```
1. 题目1
 增加io口:
    wire [31:0] pc, inst, aluout, memout, out_port0, out_port1, out_port2;
        wire [31:0] in_port0, in_port1, in_port2;
                           增加in_port2,out_port2
 sys_clk_counter:
  module sys_clk_counter (
    input sys_clk_in,
    input sys_rst_n,
    output [31:0] count
  );
    // 内部计数器信号
    reg [31:0] internal_count;
    always @(posedge sys_clk_in or negedge sys_rst_n) begin
      if ("sys rst n) begin
        internal_count <= 32'b0;
      end else begin
        internal_count <= internal_count + 1;
      end
    end
    // 输出计数器值
    assign count = internal_count;
  endmodule
                   sys_clk_counter in2(
                       .sys_clk_in(sys_clk_in),
                       .sys_rst_n(sys_rst_n),
                       . count (in_port2)
                       );
```

```
6
      module sc_computer_main (
 7
          resetn, clock, imem_clock, dmem_clock, pc, inst, aluout, memout,
 8
 9
          out_port0, out_port1, out_port2, in_port0, in_port1, in_port2);
 10
         input resetn, clock, imem_clock, dmem_clock;
11
         input [31:0] in_port0, in_port1, in_port2;
12
         output [31:0] pc, inst, aluout, memout;
13
         output [31:0] out_port0, out_port1, out_port2;
14
                                   ■ X //
    module sc_datamem (resetn,
         addr, datain, dataout, we, clock, dmem_clock,
3
         out_port0, out_port1, out_port2, in_port0, in_port1, in_port2);
4
       input [31:0] addr;
5
3
       input [31:0] datain;
       input [31:0] in_port0, in_port1, in_port2;
3
       input
                        we, clock, dmem_clock, resetn;
9
)
       output [31:0] dataout;
       output [31:0] out_port0, out_port1, out_port2;
1
       wire [31:0] io_read_data;
2
       wire write enable;
4
       wire [31:0] dataout;
5
       wire [31:0] mem_dataout;
3
       wire write_data_enable;
7
3
       wire write_io_enable;
9
        //control signal for write dram or IO space
)
                        write_enable = we & ~clock;
       assign
1
                     在sc_computer_main,sc_datamem增加接口
   display display(
     .clk(sys_clk_in),
     .reset(sys_rst_n),
     . s({{8'b10000111}}, HEX4b5, HEX4b4, HEX4b3, HEX4b2, HEX4b1, HEX4b0}),
     .seg0(seg_data_0_pin),
     .seg1(seg_data_1_pin),
     .ans(seg_cs_pin)
       );
```

```
汇编程序:
lui x10, 0
ori x4, x10, 0
addi x25, x0, 1
addi x26, x0, 2
addi x27, x0, 3
addi x28, x0, 4
sw x25, 0(x4)
sw x26, 4(x4)
sw x27, 8(x4)
sw x28, 12(x4)
addi x5, x0, 4
call:
jal sum
sw x12, 0(x4)
lw x19, 0(x4)
sub x18, x19, x12
addi x5, x0, 3
loop2:
addi x5, x5, -1
ori x18, x5, -1
xori x18, x18, 1365
addi x19, x0, -1
andi x20, x19, -1
or x16, x20, x19
xor x18, x20, x19
and x17, x20, x16
beq x5, x0, shift
j loop2
shift:
addi x5, x0, -1
slli x18, x5, 15
slli x18, x18, 16
srai x18, x18, 16
srli x18, x18, 15
// 以下六条指令,前面三条指令用于设置端口地址寄存器,后面实现端口值的读取与写入
addi x11, x0, 128
addi x12, x0, 132
```

```
addi x13, x0, 136
lw x20, 0(x13)
lw x21, 0(x11)
sw x21, 0(x11)
sw x18, 0(x12)
sw x20, 0(x13)
fi:
j fi
sum:
add x18, x0, x0
loop:
lw x19, 0(x4)
addi x4, x4, 4
add x18, x18, x19
addi x5, x5, -1
bne x5, x0, loop
```

jr ra

slli x12, x18, 0

仿真:

板上验证:

仿真结果计数器值为9a,转换为十进制就是9*16+10=154,其中最低两位对应位板上最低两位,因此两者结果相符。板上最高两位为学号87,次低两位为71,对应x18最后两位十进制数71.

读取时钟周期计数器值, 未执行该指令对应的时钟周期为76, 执行后对应的时钟周期应该是77, 因此对应 正确的计数器的值应该是位154

题目二

根据学号修改ram的coe:

¹ memory_initialization_radix=16;

^{2 |} memory_initialization_vector=

板级验证:

汇编程序:直接用原有指令实现

```
main:
 addi x11 x0 128 // 初始化
 addi x12 x0 132
 addi x13 x0 136
 addi x4 x0 0 //从前往后依次比较, x4存储的是目前比较到的指针
 lw x15 0(x4)
 lw x16 0(x4)
 addi x8 x0 15 //计数器
 jΙ
ed:
 lw x20 0 x13 // 存到x20
 sw x20 0 x13
fi:
 j fi
12:
 beq x8 x0 ed //计数器到0时退出循环
 lw x14 4(x4) //取下一个数
```

```
add x16 x16 x14 // 更新x16
 addi x4 x4 4 //向后移动指针
 addi x8 x8 -1 //计数器-1
 sw x16 0 x12 //存到x12
 j 12
l2set:
 addi x8 x0 15 //计数器复位
 addi x4 x0 0 //指针复位
 j 12
1:
 beq x8 x0 l2set //计数器到0时退出循环
 lw x14 4(x4) //取下一个数
 add x15 x15 x14//更新x15
 addi x4 x4 4 //向后移动指针
 addi x8 x8 -1 //计数器-1
 sw x15 0 x11 //存到x11
 jΙ
```

Ripes 验证

```
1 .data
2 v: .4byte 0x52,0x10,0x30,0x91,0x00,0x87
 3 .4byte 0x78,0x00,0x19,0x03,0x01,0x25
4 .text
5 main:
   addi x11 x0 128
6
7
      addi x12 x0 132
     addi x13 x0 136
8
9
     addi x4 x0 0
     lw x15 0(x4)
10
      lw x16 0(x4)
11
12
     addi x8 x0 15
13
      j 1
14 ed:
15
      lw x20 0 x13
      sw x20 0 x13
16
17 fi:
18
      j fi
19 12:
20
     beg x8 x0 ed
21
      lw x14 4(x4)
22
     add x16 x16 x14
     addi x4 x4 4
23
24
     addi x8 x8 -1
25
      sw x16 0 x12
26
      j 12
27 l2set:
      addi x8 x0 15
28
      addi x4 x0 0
29
      j 12
30
31 1:
32
      beq x8 x0 l2set
33
      lw x14 4(x4)
     add x15 x15 x14
34
35
     addi x4 x4 4
36
     addi x8 x8 -1
      sw x15 0 x11
37
      j 1
38
```

Address	Word	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6	Byte 7	^ Name
0x0000000000000098	Х	Х	Х	Х	Х	Х	Х	Х	Х	.text
0x0000000000000000	X	Х	Х	Х	Х	Х	Х	Х	Х	.data
0×0000000000000088	0x0000000000	0x00	0x00	0x00	0x00	0x00	0×00	0×00	0x00	.bss
0×00000000000000080	0x1ca5fd081	0x08	0xfd	0xa5	0x1c	0x08	0xfd	0xa5	0x1c	
0×0000000000000078	X	X	Х	Х	Х	Х	Х	Х	Х	
0×00000000000000070	0×0000000000	0×00	0×00	0x00	0×00	0x00	0×00	0×00	0x00	
0×0000000000000068	0xfe9ff06f0	0x23	0xa0	0xf5	0×00	0x6f	0xf0	0x9f	0xfe	
0×0000000000000000	0xfff404130	0x13	0x02	0x42	0x00	0x13	0x04	0xf4	0xff	
0×0000000000000058	0x00e787b30	0x03	0x27	0x42	0x00	0xb3	0x87	0xe7	0x00	
0×00000000000000050	0xfe040ae3f	0x6f	0xf0	0xdf	0xfd	0xe3	0x0a	0x04	0xfe	
0x0000000000000048	0x000002130	0x13	0x04	0xf0	0x00	0x13	0x02	0×00	0x00	
0x0000000000000040	0xfe9ff06f0	0x23	0x20	0x06	0x01	0x6f	0xf0	0x9f	0xfe	
0x000000000000038	0xfff404130	0x13	0x02	0x42	0x00	0x13	0x04	0xf4	0xff	
0x0000000000000030	0x00e808330	0x03	0x27	0x42	0x00	0x33	0x08	0xe8	0x00	
0x0000000000000028	0xfe040ae30	0x6f	0x00	0x00	0x00	0xe3	0x0a	0x04	0xfe	
0×000000000000000000000000000000000000	0x0006aa030	0x03	0xaa	0x06	0x00	0x03	0xaa	0x06	0x00	
0x000000000000018	0x0380006f0	0x13	0x04	0xf0	0x00	0x6f	0×00	0x80	0x03	
0×0000000000000010	0x000228030	0x83	0x27	0x02	0x00	0x03	0x28	0x02	0×00	
0×0000000000000008	0x000002130	0x93	0x06	0x80	0x08	0x13	0x02	0×00	0×00	
0×0000000000000000	0x084006130	0x93	0x05	0x00	0x08	0x13	0×06	0x40	0x08	

两个12轮循环,共触发7次赋值,总时钟周期数为94,计数器的值应为 2 × 94 = 188,因此显示88。