Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Disclaimer

© 2018 Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Megacore, NIOS, Quartus Prime and Stratix words and logos are trademarks of Intel Corporation in the US and/or other countries. Other marks and brands may be claimed as the property of others. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

These pin connection guidelines, and your use thereof, are subject to and governed by Intel's terms and conditions below. By using these pin connection guidelines, you indicate your acceptance of all such terms and conditions. If you do not agree with such terms and conditions, you may not use the pin connection guidelines, and you are required to promptly and irrevocably destroy the pin connection guidelines and any copies or portions thereof in your possession or under your control.

Terms and Conditions:

- 1. These pin connection guidelines are provided as examples only, and should not be deemed to be technical specifications or recommendations. The use of the pin connection guidelines for any particular design should be verified for device operation with the applicable datasheet and Intel.
- 2. Subject to these terms and conditions, Intel grants to you the use of these pin connection guidelines as examples of possible pin connections of an Intel programmable logic device-based design. You may not use these pin connection guidelines for any other purpose except as expressly permitted in these terms and conditions. Intel does not recommend, suggest, or require that these pin connection guidelines be used in conjunction or combination with any other software or product, and makes no representations, warranties or guaranties, implied or express as well as any warranties arising from course of performance, course of dealing, or usage in trade including but not limited to the accuracy, completeness or genuineness thereof.
- 3. Intel will not be liable for any lost revenue, lost profits, or other consequential, indirect, or special damages caused by your use of these pin connection guidelines even if advised of the possibility of such damages occurring.
- 4. This agreement shall be governed in all respects by the laws of the State of Delaware, without regard to conflict of law or choice of law principles. You agree to submit to the exclusive jurisdiction of the federal and state courts in the State of Delaware for the resolution of any dispute or claim arising out of or relating to these terms of use.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Pin Connection Guidelines

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
Clock and PLL Pins			
CLK[0:11][p:n]	I/O, Clock	Dedicated positive and negative clock input pins that can also be used for data inputs or outputs. When used as differential inputs, these pins support OCT Rd. When used as single-ended inputs, these pins support OCT Rt. When used as single-ended outputs, these pins support OCT Rs. When you use the single-ended I/O standard, only the CLK[0:11]p pins serve as the dedicated input pins to the PLL. The programmable weak pull-up resistor is available for single-ended I/O usage.	When you do not use these pins, Intel recommends tying them to GND or leaving them unconnected. If these pins are unconnected, use the Quartus Prime software programmable options to internally bias these pins. These pins can be reserved as inputs tri-state with the weak pull-up resistor enabled, or as outputs driving GND. Some CLK input pins share dual-purpose functionality with FPLL_[BL,BR,TL,TR]_FB pins. For more information, refer to the specific device pinout file. Not all pins are available in each device density and package combination. For details, refer to the specific device pinout file.
FPLL_[BL,BR,TL,TR]_CLKOUT0, FPLL_[BL,BR,TL,TR]_CLKOUTp, FPLL_[BL,BR,TL,TR]_FB	I/O, Clock	Dual-purpose I/O pins that can be used as two single-ended clock output pins, one differential clock output pair, or one single-ended feedback input pin.	When you do not use these pins, Intel recommends tying them to GND or leaving them unconnected. If these pins are unconnected, use the Quartus Prime software programmable options to internally bias these pins. These pins can be reserved as inputs tri-state with the weak pull-up resistor enabled, or as outputs driving GND.
FPLL_[BL,BR,TL,TR]_CLKOUT1, FPLL_[BL,BR,TL,TR]_CLKOUTn	I/O, Clock	Dual-purpose I/O pins that can be used as two single-ended clock output pins or one differential clock output pair.	When you do not use these pins, Intel recommends tying them to GND or leaving them unconnected. If these pins are unconnected, use the Quartus Prime software programmable options to internally bias these pins. These pins can be reserved as inputs tri-state with the weak pull-up resistor enabled, or as outputs driving GND.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
Dedicated Configuration/JTAG Pi	ns		
MSEL[0:4]	Input	Use these pins to set the configuration scheme and POR delay. These pins have an internal 25-k Ω pull-down that are always active.	When you use these pins, tie these pins directly to VCCPGM or GND to get the combination for the configuration scheme as specified in the "Configuration, Design Security, and Remote System Upgrades in Cyclone V Devices" chapter in the Cyclone V Device Handbook. These pins are not used in the JTAG configuration scheme. Tie the MSEL pins to GND if your device is using the JTAG configuration scheme.
AS_DATA0/ ASDO/ DATA0	Bidirectional	In a passive serial (PS) or fast passive parallel (FPP) configuration scheme, DATA0 is a dedicated input data pin. In an active serial (AS) x1 and AS x4 configuration schemes, AS_DATA0 and ASDO are dedicated bidirectional data pins.	When you do not use this pin, Intel recommends leaving the pins unconnected.
AS_DATA[1:3]/ DATA[1:3]	Bidirectional	In an AS configuration scheme, AS_DATA[1:3] pins are used. In an FPP x8 or FPP x16 configuration scheme, the	When you do not use this pin, Intel recommends leaving the pins unconnected.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
		DATA[1:3] pins are used.	
nCSO/ DATA4	Bidirectional	In an AS configuration scheme, the nCSO pin is used. nCSO drives the control signal from the Cyclone V device to the EPCS or EPCQ device in the AS configuration scheme. In an FPP configuration scheme, the DATA4 pin is used.	When you are not programming the device in the AS configuration scheme, the nCSO pin is not used. When you do not use this pin as an output pin, Intel recommends leaving the pin unconnected.
nCE	Input	nCE is an active-low chip enable pin. When nCE is low, the device is enabled. When nCE is high, the device is disabled.	In a multi-device configuration, the nCE pin of the first device is tied low while its nCEO pin drives the nCE pin of the next device in the chain. In a single-device configuration and JTAG programming, connect the nCE pin to GND.
nCONFIG	Input	Pulling this pin low during configuration and user mode causes the Cyclone V device to lose its configuration data, enter a reset state, and tri-states all the I/O pins. A high-to-low logic initiates a reconfiguration.	When you use the nCONFIG pin in a passive configuration scheme, connect the pin directly to the configuration controller. When you use the nCONFIG pin in an AS configuration scheme, connect the pin through a 10-k Ω resistor tied to VCCPGM. When you do not use the nCONFIG pin, connect the pin directly or through a 10-k Ω resistor to VCCPGM.

PCG-01014-2.8

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
CONF_DONE	Bidirectional (open-drain)	As a status output, the CONF_DONE pin drives low before and during configuration. After all configuration data is received without error and the initialization cycle starts, the CONF_DONE pin is released. As a status input, the CONF_DONE pin goes high after all data is received. Then the device initializes and enters user mode. This pin is not available as a user I/O pin.	Connect an external 10-kΩ pull-up resistor to VCCPGM. VCCPGM must be high enough to meet the VIH specification of the I/O on the device and the external host.
nCEO	I/O, Output (open-drain)	Dual-purpose open-drain output pin. This pin drives low when device configuration completes.	During multi-device configuration, this pin feeds the nCE pin of the next device in the chain. If this pin is not feeding the nCE pin of the next device, you can use this pin as a regular I/O pin. In a single-device configuration, use this pin as a regular I/O pin. During single-device configuration, you may leave this pin floating. Connect this pin through an external $10\text{-k}\Omega$ pull-up resistor to VCCPGM.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
nSTATUS	Bidirectional (open-drain)	The Cyclone V device drives the nSTATUS pin low immediately after power-up and releases it after the Cyclone V device exits power-on reset (POR). As a status output, the nSTATUS pin is pulled low to indicate an error during configuration. As a status input, the device enters an error state when the nSTATUS pin is driven low by an external source during configuration. This pin is not available as a user I/O pin.	Connect an external 10-k Ω pull-up resistor to VCCPGM. VCCPGM must be high enough to meet the VIH specification of the I/O on the device and the external host.
TCK	Input	JTAG test clock input pin that clock input to the boundary-scan testing (BST) circuitry. Some operations occur at the rising edge, while others occur at the falling edge. It is expected that the clock input waveform have a nominal 50% duty cycle. This pin has an internal 25-k Ω pull-down that is always active.	Connect this pin through a 1-k Ω pull-down resistor to GND.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
TMS	Input	JTAG test mode select input pin that provides the control signal to determine the transitions of the test access port (TAP) controller state machine. The TMS pin is evaluated on the rising edge of the TCK pin. Therefore, you must set up the TMS pin before the rising edge of the TCK pin. Transitions in the state machine occur on the falling edge of the TCK after the signal is applied to the TMS pin. This pin has an internal $25\text{-k}\Omega$ pull-up that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to the VCCPD in the dedicated I/O bank which the JTAG pin resides. If the JTAG connections are not used, connect the TMS pin to VCCPD using a 1-k Ω resistor.
TDI	Input	JTAG test data input pin for instructions as well as test and programming data. Data is shifted in on the rising edge of the TCK pin. This pin has an internal $25-k\Omega$ pull-up that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to VCCPD in the dedicated I/O bank which the JTAG pin resides. If the JTAG connections are not used, connect the TDI pin to VCCPD using a 1-k Ω resistor.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
TDO	Output	JTAG test data output pin for instructions as well as test and programming data. Data is shifted out on the falling edge of the TCK pin. This pin is tri-stated if the data is not being shifted out of the device.	If the JTAG connections are not used, leave the TDO pin unconnected. In cases where the TDO pin uses VCCPD = 2.5 V to drive a 3.3 V JTAG interface, there may be leakage current in the TDI input buffer of the interfacing devices. An external pull-up resistor tied to 3.3 V on the TDI pin may be used to eliminate the leakage current if needed.
Optional/Dual-Purpose Configurat	tion Pins		
DCLK	Input (PS, FPP) Output (AS)	Dedicated bidirectional clock pin. In the PS and FPP configuration schemes, the DCLK pin is the clock input used to clock configuration data from an external source into the Cyclone V device. In the AS configuration scheme, the DCLK pin is an output clock to clock the EPCS or EPCQ device.	Do not leave this pin floating. Drive this pin either high or low.
CRC_ERROR	I/O, Output (open-drain)	Optional output pin. This pin is an open-drain output pin by default and requires a $10\text{-k}\Omega k\Omega$ pull-up resistor. Active high signal indicates that the error detection circuitry has detected errors in the configuration SRAM bits. This pin is optional and is used when the CRC error detection circuitry is enabled.	When you use the dedicated CRC_ERROR pin configured as an open-drain output, connect this pin through an external 10-k Ω pull-up resistor to VCCPGM. When you do not use the dedicated CRC_ERROR pin configured as an open-drain output and when this pin is not used as an I/O pin, connect this pin as defined in the Quartus Prime software. The I/O buffer type is reported in the fitter report.

PCG-01014-2.8

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
DEV_CLRn	I/O, Input	Optional input pin that allows you to override all clears on all the device registers. When this pin is driven low, all the registers are cleared. When this pin is driven high (VCCPGM), all registers behave as programmed.	When you do not use the dedicated input DEV_CLRn pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin to GND.
DEV_OE	I/O, Input	Optional input pin that allows you to override all tri-states on the device. When this pin is driven low, all the I/O pins are tri-stated. When this pin is driven high (VCCPGM), all the I/O pins behave as programmed.	When you do not use the dedicated input DEV_OE pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin to GND.
DATA[5:15]	I/O, Input	Dual-purpose data input pins. These pins are required for the FPP configuration scheme. Use DATA [5:7] pins for FPP x8, DATA [5:15] pins for FPP x16. You can use the pins that are not required for configuration as regular I/O pins.	When you do not use the DATA[5:15] input pins and when these pins are not used as an I/O pin, Intel recommends leaving these pins unconnected.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
INIT_DONE	I/O, Output (open-drain)	This is a dual-purpose pin and can be used as an I/O pin when not enabled as an INIT_DONE pin in the Quartus Prime software. When this pin is enabled, a transition from low to high on the pin indicates that the device has entered user mode. If the INIT_DONE output pin option is enabled in the Quartus Prime software, the INIT_DONE pin cannot be used as a user I/O pin after configuration.	When you use the dedicated INIT_DONE pin configured as an open-drain output pin, connect this pin through an external 10-k Ω pull-up resistor to VCCPGM. In Active Serial (AS) multi-device configuration mode, Intel recommends that the INIT_DONE output pin option is enabled in the Quartus Prime software for devices in the configuration chain. Do not tie INIT_DONE pins together between master and slave devices. Monitor the INIT_DONE status for each of the device to ensure successful transition into user-mode. When you do not use the dedicated INIT_DONE pin configured as an open-drain output pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin as defined in the Quartus Prime software.
CLKUSR	I/O, Input	Optional user-supplied clock input. Synchronizes the initialization of one or more devices. If this pin is not enabled for use as a user-supplied configuration clock, it can be used as a user I/O pin.	When you do not use the CLKUSR pin as a configuration clock input pin and when the pin is not used as an I/O pin, Intel recommends setting these pins "as output driving ground" and connecting this pin to GND. You can do so using the Pin Planner in the Quartus Prime software by finding the pin, right click "Reserve Pins" then select "As output driving ground".
CvP_CONFDONE	I/O, Output (open-drain)	The CvP_CONFDONE pin is driven low during configuration. When Configuration via Protocol (CvP) is complete, this signal is released and is pulled high by an external pull-up resistor. Status of this pin is only valid if the CONF_DONE pin is high.	When you use the dedicated CvP_CONFDONE pin configured as an open-drain output pin, connect this pin through an external 10 -k Ω pull-up resistor to VCCPGM. When you do not use the dedicated CvP_CONFDONE configured as an open-drain output pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin as defined in the Quartus Prime software.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
nPERST[L0,L1]	I/O, Input	Dedicated fundamental reset pins. These pins are only available when you use them together with the PCI Express® (PCIe®) hard IP. When these pins are low, the transceivers are in reset. When these pins are high, the transceivers are out of reset. When these pins are not used as the fundamental reset pins, these pins may be used as user I/O pins.	Connect these pins as defined in the Quartus Prime software. You may drive this pin by 3.3V regardless of the VCCIO voltage level of the bank without a level translator as long as: • the input signal meets the LVTTL VIH/VIL specification, and • it meets the overshoot specifications for 100% operation as listed in the Cyclone V device datasheet. This nPERSTL1 signal is required for the CvP configuration scheme. All Cyclone V devices have 1 or 2 instances of Hard IP for PCI Express except for Cyclone V E and SE devices. Each instance has its own nPERSTL pin. The nPERSTL0 pin is located in the top left hard IP while the nPERSTL1 pin is located in the bottom left hard IP. For maximum compatibility, Intel recommends using the bottom left PCIe hard IP first as this is the only location that supports the CvP configuration scheme.
Partial Reconfiguration Pins	1		
PR_REQUEST	I/O, Input	Partial reconfiguration request pin. Drive this pin high to start partial reconfiguration. Drive this pin low to end reconfiguration. This pin can only be used in partial reconfiguration using external host mode in the FPP x16 configuration scheme.	When you do not use the dedicated input PR_REQUEST pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin to GND.
PR_READY	I/O, Output or Output(open- drain)	The partial reconfiguration ready pin is driven low until the device is ready to begin partial reconfiguration. When the device is ready to start reconfiguration, this signal is released and is pulled high by an external pull-up resistor.	When you use the dedicated PR_READY pin configured as an open-drain output pin, connect this pin to an external 10-k Ω pull-up resistor to VCCPGM. When you do not use the dedicated PR_READY pin configured as an open-drain output pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin as defined in the Quartus Prime software.

PCG-01014-2.8

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
PR_ERROR	I/O, Output, or Output (open-drain)	The partial reconfiguration error pin is driven low during partial reconfiguration unless the device detects an error. If an error is detected, this signal is released and pulled high by an external pull-up resistor.	When you use the dedicated PR_ERROR pin configured as an open-drain output pin, connect this pin through an external 10-k Ω pull-up resistor to VCCPGM. When you do not use the dedicated PR_ERROR pin configured as an open-drain output pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin as defined in the Quartus Prime software.
PR_DONE	I/O, Output or Output (open-drain)	The partial reconfiguration done pin is driven low until the partial reconfiguration is complete. When the reconfiguration is complete, this signal is released and is pulled high by an external pull-up resistor.	When you use the dedicated PR_DONE pin configured as an open-drain output pin, connect this pin through an external 10-k Ω pull-up resistor to VCCPGM. When you do not use the dedicated PR_DONE configured as an open-drain output pin and when this pin is not used as an I/O pin, Intel recommends connecting this pin as defined in the Quartus Prime software.
Differential I/O Pins			
DIFFIO_RX_[B,T,R][#:#]p, DIFFIO_RX_[B,T,R][#:#]n	I/O, RX channel	These are true LVDS receiver channels on row and column I/O banks. Pins with a "p" suffix carry the positive signal for the differential channel. Pins with an "n" suffix carry the negative signal for the differential channel. If not used for differential signaling, these pins are available as user I/O pins. OCT Rd is supported on all the DIFFIO_RX pins.	Connect unused pins as defined in the Quartus Prime software. For design compiled with Quartus II 13.1 onwards, refer to KDB - rd10102013_979 for guideline in reducing percentage of crosstalk and Simulatneous Switching Noise (SSN).

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines		
DIFFIO_TX_[B,T,R][#:#]p, DIFFIO_TX_[B,T,R][#:#]n	I/O, TX channel	These are true LVDS transmitter channels on row and column I/O banks. Pins with a "p" suffix carry the positive signal for the differential channel. Pins with an "n" suffix carry the negative signal for the differential channel. If not used for differential signaling, these pins are available as user I/O pins.	Connect unused pins as defined in the Quartus Prime software. For design compiled with Quartus II 13.1 onwards, refer to KDB - rd10102013_979 for guideline in reducing percentage of crosstalk and Simulatneous Switching Noise (SSN).		
DIFFOUT_[B,T,R][#:#]p, DIFFOUT_[B,T,R][#:#]n	I/O, TX channel	These are emulated LVDS output channels. All the user I/Os, including I/Os with true LVDS input buffers, can be configured as emulated LVDS output buffers. External resistor network is needed for emulated LVDS output buffers. Pins with a "p" suffix carry the positive signal for the differential channel. Pins with an "n" suffix carry the negative signal for the differential channel. If not used for differential signaling, these pins are available as user I/O pins.	Connect unused pins as defined in the Quartus Prime software. For design compiled with Quartus II 13.1 onwards, refer to KDB - rd10102013_979 for guideline in reducing percentage of crosstalk and Simulatneous Switching Noise (SSN).		
External Memory Interface Pins	External Memory Interface Pins				
DQS[#][B,R,T]	I/O, bidirectional	Optional data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry. The shifted DQS signal can also drive	Connect unused pins as defined in the Quartus Prime software.		

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description to internal logic.	Connection Guidelines
DQSn[#][B,R,T]	I/O, bidirectional	Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry.	Connect unused pins as defined in the Quartus Prime software.
DQ[#][B,R,T]	I/O, bidirectional	Optional data signal for use in external memory interfacing. The order of the DQ bits within a designated DQ bus is not important; however, use caution when making pin assignments if you plan on migrating to a different memory interface that has a different DQ bus width. Analyze the available DQ pins across all pertinent DQS columns in the pin list.	Connect unused pins as defined in the Quartus Prime software.
Hard Memory PHY Pins			
[B,T]_DQS_[#]	I/O, bidirectional	Optional data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry. The shifted DQS signal can also drive to internal logic.	If hard memory PHY is used, connection to memory device DQS pin must start from [B,T]_DQS_0 pin. For details, refer to the specific device pinout file. Connect unused pins as defined in the Quartus Prime software.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
[B,T]_DQS#_[#]	I/O, bidirectional	Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated DQS phase shift circuitry.	If hard memory PHY is used, connection to memory device DQSn pin must start from [B,T]_DQS#_0 pin. For details, refer to the specific device pinout file. Connect unused pins as defined in the Quartus Prime software.
[B,T]_DQ_[#]	I/O, bidirectional	Optional data signal for use in external memory interfacing. Use caution when making pin assignments if you plan on migrating to a different memory interface that has a different DQ bus width. Analyze the available DQ pins across all pertinent DQS columns in the pin list.	If hard memory PHY is used, connection to memory device DQ pin must start from [B,T]_DQ_0 pin. For details, refer to the specific device pinout file.Connect unused pins as defined in the Quartus Prime software.
[B,T]_DM_[#]	I/O, Output	Optional write data mask, edge- aligned to DQ during write.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_WE#	I/O, Output	Write enable. Write-enable input for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_CAS#	I/O, Output	Column address strobe for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_RAS#	I/O, Output	Row address strobe for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_RESET#	IO, Output	Active low reset signal.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_CK	IO, Output	Output clock for external memory devices.	Connect unused pins as defined in the Quartus Prime software.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
[B,T]_CK#	IO, Output	Output clock for external memory devices, inverted CK.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_CKE_[#]	IO, Output	Active high clock enable.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_BA_[#]	IO, Output	Bank address input for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_A_[#]	IO, Output	Address input for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_CS#_[#]	IO, Output	Active low chip select.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_CA_[#]	IO, Output	Command and address inputs for LPDDR2 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
[B,T]_ODT_[#]	IO, Output	On-die termination signal enables and disables termination resistance internal to the external memory.	Connect unused pins as defined in the Quartus Prime software.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
Reference Pins			
RREF_TL	Input	Reference resistor for transceiver and PLL	If any PLL, REFCLK pin, or transceiver channel is used, you must connect each RREF pin on that side of the device through its own individual 2.0-k Ω +/- 1% resistor to GND. Otherwise, you may connect each RREF pin on that side of the device directly to GND. In the PCB layout, the trace from this pin to the resistor needs to be routed so that it avoids any aggressor signals.
RZQ_[0,1,2]	I/O, Input	Reference pins for I/O banks. The RZQ pins share the same VCCIO with the I/O bank where they are located. The external precision resistor must be connected to the designated pin within the bank. If not required, these pins are regular I/O pins.	When the Cyclone V device does not use these dedicated input pins for the external precision resistor or as I/O pins, Intel recommends setting these pins "as output driving ground" and connecting these pins to GND. You can do so using the Pin Planner in the Quartus Prime software by finding the pin, right click "Reserve Pins" then select "As output driving ground". When these pins are used for the OCT calibration, the RZQ pins are connected to GND through an external 100- or 240- reference resistor depending on the desired OCT impedance. For the OCT impedance options for the desired OCT scheme, refer to the Cyclone V device handbook, I/O Features in Cyclone V Devices Chapter.
DNU	Do Not Use	Do Not Use (DNU).	Do not connect to power, GND, or any other signal. These pins must be left floating.
NC	No Connect	Do not drive signals into these pins.	When designing for device migration, these pins may be connected to power, GND, or a signal trace depending on the pin assignment of the devices selected for migration. However, if device migration is not a concern, leave these pins floating.
Supply Pins (See Notes 4 through	7)		
vcc	Power	VCC supplies power to the core, periphery, PCle hard IP, and physical coding sublayer (PCS).	Connect all VCC pins to a 1.1V low noise switching regulator. VCCE_GXBL and VCCL_GXBL pins may be sourced from the same regulator as VCC with a proper isolation filter. Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 6.

PCG-01014-2.8

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
VCCA_FPLL	Power	PLL analog power.	Connect these pins to a 2.5V low noise switching power supply through a proper isolation filter. This power rail may be shared with VCC_AUX and VCCH_GXBL pins. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO, VCCPD, and VCCPGM when each of these power supplies require 2.5V. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 7.
VCC_AUX	Power	Auxiliary supply.	Observe the following connection guidelines for: • All Density Cyclone V GX/GT/E FPGAs and Cyclone V SX/ST/SE devices where HPS and FPGA share power. • Cyclone V SX C2/C4 devices where HPS and FPGA do not share power. • Cyclone V SE A2/A4 devices where HPS and FPGA do not share power. Connect all VCC_AUX pins to a 2.5V low noise switching power supply through a proper isolation filter. You may share this power rail with VCCH_GXBL and VCCA_FPLL pins. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO, VCCPD, and VCCPGM when each of these power supplies requires 2.5V. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 7. Refer to the power drawings for: • Cyclone V SX/ST/SE devices where HPS and FPGA share power, see Figures 4, 7 or 9. • Cyclone V SX C2/C4 devices where HPS and FPGA do not share power, see Figure 5. • Cyclone V SE A2/A4 devices where HPS and FPGA do not share power, see Figure 10.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
			Observe the following connection guidelines for: • Cyclone V SX C5/C6 devices where HPS and FPGA do not share power. • Cyclone V ST D5/D6 devices where HPS and FPGA do not share power. • Cyclone V SE A5/A6 devices where HPS and FPGA do not share power. When using the above SoC devices, you must power VCC_AUX for HPS operation. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS. Decoupling for these pins depends on the design decoupling requirements of the specific board. However a minimal capacitance value of 1 uF should be used. See Notes 2, 3, 4, and 7. Refer to the power drawings for: • Cyclone V SX C5/C6 devices where HPS and FPGA do not share power, see Figure 6. • Cyclone V SE A5/A6 devices where HPS and FPGA do not share power, see Figure 8.
VCCIO[#]	Power	These are I/O supply voltage pins for I/O banks. Each bank can support a different voltage level from 1.2V to 3.3V. Supported I/O standards are LVTTL/ LVCMOS (3.3, 3.0, 2.5, 1.8, 1.5, 1.2V), SSTL(135,125,18,15, 2 Class-I/II), HSTL(18,15,12 Class-I/II), HSUL12, LVDS, LVPECL, and PCI/PCI-X.	Connect these pins to a 1.2V, 1.25V, 1.35V, 1.5V, 1.8V, 2.5V, 3.0V, or 3.3V power supply, depending on the I/O standard required by the specified bank. When these pins have the same voltage requirements as VCCPD and VCCPGM, they may be tied to the same regulator. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 8.
VCCPGM	Power	Configuration pins power supply which support 1.8, 2.5, 3.0, and 3.3V.	Connect these pins to either a 1.8V, 2.5V, 3.0V, or 3.3V power supply. When these pins have the same voltage requirements as VCCIO and VCCPD, they may be tied to the same regulator. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, and 4.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
VCCPD[#]	Power	Dedicated power pins.	The VCCPD pins require 2.5V, 3.0V or 3.3V. When these pins have the same voltage requirements as VCCPGM and VCCIO, they may be tied to the same regulator. The voltage on VCCPD is dependent on the VCCIO voltage. When VCCIO is 3.3V, VCCPD must be 3.3V. When VCCIO is 3.0V, VCCPD must be 3.0V. When VCCIO is 2.5V or less, VCCPD must be 2.5V. For I/O banks that share VCCPD pins, the VCCIO of each I/O bank must be compatible with the shared VCCPD voltage. You may share VCCPD with the same voltage regulator as VCCIO and VCCPGM when these power pins have the same voltage requirements. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 8.
VCCBAT	Power	Battery back-up power supply for design security volatile key register.	If you are using design security volatile key, connect this pin to a non-volatile battery power source in the range of 1.2V to 3.0V. If you are not using the volatile key, connect this pin to a 1.5V, 2.5V, or 3.0V power supply. Cyclone V devices will not exit POR if VCCBAT is not powered up.
GND	Ground	Device ground pins.	All GND pins must be connected to the board ground plane.
VREF[#]N0	Power	Input reference voltage for each I/O bank. If a bank uses a voltage referenced I/O standard for input operation, then these pins are used as the voltage-reference pins for the bank.	If the VREF pins are not used, you should connect them to either the VCCIO in the bank in which the pin resides or GND.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines		
Transceiver Pins (See Notes 4 thr	Transceiver Pins (See Notes 4 through 10)				
VCCE_GXBL	Power	Transmitter and receiver power, specific to the left (L) side of the device.	For Cyclone V GX FPGA, connect VCCE_GXBL pins to a 1.1V low noise switching regulator. For Cyclone V GT FPGA, connect VCCE_GXBL pins to a 1.1V or 1.2V linear regulator. Intel recommends increasing VCCE_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G, CPRI 6.144G, and PCI Express Gen 2 transmit jitter specification. For more information, refer to the Cyclone V Transceivers chapters in the device handbook and Cyclone V Device Datasheet. For all Cyclone V transceiver-based device variants, this power rail can be shared with the VCCL_GXBL pins. For details, refer to the respective Cyclone V GX and Cyclone V GT power supply sharing guidelines. Decoupling for these pins depends on the design decoupling requirements of the specific board design. See Notes 2, 3, 7, and 10.		
VCCL_GXBL	Power	Clock network power, specific to the left (L) side of the device.	For Cyclone V GX FPGA, connect VCCL_GXBL pins to a 1.1V low noise switching regulator. For Cyclone V GT FPGA, connect VCCL_GXBL pins to a 1.1V or 1.2V linear regulator. Intel recommends increasing VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G, CPRI 6.144G, and PCI Express Gen 2 transmit jitter specification. For more information, refer to the Cyclone V Transceivers chapters in the device handbook and Cyclone V Device Datasheet. For all Cyclone V transceiver-based device variants, this power rail can be shared with the VCCE_GXBL pins. For details, refer to the respective Cyclone V GX and Cyclone V GT power supply sharing guidelines. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 7, and 10.		

Cyclone V Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
VCCH_GXBL	Power	Transceiver high voltage power, specific to the left (L) side of the device.	Connect VCCH_GXBL to a 2.5V low noise switching regulator. This power rail may be shared with VCCA_FPLL and VCC_AUX pins. With a proper isolation filter these pins may be sourced from the same regulator as VCCIO, VCCPD, and VCCPGM if any of these power supplies require 2.5V. VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. Decoupling depends on the design decoupling requirements of the specific board design. See Notes 2, 3, 4, and 7.
GXB_RX_L[0:11][p,n], GXB_REFCLK_L[0:11][p,n]	Input	High speed positive (p) or negative (n) differential receiver channels. High speed positive (p) or negative (n) differential reference clock specific to the left (L) side of the device.	These pins are AC-coupled when used except for the single case of the PCIe HCSL I/O standard which can be DC coupled for GXB_REFCLK. Connect all unused GXB_RX and GXB_REFCLK pins directly to GND. See Note 9.
GXB_TX_L[0:11][p,n]	Output	High speed positive (p) or negative (n) differential transmitter channels. Specific to the left (L) side of the device.	Leave all unused GXB_TX pins floating.
REFCLK[0:3]L_[p,n]	Input	High speed positive (p) and negative (n) differential reference clock, specific to the left (L) side of the device.	These pins may be AC-coupled or DC-coupled when used. For the HCSL I/O standard, it only supports DC coupling. Connect all unused REFCLK pins directly to GND. See Note 9. In the PCI Express configuration, DC-coupling is allowed on the REFCLK if the selected REFCLK I/O standard is HCSL.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Intel provides these guidelines only as recommendations. It is the responsibility of the designer to apply simulation results to the design to verify proper device functionality.

- 1. These pin connection guidelines are based on the Cyclone V GX, GT, and E device variants.
- 2. Capacitance values for the power supply should be selected after considering the amount of power they need to supply over the frequency of operation of the particular circuit being decoupled. A target impedance for the power plane should be calculated based on current draw and voltage droop requirements of the device/supply. The power plane should then be decoupled using the appropriate number of capacitors. On-board capacitors do not decouple higher than 100 MHz because "Equivalent Series Inductance" of the mounting of the packages. Proper board design techniques such as interplane capacitance with low inductance should be considered for higher frequency decoupling. The Power Delivery Network (PDN) tool serves as an excellent decoupling analysis tool. For more details, refer to the Power Delivery Network (PDN) Tool for Cyclone V Devices.
- 3. Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies.
- 4. These supplies may share power planes across multiple Cyclone V devices.
- 5. Example 1 and Figure 1 illustrate power supply sharing guidelines for the Cyclone V GX device. Example 2 and Figure 2 illustrate power supply sharing guidelines for the Cyclone V GT device. Example 3 and Figure 3 illustrate power supply sharing guidelines for the Cyclone V E device.
- 6. Power pins should not share breakout vias from the BGA. Each ball on the BGA needs to have its own dedicated breakout via. VCC must not share breakout vias.
- 7. Low Noise Switching Regulator defined as a switching regulator circuit encapsulated in a thin surface mount package containing the switch controller, power FETs, inductor, and other support components. The switching frequency is usually between 800kHz and 1MHz and has fast transient response. The switching frequency range is not an Intel requirement. However, Intel does require the Line Regulation and Load Regulation meet the following specifications:
 - Line Regulation < 0.4%
 - Load Regulation < 1.2%
- 8. The number of modular I/O banks on Cyclone V devices depends on the device density. For the indexes available for a specific device, please refer to the I/O Bank section in the Cyclone V device handbook.
- 9. For AC-coupled links, the AC-coupling capacitor can be placed anywhere along the channel. PCIe protocol requires the AC-coupling capacitor to be placed on the transmitter side of the interface that permits adapters to be plugged and unplugged.
- 10. All transceiver power pins except VCCH_GXBL pin on the same side of the device must be connected either to the required supply or to GND. When ALL transceiver channels on the same side are unused, you have the option to connect all of the transceiver power pins except VCCH_GXBL pin on the same side of the device to GND or to the required supply. The VCCH_GXBL pin must always be powered. For item [#] Please refer to the device pin table for the pin-out mapping.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

HPS Pin Connection Guidelines

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
Dedicated Configuration	on/JTAG Pins		
HPS_TDI	Input	JTAG test Data input pin for instructions as well as test and programming Data. Data is shifted in on the rising edge of the TCK pin. This pin has an internal 25-k Ω pull-up resistor that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to VCCPD_HPS in the dedicated I/O bank which the JTAG pin resides. If the JTAG connections are not used, connect the TDI pin to VCCPD_HPS using a 1-k Ω resistor.
HPS_TMS	Input	JTAG test mode Select input pin that provides the control signal to determine the transitions of the test access port (TAP) controller state machine. The TMS pin is evaluated on the rising edge of the TCK pin. Therefore, you must set up the TMS pin before the rising edge of the TCK pin. Transitions in the state machine occur on the falling edge of the TCK after the signal is applied to the TMS pin. This pin has an internal 25-k Ω pull-up resistor that is always active.	Connect this pin through a 1-k Ω - 10-k Ω - pull-up resistor to the VCCPD_HPS in the dedicated I/O bank which the JTAG pin resides. If the JTAG connections are not used, connect the TMS pin to VCCPD_HPS using a 1-k Ω resistor.
HPS_TRST	Input	Active-low input to asynchronously reset the boundary-scan circuit. This pin has an internal 25-kΩ pull-up that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to the VCCPD_HPS in the dedicated I/O bank which the JTAG pin resides.
HPS_TCK	Input	JTAG test clock input pin that clock input to the boundary-scan testing (BST) circuitry. Some operations occur at the rising edge, while others occur at the falling edge. It is expected that the clock input waveform have a nominal 50% duty cycle. This pin has an internal 25-k Ω pull-down that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-down resistor to GND.
HPS_TDO	Output	JTAG test Data output pin for instructions as well as test and programming Data. Data is shifted out on the falling edge of the TCK pin. This pin is tri-stated if the Data is not being shifted out of the device.	If the JTAG connections are not used, leave the HPS_TDO pin unconnected. In cases where the HPS_TDO pin uses VCCPD_HPS = 2.5 V to drive a 3.3 V JTAG interface, there may be leakage current in the HPS_TDI input buffer of the interfacing devices. An external pull-up resistor tied to 3.3 V on the HPS_TDI pin may be used to eliminate the leakage current if needed.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines			
HPS_nRST	I/O, bidirectional	Warm reset to the HPS block. Active low input affects the system reset domains which allows debugging to operate. This pin has an internal 25- $k\Omega$ pull-up resistor that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to VCCRSTCLK_HPS.			
HPS_nPOR	I/O, Input	Cold reset to the HPS block. Active low input that will reset all HPS logics that can be reset. Places the HPS in a default state sufficient for software to boot. This pin has an internal 25-k Ω pull-up resistor that is always active.	Connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to VCCRSTCLK_HPS.			
HPS_PORSEL	Input	Dedicated input that selects between a standard POR or a fast POR delay for HPS block. A logic low selects a standard POR delay setting and a logic high selects a fast POR delay setting. This pin has an internal $25-k\Omega$ pull-down resistor that is always active.	Connect this pin directly to VCCRSTCLK_HPS or GND.			
Clock Pins						
HPS_CLK1	Input, Clock	Dedicated clock input pin that drives the main PLL. This provides clocks to the MPU, L3/L4 sub-systems, debug sub-system and the Flash controllers. It can also be programmed to drive the peripheral and SDRAM PLLs.	Connect a single-ended clock source to this pin. The I/O standard of the clock source must be compatible with VCCRSTCLK_HPS. Refer to the valid frequency range of the clock source in Cyclone V Device Datasheet. The input clock must be present at this pin for HPS operation.			
HPS_CLK2	Input, Clock	Dedicated clock input pin that can be programmed to drive the peripheral and SDRAM PLLs.	Connect a single-ended clock source to this pin. The I/O standard of the clock source must be compatible with VCCRSTCLK_HPS. Refer to the valid frequency range of the clock source in Cyclone V Device Datasheet. This is an optional HPS clock input pin. When you do not use this pin, Intel recommends tying it to VCCRSTCLK_HPS.			
Supply Pins (See Notes	Supply Pins (See Notes 4 through 7)					
VCC_HPS	Power	VCC_HPS supplies power to the HPS core.	Connect all VCC_HPS pins to a 1.1V low noise switching regulator. If powering down of the FPGA fabric is not required, VCC_HPS pins may be sourced from the same regulator as VCC.			
			Use the Cyclone V Early Power Estimator to determine the current requirements for VCC_HPS and other power supplies. Decoupling for these pins depends on the design decoupling			

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
			requirements of the specific board. See Notes 2, 3, 4, and 6.
VCCIO[#]_HPS	Power	These are I/O supply voltage pins for I/O banks. Each bank can support a different voltage level from 1.2V to 3.3V. Supported I/O standards are LVTTL/ LVCMOS (3.3, 3.0, 2.5, 1.8, 1.5V), SSTL(135, 18,15, 2 Class-I/II), HSTL(18,15 Class-I/II), HSUL12, LVDS, LVPECL, and PCI/PCI-X.	Connect these pins to a 1.2V, 1.35V, 1.5V, 1.8V, 2.5V, 3.0V, or 3.3V power supply, depending on the I/O standard required by the specified bank. 1.35V is supported for HPS ROW I/O bank only. When these pins have the same voltage requirements as VCCPD_HPS and VCCRSTCLK_HPS, they may be tied to the same regulator. If powering down of the FPGA fabric is not required and if these pins have the same voltage requirement as VCCIO, VCCIO_HPS pins may be sourced from the same regulator as VCCIO. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 8.
VCCPLL_HPS	Power	VCCPLL_HPS supplies power to the HPS core PLLs.	Connect these pins to a 2.5V low noise switching power supply through a proper isolation filter. This power rail may be shared with the VCC_AUX_SHARED pin. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when each of these power supplies require 2.5V. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 7.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
VCCRSTCLK_HPS	Power	VCCRSTCLK_HPS supplies power to HPS clock and reset pins.	Connect these pins to either a 1.8V, 2.5V, 3.0V, or 3.3V power supply. When these pins have the same voltage requirements as VCCIO_HPS and VCCPD_HPS, they may be tied to the same regulator. If powering down of the FPGA fabric is not required and if these pins have the same voltage requirement as VCCIO and VCCPD, they may be tied to the same regulator. Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, and 4.
VCC_AUX_SHARED	Power	Auxiliary supply.	Observe the following connection guidelines for: • All Cyclone V SX/ST/SE devices where the HPS and FPGA share power. • Cyclone V SX C2/C4 devices where HPS and FPGA do not share power. • Cyclone V SE A2/A4 devices where HPS and FPGA do not share power. • Cyclone V SE A2/A4 devices where HPS and FPGA do not share power. VCC_AUX_SHARED must always be powered up to a 2.5V low noise switching power supply through a proper isolation filter. If powering down of the FPGA is not required you may share this power rail with VCC_AUX, VCCH_GXBL, VCCA_FPLL and VCCPLL_HPS pins. With a proper isolation filter, these pins may be sourced from the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when each of these power supplies requires 2.5V. Decouple this pin with a minimum total decoupling capacitors value of 1uF. When planning device migration between: • Cyclone SX C2/C4 devices or • Cyclone SX C5/C6 devices or • Cyclone SX C5/C6 devices or • Cyclone ST D5/D6 devices or

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
			Cyclone SE A5/A6 devices. You must follow the power supply sharing guidelines for: Cyclone SX C5/C6 devices or Cyclone ST D5/D6 devices or Cyclone SE A5/A6 devices. See Notes 2, 3, 4, and 7. Refer to the power drawings for: Cyclone V SX/ST/SE devices where HPS and FPGA share power, see Figures 4, 7 or 9. Cyclone V SX C2/C4 devices where HPS and FPGA do not share power, see Figure 5.
			Cyclone V SE A2/A4 devices where HPS and FPGA do not share power, see Figure 10. Observe the following connection guidelines for: Cyclone V SX C5/C6 devices where HPS and FPGA do not share power. Cyclone V ST D5/D6 devices where HPS and FPGA do not share power. Cyclone V SE A5/A6 devices where HPS and FPGA do not share power.
			If powering down the FPGA fabric is required, connect this pin through a separate isolation filter to 2.5V. The filter consists of an EMI Suppression Ferrite Bead along with a minimum decoupling capacitors value of 1 uF. The ferrite bead should have an impedance of not less than 30 ohms at 100 MHz and a max impedance of 65 ohms at 1000 MHz. The bead is connected to 2.5V at one end and the other end is connected to the VCC_AUX_SHARED pin. The capacitor should connect between the VCC_AUX_SHARED pin and ground. Both components should be placed close to the VCC_AUX_SHARED pin.
			Refer to AN583: Designing Power Isolation Filters with Ferrite Beads for Intel FPGAs for further guidance. With this filter you may source VCC_AUX_SHARED from the same regulator as VCCIO_HPS, VCCPD_HPS and VCCRSTCLK_HPS.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
			See Notes 2, 3, 4, and 7. Refer to the power drawings for: • Cyclone V SX C5/C6 devices where HPS and FPGA do not share power, see Figure 6. • Cyclone V ST D5/D6 devices where HPS and FPGA do not share power, see Figure 8. • Cyclone V SE A5/A6 devices where HPS and FPGA do not share power, see Figure 11.
VCCPD[#]_HPS	Power	Dedicated power pins.	The VCCPD_HPS pins require 2.5V, 3.0V or 3.3V. When these pins have the same voltage requirements as VCCRSTCLK_HPS and VCCIO_HPS, they may be tied to the same regulator. The voltage on VCCPD_HPS is dependent on the VCCIO_HPS voltage. If powering down of the FPGA fabric is not required and if these pins have the same voltage requirement as VCCPD, they may be tied to the same regulator.When VCCIO_HPS is 3.3V, VCCPD_HPS must be 3.3V.When VCCIO_HPS is 3.0V, VCCPD_HPS must be 3.0V.When VCCIO_HPS is 2.5V or less, VCCPD_HPS must be 2.5V.Decoupling for these pins depends on the design decoupling requirements of the specific board. See Notes 2, 3, 4, and 8.
VREFB[#]N0_HPS	I/O, Power	Input reference voltage for each I/O bank. If a bank uses a voltage referenced I/O standard for input operation, then these pins are used as the voltage-reference pins for the bank.	VREF pins will source current and the regulator used for VREF pins should have the capability to sink and source current. If the VREF pins are not used, you should connect them to either the VCCIO in the bank in which the pin resides or GND.
Hard Memory PHY Pins	;	,	,
HPS_DQ[#]	I/O, bidirectional	Optional data signal for use in external memory interfacing. Use caution when making pin assignments if you plan on migrating to a different memory interface that has a different HPS_DQ bus width. Analyze the available HPS_DQ pins across all pertinent HPS_DQS columns in the pin list.	If hard memory PHY is used, connection to memory device DQ pin must start from [B,T]_DQ_0 pin. For details, refer to the specific device pinout file. Connect unused pins as defined in the Quartus Prime software.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
HPS_DQS_[#]	I/O, bidirectional	Optional data strobe signal for use in external memory interfacing. These pins drive to dedicated HPS_DQS phase shift circuitry. The shifted DQS signal can also drive to internal logic.	If hard memory PHY is used, connection to memory device DQS pin must start from [B,T]_DQS_0 pin. For details, refer to the specific device pinout file. Connect unused pins as defined in the Quartus Prime software.
HPS_DQS#_[#]	I/O, bidirectional	Optional complementary data strobe signal for use in external memory interfacing. These pins drive to dedicated HPS_DQS phase shift circuitry.	If hard memory PHY is used, connection to memory device DQSn pin must start from [B,T]_DQS#_0 pin. For details, refer to the specific device pinout file. Connect unused pins as defined in the Quartus Prime software.
HPS_DM_[#]	I/O, Output	Optional write data mask, edge-aligned to HPS_DQ during write.	Connect unused pins as defined in the Quartus Prime software.
HPS_WE#	I/O, Output	Write-Enable input for DDR2 andDDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_CAS#	I/O, Output	Column address strobe for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_RAS#	I/O, Output	Row address strobe for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_RESET#	I/O, Output	Active low reset signal.	Connect unused pins as defined in the Quartus Prime software.
HPS_CK	I/O, Output	Output clock for external memory devices.	Connect unused pins as defined in the Quartus Prime software.
HPS_CK#	I/O, Output	Output clock for external memory devices, inverted CK.	Connect unused pins as defined in the Quartus Prime software.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	Pin Description	Connection Guidelines
HPS_CKE_[#]	I/O, Output	Active high clock Enable.	Connect unused pins as defined in the Quartus Prime software.
HPS_BA_[#]	I/O, Output	Bank address input for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_A_[#]	I/O, Output	Address input for DDR2 and DDR3 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_CA_[#]	I/O, Output	Command and address inputs for LPDDR and LPDDR2 SDRAM.	Connect unused pins as defined in the Quartus Prime software.
HPS_CS#_[#]	I/O, Output	Active low chip Select.	Connect unused pins as defined in the Quartus Prime software.
HPS_ODT_[#]	I/O, Output	On-die termination signal enables and disables termination resistance internal to the external memory.	Connect unused pins as defined in the Quartus Prime software.
Reference Pins			
HPS_RZQ_0	I/O, Input	Reference pins for I/O banks. The HPS_RZQ_0 pins shares the same HPS_VCCIO with the I/O bank where it is located. The external precision resistor must be connected to the designated pin within the bank. If not required, these pins are regular I/O pins.	When the Cyclone V SoC device does not use these dedicated input pins for the external precision resistor or as I/O pins, Intel recommends connecting these pins to GND. When these pins are used for the OCT calibration, the HPS_RZQ_0 pin is connected to GND through an external 100- Ω or 240- Ω reference resistor depending on the desired OCT impedance. For the OCT impedance options for the desired OCT scheme, refer to the Cyclone V device handbook, I/O Features in Cyclone V Devices Chapter.
General Purpose Input I	Pins (See Note	13)	
HPS_GPI#	Input	General purpose inputs signals in the SDRAM bank	These pins use the same VCCIO_HPS as the other HPS SDRAM pins. If unused, program them in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)		F	Pin Description	1	Connection Guidelines					
Peripheral Pins (See Note 12 & 13)											
		Power-up	Function 3	Function 2	Function 1	Function 0					
RGMII0_TX_CLK	I/O		RGMII0 Transmit clock			General Purpose IO Bit 0	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_TXD0	I/O		RGMII0 Transmit Data Bit 0	USB1 Data Bit 0		General Purpose IO Bit 1	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_TXD1	I/O		RGMII0 Transmit Data Bit 1	USB1 Data Bit 1		General Purpose IO Bit 2	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_TXD2	I/O		RGMII0 Transmit Data Bit 2	USB1 Data Bit 2		General Purpose IO Bit 3	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_TXD3	I/O		RGMII0 Transmit Data Bit 3	USB1 Data Bit 3		General Purpose IO Bit 4	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_RXD0	I/O		RGMII0 Receive Data Bit 0	USB1 Data Bit 4		General Purpose IO Bit 5	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_MDIO	I/O		RGMII0 Manageme nt Data IO	USB1 Data Bit 5	I2C2 Serial Data	General Purpose IO Bit 6	If unused, program it in Quartus as an input with a weak pull-up.				
RGMII0_MDC	I/O		RGMII0 Manageme	USB1 Data	I2C2 Serial	General Purpose IO	If unused, program it in Quartus as an input with a weak pull-up.				

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)		Pin Descriptio	n	Connection Guidelines	
		nt Data Clock	Bit 6	Clock	Bit 7	
RGMIIO_RX_CTL	I/O	RGMIIO Receive Control	Bit 7		General Purpose IO Bit 8	If unused, program it in Quartus as an input with a weak pull-up.
RGMII0_TX_CTL	I/O	RGMII0 Transm Control			General Purpose IO Bit 9	If unused, program it in Quartus as an input with a weak pull-up.
RGMII0_RX_CLK	I/O	RGMIIO Receive Clock			General Purpose IO Bit 10	If unused, program it in Quartus as an input with a weak pull-up.
RGMII0_RXD1	I/O	RGMIIO Receive Data Bi	Data		General Purpose IO Bit 11	If unused, program it in Quartus as an input with a weak pull-up.
RGMII0_RXD2	I/O	RGMIIO Receive Data Bi	Direction		General Purpose IO Bit 12	If unused, program it in Quartus as an input with a weak pull-up.
RGMII0_RXD3	I/O	RGMIIO Receive Data Bi	Data		General Purpose IO Bit 13	If unused, program it in Quartus as an input with a weak pull-up.
NAND_ALE	I/O	NAND Address Latch Enable	RGMII1 Transmit clock	QSPI Slave Select 3	General Purpose IO Bit 14	If unused, program it in Quartus as an input with a weak pull-up.
NAND_CE	I/O	NAND (Enable	Chip RGMII1 Transmit Data Bit 0	USB1 Data Bit 0	General Purpose IO Bit 15	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	,		Pin Description	n		Connection Guidelines
NAND_CLE	I/O		NAND Command Latch Enable	RGMII1 Transmit Data Bit 1	USB1 Data Bit 1	General Purpose IO Bit 16	If unused, program it in Quartus as an input with a weak pull-up.
NAND_RE	I/O		NAND Read Enable	RGMII1 Transmit Data Bit 2	USB1 Data Bit 2	General Purpose IO Bit 17	If unused, program it in Quartus as an input with a weak pull-up.
NAND_RB	I/O		NAND Ready/Bus y	RGMII1 Transmit Data Bit 3	USB1 Data Bit 3	General Purpose IO Bit 18	If used as the NAND Ready/Busy input, connect this pin through a 1-k Ω - 10-k Ω pull-up resistor to VCCPD_HPS in the dedicated I/O bank which the NAND_RB pin resides. If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ0	I/O		NAND Data Bit 0	RGMII1 Receive Data Bit 0		General Purpose IO Bit 19	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ1	I/O		NAND Data Bit 1	RGMII1 Manageme nt Data IO	I2C3 Serial Data	General Purpose IO Bit 20	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ2	I/O		NAND Data Bit 2	RGMII1 Manageme nt Data clock	I2C3 Serial clock	General Purpose IO Bit 21	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ3	I/O		NAND Data Bit 3	RGMII1 Receive control	USB1 Data Bit 4	General Purpose IO Bit 22	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ4	I/O		NAND Data Bit 4	RGMII1 Transmit control	USB1 Data Bit 5	General Purpose IO Bit 23	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ5	I/O		NAND Data Bit 5	RGMII1 Receive	USB1 Data Bit 6	General Purpose IO	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)		F	Pin Description	1	Connection Guidelines	
				clock		Bit 24	
NAND_DQ6	I/O		NAND Data Bit 6	RGMII1 Receive Data Bit 1	USB1 Data Bit 7	General Purpose IO Bit 25	If unused, program it in Quartus as an input with a weak pull-up.
NAND_DQ7	I/O		NAND Data Bit 7	RGMII1 Receive Data Bit 2		General Purpose IO Bit 26	If unused, program it in Quartus as an input with a weak pull-up.
NAND_WP	I/O		NAND Write Protect	RGMII1 Receive Data Bit 3	QSPI Slave Select 2	General Purpose IO Bit 27	If unused, program it in Quartus as an input with a weak pull-up.
BOOTSEL2 (BSEL2)/ NAND_WE	I/O	BOOTSEL2 (BSEL2) During a cold reset this signal is sampled as a boot select input.	NAND Write Enable	QSPI Slave Select 1		General Purpose IO Bit 28	Connect a pull-up such as $10\text{-k}\Omega$ or pull-down resistor such as $1\text{-k}\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Boot Select values. This resistor will not interfere with the slow speed interface signals that could share this pin.
QSPI_IO0	I/O		QSPI Data IO Bit 0		USB 1 Clock	General Purpose IO Bit 29	If unused, program it in Quartus as an input with a weak pull-up.
QSPI_IO1	I/O		QSPI Data IO Bit 1		USB1 Stop Data	General Purpose IO Bit 30	If unused, program it in Quartus as an input with a weak pull-up.
QSPI_IO2	I/O		QSPI Data IO Bit 2		USB1 Direction	General Purpose IO Bit 31	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)		F	Pin Description	1		Connection Guidelines
QSPI_IO3	I/O		QSPI Data IO Bit 3		USB1 Next Data	General Purpose IO Bit 32	If unused, program it in Quartus as an input with a weak pull-up.
BOOTSEL1 (BSEL1)/ QSPI_SS0	I/O	BOOTSEL1 (BSEL1) During a cold reset this signal is sampled as a boot select input.	QSPI Slave Select 0			General Purpose IO Bit 33	Connect a pull-up such as $10\text{-}k\Omega$ or pull-down resistor such as $1\text{-}k\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Boot Select values. This resistor will not interfere with the slow speed interface signals that could share this pin.
QSPI_CLK	I/O		QSPI Clock			General Purpose IO Bit 34	When configured as the QSPI Clock and if single memory topology is used, connect a 50 Ω series termination resistor near this Cyclone V SoC FPGA device pin.For other topologies use a 25 Ω resistor. If unused, program it in Quartus as an input with a weak pull-up.
QSPI_SS1	I/O		QSPI Slave Select 1			General Purpose IO Bit 35	If unused, program it in Quartus as an input with a weak pull-up.
SDMMC_CMD	I/O		SDMMC Command Line	USB0 Data Bit 0		General Purpose IO Bit 36	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as $10\text{-k}\Omega$. See note 14.
SDMMC_PWREN	I/O		SDMMC Power Enable	USB0 Data Bit 1		General Purpose IO Bit 37	If unused, program it in Quartus as an input with a weak pull-up. See note 14.
SDMMC_D0	I/O		SDMMC Data Bit 0	USB0 Data Bit 2		General Purpose IO Bit 38	If unused, program it in Quartus as an input with a weak pull-up. If booting the HPS from an MMC/eMMC device, pull this pin high on the board with a weak pull-up resistor such as 10-kΩ. See note 14.
SDMMC_D1	I/O		SDMMC	USB0 Data		General Purpose IO	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	F	Pin Description		Connection Guidelines
		Data Bit 1	Bit 3	Bit 39	board with a weak pull-up resistor such as 10-kΩ. See note 14.
SDMMC_D4	I/O	SDMMC Data Bit 4	USB0 Data Bit 4	General Purpose IO Bit 40	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as $10\text{-k}\Omega$. See note 14.
SDMMC_D5	I/O	SDMMC Data Bit 5	USB0 Data Bit 5	General Purpose IO Bit 41	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as $10\text{-k}\Omega$. See note 14.
SDMMC_D6	I/O	SDMMC Data Bit 6	USB0 Data Bit 6	General Purpose IO Bit 42	If unused, program it in Quartus as an input with a weak pull-up If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as 10-kΩ. See note 14.
SDMMC_D7	I/O	SDMMC Data Bit 7	USB0 Data Bit 7	General Purpose IO Bit 43	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as $10\text{-k}\Omega$. See note 14.
HPS_GPIO44	I/O		USB0 Clock	General Purpose IO Bit 44	If unused, program it in Quartus as an input with a weak pull-up. See note 14.
SDMMC_CCLK_OUT	I/O	SDMMC Clock out	USB0 Stop Data	General Purpose IO Bit 45	If unused, program it in Quartus as an input with a weak pull-up. See note 14.
SDMMC_D2	I/O	SDMMC Data Bit 2	USB0 Direction	General Purpose IO Bit 46	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as $10-k\Omega$. See note 14.
SDMMC_D3	I/O	SDMMC Data Bit 3	USB0 Next Data	General Purpose IO Bit 47	If unused, program it in Quartus as an input with a weak pull-up. If the pin is connected to a SD/MMC flash device, pull this pin high on the board with a weak pull-up resistor such as 10 -k Ω . See note 14 and 15.
TRACE_CLK	I/O	Trace Clock		General Purpose IO	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)	I	Pin Description			Connection Guidelines
					Bit 48	
TRACE_D0	I/O	Trace Data Bit 0	SPIS0 Clock	UART0 Receive Data	General Purpose IO Bit 49	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D1	I/O	Trace Data Bit 1	SPIS0 Master Out Slave In	UART0 Transmit	General Purpose IO Bit 50	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D2	I/O	Trace Data Bit 2	SPIS0 Master In Slave Out	I2C1 Serial Data	General Purpose IO Bit 51	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D3	I/O	Trace Data Bit 3	SPIS0 Slave Select 0	I2C1 Serial clock	General Purpose IO Bit 52	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D4	I/O	Trace Data Bit 4	SPIS1 Clock	CAN1 Receive	General Purpose IO Bit 53	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D5	I/O	Trace Data Bit 5	SPIS1 Master Out Slave In	CAN1 Transmit	General Purpose IO Bit 54	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D6	I/O	Trace Data Bit 6	SPIS1 Slave Select Input	I2C0 Serial Data	General Purpose IO Bit 55	If unused, program it in Quartus as an input with a weak pull-up.
TRACE_D7	I/O	Trace Data Bit 7	SPIS1 Master In Slave Out	I2C0 Serial clock	General Purpose IO Bit 56	If unused, program it in Quartus as an input with a weak pull-up.
SPIM0_CLK	I/O	SPIM0 Clock	I2C1 Serial Data	UART 0 Clear to	General Purpose IO	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)			Pin Description			Connection Guidelines
					Send	Bit 57	
SPIM0_MOSI	I/O		SPIM0 Master Out Slave In	I2C1 Serial clock	UART0 Request to Send	General Purpose IO Bit 58	If unused, program it in Quartus as an input with a weak pull-up.
SPIM0_MISO	I/O		SPIM0 Master In Slave Out	CAN1 Receive	UART1 Clear to Send	General Purpose IO Bit 59	If unused, program it in Quartus as an input with a weak pull-up.
BOOTSEL0 (BSEL0)/ SPIM0_SS0	1/0	BOOTSEL0 (BSEL0) During a cold reset this signal is sampled as a boot select input.	SPIM0 Slave Select 0	CAN1 Transmit	UART1 Request to Send	General Purpose IO Bit 60	Connect a pull-up such as $10\text{-}k\Omega$ or pull-down resistor such as $1\text{-}k\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Boot Select values. This resistor will not interfere with the slow speed interface signals that could share this pin.
UARTO_RX	I/O		UART0 Receive	CAN0 Receive	SPIM0 Slave Select 1	General Purpose IO Bit 61	If unused, program it in Quartus as an input with a weak pull-up.
CLOCKSEL1 (CSEL1)/ UART0_TX	I/O	CLOCKSEL1 (CSEL1) During a cold reset this signal is sampled as a clock select input.	UART0 Transmit	CAN0 Transmit	SPIM1 Slave Select 1	General Purpose IO Bit 62	Connect a pull-up such as $10\text{-}k\Omega$ or pull-down resistor such as $1\text{-}k\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Clock Select values. This resistor will not interfere with the slow speed interface signals that could share this pin.
I2C0_SDA	I/O		I2C0 Serial Data	UART1 Receive	SPIM1 Clock	General Purpose IO Bit 63	If unused, program it in Quartus as an input with a weak pull-up.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V HPS Pin Name	Pin Type (1st and 2nd Function)		F	Pin Description	1	Connection Guidelines	
12C0_SCL	I/O		I2C0 Serial Clock	UART1 Transmit	SPIM1 Master Out Slave In	General Purpose IO Bit 64	If unused, program it in Quartus as an input with a weak pull-up.
CAN0_RX	I/O		CAN0 Receive	UART0 Receive	SPIM1 Master In Slave Out	General Purpose IO Bit 65	If unused, program it in Quartus as an input with a weak pull-up.
CLOCKSEL0 (CSEL0)/ CAN0_TX	I/O	CLOCKSEL0 (CSEL0) During a cold reset this signal is sampled as a clock select input.	CAN0 Transmit	UART0 Transmit	SPIM1 Slave Select 0	General Purpose IO Bit 66	Connect a pull-up such as $10\text{-k}\Omega$ or pull-down resistor such as $1\text{-k}\Omega$ to select the desired boot select values. Refer to the Booting and Configuration appendix in the Cyclone V Device Handbook for Clock Select values. This resistor will not interfere with the slow speed interface signals that could share this pin.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Intel provides these guidelines only as recommendations. It is the responsibility of the designer to apply simulation results to the design to verify proper device functionality.

- 1. These pin connection guidelines are based on the Cyclone V SX, ST, and SE device variants.
- 2. Capacitance values for the power supply should be selected after considering the amount of power they need to supply over the frequency of operation of the particular circuit being decoupled. A target impedance for the power plane should be calculated based on current draw and voltage droop requirements of the device/supply. The power plane should then be decoupled using the appropriate number of capacitors. On-board capacitors do not decouple higher than 100 MHz because "Equivalent Series Inductance" of the mounting of the packages. Proper board design techniques such as interplane capacitance with low inductance should be considered for higher frequency decoupling. The Power Delivery Network (PDN) tool serves as an excellent decoupling analysis tool. For more details, refer to the
- 3. Use the Cyclone V Early Power Estimator to determine the current requirements for VCC and other power supplies.
- 4. These supplies may share power planes across multiple Cyclone V devices.
- 5. Example 4, Figure 4, Example 5, Figure 5, Example 6, and Figure 6 illustrate power supply sharing guidelines for the Cyclone V SX device. Example 7, Figure 7, Example 8, and Figure 8 illustrate power supply sharing guidelines for the Cyclone V ST device. Example 9, Figure 9, Example 10, Figure 11, and Figure 11 illustrate power supply sharing guidelines for the Cyclone V SE device.
- 6. Power pins should not share breakout vias from the BGA. Each ball on the BGA needs to have its own dedicated breakout via. VCC must not share breakout vias.
- 7. Low Noise Switching Regulator defined as a switching regulator circuit encapsulated in a thin surface mount package containing the switch controller, power FETs, inductor, and other support components. The switching frequency is usually between 800kHz and 1MHz and has fast transient response. The switching frequency range is not an Intel requirement. However, Intel does require the Line Regulation and Load Regulation meet the following specifications:
 - Line Regulation < 0.4%
 - Load Regulation < 1.2%
- 8. The number of modular I/O banks on Cyclone V devices depends on the device density. For the indexes available for a specific device, please refer to the I/O Bank section in the Cyclone V device handbook.
- 9. For AC-coupled links, the AC-coupling capacitor can be placed anywhere along the channel. PCIe protocol requires the AC-coupling capacitor to be placed on the transmitter side of the interface that permits adapters to be plugged and unplugged.
- 10. All transceiver power pins except VCCH_GXBL pin on the same side of the device must be connected either to the required supply or to GND. When ALL transceiver channels on the same side are unused, you have the option to connect all of the transceiver power pins except VCCH_GXBL pin on the same side of the device to GND or to the required supply. The VCCH_GXBL pin must always be powered.
- 11. For item [#] Please refer to the device pin table for the pin-out mapping.
- 12. The peripheral pins are programmable through pin multiplexers. Each pin may have up to four functions. Configuration of each pin is done during HPS configuration.
- 13. Peripheral I/O pins and GPIO pins that are configured as Loan I/O drives '1' before FPGA is being configured.
- 14. USB0 is not available in U19 package with 484 pin count.
- 15. When using SD card, there is an existing 50-kΩ pull-up on SDMMC Data Bit 3 that can be disabled using SET_CLR_CARD_DETECT (ACMD42) command. This does not apply to eMMC flash.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V GX

Example 1. Cyclone V GX Power Supply Sharing Guidelines

Example Requiring 2 Power Regulators

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes	
VCC					Share	May be able to share VCCL_GXBL and VCCE_GXBL with VCC with proper isolation filters. VCC,	
VCCL_GXBL	1	1.1	± 30mV	Switcher (*)	Isolate	VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to the Cyclone V	
VCCE_GXBL					isolate	device.	
VCCIO							
VCCPD						If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other	
VCCPGM		Varies			Share if 2.5V	voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.	
VCC_AUX	2		± 5%	Switcher (*)			
VCCA_FPLL		2.5	2.5			VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to share VCC_AUX, VCCH_GXBL, VCCBAT, and VCCA_FPLL with the same regulator as VCCIO,	
VCCH_GXBL					Isolate	VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V	
VCCBAT		Varies				devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.	

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V GX device is provided in Figure 1.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

1.1V DC Input VCC Switcher (*) Board Supply VCCE_GXBL Filter VCCL GXBL VCCIO 2.5V Switcher (*) VCCPD VCCPGM VCC AUX VCCH_GXBL Filter VCCA_FPLL VCCBAT

Figure 1. Example Cyclone V GX Power Supply Block Diagram

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V GT

Example 2. Cyclone V GT Power Supply Sharing Guidelines

Example Requiring 3 Power Regulators

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	1	1.1	± 30mV	Switcher (*)	Isolate	VCC should be placed at power layers nearest to the Cyclone V device.
VCCE_GXBL	2	1.1 or 1.2	± 30mV	Linear	Share	Intel recommends increasing VCCE_GXBL and VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit jitter specification.
VCCL_GXBL	_	1.1011.2	± 30111V	Emodi	Isolate	May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters. VCCE_GXBL and VCCL_GXBL should be placed at power layers nearest to the Cyclone V device.
VCCIO					Share if 2.5V	
VCCPD						If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However,
VCCPGM		Varies				for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCC_AUX	3		± 5%	Switcher (*)		
VCCA_FPLL		2.5				VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to share VCC_AUX, VCCH_GXBL, VCCBAT, and VCCA_FPLL with the same regulator
VCCH_GXBL					Isolate	as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple.
VCCBAT		Varies				Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V GT device is provided in Figure 2.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 2. Example Cyclone V GT Power Supply Block Diagram

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Ramp up the VCCE_GXBL and VCCL_GXBL power rails to a minimum of 80% of their voltage before regulator count 3 ramps up. Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V E

Example 3. Cyclone V E Power Supply Sharing Guidelines

Example Requiring 2 Power Regulators

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	1	1.1	± 30mV	Switcher (*)	Share	VCC should be placed at power layers nearest to the Cyclone V device.
VCCIO						
VCCPD						If all of these supplies require the same voltage level, and when the regulator selected satisfies the
VCCPGM		Varies			Share if 2.5V	power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCC_AUX	2		± 5%	Switcher (*)		
VCCA_FPLL		2.5			Isolate	May be able to share VCC_AUX, VCCBAT, and VCCA_FPLL with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V device. If you use the design security feature, VCCBAT should be powered by battery with voltage range listed in the device datasheet.
VCCBAT		Varies				

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V E device is provided in Figure 3.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 3. Example Cyclone V E Power Supply Block Diagram

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V SX

Example 4. Cyclone V SX Power Supply Sharing Guidelines

Example Requiring 2 Power Regulators (FPGA & HPS share power)

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes		
VCC					Share			
VCC_HPS		4.4	. 20\/	Constals and (*)		May be able to share VCCL_GXBL and VCCE_GXBL with VCC and VCC_HPS with proper isolation		
VCCE_GXBL	1	1.1	± 30mV	Switcher (*)	Isolate	filters. VCC, VCC_HPS, VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to the Cyclone V device.		
VCCL_GXBL					isolate			
VCCIO								
VCCIO_HPS						If all of these supplies require the same voltage level, and when the regulator selected satisfies the		
VCCPD		\/orioo			Share if 2.5V	power specifications, then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.		
VCCPD_HPS		Varies						
VCCPGM								
VCCRSTCLK_HPS								
VCC_AUX								
VCC_AUX_SHARED	2		± 5%	Switcher (*)		VCC_AUX, VCCA_FPLL, VCCH_GXBL and VCCPLL_HPS must always be powered up for the PLL		
VCCA_FPLL		2.5				operation. VCC_AUX_SHARED must always be powered up for the HPS operation. May be able to		
VCCH_GXBL						share VCC_AUX, VCCA_FPLL, VCCH_GXBL, VCCPLL_HPS VCC_AUX_SHARED and VCCBAT with		
VCCPLL_HPS					Isolate	the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS, VCCPGM and VCCRSTCLK_HPS when all power rails require 2.5V, but only with proper isolation filters. Depending		
VCCBAT		Varies				on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.		

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SX device is provided in Figure 4.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 4. Example Cyclone V SX Power Supply Block Diagram (FPGA and HPS share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Example 5. Cyclone V SX C2/C4 Power Supply Sharing Guidelines

Example Requiring 4 Power Regulators (FPGA & HPS do not share power)

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	1	1.1	± 30mV		Share	
VCCE_GXBL				Switcher (*)	Isolate	May be able to share VCCL_GXBL and VCCE_GXBL with VCC with proper isolation filters. VCC, VCCL GXBL, and VCCE GXBL should be placed at power layers nearest to the Cyclone V device.
VCCL_GXBL						VOOL_ONDE, and VOOL_ONDE should be placed at perior layers hearest to the eyerene v device.
VCCIO						If all of these supplies require the same voltage level, and when the regulator selected satisfies the
VCCPD		Varies			Share	power specifications then these supplies may all be tied in common. However, for any other voltage
VCCPGM		2.5		Switcher (*)	if 2.5V	level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCC_AUX	2		± 5%		Isolate	VCC_AUX, VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to share VCCH_GXBL, VCCA_FPLL and VCCBAT with the same regulator as VCCIO, VCCPD,
VCCH_GXBL						and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the
VCCA_FPLL						design security feature, VCCBAT should be powered by battery with voltage range as listed in the
VCCBAT		Varies				device datasheet.
VCC_HPS	3	1.1	± 30mV	Switcher (*)	Isolate	Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS should be placed at power layers nearest to the Cyclone V device.
VCCIO_HPS						If all of these supplies require the same voltage level, and when the regulator selected satisfies the
VCCPD_HPS		Varies			Share if 2.5V	power specifications then these supplies may all be tied in common. However, for any other voltage
VCCRSTCLK_HPS	4	varies	± 5%	Switcher (*)	Share ii 2.5v	level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCCPLL_HPS						VCC_AUX_SHARED and VCCPLL_HPS must always be powered up for the PLL operation. May be
VCC_AUX_SHARED		2.5			Isolate	able to share VCC_AUX_SHARED and VCCPLL_HPS with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SX C2/C4 device is provided in Figure 5.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Play Early Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 5. Example Cyclone V SX C2/C4 Power Supply Block Diagram (FPGA & HPS do not share power)

^{*}When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Example 6. Cyclone V SX C5/C6 Power Supply Sharing Guidelines

Example Requiring 4 Power Regulators (FPGA & HPS do not share power)

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	1	1.1	± 30mV		Share	May be able to above VCCL CVPL and VCCE CVPL with VCC with a represented the filters VCC
VCCE_GXBL				Switcher (*)	Isolate	May be able to share VCCL_GXBL and VCCE_GXBL with VCC with proper isolation filters. VCC, VCCL_GXBL, and VCCE_GXBL should be placed at power layers nearest to the Cyclone V device.
VCCL_GXBL					1301010	
VCCIO					Chara	If all of these supplies require the same voltage level, and when the regulator selected satisfies the
VCCPD		Varies			Share if 2.5V	power specifications then these supplies may all be tied in common. However, for any other voltage level, you will require many regulators as there are variations of supplies in your specific design.
VCCPGM						Use the EPE tool to assist in determining the power required for your specific design.
VCCH_GXBL	2 2.5	2.5	± 5%	Switcher (*)		VCCH_GXBL and VCCA_FPLL must always be powered up for the PLL operation. May be able to
VCCA_FPLL		2.5			Isolate	share VCCH_GXBL, VCCA_FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design
VCCBAT		Varies				security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.
VCC_HPS	3	1.1	± 30mV	Switcher (*)	Isolate	Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS should be placed at power layers nearest to the Cyclone V device.
VCCIO_HPS						If all of these supplies require the same voltage level, and when the regulator selected satisfies the
VCCPD_HPS		Varies			Share if 2.5V	power specifications then these supplies may all be tied in common. However, for any other voltage
VCCRSTCLK_HPS		Valles			Onarc II 2.0V	level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCCPLL_HPS	4		± 5%	Switcher (*)		VCC_AUX_SHARED and VCCPLL_HPS must always be powered up for the PLL operation. May be
VCC_AUX_SHARED		2.5	± 5%	Switcher (*)	Isolate	able to share VCC_AUX_SHARED and VCCPLL_HPS with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.
VCC_AUX					Isolate	VCC_AUX must always be powered up for HPS operation. May be able to share with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter.

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SX C5/C6 device is provided in Figure 6.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the <u>PowerPlay Early Power Estimators (EPE) and Power Analyzer page</u>. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the <u>Enpirion Power page</u> and the <u>Powering FPGAs Resource Center</u>.

Refer to power up seguence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 6. Example Cyclone V SX C5/C6 Power Supply Block Diagram (FPGA & HPS do not share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V ST

Example 7. Cyclone V ST Power Supply Sharing Guidelines

Example Requiring 3 Power Regulators (FPGA & HPS share power)

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	1	1.1	± 30mV	Switcher (*)	Share	VCC and VCC, HDS about he placed at power layers progress to the Cyclone V device
VCC_HPS	'	1.1	± 30111V	Switcher ()	Share	VCC and VCC_HPS should be placed at power layers nearest to the Cyclone V device.
VCCE_GXBL				Linear	Share	Intel recommends increasing VCCE_GXBL and VCCL_GXBL from 1.1V to 1.2V for systems which require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit jitter specification.
VCCL_GXBL	2	1.1 or 1.2	± 30mV		Isolate	May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters. VCCE_GXBL and VCCL_GXBL should be placed at power layers nearest to the Cyclone V device.
VCCIO						
VCCIO_HPS		Varies			Share if 2.5V	If all of these supplies require the same voltage level, and when the regulator selected satisfies
VCCPD						the power specifications then these supplies may all be tied in common. However, for any other
VCCPD_HPS		valles				voltage level, you will require many regulators as there are variations of supplies in your specific design.
VCCPGM						Use the EPE tool to assist in determining the power required for your specific design.
VCCRSTCLK_HPS						
VCC_AUX	3		± 5%	Switcher (*)		
VCC_AUX_SHARED	3		± 3%	Switcher ()		VCC_AUX, VCCA_FPLL, VCCH_GXBL and VCCPLL_HPS must always be powered up for the
VCCH_GXBL		2.5				PLL operation. VCC_AUX_SHARED must always be powered up for the HPS operation. May be able to share VCC_AUX, VCC_AUX_SHARED, VCCH_GXBL, VCCA_FPLL, VCCPLL_HPS and VCCBAT with the same regulator as VCCIO, VCCIO_HPS, VCCPD, VCCPD_HPS,
VCCA_FPLL					Isolate	VCCPGM and VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.
VCCPLL_HPS						
VCCBAT		Varies				

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V ST device is provided in Figure 7.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 7. Example Cyclone V ST Power Supply Block Diagram (FPGA and HPS share power)

Ramp up the VCCE_GXBL and VCCL_GXBL power rails to a minimum of 80% of their voltage before regulator count 3 ramps up. Refer to power up sequence recommendation in Cyclone V Devices Handbook; Power Managament in Cyclone V Devices.

PCG-01014-2.8

^{*}When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Example 8. Cyclone V ST D5/D6 Power Supply Sharing Guidelines Example Requiring 5 Power Regulators (FPGA & HPS do not share power)

Regulator Voltage Power Power Supply Regulator **Notes** Count Pin Name Level (V) **Tolerance** Source Sharing VCC 1 Switcher (*) VCC should be placed at power layers nearest to the Cyclone V device. 1.1 ± 30mV Isolate Intel recommends increasing VCCE GXBL and VCCL GXBL from 1.1V to 1.2V for systems which Share VCCE GXBL require full compliance to the CPRI 4.9G and PCI Express Gen 2 transmit litter specification. 2 1.1 or 1.2 + 30mV Linear May be able to share VCCL_GXBL with VCCE_GXBL with proper isolation filters. VCCL_GXBL Isolate VCCE GXBL and VCCL GXBL should be placed at power layers nearest to the Cyclone V device. If all of these supplies require the same voltage level, and when the regulator selected satisfies the **VCCIO** power specifications then these supplies may all be tied in common. However, for any other voltage Share VCCPD Varies level, you will require many regulators as there are variations of supplies in your specific design. if 2.5V **VCCPGM** Use the EPE tool to assist in determining the power required for your specific design. 3 ± 5% Switcher (*) VCCH GXBL and VCCA FPLL must always be powered up for PLL operation. May be able to share VCCH GXBL VCCH GXBL, VCCA FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM 2.5 Isolate when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator VCCA FPLL capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet. **VCCBAT** Varies Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC HPS VCC HPS 4 ± 30mV Switcher (*) Isolate 1.1 should be placed at power layers nearest to the Cyclone V device. If all of these supplies require the same voltage level, and when the regulator selected satisfies the VCCIO HPS power specifications then these supplies may all be tied in common. However, for any other voltage Share if 2.5V VCCPD HPS Varies level, you will require many regulators as there are variations of supplies in your specific design. VCCRSTCLK HPS Use the EPE tool to assist in determining the power required for your specific design. VCC_AUX_SHARED must always be powered up for HPS operation. VCCPLL_HPS must always be VCC AUX SHARED powered up for the PLL operation. May be able to share VCC AUX SHARED and VCCPLL HPS with 5 Isolate ± 5% Switcher (*) the same regulator as VCCIO HPS, VCCPD HPS, and VCCRSTCLK HPS when all power rails VCCPLL HPS require 2.5V, but only with a proper isolation filter. 2.5 VCC AUX must always be powered up for HPS operation. May be able to share VCC AUX with the same regulator as VCCIO HPS, VCCPD HPS, and VCCRSTCLK HPS when all power rails require VCC AUX Isolate 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V ST D5/D6 device is provided in Figure 8.

PCG-01014-2.8

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Play Early Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 8. Example Cyclone V ST D5/D6 Power Supply Block Diagram (FPGA & HPS do not share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Ramp up the VCCE_GXBL and VCCL_GXBL power rails to a minimum of 80% of their voltage before regulator count 3 ramps up. Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Cyclone V SE

Example 9. Cyclone V SE Power Supply Sharing Guidelines

Example Requiring 2 Power Regulators (FPGA & HPS share power)

Power Pin Name	Regulator Count	Voltage Level (V)	Supply Tolerance	Power Source	Regulator Sharing	Notes
VCC	4	1.1	. 20\/	Switcher (*)	Share	VCC and VCC LIBS about the placed at never levers pearest to the Cyclere V device
VCC_HPS	'	1.1	± 30mV		Share	VCC and VCC_HPS should be placed at power layers nearest to the Cyclone V device.
VCCIO						
VCCIO_HPS					Share if 2.5V	If all of these supplies require the same voltage level, and when the requilator collected actisfies the
VCCPD		Varies				If all of these supplies require the same voltage level, and when the regulator selected satisfies the power specifications then these supplies may all be tied in common. However, for any other voltage
VCCPD_HPS						level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design.
VCCPGM						
VCCRSTCLK_HPS			50/			
VCC_AUX						
VCC_AUX_SHARED	2	2.5	± 5%	Switcher (*)		VCC_AUX, VCCA_FPLL, VCCH_GXBL and VCCPLL_HPS must always be powered up for the PLL
VCCA_FPLL		2.5				operation. VCC_AUX_SHARED must always be powered up for the HPS operation. May be able to
VCCPLL_HPS					la alata	share VCC_AUX, VCC_AUX_SHARED, VCCH_GXBL, VCCA_FPLL, VCCPLL_HPS and VCCBAT with the same regulator as VCCIO, VCCIO HPS, VCCPD, VCCPD HPS, VCCPGM and
VCCBAT		Varies			Isolate	VCCRSTCLK_HPS when all power rails require 2.5V, but only with a proper isolation filter. Depend on the regulator capabilities this supply may be shared with multiple Cyclone V devices. If you use to design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet.

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SE device is provided in Figure 9.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Play Early Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 9. Example Cyclone V SE Power Supply Block Diagram (FPGA and HPS share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Example 10. Cyclone V SE A2/A4 Power Supply Sharing Guidelines Example Requiring 4 Power Regulators (FPGA & HPS do not share power)

Regulator Voltage Power Power Supply Regulator **Notes** Count Pin Name Level (V) **Tolerance** Source Sharing VCC 1 ± 30mV Switcher (*) Share VCC should be placed at power layers nearest to the Cyclone V device. 1.1 **VCCIO** If all of these supplies require the same voltage level, and when the regulator selected satisfies the **VCCPD** Share power specifications then these supplies may all be tied in common. However, for any other voltage Varies level, you will require many regulators as there are variations of supplies in your specific design. if 2.5V **VCCPGM** Use the EPE tool to assist in determining the power required for your specific design. 2 VCC_AUX ± 5% Switcher (*) VCC AUX and VCCA FPLL must always be powered up for PLL operation May be able to share 2.5 VCC AUX, VCCA FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM VCCA FPLL when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator Isolate capabilities this supply may be shared with multiple Cyclone V devices. If you use the design security feature. VCCBAT should be powered by battery with voltage range as listed in the device datasheet. **VCCBAT** Varies Separate regulator allows the FPGA to be powered off while the HPS is powered on, VCC HPS VCC HPS 3 1.1 ± 30mV Switcher (*) Isolate should be placed at power layers nearest to the Cyclone V device. VCCIO HPS If all of these supplies require the same voltage level, and when the regulator selected satisfies the VCCPD HPS power specifications then these supplies may all be tied in common. However, for any other voltage Varies Share if 2.5V level, you will require many regulators as there are variations of supplies in your specific design. Use the EPE tool to assist in determining the power required for your specific design. VCCRSTCLK HPS ± 5% Switcher (*) VCCPLL HPS VCC_AUX_SHARED must always be powered up for the HPS operation. VCCPLL_HPS must always be powered up for the PLL operation. May be able to share VCCPLL HPS and VCC AUX SHARED 2.5 Isolate with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails VCC_AUX_SHARED require 2.5V, but only with a proper isolation filter.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SE A2/A4 device is provided in Figure 10.

PCG-01014-2.8

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 10. Example Cyclone V SE A2/A4 Power Supply Block Diagram (FPGA & HPS do not share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices. Handbook: Power Managament in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Example 11. Cyclone V SE A5/A6 Power Supply Sharing Guidelines Example Requiring 4 Power Regulators (FPGA & HPS do not share power)

Regulator Power Voltage VlaguZ Power Regulator **Notes Pin Name** Count Level (V) **Tolerance** Source Sharing VCC Switcher (*) VCC should be placed at power layers nearest to the Cyclone V device. 1.1 ± 30mV Share If all of these supplies require the same voltage level, and when the regulator selected satisfies the **VCCIO** power specifications then these supplies may all be tied in common. However, for any other voltage Share VCCPD Varies if 2.5V level, you will require many regulators as there are variations of supplies in your specific design. **VCCPGM** Use the EPE tool to assist in determining the power required for your specific design. VCCA FPLL 2.5 ± 5% Switcher (*) VCCA FPLL must always be powered up for PLL operation May be able to share VCCA FPLL and VCCBAT with the same regulator as VCCIO, VCCPD, and VCCPGM when all power rails require 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be Isolate **VCCBAT** Varies shared with multiple Cyclone V devices. If you use the design security feature, VCCBAT should be powered by battery with voltage range as listed in the device datasheet. Separate regulator allows the FPGA to be powered off while the HPS is powered on. VCC_HPS VCC_HPS 3 1.1 ± 30mV Switcher (*) Isolate should be placed at power layers nearest to the Cyclone V device. VCCIO HPS If all of these supplies require the same voltage level, and when the regulator selected satisfies the VCCPD HPS power specifications then these supplies may all be tied in common. However, for any other voltage Share if 2.5V Varies level, you will require many regulators as there are variations of supplies in your specific design. VCCRSTCLK HPS Use the EPE tool to assist in determining the power required for your specific design. VCC AUX SHARED and VCCPLL HPS must always be powered up for the PLL operation. May be VCCPLL HPS able to share VCC AUX SHARED and VCCPLL HPS with the same regulator as VCCIO HPS. ± 5% Switcher (*) Isolate VCCPD HPS, and VCCRSTCLK HPS when all power rails require 2.5V, but only with a proper VCC AUX SHARED isolation filter. 2.5 VCC AUX must always be powered up for HPS operation. May be able to share VCC AUX with the same regulator as VCCIO_HPS, VCCPD_HPS, and VCCRSTCLK_HPS when all power rails require VCC_AUX Isolate 2.5V, but only with a proper isolation filter. Depending on the regulator capabilities this supply may be shared with multiple Cyclone V devices.

Each board design requires its own power analysis to determine the required power regulators needed to satisfy the specific board design requirements. An example block diagram using the Cyclone V SE A5/A6 device is provided in Figure 11.

PCG-01014-2.8

^{*} When using a switcher to supply these voltages the switcher must be a low noise switcher as defined in note 7.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Use the EPE (Early Power Estimation) tool to assist in determining the power required for your specific design. The Cyclone V performance is guaranteed with the recommended Enpirion power solutions. For a list of recommended Enpirion solutions for Cyclone V devices, refer to the Power Play Early Power Estimators (EPE) and Power Analyzer page. The recommended Enpirion solutions are included in the "Enpirion" tab of your completed EPE. For more details about the Enpirion power solutions, refer to the Enpirion Power page and the Powering FPGAs Resource Center.

Refer to power up sequence recommendation in Cyclone V Devices Handbook: Power Managament in Cyclone V Devices.

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Figure 11. Example Cyclone V SE A5/A6 Power Supply Block Diagram (FPGA & HPS do not share power)

*When using a switcher to supply these voltages, the switcher must be a low noise switcher as defined in note 7.

Refer to power up sequence recommendation in Cyclone V Devices.

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

Revision History

Revision	Description of Changes	Date
1.0	Initial Release.	11/25/2011
1.1	Updated VCCA_FPLL and VCCH_GXBL power-up requirements.	3/29/2012
1.2	Added power supply sharing guidelines for Cyclone V GT and E devices, updated the pull-down requirement for unused transceiver receivers and REFCLK pins, and updated the INIT_DONE pin connection guidelines.	6/13/2012
1.3	Updated the power sharing guidelines for Cyclone V GT devices and updated the VCCE_GXBL, VCCL_GXBL, and nPERST[L0,L1] connection guidelines.	10/16/2012
1.4	Added HPS Pin Connection Guidelines. Added power supply sharing guidelines for Cyclone V SX, ST, and SE devices. Added [B,T]_DQS_[#], [B,T]_DQS#_[#], and [B,T]_DQ_[#] pins. Updated pin description and connection guidelines for the VREF pin. Updated connection guidelines for the RREF pin. Updated pin description for the DIFFIO_TX pin.	11/19/2012
1.5	 Updated Connection Guidelines for HPS_CLK1 and HPS_CLK2 with 'VCCRSTCLK_HPS'. Updated Pin Description for DIFFIO_TX_[B,T,R][#:#]p, DIFFIO_TX_[B,T,R][#:#]n with 'transmitter'. Updated Connection Guidelines where 'If powering down the FPGA fabric is required, tie this pin to 2.5V' is removed and "See Notes 2,3,4, and 7." is added Updated Pin Description for NAND_DQ0, NAND_DQ3 and NAND_DQ5 with 'Receive'. Updated Pin Description for TRACE_D3 with 'Slave'. Updated Note 7) with 'The switching frequency range is not an Altera requirement. However, Altera does require the Line Regulation and Load Regulation meet the following specifications:' Added VREFB[#]N0_HPS pin. 	1/22/2013
1.6	 Updated Connection Guidelines for VCC_AUX. Updated Connection Guidelines for VCC_AUX_SHARED. Updated Connection Guidelines for HPS_GPI#. Added power diagrams for Cyclone SX/ST/SE devices supporting FPGA split power. Added BSEL and CSEL mnemonics to HPS Boot Select and Clock Select signals Updated BSEL and CSEL as primary function. Added the exception that GXB_REFCLK can be DC coupled for the single case of the PCIe HCSL I/O standard. Updated Connection Guidelines for HPS_CLK2. Updated Connection Guidelines for RREF_TL for consistency. Updated Connection Guidelines for VCCIO[#]_HPS by removing 1.25V and 1.35V support. Updated Pin Description for VCCIO[#]_HPS by removing 135, 125. Added Notes 12. and 13. for Differential I/O pins. Updated Connection Guidelines for CLKUSR and RZQ. Added CPRI 6.144G and link to transceiver chapters and datasheet for VCCE_GXBL and VCCL_GXBL. Added Example 5, Figure 5, Example 6, Figure 6, Example 8, Figure 8, Example 10, Figure 10, Example 11 and Figure 11. 	5/15/2013
1.7	Updated Connection Guidelines for REFCLK.	5/17/2013
1.8	Updated Note 13. with the restriction guidelines that are applicable for the Cyclone V LVDS transmitters.	9/4/2013
1.9	Updated Connection Guidelines for TMS, HPS_TMS, TDI, HPS_TDI, TDO, HPS_TDO, nPERST, VCCIO_HPS, SDMMC_CMD, and SDMMC_D0.	10/9/2013

PCG-01014-2.8

Intel recommends that you create a Quartus® Prime design, enter your device I/O assignments, and compile the design. The Quartus Prime design will check your pin connections according to I/O assignments and placement rules. The rules differ from one device to another based on device density, package, I/O assignments, voltage assignments, and other factors that are not fully described in this document or the device handbook.

	Updated Note (10) for both Pin Connection Guidelines and HPS Pin Connection Guidelines.	
2.0	Updated Pin Description for RREF_TL.	12/15/2014
	Updated Connection Guidelines for VCCBAT.	
	 Removed notes 11, 12 and 13 I/O rules for DIFFIO_TX, DIFFIO_RX and DIFFOUT pins. 	
	 Added KDB reference to DIFFIO_TX, DIFFIO_RX and DIFFOUT pins guidelines. 	
	Added note to VREFB[#]N0_HPS.	
	Add note to power supply sharing guidelines for Enpirion solutions.	
	Changed pull-down resistor values for BSEL/CSEL pins to 1K ohm.	
	Changed figure 2, 7 and 8.	
2.1	 Added links referring to Cyclone V Device Handbook: Power Management in Cyclone V Devices for all power sharing guidelines tables and 	6/5/2015
	figures.	
	Updated content in the Disclaimer section.	
	Added Note 13 for HPS Peripheral Pins and General Purpose Input Pins.	
2.2	Added a note (14) to HPS peripheral pins that uses USB0 interface.	10/8/2015
2.3	 Clarified that Cyclone V E and SE devices do not have Hard IP for PCI Express instances and nPERSTL pins. 	12/17/2015
2.4	Changed nCSO/DATA4 pin type from output to bidirectional	4/14/2016
2.5	Removed SDMMC_FB_CLK_IN pin.	10/28/2016
	Added HPS_GPIO44 pin as General Purpose I/O bit 44.	
	Removed 1.2 LVTTL/LVCMOS and HSTL 12 support for VCCIO[#]_HPS pin.	
2.6	Changed 10-kW to 10-kΩ for CRC_ERROR pin.	2/2/2017
2.7	Added a note (15) to SDMMC_D3 pin.	11/17/2017
	Added guideline to pull-up SDMMC_D1, SDMMC_D2, SDMMC_D3, SDMMC_D4, SDMMC_D5, SDMMC_D6, and SDMMC_D7 pins when	
	booting HPS from an MMC/eMMC device.	
	Added guideline for shared VCCPD pins across I/O banks.	
2.8	 Removed note "During JTAG programming, the nCONFIG status is ignored" for nCONFIG pin. 	4/20/2018