Zadania Matematyka I, Kognitywistyka,

Konrad Zdanowski

6 listopada 2024

1 Teoria liczb

1.1 Faktoryzacja, gcd, lcm

- 1. Czy 113, 201, 213 to liczby pierwsze? ([FR15, 4.6.3, zad. 2])
- 2. Znajdź faktoryzację: 3465, 40 320, 14641. ([FR15])
- 3. Czy 1 111 111 111 jest pierwsza? ([FR15])
- 4. Niech $m = 2^2 * 3^3 * 5 * 7 * 11$, n = 2 * 3 * 11. Wyznacz gcd, lcm. ([FR15])
- 5. Niech $m = 5^2 * 7 * 11 * 13^2$, $n = 2 * 3 * 7^3 * 11^2 * 13$, $k = 3 * 5 * 7^2 * 11^3$. Wyznacz $\gcd(m, n, k)$, $\operatorname{lcm}(m, n, k)$.
- 6. Czy jest nieskończenie wiele liczb pierwszych postaci n^2-49 , dla pewnego $n\in\mathbb{N}?$ ([FR15])
- 7. Jeśli p jest pierwsza, to czy $2^p 1$ jest pierwsza? ([FR15])
- 8. ([FR15]) Wyznacz $\gcd(756, 2205), \gcd(4725, 17460), \gcd(465, 3861), \gcd(4600, 2116), \gcd(630, 990), \gcd(96, 144).$
 - Wyznacz lcm(756, 2205), lcm(4725, 17460), lcm(465, 3861), lcm(4600, 2116), lcm(630, 990), lcm(96, 144).
- 9. Wyznacz wszystkie liczby, których nie dzieli żadna liczba pierwsza większa od pięciu i które mają dokładnie pięć dzielników.
- 10. Wyznacz wszystkie liczby, które dzielą 5 * 7. Ile jest takich liczb?

1.2 Przystawanie modulo

- 1. Rozstrzygnij, czy jest prawdą
 - $0 \equiv 6 \pmod{3}$,
 - $35 \equiv 55 \pmod{9}$,
 - $(-23) \equiv 20 \pmod{7}$
 - $(-3) \equiv 3 \pmod{6}$,
 - $(-2) \equiv 2 \pmod{3}$,
 - $16 \equiv 185 \pmod{1}1$.

([FR15, sec. 6.1, p. 154])

- 2. Wyznacz wszystkie liczby $n \in \mathbb{Z}$ takie, że $n \equiv 2 \pmod{5}$.
- 3. Czy $(-1) \equiv 1 \pmod{2}$?
- 4. Wyznacz resztę z dzielenia liczby 17*23*45 przez 8. Wyznacz resztę z dzielenia liczby 17*23*45 przez 5.

Nie używaj kalkulatora.

- 5. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 3 \pmod{5}$ i $n \equiv 2 \pmod{3}$.
- 6. Znajdź $n \in \mathbb{N}$ takie, że $n \equiv 4 \pmod{4}$ i $n \equiv 2 \pmod{5}$.
- 7. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 0 \pmod{2}$. Dlaczego takie n nie istnieje?
- 8. Nie znajdź $n \in \mathbb{N}$ takiego, że $n \equiv 3 \pmod{6}$ is $n \equiv 2 \pmod{9}$. Dlaczego takie n nie istnieje?
- 9. Wyznacz wszystkie liczby, które dzielą 5 * 7.
- 10. Korzystając z Twierdzenia Eulera $(a^{\varphi(n)} \equiv 1 \pmod n)$, gdy $\gcd(a,n)=1$ i Małego Twierdzenia Fermata $(x^{p-1} \equiv 1 \pmod p)$, dla liczby pierwszej p) i z tego, że relacja przystawania modulo jest kongruencją względem dodawania i mnożenia, oblicz
 - $3^{100} \mod 5$,

- $5^{100} \mod 7$,
- $3^{100} \mod 10$,
- 3¹⁰⁰ mod 6 (uwaga),
- $4^{100} \mod 9$,
- $2^{2^{100}} \mod 5$,
- $5^{5^{100}} \mod 3$.

1.3 Indukcja

- 1. Udowodnij $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.
- 2. Udowodnij $\sum_{i=0}^{n} (2i+1) = (n+1)^2$ (sumę n pierwszych liczb nieparzystych).
- 3. Udowodnij, dla każdego $n \ge 1$, dla wszystkich $x_1, \ldots, x_n \in \mathbb{R}$, $|x_1 + \ldots + x_n| \le |x_1| + \ldots + |x_n|$.
- 4. Dla dowolnego $n\geqslant 1,$ $\forall x\in (0,1)$ $x^n\leqslant x.$ Skorzystaj z faktu, że dla dowolnych a,b, jeśli $0\leqslant a<1$ i $b\geqslant 0,$ to ab< b.
- 5. Udowodnij, że dla dowolnego $n, \sum_{i=0}^n \frac{1}{2^i} \leqslant 2$. Rozważ wzmocnienie tezy, do $\sum_{i=0}^n \frac{1}{2^i} \leqslant 2 \frac{1}{2^n}$.
- 6. Udowodnij, że dla dowolnego $n \ge 4$, $2^n \ge n^2$.

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \ge 0 \ (2^n \ge n^2)$.

Której części dowodu indukcyjnego nie można przeprowadzić dla tezy $\forall n \geqslant 3 \ (2^n \geqslant n^2).$

7. Ciąg Fibbonacciego definiujmy jako F(1)=F(2)=1, oraz F(n+2)=F(n)+F(n+1) dla $n\geqslant 1$.

Udowodnij, że dla $n \ge 1$,

$$F(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n.$$

8. (Nierówność Bernoulliego, uproszczony przypadek) Dla dowolnego $n \ge 1$,

$$\forall x \geqslant 0 ((1+x)^n \geqslant (1+nx)).$$

2 Matematyka dyskretna

2.1 Zliczania

Notacje. |X| to moc zbioru X. $\mathcal{P}(X)$ to zbiór podzbiorów X. $\mathcal{P}^{=k}(X)$ to ilość k elementowych podzbiorów zbioru X, gdzie $k \in \mathbb{N}$.

Twierdzenie 1. Niech X, Y, Z zbiory skończone. Wtedy $|X \cup Y| = |X| + |Y| - |X \cap Y|$ oraz

$$\begin{split} X \cup Y \cup Z| &= |X| + |Y| + |Z| + \\ &- |X \cap Y| - |X \cap Z| - |Y \cap Z| + |X \cap Y \cap Z|. \end{split}$$

Twierdzenie 2. Niech X będzie zbiorem skończonym o mocy (liczności) n. Wtedy $|\mathcal{P}(X)| = 2^n$.

Definicja 3. Dwumian Newtona to wyrażenie $\binom{n}{k}$, gdzie $0 \le k \le n$, zdefiniowane jako

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}.$$

Ponieważ 0! = 1, to $\binom{0}{0} = 1$.

Twierdzenie 4. Dla $0 \le k \le n$, ilość k-elementowych podzbiorów n elementowego to $\binom{n}{k}$.

Innymi słowy, jeśli |X| = n, to $|\mathcal{P}^{=k}(X)| = \binom{n}{k}$.

Dwumian Newtona spełnia rekurencyjną zależność, dla $k+1 \leqslant n$,

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}.$$

2.2 Teoria grafów

3 Uwagi lub (p)odpowiedzi

• Część 1.3, zadanie 6.

W tezie $\forall n \geqslant 0 (2^n \geqslant n^2)$ nie uda się udowodnić kroku indukcyjnego.

W tezie $\forall n \geqslant 3(2^n \geqslant n^2)$ krok indukcyjny da się udowodnić, ale nie da się udowodnić przypadek bazowy.

Literatura

[FR15] Sylvia Forman and Agnes M. Rash. *The Whole Truth About Whole Numbers: An Elementary Introduction to Number Theory*. Springer International Publishing, 2015.