## BILKENT UNIVERSITY

| PRINCIPLES OF ENGINEERING MANAGEMENT<br>Quiz 1 - Solutions |            |                |
|------------------------------------------------------------|------------|----------------|
| Code : <i>IE 400</i>                                       | Last Name: | Section #: 1   |
| Acad.Year: 2023-2024                                       | Name :     |                |
| Semester $: SPRING$                                        | Student #: |                |
| Date : 16.02.2024                                          | Signature: |                |
| Time : 9:30                                                | 2 QUESTI   | ONS ON 2 PAGES |
| Duration : 50 min                                          |            | AL 10 POINTS   |
| 1. (5) 2. (5)                                              |            |                |

1.(5 pts) Consider the following LP problem:

maximize 
$$3x_1 + 2x_2$$
  
subject to  $2x_1 + x_2 \le 12$ ,  
 $x_1 + 2x_2 \le 12$ ,  
 $x_1, x_2 \ge 0$ . (P)

- a) Solve this problem using the graphical method.
- b) Let the optimal solution you find at a) be the pair  $(\hat{x}_1, \hat{x}_2)$ . Suppose that your objective function is replaced with  $\alpha x_1 + 2x_2$  where  $\alpha$  is some real number. Find all possible values of  $\alpha$ , such that the unique optimal solution for this updated problem is  $(\hat{x}_1, \hat{x}_2)$ .

Sol:



- a) Optimal solution is (4, 4) with optimal value 20.
- b) This point is the intersection lines  $2x_1 + x_2 = 12$  and  $x_1 + 2x_2 = 12$ . Slopes of these lines are -2 and -1/2. If the slope of  $\alpha x_1 + 2x_2$  is in the interval (-2, -1/2), (4, 4) will be the unique optimal solution for the updated problem. Slope of this new objective is  $-\alpha/2$ . Hence  $\alpha \in (1, 4)$  is required.

- 2.(5 pts) A company makes two products (X and Y) using two machines (A and B). Each unit of X that is produced requires 50 minutes processing time on machine A and 30 minutes processing time on machine B. Each unit of Y that is produced requires 24 minutes processing time on machine A and 33 minutes processing time on machine B. At the start of the current week there are 30 units of X and 90 units of Y in stock. Available processing time on machine A is forecast to be 40 hours and on machine B is forecast to be 35 hours. The demand for X in the current week is forecast to be 75 units and for Y is forecast to be 95 units. Company policy is to maximise the combined sum of the units of X and the units of Y in stock at the end of the week.
  - a) Formulate the problem of deciding how much of each product to make in the current week as a linear program. Define the decision variables, constraints and the objective function explicitly.
  - b) Write the equation of an isoprofit line and write the improving direction for this problem.

## Sol:

a) Let x be the number of units of X produced in current week and y be the number of units of Y produced in the week. Constraints are: machine A time  $50x + 24y \le 2400$ , machine B time  $30x + 33y \le 2100$ , minimum requirements  $x \ge 75 - 30$  and  $y \ge 95 - 90$ . The objective is to maximize (x + 30 - 75) + (y + 90 - 95). Hence we have the model

max 
$$x + y - 50$$
  
s.t.  $50x + 24y \le 2400$ ,  
 $30x + 33y \le 2100$ ,  
 $x \ge 45$ ,  
 $y \ge 5$ ,  
 $x, y \ge 0$ .

b) x + y - 50 = 0 is an isoprofit line while c = (1, 1) is the improving direction.