Rappels sur les fluides classiques

• Fluides classiques :

- o **Définition**: Un fluide classique est constitué d'atomes et de molécules pour lesquels le mouvement de translation peut être traité par la Mécanique Classique.
- o **Fonction de partition**: (pour des systèmes monoatomiques) La fonction de partition est factorisable en deux termes : $Z=Z_C.Z_P$ (p. 113)
 - Contribution des énergies cinétiques :

$$Z_{C} = \frac{Z^{N_0}}{N_0!}$$
 avec $z = \int_0^\infty \exp\left(-\beta \frac{p^2}{2m}\right) g(p) dp$

• Contribution des énergies potentielles :

$$Z_{p} = \frac{1}{V^{N}} \int exp(-\beta W(\vec{r}_{1}, \vec{r}_{2}, ..., \vec{r}_{N})) d^{3}r_{1} d^{3}r_{2}...d^{3}r_{N}$$

• Gaz parfait:

Soit un gaz parfait constitué de N_0 particules identiques de spin J :

$$\circ \quad \text{Pour une particule} : \begin{cases} z = \int_{0}^{\infty} \exp\left(-\beta \frac{p^{2}}{2m}\right) g(p) dp \\ \operatorname{avecg}(p) = \frac{\left(2J+1\right) V_{0}}{2\pi^{2} \hbar^{3}} p^{2} \end{cases} \Rightarrow \boxed{z = \left(2J+1\right) V_{0} \left(\frac{m}{2\pi \hbar \beta}\right)^{\frac{3}{2}}}$$

- $\circ\ \ Fonction \ de \ partition \ pour \ N_0$ particules :
 - Particules différentes : Z=z^{N₀}
 - Particules identiques et discernables : $Z = \frac{Z^{N_0}}{N_0!}$

• Rappel sur le Modèle d'Einstein pour les solides : (p. 97)

- Chaque atome est décrit par un hamiltonien d'oscillateur harmonique à trois dimensions indépendant de tous les autres.
 - Pour un oscillateur : $z = \sum_{n=0}^{\infty} \exp(-\beta \hbar \omega \left(n + \frac{1}{2}\right))$
 - Fonction de partition pour N_0 particules (3 N_0 oscillateurs) : $Z=z^{3N_0}$