1a	1b	2a	2b	3a	3b	4a	4b	4c

Calif.

APELLIDO Y NOMBRE:

Comisión:

Algebra II - 2do Cuatrimestre 2022 Segundo Parcial (24/11/2022) - Mañana

1. (30pts) Sea $\mathbb{R}[t]_3$ el \mathbb{R} -espacio vectorial de polinomios de grado menor o igual que 3, y sea $T: \mathbb{R}[t]_3 \to \mathbb{R}^3$ la transformación lineal dada por

$$T(p(x)) = (p(0), p(1), p(2)).$$

- (a) Calcular el núcleo y la imagen de T.
- (b) Dadas las bases $\mathcal{B}_2 = \{(1,1,0), (0,1,1), (0,0,-1)\}$ de \mathbb{R}^3 y $\mathcal{B}_1 = \{1+t, t^2+t+1, t^2+1, t^3+1\}$ de $\mathbb{R}[t]_3$, calcular $[T]_{\mathcal{B}_1,\mathcal{B}_2}$.
- 2. (20pts) Sea $T:\mathbb{C}^3\to\mathbb{C}^3$ la siguiente transformación lineal:

$$T(x, y, z) = (-y, x, z),$$
 $x, y, z \in \mathbb{C}.$

- (a) Calcular los autovalores de T y sus correspondientes autoespacios.
- (b) Decidir si T es diagonalizable. En caso que lo sea, dar una base B de \mathbb{C}^3 tal que la matriz de T en dicha base sea diagonal.
- 3. (20pts) Sea \mathbb{R}^3 el espacio vectorial sobre \mathbb{R} . Consideremos la función $\langle \; , \; \rangle : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}$

$$\langle (x_1, y_1, z_1), (x_2, y_2, z_2) \rangle = x_1 x_2 - x_1 y_2 - x_2 y_1 + 2y_1 y_2 + 3z_1 z_2.$$

- (a) Probar que $\langle \; , \; \rangle$ es un producto interno.
- (b) Dado el subespacio W generado por los vectores $\{(1,1,0),(0,1,1)\}$, encontrar una base ortogonal de W.
- 4. Determinar si cada una de las siguientes afirmaciones son verdaderas o falsas, justificando en cada caso la respuesta dada.
 - (a) (10pt) Una matriz $A \in M_{3\times 3}(\mathbb{R})$ con exactamente dos autovalores distintos es diagonalizable.
 - (b) (10pt) Existe un isomorfismo entre $(\mathbb{C}^4)^*$ y $M_{2\times 2}(\mathbb{C})$.
 - (c) (10pt) Existen a, b, c y d tal que

$$\det \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 2 & 3 & 4 \\ 3 & 2 & 5 & 4 \\ a & b & c & d \end{pmatrix} \neq 0$$