from chapter(s) _____ in the recommended text

A. Introduction

B. Reductions Via Free Electrons

Addition Of One Electrons

a radical anion proton orbited radical anion

Addition Of One Electron Then Protonation

a radical

dianion an anion

addition of two hydrogens.

oxidize to Sm(3+) sodium amalgam inky-blue solution.

Na
$$\xrightarrow{\text{NH}_3}$$
 $e^{\text{-}}$ $\xrightarrow{\text{H}^{\text{-}}\text{NH}_2}$ $\text{H}^{\text{-}}$ + $\xrightarrow{\text{-}^{\text{-}}\text{NH}_2}$ $\xrightarrow{\text{hydride}}$ $\xrightarrow{\text{radical}}$ $\xrightarrow{\text{anion}}$

anion

Cycles Of Electron Addition Then Protonation

trans-geometry equivalent to

a radical, then another electron to form an

Na
$$\frac{NH_3}{-Na^+}$$
 $e^ \frac{H^2NH_2}{-H_2N^-}$

radical anion

НОМО non-conjugated

Na
$$\xrightarrow{\text{NH}_3}$$
 $e^ \xrightarrow{\text{H-NH}_2}$ $\xrightarrow{\text{-H}_2\text{N}^-}$

$$e^{-}$$
 $H-NH_2$
 H_2N-H
 $H-NH_2$
 H_2N-H
 $H-NH_2$
 H_2N-H

C. Reductions Via Radicals

reduction

kinetic effects Catalytic amounts

products

radical

regenerated many times.

concentration is *low*.

chain initiation

chain propagation

radical products

chain termination

D. Biosynthesis Of Prostaglandin H₂ (PGH₂)

(ii) +H*
$$O = \frac{1}{OH}$$
prostaglandin H_2 (PGH₂)

dilate blood vessels and are secreted in seminal fluid from the prostate gland

E. Reactive Oxygen Species

endoplasmic reticulum and mitochondria and peroxisomes