6.4. ЗАСТОСУВАННЯ ПРИНЦИПУ МАКСИМУМУ ДО ЗАДАЧІ ШВИДКОДІЇ

Для системи керування

$$\begin{cases} x'_1(t) = x_2(t) \\ x'_2(t) = u(t) \end{cases}$$

із закріпленими кінцями траєкторій

$$\begin{cases} x_1(t_0) = x_{10} \\ x_2(t_0) = x_{20} \end{cases} \begin{cases} x_1(t_1) = 0 \\ x_2(t_1) = 0 \end{cases}$$

та за умови обмеження на керування

$$|u(t)| \leq 1$$

знайти керування й траєкторії, які мінімізують час руху системи із заданої початкової точки в початок координат.

В даній задачі критерій оптимальності буде мати вигляд

$$T = \int_{t_0}^{t_1} dt = t_1 - t_0 \longrightarrow \min.$$

Застосовуємо принцип максимуму Понтрягіна. Будуємо функцію Гамільтона-Понтрягіна (відразу покладаємо $\psi_0 = -1$)

$$H(x(t), u(t), t, \psi(t)) = \psi_1(t)x_2(t) + \psi_2(t)u(t) - 1.$$

Записуємо спряжену систему

$$\begin{cases} \frac{d\psi_{1}(t)}{dt} = -\frac{\partial H(x(t), u(t), t, \psi(t))}{\partial x_{1}} = 0 \\ \\ \frac{d\psi_{2}(t)}{dt} = -\frac{\partial H(x(t), u(t), t, \psi(t))}{\partial x_{2}} = -\psi_{1}(t) \end{cases}$$

Шукаємо керування $u^0(t)$, при якому функція Гамільтона-Понтрягіна $H(x(t),u(t),t,\psi(t))$ досягає максимуму:

$$\max_{u} H(x(t), u, t, \psi(t)).$$

Зауважимо, що в даній задачі функція $H(x(t),u(t),t,\psi(t))$ лінійна за керуванням u(t) на замкненому проміжку $|u(t)| \leq 1$, а значить, може досягати свого максимуму лише на кінцях цього відрізка.

Якщо $\psi_2(t) > 0$, то функція $H(x(t), u(t), t, \psi(t))$ зростає із зростанням u(t), тому її максимум досягається на правому кінці відрізка, тобто $u^0 = 1$.

Аналогічно, при $\psi_2(t) < 0$ отримуємо $u^0 = -1$.

Якщо $\psi_2(t)=0$ то $H(x(t),u(t),t,\psi(t))$ від u(t) не залежить і його можна покласти довільним із допустимої області, зокрема: $u^0=0$.

Значить, $u^0 = sign\psi_2(t)$ для $\psi_2(t) \neq 0$.

Знаходимо $\psi_1(t)$ та $\psi_2(t)$ як розв'язок спряженої системи:

$$\begin{cases} \frac{d\psi_1(t)}{dt} = 0\\ \frac{d\psi_2(t)}{dt} = -\psi_1(t) \end{cases}$$

Отримаємо

$$\psi_1(t) = C_1, \quad \psi_2(t) = -C_1t + C_2.$$

Таким чином, оптимальне керування визначається за формулою: $u^0 = sign(-C_1t + C_2)$.

Оскільки знайдена функція $\psi_2(t)$ лінійна, то вона може змінювати свій знак на довільному замкненому проміжку не більш ніж в одній точці.

Значить, керування $u^0(t)$ буде змінюватися з +1 на -1 (або з -1 на +1) теж не більш ніж в одній точці на проміжку $[t_0,t_1]$.

Цю точку називають точкою перемикання.

Таким чином,

незалежно від вибору початкової точки $x_0 = (x_{10}, x_{20})^T$,

відповідне оптимальне керування є кусково-сталою функцією, яка приймає значення +1 або -1 та має не більше двох інтервалів сталості.

Розглянемо можливі випадки.

a)
$$u^0 = 1$$

Система керування набуває вигляду:

$$\begin{cases} \frac{dx_1(t)}{dt} = x_2(t) \\ \frac{dx_2(t)}{dt} = 1 \end{cases}$$

Знайдемо звідси $x_1(t)$ як функцію від $x_2(t)$:

$$dx_2(t) = dt \Rightarrow \frac{dx_1(t)}{dx_2(t)} = x_2 \Rightarrow dx_1(t) = x_2 dx_2(t).$$

Звідси маємо:

$$x_1(t) = \frac{1}{2}x_2^2(t) + C,$$

де C – стала інтегрування.

Таким чином отримали **сім'ю парабол**. Серед них є тільки одна, що проходить через початок координат. У цьому випадку стала величина C=0. Нехай початкова точка x_0 траєкторії лежить на цій параболі. Тоді система потрапляє в початок координат під дією тільки керування $u^0=1$.

Знайдемо час руху системи з урахуванням того, що $dx_2(t) = dt$. Для цього проінтегруємо друге рівняння:

$$T = \int_{t_0}^{t_1} dt = \int_{x_2(t_0)}^{x_2(t_1)} dx_2(t) = x_2(t_1) - x_2(t_0) = -x_2(t_0) = -x_2(t_0).$$

б)
$$u^0 = -1$$

Тоді система керування набуває вигляду:

$$\begin{cases} \frac{dx_1(t)}{dt} = x_2(t) \\ \frac{dx_2(t)}{dt} = -1 \end{cases}$$

Знайдемо, як і вище, залежність $x_1(t)$ від $x_2(t)$:

$$dx_2(t) = -dt \Rightarrow \frac{dx_1(t)}{dx_2(t)} = -x_2 \Rightarrow dx_1(t) = -x_2 dx_2(t).$$

Звідси маємо:

$$x_1(t) = -\frac{1}{2}x_2^2(t) + D,$$

де D – стала інтегрування.

Аналогічно отримали **сім'ю парабо**л, серед яких є тільки одна, що проходить через початок координат у випадку, коли D=0. Нехай початкова точка x_0 траєкторії вибрана на цій параболі. Тоді система потрапляє в початок координат під дією тільки керування $u^0=-1$.

Знайдемо час руху системи:

$$T = -\int_{t_0}^{t_1} dt = -\int_{x_2(t_0)}^{x_2(t_1)} dx_2(t) = -x_2(t_1) + x_2(t_0) = x_2(t_0) = x_2(t_0).$$

Позначимо дуги, по яких система може потрапити в початок координат, через L_1 і L_{-1} для керувань $u^0=1$ і $u^0=-1$ відповідно (рис. 6.1.). Очевидно, що при $x_0\in L_1$ оптимальна траєкторія є частиною дуги L_1 , а у випадку $x_0\in L_{-1}$ – частиною дуги L_{-1} . Напрямок руху за кривими – до початку координат.

Крива $L_{-1}L_1$ називається <u>лінією перемикання.</u> Лінія перемикання $L_{-1}L_1$ поділяє всю фазову площину на дві частини: $X_{-1}X_1$.

Рис. 6.1.

в) Нехай оптимальне керування змінюється з $u^0 = -1$ на $u^0 = 1$

Для цього випадку початкова точка буде належати частині X_{-1} фазової площини: $x_0 \in X_{-1}$ (див. рис. 6.1). Тоді траєкторія руху системи складається з двох частин: від x_0 до точки B під дією керування $u^0 = -1$ і від точки B до початку координат під дією керування $u^0 = 1$.

Рух від початкової точки x_0 до точки B буде проходити по параболі: $x_1(t) = -\frac{1}{2}x_2^2(t) + D$.

Знайдемо сталу $m{D}$ за умови, що дана парабола проходить через точку $m{x_0} = (x_{10}, x_{20})^T$. Маємо

$$x_{10} = -\frac{1}{2}x_{20}^2 + D \Rightarrow D = x_{10} + \frac{1}{2}x_{20}^2.$$

Від точки B до початку координат система буде рухатись під дією керування $u^0=1$ по частині L_1 лінії перемикання $L_{-1}L_1$. У цьому випадку стала величина C=0.

Знайдемо координати $(x_{1\tau}, x_{2\tau})$ точки ${\it B}$ як точки перетину двох парабол:

$$\begin{cases} x_1 = -\frac{1}{2}x_2^2 + x_{10} + \frac{1}{2}x_{20}^2 \\ x_1 = \frac{1}{2}x_2^2 \end{cases}.$$

Отримаємо:

$$x_{1\tau} = \frac{1}{2}(x_{10} + \frac{1}{2}x_{20}^2)$$
$$x_{2\tau} = -\sqrt{\frac{1}{2}x_{20}^2 + x_{10}}.$$

Знайдемо тепер час руху системи керування з початкової точки x_0 у початок координат.

Він буде складатися з часу руху з точки x_0 у точку B і з часу руху з точки B у початок координат.

Позначимо момент часу, в який система попадає в точку ${\pmb B}$, через ${\pmb au}$.

Тоді загальний час руху системи буде дорівнювати: $(\tau - t_0) + (t_1 - \tau)$.

Знайдемо час руху системи з точки x_0 у точку B під дією керування $u^0 = -1$.

$$\int_{t_0}^{\tau} dt = \tau - t_0 = -\int_{x_2(t_0)}^{x_2(\tau)} dx_2(t) = x_{20} - x_{2\tau}.$$

Час руху системи від точки B у початок координат по частині L_1 лінії перемикання $L_{-1}L_1$ під дією керування $u^0=1$ буде:

$$t_1 - \tau = -x_{2\tau} = \sqrt{\frac{1}{2}x_{20}^2 + x_{10}}$$

Отже, загальний час руху системи з точки x_0 у початок координат для випадку, коли керування спочатку є $u^0=-1$, а потім у точці B перемикається на $u^0=1$, буде

$$T = (\tau - t_0) + (t_1 - \tau) = x_{20} + 2\sqrt{\frac{1}{2}x_{20}^2 + x_{10}}$$

г) Нехай оптимальне керування змінюється з $u^0 = 1$ на $u^0 = -1$.

Для цього випадку початкова точка буде належати частині X_1 фазової площини: $x_0 \in X_1$.

Тоді траєкторія руху системи складається з двох частин:

від точки x_0 — під дією керування $u^0 = 1$ — до точки перемикання,

і далі по дузі L_{-1} лінії перемикання — під дією керування $u^0 = -1$ — до початку координат.

Виконавши аналогічні пункту в) дії й перетворення, знайдемо час руху системи в цьому випадку:

$$T = -x_{20} + 2\sqrt{\frac{1}{2}x_{20}^2 - x_{10}}.$$

Таким чином, із розглянутих випадків випливає, що мінімальний час переводу системи із заданої точки x_0 у початок координат визначається лише координатами початкової точки траєкторії:

$$T = 2\sqrt{\frac{1}{2}x_{20}^2 - x_{10}} - x_{20}, \quad x_0 \in X_1$$

 X_{-1}

Відзначимо, що для лінійних систем керування принцип максимуму для задачі швидкодії є необхідною й достатньою умовами оптимальності.

Отже, знайдені керування та траєкторія ϵ оптимальними.