Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

7. Control as probabilistic inference

Exact inference

The graphical model and policy search Connection to Bellman equations

Approximate inference
 Maximum entropy control
 Connection to variational inference
 Obtaining the optimal policy

Outline

- Exact inference
 The graphical model and policy search
 Connection to Bellman equations
- Approximate inference
 Maximum entropy control
 Connection to variational inference
 Obtaining the optimal policy

Optimal control problems

maximize (over
$$\theta$$
) $\sum_{t=1}^{T} \mathbf{E}_{(s_t, a_t) \sim p(s_t, a_t | \theta)}[r(s_t, a_t)]$

- T: time horizon
- $p(\tau) = p(s_1, a_1, \dots, s_T, a_T \mid \theta) = p(s_1) \prod_{t=1}^T p(a_t \mid s_t, \theta) p(s_{t+1} \mid s_t, a_t)$

The graphical model

ullet \mathcal{O} : binary random variable, $o_t=1 \implies$ step t is optimal

$$p(o_t = 1 \mid s_t, a_t) = \exp(r(s_t, a_t))$$

- assume $r(s_t, a_t) < 0$ for all $s_t \in \mathcal{S}$, $a_t \in \mathcal{A}$

Policy search

target: find the optimal policy $p(a_t \mid s_t, o_{1:T} = 1)$

- ullet we will denote $o_{1:T}=\mathbf{1}$ as $o_{1:T}^*$ subsequently for simplicity
- according to the Markov property of the system: $p(a_t \mid s_t, o_{1:T}^*) = p(a_t \mid s_t, o_{t:T}^*)$

backward messages

• state-action message

$$\beta(s_t, a_t) = p(o_{t:T}^* \mid s_t, a_t)$$

state-only message

$$\beta(s_t) = p(o_{t:T}^* \mid s_t)$$

Policy search

• recover $\beta(s_t)$ from $\beta(s_t, a_t)$:

$$\beta(s_t) = p(o_{t:T}^* \mid s_t) = \int_{\mathcal{A}} p(o_{t:T}^* \mid s_t, a_t) p(a_t \mid s_t) \ da_t = \int_{\mathcal{A}} \beta(s_t, a_t) p(a_t \mid s_t) \ da_t$$

- $p(a_t \mid s_t)$: action prior, assumed to be uniform, i.e., $p(a_t \mid s_t) = \frac{1}{\mathbf{card}(\mathcal{A})}$
- recursive expression

$$\beta(s_t, a_t) = p(o_{t:T}^* \mid s_t, a_t)$$

$$= \begin{cases} \exp(r(s_T, a_T)) & t = T \\ \int_{\mathcal{S}} \beta(s_{t+1}) p(s_{t+1} \mid s_t, a_t) p(o_t^* \mid s_t, a_t) \ ds_{t+1} & t < T \end{cases}$$

Policy search

optimal policy

$$p(a_t \mid s_t, o_{t:T}^*) = \frac{p(s_t, a_t \mid o_{t:T}^*)}{p(s_t \mid o_{t:T}^*)} = \frac{p(o_{t:T}^* \mid s_t, a_t)p(a_t \mid s_t)p(s_t)}{p(o_{t:T}^* \mid s_t)p(s_t)}$$
$$\propto \frac{p(o_{t:T}^* \mid s_t, a_t)}{p(o_{t:T}^* \mid s_t)} = \frac{\beta(s_t, a_t)}{\beta(s_t)}$$

• $p(a_t \mid s_t)$ disappears since it's assumed to be uniform

Connection to Bellman equations

backward messages in log-space

$$Q(s_t, a_t) = \log \beta(s_t, a_t)$$
$$V(s_t) = \log \beta(s_t)$$

• marginalization over actions:

$$\beta(s_t) = \int_{\mathcal{A}} \beta(s_t, a_t) \ da_t \implies V(s_t) = \log \int_{\mathcal{A}} \exp(Q(s_t, a_t)) \ da_t$$

-
$$V(s_t) \approx \max_{a_t} Q(s_t, a_t)$$
 for large $Q(s_t, a_t)$

Connection to Bellman equations

backups in log-space

$$\beta(s_t, a_t) = \int_{\mathcal{S}} \beta(s_{t+1}) p(s_{t+1} \mid s_t, a_t) p(o_t^* \mid s_t, a_t) \ ds_{t+1}$$

• deterministic dynamics: soft Bellman optimality equations

$$Q(s_t, a_t) = r(s_t, a_t) + V(s_{t+1}) = r(s_t, a_t) + \log \int_{\mathcal{A}} \exp(Q(s_{t+1}, a_{t+1})) \ da_{t+1}$$

• stochastic dynamics:

$$Q(s_t, a_t) = r(s_t, a_t) + \log \int_{\mathcal{S}} p(s_{t+1} \mid s_t, a_t) \exp(V(s_{t+1})) \ ds_{t+1}$$
$$= r(s_t, a_t) + \log \mathbf{E}_{s_{t+1} \sim p(s_{t+1} \mid s_t, a_t)} [\exp(V(s_{t+1}))]$$

optimistic Q-functions, creating risk-seeking behavior

Outline

- Exact inference
 The graphical model and policy search
 Connection to Bellman equations
- Approximate inference
 Maximum entropy control
 Connection to variational inference
 Obtaining the optimal policy

Maximum entropy control

ullet posterior distribution over trajectories au given that all actions are optimal:

$$p(\tau \mid o_{1:T}^*) \propto p(\tau, o_{1:T}^*)$$

$$= p(s_1) \prod_{t=1}^T p(o_t^* \mid s_t, a_t) p(s_{t+1} \mid s_t, a_t)$$

$$= p(s_1) \prod_{t=1}^T \exp(r(s_t, a_t)) p(s_{t+1} \mid s_t, a_t)$$

$$= \left[p(s_1) \prod_{t=1}^T p(s_{t+1} \mid s_t, a_t) \right] \exp\left(\sum_{t=1}^T r(s_t, a_t)\right)$$

• distribution over trajectories τ given some policy π_{θ} :

$$p_{\theta}(\tau) = p(s_1) \prod_{t=1}^{T} p(s_{t+1} \mid s_t, a_t) \pi_{\theta}(a_t \mid s_t)$$

Maximum entropy control

the inference problem

minimize (over
$$\theta$$
) $D_{\mathrm{KL}}(p_{\theta}(\tau) \parallel p(\tau \mid o_{1:T}^*))$

- the optimal policy π^* has to result in a $p^*(\tau)$ that match exactly to the optimal posterior trajectory distribution $p(\tau \mid o^*_{1:T})$
- $D_{\mathrm{KL}}(p_{\theta}(\tau) \parallel p(\tau \mid o_{1:T}^*)) = -\mathbf{E}_{\tau \sim p_{\theta}(\tau)}[\log p(\tau \mid o_{1:T}^*) \log p_{\theta}(\tau)]$

Maximum entropy control

$$\begin{split} -D_{\mathrm{KL}}(p_{\theta}(\tau) \parallel p(\tau \mid o_{1:T}^*)) &= \mathbf{E}_{\tau \sim p_{\theta}(\tau)} \left[\log p(s_1) + \sum_{t=1}^{T} (\log p(s_{t+1} \mid s_t, a_t) + r(s_t, a_t)) \right. \\ &\left. - \log p(s_1) - \sum_{t=1}^{T} (\log p(s_{t+1} \mid s_t, a_t) + \log \pi_{\theta}(a_t \mid s_t)) \right] \\ &= \mathbf{E}_{\tau \sim p_{\theta}(\tau)} \left[\sum_{t=1}^{T} r(s_t, a_t) - \log \pi_{\theta}(a_t \mid s_t) \right] \\ &= \sum_{t=1}^{T} \mathbf{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t) - \log \pi_{\theta}(a_t \mid s_t)] \\ &= \sum_{t=1}^{T} \mathbf{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t)] + \sum_{t=1}^{T} \mathbf{E}_{s_t \sim p_{\theta}(s_t)} [\mathcal{H}(\pi_{\theta}(s_t))] \end{split}$$

- $\mathcal{H}(\pi_{\theta}(s_t))$: the entropy of policy π_{θ} at state s_t
- minimizing the KL-divergence equals to maximizing the expected reward and the expected policy entropy

Connection to variational inference

variational inference

- ullet approximate some distribution p(x) with another, potentially simpler distribution q(x)
- ullet q(x) is taken to be some tractable factorized distribution, which lends itself to tractable exact inference
- approximate inference is performed by optimizing the variational lower bound (also called the evidence lower bound).

Connection to variational inference

target distribution

$$p(\tau \mid o_{1:T}^*) = \left[p(s_1) \prod_{t=1}^T p(s_{t+1} \mid s_t, a_t) \right] \exp\left(\sum_{t=1}^T r(s_t, a_t)\right)$$

approximate distribution

$$q(\tau) = q(s_1) \prod_{t=1}^{T} q(s_{t+1} \mid s_t, a_t) q(a_t \mid s_t)$$

$$- q(s_1) = p(s_1)$$

$$- q(s_{t+1} \mid s_t, a_t) = p(s_{t+1} \mid s_t, a_t)$$

$$- q(a_t \mid s_t) = \pi_\theta(a_t \mid s_t)$$

Connection to variational inference

• variational lower bound given evidence $o_t = 1$ for all $t = 1, \dots, T$:

$$\begin{split} \log p(o_{1:T}^*) &= \log \iint p(o_{1:T}^*, s_{1:T}, a_{1:T}) \ ds_{1:T} da_{1:T} \\ &= \log \iint p(o_{1:T}^*, s_{1:T}, a_{1:T}) \frac{q(s_{1:T}, a_{1:T})}{q(s_{1:T}, a_{1:T})} \ ds_{1:T} da_{1:T} \\ &= \log \mathbf{E}_{(s_{1:T}, a_{1:T}) \sim q(s_{1:T}, a_{1:T})} \left[\frac{p(o_{1:T}^*, s_{1:T}, a_{1:T})}{q(s_{1:T}, a_{1:T})} \right] \\ &\geq \mathbf{E}_{(s_{1:T}, a_{1:T}) \sim q(s_{1:T}, a_{1:T})} [\log p(o_{1:T}^*, s_{1:T}, a_{1:T}) - \log q(s_{1:T}, a_{1:T})] \\ &= \mathbf{E}_{(s_{1:T}, a_{1:T}) \sim q(s_{1:T}, a_{1:T})} \left[\sum_{t=1}^{T} r(s_t, a_t) - \log q(a_t \mid s_t) \right] \end{split}$$

- the inequality holds because of Jensen's inequality
- optimizing $\log p(o_{1:T}^*)$ equals to optimizing $D_{\mathrm{KL}}(p_{\theta}(\tau) \parallel p(\tau \mid o_{1:T}^*))$

Obtaining the optimal policy

minimize (over
$$\theta$$
) $\sum_{t=1}^{T} \mathbf{E}_{(s_t, a_t) \sim p_{\theta}(s_t, a_t)} [r(s_t, a_t) - \log \pi_{\theta}(a_t \mid s_t)]$

dynamic programming

the base case:

$$\mathbf{E}_{(s_T, a_T) \sim p_{\theta}(s_T, a_T)}[r(s_T, a_T) - \log \pi_{\theta}(a_T \mid s_T)]$$

$$= \mathbf{E}_{(s_T, a_T) \sim p_{\theta}(s_T, a_T)} \left[\log \frac{\exp(r(s_T, a_T))}{\exp(V(s_T))} - \log \pi_{\theta}(a_T \mid s_T) + V(s_T) \right]$$

$$= \mathbf{E}_{s_T \sim p_{\theta}(s_T)} \left[-D_{\text{KL}} \left(\pi_{\theta}(s_T) \mid \left\| \frac{1}{\exp(V(s_T))} \exp(r(s_T)) \right) + V(s_T) \right] \right]$$

- $V(s_T) = \log \int_{\mathcal{A}} \exp(r(s_T, a_T)) \ da_T$: normalizing constant
- optimal policy: $\pi_{\theta}(a_T \mid s_T) = \exp(r(s_T, a_T) V(s_T))$

Obtaining the optimal policy

• the recursive case:

$$\begin{split} &\mathbf{E}_{(s_t,a_t)\sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)-\log\pi_{\theta}(a_t\mid s_t)] + \mathbf{E}_{(s_t,a_t)\sim p_{\theta}(s_t,a_t)}[\mathbf{E}_{s_{t+1}\sim p(s_{t+1}\mid s_t,a_t)}[V(s_{t+1})]] \\ &= \mathbf{E}_{(s_t,a_t)\sim p_{\theta}(s_t,a_t)}[r(s_t,a_t)+\mathbf{E}_{s_{t+1}\sim p(s_{t+1}\mid s_t,a_t)}[V(s_{t+1})] - \log\pi_{\theta}(a_t\mid s_t)] \\ &= \mathbf{E}_{(s_t,a_t)\sim p_{\theta}(s_t,a_t)}\left[\log\frac{\exp(r(s_t,a_t)+\mathbf{E}_{s_{t+1}\sim p(s_{t+1}\mid s_t,a_t)}[V(s_{t+1})])}{\exp(V(s_t))} - \log\pi_{\theta}(a_t\mid s_t) + V(s_t)\right] \\ &= \mathbf{E}_{s_t\sim p_{\theta}(s_t)}\left[-D_{\mathrm{KL}}\left(\pi_{\theta}(s_t) \left\| \frac{1}{\exp(V(s_t))}\exp(Q(s_t))\right) + V(s_t)\right] \right. \\ &- Q(s_t,a_t) = r(s_t,a_t) + \mathbf{E}_{s_{t+1}\sim p(s_{t+1}\mid s_t,a_t)}[V(s_{t+1})] \\ &- V(s_t) = \log\int_{\mathcal{A}}\exp(Q(s_t,a_t)) \ da_t \\ &- \text{ optimal policy: } \pi_{\theta}(a_t\mid s_t) = \exp(Q(s_t,a_t) - V(s_t)) \end{split}$$