SE/IT SEM IV AT CBCS

[Total Marks: 80]

- 1. Question No. 1 is compulsory.
- 2. Out of remaining questions, attempt any three questions.
- 3. Assume suitable data wherever required but justify the same.
- 4. All questions carry equal marks.
- 5. Answer to each new question to be started on a fresh page.
- 6. Figure to the right in brackets indicate full marks.
- 1. Solve any four from the followings.

(a) Construct Moore machine equivalent to following clearly machine,

[05]

(b) Construct a PDA or the following Context Free Grammar (CFG).

1051

 $S \rightarrow CBA$

A - 0A010

B - OB LO

C → 0C1 | 1C0 | ε

- (c) Constant light linear grammar and left linear grammar for the regular expression $(0.01)^{+}0(0+1)^{+}$. [05]
- (d) (x) am the concepts, acceptance by final state and acceptance by empty stack of a Push flown automata with suitable example. [05]
- (e) Construct regular expression for the following FA using state elimination method. [05]

2. (a) Write down the regular expressions for the following language.

[04]

- i. L is the language of all strings over {0, 1} having odd number of 0's and any number of 1's.
- ii. L is the language of all strings over {0, 1} having number of 1's multiple of three.
- (b) Construct DFA for the following NFA with ε-moves.

[10]

(c) Construct NFA with ε -moves for the regular expression ab*(a+b)*+ba*

[06]

Paper / Subject Code: 41005 / Automata Theory

3. (a) Covert the following context free grammar into Chomsky normal form. [10] C -> cC | c | B $A \rightarrow aA \mid a \mid B$ $S \rightarrow A \mid C$ (b) Construct a Context Free Grammar (CFG) for the following PDA. [10] $M = (\{q_0, q_1\}, \{(,), [_{\mathfrak{F}}]\}, \{(, [, Z_0\}, \delta, q_0, Z_0, \Phi) \text{ and } \delta \text{ is given by: } \emptyset$ $\delta(q_0, (, Z_0) = (q_0, (Z_0))$ Attitions $\delta(q_0, [, Z_0) = (q_0, [Z_0)$ $\delta(q_0, (, () = (q_0, (())$ $\delta(q_0, [, [) = (q_0, [[)$ $\delta(q_0, (, [) = (q_0, ([)$ $\delta(q_0, [, () = (q_0, [()$ $\delta(q_0,), () = (q_0, \epsilon)$ $\delta(q_0,], [) = (q_0, \varepsilon)$ $\delta(q_0, \varepsilon, Z_0) = (q_1, \varepsilon)$

 $n, m \ge 1$ and n < m. 4. (a) Construct a PDA

[10]

- which accepts all strings that contain substring '11' and do (b) Design a DFA [06] ing '00'.
- grammar for the following languages.

[04]

- m > n + k and $n, m, k \ge 0$
- $d^n \mid n, m \ge 1$

ruct Turing Machine to accept language $L = \{a^nb^{2n+1} \mid n \ge 1\}$.

[10]

ind the equivalent NFA with c-moves accepting the regular language defined by the following grammar. [05]

S - 018 | 0A

 $A \rightarrow 10 \mid 1B \mid 00A$

 $B \rightarrow 1S | 1B | \epsilon$

(c) Let G be the grammar having following set of production.

[05]

 $S \rightarrow ABA$

 $A \rightarrow aA \mid bA \mid \epsilon$

B → bbb

For the string "ababbbba"; find a leftmost derivation and rightmost derivation.

6. (a) Minimize the following DFA $M = (\{q_0, q_1, q_2, q_3, q_4, q_5\}, \{0, 1\}, \delta, q_0, \{q_3, q_5\})$, where δ is given in the following table. [06]

	\rightarrow qo	qı	q ₂	•q3.	q ₄	•qs
0	91	q ₃	q5	q ₃	q ₅	q 3
1	q ₂	94	qı	Q 4	qı	94

- (b) Construct Turing Machine wherein given an input 1ⁿ leaves 1³ⁿ⁺¹ on the tape. Covert the TM design into equivalent function.
- (c) What do you understand by closure property? State the various set theoretic operations under which regular languages are closed. Give suitable example.