

$$I(J^P) = \frac{1}{2}(0^-)$$

Quantum numbers not measured. Values shown are quark-model predictions.

See also the B^{\pm}/B^0 ADMIXTURE and $B^{\pm}/B^0/B_s^0/b$ -baryon ADMIXTURE sections.

B[±] MASS

The fit uses m_{B^+} , $(m_{B^0}-m_{B^+})$, and m_{B^0} to determine m_{B^+} , m_{B^0} , and the mass difference.

VALUE (MeV)	MeV) <u>EVTS</u> <u>DOCUMENT ID</u>			TECN	COMMENT
5279.32±0.14 OUR FI	C Error in	ncludes scale factor	r of 1.	1.	
5279.25 ± 0.26 OUR AV	ERAGE				
$5279.38 \!\pm\! 0.11 \!\pm\! 0.33$		$^{ m 1}$ AAIJ	12E	LHCB	pp at 7 TeV
$5279.10 \pm 0.41 \pm 0.36$		² ACOSTA	06	CDF	$p\overline{p}$ at 1.96 TeV
$5279.1 \pm 0.4 \pm 0.4$	526	³ CSORNA	00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
5279.1 ± 1.7 ± 1.4	147	ABE	96 B	CDF	$p\overline{p}$ at 1.8 TeV
• • • We do not use th	e following	g data for averages	s, fits,	limits, e	etc. • • •
$5278.8 \pm 0.54 \pm 2.0$	362	ALAM	94	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
5278.3 ± 0.4 ± 2.0		BORTOLETTO) 92	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
5280.5 ± 1.0 ± 2.0		⁴ ALBRECHT	90 J	ARG	$e^+e^- ightarrow \Upsilon(4S)$
5275.8 $\pm 1.3 \pm 3.0$	32	ALBRECHT	87C	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
5278.2 $\pm 1.8 \pm 3.0$	12	⁵ ALBRECHT	87 D	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$5278.6 \pm 0.8 \pm 2.0$		BEBEK	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
1 5+	+				

¹Uses $B^+ \rightarrow J/\psi K^+$ fully reconstructed decays.

B[±] MEAN LIFE

See $B^\pm/B^0/B_s^0/b$ -baryon ADMIXTURE section for data on B-hadron mean life averaged over species of bottom particles.

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

² Uses exclusively reconstructed final states containing a $J/\psi \to \mu^+\mu^-$ decays.

³ CSORNA 00 uses fully reconstructed 526 $B^+ \to J/\psi^{(')} K^+$ events and invariant masses without beam constraint.

 $^{^4}$ ALBRECHT 90J assumes 10580 for $\varUpsilon(4S)$ mass. Supersedes ALBRECHT 87C and _ALBRECHT 87D.

Found using fully reconstructed decays with $J/\psi(1S)$. ALBRECHT 87D assume $m \gamma(4S) = 10577$ MeV.

$VALUE (10^{-12} \text{ s})$	EVTS	DOCUMENT ID		TECN	COMMENT
1.638 ± 0.004 OUR EV	ALUATIO				
$1.637 \pm 0.004 \pm 0.003$		AAIJ	14E	LHCB	pp at 7 TeV
$1.639 \pm 0.009 \pm 0.009$		¹ AALTONEN	11	CDF	$p\overline{p}$ at 1.96 TeV
$1.663 \pm 0.023 \pm 0.015$		² AALTONEN	11 B	CDF	$p\overline{p}$ at 1.96 TeV
$1.635 \pm 0.011 \pm 0.011$		³ ABE	05 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.624 \pm 0.014 \pm 0.018$		⁴ ABDALLAH	04E	DLPH	$e^+e^- \rightarrow Z$
$1.636 \pm 0.058 \pm 0.025$		⁵ ACOSTA	02 C	CDF	$p\overline{p}$ at 1.8 TeV
$1.673 \pm 0.032 \pm 0.023$		⁶ AUBERT	01F	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.648 \pm 0.049 \pm 0.035$		⁷ BARATE	00 R	ALEP	$e^+e^- \rightarrow Z$
$1.643 \pm 0.037 \pm 0.025$		⁸ ABBIENDI	99J	OPAL	$e^+e^- ightarrow Z$
$1.637 \pm 0.058 { + 0.045 \atop -0.043 }$		⁷ ABE	98Q	CDF	$p\overline{p}$ at 1.8 TeV
$1.66 \pm 0.06 \pm 0.03$		⁸ ACCIARRI	98 S	L3	$e^+e^- \rightarrow Z$
$1.66 \pm 0.06 \pm 0.05$		⁸ ABE	97J	SLD	$e^+e^- \rightarrow Z$
$1.58 \begin{array}{l} +0.21 & +0.04 \\ -0.18 & -0.03 \end{array}$	94	⁵ BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$
$1.61\ \pm0.16\ \pm0.12$		^{7,9} ABREU	95Q	DLPH	$e^+e^- \rightarrow Z$
$1.72 \pm 0.08 \pm 0.06$		¹⁰ ADAM	95	DLPH	$e^+e^- \rightarrow Z$
$1.52 \pm 0.14 \pm 0.09$		⁷ AKERS	95T	OPAL	$e^+e^- \rightarrow Z$
\bullet \bullet We do not use t	he follow	ing data for average	s, fits	, limits,	etc. • • •
$1.695 \pm 0.026 \pm 0.015$		⁶ ABE	02н	BELL	Repl. by ABE 05B
$1.68 \pm 0.07 \pm 0.02$		⁵ ABE	98 B	CDF	Repl. by ACOSTA 02C
$1.56 \ \pm 0.13 \ \pm 0.06$		⁷ ABE	96 C	CDF	Repl. by ABE 98Q
$1.58 \pm 0.09 \pm 0.03$		$^{11}_{\scriptscriptstyle{-}}$ BUSKULIC	96J	ALEP	$e^+e^- \rightarrow Z$
$1.58 \pm 0.09 \pm 0.04$		⁷ BUSKULIC	96J	ALEP	Repl. by BARATE 00R
1.70 ± 0.09		12 ADAM	95	DLPH	$e^+e^- \rightarrow Z$
$1.61 \ \pm 0.16 \ \pm 0.05$	148	⁵ ABE	94 D	CDF	Repl. by ABE 98B
$1.30 \ ^{+0.33}_{-0.29} \ \pm 0.16$	92	⁷ ABREU	93 D	DLPH	Sup. by ABREU 95Q
$1.56 \ \pm 0.19 \ \pm 0.13$	134	¹⁰ ABREU	93 G	DLPH	Sup. by ADAM 95
$1.51 \begin{array}{l} +0.30 \\ -0.28 \end{array} \begin{array}{l} +0.12 \\ -0.14 \end{array}$	59	⁷ ACTON	93 C	OPAL	Sup. by AKERS 95T
$1.47 \begin{array}{c} +0.22 & +0.15 \\ -0.19 & -0.14 \end{array}$	77	⁷ BUSKULIC	93 D	ALEP	Sup. by BUSKULIC 96J

 $^{^1}$ Measured mean life using fully reconstructed decays ($J/\psi\,K^{\left(*\right)}$). 2 Measured using $B^-\to D^0\pi^-$ with $D^0\to K^-\pi^+$ events that were selected using a silicon vertex trigger.

³ Measurement performed using a combined fit of *CP*-violation, mixing and lifetimes.

⁴ Measurement performed using an inclusive reconstruction and B flavor identification

Measured mean life using fully reconstructed decays.
 Events are selected in which one B meson is fully reconstructed while the second B meson is reconstructed inclusively.

⁷ Data analyzed using $D/D^*\ell X$ event vertices.

 $^{^8}$ Data analyzed using charge of secondary vertex. 9 ABREU 95Q assumes B($B^0 \rightarrow D^{**-} \ell^+ \nu_\ell$) = 3.2 \pm 1.7%.

 $^{^{10}}$ Data analyzed using vertex-charge technique to tag B charge.

¹¹Combined result of $D/D^*\ell X$ analysis and fully reconstructed B analysis.

 $^{^{12}}$ Combined ABREU 95Q and ADAM 95 result.

 au_{B^+}/ au_{B^-} $au_{DOCUMENT\ ID}$ au_{ECN} au_{DOMENT} au_{ECN} au_{DOMENT} au_{ECN} $au_{DOCUMENT\ ID}$ au_{ICN} au_{I

B⁺ DECAY MODES

 B^- modes are charge conjugates of the modes below. Modes which do not identify the charge state of the B are listed in the B^\pm/B^0 ADMIXTURE section.

The branching fractions listed below assume 50% $B^0\overline{B}^0$ and 50% B^+B^- production at the $\Upsilon(4S)$. We have attempted to bring older measurements up to date by rescaling their assumed $\Upsilon(4S)$ production ratio to 50:50 and their assumed D, D_S , D^* , and ψ branching ratios to current values whenever this would affect our averages and best limits significantly.

Indentation is used to indicate a subchannel of a previous reaction. All resonant subchannels have been corrected for resonance branching fractions to the final state so the sum of the subchannel branching fractions can exceed that of the final state.

For inclusive branching fractions, e.g., $B \to D^{\pm}$ anything, the values usually are multiplicities, not branching fractions. They can be greater than one.

Scale factor/
Mode Fraction (Γ_i/Γ) Confidence level

Semileptonic and leptonic modes

I ₁	$\ell^+ u_\ell$ anything	[a]	(10.99	\pm	0.28) %
Γ_2	$e^+ \nu_e X_c$		(10.8	\pm	0.4) %
Γ3	$D\ell^+ u_\ell$ anything		(9.8	\pm	0.7) %
Γ_4	$\overline{D}{}^0 \ell^+ u_\ell$	[a]	(2.27	\pm	0.11) %
Γ_5	$\overline{D}{}^0 au^+ u_ au$		(7.7	\pm	2.5	$) \times 10^{-3}$
Γ_6	$\overline{D}^*(2007)^0 \ell^+ u_\ell$	[a]	(5.69	\pm	0.19) %
Γ_7	$\overline{D}^*(2007)^0 au^+ u_ au$		(1.88	\pm	0.20) %
Γ ₈	$D^-\pi^+\ell^+ u_\ell$		(4.2	\pm	0.5	$) \times 10^{-3}$
Γ ₉	$\overline{D}_0^*(2420)^0\ell^+ u_\ell$, \overline{D}_0^{*0} $ ightarrow$		(2.5	\pm	0.5	$) \times 10^{-3}$
Γ ₁₀	$\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0} ightarrow D^{-}\pi^{+}$		(1.53	±	0.16	$) \times 10^{-3}$
Γ_{11}	$D^{(*)}$ n $\pi \ell^+ \nu_\ell$ (n ≥ 1)		(1.87	\pm	0.26) %
Γ_{12}^{-1}	$D^{*-}\pi^+\ell^+ u_\ell$		(6.1	\pm	0.6	$) \times 10^{-3}$
Γ_{13}	$\overline{D}_1(2420)^0\ell^+ u_\ell$, \overline{D}_1^0 $ ightarrow$		(3.03	\pm	0.20	$) \times 10^{-3}$
Γ ₁₄	$\overline{D}_{1}^{*-}\pi^{+}$ $\overline{D}_{1}^{\prime}(2430)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{1}^{\prime0} \rightarrow D^{*-}\pi^{+}$		(2.7	±	0.6) × 10 ⁻³

Inclusive modes

	inclusive mode	:5				
Γ ₃₇	$D^0 X$	(8.6	\pm	0.7) %
Γ ₃₈	$\overline{D}{}^0 X$	(7	'9	\pm	4) %
Γ ₃₉	D^+X	(2.5	\pm	0.5) %
Γ_{40}	D^-X	(9.9	\pm	1.2) %
Γ_{41}	$D_s^+ X$	(7.9	+	1.4 1.3) %
Γ_{42}	$D_s^- X$	(1.10	+	0.40 0.32) %
Γ ₄₃	$\Lambda_c^+ X$	(2.1	+	0.9 0.6) %
Γ ₄₄	$\overline{\Lambda}_c^- X$	(2.8	+	1.1 0.9) %
Γ_{45}	$\overline{c}X$	(9	97	\pm	4) %
Γ_{46}	cX	(2	23.4	+	2.2 1.8) %
Γ ₄₇	c / c X	(12	20	\pm	6) %

D, D^* , or D_s modes

```
[\pi^{+}\pi^{-}\pi^{0}]_{D}\pi^{+}
\Gamma_{90}
        \overline{D}{}^{0}K^{*}(892)^{+}
                                                                               (5.3 \pm 0.4) \times 10^{-4}
                                                                       [b] (2.7 \pm 0.8) \times 10^{-4}
Γ<sub>91</sub>
        D_{CP(-1)}K^*(892)^+
            D_{CP(+1)}K^*(892)^+
                                                                       [b] (5.8 \pm 1.1) \times 10^{-4}
\Gamma_{92}
        \overline{D}{}^0 K ^+ \pi^+ \pi^-
                                                                               (5.4 \pm 2.2) \times 10^{-4}
\Gamma_{94} \qquad [K^+\pi^-]_D K^+\pi^-\pi^+
        [K^-\pi^+]_D K^+\pi^-\pi^+
D_{CP(+1)} K^+\pi^-\pi^+
        \overline{D}{}^0K^+\overset{\smile}{K}{}^0
                                                                               (5.5 \pm 1.6) \times 10^{-4}
\Gamma_{98} \quad \overline{D}{}^{0} K^{+} \overline{K}^{*} (892)^{0}
                                                                               (7.5 \pm 1.7) \times 10^{-4}
\Gamma_{99} \quad \overline{D}{}^0 \pi^+ \pi^+ \pi^-
                                                                                   5.7 \pm 2.2 \times 10^{-3}
                                                                                                                           S = 3.6
\Gamma_{100} \qquad \underline{[K^-\pi^+]_D} \pi^+\pi^-\pi^+
              \overline{D}{}^0\pi^+\pi^+\pi^- nonresonant
                                                                                                        ) \times 10^{-3}
\Gamma_{101}
                                                                                            \pm 4
          \overline{D}{}^0\pi^+\rho^0
\Gamma_{102}
                                                                               (4.2 \pm 3.0) \times 10^{-3}
           \overline{D}{}^{0} a_{1}(1260)^{+}
                                                                                                        ) \times 10^{-3}
\Gamma_{103}
                                                                               (4 \pm 4)
\Gamma_{104}^{\phantom{00}\phantom{00}\phantom{00}\phantom{00}\overline{D}{}^{0}\,\omega\,\pi^{+}
                                                                            (4.1 \pm 0.9) \times 10^{-3}
              D^*(2010)^-\pi^+\pi^+
\Gamma_{105}
                                                                               (1.35 \pm 0.22) \times 10^{-3}
                  \overline{D}_1(2420)^0\pi^+, \overline{D}_1^0\to
\Gamma_{106}
                                                                               (5.3 \pm 2.3) \times 10^{-4}
                         D^*(2010)^-\pi^+
\Gamma_{107} \ D^- \pi^+ \pi^+
                                                                               (1.07 \pm 0.05) \times 10^{-3}
\Gamma_{108} \ D^- K^+ \pi^+
                                                                               (7.7 \pm 0.5) \times 10^{-5}
          D_0^*(2400)^0 K^+, D_0^{*0} \rightarrow
                                                                               (6.1 \pm 2.4) \times 10^{-6}
           D^-\pi^+ D_2^*(2460)^0 K^+, D_2^{*0} \rightarrow
                                                                               (2.32 \pm 0.23) \times 10^{-5}
\Gamma_{110}
           D_1^-\pi^+ \ D_1^*(2760)^0 \, K^+, \ D_1^{*0} 
ightarrow
                                                                               (3.6 \pm 1.2) \times 10^{-6}
\Gamma_{112} D^{+} \kappa^{D^{-} \pi^{+}}
                                                                                                        \times 10^{-6} \text{ CL} = 90\%
                                                                                   2.9
\Gamma_{113} \ D^+ \, K^+ \, \pi^-
                                                                            (5.6 \pm 1.1) \times 10^{-6}
          D_2^*(2460)^0\,K^+ , D_2^{*0} 
ightarrow
                                                                                              \times 10^{-7} \text{ CL} = 90\%
\Gamma_{115} D^{+} K^{0+} \pi^{-}
                                                                                                        \times 10^{-7} \text{ CL} = 90\%
                                                                                   4.9
\Gamma_{116} D^+\overline{K}^{*0}
                                                                                                        \times 10^{-6} \text{ CL} = 90\%
                                                                             < 1.4
\Gamma_{117} \ \overline{D}^*(2007)^0 \pi^+
                                                                               (5.18 \pm 0.26) \times 10^{-3}
              \stackrel{\sim}{D}_{CP(+1)}^{*0}\pi^+
\Gamma_{118}
                                                                      [d] (2.9 \pm 0.7) \times 10^{-3}
               D_{CP(-1)}^{*0}\pi^{+}
                                                                                   2.6 \pm 1.0 \times 10^{-3}
\Gamma_{119}
\Gamma_{120} \ \overline{D}^*(2007)^0 \omega \pi^+
                                                                               (\phantom{-}4.5\phantom{0}\pm\phantom{1}1.2\phantom{0})\times10^{-3}
\Gamma_{121} \ \overline{D}^*(2007)^0 \rho^+
                                                                               (9.8 \pm 1.7) \times 10^{-3}
\Gamma_{122} \ \overline{D}^*(2007)^0 K^+
                                                                               (4.20 \pm 0.34) \times 10^{-4}
               \stackrel{
ightharpoondown}{\overline{D}}^{*0}_{CP(+1)}K^+
                                                                       [d] (2.8 \pm 0.4) \times 10^{-4}
\Gamma_{123}
              \overline{D}_{CP(-1)}^{*0}K^+
                                                                       [d] (2.31 \pm 0.33) \times 10^{-4}
\Gamma_{124}
\Gamma_{125} \ \overline{D}^* (2007)^0 K^* (892)^+
                                                                               (8.1 \pm 1.4) \times 10^{-4}
\Gamma_{126} \overline{D}^*(2007)^0 K^+ \overline{K}^0
                                                                                                           \times 10^{-3} \text{ CL} = 90\%
                                                                             <
HTTP://PDG.LBL.GOV
                                                                           Created: 5/30/2017 17:22
```

```
\Gamma_{127} \ \overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0
                                                                                      (1.5 \pm 0.4) \times 10^{-3}
\Gamma_{128} \ \overline{D}^*(2007)^0 \pi^+ \pi^+ \pi^-
                                                                                      ( 1.03 \pm 0.12) %
\Gamma_{129} \overline{D}^*(2007)^0 a_1(1260)^+

\Gamma_{130} \overline{D}^*(2007)^0 \pi^- \pi^+ \pi^+ \pi^0
                                                                                      (1.9 \pm 0.5)\%
                                                                                      (1.8 \pm 0.4)\%
\Gamma_{131} \ \overline{D}^{*0} 3\pi^{+} 2\pi^{-}
                                                                                      (5.7 \pm 1.2) \times 10^{-3}
\Gamma_{132} D^*(2010)^+ \pi^0
                                                                                                                 \times 10^{-6}
                                                                                    < 3.6
\Gamma_{133} D^*(2010)^+ K^0
                                                                                                                  \times 10^{-6} \text{ CL} = 90\%
                                                                                    < 9.0
\Gamma_{134} D^*(2010)^- \pi^+ \pi^+ \pi^0
                                                                                 (1.5 \pm 0.7)\%
\Gamma_{135} D^*(2010)^- \pi^+ \pi^+ \pi^+ \pi^-
                                                                                  (2.6 \pm 0.4) \times 10^{-3}
\Gamma_{136} \ \overline{D}^{**0} \pi^+
                                                                              [e] ( 5.9 \pm 1.3 ) \times 10<sup>-3</sup>
\Gamma_{137} \ \overline{D}_1^*(2420)^0 \pi^+
                                                                                      (1.5 \pm 0.6) \times 10^{-3}
\Gamma_{138} \ \overline{D}_1(2420)^0 \pi^+ \times \ \mathsf{B}(\overline{D}_1^0 \to
                                                                                      (2.5 + 1.6 \atop -1.4) \times 10^{-4} S=4.0
                \overline{D}{}^0\pi^+\pi^-)
                \overline{D}_1(2420)^0 \pi^+ \times \mathsf{B}(\overline{D}_1^0 \to
                                                                                   (2.3 \pm 1.0) \times 10^{-4}
                      \overline{D}{}^0\pi^+\pi^- (nonresonant))
\Gamma_{140} \ \overline{D}_{2}^{*}(2462)^{0}\pi^{+}
                                                                                      (3.56 \pm 0.24) \times 10^{-4}
                \times \ \mathsf{B}(\overline{D}_{2}^{*}(2462)^{0} \to \ D^{-}\pi^{+})
\Gamma_{141} \ \overline{D}_2^*(2462)^{\overline{0}} \pi^+ \times B(\overline{D}_2^{*0} \rightarrow
                                                                                    (2.3 \pm 1.1) \times 10^{-4}
               \frac{\overline{D}^0\pi^-\pi^+}{\overline{D}_2^*(2462)^0\pi^+} \times \mathsf{B}(\overline{D}_2^{*0} \to
                                                                                    < 1.7 \times 10<sup>-4</sup> CL=90%
\overline{D}{}^0\pi^-\pi^+ \text{ (nonresonant))}
\Gamma_{143} \ \overline{D}_2^*(2462)^0\pi^+ \times \mathsf{B}(\overline{D}_2^{*0} \to
                                                                                   (2.2 \pm 1.1) \times 10^{-4}
                  D^*(2010)^-\pi^+)
\Gamma_{144} \ \overline{D}_0^* (2400)^0 \pi^+
                                                                                      (6.4 \pm 1.4) \times 10^{-4}
                	imes B(\overline{D}_0^*(2400)^0 
ightarrow D^- \pi^+)
\Gamma_{145} \ \overline{D}_1(2421)^{0} \pi^{+}
                                                                                      (6.8 \pm 1.5) \times 10^{-4}
                \times B(\overline{D}_1(2421)^0 \rightarrow D^{*-}\pi^+)
\Gamma_{146} \ \overline{D}_{2}^{*}(2462)^{\bar{0}}\pi^{+}
                                                                                      (1.8 \pm 0.5) \times 10^{-4}
                \times \ \mathsf{B}(\overline{D}_{2}^{*}(2462)^{0} \to \ D^{*-}\pi^{+})
\Gamma_{147} \ \overline{D}'_{1}(2427)^{\overline{0}}\pi^{+}
                                                                                      (5.0 \pm 1.2) \times 10^{-4}
                \times \ \mathsf{B}(\overline{D}_1'(2427)^0 \to \ D^{*-}\pi^+)
\Gamma_{148} \ \overline{D}_1(2420)^{\bar{0}} \pi^+ \times B(\overline{D}_1^0 \rightarrow
                                                                                                     \times 10^{-6} \text{ CL} = 90\%
                                                                                    < 6
            \overline{D}^{*0}\pi^+\pi^-)
\Gamma_{149} \ \overline{D}_{1}^{*}(2420)^{0} \rho^{+}
                                                                                    < 1.4 \times 10<sup>-3</sup> CL=90%
\Gamma_{150} \ \overline{D}_{2}^{*}(2460)^{0}\pi^{+}
                                                                                                                  \times 10^{-3} \text{ CL} = 90\%
                                                                                    < 1.3
\Gamma_{151} \ \overline{D}_2^*(2460)^0 \pi^+ \times B(\overline{D}_2^{*0} \rightarrow
                                                                                           \times 10^{-5} \text{ CL} = 90\%
                 \overline{D}^{*0}\pi^{+}\pi^{-}
\Gamma_{152} \ \overline{D}_{1}^{*}(2680)^{0} \pi^{+}, \ \overline{D}_{1}^{*}(2680)^{0} \rightarrow
                                                                      (8.4 \pm 2.1) \times 10^{-5}
\Gamma_{153} \ \overline{D}_3^* (2760)^0 \pi^+,
                                                                                     (1.00 \pm 0.22) \times 10^{-5}
                  \overline{D}_{3}^{*}(2760)^{0}\pi^{+} \rightarrow D^{-}\pi^{+}
```

Page 8 Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

Γ ₁₇₄	$\overline{D}^{*0} D_{sJ}(2573), \ D_{sJ}^+ \to \ D^0 K^+$	<	2			$\times 10^{-4}$	CL=90%
	$\overline{D}^*(2007)^0 D_{sJ}(2573), D_{sJ}^+ \to$	<	5			\times 10 ⁻⁴	CL=90%
Γ ₁₇₆	$\overline{D}{}^0D_s^0K^+$	(7.6	\pm	1.6) × 10 ⁻³	
Γ ₁₇₇	$\overline{D}^*(2007)^0 D_s^+$	($) \times 10^{-3}$	
Γ ₁₇₈	$\overline{D}^*(2007)^0 D_s^{*+}$	(0.24		
Γ ₁₇₀	$D_s^{(*)} + \overline{D}^{**0}$	(2.7	±	1.2) %	
Γ ₁₈₀	$\overline{D}^{s}(2007)^{0} D^{s}(2010)^{+}$	($) \times 10^{-4}$	
Γ ₁₈₁	$\overline{D}^0 D^* (2010)^+ + \overline{D}^* (2007)^0 D^+$	<	1.30			•	CL=90%
Γ ₁₈₂	$\overline{D}{}^{0}D^{*}(2010)^{+}$	(3.9	\pm	0.5	$) \times 10^{-4}$	
Γ102	$\overline{D}^0 D^+$	($) \times 10^{-4}$	
Γ_{184}	$\overline{D}^0D^+K^0$	($) \times 10^{-3}$	
Γ_{185}	$D^+D^*(2007)^0$	($) \times 10^{-4}$	
Γ ₁₈₆	$\overline{D}^*(2007)^0 D^+ K^0$	($) \times 10^{-3}$	
Γ ₁₈₇	$\overline{D}^{0}D^{*}(2010)^{+}K^{0}$	(3.8	\pm	0.4	$) \times 10^{-3}$	
	$\overline{D}^*(2007)^0 D^*(2010)^+ K^0$	($) \times 10^{-3}$	
Γ ₁₈₉	$\overline{D}^{0}D^{0}K^{+}$	($) \times 10^{-3}$	S=2.6
190	$\overline{D}^*(2007)^0 D^0 K^+$	($) \times 10^{-3}$	
Γ ₁₉₁	$\overline{D}^{0}D^{*}(2007)^{0}K^{+}$	($) \times 10^{-3}$	
192	$\overline{D}^*(2007)^0 D^*(2007)^0 K^+$	(0.13	•	
I ₁₉₃	D - D + K + K + K + K + K + K + K + K + K +	($) \times 10^{-4}$	
I 194	$D^-D^*(2010)^+K^+$	($) \times 10^{-4}$	
I 195	$D^*(2010)^- D^+ K^+$	($) \times 10^{-4}$	
I 196	$D^*(2010)^- D^*(2010)^+ K^+$	($) \times 10^{-3}$	
l 197	$(\overline{D} + \overline{D}^*)(D + \overline{D}^*)K$	(0.30	•	
I 198	$D_{s}^{+}\pi^{0}$	(0.5	$) \times 10^{-5}$	
I ₁₉₉	$D_{s}^{*+}\pi^{0}$	<	2.6				CL=90%
1 200	$D_s^+ \eta$	<	4			× 10 ⁻⁴	
I ₂₀₁	D_{s}^{r} η	<				× 10 ⁻⁴	
Γ ₂₀₂	$D_{s}^{+}\rho^{0}$		3.0				CL=90%
Γ ₂₀₃	$D_{s}^{s+}\eta$ $D_{s}^{+}\rho^{0}$ $D_{s}^{s+}\rho^{0}$		4				CL=90%
1 204	$D_{\mathbf{s}}^{+}\omega$	<	4			$\times 10^{-4}$	CL=90%
Γ_{205}	$D_s^{*+}\omega$	<	6			$\times 10^{-4}$	CL=90%
Γ ₂₀₆	$D_s^+ a_1 (1260)^0$	<	1.8			$\times 10^{-3}$	CL=90%
Γ ₂₀₇	$D_s^{*+} a_1(1260)^0$	<	1.3			$\times 10^{-3}$	CL=90%
Γ ₂₀₈	$D_s^+ \phi$	(1.7	+	1.2 0.7	$) \times 10^{-6}$	
Γ ₂₀₉	$D_s^{*+} \phi$ $D_s^{+} \overline{K}^0$ $D_s^{*+} \overline{K}^0$	<	1.2			$\times 10^{-5}$	CL=90%
Γ210	$D^{+}\overline{K}^{0}$	<	8			\times 10 ⁻⁴	CL=90%
Γ ₂₁₁	$D^{s+}\overline{K}^{0}$		9				CL=90%
· 211	$D_s^+ \overline{K}^* (892)^0$	<	4.4				CL=90%
' 212	S ((032)	\	7.4			∧ 10	CL-9U/0

```
\Gamma_{249} \ \ X(4014)^0 K^+, \ \ X^0 \rightarrow \ \eta_c \eta
                                                                                                   \times 10^{-5} \text{ CL} = 90\%
                                                                             3.9
\Gamma_{250} \quad X(4014)^0 K^+, \quad X^0 \rightarrow \eta_c \pi^0
\Gamma_{251} \quad X(3900)^0 K^+, \quad X^0 \rightarrow \eta_c \pi^+ \pi^-
\Gamma_{252} \quad X(4020)^0 K^+, \quad X^0 \rightarrow \eta_c \pi^+ \pi^-
                                                                                                   \times 10^{-5} \text{ CL} = 90\%
                                                                       < 1.2
                                                                       < 4.7
                                                                                                   \times 10^{-5} \text{ CL} = 90\%
                                                                                                   \times 10^{-5} \text{ CL} = 90\%
                                                                       < 1.6
\Gamma_{253} X(3872) K^*(892)^+, X \rightarrow
                                                                       < 4.8
                                                                                                   \times 10^{-6} \text{ CL} = 90\%
               J/\psi \gamma
\Gamma_{254} \ \ X(3872) \, K^*(892)^+, \ \ X \rightarrow
                                                                                        \times 10^{-5} \text{ CL} = 90\%
                                                                             2.8
               \psi(2S)\gamma
\Gamma_{255} \ \ X(3872)^+ K^0, \ \ X^+ \rightarrow
                                                                                      \times 10^{-6} \text{ CL} = 90\%
                                                                 [f] <
                                                                             6.1
               J/\psi(1S)\pi^{+}\pi^{0}
\Gamma_{256} X(3872)K^{0}\pi^{+}, X \rightarrow
                                                                (1.06 \pm 0.31) \times 10^{-5}
               J/\psi(1S)\pi^{+}\pi^{-}
\Gamma_{257} \quad X(4430)^{+} \stackrel{?}{K^{0}}, \quad X^{+} \rightarrow J/\psi \pi^{+}
\Gamma_{258} \quad X(4430)^{+} \stackrel{?}{K^{0}}, \quad X^{+} \rightarrow
                                                                                        \times 10^{-5} \text{ CL}=95\%
                                                                       < 1.5
                                                                       < 4.7 \times 10<sup>-5</sup> CL=95%
               \psi(2S)\pi^{+}
\Gamma_{259} \ \ X(42\dot{6}0)^{\dot{0}} K^+, \ \ X^0 \rightarrow
                                                                             2.9
                                                                                     \times 10^{-5} \text{ CL} = 95\%
               J/\psi \pi^+\pi^-
\Gamma_{260} \ \ X(3915) K^+, \ \ X \to \ \ J/\psi \gamma
                                                                       < 1.4 \times 10^{-5} CL=90%
\Gamma_{261} \ \ X(3930)^0 K^+, \ \ X^0 \rightarrow \ \ J/\psi \gamma
                                                                       < 2.5 \times 10^{-6} \text{ CL} = 90\%
\Gamma_{262} J/\psi(1S)K^{+}
                                                                      (1.026\pm\ 0.031)\times10^{-3}
\Gamma_{263} J/\psi(1S) K^0 \pi^+
                                                                      (1.13 \pm 0.11) \times 10^{-3}
\Gamma_{264} \ J/\psi(1S) K^+ \pi^+ \pi^-
                                                                     ( 8.1 \pm 1.3 ) \times 10^{-4}
\Gamma_{265} J/\psi(1S) K^+ K^- K^+
                                                                     (3.37 \pm 0.29) \times 10^{-5}
\Gamma_{266} \quad X(3915)K^+, X \rightarrow p\overline{p}
                                                                    < 7.1
                                                                                                   \times 10^{-8} \text{ CL} = 95\%
                                                                      ( 1.43 \pm 0.08 ) \times\,10^{-3}
\Gamma_{267} J/\psi(1S) K^*(892)^+
\Gamma_{268} J/\psi(1S)K(1270)^+
                                                                      (1.8 \pm 0.5) \times 10^{-3}
\Gamma_{269} J/\psi(1S)K(1400)^+
                                                                       < 5
                                                                                                   \times 10^{-4} \text{ CL} = 90\%
                                                                      (1.24 \pm 0.14) \times 10^{-4}
\Gamma_{270} J/\psi(1S) \eta K^{+}
\Gamma_{271} = X^{c-odd}(3872)K^+,
                                                                       < 3.8
                                                                                     \times 10^{-6} \text{ CL} = 90\%
                  X^{c-odd} \rightarrow J/\psi \eta
\Gamma_{272} \qquad \psi(4160)K^+, \ \psi \rightarrow J/\psi \eta
                                                                       < 7.4 \times 10^{-6} \text{ CL} = 90\%
\Gamma_{273} J/\psi(1S) \eta' K^{+}
                                                                                                \times 10^{-5} \text{ CL} = 90\%
                                                                       < 8.8
                                                                      (5.0 \pm 0.4) \times 10^{-5}
\Gamma_{274} J/\psi(1S) \phi K^{+}
                                                                     ( 6 \quad {}^{+10}_{-6} \quad ) \times 10^{-6}
\Gamma_{275} J/\psi(1S) K_1(1650), K_1 \rightarrow
               \phi K^+
\Gamma_{276} \ J/\psi(1S) K^*(1680)^+, \ K^* \rightarrow (3.4 \ \frac{+}{2} \frac{1.9}{2}) \times 10^{-6}
\Gamma_{277} \ J/\psi(1S) \, K_2^*(1980), \ K_2^* \rightarrow \qquad \qquad (1.5 \ ^+_{-}0.5 \ ) \times 10^{-6}
                                                                         (1.3 + 1.3 \times 10^{-6})
\Gamma_{278} J/\psi(1S)K(1830)^+,
               K(1830)^{+} \rightarrow \phi K^{+}
             X(4140)K^+, X \rightarrow
\Gamma_{279}
                                                                         ( 10
                                                                                     \pm 4 ) × 10<sup>-6</sup>
                   J/\psi(1S)\phi
```

```
X(4274)K^+, X \rightarrow
                                                                (3.6 + 2.2 \times 10^{-6}) \times 10^{-6}
\Gamma_{280}
                 J/\psi(1S)\phi
\Gamma_{281} \ \ X(4500) \ K^+, \ \ X \rightarrow \ \ J/\psi(1S) \phi ( 3.3 ^{+}_{-} \ ^{2.1}_{1.7} ) \times 10^{-6}
\Gamma_{282} X(4700)K^+, X \rightarrow J/\psi(1S)\phi (6 ^+ ^5 ^- ) \times 10 ^{-6}
                                                              ( 3.20 \ ^{+} \ 0.60 \ ) \times 10^{-4}
\Gamma_{283} J/\psi(1S) \omega K^{+}
\Gamma_{284} X(3872)K^{+}, X \rightarrow J/\psi\omega (6.0 ± 2.2 )×10<sup>-6</sup>
\Gamma_{285} = X(3915)K^+, X \rightarrow J/\psi\omega (3.0 ^+ 0.9 ) \times 10<sup>-5</sup>
S=2.2
\Gamma_{288} \qquad \psi(2S)\pi^{+}\pi^{+}\pi^{-}
                                                                (1.9 \pm 0.4) \times 10^{-5}
                                                                (5.0 \pm 0.8) \times 10^{-5}
\Gamma_{289} J/\psi(1S) \rho^{+}
\Gamma_{290} \ J/\psi(1S)\pi^+\pi^0 nonresonant < 7.3
                                                                                        \times 10^{-6} \text{ CL} = 90\%
\Gamma_{291} J/\psi(1S) a_1(1260)^+
                                                                 < 1.2
                                                                                        \times 10^{-3} \text{ CL} = 90\%
                                                                                   \times 10^{-7} \text{ CL} = 90\%
\Gamma_{292} J/\psi(1S) p \overline{p} \pi^+
                                                                 < 5.0
\Gamma_{293} J/\psi(1S) p \overline{\Lambda}
                                                                (1.18 \pm 0.31) \times 10^{-5}
\Gamma_{294} J/\psi(1S)\overline{\Sigma}^0 p
                                                                 < 1.1 \times 10<sup>-5</sup> CL=90%
\Gamma_{295} J/\psi(1S) D^{+}
                                                                                        \times 10^{-4} \text{ CL} = 90\%
                                                                 < 1.2
\Gamma_{296} J/\psi(1S)\overline{D}{}^0\pi^+
                                                                 < 2.5 \times 10^{-5} \text{ CL}=90\%
\Gamma_{297} \ \psi(2S)\pi^{+}
                                                                (2.44 \pm 0.30) \times 10^{-5}
\Gamma_{298} \ \psi(2S)K^{+}
                                                                  (6.26 \pm 0.24) \times 10^{-4}
\Gamma_{299} \ \psi(2S) K^*(892)^+
                                                                   (6.7 \pm 1.4) \times 10^{-4}
                                                                                                         S = 1.3
\Gamma_{300} \ \psi(2S) K^0 \pi^+
\Gamma_{301} \ \psi(2S) K^+ \pi^+ \pi^-
                                                                   (4.3 \pm 0.5) \times 10^{-4}
\Gamma_{302} \ \psi(2S) \phi(1020) K^+
                                                                   (4.0 \pm 0.7) \times 10^{-6}
\Gamma_{303} \ \psi(3770) K^{+}
                                                                   (4.9 \pm 1.3) \times 10^{-4}
\Gamma_{304} \psi(3770)K+,\psi \rightarrow D^0\overline{D}^0
                                                                  (1.5 \pm 0.5) \times 10^{-4}
\Gamma_{305} \qquad \psi(3770)K + \psi \rightarrow D^{+}D^{-}
                                                                (9.4 \pm 3.5) \times 10^{-5}
\Gamma_{306} \quad \psi(4040) K^{+}
                                                                 < 1.3
                                                                                           \times 10^{-4} \text{ CL} = 90\%
\Gamma_{307} \quad \psi(4160) K^{+}
                                                                (5.1 \pm 2.7) \times 10^{-4}
\Gamma_{308} \psi(4160)K^+, \psi \rightarrow \overline{D}{}^0D^0
                                                                ( 8
                                                                              \pm 5 ) × 10<sup>-5</sup>
\Gamma_{309} \chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-
                                                                                         \times 10^{-7} \text{ CL} = 90\%
                                                                 < 1
                                                                   ( 1.50 \ ^{+} \ 0.15 \ ) \times 10^{-4}
\Gamma_{310} \chi_{c0} K^{+}
\Gamma_{311} \quad \chi_{c0} \, K^*(892)^+
                                                                                         \times 10^{-4} \text{ CL} = 90\%
                                                                       2.1
\Gamma_{312} \ \chi_{c1}(1P)\pi^{+}
                                                                (2.2 \pm 0.5) \times 10^{-5}
\Gamma_{313} \quad \chi_{c1}(1P) K^{+}
                                                                (4.79 \pm 0.23) \times 10^{-4}
\Gamma_{314} \quad \chi_{c1}(1P) K^*(892)^+
                                                                (3.0 \pm 0.6) \times 10^{-4}
                                                                                                         S = 1.1
\Gamma_{315} \quad \chi_{c1}(1P) K^0 \pi^+
                                                                (5.8 \pm 0.4) \times 10^{-4}
\Gamma_{316} \quad \chi_{c1}(1P) K^+ \pi^0
                                                                (3.29 \pm 0.35) \times 10^{-4}
\Gamma_{317} \quad \chi_{c1}(1P) K^+ \pi^+ \pi^-
                                                                  (3.74 \pm 0.30) \times 10^{-4}
           \chi_{c1}(2P)K^+, \chi_{c1}(2P) \rightarrow \pi^+\pi^-\chi_{c1}(1P)
                                                                              \times 10^{-5} \text{ CL} = 90\%
Γ<sub>318</sub>
                                                                 <
                                                                       1.1
```

```
\Gamma_{319} \chi_{c2} K^+
                                                                        (1.1 \pm 0.4) \times 10^{-5}
\Gamma_{320} \quad \chi_{c2} \, K^*(892)^+
                                                                                                 \times\,10^{-4} CL=90%
                                                                            1.2
\Gamma_{321} \quad \chi_{c2} K^0 \pi^+
                                                                       (1.16 \pm 0.25) \times 10^{-4}
\Gamma_{322} \quad \chi_{c2} \, K^+ \, \pi^0
                                                                                                 \times\,10^{-5}~\text{CL}{=}90\%
                                                                            6.2
\Gamma_{323} \quad \chi_{c2} \, K^+ \, \pi^+ \, \pi^-
                                                                     (1.34 \pm 0.19) \times 10^{-4}
\Gamma_{324} \quad \chi_{c2}(2P)\pi^{+}, \quad \chi_{c2} \rightarrow \pi^{+}\pi^{-}
                                                                                              \times 10^{-7} \text{ CL} = 90\%
                                                                      <
                                                                            1
                                                                                             \times 10^{-5} \text{ CL} = 90\%
\Gamma_{325} h_c(1P)K^+
                                                                            3.8
                                                                      <
\Gamma_{326} h_c(1P)K^+, h_c \rightarrow p\overline{p}
                                                                                                 \times 10^{-8} \text{ CL} = 95\%
                                                                            6.4
                                                K or K^* modes
\Gamma_{327} K^0\pi^+
                                                                        (2.37 \pm 0.08) \times 10^{-5}
\Gamma_{328} K^+ \pi^0
                                                                        ( 1.29~\pm~0.05~)\times10^{-5}
\Gamma_{329} \eta' K^+
                                                                           7.06 \pm 0.25 \times 10^{-5}
                                                                            \Gamma_{330} \eta' K^*(892)^+
\Gamma_{331} \eta' K_0^* (1430)^+
                                                                           5.2 \pm 2.1 \times 10^{-6}
\Gamma_{332} \quad \eta' \, K_2^* (1430)^+
                                                                            2.8 \pm 0.5 \times 10^{-5}
\Gamma_{333} \eta K^{\mp}
                                                                       (2.4 \pm 0.4) \times 10^{-6}
                                                                                                                S = 1.7
\Gamma_{334} \eta K^*(892)^+
                                                                       (1.93 \pm 0.16) \times 10^{-5}
\Gamma_{335} \eta K_0^* (1430)^+
                                                                       (1.8 \pm 0.4) \times 10^{-5}
\Gamma_{336} \eta K_2^* (1430)^+
                                                                       (9.1 \pm 3.0) \times 10^{-6}
                                                                       (2.9 + 0.8 \ -0.7) \times 10^{-6}
\Gamma_{337} \quad \eta(1295) \, K^+ \times \, \mathsf{B}(\eta(1295) \to
              \eta \pi \pi)
\Gamma_{338} \quad \eta(1405) \, K^+ \times \, \mathsf{B}(\eta(1405) \to
                                                                                   \times 10^{-6} \text{ CL} = 90\%
                                                                     < 1.3
              \eta \pi \pi)
\Gamma_{339} \quad \eta(1405) \, K^+ \times \, \mathsf{B}(\eta(1405) \to
                                                                      < 1.2 \times 10<sup>-6</sup> CL=90%
               K^*K
                                                                    (1.38 \begin{array}{c} + & 0.21 \\ - & 0.18 \end{array}) \times 10^{-5}
\Gamma_{340} \quad \eta(1475) \, K^+ \times \, \mathsf{B}(\eta(1475) \to
               K^*K
\Gamma_{341} f_1(1285)K^+
                                                                                              \times 10^{-6} \text{ CL} = 90\%
                                                                      < 2.0
                                                                                         \times\,10^{-6} CL=90%
\Gamma_{342} f_1(1420)K^+ \times B(f_1(1420) \rightarrow
                                                                            2.9
              \eta \pi \pi)
\Gamma_{343} f_1(1420)K^+ \times B(f_1(1420) \rightarrow
                                                                            4.1
                                                                                   \times 10^{-6} \text{ CL} = 90\%
               K* K)
\Gamma_{344} \quad \phi(1680) \, K^+ \times \, \mathsf{B}(\phi(1680) \to 0)
                                                                                      \times 10^{-6} \text{ CL} = 90\%
                                                                            3.4
               K^*K
\Gamma_{345} f_0(1500)K^+
                                                                       (3.7 \pm 2.2) \times 10^{-6}
\Gamma_{346} \omega K^+
                                                                       (6.5 \pm 0.4) \times 10^{-6}
\Gamma_{347} \omega K^*(892)^+
                                                                                                 \times 10^{-6} \text{ CL} = 90\%
                                                                            7.4
\Gamma_{348} \ \omega (K\pi)_0^{*+}
                                                                     (2.8 \pm 0.4) \times 10^{-5}
\Gamma_{349} \omega K_0^* (1430)^+
                                                                            2.4 \pm 0.5 \times 10^{-5}
\Gamma_{350} \omega K_2^* (1430)^+
                                                                            2.1 \pm 0.4 \times 10^{-5}
\Gamma_{351} \ a_0(980)^+ K^0 \times B(a_0(980)^+ \rightarrow
                                                                                   \times 10^{-6} \text{ CL} = 90\%
                                                                            3.9
                                                                      <
              \eta \pi^+)
```

Γ ₃₅₂	$a_0(980)^0K^+ imes {\sf B}(a_0(980)^0 o \eta\pi^0)$	<	2.5			>	10-6	CL=90%
Γ ₃₅₃	$\kappa^*(892)^0\pi^+$	(1 01	+	0.09) ×	10-5	
L ³²⁴	$K^*(892)^+\pi^0$						10-6	
Γ ₃₅₅		(10 ⁻⁵	
Γ ₃₅₆	$K^+\pi^-\pi^+$ nonresonant	(× 10 ⁻⁵	
Γ ₃₅₇	ω (782) K^+	(6				10-6	
Γ ₃₅₈	${\mathcal K}^+\mathit{f}_0(980)\! imes B(\mathit{f}_0(980) ightarrow \ \pi^+\pi^-)$	(9.4	+	1.0 1.2) >	< 10 ⁻⁶	
Γ ₃₅₉	$f_2(1270)^0 K^+$	(1.07	\pm	0.27		10^{-6}	
Γ ₃₆₀	$f_0(1370)^0 K^+ \times$	<	1.07			>	10 ⁻⁵	CL=90%
Γ ₃₆₁	$B(f_0(1370)^0 \to \pi^+\pi^-) \\ \rho^0(1450)K^+ \times B(\rho^0(1450) \to 0)$	<	1.17			>	10 ⁻⁵	CL=90%
Γ ₃₆₂	$f_2^+\pi^-) \ f_2'(1525) K^+ imes {\sf B}(f_2'(1525) ightarrow \ \pi^+\pi^-)$	<	3.4			>	10-6	CL=90%
Γ ₃₆₃	$\kappa^+ \rho^0$	(3.7	土	0.5) ×	10-6	
Γ ₃₆₄	$K_0^*(1430)^0\pi^+$	(S=1.5
Γ ₃₆₅	$\kappa_2^*(1430)^0\pi^+$	(5.6	+	2.2) >	< 10 ⁻⁶	
	$K^*(1410)^0\pi^+$	<	4.5		1.5			CL=90%
Γ ₃₆₇	Δ ,	<	1.2					CL=90%
Γ ₃₆₈	$\kappa^+\pi^0\pi^0$	(10-5	02 30,0
Γ ₃₆₉	$f_0(980)K^+ imesB(f_0 o \ \pi^0\pi^0)$	(2.8				10-6	
Γ ₃₇₀		<	4.6					CL=90%
Γ_{371}	$K^-\pi^+\pi^+$ nonresonant	<	5.6					CL=90%
Γ ₃₇₂	$K_1(1270)^0 \pi^+$	<	4.0			>	10 ⁻⁵	CL=90%
Γ ₃₇₃	$K_1(1400)^0 \pi^+$	<	3.9					CL=90%
Γ_{374}	$K^0\pi^+\pi^0$	<						CL=90%
Γ_{375}	$K^0 ho^+$	(8.0	\pm	1.5) >	10^{-6}	
Γ ₃₇₆	$K^*(892)^+\pi^+\pi^-$	(10^{-5}	
Γ ₃₇₇	$K^*(892)^+_{}\rho^0$	(10^{-6}	
Γ ₃₇₈	$K^*(892)^+ f_0(980)$	(4.2	\pm	0.7) >	10-6	
Γ ₃₇₉	$K^*(892)^+ f_0(980)$ $a_1^+ K^0$	(10^{-5}	
Γ ₃₈₀	$b_1^+ {\sf K}^0 imes {\sf B}(b_1^+ o \omega \pi^+)$	(9.6	\pm	1.9) ×	10^{-6}	
Γ ₃₈₁	$K^*(892)^0 \rho^+$	(9.2	\pm	1.5) ×	10^{-6}	
Γ ₃₈₂	$K_1(1400)^+ \rho^0$	<	7.8			×	10^{-4}	CL=90%
Γ ₃₈₃	$K_2^*(1430)^+ \rho^0$	<	1.5			>	10^{-3}	CL=90%
Γ ₃₈₄	$b_1^{ar{0}} K^+ imes B(b_1^0 o \ \omega \pi^0)$	(9.1	\pm	2.0) ×	10^{-6}	
	$b_1^+ K^{*0} \times B(b_1^+ \rightarrow \omega \pi^+)$	<						CL=90%
Γ ₃₈₆	$b_1^{\cdot} K^{*+} imes B(b_1^{\cdot} o \omega \pi^0)$	<						CL=90%
Γ ₃₈₇	$ \overset{1}{K^{+}}\overline{K}^{0} $	(S=1.2

Γ ₃₈₈	$\overline{K}^0K^+\pi^0$							CL=90%
	$K^+K^0_SK^0_S$						$\times 10^{-5}$	
Γ ₃₉₀	$f_0(980)K^+$, $f_0 o K^0_{\mathcal{S}}K^0_{\mathcal{S}}$	(1.47			-	\times 10 ⁻⁵	
	$f_0(1710)K^+, f_0 \to K_S^0K_S^0$	(4.8	+	4.0 2.6)	\times 10 ⁻⁷	
Γ ₃₉₂	$K^+K^0_SK^0_S$ nonresonant	(2.0	\pm	0.4)	$\times 10^{-5}$	
Γ ₃₉₃	$K_{S}^{0}K_{S}^{0}\pi^{+}$	<	5.1				$\times 10^{-7}$	CL=90%
Γ ₃₉₄	$K^+K^-\pi^+$	(5.0	\pm	0.7)	× 10 ⁻⁶	
Γ_{305}	$K^+K^-\pi^+$ nonresonant	<	7.5					CL=90%
Γ ₃₉₆	$K^{+}\overline{K}^{*}(892)^{0}$	<	1.1				$\times 10^{-6}$	CL=90%
Γ ₃₉₇	$K^{+}\overline{K}_{0}^{*}(1430)^{0}$	<	2.2				$\times 10^{-6}$	CL=90%
Γ ₃₉₈	$K^+K^+\pi^-$	<	1.1				$\times 10^{-8}$	CL=90%
Γ ₃₉₉	${\it K}^+{\it K}^+\pi^-$ nonresonant	<	8.79					CL=90%
	$f_2'(1525)K^+$	(S=1.1
Γ ₄₀₁	- ,	`						
Γ_{402}	$K^{*+}\pi^{+}K^{-}$	<	1.18				$\times 10^{-5}$	CL=90%
Γ_{403}	$K^*(892)^+ K^*(892)^0$	($\times 10^{-7}$	
	$K^{*+}K^{+}\pi^{-}$	<						CL=90%
Γ ₄₀₅	$K^+K^-K^+$	(S=1.4
Γ ₄₀₆	$K^+\phi$	(8.8	+	0.7 0.6)	\times 10 ⁻⁶	S=1.1
Γ ₄₀₇	$f_0(980) K^+ imes {\sf B}(f_0(980) o$	(9.4	\pm	3.2) :	× 10 ⁻⁶	
401	K^+K^-	,				,		
Γ ₄₀₈	$a_2(1320) \overset{'}{K^+} imes B(a_2(1320) ightarrow \ \overset{'}{K^+} \overset{'}{K^-})$	<	1.1				× 10 ⁻⁶	CL=90%
Γ ₄₀₉	$X_0(1550)K^+ \times$	(13	+	0.7	١.	× 10 ⁻⁶	
1 409	$B(X_0(1550) \rightarrow K^+K^-)$	(4.5	_	0.1	,	^ 10	
Γ ₄₁₀	$\phi(1680) K^+ \times B(\phi(1680) \rightarrow$	<	8				× 10 ⁻⁷	CL=90%
' 410	K^+K^-)		O				× 10	CL=3070
Γ ₄₁₁	$f_0(1710)K^+ \times B(f_0(1710) \rightarrow$	(1 1	+	0.6)	× 10 ⁻⁶	
' 411	$K^{+}K^{-}$	(1.1	_	0.0	,	× 10	
г	,	,		+	0.28	,	40-5	
	$K^+K^-K^+$ nonresonant	(\times 10 ⁻⁵	
	$K^*(892)^+ K^+ K^-$	(\times 10 ⁻⁵	
	$K^*(892)^+ \phi$	(\times 10 ⁻⁶	S=1.7
Γ ₄₁₅	$\phi(K\pi)_0^{*+}$	(8.3	\pm	1.6)	\times 10 ⁻⁶	
Γ_{416}	$\phi K_1(1270)^+$	(6.1	\pm	1.9)	$\times 10^{-6}$	
Γ_{417}	$\phi K_1(1400)^+$	<						CL=90%
Γ ₄₁₈	$\phi K^*(1410)^+$	<	4.3				$\times 10^{-6}$	CL=90%
Γ ₄₁₉	$\phi K_0^*(1430)^+$	(7.0	\pm	1.6)	$\times 10^{-6}$	
	$\phi K_2^*(1430)^+$	(8.4	\pm	2.1) :	$\times 10^{-6}$	
	$\phi K_2^{(1770)^+}$	<	1.50					CL=90%
	$\phi K_2^2 (1820)^+$	<	1.63				$\times 10^{-5}$	CL=90%
T422	$a_1^+ K^{*0}$	<	3.6					CL=90%
423	-1		0.0				0	JE 3070

Light unflavored meson modes

```
a_1(1260)^+\pi^0
                                                                                        2.6 \pm 0.7 \times 10^{-5}
\Gamma_{460}
Γ<sub>461</sub>
               a_1(1260)^0\pi^+
                                                                                        2.0 \pm 0.6 \times 10^{-5}
                                                                                    (6.9 \pm 0.5) \times 10^{-6}
 \Gamma_{462} \omega \pi^+
 \Gamma_{463} \omega \rho^+
                                                                                    (1.59 \pm 0.21) \times 10^{-5}
\Gamma_{464} \eta \pi^+
                                                                                        4.02 \pm 0.27 \times 10^{-6}
\Gamma_{465} \eta \rho^+
                                                                                        7.0 \pm 2.9 \times 10^{-6}
                                                                                                                                   S = 2.8
\Gamma_{466} \quad \eta' \pi^+
                                                                                        2.7 \pm 0.9 \times 10^{-6}
 \Gamma_{467} \eta' \rho^+
                                                                                   (9.7 \pm 2.2) \times 10^{-6}
                                                                                                 \times 10^{-7} \text{ CL}=90\% 
 \times 10^{-6} \text{ CL}=90\%
\Gamma_{468} \phi \pi^+
                                                                                        1.5
                                                                                  <
\Gamma_{469} \phi \rho^+
                                                                                        3.0
                                                                                 <
\Gamma_{470} \ a_0^{-}(980)^0 \pi^+, \ a_0^0 \rightarrow \ \eta \pi^0
                                                                                                                \times 10^{-6} \text{ CL} = 90\%
                                                                                 < 5.8
\Gamma_{471} \ a_0(980)^+\pi^0, \ a_0^+ \rightarrow \ \eta \pi^+
                                                                                                             \times 10^{-6} \text{ CL} = 90\%
\Gamma_{472} \pi^{+}\pi^{+}\pi^{+}\pi^{-}\pi^{-}
                                                                                 < 8.6
                                                                                                              \times 10^{-4} \text{ CL} = 90\%
\Gamma_{473} \qquad \rho^0 \, a_1(1260)^+
                                                                                                             \times 10^{-4} \text{ CL} = 90\%
                                                                                 <
                                                                                        6.2
\Gamma_{474} \rho^0 a_2(1320)^+
\Gamma_{475} b_1^0 \pi^+, b_1^0 \to \omega \pi^0
\Gamma_{476} b_1^+ \pi^0, b_1^+ \to \omega \pi^+
                                                                                                              \times\,10^{-4}\, CL=90%
                                                                                 < 7.2
                                                                                (6.7 \pm 2.0) \times 10^{-6}
                                                                                                    \times 10^{-6} \text{ CL} = 90\%
                                                                                        3.3
                                                                                 <
                                                                                                        \times\,10^{-3} CL=90%
\Gamma_{477} \quad \pi^{+} \pi^{+} \pi^{+} \pi^{-} \pi^{-} \pi^{0}
                                                                                 <
                                                                                        6.3
\Gamma_{478} b_1^+ \rho^0, b_1^+ \rightarrow \omega \pi^+
                                                                                 < 5.2
                                                                                                             \times 10^{-6} \text{ CL} = 90\%
\Gamma_{479} a_1(1260)^{+}a_1(1260)^{0}

\Gamma_{480} b_1^0 \rho^{+}, b_1^0 \rightarrow \omega \pi^{0}
                                                                                                                 % CL=90%
                                                                                 <
                                                                                        1.3
                                                                                                                 \times 10^{-6} \text{ CL} = 90\%
                                                                                        3.3
```

Charged particle (h^{\pm}) modes

Γ ₄₉₆	$ \rho \overline{\Lambda} \pi^0 $	(3.0	+	0.7 0.6)	× 10 ⁻⁶	
	$p\overline{\Sigma}(1385)^0$	<	4.7					CL=90%
Γ_{408}	$\Delta^{+}\overline{\Lambda}$	<	8.2					CL=90%
Γ ₄₉₉	$p\overline{\Sigma}\gamma$	<	4.6					CL=90%
Γ ₅₀₀	$\rho \overline{\Lambda} \pi^+ \pi^-$	(5.9	\pm	1.1)	$\times 10^{-6}$	
Γ_{501}	$ ho \overline{\Lambda} ho^0$	(4.8	\pm	0.9)	\times 10 ⁻⁶	
Γ_{502}	$p\overline{\Lambda}f_2(1270)$	(2.0	\pm	8.0)	\times 10 ⁻⁶	
Γ ₅₀₃	$\Lambda \overline{\Lambda} \pi^+$	<	9.4				\times 10 ⁻⁷	CL=90%
Γ ₅₀₄	$\Lambda \overline{\Lambda} K^+$	(3.4	\pm	0.6)	\times 10 ⁻⁶	
Γ ₅₀₅	$\Lambda \overline{\Lambda} K^{*+}$	(2.2	+	1.2 0.9)	\times 10 ⁻⁶	
Γ ₅₀₆	$\overline{\Delta}{}^{0} \rho$	<	1.38				\times 10 ⁻⁶	CL=90%
Γ ₅₀₇	$\Delta^{++}\overline{p}$	<	1.4					CL=90%
Γ ₅₀₈	$D^+ p \overline{p}$	<	1.5					CL=90%
Γ ₅₀₉	$D^*(2010)^+ \rho \overline{\rho}$	<	1.5					CL=90%
Γ ₅₁₀	$\overline{D}{}^{0}\rho\overline{\rho}\pi^{+}$	($\times 10^{-4}$	
Γ ₅₁₁	$\overline{D}^{*0} p \overline{p} \pi^+$	(\times 10 ⁻⁴	
	$D^- \rho \overline{\rho} \pi^+ \pi^-$	($\times 10^{-4}$	
Γ ₅₁₃	$D^{*-}p\overline{p}\pi^{+}\pi^{-}$	(,	\times 10 ⁻⁴	
	$p\overline{\Lambda}^0\overline{D}^0$	(\pm	0.32	,	$\times 10^{-5}$	
	$p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0}$	<	5					CL=90%
I ₅₁₆	$\overline{\Lambda}_{c}^{-} p \pi^{+}$	(2.2	±	0.4			S=2.2
Γ ₅₁₇	$\Lambda_{c}^{-}\Delta(1232)^{++}$	<	1.9					CL=90%
Γ ₅₁₈	$\overline{\varLambda}_c^{-}\Delta_X(1600)^{++}$	(4.6	\pm	0.9)	$\times 10^{-5}$	
Γ ₅₁₉	-	(3.7	\pm	8.0)	$\times 10^{-5}$	
Γ_{520}		[h] (3.1	\pm	0.7		$\times 10^{-5}$	
Γ_{521}	$\overline{\Sigma}_c(2520)^0_{\ p}$	<	3					CL=90%
Γ ₅₂₂	$\Sigma_c(2800)^0 p$	(2.6	\pm	0.9)	$\times 10^{-5}$	
Γ ₅₂₃	$\overline{\Lambda}_c^- \rho \pi^+ \pi^0$	(1.8				$\times 10^{-3}$	
Γ ₅₂₄	$\overline{\Lambda}_c^- \rho \pi^+ \pi^+ \pi^-$	(2.2	\pm	0.7)	$\times 10^{-3}$	
Γ ₅₂₅	$\overline{\Lambda}_c^- p \pi^+ \pi^+ \pi^- \pi^0$							CL=90%
	$\Lambda_c^+ \Lambda_c^- K^+$	(6.9	\pm	2.2)	$\times 10^{-4}$	
Γ_{527}	$\overline{\Sigma}_c(2455)^0 p$	(2.9	\pm	0.7)	$\times 10^{-5}$	
	$\overline{\Sigma}_{c}(2455)^{0} p \pi^{0}$	(3.5	\pm	1.1)	$\times 10^{-4}$	
Γ ₅₂₉	$\overline{\Sigma}_{c}(2455)^{0} p \pi^{-} \pi^{+}$						\times 10 ⁻⁴	
Γ ₅₃₀	$\sum_{c} (2455)^{} p \pi^{+} \pi^{+}$						$\times 10^{-4}$	
Γ ₅₃₁	$\Lambda_c(2593)^-/\Lambda_c(2625)^- p\pi^+$							CL=90%
Γ ₅₃₂	$\underline{\Xi}_{c}^{U} \Lambda_{c}^{+}, \ \underline{\Xi}_{c}^{U} \rightarrow \ \underline{\Xi}^{+} \pi^{-}$							S=1.4
Γ ₅₃₃	$ \frac{\overline{\Lambda}_{c}(2593)^{-}}{\overline{\Lambda}_{c}(2625)^{-}}p\pi^{+} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}^{+}\pi^{-} $ $ \overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \Lambda K^{+}\pi^{-} $	(2.1	\pm	0.9)	× 10 ⁻⁵	S=1.5

Lepton Family number (LF) or Lepton number (L) or Baryon number (B) violating modes, or/and $\Delta B = 1$ weak neutral current (B1) modes

					, ,	
Γ ₅₃₄	$\pi^+\ell^+\ell^-$	B1	<	4.9	$\times 10^{-8}$ (
Γ ₅₃₅	$\pi^+e^+e^-$	B1	<	8.0	$\times 10^{-8}$ (CL=90%
Γ ₅₃₆	$\pi^+\mu^+\mu^-$	B1	($1.79 \pm$	$(0.23) \times 10^{-8}$	
Γ_{537}	$\pi^+ u \overline{ u}$	B1	<	9.8	$\times10^{-5}$ (CL=90%
Γ ₅₃₈	$K^+\ell^+\ell^-$	B1	[a] (4.51 ±	$(0.23) \times 10^{-7}$	S=1.1
Γ ₅₃₉	$K^+e^+e^-$	B1	($(0.7) \times 10^{-7}$	
Γ ₅₄₀	$\mathcal{K}^+\mu^+\mu^-$	B1	(4.43 ±	$(0.24) \times 10^{-7}$	S=1.2
Γ ₅₄₁	$K^+ au^+ au^-$	B1	<	2.25	$\times 10^{-3}$ (CL=90%
Γ ₅₄₂	$K^+ \overline{ u} u$	B1	<	1.6	$\times 10^{-5}$ (CL=90%
Γ ₅₄₃	$\rho^+ \nu \overline{\nu}$	B1	<	2.13	\times 10 ⁻⁴ (CL=90%
Γ ₅₄₄	$K^*(892)^+ \ell^+ \ell^-$	B1	[a] (1.01 ±	$0.11) \times 10^{-6}$	S=1.1
Γ ₅₄₅	$K^*(892)^+e^+e^-$	B1	($(0.40 \ 0.31) \times 10^{-6}$	
Γ ₅₄₆	$K^*(892)^+ \mu^+ \mu^-$	B1	(9.6 ±	$1.0) \times 10^{-7}$	
Γ_{547}	$K^*(892)^+ \nu \overline{\nu}$	B1	<	4.0	$\times 10^{-5}$ (CL=90%
Γ_{548}	$K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-}$	B1	($0.4) \times 10^{-7}$	
	$\phi K^+ \mu^+ \mu^-$	B1	($(2.1 \ 1.7) \times 10^{-8}$	
Γ_{550}	$\pi^+ e^+ \mu^-$	LF	<	6.4	\times 10 ⁻³ (CL=90%
Γ ₅₅₁	$\pi^{+}e^{-}\mu^{+}$	LF	<	6.4	\times 10 ⁻³ (
Γ_{552}	$\pi^+ e^{\pm} \mu^{\mp}$	LF	<	1.7	\times 10 ⁻⁷ (
Γ ₅₅₃		LF	<	7.4	\times 10 ⁻⁵ (
Γ ₅₅₄		LF	<	2.0	\times 10 ⁻⁵ (
Γ ₅₅₅		LF	<	7.5	\times 10 ⁻⁵ (
Γ ₅₅₆	$\pi^+\mu^+\tau^-$	LF	<	6.2	\times 10 ⁻⁵ (
Γ ₅₅₇	$\pi^{+}\mu^{-}\tau^{+}$	LF	<	4.5	\times 10 ⁻⁵ (
Γ ₅₅₈		LF	<	7.2	\times 10 ⁻⁵ (
Γ ₅₅₉	1	LF	<	9.1	\times 10 ⁻⁸ (
Γ ₅₆₀		LF	<	1.3	\times 10 ⁻⁷ (
Γ ₅₆₁	$K^+ e^{\pm} \mu^{\mp}$	LF	<	9.1	\times 10 ⁻⁸ (CL=90%
Γ ₅₆₂	$K^+e^+\tau^-$	LF	<	4.3	\times 10 ⁻⁵ (
Γ ₅₆₃	$K^+e^- au^+$	LF	<	1.5	\times 10 ⁻⁵ (
Γ ₅₆₄	$K^+e^{\pm} au^{\mp}$	LF	<	3.0	\times 10 ⁻⁵ (
Γ ₅₆₅	$K^+\mu^+\tau^-$	LF	<		$\times 10^{-5}$ (
Γ ₅₆₆	$K^+\mu^-\tau^+$	LF	<		$\times 10^{-5}$ (
Γ ₅₆₇	$K^+\mu^{\pm} au^{\mp}$	LF	<		$\times 10^{-5}$ (
Γ ₅₆₈	$K^*(892)^+e^+\mu^-$	LF	<	1.3	\times 10 ⁻⁶ (
Γ ₅₆₀	$K^*(892)^+e^-\mu^+$	LF	<		\times 10 ⁻⁷ (
Γ ₅₇₀	$K^*(892)^+ e^{\pm} \mu^{\mp}$	LF	<	1.4	\times 10 ⁻⁶ (
Γ ₅₇₁	$\pi^{-}e^{+}e^{+}$	L	<	2.3	× 10 ⁻⁸ (
2/1	$\pi^{-}\mu^{+}\mu^{+}$	L	<	4.0	× 10 ⁻⁹ (
512 [572	$\pi - e^{+} \mu^{+}$	L	<		× 10 ⁻⁷ (
. 513	$\rho^- e^+ e^+$	L	<	1.7	× 10 ⁻⁷ (
. 3/4	r	_			/\ 10	50/0

Γ ₅₇₅	$\rho^-\mu^+\mu^+$	L	<	4.2	imes 10 ⁻⁷ CL=90%
Γ ₅₇₆	$ ho^-\mathrm{e}^+\mu^+$	L	<	4.7	$\times10^{-7}\text{CL}{=}90\%$
	$K^{-}e^{+}e^{+}$	L	<	3.0	$\times 10^{-8} \text{ CL} = 90\%$
	$K^-\mu^+\mu^+$	L	<	4.1	$\times 10^{-8} \text{ CL} = 90\%$
	$K^-e^+\mu^+$	L	<	1.6	$\times 10^{-7} \text{ CL} = 90\%$
	$K^*(892)^-e^+e^+$	L	<	4.0	$\times 10^{-7} \text{ CL} = 90\%$
	$K^*(892)^- \mu^+ \mu^+$	L	<	5.9	$\times 10^{-7} \text{ CL} = 90\%$
	$K^*(892)^-e^+\mu^+$	L	<	3.0	$\times 10^{-7} \text{ CL}=90\%$
	$D^{-}e^{+}e^{+}$	L	<	2.6	$\times 10^{-6} \text{ CL} = 90\%$
Γ ₅₈₄	$D^-e^+\mu^+$	L	<	1.8	$\times 10^{-6} \text{ CL} = 90\%$
Γ ₅₈₅	$D^-\mu^+\mu^+$	L	<	6.9	$\times 10^{-7} \text{ CL}=95\%$
Γ ₅₈₆	$D^{*-}\mu^{+}\mu^{+}$	L	<	2.4	$\times 10^{-6} \text{ CL}=95\%$
Γ ₅₈₇	$D_{s}^{-}\mu^{+}\mu^{+}$	L	<	5.8	$\times 10^{-7} \text{ CL}=95\%$
Γ ₅₈₈	$\overline{D}^{0}\pi^{-}\mu^{+}\mu^{+}$	L	<	1.5	$\times 10^{-6} \text{ CL} = 95\%$
Γ ₅₈₉	$\Lambda^0 \mu^+$	L,B	<	6	$\times 10^{-8} \text{ CL} = 90\%$
Γ_{590}	$\Lambda^0 e^+$	L,B	<	3.2	$\times10^{-8}\text{CL}{=}90\%$
Γ_{591}	$\overline{A}{}^{0}\mu^{+}$	L,B	<	6	$\times10^{-8}$ CL=90%
Γ_{592}	$\overline{\Lambda}^0 e^+$	L,B	<	8	$\times10^{-8}$ CL=90%

- [a] An ℓ indicates an e or a μ mode, not a sum over these modes.
- [b] An $CP(\pm 1)$ indicates the $CP{=}+1$ and $CP{=}-1$ eigenstates of the $D^0{-}\overline{D}{}^0$ system.
- [c] D denotes D^0 or \overline{D}^0 .
- [d] D^{*0}_{CP+} decays into $D^0\pi^0$ with the D^0 reconstructed in CP-even eigenstates K^+K^- and $\pi^+\pi^-$.
- [e] \overline{D}^{**} represents an excited state with mass 2.2 < M < 2.8 GeV/c².
- [f] $X(3872)^+$ is a hypothetical charged partner of the X(3872).
- [g] $\Theta(1710)^{++}$ is a possible narrow pentaquark state and G(2220) is a possible glueball resonance.
- $[h] (\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².

CONSTRAINED FIT INFORMATION

An overall fit to 3 branching ratios uses 6 measurements and one constraint to determine 3 parameters. The overall fit has a $\chi^2=3.7$ for 4 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

CONSTRAINED FIT INFORMATION

An overall fit to 18 branching ratios uses 54 measurements and one constraint to determine 12 parameters. The overall fit has a $\chi^2=49.4$ for 43 degrees of freedom.

The following off-diagonal array elements are the correlation coefficients $\left\langle \delta x_i \delta x_j \right\rangle / (\delta x_i \cdot \delta x_j)$, in percent, from the fit to the branching fractions, $x_i \equiv \Gamma_i / \Gamma_{\text{total}}$. The fit constrains the x_i whose labels appear in this array to sum to one.

<i>x</i> ₇	33									
×48	0	0								
<i>x</i> 99	0	0	8							
×138	0	0	1	13						
^x 262	0	0	0	0	0					
^x 267	0	0	0	0	0	0				
^x 286	0	0	0	0	0	33	0			
×298	0	0	0	0	0	58	0	19		
^x 540	0	0	0	0	0	14	0	5	8	
^x 546	0	0	0	0	0	0	5	0	0	0
	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₄₈	<i>x</i> 99	<i>x</i> 138	<i>x</i> ₂₆₂	^X 267	^X 286	^x 298	^x 540

B⁺ BRANCHING RATIOS

$\Gamma(\ell^+\nu_\ell \text{ anything})/\Gamma_{\text{total}}$

 Γ_1/Γ

Created: 5/30/2017 17:22

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements.

aging/reseams procedure takes into account correlations between the measurements.											
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT							
10.99±0.28 OUR EVALUATION	N										
10.76±0.32 OUR AVERAGE	Error includes scale	factor	of 1.1.								
$11.17 \pm 0.25 \pm 0.28$				$e^+e^- ightarrow \ \varUpsilon(4S)$							
$10.28 \pm 0.26 \pm 0.39$	² AUBERT,B	06Y	BABR	$e^+e^- ightarrow \Upsilon(4S)$							
$10.25 \pm 0.57 \pm 0.65$	³ ARTUSO	97	CLE2	$e^+e^- ightarrow \Upsilon(4S)$							
• • • We do not use the follow	wing data for average	es, fits,	limits, e	etc. • • •							
$11.15 \pm 0.26 \pm 0.41$	⁴ OKABE	05	BELL	Repl. by URQUIJO 07							
$10.1\ \pm 1.8\ \pm 1.5$	ATHANAS	94	CLE2	Sup. by ARTUSO 97							
$^{ m 1}$ URQUIJO 07 report a mea	surement of (10.34 \pm	= 023 ±	= 0.25)%	for the partial branching							

¹ URQUIJO 07 report a measurement of $(10.34 \pm 023 \pm 0.25)\%$ for the partial branching fraction of $B^+ \to e^+ \nu_e X_c$ decay with electron energy above 0.6 GeV. We converted the result to $B^+ \to e^+ \nu_e X$ branching fraction.

² The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame. The best precision on the ratio is achieved for a momentum threshold of 1.0 GeV: B($B^+ \rightarrow e^+ \nu_e X$) / B($B^0 \rightarrow e^+ \nu_e X$) = 1.074 \pm 0.041 \pm 0.026.

 $\Gamma(\overline{D}^0\ell^+\nu_\ell)/\Gamma_{\text{total}}$

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements. $\ell=e$ or μ , not sum over e and μ modes.

$\epsilon = \epsilon$ or μ , not sum over	e and μ modes.			
VALUE	DOCUMENT ID		TECN	COMMENT
0.0227±0.0011 OUR EVALUAT	ION			
0.0229 ± 0.0008 OUR AVERAGE				
$0.0229 \pm 0.0008 \pm 0.0009$	$^{ m 1}$ AUBERT	10	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0234 \pm 0.0003 \pm 0.0013$	AUBERT	09A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.0221\!\pm\!0.0013\!\pm\!0.0019$	² BARTELT	99	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$0.016\ \pm0.006\ \pm0.003$	³ FULTON	91	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the followi	ng data for average	es, fits,	limits, e	etc. • • •
$0.0233 \pm 0.0009 \pm 0.0009$	$^{ m 1}$ AUBERT	08Q	BABR	Repl. by AUBERT 09A
$0.0194 \pm 0.0015 \pm 0.0034$	⁴ ATHANAS	97	CLE2	Repl. by BARTELT 99
1 Uses a fully reconstructed B	meson as a tag on	the re	coil side	

⁴ ATHANAS 97 uses missing energy and missing momentum to reconstruct neutrino.

$\Gamma(\overline{D}{}^0\ell^+ u_\ell)/\Gamma(\ell^+ u_\ell$ anyth	ing)				Γ_4/Γ_1
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.255 \pm 0.009 \pm 0.009$	¹ AUBERT	10	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^{1}}$ Uses a fully reconstructed B meson on the recoil side.

$\Gamma(D^0\ell^+ u_\ell)/\Gamma(D\ell^+ u_\ell$ any	thing)			Γ_4/Γ_3
VALUE	DOCUMENT ID	TECN	COMMENT	
$0.227 \pm 0.014 \pm 0.016$	¹ AUBERT	07AN BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^{1}}$ Uses a fully reconstructed B meson on the recoil side.

$\Gamma(\overline{D}{}^0 au^+ u_ au)/\Gamma_{total}$				Γ ₅ /	Γ	
$VALUE$ (units 10^{-2})	DOCUMENT IL)	TECN	COMMENT	_	
$0.77 \pm 0.22 \pm 0.12$	$^{ m 1}$ BOZEK	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the following	ng data for averag	ges, fits,	limits, e	etc. • • •		
$0.67 \pm 0.37 \pm 0.13$	² AUBERT	08N	BABR	Repl. by AUBERT 099		
¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.						

²Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^3}$ ARTUSO 97 uses partial reconstruction of $B o D^*\ell
u_\ell$ and inclusive semileptonic branching ratio from BARISH 96B (0.1049 \pm 0.0017 \pm 0.0043).

 $^{^4}$ The measurements are obtained for charged and neutral B mesons partial rates of semileptonic decay to electrons with momentum above 0.6 GeV/c in the B rest frame, and their ratio of B($B^+ \to e^+ \nu_e X$)/B($B^0 \to e^+ \nu_e X$) = 1.08 \pm 0.05 \pm 0.02.

¹ Measure the independent B^+ and B^0 partial branching fractions with electron threshold energies of 0.4 GeV.

 $^{^1}$ Uses a fully reconstructed B meson as a tag on the recoil side. 2 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

³ FULTON 91 assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at the $\Upsilon(4S)$.

 $\Gamma(\overline{D}{}^{0}\tau^{+}\nu_{\tau})/\Gamma(\overline{D}{}^{0}\ell^{+}\nu_{\ell})$ $VALUE \qquad DOCUMENT ID \qquad TECN \qquad COMMENT \\ \textbf{0.429\pm0.082\pm0.052} \qquad 1.2 \text{ LEES} \qquad 12D \qquad BABR \qquad e^{+}e^{-} \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.314\pm0.170\pm0.049 \qquad ^{1} \text{ AUBERT} \qquad 09s \quad BABR \quad \text{Repl. by LEES} \quad 12D$

$\Gamma(\overline{D}^*(2007)^0\ell^+\nu_\ell)/\Gamma_{\text{total}}$

 Γ_6/Γ

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements. $\ell=e$ or μ , not sum over e and μ modes.

DOCUMENT ID **EVTS** 0.0569 ± 0.0019 OUR EVALUATION 0.0560 ± 0.0026 **OUR FIT** Error includes scale factor of 1.5. 0.0558±0.0026 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram **AUBERT** 09A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.0540\pm0.0002\pm0.0021$ ¹ AUBERT $0.0556 \pm 0.0008 \pm 0.0041$ 08AT BABR $e^+e^- \rightarrow \Upsilon(4S)$ ² ADAM CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0650 \pm 0.0020 \pm 0.0043$ ³ ALBRECHT $0.066 \pm 0.016 \pm 0.015$ 92C ARG $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • ⁴ AUBERT $0.0583 \pm 0.0015 \pm 0.0030$ 08Q BABR Repl. by AUBERT 09A ⁵ BRIERE CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0650 \pm 0.0020 \pm 0.0043$ ⁶ BARISH CLE2 Repl. by ADAM 03 95 $0.0513 \pm 0.0054 \pm 0.0064$ 302 398 ⁷ SANGHERA 93 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.041 \pm 0.008 + 0.008$ ⁸ FULTON CLEO $e^+e^- \rightarrow \Upsilon(4S)$

⁹ ANTREASYAN 90B CBAL $e^+e^- \rightarrow \Upsilon(4S)$

Created: 5/30/2017 17:22

 $0.070 \pm 0.018 \pm 0.014$

 $^{^{1}}$ Uses a fully reconstructed B meson as a tag on the recoil side.

²Uses $\tau^+ \rightarrow e^+ \nu_e \overline{\nu}_\tau$ and $\tau^+ \rightarrow \mu^+ \nu_\mu \overline{\nu}_\tau$ and e^+ or μ^+ as ℓ^+ .

 $^{^1}$ Measured using the dependence of $B^-\to D^{*0}\,e^-\overline{\nu}_e$ decay differential rate and the form factor description by CAPRINI 98.

² Simultaneous measurements of both $B^0 o D^*(2010)^- \ell \nu$ and $B^+ o \overline{D}(2007)^0 \ell \nu$.

³ ALBRECHT 92C reports $0.058\pm0.014\pm0.013$. We rescale using the method described in STONE 94 but with the updated PDG 94 B($D^0 \rightarrow K^-\pi^+$). Assumes equal production of $B^0 \overline{B}{}^0$ and B^+B^- at the $\Upsilon(4S)$.

⁴ Uses a fully reconstructed *B* meson as a tag on the recoil side.

⁵ The results are based on the same analysis and data sample reported in ADAM 03.

⁶ BARISH 95 use B($D^0 \rightarrow K^-\pi^+$) = (3.91 \pm 0.08 \pm 0.17)% and B($D^{*0} \rightarrow D^0\pi^0$) = (63.6 \pm 2.3 \pm 3.3)%.

⁷ Combining $\overline{D}^{*0}\ell^+\nu_\ell$ and $\overline{D}^{*-}\ell^+\nu_\ell$ SANGHERA 93 test V-A structure and fit the decay angular distributions to obtain $A_{FB}=3/4*(\Gamma^--\Gamma^+)/\Gamma=0.14\pm0.06\pm0.03$. Assuming a value of V_{CB} , they measure V, A_1 , and A_2 , the three form factors for the $D^*\ell\nu_\ell$ decay, where results are slightly dependent on model assumptions.

⁸ Assumes equal production of $B^0\overline{B}^0$ and B^+B^- at the $\Upsilon(4S)$. Uncorrected for D and D^* branching ratio assumptions.

⁹ ANTREASYAN 90B is average over B and \overline{D}^* (2010) charge states.

$\Gamma(\overline{D}^*(2007)^0\ell^+\nu_{\ell})/\Gamma(D\ell^+\nu_{\ell})$ anything)

 Γ_6/Γ_3

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	· · · · · · · · · · · · · · · · · · ·		0, 0
<u>VALUE</u>	DOCUMENT ID	TECN	COMMENT
$0.582 \pm 0.018 \pm 0.030$	¹ AUBERT 07AN	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Uses a fully reconstructed B meson on the recoil side.

$\Gamma(\overline{D}^*(2007)^0\tau^+\nu_{\tau})/\Gamma_{\text{total}}$

 Γ_7/Γ

VALUE (units 10 ⁻²) 1.88±0.20 OUR FIT	DOCUMENT ID		TECN	COMMENT	
$2.12^{igoplus 0.28}_{-0.27} \pm 0.29$	¹ BOZEK	10	BELL	$e^+e^- \rightarrow \gamma(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $2.25 \pm 0.48 \pm 0.28$

² AUBERT

08N BABR Repl. by AUBERT 09S

Created: 5/30/2017 17:22

$\Gamma(\overline{D}^*(2007)^0\tau^+\nu_{\tau})/\Gamma(\overline{D}^*(2007)^0\ell^+\nu_{\ell})$

 Γ_7/Γ_6

` ` ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	, , , ,				-	
<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT		
0.335±0.034 OUR FIT						
$0.322 \pm 0.032 \pm 0.022$	1,2 LEES	12 D	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use th	e following data for average	s, fits,	limits, e	etc. • • •		

¹ AUBERT $0.346 \pm 0.073 \pm 0.034$ 09S BABR Repl. by LEES 12D

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^1}$ Uses a fully reconstructed ${\cal B}$ meson as a tag on the recoil side. 2 Uses $\tau^+\to~e^+\nu_e\overline{\nu}_\tau$ and $\tau^+\to~\mu^+\nu_\mu\overline{\nu}_\tau$ and e^+ or μ^+ as $\ell^+.$

$\Gamma ig(D^- \pi^+ \ell^+ u_\ell ig) / \Gamma_{total}$		Γ,	₈ /Г
VALUE (units 10^{-3})	DOCUMENT ID	TECN COMMENT	
4.2±0.5 OUR AVERAGE			
$4.2 \pm 0.6 \pm 0.3$		BABR $e^+e^- ightarrow \Upsilon(4S)$	
$4.2 \pm 0.6 \pm 0.2$		BELL $e^+e^- ightarrow \varUpsilon(4S)$	
• • • We do not use the follow			
$5.5 \pm 0.9 \pm 0.3$		BELL Repl. by LIVENTSEV	80
$D^-\pi^+\ell^+\nu_\ell)/\Gamma_{\rm total}]$ / [E 0.22) × 10^{-2} , which we res 10^{-2} . Our first error is the error from using our best v 3 LIVENTSEV 05 reports [$= 0.25 \pm 0.03 \pm 0.03$ where $= 0.25 \pm 0.03 \pm 0.03$	$B.0\pm0.4\pm0.6) imes 10^{-3}$ $B(B^+ o \overline D^0\ell^+ u_\ell)]$ assumption as a scale to our best value $B(R)$ derived by the experiment's error and value. The experiment $B(B^+ o D^-\pi^+\ell^+ u_\ell)$ which we multiply by our first error is their experiment.	recoil side. from a measurement of $[\Gamma(B^+)]$ from a measurement of $[\Gamma(B^+)]$ from $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ best value $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ best value $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ best value $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ $[\Gamma(B^+)]$ best value $[\Gamma(B^+)]$ $[\Gamma$	$15\pm1) imes$ natic $ u_\ell)]$
$\Gamma(\overline{D}_0^*(2420)^0\ell^+\nu_\ell, \ \overline{D}_0^{*0}$	$\rightarrow D^-\pi^+)/\Gamma_{total}$	Γ,	9/۲
$VALUE$ (units 10^{-3})	DOCUMENT ID	TECN COMMENT	
2.5±0.5 OUR AVERAGE			
$2.6 \pm 0.5 \pm 0.4$		BBL BABR $e^+e^- o au(4S)$	
$2.4 \pm 0.4 \pm 0.6$	¹ LIVENTSEV 08	BELL $e^+e^- \rightarrow \Upsilon(4S)$	
¹ Uses a fully reconstructed	B meson as a tag on the	recoil side.	
$\Gamma(\overline{D}_{2}^{*}(2460)^{0}\ell^{+}\nu_{\ell}, \ \overline{D}_{2}^{*0}$	$\rightarrow D^-\pi^+)/\Gamma_{total}$	Γ ₁ (₀ /Γ
VALUE (units 10 ⁻³)	DOCUMENT ID	TECN COMMENT	
1.53±0.16 OUR AVERAGE	1	1	
$1.42 \pm 0.15 \pm 0.15$		BABR $e^+e^- \rightarrow \Upsilon(4S)$	
$1.5 \pm 0.2 \pm 0.2$		BBL BABR $e^+e^- \rightarrow \Upsilon(4S)$	
$2.2 \pm 0.3 \pm 0.4$		BELL $e^+e^- \rightarrow \Upsilon(4S)$	
		without full reconstruction of events $0.8 (\overline{D}_2^*(2460)^0 \rightarrow D^{(*)} \pi^+$	
$(2.29\pm0.23\pm0.21)\times10^{-3}$	and the authors have pro	vided us the individual measurem	ient.
² Uses a fully reconstructed	B meson as a tag on the	recoil side.	
$\Gamma(D^{(*)} n \pi \ell^+ \nu_{\ell} (n \geq 1)) /$	$\Gamma(D\ell^+ u_\ell)$ anything)	Γ ₁₁	/Γ3
VALUE		TECN COMMENT	
$0.191 \pm 0.013 \pm 0.019$	¹ AUBERT 07	YAN BABR $e^+e^- ightarrow \varUpsilon(4S)$	
$^{\mathrm{1}}\mathrm{Uses}$ a fully reconstructed	B meson on the recoil sic	le.	
$\Gamma(D^{*-}\pi^+\ell^+ u_\ell)/\Gamma_{total}$		Г1:	2/Γ
VALUE (units 10^{-3})	DOCUMENT ID	TECN COMMENT	-
6.1±0.6 OUR AVERAGE			
$5.9 \pm 0.5 \pm 0.4$	¹ AUBERT 08Q	BABR $e^+e^- \rightarrow \Upsilon(4S)$ BELL $e^+e^- \rightarrow \Upsilon(4S)$	
$6.8\!\pm\!1.1\!\pm\!0.3$	1,2 LIVENTSEV 08	BELL $e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use the follow	wing data for averages, fi	ts, limits, etc. ● ●	
$5.9 \pm 1.4 \pm 0.1$	3,4 LIVENTSEV 05	BELL Repl. by LIVENTSEV	80
HTTP://PDG.LBL.GOV	Page 25	Created: 5/30/2017 17	7:22

 $^{
m 1}$ Uses a fully reconstructed B meson as a tag on the recoil side.

 2 LIVENTSEV 08 reports (6.4 \pm 0.8 \pm 0.9) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^+ o$ $D^{*-}\pi^{+}\ell^{+}\nu_{\ell})/\Gamma_{\text{total}}$ / [B($B^{+}\to\overline{D}^{0}\ell^{+}\nu_{\ell}$)] assuming B($B^{+}\to\overline{D}^{0}\ell^{+}\nu_{\ell}$) = $(2.15 \pm 0.22) \times 10^{-2}$, which we rescale to our best value B($B^+ \rightarrow \overline{D}^0 \ell^+ \nu_{\ell}$) = $(2.27 \pm 0.11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $D^{*-}\pi^{+}\ell^{+}\nu_{\ell})/$ $\Gamma_{
m total} \ / \ [{\sf B}(B^0 o D^*(2010)^- \ell^+
u_\ell)] = 0.12 \pm 0.02 \pm 0.02$ which we multiply by our best value B($B^0 \to D^*(2010)^- \ell^+ \nu_{\ell}$) = $(4.93 \pm 0.11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best

$\Gamma(\overline{D}_1(2420)^0\ell^+\nu_\ell, \ \overline{D}_1^0 \to D^{*-}\pi^+)/\Gamma_{\text{total}}$

 Γ_{13}/Γ

$VALUE$ (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
3.03±0.20 OUR AVERAGE				
$2.97 \pm 0.17 \pm 0.17$		09Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.9 \pm 0.3 \pm 0.3$				$e^+e^- ightarrow \Upsilon(4S)$
$4.2 \pm 0.7 \pm 0.7$	² LIVENTSEV	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$3.73 \pm 0.85 \pm 0.57$	³ ANASTASSOV	98	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}}$ Uses a simultaneous measurement of all B semileptonic decays without full reconstruction

$\Gamma(\overline{D}'_1(2430)^0\ell^+\nu_\ell, \ \overline{D}'^0_1 \rightarrow D^{*-}\pi^+)/\Gamma_{\text{total}}$

 Γ_{14}/Γ

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
2.7±0.4±0.5		¹ AUBERT	08BL BABR	$e^+e^- ightarrow \gamma(4S)$
147 1 .			c	

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹LIVENTSEV 08 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 90

$\Gamma(\overline{D}_2^*(2460)^0\ell^+\nu_\ell, \overline{D}_2^{*0} \to D^{*-}\pi^+)/\Gamma_{\text{total}}$

 Γ_{15}/Γ

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT		
1.01±0.24 OUR AV	ERAGE	Error includes scale	facto	of 2.0.			
$0.87\!\pm\!0.11\!\pm\!0.07$		$^{ m 1}$ AUBERT	09Y	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.5 \pm 0.2 \pm 0.2$		² AUBERT					
$1.8 \pm 0.6 \pm 0.3$		² LIVENTSEV	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use t	he followi	ng data for averages	s, fits,	limits, e	etc. • • •		
<1.6	90	³ ANASTASSOV	/ 98	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

 $^{^{1}}$ Uses a simultaneous fit of all B semileptonic decays without full reconstruction of events. AUBERT 09Y reports B($B^+ \to \overline{D}_2^*(2460)^0 \ell^+ \nu_\ell$) \cdot B($\overline{D}_2^*(2460)^0 \to D^{(*)} - \pi^+$) = $(2.29\pm0.23\pm0.21)\times10^{-3}$ and the authors have provided us the individual measurement.

 $^{^{2}}$ Uses a fully reconstructed B meson as a tag on the recoil side.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹Uses a fully reconstructed B meson as a tag on the recoil side.

 $^{^2}$ Uses a fully reconstructed B meson as a tag on the recoil side.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}{}^{0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell})/\Gamma(\overline{D}{}^{0}\ell^{+}\nu_{\ell})$	o)				Γ ₁₆ /Γ ₄
•//	DOCUMENT ID		TECN	COMMENT	,
7.1±1.3±0.8	¹ LEES	16		$e^+e^- \rightarrow$	
¹ Measurement used electrons an					(-)
					г /г
$\Gamma(\overline{D}^{*0}\pi^{+}\pi^{-}\ell^{+}\nu_{\ell})/\Gamma(\overline{D}^{*}(20))$					Γ_{17}/Γ_6
<u>VALUE</u> (units 10 ⁻²) 1.4±0.7±0.4	1. ==0		TECN	<u>COMMENT</u> ⊥ _	22(1.5)
_			BABR	$e^+e^- \rightarrow$	7(45)
¹ Measurement used electrons an	id muons as lepto	ns.			
$\Gamma(D_s^{(*)-}K^+\ell^+ u_\ell)/\Gamma_{total}$					Γ ₁₈ /Γ
	DOCUMENT ID		TECN	COMMENT	=0/
VALUE (units 10 ⁻⁴) 6.1 ±1.0 OUR AVERAGE					
$5.9 \pm 1.2 \pm 1.5$	¹ STYPULA	12	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$6.13^{+1.04}_{-1.03} \pm 0.67$	¹ DEL-AMO-SA.	11L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal production of B	$^+$ and B^0 at the	$\Upsilon(4)$	S).		
	u 2 ut t	. (-).		
$\Gamma(D_s^-K^+\ell^+ u_\ell)/\Gamma_{total}$					Γ ₁₉ /Γ
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
$3.0\pm0.9^{+1.1}_{-0.8}$	$^{\mathrm{1}}\mathrm{STYPULA}$	12	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $^{ m B}$	$^{+}$ and B^{0} at the	$\Upsilon(4.$	S).		
$\Gamma(D_s^{*-}K^+\ell^+ u_\ell)/\Gamma_{total}$					Γ ₂₀ /Γ
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
	^{,2} STYPULA				
1.0				e · e →	7 (43)
Assumes equal production of B	$^{+}$ and B^{0} at the	$\Upsilon(4.$	S).	. 000/ CI	C 11
² STYPULA 12 provides also ar data. Also measures branching					
$D_s^{*-}K^+\ell^+ u_\ell$ as $B(B^+ o D_s^-)$				3	-
D_{s} K \cdot ℓ \cdot $ u_{\ell}$ as B(B \cdot $ ightarrow$ L	$\kappa \sim \kappa \cdot \ell \cdot \nu_{\ell}$	= (5.	9 ± 1.2	\pm 1.5) \times 10	·.
$\Gamma(\pi^0\ell^+ u_\ell)/\Gamma_{ ext{total}}$ "OUR EVALUATION" is an	average using re	scaled	d values	of the data	Γ ₂₁ /Γ
The average and rescaling					
(HFLAV) and are described					•
aging/rescaling procedure tal		correla			neasurements.
VALUE (units 10 ⁻⁴) 0.780 ± 0.027 OUR EVALUATION	DOCUMENT ID		TECN	COMMENT	
0.748±0.029 OUR AVERAGE					
$0.80 \pm 0.08 \pm 0.04$	¹ SIBIDANOV	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.77\ \pm0.04\ \pm0.03$	² LEES	12A	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$0.705 \pm 0.025 \pm 0.035$	³ DEL-AMO-SA.	.110	BABR	e^+e^-	$\Upsilon(4S)$
$0.82\ \pm0.09\ \pm0.05$	³ AUBERT	08AV		$e^+e^- \rightarrow$	
$0.77 \pm 0.14 \pm 0.08$	⁴ HOKUUE	07		$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following					
$0.74 \pm 0.05 \pm 0.10$	⁵ AUBERT,B	050	BABR	Repl. by D SANCH	EL-AMO- EZ 11C
HTTP://PDG.LBL.GOV	Page 27		Creat	ed: 5/30/	2017 17:22

$\Gamma(\pi^0 e^+ \nu_e) / \Gamma_{\text{total}}$

 Γ_{22}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
• • • We do not use th	e following	data for averages, fits,	limits,	etc. • • •
$0.9 \pm 0.2 \pm 0.2$		¹ ALEXANDER 96T	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<22	90	ANTREASYAN 90B	CBAL	$e^+e^- \rightarrow \Upsilon(4S)$
$^{ m 1}$ Derived based in t	he reported	I B^0 result by assum	ing isos	pin symmetry: $\Gamma(B^0 \rightarrow$
$\pi^-\ell^+\nu$)= $2\Gamma(B^+$	$\rightarrow \pi^0 \ell^+ \nu$).		

 $\Gamma(\eta \ell^+ \nu_\ell)/\Gamma_{ ext{total}}$ Γ_{23}/Γ

VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT
0.38 ± 0.06 OUR AVER	RAGE	·			
$0.38\!\pm\!0.05\!\pm\!0.05$		¹ LEES			$e^+e^- ightarrow \gamma(4S)$
$0.31\!\pm\!0.06\!\pm\!0.08$					$e^+e^- ightarrow \gamma(4S)$
$0.64 \pm 0.20 \pm 0.03$		² AUBERT	08 AV	BABR	$e^+e^- ightarrow \gamma(4S)$
● ● We do not use the	following	data for averages	fits,	limits, e	tc. • • •
$0.36\!\pm\!0.05\!\pm\!0.04$		¹ DEL-AMO-SA	.11F	BABR	Repl. by LEES 12AA
<1.01	90	³ ADAM	07	CLE2	$e^+e^- ightarrow \gamma(4S)$
$0.84 \pm 0.31 \pm 0.18$		⁴ ATHAR	03	CLE2	Repl. by ADAM 07

¹ Uses loose neutrino reconstruction technique. Assumes B($\Upsilon(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}{}^0$) = (48.4 \pm 0.6)%. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^4}$ ATHAR 03 reports systematic errors 0.16 \pm 0.09, which are experimental systematic and systematic due to model dependence. We combine these in quadrature.

$\Gamma(\eta'\ell^+$	$(u_\ell)/\Gamma_{to}$	tal
----------------------	-------------------------	-----

 Γ_{24}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
0.23±0.08 OUR AVERAGE				
$0.24 \pm 0.08 \pm 0.03$	¹ LEES	12 AA	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.04\!\pm\!0.22^{+0.05}_{-0.02}$	² AUBERT	08AV	BABR	$e^+e^- ightarrow \gamma(4S)$
$2.66 \pm 0.80 \pm 0.56$	³ ADAM	07	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	data for averages	, fits,	limits, e	tc. • • •
$0.24 \pm 0.08 \pm 0.03$	¹ DEL-AMO-SA	.11F	BABR	Repl. by LEES 12AA
1 Hear lance noutring reconstruct	ion tochnique Acc	umoc	B(V(AC	$(1) P + P - 1 - (51.6 \pm 1)$

¹ Uses loose neutrino reconstruction technique. Assumes B($Y(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($Y(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 \pm 0.6)%. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{}m 1}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic

² Uses loose neutrino reconstruction technique. Assumes B($Y(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($Y(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6) %.

 $^{^3}$ Using the isospin symmetry relation, B^+ and B^0 branching fractions are combined.

 $^{^4}$ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

 $^{^5}B^+$ and B^0 decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

 $^{^3}$ The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4S)$.

 $^{^3}$ The B^0 and B^+ results are combined assuming the isospin, B lifetimes, and relative charged/neutral B production at the $\Upsilon(4S)$. Corresponds to 90% CL interval $(1.20-4.46) \times 10^{-4}$.

 $\Gamma(\omega \ell^+ \nu_\ell)/\Gamma_{\text{total}}$ Γ_{25}/Γ

n	_		4	 	_	1	modes.

<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT		
1.19±0.09 OUR AVE	RAGE						
$1.21\!\pm\!0.14\!\pm\!0.08$		1,2 LEES	13A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.35\!\pm\!0.21\!\pm\!0.11$		³ LEES	13T	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.07\!\pm\!0.16\!\pm\!0.07$		⁴ SIBIDANOV	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.19\!\pm\!0.16\!\pm\!0.09$		^{2,5} LEES	12AA	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$1.3 \pm 0.4 \pm 0.4$		⁶ SCHWANDA	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
• • • We do not use th	ne followin	g data for averages	s, fits,	limits, e	etc. • • •		
		2					

$$1.14\pm0.16\pm0.08$$
 2 AUBERT 09Q BABR Repl. by LEES 13A <2.1 90 7 BEAN 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$

$$\Gamma(\omega \mu^+
u_\mu)/\Gamma_{\mathsf{total}}$$
 $\Gamma_{\mathsf{26}}/\Gamma$

VALUE DOCUMENT ID TECN

• • • We do not use the following data for averages, fits, limits, etc. • •

$$\Gamma(
ho^0\ell^+
u_\ell)/\Gamma_{ ext{total}}$$
 $\ell=e ext{ or } \mu, ext{ not sum over } e ext{ and } \mu ext{ modes.}$

"OUR EVALUATION" is an average using re

"OUR EVALUATION" is an average using rescaled values of the data listed below. The average and rescaling were performed by the Heavy Flavor Averaging Group (HFLAV) and are described at http://www.slac.stanford.edu/xorg/hflav/. The averaging/rescaling procedure takes into account correlations between the measurements and asymmetric lifetime errors.

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
1.58±0.11 OUR E	VALUATI(ON				
1.42±0.23 OUR A	VERAGE	Error includes scale	facto	r of 2.4.	See the ide	ogram below.
$1.83\!\pm\!0.10\!\pm\!0.10$		¹ SIBIDANOV	13	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.94\!\pm\!0.08\!\pm\!0.14$		² DEL-AMO-SA.	.110	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.33\!\pm\!0.23\!\pm\!0.18$		³ HOKUUE	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.34\!\pm\!0.15\!+\!0.28\atop-0.32$		⁴ BEHRENS	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV Page 29 Created: 5/30/2017 17:22

¹ LEES 13A reports (1.21 \pm 0.14 \pm 0.08) \times 10⁻⁴ from a measurement of [$\Gamma(B^+ \to \omega \ell^+ \nu_\ell)/\Gamma_{\text{total}}$] \times [B(ω (782) $\to \pi^+ \pi^- \pi^0$)] assuming B(ω (782) $\to \pi^+ \pi^- \pi^0$) = (89.2 \pm 0.7) \times 10⁻².

² Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

³ Uses semileptonic tagging. Assumes $B(\omega \to \pi^+\pi^-\pi^0) = (89.2 \pm 0.7)\%$ and that the production ratio of B^+B^- to $B^0\overline{B}{}^0$ from $\Upsilon(4S)$ is 1.056 ± 0.028 . The partial branching fractions in three bins of q^2 are also reported.

⁴ The signal events are tagged by a second *B* meson reconstructed in the fully hadronic decays.

Uses loose neutrino reconstruction technique.

⁶ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁷ BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\rho^0\ell^+\nu_\ell)$ and $\Gamma(\rho^-\ell^+\nu_\ell)$ with this result, they obtain a limit <(1.6– $2.7)\times10^{-4}$ at 90% CL for $B^+\to\omega\ell^+\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<0.8$ –0.13 at 90% CL is derived as well.

seen

ALBRECHT 91C ARG

In ALBRECHT 91C one event is fully reconstructed providing evidence for the

 $^{^1}$ In ALBRECHT 91C, one event is fully reconstructed providing evidence for the b oup u transition.

• • We do not use the following data for averages, fits, limits, etc. • •

⁴ Derived based in the reported B^0 result by assuming isospin symmetry: $\Gamma(B^0 \to \rho^- \ell^+ \nu) = 2\Gamma(B^+ \to \rho^0 \ell^+ \nu) \approx 2\Gamma(B^+ \to \omega \ell^+ \nu)$.

⁵BEAN 93B limit set using ISGW Model. Using isospin and the quark model to combine $\Gamma(\omega^0\ell^+\nu_\ell)$ and $\Gamma(\rho^-\ell^+\nu_\ell)$ with this result, they obtain a limit <(1.6–2.7) \times 10⁻⁴ at 90% CL for $B^+\to\rho^0\ell^+\nu_\ell$. The range corresponds to the ISGW, WSB, and KS models. An upper limit on $|V_{ub}/V_{cb}|<$ 0.8–0.13 at 90% CL is derived as well.

$$\Gamma(p\overline{p}\ell^+\nu_\ell)/\Gamma_{ ext{total}}$$
 $\Gamma_{28}/\Gamma_{ ext{28}/\Gamma}$ $\Gamma_{28}/\Gamma_{ ext{28}/$

 $^{^{1}}$ The signal events are tagged by a second B meson reconstructed in the fully hadronic decays.

 $^{^2\,}B^+$ and B^0 decays combined assuming isospin symmetry. Systematic errors include both experimental and form-factor uncertainties.

³ The signal events are tagged by a second B meson reconstructed in the semileptonic mode $B \to D^{(*)} \ell \nu_{\ell}$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(p\overline{p}e^+\nu_e)/\Gamma_{\text{total}}$

 Γ_{30}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$8.2^{+3.7}_{-3.2}\pm0.6$		¹ TIEN	14	BELL	$e^+e^- ightarrow \gamma(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

< 5200

90

² ADAM

03B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(e^+\nu_e)/\Gamma_{\rm total}$

 Γ_{31}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
< 0.98	90	$^{ m 1}$ SATOYAMA	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
< 3.5	90	² YOOK	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 8	90	¹ AUBERT	10E	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
< 1.9	90	¹ AUBERT	09V	BABR	e^+e^-	$\Upsilon(4S)$
< 5.2	90	¹ AUBERT	08 AD	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<15	90	ARTUSO	95	CLE2	e^+e^-	$\Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$\Gamma\big(\mu^+\,\nu_\mu\big)/\Gamma_{\rm total}$

 Γ_{32}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
< 1.0	90	¹ AUBERT	09V	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •
< 2.7	90	² YOOK	15	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<11	90	¹ AUBERT	10E	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
< 5.6	90	$^{ m 1}$ AUBERT	08AE	BABR	$e^+e^- ightarrow \Upsilon(4S)$
< 1.7	90	$^{ m 1}$ SATOYAMA	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 6.6	90	AUBERT	040	BABR	Repl. by AUBERT 09V
<21	90	ARTUSO	95	CLF2	$e^+e^- \rightarrow \gamma(45)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Based on phase-space model; if V-A model is used, the 90% CL upper limit becomes $< 1.2 \times 10^{-3}$.

 $^{^2}$ Assumes B($\varUpsilon(4S) \rightarrow ~B^+\,B^-) = 0.513 \pm 0.006$.

² Assumes B($\Upsilon(4S) \rightarrow B^+B^-$) = 0.513 ± 0.006.

 $\Gamma(au^+
u_ au)/\Gamma_{ ext{total}}$

See the note on "Decay Constants of Charged Pseudoscalar Mesons" in the D_s^+ Listings.

VALUE (units 10^{-4}) CL%	DOCUMENT ID		TECN	COMMENT	
1.09±0.24 OUR AVER	AGE Error includes	s scale f	factor of	1.2.	
$1.25\!\pm\!0.28\!\pm\!0.27$	1,2 KRONENBIT	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.72 {+0.27\atop -0.25} \pm 0.11$	³ HARA	13	BELL	$e^+e^-\to$	$\Upsilon(4S)$
$1.83^{igoplus 0.53}_{-0.49}\!\pm\!0.24$	^{2,4} LEES	13K	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.7 \pm 0.8 \pm 0.2$	^{2,5} AUBERT	10E	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

	$1.54 {+0.38}_{-0.37} {+0.29}_{-0.31}$		^{2,6} HARA	10	BELL	Repl. by KRONENBIT- TER 15
	$1.8 \ ^{+0.9}_{-0.8} \ \pm 0.45$		^{2,7} AUBERT	08 D	BABR	Repl. by LEES 13K
	$0.9 \pm 0.6 \pm 0.1$		^{2,5} AUBERT	07AL	BABR	Repl. by AUBERT 10E
<	2.6	90	² AUBERT	06K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
	$1.79^{+0.56+0.46}_{-0.49-0.51}$		^{2,7} IKADO	06	BELL	Repl. by HARA 13
<	4.2	90	² AUBERT,B	05 B	BABR	Repl. by AUBERT 06K
<	8.3	90	⁸ BARATE	01E	ALEP	$e^+e^- \rightarrow Z$
<	8.4	90	² BROWDER	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	5.7	90	⁹ ACCIARRI	97F	L3	$e^+e^- \rightarrow Z$
<1	04	90	¹⁰ ALBRECHT	95 D	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 1	22	90	ARTUSO	95	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
<	18	90	¹¹ BUSKULIC	95	ALEP	$e^+e^- \rightarrow Z$

¹Requires one reconstructed semileptonic B decay $B^- \to D^{(*)0} \ell^- \overline{\nu}_{\ell}$ in the recoil.

¹¹ BUSKULIC 95 uses same missing-energy technique as in $\overline{b} \to \tau^+ \nu_{\tau} X$, but analysis is restricted to endpoint region of missing-energy distribution.

$\Gamma(\ell^+ u_\ell\gamma)/\Gamma_{ m total}$						Γ_{34}/Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 3.5 \times 10^{-6}$	90	¹ HELLER	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
$<15.6 \times 10^{-6}$	90	¹ AUBERT	09AT	BABR	$e^+e^- \to$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³The authors combine their result with that from HARA 10 obtaining B($B^- \to \tau^- \overline{\nu}_{\tau}$)=(0.96 \pm 0.26) \times 10⁻⁴ and deriving $f_B |V_{ub}|$ =(7.4 \pm 0.8 \pm 0.5) \times 10⁻⁴ GeV.

⁴ Requires a fully reconstructed hadronic *B*-decay in the recoil. Reports that this result combined with AUBERT 10E value gives B($B^- \to \tau^- \overline{\nu}_{\tau}$) = (1.79 ± 0.48) × 10⁻⁴.

 $^{^5}$ Requires one reconstructed semileptonic B decay $B^- \to D^0 \ell^- \overline{\nu}_\ell X$ in the recoil.

⁶ Requires one reconstructed semileptonic B decay $B^- o D^{(*)0} \ell^- \overline{\nu}_\ell X$ in the recoil.

⁷ The analysis is based on a sample of events with one fully reconstructed tag B in a hadronic decay mode $B^- \to D^{(*)0} X^-$.

 $^{^8}$ The energy-flow and b-tagging algorithms were used.

⁹ ACCIARRI 97F uses missing-energy technique and $f(b \rightarrow B^-) = (38.2 \pm 2.5)\%$.

 $^{^{10}}$ ALBRECHT 95D uses full reconstruction of one B decay as tag.

$\Gamma(e^+ u_e\gamma)/\Gamma_{ m total}$						Γ ₃₅ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 6.1 \times 10^{-6}$	90	¹ HELLER	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use t	he followir	ng data for averages	s, fits,	, limits, e	etc. • • •	
$< 17 \times 10^{-6} $ $< 200 \times 10^{-6}$	90 90	¹ AUBERT ² BROWDER			$e^+e^- \rightarrow e^+e^- \rightarrow$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² BROWDER 97 uses the hermiticity of the CLEO II detector to reconstruct the neutrino energy and momentum.

$\Gamma(\mu^+ u_\mu\gamma)/\Gamma_{ m total}$						Г ₃₆ /Г
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 3.4 \times 10^{-6}$	90	$^{ m 1}$ HELLER	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	the followi	ng data for averages	, fits,	, limits, e	etc. • • •	
$< 24 \times 10^{-6}$	90	^{1,2} AUBERT			e^+e^-	
$<$ 52 \times 10 ⁻⁶	90	³ BROWDER	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		_				

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(D^0X)/\Gamma_{\text{total}}$ Γ_{37}/Γ

 $0.086 \pm 0.006 \pm 0.004$ 1 AUBERT $0.086 \pm 0.006 \pm 0.004$ 1 AUBERT $0.086 \pm 0.006 \pm 0.004$ $0.086 \pm 0.006 \pm 0.004$

 $0.098 \pm 0.009 \pm 0.006$ 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(\overline{D}{}^0X)/\Gamma_{ ext{total}}$ $ext{DOCUMENT ID}$ $ext{TECN}$ COMMENT

0.786 \pm 0.016 ^{+0.034}_{-0.033} 1 AUBERT 07N BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.793 \pm 0.025 ^{+0.045}_{-0.044}$ 1 AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $\Gamma(D^0X)/[\Gamma(D^0X)+\Gamma(\overline{D}^0X)]$ $\Gamma_{37}/(\Gamma_{37}+\Gamma_{38})$

VALUEDOCUMENT IDTECNCOMMENT0.098 \pm 0.007 \pm 0.001AUBERT07NBABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.110\pm0.010\pm0.003$ AUBERT,BE 04B BABR Repl. by AUBERT 07N

² Note that the value given by Aubert 2009 is 24 E-6 in the paper abstract, and 26 E-6 in the paper itself (Table I).

³ BROWDER 97 uses the hermiticity of the CLEO II detector to reconstruct the neutrino energy and momentum.

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

¹ Events are selected by completely reconstructing one *B* and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

¹ Events are selected by completely reconstructing one *B* and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

$\Gamma(D^+X)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Г 39/ Г
$0.025 \pm 0.005 \pm 0.002$				$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the following				
$0.038 \pm 0.009 \pm 0.005$	¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
¹ Events are selected by comple charmed particle in the rest o branching ratio uncertainties.	tely reconstructing f the event. The la	one <i>B</i> ast err	and sea or inclu	rching for a reconstructed des systematic and charm
$\Gamma(D^-X)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₄₀ /Γ
$0.099 \pm 0.008 \pm 0.009$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the followin	-			
$0.098 \pm 0.012 \pm 0.014$				Repl. by AUBERT 07N
¹ Events are selected by comple charmed particle in the rest o branching ratio uncertainties.				
$\Gamma(D^+X)/[\Gamma(D^+X)+\Gamma(D^-X)]$	DOCUMENT ID		TECN	$\Gamma_{39}/(\Gamma_{39}+\Gamma_{40})$
0.204 ± 0.035 ± 0.001 • • • We do not use the followin				$e^+e^- ightarrow~ \varUpsilon(4S)$ etc. $ullet$ $ullet$
$0.278\!\pm\!0.052\!\pm\!0.009$	_			Repl. by AUBERT 07N
$\Gamma(D_s^+X)/\Gamma_{\text{total}}$ VALUE	DOCUMENT ID		<u>TECN</u>	Γ₄₁/Γ
$0.079 \pm 0.006 ^{+0.013}_{-0.011}$	·			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the followin				,
$0.143\!\pm\!0.016\!+\!0.051\atop-0.034$				Repl. by AUBERT 07N
Events are selected by comple charmed particle in the rest o branching ratio uncertainties.				
$\Gamma(D_s^-X)/\Gamma_{\text{total}}$	DOCUMENT ID		TECN	Γ ₄₂ /Γ
<u>VALUE</u> <u>CL%</u>	DOCUMENT ID			
$0.011^{+0.004}_{-0.003}^{+0.002}_{-0.001}$	¹ AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the followin <0.022 90				etc. • • • Repl. by AUBERT 07N
1 Events are selected by comple charmed particle in the rest of branching ratio uncertainties.	tely reconstructing	one B	and sea	rching for a reconstructed
$\Gamma(D_s^+X)/[\Gamma(D_s^+X)+\Gamma(D_s^+X)]$	DOCUMENT ID		TECN	$\Gamma_{41}/(\Gamma_{41}+\Gamma_{42})$
$0.884 \pm 0.038 \pm 0.002$	AUBERT	07N	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the followin	_			
$0.966 \pm 0.039 \pm 0.012$	AUBEK I ,BE	U4 B	BABK	Repl. by AUBERT 07N
HTTP://PDG.LBL.GOV	Page 34		Creat	red: 5/30/2017 17:22

$\Gamma(D_s^- X)/[\Gamma(D_s^+ X)]$) + Γ(<i>D</i> =	x)]			$\Gamma_{42}/(\Gamma_{41}+\Gamma_{42})$
	CL%	DOCUMENT ID		TECN	
<0.126	90	AUBERT,BE			$e^+e^- \rightarrow \Upsilon(4S)$
$\Gamma(\Lambda_c^+ X)/\Gamma_{\text{total}}$					Γ ₄₃ /Γ
VALUE		DOCUMENT ID			
$0.021 \pm 0.005 ^{+0.008}_{-0.004}$		¹ AUBERT	07N	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
• • • We do not use t	he following	data for average	s, fits,	limits, e	etc. • • •
$0.029\!\pm\!0.008\!+\!0.011\\-0.007$		¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
	the rest of				rching for a reconstructed des systematic and charm
$\Gamma(\overline{\Lambda}_c^- X)/\Gamma_{\text{total}}$					Γ ₄₄ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
$0.028 \pm 0.005 ^{+0.010}_{-0.007}$		$^{ m 1}$ AUBERT	07N	BABR	$e^+e^- ightarrow \gamma(4S)$
● ● ● We do not use t	he following	data for average	s, fits,	limits, 6	etc. • • •
$0.035\!\pm\!0.008\!+\!0.013\\-0.009$		¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
¹ Events are selected charmed particle in branching ratio unc	the rest of	ely reconstructing the event. The l	one <i>B</i> ast err	and sea or includ	rching for a reconstructed des systematic and charm
$\Gamma(\Lambda_c^+ X)/[\Gamma(\Lambda_c^+ X)]$	$+\Gamma(\overline{\Lambda}_c^-)$	DOCUMENT ID		TECN	$\Gamma_{43}/(\Gamma_{43}+\Gamma_{44})$
$0.427 \pm 0.071 \pm 0.001$		AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	he following				· ,
$0.452 \pm 0.090 \pm 0.003$		AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
$\Gamma(\overline{c}X)/\Gamma_{\text{total}}$					Γ ₄₅ /Γ
VALUE		DOCUMENT ID		TECN	COMMENT
$0.968 \pm 0.019 ^{+0.041}_{-0.039}$		¹ AUBERT	07N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	he following	data for average	s, fits,	limits, e	etc. • • •
$0.983 \pm 0.030 {+0.054 \atop -0.051}$		¹ AUBERT,BE	04 B	BABR	Repl. by AUBERT 07N
¹ Events are selected charmed particle in branching ratio unc	the rest of	ely reconstructing the event. The I	one <i>B</i> ast err	and sea or includ	rching for a reconstructed des systematic and charm
$\Gamma(cX)/\Gamma_{\text{total}}$		DOCUMENT ID		TECN	Γ ₄₆ /Γ
$0.234\pm0.012^{+0.018}_{-0.014}$					$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the	he following				
$0.330 \pm 0.022 {+0.055 \atop -0.037}$					Repl. by AUBERT 07N
	the rest of				rching for a reconstructed des systematic and charm

HTTP://PDG.LBL.GOV Page 35 Created: 5/30/2017 17:22

 $\Gamma(c/\overline{c}X)/\Gamma_{\text{total}}$ Γ_{47}/Γ TECN COMMENT ¹ AUBERT 07N BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $1.313 \pm 0.037 {+0.088 \atop -0.075}$ ¹ AUBERT,BE 04B BABR Repl. by AUBERT 07N

 $^{^{1}}$ Events are selected by completely reconstructing one B and searching for a reconstructed charmed particle in the rest of the event. The last error includes systematic and charm branching ratio uncertainties.

ū						
$\Gamma(\overline{D}{}^0\pi^+)/\Gamma_{ m total}$						Γ ₄₈ /Γ
$VALUE$ (units 10^{-3})	EVTS	DOCUMENT ID		TECN	COMMENT	
4.80±0.15 OUR FIT	-					
4.83 ± 0.15 OUR AVER	AGE					
$4.90\!\pm\!0.07\!\pm\!0.22$		$^{ m 1}$ AUBERT				
$5.0 \pm 0.6 \pm 0.3$		² ABULENCIA				
$4.49\!\pm\!0.21\!\pm\!0.23$		³ AUBERT,BE	06 J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.97\!\pm\!0.12\!\pm\!0.29$		^{1,4} AHMED	02 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$5.0 \pm 0.7 \pm 0.6$	54	⁵ BORTOLETTO) 92	CLEO	$e^+e^- \rightarrow $	$\Upsilon(4S)$
$5.4 \begin{array}{c} +1.8 & +1.2 \\ -1.5 & -0.9 \end{array}$	14	⁶ BEBEK	87	CLEO	$e^+e^- \rightarrow $	Υ(4 <i>S</i>)

• • We do not use the following data for averages, fits, limits, etc. • •

$4.74 \pm 0.26 \pm 0.05$		⁷ AUBERT,B	04 P	BABR	Repl. by AUBERT 07H
$5.5 \pm 0.4 \pm 0.5$	304	⁸ ALAM			Repl. by AHMED 02B
$2.0 \pm 0.8 \pm 0.6$	12	⁵ ALBRECHT	90J	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
$1.9 \pm 1.0 \pm 0.6$	7	⁹ ALBRECHT	88K	ARG	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ABULENCIA 06J reports $\left[\Gamma(B^+ \to \overline{D}^0 \pi^+)/\Gamma_{\text{total}}\right]/\left[B(B^0 \to D^- \pi^+)\right] = 1.97 \pm 1.97$ 0.10 ± 0.21 which we multiply by our best value B($B^0 \rightarrow D^- \pi^+$) = (2.52 \pm 0.13) \times 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

³Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

 $^{^4}$ AHMED 02B reports an additional uncertainty on the branching ratios to account for 4.5% uncertainty on relative production of B^0 and B^+ , which is not included here.

⁵ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses the Mark III branching fractions for the D.

 $^{^6\,\}mathrm{BEBEK}$ 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

⁷ AUBERT,B 04P reports $[\Gamma(B^+ \to \overline{D}{}^0\pi^+)/\Gamma_{\text{total}}] \times [B(D^0 \to \kappa^-\pi^+)] = (1.846 \pm 1.846)$ 0.032 ± 0.097) \times 10^{-4} which we divide by our best value B($D^0 \rightarrow K^- \pi^+$) = (3.89 \pm $0.04) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^8}$ ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II absolute B($D^0 \rightarrow K^- \pi^+$) and the PDG 1992 B($D^0 \rightarrow K^- \pi^+ \pi^0$)/B($D^0 \rightarrow K^- \pi^+$) and B($D^0 \to K^- 2\pi^+ \pi^-$)/B($D^0 \to K^- \pi^+$). ⁹ ALBRECHT 88K assumes $B^0 \overline{B}{}^0 : B^+ B^-$ ratio is 45:55. Superseded by ALBRECHT 90J.

 $\Gamma(\overline{D}^0 \rho^+)/\Gamma_{\text{total}}$ Γ_{51}/Γ **EVTS** TECN COMMENT 0.0134±0.0018 OUR AVERAGE ¹ ALAM $0.0135 \pm 0.0012 \pm 0.0015$ CLE2 19 ² ALBRECHT 90J ARG $0.013 \pm 0.004 \pm 0.004$ • • We do not use the following data for averages, fits, limits, etc. ³ ALBRECHT $0.021\ \pm0.008\ \pm0.009$ 88K ARG 1 ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II absolute B($D^0
ightarrow K^- \pi^+$) and the PDG 1992 B($D^0
ightarrow K^- \pi^+ \pi^0$)/B($D^0
ightarrow K^- \pi^+$) and B($D^0 \to K^- 2\pi^+\pi^-$)/B($D^0 \to K^-\pi^+$). ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses the Mark III branching fractions for the D.

3 ALBRECHT 88K assumes $B^0 \overline{B}{}^0:B^+B^-$ ratio is 45:55.

$\Gamma(\overline{D}{}^0K^+)/\Gamma(\overline{D}{}^0\pi^+)$

 Γ_{52}/Γ_{48}

, ,, ,				· · · · · · · · · · · · · · · · · · ·
$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT
7.80±0.22 OUR AVERAGE	Error includes scale	e facto	or of 1.8.	See the ideogram below.
$7.79 \pm 0.06 \pm 0.19$	AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV
$7.93\!\pm\!0.10\!\pm\!0.18$	$^{ m 1}$ AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV
$6.77 \pm 0.23 \pm 0.30$	HORII	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.31 \pm 0.35 \pm 0.20$	AUBERT	04N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$9.9 \begin{array}{c} +1.4 & +0.7 \\ -1.2 & -0.6 \end{array}$	BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for avera	ages, f	its, limit	s, etc. • • •
$7.71 \pm 0.17 \pm 0.26$	¹ AAIJ	13AE	LHCB	Repl. by AAIJ 16L
$7.74 \pm 0.12 \pm 0.19$	AAIJ	12M	LHCB	Repl. by AAIJ 16L
$9.4 \pm 0.9 \pm 0.7$	ABE	03 D	BELL	Repl. by SWAIN 03
$7.7 \pm 0.5 \pm 0.6$	SWAIN	03	BELL	Repl. by HORII 08
$7.9 \pm 0.9 \pm 0.6$	ABE	011	BELL	Repl. by ABE 03D
$5.5 \pm 1.4 \pm 0.5$	ATHANAS	98	CLE2	Repl. by BORNHEIM 03

WEIGHTED AVERAGE 7.80±0.22 (Error scaled by 1.8)

HTTP://PDG.LBL.GOV

Page 37

```
<sup>1</sup>Uses B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}]_{D}h^{\pm} mode.
\Gamma(D_{CP(+1)}K^+)/\Gamma(D_{CP(+1)}\pi^+)
                                                                                                                        \Gamma_{53}/\Gamma_{49}
0.088 ± 0.007 OUR AVERAGE
                                                 ^{1,2}\,\mathrm{ABE}
                                                                                      BELL
                                                                                                  e^+e^- \rightarrow \Upsilon(4S)
0.088 \pm 0.008 \pm 0.003
                                                    <sup>3</sup> AUBERT
                                                                              04N BABR e^+e^- \rightarrow \Upsilon(4S)
0.088 \pm 0.016 \pm 0.005
• • • We do not use the following data for averages, fits, limits, etc. •
                                                    <sup>3</sup> ABE
0.125 \pm 0.036 \pm 0.010
                                                                              03D BELL Repl. by SWAIN 03
                                                    3 SWAIN
0.093 \pm 0.018 \pm 0.008
                                                                              03 BELL Repl. by ABE 06
   ^1 Reports a double ratio of B(B^+ 	o D_{CP(+1)}K^+)/B(B^+ 	o D_{CP(+1)}\pi^+) and
     {\rm B}(B^+ \to \overline{D}{}^0 K^+)/{\rm B}(B^+ \to \overline{D}{}^0 \pi^+), 1.13 \pm 0.16 \pm 0.08. We multiply by our best
     value of B(B^+ \to \overline{D}{}^0 K^+)/B(B^+ \to \overline{D}{}^0 \pi^+) = 0.083 \pm 0.006. Our first error is their experiment's error and the second error is systematic error from using our best value.
   <sup>2</sup> ABE 06 reports [\Gamma(B^+ \rightarrow D_{CP(+1)}K^+)/\Gamma(B^+ \rightarrow D_{CP(+1)}\pi^+)] / [\Gamma(B^+ \rightarrow D_{CP(+1)}K^+)]
     \overline{D}^0 K^+)/\Gamma(B^+ \to \overline{D}^0 \pi^+)] = 1.13 \pm 0.06 \pm 0.08 which we multiply by our best value
     \Gamma(B^+ \to \overline{D}{}^0 K^+)/\Gamma(B^+ \to \overline{D}{}^0 \pi^+) = 0.0780 \pm 0.0022. Our first error is their experiment's error and our second error is the systematic error from using our best value.
   ^3 CP=+1 eigenstate of D^0\overline{D}^0 system is reconstructed via K^+K^- and \pi^+\pi^-.
```

$\Gamma(D_{CD(++)},K^+)/\Gamma(\overline{D}{}^0K^+)$

Г-- /Г--

$I(D_{CP(+1)} \times)/I(D_{\circ} \times)$)		1 53/1 52
VALUE	DOCUMENT ID	TECN	COMMENT
0.497±0.025 OUR AVERAGE		actor of 1.9	9.
$0.489 \pm 0.010 \pm 0.009$			<i>pp</i> at 7, 8 TeV
$0.65 \pm 0.12 \pm 0.06$	² AALTONEN 10		
$0.590 \pm 0.045 \pm 0.025$	³ DEL-AMO-SA10	G BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the follow	ing data for averages,	fits, limits,	, etc. • • •
$0.504 \pm 0.019 \pm 0.006$	⁴ AAIJ 12	2м LНСВ	Repl. by AAIJ 16L
$0.53 \pm 0.05 \pm 0.025$	AUBERT 08	BAA BABR	Repl. by DEL-AMO- SANCHEZ 10G
$0.45 \pm 0.06 \pm 0.02$	AUBERT 06	J BABR	Repl. by AUBERT 08AA
1 AAIJ 16L reports $\mathit{R}_{CP+}=$			
2 Reports $R_{CP+}=2$ (B(E	$B^- \rightarrow D_{CP(+1)}K^-$	+ B(B	$^+ \rightarrow D_{CP(+1)}K^+)) /$
$(B(B^- \to D^0 K^-) + B($	$B^+ \rightarrow \overline{D}^0 K^+)) = 1$	1.30 ± 0.2	4 ± 0.12 that we have di-
vided by 2.			
3 Reports $R_{CP+}=1.18\pm 0$).09 \pm 0.05 that we ha	ve divided	by 2.

 $[\]Gamma\big(D_{CP(-1)}K^+\big)/\Gamma\big(D_{CP(-1)}\pi^+\big)$

 Γ_{54}/Γ_{50}

Created: 5/30/2017 17:22

<u>VALUE</u>	DOCUMENT IL)	TECN	COMMENT		
$0.097 \pm 0.016 \pm 0.007$	¹ ABE	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the follo	wing data for averag	ges, fits,	limits,	etc. • • •		
$0.119\!\pm\!0.028\!\pm\!0.006$	² ABE	03 D	BELL	Repl. by SWAIN 03		
$0.108 \pm 0.019 \pm 0.007$	² SWAIN	03	BELL	Repl. by ABE 06		

 4 AAIJ 12M reports $R_{CP+}=1.007\pm0.038\pm0.012$ which we have divided by 2.

 1 Reports a double ratio of B(B+ \rightarrow $D_{CP(-1)}K^+)/{\rm B}(B^+ \rightarrow$ $D_{CP(-1)}\pi^+)$ and B(B+ \rightarrow $\overline{D}{}^0K^+)/{\rm B}(B^+ \rightarrow$ $\overline{D}{}^0\pi^+), \ 1.17 \pm 0.14 \pm 0.14.$ We multiply by our best value of B(B+ \rightarrow $\overline{D}{}^0K^+)/{\rm B}(B^+ \rightarrow$ $\overline{D}{}^0\pi^+) = 0.083 \pm 0.006.$ Our first error is their experiment's error and the second error is systematic error from using our best value. 2 $CP{=}{-}1$ eigenstate of $D^0\,\overline{D}{}^0$ system is reconstructed via $K_S^0\pi^0,\ K_S^0\omega,\ K_S^0\phi,\ K_S^0\eta,$ and $K_S^0\eta'.$

$\Gamma(D_{CP(-1)}K^+)/\Gamma(\overline{D}{}^0K^+)$

 Γ_{54}/Γ_{52}

· (- CP(=1)···)/· (- ··	,		- 3-7 - 32
VALUE	DOCUMENT ID	TECN	COMMENT
$0.54 \pm 0.04 \pm 0.02$	¹ DEL-AMO-SA10	G BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	owing data for averages,	fits, limits,	etc. • • •
$0.515 \pm 0.05 \pm 0.025$	AUBERT 08	BAA BABR	Repl. by DEL-AMO- SANCHEZ 10G
$0.43\ \pm0.05\!\pm\!0.02$	AUBERT 06	J BABR	Repl. by AUBERT 08AA
1 Reports $R_{CD\perp}=1.07~\pm$	\pm 0.08 \pm 0.04 that we had	ve divided	by 2.

$\Gamma([K^-\pi^+]_DK^+)/\Gamma_{\text{total}}$

 Γ_{55}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.8 \times 10^{-7}$	90	HORII	80	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$	
• • • We do not use th	e following	data for average	es, fits,	limits,	etc. • • •	
$< 6.3 \times 10^{-7}$	90	SAIGO	05	BELL	$e^+e^- ightarrow \gamma(4S)$	

$\Gamma([K^-\pi^+]_DK^+)/\Gamma([K^+\pi^-]_DK^+)$ VALUE (units 10⁻³) CL% DOCUMENT ID

 Γ_{55}/Γ_{56}

Created: 5/30/2017 17:22

V	ALUE (units 10 °)	CL 70	DOCUMENT ID		TECN	COMMENT
	18.3±1.4 OUR AVE	ERAGE				
	$18.8 \pm 1.1 \pm 1.0$		AAIJ			<i>pp</i> at 7, 8 TeV
	$22.0\!\pm\!8.6\!\pm\!2.6$		$^{ m 1}$ AALTONEN	11 AJ	CDF	$p\overline{p}$ at 1.96 TeV
	$16.3 + 4.4 + 0.7 \\ -4.1 - 1.3$		HORII	11	BELL	$e^+e^- ightarrow \ \varUpsilon(4S)$
	11 ± 6 ± 2		DEL-AMO-SA.	.10н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$15.2\!\pm\!2.0\!\pm\!0.4$		AAIJ	12M	LHCB	Repl. by AAIJ 16L
$7.8^{+6.2}_{-5.7}^{+2.0}_{-2.8}$		HORII	80	BELL	Repl. by HORII 11
<29	90	² AUBERT	05 G	BABR	Repl. by DEL-AMO- SANCHEZ 10H
<44	90	³ SAIGO	05	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
<26	90	⁴ AUBERT,B	04L	BABR	Repl. by AUBERT 05G

 $^{^1}$ AALTONEN 11AJ also measures the ratio separately for B^+ (R $^+$ (K)) and B^- (R $^-$ (K)) and obtains: R $^+$ (K) = (42.6 \pm 13.7 \pm 2.8) \times 10 $^{-3}$, R $^-$ (K) = (3.8 \pm 10.3 \pm 2.7) \times 10 $^{-3}$. 2 AUBERT 05G extract a constraint on the magnitude of the ratio of amplitudes $|A(B^+ \rightarrow$

² AUBERT 05G extract a constraint on the magnitude of the ratio of amplitudes $|A(B^+ \to D^0 K^+)| / |A(B^+ \to D^0 K^+)| < 0.23$ at 90% CL (Bayesian). Similar measurements from $B^+ \to D^{*0} K^+$ are also reported.

³ SAIGO 05 extract a constraint on the magnitude of the ratio of amplitudes $|A(B^+ \to D^0 K^+)| / |A(B^+ \to \overline{D}^0 K^+)| < 0.27$ at 90% CL.

⁴ AUBERT,B 04L extract a constraint on the magnitude of the ratio of amplitudes $|A(B^+ \to D^0 K^+)/A(B^+ \to \overline{D}^0 K^+)| < 0.22$ at 90% CL.

```
\Gamma([K^-\pi^+\pi^0]_DK^+)/\Gamma([K^+\pi^-\pi^0]_DK^+)
                                                                                                \Gamma_{57}/\Gamma_{58}
VALUE (units 10^{-3})
                                            DOCUMENT ID
   16 ±4 OUR AVERAGE
                                          ^{1} AAIJ
   14.0 \pm 4.7 \pm 2.1
                                                              15W LHCB pp at 7, 8 TeV
                                                              13 BELL e^+e^- \rightarrow \Upsilon(4S)
   19.8 \pm 6.2 \pm 2.4
                                            NAYAK
• • • We do not use the following data for averages, fits, limits, etc. • • •
                              90
                                          <sup>2</sup> LEES
                                                              11D BABR e^+e^- \rightarrow \Upsilon(4S)
                                          <sup>3</sup> AUBERT
                                                              07BN BABR Repl. by LEES 11D
 <39
   <sup>1</sup> Uses D^0 \to K^- \pi^+ \pi^0 for the favored mode, and D^0 \to K^+ \pi^- \pi^0 for the suppressed
  <sup>2</sup> Extracts a constraint on the magnitude of the ratio of amplitudes |A(B^+ \rightarrow D^0 K^+)|
    A(B^+ \to \overline{D}{}^0 K^+) | < 0.13 \text{ at } 95\% \text{ CL}.
   ^3Extracts a constraint on the magnitude of the ratio of amplitudes |A(B^+ \to D^0 K^+)/
    A(B^+ \to \overline{D}{}^0 K^+) | < 0.19 \text{ at } 95\% \text{ CL}.
\Gamma([K^-\pi^+\pi^+\pi^-]_DK^+)/\Gamma([K^+\pi^-\pi^+\pi^-]_DK^+)
                                                                                                \Gamma_{59}/\Gamma_{60}
VALUE (units 10^{-2})
                                            DOCUMENT ID
                                                                TECN COMMENT
1.40 \pm 0.15 \pm 0.06
                                            AAIJ
                                                              16L LHCB pp at 7, 8 TeV

    • • We do not use the following data for averages, fits, limits, etc.

1.24 \pm 0.27
                                            AAIJ
                                                              13AE LHCB Repl. by AAIJ 16L
\Gamma([\pi^{+}\pi^{+}\pi^{-}\pi^{-}]K^{+})/\Gamma([K^{+}\pi^{-}\pi^{+}\pi^{-}]DK^{+})
                                                                                                \Gamma_{61}/\Gamma_{60}
                                                                 TECN COMMENT
                                                              16L LHCB pp at 7, 8 TeV
0.975 \pm 0.037 \pm 0.019
\Gamma([K^-\pi^+]_D K^*(892)^+)/\Gamma([K^+\pi^-]_D K^*(892)^+)
                                                                                                \Gamma_{62}/\Gamma_{63}
                                                                    TECN COMMENT
                                                               09AJ BABR e^+e^- \rightarrow \Upsilon(4S)
0.066 \pm 0.031 \pm 0.010
                                            AUBERT

    • We do not use the following data for averages, fits, limits, etc.

0.046 \pm 0.031 \pm 0.008
                                            AUBERT.B
                                                              05V BABR Repl. by AUBERT 09AJ
\Gamma([K^-\pi^+]_D\pi^+)/\Gamma_{\text{total}}
                                                                                                   \Gamma_{64}/\Gamma
VALUE (units 10^{-7})
                                            DOCUMENT ID
                                                                     TECN COMMENT
6.29^{+1.02}_{-0.98}^{+0.37}_{-0.48}
                                                                     BELL e^+e^- \rightarrow \Upsilon(4S)
                                            HORII
                                                              80
• • • We do not use the following data for averages, fits, limits, etc. • • •
6.6 \begin{array}{c} +1.9 \\ -1.7 \end{array} \pm 0.5
                                            SAIGO
                                                              05 BELL Repl. by HORII 08
\Gamma([K^-\pi^+]_D\pi^+)/\Gamma([K^+\pi^-]_D\pi^+)
                                                                                                \Gamma_{64}/\Gamma_{65}
VALUE (units 10^{-3})
                             DOCUMENT ID
                                                               COMMENT
                                                      TECN
3.53 ± 0.14 OUR AVERAGE
3.60 \pm 0.12 \pm 0.09
                                                16L LHCB pp at 7, 8 TeV
                             AAIJ
                           <sup>1</sup> AALTONEN
2.8 \pm 0.7 \pm 0.4
                                               11AJ CDF
                                                               p\overline{p} at 1.96 TeV
3.28 { + 0.38 + 0.12 \atop -0.36 - 0.18 }
                                                      BELL e^+e^- \rightarrow \Upsilon(4S)
                             HORII
                             DEL-AMO-SA..10H BABR e^+e^- \rightarrow \Upsilon(4S)
3.3 \pm 0.6 \pm 0.4
```

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update • • • We do not use the following data for averages, fits, limits, etc. • • • $4.10 \pm 0.25 \pm 0.05$ AAIJ 12M LHCB Repl. by AAIJ 16L $3.40 \, {}^{+\, 0.55}_{-\, 0.53} \, {}^{+\, 0.15}_{-\, 0.22}$ **HORII** BELL Repl. by HORII 11 $3.5 \begin{array}{c} +1.0 \\ -0.9 \end{array} \pm 0.2$ **SAIGO** 05 BELL Repl. by HORII 08 ¹ AALTONEN 11AJ also measures the ratio separately for B^+ (R⁺(π)) and B^- (R⁻(π)) and obtains: $R^+(\pi) = (2.4 \pm 1.0 \pm 0.4) \times 10^{-3}$, $R^-(K) = (3.1 \pm 1.1 \pm 0.4) \times 10^{-3}$. $\Gamma([K^-\pi^+\pi^0]_D\pi^+)/\Gamma([K^+\pi^-\pi^0]_D\pi^+)$ Γ_{66}/Γ_{67} VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT 2.2 ±0.4 OUR AVERAGE ¹ AAIJ 15W LHCB pp at 7.8 TeV $2.35 \pm 0.49 \pm 0.06$ $1.89 \pm 0.54 + 0.22$ 13 BELL $e^+e^- \rightarrow \Upsilon(4S)$ NAYAK ¹Uses $D^0 \to K^- \pi^+ \pi^0$ for the favored mode, and $D^0 \to K^+ \pi^- \pi^0$ for the suppressed $\Gamma([K^-\pi^+\pi^+\pi^-]_D\pi^+)/\Gamma([K^+\pi^-\pi^+\pi^-]_D\pi^+)$ Γ_{68}/Γ_{69} VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT $3.77 \pm 0.18 \pm 0.06$ 16L LHCB pp at 7, 8 TeV • • We do not use the following data for averages, fits, limits, etc. 3.7 ± 0.4 **AAIJ** 13AE LHCB Repl. by AAIJ 16L $\Gamma\big([K^-\pi^+]_{(D\pi)}\pi^+\big)/\Gamma\big([K^+\pi^-]_{(D\pi)}\pi^+\big)$ Γ_{70}/Γ_{71} VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT DEL-AMO-SA..10H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $3.2 \pm 0.9 \pm 0.8$ $\Gamma([K^-\pi^+]_{(D\gamma)}\pi^+)/\Gamma([K^+\pi^-]_{(D\gamma)}\pi^+)$ Γ_{72}/Γ_{73} VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT DEL-AMO-SA...10H BABR $e^+e^- \rightarrow \Upsilon(4S)$ 2.7±1.4±2.2 $\Gamma([K^-\pi^+]_{(D\pi)}K^+)/\Gamma([K^+\pi^-]_{(D\pi)}K^+)$ *VALUE* (units 10^{-3}) DOCUMENT ID TECN COMMENT DEL-AMO-SA...10H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $1.8\pm0.9\pm0.4$ $\Gamma([K^-\pi^+]_{(D\gamma)}K^+)/\Gamma([K^+\pi^-]_{(D\gamma)}K^+)$ VALUE (units 10^{-3}) DOCUMENT ID TECN COMMENT DEL-AMO-SA..10H BABR $e^+e^-
ightarrow \gamma(4S)$ $1.3 \pm 1.4 \pm 0.8$ $\Gamma([\pi^+\pi^-\pi^0]_DK^-)/\Gamma_{\text{total}}$ Γ_{78}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT

¹ AUBERT 07BJ BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.6\pm0.8\pm0.4$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ AUBERT.B 05T BABR Repl. by AUBERT 07BJ $5.5 \pm 1.0 \pm 0.7$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma([K_S^0K^+\pi^-]_DK^+)/\Gamma([K_S^0K^+\pi^-]_DK^+)$	$(K^+\pi^-]_D\pi^+$			Γ ₇₉ /Γ ₈	4
VALUE	DOCUMENT ID		TECN	COMMENT	_
	_		LHCB	<i>pp</i> at 7, 8 TeV	
1 The anaysis uses all of $D ightarrow ~\mathcal{K}$	$\mathop{S}\limits^{0}K\pi$ Dalitz dec	ays.			
$\Gamma([K_S^0K^-\pi^+]_DK^+)/\Gamma([K_S^0K^-\pi^+]_DK^+)$	$K^-\pi^+]_D\pi^+)$			Γ ₈₀ /Γ ₈	2
VALUE	DOCUMENT ID		TECN		_
$0.066 \pm 0.009 \pm 0.002$	¹ AAIJ	14 V	LHCB	<i>pp</i> at 7, 8 TeV	
1 The anaysis uses all of $D ightarrow ~ {\it K}$	${}^0_S K\pi$ Dalitz dec	ays.			
$\Gamma([K_S^0K^-\pi^+]_DK^+)/\Gamma([K_S^0K^-\pi^+]_DK^+)$	$K^{+}\pi^{-}1D\pi^{+}$			Γ ₈₀ /Γ ₈	A
			TECN)4
0.084±0.011±0.003	DOCUMENT ID AAIJ	14V	LHCB	pp at 7, 8 TeV	
1 The Analysis uses $D ightarrow \ \mathcal{K}^*$ (89					
$\Gamma([K^*(892)^+K^-]_DK^+)/\Gamma([K^*(892)^+K^-]_DK^+)$	· ·			Γ., /Γ.	_
\- \	. , .	_	,	Γ ₈₁ /Γ ₈	5
0.056±0.013±0.002	DOCUMENT ID AAIJ	14∨	LHCB	pp at 7, 8 TeV	_
1 The Analysis uses $D ightarrow \ K^*(89)$					
	3	,			
$\Gamma([K^+K^-\pi^0]_DK^+)/\Gamma([K^+K^-\pi^0]_DK^+)$,			Γ ₈₆ /Γ ₈	7
VALUE	DOCUMENT ID	15.47	<u>TECN</u>	COMMENT	_
$0.95 \pm 0.22 \pm 0.05$ ¹ Uses $D \rightarrow K^+ K^- \pi^0$ mode.	¹ AAIJ	1500	LHCB	pp at 1, 8 leV	
	_				
$\Gamma([\pi^+\pi^-\pi^0]_DK^+)/\Gamma([\pi^+\pi^-$				Γ ₈₈ /Γ ₈	9
VALUE	1 AAIJ		TECN	COMMENT	_
	⁺ AAIJ	15W	LHCB	pp at 7, 8 TeV	
¹ Uses $D \rightarrow \pi^+ \pi^- \pi^0$ mode.					
$\Gamma([K_S^0K^+\pi^-]_D\pi^+)/\Gamma([K_S^0K^-]_D\pi^+)$	$(\pi^+]_D\pi^+$			Γ ₈₄ /Γ ₈	2
VALUE	DOCUMENT ID				_
			LHCB	<i>pp</i> at 7, 8 TeV	
1 The anaysis uses all of $D ightarrow ~ {\it K}$	${0\atop S} K\pi$ Dalitz dec	ays.			
$\Gamma([K^*(892)^-K^+]_D\pi^+)/\Gamma([K^*(892)^-K^+]_D\pi^+)$	(*(892)+ <i>K</i> -1	$_{ m D}\pi^{+}$)	Γ ₈₅ /Γ ₈	9
2.57±0.13±0.06	DOCUMENT ID AAIJ	14V	LHCB	pp at 7, 8 TeV	
1 The Analysis uses $D ightarrow \ \mathcal{K}^*$ (89	$2) K \rightarrow K_S^0 K \pi$	decay	S.		
「 <u>(¬</u> 0 //*/202)+) /□	J			Г., /	_
$\Gamma(\overline{D^0}K^*(892)^+)/\Gamma_{\text{total}}$				Γ ₉₀ /	•
VALUE (units 10 ^{−4}) 5.3 ±0.4 OUR AVERAGE	DOCUMENT ID		TECN	COMMENT	_
	¹ AUBERT	06z	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
				$e^+e^- \rightarrow \Upsilon(4S)$	
• • • We do not use the following					
				Repl. by AUBERT 062	7
1 Assumes equal production of $B^{ au}$	$^+$ and $B^{ m 0}$ at the	$\Upsilon(45)$	5).		
HTTP://PDG.LBL.GOV	Page 42		Creat	ed: 5/30/2017 17:2	2
TIT IT .//I DG.LDL.GOV	i age 42		Cical	ca. 3/30/2011 11.2	

$\Gamma(D_{CP(-1)}K^*(892)^+)/\Gamma(\overline{D}^0$					Γ_{91}/Γ_{90}
VALUE	DOCUMENT ID				
$0.515 \pm 0.135 \pm 0.065$	¹ AUBERT				$\Upsilon(4S)$
• • • We do not use the following					
$0.325 \pm 0.13 \pm 0.04$	² AUBERT,B				
1 The authors report $ extit{R}_{CP-} = 1$	$.03 \pm 0.27 \pm 0.3$	13 whi	ch is, as	ssuming <i>CP</i>	conservation,
twice the value of the quoted a 2 The authors report $R_{CP}=0$ twice the value of the quoted a	$.65 \pm 0.26 \pm 0.0$	08 whi	ch is, as	ssuming <i>CP</i>	conservation,
$\Gamma(D_{CP(+1)}K^*(892)^+)/\Gamma(\overline{D}^0$					Γ_{92}/Γ_{90}
<u>VALUE</u>	DOCUMENT ID				
1.085±0.175±0.045 • • We do not use the following	¹ AUBERT				7 (45)
0.98 ± 0.20 ± 0.055	² AUBERT,B				LIREDT OOAL
1 The authors report $R_{CP+}=2$					
twice the value of the quoted a 2 The authors report $R_{CP+}=1$ twice the value of the quoted a	bove branching r $.96 \pm 0.40 \pm 0.1$	ratio, 11 whi			
$\Gamma(\overline{D}{}^0K^+\pi^+\pi^-)/\Gamma(\overline{D}{}^0\pi^+\pi^+)$	$^{+}\pi^{-})$				Γ_{93}/Γ_{99}
VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT	
$9.4 \pm 1.3 \pm 0.9$	AAIJ	12T	LHCB	pp at 7 Te	eV
$\Gamma(D_{CP(+1)}K^+\pi^-\pi^+)/\Gamma([K$					Γ_{96}/Γ_{94}
VALUE	DOCUMENT ID				
1.040±0.064	AAIJ	1 5 BC	LHCB	<i>pp</i> at 7, 8	leV
$\Gamma([K^-\pi^+]_DK^+\pi^-\pi^+)/\Gamma([K^-\pi^+]_DK^+\pi^-\pi^+)$	$(K^+\pi^-]_D K^+\pi$	$\pi^-\pi^+$	·)		Γ_{95}/Γ_{94}
VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT	
85 ⁺³⁶ -33	AAIJ	15 BC	LHCB	<i>pp</i> at 7, 8	TeV
$\Gamma(\overline{D}{}^0K^+\overline{K}{}^0)/\Gamma_{total}$					Γ ₉₇ /Γ
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
$5.5 \pm 1.4 \pm 0.8$	¹ DRUTSKOY	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal production of $^{ m B}$	$^{+}$ and B^{0} at the	e $\Upsilon(45)$	5).		
$\Gamma(\overline{D}{}^0K^+\overline{K}^*(892)^0)/\Gamma_{total}$					Γ ₉₈ /Γ
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
7.5±1.3±1.1	¹ DRUTSKOY				
$^{ m 1}$ Assumes equal production of $^{ m B}$,
$\Gamma(\overline{\mathcal{D}}{}^0\pi^+\pi^+\pi^-)/\Gamma_{total}$	DOCUMENT ID		TECN	COMMENT	Г ₉₉ /Г
0.0057±0.0022 OUR FIT Error in	ncludes scale fact	tor of 3	3.6.	CONTINIENT	
$0.0115 \pm 0.0029 \pm 0.0021$	¹ BORTOLETT	O92	CLEO	e^+e^-	$\Upsilon(4S)$
¹ BORTOLETTO 92 assumes ed Mark III branching fractions for		of B ⁺	and B^0	$^{ m O}$ at the \varUpsilon ((4S) and uses
HTTP://PDG.LBL.GOV	Page 43		Creat	ced: 5/30/	2017 17:22

$\Gamma(\overline{D}{}^0\pi^+\pi^+\pi^-)/\Gamma(\overline{D}{}^0\pi^+)$						1	Г ₉₉ /Г ₄₈
VALUE		JMENT ID		TECN	COM	MENT	
1.2 ±0.4 OUR FIT Error include 1.27±0.06±0.11	es scale AAIJ			LHCB	pp a	t 7 TeV	
$\Gamma([K^-\pi^+]_D\pi^+\pi^-\pi^+)/\Gamma([K^-\pi^+]_D\pi^+\pi^-\pi^+)$	$(+_{\pi}-$] $_D$ K $^+$ π^-	π^+)		Г	₁₀₀ /Γ ₉₄
VALUE (units 10^{-4})	DOCL	JMENT ID		TECN	COM	MENT	
42.7±5.6	AAIJ		15 BC	LHCB	pp a	t 7, 8 TeV	,
$\Gamma(\overline{D}^0\pi^+\pi^+\pi^-$ nonresonant)/		JMENT ID		TECN	COM	MENT	Γ ₁₀₁ /Γ
		TOLETTO					
¹ BORTOLETTO 92 assumes eq Mark III branching fractions for			B+	and B	O at t	he $\Upsilon(4S)$	and uses
$\Gamma(\overline{\mathcal{D}}{}^0\pi^+ ho^0)/\Gamma_{total}$	DOCL	JMENT ID		TFCN	СОМ	MFNT	Γ ₁₀₂ /Γ
_		TOLETTO					1 <i>S</i>)
¹ BORTOLETTO 92 assumes eq Mark III branching fractions for			B+	and B	0 at t	he $\Upsilon(4S)$	and uses
$\Gamma(\overline{D}^0 a_1(1260)^+)/\Gamma_{\text{total}}$	<u>DOCU</u>	JMENT ID		<u>TECN</u>	<u>СОМ</u> !	MENT	Γ ₁₀₃ /Γ
$0.0045 \pm 0.0019 \pm 0.0031$	$^{ m 1}$ BOR	TOLETTO	92	CLEO	e^+e	$^- \rightarrow \gamma (4$	I <i>S</i>)
¹ BORTOLETTO 92 assumes eq Mark III branching fractions for			B ⁺	and B	0 at t	he $\Upsilon(4S)$	and uses
$\Gamma(\overline{D}{}^0\omega\pi^+)/\Gamma_{total}$							Γ_{104}/Γ
VALUE		JMENT ID					
		XANDER				•	,
1 Assumes equal production of B all observed $\omega\pi^+$ having proces MeV and width 547 \pm 86 $^{+46}_{-45}$ I	eded th						
$\Gamma(D^*(2010)^-\pi^+\pi^+)/\Gamma_{\text{total}}$							Γ ₁₀₅ /Γ
$VALUE$ (units 10^{-3}) $CL\%$ $EVTS$		DOCUMENT	⁻ ID	<u></u>	ECN	COMMENT	-
1.35±0.22 OUR AVERAGE	1						
$1.25 \pm 0.08 \pm 0.22$	2	ABE				e^+e^-	
$1.9 \pm 0.7 \pm 0.3$ 14		ALAM		94 C	LE2	$e^+e^- \rightarrow$	T(45)
$2.6 \pm 1.4 \pm 0.7$ 11		ALBRECH					` ,
$2.4 \begin{array}{c} +1.7 & +1.0 \\ -1.6 & -0.6 \end{array} $		BEBEK				$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following							
<4. 90	5	BORTOLE	ETTC)92 C	LEO	e^+e^-	$\Upsilon(4S)$
5. ±2. ±3. 7	6	ALBRECH	ΙΤ	87C A	RG	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$$\Gamma(\overline{D}_1(2420)^0\pi^+, \overline{D}_1^0 \to D^*(2010)^-\pi^+)/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)$$
 Γ_{106}/Γ_{99}

VALUE (units 10^{-2})DOCUMENT IDTECNCOMMENT9.3 \pm 1.6 \pm 0.91 AAIJ11ELHCBpp at 7 TeV

$\Gamma(D^-\pi^+\pi^+)/\Gamma_{\text{total}}$

 Γ_{107}/Γ

VALUE (units 10^{-3})	CL% EVTS	DOCUMENT ID	TECN	COMMENT	
1.07±0.05 OUR A	/ERAGE				
$1.08\!\pm\!0.03\!\pm\!0.05$		$^{ m 1}$ AUBERT	09AB BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$1.02 \pm 0.04 \pm 0.15$		$^{ m 1}$ ABE	04D BELL	$e^+e^- ightarrow$	$\Upsilon(4S)$
• • • \\/o do not uso	the following det	a far avarage fits	limita ata		

● We do not use the following data for averages, fits, limits, etc.

<1.4	90		² ALAM	94	CLE2	e^+e^-	$\Upsilon(4S)$
<7	90		³ BORTOLETT	O92	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$2.5 \begin{array}{c} +4.1 & +2.4 \\ -2.3 & -0.8 \end{array}$		1	⁴ BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$$\Gamma(D^-K^+\pi^+)/\Gamma(D^-\pi^+\pi^+)$$

 $\Gamma_{108}/\Gamma_{107}$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-2\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses the Mark III branching fractions for the D.

⁴BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

⁵ BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$. The authors also find the product branching fraction into $D^{**}\pi$ followed by $D^{**}\to D^*(2010)\pi$ to be $0.0014^{+0.0008}_{-0.0006}\pm0.0003$ where D^{**} represents all orbitally excited D mesons.

⁶ ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}{}^0) = 45\%$. Superseded by ALBRECHT 90J.

 $[\]begin{array}{lll} ^{1}\,\text{AAIJ 11E reports } (9.3\,\pm\,1.6\,\pm\,0.9)\,\times\,10^{-2} \text{ from a measurement of } [\Gamma(B^{+}\,\rightarrow\,\overline{D}_{1}^{0}(2420)^{0}\,\pi^{+}, & \overline{D}_{1}^{0}\,\rightarrow\,D^{*}(2010)^{-}\,\pi^{+})/\Gamma(B^{+}\,\rightarrow\,\overline{D}^{0}\,\pi^{+}\,\pi^{+}\,\pi^{-})]\,\times\, \\ [B(D^{*}(2010)^{+}\,\rightarrow\,D^{0}\,\pi^{+})] \text{ assuming } B(D^{*}(2010)^{+}\,\rightarrow\,D^{0}\,\pi^{+}) = (67.7\,\pm\,0.5)\times10^{-2}. \end{array}$

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$.

³BORTOLETTO 92 assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D. The product branching fraction into $D_0^*(2340)\pi$ followed by $D_0^*(2340) \to D\pi$ is < 0.005 at 90%CL and into $D_2^*(2460)$ followed by $D_2^*(2460) \to D\pi$ is < 0.004 at 90%CL.

⁴ BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$. B($D^-\to K^+\pi^-\pi^-$) = (9.1 \pm 1.3 \pm 0.4)% is assumed.

$\Gamma(D_0^*(2400)^0 K^+, D_0^*)$	$D^{0} \rightarrow D^{-1}$	$\pi^+)/\Gamma_{total}$			Γ ₁₀₉ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT
$6.1 \pm 1.9 \pm 1.5$	-	^l aaij	15V	LHCB	COMMENT pp at 7, 8 TeV
$^{ m 1}$ Performs the amplitu	de analysis	by fitting the sq	uare-l	Dalitz-pl	ot distribution.
$\Gamma(D_2^*(2460)^0 K^+, D_2^*)$	$p_2^{*0} \rightarrow D^{-1}$	$\pi^+ig)/\Gamma_{total}$			Γ ₁₁₀ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT pp at 7, 8 TeV
23.2±1.1±2.0	-	^L AAIJ	15V	LHCB	<i>pp</i> at 7, 8 TeV
¹ Performs the amplitu	de analysis	by fitting the sq	uare-l	Dalitz-pl	ot distribution.
$\Gamma(D_1^*(2760)^0K^+, D_2^*)$	$t^0 \rightarrow D^-$	$\pi^+)/\Gamma_{total}$			Γ ₁₁₁ /Γ
VALUE (units 10^{-6})	<u>-</u>	DOCUMENT ID		TECN	COMMENT
3.6±0.9±0.8		^l AAIJ	15V	LHCB	COMMENT pp at 7, 8 TeV
$^{ m 1}$ Performs the amplitu					
$\Gamma(D^+K^0)/\Gamma_{\text{total}}$					Γ ₁₁₂ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<2.9					$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following o	data for averages	, fits,	limits, e	etc. • • •
< 5.0	90	¹ AUBERT,B	05E	BABR	Repl. by DEL-AMO- SANCHEZ 10K
¹ Assumes equal produ	ation of D	L . 50 .	,		
· ·	CLIOII OI B	and B° at the	$\Upsilon(43)$	5).	
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-$		and B° at the	T(4S)	5).	Γ ₁₁₃ /Γ ₁₀₈
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-)$ VALUE (units 10^{-2})		DOCUMENT ID	`	TECN	COMMENT
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-$			`	TECN	
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-K^+)$ 7.3±1.2±0.7 $\Gamma(D_2^*(2460)^0K^+, D_2^*)$	K+π+)	DOCUMENT ID AAIJ π-)/Γ _{total}	16м	TECN LHCB	<u>COMMENT</u> pp at 7, 8 TeV Γ ₁₁₄ /Γ
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}K^{-})/\Gamma(D^{-}K^{-}K^{-}K^{-})/\Gamma(D^{-}K^{-}K^{-}K^{-})/\Gamma(D^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-})/\Gamma(D^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K^{-}K$	$(K^+\pi^+)$ $= 0$ $0 \to D^+$	DOCUMENT ID AAIJ	16M	TECN LHCB	COMMENT pp at 7, 8 TeV range range
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-K^+\pi^-)/\Gamma(D^-K^+\pi^-)/\Gamma(D^-K^+\pi^-)/\Gamma(D^-K^+\pi^-)/\Gamma(D^+K^+\pi^-)/\Gamma(D^+K^+\pi^-)/\Gamma(D^+K^+\pi^-)/\Gamma(D^+K^+\pi^-)/\Gamma(D^-K^-\pi^-)/\Gamma(D^-K^-\pi)/\Gamma(D^-K^-\pi^-)/\Gamma(D^-K^-\pi)/\Gamma(D^-K^-\pi)/\Gamma(D^-K^-\pi)/\Gamma(D^-K^-\pi)/$	$\frac{(K^+\pi^+)}{(S^0 \to D^+)}$	DOCUMENT ID AAIJ π-)/Γ _{total}	16M	TECN LHCB	<u>COMMENT</u> pp at 7, 8 TeV Γ ₁₁₄ /Γ
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-})/\Gamma(D^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$(K^+\pi^+)$ $= 0$ $0 \to D^+$	DOCUMENT ID AAIJ	16M	TECN LHCB	COMMENT pp at 7, 8 TeV range range
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-})/\Gamma(D^{-}K^{-})/\Gamma(D^{-}K^{-})$ 7.3±1.2±0.7 $\Gamma(D_{2}^{*}(2460)^{0}K^{+}, D_{2}^{*}K^{-})/\Gamma(D^{+}K^{*0})/\Gamma_{total}$ VALUE	$(K^+\pi^+)$ $= 0$ $0 \to D^+$	DOCUMENT ID AAIJ	16M	TECN LHCB TECN LHCB	COMMENT pp at 7, 8 TeV Γ_{114}/Γ COMMENT pp at 7, 8 TeV Γ_{115}/Γ
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-})/\Gamma(D^{-}K^{-})/\Gamma(D^{-}K^{-})$ 7.3±1.2±0.7 $\Gamma(D_{2}^{*}(2460)^{0}K^{+}, D_{2}^{-}K^{-})/\Gamma(D^{+}K^{*0})/\Gamma_{total}$	$\frac{\mathbf{k}^{0} \rightarrow \mathbf{D}^{+}}{2}$ $\frac{CL\%}{90}$	DOCUMENT ID AAIJ AAIJ DOCUMENT ID AAIJ	16M 16R	TECN LHCB TECN LHCB	COMMENT pp at 7, 8 TeV Γ_{114}/Γ COMMENT pp at 7, 8 TeV Γ_{115}/Γ
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{+}K^{-}\pi^{-})/\Gamma(D^{+}K^{-}\pi^{-})/\Gamma(D^{+}K^{+}\pi^{-})/\Gamma_{total}/\Gamma(D^{+}K^{+}\pi^{-})/\Gamma_{total}/\Gamma(D^{+}K^{-}\pi^{-})/\Gamma_{tota$	$\frac{\mathbf{c}^{0} \rightarrow \mathbf{D}^{+}}{\frac{cL\%}{90}}$	DOCUMENT ID AAIJ T)/Ftotal DOCUMENT ID AAIJ DOCUMENT ID AAIJ	16M 16R	TECN LHCB TECN LHCB	COMMENT pp at 7, 8 TeV Γ_{114}/Γ COMMENT pp at 7, 8 TeV Γ_{115}/Γ COMMENT pp at 7, 8 TeV
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$(K^+\pi^+)$ $C^0 \rightarrow D^+$ $C^0 \rightarrow$	DOCUMENT ID AAIJ T)/Ftotal DOCUMENT ID AAIJ DOCUMENT ID AAIJ data for averages AAIJ	16M 16R 16M s, fits, 13R	TECN LHCB TECN LHCB LHCB limits, 6	COMMENT pp at 7, 8 TeV F114/F COMMENT pp at 7, 8 TeV F115/F COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 16M
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$ \begin{array}{ccc} (K^+\pi^+) \\ \hline & D^+ \\ & CL\% \\ \hline & 90 \\ & \text{following of } \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ \end{array} $	DOCUMENT ID AAIJ DOCUMENT ID AAIJ DOCUMENT ID AAIJ data for averages AAIJ DEL-AMO-SA.	16M 16R 16M 5, fits, 13R .10K	TECN LHCB TECN LHCB limits, 6 LHCB BABR	COMMENT pp at 7, 8 TeV F114/F COMMENT pp at 7, 8 TeV F115/F COMMENT pp at 7, 8 TeV etc. • • •
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$ \begin{array}{ccc} (K^+\pi^+) \\ \hline & D^+ \\ & CL\% \\ \hline & 90 \\ & \text{following of } \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ \end{array} $	DOCUMENT ID AAIJ DOCUMENT ID AAIJ DOCUMENT ID AAIJ data for averages AAIJ DEL-AMO-SA.	16M 16R 16M 5, fits, 13R .10K	TECN LHCB TECN LHCB limits, 6 LHCB BABR	COMMENT pp at 7, 8 TeV F114/F COMMENT pp at 7, 8 TeV F115/F COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 16M
$\Gamma(D^{+}K^{+}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-})/\Gamma(D^{-}K^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi^{-}\pi$	$ \begin{array}{ccc} (K^+\pi^+) \\ \hline & D^+ \\ & CL\% \\ \hline & 90 \\ & \text{following of } \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ \end{array} $	DOCUMENT ID AAIJ DOCUMENT ID AAIJ DOCUMENT ID AAIJ data for averages AAIJ DEL-AMO-SA.	16M 16R 16M 5, fits, 13R .10K	TECN LHCB TECN LHCB limits, 6 LHCB BABR	COMMENT pp at 7, 8 TeV F114/F COMMENT pp at 7, 8 TeV F115/F COMMENT pp at 7, 8 TeV etc. • • • Repl. by AAIJ 16M
$\Gamma(D^+K^+\pi^-)/\Gamma(D^-VALUE \text{ (units } 10^{-2})$ 7.3±1.2±0.7 $\Gamma(D_2^*(2460)^0K^+, D_2^2VALUE$ <6.3 × 10 ⁻⁷ $\Gamma(D^+K^{*0})/\Gamma_{\text{total}}$ VALUE <4.9 × 10 ⁻⁷ • • • We do not use the contraction of the	$ \begin{array}{ccc} (K^+\pi^+) \\ \hline & D^+ \\ & CL\% \\ \hline & 90 \\ & \text{following of } \\ & 90 \\ & 90 \\ & 90 \\ & 90 \\ \end{array} $	DOCUMENT ID AAIJ DOCUMENT ID AAIJ DOCUMENT ID AAIJ data for averages AAIJ DEL-AMO-SA.	16M 16R 16M 5, fits, 13R .10K $\Upsilon(45)$	TECN LHCB TECN LHCB limits, 6 LHCB BABR	COMMENT pp at 7, 8 TeV Γ_{114}/Γ COMMENT pp at 7, 8 TeV Γ_{115}/Γ COMMENT pp at 7, 8 TeV etc. • • Repl. by AAIJ 16M $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}^*(2007)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{117}/Γ

<i>VALUE</i> (units 10^{-3})	EVTS	DOCUMENT ID	TECN	COMMENT
5.18±0.26 OUR AVERAGE				
$5.52\!\pm\!0.17\!\pm\!0.42$		¹ AUBERT 07H		
$5.5 \pm 0.4 \pm 0.2$		^{2,3} AUBERT,BE 06J		
$4.34 \pm 0.47 \pm 0.18$		⁴ BRANDENB 98	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
$5.2 \pm 0.7 \pm 0.7$	71			
$7.2\ \pm 1.8\ \pm 1.6$		⁶ BORTOLETTO92	CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
$4.0 \pm 1.4 \pm 1.2$	9	⁶ ALBRECHT 90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the fo	llowing	data for averages, fits, lir	nits, etc.	• • •

2.7 + 4.4

⁷ BEBEK

87 CLEO $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}^*(2007)^0\omega\pi^+)/\Gamma_{\rm total}$

 Γ_{120}/Γ

VALUE	DOCUMENT ID	TECN	COMMENT
$0.0045 \pm 0.0010 \pm 0.0007$	¹ ALEXANDER 01E	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ The signal is consistent with all observed $\omega\,\pi^+$ having proceeded through the ρ'^+ resonance at mass $1349\pm25{+10\atop5}$ MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV.

$\Gamma(\overline{D}^*(2007)^0 \rho^+)/\Gamma_{\rm total}$

 Γ_{121}/Γ

(, , , , , , , , , , , , , , , , , , ,						-,	
VALUE	EVTS	DOCUMENT ID		TECN	COMMENT		
0.0098±0.0017 OUR AVERA	AGE						
$0.0098 \pm 0.0006 \pm 0.0017$					$e^+e^- \rightarrow \gamma (4S)$		
$0.010\ \pm0.006\ \pm0.004$	7	² ALBRECHT	90J	ARG	$e^+e^- \rightarrow \gamma (4S)$;)	
• • • We do not use the following data for averages, fits, limits, etc. • •							
$0.0168 \pm 0.0021 \pm 0.0028$	86	³ ALAM	94	CLE2	$e^+e^- ightarrow \gamma (4S)$	<i>i</i>)	

 $^{^1}$ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$ resonance. The second error combines the systematic and theoretical uncertainties in quadrature. CSORNA 03 includes data used in ALAM 94. A full angular fit to three complex helicity amplitudes is performed.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT,BE 06J reports $[\Gamma(B^+ \to \overline{D}^*(2007)^0\pi^+)/\Gamma_{total}]/[B(B^+ \to \overline{D}^0\pi^+)]$ = 1.14 ± 0.07 ± 0.04 which we multiply by our best value $B(B^+ \to \overline{D}^0\pi^+)$ = (4.80 ± 0.15) × 10⁻³. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

⁴BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of $B(D^* \to D\pi)$.

 $^{^5}$ ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the CLEO II $B(D^*(2007)^0\to D^0\pi^0)$ and absolute $B(D^0\to K^-\pi^+)$ and the PDG 1992 $B(D^0\to K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+)$.

⁶ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

⁷ This is a derived branching ratio, using the inclusive pion spectrum and other two-body B decays. BEBEK 87 assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}^0$.

- ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.
- ³ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2007)^0 \to D^0\pi^0)$ and absolute $B(D^0 \to K^-\pi^+)$ and the PDG 1992 $B(D^0 \to K^-\pi^+\pi^0)/B(D^0 \to K^-\pi^+)$ and $B(D^0 \to K^-2\pi^+\pi^-)/B(D^0 \to K^-\pi^+)$. The nonresonant $\pi^+\pi^0$ contribution under the ρ^+ is negligible.

$\Gamma(\overline{D}^*(2007)^0 K^+)/\Gamma_{\text{total}}$

 Γ_{122}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT II	כ	TECN	COMMENT
4.20±0.34 OUR AVERAGE				
$4.21^{+0.30}_{-0.26}{\pm}0.21$	$^{ m 1}$ AUBERT	05N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.0 \pm 1.1 \pm 0.2$	² ABE	011	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
¹ AUBERT 05N reports [Γ(B^{-} = 0.0813 ± 0.0040+0.00 \overline{D}^{*} (2007) ⁰ π ⁺) = (5.18 ± and our second error is the ² ABE 01I reports [Γ(B^{+} → 0.078 ± 0.019 ± 0.009 whi = (5.18 ± 0.26) × 10 ⁻³ . Cois the systematic error from	$042 \atop 031$ which we metal $0.26) \times 10^{-3}$. On systematic error from $\overline{D}^*(2007)^0 K^+)$ where 0 charge is the contraction of the contrac	nultiply Our first om using (\(\Gamma_{\text{total}} \) our best ir experi	by our error is our best $/ [B(B^{+})]$	best value B($B^+ \rightarrow B^+$) their experiment's error st value. $B^+ \rightarrow \overline{D}^*(2007)^0\pi^+) = B^+ \rightarrow \overline{D}^*(2007)^0\pi^+$

$\Gamma(\overline{D}_{CP(+1)}^{*0}K^+)/\Gamma_{\text{total}}$

 Γ_{123}/Γ

 1 AUBERT 08BF reports [$\Gamma(B^+ \to \overline{D}^{*0}_{CP(+1)} K^+)/\Gamma_{total}$] / [B($B^+ \to \overline{D}^*(2007)^0 K^+$)] = 0.655 \pm 0.065 \pm 0.020 which we multiply by our best value B($B^+ \to \overline{D}^*(2007)^0 K^+$) = (4.20 \pm 0.34) \times 10⁻⁴. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{D}_{CP(+1)}^{*0}K^+)/\Gamma(\overline{D}_{CP(+1)}^{*0}\pi^+)$

 $\Gamma_{123}/\Gamma_{118}$

0.095±0.017 OUR AVERAGE						
$0.11 \pm 0.02 \pm 0.02$	¹ ABE			e^+e^-		
$0.086 \pm 0.021 \pm 0.007$	² AUBERT	05N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$^{ m 1}$ Reports a double ratio of B($^{ m B}$						
${\sf B}(B^+ \to \overline D^{*0}{\sf K}^+)/{\sf B}(B^+ \to \overline D^{*0}{\sf K}^+)$ is their experiment's error and value.	$/B(B^+ \rightarrow \overline{D}^{*0})$	τ ⁺) =	0.080	± 0.011. (Our first e	error
$^2 \text{Uses } D^{*0} \rightarrow D^0 \pi^0 \text{ with } D^0 \pi^+ \pi^$	reconstructed in	the (<i>CP</i> -even	eigenstates	K ⁺ K ⁻	and

```
\Gamma(\overline{D}_{CP(-1)}^{*0}K^+)/\Gamma_{\text{total}}
                                                                                                                      \Gamma_{124}/\Gamma
VALUE (units 10<sup>-4</sup>)
                                                                            08BF BABR e^+e^- \rightarrow \Upsilon(4S)
   ^{1}\,\text{AUBERT 08BF reports}\,[\Gamma(B^{+}\to\,\overline{D}_{CP(-1)}^{*0}\,\text{$K^{+}$})/\Gamma_{\text{total}}]\,/\,[\text{B}(B^{+}\to\,\overline{D}^{*}(2007)^{0}\,\text{$K^{+}$})]
      = 0.55 \pm 0.06 \pm 0.02 which we multiply by our best value B(B^+ \rightarrow \overline{D}^*(2007)^0 K^+)
      = (4.20 \pm 0.34) \times 10^{-4}. Our first error is their experiment's error and our second error
     is the systematic error from using our best value.
\Gamma(\overline{D}_{CP(-1)}^{*0}K^+)/\Gamma(D_{CP(-1)}^{*0}\pi^+)
                                                                                                                 \Gamma_{124}/\Gamma_{119}
                                                   DOCUMENT ID

TECN
COMMENT

ABE

06
BEI I

+ e - -
                                                                            06 BELL e^+e^- \rightarrow \Upsilon(4S)
0.09 \pm 0.03 \pm 0.01
   <sup>1</sup> Reports a double ratio of B(B^+ \to (D^*_{CP(-1)})^0 K^+)/B(B^+ \to (D^*_{CP(-1)})^0 \pi^+)
     and B(B^+ 
ightarrow \ \overline{D}{}^{*0} \, K^+)/{\rm B}(B^+ 
ightarrow \ \overline{D}{}^{*0} \, \pi^+), 1.15 \pm 0.31 \pm 0.12. We multiply by our
     best value of B(B^+ \rightarrow \overline{D}^{*0} K^+)/B(B^+ \rightarrow \overline{D}^{*0} \pi^+) = 0.080 \pm 0.011. Our first error
     is their experiment's error and the second error is systematic error from using our best
     value.
\Gamma(\overline{D}^*(2007)^0 K^*(892)^+)/\Gamma_{\text{total}}
                                                                                                                      \Gamma_{125}/\Gamma
VALUE (units 10^{-4})
                                                                                  TECN COMMENT
8.1±1.4 OUR AVERAGE
                                                                            04K BABR e^+e^- \rightarrow \Upsilon(4S)
8.3\!\pm\!1.1\!\pm\!1.0
                                                   <sup>2</sup> MAHAPATRA 02 CLE2 e^+e^- \rightarrow \Upsilon(4S)
7.2 \pm 2.2 \pm 2.6
   ^1 Assumes equal production of B^+ and B^0 at the \Upsilon(4S). ^2 Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and an unpolarized final state.
\Gamma(\overline{D}^*(2007)^0 K^+ \overline{K}^0)/\Gamma_{\text{total}}
                                                                                                                      \Gamma_{126}/\Gamma
VALUE (units 10^{-4})
                                                     DOCUMENT ID
                                                                                 BELL e^+e^- \rightarrow \Upsilon(4S)
                                     90
                                                   <sup>1</sup> DRUTSKOY
 <10.6
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^*(2007)^0 K^+ \overline{K}^*(892)^0) / \Gamma_{\text{total}}
                                                                                                                      \Gamma_{127}/\Gamma
VALUE (units 10<sup>-4</sup>
                                                   <sup>1</sup> DRUTSKOY 02 BELL e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^*(2007)^0\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}
                                                                                                                       \Gamma_{128}/\Gamma
VALUE (units 10^{-2})
\overline{1.03 \pm 0.12} OUR AVERAGE
                                                        <sup>1</sup> MAJUMDER 04
1.055 \pm 0.047 \pm 0.129
                                                     ^{2,3} ALAM
0.94 \pm 0.20 \pm 0.17
                                             48
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   ^2 ALAM 94 assume equal production of B^+ and B^0 at the \Upsilon(4S) and use the CLEO II
     \mathsf{B}(D^*(2007)^0 \to D^0\pi^0) and absolute \mathsf{B}(D^0 \to K^-\pi^+) and the PDG 1992 \mathsf{B}(D^0 \to K^-\pi^+)
   K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+) and B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+). 3 The three pion mass is required to be between 1.0 and 1.6 GeV consistent with an a_1
     meson. (If this channel is dominated by a_1^+, the branching ratio for \overline{D}^{*0}a_1^+ is twice that
     for \overline{D}^{*0}\pi^{+}\pi^{+}\pi^{-}.)
```

$\Gamma(\overline{D}^*(2007)^0 a_1(1260)^+)/\Gamma_{\text{total}}$ $0.0188 \pm 0.0040 \pm 0.0034$ ¹ ALAM 94 value is twice their $\Gamma(\overline{D}^*(2007)^0\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$ value based on their observation that the three pions are dominantly in the $a_1(1260)$ mass range 1.0 to 1.6 2 ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $\mathsf{B}(D^*(2007)^0 \to D^0\pi^0)$ and absolute $\mathsf{B}(D^0 \to K^-\pi^+)$ and the PDG 1992 $\mathsf{B}(D^0 \to K^-\pi^+)$ $(K^-\pi^+\pi^0)/B(D^0\to K^-\pi^+)$ and $B(D^0\to K^-2\pi^+\pi^-)/B(D^0\to K^-\pi^+)$. $\Gamma(\overline{D}^*(2007)^0\pi^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}$ DOCUMENT ID ¹ ALEXANDER 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0180 \pm 0.0024 \pm 0.0027$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. The signal is consistent with all observed $\omega\pi^+$ having proceeded through the ρ'^+ resonance at mass 1349 \pm 25 $^{+10}_{5}$ MeV and width 547 \pm 86 $^{+46}_{-45}$ MeV. $\Gamma(\overline{D}^{*0}3\pi^{+}2\pi^{-})/\Gamma_{\text{total}}$ Γ_{131}/Γ TECN COMMENT *VALUE* (units 10^{-3}) ¹ MAJUMDER 04 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $5.67 \pm 0.91 \pm 0.85$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^*(2010)^+\pi^0)/\Gamma_{\text{total}}$ Γ_{132}/Γ $< 3.6 \times 10^{-6}$ 80 • • • We do not use the following data for averages, fits, limits, etc. • • ² BRANDENB... 98 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 BRANDENBURG 98 assume equal production of B^+ and B^0 at $\Upsilon(4S)$ and use the D^* partial reconstruction technique. The first error is their experiment's error and the second error is the systematic error from the PDG 96 value of B($D^* \rightarrow D\pi$). $\Gamma(D^*(2010)^+ K^0)/\Gamma_{\text{total}}$ Γ_{133}/Γ ¹ AUBERT.B 05E BABR $e^+e^- \rightarrow$ • • • We do not use the following data for averages, fits, limits, etc. • $< 9.5 \times 10^{-5}$ 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ GRITSAN ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(D^*(2010)^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}$ Γ_{134}/Γ <u>VA</u>LUE TECN ¹ ALBRECHT 90J ARG $0.0152\pm0.0071\pm0.0001$ 26 • • We do not use the following data for averages, fits, limits, etc.

 $0.043 \pm 0.013 \pm 0.026$

² ALBRECHT

24

87C ARG

```
<sup>1</sup> ALBRECHT 90J reports 0.018 \pm 0.007 \pm 0.005 from a measurement of [\Gamma(B^+ \to D^*(2010)^-\pi^+\pi^+\pi^0)/\Gamma_{\text{total}}] \times [B(D^*(2010)^+ \to D^0\pi^+)] assuming B(D^*(2010)^+ \to D^0\pi^+) = 0.57 \pm 0.06, which we rescale to our best value B(D^*(2010)^+ \to D^0\pi^+) = (67.7 \pm 0.5) \times 10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the \Upsilon(4S) and uses Mark III branching fractions for the D
```

² ALBRECHT 87C use PDG 86 branching ratios for D and $D^*(2010)$ and assume $B(\Upsilon(4S) \to B^+B^-) = 55\%$ and $B(\Upsilon(4S) \to B^0\overline{B}^0) = 45\%$. Superseded by ALBRECHT 90J.

$\Gamma(D^*(2010)^-\pi^+\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{135}/Γ

• • • We do not use the following data for averages, fits, limits, etc. • • •

<10 90 2 ALBRECHT 90J ARG $e^+e^ightarrow$ γ (4S

$$\Gamma(\overline{D}^{**0}\pi^+)/\Gamma_{\text{total}}$$

 Γ_{136}/Γ

 D^{**0} represents an excited state with mass 2.2 < M < 2.8 GeV/c².

VALUE (units 10^{-3})

$5.9 \pm 1.3 \pm 0.2$

$1,2$
 AUBERT,BE 06J BABR $e^+e^-
ightarrow~\varUpsilon(4S)$

² Uses a missing-mass method. Does not depend on D branching fractions or B^+/B^0 production rates.

$\Gamma(\overline{D}_1^*(2420)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{137}/Γ

VALUEEVTSDOCUMENT IDTECNCOMMENT 0.0015 ± 0.0006 OUR AVERAGEError includes scale factor of 1.3. $0.0011 \pm 0.0005 \pm 0.0002$ 8 $\frac{1}{2}$ ALAM94CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $0.0025 \pm 0.0007 \pm 0.0006$ 2ALBRECHT94DARG $e^+e^- \rightarrow \Upsilon(4S)$

² ALBRECHT 94D assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II B($D^*(2010)^+ \rightarrow D^0 \pi^+$) assuming B($D_1(2420)^0 \rightarrow D^*(2010)^+ \pi^-$) = 67%.

$$\Gamma(\overline{D}_1(2420)^0\pi^+\times B(\overline{D}_1^0\to \overline{D}^0\pi^+\pi^-))/\Gamma_{\text{total}}$$

 Γ_{138}/Γ

VALUE (units 10⁻⁴) DOCUMENT ID TECN COMMENT

2.5 $^{+1.6}_{-1.4}$ **OUR FIT** Error includes scale factor of 4.0.

$$1.85\pm0.29^{+0.35}_{-0.55}$$

¹ ABE

05A BELL
$$e^+e^-
ightarrow \varUpsilon(4S)$$

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

Page 51

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and uses Mark III branching fractions for the D and $D^*(2010)$.

¹ AUBERT,BE 06J reports $[\Gamma(B^+ \to \overline{D}^{**0}\pi^+)/\Gamma_{total}]/[B(B^+ \to \overline{D}^0\pi^+)] = 1.22 \pm 0.13 \pm 0.23$ which we multiply by our best value $B(B^+ \to \overline{D}^0\pi^+) = (4.80 \pm 0.15) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0\pi^+)$ and absolute $B(D^0 \rightarrow K^-\pi^+)$ and the PDG 1992 $B(D^0 \rightarrow K^-\pi^+\pi^0)/B(D^0 \rightarrow K^-\pi^+)$ and assuming $B(D_1(2420)^0 \rightarrow D^*(2010)^+\pi^-) = 67\%$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\Gamma(\overline{D}_1(2420)^0\pi^+\times B(\overline{D}_1^0\to \overline{D}^0\pi^+\pi^-))/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)
VALUE (units 10^{-2})
                                                DOCUMENT ID TECN COMMENT
 4.4^{+3.3}_{-2.6} OUR FIT Error includes scale factor of 4.0.
10.3 \pm 1.5 \pm 0.9
                                                 AAIJ
                                                                     11E LHCB pp at 7 TeV
\Gamma\big(\overline{D}_1(2420)^0\pi^+\times \mathsf{B}(\overline{D}_1^0\to \overline{D}{}^0\pi^+\pi^-\,(\mathsf{nonresonant}))\big)/\Gamma(\overline{D}{}^0\pi^+\pi^+\pi^-)
                                                                                                         \Gamma_{139}/\Gamma_{99}
                                                DOCUMENT ID TECN COMMENT
VALUE (units 10^{-2})
                                                                   11E LHCB pp at 7 TeV
4.0±0.7±0.5
   <sup>1</sup> Excludes decays where \overline{D}_1(2420)^0 \rightarrow D*(2010)^-\pi^+.
\Gamma(\overline{D}_2^*(2462)^0\pi^+ \times B(\overline{D}_2^*(2462)^0 \rightarrow D^-\pi^+))/\Gamma_{\text{total}}
                                                                                                            \Gamma_{140}/\Gamma
VALUE (units 10^{-4})
                                                 DOCUMENT ID TECN COMMENT
3.56 ± 0.24 OUR AVERAGE
                                              <sup>1</sup> AAIJ
                                                                     16AH LHCB pp at 7, 8 TeV
3.62 \pm 0.06 \pm 0.30
                                              <sup>2</sup> AUBERT
                                                                     09AB BABR e^+e^- \rightarrow \Upsilon(4S)
3.5 \pm 0.2 \pm 0.4
                                              <sup>2</sup> ABF
                                                                     04D BELL e^+e^- \rightarrow \Upsilon(4S)
3.4 \pm 0.3 \pm 0.72
   <sup>1</sup> Measured using a Dalitz plot analysis of B^- \to D^+ \pi^- \pi^- decays.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_2^*(2462)^0\pi^+ \times B(\overline{D}_2^{*0} \to \overline{D}{}^0\pi^-\pi^+))/\Gamma(\overline{D}{}^0\pi^+\pi^+\pi^-)
                                                                                                         \Gamma_{141}/\Gamma_{99}
VALUE (units 10^{-2})
                                                DOCUMENT ID TECN COMMENT
                                                                     11E LHCB pp at 7 TeV
4.0\pm1.0\pm0.4
\Gamma(\overline{D}_2^*(2462)^0\pi^+\times B(\overline{D}_2^{*0}\to \overline{D}^0\pi^-\pi^+ \text{(nonresonant))})/\Gamma(\overline{D}^0\pi^+\pi^+\pi^-)
                                                                                                         \Gamma_{142}/\Gamma_{99}
                                                DOCUMENT ID TECN COMMENT
VALUE
                                                          11E LHCB pp at 7 TeV
   <sup>1</sup> Excludes decays where \overline{D}_2^*(2462)^0 \rightarrow D^*(2010)^- \pi^+.
\Gamma(\overline{D}_{2}^{*}(2462)^{0}\pi^{+}\times B(\overline{D}_{2}^{*0}\to D^{*}(2010)^{-}\pi^{+}))/\Gamma(\overline{D}^{0}\pi^{+}\pi^{+}\pi^{-})
VALUE (units 10^{-2})
                                              3.9 \pm 1.2 \pm 0.4
   <sup>1</sup> Uses B(D^*(2010)^+ \rightarrow D^0 \pi^+) = (67.7 +- 0.5)%.
\Gamma(\overline{D}_{0}^{*}(2400)^{0}\pi^{+} \times B(\overline{D}_{0}^{*}(2400)^{0} \rightarrow D^{-}\pi^{+}))/\Gamma_{\text{total}}
                                                                                                            \Gamma_{144}/\Gamma
VALUE (units 10^{-4})
                                                DOCUMENT ID TECN COMMENT
6.4 \pm 1.4 OUR AVERAGE
                                              <sup>1</sup> AUBERT
                                                                     09AB BABR e^+e^- \rightarrow \Upsilon(4S)
6.8 \pm 0.3 \pm 2.0
                                              <sup>1</sup> ABE
                                                                     04D BELL e^+e^- \rightarrow \Upsilon(4S)
6.1 \pm 0.6 \pm 1.8
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}_{1}(2421)^{0}\pi^{+} \times B(\overline{D}_{1}(2421)^{0} \to D^{*-}\pi^{+}))/\Gamma_{\text{total}}
                                                                                                            \Gamma_{145}/\Gamma
VALUE (units 10^{-4})
                                                DOCUMENT ID TECN COMMENT
                                              <sup>1</sup> ABE
6.8 \pm 0.7 \pm 1.3
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
                                                 Page 52 Created: 5/30/2017 17:22
HTTP://PDG.LBL.GOV
```

$\Gamma(\overline{D}_2^*(2462)^0\pi^+\times B(\overline{D}_2^*)^0$	$(2462)^0 \to D^{*-}\pi^{-}$	+))/[total		Γ ₁₄₆ /Γ
VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT	
$1.8 \pm 0.3 \pm 0.4$	¹ ABE	04 D	BELL	$e^+e^-\to$	$\Upsilon(4S)$
1					

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\overline{D}'_{1}(2427)^{0}\pi^{+} \times B(\overline{D}'_{1}(2427)^{0} \to D^{*-}\pi^{+}))/\Gamma_{\text{total}}$ Γ_{147}/Γ

VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT $\mathbf{5.0 \pm 0.4 \pm 1.1}$ $\mathbf{1}$ ABE04DBELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}_1(2420)^0\pi^+ \times \mathsf{B}(\overline{D}_1^0 \to \overline{D}^{*0}\pi^+\pi^-))/\Gamma_{\mathsf{total}}$

 Γ_{148}/Γ

$\Gamma(\overline{D}_1^*(2420)^0 \rho^+)/\Gamma_{\text{total}}$

 Γ_{149}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT < C0.0014 90 1 ALAM 94 CLE2 $e^{+}e^{-} \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}_2^*(2460)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{150}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<0.0013	90	¹ ALAM	94	CLE2	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<0.0028 90 2 ALAM 94 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ <0.0023 90 3 ALBRECHT 94D ARG $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{D}_2^*(2460)^0\pi^+ \times B(\overline{D}_2^{*0} \to \overline{D}^{*0}\pi^+\pi^-))/\Gamma_{\text{total}}$

 Γ_{151}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-4})

CL%

DOCUMENT ID

TECN

COMMENT $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II $B(D^*(2010)^+ \rightarrow D^0 \pi^+)$ assuming $B(D_1(2420)^0 \rightarrow D^*(2010)^+ \pi^-) = 67\%$.

¹ ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$ and $B(D_2^*(2460)^0 \to D^+\pi^-) = 30\%$.

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$, the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and $B(D_2^*(2460)^0 \to D^*(2010)^+\pi^-) = 20\%$.

³ ALBRECHT 94D assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the CLEO II B($D^*(2010)^+ \to D^0\pi^+$) and B($D^*_2(2460)^0 \to D^*(2010)^+\pi^-$) = 30%.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\overline{D}_2^*(2460)^0 \rho^+)/\Gamma_{\text{total}}$

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
<0.0047	90	$^{ m 1}$ ALAM	94	CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
< 0.005	90	² ALAM	94	CLE2	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ ALAM 94 assume equal production of B^+ and B^0 at the $\varUpsilon(4S)$ and use the Mark III B($D^+\to~K^-2\pi^+$) and B($D_2^*(2460)^0\to~D^+\pi^-)=30\%.$

$\Gamma(\overline{D}_{1}^{*}(2680)^{0}\pi^{+}, \overline{D}_{1}^{*}(2680)^{0} \rightarrow D^{-}\pi^{+})/\Gamma_{total}$

 Γ_{152}/Γ

 Γ_{155}/Γ

(1) / 10 /	// total	101/
VALUE (units 10 ⁻⁴)	DOCUMENT ID TECN	COMMENT
0.84±0.06±0.20	¹ AAIJ 16AH LHC	<i>pp</i> at 7, 8 TeV

¹ Measured using a Dalitz plot analysis of $B^+ \rightarrow D^- \pi^+ \pi^+$ decays.

$\Gamma(\overline{D}_3^*(2760)^0\pi^+, \overline{D}_3^*(2760)^0\pi^+ \to D^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{153}/Γ

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT1.0±0.1±0.21 AAIJ16AH LHCBpp at 7, 8 TeV

$\Gamma\big(\overline{D}_2^*(3000)^0\pi^+,\ \overline{D}_2^*(3000)^0\pi^+\to D^-\pi^+\big)/\Gamma_{\rm total}$

 Γ_{154}/Γ

$\Gamma(\overline{D}^0 D_s^+)/\Gamma_{\text{total}}$

 Γ_{156}/Γ

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
9.0±0.9 OUR AVERAGE				
$8.6 \pm 0.2 \pm 1.1$	¹ AAIJ	13 AP	LHCB	pp at 7 TeV
$9.5 \pm 2.0 \pm 0.8$	² AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$9.8 \pm 2.6 \pm 0.9$	³ GIBAUT	96	CLE2	$e^+e^- ightarrow \gamma(4S)$
$14 \pm 8 \pm 1$	⁴ ALBRECHT	92G	ARG	$e^+e^- \rightarrow \gamma(4S)$
$13 \pm 6 \pm 1$	⁵ BORTOLETTO	O90	CLEO	$e^+e^- ightarrow \gamma(4S)$
$1_{11} = p(p_0) \qquad p = p^+$) (70 00)	. 10-	3	

¹ Uses B($B^0 \to D^- D_s^+$) = (7.2 ± 0.8) × 10⁻³.

² ALAM 94 assume equal production of B^+ and B^0 at the $\Upsilon(4S)$ and use the Mark III $B(D^+ \to K^- 2\pi^+)$, the CLEO II $B(D^*(2010)^+ \to D^0\pi^+)$ and $B(D_2^*(2460)^0 \to D^*(2010)^+\pi^-) = 20\%$.

¹ Measured using a Dalitz plot analysis of $B^+ \to D^- \pi^+ \pi^+$ decays.

¹ Measured using a Dalitz plot analysis of $B^+ \to D^- \pi^+ \pi^+$ decays.

² AUBERT 06N reports $(0.92\pm0.14\pm0.18)\times10^{-2}$ from a measurement of $[\Gamma(B^+\to \overline{D}^0D_s^+)/\Gamma_{\text{total}}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.0462\pm0.0062$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ GIBAUT 96 reports $0.0126 \pm 0.0022 \pm 0.0025$ from a measurement of $[\Gamma(B^+ \to \overline{D}^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ ALBRECHT 92G reports 0.024 \pm 0.012 \pm 0.004 from a measurement of $[\Gamma(B^+ \to \overline{D}^0 D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we

rescale to our best value B($D_s^+ \to \phi \pi^+$) = (4.5 \pm 0.4) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 branching ratios, e.g., B($D^0 \to K^- \pi^+$) = 3.71 \pm 0.25%.

 5 BORTOLETTO 90 reports 0.029 \pm 0.013 from a measurement of $[\Gamma(B^{+}
ightarrow \overline{D}{}^{0}D_{s}^{+})/$ $\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.02$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = $(4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(D_{s0}^*(2317)^+\overline{D}{}^0,\ D_{s0}^{*+}\to D_s^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{157}/Γ

VALUE (units 10^{-3})

TECN COMMENT

$0.79^{+0.15}_{-0.13}$ OUR AVERAGE

$$0.79^{+0.17}_{-0.16}\pm0.02$$

 1,2 CHOI

15A BELL $e^+e^- \rightarrow \Upsilon(4S)$

$$0.80^{+0.35}_{-0.21}\pm0.07$$

^{2,3} AUBERT,B 04S BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$$0.65^{\,+\,0.26}_{\,-\,0.24}\,{\pm}\,0.06$$

^{2,4} KROKOVNY 03B BELL Repl. by CHOI 15A

 1 CHOI 15A reports $(8.0^{+1.3}_{-1.2}\pm1.1\pm0.4) imes10^{-4}$ from a measurement of $[\Gamma(B^{+}\rightarrow$ $D_{s0}^*(2317)^+ \overline{D}{}^0$, $D_{s0}^{*+} \to D_{s}^+ \pi^0)/\Gamma_{\text{total}} \times [B(D_{s}^+ \to K^+ K^- \pi^+)]$ assuming $B(D_{\epsilon}^+ \to K^+ K^- \pi^+) = (5.39 \pm 0.21) \times 10^{-2}$, which we rescale to our best value $B(D_s^+ \to K^+ K^- \pi^+) = (5.45 \pm 0.17) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 3 AUBERT,B 04S reports (1.0 \pm 0.3 $^{+0.4}_{-0.2}$) imes 10 $^{-3}$ from a measurement of [$\Gamma(B^+
ightarrow$ $D_{s0}^*(2317)^+ \overline{D}{}^0$, $D_{s0}^{*+} \to D_{s}^+ \pi^0) / \Gamma_{\text{total}} \times [B(D_{s}^+ \to \phi \pi^+)]$ assuming $B(D_{s}^+ \to \phi \pi^+)$ $\phi\pi^+)=0.036\pm0.009$, which we rescale to our best value B($D_s^+ o\phi\pi^+)=(4.5\pm0.008)$ $0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 4 KROKOVNY 03B reports (0.81 $^+0.30_ \pm$ 0.24) \times 10 $^{-3}$ from a measurement of [$\Gamma(B^+ \rightarrow$ $D_{s0}^*(2317)^+ \overline{D}{}^0$, $D_{s0}^{*+} \to D_{s}^{+} \pi^0)/\Gamma_{total} \times [B(D_{s}^+ \to \phi \pi^+)]$ assuming $B(D_{s}^+ \to \phi \pi^+)$ $\phi\pi^+)=0.036\pm0.009$, which we rescale to our best value B($D_s^+\to\phi\pi^+)=(4.5\pm0.009)$ $(0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(D_{s0}(2317)^{+}\overline{D}^{0} \times B(D_{s0}(2317)^{+} \to D_{s}^{*+}\gamma))/\Gamma_{\text{total}}$$

VALUE (units 10^{-3})

 $\frac{\textit{DOCUMENT ID}}{1 \text{ KROKOVNY}}$ 03B BELL $e^+e^-
ightarrow \varUpsilon(4S)$

$\Gamma(D_{s0}(2317)^+ \overline{D}^*(2007)^0 \times B(D_{s0}(2317)^+ \to D_s^+ \pi^0)) / \Gamma_{\text{total}}$

VALUE (units 10^{-3}) $0.9\pm0.6^{+0.4}$

DOCUMENT ID TECN COMMENT

Created: 5/30/2017 17:22

04S BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT.B

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{s.I}(2457)^{+}\overline{D}^{0})/\Gamma_{\text{total}}$

 Γ_{160}/Γ

VALUE (units 10^{-3})

$3.1^{+1.0}_{-0.0}$ OUR AVERAGE

$4.3 \pm 1.6 \pm 1.3$	¹ AUBERT	06N	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.6^{+1.8}_{-1.6}\!\pm\!1.0$	^{2,3} AUBERT,B	04 S	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$2.1^{+1.1}_{-0.9}\pm0.5$	^{2,4} KROKOVNY	03 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^{}m 1}$ Uses a missing-mass method in the events that one of the B mesons is fully reconstructed.

$$\Gamma(D_{sJ}(2457)^+\overline{D}{}^0 \times \mathsf{B}(D_{sJ}(2457)^+ \to D_s^+\gamma))/\Gamma_{\mathsf{total}}$$

 Γ_{161}/Γ

VALUE (units 10^{-3})

DOCUMENT ID TECN

Created: 5/30/2017 17:22

$0.46^{+0.13}_{-0.11}$ OUR AVERAGE

$$\Gamma(D_{sJ}(2457)^{+}\overline{D}^{0} \times B(D_{sJ}(2457)^{+} \to D_{s}^{+}\pi^{+}\pi^{-}))/\Gamma_{\text{total}}$$
 Γ_{162}/Γ

VALUE (units
$$10^{-3}$$
) CL% DOCUMENT ID TECN COMMENT
<0.22 90 1 KROKOVNY 03B BELL $e^+e^- \rightarrow \Upsilon(4S)$

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ AUBERT,B 04S reports $[\Gamma(B^+ \rightarrow D_{sJ}(2457)^+\overline{D}{}^0)/\Gamma_{ ext{total}}] \times [B(D_{s1}(2460)^+ \rightarrow D_{sJ}(2457)^+\overline{D}{}^0)/\Gamma_{ ext{total}}]$ $[D_s^{*+}\pi^0] = (2.2^{+0.8}_{-0.7}\pm 0.3)\times 10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \rightarrow 0.00)$ $D_s^{*+}\pi^0$) = $(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second

error is the systematic error from using our best value. ⁴ KROKOVNY 03B reports $[\Gamma(B^+ \to D_{sJ}(2457)^+ \overline{D}{}^0)/\Gamma_{\text{total}}] \times [B(D_{s1}(2460)^+ \to D_{sJ}(2457)^+ \overline{D}{}^0)/\Gamma_{\text{total}}]$ $[D_s^{*+}\pi^0] = (1.0^{+0.5}_{-0.4}\pm0.1)\times10^{-3}$ which we divide by our best value $B(D_{s1}(2460)^+ \rightarrow 0.00)$ $D_s^{*+}\pi^0$) = $(48 \pm 11) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 AUBERT,B 04S reports (0.6 \pm 0.2 $^{+0.2}_{-0.1})\times 10^{-3}$ from a measurement of [\Gamma($B^+\to 10^{-3})$ and 10^{-3} from the surface of the surfa B($D_s^+ \to \phi \pi^+$) = 0.036 \pm 0.009, which we rescale to our best value B($D_s^+ \to \phi \pi^+$) = $(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ³ KROKOVNY 03B reports $(0.56^{+0.16}_{-0.15}\pm0.17)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to B^+)]$

 $D_{sJ}(\text{2457})^+ \, \overline{D}{}^0 \times \, \text{B}(D_{sJ}(\text{2457})^+ \rightarrow \, D_s^+ \, \gamma)) / \Gamma_{\text{total}}] \times [\text{B}(D_s^+ \rightarrow \, \phi \, \pi^+)] \text{ assuming}$ $B(D_s^+ \to \phi \pi^+) = 0.036 \pm 0.009$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+)$ $= (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(D_{sJ}(2457)^+\overline{D}^0)$ VALUE (units 10^{-3})		DOCUMENT ID	·	<u>TEC</u> N	<u>COMM</u> ENT	
<0.27	90	1 KROKOVNY	03 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro						
$\Gamma(D_{sJ}(2457)^+\overline{D}^0)$	$ imes$ B(D_{sJ} ($(2457)^+ \to D_s^{*-1}$	[⊦] γ))/	Γ _{total}		Γ ₁₆₄ /Ι
VALUE (units 10^{-3})		•	*		COMMENT	-
<0.98		$^{ m 1}$ KROKOVNY				
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	ne $\Upsilon(4.$	S).		
$\Gamma(D_{sJ}(2457)^+\overline{D}^*($	2007) ⁰)/	$\Gamma_{ m total}$				Γ ₁₆₅ /Ι
<i>VALUE</i> (units 10^{-3})		DOCUMENT ID)	TECN	COMMENT	
12.0±3.0 OUR AVER	AGE					
$11.2 \pm 2.6 \pm 2.0$		¹ AUBERT				` '
$16 \begin{array}{c} +8 \\ -6 \end{array} \pm 4$		^{2,3} AUBERT,B	04 S	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
best value B(D_{s1} (experiment's error 3 Assumes equal pro	(2460) ⁺ – and our se	B^+ and B^0 at the	3 ± 11 /stematine $\varUpsilon(4.5)$) × 10 [—] tic error S).	² . Our first from using o	
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+}\overline{D}^{*}($	$(2460)^{+}$ - and our send out of $(2007)^{0}$ ×	$D_s^{*+}\pi^0)=(48)$ cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+)$	3 ± 11 /stemaine $\Upsilon(4)$	$() imes 10^{-1}$ tic error (5) . (+7)	² . Our first from using o	
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(VALUE \text{ (units } 10^{-3}))$	$(2460)^{+}$ - and our send out of $(2007)^{0}$ ×	$D_s^{*+}\pi^0) = (48)$ cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+)$ $DOCUMENT ID$	3 ± 11 γ stemation γ	$0) \times 10^{-1}$ tic error S). $\frac{1}{S} \gamma \gamma$	2. Our first from using of total	error is the our best value \(\Gamma_{166}/\)
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+}\overline{D}^{*}(2457)^{+})^{-}$ $VALUE \text{ (units } 10^{-3})$ $1.4\pm0.4^{+0.6}_{-0.4}$	(2460) ⁺ – and our se eduction of (2007) ⁰ ×	$D_s^{*+}\pi^0) = (48)$ cond error is the symplem B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT~ID$ 1 AUBERT,B	3 ± 11 r stematic r (4. r	$) \times 10^{-}$ icic error S). $+ \gamma) / S$ $E = \frac{TECN}{S}$ BABR	2. Our first from using of total	error is the our best value \(\Gamma_{166}\)
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^+ \overline{D}^*(2457)^+ \overline{D}^*(245$	(2460) ⁺ – and our sector of (2007) ⁰ ×	$D_s^{*+}\pi^0) = (48)$ cond error is the symplem B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the	3 ± 11 γ stema γ	$) \times 10^{-}$ cic error S). $+ \gamma$)/ S ECN BABR S).	2. Our first from using content of total $\frac{COMMENT}{e^+e^-} \rightarrow$	error is the pur best value $\Gamma_{166}/\Gamma_{166}$
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{1}{2})^{-3})$ 1.4±0.4 $\frac{1}{2}$ 0.4 ¹ Assumes equal pro $\Gamma(\overline{D}^{0} D_{s1}(2536)^{+})$	$(2460)^{+}$ - and our separation of $(2007)^{0}$ × adduction of $(2007)^{0}$ × $(2007)^{0}$ × $(2007)^{0}$ × $(2007)^{0}$	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT ID$ 1 AUBERT,B B^+ and B^0 at the B^+	3 ± 11 γ stema γ	$0) \times 10^{-1}$ cic error $f(S)$. $f(S) = \frac{TECN}{S}$ BABR $f(S) = \frac{TECN}{S}$	2. Our first from using content of the second seco	error is the pur best value $\Gamma_{166}/\Gamma_{166}$
³ Assumes equal pro $\Gamma(D_{8J}(2457)^{+} \overline{D}^{*}(1000000000000000000000000000000000000$	$(2460)^{+}$ - and our separation of $(2007)^{0}$ × adduction of $(2007)^{0}$ × $(2007)^{0}$ × $(2007)^{0}$ × $(2007)^{0}$	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the B^0	3 ± 11 γ stema γ) × 10 ⁻ tic error (S). + γ))/(S) - TECN BABR S). - TECN TECN TECN	2. Our first from using content of the following content of the follow	error is the our best value $\Gamma_{166}/\Gamma_{168}/$
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}($ $VALUE \text{ (units } 10^{-3})$ $1.4 \pm 0.4^{+0.6}_{-0.4}$ $^{1} \text{ Assumes equal pro}$ $\Gamma(\overline{D}^{0} D_{s1}(2536)^{+} \times VALUE \text{ (units } 10^{-4})$ $2.16 \pm 0.52 \pm 0.45$	$(2460)^+$ – and our send out of $(2007)^0 \times (2007)^0 $	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT ID$ 1 AUBERT, B B^+ and B^0 at the B^0 at	3 ± 11 r /stemark r (4.7) 04s 04s 08B	$) \times 10^{-}$ tic error (S). $+ \gamma))/ $ $S = \frac{TECN}{S}$ BABR $S = \frac{TECN}{S}$ BABR	2. Our first from using of total $\frac{COMMENT}{e^+e^- \rightarrow}$ / $\Gamma_{ total}$ $\frac{COMMENT}{e^+e^- \rightarrow}$	error is the our best value $\Gamma_{166}/\Gamma_{168}/$
³ Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(0)^{-1}) = 0$ $VALUE \text{ (units } 10^{-3})$ $1.4 \pm 0.4 + 0.6 \\ -0.4$ ¹ Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+}) = 0$ $VALUE \text{ (units } 10^{-4})$ $2.16 \pm 0.52 \pm 0.45$ • • • We do not use the	$(2460)^+$ – and our send out of $(2007)^0 \times (2007)^0 $	$D_s^{*+}\pi^0$) = (48) $D_s^{*+}\pi^0$) = (48) $D_s^{*+}\pi^0$) = (48) $D_s^{*+}\pi^0$ at the symplectic $D_s^{*+}\pi^0$ at $D_s^{*+}\pi^0$ and $D_s^{*+}\pi^0$ at $D_s^{*+}\pi^0$ and $D_s^{*+}\pi^0$ at $D_s^{*+}\pi^0$ at $D_s^{*+}\pi^0$ and $D_s^{*+}\pi^0$ at $D_s^{*+}\pi^0$ and $D_s^{*+}\pi^0$ a	3 ± 11 γ stematic γ (4.4) 04s 04s 08B 08B es, fits,	0×10^{-1} tic error is S). $\frac{+}{S} \gamma$)/ $\frac{-1}{S} \gamma$ BABR $\frac{-1}{S} \gamma$ $\frac{-1}{S} \gamma$ BABR limits, γ	2. Our first from using of total $ \frac{COMMENT}{e^+e^- \rightarrow} $ / Γ_{total} $ \frac{COMMENT}{e^+e^- \rightarrow} $ etc. • •	error is the pur best value $\Gamma_{166}/\Gamma_{168}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}_{-0.4}}$ 1.4±0.4 $^{+0.6}_{-0.4}$ 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2	$(2460)^+$ — and our separation of $(2007)^0$ × adduction of $(2007)^0$ × adduction of $(2007)^0$ × $(2007)^0$ the following $(2007)^0$	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT ID$ 1 AUBERT, B^+ and B^0 at the B^0 at	3 ± 11 $/$ stema r) × 10 ⁻ cic error s S). TECN BABR S). TECN BABR limits, α BABR	2. Our first from using of total $ \frac{COMMENT}{e^+e^- \rightarrow} $ / Γ_{total} $ \frac{COMMENT}{e^+e^- \rightarrow} $ etc. • •	error is the pur best value $\Gamma_{166}/\Gamma_{168}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}}$ 1.4±0.4 ^{+0.6} 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro	$(2460)^+$ — and our second outline of $(2007)^0$ × $(20$	$D_s^{*+}\pi^0$) = (48) cond error is the symplem B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the B^+	3 ± 11 γ stemark γ (4.4) 04s 04s 08B es, fits, 03X ne γ (4.4)) × 10 ⁻ cic error (S). + γ))/(S) - ECN BABR S). - ECN BABR limits, 6 BABR S).	2. Our first from using of total $COMMENT$ $e^+e^- \rightarrow COMMENT$ $e^- \rightarrow COMMENT$ e	error is the our best value Γ_{166}/Γ Γ_{168}/Γ Γ_{168}/Γ Γ_{168}/Γ UBERT 08B
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}_{-0.4}}$ 1.4±0.4 $^{+0.6}_{-0.4}$ 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$	$(2460)^+$ — and our second outline of $(2007)^0$ × $(20$	$D_s^{*+}\pi^0$) = (48) cond error is the symplem B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the B^+	3 ± 11 γ stemark γ (4.4) 04s 04s 08B es, fits, 03X ne γ (4.4)) × 10 ⁻ cic error (S). + γ))/(S) - ECN BABR S). - ECN BABR limits, 6 BABR S).	2. Our first from using of total $COMMENT$ $e^+e^- \rightarrow COMMENT$ $e^- \rightarrow COMMENT$ e	error is the our best value $\Gamma_{166}/\Gamma_{168}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}_{-0.4}}$ 1.4±0.4 ^{+0.6} 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$	$(2460)^+$ — and our separation of $(2007)^0 \times (2007)^0 \times (2007)^$	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the B^+	3 ± 11 γ stemark γ (4.1) 04s 04s 08B es, fits, 03X γ (4.1) 0807)) × 10 ⁻ cic error (S). + γ))/(S) EECN BABR S). EECN BABR limits, (BABR S). FECN BABR BABR S). FECN BABR BABR BABR S).	2. Our first from using of total $\frac{COMMENT}{e^+e^- \rightarrow}$ (Comment $e^+e^- \rightarrow$ Repl. by A (2010)	error is the our best value $\Gamma_{166}/\Gamma_{166}/\Gamma_{168}/\Gamma_{168}/\Gamma_{168}/\Gamma_{167}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}_{-0.4}}$ 1.4±0.4 ^{+0.6} 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4}$	$(2460)^+$ — and our separation of $(2007)^0 \times (2007)^0 \times (2007)^$	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENTID$ 1 AUBERT,B B^+ and B^0 at the B^+	3 ± 11 γ stemark γ (4.1) 04s 04s 08B es, fits, 03X γ (4.1) 0807)) × 10 ⁻ cic error (S). + γ))/(S) EECN BABR S). EECN BABR limits, (BABR S). FECN BABR BABR S). FECN BABR BABR BABR S).	2. Our first from using of total $\frac{COMMENT}{e^+e^- \rightarrow}$ (Comment $e^+e^- \rightarrow$ Repl. by A (2010)	error is the our best value $\Gamma_{166}/\Gamma_{166}/\Gamma_{168}/\Gamma_{168}/\Gamma_{168}/\Gamma_{167}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+}\overline{D}^{*}(\frac{VALUE \text{ (units }10^{-3})}{1.4\pm0.4^{+0.6}}$ 1.4±0.4 ^{+0.6} 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units }10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units }10^{-4})}{1.45}$ $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units }10^{-4})}{1.45}$ 3.97±0.85±0.56	$(2460)^+$ — and our send out of $(2007)^0 \times (2007)^0 $	$D_s^{*+}\pi^0$) = (48) cond error is the symbol B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT ID$ 1 AUBERT, B^+ and B^0 at the B^0 at the B^0 at the B^0 at B^0 and B^0 at the B^0 at B^0 at B^0 and B^0 at B^0 at B^0 and B^0 and B^0 at B^0 and B^0 at B^0 and B^0 and B^0 and B^0 and B^0 at B^0 and B^0 and B^0 and B^0 and B^0	3 ± 11 $\sqrt{5}$ 3 ± 11 $\sqrt{5}$ 3 ± 11 $\sqrt{5}$ 3 ± 11 4 ± 10) × 10 ⁻ tic error (S). + γ))/(S) / (FECN) /	2. Our first from using of total $\frac{COMMENT}{e^+e^- \rightarrow}$ Repl. by A $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$ $\frac{COMMENT}{e^+e^- \rightarrow}$	error is the our best value $\Gamma_{166}/\Gamma_{166}/\Gamma_{168}/\Gamma_{168}/\Gamma_{168}/\Gamma_{168}/\Gamma_{167}/$
3 Assumes equal pro $\Gamma(D_{sJ}(2457)^{+} \overline{D}^{*}(\frac{VALUE \text{ (units } 10^{-3})}{1.4\pm0.4^{+0.6}} $ 1.4±0.4 ^{+0.6} 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{2.16\pm0.52\pm0.45}$ • • • We do not use to <2 1 Assumes equal pro $\Gamma(\overline{D}^{0}D_{s1}(2536)^{+} \times \frac{VALUE \text{ (units } 10^{-4})}{1.4} \times \frac{VALUE \text{ (units }$	$(2460)^+$ — and our separation of $(2007)^0 \times (2007)^0 \times (2007)^$	$D_s^{*+}\pi^0$) = (48) cond error is the symple B^+ and B^0 at the $B(D_{sJ}(2457)^+$ $DOCUMENT ID$ 1 AUBERT, B^+ and B^0 at the B^0	3 ± 11 γ stemark γ (4.4) γ	0×10^{-1} tic error is S). $\frac{1}{S}$	2. Our first from using of total $COMMENT$ $e^+e^- \rightarrow COMMENT$ $e^- \rightarrow COME$	error is the our best value $\Gamma_{166}/\Gamma_{166}/\Gamma_{168}/\Gamma_{168}/\Gamma_{168}/\Gamma_{167}/$

```
\Gamma(\overline{D}^*(2007)^0 D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^*(2007)^0 K^+))/\Gamma_{\text{total}}
                                                                                                             \Gamma_{169}/\Gamma
                                                DOCUMENT ID _____ TECN COMMENT
                                              <sup>1</sup> AUBERT
                                                                      08B BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                                      03X BABR Repl. by AUBERT 08B
<7
                                                 AUBERT
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^0 D_{s1}(2536)^+ \times B(D_{s1}(2536)^+ \to D^{*+} K^0)) / \Gamma_{total}
                                                                                                             \Gamma_{170}/\Gamma
                                                 DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                                                     08B BABR e^+e^- \rightarrow \Upsilon(4S)
2.30\pm0.98\pm0.43
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}{}^{0}D_{s,I}(2700)^{+} \times B(D_{s,I}(2700)^{+} \to D^{0}K^{+}))/\Gamma_{\text{total}}
                                                                                                             \Gamma_{171}/\Gamma
VALUE (units 10^{-4})
                                                 DOCUMENT ID TECN COMMENT
 5.6 \pm1.8 OUR AVERAGE Error includes scale factor of 1.7.
                                                                      15C BABR e^+e^- \rightarrow \Upsilon(4S)
                                              <sup>1</sup> LEES
 5.02 \pm 0.71 \pm 0.93
11.3 \pm 2.2 + 1.4 = 2.8
                                              <sup>1</sup> BRODZICKA 08 BELL e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^{*0}D_{s1}(2536)^{+}, D_{s1}^{+} \rightarrow D^{*+}K^{0})/\Gamma_{total}
                                                                                                             \Gamma_{172}/\Gamma
VALUE (units 10^{-4})
                                               DOCUMENT ID TECN COMMENT
                                              <sup>1</sup> AUBERT
                                                                     08B BABR e^+e^- \rightarrow \Upsilon(4S)
3.92 \pm 2.46 \pm 0.83
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}{}^{0}D_{s,I}(2573)^{+}, D_{s,I}^{+} \rightarrow D^{0}K^{+})/\Gamma_{\text{total}}
                                                 DOCUMENT ID TECN COMMENT
VALUE (units 10^{-4})
                                               <sup>1</sup> LEES 15C BABR e^+e^- \rightarrow \Upsilon(4S)
0.08 \pm 0.14 \pm 0.05
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(\overline{D}^{*0}D_{sJ}(2573), D_{sJ}^+ \rightarrow D^0K^+)/\Gamma_{\text{total}}
                                                                                                             \Gamma_{174}/\Gamma
                                                 \begin{array}{cccc} \underline{\textit{DOCUMENT ID}} & \underline{\textit{TECN}} & \underline{\textit{COMMENT}} \\ \text{AUBERT} & \text{03X} & \text{BABR} & e^+ \, e^- \rightarrow & \varUpsilon(4S) \end{array}
VALUE (units 10<sup>-4</sup>)
\Gamma(\overline{D}^*(2007)^0\,D_{sJ}(2573),\;D_{sJ}^+
ightarrow\;D^0\,K^+)/\Gamma_{
m total}
                                                                                                             \Gamma_{175}/\Gamma
VALUE (units 10^{-4}) CL\%
                                                 DOCUMENT ID TECN COMMENT
                                                 AUBERT 03x BABR e^+e^- \rightarrow \Upsilon(4S)
\Gamma(\overline{D}^0 D_s^{*+})/\Gamma_{\text{total}}
                                                                                                             \Gamma_{176}/\Gamma
                                                 DOCUMENT ID TECN COMMENT
0.0076±0.0016 OUR AVERAGE
                                               <sup>1</sup> AUBERT
                                                                      06N BABR e^+e^- \rightarrow \Upsilon(4S)
0.0079 \pm 0.0017 \pm 0.0007
                                              <sup>2</sup> GIBAUT
                                                                             CLE2 e^+e^- \rightarrow \Upsilon(4S)
0.0068 \pm 0.0025 \pm 0.0006
                                                                      96
                                                                                        e^+e^- \rightarrow \gamma(4S)
0.010 \pm 0.007 \pm 0.001
                                              <sup>3</sup> ALBRECHT
                                                                      92G ARG
```

- ¹ AUBERT 06N reports $(0.77\pm0.15\pm0.13)\times10^{-2}$ from a measurement of $[\Gamma(B^+\to \overline{D}^0D_s^{*+})/\Gamma_{\text{total}}]\times[B(D_s^+\to\phi\pi^+)]$ assuming $B(D_s^+\to\phi\pi^+)=0.0462\pm0.0062$, which we rescale to our best value $B(D_s^+\to\phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ²GIBAUT 96 reports $0.0087 \pm 0.0027 \pm 0.0017$ from a measurement of $[\Gamma(B^+ \to \overline{D}{}^0D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ALBRECHT 92G reports $0.016 \pm 0.012 \pm 0.003$ from a measurement of $[\Gamma(B^+ \to \overline{D}{}^0D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 branching ratios, e.g., $B(D^0 \to K^-\pi^+) = 3.71 \pm 0.25\%$.

$\Gamma(\overline{D}^*(2007)^0 D_s^+)/\Gamma_{\text{total}}$

 Γ_{177}/Γ

VALUE	DOCUMENT ID		TLCIV	COMMENT
0.0082±0.0017 OUR AVERAGE				
$0.0078 \pm 0.0018 \pm 0.0007$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.011\ \pm0.004\ \pm0.001$	² GIBAUT	96	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
0.008 + 0.006 + 0.001	³ ALBRECHT	92G	ARG	$e^+e^- \rightarrow \gamma(4S)$

- 1 AUBERT 06N reports (0.76 \pm 0.15 \pm 0.13) \times 10^{-2} from a measurement of [$\Gamma(B^+ \to \overline{D}^*(2007)^0 \, D_s^+)/\Gamma_{\rm total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.0462 \pm 0.0062$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- 2 GIBAUT 96 reports 0.0140 \pm 0.0043 \pm 0.0035 from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^+)/\Gamma_{\rm total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ³ ALBRECHT 92G reports $0.013 \pm 0.009 \pm 0.002$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0D_s^+)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 and $D^*(2007)^0$ branching ratios, e.g., $B(D^0 \to K^-\pi^+) = 3.71 \pm 0.25\%$ and $B(D^*(2007)^0 \to D^0\pi^0) = 55 \pm 6\%$.

$\Gamma(\overline{D}^*(2007)^0 D_s^{*+})/\Gamma_{\text{total}}$

 Γ_{178}/Γ

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.0171 ± 0.0024 OUR AVERAGE				
$0.0167\!\pm\!0.0019\!\pm\!0.0015$	$^{ m 1}$ AUBERT	06N	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.024\ \pm0.009\ \pm0.002$	² GIBAUT	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.019\ \pm0.010\ \pm0.002$	³ ALBRECHT	92G	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ AUBERT 06N reports $(1.62 \pm 0.22 \pm 0.18) \times 10^{-2}$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.0462 \pm 0.0062$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² GIBAUT 96 reports $0.0310 \pm 0.0088 \pm 0.0065$ from a measurement of $[\Gamma(B^+ \to \overline{D}^*(2007)^0 D_s^{*+})/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.035$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = (4.5 \pm 0.4) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ ALBRECHT 92G reports $0.031\pm0.016\pm0.005$ from a measurement of $[\Gamma(B^+\to \overline{D}^*(2007)^0D_s^{*+})/\Gamma_{\rm total}] \times [B(D_s^+\to \phi\pi^+)]$ assuming $B(D_s^+\to \phi\pi^+)=0.027$, which we rescale to our best value $B(D_s^+\to \phi\pi^+)=(4.5\pm0.4)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes PDG 1990 D^0 and $D^*(2007)^0$ branching ratios, e.g., $B(D^0\to K^-\pi^+)=3.71\pm0.25\%$ and $B(D^*(2007)^0\to D^0\pi^0)=55\pm6\%$.

$$\Gamma(D_s^{(*)+}\overline{D}^{**0})/\Gamma_{total}$$
 $VALUE$
 $(2.73\pm0.93\pm0.68)\times 10^{-2}$
 $DOCUMENT ID$
 $TECN$
 $TECN$
 $COMMENT$
 $COMM$

¹ AHMED 00B reports their experiment's uncertainties ($\pm 0.78 \pm 0.48 \pm 0.68$)%, where the first error is statistical, the second is systematic, and the third is the uncertainty in the $D_s \to \phi \pi$ branching fraction. We combine the first two in quadrature.

$\Gamma(\overline{D}^*(2007)^0 D^*(2010)^+)/\Gamma_{\text{total}}$

 Γ_{180}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
8.1±1.2±1.2		¹ AUBERT,B	06A	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
• • • We do not use t	he followin	g data for average	s, fits,	limits, e	etc. • • •	
<110	90	BARATE	980	ALEP	$e^+e^- \rightarrow 7$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\left[\Gamma(\overline{D}{}^0D^*(2010)^+\right)+\Gamma(\overline{D}^*(2007)^0D^+)\right]/\Gamma_{total}$

 Γ_{181}/Γ

L ' ' ' '	•	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
VALUE (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT	
<130	90	BARATE 98Q	ALEP	$e^+e^- \rightarrow Z$	

$\Gamma(\overline{D}^0 D^*(2010)^+)/\Gamma_{\text{total}}$

 Γ_{182}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
3.9 ±0.5 OUR AVERAGE				
$3.6 \pm 0.5 \pm 0.4$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$4.57 \pm 0.71 \pm 0.56$	$^{ m 1}$ MAJUMDER	05	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{D}{}^0D^+)/\Gamma_{\text{total}}$						Γ ₁₈₃ /Γ
VALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
3.8 ±0.4 OUR AVE	ERAGE	1	00	DELL	+ -	20(4.6)
$3.85 \pm 0.31 \pm 0.38$ $3.8 \pm 0.6 \pm 0.5$		¹ ADACHI ¹ AUBERT,B	08 064	BARR	$e \cdot e \rightarrow + - \rightarrow$	1 (45) Υ(45)
• • • We do not use the						7 (43)
$4.83 \pm 0.78 \pm 0.58$		¹ MAJUMDER				DACHI 08
<67	90	BARATE				
$^{ m 1}$ Assumes equal produ	uction of B	$^{ m H}$ and $^{ m B0}$ at the	$\Upsilon(4.$	S).		
$\Gamma(\overline{D}{}^0D^+K^0)/\Gamma_{\text{total}}$						Γ ₁₈₄ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
$1.55 \pm 0.17 \pm 0.13$		¹ DEL-AMO-SA.	11 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	e following					
<2.8	90	¹ AUBERT			Repl. by D	EL-AMO- IEZ 11B
¹ Assumes equal produ	uction of B	$^{ m H}$ and $^{ m B0}$ at the	$\Upsilon(4.$	S).		
$\Gamma(D^+\overline{D}^*(2007)^0)/\Gamma_0$						Γ_{185}/Γ
VALUE (units 10^{-4})		1 AUBERT,B		TECN	COMMENT	
$6.3 \pm 1.4 \pm 1.0$					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^{+}$ and B^{0} at the	$\Upsilon(4.$	S).		
$\Gamma(\overline{D}^*(2007)^0D^+K^0)$	$)/\Gamma_{total}$					Γ_{186}/Γ
$VALUE$ (units 10^{-3})	CL%					
$2.06\pm0.38\pm0.30$		¹ DEL-AMO-SA.				$\Upsilon(4S)$
• • • We do not use the						
<6.1		¹ AUBERT				EL-AMO- IEZ 11B
¹ Assumes equal produ	uction of B	$^{ m H}$ and $^{ m B0}$ at the	$\Upsilon(4.$	S).		
$\Gamma(\overline{D}^0D^*(2010)^+K^0)$	$/\Gamma_{ ext{total}}$					Γ_{187}/Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID				
$3.81 \pm 0.31 \pm 0.23$		¹ DEL-AMO-SA.				$\Upsilon(4S)$
• • • We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •	
$5.2 \ ^{+1.0}_{-0.9} \ \pm 0.7$		¹ AUBERT	03X	BABR		EL-AMO- IEZ 11B
$^{ m 1}$ Assumes equal produ	uction of B	$^{ m H}$ and $^{ m B0}$ at the	$\Upsilon(4.$	S).		
$\Gamma(\overline{D}^*(2007)^0 D^*(201)^0 D^*$	$(0)^{+}K^{0}$	/Γ _{total}				Γ ₁₈₈ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
9.17±0.83±0.90 • • • We do not use the		DOCUMENT ID DEL-AMO-SA. data for averages				$\Upsilon(4S)$
7.8 $^{+2.3}_{-2.1}$ ±1.4		¹ AUBERT				EL-AMO-
$^{-2.1}$ Assumes equal produ	uction of B				SANCH	I EZ 11 B
equal prout		D ut the	. ('	-).		
HTTP://PDG.LBL.C					ed: 5/30/	

$\Gamma(\overline{D}{}^0D^0K^+)/\Gamma_{\text{total}}$						Γ ₁₈₉ /Γ
VALUE (units 10^{-3})	L	DOCUMENT ID	TI	ECN CO	OMMENT	
1.45±0.33 OUR AVERA	GE Erro	r includes scale f	actor o	of 2.6.		
$1.31\!\pm\!0.07\!\pm\!0.12$	¹ [DEL-AMO-SA1	.1B B	ABR e	$+e^- \rightarrow \gamma$	(45)
$2.22\!\pm\!0.22\!+\!0.26\\-0.24$	1 [BRODZICKA ()8 B	ELL e	$+e^- \rightarrow \gamma$	(45)
• • • We do not use the	following	data for average	es, fits,	, limits, e	etc. • • •	
$1.17\!\pm\!0.21\!\pm\!0.15$	1 (CHISTOV ()4 B	ELL R	epl. by BRC	DZICKA 08
$1.9 \pm 0.3 \pm 0.3$	1 /	AUBERT (3X B	ABR R	epl. by DEL SANCHEZ	
$^{ m 1}$ Assumes equal produ	iction of <i>B</i>	$^{+}$ and \mathcal{B}^{0} at th	e γ(4	S).	SANCILL	116
$\Gamma(\overline{D}^*(2007)^0 D^0 K^+)$	$/\Gamma_{total}$					Γ ₁₉₀ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
$2.26 \pm 0.16 \pm 0.17$		¹ DEL-AMO-SA	∖11 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for average	es, fits,	, limits, e	etc. • • •	
<3.8	90	¹ AUBERT	03X	BABR	Repl. by D	EL-AMO- EZ 11B
$^{ m 1}$ Assumes equal produ	ction of B	$^{+}$ and B^{0} at th	e γ(4	<i>S</i>).		
$\Gamma(\overline{D}{}^{0}D^{*}(2007)^{0}K^{+})$	$/\Gamma_{total}$					Γ ₁₉₁ /Γ
VALUE (units 10^{-3})	/ total	DOCUMENT ID		TECN	COMMENT	191/
6.32±0.19±0.45		¹ DEL-AMO-SA				$\Upsilon(45)$
• • • We do not use the	following					(10)
$4.7\ \pm0.7\ \pm0.7$	J	¹ AUBERT				EL-AMO-
¹ Assumes equal produ	ction of B	$^{+}$ and 0 at th	e γ(4	<i>S</i>).	SANCH	LZ 11b
$\Gamma(\overline{D}^*(2007)^0 D^*(200$	7) ⁰ K ⁺).	/Γ _{total}				Γ ₁₉₂ /Γ
VALUE (units 10^{-3})	,	DOCUMENT ID		TECN	COMMENT	
11.23±0.36±1.26		¹ DEL-AMO-SA				$\Upsilon(4S)$
• • We do not use the	following					(-)
$5.3 \begin{array}{c} +1.1 \\ -1.0 \end{array} \pm 1.2$		¹ AUBERT	03X	BABR	Repl. by D	EL-AMO- F7 11B
$^{ m 1}$ Assumes equal produ	ction of B	$^{+}$ and 0 at th	e γ(4	S).	57114611	LL 110
$\Gamma(D^-D^+K^+)/\Gamma_{\text{total}}$	l					Γ ₁₉₃ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
$0.22 \pm 0.05 \pm 0.05$		¹ DEL-AMO-SA	\11 в	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for average	es, fits,	, limits, e	etc. • • •	
< 0.90	90	$^{ m 1}$ CHISTOV	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
<0.4	90	¹ AUBERT	03X	BABR	Repl. by D SANCH	EL-AMO- EZ 11B
$^{ m 1}$ Assumes equal produ	iction of <i>B</i>	$^{+}$ and \mathcal{B}^{0} at th	e γ(4	S).		

$\Gamma(D^-D^*(2010)^+K^*)$	+)/Γ _{total}					Γ ₁₉₄ /Γ
VALUE (units 10^{-3})	•	DOCUMENT ID		TECN	COMMENT	13.7
$0.63 \pm 0.09 \pm 0.06$		¹ DEL-AMO-SA				$\Upsilon(4S)$
• • • We do not use th	ne following					(10)
<0.7	90	¹ AUBERT	03X	BABR	Repl. by D SANCH	
$^{ m 1}$ Assumes equal prod	uction of E	$^{ m +}$ and $B^{ m 0}$ at the	r(4.	S).		
$\Gamma(D^*(2010)^-D^+K^-)$	$^+)/\Gamma_{ ext{total}}$					Γ ₁₉₅ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID				
$0.60\pm0.10\pm0.08$		¹ DEL-AMO-SA	.11 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	ne following	data for averages	s, fits,	limits, e	etc. • • •	
$1.5 \pm 0.3 \pm 0.2$		¹ AUBERT			Repl. by D SANCH	
¹ Assumes equal prod	uction of E	$^{ m H}$ and $B^{ m 0}$ at the	r(4.	S).		
$\Gamma(D^*(2010)^-D^*(201$)10)+ <i>K</i> +)/Γ _{total}				Γ ₁₉₆ /Γ
$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT	
$1.32 \pm 0.13 \pm 0.12$		¹ DEL-AMO-SA	11 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	ne following	data for averages	s, fits,	limits, e	etc. • • •	
<1.8	90	¹ AUBERT	03X	BABR	Repl. by D SANCH	
¹ Assumes equal prod	uction of E	$^{ m 8}^+$ and B^0 at the	r(4.	S).		
$\Gamma((\overline{D}+\overline{D}^*)(D+D^*)$	') <i>K</i>)/Γ _{tot}	tal				Γ ₁₉₇ /Γ
$VALUE$ (units 10^{-2})		DOCUMENT ID				
$4.05\pm0.11\pm0.28$		¹ DEL-AMO-SA	.11 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	ne following	data for averages	s, fits,	limits, e	etc. • • •	
$3.5 \pm 0.3 \pm 0.5$		¹ AUBERT	03X	BABR	Repl. by D SANCH	EL-AMO- EZ 11B
$^{ m 1}$ Assumes equal prod	uction of E	$^{+}$ and B^{0} at the	$\Upsilon(4.$	S).		
$\Gamma(D_s^+\pi^0)/\Gamma_{ m total}$						Γ ₁₉₈ /Γ
$VALUE$ (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
$1.6^{+0.6}_{-0.5}{\pm}0.1$		¹ AUBERT				
• • • We do not use th	ne following	data for averages	s, fits,	limits, e	etc. • • •	
<16	90	² ALEXANDER	93 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ AUBERT 07M rep	orts $\Gamma(R)$	$+ \rightarrow D^{+}\pi^{0}$	/Γ	.1 ×	[B(D ⁺ →	ϕ_{π}^{+})1 –
$(7.0^{+2.4}_{-2.1}^{+0.6}) \times$	10^{-7} which	ch we divide by	our l	oest valu	ue B $(D_s^+$ -	\rightarrow $\phi \pi^+) =$
$(4.5\pm0.4) imes10^{-2}$ is the systematic en	² . Our firs ror from usi	t error is their exing our best value	xperin	nent's er	ror and our	second error
² ALEXANDER 93B i				suremen	t of $[\Gamma(B^+)]$	$\rightarrow D_s^+ \pi^0)/$
$\Gamma_{total}] \times [B(D_{s}^+ -$	$\rightarrow \phi\pi^+)]$ a	issuming B(D_s^+ -				
our best value $B(D_{s}^{2})$	$\phi \pi^+$	$() = 4.5 \times 10^{-2}.$				

 $\frac{\left[\Gamma\left(D_s^+\pi^0\right) + \Gamma\left(D_s^{*+}\pi^0\right)\right]/\Gamma_{\text{total}}}{\frac{VALUE}{\sqrt{5} \times 10^{-4}}} \frac{CL\%}{90} \frac{DOCUMENT\ ID}{1\ \text{ALBRECHT}} \frac{TECN}{93} \frac{COMMENT}{\sqrt{6}} e^+e^- \rightarrow \Upsilon(4S)$

 1 ALBRECHT 93E reports < 0.9 imes 10 $^{-3}$ from a measurement of [$\left[\Gamma(B^+ o D_s^+ \pi^0) + D_s^+ \pi^0\right]$ $\Gamma(B^+ \to D_s^{*+} \pi^0) / \Gamma_{\text{total}} \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+) = 0.027,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}\pi^0)/\Gamma_{\mathsf{total}}$

 Γ_{199}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT COMMENT

 1 ALEXANDER 93B reports $<3.2\times10^{-4}$ from a measurement of [$\Gamma(B^+\to~D_s^{*+}\pi^0)/$ $\Gamma_{
m total}] imes [{
m B}(D_s^+ o \ \phi \pi^+)]$ assuming ${
m B}(D_s^+ o \ \phi \pi^+) = 0.037$, which we rescale to our best value ${
m B}(D_s^+ o \ \phi \pi^+) = 4.5 imes 10^{-2}$.

 $\Gamma(D_s^+\eta)/\Gamma_{\text{total}}$

 Γ_{200}/Γ

VALUE CL% DOCUMENT ID TECN COMMENT $\sim 4 \times 10^{-4}$ 90 1 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 1 ALEXANDER 93B reports < 4.6 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+
ightarrow D_s^+ \eta)/$ $\Gamma_{\rm total}] \times [{\rm B}(D_s^+ o \phi \pi^+)]$ assuming ${\rm B}(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value ${\rm B}(D_s^+ o \phi \pi^+) = 4.5 \times 10^{-2}$.

 Γ_{201}/Γ

 $\Gamma(D_s^{*+}\eta)/\Gamma_{total}$ VALUE CL% OCUMENT ID TECN COMMENT CL% OCUMENT ID TECN COMMENT OCUMENT ID O

 1 ALEXANDER 93B reports $<7.5 imes10^{-4}$ from a measurement of $[\Gamma(B^+ o~D_S^{*+}\eta)/$ $\Gamma_{ ext{total}}] imes [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 Γ_{202}/Γ

 $\Gamma(D_s^+ \rho^0)/\Gamma_{total}$ VALUE CL% DOCUMENT ID TECN COMMENT 1 ALEXANDER 93B reports $< 3.7 \times 10^{-4}$ from a measurement of $[\Gamma(B^+
ightarrow ~D_S^+
ho^0)/$ $\Gamma_{
m total}] imes [{
m B}(D_{\it s}^+ o \phi \pi^+)]$ assuming ${
m B}(D_{\it s}^+ o \phi \pi^+) =$ 0.037, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\frac{\left[\Gamma\left(D_{s}^{+}\rho^{0}\right) + \Gamma\left(D_{s}^{+}\overline{K}^{*}(892)^{0}\right)\right]/\Gamma_{\text{total}}}{CL\%} \qquad \frac{\Gamma_{202}+\Gamma_{212}}{CL\%} \frac{\Gamma_{202}+\Gamma_{212}}{\Gamma_{212}}$ $\frac{CL\%}{\sqrt{2.0 \times 10^{-3}}} \frac{CL\%}{\sqrt{2.0 \times 10^{-3}}} \frac{1}{\sqrt{2.0 \times 10^$

Created: 5/30/2017 17:22

¹ ALBRECHT 93E reports $< 3.4 \times 10^{-3}$ from a measurement of $\left[\left[\Gamma(B^+ \to D_s^+ \rho^0) + D_s^+ \rho^0 \right] \right]$ $\Gamma(B^+ \to D_s^+ \overline{K}^*(892)^0) \Big] / \Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+) = 0$ 0.027, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^{*+}\rho^0)/\Gamma_{
m total}$ $\frac{CL\%}{90}$ $\frac{DOCUMENT~ID}{1}$ $\frac{TECN}{COMMENT}$ $\frac{COMMENT}{e^+e^-
ightarrow \gamma(4S)}$

 1 ALEXANDER 93B reports < 4.8 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+ o D_s^{*+}
ho^0)/$ $\Gamma_{ ext{total}}] \times [B(D_s^+ o \phi \pi^+)]$ assuming $B(D_s^+ o \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\frac{\left[\Gamma\left(D_{s}^{*+}\rho^{0}\right)+\Gamma\left(D_{s}^{*+}\overline{K}^{*}(892)^{0}\right)\right]/\Gamma_{\text{total}}}{CL\%} \qquad \frac{(\Gamma_{203}+\Gamma_{214})/\Gamma}{CL\%}$ $\frac{CL\%}{<1.2\times10^{-3}} \qquad \frac{DOCUMENT\ ID}{1\ ALBRECHT} \qquad \frac{TECN}{93} \qquad \frac{COMMENT}{e^{+}e^{-}\rightarrow \Upsilon(4S)}$

 1 ALBRECHT 93E reports $< 2.0 \times 10^{-3}$ from a measurement of [$\Gamma(B^{+} \rightarrow D_{s}^{*+} \rho^{0})$ + $\Gamma(B^+ \to D_s^{*+} \overline{K}^*(892)^0) \Big] / \Gamma_{\text{total}} \Big] \times [B(D_s^+ \to \phi \pi^+)] \text{ assuming } B(D_s^+ \to \phi \pi^+)$ = 0.027, which we rescale to our best value B($D_s^+
ightarrow \phi \pi^+$) = 4.5 imes 10 $^{-2}$.

 $\Gamma(D_s^+\omega)/\Gamma_{\text{total}}$ Γ_{204}/Γ

 $\frac{\textit{CL\%}}{90}$ $\frac{\textit{DOCUMENT ID}}{1}$ $\frac{\textit{TECN}}{4}$ $\frac{\textit{COMMENT}}{2}$ $\frac{\textit{COMMENT}}{4}$

• • • We do not use the following data for averages, fits, limits, etc. • •

 $< 2.0 \times 10^{-3}$ ² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90

 $\Gamma(D_s^{*+}\omega)/\Gamma_{\text{total}}$ Γ_{205}/Γ

 $\frac{\textit{DOCUMENT ID}}{1}$ ALEXANDER 93B CLE2 $e^+e^-
ightarrow \varUpsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet

$$<$$
1.1 \times 10⁻³ 90 ² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ ALEXANDER 93B reports < 4.8 imes 10 $^{-4}$ from a measurement of $[\Gamma(B^+
ightarrow ~D_{_{m S}}^+ \omega)/$ $\Gamma_{ ext{total}}] imes [B(D_s^+ o \ \phi \pi^+)]$ assuming $B(D_s^+ o \ \phi \pi^+) = 0.037$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $^{^2}$ ALBRECHT 93E reports $< 3.4 imes 10^{-3}$ from a measurement of $[\Gamma(B^+ o D_S^+ \omega)/$ $\Gamma_{ ext{total}}] imes [B(D_s^+ o \ \phi \pi^+)]$ assuming $B(D_s^+ o \ \phi \pi^+) = 0.027$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $^{^{1}}$ ALEXANDER 93B reports $< 6.8 \times 10^{-4}$ from a measurement of $[\Gamma(B^{+} \rightarrow D_{c}^{*+}\omega)/$ $\Gamma_{
m total}] imes [{
m B}(D_{s}^{+}
ightarrow \phi \pi^{+})]$ assuming ${
m B}(D_{s}^{+}
ightarrow \phi \pi^{+}) =$ 0.037, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $^{^2}$ ALBRECHT 93E reports $< 1.9 imes 10^{-3}$ from a measurement of $[\Gamma(B^+ o D_s^{*+} \omega)/D_s^{*+}]$ $\Gamma_{ ext{total}}] \times [\mathsf{B}(D_{s}^{+}
ightarrow \phi \pi^{+})]$ assuming $\mathsf{B}(D_{s}^{+}
ightarrow \phi \pi^{+}) = 0.027$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^+ a_1(1260)^0)/\Gamma_{\text{total}}$

 Γ_{206}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$<1.8 \times 10^{-3}$	90	¹ ALBRECHT 93	e ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ ALBRECHT 93E reports $< 3.0 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^+ a_1(1260)^0)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^{*+}a_1(1260)^0)/\Gamma_{\text{total}}$

 Γ_{207}/Γ

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>	<u>TECN</u>	<u>COMMENT</u>
$<1.3 \times 10^{-3}$	90	¹ ALBRECHT 93E	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
1 ALDDECUT 00-				

¹ ALBRECHT 93E reports $< 2.2 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} a_1(1260)^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^+\phi)/\Gamma_{\text{total}}$

 Γ_{208}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$1.7^{+1.1}_{-0.7}\pm0.2$		¹ AAIJ	13 R	LHCB	pp at 7 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 1.9	90	² AUBERT	06F	BABR	$e^+e^ ightarrow$	$\Upsilon(4S)$
<1000	90	³ ALBRECHT	93E	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
< 260	90	⁴ ALEXANDER	93 B	CLE2	$e^+e^- ightarrow$	$\Upsilon(4S)$

- 1 AAIJ 13R reports $(1.87^{+1.25}_{-0.73}\pm0.19\pm0.32)\times10^{-6}$ from a measurement of $[\Gamma(B^+\to D_s^+\phi)/\Gamma_{\rm total}]$ / $[B(B^+\to \overline{D}{}^0D_s^+)]$ assuming $B(B^+\to \overline{D}{}^0D_s^+)=(10.0\pm1.7)\times10^{-3}$, which we rescale to our best value $B(B^+\to \overline{D}{}^0D_s^+)=(9.0\pm0.9)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ³ ALBRECHT 93E reports $< 1.7 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \phi)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.
- ⁴ ALEXANDER 93B reports $< 3.1 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^{*+}\phi)/\Gamma_{\text{total}}$

 Γ_{209}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.2 × 10 ⁻⁵	90	¹ AUBERT	06F	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •

$$<1.3\times10^{-3}$$
 90 2 ALBRECHT 93E ARG $e^+\,e^-\to~\varUpsilon(4S)$ $<3.5\times10^{-4}$ 90 3 ALEXANDER 93B CLE2 $e^+\,e^-\to~\varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ ALEXANDER 93B reports $< 4.2 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $\Gamma(D_s^+ \overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{210}/Γ

<u>VALUE</u>	CL%_	DOCUMENT ID	TECN	COMMENT
<8 × 10 ⁻⁴	90	¹ ALEXANDER 93B	CLE2	$e^+e^- ightarrow \gamma(4S)$

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$$<$$
1.5 \times 10 $^{-3}$ 90 2 ALBRECHT 93E ARG $e^{+}e^{-} \rightarrow \Upsilon(4S)$

² ALBRECHT 93E reports $< 2.5 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \overline{K}^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $\Gamma(D_s^{*+}\overline{K}^0)/\Gamma_{\text{total}}$

 Γ_{211}/Γ

() // 55525				
VALUE	CL%	DOCUMENT ID	TECN	COMMENT
<9 × 10 ⁻⁴	90	¹ ALEXANDER 93B	CLE2	$e^+e^- \rightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
1.9 \times 10⁻³ 90 ² ALBRECHT 93E ARG $e^+e^- \rightarrow \Upsilon(4S)$

²ALBRECHT 93E reports $< 3.1 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \overline{K}^0)/\Gamma_{total}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

$\Gamma(D_s^+\overline{K}^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{212}/Γ

Created: 5/30/2017 17:22

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<4.4 × 10 ⁻⁶	90	AAIJ	13R	LHCB	pp at 7 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<$$
4 \times 10⁻⁴ 90 1 ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

² ALBRECHT 93E reports $< 2.1 \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+}\phi)/\Gamma_{total}] \times [B(D_s^+ \to \phi\pi^+)]$ assuming $B(D_s^+ \to \phi\pi^+) = 0.027$, which we rescale to our best value $B(D_s^+ \to \phi\pi^+) = 4.5 \times 10^{-2}$.

 $^{^1}$ ALEXANDER 93B reports $< 10.3 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^+ \overline{K}{}^0)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $^{^1}$ ALEXANDER 93B reports $< 10.9 \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to D_s^{*+} \overline{K}{}^0)/\Gamma_{\text{total}}] \times [B(D_s^+ \to \phi \pi^+)]$ assuming $B(D_s^+ \to \phi \pi^+) = 0.037$, which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $^{^{1}}$ ALEXANDER 93B reports $<4.4\times10^{-4}$ from a measurement of $[\Gamma(B^{+}\to D_{s}^{+}\overline{K}^{*}(892)^{0})/\Gamma_{total}]\times[B(D_{s}^{+}\to\phi\pi^{+})]$ assuming $B(D_{s}^{+}\to\phi\pi^{+})=0.037$, which we rescale to our best value $B(D_{s}^{+}\to\phi\pi^{+})=4.5\times10^{-2}$.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(D_c^+ K^{*0})/\Gamma_{\text{total}}$ Γ_{213}/Γ *VALUE* (units 10^{-6}) TECN COMMENT <3.5 13R LHCB pp at 7 TeV **AAIJ** $\Gamma(D_s^{*+}\overline{K}^*(892)^0)/\Gamma_{total}$ Γ_{214}/Γ DOCUMENT ID TECN COMMENT ¹ ALEXANDER 93B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 1 ALEXANDER 93B reports < 4.3 \times 10 $^{-4}$ from a measurement of [$\Gamma(B^{+} \rightarrow$ $D_s^{*+}\overline{K}^*(892)^0)/\Gamma_{ ext{total}}] \times [B(D_s^+ o \phi\pi^+)] \text{ assuming } B(D_s^+ o \phi\pi^+) = 0.037,$ which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_s^-\pi^+K^+)/\Gamma_{\text{total}}$ Γ_{215}/Γ VALUE (units 10^{-4}) CL%DOCUMENT ID TECN COMMENT 1.80±0.22 OUR AVERAGE $1.71^{+0.08}_{-0.07}\pm0.25$ ¹ WIECHCZYN...09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $2.02\pm0.13\pm0.38$ • • • We do not use the following data for averages, fits, limits, etc. • • 90 ² ALBRECHT 93E ARG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 ALBRECHT 93E reports $<1.1\times10^{-3}$ from a measurement of [$\Gamma(B^+\to~D_S^-\pi^+K^+)/$ $\Gamma_{\mathsf{total}}] \times [\mathsf{B}(D_{\mathsf{s}}^+ o \phi \pi^+)]$ assuming $\mathsf{B}(D_{\mathsf{s}}^+ o \phi \pi^+) = 0.027$, which we rescale to our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻². $\Gamma(D_s^{*-}\pi^+K^+)/\Gamma_{\text{total}}$ Γ_{216}/Γ *VALUE* (units 10⁻⁴) DOCUMENT ID TECN COMMENT $1.31^{+0.13}_{-0.12}\pm0.28$ ¹ WIECHCZYN...09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 08G BABR $e^+e^-
ightarrow \varUpsilon(4S)$ ¹ AUBERT $1.67 \pm 0.16 \pm 0.35$ • • We do not use the following data for averages, fits, limits, etc. • $e^+e^- \rightarrow \gamma(4S)$ 90 ² ALBRECHT 93E ARG 1 Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 ALBRECHT 93E reports $<1.6\times10^{-3}$ from a measurement of [$\Gamma(B^+\to~D_s^{*-}\pi^+K^+)/$ our best value B($D_s^+ \rightarrow \phi \pi^+$) = 4.5 × 10⁻².

 $\Gamma(D_s^-\pi^+K^*(892)^+)/\Gamma_{\text{total}}$ Γ_{217}/Γ $\frac{\textit{CL\%}}{90}$ $\frac{\textit{DOCUMENT ID}}{1}$ $\frac{\textit{TECN}}{4}$ $\frac{\textit{COMMENT}}{6}$ $e^+e^- o aggreen aggree$ $<5 \times 10^{-3}$ 1 ALBRECHT 93E reports < 8.6 \times 10 $^{-3}$ from a measurement of [$\Gamma(B^+ \rightarrow$

 $D_s^-\pi^+K^*(892)^+)/\Gamma_{\sf total}] \times [{\sf B}(D_s^+ \to \phi\pi^+)] \text{ assuming } {\sf B}(D_s^+ \to \phi\pi^+) = 0.027,$ which we rescale to our best value $B(D_s^+ \to \phi \pi^+) = 4.5 \times 10^{-2}$.

 $[\]Gamma_{
m total}] imes [{
m B}(D_{\it s}^+
ightarrow \phi \pi^+)]$ assuming ${
m B}(D_{\it s}^+
ightarrow \phi \pi^+) =$ 0.027, which we rescale to

$\Gamma(D_s^{*-}\pi^+K^*(89$)2) ⁺)/ _{[+++}				, ,	Γ ₂₁₈ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID				
$< 7 \times 10^{-3}$	90	¹ ALBRECHT	93E	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$D_s^{*-}\pi^+K^*$ (89)	$(2)^+)/\Gamma_{total}$	\times 1.1 $ imes$ 10 ⁻² $ imes$ [B($D_s^+ o \phi \pi^-$ value B($D_s^+ o \phi$	[⊢])] ass	uming l	$B(D_s^+ \to \phi)$	
$\Gamma(D_s^-K^+K^+)/\Gamma$	total					Γ_{219}/Γ
$VALUE$ (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
0.07±0.21 OUR AV	/FRACE					

 0.97 ± 0.21 OUR AVERAGE

 $0.93 \pm 0.22 \pm 0.10$

 $1.1 \pm 0.4 \pm 0.2$

 1 WIECHCZYN...15 BELL $e^{+}e^{-}
ightarrow \varUpsilon(4S)$ 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT

 $\Gamma\big(D_s^-K^+K^+\big)/\Gamma\big(D_s^-\pi^+K^+\big)$

 $\Gamma_{219}/\Gamma_{215}$

 $0.054 \pm 0.013 \pm 0.006$

TECN COMMENT WIECHCZYN...15 BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(D_s^{*-}K^+K^+)/\Gamma_{\text{total}}$

 Γ_{220}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-4}) 08G BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(n_cK^+)/\Gamma_{--}$

Гээт /Г

' ('IC'\)/ ' total					' 221/ '
VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT	
0.96±0.11 OUR AVERAGE					
0.87 ± 0.15	^{1,2} AUBERT	06E	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.20^{+0.24}_{-0.19}{\pm}0.13$	³ AUBERT,B	05L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.25 \pm 0.14 {+0.39 \atop -0.40}$	⁴ FANG	03	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.69^{+0.26}_{-0.21}{\pm}0.22$	⁵ EDWARDS	01	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

^{2,6} AUBERT.B

04B BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the arangle (4S).

 $^{^{}m 1}$ Perform measurements of absolute branching fractions using a missing mass technique.

²The ratio of B($B^{\pm} \rightarrow K^{\pm}\eta_{C}$) B($\eta_{C} \rightarrow K\overline{K}\pi$) = (7.4 \pm 0.5 \pm 0.7) \times 10⁻⁵ reported in AUBERT,B 04B and B($B^{\pm} \rightarrow K^{\pm} \eta_c$) = (8.7 \pm 1.5) \times 10⁻³ reported in AUBERT 06E contribute to the determination of B($\eta_C \to K\overline{K}\pi$), which is used by others for normalization. ³ AUBERT,B 05L reports $[\Gamma(B^+ \to \eta_c K^+)/\Gamma_{total}] \times [B(\eta_c(1S) \to p\overline{p})] = (1.8^{+0.3}_{-0.2} \pm 1.8^{+0.3}_{-0.2})$

 $^{0.2) \}times 10^{-6}$ which we divide by our best value B $(\eta_c(1S) \to p \, \overline{p}) = (1.50 \pm 0.16) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ EDWARDS 01 assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$. The correlated uncertainties (28.3)% from B $(J/\psi(1S) \to \gamma \eta_C)$ in those modes have been accounted

⁶ AUBERT,B 04B reports $[\Gamma(B^+ o \eta_c K^+)/\Gamma_{ ext{total}}] imes [B(\eta_c(1S) o K \overline{K} \pi)] = (0.074 \pm 1.00)$ $0.005 \pm 0.007) \times 10^{-3}$ which we divide by our best value B $(\eta_c(1S) \rightarrow K\overline{K}\pi) =$ $(7.3 \pm 0.5) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$$\Gamma(B^+ \to \eta_c K^+)/\Gamma_{\text{total}} \times \Gamma(\eta_c(1S) \to \gamma \gamma)/\Gamma_{\text{total}}$$

 $\Gamma_{221}/\Gamma \times \Gamma_{cc}^{\eta_c(1S)}/\Gamma_{cc}^{\eta_c(1S)}$

			. 221	4/ * * * 4/ / *
$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
$0.22^{f +0.09}_{-0.07} + 0.04_{-0.02}$	¹ WICHT	08	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta_c K^+, \eta_c \to K_S^0 K^\mp \pi^\pm)/\Gamma_{\text{total}}$

 Γ_{222}/Γ

DOCUMENT ID TECN COMMENT 1,2 VINOKUROVA 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\eta_c K^*(892)^+)/\Gamma_{\text{total}}$

uncertainties to single values.

 Γ_{223}/Γ

VALUE (units 10^{-3})

DOCUMENT ID TECN COMMENT

$$1.0^{f +0.5}_{f -0.4}{\pm 0.1}$$

$1,2$
 AUBERT

$1,2$
 AUBERT 07AV BABR $_{e}^{+}\,_{e}^{-}
ightarrow ~ \varUpsilon(4S)$

¹ AUBERT 07AV reports $[\Gamma(B^+ \to \eta_c K^*(892)^+)/\Gamma_{total}] \times [B(\eta_c(1S) \to p\overline{p})] = (1.57^{+0.56}_{-0.46} + 0.36) \times 10^{-6}$ which we divide by our best value $B(\eta_c(1S) \to p\overline{p}) = 0.57^{+0.56}_{-0.46} + 0.36 \times 10^{-6}$ $(1.50\pm0.16)\times10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta_c K^+ \pi^+ \pi^-)/\Gamma_{ m to}$	tal				Γ ₂₂₄ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 3.9 \times 10^{-4}$	90	VINOKUROVA 15	BELL	e^+e^-	$\Upsilon(4S)$
$\Gamma(\eta_c K^+ \omega(782))/\Gamma_{tc}$	otal				Γ_{225}/Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 5.3 \times 10^{-4}$	90	VINOKUROVA 15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(\eta_c K^+ \eta) / \Gamma_{\text{total}}$					Γ ₂₂₆ /Γ
<u>VALUE</u>	CL%	DOCUMENT ID	TECN	COMMENT	
$< 2.2 \times 10^{-4}$	90	VINOKUROVA 15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma ig(\eta_c {m K}^+ \pi^0 ig) / \Gamma_{ m total}$					Γ ₂₂₇ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	
$< 6.2 \times 10^{-5}$	90	VINOKUROVA 15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

HTTP://PDG.LBL.GOV

Page 70

 $^{26.7 \}pm 1.4^{+5.7}_{-5.5}$

¹ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

 $^{^2}$ VINOKUROVA 11 reports $(26.7\pm1.4^{+2.9}_{-2.6}\pm4.9)\times10^{-6}$, where the first uncertainty is statistical, the second is due to systematics, and the third comes from interference of $\eta_{c}(1S)\to K_{S}^{0}K^{\pm}\pi^{\mp}$ with nonresonant $K_{S}^{0}K^{\pm}\pi^{\mp}$. We combined both systematic

 $\Gamma(\eta_c(2S)K^+)/\Gamma_{\text{total}}$ Γ_{228}/Γ VALUE (units 10^{-4}) $3.4 \pm 1.8 \pm 0.3$

 $\Gamma(\eta_c(2S)K^+, \eta_c \to p\overline{p})/\Gamma_{\text{total}}$ Γ_{220}/Γ $<1.06 \times 10^{-7}$ ¹ AAIJ 13S LHCB pp at 7 TeV

 $\Gamma(B^{+} \rightarrow h_{c}(1P)K^{+})/\Gamma_{total} \times \Gamma(h_{c}(1P) \rightarrow \gamma \eta_{c}(1S))/\Gamma_{total}$ $\Gamma_{325}/\Gamma \times \Gamma_{9}^{h_{c}(1P)}/\Gamma^{h_{c}(1P)}$ $\frac{VALUE \text{ (units } 10^{-4})}{<0.48} \qquad \frac{CL\%}{90} \qquad \frac{DOCUMENT \text{ } ID}{\text{AUBERT}} \qquad \frac{TECN}{08AB \text{ } BABR} \qquad \frac{COMMENT}{e^{+}e^{-} \rightarrow \Upsilon(4S)}$

$$\Gamma(B^+ \to \eta_c(2S)K^+)/\Gamma_{\rm total} \times \Gamma(\eta_c(2S) \to \gamma\gamma)/\Gamma_{\rm total}$$

 $\Gamma_{228}/\Gamma\times\Gamma_{15}^{\eta_c(2S)}/\Gamma^{\eta_c(2S)}$

Created: 5/30/2017 17:22

VALUE (units 10^{-6})CL%DOCUMENT IDTECNCOMMENT<n 18</td>901 WICHT08BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\eta_c(2S)K^+, \eta_c \to K_S^0K^\mp\pi^\pm)/\Gamma_{\text{total}}$

 Γ_{230}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) 1,2 VINOKUROVA 11 BELL $e^+e^ightarrow \varUpsilon$ (4*S*)

$\Gamma(J/\psi(1S)K^+)/\Gamma_{\text{total}}$

 Γ_{262}/Γ

(,
VALUE (units 10^{-4}) EV	TS	DOCUMENT ID		TECN	COMMENT		
10.26± 0.31 OUR FIT							
10.24 ± 0.35 OUR AVE	RAGE						
$8.1~\pm~1.3~\pm0.7$		¹ AUBERT	06E	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$10.61 \pm 0.15 \pm 0.48$		² AUBERT	05 J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$10.4 ~\pm~ 1.1 ~\pm 0.1$		³ AUBERT,B	05L	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$10.1 \pm 0.2 \pm 0.7$		² ABE	03 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$10.2 \pm 0.8 \pm 0.7$		² JESSOP	97	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$9.24 \pm \ 3.04 \pm 0.05$		⁴ BORTOLETT	092	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
$8.09 \pm 3.50 \pm 0.04$	6	⁵ ALBRECHT	90J	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

 $^{^{}m 1}$ Perform measurements of absolute branching fractions using a missing mass technique.

 $^{^1}$ Measured relative to $B^+ o J/\psi K^+$ decay with charmonia reconstructed in $p \overline{p}$ final state and using B(B⁺ \rightarrow J/ ψ K⁺) = (1.013 \pm 0.034) \times 10⁻³ and B(J/ ψ \rightarrow $p\overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$.

¹ Uses the production ratio of $(B^+B^-)/(B^0\overline{B}^0) = 1.026 \pm 0.032$ at $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

 $^{^2}$ The first uncertainty includes both statistical and interference effects while the second is due to systematics.

• • • We do not use the following data for averages, fits, limits, etc. • • •

10.1	\pm 0.3	± 0.5		² AUBERT	02	BABR	Repl. by AUBERT 05J
11.0	\pm 1.5	± 0.9	59	² ALAM	94	CLE2	Repl. by JESSOP 97
22	± 10	± 2		BUSKULIC	92G	ALEP	$e^+e^- \rightarrow Z$
7	\pm 4		3	⁶ ALBRECHT	87 D	ARG	$e^+e^- ightarrow \gamma(4S)$
10	± 7	± 2	3	⁷ BEBEK	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
9	\pm 5		3	⁸ ALAM	86	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

- 1 Perform measurements of absolute branching fractions using a missing mass technique.
- ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ³ AUBERT,B 05L reports $[\Gamma(B^+ \to J/\psi(1S)K^+)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to p\overline{p})] = (2.2 \pm 0.2 \pm 0.1) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \to p\overline{p}) = (2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
- ⁴ BORTOLETTO 92 reports (8 \pm 2 \pm 2) \times 10⁻⁴ from a measurement of $[\Gamma(B^+ \to J/\psi(1S)K^+)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to e^+ e^-)]$ assuming $B(J/\psi(1S) \to e^+ e^-) = 0.069 \pm 0.009$, which we rescale to our best value $B(J/\psi(1S) \to e^+ e^-) = (5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- ⁵ALBRECHT 90J reports $(7\pm3\pm1)\times10^{-4}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^+)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.
- 6 ALBRECHT 87D assume $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. Superseded by ALBRECHT 90J. 7 BEBEK 87 value has been updated in BERKELMAN 91 to use same assumptions as noted for BORTOLETTO 92.

DOCUMENT ID TECN COMMENT

8 ALAM 86 assumes B^{\pm}/B^{0} ratio is 60/40.

$\Gamma(\eta_c K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{221}/\Gamma_{262}$

Created: 5/30/2017 17:22

0.84±0.10 OUR AVERAGE			
$0.82 \pm 0.06 \pm 0.09$	¹ AAIJ	13S LHCB	pp at 7 TeV
$1.33 \pm 0.10 \pm 0.43$	² AUBERT,B	04B BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 1 AAIJ 13S reports $[\Gamma(B^+\to\eta_c\,K^+)/\Gamma(B^+\to J/\psi(1S)\,K^+)]\times [\mathrm{B}(\eta_c(1S)\to p\overline{p})]$ / $[\mathrm{B}(J/\psi(1S)\to p\overline{p})]=0.578\pm0.035\pm0.026$ which we multiply or divide by our best values $\mathrm{B}(\eta_c(1S)\to p\overline{p})=(1.50\pm0.16)\times10^{-3},\,\mathrm{B}(J/\psi(1S)\to p\overline{p})=(2.120\pm0.029)\times10^{-3}.$ Our first error is their experiment's error and our second error is the systematic error from using our best values.

² Uses BABAR measurement of B($B^+ \rightarrow J/\psi K^+$) = (10.1 \pm 0.3 \pm 0.5) \times 10⁻⁴.

$$\Gamma\big(B^+ \to J/\psi(1S)\,K^+\big)/\Gamma_{\rm total} \,\,\times\,\, \Gamma\big(J/\psi(1S) \to \gamma\gamma\big)/\Gamma_{\rm total} \\ \Gamma_{262}/\Gamma \times \Gamma_{238}^{J/\psi(1S)}/\Gamma^{J/\psi(1S)}$$

VALUE (units
$$10^{-6}$$
)

CL%

DOCUMENT ID

TECN

COMMENT

 $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{264}/Γ

$VALUE$ (units 10^{-3})	CL% EVTS	DOCUMENT ID		TECN	COMMENT
0.81 ±0.13 OUR A	VERAGE Erro	r includes scale fac	ctor o	f 2.5. Se	e the ideogram
below.					
$0.716 \pm 0.010 \pm 0.060$		¹ GULER			$e^+e^- ightarrow \Upsilon(4S)$
$1.16 \ \pm 0.07 \ \pm 0.09$					$e^+e^- ightarrow \Upsilon(4S)$
$0.69 \ \pm 0.18 \ \pm 0.12$		² ACOSTA			
$1.39 \ \pm 0.81 \ \pm 0.01$		³ BORTOLETT	O92	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.39 \pm 0.91 \pm 0.01$	6	⁴ ALBRECHT	87 D	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne following data	for averages, fits	, limit	s, etc. •	• •
<1.8	90	⁵ ALBRECHT	90J	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $\Gamma \left(J/\psi(1S)\, K^+\, \pi^+\, \pi^- \right)/\Gamma_{
m total}$ (units 10^{-3})

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² ACOSTA 02F uses as reference of B($B \rightarrow J/\psi(1S)K^+$) = (10.1 \pm 0.6) \times 10⁻⁴. The second error includes the systematic error and the uncertainties of the branching ratio.

³BORTOLETTO 92 reports $(1.2\pm0.6\pm0.4)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁴ ALBRECHT 87D reports $(1.2\pm0.8)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^+\pi^+\pi^-)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is

the systematic error from using our best value. They actually report 0.0011 \pm 0.0007 assuming $B^+B^-/B^0\overline{B}^0$ ratio is 55/45. We rescale to 50/50. Analysis explicitly removes $B^+ \rightarrow \psi(2S) K^+$.

 $^5\,\text{ALBRECHT}$ 90J reports $<~1.6\,\times\,10^{-3}$ from a measurement of $[\Gamma(B^+$ \rightarrow $J/\psi(1S)\,K^+\,\pi^+\,\pi^-)/\Gamma_{
m total}]~ imes~[{\sf B}(J/\psi(1S)~
ightarrow~e^+\,e^-)]$ assuming ${\sf B}(J/\psi(1S)~
ightarrow$ $e^+e^-)=0.069$, which we rescale to our best value B($J/\psi(1S) \rightarrow e^+e^-)=$ 5.971×10^{-2} . Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^+K^-K^+)/\Gamma_{\text{total}}$

 Γ_{265}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
33.7±2.5±1.4	LEES	15	BABR	$e^+e^- ightarrow \Upsilon(4S)$

$\Gamma(h_c(1P)K^+, h_c \rightarrow J/\psi \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{231}/Γ

<u>VALUE</u>	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
$< 3.4 \times 10^{-6}$	90	¹ AUBERT	05 R	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(X(3730)^0 K^+, X^0 \rightarrow \eta_c \eta)/\Gamma_{\text{total}}$

 Γ_{232}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$<4.6 \times 10^{-5}$	90	VINOKUROVA 15	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

$$\Gamma(X(3730)^0 K^+, X^0 \rightarrow \eta_c \pi^0)/\Gamma_{\text{total}}$$

 Γ_{233}/Γ

$\Gamma(X(3872)K^+)/\Gamma_{\text{total}}$

 Γ_{234}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.2 \times 10^{-4}$	90	¹ AUBERT	06E	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Perform measurements of absolute branching fractions using a missing mass technique.

$\Gamma\big(B^+ \to X(3872)\,K^+\big)/\Gamma_{\rm total}\,\times\,\Gamma\big(X(3872) \to \gamma\gamma\big)/\Gamma_{\rm total}$

$\Gamma(X(3872)K^+, X \rightarrow J/\psi \pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{236}/Γ

<i>VALUE</i> (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
8.6 \pm 0.8 OUR AVERAGE				
$8.63 \pm 0.82 \pm 0.52$	¹ CHOI			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$8.4 \pm 1.5 \pm 0.7$	¹ AUBERT	08Y	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •
10.1 \pm 2.5 \pm 1.0 12.8 \pm 4.1 12.5 \pm 2.8 \pm 0.5	¹ AUBERT ¹ AUBERT ² CHOI	06 05R 03	BABR	Repl. by AUBERT 08Y Repl. by AUBERT 06 Repl. by CHOI 11

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup>CHOI 03 reports [\Gamma(B^+ \rightarrow X(3872)K^+, X \rightarrow J/\psi\pi^+\pi^-)/\Gamma_{total}] / [B(B^+ \rightarrow X(3872)K^+, X \rightarrow J/\psi\pi^+\pi^-)/\Gamma_{total}]
     \psi(2S)K^+] = 0.0200 \pm 0.0038 \pm 0.0023 which we multiply by our best value B(B^+ \rightarrow
     \psi(2S)K^+)=(6.26\pm0.24)\times10^{-4}. Our first error is their experiment's error and our second error is the systematic error from using our best value.
\Gamma(X(3872)K^+, X \rightarrow J/\psi\gamma)/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{237}/\Gamma
                                                   DOCUMENT ID
VALUE (units 10^{-6})
2.1 \pm0.4 OUR AVERAGE Error includes scale factor of 1.1.
1.78 ^{\,+\, 0.48}_{\,-\, 0.44} \pm 0.12
                                                 <sup>1</sup> BHARDWAJ
                                                                         11 BELL e^+e^- \rightarrow \Upsilon(4S)
                                                 <sup>2</sup> AUBERT
                                                                         09B BABR e^+e^- \rightarrow \Upsilon(4S)
2.8 \pm 0.8 \pm 0.1
• • • We do not use the following data for averages, fits, limits, etc. • • •
                                                <sup>1</sup> AUBERT,BE 06M BABR Repl. by AUBERT 09B
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup> Uses B(\Upsilon(4S) \to B^+ B^-) = (51.6 ± 0.6)% and B(\Upsilon(4S) \to B^0 \overline{B}{}^0) = (48.4 ± 0.6)%.
\Gamma(X(3872)K^*(892)^+, X \rightarrow J/\psi\gamma)/\Gamma_{\text{total}}
                                                                                                                 \Gamma_{253}/\Gamma
                                                                        09B BABR e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Uses B(\Upsilon(4S) \to B^+ B^-) = (51.6 ± 0.6)% and B(\Upsilon(4S) \to B^0 \overline{B}{}^0) = (48.4 ± 0.6)%.
\Gamma(X(3872)K^+, X \rightarrow \psi(2S)\gamma)/\Gamma_{\text{total}}
                OUR AVERAGE Error includes scale factor of 2.5.
0.83^{\,+\,1.98}_{\,-\,1.83}\,{\pm}\,0.44
                                              1,2 BHARDWAJ 11 BELL e^+e^- \rightarrow \Upsilon(4S)
                                                <sup>3</sup> AUBERT
                                                                         09B BABR e^+e^- \rightarrow \Upsilon(4S)
9.5 \pm 2.7 \pm 0.6
```

VALUE (units 10 ⁻⁰) DOCUMENT ID TECN COMMEN

$\Gamma(X(3872)K^*(892)^+, X \rightarrow \psi(2S)\gamma)/\Gamma_{\text{total}}$

 Γ_{254}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		
<28	90	¹ AUBERT	09 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
4					0-0		

¹ Uses B($\Upsilon(4S) \to B^+B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0\overline{B}^0$) = (48.4 ± 0.6)%.

$\Gamma(X(3872)K^+, X \rightarrow D^0\overline{D}^0)/\Gamma_{\text{total}}$

 Γ_{240}/Γ

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<6.0 \times 10^{-5}$	90	¹ CHISTOV	04	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(X(3872)K^+, X \rightarrow D^+D^-)/\Gamma_{\text{total}}$

 Γ_{241}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<4.0 \times 10^{-5}$	90	¹ CHISTOV	04	BELL	$e^+e^- \rightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{1}}$ BHARDWAJ 11 measurement is equivalent to a limit of $< 3.45 \times 10^{-6}$ at 90% CL.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Uses B($\Upsilon(4S) \to B^+B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

$\Gamma(X(3872)K^+, X -$	$\rightarrow D^0 \overline{D}{}^0 \pi$	$^{0})/\Gamma_{\mathrm{total}}$			Γ ₂₄₂ /Γ
<i>VALUE</i> (units 10 ⁻⁴)	CL%	DOCUMENT ID	TECN	COMMENT	
$1.02 \pm 0.31 ^{+0.21}_{-0.29}$		¹ GOKHROO 0	6 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use th	e following	data for averages,	fits, limits,	etc. • • •	
< 0.6	90	² CHISTOV 0	4 BELL	Repl. by G	OKHROO 06
1 Measure the near-th $0.7 {}^{+0.3}_{-1.6} \pm 0.8 \; ext{MeV}$	I/c^2 .		ŕ	ystem at a r	mass 3875.2 \pm
² Assumes equal prod	uction of B	$^+$ and B^0 at the 7	$\Upsilon(4S)$.		
$\Gamma(X(3872)K^+, X -$	$\rightarrow \overline{D}^{*0}D^{0}$)/Γ _{total}			Γ ₂₄₃ /Γ
VALUE (units 10 ⁻⁴) 0.85±0.26 OUR AVERA		DOCUMENT ID	TECN	COMMENT	
	AGE Error				22(- 2)
$0.77 \pm 0.16 \pm 0.10$ $1.67 \pm 0.36 \pm 0.47$		¹ AUSHEV 1 ¹ AUBERT (
$^{1.07\pm0.30\pm0.47}$ Assumes equal prod				e · e →	1 (43)
	_		I (43).		
$\Gamma(X(3872)^0K^+, X^0$					Γ ₂₄₄ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID	TECN	<u>COMMENT</u>	_
$< 3.0 \times 10^{-5}$	90	VINOKUROVA 1	15 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(X(3872)^0K^+, X^0$	$0 \to n_c \omega (0)$	782))/F _{total}			Γ ₂₄₅ /Γ
VALUE		.,	TECN	COMMENT	,
<6.9 × 10 ⁻⁵		VINOKUROVA 1			
F(V(2070) V+ V	(1 D	\ _+\ <i>/</i> F			F /F
$\Gamma(X(3872)K^+, X -$			TECN	COMMENT	Γ ₂₄₆ /Γ
		DOCUMENT ID BHARDWAJ			
¹ Assumes equal prod				e · e →	7 (43)
Assumes equal prod	uction of B	and B at the	I (43).		
$\Gamma(X(3915)^0K^+, X^0$	$0 \to \eta_c \eta)$	/Γ _{total}			Γ ₂₄₇ /Γ
<u>VALUE</u>	<u>CL%</u>	DOCUMENT ID	TECN	COMMENT	
$< 3.3 \times 10^{-5}$	90	VINOKUROVA 1	15 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(X(3915)^0K^+, X^0$	$0 \rightarrow n_{\sigma} \pi^{0}$) / Factor			Γ ₂₄₈ /Γ
VALUE	CL%	DOCUMENT ID	TECN	COMMENT	· 240/ ·
<u>VALUE</u> <1.8 × 10 ^{−5}	90	VINOKUROVA 1	15 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(X(4014)^0K^+, X^0$					
1 (A(4014) A 1, A	$\rightarrow \eta_c \eta_{\prime\prime}$	' total	TECN	COMMENT	Γ ₂₄₉ /Γ
VALUE <3.9 × 10 ^{−5}	90	VINOKUROVA 1	<u>7LCN</u>	$e^+e^- \rightarrow$	$\gamma(45)$
			JEEE		
$\Gamma(X(4014)^0K^+, X^0$					Γ ₂₅₀ /Γ
<u>VALUE</u> <1.2 × 10 ^{−5}	<u>CL%</u>	DOCUMENT ID	TECN	<u>COMMENT</u>	
$<1.2 \times 10^{-5}$	90	VINOKUROVA 1	l5 BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

VINOKUROVA	04Y 11 11 s, fits, 05B 14 7(45)	BELL TECN BELL BABR 5). TECN BELL limits, 6 BABR	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline COMMENT \\ e^{+}e^{-} \rightarrow \\ \hline \\ COMMENT \\ e^{+}e^{-} \rightarrow \\ \hline \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ e^{+}e^{-} \rightarrow \\ \end{array}$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$(r^-)/\Gamma_{total}$ $DOCUMENT ID$ $OINOKUROVA$ $(r)/\Gamma_{total}$ $DOCUMENT ID$ $OINOKUROVA$ $OINOKU$	04Y 2 \(\gamma(45) \) 11 s, fits, 05B 2 \(\gamma(45) \)	TECN BELL BABR S). TECN BELL limits, 6 BABR	$\begin{array}{c} \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \end{array}$	$r_{252}/r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$
DOCUMENT ID VINOKUROVA η)/ Γ_{total} DOCUMENT ID AUBERT and B^0 at the DOCUMENT ID CHOI at for averages AUBERT and B^0 at the	$\begin{array}{c} \text{A 15} \\ \hline \\ \text{O4Y} \\ \text{e} \ \Upsilon(\text{4S}) \\ \hline \\ \text{s, fits,} \\ \text{O5B} \\ \text{e} \ \Upsilon(\text{4S}) \\ \text{e} \ \Upsilon(\text{4S}) \\ \text{e} \ \Upsilon(\text{4S}) \\ \end{array}$	BELL TECN BABR 5). TECN BELL limits, 6 BABR 5).	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \end{array}$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
VINOKUROVA η)/ Γ_{total} $DOCUMENT ID$ AUBERT and B^0 at the $DOCUMENT ID$ CHOI ata for averages AUBERT 0^+ and B^0 at the	$\begin{array}{c} \text{A 15} \\ \hline \\ \text{O4Y} \\ \text{e} \ \Upsilon(\text{4S}) \\ \hline \\ \text{s, fits,} \\ \text{O5B} \\ \text{e} \ \Upsilon(\text{4S}) \\ \text{e} \ \Upsilon(\text{4S}) \\ \text{e} \ \Upsilon(\text{4S}) \\ \end{array}$	BELL TECN BABR 5). TECN BELL limits, 6 BABR 5).	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \\ e^{+}e^{-} \rightarrow \\ \end{array}$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
η)/ Γ_{total} $DOCUMENT ID$ AUBERT and B^0 at the $DOCUMENT ID$ CHOI ata for averages AUBERT D^+ and D^0 at the	$04Y$ $= \Upsilon(4S)$ $total$ 11 $s, fits,$ $05B$ $= \Upsilon(4S)$ $= \Upsilon(4S)$	TECN BABR 5). TECN BELL limits, 6 BABR 5).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ etc. • • • $e^{+}e^{-} \rightarrow$	$r_{239}/r_{(4S)}$ $r_{(4S)}$ $r_{(4S)}$
AUBERT and B^0 at the DOCUMENT ID DOCUMENT ID CHOI at a for averages AUBERT p^+ and B^0 at the and B^0 at the and B^0 at the and B^0 at the	04Y $r(45)$ total 11 s, fits, $05B$ $r(45)$ $r(45)$	BABR 5). TECN BELL limits, 6 BABR 5).	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \\ e^{+}e^{-} \rightarrow \end{array}$	$\Upsilon(4S)$ $\Gamma_{255}/\Gamma_{(4S)}$ $\Upsilon(4S)$
AUBERT and B^0 at the $S)\pi^+\pi^0$ / Γ_t DOCUMENT ID CHOI ata for averages AUBERT σ^+ and σ^0 at the and σ^0 at the	04Y $r(45)$ total 11 s, fits, $05B$ $r(45)$ $r(45)$	BABR 5). TECN BELL limits, 6 BABR 5).	$\begin{array}{c} e^{+}e^{-} \rightarrow \\ \hline \\ \underline{COMMENT} \\ e^{+}e^{-} \rightarrow \\ \text{etc.} \bullet \bullet \\ e^{+}e^{-} \rightarrow \end{array}$	r(4 s) r (4 s) r (4 s) r (4 s)
and B^0 at the $S(S)\pi^+\pi^0$ / Γ_{t} $DOCUMENT ID$ $CHOI$ ata for averages $AUBERT$ o^+ and B^0 at the and B^0 at the	total 11 s, fits, 05B $r(4S)$	TECN BELL limits, 6 BABR	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ etc. • • • $e^{+}e^{-} \rightarrow$	$rac{\Gamma_{255}}{}$
$(S)\pi^+\pi^0)/\Gamma_t$ $(DOCUMENT ID)$ $(CHOI)$ $(AUBERT)$ $(D)^+$	total 11 s, fits, 05B $r(4S) = r(4S)$ $r(4S) = r(4S)$	TECN BELL limits, 6 BABR	etc. • • • $e^+e^- \rightarrow$	τ(4S) τ(4S)
DOCUMENT ID CHOI ata for averages AUBERT p^+ and B^0 at the and B^0 at the	11 s, fits, $05B$ $rac{r}{45}$ $rac{r}{45}$	limits, e BABR 5).	etc. • • • $e^+e^- \rightarrow$	τ(4S) τ(4S)
ata for averages $_{o}^{+}$ AUBERT $_{o}^{+}$. $_{\circ}^{-}$ and $_{\circ}^{0}$ at the $_{\circ}^{-}$ and $_{\circ}^{0}$ at the	s, fits, $05B$ e $\Upsilon(4S)$ e $\Upsilon(4S)$	limits, e BABR 5).	etc. • • • $e^+e^- \rightarrow$	Υ(4S)
ata for averages $_{o}^{+}$ AUBERT $_{o}^{+}$. $_{\circ}^{-}$ and $_{\circ}^{0}$ at the $_{\circ}^{-}$ and $_{\circ}^{0}$ at the	s, fits, $05B$ e $\Upsilon(4S)$ e $\Upsilon(4S)$	limits, e BABR 5).	etc. • • • $e^+e^- \rightarrow$	Υ(4S)
AUBERT o^+ . Tand B^0 at the and B^0 at the	05B e Υ(4 <i>S</i> e Υ(4 <i>S</i>	BABR	$e^+e^- \rightarrow$,
$ ho^+$ and $ ho^0$ at the and $ ho^0$ at the	e Υ(4 <i>S</i> e Υ(4 <i>S</i>	5).		,
and B^0 at the and B^0 at the	$e \gamma (45)$		isovector-X	hypothesis
and B^0 at the	$e \gamma (45)$		isovector-X	hypothesis
$(S)\pi^+\pi^-)/\Gamma$	total			Γ ₂₅₆ /
DOCUMENT ID		TECN	COMMENT	,
BALA				
+\ /⊏				· ·
+)/Γ _{total}		TECN	COMMENT	Γ ₂₅₇ /
AUBERT				Υ(4C)
and B^0 at the			e · e →	1 (43)
	: 1 (45) .		
$\pi^+)/\Gamma_{total}$				Γ ₂₅₈ /
DOCUMENT ID AUBERT		TECN	COMMENT	
			$e^+e^- \rightarrow$	$\Upsilon(4S)$
and B^0 at the	r(45)	5).		
$^{ar{+}}\pi^{-})/\Gamma_{total}$				Γ ₂₅₉ /
DOCUMENT ID		TECN	COMMENT	- 237
DOCUMENT ID AUBERT	06	BABR	$e^+e^- \rightarrow$	Υ(4S)
and B^0 at the				` /
	`	,		Г. /
		TE 01 :	CO	Γ ₂₆₀ /
total	00:	TECN	<u>COMMENT</u> + –	20(4.0)
total	06M		e	1 (45)
total DOCUMENT ID AUBERT,BE		· 1		
total DOCUMENT ID AUBERT,BE		۰).		
	total DOCUMENT ID AUBERT,BE	DOCUMENT ID AUBERT,BE 06M	DOCUMENT ID TECN AUBERT,BE 06M BABR	total $\frac{DOCUMENT\ ID}{AUBERT,BE}$ 06M BABR $e^+e^- ightarrow$ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(X(3930)^0 K^+, X^0 \rightarrow J/\psi \gamma)/\Gamma_{\text{total}}$

 Γ_{261}/Γ

VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT

2.5 90 1 AUBERT,BE 06M BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(J/\psi(1S)K^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{263}/Γ

VALUE (units 10⁻³)

DOCUMENT ID

TECN
COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • •

 1.101 ± 0.021 ¹ AUBERT

$\Gamma(J/\psi(1S)K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{267}/Γ

For polarization information see the Listings at the end of the " B^0 Branching Ratios" section.

section.					
<i>VALUE</i> (units 10 ⁻³)	EVTS	DOCUMENT ID		TECN	COMMENT
1.43 ±0.08 OUR FIT					
1.43 ± 0.08 OUR AVER	AGE				
$1.78 \ ^{+ 0.36}_{- 0.32} \ \pm 0.02$		^{1,2} AUBERT	07AV	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.454 \pm 0.047 \pm 0.097$		² AUBERT	05 J	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.28 \pm 0.07 \pm 0.14$		² ABE			$e^+e^- ightarrow \Upsilon(4S)$
$1.41 \pm 0.23 \pm 0.24$			97	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
$1.58 \pm 0.47 \pm 0.27$		³ ABE			$p\overline{p}$ at 1.8 TeV
$1.50 \pm 1.08 \pm 0.01$		⁴ BORTOLETTO) 92	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
$1.85 \pm 1.30 \pm 0.01$	2	⁵ ALBRECHT	90J	ARG	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the	following	data for averages,	fits, lii	mits, etc	5. ● ● ●
$1.37 \pm 0.09 \pm 0.11$		² AUBERT	02	BABR	Repl. by AUBERT 05J

AUBERT 05J
2
 ALAM 94 CLE2 Sup. by JESSOP 97

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{1}}$ AUBERT 09AA BABR $e^{+}e^{-}
ightarrow$ \varUpsilon (4S)

¹ Does not report systematic uncertainties.

¹ AUBERT 07AV reports $[\Gamma(B^+ \to J/\psi(1S)\,K^*(892)^+)/\Gamma_{\rm total}] \times [B(J/\psi(1S) \to p\overline{p})] = (3.78^{+0.72}_{-0.64}^{+0.23}) \times 10^{-6}$ which we divide by our best value $B(J/\psi(1S) \to p\overline{p}) = (2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ ABE 96H assumes that B($B^+ \to J/\psi K^+$) = (1.02 \pm 0.14) \times 10⁻³.

⁴BORTOLETTO 92 reports $(1.3\pm0.9\pm0.3)\times10^{-3}$ from a measurement of $[\Gamma(B^+\to J/\psi(1S)K^*(892)^+)/\Gamma_{\rm total}]\times[B(J/\psi(1S)\to e^+e^-)]$ assuming $B(J/\psi(1S)\to e^+e^-)=0.069\pm0.009$, which we rescale to our best value $B(J/\psi(1S)\to e^+e^-)=(5.971\pm0.032)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ ALBRECHT 90J reports $(1.6 \pm 1.1 \pm 0.3) \times 10^{-3}$ from a measurement of $[\Gamma(B^+ \to J/\psi(1S)K^*(892)^+)/\Gamma_{\text{total}}] \times [B(J/\psi(1S) \to e^+e^-)]$ assuming $B(J/\psi(1S) \to e^+e^-) = 0.069 \pm 0.009$, which we rescale to our best value $B(J/\psi(1S) \to e^+e^-) = (5.971 \pm 0.032) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)K^*(892)^*$	⁺)/Γ(<i>J/</i> γ	$b(1S)K^{+})$				$\Gamma_{267}/\Gamma_{262}$
<u>VALUE</u>		DOCUMENT ID		TECN	COMMENT	
1.39±0.09 OUR AVER	AGE					
$1.37 \pm 0.05 \pm 0.08$		AUBERT			$e^+e^- \rightarrow$	` '
$1.45 \pm 0.20 \pm 0.17$		¹ JESSOP			e^+e^-	$\Upsilon(4S)$
$1.92 \pm 0.60 \pm 0.17$	c 11 ·	ABE		CDF		
• • • We do not use th	e following	² AUBERT				LIDEDT OF
$1.37 \pm 0.10 \pm 0.08$		_				UBERT 05J
¹ JESSOP 97 assumes is actually measured ² Assumes equal prod	as an aver	age over kaon ch	arged	and neu	$\Upsilon(4S)$. The tral states.	measurement
$\Gamma(J/\psi(1S)K(1270)$	$^{+})/\Gamma_{ ext{total}}$					Γ ₂₆₈ /Γ
$VALUE$ (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
$1.80 \pm 0.34 \pm 0.39$		¹ ABE	01L	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses the PDG value	of B(B+					
$\Gamma(J/\psi(1S)K(1400)^{-1}$	+)/[<i>(J/1</i>	b(15) K(1270)	+)			$\Gamma_{269}/\Gamma_{268}$
VALUE	, ,	DOCUMENT ID	,	TECN	COMMENT	- 209/ - 200
<0.30	90				$e^+e^- \rightarrow$	$\gamma(4S)$
Γ(// _e / _e /1 C) - ν+\ /Γ						Γ/Γ
$\Gamma(J/\psi(1S)\eta K^+)/\Gamma_0$	total					Γ ₂₇₀ /Γ
VALUE (units 10 ⁻⁵) 12.4±1.4 OUR AVERAGE	CE	DOCUMENT ID		TECN	COMMENT	
$12.7 \pm 1.1 \pm 1.1$	GE	¹ IWASHITA	1./	DELL	a+ a-	$\Upsilon(AS)$
$12.7 \pm 1.1 \pm 1.1$ $10.8 \pm 2.3 \pm 2.4$		¹ AUBERT				
¹ Assumes equal prod	uction of B				C C ,	7 (13)
			,	<i>3</i>).		F /F
$\Gamma(X^{c-odd}(3872)K^+)$				TECN	COLUMENT	Γ ₂₇₁ /Γ
<u>VALUE</u> <3.8 × 10 ^{−6}		DOCUMENT ID				
<3.8 × 10 °	90	IWASHITA	14	BELL	$e^+e^- \rightarrow$	1 (45)
$\Gamma(\psi(4160)K^+, \psi \rightarrow$	$J/\psi\eta)/$	Γ_{total}				Γ ₂₇₂ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$< 7.4 \times 10^{-6}$	90	IWASHITA	14	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(J/\psi(1S)\eta'K^+)/\Gamma$	- total					Γ ₂₇₃ /Γ
		DOCUMENT ID		TECN	COMMENT	•
<u>VALUE (units 10^{−5})</u> <8.8	90	1 XIE	07	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal prod						
$\Gamma(J/\psi(1S)\phi K^+)/\Gamma$						Γ ₂₇₄ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	. 2141 .
5.0 ±0.4 OUR AVERA		DOCUMENT ID		TECIV	COMMENT	
$5.00 \pm 0.37 \pm 0.15$	·OL	LEES	15	BARR	e+e	$\Upsilon(45)$
$4.4 \pm 1.4 \pm 0.5$		¹ AUBERT	030	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$8.8 \begin{array}{c} +3.5 \\ -3.0 \end{array} \pm 1.3$		² ANASTASSO\				
$-3.0^{\pm 1.3}$		ANAS IASSUN	, 00	CLEZ	c e →	1 (43)
HTTP://PDG.LBL.0	GOV	Page 79		Creat	ed: 5/30/	2017 17:22

 $^{^2}$ ANASTASSOV 00 finds 10 events on a background of 0.5 \pm 0.2. Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$, a uniform Dalitz plot distribution, isotropic $J/\psi(1S)$ and ϕ decays, and B($B^+ \rightarrow J/\psi(1S)\phi K^+$)= B($B^0 \rightarrow J/\psi(1S)\phi K^0$).

$\Gamma(J/\psi(1S) K_1(1650), K_1$	$ ightarrow \phi K^+ ig) / \Gamma ig(J/\psi ig($	$(\Gamma^+)/\Gamma(J/\psi(1S)\phi K^+)$			
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.12\pm0.10^{+0.17}_{-0.06}$	¹ AAIJ	17	LHCB	pp at 7, 8 TeV	

¹ Measured in amplitude analysis of $B^+ \rightarrow J/\psi(1S) \phi K^+$.

$$\Gamma(J/\psi(1S)K^*(1680)^+, K^* \to \phi K^+)/\Gamma(J/\psi(1S)\phi K^+)$$
 $\Gamma_{276}/\Gamma_{274}$ $VALUE (units 10^{-2})$ $DOCUMENT ID$ $TECN$ COMMENT $TACOMO = 100$ $TECN$ T

 $\Gamma(J/\psi(1S)K_2^*(1980), K_2^* \to \phi K^+)/\Gamma(J/\psi(1S)\phi K^+)$ $\Gamma_{277}/\Gamma_{274}$ VALUE (units 10^{-2})

 $2.9\pm0.8^{+1.7}_{-0.7}$

 $\Gamma(J/\psi(1S)K(1830)^+, K(1830)^+ \to \phi K^+)/\Gamma(J/\psi(1S)\phi K^+)$ $\Gamma_{278}/\Gamma_{274}$ VALUE (units 10^{-2})

 $2.6\pm1.1^{+2.3}$ 17 LHCB pp at 7, 8 TeV

¹ Measured in amplitude analysis of $B^+ \to J/\psi(1S) \phi K^+$.

$\Gamma(X(4140)K^+, X \rightarrow J/\psi(1S)\phi)/\Gamma(J/\psi(1S)\phi K^+)$ $\Gamma_{279}/\Gamma_{274}$

Created: 5/30/2017 17:22

VALUE	<u>CL%</u>	DOCUMENT ID		IECN	COMMENT
0.19 ± 0.08 OUR A	VERAGE				
$0.13 \pm 0.032 {+4.8 \atop -2.0}$		¹ AAIJ	17	LHCB	<i>pp</i> at 7, 8 TeV
$0.19 \ \pm 0.07 \ \pm 0.04$		² ABAZOV	14 A	D0	$p\overline{p}$ at 1.96 TeV
• • • We do not use th	e following	data for averages	, fits,	limits, e	etc. • • •
< 0.133	90	LEES	15	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 0.07	90	³ AAIJ	12AA	LHCB	pp at 7 TeV

¹ Measured in amplitude analysis of $B^+ \rightarrow J/\psi(1S) \phi K^+$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Measured in amplitude analysis of $B^+ \rightarrow J/\psi(1S) \phi K^+$.

¹ Measured in amplitude analysis of $B^+ \rightarrow J/\psi(1S) \phi K^+$.

² Reported a threshold enhancement in the $J/\psi \, \phi$ mass distribution consistent with the X(4140) state with a statistical significance of 3.1 standard deviations.

³Branching fractions are normalized to 382 \pm 22 events of $B^+ \to J/\psi \phi K^+$.

$\Gamma(X(4274)K^+, X -$,		•		$\Gamma_{280}/\Gamma_{274}$
VALUE (units 10 ⁻²)	<u>CL%</u>	DOCUMENT ID				
$7.1 \pm 2.5 {+3.5 \atop -2.4}$		¹ AAIJ			<i>pp</i> at 7, 8	TeV
• • • We do not use the						
<18.1 < 8		LEES ² AAIJ	12A	A LHCB	$e^+e^- \rightarrow$ Repl. by A	
¹ Measured in amplit ² Branching fractions					$\rightarrow J/\psi \phi F$	(+.
$\Gamma(X(4500)K^+, X -$	$\rightarrow J/\psi(1)$	$(S)\phi)/\Gamma(J/\psi)$.S) ϕ F	(+)		$\Gamma_{281}/\Gamma_{274}$
$VALUE$ (units 10^{-2})		DOCUMENT ID		-	COMMENT	
$6.6\pm2.4^{+3.5}_{-2.3}$		¹ AAIJ	17	LHCB	<i>pp</i> at 7, 8	TeV
$^{ m 1}$ Measured in amplit	ude analy	sis of $B^+ o J/\psi$	ϕ (1S) ϕ	κ +.		
Γ(X(4700) K ⁺ , X -	→ J/ψ(1	L S)φ)/Γ(J/ψ(1 <u>DOCUMENT ID</u>	•	,	COMMENT	$\Gamma_{282}/\Gamma_{274}$
$0.12\pm0.05^{+0.09}_{-0.05}$		¹ AAIJ			<i>pp</i> at 7, 8	TeV
$^{-}$ Measured in amplit	ude analy	sis of $B^+ o J/\psi$	$\phi(1S)\phi$	κ +.		
$\Gamma(J/\psi(1S)\omega K^+)/I$						Γ ₂₈₃ /Γ
VALUE (units 10^{-4})	totai	DOCUMENT ID		TECN	COMMENT	' 203/ '
3.2±0.1 ^{+0.6}		¹ DEL-AMO-SA				Υ(ΛC)
-0.5	المالمة المالمة					1 (43)
• • We do not use the $3.5 \pm 0.2 \pm 0.4$	ne ionown	¹ AUBERT				
¹ Assumes equal prod	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ie $\Upsilon(4.$	S).		
$\Gamma(X(3872)K^+, X -$	$\rightarrow J/\psi \omega$)/Γ _{total}				Γ ₂₈₄ /Γ
<i>VALUE</i> (units 10^{-6})	<u> </u>	DOCUMENT ID	ı	TECN	COMMENT	
6±2±1		¹ DEL-AMO-SA	410 в	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal prod	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at th	ie $\Upsilon(4.$	S).		
$\Gamma(X(3872)K^+, X - VALUE)$	→ p <u>p</u>)/l	total		TECN	COMMENT	Γ ₂₃₅ /Γ
<1.7 × 10 ⁻⁸	95	DOCUMENT ID 1 AAIJ	13 S	LHCB	pp at 7 Te	eV
1 Measured relative t state and using B(1 (2.17 \pm 0.07) $ imes$ 10	to $B^+ o J_{\mu}$	J/\psiK^+ decay v	vith ch	armonia	reconstruct	ed in $p\overline{p}$ final

 $\Gamma(X(3915)K^+, X \to J/\psi\omega)/\Gamma_{\text{total}}$ Γ_{285}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT $3.0^{+0.7}_{-0.6}^{+0.5}_{-0.3}$ ¹ DEL-AMO-SA...10B BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $4.9^{+1.0}_{-0.9}\pm0.5$ ¹ AUBERT 08W BABR Repl. by DEL-AMO-SANCHEZ 10B ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(X(3915)K^+, X \rightarrow p\overline{p})/\Gamma_{\text{total}}$ Γ_{266}/Γ **VALUE** DOCUMENT ID TECN COMMENT $< 7.1 \times 10^{-8}$ 95 13S LHCB pp at 7 TeV ¹ Measured relative to $B^+ \rightarrow J/\psi K^+$ decay with charmonia reconstructed in $p\overline{p}$ final state and using B($B^+ \rightarrow J/\psi K^+$) = (1.013 \pm 0.034) \times 10⁻³ and B($J/\psi \rightarrow p \overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$. $\Gamma(J/\psi(1S)\pi^+)/\Gamma_{\text{total}}$ Γ_{286}/Γ) \times 10⁻⁵ OUR FIT Error includes scale factor of 2.2. (4.1 ± 0.4) $(3.8\pm0.6\pm0.3)\times10^{-5}$ ¹ ABE 03B BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(J/\psi(1S)\pi^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{286}/\Gamma_{262}$

Created: 5/30/2017 17:22

VALUE (units 10^{-2}) TECN COMMENT DOCUMENT ID **3.96\pm0.34 OUR FIT** Error includes scale factor of 2.7.

3.97 ± 0.29 OUR AVERAGE Error includes scale factor of 2.4. See the ideogram below.

$3.5 \pm 0.3 \pm 1.2$	AABOUD	16L	ATLS	<i>pp</i> at 7, 8 TeV
$3.83 \pm 0.11 \pm 0.07$	AAIJ	12AC	LHCB	pp at 7 TeV
$4.86 \pm 0.82 \pm 0.15$	ABULENCIA	09	CDF	$p\overline{p}$ at 1.96 TeV
$5.37 \pm 0.45 \pm 0.11$	AUBERT	04 P	BABR	$e^+e^- ightarrow \gamma(4S)$
$5.0 \ ^{+1.9}_{-1.7} \ \pm 0.1$	ABE	96 R	CDF	<i>p</i> p 1.8 TeV
5.2 ±2.4	BISHAI	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 $3.91 \pm 0.78 \pm 0.19$ 02F BABR Repl. by AUBERT 04P ¹ ALEXANDER 95 CLE2 Sup. by BISHAI 96 4.3 ± 2.3

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+B^- and $B^0\overline{B}^0$ on $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\pi^+\pi^0$ r	onresonan	t)/Γ _{total}		
1/4/1/5 (: 10=5)	CL 0/	DOCUMENT ID	TECN	CO1414E1

DOCUMENT ID TECN COMMENT VALUE (units 10^{-5}) 07AC BABR $e^+e^- \rightarrow \Upsilon(4S)$

<77

$\Gamma(J/\psi(1S)a_1(1260)^+)/\Gamma_{\text{total}}$								
VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT			
$<1.2 \times 10^{-3}$	90	BISHAI	96	CLE2	$e^+e^ \rightarrow$	$\Upsilon(4S)$		
HTTP://PDG.LBL.	GOV	Page 83		Creat	ted: 5/30/2	2017 17:22		

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(J/\psi(1S)\rho\overline{\rho}\pi^+)$	/Γ _{total}					Γ ₂₉₂ /Γ
<i>VALUE</i> <5.0 × 10 ^{−7}	<u>CL%</u>	DOCUMENT ID		TECN	<u>COMMENT</u>	
					pp at 7 Te	eV
¹ Uses B($B_s^0 o J/$	$\psi(1S)\pi^+\tau$	$\tau^-) = (1.98 \pm 0.2)$	$(20) \times 1$.0 ⁻⁴ .		
$\Gamma(J/\psi(1S)p\overline{\Lambda})/\Gamma_{\rm t}$	otal					Γ ₂₉₃ /Γ
$VALUE$ (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
11.8±3.1 OUR AVE	ERAGE					
$11.7\!\pm\!2.8\!+\!1.8 \ -2.3$		¹ XIE	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\begin{array}{cc} 12 & +9 \\ -6 \end{array}$		¹ AUBERT	03K	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	the followir	ng data for average	s, fits,	limits, e	etc. • • •	
<41	90	ZANG	04	BELL	$e^+e^- \to$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	e $\Upsilon(4.$	S).		
$\Gamma(J/\psi(1S)\overline{\Sigma}^0 p)/U$						Γ ₂₉₄ /Γ
VALUE <1.1 × 10 ⁻⁵	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at the	e $\Upsilon(4.$	S).		
$\Gamma(J/\psi(1S)D^+)/\Gamma_0$						Γ ₂₉₅ /Γ
VALUE (units 10^{-5})						
<12		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	B^+ and B^0 at the	e $\Upsilon(4.$	S).		
$\Gamma(J/\psi(1S)\overline{D}{}^0\pi^+)$	$/\Gamma_{ ext{total}}$					Γ ₂₉₆ /Γ
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT	
<2.5		¹ ZHANG				$\Upsilon(4S)$
• • • We do not use	the followir	ng data for average	es, fits,	limits, e	etc. • • •	
< 5.2	90	¹ AUBERT	05 R	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	e $\Upsilon(4.$	S).		
$\Gamma(\psi(2S)\pi^+)/\Gamma_{ m tota}$	ıl					Γ ₂₉₇ /Γ
VALUE (units 10^{-5})		DOCUMENT ID		TECN	COMMENT	
$2.44 \pm 0.22 \pm 0.20$		$^{ m 1}$ BHARDWAJ	80	BELL	$e^+e^- \to$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	e γ(4.	S).		
$\Gamma(\psi(2S)\pi^+)/\Gamma(\psi($	(2 <i>5</i>) <i>K</i> ⁺)					$\Gamma_{297}/\Gamma_{298}$
VALUE (units 10^{-2})		DOCUMENT ID		TECN	<u>COMMEN</u> T	
3.97±0.29 OUR AVE	RAGE					
$3.95 \pm 0.40 \pm 0.12$		AAIJ			pp at 7 Te	
$3.99 \pm 0.36 \pm 0.17$		BHARDWAJ	80	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update							
$\Gamma(\psi(2S)K^+)/\Gamma_{\text{total}}$					Γ ₂₉₈ /Γ		
$VALUE$ (units 10^{-4})	<i>EVTS</i>	DOCUMENT ID		TECN	COMMENT		
6.26± 0.24 OUR FIT							
6.5 ± 0.4 OUR AVE	RAGE						
$6.65 \pm \ 0.17 \pm 0.55$		¹ GULER	11		$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$4.9 \pm 1.6 \pm 0.4$		² AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$6.17 \pm \ 0.32 \pm 0.44$		¹ AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$7.8 \pm 0.7 \pm 0.9$		¹ RICHICHI	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$18 \pm 8 \pm 4$	5	$^{ m 1}$ ALBRECHT	90 J	ARG	$e^+e^- ightarrow~ \varUpsilon(4S)$		
• • • We do not use the	e followir	g data for averages	s, fits,	limits, e	etc. • • •		
$6.9~\pm~0.6$		$^{ m 1}$ ABE	03 B	BELL	Repl. by GULER 11		
$6.4 \pm 0.5 \pm 0.8$		$^{ m 1}$ AUBERT	02		Repl. by AUBERT 05J		
$6.1 \pm 2.3 \pm 0.9$	7	$^{ m 1}$ ALAM	94	CLE2	Repl. by RICHICHI 01		
<5 at 90% CL		¹ BORTOLETTO	92	CLEO	$e^+e^- ightarrow \gamma(4S)$		
22 ± 17	3	³ ALBRECHT	87 D	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
¹ Assumes equal produ	iction of	B^+ and B^0 at the	$\Upsilon(4)$	S).			
					missing mass technique.		
³ ALBRECHT 87D assi	ume B^+	$B^-/B^0\overline{B}^0$ ratio is	55/45	5. Supers	seded by ALBRECHT 90J.		
			,	•			
$\Gamma(\psi(2S)K^+)/\Gamma(J/\psi)$	b(15)K	+)			$\Gamma_{298}/\Gamma_{262}$		
VALUE		DOCUMENT ID		TECN	COMMENT		
0.610±0.019 OUR FIT							
0.603±0.021 OUR AVE	RAGE	1					
$0.59 \pm 0.11 \pm 0.02$		¹ AAIJ			pp at 7 TeV		
$0.604 \pm 0.018 \pm 0.013$		2,3 AAIJ	12L	LHCB			
$0.63 \pm 0.05 \pm 0.08$		ABAZOV	09Y	D0	$p\overline{p}$ at 1.96 TeV		
$0.558 \pm 0.082 \pm 0.056$	си ·	ABE		CDF	p p 1.8 TeV		
• • • We do not use the				iimits, e	etc. • • •		
		1					

02 BABR $e^+e^- \rightarrow \Upsilon(4S)$ ⁴ AUBERT $0.64 \pm 0.06 \pm 0.07$

¹ AAIJ 13S reports $[\Gamma(B^+ \rightarrow \psi(2S)K^+)/\Gamma(B^+ \rightarrow J/\psi(1S)K^+)] \times [B(\psi(2S) \rightarrow J/\psi(1S)K^+)]$ $p\overline{p}$] / [B($J/\psi(1S) \rightarrow p\overline{p}$)] = 0.080 \pm 0.012 \pm 0.009 which we multiply or divide by our best values $B(\psi(2S) \rightarrow p\overline{p}) = (2.88 \pm 0.10) \times 10^{-4}, B(J/\psi(1S) \rightarrow p\overline{p}) =$ $(2.120 \pm 0.029) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using our best values.

 $^{^2}$ AAIJ 12L reports 0.594 \pm 0.006 \pm 0.016 \pm 0.015 from a measurement of [Γ(B^+ ightarrow $\psi(2S)K^+)/\Gamma(B^+ \rightarrow J/\psi(1S)K^+)] \times [B(J/\psi(1S) \rightarrow e^+e^-)] / [B(\psi(2S) \rightarrow e^+e^-)]$ e^+e^-)] assuming B($J/\psi(1S) \rightarrow e^+e^-$) = (5.94 ± 0.06) × 10⁻²,B($\psi(2S) \rightarrow e^+e^-$) $=(7.72\pm0.17)\times10^{-3}$, which we rescale to our best values B $(J/\psi(1S)\to e^+e^-)$ $= (5.971 \pm 0.032) \times 10^{-2}$, B($\psi(2S) \rightarrow e^+e^-$) = $(7.89 \pm 0.17) \times 10^{-3}$. Our first error is their experiment's error and our second error is the systematic error from using

³ Assumes B($J/\psi \rightarrow \mu^+\mu^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) = B($J/\psi \rightarrow e^+e^-$) / B($\psi(2S) \rightarrow \mu^+\mu^-$) e^+e^-) = 7.69 ± 0.19.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\psi(2S)K^*(892)^+)/\Gamma_{\text{total}}$	Γ ₂₉₉ /Γ
VALUE (units 10^{-4}) CL%	DOCUMENT ID TECN COMMENT
6.7 \pm 1.4 OUR AVERAGE	
$5.92 \pm 0.85 \pm 0.89$	1 AUBERT 05J BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$
$9.2\ \pm 1.9\ \pm 1.2$	1 RICHICHI 01 CLE2 $\mathrm{e^{+}e^{-}} ightarrow \varUpsilon(4S)$
• • We do not use the following	ng data for averages, fits, limits, etc. ● ●
<30 90	¹ ALAM 94 CLE2 Repl. by RICHICHI 01
<35 90	1 BORTOLETTO92 CLEO $e^{+}e^{-} \rightarrow \Upsilon(4S)$
	1 ALBRECHT 90J ARG $\mathrm{e^{+}e^{-}} ightarrow$ $\gamma(4S)$
¹ Assumes equal production of	$^{T}B^{+}$ and B^{0} at the \varUpsilon (4 S).
$\Gamma(\psi(2S)K^*(892)^+)/\Gamma(\psi(2S)K^*(892)^+)$	$(S)K^{+}$ $\Gamma_{299}/\Gamma_{298}$
VALUE	DOCUMENT ID TECN COMMENT
$0.96 \pm 0.15 \pm 0.09$	AUBERT 05J BABR $e^+e^- ightarrow \varUpsilon(4S)$
$\Gamma(\psi(2S)K^0\pi^+)/\Gamma_{ ext{total}}$	Γ ₃₀₀ /Γ
VALUE (units 10^{-3})	DOCUMENT ID TECN COMMENT
• • • We do not use the following	ng data for averages, fits, limits, etc. ● ●
0.588 ± 0.034	1 AUBERT 09AA BABR $e^{+}e^{-} ightarrow~\varUpsilon(4S)$
$^{ m 1}$ Does not report systematic ι	
$\Gamma(\psi(2S)K^{+}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$	Γ ₃₀₁ /Γ
VALUE (units 10^{-4}) EV7	TS DOCUMENT ID TECN COMMENT
4.3 \pm 0.5 OUR AVERAGE	
$4.31\pm 0.20\pm 0.50$	¹ GULER 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$
	3 1 ALBRECHT 90J ARG $e^{+}e^{-} ightarrow$ \varUpsilon (4 S)
¹ Assumes equal production of	$^{T}B^{+}$ and B^{0} at the \varUpsilon (4 S).
$\Gamma(\psi(2S)\phi(1020)K^+)/\Gamma_{ ext{tota}}$	Γ ₃₀₂ /Γ
VALUE (units 10^{-6})	DOCUMENT IDTECN COMMENT
4.0±0.4±0.6	1,2 KHACHATRY17C CMS pp at 8 TeV
sents total systematic uncert taken from PDG 16 as B(ϕ = $(6.26 \pm 0.24) \times 10^{-4}$.	$(S)K^+$ as a normalization channel. The second error represainties including those from branching fractions which were $(S)K^+K^- = 0.489 \pm 0.005$ and $(B)K^+ \rightarrow (C)K^+ = 0.005$ on of the non- $(C)K^+K^-K^+ = 0.005$ confidence level.
uccayo 10 cot ac c.=c at tc s	

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
0.49±0.13 OUR AVERAGE				
$3.5 \pm 2.5 \pm 0.3$	$^{ m 1}$ AUBERT	06E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.48 \pm 0.11 \pm 0.07$	² CHISTOV	04	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Perform measurements of absolute branching fractions using a missing mass technique. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\psi(3770)K+,\psi\to D^0\overline{D}^0)/\Gamma_{\text{total}}$ Γ_{304}/Γ VALUE (units 10^{-4}) DOCUMENT ID **1.5** \pm **0.5 OUR AVERAGE** Error includes scale factor of 1.4. $1.18 \!\pm\! 0.41 \!\pm\! 0.15$ ¹ LEES 15C BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ BRODZICKA 08 $2.2 \pm 0.5 \pm 0.3$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $1.41 \pm 0.30 \pm 0.22$ ¹ AUBERT 08B BABR Repl. by LEES 15C ¹ CHISTOV $3.4 \pm 0.8 \pm 0.5$ 04 BELL Repl. by BRODZICKA 08 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(3770)K+,\psi\to D^+D^-)/\Gamma_{\text{total}}$ Γ_{305}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 0.94±0.35 OUR AVERAGE 08B BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $0.84 \!\pm\! 0.32 \!\pm\! 0.21$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ CHISTOV $1.4 \pm 0.8 \pm 0.2$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\psi(4040)K^+)/\Gamma_{\text{total}}$ Γ_{306}/Γ <u>VA</u>LUE TECN COMMENT $<1.3 \times 10^{-4}$ 90 AAIJ 13BC LHCB pp at 7, 8 TeV • • • We do not use the following data for averages, fits, limits, etc. • • $< 3.0 \times 10^{-3}$ ¹ IWASHITA 14 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 90 $^{1}\,\text{IWASHITA 14 reports}\,\left[\Gamma\big(B^{+}\,\rightarrow\,\psi(\text{4040})\,K^{+}\big)/\Gamma_{\text{total}}\right]\,\times\,\left[\text{B}(\psi(\text{4040})\,\rightarrow\,J/\psi\,\eta)\right]\,<\,$ 15.5×10^{-6} which we divide by our best value B($\psi(4040) \rightarrow J/\psi \eta$) = 5.2×10^{-3} . $\Gamma(\psi(4160)K^+)/\Gamma_{\text{total}}$ Γ_{307}/Γ VALUE (units 10⁻⁴) DOCUMENT ID TECN COMMENT $5.1^{+1.3}_{-1.2}^{+2.5}_{-2.4}$ 1_{AAII} 13BC LHCB pp at 7, 8 TeV $^{1}\,\text{AAIJ 13BC reports } [\Gamma(B^{+}\ \rightarrow\ \psi(4160)\,K^{+})]/\Gamma_{\text{total}}]\ \times\ \mathsf{B}(\psi(4160)\ \rightarrow\ \mu^{+}\,\mu^{-})\ =\ \mu^{+}\,\mu^{-})\ =\ \mu^{+}\,\mu^{-}$ $(3.5^{+0.9}_{-0.8}) \times 10^{-9}$ which we devide by our best value B($\psi(4160) \rightarrow e^+e^-$) = $(6.9\pm3.3) imes10^{-6}$ assuming lepton universality. Our first error is their experiment's error and our second error is the systematic error from using our best value. $\Gamma(\psi(4160)K^+, \psi \to \overline{D}{}^0D^0)/\Gamma_{\text{total}}$ Γ_{308}/Γ TECN COMMENT VALUE (units 10^{-4}) DOCUMENT ID 15C BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ LEES $0.84 \pm 0.41 \pm 0.33$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c0}\pi^+, \chi_{c0} \rightarrow \pi^+\pi^-)/\Gamma_{total}$ Γ_{309}/Γ VALUE (units 10^{-6}) CL% DOCUMENT ID TECN COMMENT ¹ AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • • 90 ¹ AUBERT.B 05G BABR Repl. by AUBERT 09L < 0.3 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\chi_{c0}K^+)/\Gamma_{total}$

 Γ_{310}/Γ

VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
$1.50^{f +0.15}_{f -0.14}$ OUR AV	ERAGE					
$1.84 \pm 0.25 \pm 0.14$		1,2 LEES			$e^+e^- \rightarrow$	
$1.68\!\pm\!0.32\!\pm\!0.16$		^{1,3} LEES	120	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$1.8 \pm 0.9 \pm 0.1$		⁴ LEES	111	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.26^{+0.28}_{-0.25}{\pm}0.05$		^{1,5} AUBERT	08AI	BABR	$e^+e^-\to$	$\Upsilon(4S)$
$4.8 \pm 2.2 \pm 0.2$		⁶ AUBERT,BE	06м	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$1.12\!\pm\!0.12\!+\!0.30 \\ -0.20$		¹ GARMASH	06	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following data for averages, fits, limits, etc. • •						

		•	O ,		
<2.7	95	⁷ AAIJ	13 S	LHCB	pp at 7 TeV
<5	90	1,8 WICHT	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<1.8	90	⁹ AUBERT	06E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.84 \!\pm\! 0.32 \!\pm\! 0.31$		^{1,10} AUBERT	060	BABR	Repl. by LEES 120
< 8.9	90	¹ AUBERT	05K	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.39 \pm 0.49 \pm 0.11$		¹¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$1.96 \pm 0.35 {+2.00 \atop -0.42}$		$^{ m 1}$ GARMASH	05	BELL	Repl. by GARMASH 06
2.7 ± 0.7		¹² AUBERT	04T	BABR	Repl. by AUBERT,B 04P
$3.0 \pm 0.8 \pm 0.3$		¹³ AUBERT,B	04 P	BABR	Repl. by AUBERT,B 05N
6.0 $^{+2.1}_{-1.8}$ ± 1.1		¹⁴ ABE	02 B	BELL	Repl. by GARMASH 05
<4.8	90	¹⁵ EDWARDS	01	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

³ Measured in the $B^+ \rightarrow K^+ K^0_S K^0_S$ decay.

⁴LEES 11I reports $[\Gamma(B^+ \to \chi_{c0} K^+)/\Gamma_{total}] \times [B(\chi_{c0} (1P) \to \pi\pi)] = (1.53 \pm 0.66 \pm 0.27) \times 10^{-6}$ which we divide by our best value $B(\chi_{c0} (1P) \to \pi\pi) = (8.33 \pm 0.35) \times 10^{-6}$ 10^{-3} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^5}$ AUBERT 08AI reports $(0.70\pm0.10^{+0.12}_{-0.10})\times10^{-6}$ for B($B^+\to~\chi_{c0}~K^+$) \times B($\chi_{c0}\to$ $\pi^+\pi^-$). We compute B($B^+\to\chi_{c0}K^+$) using the PDG value B($\chi_{c0}\to\pi\pi$)=(8.33 \pm $0.35) imes 10^{-3}$ and 2/3 for the $\pi^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.

⁶ AUBERT,BE 06M reports $[\Gamma(B^+ \to \chi_{c0} K^+)/\Gamma_{total}] \times [B(\chi_{c0}(1P) \to \gamma J/\psi(1S))] = (6.1 \pm 2.6 \pm 1.1) \times 10^{-6}$ which we divide by our best value $B(\chi_{c0}(1P) \to \gamma J/\psi(1S))$ $= (1.27 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. The significance of the observed signal

⁷ AAIJ 13S reports $[\Gamma(B^+ \to \chi_{c0} K^+)/\Gamma_{total}] \times [B(\chi_{c0}(1P) \to p\overline{p})] < 6 \times 10^{-8}$ which we divide by our best value $B(\chi_{c0}(1P) \to p\overline{p}) = 2.25 \times 10^{-4}$.

⁸ WICHT 08 reports $[\Gamma(B^+ \to \chi_{c0} K^+)/\Gamma_{total}] \times [B(\chi_{c0} (1P) \to \gamma \gamma)] < 0.11 \times 10^{-6}$ which we divide by our best value B($\chi_{c0}(1P) \rightarrow \gamma \gamma$) = 2.23 × 10⁻⁴.

⁹ Perform measurements of absolute branching fractions using a missing mass technique.

¹⁰ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

- 11 AUBERT,B 05N reports $(0.66\pm0.22\pm0.08)\times10^{-6}$ for B($B^+\to\chi^0_cK^+)\times$ B($\chi^0_c\to\pi^+\pi^-$). We compute B($B^+\to\chi^0_cK^+$) using the PDG value B($\chi^0_c\to\pi^+\pi^-$) = $(7.1\pm0.6)\times10^{-3}$ and 2/3 for the $\pi^+\pi^-$ fraction.
- ¹² The measurement performed using decay channels $\chi_{c0} \to \pi^+\pi^-$ and $\chi_{c0} \to K^+K^-$. The ratio of the branching ratios for these channels is found to be consistent with world
- 13 AUBERT 04P reports B($B^+\to\chi_{c0}\,K^+$)×B($\chi_{c0}\to\pi^+\pi^-$) = (1.5 \pm 0.4 \pm 0.1)×10 $^{-6}$ and used PDG value of B($\chi_{c0}\to\pi\pi$) = (7.4 \pm 0.8) × 10 $^{-3}$ and Clebsh-Gordan coefficient to compute $B(B^{\pm} - > \chi_{c0} K^{+})$.
- ¹⁴ ABE 02B measures the ratio of B(B⁺ $\rightarrow \chi_{c0} \, K^+)/{\rm B}(B^+ \rightarrow J/\psi(1S) \, K^+) = 0.60 + 0.21 0.18 \pm 0.05 \pm 0.08$, where the third error is due to the uncertainty in the B($\chi_{c0} \rightarrow 0.08$) $\pi^{+}\pi^{-}$), and uses B($B^{+}\to J/\psi(1S)K^{+}$) = $(10.0\pm 1.0)\times 10^{-4}$ to obtain the result.
- 15 EDWARDS 01 assumes equal production of B^0 and B^+ at the $\varUpsilon(4S)$. The correlated uncertainties (28.3)% from B(J/ ψ (1S) ightarrow $\gamma\eta_{\it c}$) in those modes have been accounted

$\Gamma(\chi_{c0} K^*(892)^+)/\Gamma_{total}$

 Γ_{311}/Γ

$VALUE$ (units 10^{-4})	CL%	DOCUMENT ID	TECN	COMMENT
< 2.1	90	¹ AUBERT	08BD BABR	$e^+e^- ightarrow ~ \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

¹ AUBERT <28.6 05K BABR Repl. by AUBERT 08BD

$\Gamma(\chi_{c1}(1P)\pi^+)/\Gamma_{total}$

 Γ_{312}/Γ

VALUE (units 10^{-5})	DOCUMENT ID		TECN	COMMENT
2.2±0.4±0.3	1 KUMAR	06	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^+)/\Gamma_{total}$ VALUE (units 10⁻⁴) EVTS

 Γ_{313}/Γ

Created: 5/30/2017 17:22

4.79± 0.23 OUR AVERAGE				
$4.94 \pm \ 0.11 \pm 0.33$	¹ BHARDWAJ	11	BELL	$e^+e^- ightarrow \gamma(4S)$
$4.5 \pm 0.1 \pm 0.3$				$e^+e^- ightarrow \gamma(4S)$
$8.1 \pm 1.4 \pm 0.7$				$e^+e^- ightarrow ~ \varUpsilon(4S)$
$15.5 \pm 5.4 \pm 2.0$	⁴ ACOSTA	02F	CDF	<i>p</i> p 1.8 TeV
• • • We do not use the follow	wing data for aver	ages, t	fits, limit	ts, etc. ● ●
$5.2 \pm 0.4 \pm 0.2$		06м	BABR	Repl. by AUBERT 09B
$4.49 \pm 0.19 \pm 0.53$				Repl. by BHARDWAJ 11
$5.79 \pm 0.26 \pm 0.65$	¹ AUBERT	05 J	BABR	Repl. by AUBERT, BE 06M
6.0 + 0.9 + 0.2	⁶ AUBERT	02	BABR	Repl. by AUBERT 051

⁹⁴ CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 92E ARG $e^+e^- \rightarrow \Upsilon(4S)$ ⁷ ALBRECHT ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $9.7 \pm 4.0 \pm 0.9$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2}$ Uses $\chi_{c1,2}
ightarrow ~J/\psi \gamma$. Assumes B($\Upsilon(4S)
ightarrow ~B^+ ~B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S)
ightarrow$ $B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

³ Perform measurements of absolute branching fractions using a missing mass technique.

⁴ ACOSTA 02F uses as reference of B(B $\rightarrow J/\psi(1S)K^+$) = (10.1 \pm 0.6) \times 10⁻⁴. The second error includes the systematic error and the uncertainties of the branching ratio.

```
^5 AUBERT,BE 06M reports [\Gamma(B^+\to\chi_{c1}(1P)K^+)/\Gamma_{\rm total}]\times [{\rm B}(\chi_{c1}(1P)\to\gamma J/\psi(1S))]=(1.76\pm0.07\pm0.12)\times10^{-4} which we divide by our best value {\rm B}(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(33.9\pm1.2)\times10^{-2}. Our first error is their experiment's error and our second error is the systematic error from using our best value.  
^6 AUBERT 02 reports (7.5\pm0.9\pm0.8)\times10^{-4} from a measurement of [\Gamma(B^+\to0.0018)\times10^{-4}]
```

⁶ AUBERT 02 reports $(7.5 \pm 0.9 \pm 0.8) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \chi_{c1}(1P)K^+)/\Gamma_{total}] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = 0.273 \pm 0.016$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (33.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁷ ALBRECHT 92E assumes no $\chi_{C2}(1P)$ production and B($\Upsilon(4S) \rightarrow B^+B^-$) = 50%.

$\Gamma(\chi_{c1}(1P)K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{313}/\Gamma_{262}$

VALUE	DOCUMENT ID	TECN	COMMENT
0.60±0.07±0.02	¹ AUBERT 0	2 BABR	$e^+e^- ightarrow \gamma(4S)$

 1 AUBERT 02 reports $0.75\pm0.08\pm0.05$ from a measurement of $[\Gamma(B^+\to\chi_{c1}(1P)\,K^+)/\Gamma(B^+\to J/\psi(1S)\,K^+)]\times [B(\chi_{c1}(1P)\to\gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=0.273\pm0.016,$ which we rescale to our best value $B(\chi_{c1}(1P)\to\gamma J/\psi(1S))=(33.9\pm1.2)\times10^{-2}.$ Our first error is their experiment's error and our second error is the systematic error from using our best value. Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)\pi^+)/\Gamma(\chi_{c1}(1P)K^+)$

 $\Gamma_{312}/\Gamma_{313}$

VALUE	DOCUMENT ID		TECN	COMMENT
0.043±0.008±0.003	¹ KUMAR	06	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^*(892)^+)/\Gamma_{\text{total}}$

 $B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%.

 Γ_{314}/Γ

() , , , , , , , , , , , , , , , , , ,	==			- ·
VALUE (units 10 ⁻⁴) CL%	DOCUMENT ID		TECN	COMMENT
3.0 \pm 0.6 OUR AVERAGE	Error includes sca	ale facto	or of 1.1	
$2.6 \pm 0.5 \pm 0.4$	$^{ m 1}$ AUBERT	09 B	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$4.05\pm0.59\pm0.95$	² SONI	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	ng data for average	es, fits,	limits, e	etc. • • •
$2.94 \pm 0.95 \pm 0.98$	² AUBERT			Repl. by AUBERT 09B

<21 90 2 ALAM 94 CLE2 $e^+e^- \rightarrow \varUpsilon(4S)$ 1 Uses $\chi_{c1,2} \rightarrow J/\psi \gamma$. Assumes B($\varUpsilon(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($\varUpsilon(4S) \rightarrow B^+B^-$

$\Gamma(\chi_{c1}(1P)K^*(892)^+)/\Gamma(\chi_{c1}(1P)K^+)$

 $\Gamma_{314}/\Gamma_{313}$

(· · · · · · · · · · · · · · · · · · ·	, ,, (,,	• • •				U ,	
VALUE		DOCUMENT ID		TECN	COMMENT		
0.51±0.17±0.16		AUBERT	05J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	

$\Gamma(\chi_{c1}(1P)K^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{315}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT
5.75±0.26±0.32	¹ BHARDWAJ 16	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^0\pi^+)/\Gamma(J/\psi(1S)K^0\pi^+)$

 $\Gamma_{315}/\Gamma_{263}$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.508 \pm 0.030 \pm 0.018$	1 LEES	12B BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹LEES 12B reports $0.501 \pm 0.024 \pm 0.028$ from a measurement of $[\Gamma(B^+ \to \chi_{c1}(1P) K^0 \pi^+)/\Gamma(B^+ \to J/\psi(1S) K^0 \pi^+)] \times [B(\chi_{c1}(1P) \to \gamma J/\psi(1S))]$ assuming $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (34.4 \pm 1.5) \times 10^{-2}$, which we rescale to our best value $B(\chi_{c1}(1P) \to \gamma J/\psi(1S)) = (33.9 \pm 1.2) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\chi_{c1}(1P)K^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{316}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID	TECN	COMMENT
$3.29\pm0.29\pm0.19$	¹ BHARDWAJ 16	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\chi_{c1}(1P)K^+\pi^+\pi^-)/\Gamma_{total}$

 Γ_{317}/Γ

VALUE (units 10^{-4})DOCUMENT IDTECNCOMMENT3.74 \pm 0.18 \pm 0.241 BHARDWAJ16 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\chi_{c1}(2P)K^+, \chi_{c1}(2P) \rightarrow \pi^+\pi^-\chi_{c1}(1P))/\Gamma_{\text{total}}$

 Γ_{318}/Γ

(· · · · · · ·			,			
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$<1.1 \times 10^{-5}$	90	1,2 BHARDWAJ	16	BELL	$e^+e^- \rightarrow \gamma (4$	4 <i>S</i>)

 $^{^{1}\,\}mathrm{BHARDWAJ}$ 16 analysis fixes mass and width of the $\chi_{c1}(2P)$ state to 3920 MeV and 20 MeV.

$\Gamma(\chi_{c2}K^+)/\Gamma_{total}$

 Γ_{319}/Γ

<i>VALUE</i> (units 10 ⁻⁵)	CL%	DOCUMENT ID		TECN	COMMENT	
$1.11^{+0.36}_{-0.34}\pm0.09$		¹ BHARDWAJ	11	BELL	$e^+e^- ightarrow \Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • •

< 1.8	90	² AUBERT	09B BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
<20	90	³ AUBERT	06E BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 2.9	90	¹ SONI	06 BELL	Repl. by BHARDWAJ 11
< 3.0	90	$^{ m 1}$ AUBERT	05K BABR	Repl. by AUBERT 06E

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(B^+ o \chi_{c2} K^+)/\Gamma_{\rm total} \, imes \, \Gamma(\chi_{c2}(1P) o \, \gamma \gamma)/\Gamma_{\rm total}$

 $\Gamma_{319}/\Gamma \times \Gamma_{79}^{\chi_{c2}(1P)}/\Gamma^{\chi_{c2}(1P)}$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses $\chi_{c1,2} \rightarrow J/\psi \gamma$. Assumes B($\Upsilon(4S) \rightarrow B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \rightarrow B^0 \overline{B}^0$) = (48.4 ± 0.6)%.

³ Perform measurements of absolute branching fractions using a missing mass technique.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\chi_{c2}K^*(892)^+)/\Gamma_{total}$ Γ_{320}/Γ $<12 \times 10^{-5}$ ¹ AUBERT 09B BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • • $<12.7 \times 10^{-5}$ ² SONI 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $< 1.2 \times 10^{-5}$ ² AUBERT 90 05K BABR Repl. by AUBERT 09B ¹ Uses $\chi_{c1.2} \rightarrow J/\psi \gamma$. Assumes B($\Upsilon(4S) \rightarrow B^+B^-$) = (51.6 \pm 0.6)% and B($\Upsilon(4S) \rightarrow B^+B^-$) $B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c2}K^0\pi^+)/\Gamma_{total}$ Γ_{321}/Γ VALUE (units 10^{-4}) $1.16 \pm 0.22 \pm 0.12$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c2}K^+\pi^0)/\Gamma_{total}$ Γ_{322}/Γ DOCUMENT ID TECN COMMENT ¹ BHARDWAJ 16 BELL $e^+e^- \rightarrow \Upsilon(4S)$ $< 0.62 \times 10^{-4}$ 90 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c2}K^{+}\pi^{+}\pi^{-})/\Gamma_{total}$ Γ_{323}/Γ VALUE (units 10^{-4}) 16 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ BHARDWAJ $1.34 \pm 0.17 \pm 0.09$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\chi_{c2}(2P)\pi^+, \chi_{c2} \rightarrow \pi^+\pi^-)/\Gamma_{total}$ *VALUE* (units 10^{-6}) TECN COMMENT ¹ AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 0.1 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(h_c(1P)K^+)/\Gamma_{\text{total}}$ Γ_{325}/Γ VALUE (units 10^{-5}) CL%06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ FANG ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$ and $B(h_C \to \eta_C \gamma) = 50\%$. $\Gamma(h_c(1P)K^+, h_c \rightarrow p\overline{p})/\Gamma_{\text{total}}$ DOCUMENT ID TECN COMMENT $< 6.4 \times 10^{-8}$ ¹ AAIJ 13S LHCB pp at 7 TeV

 $[\]Gamma_{326}/\Gamma$

¹ Measured relative to $B^+ \rightarrow J/\psi K^+$ decay with charmonia reconstructed in $p\overline{p}$ final state and using B($B^+ \rightarrow J/\psi K^+$) = (1.013 \pm 0.034) \times 10⁻³ and B($J/\psi \rightarrow p\overline{p}$) = $(2.17 \pm 0.07) \times 10^{-3}$.

 $\Gamma(K^0\pi^+)/\Gamma_{\rm total}$ Γ_{327}/Γ VALUE (units 10^{-6}) TECN

23.7 \pm 0.8 OUR FIT 23.8 \pm 0.7 OUR AVERA	.GE							
		13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$				
$23.9 \pm 1.1 \pm 1.0$	¹ AUBERT,BE	06 C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$ $e^+e^- \rightarrow \Upsilon(4S)$				
$18.8 \begin{array}{c} + & 3.7 & +2.1 \\ - & 3.3 & -1.8 \end{array}$	¹ BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$				
 • We do not use the following data for averages, fits, limits, etc. 								
$22.8 \ \ ^{+} \ \ 0.8 \ \ \pm 1.3$	¹ LIN	07	BELL	Repl. by DUH 13				
	1							

2	$22.8 + 0.8 \\ - 0.7$	± 1.3	¹ LIN	07	BELL	Repl. by DUH 13
	26.0 ± 1.3		¹ AUBERT,BE	05E	BABR	Repl. by AUBERT,BE 06C
2	22.3 ± 1.7	± 1.1	¹ AUBERT	04M	BABR	Repl. by AUBERT, BE 05E
2	22.0 ± 1.9	± 1.1	¹ CHAO	04	BELL	Repl. by LIN 07
1	$0.9.4 + 3.1 \\ - 3.0$	± 1.6	$^{ m 1}$ CASEY	02	BELL	Repl. by CHAO 04
1	3.7 + 5.7 - 4.8	$^{+1.9}_{-1.8}$	¹ ABE	01н	BELL	Repl. by CASEY 02
1	$0.8.2 + 3.3 \\ - 3.0$	± 2.0	¹ AUBERT	01E	BABR	Repl. by AUBERT 04M
1	$0.8.2 + 4.6 \\ - 4.0$	± 1.6	¹ CRONIN-HEN.	.00	CLE2	Repl. by BORNHEIM 03
2	$\begin{array}{ccc} +11 \\ -10 \end{array}$	± 3.6	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 4	! 8	90	ASNER	96	CLE2	Repl. by GODANG 98
<19	00	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow \Upsilon(4S)$
<10	00	90	² AVERY	89 B	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
<68	30	90	AVERY	87	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
_						

 Γ_{328}/Γ

Created: 5/30/2017 17:22

$\Gamma(K^+\pi^0)/\Gamma_{\text{total}}$ <u>VALUE (units 10⁻⁶)</u>

$VALUE$ (units 10^{-0}) $CL\%$	DOCUMENT ID		TECN	COMMENT
12.9 ±0.5 OUR AVERAGE				
$12.62\!\pm\!0.31\!\pm\!0.56$	$^{ m 1}$ DUH	13	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$13.6 \pm 0.6 \pm 0.7$	$^{ m 1}$ AUBERT	07 BC	BABR	$e^+e^- ightarrow \gamma(4S)$
$12.9 \begin{array}{ccc} +2.4 & +1.2 \\ -2.2 & -1.1 \end{array}$	¹ BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • We do not use the following	ag data for averag	oc fitc	limite	otc • • •

• We do not use the following data for averages, fits, limits, etc.
 • •

12.4 ± 0.5 ± 0.6 12.0 ± 0.7 ± 0.6	¹ LIN ¹ AUBERT			Repl. by DUH 13 Repl. by AUBERT 07BC
12.0 $\pm 1.3 ^{+1.3}_{-0.9}$	¹ CHAO	04	BELL	Repl. by LIN 07A
$12.8 \ ^{+1.2}_{-1.1} \ \pm 1.0$	¹ AUBERT	03L	BABR	Repl. by AUBERT 05L
$13.0 \ ^{+2.5}_{-2.4} \ \pm 1.3$	¹ CASEY	02	BELL	Repl. by CHAO 04
$16.3 \begin{array}{c} +3.5 \\ -3.3 \end{array} \begin{array}{c} +1.6 \\ -1.8 \end{array}$	¹ ABE	01н	BELL	Repl. by CASEY 02

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 AVERY 89B reports $<9\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

```
10.8 ^{+2.1}_{-1.9} \pm 1.0
                                    <sup>1</sup> AUBERT
                                                       01E BABR Repl. by AUBERT 03L
                                    <sup>1</sup> CRONIN-HEN..00
                                                             CLE2
                                                                      Repl. by BORNHEIM 03
                         90
                                      GODANG
                                                       98
                                                             CLE<sub>2</sub>
                                                                      Repl. by CRONIN-
< 16
                                                                         HENNESSY 00
                         90
                                      ASNER
                                                             CLE<sub>2</sub>
<14
                                                       96
                                                                      Repl. by GODANG 98
```

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K^+\pi^0)/\Gamma(K^0\pi^+)$ VALUE

DOCUMENT ID

TECN

COMMENT

0.54±0.03±0.04

LIN

07A

BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •

2.38 $^{+0.98}_{-1.10} + 0.39$ ABE

01H

BELL

Repl. by LIN

07A

 $\Gamma(\eta' K^+)/\Gamma_{\text{total}}$ Γ_{329}/Γ

TECN

COMMENT

01G BABR Repl. by AUBERT 03W

CLE2 Repl. by RICHICHI 00

DOCUMENT ID

77 12 0 2 (dints 10)	D C C C C C C C C C C C C C C C C C C C		0	0011112111
70.6± 2.5 OUR AVERAGE				
$71.5 \pm 1.3 \pm 3.2$	^L AUBERT	09AV	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$63 \begin{array}{c} +10 \\ -9 \end{array} \pm 2 $ 1,2	² WICHT	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$69.2 \pm \ 2.2 \pm 3.7$	L SCHUEMANN	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$80 \begin{array}{c} +10 \\ -9 \end{array} \pm 7$	^L RICHICHI	00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the follow	wing data for ave	erages	, fits, lir	nits, etc. • • •
	AUBERT	07AE	BABR	Repl. by AUBERT 09AV
	AUBERT	05м	BABR	Repl. by AUBERT 07AE
$76.9 \pm 3.5 \pm 4.4$	^L AUBERT	03W	BABR	Repl. by AUBERT 05M
$79 \begin{array}{cc} +12 \\ -11 \end{array} \pm 9$	^L ABE	01 M	BELL	Repl. by SCHUEMANN 06

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ AUBERT

BEHRENS

98

$\Gamma(\eta' K^*(892)^+)/\Gamma_{\text{total}}$

 ± 9

VALUE (units 10^{-6})

 $70 \pm 8 \pm 5$

65 +15 -14

 Γ_{330}/Γ

Created: 5/30/2017 17:22

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID	TECN	COMMENT
$4.8^{+1.6}_{-1.4}\pm0.8$		¹ DEL-AMO-SA10A	BABR	$e^+e^- ightarrow \gamma(4S)$

• • We do not use the following data for averages, fits, limits, etc.

$4.9^{+1.9}_{-1.7}\pm0.8$		¹ AUBERT	07E	BABR	Repl. by DEL-AMO- SANCHEZ 10A
< 2.9	90				$e^+e^- ightarrow \gamma(4S)$
<14	90	¹ AUBERT,B	04 D	BABR	Repl. by AUBERT 07E
<35	90	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<13	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²WICHT 08 reports $[\Gamma(B^+ \to \eta' K^+)/\Gamma_{\text{total}}] \times [B(\eta'(958) \to \gamma\gamma)] = (1.40^{+0.16}_{-0.15} + 0.12) \times 10^{-6}$ which we divide by our best value $B(\eta'(958) \to \gamma\gamma) = (2.22 \pm 0.08) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

Citation: C. Patrignani et al. (Partic	ele Data Group), Chin	Phys. C,	40 , 1000	01 (2016) and	2017 update
$\Gamma(\eta' K_0^*(1430)^+)/\Gamma_{\text{total}}$					Γ ₃₃₁ /Γ
$VALUE$ (units 10^{-6})	DOCUMENT I	ID	TECN	COMMENT	-
5.2±1.9±1.0	¹ DEL-AMO-S				
¹ Assumes equal production of					,
$\Gamma(\eta' K_2^*(1430)^+)/\Gamma_{ ext{total}}$					Γ ₃₃₂ /Γ
VALUE (units 10^{-6})	DOCUMENT I	ID	TECN	COMMENT	-
$28.0^{+4.6}_{-4.3}\pm2.6$	¹ DEL-AMO-S	5A10A	BABR	$e^{+}e^{-}$	· \(\gamma(4S)
¹ Assumes equal production of	fB^+ and B^0 at f	the Υ (4.	S).		
$\Gamma(\eta K^+)/\Gamma_{total}$					Γ ₃₃₃ /Γ
$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID	<u> </u>	TECN	COMMENT	
2.4 \pm 0.4 OUR AVERAGE	Error includes s				
$2.12 \pm 0.23 \pm 0.11$	¹ HOI			$e^+e^- \rightarrow$	` '
$2.94 {+0.39 \atop -0.34} \pm 0.21$	¹ AUBERT	09AV	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\begin{array}{ccc} 2.2 & +2.8 \\ -2.2 & \end{array}$	¹ RICHICHI	00	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	ng data for avera	ges, fits,	limits,	etc. • • •	
$2.21^{+0.48}_{-0.42}\pm0.01$	^{1,2} WICHT	08	BELL	Repl. by H	IOI 12
$3.7 \pm 0.4 \pm 0.1$	$^{ m 1}$ AUBERT	07AE	BABR	Repl. by A	UBERT 09AV
$1.9 \pm 0.3 \substack{+0.2 \ -0.1}$	4			Repl. by H	
$3.3 \pm 0.6 \pm 0.3$	¹ AUBERT,B ¹ CHANG	05K	BABR	Repl. by A	UBERT 07AE
$2.1 \pm 0.6 \pm 0.2$		05A	BELL	Repl. by C	HANG 07B
$3.4 \pm 0.8 \pm 0.2$	$^{ m 1}$ AUBERT				UBERT,B 05K
<14 90	BEHRENS	98	CLE2	Repl. by R	ICHICHI 00
$^{ m 1}$ Assumes equal production of					
2 WICHT 08 reports [$\Gamma(B^+$ –	$\rightarrow \eta K^+)/\Gamma_{\text{total}}$	\times [B(η	\rightarrow 2 γ)	$[] = (0.87^{+}_{-})$	$(0.16+0.10)\times (0.15-0.07)\times (0.16+0.10)$
10^{-6} which we divide by out first error is their experiment using our best value.	ır best value B $(\eta$	$ ightarrow$ 2 γ)	= (39)	.41 ± 0.20)	$ imes 10^{-2}$. Our
$\Gamma(\eta K^*(892)^+)/\Gamma_{\text{total}}$					Γ ₃₃₄ /Γ
$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT I	D	TECN	COMMENT	-
19.3±1.6 OUR AVERAGE					
$19.3^{\displaystyle +2.0}_{\displaystyle -1.9}\!\pm\!1.5$	¹ WANG	07 B	BELL	e^+e^-	$\Upsilon(4S)$

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
19.3±1.6 OUR	AVERAGE				
$19.3^{+2.0}_{-1.9}\!\pm\!1.5$		$^{1}\mathrm{WANG}$	07 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$18.9\!\pm\!1.8\!\pm\!1.3$		¹ AUBERT,B	06н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$26.4^{+9.6}_{-8.2}\pm3.3$		$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
\bullet \bullet We do not	use the following	data for average	s, fits	limits,	etc. • • •
$25.6 \pm 4.0 \pm 2.4$		¹ AUBERT,B	04 D	BABR	Repl. by AUBERT,В 06н
<30	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00
1					

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\eta K_0^*(1430)^+)/\Gamma_t$	total					Γ ₃₃₅ /Γ
$VALUE$ (units 10^{-6})		DOCUMENT ID				
$18.2 \pm 2.6 \pm 2.6$		¹ AUBERT,B	06н	BABR	e^+e^-	$\Upsilon(4S)$
¹ Assumes equal prod	duction of	B^+ and B^0 at the	Y(45	5).		
$\Gamma(\eta K_2^*(1430)^+)/\Gamma_t$	total					Г ₃₃₆ /Г
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
9.1±2.7±1.4		¹ AUBERT,B	06н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal prod	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	Υ(45	5).		
$\Gamma(\eta(1295)K^+\times B($	η (1295)	$\rightarrow \eta \pi \pi))/\Gamma_{\text{total}}$				Γ ₃₃₇ /Γ
•		DOCUMENT ID		TECN	COMMENT	
2.9 ^{+0.8} _{-0.7} ±0.2		1 AUBERT				
¹ Assumes equal prod	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	Υ(45	5).		
$\Gamma(\eta(1405)K^+\times B(1405)K^+)$	n(1405)	$\rightarrow \eta \pi \pi))/\Gamma_{\text{total}}$				Γ ₃₃₈ /Γ
VALUE (units 10^{-6})				TECN	COMMENT	330,
<1.3	90	¹ AUBERT	08X	BABR	$e^+e^- ightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal prod						,
$\Gamma(\eta(1405)K^+\times B($	$\eta(1405)$	$\rightarrow K^*K))/\Gamma_{total}$				Γ ₃₃₉ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.2	90	$^{ m 1}$ AUBERT	08X	BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
						` ,
$^{ m 1}$ Assumes equal prod	duction of	${\it B}^{+}$ and ${\it B}^{0}$ at the	Υ(4 <i>S</i>	5).		,
¹ Assumes equal proof $\Gamma(\eta(1475) K^+ \times B(r))$			•	5).		Г ₃₄₀ /Г
	η (1475)		1	,		Г ₃₄₀ /Г
$\Gamma(\eta(1475)K^+\times B($	η (1475)	→ <i>K</i> * <i>K</i>))/Γ _{total}	l 	TECN	COMMENT	Γ ₃₄₀ /Γ
$\Gamma(\eta(1475)K^+ \times B(\eta_{\text{VALUE (units }10^{-6})})$	η(1475)	→ K*K))/Γ _{total} DOCUMENT ID 1 AUBERT	08x	TECN BABR	COMMENT	Γ ₃₄₀ /Γ
$\Gamma(\eta(1475) K^+ \times B(1000000000000000000000000000000000000$	η(1475) -	→ K*K))/Γ _{total} DOCUMENT ID 1 AUBERT	08x	TECN BABR	COMMENT	Γ ₃₄₀ /Γ
$\Gamma(\eta(1475) K^+ \times B(r))$ $VALUE \text{ (units } 10^{-6}\text{)}$ $13.8^{+1.8}_{-1.7} + 1.0$ 1 Assumes equal proof $\Gamma(f_1(1285) K^+)/\Gamma_{tot}$	$\eta(1475)$ duction of	$ o$ $K^*K))/\Gamma_{total}$ $ o$ $DOCUMENT ID$ 1 AUBERT B^+ and B^0 at the	08x 108x	TECN BABR S).	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$	Γ ₃₄₀ /Γ (45)
$\Gamma(\eta(1475) K^+ \times B(0))$ $VALUE \text{ (units } 10^{-6}\text{)}$ $13.8^{+1.8}_{-1.7} + 1.0$ $13.8^{+1.8}_{-1.7} + 1.0$ Assumes equal productions	$\eta(1475)$ duction of	$ o$ $K^*K))/\Gamma_{total}$ $ o$ $DOCUMENT ID$ 1 AUBERT B^+ and B^0 at the	08x 108x	TECN BABR S).	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$	Γ ₃₄₀ /Γ (45)
$\Gamma(\eta(1475) K^+ \times B(r))$ $VALUE \text{ (units } 10^{-6}\text{)}$ $13.8^{+1.8}_{-1.7} + 1.0$ 1 Assumes equal proof $\Gamma(f_1(1285) K^+)/\Gamma_{tot}$	$\eta(1475)$ duction of otal $\frac{CL\%}{90}$	$K^*K)$)/ Γ_{total} $DOCUMENT ID$ 1 AUBERT B^+ and B^0 at the 1 AUBERT 1 AUBERT	08x T(45	TECN BABR 5). TECN BABR	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$	Γ ₃₄₀ /Γ (45)
$\Gamma(\eta(1475) K^+ \times B(t^-))$ $13.8^{+1.8}_{-1.7}^{+1.0}$ 13	$\eta(1475)$ duction of otal $\frac{CL\%}{90}$ duction of	$K^*K)$ $/\Gamma_{\text{total}}$ $DOCUMENT ID$ 1 AUBERT B^+ and B^0 at the 1 AUBERT 1 AUBERT 1 AUBERT $AUBERT$ $AUBERT$ $AUBERT$ $AUBERT$	08x T(45 08x T(45	TECN BABR 5). TECN BABR	$\frac{\textit{COMMENT}}{e^+e^-} \rightarrow$	Γ ₃₄₀ /Γ (45)
$\Gamma(\eta(1475) K^+ \times B(r))$ $VALUE \text{ (units } 10^{-6})$ $13.8^{+1.8}_{-1.7} + 1.0$ $13.8^{+1.8}_{-1.7} $	$\eta(1475)$ duction of otal $\frac{CL\%}{90}$ duction of $(f_1(1420))$	$ \rightarrow$ $K^*K))/\Gamma_{ ext{total}}$ $ begin{array}{l} DOCUMENT ID \\ 1 & AUBERT \\ B^+ & and B^0 & at the \\ \hline & DOCUMENT ID \\ 1 & AUBERT \\ B^+ & and B^0 & at the \\ \hline & DOCUMENT ID & at the \\$	08x T(45 08x T(45	TECN BABR S). TECN BABR S).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ ₃₄₀ /Γ (45) Γ ₃₄₁ /Γ (45) Γ ₃₄₂ /Γ
$\Gamma(\eta(1475) K^+ \times B(t^-))$ $13.8^{+1.8}_{-1.7}^{+1.0}$ 13	$\eta(1475)$ duction of otal $\frac{CL\%}{90}$ duction of $(f_1(1420))$	$ \rightarrow$ $K^*K))/\Gamma_{ ext{total}}$ $ begin{array}{l} DOCUMENT ID \\ 1 & AUBERT \\ B^+ & and B^0 & at the \\ \hline & DOCUMENT ID \\ 1 & AUBERT \\ B^+ & and B^0 & at the \\ \hline & DOCUMENT ID & at the \\$	08x T(45 08x T(45	TECN BABR S). TECN BABR S).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ ₃₄₀ /Γ (45) Γ ₃₄₁ /Γ (45) Γ ₃₄₂ /Γ
$\Gamma(\eta(1475) K^+ \times B(r))$ $VALUE \text{ (units } 10^{-6})$ $13.8^{+1.8}_{-1.7} + 1.0$ $13.8^{+1.8}_{-1.7} $	η(1475) - duction of otal <u>CL%</u> 90 duction of (f ₁ (1420) <u>CL%</u> 90	$ \begin{array}{c} \rightarrow K^*K))/\Gamma_{\text{total}} \\ \underline{DOCUMENT\ ID} \\ 1 \text{ AUBERT} \\ B^+ \text{ and } B^0 \text{ at the} \\ \\ \underline{DOCUMENT\ ID} \\ 1 \text{ AUBERT} \\ B^+ \text{ and } B^0 \text{ at the} \\ (\rightarrow \eta \pi \pi))/\Gamma_{\text{total}} \\ \underline{DOCUMENT\ ID} \\ 1 \text{ AUBERT} \\ \end{array} $	08x T(45) 08x T(45) 1	TECN BABR S). TECN BABR S). TECN BABR	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ ₃₄₀ /Γ (45) Γ ₃₄₁ /Γ (45) Γ ₃₄₂ /Γ
$\Gamma(\eta(1475) K^+ \times B(t))$ $VALUE \text{ (units } 10^{-6})$	η(1475) - duction of otal <u>CL%</u> 90 duction of (f1(1420) <u>CL%</u> 90 duction of		$08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$	TECN BABR S). TECN BABR S). TECN BABR S).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{340}/Γ $\Upsilon_{(4S)}$ Γ_{341}/Γ $\Upsilon_{(4S)}$ Γ_{342}/Γ $\Upsilon_{(4S)}$
$\Gamma(\eta(1475) K^+ \times B(t))$ $VALUE \text{ (units } 10^{-6})$	η(1475) - duction of otal <u>CL%</u> 90 duction of (f1(1420) <u>CL%</u> 90 duction of		$08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$	TECN BABR S). TECN BABR S). TECN BABR S).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{340}/Γ $\Upsilon_{(4S)}$ Γ_{341}/Γ $\Upsilon_{(4S)}$ Γ_{342}/Γ $\Upsilon_{(4S)}$
Γ(η (1475) K^+ × B($\frac{VALUE}{VALUE}$ (units 10^{-6}) 13.8 + 1.8 + 1.0 1 Assumes equal proof Γ(f_1 (1285) K^+) / Γ _{to} VALUE (units 10^{-6}) <2.0 1 Assumes equal proof Γ(f_1 (1420) K^+ × B($\frac{VALUE}{VALUE}$ (units 10^{-6}) <2.9 1 Assumes equal proof Γ(f_1 (1420) K^+ × B($\frac{VALUE}{VALUE}$ (units 10^{-6}) <4.1	duction of otal - CL% 90 duction of (f1(1420) - CL% 90 duction of (f1(1420) - CL% 90 - CL% 90		$08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ (45) $08x$	TECN BABR 6). TECN BABR 6). TECN BABR 6).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{340}/Γ $\Upsilon_{(4S)}$ Γ_{341}/Γ $\Upsilon_{(4S)}$ Γ_{342}/Γ $\Upsilon_{(4S)}$
$\Gamma(\eta(1475) K^+ \times B(t))$ $VALUE \text{ (units } 10^{-6})$	duction of otal - CL% 90 duction of (f1(1420) - CL% 90 duction of (f1(1420) - CL% 90 - CL% 90		$08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ $\Upsilon(45)$ $08x$ (45) $08x$	TECN BABR 6). TECN BABR 6). TECN BABR 6).	$\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$ $\frac{\textit{COMMENT}}{e^{+}e^{-} \rightarrow}$	Γ_{340}/Γ $\Upsilon_{(4S)}$ Γ_{341}/Γ $\Upsilon_{(4S)}$ Γ_{342}/Γ $\Upsilon_{(4S)}$

$\Gamma(\phi(1680)K^+ \times B(\phi(1680) \rightarrow K^*K))/\Gamma_{total}$

 Γ_{344}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<3.4	90	¹ AUBERT	08X	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1500)K^+)/\Gamma_{\text{total}}$

 Γ_{345}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT IL)	TECN	COMMENT	
3.7± 2.2 OUR AVER	AGE					
$17 \pm 4 \pm 12$	1	LEES			$e^+e^- \rightarrow$	
20 ± 10 ± 27	2	LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.1^{+}_{-}\ {\overset{2.2}{2.3}} \pm \ 0.2$	3,4	AUBERT	IA80	BABR	$e^+e^-\to$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

<19

90 ^{4,5} AUBERT,B

05N BABR Repl. by AUBERT 08AI

$\Gamma(\omega K^+)/\Gamma_{\text{total}}$

 Γ_{346}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
6.5 ± 0.4 OUR AVE	ERAGE					
$6.8 \pm 0.4 \pm 0.4$		¹ CHOBANOVA	14	BELL	e^+e^-	$\Upsilon(4S)$
$6.3\!\pm\!0.5\!\pm\!0.3$		¹ AUBERT	07AE	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$3.2^{+2.4}_{-1.9}\pm0.8$		$^{ m 1}$ JESSOP	00	CLE2	$e^+e^-\to$	$\Upsilon(4S)$
• • • We do not use	the follow	ing data for avera	anc f	ita limit	s ats a a	_

ullet ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$6.1 \pm 0.6 \pm 0.4$ $8.1 \pm 0.6 \pm 0.6$ $4.8 \pm 0.8 \pm 0.4$ $6.5 + 1.3 \pm 0.6$		¹ AUBERT,B ¹ JEN ¹ AUBERT ¹ WANG	06 04н	BELL BABR	AUBERT 07AE Repl. by CHOBANOVA 14 Repl. by AUBERT,B 06E Repl. by JEN 06
$9.2^{+2.6}_{-2.3}\pm 1.0$		¹ LU	02	BELL	Repl. by WANG 04A
<4	90	¹ AUBERT	01 G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
1.5^{+7}_{-6} ± 2		¹ BERGFELD	98	CLE2	Repl. by JESSOP 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

² Measured in the $B^+ \rightarrow K^+ K^0_S K^0_S$ decay.

³ AUBERT 08AI reports B($B^+ \to f_0(1500)\,K^+$) \cdot B($f_0(1500) \to \pi^+\pi^-$) = (0.73 \pm 0.21 $^{+0.47}_{-0.48}$) \times 10⁻⁶. We divide this result by our best value of B($f_0(1500) \to \pi\pi$) = (34.9 \pm 2.3) \times 10⁻² multiplied by 2/3 to account for the $\pi^+\pi^-$ fraction. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best value.

⁴ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

⁵ AUBERT,B 05N reports B($B^+ \to f_0(1500)\,K^+$) · B($f_0(1500) \to \pi^+\pi^-$) < 4.4×10⁻⁶. We divide this result by our best value of B($f_0(1500) \to \pi\pi$) = (34.9 ± 2.3) × 10⁻² multiplied by 2/3 to account for the $\pi^+\pi^-$ fraction. Our first quoted uncertainty is the combined experiment's uncertainty and our second is the systematic uncertainty from using out best value.

$\Gamma(\omega K^*(892)^+)/\Gamma$	total					Γ ₃₄₇ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		ECN C	COMMENT	
< 7.4	90	$^{ m 1}$ AUBERT	09н Е	BABR 6	$e^+e^- o ag{7}$	^(4 <i>S</i>)
• • • We do not use		-				
< 3.4	90	¹ AUBERT,B	06T E	BABR F	Repl. by AU	BERT 09H
< 7.4	90	1 AUBERT	050 E	BABR F	Repl. by AU	BERT,B 06T
<87		¹ BERGFELD				
* Assumes equal p	roduction c	of B^+ and B^0 at the	ne 1 (43	5).		
$\Gamma(\omega(K\pi)_0^{*+})/\Gamma_{to}$	tal					Γ ₃₄₈ /Γ
$(K\pi)_0^{*+}$ is the using LASS sh	total S-wav	ve composed of K_0^* (
$VALUE$ (units 10^{-6})		DOCUMENT ID)	TECN	COMMENT	
VALUE (units 10 ⁻⁶) 27.5±3.0±2.6		¹ AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		of B^+ and B^0 at th				
F(V*(1420)+)	' -					Γ/Γ
$\Gamma(\omega K_0^*(1430)^+)/$		DOCUMENT IS		TECN	COMMENT	Г ₃₄₉ /Г
VALUE (units 10 ⁻⁶)		1 AUBERT	0011	DADD	COMMENT	Υ(4C)
24.0±2.6±4.4					e ' e →	1 (43)
* Assumes equal p	roduction c	of B^+ and B^0 at the	ne 1 (43	5).		
$\Gamma(\omega K_2^*(1430)^+)/$	$\Gamma_{ ext{total}}$					Г ₃₅₀ /Г
VALUE (units 10^{-6})		DOCUMENT ID)	TECN	COMMENT	
21.5±3.6±2.4		$^{ m 1}$ AUBERT	09н	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
¹ Assumes equal p	roduction c	of B^+ and B^0 at th	ne $\Upsilon(4.5)$	S).		
$\Gamma(a_0(980)^0 K^+ \times 1)$	R(20(080)	$0 \rightarrow n\pi^0$) / Γ .				Γ ₃₅₂ /Γ
•				TECN	COMMENT	,
<u>VALUE (units 10^{−6})</u> <2.5	90	¹ AUBERT,BE	<u>/</u> 	RARR	+	Υ(AS)
		of charged and neut				` /
				iesons n	10111 1 (43)	uecays.
$\Gamma(a_0(980)^+ K^0 \times 1)$						Г ₃₅₁ /Г
VALUE (units 10 ⁻⁶) <3.9	CL%	DOCUMENT ID)	TECN	COMMENT	
<3.9	90	¹ AUBERT,BE	04	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
		of charged and neut				
$\Gamma(K^*(892)^0\pi^+)/$	[Leated					Γ ₃₅₃ /Γ
		DOCUMENT ID	7	FCN (^OMMENT	- 353/ '
$\frac{VALUE \text{ (units } 10^{-6})}{\textbf{10.1 } \pm \textbf{0.9 } \textbf{OUF}}$	<u>CL/0</u> R AVERAGI	E		LCIV C	JOIVIIVILIVI	
	=	_				

 $10.8 \ \pm 0.6 \ ^{+1.2}_{-1.4}$

 $9.67\!\pm\!0.64\!+\!0.81\atop-\,0.89$

 $^{
m 1}$ GARMASH

 1 AUBERT 08AI BABR e $^{+}$ e $^{-}$ \rightarrow \varUpsilon (4S)

06 BELL $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

13.5 $\pm 1.2 ^{+0.8}_{-0.9}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$9.8 \pm 0.9 {}^{+1.1}_{-1.2}$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
15.5 $\pm 1.8 {}^{+1.5}_{-4.0}$		^{1,2} AUBERT,B	04 P	BABR	Repl. by AUBERT,B 05N
$19.4 \begin{array}{c} +4.2 \\ -3.9 \end{array} \begin{array}{c} +4.1 \\ -7.1 \end{array}$		³ GARMASH	02	BELL	Repl. by GARMASH 05
<119	90	⁴ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
< 16	90	¹ JESSOP	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 390	90	⁵ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
< 41	90	ASNER	96	CLE2	Repl. by JESSOP 00
<480	90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
<170	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<150	90	⁶ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<260	90	AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^+\pi^0)/\Gamma_{\text{total}}$

 Γ_{354}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
8.2±1.5±1.1		¹ LEES	111	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

$6.9\!\pm\!2.0\!\pm\!1.3$		$^{ m 1}$ AUBERT	05X	BABR	Repl. by LEES 111
<31	90	¹ JESSOP	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<99	90	ASNER	96	CLE2	Repl. by JESSOP 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+\pi^-\pi^+)/\Gamma_{\text{total}}$

 Γ_{355}/Γ

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
51.0±2.9 OUR AVERAGE	-			
$54.4 \pm 1.1 \pm 4.6$	$^{ m 1}$ AUBERT	1A80	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$48.8 \pm 1.1 \pm 3.6$	$^{ m 1}$ GARMASH	06	BELL	$e^+e^- ightarrow \Upsilon(4S)$
• • • We do not use the follow	ving data for avera	ages, fi	its, limit	s, etc. • • •
$64.1 \pm 2.4 \pm 4.0$	$^{ m 1}$ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$46.6 \pm 2.1 \pm 4.3$	¹ GARMASH	05	BELL	Repl. by GARMASH 06
$53.6 \pm 3.1 \pm 5.1$	¹ GARMASH	04	BELL	Repl. by GARMASH 05
$59.1 \pm 3.8 \pm 3.2$	² AUBERT	03M	BABR	Repl. by AUBERT,B 05N
$55.6 \pm 5.8 \pm 7.7$	³ GARMASH	02	BELL	Repl. by GARMASH 04

² AUBERT 04P also report a branching ratio for $B^+ \rightarrow$ "higher K* resonances" π^+ , $K* \rightarrow K^+\pi^-$, $(25.1 \pm 2.0 {+} 11.0 {-} 5.7) \times 10^{-6}$.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 ± 2.0) × 10⁻⁵.

⁴ ABE 00C assumes B($Z \to b\overline{b}$)=(21.7 ± 0.1)% and the B fractions $f_{B^0} = f_{B^+} = \frac{1.8}{1.8}$

 $^{(39.7^{+1.8}}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

⁵ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁶ AVERY 89B reports $< 1.3 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

butions are subtracted, otherwise no assumptions about intermediate resonances. ³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 \pm 2.0) \times 10⁻⁵.

$\Gamma(K^+\pi^-\pi^+ \text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{356}/Γ

VALUE (units 10) CE/0	VALUE	(units	10^{-6})	CL%
------------------------	-------	--------	-----------	---	-----

DOCUMENT ID

TECN COMMENT

$16.3^{+2.1}_{-1.5}$ OUR AVERAGE

9.3
$$\pm$$
1.0 $^{+}$ 6.9 1,2 AUBERT 08AI BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ 16.9 \pm 1.3 $^{+}$ 1.7 1 GARMASH 06 BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$2.9\!\pm\!0.6\!+_{-0.5}^{+0.8}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$17.3 \pm 1.7 {+17.2 \atop -8.0}$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
< 17	90	¹ AUBERT,B			Repl. by AUBERT,B 05N
<330	90	³ ADAM			$e^+e^- ightarrow Z$
< 28	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<400	90	³ ABREU			Sup. by ADAM 96D
<330	90	ALBRECHT			$e^+e^- ightarrow~ \varUpsilon(4S)$
<190	90	⁴ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\omega(782)K^+)/\Gamma_{\text{total}}$

 Γ_{357}/Γ

VALUE (units 10^{-6})	DOCUMENT ID	TECN	COMMENT
5.9 ^{+8.8} +0.5 -9.0-0.4	1,2 AUBERT 08	AI BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

$$\Gamma(K^+ f_0(980) \times B(f_0(980) \rightarrow \pi^+ \pi^-))/\Gamma_{\text{total}}$$

 Γ_{358}/Γ

VALUE (units 10⁻⁶) CL% DOCUMENT ID TECN COMMEN

9.4 $^{+1.0}_{-1.2}$ OUR AVERAGE

10.3
$$\pm 0.5 \, ^{+2.0}_{-1.4}$$
 1 AUBERT 08AI BABR $e^+e^- \rightarrow \varUpsilon(4S)$ 8.78 $\pm 0.82 \, ^{+0.85}_{-1.76}$ 1 GARMASH 06 BELL $e^+e^- \rightarrow \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 100

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

² Calculate the total nonresonant contribution by combining the S-wave composed of K_0^* (1430) and nonresonant that are described using LASS shape.

³ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12.

⁴ AVERY 89B reports $< 1.7 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

² AUBERT 08AI reports $[\Gamma(B^+ \to \omega(782)K^+)/\Gamma_{\text{total}}] \times [B(\omega(782) \to \pi^+\pi^-)] = (0.09 \pm 0.13^{+0.036}_{-0.045}) \times 10^{-6}$ which we divide by our best value $B(\omega(782) \to \pi^+\pi^-) = (1.53^{+0.11}_{-0.13}) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

• • • We do not use the following data for averages, fits, limits, etc. • • •

$9.47\!\pm\!0.97 {+0.62\atop -0.88}$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$7.55\!\pm\!1.24\!+\!1.63\\-1.18$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
$9.2\ \pm1.2\ ^{+2.1}_{-2.6}$		² AUBERT,B	04 P	BABR	Repl. by AUBERT,B 05N
$9.6 \begin{array}{c} +2.5 \\ -2.3 \end{array} \begin{array}{c} +3.7 \\ -1.7 \end{array}$		³ GARMASH	02	BELL	Repl. by GARMASH 05
<80	90	⁴ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_2(1270)^0 K^+)/\Gamma_{\text{total}}$

 Γ_{359}/Γ

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID		TECN	COMMENT
1.07 ± 0.27 OUR AVERAGE				
$0.89 \!+\! 0.38 \!+\! 0.01 \\ -0.33 \!-\! 0.03$	^{1,2} AUBERT	08AI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.33 \pm 0.30 {+0.23 \atop -0.34}$	¹ GARMASH	06	BELL	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

05N BABR Repl. by AUBERT 08AI <16 ⁴ GARMASH 90 BELL Repl. by GARMASH 06 < 2.3

$\Gamma(f_0(1370)^0 K^+ \times B(f_0(1370)^0 \to \pi^+\pi^-))/\Gamma_{\text{total}}$ Γ_{360}/Γ $\frac{\textit{DOCUMENT ID}}{1}$ TECN COMMENT $\frac{1}{4}$ AUBERT,B 05N BABR $e^+e^- \rightarrow$ 05N BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $\Gamma(\rho^{0}(1450) K^{+} \times B(\rho^{0}(1450) \to \pi^{+}\pi^{-}))/\Gamma_{\text{total}}$ Γ_{361}/Γ VALUE TECN COMMENT 05N BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT,B

² AUBERT, B 04P also reports B($B^+ \rightarrow$ "higher f^0 resonances" π^+ , $f(980)^0 \rightarrow \pi^+\pi^-$) $= (3.2 \pm 1.2^{+6.0}_{-2.9}) \times 10^{-6}.$

 $^{^3}$ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to \kappa^+\pi^-$ with B($B^+ \to 0$ $\overline{D}{}^0\pi^+)\times B(\overline{D}{}^0\to K^+\pi^-)=(20.3\pm2.0)\times10^{-5}$. Only charged pions from the

 $^{^4}$ AVERY 89B reports < 7×10^{-5} assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 AUBERT 08AI reports $(0.50\pm0.15 {+0.15\atop -0.11})\times 10^{-6}$ for B($B^+\to f_2(1270)\, K^+)\times {\rm B}(f_2\to f_2(1270)\, K^+)$ $\pi^+\pi^-$). We compute B($B^+ \rightarrow f_2(1270)K^+$) using the PDG value B($f_2(1270) \rightarrow f_2(1270)K^+$) $\pi\pi$)=(84.2 $^{+2.9}_{-0.9}$) \times 10 $^{-2}$ and 2/3 for the $\pi^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.

 $^{^3}$ AUBERT,B 05N reports 8.9×10^{-6} at 90% CL for B($B^+ o f_2(1270) \, K^+$) imes $B(f_2(1270) \rightarrow \pi^+\pi^-)$. We rescaled it using the PDG value $B(f_2(1270) \rightarrow \pi\pi)$ = 84.7% and 2/3 for the $\pi^+\pi^-$ fraction.

 $^{^4\, {\}rm GARMASH}$ 05 reports 1.3 \times 10^{-6} at 90% CL for ${\rm B}(B^+$ \rightarrow $~\it f_2(1270)\, K^+)$ \times $B(f_2(1270) \rightarrow \pi^+\pi^-)$. We rescaled it using the PDG value $B(f_2(1270) \rightarrow \pi\pi)$ = 84.7% and 2/3 for the $\pi^+\pi^-$ fraction.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

05N BABR $e^+e^-
ightarrow \gamma(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^+\rho^0)/\Gamma_{\rm total}$ Γ_{363}/Γ VAI

۱ <u>ٌ</u>	<i>UE</i> (units 10 ⁻⁶) <i>CL</i> %		DOCUMENT ID		TECN	COMMENT		
	3.7 ±0.5 OUR AVERA	GE						
	$3.56 \pm 0.45 {+0.57 \atop -0.46}$	1	¹ AUBERT	08AI	BABR	$e^+e^-\to$	$\Upsilon(4S)$	
	$3.89\!\pm\!0.47^{m{+0.43}}_{m{-0.41}}$	1	¹ GARMASH	06	BELL	$e^+e^-\to$	$\Upsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

$5.07\!\pm\!0.75\!+\!0.55 \\ -0.88$		¹ AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$4.78\pm0.75 {+1.01 \atop -0.97}$		¹ GARMASH	05	BELL	Repl. by GARMASH 06
< 6.2	90	² AUBERT,B	04 P	BABR	Repl. by AUBERT, B 05N
< 12	90	³ GARMASH	02	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 86	90	⁴ ABE	00 C	SLD	$e^+e^- o Z$
< 17	90	$^{ m 1}$ JESSOP	00	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
<120	90	⁵ ADAM	96 D	DLPH	$e^+e^- \rightarrow Z$
< 19	90	ASNER	96	CLE2	Repl. by JESSOP 00
<190	90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
<180	90	ALBRECHT	91 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 80	90	⁶ AVERY	89 B	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
<260	90	AVERY	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$
1					

$\Gamma(K_0^*(1430)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{364}/Γ

VALUE (units 10 ⁻⁶) DOCUMENT ID		TECN	COMMENT
45 $^{+9}_{-7}$ OUR AVERAGE	Error includes scale factor o	f 1.5.	
$32.0 \pm 1.2 {+10.8 \atop -6.0}$	¹ AUBERT 08A	I BABR	$e^+e^- ightarrow \gamma(4S)$
$51.6 \pm 1.7 {+\atop -} \begin{array}{l} 7.0 \\ 7.5 \end{array}$	¹ GARMASH 06	BELL	$e^+e^- ightarrow \Upsilon(4S)$

^{• • •} We do not use the following data for averages, fits, limits, etc. • • •

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 AUBERT 04P reports a central value of $(3.9\pm1.2^{+1.3}_{-3.5})\times10^{-6}$ for this branching ratio. 3 Uses a reference decay mode $B^+\to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0\to K^+\pi^-$ with B($B^+\to T^0\pi^+$ $\overline{D}{}^0\pi^+)\cdot {\rm B}(\overline{D}{}^0\to K^+\pi^-)=(20.3\pm 2.0)\times 10^{-5}.$ ⁴ABE 00C assumes B($Z\to b\overline{b}$)=(21.7 ± 0.1)% and the B fractions $f_{B^0}=f_{B^+}=10.0$

^{(39.7} $^{+1.8}_{-2.2}$)% and f_{B_s} =(10.5 $^{+1.8}_{-2.2}$)%. ⁵ Assumes production fractions $f_{\underline{B}^0}=f_{B^-}=$ 0.39 and $f_{B_s}=$ 0.12.

⁶ AVERY 89B reports $< 7 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

²See erratum: AUBERT,BE 06A.

$\Gamma(K_2^*(1430)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{365}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT	
$5.6^{f +2.2}_{-1.5}{\pm}0.1$		1,2 AUBERT	08AI BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

< 23	90	³ AUBERT,B	05N BABR	Repl. by AUBERT 08AI
< 6.9	90	⁴ GARMASH	05 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<680	90	ALBRECHT	91B ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(1410)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{366}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<45	90	¹ GARMASH	05	BELL	$e^+e^- ightarrow~\gamma(4S)$

 $^{^1}$ GARMASH 05 reports 2.0 \times 10 $^{-6}$ at 90% CL for B(B $^+$ \rightarrow $~K^*(1410)^0\,\pi^+)$ \times B($K^*(1410)^0$ \rightarrow $~K^+\pi^-$). We rescaled it using the PDG value B($K^*(1410)^0$ \rightarrow $~K\pi)$ = 6.6% and 2/3 for the $K^+\pi^-$ mode.

$\Gamma(K^*(1680)^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{367}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		ECN	COMMENT
<12	90	¹ GARMASH C	5 B	ELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<15 90
2
 AUBERT,B 05N BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma \big(K^+ \pi^0 \pi^0 \big) / \Gamma_{\rm total}$

 Γ_{368}/Γ

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
16.2±1.2±1.5	¹ LEES	111	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² AUBERT 08AI reports $(1.85 \pm 0.41^{+0.61}_{-0.29}) \times 10^{-6}$ for $B(B^+ \to K_2^*(1430)^0 \pi^+) \times B(K_2^*(1430)^0 \to K^+\pi^-)$. We compute $B(B^+ \to K_2^*(1430)^0 \pi^+)$ using the PDG value $B(K_2^*(1430)^0 \to K\pi)$ =(49.9 ± 1.2) × 10⁻² and 2/3 for the $K^+\pi^-$ fraction. Our first error is their experiment's error and the second error is systematic error from using our best value.

³ AUBERT,B 05N reports 7.7×10^{-6} at 90% CL for B($B^+ \to K_2^*(1430)^0 \pi^+$) \times B($K_2^*(1430)^0 \to K^+ \pi^-$). We rescaled it using the PDG value B($K_2^*(1430)^0 \to K\pi$) = 49.9% and 2/3 for the $K^+ \pi^-$ fraction.

⁴ GARMASH 05 reports 2.3×10^{-6} at 90% CL for B($B^+ \to K_2^*(1430)^0 \pi^+$) \times B($K_2^*(1430)^0 \to K^+ \pi^-$). We rescaled it using the PDG value B($K_2^*(1430)^0 \to K\pi$) = 49.9% and 2/3 for the $K^+ \pi^-$ mode.

 $^{^1}$ GARMASH 05 reports 3.1 \times 10 $^{-6}$ at 90% CL for B(B $^+$ \rightarrow $K^*(1680)^0\,\pi^+)$ \times B(K*(1680)^0 \rightarrow $K^+\pi^-$). We rescaled it using the PDG value B(K*(1680)^0 \rightarrow $K\pi)$ = 38.7% and 2/3 for the $K^+\pi^-$ mode.

 $^{^2}$ AUBERT,B 05N reports 3.8 \times 10^{-6} at 90% CL for B($B^+\to K^*(1680)^0\pi^+)\times B(K^*(1680)^0\to K^+\pi^-).$ We rescaled it using the PDG value B($K^*(1680)^0\to K\pi)=38.7\%$ and 2/3 for the $K^+\pi^-$ fraction.

$\Gamma(f_0(980)K^+ \times B(f_0)$	$\rightarrow \pi^0\pi^0$))/Γ _{total}				Γ ₃₆₉ /Γ
VALUE (units 10^{-6})		DOCUMENT ID)	TECN	COMMENT	
2.8±0.6±0.5		¹ LEES	111	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ						,
$\Gamma(K^-\pi^+\pi^+)/\Gamma_{ m total}$						Γ ₃₇₀ /Γ
	CL%_	DOCUMENT ID		TECN (COMMENT	
0		AAIJ			pp at 7, 8 T	
• • • We do not use the	following	data for averag	es, fits,	limits,	etc. • • •	
$< 9.5 \times 10^{-7}$	90 1	AUBERT	08BE [BABR ($e^+e^- \rightarrow 7$	r(4 <i>S</i>)
	90 1	GARMASH	04 E	BELL 6	$e^+e^- ightarrow 7$	r(4S)
	90 2	AUBERT	03M E	BABR I	Repl. by AU	BERT 08BE
$< 7.0 \times 10^{-6}$	90 3	GARMASH	02 E	BELL ($e^+e^- o 7$	r(4S)
1 Assumes equal produ 2 Assumes equal produ butions are subtracte 3 Uses a reference dec $\overline{D}{}^0\pi^+)\cdot B(\overline{D}{}^0\to K$	ection of B ⁽ ed, otherwis cay mode	D^0 and B^+ at the seno assumption $B^+ ightarrow \overline{D}{}^0 \pi^0$	ne $\Upsilon(4.5)$ ons abo $^+$ and	S); charn ut interr	nediate reso	nances.
$\Gamma(K^-\pi^+\pi^+$ nonreson	$nant)/\Gamma_{to}$	otal				Γ ₃₇₁ /Γ
VALUE (units 10^{-6})	•)	TECN	COMMENT	-
<56	90	BERGFELD	96R	CLF2	e+e-	$\Upsilon(4S)$
$\Gamma(K_1(1270)^0\pi^+)/\Gamma_{to}$ $VALUE$ $<4.0 \times 10^{-5}$ Assumes equal produce	90	¹ AUBERT	10 D	BABR		
$\Gamma(K_1(1400)^0\pi^+)/\Gamma_{\rm to}$						Γ ₃₇₃ /Γ
VALUE	CL%	DOCUMENT ID)	TECN	<u>COMMENT</u>	
		¹ AUBERT				$\Upsilon(4S)$
• • • We do not use the	•	9				
$< 2.6 \times 10^{-3}$		ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	oction of B^{-1}	$^+$ and B^0 at th	ne $\Upsilon(4.$	S).		
$\Gamma(K^0\pi^+\pi^0)/\Gamma_{\text{total}}$	CI %	DOCUMENT IF	1	TECN	COMMENT	Γ ₃₇₄ /Γ
VALUE <66 × 10 ⁻⁶	<u>CL/0</u>	1 FCKHART	ഗ	CLES	a+a-	Υ(45)
¹ Assumes equal produ					e · e →	1 (43)
$\Gamma(K^0 ho^+)/\Gamma_{ m total}$						Г ₃₇₅ /Г
$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID)	TECN	COMMENT	
$8.0^{f +1.4}_{-1.3} \pm 0.6$		AUBERT				
• • • We do not use the	following	data for averag	es, fits,	limits,	etc. • • •	
<48	90	ASNER	96	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$
HTTP://PDG.LBL.G	SOV	Page 104		Creat	ted: 5/30/	2017 17:22

$\Gamma(K^*(892)^+\pi^+\pi^-)$	$^{-})/\Gamma_{ ext{total}}$	₅ /Γ
$VALUE$ (units 10^{-6})	CL% DOCUMENT ID TECN COMMENT	
$75.3 \pm 6.0 \pm 8.1$	1 AUBERT,B 060 BABR $e^{+}e^{-} ightarrow$ \varUpsilon (4 S)	
• • • We do not use	the following data for averages, fits, limits, etc. \bullet \bullet	
<1100	90 ALBRECHT 91E ARG $e^+e^- ightarrow \varUpsilon(4S)$	
$^{ m 1}$ Assumes equal pr	oduction of B^+ and B^0 at the $arphi(4S)$.	
$\Gamma(K^*(892)^+ \rho^0)/\Gamma$	- total Γ ₃₇₇	,/Г
$VALUE$ (units 10^{-6})	CL% DOCUMENT ID TECN COMMENT	
4.6±1.0±0.4	1 DEL-AMO-SA11D 1 BABR 1 $^{e^{+}}$ $^{e^{-}}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$ $^{-}$	
• • • We do not use	the following data for averages, fits, limits, etc. • • •	
< 6.1	90 ¹ AUBERT,B 06G BABR Repl. by DEL-AMO- SANCHEZ 11D	
$10.6^{+3.0}_{-2.6}\pm 2.4$	$^{ m 1}$ AUBERT 03V BABR Repl. by AUBERT,B 06	iG
< 74	90 ² GODANG 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$	
<900	90 ALBRECHT 91B ARG $e^+e^- \rightarrow \Upsilon(4S)$	
	oduction of B^+ and B^0 at the \varUpsilon (4 S). y 00 configuration. For a helicity 11 configuration, the limit decrea	ases
$\Gamma(K^*(892)^+f_0(98)^+$	•	₃/Г
<i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID TECN COMMENT	
	1 DEL-AMO-SA11D BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$	
	the following data for averages, fits, limits, etc. • • •	
$5.2 \pm 1.2 \pm 0.5$	AUBERT,B 06G BABR Repl. by DEL-AMO-SANCHEZ 1	l1D
¹ Assumes equal pr	oduction of B^+ and B^0 at the \varUpsilon (4 S).	
$\Gamma(a_1^+ K^0)/\Gamma_{\text{total}}$	Γ ₃₇₉	٦/د
VALUE (units 10^{-6})	DOCUMENT ID TECN COMMENT	••
34.9±5.0±4.4	1,2 AUBERT 08F BABR $e^+e^- ightarrow \varUpsilon(4S)$	
	oduction of B^+ and B^0 at the $\varUpsilon(4S)$.	
² Assumes a_1^{\pm} deca	ays only to 3π and $B(a_1^\pm\to\pi^\pm\pi^\mp\pi^\pm)=0.5.$	
$\Gamma(b_1^+ K^0 \times B(b_1^+ -$)/Г
<i>VALUE</i> (units 10 ⁻⁶)	$rac{DOCUMENT\;ID}{}$ TECN COMMENT 1 AUBERT 08AG BABR $e^+e^- ightarrow \varUpsilon(4S)$	
$9.6 \pm 1.7 \pm 0.9$	1 AUBERT 08AG BABR $e^{+}e^{-} ightarrow$	
¹ Assumes equal pr	oduction of B^+ and B^0 at the $arphi(4S)$.	
$\Gamma(K^*(892)^0 ho^+)/\Gamma$	- total F ₃₈₁	<u>.</u> /Γ
VALUE (units 10 ⁻⁶)	DOCUMENT ID TECN COMMENT	
9.2±1.5 OUR AVER	1 AUDEDT D	
$9.6 \pm 1.7 \pm 1.5$ $8.9 \pm 1.7 \pm 1.2$	1 AUBERT,B 06G BABR $e^+e^- ightarrow \varUpsilon(4S)$ 1 ZHANG 05D BELL $e^+e^- ightarrow \varUpsilon(4S)$	
	` '	
+ Assumes equal pr	oduction of B^+ and B^0 at the \varUpsilon (4 S).	

$\Gamma(K_1(1400)^+\rho^0)/$						Γ ₃₈₂ /Γ
<u>VALUE</u> <7.8 × 10 ^{−4}	90	<u>DOCUMENT ID</u> ALBRECHT				
<1.9 X 10 .	90	ALBRECHI	91 B	ARG	e ' e →	7 (45)
$\Gamma(K_2^*(1430)^+\rho^0)/$	$\Gamma_{ ext{total}}$					Γ ₃₈₃ /Γ
\ - · · · /·		DOCUMENT ID		TECN	COMMENT	
<u>∨ALUE</u> <1.5 × 10 ⁻³	90	ALBRECHT	91 B	ARG	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\Gamma(b_1^0 K^+ \times B(b_1^0 -$	$\leftrightarrow \omega \pi^0)$	$/\Gamma_{total}$				Γ ₃₈₄ /Γ
$VALUE$ (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$9.1 \pm 1.7 \pm 1.0$		DOCUMENT ID 1 AUBERT	07 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	oduction o	of B^+ and B^0 at the	Υ(4 <i>S</i>	5).		
$\Gamma(b_1^+ K^{*0} \times B(b_1^+$						Γ ₃₈₅ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID 1 AUBERT		TECN	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction o	of B^+ and B^0 at the	$\Upsilon(4S)$	5).		
$\Gamma(b_1^0 K^{*+} \times B(b_1^0 -$,				Γ ₃₈₆ /Γ
VALUE	<u>CL%</u>	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	22(1.2)
		¹ AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro	oduction o	of B^+ and B^0 at the	$\Upsilon(4S)$	5).		
$\Gamma(K^+\overline{K}^0)/\Gamma_{\text{total}}$						Γ ₃₈₇ /Γ
		DOCUMENT ID			DMMENT	
1.19±0.18 OUR		r includes scale factor	OT 1	۷.		
		¹ DUH 13	BE	ELL e [⊣]	$e^- \rightarrow \gamma ($	(45)
		¹ AUBERT,BE 060				
ullet $ullet$ We do not use	the follow	ing data for averages,	fits,	limits, e	etc. • •	`
$1.22 ^{+ 0.32 + 0.13}_{- 0.28 - 0.16}$					epl. by DUH	
$1.0 \pm 0.4 \pm 0.1$		¹ ABE 050				
$1.5 \pm 0.5 \pm 0.1$	00					ERT,BE 06C
< 2.5	90	1			epl. by AUB $^-e^- ightarrow \gamma$ (ERT,BE 05E
< 3.3 < 3.3	90 90	¹ CHAO 04 ¹ BORNHEIM 03			$e^{-} ightarrow \gamma(e^{-} ight$,
< 2.0	90	¹ CASEY 02			$e \rightarrow I$ (epl. by CHA	,
< 5.0	90	3			$e^- ightarrow \gamma$	
< 2.4	90				$e^- ightarrow \gamma$	
< 5.1	90	¹ CRONIN-HEN00			$e^- \rightarrow \gamma ($	
<21	90	GODANG 98			pl. by CRO	NIN-
¹ Assumes equal pro	oduction o	of B^+ and B^0 at the	Υ(4 <i>S</i>	5).	HENNESS	Y 00
$\Gamma(K^+\overline{K}^0)/\Gamma(K^0\pi$	+)					Γ ₃₈₇ /Γ ₃₂₇
VALUE		DOCUMENT ID			COMMENT	
0.055±0.007 OUR FI 0.064±0.009±0.004	I Error	includes scale factor o			pp at 7 Te	V
HTTP://PDG.LBI	GOV	Page 106		Creat	ed: 5/30/	2017 17:22

$\Gamma(\overline{K}^0K^+\pi^0)/\Gamma_{\text{total}}$							Γ ₃₈₈ /Γ
VALUE	CL%		DOCUMENT ID		TECN	COMMENT	
$<24\times10^{-6}$	90	1	ECKHART	02	CLE2	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B	3+	and B^0 at the	Y(45	5).		
$\Gamma(K^+K_S^0K_S^0)/\Gamma_{\text{total}}$							Γ ₃₈₉ /Γ
<i>VALUE</i> (units 10^{-6})			DOCUMENT ID		TECN	COMMENT	
10.8±0.6 OUR AVERAG							
$10.6\!\pm\!0.5\!\pm\!0.3$	1	.,2	LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$13.4\!\pm\!1.9\!\pm\!1.5$		1	GARMASH	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	d	ata for averages	, fits,	limits, e	etc. • • •	
$10.7\!\pm\!1.2\!\pm\!1.0$		1	AUBERT,B	04V	BABR	Repl. by L	EES 120
¹ Assumes equal produ							
² All intermediate char	monium a	nc	d charm resonan	ces ar	e remov	ed, except c	of χ_{c0} .
$\Gamma(f_0(980)K^+, f_0 \rightarrow$	K ⁰ K ⁰)/	/ Г	total				Γ ₃₉₀ /Γ
VALUE (units 10^{-6})	•				TECN	COMMENT	
14.7±2.8±1.8		1	DOCUMENT ID	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ							(10)
				7 (40	<i>)</i>).		
$\Gamma(f_0(1710)K^+, f_0 \rightarrow$	$K_S^0K_S^0$)/	Γ _{total}				Г ₃₉₁ /Г
VALUE (units 10^{-6})			DOCUMENT ID		TECN	COMMENT	
$0.48^{f +0.40}_{f -0.24} \pm 0.11$		1	LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B	3+	and B^0 at the	Y(45	5).		
$\Gamma(K^+K^0_SK^0_S)$ nonreso	$nant)/\Gamma_t$	tot	tal				Γ ₃₉₂ /Γ
VALUE (units 10^{-6})			DOCUMENT ID		TECN	COMMENT	
19.8±3.7±2.5			LEES				$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B						, ,
$\Gamma(K_S^0K_S^0\pi^+)/\Gamma_{ ext{total}}$							Γ ₃₉₃ /Γ
$VALUE$ (units 10^{-6})	CL%		DOCUMENT ID		TECN	COMMENT	3337
<0.51	90	1	AUBERT	091	BABR	e+e-	$\Upsilon(45)$
• • • We do not use the	5.0						7 (13)
<3.2	90		GARMASH				$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B	3+	and B^0 at the	Y(45	5).		
$\Gamma(K^+K^-\pi^+)/\Gamma_{\text{total}}$							Г ₃₉₄ /Г
VALUE (units 10^{-6})	CL%		DOCUMENT ID		TECN	COMMENT	
5.0±0.5±0.5	·	1	DOCUMENT ID AUBERT	07 BB	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following						,
<13	90	1	GARMASH	04	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
< 6.3	90 1,	,2	AUBERT	03м	BABR	Repl. by Al	UBERT 07BB
<12	90	3	GARMASH	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$\Gamma(K^+K^-\pi^+ \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{395}/Γ

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<75	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow \gamma(4S)$

$\Gamma\big(K^{+}\,\overline{K}^{*}(892)^{0}\big)/\Gamma_{total}$

 Γ_{396}/Γ

VALUE (units 10 ⁻⁰)	CL%	DOCUMENT ID	<u>TECN</u>	COMMENT
< 1.1	90	¹ AUBERT	07AR BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	, fits, limits, e	tc. • • •

<129	90	ABBIENDI	00B C	OPAL	$e^+e^- ightarrow Z$
<138	90	² ABE	00C S	SLD	$e^+e^- ightarrow Z$
< 5.3	90	¹ JESSOP	00 (CLE2	$e^+e^- ightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+\overline{K}_0^*(1430)^0)/\Gamma_{total}$

 Γ_{397}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<2.2	90	¹ AUBERT	07AR BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+K^+\pi^-)/\Gamma_{\rm total}$

 Γ_{398}/Γ

VALUE	<u>CL%</u>	DOCUMENT	- ID	TECN	COMMENT
$< 1.1 \times 10^{-8}$	90	AAIJ	17E	LHCB	<i>pp</i> at 7, 8 TeV
• • • We do not u	se the follow	ing data for av	verages, fit	s, limits	, etc. • • •

$< 1.6 \times 10^{-7}$	90	¹ AUBERT	08BE BABR	$e^+e^- ightarrow~ \varUpsilon(4S)$
$< 2.4 \times 10^{-6}$	90	¹ GARMASH	04 BELL	$e^+e^- ightarrow \Upsilon(4S)$
$< 1.3 \times 10^{-6}$	90	² AUBERT	03м BABR	Repl. by AUBERT 08BE
$< 3.2 \times 10^{-6}$	90	³ GARMASH	02 BELL	$e^+e^- \rightarrow \gamma(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+K^+\pi^-\text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{399}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<87.9	90	ABBIENDI	00 B	OPAL	$e^+e^- \rightarrow Z$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to \kappa^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to \kappa^+\pi^-$) = (20.3 \pm 2.0) \times 10⁻⁵.

²ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} = (39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

² Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

³ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to \overline{D}{}^0\pi^+$)·B($\overline{D}{}^0 \to K^+\pi^-$) = (20.3 ± 2.0) × 10⁻⁵.

$\Gamma(f_2'(1525)K^+)/\Gamma_{\text{total}}$

 Γ_{400}/Γ

VALUE (units 10^{-6}) CL%	DOCUMENT ID		TECN	COMMENT
1.8 \pm 0.5 OUR AVERAGE	Error includes scale	e factoi	of 1.1.	
$1.56 \pm 0.36 \pm 0.30$	^{1,2} LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$2.8 \pm 0.9 ^{+ 0.5}_{- 0.4}$	1,3 LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

^{1,4} GARMASH 05 BELL $e^+e^- \rightarrow \Upsilon(4S)$ <8

$\Gamma(K^+ f_J(2220))/\Gamma_{\text{total}}$

 Γ_{401}/Γ

VALUE (unit	s 10 ⁻⁶)		DOC	UMENT	ID	TECN	COMMENT		
not seen			1 HU \prime	ANG	03	BELL	$e^+e^- ightarrow$	$\Upsilon(4S)$	
$^{1}\mathrm{No}$	evidence	is	found	for	such	dec	ay and	set	a
limit o	on B($B^+ \rightarrow$	f _J (22	20)) \times B(f_J	(2220) -	$\rightarrow \phi \phi$)	< 1.2	$ imes$ 10^{-6} at	90%CL	where
the f_{I}	(2220) is a po	ossible	glueball sta	ite.					

$\Gamma(K^{*+}\pi^+K^-)/\Gamma_{\text{total}}$

 Γ_{402}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<11.8	90	1 AUBERT,B	06∪ BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^+K^*(892)^0)/\Gamma_{\text{total}}$

 Γ_{403}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
0.91±0.29 OUR A	VERAGE				
$0.77^{igoplus 0.35}_{igoplus 0.30} \pm 0.12$		$^{ m 1}$ GOH	15	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$1.2 \pm 0.5 \pm 0.1$		² AUBERT	09F	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he followin	g data for average	s, fits,	limits, e	etc. • • •
<71	90	³ GODANG	02	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Signal significance is 2.7 standard deviations. This measurement corresponds to an upper limit of $<1.31\times10^{-6}$ at 90% CL. 2 Signal signicance is 3.7 standard deviations.

$\Gamma(K^{*+}K^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{404}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECI	N COMMENT
<6.1	90	¹ AUBERT,B	06U BAE	$^{ m BR} \ \overline{e^+e^- ightarrow \ \varUpsilon(4S)}$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay. ³ Measured in the $B^+ \rightarrow K^+ K^0_S K^0_S$ decay.

 $^{^{4}\,\}mathsf{GARMASH}\,\mathsf{05}\,\mathsf{reports}\,\mathsf{B}(B^{+}\to f_{2}^{\prime}(1525)\,\mathsf{K}^{+})\cdot\mathsf{B}(f_{2}^{\prime}(1525)\to\,\mathsf{K}^{+}\,\mathsf{K}^{-})<\,4.9\times10^{-6}$ at 90% CL. We divide this result by our best value of B($f_2'(1525) \rightarrow K\overline{K}$) = 88.7×10⁻² multiplied by 2/3 to account for the K^+K^- fraction.

 $^{^3}$ Assumes a helicity 00 configuration. For a helicity 11 configuration, the limit decreases to 4.8×10^{-5} .

Γ((K^+)	K-	$K^+)$	$/\Gamma_{\text{total}}$
- 1			,	// LOLAI

 Γ_{405}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
34.0±1.4 OUR AV	ERAGE	Error includes scale	facto	r of 1.4.	
$34.6\!\pm\!0.6\!\pm\!0.9$		1,2 LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$30.6\!\pm\!1.2\!\pm\!2.3$		¹ GARMASH	05	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	the follow	ing data for average	s, fits,	limits, e	etc. • • •
$35.2 \pm 0.9 \pm 1.6$		$^{ m 1}$ AUBERT	060	BABR	Repl. by LEES 120
$32.8 \pm 1.8 \pm 2.8$		¹ GARMASH	04	BELL	Repl. by GARMASH 05
$29.6\!\pm\!2.1\!\pm\!1.6$		³ AUBERT	03м	BABR	Repl. by AUBERT 060
$35.3 \pm 3.7 \pm 4.5$		⁴ GARMASH	02	BELL	Repl. by GARMASH 04
<200	90	⁵ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
<320	90	⁵ ABREU	95N	DLPH	Sup. by ADAM 96D
<350	90	ALBRECHT	91E	ARG	$e^+e^- ightarrow \Upsilon(4S)$
1		. 0			

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(K^+\phi)/\Gamma_{\mathsf{total}}$

 Γ_{406}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
8.8 $^{+0.7}_{-0.6}$ OUR	AVERAGE	Error includes sca	ale fac	ctor of 1.	1.
$9.2 \pm 0.4 ^{+0.7}_{-0.5}$		¹ LEES	120	BABR	$e^+e^- ightarrow ~ $
$7.6\ \pm 1.3\ \pm 0.6$		² ACOSTA	05 J	CDF	$p\overline{p}$ at 1.96 TeV
$9.60 \pm 0.92 {+1.05\atop -0.85}$		¹ GARMASH	05	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.5 \ {}^{+2.1}_{-1.8} \ \pm 0.6$		¹ BRIERE	01	CLE2	$e^+ e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use t	he following	g data for averages	s, fits,	limits, e	etc. • • •
$8.4 \pm 0.7 \pm 0.7$		¹ AUBERT	060	BABR	Repl. by LEES 120
$10.0 \ {}^{+ 0.9}_{- 0.8} \ \pm 0.5$		¹ AUBERT	04A	BABR	Repl. by AUBERT 060
$9.4\ \pm 1.1\ \pm 0.7$		$^{ m 1}$ CHEN	03 B	BELL	Repl. by GARMASH 05
$14.6 \ {}^{+3.0}_{-2.8} \ \pm 2.0$		³ GARMASH	02	BELL	Repl. by CHEN 03B
$7.7 \ ^{+1.6}_{-1.4} \ \pm 0.8$		¹ AUBERT	01 D	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<144	90	⁴ ABE	00 C	SLD	$e^+e^- \rightarrow Z$
< 5	90	¹ BERGFELD	98	CLE2	
<280	90	⁵ ADAM			$e^+e^- ightarrow Z$
< 12	90	ASNER	96	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<440	90	⁶ ABREU			Sup. by ADAM 96D
<180	90	_ ALBRECHT			$e^+e^- \rightarrow \Upsilon(4S)$
< 90	90	⁷ AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<210	90	AVERY	87	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^2}$ All intermediate charmonium and charm resonances are removed, except of χ_{c0} .

All intermediate charmonium and charm resonances are removed, except of χ_{CU} . 3 Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$; charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances. 4 Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with $B(B^+ \to \overline{D}{}^0\pi^+) \cdot B(\overline{D}{}^0 \to K^+\pi^-) = (20.3 \pm 2.0) \times 10^{-5}$. 5 Assumes B^0 and B^- production fractions of 0.39, and B_S production fraction of 0.12.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(980)K^+ \times B(f_0(980) \to K^+K^-))/\Gamma_{\text{total}}$

 Γ_{407}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT		
$9.4 \pm 1.6 \pm 2.8$		¹ LEES	120	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
● ● ● We do not use	the following	g data for average	es, fits,	limits, e	etc. • • •		
$6.5\!\pm\!2.5\!\pm\!1.6$		¹ AUBERT	060	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$	
<20	٩n	1 GARMASH	05	RFLI	e+e	$\Upsilon(45)$	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(a_2(1320)K^+ \times B(a_2(1320) \to K^+K^-))/\Gamma_{\text{total}}$

 Γ_{408}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<1.1 × 10 ⁻⁶	90	¹ GARMASH	05	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(X_0(1550)K^+ \times B(X_0(1550) \to K^+K^-))/\Gamma_{\text{total}}$

 Γ_{409}/Γ

 $X_0(1550)$ is a possible spin zero state near 1.55 GeV/c² invariant mass of K^+K^- .

VALUE (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
4.3±0.6±0.3	¹ AUBERT	060	BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\phi(1680)K^+ \times B(\phi(1680) \rightarrow K^+K^-))/\Gamma_{\text{total}}$

 Γ_{410}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 0.8 \times 10^{-6}$	90	¹ GARMASH	05	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1710)K^+ \times B(f_0(1710) \to K^+K^-))/\Gamma_{\text{total}}$

 Γ_{411}/Γ

Created: 5/30/2017 17:22

$VALUE$ (units 10^{-6})	DOCUMENT ID		TECN	COMMENT
1.12±0.25±0.50	¹ LEES	120	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$1.7~\pm 1.0~\pm 0.3$$
 AUBERT 060 BABR Repl. by LEES 120

² Uses B($B^+ \to J/\psi K^+$) = (1.00 \pm 0.04) \times 10⁻³ and B($J/\psi \to \mu^+ \mu^-$) = 0.0588 \pm

 $^{^3}$ Uses a reference decay mode $B^+ \to \overline{D}{}^0\pi^+$ and $\overline{D}{}^0 \to K^+\pi^-$ with B($B^+ \to D^0\pi^+$ $\overline{D}{}^{0}\pi^{+})\cdot B(\overline{D}{}^{0} \to K^{+}\pi^{-}) = (20.3 \pm 2.0) \times 10^{-5}.$

⁴ABE 00C assumes B(Z \rightarrow $b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

⁵ ADAM 96D assumes $f_{R^0} = f_{R^-} = 0.39$ and $f_{B_c} = 0.12$.

⁶ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁷ AVERY 89B reports $< 8 \times 10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+K^-K^+\text{nonr})$	-	$/\Gamma_{\text{total}}$ Γ_{412}/Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
23.8 ^{+2.8} _{-5.0} OUR AV	ERAGE	
$22.8 \pm 2.7 \pm 7.6$		¹ LEES 120 BABR $e^+e^- \rightarrow \Upsilon(4S)$
$24.0 \pm 1.5 ^{+2.6}_{-6.0}$		1 GARMASH 05 BELL $e^{+}e^{-} ightarrow \varUpsilon(4S)$
	the followi	ing data for averages, fits, limits, etc. ● ●
$50.0\pm6.0\pm4.0$		¹ AUBERT 060 BABR Repl. by LEES 120
<38	90	BERGFELD 96B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
¹ Assumes equal pro	duction o	f B^+ and B^0 at the \varUpsilon (4 S).
Γ(K*(892)+K+K	-)/Γ _{tota}	_ы Г ₄₁₃ /Г
VALUE (units 10^{-6})	•	DOCUMENT ID TECN COMMENT
36.2±3.3±3.6		1 AUBERT,B 060 BABR $e^{+}e^{-} ightarrow$ \varUpsilon (4 S)
ullet $ullet$ We do not use	the followi	ing data for averages, fits, limits, etc. • • •
<1600	90	ALBRECHT 91E ARG $e^+e^- ightarrow \varUpsilon(4S)$
¹ Assumes equal pro	oduction o	f B^+ and B^0 at the $\varUpsilon(4S)$.
$\Gamma(K^*(892)^+\phi)/\Gamma_{\rm t}$	otal	Γ ₄₁₄ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID TECN COMMENT
10.0±2.0 OUR A	WERAGE	
$11.2 \pm 1.0 \pm 0.9$		1 AUBERT 07BA BABR $e^{+}e^{-} ightarrow \Upsilon(4S)$
$6.7^{+2.1}_{-1.9}^{+0.7}_{-1.0}$		¹ CHEN 03B BELL $e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use	the followi	ing data for averages, fits, limits, etc. ● ●
$12.7^{+2.2}_{-2.0}\pm1.1$		AUBERT 03V BABR Repl. by AUBERT 07BA
$9.7^{f +4.2}_{-3.4}\!\pm\!1.7$		¹ AUBERT 01D BABR Repl. by AUBERT 03V
< 22.5	90	1 BRIERE 01 CLE2 $e^{+}e^{-} \rightarrow \Upsilon(4S)$
< 41	90	BERGFELD 98 CLE2
< 70 <1300	90 90	ASNER 96 CLE2 $e^+e^- ightarrow \varUpsilon(4S)$ ALBRECHT 91B ARG $e^+e^- ightarrow \varUpsilon(4S)$
1=000	30	of B^+ and B^0 at the $\Upsilon(4S)$.
$\Gamma(\phi(K\pi)_0^{*+})/\Gamma_{\text{tota}}$		Γ ₄₁₅ /Γ
using LASS sha	pe.	re composed of $K_0^st(1430)$ and nonresonant that are described
VALUE (units 10^{-6})		$rac{ extit{DOCUMENT ID}}{1}$ AUBERT 08BI BABR $e^+e^- ightarrow \varUpsilon(4S)$
$8.3 \pm 1.4 \pm 0.8$		1 AUBERT 08BI BABR $\mathrm{e^{+}e^{-}} ightarrow \varUpsilon(4S)$
$^{ m 1}$ Assumes equal pro	oduction o	f B^+ and B^0 at the $\varUpsilon(4S)$.
$\Gamma(\phi K_1(1270)^+)/\Gamma$	total	Γ ₄₁₆ /Γ
VALUE (units 10^{-6})		DOCUMENT ID TECN COMMENT
6.1±1.6±1.1		$rac{ extit{DOCUMENT ID}}{1 ext{ AUBERT}} rac{ extit{TECN}}{0 ext{8BI}} rac{ extit{ECN}}{ ext{BABR}} rac{ extit{cOMMENT}}{e^+e^- ightarrow argamma(4S)}$
		f B^+ and B^0 at the \varUpsilon (4S).

$\Gamma(\phi K_1(1400)^+)/\Gamma_0$	total						Γ ₄₁₇ /Γ
VALUE (units 10^{-6})	CL%		DOCUMENT ID		TECN	COMMENT	
< 3.2	90	1	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use t	he followi	ng da	ata for averages	, fits,	limits, 6	etc. • • •	
<1100	90		ALBRECHT	91 B	ARG	$e^+e^-\to$	$\Upsilon(4S)$
¹ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	Υ(45	5).		
Γ(φ <i>K</i> *(1410) ⁺)/Γ	total						Γ ₄₁₈ /Γ
VALUE (units 10 ⁻⁶) <4.3	CL%		DOCUMENT ID		TECN	COMMENT	
<4.3	90	1	AUBERT	08 BI	BABR	e^+e^-	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	Y(45	5).		
$\Gamma(\phi K_0^*(1430)^+)/\Gamma$							Γ ₄₁₉ /Γ
<u>VALUE (units 10⁻⁶)</u> 7.0±1.3±0.9			DOCUMENT ID		TECN	COMMENT	
$7.0 \pm 1.3 \pm 0.9$		1	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(\phi K_2^*(1430)^+)/\Gamma$							Γ ₄₂₀ /Γ
VALUE (units 10^{-6})	CL%		DOCUMENT ID		TECN	COMMENT	
$8.4 \pm 1.8 \pm 1.0$			AUBERT				$\Upsilon(4S)$
• • • We do not use t							
<3400			ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(\phi K_2^*(1770)^+)/\Gamma$							Γ ₄₂₁ /Γ
VALUE (units 10 ⁻⁶)	<u>CL%</u>		DOCUMENT ID		TECN	COMMENT	
<15.0			AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(\phi K_2^*(1820)^+)/\Gamma$							Γ ₄₂₂ /Γ
VALUE (units 10 ⁻⁶)			DOCUMENT ID				
<16.3	30		AUBERT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal pro	duction of	f <i>B</i> +	and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma ig(a_1^+ K^{*0} ig) / \Gamma_{ ext{total}}$							Γ ₄₂₃ /Γ
<i>VALUE</i> (units 10 ^{−6}) <3.6	CL%		DOCUMENT ID		TECN	COMMENT	
				.101	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes B($a_1^{\pm} \rightarrow$	$\pi^{\pm}\pi^{\mp}\pi$	- ±) =	= 0.5				
² Assumes equal pro				Υ(45	5).		

 $\Gamma(K^+\phi\phi)/\Gamma_{\text{total}}$ Γ_{424}/Γ VALUE (units 10^{-6}) COMMENT 5.0±1.2 OUR AVERAGE Error includes scale factor of 2.3. ¹ LEES 11A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $5.6 \pm 0.5 \pm 0.3$ $2.6^{ightarrow1.1}_{-0.9}\!\pm\!0.3$ ¹ HUANG BELL $e^+e^- \rightarrow \Upsilon(4S)$ 03 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT, BE 06H BABR Repl. by LEES 11A $7.5 \!\pm\! 1.0 \!\pm\! 0.7$ ¹ Assumes equal production of B^0 and B^+ at the $\Upsilon(4S)$ and for a $\phi\phi$ invariant mass below 2.85 GeV/ c^2 . $\Gamma(\eta'\eta'K^+)/\Gamma_{\text{total}}$ Γ_{425}/Γ VALUE (units 10^{-6}) CL% TECN COMMENT ¹ AUBERT.B 06P BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 <25 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\omega\phi K^+)/\Gamma_{\text{total}}$ Γ_{426}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% $^{1}\,\mathrm{LIU}$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ <1.9 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(X(1812)K^+ \times B(X \to \omega \phi))/\Gamma_{\text{total}}$ Γ_{427}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT 09 BELL $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(K^*(892)^+\gamma)/\Gamma_{\text{total}}$ Γ_{428}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN 4.21 ± 0.18 OUR AVERAGE ¹ AUBERT 09AO BABR $e^+e^- \rightarrow \Upsilon(4S)$ $4.22 \pm 0.14 \pm 0.16$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ ² NAKAO $4.25 \pm 0.31 \pm 0.24$ $3.76^{\,+\,0.89}_{\,-\,0.83}\,{\pm}\,0.28$ ² COAN $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • ³ AUBERT,BE 04A BABR Repl. by AUBERT 09AO $3.87 \pm 0.28 \pm 0.26$ ² AUBERT $3.83 \pm 0.62 \pm 0.22$ BABR Repl. by AUBERT, BE 04A ⁴ AMMAR $5.7 \pm 3.1 \pm 1.1$ 93 CLE2 Repl. by COAN 00 ⁵ ALBRECHT 89G ARG $e^+e^- \rightarrow \Upsilon(4S)$ 90 < 55 ⁵ AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$ < 55 90 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ **AVERY** 87 <180 ¹ Uses B($\Upsilon(4S) \to B^+ B^-$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (48.4 ± 0.6)%. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 Uses the production ratio of charged and neutral B from $\varUpsilon(4S)$ decays $\mathsf{R}^{+/0}=1.006\pm$

 $^{^4}$ AMMAR 93 observed 4.1 \pm 2.3 events above background.

⁵ Assumes the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$.

$\Gamma(K_1(1270)^+\gamma)/\Gamma$					Γ ₄₂₉ /Γ
VALUE (units 10^{-5})	<u>CL%</u> <u>D</u>	OCUMENT ID	TECN	COMMENT	
4.4 $^{+0.7}_{-0.6}$ OUR	AVERAGE				
$4.41^{+0.63}_{-0.44}\pm0.58$	3 1,2	EL-AMO-SA16	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$4.3 \pm 0.9 \pm 0.9$	³ Y	ANG 05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	_	_	s, limits, o	etc. • • •	
< 9.9 <730		IISHIDA 02 LBRECHT 89		Repl. by YA $e^+e^- \rightarrow$	
1 Requires M $_{K\pi\pi}$	_				
² Uses B($\Upsilon(4S) \rightarrow$	$B^+B^-)=0.5$				
Assumes equal pro					-0 - 0
⁴ ALBRECHT 89G rescale to 50%.	reports < 0.006	6 assuming the ´	$\Gamma(4S)$ dec	cays 45% to	$B^{0}B^{0}$. We
					F /F
$\Gamma(\eta K^+ \gamma) / \Gamma_{\text{total}}$					Γ ₄₃₀ /Γ
VALUE (units 10 ^{−6}) 7.9±0.9 OUR AVER		DOCUMENT ID	TECN	COMMENT	
$7.7 \pm 1.0 \pm 0.4$		AUBERT 09	9 BABR	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$8.4\pm1.5^{+1.2}_{-0.9}$	2,3	NISHIDA 0	5 BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
● ● We do not use					` '
$10.0 \pm 1.3 \pm 0.5$		AUBERT,B 06			JBERT 09
1 m_{nK} $<$ 3.25 GeV	_				
² Assumes equal pro		and B^0 at the $\Upsilon($	4.5).		
^			, .		
$^3m_{\etaK}$ $<$ 2.4 GeV	'/c ²		,.		
$^3 m_{\eta K} < 2.4 \text{ GeV}$ $\Gamma(\eta' K^+ \gamma) / \Gamma_{\text{total}}$	⁷ /c ²				Γ ₄₃₁ /Γ
		OCUMENT ID	TECN_	COMMENT	Γ ₄₃₁ /Γ
$\Gamma(\eta' K^+ \gamma) / \Gamma_{\text{total}}$		POCUMENT ID	ŕ	COMMENT	Γ ₄₃₁ /Γ
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})			<u>TECN</u>	$\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ 2.9 $^{+1.0}_{-0.9}$ OUR AVERA	<u>E</u> AGE 1,2 _V		TECN_	$e^+e^- \rightarrow$	Υ(4S)
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $2.9^{+1.0}_{-0.9} \text{ OUR AVER/}$ $3.6 \pm 1.2 \pm 0.4$	AGE $1,2\mathrm{V}$ $1,3\mathrm{A}$ oduction of B^+ a	VEDD 10 .UBERT,B 06	BELL M BABR	$e^+e^- \rightarrow$	Υ(4S)
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ 2.9 $^{+1.0}_{-0.9}$ OUR AVERA 3.6 \pm 1.2 \pm 0.4 1.9 $^{+1.5}_{-1.2}$ \pm 0.1 Assumes equal pro	AGE $\begin{array}{c} 1.2 \text{ V} \\ 1.3 \text{ A} \\ \text{oduction of } B^+ \text{ a} \\ /c^2. \end{array}$	VEDD 10 NUBERT,B 06 and B^0 at the $\Upsilon($	BELL M BABR 4S).	$e^+e^- \rightarrow e^+e^- \rightarrow$	Υ(4S)
$\Gamma(\eta' K^+ \gamma)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-6})$ $2.9^{+1.0}_{-0.9} ext{ OUR AVER}$ $3.6 \pm 1.2 \pm 0.4$ $1.9^{+1.5}_{-1.2} \pm 0.1$ $1 ext{ Assumes equal pro}$ $2 ext{ } m_{\eta' K} < 3.4 ext{ GeV}$	AGE $\begin{array}{c} 1.2 \text{ V} \\ 1.3 \text{ A} \\ \text{oduction of } B^+ \text{ a} \\ /c^2. \end{array}$	VEDD 10 NUBERT,B 06 and B^0 at the $\Upsilon($	BELL M BABR 4S).	$e^+e^- \rightarrow e^+e^- \rightarrow$	Υ(4S)
$\Gamma(\eta' K^+ \gamma)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-6})$ $2.9^{+1.0}_{-0.9} ext{ OUR AVER}$ $3.6 \pm 1.2 \pm 0.4$ $1.9^{+1.5}_{-1.2} \pm 0.1$ $1 ext{ Assumes equal pro}$ $2 ext{ } m_{\eta' K} < 3.4 ext{ GeV}$ $3 ext{ Set the upper limit}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{ ext{total}}$ $VALUE ext{ (units } 10^{-6})$	AGE 1,2 V 1,3 A oduction of B^+ a V /c ² . it of 4.2×10^{-6}	VEDD 10 NUBERT,B 06 and B^0 at the Υ (at 90% CL with R^0	$\frac{TECN}{}$ BELL M BABR 45). $m_{\eta' K} < 3$ TECN	$e^+e^- \rightarrow e^+e^- \rightarrow$ 3.25 GeV/c ² .	$\Upsilon(4S)$ $\Upsilon(4S)$
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ 2.9 + 1.0 OUR AVERA 3.6 ± 1.2 ± 0.4 1.9 + 1.5 ± 0.1 Assumes equal pro $2 m_{\eta' K} < 3.4 \text{ GeV}$ $3 \text{ Set the upper limit}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ 2.7 ± 0.4 OUR AVE	AGE 1,2 $\sqrt{1,3}$ A oduction of B^+ at $\sqrt{c^2}$. it of 4.2×10^{-6} RAGE Error inc.	VEDD 10 LUBERT,B 06 and B^0 at the Υ (at 90% CL with μ and μ at 10 count 10 cludes scale factor	BELL M BABR 45). $m_{\eta' K} < 3$ $\frac{TECN}{T}$ Tof 1.2.	$e^+e^- \rightarrow e^+e^- \rightarrow$ 3.25 GeV/c ² .	Υ(4S) Υ(4S)
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $2.9^{+1.0}_{-0.9} \text{ OUR AVER}$ $3.6\pm 1.2\pm 0.4$ $1.9^{+1.5}_{-1.2}\pm 0.1$ 1 Assumes equal properties $2m_{\eta' K} < 3.4 \text{ GeV}$ $3 \text{ Set the upper limit}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $2.7 \pm 0.4 \text{ OUR AVE}$ $2.48\pm 0.30\pm 0.24$	AGE 1,2 V 1,3 A oduction of B^+ at V it of 4.2×10^{-6} ERAGE Error inc. 1 S	VEDD 10 AUBERT,B 06 and B^0 at the Υ 0 at 0 0 at	$\frac{TECN}{\text{BELL}}$ M BABR $4S).$ $m_{\eta' K} < 3$ $\frac{TECN}{\text{of } 1.2.}$ A BELL	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{432}/Γ $\Upsilon(4S)$
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.9^{+1.0}_{-0.9} \text{ OUR AVER}$ $3.6 \pm 1.2 \pm 0.4$ $1.9^{+1.5}_{-1.2} \pm 0.1$ 1 Assumes equal pro $2 m_{\eta' K} < 3.4 \text{ GeV}$ $3 \text{ Set the upper limin}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.7 \pm 0.4 \text{ OUR AVE}$ $2.48 \pm 0.30 \pm 0.24$ $3.5 \pm 0.6 \pm 0.4$	AGE 1,2 V 1,3 A oduction of B^+ a V/C^2 . it of 4.2×10^{-6} ERAGE Error inc V/C V/C V/C	VEDD 10 AUBERT,B 06 and B^0 at the Υ (at 90% CL with D^0 COCUMENT ID Cludes scale factor AHOO 11. AUBERT 07	BELL M BABR $4S$). $m_{\eta' K} < 3$ TECN of 1.2. A BELL Q BABR	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{432}/Γ $\Upsilon(4S)$
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.9^{+1.0}_{-0.9} \text{ OUR AVERA}$ $3.6 \pm 1.2 \pm 0.4$ $1.9^{+1.5}_{-1.2} \pm 0.1$ Assumes equal process and sequence $2m_{\eta' K} < 3.4 \text{ GeV}$ $3 \text{ Set the upper limin}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.7 \pm 0.4 \text{ OUR AVE}$ $2.48 \pm 0.30 \pm 0.24$ $3.5 \pm 0.6 \pm 0.4$ • • • We do not use	AGE 1,2 $_{\rm V}$ 1,3 $_{\rm A}$ oduction of B^+ a $_{\rm /c^2}$. it of 4.2×10^{-6} RAGE Error inc. 1 $_{\rm S}$ 1 $_{\rm A}$ the following dat	VEDD 10 AUBERT,B 06 and B^0 at the Υ (at 90% CL with I^0 COCUMENT ID Cludes scale factor AHOO 11 AUBERT 07 at for averages, fit	BELL M BABR 45). $m_{\eta' K} < 3$ TECN TO f 1.2. A BELL Q BABR s, limits, o	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{432}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ 2.9 + 1.0 OUR AVER/ 3.6 ± 1.2 ± 0.4 1.9 + 1.5 ± 0.1 Assumes equal pro $^2 m_{\eta' K} < 3.4 \text{ GeV}$ $^3 \text{ Set the upper limin}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ 2.7 ± 0.4 OUR AVE 2.48 ± 0.30 ± 0.24 3.5 ± 0.6 ± 0.4 • • We do not use 3.4 ± 0.9 ± 0.4	AGE 1,2 V 1,3 A oduction of B^+ a V/C^2 . it of 4.2×10^{-6} ERAGE Error inc V/C the following dat V/C	VEDD 10 AUBERT,B 06 and B^0 at the Υ (at 90% CL with D^0 Cludes scale factor AHOO 11 AUBERT 07 It a for averages, fit	BELL BELL M BABR $4S$). $m_{\eta' K} < 3$ TECN of 1.2. A BELL Q BABR as, limits, of BELL	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{432}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$
$\Gamma(\eta' K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.9^{+1.0}_{-0.9} \text{ OUR AVERA}$ $3.6 \pm 1.2 \pm 0.4$ $1.9^{+1.5}_{-1.2} \pm 0.1$ Assumes equal process and sequence $2m_{\eta' K} < 3.4 \text{ GeV}$ $3 \text{ Set the upper limin}$ $\Gamma(\phi K^+ \gamma)/\Gamma_{\text{total}}$ $VALUE \text{ (units } 10^{-6})$ $2.7 \pm 0.4 \text{ OUR AVE}$ $2.48 \pm 0.30 \pm 0.24$ $3.5 \pm 0.6 \pm 0.4$ • • • We do not use	AGE 1,2 V 1,3 A oduction of B^+ a $/c^2$. it of 4.2×10^{-6} ERAGE Error inc. 1 S 1 A the following dat. 2 S oduction of S^+ a oduction of S^+ a	VEDD 10 AUBERT,B 06 and B^0 at the Υ (at 90% CL with D^0 Cludes scale factor AHOO 11 AUBERT 07 It a for averages, fit	BELL M BABR $4S$). $m_{\eta' K} < 3$ TECN of 1.2. A BELL Q BABR is, limits, of BELL BELL	$e^{+}e^{-} \rightarrow e^{+}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-} \rightarrow e^{+}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-}e^{-$	$\Upsilon(4S)$ $\Upsilon(4S)$ Γ_{432}/Γ $\Upsilon(4S)$ $\Upsilon(4S)$ $\Upsilon(4S)$ AHOO 11A

 $\Gamma(K^+\pi^-\pi^+\gamma)/\Gamma_{\text{total}}$

VALUE (units 10^{-5}) TECN COMMENT 2.58±0.15 OUR AVERAGE Error includes scale factor of 1.3. See the ideogram below. 1,2 DEL-AMO-SA...16 BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.45 \pm 0.09 \pm 0.12$ ^{1,3} AUBERT 07R BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.95 \pm 0.13 \pm 0.20$

3,4 YANG BELL $e^+e^- \rightarrow \Upsilon(4S)$ $2.50 \pm 0.18 \pm 0.22$ 05

• • We do not use the following data for averages, fits, limits, etc.

$$2.4~\pm 0.5~^{+0.4}_{-0.2}$$
 3,5 NISHIDA 02 BELL Repl. by YANG 05

WEIGHTED AVERAGE 2.58±0.15 (Error scaled by 1.3)

 $\Gamma(K^+\pi^-\pi^+\gamma)/\Gamma_{\text{total}}$ (units 10^{-5})

$\Gamma(K^*(892)^0\pi^+\gamma)/\Gamma_{total}$

 Γ_{434}/Γ

 Γ_{433}/Γ

(11 (33—) 11 // LOLAI				757/
VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT	
2.33±0.12 OUR AVERAGE		-		
+ + 0 08	1255		1	22(- 2)

 $2.34 \pm 0.09 ^{+0.06}_{-0.07}$

 1,2 DEL-AMO-SA..16 BABR $e^+e^- \rightarrow \Upsilon(4S)$

 $2.0 \begin{array}{c} +0.7 \\ -0.6 \end{array} \pm 0.2$

3,4 NISHIDA

BELL $e^+e^- \rightarrow \Upsilon(4S)$ 02

 $^{4} M_{K\pi\pi} < 2.4 \text{ GeV/c}^{2}$.

HTTP://PDG.LBL.GOV

Page 116

 $^{^{1}}M_{K\pi\pi}$ < 1.8 GeV/ c^{2} .

² Uses B($\Upsilon(4S) \rightarrow B^+B^-$) = 0.513 ± 0.006.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^4} M_{K\pi\pi} < 2.0 \text{ GeV}/c^2.$ $^5 M_{K\pi\pi} < 2.4 \text{ GeV}/c^2.$

¹ Requires $M_{K\pi\pi}$ < 1.8 GeV/c².

² Uses B($\Upsilon(4S) \rightarrow B^{+}B^{-}$) = 0.513 ± 0.006.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

```
\Gamma(K^+\rho^0\gamma)/\Gamma_{\text{total}}
                                                                                                                \Gamma_{435}/\Gamma
VALUE (units 10^{-6})
                                             <sup>1,2</sup> DEL-AMO-SA...16
                                                                               BABR e^+e
     8.2\pm0.4\pm0.8
• • We do not use the following data for averages, fits, limits, etc.
                                             3,4 NISHIDA
                                                                               BELL e^+e^- \rightarrow \Upsilon(4S)
                                   90
                                                                        02
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 \text{ GeV/c}^2
   <sup>2</sup> Uses B(\Upsilon(4S) \rightarrow B^+B^-) = 0.513 ± 0.006.
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   ^{4} M_{K\pi\pi} < 2.4 \text{ GeV}/c^{2}.
\Gamma((K^+\pi^-)_{NR}\pi^+\gamma)/\Gamma_{total}
                                                                                                                \Gamma_{436}/\Gamma
VALUE (units 10^{-6})
                                                                               TECN COMMENT
                                                  DOCUMENT ID
   9.9\pm0.7^{+1.5}_{-1.0}
                                             1,2 DEL-AMO-SA...16
                                                                               BABR e^+e^- \rightarrow \Upsilon(4S)
• • We do not use the following data for averages, fits, limits, etc.
                                   90
                                             3,4 NISHIDA
                                                                               BELL e^+e^- \rightarrow \Upsilon(4S)
                                                                        02
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 GeV/c<sup>2</sup>.
   <sup>2</sup>Uses B(\Upsilon(4S) \rightarrow B^{+}B^{-}) = 0.513 ± 0.006.
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   ^{4} M_{K\pi\pi} < 2.4 \text{ GeV}/c^{2}.
\Gamma(K^0\pi^+\pi^0\gamma)/\Gamma_{\text{total}}
                                                                                                                \Gamma_{437}/\Gamma
VALUE (units 10^{-5})
                                             ^{1,2} AUBERT
4.56 \pm 0.42 \pm 0.31
                                                                        07R BABR e^+e^- \rightarrow \Upsilon(4S)
   ^{1}M_{K\pi\pi} < 1.8 GeV/c^{2}.
   <sup>2</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
\Gamma(K_1(1400)^+\gamma)/\Gamma_{\text{total}}
                                                                                                                \Gamma_{438}/\Gamma
VALUE (units 10^{-6})
                                   CL%
                                                                               TECN COMMENT
                                             <sup>1,2</sup> DEL-AMO-SA...16
                                                                               BABR e^+e^- \rightarrow \Upsilon(4S)
• • • We do not use the following data for averages, fits, limits, etc. •
                                                <sup>3</sup> YANG
                                                                               BELL
                                   90
                                                                        05
                                                                                          e^+e^- \rightarrow \Upsilon(4S)
 < 15
                                                <sup>3</sup> NISHIDA
 < 50
                                   90
                                                                        02
                                                                               BELL Repl. by YANG 05
                                                <sup>4</sup> ALBRECHT
                                                                        89G ARG
                                                                                          e^+e^- \rightarrow \Upsilon(4S)
 <2200
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 \text{ GeV/c}^2.

<sup>2</sup> Uses B(\Upsilon(4S) \to B^+ B^-) = 0.513 \pm 0.006.
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   ^4 ALBRECHT 89G reports < 0.0020 assuming the \Upsilon(4S) decays 45% to B^0\overline{B}^0. We
     rescale to 50%.
\Gamma(K^*(1410)^+\gamma)/\Gamma_{\text{total}}
                                                                                                                \Gamma_{439}/\Gamma
VALUE (units 10^{-5})
2.71^{+0.54}_{-0.48}^{+0.59}_{-0.37}
                                             <sup>1,2</sup> DEL-AMO-SA..16
                                                                               BABR e^+e^- \rightarrow \Upsilon(4S)
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 GeV/c<sup>2</sup>.
   <sup>2</sup>Uses B(\Upsilon(4S) \rightarrow B^{+}B^{-}) = 0.513 ± 0.006.
                                                                                Created: 5/30/2017 17:22
```

HTTP://PDG.LBL.GOV

Page 117

```
\Gamma(K_0^*(1430)^0\pi^+\gamma)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{440}/\Gamma
VALUE (units 10^{-6})
1.32 + 0.09 + 0.24
                                            <sup>1,2</sup> DEL-AMO-SA..16
                                                                             BABR e^+e^- \rightarrow \Upsilon(4S)
       -0.10 - 0.30
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 GeV/c<sup>2</sup>.
   <sup>2</sup> Uses B(\Upsilon(4S) \to B^+B^-) = 0.513 ± 0.006.
\Gamma(K_2^*(1430)^+\gamma)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{441}/\Gamma
VALUE (units 10^{-5})
                                                 DOCUMENT ID
                                                                             TECN
      1.4 ±0.4 OUR AVERAGE
      0.87^{+0.70}_{-0.53}^{+0.87}_{-1.04}
                                            <sup>1,2</sup> DEL-AMO-SA..16
                                                                            BABR e^+e^- \rightarrow \Upsilon(4S)
                                              <sup>3</sup> AUBERT.B
                                                                     04U BABR e^+e^- \rightarrow \Upsilon(4S)
      1.45 \pm 0.40 \pm 0.15
• • • We do not use the following data for averages, fits, limits, etc. •
                                  90
                                              <sup>4</sup> ALBRECHT
                                                                     89G ARG
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 GeV/c<sup>2</sup>.
   <sup>2</sup> Uses B( \Upsilon(4S) \to B^+ B^-) = 0.513 \pm 0.006.
   <sup>3</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>4</sup>ALBRECHT 89G reports < 0.0013 assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
     rescale to 50%.
\Gamma(K^*(1680)^+\gamma)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{442}/\Gamma
VALUE (units 10^{-5})
      6.67^{+0.93}_{-0.78}^{+1.44}_{-1.14}
                                            <sup>1,2</sup> DEL-AMO-SA..16
                                                                             BABR e^+e^- \rightarrow \Upsilon(4S)
• • We do not use the following data for averages, fits, limits, etc.
                                              <sup>3</sup> ALBRECHT
 <190
                                  90
                                                                     89G ARG
   <sup>1</sup> Requires M_{K\pi\pi} < 1.8 GeV/c<sup>2</sup>.
   <sup>2</sup>Uses B(\Upsilon(4S) \rightarrow B^+B^-) = 0.513 ± 0.006.
   <sup>3</sup>ALBRECHT 89G reports < 0.0017 assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
     rescale to 50%.
\Gamma(K_3^*(1780)^+\gamma)/\Gamma_{\text{total}}
                                                                                                            \Gamma_{443}/\Gamma
VALUE (units 10^{-6})
                                                <sup>1,2</sup> NISHIDA
                                                                          05 BELL
                                  90
• • • We do not use the following data for averages, fits, limits, etc. •
                                  90
                                                   <sup>3</sup> ALBRECHT
                                                                          89G ARG e^+e^- \rightarrow \Upsilon(4S)
 <5500
   <sup>1</sup> Assumes equal production of B^+ and B^0 at the \Upsilon(4S).
   <sup>2</sup> Uses B(K_3^*(1780) \rightarrow \eta K) = 0.11_{-0.04}^{+0.05}.
   <sup>3</sup> ALBRECHT 89G reports < 0.005 assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We rescale
     to 50%.
\Gamma(K_{\perp}^*(2045)^+\gamma)/\Gamma_{\text{total}}
 < 0.0099
                                  90
   <sup>1</sup>ALBRECHT 89G reports < 0.0090 assuming the \Upsilon(4S) decays 45% to B^0 \overline{B}{}^0. We
     rescale to 50%.
HTTP://PDG.LBL.GOV
                                                                              Created: 5/30/2017 17:22
                                                   Page 118
```

$\Gamma(ho^+\gamma)/\Gamma_{ m total}$					Γ ₄₄₅ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
0.98±0.25 OUR A	/ERAGE				
$1.20^{+0.42}_{-0.37}\!\pm\!0.20$		¹ AUBERT	08 BH	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$0.87^{+0.29+0.09}_{-0.27-0.11}$		$^{ m 1}$ TANIGUCHI	80	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use t	he follow	ving data for averag	es, fit	s, limits,	etc. • • •
$1.10^{+0.37}_{-0.33}{\pm}0.09$		¹ AUBERT	07L	BABR	Repl. by AUBERT 08BH
$0.55 \! \begin{array}{l} \! +0.42 + \! 0.09 \\ \! -0.36 - \! 0.08 \! \end{array}$		$^{ m 1}$ MOHAPATRA	06	BELL	Repl. by TANIGUCHI 08
$0.9 \ ^{+0.6}_{-0.5} \ \pm 0.1$	90	$^{ m 1}$ AUBERT	05	BABR	Repl. by AUBERT 07L
< 2.2	90	$^{ m 1}$ MOHAPATRA	05	BELL	$e^+e^- ightarrow ~ \gamma(4S)$
< 2.1	90		04 C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
<13	90	^{1,2} COAN	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at $\varUpsilon(4S)$. 2 No evidence for a nonresonant $K\pi\gamma$ contamination was seen; the central value assumes no contamination.

$\Gamma(\pi^+\pi^0)/\Gamma_{\text{total}}$	Γ ₄₄₆ /Γ
· (·· ·· //·LOLAI	· 11 0/ ·

$VALUE$ (units 10^{-6}) CL	<u>DOCUMENT ID</u>	TECN	COMMENT
5.5 ±0.4 OUR AVE	RAGE Error includes s	scale factor of	1.2.
$5.86 \pm 0.26 \pm 0.38$	$^{ m 1}$ DUH		$e^+e^- ightarrow ~ \varUpsilon(4S)$
$5.02\pm0.46\pm0.29$	¹ AUBERT	07BC BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$\begin{array}{cccc} 4.6 & +1.8 & +0.6 \\ -1.6 & -0.7 \end{array}$	¹ BORNHEIM	03 CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the fo	llowing data for average	es, fits, limits,	etc. • • •

$6.5 \pm 0.4 \pm 0.4$ $5.8 \pm 0.6 \pm 0.4$ $5.0 \pm 1.2 \pm 0.5$		¹ LIN ¹ AUBERT ¹ CHAO	07A 05L 04	BELL BABR BELL	Repl. by DUH 13 Repl. by AUBERT 07BC Repl. by LIN 07A
$5.5 \ ^{+1.0}_{-1.9} \ \pm 0.6$		¹ AUBERT	03L	BABR	Repl. by AUBERT 05L
$7.4 \ ^{+2.3}_{-2.2} \ \pm 0.9$		¹ CASEY	02	BELL	Repl. by CHAO 04
< 13.4	90	¹ ABE	01н	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 9.6	90	$^{ m 1}$ AUBERT	01E	BABR	$e^+e^- ightarrow \Upsilon(4S)$
< 12.7	90	¹ CRONIN-HEN.	00	CLE2	$e^+e^- ightarrow \Upsilon(4S)$
< 20	90	GODANG	98	CLE2	Repl. by CRONIN- HENNESSY 00
< 17	90	ASNER	96	CLE2	Repl. by GODANG 98
< 240	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<2300	90	² BEBEK	87	CLEO	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$. 2 BEBEK 87 assume the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}^0$.

$\Gamma(\pi^+\pi^0)/\Gamma(K^0\pi^+)$					$\Gamma_{446}/\Gamma_{327}$
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.285 \pm 0.02 \pm 0.02$	LIN	07A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

$\Gamma(\pi^+\pi^+\pi^-)/\Gamma_{\text{total}}$

 Γ_{447}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
$15.2 \pm 0.6^{+1.3}_{-1.2}$		¹ AUBERT	09L	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$16.2 \pm 1.2 \pm 0.9$ $10.9 \pm 3.3 \pm 1.6$		¹ AUBERT,B ¹ AUBERT			Repl. by AUBERT 09L Repl. by AUBERT 05G
$10.9 \pm 3.3 \pm 1.0$					
<130	90	² ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
<220	90	³ ABREU	95N	DLPH	Sup. by ADAM 96D
<450	90	⁴ ALBRECHT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
<190	90	⁵ BORTOLETT	O89	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^0 and B^+ at the $\varUpsilon(4S);$ charm and charmonium contributions are subtracted, otherwise no assumptions about intermediate resonances.

$\Gamma(\rho^0\pi^+)/\Gamma_{\text{total}}$

 Γ_{448}/Γ

(· /, tota.					,
VALUE (units 10^{-6}) CL?	DOCUMENT ID		TECN	COMMENT	
8.3±1.2 OUR AVER	AGE				
$8.1\pm0.7{+1.3\atop -1.6}$	¹ AUBERT	09L	BABR	$e^+e^- ightarrow$	Υ(4S)
$8.0^{+2.3}_{-2.0}\pm0.7$	$^{ m 1}$ GORDON	02	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$10.4^{+3.3}_{-3.4}\pm 2.1$	¹ JESSOP	00	CLE2	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$8.8\!\pm\!1.0_{-0.9}^{+0.6}$		¹ AUBERT,B	05 G	BABR	Repl. by AUBERT 09L
$9.5\!\pm\!1.1\!\pm\!0.9$		$^{ m 1}$ AUBERT	04Z	BABR	Repl. by AUBERT 05G
< 83	90	² ABE	00 C	SLD	$e^+e^- \rightarrow Z$
<160	90	³ ADAM	96 D	DLPH	$e^+e^- ightarrow Z$
< 43	90	ASNER	96	CLE2	Repl. by JESSOP 00
<260	90	⁴ ABREU	95N	DLPH	Sup. by ADAM 96D
<150	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<170	90	⁵ BORTOLETTO	089	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<230	90	⁵ BEBEK	87	CLEO	$e^+e^- ightarrow \Upsilon(4S)$
<600	90	GILES	84	CLEO	Repl. by BEBEK 87

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^2\,\}mathrm{ADAM}$ 96D assumes $\mathrm{f}_{B^0}=\mathrm{f}_{B^-}=0.39$ and $\mathrm{f}_{B_{\mathrm{S}}}=0.12.$

 $^{^3}$ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. 4 ALBRECHT 90B limit assumes equal production of $B^0\overline{B}^0$ and B^+B^- at $\varUpsilon(4S)$. 5 BORTOLETTO 89 reports < 1.7 \times 10 $^{-4}$ assuming the $\varUpsilon(4S)$ decays 43% to $B^0\overline{B}^0$. We rescale to 50%.

² ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$.

 $^{^3 \, \}mathrm{ADAM}$ 96D assumes $f_{B^0} = f_{B^-} = 0.39$ and $f_{B_{\mathrm{S}}} = 0.12.$

⁴ Assumes a B^0 , B^- production fraction of 0.39 and a B_s production fraction of 0.12. ⁵ Papers assume the $\Upsilon(4S)$ decays 43% to $B^0\overline{B}{}^0$. We rescale to 50%.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\left[\Gamma(K^*(892)^0\pi^+) + \Gamma(\rho^0\pi^+)\right]/\Gamma_{\text{total}}$ $(\Gamma_{353} + \Gamma_{448})/\Gamma$ $170^{+120}_{-80}\pm20$ ¹ ADAM 96D DLPH $e^+e^- \rightarrow Z$ ¹ ADAM 96D assumes $f_{R0} = f_{R^-} = 0.39$ and $f_{B_c} = 0.12$. $\Gamma(\pi^{+}f_{0}(980), f_{0} \rightarrow \pi^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{449}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT ¹ AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ < 1.5 90 • • We do not use the following data for averages, fits, limits, etc. • • 90 ¹ AUBERT,B 05G BABR Repl. by AUBERT 09L 2 BORTOLETTO89 CLEO $e^+e^ightarrow~ \varUpsilon(4S)$ <140 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ²BORTOLETTO 89 reports $< 1.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(\pi^+ f_2(1270)) / \Gamma_{\text{total}}$ Γ_{450}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT $1.60^{+0.67}_{-0.44}^{+0.02}_{-0.06}$ 1,2 AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • $4.10\!\pm\!1.28\!+\!0.04\\-0.14$ ^{2,3} AUBERT,B 05G BABR Repl. by AUBERT 09L ⁴ BORTOLETTO89 CLEO $e^+e^- \rightarrow \Upsilon(4S)$ < 240 $^{1}\, \text{AUBERT 09L reports} \; [\Gamma\big(B^{+} \rightarrow \; \pi^{+} \, f_{2}(1270)\big) / \Gamma_{\mathsf{total}}] \, \times \, [\mathsf{B}(f_{2}(1270) \rightarrow \; \pi^{+} \, \pi^{-})] =$ $(0.9\pm0.2\pm0.1^{+0.3}_{-0.1}) imes10^{-6}$ which we divide by our best value B($f_2(1270) ightarrow \pi^+\pi^-$) $=(56.2^{+1.9}_{-0.6}) imes 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 AUBERT,B 05G reports $[\Gamma(B^+ o \pi^+ f_2(1270))/\Gamma_{\mathsf{total}}] imes [\mathsf{B}(f_2(1270) o \pi^+ \pi^-)]$ = $(2.3\pm0.6\pm0.4)\times10^{-6}$ which we divide by our best value B($f_2(1270)\to\pi^+\pi^-$) $=(56.2^{+1.9}_{-0.6})\times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁴BORTOLETTO 89 reports $< 2.1 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We rescale to 50%. $\Gamma(\rho(1450)^0\pi^+, \rho^0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{451}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
$1.4\pm0.4^{+0.5}_{-0.8}$		¹ AUBERT	09L	BABR	$e^+e^- ightarrow ~ $	

 \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<2.3 90 1 AUBERT,B 05G BABR Repl. by AUBERT 09L

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(f_0(1370)\pi^+, f_0 \to \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{452}/Γ *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT <4.0 90 ¹ AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • 90 ¹ AUBERT,B 05G BABR Repl. by AUBERT 09L ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(f_0(500)\pi^+, f_0 \rightarrow \pi^+\pi^-)/\Gamma_{\text{total}}$ Γ_{453}/Γ VALUE (units 10^{-6}) _____ CL% DOCUMENT ID TECN COMMENT 05G BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT.B <4.1 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\pi^+\pi^-\pi^+ \text{nonresonant})/\Gamma_{\text{total}}$ Γ_{454}/Γ VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT $5.3\pm0.7^{+1.3}_{-0.8}$ 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT,B 05G BABR Repl. by AUBERT 09L < 4.6 90 <41 **BERGFELD** 96B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\pi^+\pi^0\pi^0)/\Gamma_{\text{total}}$ Γ_{455}/Γ <u>TECN</u> <u>COMMENT</u> VALUE $< 8.9 \times 10^{-4}$ 90B ARG $e^+e^- \rightarrow \Upsilon(4S)$ ¹ALBRECHT 90B limit assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$. $\Gamma(\rho^+\pi^0)/\Gamma_{\text{total}}$ Γ_{456}/Γ VALUE (units 10^{-6}) TECN COMMENT CL% 10.9±1.4 OUR AVERAGE 07X BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $10.2\!\pm\!1.4\!\pm\!0.9$ $13.2 \pm 2.3 + 1.4 \\ -1.9$ ¹ ZHANG 05A BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 04Z BABR Repl. by AUBERT 07X $10.9 \pm 1.9 \pm 1.9$ ^{1,2} JESSOP CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ < 43 90 < 77 90 **ASNER** 96 CLE2 Repl. by JESSOP 00 ¹ ALBRECHT 90B ARG 90 $e^+e^- \rightarrow \Upsilon(4S)$ < 550 ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ² Assumes no nonresonant contributions of $B^+ \rightarrow \pi^+ \pi^0 \pi^0$.

 $[\]Gamma(\pi^+\pi^-\pi^+\pi^0)/\Gamma_{\text{total}}$ VALUE CL% OCCUMENT ID OCCUMENT ID

¹ ALBRECHT 90B limit assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

$\Gamma(ho^+ ho^0)/\Gamma_{ m total}$						Г ₄₅₈ /Г
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
24.0±1.9 OUR AVER		AUBERT	000	DADD	_+	$\Upsilon(AC)$
$23.7 \pm 1.4 \pm 1.4$, ,
$31.7\pm7.1^{+3.8}_{-6.7}$		ZHANG				
• • • We do not use						
$16.8 \pm 2.2 \pm 2.3$		AUBERT,BE				
$22.5^{+5.7}_{-5.4}\pm 5.8$						AUBERT,BE 06G
		ALBRECHT			$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal pro ² The systematic er					e helicity-m	ix uncertainty.
$\Gamma(\rho^+ f_0(980), f_0 \rightarrow$	$\pi^+\pi^-)/$	/Γ _{total}				Γ ₄₅₉ /Γ
			ID	TE	COMM	ENT
<i>VALUE</i> (units 10 ^{−6}) <2.0	90	$^{ m 1}$ AUBERT	(09G BA	ABR e ⁺ e ⁻	$ ightarrow \gamma(4S)$
• • • We do not use						
<1.9					ABR Repl.	by AUBERT 09G
¹ Assumes equal pro	duction of	\mathcal{B}^+ and \mathcal{B}^0 at	the 1	$\Upsilon(4S)$.		
$\Gamma(a_1(1260)^+\pi^0)/\Gamma$	- total					Γ ₄₆₀ /Γ
		DOCUMENT	ID	TE	CN COMM	
VALUE (units 10 ⁻⁶) 26.4±5.4±4.1		1,2 AUBERT	(07BL BA	ABR e^+e^-	o $ au(4S)$
• • • We do not use	the followin	g data for aver	ages,	fits, lim	its, etc. • •	•
<1700	90	¹ ALBRECH	Т 9	9 0 в А F	RG e ⁺ e ⁻	o $ au(4S)$
¹ Assumes equal pro						
² Assumes a_1^+ decay	ys only to 3	π and B(a_{1}^{+} $-$	• π [±]	$\pi^{\mp}\pi^{+}$) = 0.5.	
$\Gamma(a_1(1260)^0\pi^+)/\Gamma$						Γ ₄₆₁ /Γ
, , , , , , , , , , , , , , , , , , , ,		DOCUMENT	ID	TE	CN COMM	
20.4±4.7±3.4		1,2 AUBERT				
• • • We do not use						
<900	90	¹ ALBRECH				
¹ Assumes equal pro	duction of	\mathcal{B}^+ and \mathcal{B}^0 at	the 1	Υ(4S).		,
2 Assumes a_1^0 decay					= 1.0.	
$\Gamma(\omega\pi^+)/\Gamma_{total}$						Γ ₄₆₂ /Γ
VALUE (units 10 ⁻⁶)	CL%	DOCUMENT I	D	TEC	N COMME	VT
6.9±0.5 OUR AV	EKAGE	¹ AUBERT	07	7ΔF RΔΙ	3R e+e-	$\rightarrow \Upsilon(45)$
$6.9 \pm 0.6 \pm 0.5$		1 JEN			$L e^+e^-$	
$11.3 + 3.3 \pm 1.4$		¹ JESSOP			2 e ⁺ e ⁻	` '
-2.9 ⁻		-			-	

 \bullet \bullet \bullet We do not use the following data for averages, fits, limits, etc. \bullet \bullet

$6.1\!\pm\!0.7\!\pm\!0.4$		¹ AUBERT,B	06E	BABR	Repl. by AUBERT 07AE
$5.5\!\pm\!0.9\!\pm\!0.5$		$^{ m 1}$ AUBERT	04H	BABR	Repl. by AUBERT,B 06E
$5.7^{ightarrow1.4}_{-1.3}\!\pm\!0.6$		¹ WANG	04A	BELL	Repl. by JEN 06
$4.2^{f +2.0}_{f -1.8}\!\pm\!0.5$		¹ LU	02	BELL	Repl. by WANG 04A
$6.6^{+2.1}_{-1.8}\!\pm\!0.7$		¹ AUBERT	01 G	BABR	Repl. by AUBERT 04H
< 23	90	¹ BERGFELD			Repl. by JESSOP 00
<400	90	$^{ m 1}$ ALBRECHT	90 B	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\omega \rho^+)/\Gamma_{\rm total}$

 Γ_{463}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID	DOCUMENT ID		COMMENT		
$15.9 \pm 1.6 \pm 1.4$		$^{ m 1}$ AUBERT	09н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
● ● We do not use	the follow	wing data for avera	ges, fi	ts, limits	s, etc. • • •		
$10.6\!\pm\!2.1\!+\!1.6\\-1.0$		¹ AUBERT,B	06т	BABR	Repl. by AUBERT 09H		
$12.6^{+3.7}_{-3.3}\pm1.6$		$^{ m 1}$ AUBERT	050	BABR	Repl. by AUBERT,B 06T		
<61	90	¹ BERGFELD	98	CLE2			

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta\pi^+)/\Gamma_{
m total}$

 Γ_{464}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
4.02±0.27 OUR	AVERAGE					
$4.07\!\pm\!0.26\!\pm\!0.21$	1	HOI	12	BELL	e^+e^-	$\Upsilon(4S)$
$4.00\!\pm\!0.40\!\pm\!0.24$	1	AUBERT	09AV	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.2 \begin{array}{c} +2.8 \\ -1.2 \end{array}$	1	RICHICHI	00	CLE2	$e^+e^-\to$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$5.0 \pm 0.5 \pm 0.3$		¹ AUBERT	07AE BABR	Repl. by AUBERT 09AV
$4.2 \pm 0.4 \pm 0.2$		¹ CHANG	07в BELL	Repl. by HOI 12
$5.1 \pm 0.6 \pm 0.3$		¹ AUBERT,B	05K BABR	Repl. by AUBERT 07AE
$4.8 \pm 0.7 \pm 0.3$		¹ CHANG	05A BELL	Repl. by CHANG 07B
$5.3 \pm 1.0 \pm 0.3$		$^{ m 1}$ AUBERT	04н BABR	Repl. by AUBERT,B 05K
< 15	90	BEHRENS	98 CLE2	Repl. by RICHICHI 00
<700	90	$^{ m 1}$ ALBRECHT	90B ARG	$e^+e^- ightarrow \ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $\Gamma(\eta \rho^+)/\Gamma_{\text{total}}$

 Γ_{465}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
7.0±2.9 OUR AVER	AGE	Error includes scale f	factor	of 2.8.		
$9.9\!\pm\!1.2\!\pm\!0.8$		$^{ m 1}$ AUBERT	08ан	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$4.1^{+1.4}_{-1.3}\pm0.4$		¹ WANG	07 B	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$8.4 \pm 1.9 \pm 1.1$		$^{ m 1}$ AUBERT,B	05K	BABR	Repl. by AUBERT 08AH
<14	90	¹ AUBERT,B	04 D	BABR	Repl. by
					AUBERT,B 05K
<15	90	¹ RICHICHI	00	CLE2	$e^+e^- o ~ \varUpsilon(4S)$
<32	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta'\pi^+)/\Gamma_{ ext{total}}$ $\Gamma_{ ext{466}}/\Gamma$

$VALUE$ (units 10^{-6}) $CL\%$	DOCUMENT ID	TECN	COMMENT	
2.7 ± 0.9 OUR AVERAGE	Error includes sc	ale factor of 1	9.	
$3.5 \pm 0.6 \pm 0.2$	¹ AUBERT	09AV BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$1.76 {+0.67 +0.15\atop -0.62 -0.14}$	$^{\mathrm{1}}\mathrm{SCHUEMANN}$	06 BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$3.9 \pm 0.7 \pm 0.3$		¹ AUBERT	07AE BABR	Repl. by AUBERT 09AV
$4.0 \pm 0.8 \pm 0.4$		¹ AUBERT,B	05K BABR	Repl. by AUBERT 07AE
< 4.5	90	$^{ m 1}$ AUBERT	04н BABR	Repl. by AUBERT,B 05K
< 7.0	90	$^{ m 1}$ ABE	01м BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
<12	90	¹ AUBERT	01G BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<12	90	$^{ m 1}$ RICHICHI	00 CLE2	$e^+e^- ightarrow~ \varUpsilon(4S)$
<31	90	BEHRENS	98 CLE2	Repl. by RICHICHI 00

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\eta'
ho^+)/\Gamma_{\mathsf{total}}$ $\Gamma_{\mathsf{467}}/\Gamma$

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$9.7^{f{+}1.9}_{-1.8}{\pm}1.1$		¹ DEL-AMO-SA10A	BABR	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$8.7^{+3.1}_{-2.8}^{+2.3}_{-1.3}$		¹ AUBERT	07E	BABR	Repl. by DEL-AMO-
< 5.8	90	¹ SCHUEMANN	07	BELL	SANCHEZ 10A $e^+e^- ightarrow \gamma(4S)$
<22	90				Repl. by AUBERT 07E
<33	90	$^{ m 1}$ RICHICHI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<47	90	BEHRENS	98	CLE2	Repl. by RICHICHI 00

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\phi\pi^+)/\Gamma_{ ext{total}}$ $\Gamma_{ ext{468}}/\Gamma$

VALUE (units 10 ')	CL%	DOCUMENT ID		TECN	COMMENT
< 1.5	90	¹ AAIJ	14A	LHCB	pp at 7 TeV
• • • We do not use	the follow	ing data for averag	es, fits	s, limits,	etc. • • •
< 3.3	90	² KIM	12A	BELL	$e^+e^- ightarrow ~ \gamma(4S)$
< 2.4	90	² AUBERT,B	06 C	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
< 4.1	90	² AUBERT	04A	BABR	Repl. by AUBERT,B 06C
< 14	90	² AUBERT			$e^+e^- ightarrow ~ \varUpsilon(4S)$
<1530	90	³ ABE	00 C	SLD	$e^+e^- o Z$
< 50	90	² BERGFELD	98	CLE2	

90B ARG $e^+e^-
ightarrow \varUpsilon(4S)$ 90

¹ ALBRECHT 90B limit assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

$\Gamma(\rho^0 a_1(1260)^+)$	/Γ _{total}					Γ ₄₇₃ /Γ
VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 6.2 \times 10^{-4}$	90	¹ BORTOLETTO	O89	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use	e the followin	g data for averages	s, fits,	limits, e	etc. • • •	
$< 6.0 \times 10^{-4}$	90	² ALBRECHT				
$< 3.2 \times 10^{-3}$	90	$^{ m 1}$ BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
We rescale to 50	1%.	(5.4×10^{-4}) assum			,	

² ALBRECHT 90B limit assumes equal production of $B^0 \overline{B}{}^0$ and $B^+ B^-$ at $\Upsilon(4S)$.

$\Gamma(\rho^0 a_2(1320)^+)/\Gamma_0$	total					Γ_{474}/Γ
VALUE	CL%	DOCUMENT I	D	TECN	COMMENT	
$< 7.2 \times 10^{-4}$	90	$^{ m 1}$ BORTOLET	TO89	CLEO	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
\bullet \bullet We do not use t	he followi	ng data for avera	ges, fits	, limits,	etc. • • •	
$< 2.6 \times 10^{-3}$	90	² BEBEK	87	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ BORTOLETTO 89 We rescale to 50%. ² BEBEK 87reports of 50%.	reports < < 2.3 × 10	$< 6.3 \times 10^{-4}$ assuming the	suming γ	the \varUpsilon (4.	S) decays 43 \pm 3% to $B^0\overline{B}$	B^{0} to $B^{0}\overline{B}^{0}$. We rescale

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update 1 Measures B($B^{+}\to\phi\pi^{+}$)/B($B^{+}\to\phi$ K $^{+}$)< 0.018 at 90% C.L. and assumes B($B^{+}\to\phi$ K $^{+}$) = (8.8 $^{+0.7}_{-0.6}$) \times 10 $^{-6}$. ² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ ABE 00C assumes B($Z \rightarrow b\overline{b}$)=(21.7 \pm 0.1)% and the B fractions $f_{B^0} = f_{B^+} =$ $(39.7^{+1.8}_{-2.2})\%$ and $f_{B_s} = (10.5^{+1.8}_{-2.2})\%$. $\Gamma(\phi \rho^+)/\Gamma_{\text{total}}$ Γ_{469}/Γ DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) 08BK BABR $e^+e^-
ightarrow \gamma (4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ BERGFELD ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(a_0(980)^0\pi^+, a_0^0 \rightarrow \eta\pi^0)/\Gamma_{\text{total}}$ Γ_{470}/Γ VALUE (units 10^{-6})

CL%

DOCUMENT ID

TECN

COMMENT

SABBR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Assumes equal production of charged and neutral B mesons from $\Upsilon(4S)$ decays. $\Gamma(a_0(980)^+\pi^0, a_0^+ \to \eta \pi^+)/\Gamma_{\text{total}}$ Γ_{471}/Γ VALUE (units 10⁻⁶) CL% $\frac{DOCUMENT~ID}{}$ $\frac{TECN}{}$ $\frac{COMMENT}{}$ AUBERT 08A BABR $e^+e^-
ightarrow \Upsilon(4S)$ ¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. $\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-)/\Gamma_{\text{total}}$ Γ_{472}/Γ DOCUMENT ID TECN COMMENT

$\Gamma(b_1^0\pi^+, b_1^0 \to \omega\pi^0)$	$)/\Gamma_{ ext{total}}$					Γ ₄₇₅ /Γ
VALUE (units 10^{-6})		DOCUMENT ID		TECN	COMMENT	
$6.7 \pm 1.7 \pm 1.0$		¹ AUBERT	07 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and $B^{ m 0}$ at the	Υ(4S	5).		
$\Gamma(b_1^+\pi^0,\ b_1^+ o\omega\pi^+$	[⊦])/Γ _{total}					Γ ₄₇₆ /Γ
		DOCUMENT ID		TECN	COMMENT	
<u>VALUE</u> (units 10 ^{−6}) <3.3	90	¹ AUBERT	08AG	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	uction of B	$^+$ and $\it B^0$ at the	Υ(4S	5).		
$\Gamma(\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi^-\pi$	⁰)/Γ _{total}					Γ ₄₇₇ /Γ
VALUE <6.3 × 10⁻³	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
¹ ALBRECHT 90B lim	it assumes	equal production	of B	$0\overline{B}^0$ and	d B^+B^- at	$\Upsilon(4S)$.
$\Gamma(b_1^+ ho^0$, $b_1^+ o\omega\pi^+$	⁻)/Γ _{total}					Γ ₄₇₈ /Γ
$\frac{VALUE}{<5.2\times10^{-6}}$	CL%	DOCUMENT ID		<u>TECN</u>	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	uction of B	$^+$ and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(b_1^0 ho^+,\ b_1^0 ightarrow\omega\pi^0)$						Γ ₄₈₀ /Γ
<u>VALUE</u> <3.3 × 10 ^{−6}		DOCUMENT ID		<u>TECN</u>	COMMENT	
					$e^+e^- \rightarrow$	$\Upsilon(45)$
¹ Assumes equal produ	uction of <i>B</i>	$^+$ and B^0 at the	$\Upsilon(45)$	5).		
$\Gamma(a_1(1260)^+a_1(1260)^+)$				TECN	COMMENT	Γ ₄₇₉ /Γ
			000	TECN_	COMMENT	
<u>VALUE</u> <1.3 × 10 ^{−2}	<u>CL%</u> 90	DOCUMENT ID 1 ALBRECHT				Υ(4S)
<u>VALUE</u> <1.3 × 10 ^{−2} 1 ALBRECHT 90B lim	<u>CL%</u> 90	DOCUMENT ID 1 ALBRECHT				Υ(4S)
<u>VALUE</u> <1.3 × 10 ^{−2}	<u>CL%</u> 90	DOCUMENT ID 1 ALBRECHT				Υ(4S)
VALUE $< 1.3 \times 10^{-2}$ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$	<u>CL%</u> 90 it assumes	DOCUMENT ID 1 ALBRECHT	of B^0	0 <u>B</u> 0 and	${\sf I}{\sf B}^+{\sf B}^-$ at	$\Upsilon(4S)$ $\Upsilon(4S)$.
VALUE <1.3 × 10 ⁻² ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$	<u>CL%</u> 90 it assumes	DOCUMENT ID ALBRECHT equal production	of B	\overline{B}^0 and \underline{TECN}	d B^+B^- at	Υ(45) Υ(45). Γ ₄₈₁ /Γ
VALUE <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^{+})/\Gamma_{\text{total}}$	<u>CL%</u> 90 it assumes	DOCUMENT ID ALBRECHT equal production DOCUMENT ID	of B	\overline{B}^0 and \underline{TECN}	d B^+B^- at	Υ(45) Υ(45). Γ ₄₈₁ /Γ
VALUE <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$ VALUE (units 10 ⁻⁶) $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^{+})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$	90 it assumes	DOCUMENT ID ALBRECHT equal production DOCUMENT ID GODANG	of <i>B</i> ⁰	TECN CLE2	$\frac{COMMENT}{e^+e^-}$ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
VALUE <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^{+}\pi^{0})/\Gamma_{\text{total}}$ $h^{+} = K^{+} \text{ or } \pi^{+}$ $VALUE \text{ (units } 10^{-6}\text{)}$ $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^{+})/\Gamma_{\text{total}}$	90 it assumes	DOCUMENT ID ALBRECHT equal production DOCUMENT ID	of <i>B</i> ⁰	TECN CLE2	$\frac{COMMENT}{e^+e^-}$ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
VALUE $<1.3 \times 10^{-2}$ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ VALUE (units 10^{-6}) $16^{+6}_{-5} \pm 3.6$ $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ VALUE (units 10^{-6})	90 it assumes	DOCUMENT ID ALBRECHT equal production DOCUMENT ID GODANG	98	TECN TECN TECN	$\frac{COMMENT}{e^+e^-}$ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ ₋₅ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} -2.4 OUR AVERAGE 13.4 ^{+3.3} _{-2.9} ±1.1	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG DOCUMENT ID	98	TECN CLE2 TECN BELL	$\frac{COMMENT}{e^+e^-}$ at $\frac{COMMENT}{e^+e^-}$	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁶ 15 ± 3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{-3.6} 14.3 ^{-3.6} 150 160 170 180 180 180 180 180 180 18	90 it assumes	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG DOCUMENT ID 1 LU 1 JESSOP	98 02 00	TECN CLE2 TECN BELL CLE2	B^+B^- at B^+ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁵ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 15.0 • • • We do not use the	90 it assumes GE	DOCUMENT ID 1 ALBRECHT equal production DOCUMENT ID GODANG 1 LU 1 JESSOP data for averages	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6	AB^+B^- at AB^+ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁵ 13.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 14.3 ^{+3.3} 15.4 ^{+3.3} 16.4 ^{+3.3} 17.4 ^{+3.3} 18.4 ^{+3.3} 19.4 ^{+3.4} 19.4	90 it assumes GE	DOCUMENT ID ALBRECHT equal production DOCUMENT ID GODANG DOCUMENT ID LU JESSOP data for averages BERGFELD	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6 CLE2	AB^+B^- at AB^+ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$
$VALUE$ <1.3 × 10 ⁻² ¹ ALBRECHT 90B lim $\Gamma(h^+\pi^0)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 16 ⁺⁶ 16 ⁺⁵ ±3.6 $\Gamma(\omega h^+)/\Gamma_{total}$ $h^+ = K^+ \text{ or } \pi^+$ $VALUE \text{ (units } 10^{-6}\text{)}$ 13.8 ^{+2.7} 13.8 ^{+2.7} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 13.4 ^{+3.3} 14.3 ^{+3.6} 14.3 ^{+3.6} 14.3 ^{+3.6} 15.0 • • • We do not use the	90 it assumes GE	DOCUMENT ID ALBRECHT equal production DOCUMENT ID GODANG DOCUMENT ID LU JESSOP data for averages BERGFELD	98 02 00 s, fits,	TECN CLE2 BELL CLE2 limits, 6 CLE2	AB^+B^- at AB^+ at	r(4S) $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$ $r(4S)$

 $\Gamma(h^+X^0(Familon))/\Gamma_{total}$

 1.60^{+}_{-} $\begin{array}{cc} 0.22 \\ 0.19 \\ \end{array} \pm 0.12$

0.20 OUR AVERAGE

 Γ_{483}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<49	90	¹ AMMAR	01B CLE2	$e^+e^- ightarrow \gamma(4S)$

 $^{^1}$ AMMAR 01B searched for the two-body decay of the B meson to a massless neutral feebly-interacting particle X^0 such as the familon, the Nambu-Goldstone boson associated with a spontaneously broken global family symmetry.

DOCUMENT ID

 $\Gamma(p\overline{p}\pi^+)/\Gamma_{\text{total}}$ VALUE (units 10^{-6})

 Γ_{484}/Γ

TECN COMMENT

08 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$1.69\pm$	$0.29\pm$	0.26	¹ AUBERT	07AV BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We d	do not use	the follow	ing data for averages,	fits, limits, etc	. • • •
$1.07\pm$	$0.11\pm$	0.11	⁴ AAIJ	14AF LHCB	<i>pp</i> at 7, 8 TeV
3.06 ⁺ _	$^{0.73}_{0.62} \pm$	0.37	$^{1,3}\mathrm{WANG}$	04 BELL	Repl. by WEI 08
< 3.7		90	^{1,2} ABE	02K BELL	Repl. by WANG 04
< 500		90	⁵ ABREU		Repl. by ADAM 96D
<160		90	⁶ BEBEK	89 CLEO	$e^+e^- ightarrow~ \varUpsilon(4S)$
570 ±	150 ± 2	210	⁷ ALBRECHT	88F ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{1,2,3}\,\mathrm{WEI}$

$\Gamma(p\overline{p}\pi^+ \text{nonresonant})/\Gamma_{\text{total}}$

 Γ_{485}/Γ

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<53	90	BERGFELD	96B CLE2	$e^+e^- ightarrow \gamma(4S)$

$\Gamma(\rho \overline{\rho} \pi^+ \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{486}/Γ

VALUL		CL/0	DOCUMENT	<u> </u>	COMMENT	
• • •	We do not	use the following	data for averages,	fits, limits,	etc. • • •	

$$<$$
5.2 $imes$ 10 $^{-4}$ 90 1 ALBRECHT 88F ARG $e^{+}e^{-}
ightarrow \varUpsilon(4S)$

$\Gamma(p\overline{p}K^+)/\Gamma_{\text{total}}$

 Γ_{487}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	DOCUMENT ID	TECN	COMMENT
5.9 \pm 0.5 OUR AVERAGE	Error includes scale factor	of 1.5.	
$5.54^{+0.27}_{-0.25}{\pm0.36}$	1,2,3 WEI	08 BELL	$e^+e^- ightarrow \gamma(4S)$
$6.7 \pm 0.5 \pm 0.4$	^{1,3} AUBERT,B	05L BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

HTTP://PDG.LBL.GOV

Page 128

² Explicitly vetoes resonant production of $p\bar{p}$ from Charmonium states.

³Also provides results with $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ and angular asymmetry of $p\overline{p}$ system.

⁴ Requires $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$.

 $^{^{5}}$ Assumes a B^{0} , B^{-} production fraction of 0.39 and a B_{s} production fraction of 0.12.

 $^{^6}$ BEBEK 89 reports $<1.4\times10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

to 50%.
7 ALBRECHT 88F reports $(5.2\pm1.4\pm1.9)\times10^{-4}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ ALBRECHT 88F reports < 4.7 \times 10 $^{-4}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\,\overline B{}^0.$ We rescale to 50%.

• • We do not use the following data for averages, fits, limits, etc. • •

$4.59^{+0.38}_{-0.34}\!\pm\!0.50$	1,2,3 WANG	05A BELL	Repl. by WEI 08
$5.66^{+0.67}_{-0.57}{\pm}0.62$	$^{1,2,3}\mathrm{WANG}$	04 BELL	Repl. by WANG 05A
$4.3 {}^{+1.1}_{-0.9} \pm 0.5$	$^{1,2}ABE$	02K BELL	Repl. by WANG 04

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\rho \overline{\rho} K^+)/\Gamma(J/\psi(1S)K^+)$

 $\Gamma_{487}/\Gamma_{262}$

13S IHCB nn at 7 TeV

± 0.0000 ± 0.0001	7 0 113	105 LITED PA	, 41 1 101	
1 AAIJ 13S reports [$\Gamma(B^+-$	$\rightarrow p\overline{p}K^{+})/\Gamma(B^{+}\rightarrow$	$J/\psi(1S)K^{+}]$	$[B(J/\psi(1S)$ –	$\rightarrow p\overline{p}$
$=$ 4.91 \pm 0.19 \pm 0.14 wh			· / / /	,
$(2.120 \pm 0.029) \times 10^{-3}$.	Our first error is their	r experiment's erro	r and our secor	nd error
is the systematic error from	n using our hest valu	ie.		

is the systematic error from using our best value. ² Measurement includes contribution where $p\overline{p}$ is produced in charmonia decays.

$\Gamma(\Theta(1710)^{++}\overline{p}, \Theta^{++} \rightarrow pK^{+})/\Gamma_{\text{total}}$

 Γ_{488}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.091	90	¹ WANG	05A	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use th	ne followir	og data for averages	fits	limits	etc • • •

We do not use the following data for averages, fits, limits, etc. \bullet \bullet

<0.1 90
$1,2$
 AUBERT,B 05L BABR $\mathrm{e^+\,e^-} \rightarrow~ \varUpsilon(4S)$

$\Gamma(f_J(2220)K^+, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$

 Γ_{489}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.41	90	¹ WANG	05A	BELL	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{\Lambda}(1520))/\Gamma_{\text{total}}$

 Γ_{490}/Γ

VALUE (units 10^{-7})	CL%	DOCUMENT ID	TECN	COMMENT
$3.15 \pm 0.48 \pm 0.27$		¹ AAIJ	14AF LHCB	<i>pp</i> at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$3.9 \ ^{+1.0}_{-0.9} \ \pm 0.3$$
 1 AAIJ 13 AU LHCB Repl. by AAIJ 14 AF $^{<15}$ 90 2 AUBERT,B 0 05L BABR $^{+}e^{-}
ightarrow \varUpsilon(4S)$

$\Gamma(p\overline{p}K^+ \text{ nonresonant})/\Gamma_{\text{total}}$

 Γ_{491}/Γ

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
<89	90	BERGFELD	96 B	CLE2	$e^+e^- ightarrow \gamma(4S)$

HTTP://PDG.LBL.GOV

Page 129

² Explicitly vetoes resonant production of $p\overline{p}$ from Charmonium states.

³ Provides also results with $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ and angular asymmetry of $p\overline{p}$ system.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^2}$ Provides upper limits depending on the pentaquark masses between 1.43 to 2.0 GeV/c 2 .

¹ Uses B(B⁺ → J/ψK⁺) = (1.016 ± 0.033) × 10⁻³, B(J/ψ → $p\overline{p}$) = (2.17 ± 0.07) × 10⁻³ and B(Λ(1520) → K⁻p) = 0.234 ± 0.016. ² Assumes equal production of B⁺ and B⁰ at the Υ(4S).

$\Gamma(p\overline{p}K^*(892)^+)/\Gamma_{\text{total}}$

 Γ_{492}/Γ

VALUE (units 10⁻⁶) DOCUMENT ID TECN COMMENT

$3.6 \begin{array}{c} +0.8 \\ -0.7 \end{array}$ OUR AVERAGE

$$3.38^{\,+\,0.73}_{\,-\,0.60}\,{\pm}\,0.39$$

 1,2 CHEN

08C BELL $e^+e^- \rightarrow \Upsilon(4S)$

5.3 ±1.5 ±1.3

² AUBERT

07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$

ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

$$10.3 \begin{array}{c} +3.6 \\ -2.8 \end{array} \begin{array}{c} +1.3 \\ -1.7 \end{array}$$

^{2,3} WANG

04 BELL Repl. by CHEN 080

$\Gamma(f_J(2220)K^{*+}, f_J \rightarrow p\overline{p})/\Gamma_{\text{total}}$

 Γ_{493}/Γ

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
<0.77	90	¹ AUBERT	07AV BABR	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(p\overline{\Lambda})/\Gamma_{\text{total}}$

 Γ_{494}/Γ

VALUE (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT
< 0.32	90	$^{ m 1}$ TSAI	07	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	e following	g data for average	s, fits,	limits,	etc. • • •
< 0.49	90	$^{ m 1}$ CHANG	05	BELL	Repl. by TSAI 07
< 1.5	90	$^{ m 1}$ BORNHEIM	03	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 2.2	90	$^{ m 1}$ ABE	020	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
< 2.6	90	$^{ m 1}$ COAN	99	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<60	90	² AVERY	89 B	CLEO	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<93	90	³ ALBRECHT	88F	ARG	$e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(p\overline{\Lambda}\gamma)/\Gamma_{\mathsf{total}}$

 Γ_{495}/Γ

VALUE (units 10^{-6})	CL%	DOCUMENT ID	TECN	COMMENT
$2.45^{+0.44}_{-0.38}\pm0.22$		¹ WANG	07c BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

$$2.16^{+0.58}_{-0.53}\pm0.20$$

 $^{1}\,\mathrm{LEE}$

05 BELL Repl. by WANG 070

Created: 5/30/2017 17:22

<3.9

90

² EDWARDS

03 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}\}operatorname{Explicitly}$ vetoes resonant production of $p\,\overline{p}$ from charmonium states.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Explicitly vetoes resonant production of $p\overline{p}$ from charmonium states. The branching fraction for $M_{p\overline{p}} < 2.85 \text{ GeV/c}^2$ is also reported.

 $^{^2}$ AVERY 89B reports $<5\times10^{-5}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0\,\overline{B}{}^0$. We rescale to 50%.

to 50%. 3 ALBRECHT 88F reports $<8.5\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\overline{B}{}^0.$ We rescale to 50%.

 $^{^1\,\}mathrm{Assumes}$ equal production of B^+ and B^0 at the $\varUpsilon(4S).$

 $^{^2}$ Corresponds to $E_{\gamma} > 1.5$ GeV. The limit changes to 3.3×10^{-6} for $E_{\gamma} > 2.0$ GeV.

$\Gamma(p\overline{\Lambda}\pi^0)/\Gamma_{ m total}$							Γ ₄₉₆ /Γ
VALUE (units 10 ⁻⁶)		<u>DOCUM</u>	ENT ID		TECN	COMMENT	
$3.00^{+0.61}_{-0.53}\pm0.33$		¹ WANG		07 C	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of <i>B</i>	$^+$ and B^{\prime}	⁰ at the	Y(45	5).		
$\Gamma(p\overline{\Sigma}(1385)^0)/\Gamma_{\text{total}}$							Γ ₄₉₇ /Γ
<i>VALUE</i> (units 10 ^{−6}) <0.47	CL%	DOCUM	ENT ID		TECN	COMMENT	
<0.47	90	$^{ m 1}$ WANG		07 C	BELL	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of <i>B</i>	$^+$ and ${\it B}$	⁰ at the	Y(45	S).		
$\Gamma(\Delta^+ \overline{\Lambda})/\Gamma_{\text{total}}$							Γ ₄₉₈ /Γ
VALUE (units 10^{-6})	CL%	DOCUM	ENT ID		TECN	COMMENT	
<0.82						$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ	ction of B	$^+$ and ${\it B}$	0 at the	Υ(45	5).		
$\Gamma(p\overline{\Sigma}\gamma)/\Gamma_{total}$							Γ ₄₉₉ /Γ
VALUE (units 10^{-6})	CL%	DOCUM	ENT ID		TECN	COMMENT	
<4.6						$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for	averages	s, fits,	limits,	etc. • • •	,
<7.9						$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes equal produ 2 Corresponds to E_{γ} $>$	ction of B \cdot 1.5 GeV.	$^+$ and B^0	⁰ at the t change	$\Upsilon(45)$ es to 6	5). 5.4 × 10	$^{-6}$ for E $_{\gamma}$ $>$	> 2.0 GeV.
$\Gamma(ho\overline{\Lambda}\pi^+\pi^-)/\Gamma_{ m total}$							Γ ₅₀₀ /Γ
$VALUE$ (units 10^{-6})	CL%	DOCUM	ENT ID		TECN	COMMENT	
$5.92^{+0.88}_{-0.84}\pm0.69$						$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for	averages	s, fits,	limits,	etc. • • •	
<200	90	² ALBRE	CHT	88F	ARG	$e^+e^ \rightarrow$	$\Upsilon(4S)$
¹ Assumes equal produ	ction of B	$^+$ and B	0 at the	$\Upsilon(45)$	S).		
² ALBRECHT 88F reporterscale to 50%.	orts < 1.8	$ imes$ 10^{-4} a	ssuming	the	$\Upsilon(4S)$ d	lecays 45% t	to $B^0 \overline{B}{}^0$. We
$\Gamma ig(p \overline{\Lambda} ho^0 ig) / \Gamma_{ m total}$							Γ ₅₀₁ /Γ
VALUE (units 10^{-6})		DOCUM	ENT ID		TECN	COMMENT	
$4.78^{+0.67}_{-0.64}\pm0.60$		$^{ m 1}$ CHEN		09 C	BELL	e^+e^-	$\Upsilon(4S)$
¹ Assumes equal produ	ction of <i>B</i>	$^+$ and B	⁰ at the	Υ(45	S).		
$\Gamma(\rho \overline{\Lambda} f_2(1270))/\Gamma_{\text{tota}}$	I						Γ ₅₀₂ /Γ
•		<u>D</u> OCUM	ENT ID		TECN	COMMENT	
$2.03^{+0.77}_{-0.72}\pm0.27$						$e^+e^- \rightarrow$	
¹ Assumes equal produ	ction of <i>B</i>	$^+$ and B^{\prime}	0 at the	Y(45	5).		

$\Gamma(\Lambda\overline{\Lambda}\pi^+)/\Gamma_{total}$						Г ₅₀₃ /Г
<u>VALUE</u> (units 10 ^{−6}) <0.94	CL%	DOCUMENT ID)	TECN	COMMENT	
						HANG 09
• • • We do not use th	ie followi	-				
<2.8	90	² LEE	04	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 For $m_{\Lambda \overline{\Lambda}} < 2.85$ Ge	eV/c^2 .					
² Assumes equal prod	uction o	f B^+ and B^0 at th	ne $\Upsilon(4.$	S).		
$\Gamma(\Lambda \overline{\Lambda} K^+)/\Gamma_{\text{total}}$						Γ ₅₀₄ /Γ
VALUE (units 10^{-6})		DOCUMENT ID	1	TECN	COMMENT	
$3.38^{+0.41}_{-0.36}\pm0.41$		^{1,2} CHANG	09	BELL	e^+e^-	$\Upsilon(4S)$
• • • We do not use th	ne followi	ing data for averag	es, fits,	limits,	etc. • • •	
$2.91^{+0.9}_{-0.70}\pm0.38$		² LEE	04	BELL	Repl. by C	HANG 09
1 Excluding charmoni	ıım even	uts in 2.85< m.—	< 3.1	28 GeV	$/c^2$ and 3.3	15< m. <
3.735 GeV/c ² . Mea		, , , ,				\///
² Assumes equal prod	uction o	f B^+ and B^0 at the	he $\Upsilon(4)$	s 4.55 () S)	porteu.	
	uction o	. D una D ut ti	(<i>.</i>		_ ,_
$\Gamma(\Lambda \overline{\Lambda} K^{*+})/\Gamma_{\text{total}}$						Γ ₅₀₅ /Γ
VALUE (units 10 ⁻⁶)		DOCUMENT ID				
$2.19^{f +1.13}_{f -0.88} \pm 0.33$		^{1,2} CHANG	09	BELL	e^+e^-	$\Upsilon(4S)$
¹ For $m_{\Lambda \overline{\Lambda}} < 2.85$ Ge	eV/c^2 .					
² Assumes equal prod		f B^+ and B^0 at th	ne $\Upsilon(4.$	S).		
$\Gamma(\overline{\Delta}{}^{0}p)/\Gamma_{total}$						Γ ₅₀₆ /Γ
	CL%	DOCUMENT ID)	TECN	COMMENT	- 300/
< 1.38	90	1 WEI	08		e^+e^-	Υ(4S)
• • • We do not use th	ne followi	ing data for average	es, fits,	limits,	etc. • • •	,
<380	90	² BORTOLET	ΓΟ89	CLEO	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal prod	uction o	f B^+ and B^0 at th	ne $\Upsilon(4.$	S).		
² BORTOLETTO 89	reports	$< 3.3 imes 10^{-4}$ assu	ıming t	the $\Upsilon(4)$	S) decays 43	3% to $B^0 \overline{B}{}^0$
We rescale to 50%.						
$\Gamma(\Delta^{++}\overline{ ho})/\Gamma_{total}$						Γ ₅₀₇ /Γ
VALUE (units 10^{-6})	CL%	DOCUMENT ID	1	TECN	COMMENT	
< 0.14	90	¹ WEI				$\Upsilon(4S)$
• • • We do not use th						
<150	90	² BORTOLET			$e^+e^- \rightarrow$	$\Upsilon(4S)$
Assumes equal prod					C) I	.₀/ . =∩ = ∩
² BORTOLETTO 89 We rescale to 50%.	reports	$< 1.3 imes 10^{-4}$ assu	iming t	the $T(4)$	5) decays 43	8% to $B^{\circ}B^{\circ}$

$\Gamma(D^+ \rho \overline{\rho})/\Gamma_{\text{total}}$							Γ ₅₀₈ /Γ
VALUE	CL%		DOCUMENT ID		TECN	COMMENT	
$< 1.5 \times 10^{-5}$							
$^{ m 1}$ Assumes equal produ	uction of	B^+	and B^0 at the	ie $\Upsilon(4)$	S).		
$\Gamma(D^*(2010)^+ \rho \overline{\rho})/\Gamma$	total						Γ ₅₀₉ /Γ
VALUE <1.5 × 10 ⁻⁵	<u>CL%</u>	1	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	00(10)
						$e \mid e \rightarrow$	I (4S)
¹ Assumes equal produ	uction of	В	and B° at th	ie / (4	5).		
$\Gamma(\overline{D}{}^{0}\rho\overline{\rho}\pi^{+})/\Gamma_{\text{total}}$							Г ₅₁₀ /Г
VALUE (units 10^{-4})			DOCUMENT ID		TECN	COMMENT	
$3.72 \pm 0.11 \pm 0.25$		1,2	DEL-AMO-S	A12	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Uses the values of 2 Assumes equal produced						8.	
$\Gamma(\overline{D}^{*0} \rho \overline{\rho} \pi^+)/\Gamma_{\text{total}}$							Γ ₅₁₁ /Γ
VALUE (units 10^{-4})			DOCUMENT ID		TECN	COMMENT	
$3.73\pm0.17\pm0.27$		1,2	DEL-AMO-S	A12	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Uses the values of 2 Assumes equal produced						8.	
$\Gamma(D^-p\overline{p}\pi^+\pi^-)/\Gamma_{\rm to}$	otal						Γ ₅₁₂ /Γ
VALUE (units 10^{-4})			DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻⁴) 1.66±0.13±0.27		1,2	DEL-AMO-SA	A12	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Uses the values of 2 Assumes equal produce	and D^*	bra	nching fractio	ns fron	n PDG 0		
$\Gamma(D^{*-}p\overline{p}\pi^{+}\pi^{-})/\Gamma$	total						Γ ₅₁₃ /Γ
			DOCUMENT ID		TECN	COMMENT	
VALUE (units 10^{-4})							
VALUE (units 10 ⁻⁴) 1.86±0.16±0.19			DEL-AMO-S		BABR	$e^+e^- \rightarrow$	Υ(4S)
	\mathcal{D} and \mathcal{D}^*	1,2 bra	nching fractio	A12 ns fron	n PDG 0		<i>T</i> (4 <i>S</i>)
1.86 \pm 0.16 \pm 0.19 1 Uses the values of \overline{D} 2 Assumes equal produ $\Gamma(\rho \overline{\Lambda}{}^{0} \overline{D}{}^{0})/\Gamma_{\text{total}}$	\mathcal{D} and \mathcal{D}^*	1,2 bra	nching fractio 0 at th	A12 ns from ne $\Upsilon(4.6)$	n PDG 0 S).	8.	
1.86 \pm 0.16 \pm 0.19 1 Uses the values of D 2 Assumes equal produ $\Gamma(p\overline{\Lambda}{}^{0}\overline{D}{}^{0})/\Gamma_{\text{total}}$ VALUE (units 10^{-5})	\mathcal{D} and \mathcal{D}^*	1,2 bra B+	nching fractio and B^0 at the details of the det	A12 ns fron ne Υ (4.	n PDG 0 S). <u>TECN</u>	8. <u>COMMENT</u>	Г ₅₁₄ /Г
1.86 \pm 0.16 \pm 0.19 1 Uses the values of \overline{D} 2 Assumes equal produ $\Gamma(\rho \overline{\Lambda}{}^{0} \overline{D}{}^{0})/\Gamma_{\text{total}}$	D and D^*	1,2 bra B+	nching fractio and B ⁰ at th <u>DOCUMENT ID</u> CHEN	A12 ns from the Υ (4.	n PDG 0 S). <u>TECN</u> BELL	8. $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	Γ ₅₁₄ /Γ

Oses B($N \rightarrow p\pi^-$) = 03.9 \pm 0.5%, B($D^+ \rightarrow K^-\pi^+$) = 3.69 \pm 0 $K^-\pi^+\pi^0$) = 13.9 \pm 0.5%.

2 Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

$\Gamma(\rho \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0})/\Gamma_{\text{total}}$

 Γ_{515}/Γ

VALUE (units
$$10^{-5}$$
) CL% DOCUMENT ID TECN COMMENT

Solve 1,2,3 CHEN 11F BELL $e^+e^- \rightarrow \Upsilon(4S)$

 1 CHEN 11F reports $< 4.8 \times 10^{-5}$ from a measurement of $[\Gamma(B^{+} \rightarrow p \overline{\Lambda}{}^{0} \overline{D}^{*} (2007)^{0})/$ Γ_{total} / [B(D^* (2007) $^0 \rightarrow D^0 \pi^0$)] assuming B(D^* (2007) $^0 \rightarrow D^0 \pi^0$) = (61.9±2.9)× 10^{-2} , which we rescale to our best value B($D^*(2007)^0 \rightarrow D^0 \pi^0$) = 64.7 × 10^{-2} . ² Uses B($\Lambda \rightarrow p\pi^-$) = 63.9 ± 0.5% and B($D^0 \rightarrow K^- \pi^+$) = 3.89 ± 0.05%.

$\Gamma(\overline{\Lambda}_c^- p \pi^+)/\Gamma_{\text{total}}$

 Γ_{516}/Γ

VALUE (units 10 ⁻⁴)	DOCUMENT ID		TECN	COMMENT
2.2 ±0.4 OUR AVERAGE	Error includes scale	facto	or of 2.2.	See the ideogram below.
$2.68 \pm 0.15 \pm 0.14$	1,2 AUBERT	08BN	BABR	$e^+e^- ightarrow \Upsilon(4S)$
$1.58 \pm 0.20 \pm 0.08$	^{1,3} GABYSHEV	06A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$1.9 \pm 0.5 \pm 0.1$	1,4 DYTMAN	02	CLE2	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	owing data for avera	ages, f	its, limit	s, etc. • • •
$1.5 \pm 0.4 \pm 0.1$	^{1,5} GABYSHEV	02	BELL	Repl. by GABYSHEV 06A
$6.2 \begin{array}{c} +2.3 \\ -2.0 \end{array} \pm 1.6$	1,6 FU	97	CLE2	Repl. by DYTMAN 02

WEIGHTED AVERAGE

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

 $^{^2}$ AUBERT 08BN reports (3.4 \pm 0.1 \pm 0.9) \times 10 $^{-4}$ from a measurement of [$\Gamma(B^+$ \rightarrow $\overline{\varLambda}_{c}^{-}\,p\,\pi^{+})/\Gamma_{\mathsf{total}}]\times[\mathsf{B}(\varLambda_{c}^{+}\to\,p\,K^{-}\,\pi^{+})]\;\mathsf{assuming}\;\mathsf{B}(\varLambda_{c}^{+}\to\,p\,K^{-}\,\pi^{+})=(5.0\pm1.3)\times10^{-2}$ 10^{-2} , which we rescale to our best value B($\Lambda_c^+ \rightarrow p \, K^- \, \pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$.

Our first error is their experiment's error and our second error is the systematic error from using our best value.

 3 GABYSHEV 06A reports $(2.01\pm0.15\pm0.20) imes10^{-4}$ from a measurement of [$\Gamma(B^+ o$ $\overline{\Lambda}_{c}^{-} p \pi^{+})/\Gamma_{\text{total}}] \times [B(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+})]$ assuming $B(\Lambda_{c}^{+} \rightarrow p K^{-} \pi^{+}) = 0.05$, which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

4 DYTMAN 02 reports $(2.4^{+0.63}_{-0.62}) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ o \overline{\Lambda}_c^- p \pi^+)/$ $\Gamma_{\text{total}}] \times [B(\Lambda_C^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_C^+ \to pK^-\pi^+) = 0.05$, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. 5 GABYSHEV 02 reports $(1.87^{+0.51}_{-0.49}) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to 0.49)]$

 $\overline{\Lambda}_{C}^{-} p \pi^{+})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_{C}^{+} \to p K^{-} \pi^{+})] \text{ assuming } \mathsf{B}(\Lambda_{C}^{+} \to p K^{-} \pi^{+}) = 0.05,$ which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

 6 FU 97 uses PDG 96 values of Λ_c branching fraction.

$\Gamma(\overline{\Lambda}_c^- \Delta(1232)^{++})/\Gamma_{\text{total}}$

 Γ_{517}/Γ

$\Gamma(\overline{\Lambda}_c^-\Delta_X(1600)^{++})/\Gamma_{\text{total}}$

 Γ_{518}/Γ

 $rac{ extit{DOCUMENT ID}}{1 ext{ GABYSHEV}} rac{ extit{TECN}}{06A} rac{ extit{COMMENT}}{ ext{BELL}} rac{ extit{cOMMENT}}{e^+e^-
ightarrow aggreents(4S)}$ VALUE (units 10⁻⁵) $4.6\pm0.9\pm0.2$

 $^1\,\text{GABYSHEV}$ 06A reports (5.9 \pm 1.0 \pm 0.6) \times 10 $^{-5}$ from a measurement of [\Gamma(B^+ \rightarrow $\overline{\varLambda}_{c}^{-} \, \Delta_{X}(1600)^{++})/\Gamma_{\mathsf{total}}] \, \times \, [\mathsf{B}(\varLambda_{c}^{+} \, \rightarrow \, p \, \mathsf{K}^{-} \, \pi^{+})] \, \, \mathsf{assuming} \, \, \mathsf{B}(\varLambda_{c}^{+} \, \rightarrow \, p \, \mathsf{K}^{-} \, \pi^{+}) = 0$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Lambda}_c^-\Delta_X(2420)^{++})/\Gamma_{\text{total}}$

Γ₅₁₀/Γ

 $rac{ extit{DOCUMENT ID}}{1} extit{GABYSHEV} extit{ 06A BELL } rac{ extit{COMMENT}}{e^+e^-
ightarrow aggreen agg$ VALUE (units 10^{-5}) $3.7 \pm 0.8 \pm 0.2$

 $^1\, {\sf GABYSHEV}$ 06A reports (4.7 $^{+1.0}_{-0.9}$ \pm 0.4) $\times\,10^{-5}$ from a measurement of [$\Gamma(B^+\to$ $\overline{\varLambda}_{c}^{-} \Delta_{X}(2420)^{++})/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\varLambda_{c}^{+} \to pK^{-}\pi^{+})] \text{ assuming } \mathsf{B}(\varLambda_{c}^{+} \to pK^{-}\pi^{+}) = 0$ 0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma((\overline{\Lambda}_c^- p)_s \pi^+)/\Gamma_{\text{total}}$

 Γ_{520}/Γ

Created: 5/30/2017 17:22

 $(\overline{\Lambda}_c^- p)_s$ denotes a low-mass enhancement near 3.35 GeV/c².

DOCUMENT ID _____ TECN COMMENT VALUE (units 10^{-5}) 1 GABYSHEV 06A BELL $e^{+}e^{-}
ightarrow \varUpsilon$ (4*S*) $3.1^{+0.7}_{-0.6}\pm0.2$

 1 GABYSHEV 06A reports $(3.9^{+0.8}_{-0.7}\pm0.4) imes10^{-5}$ from a measurement of $[\Gamma(B^{+}
ightarrow$ $(\overline{\Lambda}_c^- p)_s \pi^+)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to pK^- \pi^+)] \text{ assuming } B(\Lambda_c^+ \to pK^- \pi^+) = 0.05,$ which we rescale to our best value B($\Lambda_c^+ \to pK^-\pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from

$\Gamma(\overline{\Sigma}_c(2520)^0 p)/\Gamma_{\text{total}}$

 Γ_{521}/Γ

VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN	COMMENT				
<0.3	90	1,2 AUBERT	08BN	BABR	$e^+e^- ightarrow ~ \gamma(4S)$				
• • • We do not us	e the follo	owing data for avera	ges, fit	s, limits	s, etc. • • •				
<2.7	90	^{1,2} GABYSHEV	06A	BELL	$e^+e^- ightarrow ~ \gamma(4S)$				
<4.6	90	1,2 GABYSHEV	02	BELL	Repl. by GABYSHEV 06A				
$\frac{1}{2}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.									

²Uses the value for $\Lambda_c \rightarrow pK^-\pi^+$ branching ratio (5.0 \pm 1.3)%.

 $\Gamma(\overline{\Sigma}_c(2520)^0 p)/\Gamma(\overline{\Lambda}_c^- p \pi^+)$

 $\Gamma_{521}/\Gamma_{516}$

$VALUE$ (units 10^{-3})	CL%	DOCUMENT ID	TECN	COMMENT
<9	90	AUBERT	08BN BABR	$e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(\overline{\Sigma}_c(2800)^0 p)/\Gamma_{\text{total}}$

 Γ_{522}/Γ

VALUE (units 10^{-5})	DOCUMENT ID	TECN	COMMENT
2.6±0.7±0.4	¹ AUBERT	08BN BABR	$e^+e^- ightarrow \gamma(4S)$

 $^{1}\,\text{AUBERT 08BN reports}\,\,[\Gamma\big(B^{+}\,\rightarrow\,\,\overline{\Sigma}_{c}(2800)^{0}\,p\big)/\Gamma_{\text{total}}]\,\,/\,\,[\mathrm{B}(B^{+}\,\rightarrow\,\,\overline{\Lambda}_{c}^{-}\,p\,\pi^{+})]\,=\,0$ $0.117 \pm 0.023 \pm 0.024$ which we multiply by our best value B($B^+ \rightarrow \overline{\Lambda}_c^- p \pi^+$) = $(2.2 \pm 0.4) \times 10^{-4}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Lambda}_{c}^{-}p\pi^{+}\pi^{0})/\Gamma_{\text{total}}$

 Γ_{523}/Γ

<i>VALUE</i> (units 10 ⁻³)	CL%	DOCUMENT ID		TECN	COMMENT
$1.81\pm0.29^{+0.52}_{-0.50}$		1,2 DYTMAN	02	CLE2	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<3.12 90 ³ FU 97 CLE2
$$e^+e^- \rightarrow \Upsilon(4S)$$

$\Gamma(\overline{\Lambda}_c^- p \pi^+ \pi^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{524}/Γ

Created: 5/30/2017 17:22

VALUE (units 10^{-3})	CL%	DOCUMENT ID		TECN	COMMENT
$2.25\pm0.25^{igoplus 0.63}_{igoplus 0.61}$		1,2 DYTMAN	02	CLE2	$e^+e^- ightarrow \ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<1.46 90 ³ FU 97 CLE2
$$e^+e^- \rightarrow \Upsilon(4S)$$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

 $^{^3}$ FU 97 uses PDG 96 values of Λ_c branching ratio.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 ± 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

 $^{^3\,\}mathrm{FU}$ 97 uses PDG 96 values of Λ_{C} branching ratio.

 $\Gamma(\Lambda_c^+ \Lambda_c^- K^+)/\Gamma_{\text{total}}$

 Γ_{526}/Γ

VALUE (units 10^{-4})	DOCUMENT ID		TECN	COMMENT
6.9±2.2 OUR AVERAGE				
$9.0 \pm 4.4 \pm 0.5$	1,2 AUBERT	08н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$6.2^{+2.5}_{-2.4}\pm0.3$	^{2,3} GABYSHEV	06	BELL	$e^+e^- ightarrow \Upsilon(4S)$

 $^{^1\,\}text{AUBERT}$ 08H reports (1.14 \pm 0.15 \pm 0.62) \times 10 $^{-3}\,$ from a measurement of [$\Gamma(B^+$ \rightarrow $\Lambda_c^+ \Lambda_c^- K^+)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p K^- \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p K^- \pi^+) = (5.0 \pm 1.0 \pm$ $1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = $(6.35 \pm 0.33) \times$ 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Sigma}_c(2455)^0 p)/\Gamma_{\text{total}}$

 Γ_{527}/Γ

VALUE (units 10 ⁻³)	CL%	DOCUMENT ID		IECN	COMMENT	
$2.9\pm0.6^{+0.2}_{-0.1}$		1,2 GABYSHEV	06A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.

<8 90
$1,3$
 DYTMAN 02 CLE2 $^{+}e^{-} \rightarrow \Upsilon(4S)$ <9.3 90 1,4 GABYSHEV 02 BELL Repl. by GABYSHEV 06A

 $\Gamma(\overline{\Sigma}_c(2455)^0 p)/\Gamma(\overline{\Lambda}_c^- p \pi^+)$

 $\Gamma_{527}/\Gamma_{516}$

 $^{^{1}\,\}mathrm{FU}$ 97 uses PDG 96 values of $\varLambda_{\mathcal{C}}$ branching ratio.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^3}$ GABYSHEV 06 reports $(7.9^{+1.0}_{-0.9}\pm3.6) imes10^{-4}$ from a measurement of $[\Gamma(B^+\to 1.0)]$ $\Lambda_c^+ \Lambda_c^- K^+)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+) = (5.0 \pm 1.0 \pm 1.0$ 1.3) \times 10⁻², which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10^{-2} . Our first error is their experiment's error and our second error is the systematic error from using our best value.

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S).$ 2 GABYSHEV 06A reports (3.7 \pm 0.7 \pm 0.4) \times 10 $^{-5}$ from a measurement of [$\Gamma(B^+$ \rightarrow $\overline{\Sigma}_c(2455)^0 p)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \rightarrow pK^-\pi^+)] \text{ assuming } B(\Lambda_c^+ \rightarrow pK^-\pi^+) = 0.05,$ which we rescale to our best value B($\Lambda_c^+ \to p K^- \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

⁴ Uses the value for $\Lambda_{\rm C} \rightarrow p \, {\rm K}^- \pi^+$ branching ratio (5.0 \pm 1.3)%.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$

$\Gamma(\overline{\Sigma}_c(2455)^0 p \pi^0) / \Gamma_{\text{total}}$

 Γ_{528}/Γ

VALUE (units 10^{-4})

 $\frac{DOCUMENT ID}{1,2} \underbrace{DYTMAN} \qquad 02 \quad CLE2 \quad e^{+}e^{-} \rightarrow \Upsilon(45)$

$3.5\pm1.1\pm0.2$

¹ DYTMAN 02 reports (4.4 \pm 1.4) \times 10⁻⁴ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^0 p \pi^0)/\Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p K^- \pi^+) = 0.05$

0.05, which we rescale to our best value B($\Lambda_c^+ \to p \, K^- \, \pi^+$) = (6.35 \pm 0.33) \times 10⁻². Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Sigma}_c(2455)^0 \rho \pi^- \pi^+)/\Gamma_{\text{total}}$

 Γ_{529}/Γ

VALUE (units 10⁻⁴)

$$1.2$$
 DYTMAN 02 CLE2 $e^+e^-
ightarrow \Upsilon(4S)$

¹ DYTMAN 02 reports $(4.4 \pm 1.3) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^0 \, p \, \pi^- \pi^+) / \Gamma_{\text{total}}] \times [B(\Lambda_c^+ \to p \, K^- \pi^+)]$ assuming $B(\Lambda_c^+ \to p \, K^- \pi^+) = 0.05$, which we rescale to our best value $B(\Lambda_c^+ \to p \, K^- \pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{\text{total}}$

 Γ_{530}/Γ

2.2 ± 0.8 ± 0.1 1,3 DYTMAN 02 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 LEES 12Z reports $(2.98\pm0.16\pm0.15\pm0.77)\times10^{-4}$ from a measurement of $[\Gamma(B^+\to\overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{\rm total}]\times[B(\Lambda_c^+\to pK^-\pi^+)]$ assuming $B(\Lambda_c^+\to pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$, which we rescale to our best value $B(\Lambda_c^+\to pK^-\pi^+)=(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

³ DYTMAN 02 reports $(2.8 \pm 0.9 \pm 0.5 \pm 0.7) \times 10^{-4}$ from a measurement of $[\Gamma(B^+ \to \overline{\Sigma}_c(2455)^{--}p\pi^+\pi^+)/\Gamma_{total}] \times [B(\Lambda_c^+ \to pK^-\pi^+)]$ assuming $B(\Lambda_c^+ \to pK^-\pi^+) = (5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value $B(\Lambda_c^+ \to pK^-\pi^+) = (6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Lambda}_c(2593)^-/\overline{\Lambda}_c(2625)^-p\pi^+)/\Gamma_{\text{total}}$

 Γ_{531}/Γ

VALUE	CL%	•		TECN	COMMENT
<1.9 × 10 ⁻⁴	90	1,2 DYTMAN	02	CLE2	$e^+e^- ightarrow \gamma(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² DYTMAN 02 measurement uses B($\Lambda_c^- \to \overline{p}K^+\pi^-$) = 5.0 \pm 1.3%. The second error includes the systematic and the uncertainty of the branching ratio.

$\Gamma(\overline{\Xi}_{c}^{0}\Lambda_{c}^{+}, \overline{\Xi}_{c}^{0} \rightarrow \overline{\Xi}_{c}^{+}\pi^{-})/\Gamma_{\text{total}}$

 Γ_{532}/Γ

2.4±0.9 OUR AVERAGE Error includes scale factor of 1.4. 08H BABR $e^+e^- \rightarrow \Upsilon(4S)$ $2.0 \pm 0.7 \pm 0.1$ ^{1,2} AUBERT $4.4^{+1.8}_{-1.5}\pm0.2$ ^{2,3} CHISTOV 06A BELL $e^+e^- \rightarrow \Upsilon(4S)$

 1 AUBERT 08H reports (2.51 \pm 0.89 \pm 0.61) \times 10 $^{-5}$ from a measurement of [Γ(B $^+$ \rightarrow $\overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 \to \overline{\Xi}^+ \pi^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = $(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

 2 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 3 CHISTOV 06A reports (5.6 $^{+1.9}_{-1.5}$ \pm 1.9) \times 10 $^{-5}$ from a measurement of [\Gamma(B^+ \rightarrow $\overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 \to \overline{\Xi}^+ \pi^-)/\Gamma_{\mathsf{total}}] \times [\mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \to p \, K^- \, \pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\overline{\Xi}_c^0 \Lambda_c^+, \ \overline{\Xi}_c^0 \to \Lambda K^+ \pi^-)/\Gamma_{\text{total}}$

 Γ_{533}/Γ

VALUE (units 10^{-5})DOCUMENT IDTECNCOMMENT2.1 \pm 0.9 OUR AVERAGEError includes scale factor of 1.5. 08H BABR $e^+e^- \rightarrow \Upsilon(4S)$ 1,2 AUBERT $1.3 \pm 0.8 \pm 0.1$ $3.1^{+1.1}_{-0.9}\pm0.2$ 06A BELL $e^+e^- \rightarrow \Upsilon(4S)$ ^{2,3} CHISTOV

 1 AUBERT 08H reports (1.70 \pm 0.93 \pm 0.53) imes 10 $^{-5}$ from a measurement of [$\Gamma(B^{+}
ightarrow$ $\overline{\Xi}_c^0 \Lambda_c^+, \quad \overline{\Xi}_c^0 \ \to \ \Lambda K^+ \pi^-)/\Gamma_{\mathsf{total}}] \ \times \ [\mathsf{B}(\Lambda_c^+ \ \to \ p \, K^- \, \pi^+)] \ \text{assuming} \ \mathsf{B}(\Lambda_c^+ \ \to \ p \, K^- \, \pi^+)]$ $pK^-\pi^+)=(5.0\pm1.3)\times10^{-2}$, which we rescale to our best value B($\Lambda_c^+\to pK^-\pi^+$) $=(6.35\pm0.33)\times10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. ³ CHISTOV 06A reports $(4.0^{+1.1}_{-0.9}\pm1.3)\times10^{-5}$ from a measurement of $\Gamma(B^+\to\overline{\Xi}^0_c\Lambda^+_c,$ $\overline{\Xi}_c^0 \rightarrow \Lambda K^+ \pi^-)/\Gamma_{\mathsf{total}} \times [\mathsf{B}(\Lambda_c^+ \rightarrow p K^- \pi^+)] \text{ assuming } \mathsf{B}(\Lambda_c^+ \rightarrow p K^- \pi^+)$ = $(5.0 \pm 1.3) \times 10^{-2}$, which we rescale to our best value B($\Lambda_c^+ \rightarrow p K^- \pi^+$) = $(6.35 \pm 0.33) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\pi^+\ell^+\ell^-)/\Gamma_{\text{total}}$

 Γ_{534}/Γ

Created: 5/30/2017 17:22

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<4.9 × 10 ⁻⁸	90	¹ WEI	08A	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<6.6 \times 10^{-8}$$
 90 1 LEES 13M BABR $e^+e^- \rightarrow \Upsilon(4S)$ $<1.2 \times 10^{-7}$ 90 1 AUBERT 07AG BABR $e^+e^- \rightarrow \Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $\Gamma(\pi^+ e^+ e^-)/\Gamma_{\text{total}}$

// total	3337	
Test for $\Delta B=1$ weak neutral current. All	owed by higher-order electroweak interaction	s.

VALUE	<u>CL%</u>	<u>DOCUMENT ID</u>		TECN	COMMENT	
$< 8.0 \times 10^{-8}$	90	¹ WEI	08A	BELL	$e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the	following	data for averages.	fits	limits e	tc • • •	

			6	5 / / / -	
<12.5 ×	$< 10^{-8}$	90	¹ LEES	13M BABR	$e^+e^- ightarrow \gamma(4S)$
<18 ×	10^{-8}	90	$^{ m 1}$ AUBERT	07AG BABR	$e^+e^- \rightarrow \Upsilon(4S)$
< 3.9 ×	10^{-3}	90	² WEIR	90в MRK2	e^+e^- 29 GeV

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\pi^+\mu^+\mu^-)/\Gamma_{\text{total}}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-8})	CL%	DOCUMENT ID		TECN	COMMENT
$1.79 \pm 0.22 \pm 0.05$		¹ AAIJ	15AR	LHCB	<i>pp</i> at 7, 8 TeV
• • We do not use th	e followir	og data for averages	fits	limits e	etc • • •

$$< 5.5$$
 90 2 LEES 13M BABR $e^+e^- \rightarrow \Upsilon(4S)$ 2.3 $\pm 0.6 \pm 0.1$ AAIJ 12AY LHCB Repl. by AAIJ 15AR < 6.9 90 2 WEI 08A BELL $e^+e^- \rightarrow \Upsilon(4S)$ < 28 90 2 AUBERT 07AG BABR $e^+e^- \rightarrow \Upsilon(4S)$

 1 AAIJ 15AR reports (1.83 \pm 0.24 \pm 0.05) imes 10 $^{-8}$ from a measurement of [Γ(B^+ ightarrow $\pi^+\mu^+\mu^-)/\Gamma_{\mathsf{total}}$ / [B($B^+ o J/\psi(1S)\,K^+$)] / [B($J/\psi(1S) o \mu^+\mu^-$)] assuming $B(B^+ \to J/\psi(1S)K^+) = (1.05 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.05) \times 10^{-3}, B(J/\psi(1S) \to \mu^+\mu^-)$ $(0.033) \times 10^{-2}$, which we rescale to our best values B(B⁺ $\rightarrow J/\psi(1S) K^+$) = $(1.026 \pm$ $0.031) \times 10^{-3}$, B $(J/\psi(1S) \to \mu^+\mu^-) = (5.961 \pm 0.033) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\pi^+\mu^+\mu^-)/\Gamma(K^+\mu^+\mu^-)$

 $\Gamma_{536}/\Gamma_{540}$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.053 \pm 0.014 \pm 0.001$

AAIJ

12AY LHCB Repl. by AAIJ 15AR

Created: 5/30/2017 17:22

$\Gamma(\pi^+ \nu \overline{\nu})/\Gamma_{\text{total}}$

 Γ_{537}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
<9.8 × 10 ⁻⁵	90	¹ LUTZ	13	BELL	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<1.7 \times 10^{-4}$$
 90 1 CHEN 07D BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $<1.0 \times 10^{-4}$ 90 1 AUBERT 05H BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$

 $^{^2}$ WEIR 90B assumes B^+ production cross section from LUND.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^+\ell^+\ell^-)/\Gamma_{total}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

<i>VALUE</i> (units 10^{-7})	DOCUMENT ID		TECN	COMMENT	
4.51±0.23 OUR AVERAGE			of 1.1.		
$4.36 \pm 0.15 \pm 0.18$	¹ AAIJ	13H	LHCB	pp at 7 TeV	
$4.8 \pm 0.9 \pm 0.2$	² AUBERT	09T	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
$5.3 \ ^{+0.6}_{-0.5} \ \pm 0.3$	² WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the following data for averages, fits, limits, etc. • •					
$3.8 \ ^{+0.9}_{-0.8} \ \pm 0.2$	² AUBERT,B	06J	BABR	Repl. by AUBERT 09T	
$5.3 \ ^{+1.1}_{-1.0} \ \pm 0.3$	² ISHIKAWA	03	BELL	Repl. by WEI 09A	
¹ Uses B($B^+ \to J/\psi K^+ \to \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10 ⁻⁵ .					

$\Gamma(K^+e^+e^-)/\Gamma_{\text{total}}$

 Γ_{539}/Γ

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

		,	0		
$VALUE$ (units 10^{-7})	CL%DOCUMENT ID		TECN	COMMENT	
5.5±0.7 OUR A	VERAGE				
$5.1^{ightarrow 1.2}_{-1.1}\!\pm\!0.2$	¹ AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$	
$5.7^{igoplus 0.9}_{-0.8} \!\pm\! 0.3$	¹ WEI	09A	BELL	$e^+e^- \rightarrow \gamma(4S)$	

• • • We do not use the following data for averages, fits, limits, etc. • • •

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

 $^{^3}$ The result is for di-lepton masses above 0.5 GeV. 4 ALBRECHT 91E reports $<9.0\times10^{-5}$ assuming the $\varUpsilon(4S)$ decays 45% to $B^0\,\overline{B}{}^0$. We

 $^{^{5}}$ WEIR 90B assumes B^{+} production cross section from LUND.

 $^{^6}$ AVERY 89B reports < 5 \times 10 $^{-5}$ assuming the \varUpsilon (4S) decays 43% to $B^0\overline{B}{}^0$. We rescale

to 50%. AVERY 87 reports $< 2.1 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $\Gamma(K^+\mu^+\mu^-)/\Gamma_{\text{total}}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10^{-7}) DOCUMENT ID TECN COMMENT CL%

4.43±0.24 OUR FIT Error includes scale factor of 1.2.

4.36 \pm **0.27 OUR AVERAGE** Error includes scale factor of 1.3.

$$4.29\pm0.07\pm0.21$$
 14M LHCB pp at 7, 8 TeV

4.1
$$^{+1.6}_{-1.5}$$
 ± 0.2 2 AUBERT 09T BABR $e^+e^- \rightarrow \Upsilon(4S)$

5.3
$$^{+0.8}_{-0.7}$$
 ± 0.3 2 WEI 09A BELL $e^+e^-
ightarrow \varUpsilon(4S)$

We do not use the following data for averages, fits, limits, etc. • •

$$4.36\pm0.15\pm0.18$$
 3 AAIJ 1 13H LHCB Repl. by AAIJ 14M $3.1~^{+1.5}_{-1.2}~\pm0.3$ 2 AUBERT,B 1 06J BABR Repl. by AUBERT 09T 2 0.7 $^{+1.9}_{-1.1}~\pm0.2$ 2 AUBERT 03U BABR Repl. by AUBERT,B 06J

$$4.5 \begin{array}{c} +1.4 \\ -1.2 \end{array} \pm 0.3$$
 4 ISHIKAWA 03 BELL Repl. by WEI 09A

$$<$$
 12 90 2 AUBERT 02L BABR $e^+e^- \rightarrow \Upsilon(4S)$ $<$ 36.8 90 5 ANDERSON 01B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ $<$ 52 90 6 AFFOLDER 99B CDF $p\overline{p}$ at 1.8 TeV

⁷ ABE < 100 90 96L CDF Repl. by AFFOLDER 99B

< 2400 90
8
 ALBRECHT 91E ARG $e^{+}e^{-} \rightarrow \Upsilon(4S)$ <64000 90 9 WEIR 90B MRK2 $e^{+}e^{-}$ 29 GeV

< 1700 90
10
 AVERY 89B CLEO $e^+e^- \rightarrow \Upsilon(4S)$

$$<$$
 3800 90 11 AVERY 87 CLEO $e^+e^-
ightarrow \varUpsilon(4S)$

$\Gamma(K^+\tau^+\tau^-)/\Gamma_{\text{total}}$

VALUE CL% DOCUMENT ID TECN COMMENT
$$= 1,2$$
 LEES 17 BABR $= 1,2$ LEES $= 1,2$ BABR $= 1,2$ LEES $= 1,2$ BABR $= 1,2$ BABR

¹ Uses B($B^+ \to J/\psi(1S) K^+$) = (0.998 ± 0.014 ± 0.040) × 10⁻³ for normalization.

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Uses B($B^+ \rightarrow J/\psi K^+ \rightarrow \mu^+ \mu^- K^+$) = (6.01 ± 0.21) × 10⁻⁵.

⁴ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence.

⁵ The result is for di-lepton masses above 0.5 GeV.

⁶ AFFOLDER 99B measured relative to $B^+ o J/\psi(1S) K^+$.

⁷ ABE 96L measured relative to $B^+ \to J/\psi(1S) K^+$ using PDG 94 branching ratios.

⁸ ALBRECHT 91E reports $< 2.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^{9}}$ WEIR 90B assumes B^{+} production cross section from LUND.

 $^{^{10}}$ AVERY 89B reports $< 1.5 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 43% to $B^0 \overline{B}{}^0$. We

¹¹ AVERY 87 reports $< 3.2 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 40% to $B^0 \overline{B}{}^0$. We rescale to 50%.

 $^{^1}$ Uses only leptonic decays of au and the quoted limit combines the final states $extit{K}^+\,e^+\,e^-$, $K^+\mu^+\mu^-$, and $K^+e^{\pm}\mu^{\mp}$.

 $^{^2}$ If observed events are interpreted as a signal the branching fraction measurement becomes $(1.31^{+0.66}_{-0.61}^{+0.35}) \times 10^{-3}$.

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\Gamma(K^+\mu^+\mu^-)/\Gamma(J/\psi(1S)K^+)$ $\Gamma_{540}/\Gamma_{262}$ *VALUE* (units 10^{-3}) DOCUMENT ID 0.431 ± 0.025 OUR FIT Error includes scale factor of 1.2. $0.46 \pm 0.04 \pm 0.02$ **AALTONEN** 11AI CDF $p\overline{p}$ at 1.96 TeV • • • We do not use the following data for averages, fits, limits, etc. • • • $0.38 \pm 0.05 \pm 0.02$ **AALTONEN** 11L CDF Repl. by AALTONEN 11AI $0.59 \pm 0.15 \pm 0.03$ **AALTONEN** 09B CDF Repl. by AALTONEN 11L $\Gamma(K^+\overline{\nu}\nu)/\Gamma_{\text{total}}$ Γ_{542}/Γ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions. DOCUMENT ID TECN COMMENT $<1.6 \times 10^{-5}$ 1,2 LEES 13I BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $< 5.5 \times 10^{-5}$ ¹ LUTZ 90 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 13 $< 1.3 \times 10^{-5}$ ¹ DEL-AMO-SA1.0Q BABR Repl. by LEES 131 90 $< 1.4 \times 10^{-5}$ 90 ¹ CHEN 07D BELL $e^+e^- \rightarrow \Upsilon(4S)$ $< 5.2 \times 10^{-5}$ ¹ AUBERT 05H BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 $< 2.4 \times 10^{-4}$ ¹ BROWDER 01 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$ 1 Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$. 2 Also reported a limit $<3.7\times10^{-5}$ at 90% CL obtained using a fully reconstructed hadronic *B*-tag evnets. $\Gamma(\rho^+ \nu \overline{\nu})/\Gamma_{\text{total}}$ Test for $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction.

 Γ_{543}/Γ

VALUE	CL%	DOCUMENT ID	,	_	COMMENT
$< 2.13 \times 10^{-4}$	90	1 LUTZ	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	s, fits,	limits,	etc. • • •
$< 1.5 \times 10^{-4}$	90	$^{ m 1}$ CHEN	07 D	BELL	Repl. by LUTZ 13

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma\big(K^*(892)^+\ell^+\ell^-\big)/\Gamma_{\text{total}}$

Created: 5/30/2017 17:22

 $\Delta B = 1$ weak neutral current. Allowed by higher-order electroweak interaction

$1est 101 \Delta D$	I weak neutrai	current. Anowed	by iligi	iei-oruei	electroweak interactions.
VALUE (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT
10.1 ±1.1 OUF	RAVERAGE	Error includes sca	le facto	or of 1.1	
$9.24 \pm 0.93 \pm 0.6$	7	AAIJ	14M	LHCB	<i>pp</i> at 7, 8 TeV
$14.0 \ ^{+4.0}_{-3.7} \ \pm 0.9$)	¹ AUBERT	09Т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$12.4 \begin{array}{c} +2.3 \\ -2.1 \end{array} \pm 1.3$	}	¹ WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not us	se the following	g data for average	s, fits,	limits, e	etc. • • •
$11.6\ \pm1.9$		² AAIJ	12AH	LHCB	Repl. by AAIJ 14M
7.3 $^{+5.0}_{-4.2}$ ± 2.1		$^{ m 1}$ AUBERT,B	06J	BABR	Repl. by AUBERT 09T
<22	90	$^{ m 1}$ ISHIKAWA	03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
¹ Assumes equal	production of I	3^+ and B^0 at the	e Υ(4.9	5)	

Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Measured in $B^+ \rightarrow K^*(892)^+ \mu^+ \mu^-$ decays.

$\Gamma(K^*(892)^+e^+e^-)/\Gamma_{\text{total}}$

Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

/ALUE (units 10 ⁻⁷)	CL%	DOCUMENT ID	TECN	COMMENT	
15.5^{+}_{-} $\begin{array}{c} 4.0 \\ 3.1 \end{array}$ OUR A	WERAGE				

$$13.8^{+}_{-} \stackrel{4.7}{4.2} \pm 0.8$$
 1 AUBERT 09T BABR $e^{+}e^{-} \rightarrow \Upsilon(4S)$ $17.3^{+}_{-} \stackrel{5.0}{4.2} \pm 2.0$ 1 WEI 09A BELL $e^{+}e^{-} \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

	$7.5^{+}_{-} {\begin{array}{c} 7.6 \\ 6.5 \end{array}} \!\pm\! 3.8$		¹ AUBERT,B	06J	BABR	Repl. by AUBERT 09T
	$2.0^{+13.4}_{-8.7}\pm 2.8$		¹ AUBERT	03 U	BABR	$e^+e^- ightarrow \ \varUpsilon(4S)$
<	46	90	² ISHIKAWA	03	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
<	89	90	$^{ m 1}$ ABE	02	BELL	Repl. by ISHIKAWA 03
<	95	90	$^{ m 1}$ AUBERT	02L	BABR	$e^+e^- ightarrow \Upsilon(4S)$
<6	900	90	³ ALBRECHT	91E	ARG	$e^+e^- ightarrow ~ \varUpsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

Created: 5/30/2017 17:22

 $\Gamma(K^*(892)^+\mu^+\mu^-)/\Gamma_{total}$ Test for $\Delta B=1$ weak neutral current. Allowed by higher-order electroweak interactions.

VALUE (units 10	$^{-7}$) <u>CL%</u>	DOCUMENT ID		TECN	COMMENT
9.6 ± 1	.0 OUR FIT				
9.6 ± 1	1 OUR AVERAGE				
$9.24\pm~0$	0.93 ± 0.67	¹ AAIJ	14M	LHCB	<i>pp</i> at 7, 8 TeV
14.6 $\begin{array}{c} + & 7 \\ - & 7 \end{array}$	$\frac{7.9}{5.5}$ ±1.2	² AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$11.1 \begin{array}{c} + & 3 \\ - & 2 \end{array}$	$\frac{3.2}{2.7}$ ± 1.0	² WEI	09A	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$11.6~\pm~1.9$		AAIJ	12AF	I LHCB	Repl. by AAIJ 14M
$9.7 \ \ {+} \ \ {9.4} \ \pm 1.4$		² AUBERT,B	06J	BABR	Repl. by AUBERT 09T
$30.7 \ {+25.8\atop -17.8} \ \pm 4.2$		² AUBERT	03 U	BABR	$e^+e^- ightarrow \gamma(4S)$
$6.5 {}^{+}_{-} {}^{6.9}_{5.3} {}^{+}_{-}1.5$		³ ISHIKAWA	03	BELL	Repl. by WEI 09A
< 39	90	² ABE	02		Repl. by ISHIKAWA 03
<170	90	² AUBERT	02L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Uses B($B^+ \to J/\psi(1S) \, K^*(892)^+$) = (1.431 ± 0.027 ± 0.090)×10⁻³ for normalization.

² Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of

systematic uncertainties including model dependence. 3 ALBRECHT 91E reports $< 6.3 \times 10^{-4}$ assuming the $\Upsilon(4S)$ decays 45% to $B^0\overline{B}{}^0$. We

² Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

³ Assumes equal production of B^0 and B^+ at $\Upsilon(4S)$. The second error is a total of systematic uncertainties including model dependence. The 90% C.L. upper limit is $2.2 \times$ 10^{-6} .

•	וא)) ו J/ψ	(1 <i>5</i>) <i>K</i> *(892)+)			Γ_{546}/Γ_{26}
/ALUE (units 10 ⁻³)		DOCUMENT ID		TECN	COMMENT	
0.67±0.08 OUR FIT						
$0.67 \pm 0.22 \pm 0.04$		AALTONEN	11AI	CDF	<i>p</i> p at 1.96	TeV
$(K^*(892)^+ \nu \overline{\nu})/\Gamma$	total					Γ ₅₄₇ /
Test for $\Delta B=1$ value		ral current. Allowe <u>DOCUMENT ID</u>			er electrowea <u>COMMENT</u>	k interactio
<4.0 × 10 ⁻⁵	90	¹ LUTZ			$e^+e^- \rightarrow$	$\Upsilon(45)$
• • We do not use t						, (10)
$< 6.4 \times 10^{-5}$	90	^{1,2} LEES			$e^+e^ \rightarrow$	$\Upsilon(45)$
$< 8 \times 10^{-5}$		AUBERT			Repl. by LE	
$< 1.4 \times 10^{-4}$	90	¹ CHEN			$e^+e^- \rightarrow$	
Assumes equal prod Also reported a lim hadronic B-tag evn	nit < 11.6	\times 10 ⁻⁵ at 90%	CL obt	ained us	sing a fully r	econstruct
$K(K^{+}\pi^{+}\pi^{-}\mu^{+}\mu^{-})$	$)/\Gamma(\psi(2$	S) K ⁺)				Γ_{548}/Γ_{29}
ALUE (units 10^{-4})		DOCUMENT ID		TECN	COMMENT	
$.95^{igoplus 0.46}_{igoplus 0.43} \pm 0.34$		AAIJ	14AZ	LHCB	pp at 7, 8	TeV
$(\phi K^+ \mu^+ \mu^-)/\Gamma($	$J/\psi(1S)$	$\phi K^+)$				Γ ₅₄₉ /Γ ₂
ALUE (units 10^{-3})		DOCUMENT ID		TECN	COMMENT	
$.58 { +0.36 +0.19 \atop -0.32 -0.07 }$		AAIJ	14AZ	LHCB	pp at 7, 8	TeV
$(\pi^+e^+\mu^-)/\Gamma_{ ext{total}}$ Test of lepton fa	mily numb	per conservation. <u>DOCUMENT ID</u>		TECN	COMMENT	Γ ₅₅₀ /
<0.0064	90	¹ WEIR			$e^{+}e^{-}$ 29 (GeV
• • • • • •	R ⁺ prod	uction cross soctio				
1 WEID OOD assumes	D DIOU		11 110111	LUND.		
¹ WEIR 90B assumes	•	action cross section				
$(\pi^+ e^- \mu^+)/\Gamma_{ m total}$	·					Γ ₅₅₁ ,
$(\pi^+e^-\mu^+)/\Gamma_{ m total}$ Test of lepton fa	mily numb	per conservation.			COMMENT	Γ ₅₅₁ /
$(\pi^+e^-\mu^+)/\Gamma_{ ext{total}}$ Test of lepton fa	mily numb <u><i>CL%_</i></u>	per conservation. <u>DOCUMENT ID</u>		<u>TECN</u>		
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa ALUE <0.0064	mily numb <u>CL%</u> 90	per conservation. <u>DOCUMENT ID</u> 1 WEIR	90B	TECN MRK2	$e^{+}e^{-}$ 29 (
$(\pi^+e^-\mu^+)/\Gamma_{ ext{total}}$ Test of lepton fa	mily numb <u>CL%</u> 90	per conservation. <u>DOCUMENT ID</u> 1 WEIR	90B	TECN MRK2	$e^{+}e^{-}$ 29 (
$(\pi^+e^-\mu^+)/\Gamma_{ ext{total}}$ Test of lepton fa (ALUE) <0.0064 1 WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{ ext{total}}$	mily numb <u>CL%</u> 90 B ⁺ prod	per conservation. <u>DOCUMENT ID</u> 1 WEIR uction cross sectio	90B on from	<u>TECN</u> MRK2 LUND.	e ⁺ e ⁻ 29 (GeV Γ_{552/}
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa ALUE <0.0064 1 WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$	mily numb <u>CL%</u> 90 B ⁺ prod	per conservation. <u>DOCUMENT ID</u> 1 WEIR uction cross sectio	90B on from	<u>TECN</u> MRK2 LUND.	e ⁺ e ⁻ 29 (GeV Γ_{552/}
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa ALUE <0.0064 1 WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$	mily numb <u>CL%</u> 90 B ⁺ prod	per conservation. <u>DOCUMENT ID</u> 1 WEIR uction cross sectio	90B on from	<u>TECN</u> MRK2 LUND.	e ⁺ e ⁻ 29 (GeV F_{552/}
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa 4LUE <0.0064 1 WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$	mily numb <u>CL%</u> 90 B+ prod <u>CL%</u> 90	per conservation. <u>DOCUMENT ID</u> 1 WEIR uction cross sectio <u>DOCUMENT ID</u> 1 AUBERT	90B on from 07AG	TECN MRK2 LUND. TECN BABR	e ⁺ e ⁻ 29 (GeV Γ_{552/}
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa ALUE <0.0064 ¹ WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$ ALUE <1.7 × 10 ⁻⁷ ¹ Assumes equal process $(\pi^+e^+\tau^-)/\Gamma_{\text{total}}$	mily numb 	per conservation. $\frac{DOCUMENT\ ID}{1\ WEIR}$ uction cross section $\frac{DOCUMENT\ ID}{1\ AUBERT}$ $1\ AUBERT$ B^+ and B^0 at the	90B on from 07AG	TECN MRK2 LUND. TECN BABR	e ⁺ e ⁻ 29 (GeV $oldsymbol{\Gamma_{552}}$ $oldsymbol{ au}(4S)$
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa ALUE <0.0064 ¹ WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$ ALUE <1.7 × 10 ⁻⁷ ¹ Assumes equal proc $(\pi^+e^+\tau^-)/\Gamma_{\text{total}}$ Test of lepton fa	mily numb — <u>CL%</u> 90 • B ⁺ prod — <u>CL%</u> 90 duction of	per conservation. $\frac{DOCUMENT\ ID}{1}$ WEIR uction cross section $\frac{DOCUMENT\ ID}{1}$ AUBERT $B^{+} \text{ and } B^{0} \text{ at the per conservation.}$	$90B$ on from $07AG$ se $\Upsilon(4S)$	TECN MRK2 LUND. TECN BABR	e^+e^- 29 ($\frac{COMMENT}{e^+e^-} \rightarrow$	Γ ₅₅₂ / (4S)
$(\pi^+e^-\mu^+)/\Gamma_{\text{total}}$ Test of lepton fa (20.0064 1 WEIR 90B assumes $(\pi^+e^\pm\mu^\mp)/\Gamma_{\text{total}}$ (21.7 × 10 ⁻⁷ 1 Assumes equal process $(\pi^+e^+\tau^-)/\Gamma_{\text{total}}$	mily numb — <u>CL%</u> 90 • B ⁺ prod — <u>CL%</u> 90 duction of	per conservation. $\frac{DOCUMENT\ ID}{1}$ WEIR uction cross section $\frac{DOCUMENT\ ID}{1}$ AUBERT $B^{+} \text{ and } B^{0} \text{ at the per conservation.}$	$90B$ on from $07AG$ se $\Upsilon(4S)$	TECN MRK2 LUND. TECN BABR	e^+e^- 29 ($\frac{COMMENT}{e^+e^-} \rightarrow$	GeV Γ ₅₅₂ / Γ(4 <i>S</i>) Γ ₅₅₃ /

HTTP://PDG.LBL.GOV

Page 145

 $\Gamma(\pi^+e^-\tau^+)/\Gamma_{\text{total}}$ Γ_{554}/Γ Test of lepton family number conservation. *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% ¹ LEES 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <20 90 $^{
m 1}$ Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^+ e^{\pm} \tau^{\mp})/\Gamma_{\text{total}}$ Γ_{555}/Γ Test of lepton family number conservation. DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) CL% 1,2 L FES 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <75 90 ¹ Assumes B($B^+ \to h^+ \ell^+ \tau^-$) = B($B^+ \to h^+ \ell^- \tau^+$). 2 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^+\mu^+\tau^-)/\Gamma_{\text{total}}$ Γ_{556}/Γ Test of lepton family number conservation. VALUE (units 10^{-6}) CL%DOCUMENT ID TECN COMMENT 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ <62 90 1 I FFS 1 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^+\mu^-\tau^+)/\Gamma_{\rm total}$ Γ_{557}/Γ Test of lepton family number conservation. *VALUE* (units 10^{-6}) DOCUMENT ID TECN COMMENT CL% ¹LFFS 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(\pi^{+}\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Γ_{558}/Γ Test of lepton family number conservation. DOCUMENT ID TECN COMMENT VALUE (units 10^{-6}) CL% 1,2 LFFS 12P BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 ¹ Assumes B($B^+ \to h^+ \ell^+ \tau^-$) = B($B^+ \to h^+ \ell^- \tau^+$). 2 Uses a fully reconstructed hadronic B decay as a tag on the recoil side. $\Gamma(K^+e^+\mu^-)/\Gamma_{\text{total}}$ Γ_{559}/Γ Test of lepton family number conservation. VALUE (units 10^{-7}) _____ <u>CL%</u> DOCUMENT ID TECN COMMENT ¹ AUBERT.B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ 90 • • • We do not use the following data for averages, fits, limits, etc. • • • ¹ AUBERT 90 02L BABR Repl. by AUBERT, B 06J $< 6.4 \times 10^4$ ² WEIR

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² WEIR 90B assumes B^+ production cross section from LUND.

..___ //55.6.5.

$\Gamma(K^+e^-\mu^+)/\Gamma_{\text{total}}$						Γ ₅₆₀ /Γ
Test of lepton fam $VALUE$ (units 10^{-7})				TECN	COMMENT	
<1.3	90	¹ AUBERT,B	061	BARR	e+e-	$\Upsilon(45)$
• • • We do not use the						7 (13)
$< 6.4 \times 10^4$	90	² WEIR	90 B	MRK2	$e^{+}e^{-}$ 29	GeV
¹ Assumes equal produ						
² WEIR 90B assumes I			•	,		
$\Gamma(K^+ e^{\pm} \mu^{\mp})/\Gamma_{total}$						Γ ₅₆₁ /Γ
$VALUE$ (units 10^{-7})	CL%	DOCUMENT ID		TECN	COMMENT	
VALUE (units 10 ⁻⁷) <0.91	90	$^{ m 1}$ AUBERT,B	06 J	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Assumes equal produ						
$\Gamma(K^+e^+ au^-)/\Gamma_{ m total}$						Γ ₅₆₂ /Γ
Test of lepton fam	ily numbe	er conservation.				' 502/ '
VALUE (units 10^{-6})				TECN	COMMENT	
<43	90	¹ LEES	12 P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconstr	ucted had	ronic B decay as a	a tag o	on the re	ecoil side.	
$\Gamma(K^+e^- au^+)/\Gamma_{ ext{total}}$ Test of lepton fam	nily numbe	er conservation.				Γ ₅₆₃ /Γ
				TECN	COMMENT	
<u>VALUE</u> (units 10 ^{−6}) <15	90	¹ LEES	12P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconstr						
		•				г /г
$\Gamma(K^+e^{\pm} au^{\mp})/\Gamma_{ ext{total}}$ Test of lepton fam	ilv numbe	er conservation				Γ ₅₆₄ /Γ
				TECN	COMMENT	
<u>VALUE</u> (units 10 ^{−6}) <30	90	1,2 LEES	12P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 Assumes B($B^+ ightarrow$,
² Uses a fully reconstr					ecoil side.	
$\Gamma(K^+\mu^+\tau^-)/\Gamma_{\text{total}}$ Test of lepton fam						Γ ₅₆₅ /Γ
				TECN	COMMENT	
<45	90	1 LEES	12P	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{ m 1}$ Uses a fully reconstr						,
$\Gamma(K^+\mu^- au^+)/\Gamma_{ ext{total}}$,	J			Γ ₅₆₆ /Γ
Test of lepton fam	ily numbe	er conservation.				- 500/ •
VALUE (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<28	90	¹ LEES	12 P	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$

 1 Uses a fully reconstructed hadronic B decay as a tag on the recoil side.

 $\Gamma(K^{+}\mu^{\pm}\tau^{\mp})/\Gamma_{\text{total}}$ Test of lepton family number conservation. VALUE (units 10^{-6}) DOCUMENT ID TECN COMMENT CL%

 1,2 LEES 12P BABR $e^+e^-
ightarrow \gamma(4S)$ 90 <48 ullet ullet We do not use the following data for averages, fits, limits, etc. ullet ullet

90 ¹ AUBERT 07AZ BABR Repl. by LEES 12P

1 Uses a fully reconstructed hadronic B decay as a tag on the recoil side.

$\Gamma(K^*(892)^+e^+\mu^-)/\Gamma_{\text{total}}$

 Γ_{568}/Γ

 Γ_{567}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-7}) ¹ AUBERT.B 06.1 BABR $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(K^*(892)^+e^-\mu^+)/\Gamma_{\text{total}}$

 Γ_{569}/Γ

DOCUMENT ID TECN COMMENT VALUE (units 10^{-7}) ¹ AUBERT,B 06J BABR $e^+e^- \rightarrow \Upsilon(4S)$ <9.9

$\Gamma(K^*(892)^+e^{\pm}\mu^{\mp})/\Gamma_{\text{total}}$

 Γ_{570}/Γ

Test of lepton family number conservation.

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$< 1.4 \times 10^{-6}$	90	$^{ m 1}$ AUBERT,B	06J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	ne followin	g data for average	s, fits,	limits, e	etc. • • •
$< 7.9 \times 10^{-6}$	90	¹ AUBERT	02L	BABR	Repl. by AUBERT B 061

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\pi^-e^+e^+)/\Gamma_{\text{total}}$

 Γ_{571}/Γ

Test of total lepton number conservation.

<u>VALUE</u>		<u>CL%</u>	<u>DOCUMENT ID</u>		<u>TECN </u>
<2.3	× 10 ⁻⁸	90	¹ LEES	12J	$\overline{BABR} \ \overline{e^+e^-} \to \ \varUpsilon(4S)$
• • • V	Ve do not use the	e following	g data for averages,	fits,	limits, etc. • • •
<1.6	$\times 10^{-6}$	90			CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
< 0.003	9	90	² WEIR	90 B	MRK2 e^+e^- 29 GeV

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\pi^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Test of total lepton number conservation.

 Γ_{572}/Γ

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT
$< 4.0 \times 10^{-9}$	95	¹ AAIJ	14 AC	LHCB	<i>pp</i> at 7, 8 TeV
\bullet \bullet We do not use the	following	data for averages	, fits,	limits, e	tc. • • •
$< 1.3 \times 10^{-8}$	95	² AAIJ	12AD	LHCB	Repl. by AAIJ 14AC
$< 4.4 \times 10^{-8}$	90	AAIJ	12 C	LHCB	pp at 7 TeV
$< 10.7 \times 10^{-8}$	90	³ LEES	12J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 1.4 \times 10^{-6}$	90	³ EDWARDS	02 B	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 9.1 \times 10^{-3}$	90	⁴ WEIR	90 B	MRK2	e^+e^- 29 GeV

HTTP://PDG.LBL.GOV

Page 148

² Assumes B($B^{+} \to h^{+} \ell^{+} \tau^{-}$) = B($B^{+} \to h^{+} \ell^{-} \tau^{+}$).

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^{2}}$ WEIR 90B assumes B^{+} production cross section from LUND.

 Γ_{573}/Γ

 $\Gamma(\pi^-e^+\mu^+)/\Gamma_{\text{total}}$ Test of total lepton number conservation.

VALUE	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
$<1.5 \times 10^{-7}$	90	¹ LEES	14A	BABR	$e^+e^- ightarrow \gamma (4S)$	5)
• • • We do not u	se the followin	g data for average	es, fits,	limits, e	etc. • • •	
$< 1.3 \times 10^{-6}$	90				$e^+e^- \rightarrow \gamma (4S)$	5)
< 0.0064	90	² WEIR	90 B	MRK2	e^+e^- 29 GeV	

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 Γ_{574}/Γ

 $\Gamma(
ho^-e^+e^+)/\Gamma_{ ext{total}}$ Test of total lepton number conservation.

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.17	90	¹ LEES	14A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages,	fits,	limits, e	etc. • • •
<2.6	90	¹ EDWARDS	02в	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\rho^-\mu^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{575}/Γ

Test of total lepton number conservation.

$VALUE$ (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.42	90	LEES	14 A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following o	lata for averages	, fits,	limits, e	tc. • • •	
< 5.0	90	^l EDWARDS	02 B	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(\rho^-e^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{576}/Γ

Created: 5/30/2017 17:22

Test of total lepton number conservation.

VALUE (units
$$10^{-6}$$
) CL% DOCUMENT ID TECN COMMENT

Q0.47 90 1 LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

<3.3 90 1 EDWARDS 02B CLE2 $e^+e^- \rightarrow \Upsilon(4S)$

 $^{^1}$ Uses $B^+ o J/\psi \, K^+$, $J/\psi o \mu^+ \mu^-$ mode for normalization. Obtains neutrinomass-dependent upper limits in the range $0.4-4.0 \times 10^{-9}$. This limit is applicable for Majorana neutrino lifetime < 1 ps.

² Uses $B^+ \to J/\psi K^+$, $J/\psi \to \mu^+ \mu^-$ mode for normalization. Obtains neutrino-massdependent upper limits in the range $0.4-1.0 \times 10^{-8}$.

³ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 $^{^4}$ WEIR 90B assumes B^+ production cross section from LUND.

 $^{^{2}}$ WEIR 90B assumes B^{+} production cross section from LUND.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 Γ_{577}/Γ

 $\Gamma(K^-e^+e^+)/\Gamma_{total}$ Test of total lepton number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$< 3.0 \times 10^{-8}$	90	¹ LEES	12J	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	e following	data for averages,	fits,	limits, e	etc. • • •
$<1.0 \times 10^{-6} < 0.0039$	90 90				$e^+e^- ightarrow~\varUpsilon(4S) \ e^+e^-$ 29 GeV

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

 Γ_{578}/Γ

 $\Gamma(K^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Test of total lepton number conservation.

<u>VALUE</u>	CL%	DOCUMENT ID		TECN	COMMENT
$<4.1 \times 10^{-8}$	90	AAIJ	12 C	LHCB	pp at 7 TeV
• • • We do not use	the followin	g data for average	s, fits,	limits,	etc. • • •
$< 6.7 \times 10^{-8}$	90	¹ LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 1.8 \times 10^{-6}$	90	¹ EDWARDS			$e^+e^- ightarrow ~ \varUpsilon(4S)$
$< 9.1 \times 10^{-3}$	90	² WEIR	90 B	MRK2	e^+e^- 29 GeV

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 Γ_{579}/Γ

 $\Gamma(K^-e^+\mu^+)/\Gamma_{total}$ Test of total lepton number conservation.

VALUE	CL%	DOCUMENT ID		TECN COMMENT	_
$< 1.6 \times 10^{-7}$	90	¹ LEES	14A	BABR $e^+e^- ightarrow \gamma(4S)$	
• • • We do not use the	following	data for averages	s, fits,	limits, etc. • • •	
$< 2.0 \times 10^{-6}$	90			CLE2 $e^+e^- \rightarrow \Upsilon(4S)$	
< 0.0064	90	² WEIR	90 B	MRK2 e^+e^- 29 GeV	

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^-e^+e^+)/\Gamma_{\text{total}}$ Test of total lepton number conservation.

 Γ_{580}/Γ

<i>VALUE</i> (units 10 ⁻⁶)	CL%	DOCUMENT ID		TECN	COMMENT	
<0.40	90	¹ LEES	14A	BABR	$e^{+}e^{-}\rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
<2.8	90	¹ EDWARDS	02 B	CLE2	$e^+e^- \to$	$\Upsilon(4S)$
4		. 0				

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

$\Gamma(K^*(892)^-\mu^+\mu^+)/\Gamma_{total}$ Test of total lepton number conservation.

 Γ_{581}/Γ

VALUE (units 10 ⁻⁰)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.59	90	¹ LEES	14 A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •	
<8.3	90	¹ EDWARDS	02в	CLE2	$e^+e^- \rightarrow$	$\Upsilon(4S)$

 $^{^1}$ Assumes equal production of B^+ and B^0 at the $\varUpsilon(4S)$.

 $^{^2}$ WEIR 90B assumes B^+ production cross section from LUND.

 $^{^2}$ WEIR 90B assumes B^+ production cross section from LUND.

 $^{^2\,\}mathrm{WEIR}$ 90B assumes B^+ production cross section from LUND.

 $\Gamma(K^*(892)^-e^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{582}/Γ

Test of total lepton number conservation.

<i>VALUE</i> (units 10^{-6})	CL%	DOCUMENT ID		TECN	COMMENT
<0.30	90	¹ LEES	14A	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the	following	data for averages	, fits,	limits, e	tc. • • •

<4.4 90 1 EDWARDS 02B CLE2 $e^{+}e^{-} \rightarrow \Upsilon(4S)$

$\Gamma(D^-e^+e^+)/\Gamma_{\text{total}}$

 Γ_{583}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT	
$< 2.6 \times 10^{-6}$	90	¹ LEES	14A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$< 2.6 \times 10^{-6}$	90	1,2 SEON	11	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$

¹ Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

$\Gamma(D^-e^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{584}/Γ

VALUE	CL%	DOCUMENT ID		TECN	COMMENT
$<1.8 \times 10^{-6}$	90	1,2 SEON	11	BELL	$e^+e^- ightarrow \gamma(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$< 2.1 \times 10^{-6}$$

$$90$$
 ¹ LEES

14A BABR
$$e^+e^- \rightarrow \Upsilon(4S)$$

$\Gamma(D^-\mu^+\mu^+)/\Gamma_{\text{total}}$

 Γ_{585}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$< 6.9 \times 10^{-7}$	95	¹ AAIJ	12AD LHCB	pp at 7 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$<17 \times 10^{-7}$$
 90 2 LEES 14A BABR $e^+e^- \rightarrow \Upsilon(4S)$ $<1.1 \times 10^{-6}$ 90 2,3 SEON 11 BELL $e^+e^- \rightarrow \Upsilon(4S)$

$\Gamma(D^{*-}\mu^{+}\mu^{+})/\Gamma_{\text{total}}$

 Γ_{586}/Γ

VALUE	CL%	DOCUMENT ID	TECN	COMMENT
$<2.4 \times 10^{-6}$	95	¹ AAIJ	12AD LHCB	pp at 7 TeV

¹Uses $B^+ \to \psi(2S)K^+$, $\psi(2S) \to J/\psi \pi^+ \pi^-$ mode for normalization.

$\Gamma \big(D_s^- \mu^+ \mu^+ \big) / \Gamma_{\rm total}$

 Γ_{587}/Γ

VALUE 7	<u>CL%</u>	DOCUMENT ID	TECN	<u>COMMENT</u>
$< 5.8 \times 10^{-7}$	95	¹ AAIJ	12AD LHCB	pp at 7 TeV

¹ Uses $B^+ \to \psi(2S) K^+$, $\psi(2S) \to J/\psi \pi^+ \pi^-$ mode for normalization. Obtains neutrino-mass-dependent upper limits in the range $1.5-8.0 \times 10^{-7}$.

¹ Assumes equal production of B^+ and B^0 at the $\Upsilon(4S)$.

² Uses $D^- \to K^+ \pi^- \pi^-$ mode and 3-body phase-space hypothesis for the signal decays.

 $^{^{1}}$ Assumes equal production of B^{0} and B^{+} from Upsilon(4S) decays.

²Uses $D^- \to K^+ \pi^- \pi^-$ mode and 3-body phase-space hypothesis for the signal decays.

 $^{^{1}}$ Uses $B^{+} \rightarrow \psi(2S) K^{+}$, $\psi(2S) \rightarrow J/\psi \pi^{+} \pi^{-}$ mode for normalization.

² Assumes equal production of B^0 and B^+ from Upsilon(4S) decays.

³Uses $D^- \to K^+ \pi^- \pi^-$ mode and 3-body phase-space hypothesis for the signal decays.

 $\Gamma(\overline{D}^0\pi^-\mu^+\mu^+)/\Gamma_{\text{total}}$ Γ_{588}/Γ 95 12AD LHCB pp at 7 TeV ¹Uses $B^+ \to \psi(2S) K^+$, $\psi(2S) \to J/\psi \pi^+ \pi^-$ mode for normalization. Obtains neutrino-mass-dependent upper limits in the range $0.3-1.5 \times 10^{-6}$. $\Gamma(\Lambda^0 \mu^+)/\Gamma_{\text{total}}$ Γ_{580}/Γ DOCUMENT ID TECN COMMENT **VALUE** 1,2 DEL-AMO-SA..11K BABR $e^+e^- \rightarrow \Upsilon(4S)$ $< 6 \times 10^{-8}$ 1 DEL-AMO-SANCHEZ 11K reports $< 6.1 \times 10^{-8}$ from a measurement of $\Gamma(B^{+}
ightarrow$ $\Lambda^0 \mu^+)/\Gamma_{\text{total}} \times [B(\Lambda \to p\pi^-)] \text{ assuming } B(\Lambda \to p\pi^-) = (63.9 \pm 0.5) \times 10^{-2}.$ ² Uses B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%. $\Gamma(\Lambda^0 e^+)/\Gamma_{\text{total}}$ Γ_{590}/Γ DOCUMENT ID TECN COMMENT VALUE 1,2 DEL-AMO-SA..11K BABR $e^+e^- \rightarrow \Upsilon(4S)$ $< 3.2 \times 10^{-8}$ 90 1 DEL-AMO-SANCHEZ 11K reports $< 3.2 \times 10^{-8}$ from a measurement of $\Gamma(B^{+} \rightarrow$ $\Lambda^0\,e^+)/\Gamma_{\text{total}}]\times[B(\Lambda\to\ p\pi^-)] \text{ assuming } B(\Lambda\to\ p\pi^-)=(63.9\pm0.5)\times10^{-2}.$ ² Uses B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%. $\Gamma(\overline{\Lambda}^0 \mu^+)/\Gamma_{\text{total}}$ $\frac{\textit{DOCUMENT ID}}{1,2}$ DEL-AMO-SA..11K BABR $e^+e^ightarrow \varUpsilon(4S)$ $<6 \times 10^{-8}$ 1 DEL-AMO-SANCHEZ 11K reports < 6.2 imes 10 $^{-8}$ from a measurement of [$\Gamma(B^{+}$ ightarrow $\overline{\Lambda}{}^0\mu^+)/\Gamma_{\text{total}}] \times [B(\Lambda \to p\pi^-)] \text{ assuming } B(\Lambda \to p\pi^-) = (63.9 \pm 0.5) \times 10^{-2}.$ ² Uses B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%. $\Gamma(\overline{\Lambda}^0 e^+)/\Gamma_{\text{total}}$ Γ_{592}/Γ $\frac{\textit{DOCUMENT ID}}{1,2}$ DEL-AMO-SA..11K BABR $e^+e^ightarrow \varUpsilon(4S)$ 1 DEL-AMO-SANCHEZ 11K reports < 8.1 imes 10 $^{-8}$ from a measurement of [$\Gamma(B^+
ightarrow$ $\overline{\Lambda}^0 \, e^+)/\Gamma_{\text{total}} \, \times \, [B(\Lambda o \ p \, \pi^-)] \, \text{assuming} \, B(\Lambda o \ p \, \pi^-) = (63.9 \pm 0.5) \times 10^{-2}.$ ² Uses B($\Upsilon(4S) \to B^0 \overline{B}{}^0$) = (51.6 ± 0.6)% and B($\Upsilon(4S) \to B^+ B^-$) = (48.4 ± 0.6)%.

POLARIZATION IN B+ DECAY

In decays involving two vector mesons, one can distinguish among the states in which meson polarizations are both longitudinal (L) or both are transverse and parallel (\parallel) or perpendicular (\perp) to each other with the parameters Γ_L/Γ , Γ_\perp/Γ , and the relative phases ϕ_\parallel and ϕ_\perp . See the definitions in the note on "Polarization in B Decays" review in the B^0 Particle Listings.

$$\Gamma_L/\Gamma$$
 in $B^+ o \overline{D}^{*0}
ho^+$

VALUE

0.892 \pm 0.018 \pm 0.016

DOCUMENT ID

CSORNA

03

CLE2

 $e^+ e^- o \Upsilon(4S)$

Γ_L/Γ in $B^+ o \overline{D}{}^{*0}K^{*+}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.86 \pm 0.06 \pm 0.03$	AUBERT	04K	BABR	$e^+e^-\to$	$\Upsilon(4S)$
Γ_L/Γ in $B^+ o J/\psi K^{*+}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.604 \pm 0.015 \pm 0.018$	ITOH	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
Γ_{\perp}/Γ in $B^+ o J/\psi K^{*+}$					
VALUE	DOCUMENT ID				22(1.2)
$0.180 \pm 0.014 \pm 0.010$	ITOH	05	BELL	$e^+e^- \rightarrow$	T(4S)
Γ_L/Γ in $B^+ \to \omega K^{*+}$					
VALUE	DOCUMENT ID				22(- 2)
$0.41 \pm 0.18 \pm 0.05$	AUBERT	09н	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
Γ_L/Γ in $B^+ \rightarrow \omega K_2^*(1430)^+$					
VALUE	DOCUMENT ID				22(1.5)
$0.56 \pm 0.10 \pm 0.04$	AUBERT	09н	BABR	$e^+e^- \rightarrow$	T(4S)
Γ_L/Γ in $B^+ o K^{*+} \overline{K}^{*0}$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.82^{f +0.15}_{f -0.21}$ OUR AVERAGE					
$1.06 \pm 0.30 \pm 0.14$	$^{ m 1}$ GOH	15	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$0.75^{+0.16}_{-0.26} \pm 0.03$	³ AUBERT			$e^+e^- \rightarrow$	
¹ Signal significance 2.7 standard ² Signal significance 3.7 standard ³ Assumes equal production of <i>B</i> Γ _L /Γ in $B^+ \rightarrow \phi K^*(892)^+$	deviations.	T(45	5).		
VALUE , WK (032)	DOCUMENT ID		TECN	COMMENT	
0.50±0.05 OUR AVERAGE					
$0.49 \pm 0.05 \pm 0.03$	AUBERT	0 7 ва I	BABR ($e^+e^- ightarrow$ '	r(4S)
$0.52 \pm 0.08 \pm 0.03$	CHEN				r(4S)
• • • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •	
$0.46 \pm 0.12 \pm 0.03$	AUBERT	03v I	BABR I	Repl. by AU	BERT 07BA
Γ_{\perp}/Γ in $B^+ o \phi K^{*+}$					
<u>VALUE</u> 0.20±0.05 OUR AVERAGE	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.21 \pm 0.05 \pm 0.02$	AUBERT	07 _R A	BARR	$e^+e^- \rightarrow$	$\Upsilon(AS)$
$0.19 \pm 0.08 \pm 0.02$	CHEN			$e^+e^- \rightarrow$	
	5.11	00/1	5		. ()
ϕ_{\parallel} in $B^+ o\phi K^{*+}$					
VALUE (°)	DOCUMENT ID		TECN	COMMENT	
2.34±0.18 OUR AVERAGE				1	
$2.47 \pm 0.20 \pm 0.07$	AUBERT			$e^+e^- \rightarrow$	
$2.10\pm0.28\pm0.04$	CHEN	05A	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
HTTP://PDG.LBL.GOV	Page 153		Creat	ed: 5/30/	2017 17:22

ϕ_{\perp} in $B^+ o \phi K^{*+}$					
<u>VALUE (°)</u>	DOCUMENT ID		TECN	COMMENT	
2.58±0.17 OUR AVERAGE					
$2.69 \pm 0.20 \pm 0.03$	AUBERT			$e^+e^- \rightarrow$	
$2.31 \pm 0.30 \pm 0.07$	CHEN	05A	BELL	e^+e^-	$\Upsilon(4S)$
$\delta_0(B^+ \to \phi K^{*+})$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
$3.07 \pm 0.18 \pm 0.06$	AUBERT	07 BA	BABR	$e^+e^- \to$	$\Upsilon(4S)$
$A^0_{CP}(B^+ o \phi K^{*+})$					
$CP(D \rightarrow \psi K)$	DOCUMENT ID		TFCN	COMMENT	
0.17±0.11±0.02	AUBERT				
					,
$A_{CP}^{\perp}(B^+ \rightarrow \phi K^{*+})$					
VALUE	DOCUMENT ID				
$0.22 \pm 0.24 \pm 0.08$	AUBERT	07BA	BABR	$e \mid e \rightarrow$	1 (45)
$\Delta\phi_{\parallel}(B^+ o\phi K^{*+})$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
$0.07 \pm 0.20 \pm 0.05$	AUBERT	07 BA	BABR	$e^+e^- \to$	$\Upsilon(4S)$
$\Delta\phi_{\perp}(B^+ o \phi K^{*+})$					
VALUE (rad)	DOCUMENT ID		TECN	COMMENT	
0.19±0.20±0.07	AUBERT				
					()
$\Delta \delta_0(B^+ \to \phi K^{*+})$	DOCUMENT ID		TE 611	601415NT	
VALUE (rad)	DOCUMENT ID				
$0.20 \pm 0.18 \pm 0.03$	AUBERT	U/BA	BABR	e ' e →	1 (45)
Γ_L/Γ in $B^+ \rightarrow \phi K_1(1270)^+$					
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT	
$0.46^{f +0.12}_{f -0.13} {+0.06}_{f -0.07}$	AUBERT	08 BI	BABR	e^+e^-	$\Upsilon(4S)$
- (-, -)					
Γ_L/Γ in $B^+ \rightarrow \phi K_2^*(1430)^+$	DOCUMENT ID		TE 611	601415NT	
VALUE	DOCUMENT ID				
$0.80^{+0.09}_{-0.10}\pm0.03$	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$\delta_0(B^+ \to \phi K_2^*(1430)^+)$					
$\frac{VALUE \text{ (rad)}}{VALUE \text{ (rad)}}$	DOCUMENT ID		TECN	COMMENT	
3.59±0.19±0.12	AUBERT				
	, lobelti	0001	אטוע		. (10)
$\Delta\delta_0(B^+\to \phi K_2^*(1430)^+)$					
VALUE (rad)	DOCUMENT ID				
$-0.05\pm0.19\pm0.06$	AUBERT	08 BI	BABR	e^+e^-	$\Upsilon(4S)$

Γ_L/Γ in $B^+ \rightarrow \rho^0 K^*(892)^+$ TECN COMMENT $0.78\pm0.12\pm0.03$ DEL-AMO-SA..11D BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • $0.96^{\,+\,0.04}_{\,-\,0.15}\,{\pm}\,0.04$ **AUBERT** 03V BABR Repl. by DEL-AMO-SANCHEZ 11D $\Gamma_L/\Gamma(B^+ \rightarrow K^*(892)^0 \rho^+)$ DOCUMENT ID TECN COMMENT 0.48±0.08 OUR AVERAGE 06G BABR $e^+e^- \rightarrow \Upsilon(4S)$ $0.52 \pm 0.10 \pm 0.04$ AUBERT,B $0.43 \pm 0.11 ^{+0.05}_{-0.02}$ 05D BELL $e^+e^- \rightarrow \Upsilon(4S)$ **ZHANG** Γ_L/Γ in $B^+ \to \rho^+ \rho^0$ DOCUMENT ID TECN 0.950 ± 0.016 OUR AVERAGE $0.950 \pm 0.015 \pm 0.006$ **AUBERT** 09G BABR $e^+e^- \rightarrow \Upsilon(4S)$ 03B BELL $e^+e^- \rightarrow \Upsilon(4S)$ $0.948 \pm 0.106 \pm 0.021$ **ZHANG** • • We do not use the following data for averages, fits, limits, etc. $0.905 \!\pm\! 0.042 \!+\! 0.023 \\ -0.027$ AUBERT, BE 06G BABR Repl. by AUBERT 09G $0.97 \ \, ^{+0.03}_{-0.07} \ \, \pm 0.04$ **AUBERT** 03V BABR Repl. by AUBERT, BE 06G Γ_L/Γ in $B^+ \rightarrow \omega \rho^+$

<u>VALUE</u>	DOCUMENT ID		<u>TECN</u>	COMMENT
$0.90 \pm 0.05 \pm 0.03$	AUBERT	09н	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the follow	wing data for av	erages	s, fits, lir	nits, etc. • • •
$0.82\!\pm\!0.11\!\pm\!0.02$	AUBERT,B	06T	BABR	Repl. by AUBERT 09H
$0.88^{+0.12}_{-0.15} \pm 0.03$	AUBERT	050	BABR	Repl. by AUBERT,B 06T

Γ_L/Γ in $B^+ \rightarrow p \overline{p} K^*(892)^+$

VALUE	DOCUMENT ID		TECN	COMMENT
0.32±0.17±0.09	CHEN	080	BELL	$e^+e^- \rightarrow \Upsilon(4S)$

CP VIOLATION

 A_{CP} is defined as

$$\frac{B(B^- \to \overline{f}) - B(B^+ \to f)}{B(B^- \to \overline{f}) + B(B^+ \to f)},$$

the *CP*-violation charge asymmetry of exclusive B^- and B^+ decay.

$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$

HTTP://PDG.LBL.GOV

01 (-	- / - / / ,	,			
VALUE		DOCUMENT ID		TECN	COMMENT
0.003 ± 0.006	OUR AVERA	GE Error include	es sca	le factor	of 1.8. See the ideogram
below.					
0.0059 ± 0.0036	6 ± 0.0007	ABAZOV	13M	D0	$p\overline{p}$ at 1.96 TeV
-0.0076 ± 0.0050	0 ± 0.0022	SAKAI	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.09 ± 0.07	± 0.02	¹ WEI	80		$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.030 ± 0.014	± 0.010	² AUBERT	05 J		$e^+e^- ightarrow ~ \varUpsilon(4S)$
0.018 ± 0.043	± 0.004	³ BONVICINI	00	CLE2	$e^+e^- ightarrow ~ \varUpsilon(4S)$

Page 155

• • We do not use the following data for averages, fits, limits, etc. • •

$0.0075 \pm 0.0061 \pm 0.0030$	⁴ ABAZOV	080	D0	Repl. by ABAZOV 13M
0.03 ± 0.015 ± 0.006	AUBERT	04 P	BABR	Repl. by AUBERT 05J
$-0.026 \pm 0.022 \pm 0.017$	ABE	03 B	BELL	Repl. by SAKAI 10
$0.003 \pm 0.030 \pm 0.004$	AUBERT	02F	BABR	Repl. by AUBERT 04P

 $^{^{1}}$ Uses $B^{+} \rightarrow J/\psi K^{+}$, where $J/\psi \rightarrow p \overline{p}$.

⁴ Uses $J/\psi \rightarrow \mu^+\mu^-$ decay.

$$A_{CP}(B^+ \rightarrow J/\psi(1S)K^+)$$

$A_{CP}(B^+ \rightarrow J/\psi(1S)\pi^+)$

$VALUE$ (units 10^{-2})	DOCUMENT ID		TECN	COMMENT
0.1± 2.8 OUR AVERAGE	Error includes scale	e factor	of 1.2.	
$-$ 4.2 \pm 4.4 \pm 0.9	ABAZOV	13M	D0	$p\overline{p}$ at 1.96 TeV
$0.5 \pm \ 2.7 \pm 1.1$	¹ AAIJ	12 AC	LHCB	pp at 7 TeV
$12.3 \pm 8.5 \pm 0.4$	AUBERT	04 P	BABR	$e^+e^- ightarrow \gamma(4S)$
$-2.3\pm16.4\pm1.5$	ABE	03 B	BELL	$e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follow	ing data for average	es, fits,	limits, e	etc. • • •
_ 0 + 8 +3	2 ARAZOV	080	DΩ	Repl. by ARAZOV 13M

AUBERT 02F BABR Repl. by AUBERT 04P

 $^{^2}$ The result reported corresponds to $-A_{CP}$.

 $^{^3\}mathrm{A}$ +0.3% correction is applied due to a slightly higher reconstruction efficiency for the positive kaons.

 $^{^1}$ Uses $A_{CP}(B^+\to~J/\psi\,K^+)=$ 0.001 \pm 0.007 to extract production asymmetry. 2 Uses $J/\psi\to~\mu^+\mu^-$ decay.

 $A_{CP}(B^+ \rightarrow J/\psi \rho^+)$

DOCUMENT ID TECN COMMENT AUBERT 07AC BABR $e^+e^-
ightarrow \gamma(4S)$ $-0.11\pm0.12\pm0.08$

 $A_{CP}(B^+ \to J/\psi K^*(892)^+)$

DOCUMENT ID TECN COMMENT 05J BABR $e^+e^- \rightarrow \Upsilon(4S)$ ¹ AUBERT $-0.048\pm0.029\pm0.016$

$A_{CP}(B^+ \rightarrow \eta_c K^+)$

VALUE	DOCUMENT ID		COMMENT
0.01 ±0.07 OUR AVERAGE	Error includes sca	le factor of 2.	2.
$0.040\pm0.034\pm0.004$	$^{ m 1}$ AAIJ	14AF LHCB	pp at 7, 8 TeV
$-0.16 \pm 0.08 \pm 0.02$	1 WEI	08 BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
 ● ● We do not use the followin 	g data for averages	s, fits, limits, e	etc. • • •

¹ AAIJ 13AU LHCB Repl. by AAIJ 14AF $0.046 \pm 0.057 \pm 0.007$ ¹Uses $B^+ \rightarrow \eta_C K^+$, where $\eta_C \rightarrow p\overline{p}$.

$A_{CP}(B^+ \rightarrow \psi(2S)\pi^+)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT			
0.03 ± 0.06 OUR AVERAGE							
$0.048\!\pm\!0.090\!\pm\!0.011$	$^{ m 1}$ AAIJ	12AC	LHCB	pp at 7 TeV			
$0.022 \pm 0.085 \pm 0.016$	BHARDWAJ	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$			
1 Uses $A_{CP}(B^{+} o J/\psi K^{+}) = 0.001 \pm 0.007$ to extract production asymmetry.							

$A_{CP}(B^+ \rightarrow \psi(2S)K^+)$

0 2 (, , , , ,		
VALUE	DOCUMENT ID	<u>TECN COMMENT</u>
0.012±0.020 OUR AVERAGE	Error includes sca	le factor of 1.5. See the ideogram
below.		
$0.092\!\pm\!0.058\!\pm\!0.004$	¹ AAIJ	14AF LHCB pp at 7, 8 TeV
$0.024 \pm 0.014 \pm 0.008$	² AAIJ	12AC LHCB pp at 7 TeV
$0.052 \pm 0.059 \pm 0.020$	AUBERT	05J BABR $e^+e^- ightarrow~ \varUpsilon(4S)$
$-0.042\pm0.020\pm0.017$	ABE	03B BELL $e^+e^- ightarrow \varUpsilon(4S)$
$0.02\ \pm0.091\pm0.01$	³ BONVICINI	00 CLE2 $e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	g data for averages	s, fits, limits, etc. • • •
$-0.002\pm0.123\pm0.012$	1,2 AAIJ	13AU LHCB Repl. by AAIJ 14AF

¹ Uses $\psi(2S) \rightarrow p\overline{p}$ decays.

 $^{^{1}}$ The result reported corresponds to $-A_{CP}$.

 $^{^2}$ Uses $A_{CP}(B^+ \to J/\psi K^+) = 0.001 \pm 0.007$ to extract production asymmetry.

 $^{^3}$ A +0.3% correction is applied due to a slightly higher reconstruction efficiency for the positive kaons.

$A_{CP}(B^+ \to \psi(2S)K^*(892)^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
0.077±0.207±0.051	¹ AUBERT 05J	BABR	$e^+e^- \rightarrow \Upsilon(4S)$

 $^{^{1}\,\}mathrm{The}$ result reported corresponds to $-\mathrm{A}_{CP}.$

$A_{CP}(B^+ \rightarrow \chi_{c1}(1P)\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.07 \pm 0.18 \pm 0.02$	KUMAR	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

$A_{CP}(B^+\to~\chi_{c0}\,K^+)$

VALUE	<u>DOCUMENT ID</u>	IECNCOMMENI	
-0.20 ± 0.18 OUR AVERAGE	Error includes scale	le factor of 1.5. See the ideogram	
below.			
$-0.96 \pm 0.37 \pm 0.04$	LEES	111 BABR $e^+e^- ightarrow~ \varUpsilon(4S)$	
$-0.14\ \pm0.15 {+0.03\atop -0.06}$	AUBERT	08AI BABR $e^+e^- ightarrow~ \varUpsilon(4S)$	
$-0.065\pm0.20 {}^{+0.035}_{-0.024}$	GARMASH	06 BELL $e^+e^- \rightarrow \Upsilon(4S)$	

$A_{CP}(B^+ \rightarrow \chi_{c1}K^+)$

VALUE	DOCUMENT ID	TECN	COMMENT	
-0.009 ± 0.033 OUR AVERAGE				
$-0.01 \pm 0.03 \pm 0.02 -0.003 \pm 0.076 \pm 0.017$	KUMAR ¹ AUBERT		$e^+e^- \rightarrow e^+e^- \rightarrow$	` '

 $^{^{1}\}mathrm{The}$ result reported corresponds to $-A_{CP}.$

$A_{CP}(B^+ \rightarrow \chi_{c1} K^*(892)^+)$

O± (/ CC =	•	,	,					
VALUE					DOCUMENT ID		TECN	COMMENT	
0.471+0.378+	0.268				1 AUBERT	05 I	BABR	$e^+e^- \rightarrow \gamma(4S)$	_

 $^{^{1}\,\}mathrm{The}$ result reported corresponds to $-\mathrm{A}_{CP}.$

$A_{CP}(B^+ \rightarrow D^0 \ell^+ \nu_\ell)$

VALUE (units 10^{-2})	DOCUMENT ID	TECN	COMMENT
$-0.14\pm0.14\pm0.14$	¹ ABAZOV 17/	D0	<i>p</i> p at 1.96 TeV
1 50 + .	15(54) 0.75 1.0		

¹ Uses $D^0 \rightarrow K^- \pi^+$ decays and f(B^+) = 0.56 \pm 0.01 from 10.4 fb⁻¹ of Run II data.

$A_{CP}(B^+ \rightarrow \overline{D}{}^0\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.007 ± 0.007 OUR AVERAGE				
$-0.006\pm0.005\pm0.010$	1 AAIJ	13AE	LHCB	pp at 7 TeV
$-0.008\!\pm\!0.008$	ABE	06	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
$1_{\text{Uses }} B^{\pm} \rightarrow [K^{\pm} \pi^{\mp} \pi^{+} \pi^{-}]$	$1 - h^{\pm}$ mode			

$A_{CP}(B^+ \rightarrow D_{CP(+1)}\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.008 ± 0.005 OUR AVERAGE	_			
$-0.0098 \pm 0.0043 \pm 0.0021$	AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV
0.035 ± 0.024	ABE	06	BELL	$e^+e^- ightarrow ~ \gamma(4S)$

$A_{CP}(B^+ \rightarrow D_{CP(-1)}\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.017±0.026	ABE	06	BELL	$e^+e^- ightarrow \gamma(4S)$

$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}\pi^{+})$

VALUE	DOCUMENT ID		TECN	COMMENT
0.023 + -0.048 + 0.005	AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV
• • • We do not use the following	data for averages	, fits,	limits, e	etc. • • •

 0.13 ± 0.10 AAIJ 13AE LHCB Repl. by AAIJ 16L

$A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D K^+)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
$0.100 \pm 0.034 \pm 0.018$	AAIJ	16L	LHCB	pp at 7, 8 TeV

$A_{CP}(B^+\to~\overline{D}{}^0K^+)$

VALUE	DOCUMENT ID	<u>TECN COMMENT</u>
-0.008 ± 0.010 OUR AVERAGE	Error includes se	cale factor of 1.5. See the ideogram
below.		
$-0.0194 \pm 0.0072 \pm 0.0060$	AAIJ	16L LHCB pp at 7, 8 TeV
	¹ AAIJ	16L LHCB pp at 7, 8 TeV
$0.010\ \pm0.026\ \pm0.005$	² AAIJ	15W LHCB pp at 7, 8 TeV
0.066 ± 0.036	ABE	06 BELL $e^+e^- \rightarrow \Upsilon(4S)$
• • We do not use the following	data for averages	fits limits etc.

-0.029 ± 0.020	± 0.018	¹ AAIJ	13 AE	LHCB	Repl.	by AAIJ 16L
0.003 ± 0.080	± 0.037	³ ABE	03 D	BELL	Repl.	by SWAIN 03
0.04 ± 0.06	± 0.03	⁴ SWAIN	03	BELL	Repl.	by ABE 06

WEIGHTED AVERAGE -0.008±0.010 (Error scaled by 1.5)

HTTP://PDG.LBL.GOV

Page 160

$A_{CP}([K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{+})$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.313\pm0.102\pm0.038$	AAIJ 16	L LHCB	<i>pp</i> at 7, 8 TeV
144 1 1 6 11			

• • • We do not use the following data for averages, fits, limits, etc. • • •

 -0.42 ± 0.22

AAIJ

13AE LHCB Repl. by AAIJ 16L

Created: 5/30/2017 17:22

$A_{CP}(B^+ \to [\pi^+\pi^+\pi^-\pi^-]_D\pi^+)$

VALUE (units 10^{-3})	DOCUMENT ID		TECN	COMMENT
$-4.1\pm7.9\pm2.4$	AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV

$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+)$

VALUE	DOCUMENT ID		TECIV	COMMENT
-0.58 ± 0.21 OUR AVERAGE				
$-0.82\!\pm\!0.44\!\pm\!0.09$	AALTONEN	11 AJ	CDF	$p\overline{p}$ at 1.96 TeV
$-0.39 {}^{+ 0.26}_{- 0.28} {}^{+ 0.04}_{- 0.03}$	HORII	11	BELL	$e^+e^- ightarrow \gamma(4S)$
$-0.86 \pm 0.47 {+0.12\atop -0.16}$	DEL-AMO-SA.	.10н	BABR	$e^+e^- ightarrow \gamma(4S)$

• • We do not use the following data for averages, fits, limits, etc. • •

$$-0.1 \, {}^{+0.8}_{-1.0} \, \pm 0.4$$
 HORII 08 BELL Repl. by HORII 11 $+0.88 \, {}^{+0.77}_{-0.62} \pm 0.06$ SAIGO 05 BELL Repl. by HORII 08

$A_{CP}(B^+ \rightarrow [K^-\pi^+\pi^0]_D K^+)$ VALUE DOCUMENT ID

VALUL	DOCUMENT ID		TLCIV	COMMENT
0.07 ± 0.30 OUR AVERAGE	Error includes scale	factor	of 1.5.	
$-0.20\!\pm\!0.27\!\pm\!0.04$	1 AAIJ	15W	LHCB	<i>pp</i> at 7, 8 TeV
$0.41 \pm 0.30 \pm 0.05$	NAYAK	13	BELL	$e^+e^- ightarrow \gamma(4S)$
$1_{\text{Uses }D^0 \rightarrow K^-\pi^+\pi^0 \text{ for}}$	the favored mode as	0	→ K+	$\pi^-\pi^0$ for the suppressed

¹ Uses $D^0 \to K^- \pi^+ \pi^0$ for the favored mode, and $D^0 \to K^+ \pi^- \pi^0$ for the suppressed mode.

$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D K^+)$

<u>VALUE</u>	<u>DOCUMENT ID</u>	TECN	COMMENT
$0.30 \pm 0.20 \pm 0.02$	¹ AAIJ	15W LHCB	pp at 7, 8 TeV

¹Uses $D \rightarrow K^+K^-\pi^0$ mode.

$$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)$$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.054 \pm 0.091 \pm 0.011$	¹ AAIJ	15W LHCB	<i>pp</i> at 7, 8 TeV

¹Uses $D \rightarrow \pi^+\pi^-\pi^0$ mode.

¹Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}]_{D}h^{\pm}$ mode.

² Uses $D^0 \to K^- \pi^+ \pi^0$ for the favored mode, and $D^0 \to K^+ \pi^- \pi^0$ for the suppressed mode.

 $^{^{3}}$ Corresponds to 90% confidence range $-0.15 < A_{CP} < 0.16$.

 $^{^4}$ Corresponds to 90% confidence range $-0.07 < A_{CP} < 0.15$.

$A_{CP}(B^+ \to [K^-\pi^+]_{\overline{D}}K^*(892)^+)$

TECN COMMENT DOCUMENT ID 09AJ BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.34\pm0.43\pm0.16$ **AUBERT**

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.22 \pm 0.61 \pm 0.17$

AUBERT,B 05V BABR Repl. by AUBERT 09AJ

Created: 5/30/2017 17:22

$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D\pi^+)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT
0.00 ± 0.09 OUR AVERAGE				
$0.13 \pm 0.25 \pm 0.02$	AALTONEN	11 AJ	CDF	$p\overline{p}$ at 1.96 TeV
$-0.04\!\pm\!0.11 \!+\! 0.02 \\ -0.01$	HORII	11	BELL	$e^+e^- ightarrow \Upsilon(4S)$
$0.03 \pm 0.17 \pm 0.04$	DEL-AMO-SA	. 10H	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following	data for averages	s, fits,	limits, e	tc. • • •
$-0.02^{+0.15}_{-0.16}{\pm}0.04$	HORII	80	BELL	Repl. by HORII 11
$+0.30^{+0.29}_{-0.25}\pm0.06$	SAIGO	05	BELL	Repl. by HORII 08

$A_{CP}(B^+ \to [K^-\pi^+\pi^0]_D\pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.35 ±0.16 OUR AVERAGE				
$0.438 \pm 0.190 \pm 0.011$	¹ AAIJ	15W	LHCB	<i>pp</i> at 7, 8 TeV
$0.16\ \pm0.27\ ^{+0.03}_{-0.04}$	NAYAK	13	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$

¹Uses $D^0 \to K^- \pi^+ \pi^0$ for the favored mode, and $D^0 \to K^+ \pi^- \pi^0$ for the suppressed

$A_{CP}(B^+ \to [K^+ K^- \pi^0]_D \pi^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.030\pm0.040\pm0.005$	¹ AAIJ	15W LHCB	<i>pp</i> at 7, 8 TeV

¹Uses $D \rightarrow K^+K^-$ mode.

$A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D\pi^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.016\pm0.020\pm0.004$	¹ AAIJ	15W LHCB	<i>pp</i> at 7, 8 TeV

¹Uses $D \rightarrow \pi^+\pi^-$ mode.

$A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}\pi^+)$

<u>VA</u>LUE DOCUMENT ID TECN COMMENT DEL-AMO-SA..10H BABR $e^+e^-
ightarrow ~ \varUpsilon(4S)$ $-0.09\pm0.27\pm0.05$

$A_{CP}(B^+ \to [K^-\pi^+]_{(D\gamma)}\pi^+)$

DOCUMENT ID TECN COMMENT DEL-AMO-SA..10H BABR $e^+e^-
ightarrow \gamma (4S)$ $-0.65\pm0.55\pm0.22$

$A_{CP}(B^+ \to [K^-\pi^+]_{(D\pi)}K^+)$

VALUE DOCUMENT ID TECN COMMENT DEL-AMO-SA..10H BABR $e^+e^-
ightarrow ~ \varUpsilon(4S)$ $0.77 \pm 0.35 \pm 0.12$

```
A_{CP}(B^+ \rightarrow [K^-\pi^+]_{(D\gamma)}K^+)
                                        DOCUMENT ID TECN COMMENT
0.36\pm0.94^{+0.25}_{-0.41}
                                        DEL-AMO-SA..10H BABR e^+e^- 
ightarrow \varUpsilon(4S)
A_{CP}(B^+ \to [\pi^+\pi^-\pi^0]_D K^+)
                                         DOCUMENT ID TECN COMMENT
                                      <sup>1</sup> AUBERT
                                                         07BJ BABR e^+e^- \rightarrow \Upsilon(4S)
-0.02\pm0.15\pm0.03
• • We do not use the following data for averages, fits, limits, etc. •
-0.02\pm0.16\pm0.03
                                        AUBERT,B
                                                         05T BABR Repl. by AUBERT 07BJ
  ^1 Uses a Dalitz plot analysis of D^0\to\pi^+\pi^-\pi^0. Also reports the one-sigma regions: 0.06 < r_B< 0.78, -30^\circ<\gamma< 76°, and -27^\circ<\delta< 78°.
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D K^+)
                                      DOCUMENT ID TECN COMMENT

AAIJ 14V LHCB pp at 7, 8 TeV
0.040 \pm 0.091 \pm 0.018
  <sup>1</sup> The analysis uses all of D \to K_S^0 K \pi Dalitz decays.
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D K^+)
                                        DOCUMENT ID TECN COMMENT
                                                14V LHCB pp at 7, 8 TeV
0.233 \pm 0.129 \pm 0.024
  <sup>1</sup> The analysis uses all of D \to K_S^0 K \pi Dalitz decays.
A_{CP}(B^+ \to [K_S^0 K^- \pi^+]_D \pi^+)
                                       DOCUMENT ID TECN COMMENT
                                      ^{1} AAIJ
-0.052\pm0.029\pm0.017
                                                     14V LHCB pp at 7, 8 TeV
  <sup>1</sup> The analysis uses all of D \to K_S^0 K \pi Dalitz decays.
A_{CP}(B^+ \to [K_S^0 K^+ \pi^-]_D \pi^+)
                                        DOCUMENT ID TECN COMMENT
                                      ^{1} AAIJ
                                                         14V LHCB pp at 7, 8 TeV
-0.025\pm0.024\pm0.010
  <sup>1</sup> The analysis uses all of D \to K^0_{\mathsf{S}} K \pi Dalitz decays.
A_{CP}(B^+ \rightarrow [K^*(892)^- K^+]_D K^+)
                                        DOCUMENT ID TECN COMMENT
                                      <sup>1</sup> AAIJ 14V LHCB pp at 7, 8 TeV
0.026 \pm 0.109 \pm 0.029
  <sup>1</sup> The Analysis uses D \to K^*(892) K \to K^0_S K \pi decays.
A_{CP}(B^+ \rightarrow [K^*(892)^+ K^-]_D K^+)
                                      DOCUMENT ID TECN COMMENT

AAIJ 14V LHCB pp at 7, 8 TeV
  <sup>1</sup> The Analysis uses D \rightarrow K^*(892) K \rightarrow K_S^0 K \pi decays.
A_{CP}(B^+ \to [K^*(892)^+ K^-]_D \pi^+)
                                      DOCUMENT ID TECN COMMENT

1 AAIJ 14V LHCB pp at 7, 8 TeV
  <sup>1</sup> The Analysis uses D \to K^*(892) K \to K^0_S K \pi decays.
```

Page 163

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

$A_{CP}(B^+ \to [K^*(892)^- K^+]_D \pi^+)$

¹ The Analysis uses $D \rightarrow K^*(892) K \rightarrow K_S^0 K \pi$ decays.

$A_{CP}(B^+ \rightarrow D_{CP(+1)}K^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
0.11 ± 0.04 OUR AVERAGE	Error includes sca	le fact	tor of 2.3	3.
$0.097 \pm 0.018 \pm 0.009$	AAIJ	16L	LHCB	<i>pp</i> at 7, 8 TeV
$0.39 \pm 0.17 \pm 0.04$				$p\overline{p}$ at 1.96 TeV
$0.25\ \pm0.06\ \pm0.02$	¹ DEL-AMO-SA	. 10 G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.06 \pm 0.14 \pm 0.05$	ARF	06	BFLL	$e^+e^- \rightarrow \gamma(45)$

• We do not use the following data for averages, fits, limits, etc. • •

	0	
$0.145 \pm 0.032 \pm 0.010$	² AAIJ	12M LHCB Repl. by AAIJ 16L
$0.27 \pm 0.09 \pm 0.04$	AUBERT	08AA BABR Repl. by DEL-AMO-
		SANCHEZ 10G
$0.35 \pm 0.13 \pm 0.04$	AUBERT	06J BABR Repl. by AUBERT 08AA
$0.07\ \pm0.17\ \pm0.06$	AUBERT	04N BABR Repl. by AUBERT 06J
$0.29\ \pm0.26\ \pm0.05$	³ ABE	03D BELL Repl. by SWAIN 03
$0.06 \pm 0.19 \pm 0.04$	⁴ SWAIN	03 BELL Repl. by ABE 06

 $^{^1}$ Reports the first evidence for direct $\it CP$ violation in $\it B \rightarrow \it DK$ decays with 3.6 standard

$A_{ADS}(B^+ \rightarrow DK^+)$

$$\begin{split} A_{ADS}(B^+ \to DK^+) &= \frac{(R_K^- - R_K^+)}{(R_K^- + R_K^+)} \text{ where} \\ R_K^- &= \Gamma(B^- \to [K^+ \pi^-]_D K^-) \ / \ \Gamma(B^- \to [K^- \pi^+]_D K^-) \text{ and} \\ R_K^+ &= \Gamma(B^+ \to [K^- \pi^+]_D K^+) \ / \ \Gamma(B^+ \to [K^+ \pi^-]_D K^+) \end{split}$$

VALUE $-0.403\pm0.056\pm0.011$ DOCUMENT ID TECN COMMENT 16L LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.52 \pm 0.15 \pm 0.02$

AAIJ

12M LHCB Repl. by AAIJ 16L

$A_{ADS}(B^+ \rightarrow D\pi^+)$

$$\begin{split} A_{ADS}(B^+ \to D\pi^+) &= \frac{(R_\pi^- - R_\pi^+)}{(R_\pi^- + R_\pi^+)} \text{ where} \\ R_\pi^- &= \Gamma(B^- \to [K^+\pi^-]_D\pi^-) \, / \, \Gamma(B^- \to [K^-\pi^+]_D\pi^-) \text{ and} \\ R_\pi^+ &= \Gamma(B^+ \to [K^-\pi^+]_D\pi^+) \, / \, \Gamma(B^+ \to [K^+\pi^-]_D\pi^+) \end{split}$$

<u>VA</u>LUE DOCUMENT ID TECN COMMENT $0.100 \pm 0.031 \pm 0.009$ AAIJ 16L LHCB pp at 7, 8 TeV

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.143 \pm 0.062 \pm 0.011$

AAIJ

12M LHCB Repl. by AAIJ 16L

²AAIJ 12M reports an evidence of direct *CP* violation in $B^{\pm} \rightarrow DK^{\pm}$ decays with a total significance of 5.8 σ .

 $^{^3}$ Corresponds to 90% confidence range $-0.14 < A_{CP} < 0.73$.

 $^{^4}$ Corresponds to 90% confidence range $-0.26 <\!\!A_{\mbox{\it CP}} < 0.38$

	$A_{ADS}(B^+ \rightarrow [K^-\pi^+]_D K_{VALUE})$	$(+\pi^-\pi^+)$ DOCUMENT ID TECH COMMENT	
A_ADS(B ⁺ → [K ⁻ π ⁺] _D π ⁺ π ⁻ π ⁺) NALUE -0.013±0.087 AAIJ 15BC LHCB pp at 7, 8 TeV A_CP(B ⁺ → D_CP(-1)K ⁺) VALUE -0.09±0.07±0.02 -0.12±0.14±0.05 ABE 06 BELL -0.09±0.09±0.02 -0.09±0.09±0.02 -0.09±0.09±0.02 -0.09±0.04 AUBERT 08AB ABAR Repl. by DEL-AMO-SANCHEZ 10G -0.02±0.13±0.04 -0.19±0.17±0.05 2 SWAIN 3 BELL Repl. by SWAIN 03 BELL Repl. by SWAIN 03 BELL Repl. by ABE 06 1 Corresponds to 90% confidence range -0.62 < A_CP < 0.18. 2 Corresponds to 90% confidence range -0.47 < A_CP < 0.11. A_CP(B ⁺ → [K ⁺ K ⁻] _D K ⁺ π ⁻ π ⁺) NALUE -0.054±0.101±0.011 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁻ π ⁺] _D K ⁺ π ⁻ π ⁺) NALUE -0.054±0.101±0.011 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁻ π ⁺] _D K ⁺ π ⁻ π ⁺) NALUE -0.019±0.011±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁻ π ⁺] _D π ⁺ π ⁻ π ⁺) NALUE -0.019±0.011±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁺ K ⁻] _D π ⁺ π ⁻ π ⁺) NALUE -0.019±0.011±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁺ π ⁻] _D π ⁺ π ⁻ π ⁺) NALUE -0.019±0.011±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁺ K ⁻] _D π ⁺ π ⁻ π ⁺) NALUE -0.019±0.011±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT ACP(B ⁺ → [K ⁺ π ⁻] _D π ⁺ π ⁻ π ⁺) NALUE -0.013±0.016±0.010 AAIJ 15BC LHCB DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT DOCUMENT ID TECN COMMENT TECN COMMENT TECN TECN COMMENT TECN TEC			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{ADS}(B^+ \to [K^-\pi^+]_D\pi$	$^{+}\pi^{-}\pi^{+}$)	
VALUE DOCUMENT ID TECN COMMENT -0.10±0.07 OUR AVERAGE DEL-AMO-SA10G BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.09±0.07±0.02 ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • -0.09±0.09±0.02 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G -0.06±0.13±0.04 AUBERT 06J BABR Repl. by SWAIN 03 -0.22±0.24±0.04 1 ABE 03D BELL Repl. by SWAIN 03 -0.19±0.17±0.05 2 SWAIN 03 BELL Repl. by ABE 06 1 Corresponds to 90% confidence range - 0.62 < A_{CP} < 0.18. 2 Corresponds to 90% confidence range - 0.47 < A_{CP} < 0.11. ACP(B+→ [K+K-]DK+π-π+) DOCUMENT ID TECN COMMENT -0.045±0.064±0.011 AAIJ 15BC LHCB Pp at 7, 8 TeV ACP(B+→ [K-π+]DK+π-π+) DOCUMENT ID TECN COMMENT -0.054±0.010±0.013 AAIJ 15BC LHCB Pp at 7, 8 TeV ACP(B+→ [K+K-]Dπ+π-π+) DOCUMENT ID TECN COMMENT -0.019±0.0	-0.013±0.087		
-0.10±0.07 OUR AVERAGE -0.09±0.07±0.02 DEL-AMO-SA10G BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.12±0.14±0.05 ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. • • • -0.09±0.09±0.02 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G -0.06±0.13±0.04 AUBERT 06J BABR Repl. by AUBERT 08A -0.22±0.24±0.04 1 ABE 03D BELL Repl. by SWAIN 03 BELL Repl. by AUBERT 08A -0.19±0.17±0.05 2 SWAIN 03 BELL Repl. by ABE 06 1 Corresponds to 90% confidence range −0.62 < A_{CP} < 0.18. 2 Corresponds to 90% confidence range −0.47 < A_{CP} < 0.11. $A_{CP}(B^+ \rightarrow [K^+K^-]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.045±0.064±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.054±0.101±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.019±0.013 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^+K^-]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV	` ,		
DEL-AMO-SA10G BABR $e^+e^- \rightarrow \Upsilon(4S)$ -0.12±0.14±0.05 ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • • -0.09±0.09±0.02 AUBERT 08AA BABR Repl. by DEL-AMO-SANCHEZ 10G -0.06±0.13±0.04 AUBERT 06J BABR Repl. by DBEL-AMO-SANCHEZ 10G -0.06±0.13±0.04 AUBERT 06J BABR Repl. by SWAIN 03 -0.19±0.17±0.05 2 SWAIN 03 BELL Repl. by SWAIN 03 -0.19±0.17±0.05 2 SWAIN 03 BELL Repl. by ABE 06 1 Corresponds to 90% confidence range - 0.62 < A_{CP} < 0.18. 2 Corresponds to 90% confidence range - 0.47 < A_{CP} < 0.11. $A_{CP}(B^+ \rightarrow [K^+K^-]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.045±0.064±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.054±0.101±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.019±0.013 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^+K^-]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \rightarrow [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV		DOCUMENT ID TECH COMMENT	
• • • We do not use the following data for averages, fits, limits, etc. • • • • • • • • • • • • • • • • • • •	$-0.09\pm0.07\pm0.02$	DEL-AMO-SA10G BABR $e^+e^- ightarrow~ \varUpsilon(4S)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.12\!\pm\!0.14\!\pm\!0.05$	ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ullet $ullet$ We do not use the following	ng data for averages, fits, limits, etc. • • •	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$-0.09\!\pm\!0.09\!\pm\!0.02$		
$ \begin{array}{c} -0.19 \pm 0.17 \pm 0.05 & 2 \text{ SWAIN} & 03 \text{ BELL Repl. by ABE 06} \\ {}^{1}\text{ Corresponds to 90\% confidence range} - 0.62 < A_{CP} < 0.18. \\ {}^{2}\text{ Corresponds to 90\% confidence range} - 0.47 < A_{CP} < 0.11. \\ \hline A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.045 \pm 0.064 \pm 0.011 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.054 \pm 0.101 \pm 0.011 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.013 \pm 0.019 \pm 0.013 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.019 \pm 0.011 \pm 0.010 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.013 \pm 0.016 \pm 0.010 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) & DOCUMENT ID & TECN & COMMENT \\ \hline -0.002 \pm 0.003 \pm 0.011 & AAIJ & 15BC LHCB & pp \text{ at 7, 8 TeV} \\ \hline \end{array}$		1	8AA
$ \begin{array}{c} {}^{1}\text{Corresponds to 90\% confidence range} - 0.62 < A_{CP} < 0.18. \\ {}^{2}\text{Corresponds to 90\% confidence range} - 0.47 < A_{CP} < 0.11. \\ \\ \hline A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}K^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad \qquad DOCUMENT ID \qquad TECN \\ \hline -0.045 \pm 0.064 \pm 0.011 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}K^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.054 \pm 0.101 \pm 0.011 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}K^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.013 \pm 0.019 \pm 0.013 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [K^{+}K^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.019 \pm 0.011 \pm 0.010 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [\pi^{+}\pi^{-}]_{D}\pi^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.013 \pm 0.016 \pm 0.010 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.013 \pm 0.016 \pm 0.010 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline A_{CP}(B^{+} \rightarrow [K^{-}\pi^{+}]_{D}\pi^{+}\pi^{-}\pi^{+}) \\ {}^{VALUE} \qquad DOCUMENT ID \qquad TECN \\ \hline -0.002 \pm 0.003 \pm 0.011 \qquad AAIJ \qquad 15BC \ LHCB \qquad pp \ at 7, 8 \ TeV \\ \hline \end{array}$		2	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		p	
$VALUE$ DOCUMENT ID TECN COMMENT -0.045±0.064±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.054±0.101±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT 0.013±0.019±0.013 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^+K^-]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.019±0.011±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.013±0.016±0.010 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ VALUE DOCUMENT ID TECN COMMENT -0.002±0.003±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		•	
$A_{CP}(B^+ \to [\pi^+\pi^-]_D K^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.054 \pm 0.101 \pm 0.011$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $0.013 \pm 0.019 \pm 0.013$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^+K^-]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.019 \pm 0.011 \pm 0.010$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.013 \pm 0.016 \pm 0.010$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.002 \pm 0.003 \pm 0.011$ AAIJ 15BC LHCB pp at 7, 8 TeV			
$A_{CP}(B^+ \to [K^-\pi^+]_D K^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $0.013 \pm 0.019 \pm 0.013$ AAIJ $15BC$ LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^+K^-]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.019 \pm 0.011 \pm 0.010$ AAIJ $15BC$ LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.013 \pm 0.016 \pm 0.010$ AAIJ $15BC$ LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)$ $DOCUMENT ID$ $TECN$ $COMMENT$ $-0.002 \pm 0.003 \pm 0.001$ AAIJ $15BC$ LHCB pp at 7, 8 TeV	<u> </u>		
0.013±0.019±0.013 AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^+K^-]_D \pi^+ \pi^- \pi^+)_{\begin{subarray}{c} DOCUMENT ID \\ \hline \hline -0.019±0.011±0.010 \\ \hline \hline A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+ \pi^- \pi^+)_{\begin{subarray}{c} DOCUMENT ID \\ \hline \hline -0.013±0.016±0.010 \\ \hline \hline \hline \hline A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+ \pi^- \pi^+)_{\begin{subarray}{c} DOCUMENT ID \\ \hline $	61 (15	$-\pi^{-}\pi^{+}$)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A_{CP}(B^+ \rightarrow [K^+K^-]_D\pi^+$	••	
$-0.019 \pm 0.011 \pm 0.010$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [\pi^+\pi^-]_D \pi^+\pi^-\pi^+)_{\begin{subarray}{c} N \neq 0 \\ N \neq 0.013 \pm 0.016 \pm 0.010 \end{subarray}} $ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D \pi^+\pi^-\pi^+)_{\begin{subarray}{c} N \neq 0 \\ N \neq 0.002 \pm 0.003 \pm 0.011 \end{subarray}} $ AAIJ 15BC LHCB pp at 7, 8 TeV			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$-0.019\pm0.011\pm0.010$		
$-0.013\pm0.016\pm0.010$ AAIJ 15BC LHCB pp at 7, 8 TeV $A_{CP}(B^+ \to [K^-\pi^+]_D\pi^+\pi^-\pi^+)_{VALUE}$ DOCUMENT ID TECN COMMENT $-0.002\pm0.003\pm0.011$ AAIJ 15BC LHCB pp at 7, 8 TeV			
$A_{CP}(B^+ \rightarrow [K^-\pi^+]_D\pi^+\pi^-\pi^+)$ VALUE $-0.002 \pm 0.003 \pm 0.011$ AAIJ $15BC$ LHCB pp at 7, 8 TeV	-		
VALUE DOCUMENT ID TECN COMMENT −0.002±0.003±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV	-0.013±0.016±0.010	AAIJ 15BC LHCB pp at 1, 8 TeV	
-0.002±0.003±0.011 AAIJ 15BC LHCB pp at 7, 8 TeV			
	-0.002±0.003±0.011		
$A_{CP}(B^+ \to \overline{D}^{*0}\pi^+)$	_	2000 21100 pp ut 1, 0 100	
VALUE DOCUMENT ID TECN COMMENT	O- (DOCUMENT ID TECN COMMENT	
-0.014 ± 0.015 ABE 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$			

$A_{CP}(B^+ \to (D_{CP(+1)}^*)^0 \pi^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
-0.021 ± 0.045	ABE			$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \to (D_{CP(-1)}^*)^0 \pi^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
-0.090±0.051	ABE			$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow D^{*0}K^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
-0.07 ±0.04 OUR AVERAGE				1
$-0.06 \pm 0.04 \pm 0.01$				$e^+e^- \rightarrow \Upsilon(4S)$
-0.089 ± 0.086	ABE	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \to D_{CP(+1)}^{*0}K^+)$				
VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
-0.12±0.08 OUR AVERAGE	ALIDEDT	0005	DADD	+ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
$-0.11\pm0.09\pm0.01$ $-0.20\pm0.22\pm0.04$				$e^+e^- ightarrow \Upsilon(4S)$ $e^+e^- ightarrow \Upsilon(4S)$
 • • • We do not use the following d 				()
	ata for averages	, 1115,	iiiiiis, e	ilc. • • •
$-0.10\pm0.23^{\ +0.03}_{\ -0.04}$	AUBERT	05N	BABR	Repl. by AUBERT 08BF
$A_{CP}(B^+ \rightarrow D_{CP(-1)}^*K^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
0.07±0.10 OUR AVERAGE	ALIDEDT	005-	DADD	+ - ~~~~~
$+0.06\pm0.10\pm0.02$	AUBERT ABE			$e^+e^- ightarrow \Upsilon(4S)$ $e^+e^- ightarrow \Upsilon(4S)$
$+0.13\pm0.30\pm0.08$	ADE	00	DELL	$e \cdot e \rightarrow I(43)$
$A_{CP}(B^+ \to D_{CP(+1)}K^*(892))$				
VALUE	DOCUMENT ID			
+0.09±0.13±0.06				$e^+e^- ightarrow \Upsilon(4S)$
• • We do not use the following d				
$-0.08\pm0.19\pm0.08$	AUBERT,B	05∪	BABR	Repl. by AUBERT 09AJ
$A_{CP}(B^+ \to D_{CP(-1)}K^*(892))$) ⁺)			
VALUE	DOCUMENT ID			
-0.23±0.21±0.07				$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following d	_			
$-0.26 \pm 0.40 \pm 0.12$	AUBERT,B	05 ∪	BABR	Repl. by AUBERT 09AJ
$A_{CP}(B^+ \rightarrow D_s^+ \phi)$	DOCUMENT ID		TECN	COMMENT
<u>VALUE</u>	DOCUMENT ID			
$-0.01\pm0.41\pm0.03$	AAIJ	13K	THCR	pp at 7 TeV
$A_{CP}(B^+ \rightarrow D^{*+} \overline{D}^{*0})$ VALUE	DOCUMENT ID		TECN	COMMENT
$-0.15\pm0.11\pm0.02$				$e^+e^- ightarrow \gamma(4S)$
-0.13±0.11±0.02	AUDER I,D	UUA	NAPK	$e \cdot e \rightarrow I(43)$
HTTP://PDG.LBL.GOV	Page 166		Creat	ed: 5/30/2017 17:22

$A_{CP}(B^+ \rightarrow D^{*+} \overline{D}{}^0)$				
VALUE	<u>DOCUMENT</u>	ID	TECN	COMMENT
$-0.06\pm0.13\pm0.02$	AUBERT,B			$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow D^+ \overline{D}^{*0})$	DOCUMENT	ID	TECN	COMMENT
0.13±0.18±0.04	AUBERT,B			$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow D^+ \overline{D}{}^0)$	DOCUMENT	ID	TECN	COMMENT
−0.03±0.07 OUR AVERAGE				
$0.00\!\pm\!0.08\!\pm\!0.02$	ADACHI	80	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.13\!\pm\!0.14\!\pm\!0.02$	AUBERT,B	06A	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ o K^0_S\pi^+)$	DOCUMENT ID	TE	CN CO	DMMENT
-0.017±0.016 OUR AVERAG				
$-0.022\!\pm\!0.025\!\pm\!0.010$	AAIJ	13BS LF	ICB p	at 7 TeV
$-0.011 \pm 0.021 \pm 0.006$	DUH		$ELL e^{-}$	$e^- o au(4S)$
$-0.029\pm0.039\pm0.010$	¹ AUBERT,BE	06C BA		$^+e^- ightarrow ~ \varUpsilon(4S)$
0.18 ± 0.24	² CHEN	00 CL	E2 e ⁻	$^+e^- o ag{7}(4S)$
• • • We do not use the follow	ving data for avera	ages, fits,	limits, e	etc. • • •
$\begin{array}{c} 0.03 \ \pm 0.03 \ \pm 0.01 \\ -0.09 \ \pm 0.05 \ \pm 0.01 \\ 0.05 \ \pm 0.05 \ \pm 0.01 \\ -0.05 \ \pm 0.08 \ \pm 0.01 \end{array}$	LIN 3 AUBERT,BE 4 CHAO 5 AUBERT	05E BA	ABR Re	epl. by DUH 13 epl. by AUBERT,BE 06C epl. by LIN 07 epl. by AUBERT,BE 05E
$0.07 \ {+0.09 \atop -0.08} \ {+0.01 \atop -0.03}$	⁶ UNNO	03 BE	ELL Re	epl. by CHAO 05A
$0.46 \pm 0.15 \pm 0.02$	⁷ CASEY	02 BE	ELL Re	epl. by UNNO 03
$0.098 {}^{+ 0.430 + 0.020}_{- 0.343 - 0.063}$	⁸ ABE			epl. by CASEY 02
$-0.21\ \pm0.18\ \pm0.03$	⁹ AUBERT	01E BA	ABR Re	epl. by AUBERT 04M
1 Corresponds to 90% confid	ence range -0.09	$2 < A_{CI}$	o < 0.0	036.
² Corresponds to 90% confid				
³ Corresponds to 90% confid	ence range -0.16	< Acn	< -00	າ2
⁴ Corresponds to 90% confid-	ence range = 0.10	< ΛCP		3
⁵ Corresponds to 90% confid	ence range = 0.04	< Acr	, < 0.1 , < 0.0	9. 8
⁶ Corresponds to 90% confidence of the confide				
⁷ Corresponds to 90% confidence of the confide				
⁸ Corresponds to 90% confidence of the confide	ence range ± 0.19	< ACP	< 0.00	12.
9 Corresponds to 90% confidence	ence range — 0.55	< ACP	< 0.02	•
⁹ Corresponds to 90% confid	ence range — U.51	< ACP	< 0.09	
$A_{CP}(B^+ \rightarrow K^+\pi^0)$	DOCUMENT ID	Т	ECN C	OMMENT
0.037±0.021 OUR AVERAG				
$0.043 \pm 0.024 \pm 0.002$	DUH	13 B	ELL e	$^+e^- \rightarrow ~ \Upsilon(4S)$
$0.030\!\pm\!0.039\!\pm\!0.010$	AUBERT	07BC B	ABR e	$^+{ m e}^- ightarrow ~ \varUpsilon(4S)$
-0.29 ± 0.23	$^{ m 1}$ CHEN			$+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

```
0.07 \pm 0.03 \pm 0.01
                                     LIN
                                                       80
                                                             BELL Repl. by DUH 13
                                    <sup>2</sup> AUBERT
 0.06 \pm 0.06 \pm 0.01
                                                       05L BABR Repl. by AUBERT 07BC
                                    <sup>2</sup> CHAO
                                                       05A BELL
                                                                      Repl. by CHAO 04B
 0.06 \pm 0.06 \pm 0.02
                                    <sup>3</sup> CHAO
 0.04\ \pm0.05\ \pm0.02
                                                       04B BELL
                                                                      Repl. by LIN 08
                                    <sup>4</sup> AUBERT
-0.09 \pm 0.09 \pm 0.01
                                                       03L BABR Repl. by AUBERT 05L
                                    <sup>5</sup> CASEY
                                                             BELL
-0.02 \pm 0.19 \pm 0.02
                                                                      Repl. by CHAO 04B
-0.059 {}^{+\, 0.222 \, +\, 0.055}_{-\, 0.196 \, -\, 0.017}
                                    6 ABE
                                                       01K BELL Repl. by CASEY 02
                                   <sup>7</sup> AUBERT
  0.00 \pm 0.18 \pm 0.04
                                                       01E BABR Repl. by AUBERT 03L
```

$A_{CP}(B^+ \rightarrow \eta' K^+)$

VALUE	DOCUMENT ID		TECN	COMMENT	
0.004±0.011 OUR AVERAG			TLCIV	COMMENT	
_	1 AAIJ	150	LHCB	<i>pp</i> at 7, 8 TeV	
$0.008^{+0.017}_{-0.018}\!\pm\!0.009$	AUBERT	09av	BABR	$e^+e^- ightarrow \Upsilon(4S)$	
$0.028 \pm 0.028 \pm 0.021$ 0.03 ± 0.12	SCHUEMANN ² CHEN			$e^+e^- ightarrow ~ \varUpsilon(4S) \ e^+e^- ightarrow ~ \varUpsilon(4S)$	
• • • We do not use the follow				` '	
$0.037 \pm 0.045 \pm 0.011$ $-0.11 \pm 0.11 \pm 0.02$ $-0.015 \pm 0.070 \pm 0.009$	AUBERT AUBERT AUBERT AUBERT CHEN AUBERT AUBERT AUBERT AUBERT AUBERT	05M 03W 02E 02B	BABR BABR	' '	
1 Obtained using $A_{CP}(B^\pm\to J/\psiK^\pm)=(0.3\pm0.6)\times 10^{-2}$. 2 Corresponds to 90% confidence range -0.17 $<\!A_{CP}<0.23$. 3 Corresponds to 90% confidence range $-0.012< A_{CP}<0.078$. 4 Corresponds to 90% confidence range $-0.04< A_{CP}<0.11$. 5 Corresponds to 90% confidence range $-0.28< A_{CP}<0.07$. 6 Corresponds to 90% confidence range $-0.13< A_{CP}<0.10$.					

$A_{CP}(B^+ \rightarrow \eta' K^*(892)^+)$

VALUE	DOCUMENT ID	TECN COMMENT
$-0.26\pm0.27\pm0.02$	DEL-AMO-SA10A	BABR $e^+e^- ightarrow \varUpsilon(4S)$
• • • We do not use the following	data for averages, fits	limits, etc. • • •
$-0.30^{+0.33}_{-0.37}\pm0.02$	¹ AUBERT 07E	BABR Repl. by DEL-AMO-

SANCHEZ 10A

Created: 5/30/2017 17:22

 7 Corresponds to 90% confidence range $-0.20 <\!\!A_{\mbox{\it CP}} < 0.32.$

 $^{^{1}\,\}mbox{Corresponds}$ to 90% confidence range $-0.67 < \! A_{\mbox{\it CP}} < 0.09.$

 $^{^2}$ Corresponds to a 90% CL interval of $-0.06 < A_{CP} < 0.18$.

 $^{^3}$ Corresponds to 90% CL interval of $-0.05 < A_{CP} < 0.13$.

⁴ Corresponds to 90% confidence range $-0.24 < A_{CP} < 0.06$.

 $^{^{5}}$ Corresponds to 90% confidence range $-0.35 < A_{CP}^{-2} < +0.30$.

 $^{^6}$ Corresponds to 90% confidence range $-0.40 < A_{CP} < 0.36$.

⁷ Corresponds to 90% confidence range $-0.30 < A_{CP} < +0.30$.

 $^{^{1}\}operatorname{Reports}$ \mathbf{A}_{CP} with the opposite sign convention.

$A_{CP}(B^+ \to \eta' K_0^* (1430))$	⁺)		
VALUE			TECN COMMENT
$0.06\pm0.20\pm0.02$	DEL-AMO-S	SA10A	BABR $e^+e^- o \Upsilon(4S)$
$A_{CP}(B^+ \to \eta' K_2^*(1430))$	=	15	T-21
<u>VALUE</u> 0.15±0.13±0.02			$\frac{TECN}{COMMENT} = \frac{COMMENT}{CAC}$
0.13±0.13±0.02	DEL-AIVIO-S	SAIUA	BABR $e^+e^- ightarrow \varUpsilon(4S)$
$A_{CP}(B^+ \rightarrow \eta K^+)$	DOCUMENT ID	TECN	COMMENT
VALUE −0.37±0.08 OUR AVERAGE			
$-0.38\pm0.11\pm0.01$			$e^+e^- \rightarrow \Upsilon(4S)$
$-0.36 \pm 0.11 \pm 0.03$			$e^+e^- ightarrow \gamma(4S)$
• • We do not use the follow			
$-0.22 \pm 0.11 \pm 0.01$			Repl. by AUBERT 09AV
$-0.39\pm0.16\pm0.03$ $-0.20\pm0.15\pm0.01$			Repl. by HOI 12 Repl. by AUBERT 07AE
$-0.49 \pm 0.31 \pm 0.07$			Repl. by CHANG 07B
$-0.52\pm0.24\pm0.01$			Repl. by AUBERT,B 05K
$A_{CP}(B^+ \to \eta K^*(892)^+)$			
VALUE	DOCUMENT ID	<u>TE</u>	CN COMMENT
0.02±0.06 OUR AVERAGE	VA/A NIC	075 DE	
$0.03 \pm 0.10 \pm 0.01$ $0.01 \pm 0.08 \pm 0.02$			ELL $e^+e^- ightarrow~ \varUpsilon(4S)$ ABR $e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the follow			` '
$0.13 \pm 0.14 \pm 0.02$			ABR Repl. by AUBERT,B 06H
$A_{CP}(B^+ \to \eta K_0^*(1430)^+)$		10	TECH COMMENT
<u>VALUE</u> 0.05±0.13±0.02			TECN COMMENT BABR $e^+e^- ightarrow \varUpsilon(4S)$
0.05±0.15±0.02	AUBLINT, B	ООП	P = P + P + P + P + P + P + P + P + P +
$A_{CP}(B^+ \to \eta K_2^*(1430)^+)$	-)		
VALUE			TECN COMMENT
$-0.45\pm0.30\pm0.02$	AUBERT,B	06н	BABR $e^+e^- ightarrow \varUpsilon(4S)$
$A_{CP}(B^+ \rightarrow \omega K^+)$	DOCUMENT ID	TECN	<u>COMMENT</u>
VALUE -0.02±0.04 OUR AVERAGE	DOCOMENT ID	TECH	COMMENT
$-0.03\!\pm\!0.04\!\pm\!0.01$	CHOBANOVA 14	BELL	$e^+e^- o \ \varUpsilon(4S)$
$-0.01\!\pm\!0.07\!\pm\!0.01$	AUBERT 07	'AE BABR	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the follow	ving data for avera	ges, fits, I	imits, etc. • • •
$0.05\!\pm\!0.09\!\pm\!0.01$	AUBERT,B 06	E BABR	Repl. by AUBERT 07AE
$0.05^{+0.08}_{-0.07}\pm0.01$	JEN 06	BELL	Repl. by CHOBANOVA 14
-0.07 $-0.09 \pm 0.17 \pm 0.01$	AUBERT 04	н BABR	Repl. by AUBERT,B 06E
			Repl. by JEN 06
0.10			
			Repl. by WANG 04A
1 Corresponds to 90% CL int 2 Corresponds to 90% confid	erval $0.15 < A_{CP}$ ence range -0.70	<0.90 <a<sub>CP <</a<sub>	+0.38.

$A_{CP}(B^+ \rightarrow \omega K^{*+})$				
VALUE	DOCUMENT ID		TECN	COMMENT
$+0.29\pm0.35\pm0.02$	AUBERT	09н	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \omega(K\pi)_0^{*+})$	DOCUMENT ID		TFCN	COMMENT
$-0.10\pm0.09\pm0.02$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \omega K_2^*(1430)^+)$	DOCUMENT ID		TECN	COMMENT
+0.14±0.15±0.02	AUBERT			$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow K^{*0}\pi^+)$	<u>DOCUMENT ID</u>		TECN	COMMENT
−0.04 ±0.09 OUR AVERAGE	Error includes so			<u> </u>
$0.032\!\pm\!0.052 \!+\! 0.016 \\ -0.013$	AUBERT	08AI	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$-0.149\pm0.064\pm0.022$	GARMASH	06	BELL	$e^+e^- ightarrow~\gamma(4S)$
• • • We do not use the following				` ,
$0.068\!\pm\!0.078\!+\!0.070\\-0.067$	AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$A_{CP}(B^+ \rightarrow K^*(892)^+\pi^0)$	<u>DOCUMENT ID</u>		<u>TECN</u>	<u>COMMENT</u>
$-0.06\pm0.24\pm0.04$	LEES	111	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
ullet $ullet$ We do not use the following	ng data for average	es, fits,	limits, e	etc. • • •
$0.04 \pm 0.29 \pm 0.05$	AUBERT	05X	BABR	Repl. by LEES 111
$A_{CP}(B^+ \rightarrow K^+\pi^-\pi^+)$	DOCUMENT ID		TECN	COMMENT
0.027 ± 0.008 OUR AVERAGE	_			
$0.025\pm0.004\pm0.008$	¹ AAIJ			pp at 7, 8 TeV
$0.028 \pm 0.020 \pm 0.023$	AUBERT			$e^+e^- \rightarrow \Upsilon(4S)$
$0.049 \pm 0.026 \pm 0.020$ • • We do not use the following	GARMASH ng data for average			$e^+e^- ightarrow~ \varUpsilon(4S)$ etc. $ullet$ $ullet$
$0.032 \pm 0.008 \pm 0.008$	AAIJ	13AZ I	LHCB	Repl. by AAIJ 14B0
$-0.013\pm0.037\pm0.011$				Repl. by AUBERT 08AI
$0.01\ \pm0.07\ \pm0.03$				Repl. by AUBERT,B 05N
1 AAIJ 14B0 reports also $\it CP$ a	symmetries in rest	ricted i	regions o	of phase space.
$A_{CP}(B^+ \rightarrow K^+K^-K^+$ no				
<u>VALUE</u>	DOCUMENT ID			
$0.060\pm0.044\pm0.019$	LEES	120	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow f(980)^0 K^+)$ VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>
-0.08±0.08±0.04				$e^+e^- ightarrow \gamma(4S)$
1 Measured in the $B^+ o K^+$				` '
ivicasured iii the D · → K ·	A A uecay.			

$A_{CP}(B^+ \rightarrow f_2(1270)K^+)$	DOCUMENT ID		TECN	COMMENT
-0.68 ^{+0.19} _{-0.17} OUR AVERAGE	<u>DOCUMENT ID</u>		TECN	COMMENT
$-0.85 \pm 0.22 + 0.26 \\ -0.13$	AUBERT	08AI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.59\pm0.22\pm0.036$	GARMASH	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow f_0(1500)K^+)$ VALUE	DOCUMENT ID		TECN	COMMENT
$0.28 \pm 0.26 ^{+0.15}_{-0.14}$				$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow f_2'(1525)^0 K^+)$ VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>
$-0.08 \begin{array}{l} +0.05 \\ -0.04 \end{array}$ OUR AVERAGE				
$0.18 \pm 0.18 \pm 0.04$	¹ LEES	111	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$-0.106\!\pm\!0.050\!+\!0.036\\-0.015$	AUBERT	1A80	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$-0.077 \pm 0.065 {}^{+ 0.046}_{- 0.026}$	GARMASH	06	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • We do not use the following			limits, e	etc. • • •
$0.14 \pm 0.10 \pm 0.04$ $-0.31 \pm 0.25 \pm 0.08$	² LEES ³ AUBERT	120 060		$e^+e^- ightarrow~\varUpsilon(4S)$ Repl. by LEES 120
+ 0.007				Repl. by AUBERT 08AI
1 Measured in $B^+ o f_0 K^+$ with 2 Measured in the $B^+ o K^+ K$ A $_{CP}(B^+ o f_0(1500)^0 K^+)$ and 3 Measured in the $B^+ o K^+ K^-$	$e^{-}K^{+}$ decay ass $= A_{CP}(B^{+} ightarrow$	uming	~	_
$A_{CP}(B^+ o ho^0 K^+)$ VALUE	DOCUMENT ID		<u>TECN</u>	COMMENT
0.37±0.10 OUR AVERAGE				
$0.44 \pm 0.10 {+0.06 \atop -0.14}$	AUBERT	08AI	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$0.30 \pm 0.11 {+0.11 \atop -0.04}$	GARMASH	06	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
• • • We do not use the following	data for average	s, fits,	limits, 6	etc. • • •
$0.32 \pm 0.13 {+0.10 \atop -0.08}$	AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
$A_{CP}(B^+ \to K_0^*(1430)^0\pi^+)$ VALUE 0.0005 0.0005	DOCUMENT ID		<u>TECN</u>	COMMENT
0.055±0.033 OUR AVERAGE 0.032±0.035 ⁺ 0.034 -0.028	AUBERT	08AI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$0.076 \pm 0.038 {+0.028 \atop -0.022}$	GARMASH	06	BELL	$e^+e^- ightarrow~ \varUpsilon(4S)$
• • • We do not use the following	data for average	s, fits,	limits, e	etc. • • •
$-0.064\!\pm\!0.032 \!+\!0.023 \\ -0.026$	AUBERT,B	05N	BABR	Repl. by AUBERT 08AI
HTTP://PDG.LBL.GOV	Page 171		Creat	red: 5/30/2017 17:22

$A_{CP}(B^+ \to K_2^*(1430)^0\pi^+)$					
VALUE	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>	
$0.05 \pm 0.23 {+0.18 \atop -0.08}$	AUBERT	IA80	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow K^+\pi^0\pi^0)$					
VALUE	DOCUMENT ID				
$-0.06\pm0.06\pm0.04$	LEES	111	BABR	e^+e^-	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow K^0 \rho^+)$	DOCUMENT ID		TFCN	COMMENT	
$-0.12\pm0.17\pm0.02$	AUBERT				Υ(45)
-0.12±0.17±0.02	AUDLIN	012	DADIN	e · e →	7 (43)
$A_{CP}(B^+ \rightarrow K^{*+}\pi^+\pi^-)$	DOCUMENT ID		TECN	COMMENT	
0.07±0.07±0.04	AUBERT,B				$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \rho^0 K^*(892)^+)$ $VALUE$ $DOCUMENT$ $O.31 \pm 0.13 \pm 0.03$ DEL-AMO	-SA11D BABF				
• • • We do not use the following				` '	
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT	03V BABF	R Rep	ol. by D	EL-AMO-SA	NCHEZ 11D
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \rightarrow K^*(892)^+ f_0(980)^+$)))	·			ANCHEZ 11D
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \rightarrow K^*(892)^+ f_0(980)^+$))) 	<u>COI</u>	MMENT		ANCHEZ 11D
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \rightarrow K^*(892)^+ f_0(980)^+$))) - <u>ID</u> <u>TECN</u> -SA11D BABF	<u>COI</u> R e ⁺	$e^{-} \rightarrow$	Υ(4S)	ANCHEZ 11D
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \rightarrow K^*(892)^+ f_0(980)^+ f_0$))) -SA11D BABF data for averages	<u>COM</u> R e ⁺ s, fits,	MMENT e [—] → limits, €	γ(4S) etc. • • •	
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \rightarrow K^*(892)^+ f_0(980)^+ f_$	O)) -ID TECN -SA11D BABF data for averages B 06G BABF		$\frac{MMENT}{e^{-}} \rightarrow$ limits, ϵ	Υ(4S) etc. • • • EL-AMO-SA	
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \to K^*(892)^+ f_0(980)^+ f_$	TECN TECN TECN SA11D BABF data for averages B 06G BABF	<i>CON</i> R e ⁺ s, fits, R Rep	$\frac{MMENT}{e^{-}} \rightarrow $ limits, ϵ	$\Upsilon(4S)$ etc. • • • EL-AMO-SA	ANCHEZ 11D
$0.20^{+0.32}_{-0.29}\pm0.04$ AUBERT $A_{CP}(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)^{-0.15} \pm 0.12 \pm 0.03$ DEL-AMO • • • We do not use the following of the control of the cont	D)) -SA11D BABF data for averages -SA96 BABF	CON R e ⁺ s, fits, R Rep 08F	MMENT e ⁻ → limits, e bl. by D TECN BABR	$\Upsilon(4S)$ etc. • • • EL-AMO-SA $\frac{COMMENT}{e^{+}e^{-}} \rightarrow$	ANCHEZ 11D $ au$ (4 S)
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \to K^*(892)^+ f_0(980)^+ f_$	D)) ID TECN TECN TECN TECN TECN TECN TECN TECN		MMENT e → limits, e bl. by D TECN BABR	$\Upsilon(4S)$ etc. \bullet \bullet \bullet EL-AMO-SA $\frac{COMMENT}{e^+e^-} ightarrow$	ANCHEZ 11D $ au$ (4 s)
$0.20^{+0.32}_{-0.29}\pm0.04$ AUBERT $A_{CP}(B^{+} \rightarrow K^{*}(892)^{+} f_{0}(980)^{-0.15} \pm 0.12 \pm 0.03$ DEL-AMO • • • We do not use the following of the control of the cont	D)) -SA11D BABF data for averages -SA96 BABF		MMENT e → limits, e bl. by D TECN BABR	$\Upsilon(4S)$ etc. \bullet \bullet \bullet EL-AMO-SA $\frac{COMMENT}{e^+e^-} ightarrow$	ANCHEZ 11D $ au$ (4 s)
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \to K^*(892)^+ f_0(980)^+ f_$	D)) -SA11D BABF data for averages B 06G BABF DOCUMENT ID AUBERT AUBERT		MMENT e → limits, e ol. by D TECN BABR TECN BABR	$\Upsilon(4S)$ etc. • • • EL-AMO-SA $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	ANCHEZ 11D $ au(4S)$
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \to K^*(892)^+ f_0(980)^+ f_$	D)) ID TECN -SA11D BABF data for averages B 06G BABF DOCUMENT ID AUBERT DOCUMENT ID AUBERT		MMENT e → limits, e bl. by D TECN BABR TECN BABR	$\Upsilon(4S)$ etc. • • • EL-AMO-SA $\frac{COMMENT}{e^+e^-} \rightarrow$ $\frac{COMMENT}{e^+e^-} \rightarrow$ $\frac{COMMENT}{e^+e^-} \rightarrow$	ANCHEZ 11D $ au(4S)$ $ au(4S)$
$0.20^{+0.32}_{-0.29} \pm 0.04$ AUBERT $A_{CP}(B^+ \to K^*(892)^+ f_0(980)^+ f_$	D)) -SA11D BABF data for averages B 06G BABF DOCUMENT ID AUBERT AUBERT	08F	MMENT e → limits, e ol. by D TECN BABR TECN BABR	$\Upsilon(4S)$ etc. • • • EL-AMO-SA $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$ $\frac{COMMENT}{e^{+}e^{-} \rightarrow}$	ANCHEZ 11D $T(4S)$ $T(4S)$

$A_{CP}(B^+ \rightarrow K^0K^+)$

 0.04 ± 0.14 OUR AVERAGE

TECN COMMENT

 $0.014 \pm 0.168 \pm 0.002$

DUH

BELL $e^+e^- \rightarrow \Upsilon(4S)$

 $0.10 \pm 0.26 \pm 0.03$

¹ AUBERT,BE

06C BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $0.13 \begin{array}{l} +0.23 \\ -0.24 \end{array}$ ± 0.02

 $0.15 \pm 0.33 \pm 0.03$

07 BELL Repl. by DUH 13

² AUBERT,BE 05E BABR Repl. by AUBERT,BE 06C

 1 Corresponds to 90% confidence range $-0.31 < A_{CP} < 0.54$.

$A_{CP}(B^+ \rightarrow K_5^0 K^+)$

VALUE $-0.21\pm0.14\pm0.01$ DOCUMENT ID <u>TECN</u> <u>COMMENT</u> **AAIJ**

13BS LHCB pp at 7 TeV

$A_{CP}(B^+ \rightarrow K^+ K_S^0 K_S^0)$

DOCUMENT ID TECN COMMENT

 $0.04^{+0.04}_{-0.05}\pm0.02$

LEES

120 BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.04\pm0.11\pm0.02$

¹ AUBERT.B

04V BABR Repl. by LEES 120

$A_{CP}(B^+ \rightarrow K^+K^-\pi^+)$

VALUE -0.118 ± 0.022 OUR AVERAGE

 $-0.123\pm0.017\pm0.014$ $0.00 \pm 0.10 \pm 0.03$

1 AALI

14B0 LHCB pp at 7, 8 TeV

DOCUMENT ID TECN COMMENT

AUBERT 07BB BABR $e^+e^- \rightarrow \Upsilon(4S)$ • • • We do not use the following data for averages, fits, limits, etc. • • •

 $-0.141\pm0.040\pm0.019$

 2 AALI

LHCB Repl. by AAIJ 14BO

060 BABR Repl. by LEES 120

Created: 5/30/2017 17:22

$A_{CP}(B^+ \rightarrow K^+K^-K^+)$

VALUE	DOCUMENT ID	TECN COMMENT
-0.033±0.008 OUR AVERAG	E	
$-0.036\pm0.004\pm0.007$	¹ AAIJ	14BO LHCB pp at 7, 8 TeV
$-0.017^{\color{red}+0.019}_{\color{red}-0.014}\!\pm\!0.014$	² LEES	120 BABR $e^+e^- ightarrow \gamma(4S)$
• • • We do not use the follow	ing data for averages	s, fits, limits, etc. • • •
$-0.043\pm0.009\pm0.008$	AAIJ	13AZ LHCB Repl. by AAIJ 14BO

AUBERT 03M BABR Repl. by AUBERT 060 1 AAIJ 14 BO reports also CP asymmetries in restricted regions of phase space.

AUBERT

 $-0.017\pm0.026\pm0.015$

 $0.02 \pm 0.07 \pm 0.03$

 $^{^2}$ Corresponds to 90% confidence range $-0.43 < A_{CP} < 0.68$.

 $^{^{1}}$ Corresponds to 90% confidence range $-0.23~<~A_{CP}~<0.15$.

 $^{^{1}}$ AAIJ 14 BO reports also CP asymmetries in restricted regions of phase space.

 $^{^2}$ AAIJ 14 reports $A_{CP}(B^+ o K^+K^-\pi^+)=-0.648\pm0.070\pm0.013\pm0.007$ in the Dalitz plot region of $m_{K^+K^-}^2 < 1.5 \text{ GeV}^2/c^4$. The third uncertainty is due to the *CP* asymmetry of the $B^{\pm} \rightarrow J/\psi K^{\pm}$ reference mode uncertainty.

 $^{^2}$ All intermediate charmonium and charm resonances are removed, except of χ_{c0} .

$A_{CP}(B^+ \rightarrow \phi K^+)$

<u>VALUE</u>	DOCUMENT ID		TECN	COMMENT		
0.024 ± 0.028 OUR AVERAGE	Error includes sca	le fac	tor of 2.	3.		
$0.017 \pm 0.011 \pm 0.006$	1 AAIJ	150	LHCB	<i>pp</i> at 7, 8 TeV		
$0.128 \pm 0.044 \pm 0.013$	LEES	120	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.07\ \pm0.17\ ^{+0.03}_{-0.02}$	ACOSTA	05 J	CDF	$p\overline{p}$ at 1.96 TeV		
$0.01\ \pm0.12\ \pm0.05$	² CHEN	03 B	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
• • • We do not use the following	g data for average	s, fits,	limits, e	etc. • • •		
$0.022 \pm 0.021 \pm 0.009$	AAIJ	14A	LHCB	Repl. by AAIJ 150		
$0.00 \pm 0.08 \pm 0.02$	AUBERT	060	BABR	Repl. by LEES 120		
$0.04\ \pm0.09\ \pm0.01$	³ AUBERT	04A	BABR	Repl. by AUBERT 060		
$-0.05 \pm 0.20 \pm 0.03$	⁴ AUBERT	02E	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
1 Obtained using A_{CP} (B $^\pm$ $ ightarrow$	¹ Obtained using $A_{CP}(B^{\pm} \rightarrow J/\psi K^{\pm}) = (0.3 \pm 0.6) \times 10^{-2}$.					
_	² Corresponds to 90% confidence range $-0.20 < A_{CP} < 0.22$.					
³ Corresponds to 90% confidence						
⁴ Corresponds to 90% confidence						

$A_{CP}(B^+ \to X_0(1550)K^+)$

VALUE	DOCUMENT ID	TECN	COMMENT
$-0.04\pm0.07\pm0.02$	¹ AUBERT 060	BABR	$e^+e^- ightarrow \Upsilon(4S)$
1.4	u + u - u + 1		

¹ Measured in the $B^+ \rightarrow K^+ K^- K^+$ decay.

$A_{CP}(B^+ \rightarrow K^{*+}K^+K^-)$

VALUE	DOCUMENT ID	TECN	COMMENT
$0.11 \pm 0.08 \pm 0.03$	AUBERT,B	06∪ BABR	$e^+e^- ightarrow ~ \gamma(4S)$

$A_{CP}(B^+ \rightarrow \phi K^*(892)^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
-0.01 ± 0.08 OUR AVERAGE				
$0.00\pm0.09\pm0.04$	AUBERT	07 BA	BABR	$e^+e^- o ag{7}(4S)$
$-0.02\!\pm\!0.14\!\pm\!0.03$	$^{ m 1}$ CHEN	05A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
ullet $ullet$ We do not use the following	ng data for averag	es, fits	s, limits,	etc. • • •
$0.16\!\pm\!0.17\!\pm\!0.03$	AUBERT	03V	BABR	Repl. by AUBERT 07BA
$-0.13\!\pm\!0.29\!+\!0.08\\-0.11$	² CHEN	03 B	BELL	Repl. by CHEN 05A
$-0.43^{+0.36}_{-0.30}\!\pm\!0.06$	³ AUBERT	02E	BABR	Repl. by AUBERT 03V
1 Corresponds to 00% confider	nco rango 0 25 /	· A	< 0.22	

¹ Corresponds to 90% confidence range $-0.25 < A_{CP} < 0.22$.

$A_{CP}(B^+ \rightarrow \phi(K\pi)_0^{*+})$

VALUE	DOCUMENT ID		IECN	COMMENT
$0.04 \pm 0.15 \pm 0.04$	AUBERT	08 BI	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
$A_{CP}(B^+ \to \phi K_1(1270)^+)$				
VALUE	DOCUMENT ID		TECN	COMMENT
$0.15 \pm 0.19 \pm 0.05$	AUBERT	08BI	BABR	$e^+e^- \rightarrow \gamma(45)$

HTTP://PDG.LBL.GOV Page 174

 $^{^2}$ Corresponds to 90% confidence range $-0.64 <\!\!A_{\mbox{\it CP}} < 0.36.$

 $^{^3}$ Corresponds to 90% confidence range $-0.88 <\!\!A_{\mbox{CP}} < 0.18.$

Ç ,	• 7			,	·
$A_{CP}(B^+ \to \phi K_2^*(1430)^+)$					
VALUE	DOCUMENT ID				
$-0.23\pm0.19\pm0.06$	AUBERT	08 BI	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow K^+ \phi \phi)$					
VALUE	DOCUMENT ID				
$-0.10\pm0.08\pm0.02$	¹ LEES	11 A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$^{1}m_{\phi\phi}~<$ 2.85 GeV/c $^{2}.$					
$A_{CP}(B^+ o K^+[\phi\phi]_{\eta_c})$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$0.09\pm0.10\pm0.02$	¹ LEES	11A	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 $m_{\phi\phi}$ is consistent with $\eta_{ extsf{c}}$ ma	ss [2.94, 3.02] Ge	eV/c^2 .			
, ,	-				
$A_{CP}(B^+ \rightarrow K^*(892)^+ \gamma)$					
VALUE	DOCUMENT ID				
$+0.018\pm0.028\pm0.007$	AUBERT	09 AC	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ o \eta K^+ \gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.12±0.07 OUR AVERAGE	DOCOMENT ID		1201	COMMENT	
$-0.09\pm0.10\pm0.01$	¹ AUBERT	09	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$-0.16\pm0.09\pm0.06$	² NISHIDA	05	BELL	$e^+e^- \rightarrow$	$\Upsilon(4S)$
• • • We do not use the following	data for average	es, fits,	limits, e	etc. • • •	
$-0.09\!\pm\!0.12\!\pm\!0.01$	¹ AUBERT,B	06м	BABR	Repl. by A	UBERT 09
$^{1}m_{nK}$ < 3.25 GeV/c ² .					
$2 m_{\eta K} < 2.4 \text{ GeV/c}^2$					
$m_{\eta} \kappa < 2.4 \text{ GeV/C}$					
$A_{CP}(B^+ \rightarrow \phi K^+ \gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
-0.13±0.11 OUR AVERAGE Er	ror includes scale				
$-0.03\pm0.11\pm0.08$	SAHOO				` '
$-0.26\pm0.14\pm0.05$	AUBERT	07Q	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \rho^+ \gamma)$					
VALUE	DOCUMENT ID		TECN	COMMENT	
$-0.11\pm0.32\pm0.09$	TANIGUCHI	80	BELL	$e^+e^ \rightarrow$	$\Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \pi^+\pi^0)$					
VALUE	DOCUMENT ID	<u></u>	ECN C	OMMENT	
$0.03~\pm0.04~$ OUR AVERAGE					

 $0.025\!\pm\!0.043\!\pm\!0.007$

 $0.03 \ \pm 0.08 \ \pm 0.01$

DUH

AUBERT

13 BELL $e^+e^- \rightarrow \Upsilon(4S)$ 07BC BABR $e^+e^- \rightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.07\ \pm0.06\ \pm0.01$	LIN	80	BELL	Repl. by DUH 13
$-0.01 \pm 0.10 \pm 0.02$	¹ AUBERT	05L	BABR	Repl. by AUBERT 07BC
$0.00\ \pm0.10\ \pm0.02$	² CHAO	05A	BELL	Repl. by CHAO 04B
$-0.02 \pm 0.10 \pm 0.01$	³ CHAO	04 B	BELL	Repl. by LIN 08
$-0.03 \ ^{+0.18}_{-0.17} \ \pm 0.02$	⁴ AUBERT	03L	BABR	Repl. by AUBERT 05L
$0.30 \ \pm 0.30 \ ^{+0.06}_{-0.04}$	⁵ CASEY	02	BELL	Repl. by CHAO 04B

 $^{^{1}}$ Corresponds to a 90% CL interval of $-0.19 < A_{CP} < 0.21$.

$A_{CP}(B^+ \rightarrow \pi^+\pi^-\pi^+)$

<u>VALUE</u>	<u>DOCUMENT ID</u>		TECN	COMMENT
0.057±0.013 OUR AVERAGE				
$0.058 \pm 0.008 \pm 0.011$	1 AAIJ	14 BC	LHCB	<i>pp</i> at 7, 8 TeV
$0.032 \pm 0.044 {+0.040 \atop -0.037}$	AUBERT	09L	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$0.117\!\pm\!0.021\!\pm\!0.011$	² AAIJ	14	LHCB	Repl. by AAIJ 14BO
$-0.007\!\pm\!0.077\!\pm\!0.025$	AUBERT,B	05 G	BABR	Repl. by AUBERT 09L
$-0.39 \pm 0.33 \pm 0.12$	AUBERT	03M	BABR	Repl. by AUBERT 05G

¹ AAIJ 14BO reports also *CP* asymmetries in restricted regions of phase space.

$A_{CP}(B^+ \rightarrow \rho^0 \pi^+)$

VALUE	DOCUMENT ID		TECN	COMMENT
$0.18 \pm 0.07 \ ^{+0.05}_{-0.15}$	AUBERT	09L	BABR	$e^+e^- ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$-0.074\pm0.120^{+0.035}_{-0.055}$$
 AUBERT,B 05G BABR Repl. by AUBERT 09L $-0.19\ \pm0.11\ \pm0.02$ AUBERT 04Z BABR Repl. by AUBERT,B 05G

$A_{CP}(B^+ \to f_2(1270)\pi^+)$

0.41
$$\pm$$
0.25 $+$ 0.18 AUBERT 09L BABR $e^+e^-
ightarrow \Upsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • • •

$$-0.004 \pm 0.247 ^{+0.028}_{-0.032}$$
 AUBERT,B 05G BABR Repl. by AUBERT 09L

$A_{CP}(B^+ \to \rho^0(1450)\pi^+)$

VALUE DOCUMENT ID TECN COMMENT
$$-0.06 \pm 0.28 \stackrel{+0.23}{-0.40}$$
AUBERT 09L BABR $e^+e^- \rightarrow \Upsilon(4S)$

HTTP://PDG.LBL.GOV Page 176 Created: 5/30/2017 17:22

 $^{^{2}}$ Corresponds to a 90% CL interval of $-0.17\ <\ A_{CP}^{}\ < 0.16.$

 $^{^3}$ This corresponds to 90% CL interval of $-0.18 < A_{CP} < 0.14$.

 $^{^4}$ Corresponds to 90% confidence range $-0.32 <\!\!A_{\mbox{\it CP}} < 0.27.$

⁵ Corresponds to 90% confidence range $-0.23 < A_{CP} < +0.86$.

² AAIJ 14 reports $A_{CP}(B^+ \to \pi^+\pi^-\pi^+) = 0.584 \pm 0.082 \pm 0.027 \pm 0.007$ in the Dalitz plot region of $m_{\pi^+\pi^-}^2 > 15~{\rm GeV}^2/{\rm c}^4$ or $m_{\pi^+\pi^-}^2 < 0.4~{\rm GeV}^2/{\rm c}^4$. The third uncertainty is due to the CP asymmetry of the $B^\pm \to J/\psi\,K^\pm$ reference mode uncertainty.

VALUE	<u>DOCUMEN</u>	VT ID		TECN	COMMENT
$0.72 \pm 0.15 \pm 0.16$	AUBERT	_	09L	BABR	$e^+e^- \rightarrow \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \pi^+\pi^-\pi^+ n)$	onresonant)				
VALUE	•	VT ID		TECN	COMMENT
$\substack{-0.14 \pm 0.14 + 0.18 \\ -0.08}$	AUBERT	Ī	09L	BABR	$e^+e^- ightarrow \gamma(4S)$
$A_{CP}(B^+ \rightarrow \rho^+ \pi^0)$					
<u>VALUE</u> 0.02±0.11 OUR AVERAGE	<u>DOCUMEN</u>	VT ID		TECN	COMMENT
$-0.01\pm0.13\pm0.02$	AURERT	-	07x	RARR	$e^+e^- ightarrow \gamma(4S)$
$0.06 \pm 0.17 + 0.04 \\ -0.05$					$e^+e^- \rightarrow \Upsilon(4S)$
0.00					` ,
• • • We do not use the follow	wing data for av	erage	s, fits, l	imits, e	etc. • • •
$0.24 \pm 0.16 \pm 0.06$	AUBERT	Г	04Z	BABR	Repl. by AUBERT 07X
$A_{CP}(B^+ \rightarrow \rho^+ \rho^0)$	DOCUMENT ID		TECN	6014	WENT.
<u>VALUE</u> −0.05 ±0.05 OUR AVERAG	<u>DOCUMENT ID</u> F		TECN	COMI	VIEN I
	AUBERT	09G	BABR	e^+e^-	$^- \rightarrow ~ \gamma(4S)$
	ZHANG				
• • • We do not use the follow					• ,
$-0.12 \pm 0.13 \pm 0.10$	AUBERT,BE	06G	BABR	Repl.	by AUBERT 09G
				-	by AUBERT,BE 06G
$\Lambda_{\alpha\alpha}(R^+)$					
$A_{CP}(B^+ \rightarrow \omega \pi^+)$ VALUE	DOCUMENT ID		TECN	COM	MENT
-0.04±0.06 OUR AVERAGE	DOCOMENT ID		TECH	COM	VILIVI
$-0.02\!\pm\!0.08\!\pm\!0.01$	AUBERT	07AE	BABR	e^+e	$^- ightarrow ~ \gamma(4S)$
$-0.02\!\pm\!0.09\!\pm\!0.01$	JEN	06	BELL	e^+e^-	$- \rightarrow \gamma(4S)$
-0.34 ± 0.25	CHEN	00	CLE2	e^+e^-	$^- ightarrow ~ \gamma(4S)$
• • • We do not use the follow	wing data for av	erage	s, fits, I	imits, e	etc. • • •
$-0.01\pm0.10\pm0.01$	AUBERT,B	06E	BABR	Repl.	by AUBERT 07AE
$0.03\!\pm\!0.16\!\pm\!0.01$	AUBERT	04H	BABR	Repl.	by AUBERT,B 06E
$0.50^{+0.23}_{-0.20} \pm 0.02$	WANG	04A	BELL	Repl.	by JEN 06
$-0.01^{+0.29}_{-0.31}\pm0.03$	AUBERT	02E	BABR	Repl.	by AUBERT 04H
1 Corresponds to 90% confid	ence range -0 .	75 <	A _{CP} <	0.07.	
² Corresponds to 90% CL int					
³ Corresponds to 90% confid				0.46.	
$A_{CP}(B^+ \rightarrow \omega \rho^+)$			TECN	COMI	MENT
$A_{CP}(B^+ \rightarrow \omega \rho^+)$ VALUE	DOCUMENT ID				
<u>VALUE</u> −0.20±0.09±0.02	AUBERT	09н	BABR		$^- ightarrow ~ \gamma(4S)$
VALUE	AUBERT	09н	BABR		$^- ightarrow ~ \gamma(4S)$
<u>VALUE</u> −0.20±0.09±0.02	AUBERT	09H verages	BABR s, fits, I	imits, e	$^- ightarrow ~ \gamma(4S)$

HTTP://PDG.LBL.GOV

Page 177

$A_{CP}(B^+ \rightarrow \eta \pi^+)$	DOCUMENT ID TECH COMMENT
<u>VALUE</u> -0.14±0.07 OUR AVERAGE	DOCUMENT ID TECN COMMENT Error includes scale factor of 1.4.
$-0.19\pm0.06\pm0.01$	HOI 12 BELL $e^+e^- o \Upsilon(4S)$
$-0.03\pm0.09\pm0.03$	AUBERT 09AV BABR $e^+e^- \rightarrow \Upsilon(4S)$
	wing data for averages, fits, limits, etc. • •
$-0.08\pm0.10\pm0.01$	AUBERT 07AE BABR Repl. by AUBERT 09AV
$-0.23\pm0.09\pm0.02$	CHANG 07B BELL Repl. by HOI 12
$-0.13\!\pm\!0.12\!\pm\!0.01$	AUBERT,B 05K BABR Repl. by AUBERT 07AE
$0.07 \pm 0.15 \pm 0.03$	CHANG 05A BELL Repl. by CHANG 07B
$-0.44\pm0.18\pm0.01$	AUBERT 04H BABR Repl. by AUBERT, B 05K
$A_{CP}(B^+ \rightarrow \eta \rho^+)$	
VALUE	DOCUMENT ID TECN COMMENT
0.11±0.11 OUR AVERAGE	DOCUMENT 15 TECH COMMENT
$0.13 \pm 0.11 \pm 0.02$	AUBERT 08AH BABR $e^+e^- ightarrow \varUpsilon(4S)$
$-0.04^{+0.34}_{-0.32}\!\pm\!0.01$	WANG 07B BELL $e^+e^- \rightarrow \Upsilon(4S)$
	· /
	wing data for averages, fits, limits, etc. • •
$0.02 \pm 0.18 \pm 0.02$	AUBERT,B 05K BABR Repl. by AUBERT 08AH
$A_{CP}(B^+ o \eta' \pi^+)$	
<u>VALUE</u> 0.06±0.16 OUR AVERAGE	DOCUMENT ID TECN COMMENT
$0.03\pm0.17\pm0.02$	AUBERT 09AV BABR $e^+e^- ightarrow \varUpsilon(4S)$
	• • •
$0.20^{+0.37}_{-0.36} \pm 0.04$	SCHUEMANN 06 BELL $e^+e^- ightarrow~\varUpsilon(4S)$
• • • We do not use the follow	wing data for averages, fits, limits, etc. ● ●
$0.21 \pm 0.17 \pm 0.01$	AUBERT 07AE BABR Repl. by AUBERT 09AV
$0.14 \pm 0.16 \pm 0.01$	AUBERT,B 05K BABR Repl. by AUBERT 07AE
$A_{CP}(B^+ o \eta' ho^+)$	DOCUMENT ID TECN COMMENT
$0.26 \pm 0.17 \pm 0.02$	DEL-AMO-SA10A BABR $e^+e^- \rightarrow \Upsilon(4S)$
	wing data for averages, fits, limits, etc. • •
$0.04 \pm 0.28 \pm 0.02$	¹ AUBERT 07E BABR Repl. by DEL-AMO-
0.01202020	SANCHEZ 10A
1 Reports A_{CP} with the op	posite sign convention.
$A_{CP}(B^+ \rightarrow b_1^0 \pi^+)$	
VALUE	AUBERT 07BI BABR $e^+e^- ightarrow \varUpsilon(4S)$
$+0.05\pm0.16\pm0.02$	AUBERT 07BI BABR $e^+e^- o \Upsilon(4S)$
$A_{CP}(B^+ \rightarrow \rho \overline{\rho} \pi^+)$	DOCUMENT ID TECN COMMENT
0.00±0.04 OUR AVERAGE	DOCOMENT ID 1ECT COMMENT
$-0.02 \pm 0.05 \pm 0.02$	1 WEI 08 BELL $e^{+}e^{-} ightarrow \varUpsilon(4S)$
$+0.04\pm0.07\pm0.04$	AUBERT 07AV BABR $e^+e^- ightarrow \Upsilon(4S)$
	wing data for averages, fits, limits, etc. ● ●
$-0.16\pm0.22\pm0.01$	WANG 04 BELL Repl. by WEI 08
¹ Requires $m_{p\overline{p}} < 2.85$ Ge	• •
110quiles 111pp \ 2.00 de	-,
HTTP://PDG.LBL.GOV	Page 178 Created: 5/30/2017 17:22

$A_{CP}(B^+ \rightarrow p\overline{p}K^+)$ DOCUMENT ID TECN COMMENT 0.00 ± 0.04 OUR AVERAGE Error includes scale factor of 2.2. ¹ AAIJ 14AF LHCB pp at 7, 8 TeV $0.021\pm0.020\pm0.004$ 1 WEI $-0.17 \pm 0.10 \pm 0.02$ BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.16 \ ^{+\, 0.07}_{-\, 0.08} \ \pm 0.04$ ¹ AUBERT,B 05L BABR $e^+e^- \rightarrow \Upsilon(4S)$ We do not use the following data for averages, fits, limits, etc. ¹ AAIJ $-0.047\pm0.036\pm0.007$ 13AU LHCB Repl. by AAIJ 14AF $-0.05 \pm 0.11 \pm 0.01$ WANG 04 BELL Repl. by WEI 08 ¹ Requires $m_{p\overline{p}} < 2.85 \text{ GeV/c}^2$. $A_{CP}(B^+ \rightarrow p \overline{p} K^*(892)^+)$ DOCUMENT ID TECN COMMENT **0.21 ± 0.16 OUR AVERAGE** Error includes scale factor of 1.4. 08C BELL $e^+e^- \rightarrow \Upsilon(4S)$ $-0.01\pm0.19\pm0.02$ CHEN 07AV BABR $e^+e^- \rightarrow \Upsilon(4S)$ $+0.32\pm0.13\pm0.05$ **AUBERT** $A_{CP}(B^+ \rightarrow p\overline{\Lambda}\gamma)$ VALUE TECN COMMENT DOCUMENT ID $+0.17\pm0.16\pm0.05$ 07C BELL $e^+e^- \rightarrow \Upsilon(4S)$ WANG $A_{CP}(B^+ \rightarrow p \overline{\Lambda} \pi^0)$ TECN COMMENT 07C BELL $e^+e^- \rightarrow \Upsilon(4S)$ $+0.01\pm0.17\pm0.04$ WANG $A_{CP}(B^+ \rightarrow K^+ \ell^+ \ell^-)$ TECN COMMENT -0.02 ± 0.08 OUR AVERAGE ¹ LEES $-0.03\pm0.14\pm0.01$ 12S BABR $e^+e^- \rightarrow \Upsilon(4S)$ **AUBERT** 09T BABR $e^+e^- \rightarrow \Upsilon(4S)$ $-0.18\pm0.18\pm0.01$ 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ $+0.04\pm0.10\pm0.02$ WEI • • • We do not use the following data for averages, fits, limits, etc. • • • AUBERT,B 06J BABR Repl. by AUBERT 09T 1 Measured in the union of 0.10 < q 2 < 8.12 GeV $^{2}/c^{4}$ and q 2 > 10.11 GeV $^{2}/c^{4}$. LEES 12S reports also individual measurements $A_{CP}(B^+ \to K^+ \ell^+ \ell^-) = 0.02 \pm 0.02$ 0.18 ± 0.01 for $0.10 < q^2 < 8.12 \text{ GeV}^2/\text{c}^4$ and $A_{CP}(B^+ \to K^+\ell^+\ell^-) =$ $-0.06^{+0.22}_{-0.21} \pm 0.01$ for q² > 10.11 GeV²/c⁴. $A_{CP}(B^+ \rightarrow K^+e^+e^-)$ <u>VA</u>LUE **DOCUMENT** ID <u>TECN</u> <u>COMME</u>NT 09A BELL $e^+e^- \rightarrow \Upsilon(4S)$ $+0.14\pm0.14\pm0.03$ WEI $A_{CP}(B^+ \rightarrow K^+ \mu^+ \mu^-)$ DOCUMENT ID TECN COMMENT 0.011 ± 0.017 OUR AVERAGE

14AN LHCB pp at 7, 8 TeV $0.012\pm0.017\pm0.001$ AAIJ 09A BELL $e^+e^- ightarrow \gamma(4S)$ $-0.05 \pm 0.13 \pm 0.03$ WEI • • We do not use the following data for averages, fits, limits, etc. $0.000\pm0.033\pm0.009$ **AAIJ** 13BN LHCB Repl. by AAIJ 14AN

HTTP://PDG.LBL.GOV

Page 179

$A_{CP}(B^+ \rightarrow \pi^+ \mu^+ \mu^-)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$-0.11\pm0.12\pm0.01$	AAIJ	15 AR	LHCB	<i>pp</i> at 7, 8 TeV		
$A_{CP}(B^+ \rightarrow K^{*+}\ell^+\ell^-)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
-0.09 ± 0.14 OUR AVERAGE						
$0.01^{+0.26}_{-0.24}{\pm}0.02$	AUBERT	09т	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$		
$-0.13^{\color{red}+0.17}_{\color{red}-0.16}\!\pm\!0.01$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$		
• • • We do not use the following data for averages, fits, limits, etc. • •						
$0.03\!\pm\!0.23\!\pm\!0.03$	AUBERT,B	06J	BABR	Repl. by AUBERT 09T		
$A_{CP}(B^+ \rightarrow K^*e^+e^-)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$-0.14^{f +0.23}_{f -0.22}{\pm 0.02}$	WEI	09A	BELL	$e^+e^- ightarrow \gamma(4S)$		
$A_{CP}(B^+ \rightarrow K^* \mu^+ \mu^-)$						
VALUE	DOCUMENT ID		TECN	COMMENT		
$-0.12\pm0.24\pm0.02$	WEI	09A	BELL	$e^+e^- \rightarrow \Upsilon(4S)$		
$\gamma(B^+ \rightarrow DK^+\pi^-\pi^+, D\pi^+\pi^-\pi^+)$						
VALUE (°)	DOCUMENT ID		TECN	COMMENT		
74 ⁺²⁰	AAIJ	15 BC	LHCB	pp at 7, 8 TeV		

CP VIOLATION PARAMETERS IN $B^+ \rightarrow D^{(*)0} K^{(*)+}$ DECAYS

The parameters r_{B^+} and δ_{B^+} are the magnitude ratio and strong phase difference between the amplitudes of $A(B^+ \to \overline{D}^{(*)0} K^{(*)+})$ and $A(B^- \to D^{(*)0} K^{(*)-})$. The measured observables are defined as $x_\pm = r_{B^+} \cos(\delta_{B^+} \pm \gamma)$ and $y_\pm = r_{B^+} \sin(\delta_{B^+} \pm \gamma)$, and can be used to measure the CKM angle γ .

"OUR EVALUATION" is an average, with correlations taken into accout, obtained by the Heavy Flavor Averaging Group (HFLAV) and described at http://www.slac.stanford.edu/xorg/hflav/. It include the measurements listed below as well as the measurements listed in the "CP VIOLATION PARAMETERS IN $B^0 \rightarrow D^0 K^{*0}$ DECAYS" section in the B^0 listings.

 γ

For angle $\gamma(\phi_3)$ of the CKM unitarity triangle, see the review on "CP Violation" in the Reviews section.

<u>VALUE</u> (°) <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>

$72.8_{-6.3}^{+5.3}$ OUR EVALUATION

 $^{^1}$ A combination of measurements from analyses of time-integrated $B^+ \to D\,K^+$, $B^0 \to D\,K^{(*)0}$, $B^0 \to D\,K^+\,\pi^-$, and $B^+ \to D\,K^+\,\pi^+\,\pi^-$ tree-level decays. In addition, results from a time-dependent analysis of $B^0_s \to D_s\,K$ decays are included.

DOCUMENT ID

$\gamma(B^+ \to D^{(*)0} K^{(*)+})$

CL%

For angle $\gamma(\phi_3)$ of the CKM unitarity triangle, see the review on "CP Violation" in the Reviews section.

TECN COMMENT

70	± 9 (OUR A	VERAGE				
62	$^{+15}_{-14}$			¹ AAIJ	14 BA	LHCB	<i>pp</i> at 7, 8 TeV
69	$^{+17}_{-16}$			² LEES	13 B	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
78.4	$^{+10.8}_{-11.6}\pm$	9.6		³ POLUEKTOV	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• •	• We do	not u	se the fo	llowing data for a	verage	es, fits, I	imits, etc. • • •
84	+49 -42			⁴ AAIJ	14 BE	LHCB	Repl. by AAIJ 14BA
72.6	$^{+}$ 9.7 $-$ 17.2			⁵ AAIJ	13AK	LHCB	pp at 7 TeV
44	+43 -38		(5,7 AAIJ	12AQ	LHCB	Repl. by AAIJ 13AK
77.3	$^{+15.1}_{-14.9}\pm$	5.9	7	^{7,8} AIHARA	12	BELL	$e^+e^- ightarrow \Upsilon(4S)$
68	±14 ±	: 5					Repl. by LEES 13B
7	to 173		95	¹⁰ DEL-AMO-SA.	. 10 G	BABR	$e^+e^- ightarrow ~ \varUpsilon(4S)$
76	+22 -23 ±	7.1		¹¹ AUBERT	08AL	BABR	Repl. by DEL-AMO- SANCHEZ 10F
53	$^{+15}_{-18}$ ±	10		¹² POLUEKTOV	06	BELL	Repl. by POLUEKTOV 10
70	±31 +	18 15		¹³ AUBERT,B	05Y	BABR	Repl. by AUBERT 08AL
77	$^{+17}_{-19}$ ±	17		¹⁴ POLUEKTOV	04	BELL	Repl. by POLUEKTOV 06

 $^{^1}$ Uses binned Dalitz plot analysis of $B^+ o DK^+$ decays, with $D o K^0_{\mathcal S}\pi^+\pi^-$ and $D \to K_S^0 K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input. Solution that satisfies $0 < \gamma < 180$ is

 $^{^2}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. Reports also 2σ range of 41–102° and a 5.9 σ significance for $\gamma(B^+ \to D^{(*)0}K^{(*)+})$ \neq 0 hypothesis.

 $^{^3}$ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays from $B^+ \to D^{(*)} K^+$ modes. The corresponding two standard deviation interval for γ is $54.2^{\circ} < \gamma < 100.5^{\circ}$. CP conservation in the combined result is ruled out with a significance of 3.5 standard

⁴ AAIJ 14BE uses model-dependent analysis of $D o \kappa_S^0\pi^+\pi^-$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.

 $^{^{5}}$ Presents a confidence region $55.4^{\circ} < \gamma < 82.3^{\circ}$ at 68% CL with best fit value 72.6° and includes both statistical and systematic uncertainties. The corresponding 95% CL is 40.2 $^{\circ}$ < γ < 92.7 $^{\circ}.$ The value is determined from combination of measuremets using D meson decaying to K^+K^- , $\pi^+\pi^-$, $K^\pm\pi^\mp$, $K^0_S\pi^+\pi^-$, $K^0_SK^+K^-$, and

 $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$. Combines $B^{\pm}\to DK^{\pm}$ and $B^{\pm}\to D\pi^{\pm}$.

6 Reports combined statistical and systematic uncertainties.

7 Uses binned Dalitz plot of $\overline{D}{}^0\to K^0_S\pi^+\pi^-$ decays from $B^+\to \overline{D}{}^0K^+$. Measurement of strong phases in $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input.

 $^{^{8}}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.

- ⁹ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to D^{(*)} K^+$, DK^{*+} modes. The corresponding two standard deviation interval for γ is $39^\circ < \gamma < 98^\circ$. CP conservation in the combined result is ruled out with a significance of 3.5 standard deviations.
- Reports confidence intervals for the CKM angle γ from the measured values of the GLW parameters using $B^\pm\to DK^\pm$ decays with D mesons decaying to non- $CP(K\pi)$, CP-even $(K^+K^-,\pi^+\pi^-)$, and CP-odd $(K^0_S\pi^0,K^0_S\omega)$ states.
- 11 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D^{(*)} K^{(*)\pm}$ modes. The corresponding two standard deviation interval is $29^\circ < \gamma < 122^\circ$.
- 12 Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. The corresponding two standard deviations interval for gamma is $8^\circ < \gamma < 111^\circ$.
- 13 Uses a Dalitz plot analysis of neutral $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^\pm \to D K^\pm$ and $B^\pm \to D^{*0} K^\pm$ followed by $D^{*0} \to D \pi^0$, $D \gamma$. The corresponding two standard deviations interval for gamma is $12^\circ < \gamma < 137^\circ$. AUBERT,B 05Y also reports the amplitude ratios and the strong phases.
- ¹⁴ Uses a Dalitz plot analysis of the 3-body $D \to K_S^0 \pi^+ \pi^-$ decays coming from $B^\pm \to DK^\pm$ and $B^\pm \to D^*K^\pm$ followed by $D^* \to D\pi^0$; here we use D to denote that the neutral D meson produced in the decay is an admixture of D^0 and \overline{D}^0 . The corresponding two standard deviations interval for γ is $26^\circ < \gamma < 126^\circ$. POLUEKTOV 04 also reports the amplitude ratios and the strong phases.

$r_B(B^+ \rightarrow D^0 K^+)$

 r_B and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A(B^+ \to D^0 K^+)$ and $A(B^+ \to \overline{D}^0 K^+)$,

VALUE			CL%		DOCUMENT ID		TECN	COMMENT
0.1033	3±0.0049	OUR E	/ALUA	TIC	N			
0.095	± 0.008	OUR A	/ERAG	ìΕ				
0.080	$^{+0.019}_{-0.021}$			1	AAIJ	14 BA	LHCB	<i>pp</i> at 7, 8 TeV
0.097	±0.011			2	AAIJ	13AE	LHCB	pp at 7 TeV
0.092	$^{+0.013}_{-0.012}$			3	LEES	13 B	BABR	$e^+e^- ightarrow \gamma(4S)$
0.160	$^{+0.040}_{-0.038}$	$^{+0.051}_{-0.015}$		4	POLUEKTOV	10	BELL	$e^+e^- ightarrow ~ \varUpsilon(4S)$
• • • W	'e do not	use the f	ollowin	ng d	ata for averages	, fits,	limits, e	etc. • • •
0.06	± 0.04			5	AAIJ	14 BE	LHCB	Repl. by AAIJ 14BA
0.07	± 0.04				AAIJ	12AQ	LHCB	pp at 7 TeV
0.145	± 0.030	± 0.015		7,8	AIHARA	12	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
< 0.13			90		LEES			$e^+e^- ightarrow ~ \varUpsilon(4S)$
	± 0.029	± 0.006		10	DEL-AMO-SA	10 F	BABR	Repl. by LEES 13B
0.095	$^{+0.051}_{-0.041}$			11	DEL-AMO-SA	1 0H	BABR	Repl. by LEES 13B
0.086	± 0.032	± 0.015		12	AUBERT	08AL	BABR	Repl. by DEL-AMO- SANCHEZ 10F
< 0.19			90		HORII	80	BELL	$e^+e^- \rightarrow \Upsilon(4S)$
0.159	$^{+0.054}_{-0.050}$	± 0.050		13	POLUEKTOV	06	BELL	Repl. by POLUEK- TOV 10
0.12	± 0.08	± 0.05		14	AUBERT,B	05Y	BABR	Repl. by AUBERT 08AL

- 1 Uses binned Dalitz plot analysis of $B^+ o DK^+$ decays, with $D o K^0_{f S}\pi^+\pi^-$ and $D \rightarrow K_S^0 K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the Ddecay over the Dalitz plot are used as input.
- ²Uses $B^{\pm} \rightarrow [K^{\pm}\pi^{\mp}\pi^{+}\pi^{-}]_{D}h^{\pm}$ mode.
- ³Reports combination of published measurements using GGSZ, GLW, and ADS methods.
- ⁴ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to D^0 K^+$ modes. The corresponding two standard deviation interval is 0.084 $< r_B <$ 0.239.
- ⁵ AAIJ 14BE uses model-dependent analysis of $D \to \kappa_S^0 \pi^+ \pi^-$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.
- ⁶ Reports combined statistical and systematic uncertainties.
- ⁷ Uses binned Dalitz plot of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 K^+$. Measurement of strong phases in $\overline{D}{}^0 \to \kappa_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input.
- $^{8}\hspace{-0.05cm}$ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.
- ⁹ Uses decays of neutral D to $K^-\pi^+\pi^0$. ¹⁰ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+\pi^-$, $K^0_S K^+K^-$ decays from $B^+ \to K^0_S \pi^+\pi^ D^{(*)}K^{(*)+}$ modes. The corresponding two standard deviation interval is 0.037 < $r_{R} < 0.155$.
- 11 Uses the Cabibbo suppressed decay of $B^+ \to \overline{D}\, K^+$ followed by $\overline{D} \to K^- \pi^+$. 12 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ and $\overline{D}{}^0 \to K^0_S K^+ K^-$ decays coming
- from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. 13 Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+
- and DK^{*+} modes. 14 Uses a Dalitz analysis of neutral D decays to $K^0_S\pi^+\pi^-$ in the processes B^\pm \to $D^{(*)}K^{\pm}. D^{*} \rightarrow D\pi^{0}. D\gamma.$

$\delta_B(B^+ \rightarrow D^0 K^+)$

DOCUMENT ID

137.4^{+}_{-} $\begin{array}{c} 5.3\\ 5.9 \end{array}$ OUR EVALUATION

123 \pm 10 OUR AVERAGE

- $134 \begin{array}{c} +14 \\ -15 \end{array}$ $^{
 m 1}$ AAIJ 14BA LHCB pp at 7, 8 TeV
- ² LEES 13B BABR $e^+e^- \rightarrow \Upsilon(4S)$
- $136.7^{+13.0}_{-15.8}\pm 23.2$ 3 POLUEKTOV 10 BELL $e^+e^-
 ightarrow \varUpsilon$ (4S)
- • We do not use the following data for averages, fits, limits, etc. • •
- $115 \begin{array}{c} +41 \\ -51 \end{array}$ ⁴ AAIJ 14BE LHCB Repl. by AAIJ 14BA
- $137 \begin{array}{c} +35 \\ -46 \end{array}$ 5,6 AAIJ 12AQ LHCB pp at 7 TeV
- $129.9 \pm 15.0 \pm 6.0$ 6.7 AIHARA 12 BELL $e^+e^- \rightarrow \Upsilon(4S)$
- $119 \begin{array}{c} +19 \\ -20 \end{array} \pm \ 4$ ⁸ DEL-AMO-SA..10F BABR Repl. by LEES 13B
- $109 \begin{array}{c} +27 \\ -30 \end{array} \pm 8$ ⁹ AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F
- $145.7^{+19.0}_{-10.7}\pm23.1$ ¹⁰ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10
- 104 ± 45 $+\frac{23}{32}$ ¹¹ AUBERT,B 05Y BABR Repl. by AUBERT 08AL

- ¹ Uses binned Dalitz plot analysis of $B^+ \to DK^+$ decays, with $D \to K^0_S \pi^+ \pi^-$ and $D \to K^0_S K^+ K^-$. Strong phase measurements from CLEO-c (LIBBY 10) of the D decay over the Dalitz plot are used as input.
- ²Reports combination of published measurements using GGSZ, GLW, and ADS methods.
- 3 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 K^+$ modes. The corresponding two standard deviation interval is $102.2^\circ < \delta_B < 162.3^\circ$.
- 4 AAIJ 14BE uses model-dependent analysis of $D\to \kappa_S^0\,\pi^+\pi^-$ amplitudes. The model is the same as in DEL-AMO-SANCHEZ 10F.
- 5 Reports combined statistical and systematic uncertainties.
- ⁶ Uses binned Dalitz plot of $\overline{D}{}^0 \to \mathcal{K}_S^0 \pi^+ \pi^-$ decays from $B^+ \to \overline{D}{}^0 \mathcal{K}^+$. Measurement of strong phases in $\overline{D}{}^0 \to \mathcal{K}_S^0 \pi^+ \pi^-$ Dalitz plot from LIBBY 10 is used as input.
- ⁷ We combined the systematics in quadrature. The authors report separately the contribution to the systematic uncertainty due to the uncertainty on the bin-averaged strong phase difference between D^0 and \overline{D}^0 amplitudes.
- phase difference between D^0 and $\overline{D}{}^0$ amplitudes. 8 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is $75^\circ < \delta_B < 157^\circ$.
- ⁹ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D^{(*)} K^{(*)\pm}$ modes
- from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. 10 Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.
- ¹¹ Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^\pm \to D^{(*)} K^\pm$, $D^* \to D \pi^0$, $D \gamma$.

$r_B(B^+ \rightarrow \overline{D}{}^0K^{*+})$

 ${\bf r}_B$ and δ_B are the amplitude ratio and relative strong phase between the amplitudes of $A_{CP}(B^+ \to D^0 K^{*+})$ and $A_{CP}(B^+ \to \overline{D}^0 K^{*+})$,

VALUE

DOCUMENT ID TECN COMMENT

$0.125^{m{+0.050}}_{-0.049}$ OUR EVALUATION

0.17 ±0.11 OUR AVERAGE Error includes scale factor of 2.3.

$0.143^{+0.048}_{-0.049}$	¹ LEES	13 B	BABR	$e^+e^- \rightarrow$	$\Upsilon(4S)$
1 N/U					(-)

$$0.564 ^{+0.216}_{-0.155} \pm 0.093 \hspace{1.5cm} ^{2} \hspace{0.5cm} \text{POLUEKTOV} \hspace{0.2cm} 06 \hspace{0.2cm} \text{BELL} \hspace{0.2cm} e^{+} \hspace{0.2cm} e^{-} \hspace{0.2cm} \rightarrow \hspace{0.2cm} \varUpsilon(4S)$$

• • • We do not use the following data for averages, fits, limits, etc. • • •

 $^{
m 1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.

- ² Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.
- 3 and DK^{*+} modes. 3 DEL-AMO-SANCHEZ 10F reports ${\bf r}_B\cdot{\bf k}=$ 0.149 $^+$ 0.066 for ${\bf k}=$ 0.9.
- ⁴ Obtained by combining the GLW and ADS methods. The 2-sigma range corresponds to [0.17, 0.43].
- ⁵ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D^{(*)} K^{(*)\pm}$ modes.

Created: 5/30/2017 17:22

HTTP://PDG.LBL.GOV

Page 184

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update $\delta_B(B^+ \rightarrow D^0 K^{*+})$ VALUE (°) TECN COMMENT **OUR EVALUATION** 155 ± 70 **OUR AVERAGE** Error includes scale factor of 2.0. 1 LEES 101 ± 43 13B BABR $e^+e^- \rightarrow \Upsilon(4S)$ $242.6^{+20.2}_{-23.2}\pm49.4$ ² POLUEKTOV 06 BELL $e^+e^- \rightarrow \Upsilon(4S)$ • • We do not use the following data for averages, fits, limits, etc. DEL-AMO-SA..10F BABR Repl. by LEES 13B 111 ± 32 $104 \begin{array}{c} +39 \\ -37 \end{array} \pm 18$ 3 AUBERT 08AL BABR Repl. by LEES 13B $^{ m 1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. 2 Uses a Dalitz plot analysis of the $\overline{D}{}^0 o K^0_S \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes. 3 Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}{}^0 \to K_S^0 K^+ K^-$ decays coming from $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ modes. $r_{P}^{*}(B^{+} \rightarrow D^{*0}K^{+})$ of $A(B^+ \rightarrow D^{*0}K^+)$ and $A(B^+ \rightarrow \overline{D}^{*0}K^+)$ DOCUMENT ID

 ${
m r}_{B}^{*}$ and ${
m \delta}_{B}^{*}$ are the amplitude ratio and relative strong phase between the amplitudes

0.117 ± 0.024 OUR EVALUATION

0.114⁺**0.023 OUR AVERAGE** Error includes scale factor of 1.2.

$$0.106^{+0.019}_{-0.036}$$
 13B BABR $e^+e^- o ag{7(4S)}$

$$0.196^{\,+\,0.072\,+\,0.064}_{\,-\,0.069\,-\,0.017}$$
 2 POLUEKTOV 10 BELL $e^+\,e^-
ightarrow ~ \varUpsilon(4S)$

• • We do not use the following data for averages, fits, limits, etc.
 • •

 $^{^{}m 1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods.

² Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_{S} \pi^+ \pi^-$ decays from $B^+ \to D^{*0} K^+$ modes. The corresponding two standard deviation interval is 0.061 $< r_B^* <$ 0.271.

 $^{^3}$ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K^0_S \pi^+ \pi^-$, $K^0_S K^+ K^-$ decays from $B^+ \to K^0_S \pi^+ \pi^ D^{(*)}K^{(*)+}$ modes. The corresponding two standard deviation interval is 0.049 < $r_B^* < 0.215$.

⁴ Uses the Cabibbo suppressed decay of $B^+ \to \overline{D}^* K^+$ followed by $\overline{D}^* \to \overline{D} \pi^0$ or $\overline{D} \gamma$, and $\overline{D} \rightarrow K^- \pi^+$.

 $^{^{5}}$ Uses Dalitz plot analysis of $\overline{D}{}^{0} \to K_{S}^{0} \pi^{+} \pi^{-}$ and $\overline{D}{}^{0} \to K_{S}^{0} K^{+} K^{-}$ decays coming from $B^{\pm} \rightarrow D^{(*)} K^{(*)\pm}$ modes.

⁶ Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes.

7 Uses a Dalitz analysis of neutral D decays to $K_S^0 \pi^+ \pi^-$ in the processes $B^{\pm} \to D^{(*)} K^{\pm}$, $D^* \to D \pi^0$, $D \gamma$.

$\delta_R^*(B^+ \rightarrow D^{*0}K^+)$

VALUE (°) DOCUMENT ID TECN COMMENT

311 $^{+13}_{-17}$ OUR EVALUATION

310 +22 OUR AVERAGE Error includes scale factor of 1.3.

294
$$^{+21}_{-31}$$
 1 LEES 13B BABR $e^+e^- \rightarrow \Upsilon(4S)$

$$341.9^{+\,18.0}_{-\,19.6}\pm23.1$$
 ² POLUEKTOV 10 BELL $e^+\,e^-
ightarrow~\varUpsilon(4S)$

• • • We do not use the following data for averages, fits, limits, etc. • •

278
$$\pm$$
21 \pm 6 3 DEL-AMO-SA..10F BABR Repl. by LEES 13B

$$^{+27}_{-29}~\pm~6.4$$
 4 AUBERT 08AL BABR Repl. by DEL-AMO-SANCHEZ 10F

$$302.0^{+33.8}_{-35.1}\pm23.7$$
 ⁵ POLUEKTOV 06 BELL Repl. by POLUEKTOV 10

296
$$\pm$$
41 $^{+20}_{-19}$ 6 AUBERT,B 0 5Y BABR Repl. by AUBERT 08AL

PARTIAL BRANCHING FRACTIONS

${\rm B}(B^+\to~K^{*+}\ell^+\ell^-)~({\rm q}^2<2.0~{\rm GeV}^2/{\rm c}^4)$

VALUE (units 10 ⁻⁷)	DOCUMENT ID	TECN	COMMENT	
1.4 ±0.5 OUR AVERAGE				_
$1.37 {+0.60 \atop -0.58}$	AAIJ	12AH LHCB	pp at 7 TeV	
$1.30 \pm 0.98 \pm 0.14$	AALTONEN	11AI CDF	$p\overline{p}$ at 1.96 TeV	

 $^{^1}$ Reports combination of published measurements using GGSZ, GLW, and ADS methods. We added 360° to the value of $(-66^{+21}_{-31})^\circ$ quoted by LEES 13B.

² Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays from $B^+ \to D^* K^+$ modes. The corresponding two standard deviation interval is $296.5^\circ < \delta_B^* < 382.7^\circ$.

³ Uses Dalitz plot analysis of $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$, $K_S^0 K^+ K^-$ decays from $B^+ \to D^{(*)} K^{(*)+}$ modes. The corresponding two standard deviation interval is 236° < $\delta_B^* < 322^\circ$.

⁴ Uses Dalitz plot analysis of $\overline{D}^0 \to K_S^0 \pi^+ \pi^-$ and $\overline{D}^0 \to K_S^0 K^+ K^-$ decays coming from $B^\pm \to D(*) K(*)^\pm$ modes

from $B^{\pm} \to D^{(*)} K^{(*)\pm}$ modes. ⁵ Uses a Dalitz plot analysis of the $\overline{D}{}^0 \to K_S^0 \pi^+ \pi^-$ decays; Combines the DK^+ , D^*K^+ and DK^{*+} modes

and DK^{*+} modes. 6 Uses a Dalitz analysis of neutral D decays to $K_S^0\pi^+\pi^-$ in the processes $B^\pm\to D^{(*)}K^\pm$, $D^*\to D\pi^0$, $D\gamma$.

$B(B^+ \to K^{*+}\ell^+\ell^-)$ (2.0 <	$q^2 < 4.3 \text{ GeV}$	² /c ⁴)		
VALUE (units 10 ⁻⁷)	DOCUMENT ID		TECN	COMMENT
1.1 ±0.5 OUR AVERAGE	A A I I	10411	LUCD	
1.24 + 0.60 $0.71 + 1.00 + 0.15$	AALTONEN			pp at 7 TeV $p\overline{p}$ at 1.96 TeV
$0.71 \pm 1.00 \pm 0.15$	_			<i>pp</i> at 1.90 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (4.3 <		-	-	
VALUE (units 10 ⁻⁷)	DOCUMENT ID		TECN	COMMENT
2.4 $^{+0.8}_{-0.7}$ OUR AVERAGE				
$2.50^{+0.88}_{-0.74}$	AAIJ	12AH	LHCB	pp at 7 TeV
$1.71 \pm 1.58 \pm 0.49$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (10.09)	$< a^2 < 12.86$	GeV ²	2/c ⁴)	
$VALUE (units 10^{-7})$	DOCUMENT ID			COMMENT
2.1 ±0.6 OUR AVERAGE				
$2.13^{+0.72}_{-0.66}$	AAIJ	12AH	LHCB	pp at 7 TeV
$1.97 \pm 0.99 \pm 0.22$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (14.18)	$< q^2 < 16.0$ (GeV ² /	/c ⁴)	
VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
$0.86^{+0.40}_{-0.32}$ OUR AVERAGE				
$1.00^{+0.47}_{-0.38}$	AAIJ	12AH	LHCB	pp at 7 TeV
$0.52 \pm 0.61 \pm 0.09$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (15.0 <	$< q^2 < 19.0 G$	eV ² /c	⁴)	
•	DOCUMENT ID	•	•	COMMENT
$1.58^{+0.32}_{-0.29}\pm0.11$	¹ AAIJ			
1 Uses B($B^+ o J/\psi(1S) K^*$ (89 and $\mu^+\mu^-$ as a lepton pair.	$(2)^{+} = (1.431 \pm$	0.027 =	± 0.090)	$ imes 10^{-3}$ for normalization
$B(B^+ \to K^{*+}\ell^+\ell^-) (q^2 >$	16.0 GeV ² /c ⁴	.)		
VALUE (units 10^{-7})	DOCUMENT ID	-	TECN	COMMENT
1.3 ±0.4 OUR AVERAGE	A A I I	10411	LUCD	
1.25 ± 0.46 $1.57 \pm 0.96 \pm 0.17$	AAIJ AALTONEN			pp at 7 TeV $p\overline{p}$ at 1.96 TeV
$D(D^{+} . V^{*+} l^{+} l^{-}) (1.0 <$		_		
$B(B^+ \to K^{*+}\ell^+\ell^-)$ (1.0 < VALUE (units 10 ⁻⁷)	DOCUMENT ID			COMMENT
1.8 ±0.4 OUR AVERAGE	DOCOMENT ID		TECH	COMMENT
$1.79^{+0.41}_{-0.37}\pm0.13$	¹ AAIJ	14M	LHCB	<i>pp</i> at 7, 8 TeV
$2.57 \pm 1.61 \pm 0.40$	AALTONEN			$p\overline{p}$ at 1.96 TeV
• • We do not use the following	data for averages	s, fits,	limits, e	etc. • • •
$2.90 + 0.90 \\ -0.85$	AAIJ	12AH	LHCB	Repl. by AAIJ 14M
HTTP://PDG.LBL.GOV	Page 187		Creat	red: 5/30/2017 17:22

 $^{1}\, \text{Uses B}(B^{+} \to J/\psi(1S)\, K^{*}(892)^{+}) = (1.431 \pm 0.027 \pm 0.090) \times 10^{-3} \text{ for normalization and } \mu^{+}\,\mu^{-} \text{ as a lepton pair. Measured in } 1.1 < \mathsf{q}^{2} < 6.0 \,\, \text{GeV}^{2}/\mathsf{c}^{4}.$

$B(B^+ \to K^{*+} \ell^+ \ell^-) (0.0 < q^2 < 4.3 \text{ GeV}^2/c^4)$

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
2.01±1.39±0.27	AALTONEN 11	LAI CDF	$p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^+ \ell^+ \ell^-) (q^2 < 2.0 \text{ GeV}^2/c^4)$

$VALUE$ (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
0.51 ± 0.08 OUR AVERAGE	Error includes scale fa	ctor of 1.5.	
$0.556 \pm 0.053 \pm 0.027$	¹ AAIJ 1	.3H LHCB	pp at 7 TeV
$0.36 \pm 0.11 \pm 0.03$	AALTONEN 1	.1AI CDF	$p\overline{p}$ at 1.96 TeV

 $^{^{1}\,\}text{Measured}$ in $0.05 < \text{q}^{2} < 2.0~\text{GeV}^{2}/\text{c}^{4}$ range.

$B(B^+ \to K^+ \ell^+ \ell^-)$ (2.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
0.60 ±0.07 OUR AVERAGE	Error includes scale facto	r of 1.3.	
$0.573 \pm 0.053 \pm 0.023$	AAIJ 13H	LHCB	pp at 7 TeV
$0.80\ \pm0.15\ \pm0.05$	AALTONEN 11AI	CDF	$p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (4.3 < q² < 8.68 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
1.03 ±0.07 OUR AVERAGE				
$1.003\pm0.070\pm0.039$	AAIJ	13H	LHCB	pp at 7 TeV
$1.18 \pm 0.19 \pm 0.09$	AALTONEN	11 AI	CDF	$p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (10.09 < q² < 12.86 GeV²/c⁴)

<i>VALUE</i> (units 10 ⁻⁷)	DOCUMENT ID	TECN	COMMENT	
0.58 ±0.05 OUR AVERAGE				
$0.565\pm0.050\pm0.022$	AAIJ	13H LHCB	pp at 7 TeV	
$0.68 \pm 0.12 \pm 0.05$	ΔΔΙΤΩΝΕΝ	11AL CDE	n n at 1.06 TeV	

$B(B^+ \to K^+ \ell^+ \ell^-)$ (14.18 < q² < 16.0 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
0.40 ±0.05 OUR AVERAGE	Error includes scale factor	r of 1.4.	
$0.377 \pm 0.036 \pm 0.015$	AAIJ 13H	LHCB	pp at 7 TeV
$0.53 \pm 0.10 \pm 0.03$	AALTONEN 11AI	CDF	$p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (16.0 < q² < 18.0 GeV²/c⁴)

VALUE (units 10^{-7})	DOCUMENT ID	TECN	COMMENT
$0.354 \pm 0.036 \pm 0.018$	AAIJ	13H LHCB	pp at 7 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (18.0 < q² < 22.0 GeV²/c⁴)

 ${\sf F}_H$ is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay width in the massless muon approximation.

$VALUE$ (units 10^{-7})	DOCUMENT ID		TECN	COMMENT
$0.312\pm0.040\pm0.016$	AAIJ	13H	LHCB	pp at 7 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (15.0 < q² < 22.0 GeV²/c⁴)

VALUE (units 10^{-7} 14M LHCB pp at 7, 8 TeV $0.85 \pm 0.03 \pm 0.04$

¹ Uses B($B^+ \to J/\psi(1S) K^+$) = $(0.998 \pm 0.014 \pm 0.040) \times 10^{-3}$ for normalization and $\mu^+\mu^-$ as a lepton pair.

$B(B^+ \to K^+ \ell^+ \ell^-)$ (16.0 < q² GeV²/c⁴)

VALUE (units 10^{-7}) 11AI CDF $0.48 \pm 0.11 \pm 0.03$ **AALTONEN** $p\overline{p}$ at 1.96 TeV

$B(B^+ \to K^+ \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴)

DOCUMENT ID TECN COMMENT **1.26** ±0.10 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below. $1.56 \begin{array}{l} +0.19 \\ -0.15 \end{array} \begin{array}{l} +0.06 \\ -0.04 \end{array}$ 1 AALI 14AR LHCB pp at 7, 8 TeV ² AAIJ $1.19 \pm 0.034 \pm 0.059$ 14M LHCB pp at 7, 8 TeV

AALTONEN

11AI CDF

 $p\overline{p}$ at 1.96 TeV

• • We do not use the following data for averages, fits, limits, etc.

 $1.205 \pm 0.085 \pm 0.070$ 13H LHCB Repl. by AAIJ 14M **AAIJ**

WEIGHTED AVERAGE 1.26±0.10 (Error scaled by 1.6)

 $1.41 \pm 0.20 \pm 0.10$

 $B(B^+ \to K^+ \ell^+ \ell^-)$ (1.0 < q² < 6.0 GeV²/c⁴) (units 10⁻⁷)

HTTP://PDG.LBL.GOV

Page 189

 $^{^1}$ Measured by taking the ratio of the branching fraction from $B^+ o K^+ e^+ e^-$ and $B^+ \rightarrow J/\psi(e^+e^-)K^+$ decays and multiplying it by the measured value of $B^+ \rightarrow$ $J/\psi K^+$ and $J/\psi \to e^+e^-$ as in PDG 12 update. The branching fraction of $B^+ \to e^ K^+e^+e^-$ is determined in the region $1 < q^2 < 6 \text{ GeV}^2/c^4$.

² Uses B($B^+ \to J/\psi(1S)K^+$) = $(0.998 \pm 0.014 \pm 0.040) \times 10^{-3}$ for normalization and $\mu^+\mu^-$ for leptons. Measured for $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$.

$$B(B^+ \to K^+ \mu^+ \mu^-) / B(B^+ \to K^+ e^+ e^-) (1.0 < q^2 < 6.0 \text{ GeV}^2/c^4)$$
 $VALUE$
 $DOCUMENT ID$
 $TECN$
 $COMMENT$
 $O.745^{+0.090}_{-0.074} \pm 0.036$
 $DOCUMENT ID$
 DOC

$$B(B^+ \to K^+ \ell^+ \ell^-)$$
 (0.0 < q² < 4.3 GeV²/c⁴)

VALUE (units 10^{-7})DOCUMENT IDTECNCOMMENT1.13 \pm 0.19 \pm 0.08AALTONEN11AICDF $p\overline{p}$ at 1.96 TeV

 $B(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)$ (1.00 < q² < 6.00 GeV²/c⁴)

VALUE (units 10⁻⁷)

DOCUMENT ID

TECN
COMMENT

 $1.38^{+0.15}_{-0.14} \pm 0.08$ AAIJ 14AZ LHCB pp at 7, 8 TeV

 $B(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-) (0.10 < q^2 < 2.00 \text{ GeV}^2/c^4)$

VALUE (units 10^{-7})DOCUMENT IDTECNCOMMENT $1.33^{+0.13}_{-0.12} \pm 0.09$ AAIJ14AZ LHCBpp at 7, 8 TeV

 $B(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)$ (2.00 < q² < 4.30 GeV²/c⁴)

VALUE (units 10⁻⁸)

DOCUMENT ID

TECN

COMMENT

 $5.38^{+0.94}_{-0.87} \pm 0.35$ AAIJ 14AZ LHCB pp at 7, 8 TeV

 $B(B^+ \to K^+ \pi^- \mu^+ \mu^-)$ (4.30 < q² < 8.68 GeV²/c⁴)

VALUE (units 10^{-7})DOCUMENT IDTECNCOMMENT $1.01^{+0.12}_{-0.13} \pm 0.09$ AAIJ14AZ LHCBpp at 7, 8 TeV

-0.13

 $B(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-) (10.09 < q^2 < 12.86 \text{ GeV}^2/c^4)$

 VALUE (units 10^{-8})
 DOCUMENT ID
 TECN
 COMMENT

 5.07 $^{+0.94}_{-0.89} \pm 0.47$ AAIJ
 14AZ LHCB
 pp at 7, 8 TeV

 $B(B^+ \to K^+ \pi^+ \pi^- \mu^+ \mu^-)$ (14.18 < q² < 19.00 GeV²/c⁴)

 VALUE (units 10^{-8})
 DOCUMENT ID
 TECN
 COMMENT

 0.48 $^{+0.39}_{-0.29} \pm 0.05$ AAIJ
 14AZ LHCB
 pp at 7, 8 TeV

 $B(B^+ \to \pi^+ \mu^+ \mu^-)/B(B^+ \to K^+ \mu^+ \mu^-)$ (1.00 < q² < 6.00 GeV²/c⁴) VALUE (units 10⁻²) DOCUMENT ID TECN COMMENT

3.8±0.9±0.1 AAIJ 15AR LHCB pp at 7, 8 TeV

 $B(B^+ \to \pi^+ \mu^+ \mu^-)$ (1.00 < q² < 6.00 GeV²/c⁴)

VALUE (units 10⁻⁹)

DOCUMENT ID

TECN
COMMENT

1.05

4.55 $^{+1.05}_{-1.00}$ \pm **0.15** AAIJ 15AR LHCB pp at 7, 8 TeV

¹ The ratio is determined using the ratio of the relative branching fractions of the decays $B^+ \to K^+ \ell^+ \ell^-$ and $B^+ \to J/\psi (\to \ell^+ \ell^-) K^+$, with $\ell = e, \mu$.

$B(B^+ \to \pi^+ \mu^+ \mu^-)$ (15.00 < q ² < 22.00 GeV ² /c ⁴)					
VALUE (units 10^{-9})	DOCUMENT ID		TECN	COMMENT	
$3.29^{+0.84}_{-0.70}\pm0.07$	AAIJ	15 AR	LHCB	<i>pp</i> at 7, 8 TeV	
$B(B^+ \to \pi^+ \mu^+ \mu^-)/B(B^+ -$	\rightarrow $K^+\mu^+\mu^-)$	(15.	$0 < q^2$	$^2 < 22.0 \text{ GeV}^2/\text{c}^4$)	
$B(B^+ \to \pi^+ \mu^+ \mu^-)/B(B^+ - \mu^+)$ VALUE (units 10^{-2})	→ K ⁺ μ ⁺ μ [−])	•	0 < q ² <u>TECN</u>	² < 22.0 GeV ² /c ⁴) COMMENT	

VALUE	<u>DOCUMENT IL</u>)	<u>TECN</u>	COMMENT	
$0.005\pm0.015\pm0.010$	¹ AAIJ	140	LHCB	<i>pp</i> at 7,8 TeV	
• • • We do not use the follow	wing data for averag	ges, fits,	limits, e	etc. • • •	
$0.02 \begin{array}{c} +0.05 & +0.02 \\ -0.03 & -0.01 \end{array}$	AAIJ	13H	LHCB	Repl. by AAIJ 140	

 $^{^{1}}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.

 $A_{FB}(B^+ \to K^+ \mu^+ \mu^-)$ (15.0 < q² < 22.0 GeV²/c⁴) $\frac{DOCUMENT\ ID}{1}$ AAIJ 140 LHCB $pp \ at \ 7, \ 8 \ TeV$

${\sf F}_H(B^+ o {\it K}^+ \mu^+ \mu^-)$ (1.1 < q² < 6.0 GeV²/c⁴) ${\sf F}_H$ is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay

width in the massless muon approximation.

VALUE	<u>DOCUMENT I</u>	D	TECN	COMMENT	
$0.03 \pm 0.03 \pm 0.02$	¹ AAIJ	140	LHCB	<i>pp</i> at 7, 8 TeV	
ullet $ullet$ We do not use the follow	ving data for avera	ges, fits,	limits, e	etc. • • •	
$0.05 + 0.08 + 0.04 \\ -0.05 - 0.02$	AAIJ	13H	LHCB	Repl. by AAIJ 140	

 $^{^1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.

$F_H(B^+ \to K^+ \mu^+ \mu^-)$ (15.0 < q^2 < 22.0 GeV²/c⁴) F_H is a fractional contribution of (pseudo) scalar and tensor amplitudes to the decay

width in the massless muon approximation.

VALUE	DOCUMENT ID		TECN	COMMENT
$0.035 \pm 0.035 \pm 0.02$	¹ AAIJ	140	LHCB	pp at 7, 8 TeV

 $^{^1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval

 $^{^1}$ AAIJ 140 reports 68% C.L. interval, which we encode as midpoint with uncertainty as half of the width of interval.

FORWARD-BACKWARD ASYMMETRIES

The forward-backward assymmetry is defined as ${\rm A}_{FB}$ = [${\rm N}({\rm q}_{FB}$ >0) - N(q_{FB} < 0)] / [N(q_{FB} > 0) + N(q_{FB} < 0)], where q_{FB} = - q_B \cdot sgn(η_B) with q_B as the B hadron electric charge, η_B as its pseudorapidity, and $sgn(\eta_B)$ as a sign function of η_B .

$A_{FB}(B^{\pm} \rightarrow J/\psi K^{\pm})$

VALUE (units 10^{-2})	DOCUMENT ID		TECN	COMMENT
$-0.24\pm0.41\pm0.19$	ABAZOV	15	D0	$p\overline{p}$ at 1.96 TeV

B[±] REFERENCES

		B -	NEFERENCES	
AAIJ	17	PR D95 012002	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	17E	PL B765 307	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	17K	EPJ C77 72	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	17A	PR D95 031101	V.M. Abazov <i>et al.</i>	(D0 Collab.)
KHACHATRY		PL B764 66	V. M. Abazov et al. V. Khachatryan et al.	(CMS Collab.)
LEES	17	PRL 118 031802	J.P. Lees <i>et al.</i>	(BABAR Collab)
AABOUD	16L	EPJ C76 513	M. Aaboud <i>et al.</i>	(ATLAS Collab.)
AAIJ		PR D94 072001	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1612 087	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16L	PL B760 117	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	16M	PR D93 051101	R. Aaij et al.	(LHCb Collab.)
AAIJ	16R	PR D93 119902	R. Aaij et al.	(LHCb Collab.)
BHARDWAJ	16	PR D93 052016	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)
DEL-AMO-SA	. 16	PR D93 052013	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
LEES	16	PRL 116 041801	J.P. Lees <i>et al.</i>	(BABAR Collab.)
PDG	16	Chin. Phys. C	C. Patrignani <i>et al.</i>	(PDG Collab.)
AAIJ		JHEP 1510 034	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PR D92 112005	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	150	PRL 115 051801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15V	PR D91 092002	R. Aaij <i>et al.</i>	(LHCb Collab.)
Also		PR D93 119901 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	15W	PR D91 112014	R. Aaij et al.	(LHCb Collab.)
ABAZOV	15	PRL 114 051803	V.M. Abazov et al.	(D0 Collab.)
BALA	15	PR D91 051101	A. Bala <i>et al.</i>	(BELLE Collab.)
CHOI	15A	PR D91 092011	SK. Choi <i>et al.</i>	(BELLE Collab.)
GOH	15	PR D91 071101	Y.M. Goh et al.	(BELLE Collab.)
HELLER	15	PR D91 112009	A. Heller et al.	(BELLE Collab.)
KRONENBIT		PR D92 051102	B. Kronenbitter et al.	(BELLE Collab.)
LEES	15	PR D91 012003	J.P. Lees et al.	(BABAR Collab.)
LEES	15C	PR D91 052002	J.P. Lees et al.	(BABAR Collab.)
VINOKUROVA		JHEP 1506 132	A. Vinokurova <i>et al.</i>	(BELLE Collab.)
WIECHCZYN		PR D91 032008	J. Wiechczynski <i>et al.</i>	(BELLE Collab.)
YOOK AAIJ	15 14	PR D91 052016	Y. Yook et al.	(BELLE Collab.)
AAIJ	14 14A	PRL 112 011801 PL B728 85	R. Aaij <i>et al.</i> R. Aaij <i>et al.</i>	(LHCb Collab.) (LHCb Collab.)
AAIJ		PRL 112 131802	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PRL 113 141801	R. Aaij et al.	(LHCb Collab.)
AAIJ		JHEP 1409 177	R. Aaij et al.	(LHCb Collab.)
AAIJ		PRL 113 151601	R. Aaij et al.	(LHCb Collab.)
AAIJ		JHEP 1410 064	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		JHEP 1410 097	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		NP B888 169	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14BO	PR D90 112004	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14E	JHEP 1404 114	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14M	JHEP 1406 133	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	140	JHEP 1405 082	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	14V	PL B733 36	R. Aaij <i>et al.</i>	(LHCb Collab.)
ABAZOV	14A	PR D89 012004	V.M. Abazov et al.	(D0 Collab.)
CHOBANOVA	14	PR D90 012002	V. Chobanova et al.	(BELLE Collab.)
IWASHITA	14	PTEP 2014 043C01	T. Iwashita <i>et al.</i>	(BELLE Collab.)
LEES	14A	PR D89 011102	J.P. Lees et al.	(BABAR Collab.)
TIEN	14	PR D89 011101	KJ. Tien <i>et al.</i>	(BELLE Collab.)
AAIJ	13AE	PL B723 44	R. Aaij <i>et al.</i>	(LHCb Collab.)

AAIJ	13AK	PL B726 151	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PR D87 092007	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13AU	PR D88 052015	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13 A 7	PRL 111 101801	R. Aaij et al.	(LHCb Collab.)
			•	`
AAIJ	13RC	PRL 111 112003	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13BN	PRL 111 151801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ		PL B726 646	R. Aaij et al.	
				(LHCb Collab.)
AAIJ	13H	JHEP 1302 105	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13R	JHEP 1302 043	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13S	EPJ C73 2462	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	13Z	JHEP 1309 006	R. Aaij et al.	(LHCb Collab.)
ABAZOV		PRL 110 241801	V.M. Abazov et al.	`
				(D0 Collab.)
DUH	13	PR D87 031103	Y. T. Duh <i>et al.</i>	(BELLE Collab.)
HARA	13		K. Hara et al.	
				(BELLE Collab.)
LEES	13A	PR D87 032004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13B	PR D87 052015	J.P. Lees et al.	(BABAR Collab.)
LEES	13I	PR D87 112005	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13K	PR D88 031102	J.P. Lees et al.	(BABAR Collab.)
LEES	13M	PR D88 032012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	13T	PR D88 072006	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LUTZ	13	PR D87 111103	O. Lutz et al.	(BELLE Collab.)
				` '
NAYAK	13	PR D88 091104	M. Nayak <i>et al.</i>	(BELLE Collab.)
SIBIDANOV	13	PR D88 032005	A. Sibidanov et al.	(BELLE Collab.)
AAIJ		PR D85 091103	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AC	PR D85 091105	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ			R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12AH	JHEP 1207 133	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12∆∩	PL B718 43	R. Aaij et al.	(LHCb Collab.)
		IL D/10 43	N. Adij et al.	
AAIJ	12AY	JHEP 1212 125	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12C	PRL 108 101601	R. Aaii <i>et al</i> .	(LHCb Collab.)
	12E	DI D700 041	D. Asii at al	
AAIJ		PL B708 241	R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> R. Aaij <i>et al.</i> R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12L	EPJ C72 2118	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12M	PL B712 203	R. Aaij et al.	(LHCb Collab.)
	12.77	DL D712 203	D. A-:: -+ -1	
Also		PL B713 351 (errat.)	R. Aaij <i>et al.</i>	(LHCb Collab.)
AAIJ	12T	PRL 108 161801	R. Aaij <i>et al.</i>	(LHCb Collab.)
AIHARA	12	PR D85 112014	H. Aihara <i>et al.</i>	(BELLE Collab.)
				. `
DEL-AMO-SA	. 12	PR D85 092017	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
HOI	12	PRL 108 031801	CT. Hoi <i>et al.</i>	(BELLE Collab.)
	12A			
KIM		PR D86 031101	J.H. Kim <i>et al.</i>	(BELLE Collab.)
LEES	12AA	PR D86 092004	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12B	PR D85 052003	J.P. Lees et al.	(BABAR Collab.)
				` '
LEES	12D	PRL 109 101802	J.P. Lees <i>et al.</i>	(BABAR Collab.)
Also		PR D88 072012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12J		J.P. Lees et al.	` '
				(BABAR Collab.)
LEES	120	PR D85 112010	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12P	PR D86 012004	J.P. Lees et al.	(BABAR Collab.)
LEES	12S	PR D86 032012	J.P. Lees <i>et al.</i>	(BABAR Collab.)
LEES	12Z	PR D86 091102	J.P. Lees et al.	(BABAR Collab.)
PDG	12	PR D86 010001	J. Beringer <i>et al.</i>	(PDG Collab.)
STYPULA	12	PR D86 072007	J. Stypula <i>et al.</i>	(BELLE Collab.)
AAIJ	11E	PR D84 092001	R. Aaij et al.	(LHCb Collab.)
Also		PR D85 039904 (errat.)		(LHCb Collab.)
AALTONEN	11	PRL 106 121804	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11AI	PRL 107 201802	T. Aaltonen et al.	(CDF Collab.)
AALTONEN	11AJ	PR D84 091504	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AALTONEN	11B	PR D83 032008	T. Aaltonen et al.	(CDF Collab.)
AALTONEN			T. Aaltonen <i>et al.</i>	
	11L	PRL 106 161801		(CDF Collab.)
AUSHEV	11	PR D83 051102	T. Aushev <i>et al.</i>	(BELLE Collab.)
BHARDWAJ	11	PRL 107 091803	V. Bhardwaj et al.	(BELLE Collab.)
				` '
CHEN	11F	PR D84 071501	P. Chen et al.	(BELLE Collab.)
CHOI	11	PR D84 052004	SK. Choi et al.	(BELLE Collab.)
DEL-AMO-SA		PR D83 032004	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA	. 11C	PR D83 032007	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 11D	PR D83 051101	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA			P. del Amo Sanchez <i>et al.</i>	` '
		PR D83 052011		(BABAR Collab.)
DEL-AMO-SA	. 11K	PR D83 091101	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 111	PRL 107 041804	P. del Amo Sanchez et al.	(BABAR Collab.)
GULER	11	PR D83 032005	H. Guler et al.	(BELLE Collab.)
HORII	11	PRL 106 231803	Y. Horii <i>et al.</i>	(BELLE Collab.)
LEES		PR D84 012001	J.P. Lees et al	(BABAR Collab)
LEES LEES	11A 11D	PR D84 012001 PR D84 012002	J.P. Lees <i>et al.</i> J.P. Lees <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)

LEES	111	PR D84 092007	J.P. Lees <i>et al.</i>	(BABAR Collab.)
SAHOO	11A	PR D84 071101	H. Sahoo <i>et al.</i>	(BELLE Collab.)
				(BLLLL Collab.)
SEON	11	PR D84 071106	O. Seon <i>et al.</i>	(BELLE Collab.)
VINOKUROVA	11	PL B706 139	A. Vinokurova <i>et al.</i>	(BELLE Collab.)
AALTONEN	10A	PR D81 031105	T. Aaltonen <i>et al.</i>	(CDF Collab.)
AUBERT	10	PRL 104 011802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	10D	PR D81 052009	B. Aubert <i>et al.</i>	(BABAR Collab.)
				`
AUBERT	10E	PR D81 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUSHEV	10	PR D81 031103	T. Aushev <i>et al.</i>	(BELLE Collab.)
BOZEK	10	PR D82 072005	A. BOZEK <i>et al.</i>	(BELLE Collab.)
DEL-AMO-SA		PR D82 011502	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA	. 10B	PR D82 011101	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	10F	PRL 105 121801	P. del Amo Sanchez et al.	(BABAR Collab.)
				(
DEL-AMO-SA	. 10G	PR D82 072004	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	. 10H	PR D82 072006	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
DEL-AMO-SA	10I	PR D82 091101	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA		PR D82 092006	P. del Amo Sanchez et al.	(BABAR Collab.)
DEL-AMO-SA	. 10Q	PR D82 112002	P. del Amo Sanchez <i>et al.</i>	(BABAR Collab.)
HARA	10	PR D82 071101	K. Hara <i>et al.</i>	(BELLE Collab.)
LIBBY	10	PR D82 112006	J. Libby <i>et al.</i>	(CLEO Collab.)
POLUEKTOV	10	PR D81 112002	A. Poluektov <i>et al.</i>	(BELLE Collab.)
SAKAI	10	PR D82 091104	K. Sakai <i>et al.</i>	(BELLE Collab.)
-	-			
WEDD	10	PR D81 111104	R. Wedd <i>et al.</i>	(BELLE Collab.)
AALTONEN	09B	PR D79 011104	T. Aaltonen <i>et al.</i>	(CDF Collab.)
ABAZOV	09Y	PR D79 111102	V.M. Abazov et al.	`(D0 Collab.)
ABULENCIA	09	PR D79 112003	A. Abulencia <i>et al.</i>	(CDF Collab.)
AUBERT	09	PR D79 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09A	PR D79 012002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D79 112001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AB	PR D79 112004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D80 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D80 092001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AO	PRL 103 211802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09AT	PR D80 111105	B. Aubert et al.	(BABAR Collab.)
				1 :
AUBERT		PR D80 112002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09B	PRL 102 132001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09F	PR D79 051102	B. Aubert <i>et al.</i>	(BABAR Collab.)
				` '
AUBERT	09G	PRL 102 141802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09H	PR D79 052005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09J	PR D79 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09L	PR D79 072006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09Q	PR D79 052011	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09S	PR D79 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09T	PRL 102 091803	B. Aubert <i>et al.</i>	1 :
	091			(BABAR Collab.)
Also		EPAPS Document No.	E-PRLTAO-102-060910	(BABAR Collab.)
AUBERT	09V	PR D79 091101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	09Y	PRL 103 051803	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHANG	09	PR D79 052006	YW. Chang et al.	(BELLE Collab.)
CHEN	09C	PR D80 111103	P. Chen <i>et al.</i>	(BELLE Collab.)
LIU	09		C. Liu <i>et al.</i>	(BELLE Collab.)
				(
WEI	09A	PRL 103 171801	JT. Wei <i>et al.</i>	(BELLE Collab.)
Also		EPAPS Supplement EP	APS_appendix.pdf	(BELLE Collab.)
WIECHCZYN	ΛQ	PR D80 052005	J. Wiechczynski <i>et al.</i>	(BELLE Collab.)
				`
ABAZOV	080	PRL 100 211802	V.M. Abazov <i>et al.</i>	(D0 Collab.)
ADACHI	80	PR D77 091101	I. Adachi <i>et al.</i>	(BELLE Collab.)
AUBERT	A80	PR D77 011101	B. Aubert <i>et al.</i>	(BABAR Collab.)
				(
AUBERT		PR D77 111102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08AB	PR D78 012006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08AD	PR D77 091104	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D78 011104	B. Aubert <i>et al.</i>	(BABAR Collab.)
				`
AUBERT	HA80	PR D78 011107	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	IA80	PR D78 012004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D78 034023	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	IASU	PRL 100 231803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	VA80	PRL 101 081801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08B	PR D77 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
				1 :
AUBERT		PR D78 072007	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BD	PR D78 091101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D78 091102	B. Aubert <i>et al.</i>	(BABAR Collab.)
			B. Aubert <i>et al.</i>	
AUBERT		PR D78 092002		(BABAR Collab.)
AUBERT	08BH	PR D78 112001	B. Aubert <i>et al.</i>	(BABAR Collab.)

AUBERT				
MODERT	08BI	PRL 101 161801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BK	PRL 101 201801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08BL	PRL 101 261802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D78 112003	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08D	PR D77 011107	B. Aubert <i>et al.</i>	(BABAR Collab.)
				`
AUBERT	08F	PRL 100 051803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08G	PRL 100 171803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	H80	PR D77 031101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08N	PRL 100 021801	B. Aubert et al.	(BABAR Collab.)
Also		PR D79 092002	B. Aubert <i>et al.</i>	(BABAR Collab.)
	000		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08Q	PRL 100 151802		(
AUBERT	W80	PRL 101 082001	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08X	PRL 101 091801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	08Y	PR D77 111101	B. Aubert <i>et al.</i>	(BABAR Collab.)
BHARDWAJ	80	PR D78 051104	V. Bhardwaj <i>et al.</i>	(BELLE Collab.)
BRODZICKA	08	PRL 100 092001	J. Brodzicka <i>et al.</i>	(BELLE Collab.)
				,
CHEN	08C	PRL 100 251801	JH. Chen et al.	(BELLE Collab.)
HORII	80	PR D78 071901	Y. Horii <i>et al.</i>	(BELLE Collab.)
IWABUCHI	80	PRL 101 041601	M. Iwabuchi <i>et al.</i>	(BELLE Collab.)
LIN	80	NAT 452 332	SW. Lin et al.	(BELLE Collab.)
LIVENTSEV	08	PR D77 091503	D. Liventsev <i>et al.</i>	(BELLE Collab.)
PDG	08	PL B667 1	C. Amsler et al.	(PDG Collab.)
TANIGUCHI	80	PRL 101 111801	N. Taniguchi <i>et al.</i>	(BELLE Collab.)
WEI	80	PL B659 80	JT. Wei <i>et al.</i>	(BELLE Collab.)
WEI	A80	PR D78 011101	JT. Wei <i>et al.</i>	(BELLE Collab.)
WICHT	08	PL B662 323	J. Wicht <i>et al.</i>	(BELLE Collab.)
ADAM				,
	07	PRL 99 041802	N.E. Adam et al.	(CLEO Collab.)
Also			D.M. Asner <i>et al.</i>	(CLEO Collab.)
AUBERT	07AC	PR D76 031101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AE	PR D76 031103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AG	PRL 99 051801	B. Aubert et al.	(BABAR Collab.)
AUBERT			B. Aubert <i>et al.</i>	(BABAR Collab.)
				`
AUBERT		PR D76 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D76 071103	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AV	PR D76 092004	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AZ	PRL 99 201801	B. Aubert et al.	(BABAR Collab.)
AUBERT	07BA	PRL 99 201802	B. Aubert et al.	(BABAR Collab.)
AUBERT		PRL 99 221801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT		PR D76 091102	B. Aubert et al.	(BABAR Collab.)
AUBERT		PRL 99 241803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07BJ	PRL 99 251801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07BL	PRL 99 261801	B. Aubert et al.	(BABAR Collab.)
AUBERT	07BN	PR D76 111101	B. Aubert et al.	` /
AUBERT				(BABAR Collab.)
/ (ODEILI	Ω7F	PRI 98 051802		(BABAR Collab.)
ALIDEDT	07E	PRL 98 051802	B. Aubert et al.	(BABAR Collab.)
AUBERT	07H	PR D75 031101	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	07H 07L	PR D75 031101 PRL 98 151802	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
	07H	PR D75 031101 PRL 98 151802 PRL 98 171801	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT	07H 07L	PR D75 031101 PRL 98 151802 PRL 98 171801	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT	07H 07L 07M 07N	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002	B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT	07H 07L 07M 07N 07Q	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102	 B. Aubert et al. 	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT	07H 07L 07M 07N	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804	 B. Aubert et al. 	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT Also	07H 07L 07M 07N 07Q	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E	 B. Aubert et al. 	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT Also Also	07H 07L 07M 07N 07Q 07R	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT Also	07H 07L 07M 07N 07Q	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT Also Also	07H 07L 07M 07N 07Q 07R	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AUBERT Also Also AUBERT	07H 07L 07M 07N 07Q 07R	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103	 B. Aubert et al. 	(BABAR Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT AUBERT CHANG	07H 07L 07M 07N 07Q 07R 07X 07Z 07B	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D75 071104	 B. Aubert et al. P. Chang et al. 	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT Also Also AUBERT AUBERT AUBERT CHANG CHEN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PR D75 091103 PR D76 011103 PR D76 071104 PRL 99 221802	B. Aubert et al. C. Chang et al. KF. Chen et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT Also Also AUBERT AUBERT AUBERT CHANG CHEN HOKUUE	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139	B. Aubert et al. C. Aubert et al. B. Aubert et al. B. Aubert et al. C. Chang et al. T. Hokuue et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AIso Also AUBERT AUBERT AUBERT CHANG CHEN HOKUUE LIN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 189905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804	B. Aubert et al. C. Chang et al. CF. Chen et al. T. Hokuue et al. SW. Lin et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601	B. Aubert et al. C. Chang et al. CF. Chen et al. CW. Lin et al. SW. Lin et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AIso Also AUBERT AUBERT AUBERT CHANG CHEN HOKUUE LIN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67	B. Aubert et al. C. Chang et al. CF. Chen et al. T. Hokuue et al. SW. Lin et al.	(BABAR Collab.) (BELLE Collab.) (BELLE Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67	B. Aubert et al. C. Chang et al. CF. Chen et al. CW. Lin et al. SW. Lin et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN	07H 07L 07M 07N 07Q 07R 07X 07Z 07B 07D 07 07 07 07A 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601	B. Aubert et al. C. Chang et al. C. F. Chen et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT CHANG CHEN HOKUUE LIN SATOYAMA SCHUEMANN TSAI	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101	B. Aubert et al. C. Chang et al. C. Chang et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al. YT. Tsai et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001	B. Aubert et al. C. Chang et al. C. Chang et al. C. W. Lin et al. CW. Lin et al. CW. Lin et al. C. Satoyama et al. C. T. Tsai et al. C. Urquijo et al. C. Urquijo et al. C. Urquijo et al. C. D. Aubert et al. C. Urquijo et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005	B. Aubert et al. C. Chang et al. C. F. Chen et al. C. W. Lin et al. C. W. Lin et al. C. Schuemann et al. C. T. Tsai et al. P. Urquijo et al. C. H. Wang et al. C. H. Wang et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004	B. Aubert et al. Chang et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG XIE	07H 07L 07M 07N 07Q 07R 07Z 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004 PR D75 017101	B. Aubert et al. C. Chang et al. C. F. Chen et al. CW. Lin et al. CW. Wang et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004	B. Aubert et al. Chang et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG XIE	07H 07L 07M 07N 07Q 07R 07Z 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004 PR D75 017101	B. Aubert et al. C. Chang et al. C. F. Chen et al. CW. Lin et al. CW. Wang et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG WANG XIE ABE ABULENCIA	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004 PR D75 017101 PR D73 051106 PRL 96 191801	B. Aubert et al. T. Hokuer et al. T. Hokuue et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al. YT. Tsai et al. P. Urquijo et al. C.H. Wang et al. MZ. Wang et al. Q.L. Xie et al. K. Abe et al. A. Abulencia et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG WANG XIE ABE ABULENCIA ACOSTA	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004 PR D75 017101 PR D75 051106 PRL 96 191801 PRL 96 202001	B. Aubert et al. T. Hokuer et al. T. Hokuue et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al. YT. Tsai et al. P. Urquijo et al. C.H. Wang et al. MZ. Wang et al. Q.L. Xie et al. K. Abe et al. A. Abulencia et al. D. Acosta et al.	(BABAR Collab.) (BELLE Collab.) (CDF Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG XIE ABE ABULENCIA ACOSTA AUBERT	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 052004 PR D75 052004 PR D75 051066 PRL 96 191801 PRL 96 202001 PR D73 011101	B. Aubert et al. Chang et al. Chang et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al. YT. Tsai et al. P. Urquijo et al. C.H. Wang et al. MZ. Wang et al. Q.L. Xie et al. A. Abulencia et al. D. Acosta et al. B. Aubert et al.	(BABAR Collab.) (BELLE Collab.)
AUBERT AUBERT AUBERT AUBERT AISO AISO AUBERT CHANG CHEN HOKUUE LIN LIN SATOYAMA SCHUEMANN TSAI URQUIJO WANG WANG WANG XIE ABE ABULENCIA ACOSTA	07H 07L 07M 07N 07Q 07R 07Z 07B 07D 07 07 07 07 07 07 07 07 07 07 07 07 07	PR D75 031101 PRL 98 151802 PRL 98 171801 PR D75 072002 PR D75 051102 PRL 98 211804 PRL 100 189903E PRL 100 199905E PR D75 091103 PR D76 011103 PR D76 011103 PR D75 071104 PRL 99 221802 PL B648 139 PRL 98 181804 PRL 99 121601 PL B647 67 PR D75 092002 PR D75 111101 PR D75 032001 PR D75 092005 PR D76 052004 PR D75 017101 PR D75 051106 PRL 96 191801 PRL 96 202001	B. Aubert et al. T. Hokuer et al. T. Hokuue et al. T. Hokuue et al. SW. Lin et al. N. Satoyama et al. J. Schuemann et al. YT. Tsai et al. P. Urquijo et al. C.H. Wang et al. MZ. Wang et al. Q.L. Xie et al. K. Abe et al. A. Abulencia et al. D. Acosta et al.	(BABAR Collab.) (BELLE Collab.) (CDF Collab.)

AUBERT					
	06F	PR D73 011103		B. Aubert et al.	(BABAR Collab.)
AUBERT	06J	PR D73 051105		B. Aubert et al.	(BABAR Collab.)
AUBERT	06K	PR D73 057101		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06N	PR D74 031103		B. Aubert et al.	(BABAR Collab.)
					,
AUBERT	060	PR D74 032003		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	06Z	PR D73 111104		B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06A	PR D73 112004		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06C	PR D74 011102		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06E	PR D74 011106		B. Aubert et al.	
					(BABAR Collab.)
AUBERT,B	06G	PRL 97 201801		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06H	PRL 97 201802		B. Aubert et al.	(BABAR Collab.)
,					,
AUBERT,B	06J	PR D73 092001		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06M	PR D74 031102		B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06P	PR D74 031105		B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06T	PR D74 051102		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	06U	PR D74 051104		B. Aubert et al.	(BABAR Collab.)
AUBERT,B	06Y	PR D74 091105		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06A	PR D7/ 000003	(errat)	B. Aubert et al.	(BABAR Collab.)
			(cirat.)		
AUBERT,BE	06C	PRL 97 171805		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06G	PRL 97 261801		B. Aubert et al.	(BABAR Collab.)
AUBERT,BE	06H	PRL 97 261803		B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,BE	06J	PR D74 111102		B. Aubert <i>et al.</i>	(BABAR Collab.)
	06M	PR D74 071101		B. Aubert et al.	(BABAR Collab.)
AUBERT,BE					
CHISTOV	06A	PR D74 111105		R. Chistov et al.	(BELLE Collab.)
FANG	06	PR D74 012007		F. Fang et al.	(BELLE Collab.)
				9	
GABYSHEV	06	PRL 97 202003		N. Gabyshev <i>et al.</i>	(BELLE Collab.)
GABYSHEV	06A	PRL 97 242001		N. Gabyshev et al.	(BELLE Collab.)
				3	
GARMASH	06	PRL 96 251803		A. Garmash <i>et al.</i>	(BELLE Collab.)
GOKHROO	06	PRL 97 162002		G. Gokhroo et al.	(BELLE Collab.)
IKADO	06	PRL 97 251802		K. Ikado <i>et al.</i>	3
					(BELLE Collab.)
JEN	06	PR D74 111101		CM. Jen <i>et al.</i>	(BELLE Collab.)
KUMAR	06	PR D74 051103		R. Kumar et al.	(BELLE Collab.)
MOHAPATRA	06	PRL 96 221601		D. Mohapatra <i>et al.</i>	(BELLE Collab.)
POLUEKTOV	06	PR D73 112009		A. Poluektov <i>et al.</i>	(BELLE Collab.)
SCHUEMANN	06			J. Schuemann et al.	(BELLE Collab.)
		PRL 97 061802			(DELLE CONAD.)
SONI	06	PL B634 155		N. Soni et al.	(BELLE Collab.)
ABE	05A	PRL 94 221805		K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	05B	PR D71 072003		K. Abe <i>et al.</i>	(BELLE Collab.)
Also		PR D71 079903	(errat.)	K. Abe <i>et al</i> .	(BELLE Collab.)
ABE	05G				
		PRL 95 231802		K. Abe <i>et al.</i>	(BELLE Collab.)
ACOSTA	05J	PRL 95 231802 PRL 95 031801			(BELLE Collab.)
ACOSTA	05J	PRL 95 031801		K. Abe <i>et al.</i> D. Acosta <i>et al.</i>	(BELLE Collab.) (CDF Collab.)
ACOSTA AUBERT	05J 05	PRL 95 031801 PRL 94 011801		K. Abe <i>et al.</i> D. Acosta <i>et al.</i> B. Aubert <i>et al.</i>	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA	05J	PRL 95 031801		K. Abe <i>et al.</i> D. Acosta <i>et al.</i>	(BELLE Collab.) (CDF Collab.)
ACOSTA AUBERT AUBERT	05J 05 05B	PRL 95 031801 PRL 94 011801 PR D71 031501		K. Abe et al.D. Acosta et al.B. Aubert et al.B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT	05J 05 05B 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004		 K. Abe et al. D. Acosta et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. 	(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801		 K. Abe et al. D. Acosta et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. 	(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT	05J 05 05B 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004		 K. Abe et al. D. Acosta et al. B. Aubert et al. B. Aubert et al. B. Aubert et al. 	(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801		 K. Abe et al. D. Acosta et al. B. Aubert et al. 	(BELLE Collab.) (CDF Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J 05K	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801		 K. Abe et al. D. Acosta et al. B. Aubert et al. 	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J 05K 05L	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 181802		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J 05K 05L 05M	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 181802 PRL 94 191802		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05 05B 05G 05H 05J 05K 05L 05M 05N	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 181802 PRL 94 191802 PR D71 031102		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT AUBERT	05J 05 05B 05G 05H 05J 05K 05L 05M	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 181802 PRL 94 191802		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05 05B 05G 05H 05J 05K 05L 05M 05N 05O	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R 05U 05X	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 01103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R 05U 05X 05B	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 011101 PRL 95 041804		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05G 05H 05J 05K 05L 05M 05N 05O 05R 05U 05X	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 01103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT	05J 05B 05G 05H 05J 05K 05L 05M 05O 05R 05U 05X 05B 05E	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUBERT,B	05J 05B 05G 05H 05J 05K 05L 05M 05O 05S 05S 05S 05E 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 111101 PRL 95 041804 PR D72 011102 PR D72 052002		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUBERT,B AUBERT,B	05J 05B 05G 05H 05J 05K 05D 05N 05O 05R 05U 05S 05B 05E 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 111101 PRL 95 041804 PR D72 052002 PRL 95 131803		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUBERT,B	05J 05B 05G 05H 05J 05K 05L 05M 05O 05S 05S 05S 05E 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 111101 PRL 95 041804 PR D72 052002 PRL 95 131803		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT, B AUBERT,B AUBERT,B AUBERT,B AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05E 05G 05K 05L	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUBERT,B AUBERT,B AUBERT,B AUBERT,B AUBERT,B AUBERT,B AUBERT,B AUBERT,B	05J 05B 05G 05H 05J 05K 05D 05N 05O 05R 05U 05S 05B 05E 05G	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 011101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT, B AUBERT,B AUBERT,B AUBERT,B AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05E 05G 05K 05L	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05G 05H 05J 05K 05D 05S 05O 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 091103 PR D71 111101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUSO AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05L 05M 05O 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071104 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 099903 PR D72 051101		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05L 05M 05O 05S 05S 05S 05E 05G 05K 05L	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071103 PR D72 011102 PR D72 051101 PRL 95 131803 PR D72 051101 PR D72 072003 PR D72 0510101 PR D72 075101 PR D72 051101 PR D72 051101 PR D72 051101 PR D72 051101 PR D72 051102 PR D72 051102 PR D72 051102		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B AUSO AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05L 05M 05O 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071104 PR D72 011102 PR D72 05101 PR D72 051101 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 051102 PR D74 099903 PR D72 051101		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D72 051102 PR D72 071102 PR D72 071102 PR D72 071102 PR D72 071102 PR D72 071103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 051101 PR D72 072003 PR D74 099903 PR D72 071102 PR D72 071102 PR D72 071103 PR D72 071103 PR D72 071103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D72 051102 PR D72 071102 PR D72 071102 PR D72 071102 PR D72 071102 PR D72 071103		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05E 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 11801 PRL 94 171801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 099903 PR D72 051102 PR D72 071102 PR D72 071103 PR D72 071104 PRL 95 121802		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 11801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 099903 PR D75 051102 PR D72 071103 PR D72 071103 PR D72 071104 PRL 95 121802 PRL 95 121802 PRL 95 221801		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT, B AUBERT,B	05J 05B 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 171801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 099903 PR D75 071102 PR D76 071102 PR D77 071102 PR D77 071104 PRL 95 121802 PRL 95 121802 PRL 95 221801 PR D71 072007		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05G 05H 05J 05K 05D 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 11801 PRL 94 171801 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 011102 PR D72 052002 PRL 95 131803 PR D72 051101 PR D72 072003 PR D74 099903 PR D74 099903 PR D75 051102 PR D72 071103 PR D72 071103 PR D72 071104 PRL 95 121802 PRL 95 121802 PRL 95 221801		K. Abe et al. D. Acosta et al. B. Aubert et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05M 05O 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 11801 PRL 94 171801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 051101 PR D72 052002 PRL 95 131803 PR D71 071001 PR D72 075003 PR D72 075101 PR D72 0751001 PR D72 0751002 PR D72 0751003 PR D73 0751004 PR D74 075007 PR D75 075007 PR D77 075007 PR D77 075007		K. Abe et al. D. Acosta et al. B. Aubert et al. C. Chang et al. P. Chang et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 141801 PRL 94 141801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 031103 PR D71 071103 PR D71 071103 PR D71 071100 PRL 95 041804 PR D72 051101 PRL 95 131803 PR D72 051101 PR D72 075101 PR D72 075101 PR D72 071002 PR D72 071102 PR D72 071103 PR D72 071104 PR D72 071104 PRL 95 121802 PRL 95 121802 PRL 95 121802 PRL 971 072007 PR D71 091106 PR D71 091106 PR D71 091106		K. Abe et al. D. Acosta et al. B. Aubert et al. P. Chang et al. P. Chang et al. Y. Chao et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)
ACOSTA AUBERT AUBERT,B	05J 05B 05B 05G 05H 05J 05M 05O 05S 05S 05S 05S 05S 05S 05S 05S 05S 05S	PRL 95 031801 PRL 94 011801 PR D71 031501 PR D72 032004 PRL 94 101801 PRL 94 11801 PRL 94 171801 PRL 94 181802 PRL 94 191802 PR D71 031102 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071103 PR D71 071101 PRL 95 041804 PR D72 051101 PR D72 052002 PRL 95 131803 PR D71 071001 PR D72 075003 PR D72 075101 PR D72 0751001 PR D72 0751002 PR D72 0751003 PR D73 0751004 PR D74 075007 PR D75 075007 PR D77 075007 PR D77 075007		K. Abe et al. D. Acosta et al. B. Aubert et al. C. Chang et al. P. Chang et al.	(BELLE Collab.) (CDF Collab.) (BABAR Collab.)

GARMASH ITOH	05 05	PR D71 092003 PRL 95 091601	A. Garmash <i>et al.</i> R. Itoh <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
LEE	05	PRL 95 061802	YJ. Lee <i>et al.</i>	(BELLE Collab.)
LIVENTSEV	05	PR D72 051109	D. Liventsev et al.	(BELLE Collab.)
MAJUMDER	05 05	PRL 95 041803	G. Majumder <i>et al.</i>	(BELLE Collab.)
MOHAPATRA NISHIDA	05 05	PR D72 011101 PL B610 23	D. Mohapatra <i>et al.</i> S. Nishida <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
OKABE	05	PL B614 27	T. Okabe <i>et al.</i>	(BELLE Collab.)
SAIGO	05	PRL 94 091601	M. Saigo et al.	(BELLE Collab.)
WANG	05A	PL B617 141	MZ. Wang <i>et al.</i>	(BELLE Collab.)
XIE YANG	05 05	PR D72 051105 PRL 94 111802	Q.L. Xie <i>et al.</i> H. Yang <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
ZHANG	05A	PRL 94 031801	J. Zhang et al.	(BELLE Collab.)
ZHANG	05B	PR D71 091107	L.M. Zhang <i>et al.</i>	(BELLE Collab.)
ZHANG	05D	PRL 95 141801	J. Zhang <i>et al.</i>	(BELLE Collab.)
ABDALLAH ABE	04E 04D	EPJ C33 307 PR D69 112002	J. Abdallah <i>et al.</i> K. Abe <i>et al.</i>	(DELPHI Collab.) (BELLE Collab.)
AUBERT	04D	PR D69 011102	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04C	PRL 92 111801	B. Aubert et al.	(BABAR Collab.)
AUBERT	04H	PRL 92 061801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT AUBERT	04K 04M	PRL 92 141801 PRL 92 201802	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	04N	PRL 92 201002 PRL 92 202002	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	040	PRL 92 221803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04P	PRL 92 241802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	04Q	PR D69 051101	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT AUBERT	04T 04Y	PR D69 071103 PRL 93 041801	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	04Z	PRL 93 051802	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04B	PR D70 011101	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04D	PR D70 032006	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B AUBERT,B	04L 04P	PRL 93 131804 PR D70 092001	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT,B	04S	PRL 93 181801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT,B	04U	PR D70 091105	B. Aubert et al.	(BABAR Collab.)
AUBERT,B	04V	PRL 93 181805	B. Aubert et al.	(BABAR Collab.)
AUBERT,BE AUBERT,BE	04 04A	PR D70 111102 PR D70 112006	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT,BE	04A	PR D70 091106	B. Aubert <i>et al.</i>	(BABAR Collab.)
CHAO	04	PR D69 111102	Y. Chao et al.	(BELLE Collab.)
CHAO	04B	PRL 93 191802	Y. Chao <i>et al.</i>	(BELLE Collab.)
CHISTOV DRUTSKOY	04 04	PRL 93 051803 PRL 92 051801	R. Chistov <i>et al.</i> A. Drutskoy <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
GARMASH	04	PR D69 012001	A. Garmash <i>et al.</i>	(BELLE Collab.)
LEE	04	PRL 93 211801	YJ. Lee et al.	(BELLE Collab.)
MAJUMDER	04	PR D70 111103	G. Majumder <i>et al.</i>	(BELLE Collab.)
NAKAO POLUEKTOV	04 04	PR D69 112001 PR D70 072003	M. Nakao <i>et al.</i> A. Poluektov <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
SCHWANDA	04	PRL 93 131803	C. Schwanda <i>et al.</i>	(BELLE Collab.)
WANG	04	PRL 92 131801	M.Z. Wang et al.	(BELLE Collab.)
WANG	04A	PR D70 012001	C.H. Wang et al.	(BELLE Collab.)
ZANG ABE	04 03B	PR D69 017101 PR D67 032003	S.L. Zang <i>et al.</i> K. Abe <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
ABE	03D	PRL 90 131803	K. Abe et al.	(BELLE Collab.)
ADAM	03	PR D67 032001	N.E. Adam et al.	(CLEO Collab.)
ADAM	03B	PR D68 012004	N.E. Adam et al.	(CLEO Collab.)
ATHAR AUBERT	03 03K	PR D68 072003 PRL 90 231801	S.B. Athar <i>et al.</i> B. Aubert <i>et al.</i>	(CLEO Collab.) (BABAR Collab.)
AUBERT	03L	PRL 91 021801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03M	PRL 91 051801	B. Aubert et al.	(BABAR Collab.)
AUBERT	030	PRL 91 071801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT AUBERT	03U 03V	PRL 91 221802 PRL 91 171802	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	03W	PRL 91 161801	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	03X	PR D68 092001	B. Aubert et al.	(BABAR Collab.)
BORNHEIM	03 03 P	PR D68 052002	A. Bornheim <i>et al.</i>	(CLEO Collab.)
CHEN CHOI	03B 03	PRL 91 201801 PRL 91 262001	KF. Chen <i>et al.</i> SK. Choi <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
CSORNA	03	PR D67 112002	S.E. Csorna <i>et al.</i>	(CLEO Collab.)
EDWARDS	03	PR D68 011102	K.W. Edwards et al.	(CLEO Collab.)
FANG	03	PRL 90 071801	F. Fang <i>et al.</i>	(BELLE Collab.)

HUANG	03	PRL 91 241802	HC. Huang <i>et al.</i>	(BELLE Collab.)
ISHIKAWA	03	PRL 91 261601	A. Ishikawa <i>et al.</i>	(BELLE Collab.)
KROKOVNY	03B	PRL 91 262002	P. Krokovny et al.	(BELLE Collab.)
SWAIN UNNO	03 03	PR D68 051101 PR D68 011103	S.K. Swain <i>et al.</i> Y. Unno <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
ZHANG	03 03B	PRL 91 221801	J. Zhang <i>et al.</i>	(BELLE Collab.)
ABE	02	PRL 88 021801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02B	PRL 88 031802	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02H	PRL 88 171801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	02K	PRL 88 181803	K. Abe et al.	(BELLE Collab.)
ABE	02N	PL B538 11	K. Abe <i>et al.</i> K. Abe <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
ABE ABE	02O 02W	PR D65 091103 PRL 89 151802	K. Abe et al.	(BELLE Collab.)
ACOSTA	02C	PR D65 092009	D. Acosta et al.	(CDF Collab.)
ACOSTA	02F	PR D66 052005	D. Acosta et al.	(CDF Collab.)
AHMED	02B	PR D66 031101	S. Ahmed <i>et al.</i>	(CLEO Collab.)
AUBERT	02	PR D65 032001	B. Aubert et al.	(BABAR Collab.)
AUBERT	02C 02E	PRL 88 101805 PR D65 051101	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT AUBERT	02E 02F	PR D65 051101 PR D65 091101	B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT	02L	PRL 88 241801	B. Aubert <i>et al.</i>	(BABAR Collab.)
BRIERE	02	PRL 89 081803	R. Briere et al.	(CLEO Collab.)
CASEY	02	PR D66 092002	B.C.K. Casey et al.	(BELLE Collab.)
CHEN	02B	PL B546 196	KF. Chen et al.	(BELLE Collab.)
DRUTSKOY DYTMAN	02 02	PL B542 171 PR D66 091101	A. Drutskoy <i>et al.</i> S.A. Dytman <i>et al.</i>	(BELLE Collab.) (CLEO Collab.)
ECKHART	02	PRL 89 251801	E. Eckhart <i>et al.</i>	(CLEO Collab.)
EDWARDS	02B	PR D65 111102	K.W. Edwards <i>et al.</i>	(CLEO Collab.)
GABYSHEV	02	PR D66 091102	N. Gabyshev et al.	(BELLE Collab.)
GARMASH	02	PR D65 092005	A. Garmash <i>et al.</i>	(BELLE Collab.)
GODANG	02	PRL 88 021802	R. Godang et al.	(CLEO Collab.)
GORDON LU	02 02	PL B542 183 PRL 89 191801	A. Gordon <i>et al.</i> RS. Lu <i>et al.</i>	(BELLE Collab.) (BELLE Collab.)
MAHAPATRA		PRL 88 101803	R. Mahapatra <i>et al.</i>	(CLEO Collab.)
NISHIDA	02	PRL 89 231801	S. Nishida <i>et al.</i>	(BELLE Collab.)
ABE	01H	PRL 87 101801	K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	011	PRL 87 111801	K. Abe et al.	(BELLE Collab.)
ABE ABE	01K 01L	PR D64 071101 PRL 87 161601	K. Abe <i>et al.</i> K. Abe <i>et al.</i>	(BELLE Collab.)
ABE	01L	PL B517 309	K. Abe et al.	(BELLE Collab.) (BELLE Collab.)
ALEXANDER	01B	PR D64 092001	J.P. Alexander <i>et al.</i>	(CLEO Collab.)
AMMAR	01B	PRL 87 271801	R. Ammar et al.	(CLEO Collab.)
ANDERSON	01B	PRL 87 181803	S. Anderson <i>et al.</i>	(CLEO Collab.)
AUBERT	01D 01E	PRL 87 151801	B. Aubert <i>et al.</i> B. Aubert <i>et al.</i>	(BABAR Collab.) (BABAR Collab.)
AUBERT AUBERT	01E	PRL 87 151802 PRL 87 201803	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	01G	PRL 87 221802	B. Aubert <i>et al.</i>	(BABAR Collab.)
BARATE	01E	EPJ C19 213	R. Barate et al.	(ALEPH Collab.)
BRIERE	01	PRL 86 3718	R.A. Biere <i>et al.</i>	(CLEO Collab.)
BROWDER	01	PRL 86 2950	T.E. Browder <i>et al.</i>	(CLEO Collab.)
EDWARDS GRITSAN	01 01	PRL 86 30 PR D64 077501	K.W. Edwards <i>et al.</i> A. Gritsan <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
RICHICHI	01	PR D63 031103	S.J. Richichi <i>et al.</i>	(CLEO Collab.)
ABBIENDI	00B	PL B476 233	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
ABE	00C	PR D62 071101	K. Abe <i>et al.</i>	(SLD Collab.)
AHMED	00B	PR D62 112003	S. Ahmed <i>et al.</i>	(CLEO Collab.)
ANASTASSOV BARATE	00 00R	PRL 84 1393 PL B492 275	A. Anastassov <i>et al.</i> R. Barate <i>et al.</i>	(CLEO Collab.) (ALEPH Collab.)
BEHRENS	00	PR D61 052001	B.H. Behrens <i>et al.</i>	(CLEO Collab.)
BONVICINI	00	PRL 84 5940	G. Bonvicini et al.	(CLEO Collab.)
CHEN	00	PRL 85 525	S. Chen et al.	(CLEO Collab.)
COAN	00	PRL 84 5283	T.E. Coan et al.	(CLEO Collab.)
CRONIN-HEN CSORNA	. 00	PRL 85 515 PR D61 111101	D. Cronin-Hennessy <i>et al.</i> S.E. Csorna <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
JESSOP	00	PRL 85 2881	C.P. Jessop <i>et al.</i>	(CLEO Collab.)
RICHICHI	00	PRL 85 520	S.J. Richichi <i>et al.</i>	(CLEO Collab.)
ABBIENDI	99J	EPJ C12 609	G. Abbiendi <i>et al.</i>	(OPAL Collab.)
AFFOLDER	99B	PRL 83 3378	T. Affolder <i>et al.</i>	(CDF Collab.)
BARTELT COAN	99 99	PRL 82 3746 PR D59 111101	J. Bartelt <i>et al.</i> T.E. Coan <i>et al.</i>	(CLEO Collab.) (CLEO Collab.)
ABE	98B	PR D57 5382	F. Abe <i>et al.</i>	(CDF Collab.)
				, ,

ABE	980	PR D58 072001	F. Abe <i>et al.</i>	(CDF Collab.)
			F. Abe <i>et al.</i>	
ABE	98Q	PR D58 092002		(CDF Collab.)
ACCIARRI	98S	PL B438 417	M. Acciarri <i>et al.</i>	(L3 Collab.)
ANASTASSOV	98	PRL 80 4127	A. Anastassov et al.	(CLÈO Collab.)
ATHANAS	98	PRL 80 5493	M. Athanas <i>et al.</i>	(CLEO Collab.)
BARATE	98Q	EPJ C4 387	R. Barate <i>et al.</i>	(ALEPH Collab.)
BEHRENS	98	PRL 80 3710	B.H. Behrens et al.	`(CLEO Collab.)
BERGFELD	98	PRL 81 272	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BRANDENB	98	PRL 80 2762	G. Brandenbrug et al.	(CLEO Collab.)
				`
CAPRINI	98	NP B530 153	I. Caprini, L. Lellouch, M. N.	
GODANG	98	PRL 80 3456	R. Godang <i>et al.</i>	(CLEO Collab.)
ABE	97J	PRL 79 590	K. Abe <i>et al.</i>	(SLD Collab.)
				`
ACCIARRI	97F	PL B396 327	M. Acciarri <i>et al.</i>	(L3 Collab.)
ARTUSO	97	PL B399 321	M. Artuso et al.	(CLEO Collab.)
ATHANAS	97	PRL 79 2208	M. Athanas et al.	(CLEO Collab.)
BROWDER	97	PR D56 11	T. Browder et al.	(CLEO Collab.)
FU	97	PRL 79 3125	X. Fu et al.	(CLEO Collab.)
JESSOP	97	PRL 79 4533	C.P. Jessop et al.	(CLEO Collab.)
ABE	96B	PR D53 3496	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96C	PRL 76 4462	F. Abe <i>et al</i> .	(CDF Collab.)
ABE	96H	PRL 76 2015	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96L	PRL 76 4675	F. Abe <i>et al.</i>	(CDF Collab.)
ABE	96Q	PR D54 6596	F. Abe <i>et al.</i>	(CDF Collab.)
	-			
ABE	96R	PRL 77 5176	F. Abe <i>et al.</i>	(CDF Collab.)
ADAM	96D	ZPHY C72 207	W. Adam <i>et al.</i>	(DELPHI Collab.)
				`
ALEXANDER	96T	PRL 77 5000	J.P. Alexander et al.	(CLEO Collab.)
ASNER	96	PR D53 1039	D.M. Asner et al.	(CLEO Collab.)
BARISH	96B	PRL 76 1570	B.C. Barish et al.	(CLEO Collab.)
BERGFELD	96B	PRL 77 4503	T. Bergfeld <i>et al.</i>	(CLEO Collab.)
BISHAI	96	PL B369 186	M. Bishai <i>et al.</i>	(CLEO Collab.)
BUSKULIC	96J	ZPHY C71 31	D. Buskulic et al.	(ALEPH Collab.)
				`
GIBAUT	96	PR D53 4734	D. Gibaut <i>et al.</i>	(CLEO Collab.)
PDG	96	PR D54 1	R. M. Barnett et al.	(PDG Collab.)
ABREU	95N	PL B357 255	P. Abreu <i>et al.</i>	
				(DELPHI Collab.)
ABREU	95Q	ZPHY C68 13	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ADAM	95	ZPHY C68 363	W. Adam et al.	(DELPHI Collab.)
				`
AKERS	95T	ZPHY C67 379	R. Akers <i>et al.</i>	(OPAL Collab.)
ALBRECHT	95D	PL B353 554	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	95	PL B341 435	J. Alexander et al.	(CLEO Collab.)
	55			`
Also		PL B347 469 (erratum)		(CLEO Collab.)
ARTUSO	95	PRL 75 785	M. Artuso <i>et al.</i>	(CLEO Collab.)
BARISH	95	PR D51 1014	B.C. Barish et al.	(CLEO Collab.)
BUSKULIC	95	PL B343 444	D. Buskulic <i>et al.</i>	(ALEPH Collab.)
ABE	94D	PRL 72 3456	F. Abe <i>et al.</i>	(CDF Collab.)
ALAM	94	PR D50 43	M.S. Alam et al.	(ČLEO Collab.)
ALBRECHT	94D	PL B335 526	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ATHANAS	94	PRL 73 3503	M. Athanas et al.	(CLEO Collab.)
Also	• .	PRL 74 3090 (erratum)		(CLEO Collab.)
PDG	94	PR D50 1173	L. Montanet <i>et al.</i>	(CERN, LBL, BOST+)
STONE	94	HEPSY 93-11	S. Stone	
		ecays, 2nd Edition, World		
				(DELDUIL C. II. I.)
ABREU	93D	ZPHY C57 181	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ABREU	93G	PL B312 253	P. Abreu <i>et al.</i>	(DELPHI Collab.)
ACTON	93C	PL B307 247	P.D. Acton et al.	`(OPAL Collab.)
ALBRECHT	93E	ZPHY C60 11	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALEXANDER	93B	PL B319 365	J. Alexander et al.	(CLEO Collab.)
AMMAR	93	PRL 71 674	R. Ammar et al.	(CLEO Collab.)
				` ,
BEAN	93B	PRL 70 2681	A. Bean <i>et al.</i>	(CLEO Collab.)
BUSKULIC	93D	PL B307 194	D. Buskulic et al.	(ALEPH Collab.)
			D. Buskulic et al.	(ALEPH Collab.)
Also	00	PL B325 537 (erratum)		`
SANGHERA	93	PR D47 791	S. Sanghera <i>et al.</i>	(CLEO Collab.)
ALBRECHT	92C	PL B275 195	H. Albrecht et al.	(ARGUS Collab.)
			H. Albrecht <i>et al.</i>	
ALBRECHT	92E	PL B277 209		(ARGUS Collab.)
ALBRECHT	92G	ZPHY C54 1	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
BORTOLETTO	92	PR D45 21	D. Bortoletto et al.	`(CLEO Collab.)
				. `
BUSKULIC	92G	PL B295 396	D. Buskulic et al.	(ALEPH Collab.)
ALBRECHT	91B	PL B254 288	H. Albrecht <i>et al.</i>	(ARGUS Collab.)
ALBRECHT	91C	PL B255 297	H. Albrecht et al.	(ARGUS Collab.)
	91E			
ALBRECHT		PL B262 148	H. Albrecht et al.	(ARGUS Collab.)
BERKELMAN	91	ARNPS 41 1	K. Berkelman, S. Stone	(CORN, SYRA)
"Decays of	B Me	sons"		•
,				

FULTON ALBRECHT ANTREASYAN BORTOLETTO Also WEIR ALBRECHT AVERY BEBEK BORTOLETTO ALBRECHT AVERY BEBEK ALAM PDG	90B 89G 89B 89	PR D43 651 PL B241 278 ZPHY C48 543 ZPHY C48 553 PRL 64 2117 PR D45 21 PR D41 1384 PL B229 304 PL B223 470 PRL 62 8 PRL 62 2436 PL B209 119 PL B215 424 PL B185 218 PL B199 451 PL B183 429 PR D36 1289 PR D34 3279 PL 170B 1	R. Fulton et al. H. Albrecht et al. H. Albrecht et al. D. Antreasyan et al. D. Bortoletto et al. D. Bortoletto et al. A.J. Weir et al. H. Albrecht et al. P. Avery et al. C. Bebek et al. D. Bortoletto et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al. H. Albrecht et al. C. Bebek et al. M. Salam et al. M. Aguilar-Benitez et al.	(CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (Crystal Ball Collab.) (CLEO Collab.) (Mark II Collab.) (ARGUS Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (CLEO Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (ARGUS Collab.) (CLEO Collab.)
GILES	84	PR D30 2279	R. Giles <i>et al.</i>	(CLEO Collab.)
GILES	84	PR D30 2279	R. Giles et al.	(CLEO Collab