

### Universidade Federal de Santa Catarina Centro Tecnológico – CTC Departamento de Engenharia Elétrica



# "EEL5105 - Circuitos e Técnicas Digitais"

Prof. Héctor Pettenghi Roldán\*

Hector@eel.ufsc.br

Florianópolis, março de 2016.

\*Baseados nos slides do Professor Eduardo Bezerra EEL5105 2015.2

# Circuito multiplexador - Mux

# Objetivos do laboratório

- 1. Entender o conceito de "multiplexador".
- 2. Implementação de multiplexador em VHDL utilizando apenas funções booleanas (VHDL estrutural).
- 3. Implementação de multiplexador em VHDL utilizando when / else (VHDL comportamental).
- 4. Estudo de caso: uso de multiplexador no projeto hierárquico do laboratório anterior.

# Projeto de multiplexador - MUX 2x1

No circuito, se s = 0, a saída m será igual a entrada x.
 Se s = 1, a saída m será igual a entrada y.



**VHDL** estrutural:

 $m \le (NOT (s) AND x) OR (s AND y)$ 

VHDL comportamental:

m <= x when s = '0' else y;

# Projeto de multiplexador - MUX 4x1





#### **VHDL** estrutural:

m <= ((((((not (s1)) and not (s0)) and w) and x) and y) and z) or ...

### VHDL comportamental:

# Tarefa a ser realizada na aula prática

PARTE I – Mux 4x1 em VHDL <u>estrutural</u>
PARTE II – Mux 4x1 em VHDL <u>comportamental</u>

# Reutilizar os arquivos do lab anterior, e realizar as alterações indicadas a seguir (Mux 4x1 no lugar de C4):



## Descrição da tarefa: PARTE I – VHDL estrutural

- Utilizar os componentes C1, C2, C3 e topo do laboratório anterior.
- Remover o componente C4 do projeto:
  - Remover C4 da lista de arquivos
  - Remover o Component C4 do topo.vhd
  - Remover o port map do C4 do topo.vhd
- Criar um novo arquivo VHDL, e implementar um mux 4x1 utilizando VHDL estrutural, conforme exemplo do slide 4.
- Editar o arquivo topo.vhd, e realizar a inclusão do novo componente mux 4x1 no circuito, utilizando as construções do VHDL *component* e *port map*.

## Interface com o usuário

Saída F – *LEDR(0)* 



Seleção SW(9) SW(8) Entrada C Entrada B Entrada A SW(2) SW(1) SW(0)

| Seleção SW(98) | Saída LEDR(0)   |
|----------------|-----------------|
| 00             | F1              |
| 01             | F2              |
| 10             | F3              |
| 11             | 0 (LED apagado) |

# Descrição da tarefa: PARTE II - VHDL comportamental

- Criar um novo arquivo VHDL, e implementar um NOVO mux 4x1 utilizando VHDL comportamental, conforme exemplos dos slides 4 e 5 (uso de *when / else*).
- Não é necessário alterar o arquivo topo.vhd, pois o novo mux 4x1 deverá possuir exatamente a mesma interface do mux 4x1 implementado em VHDL estrutural da PARTE I (mesma entity).
- •Na *entity* (Parte I e Parte II) o seletor deverá ser definido como um vetor de dois bits, ou seja s: in std\_logic\_vector(1 downto 0).
- Importar os pinos, realizar a síntese, simulação, e prototipação no kit de desenvolvimento, e verificar se o novo circuito funciona de acordo com o esperado.

### Resumo da tarefa – Atenção!! SÃO DOIS PROJETOS DIFERENTES!

PARTE I – Projetar e implementar o MUX em VHDL

estrutural:

 $m \le (w \text{ and } ((NOT(s(1)) \text{ AND } (NOT(s(0)))) \text{ } OR \dots$ 



PARTE II – Projetar e implementar o MUX em VHDL

# comportamental:



### **PARTE I – VHDL estrutural**



s: in std\_logic\_vector(1 downto 0);

### **PARTE II – VHDL comportamental**



s: in std\_logic\_vector(1 downto 0);

| E <u>n</u> t              | tradas                      | Saídas                                                        |                                                         |                                                    |
|---------------------------|-----------------------------|---------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------|
| SW <sub>20</sub><br>C B A | SW <sub>98</sub><br>Seleção | F1 = A or B or C<br>F2 = B xor C<br>F3 = (B or C) and (not A) | Simulação<br>Livro - <i>step</i> 5<br>LEDR <sub>o</sub> | FPGA<br>Livro - <i>step</i> 6<br>LEDR <sub>0</sub> |
| 000                       | 00                          | F1 =                                                          | 0                                                       | Ŭ                                                  |
| 001                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 010                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 011                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 100                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 101                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 110                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 111                       | 00                          | F1 =                                                          | 1                                                       |                                                    |
| 000                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 001                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 010                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 011                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 100                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 101                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 110                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 111                       | 01                          | F2 =                                                          |                                                         |                                                    |
| 000                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 001                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 010                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 011                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 100                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 101                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 110                       | 10                          | F3 =                                                          |                                                         |                                                    |
| 111                       | 10                          | F3 =                                                          |                                                         |                                                    |
| XXX                       | 11                          | 0                                                             | 0                                                       |                                                    |

14/14