

Statystyczna analiza danych SAD-2020/2021

Wykład 12

Analiza zależności dwóch zmiennych

Współczynnik korelacji próbkowej

Niech $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ będzie próbką cechy dwuwymiarowej (X, Y).

Będziemy badali zależność Y od X.

X = zmienna niezależna (objaśniająca),

Y = zmienna zależna (objaśniana),

Wykres rozproszenia – graficzne przedstawienie próbki w postaci punktów na płaszczyźnie *Oxy*.

Współczynnik korelacji z próby

Definicja. Niech $(X_1,Y_1),(X_2,Y_2),...,(X_n,Y_n)$ będzie próbą losową. **Współczynnikiem korelacji z próby** losowej nazywamy zmienną losową

$$R = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{X_i - \overline{X}}{S_X} \right) \left(\frac{Y_i - \overline{Y}}{S_Y} \right),$$

gdzie \overline{X} i S_X oznaczają średnią i odchylenie standardowe dla $X_1, X_2, ..., X_n$, a \overline{Y} i S_Y oznaczają średnią i odchylenie standardowe dla $Y_1, Y_2, ..., Y_n$.

(np.
$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$
, $S_Y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i - \overline{Y})^2$, $S_Y = \sqrt{S_Y^2}$)

Współczynnik korelacji z próby

 $(X_1, Y_1), (X_2, Y_2), ..., (X_n, Y_n)$ – prosta próba losowa

$$\rho \coloneqq \rho(X,Y) = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}, \qquad R = \hat{\rho} = \frac{Co\widehat{v(X,Y)}}{\widehat{\sigma_X} \cdot \widehat{\sigma_Y}}$$

 $\widehat{\sigma_X}$: = $\sqrt{S_X^2}$ – estymator σ_X , bo

$$S_X^2 = \frac{1}{n-1} \sum_{j=1}^n (X_j - \bar{X})^2 - \text{estymator } \sigma_X^2$$

Estymatorem $Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y))$ jest

$$Co\widehat{v(X,Y)} = \frac{1}{n-1} \sum_{j=1}^{n} (X_j - \overline{X})(Y_j - \overline{Y})$$

Własności współczynnika korelacji

$$-1 \le \rho \le 1$$

Jeśli a i b są stałymi, Y = a + bX,

to
$$\rho = \begin{cases} 1 & \text{gdy} \\ -1 & b < 0 \end{cases}$$

Jeśli $|\rho| = 1$, to między zmiennymi losowymi X, Y

istnieje liniowa zależność funkcyjna

 \square Jeśli zmienne losowe X i Y są niezależne, to

$$\rho = 0$$

(b) g = -1, perfect negative correlation.

 $\ensuremath{\not{\hspace{-0.05cm} c}}$ is close to zero and variables are not related.

(d) ∫ is close to zero, but the variables are related through a curvilinear relation.

Współczynnik korelacji próbkowej

Współczynnikiem korelacji próbkowej nazywamy wartość współczynnika R obliczoną dla próbki $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$:

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_X} \right) \left(\frac{y_i - \overline{y}}{s_Y} \right)$$

Własności współczynnika korelacji próbkowej

- $-1 \le r \le 1$.
- Jeśli r = 1, to wszystkie punkty wykresu rozproszenia <u>leżą</u> na prostej o dodatnim współczynniku kierunkowym, tzn. istnieje dodatnia zależność liniowa między zmiennymi x i y próbki.
- Jeśli r = -1, to wszystkie punkty wykresu rozproszenia l<u>eżą</u> na prostej o ujemnym współczynniku kierunkowym, tzn. istnieje ujemna zależność liniowa między zmiennymi x i y próbki.
- Wartości *r* bliskie –1 lub 1 wskazują, że wykres rozproszenia jest skupiony wokół pewnej prostej.

Współczynnik korelacji liniowej z próbki

$$r = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}} =$$

$$= \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \sqrt{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}}$$

Do obliczenia r potrzebujemy:

$$\sum_{i=1}^{n} x_{i}, \sum_{i=1}^{n} y_{i}, \sum_{i=1}^{n} x_{i}^{2}, \sum_{i=1}^{n} y_{i}^{2}, \sum_{i=1}^{n} x_{i}y_{i}, n$$

Prosta regresji. Metoda najmniejszych kwadratów

Problem: W jaki sposób do wykresu rozproszenia, tzn. do punktów $(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)$ dopasować "najlepiej" linię prostą?

Niech $y = b_0 + b_1 x$, $-\infty < x < \infty$, będzie równaniem prostej "dopasowanej" do punktów (x_i, y_i) , i = 1, ..., n, wykresu rozproszenia. $(b_1$ - współczynnik kierunkowy, b_0 - wyraz wolny).

Wówczas $\hat{y}_i = b_0 + b_1 x_i$ będzie przybliżeniem wartości y_i na podstawie zmiennej niezależnej x_i uzyskanym z zależności liniowej.

Błąd przybliżenia, czyli różnicę $y_i - \hat{y}_i$ nazywamy wartością resztową, lub rezyduum.

Miarą dopasowania prostej do próbki (punktów wykresu rozproszenia) jest suma kwadratów błędów (rezyduów):

$$S(b_0, b_1) = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Prostą dla której $S(b_0,b_1)$ osiąga wartość <u>minimalną</u> nazywamy **prostą regresji** lub też prostą wyznaczoną **metodą najmniejszych kwadratów.**

Współczynniki prostej regresji b_0 , b_1 wyznaczamy z warunku koniecznego minimum funkcji $S(b_0,b_1)$, tzn. przyrównując do zera obie pochodne cząstkowe.

Rozwiązując układ dwóch równań liniowych otrzymujemy:

$$b_{1} = \frac{\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})y_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$
(1)

$$b_0 = \frac{1}{n} \left(\sum_{i=1}^n y_i - b_1 \sum_{i=1}^n x_i \right) = \bar{y} - b_1 \bar{x}$$
 (2)

gdzie
$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i.$$

Wartość $|\hat{y} = b_0 + b_1 x|$ nazywamy wartością przewidywaną zmiennej objaśnianej (zależnej), przy pomocy prostej regresji, na podstawie zmiennej objaśniającej (niezależnej) x.

Wzory obliczeniowe

Współczynnik regresji liniowej b_1 :

$$b_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$

Wyraz wolny b_0 :

$$b_0 = \bar{y} - b_1 \bar{x}$$

Prosta regresji *y* względem *x*:

$$\hat{y} = b_0 + b_1 x$$

Błędy prognozy – rezydua

 $y_i = obserwowana wartość cechy y$

$$\hat{y}_j = b_0 + b_1 x_j = przewidywana wartość y na podstawie x_j

$$e_j = y_j - \hat{y}_j = b$$
łąd $prognozy = rezyduum$$$

Deviations of the observed y values from the predicted y values $\hat{y} = b_3 + b_3 x$.

Wyznaczenie liniowej funkcji regresji y względem x

$$\sum_{j=1}^{n} \widehat{y_j} = n(\overline{y} - b_1 \overline{x}) + \sum_{j=1}^{n} b_1 x_j = \sum_{j=1}^{n} y_j - b_1 \sum_{j=1}^{n} x_j + \sum_{j=1}^{n} b_1 x_j$$

$$\sum_{j=1}^{n} \widehat{y_j} = \sum_{j=1}^{n} y_j \text{ . Stąd } \overline{\widehat{y}} = \overline{y} \quad (*)$$

$$\sum_{j=1}^{n} \widehat{y_j} = \sum_{j=1}^{n} b_0 + b_1 x_j = nb_0 + b_1 \sum_{j=1}^{n} x_j$$

Stąd $\overline{\hat{y}} = b_0 + b_1 \overline{x}$. Ponadto z (*) $\overline{\hat{y}} = \overline{y}$. Zatem $\bar{y} = b_0 + b_1 \bar{x}$

Punkt (\bar{x}, \bar{y}) leży na wykresie liniowej funkcji regresji

Liniowa funkcja regresji x względem y

Prosta regresji x względem y:

$$\hat{x} = a_0 + a_1 y,$$

gdzie

$$a_1 = \frac{n \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}$$

$$a_0 = \bar{x} - a_1 \bar{y}$$

Liniowa funkcja regresji y względem x

Przykład. W tabeli podano wzrost i wagę grupy osób objętych badaniem. (a) Wyznaczyć liniową funkcję regresji wagi względem wzrostu. (b) Określić dobroć dopasowania modelu (c) Podać interpretację współczynnika regresji liniowej.

wzrost	175	168	173	185	180	188	180
waga	74	69	84	84	71	100	86

(a)

$$\sum_{i=1}^{7} x_i = 1249, \sum_{i=1}^{7} y_i = 568, \sum_{i=1}^{7} x_i^2 = 223147, \sum_{i=1}^{7} y_i^2 = 46786,$$

$$\sum_{i=1}^{7} x_i y_i = 101674$$

\fill Wyznaczenie liniowej funkcji regresji y względem x

$$b_1 = \frac{n\sum_{i=1}^n x_i y_i - \sum_{i=1}^n x_i \sum_{i=1}^n y_i}{n\sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} = \frac{7 \cdot 101674 - 1249 \cdot 568}{7 \cdot 223147 - 1249^2} = \frac{1,127}{1249}$$

$$b_0 = \bar{y} - b_1 \bar{x} = \frac{568}{7} - 1,127 \cdot \frac{1249}{7} = -119,9$$

$$\hat{y} = b_0 + b_1 x = -119,9 + 1,127x$$

x_j	175	168	173	185	180	188	180
y_j	74	69	84	84	71	100	86
$\widehat{\mathcal{Y}_j}$	77	69	75	88	83	92	83
e_{j}	-3	0	9	-4	-12	8	3

Współczynnik korelacji próbkowej

$$r = \frac{n\sum_{i=1}^{n} x_{i}y_{i} - \sum_{i=1}^{n} x_{i}\sum_{i=1}^{n} y_{i}}{\sqrt{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \sqrt{n\sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}}$$

$$r = \frac{7 \cdot 101674 - 1249 \cdot 568}{\sqrt{7 \cdot 223147 - 1249^{2}} \sqrt{7 \cdot 46786 - 568^{2}}} = 0,73$$

Próbkowy współczynnik korelacji r=0.73

Współczynnik determinacji = $R^2 = r^2 = 0.53$

Ocena "dobroci" dopasowania prostej regresji

Wprowadzamy oznaczenia:

$$SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

 $SST = \sum_{i=1}^{n} (y_i - \overline{y})^2$ - całkowita suma kwadratów (*Total Sum of Squares*) (miara zmienności samych $y_1,...,y_n$).

$$SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

 $SSE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$ - suma kwadratów błędów (Error Sum of Squares).

$$SSR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

 $SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$ - regresyjna (modelowa) suma kwadratów (Regression/Model Sum of Squares) (miara zmienności $\hat{y}_1,...,\hat{y}_n$).

Można pokazać, że zachodzi równość:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2.$$

$$SST = SSE + SSR$$

Współczynnik determinacji określony wzorem

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

jest miarą stopnia dopasowania prostej regresji do wykresu rozproszenia.

Określa stopień, w jakim zależność liniowa, między zmienną objaśnianą a objaśniającą, wyjaśnia zmienność wykresu rozproszenia.

Im mniejsze *SSE*, tym wykres rozproszenia jest bardziej skupiony wokół prostej regresji.

Wartość współczynnika determinacji jest ściśle związana z wartością współczynnika korelacji próbkowej.

Stwierdzenie.

Zachodzi równość

$$r^{2} = \frac{SSR}{SST} = R^{2} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \bar{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$

zmienność wyjaśniona przez model/ zmienność całkowita

Przykład. Zanotowano miesięczne wydatki na reklamę (w 10 000 PLN) pewnego artykułu oraz miesięczne dochody ze sprzedaży artykułu (w 100 000 PLN)

Miesiąc	i	1	2	3	4	5
Reklama	x_i	5	6	7	8	9
Dochód	y_i	4,5	6,5	8,4	7,6	8,4

Wyznaczyć liniową funkcję regresji oraz przewidywaną wartość dochodu przy wydatkach na reklamę 100 000 PLN (10 x 10 000).

Kolejno obliczamy:

$$\bar{x}$$
 = 7,0, \bar{y} = 7,08, s_X = 1,58, s_Y = 1,64

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{s_X} \right) \left(\frac{y_i - \overline{y}}{s_Y} \right) = 0,858$$

(współczynnik korelacji próbkowej)

Współczynniki prostej regresji

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = 0,89$$

$$b_0 = \bar{y} - b_1 \bar{x} = 7,08 - 0,89 \times \underline{7} = 0,85$$

Przewidywany dochód ze sprzedaży, przy wydatku na reklamę $x = 10 \ (x \ 10 \ 000 \ PLN)$ wynosi:

$$\hat{y} = b_0 + b_1 x = 0.85 + 0.89 \cdot 10 = 9.75 \times 100000 PLN$$

Wykres rozproszenia oraz empiryczna prosta regresji

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = 10,748$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = 2,827$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = 7,921$$

współczynnik determinacji

$$R^{2} = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$
$$R^{2} = 0.737$$

Zmienność dochodu jest w prawie 74% wyjaśniona przez zmienność wydatków ma reklamę (zmienność wydatków na reklamę w 74% określa zmienność dochodu).

Model zależności liniowej (model regresji liniowej)

Załóżmy, że próbka $(x_1, y_1),...,(x_n, y_n)$ jest realizacją próby losowej $(x_1, Y_1),...,(x_n, Y_n)$, gdzie

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n,$$

oraz $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ są <u>niezależnymi</u> zmiennymi losowymi o wartości oczekiwanej 0 i wariancji σ^2 , a znane liczby $x_1, ..., x_n$ nie wszystkie są jednakowe.

Prostą $y = \beta_0 + \beta_1 x$ nazywamy **prostą regresji.**

Współczynnik β_0 - wyraz wolny prostej regresji.

Współczynnik β_1 - współczynnik kierunkowy prostej regresji. Zmienne losowe $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ - losowe błędy w modelu

$$\operatorname{Var}(\varepsilon_i) = \sigma^2$$

Własności zmiennej losowej Y_i , i = 1,...,n,

$$E(Y_i) = E(\beta_0 + \beta_1 x_i) + E(\varepsilon_i) = \beta_0 + \beta_1 x_i$$

$$Var(Y_i) = Var(\beta_0 + \beta_1 x_i + \varepsilon_i) = Var(\varepsilon_i) = \sigma^2$$

Założenia:

- $x_1,...,x_n$ są znane.
- Obserwujemy wartości zmiennych $Y_1,...,Y_n$.
- $\beta_0, \beta_1, \sigma^2$ są nieznanymi parametrami modelu.

Cel eksperymentu – wnioskowanie na temat parametrów modelu

Naturalne **estymatory** parametrów β_0 , β_1 otrzymujemy metodą najmniejszych kwadratów, wstawiając we wzorach (1), (2) zmienne losowe Y_i zamiast ich wartości y_i , i = 1,...,n,

$$\widehat{b}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(Y_{i} - \overline{Y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})Y_{i}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}.$$

$$\left| \widehat{b}_0 = \overline{Y} - \widehat{b}_1 \overline{x} \right|$$

Własności estymatorów \widehat{b}_0 , \widehat{b}_1 podane są w następującym twierdzeniu.

Twierdzenie

(i)
$$E(\hat{b_0}) = \beta_0$$
, $E(\hat{b_1}) = \beta_1$

(ii)
$$\operatorname{Var}(\hat{b_0}) = \sigma^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right)$$

(iii)
$$\operatorname{Var}(\widehat{b}_{1}) = \frac{\sigma^{2}}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}$$

(iv) Jeśli $\mathcal{E}_i \sim N(0,\sigma)$, i=1,...,n, to $\hat{b_0}$, $\hat{b_1}$ mają rozkłady normalne o wartościach średnich i wariancjach określonych w (i) - (iii).

Estymator σ^2

Definicja

Błędem średniokwadratowym S^2 nazywamy estymator wariancji σ^2 określony następująco

$$S^{2} = \frac{\sum_{i=1}^{n} (Y_{i} - \widehat{Y}_{i})^{2}}{n-2} = \frac{SSE}{n-2}$$

Liczbę n-2 nazywamy liczbą stopni swobody rezyduów.

Stwierdzenie

 S^2 jest nieobciążonym estymatorem σ^2 , tzn.

$$E(S^2) = \sigma^2.$$

$$S = \sqrt{S^2}$$
 = estymator σ .

Wniosek (i) Nieobciążonym estymatorem wariancji ${
m Var}(b_0)$ jest

$$[SE(\hat{b}_0)]^2 = S^2 \left(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right),$$

Stąd naturalnyym estymatorem odchylenia standardowego $\sigma_{\widehat{b_0}}$ jest

$$SE(\hat{b}_0) = S \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

nazywany **błędem standardowym estymatora** \widehat{b}_0 , gdyż na mocy (3)

$$SE(\hat{b}_0)$$
 = estymator $\sigma_{\hat{b}_0}$ = ($\sqrt{Var(\hat{b}_0)}$)

(ii) Nieobciążonym estymatorem $\mathrm{Var}(\widehat{b_{\mathrm{l}}})$ jest

$$[SE(\widehat{b}_1)]^2 = \frac{S^2}{\sum_{i=1}^n (x_i - \bar{x})^2},$$

Stąd naturalnym estymatorem odchylenia standardowego $\sigma_{\widehat{b_{\mathsf{l}}}}$ jest

$$SE(\widehat{b}_1) = \frac{S}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

nazywamy **błędem standardowym** estymatora $\widehat{b}_{\mathbf{l}}$, gdyż na mocy (4)

$$SE(\hat{b}_1) = \text{estymator } \sigma_{\hat{b}_1} = \sqrt{Var(\hat{b}_1)}.$$

Twierdzenie Jeśli $\varepsilon_i \sim N(0, \sigma)$, i = 1,...,n, to:

(i)
$$\widehat{b_1} \sim N(\beta_1, \frac{\sigma}{\sqrt{\sum\limits_{i=1}^n (x_i - \overline{x})^2}}),$$

(tzn. ma rozkład normalny ze wskazanymi parametrami),

$$\frac{\widehat{b}_1 - \beta_1}{SE(\widehat{b}_1)} \sim t_{n-2}$$

gdzie

$$SE(\widehat{b}_1) = \frac{S}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2}}$$

(tzn. ma rozkład Studenta o n-2 stopniach swobody).

(ii)
$$\widehat{b}_0 \sim N(\beta_0, \sigma \sqrt{\frac{1}{n} + \frac{\overline{x}^2}{\sum\limits_{i=1}^n (x_i - \overline{x})^2}}),$$

(tzn. ma rozkład normalny ze wskazanymi parametrami),

$$\frac{\widehat{b_0} - \beta_0}{SE(\widehat{b_0})} \sim t_{n-2}$$

$$SE(\hat{b}_0) = S \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

(tzn. ma rozkład Studenta o *n*-2 stopniach swobody).

Do końca wykładu zakładamy, że szumy w modelu regresji liniowej mają rozkład normalny (założenie ostatniego twierdzenia).

Przedział ufności na poziomie ufności $1-\alpha$ dla współczynnika β_1 :

$$[\hat{b}_1 - t_{1-\alpha/2,n-2} \times SE(\hat{b}_1), \quad \hat{b}_1 + t_{1-\alpha/2,n-2} \times SE(\hat{b}_1)]$$

Przedział ufności na poziomie ufności $1-\alpha$ dla współczynnika β_0 :

$$\widehat{[\hat{b}_0 - t_{1-\alpha/2,n-2} \times SE(\hat{b}_0), \quad \hat{b}_0 + t_{1-\alpha/2,n-2} \times SE(\hat{b}_0)]}$$

Testowanie hipotezy o wartości współczynnika eta_0

(A)
$$H_0: \beta_0 = \beta_{0,0}$$
,

gdzie $\beta_{0,0}$ jest ustaloną liczbą.

Statystyka testowa

$$T = \frac{\hat{b}_0 - \beta_{0,0}}{SE(\hat{b}_0)} = (\hat{b}_0 - \beta_{0,0}) / (S \sqrt{\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}})$$

Jeśli H_0 **prawdziwa**, to $T \sim t_{n-2}$. (ma rozkład Studenta o n-2 stopniach swobody).

Zbiory krytyczne dla różnych postaci hipotez alternatywnych

(a)
$$H_1: \beta_0 \neq \beta_{0,0}$$
.

Zbiór krytyczny

$$C = \{t : |t| \ge t_{1-\alpha/2, n-2} \}$$

(b)
$$H_1: \beta_0 > \beta_{0,0}$$
.

Zbiór krytyczny

$$C = \{t : t \ge t_{1-\alpha, n-2}\}$$

(c)
$$H_1: \beta_0 < \beta_{0,0}$$

Zbiór krytyczny

$$C = \{t : t \le -t_{1-\alpha, n-2}\}$$

Testowanie hipotezy o wartości współczynnika β_1

(B)
$$H_0: \beta_1 = \beta_{1,0}$$
,

gdzie $\beta_{1,0}$ jest ustaloną liczbą.

Statystyka testowa

$$T = \frac{\hat{b}_1 - \beta_{1,0}}{SE(\hat{b}_1)} = \frac{(\hat{b}_1 - \beta_{1,0})\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}{S}$$

Jeśli H_0 prawdziwa, to

$$T \sim t_{n-2}$$

(ma rozkład Studenta o n-2 stopniach swobody).

Zbiory krytyczne dla różnych postaci hipotez alternatywnych

(a)
$$H_1: \beta_1 \neq \beta_{1,0}$$

Zbiór krytyczny $C = \{t : |t| \ge t_{1-\alpha/2, n-2}\}$.

(b)
$$H_1: \beta_1 > \beta_{1,0}$$

Zbiór krytyczny $C = \{t : t \ge t_{1-\alpha, n-2}\}$.

(c)
$$H_1: \beta_1 < \beta_{1,0}$$
.

Zbiór krytyczny C =

$$\{t: t \le -t_{1-\alpha, n-2}\}$$

Test istotności regresji liniowej

C)
$$H_0: \beta_1 = 0, H_1: \beta_1 \neq 0$$

Statystyka testowa

$$F = \frac{SSR/1}{SSE/(n-2)}$$

Jeśli H_0 prawdziwa, to F ma **rozkład** F **Snedecora** o (1,n-2) stopniach swobody.

$$\sum_{i=1}^{n} (Y_i - \overline{Y})^2 = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 + \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2.$$

$$SST = SSE + SSR$$

$$n-1 = n-2 + 1$$

(Liczby stopni swobody SSx = liczba niezależnych zmiennych zmniejszona o liczbę ograniczeń występujących w określeniu SSx).

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, $i = 1,...,n$

Zbiór krytyczny testu

$$C = \{F_{obl} : F_{obl} \ge f_{1-\alpha,1,n-2}\}.$$

Zauważmy, że

$$F = T^2$$

stąd test jest szczególnym przypadkiem testu z **(B)** gdy $\beta_{1,0}=0$.