Relatório 03

Vinícius de Oliveira Peixoto Rodrigues (245294)

Março de 2023

1 Introdução

No modelo OSI, que segmenta em diferentes camadas os componentes e processos de um sistema de comunicação, define-se como a **camada 4**, ou **camada de transporte**, o conjunto de protocolos e serviços cujo objetivo é prover um canal de comunicação host-a-host para uso de aplicações. Nessa camada, os protocolos fornecem serviços como confiabilidade, controle de fluxo, multiplexão e *streams* de dados orientadas a conexão.

Nessa camada, os dois protocolos mais importantes são o TCP (Transmission Control Protocol) e UDP User Datagram Protocol. O TCP busca oferecer uma stream de bytes confiável, orientada a conexão, ordenada e com checagem de erros; além disso, o protocolo implementa também funcionalidades para controle de congestionamento de rede. O UDP, por outro lado, é significativamente mais simples, fornecendo funcionalidades de transporte de mensagens (datagramas) sem o conceito de conexão, ordenamento ou controle de fluxo. O UDP, assim como o TCP, fornece checagem de integridade por meio de checksums.

2 Objetivos

O objetivo geral deste experimento é explorar o funcionamento dos protocolos TCP e UDP. Em particular, os objetivos específicos do experimento são:

- Analisar o conteúdo de pacotes TCP e UDP por meio da ferramenta Wireshark
- Estudar o processo de three-way handshake do protocolo TCP, assim trocas de pacotes envolvidas no processo
- Investigar os mecanismos de controle de fluxo do TCP por meio da geração de tráfego usando a ferramenta ITGSend
- Explorar as funcionalidades da ferramenta mininet-wifi
- Compreender os princípios básicos de funcionamento de arquiteturas de rede wireless

• Fazer uso do simulador para investigar a relação entre parâmetros físicos e a performance de redes sem fio

3 Metodologia

O experimento dividiu-se em sete etapas:

3.1 Primeiros passos

Foi realizada a criação de uma topologia wireless básica, com um AP e duas estações (sta1 e sta2). Em seguida, foram realizados testes básicos de conexão e desconexão entre as estações e o access point; finalmente, foram realizadas medições de largura de banda entre as duas estações.

3.2 Exploração dos parâmetros do simulador

Foi explorado o ajuste de parâmetros das estações no simulador, em particular o de posição das estações. Além disso, foi realizada uma análise dos diversos parâmetros de configuração disponíveis no simulador.

3.3 Visualização da topologia wireless

3.4 Análise de quadros

Análise de quadros 802.11 gerados pelo simulador no Wireshark

4 Resultados e Discussão

Parte 1

Qual é o atraso observado entre sta1 e sta2? Houve perda de pacotes no canal? Justifique suas respostas de forma objetiva.

O atraso médio observado na saída do comando ping é de 9.8 segundos. Além disso, não foram observadas perdas de pacote.

Use a ferramenta iperf para avaliar a banda disponível (Mbps) entre sta1 e sta2.

```
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp_seq=1 ttl=64 time=4.37 ms

64 bytes from 10.0.0.2: icmp_seq=2 ttl=64 time=2.42 ms

64 bytes from 10.0.0.2: icmp_seq=3 ttl=64 time=9.34 ms

64 bytes from 10.0.0.2: icmp_seq=4 ttl=64 time=2.45 ms

64 bytes from 10.0.0.2: icmp_seq=5 ttl=64 time=11.8 ms

64 bytes from 10.0.0.2: icmp_seq=6 ttl=64 time=13.2 ms

64 bytes from 10.0.0.2: icmp_seq=7 ttl=64 time=8.85 ms

64 bytes from 10.0.0.2: icmp_seq=8 ttl=64 time=8.85 ms

64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=24.0 ms

64 bytes from 10.0.0.2: icmp_seq=9 ttl=64 time=10.1 ms

64 bytes from 10.0.0.2: icmp_seq=10 ttl=64 time=10.1 ms

64 bytes from 10.0.0.2: icmp_seq=11 ttl=64 time=19.5 ms

^C

--- 10.0.0.2 ping statistics --

12 packets transmitted, 12 received, 0% packet loss, time 11047ms

rtt min/avg/max/mdev = 2.419/9.758/23.996/6.497 ms
```

Figura 1: ping entre sta1 e sta2.

```
mininet-wifi> iperf sta1 sta2

*** Iperf: testing TCP bandwidth between sta1 and sta2

*** Results: ['10.4 Mbits/sec', '11.3 Mbits/sec']
```

Figura 2: Teste de largura de banda entre sta1 e sta2.