Работа 1.2.5

Исследование прецессии уравновешенного гироскопа

Малиновский Владимир galqiwi@galqiwi.ru

Цель работы: исследовать вынужденную прецессию гироскопа, установить зависимость скорости вынужденной прецессии от величины момента сил, действующий на ось гироскопа и сравнить ее со скоростью, рассчитанной по скорости прецессии. **В работе используются:** гироскоп в кардановом подвесе, секундомер, набор грузов, отдельный ротор гироскопа, цилиндр известной массы, крутильный маятник, штангенсциркуль, линейка.

Теория

В этой работе исследуется зависимость скорости прецессии гироскопа от момента силы, приложенной к его оси. Для этого к оси гироскопа подвешиваются грузы. Скорость прецессии определяется по числу оборотов рычага воеруг вертикальной оси и времни, которое на это ушло, определяемоу секундомером. В процессе измерений рычаг не только поворачивается в результате прецессии гироскопа, но и опускается. Поэтому его в начале опыта следует преподнять на 5-6 градусов. Опять надо закончить, когда рычаг опустится на такой же угол.

Рис. 2. Гироскоп в кардановом подвесе

Измерение скорости прецессии гироскопа позволяет вычислить угловую скорость вращения его ротора. Расчет производится по формуле:

$$\Omega = \frac{mgl}{I_z \omega_0},\tag{1}$$

где m — масса груза, l — расстояние от центра карданова подвеса до точки крепления груза на оси гироскопа, I_z — момент инерции гироскопа по его главной оси вращения. ω_0 — частота его вращения относительно главной оси, Ω — частота прецессии.

Момент инерции ротора относительно оси симметрии I_0 измеряется по крутильным колебаниям точной копии ротора, подвешиваемой вдоль оси симметрии на десткой проволоке. Период крутильных колебаний T_0 зависит от момента инерции I_0 и модуля кручения проволоки f:

$$T_0 = 2\pi \sqrt{\frac{I_0}{f}}. (2)$$

Чтобы исключить модуль кручения проволоки, вместо ротора гироскопа к той же проволоке подвешивают цилиндр правильной формы с известными размерами и массой, для которого легко можно вычислить момент инерции $I_{\mathfrak{q}}$. Для определения момента инерции ротора гироскопа имеем

$$I_0 = I_{\pi} \frac{T_0^2}{T_{\pi}^2},\tag{3}$$

Здесь $T_{\rm u}$ – период крутильных колебаний цилиндра.

Рис. 3. Схема экспериментальной установки

Скорость вращения ротора гироскопа можно определить и не прибегая к исследованию прецессии. У используемых в работе гироскопов статор имеет две обмотки, необходимые для быстрой раскрутки гироскопа. В данной работе одну обмотку искользубт для раскрутки гироскопа, а вторую — для измерения числа оборотов ротора. Ротор электромотора всегда немного намагничен. Вращаясь, он наводит во второй обмотке переменную ЭДС индукции, частота которой равна частоте врещения ротора. Частоту этой ЭДС

можно, в частности, измерить по фигурам Лиссажу, получаемым на экране осциллографа, если на один вход подать исследуемую ЭДС, а на другой – переменное напряжение с хорошо прокалиброванного генератора. При совпадении частот на эеране получаем эллипс.

Результаты и обработка

Данные для частоты прецессии и опускания гироскопа:

m, г	t, c	h_0 , MM	h_1 , мм	$a_0,^{\circ}$	$a_1,^{\circ}$	$\Omega, 10^{-3} c^{-1}$	$\Omega_f, 10^{-3} \mathrm{c}^{-1}$
57	75.5	155	136	210	336	29.1 ± 0.6	2.0 ± 0.2
76	77.3	155	132	358	532	39.3 ± 0.7	2.4 ± 0.2
91	77.6	155	132	220	430	47.2 ± 0.7	2.4 ± 0.2
93	75.8	155	136	42	250	47.9 ± 0.7	2.0 ± 0.2
116	76.8	155	133	248	512	60.0 ± 0.8	2.3 ± 0.2
141	80.2	155	133	198	538	74.0 ± 0.8	2.2 ± 0.2
215	75.7	155	134	168	658	113.0 ± 1.1	2.2 ± 0.2
267	85.8	155	130	228	916	140.0 ± 1.1	2.3 ± 0.2
335	71.5	155	132	226	948	176.2 ± 1.5	2.6 ± 0.2

Где m — масса груза, t — время измерения, h_0 , h_1 — высоты края гироскопа до и после измерения соответственно, a_0 , a_1 — углы поворота гироскопа в горизонтальной плоскости до и после измерения соответственно. Ω , Ω_f — угловые скорости прецессии и опускания гироскопа, рассчитанные по формулам:

$$\Omega = \frac{a_1 - a_0}{t},\tag{4}$$

$$\Omega_f = \frac{asin((h_0 - h_z)/L) - asin((h_1 - h_z)/L)}{t},$$
(5)

где h_z – высота края гироскопа в горизонтальном положении, равная 145 ± 0.5 мм, а L – расстояние от центра до края, равное 126.2 ± 0.7 мм.

Погрешности измерений равны: $\Delta t = 0.4$ с, $\Delta h = 0.5$ мм, $\Delta a = 1$ °.

Поскольку момент сил трения не зависит от нагрузки m, угловая скорость опускания гироскопа так же не зависит от m, что видно из данных в таблице выше. Среднее значение Ω_f равно:

$$<\Omega_f> = (2.3 \pm 0.2) \cdot 10^{-3} c^{-1}$$
 (6)

Из формулы (1) видна линейность скорости прецессии и массы, рассмотрим эту зависимость на эспериментальных данных:

Из МНК следует, что коэффициент пропорциональности равен:

$$\frac{gl}{I_z\omega_0} = (0.5225 \pm 0.0015) \frac{1}{\mathbf{c} \cdot \mathbf{kr}}.$$
 (7)

Измерение момента инерции.

Параметры калибровочного цилиндра (Масса и диаметр соответственно):

$$M = (1617.4 \pm 0.1)$$
r, $D = (78.2 \pm 0.1)$ mm. (8)

Периоды вращения цилиндра и гироскопа:

	T_{10} , c	T_{10}, c	T_{10}, c	T_{10}, c	T_{10}, c	<t>, c</t>
гироскоп	32.41	32.53	32.39	32.66	32.59	3.25 ± 0.04
цилиндр	40.94	41.05	40.90	41.04	40.96	4.10 ± 0.04

Из этого рассчетный момент инерции гироскопа равен:

$$I_z = \frac{MD^2}{8} \left(\frac{T_g}{T_{\text{II}}}\right)^2 = (7.8 \pm 0.4) \cdot 10^{-4} \text{ K} \cdot \text{M}^2.$$
 (9)

Из (7) и (9) получаем частоту вращения гироскопа (l = 121мм):

$$\omega_0 = (2.91 \pm 0.16) \cdot 10^3 \text{ c}^{-1},$$
(10)

$$f_0 = (463 \pm 25)c^{-1}. (11)$$

Измерение момента сил трения:

$$M_f = I_z \omega_0 \Omega_f = (5.223 \pm 0.015) \text{ MH} \cdot \text{M}.$$
 (12)

Нахождение частоты вращения гироскопа по затуханию:

/	1						270.1	300.0	330.8	362.6
f , Γ ц	440	420	410	400	390	380	370	360	350	340

t, c	394.3	427.8	462.0	496.4	532.2	568.9	607.6	646.5	686.5	725.6
f , Γ ц	330	320	310	300	290	280	270	260	250	240

$$\Delta t = 0.4$$
c.

В линейном приближении получается частота $f_l = (454 \pm 2) \Gamma$ ц. В экспоненциальном приближении получается частота $f_e = (473 \pm 1) \Gamma$ ц.

Вывод:

В этой работе была найдена скорость вращения 3 способами – по прецессии, и по раздичным линеаризациям затухания вращения гироскопа и момент сил трения в оси гироскопа. Различные линеаризации все находятся в погрешности измерения по прецессии, но как основную линеаризацию я бы выбрал экспоненциальное затухание – оно лучше кладется на точки.