Lecture 6 : MAC2

Hema Murthy
Professor
Dept. of CSE, IIT Madras

Short Term Course on "Teaching Computer Networks Effectively". Sponsored by AICTE.

6.1 Collision free protocols

- Reservation Protocols
- Station have a unique address 0,...,N-1
- Bit mapped protocol:
 - Contention period divide into N slots
- station 0 can only send a 1 bit in that slot.

Collision free protocols

- Station j announces that it has a frame to transmit by inserting a bit in slot j.
- After all N slots have passed by
 - every station knows numerical order
 - Now transmit in Numerical order
 - no collision at all!

Collision free protocols

- After last ready frame transmitted
 - an event generated
- New N bit contention period
- If a station misses
 - wait for next contention period

Collision free protocols

- After all stations have transmitted probability of having a frame to transmit middle of slot
 - wait 1 ½ contention period before transmitting
- Always 1 bit/station/frame transmitted is the overhead

Efficiency

$$High \ load \ U = \frac{d}{Nd + 1}$$

$$Low load U = \frac{d}{d+1}$$

d – frame size

1 - contention

Contention Free Protocols

- Binary Countdown:
- Better than bit mapped protocols
- Use binary station addresses
- Each station broadcasts address
 - Example: 0010 0100 1001 1100

Contention Free Protocols

- All addresses same length
- Bits in each position from different stations are ORed
- Collision avoidance
 - arbitration rule
 - if high order bit position of station address overwritten by 1 give up!

Next new cycle of contention start

$$U = \frac{d}{d + \ln_2 N}$$

If the higher order bits of a station j address are 1, station j transmits continuously

Limited Contention Protocols

- combine the properties of contention and collision free protocols
- contention at low load to provide low delay
- reservation at high load

Adaptive Tree Walk Protocol

- Adaptive TreeWalk Algorithm
 - low load
 - every body contends
 - collision
 - reduces number of stations

Adaptive Tree Walk Algorithm

First contention all stations permitted to contend

- if collision then next slot only nodes under 2 can contend
- if success next slot Nodes under 3
- if collision then nodes under Node 4
- if success next slots Nodes under 5

Adaptive Tree Walk Algorithm

- Depth first tree walk algorithm
- Heavy load do not start searching at top of tree
 - what level to start the search?
 - depends on number of ready stations

Adaptive Tree Walk Algorithm

- Each node at level i has N. 2⁻ⁱ station under it.
- q ready stations uniformly distributed at level i 2⁻ⁱq
- level at which search begins
 - $2^{-i}q = 1$
 - $i = \log_2 q$

6.2 IEEE 802.4 Token Ring

- CSMA/CD probabilities
 - MAC model bad link
 - station wait for infinitely a long time!
 - no priorities
 - not useful for real time system.
- Use a ring

- stations take time sending frames.
 - n frame , nT sec to wait
 - physical ring broken

Token Bus Ring Organisation

- Linear tree shaped cable on to which stations are attached.
- Each station knows the address of its left and right neighbours.
- Ring is first initialised
 - coordinator to initialise ring.
 - stations inserted in the order of station address

Token Bus Ring Organisation

- Token passing from higher to lower order station address
- Token acquired station transmits for certain amount of time
- Hand over token either at end of time or no frame to transmit
- prioritise tokens

Token Bus

- each maintains a queue of frames
- each one has a timer
- handover token from higher priority to lower priority.
- fraction of token holding time allocated to each priority.
- useful for implementing real time traffic.

Token Bus Frame Format

- Preamble clock synchronisation
- Starting and ending delimiter
- frame boundaries
 - analog encoding symbols (other than 0 or 1)
 - does not occur in analog data
- no need of length field

Token Bus: Issues

- Frame Control
 - Successors
 - Predecessors
 - Entry of new station
 - Claim token
 - Token lost, station with token dead
 - Protocols to handle all issues
 - Useful for real time traffic

6.3 IEEE 802.5 Token Ring

- Consists of a set of nodes connected in a ring.
- Data flows in a particular direction only.
- Data received from upstream neighbour forwarded to downstream neighbour.
- Token access to the shared ring
 - a special sequence of bits
 - circulates around the ring.

IEEE 802.5 Token Ring

- Each node receives and forwards token.
- Frame makes its way back to sender
 - frame removed by sender
 - sender reinsert token.
- As token circulates around ring, each station gets a chance to transmit
 - Service round robin fashion

Token Ring Issues

- Any link or node failure
 - Network rendered useless
- Solution
 - electromechanical relay
 - Station active relay is open and station included
 - Station is inactive
 - no power
 - relay closed
 - bypass station

Several relays in a box

Token Ring (Characteristics)

- Date rate: 4 Mbps or 16 Mbps
- encoding: differential manchester
- 802.5 upto 250 station
- physical medium is +P for IBM not specified in 802.5

Token Ring Access Control

- Network adapter: receiver, and transmitter, and one or more bits of data storage between them.
- When no stations have anything to transmit token circulates
- Ring has enough storage capacity to hold an entire token.
 - 1 bit / station

- Token Size: 24 bits
 - Minimum number of stations is 24
 - Overcome this by including a monitor which adds the extra bits of delay
- Token operation
 - Token circulates
 - Station seizes a token

- Modifies a bit in the second byte of token
- Station that has token transmits data
- Station drains token out of the ring
- Station sends data
- Each packet has destination address
- All stations downhill check destination address
- Destination copies packet
- Packet finds its way back to sending station

- Sending station removes packet from ring
- Station reinserts token into the ring
- Size of packet stored in the ring
 - Larger/smaller than ring
 - Add/remove bits

Issues

- Size of data that given node is allowed to transmit
- Token holding time (THT) = ∞ ?
 - Utilisation is 100%
 - Unfair to stations to other than the station holding the token
- THT affects ring performance

Token Holding Time

- Token Rotation Time (TRT):
- TRT ≤ Active nodes * THT + Ring Latency
- Ring Latency token circulation time

Reliable Transmission

- Use A and C bits
- Initially A and C zero.
- Receiver sets A bit after seeing that it is the intended recipient
- Receiver sets C bit after copying frame
- If both A and C are not set retransmit

Priorities in IEEE 802.5

- Supports different levels of priority
 - 3 bits
 - each station waiting to send, sets priority for packet packet's priority as high current token
 - then token can be seized
 - Intending to send station sets the priority on currently passing data frame

Priorities in IEEE 802.5

- releasing station sets priority of token to n.
- Lower priority packets circulate for long in ring
- Token Release
 - Early release
 - After transmitting packet
 - Delayed release
 - After removing packet when it returns to the sender

- Designated monitor
 - any station can become a monitor
 - defined procedures for becoming a monitor
 - healthy monitor announces that it is a monitor at periodic interval
 - if a station does not see that packet for some time then it sends a "claim token"
 - if claim token comes back to station then it is monitor
 - if another wants to claim see other stations claim first some arbitration rule.

- Role of monitor
 - insert additional delay in ring
 - ensure always that there is a token somewhere in the ring
 - regenerate a vanished token
 - no token seen for TRT => regenerate

- orphaned / corrupted packets drain them if orphaned
 - (A and C bits set parent dies)
 - A bit set C bit not set parent dies
- bit is initially set to 1 by monitor
 - monitor notices back when packet passes by monitor a second time

- Detection of dead stations
 - some problem un detected
 - suspecting station sends a beacon frame –
 - how far beacon goes decide which stations must be bypassed.