Data Mining and Data Warehousing

2. Machine Learning I: Supervised Learning

Universitatea Transilvania din Brașov

FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

Contact: horia@gmail.com

Tel: 0770171577

What is learning?

- Herbert Simon: "Learning is any process by which a system improves performance from experience."
- "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom Mitchell

Machine Learning

- Machine learning: study of computer algorithms that can improve automatically through experience and by use of data
 - how to acquire a model on the basis of data / experience
 - learning parameters (e. g. probabilities)
 - learning structure (e. g. BN graphs)
 - learning hidden concepts (e. g. clustering)

Transilvanta Transilvanta Transilvanta Personal Personal

- Machine learning and data mining often employ the same methods and overlap significantly
- Machine learning focuses on prediction, based on known properties learned from the training data
- Data mining focuses on the discovery of (previously) unknown properties in the data (analysis step of knowledge discovery in databases)
- Data mining uses many machine learning methods, but with different goals

2022-2023

Computer Science

Areas Individual Areas Institute Areas Institute Areas Institute I

- Supervised Learning: data and corresponding labels are given
- Unsupervised Learning: only data is given, no labels provided
- Semi-supervised Learning: some (if not all) labels are present
- Reinforcement Learning: an agent interacting with the world makes observations, takes actions, and is rewarded punished; it should learn to choose actions in such a way as to obtain a lot of reward

Supervised learning

- Supervised learning (SL) is the machine learning task of learning a function that maps an input to an output based on example input-output pairs
- it infers a function from labeled training data
- each example consists of an input object and a desired output
- an algorithm analyzes the training data and produces an inferred function, used for mapping new examples
- optimal scenario: correctly determine the class labels for unseen instances
- statistical quality measured through generalization error

Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRICA PRI STIINȚA CALCULATOARELOR TRANSIlvania din Brașov FACULTATEA DE INGINERIE ELECTRICA PROPRED PROPR

- Data: labeled instances <x, y>, e. g. emails marked spam/not spam -> split into training/(hold-out)/test set
- Features: attribute-value pairs which characterize each *x*
- Experimentation cycle
 - learn parameters (e. g. model probabilities) on training set
 - (Tune hyper-parameters on held-out set)
 - compute accuracy of test set
- Evaluation
 - accuracy: fraction of instances predicted correctly
- Overfitting and generalization
 - want a classifier which does well on test data

Example: Spam filter

Input: email

Output: spam/ham

Setup:

- Get a large collection of example emails, each labeled "spam" or "ham"
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future emails

Words: FREE!

Text Patterns: \$dd, CAPS

Non-text: SenderInContacts

First, I must solicit your confidence in this transaction, this is by virture of its nature as being utterly confidencial and top secret. ...

99 MILLION EMAIL ADDRESSES FOR ONLY \$99

Ok, Iknow this is blatantly OT but I'm beginning to go insane. Had an old Dell Dimension XPS sitting in the corner and decided to put it to use, I know it was working pre being stuck in the corner, but when I plugged it in, hit the power nothing happened.

din Brasch Care and Digit Recognition

Input: images / pixel grids

Output: a digit 0-9

Setup:

- Get a large collection of example images, each labeled with a digit
- Note: someone has to hand label all this data!
- Want to learn to predict labels of new, future digit images

Features: The attributes used to make the digit decision

- Pixels: (6,8)=ON
- Shape Patterns: NumComponents, AspectRatio, NumLoops

??

- In classification, we predict labels y (classes) for inputs x
- examples:
 - OCR (input: images, classes: characters)
 - Medical diagnosis (input: symptoms, classes: diseases)
 - Automatic essay grader (input: document, classes: grades)
 - Fraud detection (input: account activity, classes: fraud / no fraud)
 - Customer service email routing
 - recommended articles in a newspaper, books
 - DNA and protein sequence identification
 - Pro Firmancial investments

Inductive learning

- Simplest form: learn a function from examples
 - \blacksquare f is the target function -> an example is a pair (x, f(x))
- pure induction task:
 - given a collection of examples of f, return a function h that approximates f.
 - find a hypothesis h, such that h ≈ f, given a training set of examples
- this is a highly simplified model of real learning:
 - ignores prior knowledge
 - assumes examples are given

Inductive learning

- construct/adjust h to agree with f on training set
 - h is consistent if it agrees with f on all examples
 - e. g. curve fitting

Ockham's razor: prefer the simplest hypothesis consistent with data

Generalization

- Hypotheses must generalize to correctly classify instances not in the training data.
- simply memorizing training examples is a consistent hypothesis that does not generalize.
- Occam's razor:
 - finding a simple hypothesis helps ensure generalization

 Drd. Horia Modran
 2022-2023
 13

Transilvanda dei Gine le Cata ning error vs test error

- Low bias/high variance overfitting ("fitting" the training set)
- High bias/low variance underfitting (the model cannot capture the structure of the data)

Transilvania din Brașov Acultatea de Il Ginerie La SSI fication/Regression

- Learning a discrete function: classification
 - boolean classification:
 - each example is classified as true(positive) or false(negative)
 - can also predict multiple classes (3, 4, 5...)
- Learning a continuous function: Regression
 - E.g. Linear Regression, Logistic regression

Classification

- Model construction: describing a set of predetermined classes
 - each tuple/sample is assumed to belong to a predefined class, as determined by the class label
 - the set of tuples used for model construction is training set
 - the model is represented as classification rules, decision trees, or mathematical formulae
- Model usage: for classifying future or unknown objects
 - estimate accuracy of the model
 - if the accuracy is acceptable, use the model to classify data

tuples whose class labels are not known

Transilvania din Brașov FACULTATEA DE INGINERIE ENCERICĂ ASSIFICATION EXAMPLE FI ȘTIINȚA CALCULATOARELOR CAL

Tid	Attrib1	Attrib2	Attrib3	Class
1	Yes	Large	125K	No
2	No	Medium	100K	No
3	No	Small	70K	No
4	Yes	Medium	120K	No
5	No	Large	95K	Yes
6	No	Medium	60K	No
7	Yes	Large	220K	No
8	No	Small	85K	Yes
9	No	Medium	75K	No
10	No	Small	90K	Yes

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Drd. Horia Modran Test Set

Н

Data preparation

- Data cleaning
 - preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - remove the irrelevant or redundant attributes
- Data transformation
 - generalize data to (higher concepts, discretization)
 - normalize attribute values

Drd. Horia Modran

Transilvania din Brașov FACULTATEA DE INGUERIE ELECTICA SSIFIICATION TECHNIQUES SI ȘTIINȚA CALCULATORIA CALC

- Decision Tree based Methods
 - Random Forests
- Rule-based Methods
- Naive Bayes
- Bayesian Belief Networks
- Support Vector Machines
- and many more...

Decision trees

- Example Problem: decide whether to wait for a table at a restaurant, based on the following attributes:
 - alternate: is there an alternative restaurant nearby?
 - Bar: is there a comfortable bar area to wait in?
 - Fri/Sat: is today Friday or Saturday?
 - hungry: are we hungry?
 - patrons: number of people in the restaurant (None, Some, Full)
 - price: price range (\$, \$\$, \$\$\$)
 - raining: is it raining outside?
 - reservation: have we made a reservation?
 - type: kind of restaurant (French, Italian, Thai, Burger)
 - waitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Transmitted din Electrica Urre base representation

- examples described by feature(attribute) values (Boolean, discrete, continuous)
 - e.g., situations where I will/won't wait for a table:

Example											Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	Т	Full	\$	F	F	Thai	10-30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0-10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	Т	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	Т	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

Decision trees

- one possible representation for hypotheses
 - e.g., here is the "true" tree for deciding whether to wait:

Expressivness

- Decision trees can express any function of the input attributes.
 - \blacksquare e.g., for Boolean functions, truth table row \rightarrow path to leaf:

trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples

- Principle greedy algorithm
 - tree is constructed in a top-down recursive divide-andconquer manner
- Iterations at start, all the training tuples are at the root
 - tuples are partitioned recursively
 - test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Stopping conditions
 - all samples for a given node belong to the same class
 - there are no remaining attributes for further partitioning

Transilva de di Brashy de la Collega de la C

- Advantages
 - easy to construct/implement
 - extremely fast at classifying unknown records
 - accuracy is comparable to other classification techniques for many simple data sets
- Disadvantages
 - computationally expensive to train
 - some decision trees can be overly complex that do not generalize the data well
 - less expressivity

din Brașo de In Noerie ele Pri Vearest Neighbor (KNN)

- simple, but a very powerful classification algorithm
- classifies based on a similarity measure
- non-parametric
- lazy learning
 - does not "learn" until the test example is given
 - whenever we have a new data to classify, we find its K nearest neighbors from the training data

KNN: Classification

- classified by "MAJORITY VOTES" for its neighbor classes
 - assigned to the most common class amongst its K nearest neighbors (by measuring "distant" between data)

KNN: Steps

Step 1: Determine parameter K = number of nearest neighbors

Step 2: Calculate the distance between the query-instance and all the training examples.

Step 3: Sort the distance and determine nearest neighbors based on the k-th minimum distance.

Step 4:Gather the category Y of the nearest neighbors.

Step 5: Use simple majority of the category of nearest neighbors as the prediction value of the query instance.

KNN: Example

Table 1. Euclidean distance matrix D listing all possible pairwise Euclidean distances between 10 samples.

	distances between 19 samples.																	
	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5	\mathbf{x}_6	\mathbf{x}_7	x 8	x 9	\mathbf{x}_{10}	\mathbf{x}_{11}	\mathbf{x}_{12}	\mathbf{x}_{13}	x ₁₄	\mathbf{x}_{15}	\mathbf{x}_{16}	x_{17}	x ₁₈
\mathbf{x}_2	1.5																	
\mathbf{x}_3	1.4	1.6																
\mathbf{x}_4	1.6	1.4	1.3															
X 5	1.7	1.4	1.5	1.5														
\mathbf{x}_6	1.3	1.4	1.4	1.5	1.4													
x ₇	1.6	1.3	1.4	1.4	1.5	1.8												
x 8	1.5	1.4	1.6	1.3	1.7	1.6	1.4											
x 9	1.4	1.3	1.4	1.5	1.2	1.4	1.3	1.5										
\mathbf{x}_{10}	2.3	2.4	2.5	2.3	2.6	2.7	2.8	2.7	3.1									
\mathbf{x}_{11}	2.9	2.8	2.9	3.0	2.9	3.1	2.9	3.1	3.0	1.5								
\mathbf{x}_{12}	3.2	3.3	3.2	3.1	3.3	3.4	3.3	3.4	3.5	3.3	1.6							
\mathbf{x}_{13}	3.3	3.4	3.2	3.2	3.3	3.4	3.2	3.3	3.5	3.6	1.4	1.7						
\mathbf{x}_{14}	3.4	3.2	3.5	3.4	3.7	3.5	3.6	3.3	3.5	3.6	1.5	1.8	0.5					
\mathbf{x}_{15}	4.2	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.7	1.6	0.3	0.5				
\mathbf{x}_{16}	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	1.6	1.5	0.4	0.5	0.4			
\mathbf{x}_{17}	5.9	6.2	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	2.3	2.3	2.5	2.3	2.4	2.5		
${\bf x}_{18}$	6.1	6.3	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.1	2.7	2.6	2.3	2.5	2.6	3.0	
\mathbf{x}_{19}	6.0	6.1	6.2	5.8	6.1	6.0	6.1	5.9	5.8	6.0	3.0	2.9	2.7	2.4	2.5	2.8	3.1	0.4

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

n- number of dimensions (in our case - 2)

29

Pros and cons

Pros

- learning and implementation is extremely simple and intuitive
- flexible decision boundaries

Cons

- irrelevant or correlated features have high impact and must be eliminated
- difficult to handle high dimensionality
- computational costs: memory and classification time computation

E

Correlation

- linear association between two variables
- show how to determine both the nature and strength of relationship between two variables
- correlation lies between -1 to +1
- zero correlation indicates that there is no relationship between the variables
- Pearson correlation coefficient
 - most familiar measure of dependence between two quantities

Linear Regression

Samples with ONE independent variable

Samples with TWO independent variables

Given examples $(x_i, y_i)_{i=1...n}$ Predict y_{n+1} given a new point x_{n+1}

Linear Regression

- how to represent the data as a vector/matrix
- we assume a model

$$\mathbf{y} = \mathbf{b}_0 + \mathbf{b}\mathbf{X} + \epsilon$$

, where b_0 and \mathbf{b} are intercept and slope, known as coefficients or parameters. ϵ is the error term (typically assumes that $\epsilon \sim N(\mu, \sigma^2)$

- Simple Linear Regression
 - a single independent variable is used to predict
- Multiple linear regression
 - two or more independent variables are used to predict

Linear Regression

find the optimal coefficient vector b that makes the most similar observation: y=Xb+e (vector multiplication)

$$\begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} 1 & x_{11} & \cdots & x_{1p} \\ 1 & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \cdots & x_{np} \end{bmatrix} \begin{bmatrix} b_0 \\ \vdots \\ b_p \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ e_n \end{bmatrix}$$

need to minimize the error (sum squared error)

$$\min J(\mathbf{b}) = \sum_{i=1}^{n} (y_i - \mathbf{x}_{i,*} \mathbf{b})^2$$

Indicate regression with categorical din Brașov FACULTATEA DE INGINERIE ELECTRICĂ SI ȘTIINȚA CALCULATOARELOR Variables

- we assumed that all variables are continuous variables
- categorical variables:
 - ordinal variables encode data with continuous values
 - Evaluation: Excellent (5), Very good (4), Good (3), Poor (2), Very poor (1)
- nominal variables use dummy variables
 - department: Computer, Biology, Physics

	Computer	Biology	Physics
Computer	1	0	0
Biology	0	1	0
Physics	0	0	1

- for binary classification
 - \blacksquare encode class labels as y=0,1 or {-1,1}
 - \blacksquare apply formula: $\mathbf{y} = \mathbf{X} * \mathbf{b} + \mathbf{e}$
 - check which class the prediction is closer to
 - if class 1 is encoded to 1 and class 2 is 1

class 1 if
$$f(x) \ge 0$$

class 2 if $f(x) < 0$

■ linear models are NOT optimized for classification

Logistic regression

- Predict results on a binary outcome variable
 - e.g., whether or not a patient has a disease
 - whether a new applicant would succeed in the program or not
 - the outcome is not continuous or distributed normally
- when we have a binary response variables
 - we code "disease" as 1 and "no disease" as 0, can we just fit a line through those points as we would with linear regression? Possible! But some problems.

Drd. Horia Modran 2022-2023

Transilvania din Brașilvania d

- the problem of fitting a regular regression line to a binary dependent variable
 - the line seems to oversimplify the relationship
 - It gives predictions that cannot be observable values of Y for extreme values of X
 - the approach is analogous to fitting a linear model to the probability of the event
 - produces unobservable

predictions for extreme values of dependent variable

Transilvania din Brașov FACULTATEA DE INGINERIE EL CTRICĂ PO Dabilistic approach

- Learn P(Y|X) directly
 - cumulative probability distribution
 - using a sigmoid function $P(Y = 0|X) = \frac{1}{1 + \exp(X\mathbf{b})}$

$$P(Y = 1|X) = \frac{1}{1 + \exp(-\mathbf{X}\mathbf{b})}$$

Sigmoid:
$$g(w_0 + \sum_i w_i x_i) = \frac{1}{1 + e^{w_0 + \sum_i w_i x_i}}$$

$$W_0 = -2, W_1 = -1$$

$$w_0 = 0, w_1 = -1$$

Transilvania din Brașov Gistic regression model

$$\log\left(\frac{p}{1-p}\right) = \mathbf{X}\mathbf{b}$$

- \blacksquare p is the probability that an event Y occurs, p(Y=1)
- p/(1 p) is the "Odds ratio" -> range of [0 to infinite]
- Log(p/(1 p)) is log odds ratio, or "logit" -> range: $[-\infty, +\infty]$

Odd	Logit score
0.99	1.996
0.5	0
0.25	-0.477
0.01	-1.996

Logistic function

$$Y = \log(p/(1-p))$$

■ Logistic regression predicts probabilities rather than classes:

stochastic approach

Drd. Horia Modran 2022-2023 4

Linear Separators

■ Binary classification can be viewed as the task of separating classes in feature space:

$$f(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

Training set:

$$(\mathbf{x}_1,y_1),\ldots,(\mathbf{x}_n,y_n),$$

y (either 1 or -1) - indicating the
 class to which the point x_i belongs
 w - normal vector to the hyperplane

Drd. Horia Modran 2022-2023

Hyperplane

- lots of possible choices for a, b, c
- a Support Vector Machine (SVM) finds an optimal solution
 - maximizes the distance between the hyperplane and the "difficult points" close to decision boundary
 - one intuition: if there are no points near the decision surface, then there are no very uncertain classification decisions

This line represents the decision boundary: ax + by - c = 0

SVM

- SVMs maximize the margin around the separating hyperplane
 - a.k.a. large margin classifiers
- the decision function is fully specified by a subset of training samples, the support vectors
- solving SVMs is a quadratic programming problem

Geometric Margin

- distance from example to the separator is $r = y \frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|}$
- examples closest to the hyperplane are support vectors
- lacktriangledown margin ρ of the separator is the width of separation between support vectors of classes

Linear SVM

assume that the functional margin of each data item is at least 1, then $\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathsf{b}} + \mathbf{b} = -1$ the following two constraints follow for a training set $\{(x_i, y_i)\}$:

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \ge 1 \quad \text{if } y_{i} = 1$$
$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b \le -1 \quad \text{if } y_{i} = -1$$

for support vectors, the inequality becomes an equality

Hyperplane wTx+b=0

Extra scale constraint: $min_{i=1,...,n} | w_Tx_i + b | = 1$

This implies:

$$w_T(x_a-x_b) = 2$$
 $\rho = \|x_a-x_b\|_2 = \frac{2}{\|w\|_2}$

Transilvania Conference of the Margin Classification

- if the training data is not linearly separable, slack variables ξ_i can be added to allow misclassification of difficult or noisy examples
- allow some errors
 - let some points be moved to where they belong, at a cost
- still, try to minimize training set errors, and to place hyperplane "far" from each class (large margin)

Drd. Horia Modran 2022-2023

Transilvania din Brașov ACULTATEA DE INGINER ELECTRICA SSIFICATION WITH SVM

- given a new point x , we can score its projection onto the hyperplane normal:
 - **I** i. e. compute score: $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = \Sigma \alpha_i y_i \mathbf{x}_i^{\mathsf{T}}\mathbf{x} + b$
 - decide class based on whether < or > 0
- can set confidence threshold

Score > *t* : **yes**

Score < -*t*: **no**

Else: don't know

Metrics

Universitatea Transilvania din Brașov FACULTATEA DE INGINERIE ELECTRICĂ ȘI ȘTIINȚA CALCULATOARELOR

QUESTIONS?

