PART 1 The Tate Pairing

Tate Pairing???

Corollary. Let 2^n divide p+1 for some prime p, and take a supersingular Montgomery curve over \mathbb{F}_{p^2} given by

$$E_A: y^2 = x^3 + Ax^2 + x$$
, with $A \in \mathbb{F}_{p^2}$.

If a point $P=(x_P,y_P)\in E(\mathbb{F}_{p^2})$ has x_P non-square, then P has order divisible by 2^n

Theorem 3. For an elliptic curve
$$E: y^2 = (x - r_1)(x - r_2)(x - r_3)$$
 with $r_i \in \mathbb{F}_{p^2}$, we have $P \in [2]E(\mathbb{F}_{p^2})$ if and only if $(x_P - r_1)$, $(x_P - r_2)$, and $(x_P - r_3)$ are squares.

Consequently, $P \in E(\mathbb{F}_{p^2}) \setminus [2]E(\mathbb{F}_{p^2})$ if any $(x_P - r_i)$ is a non-square.

PART 1 The Tate Pairing

Tate Pairing???

Corollary. Let 2^n divide p+1 for some prime p, and take a supersingular Montgomery curve over \mathbb{F}_{p^2} given by

$$E_A: y^2 = x^3 + Ax^2 + x$$
, with $A \in \mathbb{F}_{p^2}$.

If a point $P=(x_P,y_P)\in E(\mathbb{F}_{p^2})$ has x_P non-square, then P has order divisible by 2^n

Theorem 3. For an elliptic curve $E: y^2 = (x-r_1)(x-r_2)(x-r_3)$ with $r_i \in \mathbb{F}_{p^2}$, we have $P \in [2]E(\mathbb{F}_{p^2})$ if and only if $(x_P-r_1), (x_P-r_2)$, and (x_P-r_3) are squares. Consequently, $P \in E(\mathbb{F}_{p^2}) \setminus [2]E(\mathbb{F}_{p^2})$ if any (x_P-r_i) is a non-square.

Lemma 4. On a Montgomery curve, $r_1=0$, hence if $x_P=(x_P-0)$ is non-square then $P\in E(\mathbb{F}_{p^2})\setminus [2]E(\mathbb{F}_{p^2})$, and so there is no $Q\in E(\mathbb{F}_{p^2})$ such that [2]Q=P. Furthermore, if E is supersingular and 2^n divides p+1, then $E[2^n]$ is rational, and we get that 2^n must divide the order of P.