Linear Regression Model

This is a implementation of linear regression model which is a machine learning algorithm based on supervised learning. It performs a regression task. Regression models a target prediction value based on independent variables. It is mostly used for finding out the relationship between variables and forecasting.

Goals

10

The goal of this project is to create an ML model that can predict house prices based on the number of bedrooms in the house.

- Data Condition
 - Using dummy data which is bedrooms and house_price
 - o Single feature

Prepare Tools and Materials

```
# Library
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d

#number of bedrooms data
bedrooms = np.array([1,1,2,2,3,4,4,5,5,5])

#house price data, assumptions in dollars
house_price = np.array([15000, 18000, 27000, 34000, 50000, 68000, 65000, 81000,85000, 90000])

print(bedrooms, house_price)

[1 1 2 2 3 4 4 5 5 5] [15000 18000 27000 34000 50000 68000 65000 81000 85000 90000]

# Set data length
m = len(bedrooms)
m
```

▼ Visualize data of bedrooms and house_price

```
#@title Visualize data of `bedrooms` and `house_price`

plt.scatter(bedrooms,house_price)
plt.title('House price Data')
plt.xlabel('Number of bedrooms')
plt.ylabel('House Price')
plt.show()
```


Math Equation

Linear Regression

In linear regression, the method is to ultilize data input to fit the parameters w,b by minimizing a measure of the error between model predictions and the actual data. The measure is called the cost. In Linear Regression, the cost function is :

$$J(w,b) = rac{1}{2m} \sum_{i=0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$
 (1)

where.

 $f_{w,b}(x^{(i)}) = wx^{(i)} + b (2)$

· Gradient Descent

To find the best w,b value to minimize the cost is by using Gradient Descent to find local minimum. It is defined as:

Repeat the following steps until convergence:

$$w = w - \alpha \frac{1}{m} \sum_{i=0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$
(3)

$$b = b - \alpha \frac{1}{m} \sum_{i=0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)}$$

$$\tag{4}$$

parameters w, b are updated simultaneously. Means that you calculate the derivatives for all the parameters before updating w, b.

Math Implementation in Python

In this code, the implementation will be in 2 different functions:

- cost function implementing equation (1) and (2) to calculate cost
- gradient_descent implementing equation (3) and (4) to update w,b value

```
def cost_function (x,y,w,b,m):
    sum_cost = 0
    for i in range(m):
        j_wb = ((w * x[i])+b - y[i])**2
        sum_cost = sum_cost + (1/(2*m) * j_wb)
    return sum_cost

def gradient_descent (x, y, w, b, alpha, m):
```

```
def gradient_descent (x, y, w, b, alpha, m):
    for j in range(m):
        # dw = ((w * (x[j])) + b - y[j]) * x[j]
        # db = (w * (x[j])) + b - y[j]
        dw = (((w * (x[j])) + b - y[j]) * x[j])/m
        db = ((w * (x[j])) + b - y[j])/m
        w = w - (alpha * dw)
        b = b - (alpha * db)
    return w, b
```

▼ Compute All!

Here is a brief explanation the logic of code below that ultilize both fuctions to find best w, and b value to produce the lowest cost:

- w, and b value will start as 0
- alpha or learning rate will be set at 0.001
- the program will iterate for 30,000 times
- ullet the program will save it's current cost, w, and b to final_cost, final_w, and final_b but keep changing it if there is lower cost
- Finally, the program will print out the lowest cost after iterate for 30,000 times and print out it's w, and b value for corresponding cost

```
cost_list,w_list,b_list=[],[],[]
w=0
b=0
alpha = 0.001
final_w = final_b= 0
final_cost = cost_function (bedrooms,house_price,0,0,m)
for i in range (30000):
  # list for graph
  w list.append(w)
  # calculate cost
  cost = cost function(bedrooms, house price, w, b, m)
  cost_list.append(cost)
  # save W dand B for lowest cost function
  if cost < final_cost:</pre>
    final w = w
    final_b = b
```

```
w, b = gradient_descent (bedrooms, house_price, w, b, alpha, m)
final_cost = cost_function (bedrooms, house_price, final_w, final_b, m)

print(f'Lowest cost\t: {final_cost}\nW Value\t\t: {np.round(final_w)}\nB Value\t\t: {np.round(final_b)}')

Lowest cost : 4424666.360801171
W Value : 17426.0
```

W Value : 17426.0

B Value : -2454.0

```
plt.title('Gradient Descent Graph')
plt.plot(w_list,cost_list, c='b')
plt.scatter(final_w,final_cost, label = 'local minimum', c='g')
plt.xlabel('W Value')
plt.ylabel('Cost')
plt.legend()
plt.show
```

<function matplotlib.pyplot.show(*args, **kw)>

You see from graph above that w value is already in local minimum of the graph, by that means w value is in the perfect spot to make a lowest cost

Visualize the model prediction towards the actual data

Visualizing the model prediction by calculate house price prediction using actual data and w, and b values. The prediction will be notated as \hat{y} . It is calculated as follows:

$$\hat{y} = wx^{(i)} + b \tag{5}$$

final model function will apply the formula above(5)

```
def final_model (m,w,b,x):
    y_hat = np.zeros(m)
    for i in range(m):
        y_hat[i] = (w * x[i])+b
    return y_hat
```

```
y_hat = final_model(m, final_w, final_b, bedrooms)

plt.scatter(bedrooms, house_price, label = 'Actual data', c='b')
plt.plot(bedrooms, y_hat, label='Model prediction', c='g')
plt.title('House Price Model Prediction')
plt.xlabel('Number of bedrooms')
plt.ylabel('House Price')
plt.legend()
plt.show()
```

Model Accuracy

To check the accuracy of model prediction, this project will use R-Squared formula. The R-Squared value ranges from 0 to 1. Value of 1 indicates that the model perfectly fits the data, while a value of 0 indicates that the model has no explanatory power. It is calculated as follows:

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}}$$
 (6)

Where y_i is the actual value for the i^{th} observation, \hat{y}_i is the predicted value for the i^{th} observation, and \bar{y} is the mean of the actual values.

```
r2 = 0
y_means = np.mean(house_price)

for i in range (m):
    diff_1 = (house_price[i] - y_hat[i])**2
    diff_2 = (house_price[i] - y_means)**2
    r2 += 1 - (diff_1/diff_2)

result = r2 / m
print(f'R-Squared value is: {np.round(result,5)}')
print(f'So the accuracy is: {np.round(result * 100,2)}%')

R-Squared value is: 0.98624
```

The accuracy is pretty high, which is near 100%

So the accuracy is: 98.62%

Finalize the Model

After value of w, and b is found, and the accuracy is good, the machine learning model is ready. The formula to apply predefined value of w, and b is:

$$\hat{y} = wx + b \tag{7}$$

where the \hat{y} is a prediction of x given, or in this model is the number of bedrooms.

model_predict will be the function to use the model based on equation(6)

```
def model_predict(w,b,x):
    price = (w*x)+b
    price = np.round(price,3)
    return price
```

▼ Test the model

```
#@title Test the model

print(f'For 3 bedrooms, the house price prediction is: {model_predict(final_w, final_b, 3)}$ ')
print(f'For 7 bedrooms, the house price prediction is: {model_predict(final_w, final_b, 7)}$ ')
print(f'For 6 bedrooms, the house price prediction is: {model_predict(final_w, final_b, 6)}$ ')

For 3 bedrooms, the house price prediction is: 49824.474$
For 7 bedrooms, the house price prediction is: 119529.148$
For 6 bedrooms, the house price prediction is: 102102.98$
```