Dokumentacja

Dokumentacja do projektu "Punkty Symetryczne" z przedmiotu AAL (Analiza Algorytmów).

Opis problemu

W układzie współrzędnych XY znajduje się n punktów o współrzędnych całkowitych. Należy znaleźć prostokąt o bokach równoległych do osi współrzędnych o najmniejszym obwodzie, który zawiera wszystkie punkty lub ich odbicia symetryczne względem prostej y=x. Jeśli prostokątów o najmniejszym obwodzie jest kilka, należy wybrać ten zawierający więcej punktów oryginalnych (nie odbitych).

Metoda rozwiązania problemu

Brut:

Program sprawdzający poprawność wyników.

Problem został rozwiązany przez sprawdzenie wszystkich możliwych wyników i wybranie najlepszego. Zostało to przeprowadzone z wykorzystaniem rekurencji [O(2^n)], oraz struktury drzewiaste trzymające minimalne i maksymalne wielkości x-ów i y-ów [O(logn)].

Złożoność: O(2ⁿ * logn)

Heurystyka:

Problem został rozwiązany w trzech krokach:

krok 1 Przerzucamy wszystkie punkty na jedną stronę osi symetrii - w ten sposób dostajemy prostokąt o najmniejszym obwodzie zawierający wszystkie punkty.

krok 2 Sprawdzamy czy jesteśmy w stanie otrzymać lepszy wynik (więcej punktów oryginalnych w prostokącie) przez symetryczne odbijanie punktów idąc od jednej ze stron osi współrzędnych, aż otrzymamy taki sam obwód prostokąta jak w punkcie 1. Powtarzamy to dla drugiej osi współrzędnych i dla obu na raz. **krok 3** Powtarzamy krok 1, ale przerzucamy punkty na drugą stronę osi symetrii.

Złożoność: O(n)

Przykładowa tabela porównująca teoretyczną złożoność z prawdziwą:

-р 1000 -г	1000000 -t 10 -i	1000 -s 100 -c	24000	49.8	1.15278
Agorithm	with asymptote 0	(T(n))	25000	57.2	1.27111
n	t(n)[ms]	q(n)	26000	48.3	1.03205
1000	3.3	1.83333	27000	52.3	1.07613
2000	4.1	1.13889	28000	52.5	1.04167
3000	5.8	1.07407	29000	57	1.09195
4000	9.2	1.27778	30000	70.9	1.31296
5000	9.3	1.03333	31000	64.7	1.1595
6000	11.3	1.0463	32000	68.8	1.19444
7000	13.5	1.07143	33000	60.3	1.01515
8000	14.6	1.01389	34000	63.2	1.03268
9000	16.3	1.00617	35000	64.8	1.02857
10000	18.1	1.00556	36000	65.3	1.00772
11000	20.8	1.05051	37000	67.8	1.01802
12000	21.6	1	38000	69.4	1.01462
13000	25.7	1.09829	39000	71.1	1.01282
14000	27	1.07143	40000	72.2	1.00278
15000	27.6	1.02222	41000	74.9	1.01491
16000	31.5	1.09375	42000	76.8	1.01587
17000	33	1.07843	43000	80.6	1.04134
18000	33.2	1.02469	44000	82.7	1.04419
19000	34.6	1.0117	45000	85.4	1.05432
20000	41.9	1.16389	46000	81.3	0.981884
21000	45.9	1.21429	47000	86.6	1.02364
22000	40.1	1.01263	48000	88.8	1.02778
23000	57.1	1.37923	49000	92.6	1.04989
24000	49.8	1.15278	50000	94.5	1.05