

Formativa 1 (Certamen 1 ICI)

Marcelo Paz Investigación de Operaciones

23 de mayo de 2024

Versión: 1.0.0

Problema 1

La empresa MADERAS C. A. es un fabricante de muebles. Hace tres estilos diferentes de mesas, A, B, C. Cada modelo de mesa requiere de una cierta cantidad de tiempo para el corte de las piezas, su montaje y pintura. MADERAS C.A., puede vender todas las unidades que fabrica. Es más, el modelo B se puede vender sin pintar. Utilizando los datos indicados, obtener el modelo lineal que permita determinar la máxima utilidad mensual que puede obtener la Empresa.

	Requerimiento de Horas Hombre por mesa									
Modelo	Utilidad por mesa Corte Ensamblado Pint									
A	\$17.500	1	2	4						
В	\$20.000	2	4	4						
B sin pintar	\$10.000	2	4	0						
C	\$25.000	3	7	5						
	Disponibilidad mensual de HH	200	298	148						

Variables de Decisión:

- x_1 : Cantidad de mesas A a fabricar.
- x_2 : Cantidad de mesas B a fabricar.
- x_3 : Cantidad de mesas B sin pintar a fabricar.
- x_4 : Cantidad de mesas C a fabricar.

Función Objetivo:

$$\begin{array}{ll} \text{Max} & Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4\\ \text{s.a} & x_1 + 2x_2 + 2x_3 + 3x_4 \leq 200\\ & 2x_1 + 4x_2 + 4x_3 + 7x_4 \leq 298\\ & 4x_1 + 4x_2 + 5x_4 \leq 148\\ & x_1, x_2, x_3, x_4 \geq 0 \end{array}$$

Por método Simplex

• P.3: Agregamos variables de holgura.

$$x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 \le 200$$

$$2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 \le 298$$

$$4x_1 + 4x_2 + 5x_4 + s_3 \le 148$$

$$x_1, x_2, x_3, x_4, s_1, s_2, s_3 \ge 0$$

• P.6: Iguala las restricciones, y reescribimos la función objetivo.

$$x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 = 200$$

$$2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 = 298$$

$$4x_1 + 4x_2 + 5x_4 + s_3 = 148$$

$$x_1, x_2, x_3, x_4, s_1, s_2, s_3 \ge 0$$

٠.

$$\begin{array}{ll} \text{Max} & Z = 17500x_1 + 20000x_2 + 10000x_3 + 25000x_4\\ \text{s.a} & x_1 + 2x_2 + 2x_3 + 3x_4 + s_1 = 200\\ & 2x_1 + 4x_2 + 4x_3 + 7x_4 + s_2 = 298\\ & 4x_1 + 4x_2 + 5x_4 + s_3 = 148\\ & x_1, x_2, x_3, x_4, s_1, s_2, s_3 \geq 0 \end{array}$$

• **P.9:** Rellenamos la tabla simplex, con las ecuaciones.

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}								
	$C_j - Z_j$								

■ **P.10:** Calculamos Z_j .

$\mid C_j \mid$		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$								

■ **P.11:** Calculamos $C_j - Z_j$.

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$	17500	20000	10000	25000	0	0	0	

• P.12: Seleccionamos la variable de entrada.

$$V_{in}$$
 = columna Max $\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_4 : 25000$

• P.13: Calculamos el cociente mínimo y seleccionamos la variable de salida, para elegir el pivote.

$$s_1: \frac{200}{3} = 66,67$$
 $s_2: \frac{298}{7} = 42,57$ $s_3: \frac{148}{5} = 29,6$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = s_3: 29,6$$

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	1	2	2	3	1	0	0	200
0	s_2	2	4	4	7	0	1	0	298
0	s_3	4	4	0	5	0	0	1	148
	Z_{j}	0	0	0	0	0	0	0	0
	$C_j - Z_j$	17500	20000	10000	25000	0	0	0	

Pivote =
$$a_{i^*j^*} = a_{34} = 5$$

• P.14: Calculamos la nueva tabla simplex.

$$x_4: \mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{4 \ 4 \ 0 \ 5 \ 0 \ 0 \ 1 \ 148}{5}$$

$$= \frac{4}{5} \ \frac{4}{5} \ 0 \ 1 \ 0 \ 0 \ \frac{1}{5} \ \frac{148}{5}$$

$$-7/5$$
 $-2/5$ 2 0 1 0 $-3/5$ 556/5
 s_2 : 2 4 4 7 0 1 0 298
 $-(7)$ 4/5 4/5 0 1 0 0 1/5 148/5

$$-18/5$$
 $-8/5$ 4 0 0 1 $-7/5$ $454/5$

• P.10.R y P.11.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	-7/5	-2/5	2	0	1	0	-3/5	556/5
0	s_2	-18/5	-8/5	4	0	0	1	-7/5	454/5
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	20000	20000	0	25000	0	0	5000	740000
	$C_j - Z_j$	-2500	0	10000	0	0	0	-5000	

• P.12.R:

$$V_{in}$$
 = columna Max $\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_3 : 10000$

• P.13.R:

$$s_1: \frac{556/5}{2} = 55,6$$
 $s_2: \frac{454/5}{4} = 22,7$ $x_4: \frac{148/5}{0} = -$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = s_2: 22.7$$

C_{j}		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	-7/5	-2/5	2	0	1	0	-3/5	556/5
0	s_2	-18/5	-8/5	4	0	0	1	-7/5	454/5
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	20000	20000	0	25000	0	0	5000	740000
	$C_j - Z_j$	-2500	0	10000	0	0	0	-5000	

Pivote =
$$a_{i^*j^*} = a_{23} = 4$$

• P.14.R:

$$x_3:$$
 $\mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{-18/5 - 8/5 \ 4 \ 0 \ 0 \ 1 \ -7/5 \ 454/5}{4} = \frac{-18}{20} \frac{-8}{20} \ 1 \ 0 \ 0 \ \frac{1}{4} \ \frac{-7}{20} \ \frac{454}{20}$

$$2/5$$
 $2/5$ 0 0 1 $-1/2$ $1/10$ $329/5$
 $x_4:$ $4/5$ $4/5$ 0 1 0 0 $1/5$ $148/5$
 $-(0)$ $-18/20$ $-8/20$ 1 0 0 $1/4$ $-7/20$ $454/20$

■ P.10.R.R y P.11.R.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	2/5	2/5	0	0	1	-1/2	1/10	329/5
10000	x_3	-9/10	-2/5	1	0	0	1/4	-7/20	454/20
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	11000	16000	10000	25000	0	2500	1500	967000
	$C_j - Z_j$	6500	4000	0	0	0	-2500	-1500	

• P.12.R.R:

$$V_{in} = \text{columna Max}\{C_j - Z_j\} = X_{j^*} \Rightarrow V_{in} = x_1 : 6500$$

• P.13.R.R:

$$s_1: \frac{329/5}{2/5} = 169,5$$
 $x_3: \frac{454/20}{-9/10} = -25,2$ $x_4: \frac{148/5}{4/5} = 37$

$$V_{out} = \text{Min}\left\{\frac{RHS}{coef_{ij^*}}\right\} = i^* \Rightarrow V_{out} = x_4:37$$

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	2/5	2/5	0	0	1	-1/2	1/10	329/5
10000	x_3	-9/10	-2/5	1	0	0	1/4	-7/20	454/20
25000	x_4	4/5	4/5	0	1	0	0	1/5	148/5
	Z_{j}	11000	16000	10000	25000	0	2500	1500	967000
	$C_j - Z_j$	6500	4000	0	0	0	-2500	-1500	

Pivote =
$$a_{i^*j^*} = a_{13} = 4/5$$

• P.14.R.R:

$$x_1: \quad \mathbf{N.E.P} = \frac{\mathbf{E.P.A}}{P} \Rightarrow \frac{4/5 \quad 4/5 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1/5 \quad 148/5}{4/5}$$

$$= 1 \quad 1 \quad 0 \quad \frac{5}{4} \quad 0 \quad 0 \quad \frac{1}{4} \quad \frac{148}{4}$$

$$s_1: \quad 2/5 \quad 2/5 \quad 0 \quad 0 \quad 1 \quad -1/2 \quad 1/10 \quad 329/5$$

$$-(2/5) \quad 1 \quad 1 \quad 0 \quad 5/4 \quad 0 \quad 0 \quad 1/4 \quad 148/4$$

$$-(2/5)$$
 1 1 0 5/4 0 0 1/4 148/4

$$0 1/2 1 9/8 0 1/4 -1/8 56$$

■ P.10.R.R.R y P.11.R.R.R:

C_j		17500	20000	10000	25000	0	0	0	
	V.B	x_1	x_2	x_3	x_4	s_1	s_2	s_3	RHS
0	s_1	0	0	0	-1/2	1	-1/2	0	51
10000	x_3	0	1/2	1	9/8	0	1/4	-1/8	56
17500	x_1	1	1	0	5/4	0	0	1/4	148/4
	Z_{j}	17500	22500	10000	33125	0	2500	3125	1207500
	$C_j - Z_j$	0	-2500	0	-8125	0	-2500	-3125	

• P.11.R.R.R:

- Si ninguno de los valores en la fila C_j-Z_j es positivo, FIN.

$$C_j - Z_j \le 0 \forall j$$

Como se cumple la condición hemos llegado a la solución óptima.

Solución:

$$x_1=148/4=37$$
 Recurso abundante \Rightarrow Restricción No Activa $x_2=0$

$$x_3 = 56$$
 Recurso abundante \Rightarrow Restricción No Activa

$$x_4 = 0$$

$$Z=1207500$$