Final Project Part5 State Models

July 20, 2020

1 File Information

Name: Amie Davis

Course: DSC630 - Predictive Analytics

Assignment Number: Final Project Part 4

Purpose: Build model(s) for each state

Usage: Python 3.7.6

Developed using Jupter Notebook 6.0.3

2 Data Source

Uniform Crime Reporting Program Data: National Incident-Based Reporting System, [United States], 2016; United States Federal Bureau of Investigation; Interuniversity Consortium for Political and Social Research (ICPSR), University of Michigan; https://www.icpsr.umich.edu/icpsrweb/NACJD/NIBRS/

Geodetic Data for US Cities: https://simplemaps.com/data/us-cities

3 Part 5

In Part 5, I will build separate models for the top 6 reporting states to predict the type of offenses committed, given location information.

3.1 Import required packages

```
[1]: # Suppress Warnings
    #import warnings
    #warnings.filterwarnings('ignore')

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
```

4 Prepare Data

```
[2]: # Load data into dataframe
    data_file = "Data\crime_offenses_top6.csv"
                                               # Data from Top 6 States
    df = pd.read csv(data file)
    C:\Users\amomu\Anaconda3\lib\site-
    packages\IPython\core\interactiveshell.py:3063: DtypeWarning: Columns
    (7,11,14,15,16,17,18,19,41,42,44,46,51,52,53,54,56) have mixed types. Specify
    dtype option on import or set low_memory=False.
      interactivity=interactivity, compiler=compiler, result=result)
    4.1 Eliminate features
[3]: print(df.columns)
    Index(['Unnamed: 0', 'X1', 'ORI', 'INC_NUM', 'VIC_INC_DATE', 'VICTIM_TYPE',
           'ACT_TYPE_OFFC', 'ASSG_TYPE_OFFC', 'AGE_OF_VICTIM', 'SEX_OF_VICTIM',
           'RACE_OF_VICTIM', 'ETHNIC_OF_VIC', 'VIC_RESIDENT', 'ASSAULT_CIRC1',
           'ASSAULT_CIRC2', 'JUST_HOM_CIRC', 'INJURY_TYPE1', 'INJURY_TYPE2',
           'INJURY_TYPE3', 'INJURY_TYPE4', 'INJURY_TYPE5', 'NUM_RECS_PER_VICTIM',
           'VIC_INC_YEAR', 'VIC_INC_MONTH', 'VIC_INC_DAY', 'VIC_INC_DOW',
           'NUM_STATE_CODE', 'CITY', 'STATE', 'POP_GROUP', 'CTRY_DIVISION',
           'CTRY_REGION', 'AGENCY_IND', 'CORE_CITY', 'FBI_OFFICE', 'JUDICIAL_DIST',
           'CURRENT POP1', 'UCR COUNTY CD1', 'MSA CD1', 'LAST POP1',
           'FIPS_COUNTY1', 'city_ascii', 'state_name', 'county_fips',
           'county_name', 'county_fips_all', 'county_name_all', 'lat', 'lng',
           'population', 'density', 'source', 'military', 'incorporated',
           'timezone', 'ranking', 'zips', 'id', 'OFF_CODE'],
          dtype='object')
[4]: # Remove irrelevant and redundant fields
     # Drop unneeded columns
     # KEEP STATE
    df.drop(['X1','id', 'county_fips', 'county_fips_all', 'Unnamed: 0',
              'ORI', 'INC_NUM', 'NUM_RECS_PER_VICTIM', 'VIC_INC_DATE', ...
     'ASSAULT_CIRC1', 'ASSAULT_CIRC2', 'JUST_HOM_CIRC',
              'INJURY_TYPE1', 'INJURY_TYPE2', 'INJURY_TYPE3',
              'INJURY_TYPE4', 'INJURY_TYPE5', 'NUM_RECS_PER_VICTIM', 'AGENCY_IND',
              'FBI_OFFICE', 'JUDICIAL_DIST', 'FIPS_COUNTY1',
              'LAST_POP1', 'UCR_COUNTY_CD1', 'MSA_CD1', 'city_ascii', 'CITY',
              'state_name', 'county_name', 'county_name_all', 'population', 'zips',
              'source'],
             axis=1, inplace = True)
```

```
# Also removing victim demographics since they are not relevant to predict

→ offenses and locations

df.drop(['VICTIM_TYPE','RACE_OF_VICTIM', 'AGE_OF_VICTIM',

'SEX_OF_VICTIM', 'ETHNIC_OF_VIC', 'VIC_RESIDENT'],

axis=1, inplace = True)

# Verify Change
print(df.columns)
```

4.2 Encoding

```
[6]: # Change DOW to numeric value
     def f_dow(df):
         if df['VIC_INC_DOW'] == 'Sunday':
             val = 1
         elif df['VIC_INC_DOW'] == 'Monday':
             val = 2
         elif df['VIC_INC_DOW'] == 'Tuesday':
             val = 3
         elif df['VIC_INC_DOW'] == 'Wednesday':
             val = 4
         elif df['VIC_INC_DOW'] == 'Thursday':
             val = 5
         elif df['VIC_INC_DOW'] == 'Friday':
             val = 6
         elif df['VIC_INC_DOW'] == 'Saturday':
             val = 7
         else:
```

```
val=0
   return val
# Change Timezone to numeric value
def f_tz(df):
   if df['timezone'] == 'America/New_York':
        val = 1
   elif df['timezone'] == 'America/Detroit':
       val = 2
    elif df['timezone'] == 'America/Chicago':
       val = 2
   elif df['timezone'] == 'America/Denver':
        val = 3
   elif df['timezone'] == 'America/Los_Angeles':
       val = 4
   else:
       val=0
   return val
def f_state(df):
   if df['STATE'] == 'TN':
       val = 1
   elif df['STATE'] == 'MI':
       val = 2
   elif df['STATE'] == 'SC':
       val = 3
   elif df['STATE'] == 'MA':
       val = 4
   elif df['STATE'] == 'OH':
       val = 5
   elif df['STATE'] == 'WA':
       val = 6
   else:
       val=0
   return val
# Convert simple categorical features to numeric to limit dummy features
df['VIC_INC_DOW'] = df.apply(f_dow, axis=1)
df['timezone'] = df.apply(f_tz, axis=1)
df['STATE'] = df.apply(f_state, axis=1)
df['CORE_CITY'] = df['CORE_CITY'].map({'Y': 1, 'N': 0})
df['military'] = df['military'].map({True: 1, False: 0})
df['incorporated'] = df['incorporated'].map({True: 1, False: 0})
# Change target feature to easily translated numeric values
def f_off(df):
```

```
if df['OFF_CODE'] == '09A':
    val = 91
elif df['OFF_CODE'] == '09B':
    val = 92
elif df['OFF_CODE'] == '09C':
    val = 93
elif df['OFF_CODE'] == '100':
    val = 100
elif df['OFF_CODE'] == '11A':
   val = 111
elif df['OFF_CODE'] == '11B':
   val = 112
elif df['OFF_CODE'] == '11C':
    val = 113
elif df['OFF_CODE'] == '11D':
    val = 114
elif df['OFF_CODE'] == '120':
    val = 120
elif df['OFF_CODE'] == '13A':
    val = 131
elif df['OFF_CODE'] == '13B':
    val = 132
elif df['OFF_CODE'] == '13C':
   val = 133
elif df['OFF_CODE'] == '200':
   val = 200
elif df['OFF_CODE'] == '210':
   val = 210
elif df['OFF_CODE'] == '220':
    val = 220
elif df['OFF_CODE'] == '23A':
    val = 231
elif df['OFF_CODE'] == '23B':
    val = 232
elif df['OFF_CODE'] == '23C':
    val = 233
elif df['OFF_CODE'] == '23D':
    val = 234
elif df['OFF CODE'] == '23E':
   val = 235
elif df['OFF CODE'] == '23F':
   val = 236
elif df['OFF_CODE'] == '23G':
   val = 237
elif df['OFF_CODE'] == '23H':
    val = 238
elif df['OFF_CODE'] == '240':
```

```
val = 240
elif df['OFF_CODE'] == '250':
    val = 250
elif df['OFF_CODE'] == '26A':
   val = 261
elif df['OFF_CODE'] == '26B':
    val = 262
elif df['OFF_CODE'] == '26C':
    val = 263
elif df['OFF_CODE'] == '26D':
    val = 264
elif df['OFF_CODE'] == '26E':
    val = 265
elif df['OFF_CODE'] == '26F':
    val = 266
elif df['OFF_CODE'] == '26G':
    val = 267
elif df['OFF_CODE'] == '270':
   val = 270
elif df['OFF_CODE'] == '280':
    val = 280
elif df['OFF_CODE'] == '290':
    val = 290
elif df['OFF CODE'] == '35A':
    val = 351
elif df['OFF_CODE'] == '35B':
    val = 352
elif df['OFF_CODE'] == '36A':
    val = 361
elif df['OFF_CODE'] == '36B':
    val = 362
elif df['OFF_CODE'] == '370':
    val = 370
elif df['OFF_CODE'] == '39A':
    val = 391
elif df['OFF_CODE'] == '39B':
    val = 392
elif df['OFF_CODE'] == '39C':
    val = 393
elif df['OFF_CODE'] == '39D':
    val = 394
elif df['OFF_CODE'] == '40A':
    val = 401
elif df['OFF_CODE'] == '40B':
    val = 402
elif df['OFF_CODE'] == '40C':
    val = 403
```

```
elif df['OFF_CODE'] == '510':
        val = 510
    elif df['OFF_CODE'] == '520':
        val = 520
    elif df['OFF_CODE'] == '64A':
        val = 641
    elif df['OFF_CODE'] == '64B':
        val = 642
    elif df['OFF CODE'] == '720':
       val = 720
    else:
        val=0
    return val
df['OFF_CODE'] = df.apply(f_off, axis=1)
# Convert population group to easily translated numeric values
def f_pop(df):
    if df['POP_GROUP'] == '1A':
        val = 11
    elif df['POP_GROUP'] == '1B':
        val = 12
    elif df['POP_GROUP'] == '1C':
        val = 13
    elif df['POP GROUP'] == '8A':
        val = 81
    elif df['POP_GROUP'] == '8B':
        val = 82
    elif df['POP_GROUP'] == '8C':
        val = 83
    elif df['POP_GROUP'] == '8D':
        val = 84
    elif df['POP_GROUP'] == '8E':
        val = 85
    elif df['POP_GROUP'] == '9A':
        val = 91
    elif df['POP_GROUP'] == '9B':
        val = 92
    elif df['POP_GROUP'] == '9C':
        val = 93
    elif df['POP_GROUP'] == '9D':
        val = 94
    elif df['POP_GROUP'] == '9E':
        val = 95
    else:
        val=df['POP_GROUP']
    return val
df['POP_GROUP'] = df.apply(f_pop, axis=1)
```

4.3 Determine Target Variable

Use offense code as the target variable. The goal is to be able to predict offense code based on varying features.

4.4 Split Datasets

```
[7]: # Separate datasets by state
tn_df = df[df['STATE'] == 1]
mi_df = df[df['STATE'] == 2]
sc_df = df[df['STATE'] == 3]
ma_df = df[df['STATE'] == 4]
oh_df = df[df['STATE'] == 5]
wa_df = df[df['STATE'] == 6]
```

```
[8]: # Split data into two sets: Training and Testing.
     # Split out target variable
     tn_data_model_y = tn_df.OFF_CODE
     mi_data_model_y = mi_df.OFF_CODE
     sc_data_model_y = sc_df.OFF_CODE
     ma_data_model_y = ma_df.OFF_CODE
     oh_data_model_y = oh_df.OFF_CODE
     wa_data_model_y = wa_df.OFF_CODE
     # Remove target variable from feature list
     tn_data_model_X = tn_df.drop(['OFF_CODE'], axis=1, inplace = False)
     mi_data_model_X = mi_df.drop(['OFF_CODE'], axis=1, inplace = False)
     sc_data_model_X = sc_df.drop(['OFF_CODE'], axis=1, inplace = False)
     ma_data_model_X = ma_df.drop(['OFF_CODE'], axis=1, inplace = False)
     oh_data_model_X = oh_df.drop(['OFF_CODE'], axis=1, inplace = False)
     wa_data_model_X = wa_df.drop(['OFF_CODE'], axis=1, inplace = False)
     # Split the data into training and validation datasets
     # Save 30% for validation
     tn_X_train, tn_X_val, tn_y_train, tn_y_val = train_test_split(tn_data_model_X,_
     →tn_data_model_y, test_size =0.3, random_state=7)
     mi_X_train, mi_X_val, mi_y_train, mi_y_val = train_test_split(mi_data_model_X,_
     →mi_data_model_y, test_size =0.3, random_state=7)
     sc_X_train, sc_X_val, sc_y_train, sc_y_val = train_test_split(sc_data_model_X,_
     →sc_data_model_y, test_size =0.3, random_state=7)
     ma_X_train, ma_X_val, ma_y_train, ma_y_val = train_test_split(ma_data_model_X,__
     →ma_data_model_y, test_size =0.3, random_state=7)
     oh_X_train, oh_X_val, oh_y_train, oh_y_val = train_test_split(oh_data_model_X,_
     →oh_data_model_y, test_size =0.3, random_state=7)
     wa_X_train, wa_X_val, wa_y_train, wa_y_val = train_test_split(wa_data_model_X,_
      →wa data model y, test size =0.3, random state=7)
```

5 Model Evaluation and Selection

5.1 Random Forest Classifer

5.1.1 Build Model

```
[15]: # Optimized Hyperparameters for each state
      #TN: {'max_depth': 18, 'n_estimators': 445}
      #MI: {'max depth': 16, 'n estimators': 186}
      #SC: {'max_depth': 17, 'n_estimators': 284}
      #MA: {'max_depth': 17, 'n_estimators': 293}
      #OH: {'max depth': 17, 'n estimators': 284}
      #WA: {'max_depth': 18, 'n_estimators': 484}
      # Create random forest classifer object
      from sklearn.ensemble import RandomForestClassifier
      tn rf model = RandomForestClassifier(random state=0, n estimators=445,
      →n_jobs=-1, max_depth=18, bootstrap=False)
      mi rf model = RandomForestClassifier(random state=0, n estimators=186,,,
      →n_jobs=-1, max_depth=16, bootstrap=False)
      sc rf model = RandomForestClassifier(random state=0, n estimators=284,...
      →n_jobs=-1, max_depth=17, bootstrap=False)
      ma rf model = RandomForestClassifier(random state=0, n estimators=293,,,
      →n_jobs=-1, max_depth=17, bootstrap=False)
      oh rf model = RandomForestClassifier(random state=0, n estimators=284,,
      →n_jobs=-1, max_depth=17, bootstrap=False)
      wa rf model = RandomForestClassifier(random state=0, n estimators=484, __
      →n_jobs=-1, max_depth=18, bootstrap=False)
      # Train model
      tn_forest = tn_rf_model.fit(tn_X_train, tn_y_train)
      mi forest = mi rf model.fit(mi X train, mi v train)
      sc_forest = sc_rf_model.fit(sc_X_train, sc_y_train)
      ma_forest = ma_rf_model.fit(ma_X_train, ma_y_train)
      oh_forest = oh_rf_model.fit(oh_X_train, oh_y_train)
      wa_forest = wa_rf_model.fit(wa_X_train, wa_y_train)
```

5.1.2 Model Evaluation

```
[16]: # Predict values
    tn_y_pred_forest = tn_forest.predict(tn_X_val)
    mi_y_pred_forest = mi_forest.predict(mi_X_val)
    sc_y_pred_forest = sc_forest.predict(sc_X_val)
    ma_y_pred_forest = ma_forest.predict(ma_X_val)
    oh_y_pred_forest = oh_forest.predict(oh_X_val)
    wa_y_pred_forest = wa_forest.predict(wa_X_val)
```

[17]: # Create classification report print(classification_report(tn_y_val, tn_y_pred_forest)) print(classification_report(mi_y_val, mi_y_pred_forest)) print(classification_report(sc_y_val, sc_y_pred_forest)) print(classification_report(ma_y_val, ma_y_pred_forest)) print(classification_report(oh_y_val, oh_y_pred_forest)) print(classification_report(wa_y_val, wa_y_pred_forest))

C:\Users\amomu\Anaconda3\lib\sitepackages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.

_warn_prf(average, modifier, msg_start, len(result))

	precision	recall	f1-score	support
91	0.00	0.00	0.00	52
92	0.00	0.00	0.00	2
93	0.00	0.00	0.00	6
100	0.22	0.05	0.08	323
111	0.18	0.01	0.03	267
112	0.86	0.79	0.82	154
113	0.00	0.00	0.00	28
114	0.48	0.11	0.18	366
120	0.25	0.23	0.24	2027
131	0.31	0.38	0.34	6936
132	0.22	0.54	0.31	14417
133	0.22	0.31	0.26	4151
200	0.12	0.11	0.12	151
210	0.00	0.00	0.00	48
220	0.23	0.21	0.22	6810
231	0.00	0.00	0.00	46
232	0.00	0.00	0.00	28
233	0.17	0.17	0.17	7623
234	0.20	0.07	0.11	4794
235	0.00	0.00	0.00	51
236	0.22	0.20	0.21	5673
237	0.17	0.01	0.01	1127
238	0.22	0.09	0.12	4622
240	0.14	0.01	0.02	2110
250	0.42	0.21	0.28	2744
261	0.18	0.08	0.11	3321
262	0.44	0.37	0.40	3904
263	0.27	0.03	0.06	1263
264	0.00	0.00	0.00	12
265	0.24	0.07	0.10	120
266	0.14	0.03	0.05	468
267	0.00	0.00	0.00	3

070	0 56	0 11	0 10	F7F
270	0.56	0.11	0.19	575
280	0.75	0.52	0.61	827
290	0.23	0.21	0.22	9008
351	0.16	0.13	0.14	7945
352	0.10	0.04	0.05	5373
361	0.00	0.00	0.00	5
362	0.33	0.04	0.08	67
370	0.00	0.00	0.00	103
391	0.00	0.00	0.00	1
392	0.00	0.00	0.00	3
393	0.00	0.00	0.00	5
401	0.00	0.00	0.00	83
402	0.00	0.00	0.00	17
403	0.25	0.25	0.25	12
510	0.00	0.00	0.00	6
520	0.04	0.00	0.00	1504
641	0.00	0.00	0.00	1
720	0.00	0.00	0.00	38
120	0.00	0.00	0.00	00
accuracy			0.23	99220
macro avg	0.17	0.11	0.12	99220
weighted avg	0.23	0.23	0.21	99220
0 0				
	precision	recall	f1-score	support
	_			
91	0 24	0.05	0 08	85
91	0.24	0.05	0.08	85
92	0.00	0.00	0.00	5
92 93	0.00	0.00	0.00	5 1
92 93 100	0.00 0.00 0.42	0.00 0.00 0.12	0.00 0.00 0.18	5 1 186
92 93 100 111	0.00 0.00 0.42 0.18	0.00 0.00 0.12 0.01	0.00 0.00 0.18 0.02	5 1 186 603
92 93 100 111 112	0.00 0.00 0.42 0.18 0.27	0.00 0.00 0.12 0.01 0.03	0.00 0.00 0.18 0.02 0.05	5 1 186 603 271
92 93 100 111 112 113	0.00 0.00 0.42 0.18 0.27 0.00	0.00 0.00 0.12 0.01 0.03 0.00	0.00 0.00 0.18 0.02 0.05 0.00	5 1 186 603 271 106
92 93 100 111 112 113 114	0.00 0.00 0.42 0.18 0.27 0.00 0.41	0.00 0.00 0.12 0.01 0.03 0.00 0.12	0.00 0.00 0.18 0.02 0.05 0.00	5 1 186 603 271 106 791
92 93 100 111 112 113 114 120	0.00 0.00 0.42 0.18 0.27 0.00 0.41	0.00 0.00 0.12 0.01 0.03 0.00 0.12	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19	5 1 186 603 271 106 791 1813
92 93 100 111 112 113 114 120 131	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30	5 1 186 603 271 106 791 1813 6132
92 93 100 111 112 113 114 120 131	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30	5 1 186 603 271 106 791 1813 6132 16586
92 93 100 111 112 113 114 120 131 132	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15	5 1 186 603 271 106 791 1813 6132 16586 3829
92 93 100 111 112 113 114 120 131	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30	5 1 186 603 271 106 791 1813 6132 16586
92 93 100 111 112 113 114 120 131 132	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15	5 1 186 603 271 106 791 1813 6132 16586 3829
92 93 100 111 112 113 114 120 131 132 133 200	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28	5 1 186 603 271 106 791 1813 6132 16586 3829 392
92 93 100 111 112 113 114 120 131 132 133 200 210	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64
92 93 100 111 112 113 114 120 131 132 133 200 210 220	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.25 0.01	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231 232	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33 0.26 0.33	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.02	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03 0.25 0.01	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159 100
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231 232	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33 0.26 0.33 0.08	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.25 0.01 0.01 0.20	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03 0.25 0.01	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159 100 5534
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231 232 233 234	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33 0.26 0.33 0.08 0.21 0.23	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.25 0.01 0.01 0.20 0.07	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03 0.25 0.01 0.02	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159 100 5534 3768
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231 232 233 234 235 236	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33 0.26 0.33 0.26 0.33 0.08 0.21 0.23	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.25 0.01 0.01 0.20 0.07 0.06 0.31	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03 0.25 0.01 0.02 0.21 0.11 0.07 0.36	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159 100 5534 3768 36 6474
92 93 100 111 112 113 114 120 131 132 133 200 210 220 231 232 233 234 235	0.00 0.00 0.42 0.18 0.27 0.00 0.41 0.27 0.29 0.23 0.20 0.38 0.33 0.26 0.33 0.08 0.21 0.23 0.08	0.00 0.00 0.12 0.01 0.03 0.00 0.12 0.15 0.30 0.62 0.12 0.22 0.02 0.02 0.05 0.01 0.01 0.00	0.00 0.00 0.18 0.02 0.05 0.00 0.18 0.19 0.30 0.34 0.15 0.28 0.03 0.25 0.01 0.02 0.21 0.11 0.07	5 1 186 603 271 106 791 1813 6132 16586 3829 392 64 8057 159 100 5534 3768 36

240	0.17	0.02	0.03	2408
250	0.22	0.03	0.05	938
26:	0.28	0.12	0.17	3589
263	0.29	0.12	0.17	2235
263	0.21	0.10	0.13	1020
264	1 0.00	0.00	0.00	20
26	0.11	0.01	0.01	147
260	0.27	0.22	0.24	1602
26	7 0.31	0.26	0.29	19
270	0.44	0.04	0.08	604
280	0.49	0.35	0.40	1336
290	0.28	0.22	0.25	10833
35:	0.16	0.14	0.15	7580
35:		0.01	0.01	2027
36:		0.00	0.00	5
36:		0.00	0.00	9
370		0.00	0.00	120
39:		0.00	0.00	4
39:		0.00	0.00	3
40:		0.00	0.00	65
40:		0.00	0.00	18
403		0.00	0.00	2
510		0.00	0.00	4
520		0.00	0.00	1593
64:		1.00	0.46	22
64:		0.00	0.00	2
720		0.00	0.00	31
120	0.00	0.00	0.00	31
accurac	7		0.25	100392
macro av	·	0.11	0.11	100392
weighted av	=	0.25	0.22	100392
O .				
	precision	recall	f1-score	support
9:	0.09	0.05	0.06	60
9:		0.00	0.00	1
9:		0.00	0.00	7
100			0.00	297
		0.13		
11:			0.01	265
11:		0.10	0.15	58
113		0.00	0.00	26
114		0.07	0.11	247
120		0.23	0.26	1960
13:		0.38	0.36	4840
13:		0.53	0.33	11305
13:		0.09	0.13	2397
200		0.24	0.32	119
210	0.05	0.11	0.07	18

220	0.31	0.29	0.30	6300
231	0.27	0.39	0.32	51
232	0.00	0.00	0.00	30
233	0.16	0.12	0.13	5925
234	0.15	0.06	0.09	1699
235	0.00	0.00	0.00	71
236	0.27	0.38	0.32	7205
237	0.37	0.05	0.09	778
238	0.22	0.19	0.20	6743
240	0.12	0.02	0.03	1847
250	0.22	0.07	0.11	1557
261	0.40	0.12	0.19	2307
262	0.29	0.12	0.17	1620
263	0.65	0.24	0.36	757
264	0.00	0.00	0.00	7
265	0.40	0.06	0.10	136
266	0.00	0.00	0.00	7
270	0.81	0.50	0.62	505
280	0.26	0.14	0.18	939
290	0.22	0.24	0.23	9068
351	0.17	0.15	0.16	6352
352	0.10	0.03	0.04	2114
361	0.00	0.00	0.00	1
362	0.38	0.15	0.21	20
370	0.00	0.00	0.00	54
391	0.00	0.00	0.00	2
392	0.00	0.00	0.00	1
393	0.00	0.00	0.00	6
401	0.00	0.00	0.00	101
402	0.00	0.00	0.00	5
403	0.00	0.00	0.00	26
510	0.00	0.00	0.00	2
520	0.06	0.01	0.01	1572
641	0.00	0.00	0.00	2
accuracy			0.25	79410
macro avg	0.18	0.11	0.12	79410
weighted avg	0.24	0.25	0.23	79410
0 0				
	precision	recall	f1-score	support
91	0.50	0.03	0.05	37
92	0.00	0.00	0.00	2
100	0.30	0.08	0.13	172
111	0.50	0.00	0.13	272
112	0.59	0.15	0.01	106
113	0.00	0.00	0.24	8
114	0.14	0.00	0.04	213
	0.11	0.02	0.01	210

120	0.20	0.09	0.13	1802
131	0.23	0.19	0.21	5144
132	0.24	0.54	0.33	10065
133	0.25	0.11	0.15	3264
200	0.49	0.47	0.48	265
210	0.00	0.00	0.00	33
220	0.23	0.26	0.24	5808
231	0.00	0.00	0.00	162
232	0.00	0.00	0.00	44
233	0.22	0.05	0.08	2431
234	0.25	0.08	0.12	1763
235	0.00	0.00	0.00	7
236	0.30	0.19	0.23	3826
237	0.05	0.00	0.00	507
238	0.36	0.38	0.37	7788
240	0.14	0.01	0.02	1458
250	0.16	0.03	0.06	587
261	0.32	0.07	0.12	1675
262	0.25	0.10	0.15	912
263	0.50	0.19	0.28	1021
264	0.00	0.00	0.00	6
265	0.00	0.00	0.00	25
266	0.00	0.00	0.00	125
267	0.00	0.00	0.00	6
270	0.50	0.26	0.34	149
280	0.30	0.18	0.23	682
290	0.31	0.42	0.36	9959
351	0.08	0.00	0.01	1973
352	0.00	0.00	0.00	32
361	0.00	0.00	0.00	3
362	0.09	0.03	0.05	98
370	0.00	0.00	0.00	77
392	0.00	0.00	0.00	5
401	0.00	0.00	0.00	96
402	0.00	0.00	0.00	14
403	0.00	0.00	0.00	2
510	0.00	0.00	0.00	1
520	0.00	0.00	0.00	996
720	0.00	0.00	0.00	1
120	0.00	0.00	0.00	_
accuracy			0.27	63622
macro avg	0.16	0.09	0.10	63622
weighted avg	0.16	0.03	0.10	63622
weighted avg	0.20	0.21	0.24	03022
	precision	recall	f1-score	support
	-			11
91	0.33	0.02	0.04	89
100	0.30	0.22	0.25	407

111	0.33	0.01	0.02	515
112	0.10	0.02	0.03	54
113	0.00	0.00	0.00	1
114	0.34	0.12	0.18	438
120	0.25	0.15	0.19	1886
131	0.31	0.12	0.18	2146
132	0.23	0.42	0.30	11997
133	0.25	0.37	0.30	9479
200	0.28	0.30	0.29	398
210	0.00	0.00	0.00	37
220	0.25	0.23	0.24	9740
231	0.23	0.04	0.06	170
232	0.06	0.01	0.01	164
233	0.23	0.21	0.22	5960
234	0.31	0.15	0.20	4092
235	0.33	0.06	0.10	36
236	0.33	0.24	0.28	6436
237	0.11	0.00	0.00	433
238	0.23	0.33	0.27	11224
240	0.14	0.02	0.03	1693
250	0.30	0.06	0.10	1251
261	0.19	0.02	0.04	998
262	0.13	0.02	0.05	899
263	0.30	0.16	0.03	1464
264	0.60	0.10	0.16	32
265				5
	0.00	0.00	0.00	
266	0.00	0.00	0.00	221
270	0.00	0.00	0.00	10
280	0.55	0.29	0.38	1897
290	0.28	0.35	0.31	12968
351	0.17	0.12	0.14	7403
352	0.12	0.04	0.06	5541
361	0.00	0.00	0.00	4
362	1.00	0.02	0.05	41
370	0.00	0.00	0.00	172
392	0.00	0.00	0.00	5
401	0.00	0.00	0.00	17
402	0.09	0.01	0.02	108
510	0.00	0.00	0.00	2
520	0.19	0.01	0.02	1324
accuracy			0.25	101757
•	0.21	0.10	0.25	101757
macro avg	0.21	0.10	0.11	
weighted avg	0.25	0.25	0.23	101757
	precision	recall	f1-score	support
91	0.44	0.19	0.27	58
	J.11	3.13	3.21	33

4	0.00	0.00	0.00	92
3	0.00	0.00	0.00	93
361	0.05	0.03	0.36	100
521	0.08	0.04	0.39	111
46	0.00	0.00	0.00	112
19	0.00	0.00	0.00	113
635	0.09	0.05	0.31	114
1998	0.17	0.11	0.30	120
3420	0.19	0.14	0.31	131
11284	0.21	0.19	0.23	132
3364	0.44	0.34	0.60	133
399	0.32	0.25	0.45	200
44	0.00	0.00	0.00	210
13304	0.26	0.25	0.28	220
103	0.12	0.07	0.50	231
258	0.04	0.02	0.26	232
7935	0.17	0.15	0.19	233
3245	0.19	0.13	0.33	234
34	0.00	0.00	0.00	235
19899	0.48	0.50	0.46	236
1414	0.20	0.15	0.31	237
25196	0.50	0.60	0.43	238
6324	0.07	0.04	0.19	240
3401	0.32	0.23	0.49	250
2083	0.31	0.26	0.40	261
2767	0.63	0.54	0.74	262
2533	0.44	0.39	0.50	263
11	0.00	0.00	0.00	264
68	0.18	0.10	0.78	265
1739	0.14	0.10	0.26	266
14	0.00	0.00	0.00	267
309	0.70	0.67	0.72	270
8519	0.61	0.62	0.61	280
20381	0.32	0.47	0.24	290
4896	0.03	0.02	0.10	351
2485	0.05	0.03	0.09	352
22	0.23	0.18	0.31	361
63	0.00	0.00	0.00	362
115	0.00	0.00	0.00	370
1	0.00	0.00	0.00	392
72	0.00	0.00	0.00	401
18	0.00	0.00	0.00	402
12	0.00	0.00	0.00	403
1358	0.00	0.00	0.04	520
9	0.00	0.00	0.00	641
16	0.00	0.00	0.00	720

0.36

accuracy

150760

macro avg 0.25 0.15 0.17 150760 weighted avg 0.35 0.36 0.33 150760

```
[12]: # Use the random grid to search for best hyperparameters
      # https://jamesrledoux.com/code/randomized_parameter_search
      \#from\ sklearn.model\_selection\ import\ RandomizedSearchCV
      #from scipy.stats import randint
      #model_params = {
            'n_estimators': randint(10,500),
      #
            'max_depth': randint(1,50)
      #7
      # First create the base model to tune
      #rf = RandomForestClassifier()
      # Random search of parameters, using 3 fold cross validation,
      # search across 100 different combinations, and use all available cores
      \#tn\_rf\_random = RandomizedSearchCV(rf, model\_params, n\_iter=100, cv=3, 
       \rightarrow random_state=3, n_jobs = -1)
      #mi rf_random = RandomizedSearchCV(rf, model_params, n_iter=100, cv=3,__
       \rightarrow random_state=3, n_jobs = -1)
      #sc rf random = RandomizedSearchCV(rf, model params, n iter=100, cv=3,,,
       \rightarrow random_state=3, n_jobs = -1)
      #ma rf_random = RandomizedSearchCV(rf, model_params, n_iter=100, cv=3,__
       \rightarrow random_state=3, n_jobs = -1)
      \#oh\_rf\_random = RandomizedSearchCV(rf, model\_params, n\_iter=100, cv=3, \sqcup respectively)
       \rightarrow random_state=3, n_jobs = -1)
      #wa rf_random = RandomizedSearchCV(rf, model_params, n_iter=100, cv=3,__
       \rightarrow random_state=3, n_jobs = -1)
      #tn rf random.fit(tn X train, tn y train)
      #mi_rf_random.fit(mi_X_train, mi_y_train)
      \#sc\_rf\_random.fit(sc\_X\_train, sc\_y\_train)
      #ma_rf_random.fit(ma_X_train, ma_y_train)
      #oh_rf_random.fit(oh_X_train, oh_y_train)
      \#wa_rf_random.fit(wa_X_train, wa_y_train)
      #print('TN: ', tn_rf_random.best_params_)
      #print('MI: ', mi_rf_random.best_params_)
      #print('SC: ', sc_rf_random.best_params_)
      #print('MA: ', ma_rf_random.best_params_)
      #print('OH: ', oh rf random.best params )
      #print('WA: ', wa_rf_random.best_params_)
```

```
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model_selection\_split.py:667: UserWarning: The least populated
class in y has only 2 members, which is less than n_splits=3.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model_selection\_split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n splits=3.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model_selection\_split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n_splits=3.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model selection\ split.py:667: UserWarning: The least populated
class in y has only 2 members, which is less than n_splits=3.
  % (min_groups, self.n_splits)), UserWarning)
C:\Users\amomu\Anaconda3\lib\site-
packages\sklearn\model selection\ split.py:667: UserWarning: The least populated
class in y has only 1 members, which is less than n_splits=3.
 % (min_groups, self.n_splits)), UserWarning)
TN: {'max_depth': 18, 'n_estimators': 445}
MI: {'max_depth': 16, 'n_estimators': 186}
SC: {'max_depth': 17, 'n_estimators': 284}
MA: {'max depth': 17, 'n estimators': 293}
OH: {'max_depth': 17, 'n_estimators': 284}
WA:
    {'max_depth': 18, 'n_estimators': 484}
Results of model hyperparameter assessments: TN: {'max_depth': 18, 'n_estimators':
445
MI: {'max_depth': 16, 'n_estimators': 186}
SC: {'max_depth': 17, 'n_estimators': 284}
MA: {'max_depth': 17, 'n_estimators': 293}
OH: {'max_depth': 17, 'n_estimators': 284}
WA: {'max depth': 18, 'n estimators': 484}
```

6 Model Visualization

```
[19]: # Find most important features in Random Forest model
import matplotlib.pyplot as plt

# Calculate feature importances
tn_importances = tn_forest.feature_importances_

# Sort feature importances in descending order
```

```
indices = np.argsort(tn_importances)[::-1]

# Rearrange feature names so they match the sorted feature importances
tn_names = [tn_X_train.columns[i] for i in indices]

# Create plot
plt.figure()

# Create plot title
plt.title("Feature Importance")

# Add bars
plt.bar(range(tn_X_train.shape[1]), tn_importances[indices])

# Add feature names as x-axis labels
plt.xticks(range(tn_X_train.shape[1]), tn_names, rotation=90)

# Show plot
plt.show()
```


	precision	recall	f1-score	${ t support}$	
91	0.00	0.00	0.00	52	
92	0.00	0.00	0.00	2	
93	0.00	0.00	0.00	6	
100	0.19	0.05	0.08	323	
111	0.18	0.01	0.03	267	
112	0.86	0.79	0.82	154	
113	0.00	0.00	0.00	28	
114	0.48	0.11	0.18	366	
120	0.25	0.23	0.24	2027	
131	0.31	0.38	0.34	6936	
132	0.22	0.55	0.31	14417	
133	0.22	0.31	0.26	4151	
200	0.12	0.11	0.11	151	
210	0.00	0.00	0.00	48	
220	0.23	0.21	0.22	6810	
231	0.00	0.00	0.00	46	
232	0.00	0.00	0.00	28	
233	0.17	0.17	0.17	7623	
234	0.20	0.07	0.11	4794	
235	0.00	0.00	0.00	51	
236	0.23	0.20	0.21	5673	
237	0.19	0.01	0.01	1127	
238	0.22	0.09	0.12	4622	
240	0.15	0.01	0.02	2110	
250	0.42	0.21	0.28	2744	
261	0.19	0.08	0.11	3321	

	262	0.44	0.37	0.40	3904
	263	0.27	0.03	0.06	1263
	264	0.00	0.00	0.00	12
	265	0.23	0.07	0.10	120
	266	0.15	0.03	0.05	468
	267	0.00	0.00	0.00	3
	270	0.56	0.11	0.19	575
	280	0.75	0.52	0.61	827
	290	0.23	0.21	0.22	9008
	351	0.16	0.13	0.14	7945
	352	0.10	0.04	0.05	5373
	361	0.00	0.00	0.00	5
	362	0.33	0.04	0.08	67
	370	0.00	0.00	0.00	103
	391	0.00	0.00	0.00	1
	392	0.00	0.00	0.00	3
	393	0.00	0.00	0.00	5
	401	0.00	0.00	0.00	83
	402	0.00	0.00	0.00	17
	403	0.25	0.25	0.25	12
	510	0.00	0.00	0.00	6
	520	0.04	0.00	0.00	1504
	641	0.00	0.00	0.00	1
	720	0.00	0.00	0.00	38
accui	racy			0.23	99220
macro	avg	0.17	0.11	0.12	99220
${\tt weighted}$	avg	0.23	0.23	0.21	99220

C:\Users\amomu\Anaconda3\lib\site-

packages\sklearn\metrics_classification.py:1272: UndefinedMetricWarning:
Precision and F-score are ill-defined and being set to 0.0 in labels with no
predicted samples. Use `zero_division` parameter to control this behavior.
 _warn_prf(average, modifier, msg_start, len(result))

[]: