图形点阵液晶显示模块使用手册 TG19264A(L)

广州铜铧电子有限公司TINSHARP ELECTRONICS CO, LTD

公司地址:广州市天河区天河路龙苑大厦 A2座 17楼 1703

电话: (020-85512381, 87541571 传真:020-85517797

工厂地址:番禺大石金科工业园

网址: HTTP: WWW. TINSHARP. COM

E-mail:TINSHARP@public.Guangzhou.gd.cn

SALES@TINSHARP. COM

录 录

()	概述	(1)
()	外形尺寸图	(1)
(三)	模块主要硬件构成说明	(1)
(四)	模块的外部接口	(2)
(五)	指令说明	(3)
(六)	读写操作时序	(4)
(七)	应用举例	(5)

一. 概述

TG19264A 是一种图形点阵液晶显示器,它主要由行驱动器/列驱动器及格 192×64 全点阵液晶显示器组成。可完成图形显示,也可以显示 12×4 个(16×16 点阵)汉字。

主要技术参数和性能:

- 1. 电源: VDD: +5V;
- 2. 显示内容: 192(列)×64(行)点
- 3. 全屏幕点阵
- 4. 七种指令
- 5. 与 CPU 接口采用 8 位数据总线并行输入输出和 8 条控制线
- 6. 占空比 1/64
- 7. 工作温度: -10℃∽+60℃, 存储温度: -20℃∽+70℃

二. 外形尺寸图

1. 外形尺寸图

Unit:mm

TYPE	Α	В
LED B/L	12.5	8.40
Without B/L	9.00	4.60

2. 外形尺寸

#	- 1
衣	1

ITEM	NOMINAL DIMEN	UNIT
模块体积	$130 \times 65 \times 12.5$	mm
视域	104×39	mm
行列点阵数	192×64	dots
点距离	0.508×0.508	mm
点大小	0.458×0.458	mm

三. 模块主要硬件构成说明

(结构框图)

IC4 为行驱动器。IC1, IC2, IC3 为列驱动器。IC1, IC2, IC3, IC4 含有以下主要功能器件。了解如下器件有利于对 LCD 模块之编程。

1. 指令寄存器(IR)

IR 是用于寄存指令码,与数据寄存器数据相对应。当 D/I=0 时,在 E 信号下降沿的作用下,指令码写入 IR。

2. 数据寄存器(DR)

1

DR 是用于寄存数据的,与指令寄存器寄存指令相对应。当 D/I=1 时,在下降沿作用下,图形显示数据写入 DR,或在 E信号高电平作用下由 DR 读到 DB7∽DB0 数据总线。DR 和 DDRAM 之间的数据传输是模块内部自动执行的。

3. 忙标志: BF

BF 标志提供内部工作情况。BF=1 表示模块在内部操作,此时模块不接受外部指令和数据。BF=0 时,模块为准备状态,随时可接受外部指令和数据。

利用 STATUS READ 指令,可以将 BF 读到 DB7 总线,从检验模块之工作状态。

4. 显示控制触发器 DFF

此触发器是用于模块屏幕显示开和关的控制。DFF=1 为开显示(DISPLAY ON), DDRAM 的内容就显示在屏幕上, DFF=0 为关显示(DISPLAY OFF)。

DDF 的状态是指令 DISPLAY ON/OFF 和 RST 信号控制的。

5. XY 地址计数器

XY 地址计数器是一个 9 位计数器。高 3 位是 X 地址计数器,低 6 位为 Y 地址计数器,XY 地址计数器实际上是作为 DDRAM 的地址指针,X 地址计数器为 DDRAM 的页指针,Y 地址计数器为 DDRAM 的 Y 地址指针。

X 地址计数器是没有记数功能的,只能用指令设置。

Y地址计数器具有循环记数功能,各显示数据写入后,Y地址自动加1,Y地址指针从0到63。

6. 显示数据 RAM (DDRAM)

DDRAM 是存储图形显示数据的。数据为 1 表示显示选择,数据为 0 表示显示非选择。DDRAM 与地址和显示位置的关系见 DDRAM 地址表(见第 6 页)。

7. Z地址计数器

Z 地址计数器是一个 6 位计数器,此计数器具备循环记数功能,它是用于显示行扫描同步。当一行扫描完成,此地址计数器自动加 1,指向下一行扫描数据,RST 复位后 Z 地址计数器为 0。

Z 地址计数器可以用指令 DISPLAY START LINE 预置。因此,显示屏幕的起始行就由此指令控制,即 DDRAM 的数据从哪一行开始显示在屏幕的第一行。此模块的 DDRAM 共 64 行,屏幕可以循环滚动显示 64 行。

四. 模块的外部接口

外部接口信号如下表 2 所示:

表 2

管脚号	管脚名称	LEVER	管脚功能描述
1	VSS	0	电源地
2	VDD	5. 0V	电源电压
3	VO		液晶显示器驱动电压
4	D/I	H/L	D/I= "H",表示 DB7∽DB0 为显示数据 D/I= "L",表示 DB7∽DB0 为显示指令数据
5	R/W	H/L	R/W= "H",E= "H" 数据被读到 DB7∽DB0 R/W= "L",E= "H→L" 数据被写到 IR 或 DR
6	Е	H/L	R/W= "L", E 信号下降沿锁存 DB7∽DB0 R/W= "H", E= "H" DDRAM 数据读到 DB7∽DB0
7	DB0	H/L	数据线
8	DB1	H/L	数据线
9	DB2	H/L	数据线
10	DB3	H/L	数据线
11	DB4	H/L	数据线
12	DB5	H/L	数据线
13	DB6	H/L	数据线
14	DB7	H/L	数据线
15	CS1	L	选择 IC1,即(左)64列
16	SET	L	复位控制信号,RST=0 有效
17	CS2	L	选择 IC2,即(中)64列
18	CS3	L	选择 IC3,即(右)64列

TINSHARP ELECTRONICS CO, LTD

19	VEE	-10V	LCD 驱动负电压
20	LED+	+5. 0V	LED 背光板电源

五. 指令说	明				指ぐ	表					表 3
指			指 令 码							功能	
令	R/W	D/I	D7	D6	D5	D4	D3	D2	D1	D0	
显示	0	0	0	0	1 1 1 1 1/0						控制显示器的开关,
ON/OFF											不影响 DDRAM 中数据
											和内部状态
显示起始	0	0	1	1				起始行	指定显示屏从 DDRAM		
行					(0 •••• 63)						中哪一行开始显示数
											据
设置X地	0	0	1	0	1 1 1 X: 0 ••• 7						设置 DDRAM 中的页地
址											址(X 地址)
设置Y地	0	0	0	1		Y均	地址(0 •••	63)		设置地址(Y 地址)
址						ı	ı	ı	ı	,	
读	1	0	В	0			0	0	0	0	读取状态
状			U			R					RST 1:复位 0:正常
态			S		ON	S					ON/OFF 1:显示开 0:
			Y		/	T					显示关
					OF						BUSY 0:READY 1:IN
					F						OPERATION
写显示数	0	1				显示	数据				将数据线上的数据
据											DB7∽DB0 写入 DDRAM
读显示数	1	1				显示	数据				将数据线上的数据
据											DB7∽DB0 写入 DDRAM

1. 显示开关控制(DISPLAY ON/OFF)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	0	1	1	1	1	1	D

D=1:开显示(DISPLAY ON)意即显示器可以进行各种显示操作

D=1: 关显示(DISPLAY OFF) 意即不能对显示器可以进行各种显示操作

2. 设置显示起始行

<u> </u>	~= /H 13										
代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	0	1	1	A5	A4	А3	A2	A1	A0	l

前面在 Z 地址计数器一节已经描述了显示起始行是由 Z 地址计数器控制的。 $A5 \sim A0$ 的 6 位地址自动送入 Z 地址计数器,起始行的地址可以是 $0 \sim 63$ 的任意一行。

例如:选择 A5∽A0 是 62,则起始行与 DDRAM 行的对应关系如下:

DDRAM 行: 62 63 0 1 2 3 ······ 28 29

屏幕显示行: 1 2 3 4 5 631 32

3. 设置页地址

MT 1.0.											
代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	0	1	0	1	1	1	A2	A1	A0	l

所谓页地址就是 DDRAM 的行地址, 8 行为一页, 模块共 64 行即 8 页, $A2 \sim A0$ 表示 $0 \sim 7$ 页。读写数据对地址没有影响, 页地址由本指令或 RST 信号改变复位后页地址为 0。页地址与 DDRAM 的对应关系见 DDRAM 地址表。

4. 设置Y地址(SET Y ADDRESS)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
形式	0	0	0	1	A5	A4	А3	A2	A1	A0

此指令的作用是将 $A5 \hookrightarrow A0$ 送入 Y 地址计数器, 作为 DDRAM 的 Y 地址指针。在对 DDRAM 进行读写操作后,Y 地址指针自动加 1,指向下一个 DDRAM 单元。

DDRAM 地址表:

表 4

		CS	1=1			CS2=1					CS3=1					
Υ=	0	1	••	62	63	0	1	••	62	63	0	1	••	62	63	行号
	DB0	DB0	DB0	DBO	DB0	DB0	DB0	DB0	DB0	0						
	↓	↓	↓	↓	↓	↓	↓	↓								
X=	DB7	7														
0																
	DB0	8														
↓	↓	↓	↓	↓	↓	↓	↓	↓								
	DB7	55														
X=	DB0	DBO	DB0	DB0	DB0	DB0	DB0	56								
7																
	↓															
	DB7	63														

5. 读状态(STATUS READ)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	1	BUSY	0	ON/	RET	0	0	0	0	l
					OFF						l

当 R/W=1 D/I=0 时,在 E 信号为"H"的作用下,状态分别输出到数据总线(DB7 \backsim DB0)的相应位。BF:前面已叙述过(见 BF 标志位一节)。

ON/OFF:表示 DFF 触发器的状态(见 DFF 触发器一节)。

RST: RST=1表示内部正在初始化,此时组件不接受任何指令和数据。

6. 写显示数据(WRITE DISPLAY DATE)

代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	0	1	D7	D6	D5	D4	D3	D2	D1	D0	1

D7∽D0 为显示数据, 此指令把 D7∽D0 写入相应的 DDRAM 单元, Y 地指针自动加 1。

7. 读显示数据(READ DISPLAY DATE)

1077		D /T		DD 0	DD=	DD 4	DD0	BB0	DD4	DD0	
代码	R/W	D/I	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	
形式	1	1	D7	D6	D5	D4	D3	D2	D1	D0	ı

此指令把 DDRAM 的内容 D7∽D0 读到数据总线 DB7∽DB0, Y 地址指针自动加 1。

六. 读写操作时序

1. 写操作时序

冬 3

2. 读操作时序

冬 4

3. 读写时序参数表

表	5

名 称	符号	最小值	典型值	最大值	单位
E周期时间	Тсус	1000			ns
E高电平宽度	Pweh	450			ns
E低电平宽度	Pwel	450			ns
E上升时间	Tr			25	ns
E下降时间	Tf			25	ns
地址建立时间	Tas	140		-	ns
地址保持时间	Tah	10			ns
数据建立时间	Tdsw	200		-	ns
数据延迟时间	Tddr			320	ns
写数据保持时间	Tdhw	10			ns
读数据保持时间	Tdhw	20			ns

七. 应用举例

TG19264 与单片机 8031 的一种接口如图 5. 所示: 利用图 5 举例介绍几编程实例

1. 显示开/关控制(DISPLAY ON/OFF)
 所谓显示开与关,意即当显示器置于"开"状态时,可以对显示进行各种操作。当显示器置于"关"状态时,不能对显示进行各种操作。

MOV A, #3EH SETB P3.0 ; 关显示代码为 3EH, 开显示操作只需将代码 3EH 换为 3FH 即可

; Select Chip3

MOV DPTR, #3800H ; R/W For Write, And Select Chip1 and Chip2

MOVX @DPTR, A

CLR P3.0

; Output the Instruction

页地址设置 前面已对页地址进行定义,即 8 行为一页。LCD(或 DDRAM)共为 8 页。 MOV A, #0B8H ; 设置页地址为 0 页 SETB P3. 0 ; Select Chip3 P/W For Write. And Select Chip1 and Chip2

SETB P3.0

; R/W For Write, And Select Chip1 and Chip2 ; Output the Instruction

MOVX @DPTR, A

MOVX @DFIR, n CLR P3.0 写显示数据与对应 DDRAM 假设页地址,Y地址已设置完毕,显示数据为 DATA。 MOV A, #DATA ;设送显示数据为 SFTR P3.0 ; Select Chip3 - R/W For Write, And Select

MOV DPTR, #7800H MOVC @DPTR, A ; R/W For Write, And Select Chip1 and Chip2

; Output the Instruction

CLR P3.0

显示流程图

WRI:

CLR E

CLR DI

MOV P1,R1

CALL DELAY

SETB E

CALL DELAY

CLR E

CALL DELAY

CALL DELAY

RET

WRD:

CLR E

SETB DI

MOV P1,R1

CALL DELAY

SETB E

CALL DELAY

CLR E

CALL DELAY

CALL DELAY

RET

利用图 5 举例介绍编程实例

DI EQU P3.7
E EQU P3.5
RST EQU P3.2
cs1 equ p3.0
cs2 equ p3.1

;本测试程序中 CS1,CS2=H,RW =>GND

ORG 0000H LJMP MAIN

ORG 0003H LJMP LINTO

ORG 0100H

MAIN: NOP

clr ea

clr cs1

clr cs2

CLR E

lcall init

MOV 34H,#0ffH

LCALL DISPLAY_ALL

lcall dly100

MOV 34H,#00H

LCALL DISPLAY_ALL

lcall plybw

lcall DLY100

MOV 34H,#00H

LCALL DISPLAY_ALL

MOV R1,#0C0H ;START = 0

LCALL WRI

mov 31h,#0 mov 30h,#0

MOV 30H,#0 ;x MOV 31H,#8 ;y MOV DPTR,#HZI7 ;您

LCALL outhz

MOV 30H,#0 MOV 31H,#40

MOV DPTR,#HZI8 ;好

LCALL outhz

MOV 30H,#4 MOV 31H,#16

MOV DPTR,#HZI1 铜

LCALL outhz

MOV 30H,#4 MOV 31H,#32

MOV DPTR,#HZI2 ;铧

LCALL outhz

MOV 30H,#6 MOV 31H,#0

MOV DPTR,#HZI3 ;电

LCALL outhz

MOV 30H,#6 MOV 31H,#16

MOV DPTR,#HZI4 ;子

LCALL outhz

MOV 30H,#6 MOV 31H,#32

MOV DPTR,#HZI5 ;公

LCALL outhz

MOV 30H,#6 MOV 31H,#48

MOV DPTR,#HZI6 ;司

LCALL outhz

LCALL DLY100 LJMP MAIN LINTO: NOP NOP RETI

init: CLR RST ;RESET

LCALL DLY50 LCALL DLY50 LCALL DLY50 LCALL DLY50

setb rst

MOV R1,#3FH ;DISPLAY ON

LCALL WRI

MOV R1,#0C0H ;START = 0

LCALL WRI

MOV 34H,#00H

LCALL DISPLAY_ALL

ret

DISPLAY_ALL: MOV R1,#0C0H ;START = 0

LCALL WRI

MOV R7,#8 ;DISPLAY DATA= 34H

MOV R2,#0B8H

LOP1: MOV A,R2

MOV R1,A ; X+1

LCALL WRI

MOV R1,#40H ; Y

LCALL WRI

MOV R5,#64

LOP11: MOV R1,34H

LCALL WRD

DJNZ R5,LOP11

INC R2

DJNZ R7,LOP1

ret

outhz:

30h=x (0-6) 31h=y(0-63-16)

MOV R1,#0C0H ;START = 0

LCALL WRI

MOV R7,#2

MOV A,#0B8H

ADD A,30H ;B8+X

MOV 30H,A ;A>>30H

HZ2: ; MOV A,R2

MOV R1,30H ; X+1

LCALL WRI

MOV A,#40H ; Y

ADD A,31H

; MOV 31H,A ;40+Y

MOV R1,A LCALL WRI

MOV R5,#16

HZ1: MOV A,#00H

MOVC A,@A+DPTR

MOV R1,A

LCALL WRD

LCALL DLY10

INC DPTR

DJNZ R5,HZ1

INC 30H

DJNZ R7,HZ2

RET

plybw:

MOV R1,#0C0H ;START = 0

LCALL WRI

mov 30h,#0

mov 31h,#0

mov dptr,#bw

MOV R7,#8

MOV A,#0B8H

ADD A,30H ;B8+X

MOV 30H,A ;A>>30H

HZ2bw: ; MOV A,R2

MOV R1,30H ; X+1

LCALL WRI

```
; MOV A,#40H
                     ; Y
        ;ADD A,31H
         ;MOV 31H,A
                      ;40+Y
         ;MOV R1,A
        mov R1,#40h
        LCALL WRI
        MOV R5,#64
HZ1bw:
         MOV A,#00H
        MOVC A,@A+DPTR
        MOV R1,A
        LCALL WRD
        LCALL DLY10
        INC DPTR
        DJNZ R5,HZ1bw
        INC 30H
        DJNZ R7,HZ2bw
        RET
  WRI:
               ;写指令子程序
       CLR E
       CLR DI
       MOV P1,R1
       lcall DLY10
       SETB E
       LCALL DLY10
       CLR E
       LCALL DLY10
       LCALL DLY10
       LCALL DLY10
       RET
   WRD:
                 ;写数据子程序
        CLR E
       SETB DI
       MOV P1,R1
       LCALL DLY10
       SETB E
       LCALL DLY10
       CLR E
       LCALL DLY10
       LCALL DLY10
```

LCALL DLY10 RET

DLY10:MOV R3,#01H DL1:MOV R4,#01H DL2:MOV R6,#0FH DL3:DJNZ R6,DL3 DJNZ R4,DL2 DJNZ R3,DL1 RET

DLY50:MOV R3,#04H DL111:MOV R4,#0FH DL222:MOV R6,#0AFH DL333:DJNZ R6,DL333 DJNZ R4,DL222 DJNZ R3,DL111 RET

DLY100:MOV R3,#06H DL11:MOV R4,#0FFH DL22:MOV R6,#0FFH DL33:DJNZ R6,DL33 DJNZ R4,DL22 DJNZ R3,DL11 RET

ORG 0300H

WELCOM: DB 57H,65H,6CH,63H,6FH,6DH,65H,20H,20H,20H,20H,20H,20H,20H

DB 20H,20H,20H,20H,20H

ORG 0320H

TINSHARP: DB 54H,49H,4EH,53H,48H,41H,52H,50H,20H,4CH,43H,4DH,20H,20H DB 20H,20H,20H,20H,20H

ORG 0340H

HZI1: ; 铜

DB 080H,080H,070H,0C8H,056H,048H,0F8H,010H,010H,048H,048H,028H,0F8H,008H,000H,000H DB 000H,000H,002H,02FH,012H,008H,03FH,000H,009H,027H,040H,07FH,000H,000H,000H

HZI2:; 铧

DB 000H,080H,060H,090H,05EH,050H,030H,010H,0FCH,044H,0FEH,010H,008H,080 H,000H,000H DB 000H,000H,002H,03FH,012H,00AH,008H,008H,00BH,048H,07CH,009H,009H,005H,000H,000H HZI3: ;电

DB 00H,0f8H, 48H, 48H, 48H,0ffH, 48H, 48H, 48H, 48H,0fcH, 08H,00H,00H,00H DB 00H,07H,02H,02H,02H,02H,3fH,42H,42H,42H,42H,47H,40H,70H,00H,00H HZI4: ;子

DB 80H, 80H, 82H, 82H, 82H, 82H, 82H,0e2H,0a2H, 92H, 8aH, 86H, 80H,0c0H, 80H, 00H DB 00H, 00H, 00H, 00H, 00H, 40H, 80H, 7fH, 00H, 00H, 00H, 00H, 00H, 00H, 00H HZI5: ;公

DB 00H, 00H, 80H, 40H, 30H, 0cH, 00H,0c0H, 06H, 18H, 20H, 40H, 80H, 80H, 80H, 00H DB 01H, 01H, 00H, 30H, 28H, 24H, 23H, 20H, 20H, 28H, 30H, 60H, 00H, 01H, 00H, 00H HZI6: ;司

DB 10H, 10H, 92H, 92H, 92H, 92H, 92H, 92H, 0d2H, 9aH, 12H, 02H, 0ffH, 02H, 00H, 00H DB 00H, 00H, 3fH, 10H, 10H, 10H, 10H, 3fH, 00H, 40H, 80H, 7fH, 00H, 00H HZI7: ;您

DB 40H, 20H, 10H,0fcH, 23H, 10H, 8cH, 67H, 04H,0f4H, 04H, 44H, 94H, 8cH, 00H, 00H DB 40H, 30H, 00H, 77H, 80H, 81H, 88H, 92H,0b4H, 83H, 80H,0e0H, 00H, 11H, 60H, 00H HZI8: ;好

DB 10H, 10H,0f0H, 1fH, 10H,0f0H, 80H, 82H, 82H, 82H,0e2H, 92H, 8aH,0c6H, 80H, 00H DB 40H, 22H, 15H, 08H, 14H, 63H, 00H, 00H, 40H, 80H, 7fH, 00H, 00H, 00H, 00H, 00H

bw: