Recursive Descent and Pushdown Automata

CSCI 3136: Principles of Programming Languages

Agenda

- Recursive Descent
- Pushdown Automata (PDA)
- Deterministic Pushdown Automata

LL(1) Parser Implementation

- Two efficient approaches:
 - Recursive Descent
 - Deterministic Pushdown Automata (DPDA)

 Recursive Descent is easier to understand and implement.

Recursive Descent

```
parse_X:
    t = peek next token()
```

- Idea: For each
 variable X, write a
 procedure:
 parse_X()
- Where is the stack?
- · Where do we start?
 - parse_S()
- How do we know if the syntax is correct?
 - No syntax error

```
for each i :
if i == Y1 V:
```

based on

elseif i == Y2

parse_Y2()

parse_Y1()

• • •

select X

Example

```
parse_S:
  t = peek_at_token()
```

Grammar

· S → Add | Sub | Mul

· S → Div | Neg | Val

· Add \rightarrow + S S

· Sub \rightarrow - S S

· Mul → XSS

· Div → / S S

· Neg → neg S

select S based

on t

for each i

V:

parse_Add()

if i == Add

elseif i ==Sub

V:

parse_Sub()

elgeif i ==Val

Push Down Automata

- · We proved that
 - L can be parsed by a DFA if and only if it is regular
 - Some context free languages, including most programming languages, are not regular.
 - DFAs are not powerful enough to parse context free languages.
- · We need a more powerful automata!
- A push-down automaton (PDA) is an NFA with a stack.
 - We can use this model to reason and derive properties of context free languages.

Example: PDA for L = $\{\sigma 1\sigma r\}$ $\sigma E\{0,1\}X\}$ • States: Q ={q0,q1}

- · Input alphabet: Σ $={0,1}$
- · Stack alphabet: Γ $={a,b}$

State	Input	Pop	New State	Push
q0	0	3	q0	a
q0	1	3	q0	b
q0	1	3	q0	3
q1	0	a	q1	3
q1	1	b	q1	3

 $0,\epsilon/a$ $0,a/\epsilon$

 $1,\epsilon/b$

1,b/ε

Problem: In this language we do not know when to transition to q1.

Formal Definition of a PDA

· A pushdown automata (PDA) M is a 7-Tuple $M = (Q, \Sigma, \Gamma, \delta, q0, S, F)$

- Q is the set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- δ is the transition function: $\delta: Q \times \Sigma \times \Gamma \rightarrow 2Q \times \Gamma$
- q0 is the start state
- S the initial symbol on the stack
- F is the set of final states
- There are two different modes of acceptance

Modes of Acceptance for PDAs

- **Empty Stack**: Accept if and only if it is possible to reach a configuration where
 - The input has been consumed completely
 - The stack is empty
 - State does not matter
- **Final state**: Accept if and only if it is possible to reach a configuration where
 - The input has been consumed completely
 - The current state is an accepting state
 - Stack contents do not matter

Facts about PDAs

- A language is a CFL if and only if it can be recognized by a PDA.
- A deterministic PDA (DPDA) is a PDA that has only one possible transition in any configuration
- L can be recognized by a DPDA if and only if it is LL(k) or LR(k)
- Not all L are LL(k) or LR(k),
 e.g. Languages of palindromes.

Deterministic Pushdown Automata

 Definition: A deterministic pushdown automata (DPDA) M is a 7-Tuple:

$$M = (Q, \Sigma, \Gamma, \delta, q0, S, F)$$

- · Q is the set of states
- Σ is the input alphabet
- Γ is the stack alphabet
- δ is the transition function: $\delta: Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma$
- q0 is the start state
- S the initial symbol on the stack
- F is the set of final states

Example: DPDA for $L = \{0n1n|n>0\}$

- States: Q ={q0,q1}
- Input alphabet: Σ ={0,1}
- Stack alphabet: Γ={a}

State	Input	Pop	New State	Push		
q0	0	3	q0	a		
q0	1	a	q1	3		
q1	1	a	q1	3		
={q1}eQ						

· Transition function: δ

Parsing with a DPDA

- How do we build a DPDA to implement LL(1) grammar?
- · Idea:
 - Input: token stream
 - Σ is the alphabet of tokens.
 - Transitions are based on:
 - Tokens read, matching predictor sets for given productions
 - · Symbols on the stack
 - The stack contains partial sentential forms
 - Rewriting involves popping off a nonterminal and

Example: Our Favourite

Grammar

$$\cdot S \rightarrow + S S$$

$$\cdot S \rightarrow -SS$$

$$\cdot S \rightarrow XSS$$

$$\cdot S \rightarrow /SS$$

-,S/SS

•
$$Q = \{q0\}$$

$$\Sigma = \{+,-,X,/,neg,int\}$$

$$\cdot \Gamma = \{S\}$$

· q0: q0EQ

· Stack = SEF

E - العرابات حالات

	•	State	Input	Pop	Next	Push
•	δ:	q0	+	S	q0	SS
		q0	-	S	q0	SS
		q0	*	S	q0	SS
		q0	1	S	q0	SS
		q0	neg	S	q0	S
		q0	int	S	q0	3

Implementing DPDAs

Implementation Options

- Using nested case statements
 - Level 1: Branch on current state
 - Level 2: Branch on current input symbol
 - Level 3: Branch on current stack symbol
- Similar to recursive-descent parsing
 - Instead of recursion, maintain the stack explicitly
- Table-driven
 - 3-D table mapping (state, input symbol, stack symbol) triples to strings to be pushed onto the stack.