Improved Bounds on Sidon Sets via Lattice Packing of Simplices

Vincent Y. F. Tan

(joint work with Mladen Kovačević)

ITA (February 15, 2018)

ITA 2018

Sidon Sets

Definition

A subset $B = \{b_0, b_1, \dots, b_n\}$ of a finite Abelian group G is called a Sidon set of order h if the sums $b_{i_1} + \dots + b_{i_h}$ are distinct for every choice of $0 < i_1 < \dots < i_h < n$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ ___ 9)٩(~

Vincent Tan (NUS) Sidon Sets ITA 2018 2 / 19

Sidon Sets

Definition

A subset $B = \{b_0, b_1, \dots, b_n\}$ of a finite Abelian group G is called a Sidon set of order h if the sums $b_{i_1} + \cdots + b_{i_h}$ are distinct for every choice of $0 < i_1 < \cdots < i_h < n$.

■ If B is a Sidon set, then so is its translate

$$B - b_0 = \{0, b_1 - b_0, \dots, b_n - b_0\},\$$

and vice versa.

- \Rightarrow We can assume w.l.o.g. that $b_0=0$
- With this convention, B is a Sidon set if and only if the sums $b_{i_1} + \cdots + b_{i_t}$ are distinct for every choice of $1 \le i_1 \le \cdots \le i_t \le n$ and $0 \le t \le h$.

Vincent Tan (NUS) Sidon Sets ITA 2018

2 / 19

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

(ロ) (리) (토) (토) (토) (이익(C

Vincent Tan (NUS) Sidon Sets ITA 2018 3 / 19

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12$$

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12$$

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Integers modulo 13:

(

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$0 + 0 = 0$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Integers modulo 13:

0

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$0 + 1 = 1$$

Vincent Tan (NUS)

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Integers modulo 13:

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$0 + 3 = 3$$

Vincent Tan (NUS)

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

$$0 \quad 1 \quad 3$$

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$0 + 9 = 9$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$1 + 1 = 2$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$1 + 3 = 4$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$1 + 9 = 10$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$3 + 3 = 6$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \qquad \quad 6$$

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$3 + 9 = 12$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Sidon set
$$\{0,1,3,9\} \subset \mathbb{Z}_{13}$$
.

$$9+9=18\equiv 5$$

■ The requirement here is that all pairwise sums $b_{i_1} + b_{i_2}$ are distinct (up to the order of the summands)

Example

Integers modulo 13:

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6$$

9 10

12

Sidon set $\{0,1,3,9\} \subset \mathbb{Z}_{13}$.

Theorem (Singer '38)

There exists a Sidon set of order h=2 and cardinality n+1 in the group \mathbb{Z}_{n^2+n+1} , whenever n is a prime power.

Vincent Tan (NUS) Sidon Sets ITA 2018 4 / 19

Theorem (Singer '38)

There exists a Sidon set of order h=2 and cardinality n+1 in the group \mathbb{Z}_{n^2+n+1} , whenever n is a prime power.

Theorem (Bose–Chowla '62)

(a) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{n^h+n^{h-1}+\cdots+1}$, whenever n is a prime power.

◆ロト ◆昼 ト ◆ 豆 ト ◆ 豆 ・ 夕 ○ ○ ○

Theorem (Singer '38)

There exists a Sidon set of order h=2 and cardinality n+1 in the group \mathbb{Z}_{n^2+n+1} , whenever n is a prime power.

Theorem (Bose–Chowla '62)

- (a) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{n^h+n^{h-1}+\cdots+1}$, whenever n is a prime power.
- (b) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{(n+1)^h-1}$, whenever n+1 is a prime power.

Vincent Tan (NUS) Sidon Sets ITA 2018 4 /

Theorem (Singer '38)

There exists a Sidon set of order h=2 and cardinality n+1 in the group \mathbb{Z}_{n^2+n+1} , whenever n is a prime power.

Theorem (Bose-Chowla '62)

- (a) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{n^h+n^{h-1}+\cdots+1}$, whenever n is a prime power.
- (b) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{(n+1)^h-1}$, whenever n+1 is a prime power.
 - \blacksquare For h fixed and $n\to\infty,$ it is conjectured that the optimal size of the group grows as $\sim n^h$

- 4 ロ ト 4 週 ト 4 夏 ト 4 夏 ト 9 Q Q

Theorem (Singer '38)

There exists a Sidon set of order h=2 and cardinality n+1 in the group \mathbb{Z}_{n^2+n+1} , whenever n is a prime power.

Theorem (Bose-Chowla '62)

- (a) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{n^h+n^{h-1}+\dots+1}$, whenever n is a prime power.
- (b) There exists a Sidon set of order h and cardinality n+1 in the group $\mathbb{Z}_{(n+1)^h-1}$, whenever n+1 is a prime power.
 - \blacksquare For h fixed and $n\to\infty,$ it is conjectured that the optimal size of the group grows as $\sim n^h$
 - This is true for h = 2 from Singer's construction.

■ The discrete simplex is the following set in \mathbb{Z}^n :

$$\triangle_h^n = \left\{ \mathbf{y} \in \mathbb{Z}^n : y_i \ge 0, \ \sum_{i=1}^n y_i \le h \right\}$$

 Vincent Tan (NUS)
 Sidon Sets
 ITA 2018
 5 / 19

■ The discrete simplex is the following set in \mathbb{Z}^n :

$$\triangle_h^n = \left\{ \mathbf{y} \in \mathbb{Z}^n : y_i \ge 0, \ \sum_{i=1}^n y_i \le h \right\}$$

Its cardinality is

$$|\triangle_h^n| = \binom{h+n}{n} \sim \frac{h^n}{n!}$$
 as $h \to \infty$.

Vincent Tan (NUS) Sidon Sets ITA 2018

■ The simplex \triangle_1^2

■ The simplex \triangle_2^2

■ The simplex \triangle_3^2

Vincent Tan (NUS) Sidon Sets ITA 2018 7 / 19

■ Let $\mathcal{T} \subseteq \mathbb{Z}^n$. We say that $(\triangle_h^n, \mathcal{T})$ is a packing in \mathbb{Z}^n if the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ are disjoint for every $\mathbf{x}, \mathbf{x}' \in \mathcal{T}$, $\mathbf{x} \neq \mathbf{x}'$

Vincent Tan (NUS) Sidon Sets ITA 2018 7 / 19

- Let $\mathcal{T} \subseteq \mathbb{Z}^n$. We say that $(\triangle_h^n, \mathcal{T})$ is a packing in \mathbb{Z}^n if the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ are disjoint for every $\mathbf{x}, \mathbf{x}' \in \mathcal{T}$, $\mathbf{x} \neq \mathbf{x}'$
- If \mathcal{T} is a lattice (a subgroup of \mathbb{Z}^n), such a packing is called a lattice packing

<ロト <個ト < きト < きト き りへの

Vincent Tan (NUS) Sidon Sets ITA 2018 7 / 19

■ The simplex \triangle_3^2

lacksquare Lattice packing of the simplex $riangle_3^2$

Geometry of Sidon Sets

Theorem

(a) If $B = \{0, b_1, \dots, b_n\}$ is a Sidon set of order h in an Abelian group G, then $(\triangle_h^n, \mathcal{L})$ is a lattice packing in \mathbb{Z}^n , where

$$\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \cdot b_i = 0 \right\}.$$

If, in addition, B generates G, then $G \cong \mathbb{Z}^n/\mathcal{L}$.

< ロ > ∢ @ > ∢ 差 > 4 差 > 差 り Q (~)

Geometry of Sidon Sets: Example

■ The packing $(\triangle_3^2, \mathcal{L})$ in \mathbb{Z}^2 that corresponds to the Sidon set $\{(0,0),(1,1),(0,5)\}\subset \mathbb{Z}_2\times \mathbb{Z}_6$ of order h=3

Geometry of Sidon Sets: Example

■ The packing $(\triangle_3^2, \mathcal{L})$ in \mathbb{Z}^2 that corresponds to the Sidon set $\{(0,0),(1,1),(0,5)\}\subset \mathbb{Z}_2\times \mathbb{Z}_6$ of order h=3

Theorem

(a) If $B = \{0, b_1, \dots, b_n\}$ is a Sidon set of order h in an Abelian group G, then $(\triangle_h^n, \mathcal{L})$ is a lattice packing in \mathbb{Z}^n , where

$$\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \cdot b_i = 0 \right\}.$$

If, in addition, B generates G, then $G \cong \mathbb{Z}^n/\mathcal{L}$.

4□ > 4ⓓ > 4≧ > 4≧ > ½ → 9

11 / 19

Theorem

(a) If $B = \{0, b_1, \dots, b_n\}$ is a Sidon set of order h in an Abelian group G, then $(\triangle_h^n, \mathcal{L})$ is a lattice packing in \mathbb{Z}^n , where

$$\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \cdot b_i = 0 \right\}.$$

If, in addition, B generates G, then $G \cong \mathbb{Z}^n/\mathcal{L}$.

(b) Conversely, if $(\triangle_h^n, \mathcal{L}')$ is a lattice packing in \mathbb{Z}^n , then the group $G = \mathbb{Z}^n/\mathcal{L}'$ contains a Sidon set of order h and cardinality n+1.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

(a) If $B = \{0, b_1, \dots, b_n\}$ is a Sidon set of order h in an Abelian group G, then $(\triangle_h^n, \mathcal{L})$ is a lattice packing in \mathbb{Z}^n , where

$$\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i \cdot b_i = 0 \right\}.$$

If, in addition, B generates G, then $G \cong \mathbb{Z}^n/\mathcal{L}$.

- (b) Conversely, if $(\triangle_h^n, \mathcal{L}')$ is a lattice packing in \mathbb{Z}^n , then the group $G = \mathbb{Z}^n/\mathcal{L}'$ contains a Sidon set of order h and cardinality n+1.
 - ⇒ Lattice packings of simplices are geometric equivalents of Sidon sets in finite Abelian groups

Proof of (a):

■ Suppose that $(\triangle_h^n, \mathcal{L})$ is not a packing, i.e., that the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ overlap for some distinct $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$

Vincent Tan (NUS) Sidon Sets ITA 2018 12/19

Proof of (a):

- Suppose that $(\triangle_h^n, \mathcal{L})$ is not a packing, i.e., that the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ overlap for some distinct $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$
- This means that there is a point $\mathbf{y} \in \mathbb{Z}^n$ which can be expressed as $\mathbf{y} = \mathbf{x} + \mathbf{f} = \mathbf{x}' + \mathbf{f}'$, where $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$ are two different lattice points, and \mathbf{f}, \mathbf{f}' are two (necessarily) different vectors in the simplex \triangle_h^n

Proof of (a):

- Suppose that $(\triangle_h^n, \mathcal{L})$ is not a packing, i.e., that the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ overlap for some distinct $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$
- This means that there is a point $\mathbf{y} \in \mathbb{Z}^n$ which can be expressed as $\mathbf{y} = \mathbf{x} + \mathbf{f} = \mathbf{x}' + \mathbf{f}'$, where $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$ are two different lattice points, and \mathbf{f}, \mathbf{f}' are two (necessarily) different vectors in the simplex \triangle_h^n
- This implies that

$$\sum_{i=1}^{n} y_i \cdot b_i = \sum_{i=1}^{n} (x_i + f_i) \cdot b_i = \sum_{i=1}^{n} (x_i' + f_i') \cdot b_i$$

Vincent Tan (NUS) Sidon Sets ITA 2018 12 / 19

Proof of (a):

- Suppose that $(\triangle_h^n, \mathcal{L})$ is not a packing, i.e., that the translates $\mathbf{x} + \triangle_h^n$ and $\mathbf{x}' + \triangle_h^n$ overlap for some distinct $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$
- This means that there is a point $\mathbf{y} \in \mathbb{Z}^n$ which can be expressed as $\mathbf{y} = \mathbf{x} + \mathbf{f} = \mathbf{x}' + \mathbf{f}'$, where $\mathbf{x}, \mathbf{x}' \in \mathcal{L}$ are two different lattice points, and \mathbf{f}, \mathbf{f}' are two (necessarily) different vectors in the simplex \triangle_b^n
- This implies that

$$\sum_{i=1}^{n} y_i \cdot b_i = \sum_{i=1}^{n} (x_i + f_i) \cdot b_i = \sum_{i=1}^{n} (x_i' + f_i') \cdot b_i$$

■ By definition of \mathcal{L} , the lattice points \mathbf{x}, \mathbf{x}' satisfy

$$\sum_{i=1}^{n} x_i \cdot b_i = \sum_{i=1}^{n} x'_i \cdot b_i = 0$$

- 4 ロ ト 4 昼 ト 4 夏 ト - 夏 - 夕 Q (C)

■ Hence, we must have

$$\sum_{i=1}^{n} f_i \cdot b_i = \sum_{i=1}^{n} f_i' \cdot b_i$$

for two different vectors \mathbf{f},\mathbf{f}' in the simplex \triangle^n_h

Vincent Tan (NUS) Sidon Sets ITA 2018 13 / 19

■ Hence, we must have

$$\sum_{i=1}^{n} f_i \cdot b_i = \sum_{i=1}^{n} f_i' \cdot b_i$$

for two different vectors \mathbf{f},\mathbf{f}' in the simplex \triangle^n_h

■ Written differently

$$f_1 \cdot b_1 + \dots + f_n \cdot b_n = f'_1 \cdot b_1 + \dots + f'_n \cdot b_n$$

where $f_i, f_i' \geq 0$, $\sum_{i=1}^n f_i \leq h$, $\sum_{i=1}^n f_i' \leq h$

Vincent Tan (NUS) Sidon Sets ITA 2018 13 / 19

■ Hence, we must have

$$\sum_{i=1}^{n} f_i \cdot b_i = \sum_{i=1}^{n} f_i' \cdot b_i$$

for two different vectors \mathbf{f},\mathbf{f}' in the simplex \triangle^n_h

■ Written differently

$$f_1 \cdot b_1 + \dots + f_n \cdot b_n = f'_1 \cdot b_1 + \dots + f'_n \cdot b_n$$

where
$$f_i, f_i' \geq 0$$
, $\sum_{i=1}^n f_i \leq h$, $\sum_{i=1}^n f_i' \leq h$

lacksquare This means that $\{0,b_1,\ldots,b_n\}$ is not a Sidon set of order h

Vincent Tan (NUS) Sidon Sets ITA 2018 13 / 19

■ Hence, we must have

$$\sum_{i=1}^{n} f_i \cdot b_i = \sum_{i=1}^{n} f_i' \cdot b_i$$

for two different vectors \mathbf{f},\mathbf{f}' in the simplex \triangle^n_h

■ Written differently

$$f_1 \cdot b_1 + \dots + f_n \cdot b_n = f'_1 \cdot b_1 + \dots + f'_n \cdot b_n$$

where
$$f_i, f_i' \geq 0$$
, $\sum_{i=1}^n f_i \leq h$, $\sum_{i=1}^n f_i' \leq h$

lacksquare This means that $\{0,b_1,\ldots,b_n\}$ is not a Sidon set of order h

4□ > 4□ > 4 = > 4 = > = 90

13 / 19

■ Let $\phi(h,n)$ denote the size of the smallest Abelian group containing a Sidon set of order h and cardinality n+1

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

- Let $\phi(h,n)$ denote the size of the smallest Abelian group containing a Sidon set of order h and cardinality n+1
- Let $K \subset \mathbb{R}^n$ be a compact convex set with non-empty interior. (K, \mathcal{L}) is a lattice packing in \mathbb{R}^n if $K + \mathbf{x}$ and $K + \mathbf{y}$ have no interior points in common for all $\mathbf{x} \neq \mathbf{y} \in \mathbb{R}^n$. The lattice packing density is

$$\delta_{\mathrm{L}}(K) = \sup_{\mathcal{L}} \frac{\mathrm{Vol}(K)}{\det(\mathcal{L})}.$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

14 / 19

- Let $\phi(h,n)$ denote the size of the smallest Abelian group containing a Sidon set of order h and cardinality n+1
- Let $K \subset \mathbb{R}^n$ be a compact convex set with non-empty interior. (K, \mathcal{L}) is a lattice packing in \mathbb{R}^n if $K + \mathbf{x}$ and $K + \mathbf{y}$ have no interior points in common for all $\mathbf{x} \neq \mathbf{y} \in \mathbb{R}^n$. The lattice packing density is

$$\delta_{\mathrm{L}}(K) = \sup_{\mathcal{L}} \frac{\mathrm{Vol}(K)}{\det(\mathcal{L})}.$$

■ Let $\delta_{\scriptscriptstyle L}(\triangle^n)$ denote the lattice packing density of the simplex

$$\triangle^n = \left\{ \mathbf{y} \in \mathbb{R}^n : y_i \ge 0, \sum_{i=1}^n y_i \le 1 \right\}.$$

4□ > 4□ > 4 = > 4 = > = 90

Vincent Tan (NUS) Sidon Sets ITA 2018 14

- Let $\phi(h,n)$ denote the size of the smallest Abelian group containing a Sidon set of order h and cardinality n+1
- Let $K \subset \mathbb{R}^n$ be a compact convex set with non-empty interior. (K, \mathcal{L}) is a lattice packing in \mathbb{R}^n if $K + \mathbf{x}$ and $K + \mathbf{y}$ have no interior points in common for all $\mathbf{x} \neq \mathbf{y} \in \mathbb{R}^n$. The lattice packing density is

$$\delta_{\mathrm{L}}(K) = \sup_{\mathcal{L}} \frac{\mathrm{Vol}(K)}{\det(\mathcal{L})}.$$

■ Let $\delta_{\scriptscriptstyle L}(\triangle^n)$ denote the lattice packing density of the simplex

$$\triangle^n = \left\{ \mathbf{y} \in \mathbb{R}^n : y_i \ge 0, \sum_{i=1}^n y_i \le 1 \right\}.$$

■ The following are known:

$$\delta_{\mathrm{L}}(\triangle^1) = 1, \qquad \delta_{\mathrm{L}}(\triangle^2) = \frac{2}{3}, \qquad \delta_{\mathrm{L}}(\triangle^3) = \frac{18}{49}$$

Vincent Tan (NUS) Sidon Sets ITA 2018 14

Theorem

For every $n \ge 1$ and $\epsilon > 0$,

$$\frac{1}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n \leq \phi(h,n) < \frac{1+\epsilon}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n,$$

the lower bound being valid for every $h \ge 1$, and the upper bound for $h \ge h_0(n, \epsilon)$.

< ロ ト ← 個 ト ← 差 ト ← 差 ト 一 差 ・ 夕 Q (^-)

 Vincent Tan (NUS)
 Sidon Sets
 ITA 2018
 15 / 19

Theorem

For every $n \ge 1$ and $\epsilon > 0$,

$$\frac{1}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n \leq \phi(h,n) < \frac{1+\epsilon}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n,$$

the lower bound being valid for every $h \geq 1$, and the upper bound for $h \geq h_0(n,\epsilon)$. Consequently,

$$\lim_{h\to\infty}\frac{\phi(h,n)}{h^n}=\frac{1}{n!\;\delta_{\rm L}(\triangle^n)}.$$

Vincent Tan (NUS) Sidon Sets ITA 2018 15 / 19

Theorem

For every $n \ge 1$ and $\epsilon > 0$,

$$\frac{1}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n \le \phi(h, n) < \frac{1+\epsilon}{n! \, \delta_{\mathrm{L}}(\triangle^n)} h^n,$$

the lower bound being valid for every $h \ge 1$, and the upper bound for $h \ge h_0(n,\epsilon)$. Consequently,

$$\lim_{h\to\infty}\frac{\phi(h,n)}{h^n}=\frac{1}{n!\;\delta_{\mathrm{L}}(\triangle^n)}.$$

Proof idea:

- Packing \triangle_h^n in \mathbb{Z}^n is equivalent to packing \triangle_1^n in $\frac{1}{h}\mathbb{Z}^n$
- lacksquare As $h o\infty$, we get finer and finer grids $rac{1}{h}\mathbb{Z}^n$ which approximate \mathbb{R}^n lacksquare

■ This gives the exact asymptotic (as $h \to \infty$) behavior of $\phi(h,n)$ for n=1,2,3:

$$\phi(h,1) \sim h, \qquad \phi(h,2) \sim \frac{3}{4}h^2, \qquad \phi(h,3) \sim \frac{49}{108}h^3$$

and the best known bounds on $\phi(h, n)$ for $n \geq 4$.

Vincent Tan (NUS) Sidon Sets ITA 2018 16 / 19

■ This gives the exact asymptotic (as $h \to \infty$) behavior of $\phi(h, n)$ for n = 1, 2, 3:

$$\phi(h,1) \sim h, \qquad \phi(h,2) \sim \frac{3}{4}h^2, \qquad \phi(h,3) \sim \frac{49}{108}h^3$$

and the best known bounds on $\phi(h, n)$ for $n \geq 4$.

■ In particular, for $n \to \infty$, we have

$$\lim_{h \to \infty} \frac{\phi(h, n)}{h^n} \le \mathcal{O}((4e)^n n^{-n-2})$$

Significant improvement over Jia (J. Number Th., 1993)

$$\lim_{h \to \infty} \frac{\phi(h, n)}{h^n} \le 1$$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q C ・

Bases of order h

Bases of order h

Definition

Let G be a finite Abelian group. A subset $C = \{c_0, c_1, \ldots, c_n\} \subseteq G$ is said to be a basis of order h (or h-basis) of G if every element of the group can be expressed as $c_{i_1} + \ldots + c_{i_h}$ for some $0 \le i_1 \le \ldots \le i_h \le n$.

Vincent Tan (NUS) Sidon Sets ITA 2018 17 / 19

Definition

Let G be a finite Abelian group. A subset $C=\{c_0,c_1,\ldots,c_n\}\subseteq G$ is said to be a basis of order h (or h-basis) of G if every element of the group can be expressed as $c_{i_1}+\ldots+c_{i_h}$ for some $0\leq i_1\leq\ldots\leq i_h\leq n$.

Theorem

If $C = \{0, c_1, \dots, c_n\} \subseteq G$ is an h-basis for an Abelian group G, then $(\triangle_h^n, \mathcal{L})$ is a covering of \mathbb{Z}^n , where

$$\mathcal{L} = \left\{ \mathbf{x} \in \mathbb{Z}^n : \sum_{i=1}^n x_i c_i = 0 \right\},\,$$

and G is isomorphic to \mathbb{Z}^n/\mathcal{L} . Conversely, if $(\triangle_h^n, \mathcal{L}')$ is a lattice covering of \mathbb{Z}^n , then the group $\mathbb{Z}^n/\mathcal{L}'$ contains an h-basis of cardinality at most n+1.

Bounds on Bases of order h

Let $\psi(h,n)$ be the size of the largest Abelian group containing an h-basis of size n+1.

(ロ) (리) (토) (토) (토) (이익(C

Bounds on Bases of order h

Let $\psi(h,n)$ be the size of the largest Abelian group containing an h-basis of size n+1.

Theorem

For every fixed $n \geq 1$,

$$\lim_{h \to \infty} \frac{\psi(h, n)}{h^n} = \frac{1}{n! \vartheta_{\mathsf{L}}(\triangle^n)}$$

where $\vartheta_{L}(\triangle^{n})$ is the lattice covering density of \triangle^{n} .

(□) (□) (□) (□) (□) (□)

Vincent Tan (NUS) Sidon Sets ITA 2018 18 / 19

Bounds on Bases of order h

Let $\psi(h,n)$ be the size of the largest Abelian group containing an h-basis of size n+1.

Theorem

For every fixed $n \geq 1$,

$$\lim_{h\to\infty}\frac{\psi(h,n)}{h^n}=\frac{1}{n!\vartheta_{\scriptscriptstyle \rm L}(\triangle^n)}$$

where $\vartheta_L(\triangle^n)$ is the lattice covering density of \triangle^n .

 $\vartheta_{\mathrm{L}}(\triangle^n)$ known for n=1,2:

$$\vartheta_{\scriptscriptstyle L}(\triangle^1)=1, \quad \text{and} \quad \vartheta_{\scriptscriptstyle L}(\triangle^2)=\frac{3}{2}.$$

and for $n \geq 3$,

$$1+2^{-(3n+7)} \leq \vartheta_{\mathsf{L}}(\triangle^n) \leq n^{\log_2\log_2 n + c}.$$

Vincent Tan (NUS) Sidon Sets ITA 2018 18

Conclusion

lacktriangle Exact characterization of $\phi(h,n)$ which improves on existing bounds

$$\lim_{h\to\infty}\frac{\phi(h,n)}{h^n}=\frac{1}{n!\delta_{\rm L}(\triangle^n)}.$$

Vincent Tan (NUS) Sidon Sets ITA 2018 19 / 19

Conclusion

lacktriangle Exact characterization of $\phi(h,n)$ which improves on existing bounds

$$\lim_{h\to\infty}\frac{\phi(h,n)}{h^n}=\frac{1}{n!\delta_{\mathrm{L}}(\triangle^n)}.$$

- \blacksquare Extensions to lattice coverings of simplices (Bases of order h)
 - "Improved Bounds on Sidon Sets via Lattice Packing of Simplices", M. Kovačević and V. Y. F. Tan, SIAM J. on Discrete Mathematics, Sep 2017

□ > < □ > < □ > < □ > < □ >

Conclusion

 \blacksquare Exact characterization of $\phi(h,n)$ which improves on existing bounds

$$\lim_{h\to\infty}\frac{\phi(h,n)}{h^n}=\frac{1}{n!\delta_{\mathrm{L}}(\triangle^n)}.$$

- \blacksquare Extensions to lattice coverings of simplices (Bases of order h)
 - "Improved Bounds on Sidon Sets via Lattice Packing of Simplices", M. Kovačević and V. Y. F. Tan, SIAM J. on Discrete Mathematics, Sep 2017
- Utility in coding for permutation channels (multiset codes) with deletions
 - "Codes in the Space of Multisets—Coding for Permutation Channels with Impairments", M. Kovačević and V. Y. F. Tan, IEEE Trans. on Inf. Th., to appear in 2018

◆ロト ◆卸 ▶ ◆ 重 ト ◆ 重 ・ 夕 Q ○