

L'équation d'Euler-Lagrange : étude et applications

Valentin Moguérou

12 juin 2025

« Lorsqu'il arrive quelque changement dans la nature, la quantité d'action, nécessaire pour ce changement, est la plus petite qui soit possible. »

> Pierre Louis Moreau de Maupertuis, Accord de différentes lois de la nature qui avaient jusqu'ici parues incompatibles

Abstract Dans ce TIPE, on se propose de donner un sens formel et une démonstration à l'équation d'EULER-LAGRANGE

$$\frac{\partial L}{\partial q} - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0,$$

bien connue des physicien·nes, qui est une condition nécessaire d'extrémalité d'une fonctionnelle sur un espace fonctionnel. Nous appliquerons ensuite ce principe à des problèmes géométriques et physiques. Pour cela, nous étudierons le calcul différentiel dans le cadre plus général des espaces de Banach.

Table des matières

1	Prolégomènes	2
	1.1 Complétude dans les espaces vectoriels normés	2
	1.2 Fonctions d'une variable réelle à valeur dans un espace de BANACH	3
	1.3 Calcul différentiel dans les espaces de Banach	3
2	Le calcul des variations	3
	2.1 Notion de fonctionnelle	3
	2.2 L'équation d'Euler-Lagrange	4
3	Applications en Géométrie et en Physique	6
	3.1 La fonctionnelle de longueur	6
	3.2 Le principe fondamental de la dynamique en mécanique classique	

1 Prolégomènes

1.1 Complétude dans les espaces vectoriels normés

Définition 1. Soit E un \mathbb{R} -espace vectoriel muni d'une norme $\|\cdot\|$. On dit qu'une suite $(u_n) \in E^{\mathbb{N}}$ est de CAUCHY si, et seulement si

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall p, q \geqslant n_0, ||u_q - u_p|| < \varepsilon$$

ce que l'on peut aussi noter

$$\lim_{p,q\to+\infty} ||u_q - u_p|| = 0.$$

Proposition 1. Une suite convergente de $E^{\mathbb{N}}$ est de CAUCHY.

Remarque La réciproque est fausse : une suite de rationnels tendant vers $\sqrt{2}$ (qui existe par densité de \mathbb{Q} dans \mathbb{R}) est une suite de Cauchy. Elle ne peut pas converger dans \mathbb{Q} par irrationalité de $\sqrt{2}$.

Proposition 2. Si une suite (u_n) de CAUCHY dans un evn admet une sous-suite convergente, alors (u_n) converge.

Corollaire 3. Toute suite de CAUCHY à valeurs dans un compact converge.

Définition 2. On dit que l'espace E est complet (ou qu'il est de BANACH) si, et seulement si toute suite de CAUCHY converge.

Proposition 4. \mathbb{R}^n est complet.

Proposition 5. Si K est compact, et si E est un espace de Banach, alors $\mathscr{C}^0(K, E)$ est un espace de Banach (muni de la norme de la convergence uniforme).

En particulier $\mathscr{C}^0([a,b],\mathbb{R}^n)$ est complet.

Démonstration. Soit $(f_n)_{n\in\mathbb{N}}\in (\mathscr{C}^0(K,E))^{\mathbb{N}}$ une suite de CAUCHY. Pour tout $x\in K$, $(f_n(x))$ est une suite de CAUCHY de E complet, donc converge vers un nombre que l'on note f(x).

Ainsi (f_n) converge simplement vers f. Montrons à présent que la convergence est uniforme. On a

$$\sup_{x \in K} \|f_n(x) - f(x)\| = \sup_{x \in K} \lim_{m \to +\infty} \|f_n(x) - f_m(x)\|$$

$$\leq \overline{\lim} \sup_{m \to +\infty} \sup_{x \in K} \|f_n(x) - f_m(x)\|$$

$$= \overline{\lim} \sup_{m \to +\infty} \|f_n - f\|_{\infty}$$

$$\xrightarrow{n \to +\infty} 0.$$

Ainsi (f_n) converge uniformément. Puisque c'est une suite de fonctions continues, elle converge uniformément vers une fonction continue, c'est-à-dire un élément de $\mathscr{C}^0(K, E)$. On a donc montré que $\mathscr{C}^0(K, E)$ est complet.

Dans la suite, on fixe un espace de BANACH E, ainsi qu'un intervalle compact I = [a, b].

Définition 3. On appelle courbe de classe \mathscr{C}^1 sur E toute application de I dans E. On notera V l'ensemble des courbes de classe \mathscr{C}^1 sur E, de classe \mathscr{C}^1 .

Proposition 6. L'application

$$\begin{array}{ccc} \|\cdot\|: V & \longrightarrow & \mathbb{R}_+ \\ \varphi & \longmapsto & \|\varphi\|_\infty + \|\varphi'\|_\infty \end{array}$$

munit V d'une structure d'espace de Banach.

Remarque Cette norme est plus fine que celle de la convergence uniforme.

1.2 Fonctions d'une variable réelle à valeur dans un espace de Banach

Proposition 7. Soient E et F deux espaces de Banach. On note I = [0,1]. Soit $\varphi : U \times I \to F$ continue, où U est un ouvert de E.

Pour $x \in U$, on pose

$$\psi(x) = \int_0^1 \varphi(x, t) \, \mathrm{d}t.$$

Alors ψ est continue.

Si de plus $\partial_x \varphi$ existe en tout point $(x,t) \in U \times I$ et est une application continue $U \times I \to \mathcal{L}(E,F)$, alors ψ est de classe \mathscr{C}^1 et on a :

$$\psi'(x) = \int_0^1 \partial_x \varphi(x, t) dt.$$

(formule de Leibniz)

1.3 Calcul différentiel dans les espaces de Banach

Le but de cette section est de donner des outils de calcul différentiel utiles au reste du développement.

Définition 4. Soient E et F deux espaces de Banach. Soit $U \subset E$ un ouvert.

On dit que $f_1: U \to F$ et $f_2: U \to F$ sont tangentes en $a \in U$ si, et seulement si

$$\frac{1}{r} \sup_{x \in \overline{B}(a,r)} ||f_1(x) - f_2(x)|| \underset{r \to 0^+}{\longrightarrow} 0.$$

On note aussi

$$m(r) \stackrel{\text{def}}{=} \sup_{x \in \overline{B}(a,r)} ||f_1(x) - f_2(x)|| \underset{r \to 0^+}{=} o(r).$$

On parle en particulier de fonction tangente à 0 en $a \in U$.

Proposition 8. C'est une relation d'équivalence sur F^U .

Proposition 9. Soit q une application linéaire

Définition 5. Soit $f: U \to F$. On dit que f est différentiable au point $a \in U$ si, et seulement si :

- (i) f est continue au point a;
- (ii) il existe $g \in \mathcal{L}(E, F)$ telle que les applications $x \mapsto f(x) f(a)$ et $x \mapsto g(x a)$ soient tangentes au point a, ce qui se note également

$$||f(x) - f(a) - q(x - a)|| = o(||x - a||).$$

Lorsque f est différentiable en a, il existe une unique application linéaire $g \in \mathcal{L}(E, F)$ continue que l'on note f'(a).

On dit que f est différentiable sur U si, et seulement si elle est différentiable en tout point de U.

Définition 6 (Minima et maxima relatifs). On dit que $f: U \to \mathbb{R}$ admet un minimum (resp. maximum) local (ou relatif) en $a \in U$ ssi il existe $V \subset U$ un voisinage de a tel que

$$\forall x \in V \quad f(x) \geqslant f(a) \quad (\text{resp. } f(x) \leqslant f(a)).$$

Proposition 10 (Condition nécessaire pour un extremum relatif). Soit $f: U \to \mathbb{R}$ différentiable en $a \in U$. Si f admet un extremum relatif en a, alors f'(a) = 0.

2 Le calcul des variations

2.1 Notion de fonctionnelle

Dans toute la suite, on fixe un ouvert $U \subset \mathbb{R} \times E \times E$ ainsi qu'une fonction $F: U \to \mathbb{R}$ de classe \mathscr{C}^k (« Lagrangien » en sciences physiques).

Lorsque l'on prendra des éléments de U, on pourra les écrire avec les lettres $(t, x, y) \in U$.

Proposition 11. L'ensemble

$$\Omega \stackrel{\text{def}}{=} \left\{ \varphi \in V \mid \forall t \in I, (t, \varphi(t), \varphi'(t)) \in U \right\}.$$

est un ouvert de V.

Démonstration. Soit $\varphi_0 \in \Omega$. Montrons qu'il existe r > 0 telle que $B(\varphi_0, r) \subset \Omega$. L'ensemble

$$K \stackrel{\text{def}}{=} \{(t, \varphi_0(t), \varphi_0'(t)), t \in I\}$$

est une partie compacte de U (en tant qu'image directe de I par une application continue).

Définition 7. On appelle fonctionnelle associée à F l'application

$$f: \Omega \longrightarrow \mathbb{R}$$

$$\varphi \longmapsto \int_a^b F(t, \varphi(t), \varphi'(t)) dt.$$

La fonctionnelle f est définie dans un espace de BANACH. On peut donc parler de différentiabilité.

Proposition 12. On suppose que $F: U \to \mathbb{R}$ est de classe \mathscr{C}^k $(k \geqslant 1)$. Alors $f: \Omega \to \mathbb{R}$ est également de classe \mathscr{C}^k . De plus la dérivée de f est donnée par :

$$f'(\varphi) \cdot u = \int_a^b \frac{\partial F}{\partial x} (t, \varphi(t), \varphi'(t)) \cdot u(t) dt + \int_a^b \frac{\partial F}{\partial y} (t, \varphi(t), \varphi'(t)) \cdot u'(t) dt$$

avec $u \in V$.

Démonstration. On utilise le lemme de différentiation sous l'intégrale en posant

$$\lambda: \Omega \times I \to \mathbb{R}$$
 telle que $\lambda(\varphi, t) = F(t, \varphi(t), \varphi'(t)).$

On a

$$f(\varphi) = \int_{a}^{b} \lambda(\varphi, t) \, \mathrm{d}t.$$

Si la dérivée $\frac{\partial \lambda}{\partial \varphi}$ existe et est continue, alors f' existe et on a

$$f'(\varphi) = \int_a^b \frac{\partial \lambda}{\partial \varphi} (\varphi, t) dt.$$

ce qu'on peut réécrire

$$f'(\varphi) \cdot u = \int_a^b \frac{\partial \lambda}{\partial \varphi} (\varphi, t) \cdot u \, dt$$
 avec $u \in V$.

Pour le calcul, on remarque que

$$f: \Omega \times I \xrightarrow{\mu} U \xrightarrow{F} \mathbb{R}$$
 avec $\mu(\varphi, t) = (t, \varphi(t), \varphi'(t))$

Cette dérivée existe donc et est continue, de plus par calcul

$$\frac{\partial \lambda}{\partial \varphi} \left(\varphi, t \right) \cdot u = \frac{\partial F}{\partial x} \cdot u(t) + \frac{\partial F}{\partial y} \left(t, \varphi(t), \varphi'(t) \right) \cdot u'(t).$$

2.2 L'équation d'Euler-Lagrange

À présent, on va s'intéresser aux $\varphi \in \Omega$ vérifiant une certaine condition aux bords. On fixe $(\alpha, \beta) \in E^2$. On notera

$$W(\alpha, \beta) = \{ \varphi \in V, \varphi(a) = \alpha \text{ et } \varphi(b) = \beta \}.$$

Proposition 13. $W(\alpha, \beta)$ est un sous-espace affine de V de codimension deux. Sa direction est W(0,0).

Proposition 14. $W(\alpha, \beta)$ est un espace complet.

Définition 8. On dit que $\varphi \in \Omega$ est (faiblement) extrémale si, et seulement si pour tout $u \in W(0,0)$, $f'(\varphi) \cdot u = 0$.

FIGURE 1 – Représentation de deux éléments de $W(\alpha, \beta)$

Proposition 15. Pour que $\varphi \in W(\alpha, \beta)$ soit extrémale, il faut et il suffit que

$$\int_{a}^{b} \left[\frac{\partial F}{\partial x} \left(t, \varphi(t), \varphi'(t) \cdot u(t) + \frac{\partial F}{\partial y} \left(t, \varphi(t), \varphi'(t) \right) \cdot u'(t) \right] dt = 0$$

pour tout $u: I \to E$ de classe \mathscr{C}^1 telle que u(a) = u(b) = 0.

Lemme 16 (Analogue du lemme fondamental du calcul des variations). Soit $D: I \to \mathcal{L}(E, \mathbb{R})$ continue. On suppose que

$$\forall v \in \mathscr{C}^0(I, E) \quad \int_a^b v(t) \, \mathrm{d}t = 0 \Rightarrow \int_a^b D(t) \cdot v(t) = 0.$$

Alors D est constante.

 $D\acute{e}monstration$. Raisonnons par l'absurde. Supposons par l'absurde que D n'est pas constant. On prend alors $a < t_1 < t_2 < b$ tels que $D(t_1) \neq D(t_2)$. Prenons également $u_0 \in E$ tel que $D(t_1) \cdot u_0 \neq D(t_2) \cdot u_0$, avec $D(t_1) \cdot u_0 < D(t_2) \cdot u_0$ sans perte de généralité.

On prend $D(t_1) \cdot u_0 > \alpha_1 > \alpha_2 > D(t_2) \cdot u_0$

On peut prendre $\varepsilon > 0$ tel que

$$\begin{cases} |t - t_1| \leqslant \varepsilon \Rightarrow D(t) \cdot u_0 > \alpha_1 \\ |t - t_2| \leqslant \varepsilon \Rightarrow D(t) \cdot u_0 < \alpha_2 \end{cases}$$

avec $a \leqslant t_1 - \varepsilon \leqslant t_1 + \varepsilon \leqslant t_2 - \varepsilon \leqslant t_2 + \varepsilon \leqslant b$ et nulle ailleurs. Soit $\lambda : \mathbb{R} \to \mathbb{R}^+$ de classe \mathscr{C}^{∞} de support $[-\varepsilon, \varepsilon]$. On pose $\mu(t) = \lambda(t - t_1) - \lambda(t - t_2)$, de classe \mathscr{C}^{∞} et qui vérifie $\int_a^b \mu = 0$, et > 0 sur $]t_1 - \varepsilon, t_1 + \varepsilon[$.

On pose $v(t) = \mu(t) \cdot u_0$ (continue de I dans E).

$$\int_a^b D(t) \cdot v(t) dt = \int_{t_1 - \varepsilon}^{t_1 + \varepsilon} \lambda(t - t_1) (D(t) \cdot u_0) dt - \int_{t_2 - \varepsilon}^{t_2 + \varepsilon} \lambda(t - t_2) (D(t) \cdot u_0) dt$$

Puis les inégalités du système donnent $\int_a^b D(t) \cdot u_0 dt > 0$, ce qui est absurde.

Proposition 17. Pour une fonction φ fixée, on notera

$$A(t) = \frac{\partial F}{\partial x} (t, \varphi(t), \varphi'(t)) \quad et \quad B(t) = \frac{\partial F}{\partial y} (t, \varphi(t), \varphi'(t)).$$

On a

$$\forall u \in \mathscr{C}^1(I, E) \quad u(a) = u(b) = 0 \Rightarrow \int_a^b (A(t) \cdot u(t) + B(t) \cdot u'(t)) \, \mathrm{d}t = 0$$

si, et seulement si B admet une dérivée égale à A.

Démonstration. On note

$$A_1(t) = \int_0^t A(\tau) \, \mathrm{d}\tau$$

. On a
$$A(t) \cdot u(t) = \frac{\mathrm{d}}{\mathrm{d}t} (A_1(t) \cdot u(t)) - A_1(t) \cdot u'(t)$$
 d'où

$$\int_{a}^{b} (A(t) \cdot u(t) + B(t) \cdot u'(t)) dt = [A_{1}(t) \cdot u(t)]_{a}^{b} + \int_{a}^{b} (B(t) - A_{1}(t)) \cdot u'(t) dt$$

Puisque u(a) = u(b) = 0, on se ramène à la condition

$$\int_{a}^{b} (B(t) - A_1(t)) \cdot u'(t) dt = 0,$$

d'où la conclusion par le lemme précédent.

Théorème 18 (Équation d'EULER-LAGRANGE). Le chemin $\varphi \in W(\alpha, \beta)$ est extrémal pour la fonctionnelle f si, et seulement si

 $\forall t \in I \qquad \frac{\partial F}{\partial x} \left(t, \varphi(t), \varphi'(t) \right) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial y} \left(t, \varphi(t), \varphi'(t) \right) \right) = 0.$

3 Applications en Géométrie et en Physique

3.1 La fonctionnelle de longueur

Définition 9. La fonctionnelle de longueur est la fonctionnelle définie par

$$F(t, x, y) = ||y||,$$

de sorte que

$$f(\varphi) = \int_a^b \|\varphi'(t)\| \, \mathrm{d}t.$$

Proposition 19. Soit $E = \mathbb{R}^n$.

La fonctionnelle de longueur admet une unique extrémale dans $W(\alpha, \beta)$: c'est le segment $[\alpha, \beta]$.

Démonstration. D'après l'équation d'EULER-LAGRANGE, un chemin φ est extrémal si, et seulement si

$$\frac{\partial F}{\partial x}(t,\varphi(t),\varphi'(t)) - \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\partial F}{\partial y}(t,\varphi(t),\varphi'(t)) \right) = 0.$$

Or on a

$$\frac{\partial F}{\partial x} = 0 \qquad \text{et} \qquad \frac{\partial F}{\partial y} = \mathrm{d}_{(y_1, \cdots, y_n)}(\|y\|) = \frac{\mathrm{d}\big(\|y\|^2\big)}{\|y\|}.$$

Or $\nabla(||y||^2) = 2y$, on se ramène donc à

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{\varphi'(t)}{\|\varphi'(t)\|} \right) = 0.$$

Autrement dit les chemins extrémaux ont une direction constante (à reparamétrage près, il n'y en a qu'un : c'est le segment $[\alpha, \beta]$).

Nous avons donc trouvé le seul chemin extrémal pour la fonctionnelle de longueur, c'est la droite et cela correspond à l'intuition.

3.2 Le principe fondamental de la dynamique en mécanique classique

Définition 10. On se place dans $E = \mathbb{R}^n$ euclidien. Le lagrangien classique est donné par

$$\mathscr{L}(t, x, y) \stackrel{\text{def}}{=} \frac{1}{2} m ||y||^2 - V(x),$$

où $V: E \to \mathbb{R}$ est une application différentiable (énergie potentielle).

Proposition 20. Les extrémales de la fonctionnelle associée au lagrangien $\mathcal L$ sont les chemins vérifiant le principe fondamental de la dynamique

$$m\varphi''(t) = -\nabla V(\varphi(t)).$$

Démonstration. On applique encore l'équation d'Euler-Lagrange. On a déjà :

$$\frac{\partial L}{\partial y} \cdot h = \frac{1}{2} m \nabla (\|y\|^2) \cdot h = m(y \mid h) \qquad \frac{\partial L}{\partial x} \cdot h = -\mathrm{d}V(x) \cdot h = -(\nabla V \mid h)$$

L'extrémalité de la fonctionnelle pour un chemin $\varphi \in W(\alpha,\beta)$ équivaut alors à

$$\forall h \quad -(\nabla V(\varphi(t)) \mid h) - \frac{\mathrm{d}}{\mathrm{d}t} (m(\varphi'(t) \mid h)) = 0.$$

Autrement dit

$$\forall h \quad (\nabla V + my \mid h) = 0$$

Donc les extrémales de la fonctionnelle associée au lagrangien de la mécanique classique sont les courbes satisfaisant l'équation différentielle

$$m\varphi''(t) = -\nabla V(\varphi(t)).$$

Références

- [1] Jean-Louis Basdevant. Principes variationnels de la physique.
- [2] Henri Cartan. Calcul différentiel.
- [3] Henri Cartan. Formes différentielles.
- [4] Département de mathématiques et applications de l'ENS. Notes de cours de topologie et calcul différentiel.
- [5] John McCuan. Notes on the calculus of variations.