Supervised learning

Inteligencia Artificial en los Sistemas de Control Autónomo Máster en Ciencia y Tecnología desde el Espacio

Departamento de Automática

Objectives

- 1. Extend supervised learning algorithms
- 2. Apply supervised learning to real-world problems

Bibliography

• Müller, Andreas C., Guido, Sarah. Introduction to Machine Learning with Python. O'Reilly. 2016

All figures have been taken from https://github.com/amueller/introduction_to_ml_with_ python/blob/master/02-supervised-learning.ipynb

Table of Contents

- Generalization, overfitting and underfitting
- 2. k-Nearest Neighbors
 - k-NN classification
 - kNN regression
 - Summary
- 3. Linear models
 - Ordinary least squares
 - Linear regression
 - Regularized linear models
 - Ridge regression
 - Lasso regression
 - ElasticNet
 - Regularized linear models comparison

- Summary
- 4. Naive Bayes Classifiers
 - Summary
- 5. Decission Trees
 - Summary
- 6. Ensembles of Decision Trees
 - Summary
- 7. Support Vector Machines
 - Kernelized Support Vector Machines
 - Summary
- 8. A
 - **■**b
 - A: Summary
 - ARIMA

Generalization, overfitting and underfitting

Generalization: accurate predictions on unseen data

- i.e. there is no overfitting neither underfitting
- Depends on model complexity and data variability

Generalization

k-Nearest Neighbors

k-NN classification (I)

k-NN (k-Nearest Neighbors): Likely, the simplest classifier

- Given a data point, it takes its k closests neighbors
- Same prediction than its neighbors

k-NN does not generate a model

• The whole dataset must be stored

k uses to be an odd number (1-NN, 3-NN, 5-NN, ...)

k-Nearest Neighbors

k-NN classification (II)

k determines the model complexity

- Smoother boundaries in larger k values
- Model complexity decreases with k
- If k equals the number of samples, k-NN always predicts the most frequent class

How to figure out the best k?

k-Nearest Neighbors 000000

k-NN classification (III)

k-Nearest Neighbors

kNN regression (I)

k-NN regression

Given a data point

- I. Take the k closest data points
- 2. Predict same target value (1-NN) or averate target value (k-NN)

Performace is measured with a regression metric, by default, R²

k-Nearest Neighbors

kNN regression (II)

k determines boundary smoothness

- I. With k = 1, prediction visits all data points
- 2. With large k values, fit is worse

k-Nearest Neighbors

Summary

Hyperparameters	Advantages	Disadvantages
k	Simple	Slow with large datasets
Distance	Baseline	Bad performance with
		hundreds or more attri-
		butes
		No model
		Dataset must be stored
		in memory

Linear model (I)

Linear model

$$\mathbf{y} = \beta_0 + \beta_1 \mathbf{x}_1 + \beta_2 \mathbf{x}_2 + \dots + \beta_n \mathbf{x}_n$$

for a single feature $y = \beta_0 + \beta_1 x_1$, where

- β_0 is the intercept
- β_1 is the slope
- Intepretable model

Lineal models assume a linear relationship among variables

- This limitation can be easely overcomed
- Surprisingly good results in high dimensional spaces

Linear regression

Different linear models for regression

• The difference lies in how β_i parameters are learned

Ordinary Least Squares (OLS): Minimizes mean squared error

- OLS does not have any hyperparameter
- No complexity control

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (x_i - y_i)^2$$

Linear regression can be used to fit non-linear models

• Just adding new attributes

Regularized linear models

Regularization: Term that penalizes complexity

- Added to the cost function
- Lineal models remain the same
- Train to minimize cost function and coefficients
- Intercepts are not part of regularization

Three regularizations

LI (Lasso regression), L2 (Ridge regression) and ElasticNet (LI and L2)

Lasso (L1)

 $\alpha \sum_{i=1}^{n} |\beta_{i}|$

Ridge (L2)

 $\frac{\alpha}{2} \sum_{i}^{n} \beta_{i}^{2}$

ElasticNet

 $\alpha \left(\frac{\lambda}{2} \sum_{i}^{n} \beta_{i}^{2} + (1 - \lambda) \sum_{i}^{n} |\beta_{i}| \right)$

Ridge regression

Ridge regression (or L2 regularization) adds a new term to cost function

$$MSE + \alpha \sum_{i=1}^{n} \beta_i^2$$

 α controls the model complexity

- If $\alpha=0$ Ridge becomes a regular linear regression
- ullet Optimal lpha depends on the problem

Ridge by default

Lasso regression (I)

Lasso regression (or L1 regularization) adds a new term to cost function

$$MSE + \alpha \frac{1}{2} \sum_{i=1}^{n} |\beta_i|$$

 α controls the model complexity

- If $\alpha = 0$ Ridge becomes a regular linear regression
- Optimal α depends on the problem

Some coefficiets may be exactly zero

- Implicit feature selection
- Easier interpretation
- Better with large number of attributes

Lasso regression (II)

ElasticNet

Lasso and Ridge can be combined

$$\text{MSE} + \alpha \left(\lambda \frac{1}{2} \sum_{i=1}^{n} |\beta_i| + (1 - \lambda) \sum_{i=1}^{n} \beta_i^2 \right)$$

Two hyperparameters

- \bullet α controls the model complexity
- λ balances L_I and L₂

Regularized linear models comparison

Linear models for classification

Three regularizations

- L1 (Lasso regression)
- L2 (Ridge regression)
- ElasticNet: L1 and L2

Lasso
$$\lambda \sum_{j=1}^{n} \beta_{j}^{2}$$

Summary (I)

Linear regression

	U	
Hyperparameters	Advantages	Disadvantages
-	Fast train and predict Scales well to large data-	No complexity tuning
	sets	

Ridge regression

Tuage regression				
Hyperparameters	Advantages	Disadvantages		
α	Election by default			

Summary (II)

Lasso regression

Hyperparameters	Advantages	Disadvantages
α	Interpretation	

ElasticNet

Hyperparameters	Advantages	Disadvantages
ii, poi par amo o o i	II a v all vag ob	Dibaaranoagob

 α

λ

Naive Bayes Classifiers

TODO

Naive Bayes Classifiers

Summary

Hyperparameters Advantages Disadvantages

Decission Trees

TODO

k-Nearest Neighbors Linear models Naive Bayes Classifiers Decision Trees Ensembles of Decision Trees Support Vector Machines

Decission Trees

Summary

Hyperparameters Advantages Disadvantages

Ensembles of Decision Trees

TODO

k-Nearest Neighbors Linear models Naive Bayes Classifiers Decission Trees Decission Trees Support Vector Machine

Ensembles of Decision Trees

Summary

Hyperparameters Advantages Disadvantages

Support Vector Machines

TODO

Support Vector Machines

Kernelized Support Vector Machines

TODO

Support Vector Machines

Summary

Hyperparameters Advantages Disadvantages

F

TODO

Α

B: Summary

Hyperparameters Advantages Disadvantages

000

Algorithms

ARIMA (I)

AR: Autoregressive model

- Current observation depends on the last p observations
- Long term memory

MA: Moving Average model

- Current observation linearly depends on the last q innovations
- Short term memory

ARMA model = AR + MA

• ARMA(p, q): Two hyperparameters, p and q

AR(p)

$$X_t = c + \sum_{i=1}^p \phi_i X_{t-1} + \epsilon_t$$

MA(q)

$$X_t = \mu + \epsilon_t + \theta_1 \epsilon_{t-1} + ... + \theta_q \epsilon_{t-q}$$

A 0000 Nearest Neighbors Linear models Naive Bayes Classifiers Decission Trees Ensembles of Decision Trees Support Vector Machines

Algorithms

ARIMA (II)

ARIMA = AR + i + MA (AR integrated MA)

- ARIMA(p, d, q)
- Three integer parameters: p, q and d (in practice, low order models)

autoarima: search over p, q and d

A 0000