Классная работа 4 (решали 03.03).

Во всех задачах t — целое число, не являющееся полным квадратом.

ALG 1. Найдите "простое" условие на число t, равносильное тому, что множество $\mathbb{Z}[\frac{1+\sqrt{t}}{2}] = \{a + b\frac{1+\sqrt{t}}{2} | a, b \in \mathbb{Z}\}$ - подкольцо поля \mathbb{C} .

В дальнейшем это кольцо будет рассматриваться только при $t \equiv 1 \pmod 4$

ALG 2. Обозначим через ν функцию, действующую из \mathbb{C} в $[0; +\infty)$ по правилу $z \mapsto |z|^2$. Пусть R - подкольцо поля \mathbb{C} и для любого $r \in R$ выполнено $\nu(r) \in \mathbb{Z}$. Докажите, что R — евклидово кольцо относительно нормы ν , если и только если для любых $r \in R \setminus \{0\}$ и $s \in R$ существует такое $q \in R$, что $\left|\frac{s}{r} - q\right| < 1$.

ALG 3. Докажите, что следующие подкольца поля \mathbb{C} удовлетворяют условию "для любого $r \in R$ выполнено $\nu(r) \in \mathbb{Z}$ ":

- (a) $R = \mathbb{Z}[\sqrt{t}];$
- (б) $R = \mathbb{Z}[\frac{1+\sqrt{t}}{2}]$, где $t \equiv 1 \pmod{4}$.

ALG 4. Пусть $t \le -3$. Докажите, что 2 — неприводимый элемент кольца $\mathbb{Z}[\sqrt{t}]$.

ALG 5. Разложите в сумму простейших над полем $\mathbb C$ дробь $\frac{x}{(x^2-1)^2}$.