

Topología | 2025-I

Nestor Heli Aponte Avila¹

n267452@dac.unicamp.br

Conjuntos

\square Ejercicio (Leyes de De Morgan.) $X \setminus \bigcup A_i = \bigcap X \setminus A_i$ y $X \setminus \bigcap A_i = \bigcup X \setminus A_i$.
Ejercicio La imagen inversa es bien portada, con uniones, intersecciones y complementos.
Ejercicio (a) $f\left(\bigcup A_i\right) = \bigcup f(A_i)$; (b) $f\left(\bigcap A_i\right) \subset \bigcap f(A_i)^{-1}$; (c) $f(X \setminus A) \subset Y \setminus f(A)$; (d) $f(X \setminus A) \supset Y \setminus f(A)$.
\square Ejercicio (a) $A \subset f^{-1}(f(A))$ igualdad si $\overset{\hookrightarrow}{f}$; (b) $f(f^{-1}(B)) \subset B$ igualdad si \vec{f} .

Espacios Métricos

- \diamondsuit *Métrica*. Una función $d: X \times X \to \mathbb{R}^+$ es métrica si $\forall x,y,z \in X$
 - $d(x,y) \ge 0$ e d(x,y) = 0 si y solo si x = y.
 - d(x, y) = d(y, x).
 - $d(x,y) \leq d(x,z) + d(z,y)$.

Ejemplo Las métricas estándar en \mathbb{R}^n inducidas por las normas $\|\cdot\|_j$ con j=1,2 y ∞ .

Ejemplo Métrica discreta y métrica inducida.

- $\diamondsuit \mathcal{U}^{\vee} \subset X \text{ sii } \forall x \in \mathcal{U}, \exists r > 0 \text{ tal que } B(x; r) \subseteq \mathcal{U}.$ En contraposición, $\mathcal{F}^{\nabla} \subset X \text{ sii } X \setminus \mathcal{F} \text{ es abierto.}$

Ejercicio Las bolas abiertas son abiertos y las cerradas son cerradas en X.

- \square Sea X un espacio métrico, entonces: (a) \emptyset y X son abiertos; (b) Unión de una familia arbitraria de abiertos es abierto y (c) Intersección de una familia finita de abiertos es abierto.
- * Colorario de esto es la contra-versión para cerrados.
- \bigcirc Continuidad. Sean X y Y espacios métricos. Una función $f: X \to Y$ es continua en $a \in X$ sii $\forall \epsilon > 0, \exists \delta > 0$ tal que $f(B(a;\delta)) \subset B(f(a);\epsilon)$.
- $\Box \ f: X \to Y \text{ es continua en } a \in X \text{ sii } \forall \stackrel{f}{V^{\vee}} \subset Y, \exists \stackrel{a}{U^{\vee}} \subset X \text{ tal que } f(U) \subset V.$
- $\square \ f \text{ es continua} \Leftrightarrow \ \forall \ V^{\vee} \subset Y \text{ tenemos } f^{-1}(V)^{\vee} \subset X \Leftrightarrow \ \forall \ F^{\bigtriangledown} \subset Y \text{ tenemos } f^{-1}(F)^{\bigtriangledown} \subset X.$

 $^{^{1}}$ Igualdad si f inyecta.

Espacios Topológicos

- \diamondsuit *Espacio Topológico*. Sea X un conjunto. Una topología en X es un conjunto $\tau \subseteq \wp(X)$ que verifica:
 - $\emptyset, X \in \tau$.
 - Si $A_i \in \tau$ entonces $\bigcup A_i \in \tau$.

 $A \in \tau$ es abierto

• Si $A_k \in \tau$ con $|k| < \infty$ entonces $\bigcap A_k \in \tau$.

Ejemplo El conjunto de abiertos de un espacio métrico es una topología τ_d para X. Caso de la topología usual τ_{d_2} para \mathbb{R}^n dada por los abiertos de la métrica euclidiana.

Ejemplo La topología discreta $\tau_T = \wp(X)$ y la topología trivial $\tau_0 = \{\emptyset, X\}$.

- (X, τ) es metrizable sii una métrica d tal que $\tau = \tau_d$.
- Sean τ_1, τ_2 dos topogías para X. Si $\tau_1 \subset \tau_2$ entonces τ_2 es mas fina-fuerte que τ_1 .
- * Acá de nuevo los cerrados se definen como complementos de abiertos y existe también la definición en términos de conjuntos cerrados.

Adherencia e Interior

- \diamondsuit *Adherencia.* Para $A \subset X$ sea $\mathcal{F} = \{F^{\nabla} \subset X : A \subset F\}$, definimos $\overline{A} := \bigcap \mathcal{F}$.
- $\square \ (a) \ A \subset \overline{A}; \ (b) \ \overline{\overline{A}} = \overline{A}; \ (c) \ \overline{\emptyset} = \emptyset; \ (d) \ \overline{A \cup B} = \overline{A} \cup \overline{B}; \ (e) \ A^{\nabla} \Leftrightarrow A = \overline{A}.$
- * Sea $f: \wp(X) \to \wp(X)$ tal que $A \mapsto \overline{A}$ y $\mathcal{F} := \{A \subset X : A = \overline{A}\}$. Si la familia \mathcal{F} verifica las propiedades en la proposición anterior, entonces \mathcal{F} define los cerrados de una topología τ sobre X.
- \diamondsuit Interior. Para $A \subset X$ sea $\mathcal{U} = \{U^{\vee} \subset X : U \subset A\}$, definimos $\overset{\circ}{A} := \bigcup \mathcal{U}$.
- $\square X \backslash \overline{A} = \widehat{X \backslash A}$ y $X \backslash \widehat{A} = \overline{X \backslash A}$. Hint: De Morgan.
- $\square \ (a) \overset{\circ}{A} \subset A; \ (b) \overset{\circ\circ}{A} = \overset{\circ}{A}; \ (c) \overset{\circ}{X} = X; \ (d) \overset{\circ}{A \cap B} = \overset{\circ}{A} \cap \overset{\circ}{B}; \ (e) \ A^{\vee} \Leftrightarrow A = \overset{\circ}{A}.$
- * De nuevo, una familia $\mathcal{U}:=\{A\subset X: A=\overset{\circ}{A}\}$ que verifique las propiedades anteriores define los abiertos de una topología τ sobre X.

Sistemas de Vecindades

- \diamondsuit Sea X espacio topológico y $U \subset X$, el conjunto $U \in \mathcal{U}_x$ sii $x \in \overset{\circ}{U}$.
- \square Las vecindades cumplen: (a) $\forall U \in \mathcal{U}_x$ el punto $x \in U$; (b) $U, V \in \mathcal{U}_x \Rightarrow U \cap V \in \mathcal{U}_x$; (c) $\forall U \in \mathcal{U}_x, \exists V \in \mathcal{U}_x, \forall y \in V$ se tiene $V \subset U \in \mathcal{U}_y$; (d) $\mathcal{U}_x \ni U \subset V \subset X \Rightarrow V \in \mathcal{U}_x$; (e) $U^{\vee} \subset X$ sii $\forall x \in U$ se tiene $U \in \mathcal{U}_x$.
- * Un sistema de vecindades define una topología en X dada por $\tau := \{U \subset X : \forall x \in U \text{ se tiene } U \in \mathcal{U}_x\}.$
- \diamondsuit Una familia $\mathcal{B}_x \subset \mathcal{U}_x$ es base de vecindades de x si $\forall U \in \mathcal{U}_x, \exists \mathcal{B}_x \ni V \subset U$.

Ejemplo $\mathcal{B}_x := \{U \in \mathcal{U}_x : U^{\vee} \subset X\}.$

Ejemplo En un espacio métrico $\mathcal{B}_x := \{B(x;r) : r > 0\}$ es base del sistema de vecindades de x^2 .

²PD. Las bolas cerradas también.

\square Una base de vecindades \mathcal{B}_x verifica: (a) $\forall U \in \mathcal{B}_x$ el punto $x \in U$; (b) $U, V \in \mathcal{B}_x \Rightarrow \exists W \in \mathcal{B}_x$ tal que $W \subset U \cap V$; (c) $\forall U \in \mathcal{B}_x, \exists V, W \in \mathcal{B}_x, \forall y \in V$ se tiene $V \subset U \neq \mathcal{B}_y \Rightarrow W \subset U$; (d) $U^{\vee} \subset X \Rightarrow \forall x \in U, \exists V \in \mathcal{B}_x \Rightarrow \exists W \in \mathcal{B}_x \Rightarrow $
* Un familia \mathcal{B}_x que verifique las propiedades (a) , (b) y (c) es una base para la topología $\tau = \{U \subset X : \forall x \in U, \exists V \in \mathcal{B}_x \text{ tal que } V \subset U\}$.
□ Sea $A \subset X$ e \mathcal{B}_x una base para la topología τ . Entonces: (a) A^{\vee} sii $\forall x \in A, \exists V \in \mathcal{B}_x$ tal que $V \subset A$; (b) A^{∇} sii $\forall x \notin A, \exists V \in \mathcal{B}_x$ tal que $A \cap V = \emptyset$; (c) $\overline{A} = \{x \in X : \forall V \in \mathcal{B}_x \text{ se tiene } V \cap A \neq \emptyset\}$; (d) $A = \{x \in X : \exists V \in \mathcal{B}_x \text{ tal que } V \subset A\}$.
\diamondsuit X satisface el <i>primer axioma de enumerabilidad</i> sii $\forall x \in X, \exists \mathcal{B}_x$ enumerable.
Ejemplo Todo espacio métrico satisface el primer axioma de enumerabilidad.
Bases to Abiertos
$\diamondsuit \text{ Sea } (X,\tau). \text{ Una familia } \mathcal{B} \subset \tau \text{ es base sii } \forall U^\vee \in \tau, \exists \mathcal{C} \subset \mathcal{B} \text{ tal que } U = \bigcup \{V: V \in \mathcal{C}\}.$
Ejemplo $\{(a,b)\}$ en la topología usual de $\mathbb R$.
Ejemplo $\{\{x\}: x \in X\}$ para la topología discreta.
\square \mathcal{B} es base sii $\mathcal{B}_x = \{V \in \mathcal{B} : x \in V\}$ es una base de vecindades de x .
\square Base Juliana. Sea X un conjunto y $\mathcal B$ un familia de subconjuntos de X tal que: (a) $X = \bigcup \{V: V \in \mathcal B\};$ (b) $\forall U, V \in \mathcal B$ si $x \in U \cap V$ entonces $\exists W \in \mathcal B$ tal que $W \subset U \cap V$. El conjunto $\mathcal B$ es base para la topología,
$ au = \left\{ U : U = \bigcup \left\{ V : V \in \mathcal{C} \right\} \text{ con } \mathcal{C} \subset \mathcal{B} \right\}.$
\diamondsuit X satisface el <i>segundo axioma de enumarabilidad</i> si $\exists \mathcal{B}$ enumerable para la topología.
Subespacios
\diamondsuit Sea (X,τ) e $S\subset X$. La familia $\tau_S:=\{S\cap U:U\in\tau\}$ es una topología (inducida) sobre S .
Ejemplo $\mathbb Z$ con la topología inducida por $\mathbb R$, es una espacio discreto.
Ejemplo \mathbb{R} como subespacio de \mathbb{R}^2 .

Funciones Continuas

 $\diamondsuit \ f: X \to Y \text{ es continua en } a \in X \text{ sii } \forall V^{\vee} \subset Y, \exists \overset{a}{U^{\vee}} \subset X \text{ tal que } f(U) \subset V.$ * Denotamos C(X,Y) al conjunto de todas las $f:X\to Y$ continuas, C(X) si $Y=\mathbb{R}$. \square Sean \mathcal{B}_a y $\mathcal{B}_{f(a)}$ bases de vecindades. Entonces, son equivalentes: f continua en $a \Leftrightarrow \forall V \in \mathcal{V}_{f(a)}, \exists U \in \mathcal{U}_a$ tal que $f(U) \subset V \iff \forall V \in \mathcal{B}_{f(a)}, \exists U \in \mathcal{B}_a \text{ tal que } f(U) \subset V.$ Y se tiene $f^{-1}(F)^{\nabla} \subset X$. \square Sean $f: X \to Y$ continua en $a \lor g: Y \to Z$ continua en f(a), entonces $g \circ f: X \to Z$ es continua en a. \square Sean $f: X \to Y$ continua y $S \leq X$, entonces $f|_S$ es continua. \square Sean $X=S_1\cup S_2$, ambos abiertos y $f:X\to Y$ tal que $f|_{S_1}$ y $f|_{S_2}$ son ambas continuas, entonces f es continua. \Diamond f es un homeomorfismo si f es biyectiva y ambas f y f^{-1} son continuas. Le llamamos inmersión si f es un homeomorfismo de X en algún subespacio de Y. \Diamond f es abierta si $\forall U^{\vee} \subset X$ se tiene $f(U)^{\vee} \subset Y$, cerrada si $\forall F^{\nabla} \subset X$ se tiene $f(F)^{\nabla} \subset Y$. \Box f es un homeomorfismo \Leftrightarrow f es biyectiva, continua y abierta \Leftrightarrow f es biyectiva, continua y cerrada. Topología Producto \diamondsuit Para una familia $\{X_i\}_{i\in I}$ no vacía, su *producto cartesiano* es $\prod X_i = \{(x_i): x_i \in X_i\}$. Para cada $j \in I$ la proyección $\pi_j : x \in \prod X_i \mapsto x_j \in X_j$. * No hay garantía de $\prod X_i \neq \emptyset$ en el caso de que $|I| = \infty$, se hace necesario el axioma de elección. \diamondsuit Axioma de Elección. Sea $\mathcal{A}=\{X_i\}$ familia no vacía de conjuntos disjuntos no vacíos, entonces $\exists f, \forall i \in I$, tal que $f: I \to \bigcup X_i$ envia $i \mapsto f(i) \in X_i$. \square Si $\{X_i\} \neq \emptyset$ con $X_i \neq \emptyset$, entonces $\prod X_i \neq \emptyset$. \square Sean X_i espacios topológicos y $X = \prod X_i$. El conjunto $\mathcal{B} = \{\prod U_i : U_i^{\vee} \subset X_i\}$ es base para una una topología sobre X que llamamos topología de cajas. **Ejemplo** Sea $I = \{1, 2, \dots, n\}$ e $X_i = \mathbb{R}$ para cada $i \in I$, entonces $\prod X_i$ es la topología usual en \mathbb{R}^n . * La topología de cajas resulta inconveniente en conjuntos de indices infinitos. \square Sean $X = \prod X_i$ y $\mathcal{B} = \prod U_i$ tales que (a) $U_i^{\vee} \subset X_i$ y (b) $\forall J \subset I$ finito, $\forall i \in I \setminus J$ se tiene $U_i = X_i$, entonces \mathcal{B} es base para de una topología llamada topología producto sobre X. \square La topología producto en la más fina en X tal que todas las proyecciones $\pi_j: X \to X_j$ son continuas. \square Sean $X = \prod X_i$ y Y espacios topológicos y $g: X \to Y$ una función, entonces g es continua sii $\forall j \in I$, se tiene $\pi_j \circ g: Y \to X_j$ es continua. \square Sean X conjunto, $\{X_i\}$ familia no vacía de espacios topológicos e $\forall i \in I$ sea $f_i: X \to X_i$. Sea también $\mathcal{B} = I$ $\left\{\bigcap f_i^{-1}(U_j): J \text{ es finito y } \mathcal{U}_j^{\vee} \subset X_j\right\}$, entonces (a) \mathcal{B} es base de una topología τ_w en X; (b) τ_w es la topología más fina tal que f_i es continua; (c) Si Y es espacio topológico, entonces $g:Y\to X$ es continua sii $\forall i\in I$ la función $f_i \circ g: Y \to X_i$ es continua³. \square Sean X el espacio topológico definido por las $\{f_i\}$ y $S \leq X$, entonces S tiene la topológia más fina definida por la familia $f_i|_S: S \to X_i$. \diamondsuit La familia $\{f_i\}$ separa puntos en X si $\forall x \neq y \in X, \exists i \in I$ tal que $f_i(x) \neq f_i(y)$. $\square \ \forall i \in I \ \text{sean} \ f_i : X \to X_i \ \text{funciones entre espacios topológicos.}$ Considere $\epsilon : x \in X \to (f_i(x)) \in \prod X_i$, entonces ϵ

es una inmersión sii verifica (a) $\{f_i\}$ separa puntos en X y (b) X tiene la topología más fina definida por $\{f_i\}$ ⁴.

 $^{^{3}\}tau_{w}$ es la topología más fina definida por la familia de funciones $\{f_{i}\}$.

⁴A la función ϵ se le conoce como *evaluación*

Espacio Cociente

 \square Sean X espacio topológico, Y un conjunto y $\overset{\rightarrow}{\pi}: X \to Y$. La colección $\tau_{\pi} = \{V \subset Y : \pi^{-1}(V)^{\vee} \subset X\}$ es una topología sobre Y a la que llamamos topología cociente.

 $\stackrel{\rightarrow}{\bigcirc} \pi: X \to Y$ es una función cociente si Y tiene la topología cociente definida por π .

 \square Si π es función cociente, entonces au_π es la topología más fina en Y tal que π es continua.

 \square Sean π función cociente y Z espacio topológico. Entonces $f:Y\to Z$ es continua sii $g\circ\pi:X\to Z$ es continua.

 \square Sea $\overset{\rightarrow}{\pi}: X \to Y$ función continua entre espacios topológicos. Si π es abierta, entonces $\tau_Y = \tau_\pi$.

Ejemplo Sea $\mathbb{S}^1=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ y $\pi:[0,2\pi]\ni t\mapsto(\cos(t),\sin(t))\in\mathbb{S}^1.$

 \square Sean X un espacio topológico y $\mathcal{D} = \{A_i \subset X\}$ tal que $A_i \cap A_j = \emptyset$ y $\bigcup A_i = X$. Considere

$$\tau_{\mathcal{D}} = \left\{ \mathcal{A} \subset \mathcal{D} : \left(\bigcup \{A : A \in \mathcal{A}\} \right)^{\vee} \subset X \right\}$$

El conjunto $\tau_{\mathcal{D}}$ es una topología en \mathcal{D} y \mathcal{D} es una descomposición de X. Si $x \in X$ entonces $\exists ! P_x \in \mathcal{D}$ tal que $x \in P_x$. La función $P_x : X \to \mathcal{D}$ es llamada función descomposición.

 \square Toda descomposición $P_x: X \to \mathcal{D}$ es una función cociente.

 \square Si π función cociente, entonces $\exists P_x : X \to \mathcal{D}$ y un homeomorfismo $f : Y \to \mathcal{D}$ tales que $f \circ \pi = P$.

 \bigcirc Sea X/\sim una relación de equivalencia. La descomposición $\mathcal D$ formada por las clases de equivalencia de es llamada espacio de identificación de X módulo \sim .

Ejemplo Como vimos \mathbb{S}^1 es un cociente del intérvalo $[0,2\pi]$. Aquí $\mathcal{D}=\{\{x\}:x\in(0,2\pi)\}\cup\{\{0,2\pi\}\}$, donde $x\sim y$ si $x-y=2k\pi$ con $k\in\mathbb{Z}$.

Figure 1: $[0, 2\pi]/\sim$

Ejemplo Sea $X = [0, 2\pi] \times [0, 2\pi]$ y $(x_1, y_1) \sim (x_2, y_2)$ si $x_1 - x_2 = 2k\pi$ y $y_1 = y_2$. El espacio $X/\sim \cong \mathbb{S}^1 \times [0, 2\pi]$.

Ejemplo Mismo X ahora con $(x_1,y_1) \sim (x_2,y_2)$ si $x_1-x_2=2k\pi$ y $y_1=y_2$ o si $x_1=x_2$ y $y_1-y_2=2k\pi$. En este caso $X/\sim \cong \mathbb{S}^1\times \mathbb{S}^1$, el toro.

(b) Banda de Möbius

Ejemplo Mismo X con $(x_1, y_1) \sim (x_2, y_2)$ si $x_1 - x_2 = 2k\pi$ y $y_1 = y_2$ y $y_1 + y_2 = 2\pi$. En este caso X/\sim es la banda de Möbius.

Convergencia

 \diamondsuit Sea X espacio métrico. $X \supset (x_n) \to x \in X$ sii $\forall \epsilon > 0, \exists n_0 \in \mathbb{N}, \forall n \geq n_0$ tenemos $d(x_n, x) < \epsilon$.

 \square Sea $A \subset X$ e $x \in X$. El punto $x \in \overline{A}$ sii $\exists (x_n) \subset A$ tal que $(x_n) \to x$.

 \square Sea $f: X \to Y$. La función f es continua en a sii $\forall (x_n) \to a \in X$ se tiene $(f(x_n)) \to f(a) \in Y$.

 \bigcirc Sea X espacio topológico. $(x_n) \to x \in X$ sii $\forall U \in \mathcal{U}_x, \exists n_0 \in \mathbb{N}$ tal que $\forall n \geq n_0$ la sucesión $(x_n) \subset U^5$.

 \diamondsuit (x_{n_k}) es una *subsucesión* de (x_n) siempre que $(n_k)\subseteq\mathbb{N}$ sea estrictamente creciente.

Redes

 $(\Lambda, \leq) = \Lambda$ es un *conjunto dirigido* si verifica:

• $\forall \lambda \in \Lambda, \ \lambda \leq \lambda$.

• $\forall \lambda, \mu, \nu \in \Lambda \text{ si } \lambda \leq \mu \text{ y } \mu \leq \nu, \text{ entonces } \lambda \leq \nu.$

• $\forall \lambda, \mu \in \Lambda, \exists \nu \in \Lambda \text{ tal que } \lambda \leq \nu \text{ y } \mu \leq \nu.$

Ejemplo \mathbb{N} con el orden usual es dirigido.

 \bigcirc Sea X espacio topológico y $x:\Lambda \to X$. Llamamos red a la imagen $x(\Lambda)=(x_\lambda)\subset X$. Decimos que $(x_\lambda)\to x\in X$ sii $\forall U\in\mathcal{U}_x,\exists\lambda_0\in\Lambda,\forall\lambda\geq\lambda_0$ tenemos $(x_\lambda)\subset U$.

Ejemplo Las sucesiones son un tipo particular de redes.

Ejemplo Sean $x \in U$ e $x_U \in U \in \mathcal{U}_x$, entonces $X \ni x \leftarrow (x_U) \subset X$ es una red.

 \square Sea $x \in A \subset X$. El punto $x \in \overline{A}$ sii $\exists (x_{\lambda}) \subset A$ tal que $(x_{\lambda}) \to x$.

 $\Box f: X \to Y$ es continua en a sii $\forall (x_{\lambda}) \subset X$ tal que $(x_{\lambda}) \to a \in X$ se tiene $(f(x_{\lambda})) \to f(a) \in Y$.

 \square Sea $X = \prod X_i$. La red $(x_\lambda) \to x \in X$ sii $\forall i \in I$ tenemos $(\pi_i(x_\lambda)) \to \pi_i(x) \in X_i$.

 \diamondsuit Sea $(x_{\lambda}) \subset X$. Un punto $x \in X$ es de *acumulación* en (x_{λ}) sii $\forall U \in \mathcal{U}_x, \lambda_0 \in \Lambda, \exists \lambda \geq \lambda_0$ tal que $x_{\lambda} \in U$.

 \bigcirc Sean X e $x:\Lambda \to X$ una red. Llamamos subred a cualquier red de la forma $x\circ\phi:M\to X$ denotada $(x_{\phi(\mu)})$ tal que $\phi:(M,\leq)\to\Lambda$ es una función que verifica,

• $\mu_1 \leq \mu_2 \Rightarrow \phi(\mu_1) \leq \phi(\mu_2)$.

• $\forall \lambda \in \Lambda, \exists \mu \in M \text{ tal que } \phi(\mu) \geq \lambda.$

 \square Sea $(x_{\lambda}) \subset X$. El punto $x \in X$ es de acumulación sii $\exists (x_{\phi(\mu)}) \to x \in X$.

 \diamondsuit La red $(x_{\lambda}) \subset X$ es red universal si $\forall A \subset X, \exists \lambda_0 \in \Lambda, \forall \lambda \geq \lambda_0$ se tiene que $(x_{\lambda}) \subset A$ o $(x_{\lambda}) \subset X \setminus A$.

Ejemplo Toda red constante es universal.

 \square Sea $(x_{\lambda}) \subset X$ red universal e x punto de acumulación, entonces $(x_{\lambda}) \to x$.

References

[1] Mujica, Jorge (2005). Notas de topologia geral. IMECC-UNICAMP, Campinas.

⁵La definición es equivalente al tomar \mathcal{B}_x en lugar de \mathcal{U}_x .