

Data Structures & Algorithms (F28DA) Complexity

Kathrin Stark Heriot-Watt University, 2024

Reminder: Complexity

Illustration of Growth Rates

Fundamentals of Data Structures, E Horowitz & S Sahni, 1998.

Intro to Data Structures & Algorithms (F28SG)

Introduction to Complexity

Rob Stewart

Disclaimer:

We assume you to know what you learned in F28SG.

The next slides are **not** teaching these parts but only a **reminder**.

The pink frame means: You should know this from before!

Today You'll

- Learn the **formal definition of O-notation** for expressing algorithmic complexity.
- Explore how the O-notation definition justifies **simplifying terms** and categorizing into **different complexity classes**.
- Discover methods for inferring complexity classes from actual program runtimes.
- Learn how some common patterns translate into complexity.
- Gain insights into the concept of brute force algorithms and its implications.

Slide by Matt Stallmann included with permission.

Comparison of Two Algorithms

insertion sort is $n^2 / 4$

merge sort is 2 n lg n

sort a million items?

insertion sort takes roughly 70 hours

while

merge sort takes roughly 40 seconds

This is a slow machine, but if 100 x as fast then it's 40 minutes versus less than 0.5 seconds

Reminder: Why Growth Rate Matters

Slide by Matt Stallmann included with permission.

Complexity From a Program's Runtime

if runtime is	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
c n lg n	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n²	16c n ²
c n³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples when problem size doubles Note: This table can also help us if we want to guess the complexity from a program's runtime.

A Formal Definition of Big O Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for $n \ge n_0$.

Why this definition?

- n0 We care only about the **asymptotic** behaviour (= for big inputs).
- c With different hardware we cannot influence constant factors.

With this formal definition of O-notation, we can

- 1. show why the previous simplifications are valid.
- 2. show that the previous **classes** are indeed different.

Simplifying Functions

Last Lecture

- In Big-O try to write functions in the simplest terms
- · Rules are used to simplify terms
 - drop lower-order terms
 - drop constant factors
- For example: 6N+5
 - 1. we drop the lower-order term 5 (left with 6N)
 - 2. we drop the constant 6 (left with N)
 - 3. meaning it is expressed by the linear function O(N)
- Another example: $5n^3 + 2n^2 + 3n 4$
 - 1. drop the lower terms: 2n², 3n and 4
 - 2. drop the constant 5
 - 3. meaning it is the cubic function O(n³)

Next lecture: Why are these simplifications justified?

Simplification – Example 1

• Example: 2n + 10 is O (n).

Simplification – Example 2

• $Example: 2n^2 + 3n \text{ is } O(n^2).$

Simplification – Example 3

• $Example: 3 \log n + 5 \text{ is } O(\log n).$

General Laws

Let f_1 be a function in $O(g_1)$, f_2 be a function in $O(g_2)$, and k be a nonzero constant.

```
Let further f + g, \max(f,g) and k * f be defined by  (f + g)(n) = f(n) + g(n)  (\max(f,g))(n) = \max(f(n),g(n))  (k * f)(n) = k * f(n)
```

Then:

- 1. $f_1 + f_2$ is in $O(\max(g1, g2))$.
- 2. $k * f_1 \text{ is in } O(g_1).$

You will prove 2. on next week's assignment.

Proof of Sums O-Notation

Let f_1 be a function in $O(g_1)$, f_2 be a function in $O(g_2)$. Then $f_1 + f_2$ is in $O(\max(g_1, g_2))$.

Proof.

Examples of Growth Rates

Common Functions

- We then need to simplify the function
- The following functions are very commonly used:
 - -O(1) the constant function
 - -O(log n) the logarithmic function
 - -O(n) the linear function
 - -O(n log n) the n-log-n function
 - -O(n2) the quadratic function
 - $-O(n^3)$ the cubic function
 - -O(2ⁿ) the exponential function
- This are listed in order of complexity
 - -O(1) is the simplest, while $O(2^n)$ is the most complex
- We will come across and introduce the **bold** functions during this course

Next lecture: We will see why all these are

- different orders of complexity.
- the order holds.

(This requires the exact definition of O-notation.)

Illustration of Growth Rates

Fundamentals of Data Structures, E Horowitz & S Sahni, 1998

Example:

The function $f(n) = n^2$ is not O(n).

Big O and Growth Rate

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.

=> The Big O notation gives an **upper bound** on the growth rate of a function: The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n).

Let

$$f_1(n) = 1$$

 $f_2(n) = n$
 $f_3(n) = n^2$

Are the following statements true or false?

- a) $f_2(n)$ is $O(f_2(n))$
- b) $f_1(n)$ is $O(f_2(n))$
- c) $f_3(n)$ is $O(f_2(n))$

Related Complexity Notations

O(n)

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that $f(n) \le cg(n)$ for $n \ge n_0$.

Intuition: "f(n) is O(g(n))" ~ the growth rate of f(n) is no more than the growth rate of g(n)

$\Omega(n)$

Given functions f(n) and g(n), we say that f(n) is Ω (g(n)) if there are positive constants c and n_0 such that $f(n) \ge cg(n)$ for $n \ge n_0$.

Intuition: "f(n) is $\Omega(g(n))$ " ~ the growth rate of f(n) is more than the growth rate of g(n)

$\Theta(n)$

Given functions f(n) and g(n), we say that f(n) is Θ (g(n)) if f(n) = O(g(n)) and f(n) = O(g(n)).

Intuition: "f(n) is $\Theta(g(n))$ " ~ the growth rate of f(n) is corresponds to the growth rate of g(n)

Later (second half): Amortized cost.

See an alternative definition for Θ (g(n)) on next week's exercise sheet.

Common Patterns

Nested Loops

```
for (int i = 0; i < n; i++)

for (int j = 0; j < n; j++)

\{ \dots f(i,j) \dots \}
```

... if a loop contains another loop, we can usually multiply the run times.

What is the asymptotic runtime if

- a) f(i,j) requires constant time
- b) f(i,j) requires O(n) time
- c) f(i,j) requires O(log n) time
- d) f(i,j) requires $O(2^n)$ time

Common Patterns Loop Variables Halving

```
for (int i = n; i > 0; i /= 2)
{ ... constant time ... }
```

What's the runtime?

... if the loop variable halves each time, this is **usually** an indication of a log(n) factor.

Note: See also next lecture!

This gets more complicated together with recursive calls.

Common Patterns Recursion 1

```
Algorithm Factorial
Input: A non-negative integer n
Output: The factorial of n (n!)

if n equals 0 then
    return 1  // Base case: 0! = 1

else
    return n * Factorial(n - 1)
```

What is the asymptomatic runtime?

Common Patterns

Recursion 2

```
Algorithm fibonacci
Input: An integer n (position of the Fibonacci number)
Output: The nth Fibonacci number

if n <= 1 then
    return n // Base case: fibonacci(0) = 0, fibonacci(1) = 1

return fibonacci (n-1) + fibonacci (n-2)</pre>
```

What's the runtime?

Attention: Follow the argument and how often recursion is called.

These are relatively easy examples – more next week.

Common Design Techniques and their Runtime An Outlook

• **Recall**: We have now seen a formal definition of O-notation and how the runtime is determined for simple patterns.

• Next:

- Discuss common design techniques that are applicable to different problems.
- Today: Brute Force
- · Monday: Backtracking, Divide & Conquer
- · Later: Greedy algorithms, Dynamic Programming

• ... an important factor:

- Different algorithms solving the same problem can have vastly different runtimes
- · O-notation will help us to choose an appropriate algorithm for a given problem
- So all these techniques will include a discussion on what impact the specific technique has on the runtime.

Brute Force

Brute Force Algorithm = A straightforward and exhaustive problem-solving technique that

- 1. Enumerates all possible solutions
- 2. Checks whether one of these is actually a solution without leveraging optimisation or heuristic strategies.

Correctness? – Trivial as all solutions are considered **Efficiency?** – Often quite inefficient

Runtime:

- Number of possible solutions: g(n)
- Time to check a solution: f (n)
- Total time: g(n) * f(n)

Example 1: Prime Numbers

To find out whether n is a prime number, calculate whether n mod i = 0 for $i = 2 \dots n-1$.

```
Algorithm IsPrime
Input: A positive integer n
Output: True if n is prime, False if n
isn't a prime

if n <= 1 then
    return False

for i from 2 to n - 1:
    if n % i == 0 then
    return False</pre>
```

return True

- 1. Why would this be considered brute force?
- 2. What is the **run time**?
- 3. Can you think of ways to be more efficient?

Example 2: Linear Search

Linear Search (1)

- In linear search we
 - start at the beginning of the array
 - and compare until we find a match
 - which we return
 - Here, is a variant which searches a list of integer and returns
 - true if the list contains the element
 - false if not

```
public static boolean searchForNumber(int[] arr,int number){
  for(int i = 0; i < arr.length; i++){
    if (arr[i] == number) {
      return true;
    }
  }
  return false;
}</pre>
```

- 1. Why would this be considered brute force?
- 2. What is the run time?
- 3. Can you think of ways to be more efficient?

Where Brute Force Algorithms are Used

- ... really not a design technique but rather just used if there is no other possibility.
 - An example that not only correctness but also efficiency matters!
- Might be used as a benchmark
- · Might be feasible when the size of the set is small

Examples:

- Linear search
- For sorting a list xs, enlisting all permutations and choosing the sorted one (see next exercise sheet)
- Traveling Salesman Problem: Trying all possible orders in which a salesman can visit a set of cities to find the shortest route.

Next Lecture: More efficient design techniques

Today You'll

- Learn the **formal definition of O-notation** for expressing algorithmic complexity.
- Explore how the O-notation definition justifies **simplifying terms** and categorizing into **different complexity classes**.
- Discover methods for inferring complexity classes from actual program runtimes.
- Learn how some common patterns translate into complexity.
- Gain insights into the concept of **brute force algorithms** and its implications.

Reading

- Chapter 1.4
- Lecture Slides of Lecture 2 of F28GS (also available on Canvas)

Optional Reading

- Geogebra.org allows you to plot graphs
- Big-O Complexity Sheet (https://www.bigocheatsheet.com) Overview of complexity for most standard algorithms
- Base.cs podcast on O-notation