

Multiples Testen -Simultane Konfidenzintervalle-

Dr. Martin Scharpenberg

MSc Medical Biometry/Biostatistics

WiSe 2019/2020

Konfidenzintervall für einzelnen Kontrast

Konfidenzintervall für einzelnen Kontrast

- Betrachten k Gruppen mit Erwartungswert $\mu = (\mu_1, \dots, \mu_k)$ und Varianz σ^2
- $\bar{Y} = (\bar{Y}_1, \dots, \bar{Y}_k)$ Gruppenmittelwerte
- Sei $\mathbf{c} = (c_1, \dots, c_k)$ mit $c_1 + \dots + c_k = 0$ ein Kontrast
- Der Parameter $\mathbf{c}^T \mu = \sum_{i=1}^k c_i \mu_i$ hat Schätzer $\mathbf{c}^T \bar{Y} = \sum_{i=1}^k c_i \bar{Y}_i$
- Wir wissen, dass

$$\mathbf{c}^T \bar{Y} = \sum_{i=1}^k c_i \bar{Y}_i \sim \mathcal{N}(\mathbf{c}^T \mu, \sigma^2 \sum_{i=1}^k \frac{c_i^2}{n_i})$$

Damit folgt

$$\mathbf{c}^T \bar{Y} - \mathbf{c}^T \mu \sim N(0, \sigma^2 \sum_{i=1}^k \frac{c_i^2}{n_i})$$

Test für H_0^{δ} : $\mathbf{c}^T \mu = \delta$

• Wenn $\mathbf{c}^T \mu = \delta$:

$$T_{\mathbf{c}}(\delta) = \frac{\mathbf{c}^T \bar{Y} - \delta}{\hat{\sigma} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}}} \quad \sim \quad t_{N-k}$$

- Verwerfen $H_0^{\delta}: \mathbf{c}^T \mu = \delta$ falls $|T_{\mathbf{c}}(\delta)| \geq t_{\alpha} = Q_{N-k}^t (1 \alpha/2)$
- Nicht-verwerfen von H_{δ} ist gleichbedeutend mit

$$|\mathbf{c}^T \bar{\mathbf{Y}} - \delta| < t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i} \hat{\sigma}}$$

Test für H_0^{δ} : $\mathbf{c}^T \mu = \delta$

• Dies lässt sich wie folgt umformen:

$$\begin{aligned} |\mathbf{c}^T \bar{Y} - \delta| &< t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} \\ \Leftrightarrow &- t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} < \mathbf{c}^T \bar{Y} - \delta < t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} \\ \Leftrightarrow &\mathbf{c}^T \bar{Y} - t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} < \delta < \mathbf{c}^T \bar{Y} + t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} \end{aligned}$$

Konfidenzintervall für einzelnen Kontrast

- Wir "sammeln" alle δ für die H_0^δ auf dem Niveau α nicht verworfen werden kann
- Dies führt zu dem Konfidenzintervall

$$CI = \left(\mathbf{c}^T \bar{Y} - t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma} , \mathbf{c}^T \bar{Y} + t_{\alpha} \sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}} \hat{\sigma}\right)$$

• Für die Überdeckungswahrscheinlichkeit gilt dann:

$$P(\mathbf{c}^T \mu \in CI) = P(|T_{\mathbf{c}}(\mathbf{c}^T \mu)| < t_{\alpha}) = 1 - \alpha$$

Konfidenzintervall für einzelnen Gruppenvergleich

- Der Vergleich zweier Gruppen ist ein Spezialfall eines Kontrasttests $(c_i = 1, c_i = -1, c_l = 0 \text{ sonst})$
- $(1-\alpha)$ -Konfidenintervall für $\mu_i \mu_i$:

$$CI = \left(ar{Y}_i - ar{Y}_j - t_lpha \sqrt{rac{1}{n_i} + rac{1}{n_j}} \hat{\sigma} \; , \; ar{Y}_i - ar{Y}_j + t_lpha \sqrt{rac{1}{n_i} + rac{1}{n_j}} \hat{\sigma}
ight)$$

• Für die Überdeckungswahrscheinlichkeit gilt wieder

$$P(\mu_i - \mu_j \in CI) = P(|T_{ij}(\mu_i - \mu_j)| < t_\alpha) = 1 - \alpha$$

Simultane Konfidenzintervalle

Simultane Konfidenzintervalle - Definition

• Untersuchen h Kontraste gleichzeitig

$$\mathbf{c}_j=(c_{j,1},\ldots,c_{j,k}), \qquad j=1,\ldots,h$$

 Wollen h Konfidenzintervalle Cl₁,..., Cl_h berechnen, so dass für die simultane Überdeckungswahrscheinlichkeit gilt:

$$P\left(\mathbf{c}_{j}^{\mathsf{T}}\mu\in\mathit{CI}_{j} \;\; \mathsf{für} \; \mathsf{ALLE} \; i=1,\ldots,h
ight)\geq 1-lpha$$

Bonferroni Methode

Bonferroni Methode

• Testen die Nullhypothesen

$$H_{\delta_j,j}: \mathbf{c}_j^T \mu_j = \delta_j, \quad j = 1, \dots, h$$

mit Kontrasttests auf dem Niveau α/h

• D.h., wir verwerfen $H_{\delta_i,j}$ wenn

$$|T_{\mathbf{c}_j}(\delta_j)| = rac{|\mathbf{c}_j^T ar{Y} - \delta_j|}{\hat{\sigma} \sqrt{\sum_{i=1}^k c_{j,i}^2/n_i}} \quad \geq \quad t_{\alpha/h}$$

mit
$$t_{\alpha/h} = Q_{N-k}^t (1 - \frac{\alpha}{2h})$$

Bonferroni Methode

Die Intervalle

$$Cl_j^{Bonf} = \left(\mathbf{c}_j^T \bar{Y} \pm t_{\alpha/h} \hat{\sigma}_{\sqrt{\sum_{i=1}^k \frac{c_{j,i}^2}{n_i}}}\right)$$

haben simultane Überdeckungswahrscheinlichkeit $\geq 1 - \alpha$, d.h.

$$P\left(\mathbf{c}_{j}^{T}\mu\in\mathit{CI}_{j}^{\mathit{Bonf}}\quad \mathrm{für\ alle}\ j\right)\geq1-lpha$$

Beispieldatensatz 'cholesterol' - Wiederholung

- Datensatz cholesterol im R-Package multcomp:
- Vergleich von 5 Behandlungen zur Cholesterol-Reduktion in randomisierter Studie mit 10 Patienten pro Gruppe (N=50)
 - **Gruppe 1:** Neues Medikament, 1 mal 20 mg pro Tag
 - Gruppe 2: Neues Medikament, 2 mal 10 mg pro Tag
 - Gruppe 3: Neues Medikament, 4 mal 5 mg pro Tag
 - Gruppe 4: Kontrollmedikament D
 - Gruppe 5: Kontrollmedikament E.
- Wir interessieren uns nun für alle $h = 5 \cdot 4/2 = 10$ Gruppenvergleiche

Bonferroni-Methode - Beispiel 'Cholesterol' mit SAS

```
proc glm data=grvgl.cholest;
class trt;
model response = trt;
means trt / cldiff Bon;
run;
```


Bonferroni-Methode - Beispiel 'Cholesterol' mit SAS

Comparisons significant at the 0.05 level are indicated by ***.

			Difference			
trt			Between	Simultaneous 95%		
Comparison			Means	Confidence Limit		
_						
drugE	-	$\mathtt{drug}\mathtt{D}$	5.586	1.325	9.847	***
drugE	-	4times	8.573	4.312	12.834	***
drugE	-	2times	11.723	7.462	15.984	***
drugE	-	1time	15.166	10.905	19.427	***
drugD	-	4times	2.986	-1.275	7.247	
drugD	-	2times	6.136	1.875	10.397	***
drugD	-	1time	9.579	5.318	13.840	***
4times	-	2times	3.150	-1.111	7.411	
4times	-	1time	6.593	2.332	10.854	***
2times	_	1time	3.443	-0.818	7.704	

Bonferroni Methode - Vor- und Nachteile

Vorteile

- Kann auf beliebige (gültige) Konfidenzintervalle angewendet werden
- Man kann h beliebige Kontraste untersuchen

Nachteile

- Man muss die zu testenden Kontraste vorab festlegen
- Die multiple Überdeckungswahrscheinlichkeit ist meistens echt grösser $1-\alpha \to \mathsf{Es}$ gibt oft andere Verfahren, mit engeren Konfidenzintervallen

Scheffé Methode

Scheffé-Konfidenzintervalle

• Mit $d^{\mathsf{Scheffe}} = \sqrt{(k-1)Q_{k-1,N-k}^{\mathsf{F}}(1-lpha)}$ haben alle Intervalle

$$CI_{\mathbf{c}}^{\mathsf{Scheffé}} = \left(\mathbf{c}^T \bar{Y} \pm d^{\mathsf{Scheffé}} \hat{\sigma}_{\sqrt{\sum_{i=1}^k \frac{c_i^2}{n_i}}}\right)$$

• simultane Überdeckungswahrscheinlichkeit $\geq 1 - \alpha$, d.h.

$$P\left(\mathbf{c}^T \mu \in \mathit{CI}^{\mathsf{Scheff\'e}}_{\mathbf{c}} \ \ \text{ für alle Kontraste } \mathbf{c} \ \right) \geq 1 - \alpha$$

Scheffé-Methode - Beispiel 'Cholesterol' mit SAS

```
proc glm data=grvgl.cholest;
class trt;
model response = trt;
means trt / cldiff Scheffe;
run;
```


Scheffé-Methode - Beispiel 'Cholesterol' mit SAS

Comparisons significant at the 0.05 level are indicated by ***.

trt Comparison			Difference Between Means	Simultaneous 95% Confidence Limits			Bonferroni Confidence Lim.	
drugE	_	drugD	5.586	0.951	10.222	***	1.325	9.847
drugE	-	4times	8.573	3.937	13.208	***	4.312	12.834
drugE	-	2times	11.723	7.087	16.358	***	7.462	15.984
drugE	-	1time	15.166	10.530	19.801	***	10.905	19.427
drugD	-	4times	2.986	-1.649	7.622		-1.275	7.247
drugD	-	2times	6.136	1.501	10.772	***	1.875	10.397
drugD	-	1time	9.579	4.944	14.215	***	5.318	13.840
4 times	-	2times	3.150	-1.486	7.785		-1.111	7.411
4 times	-	1time	6.593	1.957	11.228	***	2.332	10.854
2times	_	1time	3.443	-1.193	8.079		-0.818	7.704

Tukey Methode

Tukey Methode

- Suchen simultanes Konfidenzintervall für alle Paarvergleiche
- Mit entsprechender krit. Grenze $d_{k,\alpha}^{Tukey}$ haben die Intervalle

$$CI_{ij}^{Tukey} = \left(\bar{Y}_i - \bar{Y}_j \pm d_{k,\alpha}^{Tukey} \hat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_j}} \right)$$

simultane Überdeckungswahrscheinlichkeit $\geq 1-lpha$, d.h.,

$$P\left(\mu_i - \mu_j \in Cl_{ij}^{Tukey} \quad \text{für alle } i, j\right) \geq 1 - \alpha$$

• Die krit. Grenze des zweiseitigen Tukey-Tests erfüllt

$$P_{\mathbf{0}}(\max_{1 \leq i \leq j \leq k} |T_{ij}| \geq d_{k,\alpha}^{Tukey}) = \alpha$$

Tukey-Methode - Beispiel 'Cholesterol' mit SAS

```
proc glm data=grvgl.cholest;
class trt;
model response = trt;
means trt / cldiff tukey;
run;
```


Tukey-Methode - Beispiel 'Cholesterol' mit SAS

Comparisons significant at the 0.05 level are indicated by ***

	D	ifference			
trt		Between	Simultane	ous 95%	
Comparis	on	Means	Confidence	Limits	
drugE -	drugD	5.586	1.485	9.688	***
drugE -	4times	8.573	4.471	12.674	***
drugE -	2times	11.723	7.621	15.824	***
drugE -	1time	15.166	11.064	19.267	***
drugD -	4times	2.986	-1.115	7.088	
drugD -	2times	6.136	2.035	10.237	***
drugD -	1time	9.579	5.478	13.680	***
4times -	2times	3.150	-0.951	7.251	
4times -	1time	6.593	2.492	10.694	***
2times -	1time	3.443	-0.658	7.544	

Tukey-Methode – Beispiel 'Cholesterol' mit R

> confint(amod_glht)

```
Simultaneous Confidence Intervals
Multiple Comparisons of Means: Tukey Contrasts
Fit: aov(formula = response ~ trt, data = cholesterol)
Estimated Quantile = 2.8417
95% family-wise confidence level
```

Linear Hypotheses:

```
Estimate lwr
                                      upr
2 \text{times} - 1 \text{time} == 0
                     3.4430 -0.6586 7.5446
4 \text{times} - 1 \text{time} == 0 6.5928 2.4912 10.6944
drugD - 1time == 0 9.5792 5.4776 13.6808
drugE - 1time == 0 15.1656 11.0639 19.2672
4 \times 10^{-2} = 0 3.1498 - 0.9518 7.2514
drugD - 2times == 0
                     6.1362
                               2.0346 10.2378
drugE - 2times == 0 11.7226 7.6209 15.8242
drugD - 4times == 0
                     2.9864 -1.1152 7.0880
drugE - 4times == 0
                     8.5727 4.4711 12.6744
drugE - drugD == 0
                     5.5864
                               1.4847 9.6880
```


Tukey's 95%-Konfidenzintervalle – Beispiel

95% family-wise confidence level

Tukey Methode - Vor- und Nachteile

Vorteile:

Man bekommt immer engere Konfidenzintervalle als mit der Bonferroni-Methode

Nachteile:

- Tukey Methode kann nur bei homogener Varianz angewendet werden
- Man kann nur die k Paarvergleichskontraste schätzen

Vergleich von Bonferroni-, Tukey- und Scheffé-Methode

• Es gilt immer

$$CI_{ij}^{\mathit{Tukey}} \subseteq CI_{ij}^{\mathit{Bonf}}$$
 und $CI_{ij}^{\mathit{Tukey}} \subseteq CI_{ij}^{\mathsf{Scheff\'e}}$

- ullet Zwischen Cl_{ij}^{Bonf} und $Cl_{ij}^{Scheff\acute{e}}$ gibt es keine eindeutige Beziehung
- Die Beziehung ist abhängig von der Zahl der Gruppen und den Fallzahlen

Dunnett Methode

Dunnett Methode

Dunnett-Konfidenzintervalle

Mit krit. Grenze $d_{k,\alpha}^{Dunnett}$ des Dunnett-Tests haben die Intervalle

$$CI_i^{Dunnett} = \left(\bar{Y}_i - \bar{Y}_1 \pm d_{k,\alpha}^{Dunnett} \cdot \hat{\sigma} \cdot \sqrt{\frac{1}{n_1} + \frac{1}{n_i}}\right), i = 2, \dots, k$$

simultane Überdeckungswahrscheinlichkeit $\geq 1-lpha$, d.h.,

$$P\left(\mu_i - \mu_1 \in Cl_i^{Dunnett} \mid \text{für } i \geq 2\right) \geq 1 - \alpha$$

Beispiel: Effektivität von Eniporide – Wiederholung

Vergleich von 4 Dosen Eniporide zu Placebo bei akutem Herzinfarkt in randomisierter Studie mit ingesamt 430 Patienten

- Gruppe 1: Placebo (88 Pat.)
- **Gruppe 2:** 50 mg Eniporide (86 Pat.)
- **Gruppe 3:** 100 mg Eniporide (91 Pat.)
- **Gruppe 4:** 150 mg Eniporide (74 Pat.)
- **Gruppe 5:** 200 mg Eniporide (91 Pat.)

Primärer Endpunkt: α -HBDH AUC (0 bis 72 Stunden)

Beispiel: Effektivität von Eniporide - Orginaldaten

Mittelwerte und Standardabweichungen für α -HBDA:

Dosis:	0 mg	50 mg	100 mg	150 mg	200 mg
n:	88	86	91	74	91
MW:	44.2	45.3	40.2	33.9	43.9
STD:	26.0	31.8	22.5	20.5	27.0

Dunnett-Methode – Beispiel Eniporide mit SAS

```
proc glm data=grvgl.zeym;
class group;
model HBDH = group;
means group / cldiff dunnett;
run;
```

```
Comparisons significant at the 0.05 level are indicated by ***
```

	Difference			
group	Between	Simultane	ous 95%	
Comparison	Means	Confidence	Limits	
1 - 0	1.100	-8.559	10.759	
2 - 0	-4.000	-13.523	5.523	
3 - 0	-10.300	-20.347	-0.253	***
4 - 0	-0.300	-9.823	9.223	

Dunnett-Methode - Beispiel Eniporide mit R

```
> confint(bmod_glht)
```

```
Simultaneous Confidence Intervals
Multiple Comparisons of Means: Dunnett Contrasts
Fit: aov(formula = HBDH ~ group, data = zeymer2)
Estimated Quantile = 2.4531
95% family-wise confidence level
```

Linear Hypotheses:

Dunnett's 95%-Konfidenzintervalle – Beispiel Eniporide mit R

95% family-wise confidence level

Dunnett Methode - Vor- und Nachteile

Vorteile:

 Man bekommt immer engere Konfidenzintervalle als mit der Bonferroni- und Tukey-Methode

Nachteile:

- Dunnett Methode kann nur bei homogener Varianz angewendet werden.
- Erlaubt keine anderen Vergleiche als mit μ_1 (oder einem anderen vorab gewählten μ_i).