Basics of Applied Stochastic Processes

Weihao Lu

March 30, 2018

Introduction

A discrete-time stochastic process $\{X_n:n\geqslant 0\}$ on a countable set S is a collection of S-valued random variables defined on a probability space $(\Omega,\mathcal{F},\mathcal{P})$. The \mathcal{P} is a probability measure on a family of events \mathcal{F} (a σ -field) in an event-space Ω . The set S is the state space of the process, and the value $X_n\in S$ is the state of the process at time n. The n may represent a parameter other than time such as a length or a job number. The finite-dimensional distributions of the process are

$$P\{X_0 = i_0, \dots, X_n = i_n\}, \qquad i_0, \dots, i_n \in S, n \geqslant 0$$
 (1)

These probabilities uniquely determine the probabilities of all events of the process.

Markov Chains

A Markov chain is defined as follows.

Definition 1. A stochastic process $X = \{X_n : n \ge 0\}$ on a countable set S is a *Markov Chain* if, for any $i, j \in S$ and $n \ge 0$,

$$P\{X_n + 1 = j | X_0, \dots, X_n\} = P\{X_n + 1 = j | X_n\}$$

$$P\{X_n + 1 = j | X_n\} = p_{ii}$$
(2)

The p_{ij} is the probability that the Markov chain jumps from state i to state j. These transition probabilities satisfy $\sum_{j \in S} p_{ij} = 1, i \in S$, and the matrix $\mathbf{P} = (pij)$ is the transition matrix of the chain.

Markov Chains

Condition (2), called the *Markov property*, says that, at any time n, the next state X_{n+1} is conditionally independent of the past X_0, \ldots, X_{n-1} given the present state X_n .

Condition (3) simply says the transition probabilities do not depend on the time parameter n; the Markov chain is therefore "time-homogeneous".