PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number: WO 95/15208
B01D 53/86, 53/94, B01J 29/12, 29/08	A1	(43) International Publication Date: 8 June 1995 (08.06.95)
(21) International Application Number: PCT/US9 (22) International Filing Date: 22 November 1994 (2)		DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(30) Priority Data: 08/161,961 3 December 1993 (03.12.93)	บ	Published With international search report.
(71) Applicant: W.R. GRACE & COCONN. [US/US Avenue of the Americas, New York, NY 10036 (U		4
(72) Inventors: AMIRIDIS, Michael, Dimitrios; 12225-Patuxent Parkway, Columbia, MD 21044 (US). I Joseph, Edward; 11320 Baritone Court, Silver Spri 20901 (US). PETERS, Alan, Wintrop; 13618 Ro Highland, MD 20777 (US). HALLE, Keith, Irwi Cordage Walk, Columbia, MD 21044 (US).	KUBSI ing, Mi ute 10	
(74) Agent: ARTALE, Beverly, J.; W. R. Grace & CoCon Route 32, Columbia, MD 21044 (US).	n., 737	

(54) Title: PT-CONTAINING CATALYST FOR THE REDUCTION OF NITRIC OXIDE BY ORGANIC COMPOUNDS

(57) Abstract

Nitric oxide is reduced in the presence of organic compounds under excess oxygen conditions by passing nitric oxide and an organic compound over a catalyst made of at least one noble metal such as platinum and rhodium on a stable dealuminated Y zeolite from which non framework alumina has been removed. The so treated Y zeolite has a unit cell of less than 24.40 and a mesopore surface area of over 70 m²/g. In a preferred case the treatment of the Y zeolite removes more than 40 % of the number of initial non framework A1 atoms per unit cell. The catalyst is more stable and less susceptible to poisoning by SO₂ and water than non-noble metal catalysts.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

ΑT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE.	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KB	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SB	Sweden
СН	Switzerland	KR	Republic of Korea	SI	Slovenia
CI	Côte d'Ivoire	KZ	Kazakhstan	SK	Slovakia
CM	Cameroon	u	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lamka	TD	Chad
cs	Czechoslovakia	LU	Lexembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT ·	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FI	Finland	ML	Mali	UZ	Uzbekistan
FR	France	MN	Mongolia	VN	Viet Nam
GA	Gabon		•		

WO 95/15208

PT-CONTAINING CATALYST FOR THE REDUCTION OF NITRIC OXIDE BY ORGANIC COMPOUNDS.

Background of the Invention

5

1. Field of the Invention

This invention relates to catalyst for the reduction of nitric oxide by organic compounds under excess oxygen conditions.

10

15

25

30

- 2. Description of the Previously Published Art Zeolite catalysts containing fourth period elements for the reduction of NO by hydrocarbons under excess oxygen conditions were first disclosed in 1988 in EP-286967 to Bayer and Volkswagen. The catalyst contains hydrophobic pentasil type zeolites with a Si/Al ratio of at least 15. Such catalyst however, are severely deactivated in the presence of water and sulfur dioxide.
- M. Iwamoto and N. Mizuno in Proc. Instn. Mech.

 20 Engrs., vol. 207, 23 (1993) in a review article showed that Cu-ZSM-5 is one of the strongest candidates, although it also has durability problems.

Iwamoto et al in Chem. Lett., 2235 (1992) disclose that platinum ion-exchanged ZSM-5 is stable in the presence of oxygen and water vapor. They used mordenite as a comparison zeolite; there is no discussion of using a Y zeolite.

European Patent Application 427,970 to Toyota describes a zeolite catalyst for purifying exhaust gases containing at least one noble metal of platinum (Pt), palladium (Pd) and rhodium (Rh). The zeolite is coated onto a support and the metals are loaded into the zeolite by means of an ion exchange. The zeolite has pores with diameters in the range of 5 to 10 Angstrom units and can

10

15

20

- 25

30

be selected from a group of various zeolites including faujasite with SiO_2/Al_2O_3 molar ratios in the range of 10 to 200. There is no discussion using a form of a zeolite where non framework alumina has been removed from the zeolite.

European Patent Application 512,506 to Sumitomo Metal Mining Company relates to a method for removing nitrogen oxides from an exhaust gas with a catalyst containing platinum. The carrier for the Pt is to have a large surface area such as silica, titania, zirconia, aluminum phosphate, silica-alumina, boria-silica-alumina, or zeolite. The catalytic reaction is to take place in an oxidizing atmosphere containing hydrocarbon. The hydrocarbons exemplified are gasoline, kerosene gas oil, or mixtures thereof. None of the examples used a zeolite.

3. Objects of the Invention

It is an object of this invention to provide a novel improved catalyst for the reduction of nitric oxide by organic compounds under excess oxygen conditions.

It is a further object of this invention to reduce nitric oxide with organic compounds under excess oxygen conditions over a catalyst having enhanced stability and durability in the presence of H₂O and SO₂.

Summary of the Invention

The use of stable dealuminated Y zeolite which has undergone treatment to remove some of the non framework Al_2O_3 as a support for Pt, significantly improves the activity of Pt for the reduction of NO by organic compounds under excess oxygen conditions. Furthermore, this catalyst system is more stable and less susceptible to poisoning by SO, and H₂O than non-noble metal

-3-

catalysts. The treated Y zeolite has a unit cell of less than 24.40 and a mesopore surface area over 70 m²/g. The treatment to remove the non framework alumina preferably removes more than 40% of the number of initial non framework Al atoms per unit cell.

Brief Description of the Drawings

5

10

15

20

25

30

Figure 1 shows the NO conversion at different temperatures over the catalysts and under the conditions described in Example 1.

Figure 2 shows the NO conversation at different temperatures over the catalysts and under the conditions described in Example 2.

Figure 3 shows the NO conversion at different temperatures over the catalysts and under the conditions described in Example 3.

Description of the Preferred Embodiments

Zeolites containing noble metals such as platinum (Pt) and rhodium (Rh) are active catalysts for the reduction of NO by organic compounds under excess oxygen conditions. Pt containing catalysts in particular, have a higher activity than Rh containing catalysts. Both types exhibit a characteristic bell-shaped temperature activity profile with a maximum activity at around 300°C,

Y zeolites have been used in fluid cracking catalysts (FCC) for many years and especially in a dealuminated form (USY) which is thermally stable. We have determined that when the non framework $\mathrm{Al_2O_3}$ has been removed from the dealuminated Y zeolite, the resulting zeolite (referred to hereafter as DeY) provides an improved support for a NO conversion catalyst. When Pt, for example, is added to this support, the resulting catalyst has a higher activity than Pt supported on other

10

15

20

25

30

conventional alumina supports or other zeolitic supports such as normal Y zeolite, USY which has a high framework silica to alumina ratio, and ZSM-5. The DeY zeolite preferably has a framework molar SiO₂/Al₂O₃ ratio of greater than 10, preferably greater than 20 and more preferably greater than 25. Similar improved results are also obtained with a bimetallic Pt-Rh catalyst system.

Various techniques can be used to produce the dealuminated Y zeolite having some of the non framework alumina removed. A preferred procedure is to steam the zeolite and to wash the steamed zeolite with an acidic solution having a pH of about 3.5 or less. This steaming and washing procedure is repeated at least one additional time.

This procedure removes some of the previously existing non framework alumina from the zeolite. This treatment reduces the unit cell to less than 24.40 and it increases the mesopore surface area as measured by the procedure of Johnson in J. Catalysis, 52, 425-431 (1978) to over 70 m²/g. The unit cell size can preferably be reduced to less than 24.38 and more preferably less than 24.35. The mesopore surface area can preferably be increased to over 85 m²/g. The amount of non framework alumina removed in the zeolite is preferably such that more than 40% of the number of initial non framework Al atoms per unit cell has been removed and more preferably more than 60%.

To measure the mesopore surface area the procedure by Johnson in J. Catalysis, **52**, 425-431 (1978) was used and this is also found in ASTM D 4365-84.

To determine the number of framework aluminum atoms per unit cell, an X-ray diffraction analysis is made. From the unit cell (XRD)

no. of A1/uc = 107 (unit cell - 24.23)

WO 95/15208

5

10

15

20

25

30

To determine the number of non framework Al atoms per unit cell, a chemical analysis is made of the total material to determine the amounts of the SiO_2 and Al_2O_3 . The following calculations are made:

 $Si/Al = 0.85 (\$SiO_2/\$Al_2O_3)$

no. of A1/uc = 192/(1 + Si/A1)

From this total Al per unit cell the amount of the framework Al/uc is subtracted to yield the number of non framework Al/uc.

Another technique to make the product is by the Procedure A described in J. Scherzer in "Dealuminated Faujasite-Type Structures With SiO₂/Al₂O₃ Ratios Over 100" in J. Catalysis, **54**, 285-288 (1978).

The source of the noble metals can be several soluble salts of these metals. The metals can be incorporated into the zeolite either by impregnation or by ion-exchange. There are no particular limitations in the methods used, and generally accepted practices of both impregnation and ion-exchange may be employed. The degree of nobel metal coated is preferably between 0.1 and 10% by weight. When smaller than 0.1% a satisfactory catalytic activity can not be obtained. When higher than 10% the process is no more economical due to the cost of the noble metal.

Testing in the presence of H_2O and SO_2 shows that the activity of the Pt/DeY system is not significantly affected by the presence of these two gases. On the contrary, our studies show that the presence of these gases significantly decreases the activity of Cucontaining catalysts. Longer durability tests further support the Pt/DeY system stability.

Having described the basic aspects of our invention, the following examples are given to illustrate specific embodiments thereof.

Example 1

This example illustrates the production of a dealuminated Y zeolite with non framework alumina removed.

5

10

15

20

25

30

A 10 kilogram sample of USY (Z14 obtained from Davison Chemical Co.) and having the properties set forth in Table 1 was slurried in 100 liters of water containing 10 kilograms of ammonium sulfate at a temperature of 80°C. 10% sulfuric acid was added to maintain a 2.9 pH for one hour. The sample was then steamed in 100% steam at 1400°C for 3 hours and treated again with the pH 2.9 ammonium sulfate sulfuric acid as described above. The sample prepared by this treatment had a unit cell of 24.43Å and 97% crystallinity. A second steam/calcination and ammonium sulfate/sulfuric acid wash was performed with the results listed in Table 1.

Table 1

Properties	USY	Ex. 1
Wt% SiO2	71.25	94.16
Wt% A1203	23.961	5.804
Wt% Na20	4.3	0.032
Si/Al Ratio	2.53	13.79
No. Al/unit cell	54.43	12.98
Unit cell, Å	24.59	24.32
No. Framework Al/uc (XRD)	38.52	9.63
No. non Framework Al/uc	15.91	3.35
Micropore SA, m ² /g	811	743
Mesopore SA, m ² /g	40-50	102
% Crystallinity	93	109

10

15

20

25

30

Example 2

This example illustrates the effect of various supports on the activity of Pt catalysts for the NO reduction by organic compounds.

A series of catalysts was prepared by impregnation of tetraammineplatinum (II) hydroxide ($[Pt(NH_3)_4](OH)_2$) solution onto five different supports:

- a. A stable dealuminated Y (DeY) zeolite with non framework alumina removed and having a framework SiO₂/Al₂O₃ ratio of about 28 as prepared in Example 1 above.
- b. A commercially available USY zeolite (Z14 obtained from Davison Chemical Co.) having a framework SiO₂/Al₂O₃ ratio of about 5.0.
- c. A ZSM-5 zeolite having SiO_2/Al_2O_3 ratio of about 40 and made by Mobil.
- d. Y zeolite with a framework SiO₂/Al₂O₃ ratio of about 80 and sold under the tradename CBV-780 by PQ Corporation.
- e. A conventional lanthana stabilized alumina which is sold under the tradename MI-386 by the Davison Chemical Company.

The catalysts all contained about 1.2% Pt by weight. Following the impregnation, the catalysts were calcined for 1 hour at 550°C in air. They were then ball-milled for 2 hours in a solution containing 3.5% HNO₃ based on the weight of the solids in the solution and painted on a metal foil made by Grace Emission Control Products (formerly Camet Co.). Three successive layers were applied to the metal foil (21" length by 1" width), the first being an MI-386 layer without Pt and the next two were the two catalyst layers. The total weight of the washcoat was approximately 1.2 g. Following the application of each layer, the foil-washout combination

-8-

was calcined at 500°C in air for 20 minutes. At the end of this process, it was rolled into a cylindrical monolith of 1" diameter by 1" height.

5

10

15

20

25

30

Testing was conducted in a mixture containing 1850 ppm NO, 400 ppm hydrocarbons (3:1 propylene:propane), 1% O_2 and balance N_2 . The reactor was heated in an oven and steady state conversions were determined at 25°C increments in the temperature range of 200-450°C. The results are shown in Figure 1. As it is evident from Figure 1, the Pt/DeY catalyst is the most active catalyst having about 24% maximum conversion. The other three zeolitic supports result in catalysts having maximum conversions of only about 18%. Finally, the non-zeolitic support results in the least active catalyst with a maximum conversion of about 14%.

The use of the stable dealuminated Y zeolite from which the non framework ${\rm Al}_2{\rm O}_3$ has been removed as a support results in a higher activity Pt catalyst for the reduction of NO by organic compounds under excess oxygen conditions.

Example 3

This example illustrates the effect of the support on the activity of Pt-Rh catalysts for the NO reduction by organic compounds.

Two catalysts were prepared by impregnation of a cosolution containing tetraammineplatinum (II) hydroxide ($[Pt(NH_3)_4](OH)_2$) and hexaamminerhodium (III) hydroxide ($[Rh(NH_3)_6](OH)_3$) onto two different supports:

a. A stable dealuminated Y (DeY) zeolite with non framework alumina removed and having a framework SiO₃/Al₂O₃ ratio of about 28 as prepared in Example 1 above.

10

15

20

25

30

b. A conventional lanthana stabilized alumina which is sold under the tradename MI-386 by the Davison Chemical Company.

Cerium oxide (25 wt%) was added to both catalysts which, in their final form, contained about 1.2% Pt and about 0.25% Rh. The preparation of the monoliths and the testing conditions were identical to those described in Example 2. The results are shown in Figure 2. As it is evident from Figure 2, the Pt-Rh/DeY catalysts is more active. It has approximately a 20% maximum conversion compared to a 16% maximum conversion observed over the Pt-Rh/MI-386 catalyst.

The use of the stable dealuminated Y zeolite from which the non framework ${\rm Al_2O_3}$ has been removed as a support results in a higher activity Pt-Rh catalyst for the reduction of NO by organic compounds under excess oxygen conditions.

Example 4

This example illustrates that the activity of Pt/DeY catalyst is not significantly affected by the addition of $\rm H_2O$ and $\rm SO_2$ for the NO reduction by organic compounds under excess oxygen conditions whereas a comparison $\rm Cu/ZSM-5$ catalyst is significantly affected.

A Pt/DeY catalyst containing about 1.2% Pt was prepared as described in Example 2. A Cu/ZSM-5 catalyst containing 5.4% Cu was prepared as described by d'Itri and Sachtler in Catal. Lett., 15, 289 (1992). The two catalysts were first tested under the conditions described in Example 2. Following this procedure, 10% H₂O and 20 ppm SO₂ were added to the reacting gas mixture and new steady state conversions were determined in the same temperature range. The results are shown in Figure 3. As is evident from Figure 3, the addition of H₂O and SO₂

-10-

has no substantial effect on the activity of Pt/DeY. The activity of Cu-ZSM-5, on the other hand, is significantly decreased in the presence of these two common flue gas components.

It is understood that the foregoing detailed description is given merely by way of illustration and that many variations may be made therein without departing from the spirit of this invention.

5

WHAT IS CLAIMED IS:

5

25

- 1. A method of reducing nitric oxide by organic compounds under excess oxygen conditions comprising passing nitric oxide and an organic compound over a catalyst comprising at least one noble metal on a stable dealuminated Y zeolite from which non framework alumina has been removed.
- 2. A method according to Claim 1, wherein the dealuminated Y zeolite has
 - a) a unit cell of less than 24.40; and
 - b) a mesopore surface area of over 70 m^2/g .
- 3. A method according to Claim 2, wherein more than 40% of the number of initial non framework Al atoms per unit cell has been removed.
- 4. A method according to Claim 3, wherein more 20 than 60% of the number of initial non framework Al atoms per unit cell has been removed.
 - 5. A method according to Claim 2, wherein the unit cell is less than 24.38.
 - 6. A method according to Claim 5, wherein the unit cell is less than 24.35.
- 7. A method according to Claim 2, wherein the mesopore surface area is over $85 \text{ m}^2/\text{g}$.

8. A method according to Claim 1, wherein the organic compound is selected from the group consisting of hydrocarbons, alcohols, aldehydes, ketones, organic acids, amines and mixtures thereof.

5

9. A method according to Claim 1, wherein the noble metal is selected from the group consisting of Pt, Rh and mixtures thereof.

10

- 10. A method according to Claim 1, wherein the noble metal is Pt.
- 11. A method according to Claim 1, wherein the Y zeolite has a framework molar SiO₂/Al₂O₃ ratio of greater than 10.
 - 12. A method according to Claim 5, wherein the Y zeolite has a framework molar SiO_2/Al_2O_3 ratio of greater than 20.

20

13. A method according to Claim 5, wherein the Y zeolite has a framework molar $\rm SiO_2/Al_2O_3$ ratio of greater than 25.

25

14. A method according to Claim 1, wherein the noble metal is present from about 0.2 to 10% by weight.

INTERNATIONAL SEARCH REPORT

Application No

PCT/US 94/13506 A. CLASSIFICATION OF SUBJECT MATTER IPC 6 B01D53/86 B01D53 B01J29/12 B01D53/94 B01J29/08 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) B01D B01J IPC 6 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data hase consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Relevant to claim No. Category ' Citation of document, with indication, where appropriate, of the relevant passages 1,2,5-14 EP,A,O 020 799 (UNION CARBIDE CORP.) 7 X January 1981 see page 5, line 8 - page 13, line 23 see page 33, line 18 - line 24; claims 1,2,5-14 EP,A,O 003 818 (UNION CARBIDE COPR.) 5 X September 1979 see page 3, line 28 - page 12, line 23 see page 32, line 18 - line 24; claims 1-15 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the *A* document defining the general state of the art which is not considered to be of particular relevance 'E' earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled document referring to an oral disclosure, use, exhibition or in the art. document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 16 March 1995 24.03.95 Name and mailing address of the ISA Authorized officer Furopean Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Riswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Form PCT TSA/210 (second sheet) (July 1992)

1

Eijkenboom, A

INTERNATIONAL SEARCH REPORT

Inter. Application No PCT/US 94/13506

		PC1/05 94/13506		
C.(Continua Category *	Ctation of document, with indication, where appropriate, of the relevant passages	· · · · · · · · · · · · · · · · · · ·	Relevant to claim No.	
A	JOURNAL OF CATALYSIS, vol.54, 1978, NEW YORK, US pages 285 - 288 SCHERZER J. 'Dealuminated Faujasite-Type Structures with SiO2/Al2O3 Ratios over 100' cited in the application		1-7, 11-13	
A	GB,A,2 238 784 (INSTITUTE OF RESEARCH AND INNOVATION (JAPAN)) 12 June 1991 see page 3, line 2 - page 6, line 8; claims 1-4		1,8-11	
	÷			
	·			

1

INTERNATIONAL SEARCH REPORT

itiormation on patent family members

Inter 'Application No
PCT/US 94/13506

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0020799	07-01-81	NONE		
EP-A-0003818	05-09-79	AU-A- JP-A-	4449079 54155175	30-08-79 06-12-79
GB-A-2238784	12-06-91	JP-A- CA-A- DE-A- FR-A- US-A-	3181321 2013869 4016688 2655565 5041272	07-08-91 08-06-91 13-06-91 14-06-91 20-08-91