Ler o canal 5 do Conversor AD (P1.5/A5), com referência AVcc

valor ADC < 0x00FF: Apagar leds

 $0x00FF \le \text{valor } ADC < 0x01FF$: Acender led Verde

 $0x01FF \le \text{valor } ADC < 0x02FF$: Acender led Vermelho

 $0x02FF \le \text{valor } ADC$: Acender ambos os leds

Configurar o DCO para 8MHz

C: Exercício 21.a

15	14	13	12	11	10	9	8
	SREFx			0SHTx	ADC10SR	REFOUT	REFBURST
rw-(0)	w-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
C	Can be modified o	only when ENC	= 0				
SREFx	Bits 15-13	Select refer	ence				
	—	000 V _R	$_{\text{L}} = V_{\text{CC}}$ and $V_{\text{R}} =$	· V _{SS}			
		001 V _R	$_{L} = V_{REF+}$ and V_{R-}	= V _{SS}			
		010 V _R	= Ve _{REF+} and V _F	_{R-} = V _{SS}			
		011 V _R	= Buffered Ve _{RE}	$_{\rm EF+}$ and $\rm V_{R-} = \rm V_{SS}$	S		
		100 V _R	$_{\scriptscriptstyle \rm L}$ = $\rm V_{\rm CC}$ and $\rm V_{R_{\scriptscriptstyle \rm L}}$ =	V _{REF-} / V _{eREF-}			
		101 V _R	$_{\text{\tiny L}} = V_{\text{\tiny REF+}}$ and $V_{\text{\tiny R-}}$	= V _{REF-} / V _{eREF-}			
		110 V _R	= Ve _{REF+} and V _F	$_{R-}$ = V_{REF-}/V_{eREF-}			
		111 V _R	= Buffered Ve _{RE}	$_{\rm EF+}$ and $V_{\rm R-}$ = $V_{\rm RI}$	_{EF} / V _{eREF-}		
ADC10SHTx	Bits 12-11	ADC10 san	nple-and-hold tim	ne			
		00 4 >	ADC10CLKs		\		
		01 8 >	ADC10CLKs		\		
		10 16	× ADC10CLKs				
		11 64	× ADC10CLKs				

15	14	13	12	11	10	9	8		
	SREFx		ADC1	0SHTx	ADC10SR	REFOUT	REFBURST		
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6	5	4	3	2	1	0		
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC		
rw + 0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
	Can be modi	fied only when ENC =	= 0						
ADC105R REFOUT	Bit 10	ADC10 sampling rate. This bit selects the reference buffer drive capability for the maximum sampling rate. Setting ADC10SR reduces the current consumption of the reference buffer. O Reference buffer supports up to ~200 ksps Reference buffer supports up to ~50 ksps Reference output							
		0 Reference1 Reference	•						
REFBURST	Bit 8	Reference burst.	output on						
		0 Reference	buffer on continuo	ously					
		1 Reference	buffer on only dur	ing sample-and-o	conversion				
MSC	Bit 7	Multiple sample and	d conversion. Valid	d only for sequen	ce or repeated mo	odes.			
	\longrightarrow	0 The sample	ng requires a risir	ng edge of the SH	HI signal to trigger	each sample-an	d-conversion.		
					the sampling time		ersion is completed		

15	14	13	12	11	10	9	8
	SREFx		ADC1	0SHTx	ADC10SR	REFOUT	REFBURST
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)	rw-(0)	rw-(v)	rw-(<u>Q</u>)	rw-(0)	rw-(0)	rw-(0)
	Can be modified	only when ENC:	- 0				

Can be modified only when ENC = 0

REF2_5V	Bit 6	Reference-generator voltage. REFON must also be set.
		0 1.5 V
		1 2.5 V
REFON	Bit 5	Reference generator on
		0 Reference off
		1 Reference on
ADC10ON	Bit 4	ADC10 on
		0 ADC10 off
		1 ADC10 on
ADC10IE	Bit 3	ADC10 interrupt enable
		0 Interrupt disabled
		1 Interrupt enabled

15	14	13	12	11	10	9	8
	SREFx		ADC10	ADC10SHTx		REFOUT	REFBURST
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
MSC	REF2_5V	REFON	ADC10ON	ADC10IE	ADC10IFG	ENC	ADC10SC
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	n (0)
	Can be modified only when ENC = 0						

ADC10IFG Bit 2 ADC10 interrupt flag. This bit is set if ADC10MEM is loaded with a conversion result. It is automatically reset when the interrupt request is accepted, or it may be reset by software. When using the DTC this flag is set when a block of transfers is completed. 0 No interrupt pending Interrupt pending **ENC** Bit 1 Enable conversion 0 ADC10 disabled ADC10 enabled Bit 0 Start conversion. Software-controlled sample-and-conversion start. ADC10SC and ENC may be set together ADC10SC with one instruction. ADC10SC is reset automatically. 0 No sample-and-conversion start Start sample-and-conversion

15	14	13	12	11		10	9	8
	INCHx			•	SHSx		ADC10DF	ISSH
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	4	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3		2	1	0
	ADC10DIVx		ADC10	SSELx		CON	ADC10BUSY	
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	\	rw-(0)	rw-(0)	r-0
	Can be modified only	when ENC	C = 0			\		
SHSx	Bits 11-10	Sampl	e-and-hold sourc	ce select				
		00	ADC10SC bit					
		01	Timer_A.OUT	1				
		10	Timer_A.OUT	0				
		11	Timer_A.OUT	2 (Timer_A.0	OUT1	on MSP4	30x20x2 devic	es)
ADC10DF	Bit 9	ADC10	0 data format					
		0	Straight binary	1				
		1	2s complemen	nt				
ISSH	Bit 8	Invert	signal sample-ar	nd-hold				
		0	The sample-in	put signal is	not i	inverted.		
		1	The sample-in	put signal is	inve	rted.		

15	14	13	12	11	10	9	8			
	INCH	x		SH	ISx	ADC10DF	ISSH			
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)			
7	6	5	4	3	2	1	0			
	ADC10DIVx		ADC10	SSELx	CON	ISEQx	ADC10BUSY			
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r -0			
C	an be modified or	nly when ENC	= 0							
CONSEQx	Bits 2-1	Conve	ersion sequence	e mode selec	t					
		00	00 Single-channel-single-conversion							
		01	Sequence-of	quence-of-channels						
		10	Repeat-singl	e-channel						
		11	Repeat-sequ	ience-of-char	nnels					
ADC10BUSY	Bit 0	ADC1	0 busy. This bit	indicates an	active samp	le or convers	ion operation			
		0	No operation	is active.						
		1	A sequence,	sample, or c	onversion is	active.				

22.3.3 ADC10AE0, Analog (Input) Enable Control Register 0

Canal 5: 00100000

22.3.5 ADC10MEM, Conversion-Memory Register, Binary Format

15	14	13	12	11	10	9	8
0	0	0	0	0	0	Conversion Results	
r0	r0	r0	r0	r0	r0	r	r
7	6	5	4	3	2	1	0
			Conversi	on Results			
r	r	r	r	r	r	r	r
Conversion Results	Bits 15-0	The 10-bit conversion always 0.	n results are right	t justified, straight-b	inary format. Bit s	9 is the MSB. Bits	15-10 are

22.3.6 ADC10MEM, Conversion-Memory Register, 2s Complement Format

15	14	13	12	11	10	9	8			
Conversion Results										
r	r	r	r	r	r	r	r			
7	6	5	4	3	2	1	0			
Convers	ion Results	0	0	0	0	0	0			
r	r	r0	r0	r0	r0	r0	r0			
Conversion Results	Bits 15-0 The	e 10-bit conversior	n results are left-ju	stified, 2s comple	ment format. Bit 15	is the MSB. Bits	5-0 are always			

