Measurable Functions and Mappings

Definition 1

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be two measurable spaces. For a mapping $T: \Omega \to \Omega'$ and $A' \subseteq \Omega'$, define $T^{-1}(A') = \{\omega \in \Omega: T(\omega) \in A'\}.$

Then the mapping T is called \mathcal{F}/\mathcal{F}' -measurable if $T^{-1}(A') \in \mathcal{F}$ for every $A' \in \mathcal{F}'$.

The map T^{-1} preserves set operations:

a)
$$T^{-1}(\bigcup_{\alpha} A_{\alpha}) = \bigcup_{\alpha} T^{-1}(A_{\alpha})$$

b)
$$T^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} T^{-1}(A_{\alpha})$$

c)
$$T^{-1}(A^c) = (T^{-1}(A))^c$$

- a) $\omega \in T^{-1}(\bigcup_{\alpha} A_{\alpha})$ if and only if $T(\omega) \in A_{\alpha}$ for some α . This is equivalent to $\omega \in T^{-1}(A_{\alpha})$ for some α , i.e., $\omega \in \bigcup_{\alpha} T^{-1}(A_{\alpha})$.
- b) Similar to (a) with union replaced by intersection.
- c) $\omega \in T^{-1}(A^c)$ if and only if $T(\omega) \notin A$. This is equivalent to $\omega \notin T^{-1}(A)$, i.e., $\omega \in (T^{-1}(A))^c$.

Let T be a mapping from the measurable space (Ω, \mathcal{F}) into the measurable space (Ω', \mathcal{F}') . Then $T^{-1}(\mathcal{F}') = \{T^{-1}(A'): A' \in \mathcal{F}'\}$ is a σ -algebra on Ω , whereas $\{A' \subseteq \Omega': T^{-1}(A') \in \mathcal{F}\}$ is a σ -algebra on Ω' .

 $\Omega = T^{-1}(\Omega')$ so that $\Omega \in T^{-1}(\mathcal{F}')$. Since $(T^{-1}(A'))^c = T^{-1}(A'^c)$ then $T^{-1}(\mathcal{F}')$ is closed under complementation. Lastly, $\bigcup_{n=1}^{\infty} T^{-1}(A'_n) = T^{-1}(\bigcup_{n=1}^{\infty} A'_n)$. Hence, $T^{-1}(\mathcal{F}')$ is a σ -algebra. Now, let $G = \{A' \subseteq \Omega' : T^{-1}(A') \in \mathcal{F}\}. T^{-1}(\Omega') = \Omega \in \mathcal{F} \text{ so}$ that $\Omega' \in \mathcal{G}$. $T^{-1}(A'^c) = (T^{-1}(A'))^c \in \mathcal{F}$ whenever $A' \in \mathcal{G}$. Hence, \mathcal{G} is closed under complementation. Finally, $T^{-1}(\bigcup A'_n) = \bigcup T^{-1}(A'_n) \in \mathcal{F}$ whenever $A'_n \in \mathcal{G}$. Therefore \mathcal{G} is a σ -algebra.

If $C \subseteq \mathcal{F}'$, $\sigma(C) = \mathcal{F}'$ and $T^{-1}(A') \in \mathcal{F}$ for every $A' \in C$, then T is \mathcal{F}/\mathcal{F}' -measurable.

Let $\mathcal{G} = \{A' \in \mathcal{F}': T^{-1}(A') \in \mathcal{F}\}$. Then \mathcal{G} is a σ -algebra containing \mathcal{C} and, hence, $\mathcal{G} = \mathcal{F}'$.

If (Ω, \mathcal{F}) , (Ω', \mathcal{F}') and $(\Omega'', \mathcal{F}'')$ are measurable spaces, and if T is \mathcal{F}/\mathcal{F}' -measurable and T' is $\mathcal{F}'/\mathcal{F}''$ -measurable, then $T' \circ T$ is $\mathcal{F}/\mathcal{F}''$ -measurable.

Let
$$A'' \in \mathcal{F}''$$
. It follows that $(T' \circ T)^{-1}(A'') = T^{-1}(T'^{-1}(A'')) \in \mathcal{F}$ since $T'^{-1}(A'') \in \mathcal{F}'$.

Definition 2

Let (Ω, \mathcal{F}) be a measurable space. A function $f: \Omega \to \mathbb{R}$ is called measurable if $f^{-1}(B) \in \mathcal{F}$ for every Borel set B.

The function $f: \Omega \to \mathbb{R}$ is measurable if and only if $\{f \le c\} \coloneqq \{\omega \in \Omega : f(\omega) \le c\} \in \mathcal{F}$ for all $c \in \mathbb{R}$.

The class $\{(-\infty, c] : c \in \mathbb{R}\}$ generates the Borel σ -algebra. Also, note that $\{f \le c\} = f^{-1}((-\infty, c])$. The result then follows from Theorem 3.

Let $\lambda \in \mathbb{R}$ and f, f_1 , f_2 be measurable. Then $f_1 + f_2$, $f_1 f_2$ and λf are measurable.

Note that

$$\{f_1+f_2>c\}=\cup_{r\in\mathbb{Q}}(\{f_1>r\}\cap\{f_2>c-r\})\ .$$

Hence, $f_1 + f_2$ is measurable. If $\lambda = 0$, then $\{\lambda f \leq c\}$ is either \emptyset (if c < 0) or Ω (if $c \geq 0$). Hence λf is measurable. If $\lambda \neq 0$, note that

$${\lambda f > c} = {f > c / \lambda} \text{ if } \lambda > 0$$

and

$${\lambda f > c} = {f < c / \lambda} \text{ if } \lambda < 0.$$

This shows λf is measurable.

To show that f_1f_2 is measurable, first note that $\{f^2 > c\} = \{f > \sqrt{c}\} \cup \{f < -\sqrt{c}\}.$

This shows that f^2 is measurable whenever f is measurable. Observe that

$$f_1 f_2 = \frac{1}{2} [(f_1 + f_2)^2 - f_1^2 - f_2^2]$$

and, hence, f_1f_2 is measurable.

Let $\{f_n : n \in \mathbb{N}\}$ be a sequence of measurable functions. Then inf f_n , $\lim \inf f_n$ and $\lim \sup f_n$ are measurable (into $([-\infty, +\infty], \mathcal{B}[-\infty, +\infty])$). Further $\{\omega \in \Omega : \lim f_n(\omega) \text{ exists}\} \in \mathcal{F}$.

```
Note that \{\inf f_n > c\} = \bigcap_n \{f_n > c\} \in \mathcal{F}. Hence,
inf f_n is measurable. Let g_n = \inf_{k > n} f_k. Then
   \{\liminf f_n \le c\} = \{\sup g_n \le c\} = \bigcap \{g_n \le c\} \in \mathcal{F}.
Hence, \lim \inf f_n is measurable. Now, \lim \sup f_n =
- \lim \inf -f_n and so \lim \sup f_n is measurable.
Finally,
     \{\lim f_n \text{ exists}\}
              = \{ \limsup f_n < \infty \} \cap \{ \liminf f_n > -\infty \} 
              \cap a^{-1}(\{0\}),
where g = \lim \sup f_n - \lim \inf f_n. This is in \mathcal{F}.
```