House Price Prediction

```
In [1]:
         #import libraries
         import numpy as np
         import matplotlib.pyplot as plt
         import pandas as pd
         import seaborn as sns
         %matplotlib inline
In [2]: | #import dataset with pandas
         house = pd.read_csv('C:\\Users\\bittu\\Desktop\\home_data.csv' , encoding="ISO
         -8859-1")
         #first 5 data from dataset
In [3]:
         house.head()
Out[3]:
                    id
                                   date
                                         price
                                               bedrooms
                                                         bathrooms
                                                                   sqft_living sqft_lot floors wa
          0 7129300520 20141013T000000
                                        221900
                                                       3
                                                               1.00
                                                                         1180
                                                                                 5650
                                                                                         1.0
          1 6414100192 20141209T000000
                                        538000
                                                       3
                                                               2.25
                                                                         2570
                                                                                 7242
                                                                                         2.0
                                                       2
          2 5631500400 20150225T000000
                                        180000
                                                               1.00
                                                                          770
                                                                                10000
                                                                                         1.0
```

604000

4

3.00

2.00

1960

1680

5000

8080

1.0

1.0

5 rows × 21 columns

2487200875 20141209T000000

1954400510 20150218T000000 510000

```
In [4]:
        #info about dataset
        house.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 21613 entries, 0 to 21612
        Data columns (total 21 columns):
                          21613 non-null int64
        date
                          21613 non-null object
        price
                         21613 non-null int64
        bedrooms
                         21613 non-null int64
        bathrooms
                         21613 non-null float64
        sqft living
                         21613 non-null int64
        sqft_lot
                          21613 non-null int64
        floors
                         21613 non-null float64
        waterfront
                         21613 non-null int64
                         21613 non-null int64
        view
        condition
                         21613 non-null int64
        grade
                         21613 non-null int64
        sqft above
                         21613 non-null int64
        sqft_basement
                         21613 non-null int64
                         21613 non-null int64
        yr_built
        yr_renovated
                         21613 non-null int64
        zipcode
                         21613 non-null int64
        lat
                         21613 non-null float64
        long
                         21613 non-null float64
        sqft_living15
                         21613 non-null int64
        sqft lot15
                         21613 non-null int64
        dtypes: float64(4), int64(16), object(1)
        memory usage: 3.5+ MB
In [5]: # X is features of houses y is price
        # we use X(capital) for two dimentional array y(small) for single dimentional
        X = house[['bedrooms','bathrooms','sqft living','sqft lot','floors','sqft abov
        e', 'grade', 'sqft basement', 'yr built', 'condition', 'zipcode']]
        y = house['price']
In [6]: X.shape #two dimentional array
Out[6]: (21613, 11)
In [7]: | y.shape #single dimentional array
Out[7]: (21613,)
```

```
In [8]: # check dataset
X
```

Out[8]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	grade	sqft_basement	yr
0	3	1.00	1180	5650	1.0	1180	7	0	
1	3	2.25	2570	7242	2.0	2170	7	400	
2	2	1.00	770	10000	1.0	770	6	0	
3	4	3.00	1960	5000	1.0	1050	7	910	
4	3	2.00	1680	8080	1.0	1680	8	0	
21608	3	2.50	1530	1131	3.0	1530	8	0	
21609	4	2.50	2310	5813	2.0	2310	8	0	
21610	2	0.75	1020	1350	2.0	1020	7	0	
21611	3	2.50	1600	2388	2.0	1600	8	0	
21612	2	0.75	1020	1076	2.0	1020	7	0	

21613 rows × 11 columns

```
In [9]: # import libraries from scikit learn
    from sklearn.model_selection import train_test_split
    X_train , X_test , y_train , y_test = train_test_split(X,y, test_size=0.3 , ra
    ndom_state=7) #random_state is optional
```

Now checking train and test dataset

In [10]: X_train

Out[10]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	grade	sqft_basement	yr
20204	4	2.50	3148	9612	2.0	3148	9	0	
15604	3	3.50	3030	11550	2.0	3030	8	0	
2163	3	3.50	1460	1021	2.0	1150	8	310	
6338	3	2.50	2000	1950	3.0	2000	8	0	
19379	4	2.50	1950	2617	1.5	1250	7	700	
	•••								
919	5	1.50	2120	7700	1.5	2120	7	0	
20691	2	2.25	1060	1208	2.0	940	8	120	
5699	3	2.00	2350	5700	1.5	1810	8	540	
10742	4	2.50	2760	13093	2.0	2760	9	0	
16921	2	1.00	1100	7500	1.0	1100	7	0	
15120 :	rows × 11 co	alumna							
151291	OWS A IT CO	Juillis							
4									•

There are 15129 rows before train there is 21613 there is 70% data and 30% will be in test set

In [11]: X_test

Out[11]:

	bedrooms	bathrooms	sqft_living	sqft_lot	floors	sqft_above	grade	sqft_basement	yr.
18732	5	1.75	1250	10530	1.0	1250	7	0	
18573	3	2.50	2660	10928	2.0	1830	9	830	
11401	3	1.75	2480	4000	1.0	1240	8	1240	
19712	3	2.50	1584	3200	2.0	1584	7	0	
17921	4	2.50	2430	3249	2.0	2430	8	0	
					•••				
8169	2	1.00	1050	8382	1.0	1050	7	0	
11010	3	1.00	1230	4600	1.5	1230	7	0	
739	3	2.00	1400	9177	1.0	1400	7	0	
7840	4	2.75	1930	3840	1.0	1170	7	760	
10937	4	2.25	2115	6234	2.0	2115	7	0	

6484 rows × 11 columns

4

We sucessfully splited data into training set and testing set

Now we are making LinerRegression Model

```
In [12]: #import libraries from sklearn
         from sklearn.linear_model import LinearRegression
         model = LinearRegression()
         #now we'll fit into X
         model.fit(X_train,y_train)
Out[12]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=Fals
In [13]: #predict the prices
         prediction = model.predict(X test)
In [14]: prediction
Out[14]: array([197031.56526702, 812763.86299 , 753618.22994437, ...,
                297574.71157263, 310088.88856254, 329418.42878427])
In [15]: #sucessfully predicted
In [16]: house0 = house[house['id'] == 7129300520] # created house1 whose id is 7129300
         520 in dataset
In [17]: house0['price']
Out[17]: 0
              221900
         Name: price, dtype: int64
In [18]: | #now predicted price is
         prediction[0]
Out[18]: 197031.56526702363
```

Regular Price is 221900 and Predicted Price is 197031

Data visulization

```
In [19]: plt.figure(figsize=(15,7))# just for bigger image
   plt.scatter(y_test,prediction)
   plt.title('Actual Price vs Predicted Price')
   plt.xlabel('Actual price')
   plt.ylabel('Predicted price')
```

Out[19]: Text(0, 0.5, 'Predicted price')


```
In [20]: #Coefficient of featured (eg. bedrooms, bathrooms ..... zipcode)
model.coef_
```

```
Out[20]: array([-5.47999393e+04, 4.96506414e+04, 1.32022773e+02, -2.47011137e-01, 3.60909090e+04, 5.44675511e+01, 1.28169963e+05, 7.75552221e+01, -3.99869981e+03, 1.75394672e+04, 4.13469584e+01])
```

Out[21]:

0	-54799.939332
1	49650.641411
2	132.022773
3	-0.247011
4	36090.908993
5	54.467551
6	128169.962549
7	77.555222
8	-3998.699813
9	17539.467191
10	41.346958

0

Root Mean Square Error