Probabilistic Finite State Machines

Using and building

Franck Thollard

http://eurise.univ-st-etienne.fr/~thollard

EURISE
Saint-Étienne
France

Probabilistic Finite State Machines

- Probabilistic Finite State Machines
- What learning means

- Probabilistic Finite State Machines
- What learning means
- Learnability results

- Probabilistic Finite State Machines
- What learning means
- Learnability results
- Algorithmic issues

- Probabilistic Finite State Machines
- What learning means
- Learnability results
- Algorithmic issues
- Experimental issues

- Probabilistic Finite State Machines
 - n-grams / MM / PST / A-PDFA
 - PDFA / Residual automata
 - Other: PFA / HMM, PCFG, ...
 - Choosing a model
- What learning means
- Learnability results
- Algorithmic issues
- Conclusions

The probability of a sequence

Computation using the chain rule:

$$P(he \ reads \ a \ book) = P(he) \times P(reads|he) \times P(a|he \ reads) \times P(book|he \ reads \ a)$$

The probability of a sequence

Computation using the chain rule:

$$P(he \ reads \ a \ book) = P(he) \times P(reads|he) \times P(a|he \ reads) \times P(book|he \ reads \ a)$$

and more generally:

$$P(w_1w_2...w_n) = P(w_1) \times P(w_2|w_1) \times ... \times P(w_n|w_1w_2...w_{n-1})$$

The probability of a sequence

Computation using the chain rule:

$$P(he \ reads \ a \ book) = P(he) \times P(reads|he) \times P(a|he \ reads) \times P(book|he \ reads \ a)$$

and more generally:

$$P(w_1w_2\dots w_n) = P(w_1)\times P(w_2|w_1)\times \dots \times P(w_n|w_1w_2\dots w_{n-1})$$

Definition: $w_1w_2 \dots w_{n-1}$ is called the **history**.

See (Vidal et al., 2005) for a survey

• n-grams / MM $\Leftrightarrow k$ -testables automata

- n-grams / MM $\Leftrightarrow k$ -testables automata
- Probabilistic Automata without cycles

- n-grams / MM $\Leftrightarrow k$ -testables automata
- Probabilistic Automata without cycles
- Probabilistic Deterministic Automata

- n-grams / MM ⇔ k-testables automata
- Probabilistic Automata without cycles
- Probabilistic Deterministic Automata
- Residual Automata (Esposito & al., 2002)

- n-grams / MM ⇔ k-testables automata
- Probabilistic Automata without cycles
- Probabilistic Deterministic Automata
- Residual Automata (Esposito & al., 2002)
- Probabilistic non-deterministic Automata (⇔ HMM)

- n-grams / MM ⇔ k-testables automata
- Probabilistic Automata without cycles
- Probabilistic Deterministic Automata
- Residual Automata (Esposito & al., 2002)
- Probabilistic non-deterministic Automata (⇔ HMM)
- PCFG: Probabilistic Context-Free Grammars

See (Vidal et al., 2005) for a survey

- n-grams / MM ⇔ k-testables automata
- Probabilistic Automata without cycles
- Probabilistic Deterministic Automata
- Residual Automata (Esposito & al., 2002)
- Probabilistic non-deterministic Automata (⇔ HMM)
- PCFG: Probabilistic Context-Free Grammars

Note: models define a pdf on Σ^n , for each n add of eos symbol \Rightarrow pdf on Σ^*

The n-grams model (1/3)

Assumption: the history is supposed bound

The n-grams model (1/3)

Assumption: the history is supposed bound

Example: history of size one \Rightarrow 2-grams (known as bigram)

The n-grams model (1/3)

Assumption: the history is supposed bound

Example: history of size one \Rightarrow 2-grams (known as bigram)

$$P(he \ reads \ a \ book) = P(he) \times P(reads|he) \times P(a|reads) \times P(book|a)$$

The n-grams model (2/3)

Estimating *n*-grams probabilities

The probabilities are estimated using a corpus by counting occurrences of the n-uplets :

$$P(book|a) = \frac{\operatorname{Ct}(a\ book)}{\operatorname{Ct}(a)}$$

smoothing

The n-grams (3/3)

Automata representation of n-grams

Cyclic Automaton

unbounded history

A Probabilistic automaton

Note: P(papers | ...) depends on an unbound history.

Model	Good	Bad
n-gram	Easy to build,	Assumption can be false
	Good estimates	Big model

Model	Good	Bad
n-gram	Easy to build,	Assumption can be false
	Good estimates	Big model
A-PDFA	History larger	Building the structure

Model	Good	Bad
n-gram	Easy to build,	Assumption can be false
	Good estimates	Big model
A-PDFA	History larger	Building the structure
PDFA	Unbound history	Building the structure
	Parsing time	
	Correct results	
	Size of the model	

Model	Good	Bad
n-gram	Easy to build,	Assumption can be false
	Good estimates	Big model
A-PDFA	History larger	Building the structure
PDFA	Unbound history	Building the structure
	Parsing time	
	Correct results	
	Size of the model	
PFA / HMM	Unbound history	Parsing time or
	Hand made structure	"Loose" of proba in
	Size of the model	non determinism

- Probabilistic Finite State Machines
- What learning means
 - What learning means?
 - What can be learned?
- Learnability results
- Algorithmic issues
- Experimental issues
- Conclusions

Machine Learning Assumption

Formal Language Learning

Formalization

Learning criterion

Formalization

Learning criterion

Learnability results (w.r.t. automata)

Formalization

- Learning criterion
 - Identification in the limit
 - PAC learning

Identification in the limit

PAC Learning

Proba-D-PAC

Proba-D-PAC

Proba-D-PAC

Proba-D-PAC

Proba-D-PAC

Link between

Precision / Confidence / number of examples / complexity of the class / . . .

Identification in the limit

(With Proba One)

• The class of **recursively enumerable** languages can be identified in the limit with probability one (Horning, 1969).

Identification in the limit

(With Proba One)

- The class of **recursively enumerable** languages can be identified in the limit with probability one (Horning, 1969).
- The class of probabilistic automata can be identified in the limit with probability one (constructive proof) (Carrasco, 1999).

Possible

• Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)

- Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)
- Proba-KL-PAC Unigram with unknown vocabulary (Mc Allester & Shapire, 2000)

- Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)
- Proba-KL-PAC Unigram with unknown vocabulary (Mc Allester & Shapire, 2000)
- Proba-KL-PAC PFA on Σ^n , Σ and n known, nb of states known (Abe & Warmuth, 1992)

- Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)
- Proba-KL-PAC Unigram with unknown vocabulary (Mc Allester & Shapire, 2000)
- Proba-KL-PAC PFA on Σ^n , Σ and n known, nb of states known (Abe & Warmuth, 1992)
- Proba-KL-PAC Acyclic PDFA on Σ^n , nb States known, Σ and n known (Ron & al., 1995)

- Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)
- Proba-KL-PAC Unigram with unknown vocabulary (Mc Allester & Shapire, 2000)
- Proba-KL-PAC PFA on Σ^n , Σ and n known, nb of states known (Abe & Warmuth, 1992)
- Proba-KL-PAC Acyclic PDFA on Σ^n , nb States known, Σ and n known (Ron & al., 1995)
- Proba-KL-PAC PDFA Cyclic Aut structure (Thollard & Clark, 2004)

- Proba- d_{∞} -PAC PFA (Angluin 88, lemma 14)
- Proba-KL-PAC Unigram with unknown vocabulary (Mc Allester & Shapire, 2000)
- Proba-KL-PAC PFA on Σ^n , Σ and n known, nb of states known (Abe & Warmuth, 1992)
- Proba-KL-PAC Acyclic PDFA on Σ^n , nb States known, Σ and n known (Ron & al., 1995)
- Proba-KL-PAC PDFA Cyclic Aut structure (Thollard & Clark, 2004)
- Proba-KL-PAC PDFA Cyclic Aut + informations (Clark & Thollard, 2004)

Impossible

- Proba AFN on Σ^n , Σ unknown (Abe & Warmuth, 1992)
- PDF of unknown class on $\{0,1\}^n$ (Kearns & al., 1994)
- Proba-KL-PAC Cyclic Aut, without aut information (Clark & Thollard, 2002)

Contents

- Probabilistic Finite State Machines
- What learning means
- Learnability results
- Algorithmic issues
 - Template technique
 - Instantiation of the template technique
 - Smoothing automata
- Experimental issues
- Conclusions

Template algorithm

The common strategy follows two steps

Building a maximum likelyhood estimate of the data

Template algorithm

The common strategy follows two steps

- Building a maximum likelyhood estimate of the data
- Generalizing using sate merging operations.

Learning by heart: the PPTA

Learning by heart: the PPTA

Learning by heart: the PPTA

Note: String "aba" has null probability

Choosing two states

Choosing two states

Choosing state 2 and 3

Merging states 2 and 3

Merging 2 and 3: can lead to non determinism

Merging states 4 and 5

Merging states 4 and 5

After the "determinization"

Note: String "aba" has non null probability

Generic Algorithm

Input: A multiset of string EA, a real α

Output: A PDFA

```
begin
```

```
Building-PPTA (EA);

A \leftarrow PPTA;

while (q_i,q_j) \leftarrow Choosing-Two-States (A) do

| if Compatible (i,j,\alpha) then

| A \leftarrow Merge (A,q_i,q_j);

| end

end

Return A;
```


Ordering merges

PPTA built on th multiset EA = $\{\lambda$, aac, aac, abc, aac, abc, abc, abc, λ , a, ab $\}$

Merging ordering

- Alergia (Carrasco & Oncina, 1994):
- HMM-infer (Stolcke, 1994): looking at each merge at each time → not tracktable on big data sets
- LAPPTA (Ron & al., 1995): building of acyclic automata
- EDSM (Lang, 1998): merging ordering based on the quantity of information
- **DDSM** (Thollard,2001): ordering adapted from the EDSM algorithm.

Compatibility tests

- Alergia (Carrasco, 1994): Statistic test based on Hoeffding bounds
- LAPPTA (Ron & al., 1995): Statistic test based on similarity measure
- Youg-Lai & Tompa, (2000): Same as Alergia but emphasis on low frequency problem
- MDI (Thollard & al., 2000): Tradeoff between size and distance to the data
- M-Alergia (Kermorvant & Dupont, 2002): Statistical test based on multinomial test
- Alergia (Habrard & al., 2003): Defines and deal with uniform noise.

Other learning schemes

- Splitting/merging strategy (Brant, 1996)
- Incremental learning (Carrasco'99, Thollard & Clark, 2004, Callut & Dupont, 2004)

The farm example

Let F be a farm with:

- 3 chickens
- 2 ducks

What is the probability of:

The farm example

Let F be a farm with:

- 3 chickens
- 2 ducks

What is the probability of:

Pr(chicken) = 3/5

The farm example

Let F be a farm with:

- 3 chickens
- 2 ducks

What is the probability of:

$$Pr(pig) = 0$$

The farm example

Let F be a farm with:

- 3 chickens
- 2 ducks

What is the probability of:

Pr(lion) = 0

Considering the chain rule

n-grams the problem needs to be considered **only** with null probability n-grams.

Automata

- estimating the first null transition?
- where to continue in the automaton? in the same automaton? on others?

Smoothing automata

- LAPPTA (Ron & al., 1995): Creation of a "small frequency state"
- Alergia2 (Young-lai & Tompa, 2000): Emphasis on small frequency transitions
- Error-correcting (Dupont & Amengual, 2000): Error correcting
- Discounting (Thollard, 2001): Back-off to a unigram
- Discounting (Llorens & al., 2002): Back-off to automata
- Additive discounting (Thollard & Clark, 2004): Theoretical justification.
- Discounting (Mc Allester & Shapire, 2000): Theoretical discounting for the unigram.

Contents

- Probabilistic Finite State Machines
- What learning means
- Learnability results
- Algorithmic issues
- Experimental issues
 - Experimentation with MDI/DDSM
 - Around the inference
- Conclusions

• Language Modeling: much compact models (Thollard, 2001),

- Language Modeling: much compact models (Thollard, 2001),
- Speech to text: faster at parsing time than bigrams (Exeperimentation at CNET),

- Language Modeling: much compact models (Thollard, 2001),
- Speech to text: faster at parsing time than bigrams (Exeperimentation at CNET),
- Noun phrase chunking: competitive results (~ 90 %) (Thollard & Clark, 2004),

- Language Modeling: much compact models (Thollard, 2001),
- Speech to text: faster at parsing time than bigrams (Exeperimentation at CNET),
- Noun phrase chunking: competitive results (~ 90 %) (Thollard & Clark, 2004),
- **Body rule generation:** better and more compact than *n*-gram (Infante-Lopez, 2004).

Around the inference

Clustering (Dupont & Chase, 1998)

Interpolating automata (Thollard, 2001)

Bagging (Thollard & Clark, 2002)

Boosting (Thollard & al. 2002)

Typing automata (Kermorvant & de la Higuera, 2002)

Contents

- Probabilistic Finite State Machines
- What learning means
- Learnability results
- Algorithmic issues
- Experimental issues
- Conclusions

Conclusion

Probabilistic grammatical inference

- Framework in which theoretical results exist
- Good results in many domains (e.g NLP)
- Can deal with big data sets (e.g. Wall Street Journal)
- Provides very compact automata.

Open questions

Theoretical:

- Learning/smoothing n-gram models
- What is a good distance for the Proba-D-PAC framework?

Practical:

- Learning non-deterministic models
- Improving the merging ordering
- Algorithmic: improving the algorithms

