

Inteligência Artificial Aplicada

UniSenai PR-São José dos Pinhais

AGENDA

- Apresentação;
- Informações sobre a disciplina:
 - Plano de ensino;
 - Aspectos metodológicos (aulas, avaliações, ferramentas etc.);
- Introdução a conceitos de inteligência artificial.

❖ Estudo de agentes que recebem percepções do ambiente e executam ações (RUSSELL; NORVIG, 2013).

- Processamento de linguagem natural;
- * Representação de conhecimento;
- * Raciocínio automatizado;
- * Aprendizado de máquina;
- ❖ Visão computacional;
- * Robótica.

(RUSSELL; NORVIG, 2013).

Disciplinas que contribuíram para a Inteligência Artificial

Psicologia

Linguística

Disciplina	Perguntas	
	De onde vem o conhecimento?	
	Como o conhecimento conduz à ação?	
	O que pode ser computado?	
	Como raciocinamos com informações incertas?	
\$	Como devemos tomar decisões para maximizar a recompensa?	
9	Como devemos fazer isso quando a recompensa pode estar distante no futuro?	
	Como o cérebro processa informações?	

(RUSSELL; NORVIG, 2013).

Disciplina	Perguntas
	Como os seres humanos e os animais pensam e agem?
	Como podemos construir um computador eficiente?
AX.	Como a linguagem se relaciona com o pensamento?

(RUSSELL; NORVIG, 2013).

Estatística

Matemática

- Fornece as bases teóricas e métodos para análise e interpretação de dados;
- Ajuda a entender incertezas e variabilidades nos dados;
- Contribui para inferências, testes de hipóteses e estimação de parâmetros.

- Aplica conceitos em modelagem e resolução de problemas complexos;
- Desenvolve algoritmos de aprendizado de máquina e otimização.

Tipos de dados

- Numéricos
- Categóricos

Tendência Central e Dispersão

- Média
- Mediana
 - Moda
- Variância
- Desvio Padrão
 - Amplitude

Outros

- Probabilidade
- Correlação
- Testes de hipóteses

Álgebra Linear

- Vetores
- Matriz

Otimização

• Funções de custo

O que é Aprendizado de Máquina?

❖ Ciência (e a arte) da programação de computadores para que eles possam aprender com os dados (GÉRON, 2019).

Considere como você escreveria um filtro de spam utilizando técnicas de programação tradicionais

ABORDAGEM DE APRENDIZADO DE MÁQUINA

Abordagem de Aprendizado de Máquina adaptando-se às mudanças

Aprendizado de máquina "ensinando" os seres humanos

Resumindo, o Aprendizado de Máquina é ótimo para:

- ❖ Problemas para os quais as soluções existentes exigem muita configuração manual ou longas listas de regras: um algoritmo de Aprendizado de Máquina geralmente simplifica e melhora o código;
- ❖ Problemas complexos para os quais não existe uma boa solução quando utilizamos uma abordagem tradicional: as melhores técnicas de Aprendizado de Máquina podem encontrar uma solução;
- ❖ Ambientes flutuantes: um sistema de Aprendizado de Máquina pode se adaptar a novos dados;
- Compreensão de problemas complexos e grandes quantidades de dados.

Géron (2019).

Aprendizado	Definição	Objetivo
Supervisionado	Algoritmos que usam dados rotulados (entrada e saída conhecida) para aprender a mapear novos dados e fazer previsões ou classificações.	Prever ou classificar novos dados com base nos padrões aprendidos a partir dos dados rotulados.
Não Supervisionado	Algoritmos que exploram padrões e estruturas nos dados não rotulados para realizar agrupamentos ou redução de dimensionalidade.	Descobrir estruturas ocultas nos dados, como agrupamentos naturais ou características relevantes.

Aprendizado	Algoritmos	Aplicações
Supervisionado	Regressão Linear, Árvores de Decisão, Máquinas de Vetores de Suporte (SVM), Redes Neurais, k-Vizinhos Mais Próximos (KNN)	Classificação de e-mails como spam ou não spam, previsão de preços de imóveis, diagnóstico médico, etc.
Não Supervisionado	K-Means, Agrupamento Hierárquico, Análise de Componentes Principais (PCA), Algoritmos de Redução de Dimensionalidade, etc.	Segmentação de clientes, detecção de padrões de comportamento, redução de dimensionalidade para visualização, etc.

Referências Slides:

GÉRON, A. Mãos à obra: aprendizado de máquina com Scikit-Learn & TensorFlow. Rio de Janeiro: Alta Books, 2019.

RUSSELL, S.; NORVIG, P. **Inteligência artificial**. Rio de Janeiro: Elsevier Editora Ltda, 2013.

Recomendações:

FIELD, A.; MILES, J.; FIELD, Z. Discovering statistics using R. Londres: SAGE, 2012.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep learning. Cambridge: MIT Press, 2016.

KNAFLIC, C. N. **Storytelling com dados:** um guia sobre visualização. Rio de Janeiro: Alta Books, 2019.

Fundamentos de Álgebra Linear

❖ A álgebra linear é um ramo da matemática amplamente utilizado em toda a ciência e engenhari

- ❖ É uma forma de matemática discreta;
- ❖ Uma boa compreensão da álgebra linear é essencial para compreender e trabalhar com muitos algoritmos de aprendizado de máquina, especialmente algoritmos de aprendizado profundo (deep learning).

Goodfellow, Bengio e Courville (2016).

Elemento	Definição	Exemplo	Notação
Ecolor	Número único que representa	2. 25. -	
Escalar	uma quantidade ou magnitude	$3; -2,5; \pi$	a, b, c
	Coleção ordenada de escalares,		
Vetor	geralmente representada como	[2, 4, -1]	v, u
	uma matriz unidimensional		

Elemento	Definição	Exemplo	Notação
Matriz	Coleção retangular de escalares organizados em linhas e colunas	$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$	A, B
Tensor	Generalização de escalares, vetores e matrizes. Tensores podem ter mais de duas dimensões.	$\begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} & \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} \end{bmatrix}$	<i>T, X</i>

❖ Soma de Vetores

❖ A soma de dois vetores **u** e **v** resulta em um novo vetor **w** cujos componentes são obtidos somando os componentes correspondentes de **u** e **v**.

•
$$w = u + v$$

•
$$w_i = u_i + v_i$$

❖ Multiplicação de Vetor por Escalar

 \clubsuit A multiplicação de um vetor \mathbf{v} por um escalar c resulta em um novo vetor \mathbf{w} cujos componentes são obtidos multiplicando cada componente de \mathbf{v} por c.

- $w = c \cdot v$
- $w_i = c \cdot v_i$

❖ Produto Escalar

❖O produto escalar de dois vetores **u** e **v** é um escalar que resulta da soma do produto das componentes correspondentes de **u** e **v**.

• $u.v = \sum_{i=1}^{n} u_i.v_i$

***** Considerações:

A soma e a multiplicação por escalar preservam a direção dos vetores,
 apenas alterando seu comprimento;

 O produto escalar resulta em um escalar e é usado para medir a projeção de um vetor na direção de outro.