Scilab Textbook Companion for A Textbook of Electronic Circuits by R. S. Sedha¹

Created by
Neelam Ramchandra Jadhav
pursuing B.E (EXTC)
Others
Anjuman-I-Islam's kalsekar Technical campus
College Teacher
Chaya
Cross-Checked by
Not Applicable

December 9, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: A Textbook of Electronic Circuits

Author: R. S. Sedha

Publisher: S. Chand And Company

Edition: 2

Year: 2009

ISBN: 9788121928038

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	st of Scilab Codes	5
3	SEMICONDUCTORS	15
5	PN JUNCTION DIODE	26
7	SPECIAL PURPOSE DIODES AND OPTO ELECTRONIC DEVICES	33
8	BIPOLAR JUNCTION TRANSISTORS	38
9	BJT CHARACTERISTICS	44
10	BJT LOW AND HIGH FREQUENCY MODELS	45
11	BJT LOW AND HIGH FREQUENCY MODELS	46
12	THYRISTORS	49
13	PASSIVE CIRCUITS DEVICES	52
16	PN JUNCTION DIODE APPLICATIONS RECTIFIERS AND FILTERS	55
17	CONTROLLED RECTIFIERS	62
18	BJT BIASING AND STABILISATION	66
19	SINGLE STAGE BJT AMPLIFIERS	85

20 HYBRID PARAMETERS	96
21 MULTISTAGE BJT AMPLIFIERS	103
22 FET AMPLIFIERS	111
23 AMPLIFIERS WITH COMPOUND CONFIGURATION	121
24 FREQUENCY RESPONSE OF BJT AND JFET AMPLIFIERS	129
25 LARGE SIGNAL OR POWER AMPLIFIERS	134
26 TUNED AMPLIFIERS	141
27 FEEDBACK AMPLIFIERS	144
28 SINUSOIDAL OSCILLATORS	152
29 NON SINUSOIDAL OSCILLATORS	158
30 LINEAR WAVE SHAPING CIRCUIT	165
31 TIME BASE CIRCUIT	167
32 OPERATIONAL AMPLIFIERS	169
33 OP AMP APPLICATION	175
34 REUGULATED POWER SUPPLIES	177

List of Scilab Codes

Exa 3.1	length of wire and current density	15
Exa 3.2	charge density of free electrons current density current	
	flowing in the wire and electron drift velocity	15
Exa 3.3	mobility and relaxation time of electrons	16
Exa 3.4	intrinsic conductivity	16
Exa 3.5	intrinsic conductivity	17
Exa 3.6	concentration of free electrons and drift velocity	17
Exa 3.7	intrinsic carrier concentration	18
Exa 3.8	conductivity	19
Exa 3.9	donor concentration	19
Exa 3.10	concentration of electrons and holes	19
Exa 3.11	minority electron and hole density	20
Exa 3.12	length	20
Exa 3.13	concentration of holes and electrons	21
Exa 3.14	resistivity of germanium sample	21
Exa 3.15	resistivity of intrinsic silicon	22
Exa 3.16	conductivity of silicon	23
Exa 3.17	diffusion coefficients of holes and electrons	23
Exa 3.18	electron mobility	24
Exa 3.19	conduction electrons	24
Exa 3.20	number of electrons	24
Exa 3.21	mobility and density of charge carrier	25
Exa 3.22	resistivity	25
Exa 5.1	Current	26
Exa 5.2	find current	26
Exa 5.3	value of n	27
Exa 5.4	saturation current	27
Eva 5.5	value of VF for the device	27

Exa 5.8	dc current and PDmax
Exa 5.9	voltage drop and current
Exa 5.10	VD VR I
Exa 5.11	current
Exa 5.12	voltage across resistor and current
Exa 5.13	total current
Exa 5.14	total current
Exa 5.15	output voltage
Exa 5.16	waveform of voltage
Exa 7.1	value of Izm
Exa 7.2	maximum power dissipation
Exa 7.3	resistance of device
Exa 7.4	terminal voltage
Exa 7.5	tuning range
Exa 7.6	frequency of 5th harmonic
Exa 7.7	resistor
Exa 7.8	minimum and maximum value of current 3
Exa 7.9	Imin and Imax
Exa 7.10	resistance and current
Exa 8.1	base current
Exa 8.2	current gain
Exa 8.3	base current
Exa 8.4	IC and IB
Exa 8.5	alpha and beta
Exa 8.6	emitter current
Exa 8.7	current
Exa 8.8	IB and IE
Exa 8.9	IC and IE
Exa 8.10	IC and IB
Exa 8.11	beta emitter current and new value of beta 4
Exa 8.12	collector and emitter current
Exa 8.13	collector current
Exa 9.1	PDmax
Exa 10.1	hybrid pi parameters
Exa 11.1	drain current
Exa 11.2	transconductance curve
Exa 11.4	DRAIN CURRENT AND TRANSCONDUCTANCE . 4
Exa 11.5	value og ID

Exa 12.1	destroy the device or not
Exa 12.2	max allowable duration
Exa 12.3	voltage
Exa 12.4	intrinsic stand off ratio and peak point voltage
Exa 12.5	rB1 and rB2
Exa 13.4	tolerance
Exa 13.5	coil inductance
Exa 13.6	coefficient of Coupling
Exa 13.7	Q factor of coil
Exa 13.8	capacitance
Exa 13.9	thickness of dielectric
Exa 16.1	dc output voltage and PIV
Exa 16.2	dc load current
Exa 16.3	maximum and average power
Exa 16.4	maximum ac voltage
Exa 16.5	dc output voltage
Exa 16.6	dc output voltage and PIV and output frequency
Exa 16.7	dc output voltage PIV and rectification efficiency
Exa 16.8	load resistor dc load voltage and PIV
Exa 16.9	inductance
Exa 16.10	capacitance
Exa 16.11	size of capacitor
Exa 16.12	ripple facctor
Exa 16.13	Vdc peak and average current and average power deliv-
	ered
Exa 17.1	angular firing required
Exa 17.2	power
Exa 17.3	voltage
Exa 17.4	resistance
Exa 17.5	chopper duty cycle and chopping frequency
Exa 17.6	dc output voltage
Exa 18.1	sturation current and cutoff voltage
Exa 18.2	upper and lower ends of load line
Exa 18.3	base and collector current and VCE
Exa 18.4	RB and VCE
Exa 18.5	voltage and current
Exa 18.6	find Ic and Vce
Exa 18.7	load line

Exa 18.9	current voltage and stability factor	3
Exa 18.10	Q point	3
Exa 18.11	IB IC AND IE	4
Exa 18.12	possible causes	4
Exa 18.13	find R1	5
Exa 18.14	base resistance	6
Exa 18.15	dc bias current and voltage	6
	current and voltage	7
Exa 18.17	OPERATING POINT	7
Exa 18.18	R1 and RC	8
Exa 18.19	IE and VCE	9
Exa 18.20	base current	9
Exa 18.21	change in collector current	0
Exa 18.24	value of resistors	0
Exa 18.25	CURRENT AND VOLTAGE 8	1
Exa 18.26	change in Q point	2
Exa 18.27	VOLTAGE AND CURRENT 8	3
Exa 18.28	Quiescent points	3
Exa 19.1	resistance and voltage gain	5
Exa 19.2	current and gain	6
Exa 19.3	resistance and gain	6
Exa 19.4	voltage gain and resistance	7
Exa 19.5	voltage and impedance	8
Exa 19.6	output voltage and output gain	9
Exa 19.7	voltage and impedance	0
Exa 19.8	Av Ri Ro and Avs	0
Exa 19.9	GAIN VOLTAGE AND RESISTANCE 9	1
Exa 19.10	resistance voltage gain current gain power gain 9	3
Exa 19.11	VOLTAGE GAIN	3
Exa 19.12	resistance and voltage gain	4
Exa 19.13	resistance and voltage	5
Exa 20.2	Impedance voltage and current gain 9	
Exa 20.3	impedance current and voltage gain 9	
Exa 20.4	voltage gain and resistance 9	
Exa 20.5	resistance voltage and current gain	
Exa 20.6	resistance voltage and current gain	
Exa 20.7	resistance voltage and current gain	
Exa 20.8	voltage and impedance	

Exa 20.9	resistance voltage and current gain
Exa 20.10	hfb and hfc
Exa 20.11	gain and input resistance
Exa 21.1	total voltage gain
Exa 21.2	voltage gain and input voltage of 2nd stage 103
Exa 21.3	input resistance output resitance current and voltage
	$gain \dots \dots$
Exa 21.4	voltage gain
Exa 21.5	cutoff frequency and voltage gain
Exa 21.6	individual stage gains and voltage gain
Exa 21.7	voltage gain
Exa 21.8	collector current VCE and ac voltage gain 108
Exa 21.9	gain emitter diode resistance 109
Exa 22.1	vdc vgs
Exa 22.2	R1
Exa 22.3	RS and RD
Exa 22.5	RD and RS
Exa 22.6	self bias operation point
Exa 22.7	VGS and VDS
Exa 22.8	voltage gain
Exa 22.9	voltage gain
Exa 22.10	voltage gain
Exa 22.11	voltage gain
Exa 22.12	voltage gain
Exa 22.13	rms output voltage
Exa 22.14	voltage gain
Exa 22.15	voltage gain
Exa 22.16	voltage gain and input output resistance 11'
Exa 22.17	voltage gain and resistance
Exa 22.18	voltage gain and input resistance
Exa 22.19	output resistance
Exa 22.20	input resistance and ac voltage gain
Exa 23.1	voltage gain and impedance
Exa 23.3	voltage gain
Exa 23.4	current gain
Exa 23.5	CURRENT GAIN
Exa 23.6	VE2 IE2 voltage gain
Exa 23.7	zmatrix 124

Exa 23.8	dc bias currents and voltages
Exa 23.9	load current and output voltage
Exa 23.10	calculate the value of constant current
Exa 23.11	current
Exa 23.12	current
Exa 23.13	value of current
Exa 23.14	dc voltage and current
Exa 23.15	IC AV VO1
Exa 23.16	common mode voltage gain
Exa 24.1	power gain
Exa 24.2	power gain
Exa 24.3	power gain
Exa 24.4	power gain
Exa 24.5	gain
Exa 24.8	frequency response
Exa 24.9	FREQUENCY AND PLOT
Exa 25.1	collector current and Vce
Exa 25.2	COMPLIANCE 1
Exa 25.3	voltage gain and power gain
Exa 25.4	collector efficiency and power rating of transistor 1
Exa 25.5	ac power
Exa 25.6	power dissipated
Exa 25.7	power and efficiency
Exa 25.8	resistance
Exa 25.9	turns ratio
Exa 25.10	max power
Exa 25.11	ac output power ICQ turns ratio
Exa 25.12	power
Exa 25.13	power
Exa 25.14	PinDC PoAC
Exa 26.1	frequency
Exa 26.2	frequency and impedance
Exa 26.3	bandwidth
Exa 26.4	Q factor
Exa 26.5	Q factor
Exa 26.6	impedance
Exa 27.1	voltage gain
Exa 27.2	fraction of output.

Exa 27.3	feedback	145
Exa 27.4	voltage gain and beta	145
Exa 27.5	beta	145
Exa 27.6	beta	146
Exa 27.7	change in closed loop gain	146
Exa 27.8	values of AV and beta	146
Exa 27.9	gain and beta	147
Exa 27.10	bw	147
Exa 27.11	frequency	148
Exa 27.12	gain and distortion gain	148
Exa 27.13	beta and gain	149
Exa 27.14	voltage gain and resistance	149
Exa 27.15	voltage gain and resistance	149
Exa 27.16	gain and resistance	150
Exa 28.1	inductance	152
Exa 28.2	frequency	152
Exa 28.3	frequency	153
Exa 28.4	frequency	153
Exa 28.5	frequency	153
Exa 28.6	capacitance	154
Exa 28.7	capacitance	154
Exa 28.8	c1 and c2	154
Exa 28.9	gain and frequency	155
Exa 28.10	frequency	155
Exa 28.11	inductance and frequency	155
Exa 28.13	frequency	156
Exa 28.14	frequency	156
Exa 28.15	frequency fs and fp	157
Exa 29.1	FREQUENCY	158
Exa 29.2	value of capacitors	158
Exa 29.3	value of capacitors	159
Exa 29.4	value of circuit components	159
Exa 29.5	duty cycle	160
Exa 29.6	R3 and C1	160
Exa 29.7	width	161
Exa 29.8	value of pulse width	161
Exa 29.9	CIRCUIT	161
	duty cycle	162

Exa 29.11	frequency and graph
Exa 29.12	design
Exa 30.2	VOLTAGE
Exa 30.3	VOLTAGE
Exa 30.4	peak value of input voltage
Exa 31.1	frequency
Exa 31.2	period and frequency of oscillation and R 167
Exa 32.1	CMRR
Exa 32.2	common mode gain
Exa 32.3	maximum frequency
Exa 32.4	suitable opamps
Exa 32.5	value of vin
Exa 32.7	voltage
Exa 32.8	output voltage
Exa 32.9	gain input impedance cmrr and fmax 171
Exa 32.10	Acl CMRR and maximum operating frequency 172
Exa 32.11	Acl CMRR and maximum operating frequency 172
Exa 32.12	output voltage
Exa 32.14	output voltage
Exa 33.1	value of capacitance
Exa 33.2	frequency
Exa 33.3	cutoff frequency and max operating frequency 176
Exa 33.4	frequency
Exa 34.1	value of line regulation
Exa 34.2	Change in output voltage 177
Exa 34.3	value of load regulation
Exa 34.4	voltage under full load
Exa 34.5	magnitude of variation in output voltage
Exa 34.6	load voltage voltage drop and current
Exa 34.7	min and max value of input voltage 179
Exa 34.8	min and max value of load current
Exa 34.9	min and max value of zener current
Exa 34.10	max value of Rs and power
Exa 34.11	regulated resistance
Exa 34.12	min and max value of zener current
Exa 34.13	zener regulator
Exa 34.14	regulated voltage and circuit current
	voltage current 183

Exa 34.16	max value of Resistance and power	34
Exa 34.17	circuit and value of current	35
Exa 34.18	vout IL IE PI	36
Exa 34.19	min and max value of voltage	36
Exa 34.20	regulated voltage	37
Exa 34.21	regulated dc output voltage	37

List of Figures

5.1	waveform of voltage	31
11.1	transconductance curve	17
18.1	sturation current and cutoff voltage 6	57
18.2	upper and lower ends of load line	68
18.3	find Ic and Vce	71
18.4	load line	72
24.1	frequency response	31
24.2	FREQUENCY AND PLOT	32
29.1	CIRCUIT	32
29.2	frequency and graph	3

Chapter 3

SEMICONDUCTORS

Scilab code Exa 3.1 length of wire and current density

```
1 clc;
2 //Ex3.1
3 R=1000;
4 sigma=5.8*10**7;
5 d=0.001;
6 //l is length of the cu wire
7 l=R*sigma*%pi*(d*d/4);//R=l/(sigma*%pi*(d*d/4))
8 disp ('km',l*10**-3,"l=");
9 E=10*10**-3;
10 J=sigma*E;//current density
11 disp('A/m^2',J*1,"J=");
```

Scilab code Exa 3.2 charge density of free electrons current density current flowing in the wire and electron drift velocity

```
1 clc;
2 //ex3.2
3 d=2*10**-3;
```

```
4 sigma=5.8*10**7;
5 mu=0.0032;
6 E=20*10**-3;
7 q=1.6*10**-19;
8 n=sigma/(q*mu); // sigma=q*n*mu
9 disp('/m^3',n*1,"n=");
10 J=sigma*E; // current density
11 disp('A/m^2',J*1,"J=");
12 A=%pi*d*d/4; // area of cross-section of wire
13 disp('m^2',A*1,"A=");
14 I=J*A; // current flowing in the wire
15 disp('A',I*1,"I=");
16 V=mu*E; // electron drift velocity
17 disp('m/s',V*1,"V="); // answer printed in the book is wrong
```

Scilab code Exa 3.3 mobility and relaxation time of electrons

```
1 clc;
2 //ex3.3
3 p=1.54*10**-8;
4 n=5.8*10**28;
5 q=1.6*10**-19;
6 sigma=1/p;//p=1/sigma..conductivity
7 disp('S/m',sigma*1,"sigma=");
8 mu=sigma/(q*n*10^-2);//mobility
9 disp('m^2/vs',mu*1,"mu=");
10 m=9.1*10**-31;
11 t=(m*mu)/q;//relaxation time
12 disp('ps',t*10^12,"t=");
```

Scilab code Exa 3.4 intrinsic conductivity

```
1 clc;
2 //ex 3.4
3 mun=0.38;
4 mup=0.18;
5 n=2.5*10**19;
6 a=0.13;
7 b=0.05;
8 n2=1.5*10**16;
9 q=1.6*10**-19;
10 sigma=q*n*(mun+mup);// intrinsic coductivity for germanium
11 disp('ohm-mu^-1', sigma*1, "sigma=");
12 sigma1=q*n2*(a+b);//intrinsic coductivity for silicon
13 disp('ohm-m^-1', sigma1*1, "sigma1");
```

Scilab code Exa 3.5 intrinsic conductivity

```
1 clc;
2 //ex3.5
3 n=1.41*10**16;
4 mun=0.145;
5 mup=0.05;
6 q=1.6*10**-19;
7 //sigma=q*n*(mun+mup);
8 e=q*n*mun;//contribution by electrons
9 h=q*n*mup;//contribution by holes
10 disp('ohm-m^-1',e*1,"e=");
11 disp('ohm-m^-1',h*1,"h=");
```

Scilab code Exa 3.6 concentration of free electrons and drift velocity

```
1 clc;
```

```
\frac{2}{2} / \frac{\exp 3.6}{1}
3 q=1.60*10**-19;
4 1=0.2*10**-3;
5 a=0.04*10**-6;
6 v = 1;
7 i=8*10**-3;
8 \text{ mun} = 0.13;
9 //concentration of free electrons
10 R=v/i; // resistance
11 disp('ohm', R*1, "R=");
12 rho = (R*a)/1;
13 disp('ohm-m',rho*1,"rho=");
14 sigma=1/rho; //conductivity
15 n=sigma/(q*mun);//concentration of free electrons
16 disp('/m<sup>3</sup>',n*1,"n=")
17 // Drift velocity
18 \text{ j=i/a};
19 disp('amp/m^2', j*1, "j=");
20 v = i/(n*q);
21 disp('m/sec', v*1, "v=");
```

Scilab code Exa 3.7 intrinsic carrier concentration

```
1 clc;
2 //ex3.7
3 rho=0.47;
4 q=1.6*10**-19;
5 mun=0.39;
6 mup=0.19;
7 sigma=1/rho;//conductivity of intrinsic semiconductor
8 disp('ohm-m^-1', sigma*1, "sigma=");
9 n=sigma/(q*(mun+mup));//intrinsic carrier concentration of germanium
10 disp('/m^3',n*1,"n=");
```

Scilab code Exa 3.8 conductivity

```
1 clc;
2 //e.g 3.8
3 ND=10**21;
4 NA=5*10**20;
5 q=1.6*10**-19;
6 mun=0.18;
7 ND1=ND-NA;//number of free electrons
8 disp('/m^3',ND1*1,"ND1=");
9 SIGMA=ND1*q*mun;//conductivity of silicon
10 disp('ohm-m^-1',SIGMA*1,"SIGMA=");
```

Scilab code Exa 3.9 donor concentration

```
1 clc;
2 //ex3.9
3 rho=100;
4 q=1.6*10**-19;
5 mun=0.36;
6 sigma=1/rho;
7 disp('(ohm-m)^-1', sigma*1, "sigma=");
8 ND= sigma/(q*mun); //donar concentration
9 disp('atoms/m^3', ND*1, "ND=");
```

Scilab code Exa 3.10 concentration of electrons and holes

```
1 clc;
2 //e.g 3.10
```

```
3 ND=2*10**14;
4 NA=3*10**14;
5 ni=2.3*10**19;
6 n=(ni^2)/NA;
7 disp('electrons/cm^3',n*1,"n=");
8 p=(ni^2)/ND;
9 disp('holes/cm^3',p*1,"p=");
```

Scilab code Exa 3.11 minority electron and hole density

```
1 clc;
2 //e.g 3.11
3 ND=5*10**8;
4 NA=6*10**16;
5 ni=1.5*10**10;
6 n=(ni^2)/NA;//number of electons
7 p=(ni^2)/ND;//number of holes
8 disp(n*1,"n=");
9 disp(p*1,"p=");
```

Scilab code Exa 3.12 length

```
1 clc;
2 //ex3.12
3 d=0.001;
4 q=1.6*10**-19;
5 ND=10**20;
6 R=1000;
7 mun=0.1;
8 n=ND;//number of free electrons
9 sigma=q*n*mun;//conductivity
10 disp('S/m', sigma*1, "sigma=");
11 a=(1/sigma)*(1/(%pi*(0.001^2)/4));
```

```
12 l=R/a;
13 disp('mm', 1*10**3," l=");
```

Scilab code Exa 3.13 concentration of holes and electrons

```
1 clc;
2 // ex3.13
3 \text{ sigma=100};
4 rho=0.1;
5 ni=1.5*10**10;
6 \text{ mun} = 1300;
7 \text{ mup} = 500;
8 ni1=2.5*10**13;
9 mun1=3800;
10 mup1=1800;
11 q=1.602*10**-19;
12 //concentration of p type germanium
13 p=sigma/(q*mup1);
14 disp('/cm^3',p*1,"p=");
15 n=(ni1^2)/p;
16 disp('/cm^3',n*1,"n=");
17 //concentration of n type silicon
18 n=rho/(mun*q);
19 disp('/cm<sup>3</sup>',n*1,"n=");
20 p=(ni^2)/n;
21 disp('/cm^3',p*1,"p=");
```

Scilab code Exa 3.14 resistivity of germanium sample

```
1 clc;
2 mun=3800;
3 mup=1800;
4 ni=2.5*10**13;
```

```
5 Nge=4.41*10**22;
6 q=1.602*10**-19;
7 ND=Nge/10**8;
8 disp('/cm^3',ND*1,"ND=");
9 p=(ni^2)/ND;
10 disp('/cm^3',p*1,"p=");
11 n=ND;
12 sigma=q*n*mun;
13 disp('(ohm-cm^)-1',sigma*1,"sigma=");
14 rho=1/sigma;
15 disp('ohm-cm',rho*1,"rho=");
```

Scilab code Exa 3.15 resistivity of intrinsic silicon

```
1 clc;
2 / \exp 3.15
3 \text{ Nsi} = 4.96*10**22;
4 ni=1.52*10**10;
5 q=1.6*10**-19;
6 \text{ mun} = 1350;
7 \text{ mup} = 480;
8 //resistivity of intrinsic silicon
9 sigma=q*ni*(mun+mup)
10 \operatorname{disp}('(\operatorname{ohm-cm})^-1', \operatorname{sigma*1}, "\operatorname{sigma="});
11 rho=1/sigma;
12 disp('ohm-cm', rho*1," rho=");
13 //resistivity of doped silicon
14 ND=Nsi/(50*10^6);
15 disp('/cm^3', ND*1, "ND=");
16 \quad n = ND;
17 p=(ni**2)/n;
18 disp('/cm**3',p*1,"p=");
19 sigma=q*n*mun;
20 disp('(ohm-cm)^-1', sigma*1, "sigma=");
21 rho=1/sigma;
```

```
22 disp('ohm-cm',rho*1,"rho=");
```

Scilab code Exa 3.16 conductivity of silicon

```
1 clc;
 2 \text{ mup} = 0.048;
3 \text{ mun} = 0.135;
4 q=1.602*10**-19;
5 Nsi=5*10**28;
 6 ni=1.5*10**16;
 7 sigma=q*ni*(mun+mup);
8 \operatorname{disp}(\operatorname{'ohm-m^--1'}, \operatorname{sigma="});
9 \text{ NA=Nsi}/10**7;
10 P = NA;
11 n=ni^2/P;
12 sigma=q*P*mup;
13 \operatorname{disp}(\operatorname{'ohm-m^--1'}, \operatorname{sigma*1}, \operatorname{"sigma="});
14 alpha=0.05;
15 \quad T = 34 - 20;
16 sigma20=0.44*10**-3;
17 sigma34=sigma20*(1+alpha*T);
18 disp('ohm-m^-1', sigma34*1, "sigma34=");
```

Scilab code Exa 3.17 diffusion coefficients of holes and electrons

```
1 clc;
2 //e.g 3.17
3 mun=3600;
4 mup=1700;
5 k=1.38*10**23;
6 T=300;
7 DP=mup*(T/11600);//answer given in the book is wrong disp('m^2/s',DP=");
```

```
9 Dn=mun*(T/11600);//answer given in the book is wrong 10 disp('m^2/s',Dn*1,"Dn=");
```

Scilab code Exa 3.18 electron mobility

```
1 clc;
2 //e.g 3.18
3 RH=160;
4 rho=0.16;
5 mun=(1/rho)*RH;
6 disp('cm^2/volt-sec',mun*1,"mu=");
```

Scilab code Exa 3.19 conduction electrons

```
1 clc;
2 //ex3.19
3 I=50;
4 B=1.2;
5 t=0.5*10**-3;
6 Vh=100;
7 q=1.6*10**-19;
8 n=(B*I)/(Vh*q*t);
9 disp('/m^3',n*1,"n=");
```

Scilab code Exa 3.20 number of electrons

```
1 clc;
2 rho=20*10**-2;
3 mu=100*10**-4;
4 q=1.6*10**-19;
```

```
5 n=1/(rho*q*mu);
6 disp('/m^3',n*1,"n=");
```

Scilab code Exa 3.21 mobility and density of charge carrier

```
1 clc;
2 Rh=3.66*10**-4;
3 rho=8.93*10**-3;
4 mu=Rh/rho;
5 disp('m^2/V-s',mu*1,"mu=");
6 q=1.6*10^-19;
7 n=1/(q*Rh);
8 disp('/m^3',n*1,"n=");
```

Scilab code Exa 3.22 resistivity

```
1 clc;
2 //e.g 3.22
3 rho=9*10**-3;
4 mup=0.003;
5 sigma=1/rho;
6 disp('S/m',sigma*1,"sigma=");
7 RH= mup/sigma;
8 disp('m^3*C',RH*1,"RH=");
```

Chapter 5

PN JUNCTION DIODE

Scilab code Exa 5.1 Current

```
1 clc;
2 //e.g 5.1
3 I0=2*10**-7;
4 Vf=0.1;
5 I=I0*(exp (40*Vf)-1);
6 disp('uA',I*10**6,"I=");
```

Scilab code Exa 5.2 find current

```
1 clc;
2 //e.g 5.2
3 I0=1*10**-3;
4 Vf=0.22;
5 T=298;
6 n=1
7 VT=T/11600
8 disp('mV', VT*10**3, "VT=");
9 I=I0*(exp (Vf/(n*VT))-1);
10 disp('A', I*1, "I=");
```

Scilab code Exa 5.3 value of n

```
1 clc;
2 I1=0.5*10**-3;
3 V1=340*10**-3;
4 I2=15*10**-3;
5 V2=440*10**-3;
6 kTbyq=25*10**-3;
7 a=V1/kTbyq;
8 b=V2/kTbyq;
9 //log(I1/I2)==log(exp((b-a)/n));
10 n=(a-b)/(log(I1/I2));
11 disp(n);
```

Scilab code Exa 5.4 saturation current

```
1 clc;
2 I300=10*10**-6;
3 T1=300;
4 T2=400;
5 I400=I300*(2^((T2-T1)/10));
6 disp('mA', I400*10**3," I400=");
```

Scilab code Exa 5.5 value of VF for the device

```
1 clc;
2 rB=2;
3 IF=12*10**-3;
4 VF=0.7+IF*rB;
```

```
5 disp('V', VF*1, "VF=");
```

Scilab code Exa 5.8 dc current and PDmax

```
1 clc;
2 PD=0.5;
3 VF=1;
4 VBR=150;
5 IF=(PD/VF);
6 disp('A',IF*1,"IF=");
7 IR=(PD/VBR);
8 disp('mA',IR*10**3,"IR=");
```

Scilab code Exa 5.9 voltage drop and current

```
1 clc;
2 R=330;
3 VS=5;
4 VD=VS;
5 disp('V', VD*1,"VD=VS=");
6 VR=0;
7 disp(VR,"VR=");
8 I=0;
9 disp(I,"I=");
```

Scilab code Exa 5.10 VD VR I

```
1 clc;
2 VS=12;
3 R=470;
```

```
4  VD=0;
5  disp(VD);
6  VR=VS;
7  disp('V', VR*1, "VR=");
8  I=(VS/R);
9  disp('mA', I*10**3, "I=");
```

Scilab code Exa 5.11 current

```
1 clc;
2 VS=6;
3 R1=330;
4 R2=470;
5 VD=0.7;
6 RT=R1+R2;
7 I=(VS-0.7)/RT;
8 disp('mA',I*10**3,"I=");
```

Scilab code Exa 5.12 voltage across resistor and current

```
1 clc;
2 VS=5;
3 R=510;
4 VF=0.7;
5 VR=VS-0.7;
6 disp('V', VR*1, "VR=");
7 I=VR/R;
8 disp('mA', I*10**3, "I=");
```

Scilab code Exa 5.13 total current

```
1 clc;
2 VS=6;
3 VD1=0.7;
4 VD2=0.7;
5 VR=1.5*10**3;
6 I=(VS-VD1-VD2)/VR;
7 disp('mA', I*10**3," I=");
```

Scilab code Exa 5.14 total current

```
1 clc;
2 VS=12;
3 R1=1.5*10**3;
4 R2=1.8*10**3;
5 VD1=0.7;
6 VD2=0.7;
7 I=(VS-VD1-VD2)/(R1+R2);
8 disp('mA',I*10**3,"I=");
```

Scilab code Exa 5.15 output voltage

```
1 clc;
2 V1=0;
3 V2=0;
4 V0=0;
5 disp('V', V0*1,"V0=");
6 V1=0;
7 V2=5;
8 V0=V2-0.7;
9 disp('V', V0*1,"V0=");
10 V1=5;
11 V2=0;
12 V0=V1-0.7;
```


Figure 5.1: waveform of voltage

```
13 disp('V', V0*1, "VO=");
14 V1=5;
15 V2=5;
16 V0=V2-0.7;
17 disp('V', V0*1, "VO=");
```

Scilab code Exa 5.16 waveform of voltage

```
1 clc;
2 R=20*10**3;
3 I=(R-0.7)/R;
4 disp('mA',I*1,"I=");
5 rj=50;
6 rB=1;
7 re=rB+rj;
8 R1=(R*re)/(re+R);
```

```
9 disp(R1);
10 V=10*(re/(re+1000));
11 disp('mV', V*1, "V=");
12 i=0:0.01:6*%pi;
13 plot(sin(i));
```

Chapter 7

SPECIAL PURPOSE DIODES AND OPTO ELECTRONIC DEVICES

Scilab code Exa 7.1 value of Izm

```
1 clc;
2 //ex7.01
3 pzm=500*10**-3;
4 vz=6.8;
5 Izm=pzm/vz;
6 disp('mA', Izm*10**3,"Izm=");
```

Scilab code Exa 7.2 maximum power dissipation

```
1 clc;
2 //pg no. 117
3 pzm=500*10**-3;
4 d=3.33*10**-3;
5 a=75;
```

```
6 b=50;
7 Td=d*(a-b);
8 disp('mW',Td*10**3,"Td=");
9 pz=pzm-Td;
10 disp('mW',pz*10**3,"pz=");
```

Scilab code Exa 7.3 resistance of device

```
1 clc;
2 //pg n0 120
3 IZ=10*10**-3;
4 vz=0.05;
5 rz=vz/IZ;
6 disp('ohm',rz*1,"rz=");
```

Scilab code Exa 7.4 terminal voltage

```
1 clc;
2 Vz=4.7;
3 rz=15;
4 Iz=20*10**-3;
5 VZ1= Vz+(rz*Iz);
6 disp('V', VZ1*1,"VZ1=");
```

Scilab code Exa 7.5 tuning range

```
1 clc;
2 //e.g7.5
3 C1=5*10**-12;//min
4 C2=5*10**-12;//min
```

```
5 L=10*10**-3;
6 CT=(C1*C2)/(C1+C2);//CTmax
7 disp('F',CT*1,"CT=");
8 fo=1/(2*%pi*sqrt(L*CT));
9 disp('MHZ',fo*10**-6,"fo=");
10 C1=50*10**-12;//max
11 C2=50*10**-12;//max
12 CT=(C1*C2)/(C1+C2);//CTmin
13 disp('F',CT*1,"CT=");
14 fo=1/(2*%pi*sqrt(L*CT));
15 disp('kHZ',fo*10**-3,"fo=");
```

Scilab code Exa 7.6 frequency of 5th harmonic

```
1 clc;
2 //e.g 7.6
3 T=0.04*10**-6;
4 f=1/T;
5 disp('MHz',f*10**-6,"f=");
6 disp('MHz',f*5*10**-6,"f=");//frequency of 5th harmonic
```

Scilab code Exa 7.7 resistor

```
1 clc;
2 //e.g 7.7
3 Vs=8;
4 VDmin=1.8;
5 VDmax=2;
6 Ifmax=16*10**-3;
7 Rs=(Vs-VDmin)/Ifmax;
8 disp('ohm', Rs*1, "Rs=");
9 Rsmax=(Vs-VDmax)/Ifmax;
```

```
10 disp('ohm', Rsmax*1, "Rsmax=");
```

Scilab code Exa 7.8 minimum and maximum value of current

```
1 clc;
2 //e.g 7.8
3 VDmin=1.5;
4 VDmax=2.3;
5 Vs=10;
6 R1=470;
7 Imax=(Vs-VDmin)/R1;
8 disp('mA',Imax*10**3,"Imax=");
9 Imin=(Vs-VDmax)/R1;
10 disp('mA',Imin*10**3,"Imin=")
```

Scilab code Exa 7.9 Imin and Imax

```
1 clc;
2
3 / e.g. 7.9
4 VDmin=1.8;
5 VDmax=3;
6 Vs1=24;
7 \text{ Rs1} = 820;
8 \ Vs2=5;
9 Rs2=120;
10 Imin = (Vs2 - VDmax)/Rs2;
11 disp('mA', Imin*10**3, "Imin=");
12 Imax = (Vs1 - VDmin)/Rs1;
13 disp('mA', Imax*10**3, "Imax=");
14 Imin=(Vs2-VDmax)/Rs2;
15 disp('mA', Imin*10**3, "Imin=");
16 Imax = (Vs2 - VDmin)/Rs2;
```

```
17 disp('mA', Imax*10**3, "Imax=");
```

Scilab code Exa 7.10 resistance and current

```
1 clc;
2 r=1*10**3;
3 I=10*10**-3;
4 V=30;
5 //I=30/(R+r)
6 R=(V/I)-r;//when dark
7 disp('Kohm',R*10**-3,"R=");
8 R=100*10**3;//when illuminated
9 Id=(V/(r+R));
10 disp('mA',Id*10**3,"Id=");
```

BIPOLAR JUNCTION TRANSISTORS

Scilab code Exa 8.1 base current

```
1 clc;
2 //e.g 8.1
3 Ie=10*10**-3;
4 Ic=9.8*10**-3;
5 //Ie=Ib+Ic
6 Ib=Ie-Ic;
7 disp('mA',Ib*10**3,"Ib=");
```

Scilab code Exa 8.2 current gain

```
1 clc;
2 //e.g 8.2
3 Ie=6.28*10**-3;
4 Ic=6.20*10**-3;
5 a=Ic/Ie;
6 disp(a);
```

Scilab code Exa 8.3 base current

```
1 clc;
2 //e.g8.3
3 a=0.967;
4 Ie=10*10**-3;
5 Ic=Ie*a;//a=Ic/Ie
6 disp('mA',Ic*10**3,"Ic=");
7 Ib=Ie-Ic;
8 disp('mA',Ib*10**3,"Ib=");
```

Scilab code Exa 8.4 IC and IB

```
1 clc;
2 //e.g 8.4
3 Ie=10*10**-3;
4 alpha=0.987;
5 Ic=Ie*alpha; //alpha=Ic/Ie
6 disp('mA',Ic*10**3,"Ic=");
7 Ib=Ie-Ic;
8 disp('mA',Ib*10**3,"Ib=");
```

Scilab code Exa 8.5 alpha and beta

```
1 clc;
2 //e.g 8.5
3 alpha=0.975;
4 beta=200;
5 beta=(alpha/(1-alpha));
```

```
6 disp(beta);
7 alpha=(beta/(1+beta));
8 disp(alpha);
```

Scilab code Exa 8.6 emitter current

```
1 clc;
2 //e.g 8.6
3 BETA=100;
4 IC=40*10**-3;
5 IB=IC/BETA;
6 IE=IC+IB;
7 disp('mA', IE*10**3," IE=");
```

Scilab code Exa 8.7 current

```
1 clc;
2 //e.g 8.7
3 beta=150;
4 Ie=10*10**-3;
5 alpha=beta/(1+beta)
6 Ic=alpha*Ie;//as alpha=(Ic/Ie)
7 disp('mA',Ic*10**3,"Ic=");
8 Ib=Ie-Ic;//as Ie=Ib+Ic
9 disp('mA',Ib*10**3,"Ib=");
```

Scilab code Exa 8.8 IB and IE

```
1 clc;
2 //e.g 8.8
```

```
3 beta=170;
4 Ic=80*10**-3;
5 Ib=Ic/beta;//beta=(Ic/Ib)
6 disp('mA',Ib*10**3,"Ib=");
7 Ie=Ic+Ib;
8 disp('mA',Ie*10**3,"Ie=");
```

Scilab code Exa 8.9 IC and IE

```
1 clc;
2 //e.g 8.9
3 Ib=125*10**-6;
4 beta=200;
5 Ic=beta*Ib;
6 disp('mA',Ic*10**3,"Ic=");
7 Ie=Ib+Ic;
8 disp('mA',Ie*10**3,"Ie=");
```

Scilab code Exa 8.10 IC and IB

```
1 clc;
2 //e.g 8.10
3 Ie=12*10**-3;
4 beta=140;
5 Ib=Ie/(1+beta);
6 disp('mA',Ib*10**3,"Ib=");
7 Ic=Ie-Ib;
8 disp('mA',Ic*10**3,"Ic=");
```

Scilab code Exa 8.11 beta emitter current and new value of beta

```
1 clc;
2 IB=105*10**-6;
3 IC=2.05*10**-3;
4 BETA=IC/IB;
5 disp(BETA);
6 ALPHA=BETA/(1+BETA);
7 disp(ALPHA);
8 IE=IC+IB;
9 disp('mA', IE*10**3, "IE=");
10 DELTA_IB=27*10**-6;
11 DELTA_IC=0.65*10**-3;
12 IBn=IB+DELTA_IB;
13 ICn=IC+DELTA_IC;
14 BETAn=ICn/IBn;
15 disp(BETAn);
```

Scilab code Exa 8.12 collector and emitter current

```
1 clc;
2 //e.g 8.12
3 alpha=0.98;
4 Ico=5*10**-6;
5 Ib=100*10**-6;
6 Ic=((alpha*Ib)/(1-alpha))+(Ico/(1-alpha));
7 disp('mA',Ic*10**3,"Ic=");
8 Ie=Ib+Ic;
9 disp('mA',Ie*10**3,"Ie=");
```

Scilab code Exa 8.13 collector current

```
1 clc;
2 //e.g 8.13
3 Icbo=10*10**-6;
```

```
4 \text{ beta=50};
5 //Value of collector current when Ib = 0.25*10**-3;
  Ib=0.25*10**-3;
7
   Ic=(beta*Ib)+(1+beta)*Icbo;
   disp('mA', Ic*10**3, "Ic=");
   //Value of new collector current if temperature
       rises to 50 degree
10
   t1 = 27;
11
   t2=50;
12
   Icbo50=Icbo*2^((t2-t1)/10);
   disp('microA',Icbo50*10**6,"Icbo50=");
13
   //collector current at 50 degree
14
   Ic=beta*Ib+(1+beta)*Icbo50;
15
   disp('mA',Ic*10**3,"Ic=");
16
```

BJT CHARACTERISTICS

Scilab code Exa 9.1 PDmax

```
1 clc;
2 //e.g 9.1
3 Pdmax=500*10**-3;
4 DF=2.28*10**-3;
5 T=70;
6 Pdmax70=Pdmax-DF*(T-25);
7 disp('w',Pdmax70*1,"Pdmax70=");
```

BJT LOW AND HIGH FREQUENCY MODELS

Scilab code Exa 10.1 hybrid pi parameters

```
1 clc;
2 / e.g. 10.1
3 \text{ Ic=10};
4 \ Vce=10;
5 \text{ hie} = 500;
6 hoe=10**-5;
7 \text{ hfe} = 100;
8 hre=10**-4;
9 gm=Ic/25;
10 disp('ohm',gm*1,"gm=");
11 rbe=hfe/gm;
12 disp('ohm',rbe*1,"rbe=");
13 rbb=hie-rbe;
14 disp(rbb);
15 gbc=hre/rbe;
16 \operatorname{disp}("*10^--7", \operatorname{gbc}*10**7", "\operatorname{gbc}=");
17 rce=-1/((hoe-(1+hfe)*gbc));
18 disp('kohm',rce*10**-3,"rce=");
```

BJT LOW AND HIGH FREQUENCY MODELS

Scilab code Exa 11.1 drain current

```
1 clc
2 //e.g 11.1
3 Idss=15*10**-3;
4 Vgso=-5;
5 //Id=Idss*(1-(Vgs/Vgso))^2
6 Vgs=0;
7 Id=Idss*(1-(Vgs/Vgso))^2;
8 disp('mA',Id*10**3,"Id=");
9 Vgs1=-1;
10 Id=Idss*(1-(Vgs1/Vgso))^2;
11 disp('mA',Id*10**3,"Id=");
12 Vgs2=-4;
13 Id=Idss*(1-(Vgs2/Vgso))^2;
14 disp('mA',Id*10**3,"Id=");
```


Figure 11.1: transconductance curve

Scilab code Exa 11.2 transconductance curve

```
1 clc;
2 Vgs = -5: -5: -20; //Id = Idss * (1 - (Vgs/Vgso))^2
3 \text{ Vgso} = -20;
4 Idss=12*10**-3;
5 Id=Idss*(1-(Vgs/Vgso))^2;
6 disp('mA',Id*10**3,"Id=");
7 y=0:1:12;
8 x=0:-5:-20;
9 a=gca() //get the current axes
10 a.box="off";
11 a.y_location="right";
12 plot2d(Vgs,Id);
13 xlabel("Gate-to-source voltage
                                      (VGS)");
14 ylabel ("Drain current
                            ID(mA)");
```

Scilab code Exa 11.4 DRAIN CURRENT AND TRANSCONDUCTANCE

```
1 clc;
2 //e.g 11.4
3 Idss=20*10**-3;
4 vp=-8;
5 gmo=5000*10**-6;
6 vgs=-4;
7 //Id=Idss*(1-(Vgs/Vgso))^2
8 Id=Idss*(1-(vgs/vp))^2;
9 disp('mA',Id*10**3,"Id=");
10 gm=gmo*(1-(vgs/vp));
11 disp('microsec',gm*10**6,"gm=");
```

Scilab code Exa 11.5 value og ID

```
1 clc;
2 //e.g 11.5
3 Idon=10*10**-3;
4 vgs=-12;
5 vgsth=-3;
6 //Id=K*(vgs-vgsth)^2
7 //Idon=K*(vgs-vgsth)^2
8 k=Idon/((vgs-vgsth)^2);
9 disp('mA',k*10**3,"k=");
10 vgs1=-6;
11 Idon=k*(vgs1-vgsth)^2;
12 disp('mA',Idon*10**3,"Idon=");
```

THYRISTORS

Scilab code Exa 12.1 destroy the device or not

```
1 clc;
2 //e.g 12.1
3 I=40;
4 t=15*10**-3;
5 SCR=(I^2)*t;
6 disp('A^2s',SCR*1,"SCR=");
```

Scilab code Exa 12.2 max allowable duration

```
1 clc;
2 //e.g 12.2
3 a=75;
4 Is=100;
5 tmax=a/Is**2;
6 disp('ms',tmax*10**3,"tmax=");
```

Scilab code Exa 12.3 voltage

```
1 clc;
2 //e.g 12.3
3 VD=0.7;
4 n=0.75;
5 Vbb=12;
6 Vp=n*Vbb+VD;
7 disp('V', Vp*1,"Vp=");
```

Scilab code Exa 12.4 intrinsic stand off ratio and peak point voltage

```
1
2 clc;
3 //e.g 12.4
4 rb1=4*10**3;
5 rb2=2.5*10**3;
6 Vbb=15;
7 Vd=0.7;
8 n=rb1/(rb1+rb2);
9 disp(n,"n=");//intrinsic standoff ratio
10 Vp=n*Vbb+Vd;
11 disp('V', Vp*1,"Vp=");//peak point voltage
```

Scilab code Exa 12.5 rB1 and rB2

```
1 clc;
2 //e.g 12.5
3 n=0.60;
4 rbb=7*10**3;
5 rb1=rbb*n;
6 disp('kohm',rb1*10**-3,"rb1=");
7 rb2=rbb-rb1;
```

disp('kohm',rb2*10**-3,"rb2=");

PASSIVE CIRCUITS DEVICES

Scilab code Exa 13.4 tolerance

```
1 clc;
2 R1min=2.7;
3 R2min=5.1;
4 Rmin=R1min+R2min;
5 R1max = 3.3;
6 R2max = 6.9;
7 Rmax = R1max + R2max;
8 \quad a=9-Rmin;
9 b=Rmax-9;
10 tolerance=b/9;
11 Reqmin=(R1min*R2min)/(R1min+R2min);
12 disp('ohm', Reqmin*1, "Reqmin=");
13 Reqmax = (R1max*R2max)/(R1max+R2max);
14 disp('ohm', Reqmax*1, "Reqmax=");
15 R1N=3;
16 R2N=6;
17 Req=(R1N*R2N)/(R1N+R2N);
18 disp('ohm', Req*1,"Req=");
19 minval=Reqmin;
```

```
20 maxval=Reqmax;
21 maxchng=0.235;
22 t=(maxchng/2)*100;
23 disp('%',t*1,"t=");
```

Scilab code Exa 13.5 coil inductance

```
1 clc;
2 //e.g 13.5
3 N=150;
4 mur=3540;
5 mu0=4*%pi*10**-7;
6 l=0.05;
7 A=5*10**-4;
8 L=(mur*mu0*A*N*N)/1;
9 disp('H',L*1,"L=");
```

Scilab code Exa 13.6 coefficient of Coupling

```
1 clc;
2 //e.g 13.6
3 L1=40*10**-6;
4 L2=80*10**-6;
5 M=11.3*10**-6;
6 k=M/sqrt(L1*L2);
7 disp(k);
```

Scilab code Exa 13.7 Q factor of coil

```
1 clc;
```

```
2 //e.g 13.7
3 Q=90;
4 L=15*10**-6;
5 f=10*10**6;
6 R0=(2*%pi*f*L)/Q;
disp('ohm',R0*1,"R0=");
```

Scilab code Exa 13.8 capacitance

```
1 clc;
2 //e.g 13.8
3 A=0.04;
4 d=0.02;
5 e0=8.85*10**-12;
6 er=5.0;
7 C=(e0*er*A)/d;
8 disp('pF',C*10**12,"C=");//answer printed in the book is wrong.
```

Scilab code Exa 13.9 thickness of dielectric

```
1 clc;
2 //e.g 13.9
3 A=0.2;
4 C=0.428*10**-6;
5 e0=8.85*10**-12;
6 er=1200;
7 d=(e0*er*A)/C;//ans printed in the book is wrong disp('mm',d*10**3,"d=");
```

PN JUNCTION DIODE APPLICATIONS RECTIFIERS AND FILTERS

Scilab code Exa 16.1 dc output voltage and PIV

```
1 clc;
2 //e.g 16.1
3 V1=230;
4 //a=(N2/N1)
5 b=(1/10);
6 V2=V1*b;
7 disp('V',V2*1,"V2=");
8 Vm=sqrt(2)*V2;
9 disp('V',Vm*1,"Vm=");
10 Vdc=0.318*Vm;
11 disp('V',Vdc*1,"Vdc=");
12 PIV=Vm;
13 disp('V',PIV*1,"PIV=");
```

Scilab code Exa 16.2 de load current

```
1 clc;
2 //e.g 16.2
3 RL=20*10**3;
4 V2=24;
5 Vm=sqrt(2)*V2;
6 disp('V',Vm*1,"Vm=");
7 Im=Vm/RL;
8 disp('mA',Im*10**3,"Im=");
9 Idc= 0.318*Im;
10 disp('mA',Idc*10**3,"Idc=");
```

Scilab code Exa 16.3 maximum and average power

```
1 clc;
2 / e.g. 16.3
3 V1 = 230;
4 //a = (N2/N1)
5 b = (1/2);
6 \text{ RL} = 200;
7 V2 = V1 * b;
8 disp('V', V2*1, "V2=");
9 Vm = sqrt(2) * V2;
10 disp('V', Vm*1, "Vm=");
11 Im = Vm / RL;
12 disp('A', Im*1, "Im=");
13 Pm = (Im **2) *RL;
14 disp('W', Pm*1, "Pm=");
15 Vdc = 0.318 * Vm;
16 disp('V', Vdc*1,"Vdc=");
17 Idc = (Vdc/RL);
18 disp('A', Idc*1, "Idc=");
19 Pdc=(Idc**2)*RL;
20 disp('W', Pdc*1,"Pdc=");
```

Scilab code Exa 16.4 maximum ac voltage

```
1 clc;
2 //e.g 16.4
3 Vdc=30;
4 RL=600;
5 Rf=25;
6 Idc=(Vdc/RL);
7 disp('A',Idc*1,"Idc=");
8 Im=%pi*Idc;
9 disp('A',Im*1,"Im=");
10 Vin=Im*(Rf+RL);
11 disp('V',Vin*1,"Vin=");
```

Scilab code Exa 16.5 dc output voltage

```
1
2 clc;
3 V2=30;
4 RL=5.1*10**3;
5 VS=V2/2;
6 Vm=sqrt(2)*VS;
7 Vdc=0.636*Vm;
8 disp('V', Vdc*1," Vdc=");
9 Vdc=Vdc/RL;
10 disp('mA', Vdc*10**3," Vdc=");
```

Scilab code Exa 16.6 dc output voltage and PIV and output frequency

```
1 clc;
2 V1=230;
3 fin=50;
4 //let a=N1/N2
5 a=1/4;
6 V2=V1*a;
7 Vm=sqrt(2)*V2;
8 Vdc=0.636*Vm;
9 disp('V', Vdc*1, "Vdc=");
10 PIV=Vm;
11 disp('V', PIV*1, "PIV=");
12 fout=2*fin;
13 disp('HZ', fout*1, "fout=");
```

Scilab code Exa 16.7 dc output voltage PIV and rectification efficiency

```
1 clc;
2 V1=230;
3 //LET a=N2/N1
4 a=1/5;
5 RL=100;
6 V2=V1*a;
7 Vs=V2/2;
8 Vm=sqrt(2)*Vs;
9 Vdc=2*Vm/%pi;
10 disp('V',Vdc*1,"Vdc=");
11 PIV=2*Vm;
12 disp('V',PIV*1,"PIV=");
13 n=0.812//rectifier efficiency of full wave rectifier
```

Scilab code Exa 16.8 load resistor dc load voltage and PIV

```
1 clc;
```

```
2 Vs=200;
3 Imax=700*10**-3;
4 Iavg=250*10**-3;
5 Imax=0.8*Imax;
6 disp('mA',Imax*10**3,"Imax=");
7 Vm=sqrt(2)*Vs;
8 RL=Vm/Imax;
9 disp('ohm',RL*1,"RL=");
10 Vdc=2*Vm/%pi;
11 disp('V',Vdc*1,"Vdc=");
12 Idc=Vdc/RL;
13 disp('A',Idc*1,"Idc=");
14 PIV=2*Vm;
15 disp(PIV);
```

Scilab code Exa 16.9 inductance

```
1 clc;
2 f=50;
3 y=0.05;
4 RL=100;
5 L=RL/(y*3*sqrt(2)*2*%pi*f);
6 disp('H',L*1,"L=");
7 f=400;
8 y=0.05;
9 L=RL/(y*3*sqrt(2)*2*%pi*f);
10 disp('H',L*1,"L=");
```

Scilab code Exa 16.10 capacitance

```
1 clc;
2 Vdc=30;
3 RL=1*10**3;
```

```
4 y=0.01;
5 C=2890/(y*RL);
6 disp('microF',C*1,"C=");
```

Scilab code Exa 16.11 size of capacitor

```
1 clc;
2 Vdc=12;
3 Idc=100*10**-3;
4 y=0.01;
5 L=1;
6 C=1.195/(L*y);
7 disp('microF',C*1,"C=");
```

Scilab code Exa 16.12 ripple facctor

```
1 clc;
2 Idc=0.2;
3 Vdc=30;
4 C1=100;
5 C2=100;
6 L=5;
7 f=50;
8 RL=Vdc/Idc;
9 y=5700/(L*C1*C2*RL);
10 disp('%',y*100,"y=");
```

Scilab code Exa 16.13 Vdc peak and average current and average power delivered

```
1 clc;
2 Vs=150;
3 Idc=2;
4 Vdc=2.34*Vs;
5 disp('V', Vdc*1,"Vdc=");
6 I=Idc/0.955;
7 disp('A', I*1," I=");
8 Iavg=2/3;
9 disp('A', Iavg*1," Iavg=");
10 Pdc=Vdc*Idc;
11 disp('W', Pdc*1," Pdc=");
```

CONTROLLED RECTIFIERS

Scilab code Exa 17.1 angular firing required

```
1 clc;
2 / e.g. 17.1
3 RL = 100;
4 Vm = 300;
5 //load power P= Vdc*Idc
6 a=(Vm/(2*\%pi))^2*(1/RL);
7 disp(a);
8 p = 25;
9 //1 + \cos b = \operatorname{sgrt}(25/a)
10 b=a*1+cos(sqrt(p/a));
11 cosalpha=(sqrt(p/a))-1;
12 disp(cosalpha);
13 p=80;
14 cosalpha=(sqrt(p/a))-1;
15 disp(cosalpha, "cosalpha=");
16 //or;
17 alpha=acosd(cosalpha);
18 disp('degree',alpha,"alpha=");
```

Scilab code Exa 17.2 power

```
1 clc;
2 / e.g. 17.2
3 \text{ vm} = 200;
4 R1=1*10**3;
5 //ALPHA=0degree
6 Vdc = vm * 0.318;
7 Idc=Vdc/R1;
8 P=Vdc*Idc;
9 disp('mW',P*10**3,"P=");"OR";disp('W',P*1,"P=");
10 //alpha=45 degree
11 Vdc = vm * 0.27;
12 Idc=Vdc/R1;
13 P = Vdc * Idc;
14 disp('mW',P*10**3,"P=");"OR";disp('W',P*1,"P=");
15 //alpha=90 degree
16 \, \text{Vdc=vm*0.159};
17 Idc=Vdc/R1;
18 P=Vdc*Idc;
19 disp('mW',P*10**3,"P=");"OR";disp('W',P*1,"P=");
20 //alpha=135 degree
21 \, \text{Vdc} = \text{vm} * 0.04660;
22 Idc=Vdc/R1;
23 P = Vdc * Idc;
24 disp('mW',P*10**3,"P=");"OR";
```

Scilab code Exa 17.3 voltage

```
1 clc;
2 //e.g 17.3
3 Vrms=220;
4 a=60;
5 Vm=sqrt (2)*Vrms;
6 disp('V',Vm*1,"Vm=");
```

```
7 Vdc=(Vm/(2*%pi))*(1+cosd(60));
8 disp('V', Vdc*1,"Vdc=");
```

Scilab code Exa 17.4 resistance

```
1 clc;
2 //e.g 17.4
3 Vrms=100;
4 a=45;
5 Idc=0.5;
6 Vm=sqrt (2)*Vrms;
7 disp('V', Vm*1, "Vm=");
8 //Idc=(Vm/(2*%pi*RL))*(1+cosd(a));
9 RL=(Vm/(2*%pi*Idc))*(1+cosd(a));
10 disp('ohm', RL*1, "RL=");
```

Scilab code Exa 17.5 chopper duty cycle and chopping frequency

```
1 clc;
2 //e.g 17.5
3 Ton=30*10**-6;
4 Toff=10*10**-6;
5 //consider duty cycle=a
6 a=Ton/(Ton+Toff);
7 disp(a);
8 f=(1/(Ton+Toff))
9 disp('kHZ',f*10**-3,"f=");
```

Scilab code Exa 17.6 dc output voltage

```
1 clc;
2 //e.g 17.6
3 Ton=30*10**-3;
4 Toff=10*10**-3;
5 Vdc=200;
6 a=Ton/(Ton+Toff);
7 disp(a);
8 Vl=Vdc*a;
9 disp('V',Vl*1,"Vl=");
```

BJT BIASING AND STABILISATION

Scilab code Exa 18.1 sturation current and cutoff voltage

```
1
2 clc;
3 / e.g. 18.1
4 Vbb=10;
5 Rb=47*10**3;
6 Vcc=20;
7 Rc=10*10**3;
8 B = 100;
9 Ic=Vcc/Rc;//saturation current
10 disp('mA',Ic*10**3,"Ic=");
11 Vce=Vcc; //cut-off voltage
12 \text{ disp}(\text{'V',Vce*1,"Vce=")};
13 i=2:-0.1:0;
14 plot2d(i);
15 a=gca() //get the current axes
16 a.box="off";
17 xlabel("VCE");
```


Figure 18.1: sturation current and cutoff voltage

```
18 ylabel( "IC");
```

Scilab code Exa 18.2 upper and lower ends of load line

```
1
2 clc;
3 //e.g 18.2
4 Vbb=10;
5 Rb=50*10**3;
6 Vcc=20;
7 Rc=300;
8 beta=200;
9 Ic=Vcc/Rc;//saturation current
```


Figure 18.2: upper and lower ends of load line

```
10 disp('mA',Ic*10**3,"Ic=");
11 Vce=Vcc; //cut-off voltage
12 disp('V', Vce*1,"Vce=");
13 Ib = (Vbb - 0.7)/Rb;
    disp('10^-3A', Ib*10**3, "Ib=");
14
    Ic=beta*Ib;
15
     disp('10^-3A', Ic*10**3, "Ic=");
16
17 Vce=Vcc-Ic*Rc;
18 disp('V', Vce*1, "Vce=");
19 i = 21 : -0.1 : 0;
20 plot2d(i);
21 a=gca() // get the current axes
22 a.box="off";
23 xlabel("VCE");
24 ylabel( "IC");
```

Scilab code Exa 18.3 base and collector current and VCE

```
1
2 clc;
3 //e.g 18.3
4 Rb=180*10**3;
5 Vcc=25;
6 Rc=820;
7 beta=80;
8 Ib=Vcc/Rb;//saturation current
9 disp('mA', Ib*10**3, "Ib=");
10 Ic=beta*Ib;
11 disp('mA', Ic*10**3, "Ic=");
12 Vce=Vcc-(Ic*Rc);//cut-off voltage
13 disp('V', Vce*1, "Vce=");
```

Scilab code Exa 18.4 RB and VCE

```
1
2 \text{ clc};
3 / e.g. 18.4;
4 Vcc=12;
5 \text{ Rc} = 330;
6 Ib=0.3*10**-3;
7 beta=100;
8 //Ib=Vcc/Rb;//saturation current
9 Rb=Vcc/Ib;
10 disp('Kohm', Rb*10**-3,"Rb=");
11 S=1+beta;
12 disp(S);
13 Ic=beta*Ib;
14 disp('10^-3A', Ic*10**3, "Ic=");
15 Vce=Vcc-(Ic*Rc);//cut-off voltage
16 \text{ disp}('V', Vce*1, "Vce=");
```

Scilab code Exa 18.5 voltage and current

```
1
2 clc;
3 //e.g 18.5
4 Rb=400*10**3;
5 Vcc=20;
6 Rc=2*10**3;
7 Re=1*10**3;
8 beta=100;
9 Ib=Vcc/(Rb+(beta*Re));//saturation current
10 disp('mA',Ib*10**3,"Ib=");
11 Ic=beta*Ib;
12 disp('mA',Ic*10**3,"Ic=");
13 Vce=Vcc-(Ic*(Rc+Re));//cut-off voltage
14 disp('V',Vce*1,"Vce=");
```

Scilab code Exa 18.6 find Ic and Vce

```
1 clc;
2 //e.g 18.1
3 Vcc=12;
4 Rc=2.2*10**3;
5 Rb=240;
6 B=50;
7 Vbe=0.7;
8 RE=0;
9 Ic=(Vcc-Vbe)/(RE+(Rb/B));//collector current
10 disp('mA',Ic,"Ic=");
11 Vce=Vcc-(Ic*10**-3)*Rc;//CE voltage
12 disp('V',Vce*1,"Vce=");
13 Icsat=Vcc/Rc;
14 disp('mA',Icsat*10**3,"Icsat=");
```


Figure 18.3: find Ic and Vce

```
15  Vcec=Vcc; // cutoff voltage
16  i=5.45:-0.5:0;
17  plot(i);
18  a=gca() // get the current axes
19  a.box="off";
20  xlabel("VCE");
21  ylabel("IC");
```

Scilab code Exa 18.7 load line

```
1 clc;
2 //e.g 18.7
3 Vcc=30;
```


Figure 18.4: load line

```
4 Rb=1.5*10**6;
5 Rc=5*10**3;
6 beta=100;
7 Ic=Vcc/Rc;//saturation current
8 disp('mA',Ic*10**3,"Ic=");
9 Vce=Vcc;//cut-off voltage
10 disp('V', Vce*1,"Vce=");
11 Ib=Vcc/Rb; //base current
12 disp('microA', Ib*10**6, "Ib=");
   Ic=beta*Ib;
13
     disp('mA', Ic*10**3, "Ic=");
14
15
     Vce=Vcc-Ic*Rc;
     \mathtt{disp} ( {}^{'}\mathrm{V} , {}^{'}\mathrm{ce}{*1} , {}^{''}\mathrm{Vce}{=}{}^{''} );
16
17 i=6:-0.2:0;
18 plot2d(i);
19 a=gca() // get the current axes
20 a.box="off";
```

```
21 xlabel("VCE");
22 ylabel("IC");
```

Scilab code Exa 18.9 current voltage and stability factor

```
1
2
3 clc;
4 //e.g. 18.9
5 Rb=180*10**3;
6 Vcc=25;
7 \text{ Rc} = 820;
8 \text{ Re} = 200;
9 beta=80;
10 Vbe=0.7;
11 Ic=(Vcc-Vbe)/(Re+(Rb/beta));//collector current
12 disp('mA', Ic*10**3, "Ic=");
13 Vce=Vcc-(Ic*Rc);//collector to emitter voltage
14 disp('V', Vce*1, "Vce=");
15 S=(1+beta)/(1+beta*(Re/(Re+Rb)));
16 disp(S, "S="); // stability factor
```

Scilab code Exa 18.10 Q point

```
1
2 clc;
3 //e.g 18.10
4 Vbe=0.7;
5 Rb=100*10**3;
6 Vcc=10;
7 Rc=10*10**3;
8 beta=100;
9 Ic=(Vcc-Vbe)/(Rc+(Rb/beta));//collector current
```

```
10 disp('mA', Ic*10**3," Ic=");
11 Vce=Vcc-(Ic*Rc); // collector to emitter voltage
12 disp('V', Vce*1," Vce=");
13 Ic=Vcc/Rc;
14 disp('mA', Ic*10**3," Ic=");
15 Vce=Vcc;
16 disp('V', Vce*1," Vce=");
```

Scilab code Exa 18.11 IB IC AND IE

```
1
2
3 clc;
4 //e.g 18.11
5 Rb=100*10**3;
6 Vcc=10;
7 Rc=2*10**3;
8 beta1=50;
9 Vbe=0.7;
10 Ib=(Vcc-Vbe)/(Rb+(beta1*Rc));
11 disp('mA',Ib*10**3,"Ib=");
12 Ic=beta1*Ib;
13 disp('mA',Ic*10**3,"Ic=");
14 Ie=Ic;
15 disp('mA',Ie*10**3,"Ie=");
```

Scilab code Exa 18.12 possible causes

```
1
2 clc;
3 //e.g 18.12
4 VCC=9;
5 RB=220*10**3;
```

```
6 RC=3.3*10**3;
7 VBE=0.3;
8 B=100;
9 //if vc=0
10 IB=(VCC-VBE)/(RB+(B*RC));
11 disp('microA',IB*10**6,"IB=");
12 IC=B*IB;
13 disp('microA',IC*10**6,"IC=");//CORRECTION IN BOOK
14 //if VC=9
15 VC=9;
16 IC=B*IB;
17 disp('mA',IC*10**3,"IC=");
18 //IC*RC=0,which means collector resistance is short circuited
```

Scilab code Exa 18.13 find R1

```
1
2 clc;
3 / e.g. 18.13
4 \ \ Vcc=12;
5 Rc=3.3*10**3;
6 Re=100;
7 Ie=2*10**-3;
8 \text{ Vbe} = 0.7;
9 alpha=0.98;
10 Ic=alpha*Ie;
11 disp('mA', Ic*10**3," Ic=");
12 Vb=Vbe+(Ie*Re);
13 disp('V', Vb*1, "Vb=");
14 Vc=Vcc-(Ic*Rc); // collector to emitter voltage
15 disp('V', Vc*1, "Vc=");
16 R2 = 20 * 10 * * 3;
17 IR2=Vc/R2;
18 disp('mA', IR2*10**3," IR2=");
```

```
19    Ib=Ie-Ic;
20    disp('mA',Ib*10**3,"Ib=");
21    IR1=IR2+Ib;
22    disp('mA',IR1*10**3,"IR1=");
23    R1=(Vc-Vb)/IR1;
24    disp('kohm',R1*10**-3,"R1=");
```

Scilab code Exa 18.14 base resistance

```
1 clc;
2 VCC=24;
3 RC=10*10**3;
4 RE=270;
5 VBE=0.7;
6 B=45;
7 VCE=5;
8 IC=(VCC-VCE)/RC;
9 disp('mA',IC*10**3,"IC=");
10 RB=(2.6*10^3)*B;
11 disp('kohm',RB*10**-3,"RB=")
```

Scilab code Exa 18.15 dc bias current and voltage

```
1
2 clc;
3 //e.g 18.15
4 Rb=33*10**3;
5 Vcc=3;
6 Rc=1.8*10**3;
7 beta=90;
8 Vbe=0.7;
9 Ib=(Vcc-Vbe)/(Rb+(Rc*beta));//collector current
10 disp('mA', Ib*10**3," Ib=");
```

```
11  Ic=beta*Ib;
12  disp('mA',Ic*10**3,"Ic=");
13  Vce=Vcc-(Ic*Rc);//collector to emitter voltage
14  disp('V',Vce*1,"Vce=");
15  S=(1+beta)/(1+beta*(Rc/(Rc+Rb)))//stability factor
```

Scilab code Exa 18.16 current and voltage

```
1
2 clc;
3 / e.g. 18.16
4 Vbe=0.7;
5 \text{ Vcc=10};
6 Rc=1*10**3;
7 beta=100;
8 R1=10*10**3;
9 R2=5*10**3;
10 Re=500;
11 Vb = Vcc * (R2/(R1+R2));
12 disp('V', Vb*1, "Vb=");
13 Ve=Vb-Vbe;
14 disp('V', Ve*1, "Ve=");
15 Ie=Ve/Re;
16 disp('mA', Ie*10**3, "Ie=");
17 Ic=Ie;
18 disp('mA', Ic*10**3, "Ic=");
19 Vce=Vcc-(Rc+Re);
20 disp('V', Ve*1, "Ve=");
```

Scilab code Exa 18.17 OPERATING POINT

```
1 2 clc;
```

```
3 / e.g. 18.17
4 Vcc=9;
5 Rc=1*10**3;
6 Re=680;
7 beta=100;
8 R1 = 33 * 10 * * 3;
9 R2=15*10**3;
10 Vb = Vcc * (R2/(R1+R2));
11 disp('V', Vb*1, "Vb=");
12 Vbe=0.7;
13 Ve=Vb-Vbe;
14 \text{ disp}(\text{'V',Ve=")};
15 Ie=Ve/Re;
16 disp('mA', Ie*10**3, "Ie=");
17 Ic=Ie;
18 disp('mA',Ic*10**3,"Ic=");
19 VRc = Ic * Rc;
20 disp('V', VRc*1,"VRc=");
21 \text{ Vc=Vcc-VRc};
22 disp('V', Vc*1, "Vc=");
23 Vce=Vc-Ve;
24 \text{ disp}('V', Vce*1, "Vce=");
```

Scilab code Exa 18.18 R1 and RC

```
1
2 clc;
3 VCC=5;
4 RE=0.3*10**3;
5 IC=1*10**-3;
6 VCE=2.5;
7 B=100;
8 VBE=0.7;
9 ICO=0;
10 R2=10*10**3;
```

```
11    IE=IC;
12    RC=((VCC-VCE)/IC)-RE;
13    disp('ohm',RC*1,"RC=");
14    VE=IE*RE;
15    VB=VE+VBE;
16    R1=VCC*R2-R2;
17    disp('Kohm',R1*10**-3,"R1=");
```

Scilab code Exa 18.19 IE and VCE

```
1
2 clc;
3 \ \text{Vcc} = 20;
4 RC=1*10**3;
5 RE=5*10**3;
6 R1=10*10**3;
7 R2=10*10**3;
8 B=462;
9 VBE = 0.7;
10 VB = Vcc * R2/(R1 + R2);
11 disp('V', VB*1, "VB=");
12 VE = VB - VBE;
13 IE=VE/RE;
14 disp('mA', IE*10**3, "IE=");
15 IC=IE;
16 VCE=Vcc-IC*RC;
17 disp('V', VCE*1, "VCE=");
```

Scilab code Exa 18.20 base current

```
1
2 clc;
3 VCC=8;
```

```
4  VRC=0.5;
5  RC=800;
6  a=0.96;
7  VCE=VCC-VRC;//VRC=IC*RC
8  IC=VRC/RC;
9  disp('mA',IC*10**3,"IC=");
10  IE=IC/a;
11  disp('mA',IE*10**3,"IE=");
12  IB=IE-IC;
13  disp('microA',IB*10**6,"IB=");
```

Scilab code Exa 18.21 change in collector current

```
1
2 clc;
3 \text{ VCC}=12;
4 RC=1*10**3;
5 RE = 100;
6 R1=25*10**3;
7 R2=5*10**3;
8 B=50;
9 VBE = 0.6;
10 VTH=VCC*R2/(R1+R2);
11 RTH=R1*R2/(R1+R2);
12 IE50 = (VTH - VBE) / (RE + RTH/B);
13 B = 150;
14 IE150=(VTH-VBE)/(RE+RTH/B);
15 ICdiff = (IE150 - IE50) / IE50;
16 disp('%', ICdiff*100," ICdiff=")
```

Scilab code Exa 18.24 value of resistors

```
1 clc;
```

```
2 B=50;
3 VBE=0.7;
4 VCC=22.5;
5 RC=5.6*10**3;
6 VCE=12;
7 IC=1.5*10**-3;
8 S=3;
9 RE=(VCC-IC*RC-VCE)/IC;
10 disp('kohm', RE*10^-3, "RE=");
11 RTH=(4375)-RE;
12 disp('kohm', RTH*10^-3, "RTH=");
13 R2=0.1*B*RE;
14 disp('kohm', R2*10^-3, "R2=");
15 R1=(-RTH*R2)/(RTH-R2);
16 disp('kohm', R1*10^-3, "R1=");
```

Scilab code Exa 18.25 CURRENT AND VOLTAGE

```
1
2 clc;
3 \text{ VCC=10};
4 VEE=10;
5 RC=1*10**3;
6 RE=5*10**3;
7 RB=50*10**3;
8 VBE = 0.7;
9 VE = -VBE;
10 IE=(VEE-VBE)/RE;
11 disp('mA', IE*10**3," IE=");
12 IC = IE;
13 disp('mA',IC*10**3,"IC=");
14 VC = VCC - IC * RC;
15 VCE = VC - VE;
16 disp('volts', VCE*1, "VCE=");
```

Scilab code Exa 18.26 change in Q point

```
1 clc;
2 \text{ VCC}=20;
3 \text{ VEE=20};
4 RC=5*10**3;
5 RE=10*10**3;
6 RB=10*10**3;
7 B1 = 50;
8 B2 = 100;
9 VBE1 = 0.7;
10 VBE2=0.6;
11 IE1 = (VEE - VBE1) / (RE + RB / B1);
12 disp('mA', IE1*10**3," IE1=");
13 IC1=IE1;
14 VC1 = VCC - IC1 * RC;
15 disp('V', VC1, "VC1=");
16 VE = -VBE1;
17 VCE1 = VC1 - VE;
18 disp('V', VCE1, "VCE1=");
19 IE2 = (VEE - VBE2) / (RE + RB / B2);
20 disp('mA', IE2*10**3," IE2=");
21 IC2=IE2;
22 \text{ VC2=VCC-IC2*RC};
23 disp('V', VC2, "VC2=");
VE = -VBE2;
25 \text{ VCE2=VC-VE};
26 disp('V', VCE2, "VCE2=");
27 delIc=(IC2-IC1)/IC1;
28 disp('\%', dellc*100, "dellc=");
29 delVCE=(VCE1-VCE2)/VCE2;
30 disp('\%', delVCE*100, "delVCE=");
```

Scilab code Exa 18.27 VOLTAGE AND CURRENT

```
1
2 clc;
3 \text{ VCC}=12;
4 RC=2*10**3;
5 RE=1*10**3;
6 R1=100*10**3;
7 R2 = 20 * 10 * * 3;
8 B = 100;
9 VBE = -0.2;
10 VB = -VCC * R2 / (R1 + R2);
11 disp('V', VB*1, "VB=");
12 VE = VB - VBE;
13 disp('V', VE*1, "VE=");
14 IE = -VE/RE;
15 IC=IE;
16 disp('mA',IC*10**3,"IC=");
17 VC = -(VCC - IC * RC);
18 disp('V', VC*1, "VC=");
19 VCE=VC-(VE);
20 \quad \mathtt{disp} \, (\ 'V', \mathtt{VCE} \! * \! 1, "VCE \! = ");
```

Scilab code Exa 18.28 Quiescent points

```
1 clc;

2 VCC=4.5;

3 RC=1.5*10**3;

4 RE=0.27*10**3;

5 R2=2.7*10**3;

6 R1=27*10**3;

7 B=44;
```

```
8  VBE=-0.3;
9  VB=-VCC*R2/(R1+R2);
10  disp('V', VB*1,"VB=");
11  VE=VB-VBE;
12  disp('V', VE*1,"VE=");
13  IE=-VE/RE;
14  IC=IE;
15  disp('mA', IC*10**3,"IC=");
16  VRC=IC*RC;
17  disp('V', VRC*1,"VRC=");
18  VC=-[VCC-VRC]
19  disp('V', VC*1,"VC=");
20  VCE=VC-(VE);
21  disp('V', VCE*1,"VCE=");
```

Chapter 19

SINGLE STAGE BJT AMPLIFIERS

Scilab code Exa 19.1 resistance and voltage gain

```
1 clc;
2 / e.g. 19.1
3 \text{ Vcc=10};
4 Rc=10*10**3;
5 Rb=1*10**6;
6 beta=100;
7 Vbe=0.7;
8 Ib=(Vcc-Vbe)/Rb;
9 disp('microA', Ib*10**6, "Ib=");
10 Ic=beta*Ib;
11 disp('mA', Ic*10**3," Ic=");
12 Ie=Ic;
13 re=25/(Ie*10**3);
14 disp('ohm',re*1,"re=");
15 Ri=beta*re;
16 disp('kohm', Ri*10**-3, "Ri=");
17 Ris=(Rb*beta*re)/(Rb+beta*re);
18 disp('kohm', Ris*10**-3, "Ris=");
19 RO=Rc;
```

```
20 disp('kOhm', R0*10**-3,"R0=");
21 Av=Rc/re;
22 disp(Av);
```

Scilab code Exa 19.2 current and gain

```
1 clc;
2 //e.g 19.2
3 Ri=2.5*10**3;
4 Av=200;
5 Vs=5*10**-3;
6 beta=50;
7 ib=(Vs/Ri)
8 disp('microA',ib*10**6,"ib=");
9 ic=beta*ib;
10 disp('microA',ic*10**6,"ic=");
11 Ai=beta;
12 Ap=Ai*Av;
13 disp(Ap);
14 Gp=10*log10(Ap);
15 disp('dB',Gp*1,"Gp=");
```

Scilab code Exa 19.3 resistance and gain

```
1 clc;
2 //e.g 19.3
3 Vcc=20;
4 Rc=5*10**3;
5 Re=1*10**3;
6 Rb=100*10**3;
7 beta=150;
8 Vbe=0.7;
9 Ic=Vcc/(Re+(Rb/beta));
```

```
disp('mA',Ic*10**3,"Ic=");
Ie=Ic;
re=25/(Ie*10**3);
disp('ohm',re*1,"re=");
Ri=beta*(re+Re);
disp('kohm',Ri*10**-3,"Ri=");
Ris=(Rb*Ri)/(Rb+Ri);
disp('kohm',Ris*10**-3,"Ris=");
Av=Rc/Re;
disp(Av);
Gp=10*log10(Av);
disp('dB',Gp*1,"Gp=");
```

Scilab code Exa 19.4 voltage gain and resistance

```
1 clc;
2 / e.g. 19.4
3 \text{ Vcc=12};
4 Rc=10*10**3;
5 Re=1*10**3;
6 Rb=500*10**3;
7 beta=50;
8 Ic=Vcc/(Re+(Rb/beta));
9 disp('mA', Ic*10**3," Ic=");
10 Ie=Ic;
11 re=25/(Ie*10**3);
12 disp('ohm',re*1,"re=");
13 Ri=beta*re;
14 disp('ohm', Ri*1, "Ri=");
15 Ris=(Rb*Ri)/(Rb+Ri);
16 disp('ohm', Ris*1," Ris=");
17 RO=Rc;
18 Av=R0/re;
19 disp(Av);
20 Av=Rc/Re;
```

```
21 disp(Av);
```

Scilab code Exa 19.5 voltage and impedance

```
1 clc;
2 / e.g. 19.5
3 \text{ Vcc}=30;
4 Rc=10*10**3;
5 \text{ RL} = 3.3 * 10 * * 3;
6 R1=47*10**3;
7 R2=15*10**3;
8 Re=8.2*10**3;
9 beta=200;
10 Vs = 5*10**-3;
11 Vbe=0.7;
12 Vth = (Vcc*R2)/(R1+R2);
13 disp('V', Vth*1, "Vth=");
14 Rth=(R1*R2)/(R1+R2);
15 disp('10^3ohm', Rth*10**-3, "Rth=");
16 Ie=(Vth-Vbe)/(Re+(Rth/beta));
17 disp('mA', Ie*10**3," Ie=");
18 \text{ re}=25/(\text{Ie}*10**3);
19 disp('ohm',re*1,"re=");
20 rl=(Rc*RL)/(Rc+RL);
21 disp('Kohm',rl*10**-3,"rl=");
22 \text{ Av=rl/re};
23 disp(Av);
24 \quad Vin=5;
25 \text{ VO} = \text{Av} * \text{Vin}
26 disp('mV', V0*1, "V0=");
27 Ri=beta*re;
28 disp('Kohm', Ri*10**-3, "Ri=");
29 Ris=(Rth*Ri)/(Rth+Ri);
30 disp('Kohm', Ris*10**-3, "Ris=");
```

Scilab code Exa 19.6 output voltage and output gain

```
1 clc;
2 / e.g. 19.6
3 \text{ Vcc}=10;
4 Rc=5*10**3;
5 Re=1*10**3;0
6 RL=50*10**3;
7 R1=50*10**3;
8 R2=10*10**3;
9 \text{ Rs} = 600;
10 beta=50;
11 Vs = 10 * 10 * * -3;
12 Vbe=0.7;
13 Vth = (Vcc*R2)/(R1+R2);
14 disp('V', Vth*1,"Vth=");
15 Rth=(R1*R2)/(R1+R2);
16 disp('10^3ohm', Rth*10**-3,"Rth=");
17 Ie=(Vth-Vbe)/(Re+(Rth/beta));
18 disp('mA', Ie*10**3, "Ie=");
19 re=25/(Ie*10**3);
20 disp('ohm',re*1,"re=");
21 Ri=beta*re;
22 Ris=(Rth*Ri)/(Rth+Ri);
23 disp('ohm', Ris*1," Ris=");
24 rl=(Rc*RL)/(Rc+RL);
25 disp('Kohm',rl*10**-3,"rl=");
26 \text{ Av=rl/re};
27 disp(Av);
28 Vin=(Vs*Ris)/(Ris+Rs);
29 disp('mV', Vin*10**3, "Vin=");
30 VO = Av * Vin;
31 disp('mV', V0*1, "V0=");
32 Avs=(Av*Vin)/Vs;
```

```
33 disp(Avs);
```

Scilab code Exa 19.7 voltage and impedance

```
1 clc;
2 / e.g. 19.7
3 \ \text{Vcc} = -18;
4 Rc=4.3*10**3;
5 Re=1*10**3;0
6 RL=3*10**3;
7 R1=39*10**3;
8 R2=8.2*10**3;
9 beta1=200;
10 Vbe = -0.7;
11 Vth = (Vcc*R2)/(R1+R2);
12 disp('V', Vth*1,"Vth=");
13 Rth=(R1*R2)/(R1+R2);
14 disp('kohm', Rth*10**-3,"Rth=");
15 Ie=(Vth-Vbe)/(Re+(Rth/beta1));
16 disp('mA', Ie*10**3, "Ie=");
17 re1=(30*10**-3)/(-Ie);
18 disp('ohm',re1*1,"re1=");
19 Ri=beta1*re;
20 Ris=(Rth*Ri)/(Rth+Ri);
21 disp('kohm',Ris*10**-3,"Ris=");
22 \text{ re}=(Rc*RL)/(Rc+RL);
23 disp('Kohm',re*10**-3,"re=");
24 \text{ Av=re/re1};
25 disp(Av);
```

Scilab code Exa 19.8 Av Ri Ro and Avs

```
1 clc;
```

```
2 / e.g. 19.8
3 \text{ Vcc}=20;
4 Rc=5.7*10**3;
5 Re=1*10**3;
6 R1=100*10**3;
7 R2=10*10**3;
8 \text{ Rs} = 100;
9 beta1=100;
10 Vbe=0.7;
11 Vth = (Vcc*R2)/(R1+R2);
12 disp('V', Vth*1,"Vth=");
13 Rth=(R1*R2)/(R1+R2);
14 disp('Kohm', Rth*10**-3,"Rth=");
15 Ie=(Vth-Vbe)/(Re+(Rth/beta1));
16 disp('mA', Ie*10**3, "Ie=");
17 re=25/(Ie*10**3);
18 disp('ohm',re*1,"re=");
19 Ri=beta1*re;
20 Ris=(Rth*Ri)/(Rth+Ri);
21 disp('ohm', Ris*1," Ris=");
22 \text{ rl=Rc};
23 \text{ Av=rl/re};
24 disp(Av);
25 Vin=(Vs*Ris)/(Ris+Rs);
26 disp('mV', Vin*1, "Vin=");
27 VO = Av * Vin;
28 disp('V', V0*10**-3, "V0=");
29 Avs=(Av*Vin)/Vs;
30 disp(Avs);
```

Scilab code Exa 19.9 GAIN VOLTAGE AND RESISTANCE

```
1 clc;
2 //e.g 19.9
3 Vcc=10;
```

```
4 Rc=5*10**3;
5 RE1 = 500;
6 R1=50*10**3;
7 R2=10*10**3;
8 \text{ Rs} = 600;
9 \text{ rE} = 500;
10 beta1=50;
11 Vbe=0.7;
12 vs = 100 * 10 * * -3;
13 R1=50*10**3;
14 Vth = (Vcc*R2)/(R1+R2);
15 disp('V', Vth*1,"Vth=");
16 Rth=(R1*R2)/(R1+R2);
17 disp('10^3ohm', Rth*10**-3, "Rth=");
18 RE=RE1+rE;
19 disp('ohm', RE*1,"RE=");
20 Ie=(Vth-Vbe)/(RE+(Rth/beta1));
21 disp('mA', Ie*10**3, "Ie=");
22 \text{ re} = 25/(\text{Ie}*10**3);
23 disp('ohm',re*1,"re=");
24 \text{ Ri=beta1*(re+rE)};
25 disp('Kohm', Ri*10**-3, "Ri=");
26 Ris=(Rth*Ri)/(Rth+Ri);
27 disp('ohm', Ris*1," Ris=");
28 rl=(Rc*R1)/(Rc+R1)
29 disp('kohm',rl*10**-3,"rl=");
30 \text{ Av=rl/(re+rE)};
31 disp(Av);
32 VinBYVs=(Ris)/(Ris+Rs);
33 disp('V', VinBYVs*1, "VinBYVs=");
34 \text{ Avs} = \text{Av} * \text{VinBYVs};
35 \text{ disp(Avs)};
36 \quad VO = Avs * vs;
37 disp('mV', V0*10^3, "V0=");//answer printed in the
      book is wrong (variation in decimal point)
```

Scilab code Exa 19.10 resistance voltage gain current gain power gain

```
1 clc;
2 VS = 10 * 10 * * -3;
3 a=0.98;
4 VBE = 0.7;
5 \text{ VCC=10};
6 RC=10*10**3;
7 RL=5.1*10**3;
8 RE=20*10**3;
9 VEE = 10;
10 IE=(VEE-VBE)/RE;
11 re=25/IE*10**-3;
12 Ri=re;
13 Ris=(RE*re)/(RE+re);
14 disp('ohm', Ris, "Ris=");
15 Ai=a;
16 disp(Ai);
17 rL=(RC*RL)/(RC+RL);
18 Av=rL/re;
19 disp(Av);
20 Ap=Av*Ai;
21 disp(Ap);
22 Gp = 10 * log 10 (Ap);
23 disp('dB',Gp,"Gp=");
24 Vin=VS;
25 Vo = Av * Vin;
26 \text{ disp}(\text{'mV'}, \text{Vo*10**3}, \text{"Vo="});
```

Scilab code Exa 19.11 VOLTAGE GAIN

```
1 clc;
```

```
2 Rs=50;
3 IE=0.465*10**-3;
4 re1=53.8;
5 Ri=53.8;
6 Ris=52.4;
7 rL=3.38*10**3;
8 Avs=rL/(Rs+re1);
9 disp(Avs);
10 Av=rL/re1;
11 disp(Av);
12 Vs=10;
13 vo=Avs*Vs;
14 vin=vo/Av;
15 disp('mV', vin, "vin=");
```

Scilab code Exa 19.12 resistance and voltage gain

```
1 clc;
2 VEE = 10;
3 RE = 10 * 10 * * 3;
4 RB=100*10**3;
5 B=50;
6 VBE=0.7;
7 IE=(VEE-VBE)/(RE+(RB/B));
8 re=25/IE*10**-3;
9 Ri=B*(RE+re);
10 disp('Kohm', Ri*10**-3," Ri=");
11 Ris=(RB*Ri)/(RB+Ri);
12 Rs=0;
13 Ro=re+((RB*Rs)/(RB+Rs))/B;
14 disp('ohm', Ro, "Ro=");
15 Av=RE/(re+RE);
16 disp(Av);
```

Scilab code Exa 19.13 resistance and voltage

```
1 clc;
2 B=80;
3 VBE=0.7;
4 VCC = 15;
5 R1=20*10**3;
6 R2=20*10**3;
7 RS=2*10**3;
8 VS = 5 * 10 * * -3;
9 RE=8.2*10**3;
10 RL=1.5*10**3;
11 VTH = VCC * R2 / (R1 + R2);
12 RTH=(R1*R2)/(R1+R2);
13 IE=(VTH-VBE)/(RE+(RTH/B));
14 disp('mA', IE*10**3," IE=");
15 re=25/IE*10**-3;
16 rL=(RE*RL)/(RE+RL);
17 Ri=B*(rL+re);
18 Ris=(RTH*Ri)/(RTH+Ri);
19 disp('kohm',Ris*10**-3,"Ris=");
20 Ro=re+((RS*RTH)/(RS+RTH))/B;
21 disp('ohm', Ro, "Ro=");
22 Vin=VS*Ris/(RS+Ris);
23 disp('mV', Vin*10**3," Vin=");
```

Chapter 20

HYBRID PARAMETERS

Scilab code Exa 20.2 Impedance voltage and current gain

```
1 clc;
2 \text{ hie=1.0*10**3};
3 \text{ hre}=1*10**-4;
4 hoe=100*10**-6;
5 \text{ RC} = 1000;
6 RS=1000;
7 \text{ rL=RC};
8 \text{ hfe}=50;
9 Ai = -hfe/(1+hoe*rL);
10 Ri=hie+hre*Ai*rL;
11 Ris=Ri;
12 disp('Ohm', Ris*1," Ris=");
13 delh=hie*hoe-hre*hfe;
14 his=1000;
15 Ro=(RS+his)/(RS*hoe+delh);
16 disp('kOhm',Ro*10**-3,"Ro=");
17 Ros=(Ro*rL)/(Ro+rL);
18 disp('Ohm', Ros*1, "Ros=");
19 Ais=(Ai*RS)/(RS+Ris);
20 disp(Ais);
21 Av=(Ai*rL)/Ri;
```

```
22 Avs=(Av*Ris)/(RS+Ris);
23 disp(Avs);
```

Scilab code Exa 20.3 impedance current and voltage gain

```
1 clc;
2 hie=1.1*10**3;
3 hre=2.5*10**-4;
4 hfe=50;
5 hoe=25*10**-6;
6 rs=1*10**3;
7 rL=1*10**3;
8 Ai=hfe/(1+hoe*rL);
9 disp(Ai);
10 Ri=hie+hre*Ai*rL;
11 disp('Ohm',Ri*1,"Ri=");
12 Av=(Ai*rL)/Ri;
13 disp(Av);
```

Scilab code Exa 20.4 voltage gain and resistance

```
1 clc;
2 RC=4*10**3;
3 RB=40*10**3;
4 RS=10*10**3;
5 hie=1100;
6 hfe=50;
7 hre=0;
8 hoe=0;
9 RB2=40*10**3;
10 rL=(RC*RB2)/(RC+RB2);
11 Ai=-hfe/(1+hoe*rL);
12 Ri=hie+hre*Ai*rL;
```

```
13 Av=(Ai*rL)/Ri;
14 RB1=40*10**3/(1-Av);
15 Ris=(Ri*RB1)/(Ri+RB1);
16 disp('ohm', Ris*1," Ris=");
17 Ros=rL;//Ro=infinity
18 disp('Ohm', Ros*1," Ros=");
19 Avs=(Av*Ris)/(RS+Ris);
20 disp(Avs);
```

Scilab code Exa 20.5 resistance voltage and current gain

```
1 clc;
2 \text{ hib=28;}
3 \text{ hfb} = -0.98;
4 hrb=5*10**-4;
5 hob=0.34*10**-6;
6 rL=1.2*10**3;
7 Rs=0;
8 Ai = -hfb/(1+hob*rL);
9 disp(Ai);
10 Ri=hib+hrb*Ai*rL;
11 disp('Ohm', Ri*1, "Ri=");
12 delh=hib*hob-hrb*hfb;
13 Ro=(Rs+hib)/(Rs*hib+delh);
14 disp('kOhm',Ro*10**-3,"Ro=");
15 Av=(Ai*rL)/Ri;
16 disp(Av);
```

Scilab code Exa 20.6 resistance voltage and current gain

```
1 clc;
2 hic=2*10**3;
3 hfc=-51;
```

```
4 \text{ hrc}=1;
5 hoc=25*10**-6;
6 rL=5*10**3;
7 RE=5*10**3;
8 \text{ Rs} = 1000;
9 R1=10*10**3;
10 R2=10*10**3;
11 Ai = -hfc/(1+hoc*rL);
12 disp(Ai);
13 Ri=hic+hrc*Ai*rL;
14 disp('kOhm',Ri*10**-3,"Ri=");
15 a=(R1*R2)/(R1+R2);
16 Ris=(Ri*a)/(Ri+a);
17 disp('Ohm', Ris*1," Ris=");
18 Ro=-(Rs+hic)/hfc;
19 Ros = (Ro*RE)/(Ro+RE);
20 disp('Ohm', Ros*1,"Ros=");
21 Ais=(Ai*Rs)/(Rs+Ris);
22 disp(Ais);
23 Av=(Ai*rL)/Ri;
24 disp(Av);
25 Avs=(Av*Ris)/(Rs+Ris);
26 disp(Avs);
```

Scilab code Exa 20.7 resistance voltage and current gain

```
1 clc;
2 hie=1500;
3 hfe=50;
4 hre=50*10**-4;
5 hoe=20*10**-6;
6 RC=5*10**3;
7 RL=10*10**3;
8 R1=20*10**3;
9 R2=10*10**3;
```

```
10 rL=(RC*RL)/(RC+RL);
11 Ai=-hfe;
12 Ri=hie;
13 a=(R1*R2)/(R1+R2);
14 Ris=(Ri*a)/(Ri+a);
15 disp('kOhm',Ris*10**-3,"Ris=");
16 Ro=1/hoe;
17 Ros=(Ro*rL)/(Ro+rL);//correction
18 disp('kOhm',Ros*10**-3,"Ros=");
19 Avs=(Ai*rL)/Ri;
20 disp(Avs);
21 Ais=Ai;//correction
22 disp(Ais);
```

Scilab code Exa 20.8 voltage and impedance

```
1
2 clc;
3 RC = 12 * 10 * * 3;
4 RL=4.7*10**3;
5 R1 = 33 * 10 * * 3;
6 R2=4.7*10**3;
7 IC=1*10**-3;
8 hiemin=1*10**3;
9 hiemax=5*10**3;
10 hfemin=70;
11 hfemax = 350;
12 hie=sqrt(hiemin*hiemax);
13 disp('kOhm', hie *10 ** -3, "hie=");
14 hfe=sqrt(hfemin*hfemax);
15 disp('Ohm', hfe*1," hfe=");//answer printed in the
      book is wrong
16 Ri=hie;
17 a=(R1*R2)/(R1+R2);
18 Ris=(Ri*a)/(Ri+a);
```

```
19 disp('kOhm', Ris*10**-3," Ris=");
20 Ai=hfe;
21 rc=(RC*RL)/(RC+RL);
22 Avs=(Ai*rc)/Ri;
23 disp(Avs," Avs=");
```

Scilab code Exa 20.9 resistance voltage and current gain

```
1 clc;
2 RB=330*10**3;
3 RC=2.7*10**3;
4 hfe=120;
5 hie=1.175*10**3;
6 hoe=20*10**-6;
7 Ri=hie;
8 Ris=(hie*RB)/(hie+RB);
9 disp('kohm', Ris*10**-3," Ris=");
10 Ro=1/hoe;
11 Ros=(Ro*RC)/(Ro+RC);
12 disp('kohm', Ros*10**-3,"Ros=");
13 Ai=hfe;
14 disp(Ai);
15 Av=(hfe*RC)/Ri;
16 disp(Av);
```

Scilab code Exa 20.10 hfb and hfc

```
1 clc;
2 hfe=50;
3 hfb=-hfe/(1+hfe);
4 disp(hfb);
5 hfc=-(1+hfe);
6 disp(hfc);
```

Scilab code Exa 20.11 gain and input resistance

```
1 clc;
2 \text{ hie} = 1100;
3 \text{ hre} = 2.5 * 10 * * -4;
4 \text{ hfe=50};
5 hoe=24*10**-6;
6 rL=10*10**3;
7 RS=1*10**3;
8 hic=hie;
9 \text{ hrc=1-hre};
10 hfc = -(1+hfe);
11 Ai=hfc/(1+hoe*rL);
12 disp(Ai);
13 Ri=hie+hrc*-Ai*rL;
14 disp('kOhm',Ri*10**-3,"Ri=");
15 Av = (-Ai*rL)/Ri;
16 disp(Av);
```

Chapter 21

MULTISTAGE BJT AMPLIFIERS

Scilab code Exa 21.1 total voltage gain

```
1 clc;
2 Av1=10;
3 Av2=20;
4 Av3=40;
5 Av=Av1*Av2*Av3;
6 disp(Av);
7 GV1=20*log10(Av1);
8 GV2=20*log10(Av2);
9 GV3=20*log10(Av3);
10 GV=GV1+GV2+GV3; //CORRECTION
11 disp('dB',GV*1,"GV=");
```

Scilab code Exa 21.2 voltage gain and input voltage of 2nd stage

```
1 clc;
2 vin1=0.05;
```

```
3 vout3=150;
4 Av1=20;
5 vin3=15;
6 Av=vout3/vin1;
7 disp(Av);
8 Av3=vout3/vin3;
9 disp(Av3);
10 Av2=Av/(Av3*Av1);
11 disp(Av2);
12 vin2=Av2/vin3;
13 disp('Vpk-pk', vin2*1," vin2=");
```

Scilab code Exa 21.3 input resistance output resitance current and voltage gain

```
1 clc;
2 \text{ VCC} = 10;
3 Rc=5*10**3;
4 RB=1*10**6;
5 RE=1*10**3;
6 RL=10*10**3;
7 B1 = 100;
8 B2=100;
9 B=B1;
10 IE=VCC/(RE+(RB/B1));
11 re=25/(IE*10**3);
12 Ri1=B*re;
13 disp('ohm', Ri1*1," Ri1=");
14 Ri2=B*re;
15 disp('ohm',Ri2*1,"Ri2=");
16 Ro1=(Rc*Ri2)/(Rc+Ri2);
17 disp('ohm', Ro1*1,"Ro1=");
18 Ro2=(Rc*RL)/(Rc+RL);
19 disp('ohm', Ro2*1,"Ro2=");
20 Av1=Ro1/re;
```

```
21 disp(Av1);
22 Av2=Ro2/re;
23 disp(Av2);
24 Av=Av1*Av2;
25 disp(Av);
26 Gv=20*log10(Av);
27 disp('dB',Gv*1,"Gv=");
```

Scilab code Exa 21.4 voltage gain

```
1 clc;
2 \text{ VCC=15};
3 \text{ Rc} = 3.3 * 10 * * 3;
4 RE=1000;
5 R1 = 33 * 10 * * 3;
6 R2=8.2*10**3;
7 RL=10*10**3;
8 B = 100;
9 VBE=0.7;
10 VTH = VCC * (R2/(R1+R2));
11 RTH=(R1*R2)/(R1+R2);
12 IE=(VTH-VBE)/(RE+(RTH/B));
13 re=25/(IE*10**3);
14 Ri2=B*re;
15 disp('ohm', Ri2*1, "Ri2="); // the answer of Ri2 varies
      from the answer printed in the book with slight
      difference (11.7 in book & 11.65 here), but this
      affects some answers further.
16 Ro1=(Rc*Ri2)/(Rc+Ri2);
17 disp('ohm', Ro1*1,"Ro1=");
18 Ro2=(Rc*RL)/(Rc+RL);
19 disp('ohm', Ro2*1,"Ro2=");
20 Av1=Ro1/re;
21 disp(Av1);
22 \text{ Av2=Ro2/re};
```

```
23 disp(Av2);

24 Av=Av1*Av2;

25 disp(Av);

26 Gv=20*log10(Av);

27 disp('dB',Gv*1,"Gv=");
```

Scilab code Exa 21.5 cutoff frequency and voltage gain

```
1 clc;
2 bw=500*10**3;
3 Avmax=120;
4 f1=25;
5 f2=bw+f1;
6 disp('kHZ',f2*10**-3,"f2=");
7 Av=Avmax/(sqrt(2))
8 disp(Av);//ans printed in the book is wrong
```

Scilab code Exa 21.6 individual stage gains and voltage gain

```
1 clc;
2 VCC=10;
3 RB=470*10**3;
4 RE=1*10**3;
5 RL=1*10**3;
6 a=4;
7 B=50;
8 IE=VCC/(RE+(RB/B));
9 re=25/(IE*10**3);
10 Ri1=(RB*(B*re))/(RB+(B*re));
11 disp('ohm',Ri1*1,"Ri1=");
12 Ri2=(RB*(B*re))/(RB+(B*re));
13 disp('ohm',Ri2*1,"Ri2=");
14 RI2=(a^2)*Ri2;
```

```
15 R01=RI2;

16 RI2=(a^2)*RL;

17 Av1=R01/re;

18 disp(Av1);

19 R02=RI2;

20 Av2=R02/re;

21 disp(Av1);

22 Av=Av1*Av2;

23 disp(Av);

24 Gv=20*log10(Av);

25 disp('dB',Gv*1,"Gv=");
```

Scilab code Exa 21.7 voltage gain

```
1 clc;
2 \text{ VCC=12};
3 R1 = 100 * 10 * * 3;
4 R2=20*10**3;
5 R3=10*10**3;
6 R4=2*10**3;
7 R5=10*10**3;
8 R6=2*10**3;
9 B = 100;
10 B2=100;
11 VTH=VCC*(R2/(R1+R2));
12 IE1=VTH/R4;
13 re1=25/IE1*10**-3;
14 VR6 = VCC - IE1 * R3;
15 IE2=VR6/R6;
16 re2=25/IE2*10**-3;
17 Ri2=B2*(re2+R6);
18 R01 = (R3*Ri2)/(R3+Ri2);
19 RO2=R5;
20 \text{ Av1}=R01/(re1+R4);
21 disp(Av1);
```

```
22 Av2=R02/(re2+R6);
23 disp(Av2);
24 Av=Av1*Av2;
25 disp(Av);
```

Scilab code Exa 21.8 collector current VCE and ac voltage gain

```
1 clc;
2 \text{ VCC} = 10;
3 R1 = 800;
4 R2=200;
5 R3 = 600;
6 R4 = 200;
7 R5 = 100;
8 R6=1*10**3;
9 B = 100;
10 B2=B;
11 VBE=0.7;
12 RE=200;
13 VR2 = VCC * (R2/(R1+R2));
14 IE1 = (VR2 - VBE) / RE;
15 IC1=IE1;
16 disp('mA',IC1*10**3,"IC1=");
17 VC1 = VCC - IC1 * R3;
18 VE1 = IE1 * R4;
19 VCE1 = VC1 - VE1;
20 disp('V', VCE1*1, "VCE1=");
VE2=VC1-(-VBE);
22 \quad IE2 = (VCC - VE2)/R6;
23 IC2 = IE2;
24 \text{ VC2} = \text{IC2} * \text{R5};
25 \text{ VCE2=VC2-VE2};
26 disp('V', VCE2*1, "VCE2=");
27 \text{ re1}=25/IE1*10**-3;
28 \text{ re2}=25/\text{IE}2*10**-3;
```

```
29 Ri2=B2*(re2+R6);

30 R01=(R3*Ri2)/(R3+Ri2);

31 Av1=R01/(re1+R4);

32 disp(Av1*1,"Av1=");

33 Av2=1;

34 disp(Av2*1,"Av2=");

35 Av=Av1*Av2;

36 disp(Av*1,"Av=");
```

Scilab code Exa 21.9 gain emitter diode resistance

```
1 clc;
2 \text{ VCC} = 10;
3 R1 = 30 * 10 * * 3;
4 R2=20*10**3;
5 RE=1.5*10**3;
6 B1 = 150;
7 B2 = 100;
8 VBE = 0.7;
9 Ai = B1 * B2;
10 disp(Ai);
11 VR2 = VCC * (R2/(R1+R2));
12 VB2=VR2-VBE;
13 VE2 = VB2 - VBE;
14 IE2=VE2/RE;
15 re2=25/(IE2*10**3);
16 disp('ohm',re2*1,"re2=");
17 Ib2=IE2/B2;
18 IE1=Ib2;
19 re1=25/(IE1*10**3);
20 disp('ohm',re1*1,"re1=");
21 Ri1=(R1*R2)/(R1+R2);
22 disp('Kohm', Ri1*10**-3, "Ri1=");
23 Av=RE/((re1/B2)+(re2+RE));
24 disp(Av);
```

Chapter 22

FET AMPLIFIERS

Scilab code Exa 22.1 vdc vgs

```
1 clc;
2 //e.g 22.1
3 ID=5*10**-3;
4 VDD=10;
5 RD=1*10**3;
6 RS=500;
7 VS=ID*RS;
8 disp('V', VS*1, "VS=");
9 VD=VDD-ID*RD;
10 disp('V', VD*1, "VD=");
11 VDS=VD-VS;
12 disp('V', VDS*1, "VDS=");
13 VGS=-VS;
14 disp('V', VGS*1, "VGS=");
```

Scilab code Exa 22.2 R1

```
1 clc;
```

```
2 //e.g 22.2
3 RD=56*10**3;
4 RG=1*10**6;
5 IDSS=1.5*10**-3;
6 VP=-1.5;
7 VD=10;
8 VDD=20;
9 ID=VD/RD;
10 disp('mA',ID*10**3,"ID=");
1 //ID=IDSS*(1-(VGS/VP))**2
12 VGS=VP*(1-sqrt(ID/IDSS));
13 disp('V',VGS*1,"VGS=");
14 VS=VGS;
15 R1=(-VS/ID)-4*10**3;
16 disp('kohm',R1*10**-3,"R1=");
```

Scilab code Exa 22.3 RS and RD

```
1 clc;
2 //e.g 22.3
3 ID=1.5*10**-3;
4 VDS=10;
5 IDSS=5*10**-3;
6 VP=-2;
7 VDD=20;
8 //ID=IDSS*(1-(VGS/VP))**2
9 VGS=VP*(1-(ID/IDSS));
10 VS=-VGS;
11 RS=(VS/ID);
12 disp('ohm', RS*1, "RS=");
13 RD=((VDD-VDS)/ID)-RS;
14 disp('Kohm', RD*10**-3, "RD=");
```

Scilab code Exa 22.5 RD and RS

```
1 clc;
2 //e.g22.5
3 VP=5;
4 IDSS=12*10**-3;
5 VDD=12;
6 ID=4*10**-3;
7 VDS=6;
8 VGS=VP*(1-sqrt(ID/IDSS));
9 VS=VGS;
10 RS=VS/ID;
11 disp('ohm',RS*1,"RS=");
12 RD=VDS/ID;
13 disp('Kohm',RD*10**-3,"RD=")
```

Scilab code Exa 22.6 self bias operation point

```
1 clc;
2 //e.g 22.6
3 IDSS=10*10**-3;
4 VDD=20;
5 IDQ=IDSS/2;
6 disp('mA',IDQ*10**3,"ID=");
7 VDSQ=VDD/2;
8 disp('V',VDSQ*1,"VDS=");
9 VGS=-2.2;
10 RD=(VDD-VDSQ)/IDQ;
11 disp('Kohm',RD*10**-3,"RD=");
12 RS=-VGS/IDQ;
13 disp('ohm',RS*1,"RS=");
```

Scilab code Exa 22.7 VGS and VDS

```
1 clc;
2 //e.g 22.7
3 VDD=20;
4 RD=2.5*10**3;
5 RS=1.5*10**3;
6 R1=2*10**6;
7 R2=250*10**3;
8 ID=4*10**-3;
9 VG=(R2*VDD)/(R1+R2);
10 VS=ID*RS;
11 VGS=VG-VS;
12 disp('V', VGS*1, "VGS=");
13 VD=VDD-ID*RD;
14 VDS=VD-VS;
15 disp('V', VDS*1, "VDS=");
```

Scilab code Exa 22.8 voltage gain

```
1 clc;
2 //e.g22.8
3 gm=4*10**-3;
4 RD=1.5*10**3;
5 AV=-gm*RD;
6 disp(AV);
```

Scilab code Exa 22.9 voltage gain

```
1 clc;
2 //e.g 22.9
3 gm=2.5*10**-3;
4 rd=500*10**3;
5 RD=10*10**3;
6 rL=(RD*rd)/(rd+RD);
```

```
7 disp('10^3 ohm',rL*10**-3,"rL=");
8 AV=-gm*rL;
9 disp(AV);
```

Scilab code Exa 22.10 voltage gain

```
1 clc;
2 //e.g 22.10
3 gm=2*10**-3;
4 rd=40*10**3;
5 RD=20*10**3;
6 RG=100*10**6;
7 rL=(RD*rd)/(RD+rd);
8 Av=-gm*rL;
9 disp(Av);
10 Ri=RG;
11 disp('Mohm',Ri*10**-6,"Ri=");
12 Ro=rL;
13 disp('Kohm',Ro*10**-3,"Ro=");
```

Scilab code Exa 22.11 voltage gain

```
1 clc;
2 //e.g 22.11
3 gm=2*10**-3;
4 rd=10*10**3;
5 RD=50*10**3;
6 rl=(rd*RD)/(rd+RD);
7 Av=-gm*rl;
8 disp(Av);
```

Scilab code Exa 22.12 voltage gain

```
1 clc;
2 //e.g 22.12
3 RD=100*10**3;
4 gm=1.6*10**-3;
5 rd=44*10**3;
6 Cgs=3*10**-12;
7 Cds=1*10**-12;
8 Cgd=2.8*10**-12;
9 rl=(RD*rd)/(RD+rd);
10 Av=-gm*rl;
11 disp(Av);
```

Scilab code Exa 22.13 rms output voltage

```
1 clc;
2 //e.g 22.13
3 gm=4500*10**-6;
4 RD=3*10**3;
5 RL=5*10**3;
6 vin=100*10**-3;
7 ID=2*10**-3;
8 rl=(RD*RL)/(RD+RL);
9 V0=gm*rl*vin;
10 disp('V', V0*1, "VO=");
```

Scilab code Exa 22.14 voltage gain

```
1 clc;
2 //e.g 22.14;
3 gm=4*10**-3;
4 RD=1.5*10**3;
```

```
5  RG=10*10**6;
6  rs=500;
7  rl=RD;
8  AV=-(gm*rl)/(1+gm*rs);
9  disp(AV);
10  RL=100*10^3;
11  rL=(RD*RL)/(RD+RL);
12  AV=-(gm*rL)/(1+gm*rs);
13  disp(AV);
```

Scilab code Exa 22.15 voltage gain

```
1 clc;
2 // e.g 22.15
3 RD=1.5*10**3;
4 RS=750;
5 RG=1*10**6;
6 IDSS=10*10**-3;
7 VP = -3.5;
8 IDQ=2.3*10**-3;
9 VGSQ = -1.8;
10 gmo = -2*IDSS/VP;
11 gm=gmo*(1-(VGSQ/VP));
12 \text{ rL=RD};
13 AV = -(gm*rL)/(1+gm*RS);
14 disp(AV);
15 AV=-gm*rL;
16 disp(AV);
```

Scilab code Exa 22.16 voltage gain and input output resistance

```
1 clc;
2 //e.g 22.16
```

```
3 gm=8000*10**-6;
4 RS=10*10**3;
5 RG=100*10**6;
6 (1/gm);
7 AV=RS/(RS+(1/gm));
8 disp(AV);
9 Ri=RG;
10 Ro=1/gm;
11 disp('ohm',Ro*1,"Ro=");
```

Scilab code Exa 22.17 voltage gain and resistance

```
1 clc;
2 //e.g 22.17
3 \text{ vin}=2*10**-3;
4 gm=5500*10**-6;
5 R1=1*10**6;
6 R2=1*10**6;
7 \text{ RS} = 5000;
8 RL=2000;
9 (1/gm);
10 AV = RS/(RS + (1/gm));
11 disp(AV);
12 Ri = (R1*R2)/(R1+R2);
13 disp('Mohm',Ri*10**-6,"Ri=");
14 Ro = (RS/gm)/(RS+1/gm);
15 disp('ohm', Ro*1, "Ro=");
16 Vo=(RL/(RL+Ro))*(AV*vin);
17 disp('mV', Vo*10**3, "Vo=");
```

Scilab code Exa 22.18 voltage gain and input resistance

```
1 clc;
```

```
2 //e.g 22.18
3 gm=2500*10**-6;
4 Ri=2000;
5 RD=10000;
6 AV=gm*RD;
7 disp(AV);
8 Ri1=(Ri/gm)/(Ri+1/gm);
9 disp('ohm', Ri1*1," Ri1=");
```

Scilab code Exa 22.19 output resistance

```
1 clc;
2 //e.g 22.19
3 gm=2*10**-3;
4 rd=50*10**3;
5 Rs=1*10**3;
6 Ro=(Rs/gm)/(Rs+1/gm);
7 disp('ohm', Ro*1,"Ro=");
```

Scilab code Exa 22.20 input resistance and ac voltage gain

```
1 clc;
2 //e.g 22.20
3 gmo=5*10^-3;
4 RD=1*10**3;
5 Rs=200;
6 ID=5*10**-3;
7 Ri1=(Rs/gmo)/(Rs+1/gmo);
8 disp('ohm',Ri1*1,"Ri1=");
9 Vs=ID*Rs;
10 disp('V',Vs*1,"Vs=");
11 VGS=Vs;
12 IDSS=2*ID;
```

```
13  VGSo=(-2*IDSS)/ID;
14  gm=gmo*(1-VGS/-VGSo);
15  Av=gm*RD;
16  disp(Av);
```

Chapter 23

AMPLIFIERS WITH COMPOUND CONFIGURATION

Scilab code Exa 23.1 voltage gain and impedance

```
1 clc;
 2 ID = 4 * 10 * * - 3;
3 IDSS = 2 * ID;
4 RS=390;
5 VGSQ = -ID*RS;
6 \text{ VP} = -4.5;
7 RD=2.2*10**3;
8 \text{ gm0} = (2*IDSS)/(-VP);
9 gm = gm0 * (1 - (VGSQ/VP));
10 Av1=-gm*RD;
11 Av2=-gm*RD;
12 Av = Av1 * Av2;
13 disp(Av);
14 \text{ vi} = 20*10**-3;
15 vo = Av * vi;
16 disp('mV', vo*10**3,"vo=");
17 Zi = 10 * 10 * * 6;
```

```
18 RG=10*10**6;

19 disp('Mohm', Zi*10**-6," Zi=RG=");

20 Z0=2.2*10**3;

21 RD=2.2*10**3;

22 disp('Kohm', Z0*10**-3," Z0=RD=");

23 RL=10*10**3;

24 VL=(RL/(Z0+RL))*vo;

25 disp('V', VL*10**3,"VL=");
```

Scilab code Exa 23.3 voltage gain

```
1 clc;
2 \text{ VCC} = 18;
3 R1 = 7.5 * 10 * * 3;
4 R2=6.2*10**3;
5 R3=3.9*10**3;
6 RC=1.5*10**3;
7 B1 = 200;
8 B2 = 200;
9 RE=1*10**3;
10 CE = 100 * 10 * * -6;
11 VB1 = VCC * (R2 + R3) / (R1 + R2 + R3);
12 disp('V', VB1*1,"VB1=");
13 VB2 = VCC * (R3) / (R1 + R2 + R3);
14 disp('V', VB2*1, "VB2=");
15 IE2 = (VB2 - 0.7)/RE;
16 IC2=IE2;
17 IE1=IC2;
18 IE=IE1;
19 re1 = 26 * 10 * * - 3 / IE;
20 \text{ AV1=-re1/re1};
21 AV2=-RC/re1;
22 AV=AV1*AV2;
23 disp(AV); //ans given in book has -ve sign which is
      wrong
```

Scilab code Exa 23.4 current gain

```
1 clc;
2 B1=160;
3 B2=160;
4 BD=B1*B2;
6 disp(BD);
```

Scilab code Exa 23.5 CURRENT GAIN

```
1 clc;
2 BD=6000;
3 B1=BD;
4 B2=B1;
5 B=sqrt(BD);
6 disp(B);
```

Scilab code Exa 23.6 VE2 IE2 voltage gain

```
1 clc;
2 Vcc=15;
3 RB=2.4*10**6;
4 BD=6000;
5 RE=510;
6 Vi=120*10**-3;
7 VBE=1.6;
8 IB=(Vcc-VBE)/(RB+BD*RE);
9 disp('microA', IB*10**6, "IB=");
10 IE=BD*IB;
```

```
11 disp('mA', IE*10**3, "IE=");
12 IE2=IE
13 VE2=IE2*RE;
14 disp('V', VE2*1, "VE2=");
```

Scilab code Exa 23.7 zmatrix

```
1 clc;
2 hfe=100;
3 B=100;
4 BD=100**2;
5 RE=1*10**3;
6 hie=1*10**3;
7 ri=10**3;
8 Ri=ri+BD*RE;
9 disp('Mohm',Ri*10**-6,"Ri=");
10 Ro=ri/BD;
11 disp('ohm',Ro*1,"Ro=");
```

Scilab code Exa 23.8 dc bias currents and voltages

```
1 clc;
2 VCC=16;
3 B1=160;
4 B2=200;
5 RB=1.5*10**6;
6 Vi=120*10**-3;
7 VEB1=0.7;
8 RC=100;
9 IB1=(VCC-VEB1)/(RB+B1*B2*RC);
10 IB2=B1*IB1;
11 IC2=B2*IB2;
12 IE1=IB2;
```

Scilab code Exa 23.9 load current and output voltage

```
1 clc;
2 VDD=18;
3 RD=2*10**3;
4 IDSS=6*10**-3;
5 VP=-3;
6 ID=IDSS;
7 disp('mA',ID*10**3,"ID=");
8 Vo=VDD-ID*RD;
9 disp('V',Vo*1,"Vo=");
```

Scilab code Exa 23.10 calculate the value of constant current

```
1 clc;
2 VEE=-18;
3 R1=4.3*10**3;
4 R2=4.3*10**3;
5 RE=1.8*10**3;
6 B=100;
7 VB=-(-VEE*R2)/(R1+R2);
8 VE=VB-0.7
9 IE=(VE-(VEE))/RE;
10 disp('mA', IE*10**3, "IE=");
```

Scilab code Exa 23.11 current

```
1 clc;
2 VZ=5.1;
3 VBE=0.7;
4 RE=1.2*10**3;
5 B=200;
6 I=(VZ-VBE)/RE;
7 disp('mA', I*10**3," I=");
```

Scilab code Exa 23.12 current

```
1 clc;
2 VCC=18;
3 Rx=2*10**3;
4 VBE=0.7;
5 Ix=(VCC-VBE)/Rx;
6 I=Ix;
7 disp('mA',I*10**3,"I=");
```

Scilab code Exa 23.13 value of current

```
1 clc;
2 VC=5;
3 Re=2*10**3;
4 VCC=6;
5 R=2.2*10**3;
6 VBE=0.7;
7 B=100;
8 I="IO";
9 I=(VCC-2*VBE)/Re;
10 disp('mA',I*10**3,"I=");
11 Re=1*10**3;
```

```
12  I = (VCC-2*VBE)/Re;
13  disp('mA', I*10**3," I=");
14  Re=4*10**3;
15  I = (VCC-2*VBE)/Re;
16  disp('mA', I*10**3," I=");
```

Scilab code Exa 23.14 dc voltage and current

```
1 clc;
2 VCC=15;
3 VEE=15;
4 RE=3.9*10**3;
5 RC=4.7*10**3;
6 IE=(VEE-0.7)/RE;
7 disp('mA', IE*10**3," IE=");
8 IC=IE/2;
9 disp('mA', IC*10**3," IC=");
10 VC=VCC-IC*RC;
11 disp('V', VC*1," VC=");
```

Scilab code Exa 23.15 IC AV VO1

```
1 clc;
2 VCC=12;
3 VEE=12;
4 RE=33*10**3;
5 RC1=36*10**3;
6 RC2=36*10**3;
7 B1=150;
8 B2=150;
9 vi1=2*10**-3;
10 IE=(VEE-0.7)/RE;
11 disp('mA', IE*10**3,"IE=");
```

```
12     IC=IE/2;
13     disp('mA',IC*10**3,"IC=");
14     RC=36*10**3;
15     VC=VCC-IC*RC;
16     disp('V',VC*1,"VC=");
17     re1=25*10**-3/IE;
18     Av=RC/(2*re1);
19     disp(Av);
20     vo1=Av*vi1;
21     disp('V',vo1*1,"vo1=");
```

Scilab code Exa 23.16 common mode voltage gain

```
1 clc;
2 B=200;
3 ri=20*10**3;
4 RC=47*10**3;
5 RE=43*10**3;
6 Ac=(B*RE)/(ri+2*(B+1)*RE);
7 disp(Ac);
```

Chapter 24

FREQUENCY RESPONSE OF BJT AND JFET AMPLIFIERS

Scilab code Exa 24.1 power gain

```
1
2 clc;
3 Pi=5;
4 Po=100;
5 G=10*log10(Po/Pi);
6 disp('dB',G*1,"G=");
```

Scilab code Exa 24.2 power gain

```
1
2 clc;
3 Pi=5*10**-3;
4 Po=1;
5 G=10*log10(Po/Pi);
6 disp('dB',G*1,"G=");//ans given in the book is wrong
```

Scilab code Exa 24.3 power gain

```
1
2 clc;
3 Pi=20*10**-6;
4 Po=100*10**-6;
5 G=10*log10(Po/Pi);
6 disp('dB',G*1,"G=");
```

Scilab code Exa 24.4 power gain

```
1
2 clc;
3 Po=25;
4 G=10*log10(Po/(1*10**-3));
5 disp('dB',G*1,"G=");
```

Scilab code Exa 24.5 gain

```
1
2 clc;
3 V2=100;
4 V1=25;
5 G=10*log10(V2/V1);
6 disp('dB',G*1,"G=");
```

Scilab code Exa 24.8 frequency response

Figure 24.1: frequency response

```
1
2 clc;
3 R=5*10**3;
4 C=0.1*10**-6;
5 f1=1/(2*%pi*R*C);
6 disp('HZ',f1*1,"f1=");
7 i=-21:3:0;
8 plot2d(i);
9 a=gca() //get the current axes
10 a.box="off";
11 a.x_location="top";
12 xlabel("f(log scale)");
13 ylabel("Av(dB)");
```


Figure 24.2: FREQUENCY AND PLOT

Scilab code Exa 24.9 FREQUENCY AND PLOT

```
1
2 clc;
3 RC = 4 * 10 * * 3;
4 R1=40*10**3;
5 R2=10*10**3;
6 RE=2*10**3;
7 RS=1*10**3;
8 RL=2.2*10**3;
9 CS = 10 * 10 * * -6;
10 CE = 20 * 10 * * -6;
11 CC = 1 * 10 * * -6;
12 B = 100;
13 VCC = 20;
14 VB = (R2 * VCC) / (R2 + R1);
15 IE = (VB - 0.7) / RE;
16 re=(26*10**-3)/IE;
17 B*re;
18 vo=-(RC*RL)/(RC+RL);
```

```
19 Av=vo/re;
20 a=(R1*R2)/(R1+R2);
21 Ri=(a*(B*re))/(a+(B*re));
22 \text{ Rs} = 1 * 10 * * 3;
23 vibyvs=Ri/(Ri+Rs);
24 \text{ Avs} = \text{Av*vibyvs};
25 a = (R1*R2)/(R1+R2);
26 \text{ Ri}=(a*(B*re))/(a+(B*re));
27 \text{ fLS}=1/(2*\%pi*(Rs+Ri)*CS);
28 disp('HZ',fLS*1,"fLS=");
29 fLC=1/(2*%pi*(RC+RL)*CC);
30 disp('HZ',fLC*1,"fLC=");
31 a = (R1*R2)/(R1+R2);
32 RS = (a*RS)/(a+RS);
33 b = (RS/B + re);
34 Re=(RE*b)/(RE+b);
35 \text{ fLE}=1/(2*\%pi*Re*CE);
36 disp('HZ',fLE*1,"fLE=");
37 i = -21:3:0;
38 plot2d(i);
39 a=gca() //get the current axes
40 a.box="off";
41 a.x_location="top";
42 xlabel("f (log scale)");
43 ylabel( ^{"}\mathrm{Av}(\mathrm{dB}) ^{"});
```

Chapter 25

LARGE SIGNAL OR POWER AMPLIFIERS

Scilab code Exa 25.1 collector current and Vce

```
1 clc;
2 \text{ VCC=10};
3 R1 = 10 * 10 * * 3;
4 R2=5*10**3;
5 RC=1*10**3;
6 RE=500;
7 RL=1.5*10**3;
8 B = 100;
9 VBE = 0.7;
10 VR2 = VCC * (R2/(R1+R2));
11 IEQ = (VR2 - VBE) / RE;
12 ICQ = IEQ;
13 VCEQ=VCC-ICQ*(RC+RE);
14 rL=(RC*RL)/(RC+RL);
15   ICsat=ICQ+(VCEQ/rL);
16 disp('mA', ICsat*10**3, "ICsat=");
17 VCEsat=0;
18 disp(VCEsat);
19  ICcutoff = 0;
```

```
20 disp(ICcutoff);
21 VCEcutoff=VCEQ+ICQ*rL;
22 disp('V', VCEcutoff," VCEcutoff=");
```

Scilab code Exa 25.2 COMPLIANCE

```
1 clc;
2 \text{ VCC}=20;
3 R1 = 10 * 10 * * 3;
4 R2=1.8*10**3;
5 \text{ RC} = 620;
6 RE=200;
7 RL=1.2*10**3;
8 \text{ hfe=180};
9 VB = VCC * (R2/(R1+R2));
10 VBE = 0.7;
11 VE = VB - VBE;
12 IE=VE/RE;
13 IC=IE;
14 VCE = VCC - IE * (RC + RE);
15 ICQ=IC;
16 VCEQ=VCE;
17 rL=(RC*RL)/(RC+RL);
18 PP=2*ICQ*rL;
19 disp('V', PP, "PP=");
20 PP=2*VCEQ;
21 \text{ disp}('V', PP, "PP=");
```

Scilab code Exa 25.3 voltage gain and power gain

```
1 clc;
2 re=8;
3 RC=220;
```

```
4 RE=47;
5 R1=4.7*10**3;
6 R2=470;
7 B=50;
8 rL=RC;
9 AV=rL/re;
10 Ai=B;
11 Ap=AV*Ai;
12 disp(Ap);
```

Scilab code Exa 25.4 collector efficiency and power rating of transistor

```
1 clc;
2 Ptrdc=20;
3 Poac=5;
4 ne=(Poac/Ptrdc);
5 disp('%',ne*100,"ne=");
6 "power rating of transistor=20W";
```

Scilab code Exa 25.5 ac power

```
1
2 clc;
3 pcdc=10;
4 nc=0.32;
5 poac=pcdc*nc/(1-nc);
6 disp('W',poac,"poac=");
```

Scilab code Exa 25.6 power dissipated

```
1 clc;
2 nc=0.5;
3 VCC=24;
4 Poac=3.5;
5 Ptrdc=Poac/nc;
6 disp('W',Ptrdc,"Ptrdc=");
7 Pcdc=Ptrdc-Poac;
8 disp('W',Pcdc,"Pcdc=");
```

Scilab code Exa 25.7 power and efficiency

```
1 clc;
2 \text{ VCC=20};
3 \text{ VCEQ} = 10;
4 ICQ=600*10**-3;
5 RL=16;
6 IP=300*10**-3;
7 Pindc=VCC*ICQ;
8 disp('W',Pindc,"Pindc=");
9 PRLdc=ICQ**2*RL;
10 disp('W', PRLdc, "PRLdc=");
11 I=IP/sqrt(2);
12  Poac=I**2*RL;
13 disp('W', Poac, "Poac=");
14 Ptrdc=Pindc-PRLdc;
15 disp('W',Ptrdc,"Ptrdc=");
16 Pcdc=Ptrdc-Poac;
17 disp('W', Pcdc, "Pcdc=");
18 no=Poac/Pindc;
19 disp('%',no*100,"no=");
20 no=Poac/Ptrdc;
21 disp('%',no*100,"no=");
```

Scilab code Exa 25.8 resistance

```
1 clc;
2 a=15;
3 RL=8;
4 RL1=a**2*RL;
5 disp('Kohm', RL1*10**-3, "RL1=");
```

Scilab code Exa 25.9 turns ratio

```
1 clc;
2 RL=16;
3 RL1=10*10**3;
4 a=sqrt(RL1/RL);
5 disp(a);
```

Scilab code Exa 25.10 max power

```
1 clc;
2 RL=8;
3 a=10;
4 ICQ=500*10**-3;
5 RL=a**2*RL;
6 Poac=(1/2)*ICQ**2*RL;
7 disp('W',Poac,"Poac=");
```

Scilab code Exa 25.11 ac output power ICQ turns ratio

```
1 clc;
2 Ptrdc=100*10**-3;
```

```
3 VCC=10;
4 RL=16;
5 no=0.5;
6 Poac=no*Ptrdc;
7 disp('mW',Poac*10**3,"Poac=");
8 ICQ=2*Poac/VCC;
9 disp('A',ICQ,"ICQ=");
10 RL1=VCC/ICQ;
11 a=sqrt(RL1/RL);
12 disp(a);
```

Scilab code Exa 25.12 power

```
1 clc;
2 \text{ VCC} = 10;
3 IP = 50 * 10 * * -3;
4 RL=4;
5 I=IP/sqrt(2);
6 Poac=I^2*RL;
7 disp('mW', Poac*10**3, "Poac=");
8 ICQ=IP;
9 RL1=VCC/ICQ;
10 a=sqrt(RL1/RL);
11 disp(a);
12 V1 = VCC;
13 V2 = V1/a;
14 I2p=V2/RL;
15 I2=I2p/sqrt(2);
16 P=(I2^2)*RL;
17 disp('mW',P*10**3,"P=");
```

Scilab code Exa 25.13 power

```
1 clc;
2 RL=8;
3 VP=16;
4 P=(VP^2)/(2*RL);
5 disp('W',P,"P=");
```

Scilab code Exa 25.14 PinDC PoAC

```
1 clc;
2 no=0.6;
3 Pcdc=2.5;
4 //Poac=Pindc*no;
5 //Pindc=2*Pcdc+Poac;
6 Pindc=(2*Pcdc)/(1-no);
7 disp('W',Pindc,"Pindc=");
8 Poac=0.6*Pindc;
9 disp('W',Poac,"Poac=");
```

Chapter 26

TUNED AMPLIFIERS

Scilab code Exa 26.1 frequency

```
1 clc;
2 //e.g 26.1
3 L=150*10**-6;
4 C=100*10**-12;
5 fo=0.159/sqrt (L*C);
6 disp('MHZ',fo*10**-6,"fo");
```

Scilab code Exa 26.2 frequency and impedance

```
1 clc;
2 //e.g 26.2
3 L=100*10**-6;
4 C=100*10**-12;
5 R=5;
6 fo=0.159/sqrt (L*C);
7 disp('MHZ',fo*10**-6,"fo=");
8 Zp=L/(C*R);
9 disp('Kohm',Zp*10**-3,"Zp=");
```

Scilab code Exa 26.3 bandwidth

```
1 clc;
2 //e.g 26.3
3 fo=1*10**6;
4 Qo=100;
5 BW=fo/Qo;
6 disp('kHZ',BW*10**-3,"BW=");
```

Scilab code Exa 26.4 Q factor

```
1 clc;
2 //e.g 26.4
3 fo=1600*10**3;
4 BW=10*10**3;
5 Qo=fo/BW;
6 disp(Qo);
```

Scilab code Exa $26.5~\mathrm{Q}$ factor

```
1 clc;
2 //e.g 26.5
3 fo=2*10**6;
4 BW=50*10**3;
5 Qo=fo/BW;
6 disp(Qo);
```

Scilab code Exa 26.6 impedance

```
1 clc;
2 //e.g 26.6
3 fo=455*10**3;
4 BW=10*10**3;
5 XL=1255;
6 Qo=fo/BW;
7 R=XL/Qo;
8 L=XL/(2*%pi*fo);
9 C=1/(XL*2*%pi*fo);
10 Zp=L/(C*R);
11 disp('Kohm',Zp*10**-3,"Zp=");
```

Chapter 27

FEEDBACK AMPLIFIERS

Scilab code Exa 27.1 voltage gain

```
1 clc;
2 //e.g 27.1
3 AV=400;
4 beta=0.1;
5 AV1=AV/(1+beta*AV);
6 disp(AV1);
```

Scilab code Exa 27.2 fraction of output

```
1 clc;
2 //e.g 27.2
3 AV=1000;
4 AV1=10;
5 beta=((AV/AV1)-1)/AV;
6 disp(beta);
```

Scilab code Exa 27.3 feedback

```
1 clc;
2 //e.g 27.3
3 AV=100;
4 AV1=20;
5 beta=((AV/AV1)-1)/AV;
6 disp(beta);
```

Scilab code Exa 27.4 voltage gain and beta

```
1 clc;
2 //e.g 27.4
3 Vo=12.5;
4 Vin1=1.5;
5 Vin=0.25;
6 AV=Vo/Vin;
7 disp(AV);
8 AV1=Vo/Vin1;
9 beta=((AV/AV1)-1)/AV;
10 disp(beta);
```

Scilab code Exa 27.5 beta

```
1 clc;
2 //e.g 27.5
3 AV=60;
4 AV1=80;
5 //80=AV/(1-BETA*AV)
6 beta=((AV1/AV)-1)/AV1;
7 disp(beta,"beta=");
8 beta=1/AV;
9 disp(beta,"beta=");
```

Scilab code Exa 27.6 beta

```
1 clc;
2 //e.g 27.6
3 AV1=100;
4 Vin=50*10**-3;
5 Vin1=0.6;
6 Vo=AV1*Vin1;
7 Av=Vo/Vin;
8 disp(Av);
9 beta=((Av/AV1)-1)/Av;
10 disp('*10^-3', beta*10**3," beta=");
```

Scilab code Exa 27.7 change in closed loop gain

```
1
2 clc;
3 Av=800;
4 B=0.05;
5 dAvbyAv=20;
6 a=dAvbyAv*(1/(1+B*Av));
7 disp('%',a*1,"a=");
```

Scilab code Exa 27.8 values of AV and beta

```
1 clc;
2 AV1=100;
3 A=0.01;
4 B=0.2;
```

```
5  C=B/A;
6  AV=AV1*C;
7  beta=C/AV;
8  disp(beta, "beta=");
```

Scilab code Exa 27.9 gain and beta

```
1 clc;
2 //e.g 27.9
3 AV=100;
4 BW=200*10**3;
5 beta=0.05;
6 BW1=(1+beta*AV)*BW;
7 disp('KHZ',BW1*10^-3,"BW1=");
8 AV1=AV/(1+beta*AV);
9 disp(AV1);
10 //1*10**6=(1+beta1*AV)*BW;
11 beta1=(((1*10**6)/(200*10**3))-1)/100;
12 disp(beta1);
```

Scilab code Exa 27.10 bw

```
1 clc;
2 //e.g 27.10
3 AV=1500;
4 BW=4*10**6;
5 AV1=150;
6 beta=((1500/150)-1)/1500;
7 disp(beta);
8 BW1=(1+beta*AV)*BW;
9 disp('MHZ',BW1*10**-6,"BW1=");
```

Scilab code Exa 27.11 frequency

```
1 clc;
2 //e.g 27.11
3 Rin=4.2*10**3;
4 AV=220;
5 beta=0.01;
6 Ri=(1+beta*AV)*Rin;
7 disp('Kohm', Ri*10**-3,"Ri=");
8 F1=1.5*10**3;
9 FC1=F1/(1+beta*AV);
10 disp('HZ', FC1, "FC1=");
11 F2=501.5*10**3;
12 FC2=(1+beta*AV)*F2;
13 disp('KHZ', FC2*10**-3, "FC2=");
```

Scilab code Exa 27.12 gain and distortion gain

```
1 clc;
2 //e.g 27.12
3 AV=1000;
4 f1=50;
5 f2=200*10**3;
6 D=0.05;
7 beta=0.01;
8 AV1=AV/(1+beta*AV);
9 disp(AV1);
10 f11=f1/(1+beta*AV);
11 disp('HZ',f11,"fl1=");
12 fu2=(1+beta*AV)*f2;
13 disp('MHZ',fu2*10**-6,"fu2=");
14 D1=D/(1+beta*AV);
```

```
15 disp('%',D1*100,"D1=");
```

Scilab code Exa 27.13 beta and gain

```
1 clc;
2 //e.g 27.13
3 AV=100;
4 RDN=0.8;
5 //0.8=1-(1/(1+beta*AV));
6 beta=((1/0.2)-1)/100;
7 disp(beta);
8 AV1=AV/(1+beta*AV);
9 disp(AV1);
```

Scilab code Exa 27.14 voltage gain and resistance

```
1 clc;
2 //e.g 27.14
3 AV=300;
4 Ri=1.5*10**3;
5 R0=50*10**3;
6 b=1/15;
7 AV1=AV/(1+b*AV);
8 disp(AV1);
9 Ri1=(1+b*AV)*Ri;//input resistance
10 disp('Kohm',Ri1*10**-3,"Ri1=");
11 Ri1=R0/(1+b*AV);//output resistance
12 disp('kohm',Ri1*10**-3,"Ri1=");
```

Scilab code Exa 27.15 voltage gain and resistance

```
1 clc;
2 / e.g. 27.15
3 \text{ hfe} = 100;
4 hie=2*10**3;
5 Rc = 470;
6 Re1=100;
7 \text{ Re}2 = 100;
8 R1 = 15000;
9 R2 = 5600;
10 AV=(hfe*Rc)/hie;
11 disp(AV);
12 a=((R1*R2)/(R1+R2));
13 Ri=(a*hie)/(a+hie);
14 disp('ohm',Ri*1,"Ri=");
15 b=Re1/Rc;
16 AV1=AV/(1+b*AV);
17 disp(AV1);
18 Ri1=Ri*(1+b*AV);
19 disp('OHM', Ri1*1," Ri1=");
```

Scilab code Exa 27.16 gain and resistance

```
1 clc;
2 //e.g 27.16
3 hfe=99;
4 hie=2*10**3;
5 hie1=2000;
6 hie2=2000;
7 Rc=22*10**3;
8 R4=100;
9 R1=220*10**3;
10 R2=22*10**3;
11 RC1=4.7*10**3;
12 R3=7.8*10**3;
13 Ri=hie;
```

```
14 a=(R1*R2)/(R1+R2);
15 b=(a*Rc)/(a+Rc);
16 R01=(b*hie1)/(b+hie1)
17 disp('Kohm',R01*10**-3,"R01=");
18 Ri2=hie;
19 C = (R3 + R4);
20 R02 = (RC1 * C) / (RC1 + C)
21 disp('Kohm', R02*10**-3, "R02=");
22 \text{ AV1=hfe*R01/hie};
23 AV2=hfe*R02/hie;
24 AV = AV1 * AV2;
25 \text{ bta}=R4/(R3+R4);
26 Ri1=Ri*(1+bta*AV);
27 disp('Kohm',Ri1*10**-3,"Ri1=");
28 RO2 = RO2 / (1 + bta * AV);
29 disp('ohm', RO2*1, "RO2=");
30 AV1=AV/(1+bta*AV);
31 disp(AV1);
```

Chapter 28

SINUSOIDAL OSCILLATORS

Scilab code Exa 28.1 inductance

```
1 clc;
2 //e.g 28.1
3 fo=22*10**3;;
4 C=2*10**-9;
5 L=((0.159/fo)^2)/C;
6 disp('H',L*1,"L=");
```

Scilab code Exa 28.2 frequency

```
1 clc;
2 //e.g 28.2
3 fo=2.2*10**6;
4 //fo1=(sqrt(2))/sqrt(C);
5 fo1=sqrt(2)*fo;
6 disp('MHZ',fo1*10**-6,"fo1=");
```

Scilab code Exa 28.3 frequency

```
1 clc;
2 //e.g 28.3
3 C=100*10**-12;
4 L1=30*10**-6;
5 L2=1*10**-8;
6 fo=1/(2*%pi*sqrt((L1+L2)*C));
7 disp('MHZ',fo*10**-6,"fo=");
```

Scilab code Exa 28.4 frequency

```
1 clc;
2 //e.g 28.4
3 L1=1000*10**-6;
4 L2=100*10**-6;
5 M=20*10**-6;
6 C=20*10**-12;
7 fo=1/(2*%pi*sqrt((L1+L2+2*M)*C));
8 disp('MHZ',fo*10**-6,"fo=");
```

Scilab code Exa 28.5 frequency

```
1 clc;
2 //e.g 28.5
3 C=1*10**-9;
4 L1=4.7*10**-3;
5 L2=47*10**-6;
6 fo=1/(2*%pi*sqrt((L1+L2)*C));
7 disp('KHZ',fo*10**-3,"fo=");
```

Scilab code Exa 28.6 capacitance

```
1 clc;
2 //e.g 28.6
3 L1=2*10**-3;
4 L2=20*10**-6;
5 fo=950*10**3;
6 C=1/(4*%pi^2*(L1+L2)*fo^2);
7 disp('pF',C*10**12,"C=");
8 fo=2050*10**3;
9 C=1/(4*%pi^2*(L1+L2)*fo^2);
10 disp('pF',C*10**12,"C=");
```

Scilab code Exa 28.7 capacitance

```
1 clc;
2 //e.g 28.7
3 L1=0.1*10**-3;
4 L2=10*10**-6;
5 fo=4110*10**3;
6 M=20*10**-6;
7 C=1/(4*%pi^2*(L1+L2+M)*fo^2);
8 disp('pF',C*10**12,"C=");
9 AV=(L1/L2);
10 disp(AV);
```

Scilab code Exa 28.8 c1 and c2

```
1 clc;
2 //e.g 28.8
3 fo=100*10**3;
4 L=0.5*10**-3;
5 C=2/(4*%pi^2*L*fo^2);
```

```
6 disp('microF',C*10**6,"C=");
```

Scilab code Exa 28.9 gain and frequency

```
1 clc;
2 //e.g 28.9
3 C1=0.001*10**-6;
4 C2=0.01*10**-6;
5 L=5*10**-6;
6 AV=C2/C1;
7 disp(AV);
8 C=(C1*C2)/(C1+C2)
9 fo=1/(2*%pi*sqrt(L*C));
10 disp('MHZ', fo*10**-6, "fo=");
```

Scilab code Exa 28.10 frequency

```
1 clc;
2 //e.g 28.10
3 C1=0.1*10**-6;
4 C2=1*10**-6;
5 L=470*10**-6;
6 C=(C1*C2)/(C1+C2)
7 fo=1/(2*%pi*sqrt(L*C));
8 disp('kHZ',fo*10**-3,"fo=");
```

Scilab code Exa 28.11 inductance and frequency

```
1 clc;
2 //e.g 28.11
```

```
3 C1=100*10**-12;

4 C2=7500*10**-12;

5 f01=950*10**3;

6 f02=2050*10**3;

7 C=(C1*C2)/(C1+C2);

8 //f01=1/(2*%pi*sqrt(L*C))

9 L1=1/(4*(%pi)^2*C*f01^2);

10 disp('microH',L1*10**6,"L1=");

11 L2=1/(4*(%pi)^2*C*f02^2);

12 disp('microH',L2*10**6,"L2=");
```

Scilab code Exa 28.13 frequency

```
1 clc;
2 //e.g 28.13
3 C1=0.1*10**-6;
4 C2=1*10**-6;
5 C3=100*10**-12;
6 L=470*10**-6;
7 C=1/((1/C1)+(1/C2)+(1/C3));
8 fo=1/(2*%pi*sqrt(L*C));
9 disp('kHZ',fo*10**-3,"fo=");
```

Scilab code Exa 28.14 frequency

```
1 clc;
2 //e.g 28.14
3 L=0.33;
4 C1=0.065*10**-12;
5 C2=1*10**-12;
6 R=5.5*10**3;
7 fs=1/(2*%pi*sqrt(L*C1));
8 disp('MHZ',fs*10**-6,"fs=");
```

```
9 Q=(2*%pi*fs*L)/R;
10 disp(Q);
```

Scilab code Exa 28.15 frequency fs and fp

```
1 clc;//e.g 28.14
2 L=0.8;
3 C1=0.08*10**-12;
4 C2=1*10**-12;
5 R=5*10**3;
6 fs=1/(2*%pi*sqrt(L*C1));
7 disp('MHZ',fs*10**-6,"fs=");
8 C=(C1*C2)/(C1+C2);
9 fp=1/(2*%pi*sqrt(L*C));
10 disp('MHZ',fp*10**-6,"fp=");
```

Chapter 29

NON SINUSOIDAL OSCILLATORS

Scilab code Exa 29.1 FREQUENCY

```
1 clc;
2 //e.g 29.1
3 R=20*10**3;
4 C=100*10**-12;
5 f=1/(1.38*R*C);
6 disp('kHZ',f*10**-3,"f=");
```

Scilab code Exa 29.2 value of capacitors

```
1 clc;
2 //e.g 29.2
3 R1=2*10**3;
4 R2=20*10**3;
5 C1=0.01*10**-6;
6 C2=0.05*10**-6;
7 T=0.69*(R1*C1+R2*C2)
```

```
8 disp('ms',T*10**3,"T=");
9 f=1/T;
10 disp('kHZ',f*10**-3,"f=");
```

Scilab code Exa 29.3 value of capacitors

```
1
2 clc;
3 T1=1*10**-6;
4 f=100*10**3;
5 R1=10*10**3;
6 R2=10*10**3;
7 T=1/f;
8 C1=T1/(0.69*R1);
9 disp('pF',C1*10**12,"C1=");
10 T2=T-T1;
11 C2=T2/(0.69*R1);
12 disp('pF',C2*10**12,"C2=");
```

Scilab code Exa 29.4 value of circuit components

```
1
2 clc;
3 T2A=310*10**-6;
4 T2B=250*10**-6;
5 VCC=15;
6 IC=5*10**-3;
7 hFC=20;
8 RC=VCC/IC;
9 RC1=RC;
10 RC2=RC;
11 disp('ohm', RC*1, "RC1=RC2=RC=");
12 hFE=hFC;
```

```
13    IBsat=IC/hFE;
14 IB=2*IBsat;
15 R=VCC/IB;
16 R1 = R;
17 R2=R;
18 C1=T2A/(0.69*R1);
19 disp('pF',C1*10**12,"C1=");
20 C2 = T2B/(0.69*R2);
21 disp('pF',C2*10**12,"C2=");
22 \quad tao1=R1*C1;
23 disp('microsec', tao1*10**6, "tao1=");
24 \text{ tao2} = R2 * C2;
25 disp('microsec',tao2*10**6,"tao2=");
26 tao11=RC1*C1/2;
27 disp('microsec',tao11*10**6,"tao11=");
28 \text{ tao12=RC2*C2/2};
29 disp('microsec',tao12*10**6,"tao12=");
```

Scilab code Exa 29.5 duty cycle

```
1
2 clc;
3 f=20*10**3;
4 T=1/f;
5 disp('microsec',T*10**6,"T=");
6 t=(0:0.1:5*%pi)';
7 plot2d1('onn',t,[squarewave(t,75)]);
```

Scilab code Exa 29.6 R3 and C1

```
1
2 clc;
3 close;
```

```
4 f=100*10^(-3);
5 T=(1/f);
6 disp('us',T*1,'T=');
7 tp=(1/T);
8 disp('us',tp*1,'tp=');
9 C1=0.001*10^(-6);
10 R3=((5*10^(-6))/(0.69*C1));
11 disp('kohm',R3*10^(-3),'R3=');
```

Scilab code Exa 29.7 width

```
1
2 clc;
3 RC=2*10**3;
4 R3=20*10**3;
5 rbb=200;
6 C1=1000*10**-12;
7 T=0.69*C1*R3;
8 disp('microsec',T*10**6,"T=");
```

Scilab code Exa 29.8 value of pulse width

```
1 clc;
2 //e.g 29.8
3 R1=2.2*10**3;
4 C1=0.01*10**-6;
5 tp=1.1*R1*C1;
6 disp('microS',tp*10**6,"tp=");
```

Scilab code Exa 29.9 CIRCUIT

Figure 29.1: CIRCUIT

```
1
2 clc;
3 tp=10*10**-6;
4 c=1000*10**-12;
5 R1=tp/(1.1*c);
6 disp('Kohm',R1*10**-3,"R1=");
7 t=(0:0.1:5*%pi)';
8 plot2d1('onn',t,[squarewave(t,60)]);
```

Scilab code Exa 29.10 duty cycle

```
1 clc;
2 //e.g 29.10
3 R1=6.8*10**3;
4 R2=4.7*10**3;
5 C1=1000*10**-12;
```


Figure 29.2: frequency and graph

```
6 t2=0.7*R2*C1;
7 disp('microS',t2*10**6,"t2=");
8 t1=0.7*(R1+R2)*C1;
9 disp('microS',t1*10**6,"t1=");
10 dc=(t1/(t1+t2))*100;
11 disp('%',dc*1,"dc=");
```

Scilab code Exa 29.11 frequency and graph

```
1
2 clc;
3 R1=27*10**3;
4 R2=56*10**3;
5 C1=0.01*10**-6;
6 t2=0.7*R2*C1;
7 t1=0.7*(R1+R2)*C1;
```

```
8 T=t1+t2;
9 f=1/T;
10 disp('kHZ',f*10**-3,"f=");
11 t=(0:0.1:6*%pi)';
12 plot2d1('onn',t,[squarewave(t,60)]);
```

Scilab code Exa 29.12 design

```
1
2 clc;
3 f=50*10**3;
4 dutyc=0.60;
5 C=0.0022*10**-6;
6 T=1/f;
7 t1=dutyc*T;
8 t2=T-t1;
9 R2=(t2)/(0.7*C);
10 disp('Kohm',R2*10**-3,"R2=");
11 R1=(t1)/(0.7*C)-R2;
12 disp('Kohm',R1*10**-3,"R1=");
```

Chapter 30

LINEAR WAVE SHAPING CIRCUIT

Scilab code Exa 30.2 VOLTAGE

```
1
2 clc;
3 C=1*10**-6;
4 Vi=6;
5 R=10*10**3;
6 Vo=-3;
7 t=8*10**-3;
8 tao=R*C;
9 disp('msec',tao*10**3,"tao=");
10 vf=6*(1-exp(-8/10));
11 disp('V',vf*1,"vf=");
12 output=vf-3.0;
13 disp('V',output*1,"output=");
```

Scilab code Exa 30.3 VOLTAGE

```
1
2 clc;
3 t=0.1;
4 tao=0.2;
5 vc=0.5*exp(-t/tao);
6 disp('V',vc*1,"vc=");
```

Scilab code Exa 30.4 peak value of input voltage

```
1
2 clc;
3 tao=250*10**-12;
4 v=50;
5 a=v/tao;
6 t=0.05*10**-6;
7 vp=a*t;
8 disp('kV',vp*10**-3,"vp=");
```

Chapter 31

TIME BASE CIRCUIT

Scilab code Exa 31.1 frequency

```
1 clc;
2 //e.g 31.1
3 R=100*10**3;
4 C=0.4*10**-6;
5 n=0.57;
6 f=1/(2.3*R*C*log10(1/(1-n)));
7 disp('HZ',f*1,"f=");
```

Scilab code Exa 31.2 period and frequency of oscillation and R

```
1 clc;
2 //e.g 31.2
3 n=0.62;
4 R=5*10**3;
5 C=0.05*10**-6;
6 T=2.3*R*C*log10(1/(1-n))
7 disp('msec',T*10**3,"T=");
8 f=1/T;
```

```
9 disp('HZ',f*1,"f=");
10 f1=50;
11 T1=1/f1;
12 R=T1/(2.3*C*log10(1/(1-n)));
13 disp('kohm',R*10**-3,"R=");
14 C=0.5*10**-6;
15 R=T1/(2.3*C*log10(1/(1-n)));
16 disp('kohm',R*10**-3,"R=");
```

Chapter 32

OPERATIONAL AMPLIFIERS

Scilab code Exa 32.1 CMRR

```
1 clc;
2 Adm=200000;
3 Acm=6.33;
4 CMRR=20*log10(Adm/Acm);
5 disp('dB',CMRR*1,"CMRR=");
```

Scilab code Exa 32.2 common mode gain

```
1 clc;
2 Adm=30000;
3 //CMRR=20*log10(Adm/Acm);
4 a=90/20;
5 Acm=(Adm/10^a);
6 disp(Acm);
```

Scilab code Exa 32.3 maximum frequency

```
1 clc;
2 //e.g 32.3
3 SR=0.5*10**6;
4 Vpk=0.1;
5 fmax=SR/(2*%pi*Vpk);
6 disp('kHZ',fmax*10**-3,"fmax=");
```

Scilab code Exa 32.4 suitable opamps

```
1 clc;
2 Vpk=10;
3 slewrate=0.5*10**6;
4 fmax=slewrate/(2*%pi*Vpk);
5 disp('HZ',fmax*1,"fmax=");//value of microamp 741
6 slewrate=13*10**6;
7 fmax=slewrate/(2*%pi*Vpk);
8 disp('kHZ',fmax*10**-3,"fmax=");//TLO 81
9 //value of microamp 741 is much lower than that of the input signal.And value of TLO81 is much higher than input signal, therefore TLO81 can be used
```

Scilab code Exa 32.5 value of vin

```
1 clc;
2 //e.g 32.5
3 ACL=200;
4 Vout=8;
5 Vin=Vout/ACL;
6 disp('mV', Vin*10**3," Vin=");
```

Scilab code Exa 32.7 voltage

```
1 clc;
2 //e.g 32.7
3 R1=1*10**3;
4 R2=10*10**3;
5 ACL=R2/R1
6 disp("Voltage at node A increases from 1V to 4v");
```

Scilab code Exa 32.8 output voltage

```
1 clc;
2 R1=1*10**3;
3 R2=2*10**3;
4 Vi=1;
5 Acl=R2/R1;
6 V0=Acl*Vi;
7 disp('V', V0*1,"V0=");
```

Scilab code Exa 32.9 gain input impedance cmrr and fmax

```
1 clc;
2 Acm=0.001;
3 Aol=180000;
4 Zin=1*10**6;
5 Zout=80;
6 SR=0.5;
7 R2=100*10**3;
8 R1=10*10**3;
```

```
9 Acl=R2/R1;
10 disp(Acl);
11 Zin=R1;
12 disp('kOhm',Zin*10**-3,"Zin=");
13 disp('Ohm',Zout*1,"Zout=");
14 CMRR=Acl/Acm;
15 disp(CMRR);
16 Vpk=5;
17 fmax=SR/(2*%pi*Vpk);
18 disp('kHZ',fmax*10**3,"fmax=");
```

Scilab code Exa 32.10 Acl CMRR and maximum operating frequency

```
1 clc;
2 R2=100*10**3;
3 R1=10*10**3;
4 Acl=1+(R2/R1);
5 Acm=0.001;
6 disp(Acl);
7 CMRR=Acl/Acm;
8 disp(CMRR);
9 SR=0.5;
10 Vpk=5.5;
11 fmax=SR/(2*%pi*Vpk);
12 disp('kHZ', fmax*10**3, "fmax=");
```

Scilab code Exa 32.11 Acl CMRR and maximum operating frequency

```
1 clc;
2 Acm=0.001;
3 AOL=180000;
4 Zin=1*10**6;
5 Zout=80;
```

```
6 SR=0.5;
7 Acl=1;
8 CMRR=Acl/Acm;
9 disp(CMRR);
10 Vpk=3;
11 fmax=SR/(2*%pi*Vpk)
12 disp('kHZ',fmax*10**3,"fmax=");
```

Scilab code Exa 32.12 output voltage

```
1 clc;
2 //e.g 32.12
3 V1= 0.1;
4 V2=1;
5 V3=0.5;
6 R1=10*10**3;
7 R2=10*10**3;
8 R3=10*10**3;
9 R4=22*10**3;
10 Vout=((-R4*V1)/R1)+((-R4*V2)/R2)+((-R4*V3)/R3);
11 disp('V', Vout*-1, "Vout=");
```

Scilab code Exa 32.14 output voltage

```
1 clc;
2 V1=-2;
3 V2=2;
4 V3=-1;
5 R1=200*10**3;
6 R2=250*10**3;
7 R3=500*10**3;
8 Rf=1*10**6;
9 Vout=(-Rf/R1)*V1+(-Rf/R2)*V2+(-Rf/R3)*V3;
```

 $10 \ \ \mbox{\tt disp}$ ('V' , $\mbox{\tt Vout*1}$, " Vout= ");

Chapter 33

OP AMP APPLICATION

Scilab code Exa 33.1 value of capacitance

```
1 clc;
2 R1=1*10**3;
3 R2=100*10**3;
4 Rf=R2;
5 f1=159;
6 C=1/(2*%pi*R2*f1);
7 disp('microF',C*1,"C=");
```

Scilab code Exa 33.2 frequency

```
1 clc;
2 R1=1*10**3;
3 Rf=51*10**3;
4 Cf=0.1*10**-6;
5 f=1/(2*%pi*Rf*Cf);
6 disp('HZ',f*1,"f=");//ans given in book is wrong
7 fmin=10*f;
8 disp('HZ',fmin*1,"fmin=");
```

Scilab code Exa 33.3 cutoff frequency and max operating frequency

```
1 clc;
2 R1=10*10**3;
3 Cf=0.01*10**-6;
4 f=1/(2*%pi*R1*Cf);
5 disp('HZ',f*1,"f=");//ans given in book is wrong
6 fmin=f/10;
7 disp('HZ',fmin*1,"fmin=");
```

Scilab code Exa 33.4 frequency

```
1 clc;
2 R=51*10**3;
3 C=0.001*10**-6;
4 f0=1/(2*%pi*R*C);
5 disp('HZ',f0*1,"f0=");
```

Chapter 34

REUGULATED POWER SUPPLIES

Scilab code Exa 34.1 value of line regulation

```
1 clc;
2 //e.g 34.1
3 VL=100*10**-6;
4 VS=5;
5 LR=VL/VS;
6 disp('microV/V',LR*10**6,"LR=");
```

Scilab code Exa 34.2 Change in output voltage

```
1 clc;
2 //e.g 34.2
3 LR=1.4*10**-6;
4 VS=10;
5 //LR=VL/VS;
6 VL=LR*VS
7 disp('microV', VL*10**6, "VL=");
```

Scilab code Exa 34.3 value of load regulation

```
1 clc;
2 //e.g 34.3
3 IL=40*10**-3;
4 VNL=8;
5 VFL=7.995;
6 LR=(VNL-VFL)/IL;
7 disp('microV/mA', LR*10**3,"LR=");
```

Scilab code Exa 34.4 voltage under full load

```
1 clc;
2 //e.g 34.4
3 VNL=5;
4 IL=20*10**-3;
5 LR=10*10**-6;
6 //LR=(VNL-VFL)/IL;
7 VFL=VNL-IL*LR;
8 disp('V', VFL*1,"VFL=");
```

Scilab code Exa 34.5 magnitude of variation in output voltage

```
1 clc;
2 //e.g 34.5
3 V0=10;
4 R=0.00002
5 VAR=V0*R;
6 disp('mV', VAR*10**3, "VAR=");
```

Scilab code Exa 34.6 load voltage voltage drop and current

```
1 clc;
2 //e.g 34.6
3 vs=30;
4 rs=240;
5 vz=12;
6 rl=500;
7 vl=vz;
8 disp('V',vl,"vl=");
9 Is=(vs-vz)/rs
10 Vd=Is*rs;
11 disp('V',Vd*1,"Vd=");
12 Iz=Is-(vl/rl)
13 disp('A',Iz*1,"Iz=");
```

Scilab code Exa 34.7 min and max value of input voltage

```
1 clc;
2 //e.g 34.7
3 Vz=5.1;
4 rz=10;
5 Izmin=1*10**-3;
6 Izmax=15*10**-3;
7 Rs=600;
8 Vomin=Vz+Izmin*rz;
9 disp('V', Vomin*1, "Vomin=");
10 Vsmin=Izmin*Rs+Vomin;
11 disp('V', Vsmin*1, "Vsmin=");
12 Vomax=Vz+Izmax*rz;
13 disp('V', Vomax*1, "Vomax=");
```

```
14  Vsmax=Izmax*Rs+Vomax;
15  disp('V', Vsmax*1,"Vsmax=");
```

Scilab code Exa 34.8 min and max value of load current

```
1 clc;
2 //e.g 34.8
3 Vs=24;
4 Rs=500;
5 Vz=12;
6 Izmin=3*10**-3;
7 Izmax=90*10**-3;
8 rz=0;
9 Is=(Vs-Vz)/Rs;
10 disp('mA', Is*10**3, "Is=");
11 ILmax=Is-Izmin;
12 disp('mA', ILmax*10**3, "ILmax=");
13 RLmin=Vz/ILmax;
14 disp('ohm', RLmin*1, "RLmin=");
```

Scilab code Exa 34.9 min and max value of zener current

```
1 clc;
2 //e.g 34.9
3 Vsmin=22;
4 Rs=1*10**3;
5 Vz=10;
6 RL=2*10**3;
7 Vsmax=40;
8 IL=Vz/RL;
9 disp('mA',IL*10**3,"IL=");
10 Izmax=((Vsmax-Vz)/Rs)-IL;
11 disp('mA',Izmax*10**3,"Izmax=");
```

Scilab code Exa 34.10 max value of Rs and power

```
1 clc;
2 Vz=10;
3 Vsmin=13;
4 Vsmax=16;
5 ILmin=10*10**-3;
6 ILmax=85*10**-3;
7 Izmin=15*10**-3;
8 Rsmax=(Vsmin-Vz)/(Izmin+ILmax);
9 disp('ohm', Rsmax*1, "Rsmax=");
10 Izmax=((Vsmax-Vz)/Rsmax)-ILmin;
11 Pzmax=Izmax*Vz;
12 disp('W', Pzmax*1, "Pzmax=");
```

Scilab code Exa 34.11 regulated resistance

```
1 clc;
2 Vsmin=19.5;
3 Vsmax=22.5;
4 RL=6*10**3;
5 Vz=18;
6 Izmin=2*10**-6;
7 Pzmax=60*10**-3;
8 rz=20;
9 Izmax=sqrt(Pzmax/rz);
10 IL=Vz/RL;
11 ILmax=IL;
12 ILmin=IL;
13 Rsmax=(Vsmin-Vz)/(Izmin+ILmax);
```

```
14 disp('ohm', Rsmax*1, "Rsmax=");
15 Rsmin=(Vsmax-Vz)/(Izmax+ILmin);
16 disp('ohm', Rsmin*1, "Rsmin=");
```

Scilab code Exa 34.12 min and max value of zener current

```
1 clc;
2 Vsmin=8;
3 Vsmax=12;
4 Rs=2.2*10**3;
5 Vz=5;
6 RL=10*10**3;
7 Ismin=(Vsmin-Vz)/Rs;
8 Ismax=(Vsmax-Vz)/Rs;
9 IL=Vz/RL;
10 Izmin=Ismin-IL;
11 disp('mA', Izmin*10**3, "Izmin=");
12 Izmax=Ismax-IL;
13 disp('mA', Izmax*10**3, "Izmax=");
```

Scilab code Exa 34.13 zener regulator

```
1 clc;
2 VL=5;
3 Vz=5;
4 IL=20*10**-3;
5 Pzmax=500*10**-3;
6 Vsmax=15;
7 Vsmin=9;
8 Izmax=Pzmax/Vz;
9 Ismax=IL+Izmax;
10 Vz=VL;
11 Rsmin=(Vsmax-Vz)/(Izmax+IL);
```

```
12 disp('ohm', Rsmin*1, "Rsmin=");
13 ILmax=IL;
14 Iz=((Vsmin-Vz)/Rsmin)-ILmax;
15 disp('mA', Iz*10**3, "Iz=");
```

Scilab code Exa 34.14 regulated voltage and circuit current

```
1 clc;
2 Vz=10;
3 Vbe=0.7;
4 RL=100;
5 Vs=15;
6 B=100;
7 Rs=33;
8 VL=Vz+Vbe;
9 IL=VL/RL;
10 Is=(Vs-VL)/Rs;
11 Ic=Is-IL;
12 Ib=Ic/B;
13 disp('microA', Ib*10**6, "Ib=");
```

Scilab code Exa 34.15 voltage current

```
1 clc;
2 Vs=15;
3 Vz=8.3;
4 B=100;
5 R=1.8*10**3;
6 RL=2*10**3;
7 Vbe=0.7;
8 VL=Vz-Vbe;
9 Vce=Vs-VL;
10 IR=(Vs-Vz)/R;
```

Scilab code Exa 34.16 max value of Resistance and power

```
1 clc;
2 ILmin=0;
3 ILmax=2;
4 VL=12;
5 \text{ Vsmin}=15;
6 Vsmax=20;
7 B = 100;
8 VBE=0.5;
9 \ Vz=12.5;
10 Izmin=1*10**-3;
11 IBmax=ILmax/B;
12 IR=IBmax+Izmin
13 Rmax=(Vsmin-Vz)/IR;
14 disp('ohm', Rmax*1, "Rmax=");
15  Izmax = (Vsmax - Vz) / Rmax;
16 disp('mA', Izmax*10**3, "Izmax=");
17 Pzmax=Vz*Izmax;
18 disp('W', Pzmax*1, "Pzmax=");
19 PRmax = (Vsmax - Vz) * Izmax;
20 disp('W', PRmax*1, "PRmax=");
21 VCEmax=Vsmax-VL;
22 disp('V', VCEmax*1, "VCEmax=");
23 PDmax=VCEmax*ILmax;
24 disp('W', PDmax*1, "PDmax=");
```

Scilab code Exa 34.17 circuit and value of current

```
1 clc;
2 VL = 12;
3 IL = 200 * 10 * * - 3;
4 Vs = 30;
5 Rs=10;
6 B1 = 150;
7 Ic1=10*10**-3;
8 VBE1=0.7;
9 B2=100;
10 VBE2=0.7;
11 Vz=6;
12 Rz=10;
13 Iz=20*10**-3;
14 \quad ID = 10 * 10 * * -3;
15 I1=10*10**-3;
16 RD=(VL-Vz)/ID;
17 disp('ohm', RD*1, "RD=");
18 //a = R1/R2;
19 a=(VL/(Vz+VBE2))-1;
20 \text{ Ic2=Ic1};
21 IB2=Ic2/B2;
22 V2 = Vz + VBE2;
23 \ Vz = 12;
24 R1 = (Vz - V2) / I1;
25 disp('ohm',R1*1,"R1=");
26 R2=R1/a;
27 disp('ohm', R2*1,"R2=");
28 hfe1=B1;
29 IB1 = (IL + I1 + ID) / hfe1;
30 I = IB1 + Ic2;
31 R3=(Vs-(VBE1+VL))/I;
32 disp('Kohm',R3*10**-3,"R3=");
```

Scilab code Exa 34.18 vout IL IE PI

```
1 clc;
2 Vs=25;
3 Vz=15;
4 RL=1*10**3;
5 VBE2=0.7;
6 Vout=(Vz/2)+VBE2;
7 disp('V', Vout*1, "Vout=");
8 IL=Vout/RL;
9 IE1=IL;
10 disp('mA', IE1*10**3, "IE1=");
11 Vce1=Vs-Vout;
12 P1=Vce1*IE1;
13 disp('mW', P1*10**3, "P1=");
```

Scilab code Exa 34.19 min and max value of voltage

```
1 clc;
2 IADJ=100*10**-6;
3 Vin=35;
4 VREF=1.25;
5 R2=0;
6 R1=220;
7 Voutmin=VREF*(1+(R2/R1))+IADJ*R2;
8 disp('V', Voutmin*1, "Voutmin=");
9 R2=5000;
10 Voutmax=VREF*(1+(R2/R1))+IADJ*R2;
11 disp('V', Voutmax*1, "Voutmax=");
```

${\bf Scilab~code~Exa~34.20~regulated~voltage}$

```
1 clc;
2 R1=220;
3 R2=1500;
4 Vo=1.25*(1+(R2/R1));
5 disp('V', Vo*1, "Vo="); // answer given in book is wrong
```

Scilab code Exa 34.21 regulated dc output voltage

```
1 clc;
2 R1=240;
3 R2=2.4*10**3;
4 Vo=1.25*(1+(R2/R1));
5 disp('V', Vo*1,"Vo=");
```