OBJECTIVE

Mining of structured data to find potentially useful patterns by Association Rule Mining.

Traditional Algorithms Already Available like Apriori, FP-Growth etc.

Why new approach?

1. No need to search entire lattice of item combinations.

2. No pruning step required.

3. Less computational resources in terms of time and memory.

4. k-items patterns can be obtained easily.

5. The proposed algorithm generate tree which is useful in visual analysis of data.

What is the task?

INPUT 1: Structured data

A1	A2	A3	A4	A5
V11	V21	V31	V41	V51
V11	V22	V32	V42	V51

Where Ai are the column names? and Vij are the values in the ith column.

INPUT 2: Threshold support and threshold confidence

OUTPUT: Rules satisfying threshold support and threshold confidence.

For example : (A1 = V11 => A5 = V51)

Rule generation will be done in two steps

Step 1: Generate MASP Tree

Step 2: Generate rules using MASP Tree

	<u>A1</u>	A2	A3	A4	<u>A5</u>
1	1	1	1	1	<u>1</u>
2	1	1	2	1	3
3	1				
4	1	1			2
5	1	2		3	2
6	1	2	2	3	2
7	2	2	1	4	1
8	2	2	1	4	1
9	2	3	1	5	1
<u>10</u>	2	3	2	6	1

```
Threshold support = 0.2
Threshold confidence = 0.3
```

Step 1: Generate item distribution of the candidate block

Item	Frequency	Item	Frequency
A1 = 1	6	A4 = 2	2
A1 = 2	4	A4 = 3	2
A2 = 1	3	A4 = 4	2
A2 = 2	5	A4 = 5	1
A2 = 3	2	A4 = 6	1
A3 = 1	5	A5 = 1	5
A3 = 2	5	A5 = 2	4
A4 = 1	2	A5 = 3	1

Step 2: Select item having maximum frequency

Step 3: Check whether it is satisfying threshold support and Confidence

Step 4: If threshold is not satisfied stop the algorithm

In the above data A1 = 1 frequency is 6 (maximum) and support = confidence = 6/10 = 0.6 (greater than the threshold)

Algorithm will not stop!

Split the data based on A1 = 1

	<u>A1</u>	A2	A3	A4	A5
1	1_	1	1	1	1
2 3	1_	1	2	1	3
3	1_	2	1	2	2
4	1_	1	2	2	2
5	1_	2	2	3	2
6	1_	2	2	3	2
7	2	2	1	4	1
8	2	2	1	4	_1
9	2	3	1	5	_1
<u>10</u>	2	3	2	6	1

Left part of the root will be A1 = 1 and Right part will be ~A1 = 1 and the data associated with

$$A1 = 1$$

\sim A1 = 1

	A1	A2	A3	A4	A5
1	2	2	1	4	<u>1</u>
2	2		1	4	<u>1</u>
3	2	3	1	5	<u>1</u>
4	2	3	2	6	1

Recursively apply the same steps on newly generated data

Rules Generation

Rules Generation

Path selected

$$(A1 = 1) -> (A3 = 2) -> (A5 = 2) -> (A2 = 2) -> (A4 = 3)$$

Rules (easy to generate)

$$(A1 = 1) (A3 = 2) (A5 = 2) (A2 = 2) => (A4 = 3)$$

$$(A1 = 1) (A3 = 2) (A5 = 2) => (A2 = 2)$$

$$(A1 = 1) (A3 = 2) => (A5 = 2)$$

$$(A1 = 1) => (A3 = 2)$$

Thank You