Lenguajes Formales, Autómatas y Computabilidad

Clase Teórica Máquinas de Turing, funciones parcialmente computables, conjuntos computablemente enumerables

Primer Cuatrimestre 2025

Bibliografía

Introduction to Automata Theory, Languages and Computation, J. Hopcroft, J. Ullman, First Edition, Addison Wesley, 1979. Capitulo 7, Turing Machines

Orígenes

Principios 1900, preocupación por fundamentos de la matemática (Hilbert) Completitud de la aritmética

- se buscaba un sistema axiomático que capturara todas las verdades de la aritmética
- ► Gödel (1931): cualquier sistema axiomático suficientemente poderoso es incompleto o inconsistente

El problema de la decisión (Entscheidungsproblem)

- se buscaba un procedimiento efectivo para decidir si cualquier fórmula de primer orden era válida o no
- ► Turing (1936): no existe tal procedimiento efectivo

David Hilbert

Kurt Gödel

Alan Turing

Definición de máquina de Turing

Una máquina de Turing es una tupla $\mathcal{M} = (Q, \Sigma, \delta, q_0, q_f)$ donde

Q (finito) es el conjunto de estados

 Σ es conjunto finito símbolos de la cinta, finito, $\mathbf{B} \in \Sigma$

 $q_0 \in Q$ es el estado inicial

 $q_f \in Q$ es el estado final

 $\delta \subseteq Q \times \Sigma \times \Sigma \cup \{L,R\} \times Q$ es la tabla de instrucciones (finita)

Si no hay restricciones sobre δ decimos que ${\mathcal M}$ es una máquina de Turing no determinística

Si no hay dos instrucciones en δ que empiezan con las mismas primeras dos coordenadas, decimos que ${\mathcal M}$ es una máquina de Turing determinística

Por lo tanto, $\delta: Q \times \Sigma \to \Sigma \cup \{L, R\} \times Q$

Máquinas de Turing

Se compone de :

una cinta

- dividida en celdas
- infinita en ambas direcciones
- ightharpoonup cada celda contiene un símbolo de un alfabeto dado Σ .
 - ▶ $\mathbf{B} \in \Sigma$, representa el blanco en una celda
 - $L, R \notin \Sigma$ L y R son símbolos reservados (representarán acciones que puede realizar la cabeza)

una cabeza

- lee y escribe un símbolo a la vez
- se mueve una posición a la izquierda o una posición a la derecha una función de transición es una tabla finita de instrucciones

4/3

 ${\cal Q}$ es el conjunto finito de estados

 Σ es el alfabeto. $L, R \notin \Sigma$, $\mathbf{B} \in \Sigma$.

 $A = \Sigma \cup \{L,R\}$ es el conjunto de acciones

- un símbolo $s \in \Sigma$ se interpreta como "escribir s en la posición actual"
- ► L se interpreta como "mover la cabeza una posición hacia la izquierda"
- R se interpreta como "mover la cabeza una posición hacia la derecha"

Una tabla de instrucciones δ es un subconjunto (finito) de

$$Q\times \Sigma\times A\times Q$$

La tupla $(q, s, a, q') \in \delta$ se interpreta como

Si la máquina está en el estado q leyendo en la cinta el símbolo s, entonces realiza la acción a y pasa al estado q'

Definición (descripción instantánea)

 $\mathcal M$ está en estado q con la cabeza en el símbolo más a la izquierda de α_2 Una descripción instantánea de $\mathcal M$ es $\alpha_1 q \alpha_2$, donde $\alpha_1, \alpha_2 \in \Sigma^*, p \in Q$.

Notar que α_1, α_2 pueden tener blancos adentro.

Definition (movimiento $\vdash_{\mathcal{M}} de \mathcal{M}$)

Supongamos $X_1 \dots X_{i-1} q X_i \dots X_n$ es una descripción instantánea. Si $(q, X_i, L, p) \in \delta$, entonces para i > 1,

$$X_1 \dots X_{i-1} q X_i \dots X_n \vdash_{\mathcal{M}} X_1 \dots X_{i-2} p X_{i-1} X_i X_{i+1} \dots X_n$$

Si $(q, X_i, R, p) \in \delta$, entonces

$$X_1 \dots X_{i-1} q X_i \dots X_n \underset{\mathcal{M}}{\vdash} X_1 \dots X_{i-1} X_i p X_{i+1} \dots X_n$$

Si $(q, X_i, Y, p) \in \delta$, entonces

$$X_1 \dots X_{i-1} q X_i \dots X_n \vdash_{\mathcal{M}} X_1 \dots X_{i-1} p Y X_{i+1} \dots X_n$$

 \mathcal{M} se detiene en una descripción instantánea cuando no hay un próximo movimiento, porque δ no tiene una instrucción para eso.

Definición (lenguaje aceptado por \mathcal{M})

El lenguaje aceptado por una máquina de Turing $\mathcal{M}=(Q,\Sigma,\delta,q_0,q_f)$ es el conjunto de palabras $w\in (\Sigma\setminus\{\mathbf{B}\})^*$ que causan que \mathcal{M} llegue al estado final,

$$\mathcal{L}(\mathcal{M}) = \{ w \in (\Sigma \setminus \{\mathbf{B}\})^* : q_0 w \overset{*}{\underset{\leftarrow}{\vdash}} \alpha q_f \beta, \text{ donde } \alpha \beta \in \Sigma^* \}$$

Ejemplo de un movimiento

Supongamos un alfabeto $\Sigma = \{0,1\}$. Una máquina con esta tabla de instrucciones:

$$\{ (q_1, 0, 1, q_2) , (q_2, 1, R, q_1) \}$$

Si empieza en esta configuración

$$\cdots \boxed{0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ B} \boxed{\mathbf{B}} \cdots$$

pasa a

y luego a

 q_1

Ejemplo

Sea
$$\mathcal{M} = (Q, \Sigma, \delta, q_0, q_f)$$
 con $\Sigma = \{\mathbf{B}, a, b\}$
$$Q = \{q_0, q_1, q_f\}$$

$$q_0 \quad a \quad b \quad q_1$$

$$\delta = \begin{array}{cccc} q_1 & b & R & q_0 \\ q_0 & \mathbf{B} & \mathbf{B} & q_f \end{array}$$

 \mathbf{B}

 q_1

Visto como autómata a/b inicio q_0 q_1 b/R B/B Q_f

si empieza en
$$\begin{bmatrix} \mathbf{B} & a & a & a & a & \mathbf{B} \\ q_0 & & & & & \end{bmatrix}$$
 termina en $\begin{bmatrix} \mathbf{B} & b & b & b & b & \mathbf{B} \\ q_f \end{bmatrix}$ si empieza en $\begin{bmatrix} \mathbf{B} & a & a & b & a & \mathbf{B} \\ q_0 & & & & & \end{bmatrix}$ termina en $\begin{bmatrix} \mathbf{B} & b & b & b & b & b & a & \mathbf{B} \\ q_0 & & & & & \end{bmatrix}$ termina en $\begin{bmatrix} \mathbf{B} & a & a & b & a & \mathbf{B} \\ q_f & & & & \end{bmatrix}$ termina en $\begin{bmatrix} \mathbf{B} & a & a & b & a & \mathbf{B} \\ q_f & & & & \end{bmatrix}$ $\begin{bmatrix} \mathbf{B} & a & a & b & a & \mathbf{B} \\ q_f & & & & \end{bmatrix}$

Otros lenguajes aceptados por máquinas de Turing:

 $\{ww^R : w \in \{0,1\}^*$

 $\{a^n b^n c^n : n \ge 0\}$

Describir el cómputo en cada caso.

Teorema

Para toda MT \mathcal{M}_1 multicinta hay una MT \mathcal{M}_2 de una sola cinta tal que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$.

Demostración.

Requiere que las funciones aritméticas sean computables

Sea \mathcal{M}_1 de k cintas y sea L aceptado por \mathcal{M}_1 . Construiremos \mathcal{M}_2 de una sola cinta, donde codificaremos las k cintas $c_0, \ldots c_{k-1}$ de \mathcal{M}_1 y las k cabezas.

En la cinta de \mathcal{M}_2 indentificaré una posición 0 y usaré la cinta a derecha. Cuando la cabeza de la cinta de \mathcal{M}_2 está posición t,

si $(t \mod 2k) < k$ entonces el símbolo en posición t denota el símbolo en la cinta $c_{t \mod 2k}$ de \mathcal{M}_1 en la posición $\lfloor t/2k \rfloor$;

si $(t \mod 2k) \geq k$ y el símbolo en posición t es distinto de ${\bf B}$ indica que la cabeza de la cinta $c_{(t-k) \mod 2k}$ está en la posición $\lfloor (t-k)/2k \rfloor$.

Cada movimiento de \mathcal{M}_1 es simulado por \mathcal{M}_2 . \mathcal{M}_2 acepta exactamente cuando \mathcal{M}_1 acepta.

Teorema

Para toda MT \mathcal{M}_1 no determinística hay otra MT deterministica \mathcal{M}_2 tal que $\mathcal{L}(\mathcal{M}_1) = \mathcal{L}(\mathcal{M}_2)$.

Demostración.

Requiere que las funciones aritméticas sean computables Para cualquier estado y símbolo de cinta de \mathcal{M}_1 hay un número finito de opciones para el siguiente movimiento. Estas pueden numerarse $1,2,\ldots$ Sea r el número máximo de opciones para cualquier par de estado-símbolo de cinta. Entonces cualquier secuencia finita de opciones puede representarse mediante una secuencia de los dígitos del 1 al r. No todas esas secuencias pueden representar opciones de movimientos, ya que puede haber menos de r opciones en algunos casos. Sea \mathcal{M}_2 con tres cintas. La primera contendrá la entrada. En la segunda, \mathcal{M}_2 generará todas las secuencias de dígitos 1 al r, en orden longitud lexicográfico.

$$(1), (2), \ldots (r), (1, 1), (1, 2), \ldots (r, r), (1, 1, 1), \ldots$$

Para cada secuencia generada en la cinta 2, \mathcal{M}_2 copia la entrada en la cinta 3 y luego simula \mathcal{M}_1 en la cinta 3 siguiendo los movimientos indicados en la cinta 2. Si \mathcal{M}_1 entra en un estado de aceptación, \mathcal{M}_2 también acepta. Si hay una secuencia de opciones que conducen a la aceptación, eventualmente se generará en la cinta 2. Cuando se simule, \mathcal{M}_2 aceptará. Pero si ninguna secuencia de movimientos de \mathcal{M}_1 conduce a la aceptación, \mathcal{M}_2 no aceptará.

Tres formas de usar una MT

Atención: Esta diapositiva tiene definiciones que se dan más adelante.

1. Aceptadoras de conjuntos c.e. en $(\Sigma \setminus \{B\})^*$

El lenguaje $L\subseteq (\Sigma\setminus\{\mathbf{B}\})^*$ aceptado por una MT $\mathcal M$ es el conjunto de palabras de entrada $w\in (\Sigma\setminus\{\mathbf{B}\})^*$ que causan que $\mathcal M$ llegue al estado final,

$$L = \mathcal{L}(\mathcal{M}) = \{ w \in (\Sigma \setminus \{\mathbf{B}\})^* : q_0 w \overset{*}{\vdash}_{\mathcal{M}} \alpha q_f \beta, \text{ donde } \alpha \beta \in \Sigma^* \}$$

2. Computadoras de una clsae de funciones $f: \mathbb{N} \to \mathbb{N}$, las funciones parcialmente computables

Luego, $L \subseteq (\Sigma \setminus \{\mathbf{B}\})^*$ es c.e. si representa el dominio de $f : \mathbb{N} \to \mathbb{N}$ parcialmente computable, es decir, hay MT \mathcal{M} que computa f y

$$L$$
 codifica el conjunto $\{x \in \mathbb{N} : f(x) \downarrow \}$.

3. Enumeradoras de conjuntos c.e. en $(\Sigma \setminus \{\mathbf{B}\})^*$

L representa la imagen de una funcion $f:\mathbb{N}\to\mathbb{N}$ totalmente computable, es decir hay una MT \mathcal{M} que computa f y

$$L$$
 codifica el conjunto $\{y \in \mathbb{N} : \exists x \in \mathbb{N}, f(x) = y\}.$

Conjuntos computablemente enumerables

Dado que hay una correspondencia uno a uno entre $\mathbb N$ y Σ podemos definir conjunto c.e. en $\mathbb N$ o en $\Sigma.$

Definición (Conjunto c.e.)

Un conjunto $L\subseteq (\Sigma\setminus \{\mathbf{B}\})^*$ es computablemente enumerable, que abreviamos c.e., si hay una MT \mathcal{M} tal que $\mathcal{L}(M)=L$.

Equivalentemente, L corresponde al dominio de una función $f:\mathbb{N}\to\mathbb{N}$ parcialmente computable.

Equivalentemente, L corresponde a la imagen de una función totalmente computable $f:\mathbb{N}\to\mathbb{N}.$

Representación de números y tuplas

Fijamos $\Sigma = \{\mathbf{B}, 1\}$.

Representaremos a los números naturales en unario (con palotes).

ightharpoonup el número $x \in \mathbb{N}$ se representa como

$$\overline{x} = \underbrace{1 \dots 1}_{x+1}$$

Representamos a las tuplas (x_1, \ldots, x_n) como lista de (representaciones de) los x_i separados por blanco

la tupla (x_1, \ldots, x_n) se representa como

$$\mathbf{B}\overline{x_1}\mathbf{B}\overline{x_2}\mathbf{B}\cdots * \overline{x_n}\mathbf{B}$$

Por ejemplo,

- ▶ el número 0 se representa como 1
- ▶ el número 3 se representa como 1111
- ▶ la tupla (1,2) se representa como $\mathbf{B}11\mathbf{B}111\mathbf{B}$
- ▶ la tupla (0,0,1) se representa como $\mathbf{B}1\mathbf{B}1\mathbf{B}11\mathbf{B}$

Funciones parcialmente computables y totalmente computables

Trabajaremos con funciones $f: \mathbb{N}^n \to \mathbb{N}$.

Una función $f:\mathbb{N}^n \to \mathbb{N}$ es parcialmente computable es una función que puede estar indefinida para algunos (tal vez ninguno; tal vez todos) sus argumentos. Para los argumentos en que está definida, el cómputo lo realiza una máquina de Turing.

- Escribimos $f(x_1, \ldots, x_n) \downarrow$ cuando f está definida para x_1, \ldots, x_n . En este caso $f(x_1, \ldots, x_n)$ es un número natural.
- Escribimos $f(x_1,\ldots,x_n)\uparrow$ cuando f está indefinida para x_1,\ldots,x_n

El conjunto de argumentos para los que f está definida se llama dominio de f,

$$dom(f) = \{(x_1, \dots, x_n) : f(x_1, \dots, x_n) \downarrow \}$$

Decimos que f es totalmente computable si dom $(f) = \mathbb{N}^n$.

Funciones parcialmente computables

Una función $f:\mathbb{N}^n\to\mathbb{N}$ es parcialmente computable si existe una máquina de Turing determinística $\mathcal{M}=(\Sigma,Q,\delta,q_0,q_f)$ con $\Sigma=\{\mathbf{B},1\}$ tal que cuando empieza en la configuración inicial

(con los enteros x_i representados en unario):

ightharpoonup si $f(x_1,\ldots,x_n)\downarrow$ entonces siguiendo sus instrucciones en δ llega a una configuración final de la forma

$$\cdots \boxed{\mathbf{B} \boxed{f(x_1, \dots, x_n)} \boxed{\mathbf{B}} \cdots}$$

$$\boxed{\begin{array}{c|c} \triangle \\ \hline q_f \end{array}}$$

(quizá algo más en la cinta)

▶ si $f(x_1,...,x_n)$ ↑ entonces nunca termina en el estado q_f .

Cómputo de la función f(x) = 0

Cómputo de la función f(x) = x + 1

inicio
$$\longrightarrow q_0 \xrightarrow{\mathbf{B}/1} q_1 \xrightarrow{1/R} q_f$$

Cómputo de la función f(x) = 2x

ldea: por cada 1 que borro de la entrada, pongo 11 bien a la derecha. Repito esto hasta que quede solo un 1 en la entrada. Ahí pongo un 1 más a la derecha.

Ejemplo: entrada = 2

Invariante: a lo largo de cada iteración, la cinta está así:

$$\mathbf{BBB}\underbrace{1\dots1}_{n}\mathbf{B}\underbrace{1\dots\dots1}_{2m}\mathbf{BBB}$$
 para algún $n>0, m\geq0, \ n+m-1=$ entrada

Si n=1 entonces pongo un 1 más a la derecha y termina en q_f con

BBB1B
$$\underbrace{1 \dots 1}_{2m+1}$$
BBB

Si
$$n>1$$
 transformo la cinta en $\mathbf{BBB}\underbrace{1\dots 1}_{n-1}\mathbf{B}\underbrace{1\dots \dots 1}_{2(m+1)}\mathbf{BBB}$

y vuelvo al paso 1

Cómputo de la función f(x) = 2x

x es par?

Supongamos

$$f(x) = \begin{cases} x & \text{si } x \text{ es par} \\ \uparrow & \text{si no} \end{cases}$$

Caracterización de funciones computables

Teorema (Turing 1936)

Una función es parcialmente computable si se puede definir a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización no acotada

Teorema (Turing 1936)

Una función totalmente computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización propia (del tipo $\min_{t} q(x_1, \ldots, x_n, t)$ donde siempre existe al menos un t tal que $q(x_1, \ldots, x_n, t)$ es verdadero)

Funciones Iniciales

sucesor:
$$s(x) = x + 1$$
,

inicialización: n(x) = 0,

proyectiones: $u_i^n(x_1,\ldots,x_n)=x_i$ para $i\in\{1,\ldots,n\}$

Composición

Sean $f: \mathbb{N}^k \to \mathbb{N}$ y $g_1, \dots, g_k : \mathbb{N}^n \to \mathbb{N}$. La función $h: \mathbb{N}^n \to \mathbb{N}$ se obtiene a partir de f y g_1, \dots, g_k por composición si

$$h(x_1, \ldots, x_n) = f(g_1(x_1, \ldots, x_n), \ldots, g_k(x_1, \ldots, x_n))$$

Ejemplos:

- ▶ Funciones constantes, $f: \mathbb{N} \to \mathbb{N}$, $f(x) = s(\dots(s(s(x)))$.
- ► Función $swap : \mathbb{N} \times \mathbb{N} \to N \times \mathbb{N}$, $swap(x,y) = (u_2^2(x,y), u_1^2(x,y))$
- Función que da la suma de una constante con alguno de sus argumentos.

Recursión primitiva

Sean $f: \mathbb{N}^n \to \mathbb{N}$ y $g: \mathbb{N}^{n+2} \to \mathbb{N}$. La función $h: \mathbb{N}^{n+1} \to \mathbb{N}$ se obtiene a partir de f y g por recursión primitiva si

$$h(x_1, ..., x_n, 0) = f(x_1, ..., x_n)$$

 $h(x_1, ..., x_n, t + 1) = g(h(x_1, ..., x_n, t), x_1, ..., x_n, t)$

En este contexto, una función 0-aria es una constante k. Si h es 1-aria y t=0, entonces $h(t)=k=s^{(k)}(n(t)).$

Ejemplos

```
suma(x,0) = u_1^1(x)
 suma(x, y + 1) = s(suma(x, y))
      mult(x,0) = n(x)
  mult(x, y + 1) = suma(x, mult(x, y)), es x \cdot y
    menos(x,0) = u_1^1(x),
menos(x, y + 1) = pred(menos(x, y)), es \dot{x-y} = x - y si x \ge y 0 si no
            \alpha(0) = s(n(0)), \text{ es } \alpha(0) = 1, \text{ y } \alpha(x) = 0, \text{ para } x > 0
       \alpha(x+1) = n(x)
Otras: x!, x^y, etc
```

Predicados y conectivos

Los predicados son simplemente funciones que toman valores en $\{0,1\}$.

- ▶ 1 se interpreta como verdadero
- ▶ 0 se interpreta como falso

```
Por ejemplo, el predicado x \leq y es \alpha(x - y). \neg p se define como \alpha(p) p \wedge q se define como p \cdot q p \vee q se define como \neg(\neg p \wedge \neg q)
```

Definición por casos

$$f(x_1,\ldots,x_n) = \begin{cases} g(x_1,\ldots,x_n) & \text{si } p(x_1,\ldots,x_n) \\ h(x_1,\ldots,x_n) & \text{si no} \end{cases}$$

$$f(x_1,\ldots,x_n) = g(x_1,\ldots,x_n) \cdot p(x_1,\ldots,x_n) + h(x_1,\ldots,x_n) \cdot \alpha(p(x_1,\ldots,x_n))$$

Sumatorias y productorias

Si $f:\mathbb{N}^{n+1}\to\mathbb{N}$ está definida por iniciales, composicion, recursion primitiva y minimización acotada, entonces estas otras también:

$$g(y, x_1, \dots, x_n) = \sum_{t=0}^{y} f(t, x_1, \dots, x_n)$$

$$h(y, x_1, \dots, x_n) = \prod_{t=0}^{y} f(t, x_1, \dots, x_n)$$

ya que

$$g(0, x_1, \dots, x_n) = f(0, x_1, \dots, x_n)$$

$$g(t+1, x_1, \dots, x_n) = g(t, x_1, \dots, x_n) + f(t+1, x_1, \dots, x_n)$$

Lo mismo para h con \cdot en lugar de +.

Observar que no importa la variable en la que se hace la recursión: podemos definir g'(x,t) como lo dimos y luego $g(t,x)=g'(u_2^2(t,x),u_1^2(t,x))=g'(x,t)$. Una definición muy pareceida se usa para la sumatoria y la productoria desde 1.

Cuantificadores acotados

Sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado.

$$(\forall t) \leq y \ p(t, x_1, \dots, x_n) \ \text{sii} \ \prod^y \ p(t, x_1, \dots, x_n) = 1$$

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n) \text{ sii } \sum_{t=0}^{s} p(t, x_1, \dots, x_n) \neq 0$$

Lo mismo se puede definir con < y en lugar de $\le y$.

$$(\exists t)_{\leq y} p(t, x_1, \dots, x_n)$$
 y $(\forall t)_{\leq y} p(t, x_1, \dots, x_n)$

Más ejemplos

ightharpoonup y|x sii y divide a x. Se define como

$$(\exists t)_{\leq x} \ y \cdot t = x$$

Notar que con esta definición 0|0.

ightharpoonup primo(x) sii x es primo.

Minimización acotada

Sea $p: \mathbb{N}^{n+1} \to \{0,1\}$ un predicado

$$g(y, x_1, \dots, x_n) = \sum_{n=0}^{y} \prod_{t=0}^{u} \alpha(p(t, x_1, \dots, x_n))$$

¿Qué hace q?

- \blacktriangleright supongamos que existe un $t \leq y$ tal que $p(t, x_1, \ldots, x_n)$ es verdadero
 - sea t₀ el mínimo tal t
 - $p(t, x_1, \ldots, x_n) = 0$ para todo $t < t_0$

 - $p(t_0, x_1, \dots, x_n) = 1$ $\prod_{t=0}^{u} \alpha(p(t, x_1, \dots, x_n)) = \begin{cases} 1 & \text{si } u < t_0 \\ 0 & \text{si no} \end{cases}$
 - $g(y, x_1, \dots, x_n) = \underbrace{1 + 1 + \dots + 1}_{t_0} + 0 + 0 + \dots + 0 = t_0$
 - entonces $g(y, x_1, \ldots, x_n)$ es el mínimo $t \leq y$ tal que $p(t, x_1, \ldots, x_n)$ es verdadero
- \blacktriangleright si no existe tal $t, g(y, x_1, \dots, x_n) = y + 1$

Minimización acotada

$$\min_{t \leq y} p(t,x_1,\dots,x_n) = \begin{cases} \min \text{imo } t \leq y \text{ tal que } p(t,x_1,\dots,x_n) \text{ es verdadero} \\ \text{si existe tal } t \\ 0 \text{ si no existe tal } t \end{cases}$$

Ejemplo:

x div y es la división entera de x por y

$$\min_{t \le x} ((t+1) \cdot y > x)$$

Notar que con esta definición 0 div 0 es 0.

Minimización no acotada

$$\min_t p(t,x_1,\dots,x_n) = \begin{cases} \min t \text{ tal que } p(t,x_1,\dots,x_n) \text{ es verdadero} \\ \text{si existe tal } t \\ \\ \uparrow \text{ si no existe tal } t \end{cases}$$

Si para todo (x_1,\ldots,x_n) existe t tal que $p(t,x_1,\ldots,x_n)$ la minimización se llama propia.

Ejemplos de minimización no acotada

- Primer primo gemelo mayor que n (dos números primos son gemelos si son dos impares sucesivos).
- \bullet El $k\text{-}\mathrm{\acute{e}simo}$ número $t_k=(k)(k+1)/2$ que tiene al menos n factores primos distintos
- ullet El menor factorial divisible por n primos distintos
- ullet La cantidad de pasos que una máquina de Turing determinística con entrada dada n necesita para llegar al estado final.

El lenguaje S^{++}

Damos un lenguaje de programación \mathcal{S}^{++} que permite definir todas las funciones computables en base a las funciones iniciales, composicion, recursión primitiva , minimización acotada y no acotada.

Dado un programa P en en \mathcal{S}^{++} definimos la función $\Psi_P^{(m)}(r_1,\ldots,r_m)$ es valor de las variable de salida del programa P con entrada $r_1,\ldots r_m$), o está indefinido.

Definiremos esta función $\Psi_P^{(m)}(r_1,\ldots,r_m)$ la clase que viene en base a la la transformación de estados que realiza el programa P con entrada $r_1,\ldots r_m)$ desde su estado inicial.

Teorema

Una función parcial $f: \mathbb{N}^m \to \mathbb{N}$ es parcialmente computable exactamente cuando existe un programa P en este lenguaje de programación tal que para todo $(r_1, \ldots, r_m) \in \mathbb{N}^m$,

$$f(r_1, ..., r_m) \downarrow, \Psi_P^{(m)}(r_1, ..., r_m) \downarrow y f(r_1, ..., r_m) = \Psi_P^{(m)}(r_1, ..., r_m)$$

$$f(r_1,\ldots,r_m)\uparrow,\Psi_P^{(m)}(r_1,\ldots,r_m)\uparrow$$

Teorema

Sea $f: \mathbb{N}^m \to \mathbb{N}$ una función parcial. Son equivalentes:

- 1. f es parcialmente computable
- 2. f es parcialmente computable en Python
- 3. f es parcialmente computable en C
- 4. f es parcialmente computable en \mathbb{S}^{++}

No es importante

- qué base usamos para representar a los números
 - usamos representación unaria ($\Sigma = \{\mathbf{B}, 1\}$)
 - pero podríamos haber elegido la binaria ($\Sigma = \{\mathbf{B}, 0, 1\}$)
 - o base 10 ($\Sigma = \{ \mathbf{B}, 0, 1, 2, \dots, 9 \}$)
- si permitimos que al terminar la cinta tenga otras cosas escritas además de la salida o solo contenga la salida
- si usamos esta variante de arquitectura:
 - una cinta de entrada (solo de lectura)
 - una cinta de salida (solo de escritura)
 - una o varias cintas de trabajo, de lectura/escritura

¡Siempre computamos la misma clase de funciones!