Module 1: The Nature of Fluids/Pressure Measurement (CIVL 318)

Some useful results:

Pressure:	Р	=	$\frac{F}{A}$	$\left(\frac{Force}{Area}\right)$	
Pascal's Laws:	Pressure acts uniformly in all directions on a small volume of liquid.				
	Pressure acts perpendicularly to the solid boundaries of a fluid.				
Density:	ho (rho)	=	$\frac{m}{V}$	$\left(\frac{Mass}{Volume}\right)$	
Specific Weight:	γ (gamma)	=	$\frac{w}{V}$	$\left(\frac{Weight}{Volume}\right)$	
Specific Gravity:	sg	=	$\frac{ ho_s}{ ho_w$ @ 4°C =	$\frac{\gamma_s}{\gamma_w$ @4°C	
Density & Specific Weight:	γ	=	hog		
Pressure Relationship:	p_{abs}	=	$p_{atm} + p_{gauge}$		
Pressure-Elevation Relationship:	Δp	=	γh		

Table A: Properties of Water

Table B: Properties of Common Liquids (at 101 kPa and 25°C)

Temperature	Specific Weight	Density	Dynamic Viscosity	
	γ	ho	η	
(°C)	$(\mathrm{kN/m}^3)$	(kg/m^3)	(Pa·s)	
0	9.81	1000	1.75×10^{-3}	
5	9.81	1000	1.52×10^{-3}	
10	9.81	1000	1.30×10^{-3}	
15	9.81	1000	1.15×10^{-3}	
20	9.79	998	1.02×10^{-3}	
25	9.78	997	8.91×10^{-4}	
30	9.77	996	9.00×10^{-4}	
35	9.75	994	7.18×10^{-4}	
40	9.73	992	6.51×10^{-4}	
45	9.71	990	5.94×10^{-4}	
50	9.69	988	5.41×10^{-4}	
55	9.67	986	4.98×10^{-4}	
60	9.65	984	4.60×10^{-4}	
65	9.62	981	4.31×10^{-4}	
70	9.59	978	4.02×10^{-4}	
75	9.56	975	3.73×10^{-4}	
80	9.53	971	3.50×10^{-4}	
85	9.50	968	3.30×10^{-4}	
90	9.47	965	3.11×10^{-4}	
95	9.44	962	2.92×10^{-4}	
100	9.40	958	2.82×10^{-4}	

(at 101 M a and 20 C)								
Liquid	Specific Gravity	Specific Weight	Density	Dynamic Viscosity				
		γ	ho	η				
		$(\mathrm{kN/m}^3)$	$({\rm kg/m}^3)$	(Pa⋅s)				
Acetone	0.787	7.72	787	3.16×10^{-4}				
Alcohol, Ethyl	0.787	7.72	787	1.00×10^{-3}				
Alcohol, Methyl	0.789	7.74	789	5.60×10^{-4}				
Alcohol, Propyl	0.802	7.87	802	1.92×10^{-3}				
Benzene	0.876	8.59	876	6.03×10^{-4}				
Carbon Tetrachloride	1.590	15.60	1590	9.10×10^{-4}				
Castor Oil	0.960	9.42	960	6.51×10^{-1}				
Ethylene Glycol	1.100	10.79	1100	1.62×10^{-2}				
Gasoline	0.68	6.67	680	2.87×10^{-4}				
Glycerine	1.258	12.34	1258	9.60×10^{-1}				
Kerosene	0.823	8.07	823	1.64×10^{-3}				
Linseed Oil	0.930	9.12	930	3.31×10^{-2}				
Mercury	13.54	132.8	13540	1.53×10^{-3}				
Propane	0.495	4.86	495	1.10×10^{-4}				
Seawater	1.030	10.10	1030	1.03×10^{-3}				
Turpentine	0.870	8.53	870	1.37×10^{-3}				
Fuel Oil, medium	0.852	8.36	852	2.99×10^{-3}				
Fuel Oil, heavy	0.906	8.89	906	1.07×10^{-1}				

Example 1:

A piston confines oil in a closed circular cylinder. The maximum operating pressure for the piston is 17.8 MPa. The piston has a diameter of 62.5 mm. What is the maximum load that the piston can support?

Exercise 1:

A press used to produce coins requires a force of $8.20\ \mbox{kN}.$

The hydraulic cylinder has a diameter of 63.5 mm.

What is the oil pressure needed to generate this force?

Solution:

Example 2: Solution: An empty barrel with an inside diameter of 900 mm weighs 205 N. What does the barrel weigh when it is filled to a depth of 750 mm with water at 25°C?

Example 3: Solution:

Calculate the density and the specific weight of benzene if it has a specific gravity of 0.876.

Example 5:

An open cylindrical tank with diameter $5.75~\mathrm{m}$ and depth $3.30~\mathrm{m}$ is filled to the top with water at $10^{\circ}\mathrm{C}$. The water is heated to $55^{\circ}\mathrm{C}$. Assuming that the tank dimensions remain constant and there are no losses due to evaporation, calculate the mass of water that overflows.

Example 6:

A tank, open to the atmosphere in the centre, contains medium fuel oil. Atmospheric pressure is 102.1 kPa. Calculate the gauge pressure and the absolute pressure for locations A, B, C, D and E.

Example 7:

Determine the pressure at A given that the temperature of the water is 25°C .

Example 8:

Find the pressure difference between \boldsymbol{A} and \boldsymbol{B}

Solution: