Análise

Cálculo Diferencial em \mathbb{R}^n : Extremos Condicionados

Maria Elfrida Ralha & Maria Isabel Caiado

Departamento de Matemática e Aplicações (Universidade do Minho)

MIE: Informática

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Condicionados

março 2019

1/10

Cálculo Diferencial em \mathbb{R}^n : Extremos Condicionados

- Generalidades
 - Teorema de Weierstrass
- Método de Redução da dimensão
 - Sobre os extremos da fronteira
- Método de Multiplicadores de Lagrange

Problema

• Determinar os extremantes da função

$$f: U \subset \mathbb{R}^n \longrightarrow \mathbb{R}$$

quando as variáveis independentes estão sujeitas a restrições.

Falamos, neste caso, de

Extremos condicionados

Enunciaremos 2 Métodos de abordagem ao Problema:

- Redução de dimensão
- Multiplicadores de Lagrange

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Condicionados

março 2019

3/10

Teorema (de Weierstrass)

Se f é um campo escalar de n variáveis, definido e contínuo num conjunto $D_f \subset \mathbb{R}^n$ que é fechado e limitado, então f tem um maximizante global e um minimizante global em D_f .

Obs: Os extremantes globais podem ocorrer nos pontos críticos de f, mas também podem pertencer à fronteira de D_f .

Localizar, nos casos mais simples, os extremantes globais de uma função f, nas condições do teorema, consiste em:

- Identificar os pontos críticos de f e calcular o valor de f em cada um desses pontos.
- 2 Encontrar os extremantes de f, que estão na fronteira de D_f (isto é, que são condicionados).
- 3 Comparar os valores encontrados nos passos anteriores. Concluir que o maior valor encontrado é o máximo absoluto de f em D_f , enquanto que o menor destes valores é o seu mínimo absoluto.

Sobre os extremos, da fronteira

Com $B, U \subset \mathbb{R}^n$ conjuntos abertos, $f: U \longrightarrow \mathbb{R}$ e $g: B \longrightarrow \mathbb{R}$; considere-se a estrutura de nível k da função¹ g:

$$\Sigma = \{ \mathbf{x} \in B : g(\mathbf{x}) = k \}.$$

• [Extremante condicionado] Um ponto $\mathbf{a} \in (U \cap \Sigma)$ diz-se um extremante de f condicionado pela condição $g(\mathbf{x}) = k$ quando é um extremante de $f \Big|_{\Sigma}$, isto é, da restrição de f ao conjunto Σ .

Obs: Usámos, nestes exemplos, um procedimento de "redução da dimensão".

¹ Caso se tenha $g(x) =$	k também se	poderia	definir	$G(\mathbf{x}) = g(\mathbf{x})$) <i>– k</i> e	considera	米 绘
$G(\mathbf{x}) = 0.$							

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Condicionados

março 2019

5/10

Exemplo

- 1. Quais os extremos absolutos da função f em D, sabendo que $f(x,y)=x^2-2xy+2y$ e $D=\{(x,y)\in\mathbb{R}^2:0\leq x\leq 3\ \text{e}\ 0\leq y\leq 2\}$?
 - Quais os pontos críticos?
 - Quais os extremantes de f na fronteira de D, isto é, nas retas definidas por x=0, x=3, y=0 e y=2?
 - Em suma/conclusão:

(a,b)	(1,1)	(0,2)	(0,0)	(3,0)	(3,2)	(2,2)	
f(a,b)	1	4	<u>0</u>	9	1	0	

Exercício

- **2.** Quais os extremos absolutos da função g em D, sabendo que g(x,y)=sen(xy) e $D=\{(x,y)\in\mathbb{R}^2:0\leq x\leq\pi\quad\text{e}\quad0\leq y\leq1\}$?
 - Quais os pontos críticos?
 - Quais os extremantes de f na fronteira de D, isto é, nas retas definidas por x=0, $x=\pi$, y=0 e y=1?
 - Em suma/conclusão:

(a,b)	(0,0)	(0,y)	(x,y): $xy = \frac{\pi}{2}$	
f(a,b)	0	0	1	

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Condicionados

março 2019

7/10

Exemplo

Encontre um retângulo de área máxima que pode ser inscrito em uma elipse, $\mathscr E$, definida por $\frac{x^2}{9}+\frac{y^2}{16}=1$.

- A função $g: \mathbb{R}^2 \longrightarrow \mathbb{R}$, definida por $g(x,y) = \frac{x^2}{9} + \frac{y^2}{16}$ é tal que a sua curva de nível 1 é \mathscr{E} , impõe a "restrição"ao problema (de otimização), isto é condiciona a função área...
- A função área pode definir-se como A(x, y) = 4xy, sendo que (x, y) designa um vértice de um retângulo, no primeiro quadrante.

Obs: Recorde-se que 2 curvas são tangentes em um ponto quando os respetivos vetores gradiente forem paralelos!

Multiplicadores de Lagrange

O problema da determinação de extremos de uma função $f: \mathbb{R}^n \longrightarrow \mathbb{R}$, de classe \mathscr{C}^1 , passa resolver um sistema de n equações e n incógnitas, definido por (com $i=1,\cdots,n$):

$$\nabla f(x_i) = \vec{0}.$$
 (*)

O método, denominado, de os Multiplicadores de Lagrange usa-se para encontrar os extremos de f, sob m restrições; a saber (com $j = 1, \dots, m$):

$$g_i(\mathbf{x}) = 0$$
, onde $g_i : \mathbb{R}^n \longrightarrow \mathbb{R}$.

Seja $L:\mathbb{R}^{n+m}\longrightarrow\mathbb{R}$ uma função tal que

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) - \sum_{j} \lambda_{j} g_{j}(\mathbf{x}),$$

cujos extremos são os extremos de f condicionados por g_j . Identificar os extremos de L, usando gradientes, consiste em resolver o sistema (de n+m equações e n+m incógnitas), equivalente a (*)

Ralha, M. E. & Caiado, M. I. (DMA)

Extremos Condicionados

março 2019

9/10

[Método dos multiplicadores de Lagrange:: algoritmo]

Para identificar os extremantes (livres) da função $f:U\subset\mathbb{R}^n\longrightarrow\mathbb{R}$, de classe \mathscr{C}^1 , sujeitos a m restrições $g_i(\mathbf{x})=0$, supondo que esses valores extremantes existem:

① Identificar $\mathbf{x} \in \mathbb{R}^n$ (e $\lambda_i \in \mathbb{R}$) resolvendo o sistema de n+m equações

$$\begin{cases}
\nabla f(\mathbf{x}) = \lambda_j \nabla g_j(\mathbf{x}) \\
g_j(\mathbf{x}) = 0
\end{cases}$$

Nota

O Método dos multiplicadores de Lagrange (a exemplo do Teste das $1.^{as}$ derivadas, para extremos livres) só estabelece condições necessárias para que um ponto seja extremante condicionado de f (sujeito às restrições g_i)

② Calcular o valor de f em todos \mathbf{x} encontrados no passo anterior. O maior desses valores é o máximo de f e o menor é o mínimo de f sujeita a $g_j(\mathbf{x}) = 0$.