МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Машинное обучение»

Тема: Ассоциативный анализ

Студент гр. 8304	 Холковский К.В
Преподаватель	 Жангиров Т. Р.

Санкт-Петербург

Цель работы

Ознакомиться с методами ассоциативного анализа из библиотеки MLxtend

Ход работы

Загрузка данных

Были загружены данные:

```
{'photo/film', 'soups', 'skin care', 'butter milk', 'sugar', 169
```

Рис 1 – Загруженные данные

FPGrowth u FPMax

Данные были приведены к удобному для анализа виду при помощи TransactionEncoder:

	Instant	food	products	UHT-milk	yogurt	zwieback
0			False	False	False	False
1			False	False	True	False
2			False	False	False	False
3			False	False	True	False
4			False	False	False	False
9830			False	False	False	False
9831			False	False	False	False
9832			False	False	True	False
9833			False	False	False	False
9834			False	False	False	False
[9835	rows x í	169 cd	olumns]			

Рис 2 – Удобные для анализа данные

Был проведен ассоциативный анализ используя FPGrowth при уровне поддержки 0.03:

```
itemsets
     support
                                     (citrus fruit)
0
    0.082766
1
    0.058566
                                        (margarine)
    0.139502
                                           (yogurt)
3
                                   (tropical fruit)
    0.104931
                                           (coffee)
    0.058058
    0.033249
                               (pastry, whole milk)
58
59
   0.047382
              (other vegetables, root vegetables)
                     (root vegetables, whole milk)
60
   0.048907
                             (rolls/buns, sausage)
61
   0.030605
    0.032232
                 (whipped/sour cream, whole milk)
```

Рис 3 – Результат FPGrowth при minSup=0.03

Был проведен анализ полученных данных:

```
Max for len: 1 is: 0.25551601423487547
Min for len: 1 is: 0.03040162684290798
Max for len: 2 is: 0.07483477376715811
Min for len: 2 is: 0.030096593797661414
```

Рис 4 – Анализ полученных данных

Был проведен ассоциативный анализ используя FPMах при уровне поддержки 0.03:

	support	itemsets
0	0.030402	(specialty chocolate)
1	0.031012	(onions)
2	0.032944	(hygiene articles)
3	0.033249	(berries)
4	0.033249	(hamburger meat)
45	0.038332	(soda, rolls/buns)
46	0.040061	(soda, whole milk)
47	0.042603	(other vegetables, rolls/buns)
48	0.056634	(rolls/buns, whole milk)
49	0.074835	(other vegetables, whole milk)

Рис 5 - Результаты FPMax

Был проведен анализ полученных данных:

```
Max for len: 1 is: 0.09852567361464158
Min for len: 1 is: 0.03040162684290798
Max for len: 2 is: 0.07483477376715811
Min for len: 2 is: 0.030096593797661414
```

Рис 6 – Анализ полученных данных

Алгоритмы работают одинаково, но в FPMах входят только максимальные наборы элементов. Набор элементов называется максимальным, если он является частым и не существует частого супер-шаблона, содержащего его. Поэтому результаты для наборов длинны 2 не изменились.

Была построена гистограмма для товаров:

Рис 7 – Гистограмма для всех товаров

Был проведен анализ для нового набора данных:

nebere mucepu gumbin.	O11 W11001110 A0111	
itemsets	support	
(citrus fruit)	0 0.082766	0
(yogurt)	1 0.139502	1
(tropical fruit)	2 0.104931	2
(whole milk)	3 0.255516	3
(other vegetables)	4 0.193493	4
(whole milk, pastry)	29 0.033249	2
(root vegetables, other vegetables)	30 0.047382	3
(whole milk, root vegetables)	31 0.048907	3
(rolls/buns, sausage)	32 0.030605	3
(whole milk, whipped/sour cream)	33 0.032232	3

Рис 8 – FPGrowth для нового датасета

```
Max for len: 1 is: 0.25551601423487547
Min for len: 1 is: 0.05765124555160142
Max for len: 2 is: 0.07483477376715811
Min for len: 2 is: 0.030503304524656837
```

Рис 9 – Анализ полученных данных

```
itemsets
     support
    0.057651
                                             (pork)
    0.032232
                 (whipped/sour cream, whole milk)
2
    0.077682
                                      (canned beer)
   0.080529
                                    (bottled beer)
                       (whole milk, citrus fruit)
   0.030503
   0.033249
                              (pastry, whole milk)
    0.030605
                             (rolls/buns, sausage)
6
   0.098526
                                   (shopping bags)
               (other vegetables, tropical fruit)
    0.035892
8
    0.042298
                      (whole milk, tropical fruit)
              (other vegetables, root vegetables)
10
   0.047382
                     (whole milk, root vegetables)
11
   0.048907
   0.034367
                       (bottled water, whole milk)
12
13
   0.034367
                              (rolls/buns, yogurt)
   0.043416
                       (other vegetables, yogurt)
14
   0.056024
15
                              (yogurt, whole milk)
   0.032740
                          (other vegetables, soda)
16
   0.038332
                                (rolls/buns, soda)
17
   0.040061
                                (whole milk, soda)
18
   0.042603
                    (rolls/buns, other vegetables)
19
                          (rolls/buns, whole milk)
   0.056634
20
21
   0.074835
                    (other vegetables, whole milk)
```

Рис 10 – FPMах для нового датасета

```
Max for len: 1 is: 0.09852567361464158
Min for len: 1 is: 0.05765124555160142
Max for len: 2 is: 0.07483477376715811
Min for len: 2 is: 0.030503304524656837
```

Рис 11 – Анализ полученных данных

Рис 12 – График изменения количества правил от поддержки

Ассоциативные правила

Был выполнен анализ:

	billollicii allallis.			
	antecedents	consequents	leverage	conviction
0	(yogurt)	(whole milk)	0.009183	1.070481
1	l (yogurt)	(other vegetables)	0.005150	1.033172
2	(tropical fruit)	(yogurt)	0.013156	1.102890
3	(tropical fruit)	(other vegetables)	0.008804	1.076706
4	(tropical fruit)	(whole milk)	0.005359	1.052495
Ę	(whole milk)	(other vegetables)	0.006849	1.025026
6	(other vegetables)	(whole milk)	0.006849	1.036649
7	(rolls/buns)	(whole milk)	-0.012801	0.930450
8	(bottled water)	(whole milk)	-0.010177	0.913309
9	(bottled water)	(soda)	0.007832	1.061153
1	l0 (citrus fruit)	(whole milk)	-0.001349	0.984313
1	l1 (citrus fruit)	(other vegetables)	0.008135	1.091192
1	l2 (root vegetables)	(other vegetables)	0.028050	1.273671
1	l3 (root vegetables)	(whole milk)	0.014031	1.141049
1	l4 (sausage)	(rolls/buns)	0.010985	1.102730
1	l5 (sausage)	(whole milk)	-0.011477	0.894062
1	l6 (sausage)	(other vegetables)	-0.002776	0.975687
1	17 (whipped/sour cream)	(whole milk)	0.011419	1.189023
1	l8 (whipped/sour cream)	(other vegetables)	0.015557	1.232002
1	l9 (pastry)	(whole milk)	 0.002304	1.027179

Рис 13 – Результаты анализа

Расчет проводился на основе метрики "confidence"

Метрика	Описание

support	support(A→C)=support(A∪C)		
confidence	$confidence(A \rightarrow C) = \frac{support(A \rightarrow C)}{support(A)}$		
lift	$lift(A \rightarrow C) = \frac{confidence(A \rightarrow C)}{support(C)}$		
leverage	levarage($A \rightarrow C$)=support($A \rightarrow C$)-support(A)×support(C)		
conviction	$conviction(A \rightarrow C) = \frac{1 - support(C)}{1 - confidence(A \rightarrow C)}$		

Были расчитаны среднее значение, медиана и СКО для каждой метрики:

Метрика	Среднее	Медина	СКО
support	0.07468	0.06695	0.02254
confidence	0.28957	0.26443	0.10368
lift	1.04299	1.05608	0.18326
leverage	0.01553	0.01359	0.00606
conviction	1.01719	1.02285	0.08399

Рис 14 – Граф анализа

Вывод

Ознакомились с ассоциативного частотного анализа из библиотеки MLxtend.