

Database Systems

Lecture 4 Cont. - Getting to Know Your Data

Dr. T. Akilan

takilan@lakeheadu.ca

This Session

- Basic Statistical Analysis of Data
 - Central tendency
 - o Dispersion
 - o Graphical representation

Basic Statistical Analysis of Data

• Purpose:

- O Better understand the data
 - ✓ Identify typical values and properties
 - ✓ Identify outliers and noise
 - ✓ Find the correlation between objects and attributes

• Methods:

- o Central tendency
- o Dispersion
- o Graphical representation

Central Tendency of Data - Mean

• "What is the data typically like?"

○Mean:

- ✓ *N* samples $\{x_1, x_2, ..., x_N\}$
- ✓ Assumes all samples are equally important

OWeighted mean:

- ✓ Weights w_i represent some form of relative importance of the samples
- ✓ E.g. more frequent, more valuable, more significant.

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}.$$

$$\bar{x} = \frac{\sum_{i=1}^{N} w_i x_i}{\sum_{i=1}^{N} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_N x_N}{w_1 + w_2 + \dots + w_N}.$$

Central Tendency of Data - Mean Cont.

- Major problem: Sensitivity to extreme values
 - o Outliers can corrupt the mean
 - o Recall: "how much money is in your pockets right now?"
 - ✓ Samples from 10 people: $X = \{\$10, \$1, \$5, \$20, \$7, \$4, \$12, \$20, \$5, \$1,000,000\}$
 - ✓ On average a person has \$100,008.4 in their pocket
- Solution: Trimmed mean
 - o Remove a % of maximum and minimum values before computing mean
 - o Balance:
 - ✓ Remove high enough % to eliminate outliers
 - ✓ Remove low enough % to not lose information
 - \circ E.g.: remove 20% (low 10% and high 10%) of X.
 - Thus, remove \$1 & \$1M → mean(X_{new}) = \$10.38

Central Tendency of Data - Median

Median

- O Sample value that splits the data in two sets "greater than" and "lesser than" of equal size
 - ✓ Odd number of samples : Middle value
 - ✓ Even number of samples: average of two middle values

o E.g.:

- **✓** {\$10, \$1, \$5, \$20, \$7, \$4, \$12, \$20, \$5, \$1,000,000}
- ✓ Median is \$8.50
- O Benefit: much more tolerant of outliers than mean!

Central Tendency of Data - Mode

• Mode

- o The value that occurs the most frequently in the set of objects
- o Applicable for qualitative and quantitative attributes
- Several values might have the same maximum frequency (i.e., be modes)
 - o One mode: unimodal
 - o Two modes: bimodal
 - o Three modes: trimodal
 - o More than one mode: multimodal
 - o No mode All values occur equally, or each data value occurs only once

Central Tendency of Data Cont.

• Midrange

O The average of the maximum and minimum values in the set

$$midrange(X) = \frac{\min(X) + \max(X)}{2}$$

o Example:

- **✓** {\$10, \$1, \$5, \$20, \$7, \$4, \$12, \$20, \$5, \$1,000,000}
- ✓ Midrange is \$500,000.5

• Note: Given unimodal symmetric data, the mean, trimmed means, median, mode and midrange are all the same

Central Tendency of Data

• Data is rarely symmetric, it's usually skewed

Positively skewed (most of the data on the left side):

mode < median < mean

Negatively skewed (most of the data on the right side):

mode > median > mean

Dispersion of Data

- Measuring Dispersion of Data:
 - o Range
 - o Quartiles
 - Variance
 - Standard Deviation

Dispersion of Data – Range and Quantiles

- Assume a set of samples $X = \{x_0, x_1, ..., x_{N-1}\}$ o Sorted in increasing numerical order $x_i \le x_{i+1}$
- Range: difference between the maximum and minimum value: max(X) min(X) $range = x_{N-1} - x_0$

• Quantiles: data points taken at regular intervals of a data distribution, dividing it into essentially equal size consecutive sets.

Dispersion of Data – Quantiles and Percentiles

- Q-quantile is Q-1 data points that break the data into Q equal subsets
- 2-quantile the data point that breaks the data into two equal subsets o That's the median

• 100-quantiles is 99 data points that break the data into 100 equal subsets or Percentiles

Dispersion of Data – Quantiles and Percentiles

• 4-quantile is three points that break the data into four equal subsets o Quartiles (i.e., quarters): Q1, Q2 and Q3

O Note: Interquartile range (IQR) is the distance between the first and third quartiles (i.e., middle half of the data)

$$\checkmark$$
 IQR = Q3 - Q1

Dispersion of Data - Variance and Standard deviation

• Variance

o The variance of N observations, $x_1, x_2, ..., x_N$, for a numeric attribute X:

$$\sigma^{2} = \frac{\sum_{i=0}^{N-1} \left(x_{i} - \overline{x}\right)^{2}}{N} = \frac{\sum_{i=0}^{N-1} x_{i}^{2}}{N} - \overline{x}^{2}$$

- Standard deviation (std) $\sigma = \sqrt{\sigma^2}$
 - o Square root of variance
 - o Chebyshev's theorem: at least $\left(1 \frac{1}{k^2}\right) \times 100\%$ of the data points are within k standard deviations from μ .

Dispersion of Data - Standard deviation Cont.

• In a normal distribution curve

Dispersion of Data - Variance and Standard deviation

• For any distribution

o Chebyshev's theorem: at least $\left(1 - \frac{1}{k^2}\right) \times 100\%$ of the data points are within k standard deviations from μ .

Graphic Displays of Basic Statistical Descriptions of Data - Correlation Analysis of Data

- Discover attributes whose values are related
- High correlation: both attributes values are in sync
 - o Nominal, categorical, binary: attributes have values that co-occur together
 - O Numerical: attribute values increase or decrease at the same time (same or opposite of each other)
 - ✓ Positive correlation: both values increase together
 - ✓ Negative correlation: one value increases when the other decreases

Correlation Analysis of Data Cont.

- Uncorrelated data
 - o Left: the values are unrelated
 - o Centre, right: one attribute increases independently of the other

Redundancy and Correlation Analysis

- Challenge: Redundancy is another important issue in data integration.
 - An attribute may be redundant if it can be "derived" from another attribute or set of attributes.
- Solution: Some redundancies can be detected by correlation analysis.
 - O Given two attributes, such analysis can measure how strongly one attribute implies the other, based on the available data.
 - O Nominal attributes χ 2 (chi-square) test.
 - O Numeric attributes correlation coefficient and covariance
 - ✓ express how one attribute's values vary from those of another

Nominal Data Correlation Analysis

- χ^2 correlation test (Chi-Square)
- Two nominal data tuples attributes with discrete sets of values
- Let A has c distinct values, namely $a_1, a_2, ..., a_c$.
- B has r distinct values, namely $b_1, b_2, ..., b_r$.
- The data tuples described by A and B can be shown as a **contingency table**:
 - o c number of columns and r number of rows.
 - O Let $(\mathbf{A_i}, \mathbf{B_j})$ denote the joint event that attribute A takes on value $\mathbf{a_i}$ and attribute B takes on value $\mathbf{b_j}$, that is, where $(\mathbf{A} = \mathbf{a_i}, \mathbf{B} = \mathbf{b_j})$.

Nominal Data Correlation Analysis

- Let A has c distinct values, namely $a_1, a_2, ..., a_c$.
- B has r distinct values, namely $b_1, b_2, ..., b_r$.
- The data tuples described by A and B can be shown as a **contingency table**:
 - o c number of columns and r number of rows.
 - o Let $(\mathbf{A_i}, \mathbf{B_j})$ denote the joint event that attribute A takes on value $\mathbf{a_i}$ and attribute B takes on value $\mathbf{b_i}$, that is, where $(\mathbf{A} = \mathbf{a_i}, \mathbf{B} = \mathbf{b_i})$.
 - o Every possible (A_i, B_j) joint event has its own cell (or slot) in the table

Data File

Student ID	Educational Level	Instructional Preference
1	Undergraduate	Online
2	Undergraduate	Face to Face
3	Undergraduate	Face to Face
4	Graduate	Online
	A	В

Contingency Table

Database Systems

Lecture 5 Cont. - Getting to Know Your Data

Dr. T. Akilan

takilan@lakeheadu.ca

This Session

- Basic Statistical Analysis of Data
 - o Central tendency
 - o Dispersion
 - o Graphical representation
 - o Correlation Analysis Nominal Data
 - ✓ Chi-squared test
 - Correlation Analysis Numerical Data
 - ✓ Correlation coefficient
 - ✓ Covariance
- More on Graphical Representation of Data

Recap: Correlation Analysis - Nominal Data

- Chi-squared test It tests:
 - O If two nominal attributes are correlated
 - o If there is a statistically substantial relationship between categorical variables

- Four important elements:
 - \circ A null hypothesis (H_o) the attributes are not correlated (i.e., independent)
 - \circ Chi-square values (χ^2)
 - o Degree of freedom (DF)
 - o Critical value (the significance level) wrt DF to reject the null hypothesis

Recap: Chi-square Test

Chi-squared value

$$e_{ij} = \frac{count(A = a_i) \times count(B = b_j)}{n}$$

Total number of samples in the dataset

Contingency Table

					-
	\mathbf{A}_1	\mathbf{A}_2	•••	A _c	$Count(B = b_i)$
\mathbf{B}_1		\	•••		
\mathbf{B}_2				A	
:	:	A_i	,B _j)	:	:
$\mathbf{B}_{\mathbf{r}}$	K		•••		
$Count(A = a_j)$			•••		n
					A

observed frequency = $(\mathbf{A}_i, \mathbf{B}_j)$

Total number of samples in the dataset

Degree of Freedom

$$DF = (r - 1) \times (c - 1)$$

r: total number of descriptive labels in attribute B, and

c: total number of descriptive labels in attribute A

Recap: Chi-squared Test – Example

• Data: Survey data of 1500 people on his or	-
her preferred type of reading material, genre	-
was fiction or nonfiction.	

•	Task: Are gender and preferred reading
	vpe correlated?

Person ID	Gender	Genre
1		
2		
:	:	:
1499		
1500		

- Step 1: H_o (null hypothesis)
 - o Gender and preferred reading type are independent.

Example

Recap: Chi-squared Test - Example Cont.

• Step 2: Summarize the data in the contingency table containing the observed frequency (count) of each possible joint event.

	male	female	Total
fiction	250	200	450
$non_fiction$	50	1000	1050
Total	300	1200	1500

- Step 3: Compute the expected frequencies based on the data distribution for both attributes.
- E.g., E(male, fiction):

$$e_{11} = \frac{count(male) \times count(fiction)}{n} = \frac{300 \times 450}{1500} = 90$$

	male	female	Total
fiction	250 (90)	200 (360)	450
$non_fiction$	50 (210)	1000 (840)	1050
Total	300	1200	1500

Example 28

Recap: Chi-squared Test - Example Cont.

• Step 4: Compute χ^2 using

$$\chi^{2} = \sum_{i=1}^{c} \sum_{j=1}^{r} \frac{(o_{ij} - e_{ij})^{2}}{e_{ij}}$$

	male	female	Total
fiction	250 (90)	200 (360)	450
$non_fiction$	50 (210)	1000 (840)	1050
Total	300	1200	1500

$$\chi^{2} = \frac{(250 - 90)^{2}}{90} + \frac{(50 - 210)^{2}}{210} + \frac{(200 - 360)^{2}}{360} + \frac{(1000 - 840)^{2}}{840}$$
$$= 284.44 + 121.90 + 71.11 + 30.48 = 507.93.$$

Recap: Chi-squared Test - Example Cont.

- Step 5: Compute DF = $(r 1) \times (c 1) = (2-1) \times (2-1) = 1$
- Step 6: Let set a significance level for 1 DF to reject the H_0 . For e.g., if 0.001 significance level, a χ^2 value > 10.828 will reject the H_0 .

Conclusion: Reject the hypothesis H_0 and conclude that the two attributes are (strongly) correlated for the given group of people.

- Correlation coefficient
- Aka Pearson's product-moment coefficient

Karl Pearson

Image: wikipedia.org

• Correlation coefficient:

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B} = \frac{\sum_{i=1}^{n} (a_i b_i) - n\bar{A}\bar{B}}{n\sigma_A \sigma_B}$$

• Properties:

```
\circ r_{A,B} \in [-1,1]
\checkmark r_{A,B} < 0: A and B are negatively correlated
\checkmark r_{A,B} > 0: A and B are positively correlated
\checkmark r_{A,B} = 0: A and B are not correlated (independent)
```

Redundancy alert: A (or B) may be removed as a redundancy

- Decide wisely:
 - o correlation does not imply causality.

- o if A and B are correlated, this does not necessarily imply that A causes B or that B causes A.
- So E.g., demographic database: attributes representing the number of hospitals and the number of car thefts in a region can be correlated.
 - o This does not mean that one causes the other. But both are causally linked to a third attribute, population.

- Recall that we can visualize the correlations between attributes using Scatter plots.
- Figure shows from negative correlation to positive correlation between two attributes.

- Covariance Cov()
- Consider two numeric attributes A and B, and a set of n observation: $\{(a_1,b_1), ..., (a_n,b_n)\}.$

• Correlation coefficient (r_{A,B}) vs covariance *Cov*(A,B)

$$r_{A,B} = \frac{\sum_{i=1}^{n} (a_i - \bar{A})(b_i - \bar{B})}{n\sigma_A \sigma_B}$$

$$r_{A,B} = \frac{Cov(A,B)}{\sigma_A \sigma_B}$$

• Simplification of covariance computation \rightarrow $Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$

• Properties:

- $\bigcirc cov(A,B) > 0$: if A and B change together
- $\bigcirc cov(A,B) < 0$: if A and B change opposite of each other
- \circ If A and B are independent then cov(A,B) = 0

• Note:

- random variables (attributes) may have cov. of 0, but they are not independent!
- o multivariate normal distribution holds cov. of 0 for independent data pairs.
 - So, we assume the data follow multivariate normal distributions.

Numerical Data Correlation Analysis - Covariance: Working Example

• Decide whether the attributes, number of rooms and house prices are independent using covariance analysis on the dataset.

$$E(\# \ of \ rooms) = \frac{6+5+4+3+2}{5} = \frac{20}{5} = \$4$$

Time Stamp	number of rooms	house prices (in M)
t1	6	20
t2	5	10
t3	4	14
t4	3	5
t5	2	5

$$E(bouse\ price) = \frac{20+10+14+5+5}{5} = \frac{54}{5} = \$10.80.$$

$$Cov(A, B) = E(A \cdot B) - \bar{A}\bar{B}$$

Cov(# of rooms, house price)=
$$\frac{6 \times 20 + 5 \times 10 + 4 \times 14 + 3 \times 5 + 2 \times 5}{5} - 4 \times 10.80$$

= $50.2 - 43.2 = 7$.

Graphical Representation of Data

- Boxplot
 - o Graphic display of five-number summary
- Histogram
 - o x-axis are values, y-axis are occurrence frequencies of values
- Quantile plot
 - o x-axis are %, y-axis are attribute values
- Scatter plot
 - o Cartesian graph; x and y values are attributes and each data sample is plotted as a point.

Graphical Representation of Data – Boxplot

• Data is represented with a box with **five-number summary** of the distribution: Minimum, Q1, Median, Q3, Maximum

• Properties:

- Quartiles: The ends of the box are at the first (Q1) and third quartiles (Q1)
- Height of the box is interquartile range (IQR), i.e., the distance between the lower and upper quartiles (middle half of the data)
- The median is marked by a line within the box
- O Whiskers: two lines outside the box extended to minimum and maximum
- Outliers: points beyond a specified outlier threshold, plotted individually

Graphical Representation of Data – Histogram

- Histogram (bar chart)
 - O Divide the data into discrete, disjoint subsets
 - ✓ "Buckets" or "bins"
- Plot the occurrence frequency of each bin. E.g., 60% of the transaction amounts are between \$0.00 and \$1000.

- We can use the histogram as a nonparametric statistical model to capture outliers.
 - o For e.g., a transaction amount of \$7500 can be regarded as an outlier.
 - Only 1 (60% + 20% + 10% + 6.7% + 3.1%) = 0.2% of transactions have an amount > \$5000.
 - O A transaction amount of \$385 can be treated as normal because it falls into the bin holding 60% of the transactions.

Graphical Representation of Data - Quantile Plot

- Break the data into quantiles, and measure an attribute for each quantile
- Let X be some ordinal or numeric attribute, where x_i be the data sorted in increasing order, for i = 1 to N.
 - $\circ x_1$ the smallest observation
 - $\circ x_N$ the largest for.
 - \circ **Quantile plot** each observation, x_i , is paired with a percentage, f_i , which indicates that approximately f_i \times 100% of the data are below the value, xi.

Unit price (\$)	Count of items sold
40	275
43	300
47	250
_	_
74	360
75	515
78	540
_	_
115	320
117	270
120	350

• Question: What is percentage of items sold under a unit price of \$60?

$$f_i = \frac{i - 0.5}{N}$$

 $f_i = \frac{i - 0.5}{N}$ increases in equal steps of 1/N, ranging from 1/2N (which is slightly above 0) to 1 - 1/2N (which is slightly below 1)