

Low-Voltage, 4Ω , Quad, SPST, **CMOS Analog Switches**

General Description

The MAX4651/MAX4652/MAX4653 guad analog switches feature 4Ω max on-resistance (R_{ON}) when operating from a single +5V supply. RON is matched between switches to 0.2Ω (max) and is flat (0.8Ω max) over the specified signal range. Each switch can handle Rail-to-Rail® analog signals. Off-leakage current is 0.1nA at +25°C. These switches are ideal in low-distortion applications and are the preferred solution over mechanical relays in automated test equipment or applications where current switching is required. They have low power requirements, require less board space, and are more reliable than mechanical relays.

The MAX4651/MAX4652/MAX4653 operate from a single +1.8V to +5.5V supply, making them ideal for use in battery-powered applications.

The MAX4651 has four normally closed (NC) switches, the MAX4652 has four normally open (NO) switches, and the MAX4653 has two NO and two NC switches. These devices are available in 16-pin QFN, TSSOP and SO packages, as well as 20-pin QFN package.

Applications

Battery-Powered Systems Audio and Video Signal Routing

Low-Voltage Data-Acquisition Systems

Sample-and-Hold Circuits

Communications Circuits

Relay Replacement

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

Features

- ♦ On-Resistance 4Ω max at 5V 7Ω max at 3V
- ♦ On-Resistance Flatness 0.8Ω max at 5V 2.5 Ω max at 3V
- ♦ On-Resistance Matching 0.2Ω max (+2.7V to +5.5V)
- ♦ +1.8V to +5.5V Single-Supply Voltage
- ♦ +1.8V Operation On-Resistance 30 Ω (typ) Over Temperature ton 20ns typ, toff 12ns (typ)
- **♦ TTL/CMOS-Logic Compatible**
- ♦ Crosstalk -100dB at 1MHz
- ♦ Off-Isolation -75dB at 1MHz
- ♦ Rail-to-Rail Signal Range

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4651EGE	-40°C to +85°C	16 QFN (4 × 4)
MAX4651EUE	-40°C to +85°C	16 TSSOP
MAX4651ESE	-40°C to +85°C	16 SO
MAX4651EGP	-40°C to +85°C	20 QFN (4 × 4)

Ordering Information continued at end of data sheet.

Pin Configurations/Functional Diagrams/Truth Tables

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V+ to GND0.3 to +6\
IN_, COM_, NO_, NC_ to GND (Note 1)0.3V to (V+ + 0.3V
Continuous Current (NO_, NC_, COM_)±50mA
Peak Current (NO_, NC_, COM_, pulsed at 1ms
10% duty cycle)±100mA

Continuous Power Dissipation (T _A = +70°C)	
16-Pin QFN (derate 18.5mW/°C above +70°C)1	481mW
16-Pin TSSOP (derate 5.7mW/°C above +70°C)	
16-Pin SO (derate 8mW/°C above +70°C)	640mW
20-Pin QFN (derate 20mW/°C above +70°C)1	600mW
Operating Temperature Range40°C to	+85°C
Storage Temperature Range65°C to	+150°C
Lead Temperature (soldering, 10s)	+300°C

Note 1: Signals on NO_, NC_, COM_, or IN_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single +5V Supply

 $(V+ = 4.5V \text{ to } 5.5V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+ = 5V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Input Voltage Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V	
COM_ to NO_ or NC_	D	ICOM = 10mA,	T _A = +25°C		2.5	4	Ω	
On-Resistance	R _{ON}	V_{NO} or V_{NC} = 0 to V+, V+ = 4.5V	TA = TMIN to TMAX			4.5	22	
COM_ to NO_ or NC_	AD	$I_{COM} = 10 \text{mA},$	T _A = +25°C		0.05	0.2		
On-Resistance Match Between Channels (Notes 3, 8)	ΔR _{ON}	V_{NO} or V_{NC} = 0 to V_{+} , V_{+} = 4.5 V_{-}	TA = TMIN to TMAX			0.3	Ω	
On-Resistance Flatness	Б	I _{COM} = 10mA,	T _A = +25°C		0.5	0.8		
(Note 4)	RFLAT(ON)	V_{NO} or V_{NC} = 0 to V_{+} , V_{+} = 4.5 V_{-}	TA = TMIN to TMAX			1	Ω	
Off-Leakage Current	I _{NO} ,	V _{COM} = 1V, 4.5V;	T _A = +25°C	-0.1	0.01	0.1	nA	
(NO_ or NC_) (Note 5)	I _{NC} _	V_{NO} or V_{NC} = 4.5V, 1V; V+ = 5.5V	$T_A = T_{MIN}$ to T_{MAX}	-0.2		0.2		
COM_ Off-Leakage Current	1	$V_{COM} = 1V, 4.5V;$	T _A = +25°C	-0.1	0.01	0.1		
(Note 5)	ICOM_(OFF)	V_{NO} or V_{NC} = 4.5V, 1V; V+ = 5.5V	TA = TMIN to TMAX	-0.2		0.2	- nA	
COM_ On-Leakage Current	ICOM_(ON)	V+ = 5.5V, V _{COM} = 1V, 4.5V; V _{NO} or	T _A = +25°C	-0.1	0.01	0.1	nA	
(Note 5)	ICOM_(ON)	$V_{NC_{-}} = 1V, 4.5V$ or floating	$T_A = T_{MIN}$ to T_{MAX}	-0.2		0.2	TIA .	
LOGIC INPUT (IN_)								
Input High	VIH			2.4			V	
Input Low	V _{IL}					0.8	V	
Logic Input Current	I _{IN}			-100	5	100	nA	

ELECTRICAL CHARACTERISTICS—Single +5V Supply (continued)

 $(V+ = 4.5V \text{ to } 5.5V, V_{IH} = 2.4V, V_{IL} = 0.8V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+ = 5V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	PARAMETER SYMBOL CONDITIONS					MAX	UNITS	
SWITCH DYNAMIC CHARACT	ERISTICS							
T Oc. Time - (NI-11-15)		V _{NO} _ = V _{NC} _ = 3V,	T _A = +25°C		11	14		
Turn-On Time (Note 5)	ton	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	TA = TMIN to TMAX			16	ns	
Turn-Off Time (Note 5)	torr	$V_{NO} = V_{NC} = 3V,$ $R_1 = 300\Omega, C_1 = 35pF,$	T _A = +25°C		6	8	ns	
Turr-Oil Time (Note 5)	tOFF	Figure 2	TA = TMIN to TMAX			10	115	
Break-Before-Make		V _{NO_} = V _{NC_} = 3V,	T _A = +25°C	1	6		no	
(MAX4653 only) (Note 5)		$R_L = 300\Omega$, $C_L = 35pF$	$T_A = T_{MIN}$ to T_{MAX}	1	1		ns	
Charge Injection	Q	$V_{GEN} = 2V, C_L = 1.0nF$, R _{GEN} = 0, Figure 3		2		рС	
NO_ or NC_ Off-Capacitance	Coff	$V_{NO} = V_{NC} = GND, f$		16		рF		
COM_ Off-Capacitance	C _C OM(OFF)	V _{COM} _ = GND, f = 1MI	Hz, Figure 6		16		рF	
COM_ On-Capacitance	C _{COM(ON)}	V _{COM} _ = V _{NO} _, V _{NC} _ = Figure 7	GND, f = 1MHz,		32		pF	
Off-Isolation (Note 6)	\/	$R_L = 50\Omega$, $C_L = 5pF$, f	= 10MHz, Figure 4		-50		dB	
On-isolation (Note o)	V _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$, f		-75		ub		
Crosstalk (Note 7)	Vot	$R_L = 50\Omega$, $C_L = 5pF$, f	= 10MHz, Figure 5		-80		dB	
Crossiaik (Note 7)	VCT	$R_L = 50\Omega$, $C_L = 5pF$, f		-100		ub		
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20Hz$ to		0.02		%		
POWER SUPPLY				•			•	
Positive Supply Current	I+	$V+ = 5.5V$, $V_{IN} = 0$ or $V_{IN} = 0$	/+		0.001	1.0	μΑ	

ELECTRICAL CHARACTERISTICS—Single +3V Supply

 $(V+ = 2.7V \text{ to } 3.3V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+ = 3V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	COND	TIONS	MIN	TYP	MAX	UNITS	
ANALOG SWITCH								
Input Voltage Range	V _{COM_} , V _{NO_} , V _{NC_}			0		V+	V	
COM_ to NO_ or NC_	Davi	V+ = 2.7V, I _{COM} = 10mA,	T _A = +25°C		5 7		Ω	
On-Resistance	R _{ON}	V_{NO} or V_{NC} = 0 to V+	TA = TMIN to TMAX			8	1 32	
COM_ to NO_ or NC_ On-Resistance Match Between	ADa.	$V+ = 2.7V$, $I_{COM} = 10mA$,	T _A = +25°C		0.1	0.2	0	
Channels (Notes 3, 8)	ΔR _{ON}	V_{NO} or $V_{NC} = 0$ to V_{+}	TA = TMIN to TMAX			0.3	Ω	
On-Resistance Flatness	DEL ATIONS	$V+ = 2.7V$, $I_{COM} = 10mA$,	T _A = +25°C		1.2	2.5	Ω	
(Note 4)	RFLAT(ON)	V_{NO} or $V_{NC} = 0$ to V_{+}	TA = TMIN to TMAX			3	1 22	

ELECTRICAL CHARACTERISTICS—Single +3V Supply (continued)

 $(V+ = 2.7V \text{ to } 3.3V, V_{IH} = 2.0V, V_{IL} = 0.4V, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise specified. Typical values are at } V+ = 3V, T_A = +25^{\circ}C.)$ (Note 2)

PARAMETER	SYMBOL	COND	ITIONS	MIN	TYP	MAX	UNITS	
LOGIC INPUT (IN_)	1						ı	
Input High	VIH			2.0			V	
Input Low	V _{IL}					0.4	V	
Logic Input Current	I _{IN}			-100	5	100	nA	
SWITCH DYNAMIC CHARACT	ERISTICS							
Turn On Time (Note E)	tou	$V_{NO} = V_{NC} = 2V,$ $R_1 = 300\Omega, C_1 = 35pF,$	T _A = +25°C		13	16	no	
Turn-On Time (Note 5)	ton	Figure 2	$T_A = T_{MIN}$ to T_{MAX}			20	ns	
Turn-Off Time (Note 5)	+	V _{NO} _= V _{NC} _= 2V,	T _A = +25°C		7	10	no	
Turn-On Time (Note 5)	toff	$R_L = 300\Omega$, $C_L = 35pF$, Figure 2	TA = TMIN to TMAX			12	ns	
Break-Before-Make		$V_{NO} = V_{NC} = 2V$	T _A = +25°C	1	7		ns	
(MAX4653 only) (Note 5)		$R_L = 300\Omega$, $C_L = 35pF$	TA = TMIN to TMAX	1	1			
Charge Injection	Q	V _{GEN} = 1.5V, C _L = 1.0	nF, R _{GEN} = 0, Figure 3		2		рС	
NO_ or NC_ Off-Capacitance	Coff	V _{NO_} = V _{NC_} = GND, f	= 1MHz, Figure 6		16		pF	
COM_ Off-Capacitance	C _{COM(OFF)}	V _{COM} _ = GND, f = 1MI	Hz, Figure 6		16		pF	
COM_ On-Capacitance	C _{COM} (ON)	V _{COM} = V _{NO} , V _{NC} = Figure 7	GND, f = 1MHz,		32		pF	
Off Indiation (Note 6)	Viac	$R_L = 50\Omega$, $C_L = 5pF$, f	= 10MHz, Figure 4		-50		40	
Off-Isolation (Note 6)	VISO	$R_L = 50\Omega$, $C_L = 5pF$, f	= 1MHz, Figure 4	-75			- dB	
Cycostally (Nieto 7)	\/	$R_L = 50\Omega$, $C_L = 5pF$, f	= 10MHz, Figure 5		-80		٩D	
Crosstalk (Note 7)	VCT	$R_L = 50\Omega$, $C_L = 5pF$, f	= 1MHz, Figure 5		-100		- dB	
Total Harmonic Distortion	THD	$R_L = 600\Omega$, $f = 20Hz$ to	20kHz		0.02		%	
POWER SUPPLY	•						•	
Positive Supply Current	l+	$V+ = 3.3V, V_{IN} = 0 \text{ or } V$	' +		0.001	1.0	μA	

- **Note 2:** The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
- **Note 3:** $\Delta R_{ON} = R_{ON(MAX)} R_{ON(MIN)}$.
- **Note 4:** Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
- Note 5: Guaranteed by design.
- **Note 6:** Off-Isolation = $20\log_{10}(V_{COM}/V_{NO})$, where V_{COM} = output and V_{NO} = input to off switch.
- Note 7: Between any two switches.
- Note 8: ΔR_{ON} matching specifications for QFN-packages parts are guaranteed by design.

Typical Operating Characteristics

(V+ = 5V, T_A = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

 $(V+ = 5V, T_A = +25^{\circ}C, unless otherwise noted.)$

MIXINN ______

Pin Description

				PIN									
ı	MAX4651			MAX4652	2		MAX4653	3	NAME	FUNCTION			
TSSOP/	16-PIN	20-PIN	TSSOP/	16-PIN	20-PIN	TSSOP/	16-PIN	20-PIN	NAME	FUNCTION			
SO	QFN	QFN	SO	QFN	QFN	SO	QFN	QFN					
1	15	19	1	15	19	1	15	19	IN1	Digital Control Input 1			
2	16	1	2	16	1	2	16	1	COM1	Analog Switch 1 Common Terminal			
3	1	2	_	_	_	_	_	_	NC1	Analog Switch 1 Normally Closed Terminal			
	_	_	3	1	2	3	1	2	NO1	Analog Switch 1 Normally Open Terminal			
4, 12	2, 10	6, 8, 10, 16, 18, 20	4, 12	2, 10	6, 8, 10, 16, 18, 20	4, 12	2, 10	6, 8, 10, 16, 18, 20	N.C.	No Connection. Not internally connected.			
5	3	3	5	3	3	5	3	3	GND	Ground			
6	4	4	_	_	_	_	_	_	NC4	Analog Switch 4 Normally Closed Terminal			
	_	_	6	4	4	6	4	4	NO4	Analog Switch 4 Normally Open Terminal			
7	5	5	7	5	5	7	5	5	COM4	Analog Switch 4 Common Terminal			
8	6	7	8	6	7	8	6	7	IN4	Digital Control Input 4			
9	7	9	9	7	9	9	7	9	IN3	Digital Control Input 3			
10	8	11	10	8	11	10	8	11	СОМЗ	Analog Switch 3 Common Terminal			
11	9	12	_	_	_	11	9	12	NC3	Analog Switch 3 Normally Closed Terminal			
_	_	_	11	9	12	_	_	_	NO3	Analog Switch 3 Normally Open Terminal			
13	11	13	13	11	13	13	11	13	V+	Positive-Supply Voltage Input			
14	12	14	_	_	_	14	12	14	NC2	Analog Switch 2 Normally Closed Terminal			
_			14	12	14	_			NO2	Analog Switch 2 Normally Open Terminal			
15	13	15	15	13	15	15	13	15	COM2	Analog Switch 2 Common Terminal			
16	14	17	16	14	17	16	14	17	IN2	Digital Control Input 2			

Detailed Description

The MAX4651/MAX4652/MAX4653 are low on-resistance, low-voltage analog switches that operate from a single +1.8V to +5.5V supply. CMOS switch construction allows processing analog signals that are within the supply voltage range (GND to V+).

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V+ on first, followed by the logic inputs, NO or COM. If power-supply sequencing is not possible, add two small signal diodes (D1, D2) in series with the supply pins for overvoltage protection (Figure 1). Adding these diodes reduces the analog signal by one diode drop below V+ and one diode drop above GND, but does not affect the devices' low switch resistance and low leakage characteristics. Device operation is unchanged, and the difference between V+ and GND should not exceed 6V.

Although it is not required, power-supply bypassing improves noise margin and prevents switching noise from propagating from the V+ supply to other components. A $0.1\mu F$ capacitor connected from V+ to GND is adequate for most applications.

Figure 1. Overvoltage Protection Using External Blocking Diodes

Chip Information

TRANSISTOR COUNT: 205

Timing Diagrams/Test Circuits

Figure 2. Switching-Time Test Circuit

Figure 3. Charge-Injection Test Circuit

Timing Diagrams/Test Circuits (continued)

Figure 4. Off-Isolation Test Circuit/On-Channel Bandwidth

Figure 5. Crosstalk Test Circuit

Figure 6. Switch Off-Capacitance Test Circuit

Figure 7. Switch On-Capacitance Test Circuit

Pin Configurations (continued)

_Ordering Information (continued)

PART	TEMP RANGE	PIN-PACKAGE
MAX4652EGE	-40°C to +85°C	16 QFN (4 × 4)
MAX4652EUE	-40°C to +85°C	16 TSSOP
MAX4652ESE	-40°C to +85°C	16 SO
MAX4652EGP	-40°C to +85°C	20 QFN (4 × 4)
MAX4653EGE	-40°C to +85°C	16 QFN (4 × 4)
MAX4653EUE	-40°C to +85°C	16 TSSOP
MAX4653ESE	-40°C to +85°C	16 SO
MAX4653EGP	-40°C to +85°C	20 QFN (4 × 4)

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

NOTES:

- 1. DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (.012 INCHES MAXIMUM)
- 2. DIMENSIONING & TOLERANCES CONFORM TO ASME Y14.5M. 1994.
- N IS THE NUMBER OF TERMINALS.

 Nd IS THE NUMBER OF TERMINALS IN X-DIRECTION &
 Ne IS THE NUMBER OF TERMINALS IN Y-DIRECTION.
- DIMENSION 6 APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20 AND 0.25mm FROM TERMINAL TIP.
- THE PIN #1 IDENTIFIER MUST BE EXISTED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR INK/ LASER MARKED.
- 6. EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.
- 8. PACKAGE WARPAGE MAX 0.05mm.
- 9 APPLIED FOR EXPOSED PAD AND TERMINALS.
 EXCLUDE EMBEDDED PART OF EXPOSED PAD FROM MEASURING.
- 10. MEETS JEDEC MO220.
- 11. THIS PACKAGE OUTLINE APPLIES TO ANVIL SINGULATION (STEPPED SIDES) AND TO SAW SINGULATION (STRAIGHT SIDES) QFN STYLES.

S				
S Y M B O L	L DII	MENSION	1S	No.
٩	MIN.	NOM.	MAX.	Υ _E
A A1	0.80	0.90	1.00	
A1	0.00	0.01	0.05	
A2	0.00	0.65	1.00	
А3		0.20 REF.		
D D1		5.00 BSC		
D1		4.75 BSC		
Ε		5.00 BSC		
Ē1		4.75 BSC		
θ P	0°	_	12°	
Р	0		0.60	
D2	1.25	_	3.25	
E2	1.25	_	3.25	

S M B	PITCH MIN.	VARIAT	ION B	No _T	S M B O	PITCH MIN.	VARIAT	ION B	No _T	S Y M B O	PITCH MIN.	VARIAT	TON C	No _T	S M B O	PITCH MIN.	VARIAT	TON D	No _T
lei l		0.80 BSC	WAA.	E	e		0.65 BSC	IVIAA.	E	e	IVITIN.	0.50 BSC		-	lei l	IVIII N.	0.50 BSC	I WAA.	-
N		16		3	Ñ		20		3	N		28		3	Ñ		32		3
Nd		4		3	Nd		5		3	Nd		7		3	Nd		8		3
Ne		4		3	Ne		5		3	Ne		7		3	Ne		8		3
L	0.35	0.55	0.75		L	0.35	0.55	0.75		L	0.35	0.55	0.75		L	0.30	0.40	0.50	
Ь	0.28	0.33	0.40	4	Ь	0.23	0.28	0.35	4	Ь	0.18	0.23	0.30	4	Ь	0.18	0.23	0.30	4

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.