

How to make semi private learning effective

Francesco Pinto*¹, Yaxi Hu*¹, Fanny Yang¹, Amartya Sanyal^{1,2}

¹ETH Zurich, ²Max Planck Institute for Intelligent Systems

DIFFERENTIALLY PRIVATE LEARNING

An algorithm \mathcal{A} is said to be (ϵ, δ) -differentially private (DP) if

$$\mathbb{P}\left[\mathcal{A}(S_1) \in Q\right] \le \exp(\epsilon)\mathbb{P}\left[\mathcal{A}(S_1) \in Q\right] + \delta$$

for all neighbouring datasets S_1, S_2 and output sets Q.

Existing Results: Sample complexity of DP algorithms are **dimension-dependent** in the worst case.

In Semi-Private learning [1], the learner accesses

- Private Labelled dataset,
- Public Unlabelled dataset from nearby distribution

This work: Design Semi-Private learner for linear half-spaces that

- 1. Is Computationally Efficient
- 2. Admits Dimension Independent sample complexity
- 3. Performs well in Challenging Practical Applications

THEORETICAL RESULTS

We exploit two properties of data distribution μ (covariance Σ)

- (A1) Large Margin: μ admits a classifier w^* with margin γ
- (A2) Low Rank: Large Proj. of w^* on top-k components of Σ .

Algorithm 1 Unlabelled dataset $(\mathbf{X}_U \in)$, Labelled dataset (\mathbf{X}_L, Y_L) , k

- 1: $\widehat{\Sigma} \leftarrow \sum_{\mathbf{x} \in S_U} \mathbf{x} \mathbf{x}^{\top}$, $\mathbf{A}_k \leftarrow \text{top-}k$ principal components of $\widehat{\Sigma}$.
- 2: $\mathbf{X}_L^{\operatorname{Proj}} \leftarrow \operatorname{Project} \mathbf{X_L} \text{ on } \mathbf{A}_k$.
- 3: $\hat{\mathbf{w}}_{\epsilon,\delta} \leftarrow \text{Run Noisy-SGD on } (\mathbf{X}_L^{\text{Proj}}, Y_L) \text{ with privacy parameters } \epsilon, \delta$

Guarantees on $\hat{\mathbf{w}}_{\epsilon,\delta}$

- Privacy: $\hat{\mathbf{w}}_{\epsilon,\delta}$ is (ϵ,δ) -DP.
- Accuracy: For $\alpha, \beta \geq 0$, $|\mathbf{X}_U| = O\left(\frac{1}{\gamma^2}\right)$ and $|\mathbf{X}_L| = \widetilde{O}\left(\frac{\sqrt{k}}{\alpha \epsilon \gamma}\right)$,

 $\mathbb{P}\left[\mathbf{Error}\left(\hat{\mathbf{w}}_{\epsilon,\delta}\right) \leq \alpha\right] \geq 1 - \beta$

EXPERIMENTAL SETTING

We consider

- ► 5 pre-training methods on Imagenet (as raw images fail at A2)
- Low rank \Longrightarrow small ξ_k for small k
- ► Images in **pixel space** ≉ low rank.
- ▶ **Pre-trained** features \approx low rank.
- Seven diverse datasets
 - 3 medical datasets (DermNet, PCAM, Pneumonia)
 - ► 4 object datasets (CIFAR10/100, Flower-16, GTSRB).
- Strict privacy guarantees with $\epsilon < 1$

EXPERIMENTS I: REDUCING DIMENSIONS

Takeaway:

MocoV2+

SemiWeakS

- ▶ Strict privacy ($\epsilon = 0.1$): Dimension $\Downarrow \Longrightarrow$ Accuracy \uparrow .
- Without privacy ($\epsilon = \infty$): Dimension $\Downarrow \Longrightarrow$ Accuracy \Downarrow .

EXPERIMENTS II: COMPARING ALGORITHMS ACROSS DATASETS

Comparison across datasets and pre-training for $\epsilon = 0.1$.

Methods	CIFAR10	CIFAR100
Baseline	84.89	50.65
JL [2]	84.4	50.56
AdaDPS [3]	83.49	33.9
GEP [4]	84.14	41.29
OURS	85.89	55.86

Different methods for $\epsilon = 0.7$.

EXPERIMENTS III: LOW DATA SETTING

- With less private data, DP-SGD fails catastrophically.
- Our algorithm is robust to decreasing amount of private data.

REFERENCES AND QR CODE FOR PAPER

- [1] Alon, et al. "Limits of private learning with access to public data." Advances in neural information processing systems 32 (2019).
- [2] Lê Nguyên, et al. "Efficient private algorithms for learning large-margin halfspaces." Algorithmic Learning Theory. PMLR, 2020.
- [3] Li, Tian, et al. "Private adaptive optimization with side information." International Conference on Machine Learning. PMLR, 2022.
- [4] Yu, Da, et al. "Do not let privacy overbill utility: Gradient embedding perturbation for private learning." International Conference on Learning Representations (2021).