Welcome to Covid19 Data Analysis Notebook

▼ Let's Import the modules

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
print('Modules are imported.')
```

Modules are imported.

▼ Task 2

▼ Task 2.1: importing covid19 dataset

importing "Covid19_Confirmed_dataset.csv" from "./Dataset" folder.

```
corona_dataset_csv = pd.read_csv("../covid19_Confirmed_dataset.csv")
corona_dataset_csv.head()
```

₽	Province/State	Country/Region	Lat	Long	1/22/20	1/23/20	1/24/20	1/25/
0	NaN	Afghanistan	33.0000	65.0000	0	0	0	
1	NaN	Albania	41.1533	20.1683	0	0	0	
2	NaN	Algeria	28.0339	1.6596	0	0	0	
3	NaN	Andorra	42.5063	1.5218	0	0	0	
4	NaN	Angola	-11.2027	17.8739	0	0	0	
2	NaN NaN	Algeria Andorra	28.0339 42.5063	1.6596 1.5218	0	0	0	

5 rows × 104 columns

▼ Let's check the shape of the dataframe

```
corona_dataset_csv.shape

[→ (266, 104)
```

▼ Task 2.2: Delete the useless columns

corona_dataset_csv.drop(["Lat","Long"],axis=1,inplace=True)

corona_dataset_csv.head(10)

10 rows × 102 columns

₽		Province/State	Country/Region	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/
0	0	NaN	Afghanistan	0	0	0	0	0	
	1	NaN	Albania	0	0	0	0	0	
	2	NaN	Algeria	0	0	0	0	0	
	3	NaN	Andorra	0	0	0	0	0	
	4	NaN	Angola	0	0	0	0	0	
	5	NaN	Antigua and Barbuda	0	0	0	0	0	
	6	NaN	Argentina	0	0	0	0	0	
	7	NaN	Armenia	0	0	0	0	0	
	8	Australian Capital Territory	Australia	0	0	0	0	0	
	9	New South Wales	Australia	0	0	0	0	3	

▼ Task 2.3: Aggregating the rows by the country

corona_dataset_aggregated=corona_dataset_csv.groupby("Country/Region").sum()
corona_dataset_aggregated.head()

	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/2
Country/Region								
Afghanistan	0	0	0	0	0	0	0	
Albania	0	0	0	0	0	0	0	
Algeria	0	0	0	0	0	0	0	
Andorra	0	0	0	0	0	0	0	
Angola	0	0	0	0	0	0	0	

5 rows × 100 columns

₽

corona aacabee aggregacearbhape

▼ Task 2.4: Visualizing data related to a country for example China

visualization always helps for better understanding of our data.

```
corona_dataset_aggregated.loc["China"].plot()
corona_dataset_aggregated.loc["Italy"].plot()
plt.legend()
```


▼ Task3: Calculating a good measure

we need to find a good measure reperestend as a number, describing the spread of the virus in a country.

```
corona_dataset_aggregated.loc['China'].plot()
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fb87b72b400>


```
corona_dataset_aggregated.loc["China"][:3].plot()
```

C < matplotlib.axes._subplots.AxesSubplot at 0x7fb8582c32b0>

▼ task 3.1: caculating the first derivative of the curve

corona_dataset_aggregated.loc["China"].diff().plot()

 \Box <matplotlib.axes._subplots.AxesSubplot at 0x7fb85827ba90>

▼ task 3.2: find maxmimum infection rate for China

corona_dataset_aggregated.loc["China"].diff().max()

[→ 15136.0

corona_dataset_aggregated.loc["Italy"].diff().max()

€ 6557.0

corona_dataset_aggregated.loc["Spain"].diff().max()

€ 9630.0

Task 3.3: find maximum infection rate for all of the countries.

```
countries=list(corona_dataset_aggregated.index)
max_infection_rates=[]
for c in countries:
    max_infection_rates.append(corona_dataset_aggregated.loc[c].diff().max())
corona_dataset_aggregated["max_infection_rate"]=max_infection_rates
```

<pre>corona_dataset_aggregated.head()</pre>		

	1/22/20	1/23/20	1/24/20	1/25/20	1/26/20	1/27/20	1/28/20	1/29/2
Country/Region								
Afghanistan	0	0	0	0	0	0	0	
Albania	0	0	0	0	0	0	0	
Algeria	0	0	0	0	0	0	0	
Andorra	0	0	0	0	0	0	0	
Angola	0	0	0	0	0	0	0	

5 rows × 101 columns

 \Box

▼ Task 3.4: create a new dataframe with only needed column

corona_data=pd.DataFrame(corona_dataset_aggregated["max_infection_rate"])
corona_data.head()

₽		max_infection_rate
	Country/Region	
	Afghanistan	232.0
	Albania	34.0
	Algeria	199.0
	Andorra	43.0
	Angola	5.0

Task4:

- Importing the WorldHappinessReport.csv dataset
- · selecting needed columns for our analysis
- join the datasets

• calculate the correlations as the result of our analysis

▼ Task 4.1 : importing the dataset

happiness_report_csv=pd.read_csv("../worldwide_happiness_report.csv")

happiness_report_csv.head()

C →		Overall rank	Country or region	Score	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices	Generosity	Perc cor
	0	1	Finland	7.769	1.340	1.587	0.986	0.596	0.153	
	1	2	Denmark	7.600	1.383	1.573	0.996	0.592	0.252	
	2	3	Norway	7.554	1.488	1.582	1.028	0.603	0.271	
	3	4	Iceland	7.494	1.380	1.624	1.026	0.591	0.354	

▼ Task 4.2: let's drop the useless columns

useless_cols=["Overall rank","Score","Generosity","Perceptions of corruption"]

happiness_report_csv.drop(useless_cols,axis=1,inplace=True)
happiness_report_csv.head()

₽		Country or region	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
	0	Finland	1.340	1.587	0.986	0.596
	1	Denmark	1.383	1.573	0.996	0.592
	2	Norway	1.488	1.582	1.028	0.603
	3	Iceland	1.380	1.624	1.026	0.591
	4	Netherlands	1.396	1.522	0.999	0.557

Task 4.3: changing the indices of the dataframe

happiness_report_csv.set_index("Country or region",inplace=True)

happiness_report_csv.head()

 \Box

Country or region	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
Finland	1.340	1.587	0.986	0.596
Denmark	1.383	1.573	0.996	0.592

▼ Task4.4: now let's join two dataset we have prepared

▼ Corona Dataset :

coror	na_data.head()	
₽		max_infection_rate
	Country/Region	
	Afghanistan	232.0
	Albania	34.0
	Algeria	199.0
	Andorra	43.0
	Angola	5.0

▼ wolrd happiness report Dataset :

happiness_report_csv.head()									
₽		GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices				
	Country or region								
	Finland	1.340	1.587	0.986	0.596				
	Denmark	1.383	1.573	0.996	0.592				
	Norway	1.488	1.582	1.028	0.603				
	Iceland	1.380	1.624	1.026	0.591				
happiness_report_csv.shape									

data=corona data ioin/hanninecc renort ccv how="inner")

C→		max_infection_rate	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices
	Afghanistan	232.0	0.350	0.517	0.361	0.000
	Albania	34.0	0.947	0.848	0.874	0.383
	Algeria	199.0	1.002	1.160	0.785	0.086
	Argentina	291.0	1.092	1.432	0.881	0.471
	Armenia	134.0	0.850	1.055	0.815	0.283

▼ Task 4.5: correlation matrix

data.corr()											
₽		<pre>max_infection_rate</pre>	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices					
	max_infection_rate	1.000000	0.250118	0.191958	0.289263	0.078196					
	GDP per capita	0.250118	1.000000	0.759468	0.863062	0.394603					
	Social support	0.191958	0.759468	1.000000	0.765286	0.456246					
	Healthy life expectancy	0.289263	0.863062	0.765286	1.000000	0.427892					

▼ Task 5: Visualization of the results

our Analysis is not finished unless we visualize the results in terms figures and graphs so that everyone can understand what you get out of our analysis

<pre>data.head()</pre>											
₽		max_infection_rate	GDP per capita	Social support	Healthy life expectancy	Freedom to make life choices					
	Afghanistan	232.0	0.350	0.517	0.361	0.000					
	Albania	34.0	0.947	0.848	0.874	0.383					
	Algeria	199.0	1.002	1.160	0.785	0.086					
	Argentina	291.0	1.092	1.432	0.881	0.471					
	Armenia	134.0	0.850	1.055	0.815	0.283					

▼ Task 5.1: Plotting GDP vs maximum Infection rate

```
y-naral one her cahira l
y=data["max_infection_rate"]
sns.scatterplot(x,y)
```

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass ₽ FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fb8582116a0>

sns.scatterplot(x,np.log(y))

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass \Box FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7fb85816a160>

sns.regplot(x,np.log(y))

С⇒

/usr/local/lib/python3.6/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass
FutureWarning
<matplotlib.axes._subplots.AxesSubplot at 0x7fb856e6dda0>

Task 5.2: Plotting Social support vs maximum Infection rate

Task 5.4: Plotting Freedom to make life choices vs maximum Infection rate