

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

CONTINUOUS ASSESSMENT TEST 2018/2019

STA 2408: REGRESSION MODELLING II TAKE AWAY ASSIGNMENT

INSTRUCTIONS TO CANDIDATES:

- * Answer question all the questions
- * Be neat and show all your workings
 - 1. For a given sample (X_i, Y_i) , $i = 1, 2, \cdots n$ from an NPR model $Y_i = m(X_i) + \epsilon_i$, where $n = 140, X_i \in [0.1894, 2.6855]$ and ϵ_i are i.i.d with $\mathrm{E}\epsilon_1^2 = \sigma^2$, we define $s_n(x) = \sum_{i=1}^n K_h(X_i x)(X_i x)^l$ and $T_{nl}(x) = \sum_{i=1}^n K_h(X_i x)(X_i x)^l Y_i$. We used the standard Gaussian kernel and h = 0.2420. Let $x_0 = 1$. We obtained $s_{nl}(x_0)$, l = 0, 1, 2 as 22.8038, -0.5758, 1.1189 respectively, and $T_{nl}(x_0)$, l = 0, 1 as 24.0092, 0.1631 respectively. Compute the local linear estimators of $m(x_0)$ and $m'(x_0)$ respectively. [7 marks]
 - 2. For a given sample (X_i, Y_i) , $i = 1, 2, \dots n$ from an NPR model $Y_i = m(X_i) + \epsilon_i$, where $n = 140, \ X_i \in [0.1894, 2.6855]$ and ϵ_i are i.i.d with $\mathrm{E}\epsilon_1^2 = \sigma^2$, we define $s_n(x) = \sum_{i=1}^n K_h(X_i x)(X_i x)^l$ and $T_{nl}(x) = \sum_{i=1}^n K_h(X_i x)(X_i x)^l Y_i$. We used the standard Gaussian kernel and h = 0.2420. Let $x_0 = 1$. We obtained $s_{nl}(x_0)$, l = 0, 1, 2 as 22.8038, -0.5758, 1.1189 respectively, and $T_{nl}(x_0)$, l = 0, 1 as 24.0092, 0.1631 respectively. Compute the local linear estimators of $m(x_0)$ and $m'(x_0)$ respectively. [7 marks]

W-1-2-60-1-6 JOMO KENYATTA UNIVERSITY

OF

AGRICULTURE AND TECHNOLOGY

UNIVERSITY EXAMINATIONS 2018/2019

FOURTH YEAR FIRST SEMESTER EXAMINATION FOR

THE DEGREE OF BACHELOR OF SCIENCE IN STATISTICS/BACHELOR OF SCIENCE IN FINANCIAL ENGINEERING/ BACHELOR OF SCIENCE IN BIOSTATISTICS/ BACHELOR OF SCIENCE IN ACTUARIAL SCIENCE.

STA 2408: REGRESSION MODELLING II

DATE: DECEMBER 2018

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question ONE and any other two questions
- 2. Be neat and show all your workings
- 3. All questions except question one carry equal marks

This paper consists of 5 printed pages STACS Examination board 2018/2019.

QUESTION ONE

(a) (i) Below is a diagram of a single artificial neuron (unit)

Flowchart (1).png

The node has three inputs $x=(x_1, x_2, x_3)$ that receive only binary signals (either 0 or 1). How many different input patterns can this code receive? What if the node had four inputs? Five? Can you give a formula that computes the number of binary input patterns for a given number of inputs. [3 marks]

- (ii) Suppose that a credit card company decided to deploy a new system for assessing credit worthiness of its customers. The new system is using a feed-forward neural network with a supervised learning algorithm. Suggest in a form of essay what should the bank have before the system can be used? Discuss the problem associated with this requirement.
- (b) The height of a child at different ages Estimate the height of the child as an adult of 30

years of age using the growth model, $H = \frac{a}{1+be^{-ct}}$.

[5 marks]

(c) There is a functional relationship between the mass density p of air and the altitude h above the sea level.

Altitude above the sea level, h (km)				
Mass Density, $\rho(kg/m^3)$	1.15	1.10	1.05	0.95

In the regression model $\rho = k_1 e^{-k_2 h}$, the constant k_2 is found as $k_2 = 0.1315$. assuming that the mass density of air at the top of the atmosphere is $\frac{1}{1000^{ih}}$ of the mass density of air at the sea level.

Calculate the altitude in kilometers of the top of the atmosphere.

[8 marks]

(d) For a given sample (X_i, Y_i) , $i = 1, 2, \dots n$ from an NPR model $Y_i = m(X_i) + \epsilon_i$, where n = 140, $X_i \in [0.1894, 2.6855]$ and ϵ_i are i.i.d with $E\epsilon_1^2 = \sigma^2$, we define $s_n(x) = \sum_{i=1}^n K_h(X_i - x)(X_i - x)^l$ and $T_{nl}(x) = \sum_{i=1}^n K_h(X_i - x)(X_i - x)^l Y_i$. We used the standard Gaussian kernel and h = 0.2420. Let $x_0 = 1$. We obtained $s_{nl}(x_0)$, l = 0, 1, 2 as 22.8038, -0.5758, 1.1189 respectively, and $T_{nl}(x_0)$, l = 0, 1 as 24.0092, 0.1631 respectively. Compute the local linear estimators of $m(x_0)$ and $m'(x_0)$ respectively.

)

(e) The following result are from a perspective study that were considered in building a logistic regression model for predicting capsule=1 that included psa, age, and gleason in the model(model 1). Part of the resulting SAS output follows:

Figure 1: Model 1

Model Fit Statistics

Criterion	Intercept Only	Intercept and Covariates	
AIC	514.289	411.208	
SC	518.229	426.969	
-2 Log L	512.289	403.208	

	Analy	sis of Maxim	um Likelihoo	d Estimates	
Parameter	DF	Estimate	Error	Chi-Square	ec. > Shisa
Intercept	1	-6.3896	1.4976	18,2045	<.0001
rsa	1	0.0266	0.00894	8.8442	0.0029
age	1	-0.0208	0.0188	1.2351	0.2664
gleason	1	1.0790	0.1611	44.8373	<.0001

- (i) Write the resulting logistic regression equation for model 1 [1 mark]
- (ii) What is the predicted probability of having a capsule=1 for a 69-year old man with psa level of 10mg/ml and a gleason score of 5, according to model 1? [1 mark]
- (iii) What does the intercept from the model tell you? [1 mark]
- (iv) Calculate the odds ratio and 95% confidence interval for psa from the model.

 [1 mark]

QUESTION TWO (20 MARKS)

- (a) In Kernel regression estimation, one may choose a deterministic or stochastic design depending on the type of the problem at hand.
 - (i) Describe a deterministic design model and give its kernel estimate of the mean function. [3 marks]
 - (ii) Describe a stochastic design model and give its kernel estimate of the mean function [3 marks]
- (b) A steel cylinder at $80^{\circ}F$ of length 12" is placed in a commercially available liquid nitrogen bath $(-315^{\circ}F)$. If the thermal expansion coefficient of steel behaves as a second order polynomial function of temperature and the polynomial is found by regressing the data below.

ingion		
Thermal expansion		
Coefficient, α		
$(\mu in/in/{}^0F)$		
2.76		
3.83		
4.72		
5.43		
6.00		
6.47		

(i) Fit the data to $\alpha = a_0 + a_1T + a_2T^2$.

[10 marks]

(ii) Calculate the reduction in the length of the cylinder in inches.

[4 marks]

QUESTION THREE (20 MARKS)

(a) Given the data

X	20	30	15	25	28
Y	45.6	35.3	40.3	20.0	43.2

where X and Y are predictor and response variables, respectively. Using a rectangular Kernel function and 3-nearest neighbour (K-NN)find the estimate of

i) Density function of X at point x=29

[3 marks]

ii) regression function at point x=29

[3 marks]

- (b) We have a sample (X_i, Y_i) , $i = 1, 2, \dots, n$ generated from the NPR model $Y_i = m(X_i) + \epsilon_i$, $i = 1, 2, \dots, n$ where m(x) is an unknown smooth function and $X_1 < X_2 <, \dots, < X_n$. Let $\mathbf{Y} = [Y_1, \dots, Y_n]^T$ be the response vector and $\hat{\mathbf{Y}} = [\hat{Y}_1, \dots, \hat{Y}_n]^T$ be the estimated response vector, where $\hat{Y}_i = \hat{m}(X_i)$, $i = 1, 2, \dots, n$ for some non-parametric estimator $\hat{m}(x)$. When $\hat{m}(x)$ is a linear smoother, we have $\hat{\mathbf{Y}} = \mathbf{A}\mathbf{Y}$ where \mathbf{A} is known as the associated smoother matrix and df=trace(\mathbf{A}) is known as the associated degrees of freedom, measuring how complex the fitting model is.
 - (i) First assume that $\hat{m}(x)$ is the usual regression spline smoother constructed based on the p-th order truncated power basis $\Phi(x)$ using K distinct knots $\tau_1 < \tau_2 < \cdots \tau_K$. When n > K + p and p fixed, show that df will increase as K increasing. [2 marks]
 - (ii) Assume now that $\hat{m}(x)$ is the N-W estimator using a bandwidth h > 0 and a symmetric kernel K(.) which is a pdf. Show that when K is fixed and n is sufficiently large, df will decrease as h increasing.

 [3 marks]
 - (iii) Assume now that $\hat{m}(x)$ is the cubic smoothing spline smoother with a smoothing parameter λ . Show that df will decrease as λ increasing. [3 marks]
 - (iv) Assume now that $\hat{m}(x)$ is the P-spline smoother with p-th order truncated power basis $\Phi(x)$ using K distinct knots $\tau_1 < \tau_2 < \cdots < \tau_K$ and a smoothing parameter λ . Show that when n > p + K, df will decrease as λ increases. [6 marks]

QUESTION FOUR (20 MARKS)

(a) Let $X_1, X_2 \in [0, 1]$ and

$$\begin{cases} Z = 1, & \text{if } X_1 = 1 \text{ or } X_2 = 2 \\ Z = 0, & \text{if } X_1 = 0 \text{ or } X_2 = 0 \end{cases}$$

be the logical XOR classification to be learned by a perception. The training set then consists of input vectors including the first co-ordinate $x_0 = 1$;

$$X^{1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad X^{2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \quad X^{3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad X^{4} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

with correction classification $Z^{(1)} = Z^{(2)} = Z^{(3)} = 1, Z^{(4)} = 0.$

The perception with weights w_0, w_1, w_2 classifies an object as 1 if and only if $w_0x_0 + w_1x_1 + w_2x_2 > 0$ and as 0 elsewhere. Taking $w = (0,0,0)^t$ as initial weight and $\eta = 1$ as relaxation factor, train the perception and find the weight that achieves correct classification for all input vectors in the training set. [12marks]

(b) We have a sample (X_i, Y_i) , $i = 1, 2, \dots, n$ from an NPR model $Y_i = m(X_i) + \epsilon_i$ where $E(\epsilon_i | X_1, \dots, X_n) = 0$ and $E(\epsilon_i^2 | X_1, \dots, X_n) = \sigma^2(X_i)$ and X_1, X_2, \dots, X_n has a pdf f(x). Moreover, $E(\epsilon_i \epsilon_j | X_1, \dots, X_n) = 0$ for $i \neq j$. Define

$$C_1(h) = -\frac{2}{n} \sum_{j=1}^n \epsilon_j [\hat{m}_h(X_j) - m(X_j)], \quad C_2(h) = -\frac{2}{n} \sum_{j=1}^n \epsilon_j [\hat{m}_h^{(-j)}(X_j) - m(X_j)]$$

Where $[\hat{m}_h(X_j)]$ is the N-W estimator of m(x) at X_j and $\hat{m}_h^{(-j)}$ is the N-W of m(x) at X_j obtained using all the data except (X_j, Y_j) . Find the asymptotic expression of $E(C_1(h)|X_1, \dots, X_n)$ [8mks]