# ESPECIFICAÇÃO DO SISTEMA

## 1 REQUISITOS DE ALTO NÍVEL

A especificação do sistema será feita pela técnica de especificação de requisitos *use case* (UC). Será escrito um documento de UC onde serão descritos todas as formas que o usuário poderá usar cada funcionalidade existente na ferramenta. Na Figura 1, a seguir, é mostrado o diagrama de UC do **Aprenda QEE** para que haja um melhor entendimento da ferramenta como um todo.



powered by Astah

Figura 1: Diagrama de UC

#### 1.1 UC I: SIMULAR

### 1.1.1 Descrição

Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

### 1.1.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP2. O usuário seleciona a simulação desejada;
- FP3. O UC referente a opção selecionada é iniciado; [FS1]
- FP4. O caso de uso se encerra.

#### 1.1.3 Fluxo Secundário

FS1. Usuário não seleciona nenhuma simulação e sai do programa.

### 1.2 UC II: SIMULAR FLUXO DE POTÊNCIA FUNDAMENTAL

### 1.2.1 Descrição

O programa deve mostrar a forma de onda da tensão, da corrente, da potência instantânea, o valor da potência ativa, reativa e aparente, o fator de potência e o triângulo de potências.

## 1.2.2 Fluxo principal

- FP1. O caso de uso se inicia quando o usuário seleciona a funcionalidade UC I: Simular
- FP2. Descrição
- FP3. Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

### 1.2.3 Fluxo principal

- FP5. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP6. O usuário seleciona a simulação desejada;
- FP7. O UC referente a opção selecionada é iniciado; [FS1]

FP8. O caso de uso se encerra.

#### 1.2.4 Fluxo Secundário

- FS2. Usuário não seleciona nenhuma simulação e sai do programa.
- FP4. UC II: simular fluxo de potência fundamental; [FS1]
- FP5. O usuário informa a amplitude e ângulo de fase da tensão e corrente; [FS2]
- FP6. O sistema apresenta a forma de onda da tensão, corrente e da potência instantânea. Também, os valores da potência ativa, reativa e aparente, o fator de potência e o triângulo de potências. [FS3]
- FP7. O usuário poderá alterar, a qualquer momento, as entradas sem necessidade de abrir novamente a funcionalidade e retorna-se ao FP3.
- FP8. Fim do caso de uso.

#### 1.2.5 Fluxo Secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

# 1.3 UC III: SIMULAR DISTORÇÃO HARMÔNICA

### 1.3.1 Descrição

A ferramenta deve ser capaz de apresentar a forma de onda da componente fundamental, os harmônicos causadores das distorções e a forma de onda distorcida resultante.

## 1.3.2 Fluxo principal

- FP1. O caso de uso inicia-se quando o usuário seleciona a funcionalidade UC III: simular distorção harmônica; [FS1]
- FP2. O usuário informa se irá trabalhar com ordens harmônicas pares ou ímpares. Em seguida, o usuário também informa o número de harmônicos e a ordem de cada um e, a amplitude e o ângulo de fase de cada forma de onda. O

sistema deve ser capaz de organizar as informações de acordo com o número de harmônicos informados. [FS2]

- FP3. O sistema apresenta a forma de onda das ordens harmônicas criadas pelo usuário, a forma de onda fundamental, a distorcida resultante e a série de Fourier da resultante; [FS3]
- FP4. O usuário poderá alterar a qualquer momento as entradas inseridas sem a necessidade de abrir novamente a funcionalidade. Assim, retorna-se ao FP3. [FS2] [FS3]
- FP5. Fim do caso de uso.

#### 1.3.3 Fluxo secundário

- FS1. Usuário retorna para o menu principal.
- FS2. Usuário informa entradas com valores inválidos. Uma mensagem de operação inválida deve ser apresentada pelo sistema.
- FS3. Caso o sistema não consiga processar os dados inseridos, uma mensagem de erro deve ser apresentada.

# 2 REQUISITOS DE BAIXO NÍVEL

Para as funcionalidades descritas pelos casos de uso serão especificadas as equações necessárias para implementação, as variáveis e os limites das entradas.

### 2.1 VARIÁVEIS E LIMITES DAS ENTRADAS

Como descrito no fluxo alternativo, caso o usuário insira valores de entrada não contidos nos limites definidos, o sistema deverá gerar mensagem de erro. O Quadro X, a seguir, especifica os limites e as variáveis descritas nos casos de uso.

Quadro 1: limites definidos para as entradas.

| Entradas/Variáveis        | Limites/valor                                                        |
|---------------------------|----------------------------------------------------------------------|
| Frequência angular (ω)    | ω=2π60 rad/s                                                         |
| Amplitude                 | Tensão: $0 \le V_{RMS} \le 220$<br>Corrente: $0 \le I_{RMS} \le 100$ |
| Ângulo de fase da senoide | -180°≤ θ ≤ 180°                                                      |
| Número de harmônicos (n)  | $0 \le n \le 6$                                                      |
| Ordem harmônica (h)       | 0 ≤ h ≤ 15                                                           |

# 2.2 REQUISITOS DE BAIXO NÍVEL UC II

As equações necessárias para implementação da funcionalidade fluxo de potência fundamental estão dispostas no Quadro 2 das Regras de Negócio (RGN), a seguir:

**Quadro 2:** Regras de negócio das equações necessárias para a implementação da funcionalidade fluxo de potência fundamental.

| Identificação | Requisito                             | Equações                                                                                                                                                                                        |
|---------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RNG 01        | Forma de onda da tensão               | $v(t) = V_{RMS}\cos(\omega t + \theta_v)$                                                                                                                                                       |
| RNG 02        | Forma de onda da corrente             | $i(t) = I_{RMS}\cos(\omega t + \theta_i)$                                                                                                                                                       |
| RNG 03        | Forma de onda da potência instantânea | $p(t) = v(t) \times i(t)$                                                                                                                                                                       |
| RNG 04        | Valor da potência ativa               | $P = V_{RMS}I_{RMS}\cos(\theta_v - \theta_i)$                                                                                                                                                   |
| RNG 05        | Valor da potência reativa             | $P = V_{RMS}I_{RMS}\mathrm{sen}(\theta_v - \theta_i)$                                                                                                                                           |
| RNG 06        | Valor da potência aparente            | $S = V_{RMS}I_{RMS}$                                                                                                                                                                            |
| RNG 07        | Valor do fator de potência (fp)       | $fp = \cos(\theta_v - \theta_i)$ Obs.: Se o ângulo $\theta_v - \theta_i < 0$ o FP é dito adiantado, se $0 < \theta_v - \theta_i$ o fator de potência é atrasado e $\theta_v = \theta_i$ o FP=1. |
| RNG 08        | Triângulo de potências                | Representação no plano complexo das potências ativa (P), reativa (Q) e aparente (S). Sendo que P corresponde a parte real e Q a parte imaginaria.                                               |

## 2.3 REQUISITOS DE BAIXO NÍVEL UC III

As equações necessárias para implementação da funcionalidade distorção harmônica estão dispostas no Quadro 2, a seguir:

Quadro 3: Equações necessárias para a implementação da funcionalidade distorção harmônica.

| Identificação | Requisito                       | Equações                                    |
|---------------|---------------------------------|---------------------------------------------|
| RNG 09        | Forma de onda da<br>fundamental | $v_f(t) = V_{RMS}\cos(\omega t + \theta_v)$ |

| RNG 10 | Forma de onda da ordem<br>harmônica h  | $v_h(t) = V_{RMS_h} \cos(h\omega t + \theta_h)$                                            |
|--------|----------------------------------------|--------------------------------------------------------------------------------------------|
| RNG 11 | Forma de onda distorcida<br>resultante | Forma de onda representada pela série de Fourrier: $v_R(t) = v_f(t) + \sum_{n=1}^n v_h(t)$ |

# 3 PLANO DE VERIFICAÇÃO DO SISTEMA

# 3.1 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC II

Conforme mencionado no FP2 o usuário irá inserir o valor eficaz da amplitude e o ângulo de fase. Conforme previsto no FP3 o sistema irá apresentar as formas de onda de tensão e corrente e, também a forma de onda da potência instantânea, o triângulo de potências e os valores de potência ativa, reativa, aparente e o FP.

Será mostrado como exemplo no Quadro 4, a seguir, os cenários de teste com os valores de entrada e as saídas que foram utilizadas para construção do protótipo não funcional.

**Quadro 4:** Relação de entradas, saídas e resultados do UC I: Simular Descrição

Este caso de uso descreve o comportamento de simulação do software presente em todos os casos de uso que o estendem.

## 3.1.1 Fluxo principal

- FP9. O caso de uso se inicia quando o usuário inicializa o programa e visualiza todas as opções de simulação do Software;
- FP10. O usuário seleciona a simulação desejada;
- FP11. O UC referente a opção selecionada é iniciado; [FS1]
- FP12. O caso de uso se encerra.

#### 3.1.2 Fluxo Secundário

FS3. Usuário não seleciona nenhuma simulação e sai do programa.

UC II: simular fluxo de potência fundamental. Fonte: Autora.

| Entradas | Saídas | Resultado |
|----------|--------|-----------|
|----------|--------|-----------|

| Sinal de<br>Tensão   | - Amplitude: 220 V <sub>RMS</sub> - Ângulo de fase: 0°                | Forma de onda do sinal de tensão: $v(t) = 220 \cos(\omega t) V_{RMS}$             | <ul> <li>Forma de onda da potência instantânea.</li> <li>Valor da Potência ativa P = 7028 W</li> <li>Valor da</li> </ul> |
|----------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Sinal de<br>Corrente | - Amplitude do sinal: 39 A <sub>RMS</sub> ; -Ângulo de defasagem: 35° | Forma de onda do sinal de corrente: $i(t) = 39\cos(\omega t + 35^{\circ})I_{RMS}$ | potência reativa $Q = 4921  VAR$ - Valor do FP. $fp = 0,82$ - Triângulo de potências.                                    |

O protótipo não funcional mostrado na Figura 2, propõe uma interface para a simulação do fluxo de potência fundamental. Com as visualizações mostrados no protótipo, forma de onda da tensão, corrente e potência instantânea, o triângulo de potências e os valores das potências, será alcançado o objetivo de aprendizado desejado que é a revisão de conceitos sobre fluxo de potência.



Figura 2: Protótipo não funcional do caso de uso I. Fonte: Autora.

Como visto, o protótipo atenderá as necessidades pois permitirá ao usuário a interatividade com o sistema que ocorre na alteração das entradas e visualização dos resultados de saída, como previsto no FP4. Por meio desta interação ocorrerá a fixação dos conceitos.

## 3.2 PLANO DE VERIFICAÇÃO E PROTÓTIPO NÃO FUNCIONAL DO UC III

Do fluxo principal do UC III percebe-se que o usuário terá que fornecer as informações de amplitude e ângulo de fase para cada forma de onda e, adicionalmente, o número harmônicas causadoras da distorção e a ordem de cada uma. Além disso, definirá se os harmônicos serão pares ou ímpares. Como resultado, a simulação mostrará a forma de onda da fundamental, dos harmônicos, da onda distorcida resultante e a série de Fourier desta onda. Como exemplo, o Quadro 5 cria um cenário de teste com todas as entradas e as saídas que foram definidas no protótipo da Figura 3.

Quadro 5: Exemplo das entradas e saídas do UC III: simular distorção harmônica. Fonte: Autora.

|                  | Definição dos harmônicos                    | Ímpares                                                     |  |
|------------------|---------------------------------------------|-------------------------------------------------------------|--|
|                  | Número de Harmônicas                        | Duas ordens                                                 |  |
|                  | Ordens harmônicas causadoras das distorções | Ordens: 3° e 5°                                             |  |
| Entradas         | Amplitude II des formes                     | Fundamental: 220                                            |  |
| Elitiatias Allip | Amplitude $V_{RMS}$ das formas de onda      | 3°: 20                                                      |  |
|                  | de onda                                     | 5°: 15                                                      |  |
|                  | Ângulo de defasagem θ de cada sinal         | Fundamental: 0°                                             |  |
|                  |                                             | 3°: 30°                                                     |  |
|                  |                                             | 5°: -90°                                                    |  |
| Saídas -         | Série de Fourier da onda                    | $f(t) = 220\cos(\omega t + 0^{\circ}) + 20\cos(3\omega t +$ |  |
|                  | resultante                                  | $30^{\circ}$ ) + 15 cos(5 $\omega t$ – 90°)                 |  |
|                  |                                             | Formas de onda da fundamental, harmônicos e                 |  |
|                  |                                             | distorcida                                                  |  |

Como mostrado no Quadro 5 de entradas e saídas, será proposto um protótipo não funcional do UC III: simular distorção harmônica que atenda as necessidades que foram especificadas. O protótipo é mostrado na Figura 3, a seguir:



Figura 3: Protótipo não funcional do caso de uso III. Fonte: Autora.

Esse protótipo atende as necessidades pois atinge o objetivo de aprendizado que é a visualização das distorções harmônicas permitindo a interação do usuário na alteração das entradas e visualização das saídas.