SPRAWOZDANIE

Zajęcia: Matematyka Konkretna Prowadzący: prof. dr hab. Vasyl Martsenyuk

Zadanie 3 Temat: Macierz pseudoodwrotna. Najmniejsze kwadraty. Regresja Wariant 13

> Łukasz Pindel Informatyka II stopień, stacjonarne, 2 semestr, Gr. 1B

1. Polecenie:

Zadaniem do zrealizowania jest obliczenie wieloliniowej regresji z użyciem macierzy pseudoodwrotnej dla zależności y = a * x1 + b * x2, gdzie a, b są niewiadomymi, wartości x1, x2, y2 określone wariantem zadania.

2. Wprowadzane dane:

Wariant 13 (odpowiada wariantowi 1) – plik csv z wartościami x1, x2, y

4	А	В	С	
1	x1	x2	у	
2	1	2	0	
3	3	6	0	
4	5	10	0	
5	7	14	0	
6	9	18	0	
7	11	22	0	
8	13	26	0	
9	15	30	0	
10	17	34	0	
11	19	38	0	
12	21	42	0	
13	23	46	0	
14	25	50	0	
15	27	54	0	
16	29	58	0	
17	31	62	0	
18	33	66	0	
19	35	70	0	
20	37	74	0	
21	39	78	0	
22	41	82	0	
23	43	86	0	
24	45	90	0	
25	47	94	0	
26	49	98	0	
27	51	102	0	
28	53	106	0	
29	55	110	0	
30	57	114	0	

Rysunek 1: Widok pliku csv z wartościami

3. Wykorzystane komendy:

Wczytywanie danych z pliku CSV:

Dane z pliku "war1.csv" są wczytywane za pomocą funkcji **read_csv**() z biblioteki Pandas. Parametry delimiter=";" i decimal="," określają odpowiednio separator kolumn i symbol dziesiętny w pliku. Nagłówki kolumn są wczytywane z pierwszego wiersza (header=0).

Przygotowanie danych:

Kolumny "x1", "x2" i "y" z ramki danych są konwertowane na tablice NumPy i przekształcane do typu int, aby przygotować je do dalszych operacji.

Analiza SVD:

Dane są przekształcane do postaci macierzy A za pomocą funkcji **column_stack**(), która łączy kolumny "x1" i "x2" w jedną macierz. Następnie wykorzystywana jest funkcja **np.linalg.svd**() do przeprowadzenia dekompozycji wartości singularnych (SVD) na macierzy A. Otrzymujemy macierz lewych wektorów singularnych (U), wektor wartości singularnych (S) i macierz prawych wektorów singularnych (VT).

Obliczanie współczynników regresji wieloliniowej:

Następnie obliczane są współczynniki a i b za pomocą wzoru na regresję liniową:

$$a, b = VT.T @ np.linalg.inv(np.diag(S)) @ U.T @ y$$

gdzie @ oznacza mnożenie macierzowe, a y to wektor odpowiedzi.

Link do repozytorium:

https://github.com/denniak/MK/tree/main/MK 3

4. Wynik działania:

Na rysunku 2 przedstawiono otrzymane współczynniki regresji, które mogą być wykorzystane do dalszej analizy danych. Otrzymane współczynniki pozwalają na stworzenie modelu regresji wieloliniowej, który opisuje zależność między zmiennymi niezależnymi x1 i x2 a zmienną zależną y.

```
print("Wartości współczynników: a = " + str(a) + ", b = " + str(b))
Wartości współczynników: a = 0.0, b = 0.0
```

Rysunek 2: Otrzymane współczynniki

5. Wnioski:

Na podstawie otrzymanego wyniku można stwierdzić, że wyniki obliczeń współczynników regresji wieloliniowej na podstawie danych z pliku CSV wykazały, że współczynniki a i b wynoszą wartość 0. Wynika to z faktu, że dla każdego x1 i x2 z tego zbioru danych, wartość y będzie równa 0. Otrzymane współczynniki mogą być wykorzystane do stworzenia modelu regresji liniowej, który opisuje zależność między zmiennymi niezależnymi x1 i x2 a zmienną zależną y. Wyniki te mogą być przydatne do dalszej analizy i prognozowania na podstawie danych.