

Photo: J. Verfaillie

Learning objectives

- Describe how we can quantify and model the short-wave spectral properties of a surface.
- Explain how a surface's reflectivity is affected by surface geometry.
- Understand how the sun's position relative to an object affects reflectivity.

Reflectivity and reflection coefficient

Spectral reflectivity

$$\alpha = \frac{\text{radiation reflected}}{\text{radiation incident}}$$

Reflectivity and reflection coefficient

Spectral reflectivity

$$\alpha = \frac{\text{radiation reflected}}{\text{radiation incident}}$$

Spectral reflectivity α_{λ} relates to a single wavelength.

Reflection coefficient – Average reflectivity from $\lambda_1 \rightarrow \lambda_2$ weighted by distribution of incoming radiation in the same waveband:

$$\bar{\alpha}_{\lambda_1 \to \lambda_2} = \frac{\int_{\lambda_1}^{\lambda_2} \alpha_{\lambda} I_{\lambda} d\lambda}{\int_{\lambda_1}^{\lambda_2} I_{\lambda} d\lambda}$$

when $\lambda_1 \rightarrow \lambda_2$ refers to the whole solar band (0.15 to 3 µm) $\bar{\alpha}_{\lambda 1} \rightarrow_{\lambda 2} = \bar{\alpha}_{\lambda}$ is called **surface albedo** α .

The electromagnetic spectrum

Spectral reflectivity of a leaf

What does the green area represent?

Spectral reflectivity of a leaf

What does the green area represent? Absorptivity

Spectral reflectivity of healthy vs. unhealthy vegetation

Source: http://physicsopenlab.org/2017/01/30/ndvi-index/

Measuring vegetation health - normalized difference vegetation index

Source: https://www.agricolus.com/en/indici-vegetazione-ndvi-ndmi-istruzioni-luso/

Measuring vegetation health - normalized difference vegetation index

Source: https://www.agricolus.com/en/indici-vegetazione-ndvi-ndmiistruzioni-luso/

NDVI at the global scale

Source: https://svs.gsfc.nasa.gov/3584

NDVI as an indicator of drought

Source:

https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_3.php

Review: Albedo

The albedo α can be simply measured as the fraction of incident solar radiation reflected by a surface.

$$\alpha = \frac{K_{\uparrow}}{K_{\downarrow}} \quad \star \quad$$

Albedo

Albedo is a very significant surface variable to microclimate because it controls the absorption of the main source of energy by day.

Albedo has a strong influence on the climate system. Adjacent surfaces receive the same amount of $K\downarrow$ but the impact is determined by α .

Shown are typical values. Individual values vary widely.

^{*} for small zenith angles Z only.

Albedo

Albedo is a very significant surface variable to microclimate because it controls the absorption of the main source of energy by day.

Albedo has a strong influence on the climate system. Adjacent surfaces receive the same amount of K↓ but the impact is determined by α

Surface	α
Fresh snow	0.95
Old snow	0.4
Short grass	0.25
Crops	0.2
Deciduous Forests	0.2
Coniferous Forests	0.1
Water *	0.05

Shown are typical values. Individual values vary widely.

^{*} for small zenith angles Z only.

Albedo - globally

Source: https://www.youtube.com/watch?v=O0B8Yi7AZvQ

Shortwave reflection creates energetic differences

U = urban, S = suburban, R = rural (grass, crops)

Albedo and stand height

Albedo depends on stand height:

- Increased "trapping" of solar radiation with increased height (multiple reflections)
- Individual leaves generally have higher reflectivity than a canopy of the same leaves.

Albedo and stand height

Albedo depends on stand height:

- Increased "trapping" of solar radiation with increased height (multiple reflections)
- Individual leaves generally have higher reflectivity than a canopy of the same leaves.

Albedo depends on leaf state and canopy height

Monthly average albedo

Ice-albedo feedback

Source: https://svs.gsfc.nasa.gov/20021

Specular and diffuse reflection

specular

Beam reflected at same angle (like mirror).

diffuse

Beam diffused isotropically (Lambertian).

Albedo as a function of solar altitude

Solar altitude and albedo

Natural surfaces seem to diffuse for $Z < 60^\circ$, and increasingly specular as $Z \rightarrow 90^\circ$. As a simple model we might use:

$$\alpha_Z = \alpha_0 + (1 - \alpha_0)e^{-kZ}$$

where $k \approx 0.1$

The values in literature usually refer to the middle part of the day or the albedo calculated from the daily totals of irradiance and reflectance.

Solar altitude, canopy height and albedo

Which line (a or b) corresponds to a taller canopy?

Solar altitude, canopy height and albedo

Control and modification.

There are mainly two ways to modify the short-wave radiative surface properties:

- (1) Reflectivity control Changing the surface color in various wavelengths by painting the surface (e.g. roof-tops), or wrapping the surface in white or dark plastic (agriculture).
- (2) **Geometry control** Changing the microtopographic feature of a setting to increase or reduce absorption.

Albedo control

CBC news

N.B. Votes **Arts & Entertainment Technology & Science Politics** Health World Canada Home

REPUBLISH | EMAIL | PRINT | Text Size: S M L XL | REPORT TYPO | SEND YOUR FEEDBACK | SHARE

Weatherwatch: Why cooling white roofs cause neighbours to swelter

Climate hack used to reflect heat results in less rain and higher temperatures in surrounding regions, study finds

fs law would help cool

rough proposes bylaw requiring white roofs

vorld white

All new roofs would be white under a Montreal borough's proposed bylaw aimed at taking advantage of a white roof's cooling effects.

Mayor François Croteau of Rosemont-La Petite-Patrie wants to make white roofs mandatory on new buildings. Roofs requiring repairs would have to be painted white as well.

Geometry control

Take home points

- As short-wave radiation reaches a surface, part of it is reflected - can be quantified by spectral reflectivity and the reflection coefficient (called albedo for short-wave)
- Albedo is controlled by the material, 3D form, the leaf state and the presence of snow.
- Reflection can be specular and/or diffuse and most natural surfaces become increasingly specular at low solar altitudes.
- Changing the albedo of a surface (material, geometry) is a powerful tool to microclimate modification.