T0-Theory: Cosmic Relations

The universal ξ -constant as key to gravitation, CMB and cosmic structures

Johann Pascher

Department of Communications Engineering, Higher Technical Federal Institute (HTL), Leonding, Austria johann.pascher@gmail.com

September 9, 2025

Contents

Introduction to T0-Theory	2
Fundamental Scales in ξ -Theory	2
Microscopic Length L_0 in T0-Theory 3.1 Definition in " ξ -units" ($\hbar = c = 1$)	
3.3 Physical Significance	
Characteristic Vacuum Length L_{ξ} and CMB Connection	3
4.1 Fundamental Relationship in T0-Theory	3
4.3 Numerical Verification of the Fundamental Relationship	
Cosmic Length R_0 and Scale Hierarchy	4
5.1 Definition of R_0	4
5.2 Connection between L_{ξ} and R_0 via ξ	4
Derivation of Minimal Length from the Lagrangian	5
6.1 Euler-Lagrange Equation	5
6.4 Scaling with the Universal Constant ξ	
	Fundamental Scales in ξ -Theory Microscopic Length L_0 in T0-Theory 3.1 Definition in ξ -units $\hbar = c = 1$. 3.2 Conversion to Physical SI Units. 3.3 Physical Significance. Characteristic Vacuum Length L_{ξ} and CMB Connection 4.1 Fundamental Relationship in T0-Theory. 4.2 Derivation of the Characteristic Vacuum Length L_{ξ} . 4.2.1 CMB Energy Density. 4.2.2 Numerical Calculation. 4.3 Numerical Verification of the Fundamental Relationship. Cosmic Length R_0 and Scale Hierarchy 5.1 Definition of R_0 . 5.2 Connection between L_{ξ} and R_0 via ξ . Derivation of Minimal Length from the Lagrangian 6.1 Euler-Lagrange Equation. 6.2 Discrete Structure and Minimal Length 6.3 Minimal Time and Length via Duality

1 Introduction to T0-Theory

T0-Theory presents a novel framework connecting quantum phenomena with cosmological structures through a universal dimensionless constant ξ . This theory establishes fundamental

relationships between microscopic quantum scales and macroscopic cosmic dimensions, offering a unified perspective on physics from the quantum realm to the cosmological horizon.

2 Fundamental Scales in ξ -Theory

The theory is built upon a universal, dimensionless constant:

$$\xi \equiv \frac{4}{3} \times 10^{-4}$$

This pure number is the fundamental parameter. To simplify the mathematical structure of the theory, we define a system of units where this number is assigned to the square of a characteristic energy E_0 (or equivalently, the inverse square of a characteristic length L_0).

This framework makes immediately clear:

- The pure number ξ is the fundamental input.
- E_0 (equiv. m_0) defines the energy/mass scale.
- L_0 defines the fundamental length scale.
- The relations $E_0^2 = \xi$ and $L_0^2 = 1/\xi$ are definitions within this specific theoretical framework, not independent postulates.

3 Microscopic Length L_0 in T0-Theory

3.1 Definition in " ξ -units" ($\hbar = c = 1$)

In the unit system of the theory, the fundamental constant defines the scales:

Quantity	Relation	Numerical Value
Constant ξ	-	$\frac{4}{3} \times 10^{-4}$
Energy E_0	$E_0 = \sqrt{\xi}$	$\sqrt{\frac{4}{3} \times 10^{-4}} \approx 0.0155$
Mass m_0	$m_0 = E_0$	0.0155
Length L_0	$L_0 = 1/E_0 = 1/\sqrt{\xi}$	≈ 64.5

Table 1: Characteristic microscopic quantities in the theory's natural units. Values are dimensionless.

3.2 Conversion to Physical SI Units

To express L_0 as a physical length, we must convert from natural units (where $L_0 \approx 64.5$) to meters using the conversion factor $\hbar c$:

$$1 \, (\text{in energy}^{-1} \, \, \text{units}) = \hbar c \approx 1.973 \times 10^{-16} \, \text{m}$$

$$L_0^{(\text{SI})} = L_0^{(\text{nat.})} \times \hbar c \approx 64.5 \times 1.973 \times 10^{-16} \, \text{m} \approx 1.27 \times 10^{-14} \, \text{m}$$

Important Note

T0-Theory postulates a minimal length $L_0 \approx 1.27 \times 10^{-14}$ m that cannot be exceeded. This minimal length emerges naturally from the Lagrangian density and the maximum field fluctuation, without any arbitrary parameters.

3.3 Physical Significance

- L_0 represents the fundamental microscopic length scale in T0-Theory
- It is not an arbitrary parameter but is determined by the universal constant ξ
- It serves as the basis for all other length scales in the theory
- \bullet The scale 10^{-14} m is comparable to the classical electron radius, suggesting a possible connection to fundamental electromagnetic phenomena

4 Characteristic Vacuum Length L_{ξ} and CMB Connection

4.1 Fundamental Relationship in T0-Theory

T0-Theory postulates a fundamental relationship between basic constants. Crucially, the ξ in this equation is the *dimensionless* constant:

Key Formula

$$\hbar c = \xi \cdot \rho_{\rm CMB} \cdot L_{\xi}^4$$

This equation connects quantum mechanics ($\hbar c$), cosmology ($\rho_{\rm CMB}$), and the theory's fundamental constant (ξ) to define the characteristic vacuum length (L_{ξ}).

4.2 Derivation of the Characteristic Vacuum Length L_{ξ}

From the fundamental relationship follows:

$$L_{\xi} = \left(\frac{\hbar c}{\xi \cdot \rho_{\rm CMB}}\right)^{1/4}$$

4.2.1 CMB Energy Density

$$T_{\text{CMB}} \approx 2.725 \,\text{K} \quad \Rightarrow \quad \rho_{\text{CMB}} = \frac{\pi^2}{15} \frac{(k_B T_{\text{CMB}})^4}{(\hbar c)^3} \approx 4.17 \times 10^{-14} \,\text{J/m}^3$$

4.2.2 Numerical Calculation

Using the values:

- $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$
- $\xi = \frac{4}{3} \times 10^{-4}$ (dimensionless)
- $\rho_{\rm CMB} = 4.17 \times 10^{-14} \; {\rm J/m^3}$

we obtain:

$$L_{\xi} = \left(\frac{3.16 \times 10^{-26}}{\left(\frac{4}{3} \times 10^{-4}\right) \times 4.17 \times 10^{-14}}\right)^{1/4} = \left(\frac{3.16 \times 10^{-26}}{5.56 \times 10^{-18}}\right)^{1/4} \approx 1.0 \times 10^{-4} \,\mathrm{m}$$

4.3 Numerical Verification of the Fundamental Relationship

Back-calculation for verification:

$$\xi \cdot \rho_{\text{CMB}} \cdot L_{\xi}^{4} = \left(\frac{4}{3} \times 10^{-4}\right) \times \left(4.17 \times 10^{-14}\right) \times (10^{-4})^{4} = 3.13 \times 10^{-26} \,\text{J} \cdot \text{m}$$

Compared with $\hbar c = 3.16 \times 10^{-26} \text{ J} \cdot \text{m}$, this shows a deviation of less than 1%.

5 Cosmic Length R_0 and Scale Hierarchy

5.1 Definition of R_0

The cosmic length R_0 is theoretically derived through the hierarchy between L_0 and the Planck length L_P :

$$R_0 \sim \frac{L_P^2}{L_0} \sim 10^{26} \,\mathrm{m}$$

It can be numerically compared with the Hubble length:

$$L_H = c/H_0 \sim 10^{26} \,\mathrm{m}$$

5.2 Connection between L_{ξ} and R_0 via ξ

T0-Theory postulates a hierarchy:

$$\frac{R_0}{L_{\varepsilon}} \sim \xi^{-N} \quad \Rightarrow \quad R_0 \sim L_{\xi} \, \xi^{-N}$$

With $N \approx 30$ and $L_{\xi} \sim 10^{-4}$ m, we obtain:

$$R_0 \sim 10^{-4} \times (10^4)^{30/4} = 10^{-4} \times 10^{30} = 10^{26} \,\mathrm{m}$$

This directly connects the characteristic vacuum length L_{ξ} with the cosmic length R_0 .

6 Derivation of Minimal Length from the Lagrangian

Starting from the T0 theory Lagrangian:

$$\mathcal{L} = \varepsilon (\partial \delta m)^2, \quad \delta m(x,t) = m(x,t) - m_0$$
 (6.1)

where δm is the fluctuation of the mass field around a reference mass m_0 and ε is a scaling constant.

6.1 Euler-Lagrange Equation

The Euler-Lagrange equation for the mass fluctuation δm is

$$\partial_{\mu} \frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \delta m)} - \frac{\partial \mathcal{L}}{\partial \delta m} = 0 \tag{6.2}$$

Since $\mathcal{L} \sim (\partial \delta m)^2$, we have $\frac{\partial \mathcal{L}}{\partial \delta m} = 0$ and

$$\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\delta m)} = 2\varepsilon \partial_{\mu}\delta m \tag{6.3}$$

leading to the classical wave equation:

$$\partial_{\mu}\partial^{\mu}\delta m = 0 \tag{6.4}$$

6.2 Discrete Structure and Minimal Length

Considering plane-wave solutions

$$\delta m(x) \sim e^{ik \cdot x}, \quad k = |k|$$
 (6.5)

the field energy scales as

$$E_k \sim \varepsilon k^2 |\delta m_k|^2 \tag{6.6}$$

so that high frequencies (short wavelengths) are energetically suppressed.

Imposing a maximal allowed field fluctuation $\delta m_{\rm max}$ naturally defines a characteristic maximal mass

$$m_{\text{max}} \sim m_0 + \delta m_{\text{max}} \tag{6.7}$$

6.3 Minimal Time and Length via Duality

Using the fundamental T0-theory duality

$$T \cdot m = 1 \quad \Rightarrow \quad T_{\min} = \frac{1}{m_{\max}}$$
 (6.8)

and in natural units (c = 1), this translates directly to a minimal length

$$r_0 \sim T_{\min} \sim \frac{1}{m_{\max}} \sim \frac{1}{m_0 + \delta m_{\max}} \tag{6.9}$$

6.4 Scaling with the Universal Constant ξ

Incorporating the universal scaling constant $\xi \ll 1$ of the T0 theory, the minimal length becomes

$$r_0 \sim \sqrt{\xi} \,\ell_P \tag{6.10}$$

Using $\xi = \frac{4}{3} \times 10^{-4}$ and $\ell_P \approx 1.616 \times 10^{-35}$ m:

$$r_0 \sim \sqrt{\frac{4}{3} \times 10^{-4}} \times 1.616 \times 10^{-35} \,\mathrm{m} \approx 0.0155 \times 1.616 \times 10^{-35} \,\mathrm{m} \approx 1.27 \times 10^{-14} \,\mathrm{m}$$

Thus, the minimal length r_0 emerges naturally from the Lagrangian, the maximal field fluctuation, and the intrinsic mass-time duality, without any arbitrary parameters.

Insight

T0-Theory predicts a minimal length of $r_0 \sim \sqrt{\xi} \, \ell_P \approx 1.27 \times 10^{-14}$ m that cannot be exceeded. This emerges naturally from the Lagrangian density and the fundamental mass-time duality of the theory.

Characteristic Vacuum Length L_{ξ} Scale Verification

Important Note

The characteristic vacuum length L_{ξ} is indeed approximately 0.1 mm:

$$L_{\xi} \approx 1.0 \times 10^{-4} \,\mathrm{m} = 0.1 \,\mathrm{mm}$$

This length scale is consistently derived from the fundamental relationship of T0-Theory:

$$\hbar c = \xi \rho_{\rm CMB} L_{\xi}^4$$

with $\xi = \frac{4}{3} \times 10^{-4}$ and the CMB energy density $\rho_{\rm CMB} \approx 4.17 \times 10^{-14} \, {\rm J/m}^3$.

Numerical Verification

$$L_{\xi} = \left(\frac{\hbar c}{\xi \rho_{\text{CMB}}}\right)^{1/4}$$

$$= \left(\frac{3.16 \times 10^{-26} \,\text{J} \cdot \text{m}}{\frac{4}{3} \times 10^{-4} \times 4.17 \times 10^{-14} \,\text{J/m}^3}\right)^{1/4}$$

$$\approx \left(\frac{3.16 \times 10^{-26}}{5.56 \times 10^{-18}}\right)^{1/4}$$

$$\approx \left(5.68 \times 10^{-9}\right)^{1/4}$$

$$\approx 1.0 \times 10^{-4} \,\text{m} = 0.1 \,\text{mm}$$

Physical Significance

The length scale of 0.1 mm is particularly significant because it:

- Lies within the observable range of Casimir effects
- Represents a natural boundary between microscopic and macroscopic phenomena
- Is directly linked to CMB radiation
- Mediates the hierarchy between quantum and cosmic scales

Appendix: Notation and Symbol Explanations

Symbols and Notation Used in T0-Theory

Symbol	Description
ξ	Universal dimensionless constant, fundamental parameter of T0-
L_0	Theory: $\xi = \frac{4}{3} \times 10^{-4}$ Minimal length scale, fundamental microscopic length: $L_0 = 1/\sqrt{\xi}$.
E_0	$\hbar c \approx 1.27 \times 10^{-14} \text{ m}$ Characteristic energy scale: $E_0 = \sqrt{\xi}$ (in natural units)

Symbol	Description
$\overline{m_0}$	Reference mass scale: $m_0 = E_0$ (in natural units)
L_{ξ}	Characteristic vacuum length scale: $L_{\xi} \approx 1.0 \times 10^{-4}$ m
$ ho_{ m CMB}$	Energy density of Cosmic Microwave Background radiation
T_{CMB}	Temperature of Cosmic Microwave Background: $T_{\rm CMB} \approx 2.725~{\rm K}$
R_0	Cosmic length scale: $R_0 \sim 10^{26} \text{ m}$
L_P	Planck length: $L_P \approx 1.616 \times 10^{-35} \text{ m}$
L_H	Hubble length: $L_H = c/H_0 \sim 10^{26} \text{ m}$
\hbar	Reduced Planck constant: $\hbar = h/2\pi$
c	Speed of light in vacuum
k_B	Boltzmann constant
${\cal L}$	Lagrangian density
\mathcal{L}_{ξ}	ξ -field component of Lagrangian density
$\phi_{\mathcal{E}}$	ξ -field scalar field
δm	Mass fluctuation field: $\delta m(x,t) = m(x,t) - m_0$
ε	Scaling constant in Lagrangian
∂_{μ}	Partial derivative (4-gradient in spacetime)
ℓ_P	Alternative notation for Planck length
r_0	Alternative notation for minimal length scale
T_{\min}	Minimal time scale derived from mass-time duality
$m_{ m max}$	Maximum mass scale from field fluctuations
N	Scaling exponent in hierarchy relation: $N \approx 30$
$\Delta_\%$	Percentage deviation between theoretical and observed values

Mathematical Notation

Notation	Meaning
\sim	Proportional to or approximately equal
\approx	Approximately equal
=	Defined as
:=	Definition equality
$\partial_{\mu} \ \partial^{\mu}$	Partial derivative with respect to coordinate x^{μ}
∂^{μ}	Contravariant partial derivative
$\partial_{\mu}\partial^{\mu}$	d'Alembert operator (wave operator)
$[\dot{\mathrm{E}}]$	Dimension of energy (natural units)
[L]	Dimension of length (natural units)
[m]	Dimension of mass (natural units)
GeV	Giga-electronvolt, unit of energy: $1 \text{ GeV} = 10^9 \text{ eV}$
GeV^{-1}	Inverse GeV, unit of length in natural units
$\mathrm{J/m}^3$	Joules per cubic meter, unit of energy density
K	Kelvin, unit of temperature

Special Constants and Values

Constant/Value	Description
$\xi = \frac{4}{3} \times 10^{-4}$	Fundamental dimensionless constant of T0-Theory

Constant/Value	Description
$L_0 \approx 1.27 \times 10^{-14} \text{ m}$	Minimal length scale derived from ξ
$E_0 = \sqrt{\xi}$	Characteristic energy scale (natural units)
$L_{\xi} \approx 0.1 \text{ mm}$	Characteristic vacuum length scale
$R_0 \sim 10^{26} \text{ m}$	Cosmic scale comparable to Hubble length
4% deviation	Difference between R_0 and Hubble length L_H
$\hbar c = 3.16 \times 10^{-26} \mathrm{J \cdot m}$	Product of reduced Planck constant and speed of light
$ \rho_{\rm CMB} \approx 4.17 \times 10^{-14} $	CMB energy density
$ m J/m^3$	
$T_{\rm CMB} = 2.725 \; {\rm K}$	Measured CMB temperature
$1 \text{ GeV}^{-1} = 1.973 \times$	Conversion factor between natural and SI units
10^{-16} m	