Chapitre 11

Tests statistiques sur les corrélations et régressions

Rappel

Relation entre X et Y:

	X	Y
Sujet 1	100	56
Sujet 2	80	87
•••	•••	• • •

$$\overline{X}, S_X$$

$$\overline{Y}, S_{Y}$$

$$r = \frac{\text{cov}_{XY}}{S_X S_Y}$$

$$\hat{Y} = bX + a$$

$$S_{Y \cdot X}$$

Corrélation ou régression

Coefficient de corrélation Droite de régression

= description

Quid de la population ?

Problème de l'erreur d'échantillonnage

Choisir le bon test d'hypothèse

Notation

Echantillon

Population

r

b

a

ρ (rho)

ß

 α

Les tests statistiques

Différents tests sur une relation

$$H_0 : \rho = 0$$

$$H_{\Delta}: \rho \neq 0$$

$$H_0: \beta = 0$$

$$H_{\Delta}: \beta \neq 0$$

$$H_0: \rho = 0.5$$

$$H_A: \rho \neq 0,5$$

$$H_0: \beta = 0.5$$

$$H_{\Delta}: \beta \neq 0,5$$

Tests sur un coefficient de corrélation

Choisir le bon test d'hypothèse

Tester rho = 0

Pour $\rho = 0$, r est plus ou moins normalement distribué autour de zéro avec:

$$S_r = \sqrt{\frac{1 - r^2}{N - 2}}$$

Tester rho = 0

Dès lors:

$$t_{obs} = \frac{r}{S_r}$$

Avec N – 2 dl

Y a-t-il une relation positive entre indice d'inégalité des revenus et prévalence des troubles de l'humeur ?

$$N = 9$$

$$dl = 9 - 2 = 7$$

$$r = 0.72$$

$$\alpha = 0.05$$

 $H_0: \rho = 0$

 $H_A: \rho > 0$

$$S_r = \sqrt{\frac{1 - r^2}{N - 2}} = \sqrt{\frac{1 - 0.52}{9 - 2}} = 0.26$$

$$t_{obs} = \frac{r}{S_r} = \frac{0,72}{0,26} = 2,77$$

 $t_{0.05} = 1,895$ (test unilatéral et 7 dl)

Puisque 2,77 > 1,895, rejeter H₀

Il y a bien une corrélation positive significative entre indice d'inégalité des revenus et prévalence des troubles de l'humeur.

 $H_0: \rho = 0.5$

 $H_A : \rho < 0.5$

Pour $\rho \neq 0$, r n'est pas distribué normalement

Solution de Fisher:

Transformer r en r' selon:

$$r' = 0.5 \times \ln\left(\frac{1+r}{1-r}\right)$$

r' est normalement distribué autour de ρ' avec :

$$S_{r'} = \frac{1}{\sqrt{N-3}}$$

Dès lors:

$$Z = \frac{r' - \rho'}{\sqrt{\frac{1}{N - 3}}}$$

La corrélation entre indice d'inégalité des revenus et prévalence des troubles de l'humeur est-elle inférieure à 0,9 ?

$$N = 9$$

$$dl = 9 - 2 = 7$$

$$r = 0.72$$

$$\alpha = 0.05$$

 $H_0: \rho = 0.9$

 $H_A : \rho < 0.9$

$$r = 0.72$$
 \rightarrow $r' = 0.908$

$$\rho = 0.9 \longrightarrow \rho' = 1.472$$

r	r'	r	r'
•••	•••	• • •	• • •
0.690	0.848	0.890	1.422
0.695	0.858	0.895	1.447
0.700	0.867	0.900	1.472
0.705	0.877	0.905	1.499
0.710	0.887	0.910	1.528
0.715	0.897	0.915	1.557
•••	•••	•••	•••

$$Z = \frac{r' - \rho'}{\sqrt{\frac{1}{N - 3}}} = \frac{0,908 - 1,472}{\sqrt{\frac{1}{6}}} = -1,38$$

$$H_0: \rho = 0.9$$

$$H_A : \rho < 0.9$$

$$P(r < 0.72) = P(Z < -1.38) =$$

$$P(Z > 1,38) = 0,0838$$

Puisque 0.0838 > 0.05, ne pas rejeter H₀

Nous n'avons pas suffisamment de preuves pour affirmer que la corrélation entre indice d'inégalité des revenus et prévalence des troubles de l'humeur est inférieure à 0,9.

Calculer un intervalle de confiance pour rho à partir de r

Exemple: Estimer la corrélation entre indice d'inégalité des revenus et prévalence des troubles de l'humeur pour l'ensemble des pays.

$$IC(\rho') = r' \pm Z_{\alpha/2} \frac{1}{\sqrt{N-3}}$$

$$IC(\rho') = 0.908 \pm 1.96 \frac{1}{\sqrt{6}} = 0.908 \pm 0.8$$

 $0,108 < \rho' < 1,708$

Devient

 $0,11 < \rho < 0,935$

r	r'	r	r'
•••	•••	•••	• • •
0.725	0.918	0.925	1.623
0.730	0.929	0.930	1.658
0.735	0.940	0.935	1.697
0.740	0.950	0.940	1.738
0.745	0.962	0.945	1.783
0.750	0.973	0.950	1.832
•••	•••	•••	•••

On peut donc affirmer avec une certitude de 95% que la corrélation entre indice d'inégalité des revenus et prévalence des troubles de l'humeur dans la population générale se trouve entre 0,110 et 0,935.

Choisir le bon test d'hypothèse

Tester b

b est normalement distribué avec une erreur standard égale à :

$$S_b = \frac{S_{Y \cdot X}}{S_X \sqrt{N-1}}$$

Tester b

Dès lors:

$$tobs = \frac{b - \beta}{S_b}$$

Avec N - 2 dl

Peut-on affirmer que le taux de prévalence des troubles de l'humeur augmente de plus de 2% pour une augmentation de 0,1 unité sur l'indice d'inégalité des revenus ?

$$H_0: \beta = 20$$

$$H_A : \beta > 20$$

$$N = 9$$
 $dI = 9 - 2 = 7$

$$\alpha = 0.05$$

$$S_X = 0.0819$$
 $S_{Y.X} = 5.00$

$$b = 59,328$$

$$S_b = \frac{S_{Y.X}}{S_X \sqrt{N-1}} = \frac{5}{0,0819\sqrt{8}} = 21,58$$

$$t_{obs} = \frac{b - \beta}{S_b} = \frac{59,328 - 20}{21,58} = 1,82$$

```
t_{obs} = 1,82

t_{0,05} = 1,895 (test unilatéral et 7 dl)
```

Puisque 1,82 < 1,895, ne pas rejeter H_0

Nous n'avons pas de preuves suffisantes pour affirmer que le taux de prévalence des troubles de l'humeur augmente de plus de 2% pour une augmentation de 0,1 unité sur l'indice d'inégalité des revenus.

Calculer un intervalle de confiance pour β à partir de b

Exemple: Estimer la pente de la régression entre indice d'inégalité des revenus et prévalence des troubles de l'humeur.

$$IC_{0,95} = b \pm t_{\alpha/2} S_b$$

$$IC_{0.95} = 59,328 \pm (2,365 \times 21,58)$$

$$= 59,328 \pm 51,037$$

$$8,291 < \beta < 110,365$$

Pour une augmentation de 0,1 point sur l'échelle d'inégalité des revenus, le taux de prévalence des troubles de l'humeur augmente entre 8 et 11%.

Conditions d'application

Condition 1 (rappel)

Linéarité de la régression

La relation entre X et Y est linéaire

Conditions d'application

Autres conditions

Uniquement pour les tests d'hypothèse

Conditions d'application de la régression

1. Homogénéité des variances

2. Normalité dans les vecteurs

Conditions d'application de la régression

Conditions d'application de la corrélation

Distribution normale bivariée:

- X et Y sont normalement distribués
- Pour tout X, les Y sont normalement distribués
- Pour tout Y, les X sont normalement distribués

En cas de violation des conditions

1. Tests très robustes

2. Tests non paramétriques sur les rangs