§2. Частные производные. Полный дифференциал

П.1. Частные производные

Пусть $f(x_1,x_2,...,x_n)$ определена в окрестности точки $x_0(x_{01},x_{02},...,x_{0n})$. Частной производной функции в точке x_0 называется $\frac{\partial f}{\partial x_1}(x_0) = \lim_{\Delta x_1 \to 0} \frac{\Delta x_1 f(x_0)}{\Delta x_1} = \lim_{\Delta x_1 \to 0} \frac{f(x_{01} + \Delta x_1, x_{02},...,x_{0n}) - f(x_{01}, x_{02},...,x_{0n})}{\Delta x_1}$. Обозначается как $f_x'(x_0)$. Аналогично определяются частные производные по другим параметрам.

Пример:
$$z = x^2 \sin y$$
; $\frac{\partial z}{\partial x} = 2x \sin y$; $\frac{\partial z}{\partial y} = x^2 \cos y$.

П.2. Полный дифференциал

П.2. Производная сложной функции

Пусть $z=f(u,v), u=\varphi(x,y), v=\psi(x,y)$ и пусть φ и ψ определены в области G. Тогда z определена в D – образе G при отображении φ и ψ . Пусть Δx – приращение x, тогда $\Delta_x u$, $\Delta_x v$ — приращение u и v. $\Delta_x z=\frac{\partial f}{\partial u}\Delta_x u+\frac{\partial f}{\partial v}\Delta_x v+\gamma_1\Delta_x u+\gamma_2\Delta_x v$. При $\Delta x\to 0$ $\gamma_1,\gamma_2\to 0$. Частная производная по x сложной функции $z\big(\varphi(x,y),\psi(x,y)\big)$: $\frac{\partial z}{\partial x}=\lim_{\Delta x\to 0}\frac{\Delta_x z}{\Delta x}=\lim_{\Delta x\to 0}\frac{\partial f}{\partial u}*\frac{\Delta_x u}{\Delta x}+\lim_{\Delta x\to 0}\frac{\partial f}{\partial v}*\frac{\Delta_x v}{\Delta x}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial x}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial x}$. Аналогичным образом $\frac{\partial z}{\partial y}=\frac{\partial f}{\partial u}\frac{\partial u}{\partial y}+\frac{\partial f}{\partial v}\frac{\partial v}{\partial y}$.

<u>Замечание.</u> Пусть $z=f(u,v,x), u=\varphi(x), v=\psi(x)$. Тогда $z=f(\varphi(x),\psi(x),x)$. Отсюда $\frac{\partial z}{\partial x}=\frac{\partial f}{\partial u}\frac{d\varphi}{dx}+\frac{\partial f}{\partial v}\frac{d\psi}{dx}+\frac{\partial f}{\partial x}$.

§3. Производная функции, заданной неявно

F(x,y) = 0 – неявное задание y(x).

Теорема 20. Пусть F(x,y), $\frac{\partial F}{\partial x}(x,y)$, $\frac{\partial F}{\partial y}(x,y)$ определены и непрерывны в области G, содержащей точку (x,y), удовлетворяющую уравнению: F(x,y)=0. Пусть в этой точке $\frac{\partial F}{\partial y}(x,y)\neq 0$, тогда $y_x'=\frac{-\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial y}(x,y)}$.

<u>Доказательство.</u> Зададим приращения $x+\Delta x,y+\Delta y$ так, чтобы они лежали в области G и $F(x+\Delta x,y+\Delta y)=0$, тогда $F(x+\Delta x,y+\Delta y)-F(x,y)=0$. $\frac{\partial F}{\partial x}(x,y)\Delta x+\frac{\partial F}{\partial y}(x,y)\Delta y+\gamma_1\Delta x+\gamma_2\Delta y,\; \gamma_1,\gamma_2\to 0$ при $\Delta\rho\to 0$. Разделим на $\Delta x.$ $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}\frac{\partial y}{\partial x}+\gamma_1+\gamma_2\frac{\Delta y}{\Delta x}$. При $\Delta x\to 0$ получим $\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y}y'=0$, откуда $y_x'=\frac{-\frac{\partial F}{\partial x}(x,y)}{\frac{\partial F}{\partial x}(x,y)}$.

<u>Замечание.</u> Теорему можно обобщить на случай функции n переменных. $F(z,x_1,x_2,...,x_n)$ — неявное задание $z(x_1,x_2,...,x_n)$. Тогда $\frac{\partial z}{\partial x_1}=\frac{-\frac{\partial F}{\partial x_1}}{\frac{\partial F}{\partial z}},...,\frac{\partial z}{\partial x_n}=\frac{-\frac{\partial F}{\partial x_n}}{\frac{\partial F}{\partial z}}$ (при условии, что $\frac{\partial F}{\partial x_n}\neq 0$).

§4. Частные производные высших порядков

Частная производная n — порядка есть частная производная от производной n-1 порядка. Пусть дана z=f(x,y). Тогда ее производные второго порядка: $\frac{\partial^2 f}{\partial x^2}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right)$; $\frac{\partial^2 f}{\partial y^2}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)$; $\frac{\partial^2 f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$; $\frac{\partial^2 f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)$. Последние две производные называются смешанными производными.

Теорема 21. Пусть $z=f(x,y),f_x'(x,y),f_y'(x,y),f_{xy}''(x,y),f_{yx}''(x,y)$ определены и непрерывны в точке (x,y) и ее окрестности. Тогда $f_{xy}''(x,y)=f_{yx}''(x,y)$.

Доказательство. Рассмотрим $A = [f(x + \Delta x, y + \Delta y) - f(x + \Delta x, y)] - [f(x, y + \Delta y) - f(x, y)]$ и $\varphi(x) = f(x, y + \Delta y) - f(x, y)$. Тогда $A = \varphi(x + \Delta x) - \varphi(x)$. Так как f'_x определена в окрестности точки (x, y) то $\varphi(x)$ дифференцируема на $[x, x + \Delta x], \Delta x > 0$. Следовательно, по теореме Лагранжа, $A = \varphi'(\bar{x})\Delta x$. $\varphi'(\bar{x}) = f'_x(\bar{x}, y + \Delta y) - f'_x(\bar{x}, y)$. По теореме Лагранжа $\varphi'(\bar{x}) = f''_{xy}(\bar{x}, \bar{y})\Delta y$. f'_x существует в окрестности точки (x, y) и $A = f''_{xy}(\bar{x}, \bar{y})\Delta x\Delta y$. Теперь рассмотрим $A = [f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)] - [f(x + \Delta x, y) - f(x, y)]$ и $\psi(x) = f(x + \Delta x, y) - f(x, y)$. Аналогичный образом получим $A = f''_{yx}(\bar{x}, \bar{y})\Delta x\Delta y$. Приравняем полученные выражения $f''_{xy}(\bar{x}, \bar{y})\Delta x\Delta y = f''_{yx}(\bar{x}, \bar{y})\Delta x\Delta y$. При $\Delta x, \Delta y \to 0$ точки $(\bar{x}, \bar{y}), (\bar{x}, \bar{y}) \to (x, y)$. Получаем $f''_{xy}(x, y) = f''_{yx}(x, y)$.

 ${\color{red} {\bf 3amerahue.}}$ Теорему можно обобщить на случай функции n переменных.