

Engenharia de Telecomunicações e Informática

Sistemas de Comunicação Sem Fios e Móvel

Planeamento Celular

De

Uma Rede 4G

Grupo 21

João Rabuge | 98509 Tiago Felício | 99213

Docente:

Américo Manuel Carapeto Correira

Ano curricular: 3°

Semestre: 2° Semestre

2022/23

Índice

A	crónin	nos e Siglas utilizadas	3	
1	Int	rodução	4	
2	Pla	neamento	5	
3	An	álise e Discussão	6	
	3.1	Perdas de Propagação6		
	3.2	Fator de Geometria		
4	Sin	nulação	8	
5	Fator de Throughput			
6	Col	bertura	12	
7	Zoı	nas Mortas e Zonas de Bloqueio	14	
	7.1	Zonas Mortas		
	7.2	Zonas de Bloqueio15		
8	Cor	nclusão	16	
9	Bib	oliografia	17	
10) An	exos	18	
	10.1	Anexo A – Escolha de BS's		
	10.2	Anexo B – Estudo Zonas Mortas		
	10.3	Anexo C – Estudo Zonas de Bloqueio20		

Acrónimos e Siglas utilizadas

eMBMS – Evolved Multimedia Broadcast Multicast Service

LTE-A – Long Term Evolution Advanced

R_b – Ritmo Binário

BS – Estações de Base

SINR - Signal to Interference & Noise Ratio

G – Fator Geometria

I_{or} – Interferência na própria célula

Ioc – Interferência total das células vizinhas

 P_n – Potência de ruído branco gaussiano

 E_c – Energia portadora que leva o sinal

 I_{or} – Interferência na célula (perda de ortogonalidade)

L_{prop} – Perdas de propagação

1 Introdução

Este projeto tem como objetivo a necessidade de se realizar o **desenvolvimento da rede de rádio** para a zona de Lisboa em torno do ISCTE-IUL, para um operador de **telecomunicações móveis de 4G**.

Tendo nos sido atribuído o **grupo 21**, ficou decidido que se pretende implementar **serviço eMBMS** usando a tecnologia **LTE-A** com ritmos binários de:

- A1 = 156 Kbit/s
- B1 = 616 Kbit/s
- C1 = 1512 Kbit/s

Existindo um total de **8 BS** neste projeto sendo que **3 comunicam com cada móvel (existem 3 ligações de rádio entre BS e os móveis)**, e atendendo às informações já referidas, foi possível realizar a *Tabela 1*.

Canal (R _b) [Kbit/s]	A1 = 156	B1 = 616	C1 = 1512
Pedestre B 3 Km/h [dB]	-12.26	-8.33	-5.57
Veicular A 30 Km/h [dB]	-13.86	-9.83	-7.07

Tabela 1 – Características e valores do projeto, para o grupo 21.

Neste projeto será analisado com base em mapas com a distribuição global e por célula de:

- SINR
- Cobertura
- Throughput

E por fim, irá ser analisado tendo em conta um $R_b = 64$ Kbit/s e que 4 das 8 BS são de outro operador móvel:

- Zonas Mortas
- Zonas de Bloqueio

2 Planeamento

Primeiramente para a realização da simulação, é necessário a **escolha dos locais das 8 BS** na zona de Lisboa ao torno do ISCTE-IUL. Sabe-se que se deve colocar as BS nas **zonas mais interiores do mapa** da *Figura 1* e que se deve **evitar as zonas sem coberturas no mapa**.

No <u>Anexo A – Escolha de BS's</u>, é possível observar o estudo para a escolha das **8 posições** para as BS's. As posições **escolhidas paras as BS's** são as apresentadas na *Figura 1*.

Figura 1 – Mapa da zona de Lisboa em redor ao ISCTE-IUL com os BS do grupo 21.

3 Análise e Discussão

3.1 Perdas de Propagação

Primeiramente, para se verificar se as **estações (BS's)**, foram colocados em zonas onde as **perdas de propagação** são **razoáveis**, correu-se no simulador *LTE Simulator*. Quanto **mais clara** for a cor na *Figura 2*, **melhor será a cobertura**.

É possível observar que existe **uma boa cobertura** na zona de Lisboa em torno do ISCTE-IUL, sendo por isso possível efetuar *handover* entre células.

Figura 2 –Perdas de Propagação do grupo 21.

3.2 Fator de Geometria

Foi possível realizar o cálculo do **fator de geometria** através da *Fórmula 1 e 2*.

$$G = \frac{I_{or}}{I_{oc} + P_n} [$$
Lineares $]$

Fórmula 1 – Fórmula para cálculo de fator geometria em unidades lineares.

$$G = 10 \log(I_{or}) - (10 \log(I_{oc} + P_n))$$
 [dB]

Fórmula 2 – Fórmula para cálculo de fator geometria em unidades logarítmicas.

Após observação da Fórmula 1 e 2, conseguimos observar que:

- Quanto maior for o fator geometria (G), mais próximos estamos do centro da célula.
- Quanto menor for o fator geometria (G), mais afastados estamos do centro da célula (mais próximos da fronteira).

Este facto acima descrito, é possível de observar na Figura 3.

Figura 3 –Fator de Geometria do grupo 21.

Através da *Figura 3*, é possível observar que cerca de **20% dos utilizadores** se encontram **perto da fronteira entre duas células (-3 dB e -6 dB entre 3 células)**. Já para um **fator de geometria de 10 dB**, onde o utilizador se encontra bastante perto da estação base, cerca de **20% dos utilizadores encontram-se aí**. O **fator geometria nunca ultrapassa os 15 dB**.

4 Simulação

Para a realização deste projeto, foi necessário a realização de **3 simulações**, onde cada uma destas se considerava uma **ligação pedestre de 3 Km/h** e uma **veicular de 30 Km/h**. Cada ligação tem **ritmos binários** diferentes, os valores utilizados na simulação estão presentes na *Tabela 2*.

Parâmetro	Valor
Simulation Time [s]	600
Number of Mobile Devices [número]	900
Bit Rate [Kbit/s]	156; 616 e 1512
TTI [ms]	80

Tabela 2 – Parâmetros utilizados no simulador, para o grupo 21.

Nas simulações que serão realizadas, vai ser possível observar que os gráficos que vão ser gerados vão ser da **energia portadora que leva o sinal em função da interferência na célula (Ec/Ior)**.

5 Fator de Throughput

Este **fator de throughput**, é o fator que vai analisar o **desempenho da ligação**, por outras palavras, é o fator que analisa a **quantidade de dados processados num dado período de tempo**.

É possível saber que:

Quanto maior for a relação E_c/I_{or}, maior será o fator throughput, portanto, quanto menor for a interferência na célula I_{or}, melhor será o desempenho do sistema.

Nas *Figuras 4,5 e 6* é possível observar os **gráficos de throughput** para os **diferentes ritmos binários** definidos.

Figura 4 – Gráficos Throughput para Ritmo Binário de 156 Kbit/s (A1).

Figura 5 – Gráficos Throughput para Ritmo Binário de 616 Kbit/s (B1).

Figura 6 – Gráficos Throughput para Ritmo Binário de 1512 Kbit/s (C1).

Consegue concluir-se assim também que as **BS's 5 e 7 são as que mais throughput produzem** em média em todas as simulações e as **BS's 2 e 4 são as que menos throughput produzem** em média em todas as simulações.

Através da observação das *Figuras 4,5 e 6* foi possível a realização da *Tabela 3* com os **valores de throughput** consoante a percentagem da relação **E**_c/**I**_{or}. Quanto **maior** o **ritmo binário**, **menor o throughput**.

E _c /I _{or} [%]	Ritmo Binário [Kbit/s]		
	156	616	1512
20	139.058	401.863	493.534
40	146.32	529.618	1001.43
60	147.607	565.559	1208.7
80	148.194	576,202	1314.37
100	148.615	581.077	1365.99

Tabela 3 – Valores de Throughput, para o grupo 21.

Através da *Tabela 3*, é possível realizar a *Tabela 4*, demonstrando a **eficiência do throughput** para cada ritmo binário.

Throughput	Ritmo Binário [Kbit/s]		
	156	616	1512
Valor Máximo [Kbit/s]	148.615	581.077	1365.99
Eficiência [%]	95.26	94.33	90.34

Tabela 4 – Eficiência de Throughput, para o grupo 21.

6 Cobertura

Este **fator de cobertura**, é o fator que vai analisar se a **localização das BS's é correta** para cobrir a área em redor ao **ISCTE-IUL**

É possível saber que:

Quanto maior for a relação E_c/I_{or}, maior será o fator cobertura, portanto, quanto menor for a interferência na célula I_{or}, melhor será a cobertura do sistema.

Nas *Figuras 7,8 e 9* é possível observar os **gráficos de cobertura** para os **diferentes ritmos binários** definidos.

Figura 7 – Gráficos Cobertura para Ritmo Binário de 156 Kbit/s (A1).

Figura 8 – Gráficos Cobertura para Ritmo Binário de 616 Kbit/s (B1).

Figura 9 – Gráficos Cobertura para Ritmo Binário de 1512 Kbit/s (C1).

Consegue concluir-se assim também que as **BS's 5 e 7 são as que mais cobertura dão** em média em todas as simulações e as **BS's 4 e 6 são as que menos cobertura dão** em média em todas as simulações.

Através da observação das *Figuras 7,8 e 9* foi possível a realização da *Tabela 5* com os **valores de cobertura** consoante a percentagem da relação **E**_c/**I**_{or}. Quanto **maior** o **ritmo binário**, **menor a cobertura** dada.

E _c /I _{or} [%]	Ritmo Binário [Kbit/s]		
	156	616	1512
20	93.916	65.7016	29.8467
40	98.9521	89.938	66.9837
60	99.427	96.588	82.8823
80	99.517	98.4115	91.018
100	99.6069	99.1053	94.9202

Tabela 5 – Valores de Cobertura, para o grupo 21.

7 Zonas Mortas e Zonas de Bloqueio

Foram atribuídos **8 BS's ao grupo 21**, assim, sabendo que **8/2 são BS's de outra operadora de telecomunicações**, significa que cada uma delas tem *4 BS's*. Assim, irá ser feito um estudo de **zonas mortas para as 4 BS's da nossa operadora** e um estudo de **zonas de bloqueio para as 4 BS's da concorrência**. É considerado um **ritmo binário de 64 Kbit/s** neste estudo.

7.1 Zonas Mortas

Após a realização do estudo para o cálculo das zonas mortas, que está explicado no <u>Anexo B – Estudo Zonas Mortas</u>, foi escolhido primeiramente as **4 BS's que foram disponibilizadas para o nosso operador de telecomunicações**. Os BS's foram escolhidos de modo a **maximizar a cobertura**. As **zonas mortas**, são regiões onde **não existe cobertura suficiente para o estabelecimento de ligações móveis**, devido ao facto de o sinal da rede de rádio ter uma intensidade baixa. A *Figura 10*, demonstra as **perdas de propagação**. Sendo que são consideradas **zonas mortas**, **regiões onde as perdas de propagação** (**L**_{prop}) **sejam maiores ou iguais a 144 dB.** Assim as zonas **castanhas escuras e pretas** na *Figura 10*.

Figura 10 – Zonas Mortas do grupo 21.

7.2 Zonas de Bloqueio

Após a realização do estudo para o cálculo das zonas de bloqueio, que está explicado no <u>Anexo</u> <u>C – Zonas de Bloqueio</u>, foi escolhido primeiramente os **4 BS's que foram disponibilizados ao outro operador de telecomunicações**. As zonas de bloqueio, são regiões onde as ligações móveis ficam propensas a bloquearem, devido ao facto de os dispositivos móveis estarem longe das BS's da sua operadora de telecomunicações, mas perto das BS's da operadora de telecomunicações concorrente. A *Figura 11*, demonstra as perdas de propagação. Sendo que são consideradas zonas de bloqueio, regiões onde as perdas de propagação (L_{prop}) sejam menores ou iguais a **68 dB**. Assim as zonas amarelas na *Figura 11*.

Figura 11 – Zonas de Bloqueio do grupo 21.

8 Conclusão

Após a realização deste projeto de planeamento de uma **rede rádio para a zona de Lisboa em torno do ISCTE-IUL**, foi possível chegar a algumas conclusões.

Quanto maior é o ritmo binário utilizado, menor é a eficiência, o que leva a menor cobertura de regiões, menor throughput, logo consequentemente um pior serviço de telecomunicações. Quantas mais BS's uma rede rádio tenha, melhor a sua eficiência, throughput, cobertura e claro, serviço prestado.

Neste caso específico dos dados do nosso grupo, foi possível verificar no estudo das zonas de bloqueio, que estas correspondem a regiões que se encontram a uma distância muito pequena às BS's da concorrência. Foi possível também observar as zonas mortas, sendo por isso nessas zonas necessário a colocação de BS's lá, de modo a que a cobertura aumentasse, minimizando (ou acabando se possível) as zonas mortas no sistema.

Em suma, o **ritmo binário** que deveria ser escolhido deveria ser o de **616 Kbit/s** (**B1**). Pois embora a **eficiência do de 116 Kbit/s** (**A1**) **seja ligeiramente superior** (**95.26% VS 94.33%**), a diferença de **throughput** é tão **grande** que a diferença **mínima de eficiência** não faz com que se deva escolher a opção A1 em detrimento da **B1**.

9 Bibliografia

Correia, A. (2023), Slides das Aulas. Em SCSFM, moodle.

Cox, C. (mar 2012), LTE,LTE-Advanced, SAE and 4G Mobile Communications. Em Cox, C An Introduction to LTE. Wiley 2ª Edição.

10 Anexos

10.1 Anexo A – Escolha de BS's

As posições escolhidas neste estudo para os BS's, tiveram em conta as **8 pedidas** no enunciado, e sabendo que existe **3 ligações entre as BS's e os dispositivos móveis**, de modo a ter uma a melhor cobertura possível em torno do ISCTE-IUL.

Assim, foi realizada a seguinte distribuição de modo a ter um **losango** dentro de um **quadrado** o em torno no ISCTE-IUL como é demonstrado na *Figura 12*.

Figura 12 –Distribuição das BS's do grupo 21.

10.2 Anexo B – Estudo Zonas Mortas

Para a realização dos cálculos para as **zonas mortas** teve que se seguir a seguinte Fórmula 3:

$$L_{prop} = 10\log(Pt) - 10\log(Pr)$$

Fórmula 3 – Fórmula para cálculo da perda de Propagação.

Sabendo, através do exercício 42 resolvido na aula que:

- $10\log(Pt) = 23 \text{ dBm}$
- $10\log(Pr) = -121 \text{ dBm}$

E sabendo que se considera uma região uma zona morta quando a **região tenha uma perda de propagação maior** que:

$$L_{prop} = 10 \log(Pt) - 10 \log(\Pr) \Leftrightarrow L_{prop} = 23 - (-121) \Leftrightarrow \textbf{$L_{prop} = 144$ dB}$$

Assim, se $L_{prop} > 144 dB$, a região é considerada uma zona morta.

Na Figura 13, é possível observar que BS's foram escolhidas como BS's da nossa operadora utilizadas para o cálculo das zonas mortas.

19

10.3 Anexo C – Estudo Zonas de Bloqueio

Para a realização dos cálculos para as **zonas de bloqueio** teve que se seguir a seguinte Fórmula 4:

$$L_{prop} = 10 \log(Pi) - [10 \log(Pn) + 10 \log(Mi)]$$

Fórmula 4 – Fórmula para cálculo da perda de Propagação.

Sabendo, através do exercício 42 resolvido na aula que:

- $10\log(Pi) = -17 \text{ dBm}$
- $10\log(Pn) = -100 \text{ dBm}$
- $10\log(Mi) = 15 \text{ dB}$

E sabendo que se considera uma região uma zona de bloqueio quando a **região tenha uma** perda de propagação menor que:

$$L_{prop} = 10\log(Pi) - [10\log(Pn) + 10\log(Mi)] \Leftrightarrow L_{prop} = -17 - (-100 + 15) \Leftrightarrow \textbf{\textit{L}}_{prop} = \textbf{68 dB}$$

Assim, se L_{prop} < 68 dB, a região é considerada uma zona de bloqueio.

Na Figura 14, é possível observar que BS's foram escolhidas como BS's da operadora concorrente utilizadas para o cálculo das zonas de bloqueio.

20