BCG Inside Sherpa Feature Engineering import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter df = pd.read csv('.../Data/cleaned data.csv') df.drop(df.columns[0], inplace = True, axis = 1) df.head(5)id activity_new channel_sales cons_12m cons_gas_12m cons_las 0 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 1 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 2 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 309275.0 0.0 309275.0 3 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 0.0 309275.0 0.0 48ada52261e7cf58715202705a0451c9 esoiiifxdlbkcsluxmfuacbdckommixw lmkebamcaaclubfxadlmueccxoimlema 5 rows × 38 columns 1. Simplify Information **Simplify Categorical Information** # Convert date information to date data type # We repeat this process because after loading the data back from csv, the format for the date columns reset def convert to dates(df): col_to_convert = ['date_activ', 'date_modif_prod', 'price_date', 'date_end', 'date_renewal'] for col in col to convert: df[col] = pd.to_datetime(df[col], format = '%Y-%m-%d') convert_to_dates(df) In [4]: def simplify_cols(df): col_to_simplyfiy = list(df.dtypes[df.dtypes == object].index) for col in col_to_simplyfiy: df[col] = [x[0:4] for x in df[col]]simplify cols(df) **Simplify Date Information** def simplify_date(df): cols = df.dtypes[df.dtypes == 'datetime64[ns]'].index for col in cols: df[col] = df[col].dt.year df[col].rename('month'+col) simplify_date(df) 2. Identify and Change Outlier In [6]: numeric_features = list(df.drop('churn', axis = 1).dtypes[(df.dtypes == 'int64') | (df.dtypes == 'float64')] numeric_features = [x for x in numeric_features if x not in list(df.loc[:, df.columns.str.contains("date")]. categorical_features = list(df.drop(numeric_features, axis = 1).columns) categorical features.remove('id') def deal_outlier(df): cols = df.drop('churn', axis = 1).dtypes[(df.dtypes == 'float64') | (df.dtypes == 'int64')].index for col in cols: Q1 = df[col].quantile(0.25)Q3 = df[col].quantile(0.75)IQR = Q3 - Q1outlier_indicator = (df[col] < (Q1 - 1.5 * IQR)) | (df[col] > (Q3 + 1.5 * IQR))df.loc[outlier_indicator, col] = df.loc[~outlier_indicator, col].mean() if sum(outlier indicator) != 0: print('Changed ' + str(sum(outlier_indicator)) + ' on ' + col) deal_outlier(df) Changed 30637 on cons 12m Changed 35078 on cons gas 12m Changed 30086 on cons_last_month Changed 6046 on date_activ Changed 11920 on date_end Changed 24 on date_modif_prod Changed 16926 on date_renewal Changed 42042 on forecast_base_bill_ele Changed 42042 on forecast_base_bill_year Changed 42042 on forecast bill 12m Changed 42042 on forecast cons Changed 16456 on forecast_cons_12m Changed 19011 on forecast_cons_year Changed 6944 on forecast_discount_energy Changed 4590 on forecast_meter_rent_12m Changed 5601 on forecast_price_energy_p1 Changed 10188 on forecast_price_pow_p1 Changed 18037 on imp cons Changed 8828 on margin gross pow ele Changed 8577 on margin_net_pow_ele Changed 42391 on nb prod act Changed 14245 on net_margin Changed 5890 on num years antig Changed 24072 on pow max Changed 5633 on price_p1_var Changed 10452 on price pl fix 3. Removing Multicolinearity Data In [8]: corr_matrix = df[numeric_features].drop(['cons_gas_12m', 'forecast_discount_energy', 'nb_prod_act'], axis = 1).corr() plt.figure(figsize=(10,10)) g = sns.heatmap(corr_matrix,annot=False,cmap="RdYlGn") 1.00 cons_12m cons_last_month forecast_base_bill_ele --0.75 forecast_base_bill_year forecast_bill_12m forecast_cons : -0.50 forecast cons 12m forecast_cons_year forecast_meter_rent_12m -0.25 forecast price energy p1 forecast price energy p2 forecast_price_pow_p1 -0.00 imp_cons margin_gross_pow_ele margin_net_pow_ele - -0.25 net_margin num_years_antig pow_max - -0.50 price_p1_var price_p2_var price_p3_var -0.75 price_p1_fix price_p2_fix price_p3_fix forecast_bill_12m num_years_antig forecast_cons_12m forecast_meter_rent_12m forecast_price_energy_p2 margin_gross_pow_ele margin_net_pow_ele net_margin forecast cons forecast_price_energy_p1 forecast_price_pow_pl imp_cons price_p1_var price_p2_var price_p3_var forecast_base_bill_year forecast cons year price_p2_fix In [9]: df.drop(['forecast_base_bill_year', 'forecast_bill_12m', 'margin_gross_pow_ele'], axis = 1, inplace = True) # Update Features Information numeric_features = list(df.drop('churn', axis = 1).dtypes[(df.dtypes == 'int64') | (df.dtypes == 'float64')] numeric_features = [x for x in numeric_features if x not in list(df.loc[:, df.columns.str.contains("date")]. categorical_features = list(df.drop('churn', axis = 1).drop(numeric_features, axis = 1).columns) categorical_features.remove('id') 4. Transform Skewed Information def transform_skew(df, thres = 1): skewed_features = df[numeric_features].skew()[abs(df[numeric_features].skew()) > thres].index for feat in skewed_features: df[feat] = np.log10(df[feat] + 1)for changed in skewed features: print('changed ' + changed) transform_skew(df) changed cons_12m changed cons_last_month changed forecast_cons_12m changed forecast_cons_year changed net_margin changed pow_max 5. Encoding Categorical Variables def make_pareto(df, cols, cutoff = 100): for col in cols: temp_df = df[col].copy() temp df = pd.DataFrame(temp df.value counts().sort values(ascending = False)) temp_df["cumpercentage"] = temp_df[col].cumsum()/temp_df[col].sum()*100 if len(temp df) > 10: temp_df = temp_df[temp_df['cumpercentage'] < cutoff]</pre> fig, ax = plt.subplots()ax.bar(temp_df.index, temp_df[col], color="CO") ax2 = ax.twinx()ax2.plot(temp_df.index, temp_df["cumpercentage"], color="C1", marker="D", ms=7) ax2.yaxis.set_major_formatter(PercentFormatter()) ax.tick_params(axis="y", colors="C0") ax2.tick_params(axis="y", colors="C1") plt.title('Pareto chart of ' + col) plt.show() cols_ = ['id', 'activity_new', 'channel_sales', 'has_gas', 'origin_up'] make pareto(df, cols = cols, cutoff = 80) Pareto chart of id 80% 60 70% 50 60% 40 50% 40% 30 30% 20 20% 10% 10 Pareto chart of activity_new 120000 80.0% 77.5% 100000 75.0% 80000 72.5% 70.0% 60000 67.5% 40000 65.0% 62.5% 20000 60.0% Missapde kkkl kwusmwdckfx cwofwxemclue sfis sffa sxub ipdl Pareto chart of channel_sales 80000 90% 60000 80% 70% 40000 60% 20000 50% 0 foos Miss Imke usil ewpa sddi epum fixd Pareto chart of has_gas 160000 100.0% 140000 97.5% 120000 95.0% 100000 92.5% 80000 90.0% 60000 87.5% 40000 85.0% 20000 82.5% Pareto chart of origin_up 100% 80000 90% 60000 80% 70% 40000 60% 20000 50% 0 kamk ldks Miss usap ewxe Based on the graph above, we can see that channel sales, origin up, and activity new could be kept for further analysis because it showed that most of the information followed the 80-20 rules (80% of the information is explained by the 20%). Also, since Id features are highly diverse, we can remove that information from our modelling process. Has gas feature can also be kept because it is a binary, and could be easily encoded. In [14]: df with dummies = pd.get dummies(df, columns = categorical features) df with dummies.drop('id', inplace = True, axis = 1) df with dummies cons_12m cons_gas_12m cons_last_month forecast_base_bill_ele forecast_cons forecast_cons_12m forecast_cons_year 4.310267 0.0 4.001128 335.807483 206.800605 3.179547 2.932604 4.001128 335.807483 206.800605 4.310267 0.0 3.179547 2.932604 4.001128 2.932604 4.310267 0.0 335.807483 206.800605 3.179547 4.310267 4.001128 335.807483 206.800605 3.179547 2.932604 4.310267 0.0 4.001128 335.807483 206.800605 3.179547 2.932604 192997 3.941064 0.000000 335.807483 206.800605 2.882758 0.000000 192998 206.800605 2.882758 0.000000 3.941064 0.000000 335.807483 192999 3.941064 0.0 0.000000 335.807483 206.800605 2.882758 0.000000 193000 3.941064 0.0 0.000000 335.807483 206.800605 2.882758 0.000000 193001 3.941064 0.000000 2.882758 0.0 335.807483 206.800605 0.000000 193002 rows × 487 columns df_with_dummies.to_csv('.../Data/data_ready.csv')