Search and Motion Planning

Prof. Dr. Daniel Göhring

January 29, 2018

FOR INTERNAL USE ONLY

Table of contents

- 1 Planning Basics
 - State Space Search, A*
 - Heuristic and Costs
 - Alternative Forms of A*

State Space Search¹

- States Z (Vertices)
- Operators $Op \subseteq Z \times Z$ (Edges)
- Graph [*Z*, *Op*]
- Initial states $z_{initial} \in Z$
- Target states $Z_{final} \subseteq Z$
- Cost functions $c: Z \times Z \to R^+$, Costs of path $w = z_0 z_1 \cdots z_n \in Z^*$: $c(z_0 z_1 \cdots z_n) := \sum_{i=1,\dots,n} c(z_{i-1},z_i)$
- Estimator function $\sigma: Z \to R$ (Heuristic) for remaining from z to a target state.

¹Slides with courtesy of Prof. Dr. Hans-Dieter Burkhard [2]

State Space Search

- Tasks:
- Can a goal state $z \in Z_{final}$ be reached from initial state $z_{initial} \in Z$?
- Find a way from initial state $z_{initial} \in Z$ to a target state $z \in Z_{final}$
- Find an optimal path from initial state $z_{initial} \in Z$ to a target state $z \in Z_{final}$

Complexity (Number of States / Vertices)

- 8 Puzzle: 9! states 9!/2 = 181.440 reachable
- 15 Puzzle: : 16! states 16!/2 reachable
- Rubik's cube: $12 \cdot 4.3 \cdot 10^{19}$ states 1/12 reachable: $4.3 \cdot 10^{19}$
- Towers of Hanoi: 3^n States for n discs solvable in $(2^n) 1$ moves
- Checkers: approx. 10⁴⁰ games of average length
- Chess: approx. 10¹²⁰ games of average length
- Go: 3³⁶¹ states

Expansion Strategies

- Directions
 - Forward, start with $z_{initial}$ (forward chaining, data driven, bottom up)
 - Reverse z_{final} (backward chaining, goal driven, top down)
 - Bi-directional
- Expansion
 - Depth first
 - Breadth first
- Additional information
 - blind search ("uninformed")
 - heuristic search with σ ("informed")

Bi-Directional Breadth-Search

■ Parallel search from start and goal until meeting

Search depth from both sides only half

Expansion

Data structures:

- OPEN List: A vertex is "open", if it was constructed but not expanded (neighboring vertices not calculated)
- CLOSED List: A vertex is "closed", if it was fully expanded (all neighboring vertices are known)
- Further information: Predecessor / successor of vertices for reconstruction of found paths

Heuristic Search for best Way: A*

Costs to reach z' from z:

- If z' is reachable from z: $g(z, z') := \min\{c(s)|s \text{ path from } z \text{ to } z'\}$
- Else: $g(z, z') := \infty$

Tentative cost calculation during expansion: G' = [V', E'] is a (known) partial graph of G $g'(z, z', G') := \min\{c(s)|s \text{ path in } G' \text{ from } z \text{ to } z'\}$

$$g'(z,z',G') \geq g(z,z')$$

Heuristic Search for Best Path

 $g'(z_0, z', G')$: so far known costs to reach z' from Start $\sigma(z')$: estimated costs to reach target state, starting from z'

State Space Search - Example

Algorithm A* (soft form) for Trees

- A*0 (Start) $OPEN := [z_0], CLOSED := [].$
- A*1: (negative exit)

 If OPEN = []: EXIT("no").
- A*2: (positive exit)
 If z first vertice in OPEN:
 If z is target: EXIT("yes:" z).
- A*3: (expand) OPEN := OPEN - z. $CLOSED := CLOSED \cup \{z\}$ Succ(z) := set of successors of z. If $Succ(z) = \{\}$: Goto A*1
- A*4: (Organization of *OPEN*) $OPEN := OPEN \cup Succ(z)$ with increasing order of $g'(z_0, z', G') + \sigma(z')$
- Goto A*1. Search space as a tree: CLOSED not used.

Algorithm A* (soft form) for Trees and for Cyclic Graphs

- A*0 (Start) $OPEN := [z_0], CLOSED := [].$
- A*1: (negative exit)
 If OPEN = []: EXIT("no").
- A*2: (positive exit)
 If z first vertice in OPEN:
 If z is target: EXIT("yes:" z).
- A*3: (expand) $OPEN := OPEN z. \ CLOSED := CLOSED \cup \{z\}$ Succ(z) := set of successors of z. If $Succ(z) = \{\}$: Goto A*1 $NEW = Succ(z) \{z'|z' \in Succ(z) \text{ and } z' \in CLOSED \text{ and } g'(z_0, z', G') >= g'(z_0, z', G'_{old})\}$

Algorithm A* (soft form) for Trees and for Cyclic Graphs

- A*4: (Organization of *OPEN*) $OPEN := OPEN \cup NEW$ with increasing order of $g'(z_0, z', G') + \sigma(z')$
- Goto A*1. If search space has cycles: use CLOSED.

Algorithm A* ("soft form")

Definition

 $f(z) := \min\{g(z,z_{\mathit{final}}) | z_{\mathit{final}} \in Z_{\mathit{final}}\} = \text{real costs from } z \text{ to target state (vertex)}$ $(f(z_0) = \text{cost of the optimal path})$ Heuristic function σ is called optimistic (a.k.a. admissible) or underestimating, if $\sigma(z) \leq f(z)$ for all $z \in Z$.

Proposition

Given: Ex. $\delta > 0$ with $c(z,z') > \delta$ for all z,z'. σ is an optimistic / admissible heuristic. Every node has a finite number of successors. One can prove: If solution exists, A* (soft form) finds an optimal path.

Special Cases

```
c\equiv 0: Search for best path with heuristic \sigma and no cost function (Hill climbing) \sigma\equiv 0: Search for best path without heuristic ( s\equiv 0 ist also optimistic heuristic ) - Dijkstra c\equiv 1 (g'\equiv {\sf Search\ depth}) , \sigma\equiv 0: Breadth first search
```

Influence of Heuristic σ

- Trade-off between quality of result and calculation effort
- Criteria for order of extension
- Same order as $g' + \sigma$ is also provided by $a(g' + \sigma) + b$ for arbitrary positive constants a, b.
- optimal order for $\sigma = f$
- σ_2 more efficient than σ_1 if $\sigma_1 \leq \sigma_2 \leq f$ (Hierarchy for heuristic functions)


```
• A*0 (Start) OPEN := [z_0], CLOSED := [].
```

- A*1: (negative exit) If OPEN = []: EXIT("no").
- A*2: (positive exit)
 If z first vertice in OPEN:
 If z is target: EXIT("yes:" z).
- A*3: (expand) OPEN := OPEN - z. $CLOSED := CLOSED \cup \{z\}$ Succ(z) := set of successors of z. If $Succ(z) = \{\}$: Goto A*1
- A*4: (Organization of *OPEN*) $OPEN := OPEN \cup (Succ(z) - CLOSED)$ sorted with increasing order of $g'(z_0, z', G') + \sigma(z')$
- Goto A*1.

- Problem:
- \blacksquare For optimistic σ the hard form is not always correct

What kind of heuristic do we need to stay optimal?

Definition

A heuristic σ is called consistent or monotonous, if for all states z', z'' holds: $\sigma(z') \leq g(z', z'') + \sigma(z'')$

Lemma

If σ is consistent, σ is optimistic. The reverse does not necessarily apply

Proposition

Given: Ex. $\delta>0$ with $c(z,z')>\delta$ for all z,z'. σ is a consistent heuristic. One can prove: if a solution exists, A^* (hard form) finds an optimal path.

- "consistent" functions harder to find then "optimistic"
- It is also possible to use an optimistic heuristic with weaker pruning of search space
- Erase states in OPEN (or Succ(z)) only if new evaluation is worse than earlier evaluation.

Memory Saving Variants of Algorithm A*

- Iterative Deepening A* (IDA*) in analogy to IDA: Depth first till boundary $g'(z_0, z', G') + s(z')$ is exceeded from earlier iteration
- SMA* (simplified memory-bounded A*)

Anytime (or Weighted) A*

- If the heuristic σ (sometimes denoted as h) is closer to the real costs, less vertices have to be expanded
- But "inflating" the heuristics can lead to a heuristic which is not optimistic (admissible)

Heuristics in Heuristic Search²

- Dijkstra's: expands states in the order of f = g values
- A* Search: expands states in the order of $f = g + \sigma$ values
- Weightes A*: expands states in the order of $f = g + \varepsilon \sigma$ values, $\varepsilon > 1 =$ bias towards states that are closer to goal

²Slides from Maxim Likhachev

Suboptimality

- Heuristic includes factor ε
- Suboptimality is bounded by factor ε
 - The length of the found solution is not longer than Iţ times the optimal solution
- Exampe:
 - costs from cell to cell are 1
 - Heuristic is the larger of coordinate difference from current cell to goal cell
 - Start is upper left cell
 - Goal is lower right
 - Obstacles black
 - Free space white
 - Expanded cells gray

Anytime Search based on weighted A*

- Constructing anytime search based on weighted A*:
 - find the best path possible given some amount of time for planning
 - do it by running a series of weighted A* searches with decreasing ε :

Anytime A*

- Problem:
 - \blacksquare Running A* with increasing ε each time from scratch can be very expensive
 - Many states remain the same through various iterations
 - A solution for reusing the search results is described in ARA* (Likhachev [4])
- ARA*: an efficient version of the above that reuses state values within any search iteration

ARA*

• Efficient series of weighted A* searches with decreasing ε :

ComputePathwithReuse function

```
while(f(s_{goal}) > minimum f-value in OPEN)
remove s with the smallest [g(s) + \varepsilon h(s)] from OPEN;
insert s into CLOSED;
for every successor s of s
if g(s') > g(s) + c(s,s')
g(s') = g(s) + c(s,s');
if s not in CLOSED then insert s into OPEN;
otherwise insert s into INCONS
```

```
set \varepsilon to large value;

g(s_{start}) = 0; OPEN = \{s_{start}\};

while \varepsilon \ge 1

CLOSED = \{\}; INCONS = \{\};

Compute Pathwith Reuse();

publish \ current \ \varepsilon \ suboptimal \ solution;

decrease \ \varepsilon;

initialize \ OPEN = OPEN \ UINCONS;
```

ARA*, slides from Likhachev [4]

A series of weighted A* searches

D* and Variations

- D* and its variations have been used on Mars rovers
 Opportunity and Spirit and by CMU at the DARPA Grand
 Challenge
- Roughly:
 - D* works as A* but from goal to start
 - Every expanded node "knows" its predecessor
 - When start node (vertex) is the next node, the search is done
 - nodes are marked: NEW (was never in OPEN), OPEN, CLOSE (no longer in OPEN), LOWER, RAISE (cost is higher than last time in OPEN)

D* and Variations

Heuristics in Heuristic Search [4]

Heuristics in Heuristic Search [4]

Heuristics in Heuristic Search

• A* Search: expands states in the order of f = g + h values

for high-D problems, this results in A^* being too slow and running out of memory

Heuristics in Heuristic Search [4]

Heuristics in Heuristic Search

- Weighted A* Search: expands states in the order of f = g+εh values, ε > 1
- · bias towards states that are closer to goal

Literature

- [1] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.
- [2] Hans-Dieter Burkhard: Einführung in die Künstliche Intelligenz (2008)
- [3] S. LaValle, Planning Algorithms. 2006. http://msl.cs.uiuc.edu/planning/
- [4] Likhachev, ARA*, CMU
- [5] Choset, Motion Planning, CMU,
- 🦫 [6] Toussaint, Lecture Notes Robotics, 2011
- [7] Dr. John (Jizhong) Xiao, City College New York