Name:

Due at the beginning of class on 23 January 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: Read §2.1 and §2.2 in [Rie14] or §B.1 in [HHR16].

- (1) A class of morphisms W in a category C satisfies the *two-out-of-three property* if given any two composable morphisms f and g, if any two of f, g, and gf are in W, then so is the third.
 - (a) Prove that the class of weak equivalences W in a homotopical category $\mathfrak C$ obeys the two-out-of-three property.
 - (b) Is the two-out-of-three property equivalent to the two-out-of-six property?
- (2) Let \mathcal{C} be any category equipped with a collection of morphisms \mathcal{W} . We say that \mathcal{W} is *saturated* if every morphism f in \mathcal{C} which becomes an isomorphism in $\mathcal{C}[\mathcal{W}^{-1}]$ is in \mathcal{W} . We say that a homotopical category is *saturated* if the class of weak equivalences is saturated (i.e. if f becomes an isomorphism in ho(\mathcal{C}), then $f \in \mathcal{W}$).
 - (a) Prove that if W is saturated, then W has the two-out-of-six property.
 - (b) Give an example of a homotopical category that is *not* saturated.
 - (c) (Optional) Show that the class of weak equivalences in a model category is saturated.
- (3) An absolute left (or right) Kan extension is a Kan extension that is preserved by any functor whatsoever. Let $F: \mathcal{C} \hookrightarrow \mathcal{D}: G$ be an adjunction between homotopical categories \mathcal{C} and $\mathcal{D}.$ Let $LF: ho(\mathcal{C}) \to ho(\mathcal{D})$ be the total left derived functor for F and $RG: ho(\mathcal{D}) \to ho(\mathcal{C})$ be the total right derived functor for G. Assume that LF and RG are absolute right/left Kan extensions. Prove that LF is left adjoint to RG.
- (4) Let \mathcal{C} be a homotopical category and let $L \colon \mathcal{C} \to ho(\mathcal{C})$ be the localization functor.
 - (a) Let $c \in \mathcal{C}$. Prove that any natural transformation $\mathcal{C}(c, -) \Rightarrow F$ factors through $ho(\mathcal{C})(c, -)$, where $F \colon \mathcal{C} \to \mathbf{Set}$ is a homotopical functor.
 - (b) Let $c \in \mathcal{C}$ be an object such that $\mathcal{C}(c, -)$ is a homotopical functor. Prove that the natural transformation $\mathcal{C}(c, -) \to \text{ho}(\mathcal{C})(c, -)$ induced by L is a natural bijection.

REFERENCES

- [HHR16] M. A. Hill, M. J. Hopkins, and D. C. Ravenel. On the nonexistence of elements of Kervaire invariant one. *Ann. of Math.* (2), 184(1):1–262, 2016.
- [Mal07] Georges Maltsiniotis. Le théorème de Quillen, d'adjonction des foncteurs dérivés, revisité. *C. R. Math. Acad. Sci. Paris*, 344(9):549–552, 2007.
- [Qui67] Daniel G. Quillen. *Homotopical algebra*, volume No. 43 of *Lecture Notes in Mathematics*. Springer-Verlag, Berlin-New York, 1967.
- [Rie14] Emily Riehl. *Categorical homotopy theory*, volume 24 of *New Mathematical Monographs*. Cambridge University Press, Cambridge, 2014.