Relazioni e funzioni

Relazioni binarie

Ogni sottoinsieme del prodotto cartesiano tra due insiemi A e B è una relazione binaria tra A e B.

Il prodotto cartesiano esprime tutti i possibili legami tra gli elementi dei due insiemi, quindi una relazione è uno specifico legame tra insiemi.

Relazioni binarie

Ogni sottoinsieme del prodotto cartesiano tra due insiemi A e B è una relazione binaria tra A e B.

Se A = B si parla di relazione in un insieme

Rappresentazione

Elencazione

Proprietà caratteristica

Diagramma a frecce

Tabella a doppia entrata

Rappresentazione cartesiana

Rappresentazione

$$A = \{2\}$$

$$B=\{1,3\}$$

$$A \times B = \{(2,1),(2,3)\}$$

Elencazione

$$R=\{(2,3)\}\subset A\times B$$

Proprietà caratteristica $R=\{(a,b) \in AxB | a < b\}$

$$R=\{(a,b) \in AxB | a < b\}$$

Diagramma a frecce

Rappresentazione

$$A = \{2\}$$

$$B=\{1,3\}$$

$$A \times B = \{(2,1),(2,3)\}$$

Tabella a doppia entrata

A B	1	3
2	(2,1)	(2,3)

Rappresentazione cartesiana

Sia A={PC presenti in un certo ufficio} e B={Insieme dispositivi di rete}

Relazioni in Informatica

Data Base relazionali

Riflessiva

 $\forall a \in A, aRa$

Antiriflessiva

∄a∈A, aRa

Simmetrica

 $\forall a,b \in A, aRb \rightarrow bRa$

Antisimmetrica

 $\forall a,b \in A \mid a \neq b, aRb \rightarrow bRa$

 $\forall a,b \in A \mid aRb \land bRa \rightarrow a=b$

Transitiva

 $\forall a,b,c \in A, aRb \land bRc \rightarrow aRc$

$$A = \{1, 2\}$$

$$A \times A = \{(1,1),(1,2),(2,1),(2,2)\}$$

$$R=\{(1,1),(1,2)\}$$

Riflessiva

Antiriflessiva

Simmetrica

Antisimmetrica

Transitiva

$$A = \{1,2\}$$

$$A \times A = \{(1,1),(1,2),(2,1),(2,2)\}$$

$$R=\{(1,1),(1,2),(2,2)\}$$

Riflessiva

Simmetrica

Antisimmetrica

Transitiva

$$A = \{1,2\}$$

$$A \times A = \{(1,1),(1,2),(2,1),(2,2)\}$$

$$R=\{(1,2)\}$$

Riflessiva

Antiriflessiva

Simmetrica

Antisimmetrica

Transitiva

Relazioni di equivalenza

Riflessiva Simmetrica Transitiva

Uguaglianza Equi-estensione
Congruenza Similitudine
Avere lo stesso resto nella divisione per 5
Avere la stessa altezza di
Essere pari o dispari

Relazioni d'ordine

Antisimmetrica Transitiva Attenzione: può godere anche di altre proprietà come la riflessiva ma le prime due sono necessarie.

Essere maggiore di Essere minore o uguale di Essere più alto di Essere più a destra di

Una **funzione** di A in B è una particolare relazione che ad ogni elemento del primo insieme A associa uno ed un solo elemento del secondo insieme B.

L'insieme A si chiama dominio della funzione. L'insieme B si chiama codominio della funzione

Una funzione di A in B è una relazione che ad ogni elemento del primo insieme A associa uno ed un solo elemento del secondo insieme B.

Una funzione di A in B è una relazione che ad ogni elemento del primo insieme A associa uno ed un solo elemento del secondo insieme B.

Una **funzione** da A in B esprime un legame. Ogni elemento di A **ha almeno uno ed** <u>un solo</u> corrispondente elemento in B.

Il sottoinsieme di B costituito da tutte le immagini degli elementi di A è detto immagine del dominio Im (A).

$$f: A \rightarrow B$$

 $x \rightarrow y = f(x)$

y è l'immagine di x

Dominio: A

Codominio: B

Immagine di A: {2,4}

Sia
$$A = \{V, F\}$$

$$f: A \times A \rightarrow A$$

$$(x,y) \longrightarrow z = x \wedge y$$

$$(V,V)$$

$$(V,F)$$

$$(F,V)$$

Dominio: AXA

Codominio = Immagine di A = A

(F,F)

Grafico di funzione

Si definisce grafico di una funzione f $\{(x,y)|x\in A \land y=f(x)\in B\}\subseteq AxB$

Rappresentazione cartesiana

Funzioni e relazioni

Tutte le funzioni sono relazioni, pertanto è possibile rappresentarle negli stessi modi,

ma non tutte le relazioni sono funzioni

Relazione che non è funzione

Sia A={PC} e B={schede di rete}

Relazione che non è funzione

Sia A={PC} e B={schede di rete}

Relazione che è anche una funzione

Sia A={Indirizzi IP} e B={schede di rete}

Grafico di funzione

Si definisce grafico di una funzione f $\{(x,y)|x\in A \land y=f(x)\in B\}\subseteq AxB$

Rappresentazione cartesiana

Grafico di funzione

Si definisce grafico di una funzione f $\{(x,y)|x\in A \land y=f(x)\in B\}\subseteq AxB$

f:
$$\{1,2,3\} \rightarrow \{1,2,3,4,5,6\}$$

 $x \rightarrow y = 2x$

Rappresentazione cartesiana

grafico di f:
$$\{(x,2x)|x\in A\}$$

Esercizio

A={pianeti del sistema solare} B={lettere dell'alfabeto Italiano}

Determinare dominio e immagine del dominio

Fornire una rappresentazione grafica cartesiana della funzione.

Funzione iniettiva

Una funzione $A \rightarrow B$ si dice iniettiva se $\forall x_1, x_2 \in A, x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$

Funzione non iniettiva

Due valori del dominio hanno la stessa immagine

Funzione suriettiva

Una funzione $f:A \rightarrow B$ si dice suriettiva se Im(A)=B

Una funzione si dice suriettiva se $\forall y \in B$, $\exists x \in A \mid f(x)=y$.

Funzione non suriettiva

Almeno un elemento del codominio non è immagine di alcun elemento del dominio

Funzione bigettiva o biunivoca

Una funzione si dice bigettiva se è iniettiva e suriettiva.

Tale funzione è iniettiva, suriettiva, biunivoca?

Sia A={Indirizzi IP} e B={schede di rete}

Funzione identità

La funzione identità è una funzione su un insieme che ad ogni elemento del dominio fa corrispondere l'elemento stesso.

i:
$$A \rightarrow A$$

 $x \sim y = f(x)=x$

$$Im(D)=A$$

La funzione identità è biunivoca.

Funzione identità

La funzione identità è una funzione su un insieme che ad ogni elemento del dominio fa corrispondere l'elemento stesso.

Composizione di funzioni

Siano date 2 funzioni f e g così definite

f:
$$A \rightarrow B$$

 $x \rightarrow y = f(x)$
g: $B \rightarrow C$
 $y \rightarrow z = g(y)$

Si definisce funzione composta di f e g la funzione $h = g \circ f$

$$g \circ f : A \rightarrow C$$

 $x \leadsto z = g(f(x))$

Composizione di funzioni

$$f: A \rightarrow B$$

 $x \rightsquigarrow y = f(x)$

g: B
$$\rightarrow$$
 C
y \sim z = g(y)

$$g \circ f : A \rightarrow C$$

 $x \rightsquigarrow z = g(f(x))$

Funzioni composte

f:
$$\{1,2\} \rightarrow \{2,4\}$$

 $x \rightsquigarrow y = 2x$

g:
$$\{2,4\} \rightarrow \{1,3\}$$

y $\Rightarrow z = y-1$

$$g \circ f : A \rightarrow C$$

 $x \rightsquigarrow z = g(f(x))=2x-1$

Funzioni composte

f:
$$\{1,2\} \rightarrow \{2,4\}$$

 $x \rightarrow y = 2x$

g:
$$\{2,4\} \rightarrow \{1,3\}$$

y $\Rightarrow z = y-1$

$$f \circ g(4) = f(3)$$
????

La composizione non è commutativa

Funzioni composte

f:
$$Z \rightarrow Z$$

 $x \rightarrow y = 2x$

g:
$$Z \rightarrow Z$$

y $\rightarrow z = y-1$

$$g \circ f : Z \rightarrow Z$$

 $x \rightsquigarrow z = g(f(x))=2x-1$

$$f \circ g : Z \rightarrow Z$$

 $x \longrightarrow z = f(g(x))=2(x-1)$

La composizione non è commutativa

Esempio

Sia A={Indirizzi IP}, B={schede di rete} e C={PC}

Sia data una funzione biunivoca

$$f: A \rightarrow B$$

 $x \sim y = f(x)$

Si definisce funzione inversa di f la funzione f⁻¹

f-1: B
$$\rightarrow$$
 A
y \rightarrow x | f(x) = y

Anche la funzione inversa è biunivoca e invertibile.

N.B: Non confondere f⁻¹ con 1/f

Ogni funzione $f:A \rightarrow B$ iniettiva è invertibile se si riduce il codominio a Im(A).

$$f: A \rightarrow B$$

 $x \rightsquigarrow y = f(x)$

f-1: B
$$\rightarrow$$
 A
y \sim > x | f(x) = y

$$i=f^{-1} \circ f : A \rightarrow A$$

 $x \sim f^{-1}(f(x))=x$

$$f: A \rightarrow B$$

 $x \rightsquigarrow y = f(x)$

f-1: B
$$\rightarrow$$
 A
y \sim > x | f(x) = y

$$i=f \circ f^{-1}: B \rightarrow B$$

 $y \rightsquigarrow f(f^{-1}(y))=y$

Esempio

Sia A={Indirizzi IP} e B={PC}

E' una funzione? E' invertibile?

Esercizio

A={pianeti del sistema solare} B={lettere dell'alfabeto Italiano}

Stabilire se f è iniettiva, suriettiva o bigettiva.

Dopo aver ristretto B a Im(A), valutare se la funzione è invertibile

Esercizio

A={pianeti del sistema solare} B={coppie di lettere}

Stabilire se f è iniettiva, suriettiva o bigettiva.

Dopo aver ristretto B a Im(A), determinare f^{-1}

Esercizio

A={pianeti del sistema solare}
B={lettere dell'alfabeto Italiano}
C={numeri naturali minori di 22}

 $f:A \rightarrow B$

ad ogni pianeta associa la lettera iniziale del suo nome $g:B\to C$

ad ogni lettera associa un numero che rappresenta la sua posizione nell'alfabeto

Costruire e rappresentare in un modo a scelta la funzione go f