STA0067: Regression Analysis II

Spring 2024

Lecture 01: Matrix Theory

Lecturer: Kipoong Kim

Note: LaTeX template courtesy of UC Berkeley EECS dept.

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

1.1 행렬 이론

1.2 기본 이론

1.2.1 행렬의 종류

(1) (i,j)번째 성분이 a_{ij} 인 $m \times n$ 행렬 \mathbf{A} 는 다음과 같이 주어집니다

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

그리고 $\mathbf{A} = (a_{ij})$ 또는 $\{a_{ij}\}$ 로 표기됩니다.

(2) A의 j번째 열벡터:

$$\begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{bmatrix}$$

 \mathbf{A} 의 i번째 행벡터: $\mathbf{A}_i=(a_{i1},a_{i2},\cdots,a_{in})$ 또는 열벡터와의 혼동을 피하기 위해 \mathbf{a}_i 로 표기하기도 함.

- (3) 정방 (square) 행렬 : m = n인 경우
- (4) 대각 (diagonal) 행렬 : 비대각원소 $a_{ij}=0$ 인 $(i\neq j)$ 정방행렬, $\mathbf{A}=\mathrm{diag}\,(a_{11},\ldots,a_{nn})$ 로 표기됨
- (5) 단위행렬 또는 항등 (identity) 행렬 : $a_{ii}=1, i=1, \cdots, n$ 인 대각행렬, \mathbf{I} 또는 \mathbf{I}_n 으로 표기됨
- (6) 전치 (transpose) 행렬: $m \times n$ 행렬 $\mathbf{A} = (a_{ij})$ 의 전치 (transpose) 행렬은 $n \times m$ 행렬 $\mathbf{A}' = (a_{ji})$ 이며, \mathbf{A}^T 또는 \mathbf{A}' 로도 표기됩니다. 또한, $(\mathbf{A}\mathbf{B})' = \mathbf{B}'\mathbf{A}'$ 임이 명확합니다.
- (7) 멱등 (idempotent) 행렬: 정방행렬 \mathbf{A} 가 $\mathbf{A}^2 = \mathbf{A}$ 를 만족하면 멱등 (idempotent) 행렬이라고 부릅니다.

1.2.2 대각합 (trace)

(1) 정방행렬 \mathbf{A} 의 대각합은 \mathbf{A} 의 대각 원소들의 합이며, $\mathrm{tr}(\mathbf{A})$ 로 표기됩니다. 따라서, $\mathrm{tr}(\mathbf{A}) = \sum a_{ii}$ 입니다.

(2) 대각합의 성질

$$\operatorname{tr}(\mathbf{A} \pm \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \pm \operatorname{tr}(\mathbf{B})$$

 $\operatorname{tr}(k\mathbf{A}) = k \operatorname{tr}(\mathbf{A}), \quad k : 상수$
 $\operatorname{tr}(\mathbf{AB}) = \operatorname{tr}(\mathbf{BA}),$

여기서 AB와 BA는 정의되어야 합니다.

1.2.3 행렬식 (determinant)

(1) $n \times n$ 정방행렬 \mathbf{A} 의 행렬식은 $\det(A)$ 또는 $|\mathbf{A}|$ 로 표기되며, 다음과 같이 정의됩니다:

$$\det(\mathbf{A}) = \sum_{j=1}^{n} a_{ij} c_{ij}, \forall i = 1, \dots, n,$$

여기서 $c_{ij}=(-1)^{i+j}d_{ij}$ 는 a_{ij} 의 여인수라 불리며, d_{ij} 는 ${\bf A}$ 에서 i번째 행과 j번째 열을 제거한 $(n-1)\times(n-1)$ 행렬 ${\bf A}_{(i,j)}$ 의 행렬식입니다.

(2) 예시

$$n = 1$$
인 경우 : $|\mathbf{A}| = a_{11}$, 즉, 값 자체 $n = 2$ 인 경우 :

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}, \quad (i = 1 \ \ \ \)$$
$$= -a_{21}a_{12} + a_{22}a_{11}, \quad (i = 2 \ \ \ \ \)$$

n=3인 경우:

$$|\mathbf{A}| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}c_{11} + a_{12}c_{12} + a_{13}c_{13}$$

$$= a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} - a_{11}a_{32}a_{23} - a_{12}a_{21}a_{33} + a_{12}a_{31}a_{23}$$

$$+ a_{13}a_{21}a_{32} - a_{13}a_{31}a_{22}$$

(3) 행렬식의 성질

$$|\mathbf{A}\mathbf{B}|=|\mathbf{B}\mathbf{A}|=|\mathbf{A}||\mathbf{B}|,$$
 만약 \mathbf{A} 와 \mathbf{B} 가 $n\times n$ 정방행렬이면 $|\mathbf{A}|=|\mathbf{A}'|$ $|k\mathbf{A}|=k^n|\mathbf{A}|,k$ 는 상수

(4) 정방행렬 \mathbf{A} 가 $|\mathbf{A}| \neq 0$ 이면 비특이(non-singular)라고 하고, $|\mathbf{A}| = 0$ 이면 특이(singular)라고 합니다.

1.3 역행렬 (inverse matrix)

1.3.1 선형 독립과 종속 (linearly independent & dependent)

(1) 선형 종속 (linearly dependent)

n차원 벡터 $\mathbf{v}_1, \dots, \mathbf{v}_k$ 의 선형 결합이 $\mathbf{0}$ 일 때, 즉

$$c_1 \boldsymbol{v}_1 + \dots + c_k \boldsymbol{v}_k = \boldsymbol{0}$$

에서 적어도 하나의 $\{c_i\}$ 가 0이 아니라면, v_1, \dots, v_k 를 선형 종속이라고 한다.

- (2) 선형 독립 (linearly independent) 반대로, 모든 c_i 가 0이라면, $\mathbf{v}_1, \dots, \mathbf{v}_k$ 를 선형 독립이라고 한다.
- (3) 예제: 두 벡터 (1,1)와 (-3,2)는 선형 독립이다. 왜냐하면

$$c_1 \left(\begin{array}{c} 1 \\ 1 \end{array} \right) + c_2 \left(\begin{array}{c} -3 \\ 2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

는 $c_1 - 3c_2 = 0$, $c_1 + 2c_2 = 0$ 을 주고, 우리는 반드시 $c_1 = 0$, $c_2 = 0$ 을 가져야 하기 때문이다.

(4) **주의**: $\mathbf{v}_1, \dots, \mathbf{v}_k$ 가 선형 종속이라고 가정하자, $c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k = \mathbf{0}$ 는 0이 아닌 c_i 를 가진다. 그러면, $c_i \neq 0$ 에 대해,

$$\mathbf{v}_{j} = -\frac{1}{c_{j}} (c_{1}\mathbf{v}_{1} + \dots + c_{j-1}\mathbf{v}_{j-1} + c_{j+1}\mathbf{v}_{j+1} + \dots + c_{k}\mathbf{v}_{k});$$

 $\mathbf{e}_{1}, \mathbf{v}_{1}, \cdots, \mathbf{v}_{k}$ 가 선형 종속이면, 하나의 벡터는 다른 벡터들의 선형 결합으로 표현될 수 있다.

1.3.2 행렬의 계수 (rank)

- (1) 정의 : \mathbf{A} 를 m개의 행 벡터와 n개의 열 벡터를 가진 $m \times n$ 행렬이라 하자. m^* 를 m개의 행 벡터 중 선형 독립인 벡터의 최대 개수라 하고, n^* 를 n개의 열 벡터 중 선형 독립인 벡터의 최대 개수라 하자. 그러면, 우리는 반드시 $m^* = n^*$ 를 가지며, 이를 \mathbf{A} 의 계수라 하고, $r(\mathbf{A})$ 로 표기한다. 따라서, $r(\mathbf{A}) \leq \min(m,n)$ 이다.
- (2) 예제 : 5×4 행렬 **A**의 계수를 계산하라.

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 0 \\ 1 & -1 & 3 \\ 3 & 0 & 6 \\ 2 & 1 & 3 \end{bmatrix}$$

먼저, 우리는 $r(\mathbf{A}) \le 4$ 를 가져야 한다.

첫 번째와 두 번째 행 벡터가 선형 독립임을 주목하고, 3-4 번째 행 벡터는 첫 번째와 두 번째 행 벡터의 선형 결합으로 표현될 수 있다. 예를 들어, 세 번째 행 벡터는 (1,2,0,1)+2(1,-1,3,2)로 표현될 수 있다. 따라서, $r(\mathbf{A})=2$ 이다.

- (3) 계수의 성질
 - (a) $r(\mathbf{AB}) \le \min(r(\mathbf{A}), r(\mathbf{B}))$
 - (b) $n \times n$ 행렬 \mathbf{A} 가 비특이행렬이면, $r(\mathbf{A}) = n$ 이고, 특이행렬이면, $r(\mathbf{A}) < n$ 이다.
 - (c) A의 계수는 비특이행렬을 곱해도 변하지 않는다.
 - (d) $\mathbf{AGA} = \mathbf{A}$ 이면, $r(\mathbf{A}) = r(\mathbf{GA})$ 이다.
 - (e) $r(\mathbf{A} : \mathbf{B}) \le r(\mathbf{A}) + r(\mathbf{B})$, 여기서 **A**는 $m \times n_1$, **B**는 $m \times n_2$ 이고, **A**: **B**는 $m \times (n_1 + n_2)$ 행렬로, 확장 또는 연결 행렬이라 한다. 예를 들어,

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{pmatrix}, \quad B = \begin{pmatrix} 7 & 9 \\ 8 & 10 \end{pmatrix}$$
$$A: B = \begin{pmatrix} 1 & 3 & 5 & 7 & 9 \\ 2 & 4 & 6 & 8 & 10 \end{pmatrix}$$

- (f) $r(\mathbf{A} + \mathbf{B}) \le r(\mathbf{A} : \mathbf{B}) \le r(\mathbf{A}) + r(\mathbf{B})$
- (g) A가 $n \times n$ 행렬이면, $r(AB) \ge r(A) + r(B) n$ 이다.
- (h) A가 $n \times n$ 멱등행렬이면, $r(\mathbf{I} \mathbf{A}) = n r(\mathbf{A})$ 이다.
- (i) $r(\mathbf{A}) = r(\mathbf{A}') = r(\mathbf{A}'\mathbf{A}) = r(\mathbf{A}\mathbf{A}')$

1.3.3 역행렬 (inverse matrix)

(1) 동기 : 방정식 ax = b의 해 x를 계산하기 위해, a의 역수, 즉 1/a를 양변에 곱합니다. 즉,

$$ax = b \Rightarrow \frac{1}{a}ax = \frac{1}{a}b \Rightarrow x = \frac{b}{a}$$

여기서 $a \neq 0$ 이어야 합니다. a의 역수가 존재하려면 $a \neq 0$ 일 때만 가능하기 때문입니다. 이제 n개의 방정식과 n개의 미지수를 고려해봅시다.

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n$$

이제 $\mathbf{A} = (a_{ij}), i = 1, \dots, n; j = 1, \dots, n$ 를 $n \times n$ 정방행렬, $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \dots & x_n \end{pmatrix}', \mathbf{B} = \begin{pmatrix} b_1 & b_2 & \dots & b_n \end{pmatrix}'$ 라 하면, 위의 방정식들은 다음과 같이 표현될 수 있습니다:

$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

만약 \mathbf{A}^{-1} 가

$$AA^{-1} = A^{-1}A = I.$$

를 만족한다면, 이를 ${\bf A}$ 의 역행렬이라고 부릅니다. 스칼라 a가 역수를 가지려면 $a \neq 0$ 이어야 합니다. 마찬가지로, 정방행렬 ${\bf A}$ 가 역행렬을 가지려면 $|{\bf A}| \neq 0$, 즉 비특이행렬이어야 합니다. 따라서, ${\bf A}$ 가 비특이행렬이면 ${\bf A}^{-1}{\bf A}{\bf x}={\bf A}^{-1}{\bf b}$ \Rightarrow ${\bf x}={\bf A}^{-1}{\bf b}$ 입니다. 실제로, ${\bf A}^{-1}$ 는 다음과 같이 주어집니다:

$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} c_{11} & c_{21} & \cdots & c_{n1} \\ \vdots & \vdots & & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{bmatrix}$$

여기서 c_{ij} 는 a_{ij} 의 여인수입니다.

- (2) 성질
 - (a) A^{-1} 는 유일합니다.
 - (b) A^{-1} 는 비특이행렬입니다.
 - (c) $(\mathbf{A}')^{-1} = (\mathbf{A}^{-1})'$
 - (d) $(\mathbf{AB})^{-1} = \mathbf{B}^{-1} \mathbf{A}^{-1}$
- (3) 직교행렬 (orthogonal matrix)

정방행렬 A가 A'A = AA' = I를 만족하면, 이를 직교행렬이라고 부르며, 다음과 같은 성질을 가집니다:

- (a) $\operatorname{tr}(\mathbf{A}'\mathbf{B}\mathbf{A}) = \operatorname{tr}(\mathbf{B})$
- (b) $|\mathbf{A}'\mathbf{B}\mathbf{A}| = |\mathbf{B}|$
- (c) $|\mathbf{A}| = \pm 1$

1.3.4 특수 행렬의 역행렬

(1) **J**를 모든 성분이 1인 $n \times n$ 정방행렬이라 하고, $a \neq 0, a + nb \neq 0$ 이면, 다음이 성립합니다:

$$(a\mathbf{I} + b\mathbf{J})^{-1} = \frac{1}{a} \left(\mathbf{I} - \frac{b}{a+nb} \mathbf{J} \right)$$

- (2) $\{\operatorname{diag}(a_1,\dots,a_n)\}^{-1} = \operatorname{diag}(1/a_1,\dots,1/a_n), \ a_i \neq 0, \ i = 1,\dots,n$
- (3) $I + A + A^2 + \cdots + A^{n-1} = (A^n I)(A I)^{-1}$
- (4) $(\mathbf{I} + \mathbf{A}^{-1})^{-1} = \mathbf{A}(\mathbf{A} + \mathbf{I})^{-1}$
- (5) $(I + AB)^{-1} = I A(I + BA)^{-1}B$
- (6) $(\mathbf{A} + \mathbf{U}\mathbf{B}\mathbf{V})^{-1} = \mathbf{A}^{-1} \mathbf{A}^{-1}\mathbf{U}\mathbf{B}\mathbf{V} (\mathbf{I} + \mathbf{A}^{-1}\mathbf{U}\mathbf{B}\mathbf{V})^{-1}\mathbf{A}^{-1}$

1.3.5 일반화 역행렬 (generalized inverse)

여기서는 A가 비특이햇렬일 때의 A의 역햇렬을 정의하고, A가 정방햇렬이 아닐 때의 A의 역햇렬도 정의합니다.

- **1. Moore—Penrose 역행렬** \mathbf{A} 를 $p \times q$ 행렬이라 하면, \mathbf{A} 의 Moore—Penrose 역행렬은 다음 3가지 조건을 만족하는 $q \times p$ 행렬 \mathbf{M} 입니다;
 - (1) $\mathbf{AMA} = \mathbf{A}$
 - (2) $\mathbf{MAM} = \mathbf{M}$
 - (3) **AM**와 **MA**는 대칭행렬이다

Moore-Penrose 역행렬 \mathbf{M} 은 유일하다는 점에 주목하세요. 예를 들어, 3×4 행렬

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 0 & -1 & 1 \\ 0 & 2 & 2 & 2 \\ -1 & 4 & 5 & 3 \end{array} \right]$$

의 Moore-Penrose 역행렬은

$$\mathbf{M} = \frac{1}{18} \begin{bmatrix} 5 & 2 & -1\\ 1 & 1 & 1\\ -4 & -1 & 2\\ 6 & 3 & 0 \end{bmatrix}$$

입니다. 또한, \mathbf{A} 가 정방행렬이면 \mathbf{M} 역시 정방행렬이고 $\mathbf{M} = \mathbf{A}^{-1}$ 임에 주목하세요.

2. 일반화 역행렬 (generalized inverse) 위의 3가지 조건 중, G가 첫 번째 조건만 만족한다면, 즉 AGA = A이면, G를 A의 일반화 역행렬이라 하고, A⁻로 표기합니다. 사실, G는 유일하지 않습니다. 여기서는 G를 계산하는 한 가지 대중적인 방법을 소개합니다.

먼저, $\mathbf{A}_{p\times q}$ 의 정방이고 비특이인 부분행렬 \mathbf{A}_{11} 을 찾고, 다른 모든 성분을 $\mathbf{0}$ 로 둡니다. 마지막으로, \mathbf{A}_{11}^{-1} 을 찾습니다. 즉,

$$\mathbf{A}_{p imes q} = \left[egin{array}{cc} \mathbf{A}_{11} & \mathbf{A}_{12} \ \mathbf{A}_{21} & \mathbf{A}_{22} \end{array}
ight] \Rightarrow \mathbf{G}_{q imes p} = \left[egin{array}{cc} \mathbf{A}_{11}^{-1} & \mathbf{0} \ \mathbf{0} & \mathbf{0} \end{array}
ight]$$

예를 들어, 다음을 고려해봅시다

$$\mathbf{A} = \left[\begin{array}{rrrr} 1 & 2 & 4 & 3 \\ 3 & -1 & 2 & -2 \\ 5 & -4 & 0 & -7 \end{array} \right]$$

그리고

$$\mathbf{A}_{11} = \begin{bmatrix} 1 & 2 \\ 3 & -1 \end{bmatrix}, \mathbf{A}_{12} = \begin{bmatrix} 4 & 3 \\ 2 & -2 \end{bmatrix}, \mathbf{A}_{21} = \begin{bmatrix} 5 & -4 \end{bmatrix}, \mathbf{A}_{22} = \begin{bmatrix} 0 & -7 \end{bmatrix},$$

라 하면

$$\mathbf{G} = \frac{1}{7} \left[\begin{array}{rrr} 1 & 2 & 0 \\ 3 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

입니다.

또 다른 예로, 일원분류를 고려해봅시다

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad i = 1, 2, j = 1, 2, 3$$

즉,

$$\begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{13} \\ Y_{21} \\ Y_{22} \\ Y_{23} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mu_1 \\ \alpha_1 \\ \alpha_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{21} \\ \varepsilon_{22} \\ \varepsilon_{23} \end{bmatrix}$$

행렬 표기법으로,

$$y = X\beta + \epsilon$$
,

그러면 최소제곱법의 정규방정식은

$$(\mathbf{X}'\mathbf{X})\boldsymbol{\beta} = \mathbf{X}'\mathbf{y}.$$

가 됩니다. 하지만,

$$\mathbf{X}'\mathbf{X} = \begin{bmatrix} 6 & 3 & 3 \\ 3 & 3 & 0 \\ 3 & 0 & 3 \end{bmatrix}$$

는 특이행렬이므로, $(\mathbf{X}'\mathbf{X})^{-1}$ 은 존재하지 않습니다. 따라서, $\boldsymbol{\beta}$ 의 추정량으로 일반화 역행렬 $(\mathbf{X}'\mathbf{X})^-$ 를 사용하고, 추정량은 $(\mathbf{X}'\mathbf{X})^-\mathbf{x}'\mathbf{y}$ 가 됩니다. 가능한 한 방법은 다음과 같습니다:

$$(\mathbf{X}'\mathbf{X})^{-} = \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{array} \right]$$

3. 역행렬 계산의 문제점 다음을 주목하세요:

$$\mathbf{A} = \left[\begin{array}{cc} 2 & 1 \\ 6 & 3 \end{array} \right]$$

은 $|\mathbf{A}| = 0$ 이므로 특이행렬이고, 따라서 역행렬이 존재하지 않습니다. 이제,

$$\mathbf{B} = \left[\begin{array}{cc} 1.9998 & 0.9999 \\ 5.9994 & 3.0009 \end{array} \right]$$

는 행렬식이 0.0024이므로 비특이행렬입니다. B가 수학적으로는 비특이행렬이지만, 행렬식이 0에 매우 가깝기 때문에 거의 특이햇렬에 가깝다는 점에 주목하세요. 이제 다음을 고려해봅시다:

$$\begin{bmatrix} 2.0 & 2.5 \\ 2.5 & 3.0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.55 \end{bmatrix},$$

이때 해는 (0.1,0.1)'입니다. 그러나

$$\begin{bmatrix} 2.04 & 2.49 \\ 2.49 & 3.04 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0.45 \\ 0.55 \end{bmatrix}$$

의 해는 (-1,1)'이고, 행렬식은 0에 매우 가깝습니다(실제로 0.0015입니다). 이 경우, 성분의 작은 변화가 해의 큰 변화를 초래할 수 있습니다. 행렬식의 값이 작은 행렬을 나쁜 조건의 행렬(ill-conditioned matrix)이라고 부르며, 이는 $n \times p$ 행렬 A의 가장 큰 특이값과 가장 작은 특이값의 비율로 정의되는 조건수로 측정할 수 있습니다. 조건수가 크면 행렬이 나쁜 조건을 가질 수 있습니다.

1.4 분할 행렬 (partitioned matrix)

행렬 P를 분할하는 것을 고려해봅시다.

$$\mathbf{P} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array} \right]$$

그러면, 다음 항등식에 의해,

$$\left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right] = \left[\begin{array}{cc} \mathbf{A} & \mathbf{0} \\ \mathbf{C} & \mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \end{array}\right] \left[\begin{array}{cc} \mathbf{I} & \mathbf{A}^{-1} \mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{array}\right]$$

우리는 다음을 얻습니다:

$$\begin{vmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{vmatrix} = |\mathbf{A}| \left| \mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right|, \text{ 만약 } \mathbf{A}^{-1} \text{ 가 존재한다면}$$
$$= |\mathbf{D}| \left| \mathbf{A} - \mathbf{B} \mathbf{D}^{-1} \mathbf{C} \right|, \text{ 만약 } \mathbf{D}^{-1} \text{ 가 존재한다면}$$

또한, P의 역행렬은 다음과 같습니다:

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} \mathbf{I} & -\mathbf{A}^{-1}\mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A}^{-1} & \mathbf{0} \\ -(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \mathbf{C}\mathbf{A}^{-1} & (\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1} \end{bmatrix}, \text{ 만약 } \mathbf{A}^{-1} \text{ 가 존재한다면}$$

$$= \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{D}^{-1} \end{bmatrix} + \begin{bmatrix} \mathbf{I} \\ -\mathbf{D}^{-1}\mathbf{C} \end{bmatrix} (\mathbf{A} - \mathbf{B}\mathbf{D}^{-1}\mathbf{C})^{-1} [\mathbf{I} - \mathbf{B}\mathbf{D}^{-1}], \text{ 만약 } \mathbf{D}^{-1} \text{ 가 존재한다면}$$

예를 들어, 만약

$$\boldsymbol{P} = \left[\begin{array}{cccccc} 2 & 0 & 0 & 1 & -1 \\ 0 & 2 & 0 & 1 & -1 \\ 0 & 0 & 2 & 1 & -1 \\ 2 & 2 & 2 & 1 & 0 \\ -1 & -1 & -1 & 0 & 1 \end{array} \right]$$

라면 다음과 같이 둡니다:

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix},$$
$$\mathbf{C} = \begin{bmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}, \ \mathbf{D} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

그리고 우리는 다음을 얻습니다:

$$\mathbf{A}^{-1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix} \cdot \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & -1 \\ 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$= \begin{bmatrix} -2 & 3 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

따라서

$$|\mathbf{P}| = 8\left(1 - \frac{9}{2}\right) = -28$$

$$\mathbf{P}^{-1} = \frac{1}{14} \begin{bmatrix} 4 & -3 & -3 & 2 & -2 \\ -3 & 4 & -3 & 2 & -2 \\ -3 & -3 & 4 & 2 & -2 \\ 4 & 4 & 4 & 2 & 12 \\ -2 & -2 & -2 & 6 & 8 \end{bmatrix}$$

1.5 고유값과 고유벡터 (eigenvalues and eigenvectors)

1.5.1 고유값과 고유벡터

정방행렬 \mathbf{A} , 벡터 \mathbf{u} , 그리고 상수 λ 에 대해 다음을 고려해봅시다:

$$\mathbf{A}\mathbf{u} = \lambda \mathbf{u}$$

이는 다음과 동등합니다:

$$(\mathbf{A} - \lambda \mathbf{I})\mathbf{u} = \mathbf{0}$$

만약 $\mathbf{A} - \lambda \mathbf{I}$ 가 비특이행렬이면, \mathbf{u} 에 대한 해는 $\mathbf{u} = \mathbf{0}$ 입니다. 하지만, $\mathbf{A} - \lambda \mathbf{I}$ 가 특이행렬이면, u와 상수 λ 에 대한 영이 아닌 해가 존재합니다. 즉,

$$|\mathbf{A} - \lambda \mathbf{I}| = \mathbf{0}$$

는 \mathbf{u} 와 상수 λ 에 대한 영이 아닌 해를 제공합니다. 위 방정식을 \mathbf{A} 의 특성방정식이라고 하며, \mathbf{A} 가 $n \times n$ 이므로 이는 λ 에 대한 n차 다항식입니다. n개의 해를 $\lambda_1, \cdots, \lambda_n$ 이라고 하면, 이들을 고유값, 특성근, 또는 잠재근이라고 부릅니다. 더 나아가, 각 λ_i 에 대해 다음을 만족하는 벡터 \mathbf{u}_i 를

$$\mathbf{A}\mathbf{u}_i = \lambda_i \mathbf{u}_i, \quad i = 1, \cdots, n$$

 λ_i 에 대응하는 고유벡터라고 부릅니다.

예를 들어, 만약

$$\mathbf{A} = \left[\begin{array}{cc} 1 & 4 \\ 9 & 1 \end{array} \right]$$

이라면 특성방정식 (characteristic equation)은

$$\left| \begin{array}{cc} 1 - \lambda & 4 \\ 9 & 1 - \lambda \end{array} \right| = 0$$

이고 고유값은 $\lambda = -5$ 또는 $\lambda = 7$ 입니다. 또한, 우리는 다음을 얻습니다:

$$\mathbf{A} \begin{bmatrix} 2 \\ -3 \end{bmatrix} = -5 \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$
$$\mathbf{A} \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 7 \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

따라서, $\lambda = -5$ 와 $\lambda = 7$ 에 대응하는 고유벡터는 각각

$$\left[\begin{array}{c}2\\-3\end{array}\right],\ \left[\begin{array}{c}2\\3\end{array}\right]$$

입니다.

1.5.2 고유값의 성질

- (1) λ 가 **A**의 고유값이면,
 - (a) \mathbf{A}^k 의 고유값은 λ^k 이다.
 - (b) \mathbf{A}^{-1} 의 고유값은 $1/\lambda$ 이다.
 - (c) c**A**의 고유값은 $c\lambda$ 이다.
 - (d) $\mathbf{A} + c\mathbf{I}$ 의 고유값은 $\lambda + c$ 이다.
 - (e) $(\mathbf{A} + c\mathbf{I})^{-1}$ 의 고유값은 $1/(\lambda + c)$ 이다.
- (2) $\operatorname{tr}(\mathbf{A}) = \sum \lambda_i, |\mathbf{A}| = \prod \lambda_i$
- (3) A가 대칭이고 그 성분들이 실수값이면,
 - (a) 모든 고유값은 실수이다.
 - (b) 고유벡터들은 직교한다.
 - (c) A의 계수는 0이 아닌 고유값의 개수이다.
- (4) 멱등행렬의 고유값은 0 또는 1이지만, 그 역은 성립하지 않는다.

1.6 이차형식 (quadratic form)과 양의 정부호 행렬 (positive definite matrix)

1.6.1 이차형식 (quadratic form)

벡터 \mathbf{x} 와 행렬 \mathbf{A} 에 대해, $\mathbf{x}'\mathbf{A}\mathbf{x}$ 를 \mathbf{x} 의 이차형식이라고 한다. 예를 들어, $\mathbf{x} = (x_1, x_2, x_3)'$ 이고

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 7 & 6 \\ 2 & -2 & 5 \end{array} \right]$$

이면

$$\mathbf{x}'\mathbf{A}\mathbf{x} = x_1^2 + 7x_2^2 + 5x_3^2 + (4+2)x_1x_2 + (2+3)x_1x_3 + (-2+6)x_2x_3$$

이는 x_1, x_2, x_3 의 이차함수이다. 일반적으로, $\mathbf{x} = (x_1, \dots, x_n)'$ 이고 $\mathbf{A}_{n \times n} = (a_{ij})$ 이면,

$$\mathbf{x}' \mathbf{A} \mathbf{x} = \sum a_{ii} x_i^2 + \sum_{i \neq j} \sum a_{ij} x_i x_j$$
$$= \sum a_{ii} x_i^2 + \sum_{i < j} \sum (a_{ij} + a_{ji}) x_i x_j$$

 $i \neq j$ 일 때 $x_i x_j$ 의 계수가 a_{ij} 와 a_{ji} 의 합이므로, 대응하는 행렬 ${\bf A}$ 는 유일하지 않다. 즉,

$$x_1^2 + 7x_2^2 + 5x_3^2 + (4+2)x_1x_2 + (2+3)x_1x_3 + (-2+6)x_2x_3$$

= $x_1^2 + 7x_2^2 + 5x_3^2 + (3+3)x_1x_2 + (3+2)x_1x_3 + (0+4)x_2x_3$

따라서, 만약 우리가

$$\mathbf{B} = \left[\begin{array}{rrr} 1 & 3 & 3 \\ 3 & 7 & 0 \\ 2 & 4 & 5 \end{array} \right]$$

를 취하면

 $\mathbf{x}'\mathbf{A}\mathbf{x} = \mathbf{x}'\mathbf{B}\mathbf{x}$ 이다. 그러므로, 이차형식을 정의할 때 우리는 종종 \mathbf{A} 가 대칭이라고 가정한다. 그러면 특정 이차형식에 대응하는 행렬은 유일해진다. 위의 이차형식에 대응하는 대칭행렬은

$$\mathbf{A} = \left[\begin{array}{rrr} 1 & 3 & 5/2 \\ 3 & 7 & 2 \\ 5/2 & 2 & 5 \end{array} \right]$$

이고 이는 유일하다.

1.6.2 양의 정부호 행렬 (positive definite matrix)

(1) 정의:

스칼라는 양수 또는 음수임이 명확하지만, 행렬이 양수 또는 음수라고 정의하는 것은 불가능하다. 따라서 행렬의 부호는 이차형식을 사용하여 정의되다. 행렬

$$\mathbf{A} = \left[\begin{array}{rrr} 2 & 2 & 1 \\ 2 & 5 & 1 \\ 1 & 1 & 2 \end{array} \right]$$

를 고려하고 대응하는 이차형식은

$$\mathbf{x}' \mathbf{A} \mathbf{x} = 2x_1^2 + 5x_2^2 + 2x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$$
$$= (x_1 + 2x_2)^2 + (x_1 + x_3)^2 + (x_2 + x_3)^2$$

이는 모든 x_1, x_2, x_3 가 0인 경우를 제외하고는 항상 양수이다. 이 경우 우리는 A를 양의 정부호라고 부른다. 일반적으로, $\mathbf{x}'\mathbf{A}\mathbf{x}>0, \forall x\neq 0$ 이면 A를 양의 정부호(p.d.)라고 한다. 반면에,

$$\mathbf{A} = \begin{bmatrix} 37 & -2 & -24 \\ -2 & 13 & -3 \\ -24 & -3 & 17 \end{bmatrix}$$

를 고려하면 그 이차형식은

$$\mathbf{x}' \mathbf{A} \mathbf{x} = 37x_1^2 + 13x_2^2 + 17x_3^2 - 4x_1x_2 - 48x_1x_3 - 6x_2x_3$$
$$= (x_1 - 2x_2)^2 + (6x_1 - 4x_3)^2 + (3x_2 - x_3)^2$$

이고 $\mathbf{x} = (213)'$ 이 $\mathbf{x}' \mathbf{A} \mathbf{x} = 0$ 을 주기 때문에 $\mathbf{x} \neq \mathbf{0}$ 임에도 0이 될 수 있다.

이 행렬을 양의 준정부호(p.s.d.) 행렬이라고 한다. 일반적으로, $\mathbf{x'Ax} \ge 0$, $\forall \mathbf{x}$ 이고 어떤 \mathbf{x} 에 대해 $\mathbf{x'Ax} = 0$ 이면 A를 양의 준정부호(p.s.d.)라고 한다.

양의 정부호와 양의 준정부호 행렬은 종종 비음정부호(n.n.d.)라고 불린다. 이런 의미에서 음의 정부호(n.d.), 음의 준정부호(n.s.d.), 비양정부호(n.p.d.)를 정의할 수 있다. 또한, A가 어떤 종류의 정부호성으로도 분류될 수 없으면 부정부호라고 한다.

(2) 성질

- (a) $\mathbf{A}_{n \times n} = (a_{ij})$ 가 p.d.이면,
 - (i) $r(\mathbf{A}) = n$
 - (ii) $a_{ii} > 0$, $i = 1, \dots, n$
 - (iii) 임의의 $n \times n$ 정방행렬 P에 대해 P'AP는 p.d.이다.
- (b) $\mathbf{A}_{n\times n}=(a_{ij})$ 가 p.s.d.이면,
 - (i) $r(\mathbf{A}) < n$
 - (ii) $a_{ii} \geq 0, \quad i = 1, \dots, n$
 - (iii) 임의의 $n \times n$ 정방행렬 P에 대해 P'AP는 n.n.d.이다.
- (c) 대칭행렬 $\mathbf{A}_{n \times n}$ 가 p.d.가 되기 위한 필요충분조건은
 - (i) $\mathbf{B}'\mathbf{B} = \mathbf{A}$ 를 만족하는 풀랭크 행렬 $\mathbf{B}_{n \times n}$ 이 존재한다
 - (ii) A의 모든 고유값이 양수이다

(iii)
$$a_{11} > 0$$
, $\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, |\mathbf{A}| > 0$

- (d) 대칭행렬 $\mathbf{A}_{n\times n}$ 가 p.d.가 아닌 p.s.d.가 되기 위한 필요충분조건은
 - (i) $r(\mathbf{A}) \leq n$ 인 $\mathbf{B}'\mathbf{B} = \mathbf{A}$ 를 만족하는 행렬 $\mathbf{B}_{m \times n}, \, (m \leq n)$ 이 존재한다
 - (ii) ${f A}$ 의 모든 고유값이 0보다 크거나 같고, 적어도 하나의 고유값은 0이어야 한다
- (e) $\mathbf{A}_{m \times n}$ 의 계수가 $m \ (m < n)$ 이면,
 - (i) **A'A**와 **AA'**는 p.s.d.이다
- (f) $\mathbf{A}_{m \times n}$ 의 계수가 r (r < m, r < n)이면,
 - (i) **A'A**와 **AA'**는 p.s.d.이다

1.7 행렬의 투영과 분해 (projection and decomposition)

1.7.1 투영 (projection)

(1) 벡터에 대한 투영

 \mathbf{y} 를 벡터 \mathbf{x} 에 투영하면, 그 결과는 $c\mathbf{x}$ 가 되며, 여기서 $c=\frac{\mathbf{x}'\mathbf{y}}{\mathbf{v}'\mathbf{v}}$ 입니다.

(2) 열 공간에 대한 투영

 $\mathbf{x} = (\mathbf{1}, \mathbf{x}_1, \cdots, \mathbf{x}_{p-1})$ 를 $n \times p$ 행렬이라 하고, 여기서 $\mathbf{x}_i, i = 1, \dots, p-1$, 는 n-벡터입니다. 그러면 \mathbf{x} 의 열 공간은 다음과 같이 정의됩니다:

$$C_{\mathbf{x}} \equiv \operatorname{span} \{\mathbf{1}, \mathbf{x}_1, \cdots, \mathbf{x}_{p-1}\}\$$

$$= \{\beta_0 \mathbf{1} + \beta_1 x_1 + \cdots, +\beta_{p-1} x_{p-1} \mid \beta_0, \cdots, \beta_{p-1} \in R\}\$$

$$= \{\mathbf{x}\boldsymbol{\beta} \mid \boldsymbol{\beta} \in R^p\}\$$

벡터 \mathbf{y} 를 열 공간 $\mathcal{C}_{\mathbf{x}}$ 에 투영하면, 그 결과는 $\mathbf{H}\mathbf{y}$ 가 되며, 여기서 $\mathbf{H}=\mathbf{x}\left(\mathbf{x}'\mathbf{x}\right)^{-1}\mathbf{x}'\mathbf{y}$ 이고, 이를 투영 행렬이라고 합니다.

(3) 그램-슈미트 직교화 (Gram-Schmidt orthogonalization)

 $\mathbf{x}=(\mathbf{x}_0,\mathbf{x}_1,\cdots,\mathbf{x}_{p-1})$ 를 $\mathbf{x}_0=\mathbf{1}$ 인 $n\times p$ 행렬이라 합시다. 또한, $\Pi(\mathbf{x}\mid\mathbf{z})$ 를 벡터 \mathbf{x} 를 벡터 \mathbf{z} 에 투영한 것이라 하면, 즉

$$\Pi(\mathbf{x} \mid \mathbf{z}) = (\mathbf{z}'\mathbf{x}/\mathbf{z}'\mathbf{z})\,\mathbf{z}$$

 $\mathbf{x} = (\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_{n-1})$ 를 $\mathbf{Z} = (\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_{n-1})$ 로 다음과 같이 변환합니다:

$$\begin{aligned} \mathbf{z}_0 &= \mathbf{x}_0 \\ \mathbf{z}_1 &= \mathbf{x}_1 - \Pi\left(\mathbf{x}_1 \mid \mathbf{z}_0\right) \\ \mathbf{z}_2 &= \mathbf{x}_2 - \Pi\left(\mathbf{x}_2 \mid \mathbf{z}_0\right) - \Pi\left(\mathbf{x}_2 \mid \mathbf{z}_1\right) \\ &\vdots \\ \mathbf{z}_{p-1} &= \mathbf{x}_{p-1} - \Pi\left(\mathbf{x}_{p-1} \mid \mathbf{z}_0\right) - \Pi\left(\mathbf{x}_{p-1} \mid \mathbf{z}_1\right) - \dots - \Pi\left(\mathbf{x}_{p-1} \mid \mathbf{z}_{p-2}\right) \end{aligned}$$

그러면 $C_{\mathbf{x}} = C_{\mathbf{Z}}$ 이고, $\mathbf{z}_0, \mathbf{z}_1, \cdots, \mathbf{z}_{p-1}$ 는 서로 직교한다는 점에 주목하세요. 이 변환을 그램-슈미트 직교 화라고 합니다.

1.7.2 행렬의 분해 (decomposition)

(1) QR 분해

정의. $n \times p$ 행렬 \mathbf{x} 는 $\mathbf{x} = \mathbf{Q}\mathbf{R}$ 형태로 쓸 수 있습니다. 여기서 \mathbf{Q} 는 $n \times p$ 직교행렬이고 \mathbf{R} 은 $p \times p$ 상삼각행렬입니다. 이를 \mathbf{x} 의 $\mathbf{Q}\mathbf{R}$ 분해라고 합니다.

QR 분해를 계산하는 방법에는 3가지가 있습니다: (i) 그램-슈미트 과정, (ii) 하우스홀더 변환, (iii) 기븐스 회전. 여기서는 그램-슈미트 과정을 소개합니다. $\mathbf{X}=(\mathbf{x}_0,\mathbf{x}_1,\ldots,\mathbf{x}_{p-1})$ 가 그램-슈미트 직교화에 의해 $\mathbf{Z}=(\mathbf{z}_0,\mathbf{z}_1,\ldots,\mathbf{z}_{p-1})$ 로 변환되었다고 가정하고, 다음을 정의합니다:

$$\gamma_{ij} = \begin{cases} \mathbf{x}_{j}' \mathbf{Z}_{i} / \mathbf{Z}_{i}' \mathbf{Z}_{i} &, & i < j \\ 1 &, & i = j \\ 0 &, & i > j \end{cases}$$

이제 $\Gamma = (\gamma_{ij})$ 라 하면, 이는 $p \times p$ 상삼각행렬이고, $\mathbf{X} = \mathbf{Z}\Gamma$ 를 얻습니다. 따라서 $\mathbf{X} = \mathbf{Q}\mathbf{R}$ 이며, 여기서 $\mathbf{Q} = \mathbf{Z}$ 이고 $\mathbf{R} = \Gamma$ 입니다. QR 분해는 $\mathbf{X}'\mathbf{X}$ 의 역행렬을 계산할 때 매우 유용합니다. 왜냐하면 $\mathbf{X}'\mathbf{X} = \mathbf{R}'\mathbf{Q}'\mathbf{Q}\mathbf{R} = \mathbf{R}'\mathbf{R}$ 이고 $\mathbf{R}'\mathbf{R}$ 의 역행렬을 계산하는 것이 매우 쉽기 때문입니다.

(2) 촐레스키 분해 (Cholesky decomposition)

대칭이고 양정치인 행렬 ${f A}$ 에 대해, ${f A}={f R}'{f R}$ 을 만족하는 상삼각행렬 ${f R}$ 이 존재하며, 이 결과를 촐레스키 분해라고 합니다.

주어진 A에 대한 R의 계산은 다음 알고리즘을 기반으로 합니다.

단계 1.
$$r_{11}=a_{11}^{1/2},\ r_{ij}=a_{1j}/r_{11},\ j=2,\cdots,p$$

단계 $2.2 \le i \le p$ 에 대해,

$$r_{ii} = \left(a_{ii} - \sum_{k=1}^{i-1} r_{ki}^2\right)^{1/2},$$

$$r_{ij} = \left(a_{ij} - \sum_{k=1}^{i-1} r_{ki} r_{kj}\right) / r_{ii}, \quad i+1 \le j \le p$$

(3) 스펙트럴 분해 (spectral decomposition)

모든 $n \times n$ 대칭행렬 **A**는 다음과 같이 쓸 수 있습니다:

$$\mathbf{A} = \mathbf{\Gamma} \mathbf{D} \mathbf{\Gamma}'$$

여기서 $\Gamma = (\mathbf{u}_1, \dots, \mathbf{u}_n)$ 는 $n \times n$ 직교행렬이고 $\mathbf{D} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ 는 대각행렬입니다. 여기서 λ_i , $i = 1, \dots, n$ 는 A의 고유값이고, \mathbf{u}_i 는 λ_i 에 대응하는 고유벡터입니다. 이 분해를 스펙트럴 분해(또는 고유값 분해)라고 합니다. 또한, 다음과 같이 쓸 수 있음에 주목하세요:

$$\mathbf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i'$$

(4) 특이값 분해 (singular value decomposition)

모든 $n \times p$ (p < n) 행렬 **X**는 다음과 같이 쓸 수 있습니다:

$$X = USV'$$

여기서

- (a) U는 \mathbf{XX}' 의 n개 고유값 중 가장 큰 p개의 고유값에 대응하는 고유벡터로 구성된 $n \times p$ 직교행렬입니다.
- (b) $\mathbf{S} = \operatorname{diag}(s_1, \dots, s_p), s_1 \ge \dots \ge s_p \ge 0$ 는 $p \times p$ 대각행렬이며, 여기서 $s_i, i = 1, \dots, p$ 를 \mathbf{X} 의 특이값이라고 합니다. \mathbf{X} 의 특이값은 $\mathbf{X}'\mathbf{X}$ 의 고유값의 양의 제곱근임을 상기하세요. 왜냐하면

$$X'X = VSU'USV' = VS^2V'$$

이고, 스펙트럴 분해에 의해 $\mathbf{X}'\mathbf{X}$ 의 고유값이 \mathbf{S}^2 의 대각 원소임을 알 수 있습니다.

(c) V는 $\mathbf{X}'\mathbf{X}$ 의 고유벡터로 구성된 $p \times p$ 직교행렬입니다. 이 분해를 $n \times p$ (p < n) 행렬 \mathbf{X} 의 특이값 분해(SVD)라고 합니다.

1.8 행렬의 기타 사항 (Miscellaneous)

1.8.1 합산 벡터 (Summing Vector)와 중심화 행렬 (Centering Matrix)

 $\mathbf{1}_n=(1,1,\cdots,1)'$ 를 합산 벡터라고 부릅니다. n차원 벡터 $\mathbf{x}=(x_1,\cdots,x_n)'$ 에 대해 $\mathbf{1}'\mathbf{x}=\sum x_i$ 이기 때문 입니다. 또한, $\mathbf{1}_r\mathbf{1}'_s$ 는 모든 성분이 1인 $r\times s$ 행렬이며, 종종 $\boldsymbol{J}_{r\times s}$ 로 표기됩니다. 더 나아가, $\boldsymbol{J}_{n\times n}$ 을 \boldsymbol{J}_n 으로 표기하며, $\boldsymbol{J}_n^2=n\boldsymbol{J}_n$ 임을 쉽게 보일 수 있습니다. 특히,

$$\mathbf{C} = \boldsymbol{I} - \frac{1}{n} \boldsymbol{J}_n$$

를 중심화 행렬이라고 부르며, 다음을 만족합니다:

$$C = C' = C^2$$
, $C1 = 0$, $CJ = JC = 0$

중심화 행렬의 예로, 다음과 같은 $\mathbf{x}=(x_1,\cdots,x_n)'$ 에 대한 표본 분산 s^2 를 생각할 수 있다.

$$(n-1)s^{2} = \sum (x_{i} - \bar{x})^{2} = \sum x_{i}^{2} - n\bar{x}^{2} = \mathbf{x}'\mathbf{x} - n\left(\frac{1}{n}\mathbf{1}'\mathbf{x}\right)^{2}$$
$$= \mathbf{x}'\mathbf{x} - \frac{1}{n}\mathbf{x}'\mathbf{1}\mathbf{1}'\mathbf{x} = \mathbf{x}'\mathbf{x} - \frac{1}{n}\mathbf{x}'J\mathbf{x} = \mathbf{x}'\left(I - \frac{1}{n}J\right)\mathbf{x} = \mathbf{x}'\mathbf{C}\mathbf{x}$$

1.8.2 행렬의 미분 (differentiation)

(i) **x**, **y**가 *n*차원 벡터라면,

$$\frac{\partial}{\partial \mathbf{x}}(\mathbf{x}'\mathbf{y}) = \frac{\partial}{\partial \mathbf{x}}(\mathbf{y}'\mathbf{x}) = \mathbf{y}$$

(ii) \mathbf{x} 가 n차원 벡터이고 \mathbf{A} 가 $n \times n$ 행렬이라면,

$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{x}' \mathbf{A}) = \mathbf{A}$$
$$\frac{\partial}{\partial \mathbf{x}} (\mathbf{A} \mathbf{x}) = \mathbf{A}'$$

(iii) n차원 벡터 \mathbf{x} 의 이차형식의 미분은 다음과 같다

(iv) $f(\mathbf{x}) = f(x_1, \dots, x_n)$ 의 x_i 와 x_i 에 대한 2차 미분은

$$\boldsymbol{H} = \left\{ \frac{\partial^2 f}{\partial x_i \partial x_j} \right\} = \frac{\partial^2 f}{\partial \mathbf{x} \partial \mathbf{x}'}$$

이는 $n \times n$ 행렬이며 헤시안 행렬이라고 불린다.

1.8.3 크로네커 곱 (Kronecker Product)

(1) 정의

 $\mathbf{A}_{p imes q}$ 와 $\mathbf{B}_{m imes n}$ 의 크로네커 곱 또는 직접 곱은 다음과 같이 정의된다

$$\mathbf{A}_{p\times q}\otimes\mathbf{B}_{m\times n} = \left[\begin{array}{ccc} a_{11}\mathbf{B} & \cdots & a_{1q}\mathbf{B} \\ \vdots & & \vdots \\ a_{p1}\mathbf{B} & \cdots & a_{pq}\mathbf{B} \end{array}\right]$$

이는 $pm \times qn$ 행렬이다.

(2) 성질

- (a) $(\mathbf{A} \otimes \mathbf{B})' = \mathbf{A}' \otimes \mathbf{B}'$
- (b) $(\mathbf{A} \otimes \mathbf{B})(\mathbf{x} \otimes \mathbf{y}) = \mathbf{A}\mathbf{x} \otimes \mathbf{B}\mathbf{y}$
- (c) $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$, 여기서 \mathbf{A} 와 \mathbf{B} 는 정방행렬이다
- (d) $r(\mathbf{A} \otimes \mathbf{B}) = r(\mathbf{A})r(\mathbf{B})$
- (e) $\operatorname{tr}(\mathbf{A} \otimes \mathbf{B}) = \operatorname{tr}(\mathbf{A}) \operatorname{tr}(\mathbf{B})$
- (f) $|\mathbf{A}_{p \times p} \otimes \mathbf{B}_{m \times m}| = |\mathbf{A}|^m |\mathbf{B}|^p$
- (g) $\mathbf{A} \otimes \mathbf{B}$ 의 고유값은 \mathbf{A} 의 고유값과 \mathbf{B} 의 고유값의 곱이다

1.8.4 벡터화 (vectorization)

(1) 정의

행렬 $\mathbf{A}_{m \times n}$ 을 $\mathbf{A} = [\mathbf{A}_1, \cdots, \mathbf{A}_n]$ 로 쓸 때, \mathbf{A}_i 는 m차원 i번째 열벡터이다. 그러면 $\mathrm{vec}(\mathbf{A})$ 는 다음과 같이 정의된다

$$\operatorname{vec}(\mathbf{A}) = \left[egin{array}{c} \mathbf{a}_1 \ dots \ \mathbf{a}_n \end{array}
ight]$$

즉, $vec(\mathbf{A})$ 는 mn차원 벡터이다. 예를 들어,

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 5 \\ 2 & 4 & 6 \end{bmatrix}, \quad \text{vec}(\mathbf{A}) = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \end{bmatrix}$$

(2) 성질

- (a) $\operatorname{vec}(\mathbf{ABC}) = (\mathbf{C}' \otimes \mathbf{A}) \operatorname{vec} \mathbf{B}$
- (b) $\operatorname{tr}(\mathbf{AB}) = (\operatorname{vec} \mathbf{A}')' \operatorname{vec} \mathbf{B}$
- (c) $\operatorname{tr}(\mathbf{AZ'BZC}) = (\operatorname{vec}\mathbf{Z'})'(\mathbf{CA} \otimes \mathbf{B'}) \operatorname{vec}\mathbf{Z}$