Bisrat Asefaw CSS 422 (Hardware) Prof. Yang

Homework Problem Set #5

Q1. (6 points) A full adder is a combinational circuit that forms the arithmetic sum of three input bits. It consists of three inputs, x, y, z, and two outputs, C and S. Two of the input, that is, x and y, represent the two significant bits to be added. The third input, z, represents the carry from the previous lower significant position. The output S denotes the sum of two bits and C denotes carry. Answer the following sub-questions.

1) Construct a truth table for the Full-Adder

X	у	Z	S	С
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

2) Based on the truth table, construct a K-map for the output S and derive a Boolean equation using K-map. Make the equation as simple as possible.

S table	xy	~xy	~x~y	x~y
Z			1	
~Z		1		1

$$S = \mathord{\sim} x \mathord{\sim} yz + \mathord{\sim} xy \mathord{\sim} z + x \mathord{\sim} y \mathord{\sim} z$$

3) Based on the truth table, construct a K-map for the output C and derive a Boolean equation using K-map. Make the equation as simple as possible.

C table	xy	~xy	~x~y	x~y
Z	1	1		1
~Z	1			

$$C = xy + yz + xz$$

4) By algebraic manipulation, show that S can be expressed as the exclusive-OR of the three input variables. That is, show that,

$$S = x XOR y XOR z$$
.

You can prove by deriving from S = x XOR y XOR z to the answer you got in the question 2)

$$S = x XOR z XOR y$$
= (\(\alpha(xXORy)z\) + (x \(\phi y)\alpha z\)
= (\(\alpha(x\times y + \alpha xy)z\) + ((x\times y + \alpha xy)\alpha z\)
= (x\times y + \alpha xy \alpha z\) + (\(\alpha(x\times y + \alpha xy)z\)
= (\((x\times y)^* \alpha(xxy))z + \alpha xy \alpha z\) + x\(\alpha x - z\)
= ((x\times y)^* (\alpha x + y))z + \alpha xy \alpha z\) + x\(\alpha x - z\)
= (x\times x + xy + \alpha x - y + y \alpha y)z + \alpha xy \alpha z\)
= (xy + \alpha x - y)z + \alpha xy \alpha z\)
= xyz + \alpha x \alpha yz + \alpha xy \alpha z\)

5) By algebraic manipulation, show that C can be expressed as the following term C = xy + (x XOR y)z.

```
xy + (xXORy)z = xy + (x\sim y + \sim xy)z

= xy + x\sim yz + \sim xyz (Note: xy = xyz + xy\sim z)

= xyz + xy\sim z + x\sim yz + \sim xyz

= x(yz+y\sim z+\sim yz)+\sim xyz

= x(y+z) + \sim xyz (Note: y = yz+y\sim z = y; z = yz + \sim yz, so yz+y\sim z + yz + \sim yz, while yz + yz = yz)

= xy + xz + \sim xyz + xyz (Note: Since xy + xz is here xyz is logically inferred as here)

= xy + xz + yz(x+\sim x)

= xy + xz + yz
```

6) Based on 4) and 5), draw a circuit for the full-adder in Logisim simulator, **attach** the image file and submit the circuit file!

Q2. (6 points) The following sequential circuit includes a full adder (described in the previous question). Inputs are X, Y and carry-in, and outputs are the next state of S and Q.

1) Implement the sequential circuit in Logisim simulator and **submit the circuit file**.

2) Complete the following truth table for the following sequential circuit: Note that the Carry out signal is an output, not an input. The carry in signal is the same as the Q. You can change the Carry-in bit by clicking the D-FF.

X	Y	Carry-in	S	Carry-out	S (after	Carry-out
		(or Q before clock)	(before	(before	clock)	(after
		clock)	clock)	clock)		clock)
0	0	0	0	1	1	1
0	0	1	1	1	1	1
0	1	0	1	1	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	0
1	0	1	0	0	1	1
1	1	0	0	0	0	0
1	1	1	1	0	0	0

Q3. (4 points) A sequential circuit has one D flip-flop and one JK flip-flop, two inputs x and y, and one output z. A is the output of D flip-flop, and B is the output of JK-flip-flop; A and B together form the "output state" of the circuit. The flip-flop *input* equations and the circuit output are as follows. Here DA is the D input of the D-flip flop of A, and JB, KB is the J and K input of the JK-flip flop of B.

$$DA = \sim xy + yB$$

$$JB = \sim yB + xy$$

$$KB = xB + \sim yA$$

1) Draw the logic diagram of the circuit and test it with Logisim.

2) Construct a state diagram of this circuit.

Q4. (10 points) Design a system with the following state changes: This is a sequential circuit with three flip-flops. The state sequence is changed with a clock as in the order of, 111, 010, 100, 110, 001, 011, 101, 000, 111 and repeat. Use JK flip-flops.

1) Draw a state diagram.

2) Construct an excitation table.

$\mathbf{A}_{\mathbf{t}}$	Bt	Ct	$A_{(t+1)}$	B _(t+1)	$C_{(t+1)}$	J_A	KA	J_{B}	K _B	J _C	Kc
0	0	0	1	1	1	1	X	1	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	0	0	1	X	X	1	0	X
0	1	1	1	0	1	1	X	X	1	X	0
1	0	0	1	1	0	X	0	1	X	0	X
1	0	1	0	0	0	X	1	0	X	X	1
1	1	0	0	0	1	X	1	X	1	1	X
1	1	1	0	1	0	X	1	X	0	X	1

3) Draw K-maps and derive Boolean equations using K-maps. Make the equations as simple as possible.

J_A	AB	~AB	~A~B	A~B
С	X	1		X
~C	X	1	1	X

$$J_A\!=\!B+\mathord{\sim}\!C$$

K _A	AB	~AB	~A~B	A~B
С	1	X	X	1
~C	1	X	X	

$K_A = B + C$

J_{B}	AB	~AB	~A~B	A~B
С	X	X	1	
~C	X	X	1	1

$J_B = \sim A + \sim C$

K _B	AB	~AB	~A~B	A~B
С		1	X	X
~C	1	1	X	X

$K_B = \mathord{\sim} A + \mathord{\sim} C$

$J_{\rm C}$	AB	~AB	~A~B	A~B
C	X	X	X	X
~C	1		1	

$$J_C = AB + \sim A \sim B$$

Kc	AB	~AB	~A~B	A~B
С	1			1
~C	X	X	X	X

 $K_C = A$

4) Draw the system in Logisim simulator, attach the circuit image and submit the circuit file.

5) Test the system and **attach the generated table**.

Q5. (2 points) The following circuit is a simple implementation for 4X3 memory chip. In this configuration, your memory chip has four addressable space and each data in the address is 3-bit long. In order to write/read a data into/from a specified address, you have to give a right signal to the address lines, S1 and S0.

1) (1 point) Suppose you want to write a data 1 0 1 to the word 3 (address 3). How you will set the values in each case?

RESET	S 1	S0	Bit2	Bit1	Bit0	~WE
0	1	1	1	0	1	1

2) (1 point) Suppose you want to read a data from the address 1. Give the correct values in each case. If some bits do not affect, then mark as X (don't care).

RESET	S1	S0	Bit2	Bit1	Bit0	~WE
0	0	1	X	X	X	0