ICHO-1981.Problem-6

 V_2O_5 katalizatoru səthində izopropanolun katalitik parçalanması zamanı aşağıdakı sxemdəki məhsullar əmələ gəlir və 1ci dərəcəli kinetik tənliyə uyğundur.

590K-də	reaksiyanın	başlamasından 5	saniyə sonra reaksiya	qarışığındakı
maddələri	n	qatılıqları	aşağıdakı	kimidir:
C_A	=	28.2	mmol	dm ⁻³
C_{B}	=	7.8	mmol	dm ⁻³
$C_{\rm C}$	=	8.3	mmol	dm ⁻³
C_D	=	1.8	mmol	dm ⁻³

Suallar:

- 1. Sistəmdə C_3H_7OH -un başlanğıc qatılığı (c_0) neçədir ?
- 2. Aşağıdakı proses üçün sürət sabitinin (k) qiyməti neçədir

C₃H₇OH→məhsullar

- $3.C_3H_7OH$ qatılığının c=c $_0/2$ dəyərinə çatacağı zaman intervalı ($\tau_{1/2}$) neçədir ?
- 4. Sürət sabitləri k_1, k_2 və k_3 -ün qiymətləri neçədir ?
- $5.t = \tau_{1/2}$ olan zaman C_B, C_C və C_D -in qiymətləri neçədir ?

Birinci dərəcəli reaksiya üçün A konsentrasiyasının t vaxtı ilə dəyişməsini təsvir edən tənlik aşağıdakı kimidir: $C_A = C_0 \times \exp(-k \times t)$ və ya $\log(C_0/C_A) = 0.4343 \times k \times t$ və ya $\ln(C_0/C_A) = k \times t$

Aldığınız cavablarla cədvəli doldurun.

1	c ₀ =
2	k =
3	71/2
4	k ₁ =
	$k_2 = k_3 =$
	k ₃ =
5	c _B =
	$c_{\rm C} = c_{\rm D} = c_{\rm D}$
	c _D =

Həllin tərcüməsi:

6.1
$$c_0 = c_A + c_B + c_C + c_D = 28.2 + 7.8 + 8.3 + 1.8 = 46.1 \text{ mmol dm}^3$$

6.2
$$k = \frac{1}{0.4343 t} \log \left(\frac{c_0}{c_A} \right) = \frac{1}{0.4343 \times 5} \log \left(\frac{46.1}{28.2} \right) = 0.0983 s^{-1}$$

6.3
$$t = \tau_{1/2} = \frac{1}{0.4343 \, k} \log \frac{c_0}{2} = \frac{1}{0.4343 \times 0.0983} \log 2 = 7.05 \text{ s}$$

6.4

$$v_1 = \frac{\Delta c_B}{\Delta t} = k_1 c_A$$

$$v_2 = \frac{\Delta c_C}{\Delta t} = k_2 c_A$$

$$v_3 = \frac{\Delta c_D}{\Delta t} = k_3 c_A$$

$$v = v_1 + v_2 + v_3 = k c_A$$

(1)
$$k_1 + k_2 + k_3 = k = 0.0983 \text{ s}^{-1}$$

(2)
$$\frac{\Delta c_{\rm B}}{\Delta c_{\rm C}} = \frac{c_{\rm B} - 0}{c_{\rm C} - 0} = \frac{c_{\rm B}}{c_{\rm C}} = \frac{k_1}{k_2} = \frac{7.8}{8.3} = 0.940$$

(3)
$$\frac{\Delta c_{\rm B}}{\Delta c_{\rm D}} = \frac{c_{\rm B} - 0}{c_{\rm D} - 0} = \frac{c_{\rm B}}{c_{\rm D}} = \frac{k_{\rm 1}}{k_{\rm 3}} = \frac{7.8}{1.8} = 4.33$$

From equations (1) – (3):

 $k_1 = 0.0428 \text{ s}^{-1}$

 $k_2 = 0.0455 \text{ s}^{-1}$

 $k_3 = 0.00988 \text{ s}^{-1}$

6.5 At
$$t = \tau_{1/2} = 7.05$$
 s

(4)
$$c_A = \frac{c_0}{2} = c_B + c_C + c_D = 23.05 \text{ mmol dm}^{-3}$$

From equations (2) - (4):

 $c_{\rm B} = 10.0 \; {\rm mmol} \; {\rm dm}^{-3}$

 $c_{\rm C} = 10.7 \; {\rm mmol} \; {\rm dm}^{-3}$

 $c_{\rm D}$ = 2.32 mmol dm⁻³

Tərcüməçinin öz həlli:

1)
$$(0=(x_1)+[C_0]+(C_0]+[C_0]=28,2+7,8+$$
 $+8,7+1,8=46,1$ mmolding

2) $t=5$ san $[x_1]=28,2$ mmul/dm³
 $(0=46,1)$ mmolding

 $(0=46,1$

Translated, solved and complied by, **Nihad Hajizada**