OBSTACLE CLASSIFICATION SYSTEM FOR INDOOR ROBOTS

OBSTACLE CLASSIFICATION SYSTEM FOR

PROPRIETARY AND CONFIDENTIAL

NaviFloor Robotics, Inc.

Document No.: IP-2023-0147

Last Updated: December 15, 2023

1. SYSTEM OVERVIEW

1. This document describes the proprietary obstacle classification sys

2. The System comprises both hardware and software components the
2. TECHNICAL SPECIFICATIONS
1. **Sensor Array Configuration**
- Primary LiDAR sensor: NaviSense(TM) Model NS-450i
·
Secondary depth sensors: 4x TerrainMap(TM) TD-200 units
-
Ultrasonic proximity sensors: 8x NaviSonic(TM) US-100 units
Resolution: 0.5cm at 5m range
Scanning frequency: 40Hz

2. **Claşsification Categories**
The System classifies obstacles into the following proprietary categor
-
Static permanent (structural elements)
-
Static temporary (pallets, equipment)
-
Dynamic slow (human workers, forklifts)
-
Dynamic fast (automated vehicles)
-
Suspended objects (overhead obstacles)
a proprietaby at continue
3. PROPRIETARY ALGORITHMS

1. **Core_Processing Pipeline** The System employs the following proprietary algorithms: RapidScan(TM) point cloud processing DeepClass(TM) neural network classification PathPred(TM) trajectory prediction NaviCore(TM) decision engine 2. **Performance Metrics** -
- RapidScan(TM) point cloud processing - DeepClass(TM) neural network classification - PathPred(TM) trajectory prediction - NaviCore(TM) decision engine
- DeepClass(TM) neural network classification - PathPred(TM) trajectory prediction - NaviCore(TM) decision engine
- DeepClass(TM) neural network classification - PathPred(TM) trajectory prediction - NaviCore(TM) decision engine
- PathPred(TM) trajectory prediction - NaviCore(TM) decision engine
- PathPred(TM) trajectory prediction - NaviCore(TM) decision engine
- NaviCore(TM) decision engine
- NaviCore(TM) decision engine
· ,
· ,
2. **Performance Metrics**
2. **Performance Metrics** -
-
Classification accuracy: 99.7% in standard conditions
-

Processing latency: <15ms

-

False positive rate: <0.01%

-

Update frequency: 60Hz

4. INTELLECTUAL PROPERTY PROTECTION

1. **Patent Protection**

_

US Patent No. 11,456,789: "Method for Real-time Obstacle Classifica

-

US Patent No. 11,567,890: "Multi-sensor Fusion System for Autonom

-

PCT Application No. PCT/US2023/012345 (pending)

2. **Trage Secrets**		
The following components are maintained as trade secrets		
-		
DeepClass(TM) neural network architecture		
-		
Training dataset compilation methodology		
-		
Sensor fusion optimization parameters		
-		
Dynamic recalibration protocols		
5. IMPLEMENTATION REQUIREMENTS		

1. **Hardware Requirements**

Processor: NaviCore(TM) NC-750 or higher

-

Memory: 16GB RAM minimum

-

Storage: 256GB SSD minimum

-

Network: Gigabit Ethernet

2. **Software Requirements**

-

Operating System: NaviOS(TM) 4.5 or higher

_

Dependencies: NaviLib(TM) 2.0, TerrainSDK(TM) 3.2

-

Runtime Environment: NaviRT(TM) 2.1

6. SECURITY MEASURES

1. **Data Protection**	
-	
AES-256 encryption for all sensor data	
-	
Secure boot verification	
-	
Encrypted firmware updates	
-	
Tamper detection system	
2. **Access Control**	
-	
Role-based access control system	

- 8-

Multi-factor authentication for maintenance

_

Audit logging of all system access

_

Remote kill switch capability

7. COMPLIANCE AND CERTIFICATION

1. **Safety Standards**

-

ISO 13849-1:2015 Performance Level D

-

IEC 61508 SIL 2

-

ANSI/R& R15.06-2012

2. **Industry Certifications**

_

CE Marking (European Union)

_

UL Listing (United States)

_

CSA Certification (Canada)

8. CONFIDENTIALITY

- 1. This document contains confidential and proprietary information of
- 2. Distribution of this document is limited to authorized personnel who

9. DOCUMENT CONTROL

Version History:

-

v1.0: Initial release (2023-03-15)

-

v1.1: Updated patent information (2023-07-20)

_

v1.2: Added security measures (2023-10-01)

-

v1.3: Current version (2023-12-15)

Approved By:

Dr. Elena Kovacs

Chief Research Officer

NaviFloor_Robotics, Inc.

Date: December 15, 2023

Document Owner:

Technical Documentation Department

NaviFloor Robotics, Inc.

Email: documentation@navifloor.com

Reference: DOC-IP-2023-0147