

Report No.: FR8O2320

: 1 of 37

Page Number

FCC RADIO TEST REPORT

FCC ID : U8G-P1930LITER5

Equipment : Pepwave / Peplink / Pismo Labs Wireless Product

Brand Name : Pepwave / Peplink / Pismo

Model Name : MAX Transit Mini, Max transit mini, MAX-Transit-Mini,

MAX Transit Mini LTE, Max Transit Mini LTE, MAX Transit Mini LTEA, Max Transit Mini LTEA, MAX BR1 Mini, Max BR1 Mini, MAX BR1 Mini LTE,

MAX BR1 Mini LTEA, MAX BR1 M2M,

Pismo 930 LITE, Pismo 930 LITE, Pismo 930 LITE, MAX-BR1-MINI-LTE-US, MAX-BR1-MINI-LTE-US-T, Pismo 930 Lite, Pismo 930 LITER5

Applicant : Pismo Labs Technology Limited

Unit A5, 5/F, HK Spinners Ind. Bldg., Phase 6, 481 Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong

Manufacturer : Pismo Labs Technology Limited

Unit A5, 5/F, HK Spinners Ind. Bldg., Phase 6, 481 Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong

Standard : FCC Part 15 Subpart C §15.247

The product was received on Oct. 23, 2018 and testing was started from Nov. 05, 2018 and completed on Nov. 21, 2018. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Joseph Lin

TEL: 886-3-327-3456

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory

No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Table of Contents

Report No.: FR8O2320

His	tory o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	9
	2.6	Measurement Results Explanation Example	
3	Test	Result	10
	3.1	6dB and 99% Bandwidth Measurement	10
	3.2	Output Power Measurement	12
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	15
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4		of Measuring Equipment	
5	Unce	ertainty of Evaluation	37
Ар	pendi	x A. Conducted Test Results	
Ар	pendi	x B. AC Conducted Emission Test Result	
Ар	pendi	x C. Radiated Spurious Emission	
Ар	pendi	x D. Radiated Spurious Emission Plots	
Ар	pendi	x E. Duty Cycle Plots	
Ар	pendi	x F. Setup Photographs	

TEL: 886-3-327-3456 Page Number : 2 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

History of this test report

Report No.: FR8O2320

Report No.	Version	Description	Issued Date
FR8O2320	01	Initial issue of report	Feb. 21, 2019

TEL: 886-3-327-3456 Page Number : 3 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Summary of Test Result

Report No.: FR8O2320

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)	Power Output Measurement	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
	45.047(1)	Conducted Band Edges	Pass	-
3.4	15.247(d)	Conducted Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	Under limit 0.29 dB at 2389.940 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 14.67 dB at 0.497 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Declaration of Conformity:

The judgment of conformity in the report is based on the measurement results excluding the measurement uncertainty.

Comments and Explanations:

None

Reviewed by: Wii Chang

Report Producer: Nancy Yang

TEL: 886-3-327-3456 Page Number : 4 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

1 General Description

1.1 Product Feature of Equipment Under Test

WCDMA/LTE, and Wi-Fi 2.4GHz 802.11b/g/n.

Product Specification subjective to this standard				
Integrated WWAN Module 1	Brand Name: Telit			
Integrated WWAN Module 1	Model Name: LE910-NA V2			
Integrated WWAN Medule 2	Brand Name: Telit			
Integrated WWAN Module 2	Model Name: LE910C4-NF			
Integrated WWAN Module 3	Brand Name: Sierra			
Integrated WWAN Module 5	Model Name: MC7455			
Antonno Typo	WWAN: Replacement Antenna			
Antenna Type	WLAN: Replacement Antenna			

Report No.: FR8O2320

Remark: All test items were performed with WWAN module 1.

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton S	Site No.	
Test Site No.	TH05-HY	CO05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No. 03CH12-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

TEL: 886-3-327-3456 Page Number : 5 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

1.4 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Report No.: FR8O2320

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL: 886-3-327-3456 Page Number : 6 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

Report No.: FR8O2320

b. AC power line Conducted Emission was tested under maximum output power.

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2492 E MU-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

2.2 Test Mode

Final test modes are considering the modulation and worse data rates as below table.

Modulation	Data Rate
802.11b	1 Mbps
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0

	Test Cases					
AC	Mode 1 :LTE Band 5 Idle + WLAN (2.4GHz) Link + GPS Rx + LAN Link + Console					
Conducted	port(Load) + POE Adapter					
Emission	port(Load) + FOL Adapter					
Remark: All	Remark: All the radiated test cases were performed with Adapter 1.					

TEL: 886-3-327-3456 Page Number : 7 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

2.3 Connection Diagram of Test System

Report No.: FR8O2320

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E3340	FCC DoC/ Contains FCC ID: PD97260NGU		AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
5.	Notebook	Lenovo	L570	N/A	N/A	N/A

TEL: 886-3-327-3456 Page Number : 8 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

2.5 EUT Operation Test Setup

The RF test items, utility "Tftpd64.exe" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

Report No.: FR8O2320

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$

= 4.2 + 10 = 14.2 (dB)

TEL: 886-3-327-3456 Page Number : 9 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 DTS D01 Meas. Guidance v05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.

Report No.: FR8O2320

- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

TEL: 886-3-327-3456 Page Number : 10 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.1.5 Test Result of 6dB and 99% Occupied Bandwidth

Please refer to Appendix A.

Report No.: FR8O2320

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

TEL: 886-3-327-3456 Page Number : 11 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna with directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Report No.: FR8O2320

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- For Peak Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v05 section 9.1.3 PKPM1 Peak power meter method.
- 2. For Average Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v05 section 9.2.3.1 Method AVGPM.
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

3.2.6 Test Result of Average output Power (Reporting Only)

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 12 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.

Report No.: FR8O2320

3.3.2 Measuring Instruments

See list of measuring equipment of this test report.

3.3.3 Test Procedures

- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz. Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.

TEL: 886-3-327-3456 Page Number : 13 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.3.4 Test Setup

Report No.: FR8O2320

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

TEL: 886-3-327-3456 Page Number : 14 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission Measurement

In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement.

Report No.: FR8O2320

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

3.4.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

TEL: 886-3-327-3456 Page Number : 15 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.4.5 Test Result of Conducted Band Edges and Spurious Emission

Tost Engineer:	AnAn Wu	Temperature :	21~25℃
rest Engineer.		Relative Humidity :	51~54%

Report No.: FR8O2320

Number of TX = 1, Ant. 1 (Measured)

TEL: 886-3-327-3456 Page Number : 16 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Test Mode: 802.11b Test Channel: 06

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 17 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Test Mode: 802.11b Test Channel: 11 100kHz PSD reference Level **Channel Plot** *RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -44.47 dBm SWT 40 ms 2.531975625 GHz *RBW 100 kHz *VBW 300 kHz SWT 5 ms ter 1 [T1] 5.69 dBm 2.462481920 GHz ≫ ≫ Date: 20.NOV.2018 21:08:06 Date: 20.NOV.2018 21:08:21 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz *RBW 100 kHz Marker 2 [T1]

*VBW 300 kHz -39.41 dBm
SWT 2.3 a 22.148000000 GHs *RBW 100 kHz *VBW 300 kHz SWT 300 ms **% ※**

Report No. : FR802320

TEL: 886-3-327-3456 Page Number : 18 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 19 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Test Mode: 802.11g Test Channel: 06

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 20 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

CC RADIO TEST REPORT Report No. : FR8O2320

TEL: 886-3-327-3456 Page Number : 21 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

CC RADIO TEST REPORT Report No. : FR802320

TEL: 886-3-327-3456 Page Number : 22 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 23 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Date: 20.NOV.2018 21:41:37

Test Mode: 802.11n HT20 Test Channel: 11 100kHz PSD reference Level **Channel Plot** *RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -43.67 dBm SWT 40 ms 2.488286250 GHz *RBW 100 kHz *VBW 300 kHz SWT 5 ms ≫ ≫ Date: 20.NOV.2018 21:41:03 Date: 20.NOV.2018 21:41:18 Spurious Emission 2GHz~25GHz Spurious Emission 30MHz~3GHz *RBW 100 kHz *VBW 300 kHz SWT 300 ms **% ※**

Report No. : FR802320

TEL: 886-3-327-3456 Page Number : 24 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Date: 20.NOV.2018 21:41:52

Test Mode: 802.11n HT40 Test Channel: 03 100kHz PSD reference Level **Channel Plot** *RBW 100 kHz Marker 1 [T1] *VBW 300 kHz -31.35 dBm SWT 40 ms 2.399673750 GHz *RBW 100 kHz *VBW 300 kHz SWT 10 ms er 1 [T1] -5.47 dBm 2.407248040 GHz ≫ ≫ Date: 21.NOV.2018 19:49:13 Date: 21.NOV.2018 19:49:40 Spurious Emission 30MHz~3GHz Spurious Emission 2GHz~25GHz *RBW 100 kHz Marker 2 [T1]

*VBW 300 kHz -39.92 di
SWT 2.3 s 14.65000000 Gi *RBW 100 kHz *VBW 300 kHz SWT 300 ms **% ※**

Report No. : FR802320

TEL: 886-3-327-3456 Page Number : 25 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Test Mode: 802.11n HT40 Test Channel: 06

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 26 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Test Mode: 802.11n HT40 Test Channel: 09

100kHz PSD reference Level Channel Plot

Report No. : FR802320

: 01

TEL: 886-3-327-3456 Page Number : 27 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR8O2320

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 – 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

TEL: 886-3-327-3456 Page Number : 28 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.5.3 Test Procedures

- The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

Report No.: FR8O2320

- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-3456 Page Number : 29 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.5.4 Test Setup

For radiated emissions below 30MHz

Report No.: FR8O2320

For radiated emissions from 30MHz to 1GHz

TEL: 886-3-327-3456 Page Number : 30 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

For radiated emissions above 1GHz

Report No.: FR8O2320

3.5.5 Test Results of Radiated Spurious Emissions (9kHz ~ 30MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-3456 Page Number : 31 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR8O2320

Frequency of Emission	Conducted Limit (dBμV)				
(MHz)	Quasi-Peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

TEL: 886-3-327-3456 Page Number : 32 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.6.4 Test Setup

Report No.: FR8O2320

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-3456 Page Number : 33 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR8O2320

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

TEL: 886-3-327-3456 Page Number : 34 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Anritsu	ML2495A	1132003	N/A	Aug. 16, 2018	Nov. 05, 2018~ Nov. 21, 2018	Aug. 15, 2019	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1126017	300MHz~40GH z	Aug. 16, 2018	Nov. 05, 2018~ Nov. 21, 2018	Aug. 15, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSQ	200578/02 6	20Hz~26.5GHz	May 28, 2018	Nov. 05, 2018~ Nov. 21, 2018	May 27, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC130048 4	N/A	Mar. 01, 2018	Nov. 05, 2018~ Nov. 21, 2018	Feb. 28, 2019	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 15, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	Nov. 15, 2018	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Nov. 15, 2018	Nov. 13, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Nov. 15, 2018	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Nov. 15, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Nov. 15, 2018	Jan. 02, 2019	Conduction (CO05-HY)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 35 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Nov. 23, 2017	Nov. 18, 2018~ Nov. 19, 2018	Nov. 22, 2018	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 13, 2018	Nov. 18, 2018~ Nov. 19, 2018	Oct. 12, 2019	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-132 8	1GHz ~ 18GHz	Nov. 09, 2018	Nov. 18, 2018~ Nov. 19, 2018	Nov. 08, 2019	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz ~ 40GHz	Nov. 27, 2017	Nov. 18, 2018~ Nov. 19, 2018	Nov. 26, 2018	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 26, 2018	Nov. 18, 2018~ Nov. 19, 2018	Mar. 25, 2019	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03	171000180 0054001	1GHz~18GHz	Apr. 16, 2018	Nov. 18, 2018~ Nov. 19, 2018	Apr. 15, 2019	Radiation (03CH12-HY)
Preamplifier	Keysight	83017A	MY532701 48	1GHz~26.5GHz	Jan. 15, 2018	Nov. 18, 2018~ Nov. 19, 2018	Jan. 14, 2019	Radiation (03CH12-HY)
Preamplifier	EMEC	EM18G40G	060715	18GHz ~ 40GHz	Dec. 05, 2017	Nov. 18, 2018~ Nov. 19, 2018	Dec. 04, 2018	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 25, 2017	Nov. 18, 2018~ Nov. 19, 2018	Dec. 24, 2018	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2GHz Low Pass	Mar. 21, 2018	Nov. 18, 2018~ Nov. 19, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass	Mar. 21, 2018	Nov. 18, 2018~ Nov. 19, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 14, 2018	Nov. 18, 2018~ Nov. 19, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Oct. 16, 2018	Nov. 18, 2018~ Nov. 19, 2018	Oct. 15, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Oct. 16, 2018	Nov. 18, 2018~ Nov. 19, 2018	Oct. 15, 2019	Radiation (03CH12-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Nov. 18, 2018~ Nov. 19, 2018	N/A	Radiation (03CH12-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Nov. 18, 2018~ Nov. 19, 2018	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-00098 9	N/A	N/A	Nov. 18, 2018~ Nov. 19, 2018	N/A	Radiation (03CH12-HY)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : 36 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

5 Uncertainty of Evaluation

<u>Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)</u>

Measuring Uncertainty for a Level of Confidence	2.2
of 95% (U = 2Uc(y))	2.2

Report No.: FR8O2320

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	5.1
of 95% (U = 2Uc(y))	3.1

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.2
of 95% (U = 2Uc(y))	3.2

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

	<u>-</u>
Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.7

TEL: 886-3-327-3456 Page Number : 37 of 37
FAX: 886-3-328-4978 Issued Date : Feb. 21, 2019

Report Template No.: BU5-FR15CWL AC MA Version 2.1 Report Version : 01

Appendix A. Test Result of Conducted Test Items

Test Engineer:	AnAn Wu	Temperature:	21~25	°C
Test Date:	2018/11/05~2018/11/21	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

	2.4GHz Band												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		upied BW Hz)	6dB (MI		6dB BW Limit (MHz)	Pass/Fail			
					Ant 1	Ant 2	Ant 1	Ant 2					
11b	1Mbps	1	1	2412	13.90	-	10.08	-	0.50	Pass			
11b	1Mbps	1	6	2437	13.90	-	10.09	-	0.50	Pass			
11b	1Mbps	1	11	2462	13.85	-	10.04	-	0.50	Pass			
11g	6Mbps	1	1	2412	17.05	-	16.56	-	0.50	Pass			
11g	6Mbps	1	6	2437	17.05	-	16.56	-	0.50	Pass			
11g	6Mbps	1	11	2462	17.10	-	16.56	-	0.50	Pass			
HT20	MCS0	1	1	2412	18.15	-	17.82	-	0.50	Pass			
HT20	MCS0	1	6	2437	18.15	-	17.78	-	0.50	Pass			
HT20	MCS0	1	11	2462	18.10	-	17.78	-	0.50	Pass			
HT40	MCS0	1	3	2422	38.20	-	36.56	-	0.50	Pass			
HT40	MCS0	1	6	2437	38.00	-	36.58	-	0.50	Pass			
HT40	MCS0	1	9	2452	38.10	_	36.56	-	0.50	Pass			

TEST RESULTS DATA Peak Output Power

	2.4GHz Band																
Mod. Data Rate	NTX	NTX	NTX	CH.	Freq. (MHz)	Ó	Peak Conducted Power (dBm)	d	Po ^r Lii	ucted wer mit Bm)		G Bi)	Pov	RP wer Bm)	Por Lir	RP wer mit Bm)	Pass /Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2	Ant 1	Ant 2		
11b	1Mbps	1	1	2412	17.91	-	-	30.00	-	5.21	-	23.12	-	36.00	-	Pass	
11b	1Mbps	1	6	2437	17.66	-	-	30.00	-	5.21	-	22.87	-	36.00	-	Pass	
11b	1Mbps	1	11	2462	17.44	-	-	30.00	-	5.21	-	22.65	-	36.00	-	Pass	
11g	6Mbps	1	1	2412	23.16	-	-	30.00	-	5.21	-	28.37	-	36.00	-	Pass	
11g	6Mbps	1	6	2437	23.08	-	-	30.00	-	5.21	-	28.29	-	36.00	-	Pass	
11g	6Mbps	1	11	2462	22.85	-	-	30.00	-	5.21	-	28.06	-	36.00	-	Pass	
HT20	MCS0	1	1	2412	23.18	-	-	30.00	-	5.21	-	28.39	-	36.00	-	Pass	
HT20	MCS0	1	6	2437	23.11	-	-	30.00	-	5.21	-	28.32	-	36.00	-	Pass	
HT20	MCS0	1	11	2462	22.95	-	-	30.00	-	5.21	-	28.16	-	36.00	-	Pass	
HT40	MCS0	1	3	2422	21.81	-	-	30.00	-	5.21	-	27.02	-	36.00	-	Pass	
HT40	MCS0	1	6	2437	22.08	-	-	30.00	-	5.21	-	27.29	-	36.00	-	Pass	
HT40	MCS0	1	9	2452	22.02	-	-	30.00	-	5.21	-	27.23	-	36.00	-	Pass	

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Average Output Power

	2.4GHz Band											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)		Average Conducted Power (dBm)					
					Ant 1	Ant 2	Ant 1	Ant 2	SUM			
11b	1Mbps	1	1	2412	0.00	-	15.54	-				
11b	1Mbps	1	6	2437	0.00	-	15.31	-				
11b	1Mbps	1	11	2462	0.00	-	15.05	-				
11g	6Mbps	1	1	2412	0.00	-	13.77	-				
11g	6Mbps	1	6	2437	0.00	-	13.48	-				
11g	6Mbps	1	11	2462	0.00	-	13.24	-	_			
HT20	MCS0	1	1	2412	0.00	-	13.60	-	_			
HT20	MCS0	1	6	2437	0.00	-	13.52	-				
HT20	MCS0	1	11	2462	0.00	-	13.32	-				
HT40	MCS0	1	3	2422	0.00	-	11.79	-				
HT40	MCS0	1	6	2437	0.00	1	12.23	-				
HT40	MCS0	1	9	2452	0.00	-	12.15	-				

Note: Measured power (dBm) has offset with cable loss.

TEST RESULTS DATA Peak Power Spectral Density

	2.4GHz Band													
Mod. Data	NTX	NTX	NTX	N TX	CH.	Freq.		Peak PSD (dBm/3kHz)			G Bi)	Liı	PSD mit /3kHz)	Pass/Fail
	Rate			(1011 12)	Ant 1	Ant 2	Worse + 3.01	Ant 1	Ant 2	Ant 1	Ant 2			
11b	1Mbps	1	1	2412	-8.33	-	-	5.21	-	8.00	-	Pass		
11b	1Mbps	1	6	2437	-8.64	-	-	5.21	-	8.00	-	Pass		
11b	1Mbps	1	11	2462	-8.01	-	-	5.21	-	8.00	-	Pass		
11g	6Mbps	1	1	2412	-12.15	-	-	5.21	-	8.00	-	Pass		
11g	6Mbps	1	6	2437	-12.36	-	-	5.21	-	8.00	-	Pass		
11g	6Mbps	1	11	2462	-12.75	-	-	5.21	-	8.00	-	Pass		
HT20	MCS0	1	1	2412	-12.75	-	-	5.21	-	8.00	-	Pass		
HT20	MCS0	1	6	2437	-12.38	-	-	5.21	-	8.00	-	Pass		
HT20	MCS0	1	11	2462	-12.63	-	-	5.21	-	8.00	-	Pass		
HT40	MCS0	1	3	2422	-17.80	-	-	5.21	-	8.00	-	Pass		
HT40	MCS0	1	6	2437	-17.12	-	-	5.21	-	8.00	-	Pass		
HT40	MCS0	1	9	2452	-16.82	-	-	5.21	-	8.00	-	Pass		

Measured power density (dBm) has offset with cable loss.

Appendix B. AC Conducted Emission Test Results

Test Engineer :	limmy Chang	Temperature :	24~26 ℃
	Jiriiriy Criarig	Relative Humidity:	50~52%

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : B1 of B

EUT Information

 Report NO :
 802320

 Test Mode :
 Mode 1

 Test Voltage :
 120Vac/60Hz

Phase: Line

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		30.06	55.88	25.82	L1	OFF	19.5
0.152250	42.10	-	65.88	23.78	L1	OFF	19.5
0.285000		30.70	50.67	19.97	L1	OFF	19.5
0.285000	37.01	-	60.67	23.66	L1	OFF	19.5
0.496500		31.39	46.06	14.67	L1	OFF	19.5
0.496500	36.97		56.06	19.09	L1	OFF	19.5
1.473000		23.13	46.00	22.87	L1	OFF	19.6
1.473000	24.42	-	56.00	31.58	L1	OFF	19.6
4.539750		25.10	46.00	20.90	L1	OFF	19.7
4.539750	26.47	-	56.00	29.53	L1	OFF	19.7
23.986500		25.16	50.00	24.84	L1	OFF	20.3
23.986500	26.25		60.00	33.75	L1	OFF	20.3

EUT Information

Report NO: 802320
Test Mode: Mode 1
Test Voltage: 120Vac/60Hz
Phase: Neutral

FullSpectrum

Final Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.165750		29.05	55.17	26.12	N	OFF	19.5
0.165750	38.89		65.17	26.28	N	OFF	19.5
0.300750	-	29.63	50.22	20.59	N	OFF	19.5
0.300750	36.65		60.22	23.57	N	OFF	19.5
0.485250	-	31.30	46.25	14.95	N	OFF	19.5
0.485250	36.61		56.25	19.64	N	OFF	19.5
1.360500		23.37	46.00	22.63	N	OFF	19.6
1.360500	25.13		56.00	30.87	N	OFF	19.6
4.350750		24.86	46.00	21.14	N	OFF	19.7
4.350750	26.11		56.00	29.89	N	OFF	19.7
18.368250	-	27.48	50.00	22.52	N	OFF	20.3
18.368250	29.71		60.00	30.29	N	OFF	20.3

Appendix C. Radiated Spurious Emission

Test Engineer :		Temperature :	22~26°C
rest Engineer .	Bill Chang and Jack Cheng	Relative Humidity :	52~64%

Report No.: FR8O2320

2.4GHz 2400~2483.5MHz

WIFI 802.11b (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2372.685	59.23	-14.77	74	46.6	27.55	16.66	31.58	171	283	Р	Н
		2374.89	45.72	-8.28	54	33.09	27.55	16.66	31.58	171	283	Α	Н
	*	2412	97.4	-	-	84.77	27.48	16.72	31.57	171	283	Р	Н
	*	2412	92.84	-	-	80.21	27.48	16.72	31.57	171	283	Α	Н
802.11b													Н
CH 01													Н
2412MHz		2331.21	59.98	-14.02	74	47.26	27.71	16.6	31.59	159	152	Р	V
2412111112		2386.23	48.74	-5.26	54	36.11	27.53	16.68	31.58	159	152	Α	V
	*	2412	109.7	-	-	97.07	27.48	16.72	31.57	159	152	Р	V
	*	2412	105.16	-	-	92.53	27.48	16.72	31.57	159	152	Α	V
													V
													V
		2327.22	57.64	-16.36	74	44.9	27.74	16.59	31.59	165	285	Р	Н
		2359.98	45.69	-8.31	54	33.05	27.58	16.64	31.58	165	285	Α	Н
	*	2437	95.44	-	-	82.83	27.43	16.75	31.57	165	285	Р	Н
	*	2437	90.75	-	-	78.14	27.43	16.75	31.57	165	285	Α	Н
000 441		2495.45	56.98	-17.02	74	44.38	27.31	16.84	31.55	165	285	Р	Н
802.11b		2499.16	45.52	-8.48	54	32.93	27.3	16.84	31.55	165	285	Α	Н
CH 06 2437MHz		2357.46	60.21	-13.79	74	47.56	27.59	16.64	31.58	148	152	Р	V
2437 WII 12		2359.84	48	-6	54	35.36	27.58	16.64	31.58	148	152	Α	٧
	*	2437	110.5	-	-	97.89	27.43	16.75	31.57	148	152	Р	V
	*	2437	106.02	-	-	93.41	27.43	16.75	31.57	148	152	Α	V
		2486.49	59.07	-14.93	74	46.47	27.33	16.83	31.56	148	152	Р	V
		2483.5	47.06	-6.94	54	34.47	27.33	16.82	31.56	148	152	Α	V

TEL: 886-3-327-3456 Page Number: C1 of C15

FCC RADIO TEST REPORT

	*	2462	96.55	_	_	83.94	27.38	16.79	31.56	156	285	Р	Н
					<u>-</u>								
	*	2462	92	-	-	79.39	27.38	16.79	31.56	156	285	Α	Н
		2491.32	57.75	-16.25	74	45.16	27.32	16.83	31.56	156	285	Р	Н
		2483.76	45.61	-8.39	54	33.02	27.33	16.82	31.56	156	285	Α	Н
000 445													Н
802.11b													Н
CH 11 2462MHz	*	2462	109.69	-	-	97.08	27.38	16.79	31.56	180	152	Р	V
2402WITI2	*	2462	105.16	-	-	92.55	27.38	16.79	31.56	180	152	Α	V
		2485.28	59.71	-14.29	74	47.12	27.33	16.82	31.56	180	152	Р	V
		2487.72	47.78	-6.22	54	35.19	27.32	16.83	31.56	180	152	Α	V
													V
													V
	1. No	o other spurious	s found			•							
Remark		·											
	2. AI	l results are PA	SS against	Peak and	Average lim	nit line.							

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : C2 of C15

2.4GHz 2400~2483.5MHz

Report No. : FR8O2320

WIFI 802.11b (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	($dB\mu V$)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4824	40.77	-33.23	74	55.81	31.1	10.43	56.57	100	0	Р	Н
													Н
													Н
802.11b													Н
CH 01		4824	41.36	-32.64	74	56.4	31.1	10.43	56.57	100	0	Р	٧
2412MHz													V
													V
													V
		4874	39.94	-34.06	74	54.92	31.1	10.47	56.55	100	0	Р	Н
		7311	43.94	-30.06	74	50.79	36.58	12.8	56.23	100	0	Р	Н
													Н
802.11b													Н
CH 06 2437MHz		4874	40.34	-33.66	74	55.32	31.1	10.47	56.55	100	0	Р	V
243 <i>1</i> WITIZ		7311	45.3	-28.7	74	52.15	36.58	12.8	56.23	100	0	Р	V
													٧
													V
		4924	41.57	-32.43	74	56.41	31.2	10.49	56.53	100	0	Р	Н
		7386	43.74	-30.26	74	50.81	36.36	12.71	56.14	100	0	Р	Н
000 441-													Н
802.11b													Н
CH 11 2462MHz		4924	42.28	-31.72	74	57.12	31.2	10.49	56.53	100	0	Р	V
2402IVI		7386	44.58	-29.42	74	51.65	36.36	12.71	56.14	100	0	Р	V
													V
				_				· <u> </u>					V

TEL: 886-3-327-3456 Page Number : C3 of C15

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

Report No. : FR8O2320

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		2321.025	60.53	-13.47	74	47.77	27.77	16.58	31.59	169	285	Р	Н
		2373.42	48.41	-5.59	54	35.78	27.55	16.66	31.58	169	285	Α	Н
	*	2412	97.63	-	-	85	27.48	16.72	31.57	169	285	Р	Н
	*	2412	87.53	-	-	74.9	27.48	16.72	31.57	169	285	Α	Н
802.11g													Н
CH 01													Н
2412MHz		2390	63.61	-10.39	74	50.97	27.52	16.69	31.57	186	153	Р	V
24 (210) 12		2390	52	-2	54	39.36	27.52	16.69	31.57	186	153	Α	V
	*	2412	109.57	ı	-	96.94	27.48	16.72	31.57	186	153	Р	V
	*	2412	99.64	1	-	87.01	27.48	16.72	31.57	186	153	Α	V
													V
													V
		2359.14	62.58	-11.42	74	49.94	27.58	16.64	31.58	164	285	Р	П
		2334.78	48.41	-5.59	54	35.71	27.69	16.6	31.59	164	285	Α	Н
	*	2437	96.84	-	-	84.23	27.43	16.75	31.57	164	285	Р	Н
	*	2437	86.45	1	-	73.84	27.43	16.75	31.57	164	285	Α	Н
000 44 =		2499.23	61.57	-12.43	74	48.98	27.3	16.84	31.55	164	285	Р	Н
802.11g CH 06		2483.97	48.26	-5.74	54	35.67	27.33	16.82	31.56	164	285	Α	Н
2437MHz		2380.84	63.07	-10.93	74	50.44	27.54	16.67	31.58	179	163	Р	V
270/1911/12		2389.94	50.17	-3.83	54	37.54	27.52	16.68	31.57	179	163	Α	٧
	*	2437	109.98	ı	-	97.37	27.43	16.75	31.57	179	163	Р	V
	*	2437	99.73	1	-	87.12	27.43	16.75	31.57	179	163	Α	V
		2494.26	61.71	-12.29	74	49.11	27.31	16.84	31.55	179	163	Р	V
		2483.69	49.84	-4.16	54	37.25	27.33	16.82	31.56	179	163	Α	V

TEL: 886-3-327-3456 Page Number : C4 of C15

SPORTON LAB. FCC RADIO TEST REPORT

	*	2462	96.53	-	-	83.92	27.38	16.79	31.56	156	285	Р	Н
	*	2462	86.28	-	-	73.67	27.38	16.79	31.56	156	285	Α	Н
		2491.72	61.08	-12.92	74	48.49	27.32	16.83	31.56	156	285	Р	Н
		2483.52	48.26	-5.74	54	35.67	27.33	16.82	31.56	156	285	Α	Н
000 44 =													Н
802.11g CH 11													Н
2462MHz	*	2462	110.25	-	-	97.64	27.38	16.79	31.56	182	151	Р	V
2402WII 12	*	2462	99.84	-	-	87.23	27.38	16.79	31.56	182	151	Α	V
		2483.76	63.1	-10.9	74	50.51	27.33	16.82	31.56	182	151	Р	V
		2483.6	50.8	-3.2	54	38.21	27.33	16.82	31.56	182	151	Α	V
													V
													V
	1. N	o other spurious	s found.										
Remark		l results are PA		Peak and	Average lim	nit line.							

TEL: 886-3-327-3456 FAX: 886-3-328-4978 Report No.: FR8O2320

2.4GHz 2400~2483.5MHz

Report No. : FR8O2320

WIFI 802.11g (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		, ·		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4824	38.07	-35.93	74	53.11	31.1	10.43	56.57	100	0	Р	Н
													Н
802.11g													Н
CH 01													Н
2412MHz		4824	40.21	-33.79	74	55.25	31.1	10.43	56.57	100	0	Р	V
Z-7 1 Z IVII 1 Z													V
													V
													V
		4874	39.17	-34.83	74	54.15	31.1	10.47	56.55	100	0	Р	Н
		7311	43.86	-30.14	74	50.71	36.58	12.8	56.23	100	0	Р	Н
													Н
802.11g													Н
CH 06		4874	38.83	-35.17	74	53.81	31.1	10.47	56.55	100	0	Р	V
2437MHz		7311	43.85	-30.15	74	50.7	36.58	12.8	56.23	100	0	Р	V
													V
													V
		4924	39.45	-34.55	74	54.29	31.2	10.49	56.53	100	0	Р	Н
		7386	44.93	-29.07	74	52	36.36	12.71	56.14	100	0	Р	Н
000 44													Н
802.11g													Н
CH 11		4924	39.59	-34.41	74	54.43	31.2	10.49	56.53	100	0	Р	V
2462MHz		7386	44.95	-29.05	74	52.02	36.36	12.71	56.14	100	0	Р	V
													V
	1												V

TEL: 886-3-327-3456 Page Number : C6 of C15

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No.: FR8O2320

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		2360.4	60.56	-13.44	74	47.92	27.58	16.64	31.58	150	282	Р	Н
		2389.59	48.56	-5.44	54	35.94	27.52	16.68	31.58	150	282	Α	Н
	*	2412	97.45	-	-	84.82	27.48	16.72	31.57	150	282	Р	Н
	*	2412	87.36	-	-	74.73	27.48	16.72	31.57	150	282	Α	Н
802.11n													Н
HT20													Н
CH 01		2389.8	65.08	-8.92	74	52.45	27.52	16.68	31.57	180	166	Р	V
2412MHz		2390	52.27	-1.73	54	39.63	27.52	16.69	31.57	180	166	Α	V
	*	2412	109.37	-	-	96.74	27.48	16.72	31.57	180	166	Р	٧
	*	2412	99.26	-	-	86.63	27.48	16.72	31.57	180	166	Α	V
													V
													٧
		2382.38	60.76	-13.24	74	48.13	27.54	16.67	31.58	158	283	Р	Н
		2319.66	48.43	-5.57	54	35.66	27.78	16.58	31.59	158	283	Α	Н
	*	2437	95.32	-	-	82.71	27.43	16.75	31.57	158	283	Р	Н
	*	2437	85.44	-	-	72.83	27.43	16.75	31.57	158	283	Α	Н
802.11n		2495.94	60.09	-13.91	74	47.49	27.31	16.84	31.55	158	283	Р	Н
HT20		2485.3	48.21	-5.79	54	35.62	27.33	16.82	31.56	158	283	Α	Н
CH 06		2359.56	63.01	-10.99	74	50.37	27.58	16.64	31.58	181	150	Р	V
2437MHz		2387.84	50.34	-3.66	54	37.72	27.52	16.68	31.58	181	150	Α	V
	*	2437	109.71	-	-	97.1	27.43	16.75	31.57	181	150	Р	V
	*	2437	99.87	-	-	87.26	27.43	16.75	31.57	181	150	Α	V
		2495.66	62.44	-11.56	74	49.84	27.31	16.84	31.55	181	150	Р	V
		2484.25	49.97	-4.03	54	37.38	27.33	16.82	31.56	181	150	Α	٧

TEL: 886-3-327-3456 Page Number : C7 of C15

FCC RADIO TEST REPORT

-			_		_		1				1	1
*	2462	97.35	-	-	84.74	27.38	16.79	31.56	156	285	Р	Н
*	2462	87.19	-	-	74.58	27.38	16.79	31.56	156	285	Α	Н
	2488.64	60.39	-13.61	74	47.8	27.32	16.83	31.56	156	285	Р	Н
	2483.76	48.4	-5.6	54	35.81	27.33	16.82	31.56	156	285	Α	Н
												Н
												Н
*	2462	110.58	-	-	97.97	27.38	16.79	31.56	187	165	Р	V
*	2462	100.63	-	-	88.02	27.38	16.79	31.56	187	165	Α	V
	2485.72	64.98	-9.02	74	52.39	27.33	16.82	31.56	187	165	Р	V
	2483.52	51.51	-2.49	54	38.92	27.33	16.82	31.56	187	165	Α	V
												٧
												V
	*	* 2462 2488.64 2483.76 * 2462 * 2462 2485.72	* 2462 87.19 2488.64 60.39 2483.76 48.4 * 2462 110.58 * 2462 100.63 2485.72 64.98	* 2462 87.19 - 2488.64 60.39 -13.61 2483.76 48.4 -5.6 * 2462 110.58 - * 2462 100.63 - 2485.72 64.98 -9.02	* 2462 87.19	* 2462 87.19 - - 64.74 * 2488.64 60.39 -13.61 74 47.8 2483.76 48.4 -5.6 54 35.81 * 2462 110.58 - - 97.97 * 2462 100.63 - - 88.02 2485.72 64.98 -9.02 74 52.39	* 2462 87.19 - - 74.58 27.38 2488.64 60.39 -13.61 74 47.8 27.32 2483.76 48.4 -5.6 54 35.81 27.33 * 2462 110.58 - - 97.97 27.38 * 2462 100.63 - - 88.02 27.38 2485.72 64.98 -9.02 74 52.39 27.33	* 2462 87.19 - - 74.58 27.38 16.79 2488.64 60.39 -13.61 74 47.8 27.32 16.83 2483.76 48.4 -5.6 54 35.81 27.33 16.82 * 2462 110.58 - - 97.97 27.38 16.79 * 2462 100.63 - - 88.02 27.38 16.79 2485.72 64.98 -9.02 74 52.39 27.33 16.82	* 2462 87.19 - - 74.58 27.38 16.79 31.56 2488.64 60.39 -13.61 74 47.8 27.32 16.83 31.56 2483.76 48.4 -5.6 54 35.81 27.33 16.82 31.56 * 2462 110.58 - - 97.97 27.38 16.79 31.56 * 2462 100.63 - - 88.02 27.38 16.79 31.56 2485.72 64.98 -9.02 74 52.39 27.33 16.82 31.56	* 2462 87.19 - - 74.58 27.38 16.79 31.56 156 2488.64 60.39 -13.61 74 47.8 27.32 16.83 31.56 156 2483.76 48.4 -5.6 54 35.81 27.33 16.82 31.56 156 * 2462 110.58 - - 97.97 27.38 16.79 31.56 187 * 2462 100.63 - - 88.02 27.38 16.79 31.56 187 2485.72 64.98 -9.02 74 52.39 27.33 16.82 31.56 187	* 2462 87.19 - - 74.58 27.38 16.79 31.56 156 285 2488.64 60.39 -13.61 74 47.8 27.32 16.83 31.56 156 285 2483.76 48.4 -5.6 54 35.81 27.33 16.82 31.56 156 285 * 2462 110.58 - - 97.97 27.38 16.79 31.56 187 165 * 2462 100.63 - - 88.02 27.38 16.79 31.56 187 165 2485.72 64.98 -9.02 74 52.39 27.33 16.82 31.56 187 165	* 2462 87.19 - - 74.58 27.38 16.79 31.56 156 285 A 2488.64 60.39 -13.61 74 47.8 27.32 16.83 31.56 156 285 P 2483.76 48.4 -5.6 54 35.81 27.33 16.82 31.56 156 285 A * 2462 110.58 - - 97.97 27.38 16.79 31.56 187 165 P * 2462 100.63 - - 88.02 27.38 16.79 31.56 187 165 A 2485.72 64.98 -9.02 74 52.39 27.33 16.82 31.56 187 165 P

Report No.: FR8O2320

Remark

TEL: 886-3-327-3456 Page Number : C8 of C15

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

Report No.: FR8O2320

WIFI 802.11n HT20 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4824	39.19	-34.81	74	54.23	31.1	10.43	56.57	100	0	Р	Н
													Н
802.11n													Н
HT20													Н
CH 01		4824	38.75	-35.25	74	53.79	31.1	10.43	56.57	100	0	Р	V
2412MHz													V
													V
													V
		4874	38.66	-35.34	74	53.64	31.1	10.47	56.55	100	0	Р	Н
		7311	44.2	-29.8	74	51.05	36.58	12.8	56.23	100	0	Р	Н
802.11n													Н
HT20													Н
CH 06		4874	39.36	-34.64	74	54.34	31.1	10.47	56.55	100	0	Р	V
2437MHz		7311	44.64	-29.36	74	51.49	36.58	12.8	56.23	100	0	Р	V
													V
													٧
		4924	39.92	-34.08	74	54.76	31.2	10.49	56.53	100	0	Р	Н
		7386	44.77	-29.23	74	51.84	36.36	12.71	56.14	100	0	Р	Н
802.11n													Н
HT20													Н
CH 11		4924	39.69	-34.31	74	54.53	31.2	10.49	56.53	100	0	Р	V
2462MHz		7386	45.03	-28.97	74	52.1	36.36	12.71	56.14	100	0	Р	V
													V
													V

TEL: 886-3-327-3456 Page Number : C9 of C15

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No.: FR8O2320

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.		, .		Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	, ,
		2320.78	60.41	-13.59	74	47.64	27.78	16.58	31.59	149	281	Р	Н
		2389.8	48.79	-5.21	54	36.16	27.52	16.68	31.57	149	281	Α	Н
	*	2422	93.2	-	-	80.58	27.46	16.73	31.57	149	281	Р	Н
	*	2422	82.56	-	-	69.94	27.46	16.73	31.57	149	281	Α	Н
802.11n		2486	60.39	-13.61	74	47.8	27.33	16.82	31.56	149	281	Р	Н
HT40		2491.95	48.21	-5.79	54	35.61	27.32	16.83	31.55	149	281	Α	Н
CH 03		2389.52	68.63	-5.37	74	56.01	27.52	16.68	31.58	150	153	Р	V
2422MHz		2389.94	53.71	-0.29	54	41.08	27.52	16.68	31.57	150	153	Α	٧
	*	2422	105.34	-	-	92.72	27.46	16.73	31.57	150	153	Р	٧
	*	2422	94.99	-	-	82.37	27.46	16.73	31.57	150	153	Α	٧
		2493.91	61.84	-12.16	74	49.24	27.31	16.84	31.55	150	153	Р	V
		2484.32	49.11	-4.89	54	36.52	27.33	16.82	31.56	150	153	Α	V
		2372.72	61.01	-12.99	74	48.38	27.55	16.66	31.58	156	281	Р	Н
		2314.34	48.39	-5.61	54	35.6	27.81	16.57	31.59	156	281	Α	Н
	*	2437	91.42	-	-	78.81	27.43	16.75	31.57	156	281	Р	Н
	*	2437	81.52	-	-	68.91	27.43	16.75	31.57	156	281	Α	Н
802.11n		2491.53	60.6	-13.4	74	48.01	27.32	16.83	31.56	156	281	Р	Н
HT40		2483.5	48.19	-5.81	54	35.6	27.33	16.82	31.56	156	281	Α	Н
CH 06		2380.14	62.36	-11.64	74	49.73	27.54	16.67	31.58	155	151	Р	V
2437MHz		2389.52	50.13	-3.87	54	37.51	27.52	16.68	31.58	155	151	Α	٧
	*	2437	106.46	-	-	93.85	27.43	16.75	31.57	155	151	Р	V
	*	2437	95.32	-	-	82.71	27.43	16.75	31.57	155	151	Α	V
		2483.76	61.2	-12.8	74	48.61	27.33	16.82	31.56	155	151	Р	V
		2483.5	49.43	-4.57	54	36.84	27.33	16.82	31.56	155	151	Α	V

TEL: 886-3-327-3456 Page Number : C10 of C15

FCC RADIO TEST REPORT

			1		1	1	1	1	1	ı	ı	1	
		2367.4	60.7	-13.3	74	48.06	27.57	16.65	31.58	150	286	Р	Н
		2313.78	48.39	-5.61	54	35.59	27.82	16.57	31.59	150	286	Α	Н
	*	2452	93.15	-	-	80.53	27.4	16.78	31.56	150	286	Р	Н
	*	2452	83.38	-	-	70.76	27.4	16.78	31.56	150	286	Α	Н
802.11n		2489.15	60.66	-13.34	74	48.07	27.32	16.83	31.56	150	286	Р	Н
HT40		2483.62	48.58	-5.42	54	35.99	27.33	16.82	31.56	150	286	Α	Н
CH 09		2384.2	61.42	-12.58	74	48.79	27.53	16.68	31.58	146	153	Р	V
2452MHz		2374.96	49.53	-4.47	54	36.9	27.55	16.66	31.58	146	153	Α	V
	*	2452	105.87	-	-	93.25	27.4	16.78	31.56	146	153	Р	V
	*	2452	95.4	-	-	82.78	27.4	16.78	31.56	146	153	Α	V
		2483.83	69.49	-4.51	74	56.9	27.33	16.82	31.56	146	153	Р	V
		2483.5	52.87	-1.13	54	40.28	27.33	16.82	31.56	146	153	Α	V
		1		1	1	1	1	1	1				

Report No.: FR8O2320

Remark

TEL: 886-3-327-3456 Page Number : C11 of C15

^{1.} No other spurious found.

^{2.} All results are PASS against Peak and Average limit line.

2.4GHz 2400~2483.5MHz

Report No.: FR8O2320

WIFI 802.11n HT40 (Harmonic @ 3m)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		4844	38.57	-35.43	74	53.58	31.1	10.45	56.56	100	0	Р	Н
		7266	44.17	-29.83	74	51.01	36.6	12.84	56.28	100	0	Р	Н
802.11n													Н
HT40													Н
CH 03		4844	38.85	-35.15	74	53.86	31.1	10.45	56.56	100	0	Р	V
2422MHz		7266	44.27	-29.73	74	51.11	36.6	12.84	56.28	100	0	Р	V
													V
													V
		4874	38.57	-35.43	74	53.55	31.1	10.47	56.55	100	0	Р	Н
		7311	44.69	-29.31	74	51.54	36.58	12.8	56.23	100	0	Р	Н
802.11n													Н
HT40													Н
CH 06		4874	38.15	-35.85	74	53.13	31.1	10.47	56.55	100	0	Р	V
2437MHz		7311	43.9	-30.1	74	50.75	36.58	12.8	56.23	100	0	Р	V
													V
													V
		4904	39.53	-34.47	74	54.47	31.12	10.48	56.54	100	0	Р	Н
		7356	44.09	-29.91	74	51.04	36.48	12.74	56.17	100	0	Р	Н
802.11n													Н
HT40													Н
CH 09		4904	38.48	-35.52	74	53.42	31.12	10.48	56.54	100	0	Р	V
2452MHz		7356	43.47	-30.53	74	50.42	36.48	12.74	56.17	100	0	Р	V
													V
													V

Remark

- 1. No other spurious found.
- 2. All results are PASS against Peak and Average limit line.

TEL: 886-3-327-3456 Page Number : C12 of C15

Emission below 1GHz

Report No.: FR8O2320

2.4GHz WIFI 802.11n HT40 (LF)

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		_
		30.81	22.17	-17.83	40	27.61	24.05	0.71	30.2	-	-	Р	Н
		173.64	21.59	-21.91	43.5	34.7	15.26	1.98	30.35	-	-	Р	Н
		225.21	21.57	-24.43	46	34.09	15.57	2.19	30.28	-	-	Р	Н
		512.1	24.96	-21.04	46	27.64	23.93	3.15	29.76	-	-	Р	Н
		762.7	30.45	-15.55	46	28.01	27.95	3.87	29.38	-	-	Р	Н
		900.6	34.27	-11.73	46	30.25	28.91	4.25	29.14	100	0	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
802.11n													Н
HT40		66.72	28.03	-11.97	40	45.37	11.97	1.15	30.46	100	0	Р	V
LF		120.45	21.95	-21.55	43.5	33.6	17.23	1.53	30.41	-	-	Р	٧
		258.15	20.96	-25.04	46	29.2	19.63	2.34	30.21	-	-	Р	٧
		423.9	23.85	-22.15	46	28.3	22.62	2.86	29.93	-	-	Р	٧
		559.7	27.88	-18.12	46	28.29	25.95	3.33	29.69	-	-	Р	٧
		900.6	33.49	-12.51	46	29.47	28.91	4.25	29.14	-	-	Р	V
													V
													V
													V
													٧
													V
													V

TEL: 886-3-327-3456 Page Number : C13 of C15

Note symbol

Report No.: FR8O2320

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-3456 Page Number : C14 of C15

A calculation example for radiated spurious emission is shown as below:

Report No.: FR8O2320

WIFI	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level($dB\mu V/m$)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBμV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-3456 Page Number : C15 of C15

Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Bill Chang and Jack Cheng	Temperature :	22~26°C
rest Engineer .		Relative Humidity :	52~64%

Report No.: FR8O2320

Note symbol

-L	Low channel location
-R	High channel location

TEL: 886-3-327-3456 Page Number: D1 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11b (Band Edge @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D2 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11b CH01 2412MHz 1 Vertical **Fundamental** Peak Frequency (Milt)
:03CH12-HY
:AV6_54 3m HORN_9120D_1328 VERTICAL:
:RBW:1000000KHz VBW:0.010KHz SWT:Auto
:Peak
:8o2320
:1 : 03CH12-HY : AV6_BE_54 3m HORN_9120D_1328 VERTICAL : RBW-10000,000KHz VBW-0.010KHz SWT:Auto : Peak : 80c320 :1 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D3 of D50

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D4 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m

TEL: 886-3-327-3456 Page Number: D5 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11b CH06 2437MHz - L 1 Vertical **Fundamental** Peak 2900. 2380. 2400
: 03CH12-HV
: AV6_BE_54 3m HORN_9120D_1328 VERTICAL
: 88W-1000,000KHz VBW-0,010KHz SWT-Auto
: Peak
: 862320
: 2 | Frequency (MM12) | Frequency (Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D6 of D50

: D7 of D50 TEL: 886-3-327-3456 Page Number

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D8 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11b CH11 2462MHz 1 Vertical **Fundamental** Peak 1700. 1900. 2100. 1900. 2100. 1900. 2100. 1900. 2100. 1900. 2100. 1900. 2100. 1900. 2100. 1900. : 03CH12-HV Frequency (Bitt) : 03CH12-HV : AVG_BE_54 3m HORN_9120D_1328 VERTICAL : RBW:1000.000KHz VBW:0.010KHz SWT: Auto : Peak : 86/220 : 3 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D9 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11g (Band Edge @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D10 of D50

CC RADIO TEST REPORT Report No. : FR8O2320

TEL: 886-3-327-3456 Page Number : D11 of D50

C RADIO TEST REPORT Report No. : FR802320

TEL: 886-3-327-3456 Page Number : D12 of D50

: D13 of D50 TEL: 886-3-327-3456 Page Number

Avg.

FAX: 886-3-328-4978

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11g CH06 2437MHz - L 1 Vertical **Fundamental** Peak 2380. 2280. 2400
: 03CH12-HV
: AV6_BE_54 3m HORN_9120D_1328 VERTICAL
: Peak
: 88W-1000,000KHz VBW-0,010KHz SWT:Auto
: Peak Frequency (Milt)
:03CH12-HY
:AV6_54 3m HORN_9120D_1328 VERTICAL:
:R8W:1000000KHz VBW:0.010KHz SWT:Auto
:Peak
:8o2320
:5

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D14 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11g CH06 2437MHz - R 1 Vertical **Fundamental** Peak Left Blank : 03CH12-HY
: AV6_BE_54 3m HORN_9120b_1328 VERTICAL:
RBW:1000.000KHz VBW:0.010KHz SWT:Auto
Peak
: 802320
: 5 Left Blank Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D15 of D50

TEL: 886-3-327-3456 Page Number : D16 of D50

CC RADIO TEST REPORT Report No. : FR8O2320

TEL: 886-3-327-3456 Page Number : D17 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Band Edge @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D18 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT20 CH01 2412MHz 1 Vertical **Fundamental** Peak 2360. 2360. 2 Frequency (BRL2) 2 : 03CH12-HY : AV6_BE_54 3m HORN_9120D_1328 VERTICAL : 88W:1000,000GHz VBW:0,010KHz SWT:Auto : 86c320 : 7 : 03CH12-HY
: AVG_54 3m HORN_9120D_1328 VERTICAL:
R8W:1000.000KHz VBW:0.010KHz SWT:Auto
Peak
: 802320
: 7 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D19 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT20 CH06 2437MHz - L 1 Horizontal **Fundamental** Peak ..sod. 2380. 2460.
:03CHI2-HV
:03CHI2-HV
:AV6_BE_54 am_HORN_9120D_1328 HORIZONTAL
:Peak
:802320
:8 : 03CH12-HY
: AV6_54 3m HORN_9120D_1328 HORIZONTAL
: R8W:1000.000KHz VBW:0.010KHz SWT:Auto
: 80a320
: 8 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D20 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT20 CH06 2437MHz - R 1 Horizontal **Fundamental** Peak Left blank : 03GH12-HY : AVG_BE_54 3m HORN_9120D_1328 HORIZONTAL : RBW:1000.000KHz VBW:0.010KHz SWT:Auto : Peak : 8o2320 Left blank Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D21 of D50

TEL: 886-3-327-3456 Page Number : D22 of D50

WIFI

2.4GHz 2400~2483.5MHz Band Edge @ 3m

TEL: 886-3-327-3456 Page Number : D23 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT20 CH11 2462MHz 1 Horizontal **Fundamental** Peak : 03CHI2-HY
: AVG_BE_54 3m HORN_9120D_1328 HORIZONTAL
: 88W:10000000012 VBW:0.01001-12 SWT-Aurto
: 88C2320
: 9 : 03CH12-HY
: AV6_54 3m HORN_9120D_1328 HORIZONTAL
: R8W:1000.000KHz VBW:0.010KHz SWT:Auto
: Reak
: 802320
: 9 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D24 of D50

CC RADIO TEST REPORT Report No. : FR8O2320

TEL: 886-3-327-3456 Page Number: D25 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D26 of D50

TEL: 886-3-327-3456 Page Number : D27 of D50

TEL: 886-3-327-3456 Page Number : D28 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH03 2422MHz - R 1 Vertical **Fundamental** Peak Left blank : 03CH12-HY : AV6_BE_54 3m HORN_9120D_1328 VERTICAL : RBW:1000.000KHz VBW:0.010KHz SWT:Auto : Peak : 862320 : 10 : 7 Left blank Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D29 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH06 2437MHz - L 1 Horizontal **Fundamental** Peak : 03CH12-HY : VM6_54 3m HORN_9120D_1328 HORIZONTAL : 88W:10000000KHz V8W:0.010KHz SWT:Auto : 802:320 : 11 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D30 of D50

CC RADIO TEST REPORT Report No. : FR8O2320

TEL: 886-3-327-3456 Page Number : D31 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH06 2437MHz - L 1 Vertical **Fundamental** Peak 2380. 2280. 2460
: 03CH12-HV
: AV6_BE_54 3m HORN_9120D_1328 VERTICAL
: R8W:1000.000KHz VBW:0.010KHz SWT:Auto
: Peak
: 8802320 | Frequency (MM1) | Frequency Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D32 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH06 2437MHz - R 1 Horizontal **Fundamental** Peak Left blank : 03CH12-HY : AV6_BE_54 3m HORN_9120D_1328 VERTICAL : RBW-1000.000KHz VBW-0.010KHz SWT:Auto : Peak : 8o2320 :11 Left blank Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D33 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH09 2452MHz - L 1 Horizontal **Fundamental** Peak ...xol. 2380. 2460.
:03CHI2-HY
:AV6_BE_543m_HORN_9120D_1328 HORIZ/ONTAL
:Peak
:B8W:1000,000KHz VBW:0.010KHz SWT:Aurto
:Peak
:8082320
:12 : 03CH12-HY : AV6_54 3m HORN_9120D_1328 HORIZONTAL : 88W:10000000KHz V8W:0.010KHz SWT:Auto : 802:320 : 12 Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D34 of D50

TEL: 886-3-327-3456 Page Number : D35 of D50

TEL: 886-3-327-3456 Page Number: D36 of D50

WIFI 2.4GHz 2400~2483.5MHz Band Edge @ 3m ANT 802.11n HT40 CH09 2452MHz - R 1 Vertical **Fundamental** Peak Left blank : 03CH12-HY : AV6_BE_54 3m HORN_9120D_1328 VERTICAL : RBW:1000.000KHz VBW:0.010KHz SWT:Auto : Peak : 8o2320 : 12 Left blank Avg.

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D37 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11b (Harmonic @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D38 of D50

TEL: 886-3-327-3456 Page Number : D39 of D50

TEL: 886-3-327-3456 Page Number : D40 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11g (Harmonic @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D41 of D50

TEL: 886-3-327-3456 Page Number : D42 of D50

TEL: 886-3-327-3456 Page Number : D43 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11n HT20 (Harmonic @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D44 of D50

TEL: 886-3-327-3456 Page Number: D45 of D50

TEL: 886-3-327-3456 Page Number : D46 of D50

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Harmonic @ 3m)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number: D47 of D50

TEL: 886-3-327-3456 Page Number : D48 of D50

TEL: 886-3-327-3456 Page Number : D49 of D50

Emission below 1GHz 2.4GHz WIFI 802.11n HT40 (LF)

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : D50 of D50

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
802.11b	100.00	-	-	10Hz	0.00
802.11g	100.00	-	-	10Hz	0.00
2.4GHz 802.11n HT20	100.00	-	-	10Hz	0.00
2.4GHz 802.11n HT40	100.00	-	-	10Hz	0.00

Report No.: FR8O2320

TEL: 886-3-327-3456 Page Number : E-1 of 3

Date: 5.NOV.2018 21:00:17

802.11g

Date: 5.NOV.2018 21:04:18

TEL: 886-3-327-3456 Page Number : E-2 of 3

Date: 5.NOV.2018 21:05:53

802.11n HT40

Date: 5.NOV.2018 21:12:00

FAX: 886-3-328-4978

TEL: 886-3-327-3456 Page Number : E-3 of 3