Topics Today

- Physical layer: chips versus bits
- Link layer and media access control (MAC)
- Ethernet
- Hubs and Switches
- MPLS

Protocol Layering

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Link
1	Physical

Physical layer: chips versus bits

Lecture 8: Physical and Link Layers

Protocol Layering

7	Application
6	Presentation
5	Session
4	Transport
3	Network
2	Link
1	Physical

Physical Layer (Layer 1)

- Responsible for specifying the physical medium
 - Category 5 cable (Cat5): 8 wires, twisted pair, RJ45 jack
 - WiFi wireless: 2.4GHz
- Responsible for specifying the signal
 - 100BASE-T: 5-level pulse amplitude modulation (PAM-5)
 - 802.11b: Binary and quadrature phase shift keying (BPSK/QPSK)
- Responsible for specifying the bits
 - 100BASE-T: 4-to-6 bit-to-chip encoding, 3 chip symbols
 - 802.11b: Barker code (1-2Mbps), complementary code keying (5.5-11Mbps)

Specifying the signal

- Chips versus bits
 - Chips: data (in bits) at the physical layer
 - Bits: data above the physical layer
- - On-off keying (OOK): voltage of 0 is 0, +V is 1
 - PAM-5: 000 is 0, 001 is +1, 010 is -1, 011 is -2, 100 is +2
 - Frequency shift keying (FSK)
 - Phase shift keying (PSK)
 - Don't worry about this too much now: we'll cover it in greater depth when we look at wireless

Straw man: On-off keying

- To transmit 0 bit, sent 0 V, to transmit 1, sent +5 V
 - A bit is a chip in this scheme
- OOK a form of Amplitude Shift Keying (ASK)
 - Bits are encoded in amplitude of the signal
 - Can also have frequency shift keying (FSK)
 - And phase shift keying (PSK)
- Also an example of non-return to zero (NRZ)
 - E.g., four 1 bits transmitted by asserting $+5\,V$ for 4 clock ticks

Non-return to Zero Inverted (NRZI)

- Encode 1 with transition from current signal
- Encode 0 by staying at same level
- At least solves problem of consecutive 1s

How fast can you transmit information?

- Depends on bandwidth and Signal/Noise ration
- Shannon: Channel capacity $C = B \log_2(1 + S/N)$
 - B is bandwidth of line
 - S and N are average signal & noise power
- For any transmission rate R < C, can have arbitrarily low error rate
- Example: Telephone line
 - 3 KHz b/w, $30 \text{ db S/N} = 10^{30/10} = 1000$
 - $C \approx 30$ Kbps (so 56 Kbps modems need better S/N ratio)
- Crude intuition for Shannon
 - Sample rate \sim B
 - V voltage levels encode $\log_2 V$ bits, so bits/sample $\sim \log_2 (1 + S/N)$

NRZ drawbacks

- Consecutive 1s or 0s are problematic
- Non signal could be interpreted as 0s (or vice versa)
- "Baseline wander" problem
 - Where is threshold between low and high?
 - Could compare signal to average value, but avg. will drift
- Sender and receiver need synchronized clocks
 - Otherwise, can experience "bit slip"

Encoding Goals

- DC balancing (same number of 0 and 1 chips)
- Clock synchronization
- Can recover from some chip errors
- Can constrain analog signal patterns to make signal more robust
- Want near-chanel capacity with negligible errors
 - But Shannon only says it's possible, doesn't tell us how
 - Codes could also get computationally expensive
- In practice:
 - Higher encoding \rightarrow fewer bps, more robust
 - Lower encoding \rightarrow more bps, less robust

Manchester Encoding

- Map bit $0 \rightarrow$ chips 01, bit $1 \rightarrow$ chips 10
 - Transmission rate now 1 bit per two clock cycles
 - Like XORing an NRZ encoding with the clock

- Solves clock synchronization & baseline wander
- But cuts transmission rate in half

802.15.4

- Standard for low-rate wireless personal networks
 - Must tolerate high chip error rates
- Uses a 32-to-4 chip-to-bit encoding

Link layer and media access control (MAC)

4B/5B

- Every 4 bits of data encoded in 5 chips
- 5-bit codes selected to have no more than one leading 0 and no more than two trailing 0s
 - thus, never get more than three consecutive 0s
- 16 codes used for all 4-bit sequences
- Resulting 5bit codes are transmitted using NRZI
- Remaining codes used for other purposes
 - E.g., 11111 line idle, 00000 line dead, . . .
- Achieves 80% bit/chip efficiency

Physical Layer Frames

- \bullet Usually minimalist: "here's N bytes"
 - Start symbol/preamble
 - Length field
 - Payload (link layer frame)

Link Layer Responsibilities

- Single-hop addressing (e.g., Ethernet addresses)
- Media access control
 - Link-layer congestion control
 - Collision detection/collision avoidance
- Single-hop acknowledgements

Ethernet: 802.3

• Dominant wired LAN technology

- 10BASE5 (vampire taps)
- 10BASE-T, 100BASE-TX, 1000BASE-T

• Frame format:

Phys	ical		Link		Layer 3	Link	
Preamble	SFD	Src	Dest	Type/ Len	Payload	CRC	Gap 96 ns,
7 x 10101010	10101011	6 bytes	6 bytes	2 bytes	46-1500 bytes	4 bytes	960 ns, 9600 ns

Media Access Control (MAC)

• Control access to shared physical medium

- E.g., who can use coax/radio when?
- If everyone talks at once, no-one hears anything
- This job falls to the link layer

• Prevent collisions by controlling when nodes send

• Variety of approaches

- Time Division Multiple Access (TDMA)
- Carrier Sense Multiple Access, Collision Detection (CSMA/CD)
- Carrier Sense Multiple Access, Collision Avoidance (CSMA/CA)
- Request-to-send, clear-to-send (RTS/CTS)

Conceptual Model of Wired Media Access

Ethernet Addressing

• Each Ethernet card has a unique 48-bit ID

- Example: www.scs.stanford.edu has 00:07:e9:0f:1f:3e
- Example: myth15 has 00:1e:c9:2f:a2:9c

• 24-bit organizationally unique identifier, 24-bit ID

- 0x000000-0x000009: Xerox
- 0x0007e9: Intel (www.scs)
- 0x001ec9: Dell (myth15)
- http://standards.ieee.org/regauth/oui/oui.txt

MAC Approaches

• Channel Partitioning

- Divide channel into smaller "pieces," allocate pieces to nodes

• Random Access

- Don't divide channel, allow conflicts
- Recover from errors caused by conflicts

• "Taking turns"

- Nodes take turns, but nodes with more to send can take longer turns

• Conflicting goals: maximize use of capacity

- One node should get 100% in absence of competition
- Multiple nodes can each get a share, not collide

TDMA

• Divide time into slots

- Each device is allowed to transmit in some number of slots
- No collisions
- Link is fully utilized when everyone transmits:

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4	
---------------------------------	--

• Single node cannot use all of the capacity $(\frac{1}{n})$:

1				1				1				1			

Can't get full link utilization unless everyone
transmits:

·	tiansiiits.															
	1			4	1			4	1	2		4	1	2		

CSMA

- Node senses the channel for activity
- Transmits if it thinks the channel is idle
- CSMA/CD: can detect if there is a collision, and back off
 - Randomized backoff time, grows exponentially
 - After C consecutive collisions, wait $rand(0,2^C)\cdot 512$
 - Drop when ${\cal C}$ grows large (in practice)

2-minute stretch

Collision Detect (10base2 Ethernet)

- Detect collision when average voltage spikes
 - 10base2 uses Manchester encoding
 - Has constant average voltage unless multiple transmitters
- When a node detects a collision
 - Broadcasts jam signal to ensure other nodes drop packet
- Collision detection constrains protocol
 - Imposes min. packet size (64 bytes)
 - Imposes maximum network diameter (2800 m)
 - Ensure transmission time ≥ twice propagation time—why?

Layer 2 Acknowledgements

- Common in wireless (more on this in wireless lecture)
- If layer 2 successfully receives a frame, it immediately sends an ACK
- Assumes $t_{\rm prop} \ll t_{\rm trans}$
- Hypothetical situation:
 - Let's say a router won't send an ACK if it drops the packet
 - Let's say a router will keep on retrying a packet until it is ACKed
 - Do we still need end-to-end ACKs?

Ethernet

Violating Timing Constraints

• Without min packet size, might miss collision

Ethernet Efficiency

- One node can use full link capacity
- Assuming RX/TX turnaround time of zero
 - As $n \to \infty$, use = $\frac{1}{1+5t_{\rm prop}/t_{\rm trans}}$
 - If $t_{\mathrm{prop}} \to 0$, efficiency approaches 1
 - If $t_{\mathrm{trans}} \to \infty$, efficiency approaches 1
 - if $t_{\text{prop}} = t_{\text{trans}}$, efficiency approaches 16%.

Ethernet Speeds

- Network diameter limits:
 - 10Mbps: 2800m
 - 100Mbps: 205m
 - Gigabit: 205m!
- Gigabit Ethernet
 - Uses more of the CAT5 wires (125 MHz \cdot 8 signals)
 - Pad with dummy data (signal extension) for CD (so min packet size is now 512 *bytes*, not bits)

Hubs vs. Switches

- Hub: connects multiple Ethernet segments to act like a single segment (shared collision domain, physical layer connectivity)
- Switch: store and forward between segments (single collision domains, link layer connectivity)
- Very little Ethernet today is shared
 - Means collision detection never triggered (duplex, separate RX and TX wires)
 - 10Gbps Ethernet standard does not allow shared medium

Ethernet Capture Effect

- Exponential backoff leads to self-adaptive use of channel
- When a node succeeds, it transmits the next packet immediately
- Result: bursts of packets from single nodes

Hubs and Switches

-1

Bridges and extended LANs

- LANs have physical limitations (e.g., 208 m)
- Connect two or more LANs with a bridge
 - Operates on Ethernet addresses
 - No encapsulation required
- Ethernet switch like a multi-way bridge

Learning bridges

- Idea: Don't forward packet if not useful
 - If you know recipient is not on that port
- Learn host's location based on source address
 - Switch builds a table when it receives packets

A	В	С	Χ	Y	Z
1	1	1	2	2	2

- Table says when not to forward packet
 - Does not need to be complete for correct behavior
 - Spanning tree algorithm avoids loops

MPLS

- Multiprotocol Label Switching
- Sits between layer 2 and 3 ("layer 2.5")
- Prepend a "label" to frame
- Switch in terms of label, rather than destination address
 - Two packets to the same destination can take different paths
 - Separating addressing from forwarding enables traffic engineering
 - Label changes from input to output

MLPS Architecture

- Label Edge Routers (LERs)
 - Talks to regular IP routers and MPLS-enabled ones
- Label Switch Routers (LSRs)
 - E.g., The core routers in a large backbone provider
- Label Distribution Protocol (LDP)
- Label Forwarding Information Base (LFIB)

MPLS

MLPS packet format

- 20-bit label
- 3 experimental bits
- 1 "bottom of stack bit"
 - Allows multiple MPLS headers to be stacked in a packet
- 5-bit TTL (since network-level TTL not used)

Example MPLS (from textbook)

	labe	ou l lab		out interface		in label	labe			rface
		10		0		10 12	6 9	A		1
		8	A	1						
(28)									
,	R6		0		×	0	— D			
(×		R4 1		R3	1				
	R5			0		_	0	— А		
				R2		R1				
in label	out label	dest	out interface				in abel	out label	dest	out interface
8	6	Α	0]			6	-	Α	0

Figure 5.37 ♦ MPLS-enhanced forwarding