Test di Calcolo Numerico

Ingegneria Informatica 30/06/2020

COGNOME			NOME		
MATRICOLA					
RISPOSTE					
1)					
2)					
3)					
4)					

N.B. Le risposte devono essere giustificate e tutto deve essere scritto a penna con la massima chiarezza.

Test di Calcolo Numerico

Ingegneria Informatica 30/06/2022

1) Calcolare la fattorizzazione LR della matrice

$$A = \begin{pmatrix} 5 & 4 & 3 & 2 \\ 5 & 5 & 4 & 3 \\ -5 & -5 & -5 & -4 \\ -5 & -5 & -3 & 0 \end{pmatrix}.$$

2) Calcolare i punti fissi della funzione

$$\phi(x) = \frac{4x^2 - x - 6}{x^2} \, .$$

3) È data la funzione $f(x) = x^5 - x^3 + x^2 + x + 1$. Calcolare il polinomio $P_2(x)$ di interpolazione relativo ai punti $x_0 = 0, x_1 = 1$ e $x_2 = -1$. Posto $E_2(x) = f(x) - P_2(x)$, determinare

$$\max_{x \in [-1,1]} |E_2(x)|$$
.

4) Si vuole approssimare il valore dell'integrale

$$\int_0^1 \sin(x) \ dx$$

utilizzando la formula dei trapezi. Indicare quanti sotto
intervalli sono necessari per avere una approssimazione con un massimo errore assoluto
 $|E| \leq 10^{-3}$.

SOLUZIONE

1) Risultano

$$L = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ -1 & -1 & 1 & 0 \\ -1 & -1 & -1 & 1 \end{pmatrix}, \quad R = \begin{pmatrix} 5 & 4 & 3 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 2 \end{pmatrix}.$$

2) Per determinare i punti fissi si risolve l'equazione $x = \phi(x)$. Si ottiene l'equazione

$$\frac{x^3 - 4x^2 + x + 6}{x^2}$$

le cui soluzioni sono

$$\alpha_1 = -1, \qquad \alpha_2 = 2, \qquad \alpha_3 = 3.$$

- 3) Calcolando la funzione nei punti assegnati si ottiene il polinomio di interpolazione $P_2(x)=x^2+x+1$. Risulta $E_2(x)=x^5-x^3$ che sull'intervallo [-1,1] ha massimo valore assoluto $\frac{6}{25}\sqrt{\frac{3}{5}}$ ottenuto per $x=\pm\sqrt{\frac{3}{5}}$.
- 4) Ponendo $f(x)=\sin(x)$ risulta $f''(x)=-\sin(x)$ per cui si sceglie $M_2\geq\sup_{x\in[0,1]}|f''(x)|=1$. Imponendo che la maggiorazione dell'errore $\frac{1}{12}L^2M_2$ risulti inferiore a $\frac{10^{-3}}{2}$ si ha che il minimo numero L di intervalli con cui applicare la formula dei trapezi è

$$k = 13$$
.