Procesos Estocásticos, Otoño 2014

Dr. José Vidal Alcalá Burgos

vidal@cimat.mx

Horas de oficina: Lunes y Viernes 12:30 – 1:30 pm en el D6

Horas: 75 Hrs/Sem: 4.5 Créditos: 10

Objetivo: El alumno al final del curso:

- 1. Comprenderá la teoría básica de los procesos estocásticos
- 2. Será capaz de aplicar los conocimientos sobre procesos estocásticos para modelar procesos y sistemas computacionales en los cuales la metodología determinista no es aplicable.

Contenido:

I. Preliminares.

Objetivo: El alumno comprenderá los conceptos y resultados básicos de probabilidad y estadística para el estudio de los procesos estocásticos y sus aplicaciones.

- 1. Modelos de probabilidad: Espacio muestral, σ-álgebra y función de probabilidad.
- 2. Probabilidad condicional e independencia.
- 3. Teorema de Bayes.
- 4. Variables Aleatorias, Función de Distribución, Función de Densidad, Momentos, Esperanza y Varianza.
- 5. Principales variables aleatorias.
 - i. Discretas: Binomial, Poisson, Geométrica.
 - ii. Continuas: Exponencial, Normal, Rayleigh.
- 6. Vectores aleatorios.
 - i. Distribución conjunta y marginales.
 - ii. Distribución condicional y esperanza condicional.
- 7. Vectores aleatorios Gaussianos.
 - i. Matriz de Covarianza y correlación.
 - ii. Propiedades de cerradura ante marginales y distribuciones condicionales

II. Procesos Estocásticos y su clasificación.

Objetivo: El alumno comprenderá el concepto de proceso estocástico, así como los elementos necesarios básicos para la descripción probabilista de los mismos.

1. Concepto de proceso estocástico.

- 2. Características de un proceso estacionario:
 - i. Distribuciones conjuntas finito-dimensionales.
 - ii. Trayectorias muestrales.
 - iii. Función de autocorrelación.
 - iv. Función de autocorrelación cruzada.
 - v. Función de densidad espectral potencia.
 - vi. Función de densidad espectral potencia cruzada.
- 3. Clasificación de un proceso aleatorio.
 - i. De acuerdo al espacio de estados y al conjunto de índices.
 - ii. De acuerdo a sus incrementos: estacionario, independientes.

III. Ejemplos de Procesos Estocásticos.

Objetivo: El alumno conocerá los procesos estocásticos más comunes y sus aplicaciones en el área de ingeniería en computación.

- 1. EL ruido Blanco.
- 2. EL Proceso Gaussiano.
- 3. EL proceso Browniano o de Wiener.

IV. Procesos de Markov.

Objetivo: El alumno comprenderá los procesos de Marvok, sus elementos y sus aplicaciones.

- 1. Procesos en tiempo discreto.
 - i. Definiciones básicas.
 - ii. Clasificación de los estados.
 - iii. Recursividad y transitividad.
 - iv. Distribuciones estacionarias.
 - v. Ejemplos.
- 2. Procesos en tiempo continuo.
 - i. Definiciones básicas.
 - ii. La función de transición de probabilidades.
 - iii. Probabilidades límite.
- 3. Aplicaciones

V. Procesos de Poisson.

Objetivo: El alumno comprenderá el proceso de Poisson y sus aplicaciones.

- 1. Definición de un proceso de Poisson.
- 2. Distribuciones de los tiempos de espera y tiempos entre llegadas.
- 3. Distribución condicional de los tiempos de llegadas.
- 4. Aplicaciones.

VI. Filtro de Kalman.

Objetivo: El alumno comprenderá los elementos básicos de la teoría del filtro de Kalman y sus aplicaciones

- 1. El filtro de Kalman discreto.
 - i. Definición.
 - ii. Ejemplos.
 - iii. Predicción utilizando el filtro de Kalman discreto.
 - iv. Aplicaciones.
 - v. Problemas de no convergencia del filtro de Kalman.
 - vi. La estabilidad del filtro de Kalman.

Criterios de Evaluación:

Se realizarán tres exámenes parciales, un trabajo final, y tareas asignadas regularmente a lo largo del semestre, con las ponderaciones como sigue:

Los exámenes parciales comprenderán el material como se expone a continuación:

Parcial	Contenido	Ponderación sobre
		la calificación final
1	Unidades I y II	20%
2	Unidad III y IV	20%
3	Unidad V y VI	20%

- ➤ El trabajo final consiste en el desarrollo de un proyecto de aplicación en su área, presentado como producto final.
 - un reporte escrito, bajo un formato que en su momento se les comunicará (15%).
 - Una exposición a modo de conferencia de su proyecto. (10%).
- Las Tareas tendrán una ponderación del 15% de la calificación final. Todas las tareas asignadas deberán ser entregadas resueltas en la fecha convenida, no hay entrega de tareas fuera de tiempo.

Bibliografía:

- 1. Barkat, Mourad (2005) Signal Detection and Estimation, 2ed. Artech House, Inc.
- 2. Beichelt, Frank (2006) Stochastic Processes in Science, Engineering and Finance. Chapman & Hall.
- 3. Grover B., Robert, Hwang, Patrick Y. C. (1997) Introduction to Random Signals and Applied Kalman Filtering. 3rd Ed. John Wiley & Sons, Inc.
- 4. Gubner, John A. (2002) Probability and Random Processes for Electrical and Computer Engineers. Cambridge University Press.
- 5. Ross, Sheldon M. (2003) Introduction to Probability Models. 8th Ed., Academic Press
- 6. Ross, Sheldon M. (1983) Stochastic Processes. John Wiley & Sons, Inc.

- Trivedi, Kishor S. (2002) Probability and Statistics with Reliability, Queuning and Computer Science Applications. 2nd Ed. John Wiley & Sons, Inc.
 Yates, Roy D.; Goodman, David J. (2005) Probability and Stochastic Processes. A Friendly Introduction for Electrical and Computer Engineers. 2nd Ed., John Wiley & Sons, Inc.