HAX501X – Groupes et anneaux 1

CM6 28/09/2023

Clément Dupont

Retour sur les exercices du cours

Exercice 27

Soit (G,*) un groupe et soit $x\in G$. On suppose qu'il existe $y\in G$ tel que x*y=e. Montrer que $y=x^{-1}$.

▶ En multipliant l'égalité x * y = e par x^{-1} à gauche on obtient :

$$x^{-1} * (x * y) = x^{-1} * e.$$

En utilisant l'associativité et le fait que $x^{-1} \ast x = e$ et $x^{-1} \ast e = x^{-1}$ on obtient :

$$y = x^{-1}$$
.

Écrire la table de multiplication du groupe $\mathbb{Z}/4\mathbb{Z}$.

▶ Même si l'on parle de "table de multiplication", la loi du groupe $\mathbb{Z}/4\mathbb{Z}$ est l'addition...

+	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
$\overline{0}$	$\overline{0}$	$\overline{1}$	$\overline{2}$	3
1	ī	$\overline{2}$	3	$\overline{0}$
$\overline{2}$	$\overline{2}$	3	$\overline{0}$	1
3	3	$\overline{0}$	ī	$\overline{2}$

Démontrer que $GL_n(\mathbb{R})$ est abélien si $n \leq 1$ et ne l'est pas si $n \geq 2$.

- ▶ $GL_0(\mathbb{R}) = \{()\}$ est le groupe trivial, qui est abélien.
- ▶ $GL_1(\mathbb{R}) = \mathbb{R}^*$, une matrice de taille 1×1 étant identifiée avec un scalaire. Comme \times dans \mathbb{R} est commutative, $GL_1(\mathbb{R})$ est un groupe abélien.
- ▶ $GL_2(\mathbb{R})$ n'est pas un groupe abélien car les matrices suivantes ne commutent pas :

$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \text{ et } \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

En effet on a

$$AB = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $BA = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$.

(Multiplier à gauche par A échange les 2 lignes ; multiplier à droite par A échange les deux colonnes.)

▶ Pour tout $n \ge 2$, $\operatorname{GL}_n(\mathbb{R})$ n'est pas un groupe abélien car les matrices

Pour tout
$$n\geqslant 2$$
, $\operatorname{GL}_n(\mathbb{R})$ n'est pas un groupe abélien car les matrices suivantes de commutent pas :
$$A=\begin{pmatrix}0&1\\1&0&&0\\&&1\\&&&1\\&&&&1\end{pmatrix}\quad \text{et}\quad B=\begin{pmatrix}1&1\\0&1&&0\\&&1\\&&&1\\&&&&1\\&&&&1\end{pmatrix}.$$

Lister les éléments de $\mathfrak{S}_2.$ Écrire la table de multiplication de $\mathfrak{S}_2.$

Élément de \mathfrak{S}_2	qu'on peut aussi écrire sous la forme :		
$ \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} $	id		
$ \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} $	(1 2)		

0	id	$(1\ 2)$
id	id	(12)
(12)	(12)	id

Lister les éléments de \mathfrak{S}_3 . Écrire la table de multiplication de \mathfrak{S}_3 .

Élément de \mathfrak{S}_3	qu'on peut aussi écrire sous la forme :
$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix} $	id
$ \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} $	(12)
$ \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} $	(13)
$ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} $	(2 3)
$ \begin{array}{c ccc} & 1 & 2 & 3 \\ 2 & 3 & 1 \end{array} $	(1 2 3)
$ \begin{array}{c ccc} & 1 & 2 & 3 \\ 3 & 1 & 2 \end{array} $	(1 3 2)

On écrit les produits "ligne \circ colonne".

0	id	(12)	(13)	$(2\ 3)$	$(1\ 2\ 3)$	$(1\ 3\ 2)$
id	id	(12)	(13)	(23)	(1 2 3)	(1 3 2)
(12)	(12)	id	(1 3 2)	(1 2 3)	(23)	(13)
(13)	(13)	(1 2 3)	id	(1 3 2)	(12)	(23)
(23)	(23)	(1 3 2)	(1 2 3)	id	(13)	(12)
(1 2 3)	(1 2 3)	(13)	(23)	(12)	(1 3 2)	id
(1 3 2)	(1 3 2)	(2.3)	(1.2)	(1.3)	id	(123)

Lister les éléments de \mathfrak{S}_4 .

Les 24 éléments de \mathfrak{S}_4 sont :

▶ L'identité

id.

Les 6 transpositions :

$$(1\ 2), (1\ 3), (1\ 4), (2\ 3), (2\ 4), (3\ 4).$$

► Les 8 cycles de longueur 3 :

$$(1\ 2\ 3), (1\ 3\ 2), (1\ 2\ 4), (1\ 4\ 2), (1\ 3\ 4), (1\ 4\ 3), (2\ 3\ 4), (2\ 4\ 3).$$

Les 6 cycles de longueur 4 :

$$(1\ 2\ 3\ 4), (1\ 2\ 4\ 3), (1\ 3\ 2\ 4), (1\ 3\ 4\ 2), (1\ 4\ 2\ 3), (1\ 4\ 3\ 2).$$

▶ Les 3 produits de transpositions à supports disjoints :

$$(1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3).$$

Démontrer que \mathfrak{S}_n est abélien si $n \leqslant 2$ et ne l'est pas si $n \geqslant 3$.

- ▶ On a $\mathfrak{S}_0 = \{id_{\varnothing}\}$ et $\mathfrak{S}_1 = \{id_{\{1\}}\}$ qui sont des groupes triviaux donc abéliens.
- \triangleright $\mathfrak{S}_2 = \{ id, (1 \ 2) \}$ est aussi abélien.
- ▶ Le groupe symétrique \mathfrak{S}_n n'est pas abélien pour $n \geqslant 3$ car $(1\ 2)$ et $(2\ 3)$ ne commutent pas :

$$(1\ 2)(2\ 3)=(1\ 2\ 3) \quad \ \ \text{et} \quad \ (2\ 3)(1\ 2)=(1\ 3\ 2).$$

Écrire la table de multiplication du groupe $((\mathbb{Z}/8\mathbb{Z})^\times,\times).$

×	1	3	<u>5</u>	7
1	1	3	5	7
3	3	1	7	5
<u>5</u>	5	7	1	3
$\overline{7}$	7	5	3	1

Vérifier que (\mathbb{Z},\times) est un monoïde. Quel est le groupe $(\mathbb{Z}^\times,\times)$?

- La multiplication est une loi de composition interne dans \mathbb{Z} . Elle est associative et a un élément neutre qui est 1. Donc (\mathbb{Z}, \times) est un monoïde.
- ▶ L'ensemble des inversibles de (\mathbb{Z}, \times) est $\mathbb{Z}^{\times} = \{-1, 1\}$: on obtient donc le groupe $(\{-1, 1\}, \times)$.

Montrer qu'en général la table de multiplication d'un groupe fini contient chaque élément du groupe dans chaque ligne et dans chaque colonne.

Soit G un groupe fini.

▶ Dire que la table de multiplication de G contient chaque élément $a \in G$ dans chaque **ligne** (correspondant à un élément $x \in G$) veut dire que :

$$\forall a \in G, \forall x \in G, \exists y \in G, xy = a.$$

C'est vrai :
$$xy = a \iff y = x^{-1}a$$
.

Pareil avec les colonnes.

Écrire la table de multiplication du groupe $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}.$

+	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$
$(\overline{0},\overline{0})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$
$(\overline{0},\overline{1})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{0})$
$(\overline{1},\overline{0})$	$(\overline{1},\overline{0})$	$(\overline{1},\overline{1})$	$(\overline{0},\overline{0})$	$(\overline{0},\overline{1})$
$(\overline{1},\overline{1})$	$(\overline{1},\overline{1})$	$(\overline{1},\overline{0})$	$(\overline{0},\overline{1})$	$(\overline{0},\overline{0})$

2. Sous-groupes

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

- 2. Sous-groupes
- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

2. Sous-groupes

2.1 Définition

- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

3. Morphismes de groupes

- 3.1 Définitions
- 3.2 Exemples

Définition de sous-groupe

Définition

Soit G un groupe. Un sous-groupe de G est un sous-ensemble $H\subset G$ qui vérifie les conditions suivantes :

- 1) $e \in H$;
- 2) H est stable par produit : $\forall x, y \in H, xy \in H$;
- 3) H est stable par passage à l'inverse : $\forall x \in H, x^{-1} \in H$.

Un sous-groupe... est un groupe

Proposition

Soit G un groupe, soit H un sous-groupe de G. Alors H, muni de la restriction de la loi de composition interne de G, est un groupe.

 $Dcute{emonstration}$. Comme par l'hypothèse 2) H est stable par produit, la loi de composition interne de G induit bien une loi de composition interne sur H. Celle-ci est associative car elle l'est dans G. Elle a un élément neutre car par l'hypothèse 1) $e \in H$. Enfin, tout élément de H a un inverse dans H pour cette loi par l'hypothèse 3).

Remarque

C'est une manière pratique de montrer que quelque chose est un groupe en montrant que c'est un sous-groupe d'un groupe déjà connu.

Et un exercice

Exercice 35

Soit G un groupe et $H\subset G$ un sous-ensemble de G. Montrer que H est un sous-groupe de G si et seulement s'il vérifie les conditions suivantes :

- 1') $H \neq \emptyset$;
- 2') $\forall x, y \in H, xy^{-1} \in H.$

2. Sous-groupes

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

Exemples de sous-groupes

- ▶ Pour tout groupe G on a les sous-groupes $\{e\}$ et G.
- ▶ On a déjà étudié les sous-groupes de \mathbb{Z} et de $\mathbb{Z}/n\mathbb{Z}$.
- ▶ Si V est un \mathbb{R} -espace vectoriel, tout sous-espace vectoriel $W \subset V$ est notamment un sous-groupe de V. De même en remplaçant \mathbb{R} par un corps \mathbb{K} . Il y a d'autres sous-groupes d'un espace vectoriel : par exemple \mathbb{Z} est un sous-groupe de \mathbb{R} mais pas un sous-espace vectoriel (car \mathbb{Z} n'est pas stable par multiplication par $\frac{1}{2}$, par exemple).

Exemples de sous-groupes, suite et fin

On note

$$\mathbb{U} = \{ z \in \mathbb{C}^* \mid |z| = 1 \}$$

le cercle unité dans le plan complexe, et pour tout $n \in \mathbb{N}^*$,

$$\mathbb{U}_n = \{ z \in \mathbb{C}^* \mid z^n = 1 \}$$

l'ensemble des racines n-èmes de l'unité. On a des inclusions

$$\mathbb{U}_n \subset \mathbb{U} \subset \mathbb{C}^*$$

et \mathbb{U}_n et \mathbb{U} sont des sous-groupes de \mathbb{C}^* . On a le cas particulier important de \mathbb{U}_2 , qui est le groupe $(\{-1,1\},\times)$.

▶ On rappelle la notation

$$\mathrm{SL}_n(\mathbb{R}) = \{ A \in \mathrm{GL}_n(\mathbb{R}) \mid \det(A) = 1 \}.$$

C'est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$, qu'on appelle le **groupe spécial linéaire** de degré n sur \mathbb{R} . De même en remplaçant \mathbb{R} par un corps \mathbb{K} .

Des exercices

Exercice 36

Représenter dans le plan complexe les groupes \mathbb{U} , puis \mathbb{U}_2 , \mathbb{U}_3 , \mathbb{U}_4 , \mathbb{U}_5 , \mathbb{U}_6 .

Exercice 37

Montrer que \mathbb{U}_n et \mathbb{U} sont des sous-groupes de \mathbb{C}^* . Montrer que $\mathrm{SL}_n(\mathbb{R})$ est un sous-groupe de $\mathrm{GL}_n(\mathbb{R})$.

Des non-exemples de sous-groupes

- $\blacktriangleright \ H=\{\overline{0},\overline{3},\overline{4}\} \text{ n'est pas un sous-groupe de } \mathbb{Z}/6\mathbb{Z} \text{ car } \overline{3}+\overline{4}=\overline{1} \notin H.$
- ▶ $\mathbb N$ n'est pas un sous-groupe de $\mathbb Z$ car il n'est pas stable par passage à l'opposé : $7 \in \mathbb N$ mais $-7 \notin \mathbb N$.

2. Sous-groupes

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

Intersection de sous-groupes

Proposition

Soit G un groupe, soit $(H_i)_{i\in I}$ une famille de sous-groupes de G indexée par un ensemble I. Alors l'intersection

$$H = \bigcap_{i \in I} H_i$$

est un sous-groupe de G.

On rappelle la définition :

$$\bigcap_{i \in I} H_i = \{ x \in G \mid \forall i \in I, \ x \in H_i \}.$$

▶ Notamment, si H et H' sont deux sous-groupes de G, alors l'intersection $H \cap H'$ est un sous-groupe de G.

Démonstration

- 1) Pour tout $i\in I$, H_i est un sous-groupe de G, donc $e\in H_i$. On en déduit que $e\in H$.
- 2) Soit $x, y \in H$. Alors pour tout $i \in I$, $x \in H_i$ et $y \in H_i$, et donc $xy \in H_i$ car H_i est un sous-groupe de G. On en déduit que $xy \in H$.
- 3) Soit $x \in H$. Alors pour tout $i \in I$, $x \in H_i$ et donc $x^{-1} \in H_i$ car H_i est un sous-groupe de G. On en déduit que $x^{-1} \in H$.

Sous-groupe engendré par une partie

Soit G un groupe et soit $S\subset G$ un sous-ensemble (pas nécessairement un sous-groupe).

Définition

Le sous-groupe de G engendré par S, noté $\langle S \rangle$, est l'intersection de tous les sous-groupes de G qui contiennent S.

- ▶ C'est bien un sous-groupe de G par la proposition précédente.
- \blacktriangleright On a clairement $S\subset\langle\,S\,\rangle$, et pour tout sous-groupe H de G on a l'équivalence :

$$S \subset H \iff \langle S \rangle \subset H.$$

▶ On dit donc que $\langle S \rangle$ est le plus petit (pour l'inclusion) sous-groupe de G qui contient S.

Sous-groupe engendré par une partie... mais concret !

Proposition

Le sous-groupe $\langle \, S \, \rangle$ est l'ensemble des éléments de G qu'on peut obtenir en multipliant un certain nombre d'éléments de S et de leurs inverses, c'est-à-dire l'ensemble des produits

$$x_1x_2\cdots x_n$$

avec $n \in \mathbb{N}$ et pour tout $i \in \{1, ..., n\}$, $x_i \in S \cup S^{-1}$.

(On a noté S^{-1} l'ensemble des inverses des éléments de S.)

Démonstration

Notons H_0 le sous-ensemble de G décrit par la proposition et montrons que $\langle S \rangle = H_0$. On montre d'abord que H_0 est un sous-groupe de G.

- 1) $e \in H_0$ (c'est le cas n = 0: par convention le produit de 0 élément dans un groupe est l'élément neutre e).
- 2) H_0 est clairement stable par produit.
- 3) H_0 est stable par passage à l'inverse car l'inverse d'un produit $x_1 \cdots x_n$ est $x_n^{-1} \cdots x_1^{-1}$.

De plus, il est clair que $S \subset H_0$. Comme $\langle S \rangle$ est l'intersection de tous les sous-groupes de G qui contiennent S, on a donc l'inclusion $\langle S \rangle \subset H_0$.

Pour montrer l'inclusion réciproque $H_0\subset \langle S\rangle$, il faut montrer que H_0 est inclus dans tous les sous-groupes de G qui contiennent S. Soit donc H un tel sous-groupe. Comme $S\subset H$ et que H contient e, est stable par produit et passage à l'opposé, tous les éléments $x_1\cdots x_n$ avec $n\in \mathbb{N}$ et $x_i\in S\cup S^{-1}$ sont dans H. Donc $H_0\subset H$. Comme cette inclusion est vraie pour tout sous-groupe H de G qui contient S, on en déduit que $H_0\subset \langle S\rangle$. On a donc montré que $\langle S\rangle=H_0$.

Plus de vocabulaire

Définition

On dit que G est engendré par S si $\langle S \rangle = G$. (On dit aussi que S engendre G ou que S est une partie génératrice de G.)

- D'après la proposition précédente, dire que G est engendré par S revient à dire que tout élément de G peut s'écrire comme un produit d'éléments de S et de leurs inverses.
- ▶ Lorsque $S = \{s_1, ..., s_k\}$ est finie, on note simplement.

$$\langle S \rangle = \langle s_1, \dots, s_k \rangle$$

Exercice 38

Montrer que le groupe symétrique \mathfrak{S}_3 est engendré par les transpositions $(1\ 2)$ et $(1\ 3)$:

$$\mathfrak{S}_3 = \langle (1\ 2), (1\ 3) \rangle.$$

Groupes cycliques

Un cas important, qu'on étudiera en détail plus bas, est celui d'une partie à un élément s. Dans ce cas on a, d'après la proposition précédente :

$$\langle s \rangle = \{s^n, n \in \mathbb{Z}\}.$$

Remarque

En notation additive, cela s'écrit $\langle s \rangle = \{ ns, n \in \mathbb{Z} \}.$

ightharpoonup Pour le groupe \mathbb{Z} , on retrouve donc les sous-groupes

$$\langle a \rangle = a \mathbb{Z}.$$

▶ Pour le groupe $\mathbb{Z}/n\mathbb{Z}$, on retrouve les sous-groupes

$$\langle \overline{a} \rangle = \{ \overline{ka}, \ k \in \mathbb{Z} \}.$$

Définition

Un groupe G est cyclique (on dit aussi monogène) s'il est engendré par un élément, c'est-à-dire s'il existe $s \in G$ tel que $G = \langle s \rangle$.

Exemples

- $ightharpoonup \mathbb{Z} = \langle 1 \rangle$ est cyclique, et pour tout $n \in \mathbb{N}^*$, $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ est cyclique.
- On verra, quand on aura développé la notion d'isomorphisme de groupes, que ce sont les seuls groupes cycliques à isomorphisme près.

Exercice 39

Montrer que $\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/3\mathbb{Z}$ est un groupe cyclique.

Exercice 40

Montrer que $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ n'est pas un groupe cyclique. Montrer que \mathfrak{S}_n n'est pas un groupe cyclique si $n \geqslant 3$.

Exercice 41

Montrer que \mathbb{U}_n est un groupe cyclique, pour tout $n \in \mathbb{N}^*$.

Remarque

Dans certains ouvrages, la notion de groupe cyclique est réservée aux groupes finis, ce qui exclut $\mathbb{Z}.$

2. Sous-groupes

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

Rappels

Proposition

Soit H un sous-groupe de \mathbb{Z} . Il existe un unique $n \in \mathbb{N}$ tel que

$$H = \langle n \rangle = n\mathbb{Z}.$$

- ▶ Notons que l'unicité vient du fait qu'on a imposé que n soit dans $\mathbb N$: on a $\langle -n \rangle = \langle n \rangle$.
- ▶ Notamment, $\mathbb{Z} = \langle 1 \rangle = \langle -1 \rangle$.

Proposition

Soit $n \in \mathbb{N}^*$. Soit H un sous-groupe de $\mathbb{Z}/n\mathbb{Z}$. Il existe un unique diviseur positif d de n tel que

$$H = \langle \overline{d} \rangle = \{ \overline{kd}, \ k \in \mathbb{Z} \}.$$

- Notons que l'unicité vient du fait qu'on a imposé que d soit un diviseur positif de n: on a $\langle \, \overline{a} \, \rangle = \langle \, \overline{d} \, \rangle$ pour tout \overline{a} tel que $a \wedge n = d$.
- ▶ Notamment, $\mathbb{Z}/n\mathbb{Z} = \langle \overline{a} \rangle$ pour tout \overline{a} tel que $a \wedge n = 1$.

2. Sous-groupe

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

2. Sous-groupe

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

3. Morphismes de groupes

- 3.1 Définitions
- 3.2 Exemples

Morphismes de groupes

Définition

Soient deux groupes (G,*) et (H,#). Un morphisme de groupes de G dans H est une application $f:G\to H$ qui vérifie :

$$\forall x, y \in G, f(x * y) = f(x) \# f(y).$$

Remarque

En notation multiplicative, on écrit plutôt f(xy) = f(x)f(y).

Définition

Un endomorphisme d'un groupe G est un morphisme de groupes de G dans G.

Propriétés de base des morphismes de groupes

Proposition

Soit $f: G \to H$ un morphisme de groupes.

- 1) Si l'on note e_G et e_H les élément neutres respectifs de G et H, on a $f(e_G) = e_H$.
 - 2) Pour tout $x \in G$, $f(x^{-1}) = f(x)^{-1}$.

Proposition

Soient $f:G\to H$ et $g:H\to K$ deux morphismes de groupes. Alors la composée $g\circ f:G\to K$ est un morphisme de groupes.

2. Sous-groupes

- 2.1 Définition
- 2.2 Exemples
- 2.3 Sous-groupe engendré par une partie
- 2.4 Rappel sur les sous-groupes de \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$

- 3. Morphismes de groupes
- 3.1 Définitions
- 3.2 Exemples

Exemples de morphismes de groupes

- ▶ L'application constante $f:G \to H$ définie par $f(x)=e_H$ pour tout $x \in G$, où e_H désigne l'élément neutre de H, est un morphisme de groupes. On l'appelle le **morphisme trivial**.
- ▶ L'identité d'un groupe G dans lui-même est un morphisme de groupes.
- ▶ Le déterminant des matrices est un morphisme de groupes

$$\det: \mathrm{GL}_n(\mathbb{R}) \to \mathbb{R}^* , A \mapsto \det(A).$$

En effet, on a pour tous $A, B \in \mathrm{GL}_n(\mathbb{R})$ la formule

$$\det(AB) = \det(A)\det(B).$$

▶ La signature des permutations est un morphisme de groupes

$$\operatorname{sgn}:\mathfrak{S}_n\to\{-1,1\},\ \sigma\mapsto\operatorname{sgn}(\sigma),$$

c'est-à-dire qu'on a, pour deux permutations $\sigma,\sigma'\in\mathfrak{S}_n$:

$$\operatorname{sgn}(\sigma\sigma') = \operatorname{sgn}(\sigma)\operatorname{sgn}(\sigma').$$

Exemples de morphismes de groupes

▶ La fonction exponentielle induit un morphisme de groupes

$$\exp: \mathbb{R} \to \mathbb{R}^*, x \mapsto e^x.$$

(La loi de groupe dans $\mathbb R$ est +, la loi de groupe dans $\mathbb R^*$ est \times .) En effet, on a

$$\forall x, y \in \mathbb{R}, \exp(x+y) = \exp(x) \exp(y).$$

▶ La fonction logarithme induit un morphisme de groupes

$$\ln : \mathbb{R}_+^* \to \mathbb{R} , x \mapsto \ln(x).$$

 $(\mathbb{R}_+^*$ est un groupe pour la multiplication parce que c'est un sous-groupe de $\mathbb{R}^*...$ prouvez-le !) En effet on a

$$\forall x, y \in \mathbb{R}_+^*, \ln(xy) = \ln(x) + \ln(y).$$

▶ Soient V,W deux \mathbb{R} -espaces vectoriels. Toute application linéaire $f:V\to W$ est un morphisme de groupes (où l'on rappelle que la loi de groupe dans V et W est +).