TD 9 - Homotopies

Rappel Deux lacets sont homotopes dans un ouvert Ω si l'on peut "déformer continuement le premier pour aboutir au deuxième en restant dans l'ouvert Ω ". Cela se traduit mathématiquement par l'existence d'une homotopie entre c_0 et c_1 . L'homotopie est une application C(s,t) de classe C^2 , à valeurs dans Ω qui vérifie :

- $\forall s \in [0,1] \ C(s,0) = C(s,1) \ (\text{les } t \mapsto C(s,t) \text{ sont des lacets pour tout } s)$
- $\forall t \in [0,1], C(0,t) = c_0(t)$ et $C(1,t) = c_1(t)$ (on part du lacet c_0 pour arriver sur c_1)

En particulier, deux lacets homotopes ont même indice.

Exercice 1. Dire dans les phrases suivantes, les hypothèse que l'on doit faire sur l'ouvert Ω pour que la phrase soit vraie.

- a) $f' = 0 \operatorname{sur} \Omega \implies f = cte \operatorname{sur} \Omega$.
- b) Soit $f \in C^0(\Omega)$. f admet une primitive sur $\Omega \iff$ l'intégrale sur tout chemin fermé de Ω est nulle.
- c) Soit $f \in C^0(\Omega)$. f admet une primitive sur $\Omega \iff$ son intégrale sur tout arc polygonal fermé dans Ω est nulle.
- d) Toute fonction holomorphe admet une primitive sur Ω .
- e) Si f est holomorphe sur Ω alors on peut écrire la formule de Cauchy pour tout chemin fermé de Ω .
- f) Quelles hypothèses peut-on faire sur le lacet c et l'ouvert Ω pour que la phrase suivante soit vraie : si f est holomorphe sur Ω alors $\int_{C} f(z)dz = 0$.

Exercice 2. Dire si les ouverts de \mathbb{C} suivants sont ou non : connexes, convexes, simplement connexes ou étoilés par rapport à un de ses points.

- a) un disque.
- b) l'intérieur d'un carré.
- c) le complémentaire dans C d'un point.
- d) le complémentaire dans C d'une demi-droite.
- e) le complémentaire dans $\mathbb C$ d'un segment.
- f) le complémentaire dans C d'une droite.
- g) le complémentaire dans \mathbb{C} d'un disque.
- h) $\{z \in \mathbb{C} : 2Re(z) < Im(z) < 3Re(z) \text{ et } Re(z) > 0\}.$

Exercice 3. Dans les cas suivants dessiner les lacets c_0 , c_1 et l'ouvert Ω dans le plan complexe et déterminer si c_0 et c_1 sont homotopes dans Ω .

- a) $c_0(t) = e^{2i\pi t}$, $c_1(t) = -1 + 2e^{2i\pi t}$ et $\Omega = \mathbb{C}^*$.
- b) $c_0(t) = e^{4i\pi t}$, $c_1(t) = -1 + 2e^{2i\pi t}$ et $\Omega = \mathbb{C}^*$.
- c) $c_0(t) = 2e^{2i\pi t}$, $c_1(t) = 2\cos(2\pi t) + i\sin(2\pi t)$ et $\Omega = \mathbb{C} \setminus [0, 1]$.

- d) $c_0(t) = e^{2i\pi t}$, $c_1(t) = i$ et $\Omega = \mathbb{C} \setminus \{2i\}$.
- e) $c_0(t) = e^{2i\pi t}, c_1(t) = i \text{ et } \Omega = \mathbb{C} \setminus \{-i/2\}.$

Exercice 4. Soient c_0, c_1 deux lacets de classe C_{pm}^1 de \mathbb{C} . Montrer que si pour tout $t \in [0, 1]$

$$|c_0(t) - c_1(t)| \le |z - c_0(t)|,$$

alors l'indice de c_0 et c_1 par rapport à z sont bien définis et égaux.

Exercice 5.

- a) Expliciter une homotopie entre un l'ellipse de petit axe a et de grand axe b et un cercle.
- b) Soit $\gamma(t) = a\cos(t) + b\sin(t)$ un paramétrage de cette ellipse. Calculer $\int_{\gamma} \frac{dz}{z}$.
- c) En déduire la valeur de $\int_0^{2\pi} \frac{dt}{a^2 \cos^2(t) + b^2 \sin^2(t)}$

Exercice 6. On considère une fonction f analytique dans une couronne ouverte A limitée par deux cercles concentriques $C(a, R_1)$ et $C_2(a, R_2)$, et sur sa frontière ∂A .

a) Soient $z_0 \in A$ et $R_2 < r_2 < |z_0 - a| < r_1 < R_1$. En découpant de façon convenable le bord de la couronne $A_{r_1,r_2} = \{r_2 < |z - a| < r_1\}$, montrer que

$$f(z_0) = \frac{1}{2i\pi} \int_{C(a,r_1)} \frac{f(z)}{z - z_0} dz - \frac{1}{2i\pi} \int_{C(a,r_2)} \frac{f(z)}{z - z_0} dz.$$

b) En prenant les limites $r_1 \to R_1^-$ et $r_2 \to R_2^+$, prouver que pour tout $z_0 \in A$

$$f(z_0) = \frac{1}{2i\pi} \int_{C(a,B_1)} \frac{f(z)}{z - z_0} dz - \frac{1}{2i\pi} \int_{C(a,B_2)} \frac{f(z)}{z - z_0} dz.$$

Un calcul d'intégrale

Exercice 7. Le but de cet exercice est de montrer que

$$\int_0^\infty \frac{\sin t}{t} \, dt$$

existe et que sa valeur est $\pi/2$.

On considère la fonction $z \to f(z) = \frac{e^{iz}}{z}$ holomorphe sur \mathbb{C}^* et on note

$$K(R,\varepsilon) = \{z = re^{it}\,;\, \varepsilon < r < R\,,\, 0 \le t \le \pi\}\,.$$

On oriente le bord de $K(R,\varepsilon)$ dans le sens directe, et on note C_{ε} et C_R les demi cercle de rayon ε et R situés dans $Im(z) \geq 0$. De sorte que $\partial K(R,\varepsilon)$ est formé du segment $[-R,-\varepsilon]$, de C_{ε} parcouru dans le sens indirecte, de $[\varepsilon,R]$ et de C_R parcouru dans le sens directe.

- a) Dessiner $\partial K(R,\varepsilon)$ dans le plan complexe et donner la valeur de $\int_{\partial K(R,\varepsilon)} f(z) dz$.
- b) Calculer $\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}} f(z) dz$.
- c) Montrer que $\lim_{R\to+\infty} \int_{C_R} f(z) dz = 0$. Pour cela, on utilisera que $\sin(t) \geq 2/\pi t$ sur $[0, \pi/2]$.
- d) Conclure.