1	Produits scalaires	1
2	Norme associée à un produit scalaire.	3
3	Orthogonalité. 3.1 Vecteurs orthogonaux, familles orthogonales.	7
4	Projection orthogonale sur un sous-espace de dimension finie. 4.1 Projeté orthogonal	11 12
\mathbf{E}_{2}	xercices	14

Dans ce chapitre, E désignera un R-espace vectoriel et on insiste sur le fait que les scalaires sont réels. Les notions de produit scalaire ou d'orthogonalité sur les C-espaces vectoriels sont hors-programme.

1 Produits scalaires

Définition 1 (Produit scalaire).

On appelle **produit scalaire** sur E toute application

$$\langle \cdot, \cdot \rangle : \left\{ \begin{array}{ccc} E \times E & \to & \mathbb{R} \\ (x,y) & \mapsto & \langle x,y \rangle \end{array} \right. ,$$

- bilinéaire : $\forall (x, x', y, y') \in E^4 \quad \forall (\lambda, \mu) \in \mathbb{R}^2$ $\begin{cases} \langle \lambda x + \mu x', y \rangle &= \lambda \langle x, y \rangle + \mu \langle x', y \rangle \\ \langle x, \lambda y + \mu y' \rangle &= \lambda \langle x, y \rangle + \mu \langle x, y' \rangle. \end{cases}$ symétrique : $\forall x, y \in E \quad \langle x, y \rangle = \langle y, x \rangle.$
- définie : $\forall x \in E \quad \langle x, x \rangle = 0 \Longrightarrow x = 0_E$
- positive : $\forall x \in E \quad \langle x, x \rangle \ge 0$.

Pour x et y deux vecteurs de E, $\langle x, y \rangle$ est un nombre réel, appelé produit scalaire de x et y.

Autres notations utilisées pour définir des produits scalaires : $(x,y) \mapsto (x \mid y)$ ou encore $(x,y) \mapsto x \cdot y$.

Définition 2 (Espaces préhilbertiens, euclidiens).

Si $\langle \cdot, \cdot \rangle$ est un produit scalaire sur E, le couple $(E, \langle \cdot, \cdot \rangle)$ est appelé **espace préhilbertien**. Un espace préhilbertien de dimension finie est appelé espace euclidien.

Sur $\mathbb{R}^n/M_{n,1}(\mathbb{R})$.

Cet exemple est fondamental car tous les \mathbb{R} -espaces vectoriels de dimension n peuvent être « identifiés » à \mathbb{R}^n (il suffit de travailler avec les coordonnées sur une base).

Proposition 3.

L'application $\langle \cdot, \cdot \rangle$ qui à $x = (x_1, \dots, x_n)$ et $y = (y_1, \dots, y_n)$ associe

$$\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i,$$

est un produit scalaire sur \mathbb{R}^n , dit produit scalaire canonique.

Quitte à identifier \mathbb{R}^n et $M_{n,1}(\mathbb{R})$ (on écrit les *n*-uplets comme des matrices colonnes), on peut calculer le produit scalaire canonique à l'aide d'un produit matriciel :

$$\forall X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \quad \forall Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \boxed{\langle X, Y \rangle = X^\top Y}.$$

Lorsqu'on parlera de « l'espace euclidien \mathbb{R}^n » sans expliciter le produit scalaire, c'est au produit scalaire canonique que l'on fait référence. Il y en a d'autres!

On retrouve pour n=2 le produit scalaire sur \mathbb{R}^2 avec lequel on travaillait en terminale :

$$(x,y) \cdot (x',y') = xx' + yy'.$$

et pour n=3 celui sur \mathbb{R}^3 que l'on connaissait aussi et que l'on utilise en physique :

$$(x, y, z) \cdot (x', y', z') = xx' + yy' + zz'.$$

Sur $M_{n,p}(\mathbb{R})$.

Proposition 4.

L'application $\langle \cdot, \cdot \rangle$ qui à deux matrices $A = (a_{i,j})$ et $B = (b_{i,j})$ de matrices de $M_{n,p}(\mathbb{R})$ associe

$$\langle A, B \rangle = \sum_{i=1}^{n} \sum_{j=1}^{p} a_{i,j} b_{i,j}.$$

est un produit scalaire sur $M_{n,p}(\mathbb{R})$, dit produit scalaire canonique.

On peut exprimer le produit scalaire de A et B ainsi :

$$\langle A, B \rangle = \operatorname{tr}(A^{\top}B)$$

Sur $C([a,b],\mathbb{R})$.

Proposition 5.

Soient deux réels a et b tels que a < b.

L'application $\langle \cdot, \cdot \rangle$ qui à un couple (f, g) de fonctions de $\mathcal{C}([a, b], \mathbb{R})$ associe

$$\langle f, g \rangle = \int_a^b f(t)g(t)dt,$$

est un produit scalaire sur $\mathcal{C}([a,b],\mathbb{R})$.

Muni de ce produit scalaire, $\mathcal{C}([a,b],\mathbb{R})$ est un espace préhilbertien.

Sur $\mathbb{R}[X]$.

L'application qui à un couple de polynômes $(P,Q) \in \mathbb{R}[X]^2$ tels que $P = \sum a_n X^n$ et $Q = \sum b_n X^n$ associe

$$\langle P, Q \rangle = \sum_{n=0}^{+\infty} a_n b_n$$

est un produit scalaire sur $\mathbb{R}[X]$, assez analogue au produit scalaire canonique sur \mathbb{R}^n (on fait le produit des coordonnées et on somme...) On rappelle que la somme ci-dessus compte un nombre fini de termes non nuls.

Exemple 6 (Un produit scalaire intégral sur l'espace des polynômes).

Pour P et Q deux polynômes de $\mathbb{R}[X]$, on note

$$\langle P, Q \rangle = \int_0^1 P(t)Q(t)dt.$$

Vérifier que l'application $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}[X]$.

2 Norme associée à un produit scalaire.

On considère dans cette partie un produit scalaire $\langle \cdot, \cdot \rangle$ sur E.

Définition 7.

On appelle norme associée au produit scalaire $\langle \cdot, \cdot \rangle$ l'application

$$\|\cdot\|: \left\{ \begin{array}{ccc} E & \to & \mathbb{R}_+ \\ x & \mapsto & \|x\| := \sqrt{\langle x, x \rangle} \end{array} \right.$$

L'an prochain, dans le cours Espaces vectoriels normés, vous travaillerez avec des normes non forcément définies à partir d'un produit scalaire.

Exemple 8.

Pour tout $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, la norme (associée au produit scalaire canonique) de x vaut

$$||x|| = \sqrt{\sum_{i=1}^{n} x_i^2}.$$

Cette norme est souvent écrite en physique dans les cas n=2 et n=3:

Pour
$$\overrightarrow{u}(x,y)$$
 $\|\overrightarrow{u}\| = \sqrt{x^2 + y^2}$ et pour $\overrightarrow{v}(x,y,z)$ $\|\overrightarrow{v}\| = \sqrt{x^2 + y^2 + z^2}$.

Autres exemples : la norme d'une fonction $f \in \mathcal{C}([a,b],\mathbb{R})$ lorsque cette norme est associée au produit scalaire défini plus haut :

$$||f|| = \sqrt{\int_a^b f^2(t) \mathrm{d}t},$$

ou encore pour une matrice $A \in M_{n,p}(\mathbb{R})$ sa norme associée au produit scalaire canonique :

$$||A|| = \sqrt{\operatorname{tr}(A^{\top}A)}.$$

Proposition 9 (Faits élémentaires).

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$ sur E.

1. Le vecteur nul a pour norme 0 et c'est le seul vecteur dans ce cas (propriété de séparation) :

$$||0_E|| = 0$$
 et $\forall x \in E \quad ||x|| = 0 \Longrightarrow x = 0_E$.

- 2. Pour tout $x \in E$, pour tout λ réel, on a $\|\lambda x\| = |\lambda| \cdot \|x\|$ (propriété d'homogénéité).
- 3. Si x est un vecteur non nul, le vecteur $\frac{1}{\|x\|}x$ est de norme 1. On le note aussi $\frac{x}{\|x\|}$

Proposition 10 (Identités remarquables).

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$ sur E. Soient deux vecteurs x et y.

1. Identités remarquables :

$$||x + y||^2 = ||x||^2 + 2\langle x, y \rangle + ||y||^2$$
 et $||x - y||^2 = ||x||^2 - 2\langle x, y \rangle + ||y||^2$

2. Identité du parallélogramme :

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

3. Identité de polarisation :

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

utile si on a un renseignement sur les normes et que l'on veut parler de produit scalaire.

Exemple 11 (avec n vecteurs).

Développer $\left\|\sum_{k=1}^{n} x_k\right\|^2$, pour n vecteurs $x_1, \dots x_n$ d'un espace préhilbertien $(E, \langle \cdot, \cdot \rangle)$.

Théorème 12 (Inégalité de Cauchy-Schwarz).

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$ sur E. Alors,

$$\forall (x,y) \in E^2 \qquad |\langle x,y \rangle| \le ||x|| \cdot ||y||.$$

Cette inégalité est une égalité ssi (x,y) est liée, c'est-à-dire ssi $y=0_E$ ou $\exists \alpha \in \mathbb{R} : x=\alpha y$.

Exemple 13 (Des inégalités de Cauchy-Schwarz écrites au carré).

• Soient $(a_1, \ldots, a_n) \in \mathbb{R}^n$ et $(b_1, \ldots, b_n) \in \mathbb{R}^n$. En utilisant le produit scalaire canonique,

$$\left(\sum_{i=1}^n a_i bi\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right).$$

• Soient f et g dans $\mathcal{C}([a,b],\mathbb{R})$. En utilisant le produit scalaire de la proposition 5,

$$\left(\int_{a}^{b} f(t)g(t)dt\right)^{2} \leq \left(\int_{a}^{b} f(t)^{2}dt\right)\left(\int_{a}^{b} g(t)^{2}dt\right).$$

Proposition 14 (Inégalité triangulaire).

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle\cdot,\cdot\rangle$ sur E. Alors,

$$\forall (x,y) \in E^2$$
 $||x + y|| \le ||x|| + ||y||.$

Il s'agit d'une égalité ssi x et y sont positivement liés, c'est-à-dire ssi $y=0_E$ ou $\exists \alpha \in \mathbb{R}_+: x=\alpha y$.

Corollaire 15.

$$\forall (x,y) \in E^2 \quad |||x|| - ||y||| \le ||x - y||.$$

Définition 16.

Soit $\|\cdot\|$ la norme associée au produit scalaire $\langle \cdot, \cdot \rangle$ sur E.

On appelle distance euclidienne entre deux vecteurs x et y de E le nombre positif

$$d(x,y) = ||x - y||.$$

3 Orthogonalité.

On considère toujours dans cette partie un produit scalaire $\langle \cdot, \cdot \rangle$ sur E et on note $\| \cdot \|$ la norme associée.

3.1 Vecteurs orthogonaux, familles orthogonales.

Définition 17.

Deux vecteurs d'un espace préhilbertien sont dits orthogonaux si leur produit scalaire est nul.

Exemples 18.

- Couples de vecteurs orthogonaux de \mathbb{R}^2 pour le produit scalaire canonique.
- · Dans l'espace préhilbertien $\mathcal{C}([0,2\pi],\mathbb{R})$ muni du produit scalaire de la proposition 5, les vecteurs cos et sin sont orthogonaux.
- · Diagonales d'un losange, dans un espace préhilbertien quelconque : si x et y ont même norme, alors x + y et x y sont orthogonaux.

Proposition 19.

Le vecteur nul est orthogonal à tous les vecteurs d'un espace préhilbertien, et seul dans ce cas.

Définition 20.

Soit $(x_1, \ldots, x_n) \in E^n$ une famille de vecteurs de l'espace préhilbertien E.

On dit que c'est une **famille orthogonale** si les vecteurs de cette famille sont orthogonaux deux à deux :

$$\forall 1 \le i, j \le n \quad i \ne j \Longrightarrow \langle x_i, x_j \rangle = 0.$$

On parle de **famille orthonormée** (ou orthonormale) si en plus, tous les vecteurs de la famille sont de norme 1, i.e.

$$\forall 1 \le i \le n \quad ||x_i|| = 1.$$

Proposition 21.

Soit $(x_1,\ldots,x_n)\in E^n$.

$$(x_1,\ldots,x_n)$$
 est orthonormée \iff $\forall i,j\in \llbracket 1,n \rrbracket$ $\langle x_i,x_j\rangle=\delta_{i,j}.$

Exemples. La base canonique de \mathbb{R}^n est orthonormée pour le produit scalaire canonique $(X,Y) \mapsto X^\top Y$.

La base canonique de $M_{n,p}(\mathbb{R})$ est orthonormée pour le produit scalaire canonique $(A,B) \mapsto \operatorname{Tr}(A^{\top}B)$.

Proposition 22 (Renormalisation).

Si (x_1, \ldots, x_n) est une famille orthogonale de E, constituée de vecteurs <u>non nuls</u>, on peut poser

$$\forall i \in [1, n] \quad e_i := \frac{x_i}{\|x_i\|}.$$

Alors, la famille (e_1, \ldots, e_n) est une famille orthonormée.

Proposition 23.

Une famille orthogonale formée de vecteurs non nuls est libre.

Notamment, les familles orthonormées sont libres.

Proposition 24 (Théorème de Pythagore).

Soit (x_1, \ldots, x_n) une famille orthogonale d'un espace préhilbertien pour lequel on note $\|\cdot\|$ la norme associée au produit scalaire. Alors,

$$\left\| \sum_{i=1}^{n} x_i \right\|^2 = \sum_{i=1}^{n} \|x_i\|^2.$$

3.2 Orthogonal d'une partie.

Définition 25.

Soit X une partie de E. On appelle **orthogonal** de X, et on note X^{\perp} l'ensemble des vecteurs orthogonaux à tous les éléments de X, c'est-à-dire

$$X^\perp = \left\{ y \in E : \quad \forall x \in X, \quad \langle x,y \rangle = 0 \right\}.$$

On a clairement $\{0_E\}^{\perp} = E$. La proposition 19 donne que si E est un espace préhilbertien, alors $E^{\perp} = \{0_E\}$.

Exemple 26 (Conséquences immédiates de la définition).

Si X et Y sont deux parties de E,

- $1.\ X\subset Y\implies Y^{\perp}\subset X^{\perp}.$
- $2. X \subset (X^{\perp})^{\perp}.$

Exemple 27 (se ramener à un sous-espace vectoriel).

$$\forall X \in \mathcal{P}(E) \quad X^{\perp} = (\operatorname{Vect}(X))^{\perp}.$$

Proposition 28.

Si X est une partie de $(E, \langle \cdot, \cdot \rangle)$, alors X^{\perp} est un sous-espace vectoriel de E.

Si F est un sous-espace vectoriel de E, alors F^{\perp} est un s.e.v. de E en somme directe avec F.

Exemple 29 (Reconnaître un « vecteur normal » à un hyperplan).

 \bullet Soit $(a,b,c)\neq (0,0,0).$ On considère le plan de \mathbb{R}^3

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid ax + by + cz = 0\}.$$

Écrire F sous la forme $\mathrm{Vect}(u)^{\perp}$ où u est un vecteur de \mathbb{R}^3 à expliciter Sait-on prouver que $F^{\perp} = \mathrm{Vect}(u)$?

• On considère le sous-espace vectoriel de $M_n(\mathbb{R})$ défini par

$$G = \{ M \in M_n(\mathbb{R}) \mid \operatorname{tr}(M) = 0 \}.$$

Écrire G sous la forme $\operatorname{Vect}(U)^{\perp}$ où U est une matrice de $M_n(\mathbb{R})$ à expliciter. Sait-on prouver que $G^{\perp} = \operatorname{Vect}(U)$?

3.3 Bases orthonormées d'un espace euclidien.

La terminologie est transparente : on parlera d'une **base orthonormée** (b.o.n.) d'un espace euclidien à propos d'une base de cet espace constituée de vecteurs deux à deux orthogonaux et tous de norme 1.

Théorème 30.

Dans un espace euclidien de dimension non nulle, il existe des bases orthonormées.

Proposition 31 (Les coordonnées dans une b.o.n. se calculent facilement).

Si E est de dimension finie et que (e_1,\ldots,e_n) en est une base orthonormée, alors

$$\forall x \in E \quad x = \sum_{i=1}^{n} \langle x, e_i \rangle e_i.$$

Corollaire 32.

Si E est de dimension finie et que (e_1, \ldots, e_n) en est une base orthonormée, alors, pour $(x, y) \in E^2$,

$$\langle x, y \rangle = \sum_{i=1}^{n} \langle x, e_i \rangle \langle y, e_i \rangle$$
 et $||x||^2 = \sum_{i=1}^{n} \langle x, e_i \rangle^2$.

Exemple 33.

Soit $E = \mathcal{C}^2([0,\pi],\mathbb{R})$ muni du produit scalaire $(f,g) \mapsto \langle f,g \rangle = \int_0^{\pi} fg$. On considère $F = \{f \in E \mid f'' + f = 0\}$, muni de la restriction du produit scalaire à F^2 .

- a) Justifier que (\cos, \sin) est une base de F et qu'elle est orthogonale.
- b) En déduire une base orthonormée de F.
- c) Prouver enfin que pour toute fonction $f \in F$, on a

$$\frac{\pi}{2} \int_0^\pi f^2(t) \mathrm{d}t = \left(\int_0^\pi f(t) \cos(t) \mathrm{d}t \right)^2 + \left(\int_0^\pi f(t) \sin(t) \mathrm{d}t \right)^2.$$

4 Projection orthogonale sur un sous-espace de dimension finie.

4.1 Projeté orthogonal.

Proposition-Définition 34 (Supplémentaire orthogonal d'un sous-espace de dimension finie).

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et F un sous-espace vectoriel <u>de dimension finie</u>. Alors, F^{\perp} est un supplémentaire de F dans E:

$$E = F \oplus F^{\perp}$$

La projection sur F parallèlement à F^{\perp} est notée ici p_F et appelée **projecteur orthogonal** sur F.

Si
$$(e_1, \ldots, e_p)$$
 est une base orthonormée de F , alors $p_F(x) = \sum_{i=1}^p \langle x, e_i \rangle e_i$.

Corollaire 35 (Inégalité de Bessel).

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et F un sous-espace de dimension finie. Alors,

$$\forall x \in E \qquad ||p_F(x)|| \le ||x||.$$

Corollaire 36 (Cas où E est aussi de dimension finie).

Soit E un espace <u>euclidien</u> et F un sous-espace vectoriel de E. Alors,

$$\dim\left(F^{\perp}\right) = \dim(E) - \dim(F).$$

Lorsque la dimension de F^{\perp} est nettement inférieure à celle de F est avantageux de projeter sur F^{\perp} plutôt que sur F. Ce sera très net au paragraphe suivant lorsqu'il s'agira de calculer la distance à un hyperplan.

Proposition 37 (Hors-programme? La question du bi-orthogonal).

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien et F un sous-espace vectoriel de E tel que $F \oplus F^{\perp} = E$. On a

$$\left(F^{\perp}\right)^{\perp} = F.$$

Le projecteur orthogonal sur F^{\perp} est le projecteur sur F^{\perp} parallèlement à F, de sorte que

$$\forall x \in E \quad x = p_F(x) + p_{F^{\perp}}(x).$$

Tout ceci est vrai en particulier lorsque F est de dimension finie, et donc en particulier dans le cas où E est euclidien.

Preuve. L'inclusion $F \subset (F^{\perp})^{\perp}$ est connue.

Soit $x \in (F^{\perp})^{\perp}$. Il se décompose sur $F \oplus F^{\perp}$ et s'écrit $x = x_F + x_{F^{\perp}}$. Par linéarité,

$$\langle x, x_{F^{\perp}} \rangle = \langle x_F + x_{F^{\perp}}, x_{F^{\perp}} \rangle = \langle x_F, x_{F^{\perp}} \rangle + \langle x_{F^{\perp}}, x_{F^{\perp}} \rangle = 0 + ||x_{F^{\perp}}||^2.$$

Puisque $x \in (F^{\perp})^{\perp}$ et $x_{F^{\perp}} \in F^{\perp}$, le produit scalaire que l'on vient de calculer vaut 0. Ainsi, $||x_{F^{\perp}}|| = 0$ puis $x_{F^{\perp}} = 0_E$. On a démontré que $x = x_F$, soit $x \in F$.

Remarque. à réserver pour une seconde lecture

Le programme officiel ne parle que de projection orthogonale sur un sous-espace de dimension finie. Or, nous venons de prouve que si F est de dimension finie, alors F^{\perp} est supplémentaire à son orthogonal (qui est F!) Cela a donc un sens de définir $p_{F^{\perp}}$... même si F^{\perp} n'est pas de dimension finie.

Tout cela est un peu subtil car, comme on l'aperçoit dans le TD, il existe des espaces préhilbertiens E et dans ces espaces des sous-espaces F de dimension infinie tels que $F \oplus F^{\perp} \neq E$. On peut alors avoir $(F^{\perp})^{\perp} \neq F$!

4.2 Distance à un sous-espace de dimension finie.

Définition 38.

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien, F un sous-espace de E et $x \in E$ un vecteur. On appelle **distance** de x à F, que l'on pourra noter d(x, F) le réel positif

$$d(x,F) = \inf_{y \in F} ||x - y||.$$

Le nombre ci-dessus est bien défini, comme borne inférieure d'un ensemble de réels non vide et minoré (par 0).

Proposition 39 (Distance à un sous-espace.).

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace préhilbertien. Soit F un sous-espace de dimension finie. On a

$$d(x, F) = ||x - p_F(x)||.$$

La distance au sous-espace est donc $atteinte: ||x - p_F(x)|| = \min_{y \in F} ||x - y||$, et le projeté orthogonal $p_F(x)$ est l'unique vecteur de F qui réalise le minimum.

Preuve. Notons $y_0 = p_F(x)$ (existe car F est de dimension finie) et considérons $y \in F$. Puisque $x - y_0$ appartient à F^{\perp} et que $y - y_0$ appartient à F, le théorème de Pythagore donne

$$||x - y||^2 = ||x - y_0 + y_0 - y||^2 = ||x - y_0||^2 + ||y_0 - y||^2.$$

Puisque $||y_0 - y||^2 \ge 0$, on a

$$||x - y||^2 \ge ||x - y_0||^2$$

avec égalité si et seulement si $||y_0 - y|| = 0$.

On a donc bien prouvé que $||x-y|| \ge ||x-y_0||$ avec égalité si et seulement si $y=y_0$.

Corollaire 40 (Distance à un sous-espace, dans un espace de dimension finie).

Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien et F un sous-espace vectoriel de E. Pour tout vecteur x de E, on a

$$d(x, F) = ||p_{F^{\perp}}(x)||.$$

4.3 Projeté orthogonal et calcul de distance : la pratique.

Méthode (En pratique : projeter un vecteur sur F lorsqu'on a une b.o.n. de F).

Soit F un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et $x \in E$. Pour calculer $p_F(x)$, projeté orthogonal de x sur F, on peut

- 1. se donner une b.o.n. (e_1, \ldots, e_p) de F (voir paragraphe suivant pour un algorithme de construction),
- 2. utiliser la formule $p_F(x) = \sum_{i=1}^p \langle x, e_i \rangle e_i$.

Méthode (En pratique : projeter un vecteur sur F lorsqu'on a une base quelconque de F).

Soit F un sous-espace vectoriel de dimension finie d'un espace préhilbertien E et $x \in E$. Pour calculer $p_F(x)$, projeté orthogonal de x sur F, on peut

- 1. se donner une base (u_1, \ldots, u_p) de F
- 2. Introduire $(\lambda_1, \ldots, \lambda_p)$, p-uplet des coordonnées de $p_F(x)$ sur (u_1, \ldots, u_p) .
- 3. Écrire le système linéaire sur les λ_i correspondant à l'orthogonalité de $x p_F(x)$ avec les u_i .
- 4. Résoudre le système linéaire!

Exemple 41 (Distance à un hyperplan en dimension finie).

Soit H un hyperplan de E, $u \in H^{\perp} \setminus \{0_E\}$ et x un vecteur de E.

- 1. Que dire de H^{\perp} ? Dessiner. Lequel de $p_H(x)$ ou de $p_{H^{\perp}}(x)$ est le plus facile à calculer? Justifier que la distance de x à H est $d(x,H) = \frac{|\langle x,u\rangle|}{\|u\|}$.
- 2. Application : montrer que la distance d'un vecteur $x=(x_0,y_0,z_0)\in\mathbb{R}^3$ à un plan vectoriel P d'équation ax+by+cz=0 (où $(a,b,c)\neq(0,0,0)$) vaut

$$d(x, P) = \frac{|ax_0 + by_0 + cz_0|}{\sqrt{a^2 + b^2 + c^2}}.$$

Exemple 42.

Calculer le nombre

$$\inf_{(a,b)\in\mathbb{R}^2} \int_0^1 (t^2 - ax - b)^2 \, \mathrm{d}x.$$

4.4 Construction de b.o.n. : algorithme d'orthonormalisation de Gram-Schmidt.

Exemple 43 (Comprendre d'abord pour deux vecteurs.).

On orthonormalise une famille libre (u_1, u_2) , en illustrant.

Proposition 44 (Algorithme d'orthonormalisation de Gram-Schmidt).

Soit E un espace préhilbertien. Soit (u_1, \ldots, u_n) une famille <u>libre</u> de vecteurs de E $(n \ge 2)$. Il est possible de définir des vecteurs e_1, e_2, \ldots, e_n tels que

$$\forall k \in \llbracket 1, n \rrbracket \quad (e_1, \dots, e_k) \text{ est une b.o.n. de } \operatorname{Vect}(u_1, \dots, u_k) := F_k.$$

Le procédé de construction est le suivant : on commence par poser

$$e_1 := \frac{u_1}{\|u_1\|}.$$

Pour $k \in [1, n-1]$, si e_1, \dots, e_k sont construits, on pose $e_{k+1} := \frac{v_{k+1}}{\|v_{k+1}\|}$, où

$$v_{k+1} := u_{k+1} - p_{F_k}(u_{k+1}) = u_{k+1} - \sum_{i=1}^k \langle u_{k+1}, e_i \rangle e_i.$$

Le procédé mis en œuvre pour passer de (u_1, \ldots, u_n) à (e_1, \ldots, e_n) est appelé **algorithme d'orthonormalisation de Gram-Schmidt** et on dit que l'on a orthonormalisé la famille (u_1, \ldots, u_n) .

Exemple 45.

Orthonormaliser la famille (u_1, u_2, u_3) où $u_1 = (2, -1, 1), u_2 = (-1, 1, 1), u_3 = (1, 1, 1).$ Solution: l'algorithme de Gram-Schmidt renvoie (e_1, e_2, e_3) avec

$$e_1 = \frac{1}{\sqrt{6}}(2, -1, 1), \quad e_2 = \frac{1}{\sqrt{21}}(-1, 2, 4), \quad e_3 = \frac{1}{\sqrt{14}}(2, 3, -1).$$

Exemple 46 (Matrice de passage).

Soit (u_1, \ldots, u_n) une base d'un espace euclidien et (e_1, \ldots, e_n) la b.o.n. obtenue en appliquant l'algorithme de Gram-Schmidt. Expliquer pourquoi la matrice de passage de la première à la seconde est triangulaire supérieure.

Proposition 47 (Théorème de la b.o.n. incomplète).

Dans un espace euclidien, toute famille orthonormée peut être complétée en une b.o.n.

Exercices

Calculs de distances.

40.1 $[\blacklozenge \blacklozenge \diamondsuit]$ Soient $a_0, a_1, \ldots, a_n, n+1$ réels deux à deux distincts. Soit l'application

$$\langle \cdot, \cdot \rangle : \begin{cases} \mathbb{R}_n[X]^2 & \to & \mathbb{R} \\ (P, Q) & \mapsto & \sum_{k=0}^n P(a_k)Q(a_k) \end{cases}$$

- 1. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. Déterminer une base de $\mathbb{R}_n[X]$ orthonormée pour ce produit scalaire.

3. On note
$$H = \left\{ P \in \mathbb{R}_n[X] : \sum_{i=0}^n P(a_i) = 0 \right\}$$
. Déterminer H^{\perp} .

4. Calculer $d(X^n, H)$.

40.2
$$[\spadesuit \spadesuit \diamondsuit]$$
 Notons $E = \mathcal{C}^2([-1,1],\mathbb{R})$ et $F = \{f \in E : f'' = f\}$.

Pour f et g deux fonctions de classe \mathcal{C}^2 sur [-1,1], on pose $\langle f,g\rangle = \int_{-1}^1 (fg + f'g')$.

- 1. Montrer que $\langle f, g \rangle$ est un produit scalaire sur E.
- 2. Montrer que (ch, sh) est une base de F et vérifier qu'il s'agit d'une famille orthogonale.
- 3. Calculer d(1,F) où 1 est la fonction constante égale à 1.

40.3
$$[\spadesuit \spadesuit \diamondsuit]$$
 Soit le s.e.v. de \mathbb{R}^4 donné par

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : x + y - z - t = 0 \text{ et } x + 3y + z - t = 0\}.$$

On note p_F la projection orthogonale sur F.

- 1. Déterminer une base orthonormée de F.
- 2. En déduire la matrice de p_F dans la base canonique de \mathbb{R}^4 .
- 3. Soit e_1 le premier vecteur dans la base canonique. Déterminer la distance de e_1 à F.

40.4 [♦♦◊]

- 1. Montrer que $(P,Q) \mapsto \langle P,Q \rangle = \sum_{k=0}^{n} P^{(k)}(1)Q^{(k)}(1)$ est un produit scalaire sur $\mathbb{R}_n[X]$.
- 2. Calculer $d(1_{\mathbb{R}_n[X]}, F)$, la distance de $1_{\mathbb{R}_n[X]}$ à F, où $F = \{P \in \mathbb{R}_n[X], P(1) = 0\}$.

Divers.

 $\boxed{\mathbf{40.5}}$ $\boxed{\left(\blacklozenge \diamondsuit \diamondsuit \right)}$ Un drôle d'angle droit.

Montrer que $(X,Y) \mapsto X^T \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} Y$ définit un produit scalaire sur $M_{2,1}(\mathbb{R})$.

Démontrer que les vecteurs (1,0) et (1,-3) sont orthogonaux pour ce produit scalaire.

40.6
$$[\blacklozenge \diamondsuit \diamondsuit]$$
 Montrer que pour tout $(x_1, \ldots, x_n) \in \mathbb{R}^n$, $\left(\sum_{i=1}^n x_i \right)^2 \le n \sum_{i=1}^n x_i^2$.

Pour quels n-uplets a-t-on égalité?

 $\boxed{\textbf{40.7}}$ $[\blacklozenge\diamondsuit\diamondsuit]$ Soient $x_1,\ldots,x_n\in\mathbb{R}_+^*$ tels que $\sum_{i=1}^n x_i=1$. Montrer que $\sum_{i=1}^n \frac{1}{x_i}\geq n^2$. Étudier le cas d'égalité.

40.8 $[\diamondsuit\diamondsuit]$ Soit $\|\cdot\|$ la norme associée au produit scalaire canonique sur $M_n(\mathbb{R})$. Démontrer que

$$\forall (A, B) \in M_n(\mathbb{R}) \quad ||AB|| \le ||A|| \cdot ||B||.$$

40.9 [$\diamond \diamond \diamond$] Soit E un espace préhilbertien et n un entier supérieur à 2. On considère n vecteurs v_1, \ldots, v_n tels que

$$\forall i \in \llbracket 1, n \rrbracket \quad \|v_i\| = 1 \qquad \text{ et } \qquad \exists k > 1: \ \forall i \neq j \ \langle v_i, v_j \rangle \leq -\frac{1}{k}.$$

Démontrer que $k+1 \ge n$.

 $\boxed{\textbf{40.10}}$ $\boxed{(\spadesuit \spadesuit \diamondsuit)}$ Montrer que deux vecteurs x et y sont orthogonaux si et seulement si

$$\forall \lambda \in \mathbb{R}, \quad ||x + \lambda y|| \ge ||x||.$$

40.11 $[\phi \Diamond \Diamond]$ Soient F et G deux sous-espaces vectoriels d'un espace préhilbertien.

- 1. Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 2. Montrer que $F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$.

40.12 [$\Diamond \Diamond \Diamond$] Soit A une partie d'un espace préhilbertien. Montrer que

$$\left((A^{\perp})^{\perp} \right)^{\perp} = A^{\perp}.$$

40.13 $[\phi \phi \diamondsuit]$ Soit $A \in M_{n,p}(\mathbb{R})$ et f l'application linéaire canoniquement associée.

Démontrer les égalités

$$\operatorname{Ker}(A^T A) = \operatorname{Ker}(A)$$
 et $(\operatorname{Im} A)^{\perp} = \operatorname{Ker}(A^T)$.

En déduire que

- si f est injective, alors $A^T A \in GL_p(\mathbb{R})$;
- si f est surjective, alors $AA^T \in GL_n(\mathbb{R})$.

40.14 $[\spadesuit \spadesuit \spadesuit]$ Orthogonal d'un sous-espace de dimension infinie.

Soit $E = \mathcal{C}^0([0,1],\mathbb{R})$ et $F = \mathcal{C}^1([0,1],\mathbb{R})$. On munit E du produit scalaire défini par

$$\forall (f,g) \in E^2 \quad \langle f,g \rangle = \int_0^1 f(t)g(t)dt.$$

Démontrer que $F^{\perp} = \{0_E\}$. A-t-on $(F^{\perp})^{\perp} = F$?