Types of Models: WHAT's in the BOX

Conceptual......Mathematical

Static......Dynamic: TIME

Lumped......Spatially Distributed: SPACE

Stochastic.....Deterministic

Abstract.....Physically/Process Based

but biggest differences may often be the degree specific processes/parameters are accounted for

Lumped ... Spatially distributed

 Lumped - single point in space, or space doesn't matter

* Spatially distributed - model

is applied to different "patches" in space

- spatial units are independent
- spatial units interact with each other

http://eo.ucar.edu/staff/rrussell/climate/modeling/climate_model_resolution.html

Static-Dynamic Time Varying

- Static Processes or
 Variables modeled do not evolve with time
- * Dynamic model elements evolve through time and variables/results at one time step typically depends on previous time step

http://www.econometricsbysimulation.com/2013/05/sir-model-flue-season-dynamic.html

Dynamics - connection in space and time

- Dynamic modeling is common in environmental problems solving
- * Similar issues: what happens at one place, depends on neighbors; what happens at one time; depends on previous time
- * Space two way; Time is usually one-way
- * Dynamic system modeling quickly becomes complex (Engineering degrees spend a lot of time on this; there are books, entire journals etc on this topic)

Dynamics models

- * Many environmental problems and questions can be related to
 - * Diffusion
 - * Population
- * Both often require dynamics models; and both often require thinking about dynamics in space and in time

Some useful terminology

- * stocks variables that evolve over time
- * flows transfers between variables or from the system
- * parameters values that controls the relationship between stocks and flows
- * sink something that absorbs flows
- * source something that generates flows

- * *System state*: value of all variables need to describe the "entity that evolves through time" at a particular point in time
 - * usually think of these as stores (soil moisture, bank account balance, number of individuals in a particular age class)
- * State-space: description of the entity may require multiple variables for a watershed this could be soil moisture, water currently in dam and water stored in trees, and for each "grid" in a watershed)
- * State-space trajectories: how the system state evolves through time, often involving transfers / flows between different stocks
- * Initial conditions: values to describe the system state at the beginning
- * Dynamic systems modeling: there at least one feedback loop

Nature

Notice how the change (flow in/out) of stock (population) depends on current value of stock Feedback loop!

Human Engineered

- * dynamic systems have feedback loops
 - * positive feedback
 - negative feedback
- * feedback loops often lead to highly non-linear responses
- * IF you have a feedback loop you need:
 - * difference and differential equations: basically describe how the state evolves through time

- Dynamic system may lead to stable or unstable states over time
 - * stable ...converge over time to a set of values or a repeated pattern
 - unstable...grow to infinity
 - chaotic high sensitivity to initial conditions
 - for the same dynamic system (same set of equations),
 whether you are stable or unstable can depend on initial conditions and parameters

- * rate of growth(change) = r * population(density)
- differential equation
- * dP/dt = rP

- differential equation
- * dP/dt = rP
- * an analytic solution exists so we can write Population as a function of time (integrating both sides)
 - P = P0 * exp(rt)

```
#' Simple population growth
 @param T period of growth
#'@param P initial population
#'@param r intrinsic growth rate
 @return population at time T
# 1
exppop = function(T,P0,r) {
 P = P0 * exp(r*T)
  return(P)
```


But what if we couldn't 'solve' it analytically ????

Integrate the differential equation step by step

Also called numerical integration!

R has tools to help you do this!

First you need to code your differential equation as a function

Use R's ODE solver in the deSolve package - note the S

ODE works with ordinary differential equations...

Ordinary differential equations have derivatives of only one variable ((population) with respect to (time).,..it can have multiple order derivatives dp/dt + d2p/dt + c = 0

Partial differential equations have derivatives with respect to more than one variable (think of spatial issues 3du/dx + 4du/dy = 0

Numerical Integration

Use R's ODE solver in the deSolve package

ODE requires initial conditions

Values of independent variable that you want results for

The function itself and parameters (as a single list)

Example: Dynamic Systems

- Diffusion Ficks Law
- * flux (mass/time) =
 - -Diffusivity * concentration gradient * area
 - a concentration gradient is C2-C1 / length

Example: Dynamic Systems

* Diffusion

How big that delta X is, depends on characteristics of the particles - often represented as a diffusivity (D) term

$$q_x = \frac{0.5\Delta XA(C1 - C2)}{\Delta t}.$$

Diffusion Example: Difference equation

Length =
$$nx * dx$$

Nx: number of "boxes"

dx: discretization of space

Diffusion Example

...

Total Simulation time = nt*dt

nt : number of time steps dt - discretization of time

Dynamic Modeling

- data structure to store the state (conc)
- * 2-d array (rows are time, columns are distance along path)
- * use it to track concentration through time

Distance Along Path			
Time			

Dynamic - Diffusion modeling

- * Choosing the appropriate time and space step is important if either are too large then it is easy to overshoot and create unstable oscillations
- * These are a due to using a discrete model (dividing things into units) to model what is actually a continuous process
- * Trade-off computational efficiency vs stability
- * Differential equations help us to think through this problem but often implemented in discrete ways