MATH2033 Mathematical Statistics Assignment 5

Due Date: 7/Apr/2024(Sunday), on or before 16:00, on iSpace.

- Write down your CHN name and student ID. Write neatly on A4-sized paper and show your steps. Hand in your homework in one pdf file on iSpace.
- Late submissions, answers without details, or unrecognizable handwritings will NOT be graded.
- 1. Suppose that X is a discrete random variable with

$$P(X = 0) = \frac{2}{3}\theta$$

$$P(X = 1) = \frac{1}{3}\theta$$

$$P(X = 2) = \frac{2}{3}(1 - \theta)$$

$$P(X = 3) = \frac{1}{3}(1 - \theta)$$

where $0 \le \theta \le 1$ is a parameter. The following 10 independent observations were taken from such a distribution: (3,0,2,1,3,2,1,0,2,1).

- (a) Find the method of moments estimate of θ .
- (b) Find an approximate **standard error** (in the context of parameter estimation, standard deviation of the estimator is also often called its "standard error") for your estimate.
- (c) What is the maximum likelihood estimate of θ ?
- 2. Suppose that X is a discrete random variable with $P(X = 1) = \theta$ and $P(X = 2) = 1 \theta$. Three independent observations of X are made: $x_1 = 1, x_2 = 2, x_3 = 2$.
 - (a) Find the method of moments estimate of θ .
 - (b) What is the likelihood function?
 - (c) What is the maximum likelihood estimate of θ ?
- 3. Suppose that X_1, X_2, \ldots, X_n are i.i.d. random variables with density function

$$f(x \mid \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x|}{\sigma}\right)$$

1

- (a) Find the method of moments estimate of σ .
- (b) Find the maximum likelihood estimate of σ .
- 4. Suppose that X_1, X_2, \dots, X_n are i.i.d. $N(\mu, \sigma^2)$.
 - (a) If μ is known, what is the mle of σ ?
 - (b) If σ is known, what is the mle of μ ?
- 5. Suppose X is a random variable with pdf/pmf $\pi(x|\theta)$, where $\theta \in \Theta$ is a parameter. Define the **Fisher Information** of the parameter θ as follows:

$$I(\theta) \stackrel{\text{def}}{=} \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta} \log \pi(X|\theta) \right)^2 \right] = \int \left(\frac{\partial}{\partial \theta} \log \pi(x|\theta) \right)^2 \pi(x|\theta) dx.$$

- (a) Suppose X is a Bernoulli random variable with parameter $p \in [0, 1]$, namely, $\mathbb{P}(X = 1) = p$, $\mathbb{P}(X = 0) = 1 p$. Find the Fisher information I(p).
- (b) Suppose X is a Poisson random variable with parameter $\lambda > 0$, namely, $\mathbb{P}(X = k) = e^{-\lambda} \lambda^k / k!$. Find the Fisher information $I(\lambda)$.
- (c) Suppose X is a random variable with pdf

$$f(x; \theta) = \begin{cases} \theta x^{\theta - 1} & \text{for } 0 < x < 1 \\ 0 & \text{elsewhere} \end{cases}$$

where $\theta > 0$ is the parameter. Find the Fisher information $I(\theta)$.