Контролно 1 на група 7

16 ноември 2024 г.

Задача 1. Ако A,B,C,X са множества и $B\subseteq A,$ и $A\cap C=\varnothing,$ да се намери X (изразено чрез A,B,C), което е решение на системата: $\begin{vmatrix} A\backslash X=B\\ X\backslash A=C \end{vmatrix}$

Решение. С диаграми на Вен лесно можем да се ориентираме, че търсеното решение е единствено и е именно $(A \cup C) \setminus B = (A \setminus B) \cup C$. Сега да докажем:

1 н.) От $A \ X = B$ можем да извлечем следната информация:

- $A \backslash X = B \Rightarrow A \backslash (A \backslash X) = A \backslash B$, т.е. $A \cap X = A \backslash B$, откъдето $A \backslash B \subseteq X$ (1.1)
- От дефиницията на разлика на множества следва и, че $X \cap B = \emptyset$ (1.2)

От $X \backslash A = C$ пък можем да извлечем следната информация:

- Отново директно от дефиницията на разлика $C \subseteq X$ (2.1) (казано по-просто, щом след премахване на нещо от X е останало C, то C е част от X)
- Понеже $X \cup A = (X \setminus A) \cup A = C \cup A$, то $X \subseteq A \cup C$ (2.2) (понеже ако $V \cup W = Q$, то $V \subseteq Q$)

От (1.1),~(2.1) следва, че $A\backslash B\subseteq X$ и $C\subseteq X,$ откъдето $(A\backslash B)\cup C\subseteq X.$ От (1.2),~(2.2) следва, че $X\cap B=\varnothing$ и $X\subseteq A\cup C,$ откъдето $X\subseteq (A\cup C)\backslash B=(A\backslash B)\cup C.$ От горните две получаваме и двете посоки на включването, т.е. $(A\backslash B)\cup C\subseteq X\subseteq (A\backslash B)\cup C,$ значи $X=(A\backslash B)\cup C.$

2 н.) С цел улеснение, ще искаме да ползваме операцията допълнение на множество, но за целта ни трябва подходящ универсум, дефинираме $U = A \cup B \cup C \cup X$. Макар още да не знаем X, от втория ред в системата се вижда, че $X \subseteq A \cup C$, значи $U = A \cup B \cup C \cup X = A \cup B \cup C$. Ползвайки $V \setminus W = V \cap \overline{W}$, системата можем да запишем и в следния вид:

$$\begin{vmatrix} A \cap \overline{X} = B \Rightarrow \overline{A} \cup X = \overline{B} \\ X \cap \overline{A} = C \end{vmatrix}$$

Искаме да изразим X само с неща, които знаем. Ще ползваме, че за произволни множества V,W е вярно, че: $V=(V\cup W)\backslash (W\backslash (V\cap W))$ (вижте на диаграма). След заместване $V=X,W=\overline{A}$ се получава: $X=(X\cup\overline{A})\backslash (\overline{A}\backslash (X\cap\overline{A}))=\overline{B}\backslash (\overline{A}\backslash C)=\overline{B}\cap (\overline{A}\cap\overline{C})=\overline{B}\cap (A\cup C)=(A\cup C)\backslash B$.

3абележска. Всъщност никъде не използвахме експлицитно условията $B\subseteq A$ и $A\cap C=\varnothing$. Те са дадени само за да гарантират непротиворечивост на условието (може да лесно да видите, че ако бъдат нарушени, системата няма как да бъде в сила).

Задача 2. Да се докаже, че композиция на две биекции е биекция. Тоест, ако $f:A\mapsto B$ и $g:B\mapsto C$ са биекции, то композицията им $g\circ f:A\mapsto C$ също е биекция.

• Вярно ли е, че композиция на краен брой биекции $f_1, \cdots f_k$ също е биекция? Обосновете.

Решение. Ще покажем, че $g \circ f$ е биекция:

- *инективност*: нека $x_1, x_2 \in A$, от инективността на f следва, че $f(x_1) \neq f(x_2)$. Тогава от инективността на g: $g(f(x_1)) \neq g(f(x_2))$, т.е. $(g \circ f)(x_1) \neq (g \circ f)(x_2)$, значи $g \circ f$ е инекция.
- сюрективност: нека $c_0 \in C$, от сюрективността на g следва, че $\exists b_0 \in B : g(b_0) = c_0$. От сюрективността на f пък: $\exists a_0 \in A : f(a_0) = b_0$. Тогава от $(g \circ f)(a_0) = g(f(a_0)) = g(b_0) = c_0$, значи $g \circ f$ е сюрекция.

• Ще покажем по индукция, че композиция на краен брой биекции също е биекция: База: f_1 е биекция (по условие). \checkmark ИП: Нека за някое $n \in \mathbb{N}, n < k$ композицията $f_n \circ f_{n-1} \cdots \circ f_1$ е биекция.

ИС: Ако f_{n+1} също е биекция (а по условие е), ще докажем, че $f_{n+1} \circ f_n \cdots \circ f_1$ е биекция. Нека за краткост означим $h = f_n \circ f_{n-1} \cdots \circ f_1$. От **ИП** h е биекция.

 $f_{n+1} \circ f_n \cdots \circ f_1 = f_{n+1} \circ (f_n \circ \cdots \circ f_1) = f_{n+1} \circ h$. Сега ползваме твърдението, доказано в първата част на задачата, а именно, че композиция на две биекции също е биекция. Оттук $f_{n+1} \circ h$ е биекция. \checkmark

Задача 3. В продължение на 11 *седмици* усилено се провеждат контролни на КН2. Всеки *ден* потокът има поне едно контролно, на *седмица* няма повече от 12 контролни. Да се докаже, че съществува последователност от *дни*, в която са се провели точно 21 контролни.

• Да се реши задачата, ако общият брой седмици е 3 (а не 11), условието остава същото.

Решение. Общият брой дни е 7.11=77, а общият брой проведени контролни не надвишава 11.12=132. Нека със $s_i, 1 \le i \le 77$ означаваме броя на проведените контролни до ден i включително. От условието, че всеки ден има поне 1 контролно, получаваме неравенствата: $1 \le s_1 < s_2 < \dots < s_{77} \le 132$ (1), също и $22 \le s_1 + 21 < s_2 + 21 < \dots < s_{77} + 21 \le 153$ (2). Конструираме мултимножеството $M = \{s_1, \dots, s_{77}, s_1 + 21, \dots, s_{77} + 21\}_M$. В M има 2.77 = 154 елемента, котто от (1) и (2) со внужна, не технология съ остоствения имена в нитерра на [1, 153]. От

Конструираме мултимножеството $M = \{s_1, \cdots, s_{77}, s_1 + 21, \cdots, s_{77} + 21\}_M$. В M има 2.77 = 154 елемента, като от (1) и (2) се вижда, че тези елементи са естествени числа в интервала [1,153]. От принципа на Дирихле съществуват две от тях (нека $m_k, m_l \in M$), които имат еднаква стойност. При това, отново от (1) и (2), съвпадащите числа ne могат да бъдат едновременно от едната половина на мултимножеството (спрямо реда, ползван по-горе), значи $\exists i, j \in \mathbb{N}, 1 \leq i, j \leq 77, i \neq j$: $s_i = m_k = m_l = s_j + 21$. \square

• Тук имаме 21 дни, а общият брой контролни не надминава 3.12=36. Отново ползваме частичните суми $s_0=0,s_1,\cdots,s_{21}$, където s_i е броят контролни, проведени до ден i включително. Разглеждаме остатъците на s_i при деление на 21. Това са 22 суми, а остатъците mod 21 са 21 на брой. Значи някои две числа дават еднакъв остатък, нека s_i и s_j , i < j. В такъв случай $s_j - s_i \equiv 0 \ (mod\ 21)$ Но $s_j - s_i$ е именно бройката контролни, проведени между ден i+1 и ден j включително. Установихме, че тази сума е кратна на 21, но тя не може да е 0 (защото всеки ден е решена поне 1 задача), а също е и не повече 36 (защото това е максималният възможен брой контролни за целия период). Единственото число x, кратно на 21 такова, че $0 < x \le 36$, е 21, тоест между дни i+1,j включително са проведени точно 21 контролни.

Забележка. Ясно е, че твърдението във втората част на задачата е по-силно от това на първата, т.е. доказването му автоматично влече и първото.