#### CIS 560 - Database System Concepts

Lecture 10

# Functional Dependencies and Normalization

September 18, 2013

Credits for slides: Suciu, Chang, Ullman.

Copyright: Caragea, 2013

#### **Announcements**

- HW3 due Friday
- HW4 will be posted Friday, due September 27<sup>th</sup>
- Exam 1 October 7<sup>th</sup> (sample exam posted on KSOL)
- Project information posted on KSOL
- Project proposals
  - Information about team members and English description due September 24<sup>th</sup>
  - E/R diagram and relational schema due October 4<sup>th</sup>
- Proposal presentations October 9<sup>th</sup> and 11<sup>th</sup>

#### **Outline**

#### Last time:

■ DB Design: Functional Dependencies (3.1 – 3.2)

#### Today:

- DB Design: Functional Dependencies (3.1 3.2)
- DB Design: Normalization (3.3-3.4)

#### Next:

Transactions in SQL

3

#### Review

- Data anomalies?
- Functional dependencies?
- Armstrong's rules?

# Goal: Find ALL Functional Dependencies

#### Anomalies occur when certain "bad" FDs hold

- We know some of the FDs
- Need to find all FDs, then look for the bad ones
- With closure we can find all FD's easily

#### Closure of a set of Attributes

```
Given a set of attributes A_1, ..., A_n
```

The **closure**,  $\{A_1, ..., A_n\}^+$  = the set of attributes B s.t.  $A_1, ..., A_n \rightarrow B$ 

```
Example: name → color category → department color, category → price
```

Closures:

```
name+ = {name, color}
{name, category}+ = {name, category, color, department, price}
color+ = {color}
```

## Closure Algorithm

```
X = \{A_1, ..., A_n\}.
```

**Repeat until** X doesn't change **do**:

if  $B_1, ..., B_n \rightarrow C$  is a FD and  $B_1, ..., B_n$  are all in X then add C to X.

```
{name, category}+=
```

#### Example:

```
name → color
category → department
color, category → price
```

# **Closure Algorithm**

$$X = \{A_1, ..., A_n\}.$$

**Repeat until** X doesn't change do:

if 
$$B_1, ..., B_n \rightarrow C$$
 is a FD and  $B_1, ..., B_n$  are all in X then add C to X.

#### Example:

```
name → color
category → department
color, category → price
```

```
{name, category}<sup>+</sup> = { name, category, color, department, price }
```

# Closure Algorithm

```
X = \{A_1, ..., A_n\}.
```

**Repeat until** X doesn't change **do**:

```
if B_1, ..., B_n \rightarrow C is a FD and B_1, ..., B_n are all in X then add C to X.
```

#### Example:

```
name → color
category → department
color, category → price
```

```
{name, category}<sup>+</sup> = { name, category, color, department, price }
```

Hence: name, category → color, department, price

## Example

In class:

$$R(A,B,C,D,E,F)$$

$$A, B \rightarrow C$$

$$A, D \rightarrow E$$

$$B \rightarrow D$$

$$A, F \rightarrow B$$

Compute 
$$\{A,B\}^+$$
  $X = \{A, B, \}$ 

Compute 
$$\{A, F\}^+ X = \{A, F, \}$$

# Example

In class:

$$\begin{array}{c} R(A,B,C,D,E,F) \\ A,B \rightarrow C \\ A,D \rightarrow E \\ B \rightarrow D \\ A,F \rightarrow B \end{array}$$

Compute  $\{A,B\}^+$   $X = \{A, B, C, D, E\}$ 

Compute  $\{A, F\}^+$   $X = \{A, F, B, C, D, E\}$ 

# Why Do We Need Closure

- With closure we can find all FDs easily
- To check if  $X \rightarrow A$ 
  - Compute X<sup>+</sup>
  - Check if  $A \in X^+$

#### Using Closure to Infer ALL FDs

Example:

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute  $X^+$ , for every X:

Step 2: Enumerate all FD's  $X \rightarrow Y$ , s.t.  $Y \subseteq X^+$  and  $X \cap Y = \emptyset$ :

## Using Closure to Infer ALL FDs

Example:

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute X<sup>+</sup>, for every X:

Step 2: Enumerate all FD's  $X \rightarrow Y$ , s.t.  $Y \subseteq X^+$  and  $X \cap Y = \emptyset$ :

## Using Closure to Infer ALL FDs

Example:

$$\begin{array}{c} A, B \rightarrow C \\ A, D \rightarrow B \\ B \rightarrow D \end{array}$$

Step 1: Compute  $X^+$ , for every X:

$$A^{+} = A$$
,  $B^{+} = BD$ ,  $C^{+} = C$ ,  $D^{+} = D$   
 $AB^{+} = ABCD$ ,  $AC^{+} = AC$ ,  $AD^{+} = ABCD$ ,  
 $BC^{+} = BCD$ ,  $BD^{+} = BD$ ,  $CD^{+} = CD$   
 $ABC^{+} = ABD^{+} = ACD^{+} = ABCD$  (no need to compute—why?)  
 $BCD^{+} = BCD$ ,  $ABCD^{+} = ABCD$ 

Step 2: Enumerate all FD's  $X \rightarrow Y$ , s.t.  $Y \subseteq X^+$  and  $X \cap Y = \emptyset$ :

 $AB \rightarrow CD, AD \rightarrow BC, BC \rightarrow D, ABC \rightarrow D, ABD \rightarrow C, ACD \rightarrow B$ 

## **Another Example**

• Enrollment(student, major, course, room, time)

```
student → major
major, course → room
course → time
```

What else can we infer? [at home]

## Keys

- A **superkey** is a set of attributes  $A_1, ..., A_n$  s.t. for any other attribute B, we have  $A_1, ..., A_n \rightarrow B$
- A key is a minimal superkey
  - I.e. set of attributes which is a superkey and for which no subset is a superkey

## Computing (Super)Keys

- Compute  $X^+$  for all sets X
- If  $X^+$  = all attributes, then X is a (super)key
- List only the minimal X's

# Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

# Example

Product(name, price, category, color)

name, category → price category → color

What is the key?

(name, category) + = {name, category, price, color}

Hence (name, category) is a key

## **Examples of Keys**

Enrollment(student, address, course, room, time)

student → address room, time → course student, course → room, time

# **Examples of Keys**

Enrollment(student, address, course, room, time)

student → address
room, time → course
student, course → room, time

Keys: {student, room, time}, {student, course} and all supersets

# Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

# Key or Keys?

Can we have more than one key?

Given R(A,B,C) define FD's s.t. there are two or more keys

$$\begin{array}{c|c}
AB \rightarrow C \\
BC \rightarrow A
\end{array}
\quad \text{or} \quad \begin{array}{c}
A \rightarrow BC \\
B \rightarrow AC
\end{array}$$

What are the keys here?
Can you design FDs such that there are *three* keys?

# **Eliminating Anomalies**

#### Main idea:

- $X \rightarrow A$  is OK if X is a (super)key
- $X \rightarrow A$  is not OK otherwise

# Example

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Topeka    |
| Fred | 123-45-6789 | 206-555-6543 | Topeka    |
| Joe  | 987-65-4321 | 908-555-2121 | Manhattan |
| Joe  | 987-65-4321 | 908-555-1234 | Manhattan |

SSN → Name, City

What is the key? {SSN, PhoneNumber}

Hence SSN → Name, City is a "bad" dependency

### **Boyce-Codd Normal Form**

A simple condition for removing anomalies from relations:

A relation R is in BCNF if:

If  $A_1, ..., A_n \rightarrow B$  is a non-trivial dependency

in R, then  $\{A_1, ..., A_n\}$  is a superkey for R

In other words: there are no "bad" FDs

Equivalently:

 $\forall X$ , either  $(X^+ = X)$  or  $(X^+ = \text{all attributes})$ 

## **BCNF** Decomposition Algorithm

#### repeat

choose  $A_1,\ldots,A_m\to B_1,\ldots,B_n$  that violates BNCF split R into  $R_1(A_1,\ldots,A_m,B_1,\ldots,B_n)$  and  $R_2(A_1,\ldots,A_m,$  [others]) continue with both  $R_1$  and  $R_2$ 

until no more violations



Is there a 2-attribute relation that is not in BCNF?

In practice, we have a better algorithm (coming up)

# Example

| Name | SSN         | PhoneNumber  | City      |
|------|-------------|--------------|-----------|
| Fred | 123-45-6789 | 206-555-1234 | Topeka    |
| Fred | 123-45-6789 | 206-555-6543 | Topeka    |
| Joe  | 987-65-4321 | 908-555-2121 | Manhattan |
| Joe  | 987-65-4321 | 908-555-1234 | Manhattan |

SSN → Name, City

What is the key? {SSN, PhoneNumber}

use SSN → Name, City to split

# Example

| Name | <u>SSN</u>  | City      |
|------|-------------|-----------|
| Fred | 123-45-6789 | Topeka    |
| Joe  | 987-65-4321 | Manhattan |

SSN → Name, City

| SSN         | <u>PhoneNumber</u> |
|-------------|--------------------|
| 123-45-6789 | 206-555-1234       |
| 123-45-6789 | 206-555-6543       |
| 987-65-4321 | 908-555-2121       |
| 987-65-4321 | 908-555-1234       |

Let's check anomalies:

- Redundancy?
- Update?
- Delete?

## **BCNF** Decomposition Algorithm

```
BCNF_Decompose(R)
```

find X s.t.:  $X \neq X^+ \neq [all \ attributes]$ 

if (not found) then "R is in BCNF"

let  $Y = X^+ - X$ 

<u>let</u>  $Z = [all attributes] - X^+$ 

decompose R into R1(X  $\cup$  Y) and R2(X  $\cup$  Z) continue to decompose recursively R1 and R2

Find X s.t.:  $X \neq X^+ \neq [all \ attributes]$ 

# **Example BCNF Decomposition**

Person(name, SSN, age, hairColor, phoneNumber)

SSN → name, age

age → hairColor

Find X s.t.:  $X \neq X^+ \neq [all \ attributes]$ 

## **Example BCNF Decomposition**

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age
age → hairColor

Iteration 1: Person

SSN<sup>+</sup> = {SSN, name, age, hairColor}

Decompose into: P(<u>SSN</u>, name, age, hairColor) Phone(SSN, phoneNumber)

Find X s.t.:  $X \neq X^+ \neq [all \ attributes]$ 

# **Example BCNF Decomposition**

Person(name, SSN, age, hairColor, phoneNumber)
SSN → name, age
age → hairColor

Iteration 1: Person

 $SSN^+ = \{SSN, name, age, hairColor\}$ 

Decompose into: P(<u>SSN</u>, name, age, hairColor)

Phone(SSN, phoneNumber)

Iteration 2: P

 $age^+ = \{age, hairColor\}$ 

Decompose: People(SSN, name, age)

Hair(age, hairColor)

Phone(SSN, phoneNumber)