Understanding Semantics and Context in Learned Word Representations

EECS 273

Akshay Bhatia

MS EECS @ UC Merced akshaybhatia10.github.io

Table of contents

- Introduction
- Models
 - Leabra Hebbian Word Semantics Model
 - Co-occurrence Matrix
 - Bag of Words
 - Word Embeddings word2vec
 - Transformer Language Models BERT
- Experiments and Results
- Conclusion

Introduction

Introduction

"After stealing money from the **bank vault**, the **bank robber** was seen fishing on the Mississippi **river bank**."

"You shall know a word by the company it keeps" (J. R. Firth 1957: 11)

Goal

What is meaning of a word? → The idea that a person wants to express

Problem: How to represent that idea?

Solution: Linguistic way of thinking about meaning

signifier (symbol) \Leftrightarrow signified (idea or thing)

= denotational semantics

tree \Leftrightarrow {\Phi, \phi, \gamma, \gamma, \ldots\}, \ldots\}

Source: CS224n Stanford

Models

- Leabra Hebbian Word Semantics Model
- Co-occurrence Matrix
- Bag of Words
- Word Embeddings word2vec
- Transformer Language Models BERT

Leabra Hebbian Word Semantics Model

- Understand word meaning by company it keeps - statistics of word co-occurrence
- Uses BCM-style learning mechanism
- Includes recurrent lateral excitatory and inhibitory connections
- As in the 'sem' simulation Ch. 9

Co-occurrence Matrix

"After stealing money from the **bank vault**, the **bank robber** was seen fishing on the Mississippi river bank."

- Start with a n x n matrix where n is vocab size
- Record co-occurrence for each word in a specific window size, say 5
- No learning required

	after	bank	fishing	from	mississippi	money	on	river	robber	seen	stealing	the	vault	was
after	0	1	0	1	0	1	0	0	0	0	1	1	0	0
bank	1	1	2	2	1	1	2	1	2	1	1	5	2	2
fishing	0	2	0	0	1	0	1	1	1	1	0	2	0	1
from	1	2	0	0	0	1	0	0	0	0	1	2	1	0
mississippi	0	1	1	0	0	0	1	1	0	1	0	1	0	1
money	1	1	0	1	0	0	0	0	0	0	1	2	1	0
on	0	2	1	0	1	0	0	1	1	1	0	1	0	1
river	0	1	1	0	1	0	1	0	0	1	0	1	0	0
robber	0	2	1	0	0	0	1	0	0	1	0	3	1	1
seen	0	1	1	0	1	0	1	1	1	0	0	2	1	1
stealing	1	1	0	1	0	1	0	0	0	0	0	1	1	0
the	1	5	2	2	1	2	1	1	3	2	1	1	2	2
vault	0	2	0	1	0	1	0	0	1	1	1	2	0	1
was	0	2	1	0	1	0	1	0	1	1	0	2	1	0

Bag of Words

- Represent a sentence as bag(multiset) of its words
- Disregards grammar and word order while keeping multiplicity
- No learning required

Word Embeddings - word2vec

- Represent each word in some *n*-dimensional space
- Idea: A word's meaning is given by the words that frequently appear close-by
- Trained on large text corpus from co occurrence statistics

Football —

0.2 1.2 0.4 2.9 1.8 0.3

Problems solved:

- Encode general semantic relationship
- Incorporate similarity between words
- Fixed vector size for every word(50, 100, 300) instead of vocab size
- Word order remains intact

Transformer Language Models - BERT

Numeric representation of text useful for other systems

Transformer Language Models -BERT

- BERT(Bidirectional Encoder Representations from Transformers) by Devlin et. al 2018
- Large Neural Network with billions of parameters
- Trains 2 auxiliary tasks:
 - Masked Language Model
 - Next sentence prediction
- Outperforms all other models on many NLP benchmarks

store gallon

† †

the man went to the [MASK] to buy a [MASK] of milk

Next Sentence Prediction Task

Sentence A = The man went to the store.

Sentence B = He bought a gallon of milk.

Label = IsNextSentence

Sentence A = The man went to the store.

Sentence B = Penguins are flightless.

Label = NotNextSentence

Source: BERT. Devlin et. al 2018

Experiments and Results

Experiments

Hebbian Learning

v/s

Added vs Adding

Co-Occurrence BoW word2vec BERT

Dyslexia vs reading

Results - Same Root(Lemma) Words

Word Pair	Leabra	Co-Occurrence	BoW	Word Emb	Word Emb(Gen)	BERT
Added vs Adding	0.0350	0.3185	0.0	-0.1311	0.7415	0.9247
Summary vs Summarize	-0.0199	0.0435	0.0	-0.0611	0.5143	0.5922
Introducing vs Introduction	-0.0194	0.0	0.0	-0.0607	0.6485	0.7805
Continuous vs Continuum	-0.0086	0.0757	0.0	-0.0309	0.2267	0.6488
Receptive vs Receptors	-0.027	0.0370	0.0	0.0727	0.0700	0.5904

Results - General Topics

Word Pair	Leabra	Co-Occurrence	BoW	Word Emb	Word Emb(Gen)	BERT
Dyslexia vs Reading problem	0.128	0.1412	0.0216	0.0038	0.3448	0.5202
Dyslexia vs Speech Problem	0.109	0.0954	0.0114	-0.0610	0.2674	0.6410
Dyslexia vs Speaking Problem	-0.040	0.0597	0.0122	-0.0736	0.2450	0.3625
Dyslexia vs Reading	0.561	0.2367	0.0217	0.0510	0.2974	0.3129
Dyslexia vs Speech	0.479	0.1301	0.0	-0.0382	0.1965	0.3852
Dyslexia vs Speaking	-0.021	0.0279	0.0	-0.0627	0.1710	0.2603

Results - Multiple-Choice Quiz

Based on your knowledge of the textbook, which of the options following each "question" provides the best match to the meaning?

Dyslexia

- A. surface deep phonological reading problem damage
- B. speech output hearing language nonwords
- C. competition inhibition selection binding

Model	Accuracy				
Leabra	0.8				
Co-occurrence Matrix	0.6				
BoW	0.8				
Word Embedding	0.5				
Word Embedding(Gen)	0.3				
BERT	0.5				

Conclusion

Conclusion - Model Explainability

Attention(Hidden Layer) weights of BERT for

sentiment analysis

Visualization of word embeddings in 2D space

Code

https://github.com/akshaybhatia10/EECS273-Term-Project

Thank You!

Questions?

Akshay Bhatia

Email: abhatia8@ucmerced.edu **Website**: akshaybhatia10.github.io

