Volume 49, Issue 2

Fragment-Based Approach for Estimating Thermophysical Properties of Fats and Vegetable Oils for Modeling Biodiesel Production Processes. Li Zong, Sundaram Ramanathan, and Chau-Chyun Chen*

Pages 879, 880, and 883. The A constant and the $\Delta G_{\psi}^{\rm vap}$ constant in Table 4 (page 879), the $\Delta G_{\psi,A}^{\rm vap}$ constant in Table 6, and eq b in Table 5 (page 880), as previously published, are revised. The revision corrects an unfortunate mistake in our handling of pressure units. Also revised are the mole fractions of soybean oil in Table 11 (page 883). We have misread the soybean oil triglyceride composition data of Ndiaye et al. for PPP and SSS.

Table 4. Calculated Physical Constants from Vapor Pressures of Triglycerides

material	carbons	A	В	$\Delta H_{\theta}^{\mathrm{vap}}$ (J/kmol)	$\Delta G_{\theta}^{\mathrm{vap}}(\mathrm{J/kmol})$
tributyrin	4:4:4	12.495	4250	8.137×10^{7}	1.004×10^{7}
tricaproin	6:6:6	12.945	4950	9.477×10^{7}	2.088×10^{7}
tricaprylin	8:8:8	14.245	6060	1.160×10^{8}	3.471×10^{7}
tricaprin	10:10:10	14.205	6510	1.246×10^{8}	4.355×10^{7}
trilaurin	12:12:12	14.705	7190	1.377×10^{8}	5.371×10^{7}
trimyristin	14:14:14	14.905	7720	1.478×10^{8}	6.272×10^{7}
tripalmitin	16:16:16	15.525	8400	1.608×10^{8}	7.220×10^{7}
tristearin	18:18:18	15.725	8750	1.675×10^{8}	7.776×10^{7}
1-capryl-2-lauryl-3-myristin	10:12:14	14.025	6880	1.317×10^{8}	5.166×10^{7}
1-lauryl-2-myristyl-3-palmitin	12:14:16	14.925	7720	1.478×10^{8}	6.261×10^{7}
1-myristyl-2-palmityl-3-stearin	14:16:18	15.305	8250	1.579×10^{8}	7.058×10^{7}
1-myristyl-2-capryl-3-stearin	14:10:18	15.005	7750	1.484×10^{8}	6.272×10^{7}
1-myristyl-2-lauryl-3-stearin	14:12:18	14.965	7860	1.505×10^{8}	6.506×10^{7}
1-palmityl-2-capryl-3-stearin	16:10:18	15.425	8090	1.549×10^{8}	6.684×10^{7}
1-palmityl-2-lauryl-3-stearin	16:12:18	15.675	8360	1.601×10^{8}	$\textbf{7.058}\times\textbf{10}^{7}$

Table 5. Relationship between Fragment-Specific Parameters and Carbon Number of Each Fatty Acid Fragment^a

fragment-specific parameters	trend line equation	R^2	equation number
	Vapor Pressure		
$\Delta H_{\theta,\mathrm{A}}^{\mathrm{vap}}$ (J/kmol)	y = 2093479.64x + 31397826.69	0.988	(a)
$\Delta G_{\theta,\mathrm{A}}^{\mathrm{vap}}$ (J/kmol)	y = 1653848.04x + 22009767.68	0.994	(b)
	Heat Capacity		
$A_{1,A}$ (J/(kmol K))	y = 21028.920x - 2485.721	0.995	(c)
$A_{2,A}$ (J/(kmol K ²))	y = 31.459476x - 82.038794	0.946	(d)
	Liquid Enthalpy of Formation		
saturated (kJ/mol)	y = -59.571x - 1358.7	0.996	(e)
monounsaturated (kJ/mol)	y = -76.494x - 815.18	1.00	(f)
	Solid Enthalpy of Formation		
saturated (kJ/mol)	y = -76.467x - 1250.8	0.995	(g)
monounsaturated (kJ/mol)	y = -85.795x - 752.88	0.999	(h)
	Liquid Molar Volume		
$B_{1,A}$ (kmol/m ³)	$y = 65.787x^{-0.9251}$	0.999	(i)
$B_{2,A} (K^{-1})$	$y = 3.6064 \times 10^{-6}x^2 - 7.7353 \times 10^{-5}x$ $+1.6438 \times 10^{-3}$	0.720	(j)
	Liquid Viscosity		
$C_{1,A}$ (Pa s)	y = -1.0172x - 45.8525	0.898	(k)
$C_{2,A}$ (K)	y = 81.83611x + 2153.99554	0.943	(1)
$C_{3,A}$ (K)	y = 0.141996x + 20.545285	0.896	(m)

^a Note: In the equations, y represents the fragment-specific parameters in column 1 and x represents the carbon number of each saturated fatty acid fragment. R^2 is R-square values of the trend line equations.

Table 6. Calculated Vapor Pressure Fragment Parameters $\Delta H_{\theta,\Lambda}^{\mathrm{vap}}$ and $\Delta G_{\theta,\Lambda}^{\mathrm{vap}}$

and $\Delta O_{\theta,A}$				
fragments	symbols	carbons	$\Delta H_{\theta,\mathrm{A}}^{\mathrm{vap}}$ (J/kmol)	$\Delta G_{\theta,\mathrm{A}}^{\mathrm{vap}}$ (J/kmol)
glycerol	Gly-frag		-3.476×10^7	-7.388×10^{7}
butyric	Bu-frag	C4:0	3.862×10^{7}	2.789×10^{7}
caproic	Co-frag	C6:0	4.307×10^{7}	3.148×10^{7}
caprylic	Cy-frag	C8:0	5.015×10^{7}	3.609×10^{7}
capric	C-frag	C10:0	5.292×10^{7}	3.904×10^{7}
lauric	L-frag	C12:0	5.707×10^{7}	4.233×10^{7}
myristic	M-frag	C14:0	6.006×10^{7}	4.515×10^7
palmitic	P-frag	C16:0	6.550×10^{7}	4.877×10^{7}
palmitoleic	Po-frag	C16:1	6.550×10^{7}	4.877×10^{7}
stearic	S-frag	C18:0	6.800×10^{7}	5.088×10^{7}
oleic	O-frag	C18:1	6.800×10^{7}	5.088×10^{7}
linoleic	Li-frag	C18:2	6.800×10^{7}	5.088×10^{7}
linolenic	Ln-frag	C18:3	6.800×10^{7}	5.088×10^{7}
arachidic	A-frag	C20:0	7.327×10^7	5.509×10^{7}
behenic	B-frag	C22:0	7.745×10^7	5.839×10^{7}
erucic	E-frag	C22:1	7.745×10^7	5.839×10^7

Acknowledgment

The authors are grateful to Dr. Gustavo Dassori and Mr. Adam Helton of Sustainable BioEnergy Modeling Center of

Table 11. Triglyceride Composition of Soybean Oil³⁵

fatty acid chain	triglyceride	mole fraction soybean oil
C16:0	PPP	0.1221
C18:0	SSS	0.0340
C18:1	000	0.2327
C18:2	LiLiLi	0.5425
C18:3	LnLnLn	0.0687

Archer Daniels Midland Company. They found the issues with the reported constants and kindly alerted us these problems.

Literature Cited

(1) Ndiaye, P. M.; Tavares, F. W.; Dalmolin, I.; Dariva, C.; Oliveira, D.; Oliveira, J. V. Vapor Pressure Data of Soybean Oil, Castor Oil, and Their Fatty Acid Ethyl Ester Derivatives. *J. Chem. Eng. Data* **2005**, *50*, 330–333.

IE100160V

10.1021/ie100160v Published on Web 02/16/2010