

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International Advanced Level In Further Pure Mathematics F2 (WFM02/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code WFM02_01_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2+bx+c)=(x+p)(x+q)$$
, where $|pq|=|c|$, leading to x = ...

$$(ax^2+bx+c)=(mx+p)(nx+q), \text{ where } |pq|=|c| \text{ and } |mn|=|a| \text{ , leading to } x=\dots$$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number	Scheme	Notes	Marks
1. Way 1	$x^{2} - 6 = x \Longrightarrow x = \dots$ \mathbf{or} $-x^{2} + 6 = x \Longrightarrow x = \dots$	Attempts to solve $x^2 - 6 = x$ or $6 - x^2 = x$ or equivalent equations/inequalities e.g. $x^2 - x - 6 > 0$ so $x =$	M1
	$x^{2} - 6 = x \Rightarrow x = \dots$ and $-x^{2} + 6 = x \Rightarrow x = \dots$	Attempts to solve $x^2 - 6 = x$ and $6 - x^2 = x$ or equivalent equations/inequalities e.g. $x^2 + x - 6 > 0$ so $x =$	M1
	$(x-3)(x+2) = 0 \Rightarrow (x = -2), x = 3$ $(x+3)(x-2) = 0 \Rightarrow (x = -3), x = 2$	x = 2 and $x = 3$ seen as two roots (the other roots do not need to be seen and can be ignored if present)	A1
	x = 2, x	=3⇒	
	their final answer but if any other	only used to form at least one inequality for er values of x are used score M0. revious method marks.	dM1
	x < 2		
	or $x > 3$	One correct region. Allow equivalent notation e.g. $(-\infty, 2)$, $(3, \infty)$.	A1
		Both correct regions. Allow	
	x < 2	equivalent notation e.g. $(-\infty, 2)$,	
	and	$(3, \infty)$. Ignore what they have	A1
	x > 3		
		between their inequalities e.g. allow "or", "and", "," etc. but not ∩	
		or, and, , etc. but not i	(6)
Way 2	$(x^2-6)^2 = x^2 \Rightarrow x^4-12x^2+36 = x^2$	Square both sides and attempts to expand to obtain a quartic equation	M1
	$x^{4} - 13x^{2} + 36 = 0 \Rightarrow x^{2} = \dots$ $\Rightarrow x = \dots$	Correct attempt to solve quadratic in x^2 to obtain values for x – the usual rules can be applied if necessary	M1
	x = 2, (-2), 3, (-3)	x = 2 and $x = 3$ seen as two roots (the other roots do not need to be seen and can be ignored if present)	A1
	x = 2, x	= 3 ⇒	
	their final answer but if any other	only used to form at least one inequality for er values of x are used score M0. revious method marks.	dM1
	x < 2		
	or $x > 3$	One correct region. Allow equivalent notation e.g. $(-\infty, 2)$, $(3, \infty)$.	A1
		Both correct regions. Allow	
	x < 2	equivalent notation e.g. $(-\infty, 2)$,	
	and	$(3, \infty)$. Ignore what they have	A1
	x > 3		
		between their inequalities e.g. allow "or", "and", "," etc. but not ∩	
		52 , and , , 500. Out HOL1 1	(6)
			Total 6

Question			
Number	Scheme	Notes	Marks
2 Way 1	$w = \frac{1}{z+1} \Rightarrow z = \frac{1-w}{w}$	Makes z the subject and obtains $z = \frac{\pm 1 \pm w}{w}$	M1
	$z = \frac{1 - (u + iv)}{u + iv} \times \frac{u - iv}{u - iv}$	Replaces w with $u + iv$ and multiplies top and bottom by complex conjugate of their denominator. This statement is sufficient.	M1
	$x = 0 \Rightarrow \frac{u - (u^2 + v^2)}{u^2 + v^2} = 0$	Equates real part to zero	M1
	$\Rightarrow u^2 + v^2 - u = 0$	Correct equation connecting u and v	A1 M1 on ePEN
	Centre $\left(\frac{1}{2},0\right)$ or radius $\frac{1}{2}$	One correct but must follow the use of a correct circle equation	Alcso
	Centre $\left(\frac{1}{2},0\right)$ and radius $\frac{1}{2}$	Both correct but must follow the use of a correct circle equation	Alcso
	(2)	1	
	(2) 2		(6)
Way 2	$z = iy \Rightarrow w = \frac{1}{iy + 1}$	Replaces z with iy	(6) M1
Way 2	1	7	
Way 2	$z = iy \Rightarrow w = \frac{1}{iy + 1}$	Replaces z with iy Multiplies top and bottom by complex conjugate of denominator. This statement is	M1
Way 2	$z = iy \Rightarrow w = \frac{1}{iy+1}$ $u + iv = \frac{1}{iy+1} \times \frac{1-iy}{1-iy}$	Replaces z with i y Multiplies top and bottom by complex conjugate of denominator. This statement is sufficient. $w=u+iv$ and equates real or imaginary parts to obtain either u	M1 M1
Way 2	$z = iy \Rightarrow w = \frac{1}{iy+1}$ $u + iv = \frac{1}{iy+1} \times \frac{1 - iy}{1 - iy}$ $u = \frac{1}{1+y^2} \text{ or } v = \frac{-y}{1+y^2}$	Replaces z with iy Multiplies top and bottom by complex conjugate of denominator. This statement is sufficient. w=u+iv and equates real or imaginary parts to obtain either u or v in terms of y Correct equation connecting u and	M1 M1 M1 A1 M1 on
Way 2	$z = iy \Rightarrow w = \frac{1}{iy+1}$ $u + iv = \frac{1}{iy+1} \times \frac{1 - iy}{1 - iy}$ $u = \frac{1}{1+y^2} \text{ or } v = \frac{-y}{1+y^2}$ $\Rightarrow v^2 + u^2 = u$	Replaces z with iy Multiplies top and bottom by complex conjugate of denominator. This statement is sufficient. w=u+iv and equates real or imaginary parts to obtain either u or v in terms of y Correct equation connecting u and v One correct but must follow the	M1 M1 A1 M1 on ePEN
Way 2	$z = iy \Rightarrow w = \frac{1}{iy+1}$ $u + iv = \frac{1}{iy+1} \times \frac{1 - iy}{1 - iy}$ $u = \frac{1}{1 + y^2} \text{ or } v = \frac{-y}{1 + y^2}$ $\Rightarrow v^2 + u^2 = u$ Centre $\left(\frac{1}{2}, 0\right)$ or radius $\frac{1}{2}$	Replaces z with iy Multiplies top and bottom by complex conjugate of denominator. This statement is sufficient. w=u+iv and equates real or imaginary parts to obtain either u or v in terms of y Correct equation connecting u and v One correct but must follow the use of a correct circle equation One correct but must follow the	M1 M1 M1 A1 M1 on ePEN A1cso

Question Number	Scheme	Notes	Marks
3(a)	$\frac{2}{(r-1)(r+1)} \equiv \frac{A}{(r-1)} + \frac{B}{(r+1)}$		
	$\frac{2}{(r-1)(r+1)} = \frac{A}{(r-1)} + \frac{B}{(r+1)}$ $\frac{2}{(r-1)(r+1)} = \frac{1}{(r-1)} - \frac{1}{(r+1)}$	Oe e.g. allow $\frac{1}{(r-1)} + \frac{-1}{(r+1)}$ Must be in terms of r .	B1
	Do not allow this mark for just finding their mark to be recovered in (b) if the <u>corr</u>	r constants e.g. $A = 1$, $B = -1$ but allow this	
(b)	To score in (b) they must be using partia	al fractions of the form $\frac{A}{(r-1)} + \frac{B}{(r+1)}$	(1)
	$\sum_{r=2}^{n} = \left(\frac{1}{1} - \frac{1}{3}\right) + \left(\frac{1}{2} - \frac{1}{4}\right) + \dots$ Attempts at least the first 2 groups of which may be implied by their non-c Allow other letters for <i>n</i> (most likely to below the below the below the limits of can be ignored for this mark as long as a second to the limits of t	terms and the last 2 groups of terms cancelling fractions identified below to be r) except for the final mark – see tow the summation e.g. $r = 0$, $r = 1$, these	M1
	n are	1, $\frac{1}{2}$ (or $\frac{3}{2}$) identified as the only constant term(s). Follow through their partial fractions so allow	A1ft M1 on ePEN
	$\sum_{r=2}^{n} \frac{2}{r^2 - 1} = 1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{(n+1)}$	$\frac{their A}{1}, \frac{their A}{2}$ $-\frac{1}{n}, -\frac{1}{(n+1)}$ identified as the only algebraic terms. Follow through their partial fractions so allow $\frac{their B}{n}, \frac{their B}{n+1}$	A1ft
	$=\frac{3n(n+1)-2(n+1)-2n}{2n(n+1)}$	Attempts common denominator from terms of the form $A, \frac{B}{n}, \frac{C}{n+1}$ only. Must see $n(n+1)$ in the denominator and an unsimplified quadratic expression in the numerator. Dependent on the first method mark.	d M1
	$= \frac{3n^2 - n - 2}{2n(n+1)} = \frac{(3n+2)(n-1)}{2n(n+1)} *$	Cso. No errors seen but see note below.	Alcso
	Note: If extra terms were considered for 1), allow a full recovery if the corre	ect constant terms are 'extracted'.	
	Some candidates attempt $\sum_{r=1}^{n} \frac{2}{r^2 - 1} - \sum_{r=1}^{1} \frac{2}{r^2 - 1}$ and the same ruling applies as the		
	term for $r = 1$ effectively cancels out, lea	aving the correct non-cancelling terms.	
			(5)

3(c)	$3n 2 (3 \times 3n + 2)(3n - 1)$				
	$S_{3n} = \sum_{r=2}^{3n} \frac{2}{(r-1)(r+1)} = \frac{(3 \times 3n + 2)(3n-1)}{2 \times 3n(3n+1)}$	B1			
	Correct, possibly unsimplified, expression for S_{3n} using the given result in (b)				
	$S_{3n} - S_{n-1} = \frac{(3 \times 3n + 2)(3n - 1)}{2 \times 3n(3n + 1)} - \frac{(3(n - 1) + 2)(n - 2)}{2(n - 1)n}$				
	$2 \times 3n(3n+1)$ $2(n-1)n$	M1			
	Attempts $S_{3n} - S_{n-1}$ using the given result in (b)				
	If there is any doubt about the " S_{n-1} ", at least 3 of the n 's should be replaced by $n-1$				
	(9n+2)(3n-1)(n-1)-3(3n+1)(3n-1)(n-2)				
	$=\frac{(9n+2)(3n-1)(n-1)-3(3n+1)(3n-1)(n-2)}{6n(3n+1)(n-1)}$				
	$=\frac{(3n-1)(9n^2-7n-2-3(3n^2-5n-2))}{6n(3n+1)(n-1)}$				
	$-{6n(3n+1)(n-1)}$	dM1			
	Attempts common denominator involving n , $3n + 1$ and $n - 1$ and attempts a factor of $3n - 1$ in the numerator or vice versa. Note that the numerator may be expanded completely to give $24n^2 + 4n - 4$ and the $3n - 1$ then attempted as a factor.				
	Dependent on the previous mark.				
	$= \frac{2(3n-1)(2n+1)}{3n(3n+1)(n-1)}$ Cao	A1			
	3n(3n+1)(n-1)	711			
		(4)			
	If (c) is attempted using the method of differences (i.e. repeating the work in (b)) then this scores 0/4 in part (c).				
	then this scores 0/4 in part (c).	Total 10			

Question Number	Scheme	Notes	Marks
4.	$(\cos x)\frac{\mathrm{d}y}{\mathrm{d}x} + (\sin x)y = 2\cos^3 x \sin x - 3$		
(a)	$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tan x)y = 2\cos^2 x \sin x - 3\sec x$	Attempt to divide through by cos <i>x</i> . If the intention is not clear must see at least 2 terms divided by cos <i>x</i> .	M1
	Integrating Factor: $I = e^{\int \tan x dx}$	$I = e^{\int \pm their P(x) (dx)}$ from $\frac{dy}{dx} + Py =$ Dependent on the first method mark. May be implied by use of sec x as the integrating factor.	d M1
	$I = \sec x$	$\frac{1}{\cos x}\operatorname{or}(\cos x)^{-1}\operatorname{or}\sec x$	A1
	$y \sec x = \int \sec x (2 \cos^2 x)$ o $\frac{d}{dx} (y \sec x) = \sec x (2 \cos^2 x)$ $y \times their I = \int Q(x) \times their I(dx)$ If there is any doubt, must multiply	or $\frac{d}{dx}(y \times their I) = Q(x) \times their I$	M1
	$\int 2\cos x \sin x dx = \sin^2 x$ Must follow the pre	2	A1 M1 on ePEN
	$\int -3\sec^2 x dx$ Must follow the pre		A1
	Examples of a convergence of $y = \cos x \sin^2 x - \cos x \cos^2 x$ $y = -\frac{1}{2} \cos x \cos 2x$ $y = -\cos^3 x - 3$ Follow through their integration and the with the constant dealt with correctly a	correct answer: $-3\sin x + k\cos x$ or $x - 3\sin x + k\cos x$ or $3\sin x + k\cos x$ or $3\sin x + k\cos x$ eir integrating factor but must be $y =$	Alft
			(7)

(b)	$3\sqrt{3} = \frac{1}{2} \cdot \left(\frac{\sqrt{3}}{2}\right) - 3\frac{\sqrt{3}}{2} + k\frac{1}{2} \Rightarrow k = \left(9\sqrt{3} - \frac{3}{4}\right)$ $3\sqrt{3} = -\frac{1}{2} \cdot \frac{1}{2}\left(-\frac{1}{2}\right) - 3\frac{\sqrt{3}}{2} + k\frac{1}{2} \Rightarrow k = \left(9\sqrt{3} - \frac{1}{4}\right)$ $3\sqrt{3} = \left(-\frac{1}{2}\right)^3 - 3\frac{\sqrt{3}}{2} + k\frac{1}{2} \Rightarrow k = \left(9\sqrt{3} + \frac{1}{4}\right)$ Substitutes the given conditions into their $y = f(x)$ and attempts to find their constant			
	$k = 9\sqrt{3} - \frac{3}{4}$ or $9\sqrt{3} - \frac{1}{4}$ or $9\sqrt{3} + \frac{1}{4}$ Correct constant for their method	A1		
	$y = \cos x \sin^2 x - 3\sin x + \left(9\sqrt{3} - \frac{3}{4}\right)\cos x$			
	or $y = -\frac{1}{2}\cos x \cos 2x - 3\sin x + \left(9\sqrt{3} - \frac{1}{4}\right)\cos x$ or $y = -\cos^3 x - 3\sin x + \left(9\sqrt{3} + \frac{1}{4}\right)\cos x$			
	Or equivalent correct answer. Must be $y =$	(3)		
		Total 10		

Question Number	Scheme	Notes	Marks	
5	$-8-8i\sqrt{3}$			
(a)	$r = \sqrt{(8)^2 + (8\sqrt{3})} = 16$			
	$\theta = -\pi + \tan^{-1}\left(\frac{8\sqrt{3}}{8}\right)$ or e.g. $\theta = -\frac{\pi}{2} - \tan^{-1}\left(\frac{8}{8\sqrt{3}}\right)$	Correct strategy for the argument (may see correct value only from calculator) or can be implied by a correct argument not in range e.g. $\frac{4\pi}{3}$	M1	
	$16\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right)$	Correct form and correct values. Condone careless use of brackets as long as the intention is clear.	A1 (2)	
(b)	Note that in (b) the candidate ma	 av legitimately work with e.g.	(3)	
	$16\left(\cos\left(\frac{2\pi}{3}\right)\right)$			
	$z^4 = 16 \left(\cos \left(2k\pi - \frac{2\pi}{3} \right) \right)$, (),	M1	
	Correct use of $2k\pi$ seen or implied. This may be implied by the above expression seen or used with any non-zero integer value (positive or negative) for k			
	$z = 16^{\frac{1}{4}} \left(\cos \left(\frac{2k\pi}{4} - \frac{2\pi}{12} \right) + i \sin \left(\frac{2k\pi}{4} - \frac{2\pi}{12} \right) \right)$		dM1	
	Dependent on the previous mark.			
	$z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right), 2\left(\cos\left(-\frac{\pi}{6}\right)\right)$			
	$z = 2\left(\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right), 2\left(\cos\left(\frac{5\pi}{3}\right) - i\sin\left(\frac{5\pi}{3}\right)\right), 2e^{\frac{\pi}{3}i}, 1 + i\sqrt{3}$			
	$z = 2\left(\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)\right), \ 2\left(\cos\left(\frac{5\pi}{6}\right)\right)$	$\left(\frac{7\pi}{6}\right) - i\sin\left(\frac{7\pi}{6}\right)$, $2e^{\frac{5\pi}{6}i}$, $i - \sqrt{3}$		
	$z = 2\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right), 2\left(\cos\left(\frac{2\pi}{3}\right) - i\sin\left(\frac{2\pi}{3}\right)\right), 2e^{-\frac{2\pi}{3}i}, -1 - i\sqrt{3}$			
	1 correct root in any form		A1	
	All 4 roots correct in any form (<u> </u>	A1	
	All 4 roots in correct surd form or ex The A marks must follow correct worl		A1	
	correct roots are obta	· · · · · · · · · · · · · · · · · · ·		
	So must follow a correct answer in part (a			
	the require	, .		
			(5)	
			Total 8	

Question

Special Case in (b):

Candidates who do not consider $\pm 2k\pi$ at any stage and apply De Moivre correctly to get

$$z^{4} = 16\left(\cos\left(-\frac{2\pi}{3}\right) + i\sin\left(-\frac{2\pi}{3}\right)\right) \Rightarrow z = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right)\left(= -i + \sqrt{3}\right)$$

Can score a B1 special case and this should be awarded as the first A mark on ePEN

Question Number	Scheme	Notes	Marks
6.	$y = \frac{1}{\sqrt{1+x^2}}$		
	√I-		
		$\frac{dy}{dx} = kx \left(1 + x^2\right)^{-\frac{3}{2}}$ $\frac{dy}{dx} = -x \left(1 + x^2\right)^{-\frac{3}{2}}. \text{ Allow in any}$	M1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -x(1+x^2)^{-\frac{3}{2}}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = -x\left(1+x^2\right)^{-\frac{3}{2}}.$ Allow in any	A1
		correct unsimplified form and isw if necessary.	711
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)_{x=1} = -\frac{1}{2\sqrt{2}}$	Correct value for $\frac{dy}{dx}$ at $x = 1$. Allow	A 1
	$\left(-\left(2\right)^{-\frac{3}{2}}, -\frac{\sqrt{2}}{4} \operatorname{arecommon}\right)$	for any correct exact numerical possibly unsimplified expression and isw if necessary.	A1
	$\frac{dy}{dx} = -x(1+x^2)^{-\frac{3}{2}} \Rightarrow \frac{d^2y}{dx^2} = -(1+x^2)^{-\frac{3}{2}}$	1	
	or $\frac{dy}{dx} = -\frac{x}{(1+x^2)^{\frac{3}{2}}} \Rightarrow \frac{d^2y}{dx^2} = \frac{-(1+x^2)^{\frac{3}{2}} + \frac{3}{2}x \cdot 2x(1+x^2)^{\frac{1}{2}}}{(1+x^2)^3} \left[= \frac{2x^2 - 1}{(1+x^2)^{\frac{5}{2}}} \right]$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{x}{(1+x^2)^{\frac{3}{2}}} \Longrightarrow \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = -\frac{x}{(1+x^2)^{\frac{3}{2}}}$	$\frac{2}{(1+x^2)^3} = \left[= \frac{2x}{(1+x^2)^{\frac{5}{2}}} \right]$	d M1A1
	d M1: Product rule: $\frac{d^2y}{dx^2} = \alpha$	$(1+x^2)^{-\frac{3}{2}} + \beta x^2 (1+x^2)^{-\frac{5}{2}}$	ulviiAi
	Quotient rule: $\frac{d^2y}{dx^2} = \frac{\alpha(1-x)^2}{2\alpha(1-x)^2}$	$\frac{(1+x^2)^{\frac{3}{2}} + \beta x^2 (1+x^2)^{\frac{1}{2}}}{(1+x^2)^3}$	
	Dependent on the fir	$(1 \pm \lambda)$	
	A1: Fully correct se		
	Allow in any correct unsimplifie		
	$\left(\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\right)_{x=1} = \frac{1}{4\sqrt{2}}$	Correct value for $\frac{d^2y}{dx^2}$ at $x = 1$. Allow	
	$\left(-(2)^{-\frac{3}{2}}+3(2)^{-\frac{5}{2}},\frac{\sqrt{2}}{8} \operatorname{arecommon}\right)$	for any correct exact numerical possibly unsimplified expression and isw if necessary.	A1
	f(x) = f(1) + (x-1)f'(1)	$\left(x-1\right)^{2} f''(1) + \dots$	
	$\left(\frac{1}{\sqrt{1+x^2}}\right) = \frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}$	$(x-1) + \frac{1}{8\sqrt{2}}(x-1)^2$	M1A1
	Must see an attempt a	M1: Attempts f (1) and applies the correct Taylor series using their values. Must see an attempt at the first 3 terms.	
	If the general series is not quoted and their se A1: Correct expansion (allow equivalent s		
	(and it squittered	T	(8)
			Total 8

Question Number	Scheme	Notes	Marks
7.	$x^2 \frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - 2x \frac{\mathrm{d}y}{\mathrm{d}x} + ($	$(2-x^2)y = 2x^3$	
(a)	$y = vx \Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}v}{\mathrm{d}x}x + v$	Correct expression	B1
	$d^2y = d^2v = 2 dv$	$\frac{d^2 y}{dx^2} = \alpha x \frac{d^2 v}{dx^2} + \beta \frac{dv}{dx}$	M1
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} x + 2\frac{\mathrm{d}v}{\mathrm{d}x}$	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}^2 v}{\mathrm{d}x^2} x + 2\frac{\mathrm{d}v}{\mathrm{d}x}$	A1
	$x^{2} \left(\frac{d^{2}v}{dx^{2}} x + 2 \frac{dv}{dx} \right) - 2x \left(\frac{dv}{dx} \right)$	$(x+v)+(2-x^2)vx=2x^3$	M1
	Substitutes their $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ into the given e	equation to give an equation in x and v only	
	$\frac{\mathrm{d}^2 v}{\mathrm{d}x^2} - v = 2 *$	Correct proof with no errors with at least one more line of working (usually $x^{3} \frac{d^{2}v}{dx^{2}} - x^{3}v = 2x^{3}$)	A1
		dx^2	(5)
(b)	$m^2 - 1 = 0 \Rightarrow m = \pm 1$	Attempts to solve " m " ² $-1=0$	M1
	$(v=)Ae^x + Be^{-x}$	Correct CF ($v =$ not required)	A1
	PI is -2	Correct PI	B1
	$v = CF + PI = \dots$	Adds their CF and their non-zero PI to find v in terms of x . Must be $v =$ here unless this is implied by subsequent work.	M1
	(y=)x(CF+PI)	Multiplies their v by x to find y in terms of x . (Can be awarded if no PI is found or their PI = 0)	M1
	$y = Axe^x + Bxe^{-x} - 2x$	Correct expression. Must be $y = \dots$	A1
()			(6)
(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = Ax\mathrm{e}^x + A\mathrm{e}^x - Bx\mathrm{e}^{-x} + B\mathrm{e}^{-x} - 2$	Differentiate their GS wrt <i>x</i> using the Product Rule	M1
	$x = 1, y = e \Rightarrow e = Ae + Be^{-1} - 2$ and $x = 1, \frac{dy}{dx} = e$ $\Rightarrow e = Ae + Ae - Be^{-1} + Be^{-1} - 2$	Substitutes the given values in for y and $\frac{dy}{dx}$ to obtain 2 equations	M1
	$A = \frac{e+2}{2e}, B = \frac{e(e+2)}{2}$	Both values correct or exact equivalent	A1
	$y = \left(\frac{e+2}{2e}\right)xe^{x} + \left(\frac{e(e+2)}{2}\right)xe^{-x} - 2x$	Correct expression (or equivalent). Must be $y =$	A1
			(4)
			Total 15

Question Number	Scheme	Notes	Marks
8.	$r = \sin \theta + \cos \theta$	$\cos 2\theta$	
(a)	$y = r\sin\theta = \sin^2\theta + \sin\theta\cos 2\theta$		
	or e.g.	Correct expression	B1
	$y = \sin\theta (\sin\theta + \cos 2\theta)$		
	$\frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\sin\theta\cos\theta + \cos\theta\cos\theta$	$\cos 2\theta - 2\sin \theta \sin 2\theta$	
	M1: Correct use of Chain and Product Rules		M1A1
	expression A1: Correct differ		
	$6\sin^2\theta - 2\sin\theta - 1 = 0$	Correct quadratic	A1
	$\sin \theta = \frac{2 \pm \sqrt{28}}{12} \Rightarrow \text{ at } P, \sin \theta = \frac{2 + \sqrt{28}}{12} = \frac{1}{12}$	12	
	$r = \sin \theta + \cos 2\theta = \frac{2 + \sqrt{28}}{12}$	$\frac{8}{1} + \cos(2 \times 0.653)$	
	A complete method to find OP . Solves their value for θ and uses the given exp		
	or		
	$\sin \theta = \frac{2 \pm \sqrt{28}}{12} \Rightarrow \text{at } P, \sin \theta = \frac{2 + \sqrt{28}}{12} \Rightarrow \cos 2\theta = 1 - 2\left(\frac{2 + \sqrt{28}}{12}\right)^2$		dM1
	$r = \sin \theta + \cos 2\theta = \frac{1 + \sqrt{7}}{6} + 1 - 2\left(\frac{1 + \sqrt{7}}{6}\right)^2$		
	A complete method to find OP . Solves their 3TQ in sin θ , proceeds to obtain a		
	value for $\cos 2\theta$ using a correct identity and adds their $\sin \theta$ value to find OP .		
	Dependent on the first		A 1
	OP = r = 0.8692	awrt 0.869	A1
			(6)

(b)	$\left(\sin\theta + \cos 2\theta\right)^2 = \sin^2\theta + 2$	$2\sin\theta\cos2\theta+\cos^22\theta$	
	Attempt to find r^2 .		M1
	Allow poor squaring as long as there is t		
	$\int \sin^2 \theta \ d\theta = \frac{1}{2}\theta - \frac{1}{4}\sin 2\theta$	Attempts to integrate $\sin^2\theta$ to obtain $\alpha\theta + \beta \sin 2\theta$ and attempts to integrate $\cos^2 2\theta$ to obtain $\alpha\theta + \beta \sin 4\theta$. This may be	d M1
	$\int \cos^2 2\theta d\theta = \frac{1}{2}\theta + \frac{1}{8}\sin 4\theta$	implied by an expression of the form $\alpha\theta + \beta \sin 2\theta + \gamma \sin 4\theta$ Dependent on the first method mark.	u .v.r
	$\int 2\sin\theta\cos 2\theta d\theta = \int 2\sin\theta\cos 2\theta d\theta$		
	$= \int (4\sin\theta\cos^2\theta - 2\sin\theta) d$	$\theta = -\frac{4}{3}\cos^3\theta + 2\cos\theta$	
	or	-	d M1
	$\int 2\sin\theta\cos 2\theta d\theta = \int (\sin 3\theta - \sin 3\theta) d\theta = \int (\sin 3\theta - \sin 3\theta) d\theta$	$\operatorname{n}\theta\big)\mathrm{d}\theta = -\frac{1}{3}\cos 3\theta + \cos \theta$	u ivi i
	Fully correct strategy for integ	grating $(2)\sin\theta\cos2\theta$	
	Dependent on the firs		
	$\int r^2 d\theta = \frac{1}{2} \left(\theta - \frac{1}{2} \sin 2\theta \right) + \cos \theta - \frac{1}{2} \sin 2\theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} \sin 2\theta \right) + \cos \theta = \frac{1}{2} \left(\frac{1}{2} $		
	$\int r^2 d\theta = \frac{1}{2} \left(\theta - \frac{1}{2} \sin 2\theta \right) - \frac{4}{3} \cos^3 \theta$ Fully correct in	2 (')	A1
	,	Fully correct method using a correct formula and evidence of use	
	$\frac{1}{2}\int_0^{\frac{\pi}{2}}r^2\mathrm{d}\theta = \dots$	of the limits $\frac{\pi}{2}$ and 0 with subtraction. Dependent on the first and at least one of the subsequent method marks.	dd M1
	$=\frac{\pi}{4}-\frac{1}{3}$	Correct exact area. Allow equivalent exact expressions e.g. $\frac{1}{2} \left(\frac{\pi}{2} - \frac{2}{3} \right)$	A1
			(6
—		+	Total 12