

SAIRAM DIGITAL RESOURCES

YEAR SEM

MA8351

DISCRETE MATHEMATICS (Common to CSE & IT)

ALGEBRAIC STRUCTURES

4.2 GROUPS

SCIENCE & HUMANITIES

GROUPS

Definition

If G is a non empty set and * is a binary operation of G, then the algebraic system {G, *} is called group if the following conditions are satisfied:

1. For all a, b, c ∈ G,

$$(a * b) * c = a * (b * c)$$

(Associativity)

2. There exists an element $e \in G$ such that, for any $a \in G$,

$$a * e = e * a = a$$

(Existence of identity)

3. For every $a \in G$, there exists and element $a^{-1} \in G$ such that

$$a * a^{-1} = a^{-1} * a = e$$

(Existence of inverse)

Note

The algebraic system $\{S, *\}$ is a semigroup, if * is associative. If there exists an identity element $e \in S$, then $\{S, *\}$ is a monoid. Further if there exists an inverse for each element of S, then $\{S, *\}$ is a group.

For example, {Z, +} is a group under the usual addition.

Definitions

When G is finite, the numbers of elements of G is called the order of G and denoted by O(G) or |G|. If the element $a \in G$, where G is a group with identity element e, then the least positive integer m for which $a^m = e$ is called the order of the element a and denoted as O(a). If no such integer exists, then a is of infinity order.

A group {G, *}, in which the binary operation * is commutative, is called a commutative group or abelian group.

For example, the set of rational numbers excluding zero is an abelian group under the usual multiplication.

Properties of a Group

1. The identity element of a group (G, *) is unique.

Proof

If possible, let there be two identity elements in the group $\{G, *\}$, say e_1 and e_2 . Since, e_2 is an identity and , $e_1 \in G$, we have

$$e_2 * e_1 = e_1 * e_2 = e_1$$
 ---- (1)

Since, e_1 is an identity and , $e_2 \in G$, we have

$$e_1 * e_2 = e_2 * e_1 = e_2$$
 ---- (2)

From (1) and (2), we have

$$e_1 = e_1 * e_2$$
$$= e_2$$

Hence, the identity element of a group is unique.

2. The inverse of each element of (G, *) is unique.

Proof

If possible, let b and c be two inverses of the element $a \in G$.

Then, by the existence of inverse

a * b = b * a = e, where e is the identity of G ----- (1)

Similarly
$$a * c = c * a = e$$

---- (2)

Now

$$b = e * b$$

$$= (c * a) * b$$
 by (2)

$$= c * (a * b)$$
 by axiom (1)

$$= c * e$$
 by (1)

$$= c$$
 by (1)

Hence, the inverse of an element of (G, *) is unique.

3. The cancellation laws are true in a group

viz.,
$$a * b = a * c \Rightarrow b = c$$

and
$$b * a = c * a \Rightarrow b = c$$

Proof

$$a * b = a * c$$

$$a*b=a*c\Rightarrow b=c$$

i.e., the left cancellation law is valid in a group.

$$b*a=c*a$$

i.e.,
$$(b*a)*a^{-1} = (c*a)*a^{-1}$$

i.e.,
$$b*(a*a^{-1}) = c*(a*a^{-1})$$

i.e.,
$$b*e=c*e$$

$$i.e., \qquad b=c$$

$$b * a = c * a \Rightarrow b = c$$

i.e., the right cancellation law is valid in a group.

4. $(a*b)^{-1} = b^{-1} * a^{-1}$, for any $a, b \in G$.

Proof

$$(a * b) * (b^{-1} * a^{-1}) = a * (b * b^{-1}) * a^{-1}$$

$$= a * e * a^{-1}$$

$$= a * a^{-1}$$

Also

$$(b^{-1} * a^{-1}) * (a * b) = b^{-1} * (a^{-1} * a) * b$$

$$= b^{-1} * e * b$$

$$= b^{-1} * b$$

$$= e$$

Thus the inverse of (a * b) is $b^{-1} * a^{-1}$ i.e., $(a * b)^{-1} = b^{-1} * a^{-1}$

5. If $a, b \in G$, the equation a * x = b has the unique solution $x = a^{-1} * b$. Similarly the equation y * a = b has the unique solution $y = b * a^{-1}$.

Proof

Let
$$c = a^{-1} * b$$

Then $a * c = a * (a^{-1} * b)$
 $= (a * a^{-1}) * b$
 $= e * b$

a * c = b means x = c is a solution of the equation a * x = b.

= b

If possible, let x = d be another solution of the equation a * x = b.

Then
$$a * c = a * d = b$$

By left cancellation, we get c = d.

i.e., $x = a^{-1} * b$ is the unique solution of the equation a * x = b.

Similarly we can prove that $y = b * a^{-1}$ is the unique solution of y * a = b.

6. (G,*) cannot have an idempotent element except the identity element.

Proof

If possible, let a be an idempotent element of (G,*) other than e.

Then
$$a * a = a$$
 ----- (1)

Now $e = a * a^{-1}$ by (1)

 $= a * (a * a^{-1})$
 $= a * e$
 $= a$

Hence the only idempotent element of G is its identity element.

PERMUTATION

Definition

A bijective mapping of a non-empty set $S \to S$ is called a permutation of S.

For example, if $S = \{a, b\}$, the two possible permutations of $\{a, b\}$ are $\{a, b\}$ and $\{b, a\}$. In this section, we will represent the two permutations as

$$p_1 = \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$
 and $p_2 = \begin{pmatrix} a & b \\ b & a \end{pmatrix}$

where the first row of p contains the elements of S in the given order and the second row gives their images.

Now the set $S_2 = \{p_1, p_2\}$ is the set of all possible permutations of the element of S.

Let * denote a binary operation on S_2 representing the right composition of permutations, viz., when $i, j, = 1, 2, p_i * p_j$ means the permutation obtained by permuting the elements of S by the application of p_i , followed by the application of p_i .

In other words, if p_i and p_j are treated as functions and \bullet denotes the usual left composition of functions, then $p_i * p_j = p_j \bullet p_i$ for i, j = 1, 2. For example,

$$p_{2} * p_{1} = \begin{pmatrix} a & b \\ b & a \end{pmatrix} * \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ b & a \end{pmatrix} * \begin{pmatrix} a & b \\ a & b \end{pmatrix}$$
$$= \begin{pmatrix} a & b \\ b & a \end{pmatrix} = p_{2}$$

PERMUTATION GROUP

Definition

The set G of all permutations on a non-empty set S under the binary operation * of right composition of permutations is a group $\{G,*\}$ called the permutation group.

If $S = \{1, 2, ..., n\}$, the permutation group is also called the symmetric group of degree n and denoted by S_n . The number of elements of S_n or $|S_n| = n!$, since there are n! permutations of n elements.

Now let us verify that $\{S_3,*\}$, where $S = \{1,2,3\}$ is a group under the operation of right composition of permutations.

There will be 3! = 6 permutations of the elements 1, 2, 3 of *S*. i.e., $S = \{1, 2, ..., n\}$ $S_3 = \{p_1, p_2, p_3, p_4, p_5, p_6\}$, where

$$p_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}; \qquad p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix};$$

$$p_2 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix};$$

$$p_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix};$$

$$p_4 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}; \qquad p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix};$$

$$p_5 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix};$$

$$p_6 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$$

The Cayley's compostion table of permutations on S_3 is given below:

Note

To obtain $p_i * p_j$, it will be convenient if we rewrite the first row of p_j so as to coincide with the second row of p_i .

Using the above table, all the three axioms of a group are easily verified.

For example,
$$(p_2 * p_4) * p_6 = p_3 * p_6 = p_4$$

Also
$$p_2 * (p_4 * p_6) = p_2 * p_3 = p_4$$

Thus associativity is satisfied.

Now
$$p_1 * p_i = p_i * p_1 = p_1$$
, for $i = 1, 2, 3, ... 6$

Thus the existence of the identity element (in this example, $e=p_1$) is verified.

Also
$$p_1^{-1} = p_1$$
, $p_2^{-1} = p_1$, $p_3^{-1} = p_5$, $p_4^{-1} = p_4$, $p_5^{-1} = p_3$, and $p_6^{-1} = p_6$.

Thus the existence of inverse of each element is verified.

Hence $\{S_3, *\}$ is a group.

However this symmetric group is not abelian, since, for example, $p_2 * p_3 = p_4$, where as $p_3 * p_2 = p_6$.

DIHEDRAL GROUP

Definition

The set of transformations due to all rigid motions of a regular polygon of n sides resulting in identical polygons but with different vertex names under the binary operation of right composition * is a group called dihedral group, denoted by $\{D_n, *\}$.

By rigid motion, we mean the rotation of the regular polygon about its centre through angles $1 \times \frac{360}{n}$, $2 \times \frac{360}{n}$, ..., $n \times \frac{360}{n}$, in the anticlockwise direction and reflection of the regular polygon about its lines of symmetry.

CYCLIC GROUP

Definition

A group $\{G, *\}$ is said to be cyclic, if there exists an element $a \in G$ such that every element x of G can be expressed as $x = a^n$ for some integer n.

In such a case, the cyclic group is said to be generated by a or a is generator of G, G is also denoted by $\{a\}$.

For example, if $G = \{1, -1, i, -i\}$, then $\{G, \times\}$ is a cyclic group with the generator i, for $1 = i^4, -1 = i^2$, $i = i^1$ and $i = i^3$.

For this cyclic group, -i is also a generator.

Properties of a Cyclic Group

1. A cyclic group is abelian.

Proof

Let $\{G,*\}$ be a cyclic group with $a \in G$ as generator.

Let $b, c \in G$. Then $b = a^m$ and $c = a^n$, where m and n are integers.

Now

$$b * c = a^{m} * a^{n}$$

$$= a^{m+n}$$

$$= a^{n+m}$$

$$= a^{n} * a^{m}$$

$$= c * b$$

Hence $\{G,*\}$ is an abelian group.

2. If a is a generator of a cyclic group $\{G, *\}$, a^{-1} is also a generator of $\{G, *\}$.

Proof

Let $b \in G$. Then $b = a^m$, where m is an integer.

Now $b = (a^{-1})^{-m}$ where -m is an integer.

- a^{-1} is also a generator of $\{G, *\}$.
- 3. If $\{G, *\}$ is a finite cyclic group generated by an element $a \in G$ and is of order n, then $a^n = e$ so that $G = \{a, a^2, ..., a^n (= e)\}$. Also n is the least positive integer for which $a^n = e$.

Proof

If possible let there exist a positive integer m < n such that $a^m = e$.

Since G is cyclic, any element of G can be expressed as a^k , for some $k \in Z$.

When k is divided by m, let q be the quotient and r be the remainder, where $0 \le r < m$.

Then
$$k = mq + r$$

$$a^k = a^{mq+r} = a^{mq} * a^r$$

$$= (a^m)^q * a^r$$

$$= e^q * a^r$$

$$= e * a^r$$

$$= a^r$$

This means that every element of G can be expressed as a^r , where $0 \le r < m$.

This implies that G has at most m elements or order of G = m < n, which is a contradiction.

i.e., $a^m = e$, for m < n is not possible.

Hence $a^n = e$, where n is the least positive integer. Now let us prove that the elements $a, a^2, a^3, ..., a^n (= e)$ are distinct.

If it is not true, let, $a^i = a^j$, for $i < j \le n$

Then $a^{-i} * a^i = a^{-i} * a^j$

i.e., $e = a^{j-i}$, where j - i < n,

which again is a contradiction.

Hence $a^i \neq a^j$, for $i < j \le n$.

4. If $\{G,*\}$ is a finite cyclic group of order n with a as a generator, then a^m is also a generator of $\{G,*\}$, if and only if the greatest common divisor of m and n is 1, where m < n.

Proof

Let us assume that a^m is a generator of $\{G,*\}$.

Then, for some integer r,

$$a = (a^m)^r = a^{mr}$$

i.e.,
$$a=a^{mr}*e=a^{mr}*e^s$$
, where s is an integer.
$$=a^{mr}*(e^n)^s, \text{ since } a^n=e, \text{ by property (3)}$$

$$=a^{mr}*e^{ns}$$

$$=a^{mr+ns}$$

---- (2)

DISCRETE MATHEMATICS (Common to CSE & IT)

$$\therefore$$
 GCD $(m,n) = 1$

To prove the converse, let us assume that GCD (m, n) = 1

 \therefore There exists two integers p and q such that

$$mp + nq = 1 \qquad \qquad ----- (1)$$

Let H be the set generated by a^m .

Since, each integral power of a^m will also be an integral power of a.

Now
$$a^{mp+nq} = a, \text{ by (1)}$$
 i.e.,
$$a^{mp} * a^{nq} = a$$
 i.e.,
$$(a^m)^p * (a^n)^q = a$$
 i.e.,
$$(a^m)^p * (e)^q = a, \text{ since } a^n = e$$
 i.e.,
$$(a^m)^p * e = a, \text{ since } e^q = e$$

i.e.,
$$(a^m)^p = a$$

This means that each integral power of a will also be an integral power a^m .

i.e., $G \subseteq H$ ---- (3)

From (2) and (3), we have H = G

i.e., a^m is a generator of G.

PROBLMES

1. If $\{G,*\}$ is an abelian group, show that $(a*b)^n = a^n*b^n$ for all $a,b \in G$, where n is a positive integer.

Proof

Since, $\{G,*\}$ is an abelian group,

$$a * b = b * a \qquad \qquad ---- (1)$$

For
$$a,b \in G$$
, we have $(a*b)^1 = (b*a)^1$, by (1)
and $(a*b)^2 = (a*b)*(a*b)$
 $= a*(b*a)*b$, by associativity
 $= a*(a*b)*b$, by (1)
 $= (a*a)*(b*b)$, by associativity
 $= a^2*b^2$

Thus, the required result is true for n=1,2. Let us assume that the result is valid for n=m.

i.e.,
$$(a*b)^m = a^m * b^m$$
 ----- (2)

Now $(a*b)^{m+1} = (a*b)^m * (a*b)$
 $= (a^m * b^m) * (a*b)$, by (2)
 $= a^m * (b^m * a) * b$, by associativity
 $= a^m * (a*b^m) * b$, since G is abelian

=
$$(a^m * a) * (b^m * b)$$
, by associativity
= $a^{m+1} * b^{m+1}$

Hence, by induction, the result is true for positive integral values of n.

2. Show that the set Q^+ of all positive rational numbers forms an abelian group under the operation * defined by $a * b = \frac{1}{2} ab$; $a, b \in Q^+$.

Proof

When

$$a,b \in Q^+, \qquad \frac{ab}{2} \in Q^+$$

$$\frac{ab}{2} \in Q^+$$

 Q^+ is closed under the operation *

Now

$$(a * b) * c = \left(\frac{ab}{2}\right) * c$$

$$ab c$$

$$=\frac{ab}{2}\cdot\frac{c}{2}$$

$$=\frac{ab}{4}$$

$$a * (b * c) = a * \left(\frac{bc}{2}\right)$$
$$= \frac{a}{2} * \frac{bc}{2}$$

$$=\frac{abc}{4}$$

$$(a*b)*c = a*(b*c)$$

Hence * is associative.

Let e be the identity element of Q^+ under *

$$a * e = e * a = a, \text{ for } a \in Q^+$$

i.e.,
$$\frac{1}{2} ae = a$$

$$ae = 2a$$

$$ae - 2a = 0$$

$$a(e-2)=0$$

Since a > 0, we get

$$e=2$$

Hence identity element exists.

Let b be the inverse of the element $a \in G$.

Then

$$a * b = b * a = e = 2$$

i.e.,

$$\frac{1}{2} ab = 2$$

$$ab = 4$$

:.

$$b=\frac{4}{a}\in Q^+$$

Thus every element of Q^+ is invertible.

 \therefore $(Q^+, *)$ is a group.

Also

$$b * a = a * b = \frac{1}{2}ab$$

 $(Q^+, *)$ is an abelian group.

3. If * is the binary operation on the set R of real numbers defined by

$$a * b = a + b + 2ab,$$

- (a) Find if is a semigroup. Is it commutative?
- (b) Find the identity element, if exists.
- (c) Which elements have inverses and what are they?

Proof

(a)
$$(a * b) * c = (a * b) + c + 2(a * b)c$$

$$= (a + b + 2ab) + c + 2(a + b + 2ab)c$$

$$= a + b + 2ab + c + 2(ac + bc + 2abc)$$

$$= a + b + 2ab + c + 2ac + 2bc + 4abc$$

$$= a + b + c + 2ab + 2ac + 2bc + 4abc$$

$$= a + b + c + 2(ab + ac + bc) + 4abc$$

$$a * (b * c) = a + (b * c) + 2a(b * c)$$

= $a + (b + c + 2bc) + 2a(b + c + 2bc)$
= $a + b + c + 2bc + 2ab + 2ac + 4abc$
= $a + b + c + 2(ab + ac + bc) + 4abc$

Hence, (a * b) * c = a * (b * c)

i.e., * is associative.

Hence, (R, *) is a semigroup.

Also
$$b*a = b + a + 2ba$$
$$= a + b + 2ab$$
$$= a*b$$

Hence, (R, *) is a commutative.

(b) If the identity element exists, let it be e.

Then for any $a \in R$, a * e = ai.e., a + e + 2ae = a

$$e + 2ae = 0$$

$$e(1+2a)=0$$

e = 0, since $1 + 2a \neq 0$, for any $a \in R$.

(c) Let a^{-1} be the inverse of an element $a \in R$. Then $a * a^{-1} = e$.

$$a + a^{-1} + 2aa^{-1} = 0$$

$$a^{-1}(1+2a) = -a$$

$$a^{-1} = -\frac{a}{1+2a}$$

$$\therefore$$
 If $a \neq -\frac{1}{2}$, a^{-1} exists and $= -\frac{a}{1+2a}$.

- 4. If * is the operation defined on $S = Q \times Q$, the set of ordered pairs of rational numbers and given by (a, b) * (x, y) = (ax, ay + b),
 - (a) Find if (S, *) is a semigroup. Is it commutative?
 - (b) Find the identity element of *S*.
 - (c) Which elements, if any, have inverses and what are they?

Proof

(a)
$$\{(a,b) * (x,y)\} * (c,d) = (ax,ay+b) * (c,d)$$

$$= (acx,adx+ay+b)$$

$$(a,b) * \{(x,y) * (c,d)\} = (a,b)(cx,dx+y)$$

$$= (acx,adx+ay+b)$$

Hence, * is associative on S.

 \therefore {S, *} is a semigroup.

Now
$$(x,y) * (a,b) = (ax,bx + cy) \neq (a,b) * (x,y)$$

 $\{S, *\}$ is not commutative.

Now
$$(x,y) * (a,b) = (ax,bx+cy) \neq (a,b) * (x,y)$$

- \therefore {*S*, *} is not commutative.
- (b) Let (e_1, e_2) be the identity element of $\{S, *\}$. Then for any $(a, b) \in S$,

Now
$$(a,b) * (e_1,e_2) = c$$

i.e.,
$$(ae_1, ae_2 + b) = (a, b)$$

$$ae_1 = a \qquad ae_2 + b = b$$

i.e.,
$$e_1 = 1$$
 $e_2 = 0$

- \therefore The identity element is (1,0).
- (c) Let the inverse of (a, b) be (c, d), if it exists.

Then
$$(a,b) * (c,d) = (1,0)$$

i.e.,
$$(ac, ad + b) = (1, 0)$$

ac = 1

$$ad + b = 0$$

i.e.,

$$c = \frac{1}{a}$$

$$d = -\frac{b}{a}$$

 \therefore Thus the element (a, b) has an inverse if $a \neq 0$ and its

inverse is $\left(\frac{1}{a}, -\frac{b}{a}\right)$.

5. If the permutations of the elements of {1, 2, 3, 4, 5} are given by

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}, \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 5 & 4 \end{pmatrix}, \gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 1 & 2 \end{pmatrix},$$

 $\delta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$, find $\alpha\beta$, $\beta\alpha$, α^2 , $\alpha\beta$, δ^{-1} and $\alpha\beta\gamma$. Also solve the equation $\alpha x = \beta$.

Solution

5

 α :

3

5

 $\therefore \alpha\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 4 & 5 \end{pmatrix}$

 β :

3

5

5

 β :

5

 $\therefore \beta \alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 1 & 5 & 4 \end{pmatrix}$

 α :

5

 α :

DISCRETE MATHEMATICS (Common to CSE & IT)

2 3 1 4 5
$$\therefore \alpha^2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$$

$$\alpha$$
: \downarrow \downarrow \downarrow

$$\gamma: \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

5 4 3 1 2
$$\therefore \gamma \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 3 & 1 & 2 \end{pmatrix}$$

 δ^{-1} is obtained by interchanging the two rows of δ and then rearranging the elements of the first row so as to assume the natural order.

Thus
$$\delta^{-1} = \begin{pmatrix} 3 & 2 & 1 & 5 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix}$$

$$1 \qquad 2 \qquad 3 \qquad 4 \qquad 5$$

$$2 \qquad 3 \qquad 1 \qquad 5 \qquad 4 \qquad \therefore \alpha\beta\gamma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 5 & 2 & 1 \end{pmatrix}$$

$$\gamma: \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$4 \qquad 3 \qquad 5 \qquad 2 \qquad 1$$

Solving the equation $\alpha x = \beta$ means finding the value of x that satisfies the equation. Pre-multiplying by α^{-1} , the given equation becomes

$$\alpha^{-1}\alpha x = \alpha^{-1}\beta$$

i.e., $ex = \alpha^{-1}\beta$, where e is the identity permutation.

 $x = \alpha^{-1}\beta$

Now $\alpha^{-1} = \begin{pmatrix} 2 & 3 & 1 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 4 & 5 \end{pmatrix}$

1 2 3 4 5

 α^{-1} : \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow

3 1 2 4 5 $\therefore x = \alpha^{-1}\beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 1 & 2 & 5 & 4 \end{pmatrix}$

 γ : \downarrow \downarrow \downarrow

3 1 2 5 4