Introducão á Análise Complexa - Teoria

Equipa Krypton

October 14, 2024

Abstract

This text is a very complete coverage in Portuguese of the theory of Complex Analysis. One should go from not knowing nothing at all to be at research level.

1 Pre-requisites

To read this text the only thing the readers need is a good knowledge on real analysis in one variable, we recommend for a graduate read in the subbject we recommend [2] and for an undergraduate approach we recommend [1].

2 Historical Context

To be made after. I have first to know the specifics of the subject and only after write the history of the subject.

3 The Complex Number System

3.1 What are Complex Numbers?

Definition 3.1 (Complex Numbers). We define the complex numbers as the algebraic field $(\mathbb{R}^2, +, *)$ where

$$\mathbb{R}^2 := \{(a,b) : a,b \in \mathbb{R}\}$$

that is equiped with the following operations

$$(a,b) + (c,d) = (a+b,c+d)$$

 $(a,b) * (c,d) = (ac-bd,bc+ad)$

Remark 1. If we define a set

$$\mathbb{C} := \{ a + bi : a, b \in \mathbb{R} \}$$

where $i = \sqrt{-1}$ is called a "imaginary" number, and where the +, * are defined as

$$(a+bi) + (c+di) := a+c+i(b+d)$$

 $(a+bi) * (c+di) := ac-bd+i(ad+bc)$

we can actually make an isomorphism $\mathbb{R}^2 \cong \mathbb{C}$ via $(a,b) \mapsto a+bi$ which is what is commonly called a complex number, there are good reasons to adopt this notation therefore that is what we will do from now onwards in the text.

We said in the definition that \mathbb{C} was an algebraic field, therefore there must exist multiplicative inverses, to find such objects we notice that for a complex number z the following indentity holds

$$z^{-1} := \frac{a}{a^2 + b^2} - i(\frac{b}{a^2 + b^2})$$

Just notice that $zz^{-1}=z^{-1}z=1$ which is to say that indeed we have a multiplicative inverse for any $z\neq 0$.

Remark 2. We define the real part Re and the imaginary part Im of a complex number z:=a+bi as the following Re z=a and Im z=b.

Definition 3.2 (Absolute Value and Conjugate). Let z be a complex number we define the absolute value |z| of z as the real number $|z| := a^2 + b^2$ and the conjugate \bar{z} of z as the value $\bar{z} := a - ib$.

Remark 3. The algebraic identity $z\bar{z}=|z|^2$ is good to know from times to times.

4 The Geometry of Complex Numbers

Bibliography

References

- [1] Stephen Abbott. $Understanding\ Analysis$. 2nd. Undergraduate Texts in Mathematics. New York: Springer, 2015. ISBN: 978-1493927111.
- [2] Walter Rudin. *Principles of Mathematical Analysis*. 3rd. New York: McGraw-Hill, 1976. ISBN: 978-0070542358.