Circolo Culturale Galileo Galilei

Bologna, 21 dicembre 2012 J. Julve, Consiglio Superiore delle Ricerche (CSIC), Madrid

Il "bosone di Higgs" e la Teoria Finale

Peter Higgs

La particella di Dio?

Leon Lederman

CMS-PHO-EVENTS-2012-005 - 1 - GIF; ICON, GIF; ICON-640, PNG

Figure 1. Event recorded with the CMS detector in 2012 at a proton-proton centre of mass energy of 8 TeV. The event shows characteristics expected from the decay of the SM Higgs boson to a pair of photons (dashed yellow lines and green towers). The event could also be due to known standard model background processes.

Una escursione nel macro e microcosmo

... una passeggiata per le Potenze di 10 :

```
10<sup>25</sup> metri ≈ raggio dell'universo visibile
10<sup>15</sup> metri = 1 e 15 zeri ≈ 1 anno luce
10^6 \text{ metri} = 1.000.000 \text{ metri} (1 \text{ megametro})
10^3 metri = 1.000 metri (1 kilometro)
10<sup>2</sup> metri = 100 metri (1 ettometro)
10<sup>1</sup> metri = 10 metri (1 decametro)
10<sup>o</sup> metri = 1 METRO
10^{-1} metri = 0,1 metri (1 decimetro)
10^{-2} metri = 0.01 metri (1 centimetro)
10^{-3} metri = 0.001 metri (1 millimetro)
10^{-6} metri = 0,000001 metri (1 micrometro)
10^{-9} metri = 0.000000001 metri (1 nanometro)
10<sup>-12</sup> metri = 0, undici zeri 1 metri (1 picometro)
10<sup>-15</sup> metri ≈ grandezza del protone = 1 fermi
10<sup>-35</sup> metri = Lunghezza di Planck
```

Macrocosmo

Mesocosmo

Microcosmo

Vedere il Microcosmo

I microbi (batteri) si possono ancora VEDERE con gli occhi con l'aiuto del *microscopio* ordinario

I virus, richiedono il *microscopio elettronico*, ma l'immagine si vede su uno schermo

Per gli oggetti più piccoli, "vedere" non è come con gli occhi

Occorrono altre tecniche:

Atomi: - "Tastarli" con il *Microscopio ad effetto tunnel* (l'immagine si construisce con un computer)

- Spararli contro dei "proiettili" (fotoni, elettroni) con Acceleratori di particelle

Particelle subatomiche: accelerarle con *Acceleratori di particelle*, farle scontrare tra di esse e osservare i prodotti dell'urto

Gli atomi in bassorilievo

Gli atomi sono molto, molto piccoli

Mondo sub atomico

matter constituents **FERMIONS** spin = 1/2, 3/2, 5/2, ... Ouarks spin = 1/2 **Leptons** spin = 1/2 Approx. Mass Electric Electric Flavor Flavor GeV/c² charge charge GeV/c2 e electron <1×10⁻⁸ U up 0.003 2/3 electron 0.000511 -1 **d** down 0.006 -1/3muon < 0.0002 0 C charm 2/3 1.3 μ neutrino μ muon 0.106 -1 S strange 0.1 -1/3v_ tau < 0.02 t top 175 2/3 7 neutrino 7 tau 1.7771 **b** bottom 4.3 -1/3

Fermioni: spin semi-intero Principio di esclusione di Pauli

Materia, forze e particelle mediatrici:
Modello Standard delle particelle elementari

Bosoni: spin intero Condensazione di Bose-Einstein

Tracce visibili di particelle subatomiche

Leptoni

Leptons spin = 1/2						
Flavor	Mass GeV/c ²	Electric charge				
ν _e electron neutrino	<1×10 ⁻⁸	0				
e electron	0.000511	-1				
$ u_{\mu}$ muon neutrino	<0.0002	0				
μ muon	0.106	-1				
$ u_{\tau}^{ \text{tau}}_{ \text{neutrino}}$	<0.02	0				
7 tau	1.7771	-1				

Adroni

Baryons qqq and Antibaryons qqq

Baryons are fermionic hadrons. There are about 120 types of baryons.

Symbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
p	proton	uud	1	0.938	1/2
p	anti- proton	ūūd	-1	0.938	1/2
n	neutron	udd	0	0.940	1/2
Λ	lambda	uds	0	1.116	1/2
Ω^-	omega	SSS	-1	1.672	3/2

pbar p \rightarrow p nbar K⁰ K⁻ π^+ $\pi^ \pi^0$ nbar + p \rightarrow 3 pions $\pi^0 \rightarrow \gamma\gamma$, $\gamma \rightarrow e^+$ e^- K⁰ $\rightarrow \pi^+$ π^-

Adroni

Mesons qq

Mesons are bosonic hadrons. There are about 140 types of mesons.

ymbol	Name	Quark content	Electric charge	Mass GeV/c ²	Spin
π+	plon	ud	+1	0.140	0
(-	kaon	sū	-1	0.494	0
p ⁺	rhe	ud	- 11	0.770	1
30	B-zero	db	0	5.279	0
ης	eta-c	cc	0	2 .980	0

Acceleratori di proiettili

Acceleratori di particelle subatomiche

Centro Europeo per la Ricerca Nucleare (CERN) a Ginevra

Altri acceleratori:

SLAC (California, USA)
FERMILAB (Chicago, USA)
DESY (Hamburg, Germ.)
DUBNA (Sherpukov, Russia)

Overall view of the LHC experiments.

LHC - B CERN
Point 8 Point 1
Point 2

CMS
Point 5
Point 2

ATLAS
ALICE
Point 2

LHC - B

ATLAS

ALICE
Point 2

Large Electron-Positron (LEP) 1995

Large Hadron Collider (LHC) 2008

Acceleratori e rivelatori di particelle

Tunel tubo a vuoto e magneti di curvatura del LEP

Rivelatore DELPHI

ALEPH

Produzione di bosoni W[±] e Z⁰

e+e⁻ → B⁰ B̄⁰

e Z

An electron and positron (antielectron) colliding at high energy can annihilate to produce B⁰ and B⁰ mesons via a virtual 2 boson or a virtual photon.

Vita molto più corta: Si vedono solo i prodotti del loro decadimento

Simon van der Meer

CERN 1983

Acceleratori e rivelatori di particelle

Modello Standard delle particelle elementari

Enrico Fermi

Satyendra Nath Bose

Caratteristiche fisiche delle particelle elementari

Particella di Dio?

Ha un ruolo centrale nel Modello Standard

"Da la massa" a tutte le altre particelle

Rottura spontanea della simmetria locale SU(2)xU(1)

Meccanismo di Higgs

Sfugge alla classifica "materia" – "forze"

Probabilmente ha a che vedere con misteri cosmologici che stanno dietro alla espansione accelerata dell'universo

Urti e getti di particelle in un rivelatore

Produzione e decadimento dell'Higgs

Le nuove domande

Abbiamo trovato anche l'Higgs. Pienezza dei tempi per il Modello Standard

Lavoro finito, tutti a casa?

Altre cose da vedere oltre il Modello Standard?

L'espansione dell'universo si sta accelerando

Cos'è quel misterioso e ignoto 75% dell'universo necessario per spiegarla?

Il Modello Standard delle particelle è un passo verso la "Teoría Finale"

È mai possibile pensare di raggiungere una TOE?

Candidato più popolare: Teoria delle Stringhe

Ma richiede

Particelle "supersimmetriche" Dimensioni extra

Una "Teoria Finale" o "Teoria del Tutto" (TOE)

.... dovrebbe:

- Dipendere da una sola costante universale
 - Empirica
 - Deducibile da proprietà matematiche
- Essere capace di predire il risultato di ogni esperimento o osservazione
 - Possibile o immaginable
 - Adesso e nel futuro
- Essere formulata su un formalismo matematico
 - Consistente
 - Possibilmente chiuso

Cioè, essere COMPLETA

Che voto prende il Modello Standard?

Un grande ostacolo

Kurt Gödel

1931

"Teorema della incompletezza della logica"

In ogni sistema formale fatto di assiomi e regole di deduzione che abbia al meno la complessità della aritmetica esistono sempre delle proposizioni dotate di senso nel sistema la cui verità o falsità non è decidibile usando le regole del sistema

La scommessa

Fede nella esistenza di una Teoria Finale

Entusiasmante o asfissiante?

Non è possibile una TOE

L'avventura della conoscenza continuerà eternamente

Porte sempre aperte al mistero o alle sorprese

Sfondo: la misteriosa corrispondenza tra la matematica e la realtà fisica

Grazie

FINE