Ricerca Operativa

 Modelli di Programmazione Lineare

Modelli di programmazione lineare

- Il metodo grafico è basato su
 - ⇒ linearità della funzione obiettivo
 - ⇒ linearità dei vincoli
- Sotto queste ipotesi (come vedremo meglio in seguito), una soluzione si trova su un vertice della regione ammissibile: l'ultimo toccato traslando le rette isoprofitto nella direzione del gradiente
- Si parla in questi casi di modelli di programmazione lineare (PL)

Elementi di un modello PL

- Insiemi: elementi del sistema;
- Parametri: dati del problema;
- Variabili decisionali o di controllo: grandezze sulle quali possiamo agire;
- Vincoli: relazioni matematiche che descrivono le condizioni di ammissibilità delle soluzioni;
- Funzione obiettivo: la quantità da massimizzare o minimizzare.

Un modello PL dichiara le caratteristiche della soluzione ottima in linguaggio matematico

Formulazione generale di un modello di Programmazione Lineare

```
\min (\max) z = [c_1 x_1 + c_2 x_2 + \dots + c_j x_j + \dots + c_n x_n (+ cost.)] \cdot cost \ge 0
subject to (s.t., soggetto a, s.a)
       a_{11}x_1 + a_{12}x_2 + \dots + a_{1j}x_j + \dots + a_{1n}x_n \ge (=, \le) b_1
       a_{21}x_1 + a_{22}x_2 + \dots + a_{2i}x_i + \dots + a_{2n}x_n \ge (=, \le) b_2
       a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mj}x_j + \dots + a_{mn}x_n \ge (=, \le) b_m
       x_i \in \mathbb{R}_{(+)} (x_i \text{ intere})
: funzione obiettivo da minimizzare (min) o massimizzare (max)
: variabili decisionali (incognite)
       reali (eventualmente non negative)
       intere (eventualmente non negative)
                                                                  Programmazione
                                                                  lineare intera (PLI)
       binarie (x_i \in \{0,1\})
: coefficienti di costo (min) o profitto (max) [costante nota]
: coefficienti tecnologici [costante nota]
: termini noti [costante nota]
```

 C_{i}

CAVEAT!!!

In questo corso si richiedono

MODELLI LINEARI

le variabili,

di qualsiasi natura esse siano,

possono essere solo moltiplicate per una costante e sommate tra loro.

E basta!!!

Telecomandi

Per l'assemblaggio di telecomandi, si hanno a disposizione 10 moduli display, 18 moduli di logica di controllo, 12 moduli di trasmissione, 21 tastierini, 9 moduli di navigazione e 10 moduli led. I telecomandi sono di due tipi. Il tipo A richiede un display, un modulo di navigazione, 2 tastierini, 2 moduli di logica, un modulo di trasmissione e un led. Il tipo B richiede 2 display, 3 tastierini, 2 moduli di logica e 3 moduli di trasmissione. Considerando che il tipo A permette un guadagno netto di 4 euro e il tipo B di 6 euro, determinare la produzione che massimizza il guadagno.

Siano x_A e x_B le quantità di telefoni di tipo A e B

max 4
$$x_A$$
 + 6 x_B (guadagno complessivo)
s.t.
$$x_A + 2 x_B \le 10$$
 (display)
 x_A ≤ 9 (navigazione)
2 x_A + 3 x_B ≤ 21 (tastierini)
2 x_A + 2 x_B ≤ 18 (logica)
 x_A + 3 x_B ≤ 12 (trasmissione)
 x_A ≤ 10 (led)

$$x_A, x_B \in \mathbb{Z}_+$$

Money makers

Un gruppo di ragazzi vuole ricavare il più possibile vendendo agli amici magliette e borse decorate. Sono disponibili 10 magliette di cotone e 15 borse di tela e, per la decorazione, 32 riquadri disegnati e 40 profili rossi. Su ogni maglietta vengono apposti 6 riquadri e 2 profili, e su ogni borsa 3 riquadri e 5 profili. Sono anche disponibili 15 bottoni, e ogni borsa ne utilizzerà due per la chiusura. Sono state anche preparate 22 etichette, da apporre una su ogni maglietta e due su ogni borsa. Considerando che ogni maglietta decorata è venduta a 24 euro e ogni borsa a 16 euro, e che gli amici compreranno tutte le magliette e le borse, determinare la produzione che massimizza il ricavo.

Dieta economica

Un dietologo deve preparare una dieta che garantisca un apporto giornaliero di proteine, ferro e calcio di almeno 20 mg, 30 mg e 10 mg, rispettivamente. Il dietologo è orientato su cibi a base di verdura (5 mg/kg di proteine, 6 mg/Kg di ferro e 5 mg/Kg di calcio, al costo di 4 €/Kg), carne (15 mg/kg di proteine, 10 mg/Kg di ferro e 3 mg/Kg di calcio, al costo di 10 €/Kg) e frutta (4 mg/kg di proteine, 5 mg/Kg di ferro e 12 mg/Kg di calcio, al costo di 7 €/Kg). Determinare la dieta di costo minimo.

Modello PL

Siano x_1 , x_2 e x_3 le quantità di cibi a base di verdura, carne e frutta, rispettivamente

min
$$4x_1+10x_2+7x_3$$
 (costo giornaliero dieta) s.t.

$$5x_1+15x_2+4x_3 \ge 20$$
 (proteine)
 $6x_1+10x_2+5x_3 \ge 30$ (ferro)
 $5x_1+3x_2+12x_3 \ge 10$ (calcio)

$$x_i \in \mathbb{R}_+, \ \forall i \in \{1, 2, 3\} \quad \times_j \in \mathbb{Z}_+$$

Indagine di mercato

Un'azienda pubblicitaria deve svolgere un'indagine di mercato per lanciare un nuovo prodotto. Si deve contattare telefonicamente un campione significativo di persone: almeno 150 donne sposate, almeno 110 donne non sposate, almeno 120 uomini sposati e almeno 100 uomini non sposati. Le telefonate possono essere effettuate al mattino (al costo operativo di 1.1 euro) o alla sera (al costo di 1.6 euro). Le percentuali di persone mediamente raggiunte sono riportate in tabella.

	Mattino	Sera
Donne sposate	30%	30%
Donne non sposate	10%	20%
Uomini sposati	10%	30%
Uomini non sposati	10%	15%
Nessuno	40%	5%

Si noti come le telefonate serali sono più costose, ma permettono di raggiungere un maggior numero di persone: solo il 5% va a vuoto. Si vuole minimizzare il costo complessivo delle telefonate da effettuare (mattina/sera) in modo da raggiungere un campione significativo di persone

Modello PLI

Siano x₁ e x₂ il numero di telefonate da fare al mattino e alla sera, rispettivamente

 $1.1 x_1 + 1.6 x_2$ (costo totale telefonate)

```
s.t. 0.3x_1+0.3x_2 \ge 150 (donne sposate) 0.1x_1+0.2x_2 \ge 110 (donne non sposate) 0.1x_1+0.3x_2 \ge 120 (uomini sposati) 0.1x_1+0.15x_2 \ge 100 (uomini non sposati)
```

$$x_i \in \mathbb{Z}_+, \ \forall i \in \{1, 2\}$$

Alcuni schemi base di modellazione

Modelli di copertura di costo minimo

min
$$\sum_{i \in I} C_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \ge D_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$

- I insieme delle risorse da acquistare;
- J insieme delle domande da coprire;
- C_i costo (unitario) per l'utilizzo della risorsa $i \in I$;
- D_i ammontare della domanda di $j \in J$;
- A_{ij} capacità (unitaria) della risorsa i di soddisfare la domanda j.

Alcuni schemi base di modellazione

Modelli di mix ottimo di produzione

$$\max \sum_{i \in I} P_i x_i$$
s.t.
$$\sum_{i \in I} A_{ij} x_i \leq Q_j \qquad \forall j \in J$$

$$x_i \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I$$

- I insieme dei beni che possono essere prodotti;
- J insieme delle risorse disponibili;
- P_i profitto (unitario) per il bene $i \in I$;
- Q_j quantità disponibile della risorsa $j \in J$;
- A_{ij} quantità di risorsa j necessaria per la produzione di un'unità del bene i.

Trasporto di frigoriferi

Una ditta di produzione di elettrodomestici produce dei frigoriferi in tre stabilimenti e li smista in quattro magazzini intermedi di vendita. La produzione settimanale nei tre stabilimenti A, B e C è rispettivamente di 50, 70 e 20 unità. La quantità richiesta dai 4 magazzini è rispettivamente di 10, 60, 30 e 40 unità. I costi per il trasporto di un frigorifero tra gli stabilimenti e i magazzini 1, 2, 3 e 4 sono i seguenti:

- dallo stabilimento A: 6, 8, 3, 4 euro;
- dallo stabilimento B: 2, 3, 1, 3 euro;
- dallo stabilimento C: 2, 4, 6, 5 euro.

La ditta vuole determinare il piano di trasporti di costo minimo.

Modello PLI

 Sia x_{ij} il numero di frigoriferi prodotti nello stabilimento i e smistati nel magazzino j

min
$$6 x_{A1} + 8 x_{A2} + 3 x_{A3} + 4 x_{A4} + 2 x_{B1} + 3 x_{B2} + 1 x_{B3} + 3 x_{B4} + 2 x_{C1} + 4 x_{C2} + 6 x_{C3} + 5 x_{C4}$$

s.t.

 $x_{A1} + x_{A2} + x_{A3} + x_{A4} \le 50$ (capacità produttiva stabilimento A) $x_{B1} + x_{B2} + x_{B3} + x_{B4} \le 70$ (capacità produttiva stabilimento B) $x_{C1} + x_{C2} + x_{C3} + x_{C4} \le 20$ (capacità produttiva stabilimento C)

 $x_{A1} + x_{B1} + x_{C1} \ge 10$ (domanda magazzino 1) $x_{A2} + x_{B2} + x_{C2} \ge 60$ (domanda magazzino 2) $x_{A3} + x_{B3} + x_{C3} \ge 30$ (domanda magazzino 3) $x_{A4} + x_{B4} + x_{C4} \ge 40$ (domanda magazzino 4)

 $x_{ij} \in \mathbb{Z}_+ \ \forall i \in \{A, B, C\}, j \in \{1, 2, 3, 4\}$

Alcuni schemi base di modellazione

Modelli di trasporto

min
$$\sum_{i \in I} \sum_{j \in J} C_{ij} x_{ij}$$
s.t.
$$\sum_{j \in J} x_{ij} \leq O_i \qquad \forall i \in I$$

$$\sum_{j \in I} x_{ij} \geq D_j \qquad \forall j \in J$$

$$x_{ij} \in \mathbb{R}_+ \left[\mathbb{Z}_+ \mid \{0, 1\} \right] \quad \forall i \in I, j \in J$$

I insieme dei centri di offerta; O_i ammontare dell'offerta in $i \in I$;

J insieme dei centri di domanda; D_j ammontare della domanda in $j \in J$.

 C_{ij} costo (unitario) per il trasporto da $i \in I$ a $j \in J$;

Turni in ospedale

Si vogliono organizzare i turni degli infermieri in ospedale. Ogni infermiere lavora 5 giorni consecutivi, indipendentemente da come sono collocati all'interno della settimana, e poi ha diritto a due giorni consecutivi di riposo. Le esigenze di servizio per i vari giorni della settimana richiedono la presenza di 17 infermieri il lunedì, 13 il martedì, 15 il mercoledì, 19 il giovedì, 14 il venerdì, 16 il sabato e 11 la domenica. Organizzare il servizio in modo da minimizzare il numero totale di infermieri da impegnare.

Modello PLI

 Siano lun, mar, mer, gio, ven, sab e dom il numero di infermieri in cui turno inizia di lunedì,... domenica

```
minlun + mar + mer + gio + ven + sab + doms.t.lun + gio + ven + sab + dom \ge 17 (presenze lunedi)lun + mar + mer + ven + sab + dom \ge 13 (presenze martedi)lun + mar + mer + mer + gio + ven + sab + dom \ge 15 (presenze mercoledi)lun + mar + mer + gio + ven + gio + ven + gio + ven + sab + dom \ge 16 (presenze venerdi)mar + mer + gio + ven + sab + dom \ge 16 (presenze domenica)
```

lun, mar,mer, gio, ven, sab, dom ∈ ZZ₊

Localizzazione di servizi

Una città è divisa in sei quartieri, dove si vogliono attivare dei centri unificati di prenotazione (CUP) per servizi sanitari. In ciascun quartiere è stata individuata una possibile località di apertura. Le distanze medie in minuti da ciascun quartiere a ciascuna delle possibili località è indicata in tabella. Si desidera che nessun utente abbia un tempo medio di spostamento superiore a 15 minuti per arrivare al CUP più vicino e si vuole minimizzare il numero di CUP attivati.

	Loc. 1	Loc. 2	Loc 3	Loc. 4	Loc. 5	Loc. 6
Q.re 1	5	10	20	30	30	20
Q.re 2	10	5	25	35	20	10
Q.re 3	20	25	5	15	30	20
Q.re 4	30	35	15	5	15	25
Q.re 5	30	20	30	15	5	14
Q.re 6	20	10	20	25	14	5

Modello PLI

Sia $x_i = 1$, se viene aperto il CUP nel quartiere i, 0 altrimenti

min
$$x_1 + x_2 + x_3 + x_4 + x_5 + x_6$$

s.t.

$$x_1 + x_2 \qquad \geq 1 \text{ (esigenze q.re 1)}$$

$$x_1 + x_2 \qquad + x_6 \geq 1 \text{ (esigenze q.re 2)}$$

$$x_3 + x_4 \qquad \geq 1 \text{ (esigenze q.re 3)}$$

$$x_3 + x_4 + x_5 \qquad \geq 1 \text{ (esigenze q.re 4)}$$

$$x_4 + x_5 + x_6 \qquad \geq 1 \text{ (esigenze q.re 5)}$$

$$x_2 \qquad + x_5 + x_6 \qquad \geq 1 \text{ (esigenze q.re 6)}$$

$$x_i \in \{0,1\}$$