

All Digital Phase Locked Loop

Digital Blocks

Mohamed Atef March 2015

System Block Diagram

Digital Blocks

- Down Sampler (CIC Filter)
- Digital Loop Filter
- MASH 1-1-1 Sigma Delta Modulator
- Sigma Delta Cancellation Network
- Register File
- SPI interface

Down Sampler

Block Diagram

- Down Sampler is used to down sample the time-to-digital converter (TDC_OUT) output code from TDC sampling clock (CLK_TDC) rate to the digital loop filter clock (CLK_DLF) rate.
- The decimation factor of TDC is given by:

$$M = \frac{f_{sTDC}}{f_{sDLF}}$$

Where f_{STDC} : TDC sampling frequency

 f_{SDLF} : DLF sampling frequency

Transfer Function

The Transfer function is given as:

$$H(z) = \frac{(1 - z^{-MD})^{s}}{(1 - z^{-1})^{s}}$$

Where M: Decimation Factor

D: Number of Differential Delay Units

S: Number of CIC stages

Transfer Function

The bandwidth of this filter is given as:

$$f_{BW} = \frac{f_{STDC}}{D M}$$

Specifications

Design Parameter	Symbol	Min. Value	Typ. Value	Max. Value	Unit
TDC Sampling Frequency	f_{sTDC}	600	-	625	MHz
DLF Sampling Frequency	f_{sDLF}	37.5	-	39.0625	MHz
CIC Filter Bandwidth	f_{BW}	-	19.53125	-	MHz
TDC Number of Output Bits	n_{tdc}	-	5	-	Bits
Down Sampling Factor	M	-	16	-	-
CIC Number of Stages	S	-	3	-	-
CIC Number of Differential Delay Units	D	-	2	-	-
CIC Number of Output Bits	n _{cic}	-	20	-	Bits
Down Sampler Number of Output Bits	N_{ds}	-	15	-	Bits

Discard the last five least significant bits of CIC word to get the downsampler word

Digital Loop Filter

Block Diagram

- Second-Order digital filter
- IIR Filter + Proportional and Integral Filter

Transfer Function

$$H_{DLF}(z) = K_2 \times \frac{1-\alpha}{1-\alpha z^{-1}} \times \frac{(K_1+1)-K_1z^{-1}}{1-z^{-1}}$$

Ideal Magnitude Response

Specifications

Design Parameter	Symbol	Min. Value	Max. Value	Unit
DLF Sampling Frequency	f _{sDLF}	37.5	39.0625	MHz
Coefficients	K ₁	70	248	-
	K ₂	0.00205994	0.0253754	-
	α	0.850128	0.952011	-

 The DLF coefficients is needed to be programmable so it is need to be saved in the register file.

Magnitude Response

Phase Response

Thank You!