## The McGraw-Hill Companies

# **CMOS Digital Integrated Circuits**



# **Chapter 1 Introduction**

S.M. Kang and Y. Leblebici

# **Some History**

| Invention of the transistor (BJT) Shockley, Bardeen, Brattain – Bell Labs        | 1947 |
|----------------------------------------------------------------------------------|------|
| Single-transistor integrated circuit  Jack Kilby – Texas Instruments             | 1958 |
| Invention of CMOS logic gates Wanlass & Sah – Fairchild Semiconductor            | 1963 |
| First microprocessor (Intel 4004) 2,300 MOS transistors, 740 kHz clock frequency | 1970 |
| Very Large Scale Integration Chips with more than ~20,000 devices                | 1978 |









## **More Recently**

Ultra Large Scale Integration

System on Chip (SoC)

20 ~ 30 million transistors in 2002



The chip complexity has increased by a factor of 1000 since its first introduction, but the term **VLSI** remained virtually universal to denote digital integrated systems with high complexity.

## **Economic Impact**



As a result of the continuously increasing integration density and decreasing unit costs, the semiconductor industry has been one of the fastest growing sectors in the worldwide economy.

## **Industry Trends**



## **Industry Trends**



High performance Low power dissipation Wireless capability etc...







## **Some Leading-Edge Examples**



Intel Pentium 4

 $0.13\mu$  process

55 million transistors

2.4GHz clock

145mm<sup>2</sup>

## Some Leading-Edge Examples



IBM S/390 Microprocessor

0.13 μm CMOS process

7 layers Cu interconnect

47 million transistors

1 GHz clock

180 mm<sup>2</sup>

#### **Evolution of Minimum Feature Size**



#### **Evolution of Minimum Feature Size**



#### Moore's Law



## **Evolution of Memory Capacity**



#### ITRS - International Technology Roadmap for Semiconductors

| YEAR                                | 2002                | 2005                | 2008                | 2011                | 2014                |
|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| TECHNOLOGY                          | 130 nm              | 100 nm              | 70 nm               | 50 nm               | 35 nm               |
| CHIP SIZE                           | 400 mm <sup>2</sup> | 600 mm <sup>2</sup> | 750 mm <sup>2</sup> | 800 mm <sup>2</sup> | 900 mm <sup>2</sup> |
| NUMBER OF<br>TRANSISTORS<br>(LOGIC) | 400 M               | 1 Billion           | 3 Billion           | 6 Billion           | 16 Billion          |
| DRAM<br>CAPACITY                    | 2 Gbits             | 10 Gbits            | 25 Gbits            | 70 Gbits            | 200 Gbits           |
| MAXIMUM<br>CLOCK<br>FREQUENCY       | 1.6 GHz             | 2.0 GHz             | 2.5 GHz             | 3.0 GHz             | 3.5 GHz             |
| MINIMUM<br>SUPPLY<br>VOLTAGE        | 1.5 V               | 1.2 V               | 0.9 V               | 0.6 V               | 0.6 V               |
| MAXIMUM<br>POWER<br>DISSIPATION     | 130 W               | 160 W               | 170 W               | 175 W               | 180 W               |
| MAXIMUM<br>NUMBER OF<br>I/O PINS    | 2500                | 4000                | 4500                | 5500                | 6000                |

Predictions of the worldwide semiconductor / IC industry about its own future prospects...

#### **Shrinking Device Dimensions**



| YEAR                                | 2002                | 2005                | 2008                | 2011                | 2014                |
|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| TECHNOLOGY                          | 130 nm              | 100 nm              | 70 nm               | 50 nm               | 35 nm               |
| CHIP SIZE                           | 400 mm <sup>2</sup> | 600 mm <sup>2</sup> | 750 mm <sup>2</sup> | 800 mm <sup>2</sup> | 900 mm <sup>2</sup> |
| NUMBER OF<br>TRANSISTORS<br>(LOGIC) | 400 M               | 1 Billion           | 3 Billion           | 6 Billion           | 16 Billion          |
| DRAM<br>CAPACITY                    | 2 Gbits             | 10 Gbits            | 25 Gbits            | 70 Gbits            | 200 Gbits           |
| MAXIMUM<br>CLOCK<br>FREQUENCY       | 1.6 GHz             | 2.0 GHz             | 2.5 GHz             | 3.0 GHz             | 3.5 GHz             |
| MINIMUM<br>SUPPLY<br>VOLTAGE        | 1.5 V               | 1.2 V               | 0.9 V               | 0.6 V               | 0.6 V               |
| MAXIMUM<br>POWER<br>DISSIPATION     | 130 W               | 160 W               | 170 W               | 175 W               | 180 W               |
| MAXIMUM<br>NUMBER OF<br>I/O PINS    | 2500                | 4000                | 4500                | 5500                | 6000                |

#### **Increasing Function Density**





#### **Increasing Clock Frequency**

| YEAR                                | 2002                | 2005                | 2008                | 2011                | 2014                |
|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| TECHNOLOGY                          | 130 nm              | 100 nm              | 70 nm               | 50 nm               | 35 nm               |
| CHIP SIZE                           | 400 mm <sup>2</sup> | 600 mm <sup>2</sup> | 750 mm <sup>2</sup> | 800 mm <sup>2</sup> | 900 mm <sup>2</sup> |
| NUMBER OF<br>TRANSISTORS<br>(LOGIC) | 400 M               | 1 Billion           | 3 Billion           | 6 Billion           | 16 Billion          |
| DRAM<br>CAPACITY                    | 2 Gbits             | 10 Gbits            | 25 Gbits            | 70 Gbits            | 200 Gbits           |
| MAXIMUM<br>CLOCK<br>FREQUENCY       | 1.6 GHz             | 2.0 GHz             | 2.5 GHz             | 3.0 GHz             | 3.5 GHz             |
| MINIMUM<br>SUPPLY<br>VOLTAGE        | 1.5 V               | 1.2 V               | 0.9 V               | 0.6 V               | 0.6 V               |
| MAXIMUM<br>POWER<br>DISSIPATION     | 130 W               | 160 W               | 170 W               | 175 W               | 180 W               |
| MAXIMUM<br>NUMBER OF<br>I/O PINS    | 2500                | 4000                | 4500                | 5500                | 6000                |



#### **Decreasing Supply Voltage**

| YEAR                                | 2002                | 2005                | 2008                | 2011                | 2014                |
|-------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| TECHNOLOGY                          | 130 nm              | 100 nm              | 70 nm               | 50 nm               | 35 nm               |
| CHIP SIZE                           | 400 mm <sup>2</sup> | 600 mm <sup>2</sup> | 750 mm <sup>2</sup> | 800 mm <sup>2</sup> | 900 mm <sup>2</sup> |
| NUMBER OF<br>TRANSISTORS<br>(LOGIC) | 400 M               | 1 Billion           | 3 Billion           | 6 Billion           | 16 Billion          |
| DRAM<br>CAPACITY                    | 2 Gbits             | 10 Gbits            | 25 Gbits            | 70 Gbits            | 200 Gbits           |
| MAXIMUM<br>CLOCK<br>FREQUENCY       | 1.6 GHz             | 2.0 GHz             | 2.5 GHz             | 3.0 GHz             | 3.5 GHz             |
| MINIMUM<br>SUPPLY<br>VOLTAGE        | 1.5 V               | 1.2 V               | 0.9 V               | 0.6 V               | 0.6 V               |
| MAXIMUM<br>POWER<br>DISSIPATION     | 130 W               | 160 W               | 170 W               | 175 W               | 180 W               |
| MAXIMUM<br>NUMBER OF<br>I/O PINS    | 2500                | 4000                | 4500                | 5500                | 6000                |







Process Technology Node (nm)



5-layer cross-section of chip

#### **Typical Chip Cross Section**



#### System-on-Chip

Integrating all or most of the components of a hybrid system on a single substrate (silicon or MCM), rather than building a conventional printed circuit board.

- 1. More compact system realization
- 2. Higher speed / performance
  - Better reliability
  - Less expensive!



# **New Direction: System-on-Chip (SoC)**





## Products have a shorter life-cycle!







#### The Y-Chart



Notice: There is a need for structured design methodologies to handle the high level of complexity!



## **Structured Design Principles**

**Hierarchy:** "Divide and conquer" technique involves dividing a module into sub-

modules and then repeating this operation on the sub-modules until the

complexity of the smaller parts becomes manageable.

**Regularity:** The hierarchical decomposition of a large system should result in not only

**simple**, but also **similar** blocks, as much as possible. Regularity usually reduces the number of different modules that need to be designed and

verified, at all levels of abstraction.

**Modularity:** The various functional blocks which make up the larger system must have

well-defined functions and interfaces.

**Locality:** Internal details remain at the local level. The concept of locality also

ensures that connections are mostly between neighboring modules,

avoiding long-distance connections as much as possible.

## Hierarchy of a 4-bit Carry Ripple Adder







16-bit adder complete layout



4-bit adder with Manchester carry



Carry/propagate circuit layout



Manchester carry circuit layout



Output buffer/latch circuit layout

# Regularity



## **VLSI Design Styles**



#### **Full Custom Design**

Following the partitioning, the transistor level design of the building block is generated and simulated.



The example shows a 1-bit full-adder schematic and its SPICE simulation results.



#### **Full Custom Design**

The main objective of full custom design is to ensure fine-grained regularity and modularity.







#### **Full Custom Design**



A carefully crafted full custom block can be placed both along the X and Y axis to form an interconnected two-dimensional array.

**Example:** 

**Data-path cells** 



# Full Custom SRAM Cell Design





## **Mapping the Design into Layout**



Manual full-custom design can be very challenging and time consuming, especially if the low level regularity is not well defined!

## **VLSI Design Styles**



## **HDL-Based Design**

#### 1980's

Hardware Description Languages (HDL) were conceived to facilitate the information exchange between design groups.

#### 1990's

The increasing computation power led to the introduction of logic synthesizers that can translate the description in HDL into a synthesized gate-level net-list of the design.

#### 2000's

Modern synthesis algorithms can optimize a digital design and explore different alternatives to identify the design that best meets the requirements.

## **HDL-Based Design**

The design is synthesized and mapped into the target technology.

The logic gates have one-to-one equivalents as standard cells in the target technology.













## **VLSI Design Styles**



## **Mask Gate Array**



# **Mask Gate Array**



## **VLSI Design Styles**



# Field Programmable Gate Array



## Field Programmable Gate Array



Internal structure of a CLB

# Field Programmable Gate Array



