Duale Hochschule Baden-Württemberg

Logik und Algebra

8. Übungsblatt

1. Aufgabe: Zeigen Sie mit Hilfe des klassischen Logikkalküls unter Angabe der verwendeten Axiome die Folgerung:

$$\frac{A \to (A \to \bot)}{A \to \bot}$$

- 2. Aufgabe: Für die Folge (x_n) gilt $x_1=0$ und $x_{n+1}=x_n+2n$ für $n\in\mathbb{N}$. Zeigen Sie mit vollständiger Induktion, dass $x_n=n^2-n$ gilt.
- 3. Aufgabe: Für die Menge $M=\mathbb{Z}\cap[-4,4]$ sei die Relation $x\sim y \Leftrightarrow (x+1)^2=(y+1)^2$ definiert. Zeigen Sie, dass \sim auf M eine Äquivalenzrelation darstellt und bestimmen Sie die Äquivalenzklasse $[2]_{\sim}$. Wie viele Elemente besitzt die Faktormenge $M/_{\sim}$?
- 4. Aufgabe: Auf der Menge $M = \{(x_1, x_2) \mid x_1, x_2 \in \mathbb{R}, x_1^2 + x_2^2 < 1\}$ sei die Relation R definiert als

$$(x_1, x_2) R(y_1, y_2) \Leftrightarrow x_2 \leq y_2.$$

Beweisen oder widerlegen Sie:

- (a) R ist auf M eine Äquivalenzrelation.
- (b) R ist auf M eine Quasiordnung.
- 5. Aufgabe: Sei $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ mit $f(x) = x^2$.
 - (a) Für welche Teilmengen $B\subseteq \mathbb{Z}_6$ ist $f_B:\mathbb{Z}_6\to B$ mit $f_B(x)=f(x)$ surjektiv?
 - (b) Für welche mögliche Teilmengen $A\subseteq\mathbb{Z}_6$ ist $f_{AB}:A\to B$ für ein B wie zuvor mit $f_{AB}(x)=f(x)$ bijektiv?
- 6. Aufgabe: Auf $Q=\mathbb{Q}^2\setminus(0,0)$ sei die Operation $\star:Q\times Q\to Q$ definiert durch

$$(x_1, x_2) \star (y_1, y_2) = (x_1 \cdot y_1 + 2x_2 \cdot y_2, x_1 \cdot y_2 + x_2 \cdot y_1).$$

- (a) Gibt es ein neutrales Element $(e_1, e_2) \in Q$, so dass für alle $(x_1, x_2) \in Q$ gilt: $(x_1, x_2) \star (e_1, e_2) = (x_1, x_2)$?
- (b) Für ein beliebiges $(x_1, x_2) \in Q$ bestimmen Sie $(x_1, x_2) \star (y_1, y_2)$ für

$$(y_1, y_2) = \left(\frac{x_1}{x_1^2 - 2x_2^2}, \frac{x_2}{2x_2^2 - x_1^2}\right).$$

In welcher Beziehung stehen (x_1, x_2) und (y_1, y_2) zueinander?

- 7. Aufgabe: Es sei $G = \langle (25), (2154) \rangle$ in S_5 .
 - (a) Bestimmen Sie alle Elemente von G.
 - (b) Ist (G, \circ) kommutativ?
 - (c) Ist (H, \circ) mit $H = \langle (25)(14) \rangle$ eine Untergruppe von G?
- 8. Aufgabe:
 - (a) Bestimmen Sie den ggT(62,39) mit dem erweiterten euklidischen Algorithmus.
 - (b) Existiert zu 35 eine multiplikative Inverse in \mathbb{Z}_{62} ? Falls ja, bestimmen Sie diese.
- 9. Aufgabe: Es sei $p(x) = x^2 + x + 1$ und $q(x) = x^3 + x$.
 - (a) Bestimmen Sie das Produkt $p(x) \cdot q(x)$ in $\mathbb{Z}_2[x]$.
 - (b) Zeigen Sie, dass p(x) in $\mathbb{Z}_2[x]$ das Polynom $x^6 + 1$ teilt.
 - (c) Begründen Sie, warum p(x) ein Generatorpolynom eines zyklischen Codes in $\mathbb{Z}_2[x]/_{x^6+1}$ ist.
 - (d) Bestimmen Sie den binären Code von (1,0,1,0) im vom p(x) erzeugten zyklischen Code in $\mathbb{Z}_2[x]/_{x^6+1}$.
- 10. Aufgabe: Führen Sie das Diffie-Hellman Protokoll in \mathbb{Z}_{17} mit $\alpha=6$ und den Geheimnissen a=2 von Alice und b=3 von Bob durch. Welche Informationen werden öffentlich kommuniziert und berechnen Sie sowohl für Alice als auch für Bob, auf welchen gemeinsamen geheimen Schlüssel sie sich einigen.
- 11. Aufgabe: Es sei $n = 7 \cdot 23 = 161$.
 - (a) Berechnen Sie den ggT(132,5) mit dem erweiterten euklidischen Algorithmus.
 - (b) Zeigen Sie, dass (5,161) ein gültiger öffentlicher Schlüssel im RSA-Verfahren ist, und berechnen Sie den zugehörigen privaten Schlüssel.
 - (c) Verschlüsseln Sie die Nachricht m=3 mit dem öffentlichen Schlüssel (5,161).
- 12. Aufgabe: Gegeben sei die Boolesche Funktion $f(x_1, x_2, x_3, x_4) = (\overline{x}_3 \wedge \overline{x}_4) \vee (\overline{x}_1 \wedge \overline{x}_2) \vee (x_3 \wedge \overline{x}_4) \vee (x_1 \wedge x_2)$.
 - (a) Stellen Sie die konjunktive Normalform der Funktion f auf.
 - (b) Bestimmen Sie mit einem KV-Diagramm eine konjunktive Minimalform von f.
 - (c) Erstellen Sie aus der konjunktiven Minimalform von f ein Schaltungsdiagramm.
 - (d) Erstellen Sie aus der konjunktiven Minimalform von f eine Schaltung mit Logikgattern.