Aprendizado de Máquina

Análise e Visualização de Dados

Daniel Sabino

Dados

Avanços recentes nas tecnologias de aquisição, transmissão e armazenamento de dados

Bases de dados cada vez maiores

09 de julho de 2022

Dados

Geralmente transformados para o formato atributo-valor

Podem ter diferentes formatos

Séries temporais

Páginas web

Textos

Vídeos

Conjunto de dados

Pode ser representado por uma matriz de objetos

$$X_n \times d$$

- \circ *n* = número de objetos
- \circ d = número de atributos (excluindo atributo-meta)
 - Dimensionalidade dos objetos

Daniel Sabino

o Elemento x_{ij} ⇒ valor da j-ésima característica para o objeto i

Conjunto de dados: visualização gráfica

Supor conjunto de pacientes com dois exames

Análise de dados

- Análise das características de um conjunto de dados
 - Muitas podem ser obtidas por fórmulas estatísticas simples
 - Estatística descritiva

Daniel Sabino

Análise visual também é importante

Análise de dados

- Caracterização de dados
- Instâncias e Atributos
- Tipos de Dados
- Exploração de dados
- Dados univariados
- Medidas de localidade, espalhamento e distribuição
- Dados multivariados

Daniel Sabino

Visualização

Caracterização e Exploração dos Dados

Categorização

- Valores de atributos podem ser definidos por:
 - Tipo
 - Grau de quantização dos dados
 - Escala
 - Significância relativa dos valores

Conhecer o tipo/escala dos atributos auxilia a identificar a forma adequada de preparar os dados e posteriormente modelá-los

Tipos de atributos

- Quantitativo (numérico)
 - Representa quantidades
 - Valores podem ser ordenados e usados em operações aritméticas
 - Podem ser contínuos ou discretos
 - Possuem unidade associada
 - Ex.: 29.7, 3, 100

- Qualitativo (simbólico ou categórico)
 - Representa qualidades
 - Valores podem ser associados a categorias
 - Alguns podem ser ordenados, mas operações aritméticas não são aplicáveis
 - Ex. {pequeno, médio, grande}

Tipos de atributos – Atributos quantitativos

Contínuos

- Podem assumir um número infinito de valores
- Geralmente resultados de medidas
- Frequentemente representados por números reais
- Ex. peso, distância

Discretos

- Número finito ou infinito contável de valores
- Caso especial: atributos binários (booleanos)
- o Ex. {12, 23, 45}, {0, 1}

Tipos de atributos

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Qualitativo

Quantitativo Discreto

Quantitativo Contínuo

Tipos de atributos

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Alguns atributos qualitativos são representados por números, mas não faz sentido a utilização de operadores aritméticos sobre seus valores

09 de julho de 2022

Exploração de dados

- Estatística descritiva: resumo quantitativo das principais características de um conjunto de dados
 - Muitas medidas podem ser calculadas rapidamente
 - Captura de informações como:
 - Frequência

09 de julho de 2022

- Localização ou tendência central
- Dispersão ou espalhamento
- Distribuição ou formato

Informações obtidas podem ajudar na seleção de técnicas apropriadas de pré-processamento e aprendizado

Exploração de dados

Frequência

- Proporção de vezes que um atributo assume um dado valor
- Aplicável a valores numéricos e simbólicos
- Ex.: 40% dos pacientes têm febre

- Localização, dispersão e distribuição
 - Diferem para dados univariados e multivariados
 - Maioria dos dados em AM é multivariado, mas análises em cada atributo podem fornecer informações valiosas
 - Geralmente aplicados a valores numéricos

Frequência

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Frequência: 50% das manchas são GRANDES

09 de julho de 2022

Dados univariados

- Objetos com apenas um atributo
 - \circ Conjunto com n objetos $x = \{x_1, x_2, ..., x_n\}$
- Observação: termo conjunto não tem o mesmo significado do usado em teoria dos conjuntos
 - Em um conjunto de dados, o mesmo valor pode aparecer mais de uma vez em um atributo

Dados univariados: medidas de localidade

- Definem pontos de referência nos dados
 - Valor "típico", resume os dados

Valores numéricos

- Média
- Mediana
- Percentil

Valores simbólicos

Moda: valor mais frequente

Moda

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Moda: Grandes

Média

Equação:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Problema: sensível a *outliers*

Bom indicador apenas se valores são distribuídos simetricamente

09 de julho de 2022

Mediana

09 de julho de 2022

o Passos:

- Ordenar os valores de forma crescente
- Calcular a equação:

$$mediana(x) = \begin{cases} \frac{1}{2}(x_r + x_{r+1}), & n \bmod 2 = 0 \ (n = 2r) \\ x_{r+1}, & n \bmod 2 \neq 0 \ (n = 2r + 1) \end{cases}$$

Facilita observar se distribuição é assimétrica ou se existem outliers

Mediana

• Exemplos:

- o {17, 4, 8, 21, 4}
 - o Ordenando: 4, 4, 8, 17, 21
 - Número ímpar de elementos ⇒ mediana = 8
 - Valor do meio na ordenação
- {17, 4, 8, 21, 4, 15, 13, 9}
 - Ordenando: 4, 4, 8, 9, 13, 15, 17, 21
 - Número par de elementos \Rightarrow mediana = (9+13)/2 = 11
 - Média dos dois valores do meio na ordenação

Média e mediana

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média: 26,1 Mediana: 21,5

09 de julho de 2022

Média e mediana

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média: 5

Mediana: 2,5

Média truncada

- Descarta elementos extremos da sequência ordenada de valores
 - Minimizar problemas da média
 - Necessário definir porcentagem

Média truncada

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média: 26,1 Mediana: 21,5

Média truncada (p = 25%): 23,7

Média truncada

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média: 5 Mediana: 2,5 Média truncada (p = 25%): 3,2

09 de julho de 2022

Daniel Sabino

Quartis e percentis

- Quartis
 - Divide em quartos
 - 1º quartil (Q1) ⇒ valor que tem 25% dos demais valores abaixo dele
 - 2º quartil = mediana
- Mediana divide dados ordenados ao meio
 - Quartis e percentis usam pontos de divisão diferentes

- Percentil
 - Para p entre 0 e 100
 - pº percentil = Pp ⇒ xi tal que p% dos valores observados são menores do que xi
 - P25 = Q1
 - P50 = Q2 = mediana

Quartil e percentil

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média:26,1 Mediana: 21,5

Média truncada (*p* = 25%): 23,7

Q1: 18,5; Q2: 21,5; Q3: 31

P40: 21

Quartil e percentil

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Média:5 Mediana: 2,5 Média truncada (p = 25%): 3,2 Q1: 2; Q2: 2,5; Q3: 5 P40: 2

Dados univariados: medidas de espalhamento

- Medem dispersão ou espalhamento de um conjunto de valores
 - Permitem observar se valores estão:
 - Espalhados
 - Concentrados em torno de um valor (ex. da média)
 - O Medidas mais comuns:
 - Intervalo
 - Variância
 - Desvio padrão

https://pt.wikipedia.org/wiki/Distribuição_normal#/media/Ficheiro:Boxplot_vs_PDF.svg

Intervalo

09 de julho de 2022

- Mostra espalhamento máximo entre valores
 - Medida mais simples

$$intervalo(x) = \max_{i=1...n}(x_i) - \min_{i=1...n}(x_i)$$

Problema: não é boa medida se maioria dos valores está próxima de um ponto, com um pequeno número de valores extremos

Intervalo

09 de julho de 2022

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Intervalo: 31

Intervalo

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Intervalo: 19

Desvio padrão

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Intervalo: 31

Desvio padrão: 10,8

09 de julho de 2022

Desvio padrão

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Intervalo: 19

Desvio padrão: 6,3

Transformação de Dados

Tipos De Transformação

- Conversão simbólico-numérico
- Conversão numérico-simbólico
- Transformação de atributos numéricos
- Redução de dimensionalidade

Conversão Simbólico-Numérico

- Atributo simbólico com dois valores
 - Um dígito binário é suficiente
 - Ex. presença/ausência = 1/0
 Se ordinal, 0 indica o menor valor e 1 o maior valor
- Atributo simbólico com mais valores
 - Conversão depende se o atributo é nominal ou ordinal

Atributo Nominal Com Mais De Dois Valores

- o Inexistência de relação de ordem deve ser mantida
 - Diferença entre quaisquer dois valores numéricos deve ser a mesma
- Codificação canônica: uso de c bits para c valores
 - Cada posição na sequência binária corresponde a um valor possível do atributo nominal
 - Cada sequência possui apenas um bit com valor 1
 - Distância de Hamming entre quaisquer dois valores é 2

Exemplos

M 0

F 1

09 de julho de 2022

Azul	10000		
Amarelo	01000		
Vermelho	00100		
Verde	00010		
Preto	00001		

Pseudoatributos

Pseudoatributo	#valores		
Continente	6		
PIB	1		
População	1		
Área	1		

Atributo Ordinal Com Mais De Dois Valores

- o Relação de ordem deve ser preservada
- Ordenar valores e codificar cada um de acordo com sua posição na ordem com inteiro ou real

Atributos	Valor binário	
Primeiro	000	
Segundo	001	Distância
Terceiro	010	
Quarto	011	

Conversão Numérico-Simbólico

- Atributo discreto e binário ⇒ conversão é trivial
 - Associa um nome a cada valor
- Demais casos: discretização
 - Transforma valores numéricos em intervalos (categorias)
 - Existem vários métodos diferentes para discretização
 - Paramétricos: usuário pode influenciar definição dos intervalos
 - Não paramétricos: usam apenas informações presentes nos valores dos atributos

Conversão Numérico-Simbólico

- Métodos de discretização podem ser:
 - Supervisionados: usa informação da classe
 - Melhor resultado, não leva a mistura de classes
 - Ex. escolher pontos de corte que maximizam pureza das classes (entropia)
 - Não supervisionados
- Método de discretização deve definir:
 - Como mapear valores quantitativos para qualitativos
 - Tamanho dos intervalos
 - Quantidade de valores nos intervalos

Conversão Numérico-Simbólico

- Algumas estratégias:
 - Larguras iguais
 - Frequências iguais
 - Algoritmos de agrupamento
 - Inspeção visual

Conversão Numérico-Numérico

- Quando os valores dos atributos são muito diferentes.
- Um atributo pode se tornar predominante.
- O Quando isso é importante?
- Técnica muito utilizada: normalização.
 - Faz com que um atributo fique com determinada propriedade.

Normalização

- O Por amplitude:
 - Reescala (valor máximo e mínimo)
 - Padronização (valor central e espalhamento)
- Distribuição (ranqueamento)

Reescala

$$x' = \frac{x - min}{max - min}$$

Padronização

$$x' = \frac{x - \bar{x}}{\sigma}$$

Outros tipos

Tradução

- Valor é traduzido por um mais facilmente manipulável
 - Ex. converter data de nascimento para idade
 - Ex. converter temperatura de ºF para ºC
 - Ex. localização por GPS para código postal
- Aplicação de função:
 - Log, exp, raiz, seno, etc.

Redução de Dimensionalidade

- Maldição da dimensionalidade
 - O número de exemplos necessários para representar o espaço de características cresce exponencialmente com o número de atributos.
- O Dois tipos principais:
 - Agregação
 - Ex. PCA (Principal Component Analysis)
 - Seleção de atributos
 - Filtros

09 de julho de 2022

Wrapper

Tratamento de Dados

Pré-processamento

- O desempenho da análise é afetado pela qualidade dos dados.
- Conjuntos de dados podem ter diferentes características, dimensões ou formatos.
 - Atributos numéricos vs simbólicos
 - Limpos vs com ruídos e imperfeições
 - Valores incorretos, inconsistentes, duplicados ou ausentes
 - Atributos independentes vs relacionados
 - Poucos vs muitos objetos e/ou atributos

09 de julho de 2022

O pré-processamento consiste em minimizar ou reduzir os problemas dos dados.

Pré-processamento

O Benefícios:

- o Facilitar o posterior uso de técnicas de análise.
- Obtenção de modelos mais fiéis à distribuição dos dados.
- Redução de complexidade computacional.
- o Facilitar a interpretação dos padrões extraídos.

Tornar mais adequado para as técnicas.

ex. algumas trabalham somente com entradas numéricas

Melhorar qualidade

Tempo e custo

Pré-processamento

- Grupos de tarefas de pré-processamento:
 - Eliminação manual de atributos
 - Integração de dados
 - Amostragem de dados
 - Redução de dimensionalidade
 - Balanceamento de dados
 - Limpeza de dados
 - Transformação de dados

Eliminação manual de atributos

Há atributos que claramente não contribuem para o aprendizado.

id	Nome	Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Estado	Diagnóstico
4201	João	28	М	70	Grandes	38.0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	М	92	Grandes	38,0	2	RS	Saudável
1920	José	18	М	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	М	67	Médias	38,4	2	GO	Saudável

Eliminação manual de atributos

Dados após eliminação manual de atributos.

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
28	М	70	Grandes	38.0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Eliminação manual de atributos

- Outro atributo irrelevante facilmente detectado:
 - Atributo que possui o mesmo valor para todos objetos.
 - Não traz informação para ajudar a distingui-los.
- Há ainda atributos irrelevantes de identificação não tão clara.
 - Técnicas de seleção de atributos podem ajudar a identificar.

Daniel Sabino

- Técnicas de análise de dados podem ter dificuldades em lidar com um número grande de objetos.
 - Saturação de memória.
 - Aumento do tempo computacional para ajustar os parâmetros do modelo.
- Contudo, quanto mais dados, maior tende a ser a acurácia do modelo.
- Procurar balanço entre eficiência computacional e acurácia do modelo

Amostra dos dados

- Pode levar ao mesmo desempenho do conjunto completo, a menor custo computacional.
- Deve ser representativa.

Amostra representativa:

09 de julho de 2022

- Aproximadamente as mesmas propriedades do conjunto de dados original.
- Fornecer uma estimativa da informação contida na população original.
- Uso deve ter efeito semelhante ao de toda a população.
- Permitir conclusão do todo a partir de uma parte.

63

- Variações:
 - o com reposição de exemplos e
 - o sem reposição de exemplos.
- São semelhantes quando o tamanho da amostra é bem menor que o do conjunto original.

AMOSTRAGEM ALEATÓRIA SIMPLES

- Quando as classes têm propriedades diferentes.
 - Ex. números de objetos diferentes.
- Variações:
 - manter o mesmo número de objetos para cada classe ou manter o número proporcional ao original.

AMOSTRAGEM ESTRATIFICADA

- A acurácia preditiva continua a melhorar.
- Começa com amostra pequena e vai aumentando enquanto o modelo continuar a melhorar.

AMOSTRAGEM PROGRESSIVA

Balanceamento dos Dados

- Número de objetos varia para as diferentes classes
- Típico da aplicação
 - Ex. 80% dos pacientes que vão a um hospital estão doentes Problema na geração/coleta dos dados
- Classe majoritária
 - Contém a maior parte dos exemplos
- o Classe minoritária
 - Tem o menor número de exemplos no conjunto de dados.

As técnicas de análise de dados tendem a favorecer a classe majoritária.

Balanceamento dos Dados

- Alternativas para lidar com dados desbalanceados:
 - Obter novos dados para a classe minoritária.
 - Na maioria dos casos não é possível...
- Balancear artificialmente o conjunto de dados:
 - Redefinir o tamanho do conjunto de dados.
 - Induzir um modelo para uma classe.

Limpeza dos Dados

- Qualidade dos dados:
- Em geral, os dados não foram produzidos para análise posterior.
 - Ruídos: erros ou valores diferentes do esperado.
 - Inconsistências: não combinam/contradizem valores de outros atributos no mesmo objeto.
 - Redundâncias: objetos/atributos com mesmos valores.
 - Dados incompletos: ausência de valores de atributos.

Limpeza dos Dados

- Exemplos de causas de erros:
 - Falha humana.
 - Falha no processo de coleta de dados.
 - o Limitações do dispositivo de medição.
 - Má fé.
 - Valor de atributo muda com o tempo.

Dados Incompletos

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
	М	70		38.0		Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	
18		43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas		3	
	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Daniel Sabino

Dados Incompletos

O Possíveis causas:

- Atributo não era importante quando os primeiros dados foram coletados.
 - Ex. e-mail na década de 90.
- Desconhecimento do valor do atributo.
 - Ex. não saber o tipo sanguíneo de paciente em seu cadastro.
- Falta de necessidade/obrigação de apresentar valor.
 - Ex. salário em hospital.
- Inexistência de valor para o atributo.
 - Ex. número de partos para pacientes do sexo masculino.
- Problema com equipamento para coleta, transmissão e armazenamento de dados.

Dados Incompletos

- Alternativas para lidar com valores ausentes:
 - Eliminar os objetos com valores ausentes
 - Definir e preencher manualmente os valores ausentes

Não indicada quando número de atributos com valores ausentes varia muito entre os objetos ou quando muitos objetos têm valores ausentes

Não é factível para muitos valores ausentes

Utilizar método/heurística para definir valores automaticamente

Alternativa mais usada

09 de julho de 2022

Dados Inconsistentes

- Possíveis causas:
 - Erro/engano
 - Presença de ruídos nos dados
 - Proposital (fraude)
 - Problemas na integração dos dados
 - Ex. conjuntos de dados com escalas diferentes para uma mesma medida.

Dados Inconsistentes

- Algumas inconsistências são de fácil detecção:
 - Violação de relações conhecidas entre atributos
 - Ex.: Valor de atributo A é sempre menor que valor de atributo B
 - Data de nascimento é posterior ao dia de hoje
 - Valor inválido para o atributo
 - Ex.: altura com valor negativo
- Em outros casos, informações adicionais precisam ser verificadas

09 de julho de 2022

Dados Redundantes

- Objetos que não trazem informação nova.
- Elementos que podem ter seu valor deduzido a partir de outro atributo.
- Dados duplicados.
- o Problemas:

09 de julho de 2022

- Aumento do custo computacional.
- Podem ser considerados mais importantes que outros.

Ruídos

- Objetos que aparentemente não pertencem à distribuição que gerou os dados
- Várias causas possíveis
- Podem levar a superajuste do modelo
 - Algoritmo pode se ater às especificidades dos ruídos
- A eliminação pode levar à perda de informação importante
 - Algumas regiões do espaço de atributos podem não ser consideradas

Ruídos

80

Outliers

- Valores que estão além dos limites aceitáveis ou são muito diferentes dos demais
 - Exceções
- o Podem ser ruídos ou não.

Outliers

Nome	Profissão	Nível	Peso	Altura	Salário	Situação
João	Encanador	Médio	70	180	3000	Adimplente
Lia	Médico	Superior	200	174	7000	Inadimplente
Maria	Advogado	Médio	90	180	600	Adimplente
José	Médico	Superior	100	-6	2000	Inadimplente
Sérgio	Bancário	Superior	82	178	5000	Inadimplente
Ana	Professor	Fund.	77	188	1800	Adimplente
Luíza	Médico	Superior	100	-6	2000	Inadimplente

Outliers

Nome	Profissão	Nível	Peso	Altura	Salário	Situação
João	Encanador	Médio	70	180	3000	Adimplente
Lia	Médico	Superior	200	174	7000	Inadimplente
Maria	Advogado	Médio	90	180	600	Adimplente
José	Médico	Superior	100	-6	2000	Inadimplente
Sérgio	Bancário	Superior	82	178	5000	Inadimplente
Ana	Professor	Fund.	77	188	1800	Adimplente
Luíza	Médico	Superior	100	-6	2000	Inadimplente

Visualização de Dados

Boxplots

- Também chamados diagramas de Box e Whisker
- Forma gráfica de visualizar quartis
- Usa quartis e valores máximo e mínimo

Boxplot modificado: limite superior/inferior vai até maior/menor valor apenas se esse valor não for muito distante do 3º/1º quartil (até 1,5 * intervalo entre quartis Q3 e Q1)

Valores acima/abaixo são considerados outliers

Daniel Sabino

https://operdata.com.br/blog/como-interpretar-um-boxplot/

https://pt.wikipedia.org/wiki/Distribuição_normal#/media/Ficheiro:Boxplot_vs_PDF.svg

Violinplot

Daniel Sabino

Boxplot

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
28	М	70	Grandes	38.0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Boxplot

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
28	М	70	Grandes	38.0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Histograma

- Forma gráfica para visualizar distribuição: histograma
 - Divide valores em cestas
 - Valores categóricos: cada valor é uma cesta
 - Valores numéricos: divisão em intervalos contíguos de mesmo tamanho e cada intervalo é uma cesta
 - o Para cada cesta, desenha uma barra com altura proporcional ao número de elementos na cesta

09 de julho de 2022

Histograma

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
28	М	70	Grandes	38.0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Obliquidade

Curtose

Gráfico de pizza/donut

- Outra forma gráfica de visualizar distribuição de um conjunto de valores
 - Indicado para valores qualitativos
 - Para quantitativos, deve agrupar valores em cestas
 - Cada valor ocupa fatia com área proporcional ao número de vezes que aparece no conjunto de dados

Daniel Sabino

Gráfico de pizza

Idade	Sexo	Peso	Manchas	Temperatura	# Internações	Diagnóstico
28	М	70	Grandes	38.0	2	Doente
18	F	67	Pequenas	39,5	4	Doente
49	М	92	Grandes	38,0	2	Saudável
18	М	43	Grandes	38,5	20	Doente
21	F	52	Médias	37,6	1	Saudável
22	F	72	Pequenas	38,0	3	Doente
19	F	87	Grandes	39,0	6	Doente
34	М	67	Médias	38,4	2	Saudável

Dados multivariados: visualização

- Diagramas para visualizar dados multivariados
 - Em particular, relação entre diferentes atributos
 - Alguns tipos de gráficos:
 - Scatter plot
 - Bag plots
 - Faces de Chernoff
 - Star plots
 - Heatmaps

Scatter plot

- Ilustra correlação linear entre atributos
 - Cada objeto é associado a uma posição em um plano
 - Valores dos atributos definem a sua posição
 - Valores são inteiros ou reais
 - Matrizes de scatter plot: relacionamento de vários atributos

Scatter plot

09 de julho de 2022

Scatter plot

Diagrama de Chernoff

- Mapeia valores dos atributos para imagens mais familiares: faces
 - Cada objeto é representado por uma face
 - Cada atributo é associado a uma ou mais características da face
 - Ex. altura e largura da cabeça, da boca, etc.
- Baseia-se na habilidade humana de distinguir faces

Star plot

- Desenha figura geométrica para cada objeto
 - Normalmente um polígono
 - Cada linha do polígono corresponde a um dos atributos
 - Tamanho da linha é proporcional ao valor do atributo
 - Quanto mais atributos, mais o polígono se assemelha a estrela
 - Valores de atributos semelhantes deformam a estrela

Daniel Sabino

Star plot

Heatmap

- Representa relação entre exemplos e as classes
 - Agrupamento hierárquico (dendograma)
 - Auxilia a verificar tendências nos dados
 - o Ex. conjunto de dados iris

Heatmap

https://en.wikipedia.org/wiki/Heat_map#/media/File:A_3D_triangulation_coverage_heatmap.jpg

Fim

