年级

学号_

6. 货

1.

2.

2020~2021 学年第 2 学期期末考试试卷

《概率论与数理统计 1》(B 卷 共 4 页)

(考试时间: 2021年6月4日)

题号 一	_ =	- Д	五	七	八	成绩	核分人签字	ĺ
得分								

一、选择题(每题3分,共18分)

- 1. 设随机变量(X,Y)服从二维正态分布,且X与Y不相关, $f_X(x)$, $f_Y(y)$ 分别表示X与
- Y的概率密度,则在Y=y的条件下,X的条件概率密度 $f_{X|Y}(x|y)$ 为(

A.
$$f_X(x)$$

学院

B. $f_{\gamma}(y)$

C.
$$f_X(x)f_Y(y)$$

D. $\frac{f_X(x)}{f_Y(y)}$

2. 将一枚硬币独立地掷两次,若事件 A_1 ={第一次出现正面}, A_2 ={第二次出现正面}, $A_3 = \{ \mathbb{T} \setminus \mathbb{D}$ 反面各出现一次 $\}$, $A_4 = \{ \mathbb{T}$ 正面出现两次 $\}$,则下列正确的是(

A. A_1, A_2, A_3 相互独立

B. A₂, A₃, A₄相互独立

C. A_1, A_2, A_3 两两独立

- D. A_2, A_3, A_4 两两独立
- 3. 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,且 X_i 都服从参数为 $\frac{1}{2}$ 的指数分布,则当n充

分大时,随机变量 $Z_n = \frac{1}{n} \sum_{i=1}^{n} X_i$ 的概率分布近似服从(

- A. N(2,4) B. $N(2,\frac{4}{n})$ C. $N(\frac{1}{2},\frac{1}{4})$
- D. N(2n,4n)
- 4. 设随机变量 $X \sim t_n (n > 1), Y = \frac{1}{v^2}$,则下列正确的是()

- A. $Y \sim \chi_n^2$ B. $Y \sim \chi_{n-1}^2$ C. $Y \sim F_{n,1}$
- D. $Y \sim F_{1n}$

- A. 2 B. U.S $P\{|X-1|<\varepsilon\} \ge \frac{2}{3}$,则下列正确的是(6. 设 $X \sim U[-1,b]$,若由切比雪夫不等式 $P\{|X-1|<\varepsilon\} \ge \frac{2}{3}$,则下列正确的是(

A. $b=2, \varepsilon=3$

D. $b=3, \varepsilon=1$

- C. b=3, $\varepsilon=2$
- 二、填空题(每题3分,共18分)
 - 1. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 < x < 1, \\ 0, & \text{其他,} \end{cases}$ 以 Y 表示对 X 的三次独立重 复观察中事件 $\{X \le \frac{1}{2}\}$ 出现的次数,则 $P\{Y = 2\} =$ ______.
 - 2. $\Xi P(\overline{A}) = 0.3, P(B) = 0.4, P(A\overline{B}) = 0.5, \text{ } \square P(B \mid A \cup \overline{B}) = \underline{\hspace{1cm}}$
 - 3. 设总体X 服从正态分布 $N(\mu_1,\sigma^2)$,总体Y 服从正态分布 $N(\mu_2,\sigma^2)$, $X_1,X_2,...X_m$ 和 Y_1,Y_2,\cdots,Y_{n_2} 分别是来自总体X和Y的简单随机样本,两个样本的样本均值分别为

]当n充

- 4. 设 $X_1, X_2, \cdots X_m$ 是来自二项分布 B(n, p) 总体的简单随机样本, \overline{X} 和 S^2 分别为样本 均值和样本方差,若 $\bar{X}+kS^2$ 是 np^2 的无偏估计量,则k=
- 5. 设二维随机变量(*X*,*Y*)的联合概率密度为 $f(x,y) = \begin{cases} 1, & 0 < x < 1, 0 < y < 2x, \\ 0, & \text{其他,} \end{cases}$ $P\{Y \le \frac{1}{2} \left| X \le \frac{1}{2} \right\} = \underline{\qquad}$
- 6. 从正态分布 $N(\mu,1)$ 总体中抽出一个容量 n=100 的简单随机样本,由观察值计算得样本均值 x=13.2 则 μ 公 m=100 的简单随机样本,由观察值计算得样 本均值x=13.2,则 μ 的置信水平为0.95的置信区间为 $(z_{0.05} = 1.645, z_{0.025} = 1.96)$

示X与

正面},

- 三、(10分)病树的主人外出,委托邻居浇水,设已知如果不浇水,树死去的概率为0.8,若浇水则树死去的概率为0.15,由90%的把握确定邻居会记得浇水.
- (1) 求主人回来树还活着的概率;
- (2) 若主人回来树已死去, 求邻居忘记浇水的概率.

 $X_1, ..., X_n$ 是来自总体X的一个简单随机样本,

- 求 (1
 - β的矩估计量;
 - (2) β的最大似然估计量.

专业

____班

年级

五、(12 分)设二维随机变量(X,Y)在矩形区域 $G = \{(x,y) | 0 \le x \le 2, 0 \le y \le 1\}$ 上服从均

匀分布,记
$$U = \begin{cases} 0, X \le Y, \\ 1, X > Y, \end{cases} V = \begin{cases} 0, X \le 2Y, \\ 1, X > 2Y. \end{cases}$$

- 求 (1) U和V的联合分布律;
 - (2) U 和V 的相关系数 $\rho_{U,V}$.

B 共 4 页 第 3 页

匀

- 求 (1) Y的分布函数;
 - (2) 概率 $P\{X \leq Y\}$.

_班

年级

七、(13分)设随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} be^{-(x+y)}, & 0 < x < 1, 0 < y < +\infty, \\ 0, & 其他. \end{cases}$$

- 求 (1) 常数b;
 - (2) 边缘概率密度函数 $f_X(x)$ 和 $f_Y(y)$;
 - (3) 函数 $U = \max\{X, Y\}$ 的分布函数.

八、(7分)已知某炼铁厂在生厂上的铁水,算得铁水含碳量的样本方差为0.036.问是否可为0.03.在某段时间内抽测了10炉铁水,算得铁水含碳量的样本方差为0.036.问是否可为0.03.在某段时间内抽测了20烷量的方差显著大于正常情况下的方差?

 $\chi_9^2(0.05) = 16.919, \chi_9^2(0.025) = 20.483, \chi_{10}^2(0.95) = 3.940, \chi_{10}^2(0.975) = 3.247$ $\chi_{10}^2(0.05) = 18.307, \chi_{10}^2(0.025) = 20.483, \chi_{10}^2(0.95) = 3.940, \chi_{10}^2(0.975) = 3.247$