: ANALISIS Y MODELAMIENTO NUMERICO **CURSO**

HORAS : 6 horas/semana (4 h Online +2h Online) COORDINADOR : Fidel Jara **HORAS**

CÓDIGO : CM4F1 CICLO : 2020-1 CRÉDITOS : 4

SEM	FECHA	SESIÓN 1 PRESENCIAL (2h)	SESIÓN 2 PRSENCIAL (2h)	SESIÓN 3 VIRTUAL (2h)
		Análisis de Errores: Introducción. Prueba de	Propagación de errores (Errores de redondeo).	PRUEBA DE ENTRADA
01	01/06	entrada. Motivación. Representación de	Ley de la aritmética de punto flotante. Épsilon	
		números. Aritmética del punto flotante.	de la máquina.	
		Notación O de Landau. Pérdida de dígitos	Número de condición absoluto y relativo.	PRÁCTICA DIRIGIDA 1
02	08/6	significativos. Condicionamiento. Número de condición relativo. Condición de un	Estabilidad de los algoritmos.	
		problema		
		Estabilidad. Estabilidad regresiva. Precisión	Sistema de ecuaciones lineales: Introducción	PRÁCTICA CALIFICADA 1
03	15/6	de un algoritmo estable regresivo.	Motivación, Eliminación de Gauss, Pivotación,	TRACTICA CALIFICADA I
- 00	10/0	Definición. Ejemplos.	Algoritmo. Método de Gauss – Jordan.	
		Condicionamiento de sistema de ecuaciones	Factorización LU. Propiedades. Método de	PRÁCTICA DIRIGIDA 2
04	22/6	lineales. Propiedades. Numero de condición	Crout (LU1). Método de Crout (L1U). Método	
04	22/0		de Doolitle. Ejemplo (*) Feriado: Vie 10/04	
			dosificar avance	
		Factorización de matrices simétricas.	Matrices simétricas semidefinidas positivas.	PRÁCTICA CALIFICADA 2
05	29/6	Factorización LDLT . Propiedades. Ejemplo	Propiedad. Matrices simétricas indefinidas	
		Factorización de Cholesky. Propiedades	Método de Parlett y Reid	
		Problema de mínimos cuadrados. Método de	Transformación de Householder. Propiedades.	PRÁCTICA DIRIGIDA 3
06	06/7	Gram – Schmidt. Factorización QR.	Resolución numérica de $Ax = b$, con $n > m$ y	
		Propiedad.	rango completo.	
		Resolución numérica de $Ax = b con m > n o$	Métodos iterativos Introducción. Motivación.	PRÁCTICA CALIFICADA 3
07	13/7	m < n y rango incompleto Procedimiento.	Método de Jacobi. Esquema iterativo.	
07	13//	Transformación de Givens	Algoritmo. Ejemplo. Método de Gauss –	
		~ .	Seidel. Esquema iterativo	
08	Semana de exámenes parciales			
		Algoritmo. Convergencia de matrices generales. Propiedades. Matriz con diagonal	Métodos de relajación. Convergencia del método de SOR. Método del descenso más	PRÁCTICA DIRIGIDA 4
09	27/07	dominante. Propiedades. Matriz con diagonal	rápido. Método del gradiente conjugado.	
		definida positiva. Propiedades.	rapido. Metodo dei gradiente conjugado.	
		Ecuaciones no lineales: Introducción.	Método de bisección. Método de secante.	PRÁCTICA CALIFICADA 4
10	03/8	Motivación. Método de punto fijo. Método	Método de Regula Falsi. Algoritmo.	TRITOTION CHEMICADAT
		de Newton. Convergencia.	Convergencia. Ejemplos	
		Homotopía. Método de continuación.	Sistema de ecuaciones no lineales: Motivación.	PRÁCTICA DIRIGIDA 5
11	10/8	Algoritmo. Propiedades. Ejemplo.	Método de Newton. Propiedades. convergencia	
		Teorema de punto fijo. Método de Jacobi.	Método Cuasi - Newton. Convergencia.	PRÁCTICA CALIFICADA 5
12	17/8	Método de Gauss. Método de SOR.	Aplicación	
		Ejemplos.	-	
		Cálculo de valores y vectores propios.	Método de potencia. Método de potencia	PRÁCTICA DIRIGIDA 6
13	24/8	Introducción. Motivación. Propiedades.	inversa. Método de potencia desplazada.	
13	24/0	Localización de valores propios. Teorema	Ejemplos.	
		de Gershgorin.		PR CONC. PARAGE
		Algoritmo QR. Propiedades. Otros métodos.	Aproximación polinomial: Introducción.	PRÁCTICA DIRIGIDA 7
14	31/8	Aplicación. Ejemplo.	Motivación. Teorema de aproximación. Los polinomios de Taylor. Los polinomios de	
			Lagrange.	
		Los polinomios de Newton. Los polinomios	Aplicaciones	PRÁCTICA CALIFICADA 6
15	07/9	de Hermite. Polinomio de interpolación de	productions	- Into I to I to I to I to I to I
_		Neville. Ejemplo. Aplicación		
16	14/9	* *	Semana de exámenes finales	
10	14/7		эстини ис слатенез знитех	