Digital Electronic Circuits Section 1 (EE, IE)

Lecture 20

Class Test 2:

29-10-2020 (THU):

8:00 - 8:55 AM

Syllabus: Logic families (not covered in CT1) and primarily post CT1, shall include concept dealt in pre-CT1 part which forms the pre-requisite.

Hamming Distance and Parity Code

- The number of bit positions by which code words differ is called Hamming distance.
- It can be found by counting number of 1s in bit-wise Ex-OR of two code words.

```
Parity bit
  Data 1: 10100011
                                                                                 Parity Code:
                          Code word 1: 010100011
                                                       Even parity coded
  Data 2: 11011001
                          Code word 2: 111011001
                                                                            Data with a parity bit
                  Bit-wise Ex-Or output: 101111010 : Hamming distance, d = 6
                                                                              Can detect 1 bit error.
 Data 1: 00000000
                          Code word 1: 000000000
                                                                               Cannot correct any.
 Data 2: 00000001
                          Code word 2: 100000001
                  Bit-wise Ex-Or output: 100000001 : Hamming distance, d = 2
To detect b bit errors, minimum hamming distance, d_{min} = b + 1.
```

- To correct b bit errors, minimum hamming distance, $d_{min} = 2b + 1$.

Hamming Code

- Useful for correcting 1-bit error. It uses more than 1 parity bits.
- Parity bits in the code word are positioned at 2ⁱ-th positions.
 Rest of the positions are filled by data bits.

2 ⁰			2 ²				2 ³							
P ₁	P ₂	D_3	P ₄	D ₅	D_6	D ₇	P ₈	D_9	D ₁₀	D ₁₁	D ₁₂	D ₁₃	D ₁₄	D ₁₅

• If m parity bits $(m \ge 2)$ are used to code n data bits then,

$$2^{m} > m + n$$

Parity bits	Max. data bits	Max. total length
2	1	3
3	4	7
4	11	15

Hamming Code Generation

 $\mathbf{P_1}$ $\mathbf{P_2}$ $\mathbf{D_3}$ $\mathbf{P_4}$ $\mathbf{D_5}$ $\mathbf{D_6}$ $\mathbf{D_7}$

Binary coded position 0001 0010 0011

0001 0010 0011 0100 0101 0110 0111

(7,4) Code: Rate = 4/7

 $P_1 = D_3 + D_5 + D_7$: All with 1 in 1's place of position

 $P_2 = D_3 + D_6 + D_7$: All with 1 in 2's place of position

 $P_4 = D_5 + D_6 + D_7$: All with 1 in 4's place of position

Extending:

 $d_{min} = 3$

Can detect all 2 bit error.
Can correct all 1 bit error.

$$P_1 = D_3 + D_5 + D_7 + D_9 + D_{11}$$
 ...

$$P_2 = D_3 + D_6 + D_7 + D_{10} + D_{11}$$
 "

$$P_4 = D_5 + D_6 + D_7 + D_{12}$$

$$P_8 = D_9 + D_{10} + D_{11} + D_{12}$$
 : All with 1 in 8's place of position

Example

Data: 10110101

P ₁ P ₂ 1 P ₄ 0 1 1 P ₈ 0 1 0	1
---	---

0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100

$$P_{1} = D_{3} \oplus D_{5} \oplus D_{7} \oplus D_{9} \oplus D_{11} = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 0 = 0$$

$$P_{2} = D_{3} \oplus D_{6} \oplus D_{7} \oplus D_{10} \oplus D_{11} = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 0$$

$$P_{4} = D_{5} \oplus D_{6} \oplus D_{7} \oplus D_{12} = 0 \oplus 1 \oplus 1 \oplus 1 = 1$$

$$P_{8} = D_{9} \oplus D_{10} \oplus D_{11} \oplus D_{12} = 0 \oplus 1 \oplus 0 \oplus 1 = 0$$

Coded Data: 001101100101

One bit Error Correction

$$C_{1} = D_{3} + D_{5} + D_{7} + D_{9} + D_{11} + P_{1}$$

$$C_{2} = D_{3} + D_{6} + D_{7} + D_{10} + D_{11} + P_{2}$$

$$C_{4} = D_{5} + D_{6} + D_{7} + D_{12} + P_{4}$$

$$C_{8} = D_{9} + D_{10} + D_{11} + D_{12} + P_{8}$$

- If $C_8C_4C_2C_1 = 0000$: No error
- Else, it gives position of the error bit e.g. $C_8C_4C_2C_1 = 0111$ means 7^{th} bit is erroneously received
- Invert the erroneous bit to correct.

Example:

```
Coded Data: 001101100101 C_1 = 1 \oplus 0 \oplus 1 \oplus 0 \oplus 1 \oplus 0 = 1 1011: 11<sup>th</sup> bit 1 is erroneous Data with : 0011011001<u>1</u>1 C_2 = 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1 It is to be made 0 to correct 1-bit error C_4 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 = 0 C_8 = 0 \oplus 1 \oplus 1 \oplus 1 \oplus 0 = 1
```

Note: If $C_8C_4C_2C_1 = 1000$ then 8^{th} position bit i.e. P_8 is erroneous.

Two bit Error Detection

$$C_{1} = D_{3} + D_{5} + D_{7} + D_{9} + D_{11} + P_{1}$$

$$C_{2} = D_{3} + D_{6} + D_{7} + D_{10} + D_{11} + P_{2}$$

$$C_{4} = D_{5} + D_{6} + D_{7} + D_{12} + P_{4}$$

$$C_{8} = D_{9} + D_{10} + D_{11} + D_{12} + P_{8}$$

$$C_{8}C_{4}C_{2}C_{1} = 0010$$

$$C_{1} = D_{3} \oplus D_{5} \oplus D_{7} \oplus D_{9} \oplus D_{11} \oplus P_{1}$$

$$C_{2} = D_{3} \oplus D_{6} \oplus D_{7} \oplus D_{10} \oplus D_{11} \oplus P_{2}$$

$$C_{4} = D_{5} \oplus D_{6} \oplus D_{7} \oplus D_{12} \oplus P_{4}$$

$$C_{8} = D_{9} \oplus D_{10} \oplus D_{11} \oplus D_{12} \oplus P_{8}$$

$$C_{8}C_{4}C_{2}C_{1} = 0110$$

$$C_{1} = D_{3} + D_{5} + D_{7} + D_{9} + D_{11} + P_{1}$$

$$C_{2} = D_{3} + D_{6} + D_{7} + D_{10} + D_{11} + P_{2}$$

$$C_{4} = D_{5} + D_{6} + D_{7} + D_{12} + P_{4}$$

$$C_{8} = D_{9} + D_{10} + D_{11} + D_{12} + P_{8}$$

$$C_{8}C_{4}C_{2}C_{1} = 0001$$

$$C_1 = D_3 + D_5 + D_7 + D_9 + D_{11} + P_1$$
 Three bits flip

 $C_2 = D_3 + D_6 + D_7 + D_{10} + D_{11} + P_2$
 $C_4 = D_5 + D_6 + D_7 + D_{12} + P_4$
 $C_8 = D_9 + D_{10} + D_{11} + D_{12} + P_8$
 $C_8 + C_2 + C_1 = 0000$

Sequential Logic Circuit

Bistable Circuit

- A bistable circuit has two stable states.
- Its value changes only by external trigger.
- It can store one bit of information

Inconvenient

to apply input

/ trigger

SR Latch

5	R	Q _{last}	Q
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	N.A.
1	1	1	N.A.

N.A.: Not allowed

S	R	V_2	V ₃
1	1	0	0

If SR = 00 follows SR = 11, then there is a **race** between two gates and depending on who responds faster, V_2V_3 settles at one of 01 or 10.

Latches to prior state

SR Latch

S	R	Q ⁺
0	0	Q ⁻
0	1	0
1	0	1
1	1	N.A.

 \overline{S}

 \overline{R}

Q

0

Forbidden

Last state

Realizing SR Latch using only NAND gate

IC 74279

\overline{S}_1	\overline{S}_2	\overline{R}	Q
0	0	0	Forbidden
0	X	1	1
X	0	1	1
1	1	0	0
1	1	1	Last state

Truth Table of 2 and 3

\overline{S}_1	\overline{R}	Q
0	0	Forbidden
0	1	1
1	0	0
1	1	Last state

Truth Table of 1 and 4

Debounce Switch

Gated Latch

EN	S	R	Q_{n+1}
1	0	0	Q_n (no change)
1	0	1	0
1	1	0	1
1	1	1	Forbidden
0	X	X	Q_n (no change)

Gated Latch

Clocked SR Flip-Flop

Usually, Latch with clock / enable input is referred as Flip-Flop.

When *C* is at HIGH level, state can change according to *SR* input.

Level-triggered SR Flip-Flop

Triggering with Narrow Pulse

- Synchronous digital system requires one state change per clock cycle, synchronized with clock.
- More than one state change can occur in leveltriggered flip-flop if there is feedback / input changes when clock remains enabled.

A very narrow pulse width positive trigger (effectively edge-triggered)

Edge Triggered SR Flip-Flop

C	S	R	Q_{n+1}	Action			
	0	0	Q_n	No change			
lack	0	1	0	RESET			
†	1	0	1	SET			
	1	1	Forbidden				

-ve edge triggered SR Flip-Flop

+ve edge triggered SR Flip-Flop

D Flip-Flop

C	D	Q_{n+1}
0	X	Q_n (last state)
lack	0	0
	1	1

D Flip-Flop with asynchronous preset and clear

JK Flip-Flop

C	J	K	Q_{n+1}	Action
1	0	0	Q_n (last state)	No change
†	0	1	0	RESET
†	1	0	1	SET
†	1	1	\overline{Q}_n (toggle)	Toggle

Dual -ve edge triggered JK Flip-Flop with active low PRESET and CLEAR

Master-Slave Flip-Flop

Master Flip-Flop: According to type of Flip-Flop i.e. *JK*, *SR*, *D*.

Slave Flip-Flop: Always *SR* Flip-Flop.

Individually level-triggered, changes in different phases of clock, effectively edge-triggered.

Edge-Triggering by Input Lockout

Edge-Triggering by Input Lockout

IC 7474

IC 7475 is a Quad D latch with two enables (one each for 2 latch).

IC 7476A: Dual -ve edge triggered JK Flip-Flop with active low PRESET and CLEAR

IC 7474: Dual +ve edge-triggered D Flip-Flop with asynch. active low preset and clear.

References:

- ☐ Donald P. Leach, Albert P. Malvino, and Goutam Saha, Digital Principles &
- **Applications 8e, McGraw Hill**
- ☐ Texas Instrument's Digital Logic Pocket Data Book (2007)