# Математический анализ

# Алла Владимировавна Устюжанова

24 октября 2019 г.

# Лекция 1

- 1 Глава 1. Введение.
- 1.1 Параграф 1: Множества операции над множествами

Кванторы:

 $\forall$   $\exists$ 

Множество – это совокупность каких-либо предметов (элементов).

$$A \quad B, \quad x \in A, \quad x \notin B, \quad A \in B$$

Операции:

1.  $A \cup B$  — те множество каждый элемент которого принадлежит хотябы одному из множеств A или B

$$A \cup B = \{x : x \in A \quad or \quad x \in B\}$$

2.  $A \cap B$  — это множество каждый элемент которого принадлежит одновременне и A и B

$$A \cap B = \{x : x \in A \quad and \quad x \in B\}$$

3.  $A \setminus B$  – (Разность)

$$A \setminus B = \{x : x \in A \quad but \quad x \not \in B\}$$

4. CA  $\bar{A}$  – (Дополнение)

$$CA = \bar{A} - S \setminus A$$

Виды множеств:

 $N \subset Z \subset Q \subset R \subset C$ 

# 1.2 Абсолютная величина

$$|x| = \{x \quad x \ge 0 \quad or \quad -x \quad x \le 0\}$$

## Свойства:

1. Неравенство треугольника

$$|x+y| = |x| + |y|$$

Док-во: пусть 
$$x+y \geq 0 \Rightarrow |x+y| = x+y = |x|+|y|$$
 Док-во: пусть  $x+y < 0 \Rightarrow |x+y| = x+(-y) < |x|+|y|$ 

2. 
$$|x-y|=|x|-|y|$$
 если  $|x|>|y|$  3.  $|xyz|=|x||y||z|$  4.  $\left|\frac{x}{y}\right|=\frac{|x|}{|y|}$  sgn x =  $\{1\quad x>0\quad 0\quad x=0\}$ 

### Бином Ньютона:

$$(a+b)^n = a^n + C_n^1 a^{n-1} b + \dots + b^n$$

$$C_n^k = \frac{n!}{(n-k)!k!}$$

$$n! = 1 \cdot 2 \cdot 3 \cdot \dots \cdot n$$

$$0! = 1$$

## Треугольник Паскаля:



## 1.2.1 Упражнения

- 1.  $A = \{1, 2, 3\}$   $B = \{2, 3, 4, 5\}$   $A \cup B$ ?
- 2.  $A = \{x \in N : 2 < x < 4\}$   $B = \{x \in N : 2 < x < 4\}$   $C = \{x \in N : 2 < x < 4\}$
- $2 < x < 4\} \quad B \cup C?, A \cap B \cap C, A \cup B \cup C \quad ?$
- 3.  $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$ ?
- 4.  $(A \setminus B) \cap C = (A \cap C) \setminus (B \cap C)$
- 5.  $(1-x)^5 = ?$
- 6.  $\left(\frac{2}{x} + 3\sqrt{x}\right)^4$

# 2 Глава 2. Предел и непрерывность.

Курс: Мат анализ (фтф:ИВТ)

код слово: предел

# 2.1 Параграф 1. Предел псоледовательности

Предел — пусть каждому натуральному числу N по некоторому закону поставленно в соответствие действительное число  $x_n$  тогда говорят что определена числовая последовательность  $\{x\}=\{x_1,x_2,....,x_n,...\}$ 

Число а называется пределом последовательности  $\{x_n\}$  если для всякого

действительного числа  $\epsilon>0$  найдется зависящее от  $\epsilon$  число такое что выполняется неравенство  $|x_n-a|<\epsilon$  для всех натуральных чисел  $n>n_0$ .

Обозначение:

$$\lim_{n \to 0} x_n = a \quad (x_n \to a \quad n \to \inf)$$

$$\lim_{n \to 0} x_n = a \Leftrightarrow \forall \epsilon > 0 \quad \exists n_0 = n_0(\epsilon) : \forall n > n_0 \quad |x_n - a| < \epsilon$$

Пример: 
$$\lim_{n\to 0}\frac{1}{n}=0$$
  $|\frac{1}{n}|<\epsilon,\quad \frac{1}{n}<\epsilon,\quad n>\frac{1}{\epsilon},\quad n_0=\left[\frac{1}{\epsilon}\right]+1\quad \forall \epsilon>0$  чтд.

Произвольный интервал AB содержащий точку  ${\sf C}$  называется окресностью это точки

$$\cup (C)$$

Эпсилон окресность:

$$\bigcup (\epsilon) \quad \bigcup_{\epsilon} (\epsilon) = \dot{\bigcup}_{\epsilon} (\epsilon) \setminus c$$

Число(точка) а является пределом последовательности  $x_n$  если для любого эпсилон больше нуля найдется число  $n_0$  такое что все точки  $x_n$  с индексами  $n>n_0$  попадут в  $\epsilon$ окресность точки а. Вне любой окресности точки а имеется конечная или пустое множество точек  $x_n$ .

# Лекция 2

Теорема 1: Если последовательность  $x_n$ имеет конечный предел, то он единственный.

Док-во:  $x_n$  имеет два различных предела а и b.

расмотрим окресность cd, тк  $x_n \to a$  , то ляляля, тогда в интервале не может содержаться бесконечное число элементов, те последовательность  $x_n$  не может стремится к b.

Теорема 2: Если последовательность сходится (имеет прредел), то она ограничена. Опр: если  $|x_n| \leq M, \quad M = const$  , то  $x_n$  наз ограниченной

Теорема 3(придельный переход в неравенствах):

- а) Если  $x_n \to a, \quad y_n \to b, \quad a < b$ , то  $\exists n_0^\forall n > n_0 \quad x_n < y_n$  6) Если  $x_n \to a, \quad y_n \to b, \quad x_n \le y_n \quad \forall n,$  то  $a \le b$

Теорема 4(принціп "двух милиционеров"):

Если  $x_n \to a$ ,  $y_n \to a$  and  $x_n \le z_n \le y_n$   $\forall n \in \mathbb{N}$  then  $z_n \to a$ 

Теорема 5(Арифметические свойства приделов):

- 1)  $\lim_{n\to inf} c = c$ , c = const
- 2) if  $\exists$  ending  $\lim_{n\to inf} x_n = a$ ,  $\lim_{n\to inf} y_n = b$  then ствуют приделы их суммы, разности , произведения, частного $(b \neq 0)$ :

$$a) \lim_{n \to inf} (x_n \pm y_n) = a + b$$

$$b)\lim_{n\to inf}(x_ny_n)=ab$$

c) 
$$\lim_{n \to inf} \left( \frac{x_n}{y_n} \right) = \frac{a}{b}$$
, where  $b \neq 0$ 

Определение:  $x_n$  называется бесконечно малой если предел последовательности равен 0

Определение:  $y_n$  называется бесконечно большой если предел последовательности равен бесконечности

$$\forall \epsilon > 0 \quad \exists n_0 : \quad \forall n > n_0 \quad |y_n| > \epsilon$$

Свойства:

1) произведение бесконечно малой на ограниченное является бесконечно малой

#### 2.2Параграф 2. Предел функции

- Функцией называется закон по которому каждому х из некоторово множества D соответствует единственное значение у из множества E

$$y = f(x)$$

$$f:D\to E$$

где х - независсимая переменная, аргумент у – зависимая переменная

D – область определения

Е – область значения

Определение предела функции

1. по Коши (с помощью окресности):

$$\lim_{x \to 0} f(x) = A \quad \Leftrightarrow \quad \forall \cup_{\epsilon} (A) \quad \exists \cup_{\epsilon} (x_0) \quad \forall x \in \cup_{\epsilon} (x_0) \quad \Rightarrow \quad f(x) \in \cup_{\epsilon} (A)$$

с помощью неравенства:

$$a)x_0, A - ending$$
  $\lim_{x \to x_0} f(x) = (A) \Leftrightarrow \forall \epsilon > 0 \quad \exists b > 0 : 0 < |x - x_0| < b \Rightarrow |f(x) - A| < \epsilon$ 

$$b)x_0 - ending, A = +inf \lim_{x \to x_0} f(x) = +inf \Leftrightarrow \forall \epsilon > 0 \quad \exists \delta > 0 :$$

$$|x - x_0| < \delta \Rightarrow f(x) > \epsilon$$
  
 $c)x_0 - ending, A = -inf | \lim_{x \to x_0} f(x) = -inf \Leftrightarrow \forall \epsilon > 0 | \exists \delta > 0 :$ 

$$c)x_0 - ending, A = -inf \lim_{x \to x_0} f(x) = -inf \Leftrightarrow \forall \epsilon > 0 \quad \exists \delta > 0$$
  
 $|x - x_0| < \delta \Rightarrow f(x) < -\epsilon$ 

$$d)x_0 - ending, A = \inf \lim_{x \to x_0} f(x) = \inf \Leftrightarrow \forall \epsilon > 0 \quad \exists \delta > 0 : |x| > \delta \Rightarrow |f(x) - A| < \epsilon$$

2) по Гейне(с помощью предела последовательности):

$$A = \lim_{x \to x_0} f(x) \Leftrightarrow \forall x_n \to x_0 \quad n \to inf, \quad x_n \neq x_0$$

Соответсвующая последовательность значений функции

$$f(x_n) \to A \quad n \to inf$$

Теорема 1(Арифметические свойства пределов функции): Пусть существует конечные пределы функции

$$\lim_{x \to x_0} f(x) = A, \quad \lim_{x \to x_0} g(x) = B$$

тогда предел суммы(разности) равен пределу суммы(разности) произведения = произведению

частного = частному

ограниченна в некоторых окресностях точки  $x_0$ 

Теорема 2 (предельный переход в неравенство):

$$\lim_{x \to x_0} f(x) = A, \quad \lim_{x \to x_0} g(x) = B, \quad \exists \cup (x_0), f(x) < g(x) \quad f(x) \in \cup (x_0)$$

# Лекция 3

Введем понятие сложной функции:

$$f: X \to Y \quad y = f(x)$$

$$g:Y\to R\quad g(y)$$
 
$$h:X\to R\quad h(x)=g(f(x))=g\circ f$$

Теорема 3(предел сложной функции):

пусть 
$$\lim_{x\to x_0} f(x) = y_0, f(x) \neq y_0, x \neq x_0$$
,  $\exists \lim_{y\to y_0} g(y) = A \Rightarrow \exists \lim_{x\to x_0} h(x) = \lim_{x\to x_0} g(f(x)) = A$ 

Теорема 4(критерий Коши):

Функция f(x) имеет придел в точке  $x_0$  тогда и только тогда выполнения условия  $\forall \epsilon > 0 \quad \exists \epsilon > 0: \quad \forall x', x'': \quad |x' - x_0| < \epsilon$ 

$$|f(x') - f(x'')| < \epsilon$$

## Односторонние пределы

Предел с лево $(x \to -0)$ :

$$A = \lim_{x \to x_0 - 0} f(x) = f(x_0 - 0) \quad \Leftrightarrow$$

$$\forall \epsilon > 0 \quad \exists \delta > 0 : x_0 - \delta < x < x_0 \quad \Rightarrow \quad |f(x) - A| < \epsilon$$

Предел с право $(x \to +0)$ :

$$A = \lim_{x \to x_0 + 0} f(x) = f(x_0 + 0) \quad \Leftrightarrow \quad$$

$$\forall \epsilon > 0 \quad \exists \delta > 0 : x_0 < x < x_0 + \delta \quad \Rightarrow \quad |f(x) - A| < \epsilon$$

Замечание:

- 1) Функция имеет предел при  $x \to x_0$ , когда существуют левый и правый пределы равные между собой.
- 2)Если  $A = \lim_{x \to x_0} f(x)$  то

$$f(x) = A + \alpha(x) \quad \alpha(x) \to 0$$

# 2.3 Параграф 3. Замечательные пределы

1ый замечательный предел:

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

следствие

$$\lim_{x \to x_0} \frac{\sin \alpha(x)}{\alpha(x)} = 1$$

2ой замечательный предел

$$\lim_{x \to +inf} 1 + \frac{1}{x} = \lim_{x \to -inf} (1 + \frac{1}{x})^x = \lim_{x \to inf} (1 + \frac{1}{x})^x = e \simeq 2.718281828\dots$$

следствие

$$\lim_{\alpha \to 0} (1 + \alpha)^{\frac{1}{\alpha}} = e$$

# 2.4 Параграф 4. Непрерывность функции

— Функция y=f(x) называется непрерывной в точке  $x_0$ , если  $\lim_{x \to x_0} f(x) = f(x_0)$ 

Функция непрерывна на множестве D если она не прерывна к каждой точке этого множества. Если одно из условий непрерывности не выполняется, то функция не является непрерывной в этой точке.

Точка разрыва — это когда f(x) определена проколотой окресностью этой точки и не является непрерывной в точке  $x_0$ 

## 2.4.1 Классификация точек разрыва

- а)  $x_0$  называется точкой устранимого разрыва f(x), если существует предел функции при  $x\to x_0$  (конечный предел), но функция либо не определена в  $x_0$ , либо значение предела не совпадает со значением функции
- b)  $x_0$  называется точкой разрыва первого рода функции f(x), если  $\exists$ ют конечные односторонние пределы.
- с)  $x_0$  называется точкой разрыва второго рода, если хотябы один из односторонних пределов не существует или является бесконечным.

## 2.4.2 Основные теоремы о непрерывных функциях

## Теорема 1

Сумма, разность, произведение, частное(знаменатель не равен нулю) непрерывных функций также являются непрерывной функцией.

Теорема 2(непрерывность сложной функции)

Пусть сложная функция определена в окресности  $x_0$ , пусть функция у = g(x) непрерывна в точке  $x_0$ , внешная функция  $y_0 = f(x_0)$  непрерывная в точке  $y_0$ , тогда f(g(x)) непрерывна в  $x_0$ 

Теорема 3(о промежуточном значении)

Пусть f(x) непрерывна на AB и на его концах принимает значение разных знаков, тогда существует точка 'c' внутри AB, f(c)=0.

Теорема 4(о макс значении Вейерштрасса):

Функция f(x) непрерывная на AB является оганиченной на этом отрезке и приэтом существует точка x1 из AB такая что x1 максимальное значение функции, также есть точка x2 которая является минимальным значением функции.

Следствие теоремы 3: Если  $\phi(x)$  непрерывна на AB, то найдется точка 'с' из интервала AB,  $\phi(x=c)=C$ 

# Лекция 4

Введем понятие обратной функции:

$$y = f(x) : D \to E$$

если каждому у из множества Y ПОСТАВИТЬ В СООТВЕТСТВИЕ ЗНА-ЧЕНИЕ x из D то получим обратную функцию.

$$x = f^{-1}(y)$$

Теорема 5(о непрерывности обратной функции)

Пусть y=f(x) непрерывна, строго возрастает(убывает) на [a,b]  $f(a)=A,\quad f(b)=B\quad A< B(A>B)$ , тогда обратная функция  $x=f^{-1}(y)$  определена на [A,B] непрерывно и является возрастающей (убывающей)

Теорема Элементарные функции

y = kx + b;  $y = x^x;$   $y = \sin x;$   $y = \ln_a x;$   $y = a^x \dots$ , эти функции непрерывны на всей области определения.

# 2.5 Параграф 5. Сравнение Ассимптотического поведения функции.

- это поведение функции вблизи некоторой точки.

Пусть  $\alpha(x),\beta(x)$  б.м в окресности точки  $x_0$ , т.е  $\lim_{x\to x_0}\alpha(x)=\lim_{x\to x_0}\beta(x)=0$ 

Определение:

Функция  $\alpha(x)$  называтеся бесконечно малой более высокого порядка чем  $\beta(x)$  если  $\lim_{x\to x_0} \frac{\alpha(x)}{\beta(x)}=0$ 

$$\alpha(x) = o(\beta(x))$$

о – 'о' малое(не нуль)

Определение:

Функция  $\alpha(x)$   $\beta(x)$  б.м одного порядка если  $\lim_{x\to x_0}\frac{\alpha(x)}{\beta(x)}=A\neq 0\neq inf$   $\alpha(x)$   $\beta(x)$  назыв эквивалентными б.м огранич при  $x\to x_0$  если предел отношения равен  $\mathbf{1}(\alpha(x)\sim\beta(x):x\to x_0)$ 

Теорема

Если  $\alpha(x) \sim \alpha_1(x); \beta(x) \sim \beta_1(x)$  то

$$\lim_{x \to x_0} \frac{\alpha(x)}{\beta(x)} = \lim_{x \to x_0} \frac{\alpha_1(x)}{\beta_1(x)}$$

Таблица эквивалентных б.м при  $x \to x_0$ :

$$\sin x \sim x \tag{1}$$

$$\operatorname{tg} x \sim x$$
 (2)

$$\arcsin x \sim x$$
 (3)

$$\operatorname{arcctg} x \sim x$$
 (4)

$$ln(1+x) \sim x \tag{5}$$

$$\frac{a^x - 1}{\ln a} \sim x \tag{6}$$

$$\frac{a^{x} - 1}{\ln a} \sim x \tag{6}$$

$$\frac{(1+x)^{a} - 1}{a} \sim x \tag{7}$$

$$e^x - 1 \sim x \tag{8}$$

# 3 Глава. Дифференциальное исчесление функции одной переменной

#### Параграф 1. Понятие производной функции 3.1

$$y = f(x)$$

$$\Delta x = x - x_0$$

$$x = x_0 + \Delta x$$

$$\Delta y = f(x) - f(x_0) = f(x_0 + \Delta x) - f(x_0)$$

Производная – производная функции в точки  $x_0$  называется

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \frac{d}{dx} f(x) = f'(x) \tag{9}$$

Левая производная:

$$f'_{-}(x) = f'(x - 0) = \lim_{\Delta x \to 0 - 0} \frac{\Delta y}{\Delta x}$$
 (10)

Правая производная:

$$f'_{+}(x) = f'(x+0) = \lim_{\Delta x \to 0+0} \frac{\Delta y}{\Delta x}$$
 (11)

Связь левой и правой производной

$$\exists f'(x) \Leftrightarrow \exists f'_{-}(x) = f'_{+}(x) = f'(x)$$

### 3.1.1 интерпретации производной

## 1) Геометрическая:



$$AB$$
 — секущая(при  $\Delta x \to 0$  называется касательной)  $\Delta x \to 0 \Rightarrow \beta \to \alpha \Rightarrow \quad \operatorname{tg} \beta \to \operatorname{tg} \alpha$   $\operatorname{tg} \beta = \frac{\Delta y}{\Delta x}; \quad \operatorname{tg} \alpha = f'(x)$   $y_k = f(x_0) + f'(x_0)(x - x_0)$  — уравнение касательной  $y_n = f(x_0) - \frac{1}{f'(x_0)} - (x - x_0)$  — уравнение нормали

опр. Функция называется дифференцируемой в точку  $x_0$  если приращение можно представить в виде  $y=A\cdot\Delta x+\alpha(\Delta x)\cdot\Delta x$ , где A незавитсамая переменная  $(\Delta x\to 0)$ .

$$\Delta y = A\Delta x + o(\Delta x)$$

Теорема 1(связь между дифференциироваемостью и существованием производной)

Для того чтобу функция f(x) была дифференциируема в точке  $x_0$  необходимо чтобы она имела производную в точке  $x_0$ 

Теорема 2(связь между диф и непрерывностью) Если f(x) диф в точке  $x_0$  то она непрерывна в этой точке(обратное не работает)

2) Физическая (мгновенная и средняя скорости):

$$s = f(t)$$
  $v_m = \frac{f(t + \Delta t) - f(t)}{\Delta t} = \frac{\Delta f}{\Delta x}$ 

- это скорость изменения функции.

# 3.2 Основные правила дифференциирования

$$\frac{d}{dx}(c) = 0, c = const \tag{12}$$

$$\frac{d}{dx}(u \pm v) = u' \pm v' \tag{13}$$

$$\frac{d}{dx}(uv) = u'v + uv' \tag{14}$$

$$\frac{d}{dx}cu = cu', c = const \tag{15}$$

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \tag{16}$$

## Гиперболические функции:

Гиперболический синус:

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

Гиперболический косинус:

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}$$

Гиперболический тангенс и котангенс:

$$th x = \frac{\sinh x}{\cosh x}$$
  $cth x = \frac{1}{\th x}$ 

## Понятие о частных производных

$$f(x,y)$$

$$f'_{x} = \frac{\partial f}{\partial x} \quad y = const$$

$$f'_{y} = \frac{\partial f}{\partial y} \quad x = const$$

# 3.3 Производная сложной функции

$$\frac{d}{dx}f(u(x)) = u'(x) \cdot f'(u(x)) \tag{17}$$

## Производная обратной функции

$$y = f(x), f'(x) \neq 0, \exists x = f^{-1}(y), \Rightarrow x'_y = \frac{1}{y'_x}$$
 (18)

## 3.3.1 Производная функции заданной в параметрическом виде

$$x = f(t)$$
 and  $y = g(t): x' \neq 0 \Rightarrow t = f^{-1}(x)$   $t'_x = \frac{1}{x'_t}$  
$$y = y(x) = y(x(t)): y'_x = y'_t t'_x = y'_t \frac{1}{x'_t} = \frac{y'_t}{x'_t}$$

## 3.3.2 Дифференциирование функции заданной неявно

Рассмотрим неявно заданную функцию, т.е когда функця y=y(x) задается равенством вида F(x,y)=0.

Чтобы найти производную функции заданной неявно нужно диф-вать равенство F(x,y)=0 по переменной x при этом y считаем функцией от x.

$$y'_x = \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = \frac{F'_x}{F'_y}$$

# 3.4 Дифференциал функции

$$\Delta f = f'(x)\Delta x + o(\Delta x)$$

Дифференциал функции -

$$\Delta f = f'(x)\Delta x$$

в дальнейшем: df = f'(x)dx следствие:

$$f'(x) = \frac{df}{dx}$$

св-ва (теже что и у производной ) + свойство инвариантности (сохранения формы):

1) для первого порядка:  $y(u(x)):dy=y_x'dx=y_x'u_x'dx=y_u'du$  Дифференциал первого порядка функции y выражается по одной и тойже

формуле независимо от того будет ли y рассматриватся как функция от независимой переменной x или от зависимой переменной u.

# 3.4.1 Применение дифференциала в приближенных вычеслениях

При малом  $\Delta x: \quad \Delta y = dy = f'(x)\Delta x = f(x+\Delta x) - f(x) \simeq f(x) + f'(x)\Delta x$ 

# 3.5 Производные и дифференциалы высших порядков

Производная от производной функции называется производной второго порядка:

$$y'' = (y')' = y^{(2)}$$
 ...  $y^{(n)}$ 

Дифференциалом второго порядка называется дифференциал от дифференциала, рассматривоемого как функция только от переменной x (при постоянном dx ):

$$d^{2}y = d(dy) = d(f'(x)dx) = (f'(x)dx)'dx = f''(x)dxdx = f''(x)dx^{2}$$
 ... 
$$d^{n}y = f^{(n)}(x)(dx)^{n}$$

свойства инвариантности дифференциалы высшего порядка не обладает.

# 3.6 Теоремы о средних значениях

Опр.

f(x) достигает точки x=c локальный максимум(минимум) если существует окресность этой точки в которой выполняется:  $f(c) \geq f(x) \quad \forall x \in \cup (c) \quad (f(c) \leq f(x) \quad \forall x \in \cup (c))$ , также называется экстремум(extr)

Теорема Ферма(необходимое условие существования extr)

Если f(x) имеет производную в точку c и достигает в этой точке локального эктремума то производная в этой точку равна нулю.

$$f'(c) = 0$$

Теорема Ролля

Если y=f(x) на отрезки AB, дифференцируема на этом же промежутке и значение функции на концах совпадают, то существует точка  $\xi$  т.ч f'(x)=0

Геометрический смысл:

Если выполнены условия теоремы, то на графики функции существует точка  $(\xi,f(\xi))$  касательная



Теорема Коши:

Если f(x),g(x) непрерывны на отрезке AB,f(x) и g(x) дифференцируемы на  $(a,b),g'(x)\neq 0$ ,  $\exists \xi\in (a,b),$ 

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$$

Теорема Лагранжа

Пусть f(x) непрерывна на AB и дифференциируема на (a,b), тогда существует точка  $\xi \in (a,b)$  :  $f(b)=f(a)=f'(\xi)(b-a)$ 

Геометрический смысл Т. Лагранжа:



Следствие –  $f'(x) = 0 \Rightarrow f(x) = const$ 

# 3.7 Параграф. Правила Лопиталя(раскрытие неопределенности)

Пусть выполнены условия:

- 1)f(x),g(x) дифференциируемы в окресности точки A, за исключением ,быть может, самой точки A.
- 2)g $^{\prime}(x) 
  eq 0$  в окресноти А

3) 
$$\lim_{x \to A} \frac{f(x)}{g(x)} = \left\{ \frac{0}{0} \right\}$$
 or  $\left\{ \frac{inf}{inf} \right\}$ 

 $4) \exists \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$ 

$$\Rightarrow \exists \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$

Упр. 
$$\lim_{x\to 0} \frac{x^2\cos(\frac{1}{x})}{\sin x}$$

# 3.8 Параграф. Формула Тейлора.

Задача: представить функцию f(x) в некоторой окресности точки A в виде многочлена относительно разности x-a (разложить по степеням).

Пусть f(x) имеет производную до n-ого порядка включительно, Onp.

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + r_n(x)$$

## Локальная Теорема Тейлора

Если f(x) - непрерывно-дифференцииррованна п раз в окресности А  $(f(x),f'(x),\ldots,f^{(n)}(x)$  – непрерывно дифференциируема ),то  $r_n(x)=o((x-a)^n)$ , записываем в форме Пеано.

Формы записи остатка по Коши и Лагранжу:

$$r_n(x) = \frac{f^{(n+1)}(\xi)}{n!} (x - \xi)^n (x - a)$$
$$r_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)} (x - a)^{n+1}$$

Замечания (формула Маклорена) — если в формуле Тейлора вместо a взять нуль

$$f(x) = f(0) + f'(0)(x) + \frac{f''(0)}{2!}(x)^2 + \dots + \frac{f^{(n)}(0)}{n!}(x)^n + r_n(x)$$

# 3.9 Параграф. Признаки монотонности

Опр.  $x_1 < x_2, \quad f(x)$  называется возрастающей если  $f(x_1) < f(x_2)$ , неубывающая  $f(x_1) \le f(x_2)$ , убывающей  $f(x_1) > f(x_2)$ , невозрастающей  $f(x_1) \ge f(x_2)$ 

Во всех случаях функция называется монотонной (в 1 и 3 строго монотонной).

Теорема (Признак монотонности функции) f(x)- дифференцируема на AB и  $f'(x)>0(f'(x)<0): \forall x\in AB$ , тогда f(x) возрастает (убывает) на AB.

## Правило исследования на возрастание(убывание)

- 1) находим точки в которых f'(x)=0 или несуществует, эти точки называются критическими точками первого рода, они разбивают область определения на интервалы монотонности
- 2) исследуем знак производной на каждом интервале
- 3) определяем, возрастает или убывает

Теорема (Первый достаточный признак существования экстремума) f(x) непрерывна в некоторой окресности точки  $x_0$  и дифференциируема в каждой её точке за исключением быть может точки  $x_0$ . Если при переходе через  $x_0$  производная меняет знак, то точки  $x_0$  точка экстремума.

Теорема(Второй достаточный признак существования экстремума) Пусть в окресности  $x_0$  f(x) непрерывно дифференцируема (n+1) раз  $(f'(x_0)=f''(x_0)=\ldots=f^{(n)}(x_0)=0$   $f^{(n+1)}(x_0)\neq 0$ ). Тогда если (n+1) нечетное число - в  $x_0$  нет экстремума, четное - есть экстремум, причем если  $f^{(n+1)}(x_0)<(>)0:x_0-max(min)$ 

Упр. Доказать общий случай.

# Литература

Кудрявцев А.Д Курс математического анализа Фихтенгольц Г.М Основы математического анализа Демидович Б.П Сборник задач и упражнений по математическому анализу