Stat 50 - Elementary Statistics

Winter 2020

Quiz 5: 4.3, 5.1, 5.2

Dr. Jorge Basilio

NAME (PRINT): SOLUTIONS

SCORE: 26

SIGNATURE:

Directions

- YOU ARE ALLOWED TO USE A CALCULATOR ON THIS EXAM. (Ti83/Ti83+/Ti84+/Ti84+/Ti84+CE-T, or scientific calculator)
- Handwriting should be neat and legible. If I cannot read your writing, zero points will be given.
- · Make sure to ALWAYS SHOW YOUR WORK; you will not receive any partial credits unless work is clearly shown. If in doubt, ask for clarification.
- Leave answers in exact form (as simplified as possible), unless told otherwise.
- Put a box around your final answer where applicable.

Quiz (X points)

Problem 1: 12 pts

(a) (2 pts) What are the two requirements for a **probability distribution**?

 $\sum P(X) > 1$ (2) $\bigcap \in \mathcal{L}(X) \leq 1$ for each χ

- (b) A couple plans to have three children. Let X be the random variable corresponding to the number of girls the couple will have.
 - (i) (2 pt) Using set notation, write the sample space of the "experiment" of having 3 kids. (Hint: use the G or B notation. So one outcome is GBG, for example),

 $S = \{ 666, 666, 686, 866, 688, 886, 868, 888 \}$ Since all the values of an interest of the service of the ser

(ii) (1 pt) Give all the **values** x can take.

x=0,1,2,3 X=# Girls in 3 kids

(iii) (3 pts) Find the **probability distribution** of X given as a table of values.

(iv) (2 pts) Find the **mean** number of girls the couple can have.

 $M = \sum_{i=1}^{n} x_{i} P(x) = 0 \cdot \frac{1}{p} + 1 \cdot \frac{3}{8} + 2 \cdot \frac{3}{8} + 3 \cdot \frac{1}{8} = \frac{12}{p} = 1.5$ M=1.5 Girls

(v) (2 pts) How many girls can the couple **expect** to have?

6 mean = expertation "We expect 1-5 Girls out if 3 kids

Problem 2: 10 pts $ ($
(a) (1 pt) State the four requirements for a binomial probability distribution
(b) (1 pt) Give the calculator syntax that computes the binomial probability distribution: $P(x) = \frac{binompdf(n, p, x)}{binompdf(n, p, x)}$
A = A + A + A + A + A + A + A + A + A +
(c) We survey 5 PCC students and ask "Do you want to transfer to a four-year college?" Assume that 85% of PCC students want to transfer to a four-year college. (i) (2 pts) What is the probability that all 5 students want to transfer? $P(\dot{s}) = \text{Linompsf} \left(5, 0.85, 5 \right) = x = c, 1, 2, 3, 4, f$ $N = 5, P = 0.85, x = 5$
(ii) (2 pts) What is the probability that 3 or 4 students want to transfer?
$P(3 \text{ or } 4) = P(3) + P(4)$ $\chi = 0,1,2,3,4,5$
= binompdf(5, 0.85, 3) + binompdf(5, 0.85, 4) = (0.530)
(iii) (2 pts) What is the probability that at least one student wants to transfer?
P(x>1) = 1 - P(0) $= 1 - binompdf(5, 0.85, 0)$
(iv) (2 pts) What is the probability that no more than 3 student want to transfer?
$P(\chi \leq 3) = Ginom(df(5, 0.85, 3))$ Use Linom(df
=(0.165)
(d) According to the U.S. Office of Adolescent Health, nearly 90% of adult smokers in America started smoking before turning 18 years old. (i) (2 pts) If 1000 adult smokers are randomly selected, how many would we expect to have started smoking before turning 18
years old? $(M \to E)$
M=N-p = 1000.09 = 300 people storted snoking before 1840
n=1000 p=0.9
(ii) (2 pts) Would it be unusual (significantly low or high) to observe 800 smokers who started smoking before turning 18
$\chi = 900 + 2(9.5) = 9/9$ $\chi = 900 + 2(9.5) = 9/9$ $\chi = 900 - 2(9.5) = 88/.$
- $ -$
yes, it would be unusual for
$0 = \sqrt{n \cdot p \cdot q} $ $(q = 1 - p)$ $0 = \sqrt{1000 \times 6.9 \times 0.1} = 9.5$ L4/18-20