Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

Connection

An Enumerative Connection

Hochschild Lattices and Shuffle Lattices

Henri Mühle

TU Dresden

June 04, 2021
International Seminar, TU Dresden

Outline

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

A Structural Connection

An Enumerative Connection 1 The Hochschild Lattice

2 Shuffle Lattices

3 A Structural Connection

4 An Enumerative Connection

Outline

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

Connection

An Enumerative Connection 1 The Hochschild Lattice

- 2 Shuffle Lattices
- A Structural Connection
- 4 An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection • **triword**: an integer tuple $(u_1, u_2, ..., u_n)$ such that

• $u_i \in \{0,1,2\}$

 $\leadsto \mathsf{Tri}(n)$

- $u_1 \neq 2$
- $u_i = 0$ implies $u_j \neq 1$ for all j > i

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural

An Enumerative Connection • **triword**: an integer tuple $(u_1, u_2, ..., u_n)$ such that

•
$$u_i \in \{0,1,2\}$$

$$\rightsquigarrow \mathsf{Tri}(n)$$

• $u_1 \neq 2$

•
$$u_i = 0$$
 implies $u_j \neq 1$ for all $j > i$

$$(0,0,0), (0,0,2), (0,2,0), (0,2,2), (1,0,0), (1,0,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)$$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection • **triword**: an integer tuple $(u_1, u_2, ..., u_n)$ such that

• $u_i \in \{0,1,2\}$

 $\rightsquigarrow \mathsf{Tri}(n)$

- $u_1 \neq 2$
- $u_i = 0$ implies $u_j \neq 1$ for all j > i

Lemma (C. Combe, 2020)

For n > 0, the cardinality of Tri(n) is $2^{n-2}(n+3)$.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection • **triword**: an integer tuple $(u_1, u_2, ..., u_n)$ such that

- $u_i \in \{0,1,2\}$
- $u_1 \neq 2$
- $u_i = 0$ implies $u_j \neq 1$ for all j > i

Lemma (C. Combe, 2020)

For n > 0, the cardinality of Tri(n) is $2^{n-2}(n+3)$.

1, 2, 5, 12, 28, 64, 144, 320, 704, . . .

(A045623 in OEIS)

 $\rightsquigarrow Tri(n)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural

A Structural Connection

An Enumerative Connection • **triword**: an integer tuple $(u_1, u_2, ..., u_n)$ such that

•
$$u_i \in \{0,1,2\}$$

$$\rightsquigarrow \mathsf{Tri}(n)$$

- $u_1 \neq 2$
- $u_i = 0$ implies $u_j \neq 1$ for all j > i
- Hochschild lattice:

$$\mathsf{Hoch}(n) \stackrel{\mathsf{def}}{=} (\mathsf{Tri}(n), \leq_{\mathsf{comp}})$$

Lemma (C. Combe, 2020)

For n > 0, the cardinality of Tri(n) is $2^{n-2}(n+3)$.

and Shuffle

Henri Mühle

The Lattice

- **triword**: an integer tuple (u_1, u_2, \dots, u_n) such that
 - $u_i \in \{0,1,2\}$ $\rightsquigarrow \mathsf{Tri}(n)$

(1, 2, 2)

- $u_1 \neq 2$
- $u_i = 0$ implies $u_i \neq 1$ for all j > i
- Hochschild lattice:

(0,0,0)

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural

A Structural Connection

An Enumerative Connection • **triword**: an integer tuple (u_1, u_2, \dots, u_n) such that

•
$$u_i \in \{0,1,2\}$$

 $\rightsquigarrow \mathsf{Tri}(n)$

- $u_1 \neq 2$
- $u_i = 0$ implies $u_j \neq 1$ for all j > i
- Hochschild lattice:

$$\mathsf{Hoch}(n) \stackrel{\mathsf{def}}{=} (\mathsf{Tri}(n), \leq_{\mathsf{comp}})$$

Theorem (C. Combe, 2020)

For n > 0, **Hoch**(n) is a lattice.

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

- $\mathbf{L} = (L, \leq)$.. lattice
- semidistributive:

•
$$p \lor q = p \lor r$$
 implies $(p \lor q) \land (p \lor r) = p \lor (q \land r)$

•
$$p \wedge q = p \wedge r$$
 implies $(p \wedge q) \vee (p \wedge r) = p \wedge (q \vee r)$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. lattice

- semidistributive:
 - $p \lor q = p \lor r$ implies $(p \lor q) \land (p \lor r) = p \lor (q \land r)$
 - $p \wedge q = p \wedge r$ implies $(p \wedge q) \vee (p \wedge r) = p \wedge (q \vee r)$
- canonical join representation: smallest representation of $p \in L$ as join $\rightsquigarrow Can(p)$

Hochschild and Shuffle

Lattice

• $\mathbf{L} = (L, \leq)$.. lattice

- semidistributive:

•
$$p \lor q = p \lor r$$
 implies $(p \lor q) \land (p \lor r) = p \lor (q \land r)$

•
$$p \wedge q = p \wedge r$$
 implies $(p \wedge q) \vee (p \wedge r) = p \wedge (q \vee r)$

• canonical join representation: smallest representation of $p \in L$ as join $\rightsquigarrow \mathsf{Can}(p)$

Theorem (C. Combe, 2020)

For n > 0, **Hoch**(n) is semidistributive.

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

$$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

• two statistics:

$$f_0 \colon \mathsf{Tri}(n) \to \{1,2,\dots,n+1\}$$

$$\mathfrak{u} \mapsto \begin{cases} n+1, & \text{if } 0 \notin \mathfrak{u} \\ \min\{i \mid u_i = 0\}, & \text{otherwise} \end{cases}$$

$$l_1 \colon \mathsf{Tri}(n) \to \{0,1,\dots,n\}$$

$$\mathfrak{u} \mapsto \begin{cases} 0, & \text{if } 1 \notin \mathfrak{u} \\ \max\{i \mid u_i = 1\}, & \text{otherwise} \end{cases}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

• two statistics:

$$f_0 \colon \mathsf{Tri}(n) \to \{1,2,\dots,n+1\}$$

$$\mathfrak{u} \mapsto \begin{cases} n+1, & \text{if } 0 \not\in \mathfrak{u} \\ \min\{i \mid u_i = 0\}, & \text{otherwise} \end{cases}$$

$$l_1 \colon \mathsf{Tri}(n) \to \{0,1,\dots,n\}$$

$$\mathfrak{u} \mapsto \begin{cases} 0, & \text{if } 1 \not\in \mathfrak{u} \\ \max\{i \mid u_i = 1\}, & \text{otherwise} \end{cases}$$

• by definition, $l_1(\mathfrak{u}) < f_0(\mathfrak{u})$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection ullet edge: $(\mathfrak{u},\mathfrak{v})$ such that $\mathfrak{u} < \mathfrak{v}$ without $\mathfrak{u} < \mathfrak{u}' < \mathfrak{v}$ $\leadsto \mathcal{E}\big(\mathsf{Hoch}(n)\big)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattice Shuffle

A Structural

An Enumerative Connection

- edge: $(\mathfrak{u}, \mathfrak{v})$ such that $\mathfrak{u} < \mathfrak{v}$ without $\mathfrak{u} < \mathfrak{u}' < \mathfrak{v}$ $\rightsquigarrow \mathcal{E}(\mathsf{Hoch}(n))$
- if $(\mathfrak{u}, \mathfrak{v}) \in \mathcal{E}(\mathsf{Hoch}(n))$, then $u_i < v_i$ for a unique $i \in [n]$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection Perspectivity Irreducibility

• join-irreducible triwords:

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection Perspectivity Irreducibility

- join-irreducible triwords:
 - $\bullet \ \mathfrak{a}^{(i)} \stackrel{\mathsf{def}}{=} (\underbrace{1,1,\ldots,1}_{i},0,0,\ldots,0)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection Perspectivity Irreducibility

- join-irreducible triwords:
 - $\bullet \ \mathfrak{a}^{(i)} \stackrel{\mathsf{def}}{=} (\underbrace{1,1,\ldots,1}_{i},0,0,\ldots,0)$

Hochschild and Shuffle

Henri Mühle

Lattice

• join-irreducible triwords:

$$\bullet \ \mathfrak{a}^{(i)} \stackrel{\mathsf{def}}{=} (\underbrace{1,1,\ldots,1}_{i},0,0,\ldots,0)$$

$$\mathbf{a}^{(i)} \stackrel{\mathsf{def}}{=} (\underbrace{1,1,\ldots,1}_{i},0,0,\ldots,0)$$

$$\mathbf{b}^{(i)} \stackrel{\mathsf{def}}{=} (0,0,\ldots,0,\underset{i}{2},0,\ldots,0)$$

Hochschild and Shuffle

Henri Mühl

Hochschild Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection a join-irreducible triwords:

$$\bullet \ \mathfrak{a}^{(i)} \stackrel{\mathsf{def}}{=} (\underbrace{1,1,\ldots,1}_{i},0,0,\ldots,0)$$

$$\bullet \ \mathfrak{b}^{(i)} \stackrel{\mathsf{def}}{=} (0,0,\ldots,0,\underset{i}{2},0,\ldots,0)$$

Proposition (**, 2020)

For
$$\mathfrak{u} \in \mathsf{Tri}(n)$$
, $\mathsf{Can}(\mathfrak{u}) = \{\lambda(\mathfrak{u}',\mathfrak{u}) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}(\mathsf{Hoch}(n))\}.$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection Perspectivity Irreducibility

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection

Proposition (%, 2020)

For $\mathfrak{u} \in \mathsf{Tri}(n)$, we have

$$\mathsf{Can}(\mathfrak{u}) = \left\{\mathfrak{a}^{(i)} \mid i = l_1(\mathfrak{u}) \text{ if } l_1(\mathfrak{u}) > 0\right\} \uplus \left\{\mathfrak{b}^{(i)} \mid u_i = 2\right\}.$$

Outline

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection The Hochschild Lattice

2 Shuffle Lattices

A Structural Connection

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle

Lattices

An Enumerative

 $\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

An Enumerativ Connection

$$\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$$

$$a_1a_2b_1b_2b_3 \in \mathsf{Shuf}(2,3)$$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerativ Connection $\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$

• (word) shuffle: word using letters a_i or b_i whose restriction to the a_i 's and b_i 's preserves order $\rightsquigarrow \mathsf{Shuf}(r,s)$

 $a_1a_1b_1b_2b_3 \notin Shuf(2,3)$

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle Lattices

An Enumerative $\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$

$$a_1b_1b_2b_3 \in \mathsf{Shuf}(2,3)$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection $\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$

$$b_1a_1b_2b_3 \in \mathsf{Shuf}(2,3)$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

$$\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$$

$$b_1a_1b_2a_3 \notin \mathsf{Shuf}(2,3)$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

$$\bullet \mathbf{a} = a_1 a_2 \cdots a_r, \mathbf{b} = b_1 b_2 \cdots b_s$$

$$b_2a_1b_1b_3 \notin \mathsf{Shuf}(2,3)$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle

Lattices

A Structural

An Enumerative

- $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle

Lattices

A Structural

An

• $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$

• $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

 $a_1a_2 \leq_{\mathsf{shuf}} b_1b_2b_3$

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle

Lattices

An Enumerative • $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$

• $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

$$a_1b_1a_2 \leq_{\mathsf{shuf}} b_1a_2b_3$$

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle

Lattices

A Structural

An Enumerative • $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$

• $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

 $a_1b_1 \not\leq_{\mathsf{shuf}} a_1b_1a_2$

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle

Lattices

A Structural

An Enumerative • $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$

• $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

 $a_1b_1a_2 \not\leq_{\mathsf{shuf}} b_1a_1$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative

- $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice Shuffle

Lattices

A Structural Connection

An Enumerative Connection

- $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Theorem (C. Greene, 1988)

For $r, s \ge 0$, the poset $\mathsf{Shuf}(r, s) \stackrel{\mathsf{def}}{=} (\mathsf{Shuf}(r, s), \le_{\mathsf{shuf}})$ is a supersolvable lattice.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle

Lattices

A Structural Connection

An Enumerative Connection

- $\mathbf{u}, \mathbf{v} \in \mathsf{Shuf}(r, s)$
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Proposition (C. Greene, 1988)

For
$$r, s \ge 0$$
, we have $\left| \mathsf{Shuf}(r, s) \right| = 2^{r+s} \sum_{j \ge 0} \binom{r}{j} \binom{s}{j} \left(\frac{1}{4} \right)^j$.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice Shuffle

Lattices

A Structural

Connection

An Enumerative Connection

- \bullet **u**, **v** \in Shuf(r,s)
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Proposition (C. Greene, 1988)

For
$$r, s \ge 0$$
, we have $\left| \mathsf{Shuf}(r, s) \right| = 2^{r+s} \sum_{j \ge 0} \binom{r}{j} \binom{s}{j} \left(\frac{1}{4} \right)^j$.

Corollary

For
$$n > 0$$
, we have $|\mathsf{Shuf}(n-1,1)| = 2^{n-2}(n+3)$.

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice Shuffle

Lattices

A Structural

Connection An

An Enumerative Connection

- \bullet **u**, **v** \in Shuf(r,s)
- $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Proposition (C. Greene, 1988)

For
$$r, s \ge 0$$
, we have $\left| \mathsf{Shuf}(r, s) \right| = 2^{r+s} \sum_{j \ge 0} \binom{r}{j} \binom{s}{j} \left(\frac{1}{4} \right)^j$.

Corollary

For n > 0, we have $|\mathsf{Shuf}(n-1,1)| = |\mathsf{Tri}(n)|$.

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Lattices
A Structural

An Enumerative \bullet **u**, **v** \in Shuf(r,s)

• $\mathbf{u} \leq_{\mathsf{shuf}} \mathbf{v}$ if \mathbf{v} is obtained from \mathbf{u} by deleting a_i 's or adding b_i 's without changing order of letters

Proposition (C. Greene, 1988)

For
$$r, s \ge 0$$
, we have $\left| \mathsf{Shuf}(r, s) \right| = 2^{r+s} \sum_{j \ge 0} \binom{r}{j} \binom{s}{j} \left(\frac{1}{4} \right)^j$.

Corollary

For n > 0, we have $|\mathsf{Shuf}(n-1,1)| = |\mathsf{Tri}(n)|$.

$$\mathbf{a} = 23 \cdots n, \mathbf{b} = 1$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

$$ullet$$
 $oldsymbol{\mathfrak{u}}=(u_1,u_2,\ldots,u_n)\in \operatorname{Tri}(n), \mathbf{a}\stackrel{\mathsf{def}}{=} 23\cdots n$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice Shuffle

Lattices

Connection

Enumerative Connection

- $\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n), \mathbf{a} \stackrel{\mathsf{def}}{=} 23 \cdots n$
- $\tau(\mathfrak{u})$ is the subword of **a** consisting of the positions of the non-2 entries of \mathfrak{u}

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

- $\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n), \mathbf{a} \stackrel{\mathsf{def}}{=} 23 \cdots n$
- $\tau(\mathfrak{u})$ is the subword of **a** consisting of the positions of the non-2 entries of \mathfrak{u}

$$\mathfrak{u} = (1,1,1,2,2,2,1,0,0,2) \in \mathsf{Tri}(10)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n), \mathbf{a} \stackrel{\mathsf{def}}{=} 23 \cdots n$$

• $\tau(\mathfrak{u})$ is the subword of **a** consisting of the positions of the non-2 entries of \mathfrak{u}

$$\mathfrak{u} = (\textbf{1}, \textbf{1}, \textbf{1}, \textbf{2}, \textbf{2}, \textbf{2}, \textbf{1}, \textbf{0}, \textbf{0}, \textbf{2}) \in \mathsf{Tri}(10)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n), \mathbf{a} \stackrel{\mathsf{def}}{=} 23 \cdots n$$

• $\tau(\mathfrak{u})$ is the subword of **a** consisting of the positions of the non-2 entries of \mathfrak{u}

$$\mathfrak{u} = (\textbf{X}, \textbf{1}, \textbf{1}, \textbf{2}, \textbf{2}, \textbf{2}, \textbf{1}, \textbf{0}, \textbf{0}, \textbf{2}) \in \mathsf{Tri}(10)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

An Enumerative

•
$$\mathfrak{u} = (u_1, u_2, \dots, u_n) \in \operatorname{Tri}(n), \mathbf{a} \stackrel{\text{def}}{=} 23 \cdots n$$

• $\tau(\mathfrak{u})$ is the subword of **a** consisting of the positions of the non-2 entries of \mathfrak{u}

$$\mathfrak{u} = (\mathbf{X}, \mathbf{1}, \mathbf{1}, 2, 2, 2, \mathbf{1}, \mathbf{0}, \mathbf{0}, 2) \in \mathsf{Tri}(10)$$
 $\tau(\mathfrak{u}) = 23789$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice Shuffle

Lattices

Connection

An Enumerativ Connection

•
$$\mathbf{w} \coprod_{i} \mathbb{1} \stackrel{\text{def}}{=} \begin{cases} \mathbf{w}, & \text{if } i = 0 \\ \mathbb{1}\mathbf{w}, & \text{if } i > 0, i \notin \mathbf{w} \\ w_{1}w_{2} \cdots w_{j} \mathbb{1}w_{j+1} \cdots w_{k}, & \text{if } i > 0, w_{j} = i \end{cases}$$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

•
$$\mathbf{w} \coprod_{i} \mathbb{1} \stackrel{\text{def}}{=} \begin{cases} \mathbf{w}, & \text{if } i = 0 \\ \mathbb{1} \mathbf{w}, & \text{if } i > 0, i \notin \mathbf{w} \\ w_{1}w_{2} \cdots w_{j} \mathbb{1} w_{j+1} \cdots w_{k}, & \text{if } i > 0, w_{j} = i \end{cases}$$

$$w = 23789$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathbf{w} \coprod_{i} \mathbb{1} \stackrel{\text{def}}{=} \begin{cases} \mathbf{w}, & \text{if } i = 0 \\ \mathbb{1}\mathbf{w}, & \text{if } i > 0, i \notin \mathbf{w} \\ w_{1}w_{2} \cdots w_{j} \mathbb{1}w_{j+1} \cdots w_{k}, & \text{if } i > 0, w_{j} = i \end{cases}$$

$$\mathbf{w} = 23789$$

 $\mathbf{w} \coprod_{0} \mathbb{1} = 23789$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle

Lattices

A Structural Connection

An Enumerative Connection

•
$$\mathbf{w} \coprod_{i} \mathbb{1} \stackrel{\text{def}}{=} \begin{cases} \mathbf{w}, & \text{if } i = 0 \\ \mathbb{1}\mathbf{w}, & \text{if } i > 0, i \notin \mathbf{w} \\ w_{1}w_{2} \cdots w_{j} \mathbb{1}w_{j+1} \cdots w_{k}, & \text{if } i > 0, w_{j} = i \end{cases}$$

$$\mathbf{w} = 23789$$

 $\mathbf{w} \sqcup_4 \mathbb{1} = \mathbb{1}23789$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle

Lattices

A Structural

A Structural Connection

An Enumerativ Connection

•
$$\mathbf{w} \coprod_{i} \mathbb{1} \stackrel{\text{def}}{=} \begin{cases} \mathbf{w}, & \text{if } i = 0 \\ \mathbb{1}\mathbf{w}, & \text{if } i > 0, i \notin \mathbf{w} \\ w_{1}w_{2} \cdots w_{j} \mathbb{1}w_{j+1} \cdots w_{k}, & \text{if } i > 0, w_{j} = i \end{cases}$$

$$\mathbf{w} = 23789$$
 $\mathbf{w} \coprod_{7} \mathbb{1} = 237\mathbb{1}89$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection $\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

 $\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$

 $\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

$$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

$$\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$$

$$\mathfrak{u} = (1,1,1,2,2,2,1,0,0,2) \in \mathsf{Tri}(10)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

$$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

$$\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$$

$$\mathfrak{u} = (1,1,1,2,2,2,\textcolor{red}{1},0,0,2) \in \mathsf{Tri}(10)$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative

$$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

$$\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$$

$$\mathfrak{u} = (1,1,1,2,2,2,\textcolor{red}{1},0,0,2) \in \mathsf{Tri}(10); l_1(\mathfrak{u}) = 7$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

$$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$$

$$\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$$

$$\mathfrak{u}=(1,1,1,2,2,2,1,0,0,2)\in \mathsf{Tri}(10); l_1(\mathfrak{u})=7$$

$$\sigma(\mathfrak{u})=\tau(\mathfrak{u})\sqcup_7\mathbb{1}=237\mathbb{1}89$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice Shuffle

Lattices

A Structural

A Structural Connection

An Enumerative Connection

$\bullet \ \mathfrak{u} = (u_1, u_2, \dots, u_n) \in \mathsf{Tri}(n)$

$$\bullet \ \sigma(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \tau(\mathfrak{u}) \sqcup_{l_1(\mathfrak{u})} \mathbb{1}$$

Proposition (*, 2020)

For n > 0, the map $\sigma \colon \mathsf{Tri}(n) \to \mathsf{Shuf}(n-1,1)$ is a bijection.

Outline

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural Connection

An Enumerative Connection The Hochschild Lattice

2 Shuffle Lattices

3 A Structural Connection

4 An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

A Structural

An

• $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$

- $\bullet \ \mathsf{Pre}(p) \stackrel{\mathsf{def}}{=} \big\{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \big\}$
- **nucleus**: $p_{\downarrow} \stackrel{\mathsf{def}}{=} p \wedge \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

A Structural Connection

An Enumerativ Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$
- $\bullet \ \mathsf{Pre}(p) \stackrel{\mathsf{def}}{=} \big\{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \big\}$
- **nucleus**: $p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerativ Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$
- $\operatorname{Pre}(p) \stackrel{\mathsf{def}}{=} \{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \}$
- **nucleus**: $p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerativ Connection

•
$$\mathbf{L} = (L, \leq)$$
 .. (finite) lattice, $p \in L$

- $\operatorname{Pre}(p) \stackrel{\mathsf{def}}{=} \{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \}$
- $\bullet \ \, \mathbf{nucleus} \colon p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

A Structural Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$
- $\operatorname{Pre}(p) \stackrel{\mathsf{def}}{=} \{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \}$
- **nucleus**: $p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$
- $\operatorname{Pre}(p) \stackrel{\mathsf{def}}{=} \{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \}$
- $\bullet \ \, \mathbf{nucleus} \colon p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$
- $\operatorname{Pre}(p) \stackrel{\mathsf{def}}{=} \{ p' \in L \mid (p', p) \in \mathcal{E}(\mathbf{L}) \}$
- $\bullet \ \, \mathbf{nucleus} \colon p_{\downarrow} \stackrel{\mathsf{def}}{=} p \land \bigwedge \mathsf{Pre}(p)$
- **core**: interval $[p_{\downarrow}, p]$ in **L**

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Lattices

A Structural Connection

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

- **core**: interval $[p_{\downarrow}, p]$ in **L**
- core label set: $\Psi(p) \stackrel{\mathsf{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

• **core**: interval $[p_{\downarrow}, p]$ in **L**

• core label set: $\Psi(p) \stackrel{\mathsf{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

• **core**: interval $[p_{\downarrow}, p]$ in **L**

• core label set: $\Psi(p) \stackrel{\text{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

- **core**: interval $[p_{\downarrow}, p]$ in **L**
- core label set: $\Psi(p) \stackrel{\mathsf{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

- **core**: interval $[p_{\downarrow}, p]$ in **L**
- core label set: $\Psi(p) \stackrel{\mathsf{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

A Structural

Connection

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

• **core**: interval $[p_{\downarrow}, p]$ in **L**

- core label set: $\Psi(p) \stackrel{\text{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$
- **core labeling**: assignment $p \mapsto \Psi(p)$ is injective

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

A Structural

Connection

An Enumerative Connection

• $\mathbf{L} = (L, \leq)$.. (finite) lattice, $p \in L$, λ .. edge labeling

- **core**: interval $[p_{\downarrow}, p]$ in **L**
- core label set: $\Psi(p) \stackrel{\mathsf{def}}{=} \left\{ \lambda(p', q') \mid p_{\downarrow} \leq p' \lessdot q' \leq p \right\}$
- **core labeling**: assignment $p \mapsto \Psi(p)$ is injective

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

- $\mathbf{L} = (L, \leq)$.. (finite) lattice, λ .. edge labeling
- core label order: $CLO(L) \stackrel{\text{def}}{=} (L, \leq_{\mathsf{clo}})$, where $p \leq_{\mathsf{clo}} q$ if and only if $\Psi(p) \subseteq \Psi(q)$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection

Proposition (*, 2020)

The labeling λ *is a core labeling of* **Hoch**(n).

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle

A Structural

Connection
An

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle

A Structural

Connection

An Enumerative Connection

Proposition (%, 2020)

The core label set of $\mathfrak{u} \in \mathsf{Tri}(n)$ *is*

$$\Psi(\mathfrak{u}) = \left\{ \mathfrak{a}^{(i)} \mid 0 < l_1(\mathfrak{u}) \leq i < f_0(\mathfrak{u}) \right\} \uplus \left\{ \mathfrak{b}^{(i)} \mid u_i = 2 \right\}.$$

Hochschild and Shuffle

Henri Mühle

The Hochschi

Lattice

A Structural

Connection

An Enumerative Connection

Proposition (**, 2020)

The core label set of $\mathfrak{u} \in \mathsf{Tri}(n)$ *is*

$$\Psi(\mathfrak{u}) = \left\{\mathfrak{a}^{(i)} \mid 0 < l_1(\mathfrak{u}) \leq i < f_0(\mathfrak{u})\right\} \uplus \left\{\mathfrak{b}^{(i)} \mid u_i = 2\right\}.$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

Theorem (**, 2020)

For n > 0, the map σ extends to an isomorphism from $\mathsf{CLO}(\mathsf{Hoch}(n))$ to $\mathsf{Shuf}(n-1,1)$.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

An Enumerative Connection

Theorem (**, 2020)

For n > 0, the map σ extends to an isomorphism from $\mathsf{CLO}(\mathsf{Hoch}(n))$ to $\mathsf{Shuf}(n-1,1)$.

Outline

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection The Hochschild Lattice

2 Shuffle Lattices

A Structural Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

- $\bullet \ \mathbf{w} \in \mathsf{Shuf}(n-1,1)$
- $a(\mathbf{w})$ denotes the number of a_i 's contained in \mathbf{w}

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Lattices
A Structura

A Structura Connection

An Enumerative Connection

- $\mathbf{w} \in \mathsf{Shuf}(n-1,1)$
- $a(\mathbf{w})$ denotes the number of a_i 's contained in \mathbf{w}

Proposition (C. Greene, 1988)

Let $\mathbf{w} \in \mathsf{Shuf}(n-1,1)$. The rank of \mathbf{w} in $\mathsf{Shuf}(n-1,1)$ is

$$n-1-a(\mathbf{w}) + \begin{cases} 1, & \text{if } \mathbf{w} \text{ contains } \mathbb{1}, \\ 0, & \text{otherwise.} \end{cases}$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattice:

A Structura Connection

An Enumerative Connection

Corollary (**%**, 2020)

Let $\mathfrak{u} \in Tri(n)$. The rank of \mathfrak{u} in CLO(Hoch(n)) is

$$\left|\left\{i\mid u_i=2\right\}\right|+\begin{cases} 1, & if\ l_1(\mathfrak{u})>0,\\ 0, & otherwise. \end{cases}$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection

Corollary (**%**, 2020)

The number of $\mathfrak{u} \in \mathsf{Tri}(n)$ *having rank i in* $\mathsf{CLO}(\mathsf{Hoch}(n))$ *is*

$$\binom{n-1}{i}+\binom{n-1}{i-1}+(n-1)\binom{n-2}{i-1}.$$

Hochschild and Shuffle

Henri Mühle

The Hochsch Lattice

Shuffle Lattice:

A Structur Connection

An Enumerative Connection

Corollary (**%**, 2020)

The number of $\mathfrak{u} \in \mathsf{Tri}(n)$ *having rank i in* $\mathsf{CLO}(\mathsf{Hoch}(n))$ *is*

$$\binom{n-1}{i}+\binom{n-1}{i-1}+(n-1)\binom{n-2}{i-1}.$$

$$l_1(\mathfrak{u}) = 0$$
 $l_1(\mathfrak{u}) = 1$ $l_1(\mathfrak{u}) > 1$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathfrak{u} \in \mathsf{Tri}(n)$

 $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \big| \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\} \big|$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle

A Structura Connection

An Enumerative Connection • $\mathfrak{u} \in \mathsf{Tri}(n)$

 $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \big| \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\} \big|$

Proposition (**, 2020)

The rank of $u \in Tri(n)$ in **CLO**(Hoch(n)) equals |Can(u)|.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection • $\mathfrak{u} \in \mathsf{Tri}(n)$

 $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \big| \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\} \big|$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

Enumerative Connection Hoch(n) arises from an orientation of the 1-skeleton of a (simple) polytope

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection Hoch(n) arises from an orientation of the 1-skeleton of a (simple) polytope

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura

An Enumerative Connection $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura

An Enumerative Connection $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura

An Enumerative Connection $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural Connection

- $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}', \mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$
- $\bullet \ P \subseteq \mathsf{Pre}(\mathfrak{u}) \text{: } \mathfrak{u}_{\downarrow P} \stackrel{\mathsf{def}}{=} \mathfrak{u} \land \bigwedge \big\{ \mathfrak{u}' \mid \mathfrak{u}' \in P \big\}$
- facial interval: $\langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} [\mathfrak{u}_{\downarrow P}, \mathfrak{u}]$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

Connection

An Enumerative Connection

$$\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}',\mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$$

$$\bullet \ P \subseteq \mathsf{Pre}(\mathfrak{u}) \colon \mathfrak{u}_{\downarrow P} \stackrel{\mathsf{def}}{=} \mathfrak{u} \wedge \bigwedge \big\{ \mathfrak{u}' \mid \mathfrak{u}' \in P \big\}$$

• facial interval: $\langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} [\mathfrak{u}_{\downarrow P}, \mathfrak{u}]$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural Connection

- $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}', \mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$
- $\bullet \ P \subseteq \mathsf{Pre}(\mathfrak{u}) \colon \mathfrak{u}_{\downarrow P} \stackrel{\mathsf{def}}{=} \mathfrak{u} \wedge \bigwedge \big\{ \mathfrak{u}' \mid \mathfrak{u}' \in P \big\}$
- facial interval: $\langle \mathfrak{u}, P \rangle \stackrel{\text{def}}{=} [\mathfrak{u}_{\downarrow P}, \mathfrak{u}]$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

- $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}', \mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$
- $\bullet \ P \subseteq \mathsf{Pre}(\mathfrak{u}) \colon \mathfrak{u}_{\downarrow P} \stackrel{\mathsf{def}}{=} \mathfrak{u} \wedge \bigwedge \big\{ \mathfrak{u}' \mid \mathfrak{u}' \in P \big\}$
- facial interval: $\langle \mathfrak{u}, P \rangle \stackrel{\text{def}}{=} [\mathfrak{u}_{\downarrow P}, \mathfrak{u}]$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection $\bullet \ \mathsf{Pre}(\mathfrak{u}) = \big\{ \mathfrak{u}' \in \mathsf{Tri}(n) \mid (\mathfrak{u}', \mathfrak{u}) \in \mathcal{E}\big(\mathsf{Hoch}(n)\big) \big\}$

 $\bullet \ P \subseteq \mathsf{Pre}(\mathfrak{u}) \text{: } \mathfrak{u}_{\downarrow P} \stackrel{\mathsf{def}}{=} \mathfrak{u} \land \bigwedge \big\{ \mathfrak{u}' \mid \mathfrak{u}' \in P \big\}$

• facial interval: $\langle \mathfrak{u}, P \rangle \stackrel{\text{def}}{=} [\mathfrak{u}_{\downarrow P}, \mathfrak{u}]$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

An Enumerative Connection $\bullet \ \mathsf{CP}\big(\mathsf{Hoch}(n)\big) \stackrel{\mathsf{def}}{=} \big\{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \big\}$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

- $\bullet \ \mathsf{CP}\big(\mathsf{Hoch}(n)\big) \stackrel{\mathsf{def}}{=} \big\{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \big\}$
- $\bullet \ \dim \langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} |P|$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

- $\mathsf{CP}(\mathsf{Hoch}(n)) \stackrel{\mathsf{def}}{=} \{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \}$
- $\bullet \ \operatorname{dim}\langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} |P|$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle

Lattices

A Structural Connection

An Enumerative Connection $\bullet \ \mathsf{CP}\big(\mathsf{Hoch}(n)\big) \stackrel{\mathsf{def}}{=} \big\{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \big\}$

 $\bullet \ \operatorname{dim}\langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} |P|$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

- $\mathsf{CP}\big(\mathsf{Hoch}(n)\big) \stackrel{\mathsf{def}}{=} \big\{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \big\}$
- \bullet dim $\langle \mathfrak{u}, P \rangle \stackrel{\mathsf{def}}{=} |P|$
- $\bullet f_i \stackrel{\mathsf{def}}{=} |\{\langle \mathfrak{u}, P \rangle \mid |P| = i\}|$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection $\bullet \ \mathsf{CP}\big(\mathsf{Hoch}(n)\big) \stackrel{\mathsf{def}}{=} \big\{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \big\}$

Proposition (*, 2020)

For n > 0 and $0 \le i \le n$, we have

$$f_i = \binom{n}{i} 2^{n-i-2} \frac{n(n+3) - i(i-1)}{n}.$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection • $\mathsf{CP}(\mathsf{Hoch}(n)) \stackrel{\mathsf{def}}{=} \{ \langle \mathfrak{u}, P \rangle \mid \mathfrak{u} \in \mathsf{Tri}(n), P \subseteq \mathsf{Pre}(\mathfrak{u}) \}$

$$f(x) \stackrel{\mathsf{def}}{=} \sum_{i=0}^{n} f_i x^i$$

 $\bullet \ h(x) \stackrel{\mathsf{def}}{=} f(x - 1)$

Corollary (*****, 2020)

$$f(x) = (x+2)^{n-2} (x^2 + (n+3)x + n + 3),$$

$$h(x) = (x+1)^{n-2} (x^2 + (n+1)x + 1).$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structural

An Enumerative Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

An Enumerative Connection

$$f(x) = \sum_{i=0}^{n} f_i x^i$$

Hochschild and Shuffle

Henri Mühle

The Hochschill Lattice

Shuffle

A Structura

Connection

An Enumerative Connection

$$f(x) = \sum_{i=0}^{n} f_i x^i$$
$$= \sum_{i=0}^{n} \sum_{\langle u,P \rangle \colon |P|=i} x^i$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

An Enumerative Connection

$$f(x) = \sum_{i=0}^{n} f_i x^i$$

$$= \sum_{i=0}^{n} \sum_{\langle \mathbf{u}, P \rangle : |P|=i} x^i$$

$$= \sum_{\mathbf{u} \in \mathsf{Tri}(n)} \sum_{P \subseteq \mathsf{Pre}(\mathbf{u})} x^{|P|}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

An Enumerative Connection

$$f(x) = \sum_{i=0}^{n} f_i x^i$$

$$= \sum_{i=0}^{n} \sum_{\langle \mathfrak{u}, P \rangle \colon |P| = i} x^i$$

$$= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} \sum_{P \subseteq \mathsf{Pre}(\mathfrak{u})} x^{|P|}$$

$$= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Pre}(\mathfrak{u})|}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle Lattices

A Structura

An Enumerative Connection

$$f(x) = \sum_{i=0}^{n} f_{i}x^{i}$$

$$= \sum_{i=0}^{n} \sum_{\langle \mathfrak{u}, P \rangle \colon |P| = i} x^{i}$$

$$= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} \sum_{P \subseteq \mathsf{Pre}(\mathfrak{u})} x^{|P|}$$

$$= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Can}(\mathfrak{u})|}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

An Enumerative Connection

$$\begin{split} f(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Can}(\mathfrak{u})|} \\ h(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|} \end{split}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection • to prove the proposition, we observe:

$$\begin{split} f(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Can}(\mathfrak{u})|} \\ h(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|} \end{split}$$

Corollary (**%**, 2020)

The number of $\mathfrak{u} \in \mathsf{Tri}(n)$ *with* $|\mathsf{Can}(\mathfrak{u})| = i$ *is*

$$\binom{n-1}{i}+\binom{n-1}{i-1}+(n-1)\binom{n-2}{i-1}.$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection • to prove the proposition, we observe:

$$\begin{split} f(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Can}(\mathfrak{u})|} \\ h(x) &= \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|} \end{split}$$

Corollary (**%**, 2020)

$$f(x) = (x+2)^{n-2} (x^2 + (n+3)x + n + 3),$$

$$h(x) = (x+1)^{n-2} (x^2 + (n+1)x + 1).$$

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle

A Structural

- $\mathbf{L} = (L, \leq)$.. (finite) lattice; $\hat{\mathbf{0}}$.. least element
- atom: $p \in L$ such that $(\hat{0}, p) \in \mathcal{E}(\mathbf{L})$ $\rightsquigarrow \mathcal{A}(\mathbf{L})$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Lattices

A Structural

An Enumerative Connection • $\mathbf{L} = (L, \leq)$.. (finite) lattice; $\hat{\mathbf{0}}$.. least element

• atom: $p \in L$ such that $(\hat{0}, p) \in \mathcal{E}(\mathbf{L})$ $\rightsquigarrow \mathcal{A}(\mathbf{L})$

Proposition (*, 2020)

For n > 0, we have $A(\operatorname{Hoch}(n)) = \{\mathfrak{a}^{(1)}, \mathfrak{b}^{(2)}, \dots, \mathfrak{b}^{(n)}\}.$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Lattices

Connection

An Enumerative Connection

$$\bullet \ \mathsf{pos}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \setminus \mathcal{A}\big(\mathsf{Hoch}(n) \big) \big|$$

$$\bullet \ \operatorname{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}\big(\mathbf{Hoch}(n)\big) \big|$$

Proposition (*, 2020)

For n > 0, we have $A(\mathsf{Hoch}(n)) = \{\mathfrak{a}^{(1)}, \mathfrak{b}^{(2)}, \dots, \mathfrak{b}^{(n)}\}.$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection

- $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \setminus \mathcal{A}(\mathbf{Hoch}(n))|$
- $\bullet \ \operatorname{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}\big(\mathbf{Hoch}(n) \big) \big|$
- $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$

Proposition (*, 2020)

For n > 0, we have $A(\mathsf{Hoch}(n)) = \{\mathfrak{a}^{(1)}, \mathfrak{b}^{(2)}, \dots, \mathfrak{b}^{(n)}\}.$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

A Structural

A Structural Connection

$$\bullet$$
 pos(\mathfrak{u}) $\stackrel{\mathsf{def}}{=}$ $|\mathsf{Can}(\mathfrak{u}) \setminus \mathcal{A}(\mathsf{Hoch}(n))|$

- $\bullet \ \mathsf{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}\big(\mathbf{Hoch}(n)\big) \big|$
- $|\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$

•
$$F_{\mathsf{Hoch}(n)}(x,y) \stackrel{\mathsf{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{n-|\mathsf{Can}(\mathfrak{u})|} (x+1)^{\mathsf{pos}(\mathfrak{u})} (y+1)^{\mathsf{neg}(\mathfrak{u})}$$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection

- $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \setminus \mathcal{A}(\mathbf{Hoch}(n))|$
- $\bullet \ \mathsf{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}\big(\mathbf{Hoch}(n)\big) \big|$
- $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\bullet \ F_{\mathbf{Hoch}(n)}(x,y) \stackrel{\mathrm{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{n-|\mathsf{Can}(\mathfrak{u})|} (x+1)^{\mathsf{pos}(\mathfrak{u})} (y+1)^{\mathsf{neg}(\mathfrak{u})}$

Proposition (*, 2020)

$$F_{\mathbf{Hoch}(n)}(x,y) = (x+y+1)^{n-2} (nx^2 + 2xy + (n+1)x + (y+1)^2).$$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura Connection

An Enumerativo Connection

- $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \setminus \mathcal{A}(\mathbf{Hoch}(n))|$
- $\bullet \ \mathsf{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \big| \mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}\big(\mathbf{Hoch}(n)\big) \big|$
- $|\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\bullet \ F_{\mathbf{Hoch}(n)}(x,x) = \sum_{\mathfrak{u} \in \mathrm{Tri}(n)} x^{n-|\mathrm{Can}(\mathfrak{u})|} (x+1)^{|\mathrm{Can}(\mathfrak{u})|}$

Proposition (*, 2020)

$$F_{\mathsf{Hoch}(n)}(x,x) = (2x+1)^{n-2} ((n+3)x^2 + (n+3)x + 1).$$

Hochschild and Shuffle

Henri Mühle

The Hochschi

Shuffle Lattices

A Structura Connection

An Enumerative Connection ullet pos $(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \left| \mathsf{Can}(\mathfrak{u}) \setminus \mathcal{A}\big(\mathsf{Hoch}(n)\big) \right|$

- $\operatorname{neg}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |\operatorname{Can}(\mathfrak{u}) \cap \mathcal{A}(\operatorname{\mathbf{Hoch}}(n))|$
- $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\qquad \quad \bullet \ \, x^n F_{\mathsf{Hoch}(n)} \left(\tfrac{1}{x}, \tfrac{1}{x} \right) = \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} (x+1)^{|\mathsf{Can}(\mathfrak{u})|}$

Proposition (*, 2020)

$$F_{\mathsf{Hoch}(n)}(x,x) = x^n f\left(\frac{1}{x}\right).$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural

A Structural Connection

An Enumerative Connection $\bullet \ \mathsf{pos}(\mathfrak{u}) \stackrel{\mathsf{def}}{=} \left| \mathsf{Can}(\mathfrak{u}) \setminus \mathcal{A}\big(\mathsf{Hoch}(n)\big) \right|$

- $neg(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \cap \mathcal{A}(\mathbf{Hoch}(n))|$
- $|\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\bullet \ H_{\mathbf{Hoch}(n)}(x,y) \stackrel{\mathrm{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} \!\! \chi^{|\mathsf{Can}(\mathfrak{u})|} y^{\mathsf{neg}(\mathfrak{u})}$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative • $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \setminus \mathcal{A}(\mathbf{Hoch}(n))|$

- $neg(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \cap \mathcal{A}(\mathbf{Hoch}(n))|$
- $|\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\bullet \ H_{\mathsf{Hoch}(n)}(x,y) \stackrel{\mathsf{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} \!\! x^{|\mathsf{Can}(\mathfrak{u})|} y^{\mathsf{neg}(\mathfrak{u})}$

Proposition (*, 2020)

$$H_{\mathsf{Hoch}(n)}(x,y) = (xy+1)^{n-2} (x^2y^2 + 2xy + (n-1)x + 1).$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection • $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |Can(\mathfrak{u}) \setminus \mathcal{A}(\mathbf{Hoch}(n))|$

- $\operatorname{neg}(\mathfrak{u}) \stackrel{\text{def}}{=} |\operatorname{Can}(\mathfrak{u}) \cap \mathcal{A}(\operatorname{Hoch}(n))|$
- $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$
- $\bullet \ H_{\mathsf{Hoch}(n)}(x,1) = \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|}$

Proposition (*, 2020)

$$H_{\mathsf{Hoch}(n)}(x,1) = (x+1)^{n-2} (x^2 + (n+1)x + 1).$$

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection • $pos(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |\mathsf{Can}(\mathfrak{u}) \setminus \mathcal{A}(\mathsf{Hoch}(n))|$

• $neg(\mathfrak{u}) \stackrel{\mathsf{def}}{=} |\mathsf{Can}(\mathfrak{u}) \cap \mathcal{A}(\mathsf{Hoch}(n))|$

 $\bullet \ |\mathsf{Can}(\mathfrak{u})| = \mathsf{pos}(\mathfrak{u}) + \mathsf{neg}(\mathfrak{u})$

$$\bullet \ H_{\mathsf{Hoch}(n)}(x,1) = \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|}$$

Proposition (*, 2020)

$$H_{\mathsf{Hoch}(n)}(x,1) = h(x).$$

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle Lattices

A Structural

An Enumerative Connection

$$\bullet \ F_{\mathbf{Hoch}(n)}(x,y) \stackrel{\mathrm{def}}{=} \sum_{\mathfrak{u} \in \mathrm{Tri}(n)} x^{n-|\mathrm{Can}(\mathfrak{u})|} (x+1)^{\mathrm{pos}(\mathfrak{u})} (y+1)^{\mathrm{neg}(\mathfrak{u})}$$

$$\bullet \ H_{\mathbf{Hoch}(n)}(x,y) \stackrel{\mathsf{def}}{=} \underset{\mathfrak{u} \in \mathsf{Tri}(n)}{\sum} x^{|\mathsf{Can}(\mathfrak{u})|} y^{\mathsf{neg}(\mathfrak{u})}$$

Corollary (**%**, 2020)

$$F_{\mathsf{Hoch}(n)}(x,y) = x^n H_{\mathsf{Hoch}(n)}\left(\frac{x+1}{x}, \frac{y+1}{x+1}\right).$$

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle

A Structura

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structura Connection

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Shuffle Lattices

A Structura

Refined Face Enumeration

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structura

Refined Face Enumeration

Hochschild and Shuffle

Henri Mühle

The Hochschi

Shuffle Lattices

A Structural

An Enumerative Connection $\bullet \ F_{\mathbf{Hoch}(n)}(x,y) \stackrel{\mathsf{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{n-|\mathsf{Can}(\mathfrak{u})|} (x+1)^{\mathsf{pos}(\mathfrak{u})} (y+1)^{\mathsf{neg}(\mathfrak{u})}$

Refined Face Enumeration

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structural

$$\bullet \ H_{\mathsf{Hoch}(n)}(x,y) \stackrel{\mathsf{def}}{=} \sum_{\mathfrak{u} \in \mathsf{Tri}(n)} x^{|\mathsf{Can}(\mathfrak{u})|} y^{\mathsf{neg}(\mathfrak{u})}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle Lattices

A Structura

An Enumerative Connection • $\mathbf{P} = (P, \leq)$.. (finite) poset

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Shuffle Lattices

A Structural

- $\mathbf{P} = (P, \leq)$.. (finite) poset
- Möbius function:

Hochschild and Shuffle

Henri Mühle

- $\mathbf{P} = (P, \leq)$.. (finite) poset
- Möbius function:

Hochschild and Shuffle

Henri Mühle

- $\mathbf{P} = (P, \leq)$.. (finite) poset
- Möbius function:

Hochschild and Shuffle

Henri Mühle

- $\mathbf{P} = (P, \leq)$.. (finite) poset
- Möbius function:

Hochschild and Shuffle

Henri Mühle

- $\mathbf{P} = (P, \leq)$.. (finite) poset
- Möbius function:

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

- $P = (P, \leq)$.. graded (finite) poset with bounds $\hat{0}$ and $\hat{1}$
- (reverse) characteristic polynomial:

$$\chi_{\mathbf{P}}(x) \stackrel{\mathsf{def}}{=} \sum_{p \in P} \mu_{\mathbf{P}}(\hat{0}, p) x^{\mathsf{rk}(p)}$$

Hochschild and Shuffle

Henri Mühle

The Hochschile Lattice

Lattices

A Structural Connection

An Enumerative Connection • $P = (P, \leq)$.. graded (finite) poset with bounds $\hat{0}$ and $\hat{1}$

• (reverse) characteristic polynomial:

$$\chi_{\mathbf{P}}(x) \stackrel{\mathsf{def}}{=} \sum_{p \in P} \mu_{\mathbf{P}}(\hat{0}, p) x^{\mathsf{rk}(p)}$$

• *M*-triangle:

$$M_{\mathbf{P}}(x,y) \stackrel{\mathsf{def}}{=} \sum_{p,q \in P} \mu_{\mathbf{P}}(p,q) x^{\mathsf{rk}(p)} y^{\mathsf{rk}(q)}$$

Hochschild and Shuffle

Henri Mühle

The Hochschil

Shuffle Lattices

A Structural Connection

An Enumerative Connection • $P = (P, \leq)$.. graded (finite) poset with bounds $\hat{0}$ and $\hat{1}$

• (reverse) characteristic polynomial:

$$\chi_{\mathbf{P}}(x) \stackrel{\mathsf{def}}{=} \sum_{p \in P} \mu_{\mathbf{P}}(\hat{0}, p) x^{\mathsf{rk}(p)}$$

• *M*-triangle:

$$M_{\mathbf{P}}(x,y) \stackrel{\mathsf{def}}{=} \sum_{p,q \in P} \mu_{\mathbf{P}}(p,q) x^{\mathsf{rk}(p)} y^{\mathsf{rk}(q)}$$

Lemma

$$M_{\mathbf{P}}(x,y) = \sum_{p \in P} (xy)^{\mathsf{rk}(p)} \chi_{[p,\hat{1}]}(y).$$

•
$$\chi_{\mathbf{P}}(x) = M_{\mathbf{P}}(0, x)$$
.

Hochschild and Shuffle

Henri Mühle

The Hochschil Lattice

Lattices

A Structural Connection

An Enumerative Connection • $\mathfrak{t} \stackrel{\mathsf{def}}{=} (1, 2, 2, \dots, 2)$.. top element of $\mathsf{CLO}(\mathsf{Hoch}(n))$

• if $|\mathsf{Can}(\mathfrak{u})| = i$, then

$$[\mathfrak{u},\mathfrak{t}]_{\mathsf{CLO}\big(\mathsf{Hoch}(n)\big)}\cong egin{cases} \mathsf{CLO}\big(\mathsf{Hoch}(n-i)\big), & \text{if } l_1(\mathfrak{u})=0 \\ \mathsf{Bool}(n-i), & \text{otherwise} \end{cases}$$

Hochschild and Shuffle

Henri Mühle

The Hochsch

Shuffle

A Structural

An Enumerative • $\mathfrak{t} \stackrel{\mathsf{def}}{=} (1, 2, 2, \dots, 2)$.. top element of $\mathsf{CLO}(\mathsf{Hoch}(n))$

• if $|\mathsf{Can}(\mathfrak{u})| = i$, then

$$[\mathfrak{u},\mathfrak{t}]_{\mathsf{CLO}\big(\mathsf{Hoch}(n)\big)} \cong \begin{cases} \mathsf{CLO}\big(\mathsf{Hoch}(n-i)\big), & \text{if } l_1(\mathfrak{u}) = 0 \\ \mathsf{Bool}(n-i), & \text{otherwise} \end{cases}$$

Proposition (C. Greene, 1988)

For n > 0, we have

$$\chi_{\mathrm{Bool}(n)}(x) = (1-x)^n,$$

$$\chi_{\mathrm{Shuf}(n-1,1)}(x) = (1-x)^{n-1}(1-nx).$$

Hochschild and Shuffle

Henri Mühle

The Hochsch

Lattice Shuffle

A Structura

An Enumerative Connection • $\mathfrak{t} \stackrel{\mathsf{def}}{=} (1, 2, 2, \dots, 2)$.. top element of $\mathsf{CLO}(\mathsf{Hoch}(n))$

• if $|\mathsf{Can}(\mathfrak{u})| = i$, then

$$[\mathfrak{u},\mathfrak{t}]_{\mathsf{CLO}\big(\mathsf{Hoch}(n)\big)} \cong \begin{cases} \mathsf{CLO}\big(\mathsf{Hoch}(n-i)\big), & \text{if } l_1(\mathfrak{u}) = 0 \\ \mathsf{Bool}(n-i), & \text{otherwise} \end{cases}$$

Proposition (%, 2020)

For n > 0, we have

$$M_{\text{CLO}\left(\text{Hoch}(n)\right)}(x,y) = (xy - y + 1)^{n-2} \times \left((n+1)\left((x-1)y - xy^2 \right) + (n+x^2)y^2 + 1 \right).$$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura

$$\begin{split} M_{\text{CLO}\left(\text{Hoch}(3)\right)}(x,y) &= x^3y^3 - 5x^2y^3 + 5x^2y^2 + 7xy^3 \\ &- 12xy^2 - 3y^3 + 5xy + 7y^2 - 5y + 1 \end{split}$$

Hochschild and Shuffle

Henri Mühle

The Hochsch

Shuffle

A Structur

An Enumerative Connection

Theorem (**, 2020)

For n > 0, we have

$$\begin{split} M_{\mathsf{CLO}\left(\mathsf{Hoch}(n)\right)}(x,y) &= (xy-1)^n F_{\mathsf{Hoch}(n)}\left(\frac{1-y}{xy-1},\frac{1}{xy-1}\right) \\ &= (1-y)^n H_{\mathsf{Hoch}(n)}\left(\frac{y(x-1)}{1-y},\frac{x}{x-1}\right). \end{split}$$

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattices

A Structura Connection

An Enumerative Connection prototypical relation observed by F. Chapoton (2004/2006) connecting Tamari lattices, noncrossing partition lattices and cluster complexes

Theorem (¥, 2020)

For n > 0, we have

$$\begin{split} M_{\mathsf{CLO}\left(\mathsf{Hoch}(n)\right)}(x,y) &= (xy-1)^n F_{\mathsf{Hoch}(n)}\left(\frac{1-y}{xy-1},\frac{1}{xy-1}\right) \\ &= (1-y)^n H_{\mathsf{Hoch}(n)}\left(\frac{y(x-1)}{1-y},\frac{x}{x-1}\right). \end{split}$$

Open Questions

Hochschild and Shuffle

Henri Mühle

The Hochschi Lattice

Shuffle Lattice

A Structura Connection

An Enumerative Connection • what is the relation between $\chi_{\mathsf{CLO}\big(\mathsf{Hoch}(n)\big)}(x)$, f(x) and h(x)?

- what is the geometric nature of $M_{CLO(Hoch(n))}(x,y)$?
- can we characterize lattices satisfying the FHM-correspondence?

Hochschild and Shuffle

Henri Mühle

The Hochschild Lattice

Shuffle Lattices

A Structural

An Enumerative Connection Thank You.

Abstract Examples

$$F(x,y) = (x+y+1)^3 + x^2(x+1)$$
$$H(x,y) = (xy+1)^3 + x$$

$$M(x,y) = (xy - y + 1)^3 + (x - 1)y(y - 1)^2$$

$$\tilde{M}(x,y) = (xy - y + 1)^3 + (x - 1)y(y - 1)^2$$

Abstract Examples

$$F(x,y) = (x+y+1)^3 + x^2(x+1)$$
$$H(x,y) = (xy+1)^3 + x$$

$$M(x,y) = (xy - y + 1)^3 + (x - 1)y(y^2 - 1)$$

$$\tilde{M}(x,y) = (xy - y + 1)^3 + (x - 1)y(y - 1)^2$$

Abstract Examples

$$F(x,y) = (x+y+1)^3 + x(x+1)(2x+y+1)$$
$$H(x,y) = (xy+1)^3 + x^2y + 2x$$

$$M(x,y) = (xy - y + 1)^3 - (x - 1)y(y - 1)(xy - y + 2)$$

$$\tilde{M}(x,y) = (xy - y + 1)^3 - (x - 1)y(y - 1)(xy - 2y + 2)$$

and Shuffle Henri Mühle

Questions

• 231-avoiding permutation: a permutation without subwords standardizing to 231 $\rightsquigarrow \mathfrak{S}_n(231)$

Hochschild and Shuffle

Questions

• 231-avoiding permutation: a permutation without subwords standardizing to 231 $\rightsquigarrow \mathfrak{S}_n(231)$

Theorem (A. Björner & M. Wachs, 1997)

For n > 0, the weak order on $\mathfrak{S}_n(231)$ realizes the Tamari lattice of order n - 1.

and Shuffle Henri Mühle Questions

• 231-avoiding permutation: a permutation without subwords standardizing to 231 $\rightsquigarrow \mathfrak{S}_n(231)$

Lemma (D. Knuth, 1968)

For n > 0, the cardinality of $\mathfrak{S}_n(231)$ is $\frac{1}{n+1}\binom{2n}{n}$.

Hochschild and Shuffle Henri Mühle

Questions

• 231-avoiding permutation: a permutation without subwords standardizing to 231 $\rightsquigarrow \mathfrak{S}_n(231)$

Lemma (D. Knuth, 1968)

For n > 0, the cardinality of $\mathfrak{S}_n(231)$ is $\frac{1}{n+1}\binom{2n}{n}$.

1, 2, 5, 14, 42, 132, 429, 1430, 4862, . . .

(A000108 in OEIS)

Hochschild and Shuffle

• 231-avoiding permutation: a permutation without subwords standardizing to 231 $\rightsquigarrow \mathfrak{S}_n(231)$

Theorem (A. Urquhart, 1978)

For n > 0, the Tamari lattice **Tam**(n) is semidistributive.

Hochschild and Shuffle

Henri Mühle

- $w = w_1 w_2 \cdots w_n \in \mathfrak{S}_n(231)$
- \bullet nc(w) is the noncrossing partition whose bumps are the descents of w

Hochschild and Shuffle

Henri Mühle

Questions

- $w = w_1 w_2 \cdots w_n \in \mathfrak{S}_n(231)$
- \bullet nc(w) is the noncrossing partition whose bumps are the descents of w

Proposition (P. Biane, 1997)

For n > 0, the map $nc: \mathfrak{S}_n(231) \to \mathsf{Nonc}(n)$ is a bijection.

Hochschild and Shuffle

Henri Mühle

Questions

- $w = w_1 w_2 \cdots w_n \in \mathfrak{S}_n(231)$
- \bullet nc(w) is the noncrossing partition whose bumps are the descents of w

Theorem (N. Reading, 2011)

For n > 0, the map nc extends to an isomorphism from **CLO**(**Tam**(n)) to **Nonc**(n).

Hochschild and Shuffle

Henri Mühle

- $w = w_1 w_2 \cdots w_n \in \mathfrak{S}_n(231)$
- nc(w) is the noncrossing partition whose bumps are the descents of w

Facial Intervals in Tam(n)

Facial Intervals in Tam(n)

Hochschild and Shuffle

Henri Mühle

Proposition (C. Lee, 1989)

For n > 0 and $0 \le i \le n$, we have

$$f_i = \frac{1}{n+1-i} \binom{n}{i} \binom{2n+2-i}{n-i}.$$

Facial Intervals in Tam(n)

Hochschild and Shuffle

Henri Mühle

Corollary

For n > 0, we have

$$f(x) = \sum_{i=0}^{n} \frac{1}{n+1-i} \binom{n}{i} \binom{2n+2-i}{n-i} x^{i},$$

$$h(x) = \sum_{i=0}^{n} \frac{1}{i+1} \binom{n}{i} \binom{n+1}{i} x^{i}.$$

Perspectivity

Hochschild and Shuffle

Henri Mühle

ullet L .. (finite) lattice

Hochschild

and Shuffle

Henri Mühle

- L .. (finite) lattice
- edge: (p,q) such that p < q and no $p < r < q \longrightarrow \mathcal{E}(\mathbf{L})$
- **perspective**: $(p,q) \stackrel{=}{\overline{\wedge}} (p',q')$ such that $q \wedge p' = p$ and $q \vee p' = q'$ (or $q' \wedge p = p'$ and $q' \vee p = q$)

and Shuffle

Henri Mühle

- L .. (finite) lattice
- edge: (p,q) such that p < q and no $p < r < q \longrightarrow \mathcal{E}(\mathbf{L})$
- **perspective**: $(p,q) \stackrel{=}{\overline{\wedge}} (p',q')$ such that $q \wedge p' = p$ and $q \vee p' = q'$ (or $q' \wedge p = p'$ and $q' \vee p = q$)

Hochschild and Shuffle Henri Mühle

Hochschild

- L .. (finite) lattice
- edge: (p,q) such that p < q and no $p < r < q \longrightarrow \mathcal{E}(\mathbf{L})$
- **perspective**: $(p,q) \stackrel{=}{\overline{\wedge}} (p',q')$ such that $q \wedge p' = p$ and $q \vee p' = q'$ (or $q' \wedge p = p'$ and $q' \vee p = q$)

perspective

Hochschild and Shuffle Henri Mühle

Hochschild

- L .. (finite) lattice
- edge: (p,q) such that p < q and no $p < r < q \longrightarrow \mathcal{E}(\mathbf{L})$
- **perspective**: $(p,q) \stackrel{=}{\overline{\wedge}} (p',q')$ such that $q \wedge p' = p$ and $q \vee p' = q'$ (or $q' \wedge p = p'$ and $q' \vee p = q$)

not perspective

Hochschild and Shuffle Henri Mühle

Hochschild

- L .. (finite) lattice
- edge: (p,q) such that p < q and no $p < r < q \longrightarrow \mathcal{E}(\mathbf{L})$
- **perspective**: $(p,q) \stackrel{=}{\overline{\wedge}} (p',q')$ such that $q \wedge p' = p$ and $q \vee p' = q'$ (or $q' \wedge p = p'$ and $q' \vee p = q$)

not perspective

Hochschild and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$

Hochschild and Shuffle

Henri Mühle

- L .. (finite) lattice
- **join irreducible:** $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)

Hochschild and Shuffle

Henri Mühle

- L .. (finite) lattice
- **join irreducible**: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \rightsquigarrow there exists a unique edge (j_*, j)

and Shuffle

Henri Mühle

- L .. (finite) lattice
- **join irreducible**: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \rightsquigarrow there exists a unique edge (j_*, j)

Hochschild and Shuffle

Henri Mühle

- L .. (finite) lattice
- **join irreducible**: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \rightsquigarrow there exists a unique edge (j_*, j)

and Shuffle

Henri Mühle

- L .. (finite) lattice
- **join irreducible**: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \rightsquigarrow there exists a unique edge (j_*, j)

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

and Shuffle

Henri Mühle

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \, \overline{\overline{\wedge}} \, (j_*,j)$

Hochschild and Shuffle

Hochschild

- L .. (finite) lattice
- **join irreducible**: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \rightsquigarrow there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\overline{\wedge}} (j_*,j)$

Proposition

Every semidistributive lattice is edge determined.

Hochschild and Shuffle

Henri Mühl

- L .. (finite) lattice
- join irreducible: $j = p \lor q$ implies $j \in \{p, q\} \longrightarrow \mathcal{J}(\mathbf{L})$ \leadsto there exists a unique edge (j_*, j)
- edge determined: for all $(p,q) \in \mathcal{E}(\mathbf{L})$ exists a unique $j \in \mathcal{J}(\mathbf{L})$ such that $(p,q) \overline{\wedge} (j_*,j)$
- **perspectivity labeling**: $\lambda \colon \mathcal{E}(\mathbf{L}) \to \mathcal{J}(\mathbf{L}), (p,q) \mapsto j$ such that $(p,q) \stackrel{=}{\wedge} (j_*,j)$

Hochschild and Shuffle

Henri Mühle

- L .. (finite) lattice
- if L is semidistributive, then

$$\lambda(p,q) = \min\{r \mid p \lor r = q\}$$

Hochschild and Shuffle

ri Mühle

- L .. (finite) lattice
- if L is semidistributive, then

$$\lambda(p,q) = \min\{r \mid p \lor r = q\}$$

Proposition (E. Barnard, 2019)

If **L** *is semidistributive, then*

$$\mathsf{Can}(p) = \Big\{ \lambda(p',p) \mid (p',p) \in \mathcal{E}(\mathbf{L}) \Big\}.$$

Hochschild and Shuffle

ri Mühle

- L .. (finite) lattice
- if L is semidistributive, then

$$\lambda(p,q) = \min\{r \mid p \lor r = q\}$$

Proposition (E. Barnard, 2019)

If **L** *is semidistributive, then*

$$\mathsf{Can}(p) = \Big\{ \lambda(p',p) \mid (p',p) \in \mathcal{E}(\mathbf{L}) \Big\}.$$