ALTAVOZ EN PANTALLA INFINITA Prof. Andrés Barrera A.

- 1) Un altavoz montado en pantalla infinita tiene los siguientes parámetros: $f_S = 55$ Hz, Qes = 0,5, Qms = 3,3, Vas = 0,12 m³ y $R_E = 6,7$ Ω .
 - a) ¿Cuál es el voltaje rms necesario en el pasabanda para tener una potencia eléctrica de entrada de 10 Watts? (considere que $Rg = 10\%R_{\rm F}$)
 - b) Calcule la eficiencia y la potencia acústica de salida para una potencia eléctrica de entrada de 8 Watts.
- 2) Un altavoz en pantalla infinita genera 94 dB de nivel de presión sonora a 1m y con 1 Volt rms. El driver tiene especificaciones de Sd = 0.04 m^2 , Re = 8Ω , fs = 40Hz, Qts = 0.707 y Qms = 4. Determine los valores de:
 - a) Factor de pérdidas eléctrico Qes
 - b) Volumen de aire equivalente Vas y compliancia acústica Cas de la suspensión
 - c) Masa acústica del diafragma Mas
 - d) Factor de fuerza Bl
- 3) Calcule para el siguiente altavoz:

Swan 305 Specifications							
Fs	22.7 Hz						
Impedance	8 Ω						
Vas	166,5 Liters						
Rscc	5,2 Ω						
vcL	3.82mH @ 1K						
BI	14,74 Weber / m						
Qms	9.654						
Qes	0.401						
Qts	0.385						
Xmax	7.3 mm Peak						
Sd	0.0531 m ²						

- a) La función G(s) en pantalla infinita. Grafique su magnitud de respuesta.
- b) La eficiencia de referencia y el nivel de presión sonora en el pasabanda (1Watt/1m).
- c) El desplazamiento del diafragma x_D para una potencia eléctrica de entrada de 1 Watt (para una f << f_S).
- d) Las potencias eléctrica P_{ER} y acústica P_{AR}
- 4) Para el siguiente driver: $Sd = 0,0471 \text{ m}^2$; Qms = 11; Qts = 0,5; $Vas = 0,075 \text{ m}^3$; $\eta_0 = 1,5 \% \text{ y R}_E + R_{ES} = 80,5\Omega$. Determinar los valores de los componentes electromecánicos (Mms, Cms, Rms, Bl, R_E y fs) y acústicos (Mas, Cas y Ras).
- 5) Considere los siguientes parámetros Thiele-Small:

Fs	35	Hz
Qms	6	
Qes	0,4	
Qts	0,38	
Sd	0,0346	m ²
Xmax	3 mm	
Vas	0,0288	m ³
$R_{\rm E}$	5,1	Ω
Bl	18,34	Weber/m

- a) Determine el valor máximo de la impedancia eléctrica del driver en pantalla infinita |Zvc(jw)|_{max}
- b) Calcule la frecuencia de corte f₃ del altavoz en pantalla infinita, la eficiencia de referencia y grafique el nivel de presión sonora (1Watt/1m) en función de la frecuencia ¿Hasta qué frecuencia será válido este gráfico?
- c) Indique los valores de Par y Per, así como el máximo nivel de presión sonora a 1 m sin distorsión.
- 6) Un altavoz tiene los siguientes parámetros en pequeña señal: Re = 7Ω , fs = 40Hz, Qts = 0.5, Qms = 5.5, Qes = 0.55 y Vas = 8.5 x 10^{-2} m³.
 - a) Encuentre la función de respuesta del sistema G(s). Grafíque la magnitud de respuesta $|G(j\omega)|$ en función de la frecuencia.
 - b) El driver es modificado tal que Qts = 0,707. Si sólo Qes cambia, ¿Cuál debe ser su nuevo valor?
 - c) El cambio en el Qes se produce al agregar una resistencia en serie con Re ¿Qué valor tiene esta resistencia?
 - d) Se agrega masa al diafragma del altavoz original que disminuye la fs de 40Hz a 28,3Hz ¿Cuál es el aumento porcentual de la masa del diafragma?¿Cuál es el nuevo Qts del altavoz?
- 7) Se diseña un altavoz para ser utilizado en pantalla infinita con las siguientes especificaciones Re = 7Ω y Cms = 4×10^{-4} m/N. Se estima que Qms = 5.
 - a) Calcular Mms para una frecuencia de resonancia de 30Hz.
 - b) Calcular Qes para un Qts = 0.707
 - c) Calcular el factor de fuerza Bl
- 8) Un driver tiene los siguientes parámetros Thiele Small: fs = 30Hz, $Re = 7\Omega$, Qes = 0.33, Qms = 3.3 y Vas = 5 pies³.
 - a) Calcular el nivel de presión sonora a 1,5 m en la zona plana de la respuesta cuando en la bobina hay 1 Volt rms.
 - b) Grafique la magnitud de la función de transferencia $|G(j\omega)|$ del altavoz montado en pantalla infinita.
- 9) Para el altavoz JBL Modelo 122A y para el Modelo 112A (Véase tabla adjunta)

JBL PROFESSIONAL

THIELE SMALL LOW FREQUENCY DRIVER PARAMETERS AND DEFINITIONS

March 17, 2008 Page 2 of 5

MODEL	FS	QTS	QMS	QES	VAS	EFF	PE	XMAX	RE	LE	SD	BI	MMS	FLUX
112A	40	0.21	4	0.22	34.0	0.9	60	2.79	5.8	0.3	0.018	12	22	0.95
116A	28	0.46	5	0.51	73.6	0.3	50	4.83	5.2	0.6	0.018	6.7	25	0.85
122A	17	0.23	7	0.24	339.8	0.67	50	6.86	5.7	1.5	0.053	16	100	1.08
123A	25	0.49	8.5	0.52	235.1	0.68	50	7.87	4.4	0.6	0.049	8.9	85	1
124A	16	0.14	6	0.14	399.3	1.1	100	5.08	6.3	1.4	0.053	21	100	1.2
125A	25	43	7.5	0.46	235.1	0.77	50	4.83	5.2	0.7	0.049	7.5	32	0.85

Determine:

- a) Sensibilidad dB(1W,1m) y frecuencia de corte del altavoz f_3 en pantalla infinita.
- b) Realice un bosquejo aproximado de la respuesta de frecuencia $20\log|G(j\omega)|$, mostrando claramente la pendiente del filtro y los valores de la respuesta a fs y f_3 .
- c) Realice un bosquejo aproximado de la impedancia eléctrica $|Z_{VC}(j\omega)|$ del altavoz, mostrando claramente el valor de la impedancia a fs.

10) Un altavoz tiene los siguientes parámetros Thiele-Small en pequeña señal: fs = 50 [Hz], Vas = 200 [L], Qes = 0,27, Qms = 6,7, Re = 6[Ω] y Sd = 0,054 [m2]. Evalúe la nueva frecuencia de corte f₃ si se repara el altavoz con una suspensión nueva con valores de Cms' = 4Cms y Rms' = Rms, siendo Cms y Rms los valores actuales. (<u>Indicación</u>: Explicite todos los supuestos utilizados).

Respuestas

- 1) a) 9V; b) 3,87%; 0,31 watts acusticos
- 2) a) 0,859; b) 0,208m3; 1,49e-6 m5/N; c) 10,6 kg/m4; d) 6,3 weber/m
- 3) a) $G(s) = 4.9e-5s_2/(4.9e-5s_2+0.018s+1)$; b) 0.47%; 88,8 dB(1W,1m); c) 3,8mm d) 3,6 watts eléctricos; 0.017 watts acústicos
- 4) Cas = 5,37e-7 ms/N; Qes = 0,524; Fs = 47,6Hz; Mas = 20,8 kg/m4; Ras = 565,5 Ohms acústicos; Cms = 2,42e-4 m/N; Mms = 46gr; Rms = 1,25 Ohms mecánicos; BL = 9,8 weber/m; Re = 3,7 Ohms
- 5) a) 81,5 Ohms; b) F3 = 79,2Hz; h_0 = 0,29%; NPS = 86,9 dB(1W;1m) en la zona plana; validez f < 521Hz; Per = 2,3W; Par = 6,87 mW; NPS max = 90,5 dB a 1m
- 6) a) $G(s) = 1,58e-5s_2 / (1,58e-5s_2 + 7,96e-3s + 1)$; b) 0,811; c) 3,3 Ohms; d) la masa aumenta al doble (200%); el nuevo Qts aumenta también al doble.
- 7) a) 0,0704 kg; b) 0,823; c) 10,6 weber/m.
- 8) a) 83,2 dB a 1m