1

0.1 The Circle

0.2 Circular Functions (trigonometry)

Figure 0.1: The definition of sine and cosine

Trigonometric functions may be written with or without parentheses $sin\theta$, $sin(\theta)$ and so on.

0.3 The Ellipse

The two foci are marked as F_1 and F_2 . The two points at the ends of the majoraxis $(V_1 \text{ and } V_2)$ are sometimes referred to as "vertices" while the two points at the ends of the minor axis $(V_3 \text{ and } V_4)$ are referred to as "co-vertices".

Figure 0.2: Ellipse dimensions

$CF_1 = CF_2$	linear eccentricity	c	half-focal separation (e, f)
$CV_1 = CV_2$	semi-major axis	a	·
$CV_3 = CV_4$	semi-minor axis	b	
$\frac{c}{a}$	eccentricity	e	first eccentricity, mathemati-
			cal eccentricity (ϵ)

$$e = \sqrt{\frac{a^2 - b^2}{a^2}}$$
$$c = \sqrt{a^2 - b^2}$$

The true anomaly of a point P on an ellipse is the angle between the major axis and the line from a focus to that point $-\angle VCP$ in the diagram labelled c. The true anomaly is also written θ or ν in the literature.

The eccentric anomaly is constructed by using an "auxiliary" circle of radius a. The point P is projeted (?) "up" to the auxiliary circle onto point P'. The eccentric anomaly is then $\angle VCP'$, in other words the angle between the semi-major axis and the line connecting the centre to P'.

The standard ellipse

The standard ellipse is given by the cartesian coordinate formula:

3

Figure 0.3: Ellipse angles

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

And has the following properties:

 $\begin{array}{ll} \text{Semi-major axis} & a \\ \text{Semi-minor axis} & b \\ \text{Eccentricity} & \sqrt{\frac{a^2-b^2}{a^2}} \\ \text{General point} & (acos(\phi),bsin(\phi)) \end{array}$