Hoja 9

Producto interno y ortogonalidad en espacios vectoriales sobre \mathbb{R}

Problema 9.1 Dados los vectores $u=(u_1,u_2)^t, v=(v_1,v_2)^t \in \mathbb{R}^2$ decidir si las siguientes operaciones definen productos internos:

a)
$$\langle \mathfrak{u}, \mathfrak{v} \rangle = -2\mathfrak{u}_1\mathfrak{v}_1 + 3\mathfrak{u}_2\mathfrak{v}_2$$
.

b)
$$\langle \mathfrak{u}, \mathfrak{v} \rangle = 2\mathfrak{u}_1\mathfrak{v}_1 + 3\mathfrak{u}_2\mathfrak{v}_2.$$

c)
$$\langle u, v \rangle = u_1 v_1 + u_2$$
.

Para cada una de las operaciones que sí lo sean:

- 1. Calcular la longitud de los vectores $(1,0)^t$ y $(2,-1)^t$.
- 2. Hallar su producto interno.
- 3. Determinar el ángulo entre ellos.

Problema 9.2 Sea la matriz

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & -1 & -1 \end{array}\right).$$

- 1. Calcular su inversa, si existe. ¿Es A es ortogonal? *Basar la respuesta en el cálculo de la inversa*.
- 2. Hallar una base para el espacio fila y una base para el espacio columna de A.
- 3. Hallar el espacio nulo de A y su dimensión.
- 4. Comprobar que los vectores de la base del espacio nulo son ortogonales a los vectores de la base del espacio fila A.
- 5. Determinar el espacio nulo de la traspuesta de A y calcular su dimensión.
- 6. Comprobar que los vectores de la base del espacio nulo de la traspuesta de A son ortogonales a los vectores de la base del espacio columna de A.
- 7. Sin resolver sus ecuaciones, determinar si los sistemas $Ax = b_1$ y $Ax = b_2$ son compatibles, siendo $b_1 = (1, -1, 2)^t$ y $b_2 = (2, 1, 3)^t$.

Problema 9.3 Sea A una matriz 3×4 cuyo espacio nulo es

$$N(A) = \{x = \alpha (1, 2, 3, 4)^{t} : \alpha \in \mathbb{R} \}$$
.

- 1. Determinar el rango de *A*.
- 2. Consideremos el espacio fila de A. Probar que el vector $v_1 = (4,0,0,-1)^t$ pertenece a $\mathcal{C}(A^t)$.
- 3. Extender (v_1) a una base de $\mathfrak{C}(A^t)$.

4. Hallar una base del espacio nulo de la traspuesta.

Problema 9.4 Sea la operación definida en el espacio vectorial de las matrices de dimensión 2×2 con componentes reales, $\mathbb{R}^{2 \times 2}$, mediante:

$$\langle \mathsf{A},\mathsf{B} \rangle = \left\langle \left(egin{array}{ccc} a_{11} & a_{12} \ a_{21} & a_{22} \end{array} \right), \left(egin{array}{ccc} b_{11} & b_{12} \ b_{21} & b_{22} \end{array} \right)
ight
angle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22} \,.$$

- 1. Probar que esta operación es un producto interno en $\mathbb{R}^{2\times 2}$.
- 2. Probar que las matrices

$$A = \begin{pmatrix} 1 & 3 \\ 2 & -4 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 2 \\ 3 & 3 \end{pmatrix}$$

son ortogonales entre sí.

3. Hallar la proyección ortogonal de las matrices B y

$$C = \left(\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right)$$

sobre la matriz A.

Problema 9.5 Sea W un subespacio de \mathbb{R}^n y sea W^{\perp} su complemento ortogonal. Demostrar que W^{\perp} también es un subespacio.

Problema 9.6 Sea el espacio vectorial \mathbb{P}_n , con la operación

$$\langle p, q \rangle = \int_{-1}^{1} p(t) q(t) dt.$$

- 1. Probar que esta operación es un producto interno.
- 2. Probar que el subconjunto $S_1 \subset \mathbb{P}_n$ formado por los polinomios que sólo contienen términos de grado par es un subespacio de \mathbb{P}_n .

Nota: asumir que el polinomio idénticamente nulo p(x)=0 es un polinomio de grado cero.

3. Consideremos el subconjunto $S_2 \subset \mathbb{P}_n$ formado por los polinomios de \mathbb{P}_n que sólo contienen términos de grado impar. Probar que los vectores de S_1 son ortogonales a todos los vectores de S_2 . ¿Son S_1 y S_2 complementos ortogonales?