1.1.03. Знакомство с интерфейсом MATLAB

Лекция

Проанализируем статистику цунами из Excel-файла в MATLAB без использования команд

Содержание

Главное окно МАТLAB	1
Импорт данных из файла Excel	
Поиск файла	
Мастер импорта данных	
Анализ данных	
Работа с переменной	
Построение графиков	
Сохранение результатов работы.	

Главное окно MATLAB

Центральную область занимает **окно команд**, сюда вы будете писать свои команды и тут же получать результат. Слева находится содержимое **текущей рабочей папки**, путь к ней задается в строке над окном команд (**путь к рабочей папке**). Это та папка, в которой для удобства лежат ваши рабочие файлы и ваши MATLAB-программы. В **рабочую область** будут выводиться все переменные MATLAB, с которыми вы работаете.

Импорт данных из файла Excel

Поиск файла

Статистика цунами записана в файле tsunamis.xlsx, который находится в папке установки MATLAB.

```
winopen(fullfile(matlabroot, 'toolbox\matlab\demos'))
```

Скопируем её путь, и вставим в строку **пути к рабочей папке** в главном окне, чтобы сделать папку рабочей и упростить доступ к файлу.

Либо можно сменить путь командой

```
cd(fullfile(matlabroot, 'toolbox\matlab\demos'))
```

Находим в окне **содержимого рабочей папки** файл tsunamis.xlsx, и кликаем по нему 2 раза, чтобы загрузить, откроется окно мастера импорта.

Также открыть окно импорта нашего файла можно командой

```
uiimport('tsunamis.xlsx')
```

Мастер импорта данных

Визуально мастер импорта напоминает Excel, в нем вы можете изучить данные и настроить параметры импорта. Например, вы можете вручную указать, какую часть таблицу хотите импортировать. По умолчанию она будет импортирована в переменную типа table - это самый удобный формат в MATLAB для хранения разнородных массивов данных. А у нас разные столбики имеют разный тип - число, категория, это может быть текст, дата или другой тип. Тип столбика можно поменять здесь же. Как и тип итоговой переменной. В таблице есть пропущенные значения, подсвеченные желтым, по-умолчанию они будут заменены на значение NaN (Not a Number).

После настройки жмем зеленую кнопку и получаем переменную tsunamis, с которой будем работать. Обратите внимание, что под кнопкой импорта есть дополнительные функции. Мы можем сгенерировать MATLAB скрипт или функцию, которая автоматически сделает все то, что мы настроили мышкой, и выдаст такую же переменную. Таким образом мы можем свою работу автоматизировать и применить полученную функцию к другим файлам с такой же структурой.

Анализ данных

Работа с переменной

После импорта в **рабочей области** главного окна появилась переменная tsunamis. Откроем её двойным кликоми и изучим таблицу, которая в ней хранится.

Также переменную можно открыть командой

Видим что переменная имеет тип данных table (таблица), она имееет размер 162 строчки (количество измерений) на 20 столбцов (параметры цунами). Каждый столбик имеет свое название, считанное из исходной таблицы.

С таблицей можно работать с помощью мышки и клавиатуры. Например, можно изменять значения в ячейках (заменять пропуски). Можно переименовать или поменять местами столбцы, удалить лишние, вставить новые. Так же можно вставлять и удалять строки. По любому столбцу можно сортировать всю таблицу.

Обратите внимание, что все манипуляции с таблицей отражаются в виде кода в окне команд. Таким образом MATLAB подталкивает нас к освоению команд. А ещё мы можем копировать эти команды и использовать в алгоритмах.

Кстати, считать таблицу можно командой:

```
tsunamis = readtable('tsunamis.xlsx')
```

Например, после сортировки по столбцу Year в командном окне появляется команда:

```
tsunamis = sortrows(tsunamis,'Year','ascend')
```

 $tsunamis = 162 \times 19 table$

. . .

	Latitude	Longitude	Year	Month	Day	Hour
1	-3.8000	128.3000	1950	10	8	3
2	19.5000	-156.0000	1951	8	21	10
3	-9.0200	157.9500	1951	12	22	NaN
4	42.1500	143.8500	1952	3	4	1
5	19.1000	-155.0000	1952	3	17	3
6	43.1000	-82.4000	1952	5	6	NaN
7	52.7500	159.5000	1952	11	4	16
8	50.0000	156.5000	1953	3	18	NaN
9	-2.4000	147.4000	1953	6	27	NaN
10	-18.3000	178.2000	1953	9	14	0

После удаления столбца Second:

tsunamis = removevars(tsunamis, 'Second')

tsunamis = 162×18 table

Latitude Longitude Year Month Day Hour 8 -3.8000 128.3000 1950 10 3 2 10 19.5000 -156.0000 1951 8 21 3 -9.0200 1951 12 22 157.9500 NaN 4 42.1500 143.8500 1952 3 4 1 5 19.1000 -155.0000 1952 3 17 6 43.1000 -82.4000 1952 5 6 NaN 7 52.7500 159.5000 1952 11 4 16 8 50.0000 156.5000 1953 3 18 NaN 9 -2.4000 1953 147.4000 6 27 NaN 10 -18.3000 1953 0 178.2000 9 14

Построение графиков

4

В переменной tsunamis выделим столбец MaxHeight, кликнув на его заголовок. Затем в главном окне MATLAB на вкладке **PLOTS** кликаем на график **plot**. Получаем простой график, где по оси абсцисс отложены порядковые номера точек, по оси ординат - значения столбца MaxHeight.

При этом появляется команда:

plot(tsunamis.MaxHeight)

Теперь выделим столбец Year и с зажатой клавишей Ctrl выделим также MaxHeight. Для двух выделенных столбцов на кладке **PLOTS** доступен график **scatter**, построим его.

При этом появляется команда:

scatter(tsunamis.Year, tsunamis.MaxHeight)

График можно настроить, например, выбрав *Insert -> Title*, подписать его.

В меню File -> Save As... график можно сохранить на диск, чтобы потом, например, вставить в отчет.

Кроме того, *выбрав File -> Generate Code...*, вы получите MATLAB-код, который строит в точности такой же график со всеми настройками и оформлением.

Теперь выделим 3 столбца (с зажатым Ctrl): Latitude, Longitude, MaxHeight. Строим график **geobubble** (на вкладке **PLOTS**).

Появляется команда:

geobubble(tsunamis.Latitude,tsunamis.Longitude,tsunamis.MaxHeight);

Карта позволяет проанализировать, где цунами случаются чаще всего, и где они самые высокие.

Выделим столбец **Country** и построим график **wordcloud**.

Появляется команда:

wordcloud(tsunamis.Country);

Облако слов наглядно показывает, в каких странах цунами наблюдаются чаще всего.

Оценим количественно, построив гистограмму - график histogram.

Появляется команда:

histogram(tsunamis.Country)

В России с 1950 по 2006 года было зафиксировано 19 цунами.

Сохранение результатов работы

Если закрыть MATLAB, переменная tsunamis удалится. Чтобы сохранить её на диск можно на вкладке **HOME** нажать кнопку **Save Workspace**, при этом все переменные из **рабочей области** будут сохранены в файл с расширением *.mat*.

Сохранить все переменные в файл matlab.mat в текущую рабочую папку можно также командой

save

Saving to: D:\MATLAB\Data Analysis\COURSE\2. Анализ данных в MATLAB для начинающих\matlab.mat

Чтобы загрузить все данные из .mat-файла, надо на него 2 раза кликнуть в окне содержимого рабочей папки.

Загрузить данные из файла matlab.mat можно также командой

load

Loading from: D:\MATLAB\Data Analysis\COURSE\2. Анализ данных в MATLAB для начинающих\matlab.mat

ETMC Exponenta © 2018