Séance 8 (13 novembre 2018)

Exercice 1. De combien de façons différentes peut-on monter un escalier de 30 marches, si on monte à chaque pas soit d'une seule marche soit de deux marches à la fois ?

Exercice 2. Que vaut le déterminant de la matrice $n \times n$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ 1 & 1 & -1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & 1 & -1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 & 1 \end{pmatrix}$$

Exercice 3.

Que vaut

$$\lim_{n \to \infty} \frac{F_{n+1}}{F_n} \quad ?$$

Exercice 4. Prouver que, pour tout entier $n \ge 1$,

$$\varphi^n = F_n \cdot \varphi + F_{n-1} ,$$

où $\varphi := \frac{1+\sqrt{5}}{2}$ est le **nombre d'or**.

Exercice 5. Prouver que, pour tout entier $n \ge 3$,

$$F_n > \varphi^{n-2}$$

Exercice 6. Résoudre les récurrences

1.
$$a_n = \frac{1}{2}a_{n-1} + 1$$
 pour $n \ge 1$, $a_0 = 1$
2. $a_n = 5a_{n-1} - 6a_{n-2}$ pour $n \ge 2$, $a_0 = -1$, $a_1 = 1$
3. $a_n = 6a_{n-1} - 9a_{n-2}$ pour $n \ge 2$, $a_0 = 1$, $a_1 = 9$
4. $a_n = 4a_{n-1} - 3a_{n-2} + 2^n$ pour $n \ge 2$, $a_0 = 1$, $a_1 = 11$

-

Exercice 7. Résoudre les récurrences

1.
$$a_{n+2} = 3a_{n+1} + 4a_n$$
 pour $n \ge 0$,

$$a_0 = 1, \quad a_1 = 3$$

2.
$$a_{n+3} - 6a_{n+2} + 11a_{n+1} - 6a_n = 0$$
 pour $n \ge 0$, $a_0 = 2$, $a_1 = 0$, $a_2 = -2$

$$a_0 = 2, \quad a_1 = 0, \quad a_2 = -2$$

3.
$$a_{n+3} = 3a_{n+1} - 2a_n$$
 pour $n \ge 0$,

$$a_0 = 1, \quad a_1 = 0, \quad a_2 = 0$$

4.
$$a_{n+3} + 3a_{n+2} + 3a_{n+1} + a_n = 0$$

5.
$$a_{n+4} - 4a_n = 0$$

Exercice 8. Résoudre la récurrence

$$a_{n+2} - (2\cos\alpha)a_{n+1} + a_n = 0 \quad \forall n \geqslant 0$$

 $a_1 = \cos\alpha, \quad a_2 = \cos 2\alpha$

Exercice 9. Résoudre les récurrences

1.
$$a_n + 2a_{n-1} = n + 3 \text{ pour } n \ge 1$$

$$a_0 = 3$$

2.
$$a_{n+2} + 8a_{n+1} - 9a_n = 8 \cdot 3^{n+1}$$
 pour $n \ge 0$

$$a_0 = 2, \quad a_1 = -6$$

3.
$$a_{n+2} - 6a_{n+1} + 9a_n = 2^n + n \text{ pour } n \ge 0$$

4.
$$na_n = (n+3)a_{n-1} + n^2 + n$$
 pour $n \ge 1$