Session 2

Basic Hui-Walter models

Matt Denwood 2021-06-28

Session 2: Basic Hui-Walter models

Hui-Walter Model

- A particular model formulation that was originally designed for evaluating diagnostic tests in the absence of a gold standard
- Not necessarily (or originally) Bayesian but often implemented using Bayesian MCMC
- But evaluating an imperfect test against another imperfect test is a bit like pulling a rabbit out of a hat
 - If we don't know the true disease status, how can we estimate sensitivity or specificity for either test?

Model Specification

```
model{
  Tally ~ dmulti(prob, N)
  # Test1- Test2-
    prob[1] <- (prev * ((1-se[1])*(1-se[2]))) + ((1-prev) *
    \hookrightarrow ((sp[1])*(sp[2])))
  # Test1+ Test2-
    prob[2] <- (prev * ((se[1])*(1-se[2]))) + ((1-prev) *
    \hookrightarrow ((1-sp[1])*(sp[2])))
  # Test1- Test2+
    prob[3] <- (prev * ((1-se[1])*(se[2]))) + ((1-prev) *
    \hookrightarrow ((sp[1])*(1-sp[2])))
```

```
# Test1+ Test2+
  prob[4] <- (prev * ((se[1])*(se[2]))) + ((1-prev) *
  \hookrightarrow ((1-sp[1])*(1-sp[2])))
prev ~ dbeta(1, 1)
se[1] ~ dbeta(1, 1)
sp[1] ~ dbeta(1, 1)
se[2] ~ dbeta(1, 1)
sp[2] ~ dbeta(1, 1)
#data# Tally, N
#monitor# prev, prob, se, sp, deviance
#inits# prev, se, sp
```

```
twoXtwo <- matrix(c(48, 12, 4, 36), ncol=2, nrow=2)
twoXtwo
## \[\(\int_{\cdot 1}\) \[\(\int_{\cdot 2}\)
## [1,] 48 4
## [2,] 12 36
library('runjags')
Tally <- as.numeric(twoXtwo)</pre>
N <- sum(Tally)
prev <- list(chain1=0.05, chain2=0.95)</pre>
se <- list(chain1=c(0.01,0.99), chain2=c(0.99,0.01))
sp \leftarrow list(chain1=c(0.01,0.99), chain2=c(0.99,0.01))
results <- run.jags('basic_hw.bug', n.chains=2)
```

[Remember to check convergence and effective sample size!]

	Lower95	Median	Upper95	SSeff	psrf
prev	0.332	0.498	0.672	4095	2.316
prob[1]	0.367	0.463	0.558	13452	1.000
prob[2]	0.073	0.133	0.200	13575	1.000
prob[3]	0.017	0.055	0.103	9722	1.000
prob[4]	0.255	0.344	0.435	13917	1.000
se[1]	0.029	0.528	1.000	4464	15.062
se[2]	0.000	0.370	0.964	4913	13.833
sp[1]	0.000	0.504	0.971	4645	15.324
sp[2]	0.036	0.594	1.000	4279	13.710
deviance	12.301	15.112	21.423	8572	1.000

Does anybody spot a problem?

TODO: add deviance plot

Label Switching

How to interpret a test with Se=0% and Sp=0%?

Label Switching

How to interpret a test with Se=0% and Sp=0%?

• The test is perfect - we are just holding it upside down...

Label Switching

How to interpret a test with Se=0% and Sp=0%?

The test is perfect - we are just holding it upside down...

We can force se+sp >= 1:

```
se[1] ~ dbeta(1, 1)
sp[1] ~ dbeta(1, 1)T(1-se[1], )
```

Or:

```
se[1] ~ dbeta(1, 1)T(1-sp[1], )
sp[1] ~ dbeta(1, 1)
```

This allows the test to be useless, but not worse than useless.

Note: the joint posterior is not necessarily what you would expect

Alternative, rejection stem (ability to be added to IACC/www.io.go.at

TODO show model without data

Alternatively we can have the weakly informative priors:

```
se[1] ~ dbeta(2, 1)
sp[1] ~ dbeta(2, 1)
```

To give the model some information that we expect the test characteristics to be closer to 100% than 0%.

Or we can use stronger priors for one or both tests.

TODO: show results with truncated priors

Practicalities

- Be very vareful with the order of combinations in dmultinom!
- Check your results carefully to ensure they make sense!
- Convergence is more problematic than usual
- These models need A LOT of data, and/or strong priors for one of the tests

Priors

A different prior

• A quick way to see the distribution of a prior:

```
curve(dbeta(x, 1, 1), from=0, to=1)
dbeta(x, 1, 1)
         9.0
                            0.4
               0.0
                                         0.8
                                 Х
```

```
qbeta(c(0.025,0.975), shape1=1, shape2=1)
## [1] 0.025 0.975
```

This was minimally informative, but how does that compare to a weakly informative prior for e.g. sensitivity?

```
curve(dbeta(x, 2, 1), from=0, to=1)
```



```
qbeta(c(0.025,0.975), shape1=2, shape2=1)
## [1] 0.1581139 0.9874209
```

Or more accurately:

• What about a more informative prior?

curve(dbeta(x, 20, 2), from=0, to=1)

hpd(qbeta, shape1=20, shape2=2) ## [1] 0.7919691 0.9973994

Choosing a prior

 Typically we are given median and 95% confidence intervals from a paper, e.g.:

"The median (95% CI) estimates of the sensitivity and specificity of the shiny new test were 94% (92-96%) and 99% (97-100%) respectively"

How can we generate a prior from this?

The PriorGen package

"The median (95% CI) estimates of the sensitivity and specificity of the shiny new test were 94% (92-96%) and 99% (97-100%) respectively"

```
library("PriorGen")

## Loading required package: rootSolve
findbeta(themedian = 0.94, percentile=0.95, percentile.value = 0.92)

## [1] "The desired Beta distribution that satisfies the specified

→ conditions is: Beta (429.95 27.76)"

## [1] "Here is a plot of the specified distribution."

## [1] "Descriptive statistics for this distribution are:"

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.8910 0.9322 0.9399 0.9393 0.9473 0.9749

## [1] "Verification: The percentile value 0.92 corresponds to the 0.05

→ th percentile"
```

curve(dbeta(x, shape1=429.95, shape2=27.76))

Analysing simulated data

This is useful to check that we can recover parameter values!

```
se <- c(0.9, 0.6)
sp <- c(0.95, 0.9)
N <- 1000
prevalence <- 0.25

data <- tibble(Status = rbinom(N, 1, prevalence)) %>%
    mutate(Test1 = rbinom(N, 1, se[1]*Status + (1-sp[1])*(1-Status))) %>%
    mutate(Test2 = rbinom(N, 1, se[2]*Status + (1-sp[2])*(1-Status)))

twoXtwo <- with(data, table(Test1, Test2))
Tally <- as.numeric(twoXtwo)</pre>
```

Practical Session 2

Points to consider

- 1. What is the typical autocorrelation (and therefore effective sample size) of Hui-Walter models compared to the simpler models we were running earlier? Is there any practical consequence of this?
- 2. How does changing the prior distributions for the se and sp of one test affect the inference for the other test parameters?

Priors

- We cannot estimate se, sp and prevalence simultaneously
 - We need strong priors for se and sp
- We can use the PriorGen package to generate Beta priors based on published results, for example:

```
qbeta(c(0.025, 0.5, 0.975), 41.82, 4.65)
## [1] 0.7999144 0.9056630 0.9677283
curve(dbeta(x, 41.82, 4.65), from=0, to=1)
```


Exercise

- Find beta distribution priors for:
 - Sensitivity = 0.9 (95% CI: 0.85 0.95)
 - Specificity = 0.95 (95%CI: 0.92-0.97)
- Look at these distributions using curve and qbeta
- Modify the imperfect test model using these priors and re-estimate prevalence

Optional Exercise

- Run the same model with se and sp fixed to the mean estimate
 - How does this affect CI for prevalence?
- Run the same model with se and sp fixed to 1
 - How does this affect estimates and CI for prevalence?

Summary

- Hui-Walter models are like pulling a rabbit out of a hat, but:
 - They typically exhibit high autocorrelation
 - They may not converge immediately
 - We need a larger sample for the same effective sample size
- More informative priors for one test will
 - Improve identifiability of the model
 - Impact the inference for all other parameters in the model!