대수적으로 이차부등식 풀기 
$$(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$$
 (Solving Quadratic Inequalities  $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$  in Algebra)

## Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra

▶ Start ▶ End

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

$$ax^2 + bx + c < 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$
Let  $D = b^2 - 4ac$ 

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$
Let  $D = b^2 - 4ac$ 
 $D > 0$ :

$$\overline{ax^2 + bx + c} < 0 \; (a > 0, \; b, c \in \mathbb{R})$$

• 
$$D > 0$$
: Let

$$\overline{ax^2 + bx + c} < 0 \; (a > 0, \; b, c \in \mathbb{R})$$

• 
$$D > 0$$
: Let  $\alpha$ 

$$\overline{ax^2 + bx + c} < 0 \; (a > 0, \; b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and

$$\overline{ax^2 + bx + c} < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$ 

$$ax^2 \perp bx \perp c$$

$$\overbrace{ax^2 + bx + c} < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots

$$ax^2 + bx + c < 0 \ (a>0, \ b,c \in \mathbb{R})$$
  
Let  $D=b^2-4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$  be roots of

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$ 

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .

٠.

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha$ 

$$ax^{2} + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

$$Let D = b^2 - 4ac$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha <$ 

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

 $Let D = b^2 - 4ac$ 

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x$ 

$$ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

• D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$  • proof

$$\frac{ax^2 + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})}{\sum_{c \in D = b^2 - 4ac}}$$

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$  • proof
- D ≤ 0.

$$ax^{2} + bx + c < 0 \ (a > 0, \ b, c \in \mathbb{R})$$

Let  $D = b^2 - 4ac$ 

- D > 0: Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .  $\therefore \alpha < x < \beta$  • proof
- D ≤ 0
  - ... No solutions proof

## Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra



Solving Quadratic Inequalities  $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start End
$$ax^2 + bx + c < 0$$

## Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Find 
$$ax^2+bx+c<0$$
  $(a>0,\ b,c\in\mathbb{R})$ 

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Let

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$ 

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots

$$ax^{2} + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$ 

## Solving Quadratic Inequalities $(ax^2+bx+c>0\ (a>0,\ b,c\in\mathbb{R}))$ in Algebra

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

Let  $\alpha$  and  $\beta$  be roots of  $ax^2 + bx + c = 0$  where  $\alpha < \beta$ .

$$\begin{array}{lll} & \text{Home} & \text{ `Start } & \text{`End} \\ & ax^2 + bx + c & < & 0 & (a > 0, \ b, c \in \mathbb{R}) \\ & x^2 + \frac{b}{a}x + \frac{c}{a} & < & 0 & (\because a > 0) \end{array}$$

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0, x - \beta < 0$$

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha <$ 

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x <$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0$$

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0, x - \beta < 0 \Rightarrow \alpha < x < \beta$$

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha$ 

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha <$ 

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha < x$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha < x < \beta$ 

Home Start Find
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$(x-\alpha)(x-\beta)<0$$

i) 
$$x - \alpha > 0$$
,  $x - \beta < 0 \Rightarrow \alpha < x < \beta$ 

ii) 
$$x - \alpha < 0, x - \beta > 0 \Rightarrow$$
 No solutions by i), ii)  $\therefore \alpha < x < \beta$ 

## Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, b, c \in \mathbb{R}))$ in Algebra



Solving Quadratic Inequalities  $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$  in Algebra

Home Start End
$$ax^2 + bx + c < 0$$

## Solving Quadratic Inequalities $(ax^2 + bx + c > 0 \ (a > 0, \ b, c \in \mathbb{R}))$ in Algebra

Home Start Lend 
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

Home Start End
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

From Start Find 
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$
  $x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$   $\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} < 0$ 

Home Start Find 
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} < 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} < 0$$

Home Start Find 
$$ax^2 + bx + c < 0 \quad (a > 0, b, c \in \mathbb{R})$$

$$x^2 + \frac{b}{a}x + \frac{c}{a} < 0 \quad (\because a > 0)$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} < 0$$

$$\left(x + \frac{b}{2a}\right)^2 - \frac{b^2 - 4ac}{4a^2} < 0$$

 $\therefore$  No solutions  $(\because b^2 - 4ac \le 0)$ 

## Github:

https://min7014.github.io/math20210514001.html

Click or paste URL into the URL search bar, and you can see a picture moving.