Q4a: If f is open, then it is not necessarily continuous. Consider the following function, $\sigma(x) : \mathbb{R} \to \{-1,0,1\}$ which maps x > 0 to 1, x < 0 to -1, and 0 to 0, with the codomain equipped with the discrete topology. This is an open map, since the image of any open set will be either -1,0,1 or some union of them. However, $f^{pre}(\{0\}) = 0$ which is not open in \mathbb{R} .

4b We claim any homeomorphism, $f: M \to N$, is an open map. Let U be some open set in M. Then, $f^{-1pre}(U)$ is open. Since f is a bijection, $f^{-1pre}(U) = f(U)$. Thus f is an open map.

4c: We claim an open, continuous bijection is a homeomorphism. Let U be an open set in N. Then $f^{pre}(U)$ is open, and by bijectivity, $f(f^{pre}(U)) = U$, and so $f^{pre}(U) = f^{-1}(U)$ is open. Thus f^{-1} is a homeomorphism

4d: Consider the function $f(x) = x^3 - 4x$. This is clearly surjective and continuous. Consider the open set U = (0, 1.5). We evaluate f(U) = [-3.079, 0), which is not an open set in \mathbb{R}

4e: We claim that and $f: \mathbb{R} \to \mathbb{R}$, which is a continuous, surjective and open, is a homeomorphism. It suffices to show injectivity, then we can apply the result from c and conclude it is a homeomorphism. Suppose that f is not injective. Then for some $x,y \in \mathbb{R}$, x < y, we have f(x) = f(y). By continuity, f attains a maximum and minimum on the set [x,y]. Let a correspond to the point at which f attains a minimum, b be the point where f attains its maximum. First consider the case where $a,b \in \{x,y\}$. This would imply that f is constant on [x,y], violating openness, since the image of any open set contained in [x,y] will be a point, which is closed. Suppose that $a \in \{x,y\}$, and $b \in (x,y)$. Then the image of (x,y) under f should be open, but since it attains its minimum on the interiour, f((x,y)) = [f(a), f(b)]. Similarly, if $b \in \{x,y\}$ and $a \in (x,y)$ then f((x,y)) = [f(a), f(b)]. Either case contradicts openness. Now consider the case $a,b \in (x,y)$. We see that f((x,y)) = [f(a), f(b)]. We contradict openness again. Hence f must be injective, and we conclude it is a homeomorphism.

4f: Consider the map $f: S^1 \to S^1$ which maps $z \mapsto z^2$ in the complex plane. This is a continuous, open surjection, which doubles the argument of any $x \in S^1$. We notice that it is not injective since f((1,0)) = f((-1,0)) = 0