University of Wisconsin-Madison Department of Economics

Econ 703 Fall 2002 Prof. R. Deneckere

Homework #7 (due Oct. 22, 2002)

- 1. Let $f: E \to R$ be of class C 1, $E \subset Rn$. Let $x \in E$. Suppose that f does not have a local maximum at x. Find the direction of greatest increase in f at x.
- 2. Suppose f:R \rightarrow R, and recall that x^* is a fixed point of f(.) if $f(x^*) = x^*$.
 - (a) If f is differentiable and $f'(x) \neq 1$ for every real x, show that f(.) has at most one fixed point.
 - Show that the function f(.) defined by $f(x) = x + (1-e^x)^{-1}$ has no fixed point, even though 0 < f'(x) < 1 for all real x.
 - Show that if there exists a constant c < 1 such that $|f(x)| \le c$ for all real x, then a fixed point of f(.) exists, and that $x_0 = \lim_n x_n$, where x_0 is an arbitrary real number, and $x_{n+1} = f(x_n)$.
 - (d) Show that the process described in (c) can be visualized by the zig-zag path $(x_0,x_1) \rightarrow (x_1,x_2) \rightarrow (x_2,x_3) \rightarrow (x_3,x_4) \rightarrow \dots$
- 3. (Newton's method, part 1) Let $f: [a,b] \to R$ be twice differentiable on [a,b], with f(a) < 0, f(b) > 0, $f'(x) \ge c > 0$, and $0 \le f''(x) \le M$ for all $x \in [a,b]$.
 - (a) Show that there exists a unique point x^* in (a,b) s.t. $f(x^*) = 0$.
 - (b) Pick $x_0 \in (x^*,b)$ and define the sequence $\{x_n\}$ by $x_{n+1}=x_n-f(x_n)/f'(x_n)$. Interpret this geometrically, in terms of the tangent to the graph of f.
 - (c) Prove that $x_{n+1} \le x_n$, and that $x_n \to x^*$.
 - (d) Use Taylor's Theorem to show that $x_{n+1}-x^* = [f''(z_n)/(2 f(x_n)) (x_n-x^*)^2$, for some $z_n \in (x^*,x_n)$
 - (e) Letting A = M/(2 c) deduce that $0 \le x_n x^* \le A^{-1} [A(x_0 x^*)]^{2n}$.
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = x^3 / (x^2 + y^2)$ for $x \neq 0$, and f(0,0) = 0.
 - (a) Is f a continuous function?
 - (b) Compute the directional derivative of f(.) in the direction of the vector u=(1,1).
 - (c) Compute $\partial f/\partial x$ and $\partial f/\partial y$.
 - (d) Show that f(x,y) is not differentiable at (0,0).

What do you conclude?

- 5. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = 2x^3 3x^2 + 2y^3 + 3y^2$.
 - (a) Find the four points in R² at which the gradient of f is zero. Show that f has exactly one local maximum and one local minimum.
 - (b) Let S be the set of all $(x,y) \in R^2$ at which f(x,y)=0. Find those points of S that have no neighborhoods in which the equation f(x,y) can be solved for y in terms of x (or for x in terms of y). Describe S as precisely as you can.