### Attacken auf RSA

### Mögliche Angriffspunkte

- Die gleiche Nachricht wird an mehrere Personen mit gleichem öffentlichen Exponenten geschickt.
- 2 Zwei Personen verwenden den gleichen Modulus.

# Attacke I: Low Exponent Attacke

### Voraussetzungen:

- öffentlicher Exponent e ist relativ klein
- Alice verschickt die gleiche Nachricht an mehrere Personen

### Erklärung am Beispiel:

- *e* = 3
- Module der Empfänger:  $m_1 = 15$ ,  $m_2 = 77$ ,  $m_3 = 221$
- **geheime** Nachricht t = 10

## Attacke I: Low Exponent Attacke

Werte: 
$$e = 3$$
,  $m_1 = 15$ ,  $m_2 = 77$ ,  $m_3 = 221$ ,  $t = 10$ 

### geheime Berechnungen

$$10^3 = 10 \pmod{15}$$

$$10^3 = 76 \pmod{77}$$

$$10^3 = 116 \pmod{221}$$



#### Vorgehen

Bestimme mithilfe des chinesischen Restsatzes die Zahl x mit

$$x = 10 \pmod{15}$$

$$x = 76 \pmod{77}$$

$$x = 116 \pmod{221}$$

②  $t := x^{1/3}$  (in den obigen Gleichungen steht x für  $t^3$ )

**Bem:** Die Berechnung im ersten Schritt erfolgt modulo 15 : 77 : 221

## Attacke I: Low Exponent Attacke

Bestimme mithilfe des chinesischen Restsatzes die Zahl x mit

```
x = 10 \pmod{15}

x = 76 \pmod{77}

x = 116 \pmod{221}
```

②  $t := x^{1/3}$  (in den obigen Gleichungen steht x für  $t^3$ )

#### Berechnungsschritte

- 1
- $M_1 = 77 \cdot 221 = 17017$
- $M_2 = 15 \cdot 221 = 3315$
- $M_3 = 15 \cdot 77 = 1155$
- bestimme  $u_1$  s.d.  $u_1 \cdot 17017 = 1 \pmod{15} \to \ldots \to u_1 = 13$
- bestimme  $u_2$  s.d.  $u_2 \cdot 3315 = 1 \pmod{77} \to \ldots \to u_2 = 58$
- bestimme  $u_3$  s.d.  $u_3 \cdot 1155 = 1 \pmod{221} \to \ldots \to u_3 = 84$

$$\Rightarrow x = 10 \cdot (13 \cdot 17017) + 76 \cdot (58 \cdot 3315) + 116 \cdot (84 \cdot 1155) = 28079050$$
  
= 1000 (mod 15 · 77 · 221)

$$t = x^{1/3} = 10$$

## Attacke II auf RSA – Vorüberlegungen

- 2|6 (bedeutet: 2 teilt 6)
- Für jede beliebige Zahl a gilt:  $a = 1 \pmod{6} \Rightarrow a = 1 \pmod{2}$

(Begründung: 
$$a = 1 \pmod{6} \Rightarrow a = 6 + \ldots + 6 + 1 \Rightarrow a = 1 \pmod{2}$$
)

• Allgemein: Falls r|s, dann gilt:  $a = 1 \pmod{s} \Rightarrow a = 1 \pmod{r}$ 

(Begründung: 
$$a = 1 \pmod{s} \Rightarrow a = \underbrace{s + \ldots + s}_{=0 \pmod{r}} + 1 \Rightarrow a = 1 \pmod{r}$$
)

### Attacke II auf RSA: Common Modulus Attacke

- Situation: Zwei Personen verwenden den gleichen Modulus
  - Schlüssel von Oscar (Angreifer):  $(e_1, m)$  (öffentlich),  $d_1$  (privat)
  - Schlüssel von Alice (Opfer):  $(e_2, m)$  (öffentlich),  $d_2$  (privat)

Oscars Ziel: Finde ein x. so dass . . .

$$\underline{x \cdot e_2} = 1 \pmod{v} \quad \text{mit } \varphi(m)|v \quad (\Rightarrow \quad x \cdot e_2 = 1 \pmod{\varphi(m)})$$

(Bsp: 
$$m = 91$$
,  $e_1 = 5$ ,  $d_1 = 29$ ,  $e_2 = 7$ )

- **1**  $\mathbf{v} := \mathbf{e}_1 \cdot \mathbf{d}_1 1$  (Bsp:  $\mathbf{v} = 5 \cdot 29 1 = 144$ )
- 2 Fall 1:  $ggT(v, e_2) = 1$

```
berechne x s.d. x \cdot e_2 = 1 \pmod{v} (Bsp: x \cdot 7 = 1 \pmod{144})
(mit Euklid-Algo oder mod. Inversen) (Bsp: x = 103)
```

**3** Fall 2:  $ggT(v, e_2) > 1$  [ Problem: unterstrichene Gl. nicht lösbar]  $\tilde{\mathbf{v}} := \frac{\mathbf{v}}{\mathbf{a}}$ 

berechne 
$$x$$
 s.d.  $x \cdot e_2 = 1 \pmod{\tilde{v}}$ 

## Attacke II auf RSA: Common Modulus Attacke

## Begründung, dass auch im Fall 2 der richtige Wert gefunden wird

Fall 2:  $\underbrace{\operatorname{ggT}(v,e_2)}_g > 1$   $\tilde{v} := \frac{v}{g}$  berechne x s.d.  $x \cdot e_2 = 1 \pmod{\tilde{v}}$ 

#### Bem:

- Da  $(e_2, m)$  ein öffentlicher Schlüssel ist, müssen  $e_2$  und  $\varphi(m)$  teilerfremd sein (vgl. Serie 1, Aufgabe 5a).
- $\Rightarrow$  g enthält keinen Teiler von  $\varphi(m)$
- Beim Teilen durch g geht somit kein Teiler von  $\varphi(m)$  verloren
- $\Rightarrow \varphi(m)|\tilde{v}$  aus d. untersten Gleichung folgt automatisch  $x \cdot e_2 = 1 \pmod{\varphi(m)}$