Implementação de controle Fuzzy Em CLP Industrial

Aluno: Jhonantans Moraes Rocha

Orientador: Eduardo Stockler Tognetti

Motivação

• Implementação em CLP de um controlador fuzzy para a planta.

- Por quê Fuzzy?
 - Sistemas não-lineares
 - Plantas de difícil identificação

Modelo Takagi-Sugeno

Planta de Quatro-Tanques

Introdução – CLP Rockwell

Especificação	Descrição	Posição no chassi
1756-A7/B	Chassi	•
1756-L62	Controlador	0
1756-ENBT/A	EtherNetIp	1
1756-IF8/A	Entradas Analógicas	2
1756-OF8/A	Saídas Analógicas	3
1756-IB16/A	Entradas DC	4
1756-OB8I/A	Saídas DC	5

Comunicação

Dispositivo	Endereço
PC (RSLinx)	192.168.2.1
1756-ENBT/A (CLP)	192.168.2.22
Geral	192.168.2.xxx

Teoria Fuzzy

• Pertinência Clássica

$$f_u(x): U \to \{0,1\}$$
 $f_u(x) = \begin{cases} 1 & \text{se e somente se } x \in U \\ 0 & \text{caso contrário} \end{cases}$

Pertinência Fuzzy

$$f_i(x): i \to [0,1]$$

Funções de Pertinência

Aplicação

- Definição das variáveis linguísticas termos que compõem o conjunto universo de discurso
 - "Temperatura"
- Definição dos valores linguísiticos
 - "Frio", "Muito Frio"
 - "Quente", "Muito Quente"
- Definir os limites de cada conjunto
 - $[-\infty, 10C], [5C, 25C], [15C, 35C], [25C, \infty]$
- Definir as funções de pertinência de cada conjunto

Exemplo - Temperatura

Temperatura (${}^{\circ}C$)	Muito Frio	Frio	Quente	Muito Quente
0	1	0	0	0
5	1	0	0	0
10	0.5	0.5	0	0
15	0	1	0	0
20	0	0.5	0.5	0
25	0	0	1	0
30	0	0	0.5	0.5
35	0	0	0	1
40	0	0	0	1

Regras Se-Então

Regra:
$$\begin{cases} SE: X \text{ pertence a A} \\ ENTÃO: Y \text{ pertence a B} \end{cases}$$

- Definem o comportamento de um consequente dado um antecedente
- Em lógica fuzzy definem o peso do consequente dado o "grau" do antecedente

Modelagem Takagi-Sugeno

Dado um sistema qualuer:

$$\dot{x}(t) = f(x(t)) + g(u(t))$$
$$y(t) = h(x(t))$$

• Linearização:

$$\Delta x \dot{(}t) = A \Delta x(t) + B \Delta u(t)$$
$$y(t) = C \Delta x(t)$$

"n" variáveis premissas:

$$c(t) = [c_1(t) \ c_2(t) \ c_3(t) \ \dots \ c_n(t)]$$

• "r" regras

$$\begin{aligned} \textbf{Regra i:} \left\{ & \quad \textbf{SE:} \ c_1(t) \not \in M_{1i} \ \text{e} \ c_2(t) \not \in M_{2i} \ \text{e} \ \dots \ \text{e} \ c_n(t) \ \text{e} \ M_{ni}, \\ & \quad \textbf{ENTÃO}: \begin{cases} \dot{x}(t) = A_i \Delta x(t) + B_i \Delta u(t), \\ y(t) = C_i \Delta x(t) \end{cases} \end{aligned} \right.$$

Modelagem Takagi-Sugeno

Grau de ativação de cada regra:

$$w_i(c(t)) = \prod_{j=1}^n f_{ij}(c_j(t))$$

• Peso de cada regra no modelo final:

$$\alpha_i(h(t)) := \frac{w_i(h(t))}{\sum_{j=1}^r w_j(h(t))}$$

Modelo Final:

$$\dot{x}(t) = \sum_{i=1}^{r} \alpha_i(c(t))(A_i x(t) + B_i u(t))$$

Variáveis aferidas: níveis

Variáveis premissas: Nível 1 e Nível 2

Valores Linguísticos Propostos: "Baixo" e "Alto"

 $\begin{cases} N \text{ivel 1 Baixo} & \begin{cases} N \text{ivel 2 Baixo} \\ N \text{ivel 2 Alto} \end{cases} \\ N \text{ivel 1 Alto} & \begin{cases} N \text{ivel 2 Baixo} \\ N \text{ivel 2 Baixo} \end{cases} \\ N \text{ivel 2 Alto} \end{cases}$

Modelo não-linear da planta:

$$\begin{cases} \dot{h_1} = \frac{1}{A_1} (a_3 \sqrt{2gh_3} + \gamma_1 k_1 v_1 - a_1 \sqrt{2gh_1}) \\ \dot{h_2} = \frac{1}{A_2} (a_4 \sqrt{2gh_4} + \gamma_2 k_2 v_2 - a_2 \sqrt{2gh_2}) \\ \dot{h_3} = \frac{1}{A_3} ((1 - \gamma_2) k_2 v_2 - a_3 \sqrt{2gh_3}) \\ \dot{h_4} = \frac{1}{A_4} ((1 - \gamma_1) k_1 v_1 - a_4 \sqrt{2gh_4}) \end{cases}$$

• Linearização:

$$\begin{bmatrix} \Delta \dot{h}_1 \\ \Delta \dot{h}_2 \\ \Delta \dot{h}_3 \\ \Delta \dot{h}_4 \end{bmatrix} = \begin{bmatrix} \frac{-a_1\sqrt{2g}}{2A_1\sqrt{h_1}} & 0 & \frac{a_3\sqrt{2g}}{2A_1\sqrt{h_3}} & 0 \\ 0 & \frac{-a_2\sqrt{2g}}{2A_2\sqrt{h_2}} & 0 & \frac{a_4\sqrt{2g}}{2A_2\sqrt{h_4}} \\ 0 & 0 & \frac{-a_3\sqrt{2g}}{2A_3\sqrt{h_3}} & 0 \\ 0 & 0 & 0 & \frac{-a_4\sqrt{2g}}{2A_4\sqrt{h_4}} \end{bmatrix} \begin{bmatrix} \Delta h_1 \\ \Delta h_2 \\ \Delta h_3 \\ \Delta h_4 \end{bmatrix} + \begin{bmatrix} \frac{\gamma_1 k_1}{A_1} & 0 \\ 0 & \frac{\gamma_2 k_2}{A_2} \\ 0 & \frac{(1-\gamma_2)k_2}{A_3} \\ \frac{(1-\gamma_1)k_1}{A_4} & 0 \end{bmatrix} \begin{bmatrix} \Delta v_1 \\ \Delta v_2 \end{bmatrix}$$

Fase Mínima

Especificações Iniciais da Planta					
A1, A3 (cm^2)	28				
A2, A4 (cm^2)	32				
a1, a3 (cm^2)	0.071				
a2, a4 (cm^2)	0.057				
g cm/s	981				
k1	$3,15 \ cm^3/Vs$				
k2	$3.29~cm^3/Vs$				
γ_1	0.43				
γ_2	0.34				

Fase Não-Mínima

Especificações Iniciais da Planta				
A1, A3 (cm^2)	28			
A2, A4 (cm^2)	32			
a1, a3 (cm^2)	0.071			
a2, a4 (cm^2)	0.057			
g cm/s	981			
k1	$3,33 \ cm^3/Vs$			
k2	$3.35~cm^3/Vs$			
γ_1	0.60			
γ_2	0.70			

• Fase Mínima

Sistema	$\bar{h_1}$ (cm)	$\bar{h_2}$ (cm)	$\bar{h_3}$ (cm)	$\bar{h_4}$ (cm)	$\bar{v_1}$ (v)	$\bar{v_2}$ (v)
1	5	5	0.0334	2.9076	3.2321	0.5716
2	5	15	0.9431	1.1033	1.9910	3.0390
3	15	5	0.2229	13.0191	6.8393	-1.4773
4	15	15	0.1001	8.7228	5.5982	0.9900

• Fase Não-Mínima

Sistema	$\bar{h_1}$ (cm)	$\bar{h_2}$ (cm)	$\bar{h_3}$ (cm)	$\bar{h_4}$ (cm)	$\bar{v_1}$ (v)	$\bar{v_2}$ (v)
1	5	5	2.0804	1.7175	1.8428	2.0890
2	5	15	0.0321	15.9038	5.6078	-0.2595
3	15	5	16.9727	0.1661	-0.5730	5.9668
4	15	15	6.2413	5.1525	3.1919	3.6183

Regras

• Regra 1:
$$\begin{cases} \text{SE} & h_1 \text{ \'e baixo e } h_2 \text{ \'e baixo} \\ \text{ENT\~AO} & \Delta \dot{h}(t) = A_1 \Delta h(t) + B_1 \Delta u(t) \end{cases}$$

• Regra 2:
$$\begin{cases} \text{SE} & h_1 \notin \text{baixo e } h_2 \notin \text{alto} \\ \text{ENTÃO} & \Delta \dot{h}(t) = A_2 \Delta h(t) + B_2 \Delta u(t) \end{cases}$$

• Regra 3:
$$\begin{cases} \text{SE} & h_1 \notin \text{alto e } h_2 \notin \text{baixo} \\ \text{ENTÃO} & \Delta \dot{h}(t) = A_3 \Delta h(t) + B_3 \Delta u(t) \end{cases}$$

• Regra 4:
$$\begin{cases} \text{SE} & h_1 \text{ \'e alto e } h_2 \text{ \'e alto} \\ \text{ENT\~AO} & \Delta \dot{h}(t) = A_4 \Delta h(t) + B_4 \Delta u(t) \end{cases}$$

Simulações

Simulações

Simulações

Sistema em Malha Fechada

Controle via LMIs

• Para as "r" regras:

encontre
$$X = X'$$
, $i = 1, 2, ..., r$

$$X \succ 0$$

$$s.a \begin{bmatrix} X & XA'_i - M'_iB'_i \\ A_iX - B_iM_i & X \end{bmatrix} \succ 0$$

$$K_i = M_i X^{-1}$$

Ganhos

 Ganho Final – Segue as mesmas regras de ativação do modelo simulado

$$K = \sum_{i=1}^{4} \alpha_i(h(t))K_i$$

Simulações - Malha Fechada

Fase Mínima

Regra				Ganho			
1	K =	-13.1962	3.0637 -15.2912	-3.0992	0.1430	15.0539	-1.3580
1	IX -	-5.4607	-15.2912	3.4223	0.0239	1.6964	15.9282
	_						
2	$_{K}$ $_{-}$	-12.8885	1.0745 -13.2431	-1.5395	-0.0323	14.9563	-0.5608
2		-1.7706	-13.2431	1.0214	-0.0123	0.4755	15.4671
3	$_{K}$ $-$	-13.1962	3.0637 -15.2912	-3.0992	0.1430	15.0539	-1.3580
3	IX -	-5.4607	-15.2912	3.4223	0.0239	1.6964	15.9282
	_						
1	$ig _{K}$ $igg $	-12.8885	1.0745	-1.5395	-0.0323	14.9563	-0.5608
		-1.7706	1.0745 -13.2431	1.0214	-0.0123	0.4755	15.4671

Simulações - Malha Fechada

Fase Não-Mínima

Regra	Ganho
1	$K = \begin{bmatrix} 490.5249 & -805.4358 & 366.4860 & -439.5865 & 0.3923 & 19.9419 \\ -385.9505 & 484.5975 & -230.7682 & 333.2462 & 10.4116 & -4.9420 \end{bmatrix}$
2	$K = \begin{bmatrix} 0.9652 & -1.5850 & 0.7224 & -0.8567 & -0.0047 & 0.0357 \\ -0.2384 & 0.3018 & -0.1458 & 0.2055 & 0.0069 & -0.0025 \end{bmatrix}$
3	$K = \begin{bmatrix} 490.5249 & -805.4358 & 366.4860 & -439.5865 & 0.3923 & 19.9419 \\ -385.9505 & 484.5975 & -230.7682 & 333.2462 & 10.4116 & -4.9420 \end{bmatrix}$
4	$K = \begin{bmatrix} 0.9652 & -1.5850 & 0.7224 & -0.8567 & -0.0047 & 0.0357 \\ -0.2384 & 0.3018 & -0.1458 & 0.2055 & 0.0069 & -0.0025 \end{bmatrix}$

Controle sem restrições

Com restrições de entrada

Com saturação do integrador

Identificação

Identificação Manual

Identificação	Tensão (v_i)	γ_1	γ_2	Ganho 1 (k_1)	Ganho 2 (<i>k</i> ₂)
1	42%	0.8980	0.6810	$7.4044 \ cm^3/Vs$	$7.1022 \ cm^3/Vs$
2	45%	0.8276	0.6827	$8.1801 \ cm^3/Vs$	$7.3339 \ cm^3/Vs$

• Para as "r" regras:

Sistema	Bomba 1 $(\bar{v_1})$	Bomba 2 $(\bar{v_1})$	Nível 1 $(\bar{h_1})$	Nível 2 $(\bar{h_2})$	Nível 3 $(\bar{h_3})$	Nível 4 $(\bar{h_4})$
1	42%	42%	11.1024 cm	9.4410 cm	8.7849 cm	17.4466 cm
2	42%	45%	16.3767 cm	16.1350 cm	11.4907 cm	20.5671 cm
3	45%	42%	15.0037 cm	13.9138 cm	20.7899 cm	19.5759 cm
4	45%	45%	18.0278 cm	18.8761 cm	18.3048 cm	19.6136 cm

Ganhos Implementados

Regra	Ganho						
1	<i>K</i> _	-10.1267	-0.1726	-0.0693	-0.0304	7.4632	0.0782
1	K =	L 0.4704					
2	<i>K</i> _	-10.1655	-0.1445	-0.0628	-0.0301	7.4634	0.0680
2	$2 \qquad K =$	$\begin{bmatrix} -10.1655 \\ 0.3944 \end{bmatrix}$	-8.7470	0.0221	-0.0071	-0.1460	11.0130
3	<i>K</i> _	-9.7178	-0.2288	-0.0433	-0.0878	7.1828	0.0979
3	Λ –	$ \begin{bmatrix} -9.7178 \\ 0.5970 \end{bmatrix} $	-8.9866	-0.0014	-0.0096	-0.2192	11.3719
4	K _	-9.7327	-0.2180	-0.0472	-0.0874	7.1831	0.0939
7	<i>n</i> –	$\begin{bmatrix} -9.7327 \\ 0.5519 \end{bmatrix}$	-8.7291	0.0082	-0.0090	-0.2028	11.0068

Rotina Principal

Resultados

Análise

• Respota satisfatória, porém longe da esperada

- Possíveis causas:
 - Zona de Atuação da Bomba
 - Método de Saturação do Integrador

Considerações Finais

Objetivos

- Trabalhos Futuros
 - Identificação em mais pontos
 - Sintonia de controladores com restrições
 - Inclusão da zona de atuação da bomba no modelo

Obrigado a todos!