Rappel de cours

Exercice 2

Exercice 2.1.a

Fausse, car plus de 7 nombres entre les nombres premiers 191 et 179.

Exercice 2.1.b

Vraie, soit 7 entiers consécutifs $a, a+1, a+2, \ldots, a+6$. Soit :

- a = 6k, donc c'est un multiple de 6
- a = 6k + r, 0 < r < 6, donc ce n'est pas un multiple de 6. si r = 1 alors a + 5 = 6(k + 1), si r = 2 alors a + 4 = 6(k + 1), ..., si r = 5 alors a + 1 = 6(k + 1)

Donc il existe toujours un multiple de 6 parmi 7 entiers consécutifs.

Exercice 2.2.a

Fausse. a = 7 et b = 5, premiers entre eux et a + b = 12 et a - b = 2 non premiers entre eux.

Exercice 2.2.b

Vraie. Preuve par contracdiction.

Supposons que ab et a+b ne sont pas premiers entre eux donc $\exists d>1$, $\gcd(ab,a+b)=d$. Donc d|ab, supposons que d|a, comme d|a+b, alors $a=k_1d$ et $a+b=k_2d$, donc $k_1d+b=k_2d$ ce qui montre aue d|b. On vient de trouver un d qui divise a et b, contredisant qu'ils sont premiers entre eux. Par conséquent, Si a et b sont premiers entre eux alors ab et a+b sont premiers entre eux.

Exercice 2.3

Fausse. Contre-exemple x = 27 car $27^2 + 1 = 729 + 1 = 730 = 73 * 10$.

Sinon admettons qu'il existe un x tel que $x^2 \equiv -1 \pmod{73}$. On sait par le petit théorème de Fermat que $x^{72} \equiv 1 \pmod{73}$. Donc $x^{2^{36}} \equiv 1 \pmod{73}$ $\Longrightarrow (-1)^{36} \equiv 1 \pmod{73}$. Ce qui est vrai car $1 \equiv 1 \pmod{73}$. Donc il existe un x. Sinon admettons qu'il existe un x tel que $x^2 \equiv -1 \pmod{73}$. On sait par le le petit théorème de Fermat que $x^72 \equiv 1 \pmod{73}$. Donc $x^{2^{36}} \equiv 1 \pmod{73}$ $\Longrightarrow (-1)^{36} \equiv 1 \pmod{73}$. Ce qui est vrai car $1 \equiv 1 \pmod{73}$. Donc il existe un x.

Exercice 2.4

Vraie. Si $x^1 8 \equiv n \pmod{37}$ alors $x^1 8 = 37k + n$. Donc $x^3 6 = x^{18^2} = (37k + n)^2 = 37^2k^2 + 74nk + n^2 = 37(37k^2 + 2nk) + n^2 = n^2 \pmod{37}$. D'après le petit théorème de Fermat on a $x^{36} \equiv 1 \pmod{37}$ donc il faut que $n^2 = 1$. Ceci implique n = 1 ou n = -1 donc $x^1 8 \equiv 1 \pmod{37}$ ou $x^{18} \equiv -1 \pmod{37}$.

Exercice 4

Exercice 4.1

x	$x^2 \pmod{7}$
$0,7,\ldots,7k$	$0 \pmod{7} = 0$
$1,8,\ldots,7k+1$	$1 \pmod{7} = 1$
$2,9,\ldots,7k+2$	$4 \pmod{7} = 4$
$3, 10, \ldots, 7k + 3$	$9 \pmod{7} = 2$
$4,11,\ldots,7k+4$	$16 \pmod{7} = 2$
$5, 12, \ldots, 7k + 5$	$25 \pmod{7} = 4$
$6, 13, \ldots, 7k + 6$	$36 \pmod{7} = 1$

Exercice 4.2

Montrons que $a^2 + b^2 \equiv 0 \pmod{7} \implies a \equiv 0 \pmod{7}$ et $b \equiv 0 \pmod{7}$, Les valeurs possibles pour $x^2 \pmod{7}$ sont $\{0,1,2,4\}$, la seule combinaison qui donne $a^2 + b^2 \equiv 0 \pmod{7}$ est $a^2 \pmod{7} = 0$ et $b^2 \pmod{7} = 0$, d'aprés le tableau 1 est la seule valeur de x qui donne $x^2 \equiv 0 \pmod{7}$ donc que 7 divise a et b.

Exercice 4.3

$$0^2 + 0^2 = 7.0^2$$
 est vraie

Exercice 4.4

On a $x=7k_x$ et $y=7k_y$, donc $x^2+x^2=49k_x^2+49k_y^2=7(7k_x^2+7k_y^2)=7z^2$. Donc $z^2=7(k_x^2+k_y^2)$. donc 7 divise z^2 . D'aprés le tableau 1, la seule valeur pour $x^2\equiv 0\pmod 7$ est x=7k. Donc z=7k. QED