## IN THE CLAIMS:

| 1  | 1. (CURRENTLY AMENDED) In a plurality of intermediate network devices having a              |
|----|---------------------------------------------------------------------------------------------|
| 2  | plurality of ports for forwarding network messages within a bridged network having a        |
| 3  | root, the plurality of intermediate network devices organized as a stack, each intermediate |
| 4  | network device having a stack port for use in communicating with the other network de-      |
| 5  | vices of the stack, a method for efficiently transitioning the ports among a plurality of   |
| 6  | spanning tree protocol (STP) states, the method comprising the steps of:                    |
| 7  | executing the STP at each intermediate network device of the stack so as to assign          |
| 8  | the stack port of each device to either a Root Port Role or a Designated Port Role, and to  |
| 9  | assign a non-stack port at a single device of the stack to the Root Port Role;              |
| 10 | transitioning the ports assigned to the Root Port Role and the Designated Port              |
| 11 | Role to a forwarding STP state;                                                             |
| 12 | designating all non-stack ports at the devices of the stack that provide connec-            |
| 13 | tivity to the root, other than the non-stack port assigned to the Root Port Role, as Alter- |
| 14 | nate Stack Root Ports;                                                                      |
| 15 | transitioning the Alternate Stack Root Ports to a discarding STP state; and                 |
| 16 | in response to a failure at the non-stack port assigned to the Root Port Role, tran-        |
| 17 | sitioning a selected one of the Alternate Stack Root Ports from the discarding STP state    |
| 18 | directly to the forwarding STP state.                                                       |
| 1  | 2. (ORIGINAL) The method of claim 1 wherein                                                 |
| 2  | each Alternate Stack Root Port has a respective cost to the root; and                       |

3. (ORIGINAL) The method of claim 2 further comprising the step of, in response to the failure at the non-stack port assigned to the Root Port Role, generating and issuing, from

the selected one of the Alternate Stack Root Ports that is transitioned to the forwarding STP state is the Alternate Stack Root Port whose cost to the root is lowest.

- one or more source devices of the stack for receipt by one or more other devices of the
- 4 stack, one or more bridge protocol data unit (BPDU) messages proposing to transition a
- 5 given Alternate Stack Root Port of the device to the forwarding STP state.
- 4. (ORIGINAL) The method of claim 3 further comprising the step generating and issu-
- 2 ing, in response to the proposal BPDU message, one or more Rapid Transition Acknowl-
- 3 edgement messages to the source device agreeing with the source device's proposal to
- 4 transition the given Alternate Stack Root Port to the forwarding STP state.
- 5. (ORIGINAL) The method of claim 4 further comprising the step of transitioning the
- 2 given Alternate Stack Root Port of the source device from the discarding STP state di-
- 3 rectly to the forwarding STP state, without passing through any intermediary states, pro-
- 4 vided that the source device receives a Rapid Transition Acknowledgement message
- from each other member of the stack
- 6. (ORIGINAL) The method of claim 1 wherein the spanning tree protocol is one of the
- 2 IEEE Std 802.1w.1w-2001 and the IEEE Std. 802.1s-2002 specification standards.
- 7. (ORIGINAL) The method of claim 1 further comprising the step of associating each
- stack port with a port cost of zero, such that the stack port of each device is assigned to
- 3 either a Root Port Role or a Designated Port Role.
- 8. (ORIGINAL) The method of claim 1 further comprising the step of monitoring which
- 2 intermediate network devices are organized as the stack.
- 9. (ORIGINAL) The method of claim 8 wherein the step of monitoring comprises the
- step of periodically exchanging Discovery Hello messages among the intermediate net-
- 3 work devices organized as the stack.

10. (ORIGINAL) An intermediate network device configured to forward network messages within a bridged network, the intermediate network device comprising:

a plurality of ports for connecting the device to one or more network entities;

at least one stack port for connecting the device to one or more other intermediate
network devices that cooperate to form a stack;

a port role selection state machine configured to assign roles to the ports;

a port transition state machine configured to transition the ports among a plurality
of spanning tree protocol (STP) states depending on the assigned roles, wherein
the port role selection state machine is configured and arranged to assign the stack

7

8

10

port to one of a Root Port Role or a Designated Port Role, and
the port transition state machine is configured and arranged to transition those

the port transition state machine is configured and arranged to transition those
ports that are assigned to the Root Port Role or to the Designated Port Role to a forwarding spanning tree port state.

- 1 11. (ORIGINAL) The intermediate network device of claim 10 further comprising a message generator configured and arranged periodically to issue a Discovery Hello message from the at least one stack port, signaling that the intermediate network device is part of
- from the at least one stack port, signaling that the intermediate network device is part of
   the stack.
- 1 12. (ORIGINAL) The intermediate network device of claim 11 further comprising a
  2 neighbor discovery engine configured and arranged to monitor Discovery Hello messages
  3 received from the other intermediate network devices that form the stack, and to designate the other intermediate network devices from which a Discovery Hello message is
  5 received as members of the stack.
- 13. (ORIGINAL) The intermediate network device of 10 further comprising
   a spanning tree protocol entity configured and arranged to elect a root of the
   bridged network; and

a cross-stack rapid transition engine configured and arranged to issue one or more 4 Rapid Transition Acknowledgment messages to a given intermediate network device that 5 forms the stack and from which a proposal Bridge Protocol Data Unit (BPDU) message is 6 received representing a better path to the root. 14. (ORIGINAL) In an intermediate network device having a plurality of ports for for-1 warding network messages within a bridged network, and a stack port for communicating 2 with one or more other intermediate network devices that together form a stack, a method 3 4 for efficiently transitioning the ports among a plurality of spanning tree protocol (STP) states, the method comprising the steps of: 5 executing the STP so as to assign the stack port to a Root Port Role; transitioning the stack port, which has been assigned to the Root Port Role, to a 7 8 forwarding STP state; designating all non-stack ports that provide connectivity to the root as Alternate 9 Stack Root Ports: 10 transitioning the Alternate Stack Root Ports to a discarding STP state; and in response to receiving from a source intermediate network device a proposal 12 Bridge Protocol Data Unit (BPDU) message on the stack port that specifies a path cost to 13 the root and that seeks to transition a port of the source device to a forwarding state, issu-14 ing one or more Rapid Transition Acknowledgment messages to the source device, pro-15 vided that the specified path cost of the proposal BPDU is lower than the root path costs 16 associated with the Alternate Stack Root Ports, wherein 17

diate network device's agreement to the port of the source device transitioning to the

18

19

20

forwarding state.

the one or more Rapid Transition Acknowledgment messages signal the interme-

<sup>1 15. (</sup>CURRENTLY AMENDED) The method of claim 4514 further comprising the step of issuing a proposal BPDU message to the source device, provided that the specified

- path cost of the proposal BPDU that was received is higher than the root path cost associ-
- 4 ated with a selected one of the Alternate Stack Root Ports.
- 1 | 16. (CURRENTLY AMENDED) The method of claim 4615 further comprising the step
- of transitioning the selected Alternate Stack Root Port from a discarding state directly to
  - a forwarding state provided that the intermediate network device receives a Rapid Transi-
- 4 tion Acknowledgment message from each device that forms part of the stack.
- 1 17. (CURRENTLY AMENDED) The method of claim 4716 wherein
- the intermediate network device recognizes one or more Virtual Local Area Net-
- 3 works (VLANs), and
  - the stack port is forwarding for all VLANs recognized by the intermediate net-
- 5 work device.
- 1 18. (NEW) The method of claim 1 further comprising:
- associating each stack port with a cost lower than that of non-stack ports to cause
  - all the stack ports to be assigned to the forwarding STP state.
- 1 19. (NEW) The intermediate network device of 10 wherein the at least one stack port is
- associated with a cost lower than that of ports of the plurality of ports that are not stack
- 3 ports, to cause the stack port to be assigned to the forwarding spanning tree port state.
- 1 20. (NEW) An apparatus comprising:
- 2 means for executing a spanning tree protocol (STP) to assign a stack port of the
- 3 apparatus to a Root Port Role, the stack port for communicating with one or more other
- 4 apparatus that together form a stack;
- 5 means for transitioning the stack port, which has been assigned to the Root Port
- 6 Role, to a forwarding STP state;

connectivity to a root as Alternate Stack Root Ports; 8 means for transitioning the Alternate Stack Root Ports to a discarding STP state; 9 and 10 means for issuing, in response to receiving from a source device a proposal 11 Bridge Protocol Data Unit (BPDU) message on the stack port that specifies a path cost to 12 the root and that seeks to transition a port of the source device to a forwarding state, one 13 14 or more Rapid Transition Acknowledgment messages to the source device, provided that the specified path cost of the proposal BPDU is lower than the root path costs associated 15 with the Alternate Stack Root Ports, wherein 16 the one or more Rapid Transition Acknowledgment messages signal the appara-17

tus's agreement to the port of the source device transitioning to the forwarding state.

7

18

means for designating a plurality of non-stack ports of the apparatus that provide