Point Class:

- A point is represented as a pair of Cartesian coordinates.
- Instance Variables:
 - \circ x and y representing x and y coordinates (double)
- Instance Methods:
 - A default constructor: sets the x and y coordinates to 0.0
 - Constructor that takes two doubles and initializes x and y
 - A copy constructor: takes a Point object as parameter and creates a new Point object that is an exact copy of the parameter.
 - get methods getX and getY
 - set methods setX and setY
 - odistance method that returns the distance between this Point and another point. This method takes a Point object as a parameter and computes the length of the line segment between this Point and the parameter and returns the value as a double. The length of the line segment is defined as Math.sqrt($(this.x p.x)^2 + (this.y p.y)^2$) where p is the parameter
 - ° print(PrintWriter out) method that that prints the point in the [x,y] format to the output file

Circle Class:

- A circle **is a** TwoDimensionalShape and is represented by its radius and center (center is a Point object).
- Instance Variables:
 - ° radius (represented by a *double*) radius cannot be -ve
 - center which is a Point object
- Instance Methods:
 - ° Constructor takes a Point object and a *double* and sets the center and radius
 - Copy constructor that takes a Circle and creates an exact copy (see Point class above)
 - Set methods for radius and center
 - Get methods for radius, center
 - Overridden methods getArea and getPerimeter
 - area (represented by a *double*) Formula: Math.PI * radius * radius
 - perimeter (represented by a *double*) Formula: 2 * Math.PI * radius
 - Overridden *print*(PrintWriter out) method that prints the circle object. See the output file for the format.

Triangle Class:

- A Triangle **is a** TwoDimensionalShape and is represented by its 3 corner points (which are all Point objects).
- Instance Variables:
 - 3 Points p1, p2 and p3 (all Point objects)
- Instance Methods:
 - Constructor takes 3 Point objects and initializes the three corner points
 - Copy constructor
 - Set methods for 3 corner points setPoint1, setPoint2, setPoint3 takes a
 Point object as parameter and sets the appropriate corner point
 - Get methods for 3 corner points getPoint1, getPoint2 and getPoint3
 - Overridden methods getArea and getPerimeter
 - Overridden *print*(PrintWriter out) method that that prints the Triangle object.
 See the output file for the format.
- See http://www.mathopenref.com/heronsformula.html for formula on how to compute the area of a triangle given 3 sides.
- The perimeter is the length of the 3 line segments use the distance method from the Point class to compute the length of line segment between each pair of 3 corner points.

Rectangle Class:

Instance Variables:

• length and width (both double)

Instance Methods:

- ° Constructor takes 2 doubles and initializes the length and width
- Copy constructor
- set and get methods for length and width
- Overridden methods *getArea* and *getPerimeter*
- Overridden *print*(PrintWriter out) method that prints a Rectangle object on the screen. See the output file for the format.
- isSquare() method that returns true if both length and width are the same.
- See the output file for the format.

Cone Class:

- A Cone **is a** ThreeDimensionalShape and is represented by its radius and height
 - ° radius (represented by a *double*);
 - height (represented by a double)
- Instance Methods:
 - Constructor takes radius and height
 - Copy constructor
 - Set methods for radius and height
 - Get methods for radius, height
 - Overridden methods getSurfaceArea and getVolume
 - Overridden *print*(PrintWriter out) method that prints a Cone object. See the output file for the format.
 - ° getVolume() Formula $(\pi r^2 h)/3$ (r is the radius and h is the height)
 - ° getSurfaceArea() Formula $\pi r * (r + sqrt(r^2 + h^2))$
 - http://chemistry.about.com/od/chemistry101/ss/3dformulas_2.htm

Sphere Class:

- A Sphere **is a** ThreeDimensionalShape and is represented by its radius
 - radius (represented by a *double*);
- Instance Methods: similar to Cone and Cube
 - getSurfaceArea Formula: 4 * PI * radius * radius
 - ° getVolume Formula: 4 * PI * radius * radius * radius / 3

Cylinder Class:

- A Cylinder **is a** ThreeDimensionalShape and is represented by its radius and height
 - radius (represented by a double);
 - height (represented by a *double*)
- Instance Methods: similar to Cone and Cube and Sphere
 - getSurfaceArea Formula: 2 * PI * radius * height
 - ° getVolume Formula: PI * radius * radius * height

Cube Class:

- A Cube **is a** ThreeDimensionalShape and is represented by its side length
 - length (represented by a *double*);
- Instance Methods: similar to Cone
 - getSurfaceArea Formula: 6 * length * length
 - getVolume Formula: length * length * length