

Towards a rate-based online calibration of the SSD MIP peak

Paul Filip, David Schmidt

WCD offline calibration algorithm WCI

Fit muon hump in muon histogram

WCD online calibration algorithm

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch}$.
- (2) Measure, for each PMT, the rate of events satisfying the calibration trigger by counting these events for a time t_{cal} , initially set to 5 s.
- (3) If, for a given PMT, the rate is above $70 + \sigma \text{Hz}$, increase $I_{\text{VEM}}^{\text{est.}}$ by δ . Likewise, if the rate is below $70 \sigma \text{Hz}$, decrease $I_{\text{VEM}}^{\text{est.}}$ by δ , with $\sigma = 2 \text{Hz}$ and $\delta = 1 \text{ ch initially}$.
- (4) If the rate of any single PMT is more than 10σ away from 70 Hz, adjust $I_{\text{VEM}}^{\text{est.}}$ by 5 ch in the appropriate direction, set t_{cal} to 10 s, $\delta = 1 \text{ ch}$, and repeat from step (2).
- (5) Otherwise, if $t_{\text{cal}} < 60 \text{ s}$, increase t_{cal} by 5 s. If $\delta > 0.1 \text{ ch}$, decrease δ by 0.1 ch, and repeat from step (2).

doi.org/10.1016/j.nima.2006.07.066

WCD offline calibration algorithm WCD online calibration algorithm

Fit muon hump in muon histogram

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch.}$
- (2) Measure, for each PMT, the rate of events satisfying the calibration trigger by counting these events for a time $t_{\rm cal}$, initially set to 5 s.
- (3) If, for a given PMT, the rate is above $70 + \sigma Hz$, increase $I_{VFM}^{est.}$ by δ . Likewise, if the rate is below $70 - \sigma$ Hz, decrease $I_{\text{VFM}}^{\text{est.}}$ by δ , with $\sigma = 2$ Hz and $\delta =$ 1 ch initially.
- (4) If the rate of any single PMT is more than 10σ away from 70 Hz, adjust $I_{VEM}^{est.}$ by 5ch in the appropriate direction, set $t_{\rm cal}$ to 10 s, $\delta = 1$ ch, and repeat from step (2).
- (5) Otherwise, if $t_{\rm cal} < 60$ s, increase $t_{\rm cal}$ by 5 s. If $\delta > 0.1$ ch, decrease δ by 0.1 ch, and repeat from step (2).

WCD offline calibration algorithm WCD online calibration algorithm

Fit muon hump in muon histogram

- (1) Start with a value of $I_{VEM}^{est.} = 50 \text{ ch.}$
- (2) Measure, for each PMT, the rate of events satisfying the calibration trigger by counting these events for a time $t_{\rm cal}$, initially set to 5 s.
- (3) If, for a given PMT, the rate is above $70 + \sigma Hz$, increase $I_{VFM}^{est.}$ by δ . Likewise, if the rate is below $70 - \sigma$ Hz, decrease $I_{\text{VFM}}^{\text{est.}}$ by δ , with $\sigma = 2$ Hz and $\delta =$ 1 ch initially.
- (4) If the rate of any single PMT is more than 10σ away from 70 Hz, adjust $I_{VEM}^{est.}$ by 5ch in the appropriate direction, set $t_{\rm cal}$ to 10 s, $\delta = 1$ ch, and repeat from step (2).
- (5) Otherwise, if $t_{\rm cal} < 60$ s, increase $t_{\rm cal}$ by 5 s. If $\delta > 0.1$ ch, decrease δ by 0.1 ch, and repeat from step (2).

WCD offline calibration algorithm

Fit muon hump in muon histogram

WCD online calibration algorithm

- (1) Start with a value of $I_{\text{VEM}}^{\text{est.}} = 50 \,\text{ch.}$
- (2) Measure, for each PMT, the rate of everts satisfying the calibration trigger by counting these verts for a time $t_{\rm cal}$, initially set to 5s
- (3) If, for a given PMT, the step is above 70 increase I_{VEV}^{est} by δ the sac, if the late is below 70σ Hz decrease I_{VEM}^{est} by δ with $\sigma = 2$ Hz and $\delta = 1$ elsingially
- If the rate of any single PMF is more than 10σ away 0.5 / 0 Hz, a Yust $V_{\rm VEM}^{\rm est.}$ by 5 ch in the appropriate direction, see $V_{\rm a}$ to $10 \, {\rm s}$, $\delta = 1$ ch, and repeat from step
 - therwise, if $t_{\text{cal}} < 60 \text{ s}$, increase t_{cal} by 5 s. If $\delta > 0.1 \text{ ch}$, decrease δ by 0.1 ch, and repeat from step (2).

loi.org/10.1016/j.nima.2006.07.066

- $I_{\rm VEM}$ most probable pulse height in the WCD for a VCT muon
- $Q_{\rm VEM}$ most probable (integral) charge in the WCD for a VCT muon
- $I_{\rm histo}^{\rm WCD}$ peak location of the parabola fitted to WCD muon hump
- $I_{\rm rate}^{\rm WCD}$ threshold of WCD calibration trigger for which have 70 Hz rate

new

```
I_{\mathrm{VEM}} — ... in the SSD ... Q_{\mathrm{VEM}} — ... in the SSD ...
```

- $I_{
 m histo}^{
 m SSD}$ peak location of the parabola fitted to SSD muon hump
- $I_{\text{rate}}^{\text{SSD}}$ threshold of SSD calibration trigger for which have predetermined rate

Setting up rate/threshold relationship

- 870,000 SSD histograms from SD-1500 T3s in Jun/Dec 2023
- lacksquare Bootstrap muon events according to SSD histogram to estimate $I_{
 m histo}^{
 m SSD}$

- Characteristic shape
- Scale differs due to gain
- MIP value determined by:
 - Weather
 - Electronics
 - ???
- Does there exist a stable threshold/rate relationship?

Setting up rate/threshold relationship

- 870,000 SSD histograms from SD-1500 T3s in Jun/Dec 2023
- lacksquare Bootstrap muon events according to SSD histogram to estimate $I_{
 m histo}^{
 m SSD}$

- Characteristic shape
- Scale differs due to gain
- MIP value determined by:
 - Weather
 - Electronics
 - ???
- Does there exist a stable threshold/rate relationship?

Setting up rate/threshold relationship

- 870,000 SSD histograms from SD-1500 T3s in Jun/Dec 2023
- lacksquare Bootstrap muon events according to SSD histogram to estimate $I_{
 m histo}^{
 m SSD}$

- Characteristic shape
- Scale differs due to gain
- MIP value determined by:
 - Weather
 - Electronics
 - ???
- Does there exist a stable threshold/rate relationship?

- lacksquare Fit MIP from histogram to obtain $I_{
 m histo}^{
 m SSD}$
- For threshold in $\{1.00, 1.05, ..., 5.00\}I_{\text{Histo}}^{\text{SSD}}$:
 - Count all entries above given threshold
 - Per station: remove outlier events at 3σ
 - Per station: take mean of samples
 - Divide by histogram acquisition time (61s)
 - Average across stations

- systematic: station-to-station fluctuations ~20%
- statistical: Poisson error on counts above threshold

- Adjust threshold **t** of SB calibration until rate **f** is met
- $I_{\text{rate}}^{\text{SSD}}$ given as **kt** (take **k**, **f** from rate/threshold relation)

MIP Rate

- Adjust threshold t of SB calibration until rate f is met
- $I_{\text{rate}}^{\text{SSD}}$ given as **kt** (take **k**, **f** from rate/threshold relation)

- Adjust threshold **t** of SB calibration until rate **f** is met
- $I_{\text{rate}}^{\text{SSD}}$ given as **kt** (take **k**, **f** from rate/threshold relation)

- Adjust threshold **t** of SB calibration until rate **f** is met
- $I_{\text{rate}}^{\text{SSD}}$ given as **kt** (take **k**, **f** from rate/threshold relation)

- Adjust threshold **t** of SB calibration until rate **f** is met
- $I_{\text{rate}}^{\text{SSD}}$ given as **kt** (take **k**, **f** from rate/threshold relation)

MIP Rate

MIP Rate

- Small bias (<3%) for all considered thresholds
- Acceptable error of ~6% for selected rate/threshold relationships

- Rate/threshold relationship here derived for MuonBuffer events (>30 ADC above baseline)
- Online calibration performed on **ShowerBuffer** events ($>1.75\ I_{MIP}$ above baseline)

- Rate/threshold relationship here derived for MuonBuffer events (>30 ADC above baseline)
- Online calibration performed on **ShowerBuffer** events (>1.75 I_{MIP} above baseline)
- Much easier implementation of SSD online calibration for ShowerBuffer events
- But less events! → higher Poissonian error expected → too high to be useful for us?

- Rate/threshold relationship here derived for MuonBuffer events (>30 ADC above baseline)
- Online calibration performed on **ShowerBuffer** events (>1.75 I_{MIP} above baseline)
- Much easier implementation of SSD online calibration for ShowerBuffer events
- But less events! → higher Poissonian error expected → too high to be useful for us?
 estimate from UUB Randoms

- Build SSD pulse height histogram from events that satisfy the following:
 - Corresponding WCD traces satisfies a WCD T1
 - Max. SSD pulse height occurs at most 19 (40) bins before (after) T1 latch bin

■ Rate drops by factor ~100, associated Poisson error becomes 5-12% (1.5-4% before)

- SSD events implicitly rely on T1 efficiency
- T1 efficiency might differ across stations...?
- First look: compatible for higher thresholds
- Difficult to make more precise statements with limited UUB randoms dataset
- need to extend analysis

Summary / Outlook

- lacktriangle Rate-based calibration in principle for I_{MIP} possible based on SB calibration trigger
- (As of now) unclear whether (useful) rate/threshold relations exists for T1 selected traces
- Revisit quality cuts for UUB Randoms and perform analysis for new stations
- Decide on implementation strategy for SSD online calibration