Semiconductor Memories

Semiconductor Memory Types

Semiconductor Memory Semiconductor Memories Read/Write (R/W) Memory or Random Access Memory (RAM) Dynamic RAM (DRAM) Static RAM (SRAM) 1. Mask (Fuse) ROM 2. Programmable ROM (PROM) Erasable PROM (EPROM) Electrically Erasable PROM (EEPROM) 3. Flash Memory 4. Ferroelectric RAM (FRAM)

Semiconductor Memory Types(Cont.)

□ Design Issues

- Area Efficiency of Memory Array: # of stored data bits per unit area
- Memory Access Time: the time required to store and/or retrieve a particular data bit.
- Static and Dynamic Power Consumption

☐ RAM: the stored data is volatile

- DRAM
 - » A capacitor to store data, and a transistor to access the capacitor
 - » Need refresh operation
 - » Low cost, and high density ⇒ it is used for main memory
- SRAM
 - » Consists of a latch
 - » Don't need the refresh operation
 - » High speed and low power consumption ⇒it is mainly used for cache memory and memory in hand-held devices

Static Random-Access Memory (SRAM)

• **SRAM:** The stored data can be retained indefinitely, without any need for a periodic refresh operation.

 Complementary Column arrangement is to achieve a more reliable SRAM operation

Resistive-Load SRAM Cell

Full CMOS Depletion-Load SRAM Cell

SRAM Operation Principles

- RS=0: The word line is not selected. M_3 and M_4 are OFF
- ➤ One data-bit is held: The latch preserves one of its two stable states.
- > If RS=0 for all rows: C_C and $C_{\overline{C}}$ are charged up to near V_{DD} by pulling up of M_{P1} and M_{P2} (both in saturation)

$$V_{\overline{c}} = V_{C} = V_{DD} - (V_{T0} + \gamma \sqrt{|2\phi_{F}| + V_{C}} - \sqrt{|2\phi_{F}|})$$

 \triangleright Ex: $V_C = V_C = 3.5 \text{V}$ for $V_{DD} = 5 \text{V}$, $V_{T0} = 1 \text{V}$, $|2\phi_F| = 0.6 \text{V}$

• RS=1: The word line is now selected. M_3 and M_4 are ON

Four Operations

1. Write "1" Operation ($V_1=V_{OL}$, $V_2=V_{OH}$ at t=0"): $V_{\overline{C}} \Rightarrow V_{OL}$ by the *data-write circuitry*. Therefore, $V_2 \Rightarrow V_{OL}$, then M_1 turns off $V_1 \Rightarrow V_{OH}$ and M_2 turns on pulling down $V_2 \Rightarrow V_{OL}$.

2. Read "1" Operation ($V_I = V_{OH}$, $V_2 = V_{OL}$ at t = 0"): V_C retains pre-charge level, while $V_{\overline{C}} \Rightarrow V_{OL}$ by M_2 ON. Data-read circuitry detects small voltage difference $V_C - V_{\overline{C}} > 0$, and amplifies it as a "I" data output.

3. Write "0" Operation $(V_1=V_{OH}, V_2=V_{OL} \text{ at } t=0)$: $V_C \Rightarrow V_{OL}$ by the *data-write circuitry*. Since $V_1 \Rightarrow V_{OL}$, M_2 turns off, therefore $V_2 \Rightarrow V_{OH}$.

4. Read "0" Operation ($V_1 = V_{OL}$, $V_2 = V_{OH}$ at t = 0"): $V_{\overline{C}}$ retains pre-charge level, while $V_C \Rightarrow V_{OL}$ by $M_1 ON$. Data-read circuitry detects small voltage difference $V_C - V_{\overline{C}} < 0$, and amplifies it as a "0" data output.

Static or "Standby" Power Consumption

• Assume: 1 bit is stored in the cell $\Rightarrow M_1$ OFF, M_2 ON $\Rightarrow V_1 = V_{OH}$, $V_2 = V_{OL}$. I.E. One load resistor is always conducting non-zero current.

$$\mathbf{P}_{\text{standby}} = (V_{DD} - V_{OL})^2 / R$$

with $R = 100 \text{M}\Omega$ (undoped poly), $P_{\text{standby}} \approx 0.25 \,\mu\text{W}$ per cell for $V_{DD} = 5 \text{V}$

1-T DRAM Cell

One-Transistor DRAM Cell

- Industry standard for high density dram arrays
- Smallest component count and silicon area per bit
- Separate or "explicit" capacitor (dual poly) per cell

Operation of 1-T DRAM Cell

- Write "1" OP: BL = 1, WL = 1 (M_1 ON) $\Rightarrow C_1$ charges to "1"
- Write "0" OP: BL = 0, WL = 1 (M_1 ON) $\Rightarrow C_1$ discharges to "0"
- Read OP: destroys stored charge on $C_I \Rightarrow$ destructive refresh is needed after every data read operation

