بسمه تعالى

هوش مصنوعی عاملین منطقی - ۲ نیمسال اول ۱۴۰۳–۱۴۰۲

دکتر مازیار پالهنگ آزمایشگاه هوش مصنوعی دانشکدهٔ مهندسی برق و کامپیوتر دانشگاه صنعتی اصفهان

یادآوری

- عامل دانش مبنا
- سطح دانش، سطح منطق، سطح پیاده سازی
 - دنیای دیو
 - اکتشاف در دنیای دیو
 - منطق
 - ایجاب کردن
 - مدلها =

ایجاب کردن در دنیای دیو

- وضعیت پس از تشخیص هیچ چیز در [۱و۱] و نسیم در [۱و۲]
- در نظر گرفتن همهٔ مدلها (فقط با در نظر گرفتن گودال)

- ٣ گزینهٔ بولی برای [۲و۱]، [۲و۲] و [۱و۳]
 - در نتیجه ۸ مدل ممکن

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١٤٠٢

قوانین دنیای دیو +مشاهدات KB

مازيار پالهنگ

هوش مصنوعی - نیمسال اوّل ۲۰۳-۱۴۰۲

- قوانین دنیای دیو +مشاهدات KB
 - ، امن است [1،2] امن است [1،2] امن است
- با چک مدل اثبات می شود. $KB \models \alpha_1$ ، •

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١٢٠

قوانین دنیای دیو +مشاهدات-KB

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١

- قوانین دنیای دیو +مشاهدات=KB
 - "امن است = α2 = α2 =

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١

- KB=قوانین دنیای دیو +مشاهدات
 - "امن است [2,2] امن است $KB \not\models \alpha_2$

مازيار پالهنگ

هوش مصنوعی - نیمسال اوّل ۱۴۰۲-۱

ایجاب کردن

$$KB \models \alpha \blacksquare$$

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١

استنتاج

- یک روال استنتاج یکی از دو کار را می تواند انجام دهد:
- با داشتن یک KB تمامی جملاتی که از آن ایجاب می شوند را بیابد
- با داشتن یک جمله ایجاب شدن آن توسط KB را بررسی کند.
- یک روال استنتاج که فقط جملاتی که ایجاب می شوند را تولید می کند یک استنتاج موثق یا معتبر (sound) نامیده می شود.
- يجاد مي شود. α جملهٔ α توسط روال استنتاج i از KB ايجاد مي شود.
 - $KB \mid i$ کامل بودن: i کامل است اگر α

مازيار پالهنگ

منطق گزاره ای: دستور

- ساده ترین منطق
- گزاره یک جملهٔ خبری که بتوان به آن ارزش درست یا نادرست نسبت داد.
 - نمادها: ثابتهای منطقی (درست، نادرست)، متغیرهای گزاره ای (P،Q،...)، رابطهای منطقی و پرانتزها
 - ثابتهای منطقی به تنهائی یک گزاره هستند
 - اگر Pو Q دو گزاره باشند، $Q \land P$ نیز یک گزاره است.
 - اگر P و Q دو گزاره باشند، $Q \lor P$ نیز یک گزاره است.

- اگر P و Q دو گزاره باشند، $Q \Leftrightarrow P$ نیز یک گزاره است.
- اگر P و Q دو گزاره باشند، $Q \Leftrightarrow P$ نیز یک گزاره است.
 - اگر P یک گزاره باشد، P نیز یک گزاره است.
 - \rightarrow جمله \rightarrow جملهٔ ساده یا اتمی \mid جملهٔ مرکب
 - ... | R | Q | P | False | True ← جملهٔ ساده
 - جمله مرکب → (جمله) | جمله رابط جمله | جمله |
 - \Leftrightarrow | \Rightarrow | \vee | \wedge \leftarrow رابط
 - لیترال به یک جملهٔ ساده یا نقیض آن گفته می شود.

مازيار پالهنگ

Figure 7.7

Operator Precedence : $\neg, \land, \lor, \Rightarrow, \Leftrightarrow$

A BNF (Backus-Naur Form) grammar of sentences in propositional logic, along with operator precedences, from highest to lowest.

مازيار پالهنگ

■ برای جلوگیری از ابهام و افزایش خوانائی در صورت نیاز از پرانتز و کروشه استفاده می شود.

منطق گزاره ای: معنا

- معنا قوانینی را برای تعیین درستی یک جمله در یک مدل را بیان می دارد.
- در منطق گزاره ای، یک مدل مقادیر درستی نمادهای گزاره ای را می نشاند.
 - بطور مثال:

$$m_1 = \{P_{1,2} = false, P_{2,2} = false, P_{3,1} = true\}$$
.

- معنای یک جمله نیز با داشتن یک مدل باید مشخص شود.
- درست همیشه یک واقعیت درست و نادرست یک واقعیت همیشه نادرست است.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

جملات در دنیای دیو

- اباشد. $P_{x,y}$ درست باشد اگریک گودال در $P_{x,y}$ باشد.
 - فرض کنید $B_{x,y}$ درست باشد اگر نسیم در $B_{x,y}$ باشد.
- برای هر جمله یک برچسب R_i جهت رجوع در نظر می گیریم.
 - می دانیم سلول [1،1] گودال نیست:

 $R_1 : \neg P_{1,1}$

■ یک خانه نسیم دار است اگر و تنها اگر در خانهٔ مجاور آن یک گودال باشد (یک جمله برای هر خانه):

 $R_2: B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1}).$

 $R_3: B_{2,1} \Leftrightarrow (P_{1,1} \vee P_{2,2} \vee P_{3,1}).$

مازيار پالهنگ

هوش مصنوعی - نیمسال اوّل ۰۳-۱۴۰۲

جملات در دنیای دیو

د يو .	دنیای	در هر	در ست ه	قىل	جملات	
J.,.		J J		٠٠٠		

ما:	مثال	رای	■ ب
-----	------	-----	-----

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2	2,2	3,2	4,2
ок			
1,1 V OK	2,1 A B OK	3,1	4,1

$$R_4: \neg B_{1,1}.$$

 $R_5: B_{2,1}.$

جدول درستی برای استنتاج

از KB ایجاب می شود؟ $\alpha_1 = -P_{1,2}$ آیا

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
false	true	true	true	true	false	false						
false	false	false	false	false	false	true	true	true	false	true	false	false
:	:	:	:	:	:	:	:	:	:	:	:	:
false	true	false	false	false	false	false	true	true	false	true	true	false
false	true	false	false	false	false	true	true	true	true	true	true	true
false	true	false	false	false	true	false	true	true	true	true	true	true
false	true	false	false	false	true	true	true	true	true	true	true	true
false	true	false	false	true	false	false	true	false	false	true	true	false
:	:	:	:	:	:	:	:	:	:	:	:	:
true	false	true	true	false	true	false						

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١٢٠

استنتاج با فهرست کردن

function TT-ENTAILS? (KB, α) returns true or false

فهرست کردن بصورت عمق نخست

```
inputs: KB, the knowledge base, a sentence in propositional logic
           \alpha, the query, a sentence in propositional logic
  symbols \leftarrow a list of the proposition symbols in KB and \alpha
  return TT-CHECK-ALL(KB, \alpha, symbols, \{\})
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false
  if EMPTY?(symbols) then
      if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)
      else return true // when KB is false, always return true
  else do
      P \leftarrow FIRST(symbols)
      rest \leftarrow REST(symbols)
      return (TT-CHECK-ALL(KB, \alpha, rest, model \cup {P = true})
              and
              TT-CHECK-ALL(KB, \alpha, rest, model \cup \{P = false \}))
ماز بار يالهنگ
                                  هو ش مصنوعی – نیمسال اوّل ۱۴۰۲–۱۴۰۲
                                                                                         21
```

- موثق چون همان تعریف ایجاب کردن را پیاده سازی می کند.
 - کامل چون برای هر KB و α کار می کند و پایان می یابد.
 - O(n) با n نماد پیچیدگی زمانی $O(2^n)$ و پیچیدگی فضا

هم ارزی منطقی

```
دو جملهٔ هم ارز منطقی هستند اگر و تنها اگر در مدلهای یکسانی درست باشند \alpha \equiv \beta iff \alpha \models \beta and \beta \models \alpha
```

```
(\alpha \wedge \beta) \equiv (\beta \wedge \alpha) \quad \text{commutativity of } \wedge \\ (\alpha \vee \beta) \equiv (\beta \vee \alpha) \quad \text{commutativity of } \vee \\ ((\alpha \wedge \beta) \wedge \gamma) \equiv (\alpha \wedge (\beta \wedge \gamma)) \quad \text{associativity of } \wedge \\ ((\alpha \vee \beta) \vee \gamma) \equiv (\alpha \vee (\beta \vee \gamma)) \quad \text{associativity of } \vee \\ \neg(\neg \alpha) \equiv \alpha \quad \text{double-negation elimination} \\ (\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha) \quad \text{contraposition} \\ (\alpha \Rightarrow \beta) \equiv (\neg \alpha \vee \beta) \quad \text{implication elimination} \\ (\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) \quad \text{biconditional elimination} \\ \neg(\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) \quad \text{de Morgan} \\ \neg(\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) \quad \text{de Morgan} \\ (\alpha \wedge (\beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) \quad \text{distributivity of } \wedge \text{ over } \vee \\ (\alpha \vee (\beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) \quad \text{distributivity of } \vee \text{ over } \wedge \\ \end{pmatrix}
```

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ١٤٠٢-١٤٠٠

اعتبار و قابل ارضا بودن

- یک جمله معتبر است اگر در همهٔ مدلها درست باشد یک جمله معتبر است اگر در همهٔ مدلها درست باشد $A \Rightarrow A$, $A \Rightarrow A$ $(A \land (A \Rightarrow B)) \Rightarrow B$
- استنتاج و اعتبار بصورت زیر به یکدیگر مرتبط هستند $KB \models \alpha$ if and only if $(KB \Rightarrow \alpha)$ معتبر باشد
 - عیک جمله قابل ارضا است اگر در مدلی درست باشد
- e.g., A∨ B, C
- یک جمله غیر قابل ارضا است اگر در هیچ مدلی درست نباشد $e.g., A \land \neg A$
- قابل ارضا بودن و استنتاج بصورت زیر به یکدیگر مرتبط هستند: $KB \models \alpha \text{ if and only if } (KB \land \neg \alpha)$ قابل ارضا نباشد

مازيار پالهنگ

هوش مصنوعي - نيمسال اوّل ٢٣-١۴٠٢

■ مسئلهٔ قابل ارضا بودن یک جمله در منطق گزاره ای، به مسئلهٔ SAT معروف است.

خلاصه

- مدلها =
- نمایش جملات دنیای دیو در منطق گزاره ای
 - جدول درستی برای استنتاج
 - هم ارزیها

دانشگاه صنعتی اصفهان – مجموعهٔ تالارها هوش مصنوعی - نیمسال اوّل ۰۳-۱۴۰۲ مازیار پالهنگ

- دقت نمائید که پاورپوینت ابزاری جهت کمک به یک ارائهٔ شفاهی می باشد و به هیچ وجه یک جزوهٔ درسی نیست و شما را از خواندن مراجع درس بی نیاز نمی کند.
 - لذا حتماً مراجع اصلى درس را مطالعه نمائيد.
 - در تهیهٔ اسلایدها از سایت کتاب استفاده شده است.