Inverse Problems Variational regularisation

Clarice Poon University of Bath

March 5, 2020

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

The dual perspective

Variational regularisation

Let's return to Tikhonov regularisaton: The regularised solution is u_{α} :

$$(A^*A + \alpha \mathrm{Id})u_{\alpha} = A^*f_{\delta} \tag{1.1}$$

One can check (do this!) that this is the first order optimality condition of

$$\min_{u \in \mathcal{U}} \frac{1}{2} \|Au - f_{\delta}\|^2 + \frac{\alpha}{2} \|u\|^2.$$
 (1.2)

Since this is a convex optimisaton problem, (1.1) is a necessary and sufficient condition for the minimum of the functional (1.2).

- $||Au f||^2$ is called the data fidelity term.
- $\mathcal{J}(u) \stackrel{\text{def.}}{=} \frac{1}{2} \|u\|^2$ is called the regularisation term, and penalises some unwanted features of the solution (in this case, large norm).
- lacktriangledown as the regularisation parameter.

Variational regularisation

We will now study more general variational regularisers of the form

$$R_{\alpha}f_{\delta} \in \operatorname{argmin}_{u \in \mathcal{U}} \frac{1}{2} \|Au - f_{\delta}\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u).$$
 (1.3)

where

- $A: \mathcal{U} \to \mathcal{V}$ is a bounded linear operator between a Banach spaces \mathcal{U} and a Hilbert space \mathcal{V} .
- $\mathbb{J}: \mathcal{U} \to [0,\infty].$
- $f_{\delta} \in \mathcal{V}$ satisfies $\|Au^{\dagger} f_{\delta}\|_{\mathcal{V}} \leqslant \delta$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

Intuition is to encourages solutions with small gradient which best fit the observation data f, so noise is removed.

Let $\mathcal{J}(u) = \|Lu\|_{\mathcal{Z}}$ where $L: \mathcal{U} \to \mathcal{Z}$ is a linear (possibly unbounded) operator . Popular choices include differential operators, e.g. $L = \nabla$, $\mathcal{U} = W^{1,2}(\Omega)$, $\mathcal{Z} = L^2(\Omega)$.

For $\mathcal{J}(u) = \frac{1}{2} \int_{\Omega} |\nabla u|^2$, u is a minimizer if and only if

$$A^*Au - A^*f - \alpha\Delta u = 0,$$

with Neumann boundary condition $\nabla u \cdot \eta = 0$ on $\partial \Omega$ where η is the outward unit normal to $\partial \Omega$.

- Intuition is to encourages solutions with small gradient which best fit the observation data *f* , so noise is removed.
- lacktriangleright For imaging applications, leads to oversmooth reconstructions as Δ has very strong isotropic smoothing properties.

Example: Lasso

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and $\mathcal{J}(u) = \begin{cases} \|u\|_1 & u \in \ell_1(\mathbb{N}) \\ +\infty & u \in \ell_2(\mathbb{N}) \setminus \ell_2(\mathbb{N}) \end{cases}$.

The problem

$$\min_{u} \frac{1}{2} \|Au - f\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{1}$$

is called the lasso in statistics and can be shown to promote sparse solutions.

One can also consider $\mathcal{J}(u)=\|Wu\|_1$ where $W:\ell_2(\mathbb{N})\to\ell_2(\mathbb{N})$. For example, W is some wavelet transform.

Consider
$$\mathcal{U} = \mathcal{V} = \ell_2(\mathbb{N})$$
 and $\mathcal{J}(u) = \begin{cases} \|u\|_1 & u \in \ell_1(\mathbb{N}) \\ +\infty & u \in \ell_2(\mathbb{N}) \setminus \ell_2(\mathbb{N}) \end{cases}$.

The problem

$$\min_{u} \frac{1}{2} \|Au - f\|_{2}^{2} + \frac{\alpha}{2} \|u\|_{1}$$

is called the lasso in statistics and can be shown to promote sparse solutions.

One can also consider $\mathcal{J}(u) = \|Wu\|_1$ where $W : \ell_2(\mathbb{N}) \to \ell_2(\mathbb{N})$. For example, W is some wavelet transform.

Consider $\langle u, a \rangle = f$ where $u \in \mathbb{R}^2$ is unknown, $a \in \mathbb{R}^2$ and $f \in \mathbb{R}$. Solutions are along the red line. The solution of smallest ℓ_1 norm will be 1-sparse, whereas the solution of smallest ℓ_2 norm is 2-sparse.

Example: Total variation

Instead of $\mathcal{J}(u)=\int_{\Omega}|\nabla u|^2$, one could consider $\mathcal{J}(u)=\int_{\Omega}|\nabla u|$. Deblurring example:

$$\min_{u} \mathcal{J}(u) + \|Ku - b\|_{L^{2}}^{2}, \quad \text{where} \quad Ku = h \star u$$

$$\mathcal{J}(x) = \|Dx\|_2^2$$

$$\mathcal{J}(x) = \|Dx\|_1$$

Example: Total variation

The use of $\int_{\Omega} |\nabla u|^2$ leads to smooth solutions, the point of $\int_{\Omega} |\nabla u|$ is that this makes sense not only for $u \in W^{1,1}(\Omega)$ but also for functions of bounded variation.

Given $u \in L^1(\Omega)$ for $\Omega \subset \mathbb{R}^d$, define

$$\mathrm{TV}(u) \stackrel{\scriptscriptstyle\mathsf{def.}}{=} \sup \left\{ \langle u, \, \mathrm{div} \varphi \rangle \; ; \; \varphi \in \mathit{C}^\infty_c(\Omega; \mathbb{R}^d), \; \sup_{\omega \in \Omega} \left\| \varphi(\omega) \right\|_2 \leqslant 1 \right\}.$$

Let $\|u\|_{BV} \stackrel{\text{def.}}{=} \|u\|_{L^1} + \mathrm{TV}(u)$, and the space of bounded variations $\left\{u \in L^1 \; ; \; \mathrm{TV}(u) < \infty\right\}$ is a Banach space with norm $\|\cdot\|_{BV}$.

Contains $W^{1,1}(\Omega)$ and also discontinuous functions such as χ_C where $C \subset \Omega$ has Lipschitz boundary, in which case, $TV(\chi_C) = Per(C)$.

Given $f \in \mathbb{R}^N$, there are two components to (linear) inverse problems:

- 1. A data model: $f = Au_0 + n$ where $u_0 \in \mathbb{R}^N$ is the underlying object to be recovered, A is some linear transform (e.g. a blurring operator, a subsampled Fourier transform, or the identity matrix), and n is the noise. Typically, the entries in n are assumed to be Gaussian distributed with mean 0 and variance σ^2 .
- 2. An a-priori probability density: $P(u) = e^{-p(u)}$. This represents the idea that we have of the solution.

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

Choosing
$$P(f|u) = \exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2\right)$$
:

$$P(u|f) = \frac{\exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2 - p(u)\right)}{P(f)},$$

By Bayes' rule, the posteriori probability of u knowing f is

$$P(u|f)P(f) = P(f|u)P(u).$$

Choosing
$$P(f|u) = \exp\left(-\frac{1}{\sigma^2} \|f - Au\|_2^2\right)$$
:

$$P(u|f) = \frac{\exp\left(-\frac{1}{\sigma^2} \left\|f - Au\right\|_2^2 - p(u)\right)}{P(f)},$$

The maximum a posteriori (MAP) reconstruction is:

$$u^*\in\mathop{\rm argmax}_u P(u|f).$$
 Equivalently,
$$u^*\in\mathop{\rm argmin}_u p(u)+\frac{1}{\sigma^2}\left\|f-Au\right\|_2^2.$$

Other choices of noise distributions:

- Additive Laplace noise $e^{-\frac{1}{\sigma^2}\|f-Au\|_1}$ with corresponding data fidelity term $\|Au-f\|_1$
- Poisson noise $\prod_{i,j} \frac{u_{i,j}^{f_{i,j}}}{t_{i,j}^{f_{i,j}}!} e^{-u_{i,j}}$ with data fidelity term $\int u f \log(u)$.

Figure 1: Adding different noise using Matlab's imnoise function

We now study regularisers of the form

$$R_{\alpha}(f) \in \operatorname*{argmin}_{u} \alpha \mathcal{J}(u) + \frac{1}{2} \|f - Au\|_{2}^{2}.$$

Usual questions:

- Given $f = Au^{\dagger}$, do we have convergence $R_{\alpha}(f) \rightarrow u^{\dagger}$?
- Do we have convergent regularisers?
- Convergence rates?

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

The dual perspective

We consider functionals $E: \mathcal{U} \to \bar{\mathbb{R}} \stackrel{\text{def.}}{=} \mathbb{R} \cup \{-\infty, +\infty\}.$

- Useful to model constraints. E.g. if $E:[-1,\infty)\to\mathbb{R}^2$ maps $x\mapsto x^2$, consider instead $\bar E:\mathbb{R}\to\bar{\mathbb{R}}$ defined by $\bar E(x)=E(x)$ for $x\in[-1,\infty)$ and $\bar E(x)=+\infty$ otherwise. No need to worry if E(x+y) is well-defined.
- We then consider unconstrained minimisation (although the function may no longer be differentiable).
- The indicator function on a set $C \subset \mathcal{U}$ is $\iota_C \stackrel{\text{def.}}{=} \begin{cases} 1 & x \in C \\ +\infty & x \notin C \end{cases}$ So, we can write $\min_{u \in C} E(u) = \min_{u \in \mathcal{U}} E(u) + \iota_C(u)$.

We denote $dom(E) \stackrel{\text{def.}}{=} \{u \in \mathcal{U} ; E(u) < \infty\}$. We say E is proper if $dom(E) \neq \emptyset$.

Convexity

A subset $C \subseteq \mathcal{U}$ is called convex if $\lambda u + (1 - \lambda)v \in \mathcal{C}$ for all $\lambda \in (0, 1)$ and $u, v \in \mathcal{C}$

A functional $E:\mathcal{U}\to \bar{\mathbb{R}}$ is called convex if

$$E(\lambda u + (1-\lambda)v) \leqslant \lambda E(u) + (1-\lambda)E(v), \forall \lambda \in (0,1) \quad \text{and} \quad \forall u,v \in \text{dom}(E), u \neq v.$$

It is called strictly convex if the inequality is strict.

Dual spaces

Banach spaces are complete, normed vector spaces.

Dual spaces

For every Banach space \mathcal{U} , its dual space \mathcal{U}^* is the space of continuous linear functionals on \mathcal{U} , that is, $\mathcal{U}^* = \mathcal{L}(\mathcal{U}, \mathbb{R})$. Given $u \in \mathcal{U}$ and $p \in \mathcal{U}^*$, we write the dual product $\langle p, u \rangle \stackrel{\text{def.}}{=} p(u)$. The dual space is a Banach space equipped with the norm

$$\|p\|_{\mathcal{U}^*} = \sup_{u \in \mathcal{U}, \|u\|_{\mathcal{U}} \leqslant 1} \langle p, u \rangle.$$

Dual spaces

Banach spaces are complete, normed vector spaces.

Bi-dual

The bi-dual space of $\mathcal{U}\stackrel{\text{def.}}{=} (\mathcal{U}^*)^*$. Every $u\in\mathcal{U}$ defines a continuous linear mapping on \mathcal{U}^* , by

$$\langle Eu, p \rangle \stackrel{\text{def.}}{=} \langle p, u \rangle = p(u).$$

 $E:\mathcal{U}\to\mathcal{U}^{**}$ is well defined and is a continuous linear isometry. If E is surjective, then \mathcal{U} is called reflexive.

Examples of reflexive Banach spaces include Hilbert spaces, L^q, ℓ^q for $q \in (1, \infty)$. We call $\mathcal U$ separable if there exists a countable dense subset of $\mathcal U$.

Dual spaces

Banach spaces are complete, normed vector spaces.

Adjoint

For any $A \in \mathcal{L}(\mathcal{U}, \mathcal{V})$, there exists a unique operator $A^* : \mathcal{V}^* \to \mathcal{U}^*$ called the adjoint of A such that for all $u \in \mathcal{U}$ and $p \in \mathcal{V}$,

$$\langle A^*p, u\rangle = \langle p, Au\rangle.$$

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

We say that $\{u_k\} \subset \mathcal{U}$ converges weakly to $u \in \mathcal{U}$ if and only if for all $p \in \mathcal{U}^*$, we have $\langle p, u_k \rangle \to \langle p, u \rangle$.

For $\{p_k\} \subset \mathcal{U}^*$, we say $\{p_k\}$ converges weak-* to $p \in \mathcal{U}^*$ if for all $u \in \mathcal{U}$, we have $\langle p^k, u \rangle \to \langle p, u \rangle$ for all $u \in \mathcal{U}$.

Weak and weak-* convergence

In infinite dimensions, bounded sequences do not have to have convergent subsequences.

E.g. In ℓ^2 , consider e_j the canonical basis. Then, $\|e_j\|=1$ for all j but there does not exists $u\in\ell^2$ such that $\|e_j-u\|\to 0$.

Weak and weak-* convergence

We say that $\{u_k\} \subset \mathcal{U}$ converges weakly to $u \in \mathcal{U}$ if and only if for all $p \in \mathcal{U}^*$, we have $\langle p, u_k \rangle \to \langle p, u \rangle$.

For $\{p_k\} \subset \mathcal{U}^*$, we say $\{p_k\}$ converges weak-* to $p \in \mathcal{U}^*$ if for all $u \in \mathcal{U}$, we have $\langle p^k, u \rangle \to \langle p, u \rangle$ for all $u \in \mathcal{U}$.

- Banach-Alaogu Theorem: Let \mathcal{U} be a normed vector space. Then every bounded sequence $\{f_j\} \subset \mathcal{U}^*$ has a weak-* convergent subsequence.
- Every bounded sequence in a reflexive Banach space has a weakly convergent subsequence.

Lower semi-continuity

One useful property is the notion of sequential lower semicontinuity:

Let $\mathcal X$ be a Banach space with topology $\tau_{\mathcal X}$. The functional $E:\mathcal X\to [-\infty,\infty]$ is said to be sequentially lower semi-continuous with respect to $\tau_{\mathcal X}$ at $u\in\mathcal X$ if

$$E(x) \leqslant \liminf_{j \to \infty} E(x_j)$$

for all sequences $\{x_j\}_j \subset \mathcal{X}$ with $x_j \to x$ in the topology $\tau_{\mathcal{X}}$ of \mathcal{X} .

" $E(x_0)$ is a good lower bound for function values near x_0 "

Let $\mathcal U$ be any normed space with norm $\|\cdot\|_{\mathcal U}$, then $E(u)=\|u\|_{\mathcal U}$ is lower semicontinuous with respect to the weak topology:

Let \mathcal{U} be any normed space with norm $\|\cdot\|_{\mathcal{U}}$, then $E(u) = \|u\|_{\mathcal{U}}$ is lower semicontinuous with respect to the weak topology:

Idea: For fixed $u \in \mathcal{U}$, Hahn Banach Theorem says we can construct an element of $f \in \mathcal{U}^*$ such that f(u) = ||u|| and ||f|| = 1.

Let \mathcal{U} be any normed space with norm $\|\cdot\|_{\mathcal{U}}$, then $E(u) = \|u\|_{\mathcal{U}}$ is lower semicontinuous with respect to the weak topology:

Idea: For fixed $u \in \mathcal{U}$, Hahn Banach Theorem says we can construct an element of $f \in \mathcal{U}^*$ such that f(u) = ||u|| and ||f|| = 1.

Proof: Let $u^j \to u$ weakly, by the Hahn-Banach theorem, there exists an element $f \in \mathcal{U}^*$ such that $f(u) = \|u\|_{\mathcal{U}}$ and $\|f\| = 1$. Therefore,

$$\|u\|_{\mathcal{U}} = f(u) = \lim_{j} f(u^{j}) \leqslant \liminf_{j} \|u^{j}\|_{\mathcal{U}}.$$

The functional $\left\|\cdot\right\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

The functional $\left\|\cdot\right\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

Idea: Convergence in ℓ_2 implies that each entry of the sequence converges. So, we can just apply Fatou's lemma.

The functional $\|\cdot\|_1:\ell^2\to[0,\infty]$ is lower semi-continuous with respect to ℓ_2 convergence.

Idea: Convergence in ℓ_2 implies that each entry of the sequence converges. So, we can just apply Fatou's lemma.

Proof: Given any $\{u^j\} \subset \ell_2$ with $u^j \to u$ in ℓ_2 , we have

$$u_k^j = \langle e_k, u^j \rangle \rightarrow \langle e_k, u \rangle = u_k.$$

So, by Fatou's lemma

$$\|u\|_1 = \sum_k \lim_{j \to \infty} \left| u_k^j \right| \leqslant \liminf_{j \to \infty} \sum_k \left| u_k^j \right| = \liminf_{j \to \infty} \left\| u^j \right\|_1.$$

Minimising functionals

A functional is called coercive if for all $u_j \in \mathcal{U}$ with $||u_j|| \to +\infty$, we have $E(u_j) \to +\infty$. Equivalently, if $\{E(u_j)\}_j$ is bounded, then $\{u_j\}_j$ must be bounded.

Minimising functionals

A functional is called coercive if for all $u_j \in \mathcal{U}$ with $||u_j|| \to +\infty$, we have $E(u_j) \to +\infty$. Equivalently, if $\{E(u_j)\}_j$ is bounded, then $\{u_j\}_j$ must be bounded.

Coercivity is sufficient to ensure boundedness of minimising sequences:

Lemma 2.1

Let $E: \mathcal{U} \to \mathbb{R}$ be a proper coercive functional, bounded from below. Then, $\inf_{u \in \mathcal{U}} E(u)$ exists in \mathbb{R} and there exists a minimising sequence $\{u_j\}$ such that $E(u_j) \to \inf_u E(u)$ and all minimising sequences are bounded.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to\bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to \bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Idea: Bounded sequences have convergent subsequences. So we take a minimising sequences, and show its limit is a minimiser.

Theorem 2.2 (The Direct method of Calculus)

Let $\mathcal U$ be a Banach space and $\tau_{\mathcal U}$ a topology (not necessarily the norm topology) on $\mathcal U$ such that bounded sequences have $\tau_{\mathcal U}$ convergent subsequences. Let $E:\mathcal U\to \bar{\mathbb R}$ be proper coercive and $\tau_{\mathcal U}$ -l.s.c, and bounded from below. Then E has a minimiser.

Idea: Bounded sequences have convergent subsequences. So we take a minimising sequences, and show its limit is a minimiser.

Proof.

- The assumptions imply that there exists a bounded minimising sequence $\{u_j\}_j$.
- By assumption on the topology $\tau_{\mathcal{U}}$, there exists a subsequence u_{k_j} and $u_* \in \mathcal{U}$ which converges $\tau_{\mathcal{U}}$ to u_* .
- Due to $\tau_{\mathcal{U}}$ -lsc, we have $E(u^*) \leq \liminf_{k \to \infty} E(u_{j_k}) = \inf_u E(u) > \infty$. Therefore, u_* is a minimiser.

- Key ingredient: bounded sequences have convergent subsequences.
- If \mathcal{U} is a reflexive Banach space and E is a proper, bounded from below, coercive, lsc wrt weak topology, then a minimiser exists, since reflexive Banach spaces are weakly compact.
- A convex function is lsc wrt weak topology if and only if it is lsc with respect to strong topology.
- If E has at least one minimiser and is strictly convex, then the minimiser is unique: let u, v be two minimisers of E. If $u \neq v$, then

$$E(u) \leqslant E(\frac{1}{2}u + \frac{1}{2}v) < \frac{1}{2}E(u) + \frac{1}{2}E(v) \leqslant E(u)$$

which is a contradiction. Not however that strict convexity is not necessary for uniqueness of minimisers (e.g. think for f(x) = |x|).

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

The dual perspective

Well-posedness and regularisation properties

We now study the properties of

$$R_{\alpha}f \in \operatorname{argmin}_{u \in \mathcal{U}} \Phi_{\alpha,f}(u) \stackrel{\scriptscriptstyle \mathsf{def.}}{=} \frac{1}{2} \left\| Au - f \right\|_{\mathcal{V}}^2 + \alpha \mathcal{J}(u)$$

as a convergent regularisation for

$$Au = f (3.1)$$

where $A: \mathcal{U} \to \mathcal{V}$ is a bounded linear operator and \mathcal{U} , \mathcal{V} are Banach spaces.

- 1. When do minimisers exist? (i.e. well-posedness of the regularised problem)
- 2. Is $R_{\alpha}: \mathcal{V} \to \mathcal{U}$ continuous?
- 3. What is the equivalent notion of a minimal norm solution here?
- 4. How to choose $\alpha(\delta)$ to guarantee the convergence of the minimisers to an appropriated generalised solution?

1. Existence of minimisers

Theorem 1

Let $\mathcal U$ be a Banach space and let $\mathcal V$ be a Hilbert space with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -lsc. Assume that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U}: \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then,

- (i') for any fixed $\alpha > 0$ and $f \in \mathcal{V}$, there exists a minimiser of $u^{\alpha} \in \operatorname{argmin}_{u} \frac{1}{2} \|Au f\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u)$.
- (ii') If A is injective or $\mathcal J$ is strictly convex, then u^α is unique.

1. Existence of minimisers

Theorem 1

Let $\mathcal U$ be a Banach space and let $\mathcal V$ be a Hilbert space with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -lsc. Assume that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U}: \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then,

- (i') for any fixed $\alpha > 0$ and $f \in \mathcal{V}$, there exists a minimiser of $u^{\alpha} \in \operatorname{argmin}_{u} \frac{1}{2} \|Au f\|_{\mathcal{V}}^{2} + \alpha \mathcal{J}(u)$.
- (ii') If A is injective or \mathcal{J} is strictly convex, then u^{α} is unique.

Idea: the direct method of Calculus. Take a minimising sequence, show it has a limit (from a subsequence), then use I.s.c. properties to conclude it is a minimiser.

1. Existence of minimisers

Since $\Phi_{\alpha,f}(u) \geqslant 0$, there exists a minimising sequence u_j so that

$$\lim_{j\to\infty}\Phi_{\alpha,f}(u_j)=\inf_{u\in\mathcal{U}}\Phi_{\alpha,f}(u)\stackrel{\text{def.}}{=}L.$$

In particular, $J(u_j)$ is uniformly bounded. Since the level sets of $\mathcal J$ are $\tau_{\mathcal U}$ sequentially compact, there exists a subsequence u_{j_k} which converges $\tau_{\mathcal U}$ to some $u \in \mathcal U$.

By continuity of A, Au_{j_k} converges to Au in $\tau_{\mathcal{V}}$. By lsc properties of \mathcal{J} and $\|\cdot\|_{\mathcal{V}}$, we have

$$\Phi_{\alpha,f}(u) \leqslant \liminf_{k \to \infty} \Phi_{\alpha,f}(u_{j_k}) \leqslant L.$$

Therefore, *u* is a minimiser.

Finally, we saw that the minimum is unique if $\Phi_{\alpha,f}$ is strictly convex. Note that $u \mapsto \|Au - f\|_{\mathcal{V}}$ is strictly convex if and only if A is injective (exercise!).

2. Variational regularisers are continuous

Theorem 2

Fix $\alpha > 0$. Under the assumptions of Theorem 4, assume also

- lacksquare either A is injective or $\mathcal J$ is strictly convex.
- norm convergence in V implies convergence in τ_V .

Then, given $f_j \to f$ in \mathcal{V} , $u_j \stackrel{\text{def.}}{=} R_{\alpha} f_j$ exists and is unique, and u_j converges to $u \stackrel{\text{def.}}{=} R_{\alpha} f$ in $\tau_{\mathcal{U}}$. Moreover, $\mathcal{J}(u_j) \to \mathcal{J}(u)$.

2. Variational regularisers are continuous

Theorem 2

Fix $\alpha > 0$. Under the assumptions of Theorem 4, assume also

- lacktriangle either A is injective or $\mathcal J$ is strictly convex.
- lacksquare norm convergence in $\mathcal V$ implies convergence in $au_{\mathcal V}$.

Then, given $f_j \to f$ in \mathcal{V} , $u_j \stackrel{\text{def.}}{=} R_{\alpha} f_j$ exists and is unique, and u_j converges to $u \stackrel{\text{def.}}{=} R_{\alpha} f$ in $\tau_{\mathcal{U}}$. Moreover, $\mathcal{J}(u_j) \to \mathcal{J}(u)$.

Idea: As before,

- 1. we first show that $\{\Phi_{\alpha,f}(u_i)\}_i$ is bounded
- 2. This lets us extract a convergent subsequence with limit \hat{u} .
- 3. Finally, show that \hat{u} minimises $\Phi_{\alpha,f}$.

2. Variational regularisers are continuous (proof)

Step 1: show that $\Phi_{\alpha,f}(u_j)$ is bounded: First observe that

- (a) $||f + g||_{\mathcal{V}}^2 \le 2 ||f||_{\mathcal{V}}^2 + 2 ||g||_{\mathcal{V}}^2$ for all $f, g \in \mathcal{V}$.
- (b) From (a), we have

$$\Phi_{\alpha,f}(u) \leq ||Au - g||^2 + ||g - f||^2 + 2\alpha \mathcal{J}(u) \leq 2\Phi_{\alpha,g}(u) + ||f - g||^2.$$

Now, since \mathcal{J} is proper, there exists \tilde{u} such that $\Phi_{\alpha,f}(\tilde{u})<\infty$

$$\Phi_{\alpha,f}(u_j) \leqslant 2\Phi_{\alpha,f_j}(u_j) + \|f - f_j\|_{\mathcal{V}}^2 \leqslant 2\Phi_{\alpha,f_j}(\tilde{u}) + \|f - f_j\|_{\mathcal{V}}^2$$

Step 2, Extract a subsequence which converges to \hat{u} : By compactness of the sublevel sets of \mathcal{J} , there exists a subsequence u_{j_k} which converges $\tau_{\mathcal{U}}$ to some $\hat{u} \in \mathcal{U}$.

2. Variational regularisers are continuous (proof)

Step 3, $\hat{u} = u$: By continuity of A, lsc of $\|\cdot\|_{\mathcal{V}}$ and lsc of \mathcal{J} , we have

$$\Phi_{\alpha,f}(\hat{u})\leqslant \liminf_k \Phi_{\alpha,f_{j_k}}(u_{j_k})\leqslant \liminf \Phi_{\alpha,f_{j_k}}(u)=\Phi_{\alpha,f}(u).$$

By uniqueness of minimisers, $\hat{u} = u$

Step 4, the entire sequence converges: Repeat this for any subsequence of $\{u_j\}$ to see that all subsequences have a subsequence which converge to u. Therefore, the entire sequence u_j converges to u in $\tau_{\mathcal{U}}$.

For the last statement, We see from Step 3 that $\Phi_{lpha,f_j}(u_j) o \Phi_{lpha,f}(u).$ So,

$$\begin{split} \limsup_{j \to \infty} \alpha \mathcal{J}(u_j) &= \limsup_{j \to \infty} \Phi_{\alpha, f_j}(u_j) - \frac{1}{2} \|Au_j - f_j\|^2 \\ &= \Phi_{\alpha, f}(u) - \liminf_{j \to \infty} \|Au_j - f_j\|^2 \leqslant \Phi_{\alpha, f}(u) - \|Au - f\|^2 \\ &= \alpha \mathcal{J}(u) \leqslant \liminf_{j \to \infty} \alpha \mathcal{J}(u_j). \end{split}$$

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ \operatorname{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ ext{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $\blacksquare \ u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ \text{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \ \text{for all} \ \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

■ As \mathcal{V} is a Hilbert space, $\mathbb{L}_f \stackrel{\text{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au - f\|_{\mathcal{V}} \right\}$ is non-empty if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \ \operatorname{and}$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{T}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

■ As $\mathcal V$ is a Hilbert space, $\mathbb L_f \stackrel{\mathrm{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal U} \|Au - f\|_{\mathcal V} \right\}$ is non-empty if and only if $f \in \mathcal R(A) \oplus \mathcal R(A)^{\perp}$. When it is no ambiguity, we write $\mathbb L = \mathbb L_f$.

Definition 3 (\mathcal{J} -minimising solutions)

Let

- $lacksquare u_{\mathcal{J}}^{\dagger} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \text{ and }$
- $\blacksquare \ \mathcal{J}(u_{\mathcal{J}}^{\dagger}) \leqslant \mathcal{J}(\tilde{u}) \text{ for all } \tilde{u} \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|.$

Then, $u_{\mathcal{J}}^{\dagger}$ is called a \mathcal{J} -minimising solution of the problem Au=f.

- As \mathcal{V} is a Hilbert space, $\mathbb{L}_f \stackrel{\text{def.}}{=} \left\{ v \; ; \; v \in \operatorname{argmin}_{u \in \mathcal{U}} \|Au f\|_{\mathcal{V}} \right\}$ is non-empty if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$. When it is no ambiguity, we write $\mathbb{L} = \mathbb{L}_f$.
- We next establish existence under appropriate compactness and continuity assumptions. Note however: even when there is existence, in general, there is no uniqueness.

3. Existence of a \mathcal{J} -minimising solution

Theorem 4

Let $\mathcal U$ and $\mathcal V$ be Banach spaces with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -Isc. Suppose $f\in\mathcal R(A)\oplus\mathcal R(A)^\perp$ and $\mathbb L$ has an element with finite $\mathcal J$ -value. Assume also that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}: \mathcal{U} \to (0, +\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u \in \mathcal{U} : \mathcal{J}(u) \leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then, there exists a $\mathcal J\text{-minimising solution }u_{\mathcal J}^\dagger.$

3. Existence of a \mathcal{J} -minimising solution

Theorem 4

Let $\mathcal U$ and $\mathcal V$ be Banach spaces with topologies $\tau_{\mathcal U}$ and $\tau_{\mathcal V}$ respectively. Let $\|\cdot\|_{\mathcal V}$ be $\tau_{\mathcal V}$ -Isc. Suppose $f\in\mathcal R(A)\oplus\mathcal R(A)^\perp$ and $\mathbb L$ has an element with finite $\mathcal J$ -value. Assume also that

- (i) $A: \mathcal{U} \to \mathcal{V}$ is $\tau_{\mathcal{U}} \to \tau_{\mathcal{V}}$ continuous.
- (ii) $\mathcal{J}:\mathcal{U}\to(0,+\infty]$ is proper, $\tau_{\mathcal{U}}$ -lsc and its non-empty sublevel-sets $\{u\in\mathcal{U}:\ \mathcal{J}(u)\leqslant C\}$ are $\tau_{\mathcal{U}}$ -sequentially compact

Then, there exists a ${\mathcal J}$ -minimising solution ${\it u}_{\mathcal J}^{\dagger}.$

Proof: Consider $\inf_{u \in \mathbb{L}} \mathcal{J}(u)$. Note that \mathbb{L} is nonempty by assumption.

- Since $\mathcal{J} \geqslant 0$, there exists a minimising sequence u_n . By compactness of sublevel sets, there exists a subsequence u_{n_k} which $\tau_{\mathcal{U}}$ converges to u_* . Moreover, continuity of A means Au_{n_k} converges to Au_* in $\tau_{\mathcal{V}}$.
- $u_* \in \mathbb{L}$ since $||Au_* f|| \leq \liminf_{k \to \infty} ||Au_{n_k} f|| \leq \inf_u ||Au f||$.
- u_* is a minimiser as $\mathcal J$ is $\tau_{\mathcal U}$ -lsc: $\inf_{u\in\mathbb L} \mathcal J(u) = \liminf_k \mathcal J(u_{n_k}) \geqslant \mathcal J(u_*)$.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha=\alpha(\delta)$ is such that $\alpha(\delta)\to 0$ and $\delta^2/\alpha(\delta)\to 0$ as $\delta\to 0$, then $u_\delta\stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a $\mathcal J$ minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal J(u_\delta)\to \mathcal J(u_\mathcal{J}^\dagger)$.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha = \alpha(\delta)$ is such that $\alpha(\delta) \to 0$ and $\delta^2/\alpha(\delta) \to 0$ as $\delta \to 0$, then $u_\delta \stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a \mathcal{J} minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal{J}(u_\delta) \to \mathcal{J}(u_\mathcal{J}^\dagger)$.

Idea: Show that $\{\mathcal{J}(u_\delta)\}_\delta$ is bounded. Then, use compactness and lsc properties to deduce that it has a limit (up to subsequence) which a \mathcal{J} -minimising solution.

4. Convergent regularisation

Theorem 5

Under the assumptions of Theorem 4, if $\alpha=\alpha(\delta)$ is such that $\alpha(\delta)\to 0$ and $\delta^2/\alpha(\delta)\to 0$ as $\delta\to 0$, then $u_\delta\stackrel{\text{def.}}{=} u_\delta^{\alpha(\delta)}$ converges (up to a subsequence) $\tau_\mathcal{U}$ to a $\mathcal J$ minimising solution $u_\mathcal{J}^\dagger$ and $\mathcal J(u_\delta)\to \mathcal J(u_\mathcal{J}^\dagger)$.

■ Since u_δ is a minimiser:

$$\|Au_{\delta} - f_{\delta}\|^2 + \alpha(\delta)\mathcal{J}(u_{\delta}) \leqslant \frac{1}{2} \|Au_{\mathcal{J}}^{\dagger} - f_{\delta}\|^2 + \alpha(\delta)\mathcal{J}(u_{\mathcal{J}}^{\dagger}).$$
 This implies that $\mathcal{J}(u_{\delta}) \leqslant \mathcal{J}(u_{\mathcal{J}}^{\dagger}) + \frac{\delta^2}{2\alpha(\delta)}.$

- by compactness of the sublevel sets of \mathcal{J} , up to a subsequence u_{δ_n} converges to u_* as $\delta_n \to 0$. By continuity of A, $Au_{\delta_n} \stackrel{\tau_{\mathcal{V}}}{\longrightarrow} Au_*$.
- $u_* \in \mathbb{L}_f$ follows by lsc of $\|\|_{\mathcal{V}}$ wrt $\tau_{\mathcal{V}}$ and by minimality of u_{δ_n} :

$$\frac{1}{2} \|Au_* - f\|^2 \leqslant \liminf_{n \to \infty} \frac{1}{2} \|Au_{\delta_n} - f_{\delta_n}\|^2 \leqslant \liminf_{n \to \infty} \frac{1}{2} \|Au_{\delta_n} - f_{\delta_n}\|^2 + \alpha(\delta_n) \mathcal{J}(u_{\delta_n})$$

$$\leqslant \liminf_{n \to \infty} \frac{1}{2} \|Au_{\mathcal{J}}^{\dagger} - f_{\delta_n}\|^2 + \alpha(\delta_n) \mathcal{J}(u_{\mathcal{J}}^{\dagger}) = \inf \|Au - f\|.$$

■ Finally $\mathcal{J}(u_*) \leqslant \liminf_{n \to \infty} \mathcal{J}(u_{\delta_n}) \leqslant \liminf_{n \to \infty} \mathcal{J}(u_{\mathcal{T}}^{\dagger}) + \frac{\delta_n^2}{2\alpha(\delta_n)} = \mathcal{J}(u_{\mathcal{T}}^{\dagger}).$

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

So, Theorem 5 holds with weak convergence.

Let \mathcal{U} be a Hilbert space and $\mathcal{J}(u) = ||u||^2$.

- lacktriangle Lower semicontinuity: ${\mathcal J}$ is weakly-lsc
- Compactness of sublevel sets: bounded sequences have weakly convergent subsequences.

So, Theorem 5 holds with weak convergence.

Hilbert spaces satisfy the Radon Riesz property:

If u_k converge weakly to u and $||u_k|| \to ||u||$, then $||u_k - u|| \to 0$.

So, we have strong convergence as well as weak convergence of solutions.

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1$.

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: \mathcal{J} is weakly lsc in ℓ^2 .

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: \mathcal{J} is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1$.

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

■ We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1.$

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

- We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$
- lacksquare bounded sequences have weakly convergent subsequences in ℓ^2 .

So, the sublevel-sets of ${\mathcal J}$ are weakly sequentially compact in $\ell^2.$

Let $\mathcal{U}=\ell^2(\mathbb{N})$ be the space of square summable sequences. Let $\mathcal{J}(u)=\|u\|_1$.

Lower semicontinuity: $\mathcal J$ is weakly lsc in ℓ^2 .

Compactness of sublevel sets:

- We have $\|\cdot\|_2 \leq \|\cdot\|_1$, so $\mathcal{J}(u) \leq C$ implies $\|u\|_2 \leq C$
- lacksquare bounded sequences have weakly convergent subsequences in ℓ^2 .

So, the sublevel-sets of $\mathcal J$ are weakly sequentially compact in ℓ^2 .

Theorem 5 thus guarantees weak convergence in ℓ_2 of solutions.

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Example: Bounded variation

Recall
$$\|u\|_{BV} = \|u\|_{L^1} + TV(u)$$
. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and
$$\mathcal{J}(u) = \begin{cases} \|u\|_{BV} & u \in BV(\Omega) \\ +\infty & \text{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Compactness of sublevel sets:

Theorem 6 (Rellich's compactness theorem)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with Lipschitz boundary, and let $(u_n)_n \subset BV(\Omega)$ be such that $\sup_n \|u_n\|_{BV} < \infty$. Then there exists $u \in BV(\Omega)$ and a subsequence $(u_{n_k})_k$ such that $u_{n_k} \to u$ in $L^1(\Omega)$.

Example: Bounded variation

Recall $\|u\|_{BV} = \|u\|_{L^1} + TV(u)$. Let $A: L^1(\Omega) \to L^2(\Omega)$ be continuous and

$$\mathcal{J}(u) = egin{cases} \|u\|_{BV} & u \in BV(\Omega) \ +\infty & ext{otherwise} \end{cases}.$$

Lower semi-continuity: TV is lower semi-continuous with respect to L^1 convergence (exercise)

Compactness of sublevel sets:

Theorem 6 (Rellich's compactness theorem)

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with Lipschitz boundary, and let $(u_n)_n \subset BV(\Omega)$ be such that $\sup_n \|u_n\|_{BV} < \infty$. Then there exists $u \in BV(\Omega)$ and a subsequence $(u_{n_k})_k$ such that $u_{n_k} \to u$ in $L^1(\Omega)$.

Therefore, Theorem 5 guarantees strong convergence in L^1 .

Example: Total variation

What if we take $\mathcal{J}(u) = \mathrm{TV}(u)$ on domain Ω ?

Compactness of sublevel sets is problematic as $\mathcal{J}(\alpha \chi_{\Omega}) = 0$ for all $\alpha \in \mathbb{R}$, but additional compactness can come from the data fidelity term:

Example: Total variation

What if we take $\mathcal{J}(u) = \mathrm{TV}(u)$ on domain Ω ?

Compactness of sublevel sets is problematic as $\mathcal{J}(\alpha\chi_{\Omega})=0$ for all $\alpha\in\mathbb{R}$, but additional compactness can come from the data fidelity term:

Theorem 3.1 (Poincaré inequality)

Let $\Omega\subset\mathbb{R}^N$. For $u\in BV(\Omega)$, let $m(u)=\frac{1}{|\Omega|}\int_\Omega u(x)\mathrm{d}x$. Then there exists C>0 such that

$$||u - m(u)||_{L^p} \leqslant CTV(u), \quad \forall u \in BV(\Omega),$$

for all $p \in [1, N/(N-1)]$. This holds for p = 2 and N = 2.

Let $\Omega \subset \mathbb{R}^2$, let $A: L^1(\Omega) \to L^2(\Omega)$ be a bounded linear operator and suppose that $A\chi_{\Omega} \neq 0$.

Given u_n s.t. $\mathrm{TV}(u_n) + \frac{1}{2} \|Au_n - f\|_2^2 \leqslant C$, $|m(u_n)|$ is also uniformly bounded:

- let $w_n = m(u_n)$ and $v_n = u_n m(u_n)$. Then, $\int v_n = 0$ and $\mathrm{TV}(v_n) = \mathrm{TV}(u_n)$. So, by the Poincaré inequality, $\|v_n\|_{L^2} \leqslant C'$.
- Observe now that $C \ge \|Au_n f\|_2 \ge \|Au_n\|_2 \|f\|_2$, so $\|Au_n\|_2$ is uniformly bounded. Hence

$$C \geqslant \|Au_n\|_2 = |m(u_n)| \|A\chi_{\Omega}\|_2 - \|Av_n\|_2.$$

So, Poincaré inequality tells us that $\|u_n\|_{L^2}$ and hence $\|u_n\|_1$ is uniformly bounded, and Rellich's compactness theorem allows us to extract a L^1 convergent subsequence.

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

The dual perspective

Towards convergence rates

We have established convergence of a regularised solution u_{δ} to a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$ as $\delta \to 0$. We now establish results on the *speed* of convergence.

The subdifferential

For convex functionals, we can generalise the concept of a derivative for non-differentiable functions.

Definition 7

A functional $E:\mathcal{U}\to\bar{\mathbb{R}}$ is called subdifferentiable at $u\in\mathcal{U}$ if there exists an element $p\in\mathcal{U}^*$ such that $E(v)\geqslant E(u)+\langle p,\,v-u\rangle$ for all $v\in\mathcal{U}$. We call p a subgradient at u. The collection of all subgradients at u

$$\partial E(u) \stackrel{\text{def.}}{=} \{ p \in \mathcal{U}^* \; ; \; E(v) \geqslant E(u) + \langle p, v - u \rangle, \forall v \in \mathcal{U} \}$$

is called the subdifferential of E at u.

Let
$$E: \mathbb{R} \to \mathbb{R}$$
 be $E(u) = |u|$. Then, $\partial E(u) = \begin{cases} \operatorname{sign}(u) & u \neq 0 \\ [-1, 1] & u = 0 \end{cases}$

1. If E is differentiable at u, then $\partial E(u) \stackrel{\text{def.}}{=} {\nabla E(u)}$.

1. If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{ \nabla E(u) \}$. Conversely, if $\partial E(u)$ is a singleton, then *E* is differentiable at *u*.

- 1. If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{ \nabla E(u) \}$. Conversely, if $\partial E(u)$ is a singleton, then *E* is differentiable at *u*.
- 2. u is a minimises E if and only if $0 \in \partial E(u)$.

- 1. If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{ \nabla E(u) \}$. Conversely, if $\partial E(u)$ is a singleton, then *E* is differentiable at *u*.
- 2. u is a minimises E if and only if $0 \in \partial E(u)$.
- 3. If $u \in \operatorname{int}(\operatorname{dom}(E))$ and E is a closed convex function, then $\partial E(u) \neq \emptyset$.

- 1. If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{ \nabla E(u) \}$. Conversely, if $\partial E(u)$ is a singleton, then *E* is differentiable at *u*.
- 2. u is a minimises E if and only if $0 \in \partial E(u)$.
- 3. If $u \in \operatorname{int}(\operatorname{dom}(E))$ and E is a closed convex function, then $\partial E(u) \neq \emptyset$.
- 4. If $dom(E) \neq \emptyset$ and $u \notin dom(E)$ then $\partial E(u) = \emptyset$.

- 1. If *E* is differentiable at *u*, then $\partial E(u) \stackrel{\text{def.}}{=} \{ \nabla E(u) \}$. Conversely, if $\partial E(u)$ is a singleton, then *E* is differentiable at *u*.
- 2. u is a minimises E if and only if $0 \in \partial E(u)$.
- 3. If $u \in \operatorname{int}(\operatorname{dom}(E))$ and E is a closed convex function, then $\partial E(u) \neq \emptyset$.
- 4. If $dom(E) \neq \emptyset$ and $u \notin dom(E)$ then $\partial E(u) = \emptyset$.
- 5. If $E: \mathcal{U} \to \overline{\mathbb{R}}$ is a proper convex function and $u \in \text{dom}(E)$, then $\partial E(u)$ is a weak-* compact convex subset of \mathcal{U}^* .

Calculus rules for the subdifferential

For
$$\alpha \geqslant 0$$
, $\partial(\alpha E)(x) = \alpha \partial E(x)$.

Let F = E(Ax + b) where $A : \mathcal{U} \to \mathcal{V}$ is a linear operator and $b \in \mathcal{V}$. Then $\partial F(x) = A^* \partial E(Ax + b)$.

Let $E: \mathcal{U} \to \overline{\mathbb{R}}$ and $F: \mathcal{U} \to \overline{\mathbb{R}}$ be proper lsc convex functions and suppose that there exists $u \in \mathrm{dom}(E) \cap \mathrm{dom}(F)$ such that E is continuous at u. Then $\partial(E+F) = \partial E + \partial F$.

In general, we have $\partial(E+F) \supset \partial E + \partial F$, but equality may not hold.

As an example, consider

$$E(x) = \begin{cases} -\sqrt{x} & x \geqslant 0 \\ +\infty & x < 0 \end{cases} \text{ and } F(x) = E(-x) = \begin{cases} -\sqrt{-x} & x \leqslant 0 \\ +\infty & x > 0 \end{cases}$$

Then, $F+E=\iota_{\{0\}}$ and $\partial(F+E)(0)=\mathbb{R}$. On the other hand, $\partial F(0)=\partial E(0)=\emptyset$.

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u,v\in\mathcal{U}$ such that $E(v)<\infty$ and $p\in\partial E(v)$, the Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u, v \in \mathcal{U}$ such that $E(v) < \infty$ and $p \in \partial E(v)$, the Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Example:

For
$$E(u) = \frac{1}{2} \|u\|^2$$
, $\partial E(v) = \{v\}$, so

$$\mathcal{D}_{E}^{v}(u,v) = \frac{1}{2} \|u\|^{2} - \frac{1}{2} \|v\|^{2} - \langle v, u - v \rangle$$

Bregman distances

Convergence rates are typically derived via analysis of the *dual problem* and studied in terms of the *Bregman distances* associated with the (convex) regularisation functional \mathcal{J} .

Definition 8

Given a convex functional E, $u, v \in \mathcal{U}$ such that $E(v) < \infty$ and $p \in \partial E(v)$, the Bregman distance is given by

$$\mathcal{D}_{E}^{p}(u,v) = E(u) - E(v) - \langle p, u - v \rangle. \tag{4.1}$$

Example:

For
$$E(u) = \frac{1}{2} \|u\|^2$$
, $\partial E(v) = \{v\}$, so

$$\mathcal{D}_E^v(u, v) = \frac{1}{2} \|u\|^2 - \frac{1}{2} \|v\|^2 - \langle v, u - v \rangle$$

$$= \frac{1}{2} \|u\|^2 + \frac{1}{2} \|v\|^2 - \langle v, u \rangle$$

$$= \frac{1}{2} \|u - v\|^2.$$

Convergence rates and the source condition

We say that a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$ satisfies the **source condition** if there exists $p^{\dagger} \in \mathcal{V}$ such that $A^*p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$.

Theorem 9

Assume that the source condition is satisfied at a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$. Let $f = Au_{\mathcal{J}}^{\dagger}$ and let f_{δ} be such that $\|f_{\delta} - f\| \leqslant \delta$. Let $u_{\delta} \in \operatorname{argmin}_{u} \Phi_{\alpha, f_{\delta}}(u)$ be a regularised solution. Then, letting $v = A^{*}p^{\dagger}$, we have

$$D_{\mathcal{J}}^{v}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) \leqslant \frac{1}{2\alpha} \left(\delta + \alpha \left\| p^{\dagger} \right\| \right)^{2}.$$

- lacksquare the source condition simply says that $u_{\mathcal{J}}^{\dagger}=A^*p^{\dagger}$ for some $p^{\dagger}\in\mathcal{V}$.

- lacksquare the source condition simply says that $u_{\mathcal{J}}^{\dagger}=A^{*}p^{\dagger}$ for some $p^{\dagger}\in\mathcal{V}.$
- lacksquare Recall that $D^{\mathsf{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=rac{1}{2}\left\|u_{\delta}-u_{\mathcal{J}}^{\dagger}
 ight\|^{2}.$

Tikhonov regularisation: Consider $\mathcal{J} = \frac{1}{2} \|u\|^2$.

- $\partial \mathcal{J}(u) = \{u\}$
- lacksquare the source condition simply says that $u_{\mathcal{J}}^{\dagger}=A^{*}p^{\dagger}$ for some $p^{\dagger}\in\mathcal{V}.$
- lacksquare Recall that $D^{\mathsf{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=rac{1}{2}\left\|u_{\delta}-u_{\mathcal{J}}^{\dagger}
 ight\|^{2}.$

Maximum entropy regularisation: On $L^1_+(\Omega)$, consider

$$\mathcal{J}(u) = \int_{\Omega} u \ln u - u \mathrm{d}x$$

Tikhonov regularisation: Consider $\mathcal{J} = \frac{1}{2} \|u\|^2$.

- $\partial \mathcal{J}(u) = \{u\}$
- lacksquare the source condition simply says that $u_{\mathcal{J}}^\dagger = A^*p^\dagger$ for some $p^\dagger \in \mathcal{V}$.
- lacksquare Recall that $D^{\mathrm{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=rac{1}{2}\left\|u_{\delta}-u_{\mathcal{J}}^{\dagger}
 ight\|^{2}.$

Maximum entropy regularisation: On $L^1_+(\Omega)$, consider

$$\mathcal{J}(u) = \int_{\Omega} u \ln u - u \mathrm{d}x$$

■ For u positive, we have $\partial \mathcal{J}(u) = \{\ln u\}$.

Tikhonov regularisation: Consider $\mathcal{J} = \frac{1}{2} \|u\|^2$.

- lacksquare the source condition simply says that $u_{\mathcal{J}}^{\dagger}=A^{*}p^{\dagger}$ for some $p^{\dagger}\in\mathcal{V}.$
- lacksquare Recall that $D^{\mathsf{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=rac{1}{2}\left\|u_{\delta}-u_{\mathcal{J}}^{\dagger}
 ight\|^{2}.$

Maximum entropy regularisation: On $L^1_+(\Omega)$, consider

$$\mathcal{J}(u) = \int_{\Omega} u \ln u - u \mathrm{d}x$$

- For u positive, we have $\partial \mathcal{J}(u) = \{\ln u\}$.
- lacksquare The source condition says that $u_{\mathcal{J}}^\dagger=e^{A^*p^\dagger}$ for some $p^\dagger\in\mathcal{V}.$

Tikhonov regularisation: Consider $\mathcal{J} = \frac{1}{2} \|u\|^2$.

- $\partial \mathcal{J}(u) = \{u\}$
- lacksquare the source condition simply says that $u_{\mathcal{J}}^{\dagger}=A^{*}p^{\dagger}$ for some $p^{\dagger}\in\mathcal{V}.$
- lacksquare Recall that $D^{\mathrm{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=rac{1}{2}\left\|u_{\delta}-u_{\mathcal{J}}^{\dagger}
 ight\|^{2}.$

Maximum entropy regularisation: On $L^1_+(\Omega)$, consider

$$\mathcal{J}(u) = \int_{\Omega} u \ln u - u \mathrm{d}x$$

- For u positive, we have $\partial \mathcal{J}(u) = \{\ln u\}$.
- lacksquare The source condition says that $u_{\mathcal{J}}^\dagger=e^{A^*p^\dagger}$ for some $p^\dagger\in\mathcal{V}.$
- The Bregman distance is the Kullback-Lieber divergence

$$D^{\mathrm{v}}(u_{\delta},u_{\mathcal{J}}^{\dagger})=\int u_{\delta}\ln\left(rac{u_{\delta}}{u_{\mathcal{J}}^{\dagger}}
ight).$$

Sparse regularisation: Consider $\mathcal{J}(u) = \|u\|_1 = \sum_{j \in \mathbb{N}} |u_j|$.

Sparse regularisation: Consider $\mathcal{J}(u) = ||u||_1 = \sum_{i \in \mathbb{N}} |u_i|$.

$$\blacksquare \ \partial \mathcal{J}(u) = \left\{ v \in \ell_{\infty}(\mathbb{N}) \; ; \; \left\| v \right\|_{\infty} \leqslant 1 \quad \text{and} \quad \forall j \in \mathrm{supp}(u), \; v_j = \mathrm{sign}(u_j) \right\}$$

Sparse regularisation: Consider $\mathcal{J}(u) = ||u||_1 = \sum_{j \in \mathbb{N}} |u_j|$.

- $\blacksquare \ \partial \mathcal{J}(u) = \left\{ v \in \ell_{\infty}(\mathbb{N}) \; ; \; \left\| v \right\|_{\infty} \leqslant 1 \quad \text{and} \quad \forall j \in \operatorname{supp}(u), \; v_{j} = \operatorname{sign}(u_{j}) \right\}$
- Suppose that $v \stackrel{\text{def.}}{=} A^* p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$ is such that for some $c \in (0,1)$,

$$|v_j| < 1-c, \qquad orall j
ot\in \operatorname{supp}(u_{\mathcal{J}}^\dagger) \stackrel{ ext{def.}}{=} S^\dagger.$$

Sparse regularisation: Consider $\mathcal{J}(u) = ||u||_1 = \sum_{j \in \mathbb{N}} |u_j|$.

- $\blacksquare \ \partial \mathcal{J}(u) = \big\{ v \in \ell_{\infty}(\mathbb{N}) \; ; \; \|v\|_{\infty} \leqslant 1 \quad \text{and} \quad \forall j \in \operatorname{supp}(u), \; v_{j} = \operatorname{sign}(u_{j}) \big\}$
- Suppose that $v \stackrel{\text{def.}}{=} A^* p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$ is such that for some $c \in (0,1)$,

$$|v_j| < 1 - c, \qquad \forall j
ot\in \operatorname{supp}(u_{\mathcal{J}}^\dagger) \stackrel{\scriptscriptstyle{\mathsf{def.}}}{=} S^\dagger.$$

Then,

$$\begin{split} \mathcal{D}_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) &= \|u_{\delta}\|_{1} - \|u_{\mathcal{J}}^{\dagger}\|_{1} - \langle v, u_{\delta} - u_{\mathcal{J}}^{\dagger} \rangle \\ &= \|u_{\delta}\|_{1} - \langle v, u_{\delta} \rangle \\ &\geqslant \|u_{\delta}\|_{1} - \sum_{j \in \mathcal{S}^{\dagger}} |(u_{\delta})_{j}| - (1 - c) \sum_{j \notin \mathcal{S}^{\dagger}} |(u_{\delta})_{j}| = c \sum_{j \notin \mathcal{S}^{\dagger}} |(u_{\delta})_{j}| \,. \end{split}$$

Sparse regularisation: Consider $\mathcal{J}(u) = ||u||_1 = \sum_{i \in \mathbb{N}} |u_i|$.

- $\blacksquare \ \partial \mathcal{J}(u) = \big\{ v \in \ell_{\infty}(\mathbb{N}) \; ; \; \|v\|_{\infty} \leqslant 1 \quad \text{and} \quad \forall j \in \operatorname{supp}(u), \; v_j = \operatorname{sign}(u_j) \big\}$
- Suppose that $v \stackrel{\text{def.}}{=} A^* p^{\dagger} \in \partial \mathcal{J}(u_{\mathcal{J}}^{\dagger})$ is such that for some $c \in (0,1)$,

$$|v_j| < 1 - c, \qquad \forall j
ot\in \operatorname{supp}(u_{\mathcal{J}}^\dagger) \stackrel{\scriptscriptstyle{\mathsf{def.}}}{=} S^\dagger.$$

Then,

$$\begin{split} \mathcal{D}_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) &= \|u_{\delta}\|_{1} - \|u_{\mathcal{J}}^{\dagger}\|_{1} - \langle v, u_{\delta} - u_{\mathcal{J}}^{\dagger} \rangle \\ &= \|u_{\delta}\|_{1} - \langle v, u_{\delta} \rangle \\ &\geqslant \|u_{\delta}\|_{1} - \sum_{i \in \mathcal{S}^{\dagger}} |(u_{\delta})_{i}| - (1 - c) \sum_{i \notin \mathcal{S}^{\dagger}} |(u_{\delta})_{j}| = c \sum_{i \notin \mathcal{S}^{\dagger}} |(u_{\delta})_{j}| \,. \end{split}$$

This alludes to the fact that ℓ_1 promotes sparse solutions.

Although, as we will see later, in this case, stronger convergence bounds (in terms of $\|\cdot\|_1$) are possible.

Proof of Theorem 9

1. Since u_δ is a minimiser,

$$\alpha \mathcal{J}(u_{\delta}) + \frac{1}{2} \|Au_{\delta} - f_{\delta}\|^2 \leqslant \alpha \mathcal{J}(u_{\mathcal{J}}^{\dagger}) + \frac{1}{2} \|Au_{\mathcal{J}}^{\dagger} - f_{\delta}\|^2.$$

2. Using the fact that $\left\|Au_{\mathcal{J}}^{\dagger}-f_{\delta}\right\|\leqslant\delta$ and adding and subtracting $\langle A^{*}p^{\dagger},\ u_{\delta}-u_{\mathcal{J}}^{\dagger}\rangle$ to the LHS of the previous inequality, we obtain

$$\alpha D_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) + \frac{1}{2} \|Au_{\delta} - f_{\delta}\|^{2} + \alpha \langle A^{*}p^{\dagger}, u_{\delta} - u_{\mathcal{J}}^{\dagger} \rangle \leqslant \frac{\delta^{2}}{2}.$$

$$\implies \alpha D_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) + \frac{1}{2} \|Au_{\delta} - f_{\delta}\|^{2} + \alpha \langle p^{\dagger}, Au_{\delta} - Au_{\mathcal{J}}^{\dagger} \rangle \leqslant \frac{\delta^{2}}{2}.$$

3. By adding and subtracting $\langle p^{\dagger}, f_{\delta} \rangle$, we see that the LHS is precisely

$$\frac{1}{2} \left\| A u_{\delta} - f_{\delta} + \alpha p^{\dagger} \right\|^{2} + \alpha D_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) - \frac{\alpha^{2}}{2} \left\| p^{\dagger} \right\|^{2} + \alpha \langle p^{\dagger}, f_{\delta} - f_{\dagger} \rangle.$$

4. Rearranging and by Cauchy-Schwarz:

$$\mathcal{D}_{\mathcal{J}}^{\mathsf{v}}(u_{\delta}, u_{\mathcal{J}}^{\dagger}) \leqslant \frac{1}{2\alpha} \left(\delta^{2} + \alpha^{2} \left\| \boldsymbol{p}^{\dagger} \right\|^{2} + 2\alpha \left\| \boldsymbol{p}^{\dagger} \right\| \delta \right).$$

Outline

Variational regularisation

Background

Regularisation properties

Convergence rates

The dual perspective

The dual perspective

We have so far considered

$$\min_{u} \mathcal{J}(u) + \frac{1}{2} \left\| Au - f \right\|^{2}$$

When $\mathcal J$ is a convex functional, it is often convenient (both from a theoretical and practical perspective) to consider the dual formulation.

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F:V\to (-\infty,+\infty]$, its convex conjugate is $F^*:V^*\to (-\infty,+\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F: V \to (-\infty, +\infty]$, its convex conjugate is $F^*: V^* \to (-\infty, +\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

• F^* is convex regardless of whether F is convex (as the pointwise supremum of affine functions).

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F: V \to (-\infty, +\infty]$, its convex conjugate is $F^*: V^* \to (-\infty, +\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

- F^* is convex regardless of whether F is convex (as the pointwise supremum of affine functions).
- if $F: V \subset \mathbb{R}^n \to (-\infty, +\infty]$ is proper, convex and lower semi-continuous, then $F^{**} = F$.

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F: V \to (-\infty, +\infty]$, its convex conjugate is $F^*: V^* \to (-\infty, +\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

- F^* is convex regardless of whether F is convex (as the pointwise supremum of affine functions).
- if $F: V \subset \mathbb{R}^n \to (-\infty, +\infty]$ is proper, convex and lower semi-continuous, then $F^{**} = F$.
- We have the Fenchel-Young inequality: $\langle x, y \rangle \leqslant F(x) + F^*(y)$,

Let V be a real topological vector space and let V^* be its dual.

Definition 10

Given $F: V \to (-\infty, +\infty]$, its convex conjugate is $F^*: V^* \to (-\infty, +\infty]$ defined by

$$F^*(y) \stackrel{\text{def.}}{=} \sup_{x \in V} \{\langle x, y \rangle - F(x) \}.$$

- F^* is convex regardless of whether F is convex (as the pointwise supremum of affine functions).
- if $F: V \subset \mathbb{R}^n \to (-\infty, +\infty]$ is proper, convex and lower semi-continuous, then $F^{**} = F$.
- We have the Fenchel-Young inequality: $\langle x, y \rangle \leq F(x) + F^*(y)$,
- if F is convex, then $y \in \partial F(x)$ if and only if $F(x) + F^*(y) = \langle x, y \rangle$. Moreover, if F is also proper and lsc, then $x \in \partial F^*(y)$.

The convex conjugate – Examples

- (a) if $F(x) = \frac{1}{2} \|x\|^2$ and V is a Hilbert space, then $F^*(y) = \frac{1}{2} \|y\|^2$:
 - for all x,

$$\langle x, y \rangle - \frac{1}{2} \|x\|^2 \le \|x\| \|y\| - \frac{1}{2} \|x\|^2$$

$$\le \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 - \frac{1}{2} \|x\|^2 = \frac{1}{2} \|y\|^2.$$

So, $F^*(y) \leqslant \frac{1}{2} ||y||^2$.

■ Setting $x \stackrel{\text{def.}}{=} y$ in the supremum above yields $F^*(y) \ge \frac{1}{2} \|y\|^2$.

The convex conjugate – Examples

- (a) if $F(x) = \frac{1}{2} \|x\|^2$ and V is a Hilbert space, then $F^*(y) = \frac{1}{2} \|y\|^2$:
 - \blacksquare for all x,

$$\langle x, y \rangle - \frac{1}{2} \|x\|^2 \le \|x\| \|y\| - \frac{1}{2} \|x\|^2$$

$$\le \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 - \frac{1}{2} \|x\|^2 = \frac{1}{2} \|y\|^2.$$

So, $F^*(y) \leqslant \frac{1}{2} ||y||^2$.

- Setting $x \stackrel{\text{def.}}{=} y$ in the supremum above yields $F^*(y) \geqslant \frac{1}{2} \|y\|^2$.
- (b) If F(x) = ||x|| and $||\cdot||_*$ is its dual norm, then

$$F^*(y) = \begin{cases} 0 & \|y\|_* \leqslant 1 \\ +\infty & \text{otherwise.} \end{cases}$$

The convex conjugate – Examples

- (a) if $F(x) = \frac{1}{2} \|x\|^2$ and V is a Hilbert space, then $F^*(y) = \frac{1}{2} \|y\|^2$:
 - \blacksquare for all x,

$$\langle x, y \rangle - \frac{1}{2} \|x\|^2 \le \|x\| \|y\| - \frac{1}{2} \|x\|^2$$

$$\le \frac{1}{2} \|x\|^2 + \frac{1}{2} \|y\|^2 - \frac{1}{2} \|x\|^2 = \frac{1}{2} \|y\|^2.$$

So, $F^*(y) \leqslant \frac{1}{2} ||y||^2$.

- Setting $x \stackrel{\text{def.}}{=} y$ in the supremum above yields $F^*(y) \geqslant \frac{1}{2} \|y\|^2$.
- (b) If F(x) = ||x|| and $||\cdot||_*$ is its dual norm, then

$$F^*(y) = egin{cases} 0 & \|y\|_* \leqslant 1 \ +\infty & ext{otherwise.} \end{cases}$$

(c) If $F = \iota_K$ (takes value 0 for $x \in K$ and $+\infty$ otherwise) with K being a convex set, then $F^*(y) = \sup_{x \in K} \langle x, y \rangle$.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Properties: Suppose E is convex and absolutely one-homogeneous:

■ Clearly E(0) = 0.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Properties: Suppose E is convex and absolutely one-homogeneous:

- Clearly E(0) = 0.
- Let $p \in \partial E(u)$. Then $E(u) = \langle p, u \rangle$.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Properties: Suppose E is convex and absolutely one-homogeneous:

- Clearly E(0) = 0.
- Let $p \in \partial E(u)$. Then $E(u) = \langle p, u \rangle$.
- Let E be proper and lsc. Then, $E^* = \iota_K$ where $K = \partial E(0)$.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Properties: Suppose *E* is convex and absolutely one-homogeneous:

- Clearly E(0) = 0.
- Let $p \in \partial E(u)$. Then $E(u) = \langle p, u \rangle$.
- Let E be proper and lsc. Then, $E^* = \iota_K$ where $K = \partial E(0)$.
- for any $u \in \mathcal{U}$, $p \in \partial E(u)$ if and only if $p \in \partial E(0)$ and $E(u) = \langle p, u \rangle$.

Definition 11

A functional $E: \mathcal{U} \to \overline{\mathbb{R}}$ is absolutely one-homogeneous if $E(\lambda u) = |\lambda| E(u)$ for all $\lambda \in \mathbb{R}$ and $u \in \mathcal{U}$.

Examples: norms, the total variation functional.

Properties: Suppose *E* is convex and absolutely one-homogeneous:

- Clearly E(0) = 0.
- Let $p \in \partial E(u)$. Then $E(u) = \langle p, u \rangle$.
- Let *E* be proper and lsc. Then, $E^* = \iota_K$ where $K = \partial E(0)$.
- for any $u \in \mathcal{U}$, $p \in \partial E(u)$ if and only if $p \in \partial E(0)$ and $E(u) = \langle p, u \rangle$.

NB: We have already seen the above properties for E(u) = |u|!

Let V, Y be real normed vector spaces with duals V^* and Y^* .

Let $y \in Y$ and $b_j \in \mathbb{R}$ for j = 1, ..., M.

Consider the primal problem:

$$\min_{x \in V} F_0(x)$$
 subject to $Ax = y$, $F_j(x) \leqslant b_j, \ j \in [M],$

where

- $F_0: V \to (-\infty, +\infty]$ is called the objective function
- $F_j: V \to (-\infty, +\infty]$ for $j \in [M]$ are called the constraint functions.
- $A: V \rightarrow Y$ is a continuous linear operator.

Let V, Y be real normed vector spaces with duals V^* and Y^* .

Let $y \in Y$ and $b_j \in \mathbb{R}$ for j = 1, ..., M.

Consider the primal problem:

$$\min_{x \in V} F_0(x)$$
 subject to $Ax = y$,
$$F_j(x) \leqslant b_j, \ j \in [M], \tag{\mathcal{P}}$$

where

- $F_0: V \to (-\infty, +\infty]$ is called the objective function
- $F_j: V \to (-\infty, +\infty]$ for $j \in [M]$ are called the constraint functions.
- $A: V \rightarrow Y$ is a continuous linear operator.

The set $K \stackrel{\text{def.}}{=} \{x \in V ; Ax = y, F_j(x) \leqslant b_j\}$ is called the admissible set.

The Lagrange function is defined for $x \in V$, $\xi \in Y^*$ and $\nu \in \mathbb{R}^M$ with $\nu_\ell \geqslant 0$ for all $\ell \in [M]$ by

$$L(x,\xi,\nu)\stackrel{\text{\tiny def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

The variables ξ and ν are called the **Lagrange multipliers**.

The **Lagrange function** is defined for $x \in V$, $\xi \in Y^*$ and $\nu \in \mathbb{R}^M$ with $\nu_\ell \geqslant 0$ for all $\ell \in [M]$ by

$$L(x,\xi,\nu)\stackrel{\text{def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

The variables ξ and ν are called the **Lagrange multipliers**.

The Lagrange dual function is defined as

$$H(\xi, \nu) \stackrel{\text{\tiny def.}}{=} \inf_{x \in V} L(x, \xi, \nu), \qquad \xi \in Y^*, \ \nu \in \mathbb{R}^M_{\geqslant 0}.$$

If $x \mapsto L(x, \xi, \nu)$ is unbounded from below, then we write $H(\xi, \nu) = -\infty$.

Properties of the dual function H:

$$H(\xi,\nu) \stackrel{\text{\tiny def.}}{=} \inf_{x \in V} L(x,\xi,\nu) \stackrel{\text{\tiny def.}}{=} F_0(x) + \langle \xi, \, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

Properties of the dual function H:

$$H(\xi,\nu) \stackrel{\text{def.}}{=} \inf_{x \in V} L(x,\xi,\nu) \stackrel{\text{def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

■ The dual function is always concave since it is the pointwise infimum of a family of affine functions.

Properties of the dual function H:

$$H(\xi,\nu) \stackrel{\text{def.}}{=} \inf_{x \in V} L(x,\xi,\nu) \stackrel{\text{def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

- The dual function is always concave since it is the pointwise infimum of a family of affine functions.
- We have $H(\xi, \nu) \leq \inf_{x \in K} F_0(x)$ for all $\xi \in Y^*$ and $\nu \in \mathbb{R}^M_{\geq 0}$.

Properties of the dual function H:

$$H(\xi,\nu) \stackrel{\text{\tiny def.}}{=} \inf_{x \in V} L(x,\xi,\nu) \stackrel{\text{\tiny def.}}{=} F_0(x) + \langle \xi, Ax - y \rangle + \sum_{\ell=1}^M \nu_\ell \left(F_\ell(x) - b_\ell \right).$$

- The dual function is always concave since it is the pointwise infimum of a family of affine functions.
- We have $H(\xi, \nu) \leqslant \inf_{x \in K} F_0(x)$ for all $\xi \in Y^*$ and $\nu \in \mathbb{R}^M_{\geqslant 0}$.

Make this lower bound as tight as possible:

$$\sup_{\xi \in Y^*, \nu \in \mathbb{R}^M} H(\xi, \nu) \text{ subject to } \nu_{\ell} \geqslant 0, \ \ell \in [M]. \tag{\mathcal{D}})$$

This optimisation problem is called the dual problem.

- For $D^* = \sup(\mathcal{D})$ and $P^* = \inf(\mathcal{P})$, we have $D^* \leq P^*$. This is called weak duality, and $P^* D^*$ is called the duality gap.
- When $D^* = P^*$, then we say we have **strong duality**.

Consider now $\inf_{x \in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P

Consider now $\inf_{x \in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P)

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

Consider now $\inf_{x \in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P)

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

= $\inf_{x,z} \{ E(z) + F(x) + \langle A^* \xi, x \rangle - \langle \xi, z \rangle \}$

Consider now $\inf_{x\in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P)

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

$$= \inf_{x,z} \{ E(z) + F(x) + \langle A^* \xi, x \rangle - \langle \xi, z \rangle \}$$

$$= -\sup_{z \in Y} \langle \xi, z \rangle - E(z) - \sup_{x \in V} \langle -A^* \xi, x \rangle - F(x)$$

Consider now $\inf_{x \in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P)

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

$$= \inf_{x,z} \{ E(z) + F(x) + \langle A^* \xi, x \rangle - \langle \xi, z \rangle \}$$

$$= -\sup_{z \in Y} \langle \xi, z \rangle - E(z) - \sup_{x \in V} \langle -A^* \xi, x \rangle - F(x)$$

$$= -E^*(\xi) - F^*(-A^* \xi).$$

Consider now $\inf_{x\in V} E(Ax) + F(x)$, where $E: Y \to (-\infty, +\infty]$ and $F: V \to (-\infty, +\infty]$ are convex functionals, and $A \in \mathcal{L}(V, Y)$. This is equivalent to

$$\inf_{z \in Y, x \in V} E(z) + F(x) \text{ subj. to } Ax = z$$
 (P)

The Lagrange dual is for $\xi \in Y^*$ as

$$H(\xi) = \inf_{x,z} \{ E(z) + F(x) + \langle \xi, Ax - z \rangle \}$$

$$= \inf_{x,z} \{ E(z) + F(x) + \langle A^* \xi, x \rangle - \langle \xi, z \rangle \}$$

$$= -\sup_{z \in Y} \langle \xi, z \rangle - E(z) - \sup_{x \in V} \langle -A^* \xi, x \rangle - F(x)$$

$$= -E^*(\xi) - F^*(-A^* \xi).$$

So, the dual problem is

$$\sup_{\xi \in Y^*} -E^*(\xi) - F^*(-A^*\xi) \tag{D}$$

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

Why might we want to look at the dual problem?

■ Computational: Suppose $A: V \to Y$ where $V = \mathbb{R}^N$ and $Y = \mathbb{R}^m$. We often have $m \ll N$.

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

- Computational: Suppose $A: V \to Y$ where $V = \mathbb{R}^N$ and $Y = \mathbb{R}^m$. We often have $m \ll N$.
 - lacksquare the primal problem optimises over $V=\mathbb{R}^N$

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

- Computational: Suppose $A: V \to Y$ where $V = \mathbb{R}^N$ and $Y = \mathbb{R}^m$. We often have $m \ll N$.
 - the primal problem optimises over $V = \mathbb{R}^N$
 - the dual problem optimises over $Y = Y^* = \mathbb{R}^m$.

Theorem 12 (Strong duality)

Suppose that E and F are proper convex functionals, there exists $u_0 \in V$ such that $F(u_0) < \infty$, $E(Au_0) < \infty$ and E is continuous at Au_0 . Then,

- Strong duality holds and there exists at least one dual optimal solution.
- Moreover, if p* is a primal optimal solution and d* is a dual optimal solution, then

$$Ap^* \in \partial E^*(d^*)$$
 and $A^*d^* \in -\partial F(p^*)$

- Computational: Suppose $A: V \to Y$ where $V = \mathbb{R}^N$ and $Y = \mathbb{R}^m$. We often have $m \ll N$.
 - lacksquare the primal problem optimises over $V=\mathbb{R}^N$
 - the dual problem optimises over $Y = Y^* = \mathbb{R}^m$.
- Theoretical insights (see later).

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u)$$
 (\mathcal{P}_{α})

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$
 Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2}$ and $F(u) = \mathcal{J}(u)$.

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$
 Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2}$ and $F(u) = \mathcal{J}(u)$.

$$\blacksquare E^*(v) = \langle v, f_{\delta} \rangle + \frac{\alpha}{2} \|v\|^2.$$

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$

Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^2$ and $F(u) = \mathcal{J}(u)$.

- $\blacksquare E^*(v) = \langle v, f_\delta \rangle + \frac{\alpha}{2} \|v\|^2.$
- lacksquare If $\mathcal J$ is absolute one-homogeneous, then $\mathcal J^*(v)=\iota_K$ where $K=\partial\mathcal J(0).$

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$

Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^2$ and $F(u) = \mathcal{J}(u)$.

- $\blacksquare E^*(v) = \langle v, f_{\delta} \rangle + \frac{\alpha}{2} \|v\|^2.$
- If \mathcal{J} is absolute one-homogeneous, then $\mathcal{J}^*(v) = \iota_K$ where $K = \partial \mathcal{J}(0)$.

Therefore, the dual problem is

$$\sup_{v} -\langle v, f_{\delta} \rangle - \frac{\alpha}{2} \|v\|^2 - \iota_{K} (-A^* v)$$
 (\mathcal{D}_{α})

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$

Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^2$ and $F(u) = \mathcal{J}(u)$.

- $\blacksquare E^*(v) = \langle v, f_{\delta} \rangle + \frac{\alpha}{2} \|v\|^2.$
- If \mathcal{J} is absolute one-homogeneous, then $\mathcal{J}^*(v) = \iota_K$ where $K = \partial \mathcal{J}(0)$.

Therefore, the dual problem is

$$\sup_{v} -\langle v, f_{\delta} \rangle - \frac{\alpha}{2} \|v\|^{2} - \iota_{K} (-A^{*}v)$$
 (\(\mathcal{D}_{\alpha}\))

If p_{δ} and u_{δ} are dual and primal solutions, then the optimality conditions take the form

$$-A^*p_\delta\in\partial\mathcal{J}(u_\delta)$$
 and $\alpha p_\delta=Au_\delta-f_\delta.$

$$\min_{u} \frac{1}{2\alpha} \|Au - f_{\delta}\|^{2} + \mathcal{J}(u) \tag{\mathcal{P}_{α}}$$

Let $E(Au) = \frac{1}{2\alpha} \|Au - f_{\delta}\|^2$ and $F(u) = \mathcal{J}(u)$.

- $\blacksquare E^*(v) = \langle v, f_{\delta} \rangle + \frac{\alpha}{2} \|v\|^2.$
- If \mathcal{J} is absolute one-homogeneous, then $\mathcal{J}^*(v) = \iota_K$ where $K = \partial \mathcal{J}(0)$.

Therefore, the dual problem is

$$\sup_{v} -\langle v, f_{\delta} \rangle - \frac{\alpha}{2} \|v\|^{2} - \iota_{K} (-A^{*}v)$$
 (\(\mathcal{D}_{\alpha}\))

If p_{δ} and u_{δ} are dual and primal solutions, then the optimality conditions take the form

$$-A^*p_\delta\in\partial\mathcal{J}(u_\delta)$$
 and $\alpha p_\delta=Au_\delta-f_\delta.$

We have $-\langle v, f_{\delta} \rangle - \frac{\alpha}{2} \|v\|^2 = -\alpha \frac{1}{2} \|v + \frac{f_{\delta}}{\alpha}\|^2 + \frac{1}{2} \|\frac{f_{\delta}}{\alpha}\|^2$, so the dual solution is the projection of $-f_{\delta}/\alpha$ onto a closed convex set, and is therefore **unique**.

The limit primal and dual problems

Formal limits problems as $\alpha, \delta \to 0$ are

$$\inf_{u:Au=f} \mathcal{J}(u) = \inf_{u \in \mathcal{U}} \iota_{\{f\}}(Au) + \mathcal{J}(u) \tag{\mathcal{P}_0}$$

and

$$\sup_{v:-A^*v\in\partial\mathcal{J}(0)}\langle -f,\,v\rangle = -\inf_v\langle f,\,v\rangle + \iota_{\partial J(0)}(A^*v) \tag{\mathcal{D}_0}$$

We cannot directly apply Theorem 12 to (\mathcal{P}_0) to deduce strong duality, because $\iota_{\{f\}}$ is not continuous at f.

However, if $\mathcal{J}:\mathcal{U}\to[0,\infty]$ absolute one-homogeneous and coercive, we can show that (\mathcal{P}_0) is the dual of (\mathcal{D}_0) . So, studying the two problems are still equivalent. See the additional exercises.

The source condition implies dual convergence

Theorem 13

Suppose that the source condition holds at a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$. Then, p_{α} the solution to (\mathcal{D}_{α}) with data f is uniformly bounded in α . Moreover, $p_{\alpha} \to p^{\dagger}$ strongly in \mathcal{V} as $\alpha \to 0$, where p^{\dagger} is a solution to (\mathcal{D}_{0}) with smallest norm.

The source condition implies dual convergence

Theorem 13

Suppose that the source condition holds at a \mathcal{J} -minimising solution $u_{\mathcal{J}}^{\dagger}$. Then, p_{α} the solution to (\mathcal{D}_{α}) with data f is uniformly bounded in α . Moreover, $p_{\alpha} \to p^{\dagger}$ strongly in \mathcal{V} as $\alpha \to 0$, where p^{\dagger} is a solution to (\mathcal{D}_{0}) with smallest norm.

Remark: Let u_{α} solve (\mathcal{D}_{α}) with data f and u_{δ} solve (\mathcal{D}_{α}) with f_{δ} . NB: $u_{\delta} = P_{K}(f_{\delta}/\alpha)$ the projection onto $K \stackrel{\text{def.}}{=} \{p \; ; \; A^{*}p \in \partial \mathcal{J}(0)\}$. So, $\|p_{\alpha} - p_{\delta}\| = \|P_{K}(f/\alpha) - P_{K}(f_{\delta}/\alpha)\| \leqslant \|f - f_{\delta}\|/\alpha \leqslant \delta/\alpha$

and p_{δ} converges to p^{\dagger} as $\delta/\alpha \to 0$ and $\alpha \to 0$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^{\dagger} \in \partial J(u^{\dagger})$ satisfies $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^{\dagger})$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^{\dagger} \in \partial J(u^{\dagger})$ satisfies $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^{\dagger})$.

Claim: Supp $(u_{\alpha,\delta}) = S$ for α and δ sufficiently small:

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^\dagger \in \partial J(u^\dagger)$ satisfies $\|(A^*p^\dagger)_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^\dagger)$.

Claim: Supp $(u_{\alpha,\delta}) = S$ for α and δ sufficiently small:

■ $A^*p \in \partial \mathcal{J}(u)$ means that $||A^*p||_{\infty} \leq 1$ and $(A^*p)_S = \text{sign}(u_S)$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^\dagger \in \partial J(u^\dagger)$ satisfies $\|(A^*p^\dagger)_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^\dagger)$.

Claim: Supp $(u_{\alpha,\delta}) = S$ for α and δ sufficiently small:

- $A^*p \in \partial \mathcal{J}(u)$ means that $\|A^*p\|_{\infty} \leqslant 1$ and $(A^*p)_S = \text{sign}(u_S)$.
- If $\|(A^*p^\dagger)_{S^c}\|_{\infty} < 1$, then $\|(A^*p_{\alpha,\delta})_{S^c}\|_{\infty} < 1$ for all α, δ sufficiently small. This means $\operatorname{Supp}(u_{\alpha,\delta}) \subseteq S$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^\dagger \in \partial J(u^\dagger)$ satisfies $\|(A^*p^\dagger)_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^\dagger)$.

Claim: Supp $(u_{\alpha,\delta}) = S$ for α and δ sufficiently small:

- $A^*p \in \partial \mathcal{J}(u)$ means that $||A^*p||_{\infty} \leq 1$ and $(A^*p)_S = \text{sign}(u_S)$.
- If $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$, then $\|(A^*p_{\alpha,\delta})_{S^c}\|_{\infty} < 1$ for all α, δ sufficiently small. This means $\operatorname{Supp}(u_{\alpha,\delta}) \subseteq S$.
- Since we have weak ℓ_2 convergence of $u_{\alpha,\delta}$ to u, we actually have $\operatorname{Supp}(u_{\alpha,\delta}) = S$.

The dual solutions $p_{\alpha,\delta}$ converge to the minimal norm dual solution p^{\dagger} as $\alpha,\delta\to 0$.

This often means that A^*p^{\dagger} control the structural properties of $u_{\alpha,\delta}$ for small α and δ .

Example Let $\mathcal{J} = \|\cdot\|_1$ in \mathbb{R}^n .

Assume: $A^*p^{\dagger} \in \partial J(u^{\dagger})$ satisfies $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$ for $S \stackrel{\text{def.}}{=} \operatorname{Supp}(u^{\dagger})$.

Claim: Supp $(u_{\alpha,\delta}) = S$ for α and δ sufficiently small:

- $A^*p \in \partial \mathcal{J}(u)$ means that $||A^*p||_{\infty} \leq 1$ and $(A^*p)_S = \text{sign}(u_S)$.
- If $\|(A^*p^{\dagger})_{S^c}\|_{\infty} < 1$, then $\|(A^*p_{\alpha,\delta})_{S^c}\|_{\infty} < 1$ for all α, δ sufficiently small. This means $\operatorname{Supp}(u_{\alpha,\delta}) \subseteq S$.
- Since we have weak ℓ_2 convergence of $u_{\alpha,\delta}$ to u, we actually have $\operatorname{Supp}(u_{\alpha,\delta}) = S$.

Similar notions of structural stability (stability of level curves) for $\mathcal{J} = TV$.

Proof of Theorem 13 (dual convergence)

Step 1, show that p_{α} is uniformly bounded in α : Since p_{α} solves (\mathcal{D}_{α}) , we have

$$\langle -f, p_{\alpha} \rangle - \frac{\alpha}{2} \|p_{\alpha}\|^2 \geqslant \langle -f, p^{\dagger} \rangle - \frac{\alpha}{2} \|p^{\dagger}\|^2.$$
 (5.1)

Moreover, as p^{\dagger} is a solution to (\mathcal{D}_0) , we have $\langle -f, p^{\dagger} \rangle \geqslant \langle -f, p_{\alpha} \rangle$. So, $||p^{\dagger}|| \geqslant ||p_{\alpha}||$.

Step 2, extract a convergent subsequence to some point p_* : We may extract a subsequence such that $p_{\alpha_{n_k}}$ weakly converges to p_* (recall that the closed unit ball of a Hilbert space is weakly sequentially compact). Taking the limit of $\alpha \to 0$ in (5.1) yields $\langle -f, p_* \rangle \geqslant \langle -f, p^{\dagger} \rangle$.

Proof of Theorem 13 (dual convergence)

Step 3, show p_* is a solution to \mathcal{D}_0 : Note that $A^*p_{\alpha_{n_k}}$ converges weak-* to A^*p_* , and so $A^*p_*\in\partial\mathcal{J}(0)$ (since this is a weak-* closed set). So, p_* is a solution to (\mathcal{D}_0) .

Step 4, show p_* is of minimal norm: By lower semicontinuity of the norm,

$$\|p_*\| \leqslant \liminf_k \|p_{\alpha_{n_k}}\| \leqslant \|p^{\dagger}\|,$$

and hence, $p_*=p^\dagger$. Moreover, since $\left\|p_{\alpha_{n_k}}\right\| \to \left\|p^\dagger\right\|$, by the Radon Riesz property, $p_{\alpha_{n_k}} \to p_0$ strongly in \mathcal{H} .

Step 5, the entire sequence converges: We have $\lim_{\delta \to 0} \left\| p_{\alpha} - p^{\dagger} \right\| = 0$, since otherwise, we can extract a subsequence p_{α_k} such that $\left\| p_{\alpha_k} - p^{\dagger} \right\| > \varepsilon$ and by the above argument, extract a further subsequence which converges strongly to p^{\dagger} .

We studied variational regularisers of the form

$$R_{\alpha}(f) = \operatorname{argmin}_{u} \alpha \mathcal{J}(u) + \frac{1}{2} \|Au - f\|^{2}.$$

which is a natural generalisation of Tikhonov regularisation.

- This is a convergent regularisation under appropriate continuity properties of A, \mathcal{J} is proper, lsc with compact sublevel sets and $\delta^2/\alpha(\delta) \to 0$.
- We introduced a source condition for studying convergence rates:
 - this gives convergence rates in terms of Bregman distances under a source condition.
 - For convex regularisers, we saw how to reformulate using the dual problem. The source condition is simply saying that the limit dual problem $(\alpha \to 0)$ has a solution.
 - The source condition guarantees dual convergence, and this can provide finer notions of convergence.