- PCは出来るだけ無線LANにつなげて下さい。
- アクセスポイントは

AP: 001D73F25138 PASS: 39dh6617j

資料は下記です

https://github.com/manycolors/mruby-iot-workshop

http://enzi.cc/iot.html

軽量Ruby普及・実用化推進ネットワーク 技術交流会

~ mruby × IoT ~

2015/11/17

福岡県Ruby・コンテンツビジネス振興会議

自己紹介

2010年 Manycolors株式会社を設立後、遺伝子解析Webサービスやハードウェアの開発を手がける。

2013年 mruby プロトタイピングプラットフォーム「enzi」をSCSK九州と共同開発。 2014年 enziを使った海洋及びサービスで第6回フクオカRuby 大賞・県知事賞受賞。

本セミナーについて

- mrubyの基礎
- 電子部品の基礎的な使い方(LED,温度センサ)
- インターネットとデバイスの連携(IoT, M2M)
- ・プロトタイピング

mrubyの基礎

「Ruby」を省リソース化した「mruby」の概要・特徴

mrubyとは

- Ruby良さをそのままに軽量化した軽量版Ruby
 - RAMサイズ100KB程度で動作可能
 - 組込み機器にも搭載可能

- 経済産業省「地域イノベーション創出研究開発事業」の研究成果として2012年4月に「mruby」を公開
- 商用利用しやすい MITライセンスのOSS

http://github.com/mruby/mruby にてソース公開

IoT時代の新言語 - mruby

- もののインターネット (IoT)
 - → 全てのものがネットワークに繋がっていく
- 組込み分野もフロンティア領域を重点分野として新しい市場が形成されていく
 - **→ これに対応した組込み開発が必須になっていく**

経済産業省 組込み開発の今後 資料より

mrubyの特徴

- ISO, JIS規格のRubyに準ずる言語仕様
 - 本家Rubyと同様に使える
- コンパクトな処理系「mruby VM」
 - mrubyコンパイラが出力するバイトコードを実行
 - VMさえ動作すればどんな環境でも動作可能 Windows, Mac, Linux, ITRON, Android, iOS ...
- C/C++言語との高い親和性
 - 組込みシステムの資産が再利用可能
 - アプリケーションにmrubyを組込み可能

補足: Rubyとmruby

Ruby	mruby
インタプリタ言語	インタプリタ言語/コンパイラ言語
C言語モジュールの呼び出しが可能	C言語モジュールの呼び出し、C言語から の呼び出しが可能
実行時にRubyGemsによる機能拡張が可能	ビルド時にmrbgemsによる機能拡張が可能 ※mrbgemsとRubyGemsとは互換性なし
Integer / Integer → Integer	Integer / Integer → Integer または Float ※割り切れなければ Float に変換
非常に大きな整数値はBignumで扱われる	非常に大きな整数値はFloatで扱われる
正規表現を標準装備	正規表現はオプション ※複数から選択可能
ASCII, Shift_JIS, UTF-8など様々な文字 コードが利用可能	利用可能な文字コードはASCII, UTF-8の み
バイナリ配布(ソースコードも入手可)	ソースコード配布 ※容易にカスタマイズ可能

mrubyを支えるコミュニティ

- オープンソースコミュニティ
 - 3,000人超のフォロワー
 - 150人以上のコントリビュータ
 - 6,900件を超える改良・修正

- NPO軽量Rubyフォーラム
 - ワーキンググループによる活動
 - セミナー・講演会等でのmruby広報活動
 - 福岡県からの支援

http://forum.mruby.org (軽量Rubyフォーラムサイト)

会員募集中!!

オープンソース として成長

- Creative
- Powerful

会員企業による商 業ベースでの利用 推進

- ・実用化
- ・ビジネス 利用ノウハウ

enzi

- mruby rapid prototyping platform -

enziの概要と基本的な使い方

enziについて

enzi – mruby rapid prototyping platform –

mrubyの活用を検討している企業の技術者、mrubyの習得を目的としている学生・技術者向けに

- mrubyが組み込まれたボード(enziボード)
- mrubyのアプリ開発・簡易動作シミュレーションの出来るWeb環境 (enziシミュレータ)

というmruby教育・検証の為の2つの機能を統合した新しい形のシステムです。

enziボード

enziシミュレータ

enziの特徴・利点

- mrubyを簡単に試せる
 - Webブラウザでのmrubyプログラミング
 - コンパイル結果はmrubyボードで動作
 - mirbによる対話型でのmruby実行も可能
- mrubyでものを動かせる
 - GPIO, SPI, I²C, UART等をmrubyで制御
 - Ethernetポートを利用したネットワーク機能

enziの利用イメージ

enziボードに接続した温度センサの値を読むmrubyプログラムを動作させる手順例 (enzi.cc より引用)

enziボード外観

enziのセットアップ

• 情報は

http://enzi.cc/iot.html

にもまとめてあります

enziのセットアップ

- ソフトウェアインストール (初回のみ)
- enziサイトへのログイン
- ライセンス登録(初回のみ)
- enziシミュレータでのシミュレーション
- プログラムのコンパイル
- enziボードでのプログラム実行

ソフトウェアのインストール

- VCP(仮想COMポート)ドライバのインストール https://goo.gl/hLI1XQ
- ターミナルソフト(CoolTerm)のインストール https://goo.gl/VZI9WM
- <注意>
- ※ 上記URLは大文字/小文字の区別あり
- ※ 使用環境に合ったものをインストールすること
- ※ Windows用のVCPドライバは Readme を参照のこと

enziサイトへのログイン

1. enziサイトを開く

http://enzi.cc

- ※ Internet Explorer以外のブラウザを推奨
- 2. 画面左上のloginのリンクをクリック

3. お持ちのアカウントを使ってログイン

enziライセンス登録

4. 画面右上の「登録」をクリック

5. enzi同梱の「Quick Start Guide」に印字されている ライセンスキーを入力し、「送信する」をクリック

以上で、ライセンス登録は完了です。

enziシミュレータでのシミュレーション

画面上部の「シミュレータ」のリンクをクリック

enziシミュレータでのシミュレーション

enziシミュレータでのシミュレーション

サンプルコードの説明

```
p "Hello World!"—— 文字列を表示
                          D9ポートにアナログ値100を出力
  analogWrite (D9, 100)
  status = 0
5
                                       無限ループ
  loop do
                                      0~25の範囲でループ
    (0..25). each do |i|
      status = 1
                                  D10ポートにstatus(0または1)
      digitalWrite(D10, status)-
9
                                  を出力
      analogWrite(D8, i*10)
                               D8ポートに i の10倍の値を出力
      delay (1600)
    end
                         1600ms(1.6秒)処理を停止する
  end
```

プログラムのコンパイル

1. Compileボタンをクリック

- 2. ダウンロードされる実行モジュール(enzi.ezb)を PCに保存
- 3. enzi.ezbをmicroSDカードにコピー

 ※ ファイル名は(enzi.ezb)は変更しないこと

 ※ microSDのルートディレクトリに保存すること

enziボードでのプログラム実行

4. microSDカードをenziボードに装着 ※ カチッと音がするまで差し込む

5. CoolTermを起動

6. enziボードとPCをUSBケーブルで接続

7. CoolTermの「Option」をクリック

enziボードでのプログラム実行

8. Portを選択してOKをクリック

Windowsの場合: "COMx"

Macの場合: "usbmodemXXXX"

※ Portが選択できない場合はenziの仮想COMポートが正しく認識されていません。

VCPドライバのインストールを確認して下さい。

enziボードでのプログラム実行

9. enziボードのリセットボタン(赤LEDが点灯している側のボタン)を押下

10. CoolTermの「Connect」をクリック

※ CoolTermの画面に "Hello World!" が表示されれば OK

補足: enziボードでのプログラム再実行

1. CoolTermの「Disconnect」をクリック

- 2. enziボードのリセットボタンを押下
- 3. CoolTermの「Connect」をクリック

enziではmirb(mruby版のirb)による対話形式でのmruby実行が可能

対話モードでの動作手順

1. enziボードからmicroSDカードを抜く

2. CoolTermを起動

- 1. オプション画面で「Terminal」を選択し下記を変更
 - ① Line Modeを選択
 - ② Local EchoをON
- 2. OKをクリック
- 3. enziボードのリセット ボタンを押下
- 4. CoolTermの「Connect」をクリック

mirbの実行

mirbでmrubyを実行してみましょう。

```
> 1+2+3
=> 6
> [4,6,-1,0,2].sort
=> [-1, 0, 2, 4, 6]
> 5.times {|i| puts i}
```

- 1. 長いクラス定義などはSDに書き込み
- 2. 実行はmirbで実行すると便利です

IoTのための電子回路基礎

電子部品とその基礎的な使い方

enziでLEDを光らせる①

- enziはArduinoとレイアウト及び多くの機能が同じな外部IOを 用意してあります
- 適切に外部電子部品等を接続することで制御/観測が可能 です
- 最も簡単な部品としてLEDを光らせてみましょう

enziでLEDを光らせる②

- LEDとは
 - 発光ダイオードの略
 - 省エネ照明などに利用
 - 片方向にしか電流が流れません
- 簡易的な回路で実験
 - 本当はトランジスタやドライバICを用いる

enziでLEDを光らせる③

LEDを光らせるための回路図

enziでLEDを光らせる4

ブレッドボードで回路を作る

ブレッドボードは赤線で示す穴同士が金属で接続されています。

その仕組を利用して、電子部品の端子を穴に差し込むことで回路を作ることができます。

enziでLEDを光らせる⑤

ブレッドボードを使ったLED回路の例

enziでLEDを光らせる⑥

- enziサイトのサンプルプログラムを動作させる →LEDが徐々に明るくなる
- 2. D8をD10に接続し直す
 - → LED ON/OFFを繰り返す

```
loop do
(0..25).each do |i|
status ^= 1
digitalWrite(D10, status)
analogWrite(D8, i*10)
delay(1600)
end
end
```

enziでLEDを光らせる⑦

- DigitalWrite: IOOON/OFF
 - DigitalWrite(対象ピン, 0か1)
- 組み合わせて色を変えてみましょう
- led.rb

digitalWrite(D8, 1) #R, ON

enziでPWM①

- PWMとは
 - 半導体を使った電力を制御する方式の1つです。オンとオフの繰り返しスイッチングを行い、出力される電力を制御します。
 - Pulse Width Modulation

enziでPWM②

- AnalogWrite: PWM出力
 - AnalogWrite(対象ピン, 0-255)
- loopを使いなめらかに色を変えてみましょう
- pwm.rb

analogWrite(D8, 10) #R, 10

enziでIoT

enziを使ったIoTのプロトタイピング

enziでネットワーク接続

1. microSDにenzi.cfgというファイルを作成し、下記の内容を保存

```
ipaddr=192. 168. 11. XXX2
dns=192. 168. 11. 1
subnet=255. 255. 255. 0
gateway=192. 168. 11. 1
```

個別に割り振るアドレス(101~ 110)を入力して下さい。

- 2. microSDをenziボードに装着し、LANケーブルでenziを HUBに接続
- 3. enziボードを起動※ CoolTermで起動時の表示(IPアドレス等)を確認
- 4. PCからenziに対してpingを実行(接続確認)

ping 192. 168. 11. XXX

enziでhttp

- SimpleHttpを使いyahoo.co.jpに接続
- get出来ることを確認
- get_yahoo.rbを参照

午前の復習

- mrubyの概要
- enziの基礎
- LEDを光らせる(機器の制御の基礎)
- PWMでLEDを制御
- httpアクセス

loop do 処理 end

delay(50) #delay 50ms

お願い

• info@manycolors-inc.com

にタイトル"mruby-iot"で空メールを送って下さい。

午後にSlackを使うためグループに追加します。 (本日終了後改めて削除させていただきます)

enziと温度センサ

- センサによる観測
- 実際には変換テーブルや補正が必要です
- クラスを用意してますのでtemp_bar.rbを見て下さい ※切り欠きがあるボードはtemp_bar_2.rbを 見て下さい

enziとweb api

- センサによる観測
- 実際には変換テーブルや補正が必要です
- web_api.rbを見て下さい
- 測定した温度をweb api経由でSlack(またはTwitter)に投稿します。
- IDにはenziのIPアドレスの末尾(0-255)を入れ、識別できるようにして下さい
- このweb apiのソースもGitHubで閲覧可能です

enziを簡易Webサーバにする

- enziはサーバにもなります
- hello_world_ethernet.rbを見て下さい
- Webブラウザでenziのアドレスにアクセス

Google chartを表示する

- 温度測定した結果をgoogle chartで表示します
- google_chart.rbを見て下さい
- Webブラウザでenziのアドレスにアクセス

enziの応用①

- 測定温度によってLEDの光り方を変えてみましょう
- ネット上の情報(天気など)と併せてSlackに投稿してみましょう
 - ex. 晴れ(23°C)など
- センサには気圧計もついているので使ってみましょう
 - ex. 気圧もgoogle chartに表示

まとめ

- mrubyの基礎
- 電子部品の基礎的な制御と観測
- インターネットとデバイスの連携(IoT, M2M)
- プロトタイピング

enziユーザーグループ

https://www.facebook.com/groups/321739777988177