

#### TÖBBVÁLTOZÓS ADATELEMZÉS

Logit modell

2020.10.05.



© Dr. Vékás Péter, e-mail: <u>peter.vekas@uni-corvinus.hu</u> BCE Matematikai és Statisztikai Modellezés Intézet

## Bináris logit modell (logisztikus regresszió)



- Bináris (igen/nem) kimenetet modellez tetszőleges prediktorok függvényében.
- Becslést ad a két kimenet valószínűségére.
- A 20. század közepén az orvosi statisztikában terjedt el:

Berkson, J. (1944). Application of the logistic function to bio-assay. *Journal of the American Statistical Association*.

#### Alkalmazások



- Mely ügyfeleknek nyújtson hitelt egy bank? (banki hitelelbírálás, credit scoring)
- Kik hagyják el mobilszolgáltatójukat a közeljövőben? (lemorzsolódás, churn analysis)
- Ki vesz meg várhatóan egy adott terméket? (marketing)
- Ki dolgozik várhatóan a következő évben? (nyugdíjrendszer modellezése)

## Miért nem használható itt lineáris modell?





#### Logit modell



- Az y kimenet két kategóriáját 0 (R: ábécérendben az első) és 1 értékekkel kódoljuk.
- Egy pontszámot (logitot) rendelünk minden egyedhez, ami a prediktorok lineáris függvénye:

$$L = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p$$

- A logit elvben bármilyen értéket felvehet -∞ és
   ∞ között. Ez még nem valószínűség!
- A jobb oldalon nincs hibatag! A bizonytalanság ott jelenik meg, hogy valószínűséget becsülünk.





• A logitot 0 és 1 közé transzformálva kapjuk a az y = 1 (csőd) becsült valószínűségét:

$$\mathbb{P}(y=1) = \frac{1}{1 + e^{-L}}$$

- A  $\beta_0, \beta_1, \dots, \beta_p$  együtthatókat maximum likelihood módszerrel becsüljük (lásd később).
- Ha egy prediktor együtthatója pozitív, akkor növelésének hatására nő az y=1 (csőd) becsült valószínűsége (ceteris paribus!).

## Logisztikus függvény: a prediktorok hatása





## Együtthatók maximum likelihood becslése



Logitok és becsült valószínűségek:

$$L_{i}(\beta) = \beta_{0} + \beta_{1}x_{i1} + \beta_{2}x_{i2} + \dots + \beta_{p}x_{ip}$$

$$\mathbb{P}(y_{i} = 1) = \frac{1}{1 + e^{-L_{i}(\beta)}}$$

$$\mathbb{P}(y_{i} = 0) = 1 - P(y_{i} = 1)$$

 A likelihood annak a valószínűsége, hogy a kimenetek a megfigyelttel azonosan alakulnak:

$$L(\boldsymbol{\beta}) = \prod_{y_i=1} \mathbb{P}(y_i = 1) \prod_{y_i=0} \mathbb{P}(y_i = 0) \to \max.$$

## Együtthatók maximum likelihood becslése



 A gyakorlatban a szoftver a likelihood függvény logaritmusát numerikusan maximalizálja (a megoldásra nincs képlet):

$$\ln L(\beta) = \sum_{y_i=1} \ln \mathbb{P}(y_i = 1) + \sum_{y_i=0} \ln \mathbb{P}(y_i = 0) \to \max.$$

#### Logit modellek típusai



- **Bináris** (*glm* függvény): a kimenetnek két kategóriája van.
- Multinomiális (nnet package, multinom függvény): a kimenet nominális, kettőnél több kategóriával.
- Ordinális (MASS package, polr függvény): a kimenet ordinális, kettőnél több kategóriával.
- Itt csak a bináris logit modellt tanuljuk!

#### Logit modellezés lépései





5. Értelmezés



4. Diagnosztika



3. Adatelőkészítés



2. Adatgyűjtés



## Lineáris regressziós modellezés lépései





5. Értelmezés



4. Diagnosztika



3. Adatelőkészítés



2. Adatgyűjtés



## Lineáris regressziós modellezés lépései





5. Értelmezés



4. Diagnosztika



⇒ 3. Adatelőkészítés



2. Adatgyűjtés



## Lineáris regressziós modellezés lépései





5. Értelmezés



4. Diagnosztika



3. Adatelőkészítés



2. Adatgyűjtés



#### Adatelőkészítés



- Adatok beszerzése, tisztítása, transzformációja, pótlása, stb.
- Pénzben kifejezett, pozitív (!) változókat (például ár, árfolyam, jövedelem, munkabér, vagyon stb.) logaritmikusan szokás transzformálni (így relatív, százalékos változásokat értelmezünk).
- Kategorikus prediktorokból dummy változókat kell képezni (R-ben automatikus).

#### Mintaméret



- Statisztikai hüvelykujj-szabály: legyen legalább 5-ször, de inkább 10-szer annyi megfigyelés, mint becsült paraméter.
- Különben a becslések nagyon bizonytalanok lesznek.
- Például ne építsünk 10 prediktorral modellt 27 EU-tagra!

#### Logit modellezés lépései





5. Értelmezés



4. Diagnosztika



3. Adatelőkészítés



2. Adatgyűjtés



#### Problémák a logit modellben



- a. Kilógó értékek
- b. Multikollinearitás
- c. Hibatagok nemnormalitása
- d. Heteroszkedaszticitás.
- e. Nemlinearitás
- f. Felesleges prediktorok

Nincsenek hibatagok, ezért ez a két lineáris regressziós probléma nem merül fel a logit modellben!





- a. Kilógó értékek
- b. Multikollinearitás
- c. Nemlinearitás
- d. Felesleges prediktorok





| Jelenség                     | Miért baj?                 | Diagnózis                | Megoldás                       |
|------------------------------|----------------------------|--------------------------|--------------------------------|
| a. Kilógó értékek            | Torzított<br>modell        | Stud.<br>hibatagok       | Megfigyelések<br>elhagyása     |
| b. Multikolli-<br>nearitás   | Bizonytalan<br>együtthatók | VIF                      | Prediktorok elhagyása          |
| c. Nemlinearitás             | Torzított<br>modell        | RESET teszt,<br>CR ábrák | Prediktorok<br>transzformálása |
| d. Felesleges<br>prediktorok | Nehéz<br>értelmezés        | $z$ és $\chi^z$ tesztek  | Prediktorok elhagyása          |

Ugyanúgy ellenőrizhetjük és kezelhetjük a problémákat, mint a lineáris regresszióban (azzal a különbséggel, hogy t- és F-tesztek helyett z és  $\chi^2$ -tesztek vannak).

#### Logit modellezés lépései





#### 5. Értelmezés



4. Diagnosztika



3. Adatelőkészítés



2. Adatgyűjtés



#### Értelmezés



- a. Prediktorok parciális hatása
- b. Prediktorok fontossága
- c. Modell jósága, küszöbérték kalibrálása

## a. Mi a prediktorok parciális hatása?



| $oldsymbol{eta}_0$                  | $\beta_j$ ( $x_j$ numerikus)              | $\beta_j$ ( $x_j$ dummy)                                                            |
|-------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
| Ha minden $x_j = 0$ , akkor         | Ha $x_j$ cet.par. egységnyivel nő, akkor  | Az adott<br>kategóriában<br>cet.par                                                 |
| a logit értéke $oldsymbol{eta}_0$ . | …az odds $e^{β j}$<br>szeresére változik. | az odds e <sup>βj</sup> -<br>szerese a<br>referencia-<br>kategóriabeli<br>odds-nak. |

# a. Mi a prediktorok parciális hatása?





# b. Melyik prediktorok a legfontosabbak?



 A z-statisztikák abszolút értékei alapján rangsorolható a prediktorok fontossága.



#### c. Modell jósága és küszöbérték



- Ha a becsült valószínűség meghaladja a küszöbvalószínűséget (alapesetben ½), a modell a kimenetet 1-nek, különben 0-nak becsüli.
- Osztályozó tábla:

| Tényleges \ Becsült | 0              | 1             |
|---------------------|----------------|---------------|
| 0                   | ✓              | Elsőfajú hiba |
| 1                   | Másodfajú hiba | ✓             |

Találati arány: főátlóbeli elemek összege / n

#### ROC görbe értelmezése

(Receiver Operating Characteristic)



#### Tengelyek:

- x : tévesen besorolt megfigyelések (elsőfajú hiba) aránya a 0-s kategórián belül.
- y: 1 tévesen besorolt megfigyelések aránya az 1es kategórián belül (1 – másodfajú hiba).
- Minden küszöbvalószínűséghez egy-egy (x,y)
   pár tartozik. Ezeket tartalmazza a ROC görbe.
- A görbe a 45 fokos egyenes felett halad.

## Illeszkedés minősítése a ROC görbe alapján





Hibátlan besorolás Leggyengébb besorolás

## Az illeszkedés mérőszámai:

- Görbe alatti terület
   (AUC, 0,5 ≤ A ≤ 1)
- Gini-mutató
   (Gini = 2AUC −1,
   0 ≤ G ≤ 1)

#### A modell illeszkedése





#### **Area Under the Curve**

Test Result Variable(s): Predicted probability



# Költségfüggvény minimuma (elsőfajú, másodfajú, teljes)







#### Köszönöm a figyelmet!