

# Winning Space Race with Data Science

Mehdi Hosseinpour 04/19/2025



### Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion

### **Executive Summary**

This project focuses on the landing outcome of the Falcon 9 first stage. Data was collected from the SpaceX API, capturing key information such as rocket type, payload mass (kg), launch and landing sites, and landing outcome (successful vs. failed). The data was then cleaned, structured, and visualized to explore the relationship between different factors and the target outcome—landing success. Next, four machine learning algorithms, including logistic regression, Support Vector Machine (SVM), decision tree classifier, and K-Nearest Neighbors (KNN), were developed to predict the likelihood of successful first-stage landings. Each model was tuned using GridSearchCV with 10-fold crossvalidation. The comparison results showed that the decision tree classifier slightly outperformed the others in terms of cross-validation accuracy, though all models achieved similar results on the test set. 3

#### Introduction

Several aerospace companies—such as Virgin Galactic, Rocket Lab, Blue Origin, and SpaceX—are working to make space travel more affordable and accessible. Among them, SpaceX stands out as a pioneer, primarily due to its innovative use of first-stage reusability, which significantly reduces launch costs to around \$62 million per launch. However, not all first-stage landings have been successful. To address this challenge, it is crucial to develop a machine learning model capable of accurately predicting the likelihood of a successful first-stage landing. The prediction outcomes from such a model may provide valuable insights to competing aerospace companies or contractors aiming to bid competitively against SpaceX for launch services. Therefore, the main objective of this project is to determine the probability that the first stage will successfully land.



### Methodology

- Data collection from relevant sources (e.g., SpaceX API)
- Perform data wrangling (e.g., one-hot encoding, handling missing values)
- Conduct exploratory data analysis (EDA) using visualization and SQL tools
- Create interactive visual analytics using Folium and Plotly Dash
- Build predictive analysis using classification models

#### **Data Collection**

#### Data was collected from two primary sources:

#### (1) SpaceX API:

Retrieved structured data including rocket type, payload mass (kg), launch and landing sites, and landing outcome (successful vs. failed).

#### (2) Web Scraping from Wikipedia:

Collected historical launch data for Falcon 9 rockets from a Wikipedia page listing Falcon 9 missions.

### Data Collection – SpaceX API

 Send the GET request to SpaceX API and decode the response content as a Json

Turn Json file into a Pandas data frame

• Filter the data to only include Falcon 9 launches

GitHub URL

# Data Collection - Web Scraping

Request the Falcon9 Launch Wiki page from its URL

• Extract the HTML table containing Falcon 9 launch records

• Parse the table and convert it into a Pandas data frame



Falcon 9 v1.0

2









Falcon 9 Block 5

Falcon Heavy

# **Data Wrangling**

- Handle missing values
- Calculate the number and occurrence of each orbit
- Compute the number of launches on each orbit
- Calculate the number and occurrence of mission outcome of the orbits
- Create a new binary variable, named Class, representing the outcome of each launch (1: successful landing; 0: otherwise)

### EDA with Data Visualization & Feature Engineering

#### Seaborn catplot to Visualize:

- Launch Site vs. Flight Number, grouped by Landing Outcome (Class 0 = Failure, Class 1 = Success)
- Flight Number vs. Orbit type, grouped by Landing Outcome

#### Seaborn *scatterplot* to Visualize:

- Payload Mass vs. Launch Site, grouped by Landing Outcome
- Payload Mass vs. Orbit type, grouped by Landing Outcome

#### Seaborn *barplot* to Visualize:

 The relationship between success rate of each orbit type

#### Seaborn *lineplot* to Visualize:

The launch success yearly trend

#### Pandas get\_dummies Function:

Create dummy variables for categorical columns

### **EDA** with SQL

#### **SQL** queries were executed to:

- Display the names of the unique launch sites in the space mission
- Display 5 records where launch sites begin with the string 'CCA'
- Display the total payload mass carried by boosters launched by NASA (CRS)
- Display average payload mass carried by booster version F9 v1.1
- List the date when the first successful landing outcome in ground pad was achieved
- List the total number of successful and failure mission outcomes
- List all the booster versions that have carried the maximum payload mass
- Rank the count of landing outcomes between the date 2010-06-04 and 2017-03-20, in descending order.

# Build an Interactive Map with Folium

| Map Object     | Why It Was Used                                                        |  |  |  |  |
|----------------|------------------------------------------------------------------------|--|--|--|--|
| Nankon         | To highlight key launch sites, landing sites, or observation points on |  |  |  |  |
| Marker         | the map                                                                |  |  |  |  |
| Circle         | To display launch site vicinities                                      |  |  |  |  |
| CircleMarker   | For plotting dense points like landing sites grouped by landing        |  |  |  |  |
| Circieiviarkei | outcome                                                                |  |  |  |  |
| Polyline       | To represent flight paths or the trajectory of a rocket launch         |  |  |  |  |
| Popup          | To provide more detailed information such as site name, or landing     |  |  |  |  |
|                | outcome (0, 1)                                                         |  |  |  |  |
| MarkerCluster  | To visualizing multiple markers on the map                             |  |  |  |  |
| MousePosition  | Marks down a point on the closest coastline to a specific launch site. |  |  |  |  |

# Build a Dashboard with Plotly Dash

| Map Object           | Why It Was Used                                                                    |  |  |
|----------------------|------------------------------------------------------------------------------------|--|--|
| Plotly Express (px)  | Create interactive plots (e.g., pie charts, scatter plots)                         |  |  |
| px.pie()             | Create interactive pie chart displaying the percentage of success launches by site |  |  |
| px.scatter()         | Create interactive scatter plots for payload mass vs. landing outcome              |  |  |
| Dash HTML Component  | Used to structure and format the style of web applications                         |  |  |
| Dash Core Component  | Allow to create interactive elements like dropdowns, sliders, buttons, and graphs  |  |  |
| dcc.RangeSlider()    | Add a Range Slider to select different ranges of payloads                          |  |  |
| Dash @app.callback() | Render interactive pie-chart and scatter plots by updating the content             |  |  |

### Predictive Analysis (Classification)

- 1. Load and prepare the data (e.g., perform feature scaling)
- 2. Standardize the features and assign the them to the variable scaled\_X
- 3. Split the data (80% for training, 20% for testing)
- **4. Train classification models** (Binary Logistic Regression, SVC, Decision Tree, and KNN)
- **5. Tune and fit models** (Use Scikit-learn GridSearchCV with 10-fold cross-validation)
- 6. Evaluate model performance (Based on cross-validation score, confusion matrix, and test accuracy)
  GitHub URL



### Flight Number vs. Launch Site



#### **GitHub URL**

- The likelihood of successful launches tends to increase as the flight number increases.
- More launches were conducted and successfully landed at the CCAFS SLC 40 launch site.

### Payload vs. Launch Site



- For the CCAFS SLC 40 and VAFB SLC 4E launch sites, the likelihood of successful launches tend to increase with heavier payload mass.
- For the KSC LC 39A launch site, launches with payload mass around 6000 kg had unsuccessful landing, while other payload ranges tend to have successful landing.

### Success Rate vs. Orbit Type



• The VLEO, LEO, PO, and ISS orbits had moderate successful landing rates, ranging from 63% to 87%.

**GitHub URL** 

- The ES-L1, SSO, HEO, and GEO orbits achieved a 100% successful landing rate, while the SO orbit had the lowest success rate.
- Although not shown in the barplot above, the ES-L1, HEO, GEO, and SO orbits each had a single launch with the SO orbit resulting in a failed landing.

# Flight Number vs. Orbit Type

- The GTO, ISS, PO, and LEO orbits had launches spanning a wider range of flight numbers.
- The VLEO orbit type was associated with launches in the higher flight number, ranging from 65 to 89.
- The ES-L1, HEO, GEO, and SO orbits each had a single launch.



### Payload vs. Orbit Type

The scatter plot indicates that certain orbits, such as ISS, LEO, and GTO, had a wider range of payload masses. However, due to the limited number of launches associated with other orbit types (e.g., PO, VLEO, SO), there is no clear pattern linking orbit type, payload mass, and landing outcome.



### Launch Success Yearly Trend

- The line chart depicts the average success landing by launch site over years.
- Overall, the rate of successful landings increased over the years, especially after 2016, with the CCAFS SLC 40 and VAFB SLC 4E launch sites having notable improvements in success rates.



#### All Launch Site Names

• SQL Query to find the names of the unique launch sites:

%sql SELECT DISTINCT Launch\_Site FROM SPACEXTABLE;

• **Explanation**: The SQL query above returns a list of unique launch sites from the SPACEXTABLE

Launch\_Site

CCAFS LC-40

VAFB SLC-4E

KSC LC-39A

CCAFS SLC-40

# Launch Site Names Begin with 'CCA'

• SQL Query to find 5 records where launch sites begin with "CCA":

%sql SELECT \* FROM SPACEXTABLE WHERE Launch\_Site LIKE 'CCA%' LIMIT 5;

**Explanation:** This SQL query displays the first 5 launches from the SPACEXTABLE where launch sites begin with "CCA"

| Date           | Time<br>(UTC) | Booster_Version | Launch_Site     | Payload                                                                         | PAYLOAD_MASS_KG_ | Orbit        | Customer              | Mission_Outcome | Landing_Outcome     |
|----------------|---------------|-----------------|-----------------|---------------------------------------------------------------------------------|------------------|--------------|-----------------------|-----------------|---------------------|
| 2010-<br>06-04 | 18:45:00      | F9 v1.0 B0003   | CCAFS LC-<br>40 | Dragon<br>Spacecraft<br>Qualification<br>Unit                                   | 0                | LEO          | SpaceX                | Success         | Failure (parachute) |
| 2010-<br>12-08 | 15:43:00      | F9 v1.0 B0004   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C1, two<br>CubeSats,<br>barrel of<br>Brouere<br>cheese | 0                | LEO<br>(ISS) | NASA<br>(COTS)<br>NRO | Success         | Failure (parachute) |
| 2012-<br>05-22 | 7:44:00       | F9 v1.0 B0005   | CCAFS LC-<br>40 | Dragon<br>demo flight<br>C2                                                     | 525              | LEO<br>(ISS) | NASA<br>(COTS)        | Success         | No attempt          |
| 2012-<br>10-08 | 0:35:00       | F9 v1.0 B0006   | CCAFS LC-<br>40 | SpaceX<br>CRS-1                                                                 | 500              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |
| 2013-<br>03-01 | 15:10:00      | F9 v1.0 B0007   | CCAFS LC-<br>40 | SpaceX<br>CRS-2                                                                 | 677              | LEO<br>(ISS) | NASA<br>(CRS)         | Success         | No attempt          |

### **Total Payload Mass**

SQL Query to calculate the total payload carried by boosters from NASA:

%sql SELECT SUM(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXTABLE WHERE Customer = 'NASA (CRS)';

• Explanation: This SQL query returns total payload mass (in kg) launched for missions where NASA (CRS) was the customer.

SUM(PAYLOAD\_MASS\_\_KG\_)

45596

### Average Payload Mass by F9 v1.1

• SQL Query to calculate the average payload mass carried by booster version F9 v1.1

%sql SELECT AVG(PAYLOAD\_MASS\_\_KG\_) FROM SPACEXTABLE WHERE Booster\_Version = 'F9 v1.1';

• **Explanation**: the query above returns the average payload mass for all flights using the F9 v1.1 booster version.

AVG(PAYLOAD\_MASS\_\_KG\_)
2928.4

### First Successful Ground Landing Date

• SQL Query to find the dates of the first successful landing outcome on ground pad

%sql SELECT MIN(Date) AS First\_Successful\_GroundPad\_Landing FROM SPACEXTABLE WHERE Landing\_Outcome = 'Success (ground pad)';

• **Explanation**: To find and display the dates of the first successful landing occurred on a ground pad.

First\_Successful\_GroundPad\_Landing
2015-12-22

#### Successful Drone Ship Landing with Payload between 4000 and 6000

 SQL Query to list the names of boosters which have successfully landed on drone ship and had payload mass greater than 4000 but less than 6000

%sql SELECT Booster\_Version FROM SPACEXTABLE WHERE Landing\_Outcome = 'Success (drone ship)' AND PAYLOAD\_MASS\_\_KG\_ > 4000 AND PAYLOAD\_MASS\_\_KG\_ < 6000;

**Explanation:** The query above was executed to list the names of boosters that successfully landed on a drone ship and carried a payload between 4000 kg and 6000 kg.

#### Booster\_Version

F9 FT B1022

F9 FT B1026

F9 FT B1021.2

F9 FT B1031.2

#### Total Number of Successful and Failure Mission Outcomes

• SQL Query to calculate the total number of successful and failure mission outcomes

%sql SELECT Mission\_Outcome, COUNT(\*) AS Outcome\_Count FROM SPACEXTABLE GROUP BY Mission\_Outcome;

#### **Explanation:**

The query above was run to calculate and list the total number of successful and failure mission outcomes.

| Mission_Outcome                  | Outcome_Count |
|----------------------------------|---------------|
| Failure (in flight)              | 1             |
| Success                          | 98            |
| Success                          | 1             |
| Success (payload status unclear) | 1             |

### **Boosters Carried Maximum Payload**

• SQL Query to list the names of the booster which have carried the maximum payload mass

%sql SELECT Booster\_Version FROM SPACEXTABLE WHERE
PAYLOAD\_MASS\_\_KG\_ = (SELECT MAX(PAYLOAD\_MASS\_\_KG\_) FROM
SPACEXTABLE);

• Explanation: The query above was used to find those boosters in the SPACEXTABLE dataset that carried the heaviest payload.

| Во | ost | er_ | Version |
|----|-----|-----|---------|
|    | F9  | B5  | B1048.4 |
|    | F9  | B5  | B1049.4 |
|    | F9  | В5  | B1051.3 |
|    | F9  | В5  | B1056.4 |
|    | F9  | В5  | B1048.5 |
|    | F9  | B5  | B1051.4 |
|    | F9  | В5  | B1049.5 |
|    | F9  | В5  | B1060.2 |
|    | F9  | В5  | B1058.3 |
|    | F9  | В5  | B1051.6 |
|    | F9  | В5  | B1060.3 |
|    |     |     |         |

F9 B5 B1049.7

#### 2015 Launch Records

• SQL Query to list the failed landing\_outcomes in drone ship, their booster versions, and launch site names for in year 2015

%%sql

SELECT substr(Date, 6, 2) AS Month, Landing\_Outcome, Booster\_Version, Launch\_Site

FROM SPACEXTABLE

WHERE Landing\_Outcome = 'Failure (drone ship)'

AND substr(Date, 1, 4) = '2015';

• Explanation: This SQL query was executed to find and list failed landings on a drone ship that took place in the year 2015.

| Мо | nth | Landing_Outcome      | Booster_Version | Launch_Site |
|----|-----|----------------------|-----------------|-------------|
|    | 01  | Failure (drone ship) | F9 v1.1 B1012   | CCAFS LC-40 |
|    | 04  | Failure (drone ship) | F9 v1.1 B1015   | CCAFS LC-40 |

#### Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

• SQL Query to rank the count of landing outcomes (such as Failure (drone ship) or Success (ground pad)) between the date 2010-06-04 and 2017-03-20, in descending order

%%sql

SELECT Landing\_Outcome, COUNT(\*) AS Outcome\_Count

FROM SPACEXTABLE

WHERE Date BETWEEN '2010-06-04' AND '2017-03-20'

**GROUP BY Landing\_Outcome** 

ORDER BY Outcome\_Count DESC;

• Explanation: This SQL query was used to rank in descending order the count of landing outcomes between June 4, 2010 and March 20, 2017.

Landing\_Outcome Outcome\_Count No attempt 10 Success (drone ship) 5 Failure (drone ship) 5 Success (ground pad) 3 Controlled (ocean) 3 Uncontrolled (ocean) 2 Failure (parachute) 2 Precluded (drone ship)

GitHub URL



### Folium Map Locations of Launch Sites

- There are four launch sites, including CCAFS LC-40 (FL), CCAFS SLC-40 (FL), KSC LC-39A (FL), and VAFB SLC-4E (CA).
- The launch sites are located on the map using the folium. Circle and folium. Marker methods.

New York

Washington

United States

Phoenix
SLC

4E

Mexico

La Habana 9

Ciudad

de México

Ciudad

de México

### Folium Map of Launch Outcomes for Each Site

- For each launch site on the map, the landing outcomes are depicted using the folium. Circle and folium. Marker methods.
- Green and red markers indicate successful (class=1) and failed (class=0) landings, respectively.
- Among the four launch sites, KSC LC-39A achieved the highest success rate (~77%), whereas CCAFS LC-40 recorded the lowest (~27%). GitHub URL









### Folium Map of CCAFS SLC-40 Site to Its Proximities



Proximity map showing the CCAFS SLC-40 Launch Site and the nearest coastline





Proximity map displaying the CCAFS SLC-40 Launch Site and the nearest railway line

### Folium Map of CCAFS SLC-40 Site to Its Proximities (cont.)



Proximity map showing the CCAFS SLC-40 Launch Site and the nearest highway



Proximity map displaying the CCAFS SLC-40 Launch Site and the nearest city

GitHub URL



#### Pie Chart of Success Launches Across Sites



**GitHub URL** 

The pie charts presented above show that the KSC LC-39A site accounted for 41.2% of all successful landings, whereas the CCAFS LC-40 site contributed only 14.4%.

#### Pie Chart of Success Launches for KSC LC-39A Site



The pie chart illustrates that nearly 77 percent of launches at the KSC LC-39A site were successful, making it the most reliable launch site compared to others.

GitHub URL

### Scatter Plot of Payload Mass vs. Landing Outcome



GitHub URL

As shown in the scatter plot above, the FT booster version had higher success rate, particularly for the payload range between 2,000 and 5,600 kg.



### **Classification Accuracy**

| Models   | Average CV Scores | Test Sample Scores |
|----------|-------------------|--------------------|
| Logistic | 0.846             | 0.833              |
| SVM      | 0.848             | 0.833              |
| Tree     | 0.877             | 0.833              |
| KNN      | 0.848             | 0.833              |

The results show that the decision tree classifier was preferred over the other candidate models based on its cross-validation score. However, all models demonstrated similar prediction performance on the test set.



#### **Confusion Matrix**

The confusion matrix of the decision tree classifier, which is found as the best performing model according to the cross-validation accuracy measure. Note that all the four candidate models had similar performance on the test set.



#### **Conclusions**

- This project focused on predicting the likelihood of successful first-stage landings of the Falcon 9 rocket.
- The rate of successful landings has increased over the years, especially after 2016, indicating improved performance over time.
- ❖ Over 41.2% of all successful landings occurred at the KSC LC-39A site, whereas 14.4% took place at the CCAFS LC-40 site.
- ❖ Seventy-seven percent of launches at the KSC LC-39A site landed successfully, making it making it the most reliable site for landing compared to others. In contrast, CCAFS LC-40 recorded the lowest success rate (~27%).

### Conclusions (cont.)

- Compared to other orbit types, the VLEO, SSO, and LEO orbits had higher successful landings.
- ❖ The FT booster version exhibited higher success rate, particularly for the payload range between 2,000 and 5,600 kg.
- According to the cross-validation score, the decision tree model marginally outperformed the other candidate models. However, all four models demonstrated similar prediction performance on the test set.

