

# GATK Best Practices for Variant Discovery

# Genotype Refinement Workflow

Using additional data to improve genotype calls and likelihoods





# Best Practices for Germline SNP & INDEL Discovery



# Why care about genotypes?

- Medical geneticists need genotypes for patients
  - Do any patients have two copies of a LOF mutation?
  - Are the parents of a diseased child likely to have more afflicted children?

- Population geneticists need genotypes for association studies
  - How does the number of copies of an allele affect the phenotype?

## Variant call vs. Genotype call





# Genotype call quality is important!

- Some sites/samples have poor genotype calls
  - Can be ambiguous due to low confidence
  - Might be entirely wrong!

- Can additional (independent) data improve genotype calls?
  - Use high quality data (like 1000G) as priors
  - Use pedigree (if available)
  - Calculate posterior genotype probabilities

# Review of Bayes's Rule

Given that your coworker just walked in with an umbrella, what is the probability that it is raining?

- Observation = umbrella
- Θ = probability of rain

posterior probability likelihood probability 
$$P(\theta|Obs) = \frac{P(Obs|\theta)P(\theta)}{\sum_{\theta} P(Obs|\theta)P(\theta)}$$
 (normalize)

# Genotype Refinement Workflow



#### CalculateGenotypePosteriors

```
Recalibrated Variants

Population Priors

Family Priors

CalculateGenotypePosteriors

Variants with Posterior Qualities
```

```
gatk CalculateGenotypePosteriors \
    -R reference.fasta \
    -V input.vcf \
    -ped family.ped \
    -supporting population.vcf \
    -0 output.vcf
```

# Case 1: HOM\_VAR Call w/ Low Frequency Priors



- 1) Baseline HOM VAR call
- 2) Priors w/low allele frequency applied
- 3) Posterior genotype called HET
- 4) In agreement w/NIST and BAMs

Likelihoods x Priors = Posterior Probabilities [895,3,0] AF=0.002 [868,0,27]

[HOM\_REF, HET, HOM\_VAR]

[HOM\_REF, HET, HOM\_VAR]

Genotype corrected Confidence improved from Q3 to Q27

# Case 2: HET Call with High Frequency Priors



- 1) Baseline HET call
- 2) Priors w/high allele frequency applied
- 3) Posterior genotype called HOM\_VAR
- 4) In agreement w/NIST and BAMs

Likelihoods x Priors = Posterior Probabilities [894,0,0] AF=0.987 [932,16,0]

[HOM\_REF, HET, HOM\_VAR]

[HOM\_REF, HET, HOM\_VAR]

Genotype corrected Confidence improved from Q0 to Q16

# Population priors improve genotype confidence



Baseline HomRef calls are under confident, but posterior calls are more accurate

Baseline HomVar calls are over confident, but posterior calls are improved

## Assessing confidence and correctness



## Parental genotypes inform child genotypes

- Child can only inherit alleles present in parents
- Parent genotypes determine possible child genotypes (assuming no mutations)

| Child | Mother | Father |
|-------|--------|--------|
| HR    | HR     | HR     |
| HR    | HR     | HET    |
| HR    | HET    | HR     |
| HR    | HET    | HET    |

| Child | Mother | Father |
|-------|--------|--------|
| HET   | HET    | HET    |
| HET   | HR     | HET    |
| HET   | HET    | HR     |
| HET   | HV     | HET    |
| HET   | HET    | HV     |
| HET   | HR     | HV     |
| HET   | HV     | HR     |

| Child | Mother | Father |
|-------|--------|--------|
| HV    | HV     | HV     |
| HV    | HV     | HET    |
| HV    | HET    | HV     |
| HV    | HET    | HET    |

$$P(G_C|D_C)$$

HaplotypeCaller gives

- $P(G_C|D_C,D_M,D_F)$
- Given trio data we can derive

## Bayesian priors applied to trios

• Recall Bayes's Rule: 
$$P(\theta|Obs) = \frac{P(Obs|\theta)P(\theta)}{\sum_{\theta} P(Obs|\theta)P(\theta)}$$

Establish genotype configuration probabilities

$$P(G_M, G_F, G_C) = P(\vec{G}) \begin{cases} \mu, 1MV \\ \mu^2, 2MVs \\ 1 - 10\mu - 2\mu^2, non - MV \end{cases}$$

Apply family priors

likelihood

• Apply family priors likelihood posterior 
$$P(G_C = HR | \vec{D}) = \frac{L_C(G_C = HR) \sum_{G_F, G_M} L_F(G_F) L_M(G_M) P(\vec{G})}{\sum_{\vec{H}} P(\vec{D} | \vec{H}) P(\vec{H})}$$
 apply prior normalize

## Assessing confidence and correctness





#### Filter low confidence GQs



```
gatk VariantFiltration \
   -R reference.fasta \
   -V input.vcf \
   --filter-expression "GQ<20" \
   --filter-name "lowGQ" \
   -0 output.vcf</pre>
```

- Use VariantFiltration to filter ambiguous, low-confidence calls
- Recommended threshold is GQ = 20
  - GQ 20 is Phred-scaled 99% confidence
- Restrict further analysis to high-quality data

#### VariantAnnotator



```
gatk VariantAnnotator \
   -R reference.fasta \
   -V input.vcf \
   -A PossibleDeNovo \
   -0 output.vcf
```

#### What are *De Novo* mutations?

- Culprits in many rare Mendelian disorders
- ~30 de novo mutations occur per human genome



## Properties of sequenced De Novos

#### Novelty

Child has only alt allele in trio, not inherited

#### Rarity

Allele frequency across all samples sequenced is low

#### Confidence

- Set GQ threshold for parents and child
- (GQ improvement tools help A LOT here!)

#### **ARTICLE**

doi:10.1038/nature13772

Synaptic, transcriptional and chromatin genes disrupted in autism



# Example of a clinical case

- Real clinical data
- Suspected de novo mutation in offspring



## Priors can be tuned for sensitivity

Mutation prior is a parameter in genotype configuration probability:

$$P(G_{M}, G_{F}, G_{C}) = P(\vec{G}) \begin{cases} \mu, 1MV \\ \mu^{2}, 2MVs \\ 1 - 10\mu - 2\mu^{2}, non - MV \end{cases}$$



Sensitivity and specificity can be tuned as in VQSR

# Genotype refinement yields more high-quality genotypes

- Initial genotype calls may be ambiguous or wrong
- Applying population + family priors improves confidence
- More high confidence genotypes -> more data for downstream analysis!
- External tools can be used for further variant annotation (e.g. SnpEff)



\*SnpEff is not supported by GATK

# Best Practices for Germline SNP & INDEL Discovery

