인공지능을 위한 머신러닝 알고리즘

9. 컨볼루션 신경망

CONTENTS

- 1 컨볼루션 신경망의 원리
 - 2 ImageNet: 이미지를 자동 분류하라

학습 목표

■ 컨볼루션 신경망의 분류 원리를 이해할 ▲ 수 있다.

> ■ 기존 신경망과 컨볼루션 신경망의 구조 적 차이를 이해할 수 있다.

> > ■ 컨볼루션 신경망 구조와 깊이의 진화 ▲ 과정을 이해할 수 있다.

- ▮일반 신경망으로 이미지를 분류할 때 문제점
 - 이미지의 위치, 크기, 각도 변화 등에 취약함

▮일반 신경망으로 이미지를 분류할 때 문제점

왼쪽으로 2픽셀 이동할 경우 154개의 입력이 변화함 77개 : 검은색 → 흰색 77개 : 흰색 → 검은색

■ 크기 또는 모양이 변화하는 경우

AAA

▶ 컨볼루션 신경망이란?

- 우리 뇌 속 시각 피질의 신경 세포들은 물체의 방향과 장소가 바뀌어도 별 문제 없이 인식할 수 있음
- ◉ 이러한 신경생물학적 관찰이 컨볼루션 신경망 구조 설계에 동기를 부여함
- 컨볼루션 신경망은 물체의 위치와 방향에 관계없이 물체의 고유한 특징을 학습할 수 있음
- ⊙ 다층 신경망의 한 종류임
- ◉ 역전파 알고리즘을 사용하여 학습

▮ 분류 과정

▶ 컨볼루션 신경망의 구조

■ 컨볼루션 층

입력 이미지 속 다양한 위치에서 동일한 특징들을 탐색

▮ 컨볼루션 과정

▶ 컨볼루션 과정

- 한 개의 특징 맵이 컨볼루션 과정을 통해 특징을 탐색할 때 특징 맵의 가중치 값은 변경되지 않음 (가중치 공유)
- 이와 같은 방식으로 특징 맵은 입력 이미지의 다양한 위치에서 동일한 특징을 탐색할 수 있음
- ◉ 모델이 갖는 파라미터의 개수를 줄여줌
- 특징 맵이 나타내고자 하는 템플릿과 이미지의 국소 부분이 일치한다면, 특징 맵의 뉴런이 발화

입력 이미지

컨볼루션 층

▋ 풀링 과정

- 물체의 위치와 각도 변화에 잘 대처할 수 있게 해줌
- 각 특징 맵의 해상도를 줄여줌 → 모델의 파라미터의 개수를 줄임
- ◉ 최대 / 평균 풀링을 주로 사용

LeNet5

- LeCun에 의해 고안됨
- 입력으로 32x32 픽셀 크기의 이미지를 받음
- C1, C3, C5 : 컨볼루션 층 (5 × 5크기의 피처 맵)
- ⊙ \$2, \$4: 풀링 층 (인자 2에 의한 풀링, 피처의 크기가 절반으로 축소)
- F6 : 단층 신경망 (fully-connected)

LeNet5

- ◉ 약 187,000개 뉴런들 사이 연결 존재
- ◉ 약 14,000개의 모델 파라미터 존재

▮ 장점: 물체의 위치와 각도 변화에 대한 불변성

■ 장점: 노이즈와 왜곡에 대한 불변성

▶단점

- 메모리 관점에서 일반적인 다층 퍼셉트론보다 더 많은 용량을 차지함 (많은 수의 파라미터)
- 실행 시간 관점에서 컨볼루션 과정이 많은 계산을 필요하고 전체 실행 시간 중 약 2/3의 비중을 차지
- ◎ 같은 개수의 파라미터를 갖는 신경망보다 약 3배 가까이 실행 시간이 느림

2. ImageNet: 이미지를 자동 분류하라

ImageNet Challenge

- 120만 개의 고해상도 이미지
- ◎ 1,000개의 서로 다른 클래스
- ◎ 50,000 검증 이미지, 150,000개의 테스트 이미지

쉬운 클래스

어려운 크레스

muzzle (71) hatchet (68) water bottle (68) velvet (68) loupe (66)

hook (66) spotlight (66) ladle (65) restaurant (64) letter opener (59)

2. ImageNet: 이미지를 자동 분류하라

■ ImageNet 데이터 집합에 대한 매년 성능 향상

이미지 분류의 Top - 5 에러

지금까지 [컨볼루션 신경망]에 대해서 살펴보았습니다.

컨볼루션 신경망의 원리

컨볼루션 층: 입력 이미지 속 다양한 위치에서 동일한 특징들을 탐색, 피처 맵을 입력에 대해 슬라이딩 시킴. 같은 피처 맵은 동일한 가중치 사용 풀링 층: 물체의 위치와 각도 변화에 잘 대처할 수 있게 해 줌, 최대 / 평균 풀링

컨볼루션 신경망과 일반 신경망의 차

의 이 시각 피질이 물체를 이해하는 매커니즘 모사, 신경 세포들이 물체의 방향과 장소가 바뀌어도 별문제 없이 인식할 수 있었던 이유 인 '컨볼루션' 개념을 신경망 모델에 적용

ImageNet Challenge: 이미지를 자동 분류하라

ImageNet 데이터 집합은 1000개의 이미지 클래스에 해당하는 120만 개 이미지 보유 ImageNet Challenge에서 더 좋은 성능을 보이기 위해 모델의 층이 깊어지고 있음

AlexNet(8층) → VGG(19층) → GoogleNet(22층) → ResNet(152층)