

QUAD ANALOG SWITCH/QUAD MULTIPLEXER

The MC14066B consists of four independent switches capable of controlling either digital or analog signals. This quad bilateral switch is useful in signal gating, chopper, modulator, demodulator and CMOS logic implementation.

The MC14066B is designed to be pin-for-pin compatible with the MC14016B, but has much lower ON resistance. Input voltage swings as large as the full supply voltage can be controlled via each independent control input.

- Triple Diode Protection on All Control Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Linearized Transfer Characteristics
- Low Noise 12 nV/√Cycle, f ≥ 1.0 kHz typical
- Pin-for-Pin Replacement for CD4016, CD4016, MC14016B
- For Lower RON, Use The HC4066 High-Speed CMOS Device

MAXIMUM RATINGS* (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
v_{DD}	DC Supply Voltage	~0.5 to +18.0	٧
V _{in} , V _{out}	Input or Output Voltage (DC or Transient)	-0.5 to V _{DD} +0.5	٧
l _{in}	Input Current (DC or Transient), per Control Pin	± 10	mA
I _{sw}	Switch Through Current	± 25	۰mA
P_{D}	Power Dissipation, per Package†	500	mW
T _{stg}	Storage Temperature	-65 to +150	°C
ΤL	Lead Temperature (8-Second Soldering)	260	°C

*Maximum Retings are those values beyond which damage to the device may occur.

†Temperature Derating: Plastic "P and D/DW" Packages: -7.0 mW/°C From 65°C To 125°C

Ceramic "L" Packages: -12 mW/°C From 100°C To 125°C

ELECTRICAL CHARACTERISTICS

ELECTRICAL CHARACTERIS	-	VDD		-55°C		25°C			125°C		
Characteristic	Symbol		Test Conditions	Min	Min Max Min		Typ# Max		Min	Max	Unit
UPPLY REQUIREMENTS (Voltages Referenced to V _{EE})											
Power Supply Voltage Range	V _{DD}	_		3.0	18	3.0	1	18	3.0	18	٧
Quiescent Current Per Package	I _{DD}	5.0 10 15	Control Inputs: $ \begin{array}{ll} V_{in} - V_{SS} \text{ or } V_{DD}, \\ Switch I/O: V_{SS} \leqslant V_{I/O} \\ \leqslant V_{DD}, \text{ and} \\ \Delta V_{switch} \leqslant 500 \text{ mV} \end{array} $	_ _	0.25 0.5 1.0	_ _ _	0.005 0.010 0.015	0.25 0.5 1.0	_ _ _	7.5 15 30	μΑ
Total Supply Current (Dynamic Plus Quiescent, Per Package	^I D(AV)	5.0 10 15	TA = 25°C only The channel component, (Vin = Vout)/Ron, is not included.)	he ent, Tyr		(0.07 μA/kHz)f - Typical (0.20 μA/kHz)f - (0.36 μA/kHz)f -		(Hz)f +	IDD		μΑ
CONTROL INPUTS (Voltages	Reference	d to Ve	is)								,
Low-Level Input Voltage	V _{IL}	5.0 10 15	R _{on} = per spec, l _{off} = per spec	_	1.5 3.0 4.0		2.25 4.50 6.75	1.5 3.0 4.0	111	1.5 3.0 4.0	V
High-Level Input Voltage	V _{IH}	5.0 10 15	R _{on} = per spec. I _{off} = per spec	3.5 7.0 11		3.5 7.0 11	2.75 5.50 8.25	111	3.5 7.0 11	111	V
Input Leakage Current	lin	15	$V_{in} = 0 \text{ or } V_{DD}$		± 0.1	-	± 0.00001	± 0.1		± 1.0	μΑ
Input Capacitance	C _{in}			_		1	5.0	7.5			pF
SWITCHES IN AND OUT (Vo	Itages Refe	renced	to V _{SS})								
Recommended Peak-to- Peak Voltage Into or Out of the Switch	V _{I/O}	_	Channel On or Off	0	VDD	0	_	V _{DD}	0	V _{DD}	V _{p-p}
Recommended Static or Dynamic Voltage Across the Switch** (Figure 1)	ΔV _{switch}	_	Channel On	0	600	0	_	600	0	300	mV
Output Offset Voltage	V ₀₀	_	Vin = 0 V, No Load			_	10		_		μ٧
ON Resistance	R _{on}	5.0 10 15	$ \begin{array}{ll} \Delta V_{\text{Switch}} \leqslant 500 \text{ mV}^{**}, \\ V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}} \\ \text{(Control), and } V_{\text{in}} = \\ 0 \text{ to } V_{DD} \text{ (Switch)} \end{array} $	111	800 400 220	_ _ _	250 120 80	1050 500 280	<u>-</u>	1200 520 300	Ω
ΔΟΝ Resistance Between Any Two Channels in the Same Package	ΔR _{on}	5.0 10 15		_ _	70 50 45		25 10 10	70 50 45	_ 	135 95 65	Ω
Off-Channel Leakage Current (Figure 6)	loff	15	V _{in} = V _{IL} or V _{IH} (Control) Channel to Channel or Any One Channel	_	± 100	_	± 0.05	± 100	_	± 1000	nA
Capacitance, Switch I/O	C _{I/O}		Switch Off			-	10	15		_	рF
Capacitance, Feedthrough (Switch Off)	C _{I/O}	_				_	0.47	_		_	pF

[#]Data labeled "Typ" is not to be used for design purposes, but is intended as an indication of the IC's potential performance.

**For voltage drops across the switch (ΔV_{Switch}) >600 mV (>300 mV at high temperature), excessive V_{DD} current may be drawn; i.e. the current out of the switch may contain both V_{DD} and switch input components. The reliability of the device will be unaffected unless the Maximum Ratings are exceeded. (See first page of this data sheet.)

ELECTRICAL CHARACTERISTICS* ($C_L = 50 \text{ pF}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted.)

Characteristic		Symbol	V _{DD} Vdc	Min	Тур#	Max	Unit
Propagation Delay Times Input to Output (R _L = 10 k Ω)	V _{SS} =0 Vdc	^t PLH ^{, t} PHL					ns
^t PLH, t _{PHL} = (0.17 ns/pF) C_L + 15.5 ns ^t PLH, t _{PHL} = (0.08 ns/pF) C_L + 6.0 ns			5.0 10	_	20 10	40 20	
^t PLH, tpHL = (0.06 ns/pF) C _L + 4.0 ns			15	_	7.0	15	
Control to Output ($R_L = 1 \text{ k}\Omega$) (Figure 2) Output "1" to High Impedance		^t PHZ	5.0 10 15		40 35 30	80 70 60	ns
Output "0" to High Impedance		t _{PLŽ}	5.0 10 15	_ _ _	40 35 30	80 70 60	ns
High Impedance to Output "1"		^t PZH	5.0 10 15	_ _ _	60 20 15	120 40 30	ns
High Impedance to Output "0"		^t PZL	5.0 10 15		60 20 15	120 40 30	ns
Second Harmonic Distortion $(V_{in}=1.77~Vdc,~RMS~Centered~@~0.0~Vdc,\\ R_{L}=10~k\Omega,~f=1.0~kHz)$	V _{SS} = -5 Vdc	_	5.0		0.1	_	%
Bandwidth (Switch ON) (Figure 3) $(R_L=1~k\Omega,20~Log~\frac{V_{Out}}{V_{in}}=-3~dB,~C_L=50~pH$	$V_{SS} = -5 \text{ Vdc}$ F, $V_{in} = 5 V_{p-p}$	_	5.0	AARM-	65	_	MHz
Feedthrough Attenuation (Switch OFF) $(V_{in} = 5 \ V_{p-p}, \ R_L = 1 \ k\Omega, \ f_{in} = 1.0 \ MHz)$	V _{SS} = -5 Vdd (Figure 3)	_	5.0	_	50	_	dB
Channel Separation (Figure 4) $(V_{in}=5\ V_{p-p},\ B_L=1\ k\Omega,\ f_{in}=8.0\ MHz)$ (Switch A ON, Switch B OFF)	V _{SS} = -5 Vdc		5.0	_	- 50	_	dΒ
Crosstalk, Control Input to Signal Output (Figure 4) $\langle R_1 \ = \ 1 \ k\Omega, R_L \ = \ 10 \ k\Omega, Control \ t_{TLH} \ - \ t_{T}$	V _{SS} = - 5 Vdc	_	5.0	_	300	_	mV _{p-p}

*The formulas given are for the typical characteristics only at 25°C #Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS \leq (Vin or Vout) \leq VDD.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

TEST CIRCUITS

FIGURE 1 - AV ACROSS SWITCH

FIGURE 3 -- BANDWIDTH AND FEEDTHROUGH ATTENUATION

 $V_C = V_{DD}$ for Bandwidth Test $V_C = V_{SS}$ for Feedthrough Test

FIGURE 5 -- CROSSTALK, CONTROL TO OUTPUT

FIGURE 2 — TURN-ON DELAY TIME TEST CIRCUIT AND WAVEFORMS

FIGURE 4 -- CHANNEL SEPARATION

FIGURE 6 - OFF CHANNEL LEAKAGE

6

FIGURE 7 - CHANNEL RESISTANCE (RON) TEST CIRCUIT

TYPICAL RESISTANCE CHARACTERISTICS

6

APPLICATIONS INFORMATION

Figure A illustrates use of the Analog Switch. The 0-to-5 volt digital control signal is used to directly control a 5 volt peak-to-peak analog signal.

The digital control logic levels are determined by V_{DD} and V_{SS} . The V_{DD} voltage is the logic high voltage; the V_{SS} voltage is logic low. For the example, $V_{DD} = +5$ V = logic high at the control inputs; $V_{SS} = GND = 0$ V = logic low.

The maximum analog signal level is determined by V_{DD} and V_{SS} . The analog voltage must not swing higher than V_{DD} or lower than V_{SS} .

The example shows a 5 volt peak-to-peak signal which allows no margin at either peak. If voltage transients above V_{DD} and/or below V_{SS} are anticipated on the analog channels, external diodes (D_X) are recommended as shown in Figure B. These diodes should be small signal types able to absorb the maximum anticipated current surges during clipping.

The absolute maximum potential difference between V_{DD} and V_{SS} is 18.0 volts. Most parameters are specified up to 15 volts which is the *recommended* maximum difference between V_{DD} and V_{SS}.

FIGURE A - APPLICATION EXAMPLE

FIGURE B - EXTERNAL GERMANIUM OR SCHOTTKY CLIPPING DIODES

