${\mathfrak r}_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{6ik}{(3+2k^2)^2t_3}$	$\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$	0	$\frac{6k^2}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	$\frac{3}{(3+2k^2)^2t_3}$	0	$-\frac{3i\sqrt{2}k}{(3+2k^2)^2t_3}$
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$\frac{6}{(3+2k^2)^2t_3}$	$-\frac{3\sqrt{2}}{(3+2k^2)^2t_3}$	0	$\frac{6ik}{(3+2k^2)^2t_3}$
$\tau_{1}^{\#1}_{+}$	$\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	$\frac{3ik}{(3+k^2)^2t_2}$	$\frac{3k^2}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$\frac{3}{(3+k^2)^2 t_2}$	$-\frac{3ik}{(3+k^2)^2t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	$\frac{6}{(3+k^2)^2 t_2}$	$\frac{3\sqrt{2}}{(3+k^2)^2t_2}$	$-\frac{3i\sqrt{2}k}{(3+k^2)^2t_2}$	0	0	0	0
	$-\alpha\beta$	βx	g_{χ}	_α_	σ_	_α	σ

$f_{1}^{#2}$	0	0	0	$-\frac{2}{3}$ ikt $_3$	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$-\frac{\sqrt{2}t_3}{3}$	<u>t3</u> 3	0	$-\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	$\frac{2t_3}{3}$	$-\frac{\sqrt{2}t_3}{3}$	0	2 i k t 3 3
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\#_+^2}$	$\frac{\sqrt{2} t_2}{3}$	2 2 ع	$-\frac{1}{3}$ \bar{I} kt_2	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0
	$\omega_1^{\#1} + ^{\alpha\beta}$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{#2} + \alpha$

Lagrangian density $\frac{2}{2}$ $\frac{\alpha}{\kappa}$ $\frac{1}{\kappa}$ $\frac{1}{\kappa}$ $\frac{1}{\kappa}$	$\frac{1}{3}t_3 \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} + \frac{1}{3}t_2 \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} + \frac{1}{3}t_2 \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{\alpha} + \omega_{\kappa}^{\alpha} = \omega_{\kappa}^{$	$f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} + \tfrac{2}{3} r_2 \partial^\beta \omega^{\theta\alpha}_{\ \ \kappa} \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} - \tfrac{1}{3} r_2 \partial_\theta \omega_{\alpha\beta}^{\ \ \kappa} \partial_\kappa \omega^{\alpha\beta\theta} -$	$\frac{2}{3}r_2\partial_\theta\omega_{\alpha\beta}^{}\partial_\kappa\omega^{\theta\alpha\beta} + \frac{1}{6}t_2\partial^\alpha f_{\theta\kappa}\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{6}t_2\partial^\alpha f_{\kappa\theta}\partial^\kappa f_{\alpha}^{\theta} + \frac{1}{6}t_2\partial^\alpha f^{\lambda}_{}\partial^\kappa f_{\alpha}$	$\frac{2}{3}t_{3}\;\omega_{\kappa\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{2}{3}t_{3}\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{4}{3}t_{3}\;\partial^{\alpha}f_{\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{2}{3}t_{3}\;\partial_{\kappa}f^{\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$	$\frac{1}{3}t_{2} \omega_{_{I}\theta K} \partial^{K} f^{_{I}\theta} - \frac{2}{3}t_{2} \omega_{_{I}K\theta} \partial^{K} f^{_{I}\theta} - \frac{1}{3}t_{2} \omega_{_{\theta I}K} \partial^{K} f^{_{I}\theta} + \frac{2}{3}t_{2} \omega_{_{\theta K}} \partial^{K} f^{_{I}\theta} +$	$\frac{2}{3}t_{3}\;\omega_{_{I}\alpha}^{\;\;\alpha}\;\partial^{\kappa}f'_{_{K}}+\frac{2}{3}t_{3}\;\omega_{_{I}\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{_{K}}-\frac{1}{6}t_{2}\;\partial^{\alpha}f^{\lambda}_{\;\;K}\;\partial^{\kappa}f_{_{A}\alpha}-\frac{1}{6}t_{2}\;\partial_{\kappa}f_{_{B}}^{\;\;\lambda}\partial^{\kappa}f_{_{A}}^{\;\;\beta}+$	$rac{1}{6}t_2\partial_\kappa f^\lambda_{\ \ heta}\partial^\kappa f_\lambda^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta \alpha \beta} \partial^{\kappa} \omega_{\alpha \beta \theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\alpha}^{\ \alpha \lambda} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime} + \frac{2}{3} r_2 \partial^{\beta} \omega_{\lambda}^{\ \lambda \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \prime}$
			f_{α}					

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2}^{\#1}{}_{\alpha\beta\chi}$
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{lphaeta\chi}$	0	0	0

 $\sigma_{2^{+}}^{\#1\,\alpha\beta}=0$

32

Total #:

$\omega_2^{\#1} \uparrow^{\alpha\beta\chi} 0 0$		0			$\omega_{0}^{#1}$		$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\# 2}$	L
			$\omega_0^{\#}$	1+	t_3	- 1	$\sqrt{2} kt_3$	0	0	
Source constraints			$f_{0}^{\#}$	1 +	$\sqrt{2} k$	t_3 2	$2 k^2 t_3$	0	0	
SO(3) irreps	#		$f_{0}^{\#}$	² †	0		0	0	0	
$\tau_{0+}^{\#2} == 0$	1		$\omega_0^{\#}$	1 +	0		0	0	$k^2 r_2 +$	- t ₂
$\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	1									
$\tau_{1}^{\#2\alpha} - i k \sigma_{1}^{\#1\alpha} == 0$	3	П.				1 r ₂ +t ₂				
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3	$\sigma_{0^{\text{-}}}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2}$				
$\sigma_{1}^{\#1\alpha} + 2 \sigma_{1}^{\#2\alpha} == 0$	3	$\tau_0^{\#2}$	0	0	0	0	\8\c	<		
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#1}{}^{\alpha\beta} == 0$	3	⊢ +	$\frac{2k}{2^2t_3}$	$\frac{2}{2}$ $\frac{2}{t_3}$			$\sigma_{z^-}^{*1}$		0	0
$\sigma_{1+}^{\#1}{}^{\alpha\beta} = \sigma_{1+}^{\#2}{}^{\alpha\beta}$	3	$\tau_{0}^{\#1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2}$	$\frac{2k^2}{(1+2k^2)^2}$	0	0	$t_{2}^{\#1}$	-	0	0
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5		t3 -	J 'ŵ			π ₂ τ ₂			
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$i \sqrt{2} k$ $(1+2k^2)^2 t$	0	0	$\sigma_{2}^{\#1}$	0	0	0
#1 \alpha \beta \cdot \c			(1+	1 1				g_{λ}	κβ	×

$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$	
$\tau_0^{\#2}$	0	0	0	0	
$\tau_{0}^{\#1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0	
$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	0	0	
·	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_{0}^{\#2}$ †	$\sigma_{0}^{\#1}\dagger$	

$\sigma_{2}^{\#1}{}_{\alpha\beta} \tau_{2}^{\#1}{}_{\alpha\beta} \sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	0	0	0
$\tau_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1}{}_{\alpha\beta}$	0	0	0
•	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2^+}^{\#1} + ^{\alpha\beta}$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$

	Massive partic	le
? /	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
k^{μ}	Square mass:	$-\frac{t_2}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

(No massless particles)