## Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6677/01)



## June 2008 6677 Mechanics M1 Final Mark Scheme

| Ougation           | i illat mark Scheme                                                                                                                                                                                                             |                         |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Question<br>Number | Scheme                                                                                                                                                                                                                          | Marks                   |
| 1.                 | (a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$                                                                                                                                                       | M1 A1<br>A1 (3)         |
|                    | (b) $ \begin{array}{ccc} 7.5 \\ \hline 0.4 \\ \hline v \\ \hline \end{array} $ $ \begin{array}{cccc} 0.6 \\ \hline & 5 \\ \hline \end{array} $ $ \begin{array}{cccc} LM & 0.4 \times 7.5 = 0.4v + 0.6 \times 5 \\ \end{array} $ | M1 A1                   |
|                    | $0 = 0.4v \implies v = 0 *$ cso                                                                                                                                                                                                 | A1 (3) [6]              |
| 2.                 | (a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$<br>Leading to $u = 10.5$                                                                                                                                   | M1 A1<br>A1 (3)         |
|                    | (b) $v = u + at \implies 17.5 = -10.5 + 9.8T$                                                                                                                                                                                   | M1 A1 f.t.              |
|                    | $T = 2\frac{6}{7}$ (s)                                                                                                                                                                                                          | DM1 A1 (4)              |
|                    | Alternatives for (b) $s = (\frac{u+v}{2})T \Rightarrow 10 = (\frac{17.5 + -10.5}{2})T$ $\frac{20}{7} = T$                                                                                                                       | [7] M1A1 f.t. DM1A1 (4) |
|                    | OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$<br>Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative                                                                                      | M1 A1 f.t.  DM1 A1 (4)  |
|                    | (b) can be done independently of (a)<br>$s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$                                                                                                                               | M1 A1                   |
|                    | Leading to $T = 2\frac{6}{7}, \frac{5}{7}$                                                                                                                                                                                      | DM1                     |
|                    | For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative $u$ .                                                                                                                                       | A1 (4)                  |

| Question<br>Number | Scheme                                                                                                                                                                                                                | Marks          |            |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|
| 3.                 | (a) $\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$                                                                                                                                                           | M1<br>A1 (     | (2)        |
|                    | (b) $\mathbf{F} = 0.4 \left( 6\mathbf{i} + 8\mathbf{j} \right) \left( = 2.4\mathbf{i} + 3.2\mathbf{j} \right)$ $\left  \mathbf{F} \right  = \sqrt{2.4^2 + 3.2^2} = 4$ The method marks can be gained in either order. | M1<br>M1 A1    | (3)        |
|                    | (c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ $= 39\mathbf{i} + 30\mathbf{j} \text{ (ms}^{-1})$                                                                                        |                | (3)<br>[8] |
| 4.                 | (a)  25  shape 25, 10, 30, 90  O 30  90 t                                                                                                                                                                             | B1<br>B1       | (2)        |
|                    | (b) $30 \times 25 + \frac{1}{2} (25 + 10)t + 10(60 - t) = 1410$<br>7.5t = 60<br>t = 8 (s)                                                                                                                             | M1 <u>A1</u> A | <b>A</b> 1 |
|                    | $a = \frac{25 - 10}{8} = 1.875 \text{ (ms}^{-2}\text{)}$ $1\frac{7}{8}$                                                                                                                                               | M1 A1          | (7)<br>[9] |

| Question<br>Number | Scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks                            |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| 5.                 | (a) $ \begin{array}{c}  & & & \\  & & & \\ \hline  & & & \\  & & & \\ \hline  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & &$ | M1 A1<br>DM1 A1 (4)              |
|                    | (b) $(\rightarrow) X - 15\cos 30^\circ = R\cos 50^\circ$ ft their $R$ $X \approx 19.3 \text{ (N)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1 A2 ft  DM1 A1 (5) [9]         |
|                    | Alternatives using sine rule in (a) or (b); cosine rule in (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
|                    | (a) $\frac{R}{\sin 30^{\circ}} = \frac{15}{\sin 50^{\circ}}$ $R \approx 9.79 \text{ (N)}$ $X \qquad 15 \qquad R$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1 A1  DM1 A1 (4)  M1 A2 ft on R |
|                    | (b) $\frac{X}{\sin 100^{\circ}} = \frac{15}{\sin 50^{\circ}} = \frac{R}{\sin 30^{\circ}}$ $X = 19.3 \text{ (N)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DM1 A1 (5)                       |
|                    | $X^{2} = R^{2} + 15^{2} - 2 \times 15 \times R \cos 100^{\circ}$ <b>OR</b> : cosine rule; any of $R^{2} = X^{2} + 15^{2} - 2 \times 15 \times X \cos 30^{\circ}$ $15^{2} = R^{2} + X^{2} - 2 \times X \times R \cos 50^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1 A2 ft on <i>R</i>             |
|                    | $X \approx 19.3 \text{ (N)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DM1 A1 (5)                       |

| Question<br>Number | Scheme                                                                                                                                                                                                  | Marks             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 6.                 | (a) $A \longrightarrow 2.4 \longrightarrow X$ $8g \longrightarrow 12g$ $M(A) \qquad 8g \times 0.8 + 12g \times 1.2 = X \times 2.4$ $X \approx 85 \text{ (N)} \qquad \text{accept 84.9, } \frac{26g}{3}$ | M1 A1 DM1 A1 (4)  |
|                    | (b) $X + 10$ $A \longrightarrow X$ $8g \longrightarrow X$ $12g$ $R(\uparrow)  (X + 10) + X = 8g + 12g$ $(X = 93)$                                                                                       | M1 <u>B1</u> A1   |
|                    | $M(A)$ $8g \times 0.8 + 12g \times x = X \times 2.4$ $x = 1.4$ (m) accept 1.36                                                                                                                          | M1 A1 A1 (6) [10] |

| Question<br>Number | Scheme                                                                 | Marks                      |
|--------------------|------------------------------------------------------------------------|----------------------------|
| 7.                 | (a) $45 \text{ N}$ $\mu R$ $30^{\circ}$ $4g$                           |                            |
|                    | $R = 45\cos 40^{\circ} + 4g\cos 30^{\circ}$ $R \approx 68$ accept 68.4 | M1 A2 (1, 0)<br>DM1 A1 (5) |
|                    | (b) Use of $F = \mu R$                                                 | M1                         |
|                    | $F + 4g\sin 30 = 45\cos 50^{\circ}$                                    | M1 A2 (1, 0)               |
|                    | Leading to $\mu \approx 0.14$ accept 0.136                             | DM1 A1 (6) [11]            |

| Question<br>Number | Scheme                                                                                                                             | Marks           |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 8.                 | (a) $T \qquad T \qquad 30$ $\mu 2g \qquad \mu 3g$                                                                                  |                 |
|                    | $s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} \text{ (ms}^{-2}\text{)}$                        | M1<br>A1 (2)    |
|                    | (b) N2L for system $30 - \mu 5g = 5a$ ft their $a$ , accept symbol                                                                 | M1 A1ft         |
|                    | $\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48                                                                                 | DM1 A1 (4)      |
|                    | (c) N2L for $P$ $T - \mu 2g = 2a$ ft their $\mu$ , their $a$ , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$ | M1 A1 ft        |
|                    | Leading to $T = 12$ (N) awrt 12                                                                                                    | DM1 A1 (4)      |
|                    | Alternatively N2L for $Q$<br>$30 - T - \mu 3g = 3a$<br>Leading to $T = 12$ (N) awrt 12                                             | M1 A1<br>DM1 A1 |
|                    | (d) The acceleration of $P$ and $Q$ (or the whole of the system) is the same.                                                      | B1 (1)          |
|                    | (e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$                                                                             | B1 ft on a      |
|                    | N2L (for system or either particle)<br>$-5\mu g = 5a$ or equivalent<br>$a = -\mu g$                                                | M1              |
|                    | $v = u + at \implies 0 = 4 - \mu gt$                                                                                               | DM1             |
|                    | Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857                                                                                | A1 (4) [15]     |