(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2005 年2 月3 日 (03.02.2005)

PCT

(10) 国際公開番号 WO 2005/010501 A1

(51) 国際特許分類7:

G01N 13/16

(21) 国際出願番号:

PCT/JP2004/010608

(22) 国際出願日:

2004年7月26日(26.07.2004)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2003-281533 2003年7月29日(29.07.2003) 月

(71) 出願人 (米国を除く全ての指定国について): 株式 会社東京大学TLO (TOUDAI TLO, LTD.) [JP/JP]; 〒 1130033 東京都文京区本郷 7-3-1 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 宮野 健次郎 (MIYANO, Kenjiro) [JP/JP]; 〒1810001 東京都三度市 井の頭 1-2 4-3 Tokyo (JP). 小川 直毅 (OGAWA, Naoki) [JP/JP]; 〒1540005 東京都世田谷区三宿 2-11-23-302 Tokyo (JP).

- (74) 代理人: 成瀬 重雄 (NARUSE, Shigeo); 〒1020093 東京 都千代田区平河町 2-3-1 1 花菱イマス平河町ビル 4 階 成瀬・稲葉・井波特許事務所 Tokyo (JP).
- (81) 指定国 (表示のない限り、全ての種類の国内保護が可能): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) 指定国(表示のない限り、全ての種類の広域保護が可能): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW). ユーラシア (AM, AZ, BY,

/続葉有/

(54) Title: SCANNING-TYPE PROBE MICROSCOPE

(54) 発明の名称: 走査型プローブ顕微鏡

(57) Abstract: A scanning-type probe microscope easily usable even in a severe environment. An optical fiber (32) irradiates light from a laser diode (31) toward the surface of a cantilever (1). The irradiated light is collected by a lens (33) and irradiated to the surface of the cantilever (1). The light reflected by the surface of the cantilever (1) is collected by lenses (411, 412) and inputted into optical fibers (421, 422). The light passed through the optical fibers (421, 422) is received by photodiodes (431, 432). The inclination of the cantilever (1) is detected based on variation in the amount of light received.

VO 2005/010501 A