

Advanced Computer Architecture & Advanced Microprocessor System

VIVADO DESIGN EXAMPLE

Dennis A. N. Gookyi

CONTENTS

VIVADO Design Example

- 4-bit Adder Design
 - Half Adder Design (Using XOR and AND gates)
 - Full Adder Design (Using 2 Half Adders)
 - 4-bit Adder Design (Using 4 Full Adders)

Design Example

- 4-bit Adder and Testbench
 - The Gate-level hierarchical description of the 4-bit adder:

Verilog code and Testbench

□ Half Adder Design and Truth Table

Truth Table

X	У	S	С
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Vivado project
 - Creating a new project

Vivado project

□ Creating an new project Create a New Vivado Project This wizard will guide you through the creation of a new project. To create a Vivado project you will need to provide a name and a location for your project files. Next, you will specify the type of flow you'll be working with. Finally, you will specify your project sources and choose a default part. **XILINX**. (?)

Cancel

- Vivado project
 - Creating an new project

Project name

- → must start with an alphabet
- → can include "_" and numbers

Location

- →location of the project
- →subfolders can be created

Vivado project

Creating an new project

- Vivado project
 - Creating an new project

Vivado project

Creating an new project

- Vivado project
 - Creating an new project

FPGA Device: Xc7a35fftg256-1

- Vivado project
 - Creating an new project

- Vivado project
 - □ Verilog code for Half Adder Module

```
23 ⊟
     module half adder(x, y, s, c);
2.4
25
    //input/output declaration
26
     input x, y;
27
     output s, c;
28
29
    //primitive gate instantiation
30
    xor(s, x, y);
31
    and(c, x, y);
32
     endmodule
33
```


- Vivado project
 - □ Logic synthesis

- Vivado project
 - Logic synthesis

- Vivado project
 - Logic synthesis

- Vivado project
 - □ Logic synthesis (Schematic)

- Vivado project
 - □ Logic synthesis (Results)

- Vivado project
 - □ Half Adder Testbench (Test Vectors)

X	У	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench

- Vivado project
 - Creating a Testbench


```
Project Summary
               × half adder.v
                              × Schematic
                                             half adder tb.v
D:/vivado_projects/FourBitAdder/FourBitAdder.srcs/sim_1/new/half_adder_tb.v
     // Engineer:
     // Create Date: 08/08/2023 02:58:46 PM
     // Design Name:
     // Module Name: half adder tb
     // Project Name:
     // Target Devices:
     // Tool Versions:
     // Description:
13
    // Dependencies:
     // Revision:
     // Revision 0.01 - File Created
     // Additional Comments:
19
21
22
23 module half adder tb(
24
        );
26 A endmodule
```


- Vivado project
 - Creating a Testbench

```
25 🖨
         module half_adder_tb;
26
              // Inputs
              req x;
              reg y;
             // Outputs
              wire s;
30
              wire c;
             // Instantiate the Unit Under Test (UUT)
33
             half adder uut (.x(x), .y(y), .s(s), .c(c));
34
              req [1:0] i;
              initial begin
36
                  // Add stimulus here
                  for (i = 0; i \le 3; i = i + 1) begin
38
                      x = i[1]; y = i[0]; #100;
39 △
                  end
40 🛆
              end
              initial begin
                  monitor(\text{sealtime}, \text{"ns x=\$h y=\$h } \{c,s\}=\$h", x, y, \{c, s\});
42
43 🖨
              end
         endmodule
```

X	У	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- Vivado project
 - □ Running Simulation

- Vivado project
 - Running Simulation

- Verilog code and Testbench
 - □ Full Adder Design and Truth Table

full_adder

Truth Table

X	у	cin	S	cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Verilog code and Testbench
 - Verilog Code for Full Adder module

- Verilog code and Testbench
 - □ Full Adder Schematic

- Verilog code and Testbench
 - □ Full Adder Testbench (Test Vectors)

X	У	cin	S	cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- Verilog code and Testbench
 - □ Full Adder Testbench

full adder					
х	у	cin	S	cout	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

- Verilog code and Testbench

- Verilog code and Testbench
 - □ 4-bit Adder Design

- Verilog code and Testbench
 - Verilog Code for 4-bit Adder module

```
module four bit adder(x, y, c0, s, cout);
24
     //input/output declaration
25
     input [3:0] x, y;
     input c0;
26
     output [3:0] s;
27
     output cout;
28
29
30
     //wire interconnection declaration
31
     wire c1, c2, c3;
32
     //instantiate 4-bit adder using 4 full adders
33
34
     full adder fa 1(x[0], y[0], c0, s[0], c1);
35
     full adder fa 2(x[1], y[1], c1, s[1], c2);
36
     full adder fa 3(x[2], y[2], c2, s[2], c3);
     full_adder fa_4(x[3], y[3], c3, s[3], cout);
38
39 🗎
     endmodule
```


- Verilog code and Testbench
 - □ 4-bit Adder Schematic

- Verilog code and Testbench
 - 4-bit Adder Testbench

```
23 - module four bit adder tb();
  //inputs
24
   req [3:0] x;
   req [3:0] y;
   reg c0;
28 / //outputs
29 | wire [3:0] s;
30 | wire cout;
31 //instantiate the Unit Under Test (UUT)
   four bit adder uut(.x(x), .y(y), .c0(c0), .s(s), .cout(cout));
33
34 | req [7:0] i;
35 - initial begin
36
     //add stimulus here
     for (i = 0; i \le 255; i = i + 1) begin
            x[3:0] = i[7:0]; y[3:0] = i[3:0]; c0 = 1'b0;
39 🖨
        end
40 ∩ end
41 □ initial begin
        $monitor($realtime, "ns x=%h y=%h c0=%h {cout,s}=%h", x, y, c0, {cout, sum});
42
43 ∩ end
45 @ endmodule
```


- Verilog code and Testbench
 - 4-bit Adder Simulation Waveform and Console

- Verilog code and Testbench
 - 4-bit Adder Simulation Waveform and Console

- Implement 4-bit adder on Edge Artix 7 FPGA Board
 - Input [3:0] x: {SW7, SW6, SW5, SW4}
 - Input [3:0] y: {SW3, SW2, SW1, SW0}
 - Output [3:0] s: {LED3, LED2, LED1, LED0}
 - Output cout: LED4

Net Name	PIN MAP
LED0	J3
LED1	Н3
LED2	J1
LED3	K1
LED4	L3

Net Name	PIN MAP
SWO	L5
SW1	L4
SW2	M4
SW3	M2
SW4	M1
SW5	N3
SW6	N2
SW7	N1

- Vivado project
 - □ FPGA programming (mapping)


```
set property -dict { PACKAGE PIN L5
                                       IOSTANDARD LVCMOS33 } [get_ports { sw[0] }];#LSB
set_property -dict { PACKAGE PIN L4
                                       IOSTANDARD LVCMOS33 } [get ports {
set_property -dict { PACKAGE_PIN M4
                                       IOSTANDARD LVCMOS33 } [get_ports {
                                                                          sw[2] }];
                                       IOSTANDARD LVCMOS33 } [get_ports {
set_property -dict { PACKAGE_PIN M2
set property -dict { PACKAGE PIN M1
                                       IOSTANDARD LVCMOS33 }
                                                             [get_ports {
set property -dict { PACKAGE PIN N3
                                       IOSTANDARD LVCMOS33 }
                                                              [get ports {
set property -dict { PACKAGE PIN N2
                                       IOSTANDARD LVCMOS33 }
                                                              [get ports {
set_property -dict { PACKAGE_PIN N1
                                       IOSTANDARD LVCMOS33 }
                                                              [get ports {
set property -dict { PACKAGE PIN P1
                                       IOSTANDARD LVCMOS33 }
                                                              [get ports {
set_property -dict { PACKAGE_PIN P4
                                       IOSTANDARD LVCMOS33 }
                                                             [get ports {
set property -dict { PACKAGE PIN T8
                                       IOSTANDARD LVCMOS33 }
                                                             [get_ports {
set_property -dict { PACKAGE_PIN R8
                                       IOSTANDARD LVCMOS33 }
set_property -dict { PACKAGE_PIN N6
                                       IOSTANDARD LVCMOS33 } [get_ports {
                                       IOSTANDARD LVCMOS33 } [get_ports { sw[13] }];
set_property -dict { PACKAGE_PIN T7
set_property -dict { PACKAGE_PIN P8
                                       IOSTANDARD LVCMOS33 } [get_ports { sw[14] }];
set_property -dict { PACKAGE_PIN M6
                                       IOSTANDARD LVCMOS33 } [get_ports { sw[15] }];#MSB
```

Net Name	PIN MAP
SW0	L5
SW1	L4
SW2	M4
SW3	M2
SW4	M1
SW5	N3
SW6	N2
SW7	N1

# LEDs								
set_property	-dict ·	}	PACKAGE_PIN	J3	IOSTANDARD	LVCMOS33	}	[get_ports { led[0] }];#LSB
set_property	-dict ·	{	PACKAGE_PIN	H3	IOSTANDARD	LVCMOS33	}	[get_ports { led[1] }];
set_property					IOSTANDARD	LVCMOS33	}	[get_ports { led[2] }];
set_property	-dict ·	{	PACKAGE_PIN	K1	IOSTANDARD	LVCMOS33	}	[get_ports { led[3] }];
set_property	-dict ·	}	PACKAGE_PIN	L3	IOSTANDARD	LVCMOS33	}	[get_ports { led[4] }];
set_property	-dict ·	{	PACKAGE_PIN	L2				[get_ports { led[5] }];
set_property	-dict	}	PACKAGE_PIN	K3	IOSTANDARD	LVCMOS33	}	[get_ports { led[6] }];
set_property					IOSTANDARD	LVCMOS33	}	[get_ports { led[7] }];
set_property	-dict ·	{	PACKAGE_PIN	K5	IOSTANDARD	LVCMOS33	}	[get_ports { led[8] }];
set_property	-dict ·	{	PACKAGE_PIN	P6	IOSTANDARD	LVCMOS33	}	[get_ports { led[9] }];
set_property	-dict	}	PACKAGE_PIN	R7	IOSTANDARD	LVCMOS33	}	[get_ports { led[10] }];
set_property	-dict ·	{	PACKAGE_PIN	R6	IOSTANDARD	LVCMOS33	}	[get_ports { led[11] }];
set_property	-dict ·	}	PACKAGE_PIN	T5	IOSTANDARD	LVCMOS33	}	[get_ports { led[12] }];
set_property	-dict ·	{	PACKAGE_PIN	R5	IOSTANDARD	LVCMOS33	}	[get_ports { led[13] }];
set_property	-dict ·	}	PACKAGE_PIN	T10	IOSTANDARD	LVCMOS33	}	[get_ports { led[14] }];
set_property	-dict -	{	PACKAGE_PIN	T9	IOSTANDARD	LVCMOS33	}	[get_ports { led[15] }];#MSB

Net Name	PIN MAP
LED0	J3
LED1	Н3
LED2	J1
LED3	K1
LED4	L3

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

- Vivado project
 - □ FPGA programming (mapping) Create a constraint file

Net Name	PIN MAP
SWO	L5
SW1	L4
SW2	M4
SW3	M2
SW4	M1
SW5	N3
SW6	N2
SW7	N1

Net Name	PIN MAP
LED0	J3
LED1	Н3
LED2	Jl
LED3	K1
LED4	L3

- Vivado project
 - □ FPGA programming (mapping) Implement Design

- Vivado project
 - □ FPGA programming (mapping) Implement Design

- Vivado project
 - FPGA programming (mapping) Generate Programming File

- Vivado project
 - FPGA programming (mapping) Generate Programming File

- Vivado project
 - □ FPGA programming
 - Connect the FPGA board to the computer and click on Open Target

- Vivado project
 - □ FPGA programming

Vivado project

FPGA programming

- Vivado project
 - FPGA programming

- Programming FPGA
 - Board Demo
 - Example: 15 + 15 = 30

{c_out, sum[3:0]} Binary: 11110 Decimal: 30

> {x[3:0], y[3:0]} Binary: {11111, 1111} Decimal: {15, 15}

- Programming FPGA
 - Board Demo
 - Example: 15 + 15 = 30

{c_out, sum[3:0]} Binary: 11110 Decimal: 30

> {x[3:0], y[3:0]} Binary: {11111, 1111} Decimal: {15, 15}

EXERCISE

❖ 8-BIT ADDER

- Submit as a PPT file including the following content
- 8-bit Adder Verilog Source code with comments
- Synthesis netlist schematic
- Synthesis results
- 8-bit Adder Verilog Testbench with comments
- Simulation waveform including analysis
- Board Test

Port	Width	I/O	Description
х	8	Input	Input Data
У	8	Input	Input Data
cin	1	Input	Carry Input
sum	8	Output	Result Output
cout	1	Output	Carry Output

8-bits adder

