Course Name: Data Structures and Applications

Course Code: BCS304

Module 4
Trees

Binary Search Tree

Go, change the world

Heap

a min (max) element is deleted.
 O(log₂n)

deletion of an arbitrary element O(n)

search for an arbitrary element O(n)

Binary search tree

- Every element has a unique key.
- The keys in a nonempty left subtree (right subtree) are smaller (larger) than the key in the root of subtree.
- The left and right subtrees are also binary search trees.

Examples of Binary Search Trees

Searching a Binary Search Tree the world

```
tree pointer search (tree pointer root,
                        int key)
/* return a pointer to the node that
  contains key. If there is no such node,
  return NULL */
  if (!root) return NULL;
  if (key == root->data) return root; if
  (key < root->data)
       return search (root->left child,
                        key);
  return search(root->right child, key);
```


Another Searching Algorithm

```
tree pointer search2 (tree pointer tree, int
  key)
  while (tree) {
     if (key == tree->data) return tree; if
     (key < tree->data)
         tree = tree->left child; else
    tree = tree->right child;
  return NULL;
```

Insert Node in Binary Search Tree

Insert 80

Insert 35

Insertion into A Binary Search Tree

```
void insert node(tree pointer *node, int num)
{tree pointer ptr,
       temp = modified search(*node, num); if (temp | |
  !(*node)) {
   ptr = (tree pointer) malloc(sizeof(node)); if (IS FULL(ptr)) {
      fprintf(stderr, "The memory is full\n'');
      exit(1);
   ptr->data = num;
   ptr->left child = ptr->right child = NULL;
   if (*node)
      if (num<temp->data) temp->left child=ptr; else temp-
         >right child = ptr;
   else *node = ptr;
```


Deletion for A Binary Search Trees the world

Deletion for A Binary Search Tree

Before deleting 60

After deleting 60

Definition

- A graph G consists of two sets
 - a finite, nonempty set of vertices V(G)
 - a finite, possible empty set of edges E(G)
 - G(V,E) represents a graph
- An undirected graph is one in which the pair of vertices in a edge is unordered, $(v_0, v_1) = (v_1, v_0)$
- □ A directed graph is one in which each edge is a directed pair of vertices, $\langle v_0, v_1 \rangle != \langle v_1, v_0 \rangle$

ta<u>il</u> head

Examples for Graph

Go, change the world

 G_1

complete graph

incomplete graph

 G_3

$$V(G_1)=\{0,1,2,3\}$$

 $V(G_2)=\{0,1,2,3,4,5,6\}$

$$V(G_3)=\{0,1,2\}$$

$$E(G_1)=\{(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)\}$$

$$E(G_2)=\{(0,1),(0,2),(1,3),(1,4),(2,5),(2,6)\}$$

$$E(G_3)=\{<0,1>,<1,0>,<1,2>\}$$

complete undirected graph: n(n-1)/2 edges

complete directed graph: n(n-1) edges

Complete Graph

- A complete graph is a graph that has the maximum number of edges
 - for undirected graph with n vertices, the maximum number of edges is $\frac{n(n-1)}{2}$
 - for directed graph with n vertices, the maximum number of edges is n(n-1)
 - example: G1 is a complete graph

Adjacent and Incident

- ☐ If (v₀, v₁) is an edge in an undirected graph,
 - v₀ and v₁ are adjacent
 - The edge (v_0, v_1) is incident on vertices v_0 and v_1
- □ If $\langle v_0, v_1 \rangle$ is an edge in a directed graph
 - v₀ is adjacent to v₁, and v₁ is adjacent from v₀
 - The edge $\langle v_0, v_1 \rangle$ is incident on v_0 and v_1

*Figure 6.3:Example of a graph with feedback loops and a Go, change the world multigraph (p.260)

Subgraph and Path

- A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)
- □ A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, v_p, v_{i1}, v_{i2}, ..., v_{in}, v_q, such that (v_p, v_{i1}), (v_{i1}, v_{i2}), ..., (v_{in}, v_q) are edges in an undirected graph
- □ The length of a path is the number of edges on it

Simple Path and Style

- A simple path is a path in which all vertices,
 except possibly the first and the last, are distinct
- A cycle is a simple path in which the first and the last vertices are the same
- □ In an undirected graph G, two vertices, v₀ and v₁ are connected if there is a path in G from v₀ to v₁
- An undirected graph is connected if, for every pair of distinct vertices v_i, v_j, there is a path from v_i to v_j

connected

tree (acyclic graph)

Connected Component

- A connected component of an undirected graph is a maximal connected subgraph.
- ☐ A tree is a graph that is connected and acyclic.
- A directed graph is strongly connected if there is a directed path from v_i to v_j and also from v_j to v_i.
- A strongly connected component is a maximal subgraph that is strongly connected.

*Figure 6.5: A graph with two connected components (p.262)
Go, change the world

connected component (maximal connected subgraph)

G₄ (not connected)

*Figure 6.6: Strongly connected components of G_3 (p.262) change the world

strongly connected component

not strongly connected (maximal strongly connected subgraph)

Degree

- □ The degree of a vertex is the number of edges incident to that vertex
- For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = \left(\sum_{i=1}^{n-1} d_i\right) / 2$$

Go, change the world

degree

directed graph in-degree out-degree

in:1, out: 1

in: 1, out: 2

in: 1, out: 0

 G_3

Graph Representations

- Adjacency Matrix
- Adjacency Lists
- Adjacency Multilists

Adjacency Matrix

- \square Let G=(V,E) be a graph with n vertices.
- The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
- □ If the edge (v_i, v_j) is in E(G), $adj_mat[i][j]=1$
- ☐ If there is no such edge in E(G), adj_mat[i][j]=0
- ☐ The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Go, chage the world 0

symmetric

undirected: n²/2

directed: n²

Merits of Adjacency Matrix

- ☐ From the adjacency matrix, to determine the connection of vertices is easy
- □ The degree of a vertex is $\sum_{j=0}^{n-1} adj_{-m}$
- □ For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Data Structures for Adjacency Lists

Each row in adjacency matrix is represented as an adjacency list.

```
#define MAX VERTICES 50
typedef struct node *node pointer;
typedef struct node {
    int vertex;
    struct node *link;
node pointer graph [MAX VERTICES];
int n=0; /* vertices currently in use *
```


An undirected graph with n vertices and e edges ==> n head nodes and e list nodes

Interesting Operations

- degree of a vertex in an undirected graph
 - —# of nodes in adjacency list
- u# of edges in a graph
 - -determined in O(n+e)
- out-degree of a vertex in a directed graph
 - —# of nodes in its adjacency list
- **nin-degree** of a vertex in a directed graph
 - -traverse the whole data structure

Compact Representation

node[0] ... node[n-1]: starting point for vertices node[n]: n+2e+1

node[n+1] ... node[n+2e]: head node of edge

[0]	9		[8]	23		[16]	2	
[1]	11	0	[9]	1	4	[17]	5	
[2]	13		[10]	2	5	[18]	4	
[3]	15	1	[11]	0		[19]	6	
[4]	17		[12]	3	6	[20]	5	
[5]	18	2	[13]	0		[21]	7	
[6]	20		[14]	3	7	[22]	6	
[7]	22	3	[15]	1				

Figure 6.10: Inverse adjacency list for G₃

Determine in-degree of a vertex in a fast way.

Figure 6.11: Alternate node structure for adjacency lists (p.267)

tail head column link for head flow link for tail	tail	head	column link for head	row link for tail
---	------	------	----------------------	-------------------

Figure 6.12: Orthogonal representation for graph G₃(p.268)

Figure 6.13:Alternate order adjacency list for G₁ (p.268) change the world

Order is of no significance.

Adjacency Multilists

- An edge in an undirected graph is represented by two nodes in adjacency list representation.
- Adjacency Multilists
 - -lists in which nodes may be shared among several lists.

(an edge is shared by two different paths)

marked vertex1	vertex2	path1	path2
----------------	---------	-------	-------

Example for Adjacency Multhstange the world

Lists: vertex 0: M1->M2->M3, vertex 1: M1->M4->M5

vertex 2: M2->M4->M6, vertex 3: M3->M5->M6

Adjacency Multilists

```
typedef struct edge *edge pointer;
typedef struct edge {
    short int marked;
    int vertex1, vertex2;
    edge pointer path1, path2;
edge pointer graph [MAX VERTICES];
                           path2
     marked
                vertex2
          vertex 1
                      path1
```


Some Graph Operations

- Traversal
 - Given G=(V,E) and vertex v, find all $w \in V$, such that w connects v.
 - Depth First Search (DFS)preorder tree traversal
 - Breadth First Search (BFS)
 level order tree traversal
- Connected Components
- Spanning Trees

*Figure 6.19: Graph G and its adjacency lists (p.274) Go, change the world

depth first search: v0, v1, v3, v7, v4, v5, v2, v6

breadth first search: v0, v1, v2, v3, v4, v5, v6, v7

Depth First Search

```
#define FALSE 0
            #define TRUE 1
            short int visited[MAX VERTICES];
void dfs(int v)
  node pointer w;
  visited[v] = TRUE;
  printf("%5d", v);
  for (w=graph[v]; w; w=w->link)
     if (!visited[w->vertex])
       dfs(w->vertex);
                         Data structure
                          adjacency list: O(e)
                          adjacency matrix: O(n<sup>2</sup>)
```

Breadth First Search

```
typedef struct queue *queue pointer;
typedef struct queue {
    int vertex;
    queue pointer link;
};
void addq(queue pointer *,
          queue pointer *, int);
int deleteq(queue pointer *);
```

Breadth First Search (Continued)

```
void bfs(int v)
  node pointer w;
  queue pointer front, rear;
  front = rear = NULL;
                               adjacency list: O(e)
  printf("%5d", v);
                               adjacency matrix: O(n<sup>2</sup>)
  visited[v] = TRUE;
  addq(&front, &rear, v);
```

```
while (front) {
  v= deleteq(&front);
  for (w=graph[v]; w; w=w->link)
    if (!visited[w->vertex]) {
      printf("%5d", w->vertex);
      addq(&front, &rear, w->vertex);
      visited[w->vertex] = TRUE;
```

Connected Components

```
void connected(void)
     for (i=0; i<n; i++) {
          if (!visited[i]) {
               dfs(i);
               printf("\n");
                        adjacency list: O(n+e)
                        adjacency matrix: O(n^2)
```

Spanning Trees

- When graph G is connected, a depth first or breadth first search starting at any vertex will visit all vertices in G
- A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- \square E(G): T (tree edges) + N (nontree edges)
 - where T: set of edges used during search
 - N: set of remaining edges

Examples of Spanning Tree

 G_1

Possible spanning trees

Spanning Trees

- Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree
- While adding a nontree edge into any spanning tree, this will create a cycle

DFS VS BFS Spanning Tree

A spanning tree is a minimal subgraph, G', of G' change the world such that V(G')=V(G) and G' is connected.

Any connected graph with n vertices must have at least n-1 edges.

A biconnected graph is a connected graph that has

no articulation points.

biconnected graph

biconnected component: a maximal connected subgraph H

(no subgraph that is both biconnected and properly contains H)

biconnected components

Find biconnected component of a connected undirected graph change the world

by depth first spanning tree

If u is an ancestor of v then dfn(u) < dfn(v).

*Figure 6.24: dfn and low values for dfs spanning tree with root = 3(p.281)

Vertax	0	1	2	3	4	5	6	7	8	9
dfn	4	3	2	0	1	5	6	7	9	8
low	4	0	0	0	0	5	5	5	9	8

*The root of a depth first spanning tree is an articulation point iff it has at least two children.

*Any other vertex u is an articulation point iff it has at least one child w such that we cannot reach an ancestor of u using a path that consists of

(T) only w (2) descendants of w (3) low(u)=min{dfn(u), single back edge. min{low(w)|w is a child of u}, min{dfn(w)|(u,w) is a back edge}

9

u: articulation point $low(child) \ge dfn(u)$

Go, change the world

vertex	dfn	low	child	low_child	low:dfn
0	4	4 (4,n,n)	null	null	null:4
1	3	0 (3,4,0)	0	4	4 ≥ 3
2	2	0(2,0,n)	1	0	0 < 2
3	0	0(0,0,n)	4,5	0,5	$0,5 \ge 0$
4	1	0(1,0,n)	2	0	0 < 1
5	5	5 (5,5,n)	6	5	5 ≥ 5 •
6	6	5 (6,5,n)	7	5	5 < 6
7	7	5 (7,8,5)	8,9	9,8	$9,8 \ge 7$
8	9	9 (9,n,n)	null	null	null, 9
9	8	8 (8,n,n)	null	null	null, 8

*Program 6.5: Initialization of dfn and low (p.282)

```
void init(void)
{
  int i;
  for (i = 0; i < n; i++) {
     visited[i] = FALSE;
     dfn[i] = low[i] = -1;
     }
     num = 0;
}</pre>
```

```
*Program 6.4: Determining dfn and low (p.282)
                                                            Go, change the world
void dfnlow(int u, int v)
                                   Initial call: dfn(x,-1)
/* compute dfn and low while performing a dfs search
  beginning at vertex u, v is the parent of u (if any) */
     node_pointer ptr;
     int w;
                                  low[u]=min\{dfn(u), ...\}
     dfn[u] = low[u] = num++;
     for (ptr = graph[u]; ptr; ptr = ptr ->link) {
         w = ptr -> vertex;
         if (dfn[w] < 0) { /*w is an unvisited vertex */
         dfnlow(w, u);
           low[u] = MIN2(low[u], low[w]);
      } low[u]=min{..., min{low(w)|w is a child of u}, ...} else if (w!=v) dfn[w]≠0 非第一次,表示籍back edge
          low[u] = MIN2(low[u], dfn[w]);
          low[u]=min\{...,min\{dfn(w)|(u,w) \text{ is a back edge}\}\
```


Technology and rogram 6.6: Biconnected components of a graph (p.283), change the world Management®

```
void bicon(int u, int v)
/* compute dfn and low, and output the edges of G by their
 biconnected components, v is the parent (if any) of the u
 (if any) in the resulting spanning tree. It is assumed that all
 entries of dfn[] have been initialized to -1, num has been
 initialized to 0, and the stack has been set to empty */
   node_pointer ptr;
   int w, x, y;
   dfn[u] = low[u] = num ++; low[u]=min{dfn(u), ...}
   for (ptr = graph[u]; ptr; ptr = ptr->link) {
    w = ptr -> vertex; (1) dfn[w]=-1 第一次
    if (v!=w&& dfn[w] < dfn[u])(2)dfn[w]!=-1非第一次,藉back
       add(&top, u, w); /* add edge to stack */
                                                             edge
```

```
if(dfn[w] < 0) {
   bicon(w, u);
   low[u] = MIN2(low[u], low[w]);
   if (low[w] >= dfn[u]){ articulation point
     printf("New biconnected component: ");
     do { /* delete edge from stack */
        delete(&top, &x, &y);
         printf(" <%d, %d>", x, y);
      } while (!((x = = u) \&\& (y = = w)));
      printf("\n");
  else if (w != v) low[u] = MIN2(low[u], dfn[w]);
        low[u]=min\{..., ..., min\{dfn(w)|(u,w) \text{ is a back edge}\}\}
```

Minimum Cost Spanning Tree

- □ The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- □ A minimum cost spanning tree is a spanning tree of least cost
- Three different algorithms can be used
 - Kruskal
 - Prim
 - Sollin

Select n-1 edges from a weighted graph of n vertices with minimum cost.

Greedy Strategy

- An optimal solution is constructed in stages
- At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

Kruskal's Idea

Build a minimum cost spanning tree T by adding edges to T one at a time

Select the edges for inclusion in T in nondecreasing order of the cost

An edge is added to T if it does not form a cycle

Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected

Examples for Kruskal's Algorithmage the world

0_10_5

2 12 3

4-25-5

28

6/9

2 12 3

1-14-6

 $0^{-28} - 1$

+ 3—6 cycle

2 12 3

10,

16

12

cycle

14

$$cost = 10 + 25 + 22 + 12 + 16 + 14$$

Kruskal's Algorithm

```
T= \{ \} ;
while (T contains less than n-1 edges
        && E is not empty)
choose a least cost edge (v,w) from E;
delete (v, w) from E; min heap construction time O(e)
if ((v,w) does not create a cycle in T)
     add (v,w) to T
                            find find & union O(log e)
 else discard (v,w); _
\{0,5\}, \{1,2,3,6\}, \{4\} + edge(3,6) X + edge(3,4) --> \{0,5\}, \{1,2,3,4,6\}
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
      O(e log e)
```

Prim's Algorithm

(tree all the time vs. forest)

```
T = \{ \} ;
TV = \{ 0 \} ;
while (T contains fewer than n-1 edges)
  let (u, v) be a least cost edge such that u \in and
  if (there is no such edge ) break; add v to TV;
  add (u,v) to T;
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```


Examples for Prim's Algorithm change the world

Sollin's Algorithm

Go, change the world

vertex	edge
0	0 10> 5, 0 28> 1
1	1 14 > 6, 1 16 > 2, 1 28 > 0
2	2 12 > 3, 2 16 > 1
3	3 12> 2, 3 18> 6, 3 22> 4
4	4 22> 3, 4 24> 6, 5 25> 5
5	5 10> 0, 5 25> 4
6	6 14> 1, 6 18> 3, 6 24> 4

Single Source All Destinations

Determine the shortest paths from v0 to all the remaining vertices.

*Figure 6.29: Graph and shortest paths from v_0 (p.293)

All Pairs Shortest Paths

Find the shortest paths between all pairs of vertices.

Solution 1

-Apply shortest path n times with each vertex as source. $O(n^3)$

Solution 2

- -Represent the graph G by its cost adjacency matrix with cost[i][j]
- -If the edge <i,j> is not in G, the cost[i][j] is set to some sufficiently large number
- -A[i][j] is the cost of the shortest path form i to j, using only those intermediate vertices with an index <= k

All Pairs Shortest Paths (Continued)

- □ The cost of the shortest path from i to j is Aⁿ⁻¹[i][j], as no vertex in G has an index greater than n-1
- \square Calculate the $A^0, A^1, A, 2, ..., A^{n-1}$ from A^{-1} iteratively

Graph with negative cycle

$$\begin{bmatrix} 0 & 1 & \infty \\ -2 & 0 & 1 \\ \infty & \infty & 0 \end{bmatrix}$$

(a) Directed graph

(b)
$$A^{-1}$$

The length of the shortest path from vertex 0 to vertex 2 is $-\infty$.

$$0, 1, 0, 1, 0, 1, \dots, 0, 1, 2$$

Algorithm for All Pairs Shortest Paths

```
void allcosts (int cost[][MAX VERTICES],
         int distance[][MAX VERTICES], int n)
  int i, j, k;
  for (i=0; i< n; i++)
    for (j=0; j< n; j++)
         `distance[i][j] = cost[i][j];
  for (k=0; k< n; k++)
    for (i=0; i< n; i++)
      for (j=0; j< n; j++)
        if (distance[i][k]+distance[k][j]
            < distance[i][j])
           distance[i][j]=
                distance[i][k]+distance[k][j];
```


* Figure 6.33: Directed graph and its cost matrix (p.299)

(a)Digraph G

(b)Cost adjacency matrix for G

RV Institute of Technology and Management®

Transitive Closure

Go, change the world

Goal: given a graph with unweighted edges, determine if there is a path from i to j for all i and j.

- (1) Require positive path (> 0) lengths. transitive closure matrix
- (2) Require nonnegative path (≥0) lengths. reflexive transitive closure matrix

(a) Digraph G

(b) Adjacency matrix A for G

(c) transitive closure matrix A⁺

(d) reflexive transitive closure matrix A*

There is a path of length > 0

There is a path of length ≥ 0