Examples for 09/21/2020 (1)

0. Consider the following joint probability distribution p(x, y) of two random variables X and Y:

		y		
х	0	1	2	$p_{X}(x)$
1	0.15	0.10	0	0.25
2	0.25	0.30	0.20	0.75
$p_{\mathrm{Y}}(y)$	0.40	0.40	0.20	1.00

a) What is the probability distribution of U = X + Y?

		у		
x	0	1	2	$p_{\rm X}(x)$
1	0.15 $u = 1$	0.10 $u = 2$	0	0.25
2	0.25 $u = 2$	0.30 $u = 3$	0.20 $u = 4$	0.75
$p_{\mathrm{Y}}(y)$	0.40	0.40	0.20	1.00

и	$p_{\mathrm{U}}(u)$
1	0.15
2	0.35
3	0.30
4	0.20

b) What is the probability distribution of V = XY?

		у		
х	0	1	2	$p_{\rm X}(x)$
1	0.15 $v = 0$	0.10 $v = 1$	0	0.25
2	0.25 $v = 0$	0.30 $v = 2$	0.20 $v = 4$	0.75
$p_{\mathrm{Y}}(y)$	0.40	0.40	0.20	1.00

ν	$p_{V}(v)$
0	0.40
1	0.10
2	0.30
4	0.20
	l

c) What is the joint probability distribution of U = X + Y and V = XY?

		у		
X	0	1	2	$p_{\rm X}(x)$
1	0.15	0.10	0	0.25
	u = 1	u = 2		
	v = 0	v = 1		
2	0.25	0.30	0.20	0.75
	u = 2	u = 3	u = 4	
	v = 0	v = 2	v = 4	
$p_{\rm Y}(y)$	0.40	0.40	0.20	1.00

	v				
и	0	1	2	4	$p_{\mathrm{U}}(u)$
1	0.15	0	0	0	0.15
2	0.25	0.10	0	0	0.35
3	0	0	0.30	0	0.30
4	0	0	0	0.20	0.20
$p_{V}(v)$	0.40	0.10	0.30	0.20	1.00

Let X_1 and X_2 have joint p.d.f. $f(x_1, x_2)$.

$$S = \{(x_1, x_2): f(x_1, x_2) > 0\}$$
 – support of (X_1, X_2) .

Let
$$Y_1 = u_1(X_1, X_2)$$
 and $Y_2 = u_2(X_1, X_2)$.

$$y_1 = u_1(x_1, x_2)$$
 one-to-one transformation
 $y_2 = u_2(x_1, x_2)$ maps S onto T - support of (Y_1, Y_2) .

$$x_1 = w_1(y_1, y_2)$$

$$x_2 = w_2(y_1, y_2)$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

The joint p.d.f. $f_{Y_1,Y_2}(y_1,y_2)$ of (Y_1,Y_2) is

$$f_{\mathbf{Y}_{1},\mathbf{Y}_{2}}(y_{1},y_{2}) = \begin{cases} f(w_{1}(y_{1},y_{2}),w_{2}(y_{1},y_{2})) \cdot |J| & (y_{1},y_{2}) \in \mathcal{T} \\ 0 & \text{elsewhere.} \end{cases}$$

- 1. Let X_1 and X_2 have joint p.d.f. $f(x_1, x_2) = 2e^{-(x_1 + x_2)}$, $0 < x_1 < x_2$.
- a) Find the joint p.d.f. $f_{Y_1,Y_2}(y_1,y_2)$ of the variables

$$Y_1 = X_2 - X_1$$
 and $Y_2 = X_1$.

$$\begin{array}{ccc}
Y_2 = X_1 & \Rightarrow & X_1 = Y_2 \\
Y_1 = X_2 - X_1 & \Rightarrow & X_2 = Y_1 + X_1 = Y_1 + Y_2
\end{array}$$

$$J = \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} = -1$$

$$x_1 > 0 \qquad \Rightarrow \qquad y_2 > 0$$

$$x_2 > x_1 \qquad \Rightarrow \qquad y_1 > 0$$

$$f_{Y_1,Y_2}(y_1,y_2) = 2e^{-(y_2+y_1+y_2)} \times |-1| = 2e^{-(y_1+2y_2)}, \quad y_1 > 0, \quad y_2 > 0.$$

Note that
$$f_{Y_1}(y_1) = e^{-y_1}, y_1 > 0,$$
 $f_{Y_2}(y_2) = 2e^{-2y_2}, y_2 > 0,$

 Y_1 and Y_2 are independent.

b) Find the joint p.d.f. $f_{Z_1,Z_2}(z_1,z_2)$ of the variables

$$Z_1 = X_1 + X_2$$
 and $Z_2 = X_2/X_1$.

$$Z_{2} = X_{2}/X_{1} \qquad \Rightarrow \qquad X_{2} = Z_{2}X_{1}$$

$$Z_{1} = X_{1} + X_{2} = X_{1} + Z_{2}X_{1} \qquad \Rightarrow \qquad X_{1} = Z_{1}/(1 + Z_{2})$$

$$\Rightarrow \qquad X_{2} = Z_{1}Z_{2}/(1 + Z_{2})$$

$$J = \begin{vmatrix} \frac{1}{1+z_2} & -\frac{z_1}{(1+z_2)^2} \\ \frac{z_2}{1+z_2} & \frac{z_1(1+z_2)-z_1z_2}{(1+z_2)^2} \end{vmatrix} = \begin{vmatrix} \frac{1}{1+z_2} & -\frac{z_1}{(1+z_2)^2} \\ \frac{z_2}{1+z_2} & \frac{z_1}{(1+z_2)^2} \end{vmatrix} = \frac{z_1+z_1z_2}{(1+z_2)^3} = \frac{z_1}{(1+z_2)^2}.$$

$$x_1 > 0 \qquad \Rightarrow \qquad z_1 > 0$$
$$x_2 > x_1 \qquad \Rightarrow \qquad z_2 > 1$$

$$f_{Z_1,Z_2}(z_1,z_2) = 2e^{-z_1} \times \frac{z_1}{(1+z_2)^2}, \qquad z_1 > 0, \quad z_2 > 1.$$

Note that
$$f_{Z_1}(z_1) = z_1 e^{-z_1}, z_1 > 0,$$
 $f_{Z_2}(z_2) = \frac{2}{(1+z_2)^2}, z_2 > 1,$

 Z_1 and Z_2 are independent.

2. Let $\,X_{1}\,$ and $\,X_{2}\,$ have the joint probability density function

$$f_{X_1,X_2}(x_1,x_2) = 15 x_1 x_2^2, \qquad 0 < x_2 < x_1 < 1,$$

$$0 < x_2 < x_1 < 1$$
,

zero elsewhere.

Let $Y_1 = X_1 + X_2$ and $Y_2 = X_1$. a)

Find the joint probability density function of (Y_1, Y_2) , $f_{Y_1, Y_2}(y_1, y_2)$.

Sketch the support of (Y_1, Y_2) .

$$X_1 = Y_2$$
$$X_2 = Y_1 - Y_2$$

$$J = \begin{vmatrix} 0 & 1 \\ 1 & -1 \end{vmatrix} = -1$$

$$x_2 > 0$$

$$\Rightarrow$$

$$y_1 > y_2$$

$$x_1 > x_2$$

$$\Rightarrow$$

$$y_1 < 2y_2$$

$$x_1 < 1$$

$$\Rightarrow$$

$$y_2 < 1$$

$$f_{Y_1,Y_2}(y_1,y_2) = 15 y_2 (y_1-y_2)^2 \times |-1| = 15 y_2 (y_1-y_2)^2,$$

$$0 < y_2 < 1, y_2 < y_1 < 2y_2.$$

b) Let
$$Y_1 = X_1 \cdot X_2$$
 and $Y_2 = X_1 / X_2$.
Find the joint probability density function of (Y_1, Y_2) , $f_{Y_1, Y_2}(y_1, y_2)$.
Sketch the support of (Y_1, Y_2) .

$$Y_{2} = X_{1}/X_{2} \qquad \Rightarrow \qquad X_{1} = Y_{2}X_{2}$$

$$Y_{1} = X_{1} \cdot X_{2} = Y_{2}X_{2} \cdot X_{2} \qquad \Rightarrow \qquad X_{2} = (Y_{1}/Y_{2})^{\frac{1}{2}} = Y_{1}^{\frac{1}{2}}Y_{2}^{-\frac{1}{2}}$$

$$\Rightarrow \qquad X_{1} = (Y_{1}Y_{2})^{\frac{1}{2}} = Y_{1}^{\frac{1}{2}}Y_{2}^{\frac{1}{2}}$$

$$J = \begin{vmatrix} \frac{1}{2} y_1^{-1/2} y_2^{1/2} & \frac{1}{2} y_1^{1/2} y_2^{-1/2} \\ \frac{1}{2} y_1^{-1/2} y_2^{-1/2} & -\frac{1}{2} y_1^{1/2} y_2^{-3/2} \end{vmatrix} = -\frac{1}{4} y_2^{-1} - \frac{1}{4} y_2^{-1} = -\frac{1}{2 y_2}.$$

$$\begin{array}{ccc}
0 < x_2 & \Rightarrow & 0 < y_1 \\
x_2 < x_1 & \Rightarrow & y_2 > 1 \\
x_1 < 1 & \Rightarrow & y_2 < 1/y_1
\end{array}$$

$$f_{Y_1,Y_2}(y_1, y_2) = 15 \cdot \sqrt{y_1 y_2} \cdot \left(\sqrt{\frac{y_1}{y_2}}\right)^2 \times \left|-\frac{1}{2 y_2}\right|$$

$$= 7.5 \cdot \sqrt{\frac{y_1^3}{y_2^3}} = 7.5 y_1^{3/2} y_2^{-3/2}, \qquad y_2 > 1, \ 0 < y_1 < 1/y_2.$$

c) Let $Y_1 = X_2/X_1$ and $Y_2 = X_1 + X_2$. Find the joint probability density function of (Y_1, Y_2) , $f_{Y_1, Y_2}(y_1, y_2)$. Sketch the support of (Y_1, Y_2) .

$$Y_1 = X_2 / X_1 \qquad \Rightarrow \qquad X_2 = Y_1 X_1$$

$$Y_2 = X_1 + X_2 = X_1 + Y_1 X_1 \qquad \Rightarrow \qquad X_1 = Y_2 / (1 + Y_1)$$

$$\Rightarrow \qquad X_2 = Y_1 Y_2 / (1 + Y_1)$$

$$J = \begin{vmatrix} -\frac{y_2}{(1+y_1)^2} & \frac{1}{1+y_1} \\ \frac{y_2(1+y_1)-y_1y_2}{(1+y_1)^2} & \frac{y_1}{1+y_1} \end{vmatrix} = \begin{vmatrix} -\frac{y_2}{(1+y_1)^2} & \frac{1}{1+y_1} \\ \frac{y_2}{(1+y_1)^2} & \frac{y_1}{1+y_1} \end{vmatrix}$$

$$= -\frac{y_1y_2 + y_2}{(1+y_1)^3} = -\frac{y_2}{(1+y_1)^2}.$$

$$0 < x_2 \qquad \Rightarrow \qquad y_1 > 0, \ y_2 > 0$$

$$x_2 < x_1 \qquad \Rightarrow \qquad y_1 < 1$$

$$x_1 < 1 \qquad \Rightarrow \qquad y_2 < y_1 + 1$$

$$f_{Y_1,Y_2}(y_1, y_2) = 15 \frac{y_2}{1+y_1} \left(\frac{y_1 y_2}{1+y_1} \right)^2 \times \left| -\frac{y_2}{(1+y_1)^2} \right|$$

$$= 15 \frac{y_1^2 y_2^4}{(1+y_1)^5}, \qquad 0 < y_1 < 1, \quad 0 < y_2 < y_1 + 1.$$