

Permutasiya

Fironlar öz kosmik gəmilərini sürətləndirmək üçün planetlərin nisbi hərəkətindən və cazibə qüvvəsindən istifadə edirlər. Fərz edək ki, kosmik gəmi orbital sürətləri $p[0], p[1], \ldots, p[n-1]$ olan n planetin yanından keçəcək. Hər bir planet üçün Fironların alimləri bu planetdən istifadə edərək kosmik gəmini sürətləndirib-sürətləndirməməyə qərar verə bilərlər. Enerjiyə qənaət etmək üçün orbital sürəti p[i] olan bir planet tərəfindən sürətləndirildikdən sonra kosmik gəmi orbital sürəti p[j] < p[i] olan heç bir planetdən istifadə edərək sürətləndirilə bilməz. Başqa sözlə, seçilmiş planetlər $p[0], p[1], \ldots, p[n-1]$ -in **artan alt ardıcıllığını** təşkil edir. p-nin alt ardıcıllığı p-dən sıfır və ya daha çox sayda elementini silinməklə əldə edilən ardıcıllıqdır. Məsələn, [0], [], [0,2] və [0,1,2] [0,1,2]-nin alt ardıcıllıqlarıdır, lakin [2,1] deyil.

Alimlər müəyyən ediblər ki, kosmik gəmini sürətləndirmək üçün cəmi k müxtəlif üsulla bir sıra planetləri seçmək olar, lakin onlar bütün orbital sürət qeydlərini itiriblər. (hətta n-in dəyərini də). Bununla belə, onlar xatırlayırlar ki, $(p[0], p[1], \ldots, p[n-1])$ $(0, 1, \ldots, n-1)$ -in permutasiyasıdır. Permutasiya 0-dan n-1-ə qədər hər bir tam ədədi bir dəfə ehtiva edən ardıcıllıqdır. Sizin tapşırığınız kifayət qədər kiçik uzunluqda mümkün bir permutasiya $(p[0], p[1], \ldots, p[n-1])$ tapmaqdır.

Siz q sayda müxtəlif kosmik gəmi üçün problemi həll etməlisiniz. Hər i kosmik gəmisi üçün sizə k_i tam ədədi verilir, bu, kosmik gəmini sürətləndirmək üçün bir sıra planetlərin seçilə biləcəyi müxtəlif üsulların sayını bildirir. Sizin tapşırığınız kifayət qədər kiçik n_i uzunluğuna malik elə orbital sürətlər ardıcıllığını tapmaqdır ki, artan orbital sürətlərə malik planetlərin alt ardıcıllığını seçmək üçün tam olaraq k_i müxtəlif üsul olsun.

İmplementasiya Detalları

Aşağıdakı proseduru icra etməlisiniz:

```
int[] construct permutation(int64 k)
```

- k: artan alt ardıcıllıqların arzu olunan sayıdır.
- Bu prosedur hər bir elementi 0 və n-1 arasında olan n elementli massiv qaytarmalıdır.
- Qaytarılan massiv tam olaraq k artan alt ardıcıllığa malik permutasiya olmalıdır.
- Bu prosedur cəmi q dəfə çağırılır. Bu çağırışların hər birinə ayrıca ssenari kimi yanaşmaq lazımdır.

Məhdudiyyətlər

• $1 \le q \le 100$

• $2 \le k_i \le 10^{18}$ (for all $0 \le i \le q-1$)

Alt Tapşırıqlar

- 1. (10 bal) $2 \le k_i \le 90$ (bütün $0 \le i \le q-1$ üçün). İstifadə etdiyiniz bütün permutasiyaların uzunluğu ən çoxu 90-dırsa və düzgündürsə, siz 10 bal, əks halda 0 bal alırsınız.
- 2. (90 bal) Əlavə məhdudiyyətlər yoxdur. Bu alt tapşırıq üçün gəlin m bütün ssenarilərdə istifadə etdiyiniz maksimum permutasiya uzunluğu olsun. Bu halda, balınız aşağıdakı cədvələ uyğun olaraq hesablanır:

Şərt	Bal
$m \leq 90$	90
$90 < m \leq 120$	$90 - \frac{(m-90)}{3}$
$120 < m \leq 5000$	$80 - \frac{(m-120)}{65}$
m > 5000	0

Nümunələr

Nümunə 1

Aşağıdakı prosedura nəzər yetirək:

Bu prosedur tam olaraq 3 artan alt ardıcıllığa malik bir permutasiya qaytarmalıdır. Mümkün cavablardan biri [1,0]-dır. Onun [] (boş ardıcıllıq), [0] və [1] kimi artan alt ardıcıllıqları var.

Nümunə 2

Aşağıdakı prosedura nəzər yetirək:

```
construct_permutation(8)
```

Bu prosedur tam olaraq 8 artan alt ardıcıllığa malik bir permutasiya qaytarmalıdır. Mümkün cavablardan biri [0,1,2]-dir.

Nümunə qreyder

Nümunə qreyder giriş verilənlərini aşağıdakı formatda oxuyur:

- ullet sətir 1: q
- sətir 2+i ($0\leq i\leq q-1$): k_i

Nümunə qreyder hər k_i üçün construct_permutation prosedurunun qaytardığı dəyəri və ya əgər baş vermişsə, xəta mesajını ehtiva edən yeganə sətir çap edir.