skfda.datasets.make_random_warping

skfda.datasets.make_random_warping(n_samples: int = 15, n_features: int = 100, *, start: float = 0.0, stop: float = 1.0, sigma: float = 1.0, shape_parameter: float = 50, n_random: int = 4, random_state=None) [source]

Generate random warping functions.

Let v(t) be a randomly generated function defined in [0, 1]

$$v(t) = \sum_{j=0}^{N} a_j \sin(\frac{2\pi j}{K}t) + b_j \cos(\frac{2\pi j}{K}t)$$

where $a_i, b_i \sim N(0, \sigma)$.

The random warping it is constructed making an exponential map to Γ .

$$\gamma(t) = \int_0^t \left(\frac{\sin(\|v\|)}{\|v\|} v(s) + \cos(\|v\|) \right)^2 ds$$

An affine traslation it is used to define the warping in [a, b].

The smoothing and shape of the warpings can be controlling changing N, σ and $K=1+{\rm shape_parameter}.$

Parameters:

- n_samples Total number of samples. Defaults 15.
- n_features The total number of trajectories. Defaults 100.
- start Starting point of the samples. Defaults 1.
- stop Ending point of the samples. Defaults 0.
- sigma Parameter to control the variance of the samples. Defaults 1.
- shape_parameter Parameter to control the shape of the warpings.
 Should be a positive value. When the shape parameter goes to infinity the warpings generated are γ_{id}. Defaults to 50.
- **n_random** Number of random sines and cosines to be sum to construct the warpings.
- random_state Random state.

Returns:

FDataGrid object comprising all the samples.