UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC CENTRO DE EDUCAÇÃO SUPERIOR DO ALTO VALE DO ITAJAÍ – CEAVI ENGENHARIA DE SOFTWARE

GRACIELE RODRIGUES

IMPLEMENTAÇÃO E AVALIAÇÃO DE UM ALGORITMO PARA O PROBLEMA DE MÚLTIPLAS MOCHILAS UTILIZANDO PROGRAMAÇÃO LINEAR INTEIRA

IBIRAMA

GRACIELE RODRIGUES

IMPLEMENTAÇÃO E AVALIAÇÃO DE UM ALGORITMO PARA O PROBLEMA DE MÚLTIPLAS MOCHILAS UTILIZANDO PROGRAMAÇÃO LINEAR INTEIRA

Relatório apresentado à disciplina de Métodos Quantitativos, do curso de Engenharia de Software do Centro de Educação Superior do Alto Vale do Itajaí (CEAVI), da Universidade do Estado de Santa Catarina (UDESC), como requisito parcial para a aprovação na disciplina.

Orientador: Prof. Marcelo de Souza

IBIRAMA

RESUMO

O problema da mochila é um clássico em otimização, onde se busca maximizar o valor total de itens alocados em uma mochila sem ultrapassar sua capacidade. A variação "Problema de múltiplas mochilas" expande esse conceito ao considerar várias mochilas, cada uma com capacidade limitada, tornando o problema ainda mais complexo. Este estudo apresenta o pseudocódigo necessário para a implementação do modelo matemático proposto, o qual foi implementado e executado. Além disso, são apresentados os resultados obtidos após a execução para diferentes instâncias do problema, discutindo as soluções ótimas e os tempos de execução correspondentes em cada caso.

Palavras-chave: Problema da Mochila; Problema de Múltiplas Mochilas; Otimização Combinatória; Programação Linear Inteira.

ABSTRACT

The knapsack problem is a classic problem in optimization, where the goal is to maximize the total value of items stored in a knapsack without exceeding its capacity. The variation "Multiple Knapsack Problem" expands this concept by considering multiple knapsacks, each with limited capacity, making the problem even more complex. This study presents the pseudocode necessary for the implementation of the proposed mathematical model, which was implemented and executed. In addition, the results obtained after execution for different instances of the problem are presented, discussing the optimal solutions and the corresponding execution times in each case.

Keywords: Knapsack Problem; Multiple Knapsack Problem; Combinatorial Optimization; Integer Linear Programming.

SUMÁRIO

1	INTRODUÇÃO	5
2	PROBLEMA DE MÚLTIPLAS MOCHILAS	6
2.1	Formulação matemática	6
2.1.1	Função Objetivo	6
2.1.2	Restrições	7
3	IMPLEMENTAÇÃO	8
3.1	Instâncias e Resultados	9
4	CONCLUSÃO	18
REF	ERÊNCIAS	19

1 INTRODUÇÃO

Conforme discutido por Assi e Haraty (2018), o problema da mochila (Knapsack Problem) é uma questão clássica de otimização combinatória, amplamente aplicada em áreas como economia, logística e alocação de recursos. A versão binária, ou problema da mochila 0-1, envolve a seleção de itens com o objetivo de maximizar o valor total, respeitando uma capacidade máxima W. O objetivo é maximizar a soma dos valores dos itens selecionados sem ultrapassar o limite da mochila. Cada item j tem um valor v_j e um peso w_j , com a seleção binária representada por x_j , que pode ser zero ou um.

$$\operatorname{Maximizar} \sum_{j=1}^{n} v_j x_j \tag{1.1}$$

Sujeito a
$$\sum_{j=1}^{n} w_j x_j \le W$$
 (1.2)

$$x_i \in \{0, 1\} \tag{1.3}$$

Fonte: Assi e Haraty (2018).

Neste estudo, o modelo será ampliado por meio da implementação do Problema de Múltiplas Mochilas, uma variação que considera várias mochilas, cada uma com capacidade distinta, aumentando a complexidade do problema. Será apresentado o pseudocódigo para a solução dessa variante. A performance do algoritmo será avaliada com base em instâncias selecionadas, analisando as soluções ótimas e o tempo de execução obtidos em cada teste.

2 PROBLEMA DE MÚLTIPLAS MOCHILAS

O Problema de Múltiplas Mochilas é uma generalização do problema clássico da mochila 0-1, onde o objetivo é maximizar o valor total dos itens alocados em múltiplas mochilas, respeitando suas respectivas capacidades. Neste contexto, o Problema de Múltiplas Mochilas expande essa abordagem ao considerar m mochilas, cada uma com uma capacidade distinta c_j (ASSI; HARATY, 2018).

Neste modelo, introduz-se a variável binária $x_{ij}\{0,1\}$, que indica se o item j é alocado na mochila i. Assim, a decisão não se resume apenas a escolher se um item deve ser incluído, mas também em qual mochila ele será armazenado. Essa complexidade adicional torna o problema mais aplicável a diversas situações do mundo real, como o agendamento de tarefas em múltiplos processadores e a alocação de itens em leilões (ASSI; HARATY, 2018).

2.1 FORMULAÇÃO MATEMÁTICA

Os autores Assi e Haraty (2018) determinam a formulação do Problema de Múltiplas Mochilas por meio das seguintes equações:

$$\text{Maximizar} \sum_{i=1}^{m} \sum_{j=1}^{n} v_i x_{ij}$$
 (2.1)

Sujeito a
$$\sum_{j=1}^{n} w_j x_{ij} \le c_j$$
 (2.2)

$$\sum_{i=1}^{m} x_{ij} \le 1 \tag{2.3}$$

$$x_{ij} \in \{0, 1\} \tag{2.4}$$

2.1.1 Função Objetivo

A função objetivo, expressa pela equação (2.1), visa maximizar o valor total dos itens alocados nas mochilas. Para isso, soma-se o valor de todos os itens v_j que são alocados em qualquer uma das m mochilas. A variável binária x_{ij} indica a inclusão do item j na mochila i. Assim, somente os itens selecionados contribuem para a maximização do valor total, refletindo a intenção de alocar da maneira mais eficiente possível.

2.1.2 Restrições

As restrições do modelo são apresentadas nas equações (2.2), (2.3) e (2.4). A equação (2.2) assegura que a soma dos pesos w_j dos itens alocados em cada mochila i não exceda sua capacidade máxima c_i . Já a equação (2.3) garante que cada item j possa ser alocado em no máximo uma mochila, evitando duplicações. A restrição expressa na equação (2.4), determina que a variável binária x_{ij} só pode assumir os valores 0 ou 1. Um valor de 1 indica que o item j é alocado na mochila i, enquanto 0 significa que o item não é incluído. As restrições garantem que as capacidades das mochilas sejam respeitadas, assegurando assim uma alocação adequada e eficiente dos recursos.

3 IMPLEMENTAÇÃO

Nesta seção, é apresentada a implementação do modelo do Problema de Múltiplas Mochilas. A Figura 1 apresenta a lógica utilizada para resolver o problema, permitindo visualizar as etapas envolvidas na alocação dos itens nas mochilas.

Figura 1 – Pseudocódigo para o Problema de Múltiplas Mochilas

```
Result: Solução ótima para o Problema de Múltiplas Mochilas
1 Inicialização;
2 n \leftarrow Número de itens;
3 m \leftarrow Número de mochilas;
4 Ler instância do arquivo;
5 while instância não lida do
       n, m \leftarrow \text{Ler } n \in m:
       for item \in itens do
            values \leftarrow Valor do item;
8
           weights \leftarrow Peso do item;
       end
10
       capacities ← Capacidades das mochilas;
12 end
13 Criar modelo matemático;
14 for i \in [1, m] do
       for j \in [1, n] do
           x_{ij} \leftarrow Definir variável de decisão para item j na mochila i no modelo criado
16
       end
17
18 end
19 Definir função objetivo para o modelo:;
20 Objetivo \leftarrow \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} \cdot values[j];
21 Adicionar restrições de capacidade para cada item no modelo:;
22 for i \in [1, m] do
      \sum_{i=1}^{n} x_{ij} \cdot weights[j] \leq capacities[i];
24 end
  Adicionar restrições de exclusividade para cada item no modelo:;
26 for j \in [1, n] do
      \sum_{i=1}^m x_{ij} \le 1;
29 Resolver modelo usando algum solver;
30 Exibir solução:;
31 for i \in [1, m] do
       Listar itens alocados na mochila i;
       Calcular e exibir itens alocados em cada mochila, peso total, valor total e tempo de execução.;
33
34 end
```

3.1 INSTÂNCIAS E RESULTADOS

Nesta seção, são apresentadas instâncias que demonstram a aplicabilidade do modelo. As instâncias foram obtidas a partir de arquivos base do repositório de Métodos Quantitativos (Souza, 2022), o qual foi modificado e estruturado em duas partes principais. Na primeira parte, são apresentados os itens disponíveis, cada um detalhando seu valor e peso.

Na segunda parte, são descritas as mochilas e suas respectivas capacidades. Os testes foram realizados com dez amostras que exemplificam diferentes cenários de alocação, garantindo uma variedade suficiente para análise. Cada amostra segue a mesma estrutura, assegurando a consistência dos dados e a eficiência na resolução do modelo. Para cada amostra é apresentada a tabela de soluções ótimas encontradas, com os valores das soluções ótimas e tempo de execução.

Tabela 1 – Low dimensional - 1

Instância	Valor	Peso
i1-1	55	95
i1-2	10	4
i1-3	47	60
i1-4	5	32
i1-5	4	23
i1-6	50	72
i1-7	8	80
i1-8	61	62
i1-9	85	65
i1-10	87	46
Mochila	Capacidade	
m1-1	269	
m1-2	120	

Fonte: Elaborado pelo autor, 2024.

Tabela 2 – Resultados - Low Dimensional 1

Mochila	Itens	Peso Total	Valor Total
m1-1	i1-2, i1-3, i1-4, i1-8, i1-9, i1-10	269	295
m1-2	i1-1, i1-5	118	59

Tempo Médio de Execução: 0.0554 segundos

Tabela 3 – Low dimensional - 2

Instância	Valor	Peso
i2-2	20	30
i2-3	18	25
i2-4	17	20
i2-5	15	18
i2-6	15	17
i2-7	10	11
i2-8	5	5
i2-9	3	2
i2-10	1	1
i2-11	1	1

Mochila	Capacidade	
m2-1	15	
m2-2	8	
m2-3	21	
m2-4	41	
m2-5	5	
m2-6	9	

Tabela 4 – Resultados - Low Dimensional 2

Mochila	Itens	Peso Total	Valor Total
m2-1	i2-6, i2-8, i2-9, i2-10	15	15
m2-2	i2-7	5	5
m2-3	i2-3	20	17
m2-4	i2-4, i2-5	35	30
m2-5	nenhum item	0	0
m2-6	nenhum item	0	0

Tempo Médio de Execução: 0.0292 segundos

Tabela 5 – Low dimensional - 3

Instância	Valor	Peso
i3-1	70	31
i3-2	20	10
i3-3	39	20
i3-4	37	19
i3-5	7	4
i3-6	5	3
i3-7	10	6

Mochila	Capacidade	
m3-1	25	
m3-2	10	
m3-3	15	
m3-4	2	
m3-5	44	
m3-6	18	
m3-7	33	

Tabela 6 – Resultados - Low Dimensional 3

Mochila	Itens	Peso Total	Valor Total
m3-1	i3-3	20	39
m3-2	i3-6, i3-7	9	15
m3-3	i3-5	4	7
m3-4	nenhum item	0	0
m3-5	i3-1, i3-2	41	90
m3-6	nenhum item	0	0
m3-7	i3-4	19	37

Tempo Médio de Execução: 0.0272 segundos

Fonte: Elaborado pelo autor, 2024.

Tabela 7 – Low dimensional - 4

Instância	Valor	Peso
i4-1	9	6
i4-2	11	5
i4-3	13	9
i4-4	15	7

Mochila	Capacidade	
m4-1	10	
m4-2	10	
m4-3	10	

Tabela 8 – Resultados - Low Dimensional 4

Mochila	Itens	Peso Total	Valor Total
m4-1	i4-4	7	15
m4-2	i4-3	9	13
m4-3	i4-2	5	11

Tempo Médio de Execução: 0.0263 segundos

Fonte: Elaborado pelo autor, 2024.

Tabela 9 – Low dimensional - 5

Valor	Peso
33	15
24	20
36	17
37	8
12	31
	33 24 36 37

Mochila	Capacidade	
m5-1	20	
m5-2	10	
m5-3	3	
m5-4	35	
m5-5	29	

Fonte: Elaborado pelo autor, 2024.

Tabela 10 – Resultados - Low Dimensional 5

Mochila	Itens	Peso Total	Valor Total
m5-1	i5-2	20	24
m5-2	i5-4	8	37
m5-3	nenhum item	0	0
m5-4	i5-3	17	36
m5-5	i5-1	15	33

Tempo Médio de Execução: 0.0283 segundos

Tabela 11 – Low dimensional - 6

Instância	Valor	Peso
i6-1	91	84
i6-2	72	83
i6-3	90	43
i6-4	46	4
i6-5	55	44
i6-6	8	6
i6-7	35	82
i6-8	75	92
i6-9	61	25
i6-10	15	83
i6-11	77	56
i6-12	40	18
i6-13	63	58
i6-14	75	14
i6-15	29	48
i6-16	75	70
i6-17	17	96
i6-18	78	32
i6-19	40	68
i6-20	44	92

Mochila	Capacidade	
m6-1	52	
m6-2	5	
m6-3	120	
m6-4	80	
m6-5	12	

Tabela 12 – Resultados - Low Dimensional 6

Mochila	Itens	Peso Total	Valor Total
m6-1	i6-14, i6-18	46.0	153.0
m6-2	i6-4	4.0	46.0
m6-3	i6-3, i6-11, i6-12	117.0	207.0
m6-4	i6-5, i6-9	69.0	116.0
m6-5	i6-6	6.0	8.0

Tempo Médio de Execução: 0.0819 segundos

Tabela 13 – Low dimensional - 7

Instância	Valor	Peso
i7-1	6	2
i7-2	10	4
i7-3	12	6
i7-4	13	7
Mochila	Capacidade	
m7-1	5	
m7-2	8	

Tabela 14 – Resultados - Low Dimensional 7

Mochila	Itens	Peso Total	Valor Total
m7-1	i7-2	4.0	10.0
m7-2	i7-1, i7-3	8.0	18.0

Tempo Médio de Execução: 0.0261 segundos

Tabela 15 – Low dimensional - 8

Instância	Valor	Peso
i8-1	44	92
i8-2	46	4
i8-3	90	43
i8-4	72	83
i8-5	91	84
i8-6	40	68
i8-7	75	92
i8-8	35	82
i8-9	8	6
i8-10	54	44
i8-11	78	32
i8-12	40	18
i8-13	77	56
i8-14	15	83
i8-15	61	25
i8-16	17	96
i8-17	75	70
i8-18	29	48
i8-19	75	14
i8-20	63	58

Capacidade
43
78
15
141
5
92

Tabela 16 – Resultados - Low Dimensional 8

Mochila	Itens	Peso Total	Valor Total
m8-1	i8-3	43.0	90.0
m8-2	i8-12, i8-13	74.0	117.0
m8-3	i8-19	14.0	75.0
m8-4	i8-10, i8-15, i8-17	139.0	190.0
m8-5	i8-2	4.0	46.0
m8-6	i8-11, i8-20	90.0	141.0

Tempo Médio de Execução: 0.0540 segundos

Tabela 17 – Low dimensional - 9

Instância	Valor	Peso
i9-1	0.125126	56.358531
i9-2	19.330424	80.874050
i9-3	58.500931	47.987304
i9-4	35.029145	89.596240
i9-5	82.284005	74.660482
i9-6	17.410810	85.894345
i9-7	71.050142	51.353496
i9-8	30.399487	1.498459
i9-9	9.140294	36.445204
i9-10	14.731285	16.589862
i9-11	98.852504	44.569231
i9-12	11.908322	0.466933
i9-13	0.891140	37.788018
i9-14	53.166295	57.118442
i9-15	60.176397	60.716575
Mochila	Capacidade	
m9-1	62	
m9-2	24	
m9-3	47	
m9-4	59	

Tabela 18 – Resultados - Low Dimensional 9

Mochila	Itens	Peso Total	Valor Total
m9-1	i9-15	60.716575	60.176397
m9-2	i9-10	16.589862	14.731285
m9-3	i9-8, i9-11, i9-12	46.534623	141.160313
m9-4	i9-7	51.353496	71.050142

Tempo Médio de Execução: 0.0350 segundos

Tabela 19 – Low dimensional - 10

Instância	Valor	Peso
i10-1	981	983
i10-2	980	982
i10-3	979	981
i10-4	978	980
i10-5	977	979
i10-6	976	978
i10-7	487	488
i10-8	974	976
i10-9	970	972
i10-10	485	486
i10-11	485	486
i10-12	970	972
i10-13	970	972
i10-14	484	485
i10-15	484	485
i10-16	976	969
i10-17	974	966
i10-18	482	483
i10-19	962	964
i10-20	961	963
i10-21	959	961
i10-22	958	958
i10-23	857	959
Mochila	Capacidade	
m10-1	500	
m10-2	978	
m10-3	1120	

Tabela 20 – Resultados - Low Dimensional 10

Mochila	Itens	Peso Total	Valor Total
m10-1	i10-7	488.0	487.0
m10-2	i10-16	969.0	976.0
m10-3	i10-1	983.0	981.0

Tempo Médio de Execução: 0.0821 segundos

4 CONCLUSÃO

Após a análise da resolução do problema de múltiplas mochilas por meio de um algoritmo de otimização baseado em programação linear inteira em diversas instâncias, verificou-se que as abordagens adotadas são eficazes na maximização do valor total dos itens alocados, respeitando as restrições de peso. As soluções obtidas demonstraram que o algoritmo consegue encontrar a solução ótima sem violar as restrições impostas. No entanto, as instâncias propostas limitam a aplicabilidade do algoritmo em escalas maiores.

Futuras investigações devem considerar variações do problema da mochila, incluindo a introdução de restrições adicionais e a aplicação de métodos heurísticos, que podem oferecer soluções mais ágeis para problemas de maior complexidade.

Em síntese, os resultados deste estudo validam o modelo matemático proposto, ressaltando não apenas a eficácia das abordagens utilizadas na resolução do problema de múltiplas mochilas, mas também sua relevância em contextos reais de otimização.

REFERÊNCIAS

ASSI, M.; HARATY, R. A survey of the knapsack problem. In: . [S.l.: s.n.], 2018.

SOUZA, M. de. **Métodos Quantitativos**. 2022. https://github.com/souzamarcelo/course-or>. Creative Commons BY-NC-ND 4.0.