Problem 1

Find $\sup(A)$ and $\inf(A)$ where

(a)
$$A := \left\{ 1 - \frac{(-1)^n}{n} \mid n \in \mathbb{N} \right\}$$

(b)
$$A := \left\{ \frac{1}{n} - \frac{1}{m} \mid m, n \in \mathbb{N} \right\}$$

(c)
$$A := \{ \frac{m}{n} \mid m, n \in \mathbb{N}, \ m+n \le 10 \}$$

(a)

 $\sup(A) = 2$: For any $t \in A$, t < 2, we can find a_t as follows:

$$a_t := \begin{cases} 1, & t < 1 \\ \frac{4}{3}, & 1 \le t < \frac{4}{3} \\ 2, & t = \frac{4}{3} \end{cases}$$

 $\inf(A) = \frac{1}{2}$: For any $t \in A$, $t > \frac{1}{2}$, we can find a_t as follows:

$$a_t := \begin{cases} 1, & t > 1 \\ \frac{3}{4}, & \frac{3}{4} < t \le 1 \\ \frac{1}{2}, & t < \frac{3}{4} \end{cases}$$

(b

 $\sup(A) = 1$: For any $t \in A$, t < 1, we can find $a_t > t$ as follows:

- (1) Take $|t| \ge t$.
- (2) If $|t|<\frac{1}{2}$, find m such that $\frac{1}{m}<|t|$ (which exists by the Archimedean Property corollary). Set $a_t=1-\frac{1}{m}$.
- (3) If $|t| > \frac{1}{2}$, then find m such that $\frac{1}{m} < 1 |t|$, and set $a_t = 1 \frac{1}{m}$.

In all three cases, $a_t > t$, meaning $\sup(A) = 1$

 $\inf(A) = -1$

(c)

Since A is finite, $\sup(A) = \max(A) = 9$ and $\inf(A) = \min(A) = \frac{1}{9}$

Problem 2

Suppose $u = \sup(A)$ such that $u \notin A$. Show that there is a strictly increasing sequence

$$t_1 < t_2 < t_3 < \dots$$

With $t_n \in A$ and $t_n + \frac{1}{n} > u$ for all $n \ge 1$

Let $t_n = u - \frac{1}{2n}$. t_n must be a strictly increasing sequence because $t_{n+1} = u - \frac{1}{2n+2} > u - \frac{1}{2n} = t_n$.

Additionally, $t_n + \frac{1}{n} = u - \frac{1}{n} < u$, meaning $t_n \in A$.

Problem 3

If m is a lower bound for $A \subseteq \mathbb{R}$, show that the following are equivalent:

- (i) $m = \inf(A)$
- (ii) $\forall t > m, \ \exists a_t \in A \ni a_t < t$
- (iii) $\forall \varepsilon > 0, \exists a_{\varepsilon} \ni m + \varepsilon > a_{\varepsilon}$

Problem 4

Let $A, B \in \mathbb{R}$ be bounded subsets.

(a) Show that

$$sup(A + B) = sup(A) + sup(B)$$
$$inf(A + B) = inf(A) + inf(B)$$

(b) If t > 0, show that

$$\sup(tA) = t \sup(A)$$
$$\inf(tA) = t \inf(A)$$

(a)

Let $a = \sup(A)$ and $b = \sup(B)$, and $x_a \in A$ and $x_b \in B$. Then

$$\begin{array}{c} a \geq x_a \\ a+x_b \geq x_a+x_b & \text{by the ordering of } \mathbb{R} \\ a+b \geq a+x_b & \text{by the definition of } \sup(B) \\ a+b \geq x_a+x_b & \text{by the ordering of } \mathbb{R} \\ \sup(A)+\sup(B)=\sup(A+B) & \end{array}$$

Let $a' = \inf(A)$ and $b' = \inf(B)$, with x_a and x_b defined as above. Then

$$a' \le x_a$$
 $a' + x_b \le x_a + x_b$ by the ordering of \mathbb{R}
 $a' + b' \le a' + x'_b$ by the definition of $\inf(B)$
 $a' + b' \le x_a + x_b$ by the ordering of \mathbb{R}
 $\inf(A) + \inf(B) = \inf(A + B)$

(b

Let $a = \sup(A)$, $x_a \in A$, and t > 0. Then

$$a \geq x_a$$

$$ta \geq tx_a \qquad \qquad \text{by the ordering of } \mathbb{R}$$

$$t \sup(A) = \sup(tA)$$

Let $a' = \inf(A)$, with x_a and t defined as above.

$$a' \leq x_a$$

$$ta' \leq tx_a \qquad \qquad \text{by the ordering of } \mathbb{R}$$

$$t\inf(A) = \inf(tA)$$

Problem 5

Let I = (0,1) denote the open unit interval and consider $F: I \times I \to \mathbb{R}$, F(x,y) = 2x + y.

Compute

$$\sup_{y \in I} \left(\inf_{x \in I} F(x, y) \right)$$

and

$$\inf_{x \in I} \left(\sup_{y \in I} F(x, y) \right)$$

We start by finding $\inf_{x\in I} F(x,y)$, which is equal to F(x,y)=y (as the infimum is the greatest lower bound on 2x, which is 2(0)=0). So, $\sup_{y\in I} y=1$.

We start by finding $\sup_{y \in I} F(x, y)$, which is $\sup_{y \in I} 2x + y$, which is 2x + 1, as $\sup_{x \in I} 1$. So, by similar reasoning, $\inf_{x \in I} 2x + 1 = 1$.

These values are the same.

Problem 6

Let D be a nomempty set and consider the vector space

$$\ell_{\infty}(D) := \{ f \mid f : D \to \mathbb{R} \text{ is bounded} \}$$

with point-wise addition and scalar multiplication. Show that

$$||f||_u := \sup_{x \in D} |f(x)|$$

defines a norm on $\ell_{\infty}(D)$.

- (1) Because $\forall x \in \mathbb{R}, |x| \ge 0, ||\cdot||_u \ge 0.$
- $(2) \ \|f+g\|_{u} = \sup_{x \in D} |f(x)+g(x)| \leq \sup_{x \in D} |f(x)| + \sup_{x \in D} |g(x)| \ (\text{by the Triangle Inequality}) = \|f\|_{u} + \|g\|_{u}.$
- (3) $\|\mathbf{0}\| = \sup_{x \in D} |\mathbf{0}| = 0.$
- (4) Let $||f||_u = 0$. Then, $\sup_{x \in D} |f(x)| = 0$, meaning that $\nexists x' \in D$ such that $f(x') \neq 0$ (or else $\sup_{x \in D} |f(x)| = f(x')$), so $f(x) = \mathbf{0}$.
- (5) $||tf||_u = \sup_{x \in D} |tf(x)| = |t| \sup_{x \in D} |f(x)| = |t| ||f||_u$.

Therefore, $\|\cdot\|_u$ is a norm on ℓ_{∞} .

Problem 7

Let $f, g: D \to \mathbb{R}$ be bounded functions. Show that

- (a) $\sup_{x \in D} (f+g)(x) \le \sup_{x \in D} f(x) + \sup_{x \in D} g(x)$
- (b) $\inf_{x \in D} (f+g)(x) \ge \inf_{x \in D} f(x) + \inf_{x \in D} g(x)$
- (c) $|\sup_{x \in D} f(x) \sup_{x \in D} g(x)| \le \sup_{x \in D} |f(x) g(x)|$

Problem 8

Find $\bigcap_{n=1}^{\infty} I_n$ where

- (a) $I_n = [0, 1/n]$
- (b) $I_n = (0, 1/n)$
- (c) $I_n = [n, \infty)$

(a)

For all k>1, $\bigcap_{n=1}^k=[0,1/k],$ meaning that $\bigcap_{n=1}^\infty=\lim_{k\to\infty}[0,1/k]=\{0\}.$