dynamical delocalization result. However, assumption (1.3) is stronger than simply assuming the spectrum is AC, and this stronger assumption seems to be essentially necessary for ergodicity, see [7, Prp. 1.5] for a related result.

Some basic examples were given in [2, §3.2]: if $\nu = 1$, i.e. the fundamental cell is simply one vertex, then the limiting measure is uniform. This covers the continuous quantum walk e^{itA} on \mathbb{Z}^d and the triangular lattice for example. The same property is true for the hexagonal lattice and the infinite ladder, both of which have $\nu = 2$. It was also shown that in the cases where Γ is a 1d strip of width 3, or a cylinder $\mathbb{Z} \square C_4$, then the limiting distribution is not uniform.

1.2. **Main results.** In this note we analyze further families of graphs which satisfy our assumptions, and compute the limiting average $\langle a \rangle_p$ explicitly.

We first give the following result, extracted from [7].

Proposition 1.2 (Case of Cartesian and Tensor Products). Suppose Γ_0 is a periodic graph with $\nu = 1$ (for example $\Gamma_0 = \mathbb{Z}^d$ or the triangular lattice), and let G_F be any finite graph with $\nu_F = |G_F|$ vertices. Let $\Gamma_1 = \Gamma_0 \square G_F$ be the Cartesian product, $\Gamma_2 = \Gamma_0 \times G_F$ be the tensor product and $\Gamma_3 = \Gamma_0 \boxtimes G_F$ be the strong product of Γ_0 and Γ_0 . Let Γ_0 be the band function of Γ_0 , Γ_0 , Γ_0 and Γ_0 are orthonormal eigenbasis of Γ_0 and Γ_0 the corresponding eigenvalues, Γ_0 is a periodic graph with Γ_0 and Γ_0 are Γ_0 is a periodic graph with Γ_0 and Γ_0 is a periodic graph with Γ_0 is a periodic graph Γ_0 is a periodic graph with Γ_0 is a periodic graph with Γ_0 is a periodic graph Γ_0 is a periodic graph with Γ_0 is a periodic graph Γ_0 is a periodic graph with Γ_0 is a perio

- (1) The band functions of A_{Γ_1} are given by $E_j(\theta) = E_{\Gamma_0}(\theta) + \mu_j$.
- (2) The band functions of A_{Γ_2} are given by $E_j(\theta) = \mu_j E_{\Gamma_0}(\theta)$.
- (3) The band functions of A_{Γ_3} are given by $E_j(\theta) = (1 + \mu_j)E_{\Gamma_0}(\theta) + \mu_j$.
- (4) Assumption (1.3) is satisfied for A_{Γ_1} but not necessarily for A_{Γ_2} or A_{Γ_3} .
- (5) For each of A_{Γ_1} , A_{Γ_2} and A_{Γ_3} , we have

$$\langle a \rangle_p = \sum_{q=1}^{\nu_F} \langle a(\cdot + v_q) \rangle \sum_{s=1}^{\nu_F'} |P_{\mu_s}(v_p, v_q)|^2,$$

where $P_{\mu_s}(v_p, v_q) = \sum_{j \mu_j = \mu_s} w_j(v_p) \overline{w_j(v_q)}$ is the (kernel) of the orthogonal projection for the distinct eigenvalues of the finite graph.

For example, if $\Gamma_0 = \mathbb{Z}^d$, then $E_{\Gamma_0}(\theta) = 2\sum_{i=1}^d \cos 2\pi \theta_i$ and if Γ_0 is the triangular lattice, then $E_{\Gamma_0}(\theta) = 2\cos 2\pi \theta_1 + 2\cos 2\pi \theta_2 + 2\cos 2\pi (\theta_1 + \theta_2)$, for $\theta_i \in [0, 1)$. Here $\Gamma_{1,2,3}$ are viewed as periodic graphs with fundamental domain containing ν_F vertices, cf. [7, Lemma 3.1, §3.4], with (v_i) the vertices of G_F .

Arguing as before, we get for these more special graphs that

(1.6)
$$\mu_{T,v_p+\mathbf{n}_{\mathfrak{a}}}^{N}(\mathbf{k}_{\mathfrak{a}}+v_q) \approx \frac{1}{N^d} \sum_{s=1}^{\nu'} |P_{\mu_s}(v_p,v_q)|^2 =: \frac{1}{N^d} d(p,q).$$

whenever (1.3) is satisfied. This gives a more satisfactory concept of a quantum limiting distribution than in [7] where quantum ergodicity was assessed by the behaviour of eigenvector bases, and it was shown in [7, §4.5] that such a limiting distribution depends on the eigenvector basis. In contrast, here the RHS of (1.6) depends only on the graph.

Our main target now is to compute the weights d(p,q) for specific finite graphs G_F . Because of point (4) above, the theorems are illustrated only for the Cartesian product, but some hold more generally. For definiteness, the reader can assume $\Gamma_0 = \mathbb{Z}$ in all these results, which is already interesting. However, nothing changes for any Γ_0 having a single vertex in its fundamental domain, such as \mathbb{Z}^d and the triangular lattice.

A nice simplification in the family of Cartesian products is that the limiting weight d(p,q) in (1.6) depends only on the finite graph G_F , compared to the general case (1.5), where the weight depends on the full Floquet matrix and computations become more daunting. Still, as we will see, Cartesian products already offer interesting contrasting