Triangles: angles

 $2010\text{-}2011 \hspace{3.1em} 5^{\mathrm{\grave{e}me}}$

Table des matières

Ι	Construction	3
II	Propriété	3
III	Triangles particuliers	4
I	III. 1) Triangle rectangle	4
I	III. 2) Triangle isocèle	4
I	III. 3) triangle équilatéral	4

Liste des exercices liés au manuel

Donné le	Pour le	Corrigé le	Liste	Commentaires

I Construction

II Propriété

Propriété:

La somme des mesures des trois angles d'un triangle est toujours égale à 180°.

Visualisation:

 $\underline{\text{Exemple}}:$ Dans le triangle ABC ci-dessous on sait que la somme des mesures des angles est égale à 180°. Ainsi on obtient l'égalité :

$$\widehat{ABC} + \widehat{BCA} + \widehat{CAB} = 180^{\circ}$$

$$Donc : \widehat{ABC} + 55^{\circ} + 45^{\circ} = 180^{\circ}$$

$$Puis : \widehat{ABC} + 100^{\circ} = 180^{\circ}$$

Enfin:
$$\widehat{ABC} = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

III Triangles particuliers

III. 1) Triangle rectangle

Propriété:

- Si un triangle est rectangle,
- Alors la somme des mesures de ses angles aigus est égale à 90°.

- Réciproquement, si la somme des mesures de deux angles d'un triangle est égale à $90^\circ,$
 - Alors ce triangle est rectangle.

. Vocabulaire

On dit que les angles aigus du triangle rectangle sont complémentaires.

III. 2) Triangle isocèle

Propriété:

- Si un triangle est isocèle,
 - Alors ses deux angles à la base ont la même mesure..
- Réciproquement, si deux angles d'un triangle ont la même mesure,
 Alors ce triangle est isocèle.

III. 3) triangle équilatéral

Propriété:

- Si un triangle est équilatéral,
 - Alors tous ses angles mesurent 60°.
- Réciproquement, si les trois angles mesurent 60°,
 - Alors ce triangle est équilatéral.

