IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

11.08.2025

Hoy...

Hoy...

Lógica proposicional: problema de satisfacibilidad, modelamiento lógico, sat solvers.

Definición (Satisfacibilidad)

Una fórmula proposicional ϕ se llama satisfacible si existe una asignación de sus variables a 0s y 1s tal que ϕ toma valor 1.

Definición (Satisfacibilidad)

Una fórmula proposicional ϕ se llama satisfacible si existe una asignación de sus variables a 0s y 1s tal que ϕ toma valor 1.

¿Y en términos de equivalencia?

Definición (Satisfacibilidad)

Una fórmula proposicional ϕ se llama satisfacible si existe una asignación de sus variables a 0s y 1s tal que ϕ toma valor 1.

¿Y en términos de equivalencia?

Proposición

Una fórmula proposicional ϕ es satisfacible si y sólo si ϕ

Definición (Satisfacibilidad)

Una fórmula proposicional ϕ se llama satisfacible si existe una asignación de sus variables a 0s y 1s tal que ϕ toma valor 1.

¿Y en términos de equivalencia?

Proposición

Una fórmula proposicional ϕ es satisfacible si y sólo si ϕ no es equivalente a 0.

Problema de satisfacibilidad ξ Es satisfacible? $(x \to \neg y) \to x$ Si, disamos X=1, y=1 Satisface φ

¿Es satisfacible?
$$(x \to \neg y) \to x$$

¿Es satisfacible? $(x \lor \neg y) \land (y \lor \neg z) \land (\neg x) \land z$
Para chalgen asign. 9th satisface
the nemos $Z = 1$, $X = 0$, $(0 \lor 7 \lor) = 1$, $(1 \lor 7) = 1$

¿Es satisfacible?
$$(x \rightarrow \neg y) \rightarrow x$$

¿Es satisfacible?
$$(x \lor \neg y) \land (y \lor \neg z) \land (\neg x) \land z$$

¿Es satisfacible?
$$(A \land B \land \neg A) \lor (D \land W \land \neg W) \lor (B \land \neg B)$$

¿Es satisfacible?
$$(x \rightarrow \neg y) \rightarrow x$$

¿Es satisfacible?
$$(x \vee \neg y) \wedge (y \vee \neg z) \wedge (\neg x) \wedge z$$

¿Es satisfacible?
$$(A \land B \land \neg A) \lor (D \land W \land \neg W) \lor (B \land \neg B)$$

¿Es satisfacible?
$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3)$$

$$(1 = Q) \quad X_2 = 1$$

¿Es satisfacible?
$$(x \rightarrow \neg y) \rightarrow x$$

¿Es satisfacible?
$$(x \lor \neg y) \land (y \lor \neg z) \land (\neg x) \land z$$

¿Es satisfacible?
$$(A \land B \land \neg A) \lor (D \land W \land \neg W) \lor (B \land \neg B)$$

¿Es satisfacible?
$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3)$$

Definición

Problema de satisfacibilidad es el siguiente problema algorítmico: dado una fórmula proposicional ϕ , decidir, si es satisfacible or no

¿Es satisfacible?
$$(x \rightarrow \neg y) \rightarrow x$$

¿Es satisfacible?
$$(x \lor \neg y) \land (y \lor \neg z) \land (\neg x) \land z$$

¿Es satisfacible?
$$(A \land B \land \neg A) \lor (D \land W \land \neg W) \lor (B \land \neg B)$$

¿Es satisfacible?
$$(x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2) \land (x_2 \lor x_3) \land (\neg x_2 \lor \neg x_3)$$

Definición

Problema de satisfacibilidad es el siguiente problema algorítmico: dado una fórmula proposicional ϕ , decidir, si es satisfacible or no (y si es, encontrar una asignación de las variables a 0s y 1s tal que ϕ toma valor 1, es decir, **asignación que satisface** ϕ).

Proposición

La fórmula $\phi = \bigvee_{i=1}^{n} \psi_i$ es satisfacible si y sólo si por lo menos una de las fórmulas ψ_1, \ldots, ψ_n es satisfacible.

Proposición

La fórmula $\phi = \bigvee_{i=1}^{n} \psi_i$ es satisfacible si y sólo si por lo menos una de las fórmulas ψ_1, \ldots, ψ_n es satisfacible.

Corolario

Problema de satisfacibilidad para DNFs se puede resolver en tiempo lineal.

Proposición

La fórmula $\phi = \bigvee_{i=1}^n \psi_i$ es satisfacible si y sólo si por lo menos una de las fórmulas ψ_1, \dots, ψ_n es satisfacible.

Corolario

Problema de satisfacibilidad para DNFs se puede resolver en tiempo lineal.

Proposición

La formula $\phi = \bigwedge_{i=1}^{n} \psi_i$ es satisfacible si y sólo si todas las fórmulas ψ_1, \dots, ψ_n son satisfacibles.

Proposición

La fórmula $\phi = \bigvee_{i=1}^n \psi_i$ es satisfacible si y sólo si por lo menos una de las fórmulas ψ_1, \ldots, ψ_n es satisfacible.

Corolario

Problema de satisfacibilidad para DNFs se puede resolver en tiempo lineal.

Proposición

La fórmula $\phi = \bigwedge_{i=1}^{n} \psi_i$ es satisfacible si y sólo si todas las fórmulas ψ_1, \dots, ψ_n son satisfacibles. WRONG!

$$(x \vee \neg y) \wedge (y \vee \neg z) \wedge (\neg x) \wedge z$$

Muchos problemas combinatorios se reducen al CNF-SAT – problema de satisfacibilidad para CNFs.

Muchos problemas combinatorios se reducen al CNF-SAT – problema de satisfacibilidad para CNFs.

Conjetura (P≠ NP)

No existe un algoritmo para CNF-SAT que trabaja en tiempo polinomial.

Muchos problemas combinatorios se reducen al CNF-SAT – problema de satisfacibilidad para CNFs.

Conjetura (P≠ NP)

No existe un algoritmo para CNF-SAT que trabaja en tiempo polinomial.

https://www.claymath.org/millennium-problems

Muchos problemas combinatorios se reducen al CNF-SAT – problema de satisfacibilidad para CNFs.

Conjetura (P≠ NP)

No existe un algoritmo para CNF-SAT que trabaja en tiempo polinomial.

https://www.claymath.org/millennium-problems https:

//en.wikipedia.org/wiki/List_of_NP-complete_problems

Definición

Una CNF se llama 2-CNF si cada cláusula tiene no más que 2 variables.

Definición

Una CNF se llama 2-CNF si cada cláusula tiene no más que 2 variables.

Por ejemplo, $(x \vee \neg y) \wedge (y \vee \neg z) \wedge (\neg x) \wedge z$

Definición

Una CNF se llama 2-CNF si cada cláusula tiene no más que 2 variables.

Por ejemplo, $(x \vee \neg y) \wedge (y \vee \neg z) \wedge (\neg x) \wedge z$

Definición

Una CNF se llama Horn-CNF si cada cláusula tiene no más que 1 variable sin negación.

Por ejemplo, $(\neg a \lor b \lor \neg c) \land c \land (\neg b \lor \neg a \lor \neg d)$

Definición

Una CNF se llama 2-CNF si cada cláusula tiene no más que 2 variables.

Por ejemplo, $(x \vee \neg y) \wedge (y \vee \neg z) \wedge (\neg x) \wedge z$

Definición

Una CNF se llama Horn-CNF si cada cláusula tiene no más que 1 variable sin negación.

Por ejemplo, $(\neg a \lor b \lor \neg c) \land c \land (\neg b \lor \neg a \lor \neg d)$

Teorema

2-CNF-SAT y Horn-CNF-SAT se puede resolver en tiempo polinomial.

Sat Solvers

Aunque CNF-SAT es probablemente muy difícil en el peor caso, casos prácticos en muchas instancias se puede resolver muy rápido a través de *Sat Solvers*.

Sat Solvers

Aunque CNF-SAT es probablemente muy difícil en el peor caso, casos prácticos en muchas instancias se puede resolver muy rápido a través de *Sat Solvers*. Ejercicio: resolver CNF-SAT para estas

¿Se puede colorear vértices de este grafo usando 3 colores tal que vértices adyacentes tengan colores distintos? Resolver en z3-solver

Mini-sudoku

Resolver este mini-sudoku en z3-sover

Variables: Cláusulas?

iGracias!