

ISIS-1221 INTRODUCCIÓN A LA PROGRAMACIÓN

Nivel 1 – Laboratorio 2 Funciones

Objetivo general

Entender cómo definir funciones que resuelven problemas y cuándo utilizarlas.

Objetivos específicos

- 1. Trabajar con diferentes tipos de datos y conversión entre ellos.
- 2. Practicar el uso de variables y la instrucción de asignación.
- 3. Utilizar operaciones y funciones aritméticas en Python.
- 4. Definir funciones que resuelven problemas.
- 5. Utilizar funciones para resolver problemas.

Actividad 1: Velocidad del sonido

Defina una función llamada calcular_velocidad_sonido que calcule la velocidad del sonido en el aire basándose en la temperatura. Use la fórmula

$$v = 331.3 + 0.606 \cdot T$$

donde v es la velocidad en m s⁻¹ y T es la temperatura en grados Celsius.

Actividad 2: Tiempo de propagación del eco

Escriba una función llamada calcular_tiempo_sonido que calcule cuánto tiempo tarda un eco en regresar. La función debe basarse en la temperatura ambiente y la distancia hasta el obstáculo que produce el eco (en metros). Recuerde que el sonido debe viajar ida y vuelta, por lo que la distancia total es el doble.

Invoque la función calcular_tiempo_sonido para una temperatura de 20°C y una distancia de 100 metros. Muestre en pantalla el resultado en segundos.

Consejos:

- Reutilice la función calcular_velocidad_sonido del punto anterior.
- Utilice la fórmula: tiempo = $\frac{\text{distancia total}}{\text{velocidad}}$.
- Muestre el resultado en segundos usando print.

Actividad 3: Sonido en Marte

Modifique la función calcular_velocidad_sonido para que calcule la velocidad del sonido en la atmósfera de Marte. En Marte, la fórmula es diferente debido a la composición atmosférica:

$$v = 240 + 0.4 \cdot T$$

Redefina su función y ejecute nuevamente el programa de la Actividad 2 con los mismos valores de temperatura y distancia. Compare los resultados: ¿en qué planeta es más rápido el sonido?

Entrega

Cree un archivo comprimido .zip con el archivo n2-12.py. Entregue el archivo comprimido a través de Brightspace en el laboratorio del Nivel 1 designado como "L2: Funciones".