

COMP40020 Human Language Technologies

Language Modelling
April 2019

Prof. Julie Berndsen School of Computer Science

Julie.Berndsen@ucd.ie

+HLT13

Contents:

- Recall: competence vs. performance
- Humans, ambiguity & prediction
- Probability of a sentence
- N-Grams
- Language modelling and evaluation

Aim:

■ To give an overview of probabilistic language modelling.

+Acknowledgement

■ For an excellent and detailed introduction to Language Modelling, I recommend the slides (and videos) of Dan Jurafsky at Stanford, building on his book (Jurafsky & Martin, 2018 – 3rd edition).

https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf

■ Some of the information presented here is taken directly or adapted from Dan's slides.

⁺Competence vs. Performance

Competence

Modelled by consistent and nonredundant systems of formal rules

Performance

Way in which humans actually use language influenced by non-linguistic factors

⁺Competence vs. Performance

Competence

Modelled by consistent and nonredundant systems of formal rules

Human mind employs these rules to produce and understand new utterances

Humans can perceive one utterance meaning among many

Performance

Way in which humans actually use language influenced by non-linguistic factors

+Competence vs. Performance

Modelled by redundant

Use of factors
such as
knowledge of
the real world,
likelihood of
occurrence of
words and
sentences

Competence

Modelled by consistent and nonredundant systems of formal rules

Performance

Way in which humans actually use language influenced by non-linguistic factors

Competence
grammar cannot
account for all
aspects of human
language
processing
e.g. ambiguity,
prediction

+ Humans & Ambiguity

Evidence from online sentence processing experiments that the human parser is *probabilistic* with humans preferring some readings of sentences over others...

+ Humans & Ambiguity

Evidence from online sentence processing experiments that the human parser is *probabilistic* with humans preferring some readings of sentences over others...

- The women kept the dogs on the beach
- The women kept the dogs which were on the beach 5%
- The women kept them (the dogs) on the beach 95%

+ Humans & Ambiguity

Evidence from online sentence processing experiments that the human parser is *probabilistic* with humans preferring some readings of sentences over others...

- The women kept the dogs on the beach
- The women kept the dogs which were on the beach 5%
- The women kept them (the dogs) on the beach 95%

- The women discussed the dogs on the beach
- The women discussed the dogs which were on the beach 90%
- The women discussed them (the dogs) while on the beach 10%

+ Humans & Prediction

And humans are able to predict what comes next...

■ John's favourite meal is fish and _____

+ Humans & Prediction

And humans are able to predict what comes next...

■ John's favourite meal is fish and _____ chips

+ Humans & Prediction

And humans are able to predict what comes next...

■ John's favourite meal is fish and _____ chips

boiled potatoes

peas

ice cream

. . .

he catches it himself

⁺Adressing Ambiguity/Prediction...

- \blacksquare S \rightarrow NP VP [.60]
- $S \rightarrow Aux VP PP [.35]$
- $S \rightarrow VP$ [.05]
- NP \rightarrow Det Noun [.20]
- NP \rightarrow Proper-Noun [.35]
- NP \rightarrow Noun [.05]
- NP \rightarrow Pronoun [.40]
- $VP \rightarrow Verb$ [.25]
- $VP \rightarrow Verb NP [.40]$
- $VP \rightarrow Verb NP PP [.35]$

Augment competence grammar (grammar and lexicon) with probabilities and build a parser that takes these into account

→ stochastic grammar

⁺Adressing Ambiguity/Prediction...

Data-Oriented
Parsing
(Bod, 1993)

Use experience of parse structures to find the probability of new sentence. Using e.g. a tree-bank, build the new sentence with the sub-trees of existing sentences.

13)

Data-Oriented Parsing

Use

Both of these approaches still use knowledge about the structure of the language (i.e. knowledge-based with statistical information)

P(the women kept the dogs on the beach)

P(the women kept the dogs on the beach)

Chain Rule

$$P(w_1 w_2 ... w_n) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1 w_2) ... P(w_n \mid w_1 ... w_{n-1})$$

P(the women kept the dogs on the beach)

Chain Rule

$$P(w_1 w_2 ... w_n) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1 w_2) ... P(w_n \mid w_1 ... w_{n-1})$$

P(the)P(women|the)P(kept|the women)P(the|the women kept)P(dogs|the women kept the)P(on|the women kept the dogs)P(the|the women kept the dogs on)P(beach|the women kept the dogs on the)

P(<s>the women kept the dogs on the beach</s>)

Chain Rule

$$P(w_1 w_2 ... w_n) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1 w_2) ... P(w_n \mid w_1 ... w_{n-1})$$

P(<s>)P(the | <s>)P(women | <s>the)P(kept | <s>the women)P(the | <s>the women kept)P(dogs | <s>the women kept the) P(on | <s>the women kept the dogs)P(the | <s>the women kept the dogs on)P(beach | <s>the women kept the dogs on the)P(</s> | <s>the women kept the dogs on the beach)

*Markov Assumption

$$P(w_1 w_2 ... w_n) \approx \prod_i P(w_i \mid w_{i-k} ... w_{i-1})$$

Unigram

$$P(w_1 w_2 ... w_n) \approx \prod_i P(w_i)$$

Bigram

$$P(w_1 w_2 ... w_n) \approx \prod_{i} P(w_i)$$

$$P(w_i | w_1 w_2 ... w_{i-1}) \approx \prod_{i} P(w_i | w_{i-1})$$

Trigram

$$P(w_i \mid w_1 w_2 ... w_{i-1}) \approx \prod_i P(w_i \mid w_{i-2} w_{i-1})$$

P(<s>the women kept the dogs on the beach</s>)

Unigram

$$P(w_1 w_2 ... w_n) \approx \prod_i P(w_i)$$

Unigram

P(<s>)P(the)P(women)P(kept)P(the)P(dogs)P(on) P(the)P(beach)P(</s>)

P(<s>the women kept the dogs on the beach</s>)

Bigram
$$P(w_i | w_1 w_2 ... w_{i-1}) \approx \prod_i P(w_i | w_{i-1})$$

Bigram

P(<s>)P(the|<s>)P(women|the)P(kept|women) P(the|kept)P(dogs|the)P(on|dogs)P(the|on) P(beach|the)P(</s>|beach)

P(<s>the women kept the dogs on the beach</s>)

$$P(w_i \mid w_1 w_2 ... w_{i-1}) \approx \prod_i P(w_i \mid w_{i-2} w_{i-1})$$

Trigram

P(<s>)P(the | <s>)P(women | <s>the)P(kept | the women)P(the | women kept)P(dogs | kept the)P(on | the dogs)P(the | dogs on)P(beach | on the)P(</s> | the beach)

HLT13

⁺Probabilistic Language Models

- Language Models (LM) can be used to:
 - assign a probability to a sentence
 - predict the next word in a sentence
- LMs can be regarded as *data-driven* grammars:
 - insufficient from linguistic perspective as they cannot capture long distance dependencies
 - but good for many language technology tasks
- Found in many language technology domains:
 - speech recognition
 - machine translation
 - spelling correction
 - information retrieval

⁺Probabilistic Language Models

■ The probabilities for *n-grams* of a language are estimated using a corpus or data set based on the counts (frequencies).

Training Set Test Set

- E.g.
 - a bigram language model is built using the counts of the unigrams and the bigrams in a training set with the probabilities determined using the maximum likelihood estimate (MLE).

			Ur	nigram Co	ounts		
it	was	her	to	who	mother	declare	enough
1568	1846	2436	4063	260	258	16	103

	Bigram Counts												
	it	was	her	to	who	mother	declare	enough					
it	0	201	1	55	0	0	0	0					
was	8	0	13	52	0	0	0	14					
her	2	3	1	0	0	114	0	0					
to	35	0	221	0	0	0	4	0					
who	1	31	0	0	0	0	0	0					
mother	0	13	0	6	0	0	0	0					
declare	0	0	0	0	0	0	0	0					
enough	0	0	0	49	0	0	0	0					

			Ur	nigram Co	ounts		
it	was	her	to	who	mother	declare	enough
1568	1846	2436	4063	260	258	16	103

	Bigram Counts											
	it	was	her	to	who	mother	declare	enough				
it	0	201	1	55	0	0	0	0				
was	8	0	13	52	0	0	0	14				
her	2	3	1	0	0	114	0	0				
to	35	0	221	0	0	0	4	0				
who	1	31	0	0	0	0	0	0				
mother	0	13	0	6	0	0	0	0				
declare	0	0	0	0	0	0	0	0				
enough	0	0	0	49	0	0	0	0				

			Ur	nigram Co	ounts		
it	was	her	to	who	mother	declare	enough
1568	1846	2436	4063	260	258	16	103

	Bigram Counts												
	it	was	her	to	who	mother	declare	enough					
it	0	201	1	55	0	0	0	0					
was	8	0	13	52	0	0	0	14					
her	2	3	1	0	0	114	0	0					
to	35	0	221	0	0	0	4	0					
who	1	31	0	0	0	0	0	0					
mother	0	13	0	6	0	0	0	0					
declare	0	0	0	0	0	0	0	0					
enough	0	0	0	49	0	0	0	0					

			Ur	nigram Co	ounts		
it	was	her	to	who	mother	declare	enough
1568	1846	2436	4063	260	258	16	103

	Bigram Counts												
	it	was	her	to	who	mother	declare	enough					
it	0	201	1	55	0	0	0	0					
was	8	0	13	52	0	0	0	14					
her	2	3	1	0	0	114	0	0					
to	35	0	221	0	0	0	4	0					
who	1	31	0	0	0	0	0	0					
mother	0	13	0	6	0	0	0	0					
declare	0	0	0	0	0	0	0	0					
enough	0	0	0	49	0	0	0	0					

			Ur	nigram Co	ounts						
it	was her to who mother declare enough										
1568	1846	2436	4063	260	258	16	103				

	Bigram Counts											
	it	was	her	to	who	mother	declare	enough				
it	0	201	1	55	0	0	0	0				
was	8	0	13	52	0	0	0	14				
her	2	3	1	0	0	114	0	0				
to	35	0	221	0	0	0	4	0				
who	1	31	0	0	0	0	0	0				
mother	0	13	0	6	0	0	0	0				
declare	0	0	0	0	0	0	0	0				
enough	0	0	0	49	0	0	0	0				

			Ur	nigram Co	ounts		
it	was	her	to	who	mother	declare	enough
1568	1846	2436	4063	260	258	16	103

Bigram Counts												
	it	was	her	to	who	mother	declare	enough				
it	0	201	1	55	0	0	0	0				
was	8	0	13	52	0	0	0	14				
her	2	3	1	0	0	114	0	0				
to	35	0	221	0	0	0	4	0				
who	1	31	0	0	0	0	0	0				
mother	0	13	0	6	0	0	0	0				
declare	0	0	0	0	0	0	0	0				
enough	0	0	0	49	0	0	0	0				

Unigram Counts										
it	it was her to who mother declare enough									
1568	1846	2436	4063	260	258	16	103			

Bigram Counts										
	it was her to who mother declare enough									
it	0	201	1	55	0	0	0	0		
was	8	0	13	52	0	0	0	14		
her	2	3	1	0	0	114	0	0		
to	35	0	221	0	0	0	4	0		
who	1	31	0	0	0	0	0	0		
mother	0	13	0	6	0	0	0	0		
declare	0	0	0	0	0	0	0	0		
enough	0	0	0	49	0	0	0	0		

NLTK Text: Wall Street Journal with vocabulary size of 12408 and 100676 tokens

Unigram Counts											
This	This is an old story mother to paper read										
717	671	316	24	6	3	2164	28	11			

Bigram Counts											
	This	is	an	old	story	mother	paper	to	read		
This	0	12	0	0	1	0	0	0	0		
is	0	0	15	0	0	0	0	0	0		
an	0	0	0	2	0	0	0	0	0		
old	0	0	0	0	1	0	0	0	0		
story	0	1	0	0	0	0	0	0	0		
mother	0	0	0	0	0	0	0	0	0		
paper	0	0	0	0	0	0	0	0	0		
to	0	0	19	0	0	0	0	0	3		
read	0	0	0	0	0	0	0	0	0		

HLT13

⁺Language Model: Small Example

Some sentences from Berkeley Restaurant Project (cf. Jurafsky slides)

- <s> can you tell me about any good cantonese restaurants close by </s>
- <s> mid priced that food is what i'm looking for </s>
- <s> tell me about chez panisse </s>
- <s> can you give me a listing of the kinds of food that are available </s>
- <s> i'm looking for a good place to eat breakfast </s>
- <s> when is caffe venezia open during the day </s>

*Maximum Likelihood Estimation

For Bigram:
$$P(w_i | w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

$$P(can \mid \langle s \rangle) = \frac{c(\langle s \rangle can)}{c(\langle s \rangle)} = \frac{2}{6} = \frac{1}{3} \qquad P(looking \mid i'm) = \frac{c(i'm \ looking)}{c(i'm)} = \frac{2}{2} = 1$$

$$P(when \mid \langle s \rangle) = \frac{c(\langle s \rangle when)}{c(\langle s \rangle when)} = \frac{1}{2} \qquad P(that \mid food) = \frac{c(food \ that)}{c(i'm)} = \frac{1}{2}$$

$$P(when \mid < s >) = \frac{c(< s > when)}{c(< s >)} = \frac{1}{6} \qquad P(that \mid food) = \frac{c(food that)}{c(food)} = \frac{1}{2}$$

- <s> can you tell me about any good cantonese restaurants close by </s>
- <s> mid priced that food is what i'm looking for </s>
- <s> tell me about chez panisse </s>
- <s> can you give me a listing of the kinds of food that are available </s>
- <s> i'm looking for a good place to eat breakfast </s>
- <s> when is caffe venezia open during the day </s>

⁺Unigram Counts

Example text with 6 sentences (43 words and 68 tokens)

Unigram Counts										
<g></g>		a	about	any	are	available	breakfast			
6	6	2	2	1	1	1	1			
by	caffe	can	cantonese	chez	close	day	during			
1	1	2	1	1	1	1	1			
eat	food	for	give	good	i'm	kinds	listing			
1	2	2	1	2	2	2	1			
looking	me	mid	of	open	panisse	place	priced			
2	3	1	2	1	1	1	1			
restaurants	tell	thai	that	the	to	venezia	what			
1	2	1	1	2	1	1	1			
when	you									
1	2									

⁺Some Bigram Counts

Example text with 6 sentences (43 words and 68 tokens)

Some Bigram Counts									
	<g></g>	a	for	looking	good				
<g></g>	0	0	0	0	1	0	0		
a	0	0	0	0	0	0	1		
for	0	1	0	0	0	0	0		
me	0	0	0	0	0	0	0		
i'm	0	0	0	0	0	2	0		
looking	0	0	2	0	0	0	0		
good	0	0	0	0	0	0	0		

⁺Some Bigram Probabilities

Example text with 6 sentences (43 words and 68 tokens)

$$P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

Some Bigram Probabilities									
	<s> a for me i'm looking goo</s>								
<g></g>	0	0	0	0	0.1667	0	0		
a	0	0	0	0	0	0	0.5		
for	0	0.5	0	0	0	0	0		
me	0	0	0	0	0	0	0		
i'm	0	0	0	0	0	1	0		
looking	0	0	1	0	0	0	0		
good	0	0	0	0	0	0	0		

⁺Some Bigram Probabilities

Example text with 6 sentences (43 words and 68 tokens)

$$P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

Some Bigram Probabilities										
	<s></s>	good								
<s></s>	0	0		0	0.1667	0	0			
a	0			0	0	0	0.5			
for										
me	log ₁		0							
i'm	instead		0							
looking	It is a	it is also quicker to add logs rather than multiply probabilities								
good							0			

⁺LM (ARPA) Format

Generated with http://www.speech.cs.cmu.edu/tools/lmtool-new.html which uses discount mass 0.5

- \data\
- ngram 1=43
- ngram 2=56
- ngram 3=53
- \l-grams:
- -1.3554 </s> -0.3010
- -1.3554 <s> -0.2747
- -1.8325 A -0.2913
- -1.8325 ABOUT -0.2946
- -2.1335 ANY -0.2946
- -2.1335 ARE -0.2978
- -2.1335 AVAILABLE -0.2814
- -2.1335 BREAKFAST -0.2814
- -2.1335 BY -0.2814
- -2.1335 CAFFE -0.2978
- -1.8325 CAN -0.2946
-
- \2-grams:
- -0.7782 <s> CAN 0.0000
- -1.0792 <s> I'M 0.0000
- -1.0792 <s> MID 0.0000
- -1.0792 <s>TELL 0.0000

- -1.0792 <s> WHEN 0.0000
- -0.6021 A GOOD -0.1761
- -0.6021 A LISTING 0.0000
- -0.6021 ABOUT ANY 0.0000
- -0.6021 ABOUT CHEZ 0.0000
- -0.3010 ANY GOOD -0.1761
- -0.3010 ARE AVAILABLE 0.0000
- -0.3010 AVAILABLE </s> -0.3010
- -0.3010 BREAKFAST </s> -0.3010
- -0.3010 BY </s> -0.3010
- **■** ...
- \3-grams:
- -0.3010 <s> CAN YOU
- -0.3010 <s> I'M LOOKING
- -0.3010 <s> MID PRICED
- -0.3010 <s> TELL ME
- -0.3010 <s> WHEN IS
- -0.3010 A GOOD PLACE
- -0.3010 A LISTING OF
- -0.3010 ABOUT ANY GOOD
- -0.3010 ABOUT CHEZ PANISSE
- ...
- \end\

+LM (ARPA) Format

Generated with http://www.speech.cs.cmu.edu/tools/lmtool-new.html which uses discount mass 0.5

- \data\
- ngram 1=43
- ngram 2=56
- ngram 3=53

probability log₁₀

- \l-grams:
- -1.3554 </s> -0.3010
- -1.3554 <s> -0.2747
- -1.8325 A -0.2913
- -1.8325 ABOUT -0.2946
- -2.1335 ANY -0.2946
- -2.1335 ARE -0.2978
- -2.1335 AVAILABLE -0.2814
- -2.1335 BREAKFAST -0.2814
- -2.1335 BY -0.2814
- -2.1335 CAFFE -0.2978
- -1.8325 CAN -0.2946
-
- \2-grams:
- -0.7782 <s> CAN 0.0000
- -1.0792 <s> I'M 0.0000
- -1.0792 <s> MID 0.0000
- -1.0792 <s> TELL 0.0000

- -1.0792 <s> WHEN 0.0000
- -0.6021 A GOOD -0.1761
- -0.6021 A LISTING 0.0000
- -0.6021 ABOUT ANY 0.0000
- -0.6021 ABOUT CHEZ 0.0000
- -0.3010 ANY GOOD -0.1761
- -0.3010 ARE AVAILABLE 0.0000
- -0.3010 AVAILABLE </s> -0.3010
- -0.3010 BREAKFAST </s> -0.3010
- -0.3010 BY </s> -0.3010
- **.**..
- \3-grams:
- -0.3010 <s> CAN YOU
- -0.3010 <s> I'M LOOKING
- -0.3010 <s> MID PRICED
- -0.3010 <s> TELL ME
- -0.3010 <s> WHEN IS
- -0.3010 A GOOD PLACE
- -0.3010 A LISTING OF
- -0.3010 ABOUT ANY GOOD
- -0.3010 ABOUT CHEZ PANISSE
- · ...
- \end\

⁺LM (ARPA) Format

back-off weight log₁₀

Generated with http://www.speech.cs.cmu.edu/tools/lmtool-new.html which uses discount mass 0.5

- \data\
- ngram 1=43
- ngram 2=56
- ngram 3=53
- \l-grams:
- -1.3554 </s> -0.3010
- -1.3554 <s> -0.2747
- -1.8325 A -0.2913
- -1.8325 ABOUT -0.2946
- -2.1335 ANY -0.2946
- -2.1335 ARE -0.2978
- -2.1335 AVAILABLE -0.2814
- -2.1335 BREAKFAST -0.2814
- -2.1335 BY -0.2814
- -2.1335 CAFFE -0.2978
- -1.8325 CAN -0.2946
-
- \2-grams:
- -0.7782 <s> CAN 0.0000
- -1.0792 <s> I'M 0.0000
- -1.0792 <s> MID 0.0000
- -1.0792 <s>TELL 0.0000

- -1.0792 <s> WHEN 0.0000
- -0.6021 A GOOD -0.1761
- -0.6021 A LISTING 0.0000
- -0.6021 ABOUT ANY 0.0000
- -0.6021 ABOUT CHEZ 0.0000
- -0.3010 ANY GOOD -0.1761
- -0.3010 ARE AVAILABLE 0.0000
- -0.3010 AVAILABLE </s> -0.3010
- -0.3010 BREAKFAST </s> -0.3010
- -0.3010 BY </s> -0.3010
- ...
- \3-grams:
- -0.3010 <s> CAN YOU
- -0.3010 <s> I'M LOOKING
- -0.3010 <s> MID PRICED
- -0.3010 <s> TELL ME
- -0.3010 <s> WHEN IS
- -0.3010 A GOOD PLACE
- -0.3010 A LISTING OF
- -0.3010 ABOUT ANY GOOD
- -0.3010 ABOUT CHEZ PANISSE
- **...**
- \end\

⁺Language Model:Example

Unigram "Sentence" Generation e.g.

you me any restaurants available breakfast looking i'm during open day priced what good kinds a close mid

- <s> can you tell me about any good cantonese restaurants close by </s>
- <s> mid priced that food is what i'm looking for </s>
- <s> tell me about chez panisse </s>
- <s> can you give me a listing of the kinds of food that are available </s>
- <s> i'm looking for a good place to eat breakfast </s>
- <s> when is caffe venezia open during the day </s>

⁺Language Model:Example

Bigram "Sentence" Generation e.g.

mid priced thai food is caffe veneizia i'm looking for can you give me about any

- <s> can you tell me about any good cantonese restaurants close by </s>
- <s> mid priced that food is what i'm looking for </s>
- <s> tell me about chez panisse </s>
- <s> can you give me a listing of the kinds of food that are available </s>
- <s> i'm looking for a good place to eat breakfast </s>
- <s> when is caffe venezia open during the day </s>

⁺An Aside: Shannon Visualisation

Bigram Sentence Generation e.g.

```
<s>can
    can you
    you tell
    tell me
        me a
        a listing
        listing of
        of food
        food that
        that are
        are available
        available </s>
```

```
<s> can you tell me about any good cantonese restaurants close by </s> <s> mid priced that food is what i'm looking for </s> <s> tell me about chez panisse </s> <s> can you give me a listing of the kinds of food that are available </s> <s> i'm looking for a good place to eat breakfast </s> <s> when is caffe venezia open during the day </s>
```


⁺Language Model:Example

Trigram "Sentence" Generation e.g.

tell me about...

- <s> can you tell me about any good cantonese restaurants close by </s>
- <s> mid priced that food is what i'm looking for </s>
- <s> tell me about chez panisse </s>
- <s> can you give me a listing of the kinds of food that are available </s>
- <s> i'm looking for a good place to eat breakfast </s>
- <s> when is caffe venezia open during the day </s>

*Approximating Shakespeare

Unigram

To him swallowed confess hear both. Which. Of save on trail for are ay device and rote life have

Every enter now severally so, let

Hill he late speaks; or! a more to leg less first you enter

Are where exeunt and sighs have rise excellency took of.. Sleep knave we. near; vile like

Bigram

What means, sir. I confess she? then all sorts, he is trim, captain.

Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live king. Follow.

What we, hath got so she that I rest and sent to scold and nature bankrupt, nor the first gentleman?

Trigram

Sweet prince, Falstaff shall die. Harry of Monmouth's grave.

This shall forbid it should be branded, if renown made it empty.

Indeed the duke; and had a very good friend.

Fly, and will rid me these news of price. Therefore the sadness of parting, as they say, 'tis done.

Quadrigram

King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A great banquet serv'd in; Will you not tell me who I am?

It cannot be but so.

Indeed the short and the long. Marry, 'tis a noble Lepidus.

Taken from: Jurafsky Language Modeling Slides https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf

*Approximating Shakespeare

- ■Shakespeare's "Corpus"
 - Number of tokens=884,647, Vocabulary=29,066
 - Only used 300,000 bigram types out of a possible $844M \rightarrow 99.96\%$ of possible bigrams <u>never seen</u> (i.e. have 0 in bigram count table entry)
 - Even worse for trigram and quadrigram this is why the quadrigram text on the previous slide is so good it is based on seen quadrigrams i.e. it is Shakespeare.
 - N-grams only work if training corpus is like the test corpus for real world applications this is generally not robust enough.

Adapted from: Jurafsky Language Modeling Slides https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf

*Back to Berkeley Restaurant Project

Full Berkeley Restaurant Project data with 9222 sentences (cf. Jurafsky slides)

Unigram Counts										
i	i want to eat chinese lunch food sper									
2533	927	2417	746	158	341	1093	278			

Bigram Counts											
	i	want	to	eat	chinese	lunch	food	spend			
i	5	827	0	9	0	0	0	2			
want	2	0	608	1	6	5	6	1			
to	2	0	4	686	2	6	0	211			
eat	0	0	2	0	16	42	2	0			
chinese	1	1	0	0	0	1	82	0			
lunch	2	0	0	0	0	0	1	0			
food	15	0	15	0	1	0	4	0			
spend	1	0	1	0	0	0	0	0			

+Back to Berkeley Restaurant Project Full Berkeley Restaurant Project data (cf. Jurafsky slides) $P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$

$$P(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i)}{C(w_{i-1})}$$

Bigram Probabilities										
	i	want	to	eat	chinese	lunch	food	spend		
i	0.002	0.3265	0	0.0036	0	0	0	0.0008		
want	0.0022	0	0.6559	0.0011	0.0065	0.0054	0.0065	0.0011		
to	0.0008	0	0.0017	0.2838	0.0008	0.0025	0	0.0873		
eat	0	0	0.0027	0	0.0214	0.0563	0.0027	0		
chinese	0.0063	0.0063	0	0	0	0.0063	0.519	0		
lunch	0.0059	0	0	0	0	0	0.0029	0		
food	0.0137	0	0.0137	0	0.0009	0	0.0037	0		
spend	0.0036	0	0.0036	0	0	0	0	0		

+Smoothing

- N-grams that are unseen in the training set may still occur in the test set \rightarrow sparse training data
 - E.g. based on training set, P(food | to) = 0
 - However, the test set could contain: "to food fans everywhere"
- Laplace Smoothing:
 - Add one to each count and calculate smoothed probabilities P*

$$P*(w_i \mid w_{i-1}) = \frac{C(w_{i-1}w_i) + 1}{C(w_{i-1}) + V}$$

- Only practical where small number of zeros
- Advanced Smoothing Techniques:
 - Absolute Discounting
 - Good-Turing
 - Kneser-Ney
 - Witten-Bell

*Backoff & Interpolation

- Backoff (use less context):
 - Use n-gram if the count of n-gram is greater than some threshold
 - Otherwise use (n-1)-gram
 - E.g. trigram \rightarrow bigram \rightarrow unigram

■ Interpolation:

■ Mix trigrams, bigrams and unigrams using a weighting factor (often written as λ) selected so as to maximise the probability of held-out (or development) set.

Training Set

Held-Out
Set

Test Set

*Language Model Evaluation

- Extrinsic evaluation in the context of a specific application:
 - does model A perform better at the task using the test set than model B?
 - E.g. accuracy of speech recognition, machine translation, information retrieval
 - but it can take a long time to run these experiments
- Intrinsic evaluation based on *perplexity* (branching factor):
 - only works well if the training set and the text set are similar
 - but provides a general measure about the model itself

minimising perplexity

maximising probability

+Some Resources & Toolkits

- ■See Blackboard for links
 - Google: All Our N-Gram are Belong to You
 - Google Books N-Gram Viewer
 - The SRI Language Modeling Toolkit (SRILM)
 - The CMU Statistical Language Modeling (SLM) Toolkit

