Planche nº 11. Intégration sur un intervalle quelconque. Corrigé

Exercice nº 1

1) Pour $x \ge 0$, $x^2 + 4x + 1 \ge 0$ et donc la fonction $f: x \mapsto x + 2 - \sqrt{x^2 + 4x + 1}$ est continue sur $[0, +\infty[$. Quand x tend vers $+\infty$, $x + 2 - \sqrt{x^2 + 4x + 1} = \frac{3}{x + 2 + \sqrt{x^2 + 4x + 1}} \sim \frac{3}{2x}$. Comme la fonction $x \mapsto \frac{3}{2x}$ est positive et non intégrable au voisinage de $+\infty$, l'intégrale proposée est une intégrale divergente.

2) Pour $x \ge 1$, $1 + \frac{1}{x}$ est défini et strictement positif. Donc la fonction $f: x \mapsto e - \left(1 + \frac{1}{x}\right)^x$ est définie et continue sur $[1, +\infty[$.

Quand x tend vers $+\infty$, $\left(1+\frac{1}{x}\right)^x=e^{x\ln\left(1+\frac{1}{x}\right)}=e^{1-\frac{1}{2x}+o\left(\frac{1}{x}\right)}=e-\frac{e}{2x}+o\left(\frac{1}{x}\right)$ puis $f(x)\underset{x\to+\infty}{\sim}\frac{e}{2x}$. Puisque la fonction $x\mapsto\frac{e}{2x}$ est positive et non intégrable au voisinage de $+\infty$, l'intégrale proposée est une intégrale divergente.

3) La fonction $f: x \mapsto \frac{\ln x}{x + e^x}$ est continue sur $]0, +\infty[$, de signe constant sur]0, 1] et sur $[1, +\infty[$.

Etude en 0. $\sqrt{x}f(x) \underset{x \to 0}{\sim} \sqrt{x}\ln(x) \underset{x \to 0}{=} o(1)$ et donc $f(x) \underset{x \to 0}{=} o\left(\frac{1}{\sqrt{x}}\right)$. Comme $\frac{1}{2} < 1$, la fonction $x \mapsto \frac{1}{\sqrt{x}}$ est intégrable sur un voisinage de 0 à droite et il en est de même de la fonction f.

Etude en $+\infty$. $f(x) \underset{x \to +\infty}{\sim} \frac{\ln x}{e^x} \underset{x \to +\infty}{=} o\left(\frac{x}{e^x}\right) \underset{x \to +\infty}{=} o\left(\frac{1}{x^2}\right)$ d'après un théorème de croissances comparées. Comme 2 > 1, la fonction $x \mapsto \frac{1}{x^2}$ est intégrable sur un voisinage de $+\infty$ et il en est de même de la fonction f.

Finalement, f est intégrable sur $]0,+\infty[$ et donc l'intégrale proposée est convergente.

4) La fonction $x \mapsto \sqrt[3]{x+1} - \sqrt[3]{x}$ est continue et strictement positive sur $[0, +\infty[$. Donc la fonction $f: x \mapsto \left(\sqrt[3]{x+1} - \sqrt[3]{x}\right)^{\sqrt{x}}$ est continue sur $[0, +\infty[$.

$$\mathrm{Pour\ tout\ } x>0,\ \ln\left(\sqrt[3]{x+1}-\sqrt[3]{x}\right) = \ln\left(\sqrt[3]{x}\left(\sqrt[3]{1+\frac{1}{x}}-1\right)\right) = \frac{1}{3}\ln x + \ln\left(\left(1+\frac{1}{x}\right)^{1/3}-1\right) \ \mathrm{puis\ } x + \ln\left(\left(1+\frac{1}{x}\right)^{1/3}-1\right) = \frac{1}{3}\ln x + \ln\left(\left(1+\frac{1}{x}\right$$

$$\begin{split} \sqrt{x} \ln \left(\sqrt[3]{x+1} - \sqrt[3]{x} \right) &\underset{x \to +\infty}{=} \sqrt{x} \left(\frac{1}{3} \ln(x) + \ln \left(\frac{1}{3x} + O\left(\frac{1}{x^2}\right) \right) \right) \\ &\underset{x \to +\infty}{=} \sqrt{x} \left(\frac{1}{3} \ln(x) + \ln \left(\frac{1}{3x} \right) + \ln \left(1 + O\left(\frac{1}{x}\right) \right) \right) \\ &\underset{x \to +\infty}{=} -\frac{2}{3} \ln x \sqrt{x} - \ln 3 \sqrt{x} + O\left(\frac{1}{\sqrt{x}}\right). \end{split}$$

Mais alors $x^2 f(x) = \exp\left(-\frac{2}{3}\sqrt{x}\ln x - \ln 3\sqrt{x} + 2\ln x + o(1)\right) = o(1)$ et donc $f(x) = o\left(\frac{1}{x^2}\right)$. La fonction f(x) = o(1) et donc f(x) = o(

5) La fonction $f: x \mapsto e^{-\sqrt{x^2-x}}$ est continue sur $[1, +\infty[$ car, pour tout $x \ge 1, x^2-x \ge 0$. Ensuite, $x^2 f(x) \exp\left(-\sqrt{x^2-x}+2\ln x\right) = \exp(-x+o(x))$ et donc $x^2 f(x) \xrightarrow[x \to +\infty]{} 0$. f(x) est ainsi négligeable devant $\frac{1}{x^2}$ au voisinage de $+\infty$ et donc f est intégrable sur $[1, +\infty[$. L'intégrale proposée converge.

- 6) La fonction $f: x \mapsto x^{-\ln x}$ est continue sur $]0, +\infty[$.
- Quand x tend vers 0, $x^{-\ln x} = e^{-\ln^2 x} \to 0$. La fonction f se prolonge par continuité en 0 et est en particulier intégrable sur un voisinage de 0 à droite.
- Quand x tend vers $+\infty$, $x^2 f(x) = \exp\left(-\ln^2 x + 2\ln x\right) \to 0$. Donc f est négligeable devant $\frac{1}{x^2}$ quand x tend vers $+\infty$ et f est intégrable sur un voisinage de $+\infty$.

Finalement, f est intégrable sur $]0,+\infty[$. L'intégrale proposée converge.

7) La fonction $f: x \mapsto \frac{\sin(5x) - \sin(3x)}{x^{5/3}}$ est continue sur $]0, +\infty[$.

- $f(x) \underset{x \to 0}{\sim} \frac{5x 3x}{x^{5/3}} = \frac{2}{x^{2/3}} > 0$. Puisque $\frac{2}{3} < 1$, la fonction $x \mapsto \frac{2}{x^{2/3}}$ est positive et intégrable sur un voisinage de 0 à droite et il en est de même de la fonction f. En $+\infty$, $|f(x)| \le \frac{2}{x^{5/3}}$ et puisque $\frac{5}{3} > 1$, la fonction f est intégrable sur un voisinage de $+\infty$.

Finalement, f est intégrable sur $]0,+\infty[$. L'intégrale proposée converge.

- 8) La fonction $f: x \mapsto \frac{\ln x}{x^2 1}$ est continue sur $]0, 1[\cup]1, +\infty[$.
- $f(x) \sim -\ln x = o\left(\frac{1}{\sqrt{x}}\right)$ d'après un théorème de croissances comaprées. Donc f est intégrable sur un voisinage de 0
- $f(x) = \frac{\ln(x)}{x-1} \times \frac{1}{x+1} \underset{x \to 1}{\sim} \frac{1}{2}$. La fonction f se prolonge par continuité en 1 et est en particulier intégrable sur un voisinage
- $x^{3/2}f(x) \underset{x \to +\infty}{\sim} \frac{\ln x}{\sqrt{x}} \underset{x \to +\infty}{=} o(1)$ et donc $f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x^{3/2}}\right)$. Puisque $\frac{3}{2} > 1$, f est intégrable sur un voisinage de $+\infty$.

Finalement, f est intégrable sur $]0,1[\cup]1,+\infty[$. L'intégrale proposée converge.

9) La fonction $f: x \mapsto \frac{e^{-x^2}}{\sqrt{|x|}}$ est continue sur $]-\infty,0[\cup]0,+\infty[$ et paire. Il suffit donc d'étudier l'intégrabilité de f sur

f est positive et équivalente en 0 à droite à $\frac{1}{\sqrt{x}}$ et négligeable devant $\frac{1}{x^2}$ en $+\infty$ d'après un théorème de croissances

f est donc intégrable sur]0, $+\infty$ [puis par parité sur] $-\infty$, $0[\cup]0$, $+\infty$ [. On en déduit que $\int_{-\infty}^{+\infty} \frac{e^{-x^2}}{\sqrt{|x|}} dx$ existe dans $\mathbb R$ et vaut 2 $\int_{0}^{+\infty} \frac{e^{-x^2}}{\sqrt{x}} dx$ par parité.

- 10) La fonction $f: x \mapsto \frac{1}{(1+x^2)\sqrt{1-x^2}}$ est continue et positive sur]-1,1[, paire et équivalente au voisinage de 1 à droite à $\frac{1}{2\sqrt{2}(1-x)^{1/2}}$ avec $\frac{1}{2}$ < 1. f est donc intégrable sur] - 1, 1[. L'intégrale proposée converge.
- 11) Puisque pour tout $x \in]0, 1[, x^2 x^3 = x^2(1-x) > 0$, la fonction $f: x \mapsto \frac{1}{\sqrt[3]{x^2 x^3}}$ est continue et positive sur $]0, 1[, x^2 x^3 = x^2(1-x) > 0]$ équivalente au voisinage de 0 à droite à $\frac{1}{\chi^{2/3}}$ avec $\frac{2}{3} < 1$ et équivalente au voisinage de 1 à gauche à $\frac{1}{(1-\chi)^{1/3}}$. f est donc intégrable sur]0,1[et en particulier l'intégrale proposée converge.
- 12) La fonction $f: x \mapsto \frac{1}{\operatorname{Arccos}(1-x)}$ est continue et positive sur]0,1]. Ensuite, $\operatorname{Arccos}(1-x) \underset{x\to 0}{=} o(1)$. Donc $\operatorname{Arccos}(1-x) \underset{x\to 0}{\sim} \sin\left(\operatorname{Arccos}(1-x)\right) = \sqrt{1-(1-x)^2} = \sqrt{2x-x^2}/\sin\sqrt{2}\sqrt{x}$. Donc $f(x) \sim \frac{1}{x \to 0} \frac{1}{\sqrt{2}\sqrt{x}}$ et f est intégrable sur]0, 1[. L'intégrale proposée converge.

Exercice nº 2

1) Pour tout couple de réels (a, b), la fonction $f: x \mapsto \frac{1}{x^a \ln^b x}$ est continue et positive sur $[2, +\infty[$. Etudions l'intégrabilité de f au voisinage de $+\infty$.

1er cas. Si a > 1, $x^{(a+1)/2}f(x) = \frac{1}{x^{(a-1)/2} \ln^b x} \xrightarrow{x \to +\infty} 0$ car $\frac{a-1}{2} > 0$ et d'après un théorème de croissances comparées. $\mathrm{Donc}\ f(x) \underset{x \to +\infty}{=} o\left(\frac{1}{x^{(\alpha+1)/2}}\right). \ \mathrm{Comme}\ \frac{\alpha+1}{2} > 1, \ \mathrm{la}\ \mathrm{fonction}\ x \mapsto \frac{1}{x^{(\alpha+1)/2}}\ \mathrm{est}\ \mathrm{int\acute{e}grable}\ \mathrm{sur}\ \mathrm{un}\ \mathrm{voisinage}\ \mathrm{de}\ +\infty\ \mathrm{et}\ \mathrm{il}$ en est de même de f. Dans ce cas, f est intégrable sur $[2, +\infty[$. L'intégrale proposée converge.

 $\begin{tabular}{l} \textbf{2\`eme cas.} Si $\alpha < 1, \, x^{(\alpha+1)/2} f(x) = \frac{x^{(1-\alpha)/2}}{\ln^b x} \xrightarrow[x \to +\infty]{} +\infty \ \text{car} \ \frac{1-\alpha}{2} > 0 \ \text{et d'après un th\'eor\`eme de croissances compar\'es.} \\ Donc $f(x)$ est pr\'epond\'erant devant $\frac{1}{x^{(\alpha+1)/2}}$ en $+\infty$. Comme $\frac{\alpha+1}{2} < 1$, la fonction $x \mapsto \frac{1}{x^{(\alpha+1)/2}}$ n'est pas int\'egrable sur un voisinage de $+\infty$ et il en est de même de f. Dans ce cas, f n'est pas int\'egrable sur $[2,+\infty[$.$ L'int\'egrale propos\'ee]] $(1-\alpha)$ and $(1-\alpha)$ in $(1-\alpha)$ and $(1-\alpha)$ in $(1-\alpha)$ and $(1-\alpha)$ are the foreign and $(1-\alpha)$ ar$

3ème cas. Si a = 1, pour X > 2 fixé, en posant $t = \ln x$ et donc $dt = \frac{dx}{x}$, on obtient

$$\int_2^X \frac{1}{x \ln^b x} dx = \int_{\ln 2}^{\ln X} \frac{dt}{t^b}.$$

Puisque $\ln X$ tend vers $+\infty$ quand X tend vers $+\infty$ et que les fonctions considérées sont positives, f est intégrable sur $[2, +\infty[$ si et seulement si b>1.

En résumé,

la fonction
$$x\mapsto \frac{1}{x^a\ln^b x}$$
 est intégrable sur $[2,+\infty[$ si et seulement si $a>1$ ou $(a=1$ et $b>1)$.

 $(\text{En particulier, la fonction } x \mapsto \frac{1}{x \ln x} \text{ n'est pas intégrable sur voisinage de } + \infty \text{ bien que négligeable devant } \frac{1}{x} \text{ en } + \infty).$

- 2) Pour tout réel a, la fonction $f: x \mapsto (\tan x)^a$ est continue et strictement positive sur $\left]0, \frac{\pi}{2}\right[$. De plus, pour tout réel x de $\left]0, \frac{\pi}{2}\right[$, on a $f\left(\frac{\pi}{2} x\right) = \frac{1}{f(x)}$.
- Etude en 0 à droite. $f(x) = \sum_{x \to 0}^{\infty} x^{a}$. Donc f est intégrable sur un voisinage de 0 à droite si et seulement si a > -1.
- Etude en $\frac{\pi}{2}$ à gauche. $f(x) = \frac{1}{f(\frac{\pi}{2} x)} \sim \frac{1}{x \to \frac{\pi}{2}} (\frac{\pi}{2} x)^{-\alpha}$. Donc f est intégrable sur un voisinage de $\frac{\pi}{2}$ à gauche si et seulement si $-\alpha > -1$ ou encore $\alpha < 1$.

En résumé, f est intégrable sur $\left]0,\frac{\pi}{2}\right[$ si et seulement si $-1<\alpha<1.$

3) Pour $x \ge 1$, $1 + \frac{1}{x}$ est défini et strictement positif. Donc pour tout couple (a,b) de réels, la fonction $f: x \mapsto \left(1 + \frac{1}{x}\right)^{1 + \frac{1}{x}} - a - \frac{b}{x}$ est continue sur $[1, +\infty[$.

Ensuite,
$$\left(1 + \frac{1}{x}\right) \ln\left(1 + \frac{1}{x}\right) = \left(1 + \frac{1}{x}\right) \left(\frac{1}{x} + O\left(\frac{1}{x^2}\right)\right) = \frac{1}{x \to +\infty} + O\left(\frac{1}{x^2}\right) \text{ puis } \left(1 + \frac{1}{x}\right)^{1 + \frac{1}{x}} = \exp\left(\frac{1}{x} + O\left(\frac{1}{x^2}\right)\right) = 1 + \frac{1}{x} + O\left(\frac{1}{x^2}\right) = 1 + \frac{1}{x} + O\left(\frac{1}{x}\right) = 1 + O\left(\frac{1}{x}\right) = 1 + O\left(\frac{1}{x}\right) = 1 + O\left(\frac{1}{x}\right) = 1 + O\left(\frac{1}{x}\right)$$

$$f(x) = \underset{x \to +\infty}{=} (1 - a) + \frac{1 - b}{x} + O\left(\frac{1}{x^2}\right).$$

- Si $a \neq 1$, f a une limite réelle non nulle en $+\infty$ et n'est donc pas intégrable sur $[1, +\infty[$.
- Si a = 1 et $b \neq 1$, $f(x) \underset{x \to +\infty}{\sim} \frac{1-b}{x}$. En particulier, f est de signe constant sur un voisinage de $+\infty$ et n'est pas intégrable sur $[1, +\infty[$.
- Si a = b = 1, $f(x) = O\left(\frac{1}{x^2}\right)$ et dans ce cas, f est intégrable sur $[1, +\infty[$.

En résumé, f est intégrable sur $[1,+\infty[$ si et seulement si $\mathfrak{a}=\mathfrak{b}=1.$

- 4) Pour tout couple (a,b) de réels, la fonction $f: x \mapsto \frac{1}{x^a(1+x^b)}$ est continue et positive sur $]0,+\infty[$.
- Etude en 0.
 - Si b>0, $f(x)\underset{x\to 0}{\sim}\frac{1}{x^{\alpha}}$, et donc f est intégrable sur un voisinage de 0 si et seulement si $\alpha<1$,
 - Si b=0, $f(x) \underset{x\to 0}{\sim} \frac{1}{2x^{\alpha}}$, et donc f est intégrable sur un voisinage de 0 si et seulement si $\alpha<1$,
 - -si b < 0, $f(x) \underset{x \to 0}{\sim} \frac{1}{x^{\alpha + b}}$, et donc f est intégrable sur un voisinage de 0 si et seulement si $\alpha + b < 1$.
- Etude en $+\infty$.
 - -Si b > 0, $f(x) \underset{x \to 0}{\sim} \frac{1}{x_x^{\alpha + b}}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si $\alpha + b > 1$,
 - -si b = 0, $f(x) \underset{x\to 0}{\sim} \frac{1}{2x^{\alpha}}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si $\alpha > 1$,
 - -si b < 0, $f(x) \sim \frac{1}{x \to 0}$, et donc f est intégrable sur un voisinage de $+\infty$ si et seulement si a > 1.

En résumé, f est intégrable sur $]0, +\infty[$ si et seulement si (

$$(b \ge 0 \text{ et } a < 1) \text{ ou } (b < 0 \text{ et } a + b < 1)) \text{ et } ((b > 0 \text{ et } a + b > 1) \text{ ou } (b \le 0 \text{ et } a > 1))$$

ce qui équivaut à

$$(b > 0 \text{ et } a + b > 1 \text{ et } a < 1) \text{ ou } (b < 0 \text{ et } a > 1 \text{ et } a + b < 1).$$

Représentons graphiquement l'ensemble des solutions (l'ensemble des couples $(a,b) \in \mathbb{R}^2$ tels que l'intégrale converge). La zone solution est la zone colorée bords non compris.

Exercice nº 3

1) Soient ε et X deux réels tels que $0 < \varepsilon < X$. Les deux fonction $x \mapsto 1 - \cos x$ et $x \mapsto \frac{1}{x}$ sont de classe C^1 sur le segment $[\varepsilon, X]$. On peut donc effectuer une intégration par parties et on obtient

$$\int_{\epsilon}^{X} \frac{\sin x}{x} dx = \left[\frac{1 - \cos x}{x} \right]_{\epsilon}^{X} + \int_{\epsilon}^{X} \frac{1 - \cos x}{x^{2}} dx = \frac{1 - \cos X}{X} - \frac{1 - \cos \epsilon}{\epsilon} + \int_{\epsilon}^{X} \frac{1 - \cos x}{x^{2}} dx.$$

• La fonction $x \mapsto \frac{1-\cos x}{x^2}$ est continue sur $]0, +\infty[$, est prolongeable par continuité en 0 car $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$ et donc intégrable sur un voisinage de 0, est dominée par $\frac{1}{x^2}$ en $+\infty$ et donc intégrable sur un voisinage de $+\infty$. La fonction $x \mapsto \frac{1-\cos x}{x^2}$ est donc intégrable sur $]0, +\infty[$ et $\int_{\varepsilon}^{X} \frac{1-\cos x}{x^2} dx$ a une limite réelle quand ε tend vers 0 et X tend vers $+\infty$.

• $\left|\frac{1-\cos X}{X}\right| \leqslant \frac{1}{X}$ et donc $\lim_{X\to +\infty} \frac{1-\cos X}{X} = 0$.

$$\begin{array}{c|c} X & X & \text{of done} & \lim_{X \to +\infty} X \\ \bullet & \frac{1 - \cos \varepsilon}{\varepsilon} & \frac{\varepsilon}{\varepsilon \to 0} & \frac{\varepsilon}{2} & \text{et done} & \lim_{\varepsilon \to \varepsilon} \frac{1 - \cos \varepsilon}{\varepsilon} = 0. \end{array}$$

On en déduit que $\int_0^{+\infty} \frac{\sin x}{x} dx$ est une intégrale convergente et de plus, quand ε tend vers 0 et X tend vers $+\infty$, on obtient

$$\int_0^{+\infty} \frac{\sin x}{x} \ dx = \int_0^{+\infty} \frac{1 - \cos x}{x^2} \ dx = \int_0^{+\infty} \frac{2 \sin^2(x/2)}{x^2} \ dx = \int_0^{+\infty} \frac{2 \sin^2(u)}{4u^2} \ 2du = \int_0^{+\infty} \frac{\sin^2(u)}{u^2} \ du.$$

L'intégrale
$$\int_0^{+\infty} \frac{\sin x}{x} dx$$
 converge et de plus $\int_0^{+\infty} \frac{\sin x}{x} dx = \int_0^{+\infty} \frac{1 - \cos x}{x^2} dx = \int_0^{+\infty} \frac{\sin^2 x}{x^2} dx$.

- 2) Soit a > 0. La fonction $f: x \mapsto \frac{\sin x}{x^a}$ est continue sur $]0, +\infty[$.
- Sur]0,1], la fonction f est de signe constant et l'existence de $\lim_{\epsilon \to 0} \int_{\epsilon}^{1} f(x) dx$ équivaut à l'intégrabilité de la fonction f sur]0,1]. Puisque f est équivalente en 0 à $\frac{1}{\chi^{\alpha-1}}$, l'intégrale impropre $\int_{0}^{1} f(x) dx$ converge en 0 si et seulement si $\alpha-1<1$ ou encore $\alpha<2$. On suppose dorénavant $\alpha<2$.
- Soit X > 1. Les deux fonction $x \mapsto -\cos x$ et $x \mapsto \frac{1}{x^a}$ sont de classe C^1 sur le segment [1, X]. On peut donc effectuer une intégration par parties et on obtient

$$\int_1^X \frac{\sin x}{x^{\alpha}} dx = \left[\frac{-\cos x}{x^{\alpha}} \right]_1^X - \alpha \int_1^X \frac{\cos x}{x^{\alpha+1}} dx = -\frac{\cos X}{X^{\alpha}} + \cos 1 - \alpha \int_1^X \frac{\cos x}{x^{\alpha+1}} dx.$$

Maintenant, $\left|\frac{\cos x}{x^{\alpha+1}}\right| \leqslant \frac{1}{x^{\alpha+1}}$, et puique $\alpha+1>1$, la fonction $x\mapsto \frac{\cos x}{x^{\alpha+1}}$ est intégrable sur un voisinage de $+\infty$ car dominée par $\frac{1}{x^{\alpha+1}}$ en $+\infty$. On en déduit que la fonction $X\mapsto \int_1^X \frac{\cos x}{x^{\alpha+1}}\,dx$ a une limite réelle quand X tend vers $+\infty$. Comme d'autre part, la fonction $X\mapsto -\frac{\cos X}{X^{\alpha}}+\cos 1$ a une limite réelle quand X tend vers $+\infty$, on a montré que l'intégrale impropre $\int_1^{+\infty} f(x)\,dx$ converge en $+\infty$.

Finalement

$$\forall \alpha>0, \ l'intégrale \int_0^{+\infty} \frac{\sin x}{x^\alpha} \ dx \ converge \ si \ et \ seulement \ si \ \alpha<2.$$

3) Soit X un réel strictement positif. Le changement de variables $t=x^2$ suivi d'une intégration par parties fournit :

$$\int_{1}^{X} e^{ix^{2}} dx = \int_{1}^{X^{2}} \frac{e^{it}}{2\sqrt{t}} dt = \frac{i}{2} \left(-\frac{e^{iX}}{\sqrt{X}} + e^{i} - \frac{1}{2} \int_{1}^{X} \frac{e^{it}}{t^{3/2}} dt \right)$$

Maintenant, $\lim_{X\to +\infty}\frac{e^{iX}}{\sqrt{X}}=0$ car $\left|\frac{e^{iX}}{\sqrt{X}}\right|=\frac{1}{\sqrt{X}}$. D'autre part, la fonction $t\mapsto \frac{e^{it}}{t^{3/2}}$ est intégrable sur $[1,+\infty[$ car $\left|\frac{e^{it}}{t^{3/2}}\right|=\frac{1}{t^{3/2}}$. Ainsi, $\int_{1}^{+\infty}e^{ix^2}\,dx$ est une intégrale convergente et puisque d'autre part la fonction $x\mapsto e^{ix^2}$ est continue sur $[0,+\infty[$, on a montré que

l'intégrale
$$\int_0^{+\infty} e^{ix^2} dx$$
 converge.

On en déduit encore que les intégrales $\int_0^{+\infty} \cos(x^2) dx$ et $\int_0^{+\infty} \sin(x^2) dx$ sont des intégrales convergentes (intégrales de Fresnel).

4) La fonction $f: x \mapsto x^3 \sin(x^8)$ est continue sur $[0, +\infty[$. Soit X > 0. Le changement de variables $t = x^4$ fournit

$$\int_0^X x^3 \sin(x^8) dx = \frac{1}{4} \int_0^{X^4} \sin(t^2) \ dt = \frac{1}{4} \mathrm{Im} \left(\int_0^{X^4} e^{it^2} \ dt \right).$$

D'après 3), $\int_0^{+\infty} e^{it^2} dt$ est une intégrale convergente et donc $\int_0^{+\infty} x^3 \sin(x^8) dx$ converge.

5) La fonction $f: x \mapsto \cos(e^x)$ est continue sur $[0, +\infty[$. Soit X > 0. Le changement de variables $t = e^x$ fournit

$$\int_0^X \cos(e^x) \ dx = \int_1^{e^x} \frac{\cos t}{t} \ dt.$$

On montre la convergence en $+\infty$ de cette intégrale par une intégration par parties analogue à celle de la question 1). L'intégrale impropre $\int_0^{+\infty} \cos(e^x) \ dx$ converge.

Exercice nº 4

 $1) \ I_n \ \mathrm{existe} \ \mathrm{si} \ \mathrm{et} \ \mathrm{seulement} \ \mathrm{si} \ n \geqslant 1 \ (\mathrm{pour} \ n \geqslant 1, \ \frac{1}{\left(t^2+1\right)^n} \underset{t \rightarrow +\infty}{=} O\left(\frac{1}{t^{2n}}\right) \ \mathrm{avec} \ 2n > 1).$

Soient $n \in \mathbb{N}^*$ et $X \in]0, +\infty[$. Une intégration par parties fournit

$$\int_0^X \frac{1}{(t^2+1)^n} dt = \left[\frac{t}{(t^2+1)^n} \right]_0^X + 2n \int_0^X \frac{t^2}{(t^2+1)^{n+1}} dt = \frac{X}{(X^2+1)^n} + 2n \int_0^X \frac{t^2+1-1}{(t^2+1)^{n+1}} dt$$

$$= \frac{X}{(X^2+1)^n} + 2n \int_0^X \frac{1}{(t^2+1)^n} dt - 2n \int_0^X \frac{1}{(t^2+1)^{n+1}} dt.$$

Puisque les fonctions considérées sont toutes intégrables sur $[0, +\infty[$, quand X tend vers $+\infty$ on obtient $I_n = 2n (I_n - I_{n+1})$ et donc

$$\forall n \in \mathbb{N}^*, \ I_{n+1} = \frac{2n-1}{2n} I_n.$$

En tenant compte de $I_1 = [\operatorname{Arctan}(x)]_0^{+\infty} = \frac{\pi}{2}$, on obtient pour $n \geqslant 2$,

$$I_n = \frac{2n-3}{2n-2} \times \frac{2n-5}{2n-4} \times \ldots \times \frac{1}{2} \times I_1 = \frac{((2n-2)\times(2n-3)\times(2n-4)\ldots\times3\times2\times1}{((2n-2)\times(2n-4)\times\ldots\times4\times2)^2} \times \frac{\pi}{2} = \frac{(2n-2)!}{2^{2n-2}(n-1)!^2} \times \frac{\pi}{2}.$$

ce qui reste vrai pour n = 1.

$$\boxed{\forall n \in \mathbb{N}^*, \int_0^{+\infty} \frac{1}{(t^2+1)^n} \ dt = \frac{(2n-2)!}{2^{2n-2}(n-1)!^2} \times \frac{\pi}{2}.}$$

Remarque. En posant $t = \tan x$ puis $y = \frac{\pi}{2} - x$, on obtient

$$\begin{split} \int_0^{+\infty} \frac{1}{(\mathsf{t}^2+1)^n} \; d\mathsf{t} &= \int_0^{\pi/2} \frac{1}{(1+\tan^2 x)^n} \times (1+\tan^2 x) \; dx = \int_0^{\pi/2} (\cos^2 x)^{n-1} \; dx \\ &= \int_0^{\pi/2} \sin^{2n-2} y \; dy = W_{2n-2} \; (\text{intégrales de Wallis}). \end{split}$$

2) On pose $I = \int_0^{+\infty} \frac{1}{x^3 + 1} dx$.

La fonction $f: x \mapsto \frac{1}{x^3+1}$ est continue sur $[0,+\infty[$ et dominée par $\frac{1}{x^3}$ en $+\infty$. La fonction f est donc intégrable sur $[0,+\infty[$.

Le changement de variables $t = \frac{1}{x}$ fournit $I = \int_{+\infty}^{0} \frac{1}{1 + \frac{1}{t^3}} \times -\frac{dt}{t^2} = \int_{0}^{+\infty} \frac{t}{1 + t^3} dt$. Donc

$$\begin{split} I &= \frac{1}{2} \left(\int_0^{+\infty} \frac{1}{x^3 + 1} \; dx + \int_0^{+\infty} \frac{x}{x^3 + 1} \; dx \right) = \frac{1}{2} \int_0^{+\infty} \frac{x + 1}{x^3 + 1} \; dx = \frac{1}{2} \int_0^{+\infty} \frac{1}{x^2 - x + 1} \; dx \\ &= \frac{1}{2} \int_0^{+\infty} \frac{1}{\left(x - \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} \; dx = \frac{1}{\sqrt{3}} \left[\operatorname{Arctan} \left(\frac{2x - 1}{\sqrt{3}} \right) \right]_0^{+\infty} = \frac{1}{\sqrt{3}} \left(\frac{\pi}{2} + \frac{\pi}{6} \right) = \frac{2\pi}{3\sqrt{3}}. \end{split}$$

$$\int_0^{+\infty} \frac{1}{x^3 + 1} \, \mathrm{d}x = \frac{2\pi}{3\sqrt{3}}.$$

3) Soit $n \in \mathbb{N}^*$. La fonction $f: x \mapsto \frac{1}{(x+1)(x+2)\dots(x+n)}$ est continue et positive sur $[0,+\infty[$, équivalente en $+\infty$ à $\frac{1}{x^n}$. Par suite, f est intégrable sur $[0,+\infty[$ si et seulement si $n \geqslant 2$.

Soit $n \ge 2$. La décomposition en éléments simples de f s'écrit

$$f(x) = \sum_{k=1}^{n} \frac{\lambda_k}{x+k},$$

avec

$$\begin{split} \lambda_k &= \lim_{x \to -k} (x+k) f(x) = \frac{1}{(-k+1)\dots(-k+(k-1))(-k+(k+1))\dots(-k+n)} = \frac{(-1)^{k-1}}{(k-1)!(n-k)!} \\ &= (-1)^{k-1} \frac{k}{n!} \binom{n}{k}. \end{split}$$

Une primitive de f est donc la fonction F : $x \mapsto \frac{1}{n!} \sum_{k=1}^n (-1)^{k-1} k \binom{n}{k} \ln(x+k).$

 $\text{Quand } x \text{ tend vers } +\infty, \ F(x) = \left(\sum_{k=1}^n \lambda_k\right) \ln x + o(1). \ \text{Cette expression a une limite réelle si et seulement si } \sum_{k=1}^n \lambda_k = 0.$

Puisque f est intégrable au voisinage de $+\infty$, on a donc nécessairement $\sum_{k=1}^{n} \lambda_k = 0$ puis F(x) tend vers 0 en $+\infty$. Il reste

$$\int_0^{+\infty} \frac{1}{(x+1)(x+2)\dots(x+n)} dx = \frac{1}{n!} \sum_{k=1}^n (-1)^k k \binom{n}{k} \ln(k).$$

Remarque. On peut montrer directement que $\sum_{k=1}^n \lambda_k = 0$: puisque $n \geqslant 2,$

$$\sum_{k=1}^n \lambda_k = \lim_{x \to +\infty} x f(x) = \lim_{x \to +\infty} \frac{x}{(x+1)\dots(x+n)} = 0.$$

4) Pour tout x de [0,1[, 1-x>0 et d'autre part, puisque a>0, pour tout x de [0,1[, 1+ax>0. Donc, pour tout x de [0,1[, (1-x)(1+ax)>0. La fonction $f: x\mapsto \frac{1}{\sqrt{(1-x)(1+ax)}}$ est définie, continue et positive sur [0,1[.

 $\frac{1}{\sqrt{(1-x)(1+\alpha x)}} \underset{x\to 1}{\sim} \frac{1}{(1+\alpha)\sqrt{1-x}} = \frac{1}{1+\alpha}(1-x)^{-\frac{1}{2}} \text{ avec } -\frac{1}{2} > -1. \text{ Donc, la fonction } f \text{ est intégrable sur un voisinage } de 1. \text{ Finalement, la fonction } f : x \mapsto \frac{1}{\sqrt{(1-x)(1+\alpha x)}} \text{ est intégrable sur } [0,1[.$

Calcul de $I = \int_0^1 \frac{1}{\sqrt{(1-x)(1+\alpha x)}} dx$ pour $\alpha > 0$.

 $\text{Pour } x \in [0,1[, \frac{1}{\sqrt{(1-x)(1+\alpha x)}} = \frac{1}{1-x}\sqrt{\frac{1-x}{1+\alpha x}}. \text{ On pose } u = \sqrt{\frac{1-x}{1+\alpha x}} \text{ et donc } x = \frac{-u^2+1}{\alpha u^2+1} \text{ et } dx = \frac{-2(\alpha+1)u}{(\alpha u^2+1)^2} \text{ du. }$

$$I = \int_{1}^{0} u \times \frac{1}{1 - \frac{-u^{2} + 1}{au^{2} + 1}} \times \frac{-2(a+1)u}{(au^{2} + 1)^{2}} du = 2 \int_{0}^{1} \frac{1}{au^{2} + 1} du = \frac{2}{a} \int_{0}^{1} \frac{1}{u^{2} + \left(\frac{1}{\sqrt{a}}\right)^{2}} du.$$

 $\mathrm{Donc},\ \mathrm{puisque}\ \alpha>0,\ \mathrm{I}=\frac{2}{\sqrt{\alpha}}\left[\mathrm{Arctan}\left(u\sqrt{\alpha}\right)\right]_0^1=2\frac{\mathrm{Arctan}\left(\sqrt{\alpha}\right)}{\sqrt{\alpha}}$

$$\forall \alpha > 0, \int_0^1 \frac{1}{\sqrt{(1-x)(1+\alpha x)}} \ dx = 2 \frac{\arctan\left(\sqrt{\alpha}\right)}{\sqrt{\alpha}}.$$

5) La fonction $f: x \mapsto \frac{1}{(e^x + 1)(e^{-x} + 1)}$ est continue et positive sur $[0, +\infty[$, équivalente au voisinage de $+\infty$ à e^{-x} . La fonction f est donc intégrable sur un voisinage de $+\infty$ puis intégrable sur $[0, +\infty[$.

On pose $u = e^x$ et donc $x = \ln u$ puis $dx = \frac{du}{u}$. On obtient

$$\int_0^{+\infty} \frac{1}{(e^x+1)(e^{-x}+1)} \ dx = \int_1^{+\infty} \frac{1}{(1+u)\left(1+\frac{1}{u}\right)} \ \frac{du}{u} = \int_1^{+\infty} \frac{1}{(u+1)^2} \ du = \frac{1}{2}$$

6) La fonction $f: x \mapsto \frac{1}{5 \operatorname{ch} x + 3 \operatorname{sh} x + 4}$ est continue positive sur $[0, +\infty[$ car pour tout $x \ge 0, 5 \operatorname{ch} x + 3 \operatorname{sh} x + 4 \ge 4 > 0$. En $+\infty$, $\frac{1}{5 \operatorname{ch} x + 3 \operatorname{sh} x + 4} \sim \frac{e^{-x}}{4}$ et donc f est intégrable sur $[0, +\infty[$.

On pose $u = e^x$ et on obtient

$$\int_0^{+\infty} \frac{1}{5 \operatorname{ch} x + 3 \operatorname{sh} x + 4} \, dx = \int_1^{+\infty} \frac{1}{\frac{5}{2} \left(u + \frac{1}{u} \right) + \frac{3}{2} \left(u - \frac{1}{u} \right) + 4} \, \frac{du}{u} = \int_1^{+\infty} \frac{1}{4u^2 + 4u + 1} \, du$$
$$= \int_1^{+\infty} \frac{1}{(2u + 1)^2} \, du = \left[-\frac{1}{2(2u + 1)} \right]_1^{+\infty} = \frac{1}{6}.$$

7) La fonction $f: t \mapsto 2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)$ est continue sur $[0, +\infty[$ et de signe constant au voisinage de $+\infty$. L'intégrabilité de f équivaut donc à l'existence d'une limite réelle en $+\infty$ pour la fonction $F: x \mapsto \int_0^x \left(2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)\right) dt$. Soit x > 0. Une intégration par parties fournit

$$\begin{split} F(x) - 2x &= \int_0^x (t+3) \ln \left(\frac{t+2}{t+4}\right) \, dt = \left[\frac{(t+3)^2}{2} \ln \left(\frac{t+2}{t+4}\right)\right]_0^x - \frac{1}{2} \int_0^x (t+3)^2 \left(\frac{1}{t+2} - \frac{1}{t+4}\right) \, dt \\ &= \frac{(x+3)^2}{2} \ln \left(\frac{x+2}{x+4}\right) + \frac{9}{2} \ln 2 - \int_0^x \frac{(t+3)^2}{(t+2)(t+4)} \, dt \\ &= \frac{(x+3)^2}{2} \ln \left(\frac{x+2}{x+4}\right) + \frac{9}{2} \ln 2 - \int_0^x \left(1 + \frac{1}{2(t+2)} - \frac{1}{2(t+4)}\right) \, dt \\ &= \frac{(x+3)^2}{2} \ln \left(\frac{x+2}{x+4}\right) + \frac{9}{2} \ln 2 - x - \frac{1}{2} \ln \left(\frac{x+2}{x+4}\right) - \frac{1}{2} \ln 2. \end{split}$$

Par suite,

$$\forall x > 0, \ F(x) = x + \frac{1}{2}(x^2 + 6x + 8) \ln\left(\frac{x+2}{x+4}\right) + 4 \ln 2.$$

Maintenant quand x tend vers $+\infty$

$$\ln\left(\frac{x+2}{x+4}\right) = \ln\left(1+\frac{2}{x}\right) - \ln\left(1+\frac{4}{x}\right) = \frac{2}{x} - \frac{4}{x} - \frac{2}{x^2} + \frac{8}{x^2} + o\left(\frac{1}{x^2}\right) = -\frac{2}{x} + \frac{6}{x^2} + o\left(\frac{1}{x^2}\right)$$

et donc

$$\frac{1}{2}(x^2+6x+8)\ln\left(\frac{x+2}{x+4}\right) = \frac{1}{2}\left(x^2+6x+8\right)\left(-\frac{2}{x}+\frac{6}{x^2}+o\left(\frac{1}{x^2}\right)\right) = -x-3+o(1)$$

et finalement $F(x) = 4 \ln 2 - 3 + o(1)$. Ceci montre l'intégrabilité de la fonction f sur $[0, +\infty[$ et

$$\int_0^{+\infty} \left(2 + (t+3) \ln \left(\frac{t+2}{t+4}\right)\right) dt = 4 \ln 2 - 3.$$

8) La fonction $f: x \mapsto \frac{x \operatorname{Arctan} x}{(1+x^2)^2}$ est continue et positive sur $[0, +\infty[$, équivalente en $+\infty$ à $\frac{\pi}{2x^3}$ et donc est intégrable sur un voisinage de $+\infty$. La fonction f est donc intégrable sur $[0, +\infty[$. Posons alors $I = \int_0^{+\infty} \frac{x \operatorname{Arctan} x}{(1+x^2)^2} \, dx$.

1er calcul. On pose $u = \frac{1}{x}$ et on obtient

$$I = \int_{+\infty}^{0} \frac{\frac{1}{u} \operatorname{Arctan}\left(\frac{1}{u}\right)}{\left(1 + \frac{1}{u^{2}}\right)^{2}} \frac{-du}{u^{2}} = \int_{0}^{+\infty} \frac{u\left(\frac{\pi}{2} - \operatorname{Arctan}u\right)}{\left(u^{2} + 1\right)^{2}} du = -I + \frac{\pi}{2} \int_{0}^{+\infty} \frac{u}{\left(u^{2} + 1\right)^{2}} du$$

et donc $2I = \frac{\pi}{2} \left[-\frac{1}{2(1+u^2)} \right]_0^{+\infty} = \frac{\pi}{4}$ ce qui fournit

$$\int_0^{+\infty} \frac{x \operatorname{Arctan} x}{(1+x^2)^2} \, \mathrm{d}x = \frac{\pi}{8}.$$

2ème calcul. Soit X > 0. Une intégration par parties fournit

$$\int_0^X \frac{x \operatorname{Arctan} x}{(1+x^2)^2} \ dx = \left[-\frac{1}{2(x^2+1)} \operatorname{Arctan} x \right]_0^X + \frac{1}{2} \int_0^X \frac{1}{(x^2+1)^2} \ dx = -\frac{\operatorname{Arctan} X}{2(X^2+1)} + \frac{1}{2} \int_0^X \frac{1}{(x^2+1)^2} \ dx$$

et quand X tend vers $+\infty$, on obtient $\int_0^{+\infty} \frac{x \operatorname{Arctan} x}{(1+x^2)^2} dx = \frac{1}{2} \int_0^{+\infty} \frac{1}{(x^2+1)^2} dx$. On pose alors $x = \tan t$ et on obtient

$$I = \frac{1}{2} \int_{0}^{\pi/2} \frac{1}{(1 + \tan^{2} t)^{2}} (1 + \tan^{2} t) \ dt = \frac{1}{2} \int_{0}^{\pi/2} \cos^{2} t \ dt = \frac{1}{4} \int_{0}^{\pi/2} (1 + \cos(2t)) \ dt = \frac{\pi}{8} \int_{0}^{\pi/2} (1 + \cos(2t$$

9) La fonction $f: x \mapsto \frac{x \ln x}{(x^2+1)^2}$ est continue sur $]0, +\infty[$, prolongeable par continuité en 0 et équivalente en $+\infty$ à $\frac{\ln x}{x^4}$. Cette dernière expression est elle-même négligeable en $+\infty$ devant $\frac{1}{x^3}$. La fonction f est donc intégrable sur $]0,+\infty[$.

$$\int_0^{+\infty} \frac{x \ln x}{(x^2 + 1)^2} dx = 0.$$

 $\frac{\pi}{2}$ à gauche. Finalement, la fonction f est intégrable sur $\left[0,\frac{\pi}{2}\right[$. On peut noter $I=\int_0^{\pi/2}\sqrt{\tan x}\ dx$.

On pose $u = \sqrt{\tan x}$ et donc $\tan x = u^2$ puis $(1 + \tan^2 x)$ dx = 2u du et donc $dx = \frac{2u}{1 + u^4}$. On obtient $I = \int_0^{+\infty} \frac{2u^2}{1 + u^4} du$. Or $u^4 + 1 = u^4 + 2u^2 + 1 - 2u^2 = \left(u^2 + 1 - u\sqrt{2}\right)\left(u^2 + 1 + u\sqrt{2}\right)$ et donc

$$\begin{split} \frac{u^2}{1+u^4} &= \frac{u^2}{\left(u^2+u\sqrt{2}+1\right)\left(u^2-u\sqrt{2}+1\right)} = \frac{1}{2\sqrt{2}}\left(\frac{u}{u^2-u\sqrt{2}+1} - \frac{u}{u^2+u\sqrt{2}+1}\right) \\ &= \frac{1}{4\sqrt{2}}\left(\frac{2u-\sqrt{2}}{u^2-u\sqrt{2}+1} + \frac{\sqrt{2}}{\left(u-\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} - \frac{2u+\sqrt{2}}{u^2+u\sqrt{2}+1} + \frac{\sqrt{2}}{\left(u+\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}\right) \end{split}$$

Par suite, une primitive de la fonction $u \mapsto \frac{2u^2}{u^4+1}$ sur $[0,+\infty[$ est la fonction

$$F \ : \ u \mapsto \frac{1}{2\sqrt{2}}\ln\left(\frac{u^2-u\sqrt{2}+1}{u^2+u\sqrt{2}+1}\right) + \frac{1}{\sqrt{2}}\left(\operatorname{Arctan}(u\sqrt{2}-1) + \operatorname{Arctan}(u\sqrt{2}+1)\right)$$

On en déduit que $I = \lim_{u \to +\infty} F(u) - F(0) = \frac{\pi}{\sqrt{2}}$

$$\int_0^{\pi/2} \sqrt{\tan x} \, dx = \frac{\pi}{\sqrt{2}}.$$

 $\begin{aligned} \textbf{11)} \text{ La fonction } f \ : \ t \mapsto \frac{e^{-\alpha t} - e^{-bt}}{t} \text{ est continue sur }]0, +\infty[, \text{ prolongeable par continuit\'e en 0 car } f(t) \underset{t \to 0}{=} b - \alpha + o(1) \\ \text{ et n\'egligeable devant } \frac{1}{t^2} \text{ en } +\infty. \text{ Donc } f \text{ est int\'egrable sur }]0, +\infty[. \end{aligned}$

Soit x un réel strictement positif. Chacune des deux fonctions $t\mapsto \frac{e^{-at}}{t}$ et $t\mapsto \frac{e^{-bt}}{t}$ est intégrable sur $[x,+\infty[$ et on peut écrire

$$\int_{x}^{+\infty} \frac{e^{-\alpha t} - e^{-bt}}{t} dt = \int_{x}^{+\infty} \frac{e^{-\alpha t}}{t} dt - \int_{x}^{+\infty} \frac{e^{-bt}}{t} dt.$$

En posant u=at et donc $\frac{du}{u}=\frac{dt}{t}$, on obtient $\int_{x}^{+\infty}\frac{e^{-at}}{t}\,dt=\int_{ax}^{+\infty}\frac{e^{-u}}{u}\,du$ et de même $\int_{x}^{+\infty}\frac{e^{-bt}}{t}\,dt=\int_{bx}^{+\infty}\frac{e^{-u}}{u}\,du$ et donc

$$\int_{x}^{+\infty} \frac{e^{-\alpha t} - e^{-bt}}{t} dt = \int_{\alpha x}^{bx} \frac{e^{-u}}{u} du.$$

 $\mathrm{Maintenant,\ pour\ } x>0,\ l'\mathrm{encadrement}\ e^{-bx} \int_{ax}^{bx} \frac{1}{u}\ du \leqslant \int_{ax}^{bx} \frac{e^{-u}}{u} du \leqslant e^{-ax} \int_{ax}^{bx} \frac{1}{u}\ du\ \mathrm{fournit}$

$$e^{-ax} \ln \left(\frac{b}{a}\right) \leqslant \int_{ax}^{bx} \frac{e^{-u}}{u} du \leqslant e^{-ax} \ln \left(\frac{b}{a}\right)$$

et le théorème des gendarmes fournit $\lim_{x\to 0}\int_x^{+\infty}\frac{e^{-at}-e^{-bt}}{t}\,dt=\lim_{x\to 0}\int_{ax}^{bx}\frac{e^{-u}}{u}\,du=\ln\left(\frac{b}{a}\right).$ Finalement,

$$\mathrm{pour\ tous\ r\acute{e}els\ }\alpha\mathrm{\ et\ }b\mathrm{\ tels\ }\mathrm{que\ }0<\alpha< b, \\ \int_{0}^{+\infty}\frac{e^{-\alpha t}-e^{-bt}}{t}\mathrm{\ }dt=\ln\bigg(\frac{b}{\alpha}\bigg).$$

Exercice nº 5

La fonction $f: x \mapsto \ln(\sin x)$ est continue sur $\left]0, \frac{\pi}{2}\right]$. De plus, $\ln(\sin x) \underset{x \to 0}{\sim} \ln x \underset{x \to 0}{=} o\left(\frac{1}{\sqrt{x}}\right)$. Par suite, f est intégrable sur $\left[0, \frac{\pi}{2}\right]$.

1) Soient $I = \int_0^{\pi/2} \ln(\sin x) \, dx$ et $J = \int_0^{\pi/2} \ln(\cos x) \, dx$. Le changement de variables $x = \frac{\pi}{2} - t$ fournit : J existe et J = I. Par suite,

$$\begin{split} 2I &= I + J = \int_0^{\pi/2} \ln(\sin x \cos x) \ dx = -\frac{\pi \ln 2}{2} + \int_0^{\pi/2} \ln(\sin(2x)) \ dx = -\frac{\pi \ln 2}{2} + \frac{1}{2} \int_0^{\pi} \ln(\sin u) \ du \\ &= -\frac{\pi \ln 2}{2} + \frac{1}{2} \left(I + \int_{\pi/2}^{\pi} \ln(\sin u) \ du \right) = -\frac{\pi \ln 2}{2} + \frac{1}{2} \left(I + \int_{\pi/2}^{0} \ln(\sin(\pi - t)) \ (-dt) \right) = -\frac{\pi \ln 2}{2} + I. \end{split}$$

Par suite, $I = -\frac{\pi \ln 2}{2}$.

$$\int_0^{\pi/2} \ln(\sin x) \ dx = \int_0^{\pi/2} \ln(\cos x) \ dx = -\frac{\pi \ln 2}{2}.$$

2) Pour $n \geqslant 2$, posons $P_n = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right)$. Pour $1 \leqslant k \leqslant n-1$, on a $0 < \frac{k\pi}{2n} < \frac{\pi}{2}$ et donc $P_n > 0$. D'autre part, $\sin\left(\frac{(2n-k)\pi}{2n}\right) = \sin\left(\frac{k\pi}{2n}\right)$ et $\sin\frac{n\pi}{2n} = 1$. On en déduit que

$$P_n^2 = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right) \times \sin\frac{n\pi}{2n} \times \prod_{k=n+1}^{2n-1} \sin\left(\frac{k\pi}{2n}\right) = \prod_{k=1}^{2n-1} \sin\left(\frac{k\pi}{2n}\right),$$

puis

$$\begin{split} P_n^2 &= \prod_{k=1}^{2n-1} \frac{e^{\mathrm{i}k\pi/(2n)} - e^{-\mathrm{i}k\pi/(2n)}}{2\mathrm{i}} = \frac{1}{(2\mathrm{i})^{2n-1}} \prod_{k=1}^{2n-1} \left(-e^{-\mathrm{i}k\pi/(2n)} \right) \prod_{k=1}^{2n-1} \left(1 - e^{2\mathrm{i}k\pi/(2n)} \right) \\ &= \frac{1}{(2\mathrm{i})^{2n-1}} (-1)^{2n-1} (e^{-\mathrm{i}\pi/2})^{2n-1} \prod_{k=1}^{2n-1} \left(1 - e^{2\mathrm{i}k\pi/(2n)} \right) = \frac{1}{2^{2n-1}} \prod_{k=1}^{2n-1} \left(1 - e^{2\mathrm{i}k\pi/(2n)} \right) \end{split}$$

Maintenant, le polynôme Q unitaire de degré 2n-1 dont les racines sont les 2n-1 racines 2n-èmes de l'unité distinctes de 1 est

$$\frac{X^{2n}-1}{X-1}=1+X+X^2+...+X^{2n-1}$$

et donc $\prod_{k=1}^{2n-1} \left(1-e^{2\mathrm{i}k\pi/(2n)}\right) = Q(1) = 2n. \ \mathrm{Finalement}, \ (\mathrm{en} \ \mathrm{tenant} \ \mathrm{compte} \ \mathrm{de} \ P_n > 0),$

$$\prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{2n}\right) = P_n = \sqrt{\frac{2n}{2^{2n-1}}} = \frac{\sqrt{n}}{2^{n-1}}.$$

Pour $0 \leqslant k \leqslant n$, posons alors $x_k = \frac{k\pi}{2n}$ de sorte que $0 = x_0 < x_1 < ... < x_n = \frac{\pi}{2}$ est une subdivision de $\left[0, \frac{\pi}{2}\right]$ à pas constant égal à $\frac{\pi}{2n}$.

Puisque la fonction $x \mapsto \ln(\sin x)$ est continue et croissante sur $\left]0, \frac{\pi}{2}\right]$, pour $1 \leqslant k \leqslant n-1$, on a $\frac{\pi}{2n}\ln(\sin(x_k)) \leqslant \int_{x_k}^{x_{k+1}} \ln(\sin x) \, dx$ puis en sommant ces inégalités , on obtient

$$\frac{\pi}{2n}\ln\left(P_{n}\right) \leqslant \int_{\pi/(2n)}^{\pi/2} \ln(\sin x) \, dx$$

De même, pour $0 \leqslant k \leqslant n-1$, $\int_{x_k}^{x_{k+1}} \ln(\sin x) \ dx \leqslant \frac{\pi}{2n} \ln\left(\sin\left(x_{k+1}\right)\right)$ et en sommant

$$\int_0^{\pi/2} \ln(\sin x) \, dx \leqslant \frac{\pi}{2n} \ln (P_n).$$

Finalement, $\forall n \geqslant 2$, $\frac{\pi}{2n} \ln(P_n) + \int_0^{\pi/(2n)} \ln(\sin x) \, dx \leqslant I \leqslant \frac{\pi}{2n} \ln(P_n)$. Mais $\ln(P_n) = \frac{\ln n}{2} - (n-1) \ln 2$ et donc $\frac{\pi}{2n} \ln(P_n)$ tend vers $-\frac{\pi \ln 2}{2}$ quand n tend vers $+\infty$ et comme d'autre part, $\int_0^{\pi/(2n)} \ln(\sin x) \, dx$ tend vers 0 quand n tend vers $+\infty$ (puisque la fonction $x : \mapsto \ln(\sin x)$ est intégrable sur $\left]0, \frac{\pi}{2}\right]$), on a redémontré que $I = -\frac{\pi \ln 2}{2}$.

Exercice nº 6

La fonction $f: t \mapsto \frac{\ln t}{t-1}$ est continue et positive sur]0,1[, négligeable devant $\frac{1}{\sqrt{t}}$ quand t tend vers 0 et prolongeable par continuité en 1. La fonction f est donc intégrable sur]0,1[.

Pour $t \in]0,1[$ et $n \in \mathbb{N},$

$$\frac{\ln t}{t-1} = \frac{-\ln t}{1-t} = -\sum_{k=0}^{n} t^k \ln t + \frac{t^{n+1} \ln t}{t-1}$$

Pour $t \in]0,1]$ et $n \in \mathbb{N}$, posons $f_n(t) = -t^n \ln t$.

Soit $n \in \mathbb{N}$. Chaque fonction f_k , $0 \le k \le n$, est continue sur]0,1] et négligeable en 0 devant $\frac{1}{\sqrt{t}}$. Donc chaque fonction f_k est intégrable sur]0,1] et donc sur]0,1[. Mais alors, la fonction $t \mapsto \frac{t^{n+1} \ln t}{1-t} = \frac{\ln t}{t-1} + \sum_{k=0}^{n} t^k \ln t$ est intégrable sur]0,1[et

$$\int_0^1 \frac{\ln t}{t-1} \ dt = -\sum_{k=0}^n \int_0^1 t^k \ln t \ dt + \int_0^1 \frac{t^{n+1} \ln t}{t-1} \ dt$$

• La fonction $g: t \mapsto \frac{t \ln t}{t-1}$ est continue sur]0,1[et prolongeable par continuité en 0 et en 1. Cette fonction est en particulier bornée sur]0,1[. Soit M un majorant de la fonction |g| sur]0,1[. Pour $n \in \mathbb{N}$,

$$\left|\int_0^1 \frac{t^{n+1} \ln t}{t-1} \ dt \right| \leqslant \int_0^1 t^n |g(t)| \ dt \leqslant M \int_0^1 t^n \ dt = \frac{M}{n+1}.$$

Par suite, $\lim_{n\to+\infty}\int_0^1 \frac{t^{n+1}\ln t}{t-1} \ dt = 0$. On en déduit que la série de terme général $-\int_0^1 t^k \ln t \ dt$ converge et que

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{k=0}^{+\infty} \int_0^1 (-t^k \ln t) dt.$$

• Soit $\varepsilon \in]0,1[$. Pour $k \in \mathbb{N}$, une intégration par parties fournit

$$\int_{\epsilon}^{1} (-t^k \ln t) \ dt = \left[-\frac{t^{k+1} \ln t}{k+1} \right]_{\epsilon}^{1} + \frac{1}{k+1} \int_{\epsilon}^{1} t^k \ dt = \frac{\epsilon^{k+1} \ln \epsilon}{k+1} + \frac{1-\epsilon^{k+1}}{(k+1)^2}.$$

Quand ϵ tend vers 0, on obtient $\int_0^1 (-t^k \ln t) dt = \frac{1}{(k+1)^2}$. Finalement,

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{k=0}^{+\infty} \frac{1}{(k+1)^2} = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

$$\int_0^1 \frac{\ln t}{t-1} dt = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

Exercice nº 7

La fonction $f: t \mapsto \frac{t-1}{\ln t}$ est continue sur]0, 1[, prolongeable par continuité en 0 et 1 et donc est intégrable sur]0, 1[.

Soit $x \in]0,1[$. Chacune des deux fonctions $t \mapsto \frac{t}{\ln t}$ et $t \mapsto \frac{1}{\ln t}$ se prolonge par continuité en 0 et est ainsi intégrable sur]0,x[. On peut donc écrire

$$\int_{0}^{x} \frac{t-1}{\ln t} dt = \int_{0}^{x} \frac{t}{\ln t} dt - \int_{0}^{x} \frac{1}{\ln t} dt.$$

 $\mathrm{Dans}\ \mathrm{la}\ \mathrm{première}\ \mathrm{int\acute{e}grale},\ \mathrm{on}\ \mathrm{pose}\ \mathfrak{u}=t^2\ \mathrm{et}\ \mathrm{on}\ \mathrm{obtient}\ \int_0^x \frac{t}{\ln t}\ dt = \int_0^x \frac{2t}{\ln(t^2)}\ dt = \int_0^{x^2} \frac{1}{\ln u}\ du\ \mathrm{et}\ \mathrm{donc}$

$$\int_0^x \frac{t-1}{\ln t} dt = \int_0^{x^2} \frac{1}{\ln t} dt - \int_0^x \frac{1}{\ln t} dt = \int_x^{x^2} \frac{1}{\ln t} dt.$$

On note alors que, puisque $x \in]0,1[,x^2 < x.$ Pour $t \in [x^2,x],$ on a $t \ln t < 0$ et donc $\frac{x}{t \ln t} \leqslant \frac{t}{t \ln t} = \frac{1}{\ln t} \leqslant \frac{x^2}{t \ln t}$ puis par croissance de l'intégrale, $\int_{x^2}^x \frac{x}{t \ln t} \, dt \leqslant \int_{x^2}^x \frac{1}{\ln t} \, dt \leqslant \int_{x^2}^x \frac{x^2}{t \ln t} \, dt$ et donc

$$x^2 \int_{x}^{x^2} \frac{1}{t \ln t} dt \leqslant \int_{x}^{x^2} \frac{1}{\ln t} dt \leqslant x \int_{x}^{x^2} \frac{1}{t \ln t} dt$$

 $\mathrm{Maintenant}, \int_{x}^{x^2} \frac{1}{t \ln t} \ dt = \ln |\ln(x^2)| - \ln |\ln x| = \ln 2 \ \mathrm{et} \ \mathrm{on} \ \mathrm{a} \ \mathrm{montr\'e} \ \mathrm{que}, \ \mathrm{pour} \ \mathrm{tout} \ \mathrm{r\'eel} \ x \ \mathrm{de} \]0,1[,1]$

$$x^2 \ln 2 \leqslant \int_0^x \frac{t-1}{\ln t} dt \leqslant x \ln 2$$

Quand x tend vers 1, on obtient

$$\int_0^1 \frac{t-1}{\ln t} dt = \ln 2.$$

Exercice nº 8

1) La fonction $t\mapsto e^{-t^2}$ est continue, positive et intégrable sur $[0,+\infty[$. De plus,

$$e^{-t^2} \underset{t \to +\infty}{\sim} \left(1 + \frac{1}{2t^2}\right) e^{-t^2} = \left(-\frac{1}{2t}e^{-t^2}\right)'.$$

D'après un théorème de sommation des relations de comparaison.

$$\int_{x}^{+\infty} e^{-t^{2}} dt \underset{x \to +\infty}{\sim} \int_{x}^{+\infty} \left(-\frac{1}{2t} e^{-t^{2}} \right)' dt = \frac{1}{2x} e^{-x^{2}},$$

et donc

$$e^{x^2} \int_{x}^{+\infty} e^{-t^2} dt \underset{x \to +\infty}{\sim} \frac{1}{2x}.$$

2) Pour a > 0 fixé, $\int_{-\infty}^{+\infty} \frac{\cos x}{x} dx$ converge (se montre en intégrant par parties (voir exercice n° 3)) puis

$$\begin{split} \int_{\alpha}^{+\infty} \frac{\cos x}{x} \; dx &= -\int_{1}^{\alpha} \frac{\cos x}{x} \; dx + \int_{1}^{+\infty} \frac{\cos x}{x} \; dx \underset{\alpha \to 0}{=} -\int_{1}^{\alpha} \frac{\cos x}{x} \; dx + O(1) \\ &= -\int_{1}^{\alpha} \frac{1}{x} \; dx + \int_{1}^{\alpha} \frac{1 - \cos x}{x} \; dx + O(1) \underset{\alpha \to 0}{=} -\ln \alpha + \int_{1}^{\alpha} \frac{1 - \cos x}{x} \; dx + O(1). \end{split}$$

Maintenant, $\frac{1-\cos x}{x}$ $\underset{x\to 0}{\sim}$ $\frac{x}{2}$ et en particulier, $\frac{1-\cos x}{x}$ tend vers 0 quand x tend vers 0. Par suite, la fonction $x\mapsto$ $\frac{1-\cos x}{x}$ est continue sur]0,1] et se prolonge par continuité en 0. Cette fonction est donc intégrable sur]0,1] et en particulier, $\int_{1}^{\alpha} \frac{1-\cos x}{x} dx$ a une limite réelle quand α tend vers 0. On en déduit que $\int_{\alpha}^{+\infty} \frac{\cos x}{x} dx = -\ln \alpha + O(1)$ et finalement

$$\int_{\alpha}^{+\infty} \frac{\cos x}{x} dx \underset{\alpha \to 0}{\sim} -\ln \alpha.$$

3) Soit a > 0.

$$\left| \int_0^1 \frac{1}{x^3 + a^2} \, dx - \frac{1}{a^2} \right| = \left| \int_0^1 \left(\frac{1}{x^3 + a^2} - \frac{1}{a^2} \right) \, dx \right| = \int_0^1 \frac{x^3}{(x^3 + a^2)a^2} \, dx \leqslant \int_0^1 \frac{1^3}{(0^3 + a^2)a^2} \, dx = \frac{1}{a^4} \left| \frac{1}{a^4} \right| = \left| \int_0^1 \left(\frac{1}{x^3 + a^2} - \frac{1}{a^2} \right) \, dx \right| = \int_0^1 \frac{x^3}{(x^3 + a^2)a^2} \, dx \leqslant \int_0^1 \frac{1^3}{(0^3 + a^2)a^2} \, dx = \frac{1}{a^4} \left| \frac{1}{a^4} \right| = \left| \int_0^1 \left(\frac{1}{x^3 + a^2} - \frac{1}{a^2} \right) \, dx \right| = \int_0^1 \frac{x^3}{(x^3 + a^2)a^2} \, dx \leqslant \int_0^1 \frac{1^3}{(0^3 + a^2)a^2} \, dx = \frac{1}{a^4} \left| \frac{1}{a^4} \right| = \left| \int_0^1 \left(\frac{1}{x^3 + a^2} - \frac{1}{a^2} \right) \, dx \right| = \int_0^1 \frac{x^3}{(x^3 + a^2)a^2} \, dx \leqslant \int_0^1 \frac{1^3}{(0^3 + a^2)a^2} \, dx = \frac{1}{a^4} \left| \frac{1}{a^4} \right| = \frac{1}{a^4} \left|$$

Donc, $\int_{a}^{1} \frac{1}{x^3 + a^2} dx = \frac{1}{a^2} + O\left(\frac{1}{a^4}\right) = \frac{1}{a^2} + o\left(\frac{1}{a^2}\right) \text{ ou encore}$

$$\int_0^1 \frac{1}{x^3 + a^2} dx \underset{a \to +\infty}{\sim} \frac{1}{a^2}.$$

Exercice nº 9

• Domaine de définition. Soit $x \in \mathbb{R}$. Si x < 0, la fonction $t \mapsto \frac{1}{\ln t}$ n'est pas définie sur $[x,0[\subset [x,x^2] \text{ et } f(x) \text{ n'est pas défini.}]$

Si 0 < x < 1, $[x^2, x] \subset]0,1[$. Donc la fonction $t \mapsto \frac{1}{\ln t}$ est continue sur $[x^2, x]$. Dans ce cas, f(x) existe et est de plus strictement positif car $\ln t < 0$ pour tout t de]0, 1[.

Si x > 1, $[x, x^2] \subset]1$, $+\infty[$. Donc la fonction $t \mapsto \frac{1}{\ln t}$ est continue sur $[x, x^2]$. Dans ce cas aussi, f(x) existe et est strictement positif.

Enfin, f(0) et f(1) n'ont pas de sens.

f est définie sur D =]0,1[\cup]1,+ ∞ [et strictement positive sur D.

• **Dérivabilité.** Soit I l'un des deux intervalles]0,1[ou $]1,+\infty[$. La fonction $t\mapsto \frac{1}{\ln t}$ est continue sur I. Soit F une primitive de cette fonction sur I.

Si $x \in]0,1[$, on a $[x^2,x] \subset]0,1[$ et donc $f(x)=F(x^2)-F(x)$. De même, si $x \in]1,+\infty[$, $[x,x^2] \subset]1,+\infty[$ et donc $f(x)=F(x^2)-F(x)$.

On en déduit que f est de classe C^1 sur D. De plus, pour $x \in D$,

$$f'(x) = 2xF'(x^2) - F'(x) = \frac{2x}{\ln(x^2)} - \frac{1}{\ln x} = \frac{x-1}{\ln x}.$$

- Variations. f' est strictement positive sur $]0,1[\cup]1,+\infty[$ et donc f est strictement croissante sur]0,1[et sur $]1,+\infty[$ (mais pas nécessairement sur D).
- Etude en 0. Soit $x \in]0,1[$. On a $0 < x^2 < x < 1$ et de plus la fonction $t \mapsto \frac{1}{\ln t}$ est décroissante sur $[x^2,x] \subset]0,1[$ en tant qu'inverse d'une fonction strictement négative et strictement croissante sur]0,1[. Donc, $\frac{x-x^2}{\ln x} \leqslant \int_{x^2}^x \frac{1}{\ln t} dt \leqslant \frac{x-x^2}{\ln(x^2)}$ puis

$$\forall x \in]0,1[, \frac{x^2 - x}{2 \ln x} \leqslant f(x) \leqslant \frac{x^2 - x}{\ln x}.$$

On en déduit que $\lim_{x\to 0^+} f(x) = 0$ et on peut prolonger f par continuité en 0 en posant f(0) = 0 (on note encore f le prolongement).

Quand x tend vers 0 par valeurs supérieures, $f'(x) = \frac{x-1}{\ln x}$ tend vers 0. Ainsi,

- f est continue sur [0, 1[,
- f est de classe C^1 sur]0,1[,
- f' a une limite réelle quand x tend vers 0 à savoir 0.

D'après le théorème de la limite de la dérivée, f est de classe C^1 sur [0,1[et f'(0)=0.

- Etude en 1. On a vu au n° 7 que $\lim_{x\to 1} f(x) = \ln 2$ (la limite à droite en 1 se traite de manière analogue). On prolonge f par continuité en 1 en posant $f(1) = \ln 2$ (on note encore f le prolongement obtenu). Ensuite quand x tend vers 1, f'(x) tend vers 1. Donc f est de classe C^1 sur \mathbb{R}^+ et f'(1) = 1. En particulier, f est continue sur \mathbb{R}^+ et d'après plus haut f est strictement croissante sur \mathbb{R}^+ .
- Etude en $+\infty$. Pour x>1, $f(x)\geqslant \frac{x^2-x}{\ln x}$. Donc f(x) et $\frac{f(x)}{x}$ tendent vers $+\infty$ quand x tend vers $+\infty$. La courbe représentative de f admet en $+\infty$ une branche parabolique de direction (Oy).
- Convexité. Pour $x \in D$, $f''(x) = \frac{\ln x \frac{x-1}{x}}{\ln^2 x}$. En 1, en posant x = 1 + h où h tend vers 0, on obtient

$$f''(1+h) = \frac{(1+h)\ln(1+h) - h}{(1+h)\ln^2(1+h)} = \frac{(1+h)\left(h - \frac{h^2}{2} + o(h^2)\right) - h}{h^2 + o(h^2)} = \frac{1}{2} + o(1).$$

f est donc de classe C^2 sur $]0, +\infty[$ et $f''(1) = \frac{1}{2}$.

Pour $x \neq 1$, f''(x) est du signe de $g(x) = \ln x - 1 + \frac{1}{x}$ dont la dérivée est $g'(x) = \frac{1}{x} - \frac{1}{x^2} = \frac{x-1}{x^2}$. La fonction g est stictement décroissante sur]0,1] et strictement croissante sur $[1,+\infty[$. Donc pour $x\neq 1$, g(x)>g(1)=0. On en déduit que pour tout $x\in]0,+\infty[$, f''(x)>0 et donc que f est strictement convexe sur \mathbb{R}^+ .

• Graphe.

Exercice nº 10

La fonction $f: x \mapsto \frac{(-1)^{\lfloor x \rfloor}}{x}$ est continue par morceaux sur $[1, +\infty[$ et donc localement intégrable sur $[1, +\infty[$. Soient X un réel élément de $[2, +\infty[$ et $n = \lfloor X \rfloor$.

$$\int_{1}^{X} \frac{(-1)^{\lfloor x \rfloor}}{x} \ dx = \sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{(-1)^{\lfloor x \rfloor}}{x} \ dx + \int_{n}^{X} \frac{(-1)^{\lfloor x \rfloor}}{x} \ dx = \sum_{k=1}^{n-1} (-1)^{k} \ln \left(1 + \frac{1}{k} \right) + \int_{n}^{X} \frac{(-1)^{\lfloor x \rfloor}}{x} \ dx.$$

 $\text{Or, } \left| \int_n^X \frac{(-1)^{\lfloor x \rfloor}}{x} \, dx \right| \leqslant \frac{X-n}{n} \leqslant \frac{1}{\lfloor X \rfloor} \leqslant \frac{1}{X-1}. \text{ Cette dernière expression tend vers 0 quand le réel X tend vers } + \infty \text{ et } \\ \text{donc } \lim_{X \to +\infty} \int_n^X \frac{(-1)^{\lfloor x \rfloor}}{x} \, dx = 0.$

D'autre part, la suite $\left((-1)^k \ln\left(1+\frac{1}{k}\right)\right)_{k\geqslant 1}$ est de signe alternée et sa valeur absolue tend vers 0 en décroissant. La série de terme général $(-1)^k \ln\left(1+\frac{1}{k}\right)$, $k\geqslant 1$, converge en vertu du critère spécial aux séries alternées ou encore, quand le réel X tend vers $+\infty$, $\sum_{k=1}^{n-1} (-1)^k \ln\left(1+\frac{1}{k}\right)$ a une limite réelle.

Il en est de même de $\int_{1}^{X} \frac{(-1)^{\lfloor x \rfloor}}{x} dx$ et l'intégrale $\int_{1}^{+\infty} \frac{(-1)^{\lfloor x \rfloor}}{x} dx$ converge. De plus

$$\int_1^{+\infty} \frac{(-1)^{\lfloor x \rfloor}}{x} \ dx = \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right).$$

 $\mathbf{Calcul.} \text{ Puisque la série converge, on a } \sum_{k=1}^{+\infty} (-1)^k \ln \left(1+\frac{1}{k}\right) = \lim_{n \to +\infty} \sum_{k=1}^{2n} (-1)^k \ln \left(1+\frac{1}{k}\right). \text{ Pour } n \in \mathbb{N}^*,$

$$\begin{split} \sum_{k=1}^{2n} (-1)^k \ln \left(1 + \frac{1}{k}\right) &= \sum_{k=1}^n \left(-\ln \left(1 + \frac{1}{2k-1}\right) + \ln \left(1 + \frac{1}{2k}\right)\right) = \sum_{k=1}^n \ln \left(\frac{(2k-1)(2k+1)}{(2k)^2}\right) \\ &= \ln \left(\frac{(1 \times 3 \times \ldots \times (2n-1))^2 \times (2n+1)}{(2 \times 4 \times \ldots \times (2n))^2}\right) = \ln \left(\frac{1}{2^{4n}} \times \left(\frac{(2n)!}{(n!)^2}\right)^2 \times (2n+1)\right). \end{split}$$

D'après la formule de STIRLING,

$$\frac{1}{2^{4n}} \times \left(\frac{(2n)!}{(n!)^2}\right)^2 \times (2n+1) \underset{n \to +\infty}{\sim} \frac{1}{2^{4n}} \times \frac{\left(\frac{2n}{e}\right)^{4n} (\sqrt{4\pi n})^2}{\left(\frac{n}{e}\right)^{4n} (\sqrt{2\pi n})^4} \times (2n) = \frac{2}{\pi}.$$

Donc
$$\sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n}\right) = \ln \left(\frac{2}{\pi}\right)$$
 et on a montré que

$$\int_{1}^{+\infty} \frac{(-1)^{\lfloor x \rfloor}}{x} dx = \sum_{n=1}^{+\infty} (-1)^n \ln \left(1 + \frac{1}{n} \right) = \ln \left(\frac{2}{\pi} \right).$$

Exercice nº 11

1) Puisque f est continue, positive et décroissante sur $[1, +\infty[$, pour $x \ge 2$ on a

$$0 \leqslant x f(x) = 2\left(x - \frac{x}{2}\right) f(x) \leqslant 2 \int_{x/2}^{x} f(t) \ dt = 2\left(\int_{x/2}^{+\infty} f(t) \ dt - \int_{x}^{+\infty} f(t) \ dt\right)$$

Cette dernière expression tend vers 0 quand x tend vers $+\infty$ car f est intégrable sur $[1, +\infty[$. Donc si f est continue, positive, décroissante et intégrable sur $[1, +\infty[$ alors $f(x) = o(\frac{1}{x})$.

Exercice nº 12

L'inégalité $|ff''| \le \frac{1}{2} (f^2 + f''^2)$ montre que la fonction ff'' est intégrable sur \mathbb{R} puis, pour X et Y tels que $X \le Y$, une intégration par parties fournit

$$\int_{X}^{Y} f'^{2}(x) dx = [f(x)f'(x)]_{X}^{Y} - \int_{X}^{Y} f(x)f''(x) dx.$$

Puisque la fonction f'^2 est positive, l'intégrabilité de f'^2 sur $\mathbb R$ équivaut à l'existence d'une limite réelle quand X tend vers $-\infty$ et Y tend vers $+\infty$ de $\int_X^Y f'^2(x) \, dx$ et puisque la fonction ff'' est intégrable sur $\mathbb R$, l'existence de cette limite équivaut, d'après l'égalité précédente, à l'existence d'une limite réelle en $+\infty$ et $-\infty$ pour la fonction ff'.

Si f'^2 n'est pas intégrable sur \mathbb{R}^+ alors $\int_0^{+\infty} f'^2(x) dx = +\infty$ et donc $\lim_{x \to +\infty} f(x) f'(x) = +\infty$. En particulier, pour x suffisament grand, $f(x)f'(x) \geqslant 1$ puis par intégration $\frac{1}{2} \left(f^2(x) - f^2(0) \right) \geqslant x$ contredisant l'intégrabilité de la fonction f^2 sur \mathbb{R} . Donc la fonction f'^2 est intégrable sur \mathbb{R}^+ et la fonction ff' a une limite réelle quand x tend vers $+\infty$. De même la fonction f'^2 est intégrable sur \mathbb{R}^- et la fonction ff' a une limite réelle quand x tend vers $-\infty$. Si cette limite est un réel non nul ℓ , supposons par exemple $\ell > 0$. Pour x suffisament grand, on a $f(x)f'(x) \geqslant \ell$ puis par intégration $\frac{1}{2}(f^2(x) - f^2(0)) \geqslant \ell x$ contredisant de nouveau l'intégrabilité de la fonction f^2 . Donc la fonction ff' tend vers 0 en $+\infty$ et de même en $-\infty$.

Finalement, la fonction f'^2 est intégrable sur $\mathbb R$ et $\int_{-\infty}^{+\infty} f'^2(x) \ dx = -\int_{-\infty}^{+\infty} f(x) f''(x) \ dx$.

D'après l'inégalité de CAUCHY-SCHWARZ, on a

$$\left(\int_{-\infty}^{+\infty}f'^2(x)\ dx\right)^2 = \left(-\int_{-\infty}^{+\infty}f(x)f''(x)\ dx\right)^2 \leqslant \left(\int_{-\infty}^{+\infty}f^2(x)\ dx\right)^2 \left(\int_{-\infty}^{+\infty}f''^2(x)\ dx\right)^2.$$

Puisque les fonctions f et f'' sont continues sur \mathbb{R} , on a l'égalité si et seulement si la famille (f, f'') est liée.

Donc nécessairement, ou bien f est du type $x \mapsto A \operatorname{ch}(\omega x) + B \operatorname{sh}(\omega x)$, ω réel non nul, qui est intégrable sur $\mathbb R$ si et seulement si A = B = 0, ou bien f est affine et nulle encore une fois, ou bien f est du type $x \mapsto A \cos(\omega x) + B \sin(\omega x)$ et nulle encore une fois.

Donc, on a l'égalité si et seulement si f est nulle.