

CONTENTS

- ML/DL Pipeline
- Data Pre-processing
- Feature selection
- Normalization versus Standardization
- Dimension Reduction
- Training and evaluation
- Evaluation Metrics
- Hyperparameter optimization
- Building an end-to-end ML project

TEXTBOOKS REFERRED

- 1. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems by Aurelien Geron, first edition Published by O'Reilly Media, Inc. 2017, ISBN: 978-1-491-96229-9
- 2. Deep Learning with Python by François Chollet, published by Manning Publications Co., 2018, ISBN: 978-1-61729-443-3

ML/DL PIPELINE

- Crucial step
- Select, Transform, Augment data
- Feature engineering→ domain
 knowledge + data science

Figure: Data Pre-processing for ML

DATA PRE-PROCESSING CATEGORIZATION

Data Quality Assessment:

irrelevant bits, mismatching data types (float, int), different dimensions of data arrays, mixture of data values (man, male), outliers (daily temperature high, few days very low), missing data

Need for pre-processing:

- Accuracy of data → eliminate missing values
- Reduce inconsistencies → duplicates, noise
- Complete Information → missing attributes
- Smoothen the data → Easy to use and interpret

Figure: Noisy Data

2. Data Cleaning:

- Missing data/ values → collect more data from other sources, add missing data
- Noisy data → meaningless information in data → noise, duplicates, unnecessary information
- For example, Identify if a person speaks English or not, feature provided is shoe size, blood pressure, etc.

For Noisy Data:

- a) Binning→ Pool of sorted data, For example, age binned into categories 16-21, 22-35, 36-45, 45-60, etc.
- b) Regression Analysis → Identify relationship between features and label, identify key features making an impact
- c) Clustering→ For example, K-Means→ group data→ identify outliers

Figure: Outliers in Data

3. Data Transformation or Scaling:

- Tuning of data in a proper format
- For example, data about car speed in different formats such as miles per second or kilometers per second

Categories:

- a) Aggregation \rightarrow Data from different sources aggregated in a single format, e.g., image data (jpeg, png)
- b) Normalization/Standardization > Scaling of data within a range, e.g., Population size
- c) Feature or attribute selection→ Reduce unnecessary features, improve accuracy
- d) Discretization→ improve efficiency, e.g., creating categories for age "young", "middle-aged" and "senior"
- e) Concept Hierarchy Generation→ hierarchical relationships between features, e.g., address includes street, city, province, country
- f Generalization → low-level to high-level e.g., house address to town and country

4. Data Reduction:

Reduce amount of data/features, decrease the analysis cost

Categories:

- Attribute/Feature Subset Selection → For example, Irrelevant features e.g., IP address prediction of a network attack, Redundant features e.g., purchase price of a product and sales tax paid
- b) Dimensionality reduction → Computer Vision, Speech Generation → speakers filling words not important → can be sampled
- c) Numerosity reduction → replace original data by a smaller form of data representation, data sampling, histogram, identify patterns in data

POPULAR OPEN DATA SOURCES

- Popular open data repositories
- —UC Irvine Machine Learning Repository (UCI)
- –Kaggle datasets
- —Amazon's AWS datasets
- Meta portals (they list open data repositories)
- —Data Portals
- -OpenDataMonitor
- -Quandl
- Other pages listing many popular open data repositories
- —Wikipedia's list of Machine Learning datasets
- -Quora.com
- —The datasets subreddit

FEATURE SELECTION TECHNIQUES

Why Feature Selection?

- Faster training
- Reduced complexity
- Improves Accuracy
- Reduces overfitting

FILTER METHOD FOR FEATURE SELECTION

Set of all Features Selecting the Best Subset Algorithm Performance

- Pre-processing step
- Feature selection → basis of scores in statistical tests → correlation with target variable

Feature\Response	Continuous	Categorical
Continuous	Pearson's Correlation	LDA
Categorical	Anova	Chi-Square

- Pearson's Correlation: linear dependence between two continuous variables X and Y. Value ranges from -1 to +1
- Linear Discriminant Analysis (LDA): linear combination of features that separates two or more classes
- Analysis of Variance (ANOVA): statistical test to compare if the means of several groups of data belong to same distribution
- *Chi-Square*: statistical measure of correlation between a categorical feature and a categorical target value

PEARSON'S CORRELATION

- Correlation → strength of a relationship between two variables
- Pearson's correlation → linear regression
- Returns values between -1 and +1

- +1→perfect positive correlation
- -1→perfect negative correlation
- 0→no correlation
- Between +/- 0.5 and +/- 1→ strong correlation
- Between +/- 0.3 and +/-0.49 → medium correlation
- Below +/- 0.29 → small correlation

Figures showing a correlation of -1, 0 and +1

CHI-SQUARE

- Compares two variables to check if they are related
- In the equation, the subscript "c" is the degrees of freedom. "O" is your observed value and "E" is your expected value.
- relationship between two categorical variables
- Low chi-square value → little relationship between the two variables
- In theory, if O=E, Chi-square=0→ unlikely in real life
- Compare chi-square statistic with a critical value in <u>Chi-Square distribution table</u>

$$\chi_c^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

WRAPPER METHOD FOR FEATURE SELECTION

- Employ a feature subset to train the ML model
- Based on model results→ search the best features for performance improvement
- Computationally expensive

- Forward Selection:
- ✓ start no feature, each iteration add features that best improve model results until not improve
- Backward Elimination:
- ✓ start all features, remove least significant features each iteration until no improvement
- Recursive Feature Elimination:
- ✓ greedy optimization, each iteration best and worst feature set aside
- ✓ Next model→ features left until all exhausted, Rank features based on elimination order

EMBEDDED/INTRINSIC METHOD FOR FEATURE SELECTION

- Combine the characteristics of both filter as well as wrapper methods
- ML algorithms with built-in feature selection
- For example, regularization or penalization methods
- Add constraints to optimization of an AI algorithm (for example, regression algorithm)

Examples:

- a) Lasso Regression→ Linear Regression, L1 regularization, shrink data values at the mean, reduce # features
- **b)** Ridge Regression > L2 regularization, reducing model complexity and overfitting
- c) Tree based algorithms such as decision tree, random forest, etc. also support intrinsic feature selection functions

LASSO REGRESSION- L1 REGULARIZATION

- Least Absolute Shrinkage and Selection Operator or LASSO
- Shrink data values at a central point or mean
- Sparse models → few parameters
- Reduce overfitting
- When multiple features are highly correlated → multicollinearity
- L1 Regularization adds penalty equal to the absolute value of the magnitude of coefficients.
- Larger penalties result in coefficient values closer to zero thus eliminating certain features
- Lasso Regression with L1 Regularization aims to minimize the following equation:

Figure: Multicollinearity affects
Regression adversely

RIDGE REGRESSION- L2 REGULARIZATION

Ridge Regression with L2 Regularization aims to minimize the following equation:

$$L_{ridge} = argmin_{\hat{\beta}} \left(\|Y - \beta * X\|^2 + \lambda * \|\beta\|_2^2 \right)$$

- Shrinkage/Ridge estimator λ→ L2 Penalty → square of the magnitude of coefficients
- Reducing model complexing and overfitting
- When Tuning parameter λ = 0, penalty=0, minimize sum of squared residuals
- If $\lambda = \infty$, all coefficients are shrunk to zero
- Ideal penalty → between 0 and ∞

LASSO VERSUS RIDGE REGRESSION

Penalty Function:

- Lasso → L1 Penalty function: λ |slope| → important features
- Ridge→L2 Penalty function: λ*slope^2 → none of the coefficients are extremely large

Slope:

- Lasso→ shrink the slope to zero
- Ridge → shrink the slope close to zero

Features:

- Lasso→ Increase λ, most important features shrink a bit but less important are zero and thus can be eliminated
- Ridge → When λ is increased, most important features shrink little
 bit, but less important parameters are not minimized to zero

FEATURE SCALING FOR MACHINE LEARNING

- Dataset with different magnitude, range or units for features
- Impediment for some ML algorithms

Why do we need scaling?

- Different ranges of values for population → some algorithms
 sensitive to such information
- Gradient Descent Based Algorithms such as Linear Regression,
 Logistic Regression and Neural Networks
- Distance algorithms like KNN, K-means, and SVM→ range of features

Image Source: https://serokell.io/blog/data-preprocessing

EFFECT OF FEATURE SCALING EXAMPLE

	Student	CGPA	Salary '000
0	1	3.0	60
1	2	3.0	40
2	3	4.0	40
3	4	4.5	50
4	5	4.2	52

	Student	CGPA	Salary '000
0	1	-1.184341	1.520013
1	2	-1.184341	-1.100699
2	3	0.416120	-1.100699
3	4	1.216350	0.209657
4	5	0.736212	0.471728

Table: Values of Features Before Scaling

Table: Values of Features After Scaling

Compare Euclidean Distance between data points for students 0 & 1 and between 1 & 2

Distance between 0 & 1 before scaling

$$\sqrt{(40-60)^2 + (3-3)^2} = 20$$

Distance between 1 & 2 before scaling

$$\sqrt{(40-40)^2 + (4-3)^2} = 1$$

Distance between 0 & 1 after scaling

$$\sqrt{(1.1+1.5)^2+(1.18-1.18)^2}=2.6$$

Distance between 1 & 2 after scaling

$$\sqrt{(1.1 - 1.1)^2 + (0.41 + 1.18)^2} = 1.59$$

ALGORITHMS THAT NEED FEATURE SCALING

Algorithms	Feature Scaling ■
Algorithnms that work with distances	
K-Mean Clustering	Yes
K-Nearest Neighbour (KNN)	Yes
Support Vector Machine (SVM)	Yes
Principal Component Analysis (PCA)	Yes
Linear Discriminant Analysis (LDA)	Yes
Gradient Descent based algortihms	
Regularized Linear Regression	Yes
Regularized Logistic Regression	Yes
Neural Networks	Yes
Tree based algorithms	
Decision Trees	No
Random Forests	No
XG-Boost	No

NORMALIZATION/ MIN-MAX SCALING

- Values are scaled in the range between 0 and 1. It is also known as Min-Max scaling.
- The formula is given below:

$$X' = \frac{X - Xmin}{Xmax - Xmin}$$

Figure: Normalization (Min-Max Scaling)

Here, Xmax and Xmin are the maximum and the minimum values of a feature respectively.

- When the value of X (feature) is the minimum → numerator will be 0, and hence X' = 0
- When the value of X is the maximum → numerator = denominator, and X' = 1
- If the value of X is between the minimum and the maximum value \rightarrow value of X' is between 0 and 1

STANDARDIZATION (Z-SCORE)

- Values are scaled with a mean of zero and standard deviation of one
- mean of the attribute becomes zero and the resultant distribution has a unit standard deviation.
- The formula is given below:

$$z = \frac{x - \mu}{\sigma}$$

- Here, " μ " is the mean of the feature values
- "σ" is the standard deviation of the feature values

Figure: Standardization (Z-Score)

NORMALIZATION VERSUS STANDARDIZATION

Data Distribution:

- Standardization→ the data follows a Gaussian distribution. However, this does not have to be necessarily true
- Normalization→ No Gaussian distribution, useful in algorithms that do not assume any data distribution such as K-Nearest Neighbors and Neural Networks

Outliers Handling:

- Standardization→ more robust to outliers, does not have a bounding range, facilitates faster convergence of loss function for some algorithms
- Normalization → transform all the features with varying scales to a common scale but does not handle outliers well

Robustness to new data:

- Standardization is more robust to new data since it applies mean and standard deviation
- Normalization is less robust to new data since it employs min and max values

CURSE OF DIMENSIONALITY

- ML problems → huge datasets with thousands & millions of features
- Slow convergence time
- Not an optimal solution

Solution to this problem:

- Reducing number of features considerably → dimension reduction
- For example, <u>MNIST Dataset</u>, drop pixel information from image borders → always white and irrelevant (see figure)
- Merging two highly correlated pixels into one

Figure: MNIST pixel importance (according to a Random Forest classifier)

PRINCIPAL COMPONENT ANALYSIS (PCA)

- Most popular → dimension reduction
- Identify the hyperplane that lies closest to the data, and then it projects the data onto it
- Choose the right hyperplane
- Preserve variance → lose less information
- Choose the axis that minimizes the mean squared distance between the original dataset and its projection onto that axis

Figure (a): 2D dataset with 3 axes (1D hyperplanes)

Figure (b): Selecting the subspace to project on

PCA USING SCIKIT-LEARN

uses singular value decomposition (SVD) to implementPCA

```
from sklearn.decomposition import PCA

pca = PCA(n_components = 2)
X2D = pca.fit_transform(X)
```

Explained Variance Ratio

- proportion of the dataset's variance that lies along each principal component
- via the explained_variance_ratio_ variable

CHOOSING THE RIGHT NUMBER OF DIMENSIONS

choose the number of dimensions that add up to a sufficiently large portion of the variance (e.g., 95%)

```
pca = PCA()
pca.fit(X_train)
cumsum = np.cumsum(pca.explained_variance_ratio_)
d = np.argmax(cumsum >= 0.95) + 1

preserve 95% of
variance
```


Figure: Explained variance as a function of the number of dimensions

```
pca = PCA(n_components=0.95)

X_reduced = pca.fit_transform(X_train)

Ratio of variance to preserve (lies between 0.0 and 1.0)
```

PCA VERSUS LDA

■ linear transformation techniques → dimensionality reduction

Principal Component Analysis (PCA)

- Unsupervised
- Computes the principal components
- ✓ Maximize variance in dataset

Linear Discriminant Analysis (LDA)

- Supervised
- ✓ computes the directions → linear discriminants
- ✓ project a n-dimensional dataset onto a smaller subspace k (where k≤n-1) while maintaining the class-discriminatory information
- ✓ Represent the axes that that maximize the separation between multiple classes

PCA:

component axes that maximize the variance

LDA:

maximizing the component axes for class-separation

TRAINING AND EVALUATION

- Split the dataset into 2 or 3 parts: Train, Validation, Test
- Tuning of hyperparameters based on validation data → information leaks into the model → overfitting
- Performance on completely new data is important → test data

Basic evaluation techniques:→

- 1. simple hold-out validation
- 2. Kfold validation
- 3. iterated K-fold validation with shuffling.

Image source: https://www.analyticsvidhya.com/

SIMPLE HOLD-OUT VALIDATION EXAMPLE

```
num validation samples = 10000
                                             Shuffling the data is
                                            usually appropriate.
np.random.shuffle(data)
                                                                   Defines the
                                                                   validation set
validation_data = data[:num_validation samples]
data = data[num validation samples:]
                                                   Defines the training set
training data = data[:]
                                                            Trains a model on the training
model = get_model()
                                                            data, and evaluates it on the
model.train(training data)
                                                            validation data
validation score = model.evaluate(validation data)
# At this point you can tune your model,
# retrain it, evaluate it, tune it again...
                                                         Once you've tuned your
model = get model()
                                                         hyperparameters, it's common to
model.train(np.concatenate([training data,
                                                         train your final model from scratch
                                validation datal))
                                                         on all non-test data available.
test score = model.evaluate(test data)
```


K-FOLD CROSS VALIDATION EXAMPLE

- Split the dataset into K partitions of equal size
- For each partition i, train a model on the remaining K 1 partitions, and evaluate it on partition i
- Final score is then the averages of the K scores obtained


```
k = 4
num validation samples = len(data) // k
np.random.shuffle(data)
                                                    Selects the validation-
validation scores = []
                                                          data partition
for fold in range(k):
    validation data = data[num validation samples * fold:
     num validation samples * (fold + 1)|
    training data = data[:num validation samples * fold] +
     data[num validation samples * (fold + 1):]
                                                                Uses the remainder of the data
    model = get model()
                                                                as training data. Note that the
    model.train(training data)
                                                                + operator is list concatenation.
   validation score = model.evaluate(validation data)
                                                                not summation.
    validation_scores.append(validation score)
                                                              Creates a brand-new instance
                                                              of the model (untrained)
validation score = np.average(validation scores)
                                                                           Validation score:
                                                                           average of the
model = get model()
                                                 Trains the final
                                                                           validation scores
model.train(data)
                                                 model on all non-
                                                                           of the k folds
test score = model.evaluate(test data)
                                                 test data available
```

ITERATED K-FOLD VALIDATION WITH SHUFFLING

- relatively little data available
- to evaluate your model as precisely as possible
- K-fold validation multiple times, shuffling the data every time before splitting it K ways
- final score is the average of the scores obtained at each run of K-fold validation
- High complexity → P × K models (where P is the number of iterations)

34

EVALUATION METRICS

Figure: An illustrated confusion matrix for MNIST dataset shows examples of true negatives (top left), false positives (top right), false negatives (lower left), and true positives (lower right)

- True Positive (TP): Predicted True and True in reality
- True Negative (TN): Predicted False and False in reality
- False Positive (FP): Predicted True and False in reality, false alarm
- False Negative (FN): Predicted False and True in reality

COMMON EVALUATION METRICS

Accuracy

ratio of number of correct predictions to the total number of input instances

$$\frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{TP} + \mathrm{TN} + \mathrm{FP} + \mathrm{FN}}$$

Sensitivity or Recall or True Positive Rate

ratio of positive instances that are correctly considered as positive, with respect to all positive instances.

$$ext{TPR} = rac{ ext{TP}}{ ext{P}} = rac{ ext{TP}}{ ext{TP} + ext{FN}}$$

Specificity or True Negative Rate

ratio of negative instances that are correctly considered as negative, with respect to all negative instances

$$ext{TNR} = rac{ ext{TN}}{ ext{N}} = rac{ ext{TN}}{ ext{TN} + ext{FP}}$$

Positive Predictive Value or Precision

ratio of number of correct positive predictions to the total number of positive instances predicted by classifier

$$ext{PPV} = rac{ ext{TP}}{ ext{TP} + ext{FP}}$$

F1 score

harmonic mean of precision and sensitivity

$$F_1 = 2 \times \frac{PPV \times TPR}{PPV + TPR}$$

False Positive Rate

ratio of negative instances that are mistakenly considered as positive, with respect to all negative instances

$$ext{FPR} = rac{ ext{FP}}{ ext{N}} = rac{ ext{FP}}{ ext{FP} + ext{TN}}$$

False Negative Rate

ratio of positive instances that are mistakenly considered as negative, with respect to all positive instances

$$FNR = \frac{FN}{P} = \frac{FN}{FN + TP}$$

COMMON EVALUATION METRICS CONTD.

Receiver Operating Characteristic (ROC) Graph between FPR and TPR

Mean Absolute Error (MAE) average of the difference between the original values and the predicted values

$$MeanAbsoluteError = \frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|$$

Mean Squared Error (MSE) average of the square of the difference between the original values and the predicted values

$$MeanSquaredError = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2$$

Area Under the Curve (AUC) has a range of [0,1]. Greater the value, better the model performance

PRECISION AND RECALL

Figure: An illustrated confusion matrix for MNIST dataset shows examples of true negatives (top left), false positives (top right), false negatives (lower left), and true positives (lower right)

Display the Confusion Matrix

Calculating Precision & Recall

```
>>> from sklearn.metrics import precision_score, recall_score
>>> precision_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1522)
0.7290850836596654
>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)
0.7555801512636044
```


Calculating F1 Score

```
>>> from sklearn.metrics import f1_score
>>> f1_score(y_train_5, y_train_pred)
0.7420962043663375
```

PRECISION/RECALL TRADE-OFF

increasing precision reduces recall, and vice versa

Figure: In this precision/recall trade-off, images are ranked by their classifier score, and those above the chosen decision threshold are considered positive; the higher the threshold, the lower the recall, but (in general) the higher the precision

Figure: Precision and recall versus the decision threshold

Figure: Precision versus recall

HYPERPARAMETER OPTIMIZATION (HPO)

- According to Wikipedia "hyperparameter optimization is choosing a set of optimal hyperparameters for a learning algorithm"
- Hyperparameter → parameter whose value is set before the learning process begins
- aim to find the right combination of their values to minimize loss or maximize accuracy

Examples:

- number of neurons learning rate or batch size for a neural network
- Penalty for Logistic Regression
- number of estimators in Random Forest

HYPERPARAMETER OPTIMIZATION (HPO)

Manual Search → choose hyperparameters based on our judgment, train, evaluate, repeat

Grid Search → select a grid of hyperparameters and train/evaluate the AI with each possible combination, GridSearchCV class

Random Search → select a grid of hyperparameters and train/evaluate the AI with random combinations, RandomizedSearchCV

Bayesian Search→

- automated HPO, for example, Hyperopt library, use probability to find the minimum of a function
- Final aim → find input value for a function that gives the lowest possible output value (loss)

Evolutionary Search → Genetic Algorithm, natural selection, automated HPO, e.g., TPOT

- Select population of N Machine Learning models with some predefined Hyperparameters > calculate accuracy
- Keep the best performing models
- Repeat the process of selecting N ML models→ calculate accuracy
- Repeat for predefined generations > until best models survive

HANDS-ON EXERCISES

