Missing binary features

In the framework of statistical decision theory

Origins of missing of data

- Occlusion by eyelids or eyelashes
- reflections from eye-glasses
- ring shadow by hard contact lenses
- local signal-to-noise ratio not good enough
- no good local iris texture

Iris code mask - takes value 1 (0) where data is considered good (bad)

Hamming distance of iris codes A and B with missing data masks

$$\begin{aligned} \operatorname{Hamming\ Distance} &= \frac{\|(\operatorname{code} A \otimes \operatorname{code} B) \cap \operatorname{mask} A \cap \operatorname{mask} B\|}{\|\operatorname{mask} A \cap \operatorname{mask} B\|} \end{aligned}$$

• $\|$ maskA \cap maskB $\|$ - number of bits n that are good in both iris codes (n can change from scan to scan)

Statistics reminder

- Let a tail (1) appear with a probability *p* in a coin tossing experiment
- Let the coin be tossed *n* times

The number of tails *d* is normally distributed:

$$d \sim N(pn, p(1-p)n)$$

$$N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi} \sigma} \exp\left(-\frac{1}{2} \frac{(x - \mu)^2}{\sigma^2}\right)$$

Normal distribution of normalized iris code HD

Normal distribution $N(\mu, \sigma^2)$

In 95% of the cases x is in the range $|x - \mu| \le 2\sigma$

Consequences for the choice of a decision criterion value

$$HD \sim N(p,p(1-p)/n)$$

for
$$p = 0.5$$

HD ~
$$N(0.5, \sigma^2)$$
, $\sigma = 1/(2n^{1/2})$

For error type I less than 0.025

$$HD* = 0.5 - 2\sigma$$

e.g.

$$n = 400 \rightarrow \sigma = 0.025 \rightarrow HD^* = 0.45$$

 $n = 100 \rightarrow \sigma = 0.05 \rightarrow HD^* = 0.4$
 $n = 25 \rightarrow \sigma = 0.1 \rightarrow HD^* = 0.3$

Degrees of freedom

Degrees of freedom is (in general) the number of values used in the computation of a statistic that can vary independently

Example: *n* for the computation of the normalized Hamming distance of binary vectors of *n* statistically independent bits

$$HD \sim N(p, p(1-p)/n)$$
 $(\sigma^2 = p(1-p)/n)$

(p - probability that two vectors differ in a given bit)

Binary degrees of freedom - the values used in the computation of a statistic are binary

Degrees of freedom and statistical independence

Are the $N \approx 2000$ bits of an iris code statistically independent? – No, there is certain correlation between bits corresponding to neighboring regions. Hence HD $\sim N(p,p(1-p)/N)$ does not hold. How many degrees of freedom are there then?

We know that the normalized HD of iris codes of different persons is normally distributed HD $\sim N(p, \sigma^2)$ with p and σ that can be determined empirically.

Find an *n* that corresponds to the measured σ .

Effective binary degrees of freedom

Theoretical HD ~ N(p,p(1-p)/n), empirical HD ~ $N(p,\sigma^2)$

From the empirical values of σ and p we can compute some $n = \frac{p(1-p)}{\sigma^2}$ (n < N) that represents the number of statistically independent bits needed to encode an iris pattern and that we call effective number of (binary) degrees of freedom.

In practice, $n \approx 244$ for iris recognition (for $\mu = 0.499$, $\sigma = 0.032$).

The higher n, the larger the number 2^n of unique objects that can be represented and discriminated.

Generalized binary degrees of freedom

Problem: in other applications (e.g. finger print recognition) the values used to compute a dissimilarity are not binary. Then, how should we compare the discriminative power of different methods (e.g. iris vs. finger print recognition)?

Assumption: the dissimilarity is normally distributed D ~ $N(\mu, \sigma^2)$

Transform D to D' =D/2
$$\mu$$
, D' ~ $N(\frac{1}{2}, (\sigma/2\mu)^2)$

We can now think of D' as the Hamming distance of two binary vectors of n statistically independent bits, D' $\sim N(p,p(1-p)/n)$

From
$$N(\frac{1}{2}, (\sigma/2\mu)^2) = N(p, p(1-p)/n)$$
 we get $n = (\mu/\sigma)^2$

For finger print recognition $n \approx 35$.

The higher n, the larger the number 2^n of unique objects that can be discriminated.

More on Iris Scan

See: John Daugman

http://www.cl.cam.ac.uk/~jgd1000/

More on hypothesis testing

http://wikipedia.org

Summary of concepts and facts

- Authentication by iris pattern
- Iris code extraction
- Hamming distance of iris codes
- Histogram and probability density function
- Hypothesis testing
- Errors of type I and II
- Hamming distance of iris codes with missing bits
- Consequences of missing bits for the choice of a decision criterion value
- (Effective) number of (binary) degrees of freedom