Student Number:	
Student Number:	

THE UNIVERSITY OF MELBOURNE SCHOOL OF COMPUTING AND INFORMATION SYSTEMS

COMP90038: Algorithms and Complexity Sample Exam Questions (Weeks 1-5)

Note: this test should be used as a tool to help you evaluate your progress in the subject.

Instructions to students:

• There are three parts to the test:

Part A – 5×1 mark multiple choice questions.

Part B - 10 marks for short answer questions.

- Please write your answers to the multiple choice questions in the labelled boxes on page 2.
- Please write your answer to each of the short answer / algorithm questions in the ruled boxes below (or next to) the question. If necessary, use the reverse side of any page to prepare a draft answer. Then, copy your draft answer into the appropriate boxes.

Part A: multiple choice questions

 $[5 \times 1 = 5 \text{ marks}]$

Pick the best answer to each question. Write your answer in the boxes below.

1b 2d 3b 4b 5b

Question	1.	2.	3.	4.	5.
Answer					

- 1. Choose the correct statement
 - (a) $n(n+1)/2 \in \Theta(n^3)$
 - (b) $100n + 5 \notin \Omega(n^2)$
 - (c) $5n^2 + 2n + 16 \in O(n)$
 - (d) $0.01n \in O(\log n)$
- 2. The worst case running time when performing selection sort on a list of n integers is
 - (a) $O(\log n)$
 - (b) $O(n \log n)$
 - (c) $\Theta(n)$
 - (d) $\Theta(n^2)$
- 3. A sorting algorithm is considered stable if it
 - (a) changes the relative order of equal elements in its input
 - (b) preserves the relative order of any two equal elements in its input
 - (c) performs its operations mostly in the same memory used by its input elements
 - (d) has worst case efficiency $O(n \log n)$
- 4. The number of character comparisons made by the brute-force algorithm in searching for the pattern TAB in the text NOBODY_NOTICED is
 - (a) 12
 - (b) 13
 - (c) 14
 - (d) 15
- 5. Given an adjacency-list representation of a directed graph, what is the time complexity to compute the out-degree of every vertex?
 - (a) $O(|V| \times |E|)$
 - (b) $\Theta(|V| + |E|)$
 - (c) $\Theta(|E|)$
 - (d) $\Omega(|E|)$

Part B: short answer questions

[10 marks]

1. Consider the following graph:

(a) Starting at node A, traverse the graph by depth-first search, resolving ties by taking nodes in alphabetical order. Use the notation introduced in the Levitin text to illustrate the traversal stack as the search progresses. [2 marks]

		G3,1			B5,3	E6,4	
	D2	D2	D2,2	F4	F4	F4	F4,5
A1	A 1	A 1	A1	A 1	A1	A 1	A1,6

(b) Starting at node A, write down the sequence of the nodes visited in the graph when using breadth-first search, resolving ties by taking nodes in alphabetical order. [1 mark]

(c) Is the graph acyclic (yes or no)? [1mark]

2. Consider the pseudo-code below:

function MYSTERY(
$$A[0..n-1], k$$
)

//Input: an array of n integers and an integer k (where $k < n$)

//Output: ?

for $i \leftarrow 0$ to $n-1$ do

 $value \leftarrow 0$

for $j \leftarrow 0$ to $n-1$ do

if $i \neq j$ and $A[i] < A[j]$ then

 $value \leftarrow value + 1$

if $value = k-1$ then

return i

(a) What does the algorithm compute? [2 marks]

No

Returns the index of the first item on the array that has exactly k-1 items greater than it in the array

mark]	
	O(n2)

(b) In Big-O terms, what is the overall time complexity of the algorithm on the previous page? [1

3. Solve the recurrence equations – using telescoping/substitution – and give the asymptotic time complexity of the algorithm. [3 marks]

$$C(n) = 3C(n-1)$$
 for $n > 1$, $C(1) = 4$

$C(n)=3C(n-1) \text{ n>1}$ $C(1)=4$ Telescoping / repeated substitution results in $C(n)=3^{i} C(n-i)$ Note: steps omitted from sample solution Let $i=n-1$ $C(n)=3^{i}(n-1) C(1)$ $C(n)=4/3 . 3^{i}n$ Thus $O(3^{n})$		
$C(n) = 3^i C(n-i)$ Note: steps omitted from sample solution Let $i = n-1$ $C(n) = 3^i (n-1) C(1)$ $C(n) = 4/3 \cdot 3^n$		
Let $i = n-1$ $C(n) = 3^{n}(n-1) C(1)$ $C(n) = 4/3 . 3^{n}$	Telescoping / repe	ated substitution results in
$C(n) = 3^{(n-1)} C(1)$ $C(n) = 4/3 \cdot 3^{n}$	$C(n) = 3^i C(n-i)$	Note: steps omitted from sample solution
$C(n) = 4/3 . 3^n$	Let i = n-1	
Thus O(3^n)		1)
	Thus O(3^n)	