- 1. Let X be a finite set and let τ be a topology on X. In this exercise we will show that there is a minimal basis for the topology τ . That is, there is a basis \mathcal{B}_{\min} of τ such that if \mathcal{B} is any other basis for τ , then $\mathcal{B}_{\min} \subseteq \mathcal{B}$.
 - (a) If $x \in X$, let U_x be the intersection of all open sets that contain x. Explain why U_x is an open set.
 - (b) Let $\mathcal{B}_{\min} = \{U_x \mid x \in X\}$. Show that \mathcal{B}_{\min} is a basis for τ .
 - (c) Show that if \mathcal{B} is a basis for τ , then $\mathcal{B}_{\min} \subseteq \mathcal{B}$.
 - (d) Let $X = \{a, b, c, d\}$ and let $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, d\}, \{a, b, d\}, \{a, c, d\}, \{a, b, c, d\}\}$. You may assume that τ is a topology on X. Find the unique minimal basis for τ .

Solution.

- (a) Let $x \in X$. Since X is finite, there are only finitely many open sets that contain x. The fact that the intersection of a finite number of open sets is open implies that U_x is an open set.
- (b) If $x \in X$, then $x \in U_x$. Now let $B_1 = U_x$ and $B_2 = U_y$ for some x, y in X, and suppose $z \in B_1 \cap B_2$. Then $B_1 \cap B_2$ is an open set that contains z and so $U_z \subseteq B_1 \cap B_2$. So \mathcal{B}_{\min} is a basis for τ .
- (c) Let \mathcal{B} be a basis for τ . To show that $\mathcal{B}_{\min} \subseteq \mathcal{B}$, let U_x be an element of \mathcal{B}_{\min} we will show that $U_x \in \mathcal{B}$. The fact that $U_x \in \tau$ means that U_x is a union of basis elements from \mathcal{B} . That is, there is a set $U \in \mathcal{B}$ such that $x \in U \subseteq U_x$. But U_x is the intersection of all open sets that contain x, so it follows that $C = U_x$ and $U_x \in \mathcal{B}$.
- (d) The minimal basis for τ is the set $\{U_a, U_b, U_c, U_d\}$. Since $\{a\}$ is in τ , it follows that $U_a = \{a\}$. Also

$$U_b = \{a, b\} \cap \{a, b, c\} \cap \{a, b, d\} \cap X = \{a, b\}$$

$$U_c = \{a, c\} \cap \{a, b, c\} \cap \{a, c, d\} \cap X = \{a, c\}$$

$$U_d = \{a, d\} \cap \{a, b, d\} \cap \{a, c, d\} \cap X = \{a, d\}$$

So the minimal basis for τ is $\{\{a\}, \{a,b\}, \{a,c\}, \{a,d\}\}.$

- 2. You may wonder why we can't define a basis for a topology on a set X to be any collection of subsets whose union is X. Consider the example of $X = \{a, b, c\}$ and $S = \{\{a\}, \{c\}, \{a, b\}, \{b, c\}\}$.
 - (a) Determine the collection of all of the unions of elements of S.
 - (b) Explain why the collection of unions of the elements of S, along with the empty set, is not a topology on X. What property of a basis is not satisfied?
- 3. Let a and b be integers with $b \neq 0$. Let $A_{a,b} = a\mathbb{Z} + b = \{a + kb \mid k \in \mathbb{Z}\}.$
 - (a) Show that $\{A_{a,b} \mid a,b \in \mathbb{Z}, b \neq 0\}$ is a basis for a topology τ on \mathbb{Z} . (Hint: If $B_1 = A_{a_1,b_1}$ and $B_2 = A_{a_2,b_2}$, and if $x \in B_1 \cap B_2$, what can we say about A_{x,b_1b_2} ?)
 - (b) Let $f: \mathbb{Z} \to \mathbb{Z}$ be defined by $f(n) = n + (-1)^n$.
 - i. Prove that f is a bijection.
 - ii. If O is an open set in \mathbb{Z} , is f(O) an open set?
 - iii. If U is an open set in \mathbb{Z} , is $f^{-1}(U)$ an open set? (Hint: What is f^{-1} ?)
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x|, with the Euclidean metric on both the domain and the codomain. Is f continuous at x = 0? Prove your answer.
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} \frac{x}{|x|} & \text{if } x \neq 0 \\ 1 & \text{if } x = 0. \end{cases}$ Is f continuous at x = 0? Prove your answer.
- 6. Let f and g be functions from (\mathbb{R}, d_E) to (\mathbb{R}, d_E) .
 - (a) Is it true that if f + g is a continuous function, then f and g are continuous functions? Verify your answer.

- (b) Is it true that if fg is a continuous function, then f and g are continuous functions? Verify your answer.
- 7. Let $f(x) = 2x^2 + 1$ map from \mathbb{R} to \mathbb{R} , with both the domain and codomain having the Euclidean metric.
 - (a) Let $\epsilon = \frac{1}{4}$. Find a value of δ such that $|x-1| < \delta$ implies that $|f(x)-f(a)| < \epsilon$. You might use the applet at to confirm your value of δ .
 - (b) Prove that f is continuous at x = 1.
- 8. Let f and g be continuous functions from (\mathbb{R}, d_E) to (\mathbb{R}, d_E) . In this exercise we will prove that fg is a continuous function from \mathbb{R} to \mathbb{R} . Let a be in \mathbb{R} , and follow the steps below to show that fg is continuous at x = a. Let ϵ be a positive number.
 - (a) We will first want to express f(x)g(x) f(a)g(a) in a more useful way. Use the fact that f(x) = f(a) + (f(x) f(a)) and g(x) = g(a) + (g(x) g(a)) to show that

$$f(x)g(x) - f(a)g(a) = f(a)(g(x) - g(a)) + g(a)(f(x) - f(a)) + (f(x) - f(a))(g(x) - g(a)).$$

(b) Explain why there exist positive numbers δ_1 , δ_2 , δ_3 , and δ_4 such that

$$|f(x) - f(a)| < \sqrt{\frac{\epsilon}{3}} \text{ when } |x - a| < \delta_1$$

$$|g(x) - g(a)| < \sqrt{\frac{\epsilon}{3}} \text{ when } |x - a| < \delta_2$$

$$|f(x) - f(a)| < \frac{\epsilon}{3(1 + |g(a)|)} \text{ when } |x - a| < \delta_3$$

$$|g(x) - g(a)| < \frac{\epsilon}{3(1 + |f(a)|)} \text{ when } |x - a| < \delta_4.$$

- (c) Use the results of (a) and (b) to show that fg is continuous at x = a. (Hint: 1 + |f(a)| > |f(a)|.)
- 9. Let (X, d_X) , (Y, d_Y) , and (Z, d_Z) be metric spaces, and let $f: X \to Y$ and $g: Y \to Z$ be continuous functions. Prove that $(g \circ f)$ is a continuous function from X to Z.
- 10. Let $X = \{a, b, c\}$, and let $\tau_1 = \{\emptyset, \{a\}, \{a, b, c\}\}$ and $\tau_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$. Both τ_1 and τ_2 are topologies in X, but every element in τ_1 is also an element in τ_2 . Then this happens we say that τ_1 is a weaker topology than τ_2 . More formally,

Definition 1. Let τ_1 and τ_2 be two topologies on a set X. If $\tau_1 \subseteq \tau_2$, then τ_1 is a **coarser** (or **weaker**) topology than τ_2 . We also say that τ_2 is a **finer** (or **stronger**) topology than τ_1 .

- (a) What is the weakest topology on any set?
- (b) What is the strongest topology on any set?
- (c) Let $X = \{a, b, c\}$. Are there any topologies γ on X such that γ is not the indiscrete topology but there are no weaker topologies on X other than the indiscrete topology? Explain.
- (d) Below is a list of 9 distinct topologies on $X = \{a, b, c\}$. Each topology lies in one or more sequences of topologies ordered by coarseness. For each topology τ , list the longest sequence(s) of topologies that start $\{\emptyset, X\} \subset \tau$, ordered by coarseness.

1.
$$\{\emptyset, X\}$$

2.
$$\{\emptyset, \{a\}, X\}$$

3.
$$\{\emptyset, \{a,b\}, X\}$$

4.
$$\{\emptyset, \{a\}, \{a,b\}, X\}$$

5.
$$\{\emptyset, \{a\}, \{b, c\}, X\}$$

6.
$$\{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$$

7.
$$\{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}$$

8.
$$\{\emptyset, \{b\}, \{c\}, \{b, c\}, \{a, c\}, X\}$$

9.
$$\{\emptyset, \{a\}, \{b\}, \{a,b\}, \{b,c\}, X\}$$

10. the discrete topology

- 11. Let (X, d) be a metric space, let A be a subset of X, and let $x \in X$. In this exercise we will prove that x is a limit point of A if and only if there is a sequence (a_n) in A that converges to x.
 - (a) First show that if $x \in X$ is a limit point of A, then there is a sequence (a_n) in A that converges to x. (Hint: For $n \in \mathbb{Z}^+$, consider the neighborhood $B\left(x, \frac{1}{n}\right)$.)
 - (b) Now prove that if there is a sequence (a_n) in X that converges to x, then x is a limit point of A. (Hint: What is true about the sequence $d(a_n, x)$?)