AULA 07: Camada de Aplicação

REDES DE COMPUTADORES

PROF. WINDSON VIANA

PROF. GABRIEL PAILLARD

Princípios de Aplicações de Rede

- O núcleo do desenvolvimento de aplicação de rede é escrever programas que rodem em sistemas finais diferentes e se comuniquem entre si.
- Ao desenvolver sua nova aplicação, você precisará escrever um software que rode em vários sistemas finais.
- Você não precisará escrever programas que executem nos elementos do núcleo de rede, como roteadores e comutadores.

Arquitetura de uma Aplicação Distribuída

- A arquitetura de rede é fixa e provê um conjunto específico de serviços.
- A arquitetura da aplicação é projetada pelo programador e determina como a aplicação é organizada nos vários sistemas finais.
- A comunicação de uma aplicação de rede ocorre entre sistemas finais na camada de aplicação.

Cliente-Servidor

- Em uma arquitetura cliente-servidor há um hospedeiro sempre em funcionamento, denominado servidor, que atende a requisições de muitos outros hospedeiros, denominados clientes.
- O servidor possui endereço fixo e espera ser contatado para iniciar sessão com vários possíveis clientes, podendo ser organizado em datacenter a fim de criar servidores virtuais para possibilitar um maior número de atendimento de requisições.

P₂P

- A arquitetura P2P utiliza a comunicação direta entre duplas de hospedeiros conectados alternadamente, denominados pares.
- Uma das características mais fortes da arquitetura P2P é sua autoescalabilidade.
- Ao mesmo tempo em que cada host recebe um arquivo, ele também o oferece ao sistema, se tornando uma aplicação de compartilhamento poderosa para arquivos populares.

P2P

- As futuras aplicações P2P estão diante de três principais desafios:
- 1. ISP Amigável.
- 2. Segurança.
- 3. Incentivos.

Desbalanço entre taxas de upload e download de ISPs residenciais, falta de segurança, necessidade de seeders.

Client / Server

Peer to Peer

Comunicação entre processos

- Uma aplicação de rede consiste em pares de processos que enviam mensagens uns para os outros por meio de uma rede.
- Um processo envia mensagens para a rede e recebe mensagens dela através de uma interface de software denominada socket.
- O programador tem total liberdade com a camada de aplicação, porém nem tanto com a de transporte (podendo escolher o protocolo de transporte e, talvez, tamanho máximo do buffer e de segmentos).

Sockets

- Para identificar o processo receptor, duas informações devem ser especificadas:
- 1. o endereço do hospedeiro e
- 2. um identificador que especifica o processo receptor no hospedeiro de destino.
- Para se referenciar ao processo do host de destino, é utilizado um identificador denominado porta.

Sockets

Serviços de Transporte Disponíveis para Aplicações

- Os protocolos da camada de transporte podem ser caracterizados entre quatro serviços principais
- **□** Vazão
- Transferência confiável de dados
- ☐ Temporização
- ☐ Segurança

1. Vazão

 Taxa com a qual o remetente pode enviar bits ao processo destinatário, podendo as aplicações serem sensíveis à largura de banda ou elásticas (quando não dependem de alta ou constante vazão)

2. Transferência confiável de Dados

 Obtenção de confirmação de chegada de pacote, garantia de envio e recebimento de todos os pacotes (tomando o envio mais tempo para ser concluído devido a espera de confirmação e possíveis reenvios de pacote)

3. Temporização

 Garantia de tempo máximo na entrega de pacotes, dando à aplicação um maior controle no tratamento dos dados em sua implementação

4. Segurança

 Serviços como criptografia e integridade dos dados, autenticação do ponto terminal, entre outros

Requisitos de aplicações de rede selecionadas:

Aplicação	Perda de dados	Vazão	Sensibilidade ao tempo
Transferência / download de arquivo			
E-mail			
Documentos Web			
Telefonia via Internet/ videoconferência			
Áudio/vídeo armazenado			
Jogos interativos			
Mensagem instantânea			

Requisitos de aplicações de rede selecionadas:

Aplicação	Perda de dados	Vazão	Sensibilidade ao tempo
Transferência / download de arquivo	Sem perda	Elástica	Não
E-mail	Sem perda	Elástica	Não
Documentos Web	Sem perda	Elástica (alguns kbits/s)	Não
Telefonia via Internet/ videoconferência	Tolerante à perda	Áudio: alguns kbits/s – 1Mbit/s Vídeo: 10 kbits/s – 5 Mbits/s	Sim: décimos de segundo
Áudio/vídeo armazenado	Tolerante à perda	Igual acima	Sim: alguns segundos
Jogos interativos	Tolerante à perda	Poucos kbits/s – 10 kbits/s	Sim: décimos de segundo
Mensagem instantânea	Sem perda	Elástico	Sim e não

A Internet - Dois Protocolos de Transporte

TCP

Serviço Orientado Para Conexão; Serviço Confiável De Transporte; Mecanismo De Controle De Congestionamento (Fairplay Na Rede);

UDP

Serviço Não-orientado Para Conexão; Serviço Não Confiável De Transporte; Sem Mecanismo De Controle De Congestionamento

Aplicações e seus protocolos de camada de aplicação

Aplicação	Protocolo de camada de aplicação	Protocolo de transporte subjacente
Correio eletrônico		
Acesso a terminal remoto		
Web		
Transferência de arquivos		
Multimídia em fluxo contínuo		
Telefonia por Internet		

Aplicações e seus protocolos de camada de aplicação

Aplicação	Protocolo de camada de aplicação	Protocolo de transporte subjacente
Correio eletrônico	SMTP [RFC 5321]	TCP
Acesso a terminal remoto	Telnet [RFC 854]	TCP
Web	HTTP [RFC 2616]	TCP
Transferência de arquivos	FTP [RFC 959]	TCP
Multimídia em fluxo contínuo	HTTP (por exemplo, YouTube)	TCP
Telefonia por Internet	SIP [RFC 3261], RTP [RFC 3550] ou proprietária (por exemplo, Skype)	UDP ou TCP

Um protocolo de camada de aplicação define:

- Os tipos de mensagens trocadas.
- A sintaxe dos vários tipos de mensagens, tais como os campos da mensagem e como os campos são delineados.
- •A semântica dos campos, isto é, o significado da informação nos campos.
- •Regras para determinar quando e como um processo envia mensagens e responde a mensagens.

DNS

- Há duas maneiras de identificar um hospedeiro por um nome de hospedeiro e por um endereço IP.
- Para conciliar isso, é necessário um serviço de diretório que traduza nomes de hospedeiro para endereços IP, essa é a tarefa principal do DNS da Internet.

DNS – Duas Visões

- Um banco de dados distribuído executado em uma hierarquia de servidores de DNS
- Um protocolo de camada de aplicação que permite que hospedeiros consultem o banco de dados distribuído.

DNS – Passos pra consulta

Para que a máquina de um usuário consiga acessar a um link que digita no seu browser, ela precisa primeiro obter seu endereço IP através dos procedimentos:

- 1. A própria máquina do usuário executa o lado cliente da aplicação DNS;
- 2. O navegador extrai o nome de hospedeiro do URL e passa o nome para o lado cliente da aplicação DNS;
- 3. O cliente DNS envia uma consulta contendo o nome do hospedeiro para um servidor DNS;

DNS – Passos pra consulta

- 1. O cliente DNS por fim recebe uma resposta, que inclui o endereço IP correspondente ao nome de hospedeiro;
- 2. Tão logo o navegador receba o endereço do DNS, pode abrir uma conexão TCP com o processo servidor HTTP localizado na porta 80 naquele endereço IP.

O DNS adiciona mais um atraso às aplicações de Internet caso não encontre o endereço IP correspondente em um cache de um servidor próximo.

DNS – Serviços

☐ Apelidos (aliasing) de hospedeiro: obtenção do nome canônico correspondente a um apelido de web fornecido, bem como para obter o endereço IP do hospedeiro;

☐ Apelidos de servidor de correio: obtenção do nome canônico correspondente a um apelido de e-mail fornecido, bem como para obter o endereço IP do hospedeiro;

DNS – Passos pra consulta

- □ Distribuição de carga: utilizado para realizar distribuição de carga entre servidores replicados
 - Conjunto de IPs diferentes associados a um único nome canônico
 - ☐ Garantir que endereços mais acessados consigam suportar a toda sua demanda.

Vídeo sobre o DNS

DNS

- Nenhum servidor DNS isolado tem todos os mapeamentos para todos os hospedeiros da Internet.
- Em vez disso, os mapeamentos são distribuídos pelos servidores DNS.

DNS

- Nenhum servidor DNS isolado tem todos os mapeamentos para todos os hospedeiros da Internet.
- Em vez disso, os mapeamentos são distribuídos pelos servidores DNS.

Servidores DNS — Três classes

Os servidores dividem-se em três classes:

- 1. Servidores DNS raiz: na Internet há 13 servidores DNS raiz (denominados de A a M). Embora sejam apenas 13, na verdade há um conglomerado de centenas de servidores replicados, para fins de segurança e confiabilidade.
- Servidores DNS de Domínio de Alto Nível (TLD): são responsáveis por domínios de alto nível como com, org, net, edu e gov, e por todos os domínios de alto nível de países, tais como br, uk, fr, etc. Em Julho de 2015 existiam 1058 servidores desse tipo;
- Servidores DNS autoritativos: abriga os registros DNS que mapeiam os nomes de hospedeiros para endereços IP que toda organização que possa ser acessada publicamente na Internet (como servidores Web e de correio).

Além dessas três, ainda existe uma que não pertence à hierarquia de servidores, o servidor DNS local. Cada ISP possui o seu e seu acesso visa diminuir o uso dos servidores principais.

Servidores DNS — Três classes

Servidores DNS – Três classes

Servidores Raiz

Consulta DNS

- Suponha que um hospedeiro *cis.poly.edu* deseje o endereço IP de *gaia.cs.umass.edu*. Suponha também que o servidor de nomes local seja denominado *dns.poly.edu* e que um servidor de nomes com autoridade para *gaia.cs.umass.edu* seja denominado *dns.umass.edu*.
- Para isso, segue-se o seguinte procedimento enumerado pela imagem ao lado

Consulta DNS - Recursiva

- □ No exemplo anterior, se considerou que o servidor TLD conhece o servidor DNS autoritativo para o nome de hospedeiro, o que geralmente não ocorre.
- ☐ Ele pode conhecer apenas um servidor DNS intermediário que, por sua vez, conhece o servidor DNS autoritativo para o nome de hospedeiro.

DNS – Dados e Cabeçalho

Um registro de recurso é uma tupla de quatro elementos que contém os seguintes campos:

Name, Value, Type, TTL

Identificação Flags		
Número de perguntas Número de RRs de resposta		-12 bytes
Número de RRs autoritativos	Número de RRs adicionais	
Perguntas (número variável de perguntas)		-Nome, campos de tipo para uma consulta
Respostas (número variável de registros de recursos)		-RRs de resposta à consulta
Autoridade (número variável de registros de recursos)		Registros para servidores com autoridade
Informação adicional (número variável de registros de recursos)		Informação adicional 'útil',que pode ser usada

NSLookup

