

Nombre:	Calificación
Apellidos:	
DNI/Alias	
Titulación	

1	2	3	4	5	6	7	8	9	10

Examen Enero (180 minutos): Lunes 15 de Enero de 2024

Ejercicio. Consideramos el polinomio $f := \mathbf{t}^4 - 6\mathbf{t}^2 - 3\mathbf{t} + 3 \in \mathbb{Q}[\mathbf{t}]$ y sea L el cuerpo de descomposición de f sobre \mathbb{Q} . Denotamos $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ las raíces de f.

- (1) Demostrar que tanto f como su resolvente $g := t^3 + 12t^2 + 24t + 9$ son polinomios irreducibles de $\mathbb{Q}[t]$.
- (2) Demostrar que el grupo de Galois de f es S_4 . Ayuda: puede ser útil saber que $\Delta(f) = 9099 = 3^3 \cdot 367$.
- (3) Demostrar que S_4 tiene exactamente un elemento de orden 1, nueve elementos de orden 2, ocho elementos de orden 3 y seis elementos de orden 4.
- (4) Demostrar que S_4 tiene exactamente un subgrupo de orden 1, nueve subgrupos de orden 2, cuatro subgrupos isomorfos a $\mathbb{Z}_2 \times \mathbb{Z}_2$ y tres subgrupos isomorfos a \mathbb{Z}_4 . Decidir cuáles de ellos son subgrupos normales.
- (5) Demostrar que S_4 tiene exactamente tres subgrupos isomorfos a \mathcal{D}_4 . Decidir cuáles de ellos son subgrupos normales.
- (6) Demostrar que S_4 tiene exactamente cuatro subgrupos isomorfos a \mathbb{Z}_3 y cuatro subgrupos isomorfos a S_3 . Decidir cuáles de ellos son subgrupos normales.
- (7) Demostrar que todas las raíces de f son reales. Ayuda: Puede ser útil utilizar el teorema de Bolzano.
- (8) Calcular todas las subextensiones de $L|\mathbb{Q}$ de grado potencia de 2, indicar un sistema finito de generadores para cada una de ellas y explicar cuáles son de Galois.
- (9) Demostrar que $E := \mathbb{Q}(\alpha_i, \alpha_j) | \mathbb{Q}$ es una extensión de grado 12 para cualquier par de raíces α_i, α_j distintas de f y que las raíces de g son $\beta_1 := -(\alpha_1 + \alpha_2)^2$, $\beta_2 := -(\alpha_1 + \alpha_3)^2$ y $\beta_3 := -(\alpha_1 + \alpha_4)^2$. Ayuda: Puede ser útil tener en cuenta que el coeficiente del monomio t^3 de f es cero.
- (10) Calcular todas las subextensiones de $L|\mathbb{Q}$ de grados 3, 6 y 12, indicar un sistema finito de generadores para cada una de ellas y explicar cuáles son de Galois. Ayuda: Puede ser útil demostrar que tanto $\mathbb{Q}(\alpha_1 + \alpha_2)|\mathbb{Q}(\beta_1)$ como $\mathbb{Q}((\alpha_1 + \alpha_2)\delta)|\mathbb{Q}(\beta_1)$ son extensiones de grado 2, donde $\delta := \sqrt{\Delta(f)}$.