

Curso EL 4702.

Tarea #2. Distribuciones de V. A. D.

Escuela de Ingeniería Electrónica Licenciatura en Ingeniería Electrónica

I parte: Generalidades

Con este trabajo se busca evaluar la comprensión del estudiante sobre el tema de Variable Aleatoria Discreta (VAD), mediante la aplicación en la práctica de diferentes distribuciones de este tipo.

Para esta asignación se estará trabajando con el experimento hipotético de **tirar hacia arriba una moneda varias veces** en secuencia. Para este experimento se tendrán dos casos de estudio, uno con una moneda ideal y otro con una moneda *de truco*.

1 Caso de estudio 1

Las condiciones del experimento utilizando la moneda ideal son:

- 1. La moneda solo tiene 2 posibles resultados: escudo o corona. No se contemplarán resultados atípicos (caer en el borde).
- 2. Cada tirada de la moneda dentro de la secuencia es independiente.
- 3. La moneda tiene peso ideal, por lo que la probabilidad de caer en cualquiera de las dos caras es la misma. Esta probabilidad se mantiene constante en toda la secuencia.
- 4. La moneda se tira un total de 20 veces al aire, correspondiendo este número a la longitud total de la secuencia del experimento.

2 Caso de estudio 2

Las condiciones del experimento utilizando la moneda de truco son:

- 1. La moneda solo tiene 2 posibles resultados: escudo o corona. No se contemplarán resultados atípicos (caer en el borde).
- 2. Cada tirada de la moneda dentro de la secuencia es independiente.
- 3. La moneda se modifica para que la cara de la corona tenga más peso, resultando en una probabilidad de caer del 0,7 en esta cara. Esta probabilidad se mantiene constante en toda la secuencia.
- 4. La moneda se tira un total de 20 veces al aire, correspondiendo este número a la longitud total de la secuencia del experimento.

3 Ambiente de programación

Para la solución de este trabajo se deberá utilizar el lenguaje de programación **Python**, y sus bibliotecas para tratamiento de datos, análisis matemático y estadístico, y presentación de datos como **Numpy, Pandas, Scipy y/o Matplotlib**.

4 Instrucciones

Cada equipo de trabajo deberá presentar las siguientes partes **para ambos** casos de estudio (moneda ideal Y de truco):

Parte 1 (primer tipo de distribución):

- 1. Definir el tipo de distribución de V.A.D que más se ajuste si se desea conocer la probabilidad para el número de veces que se debe tirar al aire la moneda antes de obtener el primer escudo. Justifique su elección.
- 2. Encontrar los valores para la función de masa de probabilidad para la variable del punto anterior, y para el rango dado por el tipo de distribución seleccionada y la longitud de la secuencia. Para esto puede definir la función que realiza el cálculo desde cero, o utilizar alguna función de bibliotecas¹. Para la segunda opción **se deben** justificar los atributos usados y no utilizar la función como una caja negra.
- 3. Graficar la función de masa de probabilidad de manera apropiada.

Parte 2 (segundo tipo de distribución):

- Definir el tipo de distribución de V.A.D que más se ajuste si se desea conocer la probabilidad para el número de veces que se debe tirar al aire la moneda antes de obtener 3 escudos (no necesariamente seguidos). Justifique su elección.
- 2. Encontrar los valores para la función de masa de probabilidad para la variable del punto anterior, y para el rango dado por el tipo de distribución seleccionada y la longitud de la secuencia. Para esto puede definir la función que realiza el cálculo desde cero, o utilizar alguna función de bibliotecas. Para la segunda opción se deben justificar los atributos usados y no utilizar la función como una caja negra.
- 3. Graficar la función de masa de probabilidad de manera apropiada.

Sugerencia: Note que su éxito para el experimento será obtener un resultado de escudo.

¹Se recomienda investigar las funciones de scipy.stats (https://docs.scipy.org/doc/scipy/reference/tutorial/stats/)

Parte 3 (análisis de resultados obtenidos):

- 1. Compare y explique el impacto que tuvo el cambiar la moneda ideal (caso 1) por una de truco (caso 2) en las dos distribuciones obtenidas (parte 1 y 2).
- 2. Usando la moneda ideal (caso 1), ¿es igual la probabilidad de tener un resultado de escudo en la primera tirada a tener tres escudos en las tres primeras tiradas? ¿Porqué si o no? Explique la razón.
- 3. Si usted se tuviera que enfrentar a un juego de azar en donde sabe que se está usando la moneda de truco de este experimento, ¿con cuántas oportunidades o *chances* de tirar la moneda para que le salga el escudo se sentiría seguro de que tendría la misma probabilidad que con una moneda ideal tirada una sola vez? Explique su razonamiento².

5 Procedimiento para la solución

La resolución de esta tarea se deberá realizar en **parejas o tríos**. Grupos de trabajo de mayor tamaño no son permitidos bajo ninguna circunstancia. Personas trabajando individualmente solo serán permitidas con autorización explícita de la profesora y solo se aceptarán en casos de necesidad. Trabajos individuales presentados sin previa autorización no serán revisados.

Se pueden mantener los mismos equipos de trabajo o se pueden cambiar.

Todos los archivos entregables (ver sub-sección 1 en Evaluación) deberán ser subidos al TEC-Digital **antes de la fecha de entrega**, en la sección correspondiente a la tarea #2, **por solo uno de los miembros del equipo**.

<u>IMPORTANTE:</u> Todos los equipos <u>deberán registrarse</u> para control en el siguiente link: https://forms.gle/4qL9rkKbCn5cLspf7. Dicho registro **se debe hacer a más tardar el 30 de marzo del 2022.** Equipos sin registrarse no serán evaluados.

Il parte: Evaluación

Esta tarea tiene una porcentaje del 6% de la nota total. La fecha de entrega para la misma será el 6 de abril a las 12 medio día.

Los equipos podrán presentar el trabajo de manera tardía, pero con penalidad. Así, por cada día de atraso se impondrá un 20 % de penalidad a la nota final obtenida. Es decir, si el trabajo se entrega el 6 de abril luego de las 12m.d. la nota final se basará sobre un 80 %, si se entrega el 7 de abril

²Sugerencia: el concepto de función acumulada puede serle de utilidad para esta pregunta.

luego de las 12m.d. la nota final se basará sobre un 60 %, y así sucesivamente. Esta penalización incluye fines de semana, pues es solo una prórroga condicionada.

1 Entregables

Cada equipo de trabajo deberá presentar:

- Archivo(s) con el código fuente para el cálculo y creación de los gráficos utilizados. Dichos archivos pueden ser extensiones .py o un Jupyter Notebook.
- 2. Reporte <u>corto</u> en formato tipo artículo científico IEEE. El template para dicho reporte puede ser encontrado en el TEC digital (Word o LaTEX).

Importante: Este trabajo NO es un reporte de código/algoritmo. El objetivo del reporte corto es la <u>presentación y descripción</u> de los resultados obtenidos y su análisis. Por lo tanto, no se deben incluir *pantallazos* del código en el reporte, pues para eso se entregará el mismo por aparte.

2 Desglose de evaluación

El trabajo será calificado en base al siguiente desglose:

- Demostración del manejo de los conceptos básicos del curso en cuanto a distribuciones de variable aleatoria discreta (10 %).
- Elección del tipo de distribución correcto para ambas partes, sustentado en la teoría (20%).
- Cálculo y graficación correcta de las funciones de masa de probabilidad requeridas (40%).
- Análisis correcto para los puntos requeridos (parte 3), sustentado en la teoría (30%)

Toda conducta fraudulenta será tratada según lo estipulado en el artículo 75 del RREA del TEC. Con estas conductas no engañan al profesor(a), se engañan ustedes mismos.