

14주차 Sequence Detector

서기환(20181849)

전해찬(20211588)

목차

- FSM
- Moore machine
- Mealy machine
- sequence detector
- Partitioning Minimization Procedure

FSM(유한 상태 기계, finite-state machine)

Figure 5.2 Half-adder.

Combinational circuit

• output is dependent only by its current inputs

Figure 8.1 The general form of a sequential circuit.

Sequential circuit (FSM)

- output depends not only on the present input but also on the history of the input
- functional behavior of these circuits can be represented using a finite number of states

Moore machine

• outputs depend only on the state of the circuit

Present	Next	Output	
state	w = 0	w = 1	Z
A	A	В	0
В	A	C	0
C	A	C	1

Mealy machine

outputs depend on both the state and the inputs

Present	Next	state	Output z		
state	w = 0	w = 1	w = 0	w = D	
A	A	В	0	0	
В	A	В	0	1	

Moore VS Mealy machine

Moore

	Present	Next	state	
	state	w = 0	w = 1	Output
	y_2y_1	Y_2Y_1	Y_2Y_1	Z
A	00	00	01	0
В	01	00	10	0
\ C /	10	00	10	1
	11	dd	dd	d

Mealy

	Present	Next	state	Output		
	state	w = 0	w = 1	w = 0	w = 1	
	y	Y	Y	z	z	
1	0	0	1	0	0	
3	1	0	1	0	1	

Moore VS Mealy machine

Moore

Mealy

```
Clock cycle: t_0 t_1 t_2 t_3 t_4 t_5 t_6 t_7 t_8 t_9 t_{10} w: 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1
```

Sequence detector

입력 시퀀스의 비트를 받아 타겟 시퀀스 가 검출 될 때마다 출력 1을 생성하는 순차 상태 머신

Mealy

Moore

- 1. Overlapping: last bit of one sequence becomes the first bit of the next sequence
- 2. Non-Overlapping: the last bit of one sequence does not become the first bit of the next sequence

Mealy

Non overlapping

0	1	1	0	1	0	1	0	1	1	0	0	1
0	0	0	0	1	0	0	0	1	0	0	0	0

overlapping

0	1	1	0	1	0	1	0	1	1	0	0	1
0	0	0	0	1	0	1	0	1	0	0	0	0

Sequence Detector: 1101 Mealy - Overlapping

State Diagram

Present	Next	State		
State	x=0	x=1	x=0	x=1
Α	Α	В	0	0
В	A	C	0	.0
С	D	С	0	0
D	Α	В	0	1

1. Overlapping

1이 출력된 후: 마지막 bit(1)이 S0이 되어 S1로 감!

Pres	Next S	tate	Output		
ent State	X = 0	X = 1	X =0	X = 1	
S0	S0	S1	0	0	
S1	S0	S2	0	0	
S2	S3	S2	0	0	
S3	S0	S1	0	1	

Sequence Detector: 1101 Mealy - Overlapping

1.

Pres	Next S	state	Output		
ent State	X = 0	X = 1	X =0	X = 1	
S0	S0	S1	0	0	
S1	S0	S2	0	0	
S2	S3	S2	0	0	
S 3	S0	S1	0	1	

Pres	Next S	tate	Output		
ent State	X = 0	X = 1	X =0	X = 1	
y2y1	Y2Y1	Y2Y1	Z		
00	00	01	0 0		
01	00	10	0	0	
10	11	10	0	0	
11	00	01	0	1	

Sequence Detector: 1101 Mealy - Overlapping

$$Y2(x, y2, y1) = y2y1' + xy2'y1$$

$$Y1(x, y2, y1) = x'y2 + xy2'y1'$$

$$Z(x, y2, y1) = xy2y1$$

2. Non overlapping

1이 출력된 후: 마지막 bit(1)이 S0이 되지 않음!

Pres	Next S	state	Output		
ent State	X = 0	X = 1	X =0	X = 1	
S0	S0	S1	0	0	
S1	S0	S2	0	0	
S2	S3	S2	0	0	
S3	S0	S0	0	1	

Sequence Detector: 1101 Mealy - Non overlapping

Pres	Next S	state	Output		
ent State	X = 0	X = 1	X =0	X = 1	
S0	S0	S1	0	0	
S1	S0	S2	0	0	
S2	S3	S2	0	0	
S 3	S0	S0	0	1	

Pres Next State		tate	Output	
ent State	X = 0	X = 1	X =0	X = 1
y2y1	Y2Y1	Y2Y1	Z	
00	00	01	0	0
01	00	10	0	0
10	11	10	0	0
11	00	00	0	1

Sequence Detector: 1101 Mealy - Non overlapping

$$Y2(x, y2, y1) = y2y1' + xy2'y1$$

$$Y1(x, y2, y1) = x'y2y1' + xy2'y1'$$

$$Z(x, y2, y1) = xy2y1$$

Sequence Detector: 1101 Moore

1.Overlapping

Present	Next State		Output
State	X = 0	X = 1	Υ
S0	S0	S1	0
S1	S0	S2	0
S2	S3	S2	0
S 3	S0	S4	0
S4	S0	S2	1

Sequence Detector: 1101 Moore - Overlapping

Presen	Next State		Output
t State	X = 0	X = 1	Υ
S0	S0	S1	0
S1	S0	S2	0
S2	S3	S2	0
S3	S0	S4	0
S4	S0	S2	1

Present	Next State		Output
State	X = 0	X = 1	Z
y3y2y1	Y3Y2Y1	Y3Y2Y1	
000	000	001	0
001	000	010	0
010	011	010	0
011	000	100	0
100	000	010	1

Sequence Detector: 1101 Moore - Overlapping

$$Y3(x, y3, y2, y1) = xy2y1$$
 $Y2(x, y3, y2, y1) = y2y1' + xy2'y1 + Y1(x, y3, y2, y1) = x'y2y1' + xy3'y2'y1'$

$$Z = y3$$

Sequence Detector: 1101 Moore

2. Non overlapping

Present	Next State		Output
State	X = 0	X = 1	Y
S0	S0	S1	0
S1	S0	S2	0
S2	S3	S2	0
S3	S0	S4	0
S4	S0	S1	1

Sequence Detector: 1101 Moore - Non overlapping

Presen	Next State		Output
t State	X = 0	X = 1	Υ
S0	S0	S1	0
S1	S0	S2	0
S2	S3	S2	0
S3	S0	S4	0
S4	S0	S1	1

Present	Next State		Output
State	X = 0	X = 1	Z
y3y2y1	Y3Y2Y1	Y3Y2Y1	
000	000	001	0
001	000	010	0
010	011	010	0
011	000	100	0
100	000	001	1

Sequence Detector: 1101 Moore - Non overlapping

Y3(x, y3, y2, y1) = xy2y1 Y2(x, y3, y2, y1) = y2y1' + xy2'y1

$$Y1(x, y3, y2, y1) = x'y2y1' + xy2'y1'$$

$$Z = y3$$

states in each block are equivalent

Present	Next state		Output
state	w =0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
E	F	С	0
F	Е	D	0
G	F	G	0

P1 = (ABCDEFG)

Present	Next state		Output
state	w =0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
Е	F	С	0
F	Е	D	0
G	F	G	0

P1 = (ABCDEFG)

P2 = (ABD)(CEFG)

Present	Next state		Output
state	w =0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	E	0
D	В	G	1
E	F	С	0
F	E	D	0
G	F	G	0

P1 = (ABCDEFG)

P2 = (ABD)(CEFG)

P3 = (ABD)(CEG)(F)

Present	Next state		Output
state	w =0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
Е	F	С	0
F	E	D	0
G	F	G	0

P1 = (ABCDEFG)

P2 = (ABD)(CEFG)

P3 = (ABD)(CEG)(F)

P4 = (AD)(B)(CEG)(F)

Present	Next state		Output
state	w =0	w = 1	Z
Α	В	С	1
В	D	F	1
С	F	Е	0
D	В	G	1
Е	F	С	0
F	Е	D	0
G	F	G	0

(AD) => A

(B) => B

(CEG) => C

(F) => F

Present state	Next state		Output
	w =0	w = 1	Z
Α	В	С	1
В	Α	F	1
С	F	С	0
F	С	Α	0

출처 및 팀원별 기여도

S. Brown and Z. Vranesic, 'Fundamentals of Digital Logic with VHDL Design', 3rd Edition, McGraw Hill, 2009

https://www.geeksforgeeks.org/design-101-sequence-detector-mealy-machine/

https://yue-guo.com/2019/03/25/sequence-detector-1101-moore-machine-mealy-machine-overlapping/

https://youtu.be/5wceSNz0TAE?si=zWT74xR3MIVi-ME8 -WIT Solapur - Professional Learning Community

• 기여도

서기환(50%), 전해찬(50%)