

Jacob Miller

Training with Topology

Using the Euler Characteristic Transform

December 13, 2024

Outline

- Topology Background
 Simplicial Complexes
 Mapper
 Euler Characteristic Transform (ECT)
- 2 Applying to MNIST Preprocessing Processing Model Architecture
- 3 Results

What is topology? **IOWA**

What is topology?

Topology is the study of shape up to deformations. In the mind of a topologist, a coffee cup is the same as a donut.

What is topology?

Topology is the study of shape up to deformations. In the mind of a topologist, a coffee cup is the same as a donut.

What is topology?

Topology is the study of shape up to deformations. In the mind of a topologist, a coffee cup is the same as a donut.

Remember that, as topologists, we cannot:

- cut
- 2. glue

GOAL:

GOAL: Convince you that thinking about data as samples from a high-dimensional manifold is correct.

GOAL: Convince you that thinking about data as samples from a high-dimensional manifold is correct.

• We will use topological methods to train on the MNIST dataset.

Glaring Issue: Topology cannot distinguish some numbers/letters!

GOAL: Convince you that thinking about data as samples from a high-dimensional manifold is correct.

• We will use topological methods to train on the MNIST dataset.

Glaring Issue: Topology cannot distinguish some numbers/letters!

Ignore this issue for now...

Simplices: Building Blocks

Simplicial complexes are a common way to describe shapes in topology

Definition (Simplex)

A k-simplex is the convex hull of k+1 affinely independent points:

Simplices: Building Blocks

Simplicial complexes are a common way to describe shapes in topology

Definition (Simplex)

A k-simplex is the convex hull of k+1 affinely independent points:

Simplicial Complexes

Definition

A simplicial complex $\boldsymbol{\Delta}$ is a collection of simplices satisfying:

Simplicial Complexes

Definition

A simplicial complex Δ is a collection of simplices satisfying:

- 1. If $\sigma \in \Delta$ is a simplex, then Δ contains all faces of σ
- 2. If two simplices in Δ intersect, their intersection is a face of each

Example:

Simplicial Complexes

Definition

A simplicial complex Δ is a collection of simplices satisfying:

- 1. If $\sigma \in \Delta$ is a simplex, then Δ contains all faces of σ
- 2. If two simplices in Δ intersect, their intersection is a face of each

Example:

Euler Characteristic for Simplicial Complexes

Definition

The Euler characteristic $\chi(\Delta)$ of a finite simplicial complex Δ is:

$$\chi(\Delta) = \sum_{i=0}^{\infty} (-1)^i f_i$$

where f_i is the number of *i*-dimensional simplices in Δ .

Euler Characteristic for Simplicial Complexes

Definition

The Euler characteristic $\chi(\Delta)$ of a finite simplicial complex Δ is:

$$\chi(\Delta) = \sum_{i=0}^{\infty} (-1)^i f_i$$

where f_i is the number of *i*-dimensional simplices in Δ .

Example

A filled in triangle (a.k.a. 2-simplex):

- $f_0 = 3$ (vertices), $f_1 = 3$ (edges), $f_2 = 1$ (faces)
- $\chi(\text{triangle}) = 3 3 + 1 = 1$

Working under the assumption that our data cloud was sampled from a manifold M:

Working under the assumption that our data cloud was sampled from a manifold M:

Input: A data cloud D in an ambient space \mathbb{R}^n .

Working under the assumption that our data cloud was sampled from a manifold M:

Input: A data cloud D in an ambient space \mathbb{R}^n .

Ingredients:

- A lens (filter) function $f: \mathbb{R}^n \to \mathbb{R}$
- An open cover for $\mathbb R$
- A clustering algorithm (We used Affinity Propagation)

Working under the assumption that our data cloud was sampled from a manifold M:

Input: A data cloud D in an ambient space \mathbb{R}^n .

Ingredients:

- A lens (filter) function $f: \mathbb{R}^n \to \mathbb{R}$
- An open cover for $\mathbb R$
- A clustering algorithm (We used Affinity Propagation)

Output: A simplicial complex – a topological approximation of the manifold M.

Diagram of Mapper

Euler Characteristic Transform

Input: An embedded simplicial complex Δ – normalized to live in a unit ball in \mathbb{R}^n .

Euler Characteristic Transform

Input: An embedded simplicial complex Δ – normalized to live in a unit ball in \mathbb{R}^n . **Output:** A function

$$ECT: S^{n-1} \times [-1,1] \to \mathbb{Z}$$

ECT Setup

Given an embedded simplicial complex Δ and a direction $\vec{w} \in S^{n-1} \subseteq \mathbb{R}^n$ we can define a function $F_{\vec{w}} : \Delta \to \mathbb{R}$ inductively:

$$F_{\vec{w}}(v) := v \cdot \vec{w}$$
 For any vertex $v \in \Delta$

ECT Setup

Given an embedded simplicial complex Δ and a direction $\vec{w} \in S^{n-1} \subseteq \mathbb{R}^n$ we can define a function $F_{\vec{w}} : \Delta \to \mathbb{R}$ inductively:

$$F_{\vec{w}}(v) := v \cdot \vec{w}$$
 For any vertex $v \in \Delta$

If $\sigma = [v_1, \ldots, v_k] \in \Delta$ then

$$F_{\vec{w}}(\sigma) := \max \{F_{\vec{w}}(v_i) \mid 1 \le i \le k\}$$

ECT Setup

Given an embedded simplicial complex Δ and a direction $\vec{w} \in S^{n-1} \subseteq \mathbb{R}^n$ we can define a function $F_{\vec{w}} : \Delta \to \mathbb{R}$ inductively:

$$F_{\vec{w}}(v) := v \cdot \vec{w}$$
 For any vertex $v \in \Delta$

If $\sigma = [v_1, \ldots, v_k] \in \Delta$ then

$$F_{\vec{w}}(\sigma) := \max \{F_{\vec{w}}(v_i) \mid 1 \le i \le k\}$$

For any threshold value $t \in [-1,1]$

$$F_{\vec{w}}^{-1}[[-1,t)]$$
 is a subcomplex of Δ

An example of a filtration

Warning: This is a picture of a Vietoris-Rips filtration

Recap

If we pick a direction and a threshold value, we get a simplicial complex.

Recap

If we pick a direction and a threshold value, we get a simplicial complex.

Changing our threshold value will give us different subcomplexes of $\boldsymbol{\Delta}.$

Recap

If we pick a direction and a threshold value, we get a simplicial complex.

Changing our threshold value will give us different subcomplexes of Δ .

IDEA: For each direction and threshold value, calculate the Euler characteristic!

ECT Definition

The Euler Characteristic Transform ECT is given by

$$ECT(\vec{w},t) := \chi\left(F_{\vec{w}}^{-1}\left[(-\infty,t)\right]\right)$$

Theorem (Turner et al., 2014)

The ECT is **injective** on the space of constructible* sets in \mathbb{R}^d . So:

If $ECT(K) \neq ECT(K')$, then $K \neq K'$.

Theorem (Turner et al., 2014)

The ECT is **injective** on the space of constructible* sets in \mathbb{R}^d . So:

If
$$ECT(K) \neq ECT(K')$$
, then $K \neq K'$.

So the above theorem is true for simplicial complexes in \mathbb{R}^d .

Preprocessing

- Load image from MNIST dataset
- Filter out empty pixels
- Normalize pixel and grayscale values to live in the unit 3-ball
- Translate by the mean to standardize
- Apply some Gaussian smoothing (to look good)

Processing

- Load data cloud
- Compute mapper complex using zen-mapper
 - filter function: Projection to the line y + x = 0.
 - Covering Scheme: Width Balanced with 10 elements, 40% overlap
 - Clusterer: Affinity Propagation with 0.9 damping (random preferences)
- Embed into \mathbb{R}^3
- Approximate ECT
 - 64 directions (sampled via Fibonacci spiral)
 - 64 thresholds (uniformly distributed in [-1,1])

ECTNet Architecture

Designing your own CNN - Sanjay Dutta Creating a CNN from Scratch using Pytorch - Abhishek

- Convolutional Layers:
 - Conv1: $1 \rightarrow 16$ channels (3×3)
 - BatchNorm + ReLU + MaxPool(2×2)
 - Conv2: $16 \rightarrow 32$ channels (3×3)
 - BatchNorm + ReLU + MaxPool(2×2)
 - Conv3: $32 \rightarrow 64$ channels (3×3)
 - BatchNorm + ReLU
- Classifier Head (Make Decision):
 - Flatten
 - Dropout (0.3) randomly deactivates neurons
 - Linear: input dim \rightarrow 256
 - ReLU + Dropout(0.3)
 - Linear: 256 → 10

Simplified:

- Two main components:
 - Feature extraction (conv layers)
 - Classification (dense layers)
- Convolutional section:
 - Progressively expands features
 - Spatial reduction via max pooling (takes maximum value from the input region)
- Classifier section:
 - Flattens features
 - Final 10-class prediction

Torchviz Diagram:

Training Results:

Mapper Complex Training Results: 97.8% accuracy

Point Complex Training Results: 97.6% accuracy

Thank you!

Thanks for listening! If you want to see the implementation checkout the GitHub:

https://github.com/Jamiller137/ect-mnist

There is an interactive app that will let you draw a number and see what the model is doing.