1. Show that for any Ornstein-Uhlenbeck stationary sequence $X_n, -\infty < n < \infty$, with parameter a and any m > k, the best linear estimate of X_m given $X_k, X_{k-1}, X_{k-2}, \ldots$, is given by

$$\tilde{X}_{m,k} = a^{m-k} X_k.$$

(Hint: it is an orthogonal projection, normal equations)

Answer. $\tilde{X}_{m,k} = a^{m-k}X_k$ is the best linear estimate if and only if $X_m - \tilde{X}_{m,k} = X_m - a^{m-k}X_k \perp X_l$ for all $l \leq k$ which means that

$$\mathbf{E}\left[\left(X_m - a^{m-k} X_k\right)\right] X_l = 0 \text{ for all } l \le k$$

or

$$\mathbf{E} X_m X_l = a^{m-k} \mathbf{E} X_k X_l$$
 for all $l \leq k$.

But indeed, $\mathbf{E}X_mX_l = a^{m-l}$ and $a^{m-k}\mathbf{E}X_kX_l = a^{m-k}a^{k-l} = a^{m-l}$.

2. Assume $X_n, n \geq 0$, is a real valued space continuous homogeneous Markov chain with transition kernel p(r, u). Assume the observation

$$Y_n = \gamma(X_n, W_n), n \ge 0,$$

where W_n is a sequence of i.i.d. independent of X_0, X_1, \ldots Assume that for every $r \in \mathbf{R}$, $\gamma(r, W_n)$ is a continuous r.v. whose pdf. l(r, v) is known.

a) Show that the pair (X_n, Y_n) is a space continuous homogeneous Markov chain with transition kernel

$$q^{r,u}(s,v) = p(r,u)l(u,v).$$

Write the recursive equation for UFDF. (Hint: look at HW 12.2) Answer. Since W_{n+1} does not depend on X, and $Y_{[0,n]}$,

$$\begin{split} &\mathbf{E}\left[1_{X_{n+1}\leq a}1_{\gamma(X_{n+1},W_{n+1})\leq b}|X_{[0,n+1]},Y_{[0,n]}\right]\\ &=\mathbf{E}\left[1_{u\leq a}1_{\gamma(u,W_{n+1})\leq b}|X_{[0,n+1]},Y_{[0,n]}\right]_{u=X_{n+1}}\\ &=1_{X_{n+1}\leq a}(\mathbf{E}1_{\gamma(u,W_{n+1})\leq b})|_{u=X_{n+1}}=1_{X_{n+1}\leq a}\int_{-\infty}^{b}l(u,v)dv|_{u=X_{n+1}}\\ &=1_{X_{n+1}\leq a}\int_{-\infty}^{b}l(X_{n+1},v)dv. \end{split}$$

Therefore for every $n \geq 0, a, b \in \mathbf{R}$,

$$\mathbf{P}\left(X_{n+1} \leq a, Y_{n+1} \leq b | X_{[0,n]}, Y_{[0,n]}\right) \\
= \mathbf{E}\left[1_{X_{n+1} \leq a} 1_{\gamma(X_{n+1}, W_{n+1}) \leq b} | X_{[0,n]}, Y_{[0,n]}\right] \\
= \mathbf{E}\left\{\mathbf{E}\left[1_{X_{n+1} \leq a} 1_{\gamma(X_{n+1}, W_{n+1}) \leq b} | X_{[0,n+1]}, Y_{[0,n]}\right] | X_{[0,n]}, Y_{[0,n]}\right\} \\
= \mathbf{E}\left[\int_{-\infty}^{b} l(X_{n+1}, v) dv 1_{X_{n+1} \leq a} | X_{[0,n]}, Y_{[0,n]}\right]$$

Since $Y_i = \gamma(X_i, W_i)$, and W is independent of X,

$$\mathbf{E} \left[\int_{-\infty}^{b} l(X_{n+1}, v) dv 1_{X_{n+1} \le a} | X_{[0,n]}, Y_{[0,n]} \right]$$

$$= \mathbf{E} \left\{ \mathbf{E} \left[\int_{-\infty}^{b} l(X_{n+1}, v) dv 1_{X_{n+1} \le a} | X_{[0,n]}, W_{[0,n]} \right] | X_{[0,n]}, Y_{[0,n]} \right\}$$

$$= \mathbf{E} \left\{ \mathbf{E} \left[\int_{-\infty}^{b} l(X_{n+1}, v) dv 1_{X_{n+1} \le a} | X_{[0,n]} \right] | X_{[0,n]}, Y_{[0,n]} \right\}$$

$$= \int_{-\infty}^{a} \int_{-\infty}^{b} l(u, v) dv \ p(X_{n}, u) du.$$

Summarizing we got

$$\mathbf{P}\left(X_{n+1} \le a, Y_{n+1} \le b | X_{[0,n]}, Y_{[0,n]}\right) \\ = \int_{-\infty}^{a} \int_{-\infty}^{b} l(u, v) dv \ p(X_n, u) du.$$

Taking the mixed derivative of both sides we obtain the statement.

b) (observation of a noisy reflection) Assume W_n are independent standard normal and $Y_n = |X_n + W_n|$. Find l(u, v).

Answer. For any $v \geq 0$,

$$\mathbf{P}(|r+W_n| \le v) = \mathbf{P}(-v \le r + W_n \le v) = \mathbf{P}(-v - r \le W_n \le v - r)$$
$$= \Phi(v - r) - \Phi(-v - r),$$

where Φ is cumulative distribution function of a standard normal. Differentiating in v we obtain

$$l(r,v) = \rho(v-r) + \rho(-v-r), v \ge 0,$$

where ρ is the pdf of a standard normal.

3. The signal is defined by

$$X_{n+1} = 0.1\cos(2X_n)h + 0.14\sqrt{hV_{n+1}}, 0 \le n \le N,$$

where V_n are independent standard normal r.v.. Assume $X_0 \sim N(0, 0.1^2)$. We observe

$$U_{n+1} = U_n + \arctan(X_n)h + 0.04\sqrt{h}W_{n+1}, 0 \le n \le N,$$

where W_n are independent standard normal independent of V_n . Assume $U_0 = 0$. We want to have filtering estimates of X_n and $H_n = \sum_{k=1}^n X_{k-1}$.

Take the interval [-1, 1] as the spatial domain with the grid of step 0.01 (consider all density functions on this spatial grid and use it for the integrals on **R** in the recursive formulas). Take h = 0.01, N = 200.

- a) Plot on the same graph $X_n, U_n, \hat{X}_n, 0 \le n \le 200$;
- b) Plot on the same graph H_n , \hat{H}_n , $0 \le n \le 200$;
- c) (maximum posterior probability estimate). Guessing: since all the distributions are conditionally Gaussian, the following estimate defined by

$$\hat{X}_n^{\max} = \arg\max \gamma_n(r),$$

which is certain r_n maximizing the unnormalized density $\gamma_n(r)$, should coincide with \hat{X}_n . Check this guess by plotting on the same graph $X_n, \hat{X}_n, \hat{X}_n^{\max}, 0 \le n \le 200$. (Note you can get r_n by applying max command in Matlab to the vector $\gamma_n(r)$). The r.v. \hat{X}_n^{\max} is called maximum posterior probability estimate.

d) Plot in 3D the FDF

$$\pi_n^a = \frac{\gamma_n(a)}{\int_{\mathbf{R}} \gamma_n(r) dr}, -1 \le a \le 1, 0 \le n \le 200.$$

Answer. The signal and observation are space continuous. we considered in class (see **section 8.1** of posted notes) the following model:

$$X_{n+1} = b(X_n) + d(X_n)V_{n+1},$$

 $Y_{n+1} = c(X_n) + \sigma W_{n+1}, Y_0 = 0,$

The problem above can be put into this scheme by introducing $Y_n = U_n - U_{n-1}$, $n \ge 1$, $Y_0 = 0$ (also, if U_n is observed we can observe $Y_n = U_n - U_{n-1}$ as well).

The following formulas were derived:

$$\begin{split} \mathbf{E} \left[H_n | U_{[0,n]} \right] &= \mathbf{E} \left[H_n | Y_{[0,n]} \right] = \frac{\int_{\mathbf{R}} \gamma_n(H_n, r) dr}{\int_{\mathbf{R}} \gamma_n(r) dr}, \\ \mathbf{E} \left[h(X_n) | U_{[0,n]} \right] &= \mathbf{E} \left[h(X_n) | Y_{[0,n]} \right] = \frac{\int_{\mathbf{R}} h(a) \gamma_n(a) da}{\int_{\mathbf{R}} \gamma_n(r) dr} \\ &= \int_{\mathbf{R}} h(a) \frac{\gamma_n(a)}{\int_{\mathbf{R}} \gamma_n(r) dr} da = \int_{\mathbf{R}} h(a) \pi_n^a \ da, \end{split}$$

where $\gamma_n(H_n, r)$ and $\gamma_n(r)$ satisfy the recursive equations:

$$\gamma_{n+1}(H_{n+1}, a) = \int_{\mathbf{R}} p(r, a) \lambda^{-1}(Y_{n+1}, r) [\gamma_n(H_n, r) + r\gamma_n(r)] dr,$$

and

$$\gamma_{n+1}(a) = \int_{\mathbf{R}} p(r, a) \lambda^{-1}(Y_{n+1}, r) \gamma_n(r) dr.$$

Here p(r, u) is the transition kernel of X_n and

$$\lambda^{-1}(Y_{n+1}, r) = \exp\left\{\frac{c(r)Y_{n+1}}{\sigma^2} - \frac{1}{2}\frac{c(r)^2}{\sigma^2}\right\}.$$

Note that $\gamma_0(H_0, r) = 0$ and $\gamma_0(r) = \text{pdf of } X_0$.

The file math 508 final 3.m defines a function math 508 final 3(N,h,M,L) that plots four graphs that we are asked, N is the end of time interval, h is equation parameter, the grid of size 2L/M is used on the space interval [-L.L]. The use:

>>math508final_2(200,0.01,200,1)

In the graphs:

- a) X_n is blue, U_n is green and \hat{X}_n is red;
- b) H_n is blue, \hat{H}_n is read;
- c) X_n is blue, \hat{X}_n^{\max} is green and \hat{X}_n is red;

COMMENT. In this model it turned out that indeed \hat{X}_n^{\max} and \hat{X}_n coincide. It was so not only because of some conditionally Gaussian distributions but also $\arctan(x)$ in the signal is odd function and the signal starts approximately at zero. For example, it is not so if we replace $\arctan(x)$ by |x| or by $\cos(x)$.

4. (Kalman-Bucy Filter) Assume the signal satisfies the equation:

$$X_t = 1 + \int_0^t aX_s ds + bV_t, 0 \le t \le 10,$$

and the observation process is

$$Y_t = \int_0^t X_s ds + BW_t, 0 \le t \le 10.$$

Simulate on the time grid of $\Delta t = 0.01$, and plot on the same graph the observation Y_t , signal X_t , and its estimate \hat{X}_t , $0 \le t \le 10$, for

a)
$$a = 0.1, b = 1, B = 0.3$$
; b) $a = 0.1, b = 1, B = 10$; c) $a = -1, b = 1, B = 0.3$; d) $a = -1, b = 2, B = 0.3$.

Answer. We found that the best estimate \hat{X}_t is given by the formula

$$\hat{X}_t = \alpha_t \left(x_0 + \int_0^t B^{-2} \alpha_s^{-1} P_s dY_s \right), t \ge 0,$$

where

$$\alpha_t = \exp\left\{ (a - B^{-2}\lambda_1)t \right\} \frac{(K+1)e^{t/C}}{Ke^{t/C} + 1}, t \ge 0,$$

and $P_t = \mathbf{E}\left[\left(X_t - \hat{X}_t\right)^2\right]$ is given by the formula

$$P_t = \lambda_1 + \frac{\lambda_2 - \lambda_1}{Ke^{t/C} + 1}, t \ge 0,$$

where

$$\lambda_{1} = \sqrt{a^{2}B^{4} + b^{2}B^{2}} + aB^{2},$$

$$\lambda_{2} = -\sqrt{a^{2}B^{4} + b^{2}B^{2}} + aB^{2},$$

$$C = \frac{B^{2}}{\lambda_{1} - \lambda_{2}},$$

$$K = \frac{-\lambda_{2}}{\lambda_{1}}.$$

Note that the mean square error P_t is increasing function of t. Obviously, $P_0 = 0$ and $\lim_{t \to \infty} P_t = \sup_{t \ge 0} P_t = \lambda_1 = \sqrt{a^2 B^4 + b^2 B^2} + a B^2$: in any case $P_t \le \lambda_1 \le b B$ for all t.

The file math 508 final 4.m defines a function math 508 final 4(n, T, a, b, B, x_0) that can plot the graphs that we are asked, T is the end of time interval, $T = n \cdot (\Delta t), a, b, B$ are the coefficients in the equation, x_0 is the starting deterministic point. The use:

 $>> math 508 final_4 (1000, 10, 0.1, 1, 0.3, 1)$ etc.

In the graphs: X_n is blue, Y_n is green and \hat{X}_n is red