MAE 598: Design Optimization _/_/__ HW-5 h(t) = V(t) $\dot{V}(t) = -g + a(t)$ $\dot{m}(t) = -Ka$ P m(+)= - ka(+). given initial conditions are: h(0)=ho V(0)=Vo It is a fixed end, free time problem. Assumptions are that: Theight h(t) cannot be regative So, h(t) >0

(2) Mass cannot be regative and m(t) >0. here we have considered to as the terminal lime we can see acceleration a (t)=m(t)/k, Where k is Constant fuel burning rate.

So, if we can apply min minimum applied thrust, which will reltimately give us the minimal fuel consumption and maximum mass of moon lander.

min p(a): fa(t) dt - mo-m(t) terminal time (act) Subjected to h(t)=0 V(t)=0 T = Terminal time Lo, Hamiltonian $H = -L + \lambda T_f \Rightarrow -a + \lambda_1 V + \lambda_2 \left(-g + \frac{a}{m}\right)$ $H = \left(-1 + \frac{\lambda_2}{m} - K \lambda_3\right) \alpha + \left(\lambda_1 V - \lambda_2 g\right)$ We know that, we see need to minimize H to gain optimal control. -So, a* = argmax H
a ∈ [0,1] So, $a^* = avgmax \left[(-1 + \frac{\lambda_2}{m} - KN_3) a + (\lambda_1 V - 129) \right]$ $a \in [0,1]$ $a(t) = \begin{cases} 0 ; b \leq 0 \\ i ; b > 0 \end{cases}$

9

-

1

1

1

T

here b= -1 + 2 - 2x

the guess policy act)= { o for te [o, t] for te [t, T]

the need to show that to is monotonically increasing at decreasing to prove the guess of the optimal policy.

 $\frac{\lambda_0}{m}, \dot{b} = \frac{\lambda_2}{m} - \frac{\lambda_2 \dot{m}}{m^2} - \frac{\lambda_3 \dot{m}}{m}$

We already know that

 $\lambda_1 = -\frac{\partial H}{\partial I} = 0$

 $\lambda_2 = \frac{\partial H}{\partial V} = -\lambda_1$

 $\frac{\lambda_3}{\partial m} = \frac{\lambda_2 a}{m^2}$

So, putting all the values in b

 $b = -\frac{\lambda_1}{m} - \frac{\lambda_2}{m^2} \left(-ka\right) - \left(\frac{\lambda_2 q}{m^2}\right) k$

 $\Rightarrow \dot{b} = -\lambda_1$

\rightarrow	due to switching condition, we deided
	due to switching condition, we deided when to start or stop the thrust according to the guess. because we want $V(C) = 0$.
	to the guess
	because we want V(C)=0.
	We know that $b = -\frac{\lambda_r}{m}$ (from $)$
-	Here, I, is negative then bis monotonically
	Here, I, is negative then bis monotonically increasing function because is positive
-)	I, is taken negative because we comot he
	thrust before the switching point.
	thrust before the switching point of otherwise the velocity at the final time
	will not be zero.
	alt)= } 0 if b(0 at [o, t*]
	$a(t) = \begin{cases} 0 & \text{if } b < 0 \text{ at } [0, t^*] \\ 1 & \text{if } b > 0 \text{ at } [t^*, T] \end{cases}$
-	The dynamics of the moon lander are:
	(1,4,2
	h(t) = v(t)
	$\dot{y}(t) = -g$ $\dot{m}(t) = 0$ t^*
	$m(t)=0 \Rightarrow \int m(t) dt = \int 0 dt$
	=1 $m=0+C,$
	$\Rightarrow m = c,$
	So, at the chart we know that me mo

So, C,= mo

So, h== | h= vot - 1 gt2 + ho → For t ∈ [t*, t], a=1 h(t)= V(t) V (t) = -9+1 m (t)=-k $|\dot{m}(t) = \int -k \, dt$ m= -kt+ oc We know that t=th, m=mo So, mo=-Kt+c, So, C, = motkt* m= mot Kt - Kt m= mo + K(t+-t) __(2

h=
$$\int g(T-t) + \int \log \left[\frac{m_0 + k(t^*-T)}{m_0 + k(t^*-T)} \right]$$
 $\Rightarrow g(Tt^*-t^2) + \int \log \left[\frac{m_0 + k(t^*-T)}{m_0 + k(t^*-T)} \right]$

Let's take

Now, $\int \log \left[\frac{m_0 + k(t^*-T)}{m_0 + k(t^*-T)} \right]$

Woing an online calculation such as wolfpamalpha. I get

$$= \left(\frac{T-t}{k} - \frac{1}{k} \log \left[\frac{m_0 + k(t^*-T)}{m_0 + k(t^*-T)} \right] \left(\frac{m_0 + k(t^*-T)}{k(t^*-T)} \right)$$
 $= \frac{1}{k} \log \left[\frac{m_0 + k(t^*-T)}{k(t^*-T)} \right]$
 $= \frac{1}{k} \log \left[\frac{m_0 + k(t^*-T)}{k(t^*-T)} \right]$

__/__/___ Now, if we put t = t in whose equation. to when (1) and (3). we get. V=V* *-gt -g(t-t)+1' log [motk(t'-t)

k de [mo h= -1 gt + + tvot + ho max = Mo Now. by using above consticut equating all the equations when a = 0 to a. we can find the and T. The system can be of visualized as freefall trajectory. switch point (Trust off)