AArch64
Instructions

Index by Encoding External Registers

PMSCR_EL2, Statistical Profiling Control Register (EL2)

The PMSCR EL2 characteristics are:

Purpose

Provides EL2 controls for Statistical Profiling.

Configuration

This register is present only when FEAT_SPE is implemented. Otherwise, direct accesses to PMSCR EL2 are undefined.

Attributes

PMSCR EL2 is a 64-bit register.

Field descriptions

636261605958575655545352515049484746454443424140)39:	38	37	36	35	34	33	32
RES0								
RES0	PC	T	TS	PA	CX	RES0	E2SPE	EOHSPE
31302928272625242322212019181716151413121110 9 8	7	6	5	4	3	2	1	0

Bits [63:8]

Reserved, res0.

PCT, bits [7:6]

Physical Timestamp. If timestamp sampling is enabled, determines which counter is collected. The behavior depends on the Profiling Buffer owning Exception level.

If FEAT_ECV is implemented, this is a two-bit field as shown. Otherwise, bit[7] is res0.

PCT	Meaning	Applies when
-----	---------	-----------------

- Virtual timestamp. The collected timestamp is the physical counter minus a virtual offset. If any of the following are true, the virtual offset is zero, otherwise the virtual offset is the value of CNTVOFF EL2:
 - The sampled operation executed at EL2 and HCR EL2.E2H == 1.
 - The sampled operation executed at EL0 and <u>HCR_EL2</u>. {E2H,TGE} == {1,1}.

Note

If the Profiling Buffer owning Exception level is EL1, the virtual offset is always CNTVOFF EL2.

- Ob01 If the Profiling Buffer owning
 Exception level is EL1, then the
 timestamp value is selected by
 PMSCR_EL1.PCT.
 Otherwise, physical timestamp. The
 collected timestamp is the physical
 counter.
- If the Profiling Buffer owning
 Exception level is EL1 and
 PMSCR_EL1.PCT == 0b00, then
 guest virtual timestamp. The
 collected timestamp is the physical
 counter minus the value of
 CNTVOFF EL2.

Otherwise, guest physical timestamp. The collected timestamp is the physical counter minus a physical offset. If any of the following are true, the physical offset is zero, otherwise the physical offset is the value of CNTPOFF EL2:

- SCR EL3. ECVEn == 0.
- $\underline{\text{CNTHCTL}}\underline{\text{EL2}}.\text{ECV} == 0.$

When FEAT_ECV is implemented

All other values are reserved.

If EL2 is not implemented or EL2 is disabled in the current Security state, then the Effective value of this field is 0b01, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

TS, bit [5]

Timestamp Enable.

TS	Meaning
0b0	Timestamp sampling disabled.
0b1	Timestamp sampling enabled.

This bit is ignored by the PE when any of the following are true:

- The Profiling Buffer owning Exception level is EL1.
- In Secure state, and either FEAT_SEL2 is not implemented or Secure EL2 is disabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

PA, bit [4]

Physical Address Sample Enable.

PA	Meaning		
0b0 Physical addresses are not			
	collected.		
0b1	Physical addresses are collected.		

If the Profiling Buffer owning Exception level is EL1, and EL2 is enabled in the current Security state, this bit is combined with PMSCR EL1.PA to determine which address is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit and behaves as if this bit is set to 1, other than for a direct read of the register.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

CX, bit [3]

CONTEXTIDR_EL2 Sample Enable.

	CX	Meaning	
--	----	---------	--

0b0	CONTEXTIDR_EL2 is not collected.
0b1	CONTEXTIDR_EL2 is collected.

If EL2 is not implemented or EL2 is disabled in the current Security state, the PE ignores the value of this bit.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Bit [2]

Reserved, res0.

E2SPE, bit [1]

EL2 Statistical Profiling Enable.

E2SPE	Meaning
0b0	Sampling disabled at EL2.
0b1	Sampling enabled at EL2.

This bit is res0 if MDCR EL2.E2PB != 0b00.

If EL2 is disabled in the current Security state, this bit is ignored by the PE.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

EOHSPE, bit [0]

ELO Statistical Profiling Enable.

E0HSPE	Meaning
0b0	Sampling disabled at EL0.
0b1	Sampling enabled at EL0.

If MDCR EL2.E2PB != 0b00, this bit is res0.

If EL2 is implemented and enabled in the current Security state, this bit is ignored by the PE when \underline{HCR} $\underline{EL2}$. $\underline{TGE} == 0$.

The reset behavior of this field is:

• On a Warm reset, this field resets to an architecturally unknown value.

Accessing PMSCR_EL2

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, PMSCR EL2

op0	op1	CRn	CRm	op2
0b11	0b100	0b1001	0b1001	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() && HCR_EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        X[t, 64] = PMSCR\_EL2;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PMSCR\_EL2;
```

MSR PMSCR EL2, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b100	0b1001	0b1001	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
```

```
if EL2Enabled() && HCR EL2.NV == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    else
        UNDEFINED;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' | |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    else
        PMSCR\_EL2 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PMSCR\_EL2 = X[t, 64];
```

MRS <Xt>, PMSCR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1001	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGRTR_EL2.PMSCR_EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
```

```
else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR EL2.<NV2,NV1,NV> ==
'111' then
        X[t, 64] = NVMem[0x828];
    else
        X[t, 64] = PMSCR EL1;
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED:
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR EL2.E2H == '1' then
        X[t, 64] = PMSCR\_EL2;
    else
        X[t, 64] = PMSCR\_EL1;
elsif PSTATE.EL == EL3 then
    X[t, 64] = PMSCR\_EL1;
```

MSR PMSCR_EL1, <Xt>

op0	op1	CRn	CRm	op2
0b11	0b000	0b1001	0b1001	0b000

```
if PSTATE.EL == ELO then
    UNDEFINED;
elsif PSTATE.EL == EL1 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        UNDEFINED;
    elsif EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HDFGWTR_EL2.PMSCR_EL1 ==
'1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() && MDCR_EL2.TPMS == '1' then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
```

```
MDCR EL3.NSPB[1] != SCR EL3.NS
(IsFeatureImplemented(FEAT RME) && MDCR EL3.NSPBE !=
SCR EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif EL2Enabled() && HCR_EL2.<NV2,NV1,NV> ==
'111' then
        NVMem[0x828] = X[t, 64];
    else
        PMSCR EL1 = X[t, 64];
elsif PSTATE.EL == EL2 then
    if Halted() && HaveEL(EL3) && EDSCR.SDD == '1'
&& boolean IMPLEMENTATION_DEFINED "EL3 trap priority
when SDD == '1'" && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR EL3.NSE)) then
        UNDEFINED;
    elsif HaveEL(EL3) && (MDCR_EL3.NSPB[0] == '0' |
MDCR_EL3.NSPB[1] != SCR_EL3.NS |
(IsFeatureImplemented(FEAT_RME) && MDCR_EL3.NSPBE !=
SCR_EL3.NSE)) then
        if Halted() && EDSCR.SDD == '1' then
            UNDEFINED;
        else
            AArch64.SystemAccessTrap(EL3, 0x18);
    elsif HCR_EL2.E2H == '1' then
        PMSCR\_EL2 = X[t, 64];
    else
        PMSCR\_EL1 = X[t, 64];
elsif PSTATE.EL == EL3 then
    PMSCR\_EL1 = X[t, 64];
```

AArch32AArch64AArch32AArch64Index byExternalRegistersRegistersInstructionsInstructionsEncodingRegisters

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.