

Outline

01

Intro & Problem Definition

04

Cities with most AQI
Change

07

Change in Air Quality according to specific countries

02

Prevalence of Air Pollutants

05

Regression Analysis on COVID cases and Air Quality

08

Conclusion

03

Global Pollutant Levels in 2019 and 2020

06

Lockdown Periods

09

Tableau Dashboards

Problem Definition I 01 I

Project Objectives

8

Data Source

&

Preview of the Dataset

Where do air pollutants come from?

Natural Sources

Wildfires, volcanoes...

Human Activities

Stationary sources: Industrial factories, power plants, wooding burning fireplaces...

Boston 7/26/2021

(Robin Lubbock/WBUR)

Pollutant	Sources	Effects				
Ozone	Formed when NO (from burning gasoline, coal, or other fossil fuels) and volatile organic compounds mix (from factories and trees) in sunlight.	Leading to more frequent asthma attacks, sore throats, coughs, and breathing difficulty and even premature death; Hurting plants and crops.				
со	Formed when engines burn fossil fuels.	Hard for body parts to get the oxygen; Causing dizzy, tired and headaches; Causing heart disease when exposed to high concentrations of CO.				
NO _x	From power plants and cars: Burning fuels; N_2 in the air reacting with O_2 at very high temperatures.	Causing coughs and short of breath when exposed in high concentration; Higher chance of getting respiratory infections; Can form acid rain and harm plants and animals.				
Particulate matter	Coarse particles: road dust, sea spray, and construction; Fine particles: when fuel is burned in automobiles and power plants.	Entering the lungs and causing more frequent asthma attacks, respiratory problems and premature death.				
SO ₂	Mostly from the burning of coal or oil in power plants and chemicals, paper, or fuel factories.	Making people more difficult to breathe; Irritation to people's eyes, noses, and throats; Harming trees and crops, damage buildings; visibility reduction.				
Lead	Lead paint, Lead in old pipes, leaded gasoline, power plants and other industrial sources.	Leading to lower IQs and kidney problems for small children; Increasing the chance of having heart attacks or strokes for adults.				
Toxic air pollutants	Asbestos and formaldehyde: building materials; Many toxic air pollutants can also enter the food and water supplies.	Causing cancer and birth defects; Skin and eye irritation and breathing problems.				
Stratospheric ozone depleter	CFCs: air conditioners and refrigerators; aerosol cans and fire extinguishers; solvents in industry.	More ultraviolet radiation and leading to skin cancer and eye problems; Harming plants and animals.				
Greenhouse gases (CO ₂ , methane, and N ₂ O).	CO ₂ : burning of fossil fuels in cars, power plants, houses, and industry. Methane: processing of fossil fuels, natural sources like cows and rice paddies. N ₂ O: industrial sources and decaying plants.	Global climate change: More temperature extremes, higher sea levels, changes in forest composition, and damage to land near the coast. Human health might be affected by diseases that are related to temperature or by damage to land and water.				

Robert L. McConnell, Daniel C. Abel. Burlington, MA: Jones & Bartlett Learning, c2015.: 2013; pp 597-598.

Project Objectives

- Air quality in the past two years
- How the air quality was impacted in countries and cities where the coronavirus was prevalent

Data Source

worldwide air quality data for Year 2019 and 2020 from the Air Quality
 Open Data Platform
 (https://aqicn.org/data-platform/covid19/)

data with geographic location information
 (https://aqicn.org/data-platform/covid19/airquality-covid19-cities.json)

Preview of Dataset

	Date	Country	City	lat	lon	рор	Parameter	count	min	max	median	variance
0	2020-07-08	NP	Biratnagar	26.45505	87.27007	182324	pm1	16	18.0	198.0	27.0	18671.30
1	2020-02-10	HK	Hong Kong	22.27832	114.17469	7012738	uvi	165	0.1	2.5	0.9	9.49
2	2020-08-24	HK	Hong Kong	22.27832	114.17469	7012738	uvi	195	0.1	10.0	3.7	130.76
3	2020-06-26	NP	Kathmandu	27.70169	85.32060	1442271	pm1	85	8.0	58.0	25.0	1556.39
4	2020-09-28	NP	Kathmandu	27.70169	85.32060	1442271	pm1	90	22.0	96.0	56.0	2270.48
5	2020-02-25	HK	Hong Kong	22.27832	114.17469	7012738	uvi	180	0.1	7.7	1.5	60.24
6	2020-03-15	PR	San Juan	18.46633	-66.10572	418140	aqi	2	22.0	22.0	22.0	0.00
7	2020-06-09	МО	Macau	22.20056	113.54611	520400	uvi	54	-1.0	-1.0	-1.0	0.00
8	2019-11-13	NP	Biratnagar	26.45505	87.27007	182324	pm1	10	45.0	153.0	53.0	18409.30
9	2019-01-10	HK	Hong Kong	22.27832	114.17469	7012738	uvi	140	0.1	4.0	1.0	15.39

Reference Data Source

- National Ambient Air Quality Standards Table
 (https://www.epa.gov/criteria-air-pollutants/naags-table)
- AQI basics
 (https://www.airnow.gov/agi/agi-basics/)

Daily AQI Color	Values of Levels of Concern Index		Description of Air Quality			
Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.			
Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.			
Orange Unhealthy for Sensitive 101 to Groups		101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.			
Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.			
Purple	Purple Very Unhealthy 201 to 300		Health alert: The risk of health effects is increased for everyone.			
Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.			

What are the most prevalent pollutants?

02

Prevalence of Parameter

- PM2.5
- NO2
- PM10
- O3
- SO2
- CO
- PM1

Filtering Parameters

EPA Criteria

- Only want Air Pollutants
 - o PM2.5
 - o PM10
 - NO2 (Nitrogen Dioxide)
 - o O3 (Ozone)
 - SO2 (Sulphur Dioxide)
 - CO (Carbon Monoxide)
- Remove meteorological data

Source: US EPA

Global Average Pollutant Levels 2019-2020

Cities Where Air
Quality Changes
the Most
04

During the pandemic, cities getting most air qualities improvements in terms of percent AQI differences for each pollutant are:

- CO: United States Portland, Chile Talca and Mexico Aguascalientes;
- NO2: Iran Qom, South Africa Middelburg and Philippines Butuan;
- SO2: Greece Athens, Mexico Mérida and Mexico San Luis Potosí;
- Ozone: Mexico Aguascalientes, United States Queens and United States The Bronx;
- PM 10: India Gandhinagar, China Hohhot and Israel Tel Aviv;
- PM 2.5: Mexico Mérida, Tajikistan Dushanbe, Bosnia and Herzegovina Sarajevo, Turkey Erzurum, China Qiqihar and India Gandhinagar;

City	Country	Parameter	num_month_mt_50_per_decrease
Portland	US	со	3
Qom	IR	no2	5
Shiraz	IR	no2	4
Khorramabad	IR	no2	3
Kayseri	TR	no2	3
Sivas	TR	no2	1
Butuan	PH	no2	1
Aguascalientes	MX	03	5
Brooklyn	US	03	4
The Bronx	US	03	2

Cities getting at least 50% and 50 AQI reduction for longest period:

- CO: United States Portland, 3 out of 12 months;
- NO2: Iran Qom, 5 out of 12 months;
- O3: Mexico Aquascalientes, 5 out of 12 months;
- PM10: India Gandhinagar and Bhopal, 2 out of 12 months;
- SO2: Mexico Mérida 5 out of 12 months;
- PM2.5: several cities including Iran Kermanshah, Singapore
 Singapore, AU Sydney and Canberra, 1 out of 12 months;

	Daily AQI Color	Levels of Concern	Values of Index	Description of Air Quality
	Green	Good	0 to 50	Air quality is satisfactory, and air pollution poses little or no risk.
1	Yellow	Moderate	51 to 100	Air quality is acceptable. However, there may be a risk for some people, particularly those who are unusually sensitive to air pollution.
	Orange	Unhealthy for Sensitive Groups	101 to 150	Members of sensitive groups may experience health effects. The general public is less likely to be affected.
	Red	Unhealthy	151 to 200	Some members of the general public may experience health effects; members of sensitive groups may experience more serious health effects.
	Purple	Very Unhealthy	201 to 300	Health alert: The risk of health effects is increased for everyone.
	Maroon	Hazardous	301 and higher	Health warning of emergency conditions: everyone is more likely to be affected.

Regression Analysis 1051

Regression analysis on COVID-19 cases and pollutant Air Quality Index Globally

Determining X and Y

Y

Row	month	month_n	country	parameter	diff_avg	diff_perc	confirmed	country_name
1	May	5	AE	03	9.45	0.82245430809399489	22154	United Arab Emirates
2	May	5	AE	pm25	-47.58	-0.34061135371179041	22154	United Arab Emirates
3	May	5	AR	со	3.11	3.2736842105263153	12931	Argentina
4	May	5	AR	03	-2.89	-0.32878270762229794	12931	Argentina
5	May	5	AR	no2	1.31	0.17702702702702708	12931	Argentina
6	May	5	AR	pm25	12.25	0.32347504621072093	12931	Argentina
7	May	5	AT	со	0.0	0.0	1130	Austria
8	May	5	AT	no2	-2.36	-0.27251732101616633	1130	Austria

R² Results for Other Parameter

NO₂

PM2.5

Using Tableau to do the log regression

Lockdown Periods

Change in Air Quality Interview

Changes in Air Quality from 2019 to 2020, in countries with high and low COVID-19 cases.

Changes in Pm2.5 and No2 Levels

Countries with high COVID-19 cases

Countries with low COVID-19 cases

2019-2020 Changes in Pollution

2019

Conclusion

THANKS!

Do you have any questions?

Visit our dashboard: Analyzing Air Quality During COVID19 Pandemic

Using Tableau to do the log regression

