

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P1

NOVEMBER 2011

POSSIBLE ANSWERS

MARKS: 150

This memorandum consists of 28 pages.

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent Accuracy applies in all aspects of the marking memorandum.

1.1.1	x(x+1) = 6			
1.1.1	$x^2 + x = 6$		Note: Answers by inspection:	Z 44 1 1 C 44
	$x^{2} + x - 6 = 0$ $(x+3)(x-2) = 0$		award 3/3 marks	✓ standard form ✓ factors ✓ answers
	$x = -3 \text{ or } 2$ \mathbf{OR} $x^2 + x - 6 = 0$		Note: Answer only of $x = 2$: award 1/3 marks	(3) ✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $= \frac{-1 \pm \sqrt{1^2 - 4(1)(-2(1))}}{2(1)}$	6)	Note: If candidate converts equation to linear: award 0/3 marks	✓ substitution into correct formula ✓ answers
	x = -3 or 2			(3)
1.1.2	$3x^2 - 4x = 8$ $3x^2 - 4x - 8 = 0$			✓ standard form
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$		Note: If candidate uses incorrect formula: maximum 1/4 marks (for standard form)	✓ substitution into
	$= \frac{-(-4) \pm \sqrt{(-4)^2}}{2(3)}$ $= \frac{4 \pm \sqrt{16 + 96}}{6}$	Note: Penalise 1 mark for inaccurate	Note: If an error in subs and $4 + \sqrt{80}$	correct formula
	$=\frac{4\pm\sqrt{112}}{6}$ $=\frac{2\pm2\sqrt{7}}{3}$	rounding off to ANY number of decimal places if	gets: $\frac{4 \pm \sqrt{-80}}{6}$ and states "no solution": maximum 3/4 marks	$\checkmark \sqrt{112}$ $\checkmark \frac{4 \pm \sqrt{112}}{6} \text{ or }$
	= 2,43 or -1,10	candidate gives decimal answers.	If doesn't conclude with "no solution": maximum 2/4 marks	decimal answer (4)

3

OR

$$3x^{2} - 4x = 8$$

$$3x^{2} - 4x - 8 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-(-4) \pm \sqrt{(-4)^{2} - 4(3)(-8)}}{2(3)}$$

$$= 2,43 \text{ or } -1,10$$

Note: Penalise 1 mark for inaccurate rounding off to ANY number of decimal places if candidate gives decimal answers

- ✓ standard form
- ✓ substitution into correct formula
- ✓ answer
- √ answer

(4)

(4)

1.1.3

$$4x^2 + 1 \ge 5x$$

$$4x^2 - 5x + 1 \ge 0$$
$$(4x - 1)(x - 1) \ge 0$$

$$x \le \frac{1}{4}$$
 or $x \ge 1$ **OR** $\left(-\infty; \frac{1}{4}\right] \cup \left[1; \infty\right)$

✓ both critical values of $\frac{1}{4}$ and 1

√ factors

- \checkmark or \mathbf{OR} \cup
- √ answer

OR

OR

Note: If candidate gives either of these correct graphical solutions but writes down the incorrect intervals or uses AND: max 3/4 marks

NOTES:

If a candidate gives an answer of $1 \le x \le \frac{1}{4}$ then max 3/4 marks.

If a candidate gives an answer of $\frac{1}{4} \le x \le 1$ then max 2/4 marks.

If a candidate gives an answer of $x \le \frac{1}{4}$ and $x \ge 1$ then max 3/4 marks.

If the candidate leaves out the equality of the notation then penalty of 1 mark.

If a candidate gives an answer of $x \le \frac{1}{4}$; $x \ge 1$ then max 3/4 marks.

If candidate gives $x \ge \frac{1}{4}$ and/or $x \ge 1$, BREAKDOWN: max 2/4 marks.

If candidate gives: award 3/4 marks

$$\frac{+}{\frac{1}{4}}$$
 $\frac{0}{1}$ $\frac{-}{1}$ $\frac{1}{4}$

Mathematics/PI DBE/November 2011 NSC $x^2 + 5xy + 6y^2 = 0$ 1.2.1 √ factors Note: (x+3y)(x+2y)=0x = -3y OR x = -2y If a candidate gives $<math display="block">x = -3y OR x = -2y -\frac{x}{y} = 3 or -\frac{x}{y} = 2$ <math display="block">x = -2y award 2/3 marksIf a candidate gives x + 3y = 0 $\frac{x}{v} = -3$ √ √ answers (3)OR Let $k = \frac{x}{v}$ $x^2 + 5xy + 6y^2 = 0$ $\left(\frac{x}{v}\right)^2 + 5\left(\frac{x}{v}\right) + 6 = 0$ √ factors $k^2 + 5k + 6 = 0$ (k+3)(k+2) = 0k = -3 or k = -2✓ ✓ answers $\frac{x}{v} = -3$ or $\frac{x}{v} = -2$ (3)OR $x^2 + 5xy + 6y^2 = 0$ $x = \frac{-5y \pm \sqrt{(5y)^2 - 4(1)(6y^2)}}{2(1)}$ $x = \frac{-5y \pm \sqrt{y^2}}{2}$ ✓ substitutes correctly into correct formula $x = \frac{-5y \pm y}{2}$ $x = -3y \qquad \qquad x = -2y$ $\frac{x}{v} = -3$ or $\frac{x}{v} = -2$ √ √ answers (3) OR $x^2 + 5xy + 6y^2 = 0$ $x^{2} + 5xy + \left(\frac{5}{2}y\right)^{2} = -6y^{2} + \left(\frac{5}{2}y\right)^{2}$

$$\left(x + \frac{5}{2}y\right)^2 = \frac{1}{4}y^2$$

$$x + \frac{5}{2}y = \pm \frac{1}{2}y$$

$$x = -\frac{5}{2}y \pm \frac{1}{2}y$$

✓ completing the square

Mathemati		5 SC -	DBE/November 20)11
	$x = -3y \qquad x = -2y$	SC -	✓✓ answers	
	$\frac{x}{y} = -3$ or $\frac{x}{y} = -2$			(2)
	$\frac{1}{y} = -3$ $\frac{1}{y} = -2$		ı	(3)
	OR			
	Let $k = \frac{x}{x}$			
	Let $k = \frac{y}{y}$			
	x = ky			
	$x^2 + 5xy + 6y^2 = 0$			
	$(ky)^2 + 5y(ky) + 6y^2 = 0$			
	$k^2 y^2 + 5y^2 k + 6y^2 = 0$			
	$y^{2}(k^{2}+5k+6)=0$			
	$ (k^2 + 5k + 6) = 0 $		✓ factors	
	,			
	(k+3)(k+2) = 0 k = -3 or $k = -2$			
			√√ answers	
	$\frac{x}{y} = -3$ or $\frac{x}{y} = -2$			(3)
	Note: $(x,y) = (0,0)$ is also a solution,	but in this case $\frac{x}{-}$ is undefined		
	OR	У		
	I at 11 1		✓ factors	
	Let $y = 1$, $x^2 + 5x + 6 = 0$		v factors	
	x + 5x + 6 = 0 $(x+2)(x+3) = 0$			
	(x+2)(x+3) = 0 x = -2 or $x = -3$		√√ answers	
				(3)
	$\frac{x}{y} = -2$ or $\frac{x}{y} = -3$			
1.2.2	$y \qquad y \qquad \qquad x + y = 8 \qquad \qquad x + y = 8$		✓ substitution	
	-3y + y = 8 -2y + y = 8		x = -3y	
	$-2y = 8 \qquad OR \qquad -y = 8$		✓ subs $x = -2y$	
	$y = -4 \qquad \qquad y = -8$		✓✓ y values	
	x = 12 x = 16		✓ both x values	
			correct	
				(5)
	OR		*	
	8 - y = 3 OP $8 - y = 3$	-	$\checkmark x = 8 - y$	
	$\frac{8-y}{y} = -3$ OR $\frac{8-y}{y} = -2$ 8-y = -3y $8-y = -2y$		✓ substitution	
			$\checkmark \checkmark y$ values	
	8 = -2y 8 = -y		✓ both correct <i>x</i>	
	y = -4 y = -8		values	(5)
	$x = 12 \qquad x = 16$			(5)
Copyright	recerved			

ities/PI	6' NSC —	DBE/November 2011
OR $x + y = 8$ $y = 8 - x$ $\frac{x}{8 - x} = -3 \text{OR}$ $x = -3(8 - x)$ $x = -24 + 3x$ $-2x = -24$ $x = 12$ $y = -4$	$\frac{x}{8-x} = -2$ $x = -2(8-x)$ $x = -16 + 2x$	✓ $y = 8 - x$ ✓ substitution ✓ x values correct ✓ both y values correct
OR		(5)
(x+2y)(x+3y) = 0 $x+y=8$ $x = 8 - y$ $(y+8)(2y+8) = 0$ $y = -8 or y = -4$ $x = 16$ $x = 12$		✓ $x = 8 - y$ ✓ substitution ✓ y values correct ✓ both x values correct
OR $x = 8 - y$		✓ $x = 8 - y$ ✓ substitution

	$\checkmark x = 8 - y$	
$x = 8 - y$ $(8 - y)^{2} + 5(8 - y)y + 6y^{2} = 0$ $64 - 16y + y^{2} + 40y - 5y^{2} + 6y^{2} = 0$ $2y^{2} + 24y + 64 = 0$	✓ substitution ✓ factors ✓ both y values correct	
$y^2 + 12y + 32 = 0$	\checkmark both x values	
(y+8)(y+4)=0	correct	
y = -8 or $y = -4$		(5)
$x = 16 \qquad \qquad x = 12$		
	l .	

OR

NSC - Memorandum

OR

$$x = 8 - y$$

$$(8-y)^2 + 5(8-y)y + 6y^2 = 0$$

$$64 - 16y + y^2 + 40y - 5y^2 + 6y^2 = 0$$

$$2v^2 + 24v + 64 = 0$$

$$v^2 + 12v + 32 = 0$$

$$y = \frac{-12 \pm \sqrt{12^2 - 4(1)(32)}}{2(1)}$$

$$=\frac{-12\pm\sqrt{16}}{2}$$

$$y = -8$$
 or $y = -4$

$$x = 16$$
 $x = 12$

Note:

If a candidate uses the formula and replaces x for y and then answers are swapped:

maximum 4/5 marks

 $\checkmark x = 8 - y$

✓ substitution

✓ substitutes into correct formula

 \checkmark both y values correct

 \checkmark both x values correct

(5)

OR

$$y = 8 - x$$

$$x^{2} + 5x(8 - x) + 6(8 - x)^{2} = 0$$

$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$

$$2x^2 - 56x + 384 = 0$$

$$x^2 - 28x + 192 = 0$$

$$(x-16)(x-12) = 0$$

$$x = 12$$

$$y = -4$$
or
$$x = 16$$

$$y = -8$$

$$y = -4 \qquad y = -8$$

OR

$$y = 8 - x$$

$$x^{2} + 5x(8 - x) + 6(8 - x)^{2} = 0$$
$$x^{2} + 40x - 5x^{2} + 6(64 - 16x + x^{2}) = 0$$
$$2x^{2} - 56x + 384 = 0$$

$$x^2 - 28x + 192 = 0$$

$$x = \frac{-(-28) \pm \sqrt{(-28)^2 - 4(1)(192)}}{2(1)}$$
$$= \frac{28 \pm \sqrt{416}}{2}$$

$$x = 12$$
 $x = 16$
 $y = -4$ or $y = -8$

$$y = -4$$
 or $y = -8$

$$\checkmark y = 8 - x$$

 \checkmark both x values correct

 \checkmark both y values correct

(5)

$$\checkmark v = 8 - x$$

✓ substitution

✓ substitutes into correct formula

 \checkmark both x values

correct

✓ both correct y values

(5)

[19]

x - 4 = 32 - x2x = 36x = 18

> OR a = 4a + 2d = 322d = 28d = 14x = 14 + 4x = 18

 $x = \frac{4+32}{2} = 18$

OR

Note:

Note:

If only $x = \sqrt{128}$ then

penalty 1 mark

If answer only: award 2/2 marks

Note: If candidate writes 32-x only (i.e. omits equality): 0/2 marks

 $\checkmark T_2 - T_1 = T_3 - T_2$

✓ answer (2)

 $\checkmark a + 2d = 32 \text{ and } a = 4$

✓ answer

(2)

✓ substitutes correctly into arithmetic mean formula i.e. $\frac{4+32}{2}$

√ answers

(2)

2.1.2 $x^2 = 128$ $x = \pm \sqrt{128}$ $x = \pm 8\sqrt{2}$ OR $x = \pm 11{,}31$ OR $x = \pm 2^{\frac{1}{2}}$

Note: If candidate writes $\frac{x}{4}$ $\frac{32}{x}$ only (i.e. omits equality): 0/2 marks

 $\checkmark \frac{T_2}{T_1} = \frac{T_3}{T_2}$ $\checkmark x^2 = 128$

✓ both answers (surd or decimal or exponential form)

(3)

 $ar^2 = 4\left(\frac{x}{4}\right)^2$

OR

a = 4

 $32 = 4\left(\frac{x}{4}\right)^2$ $x^2 = 128$

 $x = \pm \sqrt{128}$

 $x = \pm 8\sqrt{2}$ or $x = \pm 11.31$ or $x = \pm 2^{\frac{7}{2}}$

 $\checkmark 32 = 4\left(\frac{x}{4}\right)^2$

✓ both answers (surd or decimal or exponential form)

(3)

OR $x = \pm \sqrt{4 \times 32}$

 $x = \pm \sqrt{128}$ or $x = \pm 8\sqrt{2}$ or $x = \pm 11.31$ or $x = \pm 2^{\frac{7}{2}}$

✓✓ substitutes correctly into geometric mean formula i.e. $\pm \sqrt{4 \times 32}$ ✓ both answers (surd or decimal or exponential form) / (3)

Please turn over

2.2	$P = \sum_{k=1}^{13} 3^{k-5}$ $= 3^{1-5} + 3^{2-5} + 3^{3-5} + \dots + 3^{13-5}$ $= 3^{-4} + 3^{-3} + 3^{-2} + \dots + 3^{8}$ $= \frac{3^{-4} (3^{13} - 1)}{3 - 1}$ $= 9841,49 \text{or} 9841 \frac{40}{81} \text{or} \frac{797}{8}$	Note: Correct answer only: 1/4 marks only	✓ $a = 3^{-4}$ or $\frac{1}{81}$ ✓ $r = 3$ ✓ subs into correct formula ✓ answer
	OR $P = \sum_{k=1}^{13} 3^{k-5}$ $= 3^{1-5} + 3^{2-5} + 3^{3-5} + \dots + 3^{13-5}$ $= 3^{-4} + 3^{-3} + 3^{-2} + \dots + 3^{8}$ $= \frac{1}{81} + \frac{1}{27} + \frac{1}{9} + \dots + 6561$	Note: If the candidate rounds off and gets 9841,46 (i.e. correct to one decimal place): DO NOT penalise for the rounding off.	(4) ✓✓ expand the sum ✓ 13 terms in expansion ✓ answer (4)
2.3	$= 9841,49 \text{ or } 9841\frac{40}{81} \text{ or } \frac{797}{8}$ $= 9841,49 \text{ or } 9841\frac{40}{81} \text{ or } \frac{797}{8}$ $S_n = a + [a+d] + [a+2d] + \dots + [a+(n-2)d] + \dots$ $2S_n = [a+(n-1)d] + [a+(n-2)d] + \dots$ $2S_n = [2a+(n-1)d] + [2a+(n-1)d] + \dots$ $= n[2a+(n-1)d]$ $S_n = \frac{n}{2}[2a+(n-1)d]$	+[a+d]+a	✓ writing out S_n ✓ "reversing" S_n ✓ expressing $2S_n$ ✓ grouping to get $2S_n = n[2a + (n-1)d]$ (4)
	OR $S_{n} = a + [a + d] + [a + 2d] + \dots + (T_{n} + 2d) + \dots + [a + d] + a$ $S_{n} = T_{n} + (T_{n} - d) + \dots + [a + d] + a$ $2S_{n} = a + T_{n} + a + T_{n} + a + T_{n} + \dots + a$ $= n[a + a + (n - 1)d]$ $= [2a + (n - 1)d]$ $S_{n} = \frac{n}{2}[2a + (n - 1)d]$	<i>"</i>	✓ writing out S_n ✓ "reversing" S_n ✓ expressing $2S_n$ ✓ grouping to get $2S_n = n[a + a + (n-1)d]$ (4)
	Note: If a candidate uses a specific l	inear sequence, then NO marks.	[13]

2.1	21. 24		(21	
3.1	21; 24	didate writes $T_8 = 21$ 24: award 1/2 marks	✓ 21 ✓ 24	(2)
3.2	$T_{2k} = 3.2^{k-1}$ and so $T_{52} = 3.2^{26-1} = 100663296$ $T_{2k-1} = 3 + 6(k-1) = 6k - 3$ and so $T_{51} = 6(26) - 3 = 153$ $T_{52} - T_{51} = 100663296 - 153$ $= 100663143$ OR $Consider sequence P: 3; 6; 12$ $P = 3.2^{n-1}$	Note: If candidate writes out all 52 terms and gets correct answer: award 5/5 marks Note: If candidate used $k = 52$: max 2/5	$\checkmark 3.2^{k-1}$ $\checkmark T_{52}$ $\checkmark 6k - 3$ $\checkmark T_{51}$ $\checkmark \text{ answer}$ $\checkmark P_n = 3.2^{n-1}$	(5)
	$P_n = 3.2^{n-1}$ $P_{26} = 3.2^{26-1} = 100663296$ Consider sequence Q: 3; 9; 15 $Q_n = 6n - 3$ $Q_{26} = 6(26) - 3 = 153$ $T_{52} - T_{51} = P_{26} - Q_{26}$ $= 100663296 - 153$ $= 100663143$	interchanges order i.e. does $T_{51} - T_{52}$: max 4/5 marks Note: writes out all 52 terms and subtracts $T_{51} - T_{52}$: max 4/5 marks	$✓ P_{26}$ $✓ Q_n = 6n - 3$ $✓ Q_{26}$ $✓ answer$	(5)

NSC

3.3 For all $n \in \mathbb{N}$, n = 2k or n = 2k - 1 for some $k \in \mathbb{N}$

If n = 2k:

$$T_n = T_{2k} = 3.2^{k-1}$$

If n = 2k - 1:

$$T_n = T_{2k-1}$$
$$= 6k - 3$$

$$=3(2k-1)$$

In either case, T_n has a factor of 3, so is divisible by 3.

Note:

If a candidate only illustrates divisibility by 3 with a specific finite part of the sequence, not the general term: 0/2 marks

 \checkmark factors 3.2^{k-1}

 \checkmark factors 3(2k-1)

(2)

OR

$$P_n = 3.2^{n-1}$$

Which is a multiple of 3

$$Q_n = 6n - 3$$
$$= 3(2n - 1)$$

Which is also a multiple of 3

Since $T_n = Q_{2k-1}$ or $T_n = P_{2k}$ for all $n \in \mathbb{N}$, T_n is always divisible by 3

OR

The odd terms are odd multiples of 3 and the even terms are 3 times a power of 2. This means that all the terms are multiples of 3 and are therefore divisible by 3.

✓ factors 3.2^{n-1}

✓ factors 3(2n-1) (2)

✓ odd multiples of 3 ✓ 3 times a power of 2

(2)

First differences are: -7; T_4+6 ; $-14-T_4$ So $T_4 + 6 + 7 = -14 - 2T_4 - 6$.

$$T_4 = -11$$

OR

 T_2

$$d = -11 + 6 + 7 = 2$$
 or $-14 + 22 - 6 = 2$

$$-14 + 22 - 6 = 2$$

 T_4

The second, third, fourth and fifth terms are $1; -6; T_4$ and -14

NSC-

Note: Answer only (i.e. d = 2) with no working: 3 marks

Note: Candidate gives $T_4 = -11$ and d = 2 only: award 5/5 marks

 T_5

-14

√ - 7

$$\checkmark T_4 + 6$$

$$\sqrt{-14-T_4}$$

✓ setting up equation

$$T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$$

✓ answer

(5)

$$\sqrt{-7+d}$$

$$\sqrt{-7 + 2d}$$

✓ setting up equation

$$T_5 - T_2 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_2)$$

✓ answer

(5)

-15 = (-7 + 2d) + (-7 + d) + -7-15 = -21 + 3d

 $T_5 - T_7 = (T_5 - T_4) + (T_4 - T_3) + (T_3 - T_7)$

$$6 = 3d$$

$$d = 2$$

OR

$$4a + 2b + c = 1$$

$$9a + 3b + c = -6$$

$$5a + b = -7$$

$$25a + 5b + c = -14$$

$$16a + 2b = -8$$

$$10a + 2b = -14$$

$$6a = 6$$

$$a = 1$$

$$d = 2a = 2$$

OR

$$T_1$$
 T_2 T_4 T_4

$$T_4 + 13 = -20 - 2T_4$$

$$3T_4 = -33$$

$$T_{A} = -11$$

$$d = -11 + 13$$

$$d = 2$$

Note: Candidate uses trial and error and shows this: award 5/5 marks

 $\checkmark 4a + 2b + c = 1$

 $\checkmark 9a + 3b + c = -6$

$$\checkmark 25a + 5b + c = -14$$

✓ solved simultaneously

√ answer

(5)

$$\checkmark T_4 + 6$$

$$\checkmark -14 - T_4$$

✓ setting up equation

✓ answer

(5)

Copyright reserved

/Please/turn over

NSC-

$$\begin{array}{l}
\checkmark \ y + 6 \\
\checkmark \ -14 - y
\end{array}$$

$$y+13 = -20 - 2y$$
$$3y = -33$$
$$y = -11$$

✓ setting up equation ✓ answer

Second difference = y + 13 = -11 + 13 = 2

(5)

4.2 T_1

Note: Answer only: award 2/2 marks

✓ method

$$T_1 = 10$$

✓ $T_1 = 10$

(2)

OR

$$a = 1$$

$$5a + b = -7$$

$$5(1) + b = -7$$

$$b = -12$$

$$a+b+c=1$$

$$4(1) + 2(-12) + c = 1$$

$$c = 21$$

$$T_n = n^2 - 12n + 21$$

$$T_1 = (1)^2 - 12(1) + 21$$
$$= 10$$

Note:

If incorrect d in 4.1, 2/2 CA marks for $T_1 = d + 8$ (since $1 - T_1 = -7 - d$)

✓ method

✓
$$T_1 = 10$$

(2)

OR

$$T_4 + 13 = -8 + T_1$$
 $y + 13 = -8 + x$
 $-11 + 13 = -8 + T_1$ **OR** $-11 + 13 = -8 + x$
 $T_1 = 10$ $x = 10$

✓ method

✓
$$T_1 = 10$$

(2) [7] 14

5.1.1	y = f(0)		
5.1.2	$= \frac{-6}{0-3} - 1$ = 1 (0; 1) OR $x = 0$ and $y = 1$ $0 = \frac{-6}{x-3} - 1$ $1 = \frac{-6}{x-3}$ $x - 3 = -6$	Note: Mark 5.1.1 and 5.1.2 as a single question. If the intercepts are interchanged: max 3/5 marks	$\checkmark y = 1$ $\checkmark x = 0$ $\checkmark y = 0$ $\checkmark x - 3 = -6$ (2)
	$ \begin{aligned} x &= -3 \\ (-3 ; 0) \end{aligned} $		✓ answer (3)
5.1.3	$(-3; 0) \qquad (0; 1) \qquad 0 \qquad 3$ $y = -1 \qquad -1$	Note: The graph must tend towards the asymptotes in order to be awarded the shape mark	✓ shape ✓ both intercepts correct ✓ horizontal asymptote ✓ vertical asymptote (4)
	x = 3	draw of th	indidate who sonly one 'arm' e hyperbola loses' shape' mark i.e.
5.1.4	1 1 1 -	and $x < 3$ Note: if candidate writes $x < 3$ only: $1/2$ marks	✓-3 and 3 ✓inequality OR interval notation (2)

	NSC	
5.1.5	$y = \frac{-6}{-2-3} - 1$ $= \frac{1}{5}$ $m = \frac{1 - \frac{1}{5}}{0 - (-2)}$ $= \frac{2}{5}$	$\checkmark \frac{1}{5}$ ✓ formula ✓ substitution ✓ answer (4)
	OR $m = \frac{f(0) - f(-2)}{0 - (-2)}$ $= \frac{1 - \frac{1}{5}}{0 + 2}$ $= \frac{2}{5}$	✓ formula ✓ $f(-2) = \frac{1}{5}$ ✓ substitution ✓ answer (4)
5.2	$x = -\frac{b}{2a} < 0 \text{ since } b < 0 \text{ and } a < 0$	✓ y-intercept negative ✓ turning point on the x axis ✓ turning point on the left of the y axis ✓ maximum TP and quadratic shape (4) [19]

NSC

6.1	$0 = 2^{x} - 8$ $8 = 2^{x}$ $2^{3} = 2^{x}$ $x = 3$ $A(3; 0)$ $f(0) = 2^{0} - 8$ $= 1 - 8$ $= -7$ $B(0; -7)$ Note: no CA marks	
6.3	$h(x) = f(2x) + 8$ $= (2^{2x} - 8) + 8$ $= 4^{x} \text{ or } 2^{2x}$ Note: answer only: award 2/2 marks	(1) $\checkmark (2^{2x} - 8)$ $\checkmark \text{ answer of}$ $h(x) = 4^x \text{ or } 2^{2x}$ (2)
6.4	$x = 4^{y}$ OR $y = \log_{4} x$ $2y = \log_{2} x$ $y = \frac{1}{2}\log_{2} x$ OR $y = \log_{2} \sqrt{x}$ Note: answer only award 2/2 marks OR $y = \frac{\log x}{\log 4}$ Note: candidate works out f^{-1} and gets $y = \log_{2}(x + 8)$ award 1/2 marks	witch x and y answer in the form $y =$ (2)
6.5	$p(x) = -\log_4 x \qquad \mathbf{OR} \qquad p(x) = \log_{\frac{1}{4}} x$ \mathbf{OR} $p(x) = \log_4 \frac{1}{x} \qquad \mathbf{OR} \qquad p(x) = -\frac{1}{2} \log_2 x$ \mathbf{OR} $y = -\log_2 \sqrt{x}$	✓answer (1)

NSC -

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$
= $g(0) + g(1) + g(2) + g(3) - g(4) - g(5)$
 $x = 3$ is the axis of symmetry of g

∴ by symmetry

$$g(2) = g(4)$$
 and $g(1) = g(5)$

Answer = g(0) + g(3)=4.5+0=4.5

$$\checkmark = g(0) + g(1) + g(2) + g(3) - g(4) - g(5)$$

 $\checkmark g(2) = g(4) \text{ and } g(1) = g(5)$

 $\sqrt{g(0) + g(3)}$

√ expansion

✓ answer

(4)

OR

$$\sum_{k=0}^{3} g(k) - \sum_{k=0}^{5} g(k)$$

$$\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$$

$$\sum_{k=4}^{5} g(k) = g(4) + g(5)$$

x = 3 is the axis of symmetry of g

∴ by symmetry

$$g(4) = g(2)$$

$$g(5) = g(1)$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$=g(0)+g(3)$$

$$=4,5+0$$

=4.5

 $\checkmark g(2) = g(4) \text{ and } g(1) = g(5)$

✓ answer

(4)

OR

$$g(x) = a(x-3)^2 + 0$$

$$4.5 = a(0-3)^2 + 0$$

$$4.5 = 9a$$

$$a = \frac{1}{2}$$

$$g(x) = \frac{1}{2} \left(x - 3 \right)^2$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$\sum_{k=0}^{3} g(k) = g(0) + g(1) + g(2) + g(3)$$
$$= 4.5 + 2 + 0.5 + 0$$

 $\checkmark g(x) = \frac{1}{2}(x-3)^2$

✓ expansion

Copyright reserved

NSC-

$$\sum_{k=4}^{5} g(k) = g(4) + g(5)$$

$$= 0.5 + 2$$

$$= 2.5$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k)$$

$$= 7 - 2.5$$

$$= 4.5$$

OR
$$g(x) = ax^{2} + bx + c$$

$$g(k) = ak^{2} + bk + c$$

$$g(0) = c$$

$$g(1) = a + b + c$$

$$g(2) = 4a + 2b + c$$

$$g(3) = 9a + 3b + c$$

$$\sum_{k=0}^{3} g(k) = 14a + 6b + 4c$$

$$g(5) = 25a + 9b + c$$

$$\sum_{k=4}^{5} g(k) = 41a + 9b + 2c$$

$$k = 4$$

$$g(x) = a(x - 3)^{2} + 0$$

$$4,5 = a(0 - 3)^{2} + 0$$

$$4,5 = 9a$$

$$a = \frac{1}{2}$$

$$g(x) = \frac{1}{2}(x - 3)^{2}$$

$$= \frac{1}{2}x^{2} - 3x + \frac{9}{2}$$

$$\sum_{k=0}^{3} g(k) - \sum_{k=4}^{5} g(k) = -27a - 3b + 2c$$

$$= -27(\frac{1}{2}) - 3(-3) + 2(\frac{9}{2})$$

=4.5

 $\sqrt{7-2.5}$

√ answer

(4)

 $\checkmark \checkmark -27a-3b+2c$

 $\checkmark g(x) = \frac{1}{2}(x-3)^2$

✓ answer

(4)

[14]

NSC -

7.1	$A = P(1-i)^{n}$ $\frac{P}{2} = P(1-0.07)^{n}$ $\frac{1}{2} = 0.93^{n}$ $\log \frac{1}{2} = n \log 0.93$ $n = \frac{\log \frac{1}{2}}{\log 0.93}$ $= 9.55 \text{ years}$ OR	$A = P(1-i)^n$ $\frac{P}{2} = P(1-0.07)^n$ $\frac{1}{2} = 0.93^n$ $\log_{0.93} \frac{1}{2} = n$ $n = 9.55 \text{ years}$	$ √ A = \frac{P}{2} $ ✓ subs into correct formula $ √ \log $ ✓ answer $ (4) $
	Note: If candidate interchanges A and P i.e. uses $P = \frac{A}{2}$: max 2/4 marks	Note: If candidate uses incorred formula: max 1/4 marks for $A = \frac{P}{2}$	et

NSC -

7.2	Radesh:	
	$A = P(1+in)$ = 6 000(1+0,085×5) = 8 550 $A = 6000 + 8,5\% \text{ of } 6000 \times 5$ $= 6000 + 510 \times 5$ $= 6000 + 2550$ $= 8 550$	√ 8 550
	Bonus = 0,05 × 6 000 = 300	
	Received = 8 550 + 300 = R8 850	✓ R 8 850
	Thandi: $A = P(1+i)^n$ $= 6\ 000 \left(1 + \frac{0.08}{4}\right)^{20}$	$\checkmark n = 20$ $\checkmark i = \frac{0.08}{4}$ $\checkmark \text{ answer}$
	= R8 915,68 Thandi's investment is bigger.	✓ choice made (6)
7.3		$\sqrt{i} = \frac{0.15}{\text{or}} = \frac{1}{\text{or}} = 0.0125$
	$=1000\left(1+\frac{0,15}{12}\right)^{18}+700\left(\frac{\left(1+\frac{0,15}{12}\right)^{18}-1}{\frac{0,15}{12}}\right)$	$ √ i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125 $ $ √ n = 18 $ $ √ n = 18 $ $ √ 1000 \left(1 + \frac{0.15}{12}\right)^{18} $
	= 1 250,58 + 14 032,33 = R15 282,91	$\checkmark 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{18} - 1}{\frac{0,15}{12}} \right)$
	OR	✓ answer (6)
	F_{ν} = initial deposit with interest + annuity	$\sqrt{i} = 0.15$ or 0.0125
	$= 1000 \left(1 + \frac{0.15}{12}\right)^{18} + 700 \left(\frac{1 - \left(1 + \frac{0.15}{12}\right)^{-18}}{\frac{0.15}{12}}\right) \left(1 + \frac{0.15}{12}\right)^{18}$	$ \sqrt{n} = \frac{12}{12} \text{ of } \frac{1}{80} \text{ of } 0,0123 $ $ \sqrt{n} = 18 $ $ \sqrt{n} = 18 $ $ \sqrt{1000} \left(1 + \frac{0,15}{1000}\right)^{18} $
		$700 \frac{1 - \left(1 - \frac{0.15}{12}\right)^{-18}}{\frac{0.15}{12}} \left(1 + \frac{0.15}{12}\right)^{18}$
	= 1 250,58 + 14 032,33 = R15 282,91	$\begin{array}{c c} & \frac{3.15}{12} & 12 \end{array}$ $\begin{array}{c} \checkmark \text{ answer} \\ \checkmark & (6) \end{array}$

NSC-

OR

$$F_{v} = 300 \left(1 + \frac{0,15}{12} \right)^{18} + 700 \left(\frac{\left(1 + \frac{0,15}{12} \right)^{19} - 1}{\frac{0,15}{12}} \right)$$
$$= 375,17 + 14907,74$$

$$\checkmark i = \frac{0.15}{12} \text{ or } \frac{1}{80} \text{ or } 0.0125$$

 $\checkmark n = 19$ (corresponding

 \checkmark n = 18 (corresponding

$$\checkmark 300 \left(1 + \frac{0,15}{12}\right)^{18}$$

$$\checkmark 700 \left(\frac{\left(1 + \frac{0,15}{12}\right)^{19} - 1}{\frac{0,15}{12}} \right)$$

(6) [16]

(5)

QUESTION 8

8.1

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{-4(x+h)^2 - (-4x^2)}{h}$$

$$= \lim_{h \to 0} \frac{-4(x^2 + 2xh + h^2) + 4x^2}{h}$$

$$= \lim_{h \to 0} \frac{-4x^2 - 8xh - 4h^2 + 4x^2}{h}$$

$$= \lim_{h \to 0} \frac{-8xh - 4h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$$

$$= \lim_{h \to 0} (-8x - 4h)$$

$$= -8x$$

Note:

Incorrect notation:

no lim written: penalty 2 marks

lim written before equals sign: penalty 1 mark

√ formula

√ substitution

√ expansion

Note:

Note:

 $h \rightarrow 0$ NO penalty

A candidate who gives -8x only: 0/5 marks

A candidate who omits

brackets in the line $\lim (-8x-4h)$:

 $\checkmark -8x-4h$

✓ answer

OR

Mathematics/	PI NS	22 C –	DBE/November 2011
	$f(x) = -4x^2$ $f(x+h) = -4(x+h)^2$		✓ substitution
	$= -4x^2 - 8xh - 4h^2$		✓ expansion
j	$f(x+h) - f(x) = -8xh - 4h^{2}$ $f'(x) = \lim_{h \to 0} \frac{-8xh - 4h^{2}}{h}$		✓ formula
	$= \lim_{h \to 0} \frac{h(-8x - 4h)}{h}$ $= \lim_{h \to 0} (-8x - 4h)$		$\sqrt{-8x-4h}$
	=-8x		✓ answer (5)
8.2.1	$y = \frac{3}{2x} - \frac{x^2}{2}$ $= \frac{3}{2}x^{-1} - \frac{1}{2}x^2$		
-	$\frac{dy}{dx} = -\frac{3}{2}x^{-2} - x$		$\checkmark \frac{3}{2}x^{-1}$ $\checkmark -\frac{3}{2}x^{-2}$
	$=-\frac{3}{2x^2}-x$	Note: Incorrect notation in 8.2.1 and/or 8.2.2:	$\checkmark -x$ (3)
8.2.2	$f(x) = (7x+1)^2$	Penalise 1 mark	✓ multiplication
	$= 49x^2 + 14x + 1$ $f'(x) = 98x + 14$		✓ 98 <i>x</i>
1.	f'(1) = 98(1) + 14		√ 14
	=112		✓ answer (4)
	OR		
	$f(x) = (7x + 1)^{2}$ $f'(x) = 2(7x + 1)(7)$ By the chain ru $f'(x) = 98x + 14$ $f'(1) = 98(1) + 14$ $= 112$	ile	✓✓ chain rule ✓✓ answer
			[12]

9.1	$f(x) = -2x^3 + ax^2 + bx + c$
	$f'(x) = -6x^2 + 2ax + b$
	=-6(x-5)(x-2)
	$= -6(x^2 - 7x + 10)$
	$= -6x^2 + 42x - 60$
	2a = 42
	a=21

b = -60

A candidate who substitutes the values of a, b and c and then checks (by substitution) that T(2;-9) and S(5;18) lie on the curve: award max 2/7 marks

$$\checkmark f'(x) = -6x^2 + 2ax + b$$

$$\checkmark \checkmark -6(x-5)(x-2)$$

$$\checkmark$$
 b= −60 \checkmark 2*a* = 42

✓ subs (5; 18) or (2; -9)
✓
$$c = 43$$
 (7)

$$f(5) = -2(5)^{3} + 21(5)^{2} - 60(5) + c f(2) = -2(2)^{3} + 21(2)^{2} - 60(2) + c$$

$$18 = -25 + c OR -9 = -52 + c$$

$$c = 43 c = 43$$

Note:

A candidate who substitutes the values of a, b and c into the function i.e. gets $f(x) = -2x^3 - 21x^2 - 60x + 43$ and then shows by substitution that T(2; -9) and S(5;18) are on the curve **and** works out the derivative i.e. gets $f'(x) = -6x^2 - 42x - 60$ **and** shows (by substitution into the derivative) that the turning points are et x = 2

substitution into the derivative) that the turning points are at x = 2 and x = 5 (assuming what s/he sets out to prove and proving what is given): **award max 4/7 marks** as follows:

✓ x = 2 from f'(x) = 0 OR subs x = 2 into the derivative and gets 0 ✓ x = 5 from f'(x) = 0 OR subs x = 5 into the derivative and gets 0 ✓ substitution of x = 2 in f and gets -9

✓ substitution of x = 2 in f and gets -9✓ substitution of x = 5 in f and gets 18

Note:

If derivative equal to

zero is not written: penalize once only

OR

 $f'(x) = -6x^{2} + 2ax + b$ $f'(2) = -6(2)^{2} + 2a(2) + b$ 0 = -24 + 4a + b

a = 21; b = -60; c = 43

 $f'(5) = -6(5)^{2} + 2a(5) + b$ 0 = -150 + 10a + b

0 = -150 + 10a + (24 - 4a)

0 = -126 + 6a

b = 24 - 4a

6a = 126

a = 21

b = -60

 $f(5) = -2(5)^{3} + 21(5)^{2} - 60(5) + c f(2) = -2(2)^{3} + 21(2)^{2} - 60(2) + c$ 18 = -25 + c OR -9 = -52 + c c = 43 c = 43 a = 21 ; b = -60 ; c = 43

 $\checkmark f'(x) = -6x^2 + 2ax + b$ $\checkmark f'(2) = 0$

 $\checkmark f'(5) = 0$

 $\checkmark 6a = 126$

 $\checkmark b = -60$

✓ subs (5; 18) or (2; -9)

✓ c = 43

(7)

NSC -

	NSC -	
	OR	
	f(2) = -9 i.e. $-16 + 4a + 2b + c = -94a + 2b + c = 7f(5) = 18$ i.e. $-250 + 25a + 5b + c = 18$	$\sqrt{-16 + 4a + 2b + c} = -9$ and $-250 + 25a + 5b + c = 18$
	$25a + 5b + c = 268$ $21a + 3b = 261$ $f'(x) = -6x^{2} + 2ax + b \text{ and } f'(2) = 0 \text{OR} f'(5) = 0$	$f'(x) = -6x^2 + 2ax + b$ f'(2) = 0 or f'(5) = 0
	4a + b = 24 $10a + b = 150$	
	12a+3b = 72 30a+3b = 450 $9a = 189 9a = 189$	✓ 9 <i>a</i> = 189
	$a = \frac{189}{9}$ OR $a = \frac{189}{9}$	3 u 103
	a = 21 a = 21	
	12(21) + 3b = 72	
	3b = -180 $b = -60$	✓ b = -60
	4a + 2b + c = 7 $25a + 5b + c = 268$ $4(21) + 2(-60) + c = 7$ OR $25(21) + 5(-60) + c = 268$	✓ subs (5; 18) or (2; -9)
	c = 43 $c = 43$	$\checkmark c = 43 \tag{7}$
9.2	$f'(x) = -6x^{2} + 42x - 60$ $m_{tan} = -6(1)^{2} + 42(1) - 60$	✓ $f'(x) = -6x^2 + 42x - 60$ ✓ subs $f'(1)$
	= -24	$\sqrt{m_{\text{tan}}} = -24$
	$f(1) = -2(1)^3 + 21(1)^2 - 60(1) + 43$ = 2	$\checkmark f(1) = 2$
	Point of contact is (1; 2)	
	y = -24x + c $y - 2 = -24(x - 1)$ $y = -24x + 26$ OR $c = 26$	$\sqrt{y-2} = -24(x-1)$ OR $y = -24x + 26$
	y = -24x + 26	(5)
9.3	$f'(x) = -6x^2 + 42x - 60$	f''(x) = -12x + 42
	f''(x) = -12x + 42 $0 = -12x + 42$	
	$x = \frac{7}{2}$	$\checkmark x = \frac{7}{2}$
	OR	$\checkmark x = \frac{7}{2}$ $\checkmark x = \frac{2+5}{2}$ (2)
L		

NSC-

x	=	2 + 5
		2

$$x = \frac{7}{2}$$

OR

$$x = \frac{-21}{3(-2)}$$
$$= \frac{7}{2}$$

$$\checkmark x = \frac{7}{2}$$

$$\checkmark x = \frac{-21}{3(-2)}$$

$$\checkmark x = \frac{7}{2}$$

(2) [14]

(2)

QUESTION 10

10.1 x-value of turning point:

$$x = \frac{-4+1}{2}$$

$$= -\frac{3}{2}$$

$$\therefore x > -\frac{3}{2} \quad \text{OR} \quad \therefore x \in \left(-\frac{3}{2}; \infty\right)$$

 $\checkmark x > -\frac{3}{2} \text{ OR} \left(-\frac{3}{2}; \infty\right)$

10.2 f has a local minimum at x = -4 because:

 $\checkmark x = -4$ $\checkmark \checkmark \text{graph}$ (3)

OR

$$f'(x) < 0$$
 for $x < -4$, so f is decreasing for $x < -4$.
 $f'(x) > 0$ for $-4 < x < 1$, so f is increasing for $-4 < x < 1$.

√ x = -4 √ f'(x) < 0 for x < -4 √ f'(x) > 0 for -4 < x < 1(3)

i.e.

 $\therefore f$ has a local minimum at x = -4

OR

OR	$\checkmark x = -4$
Gradient of f changes from negative to positive at $x = -4$	✓ gradient negative for $x < -4$ ✓ gradient positive
\mathbf{OR} $f'(-4) = 0$	for $-4 < x < 1$ (3)
f''(-4) > 0 so graph is concave up at $x = -4$, so f has a local minimum at $x = -4$.	$\checkmark f'(-4) = 0$ $\checkmark f''(-4) > 0$ $\checkmark x = -4$
	$\checkmark x = -4$
	(3)
	[4]

11.1	V(0) = 100 - 4(0)		
	= 100 litres		✓ answer
			(1)
11.2	Rate in – rate out		$\sqrt{5-k}$
	$=5-k$ l/\min		
			√ - 4
	$V'(t) = -4 l / \min$		✓ units stated once
11.3	5 - k = -4		$\checkmark 5 - k = -4 $
11.5			$\sqrt{k} = 9$
	$k = 9 l / \min$	Note:	(2)
	OB	Answer only:	
	OR	award 2/2 marks	
	Volume at any time $t = initial volume + incompared to the volume of th$	ming total – outgoing	
	total	mig total oargoing	
	100 + 5t - kt = 100 - 4t		(100 % 1, 100 4,
	5t - kt = -4t		$\begin{array}{c} \checkmark \ 100 + 5t - kt = 100 - 4t \\ \checkmark \ k = 9 \end{array}$
	9t - kt = 0		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	t(9-k)=0		
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	At 1 minute from start, $t = 1$, $9 - k = 0$,		
	so $k = 9$		
	OR		
	Since $\frac{dV}{dt} = -4$, the volume of water in the ta	$\sqrt{\sqrt{k}} = 9$	
	litres every minute. So k is greater than 5 by 4, that is, $k = 9$.		
	So wie ground and so by	(2)	
			[6]

learners than available seats. Maximum of 10 marks.

Note: If the wrong inequality $50x + 25y \le 500$ is used, candidate wrongly says that there are more

NSC -

QUESTION 12.2

