CS7810 Prefetching

Seth Pugsley

Predicting the Future

- Where have we seen prediction before?
 - Does it always work?
- Prefetching is prediction
 - Predict which cache line will be used next, and place it in the cache before it is used
 - A processor cache is required

Data Accesses

- What is it about data accesses in programs that makes them predictable?
 - Spatially predictable
 - Temporally predictable
- Virtual page boundaries
- Regular vs Irregular

Regular Data Access

•Some patterns are very easy to accurately predict.

Irregular Data Access

•Pointer-chasing patterns are impossible to predict without large, comprehensive histories.

Mixed Data Access

•Some applications have a combination of both types. For example, a linked list where each item is several cache lines long.

Cache Line Size

- Overfetching and Prefetching
 - Main memory access granularity vs program access granularity
- Large cache lines have more spatial locality
 - Why not just use huge cache lines?
 - Where is the limit?

Next Line Prefetching

- For every cache line A that is fetched, also prefetch A+1
 - There is no intelligence or decision making, it always performs the same action
- How is this different from having twice the cache line size?
 - Alignment
 - Eviction granularity

Next Line Prefetching

Prefetch Aggressiveneess

- Cache Capacity
 - Prefetched lines take up cache capacity
- Memory Bandwidth
 - Prefetched lines use memory bandwidth
- Accuracy vs Cache Miss Coverage
 - Fundamentally at odds with one another
- Timeliness
 - Does the prefetched line arrive on time?
- How does a Next Line Prefetcher fare in these metrics in the best case? Worst case?

Stream Prefetcher

- Prefetch multiple +1 lines ahead
- Requires confirmation before any action is taken
 - Stream started on access A
 - Stream direction determined on access A+1
 - Stream confirmed on access A+2
 - Begin prefetching A+3
- Intelligence and bookkeeping required to identify and confirm these streams
- Prefetch degree is how many cache lines are prefetched at a time

Stream Prefetcher

Stream Prefetchers are good at prefetching very long regular streams.

Stream Prefetcher

First Access	Second Access	Direction	Next Expected	Next Prefetch

Accesses: 0, 1, 2, 10, 11, 3, 12, 4, 5

Prefetched:

Stride Prefetcher

- Like a stream prefetcher, but with variable access stride (not always +1)
 - More bookkeeping to determine stride
- Also requires confirmation before prefetching
 - Allocate stream on access A
 - Determine direction and stride on access A+X
 - Confirm stream on access A+2*X
 - Begin prefetching A+3*X

Stride Prefetcher

First Access	Second Access	Stride	Next Expected	Next Prefetch

Accesses: 0, 4, 8, 53, 56, 101, 12, 16, 20, 59, 62, 65

Prefetched:

Common Regular Data Prefetchers

- If you understand these, then you're off to a good start
 - Next Line
 - Stream
 - Stride
- Now we will introduce more advanced topics

Correlation Prefetchers

- Correlate events in a history
 - Assume history repeats itself
- History Table
 - Indexed by some key, e.g., PC or load address
 - Table entry tells prefetching algorithm what to do
- Can correlate a variety of things
 - Total access order (on a pair by pair basis)
 - Distances between accesses

Correlation Prefetchers

Index	Next
0	
1	
2	
3	
4	
5	
6	
7	

Accesses: 0, 7, 3, 6, 2, 1, 5, 4, 7, 3, 0, 7, 2, 1, 5, 0, 4, 7, 2, 1, 5, 0, 7, 3, 6

Global History Buffer

- Nesbit and Smith, 2005
- Instead of just one history table, uses an index table and global history buffer
 - Index table is accessed by directly indexing into it
 - GHB is a FIFO with pointers between entries
- This can be used as a framework to implement other prefetchers
- Still very popular basis for new prefetchers

Global History Buffer

Index	Ptr
0	
1	
2	
3	

History	

Accesses: 0, 2, 3, 1, 2, 0, 2, 3, 0, 2, 3, 1, 2, 0, 2, 3, 0, 2

Access Map Pattern Matching

- JILP Data Prefetching Championship 2009
- Exhaustive search on a history, looking for regular patterns
 - History stored as bit vector per physical page
 - Shift history to center on current access
 - Check for patterns for all +/- X strides
 - Prefetch matches with smallest prefetch distance

Summary

- Some data accesses are predictable
- Regular vs Irregular data access patterns
- Three must-know prefetchers
 - Next Line, Stream, Stride
- Fourth must-know prefetcher
 - Global History Buffer