Pravilnik o energetskoj efikasnosti zgrada

Pravilnik je objavljen u "Službenom glasniku RS", br. 61/2011 od 19.8.2011. godine.

I. UVODNE ODREDBE

Član 1.

Ovim pravilnikom bliže se propisuju energetska svojstva i način izračunavanja toplotnih svojstava objekata visokogradnje, kao i energetski zahtevi za nove i postojeće objekte.

Odredbe ovog pravilnika ne primenjuju se na: zgrade za koje se ne izdaje građevinska dozvola; zgrade koje se grade na osnovu privremene građevinske dozvole, kao i zgrade koje se grade na osnovu građevinske dozvole za pripremne radove; radionice, proizvodne hale, industrijske zgrade koje se ne greju i ne klimatizuju; zgrade koje se povremeno koriste tokom zimske i letnje sezone (manje od 25% vremena trajanja zimske odnosno letnje sezone).

Član 2.

Pojedini izrazi upotrebljeni u ovom pravilniku imaju sledeće značenje:

- 1) automatika i kontrola sistema zgrade je skup opreme, softvera i inženjerskih servisa za automatsku kontrolu, nadzor, optimizaciju, intervencije i menadžment tehničkih sistema u zgradi, a u cilju obezbeđivanja energetski efikasnog, ekonomičnog i sigumog upravljanja instalacijama zgrade;
- 2) broj izmena vazduha, n [h-1] je časovni broj izmena unutrašnjeg vazduha spoljnim vazduhom, obračunat za zapreminu zgrade unutar termičkog omotača V [m³];
- 3) bruto razvijena građevinska površina jeste zbir površina svih nadzemnih etaža zgrade, merenih u nivou podova svih delova objekta spoljne mere obodnih zidova (sa oblogama, parapetima i ogradama). U bruto građevinsku površinu ne računaju se površine u okviru sistema dvostrukih fasada, staklenika, površine koje čine termički omotač zgrade u bruto razvijenu građevinsku površinu ne obračunava se kod heterogenih zidova debljina termoizolacije preko 5 cm, a kod homogenih zidova debljina zida veća od 30 cm uz postizanje, ovim pravilnikom propisanih uslova energetske efikasnosti zgrada;
- 4) vazdušni komfor predstavlja uslove kojima se obezbeđuje potrebna količina čistog vazduha u zgradi odnosno kojima se obezbeđuje kvalitet vazduha koji je bez rizika po zdravlje korisnika;
- 5) godišnja emisija ugljen dioksida, CO2 [kg/a] je masa emitovanog ugljen dioksida u spoljnu sredinu tokom jedne godine, koja nastaje kao posledica energetskih potreba zgrade;
- 6) godišnja isporučena energija E_{an.del} [kWh/a] je energija dovedena tehničkim sistemima zgrade tokom jedne godine za pokrivanje energetskih potreba za grejanje, hlađenje, ventilaciju, potrošnu toplu vodu, rasvetu i pogon pomoćnih sistema;
- 7) godišnja potrebna energija za ventilaciju, Q_{an,V} [kWh/a] je računski određena potrebna energija za pripremu vazduha sistemom mehaničke (prinudne) ventilacije, delimične klimatizacije ili klimatizacije tokom jedne godine za održavanje uslova komfora u zgradi;
- 8) godišnja potrebna energija za zagrevanje sanitarne tople vode, Q_{an.W} [kWh/a] je računski određena količina energije koju je potrebno obezbediti sistemu za pripremu STV tokom jedne godine;
- 9) godišnja potrebna energija za hlađenje zgrade, Q_{an,C} [kWh/a] je računski određena potrebna količina toplote koju rashladnim sistemom treba odvesti iz zgrade tokom godine da bi se obezbedilo održavanje unutrašnjih projektnih temperatura;
- 10) godišnja potrebna energija za osvetljenje, ÉL [kWh/a] je računski određena količina energije koju treba obezbediti tokom jedne godine za osvetljenje u zgradi;
- 11) godišnja potrebna primama energija koja se koristi u zgradi, Q_{an.PR} [kWh/a] jeste zbir primamih energija potrebnih za rad svih ugrađenih tehničkih sistema za KGH i pripremu STV u periodu jedne godine;
- 12) godišnja potrebna toplotna energija, Q_{an tot} [kWh/a] je zbir godišnje potrebne toplotne energije i godišnjih toplotnih gubitaka sistema za grejanje i pripremu potrošne tople vode u zgradi;
- 13) godišnja potrebna toplota za grejanje zgrade, Q_{an,H} [kWh/a] je računski određena količina toplote koju grejnim sistemom treba dovesti u zgradu tokom godine da bi se obezbedilo održavanje unutrašnjih projektnih temperatura;
- 14) godišnji gubici sistema hlađenja, Q_{an.Os.} [kWh/a] su gubici energije sistema hlađenja tokom jedne godine koji se ne mogu iskoristiti za održavanje unutrašnje temperature u zgradi;
- 15) godišnji toplotni gubici sistema grejanja, Q_{an,Hls} [kWh/a] su gubici energije sistema grejanja tokom jedne godine koji se ne mogu iskoristiti za održavanje unutrašnie temperature u zgradi:
- 16) godišnji toplotni gubici sistema za pripremu sanitame tople vode, Q_{an.W/s} [kWh/a] su gubici energije sistema za pripremu potrošne tople vode tokom jedne godine koji se ne mogu iskoristiti za zagrevanje vode;
 - 17) granična površina A [m²] jeste površina termičkog omotača (spoljne mere) preko koga se vrši razmena toplote;
 - 18) grejana zapremina zgrade Ve [m³] je zapremina obuhvaćena termičkim omotačem zgrade;
 - 19) dvostruka fasada predstavlja sistem (u funkciji tehničke instalacije) koji se sastoji od dve nezavisne termičke opne između kojih struji vazduh;
- 20) elaborat energetske efikasnosti (u daljem tekstu: elaborat EE) je elaborat koji obuhvata proračune, tekst i crteže, izrađen u skladu sa ovim pravilnikom i sastavni je deo tehničke dokumentacije koja se prilaže uz zahtev za izdavanje građevinske dozvole;
- 21) električna snaga uređaja KGH, Pel [kW] je zbir nazivnih (priključnih) električnih snaga uređaja za grejanje, hlađenje, ventilaciju i klimatizaciju u zgradi (pumpe, ventilatori, kompresori, regulatori i sl.) u zimskom režimu rada, sa indeksom (H - eng. heating), ili letnjem režimu rada, sa indeksom (C- eng. cooling);
- 22) *element zgrade* jeste tehnički sistem zgrade ili deo omotača zgrade;
 23) *energetska sanacija zgrade* jeste izvođenje građevinskih i drugih radova na postojećoj zgradi, kao i popravka ili zamena uređaja, postrojenja, opreme i instalacija istog ili manjeg kapaciteta, a kojima se ne utiče na stabilnost i sigumost objekta, ne menjaju konstruktivni elementi, ne utiče na bezbednost susednih objekata, saobraćaja, ne utiče na zaštitu od požara i zaštitu životne sredine, ali kojima može da se menja spoljni izgled uz potrebne saglasnosti, u cilju povećanja energetske efikasnosti zgrade;
- 24) energetska svojstva zgrade podrazumevaju proračunatu ili izmerenu količinu energije koja je potrebna kako bi bile zadovoljene energetske potrebe koje odgovaraju uobičajenom načinu korišćenja zgrade i koje uključuju pre svega energiju za grejanje, hlađenje, ventilaciju, pripremu STV i osvetljenje;
- 25) *energetski efikasna zgrada* je zgrada koja troši minimalnu količinu energije uz obezbeđenje potrebnih uslova komfora u skladu sa ovim pravilnikom;
- 26) energetski pasoš zgrade je dokument koji prikazuje energetska svojstva zgrade i koji ima propisani sadržaj i izgled prema Pravilniku o energetskoj sertifikaciji zgrada, a izdaje ga ovlašćena organizacija koja ispunjava propisane uslove za izdavanje a o energetskim svojstvima objekata;
- 27) energija iz obnovljivih izvora predstavlja energiju iz obnovljivih nefosilnih izvora, kao što su energija vetra, Sunčevog zračenja, geotermalna energija, energija podzemnih i površinskih voda, biomasa i ostalo;
- 28) zapreminski gubici toplote, qv [W/m³] su zbir transmisionih i ventilacionih gubitaka po jedinici zapremine grejanog prostora zgrade i jednaki su specifičnom toplotnom protoku po jedinici zapremine, koji pri projektnim uslovima odaju uređaji za grejanje u prostorijama;
 - 29) zvučni komfor predstavlja uslove u kojima je nivo buke u prostoriji takav da ne izaziva osećaj neprijatnosti;
- 30) zgrada je građevina s krovom i zidovima u kojoj se koristi energija radi ostvarivanja određenih termičkih parametara sredine, namenjena boravku ljudi, odnosno smeštaju životinja, biljaka i stvari, obavljanju neke delatnosti, a sastoji se od građevinskih elemenata, tehničkih sistema i uređaja i ugrađene opreme; *zgradama* se smatraju i delovi zgrade koji su projektovani ili namenjeni za zasebno korišćenje i odvojeni termičkim omotačem od ostalih deľova zgade;
- 31) zgrada sa više energetskih zona je zgrada koja ima više posebnih delova za koje je, shodno ovom pravilniku, potrebno izraditi posebne energetske sertifikate (u daljem tekstu: energetske pasoše) i to:
- (1) koja se sastoji od delova koji čine tehničko-tehnološke i funkcionalne celine, koje imaju različitu namenu pa shodno tome imaju mogućnost odvojenih sistema grejanja i hlađenja ili se razlikuju po unutrašnjoj projektnoj temperaturi za više od 4°C,
 - (2) kod koje je više od 10% neto površine zgrade u kojoj se održava kontrolisana temperatura druge namene,
- (3) kod koje delovi zgrade, koji su tehničko-tehnološke i funkcionalne celine, imaju različite termotehničke sisteme i/ili bitno različite režime korišćenja termotehničkih sistema;
- 32) indeks izgrađenosti parcele jeste odnos (količnik) bruto građevinske površine izgrađene ili planirane zgrađe i ukupne površine građevinske parcele. U indeks izgrađenosti parcele se ne računaju površine pod staklenicima, duplim fasadama, slojevima termoizolacije debljim od 5 cm pod uslovom da se proračunom dokumentuje poboljšanje energetskih karakteristika postojeće zgrade primenom mera iz ovog pravilnika;
- 33) indeks zauzetosti parcele jeste odnos gabarita horizontalne projekcije izgrađene ili planirane zgrade i ukupne površine građevinske parcele izražene u procentima. U indeks zauzetosti parcele se ne računaju površine pod staklenicima, duplim fasadama i slojevima termoizolacije debljim od 5 cm pod uslovom da

se proračunom dokaže poboljšanje energetskih karakteristika postojeće zgrade primenom ovih mera;

- 34) koeficijent ventilacionih gubitaka toplote, H_V [W/K] su ventilacioni gubici toplote kroz omotač zgrade podeljeni razlikom temperatura unutrašnje i spoljne sredine, određene prema SRPS EN ISO 13790;
- 35) koeficijent grejanja ε_H (COP eng. coefficient of performance), predstavlja odnos između dobijene toplotne energije i uložene energije (utrošene električne energije) ((kWh)H/(kWh)E), kada rashladne mašine ili generatori hlađenja rade kao toplotne pumpe (obmut proces);

36) koeficijent hlađenja i comos odnos između energije hlađenja i uložene pogonske energije;

- 37) koeficijent transmisionih gubitaka toplote, H_T [W/K] su transmisioni gubici toplote kroz omotač zgrade podeljeni razlikom temperatura unutrašnje i spoljne sredine, određene prema SRPS EN ISO 13790;
 - 38) kratkotrajno korišćenje zgrade podrazumeva korišćenje zgrade kraće od 25% projektovanog perioda korišćenja za grejanje ili hlađenje;

39) nova zgrada je zgrada projektovana u skladu sa ovim pravilnikom;

- 40) *obimnija obnova* jeste izvođenje građevinskih i drugih radova na adaptaciji ili sanaciji na postojećoj zgradi kada je: ukupna predračunska vrednost radova na obnovi veća od 25% vrednosti zgrade, isključujući vrednost zemljišta na kojoj se zgrada nalazi; više od 25% površine omotača zgrade podrvgnuto energetskoj sanaciji uz poštovanje oblikovne i funkcionalne celovitosti delova zgrade;
 - 41) omotač zgrade čine svi elementi zgrade koji razdvajaju unutrašnji od spoljašnjeg prostora;
- 42) pasivna zgrada je zgrada u kojoj godišnja potrošnja energije za grejanje po jedinici korisne površine ne prelazi 15 kWh/m²:
- 43) period grejanja, HD (eng. heating days) je broj dana od početka do kraja grejanja zgrade. Početak i kraj grejanja za svaku lokaciju određen je temperaturom granice grejanja, koja je obuhvaćena pri određivanju broja Stepen dana HDD ("Heating degree days");
- 44) pomoćni sistem jeste skup tehničke opreme i uređaja koje koriste termotehnički sistemi zgrade (KGH i STV), a kojima je potrebno napajanje električnom energiiom:
- 45) postojeća zgrada je zgrada izgrađena na osnovu građevinske dozvole ili drugog odgovarajućeg akta, kao i svaka druga zgrada koja se koristi u skladu sa Zakonom o planiranju i izgradnji;
- 46) primama energija predstavlja energiju iz obnovljivih i neobnovljivih izvora koja nije pretrpela bilo kakvu konverziju ili proces transformacije;
- 47) referentne vrednosti date ovim pravlinikom su vrednosti u odnosu na koje se vrši poređenje izračunatih vrednosti energetskih svojstava zgrada;
- 48) referentni klimatski podaci jesu skup odabranih klimatskih parametara koji su karakteristični za neko geografsko područje;
- 49) sanitama topla voda je topla voda dobijena grejanjem vode iz vodovodne mreže;
- 50) svetlosni komfor predstavlja uslove koji omogućavaju dobro viđenje, tačno i brzo opažanje uz minimalno naprezanje očiju; 51) spoljna projektna temperatura, θ_e [°C] je proračunska temperatura spoljnog vazduha za izračunavanje toplotnih gubitaka i toplotnog opterećenja sa indeksima: zimska (H) i letnja (C);
 - 52) staklenik je zastakljeni korisni deo zgrade koji predstavlja pasivni prijemnik sunčeve energije;
 - 53) stvami klimatski podaci jesu klimatski podaci dobijeni statističkom obradom prema meteorološkoj stanici najbližoj lokaciji zgrade;
- 54) termička masa predstavlja delove termičkog omotača i strukture zgrade od materijala i u debljini koji omogućavaju akumulaciju toplote;
- 55) termički omotač zgrade čine svi elementi zgrade koji razdvajaju grejani od negrejanog dela zgrade, odnosno, celine zgrade sa različitim uslovima komfora ili delova zgrade kod kojih dolazi do prekida grejanja usled privremenog nekorišćenja nekog prostora;
- 56) termotehnički sistem zgrade obuhvata sve potrebne instalacije, postrojenja i opremu za klimatizaciju, grejanje i hlađenje (u daljem tekstu: KGH sistemi), kao i sistem za pripremu STV
 - 57) termičko zoniranje zgrade obuhvata grupisanje pojedinih delova zgrade u skladu sa njihovim potrebama za održavanjem određenih termičkih uslova;
- 58) tehnički sistem zgrade čine sve potrebne instalacije, postrojenja i oprema koja se ugrađuje u zgradu ili samostalno izvodi i namenjeni su za grejanje, hlađenje, ventilaciju, klimatizaciju, pripremu sanitame tople vode (u daljem tekstu: STV), osvetljenje i proizvodnju električne energije (kogeneracija i fotonaponski
- 59) tehničko-tehnološka i funkcionalna celina zgrade predstavlja poseban deo zgrade koji je projektovan tako da se koristi nezavisno od ostalih posebnih delova
- 60) toplotni komfor predstavlja psihološko stanje koje odgovara ugodnom osećaju toplotnih uslova u prostoru, odnosno, kojima je postignuta toplotna ravnoteža organizma. Objektivni parametri toplotnog komfora su: temperatura vazduha, srednja temperatura zračenja površina, brzina kretanja vazduha i vlažnost vazduha;
- 61) *unutrašnja projektna temperatura, θ_i* [°C] je zadata temperatura unutrašnjeg vazduha za izračunavanje toplotnih gubitaka i toplotnog opterećenja sa indeksima: zimska zimska (H) i letnja (C);
- 62) uslovi komfora su svi oni uslovi u zgradi (termički, vazdušni, vizuelni i zvučni) u kojima se neka osoba oseća ugodno;
- 63) faktor oblika fo = A/Ve, (m-1), je odnos između površine termičkog omotača zgrade (spoljne mere) i njime obuhvaćene bruto zapremine zgrade;
- 64) faktor dnevne svetlosti (eng. daylight factor) je odnos osvetljenosti prirodnim svetlom u prostoriji i nivoa osvetljenosti spolja, izražen u procentima.

Ovai pravilnik primeniuje se na:

- 1) izgradnju novih zgrada;
- 2) rekonstrukciju. dogradnju, obnovu, adaptaciju, sanaciju i energetsku sanaciju postojećih zgrada:
- 3) rekonstrukciju, adaptaciju, sanaciju, obnovu i revitalizaciju kulturnih dobara i zgrada u njihovoj zaštićenoj okolini sa jasno određenim granicama katastarskih parcela i kulturnih dobara, upisanih u Listu svetske kulturne baštine i objekata u zaštićenim područjima, u skladu sa aktom o zaštiti kulturnih dobara i sa uslovima organa, odnosno organizacije nadležne za poslove zaštite kulturnih dobara;
 - 4) zgrade ili delove zgradá koje čine tehničko-tehnološku ili funkcionalnu celinu, a koje se prodaju ili daju u zakup.

II. ENERGETSKA SVOJSTVA ZGRADA

Energetska svojstva i načini izračunavanja toplotnih svojstava utvrđuju se za sledeće kategorije zgrada:

- 1) stambene zgrade sa jednim stanom;
- 2) stambene zgrade sa dva ili više stanova;
- 3) upravne i poslovne zgrade;
- 4) zgrade namenjene obrazovanju i kulturi;
- 5) grade namenjene zdravstvu i socijalnoj zaštiti;
- 6) zgrade namenjene turizmu i ugostiteljstvu;
- 7) zgrade namenjene sportu i rekreaciji;
- 8) zgrade namenjene trgovini i uslužnim delatnostima;
- 9) zgrade mešovite namene:
- 10) zgrade za druge namene koje koriste energiju.

Član 5.

Energetska efikasnost zgrade je ostvarena ako su ispunjena sledeća svojstva zgrade:

- 1) obezbeđeni minimalni uslovi komfora sadržani u Prilogu 5 Uslovi komfora, koji je odštampan uz ovaj pravilnik i čini njegov sastavni deo;
- 2) potrošnja energije za grejanje, hlađenje, pripremu tople sanitarne vode, ventilaciju i osvetljenje zgrade ne prelazi dozvoljene maksimalne vrednosti po m² sadržane u Prilogu 6 - Metodologija određivanja energetskih performansi zgrada: određivanje godišnje potrebne toplote za grejanje, ukupne godišnje finalne i primarne energije, godišnje emisije SO2, referentni klimatski podaci i preporučene vrednosti ulaznih parametara za proračun, koji je odštampan uz ovaj pravilnik i čini niegov sastavni deo.

Kod obezbeđivanja efikasnog korišćenja energije u zgradama uzima se u obzir vek trajanja zgrade, klimatski uslovi lokacije, položaj i orijentacija zgrade, njena namena, uslovi komfora, materijali i elementi strukture zgrade i omotača, ugrađeni tehnički sistemi i uređaji, kao i izvori energije i kogeneracija i mogućnost za korišćenje obnovljivih izvora energije.

Član 7.

Za postizanje energetske efikasnosti zgrada definiše se:

- 1) orijentacija i funkcionalni koncept zgrade;
- 2) oblik i kompaktnost zgrade (faktor oblika);
- 3) toplotno zoniranje zgrade;
- 4) način korišćenja prirodnog osvetljenja i osunčanja;
- 5) optimizacija sistema prirodne ventilacije;
- 6) optimizacija strukture zgrade;

- 7) uslovi za korišćenje pasivnih i aktivnih sistema;
- 8) uslovi za korišćenie voda:

9) parametri za postizanje energetske efikasnosti postojećih i novoprojektovanih zgrada.

Parametri iz stava 1. ovog člana sadržani su u Prilogu 4 - Tehnički zahtevi za postizanje energetske efikasnosti zgrada, koji je odštampan uz ovaj pravilnik i čini niegov sastavni deo.

Uz ispunjenje energetske efikasnosti zgrade potrebno je zadovoljiti i sve uslove komfora: 1) vazdušni komfor;

- 2) toplotni komfor:
- 3) svetlosni komfor:
- 4) zvučni komfor

Úslovi iz stava 1. ovog člana sadržani su u Prilogu 5.

Član 9.

Higrotermička svojstva građevinskih materijala sadržana su u Tabeli 3.4.1.2 - Higrotermičke osobine građevinskih materijala i proizvoda Priloga 3 - Toplotna zaštita i difuzija vodene pare, koji je odštampan uz ovaj pravilnik i čini njegov sastavni deo.

Za potrebe proračuna difuzije vodene pare može da se koristi i srpski standard SRPS EN ISO 10456.

Član 10.

Toplotna, parodifuzijska i svojstva nepropustljivosti za vazduh građevinskih elemenata sadržana su u Prilogu 3.

Najveće dopuštene vrednosti koeficijenata prolaza toplote, U_{max} [W/(m 2 ×K)], elemenata termičkog omotača zgrade, odnosno elemenata između dve susedne termičke zone, sadržane su u Tabeli 3.4.1.3 - Najveće dozvoljene vrednosti koeficijenta prolaza toplote, U_{max} [W/(m²×K)], za elemente termičkog omotača zgrade Priloga 3.

Ove vrednosti se primenjuju i na unutrašnje građevinske konstrukcije koje se graniče sa prostorijama u kojima je temperatura vazduha pri projektnoj temperaturi spoljašnjeg vazduha (period grejanja) niža od 12 °C.

Način provere toplotne akumulativnosti sadržan je u Tački 3.2 - Toplotna akumulativnost Priloga 3.

Način provere difuzije vodene pare kroz građevinske elemente sadržan je u Tačka 3.3 - Difuzija vodene pare Priloga 3.

Član 11.

Toplotna svojstva i svojstva nepropustljivosti za vazduh zgrade ili dela zgrade koja se proveravaju su:

- 1) koeficijent transmisionog gubitka toplote, $H_T[W/K]$;
- 2) koeficijent ventilacionog gubitka toplote, H_V[W/K];
- 3) specifični transmisioni toplotni gubitak, $H_T[W/(m^2 \times K)]$;
- 4) ukupni zapreminski gubici toplote, q_V [W/m³]
- 5) efektivna toplotna akumulativnost zgrade, C [Wh/K];
- 6) broj izmena vazduha zgrade, ili dela zgrade, n [1/h].

Član 12.

Pri projektovanju termotehničkih sistema potrebno je predvideti elemente sistema grejanja, klimatizacije i ventilacije sa visokim stepenom korisnosti datim u Prilogu 6 i Prilogu 7 - Energetski pokazatelji za rashladne agregate koji se koriste za potrebe hlađenja u zgradama, koji je odštampan uz ovaj pravilnik i čine njegov sastavni deo.

Član 13.

Sisteme centralnog grejanja potrebno je projektovati i izvoditi tako da bude omogućena centralna i lokalna regulacija i merenje potrošnje energije za grejanje. Kotlove i cevnu mrežu sistema centralnog grejanja je potrebno projektovati i izvoditi tako da stepen korisnosti odgovara vrednostima sadržanim u Prilogu 6. Cirkulacione pumpe razgranatih sistema, kod kojih se primenjuje kvantitativna regulacija potrebno je opremiti kontrolerom broja obrtaja povezanim sa sistemom kontrole prema stvarnim zahtevima prostora.

Član 14.

Sistem mehaničke pripreme vazduha potrebno je projektovati i izvoditi tako da bude omogućeno korišćenje toplote otpadnog vazduha.

Sistem veštačkog dovoda vazduha potrebno je projektovati i izvoditi sa mogućnošću promene količine svežeg vazduha prema stvarnim zahtevima prostora, sa ograničenjem minimuma potrebnog za ventilaciju u skladu sa namenom prostorije.

Za centralnu ventilaciju zgrada mogu se koristiti reverzibilne toplotne pumpe za grejanje prostora zimi i za delimično hlađenje leti.

Kanale za usis svežeg vazduha potrebno je projektovati i izvoditi sa izolacijom od usisa do ulaska u klima komoru, u svrhu otklanjanja efekta toplotnog mosta i toplotnih gubitaka.

. Kanale za distribuciju pripremljenog vazduha potrebno je projektovati i izvoditi sa izolacijom u delu zgrade koji nije klimatizovan, kao i sve delove kanalske mreže gde može doći do kondenzacije vlage iz okolnog vazduha.

Dozvoljena je ugradnja rashladnih agregata sa efikasnošću jednakom ili većom od vrednosti sadržanih u Prilogu 7.

Vazdušne klimatizacione uređaje projektovati i izvoditi tako da mogu da koriste prirodno hlađenje, sa adijabatskom kontrolom.

Član 15.

U zgrade se ugrađuju toplotno izolovani rezervoari u grejnim sistemima ili sistemima za toplu vodu koji ispunjavaju zahteve utvrđene srpskim standardom SRPS EN 15332.

Razvodna mreža tople vode mora biti ugrađena unutar termičkog omotača zgrade, po pravilu smeštena u instalacionom kanalu i izolovana u skladu zahtevima datim u Prilogu 6.

Energetski efikasni tehnički sistemi za osvetljenje koji se ugrađuju u zgradu moraju da ispune i zahteve utvrđene srpskim standardom SRPS EN 15193 -Energetske performanse zgrada - Energetski zahtevi za osvetljenje.

Efikasno korišćenje energije za rasvetu obezbeđuje se prvenstveno korišćenjem dnevnog svetla, a ako to nije moguće, onda treba koristiti energetski efikasne svetiljke i pripadajuće elemente. U nestambenim zgradama pored toga treba obezbediti regulaciju osvetljenosti u zavisnosti od inteziteta dnevne svetlosti i prisustva korisnika u prostoriji.

III. NAČIN IZRAČUNAVANJA TOPLOTNIH SVOJSTAVA ZGRADA

Član 17.

Utvrđivanje ispunjenosti uslova energetske efikasnosti zgrade vrši se izradom elaborata EE, koji je sastavni deo tehničke dokumentacije koja se prilaže uz zahtev za izdavanje građevinske dozvole ili uz zahtev za izdavanje rešenja kojim se odobrava izvođenje radova na adaptaciji ili sanaciji objekta, kao i energetskoj sanaciji.

Član 18.

Proračun energetskih svojstava zgrade vrši se za sledeće kategorije:

- 1) godišnja potrebna energija za grejanje;
- 2) godišnja potrebna energija hlađenja;
- 3) godišnja potrebna energija za ventilaciju;
- 4) godišnja potrebna energija za pripremu sanitarne tople vode;
- 5) godišnja potrebna energija za osvetljenje;
- 6) godišnji gubici tehničkih sistema;
- 7) godišnja isporučena energija;
- 8) godišnja potrebna primarna energija;
- 9) godišnja emisija SO2.

Član 19.

Tehnički i drugi zahtevi za proračune energetskih svojstava zgrade utvrđeni srpskim standardima sadržani su u Prilogu 2 - Metodologija proračuna potrebne energije za grejanje i hlađenje u zgradama, iskazivanje energetskih performansi zgrada i monitoring i verifikacija energetskih performansi zgrada, koji je odštampan uz ovaj pravilnik i čini njegov sastavni deo, a fizičke veličine, oznake, jedinice i indeksi koji se koriste u proračunu potrebne energije za grejanje i hlađenje u zgradama sadržani i su u Prilogu 1 - Fizičke veličine, oznake, jedinice i indeksi, koji je odštampan uz ovaj pravilnik i čini njegov sastavni deo.

Godišnja potrošnja energije za grejanje i hlađenje, pripremu sanitarne tople vode, ventilaciju i osvetljenje računa se u skladu sa srpskim standardima SRPS EN

ISO 13790, SRPS EN 15316, SRPS EN 15241, SRPS EN 15243, SRPS EN 15316-3, SRPS EN 15193, kao i nacionalnim specifičnostima datim u Prilogu 6.

Godišnja potrošnja energije za grejanje, hlađenje, pripremu sanitarne tople vode, ventilaciju i osvetljenje zgrade određuje se proračunom uz korišćenje propisanog softverskog paketa za datu lokaciju.

Godišnja potrebna energija koja je osnov za utvrđivanje usklađenosti karakteristika zgrade sa propisanim zahtevima izračunava se za projektovane uslove korišćenja zgrade.

Član 20.

Emisija SO₂, koja nastaje prilikom rada tehničkih sistema određuje se na osnovu podataka za specifične emisije SO₂ za pojedine energente, tako što se godišnja potrebna primama energija za rad tehničkih sistema, izračunata za određeni energent, preračunava prema faktorima konverzije za specifične emisije SO₂, sadržanim u Priloqu 6.

Pokazatelji emisije SO₂, proizašli kao posledica rada tehničkih sistema tretiranih u ovom pravilniku, iskazuju se u obliku godišnjih emisija SO₂ (kg), ili godišnjih emisija SO₂ po jedinici neto površine unutar termičkog omotača zgrade, A_N (kg/ m²a).

Član 21.

Elaborat EE se izrađuje primenom Nacionalnog softvera za izračunavanje pokazatelja energetske efikasnosti zgrade, a na osnovu metodologije sadržane Prilogu 6.

Član 22.

Elaborat EE izrađuje se na osnow:

- 1) klimatskih karakteristika lokacije
- (1) spoljnih projektovanih temperatura gradova u Republici Srbiji sadržanih u Tabela 3.3.4.1 Spoljne projektne temperature, θ_{He} [o C], za mesta u Republici Srbiji Prilooa 3:
- (2) broja stepen dana i srednje temperature grejnog perioda za gradove u Republici Srbiji sadržanih u Tabela 6.3 Broj stepen dana za grejanje HDD i srednja temperatura grejnog perioda $\theta_{H,mn}$ za mesta u Republici Srbiji Priloga 6;
- (3) srednje mesečne sume zračenja i srednja mesečna temperatura sadržanih u Tabela 6.9 Srednje sume Sunčevog zračenja i srednja mesečna temperatura spoljnog vazduha Priloga 6;
 - 2) podataka o lokaciji situacioni plan zgrade sa položajem zgrada u neposrednom okruženju i prikazom vrsta obrada površina;
 - 3) podataka o građevinskim materijalima, elementima i sistemima potrebnim za proračune sadržanim su u Prilogu 3;
 - 4) podataka o mašinskoj i elektro opremi, uređajima i instalacijama.

Član 23.

Elaborat EE sadrži:

- 1) podatke navedene u članu 22. ovog pravilnika;
- 2) tehnički opis primenjenih tehničkih mera i rešenja u projektu usklađenih sa ovim pravilnikom i to:
- (1) funkcionalne i geometrijske karakteristike zgrade,
- (2) primenjene materijale,
- (3) ugrađene sisteme,
- (4) vrste izvora energije za grejanje, hlađenje i ventilaciju,
- (5) termotehničke instalacije.
- (6) sisteme rasvete.
- (7) upotrebu i učešće obnovljivih izvora energije;
- 3) proračune sadržane u Prilogu 3 i Prilogu 6, kojima se potvrđuje da projektovani građevinski elementi i zgrada, ili deo zgrade kao celina, sa pripadajućim tehničkim sistemima, ispunjavaju zahteve ovog pravilnika;
- 4) potrebnu godišnju potrošnju energije za rad tehničkih sistema u zgradi (finalna energija) sadržanu u Tabeli 6.1.a Metodologija za određivanje ukupne godišnje potrebne energije Priloga 6;
- 5) godišnju vrednost korišćenja ukupne primame energije sadržane u Tabeli 6.12 Faktori pretvaranja za proračunavanje godišnje primame energije za pojedine vrste izvora toplote Priloga 6:
 - 6) vrednosti emisije CO2, proračunate preko faktora datih u Tabeli 6.13 Specifične emisije SO2 za pojedine vrste energenata Priloga 6.

Navedene računske vrednosti se dobijaju korišćenjem nacionalnog softverskog paketa propisanog za tu namenu, a rezultati se iskazuju na standardnom izlaznom formatu propisanog softverskog paketa.

IV. PRELAZNE I ZAVRŠNE ODREDBE

Član 24.

Do dana izbora programskog paketa iz člana 23. stav 2. ovog pravilnika, proračun i izražavanje energetskog razreda zgrade vrši se na osnovu potrebne energije za grejanje Q_{H,nd} [kWh/(m²a)].

Od dana izbora programskog paketa iz stava 1. ovog člana, vršiće se proračun potrošnje energije za grejanje, hlađenje, pripremu sanitame tople vode, ventilaciju i osvetljenje.

Do dana izbora programskog paketa iz stava 1. ovog člana za proračun energetskih svojstava zgrade, odnosno godišnje potrošnje energije, elaborat EE sadrži:

- 1) karakteristike omotača objekta usklađene sa vrednostima koeficijenata prolaza toplote i vrednostima specifičnog transmisionog gubitka, sadržane u Prilogu 3 i Prilogu 6, kao i svim ostalim tehničkim uslovima sadržanim u ovom pravilniku;
- 2) potrošnju energije za grejanje objekta usklađenu sa vrednostima datim u Tabela 6.11a i Tabela 6.11b i proračunatu prema uputstvima datim u Prilogu 6.

Član 25.

Ovaj pravilnik stupa na snagu osmog dana od dana objavljivanja u "Službenom glasniku Republike Srbije ", a primenjuje se od 30. septembra 2012. godine. Broj 110-00-00119/2011-07

U Beogradu, 5. avgusta 2011. godine

Ministar, dr **Oliver Dulić**, s.r.

PRILOG 1

FIZIČKE VELIČINE, OZNAKE, JEDINICE I INDEKSI

Tabela 1.1 - Fizičke veličine. oznake i jedinice

Fizička veličina	Oznaka	Jedinica
Energetski koeficijent uređaja / postrojenja	e_p	-
Širina	b	m
Temperatura	θ	°C
Emisivnost, stepen emisivnosti	ε	-
Površina	A	m²
Korisna površina zgrade	A_N	m²
Dužina	ℓ	m
Linijski koeficijent prolaza toplote	Ψ	W/(m•K)
Relativna vlažnost vazduha	ø	%

Broj izmena vazduha	n	h ⁻¹
Broj izmena vazduha pri razlici pritisaka od 50 Ra	n ₅₀	h^{-1}
Masa	m	kg
Koeficijent tačkastog prolaza toplote	χ	W/K
Gustina	ρ	kg/m ³
Debljina sloja	d	m
Specifični toplotni kapacitet	С	J/(kg•K)
Štefan-Boltzman-ova konstanta (= $5,67 \times 10^{-8}$)	σ	$W/(m^2 \cdot K^4)$
Temperatura, unutra (vazduh)	θ_i	oC.
Temperatura, unutrašnja površina	$\theta_{\it si}$	°C
Temperatura, spolja (vazduh)	θ_e	°С
Temperatura, spoljna površina	θ_{se}	°C
Razlika temperatura	$\Delta heta$, ΔT	K
Temperaturski faktor (faktor temperature)	f_{Rsi}	-
Temperaturska provodnost	а	m²/s
Karakteristika toplotne (termičke) provodnosti	L	W/K
Karakteristika toplotne provodnosti, osnovna	L 0	W/K
Karakteristika toplotne provodnosti, 2D-proračun	L^{2D}	W/K
Karakteristika toplotne provodnosti, 3D-proračun	L^{3D}	W/K
Termodinamička temperatura (T = θ + 273,15)	T	K
Koeficijent transmisionih gubitaka toplote	H_T	W/K
Koeficijent ventilacionih gubitaka toplote	H_V	W/K
Zapremina, neto	V	m ³
Zapremina, bruto	V_e	m ³
Koeficijent prolaza toplote	U	W/(m²•K)
Koeficijent prolaza toplote, prozor	U_W	W/(m²•K)
Koeficijent prolaza toplote, okvir prozora	U_f	W/(m ² •K)
Koeficijent prolaza toplote, zastakljenje	U_g	W/(m ² •K)
Otpor prolazu toplote (= 1/U)	R_T	m²•K/W
Otpor prolazu toplote, gornja granična vrednost	R'T	m²•K/W
Otpor prolazu toplote, donja granična vrednost	$R^{''}_{T}$	m²∙K/W
Toplotna otpornost vazdušnog sloja / prostora	R_{g}	m²∙K/W
Toplotna otpornost negrejanog prostora	R_u	m²•K/W
Toplotna provodljivost	λ	W/(m•K)
Količina toplote	Q	J ≡ W•s ≡ N•m
Protok toplote (toplotni fluks)	F	W
Specifični toplotni protok (specifični toplotni fluks)	q	W/m²
Koeficijent prelaza toplote	h	W/(m ² •K)
Koeficijent prelaza toplote, unutrašnji	h_i	W/(m ² •K)
Koeficijent prelaza toplote, spoljni	h_e	W/(m ² •K)
Otpor prelazu toplote, unutrašnji	R_{si}	m²∙K/W
Otpor prelazu toplote, spoljašnji	R_{se}	m²•K/W
Vreme	t	S

1	1	J \ \ \ \ /
а	Vazduh	air
an	godišnje	annual
В	bruto	
c	karakteristično	characteristic
С	hlađenje	cooling
del	isporučeno	delivered
e	spolja	external
el	električna energija	electric
f	ventilator, okvir	fan, frame
g	tle, staklo	ground, glazing
h	časovna	hourly
Н	grejanje, grejano	heating, heated
i	unutrašnje	internal
j	nabrajanje	
L	osvetljenje	lighting
ls	gubici	losses
m	mesečni	monthly
N	neto	net
P	snaga	power
S	solarni	solar
se	spoljašnja površina	external surface
seas	sezonska	seasonal
sh	zasenčenje	shading
si	unutrašnja površina	internal surface
T	transmisija	transmission
tot	ukupno	total
и	negrejano	unheated
v	ventilisano	ventilated
V	ventilacija, zapremina	ventilation, volume
w	prozor	window
W	topla voda	hot water
х	dodatno	extra

PRILOG 2

METODOLOGIJA PRORAČUNA POTREBNE ENERGIJE ZA GREJANJE I HLAĐENJE U ZGRADAMA, ISKAZIVANJE ENERGETSKIH PERFORMANSI ZGRADA I MONITORING I VERIFIKACIJA ENERGETSKIH PERFORMANSI ZGRADA

Tabela 2.1 - Definicije i terminologija

Oznaka standarda:	Naziv standarda / primena:
SRPS EN ISO 7345	Toplotna izolacija - Fizičke veličine i definicije
SRPS EN ISO 9288	Toplotna izolacija - Prenos toplote zračenjem - Fizičke veličine i definicije
SRPS EN ISO 9251	Toplotna izolacija - Uslovi prenosa toplote i svojstva materijala - Rečnik
SRPS EN 12792	Ventilacija zgrada - Simboli, terminologija i grafički simboli

Uslovi toplotnog komfora i kvalitet unutrašnjeg vazduha određeni su standardom SRPS EN ISO 7730 i dokumentom CR 1752 (Tehnički izveštaj), kao i standardom SRPS EN 15251.

Tabela 2.2 - Ključni standardi

Standard	Opis:
SRPS EN ISO 13790	Ukupna potrebna energija za grejanje i hlađenje (uzimajući u obzir gubitke i dobitke toplote).
SRPS EN 15315	Primarna energija i emisija CO ₂ .
SRPS EN 15217	Smernice za iskazivanje energetske performanse (za energetski sertifikat) i smernice za iskazivanje zahteva (za regulativu). Sadržaj i oblik Sertifikata o energetskoj performansi.
ODDO EN 15270	Dd. 3! (1

SKPS EN 133/8	rregiedi (konirole) uredaja za obezbedenje topie vode.
SRPS EN 15240	Pregledi (kontrole) uređaja za pripremu vazduha za klimatizaciju.
SRPS EN 15239	Pregledi (kontrole) uređaja za ventilaciju.
SRPS EN 15193	Energetske performanse zgrada - Energetski zahtevi za osvetljenje

SRPS EN 15193	Energetske performanse zgrada - E	nergetski zanievi za osvenjenje				
bela 2. 3 - Standardi podrške Standard	ključnim standardima Naziv na engleskom jeziku	Naziv na srpskom jeziku				
		Ivaziv na srpskom jeziku				
	menu standarda SRPS EN ISO 13790					
SRPS EN ISO 13789	Thermal performance of buildings - Transmission and ventilation heat transfer coefficients - Calculation method	Toplotne performanse zgrada - Transmisioni i ventilacioni koeficijenti prolaza toplote				
SRPS EN 15232	Calculation methods for energy efficiency improvements by the application of integrated building automation systems	Metodi proračuna za poboljšavanje energetske efikasnost primenom integrisanih sistema automatike u zgradama				
SRPS EN 15241	Ventilation for buildings - Calculation methods for energy losses due to ventilation and infiltration in commercial buildings	Ventilacija zgrada - Metodi proračuna gubitaka energije usled ventilacije i infiltracije u komercijalnim (poslovnim) zgradama				
SRPS EN 15243	Ventilation for buildings - Calculation of room temperatures and of load and energy for buildings with room conditioning systems	Ventilacija zgrada - Proračun temperatura prostorije i opterećenja i energije za zgrade sa sistemima za klimatizac prostorija				
SRPS EN 15316-1	Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies - Part 1: General	Sistemi grejanja u zgradama - Metod proračuna energetskih potreba sistema i efikasnosti sistema				
SRPS EN 15316-2-1	Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies Part 2-1 Space heating emission systems	Sistemi grejanja u zgradama - Metod proračuna energetsk potreba sistema i efikasnosti sistema - Deo 2-1: Sistemi sa zračenjem toplote u prostor				
SRPS EN 15316-4	Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies Part 4: Space heating generation systems	Sistemi grejanja u zgradama - Metod proračuna energetsl potreba sistema i efikasnosti sistema - Deo 4: Sistemi koji generišu toplotu u prostoru				
SRPS EN 15316-3	Heating systems in buildings - Method for calculation of system energy requirements and system efficiencies - Part 3: Domestic hot water systems	Sistemi grejanja u zgradama - Metod proračuna energetsl zahteva (potreba) sistema i efikasnosti sistema - Deo 3: Sistemi za sanitarnu toplu vodu				
SRPS ISO 13600	Technical energy systems - Basic concepts	nički energetski sistemi - Osnovni koncepti				
N	Metode za obezbeđivanje podataka o građevinskim elem	entima i sistemima - PRORAČUNI				
SRPS EN 1745	Masonry and masonry products - Methods for determining design thermal values	Zidane konstrukcije i proizvodi za zidanje - Metode određivanja projektnih toplotnih vrednosti				
SRPS EN 410	Glass in building - Determination of luminous and solar characteristics of glazing	Staklo u zgradarstvu - Određivanje svetlosnih i solarnih karakteristika zastakljenja (ostakljenja, stakla)				
SRPS EN 673	Glass in building - Determination of thermal transmittance (U value) - Calculation method	Staklo u građevinarstvu - Određivanje toplotne propustljivosti (koeficijenta prolaza toplote) (U vrednost) Metod proračuna				
SRPS EN ISO 10077-1	Thermal performance of windows, doors and shutters - Calculation of thermal transmittance - Part 1: General	Toplotne performanse prozora, vrata i zaklona - Proračur koeficijenta prolaza toplote - Deo 1: Opšte				
SRPS EN ISO 10077-2	Thermal performance of windows, doors and shutters - Calculation of thermal transmittance - Part 2: Numerical method for frames	Toplotne performanse prozora, vrata i zaklona - Proračur koeficijenta prolaza toplote - Deo 2: Numerički metod za okvire				
SRPS EN ISO 6946	Building components and building elements - Thermal resistance and thermal transmittance - Calculation method	Komponente i elementi zgrade - Toplotna otpornost i koeficijent prolaza toplote				
SRPS EN 15241	Ventilation for buildings - Calculation methods for energy requirements due to ventilation systems in buildings	Ventilacija zgrada - Metode proračuna energetskih zahtev koji proizilaze iz sistema za ventilaciju u zgradama				
SRPS EN 15242	Ventilation for buildings - Calculation methods for the determination of air flow rates in buildings including infiltration	Ventilacija zgrada - Metode proračuna za određivanje niv protoka vazduha u zgradama, uključujući infiltraciju				
SRPS EN 15243	Ventilation for buildings - Calculation of room temperatures and of load and energy for buildings with room conditioning systems	Ventilacija zgrada - Metode proračuna temperatura u prostorijama i opterećenja i energije za zgrade sa sistemin za klimatizaciju				
SRPS EN ISO 10211	Thermal bridges in building construction - Heat flows and surface temperatures - Detailed calculations	Toplotni mostovi u konstrukciji zgrade - Toplotni protoci površinske temperature - Detaljni proračuni				

SRPS EN ISO 13370	Thermal performance of buildings - Heat transfer via the ground - Calculation methods	Toplotne karakteristike zgrada - Prenošenje toplote preko tla - Metode proračuna								
SRPS EN 13947	Thermal performance of curtain walling - Calculation of thermal transmittance	Toplotne performanse zid-zavesa - Proračun koeficijenta prolaza toplote								
SRPS U.J5.520	Toplotna tehnika u građevinarstvu - Proračun difuzije v	odene pare u zgradama								
SRPS U.J5.530	Toplotna tehnika u građevinarstvu - Proračun faktora prigušenja oscilacija temperature i proračun kašnjenja oscilacija temperature kroz spoljašnje pregrade zgrada u letnjem periodu									
	Metode za obezbeđivanje podataka o građevinskim elem	nentima i sistemima - ISPITIVANjA								
SRPS EN 12412-2	Thermal performance of windows, doors and shutters - Determination of thermal transmittance by hot box method - Part 2: Frames	Toplotne performanse prozora, vrata i zaklona - Određivanje koeficijenta prolaza toplote metodom tople kutije (hot-box metod)								
SRPS EN ISO 12567	Thermal performance of windows and doors - Determination of thermal transmittance by hot box method	Toplotne performanse prozora i vrata - Određivanje koeficijenta prolaza toplote metodom tople kutije								
SRPS EN 1026	Prozori i vrata - Propustljivost vazduha - Metod ispitiv	anja								
SRPS EN ISO 12569	Thermal insulation in buildings - Determination of air change in buildings - Tracer gas dilution method	Toplotna izolacija u zgradama - Određivanje izmene vazduha u zgradama - Metod sa razređenim gasnim tragom								
SRPS EN 13829	Thermal performance of buildings - Determination of air permeability of buildings - Fan pressurization method	Termičke performanse zgrada - Određivanje vazdušne propustljivosti zgrada - Metod ventilatora pod pritiskom								
SRPS ISO 9869	Thermal insulation - Building elements - In-situ measurement of thermal resistance and thermal transmittance	Toplotna izolacija - Elementi zgrade - merenja toplotne otpornosti i koeficijenta prolaza toplote na licu mesta								
SRPS U.A2.020	Ispitivanje građevinskih materijala - Određivanje koefic	cijenta provodljivosti toplote metodom grejne ploče								
SRPS U.A2.023	Toplotna tehnika u građevinarstvu - Merenje difuzije vo	odene pare malim memim posudama								
SRPS U.A2.024	Toplotna tehnika u građevinarstvu - Merenje difuzije vo	Toplotna tehnika u građevinarstvu - Merenje difuzije vodene pare pomoću komora								
SRPS U.J5.060	Toplotna tehnika u visokogradnji - Laboratorijske metode ispitivanja koeficijenta prolaza toplote u građevinskim konstrukcijama zgrada									
SRPS U.J5.062	Toplotna tehnika u visokogradnji - Terenske metode ispitivanja koeficijenta prolaza toplote u građevinskim konstrukcijama zgrada									
SEPS U.J5.082	Toplotna tehnika u građevinarstvu - Merenje specifični	Toplotna tehnika u građevinarstvu - Merenje specifičnih toplotnih gubitaka zgrada ili delova zgrada								
SRPS U.J5.100 (1)	SRPS U.J5.100 (1) Toplotna tehnika u građevinarstvu - Vazdušna propustljivost stana									

Napomena 1: Ispitivanja mogu da vrše od strane ATS akreditovane laboratorije, u okviru obima akreditacije. Priznavanje stranih dokumenata o usaglašenosti regulišu odgovarajući domaći propisi.

PRILOG 3

Toplotna zaštita i difuzija vodene pare

U ovom prilogu definisani su osnovni - opšti principi fizike zgrade u delu koji se odnosi na toplotnu zaštitu, toplotnu akumulativnost i difuziju vodene pare, koje treba slediti pri projektovanju, izgradnji i rekonstrukciji (revitalizaciji) zgrada ili delova zgrada.

3.1 Toplotna zaštita i gubici toplote - metodologija

Metodologija koja se primenjuje za određivanje parametara toplotne zaštite zgrade ili dela zgrade zasnovana je na sledećim osnovnim svojstvima: koeficijenti prolaza toplote građevinskih elemenata; koeficijenti transmisionog gubitka toplote; ventilacioni gubici toplote (infiltracija vazduha); specifični transmisioni gubici toplote; ukupni zapreminski gubici toplote. U primeni propisane metodologije neophodno je poznavanje opštih principa fizike zgrade, koji se pre svega odnose na: kontrolu unutrašnjih površinskih temperatura; proračun difuzije vodene pare; proračun toplotne akumulativnosti.

Tabela 3.1.1 - Metodologija za određivanje parametara toplotne zaštite zgrade ili dela zgrade

⁽¹⁾ Napomena 2: Odnosi se na metod ispitivanja, izuzev kriterijuma za ocenu, koji su dati u ovom pravilniku.

Napomena 3: Za originalne SRPS standarde naziv je dat na srpskom jeziku.

Величина	Начин прорачуна	Опис / критеријум
Коефицијент пролаза топлоте грађевинског елемента, U [W/(m²-K)]	$U = \frac{1}{R_n + R + R_n}$	Опена: $U \le U_{\text{max}}$ $R [^2 \cdot K/W]$ је топлотна отпорност грађевинског елемента, а R_{st} и R_{sp} су прелазне отпорности
Коефицијент транемисионог губитка топлоте, H_T [W/K]	$H_{T} = \sum_{i} (F_{ii} \cdot U_{i} \cdot A_{i}) + H_{TB}$ $H_{TB} = \Delta U_{TB} \cdot A$ $\Delta U_{TB} = 0.10 \text{ W/(m}^{2} \cdot \text{K)}$	Пренос топлоте кроз термички омотач зграде (или дела зграде); утицај топлотних мостова
Коефицијент вентилационог губитка топлоте, H_{i} [W/K]	$H_V = \rho_o \cdot c_p \cdot V \cdot n$ V — запремина грејаног простора $\{m^3\};$ n — број измена ваздуха на час $[h^{-1}]$	Број измена ваздуха
Специфични трансмисиони губитак топлоте, $H'_T[W/(m^2-K)]$	$H_T = \frac{H_T}{A} \left[W/(m^2 \cdot K) \right]$	Оцена: $H'_T \le H'_{T,max}$ $A \ [m^2]$ је површина термичког омотача зграде
Укупни зпремински губици топлоте, q ₃ : [W/m ³]	$q_v = \frac{H_T + H_V}{V_e}$	Укупни губици топлоте – трансмисиони и вентилациони

Proračuni fizičkih veličina navedenih u Tabeli 3.1.1 sastavni su deo elaborata EE, koji predstavlja deo projektne dokumentacije i izrađuje se u skladu sa važećim standardima i propisima.

3.2 Toplotna akumulativnost

Proračun toplotne akumulativnosti netransparentnih spoljnih građevinskih elemenata zgrada (spoljni zidovi, krovovi) za letnji period vrši se u skladu sa standardom SRPS U.J5.530, korišćenjem sledećih veličina: faktor prigušenja amplitude oscilacije temperature, η [-]; kašnjenje oscilacije temperature, ν [h]. Ove veličine ograničene su najmanjim dozvoljenim vrednostima, datim u tabeli 3.2.1 i tabeli 3.2.2.

. Tabela 3.2.1 - Najmanje dozvoljene vrednosti faktora prigušenja amplitude oscilacije temperature, v_{min} [-]

Građevinski element	v _{min} [-]
Ravni krovovi	25
Svi spoljni zidovi, osim onih koji su na severnoj strani	15
Spoljni zidovi na severnoj strani	10

Tabela 3.2.2 - Najmanje dozvoljene vrednosti kašnjenja oscilacije temperature, η_{min} [h]

Građevinski element	η _{min} [h]				
Ravni krovovi hladnjača	14				
Ravni krovovi, osim ravnih krovova hladnjača	10				
Spoljni zidovi i kosi krovovi ka zapadnoj i jugozapadnoj strani	8				
Spoljni zidovi i kosi krovovi ka južnoj i jugoistočnoj strani					
Spoljni zidovi i kosi krovovi na istočnoj, severoistočnoj i severozapadnoj strani	6				

Ukoliko je za krovove v > 45, ne postavljaju se zahtevi za vrednost η [h]. Ukoliko je za zidove v > 35, ne postavljaju se zahtevi za vrednost η [h].

Za spoljne netransparentne ventilisane građevinske elemente (osim za slabo ventilisane) ne postavljaju se zahtevi za vrednost v [-] ukoliko je površinska masa elementa bez obloge veća (ili jednaka) 100 kg/m². Ukoliko je površinska masa elementa bez obloge manja od 100 kg/m², koeficijent prolaza toplote elementa mora da bude manji od 0,35 W/(m²×K).

Sve transparentne (i polutransparentne) površine u boravišnim prostorijama, osim one koje su na severu, severoistoku i severozapadu (pri azimutu: 0 - 45° i 315 - 360°), moraju da imaju netransparentnu zaštitu od direktnog Sunčevog zračenja u letnjem periodu. Orijentacija, j (azimut i nagib), zastakljene površine se, pojednostavljeno, određuje prema tabeli 6.10.

Detaljni postupci za proračun toplotne akumulativnosti građevinskih elemenata sadržani su u standardu SRPS EN ISO 13786.

Proračuni fizičkih veličina i parametara kojima se proverava toplotna akumulativnost građevinskog elementa sastavni su deo elaborata EE, koji predstavlja deo projektne dokumentacije i izrađuje se u skladu sa važećim standardima i propisima.

3.3 Difuzija vodene pare

Difuzija vodene pare izračunava se za spoljne građevinske konstrukcije i konstrukcije koje se graniče sa negrejanim prostorijama, osim za konstrukcije koje se neposredno graniče sa terenom (pod na tlu, ukopani zidovi, ukopane tavanice). Sve građevinske konstrukcije zgrade moraju biti projektovane i izgrađene na način da se vodena para u projektnim uslovima na njihovim površinama ne kondenzuje.

Zgrada mora biti projektovana i izgrađena na način da se kod namenskog korišćenja vodena para koja zbog difuzije prodire u građevinsku konstrukciju, ne kondenzuje. U slučaju da dođe do kondenzacije vodene pare u konstrukciji, ona se nakon računskog perioda isušivanja mora sasvim osloboditi iz građevinske konstrukcije. Vlaga koja se kondenzuje u konstrukciji ne sme dovesti do oštećenja građevinskih materijala (na primer korozija, pojava buđi).

Za izračunavanje higrotermičkih karakteristika građevinskih elemenata i konstrukcija, difuzije vodene pare, kondenzacije i isušenja, kao i opasnosti od površinske kondenzacije (orošavanje), primenjuje se standard SRPS EN ISO 13788, u opcijama: 1) složeni godišnji kumulativni proračun; 2) *Glaser-*ov postupak. Ukoliko se proračun vrši na osnovu *Glaser-*ovog postupka, koristi se metod proračuna prema SRPS U.J5.520.

Higrotermičke karakteristike materijala usvajaju se prema Tabeli 3.4.1.2 ovog pravilnika. U tabeli 3.4.1.2 dat je pregled osnovnih higrotermičkih osobina građevinskih materijala. Uporedo se mogu koristiti i podaci prema tabelama standarda SRPS EN ISO 10456, za srednju temperaturu za primenu u građevinarstvu jednaku 23°C i pri praktičnom sadržaju vlage koji odgovara koriščenju građevinskog materijala. Ovo su proračunske - projektne vrednosti, navedene kao prosečne vrednosti za primenu u građevinarstvu. Niže vrednosti koeficijenata toplotne provodljivosti i higrotermičke osobine novih materijala dokazuju se ispitivanjima. Ispitivanja se vrše u skladu sa važećim standardima i propisima. Procedure za izdavanje dokaza o usaglašenosti na osnovu stranih isprava i znakova usaglašenosti regulisane su važećim domaćim propisima.

Proračuni fizičkih veličina i parametara kojima se proverava difuzija vodene pare građevinskog elementa sastavni su deo elaborata EE, koji predstavlja deo projektne dokumentacije i izrađuje se u skladu sa važećim standardima i propisima.

3.3.1 Dozvoljena temperatura unutrašnje površine

Dozvoljena temperatura unutrašnje površine spoljne građevinske konstrukcije na bilo kom mestu (i na mestima toplotnih mostova) mora da bude veća od temperature tačke rose, θ_s [°C], za date projektne uslove (temperatura i relativna vlažnost vazduha u prostoriji).

Minimalna toplotna otpomost za sprečavanje orošavanja unutrašnje površine, Rnin [m²K/W], građevinske konstrukcije izvan zone toplotnog mosta (osnovni deo građevinskog elementa) izračunava se za uslove perioda grejanja (zimski period), na sledeći način: $R_{min} \geq R_{si} \cdot \frac{\theta_i - \theta_s}{\theta_i - \theta_s} - (R_{si} - R_{ss})$

$$R_{min} \ge R_{si} \cdot \frac{\theta_i - \theta_s}{\theta_i - \theta_s} - (R_{si} - R_{ss})$$

Pri čemu je R_{Se} = 0,04 m 2 K/W, a vrednost R_{Si} se, zbog mogućnosti pojave sprečenog strujanja vazduha (nameštaj, zakloni i sl.) usvaja sa (najmanje) R_{Si} = 0,25 m²K/W. Za transparentne građevinske elemente primenjuje se uobičajena vrednost: R_{si} = 0,17 m²K/W.

Na mestima toplotnih mostova za ocenu opasnosti od orošavanja merodavna je temperature tačke rose, θ_{S} [°C], određena prema tabeli 3.3.1.1 pri vrednosti $\theta_{Si,crit} = \theta_{Si}$

Tabela 3.3.1.1 - Temperature tačke rose, θ_S [°C], u zavisnosti od relativne vlažnosti vazduha, φ_i [%], i temperature vazduha θ_i [°C]

	Tabela 3.3.1.1 - Temperature tacke rose, θ_S [°C], if zawshosti od relativne vazduna, ϕ_i [°C] θ_S [°C]													
θ_i [°C]	$arphi_i$ [%]													
	30	35	40	45	50	55	60	65	70	75	80	85	90	95
30	10,5	12,9	14,9	16,8	18,4	20,0	21,4	22,7	23,9	25,1	26,2	27,2	28,2	29,1
29	9,7	12,0	14,0	15,9	17,5	19,0	20,4	21,7	23,0	24,1	25,2	26,2	27,2	28,1
28	8,8	11,1	13,1	15,0	16,6	18,1	19,5	20,8	22,0	23,2	24,2	25,2	26,2	27,1
27	8,0	10,2	12,2	14,1	15,7	17,2	18,6	19,9	21,1	22,2	23,3	24,3	25,2	26,1
26	7,1	9,4	11,4	13,2	14,8	16,3	17,6	18,9	20,1	21,2	22,3	23,3	24,2	25,1
25	6,2	8,5	10,5	12,2	13,9	15,3	16,7	18,0	19,1	20,3	21,3	22,3	23,2	24,1
24	5,4	7,6	9,6	11,3	12,9	14,4	15,8	17,0	18,2	19,3	20,3	21,3	22,3	23,1
23	4,5	6,7	8,7	10,4	12,0	13,5	14,8	16,1	17,2	18,3	19,4	20,3	21,3	22,2
22	3,6	5,9	7,8	9,5	11,1	12,5	13,9	15,1	16,3	17,4	18,4	19,4	20,3	21,2
21	2,8	5,0	6,9	8,6	10,2	11,6	12,9	14,2	15,3	16,4	17,4	18,4	19,3	20,2
20	1,9	4,1	6,0	7,7	9,3	10,7	12,0	13,2	14,4	15,4	16,4	17,4	18,3	19,2
19	1,0	3,2	5,1	6,8	8,3	9,8	11,1	12,3	13,4	14,5	15,5	16,4	17,3	18,2
18	0,2	2,3	4,2	5,9	7,4	8,8	10,1	11,3	12,5	13,5	14,5	15,4	16,3	17,2
17	-0,6	1,4	3,3	5,0	6,5	7,9	9,2	10,4	11,5	12,5	13,5	14,5	15,3	16,2
16	-1,4	0,5	2,4	4,1	5,6	7,0	8,2	9,4	10,5	11,6	12,6	13,5	14,4	15,2
15	-2,2	-0,3	1,5	3,2	4,7	6,1	7,3	8,5	9,6	10,6	11,6	12,5	13,4	14,2
14	-2,9	-1,0	0,6	2,3	3,7	5,1	6,4	7,5	8,6	9,6	10,6	11,5	12,4	13,2
13	-3,7	-1,9	-0,1	1,3	2,8	4,2	5,5	6,6	7,7	8,7	9,6	10,5	11,4	12,2
12	-4,5	-2,6	-1,0	0,4	1,9	3,2	4,5	5,7	6,7	7,7	8,7	9,6	10,4	11,2
11	-5,2	-3,4	-1,8	-0,4	1,0	2,3	3,5	4,7	5,8	6,7	7,7	8,6	9,4	10,2
10	-6,0	-4,2	-2,6	-1,2	0,1	1,4	2,6	3,7	4,8	5,8	6,7	7,6	8,4	9,2

3.3.2 Dozvoljene vrednosti upijanja vlage - spoljni završni slojevi

Dozvoljene vrednosti upijanja vlage spoljašnjeg završnog sloja građevinske konstrukcije - zaštitno-dekorativnih nanosa debljine manje od 0,005 m, određene preko vrednosti ekvivalentne debljine, r [m], iznose: $r = d \times \mu$ £ 2, gde je d [m] debljina, a μ [-] relativni koeficijent difuzije vodene pare zaštitno-dekorativnog nanosa.

3.3.3 Dozvoljene vrednosti vlage usled difuzije i kondenzacije

Ukupna količina kondenzovane vlage ne sme preći da bude veća od: 1 kg/m 2 u opštem slučaju; 0,5 kg/m 2 ukoliko se kondenzacija dešava u slojevima materijalima koji nemaju svojstvo kapilamog upijanja odnosno oslobađanja vlage; u slučaju kondenzacije u sloju drveta, najveći dopušteni porast sadržaja vlage za 5% u odnosu na početni maseni sadržaj vlage; u slučaju kondenzacije u materijalima na bazi drveta, najveći dopušteni porast sadržaja vlage iznosi 3% u odnosu na početni maseni sadržaj vlage.

Úkupna masena vlažnost materijala u građevinskom elementu na kraju perioda kondenzacije, X_{uk} [%]:

$$X'_{uk} = X'_r + X'_{dif}$$

 $\mathcal{X}_{r}\left[\%
ight]$ - prosečna računska vlažnost materijala, prema tabeli 3.3.3.1

 $X_{
m dif}$ [%] - masena vlažnost nastala usled kondenzacije.

Mora da bude ispunjen uslov.

$$X'_{uk} < X'_{max}$$

gde je najveća dozvoljena masena vlažnost za sloj materijala u kome se dešava kondenzacija

$$X'_{dif, max} = X_r + X_{dif, max}$$

$$X'_{dif, max} = \frac{q_{max} \cdot 100}{\rho_0 \cdot \rho_0}$$

 ρ_0 [kg/m³] je zapreminska masa materijala, u suvom stanju, prema tabeli 3.3.3.1, ili 3.4.1.2

Računska debljina, d_r [m], sloja građevinskog elementa u kome se dešava kondenzacija, za slučaj kondenzne površine ima sledeće vrednosti: za sloj poroćelijastog betona ili betona sa lakim agregatom, $d_r = 0.02$ m; za opeku, $d_r = 0.05$ m; za ostale materijale usvaja se da je $d_r = d$ (d je debljina sloja), ali ne veće od 0.07 m.

Za slučaj kondenzne zone, d_r je jednako širini kondenzne zone.

Vrednost q_{max} [kg/m²] predstavlja najveću dozvoljenu količinu kondenzovane vodene pare u građevinskom elementu na završetku razdoblja difuzije vodene pare, koja ima sledeće vrednosti: u opštem slučaju, $q_{\text{max}} = 1,0$ kg/m²; ukoliko kondenzacija nastaje na dodimim površinama slojeva od kojih jedan sloj nema mogućnost preuzimanja vlage (npr.: slučaj dodimih površina vlaknastih toplotnoizolacionih materijala (ili vazdušnih slojeva) i slojeva parne brane (ili betonskih slojeva), $q_{\text{max}} = 0,5$ kg/m²; za drvene konstrukcije, $q_{\text{max}} = 0,05 \times \rho_0 \times \rho_0$ (kg/m²); za materijale na bazi drveta (lake građevinske ploče na bazi drvene vune i višeslojne lake građevinske ploče od penastih sintetičkih izolatora i drvene vune se izuzimaju), $q_{\text{max}} = 0,03 \times d_{\text{r}} \times \rho_0$ (kg/m²).

Tabela 3.3.3.1 - Vrednosti on [kg/m³] i X_r [%]

Tabela 3.3.3.1 - Vrednosti ρ ₀ [kg/m ³] i X _r [%]		_
Materijal	ρ ₀ [kg/m³]	X' _r [%]
Beton		
Beton sa teškim agregatom	2400	1,8
	2200	2,0
	2000	2,2
	1800	2,4
Beton sa lakim agregatom	1600	9,4
	1400	10,7
	1200	12,5
Beton sa dodacima od opeke	800 - 1700	3,5
Ekspandirani beton, penobeton i gasbeton	1200	3,3
	1000	4,0
	800	5,0
	600	6,7
	500	8,0
	400	10,0
Drvobeton (durisol, i sl.)	800	9,3
	550	13,5
Opeka	·	
Puna opeka	1400 -2000	1,5
Šuplja opeka	1200 -1400	2,4
Malter	·	
Produžni i cementni	900 - 1500	8,0
Toplotnoizolacioni malter	300 - 800	4,5
Drvo i proizvodi od drveta		
Drvo	500 -800	15,0
Ploče od drvene vune i trske	200 - 550	14,0
Tvrdo presovane ploče (panel, lepljenica, iverice)	-	10,0
Toplotnoizolacioni materijali		
Mineralni vlaknasti neorganski materijali (staklena vuna, kamena vuna)	15 - 200	1,5
Mineralni vlaknasti materijali organskog porekla (morska trava, drvo, treset, slama, kokos i sl.)	-	15,0
Pluta	100 - 200	10,0
Penasti sintetički materijali		
Polistiren	10 - 50	5,0
Poliuretanska pena, tvrda, IPN	28 - 55	3,0

3.3.4 Proračun difuzije vodene pare i proračun isušenja

Za potrebe pojednostavljenog proračuna (*Glaser*-ov postupak) usvajaju se sledeće vrednosti:

Zona A - obuhvata mesta za koja je spoljna projektna temperatura (period grejanja) iznosi do θ_{He} = -15 o C, temperatura spoljnjeg vazduha za proračun kondenzacije iznosi θ_{e} = -5 o C, relativna vlažnost spoljnjeg vazduha iznosi ϕ_{e} = 90%, relativna vlažnost i temperatura unutrašnjeg vazduha usvaja se prema

projektnim uslovima s obzirom na namenu objekta / prostorije, ili sa vrednošću φ₁ = 55%, trajanje perioda kondenzacije iznosi 60 dana;

Zona B - obuhvata mesta za koja je spoljna projektna temperatura (period grejanja) niža od θ_{He} = -15 o C, temperatura spoljnjeg vazduha iznosi θ_{e} = -10 o C, relativna vlažnost spoljnjeg iznosi ϕ_{e} = 90%, relativna vlažnost i temperatura unutrašnjeg vazduha usvaja se prema projektnim uslovima s obzirom na namenu objekta / prostorije, ili sa vrednošću φ_{i} = 55%, trajanje perioda kondenzacije iznosi 60 dana.

Spoljne projektne temperature za period grejanja određene su tabelom 3.3.4.1. Za mesta koja nisu obuhvaćena Tabelom 3.3.4.1, usvajaju se podaci koji su navedeni za najbližu lokaciju.

Za period isušenja: dozvoljeno trajanje isušenja iznosi 90 dana za mesta koja pripadaju *Zoni* A, a 60 dana za mesta koja pripadaju *Zoni* B. Temperature i relativne vlažnosti vazduha iznose $\theta_i = \theta_e = 18$ °C, $\varphi_i = \varphi_e = 65$ %.

Tabela 3.3.4.1 - Spoljne projektne temperature, θ_{He} [°C], za mesta u Republici Srbiji

MESTO	θ_{He}	MESTO	θ_{He}
Banatski Karlovac	-13,2	Kopaonik	-20,1
Beograd	-12,1	Leskovac	-17,4
Bečej	-15,8	Loznica	-13,7
Valjevo	-14,4	Niš	-14,5
Vranje	-15,3	Novi Sad	-14,8
Vršac	-15,4	Peć	-18,1
Veliko Gradište	-14,1	Požega	-18,3
Dimitrovgrad	-15,8	Prizren	-18,4
Zaječar	-17,5	Priština	-19,8
Zlatibor	-16,0	Sjenica	-23,7
Zrenjanin	-14,8	Sombor	-15,1
Kikinda	-15,3	Sremska Mitrovica	-15,0
Kraljevo	-14,7	Surčin - Beograd	-13,0
Kruševac	-16,2	Crni Vrh	-18,5
Kragujevac	-15,0	Ćuprija	-15,2
	·		

Za zgrade sa klimatizacijom ili sa većim oslobađanjem vodene pare dozvoljeno vreme isušenja određuje se na osnovu karakteristika procesa - unutrašnjih mikroklimatskih uslova, ali ne sme da bude duže od: 90 dana (u Zoni A), odnosno 60 dana (u Zoni B).

3.4 Toplotna zaštita i gubici toplote - metod proračuna

3.4.1 Koeficijent prolaza toplote građevinskog elementa, U [W/(m²K)]

Koeficijent prolaza toplote građevinskog elementa, U [W/(m²×K)], proračunava se, u opštem slučaju - za građevinski element jednostavne heterogenosti, saglasno standardu SRPS EN ISO 6946, na sledeći način:

$$U = \frac{1}{R_{n} + \sum_{m} \frac{d_{m}}{\lambda_{m}} + R_{sc}}$$

Vrednosti R_{Si} i R_{Se} navedene su u tabeli 3.4.1.1. Vrednost koeficijenta toplotne provodljivosti, λ_m [W/(m×K)], m-tog sloja elementa, debljine d [m], usvaja se prema tabeli 3.4.1.2, ili se dokazuje ispitivanjem u skladu sa važećim standardima i propisima.

Tabela 3.4.1.1 : Otpor prelazu toplote i F_{xi} vrednosti

Tabera 5.4. T. T. Otpor prelazu topic	ie i r _{xi} vi	euriosti					
Toplotni protok ka spoljnjoj sredini, preko građevinskog elementa određenog tipa		or prelazi m²×K	u toplote, u /W	Faktor korekcije			
	R_{si}	R_{se}	$R_{si} + R_{se}$	temperature, F _{xi}			
Građevinski elementi koji se graniče sa spoljnim vazduhom							
Spoljni zid							
neventilisan	0,13	0,04	0,17	1,0			
ventilisan	0,13	0,13	0,26	1,0			
Ravni krovovi:							
neventilisano	0,10	0,04	0,14	1,0			
ventilisano	0,10	0,10	0,20	1,0			
Međuspratna konstrukcija iznad otvorenog prolaza:							
neventilisano	0,17	0,04	0,21	1,0			
ventilisano	0,17	0,17	0,34	1,0			
Kosi krovovi:							
neventilisani	0,10	0,04	0,14	1,0			

ventilisani	0,10	0,10	0,20	1,0		
Građevinski elementi koji se graniče sa negrejanim prostorima						
Zid ka negrejanom prostoru	0,13	0,13	0,26	0,5		
Međuspratna konstrukcija ka negrejanom krovnom prostoru	0,10	0,10	0,20	0,8		
Međuspratna konstrukcija iznad negrejanog prostora	0,17	0,17	0,34	0,5		
Zid ka negrejanoj zimskoj bašti (stakleniku), sa spoljnim zastakljenjem zimske bašte:				0,7		
Jednostruko staklo, U > 2,5 W/(m²×K) Izolaciono staklo, U \leq 2,5 W/(m²×K)	0,13	0,13	0,26	0,6 0,5		
Poboljšano staklo, U≥ 1,6 W/(m²×K) Građevinski elementi u konta.	ktu sa tl	от				
zid u tlu, ili delimično ukopan	0,13	0,0	0,13	0,6		
pod na tlu	0,17	0,0	0,17	0,5		
Međuspratna konstrukcija u tlu	0,10	0,0	0,10	0,6		
Građevinski elementi između dva grejana pro	Građevinski elementi između dva grejana prostora različite temperature					
Zid između zgrada, zid koji razdvaja prostore različitih korisnika, ili zid ka grejanom stepeništu	0,13	0,08	0,21	0,8		
Međuspratna konstrukcija koja razdvaja prostor između različitih korisnika	0,10	0,08	0,18	0,8		

Tabela 3.4.1.2 - Higrotermičke osobine građevinskih materijala i proizvoda

Materijal / proizvod	Gustina, $\rho \\ \text{kg/m}^3$	Specifična toplota, C J/(kg×K)	Toplotna provodljivost, λ W/(m×K)	Relativni koeficijent difizije vodene pare, µ
	I ZIDOVI	1	1 1	
1. Puna opeka (šupljikavost 0 do 15 %)	1 800	920	0,76	12
	1 600	920	0,64	9
	1 400	920	0,58	7
	1 200	920	0,47	5
2. Šuplji blokovi i i šuplja opeka (gustina zajedno sa	1 400	920	0,61	6
otvorima)	1 200	920	0,52	4
3. Porozna opeka	800	920	0,33	2,5
4. Klinker opeka, puna klinker opeka, šuplja	1 900	880	1,05	35
	1 700	880	0,79	30
5. Blokovi od elektrofilterskog pepela	1 500	920	0,58	5
	1 300	920	0,47	4
6. Silikatna puna opeka	2 000	920	1,10	20
	1 800	920	0.99	16
	1 600	920	0.79	13
7. Silikatna šuplja opeka (gustina zajedno sa otvorima)	1 400	920	0,70	7
	1 200	920	0,56	4
8. Porolit	1 200	920	0,52	4
9. Termo šljakoblok (gustina zajedno sa otvorima)	1 600	920	0,64	4
	1 400	920	0,58	4
	1 200	920	0,52	4
10. Blokovi od porobetona	440	860	0,13	5
	460	860	0,14	5
	500	860	0,16	5
	650	860	0,18	5
11. Blokovi od gas betona	800	1 050	0,35	7
	600	1 050	0,27	5

1			
1 000	840	0,47	4
1 200	840	0,52	5
1 400	840	0,64	7
1 600	840	0,80	9
1 000	1 050	0,44	2
1 200	1 050	0,49	3
1 400	1 050	0,56	4
1 400	1 050	0,49	5
1 600	1 050	0,56	6
2 000	920	1,16	22
1 600	960	0,74	10
		0,22-0,35	
II MALTERI	<u> </u>		
1 600	1 050	0,81	10
1 700	1 050	0,85	15
1 800	1 050	0,87	20
1 900	1 050	0,99	25
2 100	1 050	1,40	30
2 200	1 050	1,40	30
1 850	1 050	0,70	15
1 900	1 050	0,70	30
1 500	920	0,70	9
1 000	920	0,47	4
500	1 050	0,13	4
600	920	0,19	6
1 000	920	0.47	3
1 200	920		4
PRIRODNI KAMEN I ZEN	⊥ ∕⁄ILjA	<u> </u>	
2 600 do 2 800	920	3,5	65
2 600 do 2 850	920	2,3 do 3,5	65
2 600	920	1,7	50
1 500 do 2 000	840		15
1 500 do 2 000	840		50
I IJALI ISPUNA I NASIPNI	 MATERIJALI		
1 800	840	0,58	1,4
1 700	840	0,81	1,5
800	840	0,41	1,3
50	840	0,04	1,1
100	840	0,05	1,3
400	840	0,22	1,3
250	2 090	0,09	1,2
1 700	840	2,1	<u> </u>
ì	1		
V BETONI			
V BETONI 2 500	960	2,33	90
-	960 960		90
2 500		2,33 2,04 1,51	
	1 200 1 400 1 600 1 000 1 200 1 400 1 400 1 400 1 600 2 000 1 600 II MALTERI 1 600 1 700 1 800 1 900 2 100 2 200 1 850 1 900 1 500 600 1 000 500 600 1 000 1 200 PRIRODNI KAMEN I ZEN 2 600 do 2 800 2 600 do 2 850 2 600 1 500 do 2 000 IJALI ISPUNA I NASIPNI 1 800 1 700 800 50 1 100 400 2 250	1 200 840 1 400 840 1 1 600 840 1 1 600 1 050 1 200 1 050 1 400 1 050 1 400 1 050 1 400 1 050 1 600 920 1 1 600 1 050 1 1 800 1 050 1 1 800 1 050 1 1 800 1 050 1 1 850 1 050 1 1 850 1 050 1 1 850 1 050 1 1 500 920 1 1 600 920 1 1 600 920 1 1 500 920 1 1 500 920 1 1 500 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 200 920 1 1 500 do 2 800 920 1 1 500 do 2 800 920 1 1 500 do 2 000 840 1 1 500 do 2 000 840 1 1 700 840 800 840 1 1 700 840 800 840 1 100 840 800 840 1 100 840 800 840 1 100 840 800 840 1 100 840 840 840 840 840 840 840 840 840 840	1 200

20.77	1 800	960	0,93	15
39. Keramzit beton	1 400	1 000	0,58	10
	1 200	1 000	0,47	6
	1 000	1 000	0,38	4
	800	1 000	0,29	3
40. Pareni, gas betoni	800	1 050	0,29	7
	600	1 050	0,23	5
	500	1 050	0,19	3
	400	1 050	0,14	2
41. Beton od usitnjene opeke	1 600	920	0,76	6
	1 400	920	0,58	4
	1 200	920	0.47	3
42. Šljakobeton	1 600	960	0,76	5
	1 400	960	0,58	4
	1 200	960	0,47	3
VII	MATERIJALI ZA OBLAGA	ANjA		
43. Gips - kartonske ploče				
- do 15 mm	900	840	0,21	12
- do 18 mm	900	840	0,23	8
44. Pune gipsane ploče	1 400	840	0,70	12
	1 200	840	0,58	8,5
	1 000	840	0,47	6
	800	840	0,35	4
45. Gipsane ploče sa punjenjem, otvorima ili porozne	600	840	0,29	3
46. Klinker pločice	1 900	920	1,05	100
47. Pločice od opeke	1 800	920	0,79	20
48. Fasadne ploče, glazirane	1 800	920	0,92	300
49. Keramičke pločice		+		
- zidne, glazirane	1 700	920	0,87	200
- podne, neglazirane	2 300	920	1,28	200
50. Keramički mozaik		+		
- 50 mm x 50 mm - 16% fuge		+		140
- 20 mm x 20 mm - 21% fuge	1 900	880	0,99	100
- 12 mm x 12 mm - 26% fuge		+	<u> </u>	90
51. Stakleni mozaik		+		
- 20 mm x 20 mm - 20% šupljina	2 300	840	0,70	150
52. Linoleum	1 200	1 880	0,19	500
53. Guma	1 000	1 470	0,16	10 000
	2 500	960	2,33	90
54. Unapred izrađeni betonski elementi	2 400	960	2,04	70
55. Laki betonski elementi	1 200	920	0,47	10
56. Ploče od gustog krečnjaka, dolomita i mermera	2 650 do 2 850	880	2,33	65
Ploče od peščara	2 600	880	2,33	50
57. Prozorsko staklo	2 500	840	0,81	10 000
58. Armirano staklo	2 600	840	0,44	100 000
59. Šuplji stakleni blokovi	1 100	840	0,44	4 000
	1 100	840	U, 44	4 000
60. Drvo		·		

	700 do 800	2 510	0,21	
- smreka, bor	500 do 600	2 090	0,14	70
61. Vodootpome panelne ploče	600	2 090	0,12	60
- teške, za spoljnje oblaganje	620	2 090	0,13	60
- lakše, za unutrašnje oblaganje	400	2 090	0,08	30
62. Vodootporne šper ploče	660	2 090		100
- za unutrašnje oblaganje	550	2 090	0,14	60
63. Iverne ploče				
- tvrde	1 000	1 880	0,12	17
- meke	400	2 090	0,058	6
	300	2 090	0,052	3
	200	2 090	0,047	2
64. Iverne ploče, presovane	600	2 090	0,099	60
65. Ploče od drvene vune (izolit, heraklit i sl.)				
- debljine 15 mm	550	2 010	0,140	11
- debljine 25 mm	500	1 670	0,099	8
- debljine 35 mm	450	1 670	0,093	6
- debljine 50 mm	400	1 670	0,081	5
66. Papirnate tapete	600	1 340	0,15	5
- perive	700	1 340	0,15	10
- plastične	700	1 250	0,20	3 000
67. Bitumen	1 100	1 050	0,17	1 200
68. Asfalt	2 100	1 050	0,70	2 500
- asfalt, 20 mm	1 900	1 050	0,70	2 000
69. Bitumenska lepenka	1 100	1 460	0,19	2 000
70. PVC, homogeni	1 400	960	0,23	10 000
71. PVC, na filcu	800	960	0,12	3 000
72. Podne obloge - tepisi				
- napeti tafting	250	1 230	0,070	1,5
- lepljeni tafting	270	1 230	0,081	10
- iglasti fil, lepljen	300	1 460	0,090	10
73. Daske za pod	520	1 670	0,140	15
74. Parket	700	1 670	0,21	15
75. Tvrde ploče od drvenih vlakana	900	1 670	0,19	70
76. Polietilenske folije	1 000	1 250	0,19	80 000
77. PVC folija, meka	1 200	960	0,19	42 000
78. Bitumenska traka sa uloškom aluminijske folije debljine	900	1 460	0,19	100 000
0,1 mm				
0,2 mm	950	1 460	0,19	150 000
79. Bitumenske trake, varene, debljine 5 mm, sa aluminijskom folijom 0,2 mm	1 000	1 460	0,19	140 000
80. Krovna lepenka	1100	1460	0,19	2000
81. Višeslojni bitumenski premaz, armiran u jednom sloju - 10 mm	1 100	1 460	0,17	10 000
82. Višeslojna bitumenska hidroizolacija debljine 13 do 16 mm	1 100	1 460	0,19	14 000
Višeslojna bitumenska hidroizolacija na perforiranoj lepenki	1 200	1 460	0,19	14 000

83. PVC krovne trake, meke	1 200	960	0,19	20 000
84. PIB (poliizobutil) trake	1 600	960	0,26	300 000
85. CR (hloropren-kaučuk) trake	1 300	1 000	0,23	100 000
86. CSM (hlorosulfidni polietilen) trake	1 500	1 000	0,30	80 000
87. EPDM (etilen-propilen-kaučuk) trake	1 200	1 040	0,30	100 000
88. Crep	1 900	880	0,99	40
89. Ploče od škriljaca	2 800	820	2,90	120
	X METALI			
90. Čelik	7 800	460	53,5	
- liveni čelik	7 200	500	46,5	600 000
91. Aluminijumska folija 0,10				600 000
0,15	2 700	940	203	700 000
0,20				800 000
92. Bakarna folija 0,10	9 000	380	380	700 000
0,15	9 000	380	360	800 000
93. Olovo	11 500	130	35	
94. Cink	7 100	390	110	
XI TO	PLOTNOIZOLACIONI MA	ATERIJALI		
	14	840	0,038	1
	23	840	0,034	1
95. Staklena vuna	30	840	0,032	1
	60	840	0,032	1
	80	840	0,034	1
	30	840	0.038	1
	80	840	0.034	1
96. Kamena vuna	100	840	0,033	1
	160	840	0,037	1
	180	840	0,039	1
97. Staklena pena	145	840	0,056	10 000
77. Suitera port	120	1 670	0,041	10
98. Pluta, ekspandirana, impregnirana	160	1 670	0,044	22
99. Ploče od prošivene trstike	800	1 260	0,046	2
100. Ploče od presovane slame (stramit)	350	1 470	0,046	3
101. Beton sa dodatkom piljevine	550	1 4/0	0,098	5
101. Deton sa dodatkom pijevine	800			10
		1 465	0,24	
102. Sintetičke ploče od višeslojnog poliestera	1 400	1 590	0,19	50 000
102 Plaža al al "la cont	1 500	1 090	0,23	50 000
103. Ploče od akrilne smole	1 180	1 000	0,19	8 000
104. PVMD i PVC ploče	1 400	960	0,21	16 000
105. Polistirenske ploče (u blokovima)	15	1 260	0,041	25
	20	1 260	0,041	35
	25	1 260	0,041	40
	30	1 260	0,041	45
106. Polistiren, izrađen u kalupina	20	1 260	0,041	40
	25	1 260	0,041	50
	30	1 260	0,041	60
107. Fenolne ploče, rezane iz blokova	40	1 260	0,041	35
10 onome proces, remine in oronova	60	1 260	0.041	40

İ			-,	- -
108. Poliuretanske ploče,	30	1 380	0,035	40
Izrezane iz blokova	40	1 380	0,035	50
109. PVC ploče	50	1 260	0,041	200
110. Urea ploče	15	1 260	0,040	3
111. Ekstrudirani polistiren (XPS)				
Do debljine 80 mm, sa glatkom površinom	33	1500	0,035	50
Do debljine 80 mm, sa brušenom površinom	33	1500	0,035	120
Iznad debljine 80 mm, sa glatkom površinom	33	1500	0,038	50
Iznad debljine 80 mm, sa brušenom površinom	33	1500	0,038	120
112. Vuna ovce	20	900	0,040	1
113. Kokosova vlakna	100	1600	0,045	1
114. Vlaknaste drvene ploče	190	2000	0,045	10
115. Toplotnoizolacioni malter			0,09-0,25	8-10
116. Celulozna vlakna	85	1800	0,040	1
117. Pamuk	20	840	0,040	1
118. Perlitne ploče	150	1000	0,060	5
119. Duvano staklo	140	1100	0,060	¥
120. Poliuretanska pena	15	1500	0,025	30
	80	1500	0,040	100
121. Perlitni nasip	90	1000	0,055	3

Najveće dopuštene vrednosti koeficijenata prolaza toplote, U_{max} [W/(m²×K)], elemenata termičkog omotača zgrade, odnosno elemenata između dve susedne termičke zone, sadržane su u tabeli 3.4.1.3. Ove vrednosti se primenjuju i na unutrašnje građevinske konstrukcije koje se graniče sa prostorijama u kojima je temperatura vazduha pri projektnoj temperaturi spoljnjeg vazduha (period grejanja) manja od 12 °C.

Proračunska vrednost koeficijenta prolaza toplote, $U[W/(m^2\times K)]$, mora da bude manja (ili jednaka) $U_{max}[W/(m^2\times K)]$: U £ $U_{max}[W/(m^2\times K)]$.

 $\textit{Tabela 3.4.1.3 - Najveće dozvoljene vrednosti koeficijenta prolaza toplote, } \textit{U_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{V_{max}} [W/(m^2 \times K)], \textit{ za elemente termičkog omotača zgrade } \textit{$$

Opis elementa / sistema	Postojeća zgrada U_{max} [W/(m²×K)]	Nova zgrada $U_{\rm max}$ [W/(m ² ×K)]
Elementi i sistemi u kontaktu sa spoljnim vazduhom		
1. Spoljni zid	0,40	0,30
2. Zid na dilataciji (između zgrada)	0,50	0,35
3. Zidovi i međuspratne konstrukcije između grejanih prostorija različitih jedinica, različitih korisnika ili vlasnika	0.90	0.90
4. Ravan krov iznad grejanog prostora	0,20	0,15
5. Ravan krov iznad negrejanog prostora	0,40	0,30
6. Kosi krov iznad grejanog prostora	0,20	0,15
7. Kosi krov iznad negrejanog prostora	0,40	0,30
8. Međuspratna konstrukcija iznad otvorenog prolaza	0,30	0,20
9. Prozori, balkonska vrata grejanih prostorija i grejane zimske bašte	1,50	1,50
10. Stakleni krovovi, izuzimajući zimske bašte, svetlosne kupole	1,50	1,50
11. Spoljna vrata	1,60	1,60
12. Izlozi	1,80	1,80
13. Staklene prizme	1,60	1,60
Unutrašnje pregradne konstrukcije		
14. Zid prema grejanom stepeništu	0,90	0,90
15. Zid prema negrejanim prostorima	0,55	0,40
16. Međuspratna konstrukcija ispod negrejanog prostora	0,40	0,30
17. Međuspratna konstrukcija iznad negrejanog prostora	0,40	0,30

Konstrukcije u tlu (ukopane, ili delimično ukopane)						
18. Zid u tlu		0,50	0,35			
19. Pod na tlu		0,40	0,30			
20. Ukopana međuspratna konstrukcija		0,50	0,40			

Napomena 1: Za elemente - sisteme panelnog (podnog, zidnog, plafonskog) grejanja moraju se primeniti odgovarajući standardi i tehnički uslovi propisani tim standardima.

Napomena 2: Vrednosti navedene za postojeću zgradu odnose se na najveće dopuštene vrednosti posle renoviranja, sanacija, rekonstrukcija.

Vrednosti U [$W/(m^2 \times K)$] proračunavaju se u skladu sa standardom SRPS EN ISO 13789 i posebnim standardima: za netransparentne građevinske elemente, izuzev podova i zidova u tlu i zid - zavesa, u skladu sa standardom SRPS EN ISO 6946; za podove i zidove u tlu u skladu sa standardom SRPS EN ISO 1370; za građevinske elemente tipa prozora, balkonskih vrata i roletni u skladu sa standardom SRPS EN ISO 10077-1 i SRPS EN ISO 10077-2; za zid - zavese u skladu sa standardom SRPS EN 13947; za stakla u skladu sa standardima SRPS EN 410; za elemente za zidanje zidanih zidova i zidane zidove, u skladu sa standardom SRPS EN 1745.

Koeficijent prolaza toplote transparentnog građevinskog elementa (spoljna građevinska stolarija: spoljni prozori i balkonska vrata; krovni prozori), U_W [W/(m²×K)], određuje se proračunom, saglasno standardu SRPS EN ISO 10077-1:

$$U_{w} = \frac{A_{g} \times U_{g} + A_{f} \times U_{f} + I_{g} \times \psi_{g}}{A_{g} + A_{f}}$$

Proračunske vrednosti U_g (staklo), U_f (okvir) i ψ_g^{L} (faktor korekcije temperature - spoj staklo/okvir), navedene su u tabelama 3.4.1.4, 3.4.1.5, 3.4.1.6, 3.4.1.7, i 3.4.1.8.

Ove vrednosti se mogu odrediti i na sledeći način:

a) proračunom, u skladu sa standardima SRPS EN ISO 10077-2 (okvir), SRPS EN 410 (staklo) i SRPS EN 673 (staklo);

b) ispitivanjem prozora istog sastava i mera, u skladu sa važećim standardima i propisima.

Vrednosti U_g (staklo) i U_f (okvir) odnose se na koeficijent prolaza toplote bez uticaja toplotnog mosta. Toplotni mostovi u transparentnim građevinskim elementima se dodatno obračunavaju i potiču od: spoja staklo-staklo u termoizolacionom staklu (različita rešenja: aluminijumska spojnica, sintetička spojnica, specijalno termički poboljšana spojnica); spoja staklo - okvir; spoja okvir - građevinska konstrukcija (ugradnja).

Vrednosti koeficijenata prolaza toplote prozora bez termoizolacionog stakla ("staklopaketi") usvajaju se sa vrednostima: $U_W = 3.5 \text{ W/(m}^2 \times \text{K})$ (za prozore krilo na krilo); $U_W = 5.0 \text{ W/(m}^2 \times \text{K})$ (za prozore sa jednostrukim staklom).

Tabela 3.4.1.4 - Toplotna svojstva transparentnih građevinskih elemenata - STAKLO

Tip stakla	U _g W/(m²×K)	g
jednostruko, 6 mm	5,8	0,83
2-struko, prozimo, 6-8-6 mm	3,2	0,71
2-struko, prozimo, 4-12-4 mm	3,0	0,71
2-struko, prozimo, 6-12-6 mm	2,9	0,71
2-struko, prozimo, 6-16-6 mm	2,7	0,72
3-struko, prozimo, 6-12-6-12-6 mm	1,9	0,63
2-struko, niskoemisiono, 4-12-4 mm (vazduh)	1,6	0,63
2-struko, niskoemisiono, 4-16-4 mm (vazduh)	1,5	0,61
2-struko, niskoemisiono, 4-15-4 mm (Ar)	1,3	0,61
2-struko, niskoemisiono, 4-12-4 mm (Kr)	1,1	0,62
2-struko, niskoemisiono, 4-12-4 mm (Xe)	0,9	0,62
3-struko, niskoemisiono, 4-8-4-8-4 mm (Kr)	0,7	0,48
3-struko, niskoemisiono, 4-8-4-8-4 mm (Xe)	0,5	0,48
2-struko, reflektujuće, 6-15-6 mm (Ar)	1,3	0,25 - 0,48
2-struko, reflektujuće, 6-12-4 mm (Ar)	1,4	0,27 - 0,44

Tabela 3.4.1.5: Koeficijent prolaza toplote okvira - drveni okvir

debljina d _f mm	Uf W/(m²×K)		
	meko drvo (500 kg/m³), $\lambda = 0.13 \text{ W/(m×K)}$	tvrdo drvo (700 kg/m³), $\lambda = 0.18 \text{ W/(m×K)}$	
30	2,3	2,7	
50	2,0	2,4	
70	1,8	2,0	
90	1,6	1,8	
110	1,4	1,6	

Tabela 3.4.1.6: Koeficijent prolaza toplote okvira - PVC-okvir

Materijal	Tip okvira - profil	U _f W/(m²×K)
	2-komorni	2,2

1		
PVC-šuplji profili	3-komorni	1,7 - 1,8
131	5-komorni	1,3 - 1,5
	6-komorni	1,2 - 1,3

Tabela 3.4.1.7: Koeficijent prolaza toplote okvira - metalni okvir

rabola o. i. i.i. rooliojoni prolaza topioto otvina i motali ii otvii	
Vrsta metalnog okvira	U _f W/(m²×K)
čelični, sa termičkim prekidom	4,0
čelični, bez termičkog prekida	6,0
aluminijumski, sa termičkim prekidom	2,8 - 3,5
aluminijumski, poboljšani	1,4 - 1,5
specijalni sistemi profila za pasivne kuće	0,7 - 0,8

Tabela 3.4.1.8: Koeficijenti korekcije - faktor korekcije temperature za toplotne mostove između okvira i stakla

	Koeficijent korekcije, ψ_g		
	2-struko i višestruko staklo, bez sloja za poboljšanje	2-struko i višestruko staklo, sa slojem za poboljšanje	
Drveni i PVC -okviri	0,04	0,06	
Metalni okviri, sa prekinutim toplotnim mostom	0,06	0,08	
Metalni okviri, bez prekinutog toplotnog mosta	0,00	0,02	

3.4.2 Gubici toplote

3.4.2.1 Koeficijent transmisionog gubitka toplote, $H_T[W/K]$

Koeficijent transmisionog gubitka toplote zgrade (ili dela zgrade), H_T [W/K], izračunava se po obrascu:

$$H_{\mathrm{T}} = \sum_{i} (F_{\mathrm{x}i} \cdot U_{i} \cdot A_{i}) + H_{\mathrm{TE}}$$

 $H_{\rm T} = \sum_i (F_{\rm xi} \cdot \ U_i \cdot \ A_i) + \ H_{\rm TB}$ $F_{\rm Xi} \cdot {\rm faktor \ korekcije \ temperature \ za \ i-ti \ građevinski \ element, \ koji \ se \ usvaja \ prema \ Tabeli \ 3.4.1.1 \ ovog \ pravilnika;}$

 U_i [W/(m²×K)] - koeficijent prolaza toplote i-tog građevinskog elementa, površine A_i [m²].

Transmisioni toplotni gubitak zgrade (ili dela zgrade) usled uticaja toplotnih mostova u termičkom omotaču zgrade (ili dela zgrade), HTB [W/K], iznosi:

$$H_{TB} = \Delta U_{TB} \cdot A$$

 $A~[\mathrm{m}^2]$ - zbima površina spoljnih građevinskih elemenata (termički omotač objekta - spoljne mere);

Usvaja se vrednost $\Delta U_{TB} = 0.10 \text{ W/(m}^2 \times \text{K)}$.

Ukoliko je uticaj toplotnih mostova već uzet u obzir pri proračunu koeficijenta prolaza toplote U, građevinskog elementa, granična površina kroz koju se toplota prenosi A, kod uvažavanja uticaja toplotnog mosta može se umanjiti za površinu građevinskog elementa za koji je koeficijent prolaza toplote na taj način određen. Transmisioni toplotni gubitak usled uticaja toplotnog mosta, H_{TB} [W/K], tada iznosi:

$$H_{TB} = \Delta U_{TB} \cdot A_{cor}$$

 A_{cor} [m²] - zbima površina spoljnih građevinskih elemenata (spoljni omotač objekta), umanjena za površine građevinskih elemenata za koje su izračunati koeficijenti prolaza toplote sa uključenim toplotnim mostovima.

3.4.2.2 Koeficijent ventilacionog gubitka toplote zgrade (ili dela zgrade), H_V [W/K]

Koeficijent ventilacionog gubitka toplote zgrade (ili dela zgrade), $H_V[W/K]$, izračunava se po obrascu:

$$H_V = \rho_a \cdot c_p \cdot V \cdot n$$

V - zapremina grejanog prostora [m³];

n - broi izmena vazduha na čas [h⁻¹]

$$\rho_a \cdot c_p = 0.33 \text{ [Wh/(m}^3 \cdot \text{K)]} (\rho_a \cdot c_p = 1200 \text{ [J/m}^3\text{K)]})$$

Tabela 3.4.2.1 - Broj izmena vazduha na čas u zavisnosti od zaklonjenosti i klase zaptívenosti zgrade (prema SRPS EN ISO 13789) - Stambene zgrade sa više stanova i prirodnom ventilacijom

	Broj izmena vazduha n [h ⁻¹] Broj izmena vazduha n [h ⁻¹]		Broj izmena vazduha n [h ⁻¹]		n [h ⁻¹]	
Izloženost fasade vetru		Više od jedne fasade			Samo jedna fasa	da
Zaptivenost	Loša	Srednja	Dobra	Loša	Srednja	Dobra
Otvoren položaj zgrade	1,2	0,7	0,5	1,0	0,6	0,5
Umereno zaklonjen položaj	0,9	0,6	0,5	0,7	0,5	0,5
Veoma zaklonjen položaj	0,6	0,5	0,5	0,5	0,5	0,5

Tabela 3.4.2.2 - Broj izmena vazduha na čas u zavisnosti od zaklonjenosti i klase zaptivenosti zgrade (prema SRPS EN ISO 13789) - Pojedinačne porodične

	Broj izmena vazduha n [h ⁻¹]			
Zaptivenost	Loša Srednja Dobra			
Otvoren položaj zgrade	1,5 0,8 0,5			

1 30	,	,	,
Umereno zaklonjen položaj	1,1	0,6	0,5
Veoma zaklonjen položaj	0,76	0,5	0,5

3.4.2.3 Specifični transmisioni gubitak toplote zgrade (ili dela zgrade), H'_T[W/(m²×K)]

Specifični transmisioni gubitak toplote zgrade (ili dela zgrade), $H_T[W/(m^2 \times K)]$, izračunava se po obrascu:

$$H_{\mathrm{T}} = \frac{H_{\mathrm{T}}'}{A}$$

Najveći dopušteni specifični transmisioni toplotni gubitak kroz termički omotač zgrade, $H_T[W/(m^2 \times K)]$, usvaja se prema tabeli 3.4.2.3.1:

Tabela 3.4.2.3.1 - Najveće dopuštene vrednosti specifičnih transmisionih gubitaka toplote, H_{Tmax} [W/(m²×K)], u zavisnosti od faktora oblika zgrade (ili dela

Faktor oblika A/V_e (m ⁻¹)	Nestambene zgrade sa udelom transparentnih površina \leq 30% i stambene zgrade $H_T(\mathrm{W/m^2K})$	Nestambene zgrade sa udelom transparentnih površina > 30% $H^*_T(\mathrm{W/m^2K})$
≤ 0.2	1.05	1.55
0.3	0.80	1.15
0.4	0.68	0.95
0.5	0.60	0.83
0.6	0.55	0.75
0.7	0.51	0.69
0.8	0.49	0.65
0.9	0.47	0.62
1.0	0.45	0.59
>1.05	0.44	0.58

3.4.2.4 Ukupni zapreminski gubici toplote unutar termičkog omotača, q_V [W/m³]

Ukupni zapreminski gubici toplote unutar termičkog omotača, $q_V[W/m^3]$, transmisioni i ventilacioni, izračunavaju se po obrascu:

$$q_V = \frac{H_{T+} H_V}{V_e}$$
 [W/m³]

PRILOG 4

Tehnički zahtevi za postizanje energetske efikasnosti zgrada

- 4.1. Tehničkim zahtevima za postizanje energetske efikasnosti zgrada naročito se određuju sledeći parametri:
- 1) orijentacija i funkcionalni koncept zgrade:
- (1) orijentaciju i funkcionalni koncept zgrade projektovati tako da se maksimalno iskoriste prirodni i stvoreni uslovi lokacije (sunce, vetar, zelenilo);
- (2) postaviti zgrade tako da prostorije u kojima se boravi tokom dana budu orijentisane prema jugu u meri u kojoj urbanistički uslovi to dozvoljavaju.

 2) oblik zgrade kojim se obezbeđuje energetski najefikasniji odnos površine i zapremine omotača zgrade u odnosu na klimatske faktore lokacije, okruženje (prirodno i stvoreno) i namenu zgrade;
- 3) toplotno zoniranje zgrade projektovati toplotno zonirane zgrade, odnosno, grupisati prostorije u zgradi u skladu sa njihovim temperaturnim zahtevima; zone sa višim temperatumim zahtevima projektovati tako da mogu maksimalno da iskoriste prirodne potencijale lokacije (sunce, vetar, zelenilo);
- 4) način korišćenja prirodnog osvetljenja i osunčanja:
- (1) maksimizirati upotrebu prirodnog osvetljenja uz omogućavanje pasivnih dobitaka toplotne energije zimi odnosno zaštite od pregrevanja leti adekvatnim zasenčenjem (forma objekta ili sistemi zasenčenja);
- (2) toplotna energija koja kroz zastakljene površine ulazi u prostoriju treba da se ograniči u letnjem danu (kada sem difuznog postoji i direktno sunčevo zračenje).
- 5) optimizacija sistema prirodne ventilacije:
- (1) otvore na zgradi, kao što su prozori, vrata, kanali za ventilaciju, projektovati tako da gubici toplote u zimskom periodu i toplotno opterećenje u letnjem periodu bude što manje;
 - (2) kada god je to moguće, otvore koncipirati tako da se maksimizira pasivno (prirodno) noćno hlađenje u letnjem periodu.
 - 6) optimizacija strukture zgrade
- (1) prema potrebama i nameni zgrade koristiti termičku masu za ostvarivanje toplotnog komfora u zimskom i letnjem periodu; termička masa treba da povećava termičku inerciju objekta, osim za objekte sa kratkotrajnim korišćenjem;
 - (2) primeniti visok kvalitet toplotne izolacije celokupnog termičkog omotača;
 - (3) izbegavati toplotne mostove;
- (4) odabirom vrste materijala i bojom materijala minimizirati pojavu toplotnih ostrva.
 7) korišćenje pasivnih i aktivnih sistema u zavisnosti od tipa zgrade, strukturu i omotač koncipirati tako da se maksimalno koriste pasivni i aktivni solarni sistemi i obezbedi zaštita od pregrevanja;
- 8) korišćenje voda izwšiti analizu mogućnosti korišćenja padavina, podzemne i otpadne vode za potrebe zalivanja, spoljnih pranja i dr., kao i za grejanje i hlađenje zgrade; tehničke prostorije (rezervoar i pumpno postrojenje) koje se koriste u gore navedene svrhe, ukoliko su ukopane, ne uračunavaju se u indeks zauzetosti parcele:
 - 4.2. Parametri za postizanje energetske efikasnosti postojećih zgrada:
 - 1) voditi računa o očuvanju funkcionalne i oblikovne celovitosti zgrade:
- (1) kada to nije isključeno drugim propisima, dozvoljeno je naknadno izvođenje spoljne toplotne izolacije zidova;
- (2) kada je zid koji se sanira na regulacionoj liniji, dozvoljava se da debljina naknadne termoizolacije sa svim završnim slojevima bude do 15 cm unutar javnog

prostora:

- (3) kada je zid koji se sanira na granici sa susednom parcelom dozvoliti postavljanje naknadne spoljne izolacije debljine do 15 cm, uz saglasnost suseda;
- (4) kada to prostome okolnosti omogućavaju, dozvoljeno je naknadno formiranje staklenika ako se elaboratom dokaže poboljšanje energetske efikasnosti
- 2) prilikom energetske sanacije postojećih zgrada, erkeri i drugi istureni delovi kao što su dvostruke fasade, staklenici, zastakljene terase i lođe staklenici, čija se građevinska linija poklapa sa regulacionom linijom mogu prelaziti regulacionu liniju i to:
- (1) maksimalno 0,6 m od građevinske linije ako je trotoar manji od 3,5 m i ako je rastojanje do susedne nasuprotne zgrade manje od 12 m i to maksimalno na 50% površine ulične fasade i na minimalnoj visini od 3 m iznad trotoara; izuzetno kod dvostrukih fasada dozvoljeno je celokupno pokrivanje fasade iznad minimalno dozvoljene visine;
- (2) maksimalno 0,9 m od građevinske linije ukoliko je trotoar veći od 3,5 m, a širina ulice od 12 do 15 m i to maksimalno na 50% površine ulične fasade i na minimalnoj visini od 3 m iznad trotoara; izuzetno kod dvostrukih fasada dozvoljeno je celokupno pokrivanje fasade iznad minimalno dozvoljene visine;
- (3) maksimalno 1,2 m ako je trotoar veći od 3,5 m, a širina ulice veća od 15 m i to na maksimalno 50% površine ulične fasade i na minimalnoj visini od 3 m iznad trotoara; izuzetno kod dvostrukih fasada dozvoljeno je celokupno pokrivanje fasade iznad minimalno dozvoljene visine;
- (4) veći ispadi nadzemnih etaža u odnosu na građevinsku liniju od navedenih nisu dozvoljeni;
- (5) ispadi na delovima objekata u kompaktnim blokovima orijentisani prema ulici ne smeju ugrožavati privatnost susednih objekata. Horizontalna projekcija linije ispada može biti najviše pod uglom od 45 stepeni od granice parcele objekta.

Prilikom projektovanja uzeti u obzir i planirani razvoj, odnosno, analizirati uticaj postojećih i planiranih susednih zgrada u skladu sa važećom urbanističkom regulativom.

PRILOG 5

Uslovi komfora

Jedan od glavnih zadataka projektanta je da stvori okruženje unutar i van zgrade koje je podesno za sve aktivnosti korisnika koje se tu dešavaju, te u sklopu tehničke dokumentacije treba jasno navesti sve primenjene mere i tehnička rešenja za postizanje projektovanih parametara komfora.

Vazdušni komfor - kvalitet vazduha u zgradama obezbeđuju:

- (1) zgrade projektovati tako da maksimalno koriste prirodnu ventilaciju, težiti omogućavanju poprečne ventilacije;
- (2) predvideti sisteme kontrole prirodne ventilacije kako bi se izbegao negativni osećaj promaje.
- 2) sistemi za kontrolu kvaliteta vazduha
- (1) preporučuje se ugradnja sistema prinudne (veštačke) ventilacije sa propisanim brojem izmena na čas, gde nije moguće postići zahtevane karakteristike vazdušnog komfora prostora prirodnom ventilacijom;
 - (2) dovođenje svežeg vazduha prinudnom ventilacijom reguliše se prema stvarnim potrebama opterećenosti i vremenu kada se korisnici nalaze u prostoriji;
- (3) svi objekti preko 500 m², koji imaju prinudnu ventilaciju, moraju imati ugrađene razmenjivače toplote koji rekuperišu toplotu otpadnog vazduha, a minimalna dozvoljena vrednost efikasnosti rekuperatora je:
 - rekuperatori voda vazduh, zimski temperaturski stepen korisnosti, η ≥ 50%;
 - rekuperatori vazduh vazduh, zimski temperaturski stepen korisnosti, η ≥ 70%;
- (4) ugradnja uređaja za rekuperaciju toplote nije obavezna kod ventilacije sa protokom vazduha do 300 m³/h i u posebnim slučajevima (npr. izvor toksičnih ili eksplozijskih materija) i u slučajevima kada je dokazano da to nije moguće izvesti;
- (5) regenerativni razmenjivači toplote mogu se koristiti samo u slučajevima kada otpadni vazduh ne sadrži duvanski dim, neprijatne mirise ili druge štetne zagađivače.

. Toplotni komfor se obezbeđuje tokom cele godine projektovanjem zgrade u skladu sa merama energetski efikasne arhitekture i drugim neophodnim arhitektonsko-građevinskim rešenjima:

- 1) pravilnim dimenzionisanjem elemenata omotača;
- 2) zaštitom od sunčevog zračenja;
- 3) korišćenjem termičke mase;
- 4) pasivnim/prirodnim noćnim hlađenjem;
- 5) toplotnim zoniranjem zgrade;
- 6) oblikovanjem zgrade, i/ili senilima ili zastorima u periodu pregrevanja, sprečiti uticaj direktnog sunčevog zračenja;
- Óvim navedenim pasivnim merama obezbediti da se temperature u zgradi održavaju u granicama komfora u zavisnosti od namene objekta definisanog ovim pravilnikom.

Obezbediti da se uslovi temperaturnih nivoa u zgradi održavaju u granicama definisanim u Prilogu 6 - Tabeli 6.5 - Dobici toplote od ljudi i električnih uređaja koja je štampana uz ovaj pravilnik i čini njegov sastavni deo.

Tek pošto su iscrpliene sve arhitektorisko-građevinske mogućnosti za postizanje toplotnog komfora ovim metodama, mogu se uvesti sistemi za grejanje, hlađenje i ventilaciju.

Svetlosni komfor u zgradi obezbeđuje se uvođenjem prirodnog svetla i veštačkim osvetljenjem.

Uvođenjem prirodnog svetla:

- 1) primeniti mere neophodne za maksimalno uvođenje dnevne svetlosti u prostorije uz minimalno korišćenje veštačkog osvetljenja;
- 2) leti obezbediti maksimalan upad difuznog i minimalan upad direktnog sunčevog zračenja upotrebom senila i zastora;
- 3) sistemi zaštite od sunčevog zračenja moraju da omoguće dovoljnu količinu dnevne svetlosti u prostorijama bez korišćenja veštačkog osvetljenja; 4) obezbediti efikasnu kontrolu bljeska od sunčevog zračenja uz zadržavanje propisanog nivoa osvetljenosti;

Intenzitet veštačkog osvetljenja prostorija treba da bude projektovan u skladu sa namenom. Zvučni komfor koji se odnosi na ljude i kao prijemnike i kao izvore zvuka postiže se sledećim merama:

- 1) adekvatnom izolacijom od vazdušnog zvuka unutrašnjih građevinskih elemenata (zidovi, tavanice, vrata);
- 2) adekvatnom izolacijom od vazdušnog zvuka spoljašnjih građevinskih elemenata (spoljašnji zidovi, fasadni otvori, krovni omotači);
- 3) adekvatnom izolacijom podova i zidova od zvuka udara;
- 4) prihvatljivim nivoom zvučnog pritiska zvukova u prostorijama, uključujući i bilo koji zvuk koji se koristi za maskiranje preslušavanja;
- 5) adekvatnim akustičkim odzivom prostorija ili prostora kojim se određuje čujnost i kvalitet korisnih zvukova;
- 6) adekvatnim projektovanjem sistema instalacija koje ne smeju da naruše prethodno navedene građevinske i arhitektonske mere za postizanje zvučnog komfora

PRILOG 6

Metodologija određivanja energetskih performansi zgrada: određivanje godišnje potrebne toplote za grejanje, ukupne godišnje finalne i primarne energije, godišnje emisije SO2, referentni klimatski podaci i preporučene vrednosti ulaznih parametara za proračun

6.1 Metodologija određivanja energetskih performansi zgrada

Tabela 6.1 - Metodologija za određivanje godišnje potrebne toplote za grejanje

Величина	Начин прорачува	Примењени гранични услови
1	2	3
Годишња погребна енергија за грејање, <i>Q_{H,nd}</i> [k'Wh/a]	Πρεма SRPS EN ISO 13790 $Q_{H,\infty} = Q_{H,\infty} - \eta_{H,\infty} \cdot Q_{H,\omega} *$ $Q_{H,\infty} = (Q_T + Q_*) - \eta_{H,\infty} \cdot (Q_{\text{tot}} + Q_{\text{tot}})$	Према SRPS EN SO 13790 • (важи за системе који раде без прекида у загревању)
Специфична годишња погребна енергија за грејање, <i>Q_{H,an}</i> [kWh/(m ² a)]	$Q_{H,so} = rac{Q_{H,sol}}{A_f} \; ,$ A_f- корисна површина зграде $\{m^2\}$	Према SRPS EN ISO 13790
Годицња потребна енергија за надокнаду губитака топлоте [kWh/a]	$Q_{H,hr} = (H_{\tau} + H_{\nu}) \cdot 24 \cdot HDD \cdot 10^{-1}$	HDD - број степен дана за локацију зграде (табела 7 3)
Коефицијент трансмисионог губитка топлоте H_T [W/K]	$H_T = \sum_i (F_{sc} \cdot U \cdot A_i) + H_{TB}$ $H_{TB} = \Delta U_{TB} \cdot A$ $\Delta U_{TB} = 0.10 \ W/(m^2 \cdot K)$ Средња вредност коефицијента пролаза топлоте за зграду: $H_T = \frac{H_T}{A_f} \ [W/(m^2 K)]$	Према SRPS EN ISO 13750
Косфицијент вентилационог губитка топлоте H_r [W/K]	$H_{V} = \rho_{s} \cdot c_{s} \cdot \sum_{i} V_{i} \cdot n_{i},$ V – запремина грејаног простора [m ³]; n – број измена вазлуха на час [5 ⁻¹]	Према SRPS EN (SO 13789: $\rho_a \cdot c_p = 1200 \text{ [J/(m^3 \text{K})]},$ Број измена ваздуха према табели 3.4.2.1 и 3.4.2.2

Величина	Начин прорачува	Примењени граничии услови
1	2	3
Фактор искоришћења добитака топлоте за период грејања 7 _{6. г} е	$\eta_{_{H,ph}} = \frac{1 - \gamma_{_H}^{a_{_{P}}}}{1 - \gamma_{_H}^{(a_{_{P}+1})}}$, $\gamma_{_H} = \frac{Q_{_{H,ph}}}{Q_{_{H,h}}}$, $a_{_H} = a_{_{Y,h}} + \frac{\tau}{\tau_{_{H,h}}}$, $\tau = \frac{C_{_H}(3600}{H_{_T} + H_{_T}}$. Просечие вредности (сезонски или месечии метод): $\eta_{_{H,ph}} = 1.00$ — Тешки тип градые; $\eta_{_{H,ph}} = 0.98$ — Средње-тешки тип градые; $\eta_{_{H,ph}} = 0.90$ — Лаки тип градые.	Према SRPS EN ISO 13790: γ_{l} - бездимензиони однос топлотног биланса; a_{ll} - бездимензиони нумерички параметар који зависи од вредности временске константе; τ – временска константа [h]; C_m – динамички топлотни капацитет [J/K]
Годишња количина енергије која потиче од унутрашњих добитака топлоте $Q_{n\epsilon}$ [kWh/ε]	$Q_{\rm int} = A_f \cdot (q_F + q_L)$	Према SRFS EN ISO 13790: Добици топлоте од људи и електричних уређаја дати у та5ели 7.5
Годишња ксличина енергије која потиче од добитака услед Сунчевог зрачења Q_{nd} [kWh/s]	$Q_{ad} = F_{ab} \cdot A_{ad} \cdot I_{ad} \cdot \tau_{ad}$. $F_{ab} \cdot \varphi$ актор осенчености зграде: $F_{ab} = F_{ba} \cdot F_{ca} \cdot F_{fb}$ За стаклене спољне површине: $A_{ad,d} = g_{gl} \cdot (1 - F_{gl}) \cdot A_{Wl}$, $g_{gl} \cdot \varphi$ актор пропустљивости Сунчевог зрачења у зависности од врсте стакла; $F_{fl} \cdot \varphi$ актор рама; $A_{Wl} \cdot \varphi$ површина прозора (грађевинског отвора) За спољне зидове: $A_{ad,fl} = \alpha_{fl} \cdot K_{fl} \cdot U_{fl} \cdot A_{cl}$ $\alpha_{fl} \cdot \varphi$ емисивност спољне површине зила (краткоталасно зрачење Сунца); $R_{fl} = \frac{1}{h_e} \cdot \varphi$ отпор предву топлоте за спољну страму зида $[m^2 K / W]$	Према SRPS EN ISO 13790: $F_{\mu} = \text{вредности дате y}$ табелама 7.6 до 7.8 $I_{\mu \ell} \cdot r_{\mu \ell} \; [kWh/m^2] \; \text{вредности дате y табели 7.9}$ $g_{\mu} = \text{вредности дате y табели 7.10}$ $\alpha_{i,\ell} = 0.6 - \text{вредност за светлије боје фасале и мермер Средња вредност:}$ $R_{i,\ell} = \frac{1}{25} \; \text{m}^2 \text{K} / \text{W}$
Годишња потребна енергија за грејање за	$Q_{H \text{ and } \dots \text{ of } M} = a_{H \text{ and }} \cdot Q_{H \text{ and }}$	Према SRPS EN ISO 13790: а _{д.па} – бездимензијски факто

системе који раде са прекидом, Qк. на мисти [kWh/a]	$a_{H,red} = 1 - 3 \left(\frac{\tau_{HB}}{\tau} \right) \cdot \gamma_H \cdot \left(1 - f_{H,hr} \right)$	редукције у загревању; $f_{H,m}$ - однос броја сати рада система за грејање у току недеље према укупном броју сати у недељи.
---	--	--

Табела 6.1а – Методологија за одређивање укупне годишње потребне енергије:

Величина	Начин прорачува	Примењени гран. услови
1	2	3
Годишња потребна топлота за припрему савитарне топле воде, Qn [kWh/a]	$\begin{split} Q_w &= \rho_v \cdot c_w \cdot V_w \cdot (\theta_w - \theta_v) \\ V_w - годишња потрошња воде [m^3/a] \\ \theta_w - температура воде у резервоару [°C] \\ \theta_v - температура воде из водоведа [°C] \end{split}$	Према SRPS EN 15316 3-1 $\rho_w \cdot c_w = 1,16$ [$kWh/(m^3K)$]. Специфична вредност за различите типове
		зграда дата је у табели 7.5
Годишњи тодлотни губици система за грејање, Q _{п.в.} [kWh/a]	$Q_{H,h} = Q_{H,sm,h} + Q_{H,sh,h} + Q_{H,sm,h} + Q_{H,sm,h}$, $Q_{H,sm,h} = \text{губици топлоте при размени у простору према 15316-2-1 [kWh/a], Q_{H,sh,h} = \text{губици топлоте у цевној мрежи према 15316-2-3 [kWh/a], } Q_{H,sh,h} = \text{губици топлоте при складиштењу у резервоару према 15316-3-3 [kWh/a], } Q_{H,sh,h} = \text{губици топлоте при производњи према 15316-4-1 [kWh/a].}$	Према SRPS EN 15315
Годишњи гоплотии губици поплотии губици питема за прему санитарие топле воде, [kWh/a]	$Q_{W,h} = Q_{W,da,h} + Q_{W,da,h} + Q_{W,da,h}$ $Q_{W,da,h} - \text{губици топлоте у цевној мрежи развода топле воде према 15316-3-2 [kWh/a], Q_{W,a,h} - \text{губици топлоте ври складиштењу у резерводру према 15315-3-3 [kWh/a], Q_{W,g,h} - \text{губици топлоте при производљи или припреми топле воде према 15316-3-3 [kWh/a].}$	Према SRPS EN 15316
Годишња потребна топлота Q _{//} [kWh/a]	$Q_{it} = Q_{tt,nd} + Q_{tt} + Q_{tt,in} + Q_{tt,ij}$	
Годишња	$Q_{C,sol} = (Q_{sol} + Q_{sol}) - \eta_{C,lo} \cdot (Q_T + Q_T),$	Према SRPS EN ISO
потребна енергија за клиђење, Q_{Cnd} [kWh/a]	Специфична вредност: $Q_{C,m} = \frac{Q_{C,ml}}{A_f} \text{ [kWh/(m^2 a)]},$ $\eta_{C,h} - \text{фактор искоришћења губитака топлоте [-]}$ $A_f - \text{корисна површина зграде [m^2]}$	13790
Годишњи губици система за хлађење Qca [kWh/a]	Према SRPS EN 15243	Прена SRPS EN 15243
Годишња потребна евергија за хлађење, Qc[kWh/a]	$Q_C = Q_{C,sol} + Q_{C,so}$	
Годишња потребна евергија за вентилацију и климатизацију, Q ₁₄ [kWh/a]	Према: SRPS EN 15243. SRPS EN 15241. SRPS EN ISO 13790	Према: SRPS EN 15243, SRPS EN 15241, SRPS EN ISO 13790
Годишња потребна енергија за освет- љење, E/[kWh/a]	Према: SRPS EN 15193	Према: SRPS EN 15193

Ukupna godišnja isporučena energija računa se kao zbir energija potrebnih za grejanje i pripremu sanitarne tople vode, za hlađenje, za ventilaciju i klimatizaciju, za grejanje, za osvetljenje i za rad pomoćnih sistema:

 $E_{del} = Q_H + Q_C + Q_{Ve} + E_I + Q_{aux} [kWh/a].$

Tabela 6.2 - Stepen korisnosti postrojenja za grejanje
Ukupni stepen korisnosti postrojenja za grejanje obuhvata stepen korisnosti kotla, cevne mreže i sistema automatske regulacije:

1. Kotlovi					
Čvrsto gorivo	Kotlovi bez regulacije	0,65			
	Kotlovi do 50 kW sa ručnom regulacijom	0,68			
	Kotlovi preko 50 kW sa dobrom ručnom regulacijom	0,72			
	Kotlovi do 175 kW sa mehaničkom regulacijom	0,75			
	Kotlovi preko 175 kW sa dobrom mehaničkom regulacijom	0,83			
Tečno gorivo	Kotlovi do 50 kW sa ručnom regulacijom	0,81 - 0,83			
	Kotlovi preko 50 kW sa automatskom regulacijom	0,83 - 0,87			
Gasovito gorivo	Kotlovi do 100 kW sa prirodnom promajom	0,80 - 0,88			
	Kotlovi preko 100 kW sa prinudnom promajom	0,88 - 0,94			

2. Cevna mreža						
Neizolovana cevna	n mreža unutar termičkog omotača zgrade	0,95				
Izolovana cevna 1	Izolovana cevna mreža u delu negrejanog prostora zgrade					
Predizolovane ce	0,88 - 0,92					
	3. Sistem regulacije					
Način regulacije	sa podelom na zone	bez podele na zone				
Automatska centralna i lokalna regulacija	1,0	0,95				
Automatska centralna regulacija	0,95	0,92				
Ručna centralna regulacija	0,92	0,90				

Tabela 6.3 - Broj stepen dana za grejanje HDD i srednja temperatura grejnog perioda $\theta_{H,mn}$ za mesta u Republici Srbiji

		0,,		1 0 3 0 1 11,1111		•	
MESTO	HDD	HD	$\theta_{H,mn}$	MESTO	HDD	HD	$\theta_{H,mn}$
Aleksinac	2517	176	5,7	Leskovac	2625	181	5,5
Beograd	2520	175	5,6	Požarevac	2588	181	5,7
Bečej	2797	184	4,8	Negotin	2818	183	4,6
Bor	3100	200	4,5	Niš	2613	179	5,4
Valjevo	2784	192	5,5	Novi Sad	2679	181	5,2
Vranje	2675	182	5,3	Pančevo	2712	182	5,1
Vršac	2556	180	5,8	Pirot	2610	180	5,5
Gornji Milanovac	3078	208	5,2	Prokuplje	2604	186	6
Divčibare	3839	243	4,2	Senta	2824	187	4,9
Zaječar	2880	192	5	Smederevo	2610	180	5,5
Zlatibor	3728	239	4,4	Sombor	2850	190	5
Zrenjanin	2748	182	4,9	Sremski Karlovci	2496	177	5,9
Jagodina	2599	178	5,4	Sremska Mitrovica	2738	185	5,2
Kikinda	2763	183	4,9	Užice	3015	201	5
Kopaonik	5349	311	2,8	Čačak	2755	190	5,5
Kragujevac	2610	180	5,5	Ćuprija	2380	163	5,4
Kraljevo	2628	180	5,4	Šabac	2588	181	5,7
Kruševac	2654	183	5,5	Šid	2686	184	5,4

| Tabela 6.4 - Potrebna minimalna debljina termičke izolacije cevovoda i rezervoara
| Spoljašnji prečnik [mm] | 30 - 83 | 89 - 159 | 191 - 267 | 292 - 394 | 219 - 521 |
| rezervoari | Debljina izolacije [mm] | 40 | 50 | 60 | 70 | 80

Tabela 6.5 - Dobici toplote od ljudi i električnih uređaja (SRPS EN ISO 13790)

Tip zgrade	1	2	3	4	5	6	7	8		9 Ostale z	grade		Jedinica
Ulazni podaci	Stambena zgrada sa jednim stanom	Stambena zgrada sa više stanova	Poslovna zgrada	Zgrade namenjene obrazovanju	Bolnice	Restorani	Trgovinski centri	Sportski centri	Sale za sastanke i prezentacije	Industrijske zgrade	Skladišta	Unutrašnji bazeni	
Unutrašnja projektna temperatura za zimski period	20	20	20	20	22	20	20	18	20	18	18	28	°C
Unutrašnja projektna temperatura za letnji period	26	26	26	26	26	26	26	26	26	26	26	28	°C
Površina po osobi (zauzetost)	60	40	20	10	30	5	10	20	5	20	100	20	m²/per
Odavanje	70	70	80	70	80	100	90	100	80	100	100	60	W/per

toplote po													
Odavanje toplote ljudi po jedinici površine	1,2	1,8	4,0	7,0	2,7	20	9,0	5,0	16	5,0	1,0	3,0	W/m²
Prisutnost tokom dana (prosečno mesečno)	12	12	6	4	16	3	4	6	3	6	6	4	h
Godišnja potrošnja električne energije po jedinici površine grejanog prostora	20	30	20	10	30	30	30	10	20	20	6	60	kWh/m²
Protok svežeg vazduha po jedinici površine grejanog prostora	0,7	0,7	0,7	0,7	1,0	1,2	0,7	0,7	1,0	0,7	0,3	0,7	m ³ / (h·m ²)
Protok svežeg vazduha po osobi (obrok po osobi)	42	28	14	7	30	6	7	14	5	14	30	14	m³/ (h·per)
Toplota potrebna za pripremu STV po jedinici površine grejanog prostora	10	20	10	10	30	60	10	80	10	10	1,4	80	kWh/m²

Tabela 6.6 - Faktor osenčenosti zgrade usled okolnih objekata

rabola oro ir alter obolico							
Korekcioni faktor F_{hor} za $45^{\rm o}$ SGŠ							
Ugao [º]	J	I, Z	S				
0	1,00	1,00	1,00				
10	0,97	0,95	1,00				
20	0,85	0,82	0,98				
30	0,62	0,70	0,94				
40	0,46	0,61	0,90				

Tabela 6.7 - Faktor osenčenosti zgrade usled okolnih objekata

rasora o.7 Tarkor ocorroom zgrado delod ekemin osjekala						
Korekcioni faktor F_{ov} za 45° SGŠ						
Ugao [°] J I, Z S						
0	1,00	1,00	1,00			
30	0,90	0,89	0,91			
45	0,74	0,76	0,80			
60	0,50	0,58	0,66			

Tabela 6.8 - Faktor osenčenosti zgrade usled okolnih objekata

Korekcioni faktor F_{fin} za 45° SGŠ						
Ugao [º]	J	I, Z	S			
0	1,00	1,00	1,00			
30	0,94	0,92	1,00			
45	0,84	0,84	1,00			
	İ	İ				

60 0,72 0,75 1,00

Faktor zasenčenja, f_S

Elementi za zasenčenje su elementi koji sprečavaju ili ograničavaju insolaciju: na osnovu topografije (uticaj položaja zgrade u odnosu na profil terena, u odnosu na susedne - zgrade koje je nadvišavaju i sl.); na osnovu konstruktivnog rešenja zgrade - izgleda spoljnjeg omotača (balkoni, lođe, istureni elementi - erkeri, prepusti, i sl.).; na osnovu posebnih (pomerljivih) elemenata za zasenčenje (novija rešenja).

Faktor zasenčenja, f_S, može se izračunavati na pojednostavljeni način:

f_S = 0,9 za nezasenčeni (nezaklonjeni) položaj;

 $f_S = 0,6$ za zasenčeni (zaklonjeni) položaj.

Efektivni stepen propustljivosti energije, g_{W}

Ukupan stepen propustljivosti energije transparentnih površina, g, je deo energije Sunčevog zračenja koja se kroz zastakljenje predaje prostoriji, pri toplotnom protoku koji je upravan na površinu (često se ova veličina obeležava sa g⊥, tj. g = g⊥).

Računske (projektne) vrednosti za ukupan stepen propustljivosti energije za različita zastakljenja, g, date su u tabeli 3.2.1 ovog priloga.

Usled zaprljanosti stakla i odstupanja u odnosu na upadni ugao (različito od 90°), efektivni stepen propustljivosti energije, gw usvaja se sa vrednošću:

 $g_{w} = 0.9 \times q$

Zimske bašte

Solami dotoci toplote kroz zimske bašte mogu se određivati primenom pojednostavljenog postupka: uračunava se samo toplotni dotok koji se direktno dobija preko spoljašnjeg zastakljenja zimske bašte i prenosi se preko unutrašnjeg ostakljenja (ostakljenje između zgrade i na nju naslonjene zimske bašte) u prostoriju/e; pri tome se u proračun uzimaju i eventualna zasenčenja od krova zimske bašte.

Transparentne toplotne izolacije

Transparentne toplotne izolacije pripadaju grupi novijih materijala. Toplotni dotoci kroz transparentne toplotne izolacije posebno se izračunavaju.

Tabela 6.9 - Srednje sume Sunčevog zračenja i srednja mesečna temperatura spoljnog vazduha Mesec II Ш ΙV VII VIII X XII Zima I VI XI Srednja mesečna temperatura 0.9 3,0 7,3 12,5 17,6 20,6 22,3 22,0 17,7 12,7 7,2 5,6 2.6 (C^{o}) S HOR 192,83 45,50 42.75 60,35 103,86 133,65 170,43 181,23 170,43 127,58 88,94 33,87 398 11 (kWh/m^2) r J č 76,98 99 43 107,38 109,22 64.25 96.43 86.73 86.28 81,43 90.31 52.80 455 66.52 (kWh/m^2) e ٧ LZ32,57 55,35 79,80 96,05 112,90 116,78 125,22 114,37 91,32 67,21 34,67 25,53 310 c (kWh/m^2) Z r a S č 17,42 22,38 36,04 44,64 55,69 56,88 58,27 52,83 38,78 29.16 17,93 14,31 145 (kWh/m^2) е nj e HDD = 2520585 458 370 102 0 0 101 373 531

Napomena: Vrednosti srednjih suma Sunčevog zračenja datih u tabeli 6.9 koriste se za proračun dobitaka toplote od Sunčevog zračenja za sve lokacije na teritoriii Republike Srbiie.

*Napomena: Orjentacija fasadnih zidova zgrade definiše se prema pretežnoj orjentaciji ka jednoj od četiri strane sveta (istok, zapad, sever i jug) i u zavisnosti od pretežne orjentacije usvajaju se vrednosti srednjih suma Sunčevog zračenja iz tabele 6.9.

** Napomena: Ukoliko se proračun radi za kose fasadne elemente, potrebno je izvršiti korekciju srednjih suma sunčevog zračenja, i to na sledeći način:

1. za ugao nagiba -15° < y < +15° - ne vrši se korekcija, već se površina tretira kao vertikalna;

2. za ugao nagiba +30°< γ < +75° - korekcija se vrši prema jednačini:

 $q_{sol} = q_{sol, tab} \cdot \sin(90-\gamma);$

3. za ugao nagiba $+75^{\circ}$ < γ < $+90^{\circ}$ - ne vrši se korekcija, već se površina tretira kao horizontalna.

Tabela 6.11 - Dozvoljena godišnja potrošnja finalne energije

Zgrade moraju biti projektovane tako da ne premašuju dozvoljenu godišnju potrošnju energije propisanu u Tabeli 6.11.

* Napomena: Vrednosti definisane u koloni 2 u tabelama 6.11a i 6.11b privremenog su karaktera i na snazi su do usvajanja Nacionalnog Programskog Paketa za određivanje potrošnje energije.

Vrednosti iz kolone br. 3, tabela 6.11a i 6.11b proračunavaće se pomoću Nacionalnog Programskog Paketa za određivanje potrošnje energije, po usvajanju ovog paketa

Tabela 6.11a - Dozvoljena godišnja potrošnja finalne energije - nove zgrade

RB.	VRSTA ZGRADE	potrošnja energije za grejanje [kWh/m²a]	hlađenje, sanitarnu toplu vodu, ventilaciju i veštačko osvetljenje [kWh/m²a]
	1	2	3
1.	stambene zgrade sa jednim stanom	65	(proračun pomoću Nacionalnog Programskog Paketa)
2.	stambene zgrade sa dva ili više stanova	60	(proračun pomoću Nacionalnog Programskog Paketa)
3.	upravne i poslovne zgrade	55	(proračun pomoću Nacionalnog Programskog Paketa)
4.	zgrade namenjene obrazovanju	65	(proračun pomoću Nacionalnog Programskog Paketa)
5.	zgrade namenjene zdravstvu i socijalnoj zaštiti	100	(proračun pomoću Nacionalnog Programskog Paketa)
6.	zgrade namenjene turizmu i ugostiteljstvu	90	(proračun pomoću Nacionalnog Programskog Paketa)
7.	zgrade namenjene sportu i rekreaciji	80	(proračun pomoću Nacionalnog Programskog Paketa)
8.	zgrade namenjene trgovini i uslužnim delatnostima	70	(proračun pomoću Nacionalnog Programskog Paketa)
9.	zgrade za druge namene koje koriste energiju uključujući i mešovite namene	/	(proračun pomoću Nacionalnog Programskog Paketa)

Tabela 6.11b - Dozvoljena godišnja potrošnja finalne energije - postojeće zgrade

	Tabeli	a 0. 110 - Dozvoljena godisnja potrosnja	intaine energije - postojece zgrade
RB	VRSTA ZGRADE	Dozvoljena maksimalna godišnja potrošnja energije za grejanje [kWh/m²a]	Dozvoljena godišnja upotreba PRIMARNE energije za grejanje, hlađenje, sanitarnu toplu vodu, ventilaciju i veštačko osvetljenje [kWh/m²a]
	1	2	3
1.	stambene zgrade sa jednim stanom	75	(proračun pomoću Nacionalnog Programskog Paketa)
2.	stambene zgrade sa dva ili više stanova	70	(proračun pomoću Nacionalnog Programskog Paketa)
3.	upravne i poslovne zgrade	65	(proračun pomoću Nacionalnog Programskog Paketa)
4.	zgrade namenjene obrazovanju	75	(proračun pomoću Nacionalnog Programskog Paketa)
5.	zgrade namenjene zdravstvu i socijalnoj zaštiti	120	(proračun pomoću Nacionalnog Programskog Paketa)
6.	zgrade namenjene turizmu i ugostiteljstvu	100	(proračun pomoću Nacionalnog Programskog Paketa)
7.	zgrade namenjene sportu i rekreaciji	90	(proračun pomoću Nacionalnog Programskog Paketa)
8.	zgrade namenjene trgovini i uslužnim delatnostima	80	(proračun pomoću Nacionalnog Programskog Paketa)
9.	zgrade za druge namene koje koriste energiju uključujući i mešovite namene	/	(proračun pomoću Nacionalnog Programskog Paketa)

Tabela 6.12 - Faktori pretvaranja za proračunavanje godišnje primame energije za pojedine vrste izvora toplote

ENERGENT	FAKTOR PRETVARANJA
ulje za loženje	1,2
gas	1,1
ugalj	1,3
drvena biomasa	0,1
električna energija	2,5
daljinsko grejanje na fosilna goriva	1,8
daljinsko grejanje kogeneracijom	1,0

Godišnja primama energija za funkcionisanje zgrade određuje se tako što se godišnja dovedena energija za rad sistema u zgradi pomnoži sa faktorom pretvaranja određenim u tabeli 6.12.

Tabela 6.13 - Specifične emisije SO₂ za pojedine vrste energenata

Energent	Po jedinici goriva	Po jedinici energije
zemni gas	1,9 kg/m ³	0,20 kg/kWh
tečni naftni gas	2,9 kg/kg	0,215 kg/kWh
ekstra lako ulje za loženje	2,6 kg/l	0,265 kg/kWh

, , ,	, ·	, <u>, , , , , , , , , , , , , , , , , , </u>
lako ulje za loženje	3,2 kg/kg	0,28 kg/kWh
daljinska toplota	0,33 kg/kWh	0,33 kg/kWh*
električna energija	0,53 kg/kWh	0,53 kg/kWh
smeđi ugalj (domaći)	1,5 kg/kg	0,32 kg/kWh
smeđi ugalj (strani)	1,88 kg/kg	0,40 kg/kWh
lignit (domaći)	1,0 kg/kg	0,33 kg/kWh

^{*}Napomena: Podaci se koriste u slučaju kada isporučilac energenta ne navede emisiju za svoj izvor energenata, odnosno energije. Proračun emisije SO₂ i pokazatelji:

PRILOG 7

Energetski pokazatelji za rashladne agregate koji se koriste za potrebe hlađenja u zgradama

Tabela 7.1 - Energetski pokazatelii za različite vrste rashladnih agregata

Vrsta rashladnih agregata (RA)	EER	COP	ESEER
Proba po:	prEN 14511	prEN 14511	Euro vent
Vazdušno hlađeni RA	2,90	3,00	3,00
Vazdušno hlađeni RA sa priključnim kanalima	2,50	2,80	3,00
Vazdušno hlađeni RA za površinsko hlađenje/grejanje	3,65	3,90	4,20
Vodeno hlađeni RA - svi do 1500 kW RA sa klipnim kompresorima	4,65	4,15	4,25
Vodeno hlađeni RA - spiralni, vijčani kompr. do 500 kW	-	-	5,00
Vodeno hlađeni RA - vijčani kompr. 500-1000 kW			5,00
Vodeno hlađeni RA - centrif. kompresor do 500 kW 500-1000 kW iznad 1000 kW	-	-	5,15 5,80 6,30
Vazdušno hlađeni RA za površinsko hlađenje/grejanje	4,9	4,2	5,00
RA sa udaljenim kondenzatorom	3,4	-	3,60
Absorpcioni - vazdušno/vodeno hlađeni, Jednostepeni Dvostepeni	-	-	-

^{*} COP važi za merenja po ARI i ekvivalentan je EER bez uzimanja u obzir dodatne električne snage.

* EER i COP važe za pojedinu jedinicu. Vrednosti važe za vazdušno hlađene rashladne agregate do 600 kW i vodeno hlađene do 1500 kW, osim tamo gde su navedene veće snage. U projektu treba navesti podatak o korišćenoj vrednosti.

Rashladni	Rashladna voda* ulaz/izlaz °S	Hlađena		EER		
medijum		voda izlaz °S		Klipni ili spiralni kompresor od 10 kW do 1,5 MW	Vijčani kompresor od 200 kW do 2 MW	Turbinski kompresor od 500 kW do 8 MW
R134a	27/33	6	0	4,0	4,5	5,2
		14	8	4,6	5,3	5,9
	40/45	6	0	3,1	2,9	4,1
		14	8	3,7	3,7	4,8
R407c	27/33	6	0	3,8	4,2	-
		14	8	4,4	4,9	-
	40/45	6	0	3,0	2,7	-
		14	8	3,6	3,3	-
R410A	27/33	6	0	3,6	-	-
		14	8	4,2	-	-
	40/45	6	0	2,8	-	-
		14	8	3,3	-	-

¹⁾ emisije SO2, koje nastanu tokom funkcionisanja objekta, određuju se na osnovu podataka specifične emisije SO2 za pojedine izvore energije, tako što se godišnja potrebna primarna energija za funkcionisanje objekta, prema određenom izvoru energije, pomnoži pripadajućim podatkom specifične emisije SO2, koji je dat u tabeli 6.13 ovog pravilnika i vrednosti saberu;

²⁾ pokazatelji emisije SO₂ izražavaju se u obliku godišnjih emisija SO₂ [kg/a] i specifičnih godišnjih emisija na jedinicu površine SO₂ [kg/m²a].

R717	27/33	6	0	-	4,6	-
		14	8	-	5,4	-
	40/45	6	0	-	3,1	-
		14	8	-	3,7	-

Tabela 7.3 - Faktor energetske efikasnosti EER, vazdušno hlađeni sistemi

Rashladni	Hlađena voda izlaz	Drogačna tamparatura	EER		
medijum	°C	Prosečna temperatura isparavanja °C	Klipni ili spiralni kompresor 10 kW - 1,5 MW	Vijčani kompresor 200 kW - 2 MW	
R134a	6	0	2,8	3,0	
	14	8	3,5	3,7	
R407c	6	0	2,5	2,7	
	14	8	3,2	3,4	
R410A	6	0	2,4	-	
	14	8	3,1	-	
R717	6	0	-	3,2	
	14	8	-	3,9	

Tabela 7.4 - Faktor energetske efikasnosti EER za sobne rashladne uređaje, vazdušno hlađeni sistemi, čiji je rashladni učinak manji od 12 kW

Vrsta rashladnog uređaja	EER
Kompaktna jedinica montirana na prozoru ili zidu	2,6
Split sistem	2,7
Multi - split sistem	2,9

Tabela 7.5 - Faktor energetske efikasnosti EER za sobne rashladne uređaje, vazdušno hlađeni sistemi, čiji je rashladni učinak veći od 12 Kw

Vrsta rashladne jedinice	
VRF sistem(variable refrigerant flow)	3,5

^{*} suvi sistem: 40/45 * sistem isparavanja: 27/33