Tema 2.3 Optimización II: Backpropagation

Miguel Ángel Martínez del Amor

Deep Learning

Departamento Ciencias de la Computación e Inteligencia ARtificial
Universidad de Sevilla

Contenido

- Propagación del gradiente
- Grafo computacional
- Vectorización

Descenso por gradiente

- Las actualizaciones se pueden aplicar directamente para actualizar pesos en modelos como regresión lineal y logística (perceptrón con función de activación sigmoide).
- ¿Cómo proceder con red neuronal multicapa?

Descenso por gradiente

- Las actualizaciones se pueden aplicar directamente para actualizar pesos en modelos como regresión lineal y logística (perceptrón con función de activación sigmoide).
- ¿Cómo proceder con red neuronal multicapa?

Descenso por gradiente

- Las actualizaciones se pueden aplicar directamente para actualizar pesos en modelos como regresión lineal y logística (perceptrón con función de activación sigmoide).
- ¿Cómo proceder con red neuronal multicapa?
- En la capa de salida, usar la actualización de pesos con el gradiente sobre la función de coste.
- Problema: en las capas ocultas desconocemos los valores esperados.
- **Solución**: propagar los gradientes, algoritmo de retropropagación (backpropagation)

• Propagación hacia adelante (forward):

• Propagación hacia atrás (backward):

• Propagación hacia atrás (backward):

- Regla de la cadena:
 - Clave del algoritmo de backpropagation.

- Regla de la cadena:
 - Clave del algoritmo de backpropagation.

$$\frac{\partial f}{\partial x} = \frac{\partial f_4}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f_4}{\partial x}$$

$$\frac{\partial f_4}{\partial x} = \frac{\partial f_4}{\partial f_3} \frac{\partial f_3}{\partial x}$$

$$\frac{\partial f}{\partial x} = \frac{\partial f_4}{\partial x}$$

$$\frac{\partial f_4}{\partial x} = \frac{\partial f_4}{\partial f_3} \frac{\partial f_3}{\partial x}$$

$$\frac{\partial f_4}{\partial x} = \frac{\partial f_4}{\partial f_3} \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial x}$$

$$\frac{\partial f_4}{\partial x} = \frac{\partial f_4}{\partial f_3} \frac{\partial f_3}{\partial f_2} \frac{\partial f_2}{\partial f_1} \frac{\partial f_1}{\partial x}$$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz
- $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
- $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
- Buscamos: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz
- $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
- $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
- Buscamos: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz
- $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
- $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
- Buscamos: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz
- $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
- $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
- Buscamos: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz

•
$$\frac{\partial q}{\partial x} = 1$$
, $\frac{\partial q}{\partial y} = 1$

•
$$\frac{\partial f}{\partial q} = z$$
, $\frac{\partial f}{\partial z} = q$

- Veamos un ejemplo: f(x, y, z) = (x + y)z
- Sea x=-2, y=5, z=-4
- Sea q = (x + y)
- f = qz
- $\frac{\partial q}{\partial x} = 1$, $\frac{\partial q}{\partial y} = 1$
- $\frac{\partial f}{\partial q} = z$, $\frac{\partial f}{\partial z} = q$
- Buscamos: $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$

• Cálculo de gradientes locales mientras forward propagation.

• Cálculo de gradientes locales mientras forward propagation.

• Cálculo de gradientes locales mientras forward propagation.

Cálculo de gradientes locales mientras forward propagation.

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

•
$$f(x) = e^x \rightarrow \frac{\partial f}{\partial x} = e^x \mid f(x) = ax \rightarrow \frac{\partial f}{\partial x} = a \mid f(x) = \frac{1}{x} \rightarrow \frac{\partial f}{\partial x} = \frac{-1}{x^2} \mid f(x) = c + x \rightarrow \frac{\partial f}{\partial x} = 1$$

• Se pueden definir nodos para funciones conocidas para ahorrar pasos de computación.

- Bloques básicos
 - Suma (distribuidor de gradiente)

- Bloques básicos
 - Multiplicación (intercambiador de gradiente)

- Bloques básicos
 - Máximo (enrutador de gradiente)

- Bloques básicos
 - Ramas (sumador de gradientes)

Propagación de gradiente con vectorización

• ¿Qué ocurre cuando las datos son vectores? Matrices jacobianas.

Propagación de gradiente con vectorización

• ¿Qué ocurre cuando las datos son vectores? Matrices jacobianas.

Recapitulación

- La base del algoritmo de backpropagation es la regla de la cadena.
- La **propagación del gradiente** es la clave para actualizar los pesos en las **capas ocultas**.
- Si vemos la red como un **grafo computacional**, podemos entender la intuitivamente cómo funciona el algoritmo.
- Es importante entender cómo se propagan los gradientes para evitar el **problema del desvanecimiento del gradiente**.