INTELIGENŢĂ ARTIFICIALĂ

Sisteme inteligente

Sisteme care învață singure

- kNN si programare genetică -

Laura Dioşan

Sumar

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - □ Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învaţă singure
 - Arbori de decizie
 - Rețele neuronale artificiale
 - kNN
 - Algoritmi evolutivi
 - Maşini cu suport vectorial
 - Sisteme bazate pe reguli
 - Sisteme hibride

Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997
- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Sisteme inteligente

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - kNN
 - Arbori de decizie
 - Modele Markov ascunse

Materiale de citit și legături utile

- capitolul VI (18) din S. Russell, P. Norvig, Artificial Intelligence: A Modern Approach, Prentice Hall, 1995
- capitolul 10 și 11 din *C. Groșan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011*
- capitolul V din D. J. C. MacKey, Information Theory, Inference and Learning Algorithms, Cambridge University Press, 2003
- capitolul 3 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

Sisteme inteligente – SIS – Învățare automată

Tipologie

- În funcție de experiența acumulată în timpul învățării:
 - SI cu învăţare supervizată
 - SI cu învăţare nesupervizată
 - SI cu învăţare activă
 - SI cu învăţare cu întărire
- În funcție de modelul învățat (algoritmul de învățare):
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial (MSV)
 - Algoritmi evolutivi
 - Modele Markov ascunse

- Maşini cu suport vectorial (MSV)
 - Definire
 - Tipuri de probleme rezolvabile
 - Avantaje
 - Dificultăţi
 - Tool-uri

Definire

- Dezvoltate de Vapnik în 1970
- Popularizate după 1992
- Clasificatori liniari care identifică un hiperplan de separare a clasei pozitive de clasa negativă
- Au o fundamentare teoretică foarte riguroasă
- Funcţionează foarte bine pentru date de volum mare (analiza textelor, analiza imaginilor)

Reamintim

- Problemă de învăţare supervizată în care avem un set de date de forma:
 - (x^d, t^d), cu:
 - $X^{d} \in \mathbb{R}^{m} \rightarrow X^{d} = (X^{d}_{1}, X^{d}_{2}, ..., X^{d}_{m})$
 - $t^d \in \mathbf{R} \rightarrow t^d \in \{1, -1\}, 1 \rightarrow \text{clasă pozitivă}, -1 \rightarrow \text{clasă negativă}$
 - cu d = 1,2,...,n,n+1,n+2,...,N
- Primele n date (se cunosc x^d şi t^d) vor fi folosite drept bază de antrenament a MSV
- Ultimele N-n date (se cunosc doar x^d, fără t^d) vor fi folosite drept bază de testare a MSV

Definire

■ MSV găseşte o funcție liniară de forma $f(\mathbf{x}) = \langle \mathbf{w} \cdot \mathbf{x} \rangle + b$, $(\mathbf{w} - \text{vector pondere})$ a.î.

$$y_i = \begin{cases} 1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b \ge 0 \\ -1 & if \langle \mathbf{w} \cdot \mathbf{x}_i \rangle + b < 0 \end{cases}$$

■ $\langle \mathbf{w} \cdot \mathbf{x} \rangle + b = 0$ → hiperplanul de decizie care separă cele 2 clase

Definire

- Pot exista mai multe hiperplane
 - Care este cel mai bun hiperplan?
- MSV caută hiperplanul cu cea mai largă margine (cel care micşorează eroarea de generalizare)
 - Algoritmul SMO (Sequential minimal optimization)

- □ Tipuri de probleme rezolvabile
 - Probleme de clasificare → Cazuri de date
 - Liniar separabile
 - Separabile
 - Eroarea = 0

- Ne-separabile
 - Se relaxează constrângerile → se permit unele erori
 - C coeficient de penalizare

Cazuri de date

- Non-liniar separabile
 - Spaţiul de intrare se transformă într-un spaţiu cu mai multe dimensiuni (feature space), cu ajutorul unei funcţii kernel, unde datele devin liniar separabile

- Kernele posibile
 - Clasice
 - Polynomial kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = (\langle \mathbf{x}_1, \mathbf{x}_2 \rangle + 1)^d$
 - RBF kernel: $K(\mathbf{x}_1, \mathbf{x}_2) = \exp(-\sigma |\mathbf{x}_1 \mathbf{x}_2|^2)$
 - Kernele multiple
 - Liniare: $K(\mathbf{x}_1, \mathbf{x}_2) = \sum w_i K_i$
 - Ne-liniare
 - Fără coeficienți: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + K_2 * \exp(K_3)$
 - Cu coeficienţi: $K(\mathbf{x}_1, \mathbf{x}_2) = K_1 + c_1 * K_2 * exp(c_2 + K_3)$

Configurarea MSV

- Parametrii unei MSV
 - Coeficientul de penalizare C
 - C mic → convergenţă lentă
 - C mare → convergenţă rapidă
 - Parametrii funcţiei kernel (care kernel şi cu ce parametri)
 - Dacă m (nr de atribute) este mult mai mare decât n (nr de instanţe)
 - MSV cu kernel liniar (MSV fără kernel) \rightarrow K(\mathbf{x}^{d1} , \mathbf{x}^{d2}) = \mathbf{x}^{d1} , \mathbf{x}^{d2}
 - Dacă m (nr de atribute) este mare, iar n (nr de instanţe) este mediu
 - MSV cu kernel Gaussian $K(\mathbf{x}^{d1}, \mathbf{x}^{d2}) = \exp(-||\mathbf{x}^{d1} \mathbf{x}^{d2}||^2/2\sigma^2)$
 - σ dispersia datelor de antrenament
 - Atributele instanţelor trebuie normalizate (scalate la (0,1))
 - m (nr de atribute) este mic, iar n (nr de instanţe) este mare
 - Se adaugă noi atribute, iar apoi
 - MSV cu kernel liniar

- MSV pentru probleme de clasificare supervizate cu mai mult de 2 clase
 - Una vs. restul (one vs. all)

- MSV structurate
 - Învăţare automată
 - □ Normală $f: \mathcal{X} \rightarrow \mathbb{R}$
 - Intrări de orice fel
 - Ieşiri numerice (naturale, întregi, reale)
 - □ Structurată: X → y
 - Intrări de orice fel
 - Ieşiri de orice fel (simple sau structurate)
 - Informaţii structurate
 - Texte şi hiper-texte
 - Molecule şi structuri moleculare
 - Imagini

MSV structurate

- Aplicaţii
 - Procesarea limbajului natural
 - Traduceri automate (ieşiri → propoziţii)
 - Analiza sintactică şi/sau morfologică a propoziţiilor (ieşiri → arborele sintactic şi/sau morfologic)
 - Bioinformatică
 - Predicţia unor structuri secundare (ieşirile → grafe bi-partite)
 - Predicţia funcţionării unor enzime (ieşirile → path-uri în arbori)
 - Procesarea vorbirii
 - Transcrieri automate (ieşiri → propoziţii)
 - Transformarea textelor în voce (ieşiri → semnale audio)
 - Robotică
 - Planificare (ieşirile → secvenţe de acţiuni)

Avantaje

- Pot lucra cu orice fel de date (liniar separabile sau nu, distribuit uniform sau nu, cu distribuție cunoscută sau nu)
 - □ Funcţiile kernel care crează noi atribute (features) → straturile ascunse dintr-o RNA
- Dacă problema e convexă oferă o soluţie unică → optimul global
 - RNA pot asocia mai multe soluţii → optime locale
- Selectează automat mărimea modelului învăţat (prin vectorii suport)
 - În RNA straturile ascunse trebuie configurate de către utilizator apriori
- Nu învaţă pe derost datele (overfitting)
 - RNA se confruntă cu problema overfitting-ului chiar şi cand modelul se învaţă prin validare încrucişată

Dificultăți

- Doar atribute reale
- Doar clasificare binară
- Background matematic dificil

Tool-uri

- LibSVM → http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- Weka → SMO
- SVMLight → http://svmlight.joachims.org/
- SVMTorch → http://www.torch.ch/
- http://www.support-vector-machines.org/

Sisteme inteligente – SIS – Învățare automată

- Programare genetică
 - Definire
 - Proiectare
 - Avantaje
 - Limite
 - Versiuni

Reamintim

- □ Învăţare supervizată → problemă de regresie (Studiul legăturii între variabile)
 - Se dă un set de n date (exemple, instanţe, cazuri)
 - date de antrenament sub forma unor perechi (atribute_datai, ieşirei), unde
 - i = 1, n (n = nr datelor de antrenament)
 - atribute_data_i= (atr_{i1}, atr_{i2}, ..., atr_{im}), m nr atributelor (caracteristicilor, proprietăţilor) unei date
 - ieşire, un număr real
 - date de test
 - sub forma ($atribute_data_i$), i = n+1, N (N-n = nr datelor de test)
 - Să se determine
 - o funcție (necunoscută) care realizează corespondența atribute ieșire pe datele de antrenament
 - Ieşirea (valoarea) asociată unei date (noi) de test folosind funcția învățată pe datele de antrenament
- Cum găsim forma (expresia) funcţiei?
 - Algoritmi evolutivi → Programare genetică

Reamintim

- Algoritmi evolutivi
 - Inspiraţi din natură (biologie)
 - Iterativi
 - Bazaţi pe
 - populații de potențiale soluții
 - căutare aleatoare ghidată de
 - Operaţii de selecţie naturală
 - Operaţii de încrucişare şi mutaţie
 - Care procesează în paralel mai multe soluţii
- Metafora evolutivă

Evoluţie naturală	Rezolvarea problemelor		
Individ	Soluţie potenţială (candidat)		
Populație	Mulţime de soluţii		
Cromozom	Codarea (reprezentarea) unei soluţii		
Genă	Parte a reprezentării		
Fitness (măsură de adaptare)	Calitate		
Încruविक्रखानुं समृद्धें प्रवादा	,		
Mediu (SVM, GP, KNN, 3	arbori de decizie) Spațiul de căutare al problemei		

Reamintim

Algoritmi evolutivi

```
Initializare populaţie P(0)

Evaluare P(0)

g := 0; //generaţia

CâtTimp (not condiţie_stop) execută

Repetă

Selectează 2 părinţi p1 şi p2 din P(g)
Încrucişare(p1,p2) =>o1 şi o2

Mutaţie(o1) => o1*

Mutaţie(o2) => o2*

Evaluare(o1*)

Evaluare(o2*)

adăugare o1* şi o* în P(g+1)

Până când P(g+1) este completă

g := g + 1

Sf CâtTimp
```


Definire

- Propusă de john Koza în 1988
- http://www.genetic-programming.org/
- Un tip particular de algoritmi evolutivi
- Cromozomi
 - sub formă de arbore care codează mici programe
- Fitness-ul unui cromozom
 - Performanţa programului codat în el
- Scopul PG
 - Evoluarea de programe de calculator
 - AG evoluează doar soluţii pentru probleme particulare

- Reprezentarea cromozomilor
 - Foarte importantă, dar este o sarcină dificilă
 - Cromozomul = un arbore cu noduri de tip
 - Funcţie → operatori matematici (+,-,*,/,sin,log, if,...)
 - Terminal \rightarrow atribute ale datelor problemei sau constante (x,y,z,a,b,c,...)
 - □ care codează expresia matematică a unui program (problema regresiei → a unei funcţii)

Projectare

Fitness

- Eroarea de predicţie diferenţa între ceea ce dorim să obţinem şi ceea ce obţinem de fapt
- pp o problemă de regresie cu următoarele date de intrare (2 atribute şi o ieşire) şi 2 cromozomi:

•
$$c_1 = 3x_1 - x_2 + 5 = (((3, x_1, *), x_2, -), 5, +)$$

•
$$c_2 = 3x_1 + 2x_2 + 2$$
 $f^*(x_1, x_2) = 3x_1 + 2x_2 + 1$ - necunoscută

<i>X</i> ₁	<i>X</i> ₂	$f^*(X_1,X_2)$	$f_1(x_1,x_2)$	$f_2(x_1,x_2)$	$ f^*-f_1 $	f*-f ₂
1	1	6	7	7	1	1
0	1	3	4	4	1	1
1	0	4	8	5	4	1
-1	1	0	1	1	1	1
					Σ=7	Σ= 4

 \rightarrow c₂ e mai bun

 $ca c_1$

Proiectare

Fitness

- Eroarea de predicţie diferenţa între ceea ce dorim să obţinem şi ceea ce obţinem de fapt
- pp o problemă de clasificare cu următoarele date de intrare (2 atribute şi o ieşire) şi 2 cromozomi:

•
$$c_1 = 3x_1 - x_2 + 5$$
 $f1(1,1) = 7 -: sigm(7) - (0,1) -: Theta$

$$c_2 = 3x_1 + 2x_2 + 2$$

<i>X</i> ₁	<i>X</i> ₂	$f^*(X_1, X_2)$	$f_1(x_1,x_2)$	$f_2(x_1,x_2)$	$ f^*-f_1 $	$ f^*-f_2 $
1	1	Yes	Yes	Yes	0	0
0	1	No	Yes	No	1	0
1	0	Yes	No	No	1	1
-1	1	Yes	No	yes	1	0
					Σ=3	Σ= 1

 \rightarrow c₂ e mai bun

- Iniţializarea cromozomilor
 - □ Generare aleatoare de arbori corecţi → programe valide (expresii matematice valide)
 - Se stabileşte o adâncime maximă a arborilor D_{max}
 - 3 metode de iniţializare
 - $Full \rightarrow$ fiecare ramură a rădăcinii are adâncimea D_{max}
 - Nodurile aflate la o adâncime d < Dmax se iniţializează cu una dintre funcţiile din F
 - Nodurile aflate la o adâncime d = Dmax se iniţializează cu unul dintre terminalele din T
 - Grow → fiecare ramură a rîdăcinii are o adâncime < D_{max}
 - Nodurile aflate la o adâncime d < Dmax se iniţializează cu un element din F ∪ T
 - Nodurile aflate la o adâncime d = Dmax se iniţializează cu unul dintre terminalele din T
 - Ramped half and half → ½ din populaţia de cromozomi se iniţializează folosind metoda full, ½ din populaţia de cromozomi se iniţializează folosind metoda grow

- Operatori genetici → Selecţia pentru recombinare
 - similar oricărui algoritm evolutiv
 - □ recomandare → selecţie proporţională
 - □ over-selection → pentru populaţii f mari
 - Se ordonează populaţia pe baza fitness-ului şi se împarte în 2 grupuri:
 - Grupul 1: cei mai buni x% cromozomi din populaţie
 - Grupul 2: restul de (100-x)% cromozomi din populaţie
 - Pentru populaţii cu 1000, 2000, 4000, 8000 de cromozomi, x este stabilit la 32%, 16%, 8%, respectiv 4%
 - 80% din operaţiile de selecţie vor alege cromozomi din grupul 1,
 20% din grupul 2

- Operatori genetici → Selecţia de supravieţuire
 - Scheme
 - Generaţională
 - steady-state
 - Probleme
 - Bloat → supravieţuirea celui mai "gras" individ (dimensiunea cromozomilor creşte de-a lungul evoluţiei)
 - Soluţii
 - Interzicerea operatorilor de variaţie care produc descendenţi prea mari
 - Presiunea economiei (zgârceniei) penalizarea cromozomilor prea mari

- Operatori genetici → Încrucişare şi mutaţie
 - Parametri
 - O probabilitate p de alegere între încrucişare şi mutaţie
 - p = 0 (cf. Koza) sau p = 0.05 (cf. Banzhaf)
 - O probabilitate p_c și respectiv p_m de stabilire a nodului care urmează a fi supus modificării
 - Dimensiunea descendenţilor diferă de dimensiune părinţilor

Proiectare

- Operatori genetici → Încrucişare
 - □ Cu punct de tăietură se interchimbă doi sub-arbori
 - Punctul de tăietură se generează aleator

- Operatori genetici → Mutaţie
 - Mutaţie de tip grow → Înlocuirea unei frunze cu un nou sub-arbore

$$p=(x+y)*(z-sin(x))$$

$$f=(x+y)*(z-sin(x+4))$$

- Operatori genetici → Mutaţie
 - Mutaţie de tip shrink → Înlocuirea unui sub-arbore cu o frunză

$$p=(x+y)*(z-sin(x))$$

$$f=(x+y)*4$$

- Operatori genetici → Mutaţie
 - Mutaţie de tip Koza → Înlocuirea unui nod (intern sau frunză) cu un nou sub-arbore

$$p=(x+y)*(z-sin(x))$$

$$f=(x+y)*sin(x+4)$$

- Operatori genetici → Mutaţie
 - Mutaţie de tip switch
 - selectarea unui nod intern şi re-ordonarea subarborilor săi
 - Mutaţie de tip cycle
 - selectarea unui nod şi înlocuirea lui cu unul nou de acelaşi tip (intern – cu o funcţie – sau frunză – cu un terminal)

- Comparaţie AG şi PG
 - Forma cromozomilor
 - AG cromozomi liniari
 - PG cromozomi ne-liniari
 - Dimensiunea cromozomilor
 - AG fixă
 - PG variabilă (în adâncime sau lăţime)
 - Schema de creare a descendenţilor
 - AG încrucişare şi mutaţie
 - PG încrucişare sau mutaţie

Avantaje

- PG găseşte soluţii problemelor care nu au o soluţie optimă
 - □ Un program pentru conducerea maşinii → nu există o singură soluţie
 - Unele soluţii implică un condus sigur, dar lent
 - Alte soluţii implică o viteză mare, dar un risc ridicat de accidente
 - □ Coducerea maşinii ←→ compromis între viteză mare şi siguranţă
- PG este utilă în problemele a căror variabile se modifică frecvent
 - Conducerea maşinii pe autostradă
 - Conducerea maşinii pe un drum forestier

Limite

Timpul mare necesar evoluţiei pentru identificarea soluţiei

- Versiuni ale PG
 - PG liniară (Cramer, Nordin)
 - Gene Expression Programming (Ferreira)
 - Multi Expression Programing (Oltean)
 - Gramatical Evolution (Ryan, O'Neill)
 - Cartesian Genetic Programming (Miller)

PG liniară

- Evoluarea de programe scrise într-un limaj imperativ (calculul fitness-ului nu necesită interpretare) → viteză mare de lucru
- Reprezentare
 - Vector de instrucţiuni, fiecare instrucţiune fiind de forma (pp ca aritatea maximală a unei funcţii din F este n):
 - Index_op, registru_out, registru_in₁, registru_in₂,...,registru_in_n

```
• v_i = v_j * v_k // instruction operating on two registers

• v_i = v_j * c // instruction operating on one register and one constant

• v_i = \sin(v_i) // instruction operating on one register
```

```
void LGP_program (double v[11])
                                                          void LGP_effective_program (double v[11])
       v[8] = v[0] - 10;
                                                                  v[4] = v[2] - v[0];
       v[6] = v[2] * v[0];
                                                                  v[10] = v[1]/v[4];
       v[5] = v[8] * 7;
                                                                 v[3] = sin(v[1]);
       v[4] = v[2] - v[0];
                                                                  v[7] = v[10] * v[3];
       v[10] = v[1]/v[4];
                                                                  v[9] = v[0] + v[7];
       v[3] = sin(v[1]);
       v[1] = v[8] - v[6];
       v[7] = v[10] * v[3];
       v[9] = v[0] + v[7];
       v[2] = v[7] + 3;
```

PG liniară

- Iniţializare
 - Aleatoare
 - Restricţii
 - Lungimea iniţială a cromozomului (nr de instrucţiuni)
- Operatori genetici de variaţie
 - □ Încrucişare cu 2 puncte de tăietură
 - Mutaţie
 - Micro mutaţie → schimbarea unui operand sau operator (nu se modifică dimensiunea cromozomului)
 - Macro mutaţie → inserarea sau eliminarea unei instrucţiuni (se modifică dimensiunea cromozomului)

PG liniară

- Avantaje
 - Evoluare într-un limbaj de nivel redus (low-level)
- Dezavantaje
 - Numărul de regiştri necesari (numărul de atribute ale problemei)
- Resurse
 - Register Machine Learning Technologies http://www.aimlearning.com
 - □ Peter Nordin's home page http://fy.chalmers.se/~pnordin
 - Wolfgang Banzhaf's home page http://www.cs.mun.ca/~banzhaf
 - Markus Brameier's home page http://www.daimi.au.dk/~brameier

□ Gene Expression Programming (GEP)

- Ideea de bază
 - Reprezentarea liniară a expresiilor codabile în arbori (prin parcuregerea în lăţime a acestora – breadth-first)

$$C = +a * /Sb - bcacabbc$$

- Reprezentare
 - Un cromozom este format din mai multe gene
 - Legate între ele prin + sau *
 - Fiecare genă este formată din:
 - Cap
 - conţine h elemente → funcţii şi terminale
 - Coadă
 - conține doar terminale, în număr de t = (n-1)*h+1, unde n aritatea maximă a unei funcții din F

GEP

- Iniţializare
 - Aleatoare, cu elemente din F şi T conform regulilor precizate anterior
- Operatori de variaţie
 - Încrucişare
 - La nivel de alelă
 - Cu un punct de tăietură
 - Cu două puncte de tăietură
 - Încrucişare la nivel de genă
 - Cromozomii schimbă între ei anumite gene (plasate pe aceeaşi poziţie)
 - Mutaţie
 - La nivel de alelă
 - se modifică un element din cap sau coadă, respectând regulile de la iniţializare
 - Transpoziţii

GEP

- Avantaje
 - Codarea în cromozomi a unor programe corecte datorită separării unei gene în cap şi coadă
- Dezavantaje
 - Cromozomii multi-genă
 - Câte gene?
 - Cum se leagă genele între ele?

Resurse

- Gene Expression Programming website, http://www.gepsoft.com
- Heitor Lopes's home page http://www.cpgei.cefetpr.br/~hslopes/index-english.html
- Xin Li's home page http://www.cs.uic.edu/~xli1
- □ GEP in C# http://www.c-sharpcorner.com/Code/2002/Nov/GEPAlgorithm.asp

Multi Expression Programming (MEP)

- Ideea de bază
 - □ Cromozomul este format din mai multe gene, fiecare genă → cod cu 3 adrese
 - Similar PG liniară, dar mai rapid

Reprezentare

- Liniară
- O genă conţine o funcţie (unară sau binară) şi pointeri spre argumentele sale
- □ Cromozomul codează mai multe potenţiale soluţii → fiecare soluţie corespunde unei gene
 - Calitatea unei soluţii (gene) = suma (peste datele de antrenament) între ceea ce trebuia obţinut şi ceea ce se obţine
 - Calitatea unui cromozom = fitness-ul celei mai bune gene

MEP

- Iniţializare
 - Prima genă trebuie să fie un terminal
 - Restul genelor pot conţine
 - un terminal sau
 - o funcție (unară sau binară) și pointeri spre argumentele sale
 - Argumentele unei funcții poziționată în a i-a genă trebuie să fie poziționate în cromozom la indici mai mici decât i
- Operatori de variaţie
 - □ Încrucişare → schimbarea unor gene între părinți
 - Cu un punct de tăietură
 - Cu două puncte de tăietură
 - Uniformă
 - Mutaţie → modificarea unei gene
 - Prima genă → generarea unui nou terminal
 - Restul genelor → generarea unui terminal sau a unei funcţii (simbolul funcţiei şi argumentele funcţiei)
 - Generarea are loc la fel ca la iniţializare

MEP

- Avantaje
 - Ieşire dinamică corespunzătoare unui cromozom
 - Complexitatea programului (expresiei) căutat(e)
 - Programe (expresii) de lungime variabilă obţinute fără operatori speciali
 - Programe de lungime exponenţială codate în cromozomi de lungime polinomială

Dezavantaje

 □ Complexitatea decodării pt date de antrenament necunoscute → evoluarea strategiilor de joc

Resurse

- Mihai Oltean's home page http://www.cs.ubbcluj.ro/~
- □ Crina Gro»san's home page http://www.cs.ubbcluj.ro/~cgrosan
- MEP web page http://www.mep.cs.ubbcluj.ro
- MEP in C# http://www.c-sharpcorner.com

Grammatical Evolution (GE)

- Ideea de bază
 - Evoluarea de programe în forma Backus-Naur (program exprimat sub forma unei gramatici cu simboluri terminale şi non-terminale, simbol de start, reguli/producţii)
- Reprezentare
 - String binar de codons (grupuri de 8 biţi) → care regulă a gramaticii tb aplicată
 - Exemplu
 - $G=\{N,T,S,P\}, N=\{+,-,*,/,\sin,(,)\}, T=\{\exp r, op 2, op 1\}, S=\langle expr \rangle, iar P este:$
 - \(\left(\expr\) ::=a|b|c| \left(\expr\) \(\left(\op 2\) \left(\expr\) \(\left(\expr\) \reft(\op 2\) \(\left(\expr\))| \(\left(\op 1\) \reft(\expr\))
 - \(\left(\text{op2}\right)::=+|-|*|/\),
 - ⟨op1⟩::=sin
 - $C*_{GF} = (9 12 12 3 15 7 11 4 2 5 0 6 11 0 1 7 12)$
 - S= $\langle \exp r \rangle$ → $\langle \exp r \rangle \langle op 2 \rangle \langle \exp r \rangle$ → $a \langle op 2 \rangle \langle \exp r \rangle$ → $a + \langle \exp r \rangle \langle op 2 \rangle \langle \exp r \rangle$ → $a + \langle \exp r \rangle \langle op 2 \rangle \langle \exp r \rangle$ → $a + b \langle op 2 \rangle \langle \exp r \rangle \langle op 2 \rangle \langle \exp r \rangle$

```
a + b/\langle expr \rangle \langle op_2 \rangle \langle expr \rangle
a + b/(\langle expr \rangle \langle op_2 \rangle \langle expr \rangle) \langle op_2 \rangle \langle expr \rangle
a + b/(c \langle op_2 \rangle \langle expr \rangle) \langle op_2 \rangle \langle expr \rangle
a + b/(c - \langle expr \rangle) \langle op_2 \rangle \langle expr \rangle
a + b/(c - a) \langle op_2 \rangle \langle expr \rangle
a + b/(c - a) * \langle expr \rangle
a + b/(c - a) * \langle op_1 \rangle \langle expr \rangle
a + b/(c - a) * \sin \langle expr \rangle
```

$$E = a + b/(c - a) * \sin(b)$$

GE

- Iniţializare
 - □ Stringul binar este iniţializat aleator cu 0 şi 1 fără restricţii → programe valide
 - Decodarea se termină când s-a obţinut un program complet
 - Dacă s-au terminat codons şi încă nu s-a format tot programul, se reiau codons de la primul element → wrapping

Operatori de variaţie

- Încrucişare
 - Cu un punct de tăietură
- Mutaţie
 - Schimbarea probabilistică a unui bit în opusul său
- Duplicare
 - O secvenţă de gene este copiată la sfârşitul cromozomului
- Pruning
 - Eliminarea genelor ne-folosite în procesul de transformare (decodare) a cromozomului

GE

- Avantaje
 - Evoluarea de programe scrise în limbaje a căror instrucţiuni pot fi exprimate ca reguli de tip BNF
 - Reprezentarea poate fi schimbată prin modificarea gramaticii
- Dezavantaje
 - □ Wrapping-ul la infinit → limitarea repetărilor şi penalizarea cromozomilor care depăşesc un anumit prag de repetări
- Resurse
 - Grammatical Evolution web page, http://www.grammatical-evolution.org
 - Conor Ryan's home page, http://www.csis.ul.ie/staff/conorryan
 - Michael O'Neill's home page, http://ncra.ucd.ie/members/oneillm.html
 - John James Collins's home page, http://www.csis.ul.ie/staff/jjcollins
 - Maarten Keijzer's home page, http://www.cs.vu.nl/~mkeijzer
 - Anthony Brabazon's home page http://ncra.ucd.ie/members/brabazont.html

- Cartesian Genetic Programming (CGP)
 - Ideea de bază
 - □ Cromozomi sub formă de graf (matrice) → programe mai complexe decât cele din arbori
 - Reprezentare
 - În sistem cartezian (matrice de noduri)
 - Un nod are asociate
 - O funcţie
 - Intrări
 - Ieşiri
 - Ouputul cromozomului
 - Outputul oricărui nod

C = (1, 2, 3, 2, 0, 1, 0, 1, 2, 1, 4, 3, 4, 3, 0, 1, 5, 4, 1, 8, 4, 0, 3, 1, 6, 8, 2, 10, 7, 2, 0, 11, 0, 4, 6, 3, 13)

CGP

- Iniţializare
 - Aleatoare
 - □ Intrările oricărui nod trebuie să fie noduri de pe coloanele anterioare
 - Nodurile de pe prima coloană au ca intrări caracteristicile datelor de antrenament
- Operatori de variaţie
 - Încrucişare
 - Nu se aplică
 - Mutaţie
 - Modificarea elementelor unui nod

CGP

- Avantaje
 - Evoluarea indicelui nodului care furnizează ieşirea programului codat în cromozom
 - Programul evoluat poate avea una sau mai multe ieşiri
- Dezavantaje
 - Stabilirea numărului de coloane influențează rezultatele obținute
- Resurse
 - Julian. F. Miller's home page <u>http://www.elec.york.ac.uk/intsys/users/jfm7</u>
 - Lukás Sekanina's home page http://www.fit.vutbr.cz/~sekanina/

Aplicaţii

Probleme în care există o relaţie între intrări şi ieşiri

Probleme de regresie

Probleme de clasificare

Aplicaţii

- Probleme de design
 - Evoluarea de circuite digitale
 - Evoluarea de antene
 - http://idesign.ucsc.edu/projects/evo_antenna.html
 - Evoluarea de programe (scrise într-un anumit limbaj)
 - Evoluarea de picturi şi muzică
 - http://www.cs.vu.nl/~gusz/

- Altele
 - http://www.geneticprogramming.com/humancompetitive.html

Sisteme inteligente – SIS - kNN

Cei mai apropiați k vecini (k-nearest neighbours - kNN)

- Unul dintre cei mai simpli algoritmi de clasificare
- În etapa de antrenament, algoritmul doar citeşte datele de intrare (atributele şi clasa fiecărei instanţe)
- □ În etapa de testare, pentru o nouă instanță (fără clasă):
 - se caută (printre instanțele de antrenament) cei mai apropiați k vecini
 - distanţa Minkowski (Manhattan, Euclidiană) atribute continue
 - distanţa Hamming, Levensthein analiza textelor
 - alte distanțe (funcții kernel)

se preia clasa majoritară a acestor k vecini

Sisteme inteligente – SIS - kNN

- Unul dintre cei mai simpli algoritmi de clasificare
- În etapa de antrenament, algoritmul doar citeşte datele de intrare (atributele şi clasa fiecărei instanţe)
- □ În etapa de testare, pentru o nouă instanță (fără clasă)
 - ullet se caută (printre instanțele de antrenament) cei mai apropiați k vecini și
 - se preia clasa majoritară a acestor k vecini

Sisteme inteligente – SIS - kNN

■ Tool-uri

- Sklearn (python)
 - <u>https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.</u>
 <u>KNeighborsClassifier.html</u>
- Weka (java)
 - https://weka.sourceforge.io/doc.dev/weka/classifiers/lazy/IBk.html

Biblio

https://github.com/rasbt/stat479-machinelearning-fs19/tree/master/02_knn

Scop

- Divizarea unei colecţii de articole în seturi mai mici prin aplicarea succesivă a unor reguli de decizie → adresarea mai multor întrebări
 - Fiecare întrebare este formulată în funcţie de răspunsul primit la întrebarea precedentă
- Elementele se caracterizează prin informaţii non-metrice

Definire

- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului

Fiecare frunză corespunde unei clase (ieșire de tip discret)

Exemplu

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)	
r1	<=30	High	No	Fair	No	
r2	<=30	High	No	Excellent	No	1
r3	3140	High	No	Fair	Yes	1
r4	>40	Medium	No	Fair	Yes	1
r5	>40	Low	Yes	Fair	Yes	
r6	>40	Low	Yes	Excellent	No	
r7	3140	Low	Yes	Excellent	Yes	
r8	<=30	Medium	No	Fair	No	1
r9	<=30	Low	Yes	Fair	Yes	
r10	>40	Medium	Yes	Fair	Yes	
r11	<=30	Medium	Yes	Excellent	Yes	1
r12	3140	Medium	No	Excellent	Yes	age
r13	3140	High	Yes	Fair	Yes	
r14	>40	Medium	No	Excellent	No	<=30 >40
						student Buys=yes credit rating
					no	yes excellent fair
					Buys=n	Buys=yes Buys=no Buys=

Definire

- Arborele de decizie
 - □ Un graf special → arbore orientat bicolor
 - Conţine noduri de 3 tipuri:
 - Noduri de decizie → posibilitățile decidentului (ex. Diversele examinări sau tratamente la care este supus pacientul) şi indică un test pe un atribut al articolului care trebuie clasificat
 - Noduri ale hazardului evenimente aleatoare în afara controlului decidentului (rezultatul examinărilor, efectul terapiilor)
 - Noduri rezultat situaţiile finale cărora li se asociază o utilitate (apreciată aprioric de către un pacient generic) sau o etichetă
 - Nodurile de decizie şi cele ale hazardului alternează pe nivelele arborelui
 - Nodurile rezultat noduri terminale (frunze)
 - Muchiile arborelui (arce orientate) → consecinţele în timp (rezultate) ale decizilor, respectiv ale realizării evenimentelor aleatoare (pot fi însoţite de probabilităţi)
- Fiecare nod intern corespunde unui atribut
- Fiecare ramură de sub un nod (atribut) corespunde unei valori a atributului
- Fiecare frunză corespunde unei clase

Tipuri de probleme

- Exemplele (instanţele) sunt reprezentate printr-un număr fix de atribute, fiecare atribut putând avea un număr limitat de valori
- Funcţia obiectiv ia valori de tip discret
- AD reprezintă o disjuncţie de mai multe conjuncţii, fiecare conjuncţie fiind de forma atributul a_i are valoarea v_i
- Datele de antrenament pot conţine erori
- Datele de antrenament pot fi incomplete
 - Anumitor exemple le pot lipsi valorile pentru unele atribute

Probleme de clasificare

- Binară
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasă_i putând lua doar 2 valori]
- Multi-clasă
 - exemple date sub forma [(atribut_{ij}, valoare_{ij}), clasă_i, i=1,2,...,n, j=1,2,...,m, clasă_i putând lua k valori]

Probleme de regresie

- AD se construiesc similar cazului problemei de clasificare, dar în locul etichetării fiecărui nod cu eticheta unei clase se asociază nodului o valoare reală sau o funcţie dependentă de intrările nodului respectiv
- Spaţiul de intrare se împarte în regiuni de decizie prin tăieturi paralele cu axele Ox şi Oy
- Are loc o transformare a ieşirilor discrete în funcţii continue
- Calitatea rezolvării problemei
 - Eroare (pătratică sau absolută) de predicție

Proces

- Construirea (creşterea, inducţia) arborelui
 - Se bazează pe un set de date de antrenament
 - Lucrează de jos în sus sau de sus în jos (prin divizare splitting)
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ansamblul decizilor efectuate de-a lungul unui drum de la rădăcină la o frunză formează o regulă
 - Regulile formate în AD sunt folosite pentru etichetarea unor noi date
- Tăierea (curăţirea) arborelui (pruning)
 - Se identifică şi se mută/elimină ramurile care reflectă zgomote sau excepţii

□ Proces → Construirea AD

- Divizarea datelor de antrenament în subseturi pe baza caracteristicilor datelor
 - □ Un nod → întrebare legată de o anumită proprietate a unui obiect dat
 - □ Ramurile ce pleacă din nod → etichetate cu posibilele răspunsuri la întrebarea din nodul curent
 - La început toate exemplele sunt plasate în rădăcină
 - La pornire, un atribut va fi rădăcina arborelui, iar valorile atributului vor deveni ramuri ale rădăcinii
 - □ Pe următoarele nivele exemplele sunt partiţionate în funcţie de atribute → ordinea considerării atributelor
 - Pentru fiecare nod se alege în mod recursiv câte un atribut (cu valorile lui pe ramurile descendente din nodul curent)
 - □ Divizarea → greedy în luarea decizilor

Proces iterativ

- Reguli de oprire
 - toate exemplele aferente unui nod fac parte din aceeaşi clasă → nodul devine frunză şi este etichetat cu Ci
 - Nu mai sunt exemple → nodul devine frunză şi este etichetat cu clasa majoritară în setul de date de antrenament
 - nu mai pot fi considerate noi atribute

□ Proces → Construirea AD

Exemplu

rec	Age	Income	Student	Credit_rating	Buys_computer(CLASS)
r1	<=30	High	No	Fair	No
r2	<=30	High	No	Excellent	No
r3	3140	High	No	Fair	Yes
r4	>40	Medium	No	Fair	Yes
r5	>40	Low	Yes	Fair	Yes
r6	>40	Low	Yes	Excellent	No
r7	3140	Low	Yes	Excellent	Yes
r8	<=30	Medium	No	Fair	No
r9	<=30	Low	Yes	Fair	Yes
r10	>40	Medium	Yes	Fair	Yes
r11	<=30	Medium	Yes	Excellent	Yes
r12	3140	Medium	No	Excellent	Yes
r13	3140	High	Yes	Fair	Yes
r14	>40	Medium	No	Excellent	No

□ Proces → Construirea AD

- Exemplu
 - Pentru rădăcină se alege atributul age

□ Proces → Construirea AD

- Exemplu
 - Pentru rădăcină se alege atributul age
 - □ Pe ramura <=30 se alege atributul student</p>

□ Proces → Construirea AD

Exemplu

- Pentru rădăcină se alege atributul age
- □ Pe ramura <=30 se alege atributul student</p>
- □ Pe ramura > 40 se alege atributul credit

- Proces → Construirea AD → Algoritmul ID3/C4.5
 - Greedy, recursiv, top-down, divide-and-conquer

```
generare(D, A){
                   //D – partitionare a exemplelor de antrenament, A – lista de atribute
    Crearea unui nod nou N
    Dacă exemplele din D fac parte dintr-o singură clasă C atunci
             nodul N devine frunză și este etichetat cu C
            returnează nodul N
    Altfel
             Dacă A=Ø atunci
                   nodul N devine frunză și este etichetat cu clasa majoritară în D
                   returnează nodul N
             Altfel
                   atribut_separare = Selectează_atribut(D, A)
                   Etichetează nodul N cu atribut separare
                   Pentru fiecare valoare posibilă vi a lui atribut_separare
                        Fie Di multimea exemplelor din D pentru care atribut_separare = vi
                        Dacă Dj =Ø atunci
                             Atașează nodului N o frunză etichetată cu clasa majoritară în D
                        Altfel
                             Atașează nodului N un nod returnat de generare(Dj, A –atribut_separare)
                   Returnează nodul N
```

- □ Proces → Construirea AD → Algoritmul ID3/C4.5
 - Selectează_atribut(D, A) → Alegerea atributului aferent unui nod (rădăcină sau intern)
 - Aleatoare
 - Atributul cu cele mai puţine/multe valori
 - Pe baza unei ordini prestabilite a atributelor
 - Câştigul de informaţie
 - Rata câştigului
 - Indicele Gini
 - Distanța între partițiile create de un atribut

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Câştigul de informaţie
 - O măsură de impuritate
 - 0 (minimă) dacă toate exemplele fac parte din aceeaşi clasă
 - 1 (maximă) dacă avem număr egal de exemple din fiecare clasă
 - Se bazează pe entropia datelor
 - măsoară impuritatea datelor
 - numărul sperat (aşteptat) de biţi necesari pentru a coda clasa unui element oarecare din setul de date
 - clasificare binară (cu 2 clase): $E(S) = -p_+log_2p_+ p_-log_2p_-$ unde
 - p_+ proporția exemplelor pozitive în setul de date S
 - p₋ proporția exemplelor negative în setul de date S
 - clasificare cu mai multe clase: $E(S) = \sum_{i=1, 2, ..., k} p_i \log_2 p_i$ entropia datelor relativ la atributul ţintă (atributul de ieşire), unde
 - p_i proporția exemplelor din clasa i în setul de date S
 - câştigul de informaţie (information gain) al unei caracterisitici a (al unui atribut al) datelor
 - Reducerea entropiei setului de date ca urmare a eliminării atributului a
 - $Gain(S, a) = E(S) \sum_{v \in valori(a)} |S_v| / |S| E(S_v)$
 - $\sum_{v \in valori(a)} |S_v| / |S| E(S_v)$ informația scontată

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Câştigul de informaţie
 - exemplu

	a1	a2	a3	Clasa
d1	mare	roşu	cerc	clasa 1
d2	mic	roşu	pătrat	clasa 2
d3	mic	roşu	cerc	clasa 1
d4	mare	albastru	cerc	clasa 2

$$S = \{d1, d2, d3, d4\} \rightarrow p_{+} = 2/4, p_{-} = 2/4 \rightarrow E(S) = -p_{+}log_{2}p_{+} - p_{-}log_{2}p_{-} = 1$$

$$S_{v=mare} = \{d1, d4\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mare}) = 1$$

$$S_{v=mic} = \{d2, d3\} \rightarrow p_{+} = \frac{1}{2}, p_{-} = \frac{1}{2} \rightarrow E(S_{v=mic}) = 1$$

$$S_{v=rosu} = \{d1, d2, d3\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=rosu}) = 0.923$$

$$S_{v=a|bastru} = \{d4\} \rightarrow p+=0, p-=1 \rightarrow E(S_{v=a|bastru}) = 0$$

$$S_{v=cerc} = \{d1, d3, d4\} \rightarrow p+ = 2/3, p- = 1/3 \rightarrow E(S_{v=cerc}) = 0.923$$

$$S_{v=patrat} = \{d2\} \rightarrow p+=0, p-=1 \rightarrow E(S_{v=patrat}) = 0$$

Gain(S, a) = E(S) -
$$\sum_{v \in valori(a)} |S_v| / |S| E(S_v)$$

$$Gain(S, a_1) = 1 - (|S_{v=mare}| / |S| |E(S_{v=mare}) + |S_{v=mic}| / |S| |E(S_{v=mic})) = 1 - (2/4 * 1 + 2/4 * 1) = 0$$

$$\begin{aligned} \text{Gain}(S, \, a_2) &= 1 - (|S_{\text{v=rosu}}| \, / \, |S| \, E(S_{\text{v=rosu}}) + |S_{\text{v=albastru}}| \, / \, |S| \, E(S_{\text{v=albastru}})) = 1 - (3/4 \, * \, 0.923 \, + \, 1/4 \, * \, 0) = 0.307 \\ \text{Aprilie, 2020} & \text{Inteligență artificială - sisteme inteligente} \end{aligned}$$

- □ Proces → Construirea AD → Algoritmul ID3/C4.5 → Selectare atribut
 - Rata câştigului
 - Penalizează un atribut prin încorporarea unui termen split information – sensibil la gradul de împrăştiere şi uniformitate în care atributul separă datele
 - Split information entropia relativ la valorile posibile ale atributului a
 - Sv proporţia exemplelor din setul de date S care au atributul a evaluat cu valoarea v

$$-\sum_{v=value(a)} \frac{|S_v|}{|S|} \log_2 \frac{|S_v|}{|S|}$$
• splitInformation(S,a)=

Studiu de caz - Problema vampirilor

Items	Shadow	Complexio n	Garlic	Accent	Vampir e
i1	?	Pale	Yes	None	No
i2	Yes	Ruddy	Yes	None	No
i3	?	Ruddy	No	None	Yes
i4	No	Average	No	Heavy	Yes
i5	?	Average	No	Odd	Yes
i6	Yes	Pale	No	Heavy	No
i7	Yes	Average	No	Heavy	No
i8	?	Ruddy	Yes	Odd	No

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Ideea de bază
 - Se extrag regulile formate în arborele anterior construit → Reguli extrase din arborele dat în exemplul anterior:
 - IF age = "<=30" AND student = "no" THEN buys computer = "no"
 - IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"</p>
 - IF age = "31...40" THEN buys_computer = "yes"
 - IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"
 - IF age = ">40" AND credit_rating = "fair" THEN buys_computer = "yes"
 - Regulile sunt folosite pentru a clasifica datele de test (date noi).
 Fie x o dată pentru care nu se ştie clasa de apartenenţă →
 Regulile se pot scrie sub forma unor predicate astfel:
 - IF age(x, <=30) AND student(x, no) THEN $buys_computer(x, no)$
 - IF $age(x, \le 30)$ AND student(x, yes) THEN $buys_computer(x, yes)$

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
 - Dificultăți
 - Underfitting (sub-potrivire) → AD indus pe baza datelor de antrenament este prea simplu → eroare de clasificare mare atât în etapa de antrenare, cât şi în cea de testare
 - Overfitting (supra-potrivire, învăţare pe derost) → AD indus pe baza datelor de antrenament se potriveşte prea accentuat cu datele de antrenament, nefiind capabil să generalizeze pentru date noi
 - Soluţii:
 - fasonarea arborelui (pruning) → Îndepărtarea ramurilor nesemnificative, redundante → arbore mai puţin stufos
 - validare cu încrucişare

Proces

- Construirea arborelui
- Utilizarea arborelui ca model de rezolvare a problemelor
- Tăierea (fasonarea) arborelui
 - Necesitate
 - Odată construit AD, se pot extrage reguli (de clasificare) din AD pentru a putea reprezenta cunoştinţele sub forma regulilor if-then atât de uşor de înţeles de către oameni
 - O regulă este creată (extrasă) prin parcurgerea AD de la rădăcină până la o frunză
 - Fiecare pereche (atribut, valoare), adică (nod, muchie), formează o conjuncţie în ipoteza regulii (partea dacă), mai puţin ultimul nod din drumul parcurs care este o frunză şi reprezintă consecinţa (ieşirea, partea atunci) regulii

Tipologie

- Prealabilă (pre-pruning)
 - Se opreşte creşterea arborelui în timpul inducţiei prin sistarea divizării unor noduri care devin astfel frunze etichetate cu clasa majoritară a exemplelor aferente nodului respectiv
- Ulterioară (post-pruning)
 - După ce AD a fost creat (a crescut) se elimină ramurile unor noduri care devin astfel frunze → se reduce eroarea de clasificare (pe datele de test)

■ Tool-uri

- http://webdocs.cs.ualberta.ca/~aixplore/learnin g/DecisionTrees/Applet/DecisionTreeApplet.html
- WEKA → J48
- http://id3alg.altervista.org/
- http://www.rulequest.com/Personal/c4.5r8.tar.g
 <u>Z</u>

Biblio

http://www.public.asu.edu/~kirkwood/DAStuff/d ecisiontrees/index.html

Avantaje

- Uşor de înţeles şi interpretat
- Permit utilizarea datelor nominale şi categoriale
- Logica deciziei poate fi urmărită uşor, regulile fiind vizibile
- Lucrează bine cu seturi mari de date

Dezavantaje

- Instabilitate → modificarea datelor de antrenament
- Complexitate → reprezentare
- Greu de manevrat
- Costuri mari pt inducerea AD
- Inducerea AD necesită multă informaţie

Dificultăţi

- Existenţa mai multor arbori
 - Cât mai mici
 - Cu o acurateţe cât mai mare (uşor de "citit" şi cu performanţe bune)
 - □ Găsirea celui mai bun arbore → problemă NP-dificilă
- Alegerea celui mai bun arbore
 - Algoritmi euristici
 - □ ID3 → cel mai mic arbore acceptabil
 - → teorema lui Occam: "always choose the simplest explanation"
- Atribute continue
 - Separarea în intervale
 - Câte intervale?
 - Cât de mari sunt intervalele?
- Arbori prea adânci sau prea stufoşi
 - □ Fasonarea prealabilă (pre-pruning) → oprirea construirii arborelui mai devreme
 - □ Fasonarea ulterioară (post-pruning) → înlăturarea anumitor ramuri

Învățare supervizată – algoritmi Arbori de decizie

Tool-uri

- http://webdocs.cs.ualberta.ca/~aixplore/learning/De cisionTrees/Applet/DecisionTreeApplet.html
- WEKA → J48
- http://id3alg.altervista.org/
- http://www.rulequest.com/Personal/c4.5r8.tar.gz
- https://scikit-learn.org/stable/modules/tree.html

Biblio

- http://www.public.asu.edu/~kirkwood/DAStuff/decisi ontrees/index.html
- https://github.com/rasbt/stat479-machine-learningfs19/tree/master/06 trees

Recapitulare

□ Sisteme care învață singure (SIS)

- Algoritmi de programare genetică (PG)
 - Algoritmi evolutivi cu cromozomi sub formă de arbore
 - Cromozomii
 - Arborescenţi
 - Matriciali
 - Liniari
 - codează potențiale soluții de tipul
 - Expresiilor matematice → probleme de regresie/clasificare
 - Expressilor de tip Boolean → probleme de tip EvenParity / proiectare de circuite digitale
 - Programelor → evoluarea de cod sursă pentru rezolvarea unor probleme

Cursul următor

- A. Scurtă introducere în Inteligența Artificială (IA)
- B. Rezolvarea problemelor prin căutare
 - Definirea problemelor de căutare
 - Strategii de căutare
 - Strategii de căutare neinformate
 - Strategii de căutare informate
 - □ Strategii de căutare locale (Hill Climbing, Simulated Annealing, Tabu Search, Algoritmi evolutivi, PSO, ACO)
 - Strategii de căutare adversială
- c. Sisteme inteligente
 - Sisteme care învață singure
 - Arbori de decizie
 - Reţele neuronale artificiale
 - Maşini cu suport vectorial
 - Algoritmi evolutivi
 - Sisteme bazate pe reguli
 - Sisteme hibride

Cursul următor – Materiale de citit și legături utile

- capitolul 15 din C. Groşan, A. Abraham, Intelligent Systems: A Modern Approach, Springer, 2011
- Capitolul 9 din T. M. Mitchell, Machine Learning, McGraw-Hill Science, 1997

- Informaţiile prezentate au fost colectate din diferite surse de pe internet, precum şi din cursurile de inteligenţă artificială ţinute în anii anteriori de către:
 - Conf. Dr. Mihai Oltean www.cs.ubbcluj.ro/~moltean
 - Lect. Dr. Crina Groşan www.cs.ubbcluj.ro/~cgrosan
 - Prof. Dr. Horia F. Pop www.cs.ubbcluj.ro/~hfpop