

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

Curso	Engenharia Informática				Ano letivo	2020-20	021	
Unidade curricular	Inteli	Inteligência Artificial						
Ano curricular	3.⁰	Semestre	1.º	Data	03.Fevereiro.2021 Dui		Duração	2h

FREQUÊNCIA-TIPO

Exercício	1.	2.	3.	4. a)	4. b)	4. c)	4. d)	5.	Total
Cotação	2.5	2.5	5.0	3.0	2.0	1.0	1.0	3.0	20

- **1.** No âmbito da área da Inteligência Artificial (IA), discuta e relacione os seguintes conceitos: (1) IA Forte, (2) IA Geral e (3) Singularidade Tecnológica.
- **2.** Considere a arquitetura de um Agente Aprendiz. Indique e descreva as funções atribuídas ao <u>módulo de aprendizagem</u>.
- **3.** Considere que no desenvolvimento de um Algoritmo Genético se obteve, a dado momento, a seguinte população

Indivíduo	Cromossoma				
1	1001.1011.1101.0110.1101				
2	0111.0011.1100.1011.1010				
3	1000.0100.1100.1100.0101				
4	1111.0111.1010.0111.1101				
5	1010.1111.1111.0101.0101				
6	0100.0111.0110.1100.1101				
7	0101.0110.1001.0110.1000				
8	1011.1101.1110.1011.1001				
9	0111.1100.1010.1110.1010				
10	1101.0110.0110.1110.0111				

Suponha também que, para obter a próxima geração da população, foram selecionados os seguintes indivíduos:

- Por elitismo foi selecionado o indivíduo 5;
- Por roleta foram selecionados para recombinação os indivíduos 8, 2, 5, 10, 3, 1, 5, 7, e 9.

Indique o resultado dos operadores de recombinação e de mutação do Algoritmo Genético, supondo que foi utilizada a <u>recombinação com 2 pontos de corte</u>.

Apresente a nova população obtida.

Apresente a sua resposta, descrevendo e justificando todos os passos necessários, com a indicação justificada dos valores escolhidos para todos os parâmetros do problema.

ENUNCIADO DE AVALIAÇÃO

MODELO PED.018.01

- **4.** Considere o algoritmo de procura heurística **A***.
 - a) Indique os passos necessários para encontrar a solução para ir desde o ponto $\underline{\mathbf{S}}$ até ao ponto $\underline{\mathbf{E}}$ (ver figura). Numere os nós pela ordem em que o algoritmo os analisa. Em cada expansão considere todos os nós. Indique a solução e o custo finais.
 - b) Aplicando agora ao mesmo problema o algoritmo de procura heurística IDA* (Iterative Deepening A* search), indique os passos necessários para encontrar a solução para ir desde o ponto <u>S</u> até ao ponto <u>E</u> (ver figura). Numere os nós pela ordem em que o algoritmo os analisa. Em cada expansão considere todos os nós. Indique a solução e o custo finais.
 - c) Indique o conteúdo das estruturas de dados (listas ordenadas) em cada iteração das estratégias das alíneas anteriores (Nota: pretende-se apenas a fronteira).
 - **d)** Comente a seguinte afirmação: "A estratégia de procura **A*** é superior à estratégia **IDA*** em todos os aspetos". Justifique a sua resposta.

Nó	h	Nó	h
Α	9	H	6
В	7	-	4
С	8	J	4
D	8	K	3
E	0	L	6
F	6	S	10
G	3		

5. Considere que estão definidos os seguintes predicados em Prolog para representar sons de um cão (cao/1) e sons de um gato (gato/1):

```
cao(wouf).
cao(wrrouf).
cao(grr).
cao(aoaouuuuuu).
gato(miauauuu).
gato(miauauau).
gato(ronron).
```

Defina em Prolog o predicado <u>conversa/1</u> que aceita uma lista constituída por sons de cão e de gato (0, 1 ou mais sons) e que será considerada uma conversa se para cada 2 latidos de cão consecutivos houver, em resposta, 1 miado de gato, também consecutivo. Exemplos:

```
?- conversa([wouf,wouf,miau,wouf,grr,ronron]).
yes
?- conversa([wouf,miau,ronron,wouf,miiiaaaauuuuw]).
no
```