טופולוגיה - תרגיל 8

עופר יהודה ־ 307960468

2017 במאי 25

- במו בות מטרי קומפקטי מקיים כי לכל כיסוי פתוח יש תת־כיסוי סופי. בפרט יש תת־כיסוי בן מנייה, לכן הוא מרחב בות במות הבחב במרחב במות מקיים את אקס' המניה השנייה. X מקיים את אקס' המניה השנייה.
- n מקיים את אקס' המניה. השנייה. יהי $\{U_{lpha}\}_{lpha\in J}$ כיסוי פתוח של X יהי הבסיס בן המנייה. לכל X מקיים את אקס' המניה השנייה. יהי $\{U_{lpha}\}_{lpha\in J}$ כיסוי של X לכל X קיימת U_{lpha} כך שרבים U_{lpha} שמכיל אותו. נטען כי $\{U_{lpha}\}_{lpha\in J}$ היא כיסוי של X לכל X אותו. X בפרט, X בפרט, X לכל X לכן X אותו. X לכן X לבן X לבן
 - $\{U_x^n\}_{x\in X}$ נקבע נקי מרחב. לכל nלכל במרחב. נקל נקי נקבע נקי מרחב לינדלף. מרחב לינדלף. נקבע נקי

$$\forall x \in X, \ U_x = B_{\frac{1}{n}}(x)$$

יהי $D=\left\{x_j^n\mid j,n\in\mathbb{N}\right\}$ תת כיסוי בן מנייה, ותהי $\left(x_j^n\right)_{j=1}^\infty$ סדרת מרכזי הכדורים בתת הכיסוי. נגדיר $\left\{U_j\right\}_{j=1}^\infty$ תת כיסוי בן מנייה, ותהי $\left\{U_j\right\}_{j=1}^\infty$ סדרת מרכזי הכדורים בת מנייה. נטען כי זו קבוצה צפופה. תהי U פתוחה. יהי $x\in U$ קיים $x\in U$ כיסוי בן מנייה, קיים $x\in U$ ש־ $x\in U$ ש־ $x\in U$ אבל מכך נובע כי $x\in U$ כיסוי בן מנייה, קיים $x\in U$ מונע כי $x\in U$

$$B_{\frac{1}{n}}\left(x_{j}^{n}\right)\subseteq B_{r}\left(x\right)\subseteq U$$

. כנדרש. $D\cap U
eq arnothing$ משמע א $x_i^n \in U$ ולכן

 $B_n=$ בפוצה את לכל $D=\{x_n\mid n\in\mathbb{N}\}$ מנייה בת מנייה צפופה את ספרבילי. תהי קבוצה את ספרבילי. את מנייה ולכן הקבוצה $\left\{B_{rac{1}{k}}\left(x_n
ight)\mid k\in\mathbb{N}
ight\}$

$$B = \bigcup_{n=1}^{\infty} B_n$$

מנייה. נראה כי היא בסיס. תהא קבוצה פתוחה U. יהי $u\in U$ קיים $u\in U$ מצפיפות קיים ח כך מנייה. נראה כי היא בסיס. תהא קבוצה פתוחה $u\in U$. יהי $u\in U$ קיים $u\in U$

$$B_{\frac{1}{h}}(x_n) \subseteq B_r(x) \subseteq U$$

B בסיס.

- $lpha \in \Omega$ מקיים את אקס' המנייה הראשונה. לכל ($\Omega,<$).3
- \varnothing את שמכילה שמכילה בכל פתוחה מוכלת פתוחה קבוצה [$\varnothing,1$) = $\{\varnothing\}$ אז $\alpha=\varnothing$
 - . אם α עוקב אז שוב $\{\alpha 1, \alpha + 1\} = \{\alpha\}$ פתוחה ומוכלת בהכל.
- את \varnothing גבולי אז יהיה β הסודר הגבולי הגדול ביותר שמקיים $\beta<\alpha$ (אם אין נבחר את \varnothing). הקבוצה •

$$\{(\beta + n, \alpha + 1) \mid n \in \mathbb{N}\}\$$

עמת את הנדרש כי אם $b \geq \alpha+1$ או ש־ $a \leq \beta$ או של מפיימת מקיימת את מקיימת מפיילה את ממכילה את ממכילה של פתוחה מקיימת את מקיימת את מפרוח של פתוחה ממכילה את מולכן הקטע ($a>\alpha$ (a,b) אחרת בהכרח מפרוח $a=\beta+n$

כעת, נבחין כי אפשר לחלק את Ω לאיחוד זר של הסודרים העוקבים S והסודרים הגבוליים L שקטנים ממנו. נשים לב כי C לאיחוד זר של הסודרים העוקבים S והסודרים הגבוליים C איחוד של קבוצות כי לכל סודר גבולי C אפשר להתאים חח"ע סודר עוקב C הקבוצה לכן בהכרח C (אחרת גם C משמע C איחוד של קבוצות בנות מניה ולכן בן מנייה בעצמו). כעת, לכל סודר עוקב C הקבוצה C הקבוצה C פתוחה. מכך אפשר להסיק כי אף אחת מניה ולכן בן מנייה בעצמו.

- ulletאקס' מניה שנייה הקבוצה $\{eta\}$ חייבת להיות קבוצה בסיסית, לכן לא ייתכן מספר בן מנייה של קבוצות בסיסיות.
 - . מנייה בן מיסוי לו תת למצוא נימוק ממוח ומאותו פתוח פתוח כיסוי בן כיסוי לו תת כיסוי בן מנייה. $\bigcup_{\beta \in S} \left\{\beta\right\} \cup L$
- ספרביליות כל קבוצה צפופה חייבת להכיל את כל העוקבים כי היא חייבת לחתוך את היחידונים שמכילים אותם.

$$X = (\overline{\Omega}, <)$$

המינימלי x_n היה המינימלי היה לכל למצוא לו אוסף כנדרש, כי אחרת היה המינימלי היה המינימלי היה המינימלי היה המינימלי למצוא לו אוסף כנדרש, או בהכרח ב־ U_n .

$$\bigcup_{n=1}^{\infty} x_n = \alpha$$

אחוד בן מנייה של הפתוח לקטע הפתוח $(\bigcup_{n=1}^\infty,\Omega]$ קבוצה באוסף שמוכלת בו ונקבל סתירה. אבל כעת קיבלנו ש־ $(\bigcup_{n=1}^\infty,\Omega]$ איחוד בן מנייה של סודרים בני מנייה, בסתירה לכך שהוא לא בן מנייה.

לכל שאר האקסיומות הנימוקים זהים.

 $X = \mathbb{R}_l$.4

מניה ראשונה $^{ au}$ תהי $a\in\mathbb{R}$ מניה ראשונה $^{ au}$

$$\left\{ [a, a + \frac{1}{n}) \mid n \in \mathbb{N} \right\}$$

 $.[a,a+\frac{1}{n})\subseteq [b,c)$ ולכן $\frac{1}{n}\leq c-a$ שר כך קיים מקיימת מקיימת שמכילה שמכילה שמכילה (b,c) אז כל קבוצה בסיסית

ולכן b < q < c ש־q רציונלי כך ש־q ולכל (b,c) אפופה כי לכל \mathbb{Q} דיים q ספרביליות

$$q \in [b, c)$$

לינדלף ־ נטען כי מספיק להראות את הטענה לכיסוים בסיסיים. ואכן, בהינתן כיסוי פתוח $\{U_{\alpha}\}_{\alpha\in J}$, נחליף אותו בכיסוי $\{B_{\alpha}\}_{n=1}^{\infty}$, כעת, בהינתן תת־כיסוי בן מנייה בסיסיות שמוכלות בו נמצאות ב־ $\{B_{\beta}\}_{\beta\in J'}$ כעת, בהינתן תת־כיסוי בן מנייה B_{α} כעת, נשים לכל B_{α} כך ש־ B_{α} אז נחליף את B_{α} ב־ B_{α} ונקבל תת־כיסוי של הכיסוי המקורי B_{α} . כעת, נשים לב כי מתקיים

$$X = \bigcup_{n=1}^{\infty} B_n \subseteq \bigcup_{n=1}^{\infty} U_n \subseteq X$$

לכן זהו כיסוי כנדרש.

אז יהי $C=\bigcup_{\alpha}(a_{\alpha},b_{\alpha})$ כיסוי ע"י קבוצות בסיס. נגדיר $C=\bigcup_{\alpha}(a_{\alpha},b_{\alpha})$ אם נסתכל על $C=\bigcup_{\alpha}(a_{\alpha},b_{\alpha})$ בפרט $C=\bigcup_{\alpha}(a_{\alpha},b_{\alpha})$ לינדלף (כי הוא מטרי ומניה שנייה כתת מרחב של מניה שנייה). ולכן יש כיסוי ב"מ $C=\mathbb{N}$ של $C=\mathbb{N}$ של $C=\mathbb{N}$ בפרט $C=\mathbb{N}$ בפרט $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ כיסוי של $C=\mathbb{N}$ נתבונן ב"כ $C=\mathbb{N}$ נטען כי היא בת מניה. יהי $C=\mathbb{N}$ אזי קיים $C=\mathbb{N}$ בער $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ און ייי קבוצונל $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ און ייי קבוצונל $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ משמע $C=\mathbb{N}$ ביסוי בן מנייה של $C=\mathbb{N}$ ביסוי בן מנייה של $C=\mathbb{N}$ און ונקבל כיסוי בן מנייה של $C=\mathbb{N}$ און מרך $C=\mathbb{N}$ ביסוי בו מנייה של $C=\mathbb{N}$ ביסוי של $C=\mathbb{N}$ ביסוי ביסוי בו $C=\mathbb{N}$ ביסוי ביסוי ביסוי ביסוי בו $C=\mathbb{N}$ ביסוי ביסו

- ullet מניה שנייה בהמשך אני נותן כדוגמה נגדית למכפלה של לינדלף היא לינדלף את המרחב $\mathbb{R}_l imes \mathbb{R}_l$. אם הוא היה מנייה שנייה, אז גם המכפלה היתה מניה שנייה, ולכן גם כל תת מרחב היה מניה שנייה. בפרט, האלכסון עם המטריקה הדיסקרטית היה, בסתירה לכך שהוא אינו בן מנייה.
- n פתוחה קיים $x\in V$ פתוחה את כך שלכל x אוסף פתוחות המכילות את $x\in V$ יהי $x\in A$ יהי $x\in A$ יהי $x\in A$ אוסף פתוחות המכילות את $x\in A$ פתוחה ב־ $x\in A$ המכילה x בתוחה ב־ $x\in A$ יהי $x\in A$ אוסף קבוצות פתוחות ב־ $x\in A$ ואוסף קבוצות פתוחה ב־ $x\in A$ יהי x בתוחה ב־ $x\in A$ שימת x פתוחה ב־ $x\in A$ בתוחה ב־ $x\in A$ יהי $x\in A$ יהי $x\in A$ יהי $x\in A$ שימת $x\in A$ פתוחה ב־ $x\in A$ פתוחה ב־ $x\in A$ יהי $x\in A$ יהי $x\in A$ יהי $x\in A$ יהי $x\in A$ פתוחה ב- $x\in A$ יהי $x\in A$

$$x \in U_n \cap A \subseteq V \cap A = U$$

כנדרש.

יהי $x=(x_n)\in X$ מכפלה בת מנייה של מרחבים עם תכונת המנייה הראשונה. תהי $X=\prod_{n=1}^\infty X_n$ יהי יהי $X=\prod_{n=1}^\infty X_n$ מכפלה בת מנייה של מרחבים עם תכונת המנייה אוסף הקבוצות מהצורה $\{U_i^n\}_{i=1}^\infty$

$$\prod_{j=1}^{\infty} V_j, \ i_1, ..., i_k \in \mathbb{N}, \begin{cases} V_j \in \left\{ U_i^j \right\}_{i=1}^{\infty} & j = i_1, ..., i_k \\ X_j & \text{else} \end{cases}$$

אלו קבוצות פתוחות ואוסף קבוצות זה הוא בן מנייה (כי הוא מתאים לאוסף תתי הקבוצות הסופיות של הקבוצה $\mathbb{N}\times\mathbb{N}$. אלו קבוצות פתוחות ואוסף קבוצות זה הוא בן מנייה (כי הוא מתאים לאוסף אלו קבוצות ממרחב המקור שלהן. לכל כעת, אם $x\in S$ פתוחה ב-x, אז יש מספר סופי של קבוצות $x\in S$ באוסף שקיים ממניה ראשונה. מכיוון שיש מספר סופי, המכפלה של ה-x מוכל באוסף הקבוצות שהגדרנו קודם, ומוכל ב-x, כנדרש.

(ב) ספרביליות המרחב U או $U=\varnothing$ או $U=\varnothing$ עם הטופולוגיה עם הטופולוגיה עם אז $X=\mathbb{R}$ קבוצה צפופה ספרביליות המרחב בו מנייה לא יכולה להיות בו $\mathbb{R}\setminus\{0\}$ מקבל את הטופולוגיה הדיסקרטית, ומכיוון שאינו בן מנייה לא יכולה להיות בו קבוצה צפופה בת מניה.

מכפלה בת מנייה־ יהי $\left\{d_j^n\right\}_{j=1}^\infty$ מכפלה ב"מ של מרחבים ספרביליים. לכל $X=\prod_{n=1}^\infty X_n$ הקבוצה הצפופה והב"מ ב־ X_n . נגדיר את הקבוצה

$$S = \left\{ \left(d_{j_n}^n \right)_{n=1}^{\infty} \mid \exists N \in \mathbb{N} \ \forall n > N \ j_n = 1 \right\}$$

 $V=\prod_{i=1}^\infty V_i\subseteq X$ פתוחה, או קבוצה ב"מ כי היא מתאימה לקבוצה של סדרות סופיות של מספרים טבעיים. כעת, לכל $V_n=N$ פתוחה, $d^n_{j_n}\in V_n$ עד $j_n\in \mathbb{N}$ יש $j_n\in \mathbb{N}$ יש $j_n\in \mathbb{N}$ עד $j_n\in \mathbb{N}$ כך שד $j_n\in \mathbb{N}$ עד $j_n\in \mathbb{N}$ יש $j_n\in \mathbb{N}$ יש $j_n\in \mathbb{N}$ כך שד $j_n\in \mathbb{N}$ (מחיתוך בקבוצה הצפופה). לכן $j_n\in \mathbb{N}$ של $j_n\in \mathbb{N}$ וגם שייך ל $j_n\in \mathbb{N}$ וגם שייך ל $j_n\in \mathbb{N}$ כנדרש.

(ג) לינדלף $^{ au}$ דוגמה נגדית לתת מרחב: $\langle \overline{\Omega},<
angle$ לינדלף, אבל אבל $\langle \Omega,<
angle$ ת"מ ולא לינדלף.

$$x' + y' > x + y > 0$$

כעת הטופ' המושרית על $\{(x,-x)\}=[x,x+1) imes [-x,-x+1)\cap D$ כי הדיסקרטית על היא הטופ' המושרית על היא הטופ' ממש מ־0). מרחב שאינו בן מנייה עם הטופ' הדיסקרטית אינו לינדלף שאינה ממש (x,-x) סכום הקואורדינטות שלה גדול ממש מ־0). מרחב אינו בן מנייה עם הטופ' הדיסקרטית אינו לינדלף.

 $V\cap A$ כי לכל A, כי לכל $\{B_n\cap A\}_{n=1}^\infty$ מניה שנייה בי הי $A\subseteq X$ יהי $A\subseteq X$ יהי $A\subseteq X$ יהי בי $A\subseteq X$ מניה שנייה בי $A\subseteq X$ יהי $A\subseteq X$ יהי $A\subseteq X$ יהי $A\subseteq X$ מניה שנייה בי $A\subseteq X$ יהי $A\subseteq X$ יהי $A\subseteq X$ בסיס בן מנייה של $A\subseteq X$ מניה של $A\subseteq X$ מניה של $A\subseteq X$ יהי $A\subseteq X$ מניה של $A\subseteq X$ מניה של $A\subseteq X$ מניה של $A\subseteq X$ יהי $A\subseteq X$ מניה של $A\subseteq X$ מניה של $A\subseteq X$ יהי $A\subseteq X$ מניה של $A\subseteq X$ יהי מנייה של $A\subseteq X$ מניה של $A\subseteq X$ יהי מנייה של $A\subseteq X$ מנייה של $A\subseteq X$ יהי מנייה של מ

נניח $\left\{B_{j}^{n}\right\}_{n=1}^{\infty}$ מכפלה של מרחבי מניה. לכל אנייה. לכל מניה של מכפלה של מכפלה אל מכפלה אל מניח נניח אנייה. מניח שנייה

$$B = \bigcup_{n=1}^{\infty} \left\{ \left(\prod_{i=1}^{n} B_{j_i}^i \right) \times \left(\prod_{i=n+1}^{\infty} X_i \right) \mid j_1, ..., j_n \in \mathbb{N} \right\}$$

איחוד בן מנייה של קבוצות בנות מנייה ולכן בן מנייה. בנוסף זה בסיס לטופולוגית המכפלה כי כל קבוצה בסיסית שלה היא מהצורה

$$V = \left(\prod_{i=1}^{n} V_i\right) \times \prod_{i=n+1}^{\infty} X_i$$

Bעבור n כלשהו, ולכן V תתקבל מאיחוד של קבוצות מ־