AUXILIARY POWER UNIT FOR HYBRID ELECTRIC VEHICLES INTERIM REPORT TFLRF No. 328

DEVELOPMENT OF A 55kW DIESEL POWERED

By William E. Likos Daniel J. Podnar Jack A. Smith Joe Steiber

U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI)
Southwest Research Institute
San Antonio, Texas

Prepared for

Defense Advanced Research Projects Agency
3701 N. Fairfax Drive
Arlington, Virginia 22203-1714

9980316 045

Under Contract to
U.S. Army TARDEC
Petroleum and Water Business Area
Warren, MI 48397-5000

Contract No. DAAK70-92-C-0059

Approved for public release; distribution unlimited

March 1998

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DTIC Availability Notice

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

Disposition Instructions

Destroy this report when no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

			7, 100, 100, 100, 100, 100, 100, 100, 10	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND D	ATES COVERED	
	March 1998	Interim September 1994 -	- September 1997	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Development of a 55kW Diesel Powered	d Auxiliary Power Unit for Hybrid	d Electric Vehicles	DAAK70-92-C-0059; WD	
6. AUTHOR(S)			36	
Likos, W.E., Podnar, D.J., Smith, J.A., a	and Steiber, J.			
7. PERFORMING ORGANIZATION NAM	IE(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
U.S. Army TARDEC Fuels and Lubrica Southwest Research Institute	nts Research Facility (SwRI)		REPORT NUMBER	
P.O. Drawer 28510				
San Antonio, Texas 78228-0510	TFLRF No. 328			
9. SPONSORING/MONITORING AGENC	10. SPONSORING/MONITORIG			
U.S. Army TARDEC	AGENCY REPORT			
Petroleum and Water Business Area U.S. Army TACOM	NUMBER			
Warren, MI 48397-5000				
11. SUPPLEMENTARY NOTES				
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution				
13. ABSTRACT (Maximum 200 words)				

Three auxiliary power units (APU) were developed for military hybrid vehicle applications with funding from DARPA. One APU was for the electric M113 troop carrier originally converted to electric power in the 1960's. The other two APU's developed during this project were for hybrid electric High Mobility Multipurpose Wheeled Vehicle (HMMWV) projects. For this APU design a Volkswagen 1.5-I diesel engine drives a permanent magnet generator, that with associated inverter produces 55 kW of DC power at 380 volts. Overall thermal efficiencies of 33 % were observed.

The controller for the APU's was based on the personal computer (PC) CPU. Basing the controller on the PC allowed flexibility in meeting the individual requirements of the different vehicles. Given a power level request from the vehicle controller, the APU controller set the engine speed for optimum thermal efficiency. The generator electronics adjusts the voltage and thus the current output from the inverter to deliver the requested power to the vehicle's electrical bus.

14. SUBJECT TERMS				15. NUMBER OF PAGES
APU	Hybrid	Permanent Magnet	Electric Vehicle	30
				16. PRICE CODE
17. SECURITY CLA OF REPORT	ASSIFICATION	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
Unclassified		Unclassified	Unclassified	

EXECUTIVE SUMMARY

The initial purpose of this project was to develop an Auxiliary Power Unit (APU) for use in a High Mobility Multi-purpose Wheeled Vehicle (HMMWV) that was being converted to a hybrid electric configuration. Later, the project scope was increased to add an APU for another electric HMMWV and another APU for a hybrid electric M113 Troop Carrier. The project involved selecting the engine and generator, developing the APU control system, and testing the completed APU. The project was divided into four phases: (1) selection of engine and generator, (2) design and construction of the APU, (3) APU control system development, and (4) APU testing.

The first phase involved reviewing the specifications of each vehicle integrator to select an appropriate engine and generator that would meet the size, weight, and power requirements and be able to operate underwater. The engine chosen, the new Volkswagen 1.9L, turbo-charged, direct injected diesel, is a state-of-the-art, high-efficiency, low emissions design. The generator selected is a permanent magnet alternator with inverter electronics to provide the requested power at the prevailing bus voltage. This electric machine is a state-of-the-art design with an overall efficiency in excess of 94 percent at most operating conditions.

The second phase involved the design and construction of the three APUs. Design of the APUs was a joint effort with SwRI and McKee Engineering. In order to fit the APU into the space available under the hood of the HMMWV, it was necessary to turn the engine on its side. Lubrication by means of the stock oil sump would no longer be functional, therefore the engine was modified to a dry sump configuration. McKee Engineering was selected for this task because of their extensive experience doing this engine modification.

The third phase of the project involved designing and developing an APU controller. The controller receives a power request from the vehicle and provides engine and generator management to meet the requested power. The APU controller was based on a personal computer (PC) platform. In order to meet the differing requirements of the M113 and the HMMWV vehicle projects, individual software programs were developed for each vehicle.

The fourth phase of the project consisted of the debugging and performance testing of the APU in the laboratory. During this testing, the output of the generator was absorbed by a battery pack and a resistive load bank that simulated the vehicle power bus. Documentation of the complete control system was prepared to assist the vehicle integrators.

FOREWARD/ACKNOWLEDGMENTS

The U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI), San San Antonio, TX performed this work, under contract no. DAAK70-92-C-0059. Work was funded by the Defense Advanced Research Projects Agency (DARPA) with Mr. R. Rosenfeld (DARPA) and Mr. T. Bagwell (TARDEC) serving as technical monitors, and Mr. L. Villahermosa (TARDEC) serving as the contracting officer's representative.

TABLE OF CONTENTS

<u>n</u>			<u>Page</u>
BACK	KGROU	ID	1
1.1	Techn	al Background	
	1.1.1	Engine	1
	1.1.2	Generator	2
	1.1.3	Controller	2
TECH	NICAL	DISCUSSION	2
2.1	APU I	esign and Development	
	2.1.1	Engine Selection	3
	2.1.2	Generator Selection	3
	2.1.3	Generator to Engine Coupling	ng6
	2.1.4	Engine Dry Sump Lubrication	on Systemg
	2.1.5	Engine & Generator Cooling	g10
2.2	APU (ontrol System Development	10
	2.2.1		10
	2.2.2	Controller Hardware Platfor	m12
	2.2.3	Control Software/Algorithm	Descriptions12
2.3	APU 7	esting	14
	2.3.1	M113 APU controller Stand	-Alone Testing16
	2.3.2	CTC Engine-Generator/M1	3 APU Controller Integrated Testing17
			s18
		2.3.2.2 Power Absorpti	on18
		2.3.2.3 Fuel Supply	18
		2.3.2.4 Power Measure	nent19
		2.3.2.5 Vehicle Control	19
		2.3.2.6 HMMWV Cont	roller/M113 APU Start/Stop Testing19
			roller/M113 APU Steady-State Testing20
		2.3.2.8 HMMWV Cont	roller/M113 APU Transient Testing22
	2.3.3	Testing of the HMMWV En	gine Generator/HMMWV APU Controller27
			MMWV Controller Testing27
		2.3.3.2 HMMWV APU	Start/Stop Testing29
	1.1 TECH 2.1	BACKGROUN 1.1 Technic 1.1.1 1 1.1.2 1 1.1.3 C TECHNICAL I 2.1 APU Do 2.1.1 1 2.1.2 (2.1.3 (2.1.4 1 2.1.5 1 2.2 APU Co 2.2.1 (2.2.2 (2.2.3 (2.3.1 1) 2.3.2 (2.3.2 (2.3.3 (BACKGROUND

TABLE OF CONTENTS (continued)

Page

Section

	2.4 AF	PU Testing Conclusions	30
3.0	SUMMAF	RY	30
APPE	NDICES		
	B Vo C Ste D Co	ower System Research Engine Survey colkswagen 1.9L Engine Specifications coady-State Test Results complete APU Wiring Diagrams for the HMMWV APU complete Wiring Diagrams for the HMMWV APU	
T		LIST OF ILLUSTRATIONS	_
Figure	<u>e</u>		Page
1 2 3 4 5 6 7 8 9 10 11 12 13 14	M113 APU Original M Final Engi Dry Sump APU Test APU Cont APU Cont APU Effic Generator Power/Rar APU Power APU Power APU Power	AcKee Engine-to-Generator Coupling	59111321212123
		LIST OF TABLES	
Table			Page
1 2 3	APU Cont	roller Signal I/Oroller I/O Signalsk Protocol Specification	28

1.0 BACKGROUND

1.1 Technical Background

Three hybrid vehicle auxiliary power units (APU) for hybrid vehicle applications were developed with DARPA funding at Southwest Research Institute (SwRI) for use in military vehicles. One APU design was for the electric M113 Troop Carrier. This vehicle is an electric conversion of the diesel-powered production M113. The conversion was completed in the 1960's. The installation of the SwRI APU was an upgrade funded by the Defense Advanced Research Projects Agency (DARPA). The other two APUs are for hybrid electric High Mobility Multipurpose Wheeled Vehicle (HMMWV) projects.

1.1.1 Engine

At the start of the APU development project, only one APU was to be delivered. The APU was for a HMMWV being converted to a hybrid by Pentastar Electronics Corporation. Pentastar's APU requirement became the basis for the initial APU design. Later in the project the second APU request, again for a HMMWV, required changes in the mechanical design. Requirements for the third APU for the M113 troop carrier were much different from the HMMWV, requiring a different engine/generator layout and APU controller hardware and software.

All three APUs used the Volkswagen 1.9L, direct injected, turbocharged, intercooled, four-cylinder engine. This is a modern-design diesel engine selected for its high efficiency, good power-to-weight ratio, quiet operation, and ability to maintain power with altitude. The engine also produces low emissions, although this was not a requirement for the current application. The engine was modified with a dry sump lubrication system, which allowed it to be mounted in the vehicle on its side. The lower height permitted the APU to be located between the battery pack and the hood of the HMMWV. The dry sump system also insured proper engine lubrication over the vehicle's extreme grade and slope operating range.

1.1.2 Generator

All three APUs used a Unique Mobility SR218H Brushless DC motor, normally used as a vehicle drive motor. For this application, the motor was operated in the regenerative braking mode. The motor controller effectively served as a boost rectifier to elevate the generator's output voltage to deliver the requested power to the vehicle bus. The generator also served as the engine starter under the SwRI APU controller. The APUs did not require the stock 12-volt starter motor, which resulted in a weight and space claim reduction.

1.1.3 Controller

The controller for the APUs is based on a personal computer (PC) CPU. Basing the controller on the PC allowed flexibility in meeting the requirements of the different vehicles. For example, the M113 controller used discrete digital and analog lines for communication with the M113 vehicle controller. The HMMWV APU employed RS232 serial data link to communicate a list of commands and status information. Different software environments were also required to meet the vehicle's communication requirements.

Given a power request from the vehicle controller, the APU controller set the engine speed for optimum thermal efficiency. The generator power electronics adjusted the voltage and current output from the generator to deliver the developed power to the vehicle's electrical bus.

2.0 TECHNICAL DISCUSSION

2.1 APU Design and Development

The developmental process of the APUs consisted of the following components: design discussions with Pentastar and McKee about fitting the APU into the hybrid HMMWV; converting the engine to the dry sump lubrication system; mating the engine to the generator; providing mounting points for the engine and generator assembly; providing adequate heat exchangers to cool the engine and

generator; designing and constructing the APU controller hardware; adapting existing SwRI software code for the APU controller; and testing of the APU in the laboratory. The details of the APU development are described in this section. Figure 1 and 2 show the HMMWV APU and the M113 APU, respectively. The engine was mounted in the normal orientation for the M113 application.

2.1.1 Engine Selection

The APU specifications, as given by Pentastar, provided the criteria for the engine selection. The requirement for diesel or JP-8 operation (55 kW electrical output, high power density, quiet and efficient operation) led to the selection of a turbo-charged, direct injected, water cooled diesel engine. Other prime mover types such as diesel rotary engines (RPI), fuel cells or gas turbines (Alturdyne) were not available as off-the-shelf items. Development of these different prime mover types was beyond the scope of this project.

Power Systems Research (PSR) conducted a survey of their database of available engines (provided in the appendix). The survey did not include the new Volkswagen turbo-charged, intercooled, 1.9L engine, which was not available at the time of the survey. The Volkswagen engine had the lightest weight of any engine in the upper-60 kilowatts of power output. Also, the double fuel injection scheme reduced the noise and improved the efficiency. The engine specifications are given in the appendix.

2.1.2 Generator Selection

The following manufacturers of permanent magnet motors and generators were contacted with the request for a 55 kW continuous output generator: Onan, Kaman, Fisher Electric Motor, Unique Mobility (UQM), and Overland Technology. Onan and Kaman did not have a suitable unit. The Fisher design would have involved the development of a boost rectifier. SuperPower was contacted for an estimate to develop the boost rectifier. The total Fisher/Kaman system was heavier and more costly than the UQM system (an off-the-shelf item) with some modifications. The UQM system could also serve as the engine starter. A design from Overland Technology, which consisted of an

Figure 2. M113 APU

eight-disk generator, (the output from each disc would be switched between parallel and series in order to stepwise vary the output voltage as required) was also considered. However, it would have been necessary to develop the controller for switching the windings. The UQM Model 218H was selected because it did not require a development effort for the power controller.

2.1.3 Generator to Engine Coupling

The generator-to-engine coupling design and fabrication was tasked to McKee Engineering. Discussions with Pentastar and McKee concluded that the adapter plate at the engine generator interface would also serve as the rear mounting points for the APU. Since the Pentastar HMMWV was located at the McKee facility, the design of the APU mounting was conducted there.

The original coupling supplied by McKee utilized a hard nylon disc as the coupling material. The coupling was a KTR-BoWex model FLE-48-T. During APU testing, a torsional resonance was discovered at 2200 RPM. This resonance fatally overloaded the nylon sline teeth of the coupling. Figure 3 is a photograph of the fractured nylon slines after an hour of operation. McKee redesigned the coupling by replacing the nylon disc with an all-steel disc. SwRI performed a torsional analysis of the new design that predicted the second order critical speed to be 4200 rpm, which was below the 4000 rpm maximum operating speed of the engine. During testing, torsional vibrations were apparent at 1400 rpm and 2100 rpm, which corresponded to the fourth and sixth order excitations of the coupling system. However, it was decided that the vibrations were not severe enough to prohibit further debugging of the APU controller. Debugging of the APU controller continued with the hard steel disc, avoiding the resonant conditions, while SwRI redesigned the coupling.

The final coupling was a KTR BoWex design (model 48 HE with a Shore 50 elastomer) utilizing a compliant elastomer. The coupling is shown in Figure 4. McKee originally considered using this coupling with the stiffer Shore 60 elastomer, but discarded the design because KTR predicted a torsional vibration in the operating speed range. SwRI determined that by going to a more compliant elastomer and raising the idle setpoint to 1000 rpm, the resonance would drop below the operation range of the engine.

Figure 3. Fractured nylon slines after an hour of operation.

Figure 4. Final Engine-to-Generator Coupling

2.1.4 Engine Dry Sump Lubrication System

During the initial design discussions with Pentastar and McKee it was decided to lay the engine on its side, which involved lowering the height of the APU, allowing it to be mounted in the space available in the HMMWV. Because the oil sump was no longer located at the lowest point, a dry sump lubrication system was required. This change produced the following advantages: an increase in the oil capacity of the engine; reduced engine friction losses; and the ability of the engine to meet the wide range of operating angles of the HMMWV.

Using the assembled engine generator with cardboard mockups of the UQM drive motors, and later the Kaman drive motor in the case of the CTC APU, McKee determined that the best location for the scavenge pumps, which are belt driven, to be the front of the engine. The system is shown in Figure 5. A toothed belt drives two Bertel pumps on the front of the engine. These pumps draw oil from the lowest points on the engine and return it to an external reservoir. An oil-air separator is located at the inlet of the reservoir, and the air is directed to the vent system. The stock engine oil pump draws oil from this reservoir and pressurizes the oil galleries in the normal manner.

Figure 5. Dry Sump Lubrication System

2.1.5 Engine and Generator Cooling

Three heat exchangers were required for the APU, with each mounted behind the other in front of the engine, as illustrated in Figure 6. The first heat exchanger (from the front) was for the electronics cooling loop. This was an aluminum radiator, the core dimensions being 3-1/2" thick x 13" high x 24" wide. The stock Volkswagen intercooler was mounted behind the electronics heat exchanger. Behind the intercooler, an aluminum core radiator was mounted which measured 3-1/2" thick x 15" high x 24" wide. A 50/50 water/antifreeze mixture was used in both liquid cooling loops. A pump in the electronics loop recirculated the coolant at 5 gallons per minute. A shroud was constructed around the three heat exchangers and the engine-driven cooling fan.

2.2 APU Control System Development

An APU control system was developed to provide control of the engine operating point. SwRI designed and constructed a PC-based APU control system to accomplish this function. The SwRI controller design was based on its Rapid Prototyping Electronic Control System (RPECS) platform. The RPECS is a highly flexible, PC-based prototyping tool used for real-time control in a variety of applications, such as engine and power-train control and test-cell control.

2.2.1 Control Functions

The SwRI APU controller was designed to provide numerous control functions as related to the APU components. Fundamentally, the APU controller provided control of the APU operating point through manipulation of the throttle and control of the generator output via the voltage boost unit. The APU controller was also responsible for the engine start and stop functions.

Figure 6. APU Test Setup

2.2.2 Controller Hardware Platform

As previously noted, the APU controller platform was based on an industrial PC. The controller utilized a commercially available 486, 66-Mhz CPU card, with a 1.44 Mb solid state RAM disk emulator as the primary memory device. The controller utilized commercially available data acquisition and control cards, as well as a commercial watchdog timer board for protection. The controller enclosure for the APU is shown in Figure 7. In order to provide the necessary signal conditioning and driver circuitry for interfacing with the APU hardware, a custom interface enclosure was designed and constructed by SwRI. Electrical power for the control system was provided via a converter that stepped the vehicle bus voltage down to 12 Vdc.

2.2.3 Control Software/Algorithm Descriptions

The APU control software was written in C language and executed in the MS DOS environment. The control software was written to utilize floating point arithmetic to allow modifications to be made to the algorithms with minimum development time. The 486 processor adequately executed all control equations in a time-based interrupt drier routine operating at 100 Hz. Because the system was built around the existing SwRI RPECS platform, built-in functions such as real-time plotting and data logging were easily integrated into the control system. The following is a detailed description of the APU control algorithms.

The APU controller's most fundamental function was to control the power output of the APU. APU power output was commanded from the vehicle controller.

Given the desired APU power output, the engine speed and throttle set point were computed via a programmable engine operation trajectory. The engine trajectory was calibrated to maximize the APU efficiency. Therefore, the engine operation trajectory programmed into the APU controller entailed transitioning the engine to the wide open rack point at the lowest engine speed and running at the maximum rack up to the maximum power point of the engine (4000 rpm).

Figure 7. APU Controller

Having computed the desired engine speed and throttle position, the APU controller first provided the necessary rpm signal to the engine ECU. In order to achieve the desired engine speed, the APU controller utilized information from an engine-speed sensor for the feedback control. In order to control engine speed, the APU controller modulated the load applied to the engine via the generator. The generator control was provided through the UQM inverter and its throttle signal. The APU control functions are shown in Figure 8.

In addition to the APU power output control function the controller also provided control of the engine start and stop functions. The engine start function was accomplished by using the generator as a motor.

In conjunction with the control functions and algorithms previously described, the APU controller was also designed with a limited set of diagnostics. Out-of-range diagnostics for each of the sensors used by the APU controller were implemented to detect and react to sensor failures. Furthermore, system level diagnostics and protection were built into the APU controller to detect and prevent APU operation that could damage the unit (engine protection). The diagnostic functions of the APU were designed to prevent operation that could cause permanent damage to the unit, and to provide valuable information for diagnosing problems.

2.3 APU Testing

Testing was performed at SwRI to verify the performance of the HMMWV APU prior to shipment. The M113 APU controller was tested with the HMMWV engine-generator since the M113 engine-generator was located at the McKee Engineering facility. The testing was broken down into two specific areas: stand alone testing of the APU controllers, and integrated testing of the APU controllers and the engine generator. The performance of the APU controllers was found to be satisfactory during all testing. Testing of the integrated APU package revealed problems with limited transient response of the APU and over-heating of the generator rotor with prolonged operation at full power. The following paragraphs detail the APU controller testing.

Figure 8. APU Control Functions

2.3.1 M113 APU Controller Stand Alone Testing

For the stand-alone testing, the APU controller was not interfaced with any other control systems or sensors that make up the APU system. Rather, the APU controller was isolated on the test bench with power supplied from a 12-VDC source and the first-stage, DC-to-DC converter bypassed. Signals from sources such as adjustable power supplies and function generators were used as input to the APU controller. Output signals were measured via oscilloscope and multi-meter instrumentation. The purpose of the APU controller stand-alone testing was to verify that all analog and digital signal I/O was functioning properly. This included all wiring and signal conditioning circuitry between the APU control computer (the appropriate analog to digital converter [ADC], digital to analog converter [DAC], digital input and digital output) and the interface connector on the exterior of the APU controller enclosure. A list of the APU controller I/O signals (by signal type) is shown in Table 1.

All controller I/O was tested on the bench environment and performed as expected. As a result of the bench testing, the controller was installed in the test laboratory for APU-integrated testing. The complete wiring diagram for the M113 and HMMWV APUs is given in the appendix.

Table 1. APU Controller Signal I/O				
Analog Input Signals				
ADC channel #:	Description:	From:		
0	APU Power Request	Vehicle Controller		
1	Coolant Temperature	APU Sensors		
2	Oil Temperature	APU Sensors		
3	Oil Pressure	APU Sensors		
4	Bus Voltage	UQM Control		
5	Generator Current	UQM Controller		
6	Engine Speed	APU Sensors		
7	Barometric Pressure	APU Sensors		

Table 1. APU Controller Signal I/O Analog Output Signals			
0	ECU Pedal Command	Engine Controller	
1	UQM Brake command	UQM Controller	
2	Coolant Temperature Signal	Vehicle Controller	
3	Engine Speed Signal	Vehicle Controller	
4	APU Power Output	Vehicle Controller	
5	UQM Accel Command	UQM Controller	
Digital Input Signals			
Dig In Bit #:	Description:	From:	
0	APU On/Off	Vehicle Controller	
1	UQM Over Temp	UQM Controller	
Digital Output Signals			
Dig Out Bit #:	Description:	То:	
0	Engine On/Off	Vehicle Controller	
1	APU Fault	Vehicle Controller	
2	UQM Enable	UQM Controller	
3	UQM Direction	UQM Controller	
4	Idle Validation	Engine Controller	
5	UQM Over Temp	Vehicle Controller	
6	ECU On/Off	APU Power Relay	

2.3.2 CTC Engine-Generator/M113 APU Controller Integrated Testing

The CTC engine-generator was mounted to a wooden pallet using three jackstands at the mounting points provided by the McKee interface plate between the engine and generator and a bracket on the front of the engine. The stock VW intake air filter assembly, which also houses the mass air flow sensor, was used.

2.3.2.1 Heat Exchangers

Volumetric air flow through the heat exchanger was determined using a hand-held anemometer to measure the air velocity at six points at the face of the heat exchanger pack. The six velocity measurements were averaged, and the heat exchanger core area was used to calculate the volumetric air flow. Using ambient temperature and pressure, the mass air flow was also calculated.

As shown in Figure 6, a centrifugal pump powered by the 120 VAC mains was used to circulate the coolant through the Unique Mobility inverter and the generator. The pump output was measured to be five gallons per minute by disconnecting the discharge line from the generator and timing the filling of a one-gallon container. The capacity of the electronics cooling loop was 4.2 gallons of water/anti-freeze mixture. The coolant was routed from the heat exchanger to the pump inlet, to the inverter then the generator, and returned to the heat exchanger. The heat exchanger header space served as the reservoir. Thermocouples were installed at the coolant flow into the inverter, and at the coolant discharge at the generator.

2.3.2.2 Power Absorption

The electrical output of the inverter was connected to a switchable resistive load bank and to the battery pack through a manual breaker. The battery pack consisted of twenty-four 12-volt, group-31 modules of lead acid batteries. Overall, battery pack and power cable DC impedance was determined to be 0.9 ohms using the Thevenin equivalent method.

2.3.2.3 Fuel Supply

The engine was operated on a low-sulfur, number 2 diesel fuel. The fuel was assigned the number AL-24507F at the TACOM Fuel and Lubricants Research Facility where the gross heat of combustion was determined to be 19,571 BTU/lb, and the net heat of combustion was found to be 18,377 BTU/lb. Fuel flow rate to the engine was measured gravimetrically using a one-gallon container on an electronic digital scale, and timed using a stopwatch.

2.3.2.4 Power Measurement

Direct current electric power output from the inverter was calculated from averaged current and voltage measurements. The current was measured using a DC clamp-on-type current probe. The voltage was measured with a digital voltmeter. Prior to these measurements the inverter output was examined using an oscilloscope and found to be free of any large voltage variations. There were voltage noise spikes of 30 volts and a few microsecond duration superimposed on the nominal 280 volt base DC voltage, which occurred at the inverter frequency of approximately 20 khz. The absence of periodic voltage variations of significant duration permitted accurate power measurements using the average values of voltage and current.

2.3.2.5 Vehicle Control

Since a vehicle controller was not part of the test setup, a potentiometer was installed to provide a 0-to-5v analog signal input to simulate the APU power request signal from the vehicle controller. Similarly, a toggle switch was also installed to simulate the APU on/off signal from the vehicle controller. The APU system was tested over a variety of operating conditions with various electrical load settings on the load bank. Details of the final testing are contained in the following paragraphs.

2.3.2.6 HMMWV Controller/M113 APU Start/Stop Testing

The APUs ability to respond to a normal start/stop command, as well as a mission disabling failure condition was tested. In order to test the normal start/stop sequencing, the APU on/off switch was toggled on, allowing the APU to start. Then, the switch was toggled off, stopping the APU. Similarly, a loss of the APU start/stop signal was simulated by disconnecting the APU on/off switch input to the APU controller. The APU, as expected, shut down immediately during this simulated failure. The system was also tested for an open circuited APU power request signal. Removing the APU power request signal connection to the APU controller simulated the failure. As expected, the APU changed from its initial operating condition to an idle condition. Multiple conditions were designed to shut down the APU to prevent damage. These engine protection faults included oil

pressure low/high, oil temperature high, coolant temperature high, and APU overspeed. APU controller response to these fault conditions were also tested during the course of the APU development effort.

2.3.2.7 HMMWV Controller/M113 APU Steady-State Testing

APU steady-state performance tests were designed to verify acceptable system performance at various power levels. Acceptable system performance was defined as stable operation at the desired power level, resulting in no-fault conditions. During the test, data was collected at discrete APU output power steps of 10, 25, 35, 45 and 55 kW. A tabulation of the data and calculated results is provided in the appendix. Figure 9 is plot of the APU efficiency versus the electrical power out. Efficiency was calculated as the electrical power out over the fuel energy in (lower or net heating value). The peak efficiency of 33.2 percent was observed at 25 kW, dropping to 30.7 percent at 55 kW. Figure 10 shows the efficiency of the generator/inverter only (based on the heat rejection to the coolant) versus the electrical power out.

APU performance was found to be acceptable at all operating conditions except 55 kW. After prolonged operation (greater than five minutes) at the 55kW point, the Unique Mobility controller set a fault indicating excessively high rotor temperatures on the UQM generator. Under the fault condition, the APU power output was reduced and the APU control system transitioned into an overspeed protection mode, which dithered the ECU pedal command in order to prevent engine overspeed. This condition remained until the rotor temperatures decreased below the fault threshold, where normal operation was again restored.

Figure 9 APU Efficiency vs. Electrical Power Out

Figure 10. Generator Efficiency vs. Electrical Power Out

2.3.2.8 HMMWV Controller/M113 APU Transient Testing

APU performance data was gathered during power command transient conditions. The following data are shown for four different transient conditions:

- 1. Power ramp up/ramp down from 0 kW to 55 kW to 0 kW over 60 seconds (Figures 11a and 11b)
- Power command step response from 0 kW to 30 kW to 0 kW over 30 seconds (Figures 12a and 12b)
- 3. Power command step response from 27.5 kW to 55 kW to 27.5 kW over 30 seconds (Figures 13a and 13b)
- 4. Power command step response from 0 kW to 55 kW to 0 kW over 30 seconds (Figures 14a and 14b)

The "a" figures show the desired and measured APU power output and the DC bus voltage. The "b" figures show the desired and measured engine speed, and the UQM brake command signal. It should be noted that the desired APU power (labeled PwrCmd in the legend) is the command signal after passing through the software rate limiter. Thus, even in a step response scenario, the maximum rate of change of this signal is 6 kW/sec. As shown in the figures, adequate APU control performance was obtained. Small overshoots in measured power of brief time duration (five seconds or less) were observed during the step response tests. The responses were found to be adequately dampened on achieving the desired output power level. As a result of the transient testing, it was determined that the power command rate limiter within the APU controller must be set at 6 kW/sec in order to achieve the responses shown in the figures. Rate limit values of more than 6 kW/sec produced uncontrollable results on the 0-to-55 kW step response. Analysis of the results showed that the UQM brake command signal from the APU controller (to the UQM controller) was reaching its upper limit of 4.5V. This indicated that the UQM controller was applying the maximum torque to the engine via the generator. Subsequent tests revealed that by lowering the APU power command rate limiter to 6 kW/sec, adequate control could be maintained without saturation of the brake command signal.

Figure 11a. Power Ramp Up/Down (Power and Bus Voltage)

Figure 11b. Power Ramp Up/Down (Engine Speed & U.M. Brake Command)

Figure 12a. APU Power Transient Response (Power and Bus Voltage)

Figure 12b. APU Power Transient Response (Engine Speed & U.M. Brake Command)

Figure 13 a. APU Power Transient Response (Power and Bus Voltage)

Figure 13b. APU Power Transient Response (Engine Speed and U.M. Brake Command)

Figure 14a. APU Power Transient Response (Power and Bus Voltage)

Figure 14b. APU Power Transient Response (Engine Speed and U.M. Brake Command)

2.3.3 Testing of the HMMWV Engine Generator/HMMWV APU Controller

Performance tests on the APU were conducted at SwRI prior to shipment. Testing was broken into two phases: 1) verifying proper functionality of the individual hardware components, and 2) verifying the integrated controller/engine/generator package. The performance of the APU controller was found to be satisfactory during all phases of testing.

2.3.3.1 Stand-Alone HMMWV Controller Testing

Stand-alone testing was conducted to verify proper functionality of the PC hardware, analog and digital I/O circuitry, and serial interface. I/O circuitry includes all wiring and signal conditioning circuits between the APU computer and the interface connector on the exterior of the APU controller enclosure. The APU controller was not interfaced with any of the other controller systems or sensors that make up the APU package during this testing. Instead, the APU controller was isolated on a test bench and powered by a 12-volt DC source. The first stage of the DC-to-DC converter was also bypassed. A mock-up KEC Battery Regulator-to-APU Controller link was established via a laptop computer and a standard RS-232 serial interface. The mock-up provided a means of verifying message parsing correctness and controller logic.

Signals from adjustable power supplies and function generators were used as APU controller inputs. APU controller outputs were measured with an oscilloscope and multi-meter. All I/O was tested on the bench and performed as designed. The mock-up serial tests were conducted by simulating link between the battery regulator and the SwRI APU controller. A list of the APU controller I/O signals by signal type is provided in Table 2.

TABLE 2. APU Controller I/O Signals				
Signal Type	Channel	Description	From/To	
Analog Input	0.00	Engine Coolant Temperature	APU Sensor	
	1	Engine Oil Temperature	APU Sensor	
	2	Engine Oil Pressure	APU Sensor	
	3	Bus Voltage	UQM Controller	
	4	Generator Current	UQM Controller	
	5	Engine Speed	APU Sensor	
	6	Barometric Pressure	APU Sensor	
Analog Output	0.00	ECU Pedal Command	Engine Controller	
	1	UQM Brake Command	UQM Controller	
Digital In Bit	0.00	APU Silent Override	Vehicle Controller	
	1	UQM Over Temperature	UQM Controller	
	2	APU Kick Down Power Override	Vehicle Controller	
Digital Out Bit	2	UQM Enable	UQM Controller	
	3	UQM Direction	UQM Controller	
	4	Idle Validation	Engine Controller	
	6	ECU On/Off	APU Power Relay	
PWM Output	2	UQM Accelerator Command	UQM Controller	

A program was written in QBasic for the mock-up serial link tests. The QBasic program utilized a 13-byte message and the protocol specification listed in Table 3. The first two bytes (not listed in Table 3) functioned as sync bytes to notify the APU controller that the succeeding 11 bytes comprised a message following the format listed in Table 3. A value of 77 hex was given to the two sync bytes for this version of the program and will be updated to a new value in each subsequent version of the APU controller software. The APU power request is a 16-bit word and was therefore broken into two bytes, the first byte indicating the most significant byte. The checksum, byte 9, was calculated as an 8-bit unsigned summation of bytes 0 to 8, and overflow was ignored.

TABLE 3. SERIAL LINK PROTOCOL SPECIFICATION					
BYTE	DESCRIPTION	DESCRIPTION MESSAGE SIZE		LIMIT/RANGE	
0.00	Message Header	1 Byte	-	01 hex	
1	Sequence Number	1 Byte	-	0 - 255	
2, 3	APU Power Request: Broken into 2 bytes; most significant byte in byte #2	2 Bytes	10 Watts	0 - 120 kW	
4	APU Enable: Bit 0 Enables if True. Bits 1-7 are Spares.	1 Byte	-	Off (False) = 0 On (True) = 1	
5, 6, 7, 8	Spare	1 Byte	-	0.00	
9	Checksum	1 Byte	-	0 - 255	
10	End of Message	1 Byte	-	03 hex	

The QBasic program was installed on the laptop and simulated requests to enable the APU and power requests. The power requests were incrementally increased/decreased and observed to change as requested. All other bytes were visually monitored at each end of the serial link on either the laptop or a monitor coupled to the APU controller and were correct. Serial link outputs from the APU controller were analyzed with another program and computer that displayed the entire message output from the APU controller. The message structure, message values, and sequence of the messages were correct. As a result of the successful bench tests, the SwRI APU controller was installed in the test laboratory and electronically integrated into the engine/generator package. The KEC Battery Regulator simulation program and laptop were also coupled to the APU. The return messages from the APU controller were not displayed.

2.3.3.2 HMMWV APU Start/Stop Testing

The APUs ability to respond to commands via the mock-up KEC Battery Regulator-to-APU Controller link, as well as mission disabling conditions, was tested. The engine started appropriately and quickly when the Enable APU byte of the simulator program was changed from 0 to 1 (byte #4) via the laptop keyboard. The engine stopped when instructed to do so when the Enable APU byte

was changed from 1 to 0. Also, the engine stopped when the silent mode override was true (5 volts) even though the APU was receiving Enable APU and power requests via the serial link.

Simply disconnecting the RS-232 cable between the APU controller and the laptop computer simulated loss of communication between the KEC Battery Regulator-to-APU Controller mock-up. If communication was not re-established after one second, a serial link fault was set and the engine shut down. Other fault conditions, called engine protect faults, can also shut down the engine to prevent damage. The engine protect faults included oil pressure high/low, oil temperature high, engine coolant temperature high, and engine overspeed. APU controller response to these fault conditions was also tested during the APU development effort.

2.4 APU Testing Conclusions

Based on these results, it was concluded that the APU and the APU controllers were functioning as intended with the exception of the limited operating time at full power. The manufacturer of the generator proposed that software changes to the inverter could be made to remedy this problem and that the testing of these changes will be made at their test facility.

3.0 SUMMARY

Three different configurations of a state-of-the-art APU for hybrid electric vehicles were developed. The APU utilized the following: the Volkswagen 1.9 l, direct injected, turbo-charged, intercooled, electronically controlled, injected diesel engine; the UQM model 218H drive motor as a generator; and an APU controller developed at SwRI. The APU develops 55 kW of DC output at 30.7 percent between 130 and 380 volts for charging the vehicle power pack. The peak efficiency of 33.2 percent (occurring at 25kW) is believed to be unprecedented.

A prototype APU control system was developed by SwRI for the control of the APU power output. The prototype controller was designed around a personal computer platform for maximum flexibility in control algorithm development, control system calibration, and sensor and actuator flexibility.

APPENDIX A
Power System Research Engine Survey

Request: SWEST Diesel Specs 56 to 70 kW

Page 1

Headeric and Action Series No. 17 1 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	DEUTZ	F41.912	1000	Thorac and	\$ -		8 :	5		Bore	Stroke	Displace	Weight
## STATE Face of the control of th	GWAPO	PACONIN	8 8	0.00		Z (z	>	٥	5	52	3.77	320
State	CWARD	HK48ZHI	0.08	67.0	-	۰	z	>	_	83	8	2.30	ğ
CHANAPRONIZO	RE	4239D	78.0	58.0		z	z	>	٥	90	110	380	1 82
S COMMARRON 200 880 W N N N N V D 103 109 109 109 109 109 109 109 109 109 109	7	F4L913	87.0	65.0	<	z	z	>	۵	102	52	8	3
Colored State	MO	CIMMARRON 220	98.0	98	-	z	z	>	٥	5	Ş	4	
S XOOP XOOP	0	503	0.08	67.0	}	z	z	>	۵	101	8	3	8 5
ΛΩΣΕ 800 W T N V I 94 65 2.46 ΛΩΣΕ ΛΩΣΕ 950 W T N N I 94 65 2.46 NUDITE 900 670 W T A C I 94 65 2.46 ALIL 3451 950 670 W T A C I 96 116 2.46 ALIL 3451 950 670 W N N C I 96 116 2.46 ALIL 3453 920 670 W N N V D 100 116 116 2.16 ALIL 3450 600 670 W N N V D 100 116 2.16 ALIL 3450 600 670 W N N V D 100 116 137	CINS	6305	92.0	0.69	>	z	z	>	۵	9	127	8	•
NOTE 1700		XD2S	80.0	90.0	3	-	z	>	_	35	£	3 5	> 6
Sulviving Sulv		XD3P	75.0	98.0	≥	z	z	>	_	3	8 8	3 6	? {
Sulvations 800 970 A N N N V D 100 100 110 130 140 150 151 151 151 151 151 151 151 151 15	یر	XUDTIE	91.0	0.88	>	-	•	U	_	S S	3 8	, ,	3 5
TALMIN	TO	SUN4105	0.08	67.0	∢	z	z	> >		3 \$	8 ‡	7.7	8
WOMPH WOMPH WEST WOMPH WEST WOMPH WEST WOMPH WOMPH WEST WOMPH WEST WOMPH WEST WOMPH WEST		1.7L4ITI	0.08	67.0	3	-	<	· u		3 8	2 6	0.30	§ '
The color	~	WD611	85.0	63.0	≯	z	z	>		3 5	3 5	- G) e
CO3	RAZIL	3-53	92.0	69.0	3	z	z	>	م د	3 3	2 7	5 6	8
See No.	•	800	80.0	67.0	>	z	z	>		5 5	2 5	0, 0	•
Marie Mari	EDES BNZ	OM364	0.08	67.0	3	z	z	>		3	3 5	5 6	ָר כּי
STATE DOZDA-4 150 580 W N N V D 102 102 103 250 4236 4236 800 W N N N V D 101 102 103 350 4236 6837 920 960 W N N N D 101 117 407 389 4236 800 960 W N N N D 104 118 588 140 988 140 988 140 988 140 988 140 980 140 <td>MOTORES</td> <td>4.07</td> <td>85.0</td> <td>63.0</td> <td>3</td> <td>z</td> <td>z</td> <td>. 0</td> <td>ء د</td> <td>8 8</td> <td>3 \$</td> <td>/A: C</td> <td>3 1</td>	MOTORES	4.07	85.0	63.0	3	z	z	. 0	ء د	8 8	3 \$	/A: C	3 1
\$ 4286 800 800 W N N V D D B B 177 388 4286 4288 800 800 W N N N V D D 101 127 388 4286 4288 800 800 W N N N V D D 104 118 5.85 4286 800 800 W N N N V D D 104 127 3.88 4401 800 800 W N N N V D D 102 140 3.89 FALST 800 800 W N N N V D D 102 140 3.89 FALST 800 800 W N N N V D 102 140 3.89 FALST 800 800 W N N N V D 102 140 3.89 FALST 800 800 W T N N V D 102 140 3.89 FALST 800 800 W T N N V D 102 140 3.89 A11D 800 800 W T N N V D 102 140 3.89 A11D 800 800 W T N N V D 102 140 3.89 A11D 800 800 W T N N V D 102 140 3.89 A11D 800 800 W T N N V D 109 140 120 3.89 A11D 800 800 W T N N V D 108 120 3.89 A11D 800 800 W T N N V D 108 120 3.89 A11D 800 800 W T N N V D 108 120 3.89 A11D 800 800 W T N N N V D 108 120 3.89 A11D 800 800 W T N N N V D 108 120 3.89 A11D 800 800 W T N N N N N N N N N N N N N N N N N N	MOTORES	D229-4	75.0	26.0	*	z	: z) >	ء د	3 \$	3 5	8 8	282
4246 810 800 W N N V D 101 177 407 SEST 820 850 W N N N V D 104 118 583 4236 800 800 W N N N V D 104 118 583 HANDIESEL 4135 800 800 W N N N V D 106 117 407 T12 830 800 800 W N N N V D 107 100 130 357 HANDIESEL 4135 800 800 W N N N V D 107 102 100 357 HANDIESEL 4135 800 800 W N N N V D 107 102 100 359 HANDIESEL 4135 800 800 W N N N V D 107 102 130 359 HANDIESEL 4135 800 800 W N N N V D 107 102 130 359 HANDIESEL 4135 800 800 W N N N V D 107 108 120 330 A1102 800 800 W N N N V D 108 120 330 A1102 800 800 W N N N N V D 108 120 330 A1103 800 800 W N N N N V D 108 120 330 A1104 800 800 W N N N N V D 108 108 120 330 A1105 800 800 W N N N N V D 108 108 120 330 A1107 800 800 W N N N N V D 108 108 110 324 A038D 800 800 W N N N N V D 108 108 110 324 A038D 800 800 W N N N N N N N N N N N N N N N N N N	NS	4236	80.0	90.0	*	z	z	>		3 8	5 5	28.0	£ 3
FALSTS SECTION	NS	4248	81.0	90.0	>	z	z	>		5	į į	8 5	3 5
### ### ### ### ### ### ### ### ### ##	NS	6357	92.0	0.69	>	z	z	>		\$ \$	2 7) u) °
F44812 780 580 A N N V D 100 120 550 HADESEL 4135 800 800 W N N V D 105 120 3.77 HAA 65110 860 860 W N N V D 102 110 3.59 RRVO 701T 860 860 W N N V D 102 110 150 8.55 RNO 701T N V D 102 10 150 4.16 150 4.16 150 150 4.16 150 <td>0</td> <td>4236</td> <td>80.0</td> <td>60.0</td> <td>></td> <td>z</td> <td>z</td> <td>></td> <td></td> <td>3 8</td> <td>,</td> <td>9 6</td> <td>2</td>	0	4236	80.0	60.0	>	z	z	>		3 8	,	9 6	2
MATERIA 1435 800 800 W N N N N N N N N N	g	F4L912	79.0	59.0	<	z	z	>		ξ	3 5	4 8	5 '
712 83.0 82.0 W N N V D 107 109 3.59 RNO 1001T 880 86.0 W N T N V D 105 110 3.59 RNO 7701T 76.0 57.0 W T N V D 105 120 4.16 RNO 8401 80.0 80.0 W T N N V D 105 120 4.16 RNO 8401 80.0 80.0 W T N N V D 105 120 4.56 A411D 80.0 80.0 W T N N V D 106 120 3.30 3200S 81.0 80.0 W T N N V D 108 120 3.30 A415D 83.0 82.0 W N N N V D 108 120 3.30 DJS 88.0 80.0 80.0 W T N N V D 108 120 3.30 DJS XUDITA 86.0 84.0 W N N V D 1 86 92 2.45 XUDITE 80.0 87.0 W T N N C I 86 92 2.08 XUDITE 80.0 87.0 W T N N C I 86 92 82 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 82 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 82 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 82 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 82 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 88 1.77 XUDITE 80.0 87.0 W T N N C I 86 92 88 1.77	SHAI DIESEL	4135	90.0	0.08	*	z	z	>		135	3 5	5	,
He desited		712	63.0	62.0	3	z	z	>	۵ ۵	3 5	£ 5	30.0	9871
RNO	RAHA	6S110	89.0	96.0	>	z	z	>	-	110	į	, a	010
RNO 7701T 760 57.0 W T N V D 102 120 352 120 1	BRNO	1001T	89.0	66.0	}	۲	z	>	۵.	5 5	\$ \$	8 4	ָר בּי
RNO 8401 80.0 60.0 W N V D 110 120 456 311DS 76.0 80.0 80.0 80.0 N N V D 100 120 456 320DS 76.0 87.0 W T N V D 100 120 3.77 411D 820DS 81.0 80.0 W T N V D 108 120 4.39 3029T 83.0 82.0 W T N V D 108 120 4.39 3029T 80.0 80.0 W T N V D 108 120 4.39 A039D 80.0 80.0 W N N V D 106 110 2.34 XUD14 78.0 84.0 W N N N N N N N N N N <td>BRNO</td> <td>77017</td> <td>76.0</td> <td>92.0</td> <td>}</td> <td>-</td> <td>z</td> <td>></td> <td>۵</td> <td>Ē</td> <td>Ş</td> <td>2 8</td> <td>624</td>	BRNO	77017	76.0	92.0	}	-	z	>	۵	Ē	Ş	2 8	624
F41812 80.0 80.0 N N V D 100 120 3.77 31DS 76.0 57.0 W T N V D 108 120 3.77 41D 820CS 81.0 60.0 W T N V D 108 120 3.30 3028T 80.0 62.0 W T N V D 108 120 3.30 DJS 80.0 60.0 W T N V D 106 110 2.84 DJS 86.0 64.0 W N N V D 106 110 2.84 XUD11A 78.0 55.0 W N N V I 94 90 2.49 XUD11A 78.0 56.0 W T N V I 86 92 2.09 XUD11AT 86.0 64.0 <t< td=""><td>BRNO</td><td>8401</td><td>80.0</td><td>90.0</td><td>\$</td><td>z</td><td>z</td><td>></td><td></td><td>110</td><td>3 5</td><td>2.92</td><td>2 0</td></t<>	BRNO	8401	80.0	90.0	\$	z	z	>		110	3 5	2.92	2 0
311DS 78.0 57.0 W T N V D 108 120 3.30 320DS 81.0 80.0 W T N V D 108 120 3.30 411D 83.0 82.0 W N N V D 108 120 3.30 3028T 80.0 80.0 W N N V D 108 110 2.94 4039D 80.0 80.0 W N N V D 106 110 2.94 XUD11AT 86.0 57.0 W N N C I 86 92 2.14 XUD7T 80.0 87.0 W T N C I 86 92 2.14 XUD7T 80.0 87.0 W T N C I 86 92 2.14 XUD7T 80.0 87.0 W T N C I 86 92 2.08		F4L912	80.0	008	<	z	z	>	٥	Ē	ţ	3 4	2
3200S 81.0 60.0 W T N V D 108 120 3.30 411D 83.0 62.0 W T N V D 108 120 3.30 3029T 80.0 60.0 W T N V D 108 120 2.94 4039D 80.0 60.0 W N N V D 106 110 2.94 XU39D 86.0 64.0 W N N V D 106 110 3.92 XU35P 76.0 57.0 W N N V D 106 110 3.92 XUD11AT 86.0 64.0 W N N C I 86 92 2.14 XUD11AT 86.0 64.0 W T N C I 86 92 2.09 XUD7T 80.0 67.0 W T N C I 86 92 2.09 XUD7T 80.0 67.0 W T N C I 86 88 1.77	H.	311DS	76.0	57.0	3	-	z	>	٥	108	5 5	; ; ;	OSC C
411D 83.0 62.0 W N N V D 108 120 4.39 3029T 80.0 80.0 W T N V D 106 110 2.94 4039D 80.0 60.0 W T N V D 106 110 2.94 DJS 86.0 64.0 W N N V I 92 92 2.45 XUD14 76.0 57.0 W N N V I 94 90 2.46 XUD14 76.0 59.0 W N N V I 86 92 2.14 XUD14 86.0 64.0 W N N C I 86 92 2.04 XUD14 76.0 64.0 W N T N C I 86 92 2.04 XUD14 80.0 67.0 W T N C I 80 88 I.77 <td>-</td> <td>320DS</td> <td>81.0</td> <td>90.0</td> <td>></td> <td>-</td> <td>z</td> <td>></td> <td>0</td> <td>108</td> <td>\$</td> <td>5</td> <td>98</td>	-	320DS	81.0	90.0	>	-	z	>	0	108	\$	5	98
3029T 80.0 60.0 W T N V D 106 110 2.94 4039D 80.0 60.0 W N N V D 106 110 2.94 DJS XD3P XD3P XD5 XD5 XD5 XD5 XD7 XUD11A XUD11A XUD7 X	F	4110	83.0	62.0	*	z	z	>	۵	108	<u> </u>	95.7	202
4039D 80.0 60.0 W N N V D 106 110 3.92 DJS 86.0 64.0 W N N C I 92 2.45 XD34 78.0 57.0 W N N V I 94 90 2.49 XUD11A 79.0 59.0 W N N C I 86 92 2.14 XUD71 78.0 54.0 W T N C I 80 88 1.77 XUD7TE 80.0 67.0 W T A C I 80 88 1.77		3029T	80.0	0.08	3	-	z	>		5	5 5	300	3
86.0 64.0 W N N C I 92 92 2.45 76.0 57.0 W N N C I 94 90 2.46 77.0 59.0 W N N C I 86 92 2.14 78.0 58.0 W T N C I 80 88 1.77 90.0 67.0 W T A C I 80 88 1.77		4039D	80.0	0.09	3	z	z	>		<u> </u>	:		9
78.0 57.0 W N N V I 94 90 2.49 T9.0 59.0 W N N C I 85 92 2.14 78.0 58.0 W T N C I 80 88 1.77 90.0 67.0 W T A C I 80 88 1.77		DJS	86.0	94.0	3	z	2	· ()	- ۱	3 8	2 8	3.82	4
79.0 59.0 W N N C I 86 92 2.14 78.0 58.0 W T N C I 80 88 1.77 90.0 67.0 W T A C I 80 88 1.77		ХДЗР	76.0	57.0	3	z	. 2	>		* *	7 6	Q :	//-
1.T 86.0 64.0 W T N C I 85 92 2.08 78.0 58.0 W T N C I 80 88 1.77 90.0 67.0 W T A C I 80 88 1.77		XUD11A	79.0	0 65	: ≥	: 2	: 2	٠ (Z :	3 8 8	2.48	203
78.0 58.0 W T N C I 80 88 1.77 90.0 67.0 W T A C I 80 88 1.77		XUD11AT	980	640	: }	: +	. 2) (8 9	8	2.14	156
90.0 67.0 W T A C 1 80 88 1.77		T COLX	2 2 2	9 6	: 3	- 1	z :	ر د	_	82	8	2.09	167
77.1 88 88 1 77 A I W 0.70 0.00		XIIDX	0.00	8 8	≱ }	- •	z ·	U ·	_	8	88	1.77	150
			0.08	0.78	3	-	<	ပ	_	8	æ	1,1	460

11:26 am

04/21/95

Manufacturer	Mfr Model	TH HP	Kw Rating	000	ASD	1000	E				i	
RENAULT	F8Q706T	94.0	70.0	3	-	<	0	_	8	3000	Olspiace 1 87	Weight
RENAULT	88	85.0	83.0	3	z	z	· U	_		2 <	79.	8 9
RENAULT	J8S814	88.0	98.0	3	-	<	· u		9	> g	81.2	9
CASE	483.9	76.0	57.0	_	z	: 2) :	_ 4	8 ;	3	2.07	170
DEUTZ	BF4M1012	0.88	629	3		: :	> :	י ב	201	8	3.82	**
DEUTZ	F4L912	C C		: «		2 :	> :	، د	ğ	115	3.19	98 8
DEUTZ	F41.912F	2 2	3 8	٠ -	z	2 :	> ;	۰	9	\$	3.77	320
DEUTZ	F41913	1 1	2. 9	< 4	z :	z:	>	٥	102	125	4.09	307
Delita	EE10434/	0.70	20.0	< .	Z	z	>	۵	102	52	€.00	307
בינונו בינונו	VAZ I BUTE L	0.87	8	<	z	z	>	_	5	52	4.71	380
	WZ1670A	26	20.0	<	z	z	>	_	100	52	5.65	410
DECIZ-MANM	02284	82.0	010	>	z	z	>	٥	105	120	4 16	240
DEUTZ-MWM	D2268-3	74.0	55.0	3	z	z	>	۵	507	ţ	3 63	3
DEUTZ-MWM	TD226B-3	88.0	98	3	-	z	>	٥	Ę	2 5	21.0) i
DMS MOTOREN	3VD14.5 SRW	84.0	83.0	3	z	z	>		3 \$	3 5	3.12	3
DMS MOTOREN	4VD SRL	91.0	089	<	z	z	> >	۵ د	8 8	£ ;	4.92	830
HATZ	4LM40	80.0	0.00	<	z	z	> >		8 5	<u> </u>	8	8
MERCEDES BNZ	OM364	0.08	67.0	3	2	: 2	> >	ם כ	201	8	3.43	8
MERCEDES BNZ	OM601D2.3	78.0	580	*	z	: 2	٠ (. د	38 8	<u> </u>	3.97	335
MERCEDES BNZ	OM602D2.5	0.08	67.0	3	2	: 2) (• -	D I	76	2.30	2
MERCEDES BNZ	OM802D2.9	92.0	089	: }	: 2	2 2) (87	Z	2.49	189
MERCEDES BNZ	OM604	96	7007	3	: 2	: 2	ه د		8	8	2.87	2
MERCEDES BNZ	OM817	75.0	9	: }	: 2	: 2	י נ		8/	2	2.18	0
MWM	D225-6	840	2002	: }	: 2	2 2	: د	_ (100	8	2:88	235
THURINGER	4D13.5	98	84.0	: }	2 2	2 2	> :	י ב	8	\$	5.10	445
VOLKSWAGEN	028.C	740	3 6	: }	Z +	2 2	> (Ω.	118	135	5.91	0
VOLKSWAGEN	028.D	8	2. 6	: }	- +	2 :	، ر	_	8	8	1.89	140
VOLKSWAGEN	988 E	0.08	9 6	\$ }	- +	z •	ပ (Ω.	8	88	1.89	142
VOLKSWAGEN	075.1	820	5 6	: }	- 2	۲:) (_	1	88	1.50	<u>13</u>
VOLKSWAGEN	2.4.5	0.16	2 6	: }	: :	2 3) د		1	8	2.38	191
ASHOK LEYLAND	8040.05	0.85	3 8	3	2 2	z 2	: د	_	8	88	2.37	0
ASHOK LEYLAND	WOAD	008	2	: 3	2 2	2 7	> :	۵ (2	115	3.91	415
EICHER MOTORS	4031	78.0	2 80	; }	z z	z 2	> >	۵ د	\$	118	4.01	¥
KIRLOSKAR-CUMM	483.9	780	57.0	: }	2 2		> ;	a (6	\$	3.29	285
MAHINDRA-NISSAN	SD25	77.0	57.0	: }	2 2	2 2	> :	. د	102	\$	3.82	58
RUSTON &HORNSBY	зурх	0.77	57.0	: }	: -	2 2	> >	_ (68	5	2.49	208
RUSTON &HORNSBY	AYDA	75.0	9		- 2		> >	י כ	111	127	3.70	8
SIMPSON & CO	6306	92.0	8	: }	2	2 2	> >	5 6	111	127	4.83	929
SWARAJ-MAZDA	3.414	98	2	: 3	. 2	2 2	> ;	י ב	6	127	9.00	0
TATA (TELCO)	OM314	78.0	3 6	: 3	2 2	z :	> :	۵	\$	110	3.45	0
ISUZU	4.1A1	0.00	5 6	\$ 3	z :	z :	>	٥	64	128	3.78	325
MIT MOTORS	4031	7 6.0	0.80	3	z :	z :	>	٥	8	8	2.50	215
PERKINS	4236	0.00	0.00	3 3	2 2	z:	> :	۵	<u>6</u>	501	3.29	285
IDEM (IRAN DSL)	OM314	9 69	3 8	;	z :	z ;	>	۵	88	127	3.86	257
FIAT AUTO	1 8/ 4TLP	0.00	0.70	3 3	z ı	z ·	>	۵	26	128	3.78	325
FIAT AUTO	230A4 DOD	9 6	8 8	3 3	- 1	< ∶	υ	۵	89	8	1.83	165
FIAT AUTO	E280A1000	0.80	0.00	3	- 1	z ·	U	_	83	8	1.83	0
VECO	8140.07	92.0	0.60	≥ ;	- :	< ∶	v	_	83	8	1.93	.0
IVECO	8144.87	0.07	98	≥ }	z :	z	v	۵	83	85	2.50	220
LAMBORGHINI	1000 444	2.6	63.0	> :	z	z	υ	-	66	85	2.50	22
COMBARDINI	DSAMO	0.0	90.0	3	z	z	>	۵	50	116	8	c
	2000											•

Manufacturer	Mfr Model	IM HP	Kw Rating		Aso		Carre Carre		1			
	1000.4A	85.0	63.0	<	z	z	>	0	5	116	4.00	Weed or
	1000.4AT	94.0	70.0	<	-	z	>	٥	105	116	90	
	1064P	79.0	59.0	<	z	z	>	۵	505	120	4 18	285
	1054PT	84.0	63.0	<	 -	z	>	۵	\$	5 5	4	8 6
	DS4000TB	98.0	98.0	<	-	z	>	٥	505	71	306	3 6
	HR362SHI	84.0	63.0	3	-	<	>	_	8	8	4 7 8	8 4
	HR494HPT	88.0	0.98	3	-	z	>	~	ā	\$ 5	3.78	3 8
	SUN4105	0.08	67.0	<	z	z	>	۵	8	15	2 6	8 8
DAIHATSU MTR	겁	82.0	61.0	>	z	z	>	-	83	101	77.	3 2
DAIHATSU MTR	DL:T	94.0	70.0	>	-	z	>	_	8	2	277	8 8
	WO4C	88.0	0.98	*	z	z	>	٥	Ş		786	2 2
	4BD1	82.0	61.0	>	z	z	>	ء م	Ē	2 5	9 9	410
	4EE1-TC	0.98	64.0	*	+	<	· U	- ۱	2 8	2 9	8 8	316
	4FG1	79.0	29.0	3	z	z	U	_	9	8 8	80.	<u> </u>
	4JA1	79.0	28.0	>	z	z	>	. 0	8 8	8 8	8 9	79.
	4/B1	880	0.99	*	z	z	>	0	8 8	ţ	3 5	2 2
	C223T	75.0	98.0	3	_	z	>		8 8	8 8	2.77	3 3
KOMATSU	4D95L-1	81.0	0.09	3	z	z	>	. 0	8 8	1 4 1 4	677	5 5
	V4000/4300-B	0.08	0.08	*	z	z	>		\$ \$	2 4	8 8	8
	HA	0.08	67.0	*	z	: z	. >	ı _	<u>8</u>		\$ 5	382
	M4-182(HA)	80.0	0.09	>	z	z	> >		8 8	3 \$	8 6	82
	RF-PWS	82.0	61.0	*	s	>	ن ،		2 2	3 8	8 8	3
	RFT	76.0	57.0	>	-	: 2	, c		8 8	8 8	<u> </u>	8 1
	*	77.0	57.0	3	z	: 2) >		8 8	8 \$	<u> </u>	172
MIT MOTORS	4D31	78.0	280	>	z	: 2	. >		8 \$	70.	7.27	535
MIT MOTORS	4D56T	88.0	0.99	*	·	: 2	. 0	. د	3 8	g a	87.5	382
MIT MOTORS	4D56TI	94.0	70.0	3	1 ~	. 3			5 8	8 8	9.7	8
MIT MOTORS	4D85T	76.0	57.0	3	-	z	, O		ē &	6 6	4. 6. t	<u> </u>
MIT MOTORS	4D66T	88.0	0.99	*	j -	z	. 0		5 %	8 8	B (2	
MIT MOTORS	40R6A	0.70	70.0	*	-	z	>	۵ .	8 8	, 5	86.	/or 246
MIT MOTORS	8DR5	0.08	67.0	>	z	z	>	_	83	9	8 8	3 5
MITSUBISHI HVY	SVE2	78.0	57.0	>	z	z	>	-	8	8	8 8	33.0
MITSUBISHI HVY	S4E2.1	63.0	62.0	>	-	7	>	_	8	88	2.08	275
MILSUBISHI HVY	- T-L-	840	63.0	>	-	z	>	0	8	88	2.88	275
MITSUBISHI HVY	XX.	90.0	0.09	*	z	z	>	Q	102	051	4.25	8
MISULDEUIZ	BF3L913	80.0	90.0	<	-	7	>	۵	102	125	306	8
MITSOLDEUTZ	F4L912	80:0	90.0	<	z	~	>	۵	6	5	3.77	320
NISSAN DIESEL	ED33	82.0	61.0	š	z	~	>	٥	5	50	3.29	8
NISSAN DIESEL	1023	76.0	27.0	3	z	-	>	_	68	85	2.29	23
NISSAN MOTOR	7701	0.08	67.0	≥ -	z	~	>	_	88	85	2.66	231
NISSAN MOTOR	CDSGT	0.00	0.00	3	- .	.	>	_	8	88	1.97	2
ACTOM MOSSIN	TOOL	0.0	0.00	≥ :	_	_	>	-	8	88	1.97	162
MISSAN MOTOR	1020	0.87	0.80	2	-	z	ပ	-	æ	88	1.85	2
5	118	0.67	0.00	- ·	z :	_	Ç	_	87	88	2.28	0
	<u> </u>	0.78	200	≥ :	z	_	>	۵	8 8	105	2.98	279
	ų, į	75.0	260	~ .	z	_	U	_	88	88	1.87	151
	; ;	88.0	96.0	· ~		_	U	-	88	88	1.97	8
	77 	85.0	63.0	- :	z		ပ	_	8	85	2.45	200
	3.	0 0	70.0	2	z		ပ	_	8	85	2.45	208
	4	0 +6	000	•								

Manufacturer	Adde thanks	411		•								
TOYOTA	B 6	RS O	Kw Reting	83	09 2	9 2	5	Dist	Bore	Stroke	Displace	Weight
YAMAHA	MOZNIKY	25.0	3	: }	٠,	2 3	> ;	_ (S :	<u>ş</u>	2.88	88
	MDZGIKI	13.0		}	-	≥	>	۵	8	5	1.97	290
YANMAR	4JH-DTE	77.0	67.0	≩	-	3	>	۵	78	88	1.80	225
YANMAR	4JH2HTE	75.0	28.0	>	-	*	>	٥	82	88	1.82	246
YANMAR	4795TLE	65.0	63.0	≩	-	z	>	٥	8	110	3.10	8
YANMAR	4TN100E	78.0	58.0	}	z	z	>	٥	5	110	3.46	95
HYUNDAI MOTOR	4031	88.0	98.0	>	z	z	>	۵	91	50	3 29	285
KIA MOTORS	¥	90.0	0.78	*	z	z	>	_	82	5	8	3 8
KIA MOTORS	S	75.0	26.0	*	z	z	>	_	8	8	5 6	3
KIA MOTORS	××	77.0	57.0	3	z	z	>		8	3 \$	0.50	7
SSANGYONG MOTOR	OM601D2.3	78.0	28.0	>	z	z	. (8 8	3 8	707	9 57
SSANGYONG MOTOR	OM602D2.9	92.0	0 080	3	z	2	, (8 8	3 8	8.3	8
DEERE	4239D(MX)	000	9	: }	: 2	: 2) >	. (8 9	74	2.87	\$
PERKINS	42380MXD	000	9 9	: 3	: :		> :	٠ د	90E	110	3.82	421
DELITZ	E41 043	28 6	0. 6	٠ ١	z :	z :	>	۵	8	127	3.87	**
ANDORIA	4CTO	8 8	0.00	٠ :	Z 1	z :	>	۵	<u>6</u>	22	3.77	320
313011	200	0.08	0.79	> :	-	z	>	-	8	8	242	250
SOSVO	9574	0.08	0.08	} :	z	z	>	۵	88	127	3.86	287
2000	20166	82.0	91.0	}	z	z	>	۵	2	2	3.91	380
OWY OF THE	L-2/D	82.0	0.10	}	z	z	>	_	46	8	2.66	0
SULVE SULVE	0-240	81.0	0.0	>	z	z	>	۵	110	125	4.74	430
BELARUS	D-2401	92.0	8	≥	-	z	>	٥	110	125	4.74	0
ALLANIIS	N962	75.0	980	}	z	z	>	٥	88	127	3.86	257
AILANIIS	אינוס	75.0	98 98	>	z	z	>	_	8	8	2.99	235
DECI 2	F4L912	80.0	90.0	<	z	z	>	۵	<u>5</u>	52	3.77	320
MOTOR IBERICA	A4-288	76.0	27.0	>	z	z	v	٥	æ	ā	2.82	0
MOLOR IBERIOR	0	65.0	0.00	}	z	z	>	۵	100	127	3.99	253
MAGN	0.229	0. 5	70.0	} .	z	z	>	٥	83	120	5.10	445
VOLKSWAGEN	2550	0. 6	0.07	« :	Z I	z	>	۵	88	52	5.10	£05
VOI VO	745	0.67	20.00	3 3	- ;	z:	ပ :	_	8	88	1.89	0
TOYOTA	£ 5	0.20	0.0	3 :	z:	z :	> 1	۵	8	128	4.48	90
BMC SANAYI	, 8	0.50	0.70	3 3	z :	z :	ပ :	_	83	8	2.45	200
DEI 17	E41 042	0.00	0.00	,	z :	z :	>	٥	8	53	3.77	0
TZDK	WD611/B)	0.00	8.0	c ;	z :	z :	> :	۵	<u>\$</u>	120	3.77	320
UZEL TRACTOR	4248	0.0	2 8	3 3	z :	2 :	> :	۵	8	110	5.18	538
CASE	2001	0.10	0.00	3	2 1	z :	> .	0	101	127	4.07	257
ENBD	ESEADER	0.00	8 8	3 }	- :	z:	> .	۵	<u>\$</u>	7	3.59	•
FORD	VI DASST	0.08	90.0	≥ ;	2 :	z	>	٥	æ	8	2.50	82
FORD	XI D418TI	0.00	0.00	3 3	- 1	z	o (_	8	82	1.75	147
KELVIN	4104	0.00	8 8	3 3	- :	< :	ပ :	(8	82	1.75	153
AND ROVER	7.57		2 4		2 1	z :	> (۵	ğ	115	3.90	430
LAND ROVER	34	0.867	9 4	2 3	- 2	2 2	o o		8 :	26	2.48	0
LISTER-PETTER	75	0.10	2 6		2 2	2 3	: د	_ 1	8	2	3.43	0
NEW HOLLAND	GSD450	6	67.0	: 3	2 2	2 2	> >	. .	101	115	4.15	459
PERKINS	1004-4	79.0	0.65	: 3	: 2	: 2	> >	ء د	71.	121	8 8	8
PERKINS	30467	810	000	: 3	: -	: 2	• >	۵ د	3 2	771	86 6	273
PERKINS	4182	76.0	57.0	3	· z	: 2	• >	۔ د	\$ 2	3 5	8 3	0
PERKINS	4236	90.0	0.09	3	: 2	: 2	> >	ء د	g a	<u>s</u> :	5.88	251
PERKINS	4248	61.0	0.08	: 3	z	. z	• >	۵ ۵	\$ *	121	90 50	257
PERKINS	PHASER 90	0.98	040	3	2	. 2	. >		5 5	77	4.07	(2)
									,			-

						Inter-	Valve	Fuel				
Manufacturer	Mfr Model	THE	Kw Rating	80	Ago	000	5	Dietr	Bons	Strake		11-1-11
ROVER CARS	2.0L4DfT	80.0	0.09			z	o I		8	Ro	S C	THOMAN
ARROW SPEC	VBD330	000	9 03	,	:	:	:	, ,		3		761
		9	e B	>	z	z	>	۵	88	118	5.41	368
CONS DIESEL	483.9	78.0	28.7	3	z	z	>	٥	5	130	30	90
DEERE	4039D	80.0	50.0	3	2	2	>			2	70.0	8
00000				:		•	•	2	3	בי	3.82	ĝ
DEERE	40450	82.0	8	≥	z	z	>	۵	5	127	4.52	474
HERCULES	D-2300T	80.0	98	3	-	z	>	c	ŝ	***		
HEDCHES	C 2200T			: }		:	•	•	70	114	3.70	325
neworks	C-33001	83.0	60.3	≥	-	z	>	۵	102	114	90.50	11.7
WIS-CON	TMDT27	90.0	99	>	-	z	>	_	ō	Ş	0.00	
TAM	E41 012	6	*		:	: :			5	3	4.70	77
	7167	0.00	90.0	∢	z	Ż	>	٥	5	120	377	330
TORPEDO	F4L012	80.0	90.0	<	z	z	>		Ş			3
						:	•	3	3	3	1/5	200

*.

APPENDIX B
Volkswagen 1.9L Engine Specifications

Specifications for Volkswagen Industrial Engine.

AFD 1.9 ltr. TDI-Diesel Engine

VOLKSWAGEN AG, WOLFSBURG

07.94

Volkswagen Industrial Engines AFD

Technical data

. . .

07.94

INTRODUCTION

The Volkswagen Industrial Engine with the engine code AFD is a 1,9 ltr. water-cooled, fourcylinder, in-line, Diesel engine with direct injection, turbo-

With the multitude of possible applications of this engine it is essential to adhere to the recommendations on the following pages when developing new equipment. This will ensure proper operation and a long service life of the entire assembly under all operating conditions.

Design: Direct valve operation via an overhead camshaft (OHC) driven with a toothed belt. Maintenance-free valve timing gear with hydraulic tappets. Distributor fuel injection pump driven with a toothed belt and electronically regulated by control unit.

Diplacement Bore / stroke Compression ratio Firing order	Cm ³	1896 79,5 / 95,5 19,5 1 - 3 - 4 - 2
Output with control unit (automotive version - Golf A: Nmax at 4000 rpm upper idling speed lower idling speed	3) kW rpm rpm	66 (89/491/EWG) 50005200 (not adjustable) 860940 (not adjustable)
Charging pressure	bar (atmos)	0,60 - 0,80
Installation angle	¥	20
Distributor injection pump Control unit	Manufacturer Manufacturer	Bosch Bosch
Fuel Cetan requirement as per Fuel consumption	CN DIN	Diesel > 45 51601
	g/kW h	see Page 2
Alternator 12 V	A	90
Starter 12 V	kV	1,8
Battery 12 V	A (Ah)	380 (63) minimum capacity
Glow plugs	v	12

Industrial Engines Instructions

· 6

07.94

FILLING CAPACITIES

Cooling system

For first filling, pour in coolant slowly up to Max.marking while continuosly bleeding cooling system of air.
Allow engine to warm up until thermostat is fully open.
Switch off engine and allow to cool down before checking and correcting coolant level.

IMPORTANT!

Do not open radiator cap while engine is hot, as coolant system is pressurised.
- DANGER OF SCALDING -

Oil circuit

with filter change

ltr. 4,5

Difference between Min. - und Max. - marking on dipstick

ltr. approx. 1.0

TEMPERATURES

Coolant

permissible temperature °C (°F) 105 (221) continuous operation °C (°F) 118 (244) absolute limit

Thermostat

fully open °C (°F) 102 (216) starts opening at °C (°F) 87 (189)

Temperature contact switch

switches on at $^{\circ}$ C (°F) 110 ± 3 (230 ± 5)

Engine oil

permissible max. temperature °C (°F) 130 (266) in oil summ

11.94

B-M - Battery earth / engine earth

L-M - EDC earth S-M - Sender earth

- Battery

В - Starter

- Alternator - Starter switch

G 28 - Engine speed sender G 80 - Needle lift sender

- Alternator warning lamp

K 29 - Engine management system and glow period warning lamp J 248 - EDC control unit

Noise Capacity Level

Full-load operation

Tracting operation

08.94

- F 14 Coolant temperature control switch (110 °C)
- F 22 Oil pressure switch (0,25 bar)
- G 70 Air mass meter
- G 149 Control plunger travel sender
- N 18 Exhaust gas recirculation valve
- N 75 Boost pressure control solenoid valve
- N 108 Start of injection valve
- N 109 Fuel cut-off valve
- J 52 Glow plug relay
- J 317 Relay for voltage supply
- K 3 Oil pressure warning lamp
- K 28 Coolant temperature warning lamp
- S 39 Strip fuse (50 A)
- Q 6 Glow plug

engine speed rpm	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000
temperature °C	501	484	483	469	471	479	493	511	535	542	560	575	576	582	608	627

10.94

engine speed rpm	1000	1200	1400	1600	1800	2000	2200	2400	2600	2800	3000	3200	3400	3600	3800	4000
volumetric flow kg/h	58,7	75	102	138	170	200	218	234		271	281	293	310	323	336	352

APPENDIX C Steady-State Test Results

	APU testing UDLC 55kw		amb tamp	67	Test date	3/4/97		Fuel
6c kw 0 10 25 35 55 55	fpm 900 1640 2390 2790 3210 3800	Dat Volts 294 321 322 335 335	tuel # 0.25 0.25 0.25 0.5 0.5	fuel time 875.07 159.1 64.34 90.28 68.57 54.11	fuel ### 1.02 5.64 13.98 26.22 33.28	Mar F 85 88 107 126 133 135	trv in 80 85 85 87 92 92	988 999
ale.	feet Excha 2 50 200 200 400 600 700	ger airflow 3 50 150 400 600 700	Mittiin 4 0 300 400 400 300 700	5 300 500 500 500 700	6 50 150 350 400	ang 25 192 375 342 492 617	54 415 810 900 1063	3.9 30.3 30.3 59.1 65.6 77.5

% eff % gen eff 0 0 0 0 32.6 87.5 33.2 90 32.6 91.1 31.9 91.7 30.7 92.1

APPENDIX D
Complete APU Wiring Diagrams for the M113 APU

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD • POST OFFICE DRAWER 28510 • SAN ANTONIO TEXAS, USA 78228-0510 • (210) 684-5111 • TELEX 244846

ENGINE, FUEL, AND VEHICLE RESEARCH DIVISION TELECOPIER: (210) 522-5720

March 17, 1997

Mr. Gordon Shafer United Defense LP Ground Systems Division P.O. Box 58123 Santa Clara, CA 95052-8123

Dear Mr. Shafer.

I am enclosing the documentation related to the HMMWV APU that SwRI recently sent you. It should include a number of wiring descriptions and wiring diagrams as described below:

- 1. UDC APU Controller External Wiring Description These two pages describe the signals and corresponding pin numbers associated to each of the five connectors on the SwRI-supplied APU Interface box.
- 2. UDC APU Controller External Wiring Description Diagram In addition to the information described above, this diagram also illustrates the SwRI harnesses supplied with the APU. Please note that SwRI is NOT supplying the harnesses for connectors #1 and #2 as agreed earlier in the program. Also note that connector #3 connects to the Engine Harness via connector F2 and C2 described on a separate diagram.
- 3. Modified VW 1.9L Engine Harness Diagram This diagram illustrates the modifications that were made to the original stock VW engine harness #3A1-971-072 CD. Several connectors not used by the system were eliminated or hard-wired for clarity. Please note that connectors labeled B2 and D2 were shorted out (the connectors were actually removed). Also note that the ECU interface harness and relays connected to connector #3 of the APU Controller box were included in this diagram to illustrate the proper connection in case the relays or weather pack connector became separated during shipping. Connector Q2 should remain disconnected during normal operation. It is intended to be used with a special VW engine diagnostic box during troubleshooting.
- 4. VW ECU 68-Pin Connector Diagram This is a VW-supplied diagram that illustrates each of the pins being used. It is supplied as a reference only since not all of the sensors shown are connected to this connector. Please note that this diagram does not show the three additional resistors attached to pins #10. #27, #33, #45, and #56 as shown in the "Modified VW 1.9L Engine Harness Diagram."

Mr. Gordon Shafer United Defense LP March 17, 1997 Page 2

- 5. VW 1.9L TDI Engine Harness Sketch This sketch is supplied for future reference. It provides a pictorial view of the physical location of the stock, VW-engine harness connectors before modifications were made to them. Note that the connectors are basically bundled into the sections: Section 1 (labeled from A to J), Section 2 (A to S), and Section 3 (A to E).
- 6. VW 1.9L Engine Harness Diagram This is a diagram of the original, stock VW engine harness before any modifications were made to it. It provides additional information not included in the sketch of the harness such as number of wires attached to each connector, wire color codes, etc. Note that the numbering system list on the right side of the diagram (and half-way down the diagram) shows the sensors attached to the engine. A separate sheet is provided that shows the same information more clearly. Please note that all the sensors are not being used as it was pointed out earlier.
- 7. VW and SwRI Numbering System List This page duplicates the information provided in the diagrams described above (items #3 and #6). It more clearly shows the sensors illustrated in the previous diagrams.

If you have any questions regarding these diagrams, please do not hesitate to call me at (210) 522-2629 or e-mail me a message (jsteiber@swri.org). For your convenience, my fax number is (210) 522-5720.

Sincerely,

Joe Steiber

Research Engineer

Advanced Vehicle Technology

/krp

Enclosures

UDC APU Controller External Wiring Description Rev 0 - March 6, 1997

Connector #1 - Bus Power Interface

Pin	Desc.	
R	Engine	Ground
S	VBus -	ordand
U	VBus +	

Connector #2 - Vehicle Control Interface

Pin	
1	Desc.
1	APU Power Request +
2	APU Power Request -
3	Coolant Temperature +
4	Coolant Temperature -
5	Engine Speed
6	Engine Speed +
7	Engine Speed -
8	Actual APU Power +
	Actual APU Power -
9	APU On/Off +
10	APU On/Off -
11	Engine On/Off +
12	Engine On Oss
13	Engine On/Off -
14	APU Fault +
	APU Fault -
17	Unique Mobility Over Temp +
18	Unique Mobility Over Temp -
	The manage of the temp a

Connector #3 - Engine Control Interface

Pin A C D F G	Desc. ECU Continuous Power ECU Switched Power Idle Validation + Pedal Command + Idle Validation -
H	Pedal Command -

Connector #4 - Unique Mobility Interface

Pin	Desc.
1	VBus Signal
2	+12V
3	IGen Signal
8	U.M. Over Temp +
12	Brake Signal
15	Accelerator Signal
18	U.M. Enable
20	U.M. Direction
30	U.M. Gnd

Connector #5 - APU Sensor Interface

Pin	Desc.
1	
2	Coolant Temperature +
	Coolant Temperature -
3	Oil Tomporeture
4	Oil Temperature +
	Oil Temperature -
5	Oil Pressure +
6	
7	Oil Fressure -
	Engine Speed +
8	Engine Speed -
9	
_	+5V
10	Gnd
11	
12	Barometric Pressure +
16	Barometric Pressure -

WIRING DESCRIPTION APU CONTROLLER EXTERNAL UDC

County Cabbae

CONNECTOR #1 BUS POWER INTERFACE

(Harness not supplied by SwRI)

APU FILLE BEGINS ! APU PUMER RECOGSE . * BARR WAR BENES * ACTUR AND PONTS . COL AND 16 ag . . 4431 1144 1000 EMGINE SPEED . FAGINC SPECB . FHEINE DAVIET . CHEINE DW/OFF . uder Dville Italy APLO SBELIPE . APAIL CIN/IBIL . APU FALL 1 . APU FALET .

CONNECTOR #2 VEHICLE CONTRUL INTERFACE

(Harness not supplied by SwRL)

CONNECTOR #3 ENGINE CONTROL INTERFACE HARNESS

A sta timinate mosts - crosses | Parish | Parish

Weather Pack Connector to VW Harness (Conn C2)

CONNECTOR #4 UNIQUE MOBILITY INTERFACE HARNESS

19-PIN AMPHENDI CTINNECTTIK xoq adbus 37-PIN AMP CONNECTOR to UGM Ctriir two-box VET SIGN to UQM Ctrllr NZHITYLE 8|8|2|8|2 VBUS \$160m. - 1045 1462/CH1 M CEL CRAHIM . IBLE 04/15 GR . (BAS 1642/O13) LIDE STOCKLIDE . (+5V) UNIONE MEDITE LAGRED (8th 86/16) CO CHARL COV 0 0 4 01010 5|5|±|5|0 8:5:82:8

CONNECTOR #5 APU SENSORS INTERFACE HARNESS

APPENDIX E
Complete Wiring Diagrams for the HMMWV APU

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD ● POST OFFICE DRAWER 28510 ● SAN ANTONIO, TEXAS, USA 78228-0510 ● (210) 684-51:1 ● TELEX 244846

ENGINE. FUEL. AND VEHICLE RESEARCH DIVISION TELECOPIER: (210) 522-5720

March 17, 1997

Ms. Kathy Bearden
MARCAV Program Manager
Concurrent Technologies Corporation
1450 Scalp Avenue
Johnstown, PA 15902-3450

Dear Ms. Bearden,

I am enclosing the documentation related to the HMMWV APU that SwRI recently sent you. It should include a number of wiring descriptions and wiring diagrams as described below:

- 1. CTC APU Controller External Wiring Description These two pages describe the signals and corresponding pin numbers associated to each of the five connectors on the SwRI-supplied APU Interface box.
- 2. CTC APU Controller External Wiring Description Diagram In addition to the information described above, this diagram also illustrates the SwRI harnesses supplied with the APU. Please note that SwRI is NOT supplying the harnesses for connectors #1 and #2 as agreed earlier in the program. Also note that connector #3 connects to the Engine Harness via connector F2 and C2 described on a separate diagram.
- 3. Modified VW 1.9L Engine Harness Diagram This diagram illustrates the modifications that were made to the original stock VW engine harness #3A1-971-072 CD. Several connectors not used by the system were eliminated or hard-wired for clarity. Please note that connectors labeled B2 and D2 were shorted out (the connectors were actually removed). Also note that the ECU interface harness and relays connected to connector #3 of the APU Controller box were included in this diagram to illustrate the proper connection in case the relays or weather pack connector became separated during shipping. Connector Q2 should remain disconnected during normal operation. It is intended to be used with a special VW engine diagnostic box during troubleshooting.
- 4. VW ECU 68-Pin Connector Diagram This is a VW-supplied diagram that illustrates each of the pins being used. It is supplied as a reference only since not all of the sensors shown are connected to this connector. Please note that this diagram does not show the three additional resistors attached to pins #10, #27, #33, #45, and #56 as shown in the "Modified VW 1.9L Engine Harness Diagram."

Ms. Kathy Bearden Concurrent Technologies Corporation March 17, 1997 Page 2

- 5. VW 1.9L TDI Engine Harness Sketch This sketch is supplied for future reference. It provides a pictorial view of the physical location of the stock, VW-engine harness connectors before modifications were made to them. Note that the connectors are basically bundled into the sections: Section 1 (labeled from A to J), Section 2 (A to S), and Section 3 (A to E).
- 6. VW 1.9L Engine Harness Diagram This is a diagram of the original, stock VW engine harness before any modifications were made to it. It provides additional information not included in the sketch of the harness such as number of wires attached to each connector, wire color codes, etc. Note that the numbering system list on the right side of the diagram (and half-way down the diagram) shows the sensors attached to the engine. A separate sheet is provided that shows the same information more clearly. Please note that all the sensors are not being used as it was pointed out earlier.
- 7. VW and SwRI Numbering System List This page duplicates the information provided in the diagrams described above (items #3 and #6). It more clearly shows the sensors illustrated in the previous diagrams.

If you have any questions regarding these diagrams, please do not hesitate to call me at (210) 522-2629 or e-mail me a message (jsteiber@swri.org). For your convenience, my fax number is (210) 522-5720.

Sincerely,

Joe Steiber

Research Engineer

Le Steiter

Advanced Vehicle Technology

/krp

Enclosures

CTC APU Controller External Wiring Description Rev 0 - March 6, 1997

Main APU Control Enclosure Connectors:

Connector #1 - Bus Power Interface

Pin	Desc.
S	
•	Gnd
U	+1277 (High Comment)
V	+12V (High Current)
•	+5V
W	+12V (Low Current)
X	
Y	-12V
Y	Gnd

Connector #2 - Vehicle Control Interface

Pin	Desc.
1	
2	Silent Run Mode Return
3	Silent Run Mode +
•	Pedal Kick Down Return
4	Pedal Kick Down +
5	Comies NICK DOWN +
6	Serial Port Tx
3	Serial Port Rx
/	Serial Port Gnd

Connector #3 - Engine Control Interface

Pin A C D F G	Desc. ECU Continuous Power ECU Switched Power Idle Validation + Pedal Command + Idle Validation -
Н	Pedal Command -

Connector #4 - Unique Mobility Interface

Pin	Desc.
1	VBus Signal
2	+12V
3	IGen Signal
8	U.M. Over Temp +
12	Brake Signal
15	Accelerator Signal
18	U.M. Enable
20	U.M. Direction
30	U.M. Gnd
	U.M. GIIU

Connector #5 - APU Sensor Interface

Pin	Desc.
1	
2	Coolant Temperature +
3	Coolant Temperature -
	Oil Temperature +
4	Oil Temperature -
5	Oil Pressure +
6	Oil Pressure -
7	
8	Engine Speed +
	Engine Speed -
9	+5V
11	Barometric Pressure +
12	Barometric Pressure -
	Derumetric Pressire -

Power Converter Enclosure Connectors

"IN" Connector

Pin	Desc.
3	VBus -
8	VRug +

"OUT" Connector

Pin	Desc.
R	Engine Ground (from Engine)
S	Gnd (110m Engine)
U	+12V (High Current)
V	+5V
W	+12V (Low Current)
X	-12V
Y	Gnd

WIRING DESCRIPTION APU CONTROLLER EXTERNAL

OUT CURINTEES XIXIEICIE N

BUS PUWLR INIERFACE CUNNECTUR #1

(Harness not supplied by SwRL)

PEDRE RECKDON RETURN *O#1 1. 16 814, POST 8. -1010:4:010/

BERIAL PORT GROUND

VEHICLE CUNTRUI INTERFACE CONNECTUR #2

C Harness not supplied by SwRI

£# CONNECTOR

ENGINE CONTROL INTERFACE HARNESS

To the ECU Switched Power Connector of VW Engine Harness (Connector F2) Veather Pack Connector , to VV Harness (Conn C2) To Fuel Pump Relay (Relay 103 - Pin #30) VW 357-911-253 P ICU CUMINGAE POVCH - (ICS/ESA IDE VALDATION - OPE TID 16/4/1 COUNTRICES POYER . CCS. 5140 PEBIL COMMAND - COAS 3642-759 Pi Bai Cibinanp . (DDA-06/10) **▼**| **®**| ∪ | **□**| ∪ . i ∟

UNIQUE MEBILITY INTERACTIONNESS CLINNE CTEIR 114

APU SENSORS INTERFACE HARNESS CONNECTOR #5

* VW Numbering System ** SwR Numbering System E45 - S2 - Cruise Control System Switch F8 - C2 - Kickdown Switch in G79 F36 - D2 - Clutch Pedai Switch F47 - 32 - Brake Pedal Switch F60 - C2 - Idling Speed Switch in G79 F96 - A2 - Barometric Pressure Sensor G28 - E1 - Engine Speed Sensor G62 - A1 - Coolant Temperature Sensor G70 - E3 - Air Mass Meter G72 — C1 — Intake Manifold Temp Sensor G80 - D1 - Accelerator Peda: Position Sensor G81 - F1 - Needle Lift Sensor G149 - F1 - Fuel Temperature Sensor J317 - J2 - Control Plunger Travel Sensor N18 - D3 - Exhaust Gas Recirculation Valve N75 - A3 - Boost Press Control Solenoid Valve N108 - A1 - Start of Injection Valve N109 - A1 - Fuel Cut-off Valve N146 - F1 - Quantity Adjuster PIN 2 - J2 - Engine Speed Info to Instrument Cluster PN 9 - P2 - Fuel Consumption Signal to Instrument Cluster⊃N#26 + K2 + Glow Period Warning Lamp / Fault Lamp ⊃:N#28 - 32 - 4C Compressor Cut-off DIN#37 - G2 - AC Compressor Signal PiN#43 - W2 - Road Speea Signal PIN#44 - R2 - Brake Signal from Brake Light Switch PIN#50 - J2 - Glow Command to Relay for Giow Plugs PIN#61 - Q2 - Diagnostic Connection

Please refer to the attached ECU 68—pin Connector diagram for additional wiring information and pin connections.

No.

A Company

;;·

W.

· Property

. .

S. A.

in in

iii.

Winter

(3)

P. Tillian

CTC APU CONTROLLER EXTERNAL \

```
GROUND
                                                 BUS POWER INTERFACE
   +12 V (HIGH CURRENT)
                       CONNECTOR #1
   -5 V
   -12 V
        (LOV CURRENT)
                            ( Harness not supplied by SwRI )
   -12 V
   GROUND
   STIFNT RUN HODE RETURN
   SILENT RUN MODE +
   PEDDAL KICKDOWN RETURN
                                                VEHICLE CONTROL INTERFACE
                        CUNNECTOR #5
   PEDAL KICKDOWN +
                           ( Harness not supplied by SwRI )
6
   SERIAL PORT RE
```


CENNECTOR #3

ENGINE CONTROL INTERFACE HARNESS

JLLER EXTERNAL WIRING DESCRIPTION

CONNECTOR #4 UNIQUE MOBILITY INTERFACE

FR INTERFACE

by SwRI)

CONTROL INTERFACE

ky SwRI)

ACE HARNESS

To the ECU Switched Power Connector of VW Engine Harness (Connector 22)

CONNECTOR #5 APU SENSORS INTERFAC

Α COOLANT TEMP - CDAS (602/GRND) В OR TEMP + (DAS 1602/2-2) -- erectly to engine nounted sensors Α CIL TEMP - (DAS 1602/CRND) В OIL PRESS + CDAS 1608/DH3) -- to engine mounted sensor DIL PRESS - CDAS 1602/GRND) ENGINE SPEED + (345 1602/CH6) -- to mag pickup on UGN georbox С В ENGINE SPEED - CLAS :602/GRND) Α +5V -- next four connected to Baro Press sensor CHASSIS GROWND 10 BARD PRESS + (DAS 1602/CH7) BARD PRESS - (DAS 1602/GRND) С В

DESCRIPTION

R #4 UNIQUE MOBILITY INTERFACE HARNESS

La serge St. M. Johnson.

ECTOR #5 APU SENSORS INTERFACE HARNESS

FUELS DISTRIBUTION LIST

Department of Defense

DEFENSE TECH INFO CTR ATTN: DTIC OCC 8725 JOHN J KINGMAN RD STE 0944 FT BELVOIR VA 22060-6218	12	JOAP TSC 1 BLDG 780 NAVAL AIR STA PENSACOLA FL 32508-5300	
ODUSD ATTN: (L) MRM PETROLEUM STAFF ANALYST PENTAGON WASHINGTON DC 20301-8000	1	DIR DLA ATTN: DLA MMSLP 8725 JOHN J KINGMAN RD STE 2533 FT BELVOIR VA 22060-6221	1
ODUSD ATTN: (ES) CI 400 ARMY NAVY DR STE 206 ARLINGTON VA 22202	1	CDR DEFENSE FUEL SUPPLY CTR ATTN: DFSC I (C MARTIN) DFSC IT (R GRAY) DFSC IQ (L OPPENHEIM) 8725 JOHN J KINGMAN RD STE 2941	1 1 1
HQ USEUCOM ATTN: ECJU L1J UNIT 30400 BOX 1000 APO AE 09128-4209	1	FT BELVOIR VA 22060-6222 DIR DEFENSE ADV RSCH PROJ AGENCY ATTN: ARPA/ASTO	1
US CINCPAC ATTN: J422 BOX 64020 CAMP H M SMITH HI 96861-4020	1	3701 N FAIRFAX DR ARLINGTON VA 22203-1714	1

Department of the Army

HQDA		CDR ARMY TACOM	
ATTN: DALO TSE	1	ATTN: AMSTA IM LMM	1
DALO SM	1	AMSTA IM LMB	î
500 PENTAGON	-	AMSTA IM LMT	î
WASHINGTON DC 20310-0500		AMSTA TR NAC MS 002	i
		AMSTA TR R MS 202	1
SARDA		AMSTA TR D MS 201A	1
ATTN: SARD TT	1	AMSTA TR M	î
PENTAGON		AMSTA TR R MS 121 (C RAFFA)	î
WASHINGTON DC 20310-0103		AMSTA TR R MS 158 (D HERRERA)	î
		AMSTA TR R MS 121 (R MUNT)	1
CDR AMC		AMCPM ATP MS 271	1
ATTN: AMCRD S	1	AMSTA TR E MS 203	1
AMCRD E	1	AMSTA TR K	1
AMCRD IT	1	AMSTA IM KP	1
AMCEN A	1	AMSTA IM MM	1
AMCLG M	1	AMSTA IM MT	1
AMXLS H	1	AMSTA IM MC	1
5001 EISENHOWER AVE		AMSTA IM GTL	1
ALEXANDRIA VA 22333-0001		AMSTA CL NG	1
		USMC LNO	1
U.S. ARMY TACOM		AMCPM LAV	1
TARDEC PETR. & WTR. BUS. AREA		AMCPM M113	1
ATTN AMSTA TR-R/210 (L. VILLHAHERMOSA)	10	AMCPM CCE	1
AMSTA TR-R/210 (T. BAGWELL)	1	WARREN MI 48397-5000	
WARREN, MI 48397-5000		•	

PROG EXEC OFFICER ARMORED SYS MODERNIZATION ATTN: SFAE ASM S SFAE ASM H SFAE ASM AB	1 1 1	CDR ARO ATTN: AMXRO EN (D MANN) RSCH TRIANGLE PK NC 27709-2211	1
SFAE ASM AB SFAE ASM BV SFAE ASM CV SFAE ASM AG CDR TACOM	1 1 1	CDR AEC ATTN: SFIM AEC ECC (T ECCLES) APG MD 21010-5401	1
WARREN MI 48397-5000 PROG EXEC OFFICER ARMORED SYS MODERNIZATION ATTN: SFAE FAS AL SFAE FAS PAL PICATINNY ARSENAL NJ 07806-5000	1 1	CDR ARMY ATCOM ATTN: AMSAT I WM AMSAT I ME (L HEPLER) AMSAT I LA (V SALISBURY) AMSAT R EP (V EDWARD) 4300 GOODFELLOW BLVD ST LOUIS MO 63120-1798	1 1 1 1
PROG EXEC OFFICER TACTICAL WHEELED VEHICLES ATTN: SFAE TWV TVSP SFAE TWV FMTV	1 1	CDR ARMY SOLDIER SPT CMD ATTN: SATNC US (J SIEGEL) SATNC UE NATICK MA 01760-5018	1 1
SFAE TWV PLS CDR TACOM WARREN MI 48397-5000	î	CDR ARMY ARDEC ATTN: AMSTA AR EDE S PICATINNY ARSENAL NJ 07808-5000	1
PROG EXEC OFFICER ARMAMENTS ATTN: SFAE AR HIP SFAE AR TMA PICATINNY ARSENAL	1 1	CDR ARMY WATERVLIET ARSN ATTN: SARWY RDD WATERVLIET NY 12189	. 1
NJ 07806-5000 PROG MGR UNMANNED GROUND VEH		CDR APC ATTN: SATPC L SATPC Q NEW CUMBERLAND PA 17070-5005	1
ATTN: AMCPM UG REDSTONE ARSENAL AL 35898-8060	1	CDR ARMY LEA ATTN: LOEA PL NEW CUMBERLAND PA 17070-5007	1
DIR ARMY RSCH LAB ATTN: AMSRL PB P 2800 POWDER MILL RD ADELPHIA MD 20783-1145	1	CDR ARMY TECOM ATTN: AMSTE TA R AMSTE TC D AMSTE EQ APG MD 21005-5006	1 1 1
VEHICLE PROPULSION DIR ATTN: AMSRL VP (MS 77 12) NASA LEWIS RSCH CTR 21000 BROOKPARK RD CLEVELAND OH 44135	1	PROJ MGR MOBILE ELEC PWR ATTN: AMCPM MEP T AMCPM MEP L 7798 CISSNA RD STE 200 SPRINGFIELD VA 22150-3199	1
CDR AMSAA ATTN: AMXSY CM AMXSY L APG MD 21005-5071	1		

TFLRF No. 328 Page 2 of 5

CDR			
ARMY COLD REGION TEST CTR		CDR 49TH QM GROUP	
ATTN: STECR TM	1	ATTN: AFFL GC	1
STECR LG	î	FT LEE VA 23801-5119	1
APO AP 96508-7850	•	11 22001-3117	
		CDR ARMY ORDN CTR	
CDR		ATTN: ATSL CD CS	1
ARMY BIOMED RSCH DEV LAB		APG MD 21005	-
ATTN: SGRD UBZ A	1		
FT DETRICK MD 21702-5010		CDR ARMY SAFETY CTR	
		ATTN: CSSC PMG	1
CDR FORSCOM		CSSC SPS	1
ATTN: AFLG TRS	1	FT RUCKER AL 36362-5363	
FT MCPHERSON GA 30330-6000			
CDD TD LD CC		CDR ARMY ABERDEEN TEST CTR	
CDR TRADOC		ATTN: STEAC EN	1
ATTN: ATCD SL 5	1	STEAC LI	1
INGALLS RD BLDG 163 FT MONROE VA 23651-5194		STEAC AE	1
F1 MONROE VA 23031-3194		STEAC AA APG MD 21005-5059	1
CDR ARMY ARMOR CTR		APG MID 21005-5059	
ATTN: ATSB CD ML	1	CDR ARMY YPG	
ATSB TSM T	î	ATTN: STEYP MT TL M	1
FT KNOX KY 40121-5000	•	YUMA AZ 85365-9130	
		30000 7.00	
CDR ARMY QM SCHOOL		CDR ARMY CERL	
ATTN: ATSM PWD	1	ATTN: CECER EN	1
FT LEE VA 23001-5000		P O BOX 9005	
		CHAMPAIGN IL 61826-9005	
ARMY COMBINED ARMS SPT CMD			
ATTN: ATCL MS	1	DIR	1
FT LEE VA 23801-6000		AMC FAST PROGRAM	
CDR ARMY FIELD ARTY SCH		10101 GRIDLEY RD STE 104	
ATTN: ATSF CD	1	FT BELVOIR VA 22060-5818	
FT SILL OK 73503	1	CDR I CORPS AND FT LEWIS	
11 bibb oil 13303		ATTN: AFZH CSS	1
CDR ARMY TRANS SCHOOL		FT LEWIS WA 98433-5000	1
ATTN: ATSP CD MS	1		
FT EUSTIS VA 23604-5000		CDR	
		RED RIVER ARMY DEPOT	
CDR ARMY INF SCHOOL		ATTN: SDSRR M	1
ATTN: ATSH CD	1	SDSRR Q	1
ATSH AT	1	TEXARKANA TX 75501-5000	
FT BENNING GA 31905-5000		7014.0.577	
CDR ARMY AVIA CTR		PS MAGAZINE DIV	
ATTN: ATZQ DOL M	1	ATTN: AMXLS PS DIR LOGSA	1
ATTN. ATZQ DOL M ATZQ DI	1 1	REDSTONE ARSENAL AL 35898-7466	
FT RUCKER AL 36362-5115	1	REDSTONE ARSENAL AL 33898-/400	
		CDR 6TH ID (L)	
CDR ARMY ENGR SCHOOL		ATTN: APUR LG M	1
ATTN: ATSE CD	1	1060 GAFFNEY RD	•
FT LEONARD WOOD		FT WAINWRIGHT AK 99703	
MO 65473-5000			

Department of the Navy

OFC CHIEF NAVAL OPER ATTN: DR A ROBERTS (N420) 2000 NAVY PENTAGON WASHINGTON DC 20350-2000	1	CDR NAVAL AIR WARFARE CTR ATTN: CODE PE33 AJD P O BOX 7176 TRENTON NJ 08628-0176	1
CDR NAVAL SEA SYSTEMS CMD		CDR	1
ATTN: SEA 03M3	1	NAVAL PETROLEUM OFFICE	1
2531 JEFFERSON DAVIS HWY		8725 JOHN J KINGMAN RD	
ARLINGTON VA 22242-5160		STE 3719	
		FT BELVOIR VA 22060-6224	
CDR			
NAVAL SURFACE WARFARE CTR		CDR	
ATTN: CODE 63	1	NAVAL AIR SYSTEMS CMD	
CODE 632	1	ATTN: AIR 4.4.5 (D MEARNS)	1
CODE 859	1	1421 JEFFERSON DAVIS HWY	
3A LEGGETT CIRCLE		ARLINGTON VA 22243-5360	
ANNAPOLIS MD 21402-5067			
CDR			
CDR			
NAVAL RSCH LABORATORY			
ATTN: CODE 6181	1		
WASHINGTON DC 20375-5342			

Department of the Navy/U.S. Marine Corps

HQ USMC ATTN: LPP WASHINGTON DC 20380-0001	1	ATTN: CODE 837 814 RADFORD BLVD ALBANY GA 31704-1128	1
PROG MGR COMBAT SER SPT MARINE CORPS SYS CMD 2033 BARNETT AVE STE 315 QUANTICO VA 22134-5080	1	CDR 2ND MARINE DIV PSC BOX 20090 CAMP LEJEUNNE NC 28542-0090	1
PROG MGR GROUND WEAPONS	1		
MARINE CORPS SYS CMD		CDR	
2033 BARNETT AVE		MARINE CORPS SYS CMD	
QUANTICO VA 22134-5080		ATTN: SSE	1
PROG MGR ENGR SYS	1	2030 BARNETT AVE STE 315	
MARINE CORPS SYS CMD		QUANTICO VA 22134-5010	
2033 BARNETT AVE			
QUANTICO VA 22134-5080		CDR 1ST MARINE DIV CAMP PENDLETON	1
CDR		CA 92055-5702	
BLOUNT ISLAND CMD			
ATTN: CODE 922/1	1	CDR	1
5880 CHANNEL VIEW BLVD		FMFPAC G4	
JACKSONVILLE FL 32226-3404		BOX 64118	
		CAMP H M SMITH	
		HI 96861-4118	
CDD			

CDR

TFLRF No. 328 Page 4 of 5

Department of the Air Force

HQ USAF/LGSF ATTN: FUELS POLICY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030	1	SA ALC/SFT 1014 BILLY MITCHELL BLVD STE 1 KELLY AFB TX 78241-5603	1
HQ USAF/LGTV ATTN: VEH EQUIP/FACILITY 1030 AIR FORCE PENTAGON WASHINGTON DC 20330-1030	1	SA ALC/LDPG ATTN: D ELLIOTT 580 PERRIN BLDG 329 KELLY AFB TX 78241-6439	1
AIR FORCE WRIGHT LAB ATTN: WL/POS WL/POSF 1790 LOOP RD N WRIGHT PATTERSON AFB OH 45433-7103	1	WR ALC/LVRS 225 OCMULGEE CT ROBINS AFB GA 31098-1647	1
AIR FORCE MEEP MGMT OFC OL ZC AFMC LSO/LOT PM 201 BISCAYNE DR BLDG 613 STE 2 ENGLIN AFB FL 32542-5303	1		

Other Federal Agencies

NASA LEWIS RESEARCH CENTER CLEVELAND OH 44135	1	DOT FAA AWS 110	1
RAYMOND P. ANDERSON, PH.D., MANAGER FUELS & ENGINE TESTING BDM-OKLAHOMA, INC.	1	800 INDEPENDENCE AVE SW WASHINGTON DC 20590 DOE	
220 N. VIRGINIA BARTLESVILLE OK 74003		CE 151 (MR RUSSELL) 1000 INDEPENDENCE AVE SW WASHINGTON DC 20585	1
		EPA AIR POLLUTION CONTROL 2565 PLYMOUTH RD ANN ARBOR MI 48105	1