Interpretation of natural language instructions

Translating sentences by using a grammar

Martin Agfjord

University of Gothenburg Computer Science and Engineering

UNIVERSITY OF GOTHENBURG Introduction & problem description Solution

Outline

- 1 Introduction & problem description
- 2 Solution
- 3 Results
- 4 Conclusion

Introduction & problem description

- An alternative user interface
- Translation
- Delimitation
 - Intranet of a software development company
 - Customers, People and Projects exists
 - Limited amount of instructions

Introduction & problem description

- An alternative user interface
- Translation
- Delimitation
 - Intranet of a software development company
 - Customers, People and Projects exists
 - Limited amount of instructions

Introduction & problem description

- An alternative user interface
- Translation
- Delimitation
 - Intranet of a software development company
 - Customers, People and Projects exists
 - Limited amount of instructions

Interface definition

Sufficient for novice users

people who know Java

Sufficient for expert users

people know java

Interface definition

Sufficient for novice users

people who know Java

Sufficient for expert users

people know java

Solution

- Precise translation
- Need mapping from natural language to query language
 - Use a grammar

Solution

- Precise translation
- Need mapping from natural language to query language
 - Use a grammar

Solution

- Precise translation
- Need mapping from natural language to query language
 - Use a grammar

Translate by using a grammar

- Structured rules for strings
- Use logic to combine strings in one language
- Use the same logic to combine strings in another language
- Grammars have a long history within programming languages

How can we build a grammar to translate sentences?

Translate by using a grammar

- Structured rules for strings
- Use logic to combine strings in one language
- Use the same logic to combine strings in another language
- Grammars have a long history within programming languages

How can we build a grammar to translate sentences?

Translate by using a grammar

- Structured rules for strings
- Use logic to combine strings in one language
- Use the same logic to combine strings in another language
- Grammars have a long history within programming languages

How can we build a grammar to translate sentences?

Translate by using a grammar

- Structured rules for strings
- Use logic to combine strings in one language
- Use the same logic to combine strings in another language
- Grammars have a long history within programming languages

How can we build a grammar to translate sentences?

Translate by using a grammar

- Structured rules for strings
- Use logic to combine strings in one language
- Use the same logic to combine strings in another language
- Grammars have a long history within programming languages

How can we build a grammar to translate sentences?

Introducing Grammatical Framework (GF)

• Development platform for natural languages

- Open source functional programming language
- Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the logic of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the logic of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

Introducing Grammatical Framework (GF)

- Development platform for natural languages
 - Open source functional programming language
 - Designed for creating natural language grammars
- Separates abstract and concrete syntax
 - Abstract syntax captures the *logic* of a sentence
 - Concrete syntax represents the logic as a string

- Programmer writes source code in concrete syntax
- Compiler translates concrete syntax to abstract syntax
- The rest of the compiler manipulates the abstract syntax

A simple example

Abstract syntax

```
Instruction
/
People Know
|
Java
```

Concrete syntaxes

```
people who know Java -- English
personer som kan Java -- Swedish
q=object_type : Person AND expertise : Java -- Solr
```

A simple example

Abstract syntax

```
Instruction
/
People Know
|
Java
```

Concrete syntaxes

```
people who know Java -- English
personer som kan Java -- Swedish
q=object_type : Person AND expertise : Java -- Solr
```

GF implementation: Abstract syntax

```
abstract Instrucs = {
  cat
    Instruction
    Subject;
    Relation:
    Object;
  fun
    MkInstruction : Subject -> Relation -> Instruction ;
    People : Subject ;
    Know : Object -> Relation ;
```

GF implementation: English concrete syntax

```
concrete InstrucsEng of Instrucs = {
  lincat
    Instruction = Str ;
    Subject = Str;
    Relation = Str ;
    Object = Str;
  lin
    MkInstruction subject relation =
                   subject ++ "who" ++ relation ;
    People = "people" ;
    Know object = "know" ++ object ;
    Java = "Java" :
}
```

GF implementation: Solr concrete syntax

```
concrete InstrucsEng of Instrucs = {
  lincat
    Instruction = Str ;
    Subject = Str;
    Relation = Str ;
    Object = Str;
  lin
    MkInstruction subject relation =
                   "q=" ++ subject ++ "AND" ++ relation ;
    People = "object_type : Person" ;
    Know object = object = "expertise : " ++ object ;
    Java = "Java" :
}
```

UNIVERSITY OF GOTHENBURG Introduction & problem description Solution

GF implementation: Translation

$$\mathsf{GF} + \mathsf{Abstract}\ \mathsf{syntax} + \mathsf{Concrete}\ \mathsf{syntax} =$$

UNIVERSITY OF GOTHENBURG Introduction & problem description Solution

GF implementation: Translation

$$\mathsf{GF} + \mathsf{Abstract}\ \mathsf{syntax} + \mathsf{Concrete}\ \mathsf{syntax} =$$

- Parser

UNIVERSITY OF GOTHENBURG Introduction & problem description Solution

Results

GF implementation: Translation

GF + Abstract syntax + Concrete syntax =

- Parser
- Linearizer

UNIVERSITY OF GOTHENBURG Introduction & problem description Solution

T 1.2

GF implementation: Translation

 $\mathsf{GF} + \mathsf{Abstract}\ \mathsf{syntax} + \mathsf{Concrete}\ \mathsf{syntax} =$

- Parser
- Linearizer
- Generator

Results

UNIVERSITY OF GOTHENBURG

foobar

Solution

Title

UNIVERSITY OF GOTHENBURG

This is an example.