30. a. Use Kruskals algorithm and construct a Minimum Spanning Tree (MST) for the following graph.

(OR)

- b. Explain 0/1 knapsack problem with greedy method and dynamic programming method with examples.
- 31. a. Explain 8 queen problem and its algorithm. Write its procedure with state space tree.

- b. Explain the algorithm for graph coloring problem with an example.
- 32. a. Solve the following Knapsack problem using branch and bound method

Items	Wi	Fi
1	2	9
2	3	6
3	2	4

With Knapsack capacity w = 6.

(OR)

b. Explain randomized algorithm for 'Hiring problem' and analyse the time complexity.

ķ	*	*	*	*

Reg. No.							

B.Tech. DEGREE EXAMINATION, JUNE 2019

1st to 7th Semester

15CS204J - ALGORITHM DESIGN AND ANALYSIS

(For the candidates admitted during the academic 2015 - 2016 to 2017 - 2018)

Note:

- Part A should be answered in OMR sheet within first 45 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 45th minute.
- Part B and Part C should be answered in answer booklet.

Time: Three Hours

Max. Marks: 100

$PART - A (20 \times 1 = 20 Marks)$

Answer ALL Questions

- 1. Two main measures for the efficiency of an algorithm are
 - (A) Processor and memory
- (B) Complexity and capacity

(C) Time and space

- (D) Data and space
- 2. What is the recurrence for worst case quick sort and what is the time complexity in worst
 - and time complexity is O (nⁿ2)
 - (A) Recurrence is T(n)=T(n-2)+O(n) (B) Recurrence is T(n)=T(n-1)+O(n) and time complexity is O (nⁿ2)
 - and time complexity is O (n log n)
 - (C) Recurrence is T(n)=2T(n/2)+O(n) (D) Recurrence is T(n)=T(n/10)+T(9n/10)+O(n)and time complexity is O (n log n)
- 3. Which of the given options provides the increasing order of asymptotic complexity of functions f1, f2, f3 and f4? f1(n)= $2^n n$, f2(n)= $n^{(3/2)}$, f3(n)= $n \log n$, f4(n)= $n^n (\log n)$.
 - (A) f3, f2, f4, f1

(B) f3, f2, f1, f4

(C) f3, f3, f1, f4

- (D) f2, f2, f4, f1
- 4. What is the solution to the recurrence T(n) = T(n/2) + n?
 - (A) $O(\log n)$

(B) O (n)

(C) $O(n \log n)$

(D) $O(n^{n}2)$

- 5. Merge sort uses
 - (A) Divide and conquer strategy
- (B) Greedy

(C) Array

- (D) Link list
- 6. Which of the following cases does not exist in complexity theory? (B) Worst case
 - (A) Best case (C) Average case

- (D) Null case
- 7. Which sorting algorithms is faster?
 - (A) $O(n^{n} 2)$ (C) O(n+k)

- (B) O (n log n) (D) $O(n^n 3)$
- 8. Which of the following standard algorithms not a greedy algorithm?
 - (A) Dijkstra's shortest path algorithm
- (B) Prims algorithm

(C) Huffman coding

(D) Bellman ford shortest path algorithm

Page 1 of 4

11JA1-7/15CS204J

9	Wh	nich of the following is true about Huffr	nan (coding?
	(A)	Huffman coding may become lossy	/ (B) Huffman codes may not be optimal lossless
		in some cases		codes in some cases
	(C)	In Huffman coding, no code is prefix of any other code	(D) Huffman coding may have good optimal complexity
10.	We	use dynamic programming approach w	hen	
	(A)	It provides optimal solution	(B)	The solution has optimal substructure
	(C)	the 3-SAT problem	(D)) It is faster than greedy
11.	The	concept of Kruskal's algorithm is base	d on	the nature of the graph.
	(A)	Connection	(B)	Cyclic
	(C)	Acyclic	(D)	Sorted
12.	uisu	ances in a grapn?	tecl	nnique is used in finding all pairs of shortest
		Dynamic programming	(B)	Back tracking
	(C)	Greedy	(D)	Divide and conquer
13.	In w	which of the following cases N queens p	rahl	om door not will
	(A)	n = 2 and $n = 4$	MODE MODE	an does not exist. $n = 4 \text{ and } n = 6$
		n = 2 and $n = 4n = 4$ and $n = 8$	(D)	n = 4 and $n = 0n = 2$ and $n = 3$
14.	A sc	olution that either maximizes or minimize	zes a	given objective function is called an
	(A)	Optimal solution	(B)	Feasible solution
	(C)	Local solution	(D)	Exact solution
15.	The	complexity of Hamiltonian cycle algori	ithm	is
	(A)	$(n-1)^n-1$	(B)	$(n-1)^2$
		$\frac{(n-1)^n-1}{n-2}$		$\frac{(n-1)^2-1}{n-2}$
	(C)	$\frac{n-1}{n-1}$	(D)	n-2 $(n-1)-2$
	` ,	$\frac{n-2}{n-2}$	(D)	$\frac{(n-1)-2}{(n-2)^n}$
		2		$(n-2)^{r}$
16.	The I	Knapsack problem belongs to the doma	in of	nroblems
	(A)	Optimization		NP complete
	(C)	Linear solution		Sorting
17	T1			
l /.	ine i	running time of quick sort depends heav		
		Number of inputs Size of elements	(B)	Arrangement of elements in array
	(0)	Size of eighents	(D)	Pivot element
8.	The c	operation of processing each element in	the	list is known as
	(A)	Sorting		Merging
	(C)			Traversal
9	T(n) :	= 2T(n/2) + n2 then $T(n) =$		
		O(3)	(B)	$O(n^2)$
		$\alpha \dot{\alpha}$		$O(n^2)$ $O(n^4)$
	. /	` /	(\mathcal{L})	∨ (¹¹)

- 20. Assuming P! = NP which of the following is true?
 - (A) NP hard = NP

(B) NP complete = P

(C) $NP = \phi$

(D) NP complete UP = ϕ

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Solve the following recurrence equation using substitution method $t_n = t_{n-1} + 3$, $t_1 = 4$.
- 22. Prove the equations using mathematical induction

$$\sum_{i=1}^{n} i^3 = \left[\frac{n(n+1)}{2}\right]^2.$$

23. Multiply the following two matrices using Strassen's multiplication method

$$A = \begin{pmatrix} a11 & a12 \\ a21 & a22 \end{pmatrix} B = \begin{pmatrix} b11 & b12 \\ b21 & b22 \end{pmatrix}$$

- 24. Write 0/1 Knapsack algorithm.
- 25. Draw the state-space tree for 4-queen problem using DFS.
- 26. Write the algorithm for sum of subsets.
- 27. Distinguish between randomized and deterministic algorithms.

$$PART - C (5 \times 12 = 60 \text{ Marks})$$

Answer ALL Questions

- 28. a.i. Solve the recurrence relation using master theorem $T(n) = \delta T(n/2) + 10n^2$, T(0) = 0.
 - ii. Solve the recurrence equation $t_n = nt_{n-1}$ for n > 1, $t_0 = 1$.

(OR)

- b.i. Elaborate the asymptotic notations used in algorithm analysis.
- ii. Describe the performance analysis of an algorithm in detail.
- 29. a. Write an algorithm to perform merge sort on a sorted listed of elements. Analyse the algorithm for best case, average case and worst case.

(OR

b. Illustrate the various stages of binary search algorithm to analyze its complexity.