Apellidos		Firma
Nombre	D.N.I o pasaporte	Grupo

Modelos matemáticos I Curso 2018/19

Grado en Informática y Matemáticas 2º

Examen final. Convocatoria Ordinaria.

Primera parte: Temas 1 y 2

1. En este ejercicio vamos a trabajar con los *números de Lucas*. Estos números vienen definidos por la ecuación en diferencias

$$l_0 = 2$$
, $l_1 = 1$, $l_{n+2} = l_{n+1} + l_n$.

- a) Calcule l_2 , l_3 , l_4 .
- b) Encuentre constantes $A, B \in \mathbb{R}$ tales que para n = 0, 1 se verifica

$$l_n = A \left(\frac{1 + \sqrt{5}}{2} \right)^n + B \left(\frac{1 - \sqrt{5}}{2} \right)^n.$$

- c) Demuestre que la fórmula anterior se verifica para todo $n \ge 0$.
- 2. Se supone que una población de insectos se rige por el modelo

$$x_{n+1} = (x_n - 1)^3 + 1,$$

para n = 0, 1, 2, ..., donde x_n indica el número de insectos en el periodo n ésimo medido en miles. Se pide:

- a) Construya un sistema dinámico discreto (SDD) asociado al modelo anterior.
- b) Calcule el/los punto/s de equilibrio del SDD.
- c) Clasifique los puntos de equilibrio según su estabilidad y determine el comportamiento asintótico de la población según la cantidad inicial de insectos.
- 3. Para construir la vía del AVE se ha tenido que levantar un viaducto de hormigón apoyado en N-1 pilares igualmente espaciados (se supone que el hormigón es homogéneo y suficientemente elástico) y sujetos a unas cargas W en los extremos del viaducto. En ausencia de otras cargas, se puede demostrar que los momentos de flexión en los apoyos verifican la ecuación de los tres momentos:

$$M_{k-1} + 4 M_k + M_{k+1} = 0, \quad 1 \le k \le N - 1,$$

y que los momentos de flexión en los extremos están dados por $M_0 = M_N = -W$. Determine los momentos en cada punto de contacto con el pilar.

Instrucciones:

- Si se examina del examen único final (previa autorización oficial), resuelva todos los ejercicios.
- Si se examina por evaluación continua:
 - Si se examina de una sóla parte, resuelva los 3 ejercicios correspondientes a esa parte.
 - Si se examina de todo, haga solo cinco ejercicios.

