Deep generative models for biologists

Clayton W. Seitz

January 21, 2022

Outline

Monte-Carlo Markov Chain (MCMC)

- MCMC algorithms were originally developed in the 1940's by physicists at Los Alamos
- They were interested in modeling the probabilistic behavior of collections of atomic particles
- Simulation was difficult the normalization constant Z was not known
- ▶ The term "Monte-Carlo" was coined at Los Alamos.
- Ulam and Metropolis overcame this problem by constructing a Markov chain for which the desired distribution was the stationary distribution
- ▶ Introduced to statistics and generalized with the Metropolis-Hastings algorithm (1970) and the Gibbs sampler of Geman and Geman (1984).

Markov Chains

For a state space Ω s.t. $\mathbf{x}_t \in \Omega$. \mathbf{x}_t is a Markov process if:

$$P(\mathbf{x}_{t}|\mathbf{x}_{t-1},\mathbf{x}_{t-2},...,\mathbf{x}_{t-N}) = P(\mathbf{x}_{t}|\mathbf{x}_{t-1})$$

which is commonly called the memoryless property.

- \triangleright \mathbf{x}_t can be generally be N-dimensional
- ▶ The chain is called *homogeneous* if $T(\mathbf{x}_t|\mathbf{x}_{t-1})$ is time-invariant.
- For discrete Ω, T is a matrix of probabilities with $T_{ij} = \Pr(i \rightarrow j)$
- For continuous Ω , T is the joint probability density $T(x_t, x_{t-1})$

Markov Chains

The Chapman-Kolmogorov equation marginalizes $T(x_t, x_{t-1})$:

$$P(\mathbf{x}_t) = \int T(x_t, x_{t-1}) d\mathbf{x}_{t-1}$$
$$= \int T(x_t | x_{t-1}) P(\mathbf{x}_{t-1}) d\mathbf{x}_{t-1}$$

The chain satisfies detailed balance if

$$T(x_t, x_{t-1})P(x_t) = T(x_{t-1}, x_t)P(x_{t-1})$$

which guarantees there is a unique stationary distribution $P_0(x_t)$

Monte-Carlo Markov Chain (MCMC)

A stationary distribution satisfies

$$P_0(\mathbf{x}_t) = \int T(x_t|x_{t-1})P_0(\mathbf{x}_{t-1})d\mathbf{x}_{t-1}$$

- ▶ If a process is Markov e.g., Brownian motion, Ornstein-Uhlenbeck, $P_0(x_t)$ is a solution to the SDE
- ▶ We can also design $T(x_t, x_{t-1})$ s.t. $P_0(x_t)$ is a distribution we cannot sample from easily such as the Ising model
- ▶ The notion of "time" in the second case is artificial
- ▶ There are several MCMC algorithms, we will focus on Gibbs MCMC

Gibbs sampling

- Suppose p(x) is a p.d.f. or p.m.f. that is difficult to sample from directly.
- Suppose, though, that we *can* easily sample from the conditional distributions e.g., $p(x_1|x_2,...,x_n)$.
- ► The Gibbs sampler proceeds as follows:
 - 1. set x to some initial starting values
 - 2. then sample $x_1|x_2,...,x_n$, then sample $x_2|x_1,...,x_n$, and so on.

Gibbs sampling

- 0. Set (x_0, y_0) to some starting value.
- 1. Sample $x_1 \sim p(x|y_0)$, that is, from the conditional distribution $X \mid Y = y_0$.

Current state: (x_1, y_0)

Sample $y_1 \sim p(y|x_1)$, that is, from the conditional distribution $Y \mid X = x_1$.

Current state: (x_1, y_1)

2. Sample $x_2 \sim p(x|y_1)$, that is, from the conditional distribution $X \mid Y = y_1$.

Current state: (x_2, y_1)

Sample $y_2 \sim p(y|x_2)$, that is, from the conditional distribution $Y \mid X = x_2$.

Current state: (x_2, y_2)

:

Repeat iterations 1 and 2, M times.

References I