Project Planning Phase

Date	12/11/2022
TeamID	PNT2022TMID07461
ProjectName	Smart Farmer-IoTEnabledSmart FarmingApplication
MaximumMarks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4Marks)

Sprint	Functional Requirement(Epic)	UserStory Number	UserStory/Task	Story Points	Priority	Team members
01Sprint-1	Simulation creation	USN-1	Connect Sensors and Arduino with pythoncode	2	High	Keerthana, Peravali Bala Venkat, Mohamed Arshath, Dharsini
Sprint-2	Software	USN-2	Creating device in the IBMWatson IoT platform,workflow for IoT scenario susing Node-Red	2	High	Keerthana, Peravali Bala Venkat, Mohamed Arshath, Dharsini
Sprint-3	MITAppInventor	USN-3	Develop an application for the Smart farmer project using MITApp Inventor	2	High	Keerthana, Peravali Bala Venkat, Mohamed Arshath, Dharsini
Sprint-3	Dashboard	USN-3	Design the Modules and test the app	2	High	Keerthana, Peravali Bala Venkat, Mohamed Arshath, Dharsini
Sprint-4	WebUI	USN-4	To make the user to interact with software.	2	High	Keerthana, Peravali Bala Venkat, Mohamed Arshath, Dharsini

Project Tracker, Velocity & Burndown Chart: (4Marks)

Sprint	Total StoryPoint s	Duration	SprintStartDate	SprintEndDate(Planned)	Story PointsCompleted(as	SprintReleaseDate(Actual)
					PlannedEndDate)	
Sprint-1	20	6Days	24Oct2022	29Oct2022	20	13Oct2022
Sprint-2	20	6Days	31Oct2022	05Nov2022	20	13Nov2022
Sprint-3	20	6Days	07Nov2022	12Nov2022	20	14Nov2022
Sprint-4	20	6Days	14Nov2022	19Nov2022	20	19Nov2022

Velocity:

Imaginewehavea10-day sprint duration, and the velocity of the team is 20(points per sprint). Let's calculate the team's average velocity(AV) per iteration unit(story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

BurndownChart:

A burn down chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies suchas Scrum. However, burn down chartscanbe applied to anyproject containing measurable progressover time.

https://www.visual-paradigm.com/scrum/scrum-burndown-

chart/https://www.atlassian.com/agile/tutorials/burndown-charts