Theorem: Scalar Times Vector is Zero implies one of them Zero Suppose that $a \in \mathbb{F}, v \in V$, and that av = 0 we will prove that

$$a=0\in\mathbb{F} \text{ or } v=0\in V$$

then by multiplying both sides by $\frac{1}{2}$ we obtain

done.

Supposing
$$a \neq 0$$
, then by multiplying both sides by $\frac{1}{a}$ we obtain

 $v = \left(\frac{1}{a}\right)0 = 0 \in \mathbb{F}$ by compatibility of scalar multiplication, and the fact that any scalar times the identity element is still the identity. Otherwise a = 0 and the proof is

Proof