Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, ins-05 besondere aus einem UV-Lack oder thermisch aushärtendem Lack bestehenden Beschichtung eines Gegenstandes

Die Erfindung betrifft eine Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder thermisch aushärtendem Lack, bestehenden Beschichtung eines Gegenstandes, insbesondere einer Fahrzeugkarosserie, mit

- a) mindestens einem elektromagnetische Strahlung erzeugenden Strahler;
- 20 b) einem Fördersystem, welches den Gegenstand in die Nähe des Strahlers und von diesem wieder wegführt.

Unter UV-Licht aushärtende Lacke werden bisher hauptsächlich zur Lackierung von empfindlichen Gegenständen,

- 25 beispielsweise Holz oder Kunststoff, eingesetzt. Dort kommt besonders der Vorteil dieser Lacke zum Tragen, daß sie bei sehr niedrigen Temperaturen polymerisiert werden können. Hierdurch wird das Material der Gegenstände vor Zersetzung oder Ausgasung bewahrt. Die Aushärtung von
- 30 Beschichtungsmaterialien unter UV-Licht besitzt jedoch noch weitere Vorteile, welche dieses Beschichtungsverfahren nunmehr auch für die Anwendung in anderen Gebieten interessant macht. Dabei handelt es sich insbesondere um die kurze Aushärtzeit, die sich insbesondere bei solchen
- 35 Beschichtungsverfahren, die im kontinuierlichen Durchlauf

arbeiten, unmittelbar in einer Verkürzung der Anlagenlänge niederschlägt. Dies ist mit enormen Kosteneinsparungen verbunden. Aufgrund der geringeren Abmessungen kann zudem die Einrichtung, mit welcher die im Innenraum der Vorrichtung befindlichen Gase konditioniert werden, verkleinert werden, was ebenfalls zu Kosteneinsparungen beiträgt. Schließlich ist die niedrige Betriebstemperatur auch bei solchen Gegenständen, die an und für sich höhere Aushärttemperaturen vertragen könnten, aus Gründen der Einsparung von Energie, insbesondere von thermischer Energie, von Vorteil.

Viele der Gegenstände, die man gerne mit UV-härtenden Materialien beschichten würde, so z.B. Fahrzeugkarosserien, 15 weisen eine stark unebene, oft dreidimensional gekrümmte Oberfläche auf, so daß es schwierig ist, diese Gegenstände in den Strahlungsbereich eines UV-Strahlers so einzubringen, daß alle Oberflächenbereiche etwa denselben Abstand von dem UV-Strahler aufweisen und die UV-Strahlung etwa unter einem rechten Winkel auf den jeweiligen Oberflächenbereich des Gegenstandes auftrifft.

Bekannte Vorrichtungen der eingangs genannten Art, wie sie bisher in der Holz- oder Druckindustrie eingesetzt werden, sind hierfür ungeeignet, da hier der oder die UV-Strahler unbeweglich angeordnet waren und die Gegenstände von dem Fördersystem in eine mehr oder weniger fixen Orientierung an dem oder den UV-Strahlern vorbeigeführt wurden.

30

In jüngster Zeit wurden zudem Lacke entwickelt, die bei Wärmeeinwirkung in einer Inertgasatmosphäre unter Ausbildung sehr harter Oberflächen aushärten. Die Wärme kann dabei auf unterschiedliche Weise, so etwa durch 35 Konvektion oder durch Infrarot-Strahler, zugeführt werden. WO 2005/014182 PCT/EP2004/007643 - 3 -

Im letzteren Falle stellen sich ähnliche Probleme, wie sie oben für den Einsatz von UV-Strahlern beschrieben sind. Insbesondere sollten also alle Oberflächenbreiche des zu lackierenden Gegenstandes in etwa dem gleichen O5 Abstand an dem Infrarot-Strahler vorbeigeführt werden.

Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung der eingangs genannten Art so auszugestalten, daß auch Beschichtungen auf kompliziert geformten, stark unebenen 10 Gegenständen, insbesondere Fahrzeugkarosserien, mit gutem Ergebnis ausgehärtet werden können.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Fördersystem umfaßt:

15

25

- c) mindestens einen Transportwagen, der auf mindestens einer Lauffläche translatorisch verfahrbar ist und aufweist:
- 20 ca) einen Antriebsmotor für die Translationsbewegung;
  - cb) ein Halterungsgestell, an welchem der Gegenstand befestigbar ist und das um eine quer zur Richtung der Translationsbewegung verlaufende Dreh- oder Schwenkachse unabhängig von der Translationsbewegung verdreh- oder verschwenkbar ist.

Erfindungsgemäß werden Fördersysteme eingesetzt, die an und für sich bisher schon für die Tauchlackierung von Fahrzeugkarosserien oder anderen Gegenständen eingesetzt werden. Mit der vorliegenden Erfindung wurde erkannt, daß sich diese Fördersysteme auch dazu eignen, kompliziert geformte Gegenstände im Strahlungsbereich von Strahlern derart unter einer Überlagerung von Schwenkungen oder Drehungen und Translationen so zu verfahren, daß alle

Oberflächenbereiche des Gegenstandes einer Strahlungsmenge und einer Strahlungsintensität ausgesetzt sind, die zur Aushärtung des Materials ausreicht. Eine vollständige Aushärtung tritt nämlich nur ein, wenn die elektromagnetische Strahlung einerseits mit einer über einem Schwellwert liegenden Intensität auf die Beschichtung auftrifft und andererseits diese Intensität auch über einen bestimmten Zeitraum aufrechterhalten wird. Bei zu geringer Intensität kommt eine Polymerisationsreaktion nicht in Gang oder läuft nur langsam ab; bei zu kurzer Bestrahlung wird nur eine unvollständige Aushärtung erzielt.

Die erforderliche Strahlungsmenge wird in der Photometrie auch "Bestrahlung" genannt und in der Einheit J/cm<sup>2</sup>

15 angegeben. Für gängige Lacke beträgt die erforderliche Bestrahlung im Falle von UV-Licht einige J/cm<sup>2</sup>.

Eine geringe "Überbelichtung" der Beschichtung über die erforderliche Bestrahlung hinaus ist im allgemeinen nicht schädlich. Vorzugsweise sollte die Bewegungsführung der Gegenstände aber so sein, daß die pro Flächeneinheit auf die Beschichtung auftreffende integrierte Strahlungsmenge überall auf der Oberfläche des Gegenstandes etwa konstant ist. Dieser konstante Wert sollte möglichst nur geringfügig über dem zur Aushärtung erforderlichen Wert liegen, da starke Überbelichtungen zu einer Versprödung oder auch Verfärbung des Lackes führen können.

20

25

Eine besonders vorteilhafte Ausführungsform der Erfindung zeichnet sich dadurch aus, daß der Transportwagen mindestens einen Arm aufweist, an dessen äußerem Ende das Halterungsgestell verdreh- oder verschwenkbar angebracht ist und der an seinem gegenüberliegenden, inneren Ende um eine zweite Dreh- oder Schwenkachse verdreh- oder verschwenkbar ist. Ein derartiges Fördersystem ist aus der

DE 201 05 676 U1 bekannt, wird dort aber zum Eintauchen von Fahrzeugkarosserien in Behandlungsbäder verwendet.

Der Transportwagen ist zweckmäßigerweise auf zwei paralle-05 len Laufflächen verfahrbar. Dadurch erhält der Transportwagen ohne großen konstruktiven Aufwand die erforderliche Stabilität.

Besonders bevorzugt wird diejenige Ausführungsform der

Erfindung, bei welcher die Vorrichtung einen zur Transportebene des Fördersystems offenen Behälter aufweist, in
dessen Innenraum der Gegenstand unter einer Verdrehung
oder Verschwenkung des Halterungsgestelles einführbar
ist und dessen Innenraum von mindestens einem Strahler

mit elektromagnetischer Strahlung beaufschlagbar ist.
Dieser Behälter sorgt dafür, daß in seitlicher Richtung
keine Strahlung und keine Gase entweichen können, was aus
Gesundheitsgründen für das Bedienungspersonal zu vermeiden
ist. Bei dieser Ausführungsform der Erfindung entfalten

die Transportwagen, die zum Ein- und Austauchen von
Gegenständen in Flüssigkeitsbehälter konstruiert sind,
ihre Vorteile besonders gut.

Die Anordnung der Strahler am oder im Behälter kann 25 unterschiedlich sein:

So ist es möglich, daß mindestens ein Strahler in eine Wand oder den Boden des Behälters eingebaut ist. Bei dreidimensional gekrümmten Oberflächen von zu behandeln30 den Gegenständen wird dabei diejenige Lösung bevorzugt, bei welcher in den gegenüberliegenden, parallel zur Translationsbewegung der Gegenstände verlaufenden Seitenwänden und in mindestens einer der beiden senkrecht zur Translationsbewegung der Gegenstände verlaufenden Stirnwände oder in den Boden des Behälters mindestens ein Strahler einge-

baut ist. Dann lassen sich alle Seiten bzw. Oberflächenbereiche des Gegenstandes von der elektromagnetischen Strahlung problemlos erreichen.

- 05 Am universellsten einsetzbar ist selbstverständlich diejenige Ausführungsform der Erfindung, bei welcher an allen Wänden und in dem Boden des Behälters eine Vielzahl von Strahlern angeordnet ist.
- Bei den obigen Ausführungsformen, bei denen die Strahler in den Wänden oder im Boden des Behälters angeordnet sind, bilden die Strahler im wesentlichen Flächenstrahler.
- Es können jedoch auch vorteilhaft Strahler eingesetzt

  15 werden, die als linienhafte Strahler ausgestaltet sind.

  In diesem Falle ist insbesondere eine Ausführungsform
  der Erfindung möglich, bei welcher mehrere Strahler
  in einer U-förmigen Anordnung mit zwei im wesentlichen
  vertikalen Schenkeln und einer im wesentlichen horizontalen

  20 Basis vorgesehen sind. Der zu behandelnde Gegenstand wird
  hier durch den von der U-förmigen Anordnung gebildeten
  Innenraum "hindurchgefädelt".
- Die annähernd vertikalen Schenkel der U-förmigen Anordnung aus Strahlern können an den Verlauf der Seitenkontur des Gegenstandes angepaßt sein, so daß auch bei gekrümmter Seitenkontur dieser Gegenstände der gewünschte senkrechte Einfall der elektromagnetischen Strahlung auf die Oberflächenbereiche und der konstante Abstand zwischen Ober-30 flächenbereich und Strahler eingehalten werden können.

Um eine variable Anpassung zu ermöglichen, können die annähernd senkrechten Schenkel der U-förmigen Anordnung aus Strahlern segmentiert und die Segmente gegenein35 ander verstellbar sein.

Auch die Basis der U-förmigen Anordnung aus Strahlern kann an den Verlauf der Kontur der Gegenstände angepaßt sein. Erneut ist diese Anpassung variabel, wenn Basis der U-förmigen Anordnung aus Strahlern segmentiert ist und die Segmente gegeneinander verstellbar sind.

Besonders bevorzugt wird, wenn dem Innenraum des Behälters ein Schutzgas zuführbar ist. Das Schutzgas hat primär

10 die Funktion, die Anwesenheit von Sauerstoff im Strahlungsbereich der Strahler zu verhindern, da dieser Sauerstoff unter dem Einfluß der elektromagnetischen Strahlung, insbesondere im Falle von UV-Licht, in schädliches Ozon umgewandelt werden könnte und außerdem bei der Polymerisationsreaktion schädlich ist.

Das Schutzgas kann schwerer als Luft, insbesondere Kohlendioxid, sein. In diesem Falle ist der Behälter nach oben offen. Der Behälter wird von dem schweren Schutzgas ähnlich 20 wie von einer Flüssigkeit angefüllt.

Es ist jedoch auch möglich, daß das Schutzgas leichter als Luft, insbesondere Helium, ist. In diesem Falle ist der Behälter als nach unten offene Haube ausgebildet, in der 25 sich das Schutzgas sammelt. Der "Boden" wird so zur Decke des Behälters.

Gleichgültig, ob der Behälter nach unten oder nach oben offen ist, können die beschichteten Gegenstände mit Hilfe der erfindungsgemäß eingesetzten Transportwagen problemlos in die Schutzgasatmosphäre innerhalb des Behälters einund ausgebracht werden.

Das Schutzgas wird zweckmäßigerweise zugleich als Kühlgas 35 für die Strahler genutzt. WO 2005/014182 PCT/EP2004/007643 - 8 -

Wenn eine Einrichtung vorgesehen ist, welche Schutzgas gegen den vom Strahler beaufschlagten Oberflächenbereich richtet, ist es möglich, am Reaktionsort für eine besonders 05 definierte, von Sauerstoff freie Atmosphäre zu sorgen.

Insbesondere bei Gegenständen, welche Hohlräume aufweisen, ist eine Einrichtung sinnvoll, welche den Gegenstand vor dem Eintritt in das Strahlungsfeld des Strahlers oder die Schutzgasatmosphäre mit einem gerichteten Schutzgasstrom abbläst, um mitgeführte Luft zu verdrängen.

Wenn mindestens einem der Strahler auf der dem Gegenstand abgewandten Seite ein beweglicher Reflektor zuge-15 ordnet ist, ist eine zusätzliche Anpassung der Strahlungsrichtung an den Verlauf der Oberfläche des zu behandelnden Gegenstandes möglich.

Der Behälter kann an seinen Innenflächen mit einer reflek-20 tierenden Schicht versehen sein. Hierdurch können Strahler mit geringerer Leistung eingesetzt werden.

Besonders günstig ist es dabei, wenn die reflektierende Schicht aus Aluminiumfolie besteht. Diese hat ein sehr gutes 25 gutes Reflektionsvermögen für elektromagnetische Strahlung und ist preiswert erhältlich.

Die Reflektionswirkung wird dadurch verstärkt, daß die Aluminiumfolie eine Vielzahl von Unebenheiten aufweist,

30 beispielsweise zerknittert ist. Die Reflektionen erfolgen unter diesen Umständen unter sehr verschiedenen Winkeln, so daß der Innenraum des Behälters sehr gleichmäßig mit elektromagnetischer Strahlung unterschiedlichster Propagationsrichtungen ausgefüllt ist.

Die erfindungsgemäße Vorrichtung sollte ein Kabinengehäuse aufweisen, das ein unkontrolliertes Austreten von Gasen und von elektromagnetischer Strahlung unterbindet. Beides wäre für das Bedienungspersonal gesundheitsgefährdend.

05

Am Ein- und am Auslaß zum Kabinengehäuse kann jeweils eine Schleuse für den Transportwagen vorgesehen sein. Diese Schleusen verhindern, daß beim Einfahren und Ausfahren des Transportwagens in das Kabinengehäuse oder aus diesem größere Luftmengen aus der Außenatmosphäre in das Kabinengehäuse gelangen, und schützen darüber hinaus das Personal vor der elektromagnetischen Strahlung.

Da sich jedoch auch mit Schleusen das Eindringen von Luft,
insbesondere von Sauerstoff, in den Innenraum des Kabinengehäuses nicht vollständig unterdrücken läßt, ist zweckmäßigerweise eine Einrichtung zur Entfernung des Sauerstoffes aus der innerhalb des Kabinengehäuses befindlichen
Atmosphäre vorgesehen. Diese Einrichtung kann einen

Katalysator zur katalytischen Bindung des Sauerstoffes,
ein Filter zur Absorption oder auch ein Filter zur Adsorption von Sauerstoff umfassen.

Wenn das Beschichtungsmaterial zunächst noch verhältnis25 mäßig viel Lösemittel enthält, wie dies beispielsweise
bei wasserbasierten Lacken der Fall ist, kann die Vorrichtung zur Entfernung des Lösemittels aus dem Material
der Beschichtung eine Vorwärmzone aufweisen.

- Wenn dagegen pulverförmige Materialien verarbeitet werden sollen, kann die Vorrichtung zur Angelierung dieses pulverförmigen Materials eine entsprechende Vorerwärmungszone besitzen.
- 35 In beiden Vorwärmzonen können die Gegenstände konvektiv,

durch IR- oder Mikrowellenstrahlung oder auch in anderer Weise erwärmt werden.

Dem mindestens einen Strahler kann in Förderrichtung
05 eine Meßstation vorgelagert sein, durch die Raumformdaten des Gegenstandes erfaßbar sind. Diese Daten können
dann zur Bewegungsführung des Gegenstandes vor dem oder
den Strahlern verwendet werden.

- 10 Die Meßstation kann mindestens einen optischen Abtaster umfassen, durch den der Gegenstand zumindest in einer Richtung scannerartig abtastbar ist. Der optische Abtaster kann dabei eine Infrarotlichtquelle aufweisen.
- 15 Alternativ kann die Meßstation auch eine Videokamera und eine Einrichtung zur digitalen Bilderkennung umfassen.
- Bei einer Ausführungsform der Erfindung sind die von

  20 der Meßstation gewonnenen Daten in einer Steuereinrichtung
  speicherbar, welche diese Daten bei der nachfolgenden
  Bewegung des Gegenstandes an dem mindestens einen Strahler
  vorbei wieder ausliest und zur Steuerung der Bewegung des
  Gegenstandes heranzieht. Die Vermessung des Gegenstandes

  25 kann hier an einem beliebigen, dem Bestrahlungsort vorgelagerten Ort und zu einem beliebigen, dem Bestrahlungszeitpunkt vorausgehenden Zeitpunkt erfolgen.
- Alternativ kann die Meßstation in unmittelbarer Nähe
  30 des mindestens einen Strahlers angeordnet und eine Steuereinrichtung vorgesehen sein, welche die von der Meßstation
  gewonnenen Daten ohne zeitliche Verzögerung direkt zur
  Steuerung der Bewegung des Gegenstandes heranzieht.
- 35 Diese Meßstation kann beispielsweise eine Lichtschranke

- 11 -

enthalten.

Unter Umständen kann auf eine Vermessung des Gegenstandes auch verzichtet werden, wenn eine Steuereinrichtung

05 vorgesehen ist, in welcher die zu einem bestimmten Typ des Gegenstandes gehörenden Raumdaten abspeicherbar und bei Bedarf aus dieser auslesbar sind.

Wenn mehrere Strahler in unregelmäßiger Anordnung vorge10 sehen sind, gelingt insbesondere die Beleuchtung von
Kanten, in der Karosserietechnik "Umgriff" genannt, besser.

Die elektromagnetische Strahlung ist vorzugsweise UV-Licht oder Infrarotstrahlung.

15

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung näher erläutert; es zeigen

- 20 Figur 1 perspektivisch und teilweise aufgebrochen eine Vorrichtung zur Aushärtung eines UV-Lackes auf Fahrzeugkarosserien;
- Figur 2 eine Ansicht, ähnlich der Figur 1, jedoch

  bei abgenommener Seitenwand eines Behälters und
  eines Kabinengehäuses der Vorrichtung;
- Figur 3 einen Schnitt durch die Vorrichtung der Figuren
  1 und 2 parallel zur Translationsrichtung der
  Fahrzeugkarosserien;
  - Figur 4 eine Draufsicht auf den Behälter sowie das Fördersystem der Vorrichtung der Figuren 1 bis 3;

- Figur 5 einen Schnitt durch die Vorrichtung der Figuren 1 bis 4 senkrecht zur Translationsrichtung der Fahrzeugkarosserien;
- 05 Figur 6 eine perspektivische Ansicht, ähnlich der Figur
  1, eines zweiten Ausführungsbeispiels einer
  Vorrichtung zur Aushärtung eines UV-Lackes auf
  Fahrzeugkarosserien;
- 10 Figur 7 eine perspektivische Ansicht des zweiten Ausführungsbeispiels, ähnlich der Figur 2;
- Figur 8 einen Schnitt durch die Vorrichtung der Figuren 6 und 7 parallel zur Translationsrichtung der Fahrzeugkarosserien;
  - Figur 9 eine Draufsicht auf den Behälter und das Fördersystem der Vorrichtung der Figuren 6 bis 8;
- 20 Figur 10 einen Schnitt durch die Vorrichtung der Figuren 6 bis 9 senkrecht zur Förderrichtung der Fahrzeugkarosserien;
- Figur 11 schematisch eine Gesamtansicht der Vorrichtung
  25 der Figuren 1 bis 5 mit verschiedenen peripheren
  Einrichtungen.

Zunächst wird auf die Figuren 1 bis 5 Bezug genommen.
In diesen ist der Kernbereich eines ersten Ausführungs30 beispiels einer Vorrichtung dargestellt, die zum Aushärten
eines UV-Lackes auf Fahrzeugkarosserien, der in einer
vorangegangenen Beschichtungsstation aufgetragen wurde,
mit UV-Licht dient.

35 Die insgesamt mit dem Bezugszeichen 1 gekennzeichnete

WO 2005/014182 PCT/EP2004/007643 - 13 -

Vorrichtung umfaßt einen nach oben offenen Behälter

2, der einem vom Tauchlackieren von Fahrzeugkarosserien
her bekannten Lacktank ähnelt. Ein Fördersystem 3, das
weiter unten näher beschrieben wird, erstreckt sich

05 über den Behälter 2 hinweg und ist in der Lage, die
von ihm beförderten Fahrzeugkarosserien 4 in einer Weise
in den Behälter 2 "einzutauchen" und in diesem zu bewegen,
die ebenfalls weiter unten näher beschrieben wird.

10 Der im wesentlichen quaderförmige Behälter 2 enthält in seiner Bodenfläche 5 ebenso wie in den parallel zu der Förderrichtung des Fördersystemes 3, die durch den Pfeil 7 gekennzeichnet ist, verlaufenden Seitenwänden 8 und 9 sowie in den hierzu senkrecht verlaufenden Stirn15 wänden 10 und 11 eine Vielzahl von UV-Strahlern 12.

Die Lichtaustrittsflächen der Strahler 12 sind zum Inneren des Behälters 2 gerichtet und durch ein IR-Filter abgedeckt, sodaß von den UV-Strahlern 12 erzeugte Wärmestrahlung nicht in das Innere des Behälters 2 gelangen kann.

Jedem UV-Strahler 12 wird über eine Leitung 14, von denen in den Figuren zu deren Entlastung nur eine dargestellt ist, gasförmiges Kohlendioxid zugeführt. Dieses Kohlendioxid umspült die im Betrieb heiß werdenden Teile der UV-Strahler 12 und tritt sodann an der Innenseite 25 des Bodens 5 sowie der Wände 8, 9, 10, 11 des Behälters 2 aus. Das gasförmige Kohlendioxid, das schwerer als Luft ist, füllt auf diese Weise den Innenraum des Behälters 2 von unten nach oben aus. Die Menge des über die 30 Leitungen 14 zugeführten gasförmigen Kohlendioxids steht mit der Menge des Kohlendioxids, das an der offenen Oberseite des Behälters 2 entweicht und sodann aus der Vorrichtung 1 in weiter unten erläuterter Weise abgeführt wird, in einem dynamischen Gleichgewicht.

20

Das Fördersystem 3 ist ähnlich aufgebaut wie dasjenige, das in der oben erwähnten DE 201 05 676 U1 beschrieben ist, auf welche ergänzend Bezug genommen wird. Es umfaßt zwei Laufflächen 15, 16, die sich beidseits des Behälters 2 parallel zur Förderrichtung 7 erstrecken und auf denen eine Vielzahl von Transportwagen 18 verfahrbar ist. Jeder dieser Transportwagen 18 besitzt zwei Längstraversen 19, 20, an deren Unterseite jeweils Räder 21 um eine horizontale Achse drehbar gelagert sind. Zusätzlich sind die Räder 21 mit Hilfe eines im einzelnen nicht dargestellten Drehschemels um eine vertikale Achse verdrehbar, so daß die Ausrichtung der Räder 21 gegenüber den jeweiligen Längstraversen 19, 20 verändert werden kann.

Die Räder 21 rollen auf den erwähnten Laufflächen 15, 16 und werden von diesen mittels eines formschlüssigen Eingriffes, dessen Details der DE 201 05 676 U1 entnommen werden können, geführt. Der Transportwagen 18 wird mit Hilfe eines Friktionsantriebes, der ebenfalls der oben 20 genannten Druckschrift zu entnehmen ist und an jeder Längstraverse 19, 20 einen Antriebsmotor 22 umfaßt, frei programmierbar entlang der Laufflächen 15, 16 bewegt, kann also unabhängig von allen anderen im selben Fördersystem 3 befindlichen Transportwagen 18 beschleunigt, verzögert, mit konstanter Geschwindigkeit gefahren oder auch angehalten werden.

Die beiden Längstraversen 19, 20 des Transportwagens
18 sind über eine Schwenkwelle 23 miteinander verbunden,
30 die mit Hilfe eines in der Zeichnung nicht erkennbaren
Antriebsmotors unabhängig von der Translationsbewegung
des Transportwagens 18 verdreht werden kann. An der
Schwenkwelle 23 sind die ersten Enden zweier Schwenkarme 24 starr befestigt, die jeweils in der Nähe einer
35 Längstraverse 19, 20, parallel zu dieser etwas nach

innen versetzt, verlaufen.

An den gegenüberliegenden Enden der Schwenkarme 24 sind zwei Streben 25 eines insgesamt mit dem Bezugszeichen 26
05 gekennzeichneten Halterungsgestelles angelenkt, an dem die Fahrzeugkarosserie 4 dann, gegebenenfalls gemeinsam mit einem die Fahrzeugkarosserie 4 tragenden Skid, befestigt ist. Die Gelenkachsen, über welche die Schwenkarme 24 mit den Streben 25 des Halterungsgestelles 26 verbunden sind, sind motorisch in einer in der Zeichnung nicht erkennbaren Weise angetrieben, so daß der Winkel zwischen den Schwenkarmen 24 und den Streben 25 des Halterungsgestelles 26 unabhängig von der Verschwenkung der Schwenkarme 24 um die Schwenkwelle 23 und unabhängig von der Translationsbewegung des Transportwagens 18 in Förderrichtung 7 verändert werden kann.

Die Oberseite des Behälters 2 ist durch ein Kabinengehäuse 27 abgedeckt, das Glas-Seitenwände 28 und eine Dach-20 konstruktion 29 aufweist. Das Glas, aus dem die Seitenwände 28 gebildet sind, ist selbstverständlich für UV-Licht undurchlässig.

Die Dachkonstruktion 29 ist mit verschiedenen parallel

25 zur Förderrichtung 7 verlaufenden Hohlräumen 30 versehen,
über welche dem Innenraum des Kabinengehäuse 27 konditioniertes Gas zugeführt werden kann und aus dem Innenraum des
Kabinengehäuses 27 Gas einschließlich des aus dem Behälter
2 entweichendes Kohlendioxids und gegebenenfalls Ozons

30 kontrolliert abgeführt werden kann.

Der Boden 5 sowie die Wände 8, 9, 10, 11 des Behälters 2 sind dort, wo sie nicht von den Austrittsflächen der UV-Strahler 12 belegt sind, durch eine reflektierende Alu-35 miniumfolie abgedeckt, die zusätzlich beispielsweise WO 2005/014182 PCT/EP2004/007643 - 16 -

durch Knittern oder durch sonstige unregelmäßige Erhebungen uneben gemacht wurde.

Die oben beschriebene Vorrichtung 1 arbeitet wie folgt:

05

Im Betrieb sind die UV-Strahler 12 in Funktion, so daß der gesamte Innenraum des Behälters 2 mit UV-Licht besetzt ist, das durch die an den Innenflächen der Behälterwände 8 bis 11 sowie des Behälterbodens 5 angebrachte zerknit-10 terte Aluminiumfolie zusätzlich in die unterschiedlichsten Richtungen reflektiert und auf diese Weise vergleichmäßigt wird. Die UV-Strahler 12 sind durch das über die Leitungen 14 zugeführte gasförmige Kohlendioxid gekühlt. Das auf diese Weise nur unwesentlich vorgewärmte Kohlen-15 dioxidgas tritt in der oben schon geschilderten Weise in den Behälter 2 ein und füllt diesen von unten nach oben auf. Das an der Oberseite aus dem Behälter 2 austretende Kohlendioxid, das in geringfügigem Ausmaße mit Ausgasungen aus dem auf der Fahrzeugkarosserie 4 aus-20 härtenden Lack sowie Ozon gemischt sein kann, gelangt in den Innenraum der Kabine 27 und wird von dort über einen der Hohlräume 30 in der Dachkonstruktion 29 abgesaugt. Eine Absaugung kann auch unmittelbar an dem oberen Rand der Wände 8 bis 11 des Behälters 2 erfolgen.

25

Die Fahrzeugkarosserien 4 werden jeweils einzeln mit
Hilfe eines Transportwagens 18 in Figur 2 von links
unten dem Behälter 2 durchgeführt. Sie werden sodann
mit Hilfe einer Bewegungskurve, die durch gleichzeitige

30 Translationsbewegung des Wagens 18, Schwenkbewegung
der Schwenkarme 24 und Schwenkbewegung der Streben 25
individuell angepaßt werden kann, in den Innenraum des
Behälters 2 eingeführt und dabei in das dort befindliche
Kohlendioxidgas eingetaucht. Dieses Kohlendioxidgas

35 dient als Schutzgas und verhindert, daß Luft und insbeson-

WO 2005/014182 PCT/EP2004/007643 - 17 -

dere der in dieser enthaltene Sauerstoff in den Innenraum des Behälters 2 eintritt und dort Ozon bildet. Diese Luft bzw. der in ihr enthaltene Sauerstoff wäre auch bei der Polymerisationsreaktion innerhalb des Lackes, der sich ost der Fahrzeugkarosserie 4 befindet, schädlich. Das Kohlendioxidgas dagegen fördert die genannte Polymerisationsreaktion, die nunmehr unter dem Einfluß des von den UV-Strahlern 12 ausgesandten UV-Lichtes in sehr kurzer Zeit stattfinden kann.

10

Die Fahrzeugkarosserie 4 weist ersichtlich in allen drei Raumrichtungen stark gekrümmte Flächen auf. Um sicherzustellen, daß allen Flächenbereiche beim Durchgang durch die Vorrichtung etwa von derselben UV-Bestrahlung getroffen werden, wird die Fahrzeugkarosserie 4 mit Hilfe der Schwenkarme 24 und des Halterungsgestells 26 entsprechend verschwenkt. Dies kann bei stillstehender Translationsbewegung des Transportwagens 18 oder auch während einer Translationsbewegung sowohl in Richtung des Pfeiles 7 als auch entgegengesetzt zu diesem erfolgen.

Soll UV-Lack, der sich an Innenflächen der Fahrzeugkarosserie 4 befindet und von außen her durch die UV-Strahler 12
nicht erreichbar ist, ausgehärtet werden, kann ein zusätzlicher UV-Strahler 12 eingesetzt werden, der sich an einem
beweglichen, in den Innenraum der Fahrzeugkarosserie 4
einführbaren Arm befindet.

Ist der Polymerisationsvorgang abgeschlossen, wird die 30 Fahrzeugkarosserie 4 in der Nähe der in Bewegungsrichtung 7 hinten liegenden Stirnwand 11 des Behälters 2 in einer entsprechend angepaßten Bewegungskurve aus dem Behälter 2 herausgehoben, wie dies in der DE 201 05 676 Ul beschrieben ist.

WO 2005/014182 PCT/EP2004/007643 - 18 -

In den Figuren 6 bis 10 ist ein zweites Ausführungsbeispiel einer Vorrichtung 101 dargestellt, mit welcher der auf einer Fahrzeugkarosserie 104 aufgebrachte UV-Lack unter der Einwirkung von UV-Licht ausgehärtet werden kann. Diese Vorrichtung 101 ähnelt stark der Vorrichtung 1 der Figuren 1 bis 5; entsprechende Teile sind daher mit denselben Bezugzeichen zuzüglich 100 gekennzeichnet.

Die Vorrichtung 101 enthält einen nach oben offenen

10 Behälter 102, ein Fördersystem 103 mit einer Vielzahl
von Transportwagen 118 sowie ein Kabinengehäuse 127, welche
den Behälter 102 überdeckt. Insofern stimmen die Verhältnisse bei den beiden Ausführungsbeispielen der Vorrichtung
1 bzw. 101 identisch überein.

15

Anders als beim Ausführungsbeispiel der Figuren 1 bis 5
befinden sich jedoch im Boden 105 sowie in den Seitenwänden
108 bis 111 des Behälters 102 keine UV-Strahler. Statt
dessen ist etwa in der Mitte des Behälters 102, in Förder20 richtung 107 gesehen, eine U-förmige Anordnung aus UVStrahlern 112 vorgesehen. Die Basis dieses "U" wird von
mindestens einem sich etwa in horizontaler Richtung
senkrecht zur Förderrichtung 107 erstreckenden "linienhaften" UV-Strahler 112 gebildet; die beiden Schenkel des
25 "U" werden in ähnlicher Weise jeweils durch mindestens
einen etwa vertikal verlaufenden, "linienhaften" UVStrahler 112 gebildet.

Der Behälter 102 weist eine etwas größere Länge als der 30 Behälter 2 des Ausführungsbeispieles der Figuren 1 bis 5 auf. Auch der Innenraum des Behälters 102 wird mit gasförmigem Kohlendioxid ausgefüllt, das als Kühlgas für die UV-Strahler 112 aber auch an anderer Stelle zugeführt werden kann.

Die Funktionsweise des in den Figuren 6 bis 9 dargestellten Ausführungsbeispieles ist wie folgt:

Die mit UV-Lack beschichteten Fahrzeugkarosserien 104 werden mit Hilfe der Transportwagen 118 in Figur 6 von links unten kommend über den Behälter 102 gefahren und sodann in der Nähe der in Förderrichtung 107 vorderen Stirnwand 110 auf einer entsprechend angepaßten Bewegungskurve in den Behälter 2 eingebracht. Sodann bewegt sich 10 der Transportwagen 18 in Richtung der Pfeile 107, wobei die Fahrzeugkarosserie 104 zwischen den beiden vertikalen Schenkeln der U-förmigen Anordnung aus UV-Strahlern 112 hindurch und über die Basis dieses U hinweggeführt wird. Durch entsprechende Verschwenkungen der Schwenkarme 124 15 sowie der Streben 125 des Halterungsgestells 126 wird darauf geachtet, daß die im Strahlungsbereich des horizontal verlaufenden UV-Strahlers 112 liegenden Flächen von diesem UV-Strahler 112 beim "Vorbeilauf" etwa denselben Abstand besitzen und daß die von diesem UV-Strahler 112 ausgesandte UV-Strahlung etwa unter einem rechten Winkel auf den fraglichen Oberflächenbereich gerichtet ist. Hierdurch wird die gewünschte etwa konstante Bestrahlung aller Oberflächenbereiche sichergestellt. Bei Bedarf kann die Translationsbewegung des Transportwagens 118 dabei auch unterbrochen oder umgekehrt werden, so daß einzelne Oberflächenbereiche länger bestrahlt werden als andere.

Nach dem Durchgang der Fahrzeugkarosserie 104 durch die U-förmige Anordnung aus Strahlern 112 ist die Polymerisationsreaktion im wesentlichen abgeschlossen.

30

35

Figur 11 zeigt die oben anhand der Figuren 1 bis 5 beschriebene Vorrichtung 1 schematisch in Ihrer Gesamtheit mit verschiedenen peripheren Einrichtungen 40, 50, 60, 70, 80 und 90. Wieder zu erkennen ist das Fördersystem 3 mit

WO 2005/014182 PCT/EP2004/007643 - 20 -

05

den einzelnen Transportwagen 18, auf denen die Fahrzeugkarosserien 4 in Richtung der Pfeile 7 translatorisch bewegt werden. Diese Bewegung kann diskontinuierlich erfolgen, wobei auch Rückwärtsbewegungen nicht ausgeschlossen sind.

Die Transportwagen 18 durchlaufen zunächst eine Vorwärmstation 40, die im dargestellten Ausführungsbeispiel heißluftbeheizt ist. Alternativ kommt eine Beheizung durch

IR-Strahler oder Mikrowellen in Frage. Die Vorwärmstation
40 kann je nach Art des Beschichtungsmaterials unterschiedliche Funktionen ausführen: Handelt es sich bei diesem
Material um Lösemittel-basierte Stoffe, beispielsweise um
Wasserlack, werden hier die Lösemittel weitestgehend

entfernt. Handelt es sich um Pulvermaterial, dient die
Vorwärmstation 40 dazu, das Pulver anzugelieren und
auf diese Weise bereit zur Polymerisationsreaktion zu
machen.

Die Transportwagen 18 mit den Fahrzeugkarosserien 4
gelangen sodann zu einer Einlaßschleuse 50, welche dem
oben beschriebenen Vorrichtungsteil, in welchem die Bestrahlung mit UV-Licht stattfindet, vorgeschaltet ist. Die
Einlaßschleuse 50 ist eine Doppelschleuse mit zwei beweglichen Toren 51 und 52. Die Fahrzeugkarosserien 4 werden
zunächst bei geöffnetem Tor 51 und geschlossenem Tor 52
in die Schleuse 50 eingefahren. Innerhalb der Schleuse
50 befindet sich eine optische Scaneinrichtung 55, mit
welcher die Kontur der Fahrzeugkarosserie 4 abgetastet
30 wird. Die hierbei gewonnen Raumformdaten werden einer
Steuerung 56 zugeleitet und dort zunächst gespeichert.

Sodann wird das Tor 51 geschlossen, das Tor 52 geöffnet und die Fahrzeugkarosserie 4 weiter in den Innenraum des 35 Kabinengehäuses 27 eingebracht. Dort wird die Fahrzeugka-

į

WO 2005/014182 PCT/EP2004/007643 - 21 -

rosserie 4, wie oben beschrieben, unter Verschwenken der Arme 24 und des Halterungsgestelles 26 in den Behälter 2 eingebracht, der mit Kohlendioxidgas aus einer Kohlendioxid-Versorgungsquelle 60 gefüllt ist. Die Fahrzeugkarosserie 4 bewegt sich in dem Behälter 2 an einer Vielzahl von UV-Strahlern 12 vorbei, von denen nur einer in Figur 11 gezeigt ist. Die Bewegungsführung erfolgt durch die oben erwähnte Steuerung nach den durch die Scaneinrichtung 55 gewonnenen Daten.

10

15

Statt der Scaneinrichtung 55 kann die Bewegungsführung der Fahrzeugkarosserie 4 im Behälter 2 auch nach Karosseriedaten erfolgen, die in der Steuerung 56 abgespeichert sind. Es ist dann nur eine Leseeinrichtung erforderlich, welche den Typ der in den Behälter 2 gerade einlaufenden Fahrzeugkarosserie 4 erkennt und die diesem zugeordneten Raumformdaten abruft. Die Scaneinrichtung 55 kann in diesem falle zusätzlich als Kontrolle eingesetzt werden.

20

Die Fahrzeugkarosserie 4 verläßt den Behälter 2 erneut unter Verschwenken der Arme 24 und des Halterungsgestelles 26 und gelangt sodann zu einem ersten beweglichen Tor 71 einer Auslaßschleuse 70, deren zweites bewegliches Tor 72 zu diesem Zeitpunkt geschlossen ist. Durch das geöffnete Tor 71 fährt der Transportwagen 18 mit der Fahrzeugkarosserie 4 in den Innenraum der Auslaßschleuse 70 ein. Sodann wird das innere bewegliche Tor 71 geschlossen und das äußere bewegliche Tor 72 geöffnet.

30

Die aus der Auslaßschleuse 70 ausfahrende Fahrzeugkarosserie 4 gelangt in eine Nachwärmzone 80, in welcher die Beschichtung der Fahrzeugkarosserie 4 für eine gewisse Zeit auf einer erhöhten Temperatur gehalten und dabei 35 stabilisiert wird. Sodann verläßt der Transportwagen 18 WO 2005/014182 PCT/EP2004/007643 - 22 -

mit der Fahrzeugkarosserie 4 die Vorrichtung 1. An geeigneter Stelle werden die Fahrzeugkarosserien 4 von den Transportwagen 18 abgenommen und der weiteren Verwendung zugeführt, während die Transportwagen 18 auf einem nicht dargestellten Wege an diejenige Stelle zurückgebracht werden, an der sie mit frisch beschichteten Fahrzeugkarosserien 4 erneut beladen und wiederum in die in Figur 11 dargestellte Vorrichtung 1, von links her kommend, eingefahren werden.

10

Die Schleusen 50 und 70 dienen neben dem Schutz der Bedienungspersonen vor UV-Licht dazu, das Eindringen von Luft in den Innenraum des Kabinengehäuses 27 möglichst weitgehend zu unterbinden, da der in der Luft enthaltene 15 Sauerstoff durch die UV-Strahlung, die im Innenraum des Kabinengehäuses 27 vorliegt, zu schädlichem Ozon umgewandelt würde. Vollständig läßt sich der Eintrag von Luft und damit von Sauerstoff durch die Schleusen 50 und 70 jedoch nicht verhindern. Aus diesem Grunde 20 ist eine Einrichtung 90 vorgesehen, welche der Entfernung von eingebrachtem Sauerstoff dient. Hierzu wird dem Innenraum des Kabinengehäuses 27 über eine Leitung 91 ständig Gas entnommen und beispielsweise über einen in der Einrichtung 90 geführten Katalysator geführt, der den Sauer-25 stoff katalytisch entfernt. Ein Teil dieses Gases wird über die Leitung 92 wieder ins Innere des Kabinengehäuses 27 zurückgegeben, während ein anderer Teil über eine Leitung 93 in die Außenatmosphäre entlassen wird.

30 Statt eines Katalysators kann die Einrichtung 90 ein Sauerstoff-adsorbierendes oder Sauerstoff-absorbierendes Filter enthalten.

Die Meßstation zur Ermittlung der Raumdaten umfaßt bei 35 einem in der Zeichnung nicht dargestellten AusführungsWO 2005/014182 PCT/EP2004/007643 - 23 -

beispiel eine Videokamera mit einer digitalen Bilderkennungseinrichtung.

Die oben als "Strahler" bezeichneten Komponenten können 05 aus einer Vielzahl einzelner linearer oder annähernd punktfömiger Lichtquellen zusammengesetzt sein.

Die obigen Ausführungsbeispiele werden zum Aushärten von Lacken unter UV-Licht eingesetzt. Sie lassen sich aber auch bei solchen Lacken verwenden, die unter Wärmeeinwirkung, insbesondere in einer Inertgasatmosphäre, also beispielsweise in einer CO<sub>2</sub>- oder Stickstoffatmosphäre, aushärten. Es brauchen dann im wesentlichen nur die beschriebenen UV-Strahler durch IR-Strahler ersetzt zu werden. Andere mit dem Wechsel der elektromagnetischen Strahlung verbundene konstruktive Anpassungen sind dem Fachmann bekannt und brauchen hier nicht näher erläutert zu werden.

## Patentansprüche

05

10

- Vorrichtung zur Aushärtung einer aus einem Material, das unter elektromagnetischer Strahlung aushärtet, insbesondere aus einem UV-Lack oder aus einem thermisch aushärtenden Lack, bestehenden Beschichtung eines Gegenstandes, insbesondere einer Fahrzeugkarosserie, mit
- a) mindestens einem elektromagnetische Strahlung erzeugenden Strahler;
- b) einem Fördersystem, welches den Gegenstand in die Nähe des Strahlers und von diesem wieder wegführt;

dadurch gekennzeichnet, daß

- 20 das Fördersystem (3; 103) umfaßt:
  - c) mindestens einen Transportwagen (18; 118), der auf mindestens einer Lauffläche (15, 16; 115, 116) translatorisch verfahrbar ist und aufweist:

25

- ca) einen Antriebsmotor (22; 122) für die Translationsbewegung;
- cb) ein Halterungsgestell (26; 126), an welchem der

  Gegenstand (4; 104) befestigbar ist und das um eine
  quer zur Richtung der Translationsbewegung verlaufende Dreh- oder Schwenkachse unabhängig von der
  Translationsbewegung verdreh- oder verschwenkbar
  ist.

- Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Transportwagen (18; 118) mindestens einen Arm (24; 124) aufweist, an dessen äußerem Ende das Halterungsgestell (26; 126) verdreh- oder verschwenkbar angebracht ist und der an seinem gegenüberliegenden, inneren Ende um eine zweite Dreh- oder Schwenkachse (23; 123) verdreh- oder verschwenkbar ist.
- 3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekenn20 zeichnet, daß der Transportwagen (18; 118) auf
  zwei parallelen Laufflächen (15, 16; 115, 116) verfahrbar
  ist.
- 4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch
  gekennzeichnet, daß sie einen zur Transportebene
  des Fördersystems (3; 103) hin offenen Behälter (2;
  102) aufweist, in dessen Innenraum der Gegenstand (4;
  104) unter einer Verdrehung oder Verschwenkung des Halterungsgestells (26; 126) einführbar ist und dessen Innenraum
  von mindestens einem Strahler (12; 112) mit elektromagnetischer Strahlung beaufschlagbar ist.
- Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß mindestens ein Strahler (12) in eine Wand (8 bis 25 11) oder den Boden (5) des Behälters (2) eingebaut ist.
- 6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, daß in den gegenüberliegenden, parallel zur Translationsbewegung der Gegenstände (4) verlaufenden Seitenwänden (8, 9) und mindestens in einer der beiden senkrecht zur Translationsbewegung der Gegenstände (4) verlaufenden Stirnwände (10, 11) oder dem Boden (5) des Behälters (2) mindestens ein Strahler (12) angeordnet ist.
- 35 7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet,

10

15

20

25

30

- 26 -

daß an allen Wänden (8 bis 11) und in dem Boden (5) des Behälters (2) eine Vielzahl von Strahlern (12) angeordnet ist.

05 8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mehrere Strahler (112) in einer U-förmigen Anordnung mit zwei im wesentlichen vertikalen Schenkeln und einer im wesentlichen horizontalen Basis vorgesehen sind.

9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die annähernd vertikalen Schenkel der U-förmigen Anordnung aus Strahlern (112) an den Verlauf der Seitenkontur der Gegenstände (104) angepaßt sind.

- 10. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß die annähernd vertikalen Schenkel der U-förmigen Anordnung aus Strahlern (112) segmentiert und die Segmente gegeneinander verstellbar sind.
  - 11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Basis der U-förmigen Anordnung aus Strahlern (112) an den Verlauf der Kontur der Gegenstände (104) angepaßt ist.
- 12. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, daß die Basis der U-förmigen Anordnung aus Strahlern (112) segmentiert ist und die Segmente gegeneinander verstellbar sind.
- 13. Vorrichtung nach einem der Ansprüche 4 bis 12, dadurch gekennzeichnet, daß dem Innenraum des Behälters(2; 102) ein Schutzgas zuführbar ist.
- 35 14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet,

daß das Schutzgas schwerer als Luft, insbesondere Kohlendioxid, ist und der Behälter (2; 102) nach oben offen ist.

- 05 15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß das Schutzgas leichter als Luft, insbesondere Helium, ist und daß der Behälter (2; 102) als nach unten offene Haube ausgebildet ist.
- 10 16. Vorrichtung nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, daß das Schutzgas zugleich Kühlgas für die Strahler (12; 112) ist.
- 17. Vorrichtung nach einem der Ansprüche 13 bis 16,

  dadurch gekennzeichnet, daß eine Einrichtung vorgesehen ist, welche das Schutzgas gegen den vom Strahler (12; 112) beaufschlagten Oberflächenbereich des Gegenstands (4; 104) richtet.
- 20 18. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Einrichtung vorgesehen ist, welche den Gegenstand vor Eintritt in das Strahlungsfeld des Strahlers oder die Schutzgasatmosphäre mit einem gerichteten Schutzgasstrom abbläst.

25

30

- Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß mindestens einem Strahler (12; 112) auf der dem Gegenstand (4; 104) abgewandten Seite ein beweglicher Reflektor zugeordnet ist.
  - 20. Vorrichtung nach einem der Ansprüche 4 bis 19, dadurch gekennzeichnet, daß der Behälter (2; 102) mit einer reflektierenden Schicht ausgekleider ist.
- 35 21. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet,

daß die reflektierende Schicht aus Aluminiumfolie besteht.

- Vorrichtung nach Anspruch 21, dadurch gekennzeichnet,
   daß die Aluminiumfolie eine Vielzahl von Unebenheiten aufweist, beispielsweise zerknittert ist.
  - 23. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein Kabinengehäuse
- 10 (27; 127) aufweist, das ein unkontrolliertes Austreten von Gasen und von elektromagnetischer Strahlung unterbindet.
  - 24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, daß am Ein- und am Auslaß des Kabinengehäuses (27)
- 15 jeweils eine Schleuse (50, 70) für den Transportwagen (18) vorgesehen ist.
- 25. Vorrichtung nach Anspruch 23 oder 24, dadurch gekennzeichnet, daß eine Einrichtung (90) zur Entfernung des
   20 Sauerstoffes aus der innerhalb des Kabinengehäuses (27) befindlichen Atmosphäre vorgesehen ist.
- Vorrichtung nach Anspruch 25, dadurch gekennzeichnet,
   daß die Einrichtung zur Entfernung des Sauerstoffes
   einen Katalysator zur katalytischen Bindung des Sauerstoffs aufweist.
- 27. Vorrichtung nach Anspruch 25 oder 26, dadurch gekennzeichnet, daß die Einrichtung zur Entfernung des
   30 Sauerstoffes ein Filter zur Absorption von Sauerstoff aufweist.
- 28. Vorrichtung nach einem der Ansprüche 25 bis 27,
   dadurch gekennzeichnet, daß die Einrichtung zur
   35 Entfernung des Sauerstoffes ein Filter zur Adsorption

von Sauerstoff aufweist.

- 29. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie zur Entfernung
   05 von Lösemittel aus dem Material der Beschichtung eine Vorwärmzone (40) aufweist.
- 30. Vorrichtung nach einem der Ansprüche 1 bis 28, dadurch gekennzeichnet, daß sie zur Angelierung 10 von pulverförmigem Material der Beschichtung eine Vorwärmzone (40) aufweist.
- 31. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß dem mindestens einen
  15 Strahler (12) in Förderrichtung eine Meßstation (55) vorgelagert ist, durch die Raumformdaten des Gegenstandes (4) erfaßbar sind.
- 32. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet,
  20 daß die Meßstation (55) mindestens einen optischen
  Abtaster umfaßt, durch den der Gegenstand (4) in mindestens
  einer Raumrichtung scannerartig abtastbar ist.
- 33. Vorrichtung nach Anspruch 32, dadurch gekennzeichnet,
   25 daß der optische Abtaster eine Infrarotlichtquelle umfaßt.
- 34. Vorrichtung nach Anspruch 31, dadurch gekennzeichnet,
   daß die Meßstation (55) eine Videokamera und eine
   30 Einrichtung zur digitalen Bilderkennung unfaßt.
  - 35. Vorrichtung nach einem der Ansprüche 31 bis 34, dadurch gekennzeichnet, daß die von der Meßstation (55) gewonnenen Daten in einer Steuereinrichtung (56)
- 35 speicherbar sind, welche diese Daten bei der nachfolgenden

WO 2005/014182 PCT/EP2004/007643 - 30 -

Bewegung des Gegenstandes (4) an dem mindestens einen Strahler (12) vorbei wieder ausliest und zur Steuerung der Bewegung des Gegenstandes (4) heranzieht.

- 05 36. Vorrichtung nach einem der Ansprüche 31 bis 34, dadurch gekennzeichnet, daß die Meßstation in unmittelbarer Nähe des mindestens einen Strahlers angeordnet und eine Steuereinrichtung vorgesehen ist, welche die von der Meßstation gewonnenen Daten ohne zeitliche Verzögerung direkt zur Steuerung der Bewegung des Gegenstandes heranzieht.
- 37. Vorrichtung nach Anspruch 36, dadurch gekennzeichnet, daß die Meßstation mindestens eine Lichtschranke 15 umfaßt.
- 38. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Steuereinrichtung vorgesehen ist, in welcher die zu einem bestimmten Typ von Gegenstand gehörenden Raumformdaten abspeicherbar und bei Bedarf aus diesem abrufbar sind.
- 39. Vorrichtung nach einem der vorhergehenden Ansprüche,
   dadurch gekennzeichnet, daß mehrere Strahler in
   unregelmäßiger Anordnung vorgesehen sind.
  - 40. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetische Strahlung UV-Licht ist.

30

41. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die elektromagnetische Strahlung IR-Strahlung ist.



**ERSATZBLATT (REGEL 26)** 





**ERSATZBLATT (REGEL 26)** 





**ERSATZBLATT (REGEL 26)** 



Fig. 5









**ERSATZBLATT (REGEL 26)** 



**ERSATZBLATT (REGEL 26)** 



**ERSATZBLATT (REGEL 26)** 

