3 – Linguagens Regulares

- 3.1 Sistema de Estados Finitos
- 3.2 Composição Seqüencial, Concorrente e Não-Determinista
- 3.3 Autômato Finito
- 3.4 Autômato Finito Não-Determinístico
- 3.5 Autômato Finito com Movimentos Vazios
- 3.6 Expressão Regular
- 3.7 Gramática Regular

3.3 Autômato Finito

- Autômato Finito: sistema de estados finitos
 - número finito e *predefinido* de estados
 - modelo computacional comum em diversos estudos teórico-formais
 - * Linguagens Formais
 - * Compiladores
 - * Semântica Formal
 - * Modelos para Concorrência

Formalismo operacional/reconhecedor - pode ser

determinístico

- dependendo do estado corrente e do símbolo lido
- * pode assumir um *único* estado

não-determinístico

- * dependendo do estado corrente e do símbolo lido
- * pode assumir um *conjunto* de estados alternativos

com movimentos vazios

- * dependendo do estado corrente e sem ler qualquer símbolo
- pode assumir um conjunto de estados (portanto é nãodeterminístico)

Movimento vazio

- pode ser visto como transições encapsuladas
 - * excetuando-se por uma eventual mudança de estado
 - * nada mais pode ser observado
- análogo à encapsulação das linguagens orientadas a objetos
- ◆ Três tipos de autômatos: equivalentes
 - em termos de poder computacional

- Autômato finito (determinístico): máquina constituída por
 - Fita: dispositivo de entrada
 - contém informação a ser processada
 - Unidade de Controle: reflete o estado corrente da máquina
 - * possui unidade de leitura (cabeça da fita)
 - * acessa uma célula da fita de cada vez
 - * movimenta-se exclusivamente para a direita
 - Programa, Função Programa ou Função de Transição
 - * comanda as leituras
 - * define o estado da máquina

♦ Fita é finita

- dividida em células
- cada célula armazena um símbolo
- símbolos pertencem a um alfabeto de entrada
- não é possível gravar sobre a fita (não existe memória auxiliar)
- palavra a ser processada ocupa toda a fita

Unidade de controle

- número finito e predefinido de estados
 - * origem do termo controle finito
- leitura
 - * lê o símbolo de uma célula de cada vez
 - * move a cabeça da fita uma célula para a direita
 - * posição inicial da cabeça célula mais à esquerda da fita

a a b	С	С	b	а	а
-------	---	---	---	---	---

Programa: função parcial

- dependendo do estado corrente e do símbolo lido
- determina o novo estado do autômato

Def: Autômato Finito (Determinístico) ou AFD

$$M = (\Sigma, Q, \delta, q_0, F)$$

- **\(\Sigma \)** é um alfabeto (de símbolos) de entrada
- Q é um conjunto de estados possíveis do autômato (finito)
- ô é uma (função) programa ou função de transição (função parcial)

$$\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$$

- * transição do autômato: $\delta(p, a) = q$
- q₀ é um elemento distinguido de Q: estado inicial
- F é um subconjunto de Q: conjunto de estados finais

♦ Autômato finito como um diagrama: $\delta(p, a) = q$

♦ Estados iniciais e finais

♦ Transições paralelas: $\delta(q, a) = p e \delta(q, b) = p$

◆ Função programa como uma tabela de dupla entrada

$$\delta(p, a) = q$$

◆ Computação de um autômato finito

- sucessiva aplicação da função programa
- para cada símbolo da entrada (da esquerda para a direita)
- até ocorrer uma condição de parada

◆ Lembre-se que um autômato finito

- não possui memória de trabalho
- para armazenar as informações passadas
- deve-se usar o conceito de estado

Exp: Autômato Finito: aa ou bb como subpalavra

 $L_1 = \{ w \mid w \text{ possui aa ou bb como subpalavra } \}$

Autômato finito

$$M_1 = (\{a, b\}, \{q_0, q_1, q_2, q_f\}, \delta_1, q_0, \{q_f\})$$

δ1	а	b	
q 0	q 1	q 2	
q 1	qf	q 2	
q ₂	91	9f	
qf	qf	qf	

- q₁: "símbolo anterior é a"
- q2: "símbolo anterior é b"
- qual a informação memorizada por q₀ e q_f
- após identificar aa ou bb
 - * qf (final): varre o sufixo da entrada terminar o processamento

Obs: Autômato Finito Sempre Pára

Como

- qualquer palavra é finita
- novo símbolo é lido a cada aplicação da função programa

não existe a possibilidade de ciclo (loop) infinito

Parada do processamento

- Aceita a entrada
 - * após processar o último símbolo, assume um estado final
- Rejeita a entrada. Duas possibilidades
 - * após processar o último símbolo, assume um estado não-final
 - programa indefinido para argumento (estado e símbolo)

Obs: Autômato Finito × Grafo Finito Direto

Qual a diferença entre um autômato finito e um grafo finito direto?

Qualquer autômato finito pode ser visto como um grafo finito direto

- podem existir arcos paralelos (mesmos nodos origem e destino)
- dois ou mais arcos podem ser identificados com a mesma etiqueta (símbolo do alfabeto)
- existe um nodo distinguido: estado inicial
- existe um conjunto de nodos distinguidos: estados finais

Usual considerar um autômato finito como grafo finito direto especial

herda resultados da Teoria dos Grafos

- Definição formal do comportamento de um autômato finito
 - dar semântica à sintaxe
 - necessário estender a função programa
 - argumento: estado e palavra

Def: Função Programa Estendida, Computação

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico

$$\delta^*: \mathbb{Q} \times \Sigma^* \to \mathbb{Q}$$

é δ: Q × Σ → Q estendida para palavras - indutivamente definida

- $\delta^*(q, \varepsilon) = q$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$

Observe

- sucessiva aplicação da função programa
 - para cada símbolo da palavra
 - * a partir de um dado estado
- se a entrada for vazia, fica parado
- aceita/rejeita: função programa estendida a partir do estado inicial

Exp: Função Programa Estendida

- $\delta^*(q_0, abaa) =$
- $\delta^*(\delta(q_0, a), baa) =$
- $\delta^*(q_1, baa) =$
- $\delta^*(\delta(q_1, b), aa) =$
- $\delta^*(q_2, aa) =$
- $\delta^*(\delta(q_2, a), a) =$
- $\delta^*(q_1, a) =$
- $\underline{\delta}^*(\delta(q_1, a), \epsilon) =$

função estendida sobre abaa processa *a*baa função estendida sobre baa

processa baa

função estendida sobre aa

processa aa

função estendida sobre a

processa a

• $\underline{\delta}^*(q_f, \varepsilon) = q_f$ função estendida sobre ε : fim da indução; ACEITA

Def: Linguagem Aceita, Linguagem Rejeitada

 $M = (\Sigma, Q, \delta, q_0, F)$ autômato finito determinístico.

Linguagem Aceita ou Linguagem Reconhecida por M

$$L(M) = ACEITA(M) = \{ w \mid \delta^*(q_0, w) \in F \}$$

Linguagem Rejeitada por M:

REJEITA(M) = { w |
$$\delta^*(q_0, w) \notin F$$
 ou $\delta^*(q_0, w)$ é indefinida }

Supondo que ∑* é o conjunto universo

- ACEITA(M) \cap REJEITA(M) = \emptyset
- ACEITA(M) \cup REJEITA(M) = Σ^*
- ~ACEITA(M) = REJEITA(M)
- ~REJEITA(M) = ACEITA(M)

◆ Cada autômato finito M sobre ∑

- induz uma partição de Σ* em duas classes de equivalência
- e se um dos dois conjuntos for vazio?

 Diferentes autômatos finitos podem aceitar uma mesma linguagem

Def: Autômatos Finitos Equivalentes

M₁ e M₂ são Autômatos Finitos Equivalentes se e somente se

 $ACEITA(M_1) = ACEITA(M_2)$

Def: Linguagem Regular, Linguagem Tipo 3

L é uma Linguagem Regular ou Linguagem Tipo 3

existe pelo menos um autômato finito determinístico que aceita

Exp: ...Autômato Finito: Vazia, Todas as Palavras

Linguagens sobre o alfabeto { a, b }

$$L_2 = \emptyset$$
 e

$$L_3 = \Sigma^*$$

Exp: Autômato Finito: Vazia, Todas as Palavras

$$L_2 = \emptyset$$
 e $L_3 = \Sigma^*$

- diferença entre δ_2 e δ_3 ?
- o que, exatamente, diferencia M2 de M3?

Exp: Autômato Finito: número par de cada símbolo

 $L_4 = \{ w \mid w \text{ possui um número par de a e um número par de b } \}$

Como seria para aceitar um número ímpar de cada símbolo?

Obs: Função Programa × Função Programa Estendida

Objetivando simplificar a notação

- δ e a sua correspondente extensão δ*
- podem ser ambas denotadas por δ

Obs: Computações × Caminhos de um Grafo

- conjunto de arcos: computações possíveis
- subconjunto de arcos
 - * com origem no estado inicial
 - * destino em algum estado final
 - * linguagem aceita

Obs: ...Computações × Caminhos de um Grafo

Computações(M)
=
{ ε, a, b, c, d,
ab, bc, abc}

ACEITA (M) = $\{\epsilon, d, abc\}$