San Francisco Public Library patron dataset

Hide Code

Dataset

Dataset is loaded. Here's the initial inspection of the head (with first few rows), description, and info that would indicate data types

```
In [76]: df=pd.read_csv("data/Library_Usage.csv")
```

In [4]: df.head()

Out[4]:

	Patron Type Code	Patron Type Definition	Total Checkouts	Total Renewals	Age Range	Home Library Code	Home Library Definition	Circulation Active Month	Circu
0	0	ADULT	1092	761	60 to 64 years	M6	Mission	July	2016
1	0	ADULT	0	0	20 to 24 years	P1	Park	None	None
2	0	ADULT	31	22	25 to 34 years	S7	Sunset	April	2016
3	0	ADULT	0	0	45 to 54 years	P1	Park	None	None
4	0	ADULT	0	0	25 to 34 years	Х	Main Library	None	None

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 423448 entries, 0 to 423447

Data columns (total 15 columns):

Patron Type Code 423448 non-null int64 Patron Type Definition 423448 non-null object Total Checkouts 423448 non-null int64 Total Renewals 423448 non-null int64 423233 non-null object Age Range 423408 non-null object Home Library Code Home Library Definition 423448 non-null object Circulation Active Month 423448 non-null object Circulation Active Year 423448 non-null object 423448 non-null object Notice Preference Code Notice Preference Definition 423448 non-null object Provided Email Address 423448 non-null bool Year Patron Registered 423448 non-null int64 Outside of County 423448 non-null bool Supervisor District 313138 non-null float64

dtypes: bool(2), float64(1), int64(4), object(8)

memory usage: 42.8+ MB

In [6]: df.describe()

only five numerical values. Patron Type Code, Supervisor District are technically factorial. Year Patron is interval, but can be used to calculate how many years a patron has a library card.

Out[6]:

	Patron Type Code	Total Checkouts	Total Renewals	Year Patron Registered	Supervisor District
count	423448.000000	423448.000000	423448.000000	423448.000000	313138.000000
mean	1.036765	161.982097	59.657327	2010.348917	6.288240
std	d 4.188198 453.703678	453.703678	225.009917	4.357374	3.123634
min	0.000000	0.000000	0.000000	2003.000000	1.000000
25%	0.000000	2.000000	0.000000	2007.000000	4.000000
50%	0.000000	19.000000	2.000000	2012.000000	6.000000
75%	1.000000	113.000000	27.000000	2014.000000	9.000000
max	104.000000	35907.000000	8965.000000	2016.000000	11.000000

Check for missing values

In [7]: df.isnull().sum().sort_values(ascending=False)

[,],	a()a()a	(,	
Out[7]:	Supervisor District	110310		
	Age Range	215		
	Home Library Code	40		
	Outside of County	0		
	Year Patron Registered	0		
	Provided Email Address	0		
	Notice Preference Definition	0		
	Notice Preference Code	0		
	Circulation Active Year	0		
	Circulation Active Month	0		
	Home Library Definition	0		
	Total Renewals	0		
	Total Checkouts	0		
	Patron Type Definition	0		
	Patron Type Code	0		
	dtype: int64			

Clearly, three variables - Supervisor District, Age Range, and Home Library Code - have missing values. Supervisor District is missing in approx. 25% of the dataset, so these records definitely could not be imputated. It is worth looking into why such the number is so big. Age Range, Home Library County is small enough, so it can be considered to be imputated. We will do it if we are using these for prediction

"Supervisor District" is an automatically populated fields and will be left blank for users who are outside of country. That will explain high volume of null values in this particular field.

From literature review, I found out that San Francisco Public Library (SFPL) considers equity and social justice as their service priority. They welcome patrons without fixed address - individuals who are homeless - to use their facilities. If the patron record without supervisor district indeed signifies that these are records from vulnerable population, it may be interesting to to run a Z-test to examine some of numerical variables, and/or chitest to examine categorical variables.

As a library professional, I really admire how SFPL deems serving the vulnerable population as part of their mandate. It also reminds me that, while it is important for libraries to show its values by using numbers and statistics - such as usage stats like total checkouts - part of its true value in the society is in providing services to those who are in need. The weakness of this particular dataset is that it only reflects the usage of those patrons who borrow materials form the library.

Initial Cleanup

That include removable variables with less values, such as 'Circulation Active Month'

We are also going to combine Total Checkouts and Total Renewals to create total_cko, as these are both circulation activities. And then, we are going to calculate the year_registered and average cko, since it is important to take number of years a patron has an account before evaluating the usage.

In sum, three new variables will be created here, and one will be dropped

To be created:

- total_cko
- avg cko
- · years registered

To be dropped

· Circulation Active Month

```
df=df.drop('Circulation Active Month', axis=1)
df['total_cko']=df['Total Checkouts']+df['Total Renewals']
df['years registered']=2016-df['Year Patron Registered']
df['avg cko']=df['total cko']/(2016-df['Year Patron Registered'])
df['avg cko'].loc[df['Year Patron Registered']==2016]=df['total cko']
df.info()
C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:190: Setti
ngWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/st
able/indexing.html#indexing-view-versus-copy
  self. setitem with indexer(indexer, value)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 423448 entries, 0 to 423447
Data columns (total 17 columns):
Patron Type Code
                                423448 non-null int64
Patron Type Definition
                                423448 non-null object
Total Checkouts
                                423448 non-null int64
Total Renewals
                                423448 non-null int64
Age Range
                                423233 non-null object
Home Library Code
                                423408 non-null object
Home Library Definition
                                423448 non-null object
Circulation Active Year
                                423448 non-null object
Notice Preference Code
                                423448 non-null object
Notice Preference Definition
                                423448 non-null object
Provided Email Address
                                423448 non-null bool
Year Patron Registered
                                423448 non-null int64
Outside of County
                                423448 non-null bool
Supervisor District
                                313138 non-null float64
total cko
                                423448 non-null int64
years registered
                                423448 non-null int64
avg cko
                                423448 non-null float64
dtypes: bool(2), float64(2), int64(6), object(7)
memory usage: 49.3+ MB
```

localhost:8888/nbconvert/html/Downloads/Capstone EDA.ipynb?download=false

In [9]: # inspection data after the initial clean-up
df.head()

Out[9]:

	Patron Type Code	Patron Type Definition	Total Checkouts	Total Renewals	Age Range	Home Library Code	Home Library Definition	Circulation Active Year	l Prefe
0	0	ADULT	1092	761	60 to 64 years	M6	Mission	2016	р
1	0	ADULT	0	0	20 to 24 years	P1	Park	None	z
2	0	ADULT	31	22	25 to 34 years	S7	Sunset	2016	z
3	0	ADULT	0	0	45 to 54 years	P1	Park	None	а
4	0	ADULT	0	0	25 to 34 years	х	Main Library	None	z
									•

Dependent Variables

Categorical Variables

Year Patron Registered

The year "2003" is likely the year records got imported from old system to new system, so it is not surprised that this category would have a high count. 2016 data is likely to be incomplete, and hence does not reflect the trend. From this count plot, it looks like there is an increase in membership over the span of ten years. This is likely to be due to population growth, opening of new branches to cover a bigger geographical area, and, possibly, growing interest in using the library.

In [10]: sns.countplot(x='Year Patron Registered',data=df)
sns.set(rc={'figure.figsize':(11.7,8.27)})

Notice Preference Definition/Provided Email Address

Not much surprised here. Most patrons prefer to receive notifications (such as when their holds are ready for pickup, when a book is overdue) through email. Those who do not provide email opted to receive notification via phone (second preferred option) and mail (print).

In [11]: sns.countplot(x='Notice Preference Definition',data=df)

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x154abba57b8>

In [12]: sns.countplot(x='Provided Email Address',data=df)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x154abbfc048>

In [13]: sns.countplot(x='Patron Type Definition',data=df)
 sns.set(rc={'figure.figsize':(11.7,8.27)})

Out[14]:

	count	median	min	max
Patron Type Definition				
ADULT	272251	5.166667	0.0	2771.000000
AT USER ADULT	349	4.333333	0.0	686.500000
AT USER JUVENILE	47	6.666667	0.0	337.500000
AT USER SENIOR	66	9.182692	0.0	335.538462
AT USER TEEN	44	2.750000	0.0	209.307692
AT USER WELCOME	45	0.111111	0.0	123.769231
BOOKS BY MAIL	95	20.000000	0.0	524.461538
DIGITAL ACCESS CARD	1744	0.000000	0.0	491.000000
FRIENDS FOR LIFE	40	34.192308	0.0	838.600000
JUVENILE	59208	16.000000	0.0	1413.000000
RETIRED STAFF	157	77.692308	0.0	628.153846
SENIOR	41619	8.400000	0.0	2567.100000
SPECIAL	977	15.923077	0.0	1564.000000
STAFF	862	85.250000	0.0	1299.000000
TEACHER CARD	1782	20.250000	0.0	947.000000
VISITOR	415	3.500000	0.0	164.000000
WELCOME	14931	0.250000	0.0	325.153846
YOUNG ADULT	28816	8.384615	0.0	1178.000000

In [15]: # Reduce the number of categories df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER ADU LT", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER JUV ENILE","OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER SEN IOR","OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER WEL COME", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER TEE N", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("AT USER TEE N", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("FRIENDS FOR LIFE", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("DIGITAL ACC ESS CARD", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("RETIRED STA FF", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("VISITOR","O THER") df['Patron Type Definition']=df['Patron Type Definition'].replace("BOOK BY MAI L", "OTHER") df['Patron Type Definition']=df['Patron Type Definition'].replace("SPECIAL","0 THER")

In [16]: sns.countplot(x='Patron Type Definition',data=df)
sns.set(rc={'figure.figsize':(11.7,8.27)})

Out[17]:

	count	median	min	max
Patron Type Definition				
ADULT	272251	5.166667	0.0	2771.000000
BOOKS BY MAIL	95	20.000000	0.0	524.461538
JUVENILE	59208	16.000000	0.0	1413.000000
OTHER	3884	0.500000	0.0	1564.000000
SENIOR	41619	8.400000	0.0	2567.100000
STAFF	862	85.250000	0.0	1299.000000
TEACHER CARD	1782	20.250000	0.0	947.000000
WELCOME	14931	0.250000	0.0	325.153846
YOUNG ADULT	28816	8.384615	0.0	1178.000000

Home Library Code/Home Library Definition

Most of the traffic seems to be from Main Library, which is likely to be the biggest branch, with the most programming activities there. It is also more likely to be in downtown, making it the centre of actions. These factors are all likely boost circulaton activities.

In [18]: sns.countplot(x='Home Library Code',data=df)
 sns.set(rc={'figure.figsize':(11.7,8.27)})
 plt.ylim(1000,130000);

In [19]: # Try to reduce the number of Home Library by combining Branch Mobile

df['Home Library Definition']=df['Home Library Definition'].replace("Branch Bo okmobile (Excelsior)", "Bookmobile")

df['Home Library Definition']=df['Home Library Definition'].replace("Branch Bo okmobile (Marina)", "Bookmobile")

df['Home Library Definition']=df['Home Library Definition'].replace("Branch Bo okmobile (Sunset)", "Bookmobile")

df['Home Library Definition']=df['Home Library Definition'].replace("Branch Bo okmobile (West Portal)", "Bookmobile")

df['Home Library Definition']=df['Home Library Definition'].replace("Childre n's Bookmobile", "Bookmobile")

df.groupby(['Home Library Definition'])['avg_cko'].agg(['count', 'median', 'min', 'max'])

Out[19]:

	count	median	min	max
Home Library Definition				
Anza	7183	12.400000	0.0	986.692308
Bayview/Linda Brooks-Burton	8417	2.333333	0.0	1321.153846
Bernal Heights	9630	7.895833	0.0	843.714286
Bookmobile	968	6.519231	0.0	670.000000
Chinatown	17140	17.094017	0.0	1245.333333
Eureka Valley/Harvey Milk Memorial	8708	8.076923	0.0	1801.900000
Excelsior	16706	6.160256	0.0	1352.200000
Glen Park	9811	8.076923	0.0	986.307692
Golden Gate Valley	4381	6.000000	0.0	976.000000
Ingleside	10738	7.500000	0.0	900.500000
Library on Wheels	782	7.000000	0.0	480.461538
Main Library	124814	2.714286	0.0	2567.100000
Marina	10631	5.500000	0.0	1538.000000
Merced	10502	7.800000	0.0	1138.400000
Mission	25443	5.625000	0.0	866.923077
Mission Bay	11271	4.666667	0.0	1005.000000
Noe Valley/Sally Brunn	8399	10.000000	0.0	968.000000
North Beach	9162	6.088462	0.0	1282.666667
Ocean View	2914	6.125000	0.0	715.714286
Ortega	14456	16.923077	0.0	1115.230769
Park	8271	7.900000	0.0	948.230769
Parkside	9744	10.000000	0.0	1438.000000
Portola	8659	11.923077	0.0	1029.000000
Potrero	7196	6.000000	0.0	1156.000000
Presidio	8652	6.250000	0.0	965.200000
Richmond	22475	10.769231	0.0	1490.000000
Sunset	15020	11.428571	0.0	1805.500000
Unknown	1498	12.076923	0.0	1146.000000
Visitacion Valley	6833	6.916667	0.0	2771.000000
West Portal	13338	10.384615	0.0	1337.000000
Western Addition	9706	6.875000	0.0	956.500000

```
In [20]: ax=sns.countplot(x='Age Range',order=('0 to 9 years','10 to 19 years','20 to 2
4 years','25 to 34 years','35 to 44 years','45 to 54 years', '55 to 59 years',
'60 to 64 years','65 to 74 years','75 years and over'),data=df)
sns.set(rc={'figure.figsize':(11.7,8.27)})
ax.set_xticklabels(ax.get_xticklabels(), fontsize=7)
plt.tight_layout()
plt.show()
```


Age range

At the first glance, it looks like the data is not normally distributed. However, note that the intervals are not the same: the width varies from 5 years to 10 years. Because of this, this is not a histrogram that could be used to determine whether there is any skewness in the data.

If we redistribute "25 to 34 years", "35 to 44 year", "45 to 54 years" so that each of these category would have an interval of ten years, it looks like the data would peak in the newly category of "30 to 39 years". This presumption is based on the likelihood that both "25 to 34 years" and "35 to 44 years" could be equally split into two parts and redistributed. Based on our literature review, we know that the median age of San Francisco is 38.9 year. This seems to be aligned with our findings with the library data

```
In [22]: ax=sns.countplot(x="Circulation Active Year",hue_order='Supervisor District',o
    rder=('None','2003','2005','2004','2005','2006','2007','2008','2009','2010','2
    011','2012','2013','2014','2015','2016'),data=df)
    sns.set(rc={'figure.figsize':(11.7,8.27)})
    ax.set_xticklabels(ax.get_xticklabels(), fontsize=10)
    ax.set_title('Countplot for Circulation Active Year')
    plt.tight_layout()
    plt.show()
```


Circulation Last Year

This is interesting to see that most of the users have used the library in the past one year ("2016") or perhaps ("2015"). This indicates that SFPL has a lot of regular users.

Supervisor District

```
In [23]: sns.countplot(x='Supervisor District',data=df)
    sns.set(rc={'figure.figsize':(11.7,8.27)})
    ax.set_xticklabels(ax.get_xticklabels(), fontsize=7)
    plt.tight_layout()
    plt.show()
```


With the exception of District two and District three, the data seems to be uniformly distributed. Further analysis will be done in a later section when combining with average checkouts (ckos) and also with the use of GeoPandas.

Numercial Variables

Total Checkouts/Average Checkouts

In [52]: sns.set(style='whitegrid', palette="deep", font_scale=1.1, rc={"figure.figsiz
e": [8, 5]})
sns.distplot(df['total_cko'], norm_hist=False, kde=False, bins=20, hist_kws={
 "alpha": 1}).set(xlabel='Average Checkouts/Renewals', ylabel='Count');

In [51]: sns.set(style='whitegrid', palette="deep", font_scale=1.1, rc={"figure.figsize": [8, 5]})
sns.distplot(df['total_cko'], norm_hist=False, kde=False, bins=1000, hist_kws={"alpha": 1}).set(xlabel='Total Checkouts/Renewals Under 1000', ylabel='Count')
plt.xlim(0,1000);

Taking a closer look at the circulation activities below 1000, it appears to be a good idea to label "frequent users" as those with activities under 50

In [26]: sns.countplot(x='years_registered',data=df)
sns.set(rc={'figure.figsize':(11.7,8.27)})

In [53]: sns.set(style='whitegrid', palette="deep", font_scale=1.1, rc={"figure.figsiz
e": [8, 5]})
sns.distplot(df['avg_cko'], norm_hist=False, kde=False, bins=100, hist_kws={"a
lpha": 1}).set(xlabel='Average Checkouts', ylabel='Count')
plt.xlim(0,1000);

In [28]: df.describe()

Out[28]:

	Patron Type Code	Total Checkouts	Total Renewals	Year Patron Registered	Supervisor District	
count	423448.000000	423448.000000	423448.000000	423448.000000	313138.000000	42
mean	1.036765	161.982097	59.657327	2010.348917	6.288240	22
std	4.188198	453.703678	225.009917	4.357374	3.123634	61
min	0.000000	0.000000	0.000000	2003.000000	1.000000	0.0
25%	0.000000	2.000000	0.000000	2007.000000	4.000000	3.0
50%	0.000000	19.000000	2.000000	2012.000000	6.000000	26
75%	1.000000	113.000000	27.000000	2014.000000	9.000000	15
max 104.000000 35907.000000		8965.000000	2016.000000	11.000000	36	

In [29]: outliers=df[df['Total Checkouts']>10000]
 print(outliers)

	D . T .C		_	D (
205	Patron Type C		on Type				
895		9			HER		8064
2007		0			JLT =		0521
3543		0			JLT		2740
20083		3		SEN			6060
31334		0		ADI	JLT	1.	3784
39620		0		ADI	JLT	1:	1086
57244		0		ADI	JLT	10	0906
86671		3		SEN	IOR	1:	1748
117604		0		ADI	JLT	1:	1817
120565		3		SEN	IOR	10	0108
129328		3		SEN			2757
138318		0			JLT		0809
145594		3		SEN:			1871
146589		0			JLT		4093
156774		0			JLT		7308
163847		3		SEN:			5223
		0			JLT		0371
180148		3					
200176				SEN:			8397
216249		0			JLT		2950
222872		3		SEN:			4502
227545		3		SEN:			1147
231752		3		SEN			1896
237636		0			JLT		5505
255022		3		SEN:	IOR	1:	1102
278357		3		SEN:	IOR	1	1366
288654		0		ADI	JLT	1.	5598
290972		0		ADI	JLT	1.	2733
293388		0		ADI	JLT	3	5907
294146		0		ADI	JLT	10	0863
330569		3		SEN	IOR	10	0637
401347		5		STA	AFF		3362
	Total Renewal	S	Age	Range Hor	ne Library	Code	\
895	226	8 60	to 64	years	_	Х	
2007	62		to 64	-		Х	
3543	220		to 54	-		C2	
20083	6		to 74	-		C2	
31334	7:		to 64	-		M4	
39620	108		to 44	-		C2	
57244	142		to 54	-		P1	
86671	96		to 74			X	
117604	285		to 54			S7	
120565	5		to 74	-		X	
						R3	
129328	50		to 74	-			
138318	2		to 24	-		S7	
145594	5		to 74	-		M4	
146589	38		to 54			Х	
156774	25		to 64	-		Х	
163847	44		to 74			Х	
180148	134		to 59	-		S7	
200176			to 74	-		Χ	
216249	154		to 64			07	
222872	351	7 65	to 74	years		E7	
227545	12	3 65	to 74	years		M6	
231752	140		to 74	-		E7	
237636	29		to 64	-		Χ	
				-			

```
255022
                   2652
                             65 to 74 years
                                                               Χ
278357
                     62
                             65 to 74 years
                                                               Χ
288654
                    228
                             55 to 59 years
                                                               Χ
                             45 to 54 years
                                                               Χ
290972
                     60
                             35 to 44 years
                                                              V3
293388
                    116
                     57
                             45 to 54 years
                                                              М6
294146
                          75 years and over
                                                              C2
330569
                    148
401347
                   1926
                               0 to 9 years
                                                               Χ
                    Home Library Definition Circulation Active Year
895
                                Main Library
                                                                    2016
2007
                                Main Library
                                                                    2016
3543
                                                                    2016
                                    Chinatown
20083
                                    Chinatown
                                                                    2016
31334
                                       Merced
                                                                    2016
39620
                                    Chinatown
                                                                    2016
57244
                                         Park
                                                                    2016
                                Main Library
86671
                                                                    2016
117604
                                       Sunset
                                                                    2016
120565
                                Main Library
                                                                    2013
129328
                                     Richmond
                                                                    2016
138318
                                       Sunset
                                                                    2016
145594
                                       Merced
                                                                    2016
146589
                                Main Library
                                                                    2016
156774
                                Main Library
                                                                    2016
163847
                                Main Library
                                                                    2016
180148
                                       Sunset
                                                                    2016
200176
                                Main Library
                                                                    2016
216249
                                                                    2016
                                       Ortega
222872
        Eureka Valley/Harvey Milk Memorial
                                                                    2016
227545
                                      Mission
                                                                    2016
231752
        Eureka Valley/Harvey Milk Memorial
                                                                    2016
                                Main Library
237636
                                                                    2016
255022
                                Main Library
                                                                    2016
278357
                                Main Library
                                                                    2016
288654
                                Main Library
                                                                    2016
290972
                                Main Library
                                                                    2016
293388
                           Visitacion Valley
                                                                    2016
                                      Mission
294146
                                                                    2016
330569
                                    Chinatown
                                                                    2015
401347
                                                                    2016
                                Main Library
       Notice Preference Code Notice Preference Definition
895
                                                          phone
                              р
2007
                                                          phone
                              p
3543
                              z
                                                          email
20083
                              а
                                                          print
31334
                                                          email
                              Z
39620
                              р
                                                          phone
57244
                                                          email
                              z
86671
                              z
                                                          email
117604
                              Z
                                                          email
120565
                                                          phone
                              p
129328
                                                          phone
                              p
138318
                                                          email
                              z
145594
                              z
                                                          email
146589
                              р
                                                          phone
```

Z

156774

163847	p	· •	ph	one
180148	z		em	ail
200176	z	:	em	ail
216249	z		em	ail
222872	Z			ail
227545	a	1	•	int
231752	z			ail
237636	р)	•	one
255022	z			ail
278357	Z			ail
288654	р		·	one
290972	Z			ail
293388	p		•	one
294146	p		-	one
330569	p		•	one
401347	Z		en	ail
	Provided Email Addres	s Year Pa	tron Registered	Outside of County \
895	Fals		2003	False
2007	Fals		2003	False
3543	Tru		2003	False
20083	Fals		2003	False
31334	Tru		2003	False
39620	Fals		2003	False
57244	Tru	ie	2003	False
86671	Tru	ie	2003	False
117604	Tru	ie	2003	False
120565	Fals	e	2003	False
129328	Fals	e	2004	False
138318	Tru	ie	2010	False
145594	Tru	e	2003	False
146589	Tru		2003	False
156774	Tru		2003	False
163847	Fals		2006	False
180148	Tru		2003	False
200176	Tru		2005	False
216249	Tru		2003	False
222872 227545	Tru		2006 2003	False
231752	Fals Tru		2003	False False
237636	Fals		2004	False
255022	Tru		2003	False
278357	Tru		2003	False
288654	Fals		2003	False
290972	Tru		2003	False
293388	Fals		2003	False
294146	Fals		2003	False
330569	Fals		2003	False
401347	Tru		2004	True
		total_cko	years_registere	~_
895	NaN	20332		3 1564.000000
2007	6.0	11142		3 857.076923
3543	3.0	14949		3 1149.923077
20083	3.0	16126		3 1240.461538
31334	11.0	13858	1	3 1066.000000

email

39620	3.0	12169	13	936.076923
57244	8.0	12327	13	948.230769
86671	5.0	12711	13	977.769231
117604	4.0	14676	13	1128.923077
120565	6.0	10167	13	782.076923
129328	NaN	13257	12	1104.750000
138318	4.0	10833	6	1805.500000
145594	7.0	11921	13	917.000000
146589	4.0	24476	13	1882.769231
156774	6.0	17565	13	1351.153846
163847	9.0	25671	10	2567.100000
180148	4.0	11716	13	901.230769
200176	NaN	18403	11	1673.000000
216249	4.0	14498	13	1115.230769
222872	8.0	18019	10	1801.900000
227545	NaN	11270	13	866.923077
231752	8.0	13304	13	1023.384615
237636	6.0	15799	12	1316.583333
255022	NaN	13754	13	1058.000000
278357	8.0	11428	13	879.076923
288654	11.0	15826	13	1217.384615
290972	8.0	12793	13	984.076923
293388	NaN	36023	13	2771.000000
294146	6.0	10920	13	840.000000
330569	3.0	10785	13	829.615385
401347	NaN	15288	12	1274.000000

Dependent Variables

Create the label "Frequent" and "Infrequent" to use, so that we can test on using this dataset for prediction "Frequent" is defined as user with 50 times average circulation activities (avg_cko). Below are various countplots to explore the relationship between this new variable ("user_category") and the existing variables. Nothing jump out when inspecting these plots.

```
In [31]: df['user_category']='Infrequent'
    df['user_category'].loc[df['avg_cko']>50]='Frequent'

In [32]: sns.set(style='whitegrid', rc={"grid.linewidth": 0.2})
    sns.set_context("paper", font_scale=0.9)
    fig, axes = plt.subplots(nrows=3, ncols=2,figsize=(10,6), dpi=100)
    sns.countplot(x='Patron Type Definition',data=df,ax=axes[0][0],hue='user_category')
    sns.countplot(x='Age Range',data=df,ax=axes[0][1],hue='user_category')
    sns.countplot(x='Notice Preference Definition',data=df,ax=axes[1][0],hue='user_category')
    sns.countplot(x='Outside of County',data=df,ax=axes[1][1],hue='user_category')
    sns.countplot(x='years registered',data=df,ax=axes[2][0],hue='user_category')
```

Out[32]: <matplotlib.axes. subplots.AxesSubplot at 0x154acb0df98>

sns.countplot(x='Home Library Code',data=df,ax=axes[2][1],hue='user_category')

In [33]: df.head()

Out[33]:

	Patron Type Code	Patron Type Definition	Total Checkouts	Total Renewals	Age Range	Home Library Code	Home Library Definition	Circulation Active Year	l Prefe
0	0	ADULT	1092	761	60 to 64 years	M6	Mission	2016	р
1	0	ADULT	0	0	20 to 24 years	P1	Park	None	Z
2	0	ADULT	31	22	25 to 34 years	S7	Sunset	2016	z
3	0	ADULT	0	0	45 to 54 years	P1	Park	None	а
4	0	ADULT	0	0	25 to 34 years	х	Main Library	None	z
_					_				

In [34]: #sorted_nb = df.groupby(['Supervisor District'])['avg_cko'].median().sort_valu
es()
 #sns.boxplot(x=df['Supervisor District'], y=df['avg_cko'], order=list(sorted_n
b.index))
sns.boxplot(x=df['Supervisor District'], y=df['avg_cko'])

Out[34]: <matplotlib.axes._subplots.AxesSubplot at 0x154acab3470>

Out[35]:

	count	median	min	max
Supervisor District				
1.0	26787	11.000000	0.0	1066.000000
2.0	21153	6.333333	0.0	1538.000000
3.0	22151	8.333333	0.0	1504.000000
4.0	32401	12.400000	0.0	1882.769231
5.0	28356	6.100000	0.0	1173.000000
6.0	26507	5.000000	0.0	2265.000000
7.0	30670	9.750000	0.0	1413.000000
8.0	30732	7.923077	0.0	1801.900000
9.0	31677	7.250000	0.0	2567.100000
10.0	32268	5.285714	0.0	1321.153846
11.0	30436	8.000000	0.0	1438.000000

In [36]: gdf2 = gpd.read_file('data/Shapefile/Supervisor Districts as of April 2012/geo
 _export_2012.shp')

Out[37]:

	supname	supervisor	numbertext	supdist	geometry	count	median	n
0	Farrell	2.0	TWO	SUPERVISORIAL DISTRICT 2	POLYGON ((-122.41922 37.80845, -122.41921 37.8	21153	6.333333	0
1	Mar	1.0	ONE	SUPERVISORIAL DISTRICT 1	POLYGON ((-122.49374 37.78761, -122.49367 37.7	26787	11.000000	0
2	Tang	4.0	FOUR	SUPERVISORIAL DISTRICT 4	POLYGON ((-122.47485 37.76179, -122.47496 37.7	32401	12.400000	0
3	Yee	7.0	SEVEN	SUPERVISORIAL DISTRICT 7	POLYGON ((-122.44854 37.75904, -122.44847 37.7	30670	9.750000	0
4	Wiener	8.0	EIGHT	SUPERVISORIAL DISTRICT 8	POLYGON ((-122.42327 37.77206, -122.42325 37.7	30732	7.923077	0

```
In [38]:
         gdf = gpd.read file('data/Shapefile/geo export.shp')
          print(gdf)
                       supervisor numbertext
              supname
                                                                  supdist \
         0
             Farrell
                              2.0
                                          TWO
                                                SUPERVISORIAL DISTRICT 2
         1
                              1.0
                                          ONE
                                                SUPERVISORIAL DISTRICT 1
                  Mar
         2
                              4.0
                                         FOUR
                                                SUPERVISORIAL DISTRICT 4
                 Tang
         3
                  Yee
                              7.0
                                        SEVEN
                                                SUPERVISORIAL DISTRICT 7
         4
              Wiener
                              8.0
                                       EIGHT
                                                SUPERVISORIAL DISTRICT 8
         5
              Avalos
                             11.0
                                               SUPERVISORIAL DISTRICT 11
                                       ELEVEN
         6
              Campos
                              9.0
                                        NINE
                                                SUPERVISORIAL DISTRICT 9
         7
                Cohen
                             10.0
                                          TEN
                                               SUPERVISORIAL DISTRICT 10
                              6.0
         8
                  Kim
                                          SIX
                                                SUPERVISORIAL DISTRICT 6
         9
                 Chiu
                              3.0
                                        THREE
                                                SUPERVISORIAL DISTRICT 3
                                                SUPERVISORIAL DISTRICT 5
         10
                Breed
                              5.0
                                         FIVE
                                                        geometry
             POLYGON ((-122.41922 37.80845, -122.41921 37.8...
         0
             POLYGON ((-122.49374 37.78761, -122.49367 37.7...
         1
         2
             POLYGON ((-122.47485 37.76179, -122.47496 37.7...
         3
             POLYGON ((-122.44854 37.75904, -122.44847 37.7...
         4
             POLYGON ((-122.42327 37.77206, -122.42325 37.7...
             POLYGON ((-122.42247 37.71789, -122.42249 37.7...
         5
             POLYGON ((-122.41093 37.76941, -122.41088 37.7...
         7
             MULTIPOLYGON (((-122.39905 37.76973, -122.3981...
         8
             MULTIPOLYGON (((-122.39382 37.79374, -122.3931...
             POLYGON ((-122.39198 37.79387, -122.39218 37.7...
             POLYGON ((-122.42157 37.78662, -122.42145 37.7...
         10
In [39]:
         # %matplotlib inline
          #gdf.plot()
```

Median seems to be the most meaningful variables here, so we are plotting it with a bigger figsize. The red dot denoted the location of different branches. The other variables are also plotted below

```
In [40]: sfpl_loc=pd.read_csv('data/sfpl_loc.csv')
    sfpl_loc.head()
    sfpl_loc=gpd.GeoDataFrame(sfpl_loc, geometry=gpd.points_from_xy(sfpl_loc.Longitude, sfpl_loc.Latitude))
```

```
In [73]: #import matplotlib.pyplot as plt
    f,ax=plt.subplots(1)
    gdf.plot(ax=ax)
    gdf3=gpd.GeoDataFrame(GB2, geometry="geometry")
    #gdf.plot(column='supdist', cmap=None, legend=True, figsize=(20, 20))
    gdf3.plot(ax=ax,column='median', cmap=None, legend=True, figsize=(20, 20))
    sfpl_loc.plot(ax=ax, marker='o', color='red', markersize=5)
    ;

    gdf3.head()
    #gdf.plot(column='supdist', cmap=None, legend=True, figsize=(20, 20))
```

Out[73]:

	supname	supervisor	numbertext	supdist	geometry	count	median	n
0	Farrell	2.0	TWO	SUPERVISORIAL DISTRICT 2	POLYGON ((-122.41922 37.80845, -122.41921 37.8	21153	6.333333	0
1	Mar	1.0	ONE	SUPERVISORIAL DISTRICT 1	POLYGON ((-122.49374 37.78761, -122.49367 37.7	26787	11.000000	0
2	Tang	4.0	FOUR	SUPERVISORIAL DISTRICT 4	POLYGON ((-122.47485 37.76179, -122.47496 37.7	32401	12.400000	0
3	Yee	7.0	SEVEN	SUPERVISORIAL DISTRICT 7	POLYGON ((-122.44854 37.75904, -122.44847 37.7	30670	9.750000	0
4	Wiener	8.0	EIGHT	SUPERVISORIAL DISTRICT 8	POLYGON ((-122.42327 37.77206, -122.42325 37.7	30732	7.923077	0


```
In [74]: #import matplotlib.pyplot as plt
         sns.set(style='whitegrid', rc={"grid.linewidth": 0.2})
         sns.set_context("paper", font_scale=0.9)
         fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10,6), dpi=100)
         #sns.countplot(x='Patron Type Definition',data=df,ax=axes[0][0],hue='user_cate
         gory')
         #
         gdf3=gpd.GeoDataFrame(GB2, geometry="geometry")
         #qdf.plot(column='supdist', cmap=None, legend=True, figsize=(20, 20))
         gdf3.plot(ax=axes[0][0],column='count', cmap=None, legend=True,figsize=(20, 20
         ))
         sfpl loc.plot(ax=ax, marker='o', color='red', markersize=5)
         gdf3.plot(ax=axes[0][1],column='median', cmap=None, legend=True, figsize=(20,
         20))
         sfpl loc.plot(ax=ax, marker='o', color='red', markersize=5)
         gdf3.plot(ax=axes[1][0],column='min', cmap=None, legend=True, figsize=(20, 20
         ))
         sfpl loc.plot(ax=ax, marker='o', color='red', markersize=5)
         gdf3.plot(ax=axes[1][1],column='max', cmap=None, legend=True, figsize=(20, 20
         sfpl loc.plot(ax=ax, marker='o', color='red', markersize=5)
         #qdf.plot(column='supdist', cmap=None, legend=True, figsize=(20, 20))
```

Out[74]: <matplotlib.axes. subplots.AxesSubplot at 0x154ad215518>

In [68]:

<Figure size 576x360 with 0 Axes>

In [45]: GB1=df.groupby(['Supervisor District','Outside of County'])['avg_cko'].agg(['c
ount','median','min','max'])
GB1.head(20)

Out[45]: _____

		count	median	min	max
Supervisor District	Outside of County				
1.0	False	26777	11.000000	0.000000	1066.000000
	True	10	11.833333	0.666667	549.000000
2.0	False	21135	6.333333	0.000000	1538.000000
	True	18	11.000000	0.000000	947.000000
3.0	False	22113	8.363636	0.000000	1504.000000
	True	38	4.250000	0.000000	351.000000
4.0	False	32382	12.400000	0.000000	1882.769231
	True	19	28.846154	0.000000	222.000000
5.0	False	28319	6.100000	0.000000	1173.000000
	True	37	5.333333	0.000000	553.923077
6.0	False	26434	5.000000	0.000000	2265.000000
	True	73	4.000000	0.000000	185.000000
7.0	False	30616	9.769231	0.000000	1413.000000
	True	54	4.000000	0.000000	337.615385
8.0	False	30709	8.000000	0.000000	1801.900000
	True	23	7.000000	0.000000	243.615385
9.0	False	31650	7.250000	0.000000	2567.100000
	True	27	14.000000	0.000000	334.000000
10.0	False	32254	5.285714	0.000000	1321.153846
	True	14	12.250000	0.000000	55.000000