$\mathcal{S} = \\ \iiint (\frac{1}{6} (2t_{1} \mathcal{A}^{\alpha_{i}}_{\alpha} \mathcal{A}^{\theta}_{, \theta} + 6 \mathcal{A}^{\alpha\beta\chi}_{\alpha} \sigma_{\alpha\beta\chi} + 6 f^{\alpha\beta}_{\alpha} \tau(\Delta + \mathcal{K})_{\alpha\beta} - 4t_{1} \mathcal{A}^{\theta}_{\alpha} \partial_{i}f^{\alpha i} + 4t_{1} \mathcal{A}^{\theta}_{, \theta} \partial^{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\theta}_{\theta} \partial^{i}f^{\alpha}_{\alpha} - 2t_{1} \partial_{i}f^{\alpha i} \partial_{\theta}f^{\theta}_{\alpha} + 4t_{1} \partial^{i}f^{\alpha}_{\alpha} \partial_{\theta}f^{\theta}_{, \theta} + 8r_{2} \partial_{\beta}\mathcal{A}_{\alpha i \theta} \partial^{\theta}\mathcal{A}^{\alpha\beta i} - 4r_{2} \partial_{\beta}\mathcal{A}_{\alpha i \theta} \partial^{\theta}\mathcal{A}^{\alpha\beta i} + 4r_{2} \partial_{\beta}\mathcal{A}_{i \theta \alpha} \partial^{\theta}\mathcal{A}^{\alpha\beta i} - 2r_{2} \partial_{i}\mathcal{A}_{\alpha \beta \theta} \partial^{\theta}\mathcal{A}^{\alpha\beta i} + 2r_{2} \partial_{\theta}\mathcal{A}_{\alpha \beta i} \partial^{\theta}\mathcal{A}^{\alpha\beta i} - 4r_{2} \partial_{\theta}\mathcal{A}_{\alpha i \beta} \partial^{\theta}\mathcal{A}^{\alpha\beta i} + 6r_{5} \partial_{i}\mathcal{A}^{\kappa}_{\theta} \partial^{\theta}\mathcal{A}^{\alpha i}_{\alpha} - 6t_{1} \partial_{\alpha}f_{i \theta} \partial^{\theta}f^{\alpha i} - 3t_{1} \partial_{\alpha}f_{\theta i} \partial^{\theta}f^{\alpha i} + 3t_{1} \partial_{i}f_{\alpha \theta} \partial^{\theta}f^{\alpha i} + 3t_{1} \partial_{\theta}f_{\alpha i} \partial^{\theta}f^{\alpha i} + 3t_{1} \partial_{\theta}f^{\alpha i} \partial^{\theta}f^{\alpha i} \partial^{$

Wave operator $0^+\mathcal{R}^{\parallel \ 0^+f^{\parallel \ 0^+f^{\perp}} \ 0^-\mathcal{R}^{\parallel }}$

Г															
$^{0.^{+}}\mathcal{A}^{\parallel}$ †	0	0	0	0											
^{0,+} <i>f</i> [∥] †	0	0	0	0											
^{0,+} <i>f</i> [⊥] †	0	0	0	0											
^ọ :Æ"†	0	0	0	$k^2 rt.$	$\overset{1^{+}}{\cdot} \mathscr{F}^{\parallel}{}_{\alpha\beta}$	$^{1^{+}}_{\cdot}\mathcal{F}^{\perp}_{lphaeta}$	$1.^+f^{\parallel}_{\alpha\beta}$	$^{1}\mathcal{A}^{\parallel}{}_{lpha}$	$^{1}\mathcal{F}_{lpha}^{\perp}$	$1 f_{\alpha}$	$\frac{1}{2}f_{\alpha}^{\perp}$				
				$^{1}\dot{\mathcal{A}}^{\parallel}\dagger^{lphaeta}$					0	0	0				
				$^{1\overset{+}{.}}\mathcal{H}^{\scriptscriptstyle\perp}\dagger^{^{lphaeta}}$	$-\frac{t}{\sqrt{2}}$	0	0	0	0	0	0				
				$1.^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	0		0	0	0	0				
				$^{1}\mathcal{F}^{\parallel}$ † lpha	0	0	0	$k^2 r_{.5} + \frac{t}{6}$	$\frac{t_1}{3\sqrt{2}}$	0	$\frac{i k t}{3}$				
				$\frac{1}{2}\mathcal{A}^{\perp} \uparrow^{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	t. 1/3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt.$				
				$f^{\parallel} \uparrow^{\parallel} \uparrow^{\alpha}$	0	0	0	0	0	0	0				
				$\frac{1}{2}f^{\perp}\uparrow^{\alpha}$	0	0	0	$-\frac{1}{3}ikt$.	$-\frac{1}{3}i\sqrt{2}kt.$	0	$\frac{2 k^2 t}{3}$	^{2,+} ℋ [∥] ά́́́́́	$_{3}\overset{2^{+}}{\cdot}f^{\parallel}_{\alpha\beta}$	$2^{-}\mathcal{A}^{\parallel}_{\alpha\beta\chi}$	
											$^{2^{+}}\mathcal{A}^{\parallel}\dagger^{lphaeta}$			0	
											$2^+f^{\parallel} \uparrow^{\alpha\beta}$	$\frac{i kt.}{\sqrt{2}}$	$k^2 t$.	0	
											$2^{-}\mathcal{A}^{\parallel} + ^{\alpha\beta\chi}$	0	0	$\frac{t_1}{2}$	
Saturated propagator															

0. ol 0. tl 0. tl 0. ol

Spin-parity form	Covariant form	Multiplicities
0 ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1
0^+ $\tau^{\parallel} == 0$	$\partial_{\beta}\partial_{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha}_{\alpha}$	1
$0^+ \sigma^{\parallel} == 0$	$\partial_{\beta}\sigma_{\alpha}^{\alpha\beta} = 0$	1
$2ik \frac{1}{2}\sigma^{\perp}^{\alpha} + \frac{1}{2}\tau^{\perp}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi}$	3
1. τ ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}==\partial_{\chi}\partial^{\chi}\partial_{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$	3
$i k 1^{+}_{\cdot} \sigma^{\perp}^{\alpha\beta} + 1^{+}_{\cdot} \tau^{\parallel}^{\alpha\beta} == 0$	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\beta\chi}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\chi\alpha}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\beta}+2\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta}+2\partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta}==$	3
	$\partial_{\chi}\partial^{\alpha}\tau \left(\Delta + \mathcal{K}\right)^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau \left(\Delta + \mathcal{K}\right)^{\alpha\chi} + \partial_{\chi}\partial^{\chi}\tau \left(\Delta + \mathcal{K}\right)^{\beta\alpha} + 2\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	
$-2 i k 2^{+}_{\cdot} \sigma^{\parallel^{\alpha\beta}} + 2^{+}_{\cdot} \tau^{\parallel^{\alpha\beta}} == 0$	$-i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\chi}_{\chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\delta} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + \mathcal{K}\right)^{\gamma \chi} - 3 \partial_{\delta} \partial^{\alpha} \partial^{\alpha} \tau \left(\Delta + $	5
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\alpha}\tau(\Delta+\mathcal{K})^{\chi\beta}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\alpha\chi}-3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\beta}\tau(\Delta+\mathcal{K})^{\chi\alpha}+3\partial_{\sigma}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau(\Delta+\mathcal{K})^{\alpha\beta}+$	
	$3\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}+4ik^{\chi}\partial_{\epsilon}\partial_{\chi}\partial^{\beta}\partial^{\alpha}\sigma^{\delta}_{\delta}{}^{\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\delta\beta\epsilon}-6ik^{\chi}\partial_{\epsilon}\partial_{\sigma}\partial_{\chi}\partial^{\beta}\sigma^{\delta\alpha\epsilon}+6ik^{\chi}\partial_{\epsilon}\partial^{\epsilon}\partial_{\sigma}\partial_{\chi}\sigma^{\alpha\beta\delta}+$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau (\Delta + \mathcal{K})^{\chi \delta} - 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau (\Delta + \mathcal{K})^{\chi}_{\chi} - 4 i \eta^{\alpha \beta} k^{\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\chi} \sigma^{\delta}_{\delta}^{\epsilon}) = 0$	
Total expected gauge g	generators:	17

Massive spectrum

Massive particle

Pole residue:	$-\frac{1}{r_{\cdot}^{2}} > 0$
Square mass:	$\frac{\frac{t}{1}}{\frac{r}{2}} > 0$
Spin:	0
Parity:	Odd

Massless spectrum

1

	, <u>;</u>	i	i				
Polarisations:	2						
Unitarity conditions							

Unitarity condition

r. < 0 &&t. < 0 &&r. < 0