Introduction to Machine Learning: Mini-Project 1 Compressed Sensing Image Recovery

ECE 580 Spring 2022 Stacy Tantum, Ph.D.

Objective

Copyright © 2014-2022 by Stacy Tantum. All rights reserved. Not to be distributed without express written consent of the author.

Recover a full image from a small number of sampled pixels (compressed sensing)

Original image

Sampled or Corrupted image

Recovered image

2D Discrete Cosine Transform (DCT)

Provides spatial frequency content

in **both** the horizontal (x) and vertical (y) directions

A 1-dimensional signal **C** with N samples can be represented (approximated) as a weighted sum of D 1-dimensional basis functions, each of which also has N samples

- **C** is a column vector with N elements
- Each T_d is a column vector with N elements

In vector-matrix notation, $\mathbf{C} = \mathbf{T}\alpha$

- Each element of **C** is a sample of the 1-D signal
- Each column of T is a basis function
 - the elements of each basis function (column) correspond to the samples of C
- Each element of γ is the weight for the corresponding basis function

$$C = (\gamma_1) \mathsf{T}_1 + (\gamma_2) \mathsf{T}_2 + (\gamma_3) \mathsf{T}_3 + \dots + (\gamma_D) \mathsf{T}_D$$

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ T_1 & T_2 & T_3 & \cdots & T_D \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_D \end{bmatrix}$$

1-D Signal (i.e., audio signal)

For a 1-D DCT, the columns of **T** look something like this

each vector corresponds to a fixed value for u which corresponds to frequency)

MP1.1: Compressed Sensing Image Recovery

A 2-dimensional signal **C** with NxM samples can also be represented (approximated) as a weighted sum of D 2-dimensional basis functions, each of which also has NxM samples

- C is a matrix with NxM elements
- Each T_d is a matrix with NxM elements

$$C = \gamma_1 \mathsf{T}_1 + \gamma_2 \mathsf{T}_2 + \dots + \gamma_D \mathsf{T}_D$$

The matrices \mathbf{C} and \mathbf{T}_d can be reshaped into column vectors with N*M elements (this process is termed "rasterization"; the matrix is "rasterized")

With C and T_d reshaped into column vectors, in vector-matrix notation, $C = T_{\gamma}$

- Each element of **C** is a sample of the 2-D signal
- Each column of T is a basis function
 - the elements of each basis function (column) correspond to the samples of C
- Each element of γ is the weight for the corresponding basis function

$$\begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_{N*M} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ T_1 & T_2 & T_3 & \cdots & T_D \\ 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \gamma_3 \\ \vdots \\ \gamma_D \end{bmatrix}$$

2-D Signal (i.e., image)

For a 2-D DCT, the matrices T_d look something like this (a subset of all possible pairwise combinations of u and v is shown)

each matrix corresponds to fixed values for u and v (which correspond to horizontal spatial frequency and vertical spatial frequency)

Copyright © 2014-2022 by Stacy Tantum. All rights reserved

Generating the Transformation Matrix T for a 2-D DCT

Create the matrix T_d for all locations in the image [(x,y) pairs] and a fixed combination of horizontal and vertical spatial frequencies [(u,v) pair]

Reshape this matrix to a column vector

Copyright © 2014-2022 by Stacy Not to be distributed without ex

This column vector is a basis function (column vector) of **T** for the relationship $\mathbf{C} = \mathbf{T}\gamma$

2D Discrete Cosine Transform (DCT)

$$g(x,y) = \sum_{u=1}^{P} \sum_{v=1}^{Q} \alpha_{u} \cdot \beta_{v} \cdot \cos \frac{\pi(2x-1)(u-1)}{2 \cdot P} \cdot \cos \frac{\pi(2y-1)(v-1)}{2 \cdot Q} \cdot G(u,v)$$

Image pixel

Transformation

DCT coefficient

$$x, u \in \{1, 2, \dots, P\}$$

$$y, v \in \{1, 2, \dots, Q\}$$

$$\alpha_{u} = \begin{cases} \sqrt{1/P} & (u = 1) \\ \sqrt{2/P} & (2 \le u \le P) \end{cases}$$

$$\alpha_{u} = \begin{cases} \sqrt{1/P} & (u=1) \\ \sqrt{2/P} & (2 \le u \le P) \end{cases}$$

$$\beta_{v} = \begin{cases} \sqrt{1/Q} & (v=1) \\ \sqrt{2/Q} & (2 \le v \le Q) \end{cases}$$

Computing the DCT Coefficients

The transformation matrix T is known

When the complete image C is available:

$$\gamma = T^{-1} \cdot C$$

When only samples of C are available (sample vector B), can we approximate γ ?

BXI

Image Recovery (Estimation)

Sampled image leads to an underdetermined linear system: $B = A \cdot \gamma$

Estimate DCT coefficients α by solving the underdetermined linear system B = A $\cdot \gamma$

Underdetermined systems generally have an infinite number of solutions

→ need to impose additional constraint(s)

→ need to impose additional constraint(s)

Common constraint is smoothness; our constraint is sparsity

Once DCT coefficients are estimated, recover the missing pixels by $\hat{C} = T \cdot \hat{\gamma}$ (recover/estimate only the missing pixels) Why does this work? Natural images tend to be sparse in the DCT domain

Sparsity Constraint (L₁-norm Regularization – LASSO)

Impose sparsity on γ by L₁-norm regularization (LASSO)

$$\begin{array}{c}
\min_{\gamma} \left\| A \gamma - B \right\|_{2}^{2} \\
\text{such that} \quad \left\| \gamma \right\|_{1} \leq \lambda \end{array} \quad \begin{array}{c}
\text{equivalent to LASSO} \\
\min_{\gamma} \left\| A \gamma - B \right\|_{2}^{2} + \lambda \left\| \gamma \right\|_{1}
\end{array}$$

Compressed Sensing in Practice

DCT coefficients of a large image are often not sparse

(8x8 blocks)

Solution: break a large image into small blocks

Copyright © 2014-2022 by Stacy Tantum. All rights reserved, Not to be distributed without express written consent of the

- Each small block will tend to have few non-zero DCT coefficients (different non-zero DCT coefficients for each block!)
- Try different block sizes (K) in your own experiments
- 8 x 8 block (64 px in block) is suggested for the small test image ("fishing boat")
- 16 x 16 block (256 px in block) is suggested for the large test image ("nature")

Choose regularization parameter λ by cross-validation

For each K x K block, sample S pixels (these S pixels are the "sensed" pixels; pretend you don't know the other K^2 -S pixels)

For each candidate λ (from the list of λ you are considering)

- Partition the block into m testing pixels and (S-m) training pixels
- Determine the DCT coefficients for the (S-m) pixels in the training set
- Estimate approximation "error" using the m pixels in the testing set
 - Use mean square error as a measurement of the "error"
 - For example, with 4-Fold cross-validation

$$Error(\lambda) = \left[\varepsilon_1(\lambda) + \varepsilon_2(\lambda) + \varepsilon_3(\lambda) + \varepsilon_4(\lambda)\right]/4$$

• Choose the λ with the lowest error (may have different λ for each block!)

Cross-Validation with Random Subsets

K-fold cross validation

Copyright © 2014-2022 by Stacy Tantum. All rights reserved. Not to be distributed without express written consent of the

- Distribute all observations into K folds such that the number of samples in every fold is equal (or as equal as possible)
- Take one fold as the test set at each iteration
- Training-and-test process is repeated K times

Cross validation with random subsets (of the S sampled pixels)

- At each iteration, randomly draw m samples (pixels) to form the test set and use the remaining (S-m) samples (pixels) as the training set
 - Use m = floor(S/6) in this project, where S is the total number of samples (sensed pixels in a block)
- Repeat the training-and-test process M times
 - Use M = 20 in this project
- Note: With this approach to cross-validation there is a "risk" that an observation (sample, or pixel) may not be included in any of the test sets, or any of the training sets

Apply cross validation with random subsets in this project

- When the data set is small, using this method with large M tends to be more accurate than K-fold cross validation (similar benefit as L-K-fold cross-validation)
- Easy to implement if the data set cannot be divided equally into K folds

Median filtering replaces each pixel in an image by the median of its neighborhood

Median filtering where filter size is $m \times n$:

- Sort all pixel values in an m×n block, centered at (x,y), to find the median
- Replace the pixel value f(x,y) by the median

Apply a median filter (MF) to improve the quality of recovered images

- Set filter size as 3×3
- You may use available packages/toolboxes
 - MATLAB: medfilt2
 (Image processing toolbox)
 - Python: medfilt2
 (SciPy multidimensional image processing scipy.ndimage)

3x3 median filtering

Neighbourhood values:

115, 119, 120, 123, 124, 125, 126, 127, 150

Median value: 124

Recovered images (4×4 block)
(Left: w/o median filter, Right: w/ median filter)

Compare the error of the recovered image with median filtering and without median filtering

17

Image Recovery Summary

- 1) Break image into K x K blocks (an 8x8 block has 64 pixels)
- 2) For each block:
 - Randomly sample S pixels without replacement (number of "sensed" pixels is S)
 - "Without replacement" means pixels are not repeated in the set of S samples; a pixel can be "sensed" only once!
 - Determine DCT coefficients from the S samples
 - λ Is determined by cross validation using random subsets
 - · S sampled pixels remain the same throughout cross-validation; m test pixels vary with each iteration
 - Given "optimal" λ identified through cross-validation, use all S samples to find DCT coefficients
 - Apply inverse DCT transform to recover the block
- 3) Combine (concatenate) all recovered blocks into a full image
- 4) Apply median filter to improve image quality

ADVICE:

Copyright © 2014-2022 by Stacy Tantum. All rights reserved Not to be distributed without express written consent of the

- 1) This process is computationally intense. This means it may take a long time to run... Start Early!
- 2) Consider a large range of λ : 1e-6 \rightarrow 1e+6, with a few values per decade [logspace]