## EXAMEN de Matemática Discreta y Lógica Matemática (Febrero 2016)

| <b>:</b> |
|----------|
| <b>:</b> |

## **GRUPO**:

Lee atentamente las siguientes instrucciones:

- Escribe tu nombre y grupo en el lugar indicado en esta hoja.
- NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).
- El examen dura 3 horas.
- Cada una de las ocho primeras preguntas es tipo test y tiene una **única** respuesta correcta. Cada pregunta respondida *correctamente* puntuará **0,75 puntos**. Cada pregunta respondida *incorrectamente* puntuará **-0,25 puntos**. Las preguntas sin contestar puntuarán **0 puntos**.
- En cada una de las preguntas a desarrollar aparece la puntuación máxima que puede obtenerse al responderlas. La mínima puntuación que puede obtenerse en estas preguntas es 0 .

| 1. | Si $A \neq \emptyset$ y $B \neq \emptyset$ , entonces:                                                                                                                                           |  |  |  |  |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
| 2. | Dados $a,b,c\in\mathbb{Z}$ tales que $a c$ y $b c$ y m.c.d. $(a,b)=1$ entonces                                                                                                                   |  |  |  |  |  |  |  |
|    | $\Box a \cdot b   c$                                                                                                                                                                             |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | $\Box a \cdot b \nmid c$ $C = b k_2 \left( \begin{bmatrix} a k_1 - b k_2 \\ k_1 \end{bmatrix} - b k_2 \right) - b k_2 \left( \begin{bmatrix} a k_1 - b k_2 \\ k_2 \end{bmatrix} - b k_2 \right)$ |  |  |  |  |  |  |  |
| 3. | ¿Cuál de las tres definiciones de la función $f:\mathbb{N}\to\mathbb{N}$ es la definición recursiva correcta?                                                                                    |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | $f(0) = 0; \ f(n) = 3f(n-1) + 2f(n-2) \ (n \ge 2)$                                                                                                                                               |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | Ninguna lo es.                                                                                                                                                                                   |  |  |  |  |  |  |  |
| 4. | Sean $f:A\longrightarrow B$ una función inyectiva y $\hat{f}:\mathcal{P}(A)\longrightarrow\mathcal{P}(B)$ definida como:                                                                         |  |  |  |  |  |  |  |
|    | $\hat{f}(X) = \{ f(x) \mid x \in X \}$                                                                                                                                                           |  |  |  |  |  |  |  |
|    | Indica la respuesta correcta:                                                                                                                                                                    |  |  |  |  |  |  |  |
|    | $\prod \hat{f}$ puede no ser inyectiva ni suprayectiva.                                                                                                                                          |  |  |  |  |  |  |  |
|    | $\prod \hat{f}$ es inyectiva pero puede no ser suprayectiva.                                                                                                                                     |  |  |  |  |  |  |  |
|    | $\prod \hat{f}$ no es inyectiva pero puede ser suprayectiva.                                                                                                                                     |  |  |  |  |  |  |  |
|    | $\prod \hat{f}$ es siempre biyectiva.                                                                                                                                                            |  |  |  |  |  |  |  |

| 5  | Sea | f . | $\mathbb{N}$ – | $\rightarrow \mathcal{D}$ | $(\mathbb{N})$ |   | podemos | afirmar | ane. |
|----|-----|-----|----------------|---------------------------|----------------|---|---------|---------|------|
| υ. | sea | 1 : | 14 -           | $\rightarrow P$           | [ [ [ ]        | • | podemos | ammai   | que: |

|  | £ | no          | nuodo | cor                  | supremostive  |
|--|---|-------------|-------|----------------------|---------------|
|  | T | $_{\rm no}$ | pueae | $\operatorname{ser}$ | supravectiva. |

$$\Box$$
 f no puede ser inyectiva.

$$\Box$$
 f no puede ser total.

## 6. Sea $\mathcal C$ la familia de conjuntos definida como:

$$\mathcal{C} = \{ \{ n \in \mathbb{N} \mid n \ge m \} \mid m \in \mathbb{N}, m \le 5 \}$$

Indica la respuesta correcta:

$$\bigcup \mathcal{C}$$
 es un conjunto finito y  $\bigcup \mathcal{C} = \mathbb{N}$ .

$$\square$$
  $\mathcal{C}$  es un conjunto infinito numerable y  $\bigcup \mathcal{C} = \mathbb{N}$ .

$$\square$$
  $\mathcal{C}$  es un conjunto finito y  $\bigcup \mathcal{C} = \mathcal{P}(\mathbb{N})$ .

$$\square$$
  $\mathcal{C}$  es un conjunto infinito numerable y  $\bigcup \mathcal{C} = \mathcal{P}(\mathbb{N})$ .

7. Sea 
$$\mathbb{N}_+=\mathbb{N}\setminus\{0\}.$$
 Definimos la función  $f:\mathbb{N}_+\longrightarrow\mathbb{N}_+$  tal que:

$$f(n) = \left\{ \begin{array}{ll} 1 & \text{si } n=1 \\ \text{número de factores primos distintos que tiene } n & \text{si } n>1 \end{array} \right.$$

Sea  $X = \{1, 2, 3, 4\}$  y sea  $R \subseteq X \times X$  la relación binaria definida por  $xRy \Leftrightarrow f(x) < y, \forall x, y \in X$ . Indica la respuesta correcta:

 $\square$  R es reflexiva.

 $\square$  R es antirreflexiva.

 $\square$  R es conexa.

Ninguna de las anteriores.

## 8. Dado el siguiente diagrama de Hasse, indica la respuesta correcta.



$$\square$$
  $\sqcap(e,x) = c \ y \ \sqcup(d,v) = z.$ 

9. [1,5 puntos] Sea  $A = \{1,2,3,4,5\}$  y  $B = \{3,4\}$ . Definimos la relación R en  $\mathcal{P}(A)$  como:

$$XRY \iff B \cup X = B \cup Y, \quad X,Y \subseteq A$$

- a) Demuestra que R es de equivalencia sobre  $\mathcal{P}(A)$ .
- b) Determina la clase de equivalencia de  $\{1, 3\}$ .
- 10. [1 punto] Sea  $f : \mathbb{R} \to \mathbb{R}$  una función biyectiva. Estudia si la función  $g : \mathbb{R} \to \mathbb{R}$  definida como g(x) = 2f(x) + 3 es biyectiva o no. En caso afirmativo demuestralo formalmente y en caso negativo da un contraejemplo.
- 11. [1,5 puntos] Demostrar por inducción que  $\forall n \geq 0$  se verifica  $a_n = 3 + n(n-1)^2$  donde:

$$a_0 = 3$$
  
 $a_n = a_{n-1} + 3(n-1)^2 - n + 1$  si  $n \ge 1$  (H1)

$$Q_{n} = Q_{n-1} + 3(n-1)^{2} - n+1 \quad \forall n \geq 1$$

$$H(P = P(K)) = Q_{n} = 3 + n(n-1)^{2}$$

$$Q_{K+1} = Q_{K} + 3(K)^{2} - (k+1) + K$$

$$3 + k(K-1)^{2} + 3k^{2} - K$$

$$3 + k(K-1)^{2} + 3k - 1$$

$$3 + k(K^{2}-2k+1+3k-1)$$

$$3 + k(K^{2}-2k+1+3k-1)$$

$$3 + k(K+1) = (3 + k^{2}-2k+1)$$