Foundation Calculation Report: «1750 OX Residences - 1750 N Oxford Ave. - Eau Claire, WI»

XC structural engineering

July 7, 2019

Contents

1	Building codes	2
2	Loading criteria 2.1 Gravity loading	2 2 2 3
3	Seismic design criteria	3
4	Materials	3
5	Design and analysis software	4
6	Load combinations	4
A	Appendix A. Loading criteria A.1 Dead loads A.2 Live loads A.3 Snow loads A.4 Wind loads A.5 Earthquake loads	7 7 8 8 9 10
$\mathbf{L}^{:}$	ist of Tables	
	1 Gravity Loads 2 Wind Design Criteria 3 Snow Design Criteria 4 Seismic Design Criteria 5 Concrete properties 6 Reinforcement properties 7 Combinations Ultimate Limit States 8 Combinations Serviceability Limit States	2 3 3 4 4 5 6

List of Figures

1 Building codes

The following building and material codes were used for the design:

- Building code
 - International Building Code, 2018 Edition (IBC 2018) with reference to Minimum Design Loads for Buildings and Other Structures by the American Society of Civil Engineers, 2016 Edition (ASCE 7).
- Material codes
 - Reinforced Concrete: Building Code Requirements for Structural Concrete and Commentary by the American Concrete Institute, 2019 Edition (ACI 318).
 - Masonry: Building Code Requirements and Specification for Masonry Structures and Companion Commentaries, 2013 Edition (ACI 530/530).

2 Loading criteria

A summary of the project-specific loading criteria follows (see appendix A for a detailed list of load values).

2.1 Gravity loading

The gravity loads listed in Table 1 are in addition to the self weight of the structure. The minimum loading requirements were taken from ASCE 7 as well as the loading criteria supplied by the engineer of record. Loads are given in pounds per square foot (psf).

UseLive Loading Superimposed Dead Loading Parking Garage 40 3 Storage/HVAC 125 28 28 Stairways, exits 100 28 Level 1 residential 40 Level 1 corridors 100 28 Level 1 office, recreational 100 28 Level 1 courtyard (footprint) 150 150 Elevated levels residential 40 28 Elevated levels corridors 40 28 Cornices 60 Balconies 40 28 Roof 20 28

Table 1: Gravity Loads

In addition to these uniform slab loads, a perimeter dead load of 12 psf was applied to the structure to account for the weight of the cladding system.

2.2 Wind design criteria

Wind loading is in accordance with the IBC and ASCE 7 requirements as shown in Table 2.

pag. 2 de 10 rev. 0.0

Table 2: Wind Design Criteria

Parameter	Value
Basic Wind Speed, 3-second gust (ultimate)	115 mph
Basic Wind Speed, 3-second gust (nominal)	90 mph
Exposure	В
Occupancy Category	II
Importance Factor (I_w)	1.0
Topographic Factor (K_{zt})	1.0
Enclosure Classification	Enclosed
Mean Roof Height (h)	33'

2.3 Snow loading

Wind loading is in accordance with the ASCE 7 requirements as shown in Table 3.

Table 3: Snow Design Criteria

Parameter	Value
Ground snow load p_g	60 psf
Terrain category	В
Exposure factor C_e	1.0
Thermal factor C_t	1.0
Occupancy Category	II
Snow load importance factor I_s	1.0
Snow load flat roof	42 psf

3 Seismic design criteria

Seismic loads are in accordance with the IBC requirements as shown in Table 4.

Table 4: Seismic Design Criteria

Parameter	Value
Building Latitude/Longitude	44°49'01.8"N 91°30'34.8"W
Occupancy Category	II
Importance Factor I_e	1.0
Mapped Spectral Acceleration	$S_s = 0.045; S_1 = 0.038$
Site Class	В
Site Class Coefficients	$F_a = 1.0; F_v = 1.0$
Spectral Response Coefficients	$S_{DS} = 0.03; S_{D1} = 0.025$
Seismic Design Category	A

4 Materials

The material properties used for the design are summarized in Tables 5 and 6.

Table 5: Concrete properties

Member	Nominal f'_c
Footings	3.0 ksi
Basement Walls	4.0 ksi
Foundation frost walls	4.0 ksi
Stair landings and treads	4.0 ksi
Slab on grade	4.0 ksi

Table 6: Reinforcement properties

Standard	Nominal f_y
All ASTM A615 Grade 60	60 ksi

5 Design and analysis software

The computer software employed for the analysis of the structure is the Finite Element Program called **XC** (see program description at http://xcengineering.xyz/html_files/software.html).

6 Load combinations

The load combinations shown in Tables 7 and 8 follow the strength design load combinations listed in IBC, section 1605.

pag. 4 de 10 $\,$ rev. 0.0 $\,$

Table 7: Combinations Ultimate Limit States

Identifier	Load Combination
ULS01:	1.4*D
ULS02_a:	1.2*D + 1.6*Lru + Lpu + 0.5*S
ULS02_b:	1.2*D + 1.6*Lrs + Lps + 0.5*S
ULS03_a:	1.2*D + 1.6*S + 0.5*Lru + Lpu
ULS03_b:	1.2*D + 1.6*S + 0.5*Lrs + Lps
ULS04_b:	$1.2*D + 1.6*S + 0.5*W_NS$
ULS04_a:	$1.2*D + 1.6*S + 0.5*W_WE$
ULS05_a:	$1.2*D + W_WE + 0.5*Lru + Lpu$
ULS05_b:	$1.2*D + W_NS + 0.5*Lru + Lpu$
ULS05_c:	$1.2*D + W_WE + 0.5*Lrs + Lps$
ULS05_d:	$1.2*D + W_NS + 0.5*Lrs + Lps$
ULS06_a:	1.2*D + 0.5*Lru + Lpu + 0.2*S
ULS06_b:	1.2*D + 0.5*Lrs + Lps + 0.2*S
ULS07_a:	$0.9*D + W_WE$
ULS07_b:	$0.9*D + W_NS$
T T 71	·

Where:

 $\mathbf{D} = \mathrm{dead} \ \mathrm{load}$

Lru = live load (uniform on rooms)

Lrs = live load (staggered pattern on rooms)

Lpu = live load (uniform on patios)

Lps = live load (staggered pattern on patios)

S = snow load

 $W_WE = Wind West-East$

 $W_NS = Wind North-South$

Table 8: Combinations Serviceability Limit States

Identifier	Load Combination
SLS01:	1.0*D
$SLS02_a:$	1.0*D + 1.0*Lru + Lpu + 0.3*S
$SLS02_b$:	1.0*D + 1.0*Lrs + Lps + 0.3*S
$SLS03_a:$	1.0*D + 1.0*S + 0.3*Lru + 0.3*Lpu
$SLS03_b$:	1.0*D + 1.0*S + 0.3*Lrs + 0.3*Lps
$SLS04_a:$	$1.0*D + W_WE + 1.0*Lru + Lpu$
SLS04_b:	$1.0*D + W_NS + 1.0*Lru + Lpu$
$SLS04_c:$	$1.0*D + W_WE + 1.0*Lrs + Lps$
$SLS04_d:$	$1.0*D + W_NS + 1.0*Lrs + Lps$
$SLS05_a:$	$1.0*D + W_WE$
SLS05_b:	$1.0*D + W_NS$

Where:

D = dead load

Lru = live load (uniform on rooms)

Lrs = live load (staggered pattern on rooms)

Lpu = live load (uniform on patios)

Lps = live load (staggered pattern on patios)

S = snow load

 $W_WE = Wind West-East$

 $W_NS = Wind North-South$

pag. 6 de 10 $\,$ rev.~0.0

A Appendix A. Loading criteria

A.1 Dead loads

Materials				
Wood structural panel	$36.0 \text{ pcf} = 5655 \frac{\text{newton}}{\text{meter}^3}$			
Concrete reinforced stone (including gravel)	$150.0 \text{ pcf} = 23563 \frac{\text{newton}}{\text{meter}^3}$			
Steel	$489.0 \text{ pcf} = 76816 \frac{\text{newton}}{\text{meter}^3}$			
Gypsum crete	$115.0 \text{ pcf} = 18065 \frac{\text{newton}}{\text{meter}^3}$			
Gypsum,loose	$70.0 \text{ pcf} = 10996 \frac{\text{newton}}{\text{meter}^3}$			
Earth (not submerged) sand and gravel (wet)	$120.0 \text{ pcf} = 18850 \frac{\text{newton}}{\text{meter}^3}$			
Water Frame partitions	$62.4 \text{ pcf} = 9802 \frac{\text{newton}}{\text{meter}^3}$			
Frame partitions Wood or steel studs, $\frac{1}{2}$ in gypsum board inside Wood studs, $2x4$ unplastered Wood studs, $2x4$ plastered one side Wood studs, $2x4$ plastered two sides Movable steel partitions	8 psf = 383 pascal 4 psf = 192 pascal 12 psf = 575 pascal 20 psf = 958 pascal 4 psf = 192 pascal			
Frame walls Exterior stud wall 2x4 @ 16in, $\frac{5}{8}$ gypsum insulated, $\frac{3}{8}$ in siding	11 psf = 526 pascal			
Exterior stud wall 2x6 @ 16in, $\frac{5}{8}$ gypsum insulated, $\frac{3}{8}$ in siding	12 psf = 575 pascal			
Exterior stud wall with brick veneer CMU wall 8in Window, glass, frame and sash	48 psf = 2298 pascal 60 psf = 9425 pascal 8 psf = 383 pascal			
Cladding Fiber cement panels, large format 38.4 in \times 102 in Fiber cement panels, small scale 9.6 in \times 102 in Perforated metal panel at exterior HVAC location	3.2 psf = 153 pascal 3.2 psf = 153 pascal			
Floor truss Single chord @ 24in o.c. spacing Double chord @ 24in o.c. spacing Sheating	3.2 psf = 153 pascal 4.25 psf = 203 pascal			
Roof sheating Floor sheating Ceilings Deck composite sleeperes (3in)	3.5 psf = 167 pascal 2.5 psf = 120 pascal 2.5 psf = 120 pascal 9.00 psf = 431 pascal			

A.2 Live loads

Occupancy or use	Uniform	Concentrated	Notes
Private rooms and corridors	40.0 psf =	-	IBC-2018 Table 1607.1
serving them in multifamily	1915 pascal		
dwelling			
Stairs and exits	100.0 psf =	300 pound =	IBC-2018 Table 1607.1.
	4788 pascal	1334 newton	Concentrated load on stair
			treads applied on an area
			of 2 inches by 2 inches
Balconies and decks	same as occu-	-	IBC-2018 Table 1607.1
	pancy served		
Garages (passenger vehicles	40.0 psf =	-	IBC-2018 Table 1607.1
only)	1915 pascal		
Cornices	$60.0 ext{ psf} =$	-	IBC-2018 Table 1607.1
	2873 pascal		
Elevator machine room and con-	-	300 pound =	IBC-2018 Table 1607.1.
trol room grating		1334 newton	Concentrated load applied
			on an area of 2 inches by
			2 inches
Flat roof (not occupiable) +	20.0 psf =	300 pound =	IBC-2018 Table 1607.1
maintenace	958 pascal	1334 newton	
Yards and terraces, pedestrians	100.0 psf =	-	IBC-2018 Table 1607.1
	4788 pascal		
Sidewalks, vehicular driveways	250.0 psf =	8000 pound =	IBC-2018 Table 1607.1
and yards, subject to trucking	11970 pascal	35586 newton	
Corridors first floor	100.0 psf =	-	IBC-2018 Table 1607.1
	4788 pascal		
Store first floor	100.0 psf =	-	IBC-2018 Table 1607.1
	4788 pascal		

A.3 Snow loads

Ground snow load	$p_q = 60.0 \text{ psf} = 2873 \text{ pascal}$	ASCE 7. Figure 7.1
Exposure factor	$\tilde{C}_e = 1.0$	ASCE 7. Table 7-2. Terrain cat-
		egory B, roof partially exposed
Thermal factor	$C_t = 1.0$	ASCE 7. Table 7-3.
Snow load importance factor	$I_s = 1.0$	ASCE 7. Table 7-4. Structure
		risk category II
Snow load flat roof	$p_f = 0.7 \times C_e \times C_t \times I_s \times p_g = 0.7 \times$	ASCE 7. Sect. 7.3
	$1.0 \times 1.0 \times 1.0 \times 60.0 = 42.0 \text{ psf} =$	
	2873 pascal	

pag. 8 de 10 $\,$ rev.~0.0

A.4 Wind loads

Alternate all-heights method.

Ultimate design wind speed $V_{ult} = 115 \frac{\text{miles}}{\text{hour}} = 51 \frac{\text{meters}}{\text{second}}$

Velocity pressure exposure coef- $K_z = 0.72$

ficient

Topographic factor $K_{zt} = 1.0$

IBC-2018, sect. 1609.6. Regularly shaped building, less than 75 feet in height, not sensitive to dynamic effects, not channeling effects or buffeting, simple diaphragm building

IBC-2018, figure 1609.3(1). Risk category II building

ASCE 7, table 27.3.1. Exposure B, height above ground level $z \approx 33$ feet

ASCE 7, sect. 26.8

Net pressure coefficients C_{net} . Main windforceresisting frames and systems

Description	C_{net} + Internal	C_{net} - Internal
	pressure	presure
Windward wall	0.43	0.73
Leeward wall	-0.51	-0.21
Sidewall	-0.66	-0.35
Parapet windward wall	1.2	28
Parapet leeward wall	-0.8	85
Flat roof	-1.09	-0.79

IBC-2018, Table 1609.6.2, enclosed

Design wind pressures P_{net} . Main windforce-resisting frames and systems

IBC-2018, sect. 1609.6.3

 $P_{net} = 0.00256 \times V^2 \times K_z \times C_{net} \times K_{zt}$ Description P_{net} + Internal P_{net} - Internal pressure presure Windward wall 10.5 psf = 501 pascal17.8 psf = 852 pascalLeeward wall -12.4 psf = -595 pascal-5.1 psf = -245 pascalSidewall -16.1 psf = -770 pascal-8.5 psf = -409 pascalParapet windward wall 31.2 psf = 1494 pascalParapet leeward wall -20.7 psf = -992 pascalFlat roof -26.6 psf = -1272 pascal -19.3 psf = -992 pascal

A.5 Earthquake loads

Parameter 0.2-second spectral response acceleration	$S_s = 0.045$	IBC-2018, figure 1613.3.1(1). Site class B
Parameter 1-second spectral response acceleration	$S_1 = 0.038$	IBC-2018, figure 1613.3.1(2). Site class B
Seismic design category	$S_1 \leq 0.04 \ and \ S_s \leq 0.15 \rightarrow \mathrm{SDS} \ \mathrm{A}$	IBC-2018, sect. 1613.3.1
Site coefficients	$F_a = 1.0, F_v = 1.0$	IBC-2018, $tables$
		1613.3.3(1) and
M		1613.3.3(2). Site class B
Maximum considered earthquake spectral re- sponse acceleration for short periods	$S_{MS} = F_a \cdot S_s = 0.045$	IBC-2018, sect. 163.3.3
Para Para Maria	$S_{M1} = F_a \cdot S_1 = 0.038$	IBC-2018, sect. 163.3.3
Design spectral response acceleration parameters	$S_{DS} = \frac{2}{3} S_{MS} = 0.03$	IBC-2018, sect. 163.3.4
	$S_{D1} = \frac{2}{3}S_{M1} = 0.025$	IBC-2018, sect. 163.3.4

pag. 10 de 10 $\,$ $rev. \ \theta.\theta$