1 Least squares with equality constraints

Consider the least squares problem with equality constraints

$$\min_{x} ||Ax - b||_{2}^{2} : Gx = h, \tag{1}$$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $G \in \mathbb{R}^{p \times n}$ and $h \in \mathbb{R}^p$. For simplicity, we will assume that $\operatorname{rank}(A) = n$ and $\operatorname{rank}(G) = p$.

Using the KKT conditions, determine the optimal solution of this optimization problem.

2 Distance between polytopes

Let $p^{(1)}, \ldots, p^{(r)}$ and $q^{(1)}, \ldots, q^{(s)}$ be points in \mathbb{R}^d , where $r, s \geq 1$. Let \mathcal{P} denote the polytope defined as the convex hull of $\{p^{(1)}, \ldots, p^{(r)}\}$, and \mathcal{Q} the polytope defined as the convex hull of $\{q^{(1)}, \ldots, q^{(s)}\}$. Thus every point in \mathcal{P} can be written as $\sum_{i=1}^r x_i p^{(i)}$ for som $x_i \geq 0$, $1 \leq i \leq r$ such that $\sum_{i=1}^r x_i = 1$, and every point in \mathcal{Q} can be written as $\sum_{j=1}^s x_{r+i} q^{(j)}$ for some $x_i \geq 0$, $r+1 \leq i \leq n$ such that $\sum_{i=r+1}^n x_i = 1$, where n := r + s.

Define the matrix $C \in \mathbb{R}^{d \times n}$ whose i-th column is $p^{(i)}$, $1 \le i \le r$ and whose r+j-th column is $-q^{(j)}$, $1 \le j \le s$.

- (a) Pose the problem of finding the minimum squared ℓ_2 distance between points in \mathcal{P} and points in \mathcal{Q} as a quadratic program with objective function $\|Cx\|_2^2$, viewed as a function on \mathbb{R}^n .
- (b) Define y := Cx. Show that QP found in the preceding part of this question can be expressed as a QP with the objective function $||y||_2^2$, viewed as a function of $(x, y) \in \mathbb{R}^n \times \mathbb{R}^d$.
- (c) Show that the dual to the QP in the preceding part of this question takes the form of the unconstrained QP

$$\max_{z} \left(-\frac{1}{4} z^{T} z + \min_{1 \le i \le r} z^{T} p^{(i)} - \max_{1 \le j \le s} z^{T} q^{(j)} \right),$$

(d) Provide a geometric interpretation of the dual problem formulated in the preceding part of this question.