

Logic is a Formal Language

Propositions:

- Anil is Intelligent
- Anil is hardworking
- If Anil is Intelligent and Anil is Hardworking, then
 Anil scores a high mark

Propositional Logic

 Syntax of the representation language specifies all the sentences that are wellformed.

 Semantics of the language defines the <u>truth</u> of each sentence with respect to each possible <u>world</u>.

Elements of Propositional Logic

Symbols

Logical constants: TRUE, FALSE

Propositional symbols:P, Q, etc. (uppercase)

- Logical connectives: $\Lambda, \vee, \Leftrightarrow, \Rightarrow, \neg$

– Parentheses: ()

Sentences

- Atomic sentences: constants, propositional symbols
- Combined with connectives, e.g. $P \land Q \lor R$ also wrapped in parentheses, e.g. $(P \land Q) \lor R$

Elements of Propositional Logic

Anil is intelligent = Intelligent(Anil)

- Propositions
- Anil is hardworking = Hardworking(Anil)
- Objects and relations or Functions

A proposition (statement) can be true or false

Logical Connectives

- Conjunction Λ
 - Binary op., e.g. P Λ Q, "P and Q", where P, Q are the conjuncts
- Disjunction
 - Binary op., e.g. P ∨ Q, "P or Q", where P, Q are the disjuncts
- Implication ⇒
 - Binary op., e.g. $P \Rightarrow Q$, "P implies Q", where P is the *premise* (antecedent) and Q the *conclusion* (consequent)
 - Conditionals, "if-then" statements, or <u>rules</u>
- Equivalence ⇔
 - Binary op., e.g. P ⇔ Q, "P equivalent to Q"
 Biconditionals
- Negation
 - Unary op., e.g. ¬ P, "not P"

Syntax of Propositional Logic

(Backus-Naur Form)

```
Sentence
                                     AtomicSentence | ComplexSentence
                                     LogicalConstant | PropositionalSymbol
AtomicSentence
ComplexSentence
                                     (Sentence)
                                      Sentence LogicalConnective Sentence
                                      | ¬Sentence
LogicalConstant
                                     TRUE | FALSE
PropositionalSymbol
                                     P | Q | R | ...
LogicalConnective
                                     \Lambda \mid \vee \mid \Leftrightarrow \mid \Rightarrow \mid \neg
```

Precedence (from <u>highest</u> to <u>lowest</u>): \neg , Λ , \vee , \Rightarrow , \Leftrightarrow e.g.: \neg P Λ Q \vee R \Rightarrow S (not ambiguous), equal to: (((\neg P) Λ Q) \vee R) \Rightarrow S

Validity

- A sentence is valid if it is true in all models.
- Valid sentences are known as tautologies.
- Every valid sentence is logically equivalent to True.

Satisfiability

- A sentence is satisfiable if it is true in some models.
- Satisfiability can be checked by enumerating the possible models until one is found that satisfies the sentence.
- Most problems in computer sciences are satisfiability problems.
 - E.g., Constraint satisfaction problem, Search problems.

Interpretation of symbols

- Logical constants have fixed meaning
 - True: always means the fact is the case; valid
 - False: always means the fact is not the case; unsatisfiable
- Propositional symbols mean "whatever they mean"
 - e.g.: **P** "we are in a pit", etc.
 - Satisfiable, but not valid (true only when the fact is the case)

Interpretation of sentences

- Meaning derived from the meaning of its parts
 - Sentence as a combination of sentences using connectives
- Logical connectives as (boolean) functions:

TruthValue f (TruthValue, TruthValue)

Example 1

- Let P stands for Intelligent(Anil)
- Let Q stands for Hardworking(Anil)

- What does P Λ Q mean?
- What does P ∨ Q mean?

• P Λ Q, P \vee Q are compound propositions

Example 2

- Use parenthesis to ensure that the syntax is completely unambiguous:
 - A: John likes Kate.
 - B: John likes Chocolate.
 - C: John buys Chocolate
- $(A \land B) \Rightarrow C$
 - If John likes Kate and John likes Chocolate, John buys Chocolate
- $A \land (B \Rightarrow C)$
 - John likes Kate, and
 - If John likes Chocolate, then John buys Chocolate

Interpretation of connectives

- Truth-tableDefine a mapping from input to output

Р	Q	¬ P	PΛQ	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

Interpretation of sentences by decomposition

• e.g.:
$$\neg P \land Q \lor R \Rightarrow S$$
, with $P \leftarrow F$, $Q \leftarrow T$, $R \leftarrow F$, $S \leftarrow T$:
$$\neg P \leftarrow T \qquad ((\neg P) \land Q) \lor R) \leftarrow T$$
$$(\neg P) \land Q \leftarrow T \qquad (((\neg P) \land Q) \lor R) \Rightarrow S \leftarrow T$$

Validity and Inference

Testing for validity

- Using truth-tables, checking all possible configurations
 - e.g.: $((P \lor Q) \land \neg Q) \Rightarrow P$

	Р	Q	$P \lor Q$	¬ Q	(P∨Q) Λ ¬Q	$((P \lor Q) \land \neg Q) \Rightarrow P$	
	False	False	False	True	False	True	
	False	True	True	False	False	True	
E	True	False	True	True	True	True	[¦
	True	True	True	False	False	True	

- The proposition says:
 - If $((P \lor Q) \land \neg Q)$ is True, then P is True.
 - If $((P \lor Q) \land \neg Q)$ is False, then ? (didn't specify, so P can be either True or False) -> overall, this proposition is *valid*

Summary

Valid sentence – TRUE under all interpretations

Satisfiable sentence – TRUE under at least 1 interpretation

Unsatisfiable sentence – FALSE under all interpretations

Exercise

A	В	С	ΑΛВ	$B \Rightarrow C$	(A ∧ B) ⇒ C	$ A \Lambda (B \Rightarrow C) $
Т	Т	Т				
Т	Т	F				
Т	F	Т				
Т	F	F				
F	Т	Т				
F	Т	F				
F	F	Т				
F	F	F				

Thank you!

