

Forelesning nr.6 analog elektronikk IN1080 Mekatronikk

Effekt

Wheatstonebroer

Dioder

Ulike typer impedans

Forholdet mellom spenning og strøm (V/I) er impedans

Ulike typer admittans

 Forholdet mellom strøm og spenning (I/V) kalles admittans, og er det motsatte av impedans.

Energi og effekt

- Energi er "evnen til å utføre arbeid"
- Energi måles i joule (J) og er uttrykt ved grunnenhetene

$$J = \frac{kg \times m^2}{s^2}$$

• Effekt P måles i watt (W), defineres som "arbeid per tidsenhet" og

uttrykkes ved

$$P = \frac{J}{s}$$

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Effekt, spenning og strøm

- Når en strøm / går gjennom et element med spenning V over terminalene, er effekten gitt ved P=VI
- Effekt kan både være positiv og negativ:

Positiv: Elementet *absorberer* effekt (og gjør effekten om til en annen energiform)

Negativ: Elementet leverer effekt (til andre elementer i kretsen)

Energitap i resistorer

- Resistans gjør at en del av energien til elektroner i bevegelse blir til varme eller lys
 - Ønsket: Produksjon av varme eller lys (f.eks. varmeovner eller lyspærer)
 - Uønsket: Overføringstap eller varme som må ledes bort
- Effekt er gitt av f
 ølgende formel:

$$P = VI = I^2 R = \frac{V^2}{R}$$

RMS-verdi

- Når vi snakker om effekt i ac-kretser er det nesten alltid RMS-effekt
- Root-Mean-Square (RMS)-effekt til et sinussignal angir hva et tilsvarende dc-signal må være for å produsere samme effekt i en resistor

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

RMS-verdi (forts)

Sammenhengen mellom RMS-verdien, peakverdier og effekt er gitt av

$$V_{rms} = \frac{1}{\sqrt{2}} V_{\rho} \approx 0.707 V_{\rho}$$
 $I_{rms} = \frac{1}{\sqrt{2}} I_{\rho} \approx 0.707 I_{\rho}$
 $P_{avg} = V_{rms} I_{rms} = R I_{rms}^2 = \frac{V_{rms}^2}{R}$

Sammenhengen mellom RMS-verdi og peakverdi er:

$$V_p = \sqrt{2}V_{rms} \approx 1,414V_{rms}$$
 $I_p = \sqrt{2}I_{rms} \approx 1,414I_{rms}$

- Kondensatorer og induktorer både avgir og absorberer effekt
- I strømnettet finnes både induktiv og kapasitiv last og må tas hensyn til dette når man dimensjonerer strømnettet
 - Elbilladere, transformatorer og elektromotorer gir induktiv last
 - Nedgravde kabler gir kapasitiv last

Effekt i kondensatorer

- En ideel kondensatoer vil ikke forbruke energi, men kun lagre og deretter avgi energi
- Effekten som lagres når strøm og spenning har samme polaritet vil avgis når strøm og spenning har motsatt polaritet

Det matematisk-naturvitenskapelige fakultet

Wheatstone-bro

- Oppgave: Vi ønsker å måle en resistors ohm-verdi med stor nøyaktighet
- Utfordring: Dette krever at vi kan måle både strøm og spenning med stor nøyaktig
- Løsning: Wheatstone-broen, en seriell-parallell krets som består av fire motstander hvorav den ene har ukjent resistans
- Wheatstone-broen «avleser» den ukjente resistansen som en spenning med høy presisjon
- En variant av Wheatstone-broen brukes i likeretter-kretser for å omdanne en ac-spenning til en dc-spenning

Det matematisk-naturvitenskapelige fakultet

Wheatstone-bro (forts)

- En av de kjente resistorene kan være regulerbar
- Hvis spenningen $V_{CB} = 0$ volt er broen *balansert*
- Hvis V_{CB} ≠ 0 volt er broen ubalansert
- Analyserer sammenhengene mellom V_S, V_{CB}, R₁,
 R₂, R₃ og R_X for de to tilfellene

Balansert Wheatstone-bro

- Hvis spenningen $V_{CB} = 0$ volt, er spenningsfallet V_1 over R_1 og V_x over R_x like store, dvs $V_1 = V_x$
- Som en konsekvens må da V₂=V₃
- Da må også $\frac{V_1}{V_2} = \frac{V_x}{V_3}$
- Bruker Ohms lov og får

$$\frac{I_{1}R_{1}}{I_{2}R_{2}} = \frac{I_{x}R_{x}}{I_{3}R_{3}} \Rightarrow \frac{R_{1}}{R_{2}} = \frac{R_{x}}{R_{3}} \Rightarrow R_{x} = \frac{R_{1}R_{3}}{R_{2}}$$

Ved å variere R₂ (og lese av verdien) slik at V_{CB}= 0 volt, kan R_x utledes kun fra de andre motstandsverdiene

Ubalansert Wheatstone-bro

- Hvis Rx er en resistor som f.eks varierer med temperatur, vil ikke $n \omega dvendigvis V_{BC} = 0 volt$
- Antar D er virtuell jord og bruker formlene for spenningsdeling:

$$V_{C} = \frac{R_{2}}{R_{1} + R_{2}} V_{S}$$
 $V_{B} = \frac{R_{3}}{R_{x} + R_{3}} V_{S}$ V_{S}

- Hvis R₁, R₂, R₃ og V_S er kjent og V_{CB} kan måles, kan vi beregne R_X
- Hvis R_x er en sensor som måler en fysisk parameter (f.eks. temperatur)
 er vi ikke interessert i den faktiske resistansen, men endringen i V_{CB} fra
 et kjent referansepunkt

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Krets for å måle temperatur

- R₃ er en regulerbar motstand for å sette et referansepunkt/nullstille målekretsen
- R_x er en temperaturavhengig resistor; ved $Tp = 25^\circ$ er $Rx=1k\Omega$
 - R_3 settes til 1k Ω slik at V_{CD} =0v (balansert Wheatstone-bro)
 - R₁=R₂=R₃= 1kΩ
- Ved Tp= 50° er Rx= 900Ω . Hva blir at V_{CD} ?
 - V_C=R₂/(R₁+R₂)*12v= 1kΩ/(1kΩ+1kΩ)*12v=6v
 - $V_D = R_x/(R_x + R_3)^*12v = 900\Omega/(900\Omega + 1k\Omega)^*12v = 5,68v$
 - $-V_{CD}=V_{c}-V_{d}=6v-5,68v=0,32v$
- Ved Tp= 60° er Rx= 850Ω . Da blir V_{CD}
 - $V_C = R_2/(R_1 + R_2)^* 12v = 1k\Omega/(1k\Omega + 1k\Omega)^* 12v = 6v$ (dvs uendret)
 - V_D=R_x/(R_x+R₃)*12v= 800Ω/(800Ω+1kΩ)*12v=5,33v
 - $-V_{CD}=V_{c}-V_{d}=6v-5,33v=0,67v$

Halvledere

- Halvledere er ledere som under visse betingelser leder strøm, og under andre ikke
- Transistorer er halvledere som kan styres med en strøm eller spenning
 - Resistansen kan økes eller senkes gradvis vha en strøm eller spenning
- Dioder er halvledere som ikke kan styres
 - Retningen på strømmen avgjør om dioden leder (ingen motstand) eller sperrer (veldig høy motstand)

N- og P-type halvledere

- De fleste halvledere er laget av silisium
- Ren silisium leder strøm dårlig på grunn av få elektroner som kan bevege seg fritt
- Ved å tilsette urenheter (doping) bedres ledningsevnen ved at det blir flere frie elektroner eller flere hull (hull = ledig plass til elektroner)
- Doping kan enten være av *n-type* eller *p-type*, avhengig av om man vil øke antall frie elektroner eller antall hull

N- og P-type halvledere (forts)

- Hvis det er flere frie elektroner enn hull, er elektronene majoritets-bærere i Ntype halvledere, og hullene er minoritetsbærere
- I P-type halvledere er det flere hull enn elektroner, og hullene er da majoritetsbærere, mens elektronene er minoritetsbærere

(a) Pentavalent impurity atom in a silicon crystal. An antimony (Sb) impurity atom is shown in the center. The extra electron from the Sb atom becomes a free electron.

(b) Trivalent impurity atom in a silicon crystal. A boron (B) impurity atom is shown in the center.

Det matematisk-naturvitenskapelige fakultet

Dioder

- En diode leder strøm i bare én retning
 - «null» motstand for strøm i den ene retningen
 - «uendelig» motstand for strøm i motsatt retning
- En diode består av en p-type og n-type halvleder festet til hverandre; i snittflaten oppstår det en pnovergang
- Siden det ene området har overskudd av frie elektroner og det andre av hull, vil elektroner i overgangsområdet «vandre» over til den andre siden
 - n-siden får et lite overskudd av positiv ladning, mens
 p-siden får overskudd av negativ ladning

Dioder (forts)

- Området hvor det er opphopning av elektron-hull kalles for et deplesjonsområde som er tømt for frie elektroner
- Deplesjonsområdet har en spenningsforskjell (potensialbarriere) på ca 0.3-0.7 volt, avhengig av dopingmaterialet

Dioder (forts)

 Avhengig av polariteten til p-regionen i forhold til n-regionen vil dioden enten lede eller sperre for strøm

• Hvis p er mer positiv enn n-regionen (forover-modus), vil dioden lede strøm hvis V_{bias} er større enn potensialbarrieren

Dioder i forovermodus (dioden leder)

Når dioden opererer i forover-modus, kan den modelleres som to motstander i serie med et batteri

21

Diode i reversmodus (dioden sperrer)

 Hvis p-regionen er mer negativ enn n-regionen, vil dioden være sperret (reverse bias)

(c) Majority current ceases when barrier potential equals bias voltage. There is an extremely small reverse current due to minority carriers.

Sammenbrudd

- Hvis dioden opererer i revers (sperre)-modus og spenningen øker til et visst nivå (dvs blir spenningen blir mer og mer negativ), vil en vanlig diode til slutt bryte sammen og bli ødelagt
- Dioden vil da lede strøm i begge retninger (eller i verste fall brenner den opp og leder ikke strøm i noen retninger)
- Vanlige dioder blir permanent ødelagt av dette, men Zener-dioder tåler å «bryte sammen» og sperrer på nytt når spenningen blir mer positiv enn breakdown-spenningen

Diodemodell (1)

- For å forstå og bruke dioder er det enklest å se på sammenhengen mellom strømmen gjennom og spenningen over den, dvs. I-V karakteristikken
- I-V karakteristikken for en diode viser hvordan strømmen gjennom dioden varierer med spenningen.
- Strøm- og spenningsretningene har fått egne navn som sier om dioden leder eller sperrer
- I_F = strømmen når dioder leder, dvs strømmen i foroverretningen
- I_B = strømmen i reversretningen, dvs når dioden sperrer

Diodemodell (2)

 For å bruke og forstå dioder trenger man å skjønne V-I karakteristikken

Enklest: dioden er en bryter som slår av/på ved 0 volt

Mer realistisk: innslagspunktet er 0.7v (barrierespenningen)

Enda mer komplett: tar hensyn til barrierespenningen, motstand i foroverretningen, og i reversretningen

Diodekarakteristikker

- Diodekarakteristikken beskriver strømmen gjennom en bestemt type diode som funksjon av spenningen over den
- Mer nøyaktig enn forenklingene på forrige side
- . I forover-retningen går det (nesten) ikke strøm hvis spenningen er lavere enn V_B
- . I revers-retningen går det ikke strøm før V_{BR} nås
- . $|V_{BR}|$ er typisk mye større enn $|V_{B}|$

Zenerdioder

 En Zener-diode tåler høy revers-spenning uten å ødelegges og er konstruert for å jobbe i break-down

Når Zener-dioden er i «reverse breakdown» har den litt motstand

UiO: Institutt for informatikk

Det matematisk-naturvitenskapelige fakultet

Spesialdioder (forts)

- En LED gir fra seg synlig lys når den opererer i foroverretningen
- Avhengig av halvledermaterialet og doping kan man produsere lysdioder i mange ulike farger

LED begynner å lyse når spenningen over den er > V_d V_B (kalt V_d for LED) er typisk >2v

Fotodioder

 En fotodiode opererer i revers-modus og vil lede en strøm som er proporsjonal med lyset som treffer den: Lyset tilfører energi som øker reversstrømmen

Zenerdiode - spenningsreferanse

 En Zener-diode tåler høy revers-spenning uten å ødelegges og er konstruert for å takle varierende strøm

Resistoren R sørger for at I_Z ikke blir større enn I_{Zmax}

Nøtt til neste gang

Hvilke Boolske funksjoner utfører de to kretsene?

