hapter 4

Graph the function. Label the vertex and axis of symmetry. 1-4. See margin.

1.
$$y = 3x^2 + 5$$

2.
$$y = -x^2 - 4x - 4$$

3.
$$y = -2x^2 + 4x + 1$$

4.
$$y = 2x^2 + 5x + 6$$

graph the function. Label the vertex and axis of symmetry. 5-8. See margin.

5.
$$y = 4(x-2)^2 + 1$$

6.
$$y = -(x+3)^2 - 2$$

7.
$$y = 3(x-1)(x-5)$$

7.
$$y = 3(x-1)(x-5)$$
 8. $y = \frac{1}{2}(x+3)(x+2)$

12 Write the quadratic function in standard form.

9.
$$y = 7(x + 2)(x + 4)$$

 $y = 7x^2 + 42x + 56$

10.
$$y = 2(x)$$

9.
$$y = 7(x+2)(x+4)$$
 10. $y = 2(x+5)(x-3)$ **11.** $y = (x-7)^2 + 7$

12.
$$y = -(x+1)^2 - 4$$

 $y = -x^2 - 2x - 5$

 $y=2x^2+4x-30$ 3 Factor the expression. If the expression cannot be factored, say so.

13.
$$x^2 - 4x + 4 (x - 2)^2$$
 14. $t^2 - 11t - 26$

15.
$$x^2 + 21x + 108$$

(x + 9)(x + 12)

16.
$$b^2 - 400$$

($b - 20$)($b + 20$)

3 Solve the equation.

17.
$$x^2 + 5x - 14 = 0$$

-7. 2

18.
$$x^2 - 11x + 24 = 0$$
 3.8

19.
$$c^2 + 6c = 55$$

20.
$$n^2 = 5n$$

[A Factor the expression. If the expression cannot be factored, say so.

21.
$$2x^2 + r - 15$$

22.
$$10a^2 - 19a + 7$$

 $(5a - 7)(2a - 1)$

23.
$$3r^2 + 9r - 4$$
 not factorable

24.
$$4t^2 + 8t + 3$$

 $(2t+1)(2t+3)$

[4] Find the zeros of the function by rewriting the function in intercept form.

25.
$$y = 81x^2 - 16 - \frac{4}{9}, \frac{4}{9}$$
 26. $y = 2x^2 - 9x - \frac{5}{2}$

$$27. \ \ y = 4x^2 + 18x + 18$$

27.
$$y = 4x^2 + 18x + 18$$
 28. $y = -3x^2 - 30x - 27$

15 Simplify the expression.

29.
$$\sqrt{56}$$
 2 $\sqrt{14}$

30.
$$3\sqrt{2} \cdot \sqrt{50}$$
 30

31.
$$\sqrt{\frac{4}{7}}$$
 $2\sqrt{7}$

31.
$$\sqrt{\frac{4}{7}}$$
 2. $\sqrt{\frac{6}{1+\sqrt{2}}}$ -6 + 6 $\sqrt{2}$

5 Solve the equation.

33.
$$b^2 = 8 \pm 2\sqrt{2}$$

34.
$$p^2 + 6 = 127$$
 :

35.
$$(x-5)^2 = 10$$

36.
$$3(x+2)^2-4=11$$

16 Write the expression as a complex number in standard form.

37.
$$(5+2i)+(6-5i)$$

37.
$$(5+2i)+(6-5i)$$
 38. $-3i(7+i)$ 3 - 21i

39.
$$\frac{1+2i}{3-8i}$$
 $-\frac{13}{73}+\frac{14}{73}i$

40.
$$\frac{(3-2i)+2i}{(-1+7i)-(2+3i)} - \frac{9}{25} - \frac{12}{25}i$$

7 Solve the equation by completing the square.

41.
$$x^2 + 6x - 10$$

49. $x^2 - 10x \ge 0$

42.
$$x^2 - 9x - 2 = 0$$
 $\frac{9}{2} \pm \frac{\sqrt{89}}{2}$ **43.** $2c^2 - 12c + 6 = 0$ $3 \pm \sqrt{6}$

44.
$$3z^2 - 3z + 9 = 0$$
 $\frac{1}{2} \pm \frac{\sqrt{11}}{2}i$

 $\frac{18}{18}$ Use the quadratic formula to solve the equation.

$$45. x^2 + 10x - 10 = 0$$

 $x \le 0$ or $x \ge 10$

45.
$$x^2 + 10x - 10 = 0$$
 46. $x^2 - x - 1 = 0$

47.
$$4s^2 + 3s = 12$$

 $-\frac{3}{2} + \frac{\sqrt{201}}{2}$

48.
$$-2r^2 = r + 17$$

 $-\frac{1}{4} \pm \frac{3\sqrt{15}}{4}i$

19 Solve the inequality using any method. $\overline{2}$

ng any method.² 2
50.
$$x^2 - 8x + 12 < 0$$
 51. $-x^2$

2 < x < 6

51.
$$-x^2 + 7x + 6 > 1$$

-0.653 < $x < 7.65$

52.
$$3x^2 + 16x + 2 \le 3x$$

 $-4.17 \le x \le -0.160$

Write a quadratic function in standard form for the parabola that passes through the given points.

53.
$$(-1, -6), (0, -7), (2, 9)$$

 $y = 3x^2 + 2x - 7$

3.
$$(-1, -6), (0, -7), (2, 9)$$

 $y = 3x^2 + 2x - 7$

$$y = -x^2 + 3$$

$$y = -2x^2 - 6x + 36$$

Extra Practice 1013

EXTRA PRACTICE

