1Cademy at Semeval-2022 Task 1: Investigating the Effectiveness of Multilingual, Multitask, and Language-Agnostic Tricks for the Reverse Dictionary Task

Zhiyong Wang*, Ge Zhang*, Nineli Lashkarashvili

Task Description

- Three embeddings: skip-gram embeddings, character-based embeddings, and transformer-based contextualized embeddings.
- Five languages: English, Spanish, French, Italian, and Russian
- Heads of glosses are hidden

Results and Findings

1. Do all architectures yield comparable results?

2. What are the effects of Re-Tokenization?

3. What are the effects of combining different languages as inputs?

4. What are the effects of handling all tracks together?

Different Architectures

- Transformer-based model is hard to tune with small amounts of data
- ELMo-based models achieve best results

Word Representations		SGNS			Char			Electra	
Monolingual Models	MSE	COS	RANK	MSE	COS	RANK	MSE	COS	RANK
RNN+WordPiece	1.000	0.249	0.310	0.158	0.778	0.442	1.454	0.832	0.433
LSTM+WordPiece	0.990	0.228	0.375	0.148	0.791	0.458	1.491	0.831	0.449
Transformer+WordPiece	1.042	0.214	0.367	0.194	0.780	0.453	1.796	0.827	0.486
BiRNN+WordPiece	0.989	0.221	0.395	0.150	0.791	0.454	1.483	0.832	0.449
Elmo+WordPiece	1.041	0.252	0.282	0.161	0.772	0.430	1.512	0.829	0.434
Elmo+BPE	1.037	0.250	0.250	0.162	0.774	0.443	1.537	0.822	0.436
Elmo+ULM	1.022	0.265	0.259	0.157	0.781	0.430	1.525	0.829	0.432
Elmo+WordPiece+DWA	0.985	0.246	0.298	0.142	0.799	0.447	1.514	0.827	0.428

Table 1: Experiment results on English resource test data using the monolingual models. Check section 2 for word algorithm representations' abbreviation. Check section 3 for details of monolingual models.

Re-Tokenization

- Three widely-used tokenization algorithm: BPE, WordPiece, and Unigram:
- The re-tokenization can improve model performance on this task significantly.

Original Tokenization

Multilingual Models

- 1. Adding Language Token
- 2. Residual Cut (Liu et al.,2020)

Language Token

Liu, D., Niehues, J., Cross, J., Guzmán, F., & Li, X. (2020). Improving zero-shot translation by disentangling positional information. arXiv preprint arXiv:2012.15127.

Multilingual Models

Languages		EN			ES			FR			IT			RU	
Multilingual Models	MSE	COS	RANK												
Transformer	1.023	0.201	0.400	0.977	0.300	0.310	1.051	0.278	0.338	1.143	0.280	0.340	0.564	0.318	0.363
Transformer+RC	1.029	0.199	0.417	1.005	0.298	0.329	1.069	0.253	0.374	1.189	0.267	0.364	0.601	0.279	0.409
Transformer+ALT	1.043	0.215	0.397	1.014	0.308	0.310	1.103	0.280	0.350	1.158	0.276	0.341	0.603	0.326	0.337
Transformer+RC+ALT	1.011	0.159	0.500	0.955	0.266	0.422	1.044	0.271	0.360	1.129	0.264	0.376	0.561	0.308	0.371

Table 2: Experiment results on **SGNS** word representation using the multilingual Transformer-based models. Check section 3 for details of multilingual models. **RC** represents the Residual Cutting trick. **ALT** represents the Adding Language Token trick.

Multitask Model

Word Representations		SGNS			Char			Electra	
Multilingual Models	MSE	COS	RANK	MSE	COS	RANK	MSE	COS	RANK
Elmo_EN Elmo+ALT_EN	1.023 1.014	0.238 0.246	0.317 0.300	0.177 0.164	0.759 0.762	0.447 0.449	1.555 1.540	0.818 0.825	0.440 0.441
Elmo_ES Elmo+ALT_ES	0.953 0.960	0.342 0.351	0.234 0.235	0.532 0.511	0.810 0.822	0.405 0.393	NA NA	NA NA	NA NA
Elmo_IT Elmo+ALT_IT	1.094 1.106	0.343 0.343	0.218 0.214	0.355 0.354	0.720 0.735	0.403 0.387	NA NA	NA NA	NA NA
Elmo_FR Elmo+ALT_FR	1.001 1.004	0.313 0.321	0.255 0.246	0.388 0.387	0.752 0.757	0.411 0.411	1.298 1.228	0.845 0.859	0.445 0.439
Elmo_RU ELmo+ALT_RU	0.547 0.563	0.357 0.368	0.247 0.232	0.145 0.137	0.816 0.828	0.398 0.400	0.891 0.887	0.729 0.728	0.386 0.384

Table 3: Experiment results of the multilingual ELmo-based models. ALT represents the Adding Language Token trick.

- The Dynamic Weight Averaging (DWA) can keep different tasks converging at the same speed.
- The ELMo-based multitask model with DWA is as competitive as ELMo-based single task model across different languages.

Liu, S., Johns, E., & Davison, A. J. (2019). End-to-end multi-task learning with attention. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 1871-1880).