

Universiteti Publik "Kadri Zeka", Gjilan

Fakulteti i Shkencave Kompjuterike

Lënda: Teoria e Grafeve

Tema:

Udhët, shtigjet dhe ciklet

Përkufizim: Le të jetë dhënë grafi G = (V, E). Vargu i alternuar i kulmeve dhe brinjëve

 $i=i_0,e_1,i_1,e_2,i_2,...,i_{k-1},e_k,i_k,...,i_{n-1},e_n,i_n=j$ i tillë që çdo brinjë e_k e vargut ka për skaje kulmet i_{k-1} dhe i_k quhet **udhëtim** (ose i-j udhëtim) në grafin G.

Kulmet *i* dhe *j* quhen skaje të udhëtimit.

Shembull.1. A paraqet udhëtim vargu U_1 : 1, e_3 , 2, e_3 , 1, e_2 , 4, e_8 , 5 për grafin e dhënë G,

Shembull.1. Vargu

 U_1 : 1, e_3 , 2, e_3 , 1, e_2 , 4, e_8 , 5 është udhëtim në grafin G,

Shënim: Lejohet përsëritja e brinjëve brenda të njëjtit udhëtim (Shiko grafin në fig.1.).

Shembull.2. Vargu

 U_2 : 1, e_1 , 3, e_6 , 4, e_8 , 5, e_7 , 3, e_4 , 2 a

është udhëtim në grafin e dhënë G?

Shembull.2. Vargu

 U_2 : 1, e_1 , 3, e_6 , 4, e_8 , 5, e_7 , 3, e_4 , 2 është udhëtim në grafin G,

Shembull.3. Vargu U_3 : 1, e_2 , 4, e_6 , 3, e_4 , 2 a është udhëtim në grafin G?

Shembull.3. Vargu U_3 : 1, e_2 , 4, e_6 , 3, e_4 , 2 është udhëtim në grafin G?

Përfundime:

- Nga shembujt e mësipërm mundë të përfundojmë se gjatë një i-j udhëtimi ka mundësi të përsëriten:
- vetëm brinjët,
- vetëm kulmet,
- edhe brinjët dhe kulmet,

- as brinjët e as kulmet.
- Numrin e brinjëve (degëve, linjave) të një udhëtimi e quajmë *gjatësi e* udhëtimit.
- Nëse kalojmë gjatë udhëtimit k degë atëherë gjatësia e udhëtimit në grafin G është k.

• Shembull. Sa e ka gjatësin udhëtimi $1, e_3, 2, e_5, 4, e_8, 5$. (figura 1)

• Shembull. Udhëtimi 1, e_3 , 2, e_5 , 4, e_8 , 5 e ka gjatësin 3. (figura 1)

• Nëse skajet i dhe j të udhëtimit përputhen dmth i=j, udhëtimi quhet i mbyllur.

Shembull. A është i mbyllur udhëtimi 1, e_3 , 2, e_5 , 4, e_8 , 5, e_7 , 3, e_1 , 1 ? (Arsyeto përgjigjen).

Shembull. Udhëtimi 1, e_3 , 2, e_5 , 4, e_8 , 5, e_7 , 3, e_1 , 1 është i mbyllur sepse fillon në nyjen 1 dhe mbaron po ashtu në nyjen 1.

• Nëse skajet i dhe j të udhëtimit janë të ndryshëm $i \neq j$, udhëtimi quhet i hapur.

Shembull. A është i hapur udhëtimi 1, e_3 , 2, e_5 , 4, e_8 , 5? (Arsyeto përgjigjen).

• Nëse skajet i dhe j të udhëtimit janë të ndryshëm $i \neq j$, udhëtimi quhet i hapur.

Shembull. Udhëtimi 1, e_3 , 2, e_5 , 4, e_8 , 5 është i hapur sepse fillon në nyjen 1 dhe mbaron në nyjen 5.

Shembull. Në grafin e dhënë G, a është i hapur apo i mbyllur udhëtimi? (Arsyeto përgjigjen).

 $v_2, e_7, v_5, e_8, v_1, e_8, v_5, e_6, v_4, e_5, v_4, e_5, v_4$

Shembull. Në grafin e dhënë G, është i hapur udhëtimi, sepse fillon në brinjën v_2 dhe mbaron në brinjën v_4 .

$$v_2, e_7, v_5, e_8, v_1, e_8, v_5, e_6, v_4, e_5, v_4, e_5, v_4$$

Shembull. Në grafin e dhënë G

Udhëtimi

$$v_4, e_5, v_4, e_3, v_3, e_2, v_2, e_7, v_5, e_6, v_4$$

a është i mbyllur?

Përkufizim. Një udhëtim në të cilin nuk përsëritet ndonjë brinjë e tij quhet $udh\ddot{e}$ në grafin G.

Shembull. Gjeni një udhë në grafin e dhënë:

Përkufizim. Një udhëtim në të cilin nuk përsëritet ndonjë brinjë e tij quhet $udh\ddot{e}$ në grafin G.

Shembull. Në grafin e dhënë G udhëtimi

$$v_1, e_8, v_5, e_9, v_1, e_1, v_2, e_7, v_5, e_6, v_4, e_5, v_4, e_4, v_4$$

është **udhë** sepse nuk përsëriten brinjët

Përkufizim. Një udhëtim në të cilin nuk përsëritet ndonjë kulm përjashtuar këtu skajet e tij quhet *shteg* në grafin G. **Shembull.** Në grafin e dhënë G udhëtimi

$$v_2, e_7, v_5, e_6, v_4, e_3, v_3$$

A është shteg?

Përkufizim. Një udhëtim në të cilin nuk përsëritet ndonjë kulm përjashtuar këtu skajet e tij quhet shteg në grafin G. **Shembull.** Në grafin e dhënë G udhëtimi

$$v_2, e_7, v_5, e_6, v_4, e_3, v_3$$

është shteg sepse nuk përsëriten kulmet

Përkufizim. Numri i brinjëve të një shtegu quhet gjatësi e shtegut. **Shembull.** Në grafin e dhënë G të arsyetohet se udhëtimi

$$v_2, e_7, v_5, e_6, v_4, e_3, v_3$$

është shteg dhe gjeni gjatësin e tijë?

Përkufizim. Numri i brinjëve të një shtegu quhet gjatësi e shtegut. **Shembull.** Në grafin e dhënë G udhëtimi

$$v_2, e_7, v_5, e_6, v_4, e_3, v_3$$

është shteg sepse nuk përsëriten kulmet ndërsa gjatësia e tijë është 3.

Përkufizim. Gjatësia e shtegut më të shkurtër që bashkon dy kulme quhet *largesë* ndërmjet atyre kulmeve.

Përkufizim. Largesa maksimale për të gjitha çiftet e ndryshme të kulmeve të një grafi quhet **diametër i grafit**.

Përkufizim. Vargun e përbërë vetëm nga një kulm e konsiderojmë si **shteg**.

• Vërejmë që çdo shteg është një $udh\ddot{e}$ por e anasjellta nuk është e vërtet. **Përkufizim.** Një udhëtim në të cilin nuk përsëritet ndonjë brinjë e tij quhet $udh\ddot{e}$ në grafin G.

Përkufizim. Një udhëtim në të cilin nuk përsëritet ndonjë kulm përjashtuar këtu skajet e tij quhet shteg në grafin G.

Vërejtje: Shpesh për paraqitjen më të thjeshtuar të udhëve dhe shtigjeve në një graf shkruajm vetëm vargun e kulmeve, sepse në graf (por jo në multigraf) kjo është e mjaftueshme për identifikimin e tyre. **Përkufizim.** Në-një diagraf G = (V, E), një varg i alternuar i kulmeve dhe brinjëve

$$i = i_0, a_1, i_1, a_2, i_2, \dots, i_{k-1}, a_k, i_k, \dots, i_{n-1}, a_n, i_n = j$$

i tillë që çdo brinjë a_k i vargut ka si fillim dhe mbarim përkatësishtë kulmet i_{k-1} dhe i_k dhe asnjëri prej brinjëve të grafit nuk përsëritet quhet *rrugëtim* me fillim i dhe mbarim j (ose i-j rrugëtim) në grafin G.

Përkufizim. Një rrugëtim në të cilin nuk përsëritet ndonjë kulm, përjashtuar këtu fillimin dhe mbarimin, quhet rrugë (ose i-j rrugë).

Përkufizim. Le të jetë dhënë diagrafi G = (V, E). *Udhë* quajm një vargë të alternuar kulmesh dhe brinjësh pa përsëritje të tyre të tillë që çdo brinjë $a_j j = 1,2,3,...,k$ skajet i ka në kulmet paraardhës dhe pasardhës, por jo detyrimisht paraardhësi është fillimi i harkut a_j .

- Në të njejtën mënyrë do të përdorim edhe termin *shteg* në një diagraf.
- **Përkufizim.** Një $udh\ddot{e}$ në një graf G quhet $cik\ddot{e}l$ në qoftë se skajet i dhe j të sajë janë i njejti kulm.

Përkufizim. Një shteg me skaje të njëjtë në një graf G quhet cikël elementar.

Përkufizim. Kur një cikël elementar është graf identik me nëngrafin e përcaktuar nga kulmet e tij, atëherë ai quhet cikël i indukuar.

Përkufizim. Një rrugëtim me skaje të njëjtë në një diagraf G quhet cirkuit elementar.

Përkufizim. Numri i brinjëve të një cikli apo cikli elementar quhet *gjatësi e* ciklit.

Përkufizim. Cikli me gjatësi minimale në një graf G quhet *cikël i belit* dhe vet gjatësia e tij quhet *beli i grafit* dhe shënohet me g G.

Përkufizim. Çdo cikël i belit është cikël i indukuar.

Përkufizim. Maksimumi i gjatësive të cikleve të një grafi quhet *perimetër* i grafit.

• Kur grafi nuk përmban cikël, beli merret ∞ dhe perimetri zero. **Përkufizim.** Një brinjë e një grafi G që nuk është brinjë e një cikli C në G dhe skajet i ka në kulmet e ciklit quhet *kordë* e tij.

Pohim. Çdo cikël i indukuar në një graf G = (V, E) nuk përmban korda.

Teoremë. Çdo i-j udhë në një graf G=(V,E) përmban një i-j shteg.

Vërtetim. Le të jetë U një i-j udhë në një graf G. Nëse udha U është e mbyllur, dmth i = j, atëherë në rolin e një shtegu marrim thjesht atë që përbëhet vetëm nga kulmi i. Supozojmë se U është udhë e hapur e trajtës $i=i_0,\,i_1,\,i_2,\,\ldots\,,\,i_k=j$. Bëjmë një kalim nëpër udhën U duke vendosur një shenjë në çdo kulm që ndeshim. Nëse një kulm i_r dhe se s > r. Largojmë prej U kulmet i_r , i_{r+1} , ..., i_{s-1} . Përftohet një i-j udhë U_1 është shteg, atëherë pohimi është vërtetuar, për ndryshe përsërisim proçesin. Derisa U është një varg i fundëm, atëherë pas disa hapash do të merret një i-judhë U_q në të cilën nuk ndeshet për së dyti ndonjë kulm i saj, pra përftohet një i - j shteg.

Shembull. Le të jetë dhënë grafi G.

Shënojmë (1-5) udhën me $1e_32e_43e_11e_24e_63e_75$

Atëherë eksiston edhe (1-5) shtegu $1e_32e_43e_75$

Teoremë. Çdo graf G me δ $G \trianglerighteq 3$ përmban një shteg të hapur me gjatësi të paktën δ G dhe një cikël elementar me gjatësi të paktën δ G + 1.

Vërtetim. Le të jetë i_0 , i_1 , i_2 , ..., i_k një shteg me gjatësi maksimale në grafin G. Është e sigurt se për një shteg të tillë të gjithë fqinjët e skajit i_k ndodhen patjetër mbi këtë shteg (ky fakt njihet me emrin parimi i shtegut më të

Prej këtu rrjedhë se $k \geq \delta(G)$. Le të jetë i_j kulmi me tregues më të vogël i tillë që i_j $i_k \in E(G)$. Shihet tani se cikli C: i_j , i_{j+1} , ..., i_k , i_j është $d(i_k) + 1 \geq \delta(G) + 1$. gjatë).

Shembull. Me d i jhënojmë fuqin e **kulmit** i,

$$\delta G() = \min\{d : i \in V\} = \min\{d(1), d(2), d(3), d(4), d(4)\}$$

= $\min\{3,3,5,5,3,3\} = 3$

 δ (6) = 3; psh eksiston shtegu i hapur $1e_34e_93e_16e_{11}5$ Cikli elementar e ka gjatësin δ (6) + 1 = 3 + 1 = 4 psh $1e_24e_96e_{10}3e_11$ është cikli elementar me gjatësi 4.

$$(5), d(6)$$
 =

Teoremë. Në çdo graf G që përmban të paktën një cikël të vërtetohet mosbarazimi g $G \leq 2 diam G + 1$. (me g G shënojmë belin e grafit me diam G shënojmë diametrin e grafit G)

Përkufizim. Një graf (Diagraf) jo bosh G quhet i *lidhur* nëse për çdo dy kulme $i, j \in V G$ eksiston një shteg P me skaje në ata kulme. Në rast të kundërt grafi quhet i *palidhur*.

- Çdo graf me një kulm konsiderohet i lidhur.
- Nëse $U \subseteq V$ G dhe nëngrafi i indukuar G[U] është i lidhur, atëherë thuhet se bashkësia e kulmeve U është në vetvete e lidhur në grafin G.
- Komponente e lidhur e një grafi është çdo nëngraf i lidhur maksimal i tij (maksimaliteti i një nënbashkësie kulmesh apo brinjësh është në kuptimin e shtrirjes, dmth po të shtohet një kulm apo brinjë çfardo nënbashkësia që përftohet e humbet vetinë).

Grafi në figurë ka tri komponente të lidhura
Përkufizim. Grafi i lidhur dhe pa cikle quhet dru (pemë). Në figurë është paraqitur një dru me 8 kulme.

Përkufizim. Thuhet se një diagraf jo bosh G është i *lidhur fort* nëse për çdo dy kulme i_j , $i_k \in V$ G eksiston një rrugë nga i në j dhe një tjetër rrugë nga j në i.

Përkufizim. Çdo nëngraf i indukuar i G-së që është i lidhur fort dhe maksimal në G quhet komponente e lidhur fort e tij.

Grafi i parë në figurë është i lidhur fortë kurse grafi i dytë jo, ai përmban dy komponente të lidhura fort me bashkësi kulmesh përkatësisht $V_1 = \{1,2,3\}$ dhe $V_2 = \{4,5,6,7\}$

