第 40 届全国信息学奥林匹克竞赛

CCF NOI2023 模拟题

第一试

竞赛时间: 7:30-12:20

(请选手务必仔细阅读本页内容)

一. 题目概况

中文题目名称	最大值	染色	剖分
英文题目与子目录名	max	paint	decompose
可执行文件名	max	paint	decompose
输入文件名	max.in	paint.in	decompose.in
输出文件名	max.out	paint.out	decompose.out
每个测试点时限	2.0秒	1.0 秒	1.0秒
测试点数目	10	20	20
测试点是否等分	是	是	是
附加样例文件	有	有	有
结果比较方式	全文比较(过滤行末空格及文末回车)		
题目类型	传统型	传统型	传统型
运行内存上限	512MB	512MB	512MB

二. 提交源程序文件名

対于 C++语言

三. 编译选项

对于 C++语言	-lm -std=c++14 -02

四. 注意事项:

- 1、文件名(程序名和输入输出文件名)必须使用英文小写。
- 2、C/C++中函数 main()的返回值类型必须是 int,程序正常结束时的返回值必须是 0。
- 3、全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GHz, 内存 8GB。上述时限以此配置为准。
- 4、只提供 Linux 格式附加样例文件。
- 5、特别提醒:评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准。

1. 最大值(max)

1.1 Description

一个长为n的序列A,从1开始标号,一开始全为0,现在小C想对它进行m次操作.

对第i次操作,他会选定恰好一个二元组(j,k), $j\in[1,n]$, $k\in[0,c]$,并令 $A_j=A_j+k$,其中选中二元组(j,k)的概率为 $P_{i,j,k}$.

小C本来是想问你区间最大值的历史版本和的历史最大值的期望的,但鉴于这是一道签到题,现在他只想知道m次操作后整个序列**最大值**的期望,对 10^9+7 取模.

1.2 Input

从文件max.in中读入数据.

第一行三个整数n, m, c,含义见问题描述.

接下来 $m \wedge n$ 行c + 1 列的矩阵,第 $i \wedge$ 矩阵的第j 行第 $k \wedge$ 元素表示 $P_{i,j,k-1}$ 的值,方便起见,这里给出的概率是模意义下的值。

1.3 Output

输出到文件max.out中.

输出一个整数表示答案.

1.4 Sample1

1.4.1 Input

3 1 1

3425 734783767

2345 34674684

980733421 249802373

1.4.2 Output

19260817

1.5 Sample2

见选手目录下的max/max2.in与max/max2.ans.

1.6 Sample3

见选手目录下的max/max3.in与max/max3.ans.

1.7 Subtasks

对于所有数据, 有 $1 \le n \le 40, 1 \le m \le 10, 1 \le c \le 3$. $\forall i, \sum_{j \in [1,n], k \in [0,c]} P_{i,j,k} \equiv 1 \pmod{10^9 + 7}, 0 \le P_{i,j,k} < 10^9 + 7.$

- subtask1(17%), n, m = 5.
- subtask2(14%), n = 2.
- subtask3(14%), n = 5.
- subtask4(34%), $c = 1, P_{i,j,0} = 0$.
- subtask5(21%), 没有特殊的约定.

每个subtask只有一组数据.

2. 染色(paint)

2.1 Description

小C很喜欢二维染色问题,这天他拿来了一个 $w \times h$ 的二维平面,初始时均为白色. 然后他在上面设置了n个关键点 (X_i,Y_i) ,对于每个关键点他会选择进行下列操作的一个:

- 将 $x > X_i$ 的部分染成黑色.
- 将 $x < X_i$ 的部分染成黑色.
- 将 $y > Y_i$ 的部分染成黑色.
- 将 $y < Y_i$ 的部分染成黑色.

(图示参见样例解释)

他本来是想让你支持单点修改以及可持久化然后把空间限制开成1M的,但鉴于这只是第二题,现在他只想最大化所有操作结束之后白色部分的**周长**(不难发现白色部分一定是个矩形).特别地,如果没有白色部分,设其周长为0.

2.2 Input

从文件paint.in中读入数据。

第一行三个整数w, h, n.

接下来n行每行两个数表示 X_i, Y_i .

2.3 Output

输出到文件paint.out中。 一行一个整数表示最大周长。

2.4 Sample1

2.4.1 Input

10 10 4

- 1 6
- 4 1
- 6 9
- 9 4

2.4.2 Output

32

2.4.3 Explanation

最优解如下图所示:

2.5 Sample2

2.5.1 Input

- 10 10 4
- 2 2
- 4 4
- 7 7
- 9 9

2.5.2 Output

26

2.5.3 Explanation

注意平面边界也可以成为最后得到的矩形的边界.

2.6 Sample3

见选手目录下的paint/paint3.in与paint/paint3.ans.

2.7 Subtasks

对于所有数据,有 $1 \le w, h \le 10^8, 0 \le n \le 2 \times 10^5, 0 \le X_i \le w, 0 \le Y_i \le h.$

- subtask1(17%), $n \le 10$.
- subtask2(16%), $n \le 100$.
- subtask3(15%), $n \le 1500$.
- subtask4(14%), $n \le 7000$.
- subtask5(38%), $n \le 2 \times 10^5$.

3. 剖分(decompose)

3.1 Description

小C有一棵n个点的树,1号点为根,每个点有L个权值,表示为 $w[u][i], u \in [1,n], i \in [1,L].$

现在他想对这棵树进行树链剖分,于是fatesky教给他一种自创的剖分方法. 具体地,一棵树的剖分可以表示为若干条链 $S_1, S_2, ..., S_k$,满足:

- 每个点属于且仅属于一条链.
- 一条链在树上是一个连通块,即对 $\forall i, u, v \in S_i$,从u到v的简单路径不经过任何不在 S_i 中的节点.
- $\forall i, S_i$ 的长度不超过L.
- 链中所有节点深度不同.

设一条链按深度**从大到小**排序后为 $u_1,u_2,...,u_m$,fatesky定义一条链的权值为 $\sum_{i=1}^m w[u_i][i]$,一种剖分的权值为所有链的权值和. 现在他想最大化剖分的权值.

小C本来是想让你支持链修改,子树查询,以及Link,Cut操作的,但考虑到这不是CTSC模拟题,现在他只需要你支持单点的权值修改. 具体地,他会给出q个修改操作,每个修改操作给出一个点u以及L个值,表示修改之后的w[u][i]. 每个修改操作之后,你需要回答最大的剖分权值.

3.2 Input

从文件decompose.in中读入数据.

第一行三个整数n,q,L.

接下来一行n-1个整数,第i个为 f_{i+1} ,表示树上i+1号点的父亲.

接下来n行,每行L个整数,第i行的第j个整数表示w[i][j].

接下来q行,每行第一个整数为要修改权值的点u,接下来L个整数表示新的w[u][i].

3.3 Output

输出到文件decompose.out中. 输出q行,每行一个整数表示对应询问的答案.

3.4 Sample1

3.4.1 Input

4 2 2

1 2 2

1 0

-25

1 100

1 100

1 -5 10

2 -16 0

3.4.2 Output

10

-3

3.4.3 Explanation

```
对于第一组询问,一种剖分方法为\{2,1\},\{3\},\{4\}.对于第二组询问,一种剖分方法为\{1\},\{4,2\},\{3\}.
```

3.5 Sample2

见选手目录下的decompose/decompose2.in与decompose/decompose2.ans.

3.6 Sample3

见选手目录下的 decompose/decompose3.in与 decompose/decompose3.ans.

3.7 Subtasks

对于所有数据,有 $1 \le n \le 10^5, 2 \le L \le 4, 1 \le f_i \le i-1, |w_{i,j}| \le 10^9,$ $1 \le q \le 10^5, q \times (L-1) \le 10^5, 1 \le u \le n.$

- subtask1(13%), $n, q \le 10$.
- subtask2(7%), $q \leq 10$.
- subtask3(8%), f_i 在[1, i-1] 内均匀随机.
- subtask4(26%), $f_i = i 1, L = 2$.
- subtask5(11%), $f_i = i 1$.
- subtask6(35%), 没有特殊的约束.