Escala y Ondita como filtros

Procesamiento de Señales

2021

1 ϕ y ψ completamente determinadas por un filtro H pasa-bajo.

En este documento ampliaremos lo desarrollado en la sección 8.4 del apunte Onditas a partir de filtros

1.1 Función Escala ϕ determinada por un filtro H pasabajo

Como sabemos,
una Base Ortonormal para el subespacio ${\cal V}_1$ es

$$BON_{V_1} = \{\sqrt{2} \ \phi(2t - k)\}_{k \in \mathbb{Z}}$$

y por lo tanto como $\phi(t) \in V_1$ tenemos la ecuación de dilatación:

$$\phi(t) = \sum_{k \in \mathbb{Z}} h[k] \sqrt{2} \phi(2t - k)$$

para ciertos coeficientes que llamamos h[k].

Tomando a ambos miembros la Transformada de Fourier y reemplazando $\phi(t)$ obtenemos

$$\Phi(\omega) = \int \phi(t) \ e^{-j\omega t} dt$$

$$\Phi(\omega) = \int \left(\sum_{k \in \mathbb{Z}} h[k] \sqrt{2} \ \phi(2t - k) \right) \ e^{-j\omega t} dt$$

Intercambiando sumatoria con integral y haciendo cambio de variable z=2t-k se tiene que $t=\frac{z+k}{2}$, dz=2dt y reemplazando en la integral:

$$\begin{split} \Phi(\omega) &= \sum_{k \in \mathbb{Z}} h\left[k\right] \sqrt{2} \int \phi(z) e^{-j\omega \frac{z+k}{2}} \frac{1}{2} dz \\ &= \frac{\sqrt{2}}{2} \sum_{k \in \mathbb{Z}} h\left[k\right] e^{-jk\frac{\omega}{2}} \int \phi(z) e^{-jz\frac{\omega}{2}} dz \end{split}$$

Observando que $\sum_{k\in\mathbb{Z}} h\left[k\right] e^{-jk\frac{\omega}{2}} = H(\frac{\omega}{2})$ y $\int \phi(z) e^{-jz\frac{\omega}{2}} dz = \Phi(\frac{\omega}{2})$, se tiene que

$$\Phi(\omega) = \frac{\sqrt{2}}{2} H(\frac{\omega}{2}) \Phi(\frac{\omega}{2})$$

de aqui podemos notar que tomando $\omega = 0 \Rightarrow H(0) = cte$ y podemos pensar H(0) = cte = 1

además iterando el proceso y considerando que podemos reemplazar la constante $\frac{\sqrt{2}}{2}$ por 1

$$\begin{split} &=H(\frac{\omega}{2})H(\frac{\omega}{4})\Phi(\frac{\omega}{4})\\ &=H(\frac{\omega}{2})H(\frac{\omega}{4})H(\frac{\omega}{8})\Phi(\frac{\omega}{8})\\ &=\dots\\ &=\prod_{1}^{\infty}H(\frac{\omega}{2^{k}})\Phi(0) \end{split}$$

Suponiendo que la función escala está normalizada, es decir $\Phi(0)=\int \phi(t)dt=1$, tenemos que

$$\Phi(\omega) = \prod_{k=1}^{\infty} H(\frac{\omega}{2^k})$$

Es decir que la función escala está completamente determinada por el filtro H.¿Porque es un filtro pasa-bajo?

El hecho de que $\{\phi(t-k)\}_{k\in\mathbb{Z}}\}$ sea un conjunto ortonormal (es una base orton
rmal del subespacio $V_0\subset\mathcal{L}^2(\mathbb{R})$) lleva a que se deba cumplir la siguiente ecuación en frecuencia (lo vamos a creer , no vamos a probarlo):

$$H(\omega)\overline{H(\omega)} + H(\omega + \pi)\overline{H(\omega + \pi)} = 1 \ \forall \ \omega$$

Ya teníamos que H(0)=1. Ahora reemplazando $\omega=0$ tenemos que

$$1 = H(0)\overline{H(0)} + H(0+\pi)\overline{H(0+\pi)}$$
$$= 1 + |H(0+\pi)|^{2}$$
$$\Rightarrow H(\pi) = 0$$

y entonces H es un filtro pasa bajo.

1.2 Función Ondita ψ determinada por un filtro G pasaalto

Repitiendo el análisis anterior y como $\psi(t) \in V_1$ tenemos la ecuación Ondita:

$$\psi(t) = \sum_{k \in \mathbb{Z}} g[k] \sqrt{2} \ \phi(2t - k)$$

para ciertos coeficientes que llamamos g[k].

Tomando a ambos miembros la Transformada de Fourier y reemplazando $\psi(t)$ obtenemos

$$\Psi(\omega) = \int \psi(t) \ e^{-j\omega t} dt$$

$$\Psi(\omega) = \int \left(\sum_{k \in \mathbb{Z}} g[k] \sqrt{2} \ \psi(2t - k) \right) \ e^{-j\omega t} dt$$

Intercambiando sumatoria con integral y haciendo cambio de variable z=2t-k se tiene que $t=\frac{z+k}{2}$, dz=2dt y reemplazando en la integral:

$$\begin{split} \Psi(\omega) &= \sum_{k \in \mathbb{Z}} g\left[k\right] \sqrt{2} \int \psi(z) e^{-j\omega \frac{z+k}{2}} \frac{1}{2} dz \\ &= \frac{\sqrt{2}}{2} \sum_{k \in \mathbb{Z}} g\left[k\right] e^{-jk\frac{\omega}{2}} \int \psi(z) e^{-jz\frac{\omega}{2}} dz \end{split}$$

Observando que $\sum_{k\in\mathbb{Z}}g\left[k\right]e^{-jk\frac{\omega}{2}}=G(\frac{\omega}{2})$ y $\int\psi(z)e^{-jz\frac{\omega}{2}}=\Psi(\frac{\omega}{2})dz$, se tiene que

$$\Psi(\omega) = \frac{\sqrt{2}}{2} G(\frac{\omega}{2}) \Phi(\frac{\omega}{2})$$

reemplazando la expresión obtenida anteriormente para $\Phi(\frac{\omega}{2})$

$$=G(\frac{\omega}{2})\prod_{k=2}^{\infty}H(\frac{\omega}{2^k})$$

lo que introduce un filtro G para la expresión de la transformada de la función Ondita.

El hecho de que $\{\psi(t-k)\}_{k\in\mathbb{Z}}\}$ sea un conjunto ortonormal lleva a que se deba cumplir la siguiente ecuación en frecuencia (lo vamos a creer , no vamos a probarlo):

$$H(\omega)\overline{G(\omega)} + H(\omega + \pi)\overline{G(\omega + \pi)} = 0 \ \forall \ \omega$$

Una vez que tenemos el filtro ${\cal H}$ observamos que una solución posible para esta ecuación es

$$G(\omega) = -e^{-j\omega}\overline{H(\omega + \pi)}$$

va que si reemplazamos esta expresión en la ecuación, tenemos:

$$\begin{split} &H(\omega)\overline{G(\omega)} + H(\omega + \pi)\overline{G(\omega + \pi)} \\ &= H(\omega)\left(\overline{-e^{-j\omega}\overline{H(\omega + \pi)}}\right) + H(\omega + \pi)\left(\overline{-e^{-j(\omega + \pi)}\overline{H(\omega + 2\pi)}}\right) \\ &= H(\omega)\left(\overline{-e^{-j\omega}}H(\omega + \pi)\right) + H(\omega + \pi)\left(\overline{-e^{-j(\omega + \pi)}}H(\omega)\right) \\ &= H(\omega)\left(-e^{j\omega}H(\omega + \pi)\right) + H(\omega + \pi)\left(-e^{j(\omega + \pi)}H(\omega)\right) \text{ y como } e^{j(\omega + \pi)} = e^{j\omega}e^{j\pi} = -e^{j\omega}e^{j\pi} \\ &= H(\omega)\left(-e^{j\omega}H(\omega + \pi)\right) + H(\omega)\left(e^{j\omega}H(\omega + \pi)\right) \\ &= 0 \end{split}$$

El hecho de que $G(\omega) = -e^{-j\omega}\overline{H(\omega + \pi)}$ implica:

1. los coeficientes $h\left[k\right]$ y $g\left[k\right]$ están vinculados por lo que se llama espejo en cuadratura

$$g[k] = (-1)^k h[L-1-k]$$

donde L es la cantidad de coeficientes usados para h.

2. como H(0) = 1 y $H(\pi) = 0$ entonces

$$G(0) = -e^{-j0}\overline{H(0+\pi)} = (-1).0$$

$$G(\pi) = -e^{-j\pi}\overline{H(\pi+\pi)} = -(-1)H(0) = 1$$

por lo que G(0) = 0 y $G(\pi) = 1$ siendo entonces un filtro pasa-alto.