Data-Driven Control under Input and Measurement Noise

Jared Miller

Tianyu Dai

Mario Sznaier

April 10, 2023

Oden Institute Seminar

What is Data-Driven Control?

Design a controller for an unknown plant

Control system directly from data, no sysid required

Example of Data-Driven Control

Single controller stabilizes all data-consistent plants

Algorithms for Data-Driven Control

Virtual Reference Feedback Tuning (first methods)

Set-Membership (this talk)

- (Data-consistent plants) \subseteq (K-Stabilized plants)
- Certificates of set containment (Farkas, S-Lemma, SOS)

Behavioral

- Parameterize and pick out best system trajectory (MPC)
- Willem's Fundamental Lemma (DeePC)

Flow of Presentation

Input/Measurement noise description and challenges

Solution using polynomial optimization (superstability)

Extend to other problems (Quadratic, H2, ARX)

Noise Model and Difficulty

Error-in-Variable Noise Task

Noisy measurements $\mathcal{D} = \{\hat{x}_t, \hat{u}_t\}_{t=1}^T$ of linear system

$$x_{t+1} = Ax_t + Bu_t$$

Data \mathcal{D} corrupted by (L_{∞} -bounded):

 Δx : state-measurement noise

 Δu : input noise

w: process noise

Find state-feedback u = Kx to stabilize all plants (A, B) consistent with \mathcal{D}

Error-in-Variable Relations

Noise processes
$$\forall t = 1..T$$

$$\epsilon_x \geq \|\Delta x_t\|_{\infty}$$
 $\epsilon_u \geq \|\Delta u_t\|_{\infty}$ $\epsilon_w \geq \|w_t\|_{\infty}$

Relations
$$\forall t=1..T-1$$

$$x_{t+1}=Ax_t+Bu_t+Ew_t$$

$$\hat{x}_t=x_t+\Delta x_t$$

$$\hat{u}_t=u_t+\Delta u_t$$

 $(A, B, \Delta x, \Delta u, w)$ unknown, $E \in \mathbb{R}^{n \times e}$ known

Bilinear Trouble

Multiplication between unknown $A\Delta x_t$, also in $B\Delta u_t$ Stabilization task is immediately NP-hard Even sysid is NP-hard

Main Ideas

Use superstability to form a more tractable control problem

Formulate a large-scale polynomial optimization problem

Improve scalability by applying a Theorem of Alternatives

Superstability

Superstablity Definition

Superstability (Blanchini and Sznaier 1997, Polyak 2001)

$$||x||_{\infty}$$
 is a CLF : $||A + BK||_{\infty} < 1$

Poles of A + BK in unit diamond $\{z \mid \operatorname{Re}(z) + \operatorname{Im}(z) < 1\}$

If
$$||A + BK||_{\infty} = \gamma$$
, then $||x_t||_{\infty} \le \gamma^{(t+1)/n} ||x_0||_{\infty}$

Constant K must superstabilize all consistent (A, B)

Superstability Formulations

Linear constraints to impose superstability

Sign-based formulation, $n2^n$ linear constraints

$$\sum_{s \in \{-1,1\}^n} s_j (A + BK)_{ij} < 1 \qquad \forall i$$

Equivalent Convex Lift, $2n^2 + n$ linear constraints

$$\exists M \in \mathbb{R}^{n \times n} :$$

$$\sum_{j=1}^{m} M_{ij} < 1 \qquad \forall i$$

$$-M_{ij} \le (A + BK)_{ij} \le M_{ij} \qquad \forall i, j$$

Process noise only: robust LP (Cheng, Sznaier, Lagoa, 2015)

Full Program

Consistency Set

Consistency set $\bar{P}(A, B, \Delta x)$ (with $\epsilon_u = \epsilon_w = 0$)

$$ar{\mathcal{P}}: \ egin{cases} 0 = -\Delta x_{t+1} + A\Delta x_t + h_t^0 & orall t = 1..T - 1 \ \|\Delta x_t\|_{\infty} \leq \epsilon_x & orall t = 1..T \end{cases}$$

Affine weight h^0 is defined by,

$$h_t^0 = \hat{x}_{t+1} - A\hat{x}_t - Bu_t \qquad \forall t = 1..T - 1.$$

Assumption: enough data collected such that $\bar{\mathcal{P}}$ compact

Superstability for Plants

Set of plants consistent with \mathcal{D} (with projection π):

$$\mathcal{P}(A,B) = \pi^{A,B}\bar{\mathcal{P}}(A,B,\Delta x)$$

Find
$$K \in \mathbb{R}^{m \times n}$$
 such that $(A + BK)$ is Schur $\forall (A, B) \in \mathcal{P}$

Restrict to superstability: $\|A + BK\|_{\infty} < 1$, $\forall (A, B) \in \mathcal{P}$

Superstability Application

Superstability certificate $M(A, B) : \mathcal{P} \to \mathbb{R}^{n \times n}$

 $2n^2 + n$ inequality expressions over $\bar{\mathcal{P}}$ (margin $\delta > 0$)

$$\forall i = 1..n : 1 - \delta - \sum_{j=1}^{n} M_{ij}(A, B) \ge 0$$
 (1a)

$$\forall i = 1..n, \ j = 1..n :$$
 (1b)

$$M_{ij}(A,B)-(A_{ij}+\sum_{\ell=1}^m B_{i\ell}K_{\ell j})\geq 0$$

$$M_{ij}(A,B)+(A_{ij}+\sum_{\ell=1}^m B_{i\ell}K_{\ell j})\geq 0$$

LP in (M, K) for each $(A, B) \in \mathcal{P}$ (infinite dimensional)

Can choose M to be continuous in compact \mathcal{P}

Sum-of-Squares Method

Every $c \in \mathbb{R}$ satisfies $c^2 \geq 0$

Sufficient: $q(x) \in \mathbb{R}[x]$ nonnegative if $q(x) = \sum_i q_i^2(x)$

Exists $v(x) \in \mathbb{R}[x]^s$, Gram matrix $Z \in \mathbb{S}^s_+$ with $q = v^T Z v$

Sum-of-Squares (SOS) cone $\Sigma[x]$

$$x^{2}y^{4} - 6x^{2}y^{2} + 10x^{2} + 2xy^{2} + 4xy - 6x + 4y^{2} + 1$$
$$= (x + 2y)^{2} + (3x - 1 - xy^{2})^{2}$$

Motzkin Counterexample (nonnegative but not SOS)

$$x^2y^4 + x^4y^2 - x^2y^2 + 1$$

Sum-of-Squares Method (cont.)

Putinar Positivestellensatz (Psatz) nonnegativity certificate over set $\mathbb{K} = \{x \mid g_i(x) \geq 0, h_i(x) = 0\}$:

$$q(x) = \sigma_0(x) + \sum_i \sigma_i(x) g_i(x) + \sum_j \phi_j(x) h_j(x)$$

$$\exists \sigma_0(x) \in \Sigma[x], \quad \sigma_i(x) \in \Sigma[x], \quad \phi_j \in \mathbb{R}[x].$$

Psatz at degree 2d is an SDP, monomial basis: $s = \binom{n+d}{d}$ Archimedean: $\exists R \geq 0$ where $R - ||x||_2^2$ has Psatz over \mathbb{K}

15

Computational Complexity (Full)

Restrict $M_{ij}(A, B)$ to a polynomial of degree 2d

Each infinite-dimensional linear constraint becomes an SOS constraint (Psatz) in $(A, B, \Delta x)$

Each Psatz has a PSD Gram matrix of size $\binom{n(n+m+T)+d}{d}$

$$(n = 2, m = 2, T = 15, d = 2)$$
: size 780

Alternatives

Motivation and Size Comparison

Use Δx -affine structure of $\bar{\mathcal{P}}$ to eliminate Δx

Maximal size of Gram (PSD) matrices

Size Full Alternatives
Super
$$\binom{n(n+m+T)+d}{d}$$
 $\binom{n(n+m)+d}{d}$

When
$$(n = 2, m = 2, T = 15, d = 2)$$
:
Full = 780, Altern. = 45

Robust Counterpart Method (eliminating noise)

Polytope-constrained noise Δx

$$\Delta x \in \bar{\mathcal{P}} = \{ \Delta x \mid G \Delta x \le h, \ C \Delta x = f \}$$

All (q, G, h, C, f) are functions of (A, B) $\bar{\mathcal{P}}$

Linear inequality involving Δx

$$q(A, B) \ge 0$$
 $\forall (A, B, \Delta x) \in \bar{\mathcal{P}}$

Equivalent (nonconservative) Robust Counterpart without Δx

$$\exists \zeta \ge 0, \mu \mid q \ge h^T \zeta + f^T \mu, \ 0 = G^T \zeta + C^T \mu.$$

Theorem of Alternatives

Superstability condition q: Full program in $(A, B, \Delta x)$

$$q(A,B) \ge 0$$
 $\forall (A,B,\Delta x) \in \bar{P}$

Alternatives program in (A, B) with no conservatism

find
$$\zeta_{1:T}^{\pm}(A, B) \geq 0$$
, $\mu_{1:T-1}(A, B)$
 $q \geq \sum_{t,i} \epsilon_x (\zeta_{t,i}^+ + \zeta_{t,i}^-) + \sum_{t=1}^{T-1} \mu_t^T h_t^0 \quad \forall (A, B)$
 $\zeta_1^+ - \zeta_1^- = A^T \mu_1$
 $\zeta_T^+ - \zeta_T^- = -\mu_{T-1}$
 $\zeta_t^+ - \zeta_t^- = A^T \mu_t - \mu_{t-1}$ $\forall t \in 2..T-1$

Polynomial Alternatives Certificate

Choose ζ^{\pm} SOS, μ polynomial when $\bar{\mathcal{P}}$ compact Express SOS Alternatives certificate as $q(A,B)\in \Sigma^{\mathrm{alt}}[\mathcal{P}]$ Find degree-2d polynomial matrix $M_{ij}(A,B)$ with

$$egin{aligned} orall i = 1..n : 1 - \delta - \sum_{j=1}^n M_{ij}(A,B) \in \Sigma^{
m alt}[\mathcal{P}] \ orall i = 1..n, \ j = 1..n : \ M_{ij}(A,B) - (A_{ij} + \sum_{\ell=1}^m B_{i\ell} K_{\ell j}) \in \Sigma^{
m alt}[\mathcal{P}] \ M_{ij}(A,B) + (A_{ij} + \sum_{\ell=1}^m B_{i\ell} K_{\ell j}) \in \Sigma^{
m alt}[\mathcal{P}] \end{aligned}$$

 $\zeta^{\pm},~\mu$: same multiplicity as SOS Psatz multipliers over $\bar{\mathcal{P}}$

Further notes about complexity

In practice d=1 suffices for Alternatives while d=2 is required for Full

With
$$(n = 2, m = 1, d_{alt} = 1, d_{full} = 2)$$

Maximum size PSD matrices

	Gram	ζ	μ (vector)
Alternatives	7	7	7
Full $(T = 4)$	120	15	120
Full $(T = 6)$	190	19	190
Full $(T = 8)$	276	23	276

All Noise

All Noise Consistency Set

Consistency set $\bar{\mathcal{P}}^{\text{all}}(A, B, \Delta x, \Delta u, w)$:

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t + Ew_t & \forall t = 1..T - 1 \\ \hat{x}_t &= x_t + \Delta x_t, & \hat{u}_t &= u_t + \Delta u_t & \forall t = 1..T - 1 \\ \epsilon_x &\geq \|\Delta x_t\|_{\infty}, & \epsilon_u \geq \|\Delta u_t\|_{\infty}, & \epsilon_w \geq \|w_t\|_{\infty} & \forall t = 1..T \end{aligned}$$

Set of consistent plants,

$$\mathcal{P}^{\mathrm{all}}(A,B) = \pi^{A,B} \bar{\mathcal{P}}^{\mathrm{all}}(A,B,\Delta x,\Delta u,w)$$

 $(\Delta x, \Delta u, w)$ together not much more complex than Δx alone

All Noise Size

Use Alternatives to eliminate $(\Delta x, \Delta u, w)$

Maximal size of Gram (PSD) matrices

Size Full Alternatives

Super
$$\binom{n(n+m)+T(n+m+e)+d}{d}$$
 $\binom{n(n+m)+d}{d}$

When
$$(n = 2, m = 2, T = 15, d = 2, e = 1)$$
:
Full = 3570, Alternatives = 45

Quadratic Stabilization

Quadratic Stabilization

Quadratic Lyapunov function $x^T Y x$ for $Y \in \mathbb{S}^n_{++}$

$$Q(A,B) = \begin{bmatrix} Y & (A+BK)Y \\ * & Y \end{bmatrix} = \begin{bmatrix} Y & AY+BS \\ * & Y \end{bmatrix} \in \mathbb{S}^{2n}_{++}$$

Recover controller $K = SY^{-1}$

Find constant (Y, K) to stabilize all $(A, B) \in \mathcal{P}$

Polynomial Matrix Inequalities

```
SOS method (scalar): q(x) \ge 0
```

Extend to matrices
$$Q(x) \in \mathbb{S}^s_{++}$$

SOS matrix:
$$Q(x) = R(x)^T R(x) \in \Sigma^s[x]$$
 for matrix $R(x)$

Gram matrix (PSD) constraint of size $s\binom{n+d}{d}$

Scherer Psatz: nonnegativity over constraint sets

Quadratic Stabilization Program

Quadratic Full: Size $2n\binom{n(n+m+T)+d}{d}$

$$\begin{bmatrix} Y & AY + BS \\ * & Y \end{bmatrix} \in \Sigma^{2n}[\bar{\mathcal{P}}]_{\leq 2d}$$
 (2)

Can eliminate Δx , form Alternatives with size $2n\binom{n(n+m)+d}{d}$

Alternatives could add conservatism

Extend to worst-case- H_2 -optimal control

Single-Input Single-Output

ARX model

Autoregressive Model with Exogenous Input (ARX)

$$y_t = -\sum_{i=1}^{n_a} a_i y_{t-i} + \sum_{i=1}^{n_b} b_i u_{t-i}.$$

Data $\mathcal{D} = (\hat{u}, \hat{y})$ and no state x,

$$\hat{u} = u + \Delta u,$$
 $\|\Delta u\|_{\infty} \le \epsilon_u$
 $\hat{y} = y + \Delta y,$ $\|\Delta y\|_{\infty} \le \epsilon_y$

Find controller u to stabilize (a, b) consistent with \mathcal{D}

Superstability for ARX

Original model with vectors (a, b)

$$y_t = -\sum_{i=1}^{n_a} a_i y_{t-i} + \sum_{i=1}^{n_b} b_i u_{t-i}.$$

Transfer Function with one-step-behind operator $\lambda u_t = u_{t-1}$

$$G(\lambda) = \frac{\sum_{i=1}^{n_b} b_i \lambda^i}{1 + \sum_{i=1}^{n_s} a_i \lambda^i} = \frac{B(\lambda)}{1 + A(\lambda)}$$

Superstability definition, linear constraints

$$||a||_1 < 1$$

Dynamic Compensation

Compensator
$$C(\lambda) = \tilde{B}(\lambda)/(1+\tilde{A}(\lambda))$$

Closed-loop system

$$G_{cl}(\lambda) = \frac{G(\lambda)}{1 + G(\lambda)C(\lambda)} = \frac{B(\lambda)(1 + \tilde{A}(\lambda))}{(1 + A(\lambda))(1 + \tilde{A}(\lambda)) + B(\lambda)\tilde{B}(\lambda)}.$$

Superstable: coefficients of G_{cl} denominator have L_1 norm < 1

Fixed C superstabilizes all $(A, B) \in \mathcal{P}$ (from \mathcal{D})

ARX Program Sizes

Set
$${\mathcal P}$$
 originally contains $(a,b,\Delta u,\Delta y)$

Eliminate $(\Delta u, \Delta y)$ in alternatives

Maximal size of Gram (PSD) matrices ($N = N_a + N_b$)

Size Full Alternatives
Super
$$\binom{2N+T-1+d}{d}$$
 $\binom{N+d}{d}$

No conservatism in Alternatives

Superstability Examples

Example 1

Ground-truth system n = 3, m = 2, T = 40

$$A = \begin{bmatrix} 0.6852 & 0.0274 & 0.5587 \\ 0.2045 & 0.6705 & 0.1404 \\ 0.8781 & 0.4173 & 0.1981 \end{bmatrix}, B = \begin{bmatrix} 0.4170 & 0.3023 \\ 0.7203 & 0.1468 \\ 0.0001 & 0.0923 \end{bmatrix}$$

Noise parameters $\epsilon_x = 0.05, \epsilon_u = 0, \ \epsilon_w = 0$

Solve $\gamma^* = \min_{\gamma \in \mathbb{R}} \gamma : \|A + BK\|_{\infty} \le \gamma$ for all $(A, B) \in \mathcal{P}$

Example 1: Complexity

Data horizon T = 6,

d #scalar variables

Full 2 3.4×10^7

Altern. 1 67776

Altern recovers ground truth $\gamma^*=0.7259$ when $\epsilon_{\scriptscriptstyle X}=0$

Example 1: Results

```
With T = 40:
```

```
\gamma_{
m alt}^*=0.8880 Alternatives with d=1 (worst-case) \gamma_{
m clp}^*=0.7749 Alternatives controller applied to ground truth \gamma_{
m true}^*=0.7259 Ground truth
```

Example 2: (Monte Carlo, Stabilization)

Ground truth system $(\epsilon_w, \epsilon_u = 0)$

$$A = \begin{bmatrix} 0.6863 & 0.3968 \\ 0.3456 & 1.0388 \end{bmatrix}, \quad B = \begin{bmatrix} 0.4170 & 0.0001 \\ 0.7203 & 0.3023 \end{bmatrix}$$

S = number of successful designs out of 100 trials

S vs.
$$\epsilon_x$$
 with $T=8$

$\epsilon_{\scriptscriptstyle X}$	0.05	0.08	0.11	0.14
S	100	84	57	39

S vs.
$$T$$
 with $\epsilon_{x}=0.14$

T	8	10	12	14
S	39	60	75	86

Example 3: (Monte Carlo, H2 Performance)

Median H_2 performance in 100 trials (PMI)

$$H_2$$
-norm vs. ϵ_x with $T=8$

ϵ	0.05	0.08	0.11	0.14
$\gamma_{2, ext{clp}}$	1.97	2.07	2.18	2.15
$\gamma_{2,\mathrm{worst}}$	2.30	2.73	3.23	4.31

 H_2 -norm vs. T with $\epsilon_x = 0.14$

T	8	10	12	14
$\gamma_{2,\mathrm{clp}}$	2.07	1.96	1.94	1.93
$\gamma_{2,\mathrm{worst}}$	2.73	2.42	2.23	2.20

Example 4: (ARX Superstabilization)

Ground truth system $(\epsilon_w, \epsilon_u = 0)$

$$y_t = u_{t-2} - (0.5y_{t-1} - 1.21y_{t-2} - 0.605y_{t-3})$$

Fixed-order control $n_a=4, n_b=3$ with $\epsilon_y=\epsilon_u=\epsilon$

$$\gamma$$
 v.s. ϵ with $T=80$

ϵ	0.02	0.04	0.06	0.08
γ	0.25	0.49	0.73	0.98

$$\gamma$$
 v.s. T with $\epsilon = 0.02$

Т	20	40	60	80
γ	0.44	0.31	0.27	0.25

Take-aways

Conclusion

Stabilization in the Error-in-variables setting

Formulate SOS certificates over consistency set

Alternatives to simplify computational complexity

Conservatism only introduced in Quadratic Stability

Thank you for your attention

Bonus Content

Set Membership: Process Noise Alone

Superstability with only L_{∞} -bounded process noise (not EIV)

$$\hat{x}_{k+1} = A\hat{x}_t + B\hat{u}_t + w_t \qquad \forall t = 1..T - 1$$

Polytope of data-consistent plants $P_1(A, B)$:

$$P_1 = (A, B) : \|\hat{x}_{k+1} - A\hat{x}_t - B\hat{u}_t\|_{\infty} \le \epsilon_w \quad \forall t = 1...T - 1$$

Superstable-plants polytope $P_2(A, B)$ given constant (M, K)

$$P_2 = (A, B) : -M \le A + BK \le M$$

Control via LP (Cheng, Sznaier, Lagoa 2015)

Sparse but Conservative Tightening

Equality constraints $0 = -\Delta x_{t+1} + A\Delta x_t + h_t^0$

Define row groups $C_i = (A_{i,1:n}, B_{i,1:m})$

Each equality constraint in (i, t) only involves one group

Sparse multipliers $\zeta_{it}^{\pm}(C_i) \geq 0$, $\mu_{it}(C_i)$

Max. Gram matrix size $\binom{n+m+d}{d}$ rather than $\binom{n(n+m)+d}{d}$

Has never worked on our experiments though