河南工业大学 09 至10 学年第 一 学期

概率论与数理统计试卷(A)

出卷教师: 林浩 适应班级:

考试方式: 半开卷,允许考生携带一张半开卷考试专用纸进入考场。占总评比例: 100%

题号	 =	三	四	五	六	七	八	总分	核分人
得分									

复查总分__

总复查人_____

评卷人 得分

- 一、填空题(每题3分,共30分)
- 1. 事件 $A \times B$ 满足 P(A) = 0.7, $P(A\overline{B}) = 0.3$,则 $P(AB) = ______.$
- 2. 抛掷二枚骰子,其点数和是8的概率为_____.
- 3. 设随机变量 $X \sim U$ [-1,2],则 $E(X^2) =$ _____.
- 4. 设随机变量 $X \sim N$ (6, 2^2), 且 $P(X \ge k) = P(X < k)$, 则k = 1
- 5. 设随机变量 X 服从参数为 λ =2 的泊松分布,则 P(X ≥ 2) = ___
- 6. 设 $X \sim N(\mu, 4^2)$, 其中 μ 为未知, 从总体中抽取样本容量为 25 的样本, 样本均值为 \overline{X} , 则

$$P\{ \mid \overline{X} - \mu \mid <1 \} =$$
______. $(\Phi(1.25) = 0.8944)$

- 8. 设D(X) = 4, D(Y) = 9, $\rho_{XY} = 0.5$, 则cov(X,Y) =_____
- 9. 随机变量 X 的方差 $D(X) = \sigma^2$,则 σ^2 的无偏估计量为______.

10. $X \sim N(\mu, 225)$, X_1, X_2, \dots, X_n 是来自总体 X 的样本, X 为样本均值。要检验 $H_0: \mu = \mu_0$

采用的统计量是

得分 评卷人

- 二、单项选择题(每题3分,共15分)
- 1. 设 $A \times B$ 是两个随机事件,若当B发生时A必发生,则一定有(

A.P(AB) = P(A) B. $P(A \cup B) = P(A)$ C. P(B|A) = 1 D. P(A|B) = P(A)

- - B. 1.5 C. $\sqrt{\pi}$ D. 2 A. 1

《概率统计》试卷 A 第 1 页 (共 4 页)

- 3. 设随机变量 X, Y相互独立, 且其概率分布如下,则 P(X=Y)=().

 - A. 0 B. 1/4 C. 1/2
- D. 1
- 4. 设随机变量 $X \sim N(\mu, \sigma^2)$, E(X) = -1 , $E(X^2) = 4$, 则样本均值 \overline{X} 服从的分布为(

- A. $N(-1, \frac{3}{n})$ B. $N(-1, \frac{4}{n})$ C. $N(\frac{-1}{n}, 4)$ D. $N(\frac{-1}{n}, \frac{3}{n})$
- 5. 假设检验时, 若增大样本容量, 其他条件不变, 则犯两类错误的概率(
 - A. 都增大

- B. 都减小 C. 都不变 D. 一个增大, 一个减小
- 三、(本题8分)某厂由甲、乙、丙三个车间生产同一产品,他们的产量之比为3:2:1,各车间的产品次品率 依次为6%、8%、10%,现从该厂任取一件产品,求恰是次品的概率.

四、(本题 **16** 分) 设连续型随机变量 X 的概率密度函数为 $f(x) = \begin{cases} 3x^2, & 0 \le x \le 1, \\ 0, & 其它。 \end{cases}$

得分	评卷人

五、(本题 10 分) 设离散型随机变量 (X, Y) 的概率分布如下,

- (1) 求关于 X, Y 的边缘概率分布;

Y	0	1
0	0.2	0.3
1	0.4	0.1

密

封

得分	评卷人		

六、(本题 $\mathbf{8}$ 分) 设总体 $X\sim N$ (μ , σ^2),从总体抽得一组样本为

14.8 15.2 18.1 15.3 17.5 15.1

(1) 求 μ , σ^2 的矩估计值。(2) 求 μ 置信度为 0.95 的置信区间.

(注:上侧分位数 $t_{0.025}(5)=2.57$, 即 $P(T\geq t_{0.025}(5))=0.025$,双侧分位数 $t_{0.05}(5)=2.57$,即

 $P(|T| \ge t_{0.05}(5)) = 0.05)$

线

七、(本题 **8** 分) 某种铁水含碳量 $X\sim N(4.55,0.13^2)$,抽測 9 炉铁水的样本均值 $\overline{x}=4.445$,若总体方差无变化,请检验总体均值 μ 有无显著变化.($\alpha=0.01$)

注: $Z_{0.005}=2.58$, $\Phi(2.58)=0.995$

八、(本题 5 分)已知 X 在区间 (0, 2)上服从均匀分布, $Y = \min\{X,1\}$,求 E(Y).

www.docin.com