EEEN313/ECEN405

Introduction to Motors

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

1

Electricity vs Magnetism

ELECTRICITY		MAGNETISM	
Field	E [V/m]	Field	H [A/m]
EMF	$\mathcal{E} = \int E \cdot dl$ [V]	MMF	$\mathcal{F} = \int H \cdot dl = N \cdot Im$ [A·turn]
Current	I [A]	Flux	φ [Wb]
Ohm's Law	$\mathcal{E} = RI$	Rowland's Law	$\mathcal{F}=\mathcal{R}_m\Phi$
Resistance	$R\left[\Omega\right]$	Reluctance	\mathcal{R}_m [H $^{ ext{-}1}$]
Conductance	$G=1/R [\Omega^{-1}]$	Permeance	\mathcal{P} =1/ \mathcal{R}_m [H]
Current Density	$J=\sigma E [A/m^2]$	Flux density	$B=\mu H$ [Wb/m 2] or [T]
Conductivity	$\sigma \left[\Omega^{\text{-1}}.\text{m}^{\text{-1}}\right]$	Permeability	μ [H/m]

CAPITAL THINKING GLOBALLY MINDED

3

Form of Motors

- DC Motors mostly used in low power –toys, UAVs, Robots, sliding doors
- Large DC motors exist but seldom used EVs are moving away from DC motors
- AC motors are most used Induction Motors, Synchronous Motors (Single and 3 phase)
- Induction motors are work horses simple, efficient, reliable
- Your refrigerators, heat pumps, fans -all use IM
- So lets look at Induction Motor first!

Slip – Motor speed

- At 50 Hz, the maximum motor speed is 3000 rpm (for a two pole motor).
- If the rotor winding rotates at same speed as rotating field, it sees no changing flux so no induced current no rotor field no torque.
- So no 'going' at same speed as rotating field.
- Hence the introduction of slip $s = \frac{n_s n_m}{n_s}$ Normally less than 5%
- We can build IMs with any number of poles provided they are multiples of 6. $n_s = \frac{60f}{n/2}$

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KU TE PAE

7

Power Flow through Induction Motor

• Power flow through an IM – input power to output shaft

- 3 phase power input voltage is line voltage
- Stator loss due to wire heating and reversing magnetic domains of the core
- Rest goes to airgap and crosses to rotor

$$\omega_s = \frac{n_s}{60} 2\pi$$

This is synchronous speed Not actual rotor speed

CAPITAL THINKING.

- Power lost in rotor is proportional to the slip wire and core losses
- Rest goes to shaft of the motor power is developed torque related to speed of the shaft $\omega_{\scriptscriptstyle m} = \frac{n_{\scriptscriptstyle m}}{60} 2\pi$
- Remaining loss is mechanical due to windage and bearing loss
- Efficiency > 85%

CAPITAL THINKING. GLOBALLY MINDED.

9

CAPITAL THINKING. GLOBALLY MINDED.

13

An Example

- Specifications for a 10-hp 60 Hz totally-enclosed three-phase induction motor in a particular manufacturer's catalogue show voltage as 208-230/460V, current as 28.0-25.0/12.5 A, Power Factor is 83.5%, Efficiency is 88.5%, full-load speed 1,740 rpm. Calculate the following:
- Power Output: $P_{out} = 10 \text{ hp} \times 746 \text{ W/hp} = 7.46 \text{ kW}.$
- Power Input: $P_{in} = \sqrt{3} \times 460 \times 12.5 \times 0.835 = 8.316 \text{ kW}.$
- Efficiency: $\%\eta = 100(7.46/8.316) = 89.7\%$,
- Number of Poles: The full-load speed is 1,740 rpm, which is just under 1,800 rpm. So the motor has four poles because $n_s = 3600/(p/2) = 1800$ for p = 4.

Slip:
$$s = 100(1800 - 1740)/1800 = 3.33\%$$
.

CAPITAL THINKING. GLOBALLY MINDED. MAI I TE IHO KI TE PAE

Exmple Contd...

Developed power, assuming windage if windage and bearing losses are 200 W: $P_{devel} = 7.46 + 0.2 = 7.66$ kW.

Air-gap power: $P_{airgap} = 7.66/(1 - s) = 7.66/(1 - 0.333) = 7.924 \text{ kW}.$

Rotor loss: $P_{rotor} = P_{airgap} - P_{devel} = 7.924 - 7.66 = 264 \text{ W}.$

Stator loss: $P_{stator} = P_{in} - P_{airgap} = 8.316 - 7.924 = 392 \text{ W}.$

Output torque: $\omega_m = (1740/60)2\pi = 182.2$ radians/second, so $T_{out} = P_{out}/\omega_m = 40.94$ N-m.

CAPITAL THINKING. GLOBALLY MINDED.

