

The 2021 ICPC Vietnam Southern Provincial Programming Contest University of Science, VNU-HCM December 05th, 2021

Problem F Expected Value

Time Limit: 1 second
Mem limit: 256 Megabytes

Having a permutation $p = (p_1, p_2, \dots p_N)$ of the first N positive integers, let us define:

 $g_i(p)$ is the greatest common divisor of the first i elements of p ($1 \le i \le N$).

f(p) is the number of distinct integers in the array g.

For example, if p = (2, 4, 6, 3, 1, 5) then

- $g_1 = GCD(2) = 2$
- $g_2 = GCD(2,4) = 2$
- $g_3 = GCD(2,4,6) = 2$
- $g_4 = GCD(2, 4, 6, 3) = 1$
- $g_5 = GCD(2,4,6,3,1) = 1$
- $g_6 = GCD(2,4,6,3,1,5) = 1$

Thus, f(p) is equal to 2.

Given an integer N, we generate a random permutation p of size N (uniformly random), your task is to calculate the expected value of f(p).

Input

The input contains only one integer $(1 \le N \le 200,000)$.

Output

You should print the expected value of f(p) modulo $10^9 + 7$.

Formally, let $M = 10^9 + 7$, it can be shown that the answer can be expressed as an irreducible fraction u / v where u and v are integers and $v! = 0 \pmod{M}$. You should output the integer equal to $u * v - 1 \pmod{M}$. In other words, output such an integer x that $0 \le x < M$ and $x * v = u \pmod{M}$.

Sample input

Sample output

2	500000005
---	-----------