06.1;08

АКУСТИМУЛИРОВАННАЯ АДГЕЗИЯ МЕДНЫХ ПЛЕНОК К КРЕМНИЮ

© Б.Н.Заверюхин, Х.Х.Исмаилов, Р.А.Муминов, Н.Н.Заверюхина, О.Турсункулов

Влияние ультразвуковых воли на свойства объема полупроводников является установленным фактом, например [1-3].

Цель настоящей работы — исследование влияния ультразвуковой обработки на адгезионные свойства поверхности полупроводинков. Ранее установлено, что повышение адгезионной прочности P металла к полупроводнику достигалось нагревом при температурах T > 200° С или фотооблучением структур металл-полупроводник [4].

В настоящем сообщении рассматривается акустостимулированный адгезионный эффект, под которым понимается изменение адгезионных свойств поверхности полупроводника и увеличение (P) после ультразвуковой обработки структур металл-полупроводник. Нами изучалась акустостимулированная адгезия меди в кремний Si n-типа (удельное сопротивление $200-400~\rm OM \cdot cm; \ \tau = 800~\rm Mkc)$ при температуре $T=293~\rm K$. По спектрам инфракрасного поглощения были отобраны Si-образцы с концентрацией кислорода $N(O_2)=2\cdot 10^{15}~\rm cm^{-3}, 4\cdot 10^{17}~\rm cm^{-3}, 2.2\cdot 10^{18}~\rm cm^{-3}$.

На Si-образцы (пластины диаметром $< 28\,\mathrm{mm}$ и толщиной $< 1\,\mathrm{mm}$) после механической и химической обработки методом напыления в вакууме наносились медные пленки толщиной $d=7000-9000\,\mathrm{A}$. Величина d определялась эллипсометрическим методом. Нагрев полученных структур металл-полупроводник не проводился.

Адгезионная прочность (P_1) и (P_2) до и после соответственно прохождения через структуры металл-полупроводник ультразвуковых волн частотой $f=(5-15)\,\mathrm{M}\,\Gamma$ ц и интенсивностью $R=(0.5-1)\,\mathrm{BT/cm^2}$ изучалась, как и в $[^4]$, методом отрыва. Характерные результаты исследования (P) для некоторых образцов сведены в таблицу.

Исследования вольт-амперных характеристик показывали, что наблюдалась общая закономерность для всех образцов после облучения ультразвуком — рост тока на 5-10% в интервалах электрических полей $E=5-60~\mathrm{B/cm}$.

В работе [4] подобное увеличение тока после фотооблучения структур связывается с возбуждением химических

11	Концен-	Ло	После			Время
Номер	трация	,	облучения	i i		облучения
образца	кислорода		ультра-	f,	R,	ультра-
	$N(O_2),$	звуком	звуком			звуком,
	см ⁻³	$P_1, \Gamma/\text{mm}^2$	P_2 , г/мм 2	МГц	Вт/см ²	t, мин
1	$2 \cdot 10^{15}$	180	278	15	0.5	30
2	$4 \cdot 10^{17}$	135	193	15	0.5	30
3	$2.2 \cdot 10^{18}$	110	154	15	0.5	30

связей на поверхности полупроводников, что и обеспечивает снижение энергетического барьера для хемосорбции и алгезии.

Из анализа результатов (см. таблицу) следует, что имеется зависимость (P) от $N(O_2)$. Наблюдаемый рост (P) связан c уменьшением концентрации кислорода, блокирующего диффузию металла в приповерхностных областях исходного кремния. Далее адгезионная прочность, согласно $[^{6,7}]$, зависит от наличия на поверхности твердого тела кислорода, изменяющего химический состав приповерхностных слоев и уменьшающего адгезионное взаимодействие контактирующих тел.

Зависимость адгезионной прочности меди и кремниевой подложки от времени облучения ультразвуком (Si-n, N(O₂) = $4\cdot 10^{-17}$ см⁻³, $f=15\,\mathrm{mT}$ ц, $R=0.5\,\mathrm{Bt/cm^2}$, $T=293\,\mathrm{K}$).

Кроме того, увеличение (P) после облучения ультразвуком образцов объясняется изменением структуры различного вида кислородосодержащих комплексов [8] в поле ультразвуковых волн [9] и внедрением в них диффундирующих атомов меди. Последующая серия экспериментов, по всей видимости, подтверждает такое предположение.

На рисунке показана типичная зависимость (P) от времени облучения t ультразвуком при $T=293\,\mathrm{K}$. Как видно из полученных результатов, P растет (интервал 1) и выходит на насыщение при t > 2.5ч (интервал 2).

Рост и насыщение Р связаны соответственно с начальным увеличением и стабилизацией со временем числа разрывов и трансляции валентных связей [10] акустоактивируемых поверхностных слоев полупроводника.

Следует отметить, что помимо возбуждения и разрыва ультразвуком химических связей, а также диффузии металла [11] в полупроводник наблюдался и другой акустостимулированный эффект, улучшающий адгезионные свойства кремния — разрушение ультразвуком окисных пленок на поверхности полупроводника перед осаждением на него металла.

Таким образом, проведенные исследования позволяют развить и применять акустические методы в технологии полупроводинковых приборов имеющих, как известно, контакты металл-полупроводник.

Список литературы

- [1] Гаибов А.Г., Заверюхин Б.Н., Кревчик В.Д. и др. // Письма в ЖТФ. 1984. Т. 10. В. 10. С. 616-620. [2] Заверюхин Б.Н., Кревчик В.Д., Муминов Р.А. и др. // ФТП. 1986. Т. 20. В 2. С. 525-528
- Т. 20. В. 3. С. 525-528. [3] Здебский А.П., Корчная В.Л., Торчинская Т.В. и др. // Письма в ЖТФ. 1986. Т. 12. В. 2. С. 76-80.
- [4] Кив А.В., Мелькин И.Г. // ФТП. 1973. Т. 7. В. 3. С. 617-619.
- [5] Вавилов В.С., Кив А.Е., Мелькин И.Г. Механизмы образования и миграции дефектов в полупроводниках. М.: Наука, 1981.
- [6] Varchenya S.A., Simanovskis A., Stolyrova S.V. // Thin Solid Films.
- 1988. V. 164. P. 147-152. [7] Kikuchi A., Baba S., Kinbara A. // Thin Solid Films. 1988. V. 164.
- P. 153-156. [8] Бехштедт Ф., Эндерлайн Р. Поверхности и границы раздела полупроводников. М.: Мир, 1990. С. 451.
- [9] Заверюхин Б.Н., Муминов Р.А., Исмаилов Х.Х. и др. // Тез. докл. Первая национальная конференция "Дефекты в полупроводниках". С.-Петербург, 1992. С. 200.
- [10] Рыкалин И.Н., Шоршоров М.Х., Красулин Ю.Л. // Неорганические материалы. 1965. T. 1. Nº 1. C. 29-36.
- [11] Krevchik V.D., Muminov R.A., Yafasov A.Y. // Phys. Stat. Sol(a). 1981. V. 63. K 159-162.

Поступило в Редакцию 26 апреля 1996 г.