Dynamics 2 – Tutorial 1

Dynamics of a Single Particle and D'Alembert's Method

Outline Solutions

1.

From FBD:

$$R(\rightarrow) P \cos \theta - ma \cos 68 + 12 \cos 32 - 4 \sin 14 = 0$$
 (1)

$$R(\uparrow)$$
 P sin θ + ma sin 68 – 12 sin 32 – 4 cos 14 = 0 (2)

P
$$\cos \theta = \text{ma } \cos 68 - 12 \cos 32 + 4 \sin 14$$
 (1a)
= -3.365

P sin
$$\theta$$
 = - ma sin68 + 12 sin32 + 4 cos14 (2b)
= -4.224

By Pythagoras

P =
$$\sqrt{[(P \sin \theta)^2 + (P \cos \theta)^2]}$$
 = 5.4 N
 $\sin \theta$ = -4.224 / 5.4 = -0.782
 θ = $\sin^{-1} (-0.782)$ = -51.5°

But both Pcos θ and Psin θ are –ve, therefore P acts in the 3rd quadrant, and $\theta = 180+51.5 = 231.5^{\circ}$

2.

Mass is sliding so $F = \mu N$.

$$a = 2.6 \text{ m/s}^2$$
; $M = 14\text{kg}$; $\mu = 0.18$; $\theta = 25^{\circ}$

From FBD

$$R(\parallel) \qquad F + Ma - P + Mg\sin\theta = 0 \tag{1}$$

$$R(\perp) N - Mg\cos\theta = 0 (2)$$

(2) gives N = 124.47

$$\Rightarrow$$
 F = μ N = 22.41

(1) gives P = 116.85 N

3.

 $\begin{array}{c|c} T_1 & T_2 \\ \hline 54^{\circ} & \downarrow \\ \hline m_1 g \\ \hline m_1 a \\ \hline \end{array}$

Platform and masses have same acceleration.

$$a = 6$$
; $m_1 = 1.2$; $m_2 = 0.8$

Note use of N3 in FBDs.

For m₁:

$$\uparrow \quad T_1 \cos 54 + T_2 \cos 22 - m_1 g - m_1 a - T_3 = 0$$

$$\rightarrow T_1 \sin 54 = T_2 \sin 22$$

$$\Rightarrow$$
 T₂ = 2.16T₁

For m2:

$$\uparrow T_3 - m_2 g - m_2 a = 0$$

$$\Rightarrow$$
 T₃ = 12.65 N

Use T_3 and T_2 to get T_1 from first equation:

$$\Rightarrow$$
 T₁ = 12.21 N

$$\Rightarrow$$
 T₂ = 26.37 N

4.

Box mass = 550kg; slope $\theta = 15^{\circ}$; $\mu = 0.35$

Find accel of truck at point of slip of box. Assume box is just on point of sliding; accel of box is same as accel of truck.

From FBD get:

$$\| F = ma + mg \sin\theta \|$$

$$\perp$$
 N = mg cos θ

Also
$$F = \mu N$$

Hence

$$a = g[\mu\cos\theta - \sin\theta] = 0.778\text{m/s}^2$$

Mass M = 12kg; $\mu = 0.35$; P = 200N.

P is applied by a wire at angle θ below horizontal. Find acceleration of mass for $\theta = 35^{\circ}$ and $\theta = 65^{\circ}$

From FBD:

For $\theta = 35^{\circ}$: Assume mass M is sliding to the right. Find a.

For
$$\theta = 65^{\circ}$$
: get $a = -1.68 \text{ m/s}^2$

However, the solution began with the assumption that the acceleration was to the right and the friction was taken to the left. The negative answer for a is not valid.

We could assume the mass acceleration to the left, but that is clearly not possible as the force P is to the right. The remaining possibility is that the mass does not slide.

Assume the mass does not slide.

