OBJECTIVE Function for Soft-Mere fin Surg

ang min $\frac{1}{2} \|w\|^2 + e^{\sum_{n=1}^{N} E_n}$ $\{w,b\}$

subject to $t_n, y(x_n) \geqslant 1 - \varepsilon_n, \forall n \bigcirc$ and $\varepsilon_n \geqslant 0, \forall n \bigcirc$

C = hyperparent ten, C >0

$$\int_{-\infty}^{\infty} \frac{e^{2\pi i N} e^{2\pi i N}}{\int_{-\infty}^{\infty} \frac{1}{2} \left(|\omega|^{2} + c \cdot \sum_{n=1}^{N} \varepsilon_{n} - \sum_{n=1}^{N} a_{n} \cdot (t_{n} \cdot y(x_{n}) - 1 + \varepsilon_{n}) \right)} = \frac{N}{N} \sum_{n=1}^{N} \mu_{n} \cdot \varepsilon_{n}$$

where j(xn) = wTp(xn)+b

KKT conditions: (an >,0

$$t_{n},y(x_{n})-1+\varepsilon_{n}>0$$

$$t_{n},y(x_{n})-1+\varepsilon_{n})=0$$

$$d_{n}(t_{n},y(x_{n})-1+\varepsilon_{n})=0$$

$$\ell_{n}(t_{n},t_{n})=0$$

HUESE and associated Optimizers for Z:

$$\frac{\partial \mathcal{R}}{\partial \omega} = 0 \qquad \qquad \omega = \sum_{n=1}^{N} a_n \cdot t_n \cdot \phi(x_n)$$

$$\frac{\partial \mathcal{R}}{\partial \omega} = 0 \qquad \qquad \sum_{n=1}^{N} a_n \cdot t_n = 0$$

$$\frac{\partial \mathcal{R}}{\partial \omega} = 0 \qquad \qquad C - a_n - \mu_n = 0 \quad (\Rightarrow) \quad a_n = C - \mu_n$$

$$\Rightarrow \quad a_n < C$$

$$\lambda = \sum_{n=1}^{N} a_n \cdot t_n \cdot \phi(x_n)$$

$$= \sum_{n=1}^{N} a_n \cdot \phi(x_n)$$

$$= \sum_{n=1}^{N} a_n \cdot \phi(x_n)$$

$$= \sum_{n=1}^{N} a_n \cdot \phi(x_n)$$

$$= \sum_{n=1}^{$$

DUAL Ragrengion:

Plugging in the solution for w in 2:

 $\mathcal{Z}(\alpha,\mu) = \sum_{n=1}^{N} a_n - \sum_{n=1}^{N} \sum_{m=1}^{N} a_n \cdot a_m \cdot t_n \cdot t_m \cdot K(x_n, x_m)$

Subject to $\sum_{n=1}^{N} a_n \cdot t_n = 0$

and osans c

TAKES THE FORM of a QUADTATIC PROGRAMMING
PROBLEM & USE AN ALGORITHM to find solution
for a and u.

- ① If $a_n = 0$ then $t_n \cdot y(x_n) > 1 \epsilon_n$, which means that the point x_n is not a S. V.
- (2) If an >0 then Lu.y(xn) = 1 En
 - En If an < C, then un > 0 because an = C-un.
 From KKT conditions, if un > 0 then En = 0.
 - (2) If an = c, then all corresponding points

 son will have En >0 => which means they

 are misclessified (wrong side of discriminant fet)

 are misclessified (wrong side of discriminant fet)

 en inside the margin (correct side of disc.

 fet).

- 3) If In is inside the monson

 (connect side of discriminant fet),

 then 0 < En < 1.
- 4) otherwise, if they are misdessified, then $E_n \gg 1$.

Discouringent finctions

$$y(x) = \omega \cdot \varphi(x) + b$$

$$y(x) = w. \phi(x) + b$$

$$y(x) = \sum_{n=1}^{N} \alpha_n t_n . k(x_n, x) + b$$

- an to for all an that ant:
- (1) S.V.s
- 2) Cornectly classified but inside the menzin
- 3 misclassified point.

To solve for b, we know that the S.V.s x_{u_1} , solve for b, we know that the S.V.s x_{u_1} , solve y_{u_2} , y_{u_3} , y_{u_4} , y_{u_5} , $y_{u_$

NN = CARDINALLY of SET of points that
have o < an < C. (STABLE points)

S = SET of the S.V.s