```
import pandas as pd
In [1]:
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn import preprocessing
         from sklearn.cluster import KMeans
         import warnings
         from sklearn.model_selection import train_test_split,GridSearchCV
        from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
         from sklearn.preprocessing import StandardScaler, PolynomialFeatures
         # Ignore FutureWarnings
        warnings.simplefilter(action='ignore', category=FutureWarning)
         # Load dataset
         houseprice_df = pd.read_excel('HousePrice_Dataset.xlsx')
         houseprice_df.head()
           longitude latitude housing_median_age total_rooms total_bedrooms population households median_inco
Out[1]:
        0
             -122.23
                       37.88
                                                       880
                                                                    129.0
                                                                                322
                                                                                           126
                                                                                                       8.3
                                            41
             -122.22
                       37.86
                                            21
                                                      7099
                                                                   1106.0
                                                                               2401
                                                                                          1138
                                                                                                       8.3
                                                                                           259
        2
             -122.25
                       37.85
                                            52
                                                      1627
                                                                    280.0
                                                                                565
                                                                                                       3.8
        3
             -122.25
                       37.85
                                                       919
                                                                    213.0
                                                                                413
                                                                                           193
                                                                                                       4.(
        4
             -122.25
                       37.84
                                            52
                                                      2535
                                                                    489.0
                                                                               1094
                                                                                           514
                                                                                                       3.6
        # Checking input data shape & info
In [2]:
         df = houseprice_df.copy()
         print(df.shape)
        print(df.info())
        (18565, 10)
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 18565 entries, 0 to 18564
        Data columns (total 10 columns):
         #
            Column
                                Non-Null Count Dtype
         _ _ _
                                  -----
                                 18565 non-null float64
         0
            longitude
                                 18565 non-null float64
         1
            latitude
            housing_median_age 18565 non-null int64
         2
                                  18565 non-null int64
         3
             total_rooms 18565 non-null int64
total_bedrooms 18376 non-null float64
             total rooms
         4
         5
             population
                                 18565 non-null int64
         6
             households
                                18565 non-null int64
                              18565 non-null float64
         7
             median_income
             median_house_value 18565 non-null int64
             ocean_proximity
                                  18565 non-null object
        dtypes: float64(4), int64(5), object(1)
        memory usage: 1.4+ MB
        #Checking for NULL values in Data
In [3]:
        df.isnull().sum()
```

```
Out[3]:
        latitude
                              0
        housing_median_age
                              0
        total_rooms
                              0
        total_bedrooms
                            189
        population
                              0
        households
                              0
        median income
                              0
        median_house_value
                              0
        ocean_proximity
                              0
        dtype: int64
In [4]: #Dropping NULL Values
        df = df.dropna()
        #Confirming dropna operation
In [5]:
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        Int64Index: 18376 entries, 0 to 18564
        Data columns (total 10 columns):
        #
           Column
                               Non-Null Count Dtype
        --- -----
                               -----
           longitude
        0
                              18376 non-null float64
        1 latitude
                              18376 non-null float64
        2 housing_median_age 18376 non-null int64
        3
           total_rooms 18376 non-null int64
        4 total_bedrooms 18376 non-null float64
        5 population
                             18376 non-null int64
        6 households
                              18376 non-null int64
            median_income 18376 non-null float64
        7
            median_house_value 18376 non-null int64
            ocean_proximity
                            18376 non-null object
        dtypes: float64(4), int64(5), object(1)
        memory usage: 1.5+ MB
       #Checking for any duplicates
In [6]:
        df.duplicated().sum()
Out[6]:
        #Checking data composition for numerical features
In [7]:
        df.describe()
Out[7]:
```

longitude

		longitude	latitude	housing_median_age	total_rooms	total_bedrooms	population	househ
	count	18376.000000	18376.000000	18376.000000	18376.000000	18376.000000	18376.000000	18376.00
	mean	-119.571095	35.635164	28.605736	2635.302188	537.711199	1425.810786	499.37
	std	2.003042	2.137485	12.570789	2200.534974	424.125849	1143.481721	384.51
	min	-124.350000	32.540000	1.000000	2.000000	2.000000	3.000000	2.00
	25%	-121.800000	33.930000	18.000000	1444.000000	295.000000	786.000000	280.00
	50%	-118.500000	34.260000	29.000000	2123.000000	434.000000	1165.500000	408.00
	75%	-118.010000	37.720000	37.000000	3137.000000	646.000000	1722.000000	603.00
	max	-114.310000	41.950000	52.000000	39320.000000	6445.000000	35682.000000	6082.00

In [8]: #Standardizing the numerical feilds.
df[['housing_median_age']] = preprocessing.scale(df[['housing_median_age']]).astype('float6# df[['total_rooms']] = preprocessing.scale(df[['total_rooms']]).astype('float64')

```
# df[['total_bedrooms']] = preprocessing.scale(df[['total_bedrooms']]).astype('float64')
# df[['population']] = preprocessing.scale(df[['population']]).astype('float64')
# df[['households']] = preprocessing.scale(df[['households']]).astype('float64')
# df[['median_income']] = preprocessing.scale(df[['median_income']]).astype('float64')
# df[['median_house_value']] = preprocessing.scale(df[['median_house_value']]).astype('float64')
# df.head()
```

```
In [9]: # Correlation matrix
figure1, a = plt.subplots(figsize=(12, 10))
sns.heatmap(df.corr(), annot=True)
plt.show()
```



```
In [10]: df=df.drop(['total_rooms','total_bedrooms','population'], axis=1)
In [11]: # Correlation matrix
    figure1, a = plt.subplots(figsize=(12, 10))
    sns.heatmap(df.corr(), annot=True)
    plt.show()
```



```
In [12]: #Checking unique values in categorical column
df['ocean_proximity'].unique()
```

Out[12]: array(['NEAR BAY', '<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'ISLAND'], dtype=object)

In [13]: #House price based on categorical value.
 df.groupby(['ocean_proximity'])['median_house_value'].describe()

Out[13]:		count	mean	std	min	25%	50%	75%	max
	ocean_proximity								
	<1H OCEAN	8096.0	239973.465415	106101.457273	17500.0	164175.0	214750.0	289425.0	500001.0
	INLAND	5869.0	124937.335492	70783.931014	14999.0	77500.0	108300.0	148600.0	500001.0
	ISLAND	5.0	380440.000000	80559.561816	287500.0	300000.0	414700.0	450000.0	450000.0
	NEAR BAY	2034.0	258756.622911	122646.084078	22500.0	162500.0	231800.0	345525.0	500001.0
	NEAR OCEAN	2372.0	249858.342327	122701.540906	22500.0	150000.0	229800.0	323825.0	500001.0

```
In [14]: #Same information using a bar chart.
df['ocean_proximity'].value_counts().plot(kind='bar')
plt.show()
```



```
In [15]: figure2, ax = plt.subplots(figsize = (12,8))
sns.barplot(x = 'ocean_proximity', y = 'median_house_value' , data = df)
```

Out[15]: <AxesSubplot:xlabel='ocean_proximity', ylabel='median_house_value'>


```
In [16]: figure3, ax = plt.subplots(figsize = (12,8))
sns.scatterplot(x = 'median_income', y = 'median_house_value' , data = df)
```

Out[16]: <AxesSubplot:xlabel='median_income', ylabel='median_house_value'>

In [17]: df = pd.get_dummies(df, columns=['ocean_proximity'])

In [18]: #Renaing feature name as it should not contain charaters like <>= etc...This will give problem df.rename(columns ={'ocean_proximity_<1H OCEAN' : 'ocean_proximity_LT1H OCEAN'}, inplace = Tr</pre>

In [19]: #Checking for dummies action & feature name change df.head()

Out[19]:		longitude	latitude	housing_median_age	households	median_income	median_house_value	ocean_proximity
	0	-122.23	37.88	41	126	8.3252	452600	
	1	-122.22	37.86	21	1138	8.3014	358500	
	2	-122.25	37.85	52	259	3.8462	342200	
	3	-122.25	37.85	52	193	4.0368	269700	
	4	-122.25	37.84	52	514	3.6591	299200	

#Distribution of median house value which we are predicting In [20]: #Data shows right skewed and some outliers sns.distplot(df['median_house_value']) plt.show()

```
1e-6

4

2

1

0 100000 200000 300000 400000 500000

median_house_value
```

```
In [21]: #Confirming via box plot
sns.boxplot(df['median_house_value'])
```

Out[21]: <AxesSubplot:xlabel='median_house_value'>


```
#Trying to identify outliers and remove them
In [22]:
         # IQR
         # Calculate the upper and lower limits
         Q1 = df['median_house_value'].quantile(0.25)
         Q3 = df['median_house_value'].quantile(0.75)
         IQR = Q3 - Q1
         # Set the threshold for outliers
         lower_threshold = Q1 - 1.5 * IQR
         upper_threshold = Q3 + 1.5 * IQR
         # Identify outlier rows using boolean masks
         outliers lower = df['median house value'] < lower threshold
         outliers_upper = df['median_house_value'] > upper_threshold
         # Display the number of outliers
         print(f"Number of lower outliers: {outliers_lower.sum()}")
         print(f"Number of upper outliers: {outliers_upper.sum()}")
         # Remove the outliers
         df = df[~(outliers_lower | outliers_upper)].copy()
         # Display the shape of the cleaned DataFrame
         print(f"Shape of the cleaned DataFrame: {df.shape}")
```

```
Number of lower outliers: 0
          Number of upper outliers: 957
          Shape of the cleaned DataFrame: (17419, 11)
          #Confirming outliers removal
In [23]:
           sns.distplot(df['median_house_value'])
           plt.show()
               le-6
             5
             4
          Density
             2
             1
             0
                         100000
                                  200000
                                                    400000
                                                            500000
                                          300000
                                 median_house_value
In [24]:
          sns.distplot(np.log(df['median_house_value']))
          <AxesSubplot:xlabel='median_house_value', ylabel='Density'>
Out[24]:
             0.8
             0.7
             0.6
          0.5
0.4
             0.3
             0.2
             0.1
             0.0
                   9.5
                         10.0
                                     11.0
                                          11.5
                                                 12.0
                                                       12.5
                                                             13.0
                                                                   13.5
                               10.5
                                   median_house_value
In [25]:
          #Checking if any column belongs to object
           category_columns = df.dtypes[df.dtypes=='object'].index
           numerical_columns = df.dtypes[df.dtypes!='object'].index
           print(category_columns)
           print(numerical_columns)
          Index([], dtype='object')
          Index(['longitude', 'latitude', 'housing_median_age', 'households',
                   'median_income', 'median_house_value', 'ocean_proximity_LT1H OCEAN',
                  'ocean_proximity_INLAND', 'ocean_proximity_ISLAND', 'ocean_proximity_NEAR BAY', 'ocean_proximity_NEAR OCEAN'],
                 dtype='object')
In [26]:
          #Seperating input features and labels
          X = df.drop('median_house_value', axis = 1)
          Y = np.log(df['median_house_value'])
           print(type(X))
           print(type(Y))
```

```
print(X.shape)
          print(Y.shape)
          <class 'pandas.core.frame.DataFrame'>
          <class 'pandas.core.series.Series'>
          (17419, 10)
          (17419,)
          # Split the dataset into training and testing sets
In [27]:
          x_train, x_test, y_train, y_test = train_test_split(X, Y, test_size=0.2, random_state=42)
          print(x_train.shape)
          print(x_test.shape)
          print(y_train.shape)
          print(y_test.shape)
          df.head()
          (13935, 10)
          (3484, 10)
          (13935,)
          (3484,)
Out[27]:
                                                                                               ocean_proximity
             longitude latitude housing_median_age households median_income median_house_value
                                                                                                           C
          0
               -122.23
                         37.88
                                              41
                                                        126
                                                                     8.3252
                                                                                       452600
               -122.22
                         37.86
                                                        1138
                                                                     8.3014
                                                                                       358500
                                              21
               -122.25
                         37.85
                                              52
                                                        259
                                                                     3.8462
                                                                                       342200
          3
               -122.25
                                              52
                                                        193
                         37.85
                                                                     4.0368
                                                                                       269700
               -122.25
                         37.84
                                              52
                                                        514
                                                                     3.6591
                                                                                       299200
          # # Standardize the features using StandardScaler
          # scaler = StandardScaler()
          # X_train = scaler.fit_transform(x_train)
          # X_test = scaler.transform(x_test)
In [29]:
          #Defining functions to calculate R2 and error rate
          def model_evaluation(y_test, y_pred):
              mae = mean absolute error(y test, y pred)
              mse = mean_squared_error(y_test, y_pred)
              rmse = mean_squared_error(y_test, y_pred, squared=False)
              \# r2 \ scr = r2 \ score(y \ test, y \ pred)
              return {'mae': mae, 'mse': mse, 'rmse': rmse}
          def model_instantiation(model, x_train, x_test, y_train, y_test, y_pred, model_name):
              training_r2 = model.score(x_train, y_train)
              testing_r2 = model.score(x_test, y_test)
              eval_return = model_evaluation(y_test, y_pred)
              result_metric = {
                   'Train_R2': training_r2,
                   'Test_R2': testing_r2,
                   'Test_MSE': eval_return['mse'],
                   'Test_RMSE': eval_return['rmse'],
                   'Test_MAE': eval_return['mae']
              result = pd.DataFrame(result metric, index=[model name])
              return result
          from sklearn.linear_model import LinearRegression
In [30]:
In [31]:
          #Instantiating Linear reg model
          linear reg = LinearRegression()
```

```
linear_reg.fit(x_train, y_train)
Out[31]:
         ▼ LinearRegression
         LinearRegression()
         #Predicting via LR
In [32]:
         y_pred_LR = linear_reg.predict(x_test)
         LR_df = model_instantiation(linear_reg ,x_train,x_test,y_train,y_test,y_pred_LR , 'Linear Reg'
In [33]:
          LR_df
Out[33]:
                         Train R2
                                   Test_R2 Test_MSE Test_RMSE Test_MAE
         Linear Regression 0.630962 0.624499
                                            0.10712
                                                     0.327293 0.251028
         from sklearn.tree import DecisionTreeRegressor
In [34]:
         from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor
         #Decision Tree
In [35]:
         Decs_Tree = DecisionTreeRegressor(max_depth = 8 , min_samples_leaf =10 , min_samples_split =
         Decs_Tree.fit(x_train, y_train)
Out[35]:
                                         DecisionTreeRegressor
         DecisionTreeRegressor(max_depth=8, min_samples_leaf=10, min_samples_split=10)
         y_pred_DT = Decs_Tree.predict(x_test)
In [36]:
         DT_df = model_instantiation(Decs_Tree ,x_train,x_test,y_train,y_test,y_pred_DT , 'DTree_Regre'
In [37]:
Out[37]:
                         Train R2
                                  Test_R2 Test_MSE Test_RMSE Test_MAE
         DTree_Regression 0.763267 0.717443
                                          0.080606
                                                     0.283912
                                                              0.208418
In [38]:
         #Randon forest
          Rand Forest = RandomForestRegressor(n estimators=300, max depth = 10, min samples split=12)
          Rand_Forest.fit(x_train, y_train)
Out[38]:
                                        RandomForestRegressor
         RandomForestRegressor(max_depth=10, min_samples_split=12, n_estimators=300)
         y_pred_RF = Rand_Forest.predict(x_test)
In [39]:
         RF_df = model_instantiation(Rand_Forest ,x_train,x_test,y_train,y_test,y_pred_RF , 'RF_Regres'
In [40]:
          RF_df
Out[40]:
                               Test_R2 Test_MSE Test_RMSE Test_MAE
                       Train_R2
         RF_Regression 0.850595 0.774959
                                        0.064198
                                                   0.253374
                                                            0.180186
         Rand_Forest_2 = RandomForestRegressor(n_estimators=300, max_depth = 9, min_samples_split=4)
In [41]:
          Rand_Forest_2.fit(x_train, y_train)
         y_pred_RF_2 = Rand_Forest_2.predict(x_test)
```

```
RF_df_2
Out[41]:
                        Train R2
                                 Test_R2 Test_MSE Test_RMSE Test_MAE
          RF2_Regression 0.830124 0.763076
                                         0.067588
                                                    0.259977
                                                              0.186851
          ada =AdaBoostRegressor(n_estimators = 300, random_state = 10)
In [42]:
          ada.fit(x_train,y_train)
          y_pred_ada = ada.predict(x_test)
          ada_df = model_instantiation(ada ,x_train,x_test,y_train,y_test,y_pred_ada , 'ADA_Regression'
          ada_df
Out[42]:
                         Train R2
                                  Test_R2 Test_MSE Test_RMSE Test_MAE
          ADA_Regression 0.599874 0.586475
                                                     0.343464
                                                              0.271343
                                          0.117968
         from xgboost.sklearn import XGBRegressor
In [43]:
          xgb_model = XGBRegressor()
          # Define the parameter grid to search
          # param_grid = {
                'n_estimators': [100, 200, 300],
                'Learning_rate': [0.01, 0.1, 0.2],
          #
                'max_depth': [3, 4, 5],
          #
                'subsample': [0.8, 0.9, 1.0],
                'colsample_bytree': [0.8, 0.9, 1.0],
          #
                'reg_alpha': [0, 0.1, 0.5], # Regularization term on weights (L1)
                'reg_lambda': [0, 0.1, 0.5] # Regularization term on weights (L2)
          # }
          # # # Create GridSearchCV
          # grid_search = GridSearchCV(estimator=xgb_model, param_grid=param_grid, scoring='neg_mean_sq
          # grid_search.fit(x_train,y_train,early_stopping_rounds=10,eval_set=[(x_test, y_test)], verbo
          # XGB_Best_Model = grid_search.best_estimator_
          # y_pred_xgboost = XGB_Best_Model.predict(x_test)
          xgb_model.fit(x_train,y_train)
          y_pred_xgboost = xgb_model.predict(x_test)
          xgboost_df = model_instantiation(xgb_model, x_train, x_test, y_train, y_test, y_pred_xgboost,
          xgboost df
Out[43]:
                        Train_R2
                                  Test_R2 Test_MSE Test_RMSE Test_MAE
          XGB_Regression 0.923149 0.801669 0.056579
                                                     0.237862
                                                              0.163638
 In [ ]:
          import tensorflow as tf
In [44]:
          from tensorflow.keras.models import Sequential
          from tensorflow.keras.layers import Dense, Dropout, BatchNormalization
          from tensorflow.keras.callbacks import EarlyStopping
          from sklearn.pipeline import make_pipeline
          from tensorflow.keras.regularizers import 12
          # # Separate features (X) and target variable (y)
          X = df.drop('median_house_value', axis=1)
```

RF_df_2 = model_instantiation(Rand_Forest_2 ,x_train,x_test,y_train,y_test,y_pred_RF_2 , 'RF2

```
y = df['median_house_value']
# # Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# # Create a pipeline with StandardScaler and PolynomialFeatures
pipeline = make_pipeline(StandardScaler(), PolynomialFeatures(degree=2, include_bias=False))
# # Fit and transform the training data
X_train_poly = pipeline.fit_transform(X_train)
# # Transform the testing data
X_test_poly = pipeline.transform(X_test)
# Build a multi-layer neural network model
model = Sequential()
model.add(Dense(128, input_dim=X_train_poly.shape[1], activation='relu', kernel_regularizer=1
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu', kernel_regularizer=12(0.001)))
model.add(BatchNormalization())
model.add(Dense(32, activation='relu', kernel_regularizer=12(0.001)))
model.add(Dense(16, activation='relu', kernel_regularizer=12(0.001)))
model.add(Dense(1, activation='relu'))
# Define early stopping callback
early_stopping = EarlyStopping(monitor='val_loss', patience=10, restore_best_weights=True)
# Compile the model with an adjusted learning rate
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimizer, loss='mean_squared_error')
# Train the model
model.fit(X_train_poly, y_train, epochs=50, batch_size=32, validation_split=0.2, callbacks=[e
# Make predictions on the test set
predictions = model.predict(X_test_poly)
# Evaluate the model
mse = mean_squared_error(y_test, predictions)
r2 = r2_score(y_test, predictions)
print(f'Mean Squared Error: {mse}')
print(f'R-squared: {r2}')
\# xqboost df = model instantiation(model, x train, x test, y train, y test, predictions, 'Ten
# xgboost df
```

```
Epoch 1/50
5659099136.0000
Epoch 2/50
5651877888.0000
Epoch 3/50
5618933760.0000
Epoch 4/50
5588664320.0000
Epoch 5/50
5505753088.0000
Epoch 6/50
5382037504.0000
Epoch 7/50
5313585152.0000
Epoch 8/50
5178540032.0000
Epoch 9/50
5011771392.0000
Epoch 10/50
4739723264.0000
Epoch 11/50
4404719616.0000
Epoch 12/50
4059979776.0000
Epoch 13/50
3515187200.0000
Epoch 14/50
3261763584.0000
Epoch 15/50
2615050240.0000
Epoch 16/50
1998520320.0000
Epoch 17/50
1106513920.0000
Epoch 18/50
0114827264.0000
Epoch 19/50
9349116928.0000
Epoch 20/50
8629601280.0000
Epoch 21/50
8276018176.0000
Epoch 22/50
```

6098195456.0000

```
Epoch 23/50
5949268992.0000
Epoch 24/50
4343340032.0000
Epoch 25/50
2776638464.0000
Epoch 26/50
1230275584.0000
Epoch 27/50
0732843008.0000
Epoch 28/50
8998916096.0000
Epoch 29/50
7636432896.0000
Epoch 30/50
5972879360.0000
Epoch 31/50
5463404544.0000
Epoch 32/50
4184819712.0000
Epoch 33/50
1572216832.0000
Epoch 34/50
2135050240.0000
Epoch 35/50
834973696.0000
Epoch 36/50
097423872.0000
Epoch 37/50
530541056.0000
Epoch 38/50
991861760.0000
Epoch 39/50
955921408.0000
Epoch 40/50
321756672.0000
Epoch 41/50
848336896,0000
Epoch 42/50
548585984.0000
Epoch 43/50
736945664.0000
Epoch 44/50
```

284270080.0000

```
Epoch 45/50
      758976512.0000
      Epoch 46/50
      697150464.0000
      Epoch 47/50
      694658560.0000
      Epoch 48/50
      71138048.0000
      Epoch 49/50
      03393024.0000
      Epoch 50/50
      682987520.0000
      109/109 [========= ] - 1s 1ms/step
      Mean Squared Error: 10499794813.146599
      R-squared: -0.1518082573703612
In [45]: | from sklearn.linear_model import Ridge, Lasso
       lasso = Lasso(alpha=1.0)
       lasso.fit(x_train, y_train)
       y_pred_lasso = lasso.predict(x_test)
       lasso_df = model_instantiation(lasso, x_train, x_test, y_train, y_test, y_pred_lasso, 'Lasso'
       lasso_df
      C:\Users\sumit\anaconda3\lib\site-packages\sklearn\linear_model\_coordinate_descent.py:628: C
      onvergenceWarning: Objective did not converge. You might want to increase the number of itera
      tions, check the scale of the features or consider increasing regularisation. Duality gap: 4.
      345e+12, tolerance: 1.269e+10
        model = cd_fast.enet_coordinate_descent(
Out[45]:
           Train R2 Test R2
                         Test MSE
                                 Test RMSE
                                           Test MAE
       Lasso 0.585009 0.588948 3.747114e+09 61213.678646 46199.161283
       ridge = Ridge(alpha=1.0)
In [46]:
       ridge.fit(x_train, y_train)
       y_pred_ridge = ridge.predict(x_test)
       ridge_df = model_instantiation(ridge, x_train, x_test, y_train, y_test, y_pred_ridge, 'Ridge'
       ridge df
Out[46]:
           Train_R2
                 Test_R2
                         Test_MSE
                                 Test_RMSE
                                           Test_MAE
       Ridge 0.584982 0.588941 3.747182e+09 61214.231846 46202.274281
       all_results = pd.concat([LR_df,DT_df,RF_df,RF_df_2,ada_df,xgboost_df,lasso_df,ridge_df])
In [47]:
       all results
```

Out[47]: _

	Train_R2	Test_R2	Test_MSE	Test_RMSE	Test_MAE
Linear Regression	0.630962	0.624499	1.071205e-01	0.327293	0.251028
DTree_Regression	0.763267	0.717443	8.060598e-02	0.283912	0.208418
RF_Regression	0.850595	0.774959	6.419829e-02	0.253374	0.180186
RF2_Regression	0.830124	0.763076	6.758802e-02	0.259977	0.186851
ADA_Regression	0.599874	0.586475	1.179678e-01	0.343464	0.271343
XGB_Regression	0.923149	0.801669	5.657852e-02	0.237862	0.163638
Lasso	0.585009	0.588948	3.747114e+09	61213.678646	46199.161283
Ridge	0.584982	0.588941	3.747182e+09	61214.231846	46202.274281