A Mini Project Report

On

STEAM TABLE

Submitted in partial fulfillment of requirements for the Course CSE18R272 - JAVA PROGRAMMING

Bachelor's of Technology

In

Computer Science and Engineering

Submitted By

N.V.V.SATYA NARAYANA 9918004085

P.GOWTHAM 9918004088

Under the guidance of

Dr. R. RAMALAKSHMI

(Associate Professor)

Department of Computer Science and Engineering Kalasalingam Academy of Research and Education Anand Nagar, Krishnankoil-626126 APRIL 2020

ABSTRACT

Stream tables may be an effective way to learn about watersheds and the dynamic processes, factors, and landforms within. We review the copious stream table literature, present new ideas for assembling stream tables, and provide a watershed approach to stream table exercises. Our stream table's compact size and low cost permits the purchase and use of multiple units to maximize active learning. The included stream table modules allow introductory students to experiment and observe the effects of factors—i.e., climate (Module A-Precipitation, Overland Flow, and Channel Initiation and Module B-Stream Discharge and Channel Formation), topography (Module C-Watershed Topography and Channel Formation), land cover (Module D-Watershed Cover Types and Channel Formation), and base level (Module E-Local Base Level Changes via Dams and Reservoirs) –on fluvial processes and landforms in a watershed. Course evaluations and exams show that students enjoy the stream table exercise more, and learn the concepts of fluvial geomorphology better, than via traditional topographic map and aerial photograph interpretation exercises.

DECLARATION

I hereby declare that the work presented in this report entitled "STREAM TABLES", in partial fulfilment of the requirements for the course CSE18R272-Java Programming and submitted in Department of Computer Science and Engineering, Kalasalingam Academy of Research and Education (Deemed to be University) is an authentic record of our own work carried out during the period from Jan 2020 under the guidance of Mr. Dr. R. Ramalakshmi (Associate Professor).

The work reported in this has not been submitted by me for the award of any other degree of this or any other institute.

N.V.V.SATYA NARAYANA 9918004085 P.GOWTHAM 9918004088

ACKNOWLEDGEMENT

First and foremost, I wish to thank the Almighty God for his grace and benediction to complete this Project work successfully. I would like to convey my special thanks from the bottom of my heart to my dear Parents and affectionate Family members for their honest support for the completion of this Project work.

I express deep sense of gratitude to "Kalvivallal" Thiru. T. Kalasalingam B.com., Founder Chairman, "Ilayavallal" Dr.K.Sridharan Ph.D., Chancellor, Dr.S.ShasiAnand, Ph.D., Vice President (Academic), Mr.S.ArjunKalasalingam M.S., Vice President (Administration), Dr.R.Nagaraj Vice-Chancellor, Dr.V.Vasudevan Ph.D., Registrar, Dr.P.Deepalakshmi Ph.D., Dean (School of Computing). And also a special thanks to Dr. A. FRANCIS SAVIOUR DEVARAJ. Head Department of CSE, Kalasalingam Academy of Research and Education forgranting the permission and providing necessary facilities to carry out Project work.

I would like to express my special appreciation and profound thanks to my enthusiastic Project Supervisor Dr.R.Ramalakshmi Ph.D, Associate Professor at Kalasalingam Academy of Research and Education [KARE] for her inspiring guidance, constant encouragement with my work during all stages. I am extremely glad that I had a chance to do my Project under my Guide, who truly practices and appreciates deep thinking. I will be forever indebted to my Guide for all the time he has spent with me in discussions. And during the most difficult times when writing this report, he gave me the moral support and the freedom I needed to move on.

N.V.V.SATYA NARAYANA 9918004085 P.GOWTHAM 9918004088

TABLE OF CONTENTS

1. ABSTRACT	i
2. CANDIDATE'S DECLARATION	ii
3. ACKNOWLEDGEMENT	iii
4. TABLE OF CONTENTS	iv
5. LIST OF FIGURES	v
Chapter 1 INTRODUCTION	1
Chapter 2 PROJECT DESCRIPTION	3 7
Chapter 3 CONCLUSION	8
REFERENCES	8
APPENDIX	10

LIST OF FIGURES

2.1	PRESSURE TABLE	4
2.2	TEMPERATURE TABLE	5
2.3	TEMPERATURE TABLE CONTINUED	6
2.4	SCREEN SHOT OF OUTPUT	7

Chapter 1

INTRODUCTION

Watersheds (i.e., drainage basins or catchments) are the most basic of landscape-scale units (Sutherland, 1994). Watershed-based environmental issues increasingly impact our daily lives—e.g., witness the recent listings of anadromous fish as threatened and endangered, and the resulting impacts of these listings on land use in the Pacific Northwest of the United States. A clear understanding of the functions of watersheds, and the factors that influence them, is therefore essential to understanding contemporary environmental issues. However, the large areas, often subtle boundaries, and complex interaction of geomorphic factors (substrate, climate, land cover, topography, time, base level, and human activity), geomorphic processes (fluvial erosion, transportation, and deposition), and landforms within make watersheds difficult to comprehend (Figure 1). Watersheds are commonly addressed in introductory physical geography, environmental science, earth science, and geology courses within sections on the hydrologic cycle and fluvial geomorphology. Instructors in such courses often attempt to link dynamic fluvial factors, processes, and landforms to watersheds with traditional lectures, and with topographic map- and airphoto-based laboratory exercises. Students subsequently may struggle to understand how fluvial landscapes evolve over time and how fluvial processes and factors affect everyday lives. This problem is especially acute when the vast majority of students enrolled in introductory courses are non-science majors. Thus, the question explored here is how may scientists and non-scientists better learn about the interrelated, dynamic fluvial factors, processes, and landforms of watersheds? A potential solution to these problems is to use stream tables as watershed education tools. Stream tables (also referred to as "earth sculpture tanks" (Balchin

and Richards, 1952), "erosion beds" (Haigh and Kilmartin, 1987), "erosion tables" (Hubbell, 1964), "erosion trays" (Tolman and Morton, 1986), "flumes" (Yoxall, 1983), "model rivers" (Chapman and Wilcox, 1983), "sand tables" (Joseph and others, 1964), "sand trays" (Joseph and others, 1964), "sedimentation tanks" (Larsen, 1968), "stream models" (DeSeyn, 1973), "stream tanks" (Anderson, 1969), and "stream troughs" (Lewis, 1944)) are sediment-filled troughs through which water flows to provide a laboratory model of a stream or stream system within a watershed. The dynamic interaction between the stream table's flowing water and sediment enables students to observe and experiment with the most important of the geomorphic agents in shaping Earth's surface—fluvial processes (Bloom, 1998). While the use of stream tables is not a new idea, it is one worth revisiting, especially in light of the recent emphasis on "student-centered" (Gold and others, 1991) or "active learning" (Meyers and Jones, 1993) classroom methods. This paper reviews the existing stream table literature and presents new ideas for assembling watershed-emulating stream tables. Additionally, it provides new approaches for watershed-based stream exercises aimed at introductory university-level students but with potential for use by kindergartners to advanced-level college students. The ultimate goal is to encourage educators to further design and use stream tables in their classrooms and laboratories.

Chapter 2

PROJECT DESCRIPTION

```
Packages Used:
java.awt.*;
java.awt.event.*;(Event Handling);
User Defined Packages:
import java.StreamTables.Pressure;
import java.StreamTables.Temperature;
```

It is mainly used in Mechanical Engineering. Here We have to give the temperature or pressure value based on the users choice. After that the user need to select wheather he is entered temperature or pressure value. By clicking on the button the corresponding values is shown in the same tab below. Based on the values the user may get helful for solving problems.

12.4. STEAM TABLES

1013

	SATURATED STEAM - PRESSURE TABLE								
		Spec. vol. Int. Ener.				nalpy		Entropy	
			=kg	kJ/kg		kJ/kg			kgºK)
Р	Т	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.
bar	°C	liq.	vap.	liq.	vap.	liq.	vap.	liq.	vap.
		Vf	Vg	Uf	u_g	h_f	h_g	Sf	Sg
0.04	20.07	X1000	24.00	404.4	0.445	404.4	0554	0.400	0.475
0.04	28.96	1.004	34.80	121.4	2415	121.4	2554	0.423	8.475
0.06	36.15	1.006	23.75	151.5	2425	151.5	2567	0.521	8.331
0.08	41.5	1.008	18.11	173.8	2432	173.8	2577	0.593	8.229
0.1	45.8	1.010	14.68	191.8	2438	191.8	2585	0.649	8.150
0.2	60.07	1.017	7.649	251.4	2457	251.4	2610	0.832	7.908
0.3	69.11	1.023	5.229	289.2	2468	289.2	2625	0.944	7.769
0.4	75.87	1.026	3.994	317.5	2477	317.6	2637	1.026	7.670
0.5	81.33	1.030	3.240	340.4	2484	340.5	2646	1.091	7.594
0.6	85.94	1.033 1.036	2.732	359.8	2490	359.9	2653	1.145	7.532
	89.95	1.036	2.365	376.6	2494 2499	376.7	2660	1.192	7.480
0.8	93.5		2.087	391.6		391.7	2666	1.233	7.435
0.9	96.71	1.041	1.870	405.1	2503	405.1	2671	1.270	7.395
1 1.5	99.62	1.043 1.053	1.694 1.159	417.3	2506 2520	417.4	2675 2694	1.303 1.434	7.359 7.223
	111.4	1.053		466.9	2520	467.1 504.7	2707	1.434	7.127
2	120.2		0.886	504.5					
3	133.6	1.073 1.084	0.606	561.1	2544 2554	561.5	2725 2739	1.672 1.777	6.992 6.896
5	143.6		0.463	604.3		604.8			
6	151.9	1.093	0.375	639.7	2561	640.2	2749	1.861	6.821
7	158.9	1.101	0.316	669.9	2567	670.6	2757	1.931 1.992	6.760
	165.0	1.108	0.273	696.4	2573 2577	697.2	2764		6.708
8	170.4 175.4	1.115 1.121	0.240 0.215	720.2 741.8	2577	721.1 742.8	2769 2774	2.046 2.095	6.663 6.623
10	179.9	1.121	0.215	761.7	2584	762.8	2778	2.139	6.586
20	212.4	1.127	0.194	906.4	2600	908.8	2800	2.139	6.341
30	233.9	1.217	0.067	1005	2604	1008	2804	2.646	6.187
40	250.4	1.252	0.050	1003	2602	1008	2801	2.796	6.070
50	264.0	1.286	0.030	1148	2597	1154	2794	2.920	5.973
60	275.6	1.319	0.037	1205	2590	1213	2784	3.027	5.889
70	285.9	1.352	0.032	1258	2580	1213	2772	3.121	5.813
80	295.1	1.384	0.027	1306	2570	1317	2758	3.207	5.743
90	303.4	1.418	0.024	1350	2558	1363	2742	3.286	5.677
100	311.1	1.453	0.021	1393	2545	1408	2725	3.360	5.614
110	318.2	1.489	0.016	1434	2530	1450	2706	3.429	5.553
120	324.8	1.527	0.014	1473	2513	1491	2685	3.496	5.492
130	331.0	1.567	0.014	1511	2496	1532	2662	3.561	5.432
140	336.8	1.611	0.013	1549	2477	1571	2638	3.623	5.372
150	342.3	1.658	0.012	1586	2456	1611	2611	3.685	5.310
160	347.4	1.711	0.009	1623	2432	1650	2581	3.746	5.246
170	352.4	1.770	0.009	1660	2405	1690	2547	3.808	5.178
180	357.0	1.839	0.008	1699	2375	1732	2510	3.871	5.105
190	361.5	1.924	0.007	1740	2338	1776	2465	3.938	5.024
200	365.8	2.036	0.006	1786	2295	1826	2411	4.013	4.931
220.9	374.1	3.155	0.003	2030	2029	2099	2099	4.430	4.430

Figure 2.1: PRESSURE TABLE

12.4. STEAM TABLES

1011

12.4 Steam Tables

SATURATED STEAM - TEMPERATURE TABLE									
	Spec. vol.			Int. Ener.		Enthalpy		ropy	
		m³=kg		kJ/kg		kJ/kg		kJ=(kg°K)	
Т	P	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.
°C	bar	liq.	vap.	liq.	vap.	liq.	vap.	liq.	vap.
	L	Vf	Vg	u_f	u_g	h_f	h_g	Sf	Sg
		X1000							
0.01	0.0061	1.0002	206.1	0.01	2376	0.01	2501	0	9.156
4	0.0081	1.0001	157.2	16.79	2381	16.79	2509	0.061	9.051
5	0.0087	1.0001	147.1	21.00	2383	21	2511	0.0762	9.026
6	0.0093	1.0001	137.7	25.21	2384	25.21	2512	0.0912	9.000
8	0.0107	1.0001	120.9	33.61	2387	33.61	2516	0.1212	8.950
10	0.0123	1.0001	106.4	42.01	2389	42.01	2520	0.151	8.901
11	0.0131	1.0007	99.86	46.19	2391	46.19	2522	0.1658	8.876
12	0.0140	1.0007	93.79	50.40	2392	50.4	2523	0.1806	8.852
13	0.0150	1.0007	88.13	54.59	2393	54.59	2525	0.1953	8.828
14	0.0160	1.0007	82.85	58.80	2394	58.8	2527	0.2099	8.805
15	0.0170	1.0007	77.93	62.99	2396	62.99	2529	0.2245	8.781
16	0.0182	1.0013	73.34	67.17	2397	67.17	2531	0.239	8.758
17	0.0194	1.0013	69.05	71.36	2399	71.36	2533	0.2535	8.735
18	0.0206	1.0013	65.04	75.57	2400	75.57	2534	0.2679	8.712
19	0.0220	1.0013	61.30	79.76	2401	79.76	2536	0.2823	8.690
20	0.0234	1.002	57.79	83.94	2403	83.94	2538	0.2966	8.667
21	0.0249	1.002	54.52	88.13	2404	88.13	2540	0.3108	8.645
22	0.0264	1.002	51.45	92.32	2406	92.32	2542	0.3251	8.623
23	0.0281	1.0026	48.58	96.50	2407	96.5	2544	0.3392	8.601
24	0.0298	1.0026	45.89	100.7	2409	100.7	2545	0.3533	8.579
25	0.0317	1.0032	43.36	104.9	2410	104.9	2547	0.3673	8.558
26	0.0336	1.0032	41.00	109.0	2411	109.0	2549	0.3814	8.537
27	0.0357	1.0032	38.78	113.2	2412	113.2	2551	0.3953	8.515
28 29	0.0378 0.0401	1.0038 1.0038	36.69 34.73	117.4 121.6	2414 2415	117.4 121.6	2553 2554	0.4093 0.4231	8.495
30						121.8	2556		8.474
	0.0425	1.0045	32.90	125.8	2416			0.4369	8.453
31 32	0.0450 0.0476	1.0045 1.0051	31.17 29.54	130.0	2418 2419	130.0 134.1	2558 2560	0.4507 0.4644	8.433
33	0.0478			134.1				0.4644	8.413
34	0.0503	1.0051	28.01	138.3 142.5	2421 2422	138.3 142.5	2562		8.393
35	0.0532	1.0057 1.0057	26.57 25.22		2422		2563 2565	0.4917 0.5053	8.373
36	0.0563	1.0063	23.94	146.7 150.8	2425	146.7 150.8	2565	0.5053	8.353 8.333
38	0.0595	1.0063	21.60	150.8	2425	150.8	2571	0.5188	8.295
40	0.0003	1.007	19.52	167.5	2427	167.5	2574	0.5725	8.257
45	0.0738	1.0076	15.26	188.4	2430	188.4	2574	0.5725	8.165
45 50	0.0959	1.010	12.03	209.3	2437	209.3	2583	0.7037	8.076
55	0.1235	1.012	9.569	230.2	2443	230.2	2601	0.7679	7.991
60	0.1376	1.015	7.671	251.1	2450	251.1	2610	0.7679	7.910
65	0.1994	1.017	6.197	272.0	2463	272.0	2618	0.8934	7.910
70	0.2503	1.020	5.042	293.0	2403	293.0	2627	0.8934	7.755
75	0.3119	1.023	4.131	313.9	2476	313.9	2635	1.016	7.682
80	0.3636	1.020	3.407	334.8	2482	334.9	2644	1.075	7.612

Figure 2.2: TEMPERATURE TABLE

1012

CHAPTER 12. SUPPLEMENTAL MATERIALS

CATHDATED	CTEANA	TEMPEDATURE	TABLE (C	'antinuad'

SATURATED STEAM - TEMPERATURE TABLE (Continued)									
	Spec. vol.			Int. Ener.		Enthalpy		Entropy	
	4	m³=kg		kJ/kg		kJ/kg		kJ=(kg°K)	
Т	Р	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.	Sat.
°C	bar	liq.	vap.	liq.	vap.	liq.	vap.	liq.	vap.
C	Dai	Vf	Vg	Uf	ug	h_f	hg	Sf	Sg
		X1000							
85	0.5783	1.033	2.828	355.8	2488	355.9	2652	1.134	7.544
90	0.7013	1.036	2.361	376.8	2494	376.9	2660	1.193	7.479
95	0.8455	1.039	1.982	397.9	2501	398.0	2668	1.250	7.416
100	1.013	1.044	1.673	418.9	2507	419.0	2676	1.307	7.355
110	1.433	1.052	1.21	461.1	2518	461.3	2691	1.418	7.239
120	1.985	1.060	0.892	503.5	2529	503.7	2706	1.528	7.130
130	2.701	1.069	0.669	546.0	2540	546.3	2720	1.634	7.027
140	3.613	1.080	0.509	588.7	2550	589.1	2734	1.739	6.930
150	4.758	1.091	0.393	631.7	2559	632.2	2746	1.842	6.838
160	6.178	1.102	0.307	674.9	2568	675.5	2758	1.943	6.750
170	7.916	1.114	0.243	718.3	2576	719.2	2769	2.042	6.666
180	10.02	1.127	0.194	762.1	2584	763.2	2778	2.140	6.586
190	12.54	1.141	0.157	806.2	2589	807.6	2786	2.236	6.508
200	15.54	1.156	0.127	850.6	2596	852.4	2793	2.331	6.432
210	19.06	1.172	0.104	895.5	2600	897.8	2798	2.425	6.358
220	23.18	1.190	0.086	940.8	2603	943.6	2802	2.518	6.286
230	27.95	1.209	0.072	986.7	2603	990.1	2804	2.610	6.215
240	33.44	1.229	0.06	1033	2603	1037.3	2804	2.702	6.144
250	39.73	1.251	0.05	1080	2603	1085.3	2802	2.793	6.073
260	46.88	1.275	0.042	1128	2600	1134.4	2797	2.884	6.002
270	54.98	1.302	0.036	1177	2592	1184.5	2790	2.975	5.930
280	64.11	1.332	0.03	1227	2587	1236.0	2780	3.067	5.857
290	74.36	1.365	0.026	1279	2573	1289.0	2766	3.159	5.782
300	85.81	1.403	0.022	1332	2560	1344.0	2749	3.253	5.704
320	112.7	1.499	0.015	1445	2531	1461.5	2700	3.448	5.536
340	145.9	1.638	0.011	1570	2462	1594.1	2622	3.659	5.336
360	186.5	1.893	0.007	1725	2351	1760.5	2481	3.915	5.053
374.14	220.9	3.155	0.003155	2030	2030	2099.3	2099	4.430	4.430

Figure 2.3: TEMPERATURE TABLE CONTINUED

2.0.1 SCREENSHOT OUTPUT

Figure 2.4: SCREEN SHOT OF OUTPUT

Chapter 3

CONCLUSION

The stream table and modules (or slight variations thereof) described above have been used for four semesters (total of 15 laboratory sections) in an introductory physical geography laboratory at Drake University. The inexpensive stream tables allow teams of two to four students to isolate the various factors affecting watershed streams and observe the resulting geomorphic processes and landforms. The laboratory also requires that students integrate what they learn throughout the physical geography course—i.e., meteorology, climatology, hydrology, biogeography, pedology, and geomorphology. Students are also encouraged to experiment on their own. Indeed, student experimentation resulted in the development of Module E: Base Level via Dams and Reservoirs. Ultimately, students learn that: watersheds and floodplains are dynamic over space and time; a variety of factors influence these dynamic places; changes in any one of the factors results in different fluvial processes; and different fluvial processes lead to the development of a variety of landforms. The lab experiments and associated questions are successful in helping students tie the "experimental world" of the stream table to the "real world", an important goal noted by Exline (1975). This goal may be further enhanced by modeling the laboratory watersheds after local watersheds that students may visit during a subsequent laboratory session. Maps of the local watershed may be incorporated into the exercise as can questions relating the local watershed to the model watershed

Appendices

SOURCE CODE

```
package Stream Tables;
public class Pressure
  double p[][]={
                   \{0.04, 28.96, 1.004, 34.80, 121.4, 2415\}
                            121.4, 2554, 0.423, 8.475,
                   \{0.06, 36.15, 1.006, 23.75, 151.5, 2425\}
                            ,151.5, 2567, 0.521, 8.331\},
                   \{0.08, 41.5, 1.008, 18.11, 173.8, 2432,
                            173.8, 2577, 0.593, 8.229
                   \{0.1, 45.8, 1.010, 14.68, 191.8, 2438,
                       \hookrightarrow 191.8, 2585, 0.649, 8.150,
                   \{0.2, 60.07, 1.017, 7.649, 251.4, 2457\}
                       \leftrightarrow ,251.4 ,2610 ,0.832 ,7.908},
                   \{0.3, 69.11, 1.023, 5.229, 289.2, 2468\}
                       \leftrightarrow ,289.2 ,2625 ,0.944
                                                   ,7.769\},
                   \{0.4, 75.87, 1.026, 3.994\}
                                                   ,317.5 ,2477
                       \hookrightarrow ,317.6 ,2637 ,1.026
                                                   ,7.670\},
                   \{0.5, 81.33, 1.030\}
                                          , 3.240
                                                   ,340.4 ,2484
                       \hookrightarrow ,340.5 ,2646 ,1.091
                                                   ,7.594\},
                   {0.6,85.94,1.033
                                                   ,359.8 ,2490
                                          , 2.732
                       \leftrightarrow ,359.9 ,2653 ,1.145
                                                   ,7.532\},
                   \{0.7, 89.95, 1.036, 2.365\}
                                                   ,376.6 ,2494
                       \leftrightarrow ,376.7 ,2660 ,1.192 ,7.480},
                   \{0.8, 93.5, 1.039, 2.087, 391.6, 2499\}
                       \leftrightarrow ,391.7 ,2666 ,1.233 ,7.435\},
                   \{0.9, 96.71, 1.041, 1.870, 405.1, 2503\}
                       \leftrightarrow ,405.1 ,2671 ,1.270 ,7.395},
                   \{1, 99.62, 1.043, 1.694, 417.3, 2506\}
                       \leftrightarrow ,417.4 ,2675 ,1.303 ,7.359},
                   \{1.5, 111.4, 1.053, 1.159, 466.9, 2520\}
                       \leftrightarrow ,467.1 ,2694 ,1.434 ,7.223},
                   \{2, 120.2, 1.061, 0.886, 504.5, 2530\}
                       \leftrightarrow ,504.7 ,2707 ,1.530 ,7.127},
                   \{3, 133.6, 1.073, 0.606, 561.1, 2544\}
                       \leftrightarrow ,561.5 ,2725 ,1.672 ,6.992},
                   \{4, 143.6, 1.084, 0.463, 604.3, 2554\}
                       \leftrightarrow ,604.8 ,2739 ,1.777 ,6.896},
```

```
\{5, 151.9, 1.093, 0.375, 639.7, 2561\}
            \leftrightarrow ,640.2 ,2749 ,1.861 ,6.821},
\{6, 158.9, 1.101, 0.316, 669.9, 2567\}
           \leftrightarrow ,670.6 ,2757 ,1.931 ,6.760},
\{7, 165.0, 1.108, 0.273, 696.4, 2573\}
            \leftrightarrow ,697.2 ,2764 ,1.992 ,6.708},
\{8, 170.4, 1.115, 0.240, 720.2, 2577\}
            \leftrightarrow ,721.1 ,2769 ,2.046 ,6.663},
\{9, 175.4, 1.121, 0.215, 741.8, 2580\}
            \leftrightarrow ,742.8 ,2774 ,2.095 ,6.623},
\{10, 179.9, 1.127, 0.194, 761.7, 2584\}
            \leftrightarrow ,762.8 ,2778 ,2.139 ,6.586},
\{20, 212.4, 1.177, 0.100, 906.4, 2600\}
            \leftrightarrow ,908.8 ,2800 ,2.447 ,6.341},
\{30, 233.9, 1.217, 0.067, 1005, 2604\}
            \hookrightarrow ,1008 ,2804 ,2.646
                                                                                                         ,6.187\},
{40 ,250.4 ,1.252 ,0.050
                                                                                                         ,1082 ,2602
            \hookrightarrow ,1087 ,2801 ,2.796
                                                                                                         ,6.070\},
{50, 264.0 ,1.286 ,0.039
                                                                                                          ,1148 ,2597
            \hookrightarrow ,1154 ,2794 ,2.920
                                                                                                          ,5.973\},
\{60, 275.6, 1.319, 0.032\}
                                                                                                           ,1205 ,2590
            \leftrightarrow ,1213 ,2784 ,3.027
                                                                                                          ,5.889\},
{70 ,285.9 ,1.352 ,0.027
                                                                                                           ,1258 ,2580
            \hookrightarrow ,1267 ,2772 ,3.121
                                                                                                          ,5.813\},
{80 ,295.1 ,1.384 ,0.024
                                                                                                          ,1306 ,2570
            \hookrightarrow ,1317 ,2758 ,3.207
                                                                                                          ,5.743\},
{90 ,303.4 ,1.418 ,0.021
                                                                                                         ,1350, 2558
            \hookrightarrow ,1363 ,2742 ,3.286 ,5.677},
\leftrightarrow ,1408 ,2725 ,3.360 ,5.614},
\{110, 318.2, 1.489, 0.016, 1434, 2530\}
            \leftrightarrow ,1450 ,2706 ,3.429 ,5.553},
\{120, 324.8, 1.527, 0.014, 1473, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 2513, 25130, 2513, 2513, 2513, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 25130, 251300, 25
            \leftrightarrow ,1491 ,2685 ,3.496 ,5.492},
\{130, 331.0, 1.567, 0.013, 1511, 2496\}
            \rightarrow ,1532 ,2662 ,3.561 ,5.432},
{140 ,336.8
                                                 , 1.611 , 0.012 , 1549 , 2477
            \leftrightarrow ,1571 ,2638 ,3.623 ,5.372},
\{150, 342.3, 1.658, 0.010, 1586, 2456, 2456, 342.3, 1.658, 0.010, 1586, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456, 2456
            \leftrightarrow ,1611 ,2611 ,3.685 ,5.310},
```

```
\{160, 347.4, 1.711, 0.009, 1623, 2432, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 16230, 1623, 1623, 1623, 1623, 1623, 16230, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 1623, 16230
                                                                                                                                                                         \leftrightarrow ,1650 ,2581 ,3.746 ,5.246},
                                                                                                                                              {170 ,352.4 ,1.770 ,0.008 ,1660 ,2405
                                                                                                                                                                        \hookrightarrow \ ,1690 \ ,2547 \ ,3.808 \ ,5.178\} \, ,
                                                                                                                                              \leftrightarrow ,1732 ,2510 ,3.871 ,5.105},
                                                                                                                                              \{190, 361.5, 1.924, 0.007, 1740, 2338, \dots, 361.5, \dots, 36
                                                                                                                                                                        \leftrightarrow ,1776 ,2465 ,3.938 ,5.024},
                                                                                                                                              {200 ,365.8 ,2.036 ,0.006 ,1786 ,2295
                                                                                                                                                                        \leftrightarrow ,1826 ,2411 ,4.013 ,4.931},
                                                                                                                                               \{ 220.9 \,,\ 374.1 \ , 3.155 \ , 0.003 \ , 2030 \ , 2029 
                                                                                                                                                                         \leftrightarrow ,2099, 2099, 4.430, 4.430},
                                                                                                                  };
int i, j, k=1;
public double[] findpressureval(int pre)
                  double a [] = new double [9];
                  for (i = 0; i < =42; i++)
                                      if (p[i][0]==pre)
                                                                                                                                             for (j = 0; j < 9; j ++)
                                                                                                                                                                 \mathbf{while}(k < 10)
                                                                                                                                                                         {
                                                                                                                                                                                            a[j] = p[i][k];
                                                                                                                                                                                                                        k++;
                                                                                                                                                                                                                        break;
                                                                                                                                              }
                                      }
                                   return a;
        }
```

```
package StreamTables;
import java.util.*;
public class Temperature
{
```

```
double t[][]={
                                                                                  \{0.01, 0.0061, 1.0002, 206.1, 0.01\}
                                                                                                  \leftrightarrow ,2376 ,0.01, 2501, 0 ,9.156},
                                                                                  \{4, 0.0081, 1.0001, 157.2, 16.79, 2381\}
                                                                                                  \hookrightarrow \ , 16.79 \ , 2509 \ , 0.061 \ , 9.051 \} \, ,
                                                                                  \{5, 0.0087, 1.0001, 147.1, 21.00, 2383,
                                                                                                                         21, 2511, 0.0762, 9.026
                                                                                  \{6, 0.0093, 1.0001, 137.7, 25.21, 2384,
                                                                                                                          25.21, 2512, 0.0912, 9.000},
                                                                                  \{8, 0.0107, 1.0001, 120.9, 33.61, 2387, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33.61, 33
                                                                                                  \leftrightarrow ,33.61, 2516 ,0.1212, 8.950},
                                                                                  \{10, 0.0123, 1.0001, 106.4, 42.01,
                                                                                                  \hookrightarrow 2389, 42.01, 2520, 0.151, 8.901,
                                                                                  \{11, 0.0131, 1.0007, 99.86, 46.19,
                                                                                                  \hookrightarrow 2391, 46.19, 2522, 0.1658,
                                                                                                  \hookrightarrow 8.876,
                                                                                  \{12, 0.0140, 1.0007, 93.79, 50.40,
                                                                                                  \hookrightarrow 2392, 50.4, 2523, 0.1806, 8.852
                                                                                  \leftrightarrow ,54.59 ,2525 ,0.1953 ,8.828},
                                                                                  \{14, 0.0160, 1.0007, 82.85, 58.80,
                                                                                                  \hookrightarrow 2394, 58.8, 2527, 0.2099, 8.805
                                                                                  \{15, 0.0170, 1.0007, 77.93, 62.99, 2396\}
                                                                                                  \leftrightarrow ,62.99 ,2529 ,0.2245 ,8.781},
                                                                                  \{16, 0.0182, 1.0013, 73.34, 67.17,
                                                                                                  \hookrightarrow 2397, 67.17, 2531, 0.239, 8.758,
                                                                                  \{17, 0.0194, 1.0013, 69.05, 71.36, 2399\}
                                                                                                  \hookrightarrow ,71.36 ,2533 ,0.2535 ,8.735},
                                                                                  \{18, 0.0206, 1.0013, 65.04, 75.57,
                                                                                                  \hookrightarrow 2400, 75.57, 2534, 0.2679,
                                                                                                  \hookrightarrow 8.712,
                                                                                  \{19, 0.0220, 1.0013, 61.30, 79.76, 2401, 61.30, 79.76, 2401, 61.30, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79.76, 79
                                                                                                                      ,79.76 ,2536 ,0.2823 ,8.690,
                                                                                  \{20, 0.0234, 1.002, 57.79, 83.94, 2403,
                                                                                                  \leftrightarrow 83.94, 2538, 0.2966, 8.667,
                                                                                  \{21, 0.0249, 1.002, 54.52, 88.13, 2404, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.002, 1.
                                                                                                  \leftrightarrow ,88.13 ,2540 ,0.3108 ,8.645},
                                                                                  \{22, 0.0264, 1.002, 51.45, 92.32, 2406,
                                                                                                                    92.32, 2542, 0.3251, 8.623
                                                                                  \{23, 0.0281, 1.0026, 48.58, 96.50, 2407\}
```

```
\rightarrow ,96.5 ,2544 ,0.3392 ,8.601\},
\{24, 0.0298, 1.0026, 45.89, 100.7, 2409\}
             \leftrightarrow ,100.7, 2545, 0.3533, 8.579},
\{25, 0.0317, 1.0032, 43.36, 104.9, 2410\}
             \hookrightarrow ,104.9 ,2547 ,0.3673 ,8.558},
\{26, 0.0336, 1.0032, 41.00, 109.0, 
             \hookrightarrow 2411, 109.0, 2549, 0.3814,
             \hookrightarrow 8.537,
\{27, 0.0357, 1.0032, 38.78, 113.2, 2412\}
             \leftrightarrow ,113.2 ,2551 ,0.3953 ,8.515},
\{28, 0.0378, 1.0038, 36.69, 117.4,
             \hookrightarrow \ 2414 \,, \ 117.4 \,, \ 2553 \,, \ 0.4093 \,,
             \hookrightarrow 8.495,
\{29, 0.0401, 1.0038, 34.73, 121.6,
             \hookrightarrow 2415, 121.6, 2554, 0.4231,
             \hookrightarrow 8.474,
\{30, 0.0425, 1.0045, 32.90, 125.8,
             \hookrightarrow 2416, 125.8, 2556, 0.4369,
             \hookrightarrow 8.453,
\{31, 0.0450, 1.0045, 31.17, 130.0, 2418\}
             \leftrightarrow ,130.0 ,2558 ,0.4507 ,8.433},
\{32, 0.0476, 1.0051, 29.54, 134.1, 2419\}
                                 ,134.1, 2560, 0.4644, 8.413\},
\{33, 0.0503, 1.0051, 28.01, 138.3, 2421, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 28.01, 2
             \leftrightarrow ,138.3 ,2562 ,0.478, 8.393},
\{34, 0.0532, 1.0057, 26.57, 142.5,
             \hookrightarrow 2422, 142.5, 2563, 0.4917,
             \leftrightarrow 8.373,
\{35, 0.0563, 1.0057, 25.22, 146.7, 2423\}
             \hookrightarrow ,146.7 ,2565 ,0.5053 ,8.353},
\{36, 0.0595, 1.0063, 23.94, 150.8, \}
             \hookrightarrow 2425, 150.8, 2567, 0.5188,
             \hookrightarrow 8.333\},
\{38, 0.0663, 1.007, 21.60, 159.2, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 2427, 
             \leftrightarrow ,159.2 ,2571 ,0.5457 ,8.295},
\{40, 0.0738, 1.0076, 19.52, 167.5,
             \hookrightarrow 2430, 167.5, 2574, 0.5725,
             \hookrightarrow 8.257,
\{45, 0.0959, 1.010, 15.26, 188.4, 2437,
             \hookrightarrow 188.4 ,2583 ,0.6386 ,8.165},
```

```
\{50, 0.1235, 1.012, 12.03, 209.3, 2443,
        209.3, 2592, 0.7037, 8.076,
\{55~, 0.1576~, 1.015\,,~9.569\,,~230.2\,,~2450
   \leftrightarrow ,230.2 ,2601 ,0.7679 ,7.991},
                        ,7.671 ,251.1 ,2457
{60 ,0.1994 ,1.017
   \hookrightarrow ,251.1 ,2610
                        ,0.8311, 7.910\},
\{65, 0.2503, 1.020\}
                        ,6.197 ,272.0 ,2463
   \leftrightarrow ,272.0 ,2618
                        ,0.8934,7.831\},
{70 ,0.3119 ,1.023
                        ,5.042 ,293.0 ,2470
   \leftrightarrow ,293.0 ,2627
                        ,0.9549,7.755\},
{75,0.3858,1.026
                        ,4.131 ,313.9 ,2476
   \leftrightarrow ,313.9 ,2635
                        , 1.016
                                 ,7.682\},
{80, 0.4739, 1.029
                        , 3.407
                                  ,334.8 ,2482
                                  ,7.612\},
   \hookrightarrow ,334.9 ,2644
                        , 1.075
\{85, 0.5783, 1.033\}
                        , 2.828
                                 ,355.8 ,2488
   \leftrightarrow ,355.9 ,2652
                        , 1.134
                                 ,7.544\},
{90 ,0.7013, 1.036
                        , 2.361
                                 ,376.8 ,2494
   \leftrightarrow ,376.9 ,2660
                        , 1.193
                                 ,7.479\},
{95 ,0.8455 ,1.039
                        , 1.982
                                 ,397.9 ,2501
   \leftrightarrow ,398.0 ,2668
                        , 1.250
                                  ,7.416\},
\{100, 1.013, 1.044\}
                        , 1.673
                                  ,418.9 ,2507
   \leftrightarrow ,419.0 ,2676
                        , 1.307
                                 ,7.355\},
\{110, 1.433, 1.052\}
                        , 1.21
                                ,461.1 ,2518
   \leftrightarrow ,461.3 ,2691
                        ,1.418,7.239\},
{120 ,1.985 ,1.060
                        ,0.892
                                  ,503.5 ,2529
   \leftrightarrow ,503.7 ,2706
                                 ,7.130\}
                        , 1.528
\{130, 2.701, 1.069\}
                        , 0.669
                                  ,546.0 ,2540
   \leftrightarrow ,546.3 ,2720
                        , 1.634
                                  ,7.027\},
{140 ,3.613 ,1.080
                        ,0.509
                                  ,588.7 ,2550
   \leftrightarrow ,589.1 ,2734
                        , 1.739
                                  ,6.930\},
{150 ,4.758 ,1.091
                        ,0.393
                                  ,631.7 ,2559
   \hookrightarrow ,632.2 ,2746
                        , 1.842
                                  ,6.838,
{160 ,6.178 ,1.102
                        ,0.307
                                  ,674.9 ,2568
   \leftrightarrow ,675.5 ,2758
                        ,1.943
                                  ,6.750\},
\{170, 7.916, 1.114\}
                        ,0.243
                                  ,718.3 ,2576
   \leftrightarrow ,719.2 ,2769
                        , 2.042
                                 ,6.666},
{180 ,10.02 ,1.127
                        , 0.194
                                  ,762.1 ,2584
   \hookrightarrow ,763.2 ,2778
                        , 2.140
                                 ,6.586\},
{190 ,12.54 ,1.141
                        , 0.157
                                  ,806.2 ,2589
   \leftrightarrow ,807.6 ,2786 ,2.236
                                 ,6.508\},
```

```
\{200, 15.54, 1.156, 0.127, 850.6, 2596\}
                                                                                                       \hookrightarrow ,852.4 ,2793 ,2.331
                                                                                                                                                                                                                                                            ,6.432\},
                                                                                    {210 ,19.06 ,1.172
                                                                                                                                                                                                           , 0.104
                                                                                                                                                                                                                                                            ,895.5 ,2600
                                                                                                       \leftrightarrow ,897.8 ,2798
                                                                                                                                                                                                           , 2.425
                                                                                                                                                                                                                                                            ,6.358\},
                                                                                    {220 ,23.18 ,1.190
                                                                                                                                                                                                              ,0.086
                                                                                                                                                                                                                                                             ,940.8 ,2603
                                                                                                       \leftrightarrow ,943.6 ,2802
                                                                                                                                                                                                           , 2.518
                                                                                                                                                                                                                                                            ,6.286\},
                                                                                                                                                                                                              ,0.072 ,986.7 ,2603
                                                                                    \{230, 27.95, 1.209\}
                                                                                                       \rightarrow ,990.1 ,2804 ,2.610 ,6.215},
                                                                                    \leftrightarrow ,1037.3 ,2804 ,2.702 ,6.144},
                                                                                    \leftrightarrow ,1085.3 ,2802 ,2.793 ,6.073},
                                                                                    \{260, 46.88, 1.275, 0.042, 1128, 2600\}
                                                                                                       \rightarrow ,1134.4 ,2797 ,2.884 ,6.002},
                                                                                    \{270, 54.98, 1.302, 0.036, 1177, 2592, 1.302, 0.036, 1177, 12592, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.302, 1.30
                                                                                                       \leftrightarrow ,1184.5 ,2790 ,2.975 ,5.930},
                                                                                    {280 ,64.11 ,1.332 ,0.03 ,1227 ,2587
                                                                                                       \rightarrow ,1236.0 ,2780 ,3.067 ,5.857},
                                                                                    \{290, 74.36, 1.365, 0.026, 1279, 2573, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.365, 1.3
                                                                                                       \rightarrow ,1289.0 ,2766 ,3.159 ,5.782},
                                                                                    \{300, 85.81, 1.403, 0.022, 1332, 2560\}
                                                                                                       \leftrightarrow ,1344.0 ,2749 ,3.253 ,5.704},
                                                                                    \{320, 112.7, 1.499, 0.015, 1445, 2531\}
                                                                                                       \leftrightarrow ,1461.5 ,2700 ,3.448 ,5.536},
                                                                                    \{340, 145.9, 1.638, 0.011, 1570, 2462, 1.638, 0.011, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.638, 1.6384, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.6388, 1.63
                                                                                                       \leftrightarrow ,1594.1 ,2622 ,3.659 ,5.336},
                                                                                     \{360, 186.5, 1.893, 0.007, 1725, 2351\}
                                                                                                       \leftrightarrow ,1760.5 ,2481 ,3.915 ,5.053},
                                                                                     \{374.14, 220.9, 3.155, 0.003155, 2030\}
                                                                                                       \leftrightarrow ,2030 ,2099.3 ,2099 ,4.430,
                                                                                                       \hookrightarrow 4.430,
                                                                              };
int i, j, k=1;
public double[] findtempval(int tem)
             double a[]=new double [9];
             for (i = 0; i <= 69; i++)
                                 if(t[i][0] = tem)
```

```
import java.awt.*;
import java.awt.event.*;
import java.util.Arrays;
import StreamTables.Temperature;
import StreamTables.Pressure;
class Temperaturepressval extends Frame implements
   \hookrightarrow ActionListener
  TextField tf1, tf2, tf3, tf4, tf5, tf6, tf7, tf8, tf9, tf10;
  Button b1, b2;
  Temperature t;
  Pressure p;
  Label 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111;
  Temperaturepressval()
  {
    super("Stream_Tables_Values_Identifier");
    11=new Label("Enter_your_value");
    11.setBounds(15,10,125,35);
    tf1=new TextField();
    tf1.setBounds(250,10,70,35);
    12=new Label("select_the_given_value_type");
    12. setBounds (15,60,180,35);
    b1=new Button("Temperature");
```

```
b1.setBackground(Color.blue);
b2=new Button("pressure");
b2.setBackground(Color.blue);
b1.addActionListener(this);
b2.addActionListener(this);
 tf2=new TextField();
 tf2.setEditable(false);
 tf2.setBounds(250,110,70,35);
 tf3=new TextField();
 tf3.setEditable(false);
 tf3.setBounds(250,160,70,35);
 tf4=new TextField();
 tf4.setEditable(false);
 tf4.setBounds(250,210,70,35);
 tf5=new TextField();
 tf5.setEditable(false);
 tf5.setBounds(250,260,70,35);
 tf6=new TextField();
 tf6.setEditable(false);
 tf6.setBounds(250,310,70,35);
 tf7=new TextField();
 tf7.setEditable(false);
 tf7.setBounds(250,360,70,35);
 tf8=new TextField();
 tf8.setEditable(false);
 tf8.setBounds(250,410,70,35);
 tf9=new TextField();
 tf9.setEditable(false);
 tf9.setBounds(250,460,70,35);
 tf10=new TextField();
 tf10.setEditable(false);
 tf10.setBounds(250,510,70,35);
add(l1);
          add(tf1); add(12); add(b1); add(b2);
setLayout(new FlowLayout());
setBackground (Color. yellow);
setForeground (Color.black);
                    setVisible(true);
setSize (900,1100);
public void actionPerformed(ActionEvent e)
```

```
String s1=tf1.getText();
int a=Integer.parseInt(s1);
if (e.getSource()==b1)
 {
   t=new Temperature();
  double b[]=t.findtempval(a);
  int size=b.length;
  String str[]=new String[size];
  for (int i = 0; i < size; i++)
           str[i]=String.valueOf(b[i]);
  13=new Label("Pressure_in_Bar");
  13 . setBounds (15,110,150,35);
  14=new Label("Specific_volume_m^3=kg__Sat.
     \hookrightarrow \text{Liquid}(\text{Vf})*1000");
  14 . setBounds (15,160,150,35);
  15=new Label ("Specific_volume_m^3=kg__Sat.
     \hookrightarrow \text{Vapour}(\text{Vg})");
  15 . setBounds (15,210,150,35);
  16=new Label("Int. Energy_KJ/Kg__Sat.liq(Uf)");
  16 . setBounds (15, 260, 150, 35);
  17=new Label("Int. Energy_KJ/Kg__Sat.Vap(Ug)");
  17. setBounds (15,310,150,35);
  18=new Label("Enthalphy_KJ/Kg___Sat.Liq(hf)");
  18. setBounds (15, 360, 150, 35);
  19=new Label("Enthalphy_KJ/Kg___Sat.vap(hg)");
  19 . setBounds (15,410,150,35);
  l10=new Label("Entrophy_KJ=Kg_Kelvin___Sat.Liq(
     \hookrightarrow Sf)");
  110 . setBounds (15,460,150,35);
  111=new Label("Entrophy_KJ=Kg_Kelvin___Sat.Vap(
     \hookrightarrow Sg)");
  111 . setBounds (15,510,150,35);
  add(13); tf2.setText(str[0]); add(tf2);
  add(14); tf3.setText(str[1]); add(tf3);
   add(15); tf4.setText(str[2]); add(tf4);
  add(16); tf5.setText(str[3]); add(tf5);
   add(17); tf6.setText(str[4]); add(tf6);
  add(18); tf7.setText(str[5]); add(tf7);
```

```
add(19); tf8.setText(str[6]); add(tf8);
  add(110); tf9.setText(str[7]); add(tf9);
  add(111); tf10.setText(str[8]); add(tf10);
else if (e.getSource()==b2)
    p=new Pressure();
   double b[]=p.findpressureval(a);
  int size=b.length;
  String str [] = new String [size];
  for (int i = 0; i < size; i++)
           str[i]=String.valueOf(b[i]);
  13=new Label("Temperature_in_celcius_=_");
  13 . setBounds (15,110,300,35);
  14=new Label ("specific_volume_m^3=Kg___sat.Liq(
     \hookrightarrow Vr)*1000 = ");
  14. setBounds (15,160,300,35);
  15=new Label ("Specific_volume_m^3=kg____Sat.Vap
      \hookrightarrow (Vg) = ");
  15 . setBounds (15,210,300,35);
  16=new Label ("Int. Energy_KJ/Kg____Sat. Liq (Ur)_=
     \hookrightarrow \square");
  16 . setBounds (15, 260, 300, 35);
  17=new Label ("Int. Energy_KJ/Kg____Sat.vap(Ug)_=
     \hookrightarrow \cup");
  17. setBounds (15,310,300,35);
  18=new Label ("Enthalaphy_KJ/Kg____Sat.Liq(hr)_=
     \hookrightarrow ");
  18 . setBounds (15,360,300,35);
  19=new Label ("Enthalphy_KJ/Kg____Sat.Vap(hg)_=
     \hookrightarrow \mathbb{L}");
  19 . setBounds (15,410,300,35);
  110=new Label ("Entrophy_KJ=Kg_Kelvin___Sat.Liq
      \hookrightarrow (sr) = ");
  110 . setBounds (15,460,300,35);
  111=new Label("Entrophy_KJ=Kg_Kelvin___Sat.Vap(
      \hookrightarrow sg) = ");
  111 . setBounds (15,510,300,35);
```

```
add(13); tf2.setText(str[0]); add(tf2);
add(14);tf3.setText(str[1]); add(tf3);
add(15); tf4.setText(str[2]); add(tf4);
add(16);tf5.setText(str[3]); add(tf5);
add(17); tf6.setText(str[4]); add(tf6);
add(18); tf7.setText(str[5]); add(tf7);
add(19); tf8.setText(str[6]); add(tf8);
add(110); tf9.setText(str[7]); add(tf9);
add(111); tf10.setText(str[8]); add(tf10);
}

public static void main(String args[])
{
    new Temperaturepressval();
}
```