Stackbasierte Sprachen VU - MODALSAT

Gerald Berger Benjamin Kiesl Matthias Reisinger

December 14, 2013

Einführung

- ➤ Wir betrachten modallogische Formeln, aufgebaut durch
 - Atome $\mathcal{P} = \{p_1, p_2, p_3, \ldots\},\$
 - unäre Junktoren ¬, □, ◊,
 - binäre Junktoren \rightarrow , \land , \lor .

Beispiele:

- ullet $\Box p_1
 ightarrow p_1$,
- $\neg p_2 \lor \Box \Diamond p_1$,
- $\Box p_1 \to \Box \Box p_1$.

Eine Kripke-Interpretation (Interpretation) ist ein Tripel $\mathcal{M}=\langle W,R,v\rangle$, wobei

Eine Kripke-Interpretation (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),

Eine *Kripke-Interpretation* (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

- ➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),
- $ightharpoonup R \subseteq W \times W$,

Eine *Kripke-Interpretation* (Interpretation) ist ein Tripel $\mathcal{M} = \langle W, R, v \rangle$, wobei

- ➤ W eine nicht-leere Menge ist (die Menge der *möglichen Welten*),
- $ightharpoonup R \subset W \times W$,
- $\triangleright v: W \times \mathcal{P} \rightarrow \{0, 1\}.$

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models \varphi$ für alle Formeln φ wie folgt:

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models \varphi$ für alle Formeln φ wie folgt:

 $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models\varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$

Sei $\mathcal{M} = \langle W, R, v \rangle$ eine Interpretation und $w \in W$. Wir definieren $\mathcal{M}, w \models \varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$

Sei $\mathcal{M} = \langle W, R, v \rangle$ eine Interpretation und $w \in W$. Wir definieren $\mathcal{M}, w \models \varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$

Sei $\mathcal{M} = \langle W, R, v \rangle$ eine Interpretation und $w \in W$. Wir definieren $\mathcal{M}, w \models \varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \iff \mathcal{M}, w \not\models \varphi.$

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models \varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \iff \mathcal{M}, w \not\models \varphi.$
- \blacktriangleright $\mathcal{M}, w \models \Box \varphi \iff \mathcal{M}, w \models \varphi$ für alle Welten w' mit wRw'.

Sei $\mathcal{M}=\langle W,R,v\rangle$ eine Interpretation und $w\in W$. Wir definieren $\mathcal{M},w\models\varphi$ für alle Formeln φ wie folgt:

- $ightharpoonup \mathcal{M}, w \models p \iff v(w,p) = 1 \text{ für ein Atom } p.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \land \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ und } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \varphi_1 \lor \varphi_2 \iff \mathcal{M}, w \models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- \blacktriangleright $\mathcal{M}, w \models \varphi_1 \rightarrow \varphi_2 \iff \mathcal{M}, w \not\models \varphi_1 \text{ oder } \mathcal{M}, w \models \varphi_2.$
- $\blacktriangleright \mathcal{M}, w \models \neg \varphi \iff \mathcal{M}, w \not\models \varphi.$
- $ightharpoonup \mathcal{M}, w \models \Box \varphi \iff \mathcal{M}, w \models \varphi \text{ für alle Welten } w' \text{ mit } wRw'.$
- $ightharpoonup \mathcal{M}, w \models \Diamond \varphi \iff \mathcal{M}, w \models \varphi \text{ für mindestens eine Welt } w' \text{ mit } wRw'.$

▶ Aufgabenstellung: Gegeben eine modallogische Formel φ , eine Interpretation $\mathcal{M} = \langle W, R, v \rangle$, sowie eine Welt $w \in W$, überprüfe ob $\mathcal{M}, w \models \varphi$.

_1	q	2	p	Gilt $\Box(p \land \Diamond q)$ in Welt 1?
3	a	4	\overline{p}	Gir $\Box(p \land \lor q)$ iii vveit 1:

1	q	2	p	Gilt $\Box(p \land \Diamond q)$ in Welt 1?
3	a	4	\overline{n}	Gift $\Box(p \land \lor q)$ in West 1:

_1	q	2	p	Gilt $\Box(p \wedge \Diamond q)$ in Welt 1
3	q	4	p	

