1

Question 23, CH Gate 2022

EE23BTECH11017 - Eachempati Mihir Divyansh*

Question: The appropriate feedforward For this system to be ideal, and from Table 0 compensator, G_{ff} , in the shown block diagram is

(6)

(7)

$$\frac{G_1(s) - G_2(s)G_{ff}(s)}{1 + G_2} = 0$$

$$\Longrightarrow G_{ff}(s) = \frac{G_1}{G_2}$$

$$\Longrightarrow G_{ff}(s) = \frac{2}{3}\frac{8s + 1}{5s + 1}$$
(8)

Solution:

Symbol	Value	Description
у	-	Signal
d	-	Disturbance
G_1	$\frac{2e^{-s}}{5s+1}$	Transfer functions
G_2	$\frac{3e^{-s}}{8s+1}$	

TABLE 0 INPUT PARAMETERS

In an ideal system, the output y must be independent of the disturbance d. This means, the transfer function

$$\frac{Y(s)}{D(s)} = 0$$

At B,

$$U(s) = -Y(s) - G_{ff}(s)D(s)$$
 (1)

At C,

$$Y(s) = G_1(s)D(s) + G_2(s)U(s)$$
 (2)

From (1) and (2),

$$Y(s) = G_1(s)D(s) + G_2(s)\left(-Y(s) - G_{ff}(s)D(s)\right)$$

$$(3)$$

$$\implies (1 + G_2)Y(s) = D(s)\left(G_1(s) - G_2(s)G_{ff}(s)\right)$$

$$\Longrightarrow \frac{Y(s)}{D(s)} = \frac{G_1(s) - G_2(s)G_{ff}(s)}{1 + G_2} \tag{5}$$