

Optimizer's Information Criterion: Dissecting and Removing Bias in Data-Driven Optimization

Garud Iyengar, Henry Lam, Tianyu Wang

Contact: tw2837@columbia.edu | Columbia University

Data-Driven Optimization

$$\min_{x \in \mathcal{X}} \left\{ \mathbb{E}_{\mathbb{P}^*}[h(x; \boldsymbol{\xi})] \right\} \quad \text{(Basic Framework)}$$

- Unknown: distribution $\xi \sim \mathbb{P}^*$;
- We only observe samples $\mathcal{D}_n := \{\xi_i\}_{i=1}^n \sim (\mathbb{P}^*)^n$;
- Generalization: Contextual Optimization, Risk-aversed Optimization.

General optimization procedures:

• Output $x^*(\hat{\theta}) \in \{x^*(\theta) \in \mathcal{X} | \theta \in \Theta\}$, where $\hat{\theta}$ is optimized from \mathcal{D}_n .

 \bullet Variants: Model class + Opt design (prediction-based, robust, ...)

Which optimization procedure should we choose?

Criterion to evaluate and compare decisions:

$$A:=\mathbb{E}_{\mathcal{D}_n}\left(\mathbb{E}_{\mathbb{P}^*}[h(x^*(\hat{\theta});\xi)]\right)$$
 (Example: Expected Cost)

Goal: Find an estimator $\hat{A}(x^*(\hat{\theta}))$ for every $x^*(\hat{\theta})$.

- Accurate Evaluation: $\mathbb{E}_{\mathcal{D}_n}[\hat{A}] \approx A$;
- Accurate Comparison: A smaller \hat{A} implies smaller A.

Evaluation Bias and Existing Solutions

Empirical Evaluation: $\hat{A}_o := \frac{1}{n} \sum_{i=1}^n h(x^*(\hat{\theta}); \xi_i)$ with the smallest \hat{A}_o

- Evaluation bias: $A \mathbb{E}[\hat{A}_o] > 0$.
- Selection bias: Always select SAA $\hat{\theta} \in \arg\min_{\theta} \{\sum_{i=1}^{n} h(x^*(\theta); \xi_i)\};$

Solution I: Resample-based estimators:

- K-Fold / Leave-one-out (LOO) Cross-validation, bootstrap;
- Refitting many optimization procedures decisions.

Solution II: Problem-specific estimators:

- Approximate Leave-one-out (ALO), Akaike Information Criterion (AIC);
- Provide bias formulas / computationally efficient ways for specific cost functions.

Our Work: A general and efficient approach that evaluates data-driven decisions by removing the bias.

Optimizer's Information Criterion (OIC)

OIC corrects the bias through direct estimation:

$$\hat{A} := \frac{1}{n} \sum_{i=1}^{n} h(x^*(\hat{\theta}); \xi_i) - \frac{1}{n^2} \sum_{i=1}^{n} \underbrace{\nabla_{\theta} h(x^*(\hat{\theta}); \xi_i)^{\top}}_{Decision} \cdot \underbrace{\hat{IF}(\xi_i)}_{Estimation}$$

- OIC yields nearly unbiased performance evaluation: $\mathbb{E}[\hat{A}] = A + o(1/n)$.
- OIC is close to LOOCV: $n(\hat{A}_{OIC} \hat{A}_{LOOCV}) \stackrel{p}{\to} 0$. (LOOCV has superior evaluation and selection performance.)

Tools and Applications

Optimization Procedure: $T(\cdot):\mathcal{D}_n\mapsto \mathsf{Decision}$ Parameter,

 $\hat{\theta} = T(\hat{\mathbb{P}}_n)$ and $\theta^* = T(\mathbb{P}^*)$.

Influence Function:

$$IF(\xi; T, \mathbb{P}^*) = \lim_{\epsilon \to 0^+} \frac{T(\epsilon \delta_{\xi} + (1 - \epsilon)\mathbb{P}^*) - T(\mathbb{P}^*)}{\epsilon}.$$

 $IF(\xi)$ captures the impact of a point ξ on the optimization procedure T. **Estimated Influence Function**: $IF(\xi) = IF(\xi; \hat{T}, \hat{\mathbb{P}}_n)$ for some approximated optimization procedure $T(\cdot)$.

Proof Sketch:

Deriving the expected bias based on properties of the influence function:

$$A = \mathbb{E}_{\mathcal{D}^n} \mathbb{E}_{\mathbb{P}^*} \left[\hat{A}_o \right] - \underbrace{\frac{\mathbb{E}_{\mathbb{P}^*} \left[\nabla_{\theta} h(x^*(\theta^*); \xi)^\top IF(\xi) \right]}{n}}_{n} + o\left(\frac{1}{n}\right)$$

• Approximate unknown $\nabla_{\theta} h(x^*(\theta^*); \xi)$ and $IF(\xi)$ with empirical counterparts: $\mathbb{E}_{\mathcal{D}_n}[\|\widehat{IF}(\xi)\|_2] - \|IF(\xi)\|_2 = o(1).$

Generality: OIC can be computed for general (constrained) (non)smooth objectives.

Computation: $\widehat{IF}(\xi)$ only requires gradient and hessian of the cost function, which is more efficient than refitting optimization procedures.

(b) Statistics Computation Frontier

Optimization Procedure Example [Estimate-then-Optimize]

 $T(\mathbb{P}) \in \arg\min_{\theta} \mathbb{E}_{\mathbb{P}}[\phi(\theta;\xi)], \quad x^*(\theta) \in \arg\min_{x \in \mathcal{X}} \mathbb{E}_{\mathbb{P}_{\theta}}[h(x;\xi)].$

$$IF(\xi) = -(\mathbb{E}_{\mathbb{P}^*}[\nabla_{\theta\theta}\phi(\theta^*;\xi)])^{-1}\nabla_{\theta}\phi(\theta^*;\xi)$$

$$\widehat{IF}(\xi) = -(\mathbb{E}_{\hat{\mathbb{P}}_n}[\nabla_{\theta\theta}\phi(\hat{\theta};\xi)])^{-1}\nabla_{\theta}\phi(\hat{\theta};\xi)$$

For example, $\phi(\theta; \xi) = -\log p_{\theta}(\xi)$ in maximum likelihood estimation.

Benefit I: Statistically Improved Decision Selection

OIC identifies optimal hyperparameters and models through improved evaluation.

(a) Parameter Selection: Mean-Variance Portfolio Optimization

(b) Model Selection: Newsvendor Problem (Exponential versus Normal)

• Performance evaluation integrated in https://python-dro.org.

Benefit II: Reduction of Computational Costs

OIC does not need to solve additional optimization problems.

_					
	Task	Method	OIC	5-CV	ALO
_	Portfolio	ERM	1.64×10^{-3}		
		Param	5.50×10^{-1}	$4.18 imes10^{-1}$	3.23×10^{0}
		DRO	$1.64 imes10^{-3}$	6.59×10^{0}	4.29×10^{-3}
	Regression	Ridge	$1.1 imes10^{-2}$	3.4×10^{-2}	8.4×10^{-2}
		Neural Network	$1.8 imes10^2$	8.3×10^2	1.9×10^2 -

Note. running time for each evaluation procedure (unit: seconds).

Benefit III: Transparent Design Principle

Understanding the evaluation bias leads to a better design of decision-focused learning.

→ Incorporate OIC in the evaluation, selection and training procedure