Principal Component Analysis

CS5240 Theoretical Foundations in Multimedia

Leow Wee Kheng

Department of Computer Science School of Computing National University of Singapore

Motivation

How wide is the widest part of NGC 1300?

How thick is the thickest part of NGC 4594?

Use principal component analysis.

Maximum Variance Estimate

Consider a set of points \mathbf{x}_i , i = 1, ..., n, in an m-dimensional space such that their mean $\boldsymbol{\mu} = \mathbf{0}$, i.e., centroid is at the origin.

Want to find a line l through the origin that maximizes the projections y_i of the points \mathbf{x}_i on l.

Let \mathbf{q} denote the unit vector along line l.

Then, the projection y_i of \mathbf{x}_i on l is

$$y_i = \mathbf{x}_i^{\top} \mathbf{q}. \tag{1}$$

The mean squared projection, which is the variance, V over all points is

$$V = \frac{1}{n} \sum_{i=1}^{n} y_i^2 = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i^{\top} \mathbf{q})^2 \ge 0.$$
 (2)

Because $\mathbf{x}_i^{\top} \mathbf{q} = \mathbf{q}^{\top} \mathbf{x}_i$, expanding Eq. 2 gives

$$V = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{q}^{\top} \mathbf{x}_i) (\mathbf{x}_i^{\top} \mathbf{q}) = \mathbf{q}^{\top} \left[\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top} \right] \mathbf{q}.$$
 (3)

The middle factor is the covariance matrix C of the data points

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^{\top}.$$
 (4)

We want to find a unit vector \mathbf{q} that maximizes the variance V, i.e.,

maximize
$$V = \mathbf{q}^{\mathsf{T}} \mathbf{C} \mathbf{q}$$
 subject to $\|\mathbf{q}\| = 1$. (5)

This is a constrained optimization problem.

Use Lagrange multiplier method:

combine V and the constraint using Lagrange multiplier λ

maximize
$$V' = \mathbf{q}^{\mathsf{T}} \mathbf{C} \, \mathbf{q} - \lambda (\mathbf{q}^{\mathsf{T}} \mathbf{q} - 1).$$
 (6)

Lagrange Multiplier Method

Lagrange multiplier is a method for solving constrained optimization.

Consider this problem:

maximize
$$f(\mathbf{x})$$
 subject to $g(\mathbf{x}) = c$. (7)

Lagrange multiplier method introduces a Lagrange multiplier λ to combine $f(\mathbf{x})$ and $g(\mathbf{x})$:

$$L(\mathbf{x}, \lambda) = f(\mathbf{x}) + \lambda (g(\mathbf{x}) - c). \tag{8}$$

The sign of λ can be positive or negative.

Then, solve for the stationary point of $L(\mathbf{x}, \lambda)$:

$$\frac{\partial L(\mathbf{x}, \lambda)}{\partial \mathbf{x}} = 0. \tag{9}$$

- ▶ If \mathbf{x}_0 is a solution of the original problem, then there is a λ_0 such that $(\mathbf{x}_0, \lambda_0)$ is a stationary point of L.
- ▶ Not all stationary points yield solutions of the original problem.
- ▶ The same method applies to minimization problem.
- Multiple constraints can be combined by adding multiple terms.

minimize
$$f(\mathbf{x})$$
 subject to $g_1(\mathbf{x}) = c_1, \ g_2(\mathbf{x}) = c_2$ (10)

is solved with

$$L(\mathbf{x}) = f(\mathbf{x}) + \lambda_1(g_1(\mathbf{x}) - c_1) + \lambda_2(g_2(\mathbf{x}) - c_2).$$
 (11)

Now, we differentiate V' with respect to \mathbf{q} and set to 0:

$$\frac{\partial V'}{\partial \mathbf{q}} = 2\mathbf{q}^{\mathsf{T}} \mathbf{C} - 2\lambda \,\mathbf{q}^{\mathsf{T}} = 0. \tag{12}$$

Rearranging the terms gives

$$\mathbf{q}^{\top}\mathbf{C} = \lambda \,\mathbf{q}^{\top}.\tag{13}$$

Since the covariance matrix C is symmetric (homework), $C^{\top} = C$. So, transposing both sides of Eq. 13 gives

$$\mathbf{C}\,\mathbf{q} = \lambda\,\mathbf{q}.\tag{14}$$

- ▶ Eq. 14 is called an eigenvector equation.
- **q** is the eigenvector.
- \triangleright λ is the eigenvalue.

Thus, the eigenvector \mathbf{q} of \mathbf{C} gives the line that maximizes variance V.

The perpendicular distance d_i of \mathbf{x}_i from the line l is

$$d_i = \|\mathbf{x}_i - y_i \mathbf{q}\| = \|\mathbf{x}_i - (\mathbf{x}_i^{\mathsf{T}} \mathbf{q}) \mathbf{q}\|.$$
 (15)

The squared distance is

$$d_i^2 = \|\mathbf{x}_i - (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q}\|^2 = (\mathbf{x}_i - (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q})^\top (\mathbf{x}_i - (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q})$$
$$= \mathbf{x}_i^\top \mathbf{x}_i - \mathbf{x}_i^\top (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q} - (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q}^\top \mathbf{x}_i + (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q}^\top (\mathbf{x}_i^\top \mathbf{q}) \mathbf{q}$$

With $\mathbf{x}_i^{\mathsf{T}}\mathbf{q}$ being a scalar and $\mathbf{x}_i^{\mathsf{T}}\mathbf{q} = \mathbf{q}^{\mathsf{T}}\mathbf{x}_i$, we obtain

$$d_i^2 = \mathbf{x}_i^\top \mathbf{x}_i - (\mathbf{x}_i^\top \mathbf{q})^2.$$

Averaging over all i gives

$$D = \frac{1}{n} \sum_{i=1}^{n} d_i^2 = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i^{\top} \mathbf{x}_i - V.$$
 (16)

So, maximizing variance V means minimizing mean squared distance D to data points \mathbf{x}_i .

The eigenvalue $\lambda = V$, the variance (homework); so $\lambda \geq 0$.

Name \mathbf{q} as the first eigenvector \mathbf{q}_1 .

The component of \mathbf{x}_i orthogonal to \mathbf{q}_1 is $\mathbf{x}_i' = \mathbf{x}_i - \mathbf{x}_i^{\top} \mathbf{q}_1 \mathbf{q}_1$.

Repeat previous method on \mathbf{x}'_i in an (m-1)-D subspace orthogonal to \mathbf{q}_1 to get \mathbf{q}_2 . Then, repeat to get $\mathbf{q}_3, \ldots, \mathbf{q}_m$.

Eigendecomposition

In general, a $m \times m$ covariance matrix **C** has m eigenvectors:

$$\mathbf{C}\,\mathbf{q}_j = \lambda_j\,\mathbf{q}_j, \quad j = 1,\dots, m. \tag{17}$$

Transpose both sides of the equations to get

$$\mathbf{q}_{j}^{\mathsf{T}}\mathbf{C} = \lambda_{j}\,\mathbf{q}_{j}^{\mathsf{T}}, \quad j = 1,\dots, m, \tag{18}$$

which are row matrices. Stack the row matrices into a column to get

$$\begin{bmatrix} \mathbf{q}_{1}^{\top} \\ \vdots \\ \mathbf{q}_{m}^{\top} \end{bmatrix} \mathbf{C} = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{m} \end{bmatrix} \begin{bmatrix} \mathbf{q}_{1}^{\top} \\ \vdots \\ \mathbf{q}_{m}^{\top} \end{bmatrix}$$
(19)

Denote matrix \mathbf{Q} and $\boldsymbol{\Lambda}$ as

$$\mathbf{Q} = [\mathbf{q}_1 \ \cdots \ \mathbf{q}_m], \quad \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_m). \tag{20}$$

Then, Eq. 19 becomes

$$\mathbf{Q}^{\top}\mathbf{C} = \mathbf{\Lambda}\mathbf{Q}^{\top} \tag{21}$$

or

$$\mathbf{C} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}.\tag{22}$$

This is the matrix equation for eigendecomposition.

Properties:

► The eigenvectors are orthonormal:

$$\mathbf{q}_{j}^{\top}\mathbf{q}_{j} = 1,$$

$$\mathbf{q}_{j}^{\top}\mathbf{q}_{k} = 0, \text{ for } k \neq j.$$
 (23)

So, the eigenmatrix \mathbf{Q} is orthogonal:

$$\mathbf{Q}^{\mathsf{T}}\mathbf{Q} = \mathbf{Q}\,\mathbf{Q}^{\mathsf{T}} = \mathbf{I}.\tag{24}$$

▶ The eigenvalues are arranged to be sorted $\lambda_i \geq \lambda_{i+1}$.

General PCA

In general, the mean μ of the data points \mathbf{x}_i is **not** at the origin. In this case, we subtract μ from each \mathbf{x}_i , obtaining shifted or zero-mean data points $\mathbf{x}_i - \mu$.

PCA transforms \mathbf{x}_i into a new vector \mathbf{y}_i through \mathbf{Q} as follows:

$$\mathbf{y}_{i} = \mathbf{Q}^{\mathsf{T}}(\mathbf{x}_{i} - \boldsymbol{\mu}) = \begin{bmatrix} \mathbf{q}_{1}^{\mathsf{T}}(\mathbf{x}_{i} - \boldsymbol{\mu}) \\ \vdots \\ \mathbf{q}_{m}^{\mathsf{T}}(\mathbf{x}_{i} - \boldsymbol{\mu}) \end{bmatrix} = \sum_{j=1}^{m} (\mathbf{x}_{i} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{q}_{j} \, \mathbf{q}_{j}, \qquad (25)$$

Each component of \mathbf{y}_i is

$$y_{ij} = (\mathbf{x}_i - \boldsymbol{\mu})^{\top} \mathbf{q}_j. \tag{26}$$

This is the projection of $\mathbf{x}_i - \boldsymbol{\mu}$ on \mathbf{q}_i .

The original \mathbf{x}_i can be recovered from \mathbf{y}_i :

$$\mathbf{x}_i = \mathbf{Q} \, \mathbf{y}_i + \boldsymbol{\mu}. \tag{27}$$

Caution!

- $\mathbf{v}_i \neq \mathbf{y}_i + \boldsymbol{\mu}$.
- \mathbf{x}_i is in the original input space but \mathbf{y}_i is in the eigenspace. Let $\hat{\mathbf{x}}_j$ denote the unit vectors that form the input space. \mathbf{q}_j are the eigenvectors that form the eigenspace. Then,

$$\mathbf{x}_{i} = (x_{i1}, x_{i2}, \dots, x_{im}) = \sum_{j=1}^{m} x_{ij} \hat{\mathbf{x}}_{j},$$
 $\mathbf{y}_{i} = (y_{i1}, y_{i2}, \dots, y_{im}) = \sum_{j=1}^{m} y_{ij} \mathbf{q}_{j}.$

Properties of PCA

- ▶ Mean μ_y over all \mathbf{y}_i is $\mathbf{0}$ (homework).
- ▶ Variance σ_j^2 along \mathbf{q}_j is λ_j (homework).
- ▶ Since $\lambda_1 \ge \cdots \ge \lambda_m \ge 0$, so $\sigma_1 \ge \cdots \ge \sigma_m \ge 0$.
- ightharpoonup q₁ gives orientation of the largest variance.
- ▶ **q**₂ gives orientation of largest variance orthogonal to **q**₁ (2nd largest variance).
- ▶ \mathbf{q}_j gives orientation of largest variance orthogonal to $\mathbf{q}_1, \dots, \mathbf{q}_{j-1}$ (j-th largest variance).
- ightharpoonup q_m is orthogonal to all other eigenvectors (least variance).

Data Points

Centroid at Origin

Principal Components

Another Example

Centroid at Origin

Principal Components

PCA Algorithm 1

Let \mathbf{x}_i denote *m*-dimensional vectors (data points), i = 1, ..., n.

1. Compute the mean vector of the data points

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i. \tag{28}$$

2. Compute the covariance matrix

$$\mathbf{C} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\top}.$$
 (29)

3. Perform eigendecomposition of C

$$\mathbf{C} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}.\tag{30}$$

► Some books and papers use sample covariance

$$\mathbf{C} = \frac{1}{n-1} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^{\top}.$$
 (31)

Eq. 31 differs from Eq. 29 by only a constant.

Notes:

- ightharpoonup Covariance matrix **C** is a $m \times m$ matrix.
- ► Eigendecomposition of very large matrix is inefficient.
- ► Example:
 - ▶ A 256×256 colour image has $256 \times 256 \times 3$ values.
 - Number of dimensions m = 196680.
 - ► C has a size of 196608×196608!!
 - Number of images n is usually $\ll m$, e.g., 1000.

PCA Algorithm 2

1. Compute mean μ of data points \mathbf{x}_i .

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$

2. Form a $m \times n$ matrix \mathbf{A} , $n \ll m$:

$$\mathbf{A} = [(\mathbf{x}_1 - \boldsymbol{\mu}) \cdots (\mathbf{x}_n - \boldsymbol{\mu})]. \tag{32}$$

- 3. Compute $\mathbf{A}^{\mathsf{T}}\mathbf{A}$, which is just a $n \times n$ matrix.
- 4. Apply eigendecomposition on $\mathbf{A}^{\mathsf{T}}\mathbf{A}$:

$$(\mathbf{A}^{\mathsf{T}}\mathbf{A})\,\mathbf{q}_j = \lambda_j \mathbf{q}_j\,. \tag{33}$$

5. Pre-multiply A to Eq. 33 giving

$$\mathbf{A}\mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{q}_{i} = \mathbf{A}\lambda_{i}\mathbf{q}_{i}.\tag{34}$$

6. Recover eigenvectors and eigenvalues.

Since $\mathbf{A}\mathbf{A}^{\top} = n\mathbf{C}$ (homework), Eq. 34 is

$$n\mathbf{C}(\mathbf{A}\mathbf{q}_j) = \lambda_j(\mathbf{A}\mathbf{q}_j)$$
 (35)

$$\mathbf{C}(\mathbf{A}\mathbf{q}_j) = \frac{\lambda_j}{n}(\mathbf{A}\mathbf{q}_j). \tag{36}$$

Therefore, eigenvectors of \mathbf{C} are \mathbf{Aq}_j , and eigenvalues of \mathbf{C} are λ_i/n .

PCA Algorithm 3

1. Compute mean μ of data points \mathbf{x}_i .

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i.$$

2. Form a $m \times n$ matrix **A**:

$$\mathbf{A} = [(\mathbf{x}_1 - \boldsymbol{\mu}) \cdots (\mathbf{x}_n - \boldsymbol{\mu})].$$

3. Apply singular value decomposition (SVD) on A:

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}.$$

4. Recover eigenvectors and eigenvalues (page 31).

Singular Value Decomposition

Singular value decomposition (SVD) decomposes a matrix \mathbf{A} into

$$\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top}. \tag{37}$$

- ▶ Column vectors of **U** are left singular vectors \mathbf{u}_j , and \mathbf{u}_j are orthonormal.
- ► Column vectors of **V** are right singular vectors \mathbf{v}_j , and \mathbf{v}_i are orthonormal.
- \triangleright Σ is diagonal and contains singular values s_i .
- ightharpoonup Rank of A = number of non-zero singular values.

Notice that

$$\mathbf{A}\mathbf{A}^{\!\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top} \left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top}\right)^{\!\top} = \mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top}\mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\!\top} = \mathbf{U}\boldsymbol{\Sigma}^2\mathbf{U}^{\!\top}$$

and eigendecomposition of $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ is

$$\mathbf{A}\mathbf{A}^{\!\top} = \mathbf{Q}\boldsymbol{\Lambda}\mathbf{Q}^{\!\top}.$$

So, eigenvector of $\mathbf{A}\mathbf{A}^{\top} = \mathbf{u}_j$, eigenvalue of $\mathbf{A}\mathbf{A}^{\top} = s_j^2$.

On the other hand,

$$\mathbf{A}^{\!\top}\!\mathbf{A} = \left(\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top}\right)^{\!\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top} = \mathbf{V}\boldsymbol{\Sigma}\mathbf{U}^{\!\top}\mathbf{U}\boldsymbol{\Sigma}\mathbf{V}^{\!\top} = \mathbf{V}\boldsymbol{\Sigma}^2\mathbf{V}^{\!\top}.$$

Compare with the eigendecomposition of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$:

$$\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\mathsf{T}}.$$

So, eigenvector of $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{v}_{j}$, eigenvalue of $\mathbf{A}^{\mathsf{T}}\mathbf{A} = s_{i}^{2}$.

4. Recover eigenvectors and eigenvalues.

Compare $\mathbf{A}\mathbf{A}^{\top} = n\mathbf{C}$ with eigendecomposition of \mathbf{C} :

$$\mathbf{A}\mathbf{A}^{\top} = \mathbf{U}\mathbf{\Sigma}^{2}\mathbf{U}^{\top},$$
$$\mathbf{C} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^{\top}.$$

Therefore, eigenvectors \mathbf{q}_j of $\mathbf{C} = \mathbf{u}_j$ in \mathbf{U} , and eigenvalues λ_j of $\mathbf{C} = s_j^2/n$, for s_j in Σ .

Application Examples

Identify the 1st and 2nd major axes of these objects.

Apply PCA for line fitting in 2-D.

Compute PCA of the points. Then,

- ightharpoonup mean of points = a point on line
- ▶ 1st eigenvector = unit vector along line

Apply PCA for plane fitting in 3-D.

Compute PCA of the points. Then,

- ightharpoonup mean of points = a point on plane
- ▶ 3rd eigenvector = unit normal vector of plane

Dimensionality Reduction

If a point represents a 256×256 colour image, then the dimensionality is $256 \times 256 \times 3 = 196680!!$

But, not all 196680 eigenvalues are non-zero.

Case 1: Number of data vectors $n \leq m$ number of dimensions.

- ▶ Data vectors are all independent. Then, number of non-zero eigenvalues (eigenvectors) = n-1, i.e., rank of covariance matrix = n-1. Why not = n?
- ▶ Data vectors are not independent. Then, rank of covariance matrix < n - 1.

Case 2: Number of data vectors n > m.

- \blacktriangleright m or more independent data vectors. Then, rank of covariance matrix = m.
- ► Fewer than m data vectors are independent. In this case, what is the rank of covariance matrix?

In practice, it is often possible to reduce the dimensionality.

Eigenmatrix \mathbf{Q} is

$$\mathbf{Q} = [\mathbf{q}_1 \ \cdots \ \mathbf{q}_m] \,. \tag{38}$$

PCA maps a data point \mathbf{x} to a vector \mathbf{y} in the eigenspace as

$$\mathbf{y} = \mathbf{Q}^{\top}(\mathbf{x} - \boldsymbol{\mu}) = \sum_{j=1}^{m} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{q}_{j} \mathbf{q}_{j},$$
(39)

which has m dimensions.

Pick l eigenvectors with the largest eigenvalues to form truncated $\hat{\mathbf{Q}}$:

$$\widehat{\mathbf{Q}} = [\mathbf{q}_1 \ \cdots \ \mathbf{q}_l], \tag{40}$$

which spans a subspace of the eigenspace.

Then, $\widehat{\mathbf{Q}}$ maps \mathbf{x} to $\widehat{\mathbf{y}}$, an estimate of \mathbf{y} :

$$\widehat{\mathbf{y}} = \widehat{\mathbf{Q}}^{\top}(\mathbf{x} - \boldsymbol{\mu}) = \sum_{j=1}^{l} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{q}_{j} \mathbf{q}_{j}, \tag{41}$$

which has l < m dimensions.

Difference between \mathbf{y} and $\hat{\mathbf{y}}$ is

$$\mathbf{y} - \widehat{\mathbf{y}} = \sum_{j=l+1}^{m} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{q}_{j} \mathbf{q}_{j}.$$
 (42)

Beware:

$$\mathbf{y} = \mathbf{Q}^{\top}(\mathbf{x} - \boldsymbol{\mu})$$

and, therefore,

$$\mathbf{x} = \mathbf{Q}\,\mathbf{y} + \boldsymbol{\mu}.$$

But,

$$\widehat{\mathbf{y}} = \widehat{\mathbf{Q}}^{\top} (\mathbf{x} - \boldsymbol{\mu}),$$

whereas

$$\widehat{\mathbf{x}} = \widehat{\mathbf{Q}}\,\widehat{\mathbf{y}} + \boldsymbol{\mu} \neq \mathbf{x}.\tag{43}$$

Why?

With n data points \mathbf{x}_i , sum-squared error E between \mathbf{x}_i and its estimate $\hat{\mathbf{x}}_i$ is

$$E = \sum_{i=1}^{n} \|\widehat{\mathbf{x}}_i - \mathbf{x}_i\|^2. \tag{44}$$

When all m dimensions are kept, the total variance is

$$\sum_{j=1}^{m} \sigma_j^2 = \sum_{j=1}^{m} \lambda_j. \tag{45}$$

When l dimensions are used, the ratio R' of unaccounted variance is:

$$R'(l) = \frac{\sum_{j=l+1}^{m} \sigma_j^2}{\sum_{j=1}^{m} \sigma_j^2} = \frac{\sum_{j=l+1}^{m} \lambda_j}{\sum_{j=1}^{m} \lambda_j}.$$
 (46)

A sample plot of R' vs. number of dimensions used:

How to choose appropriate l?

Choose l such that larger than l doesn't reduce R' significantly:

$$R'(l) - R'(l+1) < \epsilon. \tag{47}$$

Alternatively, compute ratio R of accounted variance:

the ratio
$$R$$
 of accounted variance:
$$R(l) = \frac{\sum_{j=1}^{l} \sigma_j^2}{\sum_{m=1}^{l} \lambda_j} = \frac{\sum_{j=1}^{l} \lambda_j}{\sum_{j=1}^{m} \lambda_j}.$$
(48)

l is large enough if $R(l+1) - R(l) < \epsilon$.

Summary

- ► Eigendecomposition of covariance matrix = PCA.
- ▶ In practice, PCA is computed using SVD.
- ▶ PCA maximizes variances along the eigenvectors.
- ► Eigenvalues = variances along eigenvectors.
- ▶ Best fitting plane computed by PCA minimizes distance to points.
- ▶ PCA can be used for dimensionality reduction.

Probing Questions

- ▶ When applying PCA to plane fitting, how to check whether the points really lie close to the plane?
- ▶ If you apply PCA to a set of points on a curve surface, where do you expect the eigenvectors to point at?
- ▶ In dimensionality reduction, the m-D vector \mathbf{y} is reduced to a l-D vector $\widehat{\mathbf{y}}$. Since $l \neq m$, vector subtraction is undefined. But, subtraction of Eq. 39 and 41 gives

$$\mathbf{y} - \widehat{\mathbf{y}} = \sum_{j=l+1}^{m} (\mathbf{x} - \boldsymbol{\mu})^{\top} \mathbf{q}_j \mathbf{q}_j.$$

How is this possible? Is there a contradiction?

▶ Show that when $n \le m$, there are at most n-1 eigenvectors.

Homework I

- 1. Describe the essence of PCA in one sentence.
- 2. Show that the covariance matrix C of a set of data points \mathbf{x}_i , $i = 1, \ldots, n$, is symmetric about its diagonal.
- 3. Show that the eigenvalue λ of covariance matrix \mathbf{C} equals the variance V as defined in Eq. 2.
- 4. Show that the mean μ_{y} over all \mathbf{y}_{i} in the eigenspace is 0.
- 5. Show that the variance σ_j^2 along eigenvector \mathbf{q}_j is λ_j .
- 6. Show that $\mathbf{A}\mathbf{A}^{\top} = n\mathbf{C}$.
- 7. Derive the difference $\mathbf{Q}\mathbf{y} \widehat{\mathbf{Q}}\widehat{\mathbf{y}}$ in dimensionality reduction.

Homework II

- 8. Suppose $n \leq m$, and the truncated eigenmatrix $\widehat{\mathbf{Q}}$ contains all the eigenvectors with non-zero eigenvalues, $\widehat{\mathbf{Q}} = [\mathbf{q}_1 \cdots \mathbf{q}_{n-1}]$. Now, map an input vector \mathbf{x} to \mathbf{y} and $\widehat{\mathbf{y}}$ respectively by the
 - complete \mathbf{Q} (Eq. 39) and the truncated $\widehat{\mathbf{Q}}$ (Eq. 41). What is the error $\mathbf{y} \widehat{\mathbf{y}}$?
 - What is the result of mapping $\hat{\mathbf{y}}$ back to the input space by $\hat{\mathbf{Q}}$ (Eq. 43)?
- 9. Q3 of AY2015/16 Final Evaluation.

References

1. G. Strang, *Introduction to Linear Algebra*, 4th ed., Wellesley-Cambridge, 2009.

www-math.mit.edu/~gs

2. C. Shalizi, Advanced Data Analysis from an Elementary Point of View, 2015.

www.stat.cmu.edu/~cshalizi/ADAfaEPoV