

What is claimed is:

- 1 1. A method comprising:
 - 2 translating a design description into configurations for a plurality of
 - 3 processing elements on a single integrated circuit; and
 - 4 setting at least one packet size for packet communications between the
 - 5 plurality of processing elements on the single integrated circuit.

- 1 2. The method of claim 1 wherein translating comprises partitioning the design
2 into a plurality of functions.

- 1 3. The method of claim 2 wherein translating further comprises compiling the
2 plurality of functions to code to run on at least one of the plurality of processing
3 elements.

- 1 4. The method of claim 1 further comprising profiling a design represented by
2 the configurations for the plurality of processing elements.

- 1 5. The method of claim 4 further comprising changing a power supply voltage
2 value in response to the profiling.

- 1 6. The method of claim 4 further comprising changing a clock frequency in
2 response to the profiling.

- 1 7. The method of claim 4 further comprising changing the at least one packet
2 size in response to the profiling.

- 1 8. The method of claim 4 wherein profiling produces information describing
2 latency.

1 9. The method of claim 4 wherein profiling produces information describing
2 throughput.

1 10. The method of claim 4 further comprising comparing user constraints with
2 output from the profiling.

1 11. The method of claim 10 wherein the user constraints include latency.

1 12. The method of claim 10 wherein the user constraints include throughput.

1 13. The method of claim 4 further comprising modifying parameters of the
2 processing elements in response to the profiling.

1 14. A method comprising:
2 dividing a design description into a plurality of functions;
3 compiling at least one function into machine code to run on a first
4 processing element;
5 translating at least one other function into a configuration for a second
6 processing element; and
7 setting a packet size for packet communications between the first and second
8 processing elements.

1 15. The method of claim 14 further comprising generating configuration packets
2 to configure an integrated circuit that includes the first and second processing
3 elements.

1 16. The method of claim 15 further comprising configuring the integrated circuit
2 with the configuration packets.

- 1 17. The method of claim 14 wherein translating at least one other function
- 2 comprises translating a plurality of other functions into a configuration for the
- 3 second processing element.

- 1 18. The method of claim 14 further comprising profiling a design with the
- 2 configuration packets.

- 1 19. The method of claim 18 further comprising modifying the packet size in
- 2 response to the profiling.

- 1 20. The method of claim 18 further comprising modifying a power supply
- 2 voltage of the first processing element in response to the profiling.

- 1 21. The method of claim 18 further comprising modifying a power supply
- 2 voltage of the second processing element in response to the profiling.

- 1 22. The method of claim 18 further comprising modifying a clock frequency of
- 2 the first processing element in response to the profiling.

- 1 23. The method of claim 18 further comprising modifying a clock frequency of
- 2 the second processing element in response to the profiling.

- 1 24. An apparatus including a medium to hold machine-accessible instructions
- 2 that when accessed result in a machine performing:
 - 3 reading a design description;
 - 4 compiling the design description to configure a plurality of processing
 - 5 elements; and
 - 6 determining a packet size for communications between at least two of the
 - 7 plurality of processing elements.

1 25. The apparatus of claim 24 wherein the machine-accessible instructions when
2 accessed further result in the machine performing:
3 profiling the design; and
4 modifying at least one parameter in response to the profiling.

1 26. The apparatus of claim 25 wherein modifying at least one parameter
2 comprises modifying a clock rate of at least one of the plurality of processing
3 elements.

1 27. The apparatus of claim 25 wherein modifying at least one parameter
2 comprises modifying the packet size.

1 28. An electronic system comprising:
2 a processing element; and
3 a static random access memory to hold instructions that when accessed result
4 in the processing element performing reading a design description, compiling the
5 design description to configure a plurality of processing elements, and determining a
6 packet size for communications between at least two of the plurality of processing
7 elements.

1 29. The electronic system of claim 28 wherein the instructions when accessed
2 further result in the processing element performing profiling the design, and
3 modifying at least one parameter in response to the profiling.

1 30. The electronic system of claim 29 wherein modifying at least one parameter
2 comprises modifying the packet size.