

Faculdade de Medicina de Ribeirão Preto Programa de pós graduação em ginecologia e obstetrícia (PGGO) RGO 5872- Introdução à Biologia Computacional e Análise Estatística em R para a Área da Saúde e Ciências Biológicas

"Análise estatística descritiva e inferencial do câncer de cólon (COAD)"

Componente: Anna Virgínia Bertelle Borges

Professor: Daniel Guimarães Tiezzi

Ribeirão Preto 2025

Análise Estatística do Câncer de Colorretal (COAD)

Através da base de dados do portal NIH-GDC-TCGA foram coletados dados públicos de expressão RNA-seq de pacientes com câncer de colorretal (COAD) com o objetivo de se realizar uma análise estatística descritiva e inferencial comparando amostras teciduais normais versus tumorais. Queremos analisar quais são os genes mais expressos e como a idade, o gênero e a expressão gênica influenciam o estágio do câncer e o risco de mortalidade deste câncer.

Foram selecionadas 82 amostras que possuíam tanto um tecido normal, quanto um tumoral. As variáveis clínicas de interesse foram: project.project_id, case.case_id, cases.submitter_id, demographic.age_at_index, demographic.gender, demographic.vital_status, diagnoses.ajcc_pathologic_stage

Para filtragem e remodelação do manifesto foi utilizado o pacote Pandas do Python e o GDC-Client-Tools. Para as análises estatísticas foram utilizados pacotes do R como o DESeq2 (para realizar **análises de expressão gênica diferencial** com dados de RNA-Seq), Bioconductor, dplyr, tidyverse, pheatmap, RColorBrewer, ggplot2 e readr.

A seguir uma tabela para ilustrar as análises estatísticas empregadas.

Variável	Tipo	Descrição	Exemplo de estatística
Idade	Quantitativa contínua	Idade ao diagnóstico	Média, mediana, desvio padrão
Sexo	Categórica nominal	Male/ Female	Frequência absoluta/relativa
Estágio do câncer	Categórica ordinal	Stage I/II/III/IV (A/B/C)	Distribuição de estágios
Status vital	Categórica nominal	Alive/ Dead	Proporções
Contagem de genes por amostra	Descritiva		Média, mediana de total counts
PCA de expressão gênica	Descritiva	Diferença entre grupos e influência de variáveis clínicas	Visualização da variância
Clustering hierárquico	Descritiva	Agrupamento por condição ou perfil	Heatmap, PCA
Top Genes	Descritiva	Ranking dos genes mais expressos	Heatmap, PCA e MA plot

Tumor x Normal (por gene)	Inferencial	Identificar genes diferencialmente expressos	DESeq2 (modelo GLM negativo binomial)
Idade x Expressão gênica	Inferencial	Avaliar o impacto da idade na expressão gênica	Correlação de Spearman/Pearson
Expressão x Estágio do câncer	Inferencial	Avaliar o gene mais expresso	ANOVA ou Kruskal-Wallis
Expressão vs. status vital	Inferencial	Diferença de expressão em vivos e óbitos	Teste t ou Mann-Whitney
Status vital vs idade vs gêneros	Inferencial	A idade e/ou o gênero interfere no status vital?	Histograma

1. Resultados

A coorte selecionada teve como critério amostras que possuíam tanto um tecido normal, quanto um tumoral para fins de comparação.

1. 1 Resultados de Expressão gênica

1.1.1 Contagem total de reads por amostra

Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
11232972	43114606	57264629	56258701	67328376	146513462

Total de reads por amostra

1.1.2 Média e mediana por gene

Mın.	lst	Qu.	Median	Mean	3rd Qu.	Max.
0		0	1	927	58	5040810

1.1.3 MA plot (expressão x log2FC)

O p-value <0.1. Pode-se perceber que há uma maior quantidade de genes expressos em tecidos tumorais (log2FC >0)

1.1.4 PCA

Pode-se observar que os grupos têm perfis de expressão gênica **distintos** e diferenças biológicas marcantes entre os tipos de amostra normal e tumoral.

1.1.5 Heatmap

O heatmap representa a expressão normalizada escalonada de cada gene (Z-score que varia de 4 a -4), os que estão com cores se aproximando do vermelho são os mais superexpressos, já os que estão se aproximando do azul são os mais subexpressões.

1. 2 Resultados de Dados clínicos

1.2.1 Dados clínicos do projeto COAD

1.2.1.1 Idade

Min. 1st Qu. Median Mean 3rd Qu. Max. 40.00 64.00 74.00 70.27 80.00 89.00

1.2.1.2 Gênero

Frequência absoluta

female male 42 40

Frequência relativa

female male 51.21951 48.78049

1.2.1.3 Estágio do câncer

Frequência absoluta

```
'-- Stage I Stage II Stage IIA Stage IIB Stage III
28 6 14 12 2 2 2
Stage IIIB Stage IIIC Stage IV
6 2 10
```

Frequência relativa

'	Stage I	Stage II	Stage IIA
34.146341	7.317073	17.073171	14.634146
Stage IIB	Stage III	Stage IIIB	Stage IIIC
2.439024	2.439024	7.317073	2.439024
Stage IV			
12.195122			

1.2.1.4 Status vital

Frequência absoluta

Alive Dead 58 24

Frequência relativa

Alive Dead 70.73171 29.26829

1.2.1.5 Tecido (Normal vs Tumoral)

Frequência absoluta

Normal Tumor
41 41

Frequência relativa

Normal Tumor 50 50

1.2.1.6 Comparação entre Idade x Status Vital x Gênero

1. 3 Resultados da comparação entre Dados clínicos e Expressão gênica

Correlacionando a expressão gênica com os dados clínicos da coorte selecionada, foram obtidos os seguintes resultados

O gene com a maior média de expressão gênica foi o ENSG00000198804.2 (MT-CO1), então será usado para as análises estatísticas a seguir

1.3.1 Idade vs Expressão gênica

ENSG00000198804.2

1.3.2 Estágio do câncer vs Expressão gênica

1.3.3 Status vital vs Expressão gênica

MT-CO1 por status vital

1.3.4.1 PCAs com dados clínicos por estágio do câncer

1.3.4.2 PCAs com dados clínicos por sexo

1.3.4.3 PCAs com dados clínicos por status vital e gênero

2. Metodologia empregada

- 1) Baixar o manifesto (Filtrar por RNA-seq e STAR-Counts) {GDC portal}
- 2) Baixar os dados clínicos e criar uma tabela com as colunas de interesse (clinical_data.R)
- 3) Baixar o manifesto com o tipo de amostra e barcode (generate_manifest.py) Executar no terminal (exemplo):
 - python C:\\Users\\Usuario\\Downloads\\TCGA\\generate_manifest.py -i
- C:\\Users\\Usuario\\Downloads\\TCGA\\gdc_manifest_coad_one.txt
- 4) Filtrar o manifesto, pareando uma amostra normal com uma tumoral e excluindo as demais (filtered manifest.py)
- 5) Excluir as colunas sample type, id e barcode (rebuild manifest.py)
- 6) Baixar os dados de expressão gênica
 - Executar no terminal:
 - .\gdc-client download -m manifesto_coad_reb.txt
- 7) Matriz de Contagem RNA-Seq, de modo que os id's estejam alinhados ao manifesto (build_matrix.R)
 - Deve gerar o arquivo TCGA COAD RNASEQ ORDERED
- 8) mapear os IDs do manifesto para os IDs da matriz de contagem, criar a matriz sample_conditions para análise diferencial (build_matrix.R)
- 9) Análises estatísticas inferenciais com DESeq (build_matrix.R)
- 10) Análises estatísticas descritivas e inferenciais com os dados clínicos (clinical data.R)
- 11) Correlação entre a expressão gênica e os dados clínicos (clinical_data.R)