

Politécnico de Coimbra

Projeto B

DISPONIBILIDADE E DESEMPENHO

Diogo Pinho a2020144104@isec.pt Alexandre Moreira a2020144214@isec.pt

Licenciatura em Engenharia Informática Ramo de Redes e Administração de Sistemas ISEC

Coimbra, 04 de janeiro de 2024

Índice

1	Inti	rodução	1
	1.1	Introdução	1
	1.2	Ambiente das Experiências	1
2	Wo	$\operatorname{rdPress}$	3
	2.1	Processo de instalação	3
	2.2	Configuração	4
3	Ma	riaDB	5
	3.1	Processo de instalação	5
	3.2	Configuração	6
4	HA	Proxy	7
	4.1	Processo de instalação	7
	4.2	Configuração	8
5	NG	inx	9
	5.1	Processo de instalação	9
6	Tes	tes Experimentais 1	1
	6.1	Rede A	1
	6.2	Rede B	3
	6.3	Rede C	4
	6.4	Rede D	7
	6.5	Resultado	9

ii	ÍNDICE
7 Conclusão	21
Referências	23

Lista de Figuras

2.1	Comandos para instalar o WordPress
2.2	Configuração do primeiro WordPress
3.1	Comando para instalar o MariaDB
3.2	Comando para o servidor correr
3.3	Comandos para a configuração da base de dados 6
3.4	Captura da conexão da primeira Base de dados 6
4.1	Comando de instalação do HAProxy
4.2	Iniciar e habilitar o HAProxy
4.3	Configuração HAProxy
5.1	Comando de instalação do NGinx
5.2	Configuração Nginx
6.1	Esquema da rede inicial
6.2	Utilizador adicionado no Website
6.3	Utilizador na base de dados
6.4	Tráfego entre BD e webserver com dados do utilizador $$ 13
6.5	Produtos adicionados no Website
6.6	Produtos na Base de dados
6.7	Tráfego dos Dados dos produtos na base de dados
6.8	Esquema da $2^{\underline{a}}$ rede
6.11	Esquema da $3^{\underline{a}}$ rede
6.9	Configuração do Cluster
6.10	Captura da conexão da segunda base de dados

6.12	Configuração do Word Press B	16
6.13	Conexão do Word Press B com a Base de dados $\ \ \ldots \ \ldots \ \ \ldots$	17
6.14	Rede D	17
6.15	Configuração Nginx	18
6.16	Tráfego Cliente e Reverse Proxy	18
6 17	Tráfego WebServers e Reverse Proxy	19

Introdução

1.1 Introdução

Este projeto tem como meta estabelecer uma infraestrutura altamente disponível para sustentar um site de comércio eletrónico, visando eliminar os "single points of failure" (SPOFs) e garantir a continuidade da acessibilidade do sistema. Com esse propósito, planeamos criar um ambiente virtualizado que integre redundância em todos os componentes críticos. Isso inclui o balanceamento de carga através do HAProxy, a utilização de múltiplas instâncias do WordPress e a replicação do banco de dados MySQL.

1.2 Ambiente das Experiências

- WordPress A 10.0.2.15
- WordPress B 10.0.2.7
- Database A 10.0.2.5
- Database B 10.0.2.6
- Reverse Proxy 10.0.2.8 e 192.168.1.130
- Cliente 192.168.1.80

2 Introdução

WordPress

O primeiro passo neste processo será a instalação do WordPress num servidor Ubuntu [4], com o intuito de criar um site de comércio eletrónico.

2.1 Processo de instalação

Para instalar o Wordpress foram usados os seguintes comandos:

```
sudo mkdir -p /srv/www
sudo chown www-data: /srv/www
curl https://wordpress.org/latest.tar.gz | sudo -u www-data tar zx -C /srv/www
```

Figura 2.1: Comandos para instalar o WordPress

4 WordPress

2.2 Configuração

```
CNU nano 6.2 /srv/www/wordpress/wp-config.php *

* @link https://wordpress.org/documentation/article/editing-wp-config-php/

* @package WordPress
*/

// ** Database settings - You can get this info from your web host ** //

//** The name of the database for NordPress */

define( 'DB_NAME', 'wordpress');

/** Database username */
define( 'DB_USER', 'wordpress');

/** Database password */
define( 'DB_PASSWORD', 'legion2024');

/** Database hostname */
define( 'DB_CHARSET', 'utf8');

/** Database charset to use in creating database tables. */
define( 'DB_CHARSET', 'utf8');

/** The database collate type. Don't change this if in doubt. */
define( 'DB_COLLATE', '');

define( 'DB_COLLATE', '');
```

Figura 2.2: Configuração do primeiro WordPress

MariaDB

A próxima etapa é a instalação do MariaDB, que servirá como a base de dados fundamental para interagir com o website desenvolvido no WordPress. A MariaDB desempenha um papel essencial n armazenamento e recuperação eficiente de dados, sendo uma parte integral da infraestrutura que sustenta a dinâmica do site de comércio eletrónico.

3.1 Processo de instalação

Figura 3.1: Comando para instalar o MariaDB

root@administrator-VirtualBox:/home/administrator# sudo systemctl start mysql.service

Figura 3.2: Comando para o servidor correr

6 MariaDB

3.2 Configuração

```
root@administrator-VirtualBox:/home/administrator# mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 8
Server version: 8.0.35-0ubuntu0.22.04.1 (Ubuntu)

Copyright (c) 2000, 2023, Oracle and/or its affiliates.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE wordpress
-> CREATE USER 'wordpress'@'localhost' IDENTIFIED BY 'password'
-> GRANT ALL PRIVILEGES ON wordpress.* TO 'wordpresssuser'@'localhost';
```

Figura 3.3: Comandos para a configuração da base de dados

							*enp0s3
<u>File Edit View Go Capture Analyze Statistics Telephony Wi</u> reless <u>T</u> ools <u>H</u> elp							
			< > → ← →] [÷ = =	!		
 ((mysql)) && (ip.src == 10	.0.2.6)					
No.	Time	Source	Destination	Protocol	Length	Info	
	3128 170.339556913	10.0.2.6	10.0.2.15	MySQL	176	Server Greeti	ng proto=10 version=10.6.12-Mari
	3132 170.340092757	10.0.2.6	10.0.2.15	MySQL	77	Response OK	
	3134 170.340729767	10.0.2.6	10.0.2.15	MySQL	77	Response OK	
	3136 170.341334551	10.0.2.6	10.0.2.15	MySQL		Response OK	
	3138 170.341710651	10.0.2.6	10.0.2.15	MySQL	227	Response TABU	LAR Response
	3140 170.342117144	10.0.2.6	10.0.2.15	MySQL		Response OK	
	3142 170.342458005	10.0.2.6	10.0.2.15	MySQL		Response OK	
	3144 170.344106278	10.0.2.6	10.0.2.15	MySQL		Response TABU	
	3148 170.344413028	10.0.2.6	10.0.2.15	MySQL		Response Resp	
	3150 170.344459196	10.0.2.6	10.0.2.15	MySQL		Response Resp	
	3157 170.345049048	10.0.2.6	10.0.2.15	MySQL		Response Resp	
	3159 170.345283690	10.0.2.6	10.0.2.15	MySQL	6174	Response Resp	onse
	3162 170.349248595	10.0.2.6	10.0.2.15	MySQL	416	Response TABU	LAR Response
	3164 170.354588383	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3166 170.366748627	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3168 170.368496334	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3170 170.369151044	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3172 170.370339806	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3174 170.371010340	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3176 170.371650563	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3178 170.373085226	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3180 170.373592868	10.0.2.6	10.0.2.15	MySQL	176	Response TABU	LAR Response
	3182 170.375189873	10.0.2.6	10.0.2.15	MySQL	168	Response TABU	LAR Response
	3184 170.376384155	10.0.2.6	10.0.2.15	MySQL	175	Response TABU	LAR Response
	3186 170.377477879	10.0.2.6	10.0.2.15	MySQL	5924	Response TABU	LAR Response
	3189 170.379351593	10.0.2.6	10.0.2.15	MySQL	958	Response TABU	LAR Response
	3191 170.380112658	10.0.2.6	10.0.2.15	MýSQL	1049	Response TABU	LAR Response
	3193 170.380790913	10.0.2.6	10.0.2.15	MýSQL	237	Response TABU	LAR Response
	3195 170.381332411	10.0.2.6	10.0.2.15	MÝSÕL		Response TABU	
	3197 170.382192399	10.0.2.6	10.0.2.15	MýSQL		Response TABU	
	3200 170.383264969	10.0.2.6	10.0.2.15	MVSÕL		Response TABU	

Figura 3.4: Captura da conexão da primeira Base de dados

HAProxy

O passo seguinte nesta jornada será a incorporação do HAProxy [1] [2] na sua arquitetura, abrindo caminho para a distribuição equilibrada do tráfego entre servidores, melhorando desta forma a capacidade de resposta do website. Além disso, ao utilizar o HAProxy como um proxy reverso, irá reforçar a segurança, protegendo o servidor de aplicações e aprimorando a gestão de pedidos HTTP.

4.1 Processo de instalação

Para instalar o HAProxy foram usados os seguintes comandos:

root@administrator-VirtualBox:/home/administrator# sudo apt-get install haproxy -y

Figura 4.1: Comando de instalação do HAProxy

root@administrator-VirtualBox:/home/administrator# systemctl start haproxy root@administrator-VirtualBox:/home/administrator# systemctl enable haproxy Synchronizing state of haproxy.service with SysV service stript with /lib/systemd/systemd-sysv-install. Executing: /lib/systemd/systemd-sysv-install enable_haproxy

Figura 4.2: Iniciar e habilitar o HAProxy

8 HAProxy

4.2 Configuração

Figura 4.3: Configuração HAProxy

NGinx

O próximo passo nesta jornada será a incorporação do NGinx [3] na sua arquitetura.

5.1 Processo de instalação

Para instalar o NGinx foram usados os seguintes comandos:

```
root@administrator-VirtualBox:/home/administrator# sudo apt install nginx
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
    libnginx-mod-http-geolp2 libnginx-mod-http-tmage-filter libnginx-mod-http-xslt-filter libnginx-mod-mai libnginx-mod-stream-geoip2 nginx-common nginx-core
Suggested packages:
    fcgiwrap nginx-doc
The following NEW packages will be installed:
    libnginx-mod-http-geoip2 libnginx-mod-http-image-filter libnginx-mod-http-xslt-filter libnginx-mod-mai libnginx-mod-stream-geoip2 libnginx-common nginx-core
0 upgraded, 9 newly installed, 0 to remove and 179 not upgraded.
Need to get 697 kB of archives.
After this operation, 2395 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
```

Figura 5.1: Comando de instalação do NGinx

NGinx

```
root@reverseproxy-VirtualBox: /home/reverseproxy

GNU nano 6.2 /etc/nginx/conf.d/webdd.conf
upstream appdd {
    server 10.0.2.15;
    server 10.0.2.7;
}

server{
    listen 80;
    server_name 192.168.1.130;
    location / {
        proxy_pass http://appdd;
    }
```

Figura 5.2: Configuração Nginx

Testes Experimentais

6.1 Rede A

Após a instalação e configuração integral do ambiente, procedemos à realização de testes experimentais com o intuito de avaliar a conectividade entre o Reverse Proxy e o webserver, webservers e bases de dados.

Figura 6.1: Esquema da rede inicial

Inicialmente, procedemos à criação de um utilizador no website (figura 5.2) e posteriormente verificamos se este registo foi devidamente refletido na base de dados (figura 5.3). Essa etapa foi realizada para confirmar a consistência na integração entre o front-end (website) e o back-end (base de

dados), assegurando que a informação do utilizador é devidamente persistida e acessível através do sistema.

Figura 6.2: Utilizador adicionado no Website

Figura 6.3: Utilizador na base de dados

Em seguida, repetimos a experiência, desta vez envolvendo a adição de produtos ao website (figura 5.5). Posteriormente, verificamos se esses produtos foram devidamente representados na base de dados (figura 5.6), assegurando assim a consistência e integridade das informações entre o front-end (website) e o back-end (base de dados).

6.2 Rede B 13

Figura 6.4: Tráfego entre BD e webserver com dados do utilizador

6.2 Rede B

Posteriormente, foi estabelecida uma segunda base de dados, utilizando um Cluster (configuração na figura 5.9). Neste contexto, também foi integrado o HAProxy, que serve de loadbanlancer entre as bases de dados e utiliza como Round Robin como algoritmo para tal.

Figura 6.5: Produtos adicionados no Website

Figura 6.6: Produtos na Base de dados

6.3 Rede C

Depois disso foi criado um novo WordPress (configuração na figura 5.12) de modo a diminuir os SPOF's (Single Points of Failure) e obter um maior desempenho.

6.3 Rede C 15

Figura 6.7: Tráfego dos Dados dos produtos na base de dados

Figura 6.8: Esquema da $2^{\underline{a}}$ rede

Figura 6.11: Esquema da $3^{\underline{a}}$ rede

```
GNU nano 6.2

[mysqld]

binlog_format=ROW

default-storage-engine=innodb

innodb_autoinc_lock_mode=2

bind-address=0.0.0.0

#Galera Provider Config

wsrep_on=ON

wsrep_provider=/usr/lib/galera/libgalera_smm.so

#Galera Cluster Config

wsrep_cluster_name="galera_cluster"

wsrep_cluster_address="gcomm://10.0.2.5,10.0.2.6"

#Galera syncronization config

wsrep_sst_method=rsync

#Galera Node Config

wsrep_node_address="10.0.2.5"

wsrep_node_name="n1"
```

Figura 6.9: Configuração do Cluster

Figura 6.10: Captura da conexão da segunda base de dados

```
GNU nano 6.2 /srv/www/wordpress/wp-config.php *

* @link https://wordpress.org/documentation/article/editing-wp-config-php/

* @package WordPress

*/

// ** Database settings - You can get this info from your web host ** //

/** The name of the database for WordPress */

define( 'DB_NAME', 'wordpress' );

/** Database username */

define( 'DB_USER', 'wordpress' );

/** Database password */

define( 'DB_PASSWORD', 'legion2024' );

/** Database hostname */

define( 'DB_HOST', '10.0.2.7:3306' );

/** Database charset to use in creating database tables. */

define( 'DB_CHARSET', 'utf8' );

/** The database collate type. Don't change this if in doubt. */

define( 'DB_COLLATE', '' );

define('WP_ALLOW_REPAIR', true);
```

Figura 6.12: Configuração do WordPress B

6.4 Rede D 17

lo.	Time	Source	Destination	Protocol	Length Info
	37 12.288183062	10.0.2.7	142.250.200.67	TCP	54 [TCP Dup ACK 6#1] 47866 → 80 [ACK] Seq=1 Ack=1 Win=63791 Len=0
	38 12.288500576	142.250.200.67			60 [TCP Dup ACK 7#1] [TCP ACKed unseen segment] 80 - 47866 [ACK] Seq=1 A
	39 13.074005784	10.0.2.7	10.0.2.5	TCP	74 41922 → 3306 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3
	40 13.074422958	10.0.2.5	10.0.2.7	TCP	74 3306 - 41922 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PER
	41 13.074458192	10.0.2.7	10.0.2.5	TCP	66 41922 → 3306 [RST, ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3686751148
	42 13.971442876	PcsCompu_4c:a3:83	Broadcast	ARP	42 Who has 10.0.2.6? Tell 10.0.2.7
	43 14.630014375	10.0.2.7	10.0.2.5	TCP	74 44354 - 3306 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM=1 TSval=3
	44 14.630381035	10.0.2.5	10.0.2.7	TCP	74 3306 - 44354 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PER
	45 14.630394851	10.0.2.7	10.0.2.5	TCP	66 44354 → 3306 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3686752704 TSecr
	46 14.630884419	10.0.2.5	10.0.2.7	MySQL	176 Server Greeting proto=10 version=10.6.12-MariaDB-Oubuntu0.22.04.1
	47 14.630894263	10.0.2.7	10.0.2.5	TCP	66 44354 → 3306 [ACK] Seq=1 Ack=111 Win=64256 Len=0 TSval=3686752704 TSe
	48 14.631014307	10.0.2.7	10.0.2.5	MySQL	199 Login Request user=wordpress
	49 14.631351108	10.0.2.5	10.0.2.7	TCP	66 3306 → 44354 [ACK] Seq=111 Ack=134 Win=65152 Len=0 TSval=4163178186 T
	50 14.631351161	10.0.2.5	10.0.2.7	MySQL	77 Response OK
	51 14.631523901	10.0.2.7	10.0.2.5	MySQL	88 Request Query
	52 14.631863375	10.0.2.5	10.0.2.7	MySQL	77 Response OK
	53 14.632097811	10.0.2.7	10.0.2.5	MySQL	119 Request Query
	54 14.632429974	10.0.2.5	10.0.2.7	MySQL	77 Response OK
	55 14.632515936	10.0.2.7	10.0.2.5	MySQL	96 Request Query
	56 14.632880394	10.0.2.5	10.0.2.7	MySQL	227 Response TABULAR Response
	57 14.632994767	10.0.2.7	10.0.2.5	MySQL	163 Request Query
	58 14.633337451	10.0.2.5	10.0.2.7	MySQL	77 Response OK
	59 14.633431540	10.0.2.7	10.0.2.5	MySQL	80 Request Use Database
	60 14.633765570	10.0.2.5	10.0.2.7	MySQL	77 Response OK
	61 14.634393710	10.0.2.7	10.0.2.5	MySQL	142 Request Query
	62 14.634802871	10.0.2.5	10.0.2.7	MySQL	7306 Response TABULAR Response
	63 14.634802913	10.0.2.5	10.0.2.7	TCP `	7306 3306 - 44354 [PSH, ACK] Seq=7567 Ack=426 Win=65152 Len=7240 TSval=416
	64 14.634874834	10.0.2.7	10.0.2.5	TCP	66 44354 → 3306 [ACK] Seq=426 Ack=14807 Win=64128 Len=0 TSval=3686752708
	65 14.635191139	10.0.2.5	10.0.2.7	MySQL	14546 Response Response
	66 14.635207277	10.0.2.5	10.0.2.7	MySOL	14546 Response Response

Figura 6.13: Conexão do WordPress B com a Base de dados

6.4 Rede D

Por fim foi criado um servidor com Reverse Proxy, com o Nginx, para podermos aceder ao site através de um domínio só e para conseguirmos fazer balaceamento de carga.

Figura 6.14: Rede D

Na imagem abaixo está presente a configuração do Nginx. Aqui o Nginx trabalha como reverse proxy e load balancer, utilizando o algoritmo Round Robin.

```
GNU nano 6.2 /etc/nginx/conf.d/webdd.conf
upstream appdd {
    server 10.0.2.15;
    server 10.0.2.7;
}

server{
    listen 80;
    server_name 192.168.1.130;
    location / {
        proxy_pass http://appdd;
    }
```

Figura 6.15: Configuração Nginx

```
| No. | Time | Source | Destination | Protocol Length Info | 881 224.271378157 192.168.1.80 | 192.168.1.130 | TCP | 60 60615 - 80 [ACK] Seq-4985 Ack=28040 Win=2897929 Len=0 | 682 224.397604944 192.168.1.80 | 192.168.1.130 | TCP | 60 60619 - 80 [ACK] Seq-2928 Ack=43650 Win=2897929 Len=0 | 682 224.3956049451 192.168.1.80 | 192.168.1.130 | TCP | 60 60618 - 80 [ACK] Seq-2928 Ack=43650 Win=2807929 Len=0 | 682 224.39562334 192.168.1.80 | 192.168.1.130 | TCP | 60 60618 - 80 [ACK] Seq-3917 Ack=13480 Win=2807929 Len=0 | 682 224.39562334 192.168.1.80 | 192.168.1.130 | HTTP | 898 CET /wp-content/themes/woostly/assets/js/mavigation.ain.js/ver=2.2.7 HTTP/1.1 | 898 224.39587380 192.168.1.80 | 192.168.1.130 | HTTP | 898 CET /wp-content/themes/woostly/assets/js/mocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocommerce/woocomm
```

Figura 6.16: Tráfego Cliente e Reverse Proxy

6.5 Resultado 19

Figura 6.17: Tráfego WebServers e Reverse Proxy

6.5 Resultado

Durante a realização dos testes, foi evidenciado que o reverse proxy Nginx apresenta conectividade eficiente com ambas as instâncias do servidor web, mesmo quando uma delas está offline. Além disso, observamos que ambas as instâncias são capazes de acessar as bases de dados, mesmo na eventualidade de uma delas estar offline. Esses resultados destacam a robustez e a capacidade de manutenção da operação contínua, ressaltando a eficácia do ambiente de redundância implementado.

Conclusão

Concluindo, a implementação deste projeto, baseado na integração do Word-Press, MariaDB/MySQL como base de dados, HAProxy e Nginx como reverse proxy, alcançou com sucesso todos os objetivos estabelecidos. A infraestrutura resultante proporcionou não apenas um site de comércio eletrónico funcional, mas também uma arquitetura robusta e altamente disponível.

22 Conclusão

Referências

- [1] $Configuração\ HAProxy$. URL: https://www.redswitches.com/blog/haproxy-configuration/ (acedido em 04/01/2024).
- [2] Configuração HAProxy. URL: https://linuxhostsupport.com/blog/how-to-install-and-configure-haproxy-on-ubuntu-20-04/(acedido em 04/01/2024).
- [3] Configuração Nginx. URL: https://ubuntu.com/tutorials/install-and-configure-nginx#1-overview (acedido em 04/01/2024).
- [4] Configuração WordPress. URL: https://ubuntu.com/tutorials/install-and-configure-wordpress#3-install-wordpress (acedido em 04/01/2024).