TD2 rédaction

$\mathcal{F}.\mathcal{J}$

22 janvier 2024

Exercice 1. Théorème de Gerschgörin - localisation des valeurs propres.

Si $n \in \mathbb{N}$, $n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{K})$, on note spec(A) le spectre de la matrice A, c'est-à-dire l'ensemble des valeurs propres de A et, pour chaque $i \in \{1, \ldots, n\}$, on note $D_i(A)$ l'ensemble

$$D_i(A) = \{ z \in \mathbb{C} : |z - A_{ii}| \le \sum_{\substack{j=1 \ j \ne i}}^n |A_{ij}| \}.$$

 D_i s'appelle le *i*-ème disque de Gerschgörin de la matrice A. Soit $n \in \mathbb{N}, n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{K})$.

1. Montrer que pour tout $\lambda \in spec(A)$,

$$\lambda \in \bigcup_{i=1}^{n} D_i(A).$$

Solution : Soit donc $\lambda \in Sp(A)$, montrons que λ est au moins dans l'un des $D_i(A)$. On sait que $\lambda \in Sp(A)$, $i.e \; \exists u \in \mathbb{K}^n$ tel que $Au = \lambda u$ avec $u \neq 0$. Définissons maintenant k_0 tel que $|u_{k_0}| = \max_{i \in \{1, \dots, n\}} |u_i|$. Comme $u \neq 0$, $u_{k_0} \neq 0$.

On a donc $\lambda u_{k_0} = \sum_{k=1}^n A_{k_0 k} u_k$ qui nous donne $\lambda u_{k_0} - A_{k_0 k_0} u_{k_0} = \sum_{k=1, k \neq k_0}^n A_{k_0 k} u_{k_0}$

Ce qui nous donne : $|\lambda - A_{k_0k_0}||u_{k_0}| = \sum_{k=1, k \neq k_0}^n |A_{k_0k}||u_{k_0}|$

Et par suite : $|\lambda - A_{k_0k_0}| \le \sum_{k=1, k \ne k_0}^n |A_{k_0k}| \operatorname{car} \frac{|u_k|}{|u_{k_0}|} \le 1$ Donc on a bien λ dans l'un des $D_i(A)$.

2. En déduire que le rayon spectral $\rho(A) := \max_{\lambda \in spec(A)} |\lambda|$ de A vérifie

$$\rho(A) \le \max_{1 \le i \le n} \sum_{j=1}^{n} |A_{ij}|.$$

1

Exercice 2.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ orthogonale (*i.e.* vérifiant $AA^T = A^TA = I_n$). Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $|\lambda| = 1$.
 - **Solution**: Supposons donc $A \in \mathcal{M}_n(\mathbb{R})$ orthogonale et $\lambda \in Sp(A)$, on sait donc qu'il existe un vecteur u non nul tel que $Au = \lambda u$. En prenant la norme de Au on obtient : $||Au|| = ||\lambda u|| = |\lambda|||u||$. D'autre part on a aussi $||Au||^2 = \langle Au|Au\rangle = \langle u|A^tAu\rangle = \langle u|u\rangle$ car $AA^t = I_n$. Donc on a $|\lambda|||u|| = ||u|| \Rightarrow |\lambda| = 1$.
- 2. On considère ici le produit scalaire euclidien et la norme euclidienne sur \mathbb{R}^n . Soit $A \in \mathcal{M}_n(\mathbb{R})$.
 - (a) Montrer que A est orthogonale si et seulement si les colonnes de A forment une base o. n. de \mathbb{R}^n si et seulement si A préserve le produit scalaire, autrement dit si et seulement si pour tous $x, y \in \mathbb{R}^n$,

$$(Ax|Ay) = (x|y).$$

Solution : Pour A orthogonale \iff les colonnes $C_1, ..., C_n$ de A forment une BON déjà fait en cours.

Montrons que A orthogonale \iff A préserve le produit scalaire :

- \Rightarrow Supposons A orthogonale, i.e $AA^t = I_n$ et montrons que A préserve le produit scalaire.
 - On a donc $\langle Ax|Ay\rangle = \langle x|A^tAy\rangle = \langle x|y\rangle$ car $A^tA = AA^t = I_n$
- \Leftarrow Supposons que A préserve le produit scalaire et montrons que A est orthogonale : $\langle Ax|Ay\rangle = \langle x|A^tAy\rangle = \langle x|y\rangle$ et cela quelques soient $x,y\in\mathbb{R}^n$. On a donc $\langle Ax|Ay\rangle - \langle x|y\rangle = 0$, $\forall x,y\in\mathbb{R}^n$, donc $\langle x|(A^tA)y\rangle = 0$, $\forall x,y\in\mathbb{R}^n$ $i.e\ (A^tA)y = 0$, $\forall y\in\mathbb{R}^n$, d'où $AA^t = I_n$.
- (b) Montrer que A préserve le produit scalaire si et seulement si A préserve la norme, autrement dit si et seulement si pour tout $x \in \mathbb{R}^n$,

$$||Ax|| = ||x||,$$

et en déduire que A est orthogonale si et seulement si A préserve la norme.

Solution:

- \Rightarrow évident.
- $\Leftarrow \text{ Supposons que } A \text{ préserve la norme, et en utilisant l'identité de polarisation on a } \langle Ax|Ay\rangle = \frac{1}{2}(\|Ax+Ay\|^2 \|Ax\|^2 \|Ay\|^2) = \frac{1}{2}(\|x+y\|^2 \|x\| \|y\|^2) = \langle x|y\rangle.$

Exercice 3 (Caractérisation des valeurs propres pour des matrices hermitiennes - théorème de Courant-Fischer). Soit $n \in \mathbb{N}$, $n \geq 1$, et $A \in \mathcal{M}_n(\mathbb{C})$ une matrice hermitienne (auto-adjointe). Soient $\lambda_1 \leq \cdots \leq \lambda_n$ les n valeurs propres réelles de A.

1. Montrer que :

$$\lambda_1 = \min_{x \in \mathbb{C}^n, \ x \neq 0} \frac{(Ax|x)_{\mathbb{C}}}{\|x\|_2^2} = \min_{x \in \mathbb{C}^n, \ \|x\|_2 = 1} (Ax|x)_{\mathbb{C}}$$

et que

$$\lambda_n = \max_{x \in \mathbb{C}^n, \ x \neq 0} \frac{(Ax|x)_{\mathbb{C}}}{\|x\|_2^2} = \max_{x \in \mathbb{C}^n, \ \|x\|_2 = 1} (Ax|x)_{\mathbb{C}}$$

2. Montrer de même si $A \in \mathcal{M}_n(\mathbb{R})$:

$$\lambda_1 = \min_{x \in \mathbb{R}^n, \ x \neq 0} \frac{(Ax|x)}{\|x\|_2^2} = \min_{x \in \mathbb{R}^n, \ \|x\|_2 = 1} (Ax|x)$$

Solution : On a $A \in \mathcal{M}_n(\mathbb{R})$ symétrique (*i.e* $A^t = A$) donc A est diagonalisable dans une BON de vecteurs propres, *i.e* qu'il existe une base orthonormée de vecteurs propres $(u_1, ..., u_n)$, ordonnons les valeurs propres $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$ (*il peut y en avoir qui se répète vu que l'on va jusqu'à n*). On se place dans la base orthonormée $(u_1, ..., u_n)$, dans

cette base
$$x = \sum_{k=1}^{n} x_k e_k$$
. Donc en prenant la norme on a $||x|| = \sum_{k=1}^{n} ||x_k||$

et que

$$\lambda_n = \max_{x \in \mathbb{R}^n, \ x \neq 0} \frac{(Ax|x)}{\|x\|_2^2} = \max_{x \in \mathbb{R}^n, \ \|x\|_2 = 1} (Ax|x).$$