Lecture 7 More On The Bayes' Theorem

BIO210 Biostatistics

Xi Chen

Spring, 2023

School of Life Sciences
Southern University of Science and Technology

Conditional Probability

The Multiplication Rule

$$\mathbb{P}\left(\bigcap_{i=1}^{n} A_{i}\right) = \mathbb{P}\left(A_{1}\right) \cdot \\ \mathbb{P}\left(A_{2} | A_{1}\right) \cdot \\ \mathbb{P}\left(A_{3} | A_{1} \cap A_{2}\right) \cdot \\ \mathbb{P}\left(A_{4} | A_{1} \cap A_{2} \cap A_{3}\right) \cdot \\ \cdots \\ \mathbb{P}\left(A_{n} | \bigcap_{i=1}^{n-1} A_{i}\right)$$

Conditional Probability

The Total Probability Rule

$$\mathbb{P}(B) = \mathbb{P}[(A_1 \cap B) \cup (A_2 \cap B) \cup \dots \cup (A_n \cap B)]$$

$$= \mathbb{P}(A_1 \cap B) + \mathbb{P}(A_2 \cap B) + \dots + \mathbb{P}(A_n \cap B)$$

$$= \sum_{i=1}^{n} \mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)$$

Conditional Probability

Bayes' Theorem

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}{\mathbb{P}(B)}$$
$$= \frac{\mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}{\sum_{i=1}^n \mathbb{P}(A_i) \cdot \mathbb{P}(B|A_i)}$$

Virus Detection

Who Is Steve

Amos Tversky & Daniel Kahneman

"Steve is very shy and withdrawn, invariably helpful, but with little interest in people, or in the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail. How do people assess the probability that Steve is engaged in a particular occupation from a list of possibilities (for example, farmer, salesman, airline pilot, librarian, or physician)?"

Who Is Steve

Lipkakian

Farmer

When To Use Bayes' Theorem

You have a hypothesis	You have observed some evidence	You want					
The person carries the virus; Steve is a librarian	Test result is positive; Steve's characters	Probability of the hypothesis given the evidence, $\mathbb{P}\left(H E\right)$					

Bayes' Theorem

$$\mathbb{P}\left(H_{i}|E\right) = \frac{\mathbb{P}\left(E|H_{i}\right)}{\sum_{i=1}^{n} \mathbb{P}\left(H_{i}\right) \cdot \mathbb{P}\left(E|H_{i}\right)} \cdot \mathbb{P}\left(H_{i}\right)$$

 $\mathbb{P}(H_i)$: prior probability

 $\mathbb{P}(H_i|E)$: posterior probability

The Bayesian Search

- The 4th H-bomb from American B-52 (1966)
- Air France 447 (2009 2011)
- Malaysian Air Flight 370 (2014)
- USS Scorpion (SSN-589) (1968)

US Navy photo #NH_97214 & 1136658

The Bayesian Search

			NOT	E: C	DNVE	RT N	UMB	ERS TES	TO P	ROBA	BILIT	IES FOL	BY D	IVID	NG E	Y IC	,000		
NOT	E: *	INDI	CATE	S		_	ANK	-		≤ NUI									
		SCORPION.				10 < NUMBER ≤ 100									5	7	,		
		АВ			С					3 L	W.	4 Z	24 ol	6					
		1											5	26	35	22	26	9	-
		2								~		18	46	74	42	18	10	4	2
		3								8	111	140	99	45	SO	4	2	-	-
		4	2	21	137	16	7	-	50	215		5	30	5	3	1	-	-	
		18	40	46	747	30		205		277	38	5	2	-	1	1			
	14	6 326	3	1	28	31	63	* 85	62	-	8	7	10	7	3	4			
1	359	175	174	6	282	245	82	71	65	35	27	9	12	6	5	4			
	24	25	42	82	297	230	129	115	61	33	(4	14	-01	6	2	5	1		
	17	25	50	20	ΙŒ	19	55	99	46	30	14	15	3	5	1	6			
	2	110	14	25	20	24	45	34	27	19	15	5	7	5	5	'			
		"	7	13	12	9	1	3	3	1	14	5	4	3	2	-			
		12							1	4	4	10	5	4	1				
											1	3	2						
												3	2						
		_			_	_	_		_		_	_	L	_				L	_
1	1	1	1	1	1			I		ı	1			1	1			1	i

Richardson & Stone - Operations analysis during the underwater search for Scorpions (1971)

Simulation of The Bayesian Search

0.14	0.07	0.11			
0.22	0.00	0.03			
0.17	0.21	0.04			

One Simulation Result

