Mejora del Desempeño de un servicio de Flotillas Terrestres con Inteligencia de Negocios y datos Telemáticos

Forza Transportation Services, Inc.

Presentan:

- Andrés Julián López Hurtado A01793899
- Nathalia Milena Prada Hernandez A01793999
- Víctor Alejandro Regueira Romero A01794404

Asesor: Dr. Horacio Martínez Alfaro

Patrocinador(es): Mtro. Fernando Sebastián Sánchez Cardona

Problemática

Forza Transportation es una empresa de transporte especializada en el servicio de Full Truck Load (FTL)

Objetivo: Mejora del Desempeño del servicio

Aprovechar los datos generados por el sensor GeoTab para identificar los factores clave que afectan el rendimiento del combustible.

Generar **pronósticos de consumo** que permitan anticipar las necesidades de cada vehículo y optimizar la planificación operativa para reducir el consumo total.

Mejorar la agilidad y precisión en la gestión de la operación mediante una visualización de datos y documentación de procesos claras y accesibles.

Solución propuesta

Metodología: CRISP-ML(Q)

Solución propuesta: Entendimiento del negocio

Documentación del proceso

Solución propuesta: Entendimiento de los datos

Tipo

CSV

Registros

177,653

Fecha

1 Julio – 31 Agosto

Solución propuesta: Preparación de los datos

Solución propuesta: Desarrollo del Modelo

Tendencia a la baja

Inicios de Julio

Pico de consumo

24 y 25 de Julio

Consumo estable

Agosto

Solución propuesta: Desarrollo del Modelo

Tabla consumos

	consumption	day	dayofweek	month	quarter	year	dayofyear
date							
2024-07-01	7166.415676	1	0	7	3	2024	183
2024-07-02	7182.232302	2	1	7	3	2024	184
2024-07-03	7171.074568	3	2	7	3	2024	185
2024-07-04	6231.688432	4	3	7	3	2024	186
2024-07-05	6506.612911	5	4	7	3	2024	187
2024-08-27	6630.083851	27	1	8	3	2024	240
2024-08-28	6675.791509	28	2	8	3	2024	241
2024-08-29	6653.025786	29	3	8	3	2024	242
2024-08-30	6168.360344	30	4	8	3	2024	243
2024-08-31	5456.706931	31	5	8	3	2024	244
						_	

Hiperparámetros

Característica	Trial 32	Trial 97
learning_rate	0.1841	0.1846
max_depth	8	10
subsample	0.9188	0.9040
colsample_bytree	0.8703	0.8813
reg_alpha	0.000231	0.000132
reg_lambda	1.6468	1.7343
min_child_weight	3	3
gamma	0.2373	0.2048
n_estimators	343	355
Puntajes por partición	-788.75, -1034.10, -1861.16, -198.95, -68.17	-789.24, -1036.60, -1898.17, -215.01, -77.43
Puntaje promedio	-790.22	-803.29
MAE después de Optuna	1390.40	1406.49

Solución propuesta: Desarrollo del Modelo

Validación cruzada (parte 1)

Validación cruzada (parte 2)

11000

10000

9000

8000

6000

5000

4000

Solución propuesta: Evaluación

Característica	Trial 32
learning_rate	0.1841
max_depth	8
subsample	0.9188
colsample_bytree	0.8703
reg_alpha	0.000231
reg_lambda	1.6468
min_child_weight	3
gamma	0.2373
n_estimators	343
Puntajes por partición	-788.75, -1034.10, -1861.16, -198.95, -68.17
Puntaje promedio	-790.22
MAE después de Optuna	1390.40

[0] validation_0-rmse:1236.08345

[100] validation_0-rmse:18.21589

[200] validation_0-rmse:3.28521

[300] validation_0-rmse:0.81316

[342] validation_0-rmse:0.71778

MAE después de ajustar el modelo: 0.48

Solución propuesta: Despliegue

Arquitectura MLops (Open Source)

Solución propuesta: Despliegue

\$ 5,000 dls **Arquitectura General (Azure)** Proveedor Capa de Capa de de Datos Capa de Ingesta Capa de Procesamiento Comunicación Presentación % Azure Cache Redis Capa de Almacenamiento kafka Power BI Azure Function 1 Backend-Service **DELTA LAKE** Blob Storage

Recomendaciones Comerciales Fundamentales

Creación de dashboard

Visualizar la operación

Toma de decisiones basada en datos

Beneficios y resultados esperados

Reducción de costos operativos.

Toma de decisiones informadas.

Mejora de la rentabilidad del negocio.

Competitividad en las operaciones

Trabajos Futuros

- Integración de datos externos: Expandir el modelo de pronóstico incorporando datos adicionales, como precios dinámicos de combustible y condiciones climáticas, para mejorar la precisión de las predicciones.
- Predicción a largo plazo con aprendizaje profundo: Explorar el uso de algoritmos de aprendizaje profundo para mejorar la capacidad de hacer predicciones precisas a largo plazo.
- Mantenimiento preventivo: Considerar factores de mantenimiento preventivo basados en el consumo y uso de los vehículos para optimizar la eficiencia operativa.

Hallazgos e ideas clave

Ingeniería de Datos :

- El análisis mostró que las variables tienen una correlación débil con el consumo de combustible.
- El Análisis de Componentes Principales (PCA) identificó dos factores clave para la reducción del consumo de combustible:
 - Porcentaje de ralentí en el viaje.
 - Frecuencia de excesos de velocidad.

Modelos de clasificación:

- Árbol de decisión: Precisión promedio de 0.82 y puntaje F1 de 0.78.
- XGBoost: Precisión de 0.85 y puntaje F1 de 0.81.
- Ambos modelos indicaron que la mayoría de las variables, excepto las no accionables (distancia recorrida y consumo total de combustible), carecían de alta significancia. Esto llevó a optar por un modelo de pronóstico como complemento para respaldar decisiones estratégicas y operativas.

Modelo de Pronóstico (Forecasting):

- Se identificaron patrones estacionales en el consumo de combustible, lo que facilita la planificación de abastecimiento.
- El modelo mostró un error absoluto medio (MAE) de 0.48, lo que indica un buen ajuste y precisión en las proyecciones futuras del consumo.

Bibliografía

- Mssaperla. (2024, 1 marzo). What is the medallion lakehouse architecture? Azure Databricks. Microsoft Learn. https://learn.microsoft.com/en-us/azure/databricks/lakehouse/medallion
- Kumar Mukhiya, S., y Ahmed, U. (2020). Hands-On Exploratory Data Analysis with Python. Packt Publishing. https://learning.oreilly.com/library/view/hands-on-exploratory-data/9781789537253/0957090f-fa4d-4145-95dd-6d3782e5c04d.xhtml
- Visengeriyeva, L., Kammer, A., Bär, I., Kniesz, A., y Plöd, M. (2023). CRISP-ML(Q). The ML Lifecycle Process.
 MLOps. INNOQ. https://ml-ops.org/content/crisp-ml
- Geotab. (2022). 7 strategies to reduce fleet fuel costs: Quick guide for managing fuel economy and idling. Recuperado de https://www.geotab.com/CMS-GeneralFiles-production/NA/ebooks/7%20Strategies%20to%20Reduce%20Fleet%20Fuel%20Costs_Geotab%20%5BPublic%5D.pdf