1 Allgemein

1.1 Potenzen und Wurzeln

- $-a^1 = a a^0 = 1$
- $a^{-n} = \frac{1}{a^n}$
- $-a^{\frac{1}{n}} = \sqrt[n]{a} a^{\frac{m}{n}} = \sqrt[n]{a^m}$
- $a^x = e^{x \ln a}$
- $a^m a^n = a^{m+n}$
- $\frac{a^m}{a^n} = a^{m-n}$
- \bullet $(a^m)^n = a^{mn}$
- $a^n b^n = (ab)^n$
- $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$ $a^x = e^{x \ln a}$

1.2 Logarithmen

 $y = \log_a x \iff a^x = x$

- $a^{\log_a x} = r$
- $\log_a a^x = x$
- $-\log_a a = 1 \log_a 1 = 0$
- $\log(uv) = \log(u) + \log(v)$
- $\log(\frac{u}{v}) = \log(u) \log(v)$
- $\log(u^r) = r \log(u)$
- $\log_a x = \frac{\log_b x}{\log_b a}$

1.3 Spezielle Summen

$\sum_{k=1}^{n} k$	$1+2+\cdots+n$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^2$	$1+4+\cdots+n^2$	$\frac{n(n+1)(2n+1)}{6}$
$\sum_{k=1}^{n} k^3$	$1+8+\dots n^3$	$\left(\sum_{k=1}^{\infty} k\right)^2$
$\sum_{k=1}^{n} (2k-1)$	$1+3+\cdots+(2n-1)$	n^2
$\sum_{k=1}^{n} (2k-1)^2$	$1 + \dots + (2n-1)^2$	$\frac{n(2n-1)(2n+1)}{3}$
$\sum_{k=0}^{n-1} q^k$	$1 + q + \dots = \frac{q^n - 1}{q - 1}$	$\frac{1-q^n}{1-q}, \ q \notin \{0,1\}$

1.4 Trigonometrische Funktionen

Sinussatz: $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2r$ Cosinussatz: $a^2 = b^2 + c^2 - 2ab \cos \alpha$

- $\sin^2 a + \cos^2 a = 1$
- $\tan a = \frac{\sin a}{\cos a}$ $1 + \tan^2 a = \frac{1}{\cos^2 a}$

1.4.1 Komposition

$$\sin(\arccos(x)) = \sqrt{1 - x^2} \begin{vmatrix} \sin(\arctan(x)) = \frac{x}{\sqrt{1 + x^2}} \\ \cos(\arctan(x)) = \frac{1}{\sqrt{1 + x^2}} \\ \tan(\arcsin(x)) = \frac{x}{\sqrt{1 - x^2}} \end{vmatrix} \tan(\arctan(x)) = \frac{x}{\sqrt{1 - x^2}}$$

1.4.2 Hyperbolisch

- $\cosh^2(x) \sinh^2(x) = 1$
- $\sinh(a+b) = \sinh(a)\cosh(b) + \cosh(a)\sinh(b)$
- $\cosh(a+b) = \cosh(a)\cosh(b) + \sinh(a)\sinh(b)$

1.4.3 Winkel

\deg	rad	\sin	\cos	\deg	rad	\sin	\cos
0	0	0	1	30	$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
45	$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	60	$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
90	$\frac{\pi}{2}$	1	0	120	$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{-1}{2}$
135	$\frac{3\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	150	$\frac{5\pi}{6}$	$\frac{1}{2}$	$\frac{-\sqrt{3}}{2}$
180	π	0	-1	210	$\frac{7\pi}{6}$	$\frac{-1}{2}$	$\frac{-\sqrt{3}}{2}$
225	$\frac{5\pi}{4}$	$\frac{-\sqrt{2}}{2}$	$\frac{-\sqrt{2}}{2}$	240	$ \begin{array}{c} \frac{2\pi}{3} \\ \frac{5\pi}{6} \\ \frac{7\pi}{6} \\ \frac{4\pi}{3} \\ \frac{5\pi}{3} \end{array} $	$\frac{-\sqrt{3}}{2}$	$\frac{-1}{2}$ $\frac{1}{2}$ $\sqrt{3}$
270	$\frac{3\pi}{2}$	-1	0	300	$\frac{5\pi}{3}$	$\frac{-\sqrt{3}}{2}$	$\frac{1}{2}$
315	$\frac{7\pi}{4}$	$\frac{-\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	330	$\frac{11\pi}{6}$	$\frac{-1}{2}$	$\frac{\sqrt{3}}{2}$

$$\begin{array}{c|c} \arcsin(0) = 0 \\ \arcsin(1) = \frac{\pi}{2} \\ \arcsin(-1) = -\frac{\pi}{2} \\ \end{array} \begin{array}{c} \arccos(0) = \frac{\pi}{2} \\ \arccos(0) = 0 \\ \arccos(0) = \pi \\ \end{array} \begin{array}{c} \arctan(1) = \frac{\pi}{4} \\ \arctan(-1) = -\frac{\pi}{4} \\ \arctan(\sqrt{3}) = \frac{\pi}{3} \\ \end{array}$$

- $\arccos(x) = \frac{\pi}{2} \arcsin(x)$
- $\lim_{n\to\infty} \arctan(n) = \frac{\pi}{2}$

1.4.4 Reduktion

1.5 Sonstiges

- $x_{1/2} = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- $\bullet \ \sqrt{i} = \frac{\sqrt{2}}{2} + i \frac{\sqrt{2}}{2}$

1.5.1 Bekannte Integrale

f(x)	F(x)
$\sin^2(x)$	$\frac{x-\sin(x)\cos(x)}{2}$
$\cos^2(x)$	$\frac{x+\sin(x)\cos(x)}{2}$
$\sin(kx) \cdot \cos(kx)$	$-\frac{1}{4k}\cos(2kx) = \frac{-(\cos(x))^2}{2}$
$\frac{x^2}{x^2+1}$	$x - \arctan(x)$
$\frac{1}{(1+x^2)^2}$	$\frac{\frac{x}{x^2+1} + \arctan(x)}{2}$
$\frac{u'(x)}{u(x)}$	$\ln u(x) $
$u'(x) \cdot u(x)$	$\frac{1}{2}(u(x)^2)$
$\sqrt{a^2-x^2}$	$\frac{a^2\arcsin(\frac{x}{ a })}{2} + \frac{x\sqrt{a^2 - x^2}}{2}$
$\sqrt{a^2 + x^2}$	$\frac{a^{2}\ln(\sqrt{x^{2}+a^{2}}+x)}{2} + \frac{x\sqrt{a^{2}+x^{2}}}{2}$
$a^x \cdot \ln(a), \ a > 0$	a^x
$x^x(1+\ln x)$	$x^x, x > 0$
$x^{x}(1 + \ln x) = e^{\ln x }(\ln(x) + 1)$	$ x ^x = e^{x \ln x}$
$\frac{1}{(x+a)^2}$	$-\frac{1}{x-1}$

2 Zahlen und Mengen

2.1 Körper

Addition: $\mathbb{R} \times \mathbb{R} \stackrel{+}{\to} \mathbb{R}$, $(x,y) \mapsto x + y$

- A.1 Assoziativität: x + (y + z) = (x + y) + $z \quad \forall x, y, z \in \mathbb{R}$
- A.2 Neurales Element: $x + 0 = x \quad \forall x \in \mathbb{R}$
- A.3 Inverse Elem.: $x + y = 0 \quad \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R}$
- A.4 Kommunikativität: $x+y=y+x \quad \forall x,y \in \mathbb{R}$ Werden alle Axiome erfüllt $\implies \mathbb{R}$ ist abelisch.

Multiplikation: $\mathbb{R} \times \mathbb{R} \xrightarrow{\cdot} \mathbb{R}$, $(x,y) \mapsto x \cdot y$

- M.1 Assoziativität: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ $z \quad \forall x, y, z \in \mathbb{R}$
- M.2 Neurales Element: $x \cdot 1 = x \quad \forall x \in \mathbb{R}$
- M.3 Inverses Elem.: $x \cdot y = 1 \quad \forall x \in \mathbb{R} \quad \exists y \in \mathbb{R}$
- M.4 Kommunikativität: $x \cdot y = y \cdot x \quad \forall x, y \in \mathbb{R}$ Werden alle Axiome erfüllt $\implies R^* = \mathbb{R} \setminus 0$ ist abelisch.

Distributivität: Macht Addition und Multiplikation verträglich

D.1 Distributivität: $x \cdot (y+z) = x \cdot y + x \cdot$ $z \quad \forall x, y, z \in \mathbb{R}$

Ordnung (\leq): gibt es auf \mathbb{R}

O.1 Reflexivität: $x \leq x \quad \forall x \in \mathbb{R}$

O.2 Transitivität: $x \le y \land y \le z \implies x \le z$

O.3 Antisymmetrie/Identität: $x \le y \land y \le x \implies x = y$

O.4 Total: $x \leq y \vee y \leq x \quad \forall x, y \in \mathbb{R}$

Kompatibilität: Ordnung ist mit Körperaxiome kompatibel

 $\begin{array}{ll} \mathrm{K.1} & x \leq y \implies x+z \leq y+z & \forall x,y,z \in \mathbb{R} \\ \mathrm{K.2} & x \cdot y \geq 0 & \forall x \geq 0, y \geq 0 \end{array}$

Ordnungsvollständigkeit (V): Existiert für \mathbb{R}

1. $A, B \subset \mathbb{R}$, $A, B \neq \emptyset$

2. $a \le b \quad \forall a \in A, b \in B$

 $\implies \exists c \in \mathbb{R}, \forall a \in A, b \in B, \quad a \leq c \land c \leq b$

2.2 Archimedisches Prinzip

1. $\forall x, y \in \mathbb{R}, x > 0, \exists n \in \mathbb{N} : y \le n \cdot x$

2. $\forall x \in \mathbb{R}, \exists n \in \mathbb{Z} : n \le x < n+1$

2.3 Min, Max, Abs

Max: $\max\{x,y\} = \max(x,y) \ \forall x,y \in \mathbb{R}$

Min: $\min\{x,y\} = \min(x,y) \ \forall x,y \in \mathbb{R}$

Absolutbetrag: $\forall x \in \mathbb{R} : |x| = \max\{-x, x\}$

1. $|x| \ge 0 \ \forall x \in \mathbb{R}$

 $2. |x \cdot y| = |x| \cdot |y| \ \forall x \in \mathbb{R}$

3. $|x+y| \le |x| + |y| \ \forall x \in \mathbb{R}$

4. $|x+y| \ge ||x| - |y|| \ \forall x \in \mathbb{R}$

2.4 Yung'sche Ungleichung

 $\forall x, y \in \mathbb{R} \ \forall \epsilon > 0 : \quad 2|x \cdot y| \le \epsilon \cdot x^2 + \frac{1}{\epsilon} \cdot y^2$

2.5 Intervall

Teilmenge von \mathbb{R}

1. $\forall a, b \in R, a \leq b$

(a) $[a, b] = [a, b] = \{x \in \mathbb{R} | a \le x \le b\}$

(b) $[a, b) = [a, b] = \{x \in \mathbb{R} | a \le x < b\}$

(c) $(a, b] = |a, b| = \{x \in \mathbb{R} | a < x \le b\}$

(d) $(a,b) =]a, b[= \{x \in \mathbb{R} | a < x < b\}]$

 $2. \ \forall a \in \mathbb{R}$

(a) $[a, +\infty[= \{x \in \mathbb{R} | x \ge a\}]$

(b) $]a, +\infty[=\{x \in \mathbb{R} | x > a\}]$

(c) $]-\infty,a]=\{x\in\mathbb{R}|x\leq a\}$

(d) $]-\infty, a[=\{x \in \mathbb{R} | x < a\}]$

3. $\mathbb{R} =]-\infty, +\infty[$

2.6 Schranken

Teilmenge: $A \subset \mathbb{R}, A \neq \emptyset$

Obere Schranke: $c \in R$ von A falls $\forall a \in A : a \leq c$ Nach Oben Beschränkt: A hat eine obere Schranke Untere Schranke: $c \in \mathbb{R}$ von A falls $\forall a \in A : a \geq c$ Nach Unten Beschränkt: A hat eine untere Schranke Supremum: $s := \sup A$ ist klein. obere Schranke von A $(\forall a \in A | a \geq s)$ \land $(\forall \epsilon > 0 \exists a \in A | a > s - \epsilon)$

s ist eine obere Schranke von A s ist die klein. obere Schranke von A Infimum $l := \inf A$ ist grösste untere Schranke von A

 $(\forall a \in A | a \ge l) \qquad \land \ (\forall \epsilon > 0 \ \exists a \in A | a > l + \epsilon)$

l ist eine untere Schranke von A l ist die gröss. unt. Schranke von A

• $a \le b \ \forall a \in A, b \in B \implies \sup A \le \inf B$

• $A, B \subseteq \mathbb{R}, c \in \mathbb{R}$

 $-c \cdot A := \{c \cdot a | a \in A\}$

 $-A + B := \{a + b | a \in A, b \in B\}$

• $\sup\{A \cup B\} = \max\{\sup A, \sup B\}$

• $\sup (A+B) = \sup A + \sup B$

• $\sup (c \cdot A) = \begin{cases} c \cdot \sup A & \text{if } c > 0 \\ c \cdot \inf A & \text{if } c < 0 \end{cases}$

1. $A \subset \mathbb{R}$ nach oben beschränkt \Longrightarrow Menge der oberen Schranken ist im Intervall [sup $A, +\infty$ [

2. $A \subset \mathbb{R}$ nach unten beschränkt \Longrightarrow Menge der unteren Schranken ist im Intervall $]-\infty$, inf A]

 $A \subset B \subset \mathbb{R}$:

1. B nach oben beschränkt $\implies \sup A \leq \sup B$

2. B nach unten beschränkt \implies inf $A \ge \inf B$

 $A \subset \mathbb{R}$:

1. A nach oben unbeschränkt $\implies \sup A = +\infty$

2. A nach unten unbeschränkt \implies inf $A = -\infty$

2.7 Kardinalität

Gleichmächtig: $X,Y\subset\mathbb{R}$ \exists Bijektion $f:X\to Y$

Endlich: falls $X = \emptyset$ oder $\exists n \in \mathbb{N} : \{1, 2, \dots, n\}, X$ gleichmächtig

Abzählbar: falls X endlich oder gleichmächtig wie $\mathbb N$

2.8 Komplexe Zahlen

Imaginary Number: $i, i^2 = -1$

Complex Number: $z, z = x + iy, \ x, y \in \mathbb{R}$

Real Part: $Rez = x \in \mathbb{R}$

Imaginary Part: $\text{Im} z = y \in \mathbb{R}$

Set: $\mathbb{C} = \{x + iy | x, y \in \mathbb{R}\}$

• $R \subset \mathbb{C} : \mathbb{R} = \{z \in \mathbb{C} | \operatorname{Im} z = 0\}$

• Rein-Imaginär: $0 + yi, y \in \mathbb{R}$

Konjugate: $\overline{z} = x - iy$, z = x + iy

• $z \cdot \overline{z} = x^2 \cdot y^2 = |z|^2$

 $\bullet \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$

 $\bullet \ \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$

Betrag: |z| Distanz zwischen z und Origin

• $|z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \overline{z}}$

• $|z| = |\overline{z}|$

• $|z_1 + z_2| \le |z_1| + |z_2|$

• $|z_1 \cdot z_2| = |z_1||z_2|$

 $\bullet \ |\frac{z_1}{z_2}| = \frac{|z_1|}{|z_2|}$

Euler: $e^{i\gamma} = \cos \gamma + i \sin \gamma$

• $|e^{i\gamma}| = 1$

2.8.1 Arithmetic

Für $z_1 = a + ib = re^{i\gamma}, z_2 = b + id = re^{i\delta}$:

• $z_1 + z_2 = (a + ib) + (c + id) = (a + c) + i(b + d)$

• $z_1 \cdot z_2 = (a+ib) \cdot (c+id) = (ac-bd) + i(ad+bc)$ - $z_1 z_2 = rse^{i(\gamma+\delta)}$

 $\bullet \ \frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}} = \frac{z_1 \cdot \overline{z_2}}{|z_2|}$ $- \frac{z_1}{z_2} = \frac{r}{s} e^{i(\gamma - \delta)}$

• $\sqrt[n]{z_1} = z_2 \Longrightarrow z_1 = z_2^n = r^n e^{in\delta} \stackrel{!}{=} r e^{i\gamma}$ - $s = \sqrt[n]{r}$ - $n\gamma = \gamma + 2\pi k, k = 0 \dots n - 1$

2.8.2 Polar Coordinates

 $z = x + iy \iff z = r(\cos \gamma + i \sin \gamma) \stackrel{Euler}{=} z = re^{i\gamma}$

• $-x = r\cos\gamma - y = r\sin\gamma$

• r = |z|

• $\gamma = \arccos \frac{x}{r} = \arcsin \frac{y}{r}$

• $\arg z = |z| \in [0, 2\pi[\implies r \text{ ist eindeutig bestimmt}]$

3 Folgen

Folge: $(a_n)_{n\geq a>0}$ ist Funktion $a: \mathbb{N}^* \to \mathbb{A}, n \mapsto a_n, \mathbb{A}$ ist beliebiges Set.

Konvergent: ist $(a_n)_{n\in\mathbb{N}}$ falls $\exists l \in R : \forall \epsilon > 0$ das Set $\{n \in \mathbb{N} | a_n \notin]l - \epsilon, l + \epsilon[\} = \{n \in N^* | |a_n - l| \ge \epsilon\}$ endlich ist

- $\forall \epsilon > 0 \ \exists N \ge 1 : \quad |a_n l| < \epsilon \ \forall n \ge N$
- $(a_n)_{n\in\mathbb{N}}$ konvergente \implies $(a_n)_{n\in\mathbb{N}}$ beschränkt.
- Es gibt 2 Arten von divergenten Folgen

Grenzwert: $(a_n)_{n\in\mathbb{N}}$ konvergiert gegen $a\iff$ $\lim_{n\to\infty}a_n=a\iff\forall\epsilon>0, \exists n_0\in N, \forall n\geq n_0: |a_n-a|<\epsilon$

• $\lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+k} \forall k \in \mathbb{N}$

3.1 Rechenregeln

 $\forall (a_n)_{n\in\mathbb{N}}, (b_n)_{n\in\mathbb{N}}$ konvergent, mit $\lim_{n\to\infty} a_n$ $a, \lim_{n\to\infty} b_n = b$

- 1. $(a_n + b_n)_{n \in \mathbb{N}}$ ist konvergent mit $\lim_{n \to \infty} (a_n + b_n) = a + b$
- 2. $(a_n \cdot b_n)_{n \in \mathbb{N}}$ ist konvergent mit $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- 3. $\left(\frac{a_n}{b_n}\right)_{n\in\mathbb{N}}$ ist konvergent mit $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right) = \left(\frac{a}{b}\right)$ if $b_n \neq 0 \ \forall n \in \mathbb{N} \land b \neq 0$
- 4. Falls $\exists K \geq 1, a_n \leq b_n \ \forall n \geq K \implies a \leq b$
- 5. $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{\lim_{n\to\infty} a_n}$

3.2 Monotonie

Monoton Wachsend: $a_n \leq a_{n+1} \quad \forall n \in \mathbb{N}$ Strikt Monoton Wachsend: $a_n < a_{n+1} \quad \forall n \in \mathbb{N}$ Monoton Fallend: $a_n \geq a_{n+1} \quad \forall n \in \mathbb{N}$ Strikt Monoton Fallend: $a_n > a_{n+1} \quad \forall n \in \mathbb{N}$

3.3 Einschliessungskriterium

 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \alpha \in \mathbb{R} \ \exists K \in \mathbb{N} \ \exists (c_n)_{n\in\mathbb{N}} :$ $a_n \le c_n \le b_n \ \forall n \ge K \implies \lim_{n\to\infty} c_n = \alpha$

3.4 Weierstrass / Monoton Konvergenz Satz

- $(a_n)_{n\in\mathbb{N}}$ monoton wachend und nach oben beschränkt \Longrightarrow $(a_n)_{n\in\mathbb{N}}$ konvergiert und $\lim_{n\to\infty} a_n = \sup\{a_n : n \ge 1\}$
- $(a_n)_{n\in\mathbb{N}}$ monoton fallend und nach unten be-

schränkt \Longrightarrow $(a_n)_{n\in\mathbb{N}}$ konvergiert und $\lim_{n\to\infty}a_n=\inf\{a_n:n\geq 1\}$

3.5 Funktionen und deren Grenzwert

Funktion	Grenzwert	Bedingung
$\lim_{n\to\infty} a^n$	0	a < 1
$\lim_{n\to\infty} \sqrt[n]{a}$	1	a > 0
$\lim_{n\to\infty} \sqrt[n]{n^a}$	1	a > 0
$\lim_{n\to\infty} \sqrt[n]{n}$	1	
$\frac{\lim_{n \to \infty} \frac{\log_a n}{n}}{\lim_{n \to \infty} \frac{n^k}{a^n}}$ $\frac{\lim_{n \to \infty} \frac{n^k}{a^n}}{\lim_{n \to \infty} \frac{n}{n!}}$	0	a > 1
$\lim_{n\to\infty}\frac{n^k}{a^n}$	0	a > 1
$\lim_{n\to\infty}\frac{\ddot{a}^n}{n!}$	0	
$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}$	∞	
$\lim_{n\to\infty} \left(1+\frac{\pi}{n}\right)$	e	
$\lim_{n\to\infty} \left(1+\frac{a}{n}\right)^n$	e^a	
$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n$	$\frac{1}{e}$	
$\lim_{n\to 0} \frac{\sin n}{n}$	1	
$\lim_{n\to 1} \frac{\ln n}{n-1}$	1	
$\overline{\lim_{n\to\infty} \frac{n^m}{\exp(an)}}$	0	$m \in \mathbb{R}, a > 0$
$\lim_{n\to 0} \frac{\exp(n)-1}{n}$	1	
$\lim_{n\to 0} \frac{\ln(1+n)}{n}$	1	
$\frac{\lim_{n\to\infty} \frac{\ln n}{n^a}}{\lim_{n\to0} \frac{a^n-1}{n}}$	0	a > 0
$\lim_{n\to 0} \frac{a^n-1}{n}$	$\ln a$	a > 0
$\lim_{n\to 0} (n^{\frac{n}{a}} \ln n)$	0	a > 0

3.6 Bernoulli Ungleichung

 $(1+x)^n \ge 1 + n \cdot x \ \forall n \in \mathbb{N}, x > -1$

3.7 Limes Superior und Limes Inferior

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ kann in zwei monotone Folgen $(b_n)_{n\in\mathbb{N}}$ und $(c_n)_{n\in\mathbb{N}}$ geteilt werden.

- 1. $\forall n \ge 1 : b_n = \inf\{a_k | k \ge n\} \text{ und } c_n = \sup\{a_k | k \ge n\}$
- 2. $b_n \le b_{n+1}$ und $c_n \ge c_{n+1} \quad \forall n \in \mathbb{N}$
- 3. $(b_n)_{n\in\mathbb{N}}$ monoton wachsend, $(c_n)_{n\in\mathbb{N}}$ monoton fallend
- 4. b_n und c_n sind beschränkt \implies konvergent
- 5. Limes Inferior: $\liminf_{n\to\infty} a_n := \lim_{n\to\infty} b_n$
- 6. Limes Superior: $\limsup_{n\to\infty} a_n := \lim_{n\to\infty} c_n$
- 7. $b_n \le c_n \implies \liminf_{n \to \infty} a_n \le \limsup_{n \to \infty} a_n$

• $(a_n)_{n\in\mathbb{N}}$ konvergiert \iff $(a_n)_{n\in\mathbb{N}}$ beschränkt und $\liminf_{n\to\infty}a_n=\limsup_{n\to\infty}a_n$

3.8 Cauchy Kriterium

Cauchy-Folge: $(a_n)_{n\in\mathbb{N}}$ falls $\forall \epsilon>0$ $\exists N\in\mathbb{N}:$ $\forall m,n\geq N$ $|a_n-a_m|<\epsilon$

- Abstand zwischen Folgegliedern wird mit wachsendem Index beliebig klein
- a_n Cauchy-Folge $\implies a_n$ beschränkt
- a_n konvergent $\iff a_n$ Cauchy-Folge
- $(a_n)_{n \in \mathbb{N}}$ konvergiert \iff $\forall \epsilon > 0 \exists \mathbb{N} \geq 1 : |a_n a_m| < \epsilon \quad \forall n, m \geq \mathbb{N}$
- a_n nicht Cauchy-Folge $\implies a_n$ divergent

3.9 Abgeschlossener Teilintervall

Teilmenge $I \subset \mathbb{R}$

- 1. [a,b] $a \leq b, a, b \in \mathbb{R} \implies L(I) = b a$
- 2. $[a, +\infty[$ $a \in \mathbb{R} \implies L(I) = \infty$
- 3. $]-\infty,a]$ $a \in \mathbb{R} \implies L(I) = \infty$
- 4. $]-\infty, +\infty[=\mathbb{R} \implies L(I)=\infty$
- $I \subset \mathbb{R}$ beschränkt \iff $L(I) < +\infty$
- $I \subset \mathbb{R}$ ist abgeschlossen \iff für jede konvergierende $(a_n)_{n \in \mathbb{N}}$ aus Elementen in I muss $\lim_{n \to \infty} a_n \in I$
- $I = [a, b], J = [c, d], a \le b, c \le d, a, b, c, d \in \mathbb{R}$, falls $c \le a$ und $b \le d \implies I \subset J$ - $L(I) = b - a \le d - c = L(J)$
- Monoton fallende Folge von Teilmengen von \mathbb{R} ist eine Folge $(X_n)_{n\in\mathbb{N}}, X_n \subset \mathbb{R}$ mit $X_1 \supseteq X_2, \supseteq \cdots \supseteq X_n \supseteq \ldots$

3.10 Cauchy-Cantor

Für absteigende Folge geschlossener Intervalle $I_1 \supseteq \cdots \supseteq I_n \supseteq \cdots$ mit $L(I_1) < +\infty$ gilt $\bigcap_{n \ge 1} I_n \ne \emptyset$. Falls $\lim_{n \to \infty} L(I_n) = 0 \Longrightarrow \bigcap_{n \ge 1} I_n = \{x\} \ x \in \mathbb{R}$.

3.11 Teilfolge

Teilfolge von $(a_n)_{n \in \mathbb{N}}$ ist $(b_n)_{n \in \mathbb{N}}$ wobei $b_n = a_{l(n)}$ für $l: \mathbb{N}^* \to \mathbb{N}^*$ mit der Eigenschaft $l(n) < l(n+1) \forall n \geq 1$

• Entsteht durch weglassen von Folgengliedern.

• $(a_n)_{n\in\mathbb{N}}$ konvergent $\implies (a_{l(n)})_{n\in\mathbb{N}}$ konvergent für alle Teilfolgen.

3.12 Bolzano-Weierstrass

Jede beschränkte Folge besitzt eine konvergente Teilfolge.

- $(a_n)_{n\in\mathbb{N}}$ beschränkt \Longrightarrow für jede beschränkte Teilfolge $(b_n)_{n\in\mathbb{N}}$ gilt $\liminf_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n \leq \limsup_{n\to\infty} a_n$
- Es gibt je eine Teilfolgen von $(a_n)_{n\in\mathbb{N}}$ die $\liminf_{n\to\infty} a_n$ resp. $\limsup_{n\to\infty} a_n$ als Limes annehmen.

3.13 Rezept: Konvergenz und Grenzwert

Geschlossene Formel: • auf Bruch erweitern • n ausklammern und kürzen • n in Nenner bekommen

Rekursive Definition: • Geschlossene Formel finden

- 1. Monotonie zeigen 2. Beschränktheit zeigen
- 3. Monoton Konvergenzsatz 4. Induktionstrick: $-c = \lim_{n\to\infty} a_n = \lim_{n\to\infty} a_{n+1}$ Solve c

4 Reihen

Folge der Partialsummen: $(S_n)_{n\in\mathbb{N}} := a_1 + a_2 + \cdots + a_n = \sum_{k=1}^n a_k$ einer Folge $(a_n)_{n\in\mathbb{N}}$.

- $(S_n)_{n\in\mathbb{N}}$ konv. $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konv.
- $(S_n)_{n \in \mathbb{N}}$ nach oben beschränkt $\iff \sum_{k=1}^{\infty} a_k, a_k \ge 0 \ \forall k \in \mathbb{N}^*$ konvergiert.
- Ist monoton steigend.

Reihe: Unendliche Summe $\sum_{k=1}^{\infty} a_k$ einer Folge $(a_n)_{n \in \mathbb{N}}$.

- Für divergierende Reihen ist die Summe ein Symbol nicht konvergente Folge $(s_n)_{n\in\mathbb{N}}$.
- Für konvergente Reihe ist die Summe ein Symbol für den Grenzwert der Folge $(s_n)_{n\in\mathbb{N}}$.

Konvergent: ist $\sum_{k=1}^{\infty} a_k$ falls die Folge $(S_n)_{n \in \mathbb{N}}$ von $(a_n)_{n \in \mathbb{N}}$ konvergiert.

- $\sum_{k=1}^{\infty} a_k$ konvergiert $\implies \lim_{k \to \infty} a_k = 0$.
- $\lim_{k\to\infty} |a_k| \neq 0 \implies \sum_{k=1}^{\infty} a_k$ divergent.

Grenzwert: $\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$ $\lim_{k \to \infty} \sum_{n=1}^{k} S_n$.

Weglassen von Anfangsgliedern verändert die Konvergenz nicht, verändert ggf. jedoch den Grenzwert.

4.1 Bekannte Reihen

Reihe	Wert	konv.	div.	
Geometrische Reih	$q\in\mathbb{C}$			
$\sum_{k=0}^{\infty} aq^k$	a + aq +	$\frac{a}{1-q}$	g < 1	$ q \ge$
$\sum_{k=0}^{\infty} (k+1)q^k$	1 + 2q +	$\frac{1}{(1-q)^2}$		
Harmonische Reihe	Э			
$\sum_{k=1}^{\infty} \frac{1}{k}$		∞		
$\sum_{k=1}^{\infty} \frac{1}{k^2}$		$\frac{\pi^2}{6}$		
$\frac{\sum_{k=1}^{\infty} \frac{1}{k^4}}{\sum_{k=1}^{\infty} \frac{1}{k^4}}$		$\frac{\frac{\pi^2}{6}}{\frac{\pi^4}{90}}$		
$\underline{\sim} k=1 k^a$			a > 1	$a \leq 1$
Alternierende Harr	mon. Reihe			
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}$		$\ln 2$		
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^2}$		$\frac{\pi^2}{12}$		
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k^4}$		$\frac{\pi^4}{720}$		
$\sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}$	$1 - \frac{1}{3} + \frac{1}{5} -$	$\frac{\pi}{4}$		
Teleskopreihe				
$\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$		1		
Exponentialfunktio	on $z \in \mathbb{C}$, konv.	abs.		
$\sum_{k=0}^{\infty} \frac{z^k}{k!}$	$1 + z + \frac{z^2}{2!} +$	$\exp z$		
$\frac{\sum_{k=0}^{\infty} \frac{z^k}{k!}}{\sum_{k=0}^{\infty} \frac{(-a)^k}{k!}}$		$\frac{1}{e^a}$		
$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} -$	$\sin x$		
$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}$	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - 1 - \frac{x^2}{2} + \frac{x^4}{4!} - $	$\cos x$		
$\sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)!}$	$x + \frac{x^3}{3!} + \frac{x^5}{5!} +$	$\sinh x$		
$\sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}$	$1 + \frac{x^2}{2} + \frac{x^4}{4!} +$	$\cosh x$		

4.2 Rechenregeln

 $\forall \sum_{k=1}^{\infty} a_k, \sum_{k=1}^{\infty} b_k \text{ konvergent, } \alpha \in \mathbb{C}$

- 1. $\sum_{k=1}^{\infty} (a_k + b_k) = (\sum_{k=1}^{\infty} a_k) + (\sum_{k=1}^{\infty} b_k)$ konvergent.
- 2. $\sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k$ konvergent.

4.3 Cauchy Kriterium

 $\sum_{k=1}^{\infty} a_k \text{ konvergent } \iff \forall \epsilon > 0 \ \exists N \ge 1 : \ |\sum_{k=n}^{m} a_k| < \epsilon \ \forall m \ge n \ge N.$

- $\sum_{k=1}^{\infty} a_k$ konvergent $\iff \lim_{k \to \infty} |\sum_{k=n}^m a_k| = 0$ m > n.
- $\sum_{k=1}^{\infty} a_k$ konvergent $\implies \lim_{k \to \infty} a_k = 0$.
- $\lim_{k\to\infty} a_k \neq 0 \implies \sum_{k=1}^{\infty} a_k$ divergent.

4.4 Vergleichssatz

Für $\sum_{k=1}^{\infty} a_k \sum_{k=1}^{\infty} b_k$, $0 \le a_k \le b_k \ \forall k \ge K$:

Majoranten Kriterium: $\sum_{k=1}^{\infty} b_k$ konvergiert $\sum_{k=1}^{\infty} a_k$ konvergiert (konv. abs. falls $|a_k| \leq b_k$)

Minoranten Kriterium: $\sum_{k=1}^{\infty} k_k$ divergiert = $\sum_{k=1}^{\infty} b_k$ divergiert.

4.5 Umordnung

 $\sum_{k=1}^{\infty} a'_k$ ist eine Umordnung von $\sum_{k=1}^{\infty} a_k$ falls es eine Bijektion $\phi: \mathbb{N}^* \to \mathbb{N}^*$ gibt so dass $a'_n = a_{\phi(n)}$

• Eine nicht subjektive (nur injektiv) Abbildung entspricht der Reihe einer Teilfolge der Folge. $\sum_{n=1}^{\infty} (a_n)_{n \in N} \text{ konvergent} \implies \sum_{n=1}^{\infty} (a_{\phi(n)})_{n \in \mathbb{N}} \text{ konvergent}.$

4.6 Absolute Konvergenz

 $\sum_{k=1}^{\infty} a_k$ absolut konvergent falls $\sum_{k=1}^{\infty} |a_k|$ konvergent.

- Falls divergent, kann sie nur gegen $+\infty$ divergieren.
- $\sum_{k=1}^{\infty} |a_k|$ konvergent $\Longrightarrow \sum_{k=1}^{\infty} a_k$ konvergent $-|\sum_{k=1}^{\infty} a_k| \le \sum_{k=1}^{\infty} |a_k|$.
- $a_n \ge 0 \implies$ absolute Konvergenz ist äquivalent zu konvergent.

Bedingt Konvergent: $\sum_{k=1}^{\infty} a_k$ ist konvergent aber nicht absolut konvergent.

4.6.1 Dirichlet

 $\sum_{k=1}^{\infty} a_k$ absolute konvergent \implies jede Umordnung ist konvergent mit demselben Grenzwert.

4.6.2 Riemann

 $\sum_{k=1}^{\infty} a_k \text{ konvergent aber nicht absolut konvergent } \Longrightarrow \exists \text{ Umordnung } \forall A \in \mathbb{R} \cup \{\pm \infty\} : \sum_{k=1}^{\infty} a_{\phi(n)} = A.$

4.7 Leibniz

 $(a_n)_{n\in\mathbb{N}}$ monoton fallend, $a_n \geq 0 \ \forall n \in \mathbb{N}$ und $\lim_{n\to\infty} a_n = 0 \implies S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$ konvergiert.

- $a_1 a_2 < S < a$
- $(s_n)_{n \in \mathbb{N}}$ beschränkt, $\lim_{n \to \infty} s_{2n} = \lim_{n \to \infty} s_{2n+1} = s \Longrightarrow \lim_{n \to \infty} s_n = s$.

4.8 Quotientenkriterium

Für $(a_n)_{n\in\mathbb{N}}, a_n\neq 0 \ \forall n\geq 1$:

- 1. $\limsup_{k\to\infty} \frac{|a_{n+1}|}{|a_n|} < 1 \implies \sum_{k=1}^{\infty} a_k$ konv. abs.
- 2. $\liminf_{k\to\infty} \frac{|a_n+1|}{|a_n|} > 1 \implies \sum_{k=1}^{\infty} a_k$ divergiert.
- $\exists \lim_{k \to \infty} \left| \frac{a_n + 1}{a_n} \right| =: L \implies$

 $\begin{cases} \sum_{k=1}^{\infty} a_k \text{ absolut konvergent} & \text{if } L < 1\\ \sum_{k=1}^{\infty} a_k \text{ konvergent} & \text{if } L > 1\\ \text{versagt Kriterium} & \text{if } L = 1 \end{cases}$

- Nützlich für $n!, a^n$ und Polynom.
- Versagt wenn unendlich viele Glieder a_n der Reihe verschwinden.

4.9 Wurzelkriterium

Für $(a_n)_{n\in\mathbb{N}}$:

- 1. $\limsup_{n\to\infty} \sqrt[n]{|a_n|} < 1 \implies \sum_{k=1}^{\infty} a_k$ konv. abs. 2. $\limsup_{n\to\infty} \sqrt[n]{|a_n|} > 1 \implies \sum_{k=1}^{\infty} a_k$ und
- $\sum_{k=1}^{\infty} |a_k|$ divergieren.
- $\exists \lim_{k \to \infty} \sqrt[n]{|a_n|} = L \implies$

 $\begin{cases} \sum_{k=1}^{\infty} a_k \text{ absolut konvergent} & \text{if } L < 1\\ \sum_{k=1}^{\infty} a_k \text{und } \sum_{k=1}^{\infty} |a_k| \text{ konvergent} & \text{if } L > 1 \end{cases}$

4.10 Potenzreihe

 $P(z) := c_0 + c_1 \cdot z + c_2 \cdot z^2 + \dots = \sum_{k=0}^{\infty} c_k z^k, \ (c_n)_{n \in \mathbb{N}}, z \in \mathbb{N}$

- Ist absolute konvergent $\forall |z| < p$ und divergiert
- $p := \begin{cases} +\infty & \text{if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{|\lim\sup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$
- Funktioniert nur wenn $\limsup_{k\to\infty} \sqrt[k]{|c_k|}$ existiert.
- Konvergenzbereich von Potenzreihe ist ein Kreis.

Konvention:

- 1. $\{\sqrt[n]{|a_k|}\}$ unbeschränkt \implies wir setzen p=0 (\implies |z| < 0).
- 2. $\{\sqrt[n]{|a_k|}\}$ beschränkt und $\limsup_{k\to\infty}\sqrt[k]{c_k}$ $0 \implies \text{wir setzen } p = \infty \ (\implies p(z) \text{ konvergiert}$
- 3. $\{\sqrt[n]{|a_k|}\}$ beschränkt und $\limsup_{k\to\infty} \sqrt[k]{c_k} \neq 0 \implies \text{wir setzen } p = \frac{1}{\limsup_{k\to\infty} \sqrt[k]{c_k}} (\implies p(z)$ konvergiert $\forall |z| < p$).

4.11 Rezept: Konvergenzradius Berechnen

- 1. Berechne $|p| = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$ falls $a_0 \neq 0 \forall n > N$ und Limes definiert oder unendlich ist.
- 2. Alternativ verwende $|p| = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$
- 3. Überprüfe ob p inklusive oder exklusiv ist.

4.12 Riemann Zeta Funktion

 $\zeta(s) := 1 + \frac{1}{2s} + \frac{1}{2s} + \cdots = \sum_{m=1}^{\infty} \frac{1}{ms}, \ s > 0.$

- $\zeta(s), 0 < s < 1 \implies \zeta(s)$ konvergiert.
- $\zeta(s), s > 1 \implies \zeta(s) < \sum_{k=0}^{\infty} \left(\frac{1}{2^{s-1}}\right)^n$ divergent.

4.13 Doppelfolgen und -reihen

Doppelfolge: $(c_{kl})_{k,l\in\mathbb{N}} := a_k \cdot b_l$

- Doppelreihe: $\sum_{k,l\geq 1} c_{kl}$ $\sum_{k=0}^{\infty} \sum_{l=0}^{\infty} c_{kl}$ und $\sum_{l=0}^{\infty} \sum_{k=0}^{\infty} c_{kl}$ können mit unterschiedlichem Grenzwert konvergie-
- **Lineare Anordnung:** von $\sum_{k,l>1} a_{kl}$ ist $\sum_{k=0}^{\infty} b_k$ falls \exists Bijektion $\phi N \to N \times N$ mit $b_k = a_{\phi(k)}$.

4.14 Cauchy

 $\exists B \geq 0: \sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \leq B \ \forall m \geq 0 \implies$

- Folgende Reihen konvergieren absolut:
- $-S_i := \sum_{j=0}^{\infty} a_{ij} \ \forall i \ge 0$ $-U_j := \sum_{i=0}^{\infty} a_{ij} \ \forall j \ge 0$ $-\sum_{i=0}^{\infty} S_i$ $-\sum_{j=0}^{\infty} U_j$ Es gilt $\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$
 - Es konvergiert jede lineare Anordnung der Doppelreihe absolut und hat demselben Grenzwert.

4.15 Cauchy Produkt

Produkt von $\sum_{i=1}^{\infty} a_i$, $\sum_{j=1}^{\infty} b_j$ ist $\sum_{n=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{n-j} b_j \right) =$ $a_0b_0 + (a_0b_1 + a_1b_0) + (a_0b_2 + a_1b_1 + a_2b_0) + \dots$

- Muss nicht immer konvergiere.
- Falls $\sum_{i=1}^{\infty} a_i$ und $\sum_{j=1}^{\infty} b_j$ absolut konvergieren $\implies \sum_{n=0}^{\infty} \left(\sum_{j=0}^{\infty} a_{n-j} b_j \right) = \left(\sum_{i=0}^{\infty} a_i \right) \left(\sum_{i=0}^{\infty} b_j \right)$

4.16 Folgen Funktionen

 $\forall n \text{ sein } f_n : \mathbb{N} \to \mathbb{R} \text{ eine Folge. Wir nehmen an:}$

- 1. $f(j) := \lim_{n \to \infty} f_n(j)$ existient $\forall j \in \mathbb{N}$.
- 2. \exists Funktion $q: \mathbb{N} \to [0, \infty[$ so dass:
 - $2.1 |f_n(j)| < q(j) \forall j, n > 0.$
 - $2.2 \sum_{i=0}^{\infty} g(j)$ konvergiert.

dann folgt $\sum_{i=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{i=0}^{\infty} f_n(j)$.

• $\forall z \in \mathbb{C}$ konvergiert die Folge $\left(\left(1 + \frac{z}{n}\right)^n\right)_{n \in \mathbb{N}}$ und $\lim_{n\to\infty} \left(1+\frac{z}{z}\right)^n = \exp(z).$

4.17 Rezept: Konvergenz und Grenzwert

Gegeben $\sum_{n=1}^{\infty} (a_n)_{n \in \mathbb{N}}$

- 1. Ist spezieller Typ \implies betrachte Typ
- 2. $\lim_{n\to\infty} a_n \neq 0 \implies \text{divergent}$
- 3. Quotientenkriterium anwendbar \implies fertig
- 4. Wurzelkriterium anwendbar \implies fertig
- 5. \exists konvergente Majoranten \Longrightarrow konvergent
- 6. \exists divergierende Minoranten \implies divergent
- 7. Umformen, ausprobieren etc...

5 Stetige Funktionen

5.1 Reellwertige Funktionen

Für beliebige Menge D ist $\mathbb{R}^D = \{f : D \rightarrow$ $\mathbb{R}|f$ eine Abbildung} die Menge alle reellwertigen Funktionen die auf D definiert sind.

Addition und skalare Multiplikation bilden mit \mathbb{R}^D einen Vektorraum.

Für $f, g \in \mathbb{R}^D, x \in D, \alpha \in \mathbb{R}$:

Addition: (f+g)(x) = f(x) + g(x)

Skalare Multiplikation: $(\alpha \cdot f)(x) = \alpha \cdot f(x)$

Nullfunktion: Entspricht dem Nullvektor in \mathbb{R}^D und $\zeta(x) = 0$

Konstante Funktion: Entspricht dem Einheitsvektor in \mathbb{R}^D und $\zeta(x)=1$

Produkt zweier Funktionen: $(f \cdot g)(x) := f(x) \cdot g(x)$ Quotient: $\frac{f}{g} := D' \rightarrow \mathbb{R}, x \mapsto \frac{f(x)}{g(x)}, D' = \{x \in D | g(x) \neq 0\}$

Komposition von Funktionen: $f: D \to \mathbb{R}$ und $g: E \to \mathbb{R}, f(D) \subset E$ dann $g \circ f: D \to \mathbb{R}, x \mapsto g(f(x))$

5.2 Beschränktheit

 $f: D \to \mathbb{R}$ ist:

nach oben beschränkt: falls $f(D) \subset \mathbb{R}$ nach oben beschränkt ist.

nach unten beschänkt: falls $f(D) \subset \mathbb{R}$ nach unten beschränkt ist.

beschränkt: falls $f(D) \subset \mathbb{R}$ nach oben und unten beschränkt ist.

5.3 Kompakt Intervall

Ist ein Intervall $I \subset \mathbb{R}$ falls $I = [a, b], a \leq b$.

• Für $(x_n)_{n\in\mathbb{N}}$, $\lim_{n\to\infty} x_n \in \mathbb{R}$, $a \leq b$. Falls $\{x_n | n \geq 1\} \subset [a,b] \implies \lim_{n\to\infty} x_n \in [a,b]$.

5.4 Monotonie

 $f: D \to \mathbb{R}, D \subset R, \ \forall x, y \in D \text{ ist:}$

monoton wachsend: falls $x \le y \implies f(x) \le f(y)$. streng mono. wachs.: falls $x < y \implies f(x) < f(y)$. monoton fallend: falls $x \ge y \implies f(x) \ge f(y)$. streng mon. fallend: falls $x > y \implies f(x) > f(y)$. monoton: falls mono. wachsend oder mono. fallend. streng monoton: falls streng monoton wachsend oder streng monoton fallend.

5.5 Stetigkeit

x₀ stetig: $f: D \to \mathbb{R}$ für $D \subset \mathbb{R}, x_o \in D$ falls $\forall x \in D, \ \forall \epsilon > 0 \ \exists \delta > 0: \ |x - x_0| < \delta \implies |f(x) - f_0(x)| < \epsilon.$

stetig: $f: D \to \mathbb{R}$ falls sie $\forall x_0 \in D \ x_0$ stetig ist.

gleichmässig stetig: $f: D \to \mathbb{R}$ falls $\forall \epsilon > 0 \; \exists \delta > 0$: $\forall x, y \in D \, |x - y| < \delta \implies |f(x) - f(y)| < \epsilon$.

- gleichmässig stetig \implies stetig $\implies x_0$ stetig
- f ist in x_0 stetig \iff $(\forall (a_n)_{n\in\mathbb{N}}$ in D: $\lim_{n\to\infty} a_n = x_0 \implies \lim_{n\to\infty} f(a_n) = f(x_0)).$ f ist in x_0 stetig \iff $\lim_{n\to\infty} f(a_n) = f(\lim_{n\to\infty} a_n) \ \forall (a_n)_{n\in\mathbb{N}}$ in D.
- $f: [a,b] \to \mathbb{R}$ stetig im Kompakten Intervall $\implies f$ ist in [a,b] gleichmässig stetig.

5.6 Rechenregeln

Für $x_0 \in D \subset \mathbb{R}, \lambda \in \mathbb{R}, f : D \to \mathbb{R}, g : D \to \mathbb{R}$ und f und g stetig in $x_0 \Longrightarrow$

1. $f + g, \lambda \cdot f, f \cdot g$ stetig in x_0 . 2. $\frac{f}{g} : D' \to \mathbb{R}, x \mapsto \frac{f(x)}{g(x)}, D' = \{x \in D | g(x) \neq 0\}, g(x_0) \neq 0 \text{ ist stetig in } x_0$.

Für $D_1, D_2 \subset \mathbb{R}, f: D_1 \to D_2, g: D_2 \to \mathbb{R}, x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig $\Longrightarrow g \circ f: D_1 \to \mathbb{R}$ ist in x_0 stetig.

• Falls f auf D_1 und g auf D_2 stetig $\implies g \circ f$ auf D_1 stetig.

5.7 Polynom

Funktion $P: \mathbb{R} \to \mathbb{R}, P(x) = a_n x^n + \dots + a_0, a_n, \dots a_0 \in \mathbb{R}$.

Grad: ist n falls $a_n \neq 0$.

- Sind auf ganz \mathbb{R} stetig.
- $\frac{P}{Q}: R \setminus \{x_1, \dots x_m\} \to \mathbb{R}, \ x \mapsto \frac{P(x)}{Q(x)}$ ist stetig für P, Q auf $\mathbb{R}, Q \neq 0$ und Nullst. x_1, \dots, x_m von Q.

5.8 Zwischerwertsatz

Für Intervall $I \subset R$, stetige Funktion $f: I \to \mathbb{R}$ und $a, b \in I \Longrightarrow \forall c$ zwischen f(a) und $f(b) \exists z$ zwischen a und b mit f(z) = c.

- $x, y \in R, x \leq y$, c liegt **zwischen** x und y falls $c \in [x, y]$.
- Ein Polynom P mit ungeradem Grad n besitzt mindestens eine Nullstelle in \mathbb{R} .

• Für $f:[a,b] \to \mathbb{R}$ stetig und $f(a) \cdot f(b) < 0 \implies \exists c \in]a,b[:f(c)=0.$

5.9 Min, Max, Abs

Für Menge D und $f, g: D \to \mathbb{R}$:

Abs: $|f|(x) := |f(x)|, \forall x \in D$ Max: $\max(f, q)(x) := \max(f(x), q(x)), \forall x \in D$

Min: $\min(f,g)(x) := \min(f(x),g(x)), \forall x \in D$

• Für $D \subset R, x_0 \in D, f, g : D \to \mathbb{R}$ stetig in $x_0 \Longrightarrow |f|, \max(f, g), \min(f, g)$ stetig in x_0 .

5.10 Min-Max Satz

Für $f: I = [a,b] \to \mathbb{R}$ stetig auf kompaktem Intervall $I \Longrightarrow \exists u,v \in [a,b], f(u) \le f(x) \le f(v) \ \forall x \in [a,b] \iff f$ ist beschränkt.

• $f(u) = \inf\{f(x)|x \in I\}$ • $f(v) = \sup\{f(x)|x \in I\}$.

5.11 Umkehrabbildung

Für $I\subset\mathbb{R}, f:I\to\mathbb{R}$ stetig und streng monoton $\Longrightarrow J:=f(I)\subset\mathbb{R}, f^{-1}:J\to I$ stetig und streng monoton.

5.12 Reelle Exponentialfunktion

 $\exp: R \to]0, +\infty[$ ist streng monoton wachsend, stetig und subjektiv (\implies bijektiv).

- $\exp(x) = 1 + x + \frac{x^2}{2!} + \dots \ge 1$
- $\exp(x+y) = \exp(x) \cdot \exp(y) \ \forall x, y \in \mathbb{C}.$
- $\exp(0) = 1$.
- $\exp(x) > 0 \ \forall x \in \mathbb{R}$
- $\exp(x) > 1 \ \forall x > 0$
- $\exp(x) > \exp(y) \ \forall x > y$
- $\exp(x) > 1 + x \; \exists x \in \mathbb{R}$

5.13 Natürliche Logarithmus

Die Umkehrabbildung von exp ist $\ln :]0, +\infty[\to \mathbb{R}$ streng monoton wachsend, stetig und bijektiv.

- ln(1) = 0
- $\ln(a \cdot b) = \ln(a) + \ln(b) \ \forall a, b \in]0, +\infty[$

5.14 Allgemeine Potenzen

Für $x > 0, a \in \mathbb{R}$ $x^a := \exp(a \ln(x))$

- Für a > 0 ist $x \mapsto x^a$ stetig, streng monoton wachsend und bijektiv.
- Für a < 0 ist $x \mapsto x^a$ stetig, streng monoton fallend und bijektiv.
- $\ln(x^a) = a \ln(x) \ \forall a \in R, \ \forall x > 0$
- $x^a \cdot x^b = x^{a+b} \ \forall a, b \in R, \ \forall x > 0$
- $(x^a)^b = x^{a \cdot b} \ \forall a, b \in R, \ \forall x > 0$

5.15 Funktionenfolgen

Funktionenfolge: $(f_n)_{n\geq 0}$ ist eine Abbildung $\mathbb{N} \to \mathbb{R}^{\mathbb{D}} = \{f_n : \mathbb{D} \to R\}, n \mapsto f(n) = f_n$.

• $\forall x \in \mathbb{D} \exists \text{ Folge } (f_n(x))_{n \ge 0} \text{ in } \mathbb{R}.$

Konvergiert punktweise: gegen Funktion $f: \mathbb{D} \to \mathbb{R}$ falls $\forall x \in \mathbb{D}: f(x) = \lim_{n \to \infty} f_n(x)$.

• $f_n \stackrel{\text{p.w.}}{\to} f \not\Longrightarrow f \text{ ist stetig}$

Konvergiert gleichmässig: gegen Funktion $f: \mathbb{D} \to \mathbb{R}$ falls $\exists \epsilon > 0 \ \exists N \geq 1: |f_n(x) - f(x)| < \epsilon \ \forall n \geq N, \ \forall x \in \mathbb{D}.$

- Für $\mathbb{D} \subset \mathbb{R}$ und Funktionenfolge $f_n : \mathbb{D} \to \mathbb{R}$ bestehend aus in \mathbb{D} stetigen Funktionen die gleichmässig gegen Funktion $f : \mathbb{D} \to \mathbb{R}$ konvergieren $\Longrightarrow f$ ist in \mathbb{D} stetig.
- Falls f_n gleichmässig zu f konvergiert \Longrightarrow $\limsup_{n\to\infty} |f_n(x) f(x)| = 0, x \in \mathbb{D}.$
- $f_n \stackrel{\text{glm.}}{\to} f \implies f \text{ ist stetig}$
- $f_n \stackrel{\text{glm.}}{\to} f \not\Longrightarrow f$ ist differenzierbar

Gleichmässig konvergent: falls $\forall x \in \mathbb{D} \ \exists f(x) = \lim_{n \to \infty} f_n(x)$ und $(f_n)_{n \geq 0}$ gleichmässig gegen f konvergiert.

- $f_n: \mathbb{D} \to \mathbb{R}$ ist gleichmässig konvergent $\iff \forall \epsilon > 0 \ \exists N \geq 1: \ \forall n, m \geq N \ \forall x \in D: |f_n(x) f_m(x)| < \epsilon.$
- Falls $f_n: \mathbb{D} \to \mathbb{R}$ gleichmässig konvergente Folge stetiger Funktionen $\Longrightarrow f(x) := \lim_{n \to \infty} f_n(x)$ stetig.
- Alle f_n stetig und $f_n \to f \implies f$ ist stetig.

5.15.1 Reihe von Funktionenfolgen

 $\sum_{k=0}^{\infty} f_k(x)$

Konvergiert gleichmässig: in \mathbb{D} falls die Funktionenfolge $S_n(x) := \sum_{k=0}^n f_k(x)$ gleichmässig konvergiert.

Für $\mathbb{D} \subset \mathbb{R}$, Folge stetiger Funktionen $f_n : \mathbb{D} \to \mathbb{R}$. Falls $|f_n(x)| \leq c_n \ \forall x \in D \ \text{und} \ \sum_{n=0}^{\infty} c_n \ \text{konvergent}$ $\implies \sum_{n=0}^{\infty} f_n(x) \ \text{gleichmässig konvergent in } \mathbb{D} \ \text{und}$ Grenzwert $f(x) := \sum_{n=0}^{\infty} f_n(x) \ \text{ist in } \mathbb{D} \ \text{stetig.}$

5.15.2 Potenzreihe

• $\sum_{k=0}^{\infty} c_k x^k$

Posiviten Konvergenzradius: ρ hat Potenzreihe falls $\limsup_{k\to\infty} \sqrt[k]{|c_k|}$ existiert.

•
$$\rho = \begin{cases} +\infty & \text{if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} \\ \frac{1}{\limsup_{k \to \infty} \sqrt[k]{|c_k|}} & \text{if } \limsup_{k \to \infty} \sqrt[k]{|c_k|} \\ \end{cases} > 0$$

- Für Potenzreihe mit positiven Konvergenzradius $\rho > 0$ und $f(x) := \sum_{n=1}^{\infty} c_k x^k, |x| < \rho \implies \forall 0 \leq r < \rho \text{ konvergiert } \sum_{k=0}^{\infty} c_k x^k \text{ gleichmässig auf } [-r,r] \text{ und } f:] \rho, \rho[\to \mathbb{R} \text{ ist stetig.}$
- $\bullet\,$ Sind stetig im Innern ihres Konvergenzbereiche

5.16 Trigonometrische Funktionen

- $\sin(z) = z \frac{z^2}{3!} + \frac{z^5}{5!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}$. - $\sin : \mathbb{R} \to \mathbb{R}$ stetig.
- $\cos(z) = 1 \frac{z^2}{2!} + \frac{z^4}{4!} \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}.$ - $\cos : \mathbb{R} \to \mathbb{R}$ stetig.
- 1. $\exp(iz) = \cos(x) + i\sin(z) \ \forall z \in \mathbb{C}$
- 2. $\cos(z) = \cos(-z)$ $\sin(-z) = -\sin(z) \ \forall z \in \mathbb{C}$
- 3. $\sin(z) = \frac{e^{iz} e^{-iz}}{2i}$ $\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$
- 4. $\sin(z + w) = \sin(z)\cos(w) + \cos(z)\sin(w)$
 - $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$
- 5. $\cos(z)^2 + \sin(z)^2 = 1 \ \forall z \in \mathbb{C}$
- 6. $\sin(2z) = 2\sin(z)\cos(z)$ $\cos(2z) = \cos(z)^2 \sin(z)^2$

5.17 Kreiszahl

• $\sin(0) = 0$

- sin hat auf $]0, +\infty[$ min. eine Nullstelle.
- für $\pi := \inf\{t > 0 | \sin(t) = 0\} \implies$
 - 1. $\sin(\pi) = 0 \ \pi \in]2, 4[$
 - 2. $\forall x \in]0, \pi[:\sin(x) > 0]$
 - 3. $e^{\frac{i\pi}{2}} = i$
- $x \ge \sin(x) \ge x \frac{x^3}{3!} \quad \forall 0 \le x \le \sqrt{6}$

 $\forall x \in \mathbb{R}$:

- 1. $\bullet e^{i\pi} = -1 \bullet e^{2\pi i} = 1$
- 2. $\sin(x + \frac{\pi}{2}) = \cos(x)$ $\cos(x + \frac{\pi}{2}) = -\sin(x)$ (a) $\sin(\frac{\pi}{2} - x) = \cos(x)$
- 3. $\sin(x + \pi) = -\sin(x)$ $\cos(x + \pi) = -\cos(x)$
- 4. $\bullet \sin(x+2\pi) = \sin(x) \bullet \cos(x+2\pi) = \cos(x)$ (a) $\sin(\pi-x) = \sin(x)$
- 5. Nullstellen von:
 - $\sin(x) = \{k \cdot \pi | k \in \mathbb{Z}\} \sin(x) > 0, \ \forall x \in]2k\pi, (2k+1)\pi[-\sin(x) < 0, \ \forall x \in](2k+1)\pi, (2k+2)\pi[$
 - $\cos(x) = \{\frac{\pi}{2} + k \cdot \pi | k \in \mathbb{Z}\} \cos(x) > 0, \ \forall x \in]\frac{-\pi}{2} + 2k\pi, \frac{-\pi}{2} + (2k+1)\pi[-\cos(x) < 0, \ \forall x \in]\frac{-\pi}{2} + (\frac{2k+1}{2}\pi, \frac{-\pi}{2} + (2k+2)\pi[$

Tangens: $tan(z) := \frac{\sin(z)}{\cos(z)}, z \notin \{\frac{\pi}{2} + \pi k\}$

Cotangens: $\cot(z) := \frac{\cos(z)}{\sin(z)}, z \notin \{\pi k\}$

5.18 Grenzwert von Funktionen

Function $f: \mathbb{D} \to \mathbb{R}, \mathbb{D} \subset \mathbb{R}$:

Häufigkeitspunkt: von \mathbb{D} falls $\forall \delta > 0(]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap \mathbb{D} \neq \emptyset$.

Grenzwert: $A \in \mathbb{R}$ von f(x) für $x \to x_0$ und Häufigkeitspunkt $x_0 \in \mathbb{R}$ von \mathbb{D} . Wird mit $\lim_{n \to x_0} f(x) = A$ bezeichnet falls $\forall \epsilon > 0 \ \exists \delta > 0$ so dass $\forall x \in \mathbb{D} \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$.

- f muss am Grenzwert x_0 nicht zwingend definiert sein.
- Für f und Häufigkeitspunkt x_0 . $\lim_{n\to x_0} f(x) = A \iff \forall (a_n)_{n\geq 1} \in \mathbb{D} \setminus \{x_0\} \text{ mit } \lim_{n\to\infty} a_n = x_0$ folgt $\lim_{n\to\infty} f(a_n) = A$.
- f ist stetig in $x_0 \in \mathbb{D} \iff \lim_{n \to x_0} f(x) = f(x_0)$.
- Für $f,g:\mathbb{D}\to\mathbb{R}$ und falls $\exists \lim_{n\to\infty}f(x)$ und

 $\lim_{n\to\infty} g(x) \implies : -\lim_{n\to\infty} (f+g)(x) =$ $\lim_{n\to\infty} f(x) + \lim_{n\to\infty} g(x) - \lim_{n\to\infty} (f \cdot g)(x) =$ $\lim_{n\to\infty} f(x) \cdot \lim_{n\to\infty} g(x)$

• Für $f, g: \mathbb{D} \to \mathbb{R}, f \leq g$ und beide Grenzwerte existieren $\implies \lim_{n\to\infty} f(x) \leq \lim_{n\to\infty} g(x)$.

• Für $f, g_1, g_2 : \mathbb{D} \to \mathbb{R}$, falls $g_1 \leq f$ g_2 und $\lim_{n\to\infty} g_1(x) = \lim_{n\to\infty} g_2(x)$ $\exists \lim_{n\to\infty} f(x) \text{ und } \lim_{n\to\infty} f(x) = \lim_{n\to\infty} g_1(x)$

5.18.1 Links- und rechtsseitige Grenzwerte

Rechtsseitiger Grenzwert: $\lim_{x\to x_0^+}$ falls der Grenzwert der eingeschränkten Funktion $f|_{\mathbb{D}\cap[x_0,+\infty[}$ für $x \to x_0$ existiert. Wobei $f: \mathbb{D} \to \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufigkeitspunkt von $\mathbb{D} \cap]x_0, +\infty[$.

Linksseitiger Grenzwert: $\lim_{x\to x_0^-}$ falls der Grenzwert der eingeschränkten Funktion $f|_{\mathbb{D}\cap[-\infty,x_0[}$ für $x \to x_0$ existiert. Wobei $f: \mathbb{D} \to \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufigkeitspunkt von $\mathbb{D} \cap]x_0, +\infty[$.

Erweitert Rechts: $\lim_{x\to x^+} f(x) = +\infty$ falls $\exists \epsilon >$ $0, \exists \delta > 0, \forall x \in]x_0, x_0 + \delta[\cap \mathbb{D} : f(x) > \frac{1}{\epsilon}]$

> • Alternativ: $\forall N > 0, \ \exists \delta > 0 \ \forall x \in D \cap]x_0, x_0 +$ $\delta[: f(x) > N.$

Erweitert Links: $\lim_{x\to x_0^-} f(x) = -\infty$ falls $\exists \epsilon >$ $0, \exists \delta > 0, \forall x \in]x_0, x_0 + \delta[\cap \mathbb{D}: f(x) < -\frac{1}{\epsilon}]$

> • Alternativ: $\forall N > 0, \ \exists \delta > 0 \ \forall x \in D \cap]x_0, x_0 +$ $\delta[: f(x) < -N.$

5.18.2 Unendlicher Grenzwert

Oben: Für $f: \mathbb{D} \to \mathbb{R}^n$, \mathbb{D} nach oben beschränkt, so ist $\lim_{x\to+\infty} f(x) = L \in \mathbb{R} \text{ falls } \forall \epsilon > 0, \ \exists c > 0 : \ \forall x \in \mathbb{R}$ $D, x > c \implies |f(x) - L| < \epsilon$

Unten Für $f: \mathbb{D} \to \mathbb{R}^n, \mathbb{D}$ nach unten beschränkt, so ist $\lim_{x\to-\infty} f(x) = L \in \mathbb{R}$ falls $\forall \epsilon > 0, \exists c > 0$: $\forall x \in D, \ x < -c \implies |f(x) - L| < \epsilon$

6 Differenzierbare Funktionen

6.1 Differenzierbarkeit

In $\mathbf{x_0}$ differenzierbar: Ist $f: \mathbb{D} \to \mathbb{R}, \mathbb{D} \subset \mathbb{R}$ und Häufigkeitspunkt $x_0 \in \mathbb{D}$ falls $\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =$ $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = f'(x_0)$ existiert.

hern.

• f differenzierbar in $x_0 \implies f$ stetig in x_0 .

Auf \mathbb{D} differenzierbar: Falls $f: \mathbb{D} \to \mathbb{R}$ für alle Häufigkeitspunkte $x_0 \in \mathbb{D}$ in x_0 differenzierbar sind.

6.1.1 Weierstrass

Für $f: \mathbb{D} \to \mathbb{R}, x_0$ Häufigkeitspunkt von $D \implies$ folgendes ist quivalent:

1. f ist ins x_0 differenzierbar.

2. $\exists c (= f'(x_0)) \in \mathbb{R} \text{ und } r : \mathbb{D} \to \mathbb{R} \text{ so dass:}$

(a) $f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$

(b) $r(x_0) = 0$ und r ist stetig in x_0 .

Alternative ohne limes mit $\Phi(x) = f'(x_0) + r(x)$:

• $f: \mathbb{D} \to \mathbb{R}$ ist in x_0 differenzierbar $\iff \exists \Phi:$ $\mathbb{D} \to \mathbb{R}$ welche 1. In x_0 stetig ist 2. f(x) = $f(x_0) + \Phi(x)(x - x_0) \ \forall c \in D.$

- In diesem Fall $\Phi(x_0) = f'(x_0)$

• Für $f: \mathbb{D} \to \mathbb{R}$ und $x_0 \in \mathbb{D}$ Häufigkeitspunkt von \mathbb{D} . f in x_0 differenzierbar $\implies f$ ist in x_0 stetig.

6.1.2 Rechenregeln Ableitung

Für $\mathbb{D} \subset \mathbb{R}$, Häufigkeitspunkt $x_0 \in \mathbb{D}$ von \mathbb{D} und $f, g: \mathbb{D} \to \mathbb{R}$ in x_0 differenzierbar:

f + g: $(f + q)'(x_0) = f'(x_0) + q'(x_0)$.

 $\mathbf{f} \cdot \mathbf{g} : (f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0).$

 $\frac{\mathbf{f}}{\mathbf{g}}$: $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}, \ g(x_0) \neq 0.$

 $\mathbf{g} \circ \mathbf{\hat{f}}$: Für $f: \mathbb{D} \to E, g: E \to \mathbb{R}, \mathbb{D}, E \subset \mathbb{R}$, Häufigkeitspunkt $x_0 \in D$ und f differenzierbar in x_0 und g differenzierbar in $f(x_0)$ dann $(g \circ f)'(x_0) =$ $g'(f(x_0)) \cdot f'(x_0)$

 \mathbf{f}^{-1} : Für $f: \mathbb{D} \to E$ bijektiv, x_0 Häufigkeitspunkt, f in x_0 differenzierbar, $f'(x_0) \neq 0$, f^{-1} in $y_0 = f(x_0)$ stetig \implies y_0 ist ein Häufungspunkt von Eund f^{-1} ist in y_0 differenzierbar: $(f^{-1})'(y_0) =$ $\frac{1}{f'(x_0)} \implies (f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}.$

6.2 Erste Ableitung

6.2.1 Extremaltstellen

• Lässt sich linear durch die Tangente annä- | Für $f: \mathbb{D} \to \mathbb{R}, D \subset \mathbb{R}, x_0 \in D$. f besitzt:

Lokales Maximum: in x_0 falls $\exists \delta > 0 : f(x) \leq$ $f(x_0) \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap \mathbb{D}]$.

Lokales Minimum: in x_0 falls $\exists \delta > 0 : f(x) \geq$ $f(x_0) \ \forall x \in]x_0 - \delta, x_0 + \delta[\cap \mathbb{D}.$

Lokales Extremum: in x_0 falls es ein lokales Minimum oder Maximum von f ist.

Für $f:]a, b[\to \mathbb{R}, x_0 \in]a, b[, f \text{ in } x_0 \text{ differenzierbar}:$

1. $f'(x_0) > 0 \implies \exists \delta > 0 : \bullet f(x) > f(x_0) \ \forall x \in$ $|x_0, x_0 + \delta| \bullet f(x) < f(x_0) \ \forall x \in]x_0 - \delta, x_0[$

2. $f'(x_0) < 0 \implies \exists \delta > 0 : \bullet f(x) < f(x_0) \forall x \in A$ $|x_0, x_0 + \delta| \bullet f(x) > f(x_0) \ \forall x \in]x_0 - \delta, x_0[$

3. f in x_0 ein lokales Extremum $\implies f'(x_0) = 0$.

Kritischer Punkt: Stelle x_0 wo $f(x_0) = 0$ oder undefiniert ist.

6.2.2 Rolle - Spezialfall des Mittelwertsatz

Für $f:[a,b]\to\mathbb{R}$ stetig und in [a,b] differenzierbar. Falls $f(a) = f(b) \implies \exists \xi \in]a, b[, f'(\xi) = 0.$

6.2.3 Lagrange - Mittelwertsatz

Für $f:[a,b]\to\mathbb{R}$ stetig und in [a,b] differenzierbar \Longrightarrow $\exists \xi \in]a, b[, f(b) - f(a) = f'(\xi)(b - a) \Rightarrow f'(\xi) = \frac{f(b) - f(a)}{b - a}.$

6.2.4 Qualitatives Verhalten f

Für $f, g: [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar:

- 1. $f'(\xi) = 0 \ \forall \xi \in]a, b[\Longrightarrow f \text{ konstant.}]$
- 2. $f'(\xi) = g'(\xi) \ \forall \xi \in]a,b[\implies \exists c \in \mathbb{R}, f(x) =$ $q(x) + c \ \forall x \in [a, b].$
- 3. $f'(\xi) \geq 0 \ \forall \xi \in]a,b[\implies f \text{ ist auf } [a,b] \text{ monoton }$ wachsend.
- 4. $f'(\xi) > 0 \ \forall \xi \in]a,b[\implies f \text{ ist auf } [a,b] \text{ strikt mo-}$ noton wachsend.
- 5. $f'(\xi) \leq 0 \ \forall \xi \in]a,b[\implies f \text{ ist auf } [a,b] \text{ monoton}$
- 6. $f'(\xi) < 0 \ \forall \xi \in]a,b[\implies f \text{ ist auf } [a,b] \text{ strikt mo-}$ noton fallend.
- 7. $\exists M \geq 0, |f'(\xi)| \leq M \ \forall \xi \in]a,b[\implies \forall x_1,x_2 \in$ $[a,b]: |f(x_1)-f(x_2)| \leq M|x_1-x_2|.$

6.2.5 Bekannte Funktionen und deren Ableitung

f(x)	f'(x)	f(x)	f'(x)	f(x)	f'(x)
c	0	cx	c		
x^s	sx^{s-1}	$\frac{1}{x}$	$-\frac{1}{x^2}$	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
$\ln x $	$\frac{1}{x}$	$\ln(x-a)$	$\frac{1}{x-a}$	$\log_a x $	$\frac{1}{x \ln a}$
e^{ax}	ae^x	a^{bx}	$(\ln a)ba^{bx}$		

6.2.6 Trigonometrische Funktionen

Funktion	n	Domain	Range	Ableitung
\sin		$\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	[-1, 1]	cos
arcsin		[-1, 1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$	$\frac{1}{\sqrt{1-y^2}}$
cos		$[0,\pi]$	[-1, 1]	$-\sin$
arccos		[-1,1]	$[0,\pi]$	$\frac{-1}{\sqrt{1-y^2}}$
tan		$]-\frac{\pi}{2},\frac{\pi}{2}[$	\mathbb{R}	$\frac{1}{\cos^2 x} = 1 + \tan^2 x$
arctan		\mathbb{R}	$]-\frac{\pi}{2},\frac{\pi}{2}[$	$\frac{1}{1+y^2}$
\sinh	$\frac{e^x-e^{-x}}{2}$	\mathbb{R}	\mathbb{R}	\cosh
arcsinh		\mathbb{R}	\mathbb{R}	$\frac{1}{\sqrt{1+y^2}}$
cosh	$\frac{e^x+e^{-x}}{2}$	\mathbb{R}	$[1,\infty]$	sinh
arccosh		$]1,\infty[$	\mathbb{R}	$\frac{1}{\sqrt{x^2-1}}$
tanh	$\frac{\sinh(x)}{\cosh(x)}$	\mathbb{R}]-1,1[$\frac{1}{\cosh^2 x} = 1 - \tanh^2 x$
arctanh]-1,1[\mathbb{R}	$\frac{1}{1-x^2}$

1. $\cosh^2(x) - \sinh^2(x) = 1$

6.2.7 Cauchy

Für $f, g : [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar. $\exists \xi \in]a, b[, g'(\xi)(f(b) - f(a)) = f'(\xi)(g(b) - g(a)).$

• Falls $g'(x) \neq 0 \ \forall x \in]a, b[\implies g(a) \neq g(b) \text{ und } \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\exists)}.$

6.2.8 L'Hospital - Bernoulli

Für $f, g:]a, b[\to \mathbb{R}$ differenzierbar und $g'(x) \neq 0 \ \forall x \in]a, b[$. Falls $\lim_{x \to b^-} f(x) = 0, \lim_{x \to b^-} g(x) = 0$ und $\exists \lambda := \lim_{x \to b^-} \frac{f'(x)}{g'(x)} \Longrightarrow \lim_{x \to b^-} \frac{f(x)}{g(x)} = \lim_{x \to b^-} \frac{f'(x)}{g'(x)}.$ Gilt auch für: \bullet $b = +\infty$ \bullet $x \to a^+$ \bullet $\lambda = +\infty$ \bullet $\lim_{n \to \infty} f(x) = \lim_{n \to \infty} g(x) = \infty$

6.3 Konvexität

Für Intervall $I \subset \mathbb{R}$ und $f: I \to \mathbb{R}$. f ist:

Konvex: auf I falls $\forall x, y \in I, x \leq y, \lambda \in [0, 1], f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y).$

Streng Konvex: falls $\forall x, y \in I, x < y, \lambda \in]0,1[, f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y).$

Konkav: auf I falls $\forall x, y \in I, x \leq y, \lambda \in [0, 1], \quad f(\lambda x + (1 - \lambda)y) \geq \lambda f(x) + (1 - \lambda)f(y).$

- $f: I \to \mathbb{R}$ ist konvex $\iff \forall x_0 < x < x_1 \in I, \frac{f(x) f(x_0)}{x x_0} \le \frac{f(x_1) f(x)}{x_1 x_0}$ • Summe von zwei konvexen(/konkaven) Funktionen
- Summe von zwei konvexen(/konkaven) Funktionen ist konvex(/konkav).
- Für $f:]a, b[\to \mathbb{R}$ in]a, b[differenzierbar. f ist (streng) konvex $\iff f'$ (streng) monoton wachsend ist.
- Für $f:]a, b[\to \mathbb{R}$ zwei mal differenzierbar. Falls $f'' \ge 0 \implies f$ ist konvex.

6.4 Höhere Ableitungen

Für $f: \mathbb{D} \to \mathbb{R}$ differenzierbar:

n-mal differenzirebar in \mathbb{D} : für $n \geq 2$ falls $f^{(n-1)}$ in \mathbb{D} differenzierbar ist. Dann ist die n-te Ableitung von f $f^{(n)} := (f^{(n-1)})'$.

n-mal stetig differenzierbar in \mathbb{D} : falls f n-mal differenzierbar ist und $f^{(n)}$ in \mathbb{D} stetig ist.

• $C^n(\mathbb{D}) = \{ f : \mathbb{D} \to \mathbb{R} | f \text{ n-mal stetig diff.} \}.$

glatt: falls $\forall n \geq 1$ f n-mal differenzierbar ist.

- $C^{\infty}(\mathbb{D}) = \{ f : \mathbb{D} \to R | f \text{ glatt} \}.$
- n mal differenzierbare Funktion is n-1 mal stetig differenzierbar.

Für $f, g: \mathbb{D} \to \mathbb{R}$ n-mal differenzierbar:

| f + g: ist n-mal diff. und $(f + g)^{(n)} = f^{(n)} + g^{(n)}$.

 $\mathbf{f} \cdot \mathbf{g}$: ist *n*-mal diff. und $(f \cdot g)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$

 \mathbf{f}/\mathbf{g} : ist n-mal diff. falls $g(x) \neq 0 \ \forall x \in \mathbb{D}$.

 $\mathbf{g} \circ \mathbf{f}$: ist *n*-mal diff. und $(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x) \left(g^{(k)} \circ f\right)(x), A_{n,k}$ ist ein Polynom.

6.5 Potenzreihen

- Für Folge $(f_n) \in C^1, f_n \stackrel{\text{glm.}}{\to} f, f'_n \stackrel{\text{glm.}}{\to} g, f, g :$ $]a, b[\to \mathbb{R}. \text{ Dann } f \in C^1 \text{ und } f' = g. \text{ Weiter }$ $\text{ist } -f \text{ auf }]x_0 \rho, x_0 + \rho[\text{ glatt } -f^{(j)}(x) =$ $\sum_{k=1}^{\infty} c_k \frac{k!}{((k-j)!} (x-x_0)^{k-j} c_j = \frac{f^{(j)}(x_0)}{j!}$
- Für Potenzreihe $\sum_{k=0}^{\infty} c_k x^k$ mit $\rho > 0$, dann ist $-f(x) = \sum_{k=0}^{\infty} c_k (x x_0)^k$ auf $]x_0 \rho, x_0 + \rho[$ differenzierbar $-f'(x) = \sum_{k=1}^{\infty} k c_k (x x_0)^{k-1} \ \forall x \in]x_0 \rho, x_0 + \rho[$
- Falls glatte Funktion f in einem Intervall $]-\rho, \rho[$ die Summe iner Potenzreihe $\sum_{k=0}^{\infty} c_k x^k$ mit Konvergenzbereich ρ ist $\implies c_k = \frac{f^{(k)}(0)}{k!}$.
- Potenzreihen \Longrightarrow glatte Funktion auf ihrem Konvergenzbereich.

6.6 Taylor Approximation

6.6.1 Approximation von glatten Funktionen

Für $f:[a,b] \to \mathbb{R}$ stetig und in]a,b[(n+1)-mal differenzierbar. $\forall x,a < x \leq b \ \exists \xi \in]a,x[,\ f(x) = T_n(f,x,a) + R_n(f,x,a) \bullet T_n(f,x,a) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!}(x-a)^k \bullet R_N(f,x,a) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$

6.6.2 Taylor Approximation

Für $f:[c,d] \to \mathbb{R}$ stetig und in]c,d[(n+1)-mal differenzierbar. Für $c < a < d, \forall x \in [c,d] \exists \xi$ zwischen x und a (oder a und x): $f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}$.

- ullet Entwicklungspunkt a ist Punkt wo die Annäherung startet.
- \bullet x ist der Punkt welchen man annähern möchte.
- $T_n(f,x,a) = f(a) + f'(a)(x-a) + \frac{f''(a)(x-a)^2}{2} + \frac{f'''(a)(x-a)^3}{6} + \frac{f''''(a)(x-a)^4}{24} + \dots \left(+ \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1} \right)$

6.6.3 Rezept: Approximiere Punkt

Approximiere f mit Entwicklungspunkt a an stelle x mit Taylor von Ordnung n

- 1. Leite f n mal ab
- 2. Bilder Taylorpolynom durch einsetzen von a und x

6.6.4 Rezept: Finde Fehler von Taylorpolynom

Gegeben Taylorpolynom $T_n(f, x, a)$ mit n. Ordnung.

- 1. Leite $f^{(n)}$ ab
- 2. Bilde Restpolynom $R_N(f,x,a) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}$
- 3. Select $\xi \in]a,x]$ so das $R_N(f,x,a)$ maximal ist

6.7 Sattelpunkt und Wendepunkt

Stelle x_0 wo $f'(x_0) = 0$ aber kein Extremum.

Wendepunkt: • $f''(x_0) = 0$ • $f'(x_0) \neq_0$ Sattelpunkt: • $f'(x_0) = 0$ • $f''(x_0) = 0$

6.8 Extremaltstellen

Für $n \geq 0, a < x_0 < b, f : [a, b] \rightarrow \mathbb{R}$ in]a, b[(n + 1)mal stetig differenzierbar und $f'(x_0) = f^{(2)}(x_0) = \cdots = f^{(n)}(x_0) = 0$. Falls

- 1. n gerade und x_0 lokales Extremum \Longrightarrow $f^{(n+1)}(x_0) = 0$
- 2. n ungerade und und $f^{(n+1)}(x_0) > 0 \implies x_0$ ist eine strikte lokale Minimalstelle.
- 3. n ungerade und und $f^{(n+1)}(x_0) < 0 \implies x_0$ ist eine strikte lokale Maximalstelle.

Für $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[zweimal stetig differenzierbar. Für $a< x_0< b$ und $f'(x_0)=0$. Falls

- 1. $f^{(2)}(x_0) > 0 \implies x_0$ ist ein strike lokale Minimalstelle.
- 2. $f^{(2)}(x_0) < 0 \implies x_0$ ist ein strike lokale Maximalstelle.

6.9 Eigenschaften Ableitung

f(x)	f'(x)	f''(x)	f'''(x)	Eigenschaft
=0				Nullstelle
=0	=0	$\neq 0$		2-fache Nullstelle
	> 0			Strikt Monoton Steigend
	< 0			Strikt Monoton Fallend
	=0	< 0		Lokales Maximum
	=0	> 0		Lokales Minimum
	$\neq 0$	=0	> 0	Wendepunkt $r \rightarrow l$
	$\neq 0$	= 0	< 0	Wendepunkt $l \rightarrow r$
	=0	=0	> 0	Sattelpunkt $r \to l$
	=0	=0	< 0	Sattelpunkt l \rightarrow r
		> 0		Streng Konvex
		< 0		Streng Konkav

7 Riemann Integral

7.1 Partition

P von Interval I ist eine endliche Teilmenge $P \subset [a,b], a < b \in \mathbb{R}$ mit $a \in P, b \in P$. • $\delta_i := x_i - x_{i-1}$. • $\mathbb{P}(I)$ Menge aller $P \subset I$. • $\mathbb{P}_{\delta}(I)$ Menge aller $P \subset I$, $\max_{1 \le i \le n} \delta_i \le \delta$.

Feinheit: $\delta(P) := \max_{1 \le i \le n} \delta_i$.

Verfeinerung: P' von P falls $P \subset P'$.

Zwischen Punkte: $\xi_i \in I_i$.

7.2 Riemannsche Summe

Riemannsche Summe: $S(f, P, \xi) := \sum_{i=1}^{n} f(\xi_i) \delta_i$. Untersumme: $s(f, P) := \sum_{i=1}^{n} \delta_i \cdot \inf_{x_{i-1} \le x \le x_i} f(x)$. Obersumme: $S(f, P) := \sum_{i=1}^{n} \delta_i \cdot \sup_{x_{i-1} < x < x_i} f(x)$.

- $s(f, P_1) \le S(f, P_2) \ \forall P_1, P_2 \subset I$.
- $s(f,P) \le s(f,P') \le S(f,P') \le S(f,P) \ \forall P' \subset P \subset I.$

Unteres Integral: $s(f) := \sup_{P \in \mathbb{P}(I)} s(f, P)$.

Oberes Integral: $S(f) := \inf_{P \in \mathbb{P}(I)} S(f, P)$.

• $s(f) \leq S(f)$.

7.3 Riemann-Integrierbar

Beschränkte Funktion $f:[a,b]\to R$ ist integrierbar

- falls $s(f) = S(f) =: \int_a^b f(x) dx$.
- $\iff \forall \epsilon > 0 \ \exists P \in \mathbb{P}(f, P) s(f, P) < \epsilon.$

- $\iff \forall \epsilon > 0 \ \exists \delta > 0 : \ \forall P \in \mathbb{P}_{\delta}(I), S(f, P) s(f, P) < \epsilon.$
- mit $A := \int_a^b f(x) dx \iff \forall \epsilon > 0 \ \exists \delta > 0 : \ \forall P \in \mathbb{P}_{\delta}(I), \ \xi_i \in [x_{i-1}, x_i], \ |A \sum_{i=1}^n f(\xi_i) \delta_i| < \epsilon.$
- $\iff \exists \lim_{\delta P \to 0} S(f, P, \xi) =: \int_a^b f(x) dx.$

Weitere Kriterien:

- $f:[a,b] \to \mathbb{R}$ stetig $\Longrightarrow f$ auf [a,b] integrierbar.
- $f:[a,b]\to\mathbb{R}$ monoton $\Longrightarrow f$ auf [a,b] integrierbar.
- $a < b < c, f : [a, c] \to \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar $\Longrightarrow f$ integrierbar und $\int_a^c f(x) dx = \int_a^b f(x) dx + \int_b^c f(x) dx$.
- $\bullet \int_a^a f(x) dx = 0 \int_a^b f(x) dx = \int_b^a dx$
- Für kompaktes Intervall $I \subset \mathbb{R}$ mit Endpunkten a, b, Funktionen $f, g: I \to \mathbb{R}$ beschränkt, integrierbar und $\alpha, \beta \in \mathbb{R} \implies \int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$.

7.4 Funktionenverknüpfung

- Für $f,g:[a,b]\to\mathbb{R}$ beschränkt und integrierbar, $\lambda\in\mathbb{R}\Longrightarrow -f+g-\lambda*f-f\cdot g-|f|-\max(f,g)-\min(f,g)-f/g,|g(x)|>0-g(f(x))$ integrierbar.
- Für Polynome P,Q und Intervall [a,b],Q hat keine Nullstelle $\implies R:[a,b]\to\mathbb{R},x\mapsto P(x)/Q(x)$ integrierbar.

7.5 Eigenschaften

Für $f, g: [a, b] \to \mathbb{R}$ beschränkt integrierbar:

- falls $f(x) \leq g(x) \ \forall x \in [a, b] \implies \int_a^b f(x) dx \leq \int_a^b g(x) dx$.
- $\left| \int_a^b f(x) dx \right| \le \int_a^b |f(x)| dx$.
- $\left| \int_a^b f(x)g(x) dx \right| \le \sqrt{\int_a^b f^2(x) dx} \sqrt{\int_a^b g^2(x) dx}.$
- Für Intervall $I \subset \mathbb{R}$ und $f: I \to \mathbb{R}$ stetig:
 - Für $a, b, c \in \mathbb{R}$, Intervall $[a+c, b+c] \in I \Longrightarrow \int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$. – Für $a, b, c \in R, c \neq 0$, Intervall $[a \cdot c, b \cdot c] \in$
 - Für $a, b, c \in R, c \neq 0$, Intervall $[a \cdot c, b \cdot c] \in I \implies \int_a^b f(c \cdot t) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$.

7.6 Mittelwertsatz

Für $f:[a,b]\to\mathbb{R}$ stetig. $\Longrightarrow \exists \xi\in[a,b], \int_a^b f(x)\mathrm{d}x=f(\xi)(b-a).$

• für $f,g:[a,b]\to\mathbb{R}, f$ stetig, g beschränkt integrierbar und $g(x)\geq 0 \ \forall x\in[a,b]\implies \exists\xi\in[a,b], \int_a^b f(x)g(x)\mathrm{d}x=f(\xi)\int_a^b g(x)\mathrm{d}x.$

7.7 Fundamentalsatz der Differentialrechnung

Für $f:[a,b]\to\mathbb{R}$ stetig \Longrightarrow \exists Stammfunktion F von f, welche bis auf eine additive Konstante eindeutig ist und $\int_a^b f(x) dx = F(b) - F(a)$.

- Für a < b, $f : [a, b] \to \mathbb{R}$ stetig $\Longrightarrow F(x) = \int_a^x f(t) dt$, $a \le x \le b$ in [a, b] stetig differenzierbar und $F'(x) = f(x) \ \forall x \in [a, b]$.
- Für $a < b, f : [a, b] \to \mathbb{R}$ stetig. Die **Stammfunktion** $F : [a, b] \to \mathbb{R}$ von f ist differenzierbar in [a, b] und F' = f.

7.8 Partielle Integration

Für $a < b, f, g : [a, b] \to \mathbb{R}$ stetig differenzierbar $\Longrightarrow \int_a^b f(x)g'(x)\mathrm{d}x = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x)\mathrm{d}x = f(x)g(x)|_a^b - \int_a^b f'(x)g(x)\mathrm{d}x.$

7.9 Substitution

Für $a < b, \ \phi : [a,b] \to \mathbb{R}$ stetig differenzierbar, Intervall $I \subset \mathbb{R}$ mit $\phi([a,b]) \subset I$ und $f : I \to \mathbb{R}$ stetig $\Longrightarrow \int_{\phi(a)}^{\phi(b)} f(x) \mathrm{d}x = \int_a^b f(\phi(t)) \phi'(t) \mathrm{d}t.$

- Für unbestimmtes integral $\int f(x) dx|_{x=\phi(t)} = \int f(\phi(t))\phi'(t) dt + c$.
- Integral in der Form $\int_{t_0}^{t_1} f(\phi(t))\phi'(t)dt \implies$ Anwendung von links nach rechts.
- Integral in der Form $\int_{\alpha}^{\beta} f(x) dx \implies$ versuch einer Substitution mittels $x = \phi(t)$, wobei $\phi(t_0) = \alpha$ und $\phi(t_1) = \beta$.
- Für best. Integrale gibt es zwei Methoden für den Umgang mit Grenzwerten:
 - Substitution von $x = \phi(t)$, Brechung einer Stammfunktion in x und ersetzten der Variable x mit t und Benutzung des Grenze für t.

Änderung der Grenze während der Substitution.

7.10 Konvergente Reihen

- Für beschränkte, integrierbare Folge von Funktionen $f_n: [a,b] \to \mathbb{R}$ welche gleichmässig gegen Funktion $f: [a,b] \to R$ konvergieren $\Longrightarrow f$ ist beschränkt integrierbare und $\lim_{n\to\infty} \int_a^b f_n(x) \mathrm{d}x = \int_a^b f(x) \mathrm{d}x$.
- Für Folge $f_n[a,b] \to \mathbb{R}$ beschränkter integrierbarer Funktionen, $\sum_{n=0}^{\infty} f_n$ auf [a,b] gleichmässig konvergiert $\Longrightarrow \sum_{n=0}^{\infty} \int_a^b f_n(x) dx = \int_a^b (\sum_{n=0}^{\infty} f_n(x)) dx$.
- Für Potenzreihe $f(x) = \sum_{n=0}^{\infty} c_k x^k$ mit positiven Konvergenzradius $\rho > 0 \implies \forall 0 \le r < \rho$ ist f auf [-r, r] integrierbar und $\forall x \in]-\rho, \rho[\int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$.
 - Potenzreihen können auf ihrem Konvergenzbereich gliedweise differenziert und integriert werden.

7.11 Approximation von n!

Stirling: $n! \approx (\frac{x}{e})^n$ Besser: $n! \approx (\frac{n}{e})^n \sqrt{2\pi n}$

7.12 Uneigentliche Integrale

Integral mit unendlicher oder undefinierter Grenze(n).

Konvergent: Falls Integral existiert (Grenzwert $\in \mathbb{R}$) Divergent: Ansonsten

- Für $f: [a, c] \to \mathbb{R}$ beschränkt und $\forall a < b < c$ auf [a, b] integrierbar. Falls $\exists \lim_{b \to c} \int_a^b f(x) dx =: \int_a^c f(x) dx \implies \int_a^c f(x) dx$ konvergent.
 - -c kann undefiniert oder auch ∞ sein.
 - Fall für $f: [a, c] \to \mathbb{R}$ ist analog.
- Für beidseitig offene Intervalle müssen mir den Grenzwert unabhängig nehmen: $\int_{-\infty}^{\infty} f(x) dx = \lim_{a \to -\infty} \lim_{b \to +\infty} \int_{a}^{b} f(x) dx$.

7.12.1 Überprüfe Konvergenz

• $\int_1^\infty \frac{1}{x^s} dx$ konvergiert $\underset{1}{\longleftrightarrow} s > 1$.

- Für $f, g:]a, b[\to \mathbb{R} \text{ stetig, } f(x) \le g(x) \ \forall x \in]a, b[: \int_a^b g(x) dx \text{ konvergent } \Longrightarrow \int_a^b f(x) dx \text{ konv.}$ - $\int_a^b f(x) dx \text{ divergent } \Longrightarrow \int_a^b g(x) dx \text{ div.}$
- $\int_a^b |f(x)|$ konvergent \implies d $x \int_a^b f(x) dx$ abs. konv.
- Für $f: [1, \infty[\to [0, \infty[$ monoton fallend. Die Reihe $\sum_{n=1}^{\infty} f(n)$ konvergiert $\iff \int_{1}^{\infty} f(x) dx$ konvergiert und in diesem Fall ist $0 \le \sum_{k=1}^{\infty} f(k) \int_{1}^{\infty} f(x) dx \le f(1)$.
- Für f(x) auf $[a, \infty[$ stetig, monoton fallend und $\lim_{x\to\infty} = 0 \implies : -\int_a^\infty \sin x dx \int_a^\infty \cos x dx$ konvergieren.
- Für f(x) auf]a,b] stetig. Falls $f(x)(x-a)^2$ monoton wachsend und $\lim_{x\to a^+} f(x)(x-a)^2 = 0 \implies :$ $-\int_a^b f(x) \sin(\frac{1}{x-a}) \mathrm{d}x \int_a^b f(x) \cos(\frac{1}{x-a}) \mathrm{d}x \text{ konvergieren.}$

7.12.2 Gamma Funktion

- $\Gamma:]0, \infty[\rightarrow]0, \infty[$
- $\Gamma(s) := \mapsto \int_0^\infty e^{-x} x^{n-1} dx = (n-1)!$
- $\Gamma(s) = \lim_{n \to \infty} \frac{n! n^s}{s(s+1) \dots (s+n)}$.
- $\int_{-\infty}^{\infty} e^{-t^2} dx = \Gamma(\frac{1}{2}).$

Folgende Eigenschaften beschreiben die Gamma Funktion eindeutig: 1. $\Gamma(1)=1$ 2. $\gamma(s+1)=s\Gamma(s)$ $\forall s>0$ 3. $\Gamma(s)$ ist logarithmisch konvex: $\Gamma(\lambda x+(1-\lambda)y)\leq \Gamma(x)^{\lambda}\Gamma(y)^{1-\lambda}$ $\forall x,y>0,\ 0\leq\lambda\leq 1$

• $\int_{-\infty}^{\infty} e^{-t^2} dt = \Gamma(\frac{1}{2})$

7.13 Rationale Funktionen

 $R(x) = P(x)/Q(x), \ P(x), Q(x)$ sind Polynome, $x \mapsto \frac{P(x)}{Q(x)}.$

7.13.1 Partialbruchzerlegung

$\int R(x) dx, R(x) = \frac{P(x)}{Q(x)}$

1. Reduktion

- Falls $\operatorname{grad}(P) \ge \operatorname{grad}(Q)$ führe Polynomdivision durch: $P(x) = S(x)Q(X) + \hat{P}(x)$
- $\Longrightarrow \frac{P(x)}{Q(x)} = S(x) + \frac{\hat{P}(x)}{Q(x)}$
- 2. Zerlegung

- n := grad(Q)
- $\alpha_1 \pm i\beta_1, \dots \alpha_l \pm i\beta_l, \gamma_1, \dots, \gamma_k, \quad \alpha, \beta, \gamma \in$ $\mathbb{R}, \beta \neq 0$ paarweise verschiedene Nullstellen.
- $Q(x) = \prod_{j=1}^{l} \left((x \alpha_j)^2 + \beta_j^2 \right)^{m_j} \prod_{i=1}^{k} (x \gamma_i)^{n_i}$ $\frac{P(x)}{Q(x)} = (S(x)+) \sum_{i=1}^{l} \sum_{j=1}^{m_i} \frac{A_{ij} + B_{ij}x}{\left((x \alpha_i)^2 + \beta_i^2 \right)^j} + C(x)$
- $\sum_{i=1}^k \sum_{j=1}^{n_i} \frac{C_{ij}}{(x-\gamma_i)^j}, \exists A_{ij}, B_{ij}, C_{ij} \in \mathbb{R}.$ Finde eindeutige A_{ij}, B_{ij}, C_{ij} durch Koeffizi-
- entenvergleich.

3. Integration der Partialbrüche

7.14 Gerade und Ungerade Funktionen

Gerade Funktionen: f(x) = f(-x)

- f gerade $\implies f'$ ungerade.
- f gerade, integrierbar $\Longrightarrow \int_{-A}^{A} f(x) dx = 0$.
- f, g gerade $\implies f \cdot g$ gerade.
- f gerade, g ungerade $\implies f \cdot g$ ungerade.

Ungarade Funktionen: -f(x) = f(-x)

- f ungerade $\implies f'$ gerade.
- f ungerade, integrierbar $\implies \int_{-A}^{A} f(x) dx =$ $2\int_0^A f(x) dx$.
- f, g ungerade $\implies f \cdot g$ gerade.
- f ungerade, g gerade $\implies f \cdot g$ ungerade.