- 1. Let h(n) be the impulse response of a FIR filter with h(n) = -h(N-1-n), please draw the direct form of its network structure when N is odd.
- 2. Suppose the function system of a IIR filter is

$$H(z) = \frac{1}{\sum_{n=0}^{2} h(n)z^{-n}}$$
, where $h(0) = 1$, $h(2) \neq -1$

realize H(z) using an all-pole grid network structure.

- 3. Suppose the function system of a FIR filter is $H(z) = \sum_{n=0}^{2} h(n)z^{-n}$, where h(0) = 1, $h(2) \neq -1$, realize H(z) using an all-zero grid network structure
- 4. Assume that there is a analog Butterworth filter with N=6 and $\Omega_c=0.7032$, please write out its system function $H_a(s)$
- 5. Let $H_{proto}(z)$ be the system function of a digital lowpass filter with cutoff frequency θ_c , please find out a function f(z) such that $H(z) = H_{proto}(f(z))$ is a highpass filter with cutoff frequency ω_c
- 6. Please prove that $H(e^{j\omega}) = e^{-j\frac{N-1}{2}\omega} \sum_{m=0}^{N-1} \alpha_m \cos(m\omega)$ is the frequency response of a linear phase FIR filter when even symmetric and N odd.