Exit Ticket - Traversal Algebra (1)

 $m /\!\!/ n$

- 1. $\angle 2 = 88^{\circ} \angle 6 = 4x^{\circ}$. Solve for x..
- 2. $\angle 3 = (10x + 20)^{\circ}$, $\angle 5 = (8x + 20)^{\circ}$. Solve for x.
- 3. $\angle 6 = (x + 2)^{\circ}$, $\angle 3 = (3x 12)^{\circ}$. Solve for $\angle 3$.
- 4. Dezmond says that if two angles are consecutive interior angles, the *x*'s in each angle's expressions add to 180°.

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (2)

 $m /\!\!/ n$

- 1. $\angle 2 = 44^{\circ} \angle 6 = 2x^{\circ}$. Solve for x..
- 2. $\angle 3 = (5x + 10)^{\circ}$, $\angle 5 = (4x + 10)^{\circ}$. Solve for x.
- 3. $\angle 6 = (x + 28)^{\circ}$, $\angle 3 = (2x 12)^{\circ}$. Solve for $\angle 3$.
- 4. Dezmond says that if two angles are consecutive interior angles, the *x*'s in each angle's expressions add to 180°.

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (3)

m / / n

- 1. $\angle 2 = 90^{\circ} \angle 6 = 3x^{\circ}$. Solve for x..
- 2. $\angle 3 = (x + 11)^{\circ}$, $\angle 5 = (4x 10)^{\circ}$. Solve for x.
- 3. $\angle 6 = (3x + 28)^{\circ}$, $\angle 3 = (8x 12)^{\circ}$. Solve for $\angle 3$.
- 4. Dezmond says that if two angles are consecutive interior angles, the *x*'s in each angle's expressions add to 180°.

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (1)

 $m /\!\!/ n$

- 5. $\angle 2 = 88^{\circ} \angle 6 = 4x^{\circ}$. Solve for x..
- 6. $\angle 3 = (10x + 20)^{\circ}$, $\angle 5 = (8x + 20)^{\circ}$. Solve for x.
- 7. $\angle 6 = (x + 2)^{\circ}$, $\angle 3 = (3x 12)^{\circ}$. Solve for $\angle 3$.
- 8. Dezmond says that if two angles are consecutive interior angles, the x's in each angle's expressions add to 180° .

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (2)

 $m /\!\!/ n$

- 5. $\angle 2 = 44^{\circ} \angle 6 = 2x^{\circ}$. Solve for x..
- 6. $\angle 3 = (5x + 10)^{\circ}$, $\angle 5 = (4x + 10)^{\circ}$. Solve for x.
- 7. $\angle 6 = (x + 28)^{\circ}$, $\angle 3 = (2x 12)^{\circ}$. Solve for $\angle 3$.
- 8. Dezmond says that if two angles are consecutive interior angles, the *x*'s in each angle's expressions add to 180°.

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (3)

m // n

- 5. $\angle 2 = 90^{\circ} \angle 6 = 3x^{\circ}$. Solve for x..
- 6. $\angle 3 = (x + 11)^{\circ}$, $\angle 5 = (4x 10)^{\circ}$. Solve for x.
- 7. $\angle 6 = (3x + 28)^{\circ}$, $\angle 3 = (8x 12)^{\circ}$. Solve for $\angle 3$.
- 8. Dezmond says that if two angles are consecutive interior angles, the *x*'s in each angle's expressions add to 180°.

Do you agree? **Explain your reasoning**. Use the back.

Exit Ticket - Traversal Algebra (1)

 $m /\!\!/ n$

- 9. $\angle 2 = 88^{\circ} \angle 6 = 4x^{\circ}$. Resolver para x.
- 10. $\angle 3 = (10x + 20)^{\circ}$, $\angle 5 = (8x + 20)^{\circ}$. Resolver para x.
- 11. $\angle 6 = (x + 2)^{\circ}$, $\angle 3 = (3x 12)^{\circ}$. Resolver para $\angle 3$.

12.

Dezmond dice que si dos ángulos son ángulos interiores consecutivos , las x en las expresiones de cada ángulo se suman a los 180 $^\circ$.

¿Estás de acuerdo? Explique su razonamiento. Utilice la parte posterior .

Exit Ticket - Traversal Algebra (2)

m / / n

- 9. $\angle 2 = 44^{\circ} \angle 6 = 2x^{\circ}$. Resolver para x.
- 10. $\angle 3 = (5x + 10)^{\circ}$, $\angle 5 = (4x + 10)^{\circ}$. Resolver para x.
- 11. $\angle 6 = (x + 28)^{\circ}$, $\angle 3 = (2x 12)^{\circ}$. Resolver para $\angle 3$

12.

Dezmond dice que si dos ángulos son ángulos interiores consecutivos , las x en las expresiones de cada ángulo se suman a los 180 $^\circ$.

¿Estás de acuerdo? Explique su razonamiento. Utilice la parte posterior .

Exit Ticket - Traversal Algebra (3)

m / / n

- 9. $\angle 2 = 90^{\circ} \angle 6 = 3x^{\circ}$. Solve for x..
- 10. $\angle 3 = (x + 11)^{\circ}$, $\angle 5 = (4x 10)^{\circ}$. Solve for x.
- 11. $\angle 6 = (3x + 28)^{\circ}$, $\angle 3 = (8x 12)^{\circ}$. Solve for $\angle 3$.

Dezmond dice que si dos ángulos son ángulos interiores consecutivos , las x en las expresiones de cada ángulo se suman a los 180 $^\circ$.

¿Estás de acuerdo? Explique su razonamiento. Utilice la parte posterior .