Transfer Learning в NLР Лекция 2

Masked Language Modeling, BERT и его вариации

План занятия

- 1. Новая задача Masked Language Modeling
- 2. BERT
- 3. RoBERTa
- 4. DistilBERT
- 5. Выводы

B masked language modeling мы учим модель предсказывать произвольное слово в тексте, а не только следующее.

B masked language modeling мы учим модель предсказывать произвольное слово в тексте, а не только следующее.

Вчера мы посмотрели отличный фильм в кинотеатре.

В masked language modeling мы учим модель предсказывать произвольное слово в тексте, а не только следующее.

B masked language modeling мы учим модель предсказывать произвольное слово в тексте, а не только следующее.

B masked language modeling мы учим модель предсказывать произвольное слово в тексте, а не только следующее.

Связь обычного языкового моделирования и маскированного

Как можно представить обычное языковое моделирование через MLM?

Связь обычного языкового моделирования и маскированного

Как можно представить обычное языковое моделирование через MLM?

Маскируем последний токен в последовательности!

BERT — Bidirectional Encoder Representations from Transformers

В действительности всё сложнее

Pre-training

2 задачи на pre-training стадии:

- MLM (Masked Language Modeling)
- NSP (Next Sentence Prediction)*

Как выбирать маскирование для MLM?

Детали маскирования:

- Случайным образом выбираем 15% токенов из предложения
 - 80% из них заменяем на [MASK]
 - 10% из них заменяем на случайный токен из словаря
 - 10% оставляем исходный токен (и все равно учимся предсказывать его)

Делаем это, чтобы получить хорошие представления для всех токенов, а не только [MASK].

Ha fine-tuning стадии модель не будет иметь [MASK]!

Ma	sking Ra	ates	Dev Set Results					
MASK	SAME	RND	MNLI Fine-tune	=	NER Feature-based			
80%	10%	10%	84.2	95.4	94.9			
100%	0%	0%	84.3	94.9	94.0			
80%	0%	20%	84.1	95.2	94.6			
80%	20%	0%	84.4	95.2	94.7			
0%	20%	80%	83.7	94.8	94.6			
0%	0%	100%	83.6	94.9	94.6			

Table 8: Ablation over different masking strategies.

В BERT целых три вида эмбеддингов

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

Некоторые детали

- Две конфигурации модели:
 - BERT-base: L=12, H=768, A=12, Total
 Parameters=110M
 - BERT-large: L=24, H=1024, A=16, Total
 Parameters=340M
- Данные:
 - о BookCorpus (800 млн. слов)
 - o English Wikipedia (2,5 млн. слов)
- Максимальная длина
 последовательности 512 токенов
- "Pretrain once, finetune many times"

https://iq.opengenus.org/bert-base-vs-bert-large/

BERT — универсальный фреймворк для решения большинства NLU задач

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Результаты

Более высокое качество на GLUE по сравнению с GPT

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERT _{BASE}	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Что было после BERT?

Было выпущено множество дополнений и улучшений классического BERT:

- 1. RoBERTa
- 2. DeBERTa
- 3. DistilBERT
- 4. ALBERT
- 5. ELECTRA
- 6. ..

https://www.scaler.com/topics/nlp/bert-variants/

Что было после BERT?

Было выпущено множество дополнений и улучшений классического BERT:

- 1. RoBERTa
- 2. DeBERTa
- 3. DistilBERT
- 4. ALBERT
- 5. ELECTRA
- 6. ...

https://www.scaler.com/topics/nlp/bert-variants/

Обучим тот же BERT, но немного по-другому:

Динамическое маскирование в MLM

- Динамическое маскирование в MLM
- Обучение без NSP лосса

- Динамическое маскирование в MLM
- Обучение без NSP лосса
- Больший batch size: 8 тыс. против 256 у BERT

- Динамическое маскирование в MLM
- Обучение без NSP лосса
- Больший batch size: 8 тыс. против 256 у BERT
- Больший размер датасета: 160гб против 16гб у BERT

- Динамическое маскирование в MLM
- Обучение без NSP лосса
- Больший batch size: 8 тыс. против 256 у BERT
- Больший размер датасета: 160гб против 16гб у BERT
- Более долгое обучение на pre-training

- Динамическое маскирование в MLM
- Обучение без NSP лосса
- Больший batch size: 8 тыс. против 256 у BERT
- Больший размер датасета: 160гб против 16гб у BERT
- Более долгое обучение на pre-training
- Byte-level BPE для токенизации любой последовательности без [UNK]

Получили новый SOTA подход на GLUE

	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single models on dev										
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	_

DisilBERT

У моделей из семейства BERT есть небольшая проблема — они требовательны к вычислительным ресурсам

DisilBERT

У моделей из семейства BERT есть небольшая проблема — они требовательны к вычислительным ресурсам

Решение — возьмем модель поменьше и задистиллируем в нее знания из большой модели!

DisilBERT

У моделей из семейства BERT есть небольшая проблема — они требовательны к вычислительным ресурсам

Решение — возьмем модель поменьше и задистиллируем в нее знания из большой модели!

Получим DistilBERT:

- на 40% меньше занимаемой памяти
- на 60% быстрее инференс модели
- 97% от качества большой модели

Knowledge distillation — просим модель-ученика повторять за моделью учителя

Дистиллируем не только предсказания, но и скрытые представления

- 1. Возьмем каждый второй слов из BERT-base
- 2. Обучим модель предсказывать распределения большой модели, при этом приближая скрытые состояния
- 3. Получим 97% качества от исходной модели-учителя

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B
ELMo	68.7	44.1	68.6	76.6	71.1	86.2	53.4	91.5	70.4
BERT-base	79.5	56.3	86.7	88.6	91.8	89.6	69.3	92.7	89.0
DistilBERT	77.0	51.3	82.2	87.5	89.2	88.5	59.9	91.3	86.9

Итоги занятия

- 1. Masked Language Modeling и связь с классическим языковым моделированием
- 2. BERT двусторонний контекст лучше одностороннего
- 3. RoBERTa или как достичь лучшего качества без изменения архитектуры
- 4. DistilBERT: более легкий и эффективный аналог BERT, обученные с помощью подхода knowledge distillation