Q1.

```
double sum_skip7 (double array[], int n)
//n: size of the array. Assume n is divisible by 7, i.e., n=7*k, where k is a
positive integer
{
    double sum=0;
    for (int i=0; i<n; i=i+7)
        sum = sum + array[ i ];
    return sum;
}</pre>
```

Line No.	Time taken to run this line of code once.	Total number of times needed to run this line.
1	C1	1
2	C2	n/7 +1
3	C3	n/7
4	C4	1
Total time needed to finish this function or loop:		C2(n/7+1)+C3(n/7)+C4 2+C3)/2+(C1+C2+C3)

Q2.

```
double sum_exponentials(int n)
//n is a power of 5, i.e., n=5k or k=log3n, where k is a positive integer
{
    int sum=0;
    for (int i=1; i<n; i=i*5)
        sum = sum + i;
    return sum;
}</pre>
```

Line No.	Time taken to run this line of code once.	Total number of times needed to run this line.	
1	C1	1	
.2 3 .4	C2 C3 C4	log₅n+1 log₅n 1	
Total time needed to finish this function or loop:	· · · · · · · · · · · · · · · · · · ·	$T = C1+C2(log_5n+1)+C3log_5n+C4$ $T = C1+C2+C4+log_5n(C2+C3)$	

Q3.

Line No.	Time taken to run this line of code once.	Total number of times needed to run this line.
1	C1	n+1
	C2	n(n+1)
	C3	n^2
Total time	$T = C1(n+1)+C2(n(n+1))+C3(n^2)$	
needed to finish this function or loop:	$T = C1n+C1+C2n^2+C2n+C3(n^2)$	
	$T = n^2(C3+C2)+n(C1+C2)+C1$	