

Olimpiada Departamental de Física 2018 2Da Ronda - Nivel I

IOMBRE:
echa de Nacimiento:
DIRECCIÓN:
DEPARTAMENTO:
ELÉFONO:
NSTITUCIÓN EDUCATIVA:

Problema 1: Calcular la fuerza F horizontal mínima con que hay que apretar un bloque de masa $m = 1.3 \, kg$ contra una pared para que éste no se caiga. *Nota:* considere que entre el bloque y la pared hay fricción.

Problema 2: Dos cilindros homogéneos de distinto radio y masas m_1 y m_2 respectivamente, se encuentran en equilibrio, apoyados entre si y apoyados sobre dos planos inclinados que hacen los ángulos α y β respecto a la horizontal, tal como se muestra en la figura. Se supone qu el roce es despreciable en todos los puntos de contacto. Hallar el ángulo θ que hace la línea de los centros A y B con la horizontal.

Problema 3: La masa m_1 se mueve con velocidad instantánea \overrightarrow{v} en una trayectoria circunferencial de radio R sobre una mesa horizontal con roce despreciable, tal como se muestra en la figura. La masa m_1 está sujeta a una cuerda que pasa a través de un orificio ubicado en el centro de la mesa de la cual cuelga un objeto de masa m_2 . Sí la masa m_2 está en equilibrio, calcular:

- a) La tensión T de la cuerda.
- b) La rapidez de la masa m_1 .

Problema 4: Un bloque de masa m=1 kg inicia su movimiento en el punto A a una altura h=0.47 m y se desliza hacia abajo por una pista curva(un cuarto de circunferencia) de fricción despreciable, la cual empalma en el punto B con un plano inclinado, tal como se muestra en la figura. El coeficiente de fricción dinámico entre el bloque y el plano inclinado es $\mu_k=0.25$.

- a) Hallar la velocidad v_B del bloque al pasar por el punto B.
- b) Hallar la altura máxima y que alcanza el bloque en el plano inclinado con roce en el punto C.
- c) ¿Cuál es la condición matemática que debe de cumplirse para que el bloque siempre retorne hacia la base del plano inclinado?
- d) Cuando el bloque se devuelve, bajando por el plano inclinado , ¿hasta que altura h_1 llega sobre la curva sin roce?
- e) En un segundo viaje partiendo del reposo desde la curva sin roce, ¿hasta qué altura y_1 alcanza el bloque sobre el plano inclinado con roce?
- f) ¿Cuál es la distancia total d_T que recorre el bloque sobre el camino con roce antes de quedar en reposo definitivamente?

Tiempo: 4 horas Cada problema vale: 7 puntos