Кафедра электроники и квантовой физики Отчет по лабораторной работе №1

Движение носителей заряда в электрических и магнитных полях

Выполнили студенты 430 группы Карусевич А.А, Понур К.А.

Содержание

1	Теоретическая часть		2
	1.1	Элементарная теория эффекта Холла	2
2	Практическая часть		5
	2.1	Измерение вольт-амперной характеристики образца и его паразитного на-	
		пряжения	5
	2.2	Определение типа основных носителей в образце	6
	2.3	Расчёт постоянной Холла и подвижности основных носителей	7
3	Зак	лючение	9

1. Теоретическая часть

Введение

Особенности движения носителей заряда в электрических и магнитных полях определяют специфику функционирования подавляющего большинства приборов современной микроэлектроники. Данное описание содержит краткое изложение элементарных основ теории явлений переноса носителей заряда в однородном полупроводниковом материале. При этом речь пойдет как о движении в электрических полях различной напряженности, однородно и неоднородно распределенных в пространстве, так и о движении в скрещенных электрических и магнитных полях, т.е. в условиях проявления эффекта Холла. Для работы любой радиолинии необходимо, чтобы ток возбуждения антенны на её передающем конце отображал передаваемый сигнал, т.е. необходимо каким-то образом «записать» его на токе высокой частоты.

1.1. Элементарная теория эффекта Холла

Анализ транспорта носителей в полупроводниковых структурах, представленный в предыдущем разделе, требует знания концентрации носителей заряда и их подвижности в материале. Эти характеристики являются важными физическими величинами, определяющими многие свойства полупроводников, например, электропроводность, теплопроводность, термо-ЭДС и др.

Концентрацию и подвижность в отдельности можно определить, зная соотношение между ними. В данной работе это соотношение устанавливается экспериментально при помощи эффекта Холла.

Эффект Холла представляет собой поперечный гальваномагнитный эффект, суть которого заключается в следующем: если поместить полупроводниковую пластину во внешнее магнитное поле \vec{B} (рис. 1) и пропустить вдоль нее ток, то вследствие смещения движущихся зарядов к одной из граней пластины возникает поперечная разность потенциалов, называемая \mathcal{I} Холла. При этом (см. рис. 1.6, 1.в), носители различных знаков смещаются к одной и той же боковой грани полупроводника, поэтому с изменением типа электропроводности меняется и знак \mathcal{I} С.

С помощью эффекта Холла можно экспериментально определить тип носителей, концентрацию и подвижность в данном полупроводниковом образце. Другим важным практическим приложением этого эффекта являются измерения силы тока и мощности в цепях постоянного и переменного тока (вплоть до очень высоких частот), напряженности постоянных и переменных магнитных полей, преобразование сигналов, анализ спектров и т.д.

Рис. 1: Возникновение ЭДС Холла: схема эксперимента (a); смещение носителей заряда в дырочном (б) и электронном (в) полупроводниках, соответственно

Разберем эффект Холла более подробно. На рис. 1.а показан полупроводник, две плоскости которого подключены через омические (т.е. невыпрямляющие) контакты к внешней батарее. Обозначим \vec{j} плотность тока в направлении Ох. Магнитное поле \vec{B} приложено в направлении Оу. Рассмотрим электрон, двигающийся в отрицательном направлении оси Ох со средней скоростью \vec{V} . На движущийся в магнитном поле электрон действует магнитная составляющая силы Лоренца:

$$\vec{F} = -e[\vec{v}, \vec{B}].$$

В результате действия этой силы траектория электрона будет искривляться в направлении оси z, и, поскольку в этом направлении ток протекать не может, электроны будут накапливаться на боковой поверхности ($z=\pm a$, см. рис. 1) до тех пор, пока не установится электрическое поле \vec{E}_H , достаточное для создания силы. равной магнитной составляющей силы Лоренца, но направленной противоположно. Приравнивая эти силы, получим:

$$\vec{E}_H = [\vec{v}, \vec{B}] \tag{1}$$

Воспользуемся законом Ома в дифференциальной форме:

$$\vec{j} = \sigma \vec{E},\tag{2}$$

где $\sigma = e \cdot n \cdot \mu_n$ - удельная проводимость образца, $\mu_n = \frac{v}{E}$ - подвижность носителей. Соотношение (2) перепишем в следующем виде:

$$\vec{j} = e \cdot n \cdot \mu_n \cdot \vec{E} = -e \cdot n \cdot \vec{v} \tag{3}$$

Исключая v из соотношения (1), получим:

$$\vec{E}_H = -\frac{1}{en}[\vec{j}, \vec{B}] = R[\vec{j}, \vec{B}]$$
 (4)

Учитывая, что полный ток через образец I=jab, а поперечная ЭДС $U_H=E_Ha$, получим соотношение, связывающее ЭДС Холла с величиной электрического тока:

$$U_H = R \cdot \frac{I \cdot B}{b} \tag{5}$$

Величина R называется постоянной Холла и определяется как

$$R = -\frac{1}{e \cdot n} \tag{6}$$

Поперечную ЭДС U_H , ток I, напряженность магнитного поля B (для немагнитных образцов) и толщину b полупроводникового образца можно измерить. Это позволяет найти численное значение постоянной Холла.

В действительности, произведенный элементарный вывод коэффициента Холла (6) неточен: в нем не учтена разница между мгновенной скоростью электронов, входящей в выражение магнитной составляющей силы Лоренца, и дрейфовой скоростью, которую электрон приобретает под действием электрического поля. Кроме того, не учитывается распределение электронов по скоростям и механизмы рассеяния носителей. Формула (6) оказывается справедливой только для металлов и вырожденных полупроводников (вырожденным называется полупроводник с очень высокой, порядка 10^{19} атом/см³, концентрацией примеси). Более строгий анализ дает для невырожденных полупроводников значение R, которое отличается от выражения (6) множителем А. Если учитывать рассеяние носителей только на кристаллической решетке (взаимодействие с фононами), то $A = \frac{3\pi}{8}$. В общем виде постоянная Холла может быть записана как:

$$R = -\frac{A}{n \cdot e} ($$
для полупроводника n-типа)
$$R = \frac{A}{p \cdot e} ($$
для полупроводника p-типа) (7)

где множитель A может принимать значения от 1 до 1.7. Знак минус в формуле (7) демонстрирует, что ЭДС Холла для электронного полупроводника имеет полярность, противоположную полярности для дырочного полупроводника.

Знание электропроводности и постоянной Холла позволяет найти как концентрацию носителей, так и их подвижность.

Обозначим через холловский угол θ_H малый угол, который образует с осью х вектор напряженности суммарного электрического поля (см. рис. 1):

$$\theta_H \cong \operatorname{tg} \theta_H = \frac{E_H}{E} \tag{8}$$

Из 8 с учетом 2 и 4 получим:

$$\theta_H = \mu_{nH} \cdot B \tag{9}$$

где θ_H -холловский угол в проводнике n-типа, а μ_{nH} - так называемая холловская подвижности ность электронов (индекс H указывает на метод определения подвижности). Численное значение холловской подвижности может расходиться с величиной подвижности, определенной другими методами (например, прямым способом, основанным на измерении времени распространения носителей тока по полупроводнику на определенное расстояние с

известным ускоряющим полем). Последняя называется дрейфовой подвижностью. Дрейфовую подвижность можно определить из выражения 4, если, используя выражение 7, преобразовать его к виду:

$$\vec{E}_H = -\frac{A}{en} \cdot [\vec{j}, \vec{B}] = -A \cdot \mu_{nd} \cdot [\vec{E}, \vec{B}], \tag{10}$$

где индекс d при μ_{nd} указывает, что это дрейфовая подвижность электронов.

Из выражений (8)-(10) следует, что для электронов $\mu_{nH} = A \cdot \mu_{nd}$, а для дырок $\mu_{pH} = A \cdot \mu_{pd}$. Используя выражения (2) и (7), получим:

$$\mu_{(n,p)H} = R \cdot \sigma. \tag{11}$$

Приведенные выше выражения относились к полупроводникам, у которых концентрация неосновных носителей пренебрежимо мала по сравнению с концентрацией основных (униполярная проводимость). Расчет постоянной Холла для материала со смешанной проводимостью приводит к формуле:

$$R = \frac{A}{e} \cdot \frac{n\mu_{nd}^2 - p\mu_{pd}^2}{(n\mu_{nd} + p\mu_{pd})^2}.$$
 (12)

для собственного полупроводника $(n = p = n_i)$ получим:

$$R = \frac{A}{e} \cdot \frac{\mu_{nd}^2 - \mu_{pd}^2}{\mu_{nd} + \mu_{pd}} \cdot \frac{1}{n_i}.$$
 (13)

2. Практическая часть

2.1. Измерение вольт-амперной характеристики образца и его паразитного напряжения

На рис. 2 изображена ВАХ образца. Из графика, зная закон Ома, не трудно установить значение сопротивления R=3.08 Ом. Зная размеры образца:

- длина l = 0.022 м,
- ширина d = 0.0035 м,
- толщина b = 0.00038 м,

можем найти его удельное сопротивление ho

$$\rho = 1.86 \cdot 10^{-4} \text{ Om} \cdot \text{M}, \tag{14}$$

а значит и обратную ей величину σ - удельную проводимость

$$\sigma = \frac{1}{\rho} = 5.37 \cdot 10^3 \, \frac{1}{\text{Om} \cdot \text{m}} \tag{15}$$

На рис. 3 изображена зависимость паразитного напряжения на образце от тока образца. Она понадобится нам при вычислении коэффициента Холла.

Рис. 2: Вольт-амперная характеристика образца Рис. 3: Зависимость паразитного напряжения на образце от тока образца

2.2. Определение типа основных носителей в образце

Рис. 4: Смещение носителей заряда соответственно в дырочном и электронном полупроводниках [1]

Зная направление магнитного поля и полярность клемм на ребрах образца не сложно найти тип носителей полупроводника. Рассмотрим рис. 4. Пусть поле \vec{B} направлено в плоскость рисунка, плотность тока направлена по рисунку вправо, клеммы милли-вольтметра подключены знаком «-» к нижней грани образца, а знаком «+», соответственно, к верхней грани. Тогда, если наш образец – p- полупроводник, то разность потенциалов будет положительной. В случае n-типа образца, на верхней грани потенциал станет меньше

потенциала нижней грани, а значит вольтметр покажет нам отрицательную разность потенциалов.

Эти же рассуждения можно повторить для противоположных направлений магнитного поля или плотности тока.

2.3. Расчёт постоянной Холла и подвижности основных носителей

Согласно формуле (5), зная величину тока или магнитного поля , можно найти 1 из рис.5-6 отношение постоянной Холла к его поперечному размеру.

Рис. 5: Зависимость ЭДС Холла от магнитного поля при нескольких фиксированных значениях тока образца.

Из рис. 5 для четырех значений тока (индексы соответствуют значению тока):

•
$$R_1 = 2.36 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$$

•
$$R_2 = 2.3 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$$

 $^{^{1}}$ Приводить расчёты я, конечно же, не буду. Если хочется их увидеть, то они произведены в скриптах или в самом 1 ЕХ-файле на моем Github'e. Очень надеюсь, ошибок в порядках нет

- $R_4 = 2.2 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$
- $R_7 = 2.06 \cdot 10^{-2} \frac{\text{M}^3}{\text{A} \cdot \text{c}}$.

Чтобы точнее вычислить отношение $\frac{\mathcal{E}_H}{I}$ в рис. 6 учитывалось паразитное напряжение, найденное выше: экспериментальные данные аппроксимировались методом наименьших квадратов с учетом веса каждой точки. Для четырех значений магнитного поля (индексы соответствуют значению магнитного поля в Γ c):

- $R_{200} = 1.87 \cdot 10^{-2} \frac{\text{M}^3}{\text{A.c}}$
- $R_{400} = 1.9 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$
- $R_{600} = 1.8 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$
- $R_{900} = 1.82 \cdot 10^{-2} \, \frac{\text{M}^3}{\text{A} \cdot \text{c}}$

Посчитав значение постоянной Холла и удельной проводимости, можем оценить подвижность основных носителей в образце:

$$\mu_H = R \cdot \sigma \tag{16}$$

Усредненная по восьми значениям коэффициента Холла величина подвижности:

$$\langle \mu_H \rangle = 1.1 \cdot 10^2 \frac{\text{M}^2}{\text{B} \cdot c} \tag{17}$$

А из формулы (7) можем оценить концентрацию носителей:

$$\langle n \rangle = 3.61 \cdot 10^{20} \frac{1}{\text{M}^3}$$
 (18)

Рис. 6: Зависимость ЭДС Холла от тока образца при нескольких фиксированных значениях магнитного поля.

3. Заключение

В данной работе был изучен эффект Холла, определен тип носителей заряда исходного образца, а также определены следующие величины:

•
$$\langle R \rangle = 2.04 \cdot 10^{-2} \frac{\text{M}^3}{\text{A} \cdot \text{c}}$$

•
$$\langle n \rangle = 3.61 \cdot 10^{20} \frac{1}{\text{M}^3}$$

•
$$\langle \mu_H \rangle = 1.1 \cdot 10^2 \, \frac{\text{M}^2}{\text{B} \cdot \text{c}}$$

•
$$\sigma = 5.37 \cdot 10^3 \, \frac{\mathrm{M}}{\mathrm{OM}}$$

где $\langle R \rangle$ - среднее значение постоянной Холла, $\langle n \rangle$ - среднее значение концентрации основных носителей, σ - удельная проводимость образца, $\langle \mu \rangle$ - среднее значение подвижности основных носителей.

Список литературы

- [1] Сарафанов Ф.Г. Блог «Physics & other». Н.Новгород: РФФ ННГУ, 2019.
- [2] Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978.
- [3] Мермин Н. Физика твердого тела. Том 1,2. М.: Мир, 1979.
- [4] Битюрин Ю.А. и др. Измерение ширины запрещенной зоны. Описание к лабораторной работе. Н.Новгород: ННГУ, 2004
- [5] Воробьев Л.Е. Механизмы рассеяния носителей заряда в полупроводниках: учебное пособие. Ленинград: ЛПИ, 1988.
- [6] Зи С.М. Физика полупроводниковых приборов. М.: Сов. Радио, 1984.
- [7] Пожела. Ю. Физика быстродействующих транзисторов. Вильнюс: Мокслас, 1989.
- [8] Бонч-Бруевич В.Л. Калашников С.Г. Физика полупроводников. М.: Наука, 1990.
- [9] Орешкин П.Т. Физика полупроводников и диэлектриков. М.: Высшая школа, 1976.
- [10] Кучис Е.В. Методы исследования эффекта Холла. М.: Сов. Радио, 1974.