

N 91-26018

The Effect of Electron Collisions on Rotational Excitation of Cometary Water

Xingfa Xie* and Michael J. Mumma†
Laboratory for Extraterrestrial Physics
Code 693

NASA Goddard Space Flight Center
Greenbelt, MD 20771

March 28, 1991

The e- H_2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley. The e- H_2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus, in the case of the $0_{00} \rightarrow 1_{11}$ transition. The estimates are based on theoretical and experimental studies of e- H_2O collisions, on ion and electron parameters acquired in-situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. The contribution of electron collisions may explain the need for large water-water cross-sections in models which neglect the effect of electrons. The importance of electron collisions is enhanced for populations of water molecules in regions where their rotational lines are optically thick.

*Astronomy Department, University of Pennsylvania, Philadelphia, PA 19104.

†Chief Scientist, Planetary and Astrophysical Sciences.

The Ephemeris Development Effort for Asteroid 951 Gaspra

D.K. Yeomans (JPL/Caltech)

En route to its encounter with Jupiter, the Galileo spacecraft will fly closely past asteroid 951 Gaspra on October 29, 1991. While the pre-encounter spacecraft images of the asteroid on the star background will be used to dramatically improve the knowledge of its position in the spacecraft - asteroid target plane, the component of its position uncertainty in the spacecraft - asteroid direction will remain relatively unchanged. The spacecraft's close approach time will remain relatively large and can only be improved using ground-based astrometric measurements of the asteroid. Thus, the extent to which the onboard camera must mosaic to successfully image Gaspra will depend upon the accuracy with which its ephemeris can be improved using ground-based astrometric observations. These data now extend back to 1913.

Additional efforts are being made to improve the accuracy of recent astrometric observations including those that will be made throughout the spring and summer of 1991 and end just a few weeks prior to the spacecraft encounter itself. Arnold Klemola (Lick Observatory) and William Owen (JPL) have developed special Lick Observatory reference star catalogs for Gaspra whereby the positions of stars within one degree on either side of its apparent celestial path have been re-determined using either the new PPM catalog (northern hemisphere) or the Perth 70 catalog (southern hemisphere). Within 2' of the asteroid's path, all stars (9-16 mag.) were included in the catalogs while out to 1° on either side of the paths, an approximate density of 27 stars per square degree has been achieved. These special reference star catalogs have been distributed to a group of experienced observers for reducing their astrometric data. As a result of these special star catalog efforts, and the dedication of a small group of astrometric observers, the Gaspra position uncertainty at the time of the Galileo encounter is expected to be less than 200 km.

Using Radar Data to Improve the Orbits of Asteroids and Comets

D.K. Yeomans (JPL/Caltech)

Since the time of the first radar observations of asteroid 1566 Icarus in June 1968, there have been successful radar experiments involving over 60 different mainbelt and near-Earth asteroids (Ostro 1989, *Asteroids II*; Ostro et al. 1991, AJ, submitted). Although the focus of these radar experiments has been to infer the asteroids' physical characteristics from the echoes and properties of the returned signals, corrections to the predicted Doppler and/or time delay ephemerides are also obtained. The measured differences between the transmitted and received frequencies (Doppler shifts) and the round trip time delays can provide extremely powerful data types for the orbit determination of asteroids and comets (Yeomans et al. 1987, AJ, 94,189).

Radar observation residuals can be typically 1 Hz in Doppler and about a microsecond in round-trip delay time. At the Arecibo transmitter frequency (2380 MHz), these errors correspond to range and velocity errors of 150 m and 6.5 cm/sec. For the Goldstone frequency (8495 MHz), the corresponding velocity error is less than 2 cm/s. The power of the radar data becomes evident when one realizes that radar measurement errors are orders of magnitude smaller than the position and velocity uncertainties inherent in orbits based only upon optical data over short time intervals.

Astrometric radar data effectively measures the object's distance and velocity along the observer's line-of-sight and hence these data are complementary to optical, plane-of-sky measurements. Radar data taken during an object's close approach to the Earth are most powerful, and the orbit refinement most dramatic, if the object has only a short optical astrometric history. A case in point is the recovery of minor planet 1989 PB by M. Hartley, S.M. Hughes and R. McNaught at the Anglo-Australian Observatory on May 3, 1990. Using an ephemeris based upon the 65 available optical position measurements over the interval from 1989 August 1 - 24, the predicted and observed positions of the object on May 3, 1990 differed by 37" in right ascension and 23" in declination. Had an orbit been available that included the 6 Doppler and 6 delay measurements, in addition to the optical observations, the predicted and observed positions differences would have been reduced to 1.4" and 0.8".

For the 30 asteroids and 2 periodic comets for which radar astrometric data was given by Ostro et al. (1991, AJ, submitted), Yeomans et al. (1991, AJ, submitted) computed orbits using both the radar and the existing optical measurements. Ten of these objects were considered by Weissman et al. (1989, *Asteroids II*, 880) to be extinct comets and Yeomans (1991, AJ, in press) found that for at least one of them, 1566 Icarus, the inclusion of a cometlike, outgassing acceleration model was required to successfully fit the observations.

With the relatively recent realization that a large population of near-Earth asteroids are on Earth approaching orbits, there is a critical need to accurately monitor their future motions. For the majority of these objects that lack a long history of optical astrometric data, accurate extrapolations of their motions will require the use of radar data in future orbital solutions.

230 ATHAMANTIS: ROTATION PERIOD AMBIGUITY

Young, James W. and Harris, Alan W.

Jet Propulsion Laboratory - California Institute of Technology

Partial photometric lightcurves of the asteroid 230 Athamantis over a 28-year span of time are presented. An original estimated 8 hour rotational rate by the Chinese (Purple Mountain) has been found incorrect, but the remaining two period ambiguities of 12 hours or 24 hours has yet to be determined.

ON DYNAMICAL STRUCTURE OF THE TROJAN GROUP OF ASTEROIDS;
R.V.Zagretdinov and I.P.Williams, Queen Mary and Westfield College, London, U.K.
M.Yoshikawa, Tokyo Astronomical Observatory, Japan

Using a semi-analytical model, the motions of Trojan asteroids in the three-dimensional elliptic restricted three body problem is considered. Regions where changes of semimajor axes and critical argument (mean longitude of Jupiter minus that of asteroids) occur for various sets of proper eccentricity, proper inclination and longitude of perihelion of asteroids minus that of Jupiter are plotted.

Using an analytical theory, amplitudes and periods of libration, for 70 Trojans has been calculated. Comparison with the results of Shoemaker et.al.(Asteroids II,1989) and of Bien and Schubart (Astron. Astroph.,175,292,1987) have been made, and in most cases good agreement was found. In addition, the possible presence of second order resonance among the real Trojan asteroids had been investigated.

A COMPARISON BETWEEN FAMILIES OBTAINED FROM DIFFERENT PROPER ELEMENTS

V. Zappala'(1), A. Cellino(1) and P. Farinella(2)

(1) Osservatorio Astronomico di Torino
strada Osservatorio 20
I-10025 Pino Torinese (TO) - ITALY
(2) Dipartimento di Matematica
Universita' di Pisa
via Buonarroti 2
I-56127 Pisa - ITALY

Using the hierarchical method of family identification developed by Zappala' et al. (Astron.J., 100, 2030, 1990) we compare the results coming from the data set of proper elements computed by Williams (about 2100 numbered + about 1200 PLS II asteroids) and by Milani and Knezevic (5.7 version, about 4200 asteroids). Apart from some expected discrepancies due to the different datasets and/or low accuracy of proper elements computed in peculiar dynamical zones, a good agreement was found in several cases. It follows that these high reliability families represent a sample which can be considered independent on the methods used for their proper elements computation. Therefore, they should be considered as the best candidates for detailed physical studies.

Introduction: The Science Instruments of HST

Benjamin H. Zellner, Computer Sciences Corporation, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 20771

NO ABSTRACT AVAILABLE

Some Interesting Targets for Future Work

Benjamin H. Zellner, Computer Sciences Corporation, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 20771

NO ABSTRACT AVAILABLE

A CANDIDATE FOR THE PARENT BODY OF THE TAURID COMPLEX AND
ITS SEARCH EPHEMERIS; K. Ziolkowski, Space Research Centre, Bartycka 18, 00-716
Warszawa, Poland

Unusual asteroid 5025 P-L, which has its perihelion close to the orbit of Mercury and its aphelion between the orbits of Jupiter and Saturn, seems to be a good candidate for the parent body of the Taurid complex of small interplanetary objects. Evidences that this asteroid is a major source of meteoroids as well as an analysis of the orbits of asteroidal and cometary members of the Taurid complex presented in the paper, lead to conclusion that 5025 P-L might be regarded as a remnant of a giant comet which was a progenitor of the overall complex according to the hypothesis of Clube and Napier. Unfortunately, the orbit of 5025 P-L is very poorly determined because the computations were based upon only three positional observations over an arc of only four days in October 1960. Any further research on the problem of origin and evolution of the Taurid complex needs better determined orbit of this key asteroid. Therefore its new positions are necessary. In order to enable the search of eventual trails of 5025 P-L on the plates which can be found in archives, its ephemeris for the opposition in 1960, when the asteroid passed about 0.5 AU from the Earth, is presented.

CoMA - a high resolution time-of-flight secondary ion mass spectrometer (TOF-SIMS) for *in situ* analysis of cometary matter

H. Zscheeg, J. Kissel, Gh. Natour

Introduction

To shed some light on the origin and history of comets and thus on the formation of the solar system, a detailed *in situ* analysis of the elemental, isotopic and molecular composition of solid and gaseous cometary - and therefore pristine - matter is highly desirable. The cometary matter analyzer CoMA being developed for the NASA 9 year cometary rendezvous and asteroid flyby mission (CRAF), will meet this desire by examining dust grains and gas originating from a comet, probably Tempel 2. CoMA is a contribution of the FRG.

The goals

CoMA will perform the analysis of cometary samples with an unprecedented mass resolution for a space instrument. Thus it will be able to separate the isotopes of a number of light elements (H, Li, C, Mg) and also to minimize the effects of molecular interferences. This translates to a resolution >3000 at 13 da and >13000 at 350 da. CoMA will comprise a mass range up to 3000 da.

To achieve this, the instrument consists of three basic units: the dust collector subsystem, the primary ion gun and the time-of-flight mass spectrometer.

The dust collector subsystem accommodates about 120 target devices of different structures. It will mechanically move the targets from the collect- to the store-, sputter- and analyze-positions and also add to the electric scan capability of the ion source a mechanical one.

The high brightness liquid metal primary ion gun /2/ produces 10 keV 1 ns pulses of isotopically pure ^{115}In ions and forwards them into a 20 μm spot on the sample. A DC mode is used for erosion purposes.

The time-of-flight mass spectrometer is able to compensate for second order flight time variations originating in the energy spread of the secondary ions by using a two staged ion reflector /1/. Folding of the ion flight path by implementing an additional ion mirror reduces geometric dimensions.

Status of CoMA

The feasibility of the basic design was verified by a first model, using components of standard mechanical precision and a 3 ns pulse UV-laser for secondary ion production.

Measurements with a second model basically resembling the flight unit were successful. A similar model underwent first vibration tests.

The primary ion gun in its present state can deliver 2.8 ns ion pulses generated by a combination of scanning the DC-beam across an aperture and subsequently bunching the emerging pulses.

Also under way is the development of an efficient secondary ion detector, a chevron type channelplate assembly with integrated amplifier.

Time measurement electronics evolve on a digital and an analog track. The digital version is centered around a delay line and the analog one around ramp generators. Presently both versions are capable of flight time measurements of 1ns accuracy.

/1/ B. A. Mamyrin, V. I. Karataev, D. V. Shmikk, and V.A. Zagulin: "The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution" Sov.Phys.-JETP, Vol.37, No. 1, July 1973

/2/ J. Kissel, H. Zscheeg and F. G. Ruedenauer: "Pulsed Operation of a Liquid Metal Ion Source" Appl. Phys. A 47, 167-169, (1988)

Author Index

A'Hearn M. F.	1, 34, 61, 64, 111, 160, 183, 232	Bourgois G.	24
Ahrens T. J.	203	Bowell E.	34, 93, 96, 154, 198
Aikman C.	54	Bowers C. W.	60
Albrecht R.	2	Brandt J. C.	29, 167, 232
Alfimova E. V.	2	Brisbin J.	54
Allamandola L. J.	23	Britt D. T.	30
Allton J. H.	3	Brooke T. Y.	233
Andreev V. V.	4	Brown M.	111
Aoki T.	182	Brown M. E.	31
Aoki T. E.	230	Budzien S. A.	61, 180
Arpigny C.	5, 232	Buie M. W.	32
Asher D.	207	Buratti B. J.	33
Atzei A.	6	Burke L.	219
Babadzhanov P. B.	7, 8	Burns J. A.	84
Baggaley W. J.	9	Bus S. J.	34, 185
Baguhi M.	10, 76	Campins H.	35, 226
Bailey M. E.	83	Capaccioni F.	57
Baille P.	11	Capria M. T.	129
Bao Y.	101	Cash W.	209
Baratta G. A.	12	Cellino A.	19, 35, 251
Barbieri C.	132	Celnik W. E.	188
Barker E. S.	211	Ceplecha Z.	36
Bar-Nun A.	13	Chamberlin A.	150
Barucci A.	14, 15	Chapman C. R.	37, 38
Barucci M. A.	129	Chauvineau B.	39
Baum W. A.	232	Chen F. Z.	243
Bec-Borsenberger A.	16	Chernova G. P.	86, 112, 113
Belkovich O. I.	4, 16	Chernykh N. S.	39
Bell J. F.	17, 74	Chin G.	233
Belskaya I. N.	18	Churyumov K. I.	40
Belton M. J. S.	18, 19, 234	Clairemidi J.	41, 181
Bendjoya P.	19	Cochran A. L.	42, 211
Bendjoya Ph.	20	Cochran W. D.	42
Benedix G. K.	149	Colom P.	24, 43
Benest D.	20	Combi M.	66
Bénit J.	179	Combi M. R.	44
Benson C.	35	Cook T. A.	209
Betlem H.	104	Coradini A.	57
Binzel R. P.	21, 22	Coradini M.	15
Birch P. V.	1, 160, 186	Corbach E.	83
Birkle K.	25	Cosmovici C.	130
Blair W. P.	60	Crovisier J.	24, 43, 45, 108
Blake D. F.	23	Cruikshank D. P.	220
Bockelée-Morvan D.	24, 43	Cunningham C.	45
Boehnhardt H.	25	Cunningham C. J.	46
Boice D. C.	26	Dahlgren M.	47, 67, 129
Bois E.	27	Davidson A. F.	60
Bonev T.	28		

Davis D. R.	38	Froeschlé Cl.	19, 20, 27, 58, 70
Debi-Prasad C.	48, 169	Fulchignoni M.	14, 15, 129
de Groot M.	103	Gada A.	54
de Lafontaine J.	89	Gaffey M. J.	71, 72
de Lignie M.	104	Geballe T. R.	233
Delva M.	48	Gehrels T.	191
Dermott S. F.	49, 55	Gérard E.	24
De Sanctis C.	15	Gerasimov I. A.	2, 205
Despois D.	43	Gerth C.	102
Di Martino M.	14, 15, 50, 73, 152	Getman V. S.	72, 73
DiSanti M.	51, 92, 155	Geyer E. H.	28, 48, 169
DiSanti M. A.	66	Giese B.	128
Dichko I. A.	79	Goldader J. D.	220
Dinev C.	51	Gomes R. S.	49
Dixon W. V.	60	Gonano-Beurer M.	50, 73, 152
Dones L.	52	Gonczi R.	20, 58
Donn B.	5	Gooding J. L.	3
Dossin F.	5	Gosine J.	101
Doyle L. R.	238	Granahan J. C.	74
Drobyshevski E. M.	53	Green D. W. E.	108
Dunham D. W.	54	Green J. C.	209
Durda D.	49	Greenberg J. M.	103, 124
Durda D. D.	55	Greenberg R.	159
Durrance S. T.	60	Grensemann M. G.	75
Eich G.	179	Grün E.	10, 76, 82, 120
Eist E. W.	55	Grundy W. M.	77
Engel L.	173	Gulak Yu. K.	78, 79
Engle S.	56	Gull T. R.	60
Espinasse S.	57	Gustafson B.	49
Evlanov E. N.	69	Gustafson B. Å. S.	80, 81, 82, 83
Farinella P.	35, 39, 58, 251	Hadamcik A.	133
Fechtig H.	76	Hahn G.	47, 83
Federico C.	57	Halliday I.	72
Feldman P. A.	72	Hamabe M.	182
Feldman P. D.	59, 60, 61, 64, 180, 232	Hamburger D.	11
Ferguson H. C.	60	Hamilton D. P.	84
Ferrin I.	62	Hanner M. S.	76
Ferro A. J.	63	Harris A. W.	85, 86, 249
Festou M. C.	59, 61, 63, 64, 132, 176	Hartman W. K.	220
Filimonova T. K.	16	Hartung J. B.	87
Filonenko V. S.	40	Hasegawa H.	88, 184
Fink U.	44, 65, 66, 77, 219	Hauser M. G.	139
Fitzsimmons A.	67	Hawkes R. L.	178
Fletcher M.	54	Hechler M.	89
Flynn G. J.	68	Helin E. F.	90
Fomenkova M. N.	69	Hendricks C.	102
Freudenreich H. T.	139	Henry R. C.	60
Freund F.	23	Heyd R.	91
Froeschlé C.	176	Heyd R. S.	172, 173
Froeschlé Ch.	58, 70	Hicks M.	65
		Hiromoto N.	230

Hirose T.	54	Koczet P.	188
Hoban S.	51, 92, 116, 155	Kohl H.	10, 120
Hoffman H.	152	Kölzer G.	121
Hoffmann M.	92	Komitov B.	99
Holt H. E.	93	Kömle N. I.	122
Hopp U.	25	Konno I.	26, 123, 125, 182
Howell E. S.	33	Kouchi A.	124
Hu Z.-W.	94, 227	Kozuka Y.	123, 125, 182
Hudgins D.	23	Kresák L.	126, 127
Huebner W. F.	26	Kresáková M.	126, 127
Ibadov S.	95	Kriss G. A.	60
Innanen K. A.	96	Kruk J.	60
Ip W.-H.	97	Kuert E.	128
Ipatov S. I.	98	Kurihara H.	212
Isobe S.	182	Kwiatkowski T.	128, 151
Ivanova V.	99	Lacy J.	51
Iwase M.	184	Lagerkvist C.-I.	47, 67, 129
Jackson A. A.	100	Lamberg L.	109
Jackson W. M.	101, 102	Lamy P.	130
Jayaraman S.	49	Larson S. M.	131
Jenniskens P.	103, 104	Lazzarin M.	132
Jiang H.-S.	94	Lebofsky L. A.	30
Jockers K.	28, 48, 169	Lein D. J.	136
Jones J.	104, 105, 106	Levasseur-Regourd A. C.	133
Jones L. V.	86	Levison H. F.	134, 135
Jones W.	104, 106, 107	Li R.-L.	94
Jorda L.	108	Li Z.-L.	94
Joyce R.	92	Lichtenegger H.	48
Judge D. L.	243	Light R. M.	232
Julian W. H.	19	Lindblad B. A.	76, 137
Kaasalainen M.	109	Lindgren M.	138, 217
Kaiser R.	110	Linkert D.	76
Kamél L.	176	Linkert G.	76
Kato M.	216	Lisse C. M.	139
Kawabata K.	184	Long K. S.	60
Keay C.	111	Lumme K.	109
Keller H. U.	128	Lundstrom M.	47
Kelsall T.	139	Lunine J. I.	56
Kim S. J.	111	Lupishko D. F.	86, 113, 140
Kimble R. A.	60	Luu C.	101
Kingsley S. P.	107	Luu J. X.	141
Kiselev N. N.	86, 112, 113	Mack P.	91
Kissel J.	76, 254	Magnusson P.	67, 129, 142
Klačka J.	114, 115	Maley P.	54
Klavetter J. J.	116	Manara A.	143
Kleine M.	116, 174, 234	Marcialis R. L.	33
Knežević Z.	117, 151	Mardon A. A.	144
Kochan H.	118, 121, 168	Mardon E. G.	144
Kochetova O. H.	119	Markiewicz W. F.	118
		Marsden B. G.	145

Matese J. J.	146, 238	Osborn W.	54
Mathews J. D.	73	Osip D. J.	1, 160, 185, 186
Matson D. L.	225	Parmar R.	51
Matthews C. N.	147	Paubert G.	43
McCrosky R. E.	36	Pauwels Th.	161, 162
McDonnell J. A.	76	Peale S. J.	163
McDonnell J. A. M.	148	Peterson B. A.	116
McFadden L. A.	149, 150	Petit J. M.	70
McKinnon W. B.	197	Pittich E. M.	164
McNaught R.	207	Porubčan V.	137, 165
Meisser W.	188	Povenmire H.	54
Michałowski T.	128, 151	Prilutsky O. F.	69
Mignard F.	39	Rabinowitz D. L.	166, 191
Mikkola S.	96	Rahe J.	5
Milani A.	117, 151	Ramsay D. A.	172, 174
Millis R. L.	1, 160, 186,	Randall C. E.	29, 167
Minami S.	182	Ratcliff P. R.	148
Mitchell R.	6	Ratke L.	168
Miunonen K. O.	196	Rauer H.	48, 169
Miyashita A.	229	Redman R. O.	170
Mizutani H.	216	Reed K. L.	72
Moos H. W.	60	Renard J. B.	133
Moreels G.	41, 181	Rendtel J.	171
Morfill G.	76	Rettig T.	91
Morley T.	190	Rettig T. W.	172, 173
Morrow E.	149	Reuter D.	92
Morton Y. T.	73	Reuter D. C.	155, 175
Moseley S. H.	139	Reynolds R. T.	238
Mottola S.	50, 73, 152	Rickman H.	176
Mueller B. E. A.	19, 153	Rietmeijer F. J. M.	177
Muinonen K.	96, 154	Robertson M. C.	178
Mukai T.	124	Roessler K.	110, 179
Mukhin L. M.	69	Roettger E. E.	180
Mumma M.	51, 92, 155	Roper R. G.	73
Mumma M. J.	175, 246	Rotundi A.	15
Nakamura T.	156, 157, 229	Rousselot P.	41, 181
Namiki N.	21	Saito M.	123
Natour Gh.	254	Saito T.	123, 125, 182
Nazarchuk B. K.	158	Samarasinha N. H.	183
Neugebauer M.	235	Sandford S.	23
Neukum G.	73, 152	Satoh T.	184
Neukum S.	50	Sauer M.	179
Nicholson P. D.	49	Sauter L. M.	22
Nishioka K.	123	Schlapfer M. F.	226
Nolan M.	159	Schleicher D. G.	1, 160, 185, 186
Nolan M. C.	33	Schloerb F. P.	187
Numazawa S.	125	Schlosser W.	188
Obert P.	27	Scholl H.	70
Obrubov Yu. V.	8	Schulz K.	83
Okamura S.	182		

Schulz R.	188	Taylor A. D.	9
Schwarz G.	130	Tedesco E. F.	218, 225
Schwehm G.	76, 189, 190	Tegler S.	234
Schwingenschuh K.	48	Tegler S. C.	35, 219
Scotti J. V.	191	Telesco C. M.	35
Sekanina Z.	192, 193, 194	ter Kuile C.	104
Shefer V. A.	195	Thiel K.	121
Shkodrov V.	51, 99	Tholen D. J.	220
Shkuratov Yu. G.	196	Thomas H.	168
Shock E. L.	197	Thrush J.	54
Shoemaker C. S.	93, 198	Todorovic-Juchniewicz B.	221
Shoemaker E. M.	93, 96, 135, 198, 199	Tokunaga A. T.	233
Shor V. A.	119, 200	Tozzi G. P.	61, 132
Shull J. M.	208	Tsuda T.	229
Shulman L. M.	201	Tsutsumi M.	229
Sichao W.	54	Urdahl R. S.	101
Siddique N.	76	Valsecchi G. B.	143
Sidorov V. V.	16	Vancura O.	60
Silverberg R. F.	139	Van Flandern T. C.	222
Šimek M.	202	Vanysek V.	25, 223
Sitarski G.	221	Vaschkov'yak M. A.	224
Slaughter C. D.	131	Veeder G. J.	218, 225
Slezak E.	20	Velichko F. P.	140
Smithier C. L.	203	Vernotte F.	41, 181
Snow P.	206	Vilas F.	150
Sokolsky A. G.	204	Vladimirov S.	99
Solovaya N. A.	205	Vollmer E.	254
Soma M.	54	Walker R. G.	215, 226
Song X.	101	Wallace B. J.	86
Spinrad H.	31, 111	Wang E.-K.	94, 227
Stamm J.	54	Watanabe J.	88, 212, 228, 229, 230
Stathakis R.	172	Weaver H. A.	231, 232, 233
Steel D.	206, 207	Webster A. R.	105
Steel D. I.	9	Wehinger P.	91
Steiner G.	122	Wehinger P. A.	116, 234
Stern S. A.	26, 34, 208, 209	Weiguo G.	187
Štohl J.	165	Weissman P.	235
Stooke P. J.	210	Westphal J. A.	232
Storrs A.	92	Wetherill G. W.	236
Storrs A. D.	211	Wettig R. W.	174
Strazzulla G.	12	Whipple F. L.	237
Suzuki B.	212	Whitman P. G.	146
Svetashkova N. T.	213	Whitmire D. P.	146, 238
Swindle T. D.	214	Williams G.	54
Sykes M. V.	215	Williams I. P.	67, 82, 244, 250
Szutowicz S.	215	Williams J. G.	225, 239, 240
Takagi Y.	216	Wisniewski W. Z.	241
Takahashi T.	123	Wolfe R. F.	135, 198, 242
Takami H.	230	Woszczyk A.	5
Takeuchi H.	182		
Tancredi G.	217		

Wu C. Y. R.	243
Wu Z.	244
Wyckoff S.	5, 91, 116, 172, 173, 219, 234, 245
Xie X.	246
Xu X.-Y.	94
Xu Y.-L.	49
Yagudina E. I.	200
Yamamoto T.	124
Yeomans D. K.	247, 248
Yi Y.	29, 167
Yoshikawa M.	156, 157, 229, 250
Young J. W.	86, 249
Yuqiu W.	227
Zagretdinov R. V.	250
Zappalá V.	19, 35, 251
Zellner B. H.	252
Zerull R. H.	83
Zhou Q.	73
Ziolkowski K.	253
Zook H. A.	76, 100
Zscheeg H.	254