Question 1.

Algorithm	Algorithm_	_one()
-----------	------------	--------

Output: the max difference between two integ	gers
--	------

Ints ← new Array[1000]	2
n ← ints.length	2

count
$$\leftarrow 0$$
 1

for i←0 to n do
$$n+2$$

Ints[i]← Math.Random $2(n+1)$

$$\begin{array}{ll} \text{if ints[i]}\%2\text{=}0\text{ then} & \textbf{2(n+1)} \\ & \text{increment count} & \textbf{2(n+1)} \end{array}$$

$$j \leftarrow 0$$
 1

for i
$$\leftarrow$$
 0 to n do n + 1

if ints[i]
$$%2 = 0$$
 then $2(n + 1)$

evenNumbers[j]
$$\leftarrow$$
 ints[i] 2(n + 1)

for
$$i \leftarrow 0$$
 to n do $n+2$

for
$$j \leftarrow 0$$
 to n do $n^2 + 2$

k←eventNumber[i] - eventNumber[j]
$$(n^2 + 2)*4$$

if k>max $(n^2 + 2)*4$

$$max \leftarrow k$$
 $(n^2 + 2)*4$

 $13n^2 + 15n + 55 \rightarrow O(n^2)$

Algorithm Algorithm_Two ()

Output: the max difference between two integers

We have a helper static method RandomNumber to generate a Random Number and return an Array with the Randomly generated numbers.

Ints ← new Array[1000]	2
ints← RandomNumber	n
n← ints.length	2
max← 0;	1
for i \leftarrow 0 to n-1 do if ints[i]%2=0 then for j \leftarrow i to n-1 do if ints[j]%2=0 then $k i \leftarrow ints[i] - ints[j]$ if max $<$ k then $max \leftarrow k$	n + 1 2(n) 2(n²) 2(n²-1) 2(n²-1) 2(n²-1) 2(n²-1)
Return max	1
	10n ² + 4n – 1 O(n²)

Algorithm Algorithm_Three ()

Output: the max difference between two integers

We have a helper static method RandomNumber to generate a Random Number and return an Array with the Randomly generated numbers. And assuming the min a number can be is -1000 and max a number can be is 1000.

ints ← new Array[1000]	2
ints← RandomNumber	n
n← ints.length	2
max ← -1000	1
min ← 1000	1
<pre>for i←0 to n-1 do if ints[i] %2=0 then if max < ints[i] then max ← ints[i] if min > ints[i] then</pre>	n + 2 2n 2n 2n 2n 2n
min← ints[i] Return max-min	2n 1
_	12n + 9 → O(n)

Question 2.

10,1	Θ(1)
$\log n$	$\Theta \log n$
$(\log n)^2$	$\Theta(\log n)^2$
In	Θ(ln)
n ^{1/k} k>3	$\Theta(n^{1/3})$ k>3
n ^{1/3}	Θ n ^{1/3}
n ^{1/2}	Θ n ^{1/2}
$n^{1/3}logn$	Θ n ^{1/3} $\log n$
$n^{1/2}\log n$	Θ n ^{1/2} $\log n$
nlogn	Θ n $\log n$
$\log n^{n}$	$\Theta \log n^{n}$
n ²	Θn ²
n ³	Θn³
n ^k k>3	Θn ^k k>3
2 ⁿ	Θ2 ⁿ
3 ⁿ	Θ3 ⁿ
n!	On!
n ⁿ	Θn ⁿ