Отчет по лабораторной работе №5

Дисциплина: Научное программирование

Выполнила Дяченко Злата Константиновна, НПМмд-02-22

Содержание

1	Цел	Дель работы															5												
2	Зада	ание																											6
3		Выполнение лабораторной работы 3.1 Шаг 1															7												
	3.2	Шаг 2																											9
	3.3	Шаг 3																											10
	3.4	Шаг 4					•							•	•			•	•	•	•	•				•	•		11
4	Выв	оды																											12

List of Figures

3.1	Ввод данных	7
3.2	Решение системы	8
3.3	Решение задачи и график	8
3.4	Подгонка встроенной функцией	Ç
3.5	Граф-домик	ç
3.6	Поворот на 90⊠	(
3.7	Поворот на 225⊠ и график	(
3.8	Отражение графа	. 1
3.9	Дилатация графа	. 1

List of Tables

1 Цель работы

Научиться совершать матричные преобразования в Octave.

2 Задание

Выполнить подгонку полиномиальной кривой, совершить матричные преобразования: вращение, отражение, дилатация.

3 Выполнение лабораторной работы

3.1 Шаг 1

Ввела матрицу данных в Octave и извлекла вектора № и №. Точки построила на графике, который показан на Рисунке 1 (рис - fig. 3.1), как и выполненные для его получения команды.

Figure 3.1: Ввод данных

Уравнение вида $y=ax^2+bx+c$ с исходными данными предстает в виде системы линейных уравнений. Нашла решение по методу наименьших квадратов (рис - fig. 3.2) и использовала его для решения задачи методом Гаусса, построила график, представленный на Рисунке 3 (рис - fig. 3.3).

Figure 3.2: Решение системы

Figure 3.3: Решение задачи и график

Для подгонки полинома также можно использовать встроенную функцию polyfit, что продемонстрированно на Рисунке 4 (рис - fig. 3.4). Был получен подгоночный полином, рассчитаны его значения в точках, а исходные и подгоночные данные представлены на графике.

Figure 3.4: Подгонка встроенной функцией

3.2 Шаг 2

Задала матрицу, содержащую в качестве столбцов точку графа. Изображение этого графа представлено на Рисунке 5 (рис - fig. 3.5).

Figure 3.5: Граф-домик

Для вращения использовала метод умножения на специальную матрицу. Для поворота графа дома на 90⊠ и 225⊠ вначале перевела угол в радианы, а затем произвела умножение координат. Для угла в 90⊠ команды показаны на Рисунке 6 (рис - fig. 3.6). Для угла в 225⊠ все команды и построенный график показан на Рисунке 7 (рис - fig. 3.7).

```
>> theta1 = 90*pi/180
theta1 = 1.5708
>> R1 = [cos(theta1) -sin(theta1); sin(theta1) cos(theta1)]
R1 =
6.1230e-17 -1.0000e+00
1.0000e+00 6.1230e-17
>> RD1 = R1*D
RD1 =
-2.0000e+00 6.1230e-17 1.8369e-16 -2.0000e+00 -3.0000e+00 -2.0000e+00 -2.0000e+00
1.0000e+00 1.0000e+00 3.0000e+00 3.0000e+00 2.0000e+00 1.0000e+00 3.0000e+00
>> x1 = RD1(1,:) x1 =
-2.0000e+00 6.1230e-17 1.8369e-16 -2.0000e+00 -3.0000e+00 -2.0000e+00 -2.0000e+00
>> y1 = RD1(2,:) y1 =
1 1 3 3 2 1 3
```

Figure 3.6: Поворот на 90**区**

Figure 3.7: Поворот на 225⊠ и график

3.3 Шаг 3

Для отражения графа относительно прямой у=х использовала специальную матрицу. Получившийся график показан на Рисунке 8 (рис - fig. 3.8).

Figure 3.8: Отражение графа

3.4 Шаг 4

Для дилатации также использовала умножение исходной матрицы на особую. На Рисунке 9 (рис - fig. 3.9) показано увеличение графа в два раза.

Figure 3.9: Дилатация графа

4 Выводы

Я ознакомилась с тем, как выполнить подгонку полиномиальной кривой, совершить матричные преобразования - вращение, отражение, дилатация - в Octave. Результаты работы находятся в репозитории на GitHub, а также есть скринкаст выполнения лабораторной работы.