Machine Learning from Data CSCI 4100 Assignment 2 Jae Park (661994900)

1. Exercise 1.8

If $v \le 0.1$, it means that either one or zero red marbles can exist. Using binomial distribution, the probability is

$$_{10}C_1 \times 0.9^1 \times 0.1^9 + {}_{10}C_0 \times 0.9^0 \times 0.1^{10} = 9 \times 10^{-9} + 1 \times 1 \times 10^{-10} = 9.1 \times 10^{-10}$$

2. Exercise 1.9

Given: $\mu = 0.9$, $v \le 0.1$. That means we are looking for ϵ that is $0.8 < |\mu - v|$. $P[|\mu - v| > 0.8] \le 2e^{-2 \times (0.8)^2 \times 10} = 5.522... \times 10^{-6}.$

To quantify the relationship between v and μ , we use a simple **upper** bound, the *Hoeffding Inequality*, so it make sense that the result is greater than the actual probability given by 1.8

3. Exercise 1.10

(a) μ for the three coins selected is 0.5 because the probability of getting heads for each coin is 0.5.

(b)

 V_1

 V_{\min}

(c) scaled, adjusted distribution of Hoeffding for $\ensuremath{\text{v}}_1$

scaled, adjusted distribution of Hoeffding for $\nu_{\mbox{\tiny rand}}$

(d)

 C_1 and c_{rand} obey the Hoeffding bound, but c_{min} didn't. The difference between c_1/c_{rand} and c_{min} is that, for c_{min} , it chooses the minimum frequency of heads, i.e., the coins are not fixed during the experiment. For that matter, c_1 and c_{rand} had a similar performance. (e)

For the c_1 and c_{rand} case, we may say that each coin represents a bin (model) where the hypothesis h is set before the data is generated. However, as the coins are not fixed, c_{min} cannot be regarded as the bin model.

4. Exercise 1.11

(a)

No. As discussed in the lecture, there is no *guarantee* that S will choose a hypothesis that always performs better than the counterpart outside of the training data. It could have been a sheer luck that a hypothesis was chosen such that it performs well within the

in-sample data set D, but that was done through the process of verification, not real learning.

(b)

Yes. Suppose an extreme case where p is a very small probability, meaning there is very little +1's compared to -1's in Y. And somehow, through random selection, D only contained +1, so our hypothesis S is chosen which says y is always +1. However, we have more -1's in Y, so from the probabilistic point of view, C will perform much better outside of the training data, which tells us y always -1 (opposite of S).

(c)

In order for S to be considered a better hypothesis than C, it has to be the case that more +1's are present out of the 25 training examples than the -1's. So the probability that 13 to 25 +1's will be present out of 25 sample with p 0.9 is

$$_{25}C_{13} \times 0.9^{13} \times 0.1^{12} + {}_{25}C_{14} \times 0.9^{14} \times 0.1^{11} + \dots + {}_{25}C_{25} \times 0.9^{25} \times 0.1^{0} \approx 0.9999998379$$
 (d)

No. Assuming that the data set D is "well-chosen" (i.e., IID), it is fair to say that the smart algorithm S will choose a hypothesis that agrees the most with D and will approximate v to μ . Therefore, regardless of what the p value is, S will always choose a better hypothesis between h_1 and h_2 , and C will be left to choose whichever the worse hypothesis is.

5. Exercise 1.12

(c) is what we can promise. We cannot guarantee that we will find a hypothesis that achieves $E_{out}(g) \approx E_{in}(g)$, but at least we will know if we find it (pg.25). If we did find it, we can say that with some probabilistic certainty, g will approximate f outside of the sample.

6. **Problem 1.3**

(a)

Showing $\min_{1 \le n \le N} y_n(w^{*T}x_n) > 0$ is basically same as saying that all of $y_n(w^{*T}x_n)$ is positive for every n, as the minimum of them has to be greater than 0. So the question is asking is $y_n(w^{*T}x_n)$ always positive for every iteration n? And the answer is yes because we said w^* is an optimal set of weight that separates the data. This means that y_n and $w^{*T}x_n$ will always have the same sign. This makes $y_n(w^{*T}x_n)$ to be always positive. (b)

$$w^{T}(t)w^{*} \ge w^{T}(t-1)w^{*} + p$$
 ... (1)

Using the known update rule w(t+1) = w(t) + y(t)x(t),

$$w^{T}(t-1)w^{*} + y(t-1)x(t-1)w^{*} \ge w^{T}(t-1)w^{*} + p$$

and replacing p with the proven above in part (a),

$$w^{T}(t-1)w^{*} + y(t-1)x(t-1)w^{*} \ge w^{T}(t-1)w^{*} + \min_{1 \le n \le N}[y_{n}(t-1)(w^{*T}x_{n}(t-1))]$$

Cancel out the equivalent left terms and we get a base case that is,

$$y(t-1)x(t-1)w^* \ge \min_{1 \le n \le N} [y_n(t-1)(w^{*T}x_n(t-1))] \dots (2)$$

This is certainly true because at iteration t-1, or at any iteration as a matter of fact, the min out of $1 \le n \le N$ will be smaller than what is on the left hand side of the inequality, in this case $y * x * w^*$ at iteration t-1. Given this holds true, we go back to inequality (1) where the form is simpler. Base case:

$$w^{T}(t)w^{*} \ge w^{T}(t-1)w^{*} + p$$

Next step: we look at an iteration before the update, at iteration t-2

$$w^{T}(t)w^{*} \geq w^{T}(t-1)w^{*} + p_{t-1} \geq w^{T}(t-2)w^{*} + p_{t-1} + p_{t-2}$$

where the subscript of p denotes the iteration of update in which p takes place. As demonstrated by inequality (2), we can see that this relationship also hold true because (2) shows that p is of something smaller or equal to than what is actually being updated. Iterative step:

$$W^{T}(t)W^{*} \ge W^{T}(t-1)W^{*} + p_{t-1} \ge ... \ge W^{T}(0)W^{*} + t * p$$

We know that w(0) = 0, so $w^{T}(t)w^{*} \ge tp$

(c)

Using a simple property $(a+b)^2 = a^2 + 2ab + b^2$,

$$||w(t)||^2 = ||w(t-1) + y(t-1)x(t-1)||^2 = ||w(t-1)||^2 + 2 * (y(t-1)w^{T}(t-1)x(t-1)) + ||y(t-1)x(t-1)||^2$$

We know $y(t-1)w^{T}(t-1)x(t-1) \le 0$ because x(t-1) was misclassified by w(t-1)

Therefore, $||w(t)||^2 = ||w(t-1)||^2 + 2 * (negative vector) + ||y(t-1)x(t-1)|| \le ||w(t-1)||^2 + ||x(t-1)||^2$

(d)

Base case: $||w(0)||^2 \le 0 * R^2$ holds true because w(0) = 0.

Inductive step:

Assume step t-1 holds true, that is

$$||w(t-1)||^2 \le (t-1)R^2$$
(1)

Now, so that it is still true for step t:

From the proof of (c) above, we know that

$$||w(t)||^2 \le ||w(t-1)||^2 + ||x(t-1)||^2$$
 ...(2)

We can combine (1) and (2) by substituting $||w(t-1)||^2$ appropriately, and we get

$$||w(t)||^2 \le (t-1)R^2 + ||x(t-1)||^2$$

R = $\max_{1 \le n \le N} ||x_n||$, so $||x(t-1)||^2$ can be written as R².

$$||w(t)||^2 \le (t-1)R^2 + ||x(t-1)||^2 = (t-1)R^2 + R^2 = (t)R^2$$

 $||w(t)||^2 \le tR^2$

This shows that induction holds true for the tth step.

(e)

$$w^{T}(t)w^{*} \ge w^{T}(t-1)w^{*} + p$$

 $w^{T}(t)w^{*} - w^{T}(t-1)w^{*} \ge p ...(1)$

 $||w(t)||^2 \le tR^2$ (square root on both sides)

∴ $\sqrt{tR} \le 0 \le ||w(t)|| \le \sqrt{tR}$, and the zero bound is given because ||w(t)|| is always positive, but we will write it as $||w(t)|| \le \sqrt{tR}$ for the sake of the proof, and this partial inequality is also certainly true.

$$||w(t)|| \leq \sqrt{tR}$$

$$\frac{1}{||w(t)||} \geq \frac{1}{\sqrt{tR}}$$

$$\frac{1}{||w(t)||} \geq \frac{\sqrt{t}}{tR}$$

$$\frac{t}{||w(t)||} \geq \frac{\sqrt{t}}{R} \dots (2)$$

multiply (1) and (2) and we get

$$(w^{T}(t)w^{*} - w^{T}(t-1)w^{*}) \times \frac{t}{||w(t)||} \ge p^{*} \frac{\sqrt{t}}{R}$$

rewritten,

$$\frac{w^{T}(t)w^{*} - w^{T}(t-1)w^{*}}{\|w(t)\|} \ge \sqrt{t} * \frac{p}{R}$$

We can see that $\frac{w^T(t)w^*}{\|w(t)\|} \ge \frac{w^T(t)w^* - w^T(t-1)w^*}{\|w(t)\|}$ because $w^T(t-1)w^*$ is not negative.

$$\frac{w^{T}(t)w^{*}}{\|w(t)\|} \ge \frac{w^{T}(t)w^{*} - w^{T}(t-1)w^{*}}{\|w(t)\|} \ge \frac{p}{\sqrt{tR}}$$

$$\frac{w^{T}(t)w^{*}}{\|w(t)\|} \ge \frac{\sqrt{tp}}{R}$$

$$\frac{w^{T}(t)w^{*}}{\|w(t)\|} * \frac{R}{p} \geq \sqrt{t} \qquad (\frac{R}{p} \text{ is not negative since both positive})$$

$$\frac{R w^{T}(t)w^{*}}{p \|w(t)\|} \geq \sqrt{t}$$

use transpose matrix property $a^Tb \le ||a|| \times ||b||$

$$\frac{R \|w(t)\| * \|w^*\|}{p \|w(t)\|} \ge \sqrt{t}$$

$$\frac{R \|w^*\|}{p} \ge \sqrt{t}$$

$$\frac{R^2 \|w^*\|^2}{p^2} \ge t$$

7. **Problem 1.7**

(a)

P[one coin of the sample (10) has v = 0] = $p = (1 - \mu)^{10}$

When $\mu = 0.05$, p = 0.59873...

P[at least one coin of 1 coin(s) has v = 0] = 1 - (1 - p) = 0.598...

P[at least one coin of 1,000 coin(s) has v = 0] = 1 - $(1 - p)^{1000}$ = 1.000...

P[at least one coin of 1,000,000 coin(s) has v = 0] = 1 - $(1 - p)^{1000000}$ = 1.000...

When $\mu = 0.8$, p = 1.024 x 10⁻⁷

P[at least one coin of 1 coin(s) has v = 0] = 1 – (1 – p) = 1.024 x 10⁻⁷

P[at least one coin of 1,000 coin(s) has v = 0] = 1 - $(1 - p)^{1000}$ = 1.024 x 10⁻⁴

P[at least one coin of 1,000,000 coin(s) has v = 0] = 1 - $(1 - p)^{1000000}$ = 0.09733...

(b)

i	ν - μ	P[ν- μ]
0	1/2	0.0156
1	1/3	0.0938
2	1/6	0.2344
3	0	0.3125
4	1/6	0.2344
5	1/3	0.0938
6	1/2	0.0156

For $0 \le \epsilon < 1/6$, i = 3, $P = 1 - (0.3125)^2 = 0.9023...$

For $1/6 \le \epsilon < 1/3$, i = 2 or 3 or 4 , $P = 1 - (0.2344 + 0.3125 + 0.2344)^2 = 0.3896...$

For $1/3 \le \varepsilon < 1/2$, i = 1 or 2 or 3 or 4 or 5,

 $P = 1 - (0.0938 + 0.2344 + 0.3125 + 0.2344 + 0.0938)^2 = 0.0612...$

For $1/2 \le \epsilon \le 1$, i = 0 or 1 or 2 or 3 or 4 or 5 or 6, $P = 1 - (1)^2 = 0$

8. Problem 1.8

(a)

$$E(t) = \sum_{x=0}^{\infty} t * P(T = t)$$

for some number a,

$$E(t) = \sum_{t=0}^{a-1} t * P(T = t) + \sum_{t=a}^{\infty} t * P(T = t)$$

$$\geq \sum_{t=a}^{\infty} t * P(T=t)$$

$$\geq \sum_{t=a}^{\infty} a * P(T=t)$$
 because $a = min_t t$

$$E(t) \geq a * \sum_{t=a}^{\infty} P(T=t) = a * P(T \geq a)$$

$$\frac{E(t)}{a} \geq P(T \geq a)$$

(b)

Let $t = (u - \mu)^2$. Note that $E(t) = E((u - \mu)^2) = Var(u)$.

 $|u-\mu| \geq \alpha$ is exactly same as $t = (u-\mu)^2 \geq \alpha^2$

Therefore, P[$|u-\mu| \ge \alpha$] = P[$t \ge \alpha^2$].

Y is always non-negative, so applying (a), we get

$$P[(u-\mu)^2 \ge \alpha^2] = P[t \ge \alpha^2] \le \frac{E(t)}{a^2} = \frac{Var(u)}{a^2} = \frac{\sigma^2}{a^2}$$

Reducing α^2 to α , we get

$$P[(u-\mu)^2 \ge \alpha] \le \frac{\sigma^2}{a}$$

$$P[(u-\mu)^{2} \geq \alpha] = P[t \geq \alpha] \leq \frac{E(t)}{a} = \frac{Var(u)}{a}$$

$$P[(u-\mu)^{2} \geq \alpha] \leq \frac{Var(u)}{a} ...(1)$$

$$Var(u) = \frac{1}{N^{2}} \sum_{i=1}^{N} var(u_{i}) = \frac{N\sigma^{2}}{N^{2}} = \frac{\sigma^{2}}{N} ...(2)$$

plug in Var(u) ...(2) into ... (1)

$$P[(u-\mu)^2 \ge \alpha] \le \frac{Var(u)}{a} = \frac{\sigma^2}{N} * \frac{1}{a}$$

$$P[(u-\mu)^2 \ge \alpha] \le \frac{\sigma^2}{Na}$$