诚信保证

本人知晓我校考场规则和违纪处分条例的有关规定,保证遵守考场规则,诚实做人。 本人签字:

编号:

西北工业大学期末考试试题(A卷)

2019 -2020 学年第 2 学期

开	「课学院_	理学院			课程		线性代数		学时40		
考试日期				考试时间 2 小时 考试形式($\frac{\mathcal{H}}{\mathcal{H}}$)($\frac{A}{B}$)卷) 3	
	题号		[1	111	四	五	六	七	八	总分	
	得分										

考生班级 学 号 姓 名

- 一、填空题(每题3分)
 - 1. 设 3 阶方阵 A 满足 det(A+E)=0,det(A-2E)=0,det(A+3E)=0,则 detA=().
 - 2. 设方阵 A 满足 $A^2 5A 2010 E = 0$,则 $(A + E)^{-1} = ($).
 - 3. 已知线性方程组 Ax=b,A 是 3 阶方阵,rank A=2,该方程组的三个特解

为 η_1, η_2, η_3 , $\eta_1 = (1,1,2)^T$, $\eta_2 + \eta_3 = (1,2,1)^T$, 则该方程组的通解是(

)。

4. 设
$$\mathbf{A} = \begin{pmatrix} a & 0 & 1 \\ 0 & 4 & 0 \\ 1 & 0 & b \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} c & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 且 $\mathbf{A} 与 \mathbf{B}$ 相似,则 $a = ()$, $b = ()$,

c = ().

5. 设向量空间 $V = \{(x_1, x_2, \cdots, x_n) | x_1 = x_2 = \cdots = x_n, x_i \in \mathbf{R}, i = 1, 2, \cdots, n\}$,则向量空间V的维数 dimV=().

- 注: 1. 命题纸上一般不留答题位置, 试题请用小四、宋体打印且不出框。
 - 2. 命题教师和审题教师姓名应在试卷存档时填写。

共 6页 第1页

更多考试真题请扫码获取

西北工业大学命题专用纸

6. 设 $C = \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & k \\ 1 & k & 1 \end{pmatrix}$ 是向量空间 R^3 中某两个基之间的过渡矩阵,则常数 k 应满

足的条件是(

7. 已知二次型 $f = \mathbf{x}^T \mathbf{B} \mathbf{x}$, 其中 $\mathbf{B} = \begin{pmatrix} 1 & 2 & 0 \\ 4 & 3 & 5 \\ 2 & 1 & 2 \end{pmatrix}$, 则二次型 f 的矩阵 $\mathbf{A} = \mathbf{A} = \mathbf{A}$

二. (9分) 计算 n 阶行列式

$$D = \begin{vmatrix} 1 & -1 \\ 1 & 1 & -2 \\ 2 & 1 & -3 \\ \vdots & \ddots & \ddots \\ n-2 & 1 & -n+1 \\ n-1 & 1 \end{vmatrix}$$

工大小星球

三、(10分) 已知二阶方阵
$$X$$
满足 $A^2XB^{-1}-A=XB^{-1}+E$,其中 $A=\begin{pmatrix}2&1\\1&3\end{pmatrix}$, $B=\begin{pmatrix}1&2\\3&5\end{pmatrix}$, E 是二阶单位矩阵,求 X 。

$$\boldsymbol{B} = \begin{pmatrix} 1 & 2 \\ 3 & 5 \end{pmatrix}$$
, \boldsymbol{E} 是二阶单位矩阵,求 \boldsymbol{X}

四、(15分)已知线性方程组

$$\begin{cases} ax_1 + 2x_2 + x_3 = 2\\ x_1 + 3bx_2 + x_3 = 3\\ x_1 + bx_2 + x_3 = 2 \end{cases}$$

问: a,b 为何值时,方程组有唯一解、无解、无穷多解? 在无穷多解时,

五. (15 分) 已知 R^3 上的二组基:

(I)
$$\begin{cases} \boldsymbol{\alpha}_{1} = (1,1,1) \\ \boldsymbol{\alpha}_{2} = (1,1,0) \\ \boldsymbol{\alpha}_{3} = (1,0,0) \end{cases}$$
 (II)
$$\begin{cases} \boldsymbol{\beta}_{1} = (1,1,2) \\ \boldsymbol{\beta}_{2} = (1,2,1) \\ \boldsymbol{\beta}_{3} = (2,1,1) \end{cases}$$

- (1) 求: 基(I) 到基(II) 的过渡矩阵。
 - (2) 求:向量 $\alpha = \beta_1 2\beta_2 + \beta_3$ 在基(I)下的坐标。

六. $(10\, eta)$ 已知三对角矩阵 $\emph{\textbf{A}} = \left(egin{array}{cccc} a_1 & \upsilon_1 & & & & & \\ c_2 & a_2 & b_2 & & & & \\ & \ddots & \ddots & \ddots & & \\ & & c_{n-1} & a_{n-1} & b_{n-1} & \\ & & & c_n & a_n \end{array} \right)$,且 $b_1 b_2 \cdots b_{n-1} \neq 0$,

证明: A 与对角矩阵相似的充分必要条件是矩阵 A 的 n 个特征值互不相等。

七、(15 分) 设二次型 $f(x_1,x_2,x_3) = x_1^2 + x_2^2 + x_3^2 - 2ax_1x_2 + 2x_1x_3 - 2bx_2x_3$ 通过正交变换化为标准形 $f = 2y_1^2 + y_2^2$, 求参数 a,b 及所用的正交变换。

西北工业大学命题专用纸

八、 $(5\,\%)$ 设A为 $n\times n$ 实对称正定矩阵, λ_0 是A的一个特征值,又 x_0 是A的对应于 λ_0 的实特征向量且 $\|x_0\|=1$,证明:矩阵 $A-\frac{\lambda_0}{2}x_0x_0^T$ 是实对称正定矩阵。

教务处印制

共6页 第6页