Programozáselmélet – 2. minta ZH

1.
$$A = (x: \mathbb{N})$$

 $B = (x': \mathbb{N})$
 $Q = (x = x')$
 $R = (x = x' + 3)$ (28 pont)

Bizonyítsd be, hogy a **parbegin** $S_1 \parallel S_2$ **parend** program megoldja a specifikált feladatot, ahol

S₁:

$$\{x = x' \lor x = x' + 8\}$$
await $x \ge 5$ **then**
 $x := x - 5$
ta

$$\{x = x' + 3 \lor x = x' - 5\}$$

$$S_2:$$

$$\{x = x' \lor x = x' - 5\}$$

$$x := x + 8$$

$$\{x = x' + 3 \lor x = x' + 8\}$$

2. A feladat informálisan:

(24 pont)

Adott az x vektor, melynek elemei k-as számrendszerbeli számjegyek. Állítsuk elő az így reprezentált szám k^2 -es számrendszerbeli jegyeit az y vektorba (a szám magasabb helyiértékeit a vektor alacsonyabb indexű helyein találjuk).

$$A = (x: [0..k - 1]^n, y: [0..k^2 - 1]^m, k: \mathbb{N}^+)$$

$$B = (x': [0..k - 1]^n, k': \mathbb{N}^+)$$

$$Q = (x = x' \land k = k' \land k \neq 1 \land n = 2m)$$

$$R = (Q \land \forall i \in [1..m]: y[i] = x[2i - 1] \cdot k + x[2i])$$

A program állapottere: $(x : [0..k - 1]^n, y : [0..k^2 - 1]^m, k : \mathbb{N}^+, j : \mathbb{N})$

Legyen $Q' = (Q \land j = 0)$ a szekvencia közbülső állítása, t: m - j a ciklus terminálófüggvénye, $P = (Q \land (\forall i \in [1..j]: y[i] = x[2i-1] \cdot k + x[2i]) \land j \in [0..m])$ a ciklus invariánsa.

Legyen a ciklusmagnak mint szekvenciának a közbülső állítása $Q'' \wedge m - j = t_0$, ahol $Q'' = P^{j \leftarrow j+1}$. Mutasd meg, hogy az S program megoldja a specifikált feladatot.

(Az x és y tömböket egytől a hosszukig (n és m) indexeljük.)

(8 pont)

3. Legyen
$$A = [1..4]$$
, és S_0 az alábbi program az A állapottér felett:
$$S_0 = \begin{cases} 1 \to < 1, 2 > \\ 2 \to < 2, 3, 4 > , & 2 \to < 2, 1 > \\ 3 \to < 3, 1 > , & 3 \to < 3, 2, 4 > \\ 4 \to < 4, 4, 4, \dots > \end{cases}$$

Határozd meg az A állapottér felett a DO-val jelölt (π, S_0) ciklust, ahol $\pi \in A \to \mathbb{L}$ olyan, hogy $\pi = \{ (1, igaz), (2, igaz), (4, hamis) \}.$