

Tiprior
$$(\vec{m}) \propto T_{\vec{w}}(A\vec{m})$$

$$\propto \exp\left(-\frac{1}{28^2}\vec{m}^{T}A^{T}A\vec{m}\right)$$

Lemanh: A is not square and this is a direct consequence of the fact that we haven't specified the smoothness at the boundary!

DIRICHLET BOUNDARY CONDITIONS

Let's say that we believe that the function f is "close" to zero out the boundary. Then one way to convey this belief is to extend by zero: $m_{-1} = 0$, $m_{n+1} = 0$

 $M_{-1} = 0$ $M_{N+1} = 0$ $M_{N+1} = 0$

m : = f(x)

Thus we can use the same expression:

 $M_0 = \frac{M_1 + M_1}{2} + W_0 \qquad W_0 \sim N(0, \gamma^2)$

$$\frac{2}{2} = \frac{2}{2} = \frac{2$$

EM397Fall2018 Page 5

$$N(\vec{0}, \vec{\Sigma}^{3\times3})$$

For our case

$$\vec{m} \sim \exp(-\frac{1}{3r^2}\vec{m} + A_D \vec{m})$$
 \vec{n}
 \vec{n}

whitening process

Let
$$\vec{y} = Y A \vec{b} \times W$$
 where $\vec{x} \times N(o, \vec{x})$

Linearity of \vec{E}
 $\vec{y} = \vec{x} \cdot \vec{y} = \vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{y} \cdot \vec{y} = \vec{y} \cdot \vec{y$

Home work:

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim N\left(\begin{bmatrix} \vec{x}_1 \\ \vec{x}_2 \end{bmatrix}, \begin{bmatrix} a_1 & a_2 \\ a_2 & a_3 \end{bmatrix}\right)$$
a) what is the marginal distribution of
$$\vec{x}_1$$
b)
$$\vec{x}_2$$

$$\vec{x}_3$$

$$\vec{x}_4$$

$$\vec{x}_2$$

$$\vec{x}_4$$

 \mathcal{X}_{\downarrow} 6/ // // $x \sim \pi(x) = \pi(x) = 1$ Note NON- 75 RD DIRICHLET In this case, one way to express non zero Dirichlet boundary condition in to say $N_{o} \sim N(0, \frac{\chi^{2}}{\delta_{o}^{2}})$ $M_{\perp} = \frac{M_0 + M_2}{2} + N(0, \chi^2)$ $M_{n-1} = M_{n-2+Mn} + N(0, x^2)$ $M_n \sim N(6) \frac{\chi^2}{5^2}$ $\int_{0}^{\infty} w^{0} = w^{0} \wedge w(0, x^{2})$ -122-10... ω_o

11/ ~2

 $\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$ $A_{L} \times \hat{m} = \hat{w}$ Same process $\overline{1}$ (\overline{M}) $\propto \exp(-\frac{1}{2} \overline{M} + \overline{1} A_{\perp} \overline{M})$ Remark. Guen 8, it is not sufficient to determine Tr (m) because So, on = ?? In order to have a more uniform uncertainty we can make δ_0 , $\delta_n = uncertainty of the midpoint$ So if we define L = (ATAL) -, then this moans $\delta_0 = \delta_n = L(\lfloor \frac{n}{2} \rfloor, \lfloor \frac{n}{2} \rfloor)$ This is a nonlinear egn of $x = \delta_0^2 = \sigma_0^2$ relax, simplify

relax, simplify

$$S_0^2 = S_n^2 = L_0 \left(\lfloor \frac{2}{2} \rfloor, \lfloor \frac{2}{2} \rfloor \right)$$
where $L_0 = \left(A_0^2 A_0 \right)^{-\frac{1}{2}}$

NON-SMOOTH PRIORS

One way to convey the fact that the unknown function is non-smooth is

 $M_1 = M_{1-1} + W_1 \left(\sim N(0, x^2) \right)$
 $M_2 = M_1 + W_2 \left(\sim N(0, x^2) \right)$
 $M_3 = M_4 + M_2 + M_3 + M_4 +$

The solution (\vec{m}) $\leq \exp(-\frac{1}{2\chi^2}\vec{m}'A_N T_N \vec{m})$ Morebuer if we "know" that there is a higger jump at i = J, $1 \le J \le n$ $m_i = m_j = m_{j-1} + \omega_j \left(\sim N(o) \frac{r^2}{n^2} \right)$ J Column.