correlation...one

TECH FOR JOBS

Dunning-Kruger Effect

CONFIDENCE

KNOWLEDGE

Analytics Paradigm

Regardless of type or industry, this paradigm provides a repeatable pathway for effective data problem solving.

<u>Ooh...Coding! (Sort Of)</u>

Excel introduces you to a sort of proto-programming. When you write scripts, you will rely on functions (methods) that do something to or with arguments.

Ooh...Coding! (Sort Of)

When we reference a range or a set of ranges, Excel is given a set of variable inputs. Excel will determine the actual values of these inputs prior to executing the function.

Ooh...Coding! (Sort Of)

What about this example?

= SUM(AVG(F4:F6), AVG(G4:G6))

There are multiple ways to select data in a formula

Most of us learned to select a range of cells to input into a function

=SUM (A1:A10)

There are multiple ways to select data in a formula

But we can name a range of values to make interpreting formulas easier!

Conditionals present a way to control the flow of logic based on certain criteria being met. This is a **core building block** of all languages.

=IF(D2>5,TRUE,FALSE)

Current reference (description):	Changes to:
\$A\$1 (absolute column and absolute row)	\$A\$1 (the reference is absolute)
A\$1 (relative column and absolute row)	C\$1 (the reference is mixed)
\$A1 (absolute column and relative row)	\$A3 (the reference is mixed)
A1 (relative column and relative row)	C3 (the reference is relative)

Ooh...Coding! (Sort Of)

=IF(AND(D2>5, D2<10), TRUE, FALSE)

Nesting conditionals are powerful, but can become convoluted very quickly!

Assume this table is gigantic. How would we **retrieve** the population of a specific planet for use in another formula?

Planet	Population
Zeelo	5020
Merinoa	380
Cardboard Box	2
Asteroid 9	95

Assume this table is gigantic. How would we **retrieve** the population of a specific planet for use in another formula?

=vlookup(<value>, <full table>, <column to retrieve>, <match parameter>)

Planet	Population
Zeelo	5020
Merinoa	380
Cardboard Box	2
•••	
Asteroid 9	95

What will this yield? =vlookup("Asteroid 9", Planets, 3, FALSE)

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
•••	•••	
Asteroid 9	95	Asterisks

What will this yield? =vlookup("Asteroid 9", Planets, 3, FALSE)

Planet	Population	Species
Zeelo	5020	Zoltans
Merinoa	380	Murphies
Cardboard Box	2	Hambones
•••		
Asteroid 9	95	Asterisks