

«Анализ транскриптомных данных»

# Лекция #4. **Дифференциальная экспрессия**

### Серёжа Исаев

аспирант ФБМФ МФТИ аспирант MedUni Vienna

## Содержание курса

### 1. Bulk RNA-Seq:

- а. экспериментальные подходы,
- b. выравнивания и псевдовыравнивания,
- с. анализ дифференциальной экспрессии,
- d. функциональный анализ;

### 2. Single-cell RNA-Seq:

- а. экспериментальные подходы,
- b. отличия от процессинга bulk RNA-Seq,
- с. методы снижения размерности,
- d. кластера и траектории,
- е. мультимодальные омики одиночных клеток.

## Дорожная карта анализа RNA-Seq



## Суть задачи

Нам необходимо статистически сравнить среднее экспрессий между двумя выборками образцов

Что бы мы сделали в классическом случае?

- 1. Тест Манна-Уитни,
- 2. t-test

Проблема в том, что тест Манна-Уитни будет слишком слабый, так как чаще всего у нас мало точек в каждой из выборок, а t-test просто не подойдёт потому, что наши данные распределены не нормально

Что делать?

## Причём тут регрессия?

С одной стороны, регрессионные модели могут позволить нам оценить статистическую достоверность разниц в средних

С другой стороны, GLM позволяют обобщить регрессию на ненормальные распределения



## Причём тут регрессия?

Статистический вопрос, который мы будем извлекать из регрессии, — значимо ли различаются параметры β1 и β2?

Это можно сказать, сравнив правдоподобия моделей или при помощи других подходов (будет оговорено дальше)



## Причём тут регрессия?

Линейную модель можно обобщить и добавить более двух уровней фактора, чтобы сравнивать сразу несколько категорий



## Intercept

Вместо того, чтобы сравнивать значимость разницы между β1 и β2, обычно используют модель со свободным членом β0 и после этого вычисляют значимость β1

Свободный член в данном случае называют словом **intercept** 



## Intercept

Эту же логику можно обобщить и на модели с несколькими категориями в таргетной переменной



## Линейные модели

$$y \sim 0 + feature1 + feature2 + ...$$

$$\textit{6e3 intercept}$$

$$y \sim 1 + feature1 + feature 2 + ...$$

$$\textit{c intercept}$$





## Какие переменные включают в модель?

### Таргет:

• экспериментальные условия,

### сопутствующие факторы:

- пациент,
- пол,
- возраст,
- ... (всё, что может иметь влияние на экспрессию)

### Что не включают:

• техническую повторность

## Обобщённые линейные модели (GLM)

В обобщённой линейной модели нет требования к нормальности и гомоскедамтичности остатков

Коэффициенты определяются при помощи MLE



## Модель DESeq2

Модель, которая вшита в DESeq2, может описываться следующим образом:

$$K_{i,j} \sim NB(\mu_{i,j}, lpha_i)$$
  $\mu_{i,j} = s_j \ p_{i,j}$   $log2(p_{i,j}) = x_{j,A} eta_{i,A} + x_{j,B} \ eta_{i,B}$ 

- Where, K<sub>i,j</sub> is matrix of observed counts (known),
- μ<sub>i,j</sub> is a mean for NB distribuion,
- p<sub>i,j</sub> is a probability to get read i from sample j
- s<sub>i</sub> is a scaling factor (will be calculated), α<sub>i</sub> are gene dispersions (will be calculated),
- matrix x is model coefficients (zero or one depending on conditions) and most importantly
- β<sub>i,j</sub> (log-)probability to get read from gene i if a sample is from condition

## Последовательность действий DESeq2

- Сначала происходит оценка size factor'a (разбиралось на прошлом занятии),
- 2. потом происходит оценка дисперсии и затем
- 3. происходит оценка параметров β модели при помощи GLM

$$K_{i,j} \sim NB(\mu_{i,j}, lpha_i)$$
  $\mu_{i,j} = s_j \ p_{i,j}$   $log2(p_{i,j}) = x_{j,A} eta_{i,A} + x_{j,B} \ eta_{i,B}$ 

## Подрезание дисперсии

При малых размерах выборки оценка дисперсии становится достаточно неточной, поэтому используют процедуру подрезание дисперсии



## Взаимодействие переменных

Удобным способом понимания и отображения того, что с чем сравнивается в дизайне экспериментов по секвенированию РНК могут служить модельные матрицы

**Модельные матрицы** содержат 0 или 1 для каждого из элементов линейной модели

```
model.matrix(~1+condition+time+condition:time, samples)
```

Рассмотрим примеры модельных матриц для разных дизайнов (по материалам Hugo Tavares)

Condition:





### colData

|         | condition         |
|---------|-------------------|
|         | <factor></factor> |
| sample1 | shade             |
| sample2 | shade             |
| sample3 | shade             |
| sample4 | sun               |
| sample5 | sun               |
| sample6 | sun               |
|         |                   |

Condition:





### colData

| condition |                   |
|-----------|-------------------|
|           | <factor></factor> |
| sample1   | shade             |
| sample2   | shade             |
| sample3   | shade             |
| sample4   | sun               |
| sample5   | sun               |
| sample6   | sun               |

Design:

Expr = 
$$\beta_0 + \beta_1$$
 CondSun

Condition:





### colData

| condition         |
|-------------------|
| <factor></factor> |
| shade             |
| shade             |
| shade             |
| sun               |
| sun               |
| sun               |
|                   |

### Коэффициенты из DESeq:

 $eta_{\scriptscriptstyle 0}$  = Intercept  $eta_{\scriptscriptstyle 1}$  = condition\_sun\_vs\_shade

### Null hypothesis:

$$\beta_1 = 0$$





## Иногда можно немного переписать модель для упрощенной интерпретации

Design:  $\sim$  0 + condition

Expr =  $\beta_0$  +  $\beta_1$  CondSun

## Кодируется переменной со значениями 0/1

### Model matrix

|         | (Intercept) | conditionsun |
|---------|-------------|--------------|
| sample1 | 1           | 0            |
| sample2 | 1           | 0            |
| sample3 | 1           | 0            |
| sample4 | 1           | 1            |
| sample5 | 1           | 1            |
| sample6 | 1           | 1            |

Condition:





### colData

|         | condition         |
|---------|-------------------|
|         | <factor></factor> |
| sample1 | shade             |
| sample2 | shade             |
| sample3 | shade             |
| sample4 | sun               |
| sample5 | sun               |
| sample6 | sun               |

Иногда можно немного переписать модель для упрощенной интерпретации

**Design:**  $\sim$  0 + condition

Expr =  $\beta_0$ Shade +  $\beta_1$ Sun

Null hypothesis:

$$\beta_1 - \beta_0 = 0$$





## Кодируется переменной со значениями 0/1

### Model matrix

|         | (Intercept) | conditionsun |
|---------|-------------|--------------|
| sample1 | 1           | 0            |
| sample2 | 1           | 0            |
| sample3 | 1           | 0            |
| sample4 | 1           | 1            |
| sample5 | 1           | 1            |
| sample6 | 1           | 1            |

## Один фактор, три уровня

Colour:







### Коэффициенты из DESeq:

 $\beta_0$  = Intercept

 $\beta_1$  = colour\_pink\_vs\_white

 $\beta_2$  = colour\_yellow\_vs\_white

|         | 7                 |  |
|---------|-------------------|--|
|         | colour            |  |
|         | <factor></factor> |  |
| sample1 | pink              |  |
| sample2 | pink              |  |
| sample3 | pink              |  |
| sample4 | yellow            |  |
| sample5 | yellow            |  |
| sample6 | yellow            |  |
| sample7 | white             |  |
| sample8 | white             |  |
| sample9 | white             |  |

Design: ~ 1 + colour

Expr =  $\beta_0$  +  $\beta_1$ ColPink +  $\beta_2$ ColYellow

### Нулевая гипотеза:

Pink vs White

 $\beta_1 = 0$ 

Yellow vs White

 $\beta_2 = 0$ 

Pink vs Yellow

 $\beta_1$  -  $\beta_2$  = 0



|         |             |            | Modelmatix   |
|---------|-------------|------------|--------------|
|         | (Intercept) | colourpink | colouryellow |
| sample1 | 1           | 1          | 0            |
| sample2 | 1           | 1          | 0            |
| sample3 | 1           | 1          | 0            |
| sample4 | 1           | 0          | 1            |
| sample5 | 1           | 0          | 1            |
| sample6 | 1           | 0          | 1            |
| sample7 | 1           | 0          | 0            |
| sample8 | 1           | 0          | 0            |
| sample9 | 1           | 0          | 0            |

Model matrix

## Два фактора и взаимодействие

Colour:

Condition:



Design:

~ 1 + colour + condition + colour:condition

Нулевая гипотеза:

Pink vs White (Shade)

 $\beta_1 = 0$ 

Pink vs White (Sun)

 $\beta_1 + \beta_3 = 0$ 

Sun vs Shade (White):

 $\beta_2 = 0$ 

Sun vs Shade (Pink):

 $\beta_2 + \beta_3 = 0$ 

Interaction:

 $\beta_3 = 0$ 



Коэффициенты из DESeq:

 $\beta_{\circ}$  = Intercept

 $\beta_1$  = colour\_pink\_vs\_white

 $\beta_2^- = \text{condition\_sun\_vs\_shade}$ 

 $\beta_3 =$ 

colourpink.conditionsun

## Три фактора с вложенностью



Species вложен в colour.

Species полностью входит в colour, поэтому в дизайн colour не включаем (но это есть смысл учесть про создании контрастов).

Design:

```
~ 1 + species + condition + species:condition
```

### Contrasts (example):



## Три фактора с вложенностью



Species вложен в colour.

Species полностью входит в colour, поэтому в дизайн colour не включаем (но это есть смысл учесть про создании контрастов).

### Design:

```
~ 1 + species + condition + species:condition
```

### Почему не?

~ 1 + colour + condition + colour:condition

Можно теряет сравне

Можно переоценить или недооценить ошибку (либо тест теряет мощность, либо больше ошибок I рода (по сравнению с использованием вложенного фактора))

### P-value

Способы определения достоверности коэффициентов линейной модели

**Likelihood-Ratio Test** (LRT)

Тест Вальда

Рассматривает отношение правдоподобий  $H_0$  и  $H_a$ , логарифм их отношения распределён как  $\chi^2$ 

Похож на LRT, но в явном виде сравнивает не правдоподобия моделей, а коэффициенты

## p-value = NA?

Если в строке все значения = 0, что изменение экспрессии и дисперсию не посчитать

Если в строке есть очень большой выброс, то p-value назначается NA

Строка не прошла фильтрацию по средней экспрессии

## Проблема множественного сравнения



### Neural correlates of interspecies perspective taking in the post-mortem Atlantic Salmon: An argument for multiple comparisons correction

Craig M. Bennett<sup>1</sup>, Abigail A. Baird<sup>2</sup>, Michael B. Miller<sup>1</sup>, and George L. Wolford<sup>3</sup>

- 1 Psychology Department, University of California Santa Barbara, Santa Barbara, CA; 2 Department of Psychology, Vassar College, Poughkeepsie, NY;
- <sup>3</sup> Department of Psychological & Brain Sciences, Dartmouth College, Hanover, NH

### **GLM RESULTS**



A *t*-contrast was used to test for regions with significant BOLD signal change during the photo condition compared to rest. The parameters for this comparison were t(131) > 3.15, p(uncorrected) < 0.001, 3 voxel extent threshold.

Several active voxels were discovered in a cluster located within the salmon's brain cavity (Figure 1, see above). The size of this cluster was  $81 \text{ mm}^3$  with a cluster-level significance of p=0.001. Due to the coarse resolution of the echo-planar image acquisition and the relatively small size of the salmon brain further discrimination between brain regions could not be completed. Out of a search volume of 8064 voxels a total of 16 voxels were significant.

Identical *t*-contrasts controlling the false discovery rate (FDR) and familywise error rate (FWER) were completed. These contrasts indicated no active voxels, even at relaxed statistical thresholds (p = 0.25).

## Принципы принятия решений

Некоторые обобщения ошибки первого рода:

- FWER family-wise error rate, групповая вероятность ошибки первого рода. Используется при поправке методом Бонферрони
- **FDR false discovery rate**, средняя доля ложных отклонений гипотез (среди всех отклонений). Используется при поправке методом Бенджамини Хохберга

## Поправка Бонферрони

The original p value

Bonferroni-corrected p value =  $\frac{\alpha}{n}$ 

The number of tests performed

## Поправка Бенджамини-Хохберга



## Volcano plot



## От генов к транскриптам: tximport

Как мы уже говорили ранее, самой правильной стратегией будет проводить анализ дифференциальной экспрессии на уровне транскриптов, а потом уже агрегировать информацию до уровня генов

