NOM: Note:

Prénom:

Exercice 1. Soit X une v.a.r. de densité $x \longmapsto \frac{1}{\ln 2} \frac{1}{1+x} \mathbf{1}_{[0,1]}(x)$ définie sur $(\Omega, \mathcal{F}, \mathbb{P})$.

- 1. Rayer les propositions qui ne sont pas correctes
 - $\bullet \qquad \mathbb{P}(X \in]0,1[) = 1;$
 - $\forall \omega \in \Omega, X(\omega) \in [0,1];$
 - $\forall \omega \in \Omega, X(\omega) \in]0,1[.$
- 2. Déterminer la loi de Y=1/X-[1/X] où [x] désigne la partie entière de x.

On rappelle que si
$$x \geq 0$$
 $\sum_{k \geq 1} \frac{1}{(x+k)(x+k+1)} = \frac{1}{x+1}.$

T.S.V.P.

1

Exercice 2. Pour $n \in \mathbb{N}^*$, soit X_n une v.a.r. définie sur $(\Omega, \mathcal{F}, \mathbb{P})$ de densité $x \longmapsto \frac{n^3}{2} e^{-n^3|x|}$.

1. Calculer, pour $n \in \mathbb{N}^*$, $\mathbb{P}(|X_n| > n^{-2})$.

2. Calculer $\mathbb{P}\left(\limsup\left\{|X_n|>n^{-2}\right\}\right)$.

3. En déduire que, presque sûrement, $\sum\nolimits_{k\geq 1} |X_k| < +\infty.$

2

Exercice 3. 1. Soient X une v.a.r. bornée et $z\in\mathbb{C}$. Justifier brièvement que e^{zX} est intégrable et montrer que

$$\mathbb{E}\left[e^{zX}\right] = \sum_{n \geq 0} \frac{z^n}{n!} \mathbb{E}\left[X^n\right].$$

2. Soient X et Y deux v.a.r. bornées telles que $\mathbb{E}\left[X^n\right]=\mathbb{E}\left[Y^n\right]$ pour tout $n\in\mathbb{N}^*.$ Montrer que X et Y ont même loi.

3

Fin