

Small microphone module

DESCRIPTION:

Learn interfacing Small Microphone Sound Detection Module in Arduino. Small sound sensor acts like a microphone which detects sound signals. The sensor will detect sound signals an provide digital or analog output. The sound sensor can be used to make exciting projects like clap switch.

Specification:

- Voltage:5V/3.3V
- there is a mounting screw hole 3mm
- the use 5v DC power supply
- with analog output
- there is threshold level output flip
- high sensitive microphone and high sensitivity.
- a power indicator light
- the comparator output is light
- Weight: 4g
- Frequency Response range:50Hz∼20kHz
- Impedance: 2.2K ohm
- Sensitivity: 48~66dB

• polar pattern: Universal

• Operating temperature: -40 to 85 degrees celsius

• Operating humidity: <90%

• Storage temperature : -40 to 85 degrees celsius

• Storage humidity: <75%

• product size: 41*15mm

PIN CONFIGURATION:

1 "A0": Analog

2、 "G": GND

3、 "+":+5V

4、 "D0": digital output

Example:

In this example we try to combine digital pin and analog pin together to control two LED lights, connection and code as below.

Code:

int Led=13;

int ledPin=12;


```
int buttonpin=7; // define D0 Sensor Interface
int sensorPin = A0;
int sensorValue = 0;
int val;
void setup()
{
Serial.begin(9600);
pinMode(Led,OUTPUT);
pinMode(ledPin, OUTPUT);
pinMode(buttonpin,INPUT);
}
void loop()
{
sensorValue = analogRead(sensorPin);
digitalWrite(ledPin, HIGH);
delay(sensorValue);
digitalWrite(ledPin, LOW);
delay(sensorValue);
Serial.println(sensorValue, DEC);
val=digitalRead(buttonpin);
if(val==HIGH)
{
digitalWrite(Led,HIGH);
}
else
{
digitalWrite(Led,LOW);
}
}
```