ПРОТОКОЛ № 2

Проведения испытаний программного алгоритма по распознаванию движения в видеозаписях

г. Саранск 11 ноября 2024 г.

1 Рабочая группа

Рабочая группа в составе: Макаров О. С. – аспирант 4-го года очной формы обучения Федерального государственного бюджетного образовательного учреждения высшего образования «Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва»

2 Данные об испытании

2.1 Цель испытаний

Цель испытаний – определить количественные характеристики работы программного обеспечения.

2.2 Объект испытаний

Программное обеспечение, разработанное по алгоритму Vibe (VIsual Background Extractor) для распознавания движения в видеозаписях. Источник алгоритма: https://www.ipol.im/pub/art/2022/434/article_lr.pdf

2.1 Предмет испытаний

Количественные характеристики работы программного обеспечения, определяющие эффективность программного алгоритма, а именно: показатели точности и потребления вычислительных ресурсов. Количественные показатели точности распознавания:

- 1) Процент корректных распознаваний (РСС)
- 2) Чувствительность (Rcl)
- 3) Точность (Ргс)
- **4)** F-балл

Подробнее показатели точности с методиками их расчета представлены в Приложении А.

Количественные показатели потребляемых вычислительных ресурсов:

- 1) Количество потребляемой памяти
- 2) Количество кадров, обрабатываемых в секунду (FPS)

2.3 Ход испытаний

2.3.1 Используемое оборудование и среда испытаний

Все испытания проводились на персональном компьютере со следующими характеристиками:

- 1) Центральный процессор: Intel Core 2 Duo E7500, 2 x 2.93 ГГц
- 2) Оперативная память: 4 GB, DDR3
- 3) Видеопроцессор: NVIDIA GEFORCE 9600 GT
- 4) Жесткий диск: 512GB, HDD
- 5) Операционная система Windows 7 Home Premium

2.3.2 Перечень входных данных

Программное обеспечение запускалось для десяти видеозаписей пяти различных категорий из коллекции Change Detection 2014, указанных в таблице 1. Оригинальный источник данных: https://www.kaggle.com/datasets/maamri95/cdnet2014. Каждая видеозапись этого набора содержит входные кадры, которые подаются на вход алгоритма (подпапка /input) и

вручную сегментированные ожидаемые маски распознавания, приближенные к реальности (подпапка /groundtruth).

Таблица 1 – Видеозаписи для проведения испытаний

№	Видеозапись	Разрешение	Количество кадров	Категория	Путь до видеокадров
1	PETS 2006	720 x 576	1200	PETS 2006	baseline\PETS2006
2	pedestrians	360 x 240	1099	Обычные видеозаписи	baseline\pedestrians
3	office	360 x 240	2050	Обычные видеозаписи	baseline\office
4	highway	320 x 240	1700	Обычные видеозаписи	baseline\highway
5	fall	720 x 480	4000	Динамический фон	dynamicBackground\fall
6	canoe	320 x 240	1189	Динамический фон	dynamicBackground\canoe
7	tramstop	432 x 288	3200	Прерывистое движение объектов	intermittentObjectMotion\tramstop
8	sofa	320 x 240	2750	Прерывистое движение объектов	intermittentObjectMotion\sofa
9	bungalows	360 x 240	1700	Тень	shadow\bungalows
10	cubicle	352 x 240	7400	Тень	shadow\cubicle

2.3.3 Замечания

Для достижения объективных результатов программное обеспечение для каждой видеозаписи запускалось 5 раз. Отказов, сбоев и аварийных ситуаций в ходе проведения испытаний не возникло. Корректировка параметров испытуемого алгоритма в ходе испытаний не вносилась.

3 Результаты испытаний

В таблицах 2 и 3 продемонстрированы показатели эффективности программного обеспечения, установленные в ходе проведения испытаний. Данные в таблице 2 для каждой видеозаписи усреднены по количеству запусков.

Таблица 2 – Результаты испытаний показателей точности

№	TP	TN	FP	FN	Prc	Rcl	PCC	F-балл
1	9186083	483926282	2846248	1705387	0,76	0,84	99,1%	0,80
2	2336858	90941308	1061714	613720	0,69	0,79	98,2%	0,74
3	3415737	170970416	1440301	1293546	0,70	0,73	98,5%	0,71
4	2501825	125680547	1270358	1107270	0,66	0,69	98,2%	0,68
5	38392121	1299153146	22098586	22756147	0,63	0,63	96,8%	0,63
6	1300114	88420225	868767	726094	0,60	0,64	98,3%	0,62
7	5269648	387864209	2850654	2146689	0,65	0,71	98,7%	0,68
8	2866584	206104200	1149657	1079559	0,71	0,73	98,9%	0,72
9	2962130	141371411	1219627	1326832	0,71	0,69	98,3%	0,70
10	13997357	590107901	12742815	8303927	0,52	0,63	96,6%	0,57
Среднее					0,66	0,71	98,2%	0,68

Таблица 3 – Результаты испытаний показателей потребления вычислительных ресурсов

№	Память, сред. (МБ)	FPS, мин. (c)	FPS, make. (c)	FPS, средн. (c)
1	215	38,0	40,2	38,4
2	25	52,5	57,3	56,3
3	51	60,5	62,5	61,4

4	35	60,9	65,8	62,2
5	115	40,0	40,7	40,4
6	24	62,8	69,4	63,7
7	88	46,4	51,1	48,8
8	25	58,2	61,3	60,7
9	26	59,8	62,4	61,8
10	25	54,2	59,1	57,3

Приложение А

Показатели точности распознавания

Количество истинно отрицательных пикселей (TN) – количество пикселей в кадре, правильно классифицированных как пиксели фоновой модели.

Количество истинно положительных пикселей (TP) – количество пикселей в кадре, правильно классифицированных как пиксели объектов переднего плана.

Количество ложно положительных пикселей (FP) — количество пикселей в кадре, неправильно классифицированных как пиксели объектов переднего плана, на самом деле являющихся фоновыми пикселями;

Количество ложно отрицательных пикселей (FN) — количество пикселей в кадре, неправильно классифицированных как фоновые пиксели, на самом деле являющихся пикселями объектов переднего плана;

Процент правильных классификаций (PCC) – показатель, определяющий общую долю правильных классификаций:

$$PCC = \frac{TP + TN}{TP + TN + FP + FN} \cdot 100\%$$

Чувствительность (Rcl) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей объектов переднего плана:

$$Rcl = \frac{TP}{TP + FN}$$

Точность (Prc) показывает долю правильно классифицированных пикселей объектов переднего плана в общем количестве пикселей, классифицированных алгоритмом как пиксели объектов переднего плана:

$$Prc = \frac{TP}{TP + FP}$$

F-балл – это среднее гармоническое взвешенное показателей чувствительности и точности:

$$F = \frac{2 \cdot Pr \cdot Rcl}{Pr + Rcl}$$