日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日
Date of Application:

2004年10月 8日

出 願 番 号

Application Number: 特願2004—295983

パリ条約による外国への出願 に用いる優先権の主張の基礎 となる出願の国コードと出願 番号

JP2004-295983

The country code and number of your priority application, to be used for filing abroad under the Paris Convention, is

出 願 人 ソニー株式会社

Applicant(s):

2005年11月 2日

特許庁長官 Commissioner, Japan Patent Office.

BEST AVAILABLE COPY

【百炔白】 1丁訂 脒 【整理番号】 0490583603 平成16年10月 8日 【提出日】 特許庁長官殿 【あて先】 【国際特許分類】 GOIC 19/56G01P 09/04 H01L 41/107 【発明者】 【住所又は居所】 東京都品川区北品川6丁目7番35号 ソニー株式会社内 【氏名】 栗原 一夫 【特許出願人】 【識別番号】 000002185 【氏名又は名称】 ソニー株式会社 【代理人】 【識別番号】 100072350 【弁理士】 【氏名又は名称】 飯阪 泰雄 【電話番号】 045 (212) 5517 【手数料の表示】 【予納台帳番号】 043041 【納付金額】 16,000円 【提出物件の目録】 特許請求の範囲 1 【物件名】 【物件名】 明細書 【物件名】 図面 1 【物件名】 要約書

【包括委任状番号】 0011328

【請求項1】

振動ジャイロの2つの検出片の出力信号の差に応じた信号を出力する差動増幅回路と、 前記差動増幅回路の出力信号を同期検波する同期検波回路と、

前記振動ジャイロに供給される駆動信号に対して位相がシフトされた信号を前記同期検 波用のタイミング信号として前記同期検波回路に供給する移相回路と、を備えた振動ジャ イロ用回路であって、

前記駆動信号と前記タイミング信号との位相差は、前記振動ジャイロを駆動させて回転 角速度を加えた状態で予め求められた、前記差動増幅回路の出力信号の検波感度の位相差 特性に基づいて設定された

ことを特徴とする振動ジャイロ用回路。

【請求項2】

前記移相回路は、抵抗とコンデンサとからなる積分回路を含み、前記積分回路は、前記駆動信号の入力を受け、前記駆動信号を前記抵抗と前記コンデンサの時定数で決められる前記位相差だけ遅延させる

ことを特徴とする請求項1に記載の振動ジャイロ用回路。

【請求項3】

2つの検出片を有する振動ジャイロと、

前記検出片の出力信号の差に応じた信号を出力する差動増幅回路と、

前記差動増幅回路の出力信号を同期検波する同期検波回路と、

前記振動ジャイロに供給される駆動信号に対して位相がシフトされた信号を前記同期検 波用のタイミング信号として前記同期検波回路に供給する移相回路と、を備えた振動ジャ イロユニットであって、

前記駆動信号と前記タイミング信号との位相差は、前記振動ジャイロを駆動させて回転 角速度を加えた状態で予め求められた、前記差動増幅回路の出力信号の検波感度の位相差 特性に基づいて設定された

ことを特徴とする振動ジャイロユニット。

【請求項4】

前記移相回路は、抵抗とコンデンサとからなる積分回路を含み、前記積分回路は、前記 駆動信号の入力を受け、前記駆動信号を前記抵抗と前記コンデンサの時定数で決められる 前記位相差だけ遅延させる

ことを特徴とする請求項3に記載の振動ジャイロユニット。

【請求項5】

振動ジャイロの2つの検出片の出力信号の差に応じた信号を、前記振動ジャイロに供給される駆動信号に対して位相がシフトされたタイミング信号で同期検波することで前記振動ジャイロに加えられた回転角速度を検出する振動ジャイロの出力検出方法であって、

前記駆動信号と前記タイミング信号との位相差を、前記振動ジャイロを駆動させて回転 角速度を加えた状態で予め求められた、前記検出片の出力信号の差に応じた信号の検波感 度の位相差特性に基づいて設定し、この設定された位相差の分前記駆動信号に対して位相 がシフトされた前記タイミング信号で前記同期検波を行う

ことを特徴とする振動ジャイロの出力検出方法。

【請求項6】

前記位相差を、抵抗とコンデンサとから構成され前記駆動信号の入力を受けて前記駆動 信号を遅延させる積分回路の前記抵抗の抵抗値の調整により設定する

ことを特徴とする請求項5に記載の振動ジャイロの出力検出方法。

【請求項7】

前記位相差を、抵抗とコンデンサとから構成され前記駆動信号の入力を受けて前記駆動 信号を遅延させる積分回路の前記コンデンサの容量の調整により設定する

ことを特徴とする請求項5に記載の振動ジャイロの出力検出方法。

【発明の名称】振動ジャイロ用回路、振動ジャイロユニット、振動ジャイロの出力検出方法

【技術分野】

[0001]

本発明は、振動している振動子に回転角速度が加わると生じるコリオリカに応じた信号を検出することにより、その加えられた回転角速度を検出する振動ジャイロ用回路、振動ジャイロユニット、振動ジャイロの出力検出方法に関し、詳しくは、上記コリオリカに応じた信号の検波タイミングを振動ジャイロの特性に合わせて最適に設定した振動ジャイロ用回路、振動ジャイロユニット、振動ジャイロの出力検出方法に関する。

【背景技術】

[00002]

従来より、回転角速度を検出するセンサとしてジャイロが知られている。ジャイロの中でも特に振動子を用いているものは振動ジャイロと呼ばれ、ビデオカメラやデジタルスチルカメラの手振れ検知、カーナビゲーションシステムにおける方向検知、自動車などの移動体の姿勢制御といった様々な用途に広く用いられている。

[00003]

振動ジャイロとしては、四角柱状や三角柱状の振動子に圧電素子を貼り付けたものや、 圧電セラミックスなどからなる円柱状の振動子に電極を印刷したものが実用化されている 。例えば、特許文献 1 参照。

【特許文献1】特開2000-337883号公報

[0004]

図13は、従来の振動ジャイロユニットの構成ブロック図の一例を示す。振動子32と、これに貼り付けられた圧電素子33a、33bとからなる振動ジャイロ31は、振動ジャイロ用回路に接続されている。振動ジャイロ用回路は、加算回路1と、発振回路2と、差動増幅回路4と、同期検波回路5と、移相回路13と、直流増幅回路6とを備える。振動ジャイロ31と加算回路1と発振回路2は、振動ジャイロ31の屈曲振動の共振周波数で振動ジャイロ31を自励発振駆動させる自励発振回路7aを構成する。

[0005]

発振回路2の出力信号は、振動子32に入力され、さらに振動子32表面の導電めっきを介して圧電素子33a、33bに加わる。圧電素子33bの出力信号と、圧電素子33aの出力信号は、加算回路1に入力され加算される。加算回路1の出力信号は、発振回路2と移相回路13に入力される。

[0006]

また、圧電素子33bの出力信号と、圧電素子33aの出力信号は、差動増幅回路4にも入力される。差動増幅回路4は、圧電素子33bの出力信号と、圧電素子33aの出力信号との差に応じた信号を出力し、その信号は同期検波回路5にて、移相回路13が出力するタイミング信号に同期して検波される。直流増幅回路6は、同期検波回路5で同期検波された直流信号を増幅する。

[0007]

振動ジャイロ31は自励発振回路7aによって駆動され、長手方向に直交する方向に屈曲振動する。振動ジャイロ31の長手方向の中心軸のまわりに回転角速度が加わっていない状態では、圧電素子33bと圧電素子33aの歪みは全く同じように生じるので圧電素子33bからの出力信号と、圧電素子33aからの出力信号は振幅、位相共に同一であり、したがって差動増幅回路4の出力は0である。

[0008]

振動ジャイロ31が上述のように屈曲振動している状態で、振動ジャイロ31の長手方向の中心軸のまわりに回転角速度が加わった場合には、長手方向及び屈曲振動方向に対して直角な方向にコリオリ力が発生し、そのコリオリ力によって屈曲振動の向きが変わり、2つの検出片(圧電素子)33a、33b間に出力差が生じ、差動増幅回路4からはその

左に見りした山川店りが行りれる。

[0009]

回転角速度が加わったときの圧電素子33bの出力信号は、振動ジャイロ31に供給される駆動信号に応じた出力信号と、コリオリ力に応じた出力信号とが重畳された信号である。同様に、回転角速度が加わったときの圧電素子33aの出力信号は、振動ジャイロ31に供給される駆動信号に応じた出力信号と、コリオリカに応じた出力信号とが重畳された信号である。

[0010]

上記駆動信号に応じた圧電素子33bの出力信号と圧電素子33aの出力信号とは、同相で同じ大きさの信号であるため差動増幅回路4で相殺される。これに対して、コリオリカに応じた圧電素子33bの出力信号と圧電素子33aの出力信号とは、逆相で同じ大きさの信号である。したがって、差動増幅回路4の出力信号は、圧電素子33bからの出力信号と圧電素子33aからの出力信号との差に比例となり、差動増幅回路4からは回転角速度の大きさに応じた信号のみが出力される。なお、振動ジャイロ31を駆動するための駆動信号は、加算回路1の出力信号と同相であり、振幅は比例関係にある。

$[0\ 0\ 1\ 1]$

コリオリカは駆動信号による屈曲振動の方向に対して直交する方向に発生するため、コリオリカに応じて差動増幅回路4から出力される信号は、原理上は、駆動信号と相関がある(同相の)加算回路1の出力信号の振幅最大点で0となり、加算回路1の出力信号のゼロクロス点で最大となり、加算回路1の出力信号と、差動増幅回路4の出力信号との位相差は90°となる。したがって、同期検波回路5は、加算回路1の出力信号との間に90°の位相差を持つ移相回路13の出力信号のタイミングで差動増幅回路4の出力信号を検波すればよい。

【発明の開示】

【発明が解決しようとする課題】

$[0\ 0\ 1\ 2]$

従来においては、差動増幅回路4の出力信号は、加算回路1の出力信号に対して90°の位相差を持つことを前提とした信号処理を行っている。しかし、振動ジャイロ31の構造、材質、寸法などに起因する要因によって、加算回路1の出力信号と、差動増幅回路4の出力信号との位相差は必ずしも90°になるとは限らない。したがって、上記位相差が90°ではない特性を有する振動ジャイロに対して、加算回路1の出力信号から位相が90°シフトされた移相回路13のタイミング信号で、差動増幅回路4の出力信号を同期検波してしまうと、差動増幅回路4の出力信号の検波感度、すなわち回転角速度の検出感度が最大と成り得ず、またノイズは振動ジャイロの構造、材質、寸法などによってあまり変わらないので、回転角速度の検出に際してのS/N比が悪化することになる。

$[0\ 0\ 1\ 3\]$

本発明は上述の問題に鑑みてなされ、その目的とするところは、高感度に回転角速度を 検出できる振動ジャイロ用回路、振動ジャイロユニット、振動ジャイロの出力検出方法を 提供することにある。

【課題を解決するための手段】

$[0\ 0\ 1\ 4]$

本発明は前記課題を解決するため以下の構成を採用した。

すなわち、本発明の振動ジャイロ用回路は、振動ジャイロの2つの検出片の出力信号の差に応じた信号を出力する差動増幅回路と、差動増幅回路の出力信号を同期検波する同期検波回路と、振動ジャイロに供給される駆動信号に対して位相がシフトされた信号を同期検波用のタイミング信号として同期検波回路に供給する移相回路とを備え、駆動信号とタイミング信号との位相差は、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、差動増幅回路の出力信号の検波感度の位相差特性に基づいて設定された。

[0015]

また、本発明の振動ジャイロユニットは、2つの検出片を有する振動ジャイロと、それ

つ快山口の山川后つい左に心した后つで山川りる左野垣畑凹町と、左野垣畑凹町の山川店号を同期検波する同期検波回路と、振動ジャイロに供給される駆動信号に対して位相がシフトされた信号を同期検波用のタイミング信号として同期検波回路に供給する移相回路とを備え、駆動信号とタイミング信号との位相差は、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、差動増幅回路の出力信号の検波感度の位相差特性に基づいて設定された。

[0016]

ここで、振動ジャイロの2つの検出片の出力信号の差は、振動ジャイロに回転角速度が加わっていない状態では0であり、回転角速度が加えられるとその回転角速度に応じた大きさとなる。したがって、差動増幅回路は、振動ジャイロに回転角速度が加わっていない状態では出力が0であり、回転角速度が加えられるとその回転角速度に応じた大きさの信号を出力する。差動増幅回路の出力信号は交流信号であり、同期検波回路は、その差動増幅回路の出力信号を同期検波して直流に整流する。移相回路は、その同期検波のためのタイミング信号を作り、そのタイミング信号に同期して差動増幅回路の出力信号は整流される。

[0017]

タイミング信号は、振動ジャイロに供給される駆動信号に対して位相がシフトされており、その位相のシフト量(駆動信号とタイミング信号との位相差)は、振動ジャイロが駆動されて回転角速度が加えられた状態で予め求められた、差動増幅回路の出力信号の検波感度とは、差動増幅回路の出力信号の整流後の直流信号の大きさであり、振動ジャイロに加わった回転角速度の検出感度に対応する。すなわち、本発明では、上記位相差を様々に変えた場合のその位相差と回転角速度の検出感度との関係を予め求め、これに基づいて、高い感度が得られる位相差を設定値として設定する。従来のように、上記位相差を90°に固定するのではなく、振動ジャイロの特性に合わせて最適な位相差の設定を行うことができ、回転角速度の高感度の検出を実現する。

[0018]

また、移相回路としては、入力される駆動信号を、抵抗とコンデンサの時定数で決められる位相差だけ遅延させる積分回路を含む構成とすれば、抵抗の抵抗値の調整(抵抗の段数を変えることによる抵抗値の調整も含む)またはコンデンサの容量の調整(コンデンサの段数を変えることによる容量の調整も含む)により簡単に所望の位相差に設定でき、また回路構成も簡単であり、安価に上述した機能を有する移相回路を実現できる。

$[0\ 0\ 1\ 9\]$

また、本発明の振動ジャイロの出力検出方法は、振動ジャイロの2つの検出片の出力信号の差に応じた信号を、前記振動ジャイロに供給される駆動信号に対して位相がシフトされたタイミング信号で同期検波することで前記振動ジャイロに加えられた回転角速度を検出する振動ジャイロの出力検出方法であって、

振動ジャイロに供給される駆動信号と、この駆動信号に対して位相がシフトされたタイミング信号との位相差を、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、振動ジャイロの2つの検出片の出力信号の差に応じた信号の検波感度の位相差特性に基づいて設定し、この設定された位相差の分駆動信号に対して位相がシフトされたタイミング信号で、2つの検出片の出力信号の差に応じた信号の同期検波を行う。

[0020]

ここで、振動ジャイロの2つの検出片の出力信号の差は、振動ジャイロに回転角速度が加わっていない状態では0であり、回転角速度が加えられるとその回転角速度に応じた大きさとなる。したがって、それら検出片の出力信号の差に応じた信号は、振動ジャイロに回転角速度が加わっていない状態では0であり、回転角速度が加えられるとその回転角速度に応じた大きさの信号となる。この検出片の出力信号の差に応じた信号は交流信号であり、これは、振動ジャイロに供給される駆動信号に対して位相がシフトされたタイミング信号に同期して検波されて直流に整流される。

100211

そのタイミング信号の位相シフト量(駆動信号とタイミング信号との位相差)は、振動ジャイロが駆動されて回転角速度が加えられた状態で予め求められた、検出片の出力信号の差に応じた信号の検波感度の位相差特性に基づいて設定されている。検出片の出力信号の差に応じた信号の整流後の直流信号の大きさであり、振動ジャイロに加わった回転角速度の検出感度に対応する。すなわち、本発明では、上記位相差を様々に変えた場合のその位相差と回転角速度の検出感度との関係を予め求め、これに基づいて、高い感度が得られる位相差を設定値として設定する。従来のように、上記位相差を90°に固定するのではなく、振動ジャイロの特性に合わせて最適な位相差の設定を行うことができ、回転角速度の高感度の検出を実現する。

【発明の効果】

[0022]

本発明の振動ジャイロ用回路によれば、駆動信号に対する同期検波用のタイミング信号の位相差は、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、差動増幅回路の出力信号の検波感度の位相差特性に基づいて設定されるので、振動ジャイロの種類や構造によって高い感度が得られる位相差が異なっていても、その高い感度を得られる位相差に設定でき、この結果、回転角速度の検出が高感度で行え、対雑音比(S/N比)を向上できる。

[0023]

本発明の振動ジャイロユニットによれば、駆動信号に対する同期検波用のタイミング信号の位相差は、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、差動増幅回路の出力信号の検波感度の位相差特性に基づいて設定されるので、振動ジャイロの種類や構造によって高い感度が得られる位相差が異なっていても、その高い感度を得られる位相差に設定でき、この結果、回転角速度の検出が高感度で行え、対雑音比(S/N比)を向上できる。また、一般に振動ジャイロが小型になると感度は低下するので、回転角速度を高感度で検出できるということは、振動ジャイロの小型化を図るうえで有利となる。

[0024]

本発明の振動ジャイロの出力検出方法によれば、駆動信号に対する同期検波用のタイミング信号の位相差は、振動ジャイロを駆動させて回転角速度を加えた状態で予め求められた、振動ジャイロの2つの検出片の出力信号の差に応じた信号の検波感度の位相差特性に基づいて設定されるので、振動ジャイロの種類や構造によって高い感度が得られる位相差が異なっていても、その高い感度を得られる位相差に設定でき、この結果、回転角速度の検出が高感度で行え、対雑音比(S/N比)を向上できる。

【発明を実施するための最良の形態】

[0025]

以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。

[0026]

[第1の実施形態]

図2は第1の実施形態に係る振動ジャイロ31の斜視図であり、図3はその断面図である。振動ジャイロ31は、表面に導電体がめっきされた四角柱状の振動子32と、この振動子32の第1の側面32aに貼り付けられた2つの圧電素子33a、33bとから構成される。圧電素子33a、33bは、振動ジャイロ31に駆動信号を供給するための駆動片と、振動ジャイロ31に加わった回転角速度に応じた信号を検出するための検出片とを兼ねている。

[0027]

振動子32は、例えば、アモルファスカーボン、エリンバ、Fe-Ni合金、石英、ガラス、水晶、セラミックスなどの機械的屈曲振動を生じる材料からなる。2つの圧電素子33

a、330は、てれてれ、配割」320回し程でで用りるEM内性がで生し、配割」320 長手方向に沿って延在し、両者の間に間隙を形成して互いに向き合っている。圧電素子33aと圧電素子33bとは、振動子32の第1の側面32aを短手方向に二分する中心線に関して対称である。

[0028]

振動ジャイロ31は振動ジャイロ用回路に接続され、この回路と振動ジャイロ31とから振動ジャイロユニットが構成される。振動ジャイロ用回路は、図1に示すように、加算回路1と、発振回路2と、差動増幅回路4と、同期検波回路5と、移相回路3と、直流増幅回路6とを備える。振動ジャイロ31と加算回路1と発振回路2は、振動ジャイロ31の屈曲振動の共振周波数で振動ジャイロ31を自励発振駆動させる自励発振回路7aを構成する。振動ジャイロ用回路は、例えば1つの半導体チップにIC(integrated circuit)化されてなる。その半導体チップは、ベアチップあるいはバッケージングされて回路基板に実装され、この回路基板には振動ジャイロ31も搭載され、振動ジャイロユニットを構成する。

[0029]

発振回路2の出力信号Vgoは、振動子32の第1の側面32aと対向する第2の側面32bに入力され、さらに振動子32表面の導電めっきを介して第1の側面32aに貼り付けられた圧電素子33a、33bに加わる。圧電素子33bの出力信号Vglと、圧電素子33aの出力信号Vgrは、加算回路1に入力され加算される。加算回路1の出力信号Vsaは発振回路2で振幅と位相が調整され、駆動信号として振動ジャイロ31に供給される。また、加算回路1の出力信号Vsaは移相回路3にも入力される。

[0030]

圧電素子33bの出力信号Vglと、圧電素子33aの出力信号Vgrは、差動増幅回路4にも入力される。差動増幅回路4は、VglとVgrとの差に応じた信号Vdaを出力し、その信号Vdaは同期検波回路5にて、移相回路3が出力するタイミング信号Vckに同期して検波される。直流増幅回路6は、同期検波回路5で同期検波された直流信号Vsdを増幅して信号Sを出力する。

[0031]

図4は、上述した各信号波形のタイムチャート図である。左側は振動ジャイロ31に回転角速度が加わっていないときの各信号波形を示し、右側は振動ジャイロ31の長手方向の中心軸C(図1参照)のまわりに回転角速度が加わったときの各信号波形を示す。

[0032]

振動ジャイロ31は自励発振回路7aによって駆動され、第1、第2の側面32a、32b、および長手方向に直交する方向(図1においてy方向)に屈曲振動する。振動ジャイロ31の長手方向の中心軸Cのまわりに回転角速度が加わっていない状態では、圧電素子33bと圧電素子33aの歪みは全く同じように生じるので圧電素子33bからの出力信号Vglと圧電素子33aからの出力信号Vgrは振幅、位相共に同一であり、したがって差動増幅回路4の出力は0である。

[0033]

振動ジャイロ3 1 が y 方向に屈曲振動している状態で、振動ジャイロ3 1 の長手方向の中心軸 C のまわりに回転角速度が加わった場合には、長手方向及び y 方向の両方向に対して直角な x 方向にコリオリ力が発生し、そのコリオリ力によって屈曲振動の向きが変わり、2 つの検出片(圧電素子)33a、33b間に出力差が生じる。

[0034]

すなわち、圧電素子33bからの出力信号 V_{g} |と、圧電素子33aからの出力信号 V_{gr} との間に差($V_{gl}-V_{gr}$)が生じ、差動増幅回路4からはその差($V_{gl}-V_{gr}$)に比例した出力信号 V_{da} が得られる。

[0035]

回転角速度が加わったときの圧電素子33bの出力信号Vglは、振動ジャイロ31に供給される駆動信号に応じた出力信号(図4において破線で示す)と、コリオリ力に応じた

山川后ワVい「四年において1点頭隊でホッノとか里重とれた后ワである。四様に、四戦角速度が加わったときの圧電素子33aの出力信号 V_{gr} は、振動ジャイロ31に供給される駆動信号に応じた出力信号(図4において破線で示す)と、コリオリカに応じた出力信号 V_{cr} (図4において1点鎖線で示す)とが重畳された信号である。

[0036]

上記駆動信号に応じた圧電素子33bの出力信号と圧電素子33aの出力信号とは、同相で同じ大きさの信号であるため差動増幅回路4で相殺される。これに対して、コリオリカに応じた圧電素子33bの出力信号Vεlと圧電素子33aの出力信号Vεlとは、逆相で同じ大きさの信号である。したがって、差動増幅回路4の出力信号Vdaは(VεlーVεr)に比例となり、差動増幅回路4からは回転角速度の大きさに応じた信号のみが出力される

[0037]

また、コリオリカに応じた圧電素子33bの出力信号VcIと圧電素子33aの出力信号 VcIとは、逆相で同じ大きさの信号であるため、加算回路1では相殺される。よって、発 生するコリオリカには関係なく、振動ジャイロ31には一定の駆動信号が供給される。な お、駆動信号は、加算回路1の出力信号Vsaと同相であり、振幅は比例関係にある。

[0038]

コリオリ力に応じて差動増幅回路4から出力される信号Vdaは、原理上は、振動ジャイロ31を駆動するための駆動信号、すなわちこれと同相の加算回路1の出力信号Vsaの振幅最大点で0となり、Vsaのゼロクロス点で最大となり、加算回路1の出力信号Vsaと、差動増幅回路4の出力信号Vdaとの位相差は90°となる。

[0039]

しかし、振動ジャイロ31の構造、材質、寸法などに起因する要因によって、加算回路 1 の出力信号 V saと、差動増幅回路 4 の出力信号 V daとの位相差は必ずしも 9 0 になるとは限らない。図 4 の例では、加算回路 1 の出力信号 V saと差動増幅回路 4 の出力信号 V daとの位相差 θ psは 9 0 より大きくなっている。

[0040]

そこで、本実施形態では、タイミング信号Vckの、加算回路1の出力信号Vsaからの位相シフト量を90°に固定せずに、実際にVsaとVdaとの間で生じている位相差に応じて設定する。そして、その設定された位相差 θ psの分だけ加算回路1の出力信号Vsaから位相シフトされたタイミング信号Vckのタイミングで、差動増幅回路4の出力信号Vdaの同期検波を行う。したがって、移相回路3は、加算回路1の出力信号Vsaから位相を θ psだけシフトした方形波状のタイミング信号Vckを作り、同期検波回路5に同期検波用のタイミング信号Vckを作り、同期検波回路5に同期検波用のタイミング信号VCkを作り、同期検波回路5に同期検波用のタイミング信号VCkを作り、同期検波回路5に同期検波用のタイミング信号VCkを作り、同期検波回路VCkを作り、

$[0 \ 0 \ 4 \ 1]$

[0042]

同期検波回路5の出力信号Vsdは、振動ジャイロ31に加わった回転角速度の方向に応じた極性を有し、その回転角速度の大きさに比例する。そして、直流増幅回路6はその信号Vsdを所定の大きさまで直流増幅して信号Sを出力する。

[0043]

図5は、差動増幅回路4の出力信号Vdaの検波感度、すなわち振動ジャイロ31に加えられた回転角速度の検出感度の位相差特性の一例を示す。縦軸は、直流増幅回路6の出力信号Sの大きさである。または、同期検波回路5の出力信号Vsdの大きさとしてもよい。横軸は、加算回路1の出力信号Vsaに対するタイミング信号Vckの位相シフト量 θ を表す

[0044]

図5に示される特性は、アモルファスカーボンからなり図2に示すような長さ $7.5\,\mathrm{m}$ m、幅 $0.58\,\mathrm{mm}$ 、厚さ $0.6\,\mathrm{mm}$ の寸法の振動子 $32\,\mathrm{c}$ 、PZTからなる圧電素子 $33\,\mathrm{a}$ 、 $33\,\mathrm{b}$ とを用いた振動ジャイロ $31\,\mathrm{e}$ 駆動させて上記 y 方向に屈曲振動させ、その状態で長手方向の中心軸 C のまわりに回転角速度を加え、その駆動条件、加えた回転角速度の方向及び大きさを同じ条件とした状態で、上記 y イミング信号 V ck の位相シフト量 $\mathrm{\theta}$ を様々に変えて設定したときの、回転角速度を検出した結果である。

[0045]

図5から明らかなように、加算回路1の出力信号Vsaに対するタイミング信号Vckの位相シフト量 θ が110°~150°のときに、高い感度(最大感度を含む)が得られ、かつその高い感度で安定している。したがって、図5の特性を有する振動ジャイロ31については、Vsaに対するタイミング信号Vckの位相シフト量の設定値 θ psを110°~150°の範囲に収まるようにすれば、そのタイミング信号Vckに同期して検波される差動増幅回路4の出力信号Vdaの検波感度を高めることができ、結果として振動ジャイロ31に加わった回転角速度の検出感度を高めることができる。

[0046]

もし、図5の特性を有するものに対して、従来のように90 に固定した位相差 θ psのタイミング信号で差動増幅回路4の出力信号Vdaの同期検波を行ってしまうと、信号Vdaの全波整流及び積分後の直流値が、図4のタイミングで同期検波を行った場合よりも小さくなり、この結果、図5のグラフからもわかるように信号Sの値すなわち回転角速度の検出感度が小さくなってしまう。この場合には、振動ジャイロに加わった回転角速度が小さいとノイズにまぎれて認識できなくなるおそれがある。また、コリオリカは振動ジャイロの質量に比例するため、特に小型化された振動ジャイロではコリオリカに応じた信号である差動増幅回路4の出力信号Vdaが小さく、よってその信号Vdaを感度良く検波することは重要である。

[0047]

なお、図5に示す特性は一例であって、振動ジャイロの構造、材質、寸法などが変われば、図5とは異なった特性となる。もちろん、振動ジャイロによっては、タイミング信号 V_{ck} の駆動信号に対する位相差が原理どおりに 9.0 あるいはこの付近のときに最大感度が得られるものもある。この場合においても、上述のように予め求めた図 5 のような感度 5 の位相差特性に基づいて位相差 θ_{ps} は 9.0 に設定されることになる。

[0048]

なお、図4に示す例では、加算回路1の出力信号Vsaに対するタイミング信号Vckの位相差 θ psを、加算回路1の出力信号Vsaに対する差動増幅回路4の出力信号Vsdの位相差に一致させて設定しているが、必ずしも一致させる必要はなく、図5に示した特性図からもわかるように、最大感度でフラットになっている位相差範囲では位相差の違いによる感度の違いはない、あるいは実用上無視できるほど小さいため、設定位相差 θ psはその位相差範囲内に設定すればよい。

[0049]

図6は、移相回路3の一例を示す回路図である。この移相回路3は、入力される加算回路1の出力信号Vsaに位相遅れを生じさせる遅延回路として、抵抗63とコンデンサ64とから構成される積分回路を有している。抵抗63の一端は加算回路1の出力側に接続され、他端はオペアンプ65の正入力端子に接続されている。コンデンサ64は、一端が抵抗63の他端に接続され、他端が接地されている。抵抗63の一端とオペアンプ65の出力端子との間には、直列接続された2つの抵抗61、62が接続されている。オペアンプ65の出力端子は、抵抗61と抵抗62との間に接続されている。オペアンプ65の出力端子はコンバレータ66の入力端子に接続されている。

[0050]

加算回路1の出力信号Vsaは、抵抗63とコンデンサ64とから構成される積分回路を

四った区、4、1、2、0000世八八州」に八八〇和3。4、1000世八八州」の電位は正入力端子の電位となるので、抵抗 61の両端電圧は上記積分回路の出力と、加算回路 100出力 V s12との差分となる。この抵抗 61の両端電圧により流れる電流は抵抗 62にそのまま流れ、オペアンプ 65の出力電圧が決定される。このオペアンプ 65の出力がコンバレータ 66を通ることで図 41に示すような移相回路 30の出力信号(タイミング信号) V c1k2を得ている。

$[0\ 0\ 5\ 1]$

ここで、抵抗63の抵抗値を R_{PS} とし、コンデンサ64の容量を C_{PS} とし、抵抗61の抵抗値と抵抗62の抵抗値とは等しいとし、加算回路1の出力信号 V_{S} 4の周波数を f_{QS} 6とすると、この移相回路3の入出力間の位相差、すなわち加算回路1の出力信号 V_{S} 8に対するタイミング信号 V_{C} 8の位相差 θ_{QS} 8は下記(1)式で決まる。

 $\theta ps = 2 \cdot tan^{-1} (2 \cdot \pi \cdot Rps \cdot Cps \cdot fo) \cdot \cdot \cdot \cdot (1)$

[0052]

すなわち、時定数(Rps・Cps)で位相遅れ量 θ psが決まるので、抵抗63の抵抗値Rpsあるいはコンデンサ64の容量Cpsを調整(抵抗63とコンデンサ64の段数の調整も含む)することで、所望の位相差 θ psを容易に設定できる。

[0053]

移相回路3としては、遅延回路(積分回路)による位相の遅れを利用したものに限らず、進み回路(微分回路)による位相の進みを利用したものを用いてもよい。

[0054]

近年、振動ジャイロユニットを搭載する機器の小型化及び低価格化に伴って、振動ジャイロユニットにも小型化及び低価格化が求められてきており、振動ジャイロ用回路は1つの半導体チップにI C 化されている。その回路の製造に際しては、先ず、I C 化する前の段階で、図5 に示すような位相差 θ と感度S との関係を求め、これに基づいて、上記抵抗6 3 の抵抗値R ps あるいはコンデンサ6 4 の容量C ps を調整して、高い感度を得ることができる位相差の設定値 θ ps を決める。そして、その設定値 θ ps でI C 化し、そのI C の出力をオシロスコープで観察し、正しい設定となっているか確認する。

[0055]

この確認で、所望の感度が得られていない場合には、 θ psを再設定する。例えば、抵抗 6 3 は多数の抵抗がヒューズによって接続された構成を有し、レーザや高電圧を加えるな との手段によって任意の箇所のヒューズを切断することで抵抗 6 3 の抵抗値 Rps を調整して、 θ ps を調整する。

[0056]

なお、設定値 θ psを決めるにあたっては、図5に示すような特性図を複数個の振動ジャイロについて求め、これら複数の特性図の統計的データから決める。あるいは、1個の振動ジャイロの特性図から決めてもよい。そして、設定値 θ psは、構造、寸法、材質、製造条件などが同じ、同規格の振動ジャイロについて共通して適用される。

[0057]

[第2の実施形態]

次に、本発明の第2の実施形態について説明する。なお、上記第1の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。

[0058]

第2の実施形態に係る振動ジャイロ41の斜視図を図8に、断面図を図9に示す。振動ジャイロ41は、断面正三角形の三角柱状の振動子42と、この振動子42の3つの側面にそれぞれ貼り付けられた3つの圧電素子43a、43b、43cとから構成される。圧電素子43cは振動ジャイロ41に駆動信号を供給するための駆動片として機能し、圧電素子43a、43bは振動ジャイロ41に加わった回転角速度に応じた信号を検出するための検出片として機能する。

[0059]

振動子42は、例えば、アモルファスカーボン、エリンパ、Fe-Ni合金、石英、ガラス

、小田、 てノミソノへなどの域域の四四級割で工じる竹村かつなる。 3 つの圧電系 1 4 3 a 4 3 c は、何れも同じ形状(直方体状)、同じ寸法を有し、振動子 4 2 の長手方向の中心軸に関して対称に配置されている。

[0060]

振動ジャイロ41は、図7に示す振動ジャイロ用回路に接続され、この回路と振動ジャイロ41とから第2の実施形態に係る振動ジャイロユニットが構成される。振動ジャイロ用回路は、第1の実施形態と同様に、加算回路1と、発振回路2と、差動増幅回路4と、同期検波回路5と、移相回路3と、直流増幅回路6とを備える。振動ジャイロ41と加算回路1と発振回路2は、振動ジャイロ41の屈曲振動の共振周波数で振動ジャイロ41を自励発振駆動させる自励発振回路7bを構成する。

[0061]

発振回路2の出力信号Vgoは、駆動片である圧電素子43cに加えられる。検出片である圧電素子43bの出力信号Vglと圧電素子43aの出力信号Vgrは、加算回路1に入力されが算される。加算回路1の出力信号Vsaは、発振回路2と移相回路3に入力される。

[0062]

また、圧電素子43bの出力信号Vglと、圧電素子43aの出力信号Vgrは、差動増幅回路4にも入力される。差動増幅回路4は、VglとVgrとの差に応じた信号Vdaを出力し、その信号Vdaは同期検波回路5にて、移相回路3が出力するタイミング信号Vckに同期して検波される。直流増幅回路6は、同期検波回路5で同期検波された直流信号Vsdを増幅して信号Sを出力する。

[0063]

振動ジャイロ41は自励発振回路7bによって駆動され、圧電素子43cが貼り付けられた面、および長手方向に直交する方向(図7においてy方向)に屈曲振動する。振動ジャイロ41の長手方向の中心軸Cのまわりに回転角速度が加わっていない状態では、圧電素子43bと圧電素子43aの歪みは全く同じように生じるので圧電素子43bからの出力信号Vglと圧電素子43aからの出力信号Vgrは振幅、位相共に同一であり、したがって差動増幅回路4の出力は0である。

[0064]

振動ジャイロ41がy方向に屈曲振動している状態で、振動ジャイロ41の長手方向の中心軸Cのまわりに回転角速度が加わった場合には、長手方向及びy方向の両方向に対して直角なx方向にコリオリ力が発生し、そのコリオリ力によって屈曲振動の向きが変わり、2つの検出片(圧電素子)43a、43b間に出力差が生じる。

[0065]

すなわち、圧電素子43bからの出力信号 V_{gl} と、圧電素子43aからの出力信号 V_{gr} との間に差(V_{gl} - V_{gr})が生じ、差動増幅回路4からはその差(V_{gl} - V_{gr})に比例した出力信号 V_{da} が得られる。

[0066]

回転角速度が加わったときの圧電素子425の出力信号Vglは、振動ジャイロ41に供給される駆動信号に応じた出力信号と、コリオリ力に応じた出力信号Vclとが重畳された信号である。同様に、回転角速度が加わったときの圧電素子43aの出力信号Vgrは、振動ジャイロ41に供給される駆動信号に応じた出力信号と、コリオリ力に応じた出力信号Vcrとが重畳された信号である。

[0067]

上記駆動信号に応じた圧電素子43bの出力信号と圧電素子43aの出力信号とは、同相で同じ大きさの信号であるため差動増幅回路4で相殺される。これに対して、コリオリカに応じた圧電素子43bの出力信号Vclと圧電素子43aの出力信号Vcrとは、逆相で同じ大きさの信号である。したがって、差動増幅回路4の出力信号Vdaは(Vcl-Vcr)に比例となり、差動増幅回路4からは回転角速度の大きさに応じた信号のみが出力される

るた、コッタックに心した圧電系」ものりの山内につくいて圧電系」ものない山内につ Vcrとは、逆相で同じ大きさの信号であるため、加算回路1では相殺される。よって、発 生するコリオリ力には関係なく、振動ジャイロ41には一定の駆動信号が供給される。な お、駆動信号は、加算回路1の出力信号Vsaと同相であり、振幅は比例関係にある。

[0069]

そして、第2の実施形態においても、上記第1の実施形態と同様、タイミング信号Vckの、加算回路1の出力信号Vsaからの位相シフト量を、実際にVsaとVdaとの間で生じている位相差に応じて設定する。そして、その設定された位相差 θ psの分だけ加算回路1の出力信号Vsaから位相シフトされたタイミング信号Vckのタイミングで、差動増幅回路4の出力信号Vdaの同期検波を行う。したがって、移相回路3は、加算回路1の出力信号Vsaから位相を θ psだけシフトした方形波状のタイミング信号Vckを作り、同期検波回路5に同期検波用のタイミング信号として供給する。

[0070]

[0071]

本実施形態においても、差動増幅回路4の出力信号Vdaの検波感度、すなわち振動ジャイロ41に加えられた回転角速度の検出感度と、加算回路1の出力信号Vsaに対するタイミング信号Vckの位相シフト量 θ との関係が予め求められ、これに基づいて位相差 θ psが設定される。よって、加算回路1の出力信号Vsaに対する位相シフト量がその θ psに設定されたタイミング信号Vckで、差動増幅回路4の出力信号Vdaの同期検波を行えば、Vdaの検波感度を高めることができ、結果として振動ジャイロ41に加わった回転角速度の検出感度を高めることができる。

[0072]

[第3の実施形態]

次に、本発明の第3の実施形態について説明する。なお、上記第1の実施形態と同じ構成部分には同一の符号を付しその詳細な説明は省略する。

[0073]

第3の実施形態に係る振動ジャイロ51の斜視図を図11に、断面図を図12に示す。振動ジャイロ51は、円柱状の振動子52と、この振動子52の外周面に形成された電極53a~53fとから構成される。電極53a、53b、53cはそれぞれ独立し、電極53d~53fは共通グランドに接続される。電極53cは振動ジャイロ51に駆動信号を供給するための駆動片として機能し、電極53a、53bは振動ジャイロ51に加わった回転角速度を検出するための検出片として機能する。

[0074]

振動子52は圧電セラミックスなどの圧電体からなる。すべての電極53a~53fは 振動子52の長手方向と平行になるように配置されている。また、各々の電極53a~5 3fは、振動子52を断面して現れる円の円周を6等分した位置に配置されている。

[0075]

振動ジャイロ51は、図10に示す振動ジャイロ用回路に接続され、この回路と振動ジャイロ51とから第3の実施形態に係る振動ジャイロユニットが構成される。振動ジャイロ用回路は、第1の実施形態と同様に、加算回路1と、発振回路2と、差動増幅回路4と、同期検波回路5と、移相回路3と、直流増幅回路6とを備える。振動ジャイロ51と加算回路1と発振回路2は、振動ジャイロ51の屈曲振動の共振周波数で振動ジャイロ51を自励発振駆動させる自励発振回路7cを構成する。

[0076]

発振回路2の出力信号 Vgoは、駆動片である電極53 cに加えられる。検出片である電

型30aの山川后ワV&IC電型30Uの山川后ワV&Iは、加昇凹町1に八川で4い川昇で4にる。加算回路1の出力信号Vsaは、発振回路2と移相回路3に入力される。

[0077]

また、電極53aの出力信号Vglと、電極53bの出力信号Vgrは、差動増幅回路4にも入力される。差動増幅回路4は、VglとVgrとの差に応じた信号Vdaを出力し、その信号Vdaは同期検波回路5にて、移相回路3が出力するタイミング信号Vckに同期して検波される。直流増幅回路6は、同期検波回路5で同期検波された直流信号Vsdを増幅して信号Sを出力する。

[0078]

振動ジャイロ51は自励発振回路7cによって駆動され、駆動片である電極53cの表面、および長手方向に直交する方向(図10においてy方向)に屈曲振動する。振動ジャイロ51の長手方向の中心軸Cのまわりに回転角速度が加わっていない状態では、電極53aと電極53bの歪みは全く同じように生じるので電極53aからの出力信号Vglと電極53bからの出力信号Vgrは振幅、位相共に同一であり、したがって差動増幅回路4の出力は0である。

[0079]

振動ジャイロ51がy方向に屈曲振動している状態で、振動ジャイロ51の長手方向の中心軸Cのまわりに回転角速度が加わった場合には、長手方向及びy方向の両方向に対して直角なx方向にコリオリ力が発生し、そのコリオリ力によって屈曲振動の向きが変わり、2つの検出片(電極)53a、53b間に出力差が生じる。

[0800]

すなわち、電極53aからの出力信号Vglと、電極53bからの出力信号Vgrとの間に差(Vgl-Vgr)が生じ、差動増幅回路4からはその差(Vgl-Vgr)に比例した出力信号Vdaが得られる。

[0081]

[0082]

上記駆動信号に応じた電極53aの出力信号と電極53bの出力信号とは、同相で同じ大きさの信号であるため差動増幅回路4で相殺される。これに対して、コリオリカに応じた電極53aの出力信号Vclと電極53bの出力信号Vcrとは、逆相で同じ大きさの信号である。したがって、差動増幅回路4の出力信号Vdaは(Vcl-Vcr)に比例となり、差動増幅回路4からは回転角速度の大きさに応じた信号のみが出力される。

[0083]

また、コリオリカに応じた圧電素子53aの出力信号Vclと圧電素子53bの出力信号Vcrとは、逆相で同じ大きさの信号であるため、加算回路1では相殺される。よって、発生するコリオリカには関係なく、振動ジャイロ51には一定の駆動信号が供給される。なお、駆動信号は、加算回路1の出力信号Vsaと同相であり、振幅は比例関係にある。

[0084]

そして、第3の実施形態においても、上記第1の実施形態と同様、タイミング信号Vckの、加算回路1の出力信号Vsaからの位相シフト量を、実際にVsaとVdaとの間で生じている位相差に応じて設定する。そして、その設定された位相差 θ psの分だけ加算回路1の出力信号Vsaから位相シフトされたタイミング信号Vckのタイミングで、差動増幅回路4の出力信号Vdaの同期検波を行う。したがって、移相回路3は、加算回路1の出力信号Vsaから位相を θ psだけシフトした方形波状のタイミング信号Vckを作り、同期検波回路5に同期検波用のタイミング信号として供給する。

[0085]

回期候以凹衄のは、文価値つじのる左割垣哩凹衄生の山刀値つ V u u u で、フェミンノ値つ V c k に同期して全波整流することで信号 V l l l に変換した後、積分(あるいは平滑化)し、直流信号 V s d を出力する。この信号 V s d は、振動ジャイロ 5 1 に加わった回転角速度の方向に応じた極性を有し、その回転角速度の大きさに比例する。そして、直流増幅回路 6 はその信号 V s d を 所定の大きさまで直流増幅して信号 S を出力する。

[0086]

本実施形態においても、差動増幅回路4の出力信号Vdaの検波感度、すなわち振動ジャイロ51に加えられた回転角速度の検出感度と、加算回路1の出力信号Vsaに対するタイミング信号Vckの位相シフト量 θ との関係が予め求められ、これに基づいて位相差 θ psが設定される。よって、加算回路1の出力信号Vsaに対する位相シフト量がその θ psに設定されたタイミング信号Vckで、差動増幅回路4の出力信号Vdaの同期検波を行えば、Vdaの検波感度を高めることができ、結果として振動ジャイロ51に加わった回転角速度の検出感度を高めることができる。

[0087]

なお、上記各実施形態では、位相差 θ psを、加算回路1の出力信号Vsaに対してのタイミング信号Vckの位相差としたが、発振回路2の出力信号Vgoは加算回路1の出力信号Vsaと同相かつ振幅比例の関係にあるので、位相差 θ psを、発振回路2の出力信号Vgoに対してのタイミング信号Vckの位相差としてもよい。

【図面の簡単な説明】

[0088]

- 【図1】本発明の第1の実施形態に係る振動ジャイロユニットの構成を示すブロック図である。
 - 【図2】図1に示した振動ジャイロの斜視図である。
 - 【図3】同振動ジャイロの断面図である。
- 【図4】図1に示した振動ジャイロ用回路の各部における電圧波形のタイムチャート図である。
- 【図5】駆動信号と同期検波用のタイミング信号との間の位相差 θ と、回転角速度の検出感度Sとの関係の一例を示すグラフである。
 - 【図6】図1に示した移相回路の一例を示す回路図である。
- 【図7】本発明の第2の実施形態に係る振動ジャイロユニットの構成を示すブロック図である。
 - 【図8】図7に示した振動ジャイロの斜視図である。
 - 【図9】同振動ジャイロの断面図である。
- 【図10】本発明の第3の実施形態に係る振動ジャイロユニットの構成を示すブロック図である。
- 【図11】図10に示した振動ジャイロの斜視図である。
- 【図12】同振動ジャイロの断面図である。
- 【図13】従来例の振動ジャイロユニットの構成を示すブロック図である。

【符号の説明】

[0089]

1 …加算回路、2 …発振回路、3 …移相回路、4 …差動増幅回路、5 …同期検波回路、6 …直流増幅回路、7 a ~ 7 c … 自励発振回路、3 1 …振動ジャイロ、3 2 …振動子、3 3 a … 圧電素子(駆動片兼検出片)、3 3 b … 圧電素子(駆動片兼検出片)、4 1 …振動ジャイロ、4 2 … 振動子、4 3 a … 圧電素子(検出片)、4 3 b … 圧電素子(検出片)、4 3 c … 圧電素子(駆動片)、5 1 … 振動ジャイロ、5 2 … 振動子、5 3 a …電極(検出片)、5 3 b …電極(検出片)、5 3 c … (駆動片)、5 3 d ~ 5 3 f …電極。

【図3】

【図6】

【図9】

【盲 烘 口】 女形 盲

【要約】

【課題】 高感度に回転角速度を検出できる振動ジャイロ用回路、振動ジャイロユニット 、振動ジャイロの出力検出方法を提供すること。

【解決手段】 振動ジャイロ31の2つの検出片33b、33aの出力信号の差(Vgl-Vgr)に応じた信号Vdaを出力する差動増幅回路4と、差動増幅回路4の出力信号Vdaを同期検波する同期検波回路5と、振動ジャイロ31に供給される駆動信号(加算回路1の出力信号)Vsaに対して位相がシフトされた信号を同期検波用のタイミング信号Vckとして同期検波回路5に供給する移相回路3とを備え、駆動信号Vsaとタイミング信号Vckとの位相差 θ psは、振動ジャイロ31を駆動させて回転角速度が加えた状態で予め求められた、差動増幅回路4の出力信号Vdaの検波感度Sの位相差特性に基づいて設定された。

【選択図】

図 1

0000002185 19900830 新規登録 597062993

東京都品川区北品川6丁目7番35号 ソニー株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP2005/017853

International filing date:

28 September 2005 (28.09.2005)

Document type: Certified copy of priority document

Document details:

Country/Office: JP

Number:

2004-295983

Filing date: 08 October 2004 (08.10.2004)

Date of receipt at the International Bureau: 17 November 2005 (17.11.2005)

Remark:

Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record.

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.