QinetiQ Young Engineers' Scheme 2017-18

Lucas Fowler- Dewe, Tom Vernon, Jasmine Jain and Khoa Bang Tran

Introduction

- We were given a problem and had to create a logical solution
- Electronic device had to:
 - deploy rapidly
 - autonomously report the target position
 - be relatively inexpensive

Project Aims

- Portable device that uses radio signals to report the target device's position
- Design a fully functional end product
- Planning, user requirements, research, and creating a solution
- Functional prototype created

Requirements

- Deploy rapidly
- Shows position of the target
- Cheap as possible
- Lightweight and portable
- Locates target as quickly as possible
- Sturdy and Robust

Job allocation

Jasmine - Research and Planning.

Khoa Bang - Programming.

Tom - Hardware and Prototyping.

Lucas - Design, Prototyping and Planning.

Research

- Trilateration
 - Time of arrival
- Triangulation
 - Angle of arrival
- Doppler
 - Time of transmission and arrival
- Distance Signal strength
 - To inaccurate
- Examples on the internet

Trilateration

- Used to calculate location of an object on a map or grid
- Works using time of arrival of a signal across three known points
- GPS and Earthquake location use this method

Triangulation

- Used to calculate the distance of an object from two known points.
- Cannot calculate direction by itself, requires rotation
- Uses simple trigonometry
- Fox hunting

Doppler

- Uses time between emission of a signal, and receival of the reflected signal to calculate distance.
- Direction is calculated typically by the antenna constantly rotating
- Used typically in nautical and aeronautical navigation

Examples on the Internet

- Very similar device to our own project
- Very Compact
- Triangulation
- No instructions/links/help in video for us to carry forward our research

Hardware

Electronics

- Raspberry Pi
 - Cheap £30
 - Compact size of a thick wallet
 - Popular <u>should</u> have lots of online support and good compatibility
 - Easy to use works like a normal desktop computer
 - Tom had one

- Display

- Running directly off GPIO pins to make power management easier
- Removes need for 2 power supplies
- Touch screen to remove need for external mouse
- Initially a generic 7" TFT display with a DPI display kippah (stopped working)
- Hyperpixel 5" TFT display hat

- Power

- 4400mAh Battery plenty of battery life
- Powerboost 1000 battery charger (stopped working)

Directional Antennas

- 3 main viable types of directional antennas:
- The Uda Yagi antenna
- The "Cantenna"
- The Parabolic antenna

- Looked into Yagi Antenna first
- Fox Hunting!
- Only uses detection and direction.
- Null finding

How does a Yagi antenna work?

- It's directional
- Spacings between "elements" are specific to the frequency
- "Director" elements focus signal towards "driven" element
- "Reflector" element reflects back signal that missed driven element

The Yagi antenna prototype (of the prototype?)

What went wrong? (and what did we learn?)

- Yagi antennas aren't fully directional.
- At close proximity, difficult to tell apart side lobes to the main lobe.
- Measurements may not have been accurate enough to be effective

So... What Next?

- We decided to look into other antennas
- Cantenna
 - works by lining up phase of signal coming into antenna with the same signal reflected off the back
 - Creates constructive interference -> increases amplitude, therefore gain
 - Used for short range directional internet access eg: to a garden shed, linking 2 buildings.

Parabolic Antenna

- Decided to go for this antenna
- Highest gain of all types
- Works by reflecting signal off a parabolically shaped dish to a receiver/transmitter
- Extremely long range
- Much smaller lobes than other designs, better direction distinction
- Used for:
 - Satellite communication (GPS, TV, etc)
 - long range WIFI WAPs
- TP-LINK TL-ANT2424B 2.4 GHz Grid Parabolic Antenna

Hardware

Design

Initial design

- Three antennae.
- Screen.
- Handle for support

Design

- Foldable for better transportation.
- Use more lightweight materials.
- Gun type features.
- Mounts.

Military-Today.com

Final Design

Pricing

Item	Price
Raspberry Pi 3	£32
4400mAh Lithium Ion Battery	£15
Battery Charger	£8
Parabolic Antenna	£60
Wifi NIC	£13
Touch Screen	£40

Total - £168

- Price is higher than we wanted
- Could maybe reduce costs on cheaper touch screen and smaller battery

Software

Linux

- Raspberry pi
- Ubuntu Mate
- Functionality
 - Detection
 - Strength
- Linux app:
 - Python 3
 - Modules
- Compatibility
 - WiFi NIC
 - Ubuntu

Windows

- Windows IoT Core
- Documentation
- Built in modules
- GUI support
- C#
- C#

Meanwhile - User interface

- Mockups
- Easy to understand and use
- Simplicity

Windows stopped working

Back to Linux

- Too long to troubleshoot
- Windows for next revision
- Easily transferable
 - Math
 - Logic
- GUI PyQt
- Minimalism

Final program

- Refresh rate limitation
- Current, max added
- Max reset button
- Chose adapter, mac address

- Using a standard phone charger as power
- Tom defined a boundary
- KB had to find the transmitter within the boundary
- A mouse and keyboard is still needed to run the script no right click or enter on touch screen

Demonstration

Did we meet the requirements?

- Deploy rapidly Relatively, yes
- Shows position of the target No, aids the user in finding the "target"
- Cheap as possible Cheap components were used, but they could have been cheaper
- Lightweight and portable to a certain extent
- Locates target as quickly as possible As long as the user is using it correctly, yes
- Sturdy and Robust The prototype, could easily be constructed from more robust materials

Questions?