A Comprehensive Machine Learning Approach to Maternal Risk Assessment

Executive Summary

Project Overview

This comprehensive analysis examines maternal health risk factors using a large-scale dataset of 76,645 patient records with 21 clinical features. The study employs advanced machine learning techniques to develop a highly accurate predictive model for maternal risk assessment.

Our analysis reveals exceptional model performance with Random Forest achieving 99.82% accuracy, making it suitable for realworld clinical deployment and maternal health monitoring systems.

Key Achievements

- 99.82% prediction accuracy achieved
- Clean dataset with zero missing values
 - Robust cross-validation results
- Comprehensive feature importance analysis

Dataset Overview

Dataset Structure & Features Demographic Features

- Age
- BMI (Body Mass Index)
- Gestational Age
- Blood Pressure (Systolic/Diastolic)

Vital Signs

- Hemoglobin Level
- Blood Glucose Urine Protein

Previous C-Section

Medical History

- Previous Miscarriages
- Previous Preterm Birth
- Preeclampsia History

Chronic Hypertension

Risk Factors

- Diabetes & Gestational Diabetes
- Multiple Pregnancy
- Smoking & Alcohol Use
- Family History

Data Quality Assessment

Data Preprocessing Pipeline

model performance.

Methodology

1. Data Validation Comprehensive check for missing values, duplicates, and data consistency across all 76,645 records. 2. Feature Engineering Label encoding of risk levels, feature selection, and removal of redundant text-based columns. 3. Data Splitting Stratified train-test split (80/20) ensuring balanced representation across risk categories. 4. Standardization StandardScaler applied to normalize feature distributions for optimal

Accuracy Score • F1 Score (weighted) • ROC AUC Score • 5-fold Cross Validation

Model Selection

XGBoost Classifier

Evaluation Metrics

Machine Learning Pipeline

Logistic Regression (baseline)

• Random Forest Classifier

Validation Strategy Rigorous cross-validation and confusion matrix analysis to ensure model robustness and generalizability.

Feature Importance (Random Forest)

Model Comparison

Model Performance Analysis

91.32%

99.82%

99.79%

30.5%

91.17%

99.82%

99.79%

Clinical Implications

Resource Allocation

Early Detection

97.19%

100.00%

100.00%

The model's 99.82% accuracy enables reliable early identification of

high-risk pregnancies, allowing for timely interventions.

Accurate risk stratification helps healthcare systems optimize

Baseline

Best

Excellent

Key Findings & Insights

Critical Risk Predictors

Primary demographic risk factor

Logistic Regression

Random Forest

XGBoost

Age

Clinical Deployment Ready

Robust performance suitable for real-world applications

±0.08% **Standard Deviation**

Mean F1 Score

Extremely low variance indicates consistent performance across all folds.	Outlier Resilience Strong performance despite data outliers in glucose and protein levels
> Technical Implementation	
Technology Stack	Code Workflow
Python Core programming language	<pre># Data Loading & EDA maternal = pd.read_csv("maternal_data.csv") maternal.info(), maternal.describe()</pre>
Pandas & NumPy Data manipulation and analysis	<pre># Preprocessing & Encoding le = LabelEncoder() cooler = StandardSeeler()</pre>
Scikit-learn Machine learning algorithms	<pre># Model Training & Evaluation</pre>

Age, chronic hypertension, and diabetes emerge as primary risk predictors, providing clear clinical guidance for risk stratification.

Cross-validation results confirm the model's reliability and suitability for

Prospective Validation

Model Enhancement

diverse healthcare settings and populations.

improve prediction accuracy and personalization.

Conduct prospective clinical trials to validate model performance in

Incorporate additional temporal features and genomic data to further

Acknowledgments

deployment in clinical decision support systems.

Clinical Readiness

We extend our heartfelt thanks to MAHE Manipal for the opportunity, to each other for our collaborative efforts, to the internet for providing invaluable data and learning resources, and to all healthcare professionals tirelessly working to improve maternal health outcomes worldwide.

