Fundamental Groups of Small Covers

1 Introduction

1.1 Small Cover

凸多面体 P 是指 \mathbb{R}^n 中非空有限多个点集的凸包,或者等价的是 \mathbb{R}^n 中有限个半空间的有界交,即

$$P = conv\{p_1, p_2, \cdots, p_\ell\} = \{x \in \mathbb{R}^n : \langle l_i, x \rangle \ge -a_i, i = 1, 2, \cdots, m\}$$

其中 l_i 为 $(\mathbb{R}^n)^*$ 中的线性函数, $a_i \in \mathbb{R}$.

凸多面体的维数就是指凸包或者有界交的维数。若无特殊说明,本文中的所考虑的多面体均指 \mathbb{R}^n 中的 n 维凸多面体,记为 P. 我们把 P 的边界记为 K. 把 P 的内部记为 P° . 凸子集 $F \subset P$ 称为 P 的面,若 F 是多面体 P 与某一个半空间 $V = \{x \in \mathbb{R}^n : \langle l, x \rangle \geq -a \}$ 的交,且 $P^\circ \cap \partial V = \emptyset$. 子集 \emptyset 和 P 本身都为 P 的面,称为平凡面;其他的面称为真面. P 的 0 维面称为 P 的项点,P 的 1 维面称为 P 的边,P 的 n-1 维面称为 P 的 f acet. 记 f_i 为 P 的 i 维面的个数,称 $\mathbf{f}(P) = (f_0, f_1, \cdots, f_{n-1})$ 为 P 的 f-vector. 取 $f_{-1} = 1$,则 P 的 h-vector $\mathbf{h}(P) = (h_0, h_1, \cdots, h_n)$ 由下面等式定义

$$h_0t^n + \dots + h_{n-1}t + h_n = (t-1)^n + f_0(t-1)^{n-1} + \dots + f_{n-1}$$

由 Dehn-Sommerville 关系知 $h_i = h_{n-i}, i = 0, 1, \dots, n$,为方便我们在本文中将 P 的 facets 的个数记为 $f_{n-1} = m$,即 P 的 facets 集为 $\mathcal{F}(P) = \{F_1, F_2, \dots, F_m\}$.

我们称多面体 P 是单 (simple) 的,若 P 的每个顶点恰好是 P 中 n 个 facets 的交,等价地,每个顶点处恰好有 n 条边. 单多面体中任意余维数为 k 的面 f 总可以 (唯一) 表示为 $f = F_1 \cap F_2 \cap \cdots \cap F_k$,其中 F_1, F_2, \cdots, F_k 为包含 f 的 facets.

取 $\mathbb{Z}_2 = \{1, -1\}$ 为二元乘法群或者模空间, \mathbb{Z}_2^n 表示它们的乘积, e_i 表示 \mathbb{Z}_2^n 第 i 个标准向量. 设 P 为 n 维单凸多面体, $\mathcal{F}(P)$ 为 P 的 facets 集,对每一个 facet $F_i \in \mathcal{F}(P)$,我们定义一个染色 $\lambda(F_i) \in \mathbb{Z}_2^n$,使得对 P 的每一个顶点 $p = F_1 \cap F_2 \cap \cdots \cap F_n$,满足 $span\{\lambda(F_1), \lambda(F_2), \cdots, \lambda(F_n)\} \cong \mathbb{Z}_2^n$. 进一步我们称 $\lambda : \mathcal{F}(P) \longrightarrow \mathbb{Z}_2^n$ 为下面将要构造的 small cover M 的示性函数. 需要注意的是,下文出现的多面体指数之间的乘法,均默认为群 \mathbb{Z}_2^n 中的乘法运算.

注 对于任意单凸多面体,满足上面条件的染色不一定存在,参考 Davis-Januszkiewicz [5]. Nonexample 1.22 (Duals of cyclic ploytope)

现在我们定义单凸多面体 P 上的 small cover. 对任意点 $x \in P$,记 f(x) 为 P 中包含 x 为相对内点的唯一的面,例如 x 为 P 内部的点时,则 f(x) = P; x 为 P 的顶点时,则 $f(x) = F_1 \cap F_2 \cap \cdots \cap F_n$,其中 $\{F_1, F_2, \cdots, F_n\}$ 为包含点 x 的 n 个 facets. 不妨设 $f(x) = F_1 \cap F_2 \cap \cdots \cap F_k$ 为 P 的任意一个固定的余 k 维面,记 $G_{f(x)} = \langle \lambda(F_1), \lambda(F_2), \cdots, \lambda(F_k) \rangle = \langle \lambda(F_i) : x \in F_i \rangle$. 则定义 small cover 为

$$M = (P \times \mathbb{Z}_2^n) / \sim \tag{1}$$

 $(x,g) \sim (y,h)$ 当且仅当 $x=y,g^{-1}h \in G_{f(x)}$. 这里 $G_{f(x)} < \mathbb{Z}_2^n$ 实际上是点 x 处的 $isotopy\ subgroup$, i.e. $\{g \in \mathbb{Z}_2^n : gx = x\}$. 进一步,设 $\pi: M \longrightarrow P$ 为一个自然的投射.

另外,我们也可以比较直观的构造一个 small cover. 任取 P 的一个顶点 p_0 ,不妨记 p_0 附近的 facets 为 F_1, F_2, \cdots, F_n ,且对应 facet 上的染色为 $\lambda(F_i)=e_i, i=1,2,\cdots,n$. 首先我们把 P 放到 \mathbb{R}^n 的第一卦限中,使得 p_0 与原点重合,第 i 个 facet F_i 落在 $x_i=0$ 的坐标面上. 然后我们将 P 沿着坐标面反射,得到原点附近的 P 的 2^n 个 copy,我们把这 2^n 个 P 的 copy 组成的多面体记为 Q, p_0 自然的落在 Q 的内部. 我们给第 g 个坐标卦限的 copy 一个自然的标号 $g\in\mathbb{Z}_2^n$. 最后我们再将 Q 剩余的 facets 按照染色信息成对粘合起来,具体第 g_1 个 P 的 copy 的 facet F_i 与第 g_2 个 P 的 facet F_j 粘,当且仅当 i=j, $g_1^{-1}g_2=\lambda(F_i)$. 这样就得到 P 上的 small cover M.

命题 1.1 small cover 为连通闭流形.

证明:参考 Davis-Januszkiewicz [5]. 性质 1.7

1.2 Examples of Small Covers

例 1 当 $P = \triangle^n$ 时, $\mathcal{F}(P)$ 上本质上只有一种染色,如 n = 2 时,

例 2 当 P^2 为四边形时, $\mathcal{F}(P)$ 上有下面两种不同的染色,

同样的操作,我们可以分别得到 T^2 和 Klein bottle.

例 3 $(P^2$ 是一个 m 边形时)

M 是由 4 个 m-gon 沿边粘成的曲面,所以 M 的欧拉数为 $\chi(M)=4-m$. 当 m 为奇数时,M 为 m-2 个 $\mathbb{R}P^2$ 的连通和;当 m 为偶数时,M 为 m-2 个 $\mathbb{R}P^2$ 的连通和或着为 $\frac{m-2}{2}$ 个 T^2 的连通和. 所以 small cover 决定了除 S^2 外的所有二维闭曲面.

在本文中,我们主要通过构造 small cover 的一种自然的胞腔分解来计算基本群的群表示. 我们由 Hurewicz 定理知道,胞腔复形的基本群可以由它们的二维骨架确定,所以在本文中,我们将构造 small cover 的胞腔结构,计算基本群时,仅考虑它们的二维骨架. 另外我们将 small cover M 的 k 维骨架记为 M[k],将多面体 P 的 k 维骨架记为 P[k].

2 Cell Structure

由于单凸多面体具有很好的组合性质,所以我们可以通过不同的方式来构造 Small cover 的胞腔结构. 比如由单多面体面结构诱导的胞腔结构; small cover 的 perfect 胞腔结构,见 Davis-Januszkiewicz [5].; 由单多面体的 cubical subdivision 所诱导的胞腔结构,见 Buchstaber [2]. 在下面一节我们在 Q 上作类似的 cubical subdivision,来构造 small cover 一种更自然的胞腔分解,在这种胞腔结构,可以方便的得到 small cover 基本

群的一个简洁的表示. 对于一般的单凸多面体 P,总存在它的一个 cubical subdivision,我们将这种分解拉到 small cover,我们自然地可以得到 small cover 一种胞腔分解. 而 Q 一般来说未必是单的,所以我们下面构造的这种分解不是严格意义的 cubical. 进一步,这多面体 Q 的面结构诱导的 M 的一个胞腔分解,我们下面构造的胞腔分解实际上是这种胞腔结构 Poincare 意义上的对偶.

2.1 Definitions and Constructions

同上面,我们首先将 $|\mathbb{Z}_2^n| = 2^n$ 个多面体 P 的 copy 在 P 的任一顶点 p_0 处粘合,得到一个大的 n 维多面体 Q,这里 Q 也可以看作将多面体 P 沿着它的一点 p_0 附近的 facets 作反射得到.

由 Q 的构造知,Q 中的每一个 P 自然地拥有一个标号 $g \in \mathbb{Z}_2^n$,我们将第 g 个多面体 P 记为 P_g ,将 Q 中 P_g 的第 i 个 facet F_i 记为 $F_{i,g}$. 若 P_g 的 k 维面 $f_i^k \subset \partial Q$,此时 f_i^k 称为 Q 的外 face,否则称为 Q 的内 face,将 Q 的内、外面集分别记为 in(Q),out(Q). 接下来把 Q 的外 facets 按照染色信息配对粘合就可以得到商空间—small cover M. 我们注意到 M 的所有的 facets 上存在一种自然的配对结构。配对的规则由 P 上的染色 λ 决定。这种配对结构有助于我们描述 M 的基本群。下面,我们引入 M 的面配对结构的定义。

定义 1 facets-pair structure of X.

设 X 为一个 n 维连通拓扑空间,X 可以由若干个单凸多面体 $\{P_g^n:g=1,2,\cdots,N\}$ 粘合而成,我们记 P_g 的第 i 个 facet F_i 为 $F_{i,g}$,并且满

足下面两个条件:

1、任意 facet F_{i,g_1} 唯一配对 F_{j,g_2} . 即存在一个同胚 $\tau_{i,g_1}: F_{i,g_1} \longrightarrow F_{j,g_2}$ 与 $\tau_{j,g_1}: F_{j,g_2} \longrightarrow F_{i,g_1}$ 使得 $\tau_{i,g_1} = \tau_{j,g_2}^{-1}$. 我们称 $\hat{F} = \{F_{i,g_1}, F_{j,g_2}\}$ 为一个 facet 对,称 F_{j,g_2} 为 F_{i,g_1} 的配对 facet.

2、对任意余二维面 $f = F_{i_1,g_1} \cap F_{i_2,g_1}$,如果 $\tau_{i_1,g_1}(f) = F_{j_1,g_2} \cap F_{j_3,g_2}$, $\tau_{i_2,g_1}(f) = F_{j_2,g_4} \cap F_{j_4,g_4}$,则 $\tau_{j_3,g_2}\tau_{i_1,g_1}(f) = \tau_{j_4,g_4}\tau_{i_2,g_1}(f) = F_{i_3,g_3} \cap F_{i_4,g_3}$ 。这里不排除 $F_{j_2,g_4} = F_{j_3,g_2}$ 或者 $F_{i_2,g_1} = F_{i_3,g_3}$.

则我们称 $S = \{\hat{F}_{i,g}, \tau_{i,g}\}$ 为 $\{P_l^n\}$ 上的一个 facets-pairing structure, $\tau_{i,g}: F_{i,g_1} \longrightarrow F_{j,g_2}$ 为 S 的 structure map. 记一步,若 X 为闭的,我们称 S 是 M 的一个完全的 facets-pairing structure

事实上, $\mathcal{F}(P)$ 上的示性函数 $\lambda:\mathcal{F}(P)\longrightarrow\mathbb{Z}_2^n$ 决定了 M 上的一个配对结构. $F_{i,g_1}\sim F_{j,g_2}$ 当且仅当 $F_i=F_j$, $\lambda(F_i)=(g_1)^{-1}g_2$. 反之,若知道 $\{P_g^n:g=1,2,\cdots,N\}$ 上的一个完全配对结构,我们也可以构造出一个闭流形 M. 进一步由 $\lambda(F_i)=(g_1)^{-1}g_2$ 得 $g_2=g_1\cdot\lambda(F_i)$,即对 Q 的任意一个facet $F_{i,g}$,他的配对 facet 为 $F_{i,\phi_i(g)}$,其中 $\phi_i(g)=g\cdot\lambda(F_i):\mathbb{Z}_2^n\longrightarrow\mathbb{Z}_2^n$. 下面,我们把 M 的 facets pair 记为 $\{F_{i,g},F_{i,\phi_i(g)}\},\forall g\in\mathbb{Z}_2^n$. Q 到 P 有一个自然地投射,我们记为

$$\bar{\pi}: Q \longrightarrow P$$
 (2)

下面构造 M 的 cell structure. 首先我们将 M[0] 取为点 p_0 ,并且设为 M 的基点. 我们在 Q 的每一对余 1 维面处构造 1-cells. 对 Q 的每对 facets pair $\{F_{i,g},F_{i,\phi_i(g)}\}$ (包括所有的内 facets、外 facets),任取 $F_{i,g}$, $F_{i,\phi_i(g)}$ 内部的点 $a_{i,g},a_{i,\phi_i(g)}$ (不妨取为 $F_{i,g}$, $F_{i,\phi_i(g)}$ 的重心),使得 $\pi(a_{i,g})=\pi(a_{i,\phi_i(g)})=a_i\in P$,在 Q 的内部取连接 p_0 到 $a_{i,g},a_{i,\phi_i(g)}$ 的两条简单有向道路 (不妨取为直线段),记为 $\overrightarrow{a_{i,g}},\overrightarrow{a_{i,\phi_i(g)}}$ 则 $\overrightarrow{a_{i,g}}(\overrightarrow{a_{i,\phi_i(g)}})^{-1}$ 为 M 中以 p_0 为起点的一条有向闭路,记为 $x_{i,g}$,另外记 $x_{i,\phi_i(g)}=x_{i,g}^{-1}$,它表示 M 中以 p_0 为起点的有向闭路 $\overrightarrow{a_{i,\phi_i(g)}}(\overrightarrow{a_{i,g}})^{-1}$. 若我们不考虑 $x_{i,g}$ (或 $x_{i,\phi_i(g)}$)的方向,则 $x_{i,g}-\{p_0\}\cong e^1$ (或 $x_{i,\phi_i(g)}-\{p_0\}\cong e^1$),这里 e^k 表示 M 一个 k 维 cell. M 中的每一对 facets pair 都决定了一个 1-cell. 在上述构造中,所有的 $\{x_{i,g}\}$ 都仅交于 0-skelton p_0 处. 这样我们就获得 M 的 1-skelton $M[1]=\bigvee x_{i,g}$.

我们在余 2 维面处构造 2-cells. 设 $f_1 = F_{i,g} \cap F_{j,g}$ 为 Q 的任意一个 余 2 维面,则令 $f_2 = F_{i,\phi_i(g)} \cap F_{j,\phi_i(g)}$, $f_3 = F_{i,\phi_i\phi_j(g)} \cap F_{j,\phi_i\phi_j(g)}$, $f_4 = F_{i,\phi_j(g)} \cap F_{j,\phi_j(g)}$,使得 $\{\bar{\pi}(f_k), k = 1, 2, 3, 4\}$ 在 P 中的像相同,记为 f,这里 $\phi_i\phi_j(g) = \phi_i(g \cdot \lambda(f_j)) = g \cdot \lambda(f_j) \cdot \lambda(f_i)$. 取 f 内部的一个点 b,对应 f_k 上的点设为 b_k , k = 1, 2, 3, 4. 取 V_1 为经过点 b_k , $p_0, a_{i,g}, a_{j,g}$ 的二维简单区域,如取 b 为 $span\{\vec{a_i}, \vec{a_j}\}$ 与 f 的交点,其中 $\vec{a_i} = \bar{\pi}(\vec{a_{i,g}}), \vec{a_j} = \bar{\pi}(\vec{a_{j,g}})$,这里的 $span\{\vec{a_i}, \vec{a_j}\} \triangleq \{\vec{x} = k_1\vec{a_i} + k_2\vec{a_j}, k_1, k_2 \geq 0\}$. 则 $V_1 = span\{\vec{a_{i,g}}, \vec{a_{j,g}}\} \cap P_g \cong D_+^2$. 类似确定 $V_2 = span\{\vec{a_{i,\phi_i(g)}}, \vec{a_{j,\phi_i(g)}}\} \cap P_{\phi_i(g)}, V_3 = span\{\vec{a_{i,\phi_i(g)}}, \vec{a_{j,\phi_i(g)}}\} \cap P_{\phi_j(g)}, V_4 = span\{\vec{a_{i,\phi_i(g)}}, \vec{a_{j,\phi_i(g)}}\} \cap P_{\phi_j(g)}$,则 $\{V_k : k = 1, 2, 3, 4\}$ 在 M 中实际上粘合成一个闭的 D^2 ,记为 D_f^2 ,且 D_f^2 的边界落在 M 的 1-skelton 中,对应的二维 cell $e_f^2 = (D_f^2)$ °. 这样就得到 2-skelton $M[2] = M[1] \cup \{e_f^2\}$.

依次进行下去,我们可以在 Q 的余 k 维面 $f_l^k = F_{i_1,g} \cap F_{i_2,g} \cap \cdots \cap F_{i_k,g}$ 处可构造 M 的 k-cells. 我们可以类似取 $V_l = span\{a_{i_1,g}, a_{i_2,g}, \cdots, a_{i_k,g}\} \cap P_g, l = 1, 2, \cdots, 2^k$,它们在 M 中粘成一个 k 维闭圆盘,记为 D^k ,则 ∂D^k 落在 M[k-1] 中,且 D^k 对应 M 的 k-cell 可以为

$$e^k \cong (D^k)^\circ = \left(\bigcup_{\{l=1,2,\cdots,2^k\}} V_l\right)^\circ.$$

最终我们可以在 Q 的顶点处构造 M 的 h_0 个 n-cells.

注 在上述构造中,若点 $p_0 \in F_{i,g}$,则 $a_{i,g}$ 可能包含在 $F_{i,g}$ 中,此时我们的构造方法依然适应,且 facet $F_{i,g}$ 对应的 $x_{i,g}$ 在 Q 中与点道路同伦.

事实上,对于具有 facets pair 结构的任意拓扑流形都可类似构造其胞腔结构. 如我们考虑

\mathbf{M} 4 我们将三角形沿着他们对应的边粘和得到一个 S^2

按照上面步骤, 我们可以得到 S^2 的一个胞腔分解 $S^2 = e_0 \cup e^1 \cup e_1^2 \cup e_2^2$

2.2 Calculation and Example

在这种胞腔结构下,我们可以得到 $\pi_1(M)$ 的一个比较简洁的群表示. 下面我们分析 M 的基本群. small cover 的基本群 $\pi_1(M)$ 的生成元可取为 facets 对应的有向闭路 $\{x_{i,g}\}$. $\pi_1(M)$ 的关系由二维胞腔及配对关系决定. 对任意 facet pair $\{F_{i,g}, F_{i,\phi_i(g)}\}$ 对应一对互逆的生成元 $x_{i,g}, x_{i,\phi_i(g)},$ 即配对关系为 $x_{i,g}x_{i,\phi_i(g)}=1$. 对于任意余二维面 $f=F_{i,g}\cap F_{j,g}(\neq\varnothing)\subset Q$,由 f 确定的二维胞腔 e_f 决定一个关系 $r_f=\partial D_f^2=x_{i,g}x_{j,\phi_i(g)}x_{i,\phi_i\phi_j(g)}x_{j,\phi_j(g)}=1$, 即 $x_{i,g}x_{j,\phi_i(g)}=(x_{i,\phi_i\phi_j(g)}x_{j,\phi_j(g)})^{-1}=(x_{j,\phi_j(g)})^{-1}(x_{i,\phi_i\phi_j(g)})^{-1}=x_{j,g}x_{i,\phi_j(g)}$. 从而我们得到 $\pi_1(M)$ 的一个群表示.

$$\pi_1(M) = \langle x_{i,g}, i = 1, 2, \cdots, m, g \in \mathbb{Z}_2^n : x_{i,g} x_{i,\phi_i(g)} = 1, \forall i, g; x_{i,g} x_{j,\phi_i(g)} = x_{j,g} x_{i,\phi_j(g)}, \forall f = F_{i,g} \cap F_{j,g} \neq \emptyset \rangle$$
 (3)

其中 $\phi_i(g) = g \cdot \lambda(F_i)$

我们记 $\mathcal{F}_1(Q)$ 为 Q 的内 facets 集; 记 $\mathcal{F}_2(Q)$ 为 Q 的内 facets 集附近 的 facets 集, 即 $\mathcal{F}_2(Q) = \{F \in \mathcal{F}(Q) \cap \partial Q : \exists G \in \mathcal{F}_1(Q), st. \ F \cap G \neq \emptyset\};$ 记 $\mathcal{F}_3(Q)$ 为 Q 外 facets 集剩余的 facets 集. 则我们有下面结论.

引理 **2.1** $\forall F_i \in \mathcal{F}(P)$ 固定,则 $\pi^{-1}(F_i) = \{F_{i,g} : g \in \mathbb{Z}_2^n\}$ 对应的生成元 $\{x_{i,g} : g \in \mathbb{Z}_2^n\}$ 是彼此相关的. 特别地, 当 $F_{i,g} \in \mathcal{F}_1(Q)$ 时, $x_{i,g} = 1$;

当 $F_{i,g_1}, F_{i,g_2} \in \mathcal{F}_2(Q)$ 时,若 $F_{i,g_1} \cap F_{i,g_2} \neq \emptyset$,则 $x_{i,g_1} = x_{i,g_2}$,否则 $x_{i,g_1} = (x_{i,g_2})^{-1}$.

进一步,设 $f = F_{i,g} \cap F_{j,g}$ 为 Q 中任意一个固定的余二维面. 当 $F_{i,g}$ 和 $F_{j,g}$ 都属于 $F_1(Q)$,即 f 为内面时,f 对应的关系为 1; 当 $F_{i,g}$ 和 $F_{j,g}$ 分别属于 $F_2(Q)$ 和 $F_1(Q)$ 时,f 对应的关系为 $x_{i,g} = x_{i,\phi_i(g)}$.

证明: 若 $F_{i,g}$ 为内 facets,则 $\overrightarrow{x_{i,g}}$ 包含在 Q 的内部,可缩为点道路,故 $x_{i,g}=1$. 对于内余 2 维面 $f=F_{i,g}\cap F_{j,g}$ 确定的关系,为内生成元的组合,故也是平凡的. 若 $F_{i,g},F_{j,g}$ 分别为外面和内面,不妨设 $F_{i,g}$ 为外面, $F_{j,g}$ 为内面,则 $x_{j,g}=x_{j,\phi_i(g)}=1$,所以 f 对应的关系为 $x_{i,g}=x_{i,\phi_j(g)}$. 即内面附近的且相交为余二维面 f 的 facets 对应的生成元是彼此相关的. 又因为每对 facets pair 对应的生成元互为逆元,所以当 $F_{i,g_1}\cap F_{i,g_2}=\varnothing$ 时, $x_{i,g_1}=(x_{i,g_2})^{-1}$.

最后,我们考虑 $F_{i,g} \in \mathcal{F}_3(Q)$ 的情况. 我们不妨固定 $F_{i,1} \in \pi^{-1}(F_i)$,对应的生成元为 $x_{i,1}$. 首先它的配对 facets 对应的生成元 $x_{i,\phi_i(1)} = (x_{i,1})^{-1}$. 由于与 $F_{i,1}$ 相交的 facets 都在 P_1 中,所以任意 $f = F_{i,1} \cap F_{j,1} \neq \emptyset$ 对应的关系为 $x_{i,1}x_{j,\phi_i(1)} = x_{j,1}x_{i,\phi_j(1)}$,即 $x_{i,\phi_j(1)} = x_{i,\lambda(F_j)} = (x_{j,1})^{-1}x_{i,1}x_{j,\phi_i(1)}$. 然后,我们对 $F_{i,\phi_j(1)}$ 进行上面的讨论. 所以 $\forall g \in \langle \phi_i(1), \{\phi_j(1)\} \rangle$, $x_{i,g}$ 都与 $x_{i,1}$ 相关,其中 $j \in \{j: F_j \cap F_i \neq \emptyset\}$. 我们仅考虑 F_i 一个顶点处的染色,我们知 $\langle \{\phi_j(1)\} \rangle \cong \mathbb{Z}_2^n / \langle \phi_i(1) \rangle$. 所以 $\langle \phi_i(1), \{\phi_j(1)\} \rangle \cong \mathbb{Z}_2^n$,这就证明了所有的 $\{x_{i,g}: g \in \mathbb{Z}_2^n\}$ 是相关的.

注 1、注意这里不排除 $F_{i,g} \cap F_{i,\phi_j(g)}$, $F_{i,g} \cap F_{i,\phi_i\phi_j(g)}$ 都为 Q 中非空的余二维面的情况,此时 $(x_{i,\phi_j(g)})^{-1} = x_{i,\phi_i\phi_j(g)} = x_{i,g} = x_{i,\phi_j(g)}$, i.e. $(x_{i,\phi_j(g)})^2 = 1$. 从而 $\{x_{i,g}: g \in \mathbb{Z}_2^n\}$ 为 $\pi_1(M)$ 中的相等的二阶生成元.

2、Davis-Januszkiewicz [5] theroem 3.1 中指出 small cover Mod 2 Betti 数 $b_i(M) = h_i(P)$ (这里 h_i 定义中 f_k 表示 P 中余 k+1 维面的个数). $b_1(M) = h_i(P) = m-n$,即在 perfect 意义上的胞腔结构得到基本群生成元个数为 m-n 个. 在这里所有外 facets 决定的生成元实际上也是 m-n 个. 并且是 $\pi_1(M)$ 最少生成元个数(待证).

猜想: P 中存在 Δ^2 面当且仅当 $\pi_1(M)$ 中有二阶元. (必要性易证)

在下面例子中,我们只取每个 facets pair 中的其中一个 facets 对应的 闭路作为基本群的生成元.

例 5 P 为五边形时, \mathcal{F} 上的染色依次取为 $\{e_2, e_1e_2, e_1, e_2, e_1\}$,Q 可视为 12 边形,对应 6 对外 facets,4 组余二维外面。

Q 中的 facets pair 有 $\{F_{2,e_1},F_{2,e_2}\}$, $\{F_{1,e_1},F_{1,e_1e_2}\}$, $\{F_{1,1},F_{1,e_2}\}$, $\{F_{2,1},F_{2,e_1e_2}\}$, $\{F_{3,1},F_{3,e_1}\}$, $\{F_{3,e_2},F_{3,e_1e_2}\}$ (内部 facets pair 对应平凡生成元,我们暂不考虑). 给所有道路一个指向 p_0 的方向,不妨设 p_0 为基本群基点,取生成元为

$$\begin{cases} x_{2,e_1} & \longleftrightarrow \overline{a_{2,e_1}} \cdot (\overline{a_{2,e_2}})^{-1} \\ x_{1,e_1} & \longleftrightarrow \overline{a_{1,e_1}} \cdot (\overline{a_{1,e_1e_2}})^{-1} \\ x_{1,1} & \longleftrightarrow \overline{a_{1,1}} \cdot (\overline{a_{1,e_2}})^{-1} \\ x_{2,1} & \longleftrightarrow \overline{a_{2,1}} \cdot (\overline{a_{2,e_1e_2}})^{-1} \\ x_{3,1} & \longleftrightarrow \overline{a_{3,1}} \cdot (\overline{a_{3,e_1}})^{-1} \\ x_{3,e_2} & \longleftrightarrow \overline{a_{3,e_2}} \cdot (\overline{a_{3,e_1e_2}})^{-1} \end{cases}$$

在余 2 维面 p_1, p_2, p_3, p_4 处确定四组关系:

在 p_1 处胞腔对应的关系为 $x_{1,1} = x_{1,e_1}$;

在 p_2 处胞腔对应的关系为 $x_{1,1}x_{2,e_2}=x_{2,1}x_{1,e_1e_2}$,即 $x_{1,1}(x_{2,e_1})^{-1}=x_{2,1}(x_{1,e_1})^{-1}$;

在 p_3 处胞腔对应的关系为 $x_{2,1}x_{3,e_1e_2}=x_{3,1}x_{2,e_1}$,即 $x_{2,1}(x_{3,e_2})^{-1}=x_{3,1}x_{2,e_1}$;

在 p_4 处胞腔对应的关系为 $x_{3,1} = x_{3,e_2}$.

从而

$$\pi_{1}(M) = \langle x_{2,e_{1}}, x_{1,e_{1}}, x_{1,1}, x_{2,1}, x_{3,1}, x_{3,e_{2}} | x_{1,1}(x_{1,e_{1}})^{-1}, x_{3,1}(x_{3,e_{2}})^{-1},$$

$$x_{1,1}(x_{2,1})^{-1} x_{1,1}(x_{2,e_{1}})^{-1}, x_{3,1}(x_{2,1})^{-1} x_{3,1} x_{2,e_{1}} \rangle \quad (4)$$

$$\cong \langle x_{1,1}, x_{2,1}, x_{3,1} | x_{1,1}(x_{2,1})^{-1} x_{1,1} x_{3,1}(x_{2,1})^{-1} x_{3,1} \rangle$$

2.3 Connection with Group of Deck Transformation

设 $\pi: M \longrightarrow P$ 为单多面体 P 上的 small cover. P 的 facets 集为 $\mathcal{F}(P) = \{F_1, F_2, \cdots, F_m\}$. 下面我们将构造 small cover $\pi: M \longrightarrow P$ 的 (万有) 覆叠空间

$$\mathcal{M} = Q \times \pi_1(M) / \sim \tag{5}$$

 (Q, ν_1) 的外 facet F_{i,g_1} 与 (Q, ν_2) 的外 facet F_{j,g_2} 粘当且仅当 i = j, $g_1(g_2)^{-1} = \lambda(F_i)$, $\nu_1(\nu_2)^{-1} = x_{i,g_1}$ (或者等价的 $\nu_2(\nu_1)^{-1} = x_{i,g_2}$),其中 ν_1 , $\nu_2 \in \pi_1(M)$,Q 为上文构造的多面体.下面为记号方便,我们把 (Q, ν) 简记为 Q_{ν} , Q_{ν} 的 facet $F_{i,g}$ 记为 $F_{i,g}^{\nu}$.

下面我们将说明 M 实际上只与单多面体 P 及 P 的面结构有关.

我们首先定义由 P 的面结构决定的 right-angle Coxeter group W_P 如下:

$$W_P = \langle F_1, \cdots, F_m : F_i^2 = 1; (F_i F_j)^2 = 1, \forall F_i, F_j \in \mathcal{F}(P), F_i \cap F_j \neq \varnothing \rangle$$

Davis-Januszkiewicz [5] 中构造了

$$\mathcal{L} = (P \times W_P) / \sim \tag{6}$$

其中 $(x_1,g_1) \sim (x_2,g_2)$ 当且仅当 $x_1 = x_2$, $g_1(g_2)^{-1} \in \langle F : x \in F, F \in \mathcal{F}(P) \rangle$. 且由 Davis [3](Theorem 10.1 and 13.5)知 \mathcal{L} 为单连通的.

设 $\widetilde{\lambda}: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2^n$ 为 $\mathcal{F}(P)$ 上特征映射诱导的群同态,定义映射 ψ 为 投射 $W \longrightarrow W^{ab} \cong \mathbb{Z}_2^m$ 和 $\widetilde{\lambda}$ 的复合.

引理 2.2 设 $\pi: M \longrightarrow P$ 为单多面体 P 上的 $small\ cover$,则有群短正合列

$$1 \xrightarrow{\beta} \pi_1(M) \longrightarrow W_P \xrightarrow{\psi} \mathbb{Z}_2^n \longrightarrow 1$$

其中 $\pi_1(M) \cong \ker \psi$ 为 W_P 的子群, $W_P = \pi_1(M) \rtimes \mathbb{Z}_2^n$ 证:在 Davis-Januszkiewicz [5] 中,我们知道有上面正合列成立,且 $\pi_1(M) \cong \ker \psi$ 为 W_P 的正规子群. 不妨设 p_0 附近的 facets 为 $\{F_1, F_2, \cdots, F_n\}$,

 $\lambda(F_i) = e_i$,考虑 $\gamma: \mathbb{Z}_2^n \longrightarrow W_P$, $\gamma(e_i) = F_i, i = 1, 2, \cdots, n$,则 $\psi \circ \gamma = id_{\mathbb{Z}_2^n}$,即上面短正合列是可裂的,故 $W_P = \pi_1(M) \rtimes \mathbb{Z}_2^n$.

引理 2.3 $\mathcal{L} \cong \mathcal{M}$

证:由 \mathcal{L} 和 \mathcal{M} 的构造中,它们局部都是通过单多面体 P 的顶点附近的 facets 做反射得到的,所以我们只需要证明 \mathcal{L} 和 \mathcal{M} 中的 P 存在着某种 index 对应即可。 $W_P = \pi_1(M) \rtimes \mathbb{Z}_2^n$,所以任意 $\omega \in W_P$,存在唯一的 $\nu \in \pi_1(M), g \in \mathbb{Z}_2^n$,使得 $\omega = \nu g$. 为了避免混淆,我们把 W_P 的第 i 个生成元 F_i 记为 ω_i . 我们下面仅考虑第 $1 = 1' \cdot 1''$ (分别为 $W_P, \pi_1(M), \mathbb{Z}_2^n$ 中的单位元) 个多面体 P 的第 i 个面 F_i 的情况,在 \mathcal{L} 中,它与第 ω_i 个 P 的面 F_i 粘,不妨设 $\omega_i = \nu_1 g_1$,其中 $\nu_1 \in \pi_1(M), g_1 \in \mathbb{Z}_2^n$;另一方面在 \mathcal{M} 中, $F_{i,1''}^{1'}$ 与 $F_{i,\lambda(F_i)}^{x_{i,1}}$ 配对粘在一起。由于 P 相对于 \mathcal{M} 的覆叠变换群 仍为面生成的 W_P ,所以 $x_{i,1}\lambda(F_i) = \omega_i$,由于 $\omega_i = \nu_1 g_1$ 是唯一的,所以 $x_{i,1} = \nu_1, \lambda(F_i) = g_1$,即证。其他位置的 P 类似,所以 \mathcal{M}, \mathcal{L} 局部构造一 致,从而为同一个空间。

注 在我们的胞腔构造过程中,设 $\{F_1,F_2,\cdots,F_n\}$ 为顶点 p_0 附近的 n 个 facets, $\lambda(F_i)=e_i,i=1,2,\cdots,n$,从而我们可以把 2^n 个 P 的 copy 在 p_0 处粘在一起得到 Q,即取 $\{F_1,F_2,\cdots,F_n\}$ 为 Q 的内 facets,最后得到基本 群的表达形式如(3). 这在引理 2.2 的短正合列中,等价于 $\psi(F_i)=\lambda(F_i)=e_i,i=1,2,\cdots,n$. $\psi(F_k)=\lambda(F_k)=\prod\delta_ie_i=\prod\delta_i\lambda(F_i)=\prod\delta_i\psi(F_i)$,所以 $\psi(F_k\left(\prod F_i^{\delta_i}\right)^{-1})=1$,其中 $k=1,2,\cdots,m$; $i=1,2,\cdots,n$. F_1,F_2,\cdots,F_n 在 M 中对应的闭路是可缩的,所以 F_k 对应的闭路是 ker ψ 的生成元. 我们设 $\varphi:\mathbb{Z}_2^n\longrightarrow Aut(\pi_1(M))$ via $\varphi(g)(h)=\beta^{-1}(\gamma(g)\beta(h)\gamma(g^{-1}))=\beta^{-1}(\gamma(g)\beta(h)\gamma(g))$,其中 $g\in\mathbb{Z}_2^n$, $h\in\pi_1(M)$. 我们可以规定 W_P 的生成元 元 F_i 可以对应 $(x_{i,1},\lambda(F_i))$,一般地 $F_iF_j=(x_{i,1},\lambda(F_i))\cdot(x_{j,1},\lambda(F_j))=(x_{i,1}\varphi_{\lambda(F_i)}(x_{j,1}),\lambda(F_i)\lambda(F_j))$. 特别的若 F_i 为内 facet,则 $F_iF_j=(x_{j,e_i},\lambda(F_i)\lambda(F_j))$.

接下来我们将证明 M 为 M 的万有覆叠空间. M 到 M 有一个自然

的投射,我们记为 $\Pi: \mathcal{M} \longrightarrow M$.

$$Q \times \pi_1(M) \xrightarrow{q'} Q \times \pi_1(M) / \sim = \mathcal{M}$$

$$\widetilde{\Pi} \qquad \qquad \Pi$$

$$Q \times \pi_1(M) \xrightarrow{q} Q \times \pi_1(M) / \sim = \mathcal{M}$$

其中 q, q' 是粘合 Q 和 Q 的 copy 的 facets 决定的商映射.

下面我们说明, small cover 中的任意一个点在某种意义上是地位是一样的.

引理 **2.4** 设 $\pi: M \longrightarrow P$ 为一个固定的 *small cover*,则 $\forall x \in M$, M 可以在点 x 处分解成 2^n 个同构于 P 的多面体.

证明: 我们考虑商映射 $q:Q \longrightarrow M$,这里不妨设 Q 是凸的. 若 $q^{-1}(x) \subset Q^\circ$,则 $q^{-1}(x)$ 为单元集,不妨设 $y=q^{-1}(x)$. 我们在 Q 的内部将点 p_0 连同它附近的 Q 的内面线性地拉到到点 x 处,则此时 Q 可以看为点 x 附近的 2^n 个 P 的 copy 粘成的.

若 $q^{-1}(x) \subset \partial Q$,任取 $y \in q^{-1}(x)$,我们记 f(y) 为 out(Q) 中包含 y 为相对内点的最小的面,不妨设 f(y) 为余 k 维的,则所有的 $\{f(y): y \in q^{-1}(x)\}$ 都是 identity,且 $|(q')^{-1}(x)| = 2^k$. 事实上,商映射 q 对 ∂Q 上点的局部作用就是将 $q^{-1}(x)$ 中的点连同包含这些点为相对内点的最小的面粘在一起. 接下来我们将 Q 重新分解成 P 的 copy,并将它们在 f(y) 的某个顶点处粘在一起,得到一个大的多面体,记为 Q',将 Q' 的外 facets 按照染色信息成对粘在一起,得到同样的 small cover M. 此时 x 在 Q' 中的原象位于 Q' 的内部,进行上面讨论.

定理 2.5 M 为 M 的万有覆叠空间.

证明:根据上面引理,我们不妨考虑点 $x=\pi^{-1}(p_0)\in M$,则 $q^{-1}(x)\subset Q^\circ$ 为单元集,我们可以取包含 $q^{-1}(x)$ 的 n 维实心开球 U,满足 $U\subset Q^\circ$.则 q(U) 为 M 中包含 x 的开邻域,与 U 为 identity. 且 $(\widetilde{\Pi})^{-1}(U)$ 为 $|\pi_1(M)|$ 个互不相交开球的并,即

$$(\widetilde{\Pi})^{-1}(U) = \bigsqcup_{\nu \in \pi_1(M)} V_{\nu}$$

其中每个 $V_{\nu} \subset (Q_{\nu})^{\circ}$ 与 U 为 identity. 则

$$(\Pi)^{-1}(q(U)) = q'((\widetilde{\Pi})^{-1}(U)) = \bigsqcup_{\nu \in \pi_1(M)} q'(V_{\nu})$$

为一族互不相交的开集,且 Π 限制在每一个 $q'(V_{\nu})$ 上都为到 q(U) 的 identity.

当 $q^{-1}(x) \subset \partial Q$ 时,我们将 Q 换成 Q',得到的 \mathcal{M} 实际上是不变的,这是因为 \mathcal{M} 是由多面体 P 决定的. 所以我们可以类似进行上面的操作.

故 \mathcal{M} 为 M 的覆叠空间. 又因为 $\mathcal{M}\cong\mathcal{L}$ 为单连通的,故为万有覆叠空间. \square

设 $D(\mathcal{M},\Pi,M)$ 为上面覆叠空间 $\Pi:\mathcal{M}\longrightarrow M$ 的覆叠变换群. 由于 \mathcal{M} 是单连通的,所以 $\pi_1(M)\cong D(\mathcal{M},\Pi,M)$. 下面我们根据上面构造的 cell structure(的 2-skeleton)来刻画 $D(\mathcal{M},\Pi,M)$ 的生成元.

对于 Q 中的每个 facet $F_{i,g}$, 我们定义 \mathcal{M} 上的函映射 $\Gamma_{i,g}: \mathcal{M} \longrightarrow \mathcal{M}$. $\forall x \in \mathcal{M}$,存在某个 Q_{ν_1} ,使得 $x \in Q_{\nu_1}$,由 \mathcal{M} 的构造知存在唯一的 Q_{ν_2} ,使得 $F_{i,g} \subset Q_{\nu_1} \cap Q_{\nu_2}$,我们定义 $\Gamma_{i,g}(x)$ 为 $\Pi^{-1}(\Pi(x)) \cap Q_{\nu_2}$ 中的唯一的一点,这样定义的 $\Gamma_{j,g'}$ 显然是 well-defined 的. $\Gamma_{i,g}$ 的连续性也是显然的. 类似引理 2.1容易验证

引理 **2.6** 1、 $\Gamma_{i,q}\Gamma_{i,\phi_i(q)}(x)=x$.

2、若存在 $F_{i,q'}(\neq F_{i,q}) \subset Q_{\nu_1} \cap Q_{\nu_2}$, 则 $\Gamma_{i,q'}(x) = \Gamma_{i,q}(x)$.

3、若 $facet F_{i,g} \in in(Q)$,此时 $Q_{\nu_1} = Q_{\nu_2}, \Gamma_{i,g} = id$. 进一步我们有

引理 2.7 面映射 $\Gamma_{i,q}: \mathcal{M} \longrightarrow \mathcal{M}$ 为 \mathcal{M} 上的覆叠变换.

命题 2.8 $D(\mathcal{M}, \Pi, M)$ 可以由面映射 $\{\Gamma_{i,q}\}$ 来刻画.

证明: \mathcal{M} 为单连通的,此时 $\pi_1(M,p_0)$ 到 $D(\mathcal{M},\Pi,M)$ 的满同态实际上为群同构,它将 $[x_{i,g}] \in \pi_1(M,p_0)$ 映为 $\Gamma_{i,g}$. 我们不妨取点 $x = \pi^{-1}(p_0) \in M$,则 $\{\Pi^{-1}(x)\}$ 实际上是每个 Q 中 p_0 的 copy. 我们取第 1 个 Q_1 中的 p_0 的 copy,记为 y_0 ,其中 1 为 $\pi_1(M)$ 的单位元. 所以我们只需要验证 $\Gamma_{i,g}(y_0) = \widetilde{x_{i,g}}(1)$,其中 $\widetilde{x_{i,g}}$ 是 $x_{i,g}$ 在 \mathcal{M} 中的一段提升. $\Gamma_{i,g}(y_0)$ 实际上是 $Q_{x_{i,g}}$ 中的 p_0 的 copy,即 $\widetilde{x_{i,g}}(1)$. 所以 $D(\mathcal{M},\Pi,M)$ 的生成元可以自然的选为 Q 的 facets 对应的面映射.

综上,我们有下面结论:

定理 **2.9** $\Pi: \mathcal{M} \longrightarrow M$ 为 M 的万有覆叠空间,复叠变换群 $D(\mathcal{L}, \Pi, M) \cong \pi_1(M)$ 可以由 Q 的 facets 对应的面映射生成.

2.4 Else

最后我们解释一下我们这种胞腔结构的自然. 我们考虑 M[2],它的 0-skeleton 只有一个点 p_0 ; 它的 1-skeleton 是 $\overrightarrow{x_{i,g}}$ 的一点并,对应 $\pi_1(M)$ 的生成元; 它的每一个二维胞腔对应 $\pi_1(M)$ 的一个关系. 即 M[2] 是 $\pi_1(M,p_0)$ 的 presentation complex. 进一步,我们将 M 的这种胞腔结构提升到它的万有覆叠空间 \mathcal{M} 中,则 $\mathcal{M}[2]$ 实际上是 $\pi_1(M,p_0)$ 的 $Cayley\ 2$ -complex.

事实上,将单多面体 P 视为一个 right angle orbifold,则 small cover $\pi: M \longrightarrow P$ 为 P 上的 covering orbifold. 由于 M 为一个闭流形,P 为一个 good orbifod,则 P 的单连通的 covering orbifold M 为它的万有 covering orbifold. 进一步,covering orbifold $\tau: M \longrightarrow P$ 为 covering space $\Pi: M \longrightarrow M$ 和 small cover $\pi: M \longrightarrow P$ 的复合。它们的覆叠变换群分别为 $W_P, \pi_1(M)$ 和 \mathbb{Z}_2^n . (Davis-Januszkiewicz [5])

我们定义 π_1^{orb} 为 universal orbifold cover $\tau: \mathcal{M} \longrightarrow P$ 的覆叠变换 群. 即 $\pi_1^{orb}(P) = W_P$,此时 $\pi_1^{orb}(P)$ 和 $\pi_1(M)$ 存在自然的子群关系. 我们对单多面体 P 做类似的 cubical 分解,则某种意义上,P[2] 为 W_P 的 presentation complex. 把这种分解提升到 \mathcal{M} 中,则 [2] 实际上是 W_P 的一个 Cayley 2-complex. (Davis [4])

我们设 []

3 Application

设 \mathfrak{F} 为单多面体 P 的任意一个 k-face. 则它依然是单凸的,且 $\mathcal{F}(\mathfrak{F})$ 可以继承 $\mathcal{F}(P)$ 上的染色,进而可以构造 \mathfrak{F} 上的 small cover $\pi_{\mathfrak{F}}: M_{\mathfrak{F}} \longrightarrow \mathfrak{F}$. 在 Davis [5] Lemma 1.3 中,我们知道 $M_{\mathfrak{F}}$ 为 M 的 k 维连通子流形. 在这一节中,我们利用上面的胞腔结构,考虑 $\pi_1(M_{\mathfrak{F}})$ 与 $\pi_1(M)$ 之间的关系. 设 $\rho:\mathfrak{F}\longrightarrow P$ 为面包含映射. p_0 为 \mathfrak{F} 的一个项点. $\rho_*:\pi_1(M_F)\longrightarrow \pi_1(M)$ 为 ρ 诱导的基本群同态.

引理 3.1 设 $\pi_1(M,p_0)=\langle G:R\rangle,\ \pi_1(M_{\mathfrak{F}},p_0)=\langle G_{\mathfrak{F}}:R_{\mathfrak{F}}\rangle$,则 $G_{\mathfrak{F}}\subset G,R_{\mathfrak{F}}\subset R$,且 $\rho_*|_{G_{\mathfrak{F}}}=id$.

证明: 不妨取 F 为 P 的第一个的 facet, p_0 为 F 的一个顶点, 自然也

是 P 的一个顶点,我们分别将 $\{(F,g)\}_{g\in\mathbb{Z}_2^{n-1}}$ 与 $\{(P,g)\}_{g\in\mathbb{Z}_2^n}$ 在点 p_0 处 粘合在一起,分别得到多面体 Q 与 $Q_F = F \times \mathbb{Z}_2^{n-1}/\sim$. 则 $out(Q_F) \subset out(Q), in(Q_F) \subset in(Q)$. 设 $f_i = F_i \cap F \neq \varnothing$ 为 F 的一个任意的 facet, $f_i \cap f_j = F_i \cap F_j \cap F \neq \varnothing$ 为 F 的一个任意的余 2 维面. 设 $f_{i,g} = F_{i,g} \cap F_{1,g} = F_{i,\phi_i(g)} \cap F_{1,\phi_i(g)}$ 为 Q_F 中的任意一个 facet,其中 $\{F_{1,g},F_{1,\phi_i(g)}\}$ 为 $\{P_g:g\in\mathbb{Z}_2^n\}$ 中的 facets-pair. 由引理 2.1 ,我们知道 $f_{i,g}$ 在 Q_F 中对应的有向闭路与 $F_{i,g}$ 和 $F_{i,\phi_i(g)}$ 在 Q 中对应的有向闭路为 $x_{i,g},x_{i,\phi_i(g)}$ 是定点同伦的,所以我们不妨记 $f_{i,g}$ 在 Q_F 中对应的有向闭路为 $x_{i,g}$. 对于 Q_F 中的任意一个余 2 维面 $f_{i,g} \cap f_{j,g} = F_{i,g} \cap F_{j,g} \cap F_{1,g} \neq \varnothing$ 所对应的二维胞腔 $D_g,D_{\phi_i(g)}$ 是也是定点同伦的,所以在 $\pi_1(M_F)$ 中, $f_{i,g} \cap f_{j,g}$ 决定的关系与 $F_{i,g} \cap F_{j,g} (\cap F_{1,g} \neq \varnothing)$ 或者 $F_{i,\phi_i(g)} \cap F_{j,\phi_i(g)} (\cap F_{1,\phi_i(g)} \neq \varnothing)$ 在 $\pi_1(M)$ 中决定的关系对应。所以 M_F 的基本群为

$$\pi_1(M_F) = \langle x_{i,g}, i = 1, 2, \cdots, m', g \in \mathbb{Z}_2^{n-1} : x_{i,g} x_{i,\phi_i(g)} = 1, \forall i, g$$

$$x_{i,g} x_{j,\phi_i(g)} x_{i,\phi_i(g)} x_{j,\phi_i(g)} = 1, \forall f_{i,g} \cap f_{j,g} \neq \emptyset \rangle \quad (7)$$

其中 $f_{i,g} \cap f_{j,g} = F_{i,g} \cap F_{j,g} \cap F_{1,g} = F_{i,\phi_i(g)} \cap F_{j,\phi_i(g)} \cap F_{1,\phi_i(g)} \neq \varnothing$. 即形式上 $\pi_1(M_F)$ 的生成元集 G_F 和关系集 R_F 都可为 $\pi_1(M)$ 的生成元集 G 和关系集 R 的子集. 进一步,这种关系是由包含映射 $\rho: F \longrightarrow P$ 所诱导的,即对 $\rho_*: \pi_1(M_F) \longrightarrow \pi_1(M)$ 有 $\rho_*|_{G_F} = id$.

进一步对一般的 k 维面 \mathfrak{F} ,我们不断进行上面的操作,则 $\pi_1(M_{\mathfrak{F}})$ 和 $\pi_1(M)$ 都有上面的关系.

可以看出一般 ρ_* 不一定是单同态. 如下面的例子.

例 6 取 $P = I \times \triangle^2$ 为三棱柱,共有 5 个 facets $\{F_i\}_{i=1,2,3,4,5}$,我们给上下底面 F_1, F_2 染色 e_1 ,侧面 F_3, F_4, F_5 染色为 $e_2, e_3, e_1e_2e_3$,由 P 的 h-vector 知, $\pi_1(M)$ 有两个生成元和两个关系,它的任意一个侧面上的 small cover 基本群有两个生成元,一个关系.

$$\mathbb{U} \ \pi_1(M) = \langle x,y: x^2 = yxyx^{-1} = 1 \rangle, \pi_1(M_F) = \langle x,y: yxyx^{-1} = 1 \rangle$$

$$\rho_* : \pi_1(M_F) \longrightarrow \pi_1(M)$$

满足 $\rho_*(x) = x, \rho_*(y) = y$,但 ρ_* 非单.

定义 2 我们称一个单纯复形 K 为 flag 的,如果 K 中两两相连的顶点集 张成 K 中的一个单形. 等价地,K 中不含维数 ≥ 2 的空单形.

我们称一个单多面体 P 为 flag 的,如果 $K = \partial P$ 为 flag 的. 等价地, P 中两两相交的面必有公共的交.

例 7 1、一个 m 边形为 flag 的, 当且仅当 m > 3.

2、flag 多面体的面是 flag 的.

设 F 为单多面体 P 的第 1 个 facet,并取定 F 的一个顶点 p_0 . 我们记 W_F , W_P 分别为 F 和 P 的 Coxeter group, $\pi_F: M_F \longrightarrow F$ 和 $\pi_P: M \longrightarrow P$ 分别为 F 和 P 上的 small cover. 设 $\rho: F \longrightarrow P$ 为面包含映射, $\beta: W_F \longrightarrow W_P$ 为 ρ 诱导的 Coxeter group 之间的群同态, $\rho_*: \pi_1(M_F, p_0) \longrightarrow \pi_1(M, p_0)$ 为 ρ 诱导的 small cover 基本群之间的群同态. 另外我们把 W_P 的生成元集 F(P) 记为 \tilde{G}_P ,关系集记为 \tilde{R}_P ;把 W_F 的生成元集 F(F) 记为 \tilde{G}_F ,关系集记为 \tilde{R}_F . 取 p_0 为基点,按照引理中的方式,分别得到 $\pi_1(W_F, p_0)$ 和 $\pi_1(W_P, p_0)$ 的群表示,分别记它们生成元集为 G_F, G_P ,关系集为 G_F, G_P ,为 flag 时, G_F, G_P ,并不是单的.

引理 3.2 $\widetilde{G}_F \subset \widetilde{G}_P$, $\widetilde{R}_F \subset \widetilde{R}_P$, 进一步 $\beta|_{\widetilde{G}_R} = id$.

证明: 类似上面引理的证明.

引理 3.3 当 P 为 flag 时, $\beta: W_F \longrightarrow W_P$ 为单的.

证明: 当单多面体 P 为 flag 时,若 $F \cap F_i \neq \emptyset$, $F \cap F_j \neq \emptyset$,则 $F \cap F_i \cap F_j \neq \emptyset$,即 W_P 中 F 附近的任意余二维面 $f \subset P$ 对应的关系一定可以继承到 W_F 中. 这保证了下面这个态射的定义合理性. 我们构造群态射

$$\eta_*: W_P \longrightarrow W_F$$
(8)

满足 $\eta_*|_{\widetilde{G}_P-\widetilde{G}_F}=1$, $\eta_*|_{\widetilde{G}_F}=id$.

 η_* 为一个群同态显然. 下面我们验证 η_* 定义的合理性. 我们考虑 W_P 中的关系在 η_* 下的像是否为 W_F 的单位元. P 中与 F 相交的 facets 集 (包含 F),我们记为 \mathcal{F}_1 ,与 \mathcal{F}_1 中 facets 相交且不包含 F 的 facets 集,我们记为 \mathcal{F}_2 ,剩余的 facets 我们记为 \mathcal{F}_3 . 则 η_* 将 \mathcal{F}_2 , \mathcal{F}_3 中 facets 对应的生成元映为 1. 对于 W_P 的关系 $(F_i)^2=1$,当 $F_i\in\mathcal{F}_1$ 时, $\eta_*(F_iF_i)=(F_i)^2=1$; 当 $F_i\in\mathcal{F}(F)-\mathcal{F}_1$ 时, $\eta_*(F_iF_i)=1$. 对于 Q 中的任意余二位面 $f=F_i\cap F_j$,若 F_i,F_i 都属于 \mathcal{F}_1 ,则由 P 的 flag 性质知 $f\cap F\neq\emptyset$,从而 η_* 将 $f\subset P$ 所

对应的关系映为 W_F 的一个关系; 若 F_i, F_j 都不属于 \mathcal{F}_1 ,则对应关系在 η_* 下的像为 1; 若 F_i, F_j 分别属于 $\mathcal{F}_1, \mathcal{F}_2$,不妨设 $F_i \subset \mathcal{F}_1, F_j \subset \mathcal{F}_2$,设这个关系为 $(F_iF_j)^2 = 1$,则 $\eta_*(F_iF_jF_iF_j) = \eta_*(F_i)\eta_*(F_j)\eta_*(F_i)\eta_*(F_j) = (F_i)^2 = 1$. 所以对任意关系 $r \in W_P, \eta_*(r) \equiv 1$,即 η_* 为 well-defined.

最后容易验证
$$\eta_*\beta = id: W_F \longrightarrow W_F$$
, 即 β 为单的.

定理 3.4 当多面体 P 为 flag 时, ρ_* 为单同态.

证明: 考虑 pull back

$$M_F \stackrel{\tilde{\rho}}{\longrightarrow} M$$

$$\begin{array}{ccc}
\pi_F & \pi_P \\
\downarrow & & \downarrow \\
F & \xrightarrow{\rho} & P
\end{array}$$

则

$$\pi_1(M_F) \xrightarrow{\rho_*} \pi_1(M)$$

$$(\pi_F)_* \qquad (\pi_P)_*$$

$$W_F \xrightarrow{\beta} W_P$$

为交换的.

所以当 P 为 flag 时, β 为单的,所以 $\beta(\pi_F)_* = (\pi_P)_* \rho_*$ 为单的,从 而 ρ_* 为单的. 这里的 ρ_* 即为面包含映射 ρ 所诱导的基本群同态.

对于单多面体 P 的任意 k 维面 \mathfrak{F} ,设 $\rho:\mathfrak{F}\longrightarrow P$ 为面包含映射,则 ρ 可以分解为 facet 包含映射的复合,从而此时 ρ 诱导的基本群同态也为单的.

推论 1 对于单多面体 P 的任意 k 维面 \mathfrak{F} , 它的面包含映射诱导的基本群 同态为单的.

定义 3 我们称一个连通闭流形 M 为 aspherical 的,若 $\pi_k(M) = 0, k \geq 2$.

Borel conjecture 设 $f: M \longrightarrow N$ 为同伦等价,其中 M, N 为同维数闭的 aspherical 流形,则 f 同伦于一个同胚映射。

定理 3.5 ([6]) Let M be a small cover of P. Then the following statements are equivalent.

- 1, M is aspherical.
- 2. The boundary of P is dual to a flag complex.
- 3. The natural piecewise Euclidean metric on the dual cubical cellulation of M is nonpositively curved.

定理 3.6 ([8]) Let $f: N \longrightarrow M$ be a homotopy equivalence between closed smooth manifolds such that M supports a non-positively curved Riemannian metric. Then N and M are stably homeomorphic; i.e.

$$f \times id : N \times \mathbb{R}^{m+4} \longrightarrow M \times \mathbb{R}^{m+4}$$
 (9)

is homotopic to a homeomorphism where $m = \dim M$.

上面定理说明,当流形 M 是一个 non-positively curved Riemannian 流形,且 $\dim(M) \neq 3,4$,Borel conjecture 成立. 可以验证 small cover 为 这样的闭流形.

推论 2 设 n(>4) 维闭流形 M,N 都为 flag 单多面体上的 small cover , 若 $\pi_1(M)\cong\pi_1(N)$,则 M 和 N 是同胚的.

对于 3 维情况,在 [1] 中指出,Borel conjecture 对所有的三维流形都成立. 我们感兴趣的是 aspherical small cover M 是不是一个 Haken manifold

定义 4 A Haken 3-manifold is a compact 3-manifolds which are

- (1) P^2 -irreducible and
- (2) sufficiently large i.e. contain a properly embedded, 2-sided, incompressible surface.

命题 3.7 P^2 -irreducible M with $H_1(M)$ infinite is a Haken manifold.

证明:由 Hempel [10] Lemma 6.6 知 M 包含一个 properly embedded 2-sided, nonseparating incompressible surface S.

引理 3.8 设 M 是 3 维 flag 多面体 P 上的一个 small cover, 则 $H_1(M)$ 是 infinite 的.

证明:由引理 3.1 知, $\rho_*|_{G_F}=id$,而 $G-G_F$ 与 G_F 是独立的,所以 $H_1(M_F)=\pi_1^{\rm ab}(M_F)$ 是 $H_1(M)=\pi_1^{\rm ab}(M)$ 的直和项.又 P 为 flag 的,所 以二维闭曲面 M_F 不是 $\mathbb{R}P^2$,故 \mathbb{Z} 为 $H_1(M_F)$ 的直和项. 所以 $H_1(M)$ infinite.

推论 3 Aspherical small covers are Haken manifolds.

证明: 设 P 为三维单的 flag 多面体 (不包含单形面), M 为 P 上的 small cover, M 是 aspherical 的. 由 Sphere Theorem,我们知道三维闭可定向流形是 aspherical 的,当且仅当它是 irreducible 和 π_1 infinite 的. 进一步为 P^2 -irreducible,又 $H_1(M)$ 为 infinite 的,故 aspherical small cover M 为 Haken 流形.

可定向 aspherical 流形为 irreducible 的,故为 prime 的,故同伦等价诱导同胚. 尽管 $\{M_F\}$ 中不一定存在 M 的 two-sided incompressible surface (考虑正十二面体上的 small cover),但 M_F 拥有许多好的性质,比如包含映射诱导的基本群同态为单的. 特别地,我们沿着 M_F 去切 M,这在我们构造的胞腔结构中,相当于把与 F 横截相交的那些一维闭路 $\{x\}$ 切开,或者给面 F 一个平凡的 color. 此时对应在我们上面构造的胞腔结构中,是把 facets 对应的闭路切开,从而这些闭路决定的生成元变为平凡元,基本群得到化简. 所以从这里我们猜测,类似于 Hierachy of Waldhausen 的操作对 (高维) aspherical small cover 也是有效的. 这对高维 small cover 中的borel 猜想的证明提供一种可行的 idea. 而且 Davis 等一些人已经在做了一些这方面的工作,比如对高维 Haken 流形的推广.

参考文献

- [1] M. Aschenbrenner, S. Friedl and H. Wilton, 3-manifold groups, *Mathematics* (2013), 1-149
- [2] V.M. Buchstaber and T.E. Panov, Torus actions and their applications in topology and combinatorics, *University Lecture Series*, 24. American Mathematical Society, Providence, RI, (2002)
- [3] M.W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, *Ann. Math.* (2) 117 (1983), 293-325.
- [4] M.W. Davis, Exotic aspherical manifolds, Topology of high-dimensional manifolds. (Trieste, 2001), 371-404.
- [5] M.W. Davis and T. Januszkiewicz, Convex polytopes, coxeter orbifolds and torus actions, *Duke Math. J.* 62 (1991), 417-451.
- [6] M.W. Davis, T. Januszkiewicz, and R.Scott, Nonpositive curvature of blow-ups, Selecta Math. (N.S.) 4 (1998), 491-547.
- [7] M.W. Davis, T. Januszkiewicz, and R.Scott, Fundamental groups of blow-ups, Advances in mathematics. 177 (2003), 115-179.
- [8] F.T. Farrell, The Borel conjecture, *Topology of high-dimensional manifolds*. (Trieste, 2001), 225-298.
- [9] A. Hatcher, Spaces of Incompressible Surfaces, Mathematics. (1999).
- [10] J. Hempel, 3-manifolds, Annals of Mathematics studies. 86 (1978).
- [11] F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, *Ann. of Math.* (2)87 (1968), 56-88.
- [12] S. Kuroki, M. Masuda, and L. Yu, Small covers, infra-solvmanifolds and curvature, *Forum mathematicum*. 27(5)(2015), 2981-3004
- [13] L. Yu, Crystallographic groups with cubic normal fundamental domain, RIMS Kôkyûroku Bessatsu, B39, Res. Inst. Math. Sci. (RIMS), Kyoto. (2013), 233-244