Universidad Nacional Autónoma de México

Presentado a: Santiago Caballero

Presentado por: F. E. Charry-Pastrana

Maestría en Ciencias Físicas

Introducción a la física computacional

3 de mayo de 2018

Shooting method: simple pendulum

Las ecuaciones para el péndulo simple son:

$$\dot{p} = -\sin(\theta),\tag{1}$$

$$\dot{\theta} = p,$$
 (2)

con $m=1,\; g=1,\; l=1$ y la energía constante como $E=\frac{p^2}{2}+1-\cos(\theta).$

El método de "shooting" se utilizó para encontrar aquellas soluciones para las cuales el ángulo inicial, θ_0 , fuese $\theta_0 = \frac{\pi}{2}$ y el ángulo para t = 10 fuese el mismo ángulo inicial, $\theta(t = 10) = \theta_0$.

1. Solución encontrada en clase

La solución que se encontró en clase, utilizando como semilla para $p_0 = 1$, se muestra en la Figura 1.

Figura 1: Solución encontrada en clase para θ y p en función del tiempo, t, utilizando como semilla para $p_0 = 1$.

2. Soluciones en función de la semilla p_0

El valor inicial para una solución que cumplan las condiciones del problema, $\theta_0 = \theta(t = 10) = \frac{\pi}{2}$, dependen del valor de la semilla para el momento inicial. En la Figura 2 se muestra esta dependencia y se observa que, en el rango de $p_{\text{semilla}} = [-\pi, \pi]$, existen **tres** valores aceptables para $p_0 = \{-1,24,0,86,1,24\}$. Aunque se reporta solución para $p_0 = -1,41$, esta "solución" se cree que se debe a un error numérico referente al número de iteraciones.

3. Soluciones

En la Figura 3 se muestra las soluciones aceptables.

 $p_0 = 0.86$ presenta una energía de E = 1.34.

 $p_0 = -1.24$ y $p_0 = 1.24$ presentan una degeneración en la energía, ambos con E = 1.76.

 $p_0 = -1,41$ no es una solución aceptable.

Figura 2: Dependencia del valor inicial de p_0 en función de la semilla.

Figura 3: Soluciones de θ , p y energía en función del tiempo que cumplen con $\theta_0 = \theta(t=10) = \frac{\pi}{2}$. Se muestra "solución" para $p_0 = -1.41$.