SNP detection and Genome Wide Association Study using Hadoop-BAM, CrossBow and Apache HIVE in Hadoop Cluster

Jyotsna Singh – PGDBD201901006

Paulami Das – PGDBD201901009

Poushali Gupta – PGDBD201901010

Institute of Bioinformatics & Applied Biotechnology, Bangalore

Next Generation Sequencing & Big Data

- The amount of NGS

 Data worldwide is predicted to double every 5 months which is must faster than Moore's law
- ➤ 1000 Genomes projects has Petabytes of human genome data sets
- ➤ In many GWAS and WGS studies multiple large files has to be processed sequentially

Kryder's law: Exponential growth of neuroimaging and genomics data, relative to increase of number of transistors per chip. By 2025 more than 100 PB of sequenced genome and 1 TB of neuroimaging data will be generated daily.

Different File Formats of Genomic Data

@HD VN:1.0 SO:coordinate
@SQ SN:chr20 LN:64444167
@PG ID:TopHat VN:2.0.14 CL:/srv/dna tools/tophat/tophat -N 3read-edit-dist 5read-r
lign-edit-dist 2 -i 50 -I 5000max-coverage-intron 5000 -M -o out /data/user446/mapping_tophat/index/c
20 /data/user446/mapping_tophat/L6_18_GTGAAA_L007_R1_001.fastq
HWI-ST1145:74:C101DACXX:7:1102:4284:73714 16 chr20 190930 3 100M * 0
${\sf CCGTGTTTAAAGGTGGATGCGGTCACCTTCCCAGCTAGGCTTAGGGATTCTTAGTTGGCCTAGGAAATCCAGCTAGTCCTGTCTCTCAGTCCCCCCTGCCCCCCTGCCTG$
C BBDCCDDCCDDDDCDCDCCCDBC?DDDDDDDDDDDDDD
AS:i:-15 XM:i:3 X0:i:0 XG:i:0 MD:Z:55C20C13A9 NM:i:3 NH:i:2 CC:Z:= CP:i:55352714 HI:i
HWI-ST1145:74:C101DACXX:7:1114:2759:41961 16 chr20 193953 50 100M * 0
TGCTGGATCATCTGGTTAGTGGCTTCTGACTCAGAGGACCTTCGTCCCCTGGGGCAGTGGACCTTCCAGTGATTCCCCTGACATAAGGGGCATGGAC
G DCDDDDDDDDDDDDDDDDDCCCDDDCDDDDDEEC>DFFFEJJJJJIGJJJJIHGBHHGJIJJJJJJGJJJJIHJJJJJJHHHHHFFFFFCC
AS:i:-16 XM:i:3 XO:i:0 XG:i:0 MD:Z:60G16T18T3 NM:i:3 NH:i:1
HWI-ST1145:74:C101DACXX:7:1204:14760:4030 16 chr20 270877 50 100M * 0
GGCTTTATTGGTAAAAAAGGAATAGCAGATTTAATCAGAAATTCCCACCTGGCCCAGCAGCACCCAGAAAGAA
C DDDDDDDDDDDDDDDDDDDDDDDEEEEEEFFFEFFEGHHHHFGDJJIHJJIJJJJIIIIGGFJJIHIIIIJJJJJJIIGHHFAHGFHJHFGGHFFFDD@E
AS:i:-11 XM:i:2 XO:i:0 XG:i:0 MD:Z:0A85G13 NM:i:2 NH:i:1
HWI-ST1145:74:C101DACXX:7:1210:11167:8699 0 chr20 271218 50 50M4700N50M *
0 GTGGCTCTTCCACAGGAATGTTGAGGATGACATCCATGTCTGGGGTGCACTTGGGTCTCCGAAGCAGAACATCCTCAAATATGACCTCT
accepted_hits.sam

SAM/BAM Files

ReferenceGenome	Homo_sapiens\UCSC\hg19\Sequence\WholeGenomeFASTA				
[Regions]					
Name	Chromosome	Start	End	Upstream Probe Length	Downstream Probe Len
WASH5P-chr1-14363-14829	chr1	14363	14829	0	
WASH5P-chr1-14970-15038	chr1	14970	15038	0	
WASH5P-chr1-15796-15947	chr1	15796	15947	0	
WASH5P-chr1-16607-16765	chr1	16607	16765	0	
WASH5P-chr1-16858-17055	chr1	16858	17055	0	
WASH5P-chr1-17233-17368	chr1	17233	17368	0	
WASH5P-chr1-17606-17742	chr1	17606	17742	0	

##fileformat=VCF4.2
##INFO= <id=svtype,number=1,type=string,< th=""></id=svtype,number=1,type=string,<>
Description="Type of structure variant">
##INFO= <id=end,number=1,type=integer,< th=""></id=end,number=1,type=integer,<>
Description="End position of the variant described in this record">
#CHROM POS ID REF ALT QUAL FILTER INFO

rs7520618 G A SVTYPE=SNP;END=160929436	
rs113387749 ASVTYPE=INS;END=160932043	
rs5778188 C SVTYPE=DEL;END=160932207	
rs2256505 A G SVTYPE=SNP;END=160932772	
rs2481074 T A SVTYPE=SNP;END=160934078	
rs1023115 A G SVTYPE=SNP:END=160934819	
와 있는 경우 경우 경우 경우 보다는 보다면 하는데 보면 하는데 보다 보다 보다 있다면 하고 있다면 하는데 가지 않는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하는데 하	
1	rs7520618 G A SVTYPE=SNP;END=160929436 rs113387749 A SVTYPE=INS;END=160932043 rs5778188 C SVTYPE=DEL;END=160932207 rs2256505 A G SVTYPE=SNP;END=160932772 rs2481074 T A SVTYPE=SNP;END=160934078 rs1023115 A G SVTYPE=SNP;END=160934819 . AAA TGC SVTYPE=SUB;END=160935331 rs75452934 AA TC SVTYPE=SUB;END=160935336

>@HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
TTTTCAGNGAATACTGCAAATCAATAAACTCTTTAG
>@HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
AAAAGCTCATTTCCTATAGTTAACAGGACATGCCTT
>@HWI-ST216_0180:4:1101:1448:2211#GGCTAC/1
ATTATATAAGATAGCGGCTTTTTCCGTTAGTTTCCT
>@HWI-ST216_0180:4:1101:1331:2227#GGCTAC/1
CACGTTCTCTGTCCCCAATGGTATTTGCATCCCTGT
>@HWI-ST216_0180:4:1101:1376:2237#GGCTAC/1
GCGTCCCTTAGCTGAACTACCCAAACGTACGAATGC

Fasta Files

@HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
TTTTCAGNGAATACTGCAAATCAATAAACTCTTTAG
+HWI-ST216_0180:4:1101:1096:2196#GGCTAC/1
ceedb]]B[[]]]][ffffff\ddddedeeedf_fbd
@HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
AAAAGCTCATTTCCTATAGTTAACAGGACATGCCTT
+HWI-ST216_0180:4:1101:1158:2236#GGCTAC/1
gggggggggggggggggggggfffggggggggggg
@HWI-ST216_0180:4:1101:1448:2211#GGCTAC/1
ATTATATAAGATAGCGGCTTTTTCCGTTAGTTTCCT

Fastq Files

200	History		Attributes	Frame	Strand	Score	End	Start	Feature	Source	Segname
		"ERVL-E-inf";	gene_id			980	83886750	83886030	exon	hg19_rmsk	:hr1
8	search datasets	"MLT1J";	gene_id		+	491	192938046	192937729	exon	hg19_rmsk	chr1
	Unnamed history	"THE1B";	gene_id		+	2249	243269678	243269324	exon	hg19_rmsk	chr1
	3 shown, 2 deleted	"LTR12C";	gene_id			8848	10486981	10485712	exon	hg19_rmsk	chr1
6.5 GB ☑ % ●	"MER21C";	gene_id		+	1005	53477536	53477263	exon	hg19_rmsk	chr1	
	1.	"THE1B-inf";	gene_id			9303	74449973	74448477	exon	hg19_rmsk	chr1
● / X	4:	"MamRep1527";	gene_id			461	82837529	82837212	exon	hg19_rmsk	thr1
500	LTRs repeatmasker H	"THE1D";	gene_id		+	1754	102760736	102760404	exon	hg19_rmsk	thr1
	1 line, 717,655 comments format: gtf, database: 2	"LTR47B";	gene_id		š	1532	145752401	145751968	exon	hg19_rmsk	chr1
Ž.		"LTR76";	gene_id		â	4373	153092533	153091848	exon	hg19_rmsk	chr1
	uploaded tabular file	"LTR85c";	gene_id			848	160432454	160432100	exon	hg19_rmsk	thr1
	D O III	"MLT284";	gene_id			1368	210764168	210763724	exon	hg19_rmsk	chr1
	B 0 M	"MER21A";	gene_id		ž	1068	211812354	211812124	exon	hg19_rmsk	chr1
	display in IGB <u>View</u>	"MLT1F2";	gene_id		¥	1378	213910008	213909477	exon	hg19_rmsk	chr1
	display with IGV jocal	'MLT1M';	gene_id		+	816	238027031	238026629	exon	hg19_rmsk	chr1
ALCOHOLD BY THE	1.Seqname 2.Source 3.	"LTR24C";	gene_id		¥	3210	241172753	241172240	exon	hg19_rmsk	chr1
	chri hgi9_rmsk ex	"MER65D";	gene_id		÷	721	262386	262105	exon	hg19_rmsk	chr1
	((-m-)	"THE1D";	gene_id		+	2001	3539068	3538719	exon	hg19_rmsk	chr1
83 @ / X	2: EBI SRA: SRX886283	"MLT18";	gene_id			1304	4325379	4324984	exon	hg19_rmsk	chr1
	File:	"HERVH-Int";	gene_id		+	28994	5112709	5108932	exon	hg19_rmsk	chr1
	ftp://ttp.sra.ebi.ac.uk/vol/ /SRR181/009/SRR18138	"MER52-inf";	gene_id			808	12714399	12713599	exon	hg19_rmsk	chr1
/SRR1813899 1.fastq.gz		"HERVK-int";	gene_id		7	27617	12845090	12840257	exon	hg19_rmsk	chr1

Properties of Our Data Set

Semi-Structured

Reference Genome – Fasta Format

3.2 GB

62743362 bp

Raw Data — Fastq Format

4.1 GB

27999799 bp

Sequence length - 36 bp

GC Content - 44%

Output File – BAM Format, VCF

Format

42 GB, 30 KB

Relationship of Human Genome with Other Species

Advantages of Hadoop

- Hadoop is Open Source distributed data processing system
- Based on Google's MapReduce architecture design
- Cheap commodity hardware for storage
- Fault tolerant distributed filesystems: HDFS
- Batch processing systems: Hadoop MapReduce, Apache Hive, Apache Pig (HDD), Apache Spark (RAM)
- Parallel SQL implementations for analytics: Apache Hive,
 Cloudera Impala, Apache Spark
- Fault tolerant distributed database: Hbase
- Distributed machine learning libraries, text indexing & search

Hadoop in Different Biological Aspects

- In Cancer treatments
- In monitoring Patient Vitals
- In the Hospital Network
- In Healthcare Intelligence
- In Structural Bioinformatics
 - 1) Molecular Docking
 - 2) Clustering of Protein-Ligand complex
 - 3) Structural Alignment
- In Genomic Data Analysis

Tools used in Hadoop For Biological Data Analysis

- Cloud Burst Uses Hadoop as a platform for alignment of short reads.
- Crossbow Uses Hadoop for SNP genotyping from short reads.
- Contrail Uses Hadoop for denovo assembly from short sequencing reads
- Myrna Uses Bowtie and R/Bioconductor for calculating differential gene expression from large RNASeq data sets
- Cloud Blast Uses Gene Set Enrichment Analysis in Hadoop
- **BlueSNP** Implements GWAS statistical tests in R & executes the calculations with Apache Hadoop using MapReduce formalism.
- HadoopBAM A library for processing NGS data format in parallel with both Hadoop and Spark.
- Amazon Elastic Compute Cloud & MapReduce.

Typical Genomics Data Analysis Using HDFS

Processing Data in main memory instead of files in hard disks = minimal I/O operations. Map/Reduce data from Petabytes to Gigabytes (million times less in the end

Project Proposal

- Genome Alignment using HADOOP-BAM
- SNP Detection using Crossbow (Bowtie+SOAPsnp) and HadoopBAM and comparing both
- Genome Wide Association Study (GWAS) using Apache HIVE across Human Genome of Different Population

SNP Detection using MapReduce Algorithm in Crossbow

- Copying the Fastq raw data and Fasta reference genome from Local File System to HDFS
- Running the Crossbow pipeline in Hadoop Cluster
- Crossbow's Map phase align reads with Bowtie 2 which employs a compact index of reference sequence requiring about 3 GB of memory using HG19
- The index is distributed to all computers in cluster via hadoop file or by instructing each node to independently obtain the index from a shared file
- The reduce phase performs SOAPsnp
- The output of Reduce phase is SNP tuple which stored on the Clustered distributed File System which can be transferred to Local File System.

SNP Detection using HadoopBAM

Genome Wide Association Study using Apache HIVE

- Processing of VCF Files in Data Browser and query using Apache HIVE
- Counting the Allele Frequency
- Taking Input Data from different population and finding Genome wide association using Log odds ratio/Likelihood ratio/Chi-square test across different population

SNP Detection using Crossbow

Downloaded fastq files from 1000 Genomes
 Project of different populations

Work Flow

Installed Crossbow, Bowtie, soapSNP, HadoopBAM

Indexed using Bowtie and Detected SNPs using soapSNP

```
bab@IBAB-PGDBD-Comp07:~/Applications/AM_Assignment/GENOMICS/20feb/AlignmentFiles$ soapsnp -B cancer sorted.bam -o out.
Illumina Fastq System Set
                         Software name :SOAPsnp
                                                             Version : v 1.05
                                                       Last Update : 2011.9.25
                                                               Author:Core Development Group
                                                               Fan Zhang & Bill Tang
E_mail : zhangfan@genomics.org.cn
                         * zhouguyue@genomics.org.cn
* Copyright : BGI. All Rights Reserved.
Parameters:
                         -i <String> Input SORTED Soap Result or list
                         -s -s -s cstrings Input SORTED SAM Result or list
-B <strings Input SORTED BAM Result or list
-l Specify this option will enable the alignments' filelist input</pre>
                          P <Int> Set the thread number[1]
                         -d <Strings Reference Sequence in fasta format
-o <Strings (<DIR» if input is file list) output consensus file Optional Parameters:(Default in [])
-z <Char> ASCII chracter standing for quality==0 [0]
-g <Double> Global Error Dependency Coefficient, 0.0(complete dependent)-1.0(complete independent)[0.9]
                          p <Double> PCR Error Dependency Coefficient, 0.0(complete dependent)-1.0(complete independent)[0.5]
                          -r <Double> novel altHOM prior probability [0.0005]
-e <Double> novel HET prior probability [0.0010]
                          -t set transition/transversion ratio to 2:1 in prior probability
-s <String> Pre-formated dbSNP information
                          2 specify this option will REFINE SNPs using dbSNPs information [Off]
                         -2 specify this option will REFINE SIPS using dbSNPs information [Off]
-a Gobuble- Validated HET prior, if no allele frequency known [0.05]
-b Gobuble- Validated altHOM prior, if no allele frequency known [0.05]
-j Gobuble- Unvalidated HET prior, if no allele frequency known [0.02]
-k Gobuble- Unvalidated altHOM rate, if no allele frequency known [0.01]
-u Enable rank sum test to give HET further penalty for better accuracy [Off]
-n Enable monoploid calling mode, this will ensure all consensus as HOM and you probably should SPECIFY
                             higher altHOM rate [Off]
                          -q Only output potential SNPs. Useful in Text output mode [Off]
-M <FILE>(<OIR> if set -l parameter) Output the quality calibration matrix;the matrix can be reused with -I
                         if you rerun the program
-I <FILE>(<FILELIST> if set -l parameter) Input previous quality calibration matrix. It cannot be used
                             simutaneously with -M
                          -L <Short> maximum length of read [45]
                          -Q <Char> maximum FASTQ quality score, using ASCII chracter standing for quality[h]
                           F <Int> Output format. 0: Text; 1: GLFv2; 2: GPFv2.[0]
```

GWAS using Apache Hive – Flow Chart

 From the generated VCF files we chose only two populations – 1) Bengalis in Bangladesh
 2) British in Scotland

- Next we preprocessed the VCF files
- Randomly we chose chromosome 20 for further analysis

Preprocessing of VCF files

Selection of lines which contain the information about SNP

```
ibab@IBAB-PGDBD-Comp07:~/SecondSemester/VCFS$ cat ALL.chr20.phase3_shapeit2_mvnc
all_integrated_v5a.20130502.genotypes.vcf | grep "^20" > british_in_scotland.csv
```

 Extracted relevant columns: chrom, pos, ref, alt, info, format

```
ibab@IBAB-PGDBD-Comp07:~/SecondSemester/VCFS$ awk '{print $1,$2,$4,$5,$8,$9}' br
itish_in_scotland.csv > british_in_scotland_1.csv
```

Continued...

Uploaded processed VCF files in Apache Hive

Queries in Hive

- Queried for all possible base changes : purine to purine (A -
- > G) , pyriminidine to pyrimidine (T ->C) , purine to pyrimidine(A ->T, A->C, G->T,G->C and vice versa)

Frequency Table

Reference Allele	Alternative Allele	Count
Т	А	53024
А	Т	53692
С	G	72349
G	С	71959
С	Т	373871
Т	С	210950
Т	G	56328
А	G	219805
А	С	56018
С	А	79395
G	Т	81070
G	А	377981

Reference Allele	Alternative Allele	Count
Т	А	52429
А	Т	53218
С	G	74052
G	С	73639
С	Т	381657
Т	С	216606
Т	G	56796
Α	G	226183
А	С	56717
С	А	80439
G	Т	82315
G	Α	385264

Benagali in Bangladesh

British in Scotland

Visualization of the result

Histogram of the VCF's of the two populations

Hive is Fast!

 Processing of files in hive was very fast as compared to running in local environment

References

- Searching for SNPs with cloud computing
 Ben Langmead, Michael C Schatz, Jimmy Lin, Mihai Pop and Steven L Salzberg
- The application of Hadoop in Structural Bioinformatics
 Jamie Alnasir, Hugh P. Shanahan
- Big Data Processing for Genomics
 Altti Ilari Maarala, Keijo Heljanko, Andre
 Schumacher, Ridvan Dongelci, Luca Pireddu,
 Matti Niemenmaa, Aleksi Kallio, Eija Korpelainen and
 Gianluigi Zanetti

Thank You