

LT8910

2.4G 可变数据率射频芯片

芯片特点

- 包括射频前端和数字基带的单芯片解决方案。
- 支持跳频
- 支持 SPI 和 I2C 接口
- 内置 auto_ack 功能
- 数据率 1Mbps, 250Kbps, 125Kbps, 62.5Kbps
- 极低功耗
- 支持信号能量检测
- 单芯片传输距离 200 米
- 支持 QFN4*4 和 SSOP16 的封装

典型应用

- 遥控
- 无线键盘鼠标
- 无线组网
- 智能家居
- 工业和商用近距离通信
- IP 电话,无绳电话
- 机器间相互通信

芯片简介

LT8910 是一款低成本,高集成度的 2.4GHZ 的无线收发芯片,片上集成发射机,接收机,频率综合器,GFSK 调制解调器。发射机支持功率可调,接收机采用数字扩展通信机制,在复杂环境和强干扰条件下,可以达到优良的收发性能。外围电路简单,只需搭配 MCU以及少数外围被动器件。LT8910 传输 GFSK 信号,发射功率最大可以到 6dBm。接收机采用低中频结构,接收灵敏度可以达到-96dBm@62.5Kbps。数字信道能量检测可以随时监控信道质量。

片上的发射接收 FIFO 寄存器可以和 MCU 进行通信,存储数据,然后在空中传输。它内置了 CRC,FEC,auto-ack 和重传机制,可以大大简化系统设计并优化性能。

数字基带支持 4 线 SPI 和 2 线 I2C 接口,此外还有 Reset, Pkt_flag, Fifo_flag 三个数字接口。

为了提高电池使用寿命,芯片在各个环节都降低功耗,芯片最低工作电压可以到 1.9V,在保持寄存器值条件下,最低电流为 1uA。

芯片采用 QFN24 4*4mm 和 SSOP16 封装,符合 RoHS 标准。

PRELIMINARY

1. 2. 3. 4. 5.	材 月 夕 管	英块方框图	. 5 . 6 . 9
	6. 1.	SPI 默认格式	13
	6. 2.	SPI Optional Format	13
_		SPI 时序要求	
7.		IC 接口	
	7. 1.	W NING	
	7. 2.	(. —	
^		I2C 器件地址	
8. 9.	_	犬态机框图 寄存器信息	
		Register 3 - Read only	
	9. 2.		
	9. 3.	Register 7	18
	9. 4.	Register 9	19
	9. 5.	Register 10	19
	9. 6.	Register 11	19
	9. 7.	Register 23	19
	9. 8.	Register 27	20
	9. 9.	Register 29 - Read only	20
	9. 10.	Register 30 - Read only	20
	9. 11.	Register 31 - Read only	20
	9. 12.	Register 32	21
	9. 13.	Register 33	23
	9. 14.	Register 34	23
	9. 15.	Register 35	23
	9. 16.	Register 36	24
	9. 17.	Register 37	24
	9. 18.	Register 38	25
	9. 19.	Register 39	25
	9. 20.	Register 40	25

9. 21.	Register 41	25
9. 22.	Register 42	26
9. 23.	Register 43	26
9. 24.	Register 48 - Read only	27
9. 25.	Register 50	27
	Register 52 字器推荐值 意事项	29
11. 1.	上电和寄存器初始化数据	30
11. 2.	进入 sleep mode 和唤醒	31
11. 3.	数据包格式	31
11. 4.	清空 FIFO 指针	31
11. 5.	Packet Payload Length	31
11. 6. 11. 6.	状态机决定包长度 1. 发射时序	
11. 7.	接收时序	35
11. 8. 11. 8. 11. 8. 11. 8.	2. FW_TERM_TX= 0 (发射状态)	37 39
11. 9.	晶体振荡器	
11. 9. 11. 9.	• • • • • • • • • • • • • • • • • • • •	
11. 9.	3. 减小管脚数	4 4
11. 9.		
	とまる	
	Reflow Standard	
14. 文林	当更新历史 错误!未定义书签	0

1. 模块方框图

Page 4 2013 年 6 月

2. 极限值

Table 1. 极限值

Parameter	Symbol	MIN	TYP	MAX	Unit
工作温度.	Top	-40		+85	° C
存储温度.	Tstorage	-55		+125	° C
工作电压	V _{IN_MAX}			+3. 7	VDC
1.8V 电压	VDD_MAX			+2.5	VDC
IO 电压	V _{OTHER}	-0.3		+3. 7	VDC
输入射频信号强度	P _{IN}			+10	dBm

Notes:

- 1. 极限值表示芯片在超出此条件工作时,可能会损坏。芯片在建议工作值范围内功能正常。
- 2. 芯片对静电比较敏感,在运输和存储时,最好使用防静电设备,用机器或手工焊接时要有良好的接地。

Page 5 2013 年 6 月

3. 电气特性						
下面的电气特性都是在 TA =	25 C, LDO_VDD=		2. 电气 3.3 VDC		% .	
Parameter	Symbol	MIN	TYP	MAX	Units	Test Condition and Notes
工作电压						
直流工作电压		2.2		3.6	VDC`	Input to VDD_IO and LI pins.
工作电流						pino.
T V T L L L L	IDD_TXH		24		mA	POUT =2dBm
TX 工作电流	IDD_TXL		15		mA	POUT = low power setting
RX工作电流	IDD_RX		18		mA	
Idle mode 工作电流	IDD_IDLE1		1.4		mA	Configured for BRCLl running.
Idle mode 工作电流	IDD_IDLE2		1.1		mA	Configured for BRCLk OFF.
Sleep mode 工作电流	IDD_SLP		6		uA	G
数字输入						
高电平电压	VIH	0.8 VDD_IN		1.2 VDD_IN	V	
低电平电压	VIL	0		0.8	V	
输入电容	C_IN			10	pF	
输入漏电	I_LEAK_IN			10	uA	
数字输出						
高电平电压	VOH	0.8 VDD_IN		VDD_IN	V	
低电平电压	VOL			0.4	V	
输出电容	C_OUT			10	pF	
输出漏电	I_LEAK_OU T			10	uA	
SPI 电平边沿时间	T_RISE_OU			5	nS	
时钟信号	'					
SPI 时钟沿上升下降时间	Tr_spi			25	nS	Requirement for expression register reading, writing.
SPI 时钟速度	FSPI	0	12		MHz	register reading, writing.
收发器特性						
工作频率	F_OP	2400		2482	MHz	
天线端口差异	VSWR_I		<2:1		VSWR	Receive mode.
(Z0=50Ω)	VSWR_O		<2:1		VSWR	Transmit mode.

Page 6 2013年6月

Parameter		Symbol	MIN	TYP	MAX	Unis	Test Condition	and Notes		
Receive Section	on						Measured using BER ≤ 0.1%:	g 50 Ohm balun. Fo		
				-87		dBm	1Mbps			
按此目标的				-90		dBm	250Kbps			
按 似火蚁浸				-93		dBm	125Kbps			
接收灵敏度				-96		dBm	62.5Kbps			
最大输入功率			-20	1		dBm				
数据率		Ts		1		us				
抗干扰特性							For BER ≤ 0.19	%		
同频干扰		CI_cochanne		+9		dB	-60 dBm desire	ed signal.		
1MHz 相邻信	言号干扰	CI_1		+6		dB	-60 dBm desire	ed signal.		
2MHz 相邻信	言号干扰	CI_2		-12		dB	-60 dBm desire	ed signal.		
3MHz 相邻信	言号干扰	CI_3		-24		dB	-67 dBm desire	d signal.		
		OBB_1	-10			dBm	30 MHz to 2000 MHz	Meas. with AC.		
##. / 1		OBB_2	-27			dBm	2000 MHz to 2400 MHz	BF2520 ceram filter 2 on ant. pin		
带外干扰		OBB_3	-27			dBm	2500 MHz to 3000 MHz	Desired sig6		
		OBB_4	-10			dBm	3000 MHz to 12.75 GHz	dBm, BER ≤ 0.1%		
Transmit Secti	ion						Measured using 50 Ohm balun3:			
		PAV			6		POUT= maximum output po Reg09=0x4800 POUT = nominal output pov Reg09=0x1840 POUT=minimum ou power,Reg09=1FC0			
发射功率				2		dBm				
			-17							
二次谐波				-50		dBm	Conducted to ANT pin.			
三次谐波				-50		dBm	Conducted to A	NT pin.		
调制特性										
是士坻伯	00001111 pattern	∆f1avg		280		kHz				
最大频偏	01010101 pattern	Δf2max		225		kHz				
带内辐射 2MHz 频偏 >3MHz 频偏										
		IBS_2			-40	dBm				
		IBS_3			-60	dBm				
		OBS_O_1		< -60	-36	dBm	30 MHz ~ 1 GHz			
带外辐射		OBS_O_2		-45	-30	dBm	1 GHz ~ 12 desired signal a	.75 GHz, exclude and harmonics.		
and the second		OBS_O_3		< -60	-47	dBm	1.8 GHz ~ 1.9	GHz		
		OBS_O_4		< -65	-47	dBm	5.15 GHz ~ 5.3	GHz		

Note:

- 1. 测试是在 2460MHz 频率下进行,干扰信号以 1MHz 间隔测试。同时因为干扰信号的谐波会影响性能,所以要对其进行良好的滤波。
- 2. 在一些应用中,天线前端会加上滤波器,或者受到天线有效带宽的限制。

Page 7 2013 年 6 月

Parameter	Symbol	MIN	TYP	MAX	Unit	Test Condition and	Notes			
射频 VCO 和 PLL										
PLL 锁定范围	FLOCK	2366		2516	MHz					
发射接收机频偏					ppm	Same as XTAL pins f	requency tolerance			
信道宽度			1		MHz					
公 ·共和/5·昭 李			≤ -95		dBc/H z	550kHz offset				
单边带相位噪声			≤ -115		dBc/H z	2MHz offset				
晶体频率			12.00 0		MHz	Designed for 12 MHz crystal reference freg.				
芯片内部晶体调节范围			±20		ppm	See Register 27 description. Amount of pull depends on crystal spec. and operating point.				
PLL 稳定时间	THOP		75	150	uS	Settle to within 30 kH	z of final value.			
te hi	OBS_1		< -75	-57	dBm	30 MHz ~ 1 GHz	IDLE state,			
辐射	OBS_2		-68	-47	dBm	1 GHz ~ 12.75 GHz	Synthesizer and VCO ON.			
LDO 电压										
压降范围	Vdo		0.17	0.5	V	Measured during Red	Measured during Receive state			

Page 8 2013 年 6 月

4. 典型应用

Figure 1. LT8910 典型应用电路

LT8910 QFN24 电路图

LT8910 SSOP16 电路图

Page 9 2013年6月 **PRELIMINARY**

注: 晶体两端内置了 22pF 的电容,请选用相应的晶体。

Page 10 2013 年 6 月

5. 管脚描述

Table 3. 管脚描述

QFN24

Pin No.	Pin Name	Туре	Description
1, 2, 5, 6, 7, 19, 22	VDD	PWR	电源.
3, 4	ANTb, ANT	Balanced RF	射频输入输出
8	FIFO	0	FIFO 状态标志
9	GND	GND	地
10	VDD_IO	PWR	数字 IO 电源
11	SPI_SS	1	SPI:使能 SPI 信号,低有效,也可以使芯片进入 sleep mode I2C: 使芯片进入 sleep mode
12	BRCLK	0	内部时钟输出
13	PKT	0	发射/接收状态支持位
14	SPICLK	I	SPI/I2C 时钟输入脚
15	I2C_SEL	I	模式选择 0: SPI 模式 1: I2C 模式
16	MOSI/A4	1	SPI:SPI data 输入脚 I2C:设置 I2C 地址位 A4.
17	MISO/I2C_DA T	I/O	SPI: SPI data 输出脚 I2C: 数据输出输入脚
18	RST_n	I	当 RST_n 为低时,将关闭芯片,电流<1uA, 数字部分的值 也会失去。如果想保留数字寄存器的值,可以进入 sleep 模式。 当 RST_n 为高时,将开启芯片,寄存器将回复复位值
20	LDO_VDD	PWR	片上 LDO 输入电压
21	LDO_OUT	PWR	片上 LDO 输出电压,1.8V 通常会和芯片上其他 VDD 脚连在一起,提供干净的电源。 不要再接其他负载
23	XTALO	АО	晶体振荡器输出脚
24	XTALI	ΑI	晶体振荡器输入脚
25 (Exposed pad)	GND	GND	地

Page 11 2013 年 6 月

Table 4. 管脚描述 SSOP16

Pin No.	Pin Name	Туре	Description
1	MOSI	Input	SPI:SPI data 输入脚
2	MISO	output	SPI: SPI data 输出脚
3	VDD_DIG	Power	1.8V 电源
4	RST_n	Input	当 RST_n 为低时,将关闭芯片,电流<1uA,数字部分的值也会失去。如果想保留数字寄存器的值,可以进入 sleep模式。 当 RST_n 为高时,将开启芯片,寄存器将回复复位值
5	LDO_OUT	Power	片上 LDO 输出电压,1.8V 通常会和芯片上其他 VDD 脚连在一起,提供干净的电源。 不要再接其他负载
6	XTALO	AO	晶体振荡器输出脚
7	XTALI	ΑI	晶体振荡器输入脚
8	PLL_VDD	Power	1.8V 电源
9 10	Balanced RF	射频输入输出	Balanced RF
11	RF_VDD	Power	RF 单元供电电源
12	LDO_IN	Power	片上 LDO 输入电压
13	PKT	output	发射/接收状态标志位 可通过设置为高或低有效
14	SPI_SS	input	SPI_SS 为 0,使能 SPI 信号,低电平有效,也可以使芯片进入 sleep mode
15	GND	GND	地
16	SPICLK	Input	SPI/I2C 时钟输入脚

Page 12 2013 年 6 月

6. SPI 接口

SPI 默认格式

Figure 2. 当 CKPHA=1 时,SPI 为下降沿采样

(为封装片的标准格式)

6.2. **SPI Optional Format**

Figure 3. 当 CKPHA=0 时,SPI 为上升沿采样

(在 COB 时可以选择)

Notes:

- SPI 读写位: 写= 0, 读= 1.
- 访问 FIFO 寄存器 50 时,可以一字节一字节读(8-bits 的整数倍)。访问多个 FIFO 数据时可以用一个 SPI_SS 周期。
- 3. 访问除 FIFO 外的其他寄存器时,一次要读 16-bits。
- 访问除 FIFO 外的其他多个寄存器时,可以用一个 SPI_SS 周期。此时,地址只要写一次,然后是 16-bits。当写完一个寄 存器值后,LT8910 会自动增加寄存器地址。
- 5. MISO 输出的 S7: S0 和寄存器 48 是一样的(包括 CRC 结果, FEC 错误标志和状态机指针)。

Page 13 2013年6月

6.3. SPI 时序要求

Table 4. SPI 时序要求

Name	Min	Тур.	Max	Description
T1	250ns			两次 SPI 访问的间隔时间
T2a, T2b	41.5ns			SPI_SS 和 SPI_CLK 的间隔
T3	Note 1			地址和数据间隔时间
T4	Note 1			高位字节和低位字节的时间间隔
T5	Note 2			两个寄存器数据的时间间隔
T6	83ns			SPI_CLK 时钟周期

Notes:

- 1. 在访问寄存器 50 中的 FIFO 数据时,芯片需要 450nS 去找到正确的读 FIFO 读取的指针地址。
- 2. 当读寄存器 50 中的 FIFO 数据时,至少需要等 450nS 读其他寄存器时, T5min = 41.5ns.

Page 14 2013 年 6 月

7. IIC 接口

7.1. I2C 命令格式

Figure 4. I2C 数据传输

Example I2C Data Transfers: Master write 1 or more data byes to LT8900 FIFO register: start device_addr[6:0] W A byte_addr[7:0] data[7:0] data[7:0] A stop Master writes 1 byte to LT8900 to specify FIFO register, then reads one or more bytes from LT8900 FIFO: device_addr[6:0] W A byte_addr[7:0] A Sr device_addr[6:0] R A data[7:0] A stop Master may continue reading LT8900 FIFO: device_addr[6:0] R A data[7:0] start data[7:0] data[7:0] A stop Sr: Repeated Start

Slave to Master

7.2. I2C 特性

A: Acknowledge

Master to Slave

Table 5. I2C 特性列表

I2C device Slave Mode Optional Feature List	LT8910 Support?
Standard-mode – 100 kbps	Yes
Fast-mode – 400 kbps	Yes
Fast-mode Plus – 1000 kbps	Yes
High-speed mode – 3200 kbps	No
Clock Stretching	No
10-bit slave address	No
general call address	No
software reset	No
device ID	No

Page 15 2013 年 6 月

7.3. 在12	I2C 器件地址 C条件下,芯片器件地址如下	ī:					
A6	A5	A4	A3	A2	A1	A0	R/W
A6 0	1	由 PIN15 MOSI/A4 决定	1	0	0	0	Read=1 Write=0

Page 16 2013年6月

8. 状态机框图

Page 17 2013 年 6 月

9. 寄存器信息

下面的寄存器可以通过 SPI 或者 I2C 访问。

有些寄存器是内部调试使用,所以这里没有公开,应保持初始化值。

9.1. Register 3 – Read only

Table 6. Register 3 information

Bit No.	Bit Name	Description
15:13	(Reserved)	(Reserved)
		RF 频率综合器锁定标志位
12	RF_SYNTH_LOCK	1: 锁定
		0: 没锁定
11:0	(Reserved)	(Reserved)

9.2. Register 6 - Read only

Table 7. Register 6 information

Bit No.	Bit Name	Description
15:10	RAW_RSSI[5:0]	RSSI 原始数据
9:0	(Reserved)	(Reserved)

9.3. Register 7

Table 8. Register 7 information

Bit No.	Bit Name	Description
15 :9	(Reserved)	(Reserved)
0	TV FN	使芯片进入 TX 状态, 1 有效
8	TX_EN	注意:不能使 TX_EN 和 RX_EN 同时为 1,同时为 0 时,芯片为 idle 状态
7	RX_EN	使芯片进入 RX 状态, 1 有效
		注意:不能使 TX_EN 和 RX_EN 同时为 1,同时为 0 时,芯片为 idle 状态
6:0	RF_PLL_CH_NO [6:0]	设定 RF 频道,空中频率为: f=2402+ RF_PLL_CH_NO

Page 18 2013 年 6 月

9.4. Register 9

Table 9. Register 9 information

Bit No.	Bit Name	Description
15:12	PA_PWCTR[3:0]	PA 电流控制
11	(Reserved)	(Reserved)
10:7	PA_GN[3:0]	PA 增益控制
6:0	(Reserved)	(Reserved)

9.5. Register 10

Table 10. Register 10 information

Bit No.	Bit Name	Description		
15:1	(Reserved)	(Reserved)		
0	XTAL OSC EN	1: 开启晶体振荡器.		
J	ATAL_OOO_LIV	0: 关闭晶体振荡器		

9.6. Register 11

Table 11. Register 11 information

Bit No.	Bit Name	Description	
15:9	(Reserved)	(Reserved)	
8	RSSI_PDN	1: 关闭 RSSI	
O		0: 开启 RSSI	
7:0	(Reserved)	(Reserved)	

9.7. Register 23

Table 12. Register 23 information

Bit Name	Description	
(Reserved)	(Reserved)	
TxRx_VCO_CAL_EN	1:在 TX/RX 开启前重新校准 VCO	
	0:在 TX/RX 开启前不校准 VCO	
(Reserved)	(Reserved)	
	(Reserved) TxRx_VCO_CAL_EN	

Page 19 2013 年 6 月

9.8. Register 27

Table 13. Register 27 information

Bit No.	Bit Name	Description
15:0	(Reserved)	(Reserved)

9.9. Register 29 - Read only

Table 14. Register 29 information

Bit No.	Bit Name	Description	
15:8	(Reserved)	(Reserved)	
7:4	RF_VER_ID [3:0]	RF 版本号	
3	(Reserved)	(Reserved)	
2:0	Digital version	数字版本号	

9.10. Register 30 - Read only

Table 15. Register 30 information

Bit No.	Bit Name	Description	
15:0	(Reserved)	(Reserved)	

9.11. Register 31 - Read only

Table 16. Register 31 information

Bit No.	Bit Name	Description	
15:12	(Reserved)	(Reserved)	
11:0	(Reserved)	(Reserved)	

Page 20 2013 年 6 月

Table 17. Register 32 information

DIL	Name	R/W	Description	default
	Name PREAMBLE_LEN SYNCWORD_LEN		000: 1byte,	
			001: 2bytes,	
15:13	PREAMBLE_LEN	R/W	010: 3 bytes,	010B
			111: 8 bytes	
			11: 64 bits	
			{Reg39[15:0],Reg38[15:0],Reg37[15:0],Reg36[15:0]}	
12:11	SYNCWORD_LEN	R/W	10: 48bits, {Reg39[15:0],Reg38[15:0],Reg36[15:0]}	11B
			01: 32bits, {Reg39[15:0],Reg36[15:0]	
			00: 16 bits,{Reg36[15:0]}	
			000: 4 bits,	
			001: 6bits,	
	TRAILER_LEN	R/W	010: 8 bits,	
10:8			011: 10 bits	000B
			111: 18 bits	
			00: NRZ law data	
		R/W	01: Manchester data type	
7:6	DATA_PACKET_TYPE		10: 8bit/10bit line code	00B
			11: Interleave data type	
	(Reserved)	R/W	(Reserved)	00B

Page 21 2013年6月

Bit	Name	R/W	Description	default
			选择时钟输出频率	
3:1	BRCLK_SEL	R/W	3'b000: 置低 3'b001: 晶体频率输出 3'b010: 晶体频率除 2 3'b011: 晶体频率除 4 3'b100: 晶体频率除 8 3'b101: 1MHz 3'b110: APLL_CLK (12MHz) 3'b111: 置低	011B
0	(Reserved)	W/R	(Reserved)	0В

Page 22 2013 年 6 月

Table 18. Register 33 information

	•	able 1	8. Register 33 information	
Bit	Name	R/W	Description	Default
15-8	VCO_ON_DELAY_CNT[7:0]	R/W	在每次进入 RX 或者 TX 后,等待内部 VCO 稳定的时间,单位为 1uS。	63H
7-6	TX_PA_OFF_DELAY[1:0]	R/W	PA 关闭的等待时间,单位是 1uS,基数是 4uS. 00 表示 4uS。	00B
5:0	TX_PA_ON_DELAY[5:0]	R/W	在 VCO_ON 以后,等待内部 PA 开启的时间,单位为 1uS。	07H

9.14. Register 34

Table 19. Register 34 information

Bit	Name	R/W	Description	Default
15	Bpktctl_direct	R/W	在 direct mode 中 ,它控制 TX 的 PA 和 RX 的宽带/窄带模式	0В
14-8	TX_CW_DLY[6:0]	R/W	在发射数据前,传输 CW 调制信号的时间	03H
7-6	Reserved	R/W		0B
5:0	TX_SW_ON_DELAY[5:0]	R/W	VCO_ON 后,等待 RF switch 开启的时间,单位 1uS	0BH

9.15. Register 35

Table 20. Register 35 information

Page 23 2013年6月

1: 先美闭晶体振荡器,再美闭 LDO。 (寄存器值将丢失) 0B 0: Leave power on. 1: 进入 sleep mode,晶体美闭,保持 LDO 工作(寄存器值将保留) 当 SPL_SS 为低时,芯片将重新工作 0: idle mode 13 (Reserved) (Reserved) 12 BRCLK_ON_SLEEP RW	Bit	Name	R/W	Description	default
14 SLEEP_MODE I: 进入 sleep mode,晶体关闭,保持 LDO 工作(寄存器值将保留) 当 SPI_SS 为低时,芯片将重新工作 0: idle mode 0B 13 (Reserved) 1: 在 sleep mode 开启晶体振荡器 耗电但能快速启动 0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 18 11:8 RE-TRANSMIT_TIMES RW 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为重发 2 次 3H 7 MISO_TRI_OPT RW 1: 当 SPI_SS=1 时, MISO 保持低阻. 0: 当 SPI_SS=1 时, MISO 保持三态. 0B				1: 先关闭晶体振荡器,再关闭 LDO。	
14 SLEEP_MODE W 1: 进入 sleep mode,晶体关闭,保持 LDO 工作(寄存器值将保留) 0B 13 (Reserved) 当 SPI_SS 为低时,芯片将重新工作 0B 12 BRCLK_ON_SLEEP RW 1: 在 sleep mode 开启晶体振荡器 样电但能快速启动 0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 1B 11:8 RE-TRANSMIT_TIMES RW 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为重发 2 次 3H 7 MISO_TRI_OPT RW 1: 当 SPI_SS=1 时, MISO 保持低阻. 0: 当 SPI_SS=1 时, MISO 保持三态. 0B	15	POWER_DOWN	W	(寄存器值将丢失)	0B
14 SLEEP_MODE W 器值将保留) 当 SPI_SS 为低时,芯片将重新工作 0: idle mode 0B 13 (Reserved) 1: 在 sleep mode 开启晶体振荡器 耗电但能快速启动 0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 1B 11:8 RE-TRANSMIT_TIMES RW 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为 重发 2 次 3H 7 MISO_TRI_OPT RW 1: 当 SPI_SS=1 时,MISO 保持低阻. 0: 当 SPI_SS=1 时,MISO 保持三态. 0B				0: Leave power on.	
13 (Reserved) (Reserved) 12 BRCLK_ON_SLEEP R/W に 在 sleep mode 开启晶体振荡器	14		W		
13 (Reserved) (Reserved) 12 BRCLK_ON_SLEEP 1: 在 sleep mode 开启晶体振荡器 耗电但能快速启动 0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 18 11:8 RE-TRANSMIT_TIMES R/W 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为重发 2 次 7 MISO_TRI_OPT R/W 1: 当 SPI_SS=1 时,MISO 保持低阻。 0: 当 SPI_SS=1 时,MISO 保持三态。 0B		SLEEP_MODE		当 SPI_SS 为低时,芯片将重新工作	0B
12 BRCLK_ON_SLEEP R/W 年电但能快速启动				0: idle mode	
12 BRCLK_ON_SLEEP R/W 年电但能快速启动	13	(Pasaryad)		(Pasaryad)	
12 BRCLK_ON_SLEEP R/W 耗电但能快速启动 0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 11:8 RE-TRANSMIT_TIMES R/W 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为 重发 2 次 3H 7 MISO_TRI_OPT R/W 1: 当 SPI_SS=1 时,MISO 保持低阻.		(Neserved)		,	
12 BRCLK_ON_SLEEP RW 18 0: 在 sleep mode 关闭晶体振荡器省电但启动速度慢 11:8 RE-TRANSMIT_TIMES RW 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为重发 2 次 3H 7 MISO_TRI_OPT RW 1: 当 SPI_SS=1 时,MISO 保持低阻. 0: 当 SPI_SS=1 时,MISO 保持三态. 0B			1: 在 sleep mode 开启晶体振荡器 耗电但能快速启动 0: 在 sleep mode 关闭晶体振荡器	1: 在 sleep mode 开启晶体振荡器	1R
0: 在 sleep mode 关闭晶体振荡器 省电但启动速度慢 11:8 RE-TRANSMIT_TIMES R/W 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为 重发 2 次 3H 7 MISO_TRI_OPT R/W 1: 当 SPI_SS=1 时,MISO 保持低阻. 0B 0: 当 SPI_SS=1 时,MISO 保持三态. 0B	12	BRCLK ON SLEEP		耗电但能快速启动	
11:8 RE-TRANSMIT_TIMES RW 在 auto-ack 功能开启是,最多的重发次数。设为 3 时,为 重发 2 次 3H 7 MISO_TRI_OPT RW 1: 当 SPI_SS=1 时,MISO 保持低阻. 0B 0: 当 SPI_SS=1 时,MISO 保持三态. 0B	12	BROCK_ON_OLLE		10	
11:8 RE-TRANSMIT_TIMES R/W 重发 2 次 3H 7 MISO_TRI_OPT 1: 当 SPI_SS=1 时,MISO 保持低阻. 0B 0: 当 SPI_SS=1 时,MISO 保持三态. 0B				省电但启动速度慢	
7 MISO_TRI_OPT RW 0B 0: 当 SPI_SS=1 时,MISO 保持三态.	11:8	RE-TRANSMIT_TIMES	R/W		3H
0: 当 SPI_SS=1 时,MISO 保持三态.	7	MISO TRI OPT	R/W	1: 当 SPI_SS=1 时,MISO 保持低阻.	0B
6:0 SCRAMBLE_DATA R/W Scramble data 的种子,收发两边必须一致. 00H	,	WIIOO_1141_O1 1	1 1/ 7 7	0: 当 SPI_SS=1 时,MISO 保持三态.	0D
	6:0	SCRAMBLE_DATA	R/W	Scramble data 的种子,收发两边必须一致.	00H

9.16. Register 36

Table 21. Register 36 information

Bit	Name	R/W	Description	default
15:0	SYNC_WORD[15:0]	R/W	LSB bits of sync word is sent first.	0000H

9.17. Register 37

Table 20. Register 37 information

Bit	Name	R/W	Description	default
15:0	SYNC_WORD[31:16]	R/W	LSB bits of sync word is sent first.	0000H

Page 24 2013 年 6 月

Table 21. Register 38 information

Bit	Name	R/W	Description	default
15:0	SYNC_WORD[47:32]	R/W	LSB bits of sync word is sent first.	0000H

Table 22. Register 39 information

Bit	Name	R/W	Description	default
15:0	SYNC_WORD[63:48]	R/W	LSB bits of sync word is sent first.	0000H

9.20. Register 40

Table 23. Register 40 information

Bit	Name	R/W	Description	default
14:1	FIFO_EMPTY_THRESHOLD	R/W	认为 FIFO 为空的阈值	0100B
9:6	FIFO_FULL_THRESHOLD	R/W	认为 FIFO 为满的阈值	0100B
5:0	SYNCWORD_THRESHOLD	R/W	认为 SYNCWORD 为正确的阈值	07H
5.0	OTNOWORD_THREEHOLD	10,00	07 表示可以错 6bits, 01 表示 0bit 可以错 0bits	0711

9.21. Register 41

Table 24. Register 41 information

Bit	Name	R/W	Description	default
15	CRC_ON	R/W	1: 开启 CRC	1B
			0: 关闭 CRC	
14	(Reserved)	R/W	(Reserved)	0B
			1: 第一字节表示 payload 的长度	
13	PACK_LENGTH_EN	R/W	如要写 8 个 byte 有效字节,那第一个字节应写 8,总长 9	1B
			如女习 0 1 byte 1 双于 1 ,那第一个子 1 应与 0 ,总长 9	

Page 25 2013年6月

Bit	Name	R/W	Description	defau
12 FW_TERM_TX	R/W	1: 当 FIFO 的读指针和写指针相等时,LT8910 将关闭发射。	1B	
			0: 由 MCU 确定长度并关闭发射。	
11	AUTO_ACK	R/W	1: 当接收到数据,自动回 ACK 或者 NACK	1B
II AUTO_AUR	17,77	0:接收数据后,不回 ACK,直接进 IDLE	10	
10	PKT_FIFO_POLARITY	R/W	1: PKT flag, FIFO flag 低有效.	0B
10	TICI_TITO_TOLARITT	17,44	0: 高有效	
9:8	(Reserved)	R/W	(Reserved)	00B
7:0	CRC_INITIAL_DATA	R/W	CRC 计算初始值。	00H

Table 25. Register 42 information

Bit	Name	R/W	Description	default
15:1 0	SCAN_RSSI_CH_NO	R./W	RSSI 扫描的信道数量,RSSI 值将保留到 FIFO 中	00H
9:8	(Reserved)	R/W	(Reserved)	01B
7:0	Rx_ACK_TIME[7:0]	R/W	等待 RX_ACK 的时间,1 表示 1uS	6BH

9.23. Register 43

Table 26. Register 43 information

Bit	Name	R/W	Description	default
15	SCAN_RSSI_EN	R./W	1: 开始扫描 RSSI	0B
			通常 RSSI 从 2402MHz 开始扫描(0 信道)。	
14:8	SCAN_STRT_CH_OFFST[6:	R/W	这里可以开始的信道数	01B
	0]		如设为 10,将从 2412MHz 开始扫描	-
7:0	WAIT_RSSI_SCAN_TIM[7:0]	R/W	设置在扫描不同信道 RSSI 时,VCO&SYN 稳定时间	6BH

Page 26 2013年6月

Table 27. Register 43 information

		Table 27	7. Register 43 information	
Bit	Name	R/W	Description	default
			01: 1Mbps	
15:8	DATARATE[7:0]	R./W	04: 250Kbps	0B
13.0	DAIANAIL[1.0]	17./ ٧٧	08: 125Kbps	06
			10: 62.5Kbps	
7:0	Reserved	R./W	Reserved	00H

9.25. Register 48 - Read only

Table 28. Register 48 information

Name	R/W	Description	default
CRC_ERROR	R	CRC 错误标志位, 1 表示错误, 0 表示正确	
FEC23_ERROR	R	FEC23 错误标志位, 1 表示错误, 0 表示正确	
FRAMER_ST	R	Framer 状态	
SYNCWORD RECV	D	1:表示收到 syncword,只在接收时有效。	
STNOWORD_RECV	K	跳出接收状态时,为0	
PKT_FLAG	R	PKT flag 标志	
FIFO_FLAG	R	FIFO flag 标志	
(Reserved)	R	(Reserved)	
	CRC_ERROR FEC23_ERROR FRAMER_ST SYNCWORD_RECV PKT_FLAG FIFO_FLAG	CRC_ERROR R FEC23_ERROR R FRAMER_ST R SYNCWORD_RECV R PKT_FLAG R FIFO_FLAG R	CRC_ERROR R CRC 错误标志位,1 表示错误,0 表示正确 FEC23_ERROR R FEC23 错误标志位,1 表示错误,0 表示正确 FRAMER_ST R Framer 状态 SYNCWORD_RECV R 1: 表示收到 syncword,只在接收时有效。 跳出接收状态时,为 0 PKT_FLAG R PKT flag 标志 FIFO_FLAG R FIFO flag 标志

9.26. Register 50

Table 30. Register 50 information

Bit	Name	R/W	Description	default
15:0	TXRX_FIFO_REG	R/W	MCU 读取 FIFO 数据的接口。	00H

Page 27 2013年6月

9.27. Register 52

Table 31. Register 51 information

Bit	Name	R/W	Description	default
15	CLR_W_PTR	W	1: 清空 TX FIFO 指针为 0,但不清空 TX FIFO 中的数据	0B
14	(Reserved)	W		
13:8	FIFO_WR_PTR	R	FIFO 写指针	_
7	CLR_R_PTR	W	1: 清空 RX FIFO 指针为 0但不清空 RX FIFO 中的数据	0B
6	(Reserved)			
5:0	FIFO_RD_PTR	R	FIFO 读指针 当使用 auto-ack 功能时,此位可以做为标志位。 当 PKT 拉高后,读此寄存器,如果为 0,即收到 ack。 如果不为 0,而是发射总 byte 数+1,即没收到 ack。	

Page 28 2013 年 6 月

10. 寄存器推荐值

Table 32. 寄存器推荐值

		Table 32. 寄存器推荐值			
Register number	Power-up reset value (hex)	Recommended value for many applications (hex)	Notes		
0	6fef	6fe0			
1	5681	5681			
2	6619	6617			
5	5447	9009			
	f000	6637			
7	0030	0030	Use for setting RF frequency,		
•			and to start/stop Tx/Rx packets.		
8	71af	6c90			
9	3000	1840	Sets Tx power level		
10	7ffd	7ffd	Crystal osc. enabled.		
11	4008	0008	RSSI enabled.		
12	0000	0000			
13	4855	48bd			
22	c0ff	00ff			
23	8005	8005	Calibrate VCO before each and every Tx/Rx		
24	307b	0067			
25	1659	1659			
26	1833	19e0			
27	9100	1300	No crystal trim.		
28	1800	1800			
29	00x0	read-only	Stores p/n, version information.		
30	f413	read-only	Stores p/n, version information.		
31	1002	read-only	Stores p/n, version information.		
32	1806	4800	Packet data type: NRZ, no FEC, BRCLK=12 div. by 4= 3MHz		
33	6307	3fc7	Configures packet sequencing.		
34	030b	2000	Configures packet sequencing.		
35	1300	0300	AutoAck max Tx retries = 3		
36	0000	. Choose unique sync words			
37	0000	for each over-the-air	Similar to a MAC address.		
38	0000	network.			
39	0000				
40	2107	2102	Configure FIFO flag, sync threshold.		
41	b800	p000	CRC on. SCRAMBLE off. 1st byte is packet length.		
42	fd6b	fdb0			
43	000f	000f	Configure scan_rssi.		
44	0100	1000	Configure data rate		
	3.00		gaio data idio		

Page 29 2013年6月

11. 注意事项

LT8910 可以给很多现有的应用添加无线功能.下面主要回答了在使用过程中遇到的问题。

11.1. 上电和寄存器初始化数据

Figure 5. 上电和寄存器初始化顺序

- 1. 当 VDD 稳定后,确保在 RST_n 脚上有 reset 信号。
- 2. 当 RST_n =1, BRCLK 输出 12MHz 时钟
- 3. 等待 T1(1到5ms),使晶体稳定,然后由 MCU 初始化寄存器。
- 4. 寄存器初始化完成后,LT8910 可以开始发射或者接收。

Figure 6.初始化流程图

Page 30 2013 年 6 月

拉低后,上 **拉低后,上 11.3. 数据包格式** 空中数据包格式 Preamble S' -- Samble: 1~8 b

💶 11.2. 进入 sleep mode 和唤醒

当 MCU 写寄存器并且拉高 SPI SS 后,LT8910 进入 sleep mode,此时功耗很低,电流为 1uA. 当 SPI SS 拉低后,LT8910 自动唤醒。MCU 要拉低 SPI_SS 一段时间(等待晶体稳定)1~2mS,再写 SPI 数据。

Preamble	SYNC	Trailer	Payload	CRC	
----------	------	---------	---------	-----	--

- Preamble: 1~8 bytes, programmable.
- SYNC: 16/32/48/64 bits, programmable as device syncword.
- Trailer: 4~18 bits, programmable.
- Payload: TX/RX data. There are 4 data types:
 - Raw data
 - 8 bit / 10 bit line code
 - Manchester
 - Interleave with FEC option
- CRC: 16-bit CRC is optional.

11.4. 清空 FIFO 指针

在发射前,要将 FIFO 写指针清空。这可以通过在寄存器 52<15>写入 0 来实现。

当接收到数据包,读指针将指示 FIFO 中有多少 bytes 数据。

当接收器收到 SYNC 时,FIFO 写指针会自动清 0.

当接收器收到 SYNC 或发射器发送完 SYNC 后, FIFO 读指针会自动清 0.

11.5. . Packet Payload Length

LT8910 提供两种方式去确定 TX/RX 包长度。当寄存器 41[13]=1 时,内部状态机会根据 payload 第一个 byte 数据来检测包长度。如要发 8 个 byte, 第一个 byte 应写 8, 总字长为 9 个 byte。当寄存器 41[13]=0, 第一个

Page 31 2013年6月

byte 数据没什么特殊意义。数据包长度将由 TX FIFO 何时为空或者何时清空 TX_EN 来决定,见下表。

Table 33. 数据包长度

Register 41[13] PACK_LENGTH_EN	Register 41[12] FW_TERM_TX	
0	0	当 TX_EN=0 时,终止发射。 当 RX_EN=0 时,终止接收。
(MCU/application handles packet length)	1	当 FIFO 为空时,自动终止发射。 当 RX_EN=0 时,终止接收。
1 (LT8910 framer handles packet length)	X (don't care)	Payload 第一个字节表示包长度,0 到 255bytes。 当发完 0 到 255bytes 后,发射自动终止。

下面显示具体时序图。

Page 32 2013 年 6 月

PRELIMINARY

11.6. 状态机决定包长度

当寄存器 41[13]=1 时,payload 的第一个 byte 表示包长度,最大长度是 255 bytes。

11.6.1. 发射时序

下面显示 TX 时序. 当 MCU 将寄存器 7[8]写为 1 后,同时设定好发射信道,芯片将自动根据 payload 来产生包。MCU 需要在发射 trailer 前写入发射数据。

如果包长度超过 FIFO 长度,MCU 需要多次写 FIFO 数据。FIFO flag 表示 FIFO 是不是为空。

Figure 7. TX 时序图

PKT 和 FIFO flags 高有效

Page 33 2013 年 6 月

Figure 8. TX 发包流程图

where FIFO and PKT flags are interrupt signals to MCU.

Page 34 2013 年 6 月

■ 11.7. 接收时序

下面显示 RX 接收时序。当 MCU 将寄存器 7[7]写为 1 并且选择好接收器信道,LT8910 将打开 RX 并等待正确的 syncword。

当收到正确的 syncword,LT8910 将自动开始处理数据包。当数据包处理完毕,LT8910 状态机将进入 IDLE。 当接收到的数据包长度长于 63 bytes,FIFO flag 将起作用,意味着 MCU 必须从 FIFO 中读取数据。

在弱信号,多径和远距离时,不一定能收到正确的 syncword。为了避免出现死机情况,MCU 需要做一个定时器。在大多数应用中,数据包是在一定时间窗口内可以收到的,如果没收到,系统要有定时器恢复到正常模式。

Figure 9. RX 时序图

Page 35 2013 年 6 月

Figure 10. RX 流程图

where FIFO and PKT flag signals interrupt MCU.

Page 36 2013 年 6 月

11.8. MCU/应用决定包长度

当寄存器 41[13]=0 时, payload 第一个 byte 没有特殊意义。此时,包长度由寄存器 41[12]决定。

11.8.1. FW_TERM_TX= 1

当寄存器 41[12]=1,在发射数据时,LT8910 将比较 FIFO 的写指针和读指针,如果 MCU 停止朝 FIFO 写数据,芯片将会最终探测到 FIFO 何时为空,LT8910 将会自动退出发射状态。时序图如下。

Figure 11. TX 时序图(Register 41[13:12]= 'b01).

PKT 和 FIFO flags 高有效.

Note: 当寄存器 41[13]=0,不要让 FIFO 过空或过满。FIFO full/empty 阈值可以通过寄存器 40 FIFO full/empty threshold 来设置。最优值是由 SPI 速度和 MCU 读写 FIFO 速度决定。.

Page 37 2013 年 6 月

Figure 12. 寄存器 41[13:12]=`b01 时发射的流程图

using interrupts for PKT and FIFO flags.

Page 38 2013 年 6 月

PRELIMINARY

11.8.2. FW_TERM_TX= 0 (发射状态)

当 Reg41[13:12] = 'b00, LT8910 只会在 Reg7[8] TX_EN=0 时停止发射。

Figure 13. 当 Reg41[13:12]= 'b00 时,TX 时序图

PKT and FIFO flags are shown high active.

Page 39 2013 年 6 月

Figure 14. 当 Reg41[13:12]='b00 是 TX 流程图 using interrupts for PKT and FIFO flags.

Page 40 2013 年 6 月

11.8.3. FW_TERM_TX= 0 (RX)

当 Reg41[13]=0 时,芯片将会在 Reg7[7] RX_EN=1 时开始接收包,此时,芯片将会自动将 RX 设定到固定的 频道接收。在等待一定时间使内部时钟和 RX 电路稳定后,LT8910 开始在收到的信号中寻找 syncword. 一旦 找到,它将拉高 PKT flag,并向 FIFO 里写收到的数据。PKT flag 将一直为高,直到 MCU 将 FIFO 中的数据 读完。当 MCU 把数据读完后,PKT flag 将拉低直到下个 TX/RX 周期。

当 Reg41[13:12]= 'b00 or 'b01 时,必须由 MCU 将 Reg7[7]写为 0 才能退出 RX 状态。

Figure 15. 当 Reg41[13:12] = 'b00 or 'b01 时,RX 时序图.

PKT_flag 和 FIFO_flag 高有效.

Page 41 2013 年 6 月

Figure 16. 当 Reg41[13:12]= 'b00 or 'b01 时,RX 流程图 using interrupts for PKT and FIFO flags.

Page 42 2013 年 6 月

而达到最大增益。 11.9.2. 外部时钟输入 自偏置电阻 R1 还是需要的输出电阻 R0 用来对现有

11.9. 晶体振荡器

LT8910 支持外接晶体或者外部时钟输入。

11.9.1. Quartz crystal application

串联电阻 R2 限制了晶体振荡的能量,并且为起振提供了相位余度。晶体的负载电容 C1 和 C2 应与晶体的定 义相符。这些电容值可以微调,从而保证振荡频率的准确性。自偏置电阻 R1,为片上的增益级提供偏置,从

自偏置电阻 R1 还是需要的,但外部时钟需要通过一个隔直电容从 XTALI 来输入。如下图所示。

输出电阻 R0 用来对现有振荡器进行采样。R0 的具体值需要根据实验来决定, 3K 是个合适的参考值。

在 PCB layout 时, CLK 线需要尽量短和直,并且远离干扰。LT8910 接收的时钟信号是以地为参考的,所以 也要保持有一个干净的地。

Figure 17.外部时钟输入应用图

注意事项:

- 时钟占空比最好是50%。
- 2. 如果 BER 过高,可能是时钟驱动不够造成的。
- 当参考时钟相位噪声很高的时候,也会造成 BER 变高。

Page 43 2013年6月

11.9.3. 减小管脚数

■ 当用低成本的 MCU 来驱动 LT8910 时,MCU 的管脚有限。可以通过以下的办法来节省管脚数:

- FIFO: 只有当包长度超过 63bytes 时,才需要。
- PKT: 当收发包时,给 MCU 一个硬件中断。这个数据也可以通过 Reg48 来读取,这样 PKT_flag 就不需
- RST_n: 这个接口可以用RC来做上电复位电路,从而省掉一个MCU管脚。

 PKI: 当收发包时,给 MCU 一个硬件要了。
 SPI lines: 这 4 个接口是需要的.
 RST_n: 这个接口可以用 RC 来做上电。
 I2C lines: 相比 SPI,可减少管脚数。
 11.9.4. CKPHA
 在 LT8910 中,有个 CKPHA 管脚,在 QFI在 SSOP 封装中,不支持 I2C。 在 LT8910 中,有个 CKPHA 管脚,在 QFN 和 SSOP 的封装中,这个管脚通常是拉高的,SPI 为下降沿采样。 在 SSOP 封装中,不支持 I2C。

如果有特殊要求, CKPHA 也可接 0

Page 44 2013年6月

12. 封装形式

QFN 24 Lead Exposed Pad Package, 4x4 mm, 0.5mm pitch. Dimensions in mm.

Table 29. Package Outline Dimension

Dim.	Min. Nom. Max.	Dim.	Min. Nom. Max.
Α	0.70 0.75 0.80	L	0.30 0.40 0.50
A1	0 0.02 0.05	у	0.08
A3	0.203 REF		
В	0.18 0.25 0.30		
D/E	3.90 4.00 4.10		
D2/E2	1.90 2.00 2.10		
E	0.50 BSC		

Page 45 2013 年 6 月

SSOP16 PACKAGE OUTLINE DIMENSIONS

Sumbol	Dim ensions In	Millimeters	Dimensions In Inches	
Symbol	Min	Max	Min	Max
A	1.350	1.750	0.053	0.069
A1	0.100	0.250	0.004	0.010
A2	1.350	1.550	0.053	0.061
b	0.200	0.300	0.008	0.012
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.200
Е	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
e	0.635(0.635(BSC) 0.025(BSC)		(BSC)
L	0.400	1.270	0.016	0.050
θ	0 °	8°	0 °	8°

Page 46 2013 年 6 月

13. IR Reflow Standard

Follow: IPC/JEDEC J-STD-020 B

Condition: Average ramp-up rate (183°C to peak): 3 °C/sec. max.

Preheat: 100~150°C 60~120sec

Temperature maintained above 183°C: 60~150 seconds Time within 5°C of actual peak temperature: 10 ~ 30 sec.

Peak temperature: 240+0/-5 °C Ramp-down rate: 6 °C/sec. max.

Time 25°C to peak temperature: 6 minutes max.

Cycle interval: 5 minutes

Figure 18. IR Reflow Diagram

Page 47 2013 年 6 月