

Contents lists available at ScienceDirect

Deep-Sea Research II

The influence of diurnal winds on phytoplankton dynamics in a coastal upwelling system off southwestern Africa

Andrew J. Lucas a,*, Grant C. Pitcher b,c, Trevor A. Probyn b, Raphael M. Kudela d

Enhanced Vertical Mixing in Coastal Upwelling Systems Driven by Diurnal-Inertial Resonance: Numerical Experiments

Giles Fearon^{1,3} (a), Steven Herbette^{1,2} (b), Jennifer Veitch^{3,4} (b), Gildas Cambon² (c), Andrew J. Lucas⁵ (c), Florian Lemarié⁶ (c), and Marcello Vichi^{1,7} (c)

CROCO 1D model

- Anti-cyclonic rotating wind stress with diurnal frequency and constant amplitude τ^{ac0}
- Horizontal surface elevation gradient forcing $(\frac{d\eta}{dx})$ to ensure zero cross-shore barotropic flow
- Latitude (ϕ) =30°S (f=2 Ω sin ϕ =1 day⁻¹)
- water depth = 50 m
- Bottom temperature = 10°C
- Surface temperature = 16°C
- Thermocline (dotted line) approximated by 11°C isotherm
- Zero surface radiation

No Reactions

Initial Chl condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface

$$\frac{\partial C}{\partial t} = \kappa \frac{\partial^2 C}{\partial z^2}$$

C = phytoplankton concentration (mg m⁻³) κ = diffusivity (m² s⁻¹)

Aquacosm model settings:

No Reactions

Initial Chl condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface

$$\frac{\partial C}{\partial t} = \kappa \frac{\partial^2 C}{\partial z^2}$$

C = phytoplankton concentration (mg m⁻³) κ = diffusivity (m² s⁻¹)

Aquacosm model settings:

Sverdrup

Initial Chl condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface

$$\frac{\partial C}{\partial t} = \left(re^{-z\lambda} - \mu \right) C + \kappa \frac{\partial^2 C}{\partial z^2}$$

 $C = \text{phytoplankton concentration (mg m}^{-3})$

r = maximum photosynthetic rate (1/day)

 $\lambda = \text{light decay (m}^{-1})$

 μ = respiration rate (1/day)

 $\kappa = \text{diffusivity } (m^2 \text{ s}^{-1})$

Model settings:

 $r = 1 \text{ days}^{-1}$

 $\lambda = 1/5 \text{ m}^{-1}$

 $\mu = 0.1 \text{ days}^{-1}$

Sverdrup with carrying capacity

Initial Chl condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface

$$\frac{\partial C}{\partial t} = \left(re^{-z\lambda} - \mu\right) \left(1 - \frac{C}{K}\right) C + \kappa \frac{\partial^2 C}{\partial z^2}$$

 $C = \text{phytoplankton concentration (mg m}^{-3})$

r = maximum photosynthetic rate (1/day)

 $\lambda = \text{light decay (m}^{-1})$

 μ = respiration rate (1/day)

 $\kappa = \text{diffusivity } (m^2 \text{ s}^{-1})$

K = carrying capacity (mg m⁻³)

Model settings:

 $r = 1 \text{ days}^{-1}$

 $\lambda = 1/5 \text{ m}^{-1}$

 $\mu = 0.1 \text{ days}^{-1}$

 $K = 20 \text{ mg m}^{-3}$

Initial Chl (L) condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface. Initial Carbon (C) = L/θ_{chl}

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(z, t) \frac{\partial C}{\partial z} \right) + \dot{C}.$$

where
$$\dot{C} = rf^E C - bC - \frac{aC^2}{C_h + C}$$

where
$$f^E = 1 - \exp\left(-\frac{\alpha E_{PAR}}{r}\theta_{chl}\right)$$

where
$$E_{PAR}(z) = \varepsilon_{PAR} Q_S e^{\lambda_w z + \int_z^0 \lambda_{bio}(z')dz'}$$

where
$$\lambda_{bio} = cL$$
 , $L = \theta_{chl}C$

Model settings:

$$\theta_{chl} = 0.017$$

$$r = 0.5 \text{ days}^{-1}$$

 $\lambda_w = 1/5 \text{ m}^{-1} \text{ (as per Sverdrup experiments)}$

 $c = 0 \text{ m}^2 \text{ mg chl}^{-1}$ (i.e. no bioshading)

 $b = 0.16 \text{ days}^{-1}$

 $a = 0.1 \, \text{days}^{-1}$

Initial Chl (L) condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface. Initial Carbon (C) = L / θ_{chl}

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(z, t) \frac{\partial C}{\partial z} \right) + \dot{C}.$$

where
$$\dot{C} = rf^E C - bC - \frac{aC^2}{C_h + C}$$

where
$$f^E = 1 - \exp\left(-\frac{\alpha E_{PAR}}{r}\theta_{chl}\right)$$

where
$$E_{PAR}(z) = \varepsilon_{PAR} Q_S e^{\lambda_w z + \int_z^0 \lambda_{bio}(z')dz'}$$

where
$$\lambda_{bio} = cL$$
 , $L = \theta_{chl}C$

Model settings:

$$\theta_{chl} = 0.017$$

$$r = 2 \text{ days}^{-1}$$

 $\lambda_w = 1/5 \text{ m}^{-1}$ (as per Sverdrup experiments)

 $c = 0 \text{ m}^2 \text{ mg chl}^{-1}$ (i.e. no bioshading)

$$b = 0.16 \text{ days}^{-1}$$

$$a = 1 \text{ days}^{-1}$$

Impact of diurnal surface heat fluxes

Impact of diurnal surface heat fluxes and a mean alongshore wind stress

Initial Chl (L) condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface. Initial Carbon (C) = L / θ_{chl}

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(z, t) \frac{\partial C}{\partial z} \right) + \dot{C}.$$

where
$$\dot{C} = rf^EC - bC - \frac{aC^2}{C_h + C}$$

where $f^E = 1 - \exp\left(-\frac{\alpha E_{PAR}}{r}\theta_{chl}\right)$

where
$$f^E = 1 - \exp \left(-\frac{\alpha E_{PAR}}{r} \theta_{chl}\right)$$

where
$$E_{PAR}(z) = \varepsilon_{PAR} Q_S e^{\lambda_w z + \int_z^0 \lambda_{bio}(z')dz'}$$

where
$$\lambda_{bio} = cL$$
 , $L = \theta_{chl}C$

Model settings:

$$\theta_{chl} = 0.017$$

$$r = 2 \text{ days}^{-1}$$

 $\lambda_w = 1/5 \text{ m}^{-1}$ (as per Sverdrup experiments)

 $c = 0 \text{ m}^2 \text{ mg chl}^{-1}$ (i.e. no bioshading)

 $b = 0.16 \text{ days}^{-1}$

 $a = 1 \text{ days}^{-1}$

Initial Chl (L) condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface. Initial Carbon (C) = L/θ_{chl}

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(z, t) \frac{\partial C}{\partial z} \right) + \dot{C}.$$

where
$$\dot{C} = rf^E C - bC - \frac{aC^2}{C_h + C}$$

where
$$f^E = 1 - \exp\left(-\frac{\alpha E_{PAR}}{r}\theta_{chl}\right)$$

where
$$E_{PAR}(z) = \varepsilon_{PAR} Q_S e^{\lambda_w z + \int_z^0 \lambda_{bio}(z')dz'}$$

where
$$\lambda_{bio} = cL$$
 , $L = \theta_{chl}C$

Model settings:

$$\theta_{chl} = 0.017$$

$$r = 2 \text{ days}^{-1}$$

$$\lambda_w = 1/23 \text{ m}^{-1} \text{ (clear water)}$$

 $c = 0.03 \text{ m}^2 \text{ mg chl}^{-1}$ (i.e. including bioshading)

$$b = 0.16 \text{ days}^{-1}$$

$$a = 0.1 \, \text{days}^{-1}$$

Initial Chl (L) condition – 1 mg m⁻³ in surface layer, 0 mg m⁻³ in subsurface. Initial Carbon (C) = L/θ_{chl}

$$\frac{\partial C}{\partial t} = \frac{\partial}{\partial z} \left(\kappa(z, t) \frac{\partial C}{\partial z} \right) + \dot{C}.$$

where
$$\dot{C} = rf^E C - bC - \frac{aC^2}{C_h + C}$$

where
$$f^E = 1 - \exp\left(-\frac{\alpha E_{PAR}}{r}\theta_{chl}\right)$$

where
$$E_{PAR}(z) = \varepsilon_{PAR} Q_S e^{\lambda_w z + \int_z^0 \lambda_{bio}(z')dz'}$$

where
$$\lambda_{bio} = cL$$
 , $L = \theta_{chl}C$

Model settings:

$$\theta_{chl} = 0.017$$

$$r = 2 \text{ days}^{-1}$$

$$\lambda_w = 1/23 \text{ m}^{-1} \text{ (clear water)}$$

 $c = 0.03 \text{ m}^2 \text{ mg chl}^{-1}$ (i.e. including bioshading)

$$b = 0.16 \text{ days}^{-1}$$

$$a = 0.1 \text{ days}^{-1}$$

$$\varepsilon = \frac{R\ell^2}{\kappa_s}$$

where ℓ =thermocline depth (maybe better to use euphotic depth?) $R = \dot{C}/C$, averaged over ℓ

 $\kappa_S = \kappa$ averaged over ℓ

