Ecole Supérieure de la Statistique et de l'Analyse de l'Information

Niveau : 2 de Année cycle ingénieur

Matière: Modèles linéaires

Enseignante: Amira GASMI SASSI

Durée : 1H30

Examen P2, Janvier 2023

- Aucune documentation n'est permise.

- Arrondir tous les calculs au 3ème chiffre après la virgule.

- Nombre de pages : 02 + 02 tables de lois.

EXERCICE 1: (11 points)

On souhaite estimer une fonction de production du type Cobb-Douglass. On considère donc le modèle de régression linéarisé suivant :

$$y_t = a + bx_t + cz_t + \varepsilon_t$$
 ; $t = 1, ..., T$.

Où:

y_t est le Log de la production ;

- xt est le Log du travail;

- zt est le Log du capital;

- ε_t désigne un terme d'erreur vérifiant les hypothèses de la MCO.

On pose: $X = \begin{pmatrix} 1 & x_1 & z_1 \\ 1 & x_2 & z_2 \\ \vdots & \vdots & \vdots \\ 1 & x_T & z_T \end{pmatrix}$ la matrice des valeurs des variables explicatives y compris la

constante.

On donne les informations suivantes :

$$X'X = \begin{pmatrix} 23 & 230 & 115 \\ . & 2312 & 1158 \\ . & . & 587 \end{pmatrix}; \quad (X'X)^{-1} = \frac{1}{460} \begin{pmatrix} 4045 & -460 & 115 \\ . & 69 & -46 \\ . & . & 69 \end{pmatrix}$$
$$X'Y = \begin{pmatrix} 276 \\ 2770 \\ 1388 \end{pmatrix}; \quad \sum_{t=1}^{T} (y_t - \bar{y})^2 = 10.$$

Soit $\beta = \begin{pmatrix} a \\ b \end{pmatrix}$: le vecteur des paramètres du modèle.

- 1) Déterminer $\hat{\beta}$ l'estimateur des MCO de β . Interpréter économiquement les paramètres b et c. (2 points)
- 2) Calculer l'estimateur de $\sigma_{\mathcal{E}}^2$. (2 points)
- 3) Calculer le coefficient de détermination R^2 et interpréter le résultat. (2 points)
- 4) Déterminer les termes suivants : $\hat{\sigma}_{\hat{b}}$, $\hat{\sigma}_{\hat{c}}$ et $\widehat{cov}(\hat{b}, \hat{c})$. (2 points)
- 5) Les rendements d'échelle sont-ils constants au seuil de 5% ? Justifier la réponse. (3 points)

EXERCICE 2: (9 points)

On réalise une étude sur le système de notation des candidats à un concours de recrutement auprès de 3 jurys. On a obtenu le tableau des notes suivant :

Jury A	10	11	11	12	13	15		
Jury B	8	11	11	13	14 *	15	16	16
Jury C	10	13	14	14	15	16	16	-

En supposant que les hypothèses d'indépendance, d'homogénéité et de normalité des résidus (ε_{ij}) sont vérifiées, on souhaite vérifier si le système de notation diffère selon le jury. Pour ce faire, on vous demande de :

- 1) Préciser la variable endogène (y)et le facteur (x) ; (1 point)
- 2) Présenter le modèle linéaire statistique ANOVA en définissant ses termes; (2 points)
- Tracer et compléter le tableau d'analyse de la variance avec les calculs nécessaires;
 (4 points)
- Tester, au risque de 1%, l'hypothèse selon laquelle les jurys ont, en moyenne, le même système de notation. (2 points)

· · · Bon courage · · ·

Loi de Student avec n degrés de liberté

n	α											
	0.25	0.20	0.15	0.10	0.05	0.025	0.010	0.005	0.0025	0.0010	0.0005	
1	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	127.3	318.3	636.6	
2	0.816	1.061	1.386	1.886	2.920	4.303	- 6.965	9.925	14.09	22.33	31.60	
3	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	7.453	10.21	12.92	
4	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610	
5	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869	
6	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959	
7	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408	
8	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041	
9	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781	
10	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587	
11	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437	
12	0.695	0.873	1.083	1.356	1.782	2.179	2.681		3.428	3.930	4.318	
13	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.055	3.428	3.852	4.221	
14	0.692	0.868	1.076	1.345	1.761	2.145				3.787		
15	0.691	0.866	1.074	1.341	1.753	2.145	2.624 2.602	2.977 2.947	3.326 3.286	3.733	4.140	
16	0.690	0.865	1.071	1.337	1.746	2.120						
17	0.689	0.863	1.069	1.333	1.740	2.110	2.583	2.921	3.252	3.686	4.015	
18	0.688	0.862	1.067	1.330	1.734	2.110	2.567	2.898	3.222	3.646	3.965	
19	0.688	0.861	1.066	1.328	1.729		2.552	2.878	3.197	3.610	3.922	
20	0.687	0.860	1.064	1.325	1.725	2.093 2.086	2.539	2.861	3.174	3.579	3.883	
21	0.686	0.859	1.063	1.323			2.528	2.845	3.153	3.552	3.850	
22	0.686	0.858	1.061	1.321	1.721	2.080	2.518	2.831	3.135	3.527	3.819	
23	0.685	0.858	1.060	1.319	1.717	2.074	2.508	2.819	3.119	3.505	3,792	
24	0.685	0.857	1.059	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.767	
25	0.684	0.856	1.058	1.316	1.711 1.708	2.064	2.492	2.797	3.091	3.467	3.745	
26	0.684	0.856				2.060	2.485	2.787	3.078	3.450	3.725	
27	0.684	0.855	1.058	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707	
28	0.683	0.855	1.057 1.056	1.314	1.703	2.052	2.473	2.771	3.057	3,421	3.690	
29	0.683	0.854	1.055	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674	
30	0.683	0.854	1.055	1.311	1.699 1.697	2.045	2,462	2.756	3.038	3.396	3.659	
40	0.681	0.851				2.042	2.457	2.750	3.030	3.385	3.646	
50	0.679	0.849	1.050 1.047	1.303 1.299	1.684	2.021	2.423	2.704	2.971	3.307	3.551	
60	0.679	0.848	1.047		1.676	2.009	2.403	2.678	2.937	3.261	3.496	
80	0.678	0.846	1.043	1.296 1.292	1.671	2.000	2.390	2.660	2.915	3.232	3.460	
100	0.677	0.845	1.043	1.292	1.664	1.990	2.374	2.639	2.887	3.195	3.416	
120	0.677	0.845	1.042	1.289	1.660 1.658	1.984	2.364	2.626	2.871	3.174	3.390	
	0.077	0.040	1.041	1.209	1.000	1.980	2.358	2.617	2.860	3.160	3.373	
∞	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291	

TABLE DE LA LOI DE FISHER-SNEDECOR

Valeurs de F ayant la probabilité P d'être dépassées ($F = s_1^2/\frac{2}{2}$)

ν2	ν ₁ =	$v_1 = 1$		$v_1 = 2$		= 3	$\nu_1 = 4$		$v_1 = 5$	
	P = 0.05	P = 0.01	P = 0.05	P = 0.01	P = 0.05	P = 0.01	P = 0.05	P = 0.01	P = 0.05	P = 0.01
1	161,4	4052	199,5	4999	215,7	5403	224,6	5625	230,2	5764
2	18,51	98,49	19,00	99,00	19,16	99,17	19,25	99,25	19,30	99,30
3	10,13	34,12	9,55	30,81	9,28	29,46	9,12	28,71	9,01	28,24
4	7,71	21,20	6,94	18,00	6,59	16,69	6,39	15,98	6,26	15,52
5	6,61	16,26	5,79	13,27	5,41	12,06	5,19	11,39	5,05	10,97
6	5,99	13,74	5,14	10,91	4,76	9,78	4,53	9,15	4,39	8,75
7	5,59	12,25	4,74	9,55	4,35	8,45	4,12	7,85	3,97	7,45
8	5,32	11,26	4,46	8,65	4,07	7,59	3,84	7,01	3,69	6,63
9	5,12	10,56	4,26	8,02	3,86	6,99	3,63	6,42	3,48	6,06
10	4,96	10,04	4,10	7,56	3,71	6,55	3,48	5,99	3,33	5,64
11	4,84	9,65	3,98	7,20	3,59	6,22	3,36	5,67	3,20	5,32
12	4,75	9,33	3,88	6,93	3,49	5,95	3,26	5,41	3.11	5,06
13	4,67	9,07	3,80	6,70	3,41	5,74	3,18	5,20	3,02	4,86
14	4,60	8,86	3,74	6,51	3,34	5,56	3,11	5,03	2,96	4,69
15	4,54	8,68	3,68	6,36	3,29	5,42	3,06	4,89	2,90	4,56
16	4,49	8,53	3,63	6,23	3,24	5,29	3,01	4,77	2,85	4,44
17	4,45	8,40	3,59	6,11	3,20	5,18	2,96	4,67	2,81	4,34
18	4,41	8,28	3,55	6,01	3,16	5,09	2,93	4,58	2,77	4,25
19	4,38	8,18	3,52	5,93	3,13	5,01	2,90	4,50	2,74	4,17
20	4,35	8,10	3,49	5,85	3,10	4,94	2,87	4,43	2,71	4,10
21	4,32	8,02	3,47	5,78	3,07	4,87	2,84	4,37	2,68	4,04
22	4,30	7.94	3,44	5,72	3,05	4,82	2,82	4,31	2,66	3,99
23	4,28	7,88	3,42	5,66	3,03	4,76	2,80	4,26	2,64	3,94
24	4,26	7,82	3,40	5,61	3,01	4,72	2,78	4,22	2,62	3,90
25	4,24	7,77	3,38	5,57	2,99	4,68	2,76	4,18	2,60	3,86
26	4,22	7,72	3,37	5,53	2,98	4,64	2,74	4,14	2,59	3,82
27	4,21	7,68	3,35	5,49	2,96	4,60	2,73	4,11	2,57	3,78
28	4,20	7,64	3,34	5,45	2,95	4,57	2,71	4,07	2,56	3,75
29	4,18	7,60	3,33	5,42	2,93	4,54	2,70	4,04	2,54	3,73
30	4,17	7,56	3,32	5,39	2,92	4,51	2,69	4,02	2,53	3,70
40	4,08	7,31	3,23	5,18	2,84	4,31	2,61	3,83	2,45	3,51
60	4,00	7,08	3,15	4,98	2,76	4,13	2,52	3,65	2,37	3,34
20	3,92	6,85	3,07	4,79	2,68	3,95	2,45	3,48	2,29	3,17
∞	3,84	6,64	2,99	4,60	2,60	3,78	2,37	3,32	2,21	3,02

Nota. — s_1^2 est la plus grande des deux variances estimées, avec v_1 degrés de liberté.