Ollscoil na hÉireann The National University of Ireland

Coláiste na hOllscoile, Corcaigh University College, Cork

In-Class Quiz #1, 2014

CS4407 Algorithm Analysis

Prof. G. Provan Prof. B. O'Sullivan (HoD) Prof. Ian Gent (extern)

Total marks: 50

50 minutes

- 1. [20] Suppose you are choosing between the following three divide and conquer algorithms:
 - Algorithm A solves problems of size n by dividing them into 4 sub-problems of size n/2, recursively solving each sub-problem, and then combining the solutions in linear time.
 - Algorithm B solves problems of size n by recursively solving 2 sub-problems of size n-1 and then combining the solutions in constant time.
 - Algorithm C solves problems of size n by dividing them into 9 sub-problems of size n/3, recursively solving each sub-problem, and then combining the solutions in $O(n^2)$ time.
 - (a) [15] Compute the running times of each of these algorithms in big-O notation.
 - (b) [5] Which one is asymptotically fastest, and which one is slowest?

For each case, assume that T(0)=0. If you use the Master Theorem, use the version below:

Master Theorem:

Given the recurrence $T(n) = aT(n/b) + \Theta(n^d)$, let $e = \log_b(a)$. Then

- (a) Case 1: $T(n) = O(n^d)$, if e < d,
- (b) Case 2: $T(n) = O(n^d \log(n))$, if e = d, and
- (c) Case 3: $T(n) = O(n^e)$, if e > d.
- **2.** [10] Given an array A of *n* integers, we want to provide an algorithm to determine if A is *light*. An array is light if more than half the elements are less than the mean of A.
 - a) Define an $O(n\log n)$ algorithm to compute if an array A is light or not.
 - b) Derive the complexity of your algorithm.
- 3. [20] Let G=(V,E,w) be a directed weighted graph such that all the weights are positive. Let v and u be two vertices in G and $k \le |V|$ be an integer.
 - (a) [15] Design an algorithm to find the k shortest paths from v to u, such that the complexity of the algorithm is strictly less than $O(|V|^2)$. Note that a path need not be simple. *Hint: Modify Dijkstra's algorithm*.
 - (b) [5] Derive the complexity of your algorithm.