Global tests in high-dimensions

Aldo Solari Statistical Inference II PhD in Economics and Statistics University of Milano-Bicocca

Classical theory

- It concerns the behaviour when the *sample size* $n \to \infty$
- Suppose $Y_1,\ldots,Y_n\stackrel{i.i.d.}{\sim} Y_n$ with mean $\mu=\mathbb{E}(Y)$ and finite variance $\Sigma=\mathbb{V}\mathrm{ar}(Y)$
- Law of large numbers: the sample mean $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n Y_i$ converges in probability to μ
- Central limit theorem: the rescaled deviation $\sqrt{n}(\hat{\mu}_n \mu)$ converges in distribution to a centered Gaussian with covariance matrix Σ
- Consistency of maximum likelihood estimation
- Etc.

Suppose that we are given n=1000 samples from a statistical model in m=500 dimensions

Will theory that requires $n \to \infty$ with the dimension m remaining fixed provide useful predictions?

High-dimensional data

 The data sets arising in many parts of modern science have a "high-dimensional flavor", with *m* on the same order as, or possibly larger than *n*

$$m \gg n$$

- Classical "large n, fixed m" theory fails to provide useful predictions
- Classical methods can break down dramatically in high-dimensional regimes

Reference

Wainwright (2019) High-Dimensional Statistics: A Non-Asymptotic Viewpoint Cambridge University Press Sections 1.1.1, 1.2.1, 1.3.1

Two classes

- Hypothesis testing can be used to determine whether an observed vector $x = (x_1, \dots, x_m)^\mathsf{T} \in \mathbb{R}^m$ has been drawn from one of two possible densities $f_A \equiv P(X|Y=A)$ and $f_B \equiv P(X|Y=B)$, corresponding to two possible classes A and B
- Consider testing $H_A: X_A \sim f_A$ vs $H_B: X_B \sim f_B$, where $X_A \equiv (X|Y=A)$ and $X_B \equiv (X|Y=B)$
- When these two distributions are known, then the Neyman-Pearson lemma says that the optimal decision rule is based on thresholding the log-likelihood ratio

$$\log \frac{f_B(x)}{f_A(x)}$$

- By testing H_A vs H_B and H_B vs H_A the conclusion is that the observed data x is consistent with A (H_B rejected), with B (H_A rejected), with both (no rejections), or with neither (both rejected)

Classification problem

- Let's turn to the classification problem involving the allocation of the observed unit *x* to one of two classes *A* and *B*
- For a Bayesian analysis suppose that the prior probabilities are $\pi_A \equiv P(Y=A)$ and $\pi_B \equiv P(Y=B)$ with $\pi_A + \pi_B = 1$. Then the posterior probabilities satisfy

$$\frac{P(Y=B|X=x)}{P(Y=A|X=x)} = \frac{\pi_B}{\pi_A} \frac{f_B(x)}{f_A(x)}$$

giving the class with the higher posterior probability

- As a special case, suppose that the two classes are distributed as multivariate Gaussians $X_A \sim N(\mu_A, I_m)$ and $X_B \sim N(\mu_B, I_m)$, with $\pi_A = \pi_B = 1/2$

Optimal decision

The optimal decision rule is to threshold the log-likelihood ratio

$$\Psi(x) = \langle \mu_A - \mu_B, \left(x - \frac{\mu_A + \mu_B}{2}\right) \rangle$$

where $\langle x, z \rangle = x^{\mathsf{T}} z = \sum_{j=1}^{m} x_j z_j$ denotes the Euclidean inner product in \mathbb{R}^m

- If $\Psi(x) > 0$ then classify *A*, otherwise *B*
- Error probability of the optimal rule:

$$\operatorname{Err}(\Psi) = \frac{1}{2} P(\Psi(X_A) < 0) + \frac{1}{2} P(\Psi(X_B) \ge 0) = \Phi\left(-\frac{\gamma}{2}\right)$$

where $\gamma = \|\mu_A - \mu_B\|_2$, $\|\mu\|_2 = \sqrt{\mu^T \mu}$, and Φ is the cdf of a standard normal variable

$$\langle \mu_A - \mu_B, \left(x - \frac{\mu_A + \mu_B}{2} \right) \rangle = 0$$

source: Wainwright

Linear Discriminant Analysis

– Fisher's LDA: uses the plug-in principle based on n_A samples from class A and n_B samples from class B

$$\hat{\Psi}(\mathbf{x}) = \langle \hat{\mu}_A - \hat{\mu}_B, \mathbf{x} - \frac{\hat{\mu}_A + \hat{\mu}_B}{2} \rangle$$

Error probability of LDA (is itself a random variable)

$$\operatorname{Err}(\hat{\Psi}) = \frac{1}{2} P(\hat{\Psi}(X_A) < 0) + \frac{1}{2} P(\hat{\Psi}(X_B) \ge 0)$$

- Classical theory: if $(n_A, n_B) \to \infty$ and m remains fixed, then $\hat{\mu}_A \overset{prob.}{\to} \mu_A$, $\hat{\mu}_B \overset{prob.}{\to} \mu_B$ and the asymptotic error probability is $\operatorname{Err}(\hat{\Psi}) \overset{prob.}{\to} \operatorname{Err}(\Psi) = \Phi(-\gamma/2)$

High-Dimensional Theory

- What happens if $(n_A, n_B, m) \rightarrow \infty$ with
 - $m/n_A \rightarrow \delta$ with $\delta > 0$
 - $m/n_B \rightarrow \delta$
 - $\|\mu_A \mu_B\|_2 \to \gamma > 0$
- Kolmogorov (1960) showed that

$$\operatorname{Err}(\hat{\Psi}) \stackrel{prob.}{\to} \Phi\left(-\frac{\gamma^2}{2\sqrt{\gamma^2 + 2\delta}}\right)$$

- If $m/n \to 0$, then the asymptotic error probability is $\Phi(-\gamma/2)$ as is predicted by classical theory
- If $m/n \to \delta > 0$, then the asymptotic error probability is strictly larger than $\Phi(-\gamma/2)$

The error probability of $\hat{\Phi}$, for the finite triple

$$(m, n_A, n_B) = (400, 800, 800)$$

is better described by the classical $\Phi(-\gamma/2)$, or the high-dimensional analog $\Phi(-\gamma^2/(2\sqrt{\gamma^2+2\delta}))$?

circles correspond to the empirical error probabilities, averaged over 10 trials

What can help us in high dimensions?

- An important fact is that high-dimensional phenomena are unavoidable
- If the ratio m/n stays bounded strictly above zero, then it is not possible to achieve the optimal classification rate
- Our only hope is that the data is endowed with some form of low-dimensional structure

- What is the underlying cause of the inaccuracy of the prediction for the LDA in high-dimensions?
- The squared Euclidean error

$$\|\hat{\mu} - \mu\|_2^2 = \sum_{j=1}^m (\hat{\mu}_j - \mu_j)^2$$

concentrates sharply around m/n, i.e. for $t \in (0, 1)$

$$P\left(\left|\|\hat{\mu}-\mu\|_2^2 - \frac{m}{n}\right| \geq \frac{m}{n}t\right) = P\left(\left|\frac{1}{m}\sum_{j=1}^m Z_j^2 - 1\right| \geq t\right) \leq 2e^{-\frac{mt^2}{8}}$$

where $Z_j = \sqrt{n}(\hat{\mu}_j - \mu_j) \sim N(0, 1)$; for the upper bound see Wainwright (2019), Example 2.11

Sparsity

- Suppose that the *m*-vector μ is *sparse*, with only *s* of its *m* entries being nonzero, for some sparsity parameter $s \ll m$
- If sparsity holds, we can obtain a better estimator by thresholding the sample means

$$\tilde{\mu}_j = \hat{\mu}_j \mathbb{1}\{|\hat{\mu}_j| > \lambda\}$$

where

$$\lambda = \sqrt{\frac{2\log m}{n}}$$

Thresholded mean

Suppose to replace $\hat{\mu}$ by the thresholded mean $\tilde{\mu}$, then

$$ilde{\Psi}(extbf{ extit{x}}) = \langle ilde{\mu}_{ extit{A}} - ilde{\mu}_{ extit{B}}, extit{ extit{x}} - rac{ ilde{\mu}_{ extit{A}} + ilde{\mu}_{ extit{B}}}{2}
angle$$

approaches the optimal $\operatorname{Err}(\Psi)$ if $\log {m \choose s}/n \to 0$. For s=5:

circles correspond to the empirical error probabilities, averaged over 10 trials

- Random sample of *n* observations from $y \sim N_m(\mu, \Sigma)$

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \sim N_m \begin{pmatrix} \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_m \end{pmatrix}, \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdot & \sigma_{1m} \\ \sigma_{21} & \sigma_2^2 & \cdot & \sigma_{2m} \\ \cdot & \cdot & \cdot & \cdot \\ \sigma_{m1} & \cdot & \cdot & \sigma_m^2 \end{bmatrix}$$

- The parameter of interest is $\mathbb{E}(y) = \mu$, where $\mu_j = 0$ means "no effect" and $\mu_i \neq 0$ means "effect" in the *j*th component
- The nuisance parameter is the variance/covariance matrix $\mathbb{V}ar(y) = \Sigma$

Three questions

- 1. Detecting effects: There is at least one μ_j different from o?
- 2. Counting effects: How many μ_i are different from o?
- 3. *Identifying effects*: Which μ_i are different from o?

Global null hypothesis

Testing the global null hypothesis aims at detecting any effect

$$H_0: \mu = 0$$
, i.e. $\bigcap_{j=1}^{m} \{\mu_j = 0\}$

$$H_1: \mu \neq 0$$
, i.e. $\bigcup_{j=1}^m \{\mu_j \neq 0\}$

One-sided alternative

$$H_0: \bigcap_{j=1}^{m} \{\mu_j = 0\}$$

 $H_1: \bigcup_{j=1}^{m} \{\mu_j > 0\}$

MaxT and SumT

- For simplicity, assume $\Sigma = I_m$ and n = 1 and consider the one-sided alternative
- $T_j = y_j \sim N(\mu_j, 1)$ for j = 1, ..., m
- $(T_1,\ldots,T_m)' \stackrel{H_0}{\sim} N_m(0,I_m)$
- MaxT

$$T_{\max} = \max(T_1, \ldots, T_m)$$

- SumT

$$T_{\text{sum}} = \sum_{i=1}^{m} T_i$$

MaxT

– The critical value $t_{1-\alpha}$ of T_{\max} is

$$P_0(T_{\text{max}} \geq t_{1-\alpha}) = \alpha$$

where $t_{1-\alpha}$ is the $1-\alpha$ quantile of the distribution of the maximum of m independent standard normal variables

$$\int_{t_{1-\alpha}}^{\infty} m\phi(y)\Phi(y)^{m-1}dy = \alpha$$

where ϕ and Φ are the density and cdf of N(0,1)

Critical value approximation

– We can replace $t_{1-\alpha}$ by $z_{1-\frac{\alpha}{m}}$

$$P_0(T_{\max} \ge z_{1-\frac{\alpha}{m}}) = P_0\left(\bigcup_{j=1}^m \{T_j \ge z_{1-\frac{\alpha}{m}}\}\right)$$

$$\le \sum_{j=1}^m P_0(T_j \ge z_{1-\frac{\alpha}{m}}) = m\frac{\alpha}{m} = \alpha$$

– The union bound might seem crude, but with independent T_j s the size of the test is very near α

$$P_0(T_{\text{max}} \ge z_{1-\frac{\alpha}{m}}) = 1 - \prod_{j=1}^m P_0(T_j < z_{1-\frac{\alpha}{m}})$$
$$= 1 - \left(1 - \frac{\alpha}{m}\right)^m \stackrel{m \to \infty}{\to} 1 - e^{-\alpha}$$

For
$$\alpha = 0.05$$
, $1 - e^{-\alpha} = 0.0487$

Magnitude of the critical value

– How large is the threshold $z_{1-\frac{\alpha}{m}}$? For large m

$$\begin{array}{lcl} z_{1-\frac{\alpha}{m}} & \approx & \sqrt{2\log m} - \frac{\log(2\log m) + \log 2\pi}{2\sqrt{2\log m}} \\ \\ & \approx & \sqrt{2\log m} \end{array}$$

with no dependence on α

Proof

$$\frac{\phi(t)}{t}(\frac{t^2}{t^2+1}) \le P(N(0,1) > t) \le \frac{\phi(t)}{t}$$

where $\phi(t)$ is the probability density function of N(0,1). This result implies that for large t, $\frac{\phi(t)}{t}$ is a good approximation to the normal tail probability. Let $z^* = z_{1-\frac{\alpha}{m}}$. We have

$$\frac{\alpha}{m} = P(N(0,1) > z_{1-\frac{\alpha}{m}}) \approx \frac{\phi(z^*)}{z^*}$$
, which implies

$$\alpha/m \approx \frac{1}{z^*\sqrt{2\pi}}e^{-\frac{(z^*)^2}{2}}$$
. Taking the logarithm

$$\log m \approx \frac{1}{2} \log(2\pi) + \frac{1}{2} (z^*)^2 + \log(z^*) + \log(\alpha)$$

Note that z^* is increasing in m, i.e. $m \to \infty$ induces $z^* \to \infty$. As $\frac{1}{2}\log(2\pi) + \log(z^*) + \log(\alpha)$ is negligible compared to $(z^*)^2$ when m goes to ∞ , it gives

$$z_{1-\frac{\alpha}{m}} pprox \sqrt{2\log m}$$

Needle in a haystack problem

$$H_0: \mu_j = 0 \text{ for all } j = 1, \dots, m$$

 $H_1: \mu_j = c_m > 0, \mu_k = 0 \text{ for } k \neq j$

– What is the limiting power of the MaxT test?

$$\lim_{m\to\infty} P_1(T_{\max}>z_{1-\frac{\alpha}{m}})$$

It depends on the limiting ratio

$$\lim_{m \to \infty} \frac{c_m}{\sqrt{2\log m}} \le 1$$

where c_m is the value of the single non-zero mean, which depends on m

Two cases:

- Assume without loss of generality that $\mu_1 = c_m$. Suppose $c_m > (1 + \epsilon) \sqrt{2 \log m}$. Then, for $m \to \infty$

$$\mathrm{P}_1(\mathit{T}_{\mathrm{max}} > \mathit{z}_{1-\frac{\alpha}{m}}) \geq \mathrm{P}_1(\mathit{T}_1 > \mathit{z}_{1-\frac{\alpha}{m}}) = \mathrm{P}(\mathit{N}(0,1) > \mathit{z}_{1-\frac{\alpha}{m}} - \mathit{c}) \rightarrow 1$$

- Suppose $c_m < (1-\epsilon)\sqrt{2\log m}$. Then for $m\to\infty$

$$\begin{array}{lcl} \mathrm{P}_{1}(T_{\max}>z_{1-\frac{\alpha}{m}}) & \leq & \mathrm{P}(T_{1}>z_{1-\frac{\alpha}{m}}) + \mathrm{P}(\max_{j>1}T_{j}>z_{1-\frac{\alpha}{m}}) \\ \\ & = & \mathrm{P}(N(0,1)>z_{1-\frac{\alpha}{m}}-c) + \mathrm{P}(\max_{j>1}T_{j}>z_{1-\frac{\alpha}{m}}) \\ \\ & \to & 0+(1-e^{-\alpha}) \end{array}$$

and the MaxT test has no power

SumT

$$T_{\text{sum}} = \sum_{j=1}^{m} T_j \sim N(\sum_{j=1}^{m} \mu_j, m)$$

$$- \ \frac{T_{\text{sum}}}{\sqrt{m}} \overset{H_0}{\sim} \textit{N}(0,1); \frac{T_{\text{sum}}}{\sqrt{m}} \overset{H_1}{\sim} \textit{N}(\theta_{\textit{m}},1) \text{ with }$$

$$\theta_m = \frac{\sum_{j=1}^m \mu_j}{\sqrt{m}}$$

but if $\theta_m \to 0$ when $m \to \infty$, then T_{sum} has no power

– By the Neyman-Pearson lemma, $T_{\rm sum}$ is the UMP test for

$$H_0: \mu_j = 0 \text{ for all } j$$

$$H_1: \mu_j = c_m > 0$$
 for all j

where $\theta_m = \sqrt{m}c_m$, but if $c_m = \frac{1}{m}$ the UMP test has no power

Comparison

- Few strong effects:

 $m^{1/4}$ of the μ_{j} s are equal to $\sqrt{2\log m}$, the rest o. E.g. when $m=10^6$, $m^{1/4}\approx 36$ and $\sqrt{2\log m}\approx 5.3$. In this setting T_{\max} has full power, but T_{\sup} has no power because

$$\theta_m = \frac{m^{1/4}\sqrt{2\log m}}{\sqrt{m}} \to 0$$

- Small, distributed effects:

 $\sqrt{2m}$ of the μ_j s are equal to 3, the rest o.

The $T_{\rm sum}$ has (almost) full power, but $T_{\rm max}$ has no power because when m is large it's very likely that the largest y_j value comes from a null μ_j

MinP

- Let $p_i = 1 \Phi(T_i)$ be the *j*th *p*-value
- $p_1, \ldots, p_m \stackrel{i.i.d.}{\sim} U(0,1)$ under H_0
- The MinP test is based on the minimum p-value

$$p_{\min} = \min(p_1, \ldots, p_m) \stackrel{H_0}{\sim} \text{Beta}(1, m)$$

- The MinP test rejects H_0 if $p_{\min} \leq 1 - (1 - \alpha)^{\frac{1}{m}}$ and has size α :

$$P_{0}(p_{\min} \leq 1 - (1 - \alpha)^{\frac{1}{m}}) = 1 - P_{0}\left(\bigcap_{i=1}^{m} \{p_{i} > 1 - (1 - \alpha)^{\frac{1}{m}}\}\right)$$
$$= 1 - [(1 - \alpha)^{\frac{1}{m}}]^{m} = \alpha$$

Simes test

- $-p_1,\ldots,p_m \stackrel{i.i.d.}{\sim} U(0,1)$ under H_0
- Sort the *p*-values

$$p_{(1)} \leq p_{(2)} \leq \ldots \leq p_{(m)}$$

- The null distribution of *j*th ordered *p*-value is

$$p_{(j)} \stackrel{H_0}{\sim} \text{Beta}(j, m - j + 1)$$

- The Simes test *p*-value

$$p_{s} = \min_{j=1,\dots,m} \left\{ p_{(j)} \frac{m}{j} \right\} \stackrel{H_0}{\sim} U(0,1)$$

- It rejects H_0 if

$$\exists j: p_{(j)} \leq \frac{\alpha j}{m}$$

Fisher combination

$$-p_1,\ldots,p_m \stackrel{i.i.d.}{\sim} U(0,1)$$
 under H_0

- Fisher's method of combining *p*-values

$$T_{\mathrm{f}} = \sum_{j=1}^{m} 2\log\left(\frac{1}{p_{j}}\right) \stackrel{H_{0}}{\sim} \chi_{2m}^{2}$$

Higher criticism

- Empirical cdf $\hat{F}_m(t) = \frac{\sum_{j=1}^m \mathbbm{1}\{p_j \leq t\}}{m}$ for $t \in [0,1]$.
- Since $p_1, \ldots, p_m \stackrel{i.i.d.}{\sim} U(0,1)$ under H_0 , then

$$m\hat{F}_m(t) \stackrel{H_0}{\sim} \text{Binomial}(m, t)$$

The higher criticism test is

$$T_{\text{hc}} = \sup_{t \in [0,1]} \frac{F_m(t) - t}{\sqrt{t(1-t)/m}}$$

or equivalently

$$T_{\text{hc}} = \max_{j=1,...,m} \sqrt{m} \frac{(i/m) - p_{(i)}}{\sqrt{p_{(i)}(1 - p_{(i)})}}$$

Reference

Donoho, Jin (2015)

Higher Criticism for Large-Scale Inference, Especially for Rare and Weak Effects Statistical Science, 30:1–25

- For $m \to \infty$, $b_m T_{\rm hc} - c_m$ converges weakly to the standard Gumbel distribution, where $b_m = \sqrt{2 \log \log m}$ and

Gumbel distribution, where
$$b_m = \sqrt{2 \log \log m}$$
 and $c_m = \frac{1}{2} (\log \log \log (m) - 4\pi)$

- For any fixed α and $m \to \infty$, its critical value is

for some a > 0, e.g. a = 1.08 for $m \approx 10^6$ and $\alpha = 0.05$

$$c_m = \frac{1}{2}(\log \log \log(m) - 4\pi)$$

For any fixed α and $m \to \infty$, its critical value is

 $t_{1-\alpha} \approx (1+a)\sqrt{2\log\log m}$

Mixture distribution

– We assume that our samples follow a mixture of N(0,1) and $N(\mu,1)$ distributions

$$H_0: y_j \stackrel{i.i.d}{\sim} N(0,1)$$
 $H_1: y_j \stackrel{i.i.d}{\sim} \pi_0 N(0,1) + \pi_1 N(\mu,1)$

where $\pi_1 = 1 - \pi_0$

- To carry out asymptotic analysis, we must specify the dependence scheme of $\pi_1 = \pi_1(m)$ and $\mu = \mu(m)$ on m:

$$\pi_1 = m^{-\beta} \qquad \frac{1}{2} < \beta < 1$$

$$\mu = \sqrt{2r \log m} \qquad 0 < r < 1$$

– The needle in a haystack problem: $\beta = 1$ and r = 1; small distributed effects: $\beta = 1/2$

Threshold curve

Consider the following threshold curve for r

$$\rho_{\mathrm{hc}}(\beta) = \left\{ \begin{array}{cc} \beta - \frac{1}{2} & \text{if } \frac{1}{2} < \beta \leq \frac{3}{4} \\ (1 - \sqrt{1 - \beta})^2 & \text{if } \frac{3}{4} \leq \beta \leq 1 \end{array} \right.$$

– If $r > \rho_{hc}(\beta)$ the Neyman-Pearson optimal test achieves

$$P_0(\text{Type I Error}) + P_1(\text{Type II Error}) \rightarrow 0$$

The Higher Criticism is asymptotically equivalent to the optimal test without knowledge of π_1 and/or μ

- If $r < \rho_{hc}(\beta)$ then for any test

$$\liminf_{m\to\infty} P_0(\text{Type I Error}) + P_1(\text{Type II Error}) \ge 1$$

Detectable region

