CPEN 400Q / EECE 571Q Lecture 13 Introducing variational algorithms

Tuesday 1 March 2022

Announcements

- Assignment 3 available
 - second-last assignment
 - please read grading details
 - due Friday 11 March 23:59
- Meetings *next week* for project prototypes (schedule selection starting tomorrow)

Quiz 6 after class today.

Last time

We learned about RSA, implemented Shor's algorithm, and used it to decompose numbers into their prime factors.

Learning outcomes

- Describe the main structural elements of a variational quantum algorithm
- Compute gradients of variational circuit parameters using the parameter-shift rule
- Find optimal parameters of a variational circuit in PennyLane

Consider an algorithm like QPE...

"Full-size algorithms" like QPE, Shor, Grover, etc.:

- Use many qubits
- Require dense qubit *connectivity*
- Have high circuit depth

Today's quantum computers today aren't really suitable for these...

[A NISQ-era device, for exemplary purposes]

Image credit: IBM Q Auckland, screen capture 2022-03-01.

https://quantum-computing.ibm.com/services?services=systems&system=ibm_auckland

What can we do with a NISQ device?

Suitable algorithms should:

- Not be too long
- Fit the processor architecture well
- Use a quantum computer to do something non-trivial
- Still solve an interesting problem

Variational algorithms

Feature an iterative exchange between classical and quantum devices. (Sometimes called "hybrid" quantum-classical algorithms)

Variational algorithms

Useful in many domains: quantum chemistry, quantum machine learning, optimization, etc.

Variational algorithms

We will cover in the rest of the course:

- The basics of setting up and running variational algorithms
 - Quantum gradients
 - Parametrized quantum circuits and variational ansaetze
 - Cost functions
- A number of common variational algorithms
 - Variational quantum classifier (VQC)
 - Variational quantum eigensolver (VQE)
 - Quantum approximate optimization algorithm (QAOA)
- Challenges and solutions for running such algorithms on noisy quantum hardware

Some quantum operations depend on real-valued parameters.

These can be passed as arguments to a quantum function.

```
def circuit(x, y, z):
    qml.RX(x, wires=0)
    qml.RY(y, wires=1)
    qml.RZ(z, wires=2)
```

We call these parametrized quantum circuits.


```
def parametrized_circuit(theta):
   qml.RX(theta[0], wires=0)
    qml.RX(theta[1], wires=1)
    qml.RX(theta[2], wires=2)
    qml.CNOT(wires=[0, 1])
    qml.CNOT(wires=[1, 2])
    qml.CNOT(wires=[2, 0])
    qml.RX(theta[3], wires=0)
    qml.RX(theta[4], wires=1)
    qml.RX(theta[5], wires=2)
    qml.CNOT(wires=[0, 1])
    qml.CNOT(wires=[1, 2])
    qml.CNOT(wires=[2, 0])
```

Parametrized circuits are used to assist in evaluation of a cost function which represents a particular problem.

We are trying to *find optimal values* for these parameters in order to minimize the cost, which represents the solution to the problem.

Expectation values are often used to construct a cost function.

Expectation values and objective functions

Example: find the value of θ which minimizes $\langle Z \rangle$.

$$|0\rangle - RY(\theta) - A \langle Z \rangle$$

Easy to solve by hand $(\theta^* = \pi)$. How can we *train* the quantum circuit to learn the optimal value?

Training variational quantum circuits

Working with variational quantum circuits is a lot like working with neural networks (architecture and layer design, training to determine optimal weights, etc.)

Variational circuits are often termed quantum neural networks.

Training variational quantum circuits

Training variational quantum circuits

Circuits can be trained using standard optimization techniques *on a classical computer* such as gradient descent.

... but how do we compute the gradient of a quantum circuit?

Image credit: A. Amini, A. P. Soleimany, S. Karaman, D. Rus. Spatial Uncertainty Sampling for End-to-End Control. NIPS 2017.

$$|0\rangle - RY(\theta) - A \langle Z \rangle$$

Key point: the expectation values measured at the end are *functions* of the variational parameters, i.e.,

$$\langle Z \rangle = f(\theta)$$

We can compute such functions, then differentiate them.

$$|0\rangle - RY(\theta) - A \langle Z \rangle$$

Let's compute the analytical expression for $\langle Z \rangle$:

$$\begin{split} \langle Z \rangle &= \langle 0 | RY^{\dagger}(\theta) \cdot Z \cdot RY(\theta) | 0 \rangle \\ &= \langle 0 | RY(-\theta) \cdot Z \cdot RY(\theta) | 0 \rangle \\ &= \langle 0 | RY(-\theta) \cdot Z \cdot [\cos(\theta/2) | 0 \rangle + \sin(\theta/2) | 1 \rangle] \\ &= \langle 0 | RY(-\theta) [\cos(\theta/2) | 0 \rangle - \sin(\theta/2) | 1 \rangle] \\ &= \langle 0 | [\cos(\theta/2) (\cos(-\theta/2) | 0 \rangle + \sin(-\theta/2) | 1 \rangle) \\ &- \sin(\theta/2) (-\sin(-\theta/2) | 0 \rangle + \cos(-\theta/2) | 1 \rangle)] \end{split}$$

$$0\rangle - \overline{RY(\theta)} - \overline{A} \langle Z \rangle$$

Let's compute the analytical expression for $\langle Z \rangle$:

$$\begin{split} \langle Z \rangle &= \langle 0 | [\cos(\theta/2)(\cos(-\theta/2)|0\rangle + \sin(-\theta/2)|1\rangle) \\ &- \sin(\theta/2)(-\sin(-\theta/2)|0\rangle + \cos(-\theta/2)|1\rangle)] \\ &= \langle 0 | [\cos(\theta/2)(\cos(\theta/2)|0\rangle - \sin(\theta/2)|1\rangle) \\ &- \sin(\theta/2)(\sin(\theta/2)|0\rangle + \cos(\theta/2)|1\rangle)] \\ &= \langle 0 | [\cos^2(\theta/2)|0\rangle - \cos(\theta/2)\sin(\theta/2)|1\rangle \\ &- \sin^2(\theta/2)|0\rangle - \sin(\theta/2)\cos(\theta/2)|1\rangle] \\ &= \cos^2(\theta/2) - \sin^2(\theta/2) \\ &= \cos(\theta) \end{split}$$

$$|0\rangle - RY(\theta) - A \langle Z \rangle$$

In order to train the circuit, we can use gradient descent; just compute the derivative of the function!

$$\langle Z \rangle = \cos(\theta)$$
$$\frac{\partial \langle Z \rangle}{\partial \theta} = -\sin(\theta)$$

But obviously, we don't want to do this by hand... use automatic differentiation instead! PennyLane will do this for us.

qml.grad

qml.grad is a *transform*: apply to a QNode to obtain a function that computes the *gradient* of that QNode.

```
@qml.qnode(dev)
def pqc(theta):
    qml.RY(theta, wires=0)
    return qml.expval(qml.PauliZ(0))

grad_fn = qml.grad(pqc)
grad_fn(theta)
```

Easy to do in software, but what about on hardware?

To train using gradient descent, then we'd have to:

- 1. guess an initial value for θ
- 2. run a circuit that computes the gradient at θ
- 3. use those results to produce an updated value for θ
- 4. repeat 2-3 until converged

You don't actually need a different circuit: you can use a circuit to compute its own gradient by running the circuit multiple times at different values, and combining the results.

The parameter-shift rule

Our circuit implements the function

$$f(\theta) = \cos(\theta)$$

The gradient of this function is

$$\frac{\partial f(\theta)}{\partial \theta} = -\sin(\theta)$$

Consider the following:

$$\frac{1}{2}\left(\cos(\theta+\pi/2)-\cos(\theta-\pi/2)\right)$$

The parameter-shift rule

Let's simplify this by noting that

$$cos(\theta + \pi/2) = -sin(\theta)$$
$$cos(\theta - \pi/2) = sin(\theta)$$

Then:

$$\frac{1}{2}(\cos(\theta + \pi/2) - \cos(\theta - \pi/2)) = \frac{1}{2}(-\sin(\theta) - \sin(\theta))$$
$$= -\sin(\theta)$$
$$= \frac{\partial f(\theta)}{\partial \theta}$$

The parameter-shift rule

$$\frac{\partial f(\theta)}{\partial \theta} = \frac{1}{2} \left(\cos(\theta + \pi/2) - \cos(\theta - \pi/2) \right)$$

This is an example of a parameter-shift rule: we can compute gradients with respect to parameters of a circuit by evaluating them at shifted versions of those parameters!

Next time

More generally, for all single-qubit rotation gates $U(\theta)$,

$$\frac{\partial f(\theta)}{\partial \theta} = \frac{1}{2} \left(f(\theta + \pi/2) - f(\theta - \pi/2) \right)$$

where $f(\theta)$ is the function implemented by the *whole circuit*, with every other parameter held constant.

Let's try an example with more than one parameter.

Next time

Content:

- Embedding data in variational circuits
- The variational quantum classifier

Action items:

- 1. Assignment 3 (can do all problems)
- 2. Start working on prototype implementation for project

Recommended reading:

- QML glossary entries (https://pennylane.ai/qml/glossary.html):
 - Quantum differentiable programming
 - Parameter-shift rules
 - Quantum gradients
 - Variational circuit
- https://arxiv.org/abs/2012.09265v2 (review paper)