Problem 1

Let X be a metric space and consider a subset $Y \subseteq X$ viewed as a metric space. Show that $C \subseteq Y$ is connected in Y if and only if it is connected as a subset of X.

Proof: $C \subseteq Y$ is connected if and only if any splitting $C \subseteq (Y \cap U) \sqcup (Y \cap V)$ in Y is trivial, for $U, V \subseteq X$ open. Thus, $C \subseteq Y \cap (U \sqcup V)$ is a trivial splitting, if and only if $C \subseteq U \sqcup V$ is trivial.

Problem 2

If X is a metric space, and $Y \subseteq X$ is a connected subset of X, show that for every splitting $X = X_1 \sqcup X_2$, $X_i \subseteq X$ open, we must have $Y \subseteq X_1$ or $Y \subseteq X_2$.

Proof: Let $Y \subseteq X$ be connected. Then, for any splitting $Y \subseteq X_1 \cup X_2$, with $X_1, X_2 \subseteq X$ open, it is the case that $Y \cap X_1 \cap X_2 = \emptyset$. Since the splitting is trivial, it is the case that either $Y \cap X_1 = \emptyset$ or $Y \cap X_2 = \emptyset$.

We also have that $Y \cap (X_1 \cup X_2) = (Y \cap X_1) \cup (Y \cap X_2) = Y$. Therefore, it must be the case that $Y \cap X_1 = Y$ or $Y \cap X_2 = Y$, so $Y \subseteq X_1$ or $Y \subseteq X_2$.

Problem 3

For n = 0, 1, 2, 3..., let $X_n := [0, 1] \times \{2^{-n}\}$, and consider the space

$$X = \{(0,0), (1,0)\} \cup \left(\bigcup_{n=1}^{\infty} X_n\right).$$

- (i) List all the connected components of X.
- (ii) If $X = U \sqcup V$ is a nontrivial splitting of X, show that there is a finite subset $F \subseteq \mathbb{N}$ with

$$U = \bigcup_{n \in F} X_n, \quad V = X \setminus U.$$

Problem 4

Show that the *n*-sphere, $S^{n-1} = \{v \in \mathbb{R}^n \mid ||v||_2 = 1\}$ is path-connected.

Proof: Let $x, y \in S^{n-1}$. Then, $\|x\|_2 = \|y\|_2 = 1$. Let $\gamma: [0,1] \to S^{n-1}$ be defined by $\gamma(0) = x$, $\gamma(1) = y$, and $\gamma(t) = \frac{(1-t)x+ty}{\|(1-t)x+ty\|}$ (for $(1-t)x+ty \neq 0$). Since convex combinations and norms are continuous, $\gamma(t)$ is continuous and $\|\gamma(t)\| = 1$ for all t, meaning every element of $\gamma(t)$ is an element of S^{n-1} , so $\gamma(t)$ is a path.

If x and y are antipodes, then there is some x^* in a ε -neighborhood of x, and a path from x^* to y, so by appending paths, we have a path from x to y.

Problem 5

Let X be a metric space. We define a relation on X, $x \sim y$ if and only if there exists a path $\gamma: [0,1] \to X$ with $\gamma(0) = x$ and $\gamma(1) = y$. Show that this defines an equivalence relation on X. Equivalence classes are called path-connected components.

Proof: The relation is clearly reflexive.

For symmetry, if γ is a path from x to y, we define γ' as $\gamma(1-t)$, which is a path from y to x.

If γ_1 is a path from x to y, and γ_2 is a path from y to z, we define $\gamma:[0,1]\to X$ as

$$\gamma(t) = \begin{cases} \gamma_1(2t) & 0 \le t \le 1/2 \\ \gamma_2(2t-1) & 1/2 \le t \le 1 \end{cases}.$$

This is a path from x to z, and thus the relation is transitive.

Problem 6

Show that \mathbb{R} and \mathbb{R}^2 are not homeomorphic.

Proof: Let $f: \mathbb{R} \to \mathbb{R}^2$ be a homeomorphism, meaning f is continuous.

Consider $f(\mathbb{R}\setminus\{0\})$. We have that $\mathbb{R}\setminus\{0\}=f^{-1}\left(f(\mathbb{R}\setminus\{0\})\right)$ is disconnected. However, $f(\mathbb{R}\setminus\{0\})=f(\mathbb{R})\setminus f(\{0\})=\mathbb{R}^2\setminus f(0)$, but $\mathbb{R}^2\setminus f(0)$ is connected. \bot

Problem 7

Let V be a normed space and suppose $Y \subseteq V$ is an open and connected subset. Fix a vector $y_0 \in Y$, and set

 $W := \{ w \in Y \mid \text{there is a path from } y_0 \text{ to } w \}.$

- (i) Show that W is open in Y.
- (ii) Show that W is closed in Y.
- (iii) Conclude that Y is path-connected.

Problem 8

A group is a nonempty set G with a binary operation $G \times G \to G$, $(s, t) \mapsto st$ satisfying

- (st)r = s(tr);
- there is a unique neutral element $e \in G$ with te = et for all $t \in G$;
- for every $t \in G$ there is a unique inverse $t^{-1} \in G$ with $t^{-1}t = tt^{-1} = e$.

A subgroup of G is a nonempty subset $H \subseteq G$ such that $s, t \in H \Rightarrow st, t^{-1} \in H$. The subgroup H is normal if $t \in G, s \in H$ implies $tst^{-1} \in H$.

Consider a group G equipped with a metric so that the operations $G \times G \to G$, $(s,t) \mapsto st$ and $G \to G$, $t \mapsto t^{-1}$ are both continuous. Show that the connected component containing the neutral element e, G_0 , is a closed and normal subgroup of G.

Proof:

Problem 9

Show that the Cantor set is totally disconnected.

Proof: Let $a, b \in \mathcal{C}$, and let $a, b \in U \subseteq \mathcal{C}$, where U is connected. We will show that a = b.

Problem 10

A metric space X is called zero-dimensional if for any $x, y \in X$ with $x \neq y$, there are open subsets $U, V \subseteq X$ with $x \in U, y \in V$ and $X = U \sqcup V$.

- (i) Show that every zero-dimensional metric space is totally disconnected.
- (ii) If $Y\subseteq\mathbb{R}$ is totally disconnected, show that Y is zero-dimensional.
- (iii) Conclude that $\mathbb Q$ and the Cantor set are zero-dimensional.

Bonus

Let X be a compact metric space. Show that X is zero-dimensional if and only if X admits a basis of compact-open subsets.