

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

Факультет «Фундаментальные науки»

Кафедра «Математическое моделирование»

РАСЧЕТНО-ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к научно-исследовательской работе на тему:

МЕТОД ВЫБОРА ФУНКЦИИ ЛЯПУНОВА В МОДЕЛЯХ С ДРОБНО-РАЦИОНАЛЬНЫМИ ПРАВЫМИ ЧАСТЯМИ

Студент группы <u>ФН12-81Б</u>	(подпись, дата)	_ М.Д.	Кирдин
Руководитель НИР	(подпись, дата)	<u>Д</u> .А.	$\Phi e muco \epsilon$

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

УТВЕРЖДА	Ю			
Заведующий кафедро	й <u>ФН12</u>			
А.П. Крищенко				
«»	_ 20 г.			

ЗАДАНИЕ

на выполнение научно-исследовательской работы

по теме

«Метод выбора функции Ляпунова в моделях с дробно-рациональными правыми частями»

	4aC17M1//
Студент	Кирдин Матвей Дмитриевич ФН12-81Б
	(Фамилия, Имя, Отчество, Индекс Группы)
Направленность НИР	(учебная, исследовательская, практическая, производственная и др.)
Источник тематики	
График выполнения р	работы: 25% к нед., 50% к нед., 75% к нед., 100% к нед.
Задание	
Офа	ррмление научно-исследовательской работы:
Расчетн	ю-пояснительная записка на листах формата А4.
Перечень графического (иллюстративного) материала
	· · · · · · · · · · · · · · · · · · ·
Да	ата выдачи задания «»20г.
Студент	M/I . $V_{aux} \partial_{aux}$
Студент	$M.$ Д. $Kup \partial u H$
D	
Руководитель НИР	Д.А. Φ emucoв
	(подпись, дата)

Примечание. Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

СОДЕРЖАНИЕ

1.	ПОСТАНОВКА ЗАДАЧИ	4
2.	ОСНОВНАЯ ЧАСТЬ	
CI	ТИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	(

1. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим следующую пятимерную систему с положительными параметрами:

$$\begin{cases} \dot{x}_{1} = r_{1}x_{1} \left(1 - \frac{x_{1}}{c_{1}}\right) - \frac{1}{x_{4} + e_{1}} (\alpha_{1}x_{2} + \alpha_{2}x_{3}) \frac{x_{1}}{x_{1} + k_{1}}, \\ \dot{x}_{2} = r_{2}x_{2} \left(1 - \frac{x_{2}}{c_{2}}\right) + \frac{x_{5}}{k_{4} + x_{5}} a_{1} \frac{1}{x_{4} + e_{2}} - \alpha_{3} \frac{x_{1}}{x_{1} + k_{2}} x_{2}, \\ \dot{x}_{3} = a_{2} \frac{x_{1}}{k_{5} + x_{4}} - \mu_{1}x_{3} - \alpha_{4} \frac{x_{1}}{x_{1} + k_{3}} x_{3}, \\ \dot{x}_{4} = s_{1} + b_{1}x_{1} - \mu_{2}x_{4}, \\ \dot{x}_{5} = b_{2}x_{3} - \mu_{3}x_{5}, \end{cases}$$

$$(1)$$

где $x = (x_1, x_2, x_3, x_4, x_5)$ – неотрицательные переменные, $t \ge 0$ — время. Введем следующие обозначения:

$$\mathbb{R}^{n}_{+,0} = \{ x = (x_1, \dots, x_n) \in \mathbb{R}^n : x_i \ge 0, i = \overline{1, n} \}, \, \mathbb{R}_{+,0} = \{ x \in \mathbb{R} : x \ge 0 \}.$$

Для данной системы найдем положения равновесия при помощи построения функций Ляпунова, а также условия их устойчивости, если таковые имеются.

2. ОСНОВНАЯ ЧАСТЬ

Рассмотрим следующий класс динамических систем:

$$\dot{x}_i = f_i(x), \ x = (x_1, \dots, x_n) \in \mathbb{R}^n_{+,0}, \ i = \overline{1, n},$$

где правые части $f_i(x)$ — некие дробно-рациональные функции (далее ДРФ) вида

$$g(x) = \frac{P(x)}{Q(x)}, \quad l, m \in \mathbb{N} \cap \{0\}.$$

Здесь P(x) и Q(x) — многочлены порядков l и m соответственно с отрицательными действительными корнями.

Теорема 1. Для динамических систем данного вида за функцию Ляпунова для внутреннего положения равновесия $x_0 = (x_{1,0}, \dots, x_{n,0}) \in \mathbb{R}^n_+$ можно принять следующее выражение:

$$V(x) = 2\sum_{i \in \sigma_1} \hat{k}_i (x_i - x_{i,0} - x_{i,0} \ln \frac{x_i}{x_{i,0}}) + \frac{1}{2} \sum_{j \in \sigma_2} \hat{k}_j (x_j - x_{j,0})^2,$$

где σ_1 — множество номеров функций $f_i(x)$ кратных x_i ; σ_2 — множество всех остальных номеров функций $f_j(x)$; \hat{k}_i — положительные параметры.

Производная такой функции в силу системы будет представима в виде квадратичной формы:

$$\dot{V}(x) = (x - x_0)^T H(x)(x - x_0),$$

где H(x) – симметричная функциональная матрица размера $n \times n$, координатными функциями которой являются константы либо рациональные функции.

◄ Обозначим корни $Q_i(x)$ как $(-a_k) \in \mathbb{R}_-, k = \overline{1, m}$, а корни $P_i(x)$ как $(-b_j) \in \mathbb{R}_-, j = \overline{1, l}$. Тогда

$$Q_i(x) = (x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m),$$

$$P_i(x) = (x_{j_1} + b_1) \cdot \dots \cdot (x_{j_l} + b_l).$$

Здесь $j_1, \ldots, j_l, k_1, \ldots, k_m \in \{1, \ldots, n\}$. Заметим, что во внутреннем ПР $x = x_0$ справедливо, что:

$$f_i(x_0) = \frac{P_i(x_0)}{Q_i(x_0)} = 0.$$

На области \mathbb{R}^n_+ для V(x) выполняются следующие условия:

$$V(x) > 0, V(x_0) = 0, x_0 \in D, x \in D \setminus \{x_0\}.$$

Квадратичные слагаемые неотрицательно определены на области \mathbb{R}^n_+ , слагаемые вида

$$x_j - x_{j,0} - x_{j,0} \ln \frac{x_j}{x_{j,0}}$$

также неотрицательны в \mathbb{R}^n_+ . Производная V(x) в силу системы:

$$\dot{V}(x) = \sum_{i \in \sigma_1} \hat{k}_i \left(1 - \frac{x_{i,0}}{x_i} \right) x_i \tilde{f}_i(x) + \sum_{j \in \sigma_2} \hat{k}_j (x_j - x_{j,0}) f_j(x) =$$

$$= \sum_{i \in \sigma_1} \hat{k}_i (x_i - x_{i,0}) \tilde{f}_i(x) + \sum_{j \in \sigma_2} \hat{k}_j (x_j - x_{j,0}) f_j(x).$$

Воспользовавшись методом математической индукции покажем, что ДРФ $f_i(x)$ можно представить как набор произведений разностей Δx_j и неких дробно-рациональных функций.

При l = 0 и m = 1 имеем, что:

$$f_i(x) = f_i(x) - f_i(x_0) = \frac{\Delta x_{k_1}}{(x_{k_1} + a_1)(x_{k_1,0} + a_1)}.$$

При l = 0 и m = 2:

$$f_i(x) = f_i(x) - f_i(x_0) = \frac{1}{(x_{k_1} + a_1)(x_{k_2} + a_2)} - \frac{1}{(x_{k_1,0} + a_1)(x_{k_2,0} + a_2)},$$

$$f_i(x) = -\frac{\Delta x_{k_1}}{(x_{k_1} + a_1)(x_{k_1,0} + a_1)(x_{k_2,0} + a_2)} - \frac{\Delta x_{k_2}}{(x_{k_1} + a_1)(x_{k_2} + a_2)(x_{k_1,0} + a_1)},$$

При $l = 0, m \ge 3$:

$$f_i(x) = \frac{1}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)} - \frac{1}{(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m)}.$$

Тогда приведя дроби к общему знаменателю и совершив в числителе замену $x_{k_j} = \Delta x_{k_j} + x_{k_j,0}$ получим:

$$f_{i}(x) = -\frac{\Delta x_{k_{1}}(x_{k_{2},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})} - \frac{\Delta x_{k_{1}} \Delta x_{k_{2}}(x_{k_{3},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})} - \dots - \frac{\Delta x_{k_{1}} \cdot \dots \cdot \Delta x_{k_{m-1}}(x_{k_{m},0} + a_{m})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})} - \frac{\Delta x_{k_{1}} \cdot \dots \cdot \Delta x_{k_{m}}}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})}.$$

Вынося поочередно множители Δx_{k_i} из слагаемых, содержащих их, получим:

$$f_{i}(x) = -\Delta x_{k_{m}} \frac{(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m-1},0} + a_{m-1})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})} - \Delta x_{k_{m-1}} \frac{(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m-2},0} + a_{m-2})(\Delta x_{k_{m}} + x_{k_{m},0} + a_{m})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})} - \dots - \Delta x_{k_{1}} \frac{\Delta x_{k_{2}} \cdot \dots \cdot \Delta x_{k_{m}} + \dots + (x_{k_{2},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})}{(x_{k_{1}} + a_{1}) \cdot \dots \cdot (x_{k_{m}} + a_{m})(x_{k_{1},0} + a_{1}) \cdot \dots \cdot (x_{k_{m},0} + a_{m})}.$$

Заметим, что каждое слагаемое начиная со третьего является произведением дроби

$$\frac{\Delta x_{k_j}}{(x_{k_j} + a_j)(x_{k_j,0} + a_j)}$$

и одного из предыдущих шагов индукции вплоть до шага l=0, m=m-1. Таким образом,

$$f_i(x) = -\frac{\Delta x_{k_m}}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)(x_{k_m,0} + a_m)} - \dots$$
$$\dots - \frac{\Delta x_{k_1}}{(x_{k_1} + a_1)(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m)}.$$

При $l = 1, m \in \{2, ..., n\}$:

$$f_i(x) = \frac{(x_{j_1} + b_1)}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)} - \frac{(x_{j_1,0} + b_1)}{(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m)}.$$

Совершив в числителе первого слагаемого замену $x_{j_1} = \Delta x_{j_1} + x_{j_1,0}$ и раскрыв скобки можно получить следующую сумму:

$$f_i(x) = \frac{\Delta x_{j_1}}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)} + b_1 \frac{(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m) - (x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m)}.$$

Здесь второе слагаемое соответствует случаю, когда l=0 и $m \in \mathbb{N}/\{1\}$, из чего предположение индукции работает также и в этом случае.

Рассмотрим случай, где l > 1 и $m \in \mathbb{N}/\{1\}$.

$$f_i(x) = \frac{(x_{j_1} + b_1) \cdot \dots \cdot (x_{j_l} + b_l)}{(x_{k_1} + a_1) \cdot \dots \cdot (x_{k_m} + a_m)} - \frac{(x_{j_1,0} + b_1) \cdot \dots \cdot (x_{j_l,0} + b_l)}{(x_{k_1,0} + a_1) \cdot \dots \cdot (x_{k_m,0} + a_m)}.$$

Если разложить произвольное слагаемое в числителе первой дроби как $x_{j_p} = \Delta x_{j_p} + x_{j_p,0}, p \in \{1,\ldots,l\}$, то выражение преобразуется в сумму некой ДРФ и произведения разности Δx_{j_p} и некоторой другой ДРФ. При этом заметим, что первое слагаемое будет соответствовать предыдущему шагу индукции, т.е. также может быть приведено к виду произведения разности и ДРФ.

Таким образом, каждая функция $f_i(x)$ может быть представлена как

$$f_i(x) = \sum_{p \in \hat{\sigma}_i} (x_p - x_{p,0}) \tilde{h}_p(x),$$

где $\tilde{h}_j(x)$ — некие ДРФ или линейные функции, $\hat{\sigma}_i$ — множество всех номеров $x_p, p \in \{1, \ldots, n\}$, входящих в $f_i(x)$. Тогда производная V(x) в силу системы примет вид:

$$\dot{V}(x) = \sum_{i \in \sigma_1} \hat{k}_i(x_i - x_{i,0}) \sum_{p \in \hat{\sigma}_i} (x_p - x_{p,0}) \tilde{h}_p(x) + \sum_{j \in \sigma_2} \hat{k}_j(x_j - x_{j,0}) \sum_{q \in \hat{\sigma}_j} (x_q - x_{q,0}) \tilde{h}_q(x).$$

Сложив все слагаемые с повторяющимися множителями $(x_i - x_{i,0})(x_j - x_{j,0})$ и положив равными нулю коэффициенты при множителях отсутствующих в сумме, получим квадратичную форму с симметричной функциональной матрицей H:

$$\dot{V}(x) = (x - x_0)^T H(x - x_0).$$

Теорема 2. Система (1) при положительных значениях параметров на границе множества D имеет положения равновесия $P_1\left(0,\,0,\,0,\,\frac{s_1}{\mu_2}\right)$ и $P_2\left(0,\,c_2,\,0,\,\frac{s_1}{\mu_2}\right)$.

•

Теорема 3. Система (1) при значениях параметров, данных в [1], имеет внутреннее положение равновесия

$$P_3$$
 (875419.1750, 943091.7442, 151.6805, 9135.6470, 0.1517).

Теорема 4. Положение равновесия P_3 является асимптотически устойчивым.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. S. Banerjee, S. Khajanchi and S. Chaudhury, PLoS ONE 10(5), e0123611 (2015).