Homework 2 Tutorial

Artificial Intelligence II - Fall 22-23 Dept. of Informatics & Telecommunications National & Kapodistrian University of Athens

Katerina Xagorari (<u>katexagorari@athenarc.gr</u>)

Based on previous slides by George Katsogiannis et al.

Al Project Structure - Recipe

Word Embeddings

GloVe: Global Vectors for word representation

Unsupervised learning (clustering) algorithm developed by Stanford

- Create meaningful vector representations for each word
- Vectors calculated based on word co-occurrence in the training corpus
- Useful linear substructures for word relations
- Words close to each other are semantically similar
- Pre-trained vectors created from large corpuses are available for download

Using Word Embeddings with Linear Networks

- A pre-trained set of embeddings contains a vector of the same dimension for each word (usually 50, 100 or 300)
- How can we create a representation of sentences using word-embeddings, whilst keeping the same dimension for each sentence?
 - Ideas: Averaging, summation, etc.

- TensorFlow
- Keras
- Caffe2
- DL4J
- Microsoft Cognitive Toolkit (CNTK)
- Torch/ PyTorch

TensorFlow

- Open source framework for dataflow and differential programming
- One of the most preferred frameworks for Deep Learning
- Developed by the Google Brain team
- Support for Python, C++, R
- Known to be complicated
- Excellent documentation and community support

K Keras

- An easy-to-use library that provides interfaces for:
 - DL layers
 - Activation functions, loss functions
 - o Optimisers, and many more
- Easy to test an idea quickly with little code
- Uses TensorFlow as its backend
- Integrated in TensorFlow V2

© Caffe2

Merged with PyTorch

- Deep Learning Framework, widely used for Computer Vision Tasks
- Support for C, C++, Python, MATLAB and various CLI
- It is considered to be one of the fastest DL Frameworks
- Big advantage is the Caffe's Model Zoo that contains easy to use pre-trained models
- Developed by Berkley

- Deep Learning for Java and all the JVM based programming languages (i.e. Scala, Kotlin, Closure, etc)
- Support Keras models loaded as
 .h5 objects
- Supports distributed training using Apache Spark
- It's considered one of the fastest, alongside with Caffe2

O PyTorch

- One of the most popular in Industry and Research
- Supports Python and C++
- Easier to learn than TensorFlow
- More educative than Keras, as provides better understanding for what happens:
 - during the forward pass
 - during backward pass
 - usage of activation functions, loss functions, optimizers, etc
- Developed by Meta Al/Linux

- PyTorch and TensorFlow Comparison
- PyTorch Documentation Tutorials:
 - Building a Neural Network
 - o How Automatic Differentiation works
 - Optimising (Training) a PyTorch
 Model

Evaluating your model

- All the same things apply, as in HW1
- Note: Learning curves are plotted with the number of epochs/steps in the x-axis
- Plot a <u>ROC curve</u> (used to evaluate classifier output quality)

Demo Notebooks

Notebook 1: PyTorch Intro

Introduction to Tensors

- Torch Tensors
- Creating/Reshaping Tensors
- Operations with Tensors
- Converting Tensors to NumPy arrays
- Automatic Differentiation for tensor operations
- Examples on computing gradients with PyTorch

Notebook 2: PyTorch Example

Training a NN model with PyTorch

- GloVe Intro & Examples
- Loading & Pre-processing your data:
 - handling NaN values
 - normalising values
 - separating features and targets
 - saving values to tensors
- Creating a model
- Training your model

