

Agenda

- Einführung
- 2. Wiederholung BB84
- 3. Qubits und Messbasen
- 4. Zusammengesetzte Systeme
- Verschränkung
- 6. Anwendung von Verschränkung
- 7. Shared Randomness
- 8. Schmidt-Darstellung
- 9. Dichtematrizen
- 10. Partielle Spur

- 11. Verschränkungsmaß
- 12. Entropie und Monogamie
- 13. Entanglement Swapping
- 14. Entanglement Distillation
- 15. CHSH-Ungleichung (klassisch)
- 16. CHSH-Ungleichung (Quantenversion)
- 17. CHSH-Ungleichung (Simulation)
- 18. Ekert-Protokoll
- 19. Sicherheit und DIQKD
- 20. Zusammenfassung

Quantenkryptographie

Qubits

- Qubits werden (immer) bezüglich einer Basis angegebe
- Darstellung eines Qubits bezüglich der Standardbasis:

- Bemerkung: $\alpha, \beta \in \mathbb{C}$ und $|\alpha|^2 + |\beta|^2 = 1$
- Globale Phase ist weitere Freiheitsgrad

$$- |\Psi\rangle \equiv e^{i\gamma} |\Psi\rangle$$

Hat physikalisch keine Relevanz.

Bloch-Kugel-Darstellung

$$|\Psi\rangle = \cos\frac{\theta}{2} |0\rangle + e^{i\phi} \sin\frac{\theta}{2} |1\rangle$$

 $\quad \text{Mit } 0 \le \theta \le \pi \text{ und } 0 \le \phi \le 2\pi$

Quantenkryptographie

Hadamard-Basis

- Qubits können bezüglich verschiedener Basen dargestellt werden.
- Ein weitere oft verwendete Basis ist die Hadamard-Basis:

$$|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), |-\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Somit gilt: $|0\rangle = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle), |1\rangle = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle = \frac{\alpha + \beta}{\sqrt{2}} |+\rangle + \frac{\alpha - \beta}{\sqrt{2}} |-\rangle$$

- Bemerkung zur Hadamard-Basis:
 - Spiegelung an Ursprungsgeraden mit Winkel $\alpha = \frac{\pi}{8} = 22,5^{\circ}$ zur positiven x-Achse.

Quantenkryptographie

Basiswechsel

- Im Folgenden beschränken wir uns auf reelle Koeffizienten.
 - Bleiben in der (x,z)-Ebene der Blochkugel.
- Durch Drehung der Standardbasis entstehen ebenfalls neue Basen

$$|\phi\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$$

$$|\phi^{\perp}\rangle = -\sin\phi |0\rangle + \cos\phi |1\rangle$$

Matrixoperation:

- Es gilt
 - $|\phi\rangle = R(\phi)|0\rangle$
 - $|\phi^{\perp}\rangle = R(\phi)|1\rangle$

Quantenkryptographie

Qubits: Eigenbasis

- Allgemeine Darstellung eines Qubits bezüglich der Standardbasis
- Einführung einer speziellen (Eigen-) Basis
 - $|b\rangle = R(\phi) |0\rangle$
 - $|b^{\perp}\rangle = R(\phi) |1\rangle$

$$|\Psi\rangle = 1 |b\rangle$$

Quantenkryptographie

Basiswechsel

- Darstellung der $\{|\phi\rangle, |\phi^{\perp}\rangle\}$ -Basis in der Standardbasis:
 - $|\phi\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$
 - $|\phi^{\perp}\rangle = -\sin\phi |0\rangle + \cos\phi |1\rangle$

- Darstellung der Standardbasis in der $\{|\phi\rangle, |\phi^{\perp}\rangle\}$ -Basis :
 - $|0\rangle = \cos\phi |\phi\rangle \sin\phi |\phi^{\perp}\rangle$
 - $|1\rangle = \sin \phi |\phi\rangle + \cos \phi |\phi^{\perp}\rangle$

Quantenkryptographie

Beispiel

Darstellung von

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

- In der $\{|\phi\rangle, |\phi^{\perp}\rangle\}$ -Basis:
 - $|\phi\rangle = \cos\phi |0\rangle + \sin\phi |1\rangle$
 - $|\phi^{\perp}\rangle = -\sin\phi |0\rangle + \cos\phi |1\rangle$
- Einsetzen von:
 - $|0\rangle = \cos\phi |\phi\rangle \sin\phi |\phi^{\perp}\rangle$
 - $|1\rangle = \sin \phi |\phi\rangle + \cos \phi |\phi^{\perp}\rangle$

ergibt

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle = (\alpha\cos\phi + \beta\sin\phi)|\phi\rangle + (-\alpha\sin\phi + \beta\cos\phi)|\phi^{\perp}\rangle$$

Quantenkryptographie

- Ein Qubit |Ψ⟩ soll bezüglich einer gedrehten Basis gemessen werden.
 - Messen können wir aber (in vielen Fällen) nur in der Standardbasis.
- Idee: Gedrehtes Basissystem (plus Qubit $|\Psi\rangle$) zurückdrehen auf Standardbasis und Standardmessung vornehmen.

Quantenkryptographie

• Entspricht einer Drehung des Qubits $|\Psi\rangle$ nach rechts und Messung in der Standardbasis.

Quantenkryptographie

Rotationsgatter $RY(\theta)$

- Qubit-Gatter werden oft (bei Qiskit) durch ihre Wirkung auf der Bloch-Kugel beschrieben.
- Mit Rotationsgattern kann man Zustandsvektoren um eine der drei Achsen der Bloch-Kugel drehen.
 - Das $RY(\theta)$ dreht einen Zustandsvektor um den Winkel θ um die y-Achse der Bloch-Kugel (Drehung in der (x,z)-Ebene).
 - Beachte: $0 \le \theta \le \pi$ und $0 \le \phi \le 2\pi$
 - Matrixdarstellung:

$$RY(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \frac{\theta}{\sin\frac{\theta}{2}} & \cos\frac{\theta}{2} \end{pmatrix}$$

Quantenkryptographie

- Rotation mit einem RY-Gatter (definiert auf der Bloch-Kugel)
 - Beachte: $0 \le \theta \le \pi$ (Drehung von $|0\rangle$ Richtung $|1\rangle$)

$$RY(\theta) = \begin{pmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \frac{\theta}{\sin\frac{\theta}{2}} & \cos\frac{\theta}{2} \end{pmatrix}$$

• Messung in eine um den Winkel ϕ gedrehte Basis entspricht einem Zurückdrehen um den "doppelten" Winkel mit $RY(\theta)$ und Messung in der Standardbasis.

Quantenkryptographie

Zusammenfassung

Allgemeine Darstellung eines Qubits bezüglich der Standardbasis:

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle$$

Darstellung eines Qubits bezüglich einer gedrehten Basis:

$$|\Psi\rangle = \alpha_{\phi}|\phi\rangle + \beta_{\phi}|\phi^{\perp}\rangle$$

Darstellung in der "Eigenbasis":

$$|\Psi\rangle = 1 |b\rangle$$

 Messung in einer gedrehten Basis entspricht einer "Rückdrehung" und anschließender Messung in der Standardbasis.

Quantenkryptographie

