ENGG 1130 Multivariable Calculus for Engineers

Assignment 1 (Term 2, 2019-2020)

Assigned Date: 6 Jan 2020 (Monday)

Deadline: due on 24 Jan 2020 (Friday) 5:00 pm

- Show ALL your steps and details for each question unless otherwise specified.
- Make a copy of your homework before submitting the original!
- Please submit the hard copy of your HW to **your TA** before the prescribed deadline.
- Submit it to the TAs of ENGG 1130A from Department of Systems Engineering and Engineering

* Harder questions

Notation: $\langle a, b, c \rangle$ represents the vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$

- 1. Consider the two-dimensional xy-plane. Let O be the origin and A be a point lying on the x-axis. Let P be an arbitrary point lying on a curve. Given that $\angle OPA$ (with P being the vertex) is always equal to 90°, describe the geometrical object traced by P (the curve). Show your derivation and explain briefly.
- 2. (a) Given a hyperbola with equation $x^2 y^2 = 1$, find the area of the region bounded by the x-axis, the hyperbola, and the straight line from (0,0) to the point $(\sqrt{1+y_0^2},y_0)$. (**Note:** Here we assume y_0 is positive, and notice that the point $(\sqrt{1+y_0^2},y_0)$ actually lies on the given hyperbola.)
 - (b) Suppose $y_0 = \sinh t = \frac{e^t e^{-t}}{2}$. Express the area calculated in (a) in terms of t only.
- 3. Let $\mathbf{u} = \langle 2, 1, -2 \rangle$, $\mathbf{v} = \langle 1, 2, 2 \rangle$ and $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.
 - (a) Show that **u**, **v** and **w** are mutually orthogonal vectors.
 - (b) Given any vector $\mathbf{r} = \langle x, y, z \rangle$ in \mathbb{R}^3 , show that

$$r = \frac{r \cdot u}{\|u\|^2} u + \frac{r \cdot v}{\|v\|^2} v + \frac{r \cdot w}{\|w\|^2} w$$

- (c) Using the result of (b), express the vector **i** as a linear combination of **u**, **v** and **w**.
- (**Hint:** You may use the fact that since \mathbf{u} , \mathbf{v} and \mathbf{w} are mutually orthogonal and non-zero, the vector \mathbf{r} can be expressed as a linear combination of \mathbf{u} , \mathbf{v} and \mathbf{w} .)

1

- 4. (a) Find the distance from the point (1, 2, 0) to the plane 3x 4y 5z = 2.
 - (b) Find the distance between the lines $\begin{cases} x + 2y = 3 \\ y + 2z = 3 \end{cases}$ and $\begin{cases} x + y + z = 6 \\ x 2z + 5 = 0 \end{cases}$.

- 5. (a) Show that the line $x-2=\frac{y+3}{2}=\frac{z-1}{4}$ is parallel to the plane 2y-z-1=0.
 - (b) Find the distance between the line and the plane.
- 6. (a) Describe the set of points in \mathbb{R}^3 that satisfy the equation z=x. Provide your descriptions in words.
 - (b) Describe the set of points in ${\bf R}^3$ that satisfy the inequality $z \ge \sqrt{x^2 + y^2}$. Provide your descriptions in words.
 - (c) Describe the set of points in \mathbb{R}^3 that satisfy the simultaneous equation $\begin{cases} x^2 + y^2 + z^2 = 4 \\ x + y + z = 3 \end{cases}$ Provide your descriptions in words.
- *7. Determine the intersection between the hyperbolic paraboloid $z = \frac{y^2}{b^2} \frac{x^2}{a^2}$ and the plane bx + ay z = 0. Here we may assume both a, b are positive values.
- *8. The cross product of two vectors $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ is called a **vector triple product**. In this question, we assume \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in 3-space.
 - (a) Explain briefly why $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ must lie in the plane of \mathbf{v} and \mathbf{w} .
 - (b) Show that $\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} (\mathbf{u} \cdot \mathbf{v})\mathbf{w}$.
 - (**Hint:** The proof will be much easier if you select the coordinate axes such that \mathbf{v} lies along the x-axis and \mathbf{w} lies in the xy-plane. If you are not certain of this hint, just expand everything and compare L.H.S. with R.H.S..)
 - (c) Using the result of (b), show that

$$(\mathbf{u} \times \mathbf{v}) \times (\mathbf{w} \times \mathbf{x}) = ((\mathbf{u} \times \mathbf{v}) \cdot \mathbf{x})\mathbf{w} - ((\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w})\mathbf{x}$$

and

$$(\mathbf{u} \times \mathbf{v}) \times (\mathbf{w} \times \mathbf{x}) = ((\mathbf{w} \times \mathbf{x}) \cdot \mathbf{u})\mathbf{v} - ((\mathbf{w} \times \mathbf{x}) \cdot \mathbf{v})\mathbf{u}$$

for any vectors **u**, **v**, **w** and **x** in 3-space.

(d) Using the result of (c), show that $(\mathbf{u} \times \mathbf{v}) \times (\mathbf{u} \times \mathbf{w}) = ((\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w})\mathbf{u}$ for any vectors \mathbf{u} , \mathbf{v} and \mathbf{w} in 3-space.

*9. For each non-negative integer n, we define the following expressions:

$$A_n \coloneqq \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx$$

$$B_n \coloneqq \int_0^{\frac{\pi}{2}} x^2 \cos^{2n} x \, dx$$

- (a) Show that for any positive integer n, $2\frac{B_{n-1}}{A_{n-1}} 2\frac{B_n}{A_n} = \frac{1}{n^2}$.
- (b) By considering the concavity of $\sin x$ on $x \in \left[0, \frac{\pi}{2}\right]$, show that there exists a constant C > 0 (independent of n), such that $B_n \le \frac{C}{n+1}A_n$ for any positive integer n. Show your choice of C explicitly in your proof.
- (c) Hence, show that $\zeta(2) \coloneqq \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$. You are allowed to use the above results **ONLY**, but not other methods.

END OF ASSIGNMENT 1