Authenticated Encryption

Authenticated Encryption (AE)

- Everything demonstrated so far provides
 - either integrity
 - or <u>confidentiality</u> (security against eavesdropping)
- CPA security does not provide secrecy against active attacks (where an attacker can tamper with ciphertext)
 - → If you require integrity → MAC
 - → If you require integrity and confidentiality → AE

Contents

- Ciphertext integrity
- AE definitions
- Chosen Ciphertext Attack
- Constructions
 - Encrypt-then-MAC
 - Encrypt-and-MAC
 - MAC-then-Encrypt

AE: Desired properties

– An authenticated encryption system $\zeta\!=\!(E\,,\!D)$ is a cipher where

as usual
$$E: K \times M \times N \rightarrow C$$

but $D: K \times C \times N \rightarrow M \cup \{\bot\}$ $\bot \not\in M$
Nonce CT is invalid (rejected)

- Security: the system must provide
 - · semantic security under CPA, and
 - ciphertext integrity
 - an adversary cannot create a new valid CT (such that would decrypt properly)

Ciphertext integrity (def)

Let $\zeta = (E, D)$ be a cipher with message space M

Def: $\zeta = (E, D)$ has **ciphertext integrity** if for all "efficient" adversaries $A : Adv_{CI}[A, \zeta]$ is "negligible".

$$Adv_{CI}[A,\zeta] = Pr[Chal. outputs 1]$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Authenticated Encryption

Implication 1: Authenticity

- An attacker cannot create a new valid $c \notin \{c_1...c_q\}$
- If message decrypts properly $(D(k,c) \neq \bot)$, it must have come from someone who knows secret key k
 - But it could be a replay
- Implication 2: Security against chosen ciphertext attack (CCA)

Authenticated Encryption

- Def: A cipher $\zeta = (E, D)$ provides authenticated encryption (AE) if it is
 - 1) semantically secure under CPA, and
 - 2) has ciphertext integrity.
- Do the following ciphers provide AE:
 - AES-CBC,
 - AES-CTR,
 - RC4?
- Why?

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Chosen ciphertext security

- Adversary's power: CPA and CCA
 - Can encrypt any message of her choice
 - Can decrypt any message of her choice other than some challenge
 - (still conservative modeling of real life)
- Adversary's goal: break semantic security
 - Learn about the PT from the CT

Chosen ciphertext security (def)

- Let $\zeta = (E, D)$ be a cipher defined over (K, M, C)
- For $b \in \{0,1\}$ define experiments EXP(b) as

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Ex: AES-CTR is not CCA secure

- Recall
 - AES-CTR is effectively a stream cipher
 - Malleability of stream ciphers

Chosen ciphertext security (def)

- <u>Def.</u> Cipher $\zeta = (E, D)$ is CCA secure if for all efficient adversaries $AAdv_{CCA}[A, \zeta]$ is negligible. $Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] Pr[EXP(1)=1]|$
- <u>Thm.</u> A cipher that provides AE is also CCA secure.
- Implication. AE provides confidentiality against an active adversary that can decrypt some ciphertexts.
- Limitations
 - AE does not prevent replay attacks
 - Does not account for side channels attacks (timing)

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Encrypt then MAC

- MAC computed over cipher text
- Used in IPsec, always provides AE
 - Use separate and independent keys

Encrypt and MAC

- MAC computed over plain text and sent unencrypted
- Used in SSH
- Use separate and independent keys

MAC then encrypt

- MAC computed over plain text and then encrypted before sending
- Used in TLS/SSL
- Use separate and independent keys

https://en.wikipedia.org/wiki/Authenticated_encryption

https://en.wikipedia.org/wiki/Authenticated encryption

Three AE approaches

AE: Standardized solutions

- Galois/Counter Mode (GCM)
 - CTR mode encryption then CW-MAC
 - Made popular by Intel's PCLMULQDQ instruction
- CBC-MAC then CTR mode encryption (CCM)
- EAX
- All support authenticated encryption with associated data (AEAD)

Index

Public key encryption

Public key encryption

- Each party uses a key pair: k = (pk, sk)
- Public key is given to everyone, secret is kept hidden

Public-key ciphers overview

- Security definitions
 - CPA-security
 - CCA-security
- Trapdoor functions and permutations (TDF, TDP)
 - Encryption schemes from TDF (ISO)
- Example TDP: RSA
 - Definition
 - RSA in practice
 - Security of RSA

Public key encryption: usage

- Communication session set-up
 - A process where Alice and Bob agree upon a shared secret
- Non-interactive applications
 - E.g. email
 - Typically, PKs are long-lived, symmetric keys are ephemeral
 - (But the sender needs to know recipient's PK in advance – need PKI)

Public key encryption: def

Def. A public-key encryption system is triple of algs. (G, E, D)

- G() rand. alg. generates key pairs (pk, sk)
- E(pk, m) rand. alg. takes $m \in M$ and returns $c \in C$
- ullet D(sk,c) det. alg. takes $c\in C$ and returns $m\in M$ or \bot

such that $\forall (pk, sk)$ output by G:

 $\forall m \in M : D(sk, E(pk, m)) = m$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Relation to symmetric cipher security

- For symmetric ciphers, we had 2 security definitions
 - One-time security (key used only once) and manytime security (key used many times; CPA)
 - One-time security does not imply many-time security (OTP is broken if used more than once)
- Public key encryption
 - One-time security → many-time security (CPA)
 - Because the adversary can encrypt herself (she knows pk)
 - Public key encryption must be randomized

Semantic security (def)

Let $\zeta = (G, E, D)$ be a public key encryption system. For $b \in \{0, 1\}$ define experiments EXP(0), EXP(1)

Def: $\zeta=(G,E,D)$ is **semantically secure** (aka IND-CPA) if for all eff. adversaries $A: \mathrm{Adv}_{\mathrm{SS}}[A,\zeta]$ is negligible.

$$Adv_{SS}[A,\zeta] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

(pub-key) Chosen Ciphertext Security (def)

 $\zeta = (G, E, D)$ a pub-key enc. over (M, C). For $b \in \{0, 1\}$ define experiments EXP(b):

CCA security

• <u>Def.</u> $\zeta = (G, E, D)$ is CCA secure (aka. IND-CCA) if for all efficient adversaries A: $\mathrm{Adv}_{\mathrm{CCA}}[A, \zeta]$ is negligible.

$$Adv_{CCA}[A, \zeta] := |Pr[EXP(0)=1] - Pr[EXP(1)=1]|$$

- Recall: A secure symmetric cipher provides AE, when it has CPA security and ciphertext integrity
 - Attacker cannot create new ciphertexts (implies CCA security)
- In pub-key setting
 - Attacker knows pk → can create new ciphertexts
 - Instead: we directly require CCA security
- Next step: Constructing CCA secure pub-key encryption

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Secure TDFs

- TDF (G, F, F⁻¹) is secure if F(pk, -) is *one-way*
 - It can be evaluated but not inverted without sk

• Def. (G, F, F⁻¹) is a secure TDF if for all eff. algs. A: $Adv_{OW}[A,F] := Pr[x=x']$ is negligible.

Trapdoor function (TDF)

- Def. A trapdoor function X → Y is a triple of eff. algorithms (G, F, F⁻¹)
 - **G()**: rand. alg. for creating (pk, sk)
 - F(pk, -): <u>det. alg.</u> that defines $X \rightarrow Y$
 - F⁻¹(sk, -): det. alg. that defines Y → X
 [inverts F(pk, -)]

For every (pk, sk) returned by **G**

$$F^{-1}[sk, F(pk, x)] = x$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Pub-key encryption from TDFs

(ISO 18033-2 standard)

- · Building blocks
 - (G, F, F⁻¹) secure TDF $X \rightarrow Y$
 - (E_S, D_S) symmetric AE cipher over (K, M, C)
 - $H: X \rightarrow K$ a hash function
- Pub-key enc. system (G, E, D)
 - Key generation **G**: same as **G** in TDF

E(pk, m): $x \stackrel{R}{\leftarrow} X$, $y \leftarrow F(pk, x)$ $k \leftarrow H(x)$, $c \leftarrow E_s(k, m)$ return (y, c)

D(sk, (y, c)):

 $X \leftarrow F^{-1}(sk, y)$ $k \leftarrow H(x), \qquad m \leftarrow D_s(k, c)$

return m

Pub-key encryption from TDFs

(ISO 18033-2 standard)

F(pk, x)

 $E_S(H(x),m)$

<u>Thm.</u> If **(G, F, F⁻¹)** is a secure TDF, if **(E_s, D_s)** provides AE, and if **H**: $X \rightarrow K$ is a "random oracle", then **(G, E, D)** is CCA^{ro} secure.

An incorrect use of TDF:

$$E(pk, m) := F(pk, m)$$

 $D(sk, c) := F^{-1}(sk, c)$

Such construction results in a deterministic encryption scheme: cannot be semantically secure

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Adaptation of: Dan Boneh, Cryptography I, Stanford.

Arithmetic modulo composites

Let $N = p \cdot q$ where p, q are primes

$$\mathbb{Z}_N = \{0, 1, ..., N-1\}$$

 $\mathbb{Z}_N^* = \{\text{invertible elements in } Z_N \}$

Facts $x \in \mathbb{Z}_N$ is invertible $\iff \gcd(x,N) = 1$ $|\mathbb{Z}_N^*| = \varphi(N) = (p-1)(q-1) = N - p - q + 1$

Euler's theorem

$$\forall x \in \mathbb{Z}_N^* : x^{\varphi(N)} = 1 \mod N$$

Trapdoor permutation (TDP)

- TDP is a triple of eff. algorithms (G, F, F-1)
 - G(): generates (pk, sk); pk defines a function $X \rightarrow X$
 - F(pk, x): evaluates the function at x
 - F⁻¹(sk, y): inverts the function at y using sk

Secure TDP

The function F(pk, -) is one-way without the sk

RSA trapdoor permutation

- G():
 - Choose random primes p,q (~1024 bits); $N=p\cdot q$
 - Choose integers e, d such that $e \cdot d = 1 \mod \varphi(N)$
 - Return pk = (N, e), sk = (N, d)
- F(pk, x): $\mathbb{Z}_N^* \to \mathbb{Z}_N^* : RSA(x) = x^e \mod N$
- F-1(sk, y): $y^d = \operatorname{RSA}(x)^d \mod N$ $= x^{ed} \mod N$ $= x^{k \cdot \varphi(N) + 1} \mod N$ $= (x^{\varphi(N)})^k \cdot x \mod N$

RSA trapdoor permutation

RSA assumption: RSA is one-way permutation

For all eff. algs. *A*:

$$\Pr[A(N, e, y) = \sqrt[e]{y}] < \text{negligible}$$

$$p, q \leftarrow n$$
-bit primes

$$N = p \cdot q$$

$$y \stackrel{R}{\leftarrow} \mathbb{Z}_N^*$$

Adaptation of: Dan Boneh, Cryptography I, Stanford.

RSA in practice

- RSA in practice (ISO standard rarely used)
 - Expand the message to the RSA modulus size and add random bits
 - Apply the RSA function

Insecure "textbook" RSA

- Encrypting directly with RSA ("textbook" RSA) is insecure
 - $-E((N,e),x) := x^e \mod N$
 - $D((N,d),y) := y^d \mod N$
- Problem 1: Ciphertext is malleable
 - Given ciphertext c = E((N, e), m) an attacker can create $c' = c \cdot 2^e \mod N$
 - The modified ciphertext c' decrypts to $2m \mod N$
- Problem 2: Encryption is deterministic

Adaptation of: Dan Boneh, Cryptography I, Stanford.

RSA in practice: PKCS1 v1.5

RSA modulus size (e.g. 2048 bits)

02 Random pad 11..1 Message

- Resulting value is RSA encrypted
- Widely deployed (HTTPS)
- Attack due to Bleichenbacher (1998)
 - During decryption, the system will signal an error if the decrypted plaintext does not start with 02
 - Enough to completely decrypt the ciphertext
- Solution in RFC 5246
 - set decrypted PT to a random value and fail later on
- Generally PKCS1 v1.5 padding should be avoided

RSA in practice: PKCS1: v2.0 (OAEP)

- New preprocessing function: Optimal asymmetric encryption padding (OAEP)
- Check pad on decryption
 - Reject CT if invalid
- Thm. If RSA is a TDP, then RSA-OAEP is CCA secure if H, G are random oracles.
 - In practice we use SHA-256 for H and G

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

RSA security (informally)

 Security of public key system should be comparable to security of symmetric cipher

Cipher key size	RSA modulus size [in modulo primes]
80	1024
128	3072
256	15360

RSA security (informally)

- To invert RSA one-way function, the attacker must extract x from $c = x^e \mod N$
- How difficult is to compute e'th root modulo N?
 Currently best known algorithm
 - Step 1: Factor N [difficult]
 - Step 2: Compute e'th roots modulo p and q [easy]
- Shor's algorithm: a quantum algorithm for integer factorization in polynomial time
 - Unknown if quantum computers can be built