

Maestría en Ingeniería Electrónica

Reconocimiento de patrones

Apuntes de clase 1

Estudiante: Esteban Martínez Valverde

Profesor: Felipe Meza Obando

INTRODUCCIÓN

Aprendizaje Automático (Machine Learning - ML)

El aprendizaje automático es un campo de la informática que a menudo utiliza técnicas estadísticas para dar a las computadoras la capacidad de "aprender" con datos, sin estar explícitamente programadas. El nombre de aprendizaje automático fue acuñado en 1959 por Arthur Samuel. (Wikipedia)

- Conjunto de mecanismos que permiten convertir los datos en información/conocimiento
 útil
- Utiliza técnicas de los campos de computación, estadística, entre otros
- Construcción de programas que mejoren automáticamente con la experiencia.

Algunos ejemplos de aplicación son:

- Carros que se manejan solos
- Reconocimiento de texto y voz
- Generación de rostros

Ejemplos de aplicaciones reales

- SIRI y Cortana
- Facebook (reconocimiento de rostros)
- Google Maps (Al utilizar la locación de los smartphones sugiere rutas alternas)
- Google Search (Recomienda y sugiere basado en búsquedas previas)
- Gmail (Sugiere respuestas a los correos)
- Paypal (Utiliza Deep learning para evitar fraudes)
- Netflix (Sugiere películas y series de acuerdo con los gustos del usuario)
- UBER (Predice los tiempos de llegada, lugares de recogida)

Spotify (Sugiere canciones de acuerdo con las reproducciones del usuario)

Estadística?

Busca la relación entre variables, mediante ecuaciones matemáticas constituyendo una herramienta útil (matemáticas) . Se encarga de estimar, realizar una hipótesis, obtener muestreos de la información y obtener resultados.

ML?

Busca aprender de los datos mediante algoritmos, constituyendo una herramienta vital (Inteligencia artificial). Se encarga de aprender, clasificar, crear instancias y etiquetas.

Tipos de Aprendizaje.

Supervisado

- Los datos están etiquetados y se predice una salida futura
- Clasificación -> Predicción (regresión)

No Supervisado

• Los datos no están etiquetados y se encuentra una estructura oculta

Agrupamiento (clustering): Se encarga de encontrar los centros

Refuerzo

Se etiquetan los datos y se predice una salida futura

Instancias, Atributos y Clases.

Instancias

Muestras, observaciones, número de datos

Atributos

Características, valores de los datos (inputs)

Clases

Etiquetas, objetivos

Metodología de Diseño.

Métricas para evaluar lo aprendido.

- Exactitud de la clasificación.
- Pérdidas logarítmicas.
- Curva ROC.
- Matriz de confusión.
- MSE.
- R².

AMBIENTE PYTHON

PRE-PROCESADO

Metodología de diseño

Pre-procesado

(Data preparation, data cleaning, pre-processing, wrangling)

Se realiza un análisis del conjunto de datos para identificar los componentes que sean incompletas, imprecisas, incorrectas, o irrelevantes y puedan ser reemplazadas, removidas o modificadas.

Parte de las modificaciones se incluye:

- Transformación de los datos "puros" a formatos que faciliten el manejo en los algoritmos de minería de datos.
- Reducción de los datos a menores dimensiones para facilitar el procesamiento

Preparación de datos

En las primeras etapas de los modelos de diseño se lleva a cabo la selección, pre-procesado o transformación de los datos. Esa preparación de los datos no es un componente integral en los algoritmos de aprendizaje, sin embargo, se requiere de bastante tiempo (80% a 90%), por lo que es importante su consideración,

En ambientes de desarrollo como **PYTHON**, se usan librerías como **PANDAS** para la preparación de los datos

Tareas del Pre-Procesado

Análisis exploratorio de los datos (EDA)

Métodos cuantitativos y visuales para comprender mejor un conjunto de datos sin tener que asumir hechos. Arrojar el conjunto de datos a un algoritmo y esperar los mejores resultados, no es la mejor estrategia.

- Visualización de un resumen estadı´stico del conjunto de datos.
- Exploración visual de cualquier relación que pueda tener cada atributo con la clase que nos interesa predecir.
- Mediante diagramas de dispersión observar cualquier tipo de agrupamiento que se pueda presentar en los datos.

Valores Faltantes

Algunas técnicas comunes son:

- Eliminar instancias.
- Eliminar atributos.
- Calcular "media" del atributo faltante.
- Calcular "mediana" del atributo faltante.
- Calcular "moda" del atributo faltante.
- Usar regresión para estimar el valor del atributo faltante.

Se utilizan las funciones *dropna* y *fillna* de la herramienta *pandas* como ejemplo de completar los valores faltantes de un Dataset

Outliers

Un *Outlier* es un dato que se presenta como "atípico" dentro del conjunto de datos. Dependiendo de la naturaleza de los datos, hay ocaciones es necesario mantenerlos y en otras más bien se busca eliminarlos. Algunas técnicas comunes son:

- Removerlos usando desviación estándar (PYTHON), importando la librería numpy.
- Removerlos usando percentiles (pandas).

Datos no-balanceados

Ocurre cuando una clase de datos en el conjunto, posee una mayoría importante de la cantidad de datos e.g un conjunto de datos de 2 clases, donde: CLASE1 = 98% y CLASE2 = 2%.

Algunas técnicas comunes son:

- Usar otras métricas diferentes al porcentaje de exactitud, por ejemplo:
 - o Precision/Specificity: cuantas instancias seleccionadas son relevantes.
 - Recall/Sensitivity: cuantas instancias relevantes son seleccionadas.
 - o F1 score: media harmónica de "precision" y "recall".
- Muestreo de datos:
 - o sub-muestreo: Eliminar instancias abundantes (sólo si hay suficientes datos).
 - o sobre-muestreo: Generar instancias faltantes (mediante métodos de repetición o generación, solo en caso de que sea posible)
- Descomponer el conjunto de datos en subconjuntos.
- Hacer clustering de grupo abundante.

Transformación de datos

- Ocurre cuando transformamos un valor zi en yi mediante una función f () de forma tal que yi = f (zi).
- Se hace con el fin de alinear los datos con alguna suposición estadistica, mejorar la interpretación de los datos o bien obtener gráficos de mejor apariencia.
- Técnica muy común: One Hot Encode
 - Permite convertir datos categóricos en numéricos (vectores binarios).

Reducción de dimensiones (PCA)

Mediante la detección de correlación entre variables y análisis de máximas varianzas, es posible proyectar datos de grandes dimensiones en sub-espacios de menor dimensión, de manera tal que se conserve la información más relevante. Se lleva a cabo en los siguientes pasos:

- Estandarizar de los datos (en especial si poseen escalas distintas).
- Calcular la matriz de covarianza o correlación:

$$\Sigma = \frac{1}{n-1} \left((\mathbf{X} - \bar{\mathbf{x}})^T (\mathbf{X} - \bar{\mathbf{x}}) \right)$$

• Extraer los valores propios (eigenvalues) y ordenarlos.

El PCA se puede considerar como una rotación de los ejes del sistema de coordenadas de la variable original a unos nuevos ejes ortogonales, llamados "ejes principales". Como se observa en la Figura , el punto y_{1m} es la proyección del punto (x_{1m}, x_{2m}) \$ en el eje definido por Y_1 .

Términos y Definiciones

- **Training set:** Colección grande de N datos usado para entrenar los parámetros de un modelo adaptativo
- **Test Set:** Colección de datos para probar el entrenamiento.
- Target vector: Una categoría escogida para identificar el tipo de cada dato.
- Training/learning phase: se utiliza para determinar la forma de una función Y(x) donde x es cada dato nuevo de entrada (dígitos)
- **Generalization:** La capacidad de categorizar correctamente nuevos ejemplos que difieren de los utilizados para la capacitación se conoce como generalización.
- Preprocesado / Feature extraction: las variables de entrada son transformadas en un nuevo espacio de variables, donde se espera el problema de reconocimiento de patrones sea más fácil.
 - Por lo general se realiza una reducción dimensional de las variables.
 - Hay que tener cuidado para que no se pierda información necesaria para el criterio de selección en el ML
- **Supervised Training:** Son las aplicaciones donde los datos de entrenamiento comprenden los vectores de entrada y sus correspondientes vectores de destino **(Target)**
 - Classification: Cada vector de entrada se le asigna un número finito de categorías discretas
 - Regression: La salida consiste en una o mas variables continuas
- **Unsupervised Training:** El *training set*, consiste en vectores de entrada **x** sin ninguna categoría definida como **target**
 - Clustering: Descubrir grupos de ejemplos similares dentro de los datos de entrada
 - Density Estimation: Determinar la distribución de datos dentro del espacio de una entrada
 - Visualization: Proyectar datos de una dimensión mayor a un espacio de 2 o 3 dimensiones
- **Reinforcement Learning:** se relaciona con el problema de encontrar acciones adecuadas para tomar en una situación dada con el fin de maximizar una recompensa.