Point group reminder

- Point group is collection of symmetry element of an isolated shape
- Combination of rotation and reflection in 2D
- Translation is not considered and hence glide is also ignored
- > 5 rotation elements: 1, 2, 3, 4, 6 fold
- Mirror or reflection changes handedness
- Odd rotation have one mirror (m), even have two (mm)

	Crystals	Molecules
	Hermaan-Mauguin symbol	Schoenflies symbol
mirror	m	C_v
2 fold with mirrors	2mm	C_{2v}
3 fold with mirror	3m	C_{3v}
4 fold with mirrors	4mm	C_{4v}
6 fold with mirrors	6mm	C _{6v}

https://en.wikipedia.org/wiki/Wallpaper_group

(monad)

(diad) Axes perpendicular to the plane

mirror

— Axes parallel to the plane

(Tetrad)

(Hexad)

Point group symmetry

- m on major and minor axis of ellipse
- > m on altitude
- m on sides and diagonal
- m on line joining corner to corner and edge center to edge center

- Symmetry in 1D, 2D and 3D
- Cartesian space is 3D
- We can view 2D
- Stereographic projection is angle true
- We can appreciate symmetry
- Spherical trignomentry

http://pd.chem.ucl.ac.uk/pdnn/symm2/project 2.htm

- center of inversion
- 3D not in 2D

- Northern hemisphere similar to southern hemisphere
- Positive and negative directions

https://mathworld.wolfram.com/Stereographic Projection.html

 $P' = \frac{2r}{r - z} P$

Pattern, stereographic projection and representation

m

2mm

3m

4mm

6mm

- Five different cell types
 - Oblique or parallelogram (a ≠ b, ∠ ≠ 90°)
 - Rectangular (a \neq b, \angle = 90°)
 - Centered rectangular (a ≠ b, ∠ = 90°)
 - Square (a = b, \angle = 90°)
 - Rhombic or hexagonal (a = b, \angle = 120°)

Oblique or parallelogram Rectangular 0 **Square Centered rectangular** o∷.. 0 **Rhombic or hexagonal**

0

Plane groups

- Combining rotation and mirror symmetry with translation and glide reflection gives plane groups
- Notation for plane groups
 - p for primitive and c for centered
 - 1 lattice point per unit cell in p
 - 2 lattice points per unit cell in c
 - Symmetry elements arranged along x, y and z axis
 - Highest symmetry element first even if along z axis p4mm
 - Lower symmetry axes omitted p4mm 2 fold along x and y are omitted
 - For 2 fold, the sequence is always x, y, z

Plane groups

- > 10 2D point groups
- > 5 2D lattices
- > 17 plane groups

https://en.wikipedia.org/wiki/Wallpaper group

https://mcescher.com/

https://www2.clarku.edu/faculty/djoyce/wallpaper/seventeen.html

Plane groups from oblique cell

p stands for primitive that is one point per unit cell

p1

Motif with 1 fold and 2 fold symmetry respectively for p1 and p2

Remember p1 and p2 can have all lattices!

Visions of Synmetry Note work of Grawings at Related Work of M. C. Escherby Doris Schattschneider

Plane groups from rectangular cell

pmg2

pgg2

