# Binary data — logistic regression continued

# **EXPOSURE VARIABLE**

#### Type of Outcome/Exposure Variables

#### **OUTCOME VARIABLE**

|            | Continuous        | Binary                                             |
|------------|-------------------|----------------------------------------------------|
| 1 group    | One-group t-test  | Exact binomial test [or] normal approximation test |
| 2 groups   | Two-group t-test  | $\chi^2$ test [or] Fisher's exact test             |
| >2 groups  | ANOVA             | $\chi^2$ test [or] Fisher's exact test             |
| Continuous | Linear regression | Logistic regression                                |

#### Logistic Regression

 Logistic regression relates the predictor variable(s) to the log odds of the outcome (log odds of being in the category of interest)

If y is the binary outcome variable, then let p be the probability that y equals the category of interest. The logistic regression model is:

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

Slide 3 Slide 3

# REVIEW Linear Regression Coefficients

- In linear regression, statistical software estimates coefficients by finding the equation that minimizes the residuals
  - Called the ordinary least squares (OLS) method



#### Logistic Regression Coefficients

- In logistic regression, statistical software estimates coefficients by finding the equation that maximizes the probability of getting our sample results
  - Called the maximum likelihood estimation (MLE) method

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

### Model Convergence

- Can't directly solve for MLE estimates of logistic regression coefficients
- Statistical software finds the coefficient estimates using an iterative process
  - Basically "guess-and-check" until it finds the best answer
  - When it finds the best answer, we say that the model has converged
- Beware: sometimes the model doesn't converge
  - Usually because the sample size is too small for the number of predictor variables in your model → either decrease the number of predictors or increase the sample size to get a model that converges

#### A Note on e

 Key: Regression models must capture the uncertainty in each subject's outcome

In linear regression, we do this by adding the residual on to the equation...

$$y = \beta_0 + \beta_1 x + e$$

...or by indicating that the equation is for the predicted values  $(\hat{y})$ , not the observed values (y).

$$\hat{y} = \beta_0 + \beta_1 x$$

In logistic regression, we model the log odds of the outcome directly (without a residual):

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta_1 x$$

This is because we're only modeling the probability of the outcome, not the actual outcome itself. Our uncertainty in the outcome itself (0 or 1) is captured in this probability.

# Assumptions of Linear Regression

- Independence of the observations
- Linearity of the relationship between the predictor(s) and outcome
- Constant variance of the residuals
- Normality of the residuals
- Absence of multicollinearity

#### Assumptions of Logistic Regression

- Independence of the observations
- Linearity of the relationship between the predictor(s) and outcome

the log odds of the outcome

- Constant variance of the residuals
- Normality of the residuals
- Absence of multicollinearity
- Large sample size

Too small may lead to the model not converging

#### Confidence Intervals

- Recall:  $\exp(\hat{\beta}_1)$  is the estimated odds ratio of the outcome for a one unit increase in the predictor variable
  - When this is the only predictor in the model, this is an unadjusted odds ratio
  - When there are other predictor variables in this model, this is an adjusted odds ratio
- We can also provide a range of possible values for the adjusted or unadjusted odds ratio in the population  $(\exp(\beta_1))$ 
  - Interpretation: "We are 95% confident that the adjusted/unadjusted odds ratio of [outcome variable] for a one unit increase in [predictor variable] is between \_\_\_\_\_\_ and \_\_\_."
  - What value would indicate that there is no significant association between the predictor and the outcome?

#### Low Birth Weight Data

 Information on 100 low birth weight infants born in two teaching hospitals in Boston, Massachusetts

| Variable    | Description                                                                                                                                                                                                  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| birthwtlbs  | Birth weight of the baby (pounds)                                                                                                                                                                            |
| hemorrhage  | Germinal matrix hemorrhage (No, Yes). This is a type of brain bleed in a premature baby.                                                                                                                     |
| apgar       | Apgar score (integers, min=0, max=10). This is a scoring system used for assessing the clinical status of a newborn. 7 or higher is generally considered normal, 4-6 is low, and 3 or below is critically lo |
| apgarnormal | Binary indicator variable for a normal Apgar score.<br>Equals 1 when Apgar score is Normal (7-10) and<br>equals 0 otherwise.                                                                                 |

Find the dataset
(lowbwt.xlsx) and the
full data dictionary
(lowbwt Data
Dictionary.pdf) in the
Data Module on the
Canvas site

 Calculate and interpret a 95% confidence interval for the adjusted odds ratio of having a normal Apgar score for a one pound increase in birth weight, adjusting for germinal matrix hemorrhage status.

Let y be the normal Apgar score variable

Let p be the probability of having a normal apgar score (y=1)

Let x1 be birthweight (in pounds)

Lex x2 be germinal matrix hemorrhage status (indicator variable,

#### Logistic regression (outcome is log odds of *apgarnormal*):

#### Coefficients:

```
(Intercept) -1.5386 0.9137 -1.684 0.09219
birthwtlbs 0.9195 0.3755 2.449 0.01433
hemorrhage[T.Yes] -1.7156 0.6494 -2.642 0.00825
```

#### Exponentiated coefficient estimates:

```
(Intercept) birthwtlbs hemorrhage[T.Yes] 0.2146772 2.5080151 0.1798562
```

We are 95% confident that the true adjusted odds ratio of having a normal Apgar score for a one pound increase in birth weight is between 1.22 and 5.38, controlling for germinal matrix hemorrhage status.

#### Confidence intervals:

```
Estimate 2.5 % 97.5 % (Intercept) -1.5386197 -3.3808788 0.2326678 birthwtlbs 0.9194917 0.1998267 1.6825953 hemorrhage[T.Yes] -1.7155976 -3.1090470 -0.5080707
```

```
exp(Estimate) 2.5 % 97.5 % 0.2146772 0.03401755 1.2619622 2.5080151 1.22119115 5.3794992 0.1798562 0.04464348 0.6016552
```

# Hypothesis Testing

- We can also perform a hypothesis test for the association between a predictor variable and the binary outcome variable in the population
  - When there is only one predictor in the model, we're testing the unadjusted association
  - When there are other predictor variables in this model, we're testing the **adjusted** association, controlling for the other predictor variables in the model

$$H_0: \beta_1 = 0 \qquad H_A: \beta_1 \neq 0$$

Reject  $H_0$  when p-value  $\leq \alpha$ Fail to reject  $H_0$  when p-value  $> \alpha$  Note: Can perform test on the log odds  $(\beta_1)$  or odds  $(\exp(\beta_1))$  scale – both are measures of association between the two variables.

H0: exp(Beta1) = 1HA: exp(Beta1) != 1

 Is the association between birth weight and having a normal Apgar score statistically significant after adjusting for germinal matrix hemorrhage status?

H0: beta1 = 0
Let p be the probability of having a normal apgar score
HA: beta1 != 0

Let x1 be birth weight (in pounds)

Let x2 be germinal matrix hemorrhage indicator variable

```
Logistic regression (outcome is log odds of apgarnormal):

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.5386 0.9137 -1.684 0.09219

birthwtlbs 0.9195 0.3755 2.449 0.01433

hemorrhage[T.Yes] -1.7156 0.6494 -2.642 0.00825
```

```
p-value = 0.014
```

Since the p-value is less than 0.05, we reject the null hypothesis and conclude that there is evidence to suggest that there is an association between birth weight and having a normal Apgar score, after adjusting for germinal matrix hemorrhage status.

#### Comparing Logistic Regression Models

- In linear regression, we used adjusted  $R^2$  to compare two models
  - Larger adjusted  $R^2 \rightarrow$  better model fit
- In logistic regression, an equivalent  $\mathbb{R}^2$  statistic does not exist
  - A number of different measures can be used to compare models
    - AIC

• Pseudo  $R^2$  (there are many)

• BIC

- Deviance
- Log likelihoodEtc...
- We'll focus on **AIC** (Akaike Information Criterion)
- Smaller AIC → better model fit

- Fit the following models to examine the association between birth weight and having a normal Apgar score, with and without adjusting for germinal matrix hemorrhage status:
  - Model 1: apgarnormal ~ birthwtlbs
  - Model 2: apgarnormal ~ birthwtlbs + hemorrhage
- Is it necessary to adjust for germinal matrix hemorrhage status in the model?

```
Model 2 (adjusted model):
Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
(Intercept)
                 -1.5386
                             0.9137 -1.684
                                            0.09219
birthwtlbs
                 0.9195
                             0.3755
                                     2.449
                                            0.01433
hemorrhage[T.Yes] -1.7156
                             0.6494 -2.642 0.00825
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 134.60 on 99 degrees of freedom
Residual deviance: 120.19 on 97 degrees of freedom
AIC: 126.19
```

Since AIC in model 2 is smaller, model 2 is the better model.

#### Important Points

- Model convergence: what it means and reasons why a model may not converge
- Logistic regression assumptions
- Confidence interval for logistic regression coefficients (interpretation)
- Hypothesis test for logistic regression coefficients (set up and interpretation)
- Using AIC to compare models