26. Regularization Technique (Practical)

```
In [2]: import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import StandardScaler
        from sklearn.model_selection import train_test_split
In [3]: dataset = pd.read_csv(r'Data/housing.csv')
        dataset.head(3)
Out[3]:
           area bedrooms bathrooms stories mainroad guestroom basement hotwaterheating
        0 7420
                        4
                                                                        no
                                                   yes
                                                              no
                                                                                        nc
        1 8960
                                                   yes
                                                              no
                                                                        no
                                                                                        nc
                        3
                                   2
        2 9960
                                           2
                                                   yes
                                                              no
                                                                        yes
                                                                                        nc
        dataset.isnull().sum()
In [4]:
Out[4]:
        area
                            0
        bedrooms
        bathrooms
        stories
                            0
        mainroad
        guestroom
        basement
        hotwaterheating
        airconditioning
        parking
        prefarea
                            0
        furnishingstatus
                            0
        price
        dtype: int64
        Encoding the Data into Numerical Form
```

```
In [5]: en_data = dataset[['mainroad','guestroom', 'basement', 'hotwaterheating', 'aircondi
    en_data.head(3)
```

Out[5]:		mainroad	guestroom	basement	hotwaterheating	airconditioning	prefarea	furnishing
	0	yes	no	no	no	yes	yes	fur
	1	yes	no	no	no	yes	no	fur
	2	yes	no	yes	no	no	yes	semi-fur

In [6]: pd.get_dummies(en_data)

\cap		4	г	-	٦.	
U	u	L		O	-	

•		mainroad_no	mainroad_yes	guestroom_no	guestroom_yes	basement_no	basement_y
	0	0	1	1	0	1	
	1	0	1	1	0	1	
	2	0	1	1	0	0	
	3	0	1	1	0	0	
	4	0	1	0	1	0	
	••						
54	0	0	1	1	0	0	
54	1	1	0	1	0	1	
54	2	0	1	1	0	1	
54	3	1	0	1	0	1	
54	4	0	1	1	0	1	

545 rows × 15 columns

In [7]: pd.get_dummies(en_data).info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 545 entries, 0 to 544
Data columns (total 15 columns):

Ducu	(cocar 13 coramis).		
#	Column	Non-Null Count	Dtype
0	mainroad_no	545 non-null	uint8
1	mainroad_yes	545 non-null	uint8
2	guestroom_no	545 non-null	uint8
3	guestroom_yes	545 non-null	uint8
4	basement_no	545 non-null	uint8
5	basement_yes	545 non-null	uint8
6	hotwaterheating_no	545 non-null	uint8
7	hotwaterheating_yes	545 non-null	uint8
8	airconditioning_no	545 non-null	uint8
9	airconditioning_yes	545 non-null	uint8
10	prefarea_no	545 non-null	uint8
11	prefarea_yes	545 non-null	uint8
12	furnishingstatus_furnished	545 non-null	uint8
13	<pre>furnishingstatus_semi-furnished</pre>	545 non-null	uint8
14	furnishingstatus_unfurnished	545 non-null	uint8
dtype	es: uint8(15)		

dtypes: uint8(15)
memory usage: 8.1 KB

```
In [9]: ohe = OneHotEncoder()
          ohe.fit_transform(en_data)
 Out[9]: <545x15 sparse matrix of type '<class 'numpy.float64'>'
                  with 3815 stored elements in Compressed Sparse Row format>
          ohe=OneHotEncoder()
In [10]:
          arr = ohe.fit_transform(en_data).toarray()
          arr
Out[10]: array([[0., 1., 1., ..., 1., 0., 0.],
                  [0., 1., 1., ..., 1., 0., 0.],
                  [0., 1., 1., \ldots, 0., 1., 0.],
                  [0., 1., 1., \ldots, 0., 0., 1.],
                  [1., 0., 1., ..., 1., 0., 0.],
                  [0., 1., 1., ..., 0., 0., 1.]
In [11]: pd.DataFrame(arr, columns=['mainroad_Yes', 'mainroad_No', 'guestroom_Yes', 'guestroom
Out[11]:
               mainroad_Yes mainroad_No guestroom_Yes guestroom_No basement_Yes basement
            0
                         0.0
                                       1.0
                                                       1.0
                                                                       0.0
                                                                                     1.0
                         0.0
                                        1.0
                                                       1.0
                                                                       0.0
                                                                                     1.0
            2
                         0.0
                                       1.0
                                                       1.0
                                                                       0.0
                                                                                     0.0
                         0.0
                                        1.0
                                                       1.0
                                                                       0.0
                                                                                     0.0
            4
                         0.0
                                       1.0
                                                       0.0
                                                                       1.0
                                                                                     0.0
          540
                         0.0
                                                       1.0
                                                                                     0.0
                                        1.0
                                                                       0.0
          541
                         1.0
                                        0.0
                                                       1.0
                                                                       0.0
                                                                                     1.0
          542
                         0.0
                                        1.0
                                                       1.0
                                                                       0.0
                                                                                     1.0
          543
                                                                       0.0
                         1.0
                                        0.0
                                                       1.0
                                                                                     1.0
          544
                         0.0
                                       1.0
                                                       1.0
                                                                       0.0
                                                                                     1.0
         545 rows × 15 columns
In [12]: ohe = OneHotEncoder(drop='first')
          ar = ohe.fit_transform(en_data).toarray()
          ar
```

```
Out[12]: array([[1., 0., 0., ..., 1., 0., 0.],
                 [1., 0., 0., ..., 0., 0., 0.]
                 [1., 0., 1., ..., 1., 1., 0.],
                 [1., 0., 0., ..., 0., 0., 1.],
                  [0., 0., 0., ..., 0., 0., 0.]
                  [1., 0., 0., ..., 0., 0., 1.]]
In [13]: pd.DataFrame(arr, columns=['mainroad_Yes', 'mainroad_No', 'guestroom_Yes', 'guestroom
Out[13]:
               mainroad_Yes mainroad_No guestroom_Yes guestroom_No basement_Yes basement
            0
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
            1
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
            2
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     0.0
            3
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     0.0
            4
                         0.0
                                       1.0
                                                       0.0
                                                                      1.0
                                                                                     0.0
          540
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     0.0
          541
                         1.0
                                       0.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
          542
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
          543
                         1.0
                                       0.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
          544
                         0.0
                                       1.0
                                                       1.0
                                                                      0.0
                                                                                     1.0
         545 rows × 15 columns
In [14]: ohe = OneHotEncoder(drop='first')
          ar = ohe.fit transform(en data).toarray()
Out[14]: array([[1., 0., 0., ..., 1., 0., 0.],
                 [1., 0., 0., ..., 0., 0., 0.]
                 [1., 0., 1., ..., 1., 1., 0.],
                  [1., 0., 0., ..., 0., 0., 1.],
                 [0., 0., 0., ..., 0., 0., 0.]
                 [1., 0., 0., ..., 0., 0., 1.]])
In [15]: ar.shape
Out[15]: (545, 8)
In [16]: encoded_data = pd.DataFrame(ar, columns=['mainroad_Yes', 'guestroom_Yes', 'basement_
In [17]: encoded_data
```

Out[17]:		mainroad_Yes	guestroom_Yes	basement_Yes	hotwaterheating_Yes	airconditioning_Yes
	0	1.0	0.0	0.0	0.0	1.0
	1	1.0	0.0	0.0	0.0	1.0
	2	1.0	0.0	1.0	0.0	0.0
	3	1.0	0.0	1.0	0.0	1.0
	4	1.0	1.0	1.0	0.0	1.0
	•••					
	540	1.0	0.0	1.0	0.0	0.0
	541	0.0	0.0	0.0	0.0	0.0
	542	1.0	0.0	0.0	0.0	0.0
	543	0.0	0.0	0.0	0.0	0.0
	544	1.0	0.0	0.0	0.0	0.0

545 rows × 8 columns

```
In [18]: encoded_data.to_csv(r'Data/encoded_data_file.csv', index=False)
```

Loading the Encoded Data for Applying Regularization Techniques

```
In [19]: dataset = pd.read_csv('Data/housing_2.csv')
    dataset
```

Out[19]:		area	bedrooms	bathrooms	stories	parking	mainroad_Yes	guestroom_Yes	baseme
	0	7420	4	2	3	2	1	0	
	1	8960	4	4	4	3	1	0	
	2	9960	3	2	2	2	1	0	
	3	7500	4	2	2	3	1	0	
	4	7420	4	1	2	2	1	1	
	•••								
	540	3000	2	1	1	2	1	0	
	541	2400	3	1	1	0	0	0	
	542	3620	2	1	1	0	1	0	
	543	2910	3	1	1	0	0	0	
	544	3850	3	1	2	0	1	0	

545 rows × 14 columns

```
In [20]: dataset = pd.read_csv(r'Data/housing_2.csv')
    dataset.head(3)
```

Out[20]:		area	bedrooms	bathrooms	stories	parking	mainroad_Yes	guestroom_Yes	basement_
	0	7420	4	2	3	2	1	0	
	1	8960	4	4	4	3	1	0	
	2	9960	3	2	2	2	1	0	

Check Correlation in Data

```
In [21]: plt.figure(figsize=(10,10))
    sns.heatmap(data=dataset.corr(), annot=True)
    plt.show()
```


In [22]: x = dataset.iloc[:,:-1]

Out[22]:		area	bedrooms	bathrooms	stories	parking	mainroad_Yes	guestroom_Yes	baseme
	0	7420	4	2	3	2	1	0	
	1	8960	4	4	4	3	1	0	
	2	9960	3	2	2	2	1	0	
	3	7500	4	2	2	3	1	0	
	4	7420	4	1	2	2	1	1	
	•••								
	540	3000	2	1	1	2	1	0	
	541	2400	3	1	1	0	0	0	
	542	3620	2	1	1	0	1	0	
	543	2910	3	1	1	0	0	0	
	544	3850	3	1	2	0	1	0	

545 rows × 13 columns

```
In [23]: y=dataset['price']
         У
Out[23]: 0
                13300000
         1
                12250000
         2
                12250000
         3
                12215000
                11410000
         540
                1820000
         541
                 1767150
         542
                 1750000
         543
                 1750000
                 1750000
         544
         Name: price, Length: 545, dtype: int64
         Perform Scaling on Data
```

```
In [28]: sc = StandardScaler()
    sc.fit(x)
    sc.transform(x)
```

Out[29]:

	area	bedrooms	bathrooms	stories	parking	mainroad_Yes	guestroom_Yes
0	1.046726	1.403419	1.421812	1.378217	1.517692	0.405623	-0.465315
1	1.757010	1.403419	5.405809	2.532024	2.679409	0.405623	-0.465315
2	2.218232	0.047278	1.421812	0.224410	1.517692	0.405623	-0.465315
3	1.083624	1.403419	1.421812	0.224410	2.679409	0.405623	-0.465315
4	1.046726	1.403419	-0.570187	0.224410	1.517692	0.405623	2.149083
•••							
540	-0.991879	-1.308863	-0.570187	-0.929397	1.517692	0.405623	-0.465315
541	-1.268613	0.047278	-0.570187	-0.929397	-0.805741	-2.465344	-0.465315
542	-0.705921	-1.308863	-0.570187	-0.929397	-0.805741	0.405623	-0.465315
543	-1.033389	0.047278	-0.570187	-0.929397	-0.805741	-2.465344	-0.465315
544	-0.599839	0.047278	-0.570187	0.224410	-0.805741	0.405623	-0.465315

545 rows × 13 columns

Split data into train and test

```
In [30]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.2, random_state
```

26.1 Model by Linear Regression

```
In [31]: from sklearn.linear_model import LinearRegression, Lasso, Ridge
In [32]: lr = LinearRegression()
lr.fit(x_train, y_train)
```

```
Out[32]: • LinearRegression
LinearRegression()
```

Test Model

```
In [35]: lr.score(x_test, y_test)*100
Out[35]: 65.29242642153177
```

Graphical representation of constant and coefficient

```
In [36]: lr.coef_
Out[36]: array([ 511615.56377666,
                                     56615.57245779, 549420.50124098,
                  353158.42985604, 193542.78167455, 128151.92129533,
                   88590.21346152, 186194.15050566, 143233.20624958,
                  367817.89491558, 267018.66081239, -62550.29721128,
                 -193987.7810882 ])
In [37]:
         x.columns
Out[37]: Index(['area', 'bedrooms', 'bathrooms', 'stories', 'parking', 'mainroad_Yes',
                 'guestroom_Yes', 'basement_Yes', 'hotwaterheating_Yes',
                 'airconditioning_Yes', 'prefarea_Yes', 'furnishingstatus_Yes',
                 'furnishingstatus_Partial'],
                dtype='object')
In [43]: #plt.bar(x_data, y_data)
         plt.figure(figsize=(18,5))
         plt.title("Linear Regression")
         plt.bar(x.columns, lr.coef_)
         plt.xlabel("Columns")
         plt.ylabel("Coeficient")
         plt.show()
```


26.2 Model by Lasso (L1)

This technique is used for feature selection

Test the Model

```
In [47]: la.score(x_test, y_test)*100
Out[47]: 65.29241383553659
 In [50]: #plt.bar(x_data, y_data)
                                                                           plt.figure(figsize=(18,5))
                                                                           plt.title("Lasso")
                                                                           plt.bar(x.columns, la.coef_)
                                                                           plt.xlabel("Columns")
                                                                           plt.ylabel("Coeficient")
                                                                           plt.show()
                                                                           400000
                                                                           300000
                                                                           200000
                                                                           100000
                                                                       -100000
                                                                       -200000
                                                                                                                                                                                                                                                                                                                                                           mainroad_Yesguestroom_Yesbasement_Yestwaterheatingi_Yesralitioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishingstatus_j\leftytesiditioning_Yesrefarea_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnishing_Yesrnish
```

26.3 Model by Ridge (L2)

• It reduces coefficient values and save model from over-fitting

Test the Model

```
In [53]: ri.score(x_test, y_test)*100
```

```
In [54]: #plt.bar(x_data, y_data)
  plt.figure(figsize=(18,5))
  plt.title("Ridge")
  plt.bar(x.columns, ri.coef_)
  plt.xlabel("Columns")
  plt.ylabel("Coeficient")
  plt.show()
```


26.4 To check which model is best

26.4.1 Regression Model

```
In [56]: from sklearn.metrics import mean_absolute_error, mean_squared_error
import numpy as np

In [61]: #mean_squared_error(y_true, y_pred)
    print(mean_squared_error(y_test, lr.predict(x_test)))
    #mean_absolute_error(y_true, y_pred)
    print(mean_absolute_error(y_test, lr.predict(x_test)))
    # Root mean square error
    print(np.sqrt(mean_squared_error(y_test, lr.predict(x_test))))

1754318687330.6672
    970043.4039201641
    1324506.96009144
```

26.4.2 Lasso (L1) Model

1324507.2002441646

```
In [62]: #mean_squared_error(y_true, y_pred)
    print(mean_squared_error(y_test, la.predict(x_test)))
    #mean_absolute_error(y_true, y_pred)
    print(mean_absolute_error(y_test, la.predict(x_test)))
    # Root mean square error
    print(np.sqrt(mean_squared_error(y_test, la.predict(x_test))))

1754319323498.6353
970043.3950649527
```

26.4.3 Ridge (L2) Model

Out[64]

```
In [63]: #mean_squared_error(y_true, y_pred)
    print(mean_squared_error(y_test, ri.predict(x_test)))
    #mean_absolute_error(y_true, y_pred)
    print(mean_absolute_error(y_test, ri.predict(x_test)))
    # Root mean square error
    print(np.sqrt(mean_squared_error(y_test, ri.predict(x_test))))

1759455843663.3877
967942.6216085082
1326444.8136516602
```

We will use Ridge model as it is showing comparatively less error as compared to Lasso and Linear regression model

26.4.3 To compare coefficient of all models

```
In [64]: df = pd.DataFrame({"col_name":x.columns, "LinearRegression":lr.coef_, "Lasso":la.co
df
```

.]:		col_name	LinearRegression	Lasso	Ridge
	0	area	511615.563777	511615.467912	502252.286215
	1	bedrooms	56615.572458	56615.441731	65132.373585
	2	bathrooms	549420.501241	549420.321462	537574.041615
	3	stories	353158.429856	353158.186082	346006.857732
	4	parking	193542.781675	193542.619408	194954.682792
	5	mainroad_Yes	128151.921295	128151.745183	130790.775299
	6	guestroom_Yes	88590.213462	88590.029990	91998.609421
	7	basement_Yes	186194.150506	186193.873949	181385.995261
	8	hotwaterheating_Yes	143233.206250	143232.743062	140133.580908
	9	airconditioning_Yes	367817.894916	367817.774947	364207.282689
	10	prefarea_Yes	267018.660812	267018.388019	262517.337220
	11	furnishingstatus_Yes	-62550.297211	-62549.219050	-58988.254578
	12	furnishingstatus_Partial	-193987.781088	-193986.867394	-190415.566289

```
In [ ]:
```