Микроэкономика 1

Лекция 14 24.04.2025

Морфий

Группа БЭАД242

Экономика обмена: равновесие по Вальрасу и закон Вальраса

Предпосылки:

- потребители принимают цены заданными
- $p=(p_1,p_2)\gg 0$ вектор цен, $p_i>0$ цена за единицу блага i
- нет внешних воздействий потребителей друг на друга
- нет ассиметрии информации между потребителями

Задача потребителя k:

$$\begin{cases} u_k\big(x_1^k,x_2^k\big) \to \max_{x_1^k,x_2^k\geqslant 0} \\ p_1x_1^k + p_2x_2^k \leqslant p_1\omega_1^k + p_2\omega_2^k \end{cases}$$

Бюджетная линия в ящике Эджворта:

- наклон $-\frac{p_1}{p_2}$
- проходит через точку первоначального запаса ω .
- бюджетные линии для потребителей в ящике Эджворта совпадают

На рисунке $x_1^A+x_1^B<\overline{\omega_1}\Rightarrow$ профицит первого блага, $x_2^A+x_2^B>\overline{\omega_2}\Rightarrow$ дефицит первого блага.

Определение.

 $z_i(p_1, p_2)$ — функция избыточного спроса на благо i.

$$z_i(p_1,p_2) = x_i^A \big(p_1,p_2,\omega^A\big) + x_i^B \big(p_1,p_2,\omega^B\big) - \overline{\omega}_i$$

Если $z_i(p_1,p_2) > 0$ — дефицит *i*-го блага, если $z_i(p_1,p_2) < 0$ — профицит *i*-го блага.

На рисунке: $z_1(p) < 0, z_2(p) > 0$. Тогда

$$\frac{p_1}{p_2} = \left| \frac{z_2(p)}{z_1(p)} \right|$$

$$p_1 z_1(p) + p_2 z_2(p) = 0$$

Закон Вальраса. Совокупная стоимость избыточного спроса равна нулю.

Когда выполняется закон Вальраса?

Утверждение.

Если предпочтения локально ненасыщаемые (в частности, если монотонные), то есть выбор потребителя лежит на бюджетной линии, то закон Вальраса выполнен при любых ценах, при которых определён избыточный спрос.

Доказательство.

Предпочтения монотонны, значит, в решении UMP ограничение выполняется как равенство, значит,

$$\forall k \ p_1 x_1^k + p_2 x_2^k = p_1 \omega_1^k + p_2 \omega_2^k \Leftrightarrow p_1 \big(x_1^k - \omega_1^k \big) + p_2 \big(x_2^k - \omega_2^k \big) = 0$$

Сложим все эти равенства. Получим

$$p_1 z_1(p) + p_2 z_2(p) = 0$$

Следствие.

Если закон Вальраса выполнен и цены положительны, то не может быть профицита на всех рынках, как и дефицита на всех рынках.

Определение. Равновесие по Вальрасу

Набор $(x_1^A, x_2^A, x_1^B, x_2^B, p_1, p_2)$ называется равновесным по Вальрасу, если:

- 1. $\forall k$ набор $x^k = (x_1^k, x_2^k)$ является решением UMP потребителя k при ценах p_1, p_2 .
- 2. $x_i^A + x_i^B = \overline{\omega_i}$, то есть $\forall i \ z_i(p) = 0$.

Замечания:

1. Равновесные распределения в ящике Эджворта.

Пример. Аля-КД + субституты

$$u^B = \gamma x_1^B + x_2^B$$

$$1) \frac{p_1}{p_2} = \gamma$$

- 2) $\frac{p_1}{p_2} < \gamma \Rightarrow x_1^B > 0, x_2^B = 0$ Если кривая безразличия A коснётся бюджетной линии в этой точке, то это будет равновесием.
- 3) Если кривая безразличия A (в субститутах) будет круче бюджетной линии, то такие цены вообще не могут быть равновесными.
- 2. Пусть \tilde{p} равновесный вектор цен. Рассмотрим $t\tilde{p}$. Тогда ничего не поменяется, так как не поменялось отношение цен (например, всегда можем отнормировать одну из цен.)
- 3. Если предпочтения монотонны, то закон Вальраса выполнен при любых корректных ценах, в частности, при равновесных. Тогда

$$\tilde{p}_1z_1(\tilde{p})+\tilde{p}_2z_2(\tilde{p})=0$$

Тогда $z_1(\tilde{p}) = 0 \Leftrightarrow z_2(\tilde{p}) = 0.$

То есть, при N=2 из следствия закона Вальраса достаточно уравновесить один рынок. При N>2 достаточно уравновесить N-1 рынок.

Пример.

Пусть
$$u^A = x_1 x_2^3, u^B = x_1^2 x_2^5.$$

 $\omega^A = (5,5), \omega^B = (2,2).$

Найти равновесие по Вальрасу:

1) Решаем для каждого потребителя UMP \Rightarrow находим маршаллианский спрос.

$$\begin{split} x_1^A(p) &= \frac{5p_1 + 5p_2}{4p_1} = \frac{5}{4} + \frac{5}{4}\frac{p_2}{p_1} \\ x_2^A(p) &= 3\frac{5p_1 + 5p_2}{4}(p_2) = \frac{15}{4}\frac{p_1}{p_2} + \frac{15}{4} \\ x_1^B(p) &= \frac{2}{7}\frac{2p_1 + 2p_2}{p_1} = \frac{4}{7} + \frac{4}{7}\frac{p_2}{p_1} \\ x_2^B(p) &= \frac{5}{7}\frac{2p_1 + 2p_2}{p_2} = \frac{10}{7}\frac{p_1}{p_2} + \frac{10}{7} \end{split}$$

Уравновесим, например, второй рынок, так как предпочтения монотонны:

$$x_2^A + x_2^B = 7$$

$$\frac{15}{4} \left(\frac{p_1}{p_2} + 1\right) + \frac{10}{7} \left(\frac{p_1}{p_2} + 1\right) = 7$$

$$\frac{145}{28} \frac{p_1}{p_2} + \frac{145}{28} = 7$$

$$145 \frac{p_1}{p_2} = 51$$

$$\frac{p_1}{p_2} = \frac{51}{145}$$

Подставив соотношение цен в функции маршаллианского спроса двух потребителей, получим равновесное распределение \tilde{x} .

Существование и единственность равновесия по Вальрасу.

1) Нет строгой выпуклости:

В этом случае не будет равновесия вовсе. 2) Нет монотонности (точка насыщения):

Утверждение.

Если предпочтения строго монотонны и строго выпуклы, то равновесие по Вальрасу существует.

Про единственность.

В случае субститутов ($u = \min\{x_1, x_2\}$), все точки на диагонали, достижимые из точки изначального запаса, будут возможными равновесиями при всех возможных положительных ценах.

Если $u^A=u^B=\alpha x_1+x_2$, то при $\frac{p_1}{p_2}=\alpha$ любая точка на бюджетной линии внутри Ящика будет равновесной.

Равновесие и оптимальность.

Утверждение. Первая теорема благосостояния

Пусть предпочтения потребителей монотонны (достаточно локальной ненасыщаемости) и (\tilde{x}, \tilde{p}) — равновесие по Вальрасу. Тогда \tilde{x} — ПО.

Доказательство.

Пусть \tilde{x} — равновесное распределение.

Пусть \tilde{x} — не Π O \Rightarrow существует распределение \hat{x} , являющееся Π У для \tilde{x} , пусть $u^A(\hat{x}^A) > u^A(\tilde{x}^A), u^B(\hat{x}^B) \geqslant u^B(\tilde{x}^B)$.

 $A:\hat{x}^A$ лучше, чем \tilde{x}^A , но не был выбран при \tilde{p} , значит, был недоступен:

$$\tilde{p}_{1}\hat{x}_{1}^{A}+\tilde{p}_{2}\hat{x}_{2}^{A}>\tilde{p}_{1}\omega_{1}^{A}+\tilde{p}_{2}\omega_{2}^{A}\quad (1)$$

 $B: \text{покажем, что } \tilde{p}_1 \hat{x}_1^B + \tilde{p}_2 \hat{x}_2^B > \tilde{p}_1 \omega_1^B + \tilde{p}_2 \omega_2^B \quad (2).$

Пусть это не так, то есть $\tilde{p}\hat{x}^B < \tilde{p}\omega^B$, то есть его выбор не на бюджетной линии. Это невозможно, так как предпочтения B монотонны.

Сложим (1) и (2):

$$\tilde{p}(\hat{x}^B + \hat{x}^A) > \tilde{p}\overline{\omega}$$

$$\tilde{p} \big(\hat{x}^B + \hat{x}^A - \overline{\omega} \big) > 0$$

Это значит, что $\hat{x}^A + \hat{x}^B > \overline{\omega}$. Но \hat{x} — допустимое распределение, значит, $\hat{x}^A + \hat{x}^B = \overline{\omega}$. Противоречие! \blacksquare