

AZ-300T03 Module 03: Deploying and Managing Virtual Machines (VMs)

Ahmad Majeed Zahoory

1

Module 03: Deploying and Managing Virtual Machines (VMs)

Lesson 01: Creating Virtual Machines in the Azure Portal

Creating Virtual Machines (Portal)

High level steps:

- 1. Select a Marketplace image.
- 2. Provide required information, including:

VM name

Administrative credentials

Virtual network and subnet

Storage type

3. Provide optional information, including:

Availability settings

VM extensions

4. Provision the machine.

3

Virtual Machine Example (Part 1)

A sample provisioning (steps 1-3):

1. Set the credentials of the administrator account:

\$cred = Get-Credential

2. Create the initial configuration for the virtual machine:

\$vm = New-AzureRmVMConfig -VMName myVM -VMSize Standard_D1

3. Add the operating system information to the virtual machine configuration:

\$vm = Set-AzureRmVMOperatingSystem`

- -VM \$vm`
- -Windows `
- -ComputerName myVM `
- -Credential \$cred`
- -ProvisionVMAgent -EnableAutoUpdate

Virtual Machine Example (Part 2)

A sample provisioning (steps 4-7):

4. Add the image information to the virtual machine configuration:

\$vm = Set-AzureRmVMSourceImage -VM \$vm -PublisherName MicrosoftWindowsServer `

-Offer WindowsServer -Skus 2016-Datacenter -Version latest

5. Add the operating system disk settings to the virtual machine configuration:

\$vm = Set-AzureRmVMOSDisk -VM \$vm -Name myOsDisk -DiskSizeInGB 128 `

-CreateOption FromImage -Caching ReadWrite

6. Add the network interface card to the virtual machine configuration:

\$vm = Add-AzureRmVMNetworkInterface`

-VM \$vm -Id \$nic.Id

7. Create the virtual machine:

New-AzureRmVM `

- -Location EastUS `
- -VM \$vm `
- -ResourceGroupName myResourceGroupVM

5

Moving Virtual Machines Between Resource Groups

Supported by using the Azure Portal, PowerShell, CLI, and REST API Azure PowerShell-based example:

1. Identify ResourceId of all of the dependent resources:

 ${\bf Get-Azure RMR e source - Resource Group Name < source Resource Group Name > | \ Format-table - Property Resource Id | \ The source of the$

2. Create a comma separated list of the Resourcelds and use the list as input of the Move-AzureRMResource cmdlet:

 ${\bf Move-AzureRmRe source - DestinationRe source Group Name "< my DestinationRe source Group > "``in the control of the contr$

- -ResourceId < myResourceId, myResourceId, myResourceId>
- 3. For cross-subscriptions moves, include the -DestinationSubscriptionId parameter.

 $Move-Azure RmResource \ - Destination Subscription ID > "`` and the property of the property$

- -DestinationResourceGroupName "<myDestinationResourceGroup>" `
- $\hbox{-ResourceId} < \hbox{myResourceId,myResourceId} >$

Linux Virtual Machines

Azure supports many Linux distributions including:

- · CentOS by OpenLogic
- · Core OS
- · Debian
- · Oracle Linux
- · Red Hat Enterprise Linux
- · Ubuntu.

- · Created with Bitnami
- · Certified for Azure

Linux VMs support the same deployment options as Windows VMs Linux VMs support open-source DevOps tools, e.g. Puppet and Chef

Debian Linux

Clear Linux OS

SUSE Linux Enterprise

7

Linux VM Connections

When you create a Linux VM, you can decide to authenticate with an SSH public key or Password.

What is SSH?

SSH is an encrypted connection protocol that allows secure sign-ins over unsecured connections.

The preferred method of connecting to a VM using SSH is by using a public-private key pair:

- •The *public key* is placed on your Linux VM, or any other service that you wish to use with public-key cryptography.
- •The *private key* remains on your local system. Protect this private key. Do not share it.

Windows VM Connections

- Remote Desktop Protocol (RDP) creates a GUI session and accepts inbound traffic on TCP port 3389
- WinRM creates a command-line session so can run scripts

9

Module 03: Deploying and Managing Virtual Machines (VMs)

Lesson 02: Backup and Restore

Azure Site Recovery (ASR) Scenarios

- Replicate Azure VMs from one Azure region to another
- Replicate on-premises VMware VMs, Hyper-V VMs, physical servers (Windows and Linux), Azure Stack VMs to Azure
- Replicate on-premises VMware VMs, Hyper-V VMs managed by System Center VMM, and physical servers to a secondary site

11

Virtual Machine Data Protection

- Managed snapshots provide a quick and simple option for backing up VMs that use Managed Disks
- Azure Backup supports application-consistent backups for both Windows and Linux VMs
- · Azure Site Recovery protects your VMs from a major disaster scenario when a whole region experiences an outage

Workload Protection Needs

- · Many backup options are available
- How the workload is being protected today?
- How often is the workload is backed up?
- What types of backups are being done?
- · Is disaster recovery protection in place?

13

Azure to Azure Architecture

Source Environment (East US)

Storage
Account

Data
Flow

Failover

Target Environment (Central US)

Storage
Account

Storage
Account

Failover

- 1. VM is registered with Azure Site Recovery
- 2. Data is continuously replicated to cache
- 3. Cache is replicated to the target storage account
- 4. During failover the virtual machine is added to the target environment

Recovery Services Vault VM Backup Options

Azure Workloads

✓ Multiple servers can be protected using the same Recovery Services vault

· On-Premises Workloads

15

Implementing VM Backups

- 1. Use a Recovery Services vault in the region where you want to store the data To backup your files and folders. Also determine how you want your storage replicated.
- 2. Take snapshots (recovery points) of your data at defined intervals. These snapshots are stored in recovery services vaults.
- 3. For the Backup extension to work, the Azure VM Agent must be installed on the Azure virtual machine.

Implementing VM Restore

- Once you trigger the restore operation, the Backup service creates a job for tracking the restore operation
- The Backup service also creates and temporarily displays notifications, so you monitor how the backup is proceeding

17

Azure Backup Server

Specialized Workloads
Virtual Machines
Files/Folders/Volumes

System Center DPM
Or Azure Backup Server

Azure

- App-aware backups, file/folder/volume backups, and machine state backups (bare-metal, system state)
- Each machine runs the DPM/MABS protection agent, and the MARS agent runs on the MABS/DPM
- · Flexibility and granular scheduling options
- · Manage backups for multiple machines in a protection group

Backup Component Comparison

Component	Benefits	Limits	Protects	Backup Storage
Azure Backup (MARS) agent	 Backup files and folders on physical or virtual Windows OS No separate backup server required. 	 Backup 3x per day Not application aware File, folder, and volume-level restore only No support for Linux 	• Files • Folders	Recovery services vault
Azure Backup Server	App aware snapshots Full flex for when to backups Recovery granularity Linux support on Hyper-V and VMware VMs Backup and restore VMware VMs Doesn't require a System Center license	Cannot backup Oracle workloads Always requires live Azure subscription No support for tape backup	• Files • Folders, • Volumes • VMs • Applications • Workloads	Recovery services vault Locally attached disk

19

Module 03: Deploying and Managing Virtual Machines (VMs)

Lesson 03: Virtual Machine Extensions

Virtual Machine Extensions

- Extensions are small applications that provide post-deployment VM configuration and automation tasks
- Managed with Azure CLI, PowerShell, Azure Resource Manager templates, and the Azure portal
- Bundled with a new VM deployment or run against any existing system
- Different for Windows and Linux machines.

21

Custom Script Extensions

- Extension scripts can be simple or complex
- · Extensions have 90 minutes to run
- Double check dependencies to ensure availability
- Account for any errors that might occur
- · Protect/encrypt sensitive information

Install extension

* Script file (Required) 🚯

✓ For PowerShell use the Set-AzVmCustomScriptExtension command

Desired State Configuration

- · Configuration block(s) have a name
- Node blocks define the computers or VMs that you are configuring
- Resource block(s) configure the resource and it's properties
- There are many built-in configuration resources

```
configuration IISInstall
{
   Node "localhost"
   {
     WindowsFeature IIS
     {
        Ensure = "Present"
        Name = "Web-Server"
     }
   }
}
```

23

Module 03: Deploying and Managing Virtual Machines (VMs)

Lesson 04: Monitoring Virtual Machines

Monitoring

The Azure VM Overview blade in the Azure portal shows:

- · CPU
- · Network
- · Disk bytes
- Disk operations

The Azure VM Monitoring section in the Azure portal shows:

- · Metrics
- · Diagnostic settings
- Advisor recommendations
- · Diagram.

25

Advisor Recommendations

Personalized cloud service for optimizing Azure deployments:

- · Analyzes resource configuration and usage telemetry
- Offers recommendations grouped in four categories:
 - · High availability: To ensure and improve the continuity of your business-critical applications.
 - · Security: To detect threats and vulnerabilities that might lead to security breaches.
 - · Performance: To improve the speed of your applications.
 - · Cost: To optimize and reduce your overall Azure spending.

LAB [300TO01-M03-01]

 Build DR Solution for Application to Maintain Business Continuity (Minimum RPO & RTO).

27

29

LAB [300TO01-M03-01]

- 1. Build DR Solution for Application to Maintain Business Continuity (Minimum RPO & RTO).
 - a. Services, Tools & Code used
 - i. Azure Windows Virtual Machine
 - ii. IIS Web Server
 - iii. HTML Code
 - iv. Windows PowerShell Script
 - v. Azure Data Disk

- vii. Azure Disk Snapshot
- viii. Azure Storage
- ix. Azure Blob
- x. Azure PowerShell
- xi. Custom Script Extension

Duration: 60 mnts.

