Process and Workflow of Data Visualization Part 2

John Keyser

Four Stages of a Visualization Project

- Formulating a brief
 - Definitions and requirements
- Working with data
 - Characteristics and qualities of data
- Establishing your editorial thinking
 - What will you show?
 - Bridge between data work and design work
- Developing your design solution
 - Creating the visualization itself

What is data?

- This is all the "stuff" we have to work with
- It can take many forms
 - Values/numbers
 - Of various types
 - Labels
 - Relationships
- What gives meaning to these forms are the semantics
 - How to interpret the forms what their meaning is
- There are a lot of different ways to think about and categorize data

Entity-Relationship Model

- One way to look at data; common in database modeling
- Entities are the things of interest
 - Can be abstract "things" ideas,
- Relationships describe how entities are related
 - Many types: causal, temporal, hierarchical, etc.
- Attributes are attached to entities and relationships
 - Can have many dimensions

Independent vs. Dependent Variables

- A useful way to think about data
- Independent variables:
 - In an experiment, a thing that changes by the experimenter
 - Entities, items, axes
 - e.g. person, location, parameters
- Dependent variables:
 - The things that are associated with some particular set of independent variables
 - Attributes, measurements, assigned values
 - e.g. color, temperature, name, return value

Taxonomy defined in 1946 *Science* article by statistician S.S. Stevens: "On the theory of scales of measurement":

- Categorical (nominal)
- Ordinal (ordered)
- Quantitative Interval
- Quantitative Ratio

- Categorical (nominal)
 - Discrete values
 - No defined ordering
 - e.g. chair/table/bed; quiz/homework/test
- Ordinal (ordered)
- Quantitative Interval
- Quantitative Ratio

- Categorical (nominal)
- Ordinal (ordered)
 - Discrete values
 - Can be ordered
 - e.g. Small/Med/Large; Bronze/Silver/Gold
- Quantitative Interval
- Quantitative Ratio

- Categorical (nominal)
- Ordinal (ordered)
- Quantitative Interval
 - Usually "continuous" values (real or integer)
 - Differences between them are meaningful;
 absolute magnitude of numbers is not
 - e.g. time, degrees Fahrenheit
- Quantitative Ratio

- Categorical (nominal)
- Ordinal (ordered)
- Quantitative Interval
- Quantitative Ratio
 - Usually "continuous" values (real or integer), with a 0 value reference
 - Can perform math, make absolute comparisons
 - e.g. A is twice the size of B
 - e.g. mass of an object; money

Some Other Data Classes

- Uncertainty
 - May be attached to quantitative data types
 - Mostly found in some scientific data
- Operations as data
 - Sometimes the things done to data are themselves data
 - e.g. A modification history
 - Can be very difficult to use, but can be a source of powerful visualizations
 - e.g. Understanding how something came to be

Ordering Data

- Sequential
 - Clear ordering from min to max
- Diverging
 - A "neutral" point (a 0) with values diverging away
- Cyclic
 - Repeating data (e.g. months of a year)

- How the data is provided
 - Several ways possible, but there are some common ones
- Tabular data
- Network (graph) data
- Spatial data
- Collections

- How the data is provided
- Tabular data
 - By far the most common
 - Each row is an item/entity
 - Columns identify:
 - The attributes (values associated with an item)
 - The independent variables that uniquely identify that item/entity
- Network (graph) data
- Spatial data
- Collections

- How the data is provided
- Tabular data
- Network (graph) data
 - Describes relationships
 - Nodes and edges
 - Can be a tree, in which case there might be a hierarchy
 - Attributes can be attached to nodes and edges
- Spatial data
- Collections

- How the data is provided
- Tabular data
- Network (graph) data
- Spatial data
 - Attributes measured across space, with geometry assumed
 - Samples taken in a regular grid pattern, or at selected locations (set of measurement points, or by region)
 - Common for scientific data
- Collections

Data Visualization Process and Workflow

- How the data is provided
- Tabular data
- Network (graph) data
- Spatial data
- Collections
 - Sets
 - Ordered lists
 - Clusters

Data Formatting

- To understand data, need to know how to interpret it:
 - Is the date 2-3-57:
 - February 3, 1957?
 - March 2, 2057?
 - Is the time 13:25, or 1:25, or 1:25p, or 1:25 p.m.? And, which time zone?
- And remember, it might not be consistent across data sets or even within data sets!

Data Quality

- For "real world" data, it is often not "clean"
- Anything a human entered or scanned (e.g. via OCR) is likely to have errors
- Many types of issues:
 - Missing data points
 - Inconsistent references
 - e.g. TX vs. Texas
 - Misspellings, Mis-entered entries
 - Exceptional values/mis-typed entries
 - e.g. NaN, "unknown"
 - e.g. The "number" 00, or 007
 - Special/whitespace characters
 - Out-of-date info (e.g. age)
 - Capitalizations

Data Abstraction

- Understanding how the specific data fits into the more general, abstract, categories
 - This will determine what visualization methods are appropriate
- Analyze the data, ask questions about it

Questions to Answer

- What are the dataset types, what are the attribute types?
- How many entities are there?
- What is the range of each attribute
 - Number of discrete values, or range of quantitative values

Transforming Data

- Very common practice to get data into a more "usable" format
- Taking the given data and generating new data from it
 - For many possible reasons
 - Replacing or adding to the original data
- Keep in mind that as you do so, you are introducing some decision/bias/human input into what is there

- Transform to clean
 - "Fixing" problems in the original data
 - e.g. one value for TX, TEXAS, Texas, Tex.
 - Removing unneeded attributes/entities/etc.
 - e.g. phone number might not be used
- Transform to convert
- Transform to create
- Transform to consolidate

- Transform to clean
- Transform to convert
 - Convert from one data type to another that's more usable
 - e.g. Temperature value to cold/warm/hot
 - e.g. Breaking Name out into First and Last
 - e.g. Converting text into categorical data
- Transform to create
- Transform to consolidate

- Transform to clean
- Transform to convert
- Transform to create
 - Generating new data from operations on original (some overlap with "converting")
 - Derived from the original data
 - e.g. Use departure and arrival times to generate a duration of trip attribute
 - e.g. Running linear regression, other statistical techniques to get more data
- Transform to consolidate

- Transform to clean
- Transform to convert
- Transform to create
- Transform to consolidate
 - Combining information from multiple sources (like joins in databases)
 - Adds entities or attributes to data
 - e.g. add the department each person belongs to (allowing display by department)

Data Visualization Process and Workflow

Examples