

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE
United States Patent and Trademark Office
Address: COMMISSIONER FOR PATENTS
P.O. Box 1450
Alexandria, Virginia 22313-1450
www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/532,249	04/22/2005	Kenji Maruyama	050256	1069
23850	7590	06/02/2009	EXAMINER	
KRATZ, QUINTOS & HANSON, LLP			FULK, STEVEN J	
1420 K Street, N.W.				
Suite 400			ART UNIT	PAPER NUMBER
WASHINGTON, DC 20005			2891	
		MAIL DATE	DELIVERY MODE	
		06/02/2009	PAPER	

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

Office Action Summary	Application No. 10/532,249	Applicant(s) MARUYAMA ET AL.
	Examiner STEVEN J. FULK	Art Unit 2891

-- The MAILING DATE of this communication appears on the cover sheet with the correspondence address --
Period for Reply

A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION.

- Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication.
- If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication.
- Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED. (35 U.S.C. § 133).

Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).

Status

1) Responsive to communication(s) filed on 23 March 2009.

2a) This action is FINAL. 2b) This action is non-final.

3) Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under *Ex parte Quayle*, 1935 C.D. 11, 453 O.G. 213.

Disposition of Claims

4) Claim(s) 1-8 and 11-15 is/are pending in the application.

4a) Of the above claim(s) _____ is/are withdrawn from consideration.

5) Claim(s) _____ is/are allowed.

6) Claim(s) 1,2,4-8 and 11-15 is/are rejected.

7) Claim(s) 3 is/are objected to.

8) Claim(s) _____ are subject to restriction and/or election requirement.

Application Papers

9) The specification is objected to by the Examiner.

10) The drawing(s) filed on 22 April 2005 is/are: a) accepted or b) objected to by the Examiner.
 Applicant may not request that any objection to the drawing(s) be held in abeyance. See 37 CFR 1.85(a).
 Replacement drawing sheet(s) including the correction is required if the drawing(s) is objected to. See 37 CFR 1.121(d).

11) The oath or declaration is objected to by the Examiner. Note the attached Office Action or form PTO-152.

Priority under 35 U.S.C. § 119

12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f).

a) All b) Some * c) None of:

1. Certified copies of the priority documents have been received.
2. Certified copies of the priority documents have been received in Application No. _____.
3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)).

* See the attached detailed Office action for a list of the certified copies not received.

Attachment(s)

1) <input type="checkbox"/> Notice of References Cited (PTO-892)	4) <input type="checkbox"/> Interview Summary (PTO-413)
2) <input type="checkbox"/> Notice of Draftsperson's Patent Drawing Review (PTO-948)	Paper No(s)/Mail Date. _____
3) <input type="checkbox"/> Information Disclosure Statement(s) (PTO/SB/08)	5) <input type="checkbox"/> Notice of Informal Patent Application
Paper No(s)/Mail Date _____	6) <input type="checkbox"/> Other: _____

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on March 23, 2009 has been entered.

Claim Rejections - 35 USC § 103

2. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

(a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

3. Claims 1, 4, 5 and 11-12 are rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235, previously presented) in view of Mirkarimi et al. '094.

a. Regarding claims 1, 4 and 5, Takeshi et al. discloses a method of producing a semiconductor device incorporating a capacitor structure that includes a ferroelectric thin film, comprising: forming, on a single crystalline substrate (figure A, memory capacitor part 10) having a surface suited for growing thereon a thin film layer of ferroelectric single crystal having a plane (111), an electrically conducting thin film that will form one electrode of the

capacitor on the single crystalline substrate; forming a ferroelectric thin film containing Pb (PbZrTiO_3 layer 6); wherein the single crystalline substrate has a plane (111) on which the ferroelectric thin film is to be formed, or a single crystalline substrate having an offset angle from the plane (111) is used (the substrate would inherently have either a (111) plane or another plane that is offset from the (111) plane); and part of a circuit of a semiconductor device (metal bumps 1), to thereby fabricate a single crystalline substrate having the ferroelectric thin film containing Pb and the part of the circuit of the semiconductor device; and bonding the single crystalline substrate to another substrate (transistor part 20) on which another circuit of the semiconductor device has been formed in advance, to couple the two circuits together to thereby obtain a semiconductor device incorporating a capacitor structure that includes a ferroelectric thin film (figure B).

Takeshi et al. does not explicitly disclose the ferroelectric thin film to be a single crystalline film formed epitaxially with a plane (111) in parallel with the surface of the substrate. Mirkarimi et al. teaches a ferroelectric memory device wherein a single crystalline ferroelectric thin film (claim 16, ferroelectric material has rhombohedral unit cell, thus single crystalline) is formed epitaxially with a (111) orientation parallel with the surface (col. 4, lines 17-19, (111) PZT grown on (111) Pt, thus considered epitaxial due to taking the form of the substrate underneath). It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the (111) oriented single crystalline thin film

of Mirkarimi et al. as the thin film of Takeshi et al. One would have been motivated to do this because Mirkarimi et al. taught that the (111) orientation of PZT minimized the electromechanical coefficient of the material, thus minimizing physical distortion of the layer and preventing damage to the memory device (Mirkarimi et al., col. 1, lines 14-35 and col. 2, lines 20-28).

b. Regarding claims 11 and 12, Takeshi et al. discloses all of the elements of the claims as set forth in paragraph 3a above, but the reference does not explicitly disclose the substrate to comprise single crystalline silicon having a plane {111}, {100} or offset from {111} or {100}. Mirkarimi et al. teaches the use of a silicon substrate, which would inherently have a plane {111}, {100} or offset from {111} or {100}.

It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the substrate of Mirkarimi et al. in the method of Takeshi et al. because single crystalline silicon was a well known, conventional substrate used in semiconductor manufacturing due to its process compatibility and low cost.

4. Claim 2 is rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235) in view of Mirkarimi et al. '094, and further in view of Adkisson et al. '202.

Takeshi et al. in view of Mirkarimi et al. teach all the elements of the claim as set forth above, and Takeshi et al. also discloses patterning the thin film layer to thereby form isolated ferroelectric thin films of a predetermined shape on the single crystalline

substrate, forming one electrode of a capacitor of a predetermined shape positioned on the ferroelectric thin film, but the references do not explicitly disclose removing the single crystalline substrate to expose the ferroelectric thin film, and forming another electrode of the capacitor on the ferroelectric thin film that is exposed.

Adkisson et al. teaches a method of forming a ferroelectric capacitor device wherein a ferroelectric thin film (fig. 1b, 30) is formed on a single crystalline substrate (24), the single crystalline substrate is bonded to another substrate having a circuit formed in advance (fig. 1a, 10; fig. 1c), and the single crystalline substrate is removed (fig. 1d). It would have been obvious to one of ordinary skill in the art at the time the invention was made to remove the single crystalline substrate in the method of Takeshi et al. in view of Mirkarimi et al. as taught by Adkisson et al. One would have been motivated to do this because removing the single crystalline substrate allowed the top of the ferroelectric device to be contacted by an electrode and connected to peripheral circuitry, thus allowing the device to perform its intended function.

5. Claim 6 is rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235) in view of Mirkarimi et al. '094, and further in view of Kim et al. '371.

Takeshi et al. in view of Mirkarimi et al. teach all the elements of the claim as set forth above, but the references do not explicitly disclose the substrate to be MgO or SrTiO₃. Kim et al. discloses a ferroelectric capacitor device wherein the substrate is MgO (fig. 1a, 11). It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the MgO substrate of Kim et al. in the method as

taught by Takeshi et al. in view of Mirkarimi et al. One would have been motivated to do this because MgO was a conventional substrate used with PZT material due to its similar lattice constant.

6. Claim 7 is rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235) in view of Mirkarimi et al. '094, and further in view of Greenwald et al. '026.

Takeshi et al. in view of Mirkarimi et al. teaches all the elements of the claim as set forth above, but the references do not explicitly disclose the substrate to be an a-Al₂O₃ single crystalline substrate having a plane (0001) on which the ferroelectric thin film is to be formed, or an a-Al₂O₃ single crystalline substrate having an offset angle from the plane (0001). Greenwald et al. discloses a ferroelectric capacitor device wherein the substrate is a-Al₂O₃ (fig. 1, 10), which would inherently have a plane (0001) or a plane offset from (0001). It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the a-Al₂O₃ substrate of Greenwald et al. in the method as taught by Takeshi et al. in view of Mirkarimi et al. One would have been motivated to do this because a-Al₂O₃ was a conventional substrate used with PZT material due to its similar lattice constant.

7. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235) in view of Mirkarimi et al. '094, and further in view of Yamawaki et al. '774.

Takeshi et al. in view of Mirkarimi et al. teaches all the elements of the claim as set forth above, but the references do not explicitly disclose the substrate to be

Art Unit: 2891

MgAl₂O₄. Yamawaki et al. discloses a ferroelectric capacitor device wherein the substrate is MgAl₂O₄ (fig. 4, 1). It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the MgAl₂O₄ substrate of Yamawaki et al. in the method as taught by Takeshi et al. in view of Mirkarimi et al. One would have been motivated to do this because MgAl₂O₄ was a conventional substrate used with PZT material due to its similar lattice constant.

8. Claims 13-15 are rejected under 35 U.S.C. 103(a) as being unpatentable over Takeshi et al. (Abstract JP8186235) in view of Mirkarimi et al. '094, and further in view of Li '254.

Takeshi et al. in view of Mirkarimi et al. teaches all the elements of the claim as set forth above, but the references do not explicitly disclose the epitaxially forming the ferroelectric thin film through a buffer layer of MgO. Li teaches a method of epitaxially forming a ferroelectric thin film through a buffer layer of MgO. It would have been obvious to one of ordinary skill in the art at the time the invention was made to use the MgO buffer layer of Li in the method as taught by Takeshi et al. in view of Mirkarimi et al. One would have been motivated to do this because Li taught that a buffer layer provided excellent crystalline properties, such as high orientational properties, and excellent surface flatness of the ferroelectric thin film due to the surface flatness of the underlying layers (Li, ¶[0024]), thus improving the performance of the device.

Response to Arguments

9. Applicant's arguments with respect to the rejection of claim 1 over Takeshi in view of Mirkarimi have been fully considered but they are not persuasive. Applicant

argues that Takeshi in view of Mirkarimi does not teach a ferroelectric single crystalline thin film. This argument is not persuasive because Mirkarimi teaches the ferroelectric thin film to comprise a rhombohedral unit cell, meaning the material is single crystalline.

Allowable Subject Matter

10. Claim 3 is objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

11. The following is a statement of reasons for the indication of allowable subject matter: a search of the prior art failed to disclose or reasonably suggest a method of producing a ferroelectric thin film capacitor comprising forming an electrically conducting thin film layer on a single crystalline substrate having through holes, forming, on said electrically conducting thin film layer, ferroelectric thin film containing Pb and having a plane (111) in parallel with the surface of the substrate, patterning said electrically conducting thin film layer and said ferroelectric thin film layer to thereby form isolated ferroelectric thin films of a predetermined shape and one electrode of a capacitor of a predetermined shape, forming another electrode of the capacitor on said ferroelectric thin film, and forming part of a circuit of a semiconductor device so as to pass through the holes in said single crystalline substrate, to thereby fabricate a single crystalline substrate comprising a capacitor structure constituted by said ferroelectric thin film containing Pb and a pair of electrodes holding the ferroelectric thin film there between, as recited by claim 3.

Takeshi et al. (JP8186235), Mirkarimi et al. '094, Adkisson et al. '202, Kim et al. '371, Greenwald et al. '026, Yamawaki et al. '774, Li '254 and Lee et al. '705 disclose a method of forming a ferroelectric thin film capacitor, but the references do not teach the limitations of claim 3 as discussed above.

Conclusion

12. Any inquiry concerning this communication or earlier communications from the examiner should be directed to STEVEN J. FULK whose telephone number is (571)272-8323. The examiner can normally be reached on Monday through Friday, 9:00am-6:00pm.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kiesha Rose can be reached on (571) 272-1844. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

13. Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see <http://pair-direct.uspto.gov>. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Steven J. Fulk/
Examiner, Art Unit 2891