Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 8** 16/01/2025

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

2 Materiais

- Fonte DC Agilent E3631A
- $\bullet\,$ Multímetro Agilent 34410A
- Protoboard
- \bullet 1 chip UA741CN (amplificador operacional)
- 1 resistor de $1k\Omega$
- 1 resistor de $2.2k\Omega$

3 Procedimentos

É feita a medição dos valores dos componentes utilizados e essas informações são dispostas na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R_1	$1k\Omega$	$0.978k\Omega$	2.2
R_2	$2.2k\Omega$	$2.145k\Omega$	2.5

Tabela 1: Valores dos componentes

Os componentes são dispostos no Circuito 1, como mostrado na Figura 1. Os valores de $v_0=1V,\,V^+=10V$ e $V^-=-10V.$

Figura 1: Disposição do Circuito 1

Esse circuito é um amplificador inversor, fazendo com que a tensão de saída seja inversa e de módulo maior que a tensão de entrada.

Considerando um Amplificador Operacional ideal, devido ao conceito do curto virtual, $i_-=i_+=0$ assim como $v_-=v_+=0$. Além disso, para um Amplificador Inversor, vale a relação $v_1=-\frac{R_2}{R_1}v_0$.

Os dados são coletados usando o Multímetro e seus resultados são dispostos na Tabela 2.

Grandeza	Valor nominal	Valor medido	Erro (%)
v_0	1V	0.997V	0.3
v_1	-2.2V	-2.176V	1.09
v_{-}	0V	$1.727 \mathrm{mV}$	-
V^+	10V	10.005V	0.05
V^-	-10V	-9.998V	0.02
i_+	0A	$0.95\mu A$	-
i	0A	$7.743 \mu A$	-

Tabela 2: Circuito Amplificador Inversor

Nota-se que por conta dos valores esperados serem 0, a fórmula de erro relativa não é muito adequada. No entanto, os valores medidos encontram-se dentro do esperado.

Em seguida, é montado o circuito 2 que é um Amplificador não Inversor.

Figura 2: Disposição do Circuito 2

O procedimento é todo exatamente o mesmo, mudando apenas que para esse circuito o ganho é ditado por $v_1=(1+\frac{R_2}{R_1})v_0$.

Feitas todas as medições, os dados são dispostos na Tabela 3.

Grandeza	Valor nominal	Valor medido	Erro (%)
v_0	1V	1.006V	0.6
v_1	3.2V	2.315V	27.66
v_{-}	1V	1.007V	0.7
V^+	10V	9.994V	0.6
V^-	-10V	-10.005V	0.5
i_+	0A	0.195A	-
i_	0A	4.158mA	-

Tabela 1: Valores dos componentes

4 Conclusão

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.