Dinámica efectiva de un sistema de N qubits

Utilizando el principio de máxima entropía

Autor: A. Castillo

Director de tesis: D. Dávalos

Equipo de trabajo: C. Pineda, D. Dávalos, K. Uriostegui, E. Navarrete.

Enero 2023

Facultad de Ciencias, UNAM

Estructura de la presentación

[0]

- 1. Introducción
- 2. Construcción del modelo y la asignación
- 3. Resultados
- 4. Conclusiones

Introducción

Qubits y su dinámica

Un qubit es un sistema cuántico de dos niveles. Todo qubit se puede escribir como

$$\left|\psi\right\rangle =\alpha\left|\mathbf{0}\right\rangle +\beta\left|\mathbf{1}\right\rangle .$$

Por convención usamos los eigenestados del operador σ_3 .

$$|0
angle$$
 y $|1
angle$.

La evolución de un sistema cuántico descrito por $|\psi\rangle$ está dada por

$$\mathrm{i}\hbarrac{d}{dt}\ket{\psi(t)}=H\ket{\psi(t)}\,.$$

Cuya solución es una evolución unitaria $U(t,t_0)=e^{-\mathrm{i}H(t-t_0)/\hbar}$

$$|\psi(t)\rangle = U(t,t_0) |\psi(t_0)\rangle$$
.

Parametrización de un qubit

Un qubit $|\psi
angle \in \mathsf{H}_2$ arbitrario

$$\left|\psi\right\rangle =\alpha\left|\mathbf{0}\right\rangle +\beta\left|\mathbf{1}\right\rangle ,$$

se puede reescribir como:

$$|\psi\rangle = \cos\!\left(\frac{\theta}{2}\right)|0\rangle + \mathrm{e}^{\mathrm{i}\varphi}\sin\!\left(\frac{\theta}{2}\right)|1\rangle\,.$$

Dinámica que emerge de una descripción efectiva

"Dinámica efectiva de un sistema de N qubits"

Dinámica efectiva

Dinámica (que emerge de una descripción) efectiva¹

Aquí,

 $efectiva \iff gruesa.$

La descripción gruesa de un sistema es resultado de

- Aparato de medición imperfecto
- Descarte de grados de libertad del sistema

¹Duarte et al., "Emerging dynamics arising from coarse-grained quantum systems"

Descripciones efectivas y modelos de grano grueso

Una descripción de grano grueso es aquella que no toma en cuenta todos los detalles de un sistema o fenómeno.

Variables termodinámicas

Descripción efectiva

$$T = \frac{1}{k_{\rm P}} \frac{2}{3} \langle E_{\rm cin} \rangle$$
.

Introducción

El operador de densidad

Mezclas estadísticas

Probabilidad cuántica

Los vectores de estado contienen probabilidad cuántica:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$$
,

de la que se recupera la regla de Born:

$$p(|0\rangle) = |\alpha|^2$$
 $p(|0\rangle) = |\beta|^2$

Probabilidad por ignorancia

Un sistema del que se sabe se halla en el estado $|\varphi_j\rangle$ con probabilidad p_j .

De este sistema se halla en un estado de *mezcla estadística*.

Es descrito por el operador de densidad

$$\rho = \sum_{j} p_{j} |\varphi_{j}\rangle\langle\varphi_{j}|.$$

Parametrización

Una base hermítica permite parametrizar a una matriz de densidad a través del producto punto de Hilbert-Schmidt¹

$$\rho = \frac{1}{2} \left(\mathbb{1}_2 \operatorname{Tr}(\rho) + \sum_{k=1}^3 \operatorname{Tr}(\rho \sigma_k) \sigma_k \right).$$

El vector de Bloch es

$$ec{r_{
ho}} = egin{pmatrix} \operatorname{Tr}(
ho\sigma_{\mathsf{x}}) \\ \operatorname{Tr}(
ho\sigma_{\mathsf{y}}) \\ \operatorname{Tr}(
ho\sigma_{\mathsf{z}}) \end{pmatrix}$$

 $^{|1\}rangle$

¹Nielsen et al., Quantum Computation and Quantum Information

Sistemas multipartitos

Combinar y reducir

Si $\rho_{\rm bi}$ describe dos qubits A y B,

$$\mathsf{H}_{\mathsf{bi}} = \mathsf{H}_2 \otimes \mathsf{H}_2.$$

¿Qué sucede si es relevante **una** partícula?

$$\rho^{A} = \operatorname{Tr}_{B}(\rho_{\mathsf{bi}}),$$

Evolución

Sistema multipartito \rightarrow von Neumann

$$\mathrm{i}\hbarrac{d}{dt}
ho_{\mathrm{bi}}(t)=[H,
ho_{\mathrm{bi}}(t)].$$

Trazando:

$$\mathrm{i}\hbarrac{d}{dt}
ho^{A}(t)=\mathrm{Tr}_{B}([H,
ho_{\mathrm{bi}}(t)]).$$

Supóngase que el sistema de interés está acoplado a un entorno: $ho_{\mathsf{Tot}}(0) =
ho_{\mathcal{S}}(0) \otimes
ho_{\mathcal{E}}$

El canal cuántico

$$\mathrm{i}\hbar rac{d}{dt}
ho_{S}(t)=\mathrm{Tr}_{E}([H,
ho_{\mathrm{Tot}}(t)]),$$

Tiene solución:

$$ho_{S}(t) = \mathcal{E}_{t}(
ho_{S}(0))$$
 $\mathcal{E}_{t}(
ho_{S}(0)) = \operatorname{Tr}_{E}\left[U(t)\left(
ho_{S}(0)\otimes
ho_{E}\right)U^{\dagger}(t)
ight]$

Operadores de Kraus

La representación en operadores:

- $\mathcal{E}(\rho) = \sum_{k} A_{k} \rho A_{k}^{\dagger}$
- $\sum_k A_k^{\dagger} A_k = 1$,

asegura CPTP.1

¹Breuer et al., The theory of open quantum systems

Ejemplo de canal cuántico: desfasamiento

El canal de desfasamiento tiene operadores de Kraus $\{\sqrt{p}\mathbb{1}, \sqrt{(1-p)}\sigma_3\}$.

Ejemplo de canal cuántico: bitflip

El canal de bitflip tiene operadores de Kraus $\{\sqrt{p}\mathbb{1}, \sqrt{(1-p)}\sigma_1\}$.

Ejemplo de canal cuántico: despolarización

Finalmente, el canal de despolarización se define mediante

$$ho\mapsto
horac{1}{2}\mathbb{1}+(1-
ho)
ho.$$

El problema: motivación

Se estudia la dinámica que emerge de una descripción efectiva

¿Cómo construir A?

Introducción

Entropía e información

Entropía en teoría de información clásica

Información clásica

A cada evento se le puede asociar una cantidad de información

- "Número entre 1 y 6" → no da información.
- "No cayó 6" → poca información
- "Cayó 5" → más información

Entonces información $\propto f(p(\text{evento})^{-1})$

Claude Shannon demostró¹

$$S_{S} = -k \sum_{j} p(x_{j}) \log p(x_{j}).$$

La *entropía de Shannon* representa la información promedio.

Entropía de Shannon

¹Shannon, "A mathematical theory of communication"

Introducción

El Principio de Máxima Entropía

Intuición del Principio de Máxima Entropía

Usando dados: 🗇 🖼

Supóngase que
$$\left\langle \widehat{\square} \right\rangle = 3.5$$
 $\not : p(x)$?

$$p(\boxdot) = \frac{1}{6} \quad p(\boxdot) = \frac{1}{6} \quad p(\boxdot) = \frac{1}{6}$$

$$p(\boxdot) = \frac{1}{6} \quad p(\boxdot) = \frac{1}{6} \quad p(\boxdot) = \frac{1}{6}$$

Dado pesado:

$$p(\mathbf{C}) = \frac{1}{2}$$
 $p(\mathbf{C}) = \frac{1}{2}$ $p(\mathbf{C}) = 0$
 $p(\mathbf{C}) = 0$ $p(\mathbf{C}) = 0$ $p(\mathbf{C}) = 0$

El principio de máxima entropía fue introducido por E. T. Jaynes en 1957. Afirma que la distribución de probabilidad que maximice la entropía es la estimación menos sesgada que se puede hacer.1

¹ Jaynes, "Information Theory and Statistical Mechanics"

El Principio de Máxima Entropía clásico

Sean x_j los valores de X, $\langle f_l(x) \rangle$ conocidos. Maximizamos la entropía:

$$\mathcal{L} = -S_{S}(p) + \sum_{l} \lambda_{l} \left(\sum_{j} p(x_{j}) f_{l}(x_{j}) \left\langle f_{l}(x) \right\rangle \right) - + \mu \left(\sum_{j} p(x_{j}) - 1 \right).$$

Resolviendo:

$$p(x_j) = \frac{1}{Z} \exp \left[-\frac{1}{k} \sum_{l} \lambda_l f_l(x_j) \right].$$

El Principio de Máxima Entropía cuántico

Usamos la entropía de von Neuman $S=-Tr(\rho \ln(\rho))$, que si $[\rho,H]=0$ es

$$S_{\mathsf{N}} = -\sum_{k}
ho_{kk} \log
ho_{kk} \xrightarrow{\mathsf{maximización}}
ho_{kk} = \frac{1}{Z} e^{-\lambda E_k}$$

Utilizando notación de Dirac, $ho = \sum_k
ho_{kk} |e_k\rangle\!\langle e_k|$:

$$\rho = \frac{1}{Z}e^{-\lambda H}.$$

En general¹:

$$\left[\rho = \frac{1}{Z} e^{-\sum_k \lambda_k A_k} \right]$$

¹ Jaynes, "Information Theory and Statistical Mechanics, II"

El problema

"Dinámica efectiva de un sistema de N qubits Utilizando el Principio de Máxima Entropía"

Construcción del modelo y la asignación

Construcción del modelo y la asignación

El modelo de grano grueso

El modelo de grano grueso considera dos tipos de error¹:

Permutación

La posibilidad de medir una partícula diferente a la pretendida:

$$\begin{split} \mathcal{F} : & \mathcal{S}(\mathsf{H}_2 \otimes \mathsf{H}_2) \to \mathcal{S}(\mathsf{H}_2 \otimes \mathsf{H}_2) \\ & \varrho \mapsto \rho \varrho + (1-\rho) \mathcal{S} \varrho \mathcal{S}. \end{split}$$

Resolución

Falta de resolución en el aparato de detección:

$$\mathcal{C}: \mathcal{S}(\mathsf{H}_2 \otimes \mathsf{H}_2) \to \mathcal{S}(\mathsf{H}_2)$$

$$arrho_{AB}\mapsto p
ho_A+(1-p)
ho_B$$
,

¹Pineda et al., "Fuzzy measurements and coarse graining in quantum many-body systems"

Extensión a N qubits

Permutación

Para N qubits la aplicación borrosa:

$$egin{aligned} \mathcal{F} : \mathcal{S}ig(\mathsf{H}_2^{\otimes n}ig) &
ightarrow \mathcal{S}ig(\mathsf{H}_2^{\otimes n}ig) \ arrho &\mapsto p_1arrho + \sum_{j=2}^n p_j(\mathcal{S}_{1,j})arrho(\mathcal{S}_{1,j}ig), \end{aligned}$$

Resolución

La aplicación de grano grueso:

$$\begin{aligned} \mathcal{C} : \mathcal{S}(\mathsf{H}_2^{\otimes n}) &\to \mathcal{S}(\mathsf{H}_2) \\ \varrho &\mapsto \mathsf{Tr}_{\overline{1}}(\mathcal{F}\left[\varrho\right]). \end{aligned}$$

Construcción del modelo y la asignación

La aplicación de asignación

El estado de máxima entropía

$$ho_{\mathsf{ef}}(0) \xrightarrow{\Gamma_t}
ho_{\mathsf{ef}}(t) \ \downarrow^{\mathcal{A}_{\mathcal{C}}^{\mathsf{max}}} \qquad \mathcal{C} \ \downarrow^{\mathcal{Q}_{\mathsf{max}}}(0) \xrightarrow{\mathcal{E}_t} \varrho_{\mathsf{max}}(t)$$

El estado que maximiza la entropía es:

$$\varrho_{\mathsf{max}} = \frac{1}{Z} \exp \left(\sum_{i} \lambda_{i} \, \mathbf{G}_{i} \right)$$

¿Qué valores de expectación conocemos?

Los de $\rho_{\rm ef}$:

$$\begin{split} \left\langle \sigma_{i} \right\rangle_{\rho_{\text{ef}}} &= \mathsf{Tr}(\sigma_{i} \rho_{\text{ef}}) \\ &= \mathsf{Tr}[\sigma_{j} \mathcal{C} \left[\varrho \right] \right] \\ &= \mathsf{Tr} \left[\sigma_{j} \otimes \mathbb{1}_{2^{n-1}} \left(p_{1} \varrho + \sum_{k=2}^{n} p_{k} S_{1,k} \varrho S_{1,k} \right) \right] \\ &= \mathsf{Tr} \left[\left(\sum_{k=1}^{n} p_{k} (\mathbb{1}_{2^{k-1}} \otimes \sigma_{j} \otimes \mathbb{1}_{2^{n-k}}) \right) \varrho \right] \\ &= \left\langle G_{i} \right\rangle_{\varrho}. \end{split}$$

La aplicación de Máxima Entropía

Tenemos

$$\varrho_{\mathsf{max}} = \varrho_{\mathsf{max}}(\lambda_1, \lambda_2, \lambda_3)$$

La relación:

$$\langle \sigma_k
angle = rac{\lambda_k}{\lambda} \sum_{j=1}^n p_j anh(p_j \lambda)$$

donde
$$\lambda = \sqrt{\lambda_1^2 + \lambda_2^2 + \lambda_3^2}$$

Definimos la aplicación de asignación de máxima entropía:

$$\mathcal{A}_{\mathcal{C}}^{\mathsf{max}}: \mathcal{S}(\mathsf{H}_2) \to \mathcal{S}(\mathsf{H}_2^{\otimes n})$$

$$\rho_{\mathsf{ef}} \mapsto \bigotimes_{j=1}^n \frac{1}{Z_j} \mathsf{exp} \bigg(p_j \sum_{k=1}^3 \lambda_k \sigma_k \bigg).$$

Uniendo todo

Donde:

$$\mathcal{A}^{\mathsf{max}}_{\mathcal{C}}[\rho] = \bigotimes_{j=1}^{n} \frac{1}{Z_{j}} \mathsf{exp} \left(p_{j} \sum_{k=1}^{3} \lambda_{k} \sigma_{k} \right) \qquad \mathcal{C}\left[\varrho\right] = \mathsf{Tr}_{\overline{1}} \left(p_{1} \varrho + \sum_{j=2}^{n} p_{j}(S_{1,j}) \varrho(S_{1,j}) \right)$$

$$\Gamma_{t}[\rho] := (\mathcal{C} \circ \mathcal{E}_{t} \circ \mathcal{A}^{\mathsf{max}}_{\mathcal{C}})[\rho].$$

Resultados

Resultados

Dinámicas factorizables

Dinámicas factorizables

Por dinámicas factorizables entendemos:

$$\mathcal{H} = \sum_{k=1}^n \omega_k \mathbb{1}_{2^{k-1}} \otimes H_k \otimes \mathbb{1}_{2^{n-k}},$$

Las unitarias:

$$\mathcal{U}_t = \bigotimes_{k=1}^n \exp(-\mathrm{i}\omega_k H_k t) = \bigotimes_{k=1}^n U_k(t).$$

El estado de máxima entropía es

La dinámica efectiva tiene expresión general

$$\varrho_{\mathsf{max}}(t) = \bigotimes_{k=1}^{n} \frac{1}{Z_k} U_k(t) e^{\left(p_k \sum_j \lambda_j \sigma_j\right)} (U_k(t))^{\dagger} \qquad \qquad \Gamma_t(\rho_{\mathsf{ef}}) = \sum_{k=1}^{n} p_k U_k(t) \rho_k(U_k(t))^{\dagger}.$$

Partículas no interactuantes con diferente frecuencia de transición

Usamos el hamiltoniano $\mathcal{H} = \sum_{k=1}^{n} \omega_k \sigma_{3,k}$. Los valores $\langle \sigma_k(t) \rangle_{\text{ef}} \equiv \text{Tr}(\sigma_k \Gamma_t(\rho_{\text{ef}}))$:

$$egin{aligned} \left\langle \sigma_1(t)
ight
angle_{ ext{ef}} &= p_1 \left\langle \sigma_1(t)
ight
angle_1 + \sum_{k=2}^n p_k \left\langle \sigma_1(t)
ight
angle_k^{-1} \ &\left\langle \sigma_2(t)
ight
angle_{ ext{ef}} &= p_1 \left\langle \sigma_2(t)
ight
angle_1 + \sum_{k=2}^n p_k \left\langle \sigma_2(t)
ight
angle_k \ &\left\langle \sigma_3(t)
ight
angle_{ ext{of}} &= \left\langle \sigma_3(0)
ight
angle_{ ext{of}}. \end{aligned}$$

Sea $p_{j\neq 1}=p_{\sf np}=\frac{1-p_1}{1-n}$ y $r_{3,\sf ef}=0$. Las expresiones se reducen a:

$$r_{1,\text{ef}}(t) = p_1 r_{1,1}(t) - p_{\text{np}} r_{\text{np}} \sum_{k=2}^{n} \sin(2\omega_k t - \phi)$$

$$r_{2,\text{ef}}(t) = p_1 r_{2,1}(t) + p_{\text{np}} r_{\text{np}} \sum_{k=2}^{n} \sin(2\omega_k t + \theta).$$

donde

$$r_{\sf np} = \tanh(p_{\sf np}\lambda).$$

 $^{^{1}}$ Aquí, $\langle \sigma_{1}(t)
angle_{k} = \mathrm{Tr} \Big[\sigma_{1} \mathrm{e}^{-\mathrm{i} \omega_{k} t \sigma_{3}}
ho_{k} \mathrm{e}^{\mathrm{i} \omega_{k} t \sigma_{3}} \Big]$

Convergencia

Importante: límite $n \to \infty$.

$$r_{1,\text{ef}}(t) = p_1 r_{1,1}(t) - p_{\text{np}} r_{\text{np}} \sum_{k=2}^{n} \sin(2\omega_k t - \phi)$$

Sumas trigonométricas $\xrightarrow{n\to\infty} N(0, std)$

La dinámica efectiva tiende a

$$egin{aligned} egin{aligned} \Gamma_{t o\infty}(ec{r}_{ ext{ef}}) &
ightarrow egin{pmatrix} eta_1 r_{1,1}(t) \ eta_1 r_{2,1}(t) \ egin{pmatrix} r_3 \end{pmatrix}. \end{aligned}$$

Convergencia

CAPTION

Resultados

Compuertas de cómputo cuántico

Compuerta SWAP

Estado efectivo antes y después:

$$ho(0) = p
ho_A + (1 - p)
ho_B,$$
 $ho(t = 1) = (1 - p)
ho_A + p
ho_B.$

Esto es una contracción:

$$\kappa_t = \frac{r_{\rho(1)}}{r_{\rho(0)}}.$$

Canal de despolarización no lineal:

$$ho\mapsto\kappa_1^
ho
ho+ig(1-\kappa_1^
hoig)rac12\mathbb{1}$$

Depolarizing coefficient as a function of $r_{\rho(0)}$ for different values of p.

Compuerta CNOT

Estudiamos:

El estado efectivo inicial es

$$ho(t=1) = \mathcal{C}\left[\mathsf{C}_\mathsf{X}\mathcal{A}_\mathcal{C}^{ extit{max}}[
ho(0)](\mathsf{C}_\mathsf{X})^\dagger
ight] \qquad \qquad
ho(0) = p
ho_\mathsf{A} + (1-p)
ho_\mathsf{B}.$$

El estado efectivo final es

$$\rho(t=1) = \frac{1}{2}\rho(0) + \frac{(1-\rho)}{2} \left[\langle \sigma_1 \rangle_{\rho_B} \rho_A + (1-\langle \sigma_1 \rangle_{\rho_B}) \sigma_3 \rho_A \sigma_3 \right] + \frac{\rho}{2} \left[\langle \sigma_3 \rangle_{\rho_A} \rho_B + (1-\langle \sigma_3 \rangle_{\rho_A}) \sigma_1 \rho_B \sigma_1 \right].$$

Combinación de un canal no lineal de desfasamiento y un canal no lineal de bit flip.

Caso límite: canal de desfasamiento

Supongamos p = 0. El estado efectivo evolucionado:

$$ho(t=1) = rac{1}{2}
ho(0) + rac{1}{2}\sigma_3
ho(0)\sigma_3.$$

¡Esto es un canal de desfasamiento!

Canal de desfasamiento

Caso límite: canal de bitflip

Supongamos p = 1. El estado efectivo evolucionado:

$$ho(t=1) = rac{1}{2}
ho(0) + rac{1}{2}\sigma_1
ho(0)\sigma_1.$$

¡Esto es un canal de bit flip!

Canal de bit flip

CNOT efectivo sobre la esfera de Bloch

Efecto sobre la esfera de Bloch. r = 0.8, p = 0.4.

Resultados

Dinámicas especiales

Canales de Pauli de N qubits

Un canal de Pauli sobre un qubit,

$$P:\mathcal{B}(\mathsf{H}_2) o\mathcal{B}(\mathsf{H}_2) \ P(\Delta) = \sum_k q_k \sigma_k \Delta \sigma_k,$$

aplica σ_k con probabilidad q_k .

El canal de Pauli sobre *n* qubits:

$$egin{aligned} P: \mathcal{B}(\mathsf{H}_{2^n}) &
ightarrow \mathcal{B}(\mathsf{H}_{2^n}) \ P(\Delta) &= \sum_{ec{lpha}} q_{ec{lpha}} \sigma_{ec{lpha}} \Delta \sigma_{ec{lpha}}, \;\; lpha_k \in \{0,1,2,3\}. \end{aligned}$$

donde
$$\sigma_{\vec{\alpha}} = \sigma_{\alpha_1} \otimes \sigma_{\alpha_2} \otimes ... \otimes \sigma_{\alpha_n}$$
.

Canales de desfasamiento y despolarización

Desfasamiento

El canal de Pauli

$$P_{n,\sigma_j}(\Delta) = \sum_{\vec{\alpha}} q_{\vec{\alpha}} \sigma_{\vec{\alpha}} \Delta \sigma_{\vec{\alpha}}, \quad \alpha_k \in \{0,j\}$$

es de desfasamiento si $q_{\vec{n} \neq \vec{0}} = \frac{1 - q_{\vec{0}}}{2^n - 1}$ y

$$\Gamma_{t}(\rho_{\text{ef}}) = \left(q_{\vec{0}} + \frac{2^{n-1} - 1}{2^{n} - 1}(1 - q_{\vec{0}})\right)\rho_{\text{ef}} + \left(\frac{2^{n-1}}{2^{n} - 1}(1 - q_{\vec{0}})\right)\sigma_{j}\rho_{\text{ef}}\sigma_{j}.$$

Despolarización

Para *n* qubits:

$$egin{aligned} D_q: \mathcal{B}(\mathsf{H}_{2^n}) &
ightarrow \mathcal{B}(\mathsf{H}_{2^n}) \ D_q(\Delta) = q\Delta + (1-q)\mathbb{1}_{2^n} \, \mathsf{Tr}(\Delta). \end{aligned}$$

La dinámica efectiva que corresponde al canal de despolarización es

$$\Gamma_t(\rho_{\mathsf{ef}}) = q \rho_{\mathsf{ef}} + (1-q) \mathbb{1}_2,$$

¡Otro canal de despolarización!

Canal de estabilización

El canal de estabilización.

La dinámica efectiva:

$$\Gamma_t(
ho_{\mathsf{ef}}) = \mathsf{e}^{-t\mu}
ho(\mathsf{0}) + (1 - \mathsf{e}^{-t\mu}) \mathcal{C}(|\psi
angle \langle \psi |).$$

Canal cuántico, pero no necesariamente un canal de estabilización: ¡puede ser despolarización!

Resultados

La asignación promedio

Construcción de la asignación promedio

Otra forma de escoger un estado microscópico compatible es tomando un promedio¹. Un promedio sobre el conjunto

$$\Omega_{\mathcal{C}}(\rho_{\mathsf{ef}}) = \{ |\psi\rangle \in \mathsf{H}_{\mathit{m}} : \mathcal{C}(|\psi\rangle\!\langle\psi|) = \rho_{\mathsf{ef}} \}.$$

La aplicación de asignación promedio es el promedio sobre dicho conjunto¹, i.e.

$$\mathcal{A}^{\mathsf{avg}}_{\mathcal{C}}(
ho_{\mathsf{ef}}) = \int d\mu \; \delta(\mathcal{C}(|\psi
angle\!\langle\psi|) -
ho_{\mathsf{ef}}) \; |\psi
angle\!\langle\psi| \, .$$

¹Correia et al., "Macro-to-micro quantum mapping and the emergence of nonlinearity"

¹Pineda et al.,

Distancia entre la asignación promedio y la de máxima entropía

Distancia de Frobenius entre asignaciones como función de p_1 para diferentes valores de r_z , y como función de r_z para diferentes valores de p_1 .

Discusión

- Iguales si el estado efectivo inicial es puro y si la aplicación de grano grueso se reduce a una traza parcial $(p_1 \in \{0,1\})$.
- Notar que $\mathcal{A}_{\mathcal{C}}^{\mathsf{max}}(\mathbb{1}_2/2) = \mathbb{1}_4/4$ mientras que $\mathcal{A}_{\mathcal{C}}^{\mathsf{avg}}(\mathbb{1}_2/2) \neq \mathbb{1}_4/4$.

Conclusiones

Conclusiones

- Clásica no linealidad.
- SWAP y CNOT no lineales de canales cuánticos conocidos
- no son universales.
- irreversibles

- fuertes simetrías
- coinciden en los casos en no error
- y si efectivo inicial es puro
- de dónde viene la no linealidad