DSPIC - Final Project

111064559 徐詠祺

16-points FFT Processor with Radix-2 Delay Feedback Architecture

■ Introduction:

此 final project 的成果是製作出 delay feedback 架構的 16 點 FFT processor 來處理 stream in data · 相較於 delay communicator 架構的 16 點 FFT 可節省 8 個單位的 delay register 的使用 · 因此做為一個 stream in/out FFT processor · 本此 project 所採用的 delay feedback 架構是更有優勢的。由於之前並沒有做過可以比較的 FFT processor · 所以難以去訂定目標規格 · 因此我把此 FFT processor 做了 non-pipelined 和 pipelined 的版本(檔案內的是 pipelined 版本) · 透過比較這兩個版本的差異來進一步分析如何去做到期望的規格。

■ File Description:

如下圖所示,分為四個主要的資料夾,第一個是 fxp_sim,裡面存放 fix point FFT 模擬的 Matlab code 以及輸入進電路的 testpattern 和該筆 pattern 的輸出結果來作為驗證使用;第二個是 RTL,裡面存放 5 份電路的 Verilog code 和 testbench;第三個是synthesis_report,裡面存放合成結果的 timing & utilization report;最後是 Vivado project 完整的檔案。

■ Fix Point Simulation:

本次 FFT 的 fix point simulation 是透過 fxp_fft_sim.m 和 my16fft.m 來完成,並根據下圖的方法做 fix point simulation 與 SNR 分析來決定出 FFT 輸入&運算、twiddle factor 的 word length。

一開始我產生了一個 32000 筆隨機複數序列,並另該序列的平均功率為 1 以作為 FFT 的 input signal · 之後便是產生相對原本 input signal SNR 為 30 的複數 noise · 並把他和 原本的 signal 疊加起來作為 fix point FFT SNR 分析使用。

第二部分我先在 my16fft.m 中實作出了下圖要應用在電路上的 DIF FFT 演算法,並

且在尚未進行輸入&運算、twiddle factor fix point 時先把 input signal 丟進去做 過 floating 運算,並且和 Matlab 內建的 fft function 進行比較結果,確認過我的 function 運算無誤才加入 fi function 進行 fix point simulation。

至於將 floating point 轉換成指令 word length、fraction length 的 fix point 上,我透過 Matlab fi function 來完成,特別需要注意的是由於我在電路中在運算過後做 bit reduction 打算使用 saturation 方法來處理 overflow 問題,此外因在小數 bit reduction 部分打算直接做 truncation 以避免電路做 rounding 會需要用到加法器,因此這 fi 的方法也要設置成 saturate 和 floor 方法來確保模擬結果會與電路行為一致。

F = fimath('OverflowAction','Saturate','RoundingMethod','Floor');

確定好了 fi function 的兩種行為後便是在 my16fft.m 中加上輸入&運算的 fix point,我會決定把輸入和運算一起做是因為在電路設計中輸入的 data 和做完一個 stage 後輸出的 data 需要做 bit reduction,並且他們的 word length、fraction length 是相同的,因此我第一部份的 SNR 分析會先 fix 輸入&運算,但在 twiddle factor 仍是 floating 的情況去決定輸入&運算的 word length。

根據 floating FFT 運算結果和 input sequence 的最大最小值情況,我決定把整數含 sign 的位寬定在 5 bits 來盡量避免 overflow 導致的 SNR loss。

從下圖的 SNR 曲線可以看出,在我設定的 5 bits 整數寬度(含 sign bit)下,輸入與運算的 word length 約在 12 bits 會達到飽和,因此我就決定了以(12, 7)作為輸入與運算的 word length。

Fix 輸入和運算位寬後,剩下便是 twiddle factor SNR 模擬,由於 twiddle factor 的數值範圍在 1 到-1 之間,因此我決定整數只要 1bit 也就是 sign,但這樣會遇到一個問題是 twiddle factor 在表示 1 上會有誤差,1 會變成 1-2^(fraction length),為了避免這

個的誤差我在 FFT 軟體運算和電路上都不進行乘 1 的行為(W_16_0),直接 bypass 這部分即可避免使用 1bit 整數導致的誤差。

如下圖所示,twiddle factor word length 約在 9bits 會達到飽和,因此我就決定了以(9, 8)作為 twiddle factor word length。

■ Circuit Design (Pipelined version):

如下圖所示,整個 16 點 FFT processer 在 delay feedback 架構下可依照 stage 拆解,也就是拆成 4 個 Delay Feedback Cell,這樣的模組化的做法更容易因應不同點數 FFT 而進行修改,並且在 pipelined 版本我在每個 cell 輸出皆擋了一級 register,以用於切斷 critical path,讓 clock rate 可以進一步提升。

下圖是根據我使用的 DIF 演算法設計的 cell 架構·在每個 delay cell 內部大致上包含五個部分: 第一個部分是 delay register·以 shift register 來完成 2^n 的 delay 以用於對齊 butterfly 運算的輸入;第二個部分是 butterfly·他的上方 path 輸入連接到 delay register·下方 path 接到 cell 的 stream input;第三個部份是兩個收到同樣 select 的mux_a/b·根據對齊的時序去把正確的 butterfly 結果輸出到下面的 twiddle factor 乘法器;第四個部分是 twiddle factor 乘法器·收到 butterfly 資料後進 twiddle factor 複數乘法;第五個部分是決定 cell output 的 mux_out·它的存在是為了解決上述過的

twiddle factor 表示 1 的問題,因此這個 \max_{out} 負責去輸出經過 twiddle factor 乘法的結果和不進行乘法的結果。

此外把 butterfly module 和 twiddle factor module 獨立拆開是為了這些 module 可以根據演算法調整,也可以把 twiddle factor 乘法和 mux_out 搬到 butterfly 前方,改變成 DIT 的架構。

下圖為 butterfly module · 在加法器輸出後擴增成 13bits 要經過(13,7)-(12,7)的 saturation module 判斷是否 overflow 並進行飽和的動作 · 和我在 Matlab 所做的加法 再 fi 回(12,7)行為是一致的。

下圖為 twiddle factor multiplier module · 因為是複數乘法 · 所以共需要 4 個乘法器和兩個加法器 · 此處為了避免乘加運算中間的 overflow 我是決定在乘加後再過(22,15)-(12,7)的 saturation module · 但代價是兩個加法器的位寬就需要變大到 21 bits · 此處電路的行為也和我在 Matlab 做 twiddle factor 乘法再 fi 回(12,7)的行為相同。

下圖為 FFT processor 預期的時序圖(pipelined),我透過預先繪製時序圖的方法來進行controller 的設計,確保在時序上有正確的控制所有 mux 和 twiddler factor。

Vivado Project FPGA 選擇為 Xilinx Alveo U50LV 來做合成結果分析使用,其速度等級

為-2。

■ Simulation Result:

由下圖 Vivado 模擬結果可以看出前兩組 16 點輸出與 Matlab fix point 運算結果相同,因此可以驗證電路功能是正確的,剩餘組數的結果比較可參考波行檔: tb_behav.wcfg 和output_fix.txt。

1	820+578i	17	652+59i	X[0]
2	-787+484i	18	-357-677i	X[1]
3	349+65i	19	645-831i	X[2]
4	-632-306i	20	-568-473i	X[3]
5	628-166i	21	-11+50i	X[4]
6	-547-430i	22	56+24i	X[5]
7	-65-893i	23	-303-445i	X[6]
8	-77+353i	24	124-315i	X[7]
9	-512+314i	25	272-151i	X[8]
10	-131+84i	26	111+5i	X[9]
11	347 +1 071i	27	-285+119i	X[10]
12	-88-104i	28	256+475i	X[11]
13	920-294i	29	-409-126i	X[12]
14	93-326i	30	-166-36i	X[13]
15	505+597i	31	-241-43i	X[14]
16	-55-467i	32	80-115i	X[15]

X[0],X[8], X[4], X[12], X[2], X[10], X[6], X[14], X[1], X[9], X[5], X[13], X[3], X[11], X[7], X[15]

- Synthesis Result:
 - 1. Non-pipelined version:
 - ♦ Timing Report:

◆ Utilization Report:

+	+	+	+	+	++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	+	+	+	++
CLB LUTs*	672	0	0	871680	0.08
LUT as Logic	624	0	0	871680	0.07
LUT as Memory	48	0	0	403200	0.01
LUT as Distributed RAM	0	0			
LUT as Shift Register	48	0			
CLB Registers	182	0	0	1743360	0.01
Register as Flip Flop	182	0	0	1743360	0.01
Register as Latch	0	0	0	1743360	0.00
CARRY8	32	0	0	108960	0.03
F7 Muxes	0	0	0	435840	0.00
F8 Muxes	0	0	0	217920	0.00
F9 Muxes	0	0	0	108960	0.00
+	+	+	+	+	++

2. Pipelined version:

◆ Timing Report:

L Clark Command					
Clock Summary					
Clask Navafanm(na)	Danied(na)	Enagueney/MII=\			
Clock Waveform(ns)	Period(ns)	Frequency(MHz)			
11 (0.000.0.000)	5 600	470 574			
clk {0.000 2.800}	5.600	178.571			

◆ Utilization:

+	+	+	+		++
Site Type	Used	Fixed	Prohibited	Available	Util%
+	+	+	- 		++
CLB LUTs*	576	0	0	871680	0.07
LUT as Logic	528	0	0	871680	0.06
LUT as Memory	48	0	0	403200	0.01
LUT as Distributed RAM	0	0			
LUT as Shift Register	48	0			
CLB Registers	275	0	0	1743360	0.02
Register as Flip Flop	275	0	0	1743360	0.02
Register as Latch	0	0	0	1743360	0.00
CARRY8	32	0	0	108960	0.03
F7 Muxes	0	0	0	435840	0.00
F8 Muxes	0	0	0	217920	0.00
F9 Muxes	0	0	0	108960	0.00
+					

Power Report:

◆ **備註**: 兩種版本的合成結果皆有 met setup time,但是在合成報告中會有 negative hold slack,但這並沒有關係,因為在 Vivado implementation 的 clock tress synthesis 會把 hold time issue 修掉,如下圖 implementation 結果(pipelined 版本),因此合成結果有 hold time violation 是無妨的,基本上做完 implantation 就會解決。

Design Timing Summary

etup		Hold		
Worst Negative Slack (WNS):	0.124 ns	Worst Hold Slack (WHS): 0.056 ns		
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS): 0.000 ns		
Number of Failing Endpoints:	0	Number of Failing Endpoints: 0		
Total Number of Endpoints:	322	Total Number of Endpoints: 346		

All user specified timing constraints are met.

■ Result Analysis:

從合成結果可以發現此電路在 stage output 切了 pipeline 後·clock speed 從 80 MHz 大幅提升到 178.571 MHz·約提升了 123%·原本沒有切的 critical path 會從第一個 stage 的 delay register 到最後一個 stage 的 delay register · 在每個 stage 輸出切過之後變成每級 delay register 輸出到 stage output register · 大約僅剩下 1 個乘法、2 個 加法等等的 delay · 但是從輸入到輸出便會多了 4T delay · 也多了 93 個 register。此外 LUT 的數量從 672 減少到了 576 · 約減少了 14% · 我認為是控制邏輯的調整與 critical path 變短所導致的結果。對我來說切過 pipeline 的結果在 clock speed 上算是有達到 我在 U50LV 上合成出來的預期。

■ Specification Chart:

	16-points FFT Processor			
FPGA	Xilinx Alveo U50LV			
Clock Speed	178.571 MHz			
Hardware Cost	LUT: 576, Registers: 275			
Throughput	11.16M 16-point FFT result per second			
Power	0.101 W			