

BCS401

Fourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Analysis and Design of Algorithms

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define algorithm Explain asymptotic notations Bigh oh, Big omega and Big theta notations.	08	L2	CO1
	b.	Explain the general plan for analyzing the efficiency of a recursive algorithm. Suggest a recursive algorithm to find factorial of number. Derive its efficiency.	08	L3	CO1
	c.	If t_1 (n) $\in O(g_1(n))$ and $t_2(n) \in O(g_2(n))$ then show that t_1 (n) + $t_2(n) \in O(\max \{ g_1(n), g_2(n) \})$	04	L2	CO1
		OR OR			
Q.2	a.	With a neat diagram explain different steps in designing and analyzing algorithm.	08	L2	CO1
	b.	Write an algorithm to find the max element in an array of n elements. Give the mathematical analysis of this non-recursive algorithm.	08	L3	CO1
	c.	With the algorithm derive the worst case efficiency for selection sort.	04	L3	CO1
		Module – 2			
Q.3	a.	Explain the concept of divide and conquer. Design an algorithm for merge sort and derive its time complexity.	10	L3	CO2
	b.	Design an algorithm for insertion algorithm and obtain its time complexity. Apply insertion sort on these elements. 89, 45, 68, 90, 29, 34, 17	10	L3	CO2
		OR			
Q.4	a.	Design an algorithm for Quick sort. Apply quick sort on these elements. 5, 3, 1, 9, 8, 2, 4, 7.	10	L3	CO2
	b.	Explain Strassen's Matrix multiplication and derive its time complexity.	10	L2	CO2
	, ,	Module – 3			
Q.5	a.	Define AVL trees. Explain its four rotation types.	10	L2	CO3
	b.	Design an algorithm for Heap sort. Construct bottom – up heap for the list 15, 19, 10, 7, 17, 16.	10	L3	CO4
		OR			
Q.6		Design Horspool's Algorithm for string matching Apply Horspool algorithm to find pattern BARBER in the test: JIM_SAW_ME_IN_A_BARBERSHOP.	10	L3	CO4
	b.	Define heap. Explain the properties of heap along with its representation.	10	L2	CO3
			- 0		000

of 2

		Module – 4							
Q.7	a.	Construct minimum cost spanning tree using Kruskal's algorithm for the following graph.							
		Q 2 6 9 C							
		3/4/3							
		@ 6 @							
		4							
		8							
		Fig. 7(a)							
	b.	What are Huffman trees? Construct the Huffman tree for the following data Character A B C D -							
		Probability 0.4 0.1 0.2 0.15 0.15 i) Encode the text ABAC ABAD							
		ii) Decode the code100010111001010							
Q.8	a.	Apply Dijkstra's algorithm to fine single source shortest path for the given 10 L3 CO4							
		graph by considering A as the source vertex.							
		2 B 9							
		3 (A) 1							
		D 5 E							
		4 /3							
		7							
		Fig. 8 (a)							
	b.	Define transitive closure of a graph. Apply Warshall's algorithm to 10 L3 CO4 compute transitive closure of a directed graph.							
		compute transitive closure of a directed graph.							
		6							
		Contract of the contract of th							
		Fig.8 (b)							
		2 of 3							

				N	1odule – 5			10		COS
1	a.	Explain the following with examples.							L2	CO ₅
9	а.									
		i) P problem								
		ii) NP problem								
		ii) NP-Complete problem iv) NP – Hard problem								
							atomon of	10	L3	CO6
	b.	What is back	ktracking?	Apply backt	racking to sol	ve the below i	istance of	10	200	
		What is backtracking? Apply backtracking to solve the below instance of sum of subset problem.								
		$S = \{1, 2, 5,$	6, 8} and	d = 9.						
		(1, =, 1,	,							
)R	<u> </u>		- 0		606
Q.10		Illustrate N	Oueen's 1	problem usir	g backtrackir	ng to solve 4	– Queens	10	L2	CO6
	a.	nachlam								
		problem. Using Branch and Bound method solve the below instance of Knapsack					Knapsack	10	L3	CO6
	b.									
		Problem.	T. 33 37	Weight	Value					
			Item		40					
			si.	4						
		46	2	7	42					
		7	3	5	25					
		- 24	4	3	12					
		Capacity = 10								

3 of 3