2-Office Copies

Roll Number:	
	Thapar Institute of Engineering & Technology, Patiala
	Department of Computer Science and Engineering

AUXILIARY EXAMINATION

Day 100 w Shower Steph Program and	
B. E. (CSE & COE)	Course Code: UCS415
	Course Name: Design and Analysis of Algorithms
Date: August 17, 2022	Time: 5:30 PM - 7:30 PM
Duration: 2 Hours, M. Marks: 50	Name of Faculty: Dr. Yashwant Singh Patel

Note: Attempt all questions in a proper sequence with justification.
Assume missing data, if any, suitably.

Q. 1(a)	Solve the following recovered relations of	1
Q. 1(a)	Solve the following recurrence relation using recursive tree method.	(5)
	$T(n) = \begin{cases} T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + n & n > 1\\ 1 & n = 1 \end{cases}$	
Q.1(b)	Explain the difference between deterministic and non-deterministic algorithm? Also, explain the relationship between P, NP, NP-complete and NP hard class problems with example of each class.	(1+4)
Q. 2(a)	Execute the Ford-Fulkerson algorithm to find the maximum flow for a graph (shown in Fig. 1) from source S to destination T. Show all the intermediate steps of algorithm. Also explain: (a) Augmented path (b) Residual graph (c) Minimum cut (d) Residual capacity.	(8)
Q. 2(b)	Discuss the time complexity of the Hierholzer's algorithm to determine Euler circuit?	(2)
Q. 3	Use dynamic programming to fully parenthesize the product of five matrices, i.e. $A[4 \times 10]$, $B[10 \times 3]$, $C[3 \times 12]$, $D[12 \times 20]$, $E[20 \times 7]$ such that the number of scalar multiplications gets minimized. Show each and every step.	(10)
Q. 4(a)	Discuss the recursive definition/equation employed in dynamic programming solution for $0/1$ knapsack problem. Utilize it to maximize the profit for a knapsack having a capacity of $\mathbf{W} = 7$ using four items. The respective weight and profit values of the four items are $\mathbf{w}[\]$: $(1, 3, 4, 5)$ and $\mathbf{p}[\]$: $(1, 4, 5, 7)$.	(1+5)
Q. 4(b)	Consider a modification to the activity-selection problem in which each activity a_i has, in addition to a start and finish time, a value v_i . The objective is no longer to maximize the number of activities scheduled, but instead to maximize the total value of the activities scheduled. That is, we wish to choose a set A of compatible activities such that $\sum_{a_k \in A} v_k$ is maximized. Discuss whether a greedy algorithm is possible. If yes, present such an algorithm, and if no, argue why not.	(4)

Q. 5(a)	For string matching, working modulo $\mathbf{q} = 13$, how many spurious hits does the Rabin-Karp matcher encounter in the Text $\mathbf{T} = 3141592653589793$	(7)
	When looking for the pattern $P = 26$? Explain your answer with proper implementation of Rabin-Karp algorithm.	
Q. 5(b)	What is backtracking? Explain 8 queen's problem and how can we solve it using backtracking?	(3)