

CENERAL CONCERTS POPULATION

Set of objects that we are interested in, for which we intend to get conclusions.

Example: All pieces that are going to be assembled by means of a certain industrial process.

SAMPLE

Subset formed by parts of the objects (individuals) of a population.

Example: 20 pieces produced by the industrial process.

The sample must be "representative" of the population.

Only guarantee of "representativity": Random sampling.

OBJECT OF SAMPLING

To know the population, by analyzing one sample.

STATISTICAL INFERENCE

Process of reasoning to obtain conclusions (with a known margin of error) about the population, by analyzing samples extracted from the population.

EXAMPLES OF POPULATIONS

YES

Does the population exist?

- Intention of voting of spaniards in a General Election in Spain.
- Development of a certain pathology in buildings in Valencia.

Partially

- No. of laptop batteries that are sold every day at a computer store.
- No. of errors in the invoices of the Account Department of the company.

- Resistance of a new type of polymer.

No

- Study to investigate if a dice is correct or not
- In any experiment in a laboratory

The size of populations is usually large, but not always:

- Population of countries in the European Union

The results of any process always present <u>VARIABILITY</u>

All real populations have variability. That is, it is not possible to have two identical pieces.

RANDOM VARIABLE

It is any characteristic, that can be expressed numerically, that fluctuates among the individuals of the population.

Example: the length of a piece.

Types of RANDOM VARIABLES

- Nature
 - QUALITATIVE
 - QUANTITATIVE
- Number of characteristics
 - ONE-DIMENSIONAL
 - K-DIMENSIONAL
- Set of values
 - DISCRETE
 - CONTINUOUS

DISCRETE VARIABLE:

Absolute frequency

Digits chosen (X)	No. occurrences (դ)	Relative frequency f _i =η/N
0	0	0
1	2	0.06
2	6	0.18
3	7	0.21
4	9	0.26
5	4	0.12
> 5	6	0.18

CONTINUOUS VARIABLE:

Frequency tabulation Resistance of a polymer (Nw)

Lower Upper					Relative	Cumulative	Cum. Rel.
Class	Limit	Limit	Midpoint	Frequency	Frequency	Frequency	Frequency
at o	r below	10.00		0	.00000	0	.00000
1	10.00	15.00	12.50	0	.00000	0	.00000
2	15.00	20.00	17.50	1	.00610	1	.00610
3	20.00	25.00	22.50	9	.05488	10	.06098
4	25.00	30.00	27.50	18	.10976	28	.17073
5	30.00	35.00	32.50	26	.15854	54	.32927
6	35.00	40.00	37.50	38	.23171	92	.56098
7	40.00	45.00	42.50	34	.20732	126	.76829
8	45.00	50.00	47.50	20	.12195	146	.89024
9	50.00	55.00	52.50	9	.05488	155	.94512
10	55.00	60.00	57.50	5	.03049	160	.97561
11	60.00	65.00	62.50	0	.00000	160	.97561
12	65.00	70.00	67.50	3	.01829	163	.99390
13	70.00	75.00	72.50	1	.00610	164	1.0000

HISTOGRAMS

It is a graphical representation of one set of data (minimum 40-50 data) (frequency diagram)

Is this absolute or relative frequency?

Best number of intervals $\approx \sqrt{N} \in (5,15)$

Is this a symmetric distribucion?

Abnormal frequency of one interval (systematic error in data recording)

Mixture of populations

Histogram of 2 different populations

Continuous random variables:

Density function.

Example: time (sec.) required by algorithm to invert a matrix

Parameters of Position and Dispersion of one random variable

PARAMETERS OF POSITION

AVERAGE

(mean)

$$\frac{1}{x} = \frac{X_1 + \dots + X_N}{N} = \frac{\sum X_i}{N}$$

Sample mean

Population mean: m (or μ)

In case of asymmetric data or outliers,

the MEDIAN is better parameter of position than the mean.

MEDIAN

 \widetilde{X} : (No. values $<\widetilde{X}$) = (No. values $>\widetilde{X}$)

If N even: Average of values in the position N/2, (N/2) + 1

If N odd: Value in the position (N+1)/2

Percentile 30 =
$$Z_{30}$$
 \longrightarrow P(X $<$ Z $_{30}$) = 0.3

1st quartile (Q1) =
$$Z_{25}$$
 \longrightarrow P(X

$$3^{rd}$$
 quartile (Q3) = Z_{75} \longrightarrow P(X

CALCULATION OF MEDIAN AND QUARTILES

- Take all data
- Sort data in increasing order

See formulary table for exact calculation of Q_1 , Q_3

Same value in a Normal distribution

RAMETERSOFDISPERSION

VARIANCE:

$$s^{2} = \frac{\sum (X_{i} - \overline{X})^{2}}{N-1} = \frac{\sum X_{i}^{2} - N \cdot \overline{X}^{2}}{N-1}$$

STANDARD DEVIATION

$$s = \sqrt{s^2}$$
 (Same units as data)

INTERQUARTILE RANGE:

$$Z_{75} - Z_{25} = Q3 - Q1$$

RANGE:

$$R = X_{max} - X_{min}$$

COEFFICIENT OF VARIATION

COEFFICIENT OF ASIMMETRY (SKEWNESS):

$$CA = \frac{\sum (X_i - \overline{X})^3 / (N-1)}{s^3}$$

- CA > 0

- CA < 0

$$CA_{std} = \frac{CA}{\sqrt{6/n}} \Rightarrow \approx N(0;1) \text{ if } n > 150$$

KURTOSIS COEFFICIENT

$$CC = \frac{\sum (X_i - \overline{X})^4 / (N-1)}{s^4}$$

CC=3 (=0) NORMAL DISTRIBUTION

CC>3 (>0) LEPTOKURTIC DATA (e.g. Student's t); OUTLIERS?

CC<3 (<0) PLATIKURTIC DATA. CENSORED DATA?

BOXWHISKER DIAGRAM

Sample size	9
Average	193.333
Median	191
Mode	191
Geometric mean	191.859
Variance	637.5
Standard deviation	25.2488
Standard error	8.4162
Minimum	155
Maximum	230
Range	75
Lower quartile	175
Upper quartile	207
Interquartile range	32
Skewness	0.0700
Standardized skewness	0.0858
Kurtosis	-0.9567
Standardized kurtosis	-0.5858

 CA_{std} and $CC_{std} \in [-2, 2] \Rightarrow Normal \ distribution$

Variable:	JOSECHU. COCHES
Sample size	10
Average	7.1
Median	4
Mode	4
Geometric mean	5.33276
Variance	42.3222
Standard deviation	n 6.50555
Standard error	2.05724
Minimum	2
Maximum	23
Range	21
Lower quartile	3
Upper quartile	9
Interquartile ran	ge 6
Skewness	1.95257
Standardized skew	ness 2.52076
Kurtosis	3.78297
Standardized kurt	osis 2.4419

- The "box" comprises 50% of values, from the 1st to 3rd quartile
- The central line corresponds to the median
- The "whiskers" extend from the lowest to the highest observed value except if their distance to the nearest quartile is higher than 1.5 · IQR

Box-Whisker Diagram

- Those extreme values that differ from the nearest quartile more than 1.5 IQR are plotted as isolated points to highlight that they might be outliers.

Outlier: an abnormal datum that does not belong to the same population, "it lies out" of the rest. They are usually eliminated.

Not all isolated points are outliers!!

In a Normal distribution, isolated points in the box-whisker plot "quite close" to the end of a whisker are not outliers.

(check this by simulating 1000 Normal data with Statgraphics)

To check if a high value in a positive skewed distribution is an outlier: represent data on a Normal Probability Plot using transformations: $X^{0.5}$; $X^{0.25}$; log(x)

(check this by simulating 100 Chi² data with Statgraphics)

Is there any outlier in women's data?

Calculate the interquartile range of men's height

Calculate the range of women's height

Is the distribution of men's data asymmetric? Positive / negative?

EXERCISE: draw a box-whisker plot with the following data: 16; 8; 90; 22; 2; 50; 5; 30; 11

(check formula table for the exact value of Q1 and Q3)

Calculate the range and the interquartile range Describe the distribution (symmetric, CA>0, CA<0)

Is there any outlier that should be discarded?

- Plot data on a Normal Probability Plot
- Use transformations: X^{0.5}; X^{0.25}; log(x)

Change 90 by 500; is it an outlier?

Multiple Box-and-Whisker Plot

BARCHART

PIECHART

TWO-DIMENSIONAL DESCRIPTIVE STATISTICS

TWO-DIMENSIONAL RANDOM VARIABLES

WHEN **TWO RANDOM NUMERIC** CHARACTERISTICS **OBSERVED FROM** ARE INDIVIDUAL, **HAVE** TWO-WE **DIMENSIONAL RANDOM VARIABLE.**

<u>X</u>	<u> </u>	
174	184	EXERCISE
169	178	Are these 2 one-dimensional variables
183	167	or one two-dimensional variable?
168	186	or one two dimensional variables

- length of pieces from supplier A (X) and supplier B (Y)
- In a married couple, the height of husband (X) and wife (Y)
- The height of students from Valencia (X) and Madrid (Y)
- Time (ms) taken by algorithm X and Y to invert different matrixes

TWO-DIMENSIONAL VARIABLES: CONTINGENCY TABLES

- THEY ALLOW TO STUDY THE RELATIONSHIP BETWEEN THE TWO COMPONENTS
 - IF ONE OF THE VARIBLES IS CONTINUOUS, IT WILL BE REGROUPED IN INTERVALS.

Marginal frequencies:

Frequency of each value of one variable without taking into account the other

Relative conditional frequencies:

Relative frequency of the value of one variable in relation to each value of the other

QUALITATIVE VARIABLES:

BY MEANS OF A CONTINGENCY TABLE.

REPEAT	YES	NO
GENDER	1	2
MALE	5	41
1	83.3 10.9	63.1 <mark>89.1</mark>
FEMALE	1	24
2	16.7 4.0	36.9 96.0
COLUMN	6	65
TOTAL	8.5	91.5

Row	Marginal fraguency of
Total	Marginal frequency of gender
46	Marginal frequency of
64.8	repeat Relative frequency of
25	gender conditined to
35.2	repeat
	Relative frequency of
71	repeat conditioned to gender

QUANTITATIVE VARIABLES:

BY MEANS OF A CONTINGENCY TABLE AFTER GROUPING THE DATA IN INTERVALS.

PROBLEM: SOME INFORMATION IS LOST IN THE TABULATION

Marginal frequency of weight Marginal frequency of height Relative frequency of weight conditioned to height

SCATTERPLOT

Plot of WEIGHT vs HEIGHT

EXERCISES:

in PoliformaT at:

recursos \ 04-ejercicios \ ejercicios resueltos \ ejercicios UD2.pdf