Višestruka linearna regresija

Ovo je i dalje *linearna* regresija (linearna po θ)

Polinomijalna obeležja: $\theta_0 + \theta_1 GDP + \theta_2 GDP^2 + \theta_3 GDP^3$

Možemo kreirati nova obeležja

$$f_0(x) = x^0 = 1$$
 $f_1(x) = x$ $f_2(x) = x^2$... $f_D(x) = x^D$ $f_k = \sin(2\pi x/12)$

Linearna regresija: linearna funkcija parametara modela θ

$$h_{\theta}(x) = \sum_{d=0}^{D} \theta_{d} x^{d}$$

(zbog jednostavnosti notacije uz θ_0 ide $x^0 = 1$)

$$x^{(i)} = \begin{bmatrix} x^0 \\ x^1 \\ \dots \\ x^D \end{bmatrix} \in \mathbb{R}^{D+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \dots \\ \theta_D \end{bmatrix} \in \mathbb{R}^{D+1} \qquad h_{\theta}(x^{(i)}) = \theta^T x^{(i)}$$

- Skaliranje obeležja je još važnije
 - Ako $x \in [1,1000]$ onda $x^2 \in [1,10^6]$, $x^3 \in [1,10^9]$, ...

Kako da znamo do kog stepena polinoma da idemo?

U ovom slučaju možemo vizuelnom inspekcijom

- Međutim, šta ako imamo više nezavisnih varijabli?
 - sanitation, vaccination, BMI, kriminal,...
 - imamo *D*-dimenzioni prostor koji ne možemo vizualizovati

- Treba nam način da ovo automatizujemo
 - Funkcija gubitka (*loss*)