Inverse Dirichlet-to-Neumann problem for compact surfaces in \mathbb{R}^3 G.M.Henkin

Abstract of the talk at the international seminar "Quasilinear equations and inverse problems" Moscow 07.08.2012

Let X be a compact or bordered connected oriented two dimensional surface in \mathbb{R}^3 equipped with a constant scalar conductivity or equivalently with conformal structure induced by the standard euclidean metric of \mathbb{R}^3 . Let $\bar{\partial}$ be corresponding Cauchy-Riemann operator, $d^c = i(\bar{\partial} - \partial)$ and $d = \partial + \bar{\partial}$.

Solution of the Dirichlet problem on such surface has the following electrostatic formulation.

Theorem (Riemann, 1851, Klein, 1881).

Let u be an "electrical" potential on bX (this assumption is empty, when X is compact surface) and X has "electrical" real charges $\pm c_j$ concentrated at points a_j^{\pm} , $1 \leq j \leq \nu$ ($\sum c_j = 0$ when X is compact). Then there exists unique "electrical" potential U on X, extending (when X is non compact) u to X, such that $dd^cU = 0$ on $X \setminus \{a_j^{\pm}, 1 \leq j \leq \nu\}$ and the residues $Res_{a_j^{\pm}}(d^cU)$ of d^cU at a_j^{\pm} are $\pm c_j$, $1 \leq j \leq \nu$.

Gelfand, 1962, has formulated the following inverse problem: whether the conformal structure of compact surface $X \subset \mathbb{R}^3$ can be reconstructed from spectre of laplacian dd^c on X?

Related inverse problem was formulated recently by R.Wentworth, 2010: how to reconstruct the conformal structure of compact Riemann surface X from inverse Dirichletto-Neumann type data on X collected in some small domain $D \subset X$?

The theorem below gives for compact surfaces in \mathbb{R}^3 the result inverse to the formulated Riemann-Klein result and gives also the constructive answer to the question of R.Wentworth.

The following theorem is development of the constructive inverse Dirichlet-to-Neumann result for the bordered surfaces (Henkin, Michel, 2007).

Theorem (Henkin, Michel, 2012).

Let X and X' be compact connected oriented two dimensional surfaces in \mathbb{R}^3 equipped with the conformal structures, induced by the euclidean metric of \mathbb{R}^3 . Assume that $X \cap X'$ contains smoothly bordered domain D, in which three pairs of mutually distinct points a_l^{\pm} are given with fixed "electrical" non zero charges $\pm c_l$, l=0,1,2. Let $U_l(resp.U'_l)$ be harmonic functions on $X \setminus \{a_l^{\pm}\}(resp.X' \setminus \{a_l^{\pm}\})$ generated by these data such that $U_l|_D = U'_l|_D$ and forms $\partial U_l(resp.\partial U'_l)$ have simple poles at a_l^{\pm} with residues $\pm c_l$, l=0,1,2. Then there is biholomorphism between X and X'. Moreover, X can be explicitly reconstructed from non degenerated meromorphic mapping

$$F = \left(\frac{\partial U_1}{\partial U_0}, \frac{\partial U_2}{\partial U_0}\right) : D \to \mathbb{C}^2.$$