integra it forms the basiston formula It. forms the basis for a number of numbers. This is known as Newton-cota Method.	Spacea. . We will discuss a method Rombarg integnational dissigned to improve estimate Newton course. . Johnnote: Method:	osea. a set of method known gule in which sampling po	can be tolered as the asks under the every of -f (n) emclosed within limit x-a, y-b could be use a better alternative approach that uses simple asithmatic calculation to compute the asks that can be easily implemented in	NUMERICAL INTEGRATION b ch definite integral is a form: I - I fooder which	2: 2 3, 5+2 x ₂ 3, x ₂ 3, x ₃ 3, x ₄ 3, x
J(An-3nt) da Absolute euroge 4 [nt - 3 t ng Tome - Appmoximate] 4 xt - 3 xt 3	1 (4a-3a-)da - 0-1 [0 & 2()+1]	ま(な)=4x-3x ² 1-0=10ト	Simpson #: [dd(x) = x = [d. + 2(d1+d1++dn+) + dn]	Sof the limits of integration ast.	Depromial interpolation of Newton-Course formula is based or polynomial interpolation - And nth degree polynomialing polynomial interpolate the values of fix) at n+1 evenily spaced point can be used to steplace integrant fix) of the integral I - I fix) and the stesution of the integral Newton-Course Formula. Is called (m+1) point Newton-Course Formula. In the integration a, b one the interpolation of the interpolation of the interpolation.

1 Har Using Harapizordal	selative, percentage	0.4 0.5 0.6 070.80.912 0.8621 00 0.733 0.6093 0.5	MAN STATE OF THE S	K T				os)te trapi₹oidal suute	5	
Company value of (X	event 2014 10 subinterval. Absolute, Relative, percentage event.	0.1 0.2 0.3 0.0 0.4615 0.89 0.9904 25015	da = 0.1 [1+0.5+2(12.4446)] 1+2+ 2 0.78498	Now form calculabing tem! 1=	= \frac{\times = 0.78498}{\times = 3.13992 (Approx)	Abgolute essan = 1 Town - Absolute 5 13924	Relative envior: 5.31570-4 Pententage 0.053%	F. Hw. Calculat Jerdan using composite trapizaidal sunter Las 2 number, 4 number 306 interval	3) JI-nsdar taking m=5	Jenda Bomet

=1, F2 For allestabulated value 21, 81+h, 21, 21, 2h Sum= \$1+2+1 37 1 00.1 32.1 0.2.1 38 00.0 00.5 for girl to me se a o) 1 1 (6 2 3 2 5 4 6 4 5 6 6 6 6 6 sum = sumit f.(1) CSOST TA' O end for sum, sum+2\$(1) # Final Result = printer store the store and store is a white Integral

occupred to the standard of th Stop impson's 1/3 RD Formula (Composite): putting m=2 in 41 and takin Mis Js toure for exemonumber of subinterval laggisconmpet of Bolist pere 8:0 12 06.0. 1 mh = b-a

A + S J T A O + 1) 1.0

Exaluate | dx using simpsom y3 RD sule h= 4 ES 22.0 0.25 0.5 2 0.75 2.1.0 (2) 1 . 10.194 = 20.8 SUDOIGHN WINGIST MORE dz = (1+0.5 + 4(0.94+0.64) +2x0.8) - 1 - 4 20.785 01-5.801

```
startaking 6 ondinates. Comme
           h - 0.25
                              1. 75
                                                     9-0 = 5W
                             0.41686
  f(a) 0.60653 0.53526 0.47237
                                                                  0.8
                                                             0.608 2.944 7.776
    = 0.4773025
     Jean da by simpson composite stule taking !
f coordinate. Find value of tog_2 upto 5 significants
       m=11- 1Filogramo) sicomosof as El glace
        1-0 = 10h
         h= 0:1
      1 0.90 71 0.8333 0.73420 7143 0.667 0.625 0.58 82.0556
                                                   = 16
                                                  Absolute error = 16 - 13.2224 = 2.7776
 Jda = 0.1 (1+0.4762+A(-
        5 0.69315
from calculas eve have
```

2.
$$\int e^{x} dx$$

2. $\int e^{x} dx$

2. $\int e^{x} dx$

3. $\int \frac{dx}{2}$

4. $\int \frac{dx}{2}$

5. $\int \frac{dx}{2}$

6. $\int \frac{dx}{2}$

7. $\int \frac{dx}{2}$

8. $\int \frac{dx}{2}$

9. $\int \frac{dx}{2}$

9. $\int \frac{dx}{2}$

1. $\int \int e^{-x} dx$

1. $\int \int e^{-x} dx$