Universidad de Guadalajara Centro Universitario de los Lagos

"Análisis y Modelado de Parámetros Biocinéticos de Lodos Activados Provenientes de la Planta Municipal de Tratamiento de Aguas Residuales de Lagos de Moreno"

Tesis para obtener el Título de Ingeniero Bioquímico

Presenta:

Luis David Rodríguez Centeno

Director de Tesis:

M. en C. Gabriela Camarillo Martínez

Lagos de Moreno, Jal. 7 de agosto de 2023

Índice

Índice de figuras		
ĺno	dice de cuadros	ii
Resumen		
1	Introducción	1
2	Antecedentes 2.1 Aguas residuales	2 2
	2.1.1 Características Físicas	3 3
	2.3 Lodos Activados 2.3.1 Organismos presentes en los lodos activados 2.3.2 Flóculos 2.3.3 Bulking filamentoso	3 3 3
3	Planteamiento del problema	4
4	Justficación	5
5	Objetivos5.1 Objetivo general5.2 Objetivos particulares	6 6
6	Materiales	7
7	Resultados	8
8	Discusión	9
9	Conclusiones	10
10	Perspectivas	11
Re	eferencias	12

Anexos	Α
Siglas	В
Glosario	С

Índice de figuras

Índice de cuadros

Resumen

1 Introducción

2 Antecedentes

2.1 Aguas residuales

Las aguas residuales pueden estar constituidas por diversos constituyentes; dentro de los cuales se destacan los físicos, químicos y biológicos (Crites y Tchobanoglous, 2000). Es importante caracterizar los distintos tipos de aguas residuales antes de comenzar con algún proceso para la remoción de contaminantes.

Las aguas residuales son todas aquellas que, una vez son desechadas por cualquier actividad humana o provenientes de precipitaciones, son vertidas a un sistema de alcantarillado para su posterior tratamiento, o en los casos más comunes, son liberadas directamente en algún cuerpo de agua o sobre una superficie de terreno cualquiera. Según sea el caso de uso que recibe el agua es como se clasifica, siendo los principales: aguas residuales domésticas, aguas residuales industriales, aguas pluviales, aguas residuales de origen pecuario y agrícola; y por ultimo las aguas residuales de origen minero-metalúrgico. Antes de ser vertidas en algún cuerpo de agua o suelo, estas deben ser acondicionadas de acuerdo con la normalidad presente en cada país. La misión de estas normativas es mantener una estabilidad en los diferentes ecosistemas, así como el de reducir el número de afecciones a la salud de la población en general (Lazcano Carreño, 2016; Martínez Delgadillo, 1999).

Cabe destacar a este tema que, en la mayoría de países subdesarrollados, la aplicación de estas normativas rara vez se cumplen, resultando en problemas ambientales y de salud graves. La aparición de nuevas industrias locales artesanales y fabricas clandestinas no reguladas provocan un aumento en la cantidad de contaminantes disueltos, entre los cuales, gran parte son metales pesados y/o compuestos de difícil degradación Tchobanoglous et al. (2003). Este problema de exacerba cuando no se cuentan con sistemas de tratamiento para las aguas negras generadas por la población, contaminando las distintas fuentes de agua potable de la cuenca en cuestión.

Aguas residuales domésticas

Esta categoría se encuentra conformada por todo aquel flujo de agua proveniente de los hogares. Entre los principales constituyentes se incluyen heces y orina de la población; desechos de mascotas, residuos orgánicos producidos por actividades culinarias, desechos de lavandería.

Aguas residuales municipales

Este tipo de aguas provienen de la mezcla de los efluentes domésticos, de las distintas actividades realizadas en las áreas urbanas (oficinas, tiendas, centros comerciales, restaurantes, actividades recreativas, etc.) y de las pequeñas industrias locales, las cuales aumentan la cantidad de contaminantes y sustancias indeseadas que dificultan su tratamiento mediante sistemas convencionales aplicados a pequeñas comunidades (Lazcano Carreño, 2016).

Aguas residuales industriales

Este tipo de aguas provienen de las grandes industrias, a diferencia de las anteriores, estas se caracterizan por estar fuera de las zonas pobladas y debido a su alto contenido en partículas recalcitrantes, estas deben de recibir un tratamiento previo a ser vertidas a los sistemas de alcantarillado público. generalmente cuentan con un número elevado de metales pesados, pH extremo, altos niveles de materia orgánica, solventes y sustancias tóxicas (Lazcano Carreño, 2016).

Aguas residuales agropecuarias o agroindustriales

Son todos aquellos flujos de agua provenientes de cualquier actividad agrícola

2.1.1 Características Físicas

Sólidos

Uno de los principales componentes físicos presentes en las aguas residuales son los materiales sólidos dispersos por todo el afluente. El tamaño de estas partículas puede variar desde cabellos hasta materiales coloidales.

2.2 Muestreo

2.3 Lodos Activados

Dentro de los procesos basados en cultivo de microorganismos en suspensión, uno de los más importantes, y a su vez mas utilizados, es el que involucra la utilización de lodos activados como agentes reductores de la carga orgánica presente en el afluente a tratar.

2.3.1 Organismos presentes en los lodos activados

2.3.2 Flóculos

2.3.3 Bulking filamentoso

3 Planteamiento del problema

4 Justficación

5 Objetivos

5.1 Objetivo general

Establecer los parámetros cinéticos de crecimiento, degradación de sustrato, producción de biomasa y consumo de oxígeno óptimos para la remoción de contaminantes que permiten el diseño de sistemas más eficientes y la reducción de los costos de operación, empleando distintas fuentes de alimentación (aguas sintéticas y aguas crudas) a escala de laboratorio utilizando lodos activados.

5.2 Objetivos particulares

- 1. Calcular las constantes de crecimiento microbiano de manera experimental de lodos provenientes de una planta de tratamiento en función
- 2. Comparar las diferencias que se generan empleando agua residual de constituyentes conocidos frente a un afluente real.
- 3. Simular el proceso de remoción de contaminantes utilizando las herramientas presentes en el programa MATLAB® y las constantes que se generan en el proceso.

6 Materiales

7 Resultados

8 Discusión

9 Conclusiones

10 Perspectivas

Referencias

- Crites, R. y Tchobanoglous, G. (2000). *Tratamiento de aguas residuales en pequeñas poblaciones*. McGraw-Hill Interamericana, S.A., 1a edición.
- Lazcano Carreño, C. A. (2016). *Biotecnología ambiental de aguas y aguas residuales*. Ecoe Ediciones, 2da edición.
- Martínez Delgadillo, S. A. (1999). *Parámetros de diseños de sistemas de tratamiento de aguas residuales: métodos experimentales*. Universidad Autónoma Metropolitana, Unidad Azcapotzalco, División de Ciencias Básicas e Ingeniería, Departamento de Energía, 1a edición.
- Tchobanoglous, G., Burton, F. L., y Stensel, H. D. (2003). *Wastewater Engineering Treatment & Reuse*. McGraw-Hill Series in Civil and Environmental Engineering. McGraw-Hill, 6ta edición.

Anexos

ANEXOS

Siglas

DBO₅ Demanda Bioquímica de Oxígeno. *Glosario:* Demanda Bioquímica de Oxígeno

DQO Demanda Química de Oxígeno. 3, *Glosario:* Demanda Química de Oxígeno

pH Potencial Hidrógeno. *Glosario:* Potencial Hidrógeno

PTAR Planta de Tratamiento de Aguas Residuales. *Glosario:* Planta de Tratamiento de Aguas Residuales

SST Sólidos suspendidos Totales. Glosario: Sólidos suspendidos Totales

SSV Sólidos Suspendidos Volátiles. Glosario: Sólidos Suspendidos Volátiles

VUO Velocidad de Utilización de Oxígeno. Glosario: Velocidad de Utilización de Oxígeno

ANEXOS B

Glosario

D

Demanda Bioquímica de Oxígeno

Es una estimación de la cantidad de oxígeno que se requiere una población microbiana heterogénea para oxidar la materia orgánica de una muestra de agua en un periodo de 5 días. B

Demanda Química de Oxígeno

La concentración de masa de oxígeno es equivalente a la cantidad de dicromato consumida por la materia disuelta y suspendida, cuando una muestra de agua es tratada con este oxidante bajo condiciones definidas.

1 mol de dicromato $(Cr_2O_7^{2-})$ es equivalente a 3 moles de Oxígeno

. 3, B

M

masa constante

Es la masa que se registra cuando el material ha sido calentado, enfriado y pesado, y que en dos ciclos completos consecutivos presenta una diferencia de ≤ 0.0005 g. D

P

Planta de Tratamiento de Aguas Residuales

. B

Potencial Hidrógeno

El pH se define en términos de la actividad relativa de los iones de hidrógeno en la disolución:

$$pH = -\log a_H = -\log(\frac{m_H \gamma_H}{m^0})$$

Donde a_H es la actividad relativa del ión hidrógeno (en base molal); γ_H es el coeficiente de actividad molal del ión hidrógeno H^+ a la molalidad m_H , y m° es la molalidad estándar. La magnitud pH es considerada como una medida de la actividad de los iones hidrógeno en la disolución. B

ANEXOS C

S

Sólidos suspendidos Totales

Es el material constituido por los sólidos sedimentables, los sólidos suspendidos y coloidales que son retenidos por un filtro de fibra de vidrio con poro de 1.5 μ m secado y llevado a masa constante a una temperatura de 105 °C \pm 2 °C. B

Sólidos Suspendidos Volátiles

Son aquellos sólidos suspendidos que se volatilizan en la calcinación a 550 °C \pm 50 °C. B

ANEXOS D