

数据链路层

Tedu.cn

以太网

- 以太网MAC地址
 - 用来识别一个以太网上的某个单独的设备或一组设备

以太网(续1)

• 以太网帧格式

以太网交换机

什么是交换机

- 交换机是用来连接局域网的主要设备
 - 交换机能够根据以太网帧中目标地址智能的转发数据,因此交换机工作在数据链路层

Tedu.cn

交换机的工作原理

- 交换机的转发原理
 - 初始状态

交换机的工作原理(续1)

- 交换机的转发原理
 - 初始状态
 - MAC地址学习

交换机的工作原理(续2)

- 交换机的转发原理
 - 初始状态

交换机的工作原理(续3)

- 交换机的转发原理
 - 初始状态
 - MAC地址学习

- 广播未知数据帧

- 接收方回应

00-00-00-11-11-11 00-00-00-22-22-22

交换机的工作原理(续4)

- 交换机的转发原理
 - 初始状态
 - MAC地址学习
 - 广播未知数据帧
 - 接收方回应
 - 交换机实现单播通信

交换机的工作原理(续5)

- 学习
 - MAC地址表是交换机通过学习接收的数据帧的源MAC地址来形成的
- 广播
 - 如果目标地址在MAC地址表中没有,交换机就向除接收到该数据帧的端口外的其他所有端口广播该数据帧
- 转发
 - 交换机根据MAC地址表单播转发数据帧
- 更新
 - 交换机MAC地址表的老化时间是300秒
 - 交换机如果发现一个帧的入端口和MAC地址表中源MAC地址的所在端口不同,交换机将MAC地址重新学习到新的端口

查看MAC地址表

- · 查看MAC地址表
- Tarena-sw1#show mac-address-table

Mac Address Table

Vlan	Mac Address	Туре	Ports	
All	000d.28be.b640	STATIC	CPU	
All	0100.0ccc.ccc	STATIC	CPU	
All	0100.0ccc.cccd	STATIC	CPU	
All	0100.0cdd.dddd	STATIC	CPU	
1	0013.8044.ff40	DYNAMIC	Fa0/2	
1	0013.8044.ff41	DYNAMIC	Fa0/8	
Total Mac Addresses for this criterion: 6				

交换机的工作原理案例

交换机的工作原理案例(续1)

- 交换机A在接收到数据帧后,执行以下操作:
 - 交换机A查找MAC地址表
 - 交换机A学习主机11的MAC地址
 - 交换机A向其他所有端口发送广播

交换机的工作原理案例(续2)

交换机的工作原理案例(续3)

- 交换机B在接收到数据帧后,执行以下操作:
 - 交换机B查看MAC地址表
 - 交换机B学习源MAC地址和端口号
 - 交换机B向所有端口广播数据包
- 主机22,查看数据包的目标MAC地址不是自己,丢 弃数据包

交换机的工作原理案例(续4)

主机33, 丢弃数据帧 主机44,接收数据帧

交换机的工作原理案例(续5)

交换机的工作原理案例(续6)

- 交换机B在接收到数据帧后,执行以下操作:
 - 交换机B学习源MAC地址和端口号
 - 交换机B查看MAC地址表,根据MAC地址表中的条目, 单播转发数据到端口3

交换机的工作原理案例(续7)

交换机的工作原理案例(续8)

交换机的工作原理案例(续9)

• 交换机最终的MAC地址表

Tedu.cn

广播域

- 广播域指接收同样广播消息的节点的集合,如:在该 集合中的任何一个节点传输一个广播帧,则所有其他 能收到这个帧的节点都被认为是该广播帧的一部分
- 交换机的所有端口默认属于同一个广播域

VLAN

Tedu.cn

VLAN概述

- 什么是VLAN
 - Virtual LAN (虚拟局域网)是物理设备上连接的不受物理位置限制的用户的一个逻辑组。
- 为什么引入VLAN
 - 交换机的所有端口默认属于同一个广播域
 - 随着接入设备的增多,网络中广播增多,降低了网络的效率
 - 为了分割广播域,引入了VLAN

VLAN概述(续1)

• VLAN分割广播域

VLAN概述(续2)

- VLAN的作用
 - 广播控制
 - 安全性
 - 带宽利用
 - 延迟

VLAN概述(续3)

· 基于端口划分的静态VLAN

以太网交换机

端口	所属VLAN
Port 1	VLAN 5
Port 2	VLAN 10
•••	•••
Port 7	VLAN5
Port 10	VLAN10
•••	•••

VLAN表

VLAN配置

静态VLAN的配置

- · 配置VLAN的步骤
 - 创建VLAN
 - 将端口加入到相应的VLAN中
 - 验证

静态VLAN的配置(续1)

- 在全局配置模式下创建VLAN
- Switch(config)#vlan vlan-id
- Switch(config-vlan)#name vlan-name

Tedu.cn

静态VLAN的配置(续2)

- · 删除已创建的VLAN
- Switch(config)#no vlan 2

Tedu.cn

将端口加入VLAN

- Switch(config)# interface f0/1
- Switch(config-if)# switchport access vlan vlan-id
- Switch(config-if)# no switchport access vlan vlan-id
- · 也可以同时将多个端口添加到某个VLAN中:
- Switch(config)# interface range f0/1 10

验证VLAN的配置

Switch# show vlan brief

Switch# show vlan id vlan-id

查看VLAN配置

Switch#show vlan brief

VLAN Name	Status	Ports
1 default Fa0/4	active	Fa0/1, Fa0/2, Fa0/3,
Fa0/13, Fa0/14		Fa0/11, Fa0/12,
Fa0/17, Fa0/18		Fa0/15, Fa0/16,
Fa0/21, Fa0/22		Fa0/19, Fa0/20,
2 v2	active	Fa0/23, Fa0/24 Fa0/5, Fa0/6, Fa0/7,
Fa0/8		Fa0/9, Fa0/10
1002 fddi-default 1003 token-ring-default	active active	
1004 fddinet-default 1005 trnet-default	active active	

案例:Vlan基本命令

- 在交换机上创建vlan10,修改名称为web并查看vlan 配置
- 删除vlan10 , 查看vlan配置
- 创建vlan20,将f0/1端口加入此vlan,查看vlan配置
- 将f0/1端口从vlan20中删除,查看vlan配置

案例: Vlan的划分

· 在交换机上创建以下vlan,按拓扑将端口加入到指定 <u>的</u>vlan并配置服务器IP地址,实现同vlan主机的通信。

案例:Vlan的划分

• 通过配置交换机实现同vlan主机互通

Trunk原理

交换机之间的VLAN通信

交换机之间的VLAN通信(续1)

- 如何实现交换机之间的VLAN通信?
 - 每个VLAN一条链路?

交换机之间的VLAN通信(续2)

- 如何实现交换机之间的VLAN通信?
 - 每个VLAN一条链路?

交换机之间的VLAN通信(续3)

- 如何实现交换机之间的VLAN通信?
 - 只使用一条链路,那么来自多个VLAN的数据如何标识?

交换机之间的VLAN通信(续4)

- 如何实现交换机之间的VLAN通信?
 - 只使用一条链路,那么来自多个VLAN的数据如何标识?

交换机之间的VLAN通信(续5)

 例如:三个分别来自1、2、3班级的学生,到另一个 学校去,分别要参观1、2、3班的上课情况,对方的 学校怎么识别他们分别应该去哪个班级?

VLAN标识

• 交换机给每个去往其他交换机的数据帧打上VLAN标识

VLAN标识(续1)

• 交换机给每个去往其他交换机的数据帧打上VLAN标识

VLAN标识的种类

- 以太网上实现中继可用两种封装类型
 - ISL (Cisco私有协议)
 - IEEE 802.1Q

VLAN标识的种类(续1)

• IEEE802.1Q帧格式

VLAN标识的种类(续2)

Tedu.cn

VLAN标识的种类(续3)

• ISL帧格式

VLAN标识的种类(续4)

• ISL帧格式

VLAN标识的种类(续5)

- ISL和802.1Q 的异同
- 相同点
 - 都是显式标记,即帧被显式标记了VLAN的信息
- 不同点
 - IEEE 802.1Q是公有的标记方式, ISL是Cisco私有的
 - ISL采用外部标记的方法,802.1Q采用内部标记的方法
 - ISL标记的长度为30字节,802.1Q标记的长度为4字节

Trunk配置

配置接口为Trunk模式

Switch(config)# interface interface-id

Switch(config-if)#switchport mode ?

access Set trunking mode to ACCESS unconditionally

dynamic Set trunking mode to dynamically negotiate

access or trunk mode

trunk Set trunking mode to TRUNK unconditionally

Switch(config-if)#switchport mode trunk

恢复接口默认模式

Switch(config)# interface *interface-id*Switch(config-if)#switchport mode dynamic auto
或

Switch(config-if)#no switchport mode trunk

查看接口模式

Switch#show interface interface-id switchport

Name: Fa0/1

Switchport: Enabled

Administrative Mode: dynamic auto

Operational Mode: static access

Administrative Trunking Encapsulation: dot1q

Operational Trunking Encapsulation: native

Negotiation of Trunking: On

Access Mode VLAN: 1 (default)

•••••

Tedu.cn

配置VLAN Trunk实例

配置VLAN Trunk实例(续1)

- 第一步:在交换机上创建VLAN
- 第二步:将接口添加到相应的VLAN中
 - SW1#config terminal
 - SW1(config)#interface range f0/4 10
 - SW1(config-if-range)#switchport access vlan 2
 - SW1(config)#interface range f0/11 23
 - SW1(config-if-range)#switchport access vlan 3

配置VLAN Trunk实例(续2)

- 第三步:配置交换机之间互联的端口为Trunk
 - SW1(config)#interface f0/24
 - SW1(config-if)#switchport mode trunk

配置VLAN Trunk实例(续3)

配置VLAN Trunk实例(续4)

• 查看端口状态

SW1#show interface f0/24 switchport

Name: Fa0/24

Switchport: Enabled

Administrative Mode: trunk Operational Mode: trunk

Administrative Trunking Encapsulation: dot1q

Operational Trunking Encapsulation: dot1q

Negotiation of Trunking: On

Access Mode VLAN: 1 (default)

Trunking Native Mode VLAN: 1 (default)

Voice VLAN: none

•••••

配置VLAN Trunk实例(续5)

- 配置结果验证,如果配置正确
 - 连接在SW1上的属于VLAN 1、2、3主机能够ping通SW2上VLAN 1、2、3的主机

案例:配置trunk中继链路

配置s1的f0/1口为trunk模式,分别查看两台交换机f0/1端口状态

恢复s1的f0/1口为默认模式,分别查看两台交换机f0/1端口状态

案例:配置trunk中继链路

通过配置实现跨交换机的同vlan主机的通信。

以太通道

以太通道概述

- 也称为以太端口捆绑、端口聚集或以太链路聚集。英 文名EtherChannel
- 以太通道为交换机提供了端口捆绑的技术,允许两个 交换机之间通过两个或多个端口并行连接,同时传输 数据,以提供更高的带宽

配置以太网通道

- EtherChannel 以太通道
 - 多条线路负载均衡, 带宽提高
 - 容错, 当一条线路失效时, 其他线路通信, 不会丢包

配置以太网通道(续1)

• 配置接口为以太通道模式

要捆绑在一起的端口

Switch(config)# interface range fastEthernet 0/1 - 2Switch(config-if-range)#channel-group 1 mode on Creating a port-channel interface Port-channel 1

以太通道的组号

配置以太网通道(续2)

• 查看以太通道的配置

```
Switch# show etherchannel summary
Flags: D - down P - in port-channel
I - stand-alone s - suspended
H - Hot-standby (LACP only)
R - Layer3 S - Layer2
U - in use f - failed to allocate aggregator u - unsuitable for bundling
w - waiting to be aggregated
d - default port
```

Number of channel-groups in use: 1 Number of aggregators: 1

以太通道配置指导原则

• 参与捆绑的端口必须属于同一个vlan,如果是在中继模式下,要求所有参加捆绑的端口都是在中继模式下

如果端口配置的是中继模式,那么应该在链路的两端 将通道中的所有端口配置成中继模式

案例:以太通道配置

参照如下网络拓扑将交换机的f0/7-f0/9端口配置为以太网通道。

