Cohomologie de de Rham -3-(Classe d'Euler - Classe de Thom)

Abdelhak Abouqateb

Université Cadi Ayyad Faculté des sciences et Techniques Marrakech

Rencontre du GGTM Géométrie, Topologie et systèmes dynamiques Casablanca, du 26-28 octobre 2011

Isomorphisme de Thom

Soit V une variété compacte orientée de dimension n et $\pi: E \to V$ un fibré vectoriel orienté de rang q. Une orientation naturelle de la variété E en est alors induite. Par dualité de Poincaré, nous obtenons des isomorphismes :

$$\mathcal{P}_E: H_c^{q+k}(E) \xrightarrow{\cong} H_{n-k}(E) \text{ et } \mathcal{P}_V: H^k(V) \xrightarrow{\cong} H_{n-k}(V).$$

Isomorphisme de Thom

Soit V une variété compacte orientée de dimension n et $\pi: E \to V$ un fibré vectoriel orienté de rang q. Une orientation naturelle de la variété E en est alors induite. Par dualité de Poincaré, nous obtenons des isomorphismes : $\mathcal{P}_E: H_c^{q+k}(E) \xrightarrow{\cong} H_{n-k}(E) \text{ et } \mathcal{P}_V: H^k(V) \xrightarrow{\cong} H_{n-k}(V).$ D'un autre côté, l'homomorphisme $H_*(\pi): H_*(V) \to H_*(E)$ est un isomorphisme (pour une section arbitraire s du fibré on a $\pi \circ s = id_V$ et $s \circ \pi$ est homotope à id_E).

Nous obtenons ainsi par composition un isomorphisme :

$$\mathcal{T}: H^*(V) \xrightarrow{\cong} H_c^{q+*}(E),$$

appelé isomorphisme Thom.

Nous obtenons ainsi par composition un isomorphisme :

$$\mathcal{T}: H^*(V) \xrightarrow{\cong} H_c^{q+*}(E),$$

appelé isomorphisme Thom.

De manière plus explicite, on considère l'opérateur d'intégration le long des fibres $\int_{\mathbb{R}^q} \Omega_c^{q+*}(E) \to \Omega_c^*(V)$; celui-ci commute aux différentiels et passe à la cohomologie :

$$H^*(\int_{\mathbb{R}^q}): H_c^{q+*}(E) \to H^*(V).$$

Nous obtenons ainsi par composition un isomorphisme :

$$\mathcal{T}: H^*(V) \xrightarrow{\cong} H_c^{q+*}(E),$$

appelé isomorphisme Thom.

De manière plus explicite, on considère l'opérateur d'intégration le long des fibres $\int_{\mathbb{R}^q} \Omega_c^{q+*}(E) \to \Omega_c^*(V)$; celui-ci commute aux différentiels et passe à la cohomologie :

$$H^*(\oint_{\operatorname{IR}^q}): H_c^{q+*}(E) \to H^*(V).$$

Il est facile de voir (en utilisant le théorème de Fubini de l'intégration le long des fibre) que c'est la bijection inverse de l'isomorphisme de Thom

Classe de Thom

La classe de cohomologie $\mathcal{T}(1) \in H_c^q(E)$, image de $1 \in H^0(V)$ par l'isomorphisem de Thom, est appelée *classe de Thom* de E; elle sera notée $\tau(E)$.

Classe de Thom

La classe de cohomologie $\mathcal{T}(1) \in H_c^q(E)$, image de $1 \in H^0(V)$ par l'isomorphisem de Thom, est appelée *classe de Thom* de E; elle sera notée $\tau(E)$.

Autrement dit, c'est l'unique calsse dans $H_c^q(E)$ dont l'intégrale sur la fibre E_x est égale à 1, pour tout $x \in V$.

Comme exercice, on peut montrer les deux propositons :

Proposition 1. Si $\vartheta \in \Omega^q_c(E)$ est un représentant de la classe de Thom , alors l'isomorphisme de Thom $\mathcal{T}: H^*(V) \to H^{*+q}_c(E)$ est réalisé par l'application $[\omega] \mapsto [\pi^*(\omega) \wedge \vartheta].$

Comme exercice, on peut montrer les deux propositons :

Proposition 1. Si $\vartheta \in \Omega^q_c(E)$ est un représentant de la classe de Thom , alors l'isomorphisme de Thom $\mathcal{T}: H^*(V) \to H^{*+q}_c(E)$ est réalisé par l'application $[\omega] \mapsto [\pi^*(\omega) \wedge \vartheta].$

Proposition 2. Soit $\vartheta \in \Omega^q_c(E)$ un représentant de la classe de Thom, et soit s une section arbitraire de E. Alors la classe de cohomologie $[s^*\vartheta] \in H^q(V)$ ne dépend pas des choix de ϑ et s.

Classe d'Euler topologique :

On note $e_{\tau}(E) \in H^q(V)$ la classe de cohomologie $[s^*\vartheta]$ (on peut prendre pour s la section nulle par exemple); on l'appellera classe d'Euler topologique du fibré vectoriel $E \to V$.

Classe d'Euler topologique :

On note $e_{\tau}(E) \in H^q(V)$ la classe de cohomologie $[s^*\vartheta]$ (on peut prendre pour s la section nulle par exemple); on l'appellera classe d'Euler topologique du fibré vectoriel $E \to V$.

lemme. Soit $\pi: E \to V$ un fibré vectoriel orienté. Alors : L'existence d'une section $s: V \to E$ partout non nulle implique la nullité de la classe d'Euler topologique.

Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c=1+\sup_{v\in K}\rho(v)$

Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c = 1 + \sup_{v \in K} \rho(v)$

Le support de s est ainsi contenu dans $\{v \in E/ \rho(v) < c\}$.

Autrement dit, $\vartheta_{v} = 0$ dès que $\rho(v) \geq c$.

Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c=1+\sup_{v\in K}\rho(v)$

Le support de s est ainsi contenu dans $\{v \in E \mid \rho(v) < c\}$.

Autrement dit, $\vartheta_{v} = 0$ dès que $\rho(v) \geq c$.

Puisque s est partout non nulle, il existe $\epsilon > 0$ telle que $\rho(s(x)) \ge \epsilon$ pour tout $x \in \pi(K)$.

Soit ϑ un représentant de la classe de Thom et K le support de ϑ . La fonction ρ est continue donc bornée sur K. Posons $c=1+\sup_{v\in K}\rho(v)$

Le support de s est ainsi contenu dans $\{v \in E/ \rho(v) < c\}$.

Autrement dit, $\vartheta_{v} = 0$ dès que $\rho(v) \geq c$.

Puisque s est partout non nulle, il existe $\epsilon > 0$ telle que $\rho(s(x)) \ge \epsilon$ pour tout $x \in \pi(K)$.

On considére $\sigma = \frac{c}{\epsilon}s$. Il est alors facile de voir que $\sigma^*(\vartheta) = 0$.

D'où : $e_{\tau}(E) = 0$. \Box

Une autre description:

Proposition. On a l'égalité :

$$e_{\tau}(E) = \mathcal{T}^{-1}(\tau(E) \frown \tau(E))$$

Une autre description:

Proposition. On a l'égalité :

$$e_{\tau}(E) = \mathcal{T}^{-1}(\tau(E) \frown \tau(E))$$

En particulier $e_{\tau}(E) = 0$ lorsque le rang du fibré est impaire.

Une autre description:

Proposition. On a l'égalité :

$$e_{\tau}(E) = \mathcal{T}^{-1}(\tau(E) \frown \tau(E))$$

En particulier $e_{\tau}(E) = 0$ lorsque le rang du fibré est impaire.

Démonstration. Soit ϑ un représentant de $\tau(E)$. On a : $\mathcal{T}(e(E)) = [\pi^*(s^*\vartheta) \wedge \vartheta]$. D'un autre côté, du fait que $s \circ \pi$ est homotope à id_E il en découle que $\pi^* \circ s^*(\vartheta)$ est cohomologue à ϑ . D'où le résultat.

Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$.

Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$. On désignera par $s_0: V \hookrightarrow E$ la section nulle.

Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$. On désignera par $s_0: V \hookrightarrow E$ la section nulle. Soit s une autre section de E et m un zéro de s (c'est-à-dire $s(m) = s_0(m)$).

Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$. On désignera par $s_0: V \hookrightarrow E$ la section nulle. Soit s une autre section de E et m un zéro de s (c'est-à-dire $s(m) = s_0(m)$). Les deux applications s et s_0 sont des plongements de s_0 dans s_0 0 injectent l'espace tangent s_0 1 dans le même espace s_0 2 injectent l'espace tangent s_0 3 dans le même espace s_0 4 dans s_0 6.

On dira que s est transverse à s_0 si pour tout m qui zéro de s on a :

$$T_m s(T_m V) \cap T_m s_0(T_m V) = \{0\}.$$

On dira que s est transverse à s_0 si pour tout m qui zéro de s on a :

$$T_m s(T_m V) \cap T_m s_0(T_m V) = \{0\}.$$

L'espace $T_{s_0(m)}E$ s'identifie naturellement à la somme $T_m s_0(T_m V) \oplus E_m$ (comme pour tout espace vectoriel, la fibre E_m s'identifie à l'espace tangent $T_{s_0(m)}E_m = Ker(T_{s_0(m)}\pi)$).

On dira que s est transverse à s_0 si pour tout m qui zéro de s on a :

$$T_m s(T_m V) \cap T_m s_0(T_m V) = \{0\}.$$

L'espace $T_{s_0(m)}E$ s'identifie naturellement à la somme $T_m s_0(T_m V) \oplus E_m$ (comme pour tout espace vectoriel, la fibre E_m s'identifie à l'espace tangent $T_{s_0(m)}E_m = Ker(T_{s_0(m)}\pi)$). A partir de s, on peut définir l'application linéaire :

$$L: T_mV \to E_m, \quad L(v) = T_ms(v) - T_ms_0(v)$$

C'est un isomorphisme linéaire (à cause de la transversalité).

On dira que s est transverse à s_0 si pour tout m qui zéro de s on a :

$$T_m s(T_m V) \cap T_m s_0(T_m V) = \{0\}.$$

L'espace $T_{s_0(m)}E$ s'identifie naturellement à la somme $T_m s_0(T_m V) \oplus E_m$ (comme pour tout espace vectoriel, la fibre E_m s'identifie à l'espace tangent $T_{s_0(m)}E_m = Ker(T_{s_0(m)}\pi)$). A partir de s, on peut définir l'application linéaire :

$$L: T_mV \to E_m, \quad L(v) = T_ms(v) - T_ms_0(v)$$

C'est un isomorphisme linéaire (à cause de la transversalité). Les deux espaces T_mV et E_m sont orientés par hypothèse.

▶ On définit l'*indice de Poincaré-Hopf* local $\iota(s, m)$ de s en m en posant : $\iota(s, m) = 1$ si L préserve les orientations, et $\iota(s, m) = -1$ dans le cas contraire.

Remarque. Si l'on se donne une carte locale positive (U, φ) autour de m $(\varphi(0) = m)$ et $\{e_1, \dots, e_q\}$ un repère local direct E_U , alors l'expression locale de s est donnée par une fonctions $f: \mathbb{R}^q \to \mathbb{R}^q$ qui s'annule en 0.

Remarque. Si l'on se donne une carte locale positive (U,φ) autour de m $(\varphi(0)=m)$ et $\{e_1,\ldots,e_q\}$ un repère local direct E_U , alors l'expression locale de s est donnée par une fonctions $f:\mathbb{R}^q\to\mathbb{R}^q$ qui s'annule en 0. Il est facile de voir que la condition de transversalité équivaut au fait que la différentielle df_m est un isomorphisme. Ainsi $\iota(s,m)$ est le signe du déterminant de df_m .

Remarque. Si l'on se donne une carte locale positive (U,φ) autour de m $(\varphi(0)=m)$ et $\{e_1,\ldots,e_q\}$ un repère local direct E_U , alors l'expression locale de s est donnée par une fonctions $f:\mathbb{R}^q\to\mathbb{R}^q$ qui s'annule en 0. Il est facile de voir que la condition de transversalité équivaut au fait que la différentielle df_m est un isomorphisme. Ainsi $\iota(s,m)$ est le signe du déterminant de df_m . De plus, le théorème d'inversion local implique que f est un difféomorphisme local en m, et que par suite m est un zéro isolé de s.

Remarque. Si I'on se donne une carte locale positive (U, φ) autour de m ($\varphi(0) = m$) et $\{e_1, \dots, e_q\}$ un repère local direct E_{U} , alors l'expression locale de s est donnée par une fonctions $f: \mathbb{R}^q \to \mathbb{R}^q$ qui s'annule en 0. Il est facile de voir que la condition de transversalité équivaut au fait que la différentielle df_m est un isomorphisme. Ainsi $\iota(s,m)$ est le signe du déterminant de df_m . De plus, le théorème d'inversion local implique que f est un difféomorphisme local en m, et que par suite m est un zéro isolé de s. Par conséquent, à cause de la compacité de V. l'ensemble des zéros d'une section transversale est toujours fini.

Théorème. Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$, et s une section transverse de E. Alors :

$$\int_V e_\tau(E) = \sum \iota(s,m)$$

Théorème. Soit $E \to V$ un fibré vectoriel orienté $E \to V$ de base V variété compacte orientée tels que dim $V = rang\ E$, et s une section transverse de E. Alors :

$$\int_V e_\tau(E) = \sum \iota(s,m)$$

Conséquence. $e_{\tau}(E)$ est une classe de cohomologie entière.

Degré:

Soit $f:V\to W$ une application C^∞ entre variétés différentielles connexes compactes orientées et de même dimension n. On appelle degré de f et on note $\deg f$ le nombre réel tel que

$$H^n(f)\theta_W = \deg(f)\theta_V$$

Autrement dit, pour tout $\omega \in \Omega^n(W)$, on a $\int_V f^*(\omega) = \deg(f) \int_W \omega$.

Degré:

Soit $f:V\to W$ une application C^∞ entre variétés différentielles connexes compactes orientées et de même dimension n. On appelle degré de f et on note deg f le nombre réel tel que

$$H^n(f)\theta_W = \deg(f)\theta_V$$

Autrement dit, pour tout $\omega \in \Omega^n(W)$, on a $\int_V f^*(\omega) = \deg(f) \int_W \omega$.

Proposition

- **①** Si $f, g : V \to W$ sont homotopes alors deg(f) = deg(g).
- **3** Si $deg(f) \neq 0$ alors f est surjective.
- 4 Si f est un difféomorphisme, alors deg(f) = +1 si f préserve l'orientation et deg(f) = -1 sinon.

Application:

Exercice Soit V une variété différentiable compacte connexe orientée et $f: S^n \to V$ une application C^{∞} . Montrer que si $\deg(f) \neq 0$, alors $H^p(V) = 0$ pour tout $1 \leq p \leq n-1$.

Application:

Exercice Soit V une variété différentiable compacte connexe orientée et $f: S^n \to V$ une application C^{∞} . Montrer que si $\deg(f) \neq 0$, alors $H^p(V) = 0$ pour tout $1 \leq p \leq n-1$.

Le degré est un entier relatif : L'argument se base sur une propriété importante des valeurs régulières. Soit $f:V\to W$ une application C^∞ entre variétés différentiables (non nécessairement de même dimension) ; on dira que $y\in W$ est une valeur régulière de f si pour tout $x\in f^{-1}(y)$ l'application linéaire tangente $T_xf:T_xV\to T_yW$ est sujective. En particulier, tout point y qui n'est pas dans l'image f(V) est une valeur régulière.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \cdots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de Y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de Y à Y soit un difféomorphisme sur Y.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de f à D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{\mathcal{M}} \omega = 1$,

Revenons maintenant au cas où dim(V) = dim(W) = n et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(v)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de f à D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{\omega} \omega = 1$, nous obtenons ainsi que $f^*(\omega) = \sum_{i=1}^k \omega_i$ avec ω_i est l'image réciproque de ω par le difféomorphisme $f_{|D|}$.

Revenons maintenant au cas où $\dim(V) = \dim(W) = n$ et soit y une valeur régulière de f. Pour tout $x \in f^{-1}(y)$ l'application $T_x f$ est alors un isomorphisme, et par suite un difféomorphisme local autour x. En particulier les éléments de $f^{-1}(y)$ sont des points isolés. La compacité de V implique alors que $f^{-1}(y)$ est un ensemble fini $\{m_1, \dots, m_k\}$. Il existe des voisinages ouverts disjoints D_i de m_i et un voisinage ouvert U de y tels que $f^{-1}(U) = \bigcup_{i=1}^k D_i$ et la restriction de fà D_i soit un difféomorphisme sur U. Soit $\omega \in \Omega_c^n(U)$ telle que $\int_{W} \omega = 1$, nous obtenons ainsi que $f^*(\omega) = \sum_{i=1}^k \omega_i$ avec ω_i est l'image réciproque de ω par le difféomorphisme $f_{|D|}$. Il en découle :

$$\int_V f^*(\omega) = \sum_{x \in f^{-1}(y)} \pm 1$$