Методы оценки сложности текстовых данных для ускорения обучения языковых моделей с помощью обучения по плану

Сурков Максим Константинович Научный руководитель: Ямщиков Иван Павлович

Санкт-Петербургская школа физико-математических и компьютерных наук НИУ ВШЭ СПБ

20 апреля 2021 г.

Мотивация. Применения

- социальные сети
- голосовые помощники
- переводчики
- чат-боты

- классификация
- машинный перевод
- вопросно-ответные системы

- небольшие языковые модели
- GPT-3
 - очень большая модель
- BERT
 - высокое качество

Мотивация. Обучение языковой модели

ullet текст o токены o BERT o предсказание

- требуемое время: от 1-2 дней до 1-2 недель
- мировой рекорд: 47 минут с использованием 1472 GPU Корпус данных | Размер

порпус данных	i dowcp
Wikipedia	3-600M
${\sf BookCorpus}$	74M

• требуемое время: 1-2 дня

•	* *
Корпус данных	Размер
HND	600k-2M
s140	1.6M
IWSLT	200-230k
QQP	364k
MNLI	393k
	1

- долго обучать
- нужно обрабатывать большие объемы данных 🕕 🧸

Обучение по плану. Определение

- сортируем данные по сложности (длина)
- - ullet вычисляем $c(t) \in [0,1]$
 - формируем пакет данных маленького размера из множества c(t) легких примеров
 - шаг обучения

Platanios et al., Competence-based Curriculum Learning for Neural Machine Translation, 2019

Метод сравнения алгоритмов обучения

- фиксируем: корпус данных, модель, семплер
- обучаем модель
- фиксируем достаточно большой порог (точность, функция потерь)
- сравниваем среднее число шагов, необходимое для достижения данного порога

Поле исследований

метрика	перевод	NLU
длина	Platanios et al. (2019)	
языковая 1		
энтропия		
модельная		Xu et al. (2020)
частота слов	Kocmi et al. (2017)	
правдоподобие	Platanios et al. (2019)	

- не изучено влияние обучения по плану на задачах классификации и предобучения
- покрыто узкое множество метрик (длина лучшая метрика на данный момент)
- большинство работ улучшают качество модели, но не скорость обучения
- не рассмотрен случай с шумными тренировочными данными

 1 Sluis et al. (2010) показали слабую корреляцию с реальной сложностью <u>т</u>екста $_{\sim}$

Цель и задачи

Цель: ускорить обучение языковой модели BERT с помощью обучения по плану за счет применения улучшенной метрики сложности текстовых данных на задачах классификации и предобучения **З**адачи:

- Предложить метрики оценки сложности текста
- Реализовать производительные алгоритмы вычисления предложенных метрик на больших корпусах данных
- Сравнить найденные метрики
- Исследовать влияние найденных метрик на скорость обучения языковой модели BERT на чистых и шумных тренировочных данных

Поиск метрик

- 💶 база
 - длина, вероятность правдоподобия (Platanios et al., 2019)
 - самое редкое слово в предложении (Xuan Zhang et al., 2018)
- информационный поиск
 - tf-idf
- теория информации (Nihat Ay et al., 2006)
 - EE. TSE

$$\downarrow \\
\xi = (\xi_{t_{1}}^{1}, \xi_{t_{2}}^{2}, \dots, \xi_{t_{i-1}}^{i-1}, \xi_{t_{i}}^{i}, \dots, \xi_{t_{i}}^{n})$$

 $T = (t_1, t_2, \ldots, t_{i-1}, t_i, \ldots, t_n)$

Асимптотика	Время
$\mathcal{O}^*(2^n), \mathcal{O}(n^2)$	> 1 мес.
$\mathcal{O}(n)$	< 4u.

- $t_i \to \xi_{t_i}^i =: \mu_i$ -бинарная случайная величина
 - модельная (MLM-loss)
 - учим BERT на задаче MLM (Пример: "Привет, как [MACKA]?"), оптимизируя кросс-энтропию
 - сложность = значение кросс-энтропии на данном тексте
 - треубет GPU
 - среднее число токенов в слове (TPW)

8 / 14

Вычисление метрик

- статистики
 - lacktriangle длина ightarrow число текстов с такой длиной
 - $(i, x_i) \rightarrow$ число текстов, где $t_i = x_i$
 - $(x_i) \rightarrow$ число текстов, где x_i является последним токеном
 - $(i, x_{i-1}, x_i) \rightarrow$ число текстов, где на (i-1)-й позиции стоит x_{i-1} , а на i-й позиции стоит x_i
 - **5** $x_i \rightarrow$ число текстов, в которых есть x_i
- сбор статистик в параллельном режиме (разделение по данным)

Режим	Время
1 CPU	pprox 2 недели
5 CPU	pprox 1-2 дня
20 CPU	< 14 ч.
40 CPU	< 6 ч.

Итого:

- предложены подходы, покрывающие широкое множество метрик
- предложены алгоритмы, вычисляющие метрики за пренебрежимо маленькое время (< 8% от времени обучения)

Сравнение метрик. Предобучение

- Данные: Wikipedia, BookCorpus
- Обучение по плану проигрывает базовому решению от 2 до 5 раз
- Метрики имеют порядок вне зависимости от семплера
 - 🚺 максимальный ранг слова
 - 2 TF-IDF
 - EE
 - TSE
 - правдоподобие
 - **1** длина
- Длина проигрывает остальным метрикам от 2 до 12 раз

Сравнение метрик. Предобучение

 $\max \Delta \leq 3k$

Датасет			BooksCorpus					
семплер	Порог	СВ	DB	Нур	SS	SM	min loss	
max wf rk	2.00	∞	17.5k	16.5k	16.5k	27k	1.58	
TF-IDF	2.00	∞	34k	35k	37.5k	∞	1.84	
база	2.00			9.5k			1.58	
			BooksCorpus					
EE	3.50	∞	4k	3.5k	4.5k	9.5k	2.25	
TSE	3.50	∞	9k	9k	8.5k	18k	2.60	
правд.	3.50	∞	13.5k	13.5k	15.5k	50k	2.83	
длина	3.50	∞	50.5k	∞	-	-	3.45	

- (\pm) лучшая метрика максимальный ранг слова ((-)замедляет в 2 раза (+) без потери качества)
- (—) обучение по плану замедляет обучение от 2 до 5 раз и ухудшает качество модели

Сравнение метрик. Классификация

 $\max \Delta \leq 3k$

Датасет		sentiment140					
семплер	Порог	СВ	DB	Нур	SS	SM	Точность
длина	85.5%	112.5k	20k	19k	-	-	86.2%
TF-IDF	85.5%	115.5k	21.5k	19.5k	16.5k	22k	86.7%
TSE	85.5%	95.5k	16.5k	20.5k	21.5k	18k	86.8%
EE	85.5%	59k	19.3k	23k	20k	19k	86.7%
max wf rk	85.5%	70k	18.5k	19.5k	17k	19k	86.7%
правд.	85.5%	112k	17.5k	21.5k	17.5k	21.5k	86.7%
MLM-loss	85.5%	59.5k	21k	23.5k	19.5k	20k	86.1%
база	85.5%			17.5k			87%

- (+) лучшая конфигурация (TF-IDF+SS) ускоряет обучение до 3% в среднем
- (—) длина и MLM-loss уменьшают точность модели на 0.6%
- (-) нет значительного ускорения обучения

Влияние метрик на скорость обучения. Шум

- ullet $p \sim U[0,0.4]$ уровень шума (доля слов с шумом)
 - искусственная метрика
- виды шума:
 - вставки
 - удаления
 - **3** клавиатурный

метрика "уровень шума" ускоряет обучение на старте до 2.5 раз (+) метрика TPW ускоряет обучение до 2 раз для достижения 95% итоговой точности () () () ()

Результаты

- Предложен широкий спектр метрик оценки сложности текста
 - метрики TSE и EE адаптированы под задачу обработки языка
- ② Реализованы алгоритмы подсчета метрик на больших объемах данных ($\leq 8\%$ от времени обучения)
- Предобучение
 - есть строгий порядок метрик
 - длина худшая метрика на предобучении (замедляет обучения до 12 раз, уменьшает качество модели)
 - максимальный ранг слова лучшая метрика на предобучении (замедляет в 2 раза без потери качества)
- Классификация
 - лучшая конфигурация (TF-IDF+SS) ускоряет обучение до 3% в среднем на классификации
 - длина и MLM-loss уменьшают точность модели на 0.6%
 - метрика TPW ускоряет обучение до **2 раз** для достижения 95% итоговой точности на шумном корпусе данных

- Ay, N., Olbrich, E., Bertschinger, N., & Jost, J. (2006, August). A
 unifying framework for complexity measures of finite systems. In
 Proceedings of ECCS (Vol. 6).
- Bengio, Y., Louradour, J., Collobert, R., & Weston, J. (2009, June).
 Curriculum learning. In Proceedings of the 26th annual international conference on machine learning (pp. 41-48).
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
 Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165.
- Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.

- Hacohen, G., & Weinshall, D. (2019, May). On the power of curriculum learning in training deep networks. In International Conference on Machine Learning (pp. 2535-2544). PMLR.
- Kocmi, T., & Bojar, O. (2017). Curriculum learning and minibatch bucketing in neural machine translation. arXiv preprint arXiv:1707.09533.
- Kurdi, M. Z. (2020). Text Complexity Classification Based on Linguistic Information: Application to Intelligent Tutoring of ESL. arXiv preprint arXiv:2001.01863.
- Mermer, M. N., & Amasyali, M. F. (2017). Scalable Curriculum Learning for Artificial Neural Networks. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 13(2).

- Narasimhan, S., Narasimhan, V. A. P. B. S., Karch, G., Rao, R., Huang, J., Zhang, Y., Ginsburg, B., Chitale, P., Sreenivas, S., Mandava, S., Ginsburg, B., Forster, C., Mani, R., & Kersten, K. (2020, October 13). NVIDIA Clocks World's Fastest BERT Training Time and Largest Transformer Based Model, Paving Path For Advanced Conversational Al. NVIDIA Developer Blog. https://developer.nvidia.com/blog/training-bert-with-gpus/
- Platanios, E. A., Stretcu, O., Neubig, G., Poczos, B., & Mitchell, T. M. (2019). Competence-based curriculum learning for neural machine translation. arXiv preprint arXiv:1903.09848.
- Sajjad, H., Dalvi, F., Durrani, N., & Nakov, P. (2020). Poor Man's BERT: Smaller and Faster Transformer Models. arXiv preprint arXiv:2004.03844.

- Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M. W., & Keutzer, K. (2020). Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT. Proceedings of the AAAI Conference on Artificial Intelligence, 34(05), 8815–8821. https://doi.org/10.1609/aaai.v34i05.6409
- van der Sluis, F., & van den Broek, E. L. (2010, August). Using complexity measures in information retrieval. In Proceedings of the third symposium on information interaction in context (pp. 383-388).
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. arXiv preprint arXiv:1706.03762.

- Xu, B., Zhang, L., Mao, Z., Wang, Q., Xie, H., & Zhang, Y. (2020). Curriculum Learning for Natural Language Understanding. Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 6095–6104. https://doi.org/10.18653/v1/2020.acl-main.542
- Zhang, X., Kumar, G., Khayrallah, H., Murray, K., Gwinnup, J., Martindale, M. J., ... & Carpuat, M. (2018). An empirical exploration of curriculum learning for neural machine translation. arXiv preprint arXiv:1811.00739.

Дополнительно: Поиск метрик

метрика	формула
Мультиинформация	$\sum_{v \in V} H_p(X_v) - H_p(X_V)$
Избыточная энтропия (ЕЕ)	$\left[\sum_{v\in V}H(X_{V\setminus\{v\}})\right]-(n-1)H(X_V)$
TSE	$\sum\limits_{k=1}^{n-1}rac{k}{n}C^{(k)}(X_{V})$, где
	$C^{(k)}(X_V) =$
	$rac{n}{k\binom{n}{k}}\sum_{A\subseteq V, A =k}H(X_A)-H(X_V)$
Переходная информация	:(

$$V = \{1, \ldots, n\}, X_V = (X_1, \ldots, X_n)$$

Nihat Ay et al., A **Unifying** Framework for Complexity Measures of Finite Systems, 2006

Дополнительно: Адаптация EE и TSE под задачи обработки языка

Образование совместной случайной величины

$$T=(t_1,t_2,\dots,t_{i-1},t_i,\dots,t_n)$$
 $t_i o \xi_{t_i}^i=:\mu_i$ — бинарная случайная величина $iggle$ $\xi=(\xi_{t_1}^1,\xi_{t_2}^2,\dots,\xi_{t_{i-1}}^{i-1},\xi_{t_i}^i,\dots,\xi_{t_n}^n)$

Вычисление энтропии

$$H(\mu) = \sum_{i=1}^{n} H(\mu_i | \mu_1, \mu_2, \dots, \mu_{i-1}) = \sum_{i=1}^{n} H(\mu_i | \mu_{i-L}, \dots, \mu_{i-1})$$

3 L = 1

$$H(\mu) = H(\mu_1) + H(\mu_2|\mu_1) + \ldots + H(\mu_i|\mu_{i-1}) + \ldots + H(\mu_n|\mu_{n-1})$$

Дополнительно: Вычисление ЕЕ

$$EE(X) = \left[\sum_{v \in V} H(X_{V \setminus \{v\}})\right] - (n-1)H(X_V) =$$

$$\left[\sum_{i=1}^n H(\mu_1, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_n)\right] - (n-1)H(\mu)$$

- $\mathcal{O}(n^2)$
- O(n)

$$\sum_{i=1}^{n} H(\mu_{1}, \dots, \mu_{i-1}, \mu_{i+1}, \dots, \mu_{n}) =$$

$$= \sum_{i=1}^{n} H(\mu) - H(\mu_{i}|\mu_{i-1}) - H(\mu_{i+1}|\mu_{i}) + H(\mu_{i+1})$$

$$EE(X) = \sum_{i=2}^{n} H(\mu_{i}) - H(\mu_{i}|\mu_{i-1}) = \sum_{i=2}^{n} I(\mu_{i-1}: \mu_{i})$$

Дополнительно: Вычисление TSE

$$\sum_{k=1}^{n-1} \frac{k}{n} C^{(k)}(X_V)$$

$$C^{(k)}(X_V) = \frac{n}{k \binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) - H(X_V) =$$

$$= \frac{n}{k} \left[\frac{1}{\binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) \right] - H(X_V)$$

Дополнительно: Вычисление TSE

$$\frac{1}{\binom{n}{k}} \sum_{A \subseteq V, |A| = k} H(X_A) = \frac{1}{\binom{n}{k}} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} H(\mu_{i_1}, \mu_{i_2}, \dots, \mu_{i_k})$$

- **1** $\mathcal{O}^*(2^n)$
- $\mathcal{O}(n^2)$ динамическое программирование
- \circ $\mathcal{O}(n)$

$$\sum_{i=1}^{n} A_{i}H(\mu_{i}) + \sum_{i=2}^{n} B_{i}H(\mu_{i}|\mu_{i-1})$$

$$A_{i} = \begin{cases} \binom{n-2}{k-1} / \binom{n}{k} = \frac{k(n-k)}{n(n-1)}, & i > 1\\ \binom{n-1}{k-1} / \binom{n}{k} = \frac{k}{n}, & i = 1 \end{cases}$$

$$B_{i} = \frac{\binom{n-2}{k-2}}{\binom{n}{k}} = \frac{k(k-1)}{n(n-1)}$$

Результаты. Классификация. HND

Корпус данных: Hyperpartisan News Detection

 $\max \Delta \leq 3k$

Датасет				HND			
семплер	Порог	СВ	DB	Нур	SS	SM	Точность
длина	92.9%	55k	23k	22.5k	-	-	93.7%
TF-IDF	92.9%	∞	19.5k	24k	23.5k	33k	93.5%
TSE	92.9%	56.5k	21k	23k	22k	31k	93.8%
EE	92.9%	71.5k	25.5k	22.5k	19.5k	32.5k	93.8%
max wf rk	92.9%	∞	22k	20.5k	22.5k	39k	93.6%
правд.	92.9%	∞	20k	24k	20k	30k	93.8%
база	92.9%			22k			93.8%