Chapter 8 Random-Variate Generation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- Develop understanding of generating samples from a specified distribution as input to a simulation model.
- Illustrate some widely-used techniques for generating random variates.
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - □ Special properties

Random Number Generator

All the techniques assume that a source of uniform [0,1] random numbers R₁, R₂, ... is readily available, where each R_i has pdf

$$f_R(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

and cdf

$$F_{R}(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

Inverse-transform Technique

- The concept:
 - \square For cdf function: r = F(x)
 - ☐ Generate *r* from uniform (0,1)
 - ☐ Find *x*:

$$X = F^{-1}(r)$$

Note
$$0 \le F(x) \le 1$$

Steps to follow

- Compute the cdf of the desired random variable X
- 2. Set F(X)=R on the range of X
- 3. Solve the equation F(X)=R for X in terms of R
- 4. Generate (as needed) uniform Random Numbers R₁, R₂, R₃, and compute the desired random variates by X_i=F⁻¹(R_i)

Exponential cdf:

Density
$$f(x) = \lambda e^{-\lambda x}$$

$$r = F(x)$$

= $1 - e^{-\lambda x}$ for $x \ge 0$

 \square To generate $X_1, X_2, X_3 \dots$

$$X_i = F^{-1}(R_i)$$

= $-(1/\lambda) \ln(1-R_i)$ [Eq'n 8.3]

• One simplification is use to Replace $(1-R_i)$ with R_i as both R_i and $(1-R_i)$ are uniformly distributed on [0,1]

$$X_i = -(1/\lambda) \ln(R_i)$$

Exponential Distribution (λ =1)

i	R_i	X_i
1	0.1306	0.1400
2	0.0422	0.0431
3	0.6597	1.078
4	0.7965	1.592
5	0.7696	1.468

- Example: Generate 200 variates X_i with distribution exp(λ= 1)
 - □ Generate 200 R_i with U(0,1) and utilize eq'n 8.3, the histogram of X_i becomes:

Does X have the desired distribution??

Check: Does the random variable X₁ generated through transformation have the desired distribution?

 $\therefore R_1$ is Uniformly distributed on [0,1]

$$P(X_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$$

Remember for Uniform Distribution U(0,1) $P(Y \le y) = y$ for $0 \le y \le 1$

Java Code: Exponential Distribution

```
public static double exponential(Random rng, double mean)
{
    return -mean*Math.log( rng.nextDouble() );
}
```

Other Distributions

[Inverse-transform]

- Examples of other distributions for which inverse cdf works are:
 - □ Uniform distribution
 - □ Weibull distribution
 - □ Triangular distribution

■ The pdf of X is:
$$f(x) = \begin{cases} 1/b - a, & a \le x \le b \\ 0, & \text{otherwise} \end{cases}$$

■ The cdf is given by:

$$F(x) = \begin{cases} 0, & x < a \\ x - a/b - a, & a \le x \le b \\ 1, & x > b \end{cases}$$

- Set F(X)=(X-a)/(b-a)=R
- Solving for X yields X=a+(b-a)R
- Therefore the random variate is X=a+(b-a)R

The pdf of X is:

$$f(x) = \begin{cases} \frac{\beta}{\alpha^{\beta}} x^{\beta - 1} e^{-(x/\alpha)^{\beta}}, & x \ge 0; \\ 0, & \text{otherwise;} \end{cases}$$

The cdf is given by:

ven by:
$$\alpha > 0$$
 and $\beta > 0$ are shape parameters

$$F(x)=1-e^{-(x/\alpha)^{\beta}}, x\geq 0$$

• Set $F(x)=1-e^{-(x/\alpha)^{\beta}}=R$

Compare this with exponential variate

- Solving for X yields $X = \alpha \left[-\ln(1-R)\right]^{1/\beta}$ If X is a Weibull variate, then X^{β} is an exponential variate with mean α^{β}
- Conversely, if Y is an exponential variate with mean μ , then $Y^{1/\beta}$ is a Weibull variate with shape parameter β and scale parameter $\alpha = \mu^{1/\beta}$

Consider a random variable X that has the pdf as:

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, & 1 < x \le 2 \\ 0, & \text{otherwise} \end{cases}$$

- For $0 \le X \le 1$, $R = X^2/2$ and for $1 \le X \le 2$, $R = 1 ((2 X)^2/2)$
- Thus X is generated by:

$$X = \begin{cases} \sqrt{2R}, & 0 \le R \le 1/2 \\ 2 - \sqrt{2(1-R)}, & 1/2 < R \le 1 \end{cases}$$

Empirical Continuous Dist'n

[Inverse-transform]

- When theoretical distribution is not applicable that provides a good model, then it is necessary to use empirical distribution of data
- To collect empirical data:
 - One possibility is to resample the observed data itself
 - This is known as using the empirical distribution
 - It makes sense if the input process takes a finite number of values
 - □ If the data is drawn from a continuous valued input process, then we can interpolate between the observed data points to fill in the gaps
- This section looks into defining and generating data from a continuous empirical distribution

Empirical Continuous Dist'n [Inverse-transform]

- \square Arrange the data from smallest to largest $x_{(1)} \le x_{(2)} \le ... \le x_{(n)}$
- \square Define $x_{(0)} = 0$
- \square Assign the probability 1/n to each interval $\chi_{(i-1)} \leq \chi \leq \chi_{(i)}$
- The resulting empirical cdf has a ith line segment slope as

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{1/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

The inverse cdf is calculated by

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$

where (i-1)/n<R≤i/n; R is the random number generated

Example Empirical Distribution

- Five observations of fire crew response times (in minutes) to incoming alarms are collected to be used in a simulation investigating possible alternative staffing and crew-scheduling policies. The data are: 2.76, 1.83, 0.80, 1.45, 1.24
- Arranging in ascending order: 0.80, 1.24, 1.45, 1.83, 2.76

	Interval		Cumulative	
i	(minutes)	Probability 1/n	Probability, i/n	Slope, a i
1	$0 \le x \le 0.80$	0.2	0.20	4.00
2	$0.80 \le x \le 1.24$	0.2	0.40	2.2
3	$1.24 \le x \le 1.45$	0.2	0.60	1.1
4	$1.45 \le x \le 1.83$	0.2	0.80	1.9
5	$1.83 \le x \le 2.76$	0.2	1.00	4.65

If a random number R1=0.71 is generated, then R1 lies in the fourth interval (between 3/5 and 4/5. Therefore,

$$X1=x_{(4-1)} +a_4(R1-(4-1)/n) = 1.66$$

Empirical Distribution

In general, given c_i is the cumulative probability of first i intervals, $x_{(i-1)} \le x \le x_{(i)}$ is the ith interval, then the slope of the ith line segment is:

$$a_i = \frac{x_{(i)} - x_{(i-1)}}{c_i - c_{i-1}}$$

The inverse cdf is calculated as:

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i(R - c_{i-1})$$
when $c_{i-1} < R \le c_i$

Empirical Continuous Dist'n [Inverse-transform]

Example: Suppose the data collected for 100 brokenwidget repair times are:

	Interval		Relative	Cumulative	Slope,
i	(Hours)	Frequency	Frequency	Frequency, c _i	ai
1	$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
2	$0.5 \le x \le 1.0$	10	0.10	0.41	5.0
3	$1.0 \le x \le 1.5$	25	0.25	0.66	2.0
4	$1.5 \le x \le 2.0$	34	0.34	1.00	1.47

Continuous Distributions with no closed-form inverse

- A number of useful continuous distributions do not have a closed form expression for their cdf or inverse
- Examples are: Normal, Gamma, Beta
- Approximations are possible to inverse cdf
- A simple approximation to inverse cdf of normal is given by

$$X = F^{-1}(R) \approx \frac{R^{0.135} - (1 - R)^{0.135}}{0.1975}$$

■ The problems with approximate inverse cdf is that some of them can be computationally intensive

Popular Normal Variate

- Method is due to Box and Muller (1958)
- Generate two identical and independent (IID) uniformly distributed variables, U1 and U2 as IID U(0,1)
- Then set

$$X_1 = \sqrt{-2\ln U_1} \cos 2\pi U_2$$
$$X_2 = \sqrt{-2\ln U_1} \sin 2\pi U_2$$

- X1 and X2 are IIDs distributed Normally N(0,1), with zero mean
- To generate $X'\sim N(\mu,\sigma^2)$, generate $X\sim N(0,1)$ and then set $X'=\mu+\sigma X$

Java code: Normal Distrbution

```
public static double SaveNormal;
public static int NumNormals = 0;
public static final double PI = 3.1415927 ;
public static double normal(Random rng, double mean, double sigma) {
        double ReturnNormal;
        // should we generate two normals?
        if(NumNormals == 0 ) {
          double r1 = rng.nextDouble();
          double r2 = rng.nextDouble();
          ReturnNormal = Math.sqrt(-2*Math.log(r1)) *Math.cos(2*PI*r2);
          SaveNormal = Math.sqrt(-2*Math.log(r1))*Math.sin(2*PI*r2);
          NumNormals = 1;
        } else {
          NumNormals = 0;
          ReturnNormal = SaveNormal;
        return ReturnNormal*sigma + mean ;
```

Discrete Distribution

[Inverse-transform]

- All discrete distributions can be generated via inverse-transform technique, either numerically through a table-lookup procedure, or algebraically using a formula
- Examples of application:
 - Empirical
 - □ Discrete uniform
 - □ Geometric
 - □ Gamma

Empirical Discrete Distribution [Inverse-transform]

- Example: Suppose the number of shipments, x, on the loading dock of a company is either 0, 1, or 2
 - □ Data Probability distribution:

X	p(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

■ Method - Given R, the generation scheme becomes:

$$x = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}$$

In general, generate R if $F(x_i-1) < R <= F(x_i)$ set $X=x_i$

Consider
$$R_1 = 0.73$$
:
 $F(x_{i-1}) < R <= F(x_i)$
 $F(x_0) < 0.73 <= F(x_1)$
Hence, $x_1 = 1$

Another Empirical Example

- A computer on a network generates the following packet sizes
- Therefore the distribution function is:

	0.0,	$0 \le x < 64$
E(x) =	0.4,	$64 \le x < 512$
$F(x) = \langle$	0.6, 5	$12 \le x < 1500$
	1.0,	$1500 \le x$

	$\int 0.0$,	$0 \le x < 64$
F(x) = 0	0.4,	$64 \le x < 512$
	0.6, 5	$12 \le x < 1500$
	$\lfloor 1.0, \rfloor$	$1500 \le x$

		•		
	Ihhh	INVARCA	function	
		11176126		1.5
_		11 1 4 0 1 0 0	1011011011	. •

- Generate $u \sim U(0,1)$
 - \Box if u<0.4 Size = 64
 - if $0.4 \le u < 0.6$, Size = 512
 - *if 0.6≤u, Size* = 1500

Size	Probability
64	0.4
512	0.2
1500	0.4

$$F^{-1}(u) = \begin{cases} 64, & 0 \le u < 0.4 \\ 512, & 0.4 \le u < 0.6 \\ 1500, & 0.6 \le u < 1.0 \end{cases}$$

Discrete Uniform Distribution

Consider Uniform distribution on {1,2,...,k} with pmf and cdf given by

$$p(x) = 1/k, x = 1, 2, \dots, k$$

If the generated random number R satisfies:

$$F(x) = \begin{cases} 0, & x < 1 \\ 1/k, & 1 \le x < 2 \\ 2/k, & 2 \le x < 3 \\ \vdots & & \\ (k-1)/k, & k-1 \le x < k \\ 1, & k \le x \end{cases}$$

$$r_{i-1} = \frac{i-1}{k} < R \le r_i = \frac{i}{k}$$
, then X is generated by setting $X = i$

Solving the inequality we get $R.k \le i < R.k + 1$

$$\Rightarrow X = \lceil Rk \rceil$$

Example: R1 = 0.78 then $X1 = \sqrt{7.8} = 8$; R2 = 0.03 then $X2 = \sqrt{0.03} = 1$;

Geometric Distribution

$$p(x) = p(1-p)^x$$
, $x = 0,1,2,...$

It's cdf is given by

$$F(x) = \sum_{j=0}^{x} p(1-p)^{j} = \frac{p\{1-(1-p)^{x+1}\}}{1-(1-p)} = 1-(1-p)^{x+1}$$

 Using the inverse transform technique, Geometric RV assume the value x whenever,

$$F(x-1) = 1 - (1-p)^{x} < R \le (1-p)^{x+1} = F(x)$$

$$\Rightarrow (1-p)^{x+1} \le 1 - R < (1-p)^{x}$$

$$\Rightarrow (x+1)\ln(1-p) \le \ln(1-R) < x\ln(1-p)$$

$$\Rightarrow \frac{\ln(1-R)}{\ln(1-p)} - 1 \le x < \frac{\ln(1-R)}{\ln(1-p)}$$

$$\therefore$$
 using the round - up function, $X = \left\lceil \frac{\ln(1-R)}{\ln(1-p)} - 1 \right\rceil$

Geometric Distribution (continued ..)

- Since p is a fixed parameter, let β =-1/ln(1-p).
- Then $X=\sqrt{-\beta \ln(1-R)-1}$. This is nothing but exponentially distributed RV with mean β (see Slide 6).
- Therefore, one way to generate a geometric variate with parameter p is to generate exponential variate with parameter β^{-1} =-ln(1-p), subtract 1 and Round-up!!
- Occasionally, there is a need to generate Geometric variate X that can assume values {q, q+1, q+2, ...}
- This can be generated by $X = q + \left\lceil \frac{\ln(1-R)}{\ln(1-p)} 1 \right\rceil$

Example

- Generate three values from a Geometric distribution on the range {X ≥1} with mean 2.
- This has pmf as

$$p(x) = p(1-p)^x$$
, $x = 0,1,2,...$; with mean $1/p = 2$ or $p = 1/2$

- Thus X can be generated with q=1, p=1/2 and $1/\ln(1-p)=-1.443$
- R1=0.932, X1=1+ \lceil -1.443ln(1-0.932)-1 \rceil =4
- R2=0.105, X1=1+ \[-1.443\ln(1-0.105)-1 \]=1
- R3=0.687, X1=1+ \[\bigcup -1.443\ln(1-0.687) -1 \]=2

Acceptance-Rejection technique

- Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning
- Illustration: To generate random variates, X ~ U(1/4, 1)

Procedures:

Step 1. Generate R ~ U[0,1]

Step 2a. If $R >= \frac{1}{4}$, accept X=R.

Step 2b. If R < 1/4, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R') on the event $\{R \ge \frac{1}{4}\}$ does.
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

Poisson Distribution

 Recall from Chapter 5, a Poisson RV, N with mean α>0 has pmf

$$p(n) = P(N = n) = \frac{e^{-\alpha} \alpha^n}{n!}, \quad n = 0,1,...$$

- Recall that inter-arrival times A1, A2, ... of successive customers are exponentially distributed with rate α (i.e., α is the mean arrivals per unit time)
- Then,

$$N = n \text{ iff } A_1 + A_2 + \dots + A_n \le 1 < A_1 + A_2 + \dots + A_n + A_{n+1}$$

Relation N=n states that there were exactly n arrivals during one unit of time Second relation states that the n^{th} arrival occurred before time 1 while the (n+1) arrival occurred after time 1. Clearly these two are equivalent

Poisson Distribution (continued)

- Recall A_i can be generated by $A_i = (-1/\alpha) \ln R_i$
- Therefore,

$$A_1 + A_2 + \dots + A_n \le 1 < A_1 + A_2 + \dots + A_n + A_{n+1}$$

$$\sum_{i=1}^{n} -\frac{1}{\alpha} \ln R_{i} \le 1 < \sum_{i=1}^{n+1} -\frac{1}{\alpha} \ln R_{i}$$

Multiplyby - α and use the fact that sum of logarithms is the logarithm of a product toget

$$\ln \prod_{i=1}^{n} R_{i} = \sum_{i=1}^{n} \ln R_{i} \ge -\alpha > \sum_{i=1}^{n+1} \ln R_{i} = \ln \prod_{i=1}^{n+1} R_{i}$$

Use the relation $e^{\ln x} = x$ for any number x to get

$$\prod_{i=1}^n R_i \ge e^{-\alpha} > \prod_{i=1}^{n+1} R_i$$

Poisson Distribution (continued)

- Therefore, the procedure for generating a Poisson random variate N is:
 - □ Step 1: Set *n*=0; *P*=1
 - □ Step 2: Generate a random number R_{n+1} and replace P by $P.R_{n+1}$
 - □ Step 3: If $P < e^{-\alpha}$, then accept N=n. Otherwise, reject the current n, increase n by one and return to step 2.
- How many random numbers are required to generate one Poisson variate N?
 - □ Answer: If N=n, then n+1 random numbers are required. So the average # is: $E(N+1)=\alpha+1$.

Example

- Generate three Poisson variates with mean α =0.2
- First compute $e^{-\alpha}$ =0.8187
- Step 1: Set n=0, P=1
- Step 2: *R1=0.4357*, *P=1.R1=0.4357*
- Step 3: Since P=0.4357< e^{-α}=0.8187, accept N=0
- Step 1-3. (R1=0.4146 leads to N=0)
- Step 1. Set n=0, P=1
- Step 2. *R1=0.8352*, *P=1.R1=0.8353*
- Step 3 Since P≥ $e^{-\alpha}$ reject n=0 and return to Step 2 with n=1
- Step 2. *R2=0.9952*, *P=R1.R2=0.8313*
- Step 3 Since $P \ge e^{-\alpha}$ reject n=1 and return to Step 2 with n=2
- Step 2 R3=0.8004, P=R1.R2.R3=0.6654
- Step 3. Since P < e^{-α}, accept N=2

Example (continued)

The calculations for the generation of these Poisson random variates is summarized as:

n	R _{n+1}	Р	Accept/Reject	Result
0	0.4357	0.4357	Accept	N=0
0	0.4146	0.4146	Accept	N=0
0	0.8353	0.8353	Reject	
1	0.9952	0.8313	Reject	
2	0.8004	0.6654	Accept	N=2

- Non-stationary Poisson Process (NSPP): a Possion arrival process with an arrival rate that varies with time
- Idea behind thinning:
 - □ Generate a stationary Poisson arrival process at the fastest rate, $\lambda^* = \max \lambda(t)$
 - □ But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate

- Generic algorithm that generates T_i as the time of ith arrival
 - □ Step 1: Let $\lambda^* = \max \lambda(t)$ be the maximum arrival rate function and set t=0 and i=1
 - □ Step 2: Generate E from the exponential distribution with rate λ^* and let t=t+E (this is the arrival time of the stationary Poisson process)
 - □ Step 3: Generate random number R from the U(0,1) distribution. If $R \le \lambda(t)/\lambda^*$, then $T_i = t$ and i=i+1

NSPP

[Acceptance-Rejection]

Data: Arrival Rates

t (min)	Mean Time Between Arrivals (min)	Arrival Rate λ(t) (#/min)
0	15	1/15
60	12	1/12
120	7	1/7
180	5	1/5
240	8	1/8
300	10	1/10
360	15	1/15
420	20	1/20
480	20	1/20

Procedures:

Step 1.
$$\lambda^* = \max \lambda(t) = 1/5$$
, $t = 0$ and $i = 1$.

Step 2. For random number
$$R = 0.2130$$
,

$$E = -5ln(0.213) = 13.13$$

$$t = 13.13$$

Step 3. Generate
$$R = 0.8830$$

$$\lambda(13.13)/\lambda^*=(1/15)/(1/5)=1/3$$

Since R>1/3, do not generate the arrival

Step 2. For random number R = 0.5530,

$$E = -5ln(0.553) = 2.96$$

$$t = 13.13 + 2.96 = 16.09$$

Step 3. Generate
$$R = 0.0240$$

$$\lambda(16.09)/\lambda = (1/15)/(1/5)=1/3$$

Since
$$R < 1/3$$
, $T_1 = t = 16.09$,

and
$$i = i + 1 = 2$$

Special Properties

- Variate generate techniques that are based on features of particular family of probability distributions
- For example:
 - Direct Transformation for normal and lognormal distributions
 - □ Convolution
 - □ Beta distribution (from gamma distribution)

□ Consider two standard normal random variables, Z_1 and Z_2 , plotted as a point in the plane: Z_2 -axis \uparrow

In polar coordinates:

$$Z_1 = B \cos \theta$$
$$Z_2 = B \sin \theta$$

- □ $B^2 = Z_1^2 + Z_2^2$ ~ chi-square distribution with 2 degrees of freedom that is equivalent to $Exp(\lambda = 2)$. Hence, $B = (-2 \ln R)^{1/2}$
- \square The radius *B* and angle θ are mutually independent.

$$Z_1 = (-2 \ln R)^{1/2} \cos(2\pi R_2)$$
$$Z_2 = (-2 \ln R)^{1/2} \sin(2\pi R_2)$$

□ Generate $Z_i \sim N(0,1)$

$$X_i = \mu + \sigma Z_i$$

- Approach for lognormal(μ , σ ²):
 - □ Generate $X \sim N(\mu, \sigma^2)$

$$Y_i = e^{X_i}$$

Summary

- Principles of random-variate generate via
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - □ Special properties
- Important for generating continuous and discrete distributions