University of California Berkeley, University of Illinois Urbana-Champaign

An Information-Theoretic Meta-Theorem on Edge-Cut bounds and Applications

The oldest flow problem ever: Single-unicast

Max-Commodity-Flow = Min-Edge-Cut [Ford - Fulkerson '56]

Information-Capacity = Min-Edge-Cut [Ahlswede - Cai - Li - Yeung '00]

Simple generalization: k-unicast

Flow

- ► Easy! © Linear Program
- ► Hard ②
- Hard to approximate

Edge-cut

- ▶ NP-complete [Ambühl -Mastrolilli - Svensson '07]
- [Chuzhoy Khanna '07]

- ► Notorious ②
- Linear coding insufficient
- [Dougherty Freiling Zeger '05]
- $ightharpoonup \bar{\Gamma}_n^*$ necessary [Chan Grant '08]

Capacity

Worst-case relationships

Edge – cut $\approx \frac{\text{Capacity}}{k}$

Flow $\approx \frac{\text{Capacity}}{k}$

[Harvey - Kleinberg -Lehman '06]

[Harvey - Kleinberg -Lehman '06]

Meta-theorems

Zosin '04]

Suppose the network or traffic pattern has some suitable SYMMETRY.

Algorithmic meta-theorem (CS Theory)

Information-theoretic meta-theorem (this work)

Combined meta-theorem

Flow \approx Edge-cut

Capacity ≤ Edge-cut

Flow ≈Capacity

Scenario 1: k-unicast in undirected networks

Scenario 2: k-unicast in directed networks with symmetric demands

Generalized Network Sharing bound

k-unicast network:

Set of edges E such that $G \setminus E$ has no paths from s_i to t_i whenever $i \geq j$

 $R_1+R_2+\ldots+R_k\leq\sum C_e$

holds for all rate tuples in the capacity region. [Kamath - Tse - Anantharam '11]

Scenario 3: k-groupcast sum-rate

MAC + BC Gaussian networks

- ► Simple Scheme:
- ► Local code design for MAC's, BC's, point-to-point links Global routing
- Network looks like a polymatroidal network
- ► Flow-Edge-cut closeness results also hold for polymatroidal networks [Chekuri - Kannan -Raja - Viswanath '11]
- We show a Generalized Network Sharing outer bound for Gaussian networks

Results for Gaussian networks

Bidirected networks:

 $\frac{\mathcal{R}_{\text{cutset}}(\bar{P})}{\Theta(\log k)} \subseteq \mathcal{R}(\bar{P}) \subseteq \mathcal{C}(\bar{P}) \subseteq \mathcal{R}_{\text{cutset}}(\bar{P})$

Symmetric-demand networks:

 $\frac{\mathcal{R}_{\text{GNS}}(\frac{P}{d})}{\Theta(\log^2 k)} \subseteq \mathcal{R}(\bar{P}) \subseteq \mathcal{C}(\bar{P}) \subseteq \mathcal{R}_{\text{GNS}}(\bar{P})$

Groupcast networks:

 $rac{R_{ ext{GNS}}(ar{ar{ heta}})}{4} \leq R(ar{ heta}) \leq C(ar{ heta}) \leq R_{ ext{GNS}}(ar{ heta})$

where \bar{P} = power constraint vector, d = max-degree of MAC or BC

Acknowledgments

Research support for the first author from NSF Science and Technology Center for Science of Information Grant CCF-0939370 is gratefully acknowledged.