לוגיקה מתמטית - תרגיל 12

הפסוק arphi , היי , בשפה שבה יש סימן פונקציה חד-מקומי f וסימן יחס היהי σ הפסוק.

$$(\forall x)(\neg f(x) = x \land f(f(f(x))) = x)$$

- κ עם עולם מעוצמה $\{arphi\}$ מצא את כל העוצמות $\{arphi\}$ סופיות ואינסופיות שעבורן קיים מודל של
 - ב. הוכח שלכל עוצמה κ שמצאת בחלק א' , $\{ \varphi \}$ היא שמצאת בחלק שלכל עוצמה הוכח שלכל עוצמה א
 - $\{arphi\}$ תורה שלמה אם $\{arphi\}$
 - תהי \sum , בשפה שבה יש סימן יחס דו-מקומי R וסימן יחס התיר $\mathbf{2}$

$$\sum = \{ (\forall x) \neg R(x, x) , (\forall x)(\forall y)(R(x, y) \rightarrow R(y, x)) , (\forall x)(\exists y)(\exists z)(\neg y = z \land (\forall w)(R(x, w) \equiv (w = y \lor w = z))) \}$$

- λ . תאר במילים מתמטיות מקובלות את המודלים של
- ב. מצא את כל העוצמות κ (סופיות ואינסופיות) שעבורן היא $-\kappa$ -קטגורית.
 - $oldsymbol{\zeta}$. האם \sum תורה שלמה י
 - .3 תהי \sum תורת הסדר הקווי הצפוף בלי איבר ראשון ובלי איבר אחרון. $(\kappa=|\mathbb{R}|=2^{\aleph_0}$ כלומר הרצף (כלומר $\kappa=|\mathbb{R}|=2^{\aleph_0}$. הוכח כי $(\kappa=|\mathbb{R}|=2^{\aleph_0}$ איננה κ -קטגורית.
- . תן דוגמה לתורה שהיא κ -קטגורית לכל עוצמה סופית $\kappa \geq 1$, אך איננה שלמה. 4
 - . = יחסימן וסימן fוסימן פונקציה יש סימן פונקציה שבה שבה נתבונן בשפה . ${\bf .5}$. $f^M(a)=a-2$, המבנה המספרים המספרים W^M היא המבנה שבו Mיהי
 - א את כל התת-מבנים של M איזה מהם אלמנטריים ${f X}$
 - Mב. כמה תת-מבנים לא איזומורפיים יש ל-Mי