Assignment-4

Solution-1:

Given data as in table below

	U	nit Shipping Co	Unit	Monthly		
	Warehouse 1	Warehouse 2	Warehouse 3	Production Cost	Production Capacity	
Plant A	\$22	\$14	\$30	\$600	100	
Plant B	\$16	\$20	\$24	\$625	120	
Monthly Demand	80	60	70			

Decision Variables:

Xa1- from plant A to warehouse 1.

Xa2- from plant A to warehouse 2.

Xa3- from plant A to warehouse 3.

Xb1- from plant B to warehouse 1.

Xb2- from plant B to warehouse 2.

Xb3- from plant B to warehouse 3.

Xd- dummy variable

Objective Function:

$$Min Z = 622Xa1 + 614 Xa2 + 630 Xa3 + 641 Xb1 + 645 Xb2 + 649 Xb3 + 0 Xad + 0 Xbd$$

Constraints:

$$Xa1 + Xa2 + Xa3 + Xad = 100$$

$$Xb1 + Xb2 + Xb3 + Xbd = 120$$

$$Xa1 + Xb1 = 80$$

$$Xa2 + Xb2 = 60$$

$$Xa3 + Xb3 = 70$$

$$Xad + Xbd = 10$$

All the decision variables are ≥ 0 .

Solution-2:

Given data as shown in table below

Refinery	R1	R2	R3	R4	R	5
Requirement (TBD)	30	57	48	91	48	8
То		Pump A		Pump B	Pump C	
	Well 1	1.52		1.60	1.40	
From	Well 2	1.70		1.63	1.55	
	Well 3	1.45		1.57	1.30	
То		R1	R2	R3	R4	R5
	Pump A	5.15	5.69	6.13	5.63	5.80
From	Pump B	5.12	5.47	6.05	6.12	5.71
	Pump C	5.32	6.16	6.25	6.17	5.87

Decision Variables:

Xij = from well i to pump j

i = 1, 2,3 for well1, well2, well3 respectively.

j = a, b, c for pump A, pumpB, pumpC respectively.

Xjk = from pump j to refinery k

j = a, b, c for pump A, pumpB, pumpC respectively.

k = 1, 2, 3, 4, 5, 6, for refinery R1, R2, R3, R4, R5, R6 respectively.

Dummy refinery – R6

Detail explanation for each decision variable.

X1a =from well 1 to pump A.

X1b = from well 1 to pump B.

X1c = from well 1 to pump C.

X2a =from well 2 to pump A.

X2b =from well 2 to pump B.

X2c = from well 2 to pump C.

X3a =from well 3 to pump A.

X3b = from well 3 to pump B.

X3c = from well 3 to pump C.

Xa1 = from pump A to refinery R1.

Xb1 = from pump B to refinery R1.

Xc1 = from pump C to refinery R1.

Xa2 =from pump A to refinery R2.

Xb2 = from pump B to refinery R2.

Xc2 = from pump C to refinery R2.

Xa3 = from pump A to refinery R3.

Xb3 = from pump B to refinery R3.

Xc3 = from pump C to refinery R3.

Xa4 = from pump A to refinery R4.

Xb4 = from pump B to refinery R4.

Xc4 = from pump C to refinery R4.

Xa5 = from pump A to refinery R5.

Xb5 = from pump A to refinery R5.

Xc5 = from pump A to refinery R5.

Objective Function:

 $\begin{aligned} & \text{Minimum Z} = 1.52\text{X}1\text{a} + 1.70\text{X}2\text{a} + 1.45\text{X}3\text{a} + 1.60\text{X}1\text{b} + 1.63\text{X}2\text{b} + 1.57\text{X}3\text{b} + 1.40\text{X}1\text{c} + 1.55\text{X}2\text{c} + \\ & 1.30\text{X}3\text{c} + 5.15\text{X}3\text{1} + 5.12\text{X}\text{b}1 + 5.32\text{X}\text{c}1 + 5.69\text{X}3\text{2} + 5.47\text{X}\text{b}2 + 6.16\text{X}\text{c}2 + 6.13\text{X}3\text{3} + 6.05\text{X}\text{b}3 + 6.25\text{X}\text{c}3 + \\ & 5.63\text{X}3\text{4} + 6.12\text{X}\text{b}4 + 6.17\text{X}\text{c}4 + 5.80\text{X}3\text{5} + 5.71\text{X}\text{b}5 + 5.87\text{X}\text{c}5 + 0\text{X}3\text{6} + 0\text{X}6\text{b} + 0\text{X}\text{c}6. \end{aligned}$

Constraints:

$$X1a + X1b + X1c = 93$$

$$X2a + X2b + X2c = 88$$

$$X3a + X3b + X3c = 95$$

$$Xa1 + Xb1 + Xc1 = 30$$

$$Xa2 + Xb2 + Xc2 = 57$$

$$Xa3 + Xb3 + Xc3 = 48$$

$$Xa4 + Xb4 + Xc4 = 91$$

$$Xa5 + Xb5 + Xc5 = 48$$

$$Xa6 + Xb6 + Xc6 = 2$$

$$X1a + X2a + X3a = Xa1 + Xa2 + Xa3 + Xa4 + Xa5 + Xa6$$

X1b + X2b + X3b = Xb1 + Xb2 + Xb3 + Xb4 + Xb5 + Xb6

X1c + X2c + X3c = Xc1 + Xc2 + Xc3 + Xc4 + Xc5 + Xc6

 $Xij = \text{from well i to pump } j \ge 0$

i = 1, 2,3 for well1, well2, well3 respectively.

j = a, b, c for pump A, pumpB, pumpC respectively.

 $Xjk = \text{from pump } j \text{ to refinery } k \ge 0$

j = a, b, c for pump A, pumpB, pumpC respectively.

k = 1, 2, 3, 4, 5, 6, for refinery R1, R2, R3, R4, R5, R6 respectively.

Well 1 is used to capacity optimal schedule.

Network Diagram

