Numerical Analysis HW3

ID: 3200101135 Name: 李坤林

Numerical Analysis HW3

- Problem 1
 - a.
 - b.
- Problem 2
- Problem 3
 - a.
 - b.
- Problem 4
 - a.
 - b.
- Problem 5
 - a.

Gauss_Seidel方法

Jacobi方法

h.

Gauss_Seidel方法

Jacobi方法

Problem 1

The following linear systems $A\mathbf{x}=\mathbf{b}$ have \mathbf{x} as the actual solution and $\widetilde{\mathbf{x}}$ as an approximate solution. Compute $||\mathbf{x}-\widetilde{\mathbf{x}}||_{\infty}$.

a.

$$||\mathbf{x} - \widetilde{\mathbf{x}}||_{\infty} = ||(0.2, 0.5, 0.4)^T|| = 0.5$$

 $||A\widetilde{\mathbf{x}} - \mathbf{b}||_{\infty} = ||(0, -0.3, -0.2)^T|| = 0.3$

b.

$$||\mathbf{x} - \widetilde{\mathbf{x}}||_{\infty} = ||(0.33, 0.9, -0.8)^T|| = 0.9$$

 $||A\widetilde{\mathbf{x}} - \mathbf{b}||_{\infty} = ||(0.27, 0.16, 0.21)^T|| = 0.27$

Problem 2

Show that if A is symmetric, then $||A||_2=
ho(A)$

证明:

记: $D = diag\{\lambda_1, \lambda_2, \lambda_3, \dots, \lambda_n\}$, 满足: $|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n|$

则: $||\lambda_1||$ 为A的谱半径

```
令:x_1为\lambda_1对应的 右特征向量,满足:Ax_1=\lambda_1x_1则必有:
满足:\frac{||Ax_1||_2}{||x_1||_2}=|\lambda_1|\leq ||A||_2 (2.1)
令y_1为A的 2范数对应的单位向量,即:||y_1||_2=1 且 ||A||_2=||Ay_1||_2而:y_1可以被Q线性表出为:y_1=Qz_1,且z_1也为单位向量不难得出:||A||_2=||Ay_1||_2=||AQz_1||_2=||Dz_1||_2\leq |\lambda_1| (2.2) 综上2.1&2.2可得:||A||_2=|\lambda_1|
```

Problem 3

Implement the algorithm of Gaussian elimination with scaled partial pivoting, and solve the following linear systems.

a.

见"HW3\Code\gauss.m"

```
1 clear all;
 2 clc;
3 A = [0.0358.9; 5.31 - 6.10];
5 x= GaussianSolverO(A,b)
7 function x=GaussianSolverO(A,b)
8 [n,\sim] = size(A);
9 x=zeros(n,1);
          mul = A(i,j)/A(j,j);
          A(i,:) = A(i,:) - mul * A(j,:);
           b(i) = b(i) - mul * b(j);
17 end%这个循环可以使矩阵A的第一列元素全为0
19 for i=n:-1:1
       sum=0;
       for j=n:-1:i+1
           sum=sum+x(j)*A(i,j);
       x(i)=(b(i)-sum)/A(i,i);
27 %以下为命令行输入:
30 %命令行输出:
```

31	%x=10.00000000000142
32	% 1.0000000000000

	x_1	x_2
准确值	10	1
计算值	10.00000000000142	1.00000000000000

b.

见"HW3\Code\gauss_2.m"

```
1 clear
3 A=input('输入系数矩阵A: ');
4 b=input('输入b向量(按行向量):');
5 B=[A b'];
6 n=length(b);
7 RA=rank(A);
8 RB=rank(B);
9 zhica=RB-RA;
  if RA=RB
      if RA=n
         fprintf('此方程组有唯一解.\n',n)
         X=zeros(n,1);
         for p=1:n-1
             t=find(abs(B(p:end,p))=max(abs(B(p:end,p))))+p-1;
              if abs(B(t,p))~=abs(B(p,p))
                  l=B(t,:);
                   B(t,:)=B(p,:);
                   B(p,:)=l;
              end %列主元判断
              for k=p+1:n
                   m = B(k,p)/B(p,p);
                   B(k,p:n+1) = B(k,p:n+1) - m * B(p,p:n+1);
         %把方程组系数矩阵A化为同解的上三角矩阵
         b=B(1:n,n+1);
         A=B(1:n,1:n);
         X(n)=b(n)/A(n,n);
         for q=n-1:-1:1
            X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q);
         %从xn至x1逐个求解上三角方程组
```

	x_1	x_2	x_2
准确解	0	10	$\frac{7}{1}$
数值解	0	10.00000000000000	0.142857142857143

Problem 4

Implement the Jacobi iterative method and list the first three iteration results when solving the following linear systems, using $\mathbf{x}^{(0)} = \mathbf{0}$.

a.

代码见"HW3\Code\jacobi.m"

```
1 clear;
2 A=input('请输入线性方程组的系数矩阵:');
3 b=input('请输入线性方程组的常向量:');
4 x1=input('请输入解向量的初始值:');
5 n=numel(b);
7 e_max=1e6; %%前后之差
8 while e_max>=1e-6
     e_max=0;
     for i=1:n
                     %初始化变量
         s=0;
         for j=1:n
           if j~=i
                s=s+A(i,j)*x1(j);
        x2(i) = (b(i)-s)/A(i,i);
        e = abs(x2(i)-x1(i));
        if e > e_max
```

```
21
              e_{max} = e;
24
       x1=x2
                 %观察每步迭代结果
27 %以下为命令行提示及输入
29 %请输入线性方程组的系数矩阵:[4,1,-1;-1,3,1;2,2,5]
30 %请输入线性方程组的常向量:[5,-4,1]
31 %请输入解向量的初始值:[0,0,0]
32 %以下为命令行输出
40 %x1 =1.449305092592593 -0.836580787037037 -0.043717129629630
41 %x1 =1.448215914351852 -0.835659259259259 -0.045089722222222
43 %x1 =1.447635531442901 -0.835778317901235 -0.044831038580247
45 %x1 =1.447775397810571 -0.835840098251029 -0.044756937268519
46 %x1 =1.447770790245628 -0.835822554973637 -0.044774119823817
47 %x1 =1.447762108787455 -0.835818363310185 -0.044779294108796
49 %x1 =1.447760508544252 -0.835820911502915 -0.044776093972972
50 %x1 =1.447761204382486 -0.835821132494258 -0.044775838816535
```

	x_1	x_2	x_3
$\mathbf{x}^{(1)}$	1.250000000000000	-1.333333333333333	0.200000000000000
$\mathbf{x}^{(2)}$	1.633333333333333	-0.983333333333333	0.233333333333333
$\mathbf{x}^{(3)}$	1.554166666666667	-0.86666666666667	-0.06000000000000

b.

代码同上,下面给出命令行操作

12	%x1 =-1.359375000000000	1.359375000000000	-0.796875000000000
13	%x1 =-1.519531250000000	1.519531250000000	-0.679687500000000
14	%x1 =-1.410156250000000	1.410156250000000	-0.759765625000000
15	%x1 =-1.484863281250000	1.484863281250000	-0.705078125000000
16	%x1 =-1.433837890625000	1.433837890625000	-0.742431640625000
17	%x1 =-1.468688964843750	1.468688964843750	-0.716918945312500
18	%x1 =-1.444885253906250	1.444885253906250	-0.734344482421875
19	%x1 =-1.461143493652344	1.461143493652344	-0.722442626953125
20	%x1 =-1.450038909912109	1.450038909912109	-0.730571746826172
21	%x1 =-1.457623481750488	1.457623481750488	-0.725019454956055
22	%x1 =-1.452443122863770	1.452443122863770	-0.728811740875244
23	%x1 =-1.455981373786926	1.455981373786926	-0.726221561431885
24	%x1 =-1.453564703464508	1.453564703464508	-0.727990686893463
25	%x1 =-1.455215319991112	1.455215319991112	-0.726782351732254
26	%x1 =-1.454087927937508	1.454087927937508	-0.727607659995556
27	%x1 =-1.454857951030135	1.454857951030135	-0.727043963968754
28	%x1 =-1.454332015477121	1.454332015477121	-0.727428975515068
29	%x1 =-1.454691236140206	1.454691236140206	-0.727166007738560
30	%x1 =-1.454445883864537	1.454445883864537	-0.727345618070103
31	%x1 =-1.454613462585257	1.454613462585257	-0.727222941932268
32	%x1 =-1.454499004190438	1.454499004190438	-0.727306731292629
33	%x1 =-1.454577180727938	1.454577180727938	-0.727249502095219
34	%x1 =-1.454523785159836	1.454523785159836	-0.727288590363969
35	%x1 =-1.454560255011074	1.454560255011074	-0.727261892579918
36	%x1 =-1.454535345639442	1.454535345639442	-0.727280127505537
37	%x1 =-1.454552359056663	1.454552359056663	-0.727267672819721
38	%x1 =-1.454540738676599	1.454540738676599	-0.727276179528332
39	%x1 =-1.454548675543784	1.454548675543784	-0.727270369338299
40	%x1 =-1.454543254562683	1.454543254562683	-0.727274337771892
41	%x1 =-1.454546957161631	1.454546957161631	-0.727271627281342
42	%x1 =-1.454544428239520	1.454544428239520	-0.727273478580816
43	%x1 =-1.454546155525444	1.454546155525444	-0.727272214119760
44	%x1 =-1.454544975767218	1.454544975767218	-0.727273077762722
45	%x1 =-1.454545781557071	1.454545781557071	-0.727272487883609

	x_1	x_2	x_3
$\mathbf{x}^{(1)}$	-2	2	0
$\mathbf{x}^{(2)}$	-1	1	-1
$\mathbf{x}^{(3)}$	-1.750000000000000	1.7500000000000000	-0.500000000000000

Problem 5

Use the Jacobi method and Gauss-Seidel method to solve the following linear systems, with TOL= 0.001 in the \mathbf{L}_∞ norm.

a、b两题所用Gauss-Seidel方法代码相同,所以先将代码置顶,解答中给出命令行操作,代码详见"HW3\Code\Gauss_Seidel.m"

```
1 function x=Gauss_Seidel(A,b,x0,ep,N)
2 %A为系数矩阵, b为右端向量, x0为初始向量 (默认零向量)
3 %ep为精度(1e-6), N为最大迭代次数(默认500次), x返回近似解向量
4 n=length(b);
5 if nargin<5
      N=500;
9 if nargin<4
    ep=1e-6;
13 if nargin<3
    x0=zeros(n,1);
17 x=zeros(n,1);
20 while k<N
    for i=1:n
         if i=1
              x(1)=(b(1)-A(1,2:n)*x0(2:n))/A(1,1);
         elseif i=n
                 x(n)=(b(n)-A(n,1:n-1)*x(1:n-1))/A(n,n);
                  x(i)=(b(i)-A(i,1:i-1)*x(1:i-1)-
   A(i,i+1:n)*x0(i+1:n))/A(i,i);
      if norm(x-x0,inf)<ep</pre>
         break;
      x0=x;
40 if k=N
       Warning('已到达迭代次数上限!');
44 disp(['k=',num2str(k)])
```

Gauss_Seidel方法

```
1 %命令行操作
2 >> B=[3,-1,1;3,6,2;3,3,7];
3 >> b2=[1;0;4];
4 >> x0=[0;0;0];
5 >> ep=1e-3;
6 >> N=500;
7 >> x=Gauss_Seidel(B,b2,x0,ep,N)
8 %命令行输出
9 x =0.035351068284877
10 -0.236788626595343
11 0.657758953561628
```

Jacobi方法

```
1 %命令行操作
2 >> jacobi_a
3 请输入线性方程组的系数矩阵:[3,-1,1;3,6,2;3,3,7]
4 请输入线性方程组的常向量:[1,0,4]
5 请输入解向量的初始值:[0,0,0]
6 %命令行输出
7 %由于直接使用Problem4的代码,所以中途打印了迭代过程值,此处删去
8 x1 =0.035087737436061
9 -0.236841911943220
10 0.657894952890508
```

	Gauss_Seidel 方法	Jacobi 方 法
\mathbf{L}_{∞}	0.657758953561628	0.657894952890508

b.

Gauss_Seidel方法

```
1 %命令行操作
2 >> B=[10,-1,0;-1,10,-2;0,-2,10];
3 >> b2=[9;7;6];
4 >> x0=[0;0;0];
5 >> ep=1e-3;
6 >> N=500;
7 >> x=Gauss_Seidel(B,b2,x0,ep,N)
8 %命令行输出
9 x =0.995747500000000
10 0.9578737500000000
11 0.7915747500000000
```

Jacobi方法

- 1 %命令行操作
- 2 >> jacobi_a
- 3 请输入线性方程组的系数矩阵:[10,-1,0;-1,10,-2;0,-2,10]
- 4 请输入线性方程组的常向量:[9,7,6]
- 5 请输入解向量的初始值:[0,0,0]
- 6 %命令行输出
- 7 %由于直接使用Problem4的代码,所以中途打印了迭代过程值,此处删去
- 8 x1 =0.995789443750000
- 9 0.957894656250000
- 10 0.791578887500000

	Gauss_Seidel方法	Jacobi方法
\mathbf{L}_{∞}	0.995747500000000	0.995789443750000