9/12

C1 Combinations of Resistors

What is the resistance of labelled combination?

- C1.1
- a) A

b) B

- C1.2
- a) C

b) D

- C1.3
- a) E

b) F

Resistivity

Complete the questions in the table:

Length /m	Wire thickness	Resistivity /Ω m	Resistance /Ω
68	cross sectional area: $2.1 \times 10^{-6} \text{ m}^2$	1.5×10^{-8}	C1.4
C1.5	cross sectional area: $0.50 \times 10^{-6} \text{ m}^2$	4.9×10^{-7}	15
1.0	1.0 mm radius	4.9×10^{-7}	C1.6
15000	1.0 cm diameter	1.5×10^{-7}	C1.7

- C1.8 Conventional domestic 13 A sockets are connected with copper cables with a cross sectional area of 2.5 mm². Copper has a resistivity of $1.5 \times 10^{-8} \ \Omega$ m. What is the resistance of 20 m of cable?
- C1.9 A high voltage wire for transmission of electricity across the country is made of 10 aluminium wires (resistivity = $2.5 \times 10^{-8} \Omega$ m) wound together with 15 copper wires (resistivity of $1.5 \times 10^{-8} \Omega$ m). If all of the wires have a radius of 2.0 mm, calculate the overall resistance of 20 km of cable. (The aluminium is there to give strength to the cable.)