Material Auxiliar - Álgebra de Conjuntos

Definições

Definição da União:

 $x \in A \cup B \Leftrightarrow x \in A \lor x \in B$

 $x \in B \cup A \Leftrightarrow x \in B \lor x \in A$

Definição da Intersecção:

 $x \in A \cap B \Leftrightarrow x \in A \land x \in B$

 $x \in B \cap A \Leftrightarrow x \in B \land x \in A$

Definição do complemento de um conjunto:

 $x \in A' \Leftrightarrow x \notin A$

Definição da diferença:

 $A - B = \{x \mid x \in A \land x \notin B\} = A \cap B'$

Definição do conjunto das partes:

 $\{X \mid X \subseteq A\}$

Definição de produto cartesiano:

 $A \times B = \{ (a,b) \mid a \in A \land b \in B \}$

Definição de união disjunta:

 $A \uplus B = \{ \langle a,0 \rangle \mid a \in A \} \cup \{ \langle b,1 \rangle \mid b \in B \}$

 $A \uplus B = \{ a_A \mid a \in A \} \cup \{ b_B \mid b \in B \}$

• Tabela de Propriedades:

Propriedade	Lógica	Teoria dos Conjuntos
Idempotência	p∧p⇔p	$A \cap A = A$
	$p \lor p \Leftrightarrow p$	A ∪ A = A
Comutativa	$p \wedge q \Leftrightarrow q \wedge p$	A∩B=B∩A
	$p \vee q \Leftrightarrow q \vee p$	A∪B=B∪A
Associativa	$p \wedge (q \wedge r) \Leftrightarrow (p \wedge q) \wedge r$	$A \cap (B \cap C) = (A \cap B) \cap C$
	$p \vee (q \vee r) \Leftrightarrow (p \vee q) \vee r$	$A \cup (B \cup C) = (A \cup B) \cup C$
Distributiva	$p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
	$p \vee (q \wedge r) \Leftrightarrow (p \vee q) \wedge (p \vee r)$	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
Negação/	¬¬p ⇔ p	~~A = A
Complemento	p∧¬p⇔F	A ∩ ~A = Ø
	p v ¬p ⇔ V	$A \cup \sim A = U$
DeMorgan	¬(p v q) ⇔ ¬p ∧ ¬q	~(A ∪ B) = ~A ∩ ~B
	¬(p∧q) ⇔ ¬p∨¬q	~(A∩B)=~A∪~B
Elemento Neutro	p∧V ⇔ p	$A \cap U = A$
	pvF⇔p	$A \cup \emptyset = A$
Elemento Absorvente	p∧F⇔F	A ∩Ø=Ø
	$p \lor V \Leftrightarrow V$	$A \cup U = U$
Absorção	$p \land (p \lor q) \Leftrightarrow p$	$A \cap (A \cup B) = A$
	$p \vee (p \wedge q) \Leftrightarrow p$	$A \cup (A \cap B) = A$

FONTE: MENEZES, Paulo Blauth. Matemática discreta para computação e informática, V.16. 4. Porto Alegre Bookman 2013.