Introduction to the Coalescent

Mark Reppell

July 21, 2015

Why do we need models for how genes behave in populations?

Outline

- ▶ Genetic drift and the Wright-Fisher model
- ▶ What is the coalescent?
- ▶ Math behind the model
- Features of a genealogy
- Mutations and the infinite sites model

Genetic drift: the luck of the draw

Over time alleles may: become fixed remain segregating

become lost

Genetic drift refers to changes in allele frequencies over time as alleles **by chance** produce more/less offspring each generation

This contrasts with *natural selection* where alleles **systematically** produce more/less offspring each generation

The Wright-Fisher model of genetic drift

In a population with size 2N, two alleles are segregating at a genetic locus

Each new generation, every chromosome inherits one of the allele types, with probability p equal to $\frac{x}{2N}$ where x is the number of alleles of that type in the proceeding generation

At the population level the number of alleles of type i in a generation follows a binomial distribution, with p the allele frequency in the proceeding generation:

$$Prob(X_i = x) = {2N \choose x} p^x (1-p)^{2N-x}$$

Assumptions of the Wright-Fisher model

- ▶ Discrete and non-overlapping generations
- ► Haploid chromosomes
- Randomly mating population with constant size
- ▶ No recombination or selection

A sample evolving under Wright-Fisher

Generation

Every generation each sample has an ancestor in the preceding generation

A sample evolving under Wright-Fisher

After several generations, all samples are descendants of a limited number of original individuals

A sample evolving under Wright-Fisher

Generation

Eventually, all lineages will share a single common ancestor

Reversing our perspective

In the present, we cannot observe lineages that have been lost from the population

The discrete time Kingman coalescent

How many generations does it take to find a common ancestor?

In a population with size 2N

$$n = 2$$

P(coalesce in next gen) =
$$\frac{1}{2N}$$

P(don't coalesce in 1 gen) =
$$(1 - \frac{1}{2N})$$

P(don't coalesce in j gen) =
$$(1 - \frac{1}{2N})^j$$

$$(1-\frac{1}{2N})^{j-1}\frac{1}{2N}$$

$$n \ge k > 2$$

P(don't coalesce in 1 gen) =

$$\frac{(2N-1)}{2N} \frac{(2N-2)}{2N} \cdots \frac{(2N-k+1)}{2N}$$

$$= \prod_{i=1}^{k-1} (1 - \frac{i}{2N}) = 1 - \sum_{i=1}^{k-1} \frac{i}{2N} + O(\frac{1}{N^2})$$
$$= 1 - {k \choose 2} \frac{1}{2N} + O(\frac{1}{N^2})$$

Time until the first coalescence

For n > k > 2, from last slide:

P(don't coalesce in 1 gen)
$$\approx 1 - {k \choose 2} \frac{1}{2N}$$

so, with assumption of at most 1 coalescence in a generation:

P(coalesce in 1 gen) =
$$\binom{k}{2} \frac{1}{2N}$$

and, for T_k^* time until first coalescent event:

$$P(T_k^* = j \text{ generations}) = \left\{ 1 - {k \choose 2} \frac{1}{2N} \right\}^{j-1} {k \choose 2} \frac{1}{2N}$$

The continuous time coalescent

While the Wright-Fisher works with discrete generations, it is computationally beneficial to work with continuous time

$$P(T_k^* > j \text{ gens}) = \left(1 - \frac{\binom{k}{2}}{2N}\right)^j$$

Scale by the average time for two lineages to find a common ancestor, $t = \frac{j}{2N}$:

$$P(T_k > t) = \left(1 - \frac{\binom{k}{2}}{2N}\right)^{2Nt} \rightarrow \lim_{2N \to \infty} \left(1 - \frac{\binom{k}{2}}{2N}\right)^{2Nt} = e^{-\binom{k}{2}t}$$

 T_k is an exponential random variable, with rate $\binom{k}{2}$

The basic coalescent algorithm

- 1) Start with k = n
- **2)** Simulate waiting time T_k to next event, $T_k \sim \text{Exp}(\binom{k}{2})$
- 3) Choose pair of lineages (i, j) uniformly among $\binom{k}{2}$ possible pairs
- **4)** Merge *i* and *j* into single lineage, and decrease sample size by one, $k \rightarrow k-1$
- **5)** If $k \geq 2$ go to **2)**, otherwise stop

Anatomy of a coalescent genealogy

Coalescent times

Each coalescent time is independent of all other times

Majority of
$$E(T_{MRCA})$$
 is $E(T_2)$

Variance in times is small for big *k* and big for small *k*

$$E(T_k) = \binom{k}{2} = \frac{2}{k(k-1)}$$

$$Var(T_k) = \left(\frac{2}{k(k-1)}\right)^2$$

$$E(T_2) = 1 = 2N$$
 gens $Var(T_2) = 1$

Expected coalescent times

Total tree length is the summed length of all the branches on the tree

$$T_{total} = \sum_{k=2}^{n} kT_k$$
 $E(T_{total}) = \sum_{k=2}^{n} kE(T_k) = \sum_{k=2}^{n} k \frac{2}{k(k-1)} = \sum_{k=1}^{n-1} \frac{2}{k} \approx 2ln(n-1)$

The infinite sites mutation model

Infinite sites is a mutation model where every polymorphism is the result of a single mutation event. Each mutation creates a new polymorphic site

Infinite sites is a reasonable assumption for long genetic sequences with low mutation rates

The parameter θ is the **scaled mutation rate** (also called the population mutation rate)

Usually defined as $\theta = 4N\mu b$, where 2N is the population size, μ is the per base per gen mutation rate, and b is the length in bases of the locus

 θ can be interpreted as the expected number of mutations separating a sample of 2 sequences

(2 branches \times 2*N* gen \times *b* bases $\times\mu$ mutations/base*gen)

Mutations are modeled as a Poisson process

Along a coalescent genealogy, mutations are modeled as Poisson distributed with rate $\frac{\theta}{2}$ per **coalescent time unit** (2N generations)

The number of mutations, *x* during time *t*:

$$P(X = x|t) = rac{\left(rac{ heta t}{2}
ight)^{X}}{x!}e^{-rac{ heta t}{2}} \quad E(X|t) = Var(X|t) = rac{ heta t}{2}$$

With this definition the time between mutation events is exponentially distributed with rate $\frac{\theta}{2}$

Adding mutations to the coalescent algorithm

Previous algorithm

- 1) Start with k = n
- **2)** Simulate waiting time T_k to next event, $T_k \sim \mathsf{Exp}(\binom{k}{2})$
- Choose pair of lineages (i, j) uniformly among (k) possible pairs
- **4)** Merge *i* and *j* into single lineage, and decrease sample size by one $k \rightarrow k 1$
- **5)** If $k \geq 2$ go to **2)**, otherwise stop

- 6) For each branch along genealogy, with length ℓ
 - **a)** draw *x* mutations, $x \sim Pois(\frac{\theta \ell}{2})$
 - **b)** select location of each mutation along sequence uniformly

Generally, sequence is treated as having length 1, so mutation locations follow Uniform(0,1)

The first lab

- ▶ Review working with the Linux command line
- ▶ Install the program ms
- Run a simple coalescent simulation and explore the output