Correction

Exercice Nº 01:

Ecrivez en logique des prédicats les expressions suivantes :

- 1) Aya est une femme
- 2) Imad est un homme
- 3) Imad est le père de Zina
- 4) Fares est le père de Fatma et Zouhir
- 5) n nombre pair alors n est divisible par 2
- 6) Un entier naturel est pair ou impair
- 7) Le cheval est plus rapide que le chien.
- 8) Un chat est entré
- 9) Tous sont étudiants

- 10) Tout étudiant est inscrit
- 11) Certains étudiants ne sont pas malades
- 12) Tous les hommes ne voyagent pas avec John
- 13) Si tous les hommes voyage avec John, alors il est content
- 14) Les personnes qui ont de la fièvre et qui toussent ont la grippe.
- 15) Les personnes qui ont la grippe doivent prendre du Tamiflu.

<u>Réponse</u>

Ecrivez en logique des prédicats les expressions suivantes :

- 1) Aya est une femme
- 2) Imad est un homme
- 3) Imad est le père de Zina
- 4) Fares est le père de Fatma et Zouhir »
- 5) n nombre pair alors n est divisible par 2
- 6) Un entier naturel est pair ou impair
- 7) Le cheval est plus rapide que le chien.
- 8) Un chat est entré
- 9) Tous sont étudiants
- 10) Tout étudiant est inscrit
- 11) Certains étudiants ne sont pas malades
- 12) Tous les hommes ne voyagent pas avec John
- 13) Si tous les hommes voyage avec John, alors il est content
- 14) Les personnes qui ont de la fièvre et qui toussent ont la grippe.
- 15) Les personnes qui ont la grippe doivent prendre du Tamiflu.

- 1) Femme(Aya).
- 2) Homme(Imad).
- 3) Pere(Imad, Zina).
- 4) Pere (Fares, Fatma) ∧ Pere(Fares, Zouhir)
- 5) $\forall n (Pair(n) \Rightarrow Devisible(n, 2))$
- 6) $\forall n(Naturel(n) \Rightarrow (Pair(n) \lor Impair(n))$
- 7) $\forall x \forall y (Cheval(x) \land Chien(y) \Rightarrow Plus(x, y))$
- 8) $\exists x (C(x) \land E(x))$
- 9) $\forall x Etudiant(x)$
- 10) $\forall x (Etudiant(x) \Rightarrow Inscrit(x))$
- 11) $\exists x (E(x) \land \neg M(x))$
- 12) $\forall x (H(x) \Rightarrow \neg V(x,J))$
- 13) $\forall x(H(x) \Rightarrow V(x,J)) \Rightarrow C(J)$
- 14) $\forall x (Personne(x) \land (Fievre(x) \land Tousse(x)) \Rightarrow Grippe(x)$
- 15) $\forall x (Personne(x) \land (Grippe(x)) \Rightarrow Prendre(x, Tamiflu))$

Exercice N° 02:

L est un langage de prédicats définit comme suit :

Constante A, B

fonction f, g

prédicat P, Q, R

Parmi les expressions suivantes, lesquelles sont des termes ou des formules syntaxiquement correctes?

- 1. R(A, g(A, A))
- 2. $\neg y \land P(y)$
- 3. g(A, g(A, A))
- 4. $\forall x P(x)$
- 5. $\neg R(P(A), x)$

- 6. $\exists x \ \forall y (R(x,y) \Rightarrow R(y,x))$
- 7. $\exists A R(A, A)$
- 8. $\forall x \ Q(x, f(x), B) \Rightarrow \exists x \ R(A, x)$
- 9. $\forall x P(R(A, x))$
- 10. $\exists R(x, A)$

<u>Réponse</u>

- 1. R(A,g(A,A)) formule bien formée
- 2. $\neg \underline{\mathbf{y}} \wedge P(\mathbf{y})$ ni terme ni formule (y est une variable)
- 3. g(A,g(A,A)) terme correct
- 4. $\forall x P(x)$ formule bien formée
- 5. $\neg R(\underline{P(A)}_{x}x)$ ni terme ni formule (P(A) est un prédicat et ce n'est pas une fonction)
- 6. $\exists x \, \forall y (R(x,y) \Rightarrow R(y,x))$ formule bien formée
- 7. $\exists \mathbf{A} R(A, A)$ ni terme ni formule (A est une constante)
- 8. $\forall x Q(x, f(x), B) \Rightarrow \exists x R(A,x)$ formule bien formée
- 9. $\forall x P(\mathbf{R}(\mathbf{A}, \mathbf{x}))$ ni terme ni formule (R(A,x) est un prédicat et ce n'est pas une fonction)
- 10. $\underline{\exists} R(x,A)$ ni terme ni formule (\exists mentionné sans variable)

Exercice N° 03:

Indiquer les variables libres dans les formules suivantes :

- 1. $P(x) \wedge R(y, A)$
- 2. $\exists y (Q(y) \land P(x))$
- 3. $\forall x \exists y \ R(x, f(y))$
- 4. $\forall x (P(x) \Rightarrow Q(x))$
- 5. $\forall x P(x) \Rightarrow Q(y)$
- 6. $P(x) \Rightarrow \exists x Q(x)$
- 7. $\exists x (P(x) \Rightarrow Q(x))$
- 8. $\forall x \exists y (P(x) \lor Q(y))$
- 9. $\forall x (P(x) \Rightarrow \exists y (Q(y) \land R(x,y)))$
- **10.** $\forall x \ R(x, y)$

<u>Réponse</u>

Indiquer les variables libres dans les formules suivantes :

- 1. $P(x) \land R(y, A)$ les deux variables sont libres
- 2. $\exists y (Q(y) \land P(x))$ x est libre
- 3. $\forall x \exists y \ R(x, f(y))$ les deux variables sont liées
- 4. $\forall x (P(x) \Rightarrow Q(x))$ pas de variable libre, x est liées par $\forall x$
- 5. $\forall x P(x) \Rightarrow Q(y)$ y est libre
- 6. $P(x) \Rightarrow \exists x Q(x)$ la deuxième occurrence de x est liée par $\exists x$ mais la première ne l'est pas, x est libre
- 7. $\exists x (P(x) \Rightarrow Q(x))$ les deux occurrences de y sont liées par $\exists x$, x n'est pas libre
- 8. $\forall x \exists y (P(x) \lor Q(y))$ x est lié par \forall x, y est lié par \forall y, aucune variable libre
- 9. $\forall x \ (P(x) \Rightarrow \exists y \ (Q(y) \land R(x,y)))$ les deux variables sont liées.
- 10. $\forall x R(x, y)$ y est libre

Exercice N° 04:

Discuter la validité des formules ci-dessous pour l'interprétation suivante:

$$D = \mathbb{N}$$
, $P(x,y) = "x > y$ ", $E(x,y) = "x = y$ "

- 1. $(\exists x) P(x, Z\acute{e}ro)$ vraie (x = 5)
- 2. $(\forall x) P(x, x)$ fausse
- 3. $(\forall x)(\exists y) P(x, y)$ fausse (contre-exemple: pour x = 0, il n'existe pas y)
- 4. $(\exists x)(\forall y) P(x, y)$ fausse (contre-exemple: x=1, y=2)
- 5. $(\exists y) (\forall x) P(x, y)$ fausse (contre-exemple:: y=0, x=0)
- 6. $(\forall y) (\exists x) P(x, y)$ vraid
- 7. $(\exists x)(\forall y) \neg E(y, x) \Rightarrow P(x, y)$ fausse (contre-exemple: x=1, y= 2)
- 8. $(\forall x)(P(x,y) \land \neg P(x,y))$ fausse (Toujours $P \land \neg P = 0$)