Ayoub Aissaoui

## Correction du devoir à domicile 1 S2

Ayoub Aissaoui

6 mars 2025

## Correction 1

0

$$x+8 = 3x-11$$

$$x-3x = -11-8$$

$$-2x = -19$$

$$x = \frac{-19}{-2}$$

$$x = \frac{19}{2}$$

Donc  $\frac{19}{2}$  est la solution de cette équation.

$$(11x - 10)(\sqrt{2}x + 5) = 0$$

$$11x - 10 = 0 \quad \text{ou} \quad \sqrt{2}x + 5 = 0$$

$$11x = 10 \quad \text{ou} \quad \sqrt{2}x = -5$$

$$x = \frac{10}{11} \quad \text{ou} \quad x = \frac{-5}{\sqrt{2}}$$

$$x = \frac{10}{11} \quad \text{ou} \quad x = -\frac{5\sqrt{2}}{2}$$

Donc, les solutions de cette équation sont  $\frac{10}{11}$  et  $-\frac{5\sqrt{2}}{2}$ .



$$4x-3 < 6x+9$$

$$4x-6x < 9+3$$

$$-2x < 12$$

$$\frac{1}{-2} \times -2x > \frac{1}{-2} \times 12$$

$$x > -6$$

Donc, les solutions de cette inéquation sont tous les nombres réels strictement supérieurs à -6.





#### Choix de l'inconnue

Soit *x* le nombre des garçons.

### Mise en équation

Le nombre de garçons est x.

Puisque le nombre de filles est les deux tiers du nombre de garçons, nous pouvons écrire le nombre de filles comme  $\frac{2}{3}x$ .

Le total des élèves est 40, donc nous avons l'équation suivante :

$$x + \frac{2}{3}x = 40.$$

#### Résolution de l'équation

$$x + \frac{2}{3}x = 40$$
$$\frac{3x + 2x}{3} = 40$$
$$\frac{5x}{3} = 40$$
$$5x = 120$$
$$x = 24$$

## Retour au problème

Le nombre des garçons est 24 et le nombre des filles est  $\frac{2}{3} \times 24 = 16$ .

# Correction 3

- 1 Construction du point E
- Construction du point F



3 On a : E est l'image de B par la translation T

Donc :  $\overrightarrow{AC} = \overrightarrow{BE}$ 

Cela signifie que ABEC est un parallélogramme

Donc :  $\overrightarrow{AB} = \overrightarrow{CE}$  (1)

Et comme  $\overrightarrow{ABCD}$  est un parallélogramme, on a :  $\overrightarrow{AB} = \overrightarrow{CD}$  (2)

D'apres (1) et (2), on a :  $\overrightarrow{CE} = \overrightarrow{CD}$ 

D'où : C est le milieu de [DE]



- 4 On sait que :  $\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{AD}$  Cela montre que *ACFD* est un parallélogramme, donc  $\overrightarrow{AC} = \overrightarrow{DF}$ D'où : F est l'image de D par la translation T.
- 6 On a : E, C et F les images respectifs de B, A et D par la translation TDonc l'angle  $\widehat{ECF}$  est l'image de l'angle  $\widehat{BAD}$  par la translation TEt comme la translation conserve la mesure des angles, donc  $\widehat{ECF} = \widehat{BAD}$  or  $\widehat{BAD} = 100^\circ$  donc  $\widehat{ECF} = 100^\circ$

Avoub Aissaoui

•

• 
$$\overrightarrow{AB} + \overrightarrow{EC} + \overrightarrow{BE} + \overrightarrow{CA} = \overrightarrow{AB} + \overrightarrow{BE} + \overrightarrow{EC} + \overrightarrow{CA} = \overrightarrow{AE} + \overrightarrow{EA} = \overrightarrow{AA} = \overrightarrow{0}$$

• 
$$2\overrightarrow{BA} - 3\overrightarrow{CA} - \overrightarrow{BC} = 2\overrightarrow{BA} + 3\overrightarrow{AC} + \overrightarrow{CB} = 2\overrightarrow{BA} + 2\overrightarrow{AC} + \overrightarrow{AC} + \overrightarrow{CB} = 2(\overrightarrow{BA} + \overrightarrow{AC}) + \overrightarrow{AB} = 2\overrightarrow{BC} + \overrightarrow{AC} + \overrightarrow$$

② 1 Construction des points D, E et F.



2 On montre que : 
$$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BD}$$

$$= \overrightarrow{AB} + \frac{1}{3}\overrightarrow{BC}$$

$$= \overrightarrow{AB} + \frac{1}{3}(\overrightarrow{BA} + \overrightarrow{AC})$$

$$= \overrightarrow{AB} + \frac{1}{3}\overrightarrow{BA} + \frac{1}{3}\overrightarrow{AC}$$

$$= \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$

$$\overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CE}$$
$$= \overrightarrow{AC} + 2\overrightarrow{AB}$$

On déduit que les points A, D et E sont alignés. On a :

$$\overrightarrow{AD} = \frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$$
$$= \frac{1}{3}\left(2\overrightarrow{AB} + \overrightarrow{AC}\right)$$
$$= \frac{1}{3}\overrightarrow{AE}$$

Donc les points A, D et E sont alignés.

- 3 On sait que :  $\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{AC}$  Cela montre que  $\overrightarrow{ABFC}$  est un parallélogramme, donc  $\overrightarrow{AC} = \overrightarrow{BF}$ D'où : F est l'image de B par la translation T.
  - 2 Construction des points D' et E'.(Voir la figure ci-dessus).
  - 3 On a : C, D' et E' les images respectifs de A, D et E par la translation T

Or la translation conserve l'alignement des points et les points A, D et E sont alignés.

Donc les points C, D' et E' sont alignés.