Pseudo-code of optimized SNI refresh gadgets

Gaëtan Cassiers

Benjamin Grégoire

The input (resp., output) sharing is denoted as \mathbf{x} (resp., \mathbf{y}). All r_i variables are independent uniform random elements, and \mathbf{s}^i are vectors of d independent randoms elements. The $(\cdot \gg i)$ operator applied to a vector denotes a rotation of its elements: the 1st element becomes the i+1-th, etc. Registers are denoted as $\mathbb{R}\left[\cdot\right]$.

d = 2	$t_6^0 \leftarrow R\left[t_6^0 + r_2\right]$	$t_3^0 \leftarrow R\left[t_3^0 + r_3\right]$
$y_0 \leftarrow R\left[x_0 + r_0\right]$	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0}\right]$	$t_4^0 \leftarrow R\left[t_4^0 + r_4\right]$
$y_1 \leftarrow R\left[x_1 + r_0\right]$	d = 9	$t_5^0 \leftarrow R\left[t_5^0 + r_0\right]$
d=3	$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$t_6^0 \leftarrow R\left[t_6^0 + r_1\right]$
$t_0 \leftarrow R\left[r_0 + r_1\right] \\ y_0 \leftarrow R\left[x_0 + r_0\right]$	$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$	$t_7^0 \leftarrow R\left[t_7^0 + r_2 + r_5\right]$
$y_0 \leftarrow R[x_0 + r_0]$ $y_1 \leftarrow R[x_1 + r_1]$	$t_{1}^{0} \leftarrow R\left[t_{1}^{0} + r_{1}\right]$	$t_8^0 \leftarrow R\left[t_8^0 + r_3\right]$
$y_2 \leftarrow R\left[x_2 + t_0\right]$	$t_3^0 \leftarrow R\left[t_3^0 + r_2\right]$	$t_9^0 \leftarrow R\left[t_9^0 + r_4\right]$
d = 4.5	$t_{4}^{0} \leftarrow R\left[t_{4}^{0} + r_{0}\right]$	$t_{10}^0 \leftarrow R\left[t_{10}^0 + r_5\right]$
$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$t_6^0 \leftarrow R\left[t_6^0 + r_1\right]$	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0}\right]$
$\mathbf{y} \leftarrow R \left[\mathbf{x} + \mathbf{t^0} \right]$	$t_7^0 \leftarrow R\left[t_7^0 + r_2\right]$	d = 12
d = 6	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0}\right]$	$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$
$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	d = 10	$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$
$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$	$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$t_1^0 \leftarrow R\left[t_1^0 + r_1\right]$
$t_3^0 \leftarrow R\left[t_3^0 + r_0\right]$	$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$	$t_2^0 \leftarrow R \left[t_2^0 + r_2 + r_6 \right]$
$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0} ight]$	$t_1^0 \leftarrow R\left[t_1^0 + r_1\right]$	$t_3^0 \leftarrow R\left[t_3^0 + r_3\right]$
d=7	$t_{2}^{0} \leftarrow R\left[t_{2}^{0} + r_{2}\right]$	$t_4^0 \leftarrow R\left[t_4^0 + r_4\right]$
$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$t_3^0 \leftarrow R \left[t_3^0 + r_3 \right]$	$t_5^0 \leftarrow R\left[t_5^0 + r_5 + r_6\right]$
$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$	$t_4^0 \leftarrow R\left[t_4^0 + r_4\right]$	$t_6^0 \leftarrow R\left[t_6^0 + r_0\right]$
$t_2^0 \leftarrow R\left[t_2^0 + r_1\right]$	$t_5^0 \leftarrow R\left[t_5^0 + r_0\right]$	$t_7^0 \leftarrow R\left[t_7^0 + r_1\right]$
$t_{4}^{0} \leftarrow R\left[t_{4}^{0} + r_{0}\right]$	$t_{6}^{0} \leftarrow R\left[t_{6}^{0} + r_{1}\right]$	$t_{8}^{0} \leftarrow R\left[t_{8}^{0} + r_{2} + r_{7}\right]$
$t_6^0 \leftarrow R\left[t_6^0 + r_1\right]$	$t_7^0 \leftarrow R\left[t_7^0 + r_2\right]$	$t_9^0 \leftarrow R\left[t_9^0 + r_3\right]$
$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0} ight]$	$t_8^0 \leftarrow R\left[t_8^0 + r_3\right]$	$t_{10}^0 \leftarrow R\left[t_{10}^0 + r_4\right]$
d = 8	$t_9^0 \leftarrow R\left[t_9^0 + r_4\right]$	$t_{11}^{0} \leftarrow R\left[t_{11}^{0} + r_5 + r_7\right]$
$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0}\right]$	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^0} ight]$
$t_0^0 \leftarrow R \left[t_0^0 + r_0 \right]$	d = 11	$d = 13, \dots, 16$
$t_1^0 \leftarrow R\left[t_1^0 + r_1\right]$	$\mathbf{t^0} \leftarrow R\left[\mathbf{s^0} + (\mathbf{s^0} \gg 1)\right]$	$\mathbf{t^0} \leftarrow R \left[\mathbf{s^0} + (\mathbf{s^0} \gg 1) \right]$
$t_2^0 \leftarrow R\left[t_2^0 + r_2\right]$	$t_0^0 \leftarrow R\left[t_0^0 + r_0\right]$	$\mathbf{t^1} \leftarrow R\left[\mathbf{s^1} + (\mathbf{s^1} \gg 3)\right]$
$t_4^0 \leftarrow R\left[t_4^0 + r_0\right]$	$t_1^0 \leftarrow R\left[t_1^0 + r_1\right]$	$\mathbf{t^2} \leftarrow R\left[\mathbf{t^0} + \mathbf{t^1}\right]$
$t_5^0 \leftarrow R\left[t_5^0 + r_1\right]$	$t_2^0 \leftarrow R\left[t_2^0 + r_2\right]$	$\mathbf{y} \leftarrow R\left[\mathbf{x} + \mathbf{t^2}\right]$