Деревья и циклы

Определение 1. Дерево – связный граф без циклов.

Определение 2. Дерево – связный граф, у которого число вершин на единицу больше числа ребер.

Определение 3. Дерево – граф, любые две вершины которого соединены единственной простой цепью.

Определение 4. Дерево – граф без циклов, но при добавлении любого одного ребра получим ровно один простой цикл.

Вершина, инцидентная только одному ребру – висячая.

Докажем, например, эквивалентность определений 1 и 3.

 $1\Rightarrow 3$. Пусть существует цикл $v_i,v_{i_1},\ldots,v_{i_k},v_j,\ldots,v_{j_k},v_i$. Тогда вершины v_i и v_j соединяют две цепи: $v_i,v_{i_1},\ldots,v_{i_k},v_j$ и v_j,\ldots,v_{j_k},v_i .

 $3\Rightarrow 1$. Пусть существуют две цепи, соединяющие вершины v_i и v_j : $v_i,v_{i_1},\ldots,v_{i_k},v_j$ и v_j,\ldots,v_{j_k},v_i . Тогда можно построить цикл: $v_i,v_{i_1},\ldots,v_{i_k},v_j,\ldots,v_{j_k},v_i$.

Граф, состоящий из нескольких деревьев, называется лесом. Вершина степени 1 – листом.

Определение 5. Остовным деревом графа G = < V, Q > называется подграф $D = < V, \bar{Q} >$, содержащий все вершины графа G и являющийся деревом.

Алгоритм нахождения остовного дерева ${\it D}=<{\it V}, {\it \overline{\it Q}}>{\it c}$ вязного графа ${\it G}=<{\it V},{\it Q}>$

- 1) $D_1 = < v_{i_1}$, $\emptyset > -$ выбираем из множества вершин графа G = < V, Q > произвольную вершину v_{i_1} .
- 2) $D_2 = <\{v_{i_1}, v_{i_2}\}, (v_{i_1}, v_{i_2})>$ добавляем к D_1 вершину v_{i_2} , смежную с v_{i_1} , и соединяем их ребром (v_{i_1}, v_{i_2}) .

.....

n) $D_n=D=< V$, ar Q> — добавляем к D_{n-1} новую вершину v_{i_n} (последнюю) соединяем её ребром с одной из смежных вершин множества $\{v_{i_1},\dots,v_{i_{n-1}}\}$.

Обоснование:

- 1) так как каждый раз новая вершина связана с одной из предыдущих граф $D = < V, \bar{Q} > \text{связный};$
- 2) граф D = < V, $\bar{Q} >$ не содержит циклов, так как каждая новая вершина висячая.

У графа может быть несколько остовных деревьев.

Пример 1. Этапы построения одного из остовных деревьев связного графа

Остовное дерево минимального веса

Рассмотрим нагруженный неориентированный граф G = < V, Q >, в котором каждому ребру (v_i, v_j) ставится в соответствие вес $l_{ij} \ge 0$.

Определение 6. Остовным деревом D минимального веса называется остовное дерево с наименьшей суммой весов его ребер.

$$L(D) = \sum_{\substack{\text{по всем весам } l_{ij} \\ \text{ребер дерева } D}} l_{ij}
ightarrow min.$$

Алгоритм Краскала построения остовного дерева минимального веса ${m D}=<{m V}, {ar Q}>$ связного графа ${m G}=<{m V}, {m Q}>$

- 1) Выбираем все вершины графа G.
- 2) Добавляем все дуги, имеющие минимальный вес, так, чтобы не было циклов.
- 3) Добавляем дуги минимального веса из оставшихся весов, так, чтобы не было циклов до получения n-1 ребра.

Обоснование алгоримма. Предположим, что существует остовное дерево S меньшей длины, чем D: L(S) < L(D). В D найдем ребро $q_{d_1} \in D$, $q_{d_1} \notin S$. Добавим его в S, получим ровно один простой цикл. Удалим из этого цикла ребро $q_{S_1} \in S$, $q_{S_1} \notin D$. Получим дерево S_1 . Так как по построению D вес $l(q_{d_1}) \leq l(q_{S_1})$, то $L(S) \geq L(S_1)$. И т.д. Заменим все ребра дерева S на ребра дерева D. Получим цепочку $L(S) \geq L(S_1)$... $\geq L(D)$. Противоречит предположению: L(S) < L(D).

У графа может быть несколько остовных деревьев минимальной длины.

Пример 2. У графа, изображенного на рисунке, два остовных дерева минимального веса: из двух дуг, весом 2, чтобы не было циклов, можно выбрать только одну. Их вес равен 13.

Цикломатическое число графа. Базис циклов

Определение 7. Цикломатическое число графа $\gamma(G) = m - n + p$, где p – число компонент связности, m – число ребер, n – число вершин.

Для связного графа p = 1 и цикломатическое число равно $\gamma(G) = m - n + 1$

Цикломатическое число для дерева равно нулю, т.к. n = m + 1. Циклов нет.

Рассмотрим неориентированный граф и зададим на нем произвольную ориентацию. Каждому циклу μ поставим в соответствие вектор-цикл $c(\mu)$.

Определение 8. Вектор-циклом $c(\mu)$ назовем вектор с m компонентами $c(\mu) = (c_1(\mu), ..., c_m(\mu))$, где $c_i(\mu)$ равно разности числа проходов ребра q_i по и против направления ориентации.

Определение 9. Циклы μ_1 ... μ_k называются независимыми, если соответствующие векторциклы $c(\mu_1)$... $c(\mu_k)$ ЛНЗ.

Определение 10. Цикл μ называют линейной комбинацией циклов μ_1 ... μ_k , если векторцикл $c(\mu)$ – линейная комбинация $c(\mu_1)$... $c(\mu_k)$.

Определение 11. Циклы μ_1 ... μ_k образуют базис циклов, если:

- 1) Они независимые.
- 2) Любой цикл можно представить как линейную комбинацию $\mu_1 \dots \mu_k$.

Утверждение 1. Число циклов в базисе равно цикломатическому числу графа.

(Без доказательства).

Алгоритм нахождения базиса циклов связного графа G=< V, Q>

1. Строим остовное дерево графа с n-1 ребром (вершин -n)

$$q_{i_1}, \ldots, q_{i_{n-1}}$$

2. Добавляем по одному из оставшихся ребер q_{i_n}, \ldots, q_{i_m} к остовному дереву, получаем ровно один простой цикл, который и берем в базис циклов.

Обоснование.

1. Число циклов, построенных по алгоритму, равно

$$m - (n - 1) = m - n + 1 = \gamma(G)$$

цикломатическому числу связного графа. Из утверждения 1 следует, что столько циклов в базисе.

2. Все циклы независимые, т.к. имеют ребро, которого нет ни в одном другом цикле.

Для вектор-циклов получаем аналог ФСР линейной системы (одна единица или минус единица, а остальные – нули) – ЛНЗ.

Пример 3. Задан неориентированный граф, на котором задаем произвольную ориентацию

- 1. Находим произвольное остовное дерево D.
- 2. Добавляем по одному ребру из графа, получаем ровно один простой цикл. Записываем соответствующие вектор циклы.

$$(D + q_1)\mu_1: V_1 - V_4 - V_3 - V_1 \rightarrow C(\mu_1) = (1, -1, 0, 1, 0, 0)$$

$$(D + q_3)\mu_2: V_1 - V_2 - V_4 - V_1 \to C(\mu_2) = (0, 1, 1, 0, -1, 0)$$

$$(D + q_6)\mu_3$$
: $V_2 - V_3 - V_4 - V_2 \rightarrow C(\mu_3) = (0, 0, 0, -1, 1, 1)$

Цикломатическая матрица

$$C_{\gamma \times m} = \begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{pmatrix}$$

Определение 12. Цикломатической матрицей C неориентированного графа называется матрица размерности $\gamma \times m$, строки которой есть вектор-циклы базиса циклов.

Законы Кирхгофа для токов и напряжения

Закон Кирхгофа для напряжений.

Пусть
$$U = \begin{pmatrix} U_1 \\ \vdots \\ U_m \end{pmatrix}$$
 – вектор напряжений. Тогда для замкнутого контура выполняется

 $(c(\mu_i), U) = 0$. Откуда получаем:

$$C * U = 0$$

При решении данной системы напряжения, соответствующие добавленным ребрам при построении базиса циклов, являются базисными переменными.

Пример 4. Рассмотрим электрическую схему с сопротивлениями и э.д.с.

Закон Кирхгофа для напряжений (см. пример 3) примет вид:

$$\begin{pmatrix} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} U_1 \\ \vdots \\ U_m \end{pmatrix} = 0$$

6

$$\begin{cases} U_1 - U_2 + U_4 = 0 \\ U_2 + U_3 - U_5 = 0 \\ -U_4 + U_5 + U_6 = 0 \end{cases} = > \begin{cases} U_1 = U_2 - U_4 \\ U_3 = -U_2 + U_5 \\ U_6 = U_4 - U_5 \end{cases}$$

 U_1, U_3, U_6 соответствуют добавленным ребрам — базисные переменные. U_2, U_4, U_5 — свободные.

Закон Кирхгофа для токов

Пусть
$$I = \begin{pmatrix} I_1 \\ \vdots \\ I_m \end{pmatrix}$$
— вектор токов.

R*I=0.

B – матрица инцидентности графа. По свойству матрицы инцидентности: $rg \ B = n - 1$.

Пример 5. Запишем матрицу инцидентности рассматриваемого ранее графа:

$$B = \begin{pmatrix} 1 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & -1 \\ -1 & 0 & 0 & 1 & 0 & 1 \\ 0 & -1 & 0 & -1 & -1 & 0 \end{pmatrix}, \qquad rgB = 4 - 1 = 3$$

По закону Кирхгофа получаем систему:

$$\begin{cases} I_1 + I_2 - I_3 = 0 \\ I_3 + I_5 - I_6 = 0 \\ -I_1 + I_4 + I_6 = 0 \\ -I_2 - I_4 - I_5 = 0 \end{cases} \Longrightarrow \begin{cases} I_1 + I_2 - I_3 = 0 \\ I_3 + I_5 - I_6 = 0 \\ -I_1 + I_4 + I_6 = 0 \end{cases}.$$

Одно любое уравнение вычеркиваем, так как rgB = 3.

С учетом закона Ома U = I * R окончательно получим систему:

$$\begin{cases} I_2R_2 - I_4R_4 = E_1 \\ I_2R_2 + I_3R_3 - I_5R_5 = 0 \\ -I_4R_4 + I_5R_5 + I_6R_6 = 0 \\ I_1 + I_2 - I_3 = 0 \\ I_3 + I_5 - I_6 = 0 \\ -I_1 + I_4 + I_6 = 0 \end{cases}$$

В системе 6 уравнений и 6 неизвестных – токи.