QUANTITATIVE ANALYSIS

BIVARIATE REGRESSION

AGENDA

- 1. Follow-up
- 2. Tables and Plots
- 3. The Failings of Simple Models
- 4. Bivariate Regression Theory
- 5. Bivariate Regression in Stata

1 FOLLOW-UP

2 TABLES AND PLOTS

Table format will depend on medium - print vs. projection

	mpg	weight	foreign
mpg	1.00	-	-
weight	807***	1.00	-
foreign	.393***	593***	1.00

^{* -} p < .05; ** - p < .01; *** - p < .001

Tables for projection should have less detail and emphasize readability

	mpg	weight	foreign
mpg	1.00	-	-
weight	807***	1.00	-
foreign	.393***	593***	1.00

^{* -} p < .05; ** - p < .01; *** - p < .001

- Print tables use minimum horizontal lines
- Tables are included at end of paper with references left in text where they should be placed: <<<< TABLE 2 ABOUT HERE >>>>>

	miles per gallon	weight (lbs.)	foreign
miles per gallon	1.00		
weight (lbs.)	807***	1.00	
foreign	.393***	593***	1.00

 Use your word processor of choice to create a table and edit it to match requested format for journal submissions

PLOTS

- Plot format will depend on medium print vs. projection
- Plots for projection can (and often should!) use color with fonts sized appropriately for slides

- Many journals have a specific standard for how plots are designed, and typically required black and white or grayscale plots
- Fonts for print plots need to be sized appropriately for printing

PRESENTATIONS

See:

https://github.com/chris-prener/Presentations

3 THE FAILINGS OF SIMPLE MODELS

DIFFERENCE OF MEANS

DIFFERENCE OF MEANS

ANOVA

ANOVA

CORRELATION

CORRELATION

CORRELATION

THE "REAL" WORLD

4 BIVARIATE REGRESSION THEORY

THE GOAL OF OLS REGRESSION

$$y = a + bx$$

y is the dependent variable (DV) in regression analysis

$$y = b_0 + b_i x_i + \varepsilon$$

b₀ is called the 'constant' rather than the 'intercept'

subscript used because the slope of *y* is dependent on multiple factors

$$y = a + bx$$

$$y = b_0 + b_i x_i + \varepsilon$$

ε is included because we are estimating the line, there may be unexplained variation in y

```
y = dependent variable

b_0 = constant

x_i = independent variable i

b_i = beta value of IV i
```

DV = height
IV = gender
(where 0 = male
& 1 = female)

$$y = b_0 + b_i x_i + \varepsilon$$

$$y_{height} = b_0 + b_1 x_{female} + \varepsilon$$


```
y = b_0 + b_i x_i + \varepsilon

y = \text{dependent variable}

b_0 = \text{constant}

x_i = \text{independent variable } i

b_i = \text{beta value of IV } i
```

DV = height

IV = school year

(where 0 = pre-school,

I = elementary,

& 2 = middle school)

$$y_{height} = b_0 + b_1 x_{elementary} + b_2 x_{middle} + \varepsilon$$

```
y = b_0 + b_i x_i + \varepsilon

y = \text{dependent variable}

b_0 = \text{constant}

x_i = \text{independent variable } i

b_i = \text{beta value of IV } i
```

DV = occupational prestige IV = race/ethnicity (where 0 = white, I = African American, & 2 = Hispanic)

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\hat{y}_{prestige} = 40 + (-5)x_{black} + (-7)x_{hispanic} + \varepsilon$$

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{y}_{prestige} = 40 + (-5)(1) + (-7)(0) + \varepsilon$$

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\downarrow \hat{y}_{prestige} = 40 + (-5) + 0 + \varepsilon$$

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\hat{y}_{prestige} = 35$$

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\downarrow \hat{y}_{prestige} = 40 + (-5)(1) + (-7)(0) + \varepsilon$$

what is the mean occupational prestige for Hispanic respondents?

SOLVING REGRESSION EQUATIONS

$$y_{prestige} = b_0 + b_1 x_{black} + b_2 x_{hispanic} + \varepsilon$$

$$\hat{y}_{prestige} = 33$$

what is the mean occupational prestige for Hispanic respondents?

THE MECHANICS OF OLS REGRESSION

THE MECHANICS OF OLS REGRESSION

THE MECHANICS OF OLS REGRESSION

EXPLAINED VARIATION

the amount of variation in y that our model explains, known as r^2

$$r^2 = \frac{SS_M}{SS_T}$$

ASSUMPTIONS

- DV must be continuous
- IV may be:
 - Dummy
 - Ordinal
 - Continuous
- IV's must have a variance > 0
- Relationship is linear
- DV should be normal
- No significant outliers

There are also assumptions about multicollinearity and autocorrelation, but we'll address these next week.

5 BIVARIATE REGRESSION IN STATA

ESTIMATING REGRESSION MODELS

regress yvar xvar [, robust]

regress mpg weight, robust

Linear regression

Number of obs = 74 F(1, 72) = 105.83 Prob > F = 0.0000 R-squared = 0.6515 Root MSE = 3.4389

mpg	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
weight	0060087	.0005841	-10.29	0.000	007173	0048443
_cons	39.44028	1.98832	19.84	0.000	35.47664	43.40393

RELATIONSHIP WITH BIVARIATE TESTS

pwcorr mpg weight

display -0.8072^2

-.65157184

regress mpg weight, robust

Linear regression

Number of obs = 74F(1, 72) = 105.83Prob > F = 0.0000R-squared = 0.6515Root MSE = 3.4389

mpg	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
weight		.0005841	-10.29	0.000	007173	0048443
_cons		1.98832	19.84	0.000	35.47664	43.40393

. ttest mpg, by(foreign)

Two-sample t test with equal variances

Group	0bs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Domestic Foreign	52 22	19.82692 24.77273	.657777 1.40951	4.743297 6.611187	18.50638 21.84149	21.14747 27.70396
combined	74	21.2973	.6725511	5.785503	19.9569	22.63769
diff		-4 . 945804	1.362162		-7 . 661225	-2.230384

$$t = -3.6308$$

Ho: diff = 0

degrees of freedom = 72

Ha: diff
$$< 0$$

r(T $<$ t) = 0.0003

Ha:
$$d1ff > 0$$

 $Pr(T > t) = 0.9997$

. regress mpg foreign, robust

Linear regression

Number of obs	=	74
F(1, 72)	=	10.26
Prob > F	=	0.0020
R-squared	=	0.1548
Root MSE	=	5.3558

mpg +	Coef.	Robust Std. Err.	t 	P> t	[95% Conf.	Interval]
foreign	4.945804	1.544418	3.20	0.002	1.867062	8.024546
_cons	19.82692	.660407	30.02	0.000	18.51043	21.14342

INTERPRETATIONS: MODEL FIT

. regress mpg weight

Source	SS	df	MS		per of obs	=	74 134 . 62
Model Residual	1591.9902 851.469256	1 72	1591.9902 11.8259619	2 Prol 9 R-so	F(1, 72) Prob > F R-squared Adj R-squared Root MSE		0.0000 0.6515
Total	2443.45946		33.4720474	_			0.6467 3.4389
mpg			t	' '		 nf.	Interval]
weight _cons	0060087	.0005179 1.614003	-11.60 24.44	0.000	0070411 36.22283		0049763 42.65774

The results of the ANOVA test (f = 134.62, p < .001) indicate that the model is a good fit for the data. Overall, the model explains 64.67% of the variation in miles per gallon.

INTERPRETATIONS: MODEL FIT

regress mpg weight, robust

		_				
Linear regress	Linear regression				obs =	74
			F(1, 72)	=	105.83	
		Prob > F	=	0.0000		
				R-squared	=	0.6515
				Root MSE	=	3.4389
mpg	 Coef.	Robust Std. Err.	t	 P> t	[95% Conf.	Interval]
	+					
weight	0060087	.0005841	-10.29	0.000	007173	0048443
_cons	39.44028	1.98832	19.84	0.000	35.47664	43.40393

The results of the ANOVA test (f = 105.83, p < .001) indicate that the model is a good fit for the data. Overall, the model explains 64.67% of the variation in miles per gallon.

INTERPRETATIONS: CONTINUOUS PREDICTORS

regress mpg weight, robust Number of obs = Linear regression 74 = 105.83 F(1, 72)Prob > F = 0.0000R-squared = 0.6515 Root MSE 3.4389 Robust Coef. Std. Err. t P>|t| [95% Conf. Interval] mpg weight | -.0060087 .0005841 -10.29 0.000 -.007173 -.0048443_cons | 39.44028 1.98832 0.000 35.47664 43.40393 19.84

The model finds that a unit increase in weight is associated with a -0.006 (p < .001) miles per gallon decrease. Heavier cars are, on average, less fuel efficient than lighter cars.

INTERPRETATIONS: BINARY PREDICTORS

regress mpg foreign, robust

J		1 3	<i>J</i> ,					
Linear	regr	ession				Number of	obs =	74
						F(1, 72)	=	10.26
						Prob > F	=	0.0020
						R-squared	=	0.1548
						Root MSE	=	5.3558
				Robust				
	mp	og	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
fo	reig	ın 4	1.945804	1.544418	3.20	0.002	1.867062	8.024546
	_cor	ns 1	19.82692	.660407	30.02	0.000	18.51043	21.14342

The model finds that foreign cars are associated with a 4.946 (p < .001) miles per gallon increase. Foreign cars are, on average, more fuel efficient than domestic cars..

DOCUMENT DETAILS

Document produced by <u>Christopher Prener, Ph.D</u> for the Saint Louis University course SOC 5050: QUANTITATIVE ANALYSIS - APPLIED INFERENTIAL STATISTICS. See the <u>course wiki</u> and the repository <u>README.md</u> file for additional details.

This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u>.