Toeplitz Operators and Bergman Spaces

Polymath Jr

2024

- $L^2(\mathbb{D}, dA)$: space of square-integrable functions on \mathbb{D}
- L_a^2 : closed subspace of analytic functions in $L^2(\mathbb{D}, dA)$
- $P: L^2(\mathbb{D}, dA) \to L^2_a$: orthogonal projection operator
- $T_u: L_a^2 \to L_a^2$: Toeplitz operator with symbol u. $T_u(f) = P(uf)$
- $K_z \in L_a^2$: Bergman reproducing kernel. $f(z) = \langle f, K_z \rangle$
- $k_z \in L^2_a$: normalized Bergman reproducing kernel. $k_z = K_z/\|K_z\|_2$
- $\tilde{S}: \mathbb{D} \to \mathbb{C}$: Berezin transform of S. $\tilde{S}(z) = \langle Sk_z, k_z \rangle$.
- $\varphi_z: \mathbb{D} \to \mathbb{D}$: automorphism of unit disk. $\varphi_z(w) = (z-w)/(1-\overline{z}w)$
- $U_z: L_a^2 \to L_a^2$: $U_z f = (f \circ \varphi_z) \varphi_z'$
- $S_z: L_a^2 \to L_a^2$: $S_z = U_z S U_z$
- $H_u: L_a^2 \to (L_a^2)^{\perp}$: Hankel operator with symbol u. $H_u(f) = (I P)(uf)$

Theorem by Axler, Zheng^[1]

Suppose S is a finite sum of finite products of Toeplitz operators. Then the following are equivalent:

- $lacksquare S_z 1 o 0$ weakly in L^2_a as $z o \partial \mathbb{D}$

Axler, Sheldon, and Dechao Zheng. "Compact Operators via the Berezin Transform." Indiana University Mathematics Journal, vol. 47, no. 2, 1998, pp. 387–400. JSTOR, http://www.jstor.org/stable/24899675. Accessed 30 July 2024.

We define $U_z:A^2(\mathbb{D})\to A^2(\mathbb{D})$ as follows: $U_zf=(f\circ\varphi_z)\varphi_z'$

Fact

 U_z is unitary: $\langle U_z f, U_z f \rangle = \langle f, f \rangle$ for all $f \in A^2(\mathbb{D})$.

Proof.

$$\langle U_z f, U_z f \rangle = \int_{\mathbb{D}} |(U_z f)(w)|^2 dA(w) = \int_{\mathbb{D}} |(f \circ \varphi_z)(w)|^2 |\varphi_z'(w)|^2 dA(w)$$

Let $\lambda = \varphi_z(w)$. Then $dA(\lambda) = |\varphi_z'(w)|^2 dA(w)$ so that

$$\int_{\mathbb{D}} |(f \circ \varphi_z)(w)|^2 |\varphi_z'(w)|^2 dA(w) = \int_{\mathbb{D}} |f(\lambda)|^2 dA(\lambda) = \langle f, f \rangle$$

Fact

 $H^*_{\overline{f}}H_g=T_{fg}-T_fT_g$ for any symbols $f,g\in L^\infty(\mathbb{D},dA)$.

Proof.

First, we compute what $H_{\overline{f}}^*$ is. Let $a \in (L_a^2)^{\perp}$ and $b \in L_a^2$. Then,

$$\langle H_{\overline{f}}^*a,b\rangle=\langle a,H_{\overline{f}}b\rangle=\langle a,(I-P)(\overline{f}\,b)\rangle=\langle a,\overline{f}\,b-P(\overline{f}\,b)\rangle$$

$$=\langle a,\overline{f}\,b\rangle-\langle a,P(\overline{f}\,b)\rangle=\langle fa,b\rangle-\langle Pa,\overline{f}\,b\rangle=\langle fa,b\rangle$$

Thus we deduce that $H_{\overline{f}}^*a=fa$. Now, we let $b\in L_a^2$. We obtain

$$H_{\overline{f}}^*H_g(b) = P(H_{\overline{f}}^*H_g(b)) = P(H_{\overline{f}}^*(gb - P(gb)))$$

$$=P(fgb-fP(gb))=P(fgb)-P(fP(gb))=T_{fg}(b)-T_{f}T_{g}(b)$$

thus proving that

$$H_{\overline{f}}^* H_g = T_{fg} - T_f T_g$$

Lemma

Let $S:L^2_a o L^2_a$ be a bounded operator. Then, $\widetilde{S}\circ \varphi_z=\widetilde{S_z}$

Proof.

First,

$$\tilde{S} \circ \varphi_z(w) = \tilde{S}(\varphi_z(w)) = \langle Sk_{\varphi_z(w)}, k_{\varphi_z(w)} \rangle$$

and

$$\widetilde{S_z}(w) = \langle S_z k_w, k_w \rangle = \langle U_z S U_z k_w, k_w \rangle = \langle S U_z k_w, U_z k_w \rangle$$

Note that

$$U_z k_w = (k_w \circ \varphi_z) \varphi_z'$$

I appeal to the following formula^[2]:

$$K_U(z,\overline{\zeta}) = \det Df(z)\overline{\det Df(\zeta)}K_V(f(z),\overline{f(\zeta)})$$

Proof.

Take
$$U=V=\mathbb{D}$$
, $f=\varphi_z$, $z=w$ and $\zeta=\varphi_z(v)$. Then

$$K_{\mathbb{D}}(w, \overline{\varphi_z(v)}) = \det D\varphi_z(w) \overline{\det D\varphi_z(\varphi_z(v))} K_{\mathbb{D}}(\varphi_z(w), \overline{v})$$

I compute

$$K_{\mathbb{D}}(w, \overline{\varphi_{z}(v)}) = \overline{K_{w}(\varphi_{z}(v))} = \frac{\overline{k_{w}(\varphi_{z}(v))}}{1 - |w|^{2}}$$

$$K_{\mathbb{D}}(\varphi_{z}(w), \overline{v}) = \overline{K_{\varphi_{z}(w)}(v)} = \frac{\overline{k_{\varphi_{z}(w)}(v)}}{1 - |\varphi_{z}(w)|^{2}}$$

$$\det D\varphi_{z}(w) = \varphi'_{z}(w) = \frac{|z|^{2} - 1}{(1 - \overline{z}w)^{2}}$$

$$\overline{\det D\varphi_{z}(\varphi_{z}(v))} = \overline{\varphi'_{z}(\varphi_{z}(v))} = \frac{\overline{1}}{\varphi'_{z}(v)}$$

Proof.

Putting it all together yields

$$\frac{\overline{k_w(\varphi_z(v))}}{1-|w|^2} = \frac{|z|^2-1}{(1-\overline{z}w)^2} \cdot \frac{\overline{1}}{\varphi_z'(v)} \cdot \frac{\overline{k_{\varphi_z(w)}(v)}}{1-|\varphi_z(w)|^2}$$

which simplifies to

$$k_w(\varphi_z(v))\varphi_z'(v) = k_{\varphi_z(w)}(v) \cdot -\frac{|1-z\overline{w}|^2}{(1-z\overline{w})^2}$$

With this formula, it can be shown that

$$\widetilde{S_z}(w) = \langle SU_z k_w, U_z k_w \rangle = \langle Sk_{\varphi_z(w)}, k_{\varphi_z(w)} \rangle = \widetilde{S}(\varphi_z(w))$$

Fact

 ϕ vanishes on $\partial \mathbb{D} \implies T_{\phi}$ is compact.

Is this true on exponentially weighted spaces? Let $\lambda(z)=\exp(-1/(1-|z|^2))$ and $\phi(z)=1-|z|^2$. To show that $T_\phi: L^2_a(\mathbb{D},\lambda) \to L^2_a(\mathbb{D},\lambda)$ is not compact, it suffices to find a bounded sequence $\{f_n\}$ such that $\{T_\phi(f_n)\}$ does not contain a convergent subsequence.

Let
$$f_n(z) = 1/(1-z^n)$$
. Then

$$||f_1|| \approx 0.468 \quad ||f_2|| \approx 0.412 \quad ||f_3|| \approx 0.396$$

$$||f_4|| \approx 0.391 \quad ||f_5|| \approx 0.388$$

Thus $\{f_n\}$ is bounded. Furthermore,

$$||f_1\phi|| \approx 0.331$$
 $||f_2\phi|| \approx 0.302$ $||f_3\phi|| \approx 0.296$ $||f_4\phi|| \approx 0.294$ $||f_5\phi|| \approx 0.294$

Note that

$$||T_{\phi}f_{n}|| = ||P(\phi f_{n})|| \le ||\phi f_{n}|| \le ||f_{n}||$$

so $\{T_{\phi}(f_n)\}$ is also bounded.