Assignment 4

Deadline: June 4

- 1. The maximum cut problem is defined as follows: Given an undirected graph G = (V, E) along with a nonnegative weight $w_{ij} \ge 0$ for each $(i, j) \in E$. The goal is to partition the vertex set into two parts, U and W = V U, so as to maximize the weight of the edges whose two endpoints are in different parts. Give a 2-approximation randomized algorithm for maximum cut problem.
- **2.** In the *maximum* k-cut problem, we are given an undirected graph G = (V, E), an nonnegative weights $w_{ij} \geq 0$ for all $(i, j) \in E$. The goal is to partition the vertex set V into k parts V_1, \ldots, V_k so as to maximize the weight of all edges whose endpoints are in different parts (i.e. $\max_{(i,j) \in E: i \in V_a, j \in V_b, a \neq b} w_{ij}$).

 $\max_{(i,j)\in E: i\in V_a, j\in V_b, a\neq b} w_{ij}$). Give a randomized $\frac{k-1}{k}$ -approximation algorithm for the maximum k-cut problem.

3. Consider the *multicut problem in trees*. In this problem, we are given a tree T=(V,E). k pairs of vertices s_i - t_i , and costs $c_e \ge 0$ for each edge $e \in E$. The goal is to find a minimum cost set of edges F such that for all i, s_i and t_i are in different connected components of G'=(V,E-F).

Let P_i be the set of edges in the unique path in T between s_i and t_i . Then we can formulate the problem as the following integer program:

$$\begin{array}{ll} \text{minimize} & \displaystyle \sum_{e \in E} c_e x_e \\ \\ \text{subject to} & \displaystyle \sum_{e \in P_i} x_e \geq 1, \quad 1 \leq i \leq k, \\ \\ & x_e \in \{0,1\}, \qquad e \in E. \end{array}$$

Suppose we root the tree at an arbitrary vertex r. Let $\operatorname{depth}(v)$ be the number of edges on the path from v to r. Let $\operatorname{lca}(s_i,t_i)$ be the vertex v on the path from s_i to t_i whose depth is minimum. Suppose we use the primal-dual method to solve this problem, where the dual variable we increase in each iteration corresponds to the violated constraint that maximizes $\operatorname{depth}(\operatorname{lca}(s_i,t_i))$.

Prove that this gives a 2-approximation algorithm for the multicut problem in trees.

- **4.** In the *minimum-cost branching* problem we are given a directed graph G = (V, A), a root vertex $r \in V$, and weights $w_{ij} \geq 0$ for all $(i, j) \in A$. The goal of the problem is to find a minimum-cost set of arcs $F \subseteq A$ such that for every $v \in V$, there is exactly on directed path in F from r to v. Use the primal-dual method to give an optimal algorithm for this problem.
- **5.** Consider the following two algorithms for the knapsack problem:
 - The greedy algorithm (pick the item with best value of profit(i)/size(i));
 - The algorithm that packs the maximum profit item. Prove that the algorithm that picks the better of these two solutions is a 2-approximation for the knapsack problem.

1

- **6.** Suppose we are given a directed acyclic graph with specified source node s and sink node t, each arc e has an associated cost c_e . We are also given a length bound L. Give a fully polynomial time approximation scheme for the problem of finding a minimum-cost path from s to t, of total length at most L.
- 7. You are given a biased coin which comes up heads with probability p and tails with probability 1-p. What is the expected number of times you need to toss the coin before the first head appears (including the head itself)?
- **8.** Suppose we have access to a source of unbiased random bits. This problem looks at constructing biased coins or dice from this source.
 - 1. Show how to construct a biased coin, which is 1 with probability p and 0 otherwise, using O(1) random bits in expectation.
 - 2. Show how to sample from [n], with probabilities p_1, \ldots, p_n , using O(log n) random bits in expectation.
 - 3. Show that the "in expectation" caveat is necessary: for example, one cannot sample uniformly over $\{1, 2, 3\}$ using O(1) bits in the worst case.