Empresa de jogos em nuvem:

πCock

Nosso time - Turma 113B.

João Victor Santos

CEO da empresa. Responsável por fazer **novos contratos** com **grandes empresas**.

Thiago Akira

CEO da empresa. Responsável por **gerenciar** a **seção de limpeza**.

Rafael πres

CEO da empresa (Ф do CheФ Thiago). Responsável pelos recursos humanos.

Sumário

01 Apresentação

Sobre a **empresa**.

04
Sistema de arquivos

Qual **sistema de arquivos** utilizar?

02

0 servidor

Sobre o funcionamento do **servidor**.

05

Particionamento

Como particionar o servidor?

03

Sistema operacional

Qual **sistema operacional** usar?

06

Conclusão

Considerações finais.

01

Apresentação

πCock

Nossa empresa é uma **empresa de games**, oferecendo **serviços em nuvem.** A ideia da empresa é oferecer serviços similares ao:

- Xbox e Xbox Cloud Gaming;
- Google Stadia;
- GeForce Now;
- Bluestacks X.

 Escolhemos este nome por ser moderno, lógico

 con la forte como um galo (cock em inglês), luntos

 (π) e forte como um galo (**cock** em inglês). Juntos temos um poderoso $\pi Cock$ (Pavão em inglês).

Onde operamos?

América do

Norte

Estados Unidos e Canadá.

Ásia

Nos concentramos na China.

América do Sul Brasil.

"O que sabemos é uma **gota**, o que ignoramos é um **oceano**."

- Sir Isaac Newton

02 O servidor

Qual é o papel do servidor?

Sistema operacional

O servidor executa o sistema operacional.

Processamento e Output

O servidor processa os **inputs** dos usuários e traz o respectivo **output** (imagem do jogo), comum de serviços em **cloud**.

Programas principais

- Página Web;
- API.

Armazenar dados

Jogos, LOGs e dados dos usuários devem ser armazenados no servidor.

Serviço em Cloud

O jogo é **executado no servidor**, o input é processado pelo dispositivo do usuário e isto é **processado** no servidor, onde envia a imagem de output.

Sistema 03 operacional

EU SEMPRE ESCOLHO UMA PESSOA PREGUIÇOSA PARA FAZER UM TRABALHO DIFÍCIL. PORQUE ELA ENCONTRARÁ UMA MANEIRA FÁCIL DE FAZÊ-LO.

Sistema Operacional

Escolhemos o Linux por 6 motivos principais.

Por que Linux?

Estabilidade

Servidor funcionando por **longo tempo**, sem muitas reinicializações.

Desempenho

Capacidade de **otimizar** o uso de recursos do servidor.

Segurança

Comunidade ativa que fornece **atualizações** e correções regulares.

Baixo custo

Linux usa **código aberto**. Contudo, a comunidade fornece suporte a custo zero.

Flexibilidade

Configurações que podem ser personalizadas para atender as necessidades do servidor.

Escalabilidade

Linux consegue lidar com **grandes cargas de trabalho** no servidor.

Desempenho excepcional

O desempenho é **essencial** para nossos serviços. Linux é o **melhor** sistema operacional para este propósito.

Sistema de 04 arquivos

EXT4: é o melhor?

Armazenamento

Funciona para grandes arquivos (até **16 TB** por arquivo) e suporta até **1 EB**. Além disso, é mais **ágil**.

Comparação

Em comparação com outros sistemas de arquivos, como **NTFS**, o **EXT4** é superior em:

- Desempenho;
- Armazenamento;
- Compatibilidade.

+ 56% EXT4 é cerca de 56% mais rápido que NTFS.

05 Particionamento

Como particionaremos o disco?

Armazenamento

Dispomos de 500 Petabytes, ou seja, cerca de **500 mil Terabytes**. Particionamos o disco de acordo com o armazenamento requerido.

Função

Cada **partição** está diretamente relacionada à **uma função**.

Resumo geral

	Petabyte	Terabyte	Gigabyte
/dev/sda1	0,000002	0,002	2
/dev/sda2	0,001	1	1.000
/dev/sda3	10	10.000	10.000.000
/dev/sda4	400	400.000	400.000.000
/dev/sda5	8	8.000	8.000.000
/dev/sda6	80	80.000	80.000.000

Graficamente

- dev/sda1
- dev/sda2
- dev/sda3
- dev/sda4
- dev/sda5
- dev/sda6

Função

Responsável por armazenar o sistema operacional e os programas principais do servidor. É onde o servidor processa as informações e retorna o jogo por serviço de cloud. Isto é feito visando desempenho, pois os aplicativos estão na mesma partição. Também é melhor para fazer a manutenção.

Armazenamento

Cerca de **1 TB** será necessário, pois devem ser guardados diversos arquivos de log do servidor.

Permissões

Apenas o administrador deve ter acesso à leitura, escrita e execução para manutenção do sistema e desenvolvimento de correções, melhorias e novas versões dos softwares principais do servidor.

Função

Armazena as informações de inicialização (boot) do sistema.

Armazenamento

Cerca de **2GB** é necessário.

Permissões

Apenas o **administrador** deve ter **acesso à leitura, escrita e execução** para **manutenção** do sistema.

Função

É onde ficará armazenada a partição **SWAP**, que serve para armazenar os dados de memória quando a **RAM** não for suficiente.

Permissões

Apenas o sistema deve ter acesso a esta partição, pois uma alteração direta nos dados da memória pode trazer prejuízos imprevisíveis.

Armazenamento

O armazenamento recomendado é o mesmo que a memória RAM ou ligeiramente acima. Os cálculos para esta memória serão feitos a seguir.

Memória SWAP

- Uma pesquisa sobre a quantidade de jogadores médios do Xbox foi feita. Vamos nos basear totalmente neste número: **120 milhões de jogadores** ativos mensais;
- Em média, este número se aproxima de 20 milhões de usuários diários, se estes jogarem 5x por semana em nossa plataforma;
- Atualmente, grande parte dos jogos funcionam bem com 10Gb de RAM. Isto nos dá 200 milhões de gigabytes por dia, ou, cerca de 8,33 milhões de gigabytes por hora. Isto é, 8330 terabytes por hora;
- Excedendo em **20**% esta quantia, teríamos 10.000 terabytes por hora, ou, **10 petabytes por hora**;
- Sendo assim, precisaríamos de uma memória SWAP de cerca de **10Pb**.

Esta quantidade de memória SWAP, normalmente, seria dividida em vários discos rígidos num Data Center. Porém, para fins educativos e dadas as l**imitações do trabalho**, consideramos **todos em um só disco**.

Função

Onde os arquivos dos jogos são **armazenados**. Deve ter maior capacidade.

Armazenamento

Os arquivos de todos os jogos devem ser alocados aqui. O máximo de memória deve ser alocada, e, portanto, decidimos reservar cerca de **400 PB** de memória.

Permissões

Apenas o administrador e os principais softwares devem ter acesso, por segurança.

Função

Os arquivos desta partição devem armazenar os **dados dos usuários**, como:

- bancos de dados;
- perfis;
- conquistas;
- dados de pagamento, etc.

Armazenamento

Esta partição deve guardar cerca de **8 PB de dados**.

Permissões

O administrador do sistema e os principais programas devem ter acesso a esta partição. Outros usuários não podem ter este acesso, pois contém informações pessoais dos clientes.

Função

Partição para **armazenar backups** regulares com os arquivos dos usuários, com cerca de **10 backups salvos**.

Armazenamento e permissões

Esta partição deve guardar **10x** a quantidade de dados da partição /dev/sda5, ou seja, **80 PB**.

As p**ermissões são similares** às da partição /dev/sda5.

Se houvesse outro disco, também faríamos **um backup secundário** para os arquivos dos usuários.

06 Conclusão

Obrigado!

Alguma dúvida?

CREDITS: This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>