 28) - (1 \times 22) = 6$$

$$t = \frac{\hat{\Psi}}{\sqrt{est. \text{var}(\hat{\Psi})}} = \frac{6}{1.7321} = 3.46$$

95% CI =
$$6 \pm 2.18 (1.7321) = (2.23, 9.77)$$

- Several planned comparisons can be made from the same data
 - Some are independent; some are not
- Two comparisons from a normal population with equal sample sizes in each cell are independent if the sum of the products of weights is zero

$$\sum c_i c'_i = c_1 c'_1 + c_2 c'_2 + \dots + c_i c'_i = 0$$

- If the sample sizes are not equal

$$\sum_{j} \frac{c_{1j} \cdot c_{2j}}{n_j} = 0$$

Example (a)

	\overline{X}_1	\overline{X}_2	\overline{X}_3	Σ
c_1	1	-1	0	0
c_2	1	-1/2	-1/2	0
$c_j c'_j$	1	1/2	0	1 1/2

the contrasts are equal but not independent; they are correlated...we need to be concerned with $\boldsymbol{\alpha}$

Example (b)

	\overline{X}_1	\overline{X}_2	\overline{X}_3	Σ
c_1	1	-1	0	0
c_2	1/2	1/2	-1	0
$c_j c'_j$	1/2	-1/2	0	0

the contrasts are orthogonal (independent from each other)

- When the tests are correlated, if we make a type I error, we are very likely to carry over more errors because the tests are correlated. So, we don't know exactly what the total alpha error is
- When the tests are independent, we know what the alpha error is so we can draw conclusions more safely
- How many orthogonal contrasts? J-1; each contrast has 1 df
- For orthogonal contrasts

$$SS_B = SS_{C1} + SS_{C2} + ... + SS_{CJ-1}$$

• 8.3 Trend Analysis

- If the IV is ordered (e.g., time, age, drug dosage)
- The goal is to find whether there is a functional relation between the IV and the DV
 - linear, quadratic, cubic, quartic, mixed, etc.
- It is a special case of orthogonal planned contrasts (J-1) orthogonal trends or polynomials)

Linear
$$Y = a + bX$$

Quadratic
$$Y = a + bX + cX^2$$

Cubic
$$Y = a + bX + cX^2 + dX^3$$

8. 4 The Bonferroni Procedure

- The Bonferroni procedure applies to any kind of comparison (i.e., orthogonal or nonorthogonal)

$$\alpha' = \frac{\alpha_{FW}}{c}$$

c = number of comparisons

- It is a "conservative" test the Bonferroni procedure rejects too few hypotheses of equal means
- Good when there is a limited number of comparisons
- If there is a large number of comparisons, α_{FW} becomes extremely low
- Example, if α_{FW} is desired at .05 and c = 5

$$\alpha_{FW} = .05/5 = .01$$

- Use the adjusted alpha (e.g., .01) for each comparison

8. 5 Post Hoc Tests – Tukey's Honestly Significant Difference (HSD) Test

- Tukey's honestly significant difference (HSD) test does not inflate alpha very much

$$q = \frac{\overline{x}_i - \overline{x}_j}{\sqrt{\frac{MS_w}{\widetilde{n}}}}$$

where ñ is the *harmonic mean* of the two sample sizes

$$\widetilde{n} = \frac{1}{\frac{1}{n_1} + \frac{1}{n_2} + \dots \frac{1}{n_k}}$$

- It is hard to compute but not biased (not too liberal, not too conservative)
- It applies to pairwise comparisons
- Based on α_{FW}
- Studentized Range statistic (As *n* increases, so does the range)

$$q = \frac{\overline{X}_{l} \operatorname{arg est} - \overline{X}_{smallest}}{\sqrt{\frac{MSw}{N}}}$$

- It follows a studentized range distribution with df = (J, N - J)

$$HSD = \frac{critical_q}{\sqrt{\frac{MSw}{N}}}$$

If
$$\overline{X}_j - \overline{X}_j' \ge \text{HSD}$$
, reject H_0

- HSD = honestly significant difference. For HSD, use k = J, the number of groups in the study. Choose α and find the *df* for error. Look up the value q_{α} . Then find the value:

$$HSD = q_{\alpha} \sqrt{\frac{MS_{error}}{n}}$$

- Compare HSD to the absolute value of the difference between all pairs of means. Any difference larger than HSD is significant

8. 6 Post Hoc Tests – Scheffe Test

- Applies to any kind of contrasts. Follows same calculations, but uses different critical values

$$t = \frac{\hat{\Psi}}{\sqrt{est. \operatorname{var}(\hat{\Psi})}}$$

- It is a very conservative test. Instead of comparing the test statistic to a critical value of t, use:

$$S = \sqrt{(J-1)F_{\alpha}}$$

where F comes from the overall F test (J-1 and N-J df)

- Test any linear combination of means
- Based on $\alpha_{\rm FW}$
- The probability of a type II error is very high but not the type I error (previous example)

Source	SS	df	MS	F	
Between	219	3	73	12.17	
Within	72	12	6		
Total	291	15			

$$\hat{\Psi}_{1} = (.5 \times 18) + (.5 \times 25) - (.5 \times 28) - (.5 \times 22) = -3.5$$

$$est. \operatorname{var}(\hat{\Psi}) = 6 \frac{.5^{2} + .5^{2} + (-.5)^{2} + (-.5)^{2}}{4} = \frac{3}{2}; \ est. SE(\hat{\Psi}) = \sqrt{\frac{3}{2}} = 1.2247$$

$$t = \frac{\hat{\Psi}}{\sqrt{est. \operatorname{var}(\hat{\Psi})}} = \frac{-3.5}{1.2247} = -2.86; F_{(\alpha = .05; 3,12)} = 3.49$$

$$S = \sqrt{(J-1)F_{\alpha}} = \sqrt{(4-1)\times3.49} = 3.24$$

The comparison is not significant because |-2.86| < 3.24.

8. 7 Effect Size and Practical Significance

- A significant F simply means we had enough power to reject the null hypothesis of no effect. That says nothing about how important the effect is – only that it is probably not due to chance
- We need a measure of *practical* significance to supplement our test of *statistical* significance

- Eta-squared
$$\eta^2 = \frac{SS_B}{SS_T}$$

- It is the proportion of the total variability of the data that is accounted for by the treatment effect (also called R^2)
- It varies from 0 (no effect) to 1 (no error)

in the example of drugs and anxiety
$$\eta^2 = \frac{4299.6}{7354} = .58$$

 η^2 is positively biased (overestimates the true effect), with larger bias for a larger number of groups and smaller sample sizes

- Omega-squared
$$\omega^2 = \frac{SS_B - (J-1)MS_W}{SS_T + MS_W}$$

- It is the proportion of variance accounted for – with a correction factor

in the example of
$$\eta^2 = \frac{4299.6 - (3-1)254.43}{7354 + 254.43} = .50$$