

Simon Schrodi TINF16B3 15/04/19

### Agenda

- Einführung
- Übertragungstechnik (Physical Layer)
- Buszugriffsverfahren (Data Link Layer)
- Kommunikation (Application Layer)
- Allgemeine & spezifische Applikationsprofile (über Application Layer)

15/04/2019 14:45 PROFIBUS - Simon Schrodi 2 von 16

# Einführung Einordnung in OSI-Modell

|                 | User program       |  | Application profiles                                                   |  |  |  |
|-----------------|--------------------|--|------------------------------------------------------------------------|--|--|--|
| 7               | Application Layer  |  | PROFIBUS DP Protocol<br>(DP-V0, DP-V1, DP-V2)                          |  |  |  |
| 6               | Presentation Layer |  | Not used                                                               |  |  |  |
| 5               | Session Layer      |  |                                                                        |  |  |  |
| 4               | Transport Layer    |  |                                                                        |  |  |  |
| 3               | Network Layer      |  |                                                                        |  |  |  |
| 2               | Data link Layer    |  | Fieldbus Data Link (FDL):<br>Master Slave principle<br>Token principle |  |  |  |
| 1               | Physical Layer     |  | Transmission technology                                                |  |  |  |
| OSI Layer Model |                    |  | OSI implementation at PROFIBUS                                         |  |  |  |

## Einführung Systembaukasten



# Übertragungstechnik Exkurs: NRZ und Manchester Codierung





#### Quelle:

https://upload.wikimedia.org/wikipedia/commons/a/a5/NRZ code.png

#### Quelle:

https://upload.wikimedia.org/wikipedia/commons/thumb/9/90/Manchester\_encoding\_both\_conventions.svg/771px-Manchester\_encoding\_both\_conventions.svg.png

# Übertragungstechnik

|                  | RS 485                                                                 | RS485-IS                                                       | МВР                                                      | MBP-IS | Fiberoptik                                                    |
|------------------|------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------|---------------------------------------------------------------|
| Datenübertragung | Digital; Differenzialsignale<br>nach RS485, NRZ<br>(no return to zero) |                                                                | Manchester Codierung Digital, bitsynchron                |        | Optisch, Digital, NRZ                                         |
| Übertragungsrate | 9,6 bis 12.000 Kbit/s                                                  |                                                                | 31,25 Kbit/s                                             |        | 9,6 bis 12.000 Kbit/s                                         |
| Datensicherung   | HD=4; Paritybit;<br>Start- und End-Delimiter                           |                                                                | Präambel;<br>fehlergesicherte<br>Start-End-Delimiter     |        | HD=4; Paritybit; Start-<br>und<br>End-Delimiter               |
| Kabel            | Verdrillte<br>geschirmte<br>Zweidrahtle<br>itung<br>Kabeltyp A         | Verdrillte<br>geschirmte<br>Vierdrahtlei<br>tung<br>Kabeltyp A | Verdrillte geschirmte<br>Zweidraht-Leitung<br>Kabeltyp A |        | Multi- und Single- mode<br>Glasfaser; PCF;<br>Kunststofffaser |

# Übertragungstechnik

|                     | RS 485                              | RS485-IS                 | МВР                                                         | MBP-IS                      | Fiberoptik                               |
|---------------------|-------------------------------------|--------------------------|-------------------------------------------------------------|-----------------------------|------------------------------------------|
| Fernspeisung        | Über zusätzl. Adern möglich         |                          | Über Signaladern                                            |                             | Über Hybridleitung                       |
| Zündschutzart       | keine                               | Eigensicherheit<br>Ex ib | Erhöhte<br>Sicherheit ex E,<br>druckfeste<br>Kapselung ex d | Eigensicherheit<br>Ex ia/ib | keine                                    |
| Topologie           | Linie mit aktivem Busabschluss      |                          | Linie und Baum mit<br>Terminierung                          |                             | Typisch Stern und Ring, Linie<br>möglich |
| Teilnehmerzahl      | Max. 32 je Segment, max. 126 je Net |                          |                                                             | ZZ                          | Max. 126 je Netz                         |
| Anzahl der Repeater | Max. 9 mit Signalauffrischung       |                          | Max. 4 mit Signalauffrischung                               |                             | Mit Signalauffrischung<br>unbegrenzt     |

## Buszugriffsverfahren Hybrides Buszugriffsverfahren



Quelle: https://images.slideplayer.c om/27/9185790/slides/slid e\_2.jpg

#### Kommunikation

Kommunikationsprotokoll DP (Decentralized Peripherals)

- Schneller, zyklischer Datenaustausch in Feldebene
- Zentrale Automatisierungsgeräte (z.B. SPS, PC,...) kommunizieren über serielle Verbindung mit dezentralen Feldgeräten (z.B. E/A, Antriebe, Ventile, Sensoren,...)
- 3 Leistungsstufen: DP-V0, DP-V1 u. DP-V2

15/04/2019 14:45 PROFIBUS - Simon Schrodi 9 von 16

# Kommunikation DP-V0

- Kommunikation
  - Punkt-zu-Punkt (Nutzdaten) oder Multicast (Steuerkommandos)
  - Zyklischer Master-Slave Nutzdatenverkehr
- Diagnosefunktionen
  - Gerätebezogen, modulbezogen & kanalbezogen
- Gerätetypen
  - DP-Master Klasse 1: zentrale Bussteuerungen
  - DP-Master Klasse 2: Engineering oder Diagnosetool
  - DP-Slave: Geräte mit binären oder analogen Ein/Ausgängen, Antriebe, Ventile

# Kommunikation DP-V0

- Betriebszustände (DPM1 zu Slaves)
  - Stopp: Diagnose und Parametrierung, keine Nutzdatenübertragung
  - Clear: Eingänge werden gelesen, Ausgänge bleiben in sicherem Zustand
  - Operate: Zyklische Übertragung von Eingangs- und Ausgabedaten
  - Multicast in Intervallen über Zustand

#### Schutzfunktionen

- Schutz gegen Parametrierungsfehler
- Zeitüberwachung über ordnungsgemäßen Nutzdatentransfer
- Ansprechüberwachung des Slaves

# Kommunikation DP-V1 & DP-V2

- DP-V1
  - Zusätzlich azyklischer Datenverkehr
  - Bestätige Alarmmeldungen

- DP-V2
  - Slave-Querverkehr
  - Isochronous Mode
  - Uhrzeitsynchronisation

### Allgemeine Applikationsprofile

- Identification & Maintenance
- Time Stamp
- Redundancy
- PROFIsafe

# Allgemeine Applikationsprofile PROFIsafe

- Azyklische Kommunikation zwischen sicherheitsgerichteten Geräten und Sicherheitssteuerung
- Maßnahmen gegen Fehlermöglichkeiten bei serieller Buskommunikation
  - Fortlaufende Nummerierung der Sicherheitstelegramme
  - Zeiterwartung für ankommende Telegramme und Quittierung
  - Kennung zwischen Sender & Empfänger
  - Zusätzliche Datensicherung (CRC)
- RS 485, MBP oder Fiberoptik

## Spezifische Applikationsprofile

- PROFIdrive
- PA devices
- Robots
- Encoder
- Fluid Power
- Ident Systems
- Etc.

### Vielen Dank für Ihre Aufmerksamkeit!