Choisir une triangulation adaptée

Des mesures ont été effectuées sur le terrain en vue d'effectuer des mesures par triangulation.

Sur le schéma ci-dessous :

- les villes sont repérées par des lettres ;
- les mesures effectuées ont été reportées.

De quelles mesures a-t-on besoin pour déterminer la distance entre les villes $\,A\,$ et $\,C\,$ en utilisant une triangulation ?

La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{D_2}\,$

La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{C_2}\,$

La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{F_3}\,$

La longueur $\,CD$, ainsi que l'angle $\,\widehat{A_2}$

Loi des sinus :
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Identification du triangle utile : La distance $\ AC$ est dans le triangle $\ ACD$.

Selon la loi des sinus dans un triangle quelconque, il faut utiliser l'angle opposé à la distance recherchée : l'angle utile sera donc l'angle $\widehat{D_2}$.

Dans le triangle choisi, il faut une autre longueur mesurée au préalable ainsi que l'angle qui y est opposé. Sur le schéma, la distance connue est CD et l'angle opposé est l'angle $\widehat{A_2}$.

Ainsi, avec la loi des sinus dans le triangle ACD , on aura la relation :

$$\frac{AC}{\sin\left(\widehat{D_2}\right)} = \frac{CD}{\sin\left(\widehat{A_2}\right)}$$

Soit:

$$AC = rac{CD}{\sin\left(\widehat{A_2}
ight)} imes \sin\left(\widehat{D_2}
ight)$$

Pour obtenir la distance entre les villes A et C, on aura besoin de la longueur CD, ainsi que des angles \widehat{A}_2 et \widehat{D}_2 Des mesures ont été effectuées sur le terrain en vue d'effectuer des mesures par triangulation.

Sur le schéma ci-dessous :

- les villes sont repérées par des lettres ;
- · les mesures effectuées ont été reportées.

De quelles mesures a-t-on besoin pour déterminer la distance entre les villes A et D en utilisant une triangulation?

La longueur $\,CD$, ainsi que des angles $\,\widehat{C_2}\,$ et $\,\widehat{D_2}\,$

La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{C_2}\,$

La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{F_3}$

La longueur $\,CD\,$, ainsi que l'angle $\,\widehat{A_2}\,$

Identification du triangle utile : La distance AD est dans le triangle ACD et le triangle AND . Or, il faudra connaître la longueur d'un autre côté du triangle qui sera utilisé d'après la loi des sinus. Le triangle utile sera donc le triangle ACD .

Selon la loi des sinus dans un triangle quelconque, il faut utiliser l'angle opposé à la distance recherchée : l'angle utile sera donc l'angle $\widehat{C_2}$.

Dans le triangle choisi, il faut une autre longueur mesurée au préalable ainsi que l'angle qui y est opposé. Sur le schéma, la distance connue est CD et l'angle opposé est l'angle $\widehat{A_2}$.

Ainsi, avec la loi des sinus dans le triangle ACD , on aura la relation :

$$\frac{AD}{\sin\left(\widehat{C_2}\right)} = \frac{CD}{\sin\left(\widehat{A_2}\right)}$$

Soit:

$$AD = rac{CD}{\sin\left(\widehat{A_2}
ight)} imes \sin\left(\widehat{C_2}
ight)$$

Pour obtenir la distance entre les villes $\,A\,$ et $\,D\,$, on aura besoin de la longueur $\,CD\,$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{C_2}\,$

Des mesures ont été effectuées sur le terrain en vue d'effectuer des mesures par triangulation.

Sur le schéma ci-dessous :

- les villes sont repérées par des lettres ;
- · les mesures effectuées ont été reportées.

De quelles mesures a-t-on besoin pour déterminer la distance entre les villes $\,A\,$ et $\,N\,$ en utilisant une triangulation ?

- lacksquare La longueur $\,CD$, ainsi que des angles $\,\widehat{N_1}\,$ et $\,\widehat{D_1}\,$
- lacksquare La longueur $\,ND$, ainsi que des angles $\,\widehat{A_1}\,$ et $\,\widehat{N_1}$
- La longueur $\,ND$, ainsi que des angles $\,\widehat{A_1}\,$ et $\,\widehat{D_1}\,$
- La longueur $\,ND$, ainsi que des angles $\,\widehat{N_1}\,$ et $\,\widehat{D_1}\,$

Loi des sinus :
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Identification du triangle utile : La distance $\,DF\,$ est dans le triangle $\,CDF\,$.

Selon la loi des sinus dans un triangle quelconque, il faut utiliser l'angle opposé à la distance recherchée : l'angle utile sera donc l'angle $\widehat{C_3}$.

Dans le triangle choisi, il faut une autre longueur mesurée au préalable ainsi que l'angle qui y est opposé. Sur le schéma, la distance connue dans le triangle CDF est CD et l'angle opposé est l'angle $\widehat{F_3}$.

Ainsi, avec la loi des sinus dans le triangle $\,CDF\,$, on aura la relation :

$$\frac{DF}{\sin\left(\widehat{C_3}\right)} = \frac{CD}{\sin\left(\widehat{F_3}\right)}$$

Soit:

$$DF = rac{CD}{\sin\left(\widehat{F_3}
ight)} imes \sin\left(\widehat{C_3}
ight)$$

Pour obtenir la distance entre les villes D et F, on aura besoin de la longueur CD, ainsi que des angles \widehat{C}_3 et \widehat{F}_3 Des mesures ont été effectuées sur le terrain en vue d'effectuer des mesures par triangulation.

Sur le schéma ci-dessous :

- les villes sont repérées par des lettres ;
- · les mesures effectuées ont été reportées.

De quelles mesures a-t-on besoin pour déterminer la distance entre les villes $\,C\,$ et $\,F\,$ en utilisant une triangulation ?

- La longueur $\,ND$, ainsi que des angles $\,\widehat{D_3}\,$ et $\,\widehat{C_2}\,$
- La longueur $\,CD$, ainsi que des angles $\,\widehat{C_3}\,$ et $\,\widehat{F_3}\,$
- La longueur $\,CD$, ainsi que des angles $\,\widehat{A_2}\,$ et $\,\widehat{D_3}\,$
- La longueur $\,CD$, ainsi que des angles $\,\widehat{D_3}\,$ et $\,\widehat{F_3}\,$.

Identification du triangle utile : la distance CF est dans le triangle CFD et le triangle CFS . Or, il faudra connaître la longueur d'un autre côté du triangle qui sera utilisé d'après la loi des sinus. Le triangle utile sera donc le triangle CFD .

Selon la loi des sinus dans un triangle quelconque, il faut utiliser l'angle opposé à la distance recherchée : l'angle utile sera donc l'angle $\widehat{D_3}$.

Dans le triangle choisi, il faut une autre longueur mesurée au préalable ainsi que l'angle qui y est opposé. Sur le schéma, la distance connue est CD et l'angle opposé est l'angle $\widehat{F_3}$.

Ainsi, avec la loi des sinus dans le triangle CFD , on aura la relation :

$$\frac{CF}{\sin\left(\widehat{D_3}\right)} = \frac{CD}{\sin\left(\widehat{F_3}\right)}$$

Soit

$$CF = rac{CD}{\sin\left(\widehat{F_3}
ight)} imes \sin\left(\widehat{D_3}
ight)$$

Pour obtenir la distance entre les villes $\,C\,$ et $\,F\,$, on aura besoin de la longueur $\,CD\,$, ainsi que des angles $\,\widehat{D_3}\,$ et $\,\widehat{F_3}\,$