

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Ecuaciones Diferenciales I Examen XIV

Los Del DGIIM, losdeldgiim.github.io
Arturo Olivares Martos

Granada, 2024-2025

Asignatura Ecuaciones Diferenciales I

Curso Académico 2023-24.

Grado Doble Grado en Ingeniería Informática y Matemáticas.

Grupo Único.

Profesor Rafael Ortega Ríos.

Descripción Parcial 2.

Fecha 19 de Diciembre de 2023.

Ejercicio 1. Se consideran las funciones $f_1, f_2 :]0,1[\to \mathbb{R}$ dadas por:

$$f_1(t) = 1$$
 $f_2(t) = \begin{cases} 1 & \text{si } t \in \left]0, \frac{2}{3}\right], \\ 0 & \text{si } t \in \left]\frac{2}{3}, 1\right[.$

¿Son estas funciones linealmente independientes en el intervalo]0, 1[?

Ejercicio 2. Se considera la ecuación diferencial

$$ax + by + (cx + dy)y' = 0,$$

con $a,b,c,d\in\mathbb{R}^+$. ¿En qué casos se puede afirmar que $\mu(x,y)=e^{x+y}$ es un factor integrante?

Ejercicio 3. Dada una función $a \in C(\mathbb{R})$, se supone que φ_1, φ_2 son las soluciones de la ecuación x'' + a(t)x = 0 que cumplen las condiciones iniciales

$$\varphi_1(0) = 1, \qquad \qquad \varphi'_1(0) = 0,
\varphi_2(0) = 0, \qquad \qquad \varphi'_2(0) = 1.$$

Demuestra que la función

$$x(t) = \varphi_2(t) \int_0^t e^s \varphi_1(s) \ ds - \varphi_1(t) \int_0^t e^s \varphi_2(s) \ ds + 2024 \varphi_2(t)$$

pertenece a $C^2(\mathbb{R})$ y encuentra una ecuación diferencial de la que es solución.

Ejercicio 4. Encuentra todas las funciones continuas $f: \mathbb{R} \to \mathbb{R}$ que cumplen las desigualdades

$$0 \leqslant f(t) \leqslant \frac{1}{1+t^2} F(t), \quad \forall t \in \mathbb{R},$$

con $F(t) = \int_0^t f(s) \ ds$.

Ejercicio 5. El espacio vectorial de soluciones de la ecuación x'' + 4x = 0 se denota por Z_x . De igual modo, Z_y será el espacio vectorial de soluciones de y'' + 2y' + 5y = 0. Demuestra que la transformación

$$\Psi: Z_x \to Z_y, \quad x \mapsto y, \quad y(t) = e^{-t}x(t)$$

define un isomorfismo. Encuentra bases de Z_x y Z_y y calcula la matriz que representa a Ψ en esas bases.