Mewen,

Erasure Channel

Te =

autput

$$P_{B}(0) = \vec{P}(0|0)P_{C}(0) = 0.38$$

$$P_{B}(E) = \vec{P}(E|0)P_{A}(0) + \vec{P}(E|1)P_{A}(1) = 0.05(0.4) + 0.05(0.4)$$

$$P_{B}(1) = \vec{P}(1|1)P_{A}(1) = 0.95(0.6) = 0.57$$
backward transition probabilities are,
$$\vec{P}(0|0) = \frac{\vec{P}(0|0)P_{A}(0)}{\vec{P}(0)} = \frac{(.95)(.4)}{.38} = 1$$

$$\vec{P}(0|E) = \vec{P}(E|0)P_{A}(0) = \frac{(.05)(.4)}{.05} = \frac{(.95)(.4)}{.05}$$

$$\vec{P}(1|E) = \vec{P}(E|1)P_{A}(1) = \frac{(.05)(.6)}{.05} = \frac{(.95)(.6)}{.05} = \frac{(.95)(.6$$

entropy of the source is

i<Àsiöe^.Oc>vv \s '.

$$H(A)B) = -\frac{7}{8}(6)\frac{5}{6} = (610) \log \frac{7}{6}(610)\frac{3}{5}$$

 $(.^{5})^{6} = (610) \log \frac{7}{6}(610)\frac{3}{5}$
 $= (.^{5})^{6} = (.^{5})^{6} = (.^{5})^{6} = (.^{5})^{6} = (.^{5})^{6}$
 $= (.^{5})^{6} = (.^{5})^{$

»OA pnx w^S^eSSÌC»*^-

G^'li.o

Input Symbols: 0, 1

Input Symbol Probabilities

Xi: P(Xi) 0: 0.4 1: 0.6

Output Symbols: 0, E, 1

Conditional Probabilities

Xi: P(0|Xi), P(E|Xi), P(I|Xi)

0: 0.95, 0.05, 0 1: 0, 0.05, 0.95

Channel Matrix

Xi∖Yj	0	Е	1	
0	0.9500 0.0000	0.0500 0.0500	0.0000 0.9500	
Joint and	Marginal Distri	butions		
Xi∖Yj	0	Е	1	P(Xi)
0	0.3800	0.0200	0.0000	0.4000
1	0.0000	0.0300	0.5700	0.6000
P(Yj)	0.3800	0.0500	0.5700	1.0000

Backward Channel Matrix

Yj∖Xi	0	1
0	1.0000	0.0000
Е	0.4000	0.6000
1	0.0000	1.0000

Entropies

H(X): H(Y):		bits/symbol bits/symbol
H(X Y): H(Y X):		bits/symbol bits/symbol
H(X,Y):	1.2573	bits/symbol

Mutual Information

I(X;Y): 0.9224 bits/symbol