Announcements

- * HW1 due today at 11:59pm
- HW2 release today
- * P0
 - Submission on OJ
 - * Watch out if grade below 90
- * P1 released
 - Start early! Maybe the longest of all projects
- * Mid-term exam Oct 28 10-11:40am (D508)
- Recitation attendance

Ve492: Introduction to Artificial Intelligence

From Decision Theory to Game Theory

Paul Weng

UM-SJTU Joint Institute

Slides adapted from http://ai.berkeley.edu, AIMA, UM, CMU

Outline

* Decision Theory

* Game Theory

Decision Theory

- Decision problem:
 - * Choose $a \in A$ assuming given preference relation \geq over A
- Often, choice has uncertain outcomes
 - Probability distribution over outcomes
- Here, we assume single-agent decision-making
- * Which decision criterion should we choose?
 - Descriptive
 - Normative

Decision Theory

Utilities

Utilities

- Utilities are functions from outcomes (states of the world)
 to real numbers that describe an agent's preferences
- Where do utilities come from?
 - * In a game, may be simple (+1/-1)
 - Utilities summarize the agent's goals
 - Theorem: any "rational" preferences can be summarized as a utility function
- * We hard-wire utilities and let behaviors emerge
 - * Why don't we let agents pick utilities?
 - * Why don't we prescribe behaviors?

Utilities: Uncertain Outcomes

Preferences

- * An agent must have preferences among:
 - * Outcomes: A, B, etc.
 - * Lotteries: situations with uncertain outcomes

$$L = [p, A; (1 - p), B]$$

* Notations:

- * Preference: A > B
- * Indifference: $A \sim B$

Maximum Expected Utility

- Principle of Maximum Expected Utility (MEU):
 - Rational agent should choose the action that maximizes its expected utility, given its knowledge
- * Why should we average utilities? Why not minimax?
- * Questions:
 - * Where do utilities come from?
 - * How do we know such utilities even exist?
 - * How do we know that averaging even makes sense?
 - * What if our behavior (preferences) can't be described by utilities?

Rational Preferences

- * We want some conditions on preferences before we call them rational, such as:
 - * Transitivity: $(A > B) \land (B > C) \Rightarrow (A > C)$
- * Why is it important?
 - * An agent with intransitive preferences can be induced to give away all of its money:

If B > C, then an agent with C would pay (say) 1 cent to get B

If A > B, then an agent with B would pay (say) 1 cent to get A

If C > A, then an agent with A would pay (say) 1 cent to get C

Rational Preferences

- Axioms of Rationality [Machina, 1988]
 - * Comparability: $(A > B) \land (B > A) \land (A \sim B)$
 - * Transitivity: $(A > B) \land (B > C) \Rightarrow (A > C)$
 - * Independence: $A \gtrsim B \Rightarrow [p, A; (1-p), C] \gtrsim [p, B; (1-p), C]$
 - * Continuity: $A > B > C \Rightarrow \exists p, [p, A; (1-p), C] \sim B$
- * Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]
 - Axioms of rationality is equivalent to MEU principle

Human Utilities

Utility Elicitation

- * Utility function maps outcome to real numbers. How to obtain them?
- Possible approach:
 - * Compare outcome A to standard lottery $[p, u^+; (1 p), u_-]$ where u^+ = best outcome, u_- = worst outcome

- For which p^* do we have $A \sim [p, u^+; (1-p), u_-]$?
- * $p^* = u(A)$ if we assume that u is normalized (in [0, 1])

Human decision-makers

- Often risk-averse: utility function is concave in EU
- * However, does human follow MEU principle?
- Allais paradox (1953)
 - * A: [0.8, \$4k; 0.2, \$0] > B: [1.0, \$3k; 0.0, \$0]?
 - * C: [0.2, \$4k; 0.8, \$0] > D: [0.25, \$3k; 0.75, \$0]?
 - * Most people prefer B > A, C > D
 - * However, inconsistent with EU:
 - * Assume u(\$0) = 0
 - * $B > A \Rightarrow u(\$3k) > 0.8 u(\$4k)$
 - * $C > D \Rightarrow 0.8 \text{ u($4k)} > \text{u($3k)}$

Game Theory

Problems with Uncertainty vs Adversary

Tic Tac Toe

Wheel Of Fortune

VE492 Exam

Decision Theory vs Game Theory

- * Decision Theory: pick a strategy to maximize utility given world outcomes
- * Game Theory: pick a strategy for player that maximizes his utility given the strategies of the other players
- Models are essentially the same
- * Imagine the world is a player in the game!

History of Game Theory

- Game theory is the study of strategic decision-making (of more than one player)
- Used in economics, political science etc.

John von Neumann

John Nash

Robert Aumann

Games: Extensive Form

* Representation:

- 1. Set of all players of a game
- 2. For every player, every opportunity they have to move
- 3. What each player can do at each of their moves
- 4. What each player knows/observes when making every move
- 5. Payoffs received by everyone for all possible combo of moves

Alternative Representation: Normal Form

- Represent games as single-shot decision-making problems
- * Represent only strategies (e.g., actions or policies) and utilities
- * Easier to determine particular properties of games

Studying – Normal Form Game

- Represent games as single shot
- Represent only strategies and utilities

Studying – Normal Form Game

- Represent games as single shot
- Represent only strategies and utilities

Studying - Strategies and Utilities

* The world acts at the same time as you choose a strategy

Strategy/Utility Notations

- * Strategy k for player = $\pi_k \in \Pi$ where Π is finite
- * Utility $u(\pi_k, s)$ where s is a state of the world

Questions you may ask...

- Which strategy should I adopt?
 - * Maximize the expected utility based on state probabilities
- * Is it beneficial to choose a strategy in a random way?

Mixed Strategies

- Pure strategies Π
- * Mixed strategies $\Delta(\Pi)$ = set of probability distributions over Π
- Goal: Pick strategy that maximizes expected utility given exam probability

Calculating Utilities of Pure Strategies

What is the utility of pure strategy: CRAM?

$$u(CRAM) = P(Easy) \cdot u(CRAM, Easy) + P(Hard) \cdot u(CRAM, Hard)$$

* General formula:

$$u(\pi) = \sum_{s} P(s) \cdot u(\pi, s)$$

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

$$P(Easy) = .2$$

 $P(Hard) = .8$

Calculating Utilities of Pure Strategies

- What is the utility of pure strategy: DO HW?
- * What is the utility of pure strategy: PLAY GAME?

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

$$P(Easy) = .2$$

Calculating Utilities of Mixed Strategies

* What is the utility of mixed strategy: $\sigma = (\frac{1}{2} \text{ CRAM}, \frac{1}{2} \text{ DO HW})$?

$$u(\sigma) = P_{\sigma}(CRAM) \left(\sum_{s} P(s)u(CRAM, s) \right) + P_{\sigma}(DO HW) \left(\sum_{s} P(s)u(DO HW, s) \right)$$

* General formula:

$$u(\sigma) = \sum_{k} \sum_{s} P(s) P_{\sigma}(\pi_{k}) u(\pi_{k}, s) = \sum_{k} P_{\sigma}(\pi_{k}) \sum_{s} P(s) u(\pi_{k}, s)$$

CRAM	DO HW	PLAY GAME	
98	100	85	
97	90	65	

$$P(Easy) = .2$$

 $P(Hard) = .8$

Quiz: Grocery Shopping Transportation Decision

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

- 1. How many pure strategies to do you have?

- A) 1 B) 2 C) 3 D) 4 E) Infinite
- 2. How many mixed strategies do you have?

- A) 4 B) 8 C) 16 D) 64 E) Infinite
- 3. What is your best pure strategy?

- A) Bike B) Walk C) Bus D) Drive
- E) It depends

Quiz: Grocery Shopping Transportation Decision

Suppose you want to decide how to get groceries from the store

SUN **RAIN**

BIKE	WALK	BUS	DRIVE
1	2	1	1
-2	-4	-1	0

$$P=.5$$

4. What is your best pure strategy?

- A) Bike B) Walk C) Bus D) Drive E) It depends

5. What is the utility of a ¼ walk, ¼ bike, and ½ drive strategy?

- A) -1/8 B) -1/4 C) -1/2 D) 1/8 E) 1/2

Game Theory

Game: Rock, Paper, Scissors

- Each player simultaneously picks rock, paper, or scissors
- Rock beats scissors, scissors beats paper, paper beats rock


```
P1's Strategies
\Pi_1 = \{\text{rock, paper, scissors}\}
```

$$P2's Strategies \\ \Pi_2 = \{rock, paper, scissors\}$$

Joint Utilities

* When both players choose their actions, they receive a utility based on both of their choices

P2's ACTIONS PLAYER 2 **ROCK PAPER SCISSORS ROCK** 0,0 -1,1 1,-1 **PLAY** PAPER 1,-1 0,0 -1,1 ER 1 **SCISSORS** -1,1 1,-1 0,0 JOINT UTILITIES

Normal Form Notation

- * Players:{1,...,*N*}
- * Pure strategies for each player *i*
 - $\star \quad \pi_{i,1}, \ldots, \pi_{i,n_i}$
- * Utility functions that maps a strategy per player to a reward for player *i*
 - $* u_i(\pi_1, ..., \pi_N) = u_i(\overrightarrow{\pi})$
- Strategy profile:
 - $* \overrightarrow{\pi} = (\pi_1, \pi_2, ..., \pi_N) \overrightarrow{\pi}_{-i} = (\pi_1, ..., \pi_{i-1}, \pi_{i+1}, ..., \pi_N)$

P2's ACTIONS PLAYER 2 **ROCK PAPER SCISSORS ROCK** 0,0 -1,1 1,-1 PAPER 1,-1 0,0 -1,1 ER 1 **SCISSORS** 0,0 -1,1 1,-1

JOINT UTILITIES

Solution Concepts

Solution concept

- * Subset of outcomes of the games that are possibly interesting
- Generally assumes that players are rational
- Nash equilibrium (NE)
 - With pure strategies vs mixed strategies
 - Weak vs strict NE
- * Pareto-optimal solutions
- Correlated equilibrium

Strategies for Games

- * Best response against $\overrightarrow{\pi}_{-i}$
 - * Strategy for player *i* that maximizes her utility given the strategy of the other players

Pure Strategies:

P2 always picks rock
P1 should

P2 always picks paper
P1 should

Strategies for Games

- * Best response against $\overrightarrow{\pi}_{-i}$
 - * Strategy for player *i* that maximizes her utility given the strategy of the other players of the other players

Mixed Strategies:

P2 randomly chooses between 50% rock and 50% paper
P1 should _____

		FZSACHONS		
		PLAYER 2		
				SCISSORS
PLAY ER 1	ROCK	0,0	-1,1	1,-1
	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0
			γ	

P2's ACTIONS

JOINT UTILITIES

Zero-Sum Games

* If each cell in the table sums to 0, the game is zero-sum:

$$\forall \overrightarrow{\pi}, \sum_{i} u_{i}(\overrightarrow{\pi}) = 0$$

- * Is Rock, Paper, Scissors zero-sum?
- * Is Tic Tac Toe zero-sum?

P2's ACTIONS

		PLAYER 2		
		ROCK	PAPER	SCISSORS
	ROCK	0,0	-1,1	1,-1
PLAY ER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

JOINT UTILITIES

* A strategy $\pi_{i,k}$ for player i is strictly dominant if it is better than all other strategies for player i no matter any opponent's strategy:

*
$$\forall k' \neq k, u_i(\pi_{i,k}, \overrightarrow{\pi}_{-i}) > u_i(\pi_{i,k'}, \overrightarrow{\pi}_{-i})$$

	A	В	C	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

* A strategy $\pi_{i,k}$ for player i is weakly dominant if it is better than all other strategies for player i no matter any opponent's strategy

*
$$\forall k' \neq k, u_i(\pi_{i,k}, \overrightarrow{\pi}_{-i}) \geq u_i(\pi_{i,k'}, \overrightarrow{\pi}_{-i})$$

	A	В	C	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

* For player Column, strategy A's utilities are the highest compared to B,C,D,E for all of player Row's strategies

$$\forall \pi_r \in \{i, ii, iii, iv\}, \forall \pi_c \neq A, u_c(\pi_r, A) > u_c(\pi_r, \pi_c)$$

Column should always play A!

	A	В	C	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

 For player Row, strategy iv's utilities are the highest compared to i,ii,iii for all of player Column's strategies

*
$$\forall \pi_c \in \{A, B, C, D, E\}, \forall \pi_r \neq iv, u_r(iv, \pi_c) > u_r(\pi_r, \pi_c)$$

Row should always play iv!

	A	В	C	D	E
i	2,10	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	4,1	3,0
iv	6,7	9,5	7,5	8,5	5,5

Is there always a dominant strategy?

* No! There is no dominant strategy in Tic Tac Toe, for example.

* 2 Players {1,2}

Each as 2 strategies {Cooperate, Defect}

PRISONER 2

Utilities in table:

		Cooperate	Defect
PRIS	Cooperate	-1,-1	-6,0
R 1	Defect	0,-6	-3,-3

- * Is there a dominant strategy?
 - * Yes!
- What is the best joint strategy for both prisoners?
 - * Best joint strategy: prisoners cooperate

Measure of Social Welfare

* The sum of the utilities of the players is the social welfare

*
$$SW(C,C) = -2$$

*
$$SW(C,D) = -6$$

*
$$SW(D,D) = -6$$

		PRISONER 2			
		Cooperate Defect			
PRIS ONE R 1	Cooperate	-1,-1	-6,0		
	Defect	0,-6	-3,-3		

* Compute best responses

		PRISONER 2		
		Cooperate	Defect	
PRIS ONE R 1	Cooperate	-1,-1	-6,0	
	Defect	0,-6	-3,-3	

- * Strategy profile (C, C) is not stable
- Each prisoner would profit by switching to defection assuming that the other prisoner continues to cooperate

* If they both trust that the other prisoner will cooperate, each should defect. But both defecting results in lower scores!

		PRISONER 2			
		Cooperate Defect			
PRIS ONE	Cooperate	-1,-1	-6,0		
R 1	Defect	0,-6	-3 ,-3		

Nash Equilibrium

* Nash Equilibria: strategy profiles $\overrightarrow{\pi}$ where none of the participants benefit from unilaterally changing their decisions:

$$\forall i, u_i(\overrightarrow{\pi}) \geq u_i(\pi'_i, \overrightarrow{\pi}_{-i})$$

		PRISONER 2		
		Cooperate Defect		
PRIS ONE R 1	Cooperate	-1,-1	-6,0	
	Defect	0,-6	-3,-3	

Nash Equilibrium

* NOT A NASH EQUILIBRIUM - participants benefit from unilaterally changing their decision

		PRISONER 2			
		Cooperate Defect			
PRIS ONE R 1	Cooperate	-1,-1	-6,0		
	Defect	0,-6	-3,-3		

Nash Equilibrium

* Strict Nash Equilibria are Nash Equilibria where the "neighbor" strategy profiles have strictly less utility.

$$* \forall i, u_i(\overrightarrow{\pi}) > u_i(\pi'_i, \overrightarrow{\pi}_{-i})$$

		PRISONER 2		
		Cooperate	Defect	
	Cooperate	-1,-1	-6,0	
ONE R 1	Defect	0,-6	-3,-3	

Quiz: Professor's Dilemma!

- What is/are the Nash equilibrium/equilibria?
- * Which are strict Nash equilibria?

		Student		
		Study	Games	
Profess	Effort	1000,1000	0,-10	
or	Slack	-10,0	0,0	

Finding a Pure Nash Equilibrium

Pure Nash Equilibria are composed of pure strategies

- * Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

Finding a Pure Nash Equilibrium

- Option 1: Examine each state and determine if it fits the criteria
- Option 2: Find a dominating strategy and eliminate all other row or columns and recurse
- Option 3: Remove a strictly dominated strategy and recurse

	A	В	C	D	E	
i	2,10	4,7	4,6	5,2	3,8	
ii	3,8	6,4	5,2	1,3	2,6	
iii	5,3	3,1	2,2	4,1	3,0	
iv	6,7	9,5	7,5	8,5	4,5	

	A	В	C	D	E	
i	2,10	4,7	4,6	5,2	3,8	
ii	3,8	6,4	5,2	1,3	2,6	
iii	5,3	3,1	2,2	4,1	3,0	
iv	6,7	9,5	7,5	8,5	4,5	

	A	В	C	D	E	
i	2,4	4,7	4,6	5,2	3,8	
ii	3,8	6,4	5,2	1,3	2,6	
iii	5,3	3,1	2,2	9,1	3,0	
iv	6,7	9,5 er strict do	5,5	8,5	4,5	

	A	В	C	D	Е
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5
		>	>		

D is strictly dominated by A

	A	В	C	D	Е
i	2,4	4,7	4,6	5,2	3,8
ii	3,8	6,4	5,2	1,3	2,6
iii	5,3	3,1	2,2	9,1	3,0
iv	6,7	9,5	5,5	8,5	4,5

D is weakly dominated by B

	A	В	C	E
i	2,4	4,7	4,6	3,8
ii	3,8	6,4	5,2	2,6
iii	5,3	3,1	2,2	3,0
iv	6,7	9,5	5,5	4,5

	A	В	C	E
i	2,4	4,7	4,6	3,8
ii	3,8	6,4	5,2	2,6
iii	5,3	3,1	2,2	3,0 <
iv	6,7	9,5	5,5	4,5

iii is strictly dominated by iv

	A	В	C	E
i	2,4	4,7	4,6	3,8
ii	3,8	6,4	5,2	2,6
iii	5,3	3,1	2,2	3,0 <
iv	6,7	9,5	5,5	4,5

i is strictly dominated by iv

	A	В	C	E
ii	3,8	6,4	5,2	2,6
iv	6,7	9,5	4,5	4,5

	A	В	C	E
ii	3,8	6,4	5,2	2,6
iv	6,7	9,5	4,5 >	4,5

E is strictly dominated by A

	A	В	C	E
ii	3,8	6,4	5,2	2,6
iv	6,7	>9,5	4,5	4,5

C is strictly dominated by A

	A	В	C	E
ii	3,8	6,4	5,2	2,6
iv	6,7	9,5	4,5	4,5

B is strictly dominated by A

ii is strictly dominated by iv

Finding Nash Equilibrium Example 3 (Battle of Sexes)

	Opera	Football
Opera	(3, 2)	(0, 0)
Football	(0, 0)	(2, 3)

Finding Nash Equilibrium: Rock, Paper, Scissors

Nash Equilibrium?

Not with pure strategies!

P	LAYER	2
		_

		ROCK	PAPER	SCISSORS
	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Nash Equilibria always exist in finite games

- * Theorem (Nash, 1950)
 - * If there are a finite number of players and each player has a finite number of actions, there always exists a Nash Equilibrium.

The NE may be pure or it may be a mixed strategy.

Calculating Utilities of Mixed Strategies

* Decision Theory Version:

$$u(\sigma) = \sum_{k} \sum_{s} P(s) P_{\sigma}(\pi_{k}) u(\pi_{k}, s)$$

* Game Theory Version:

$$u(\overrightarrow{\sigma}) = \sum_{\pi_1, \dots, \pi_N} \prod_i P_{\sigma_i}(\pi_i) u(\pi_1, \dots, \pi_N)$$

Example: Calculating Utilities

- * What is u_1 for $\sigma_1 = (1/2, 1/2, 0)$ and $\sigma_2 = (0, 1/2, 1/2)$?
- * Is $[\sigma_1 = (1/2, 1/2, 0), \sigma_2 = (0, 1/2, 1/2)]$ a mixed strategy equilibrium?

		ROCK	PAPER	SCISSORS
	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

Quiz: Calculating Utilities

* What is u_2 for $\sigma_1 = (1/3, 1/3, 1/3)$ and $\sigma_2 = (1/3, 1/3, 1/3)$?

		PLAYER 2		
		ROCK	PAPER	SCISSORS
	ROCK	0,0	-1,1	1,-1
PLAYER 1	PAPER	1,-1	0,0	-1,1
	SCISSORS	-1,1	1,-1	0,0

DI AVED 2

Finding the Mixed Strategy Nash Equilibrium

What features of a mixed strategy qualify it as a NE?

* There is no reason for either player to deviate from their strategy, which occurs when the utilities of the weighted actions are equal!

Finding the Mixed Strategy Nash Equilibrium

* P1

			ROCK	PAPER	SCISSORS
		ROCK	0,0	-1,1	1,-1
* P2	PLAYER 1	PAPER	1,-1	0,0	-1,1
		SCISSORS	-1,1	1,-1	0,0

PLAYER 2

Another Mixed Strategy NE

* P1

		Receiver		
TENNIS		F	В	
Server	F	90,10	20,80	
Server	В	30,70	60,40	

* P2

Other Properties of Strategies

Correlated Equilibrium

Pareto Optimal/Dominated

Correlated Equilibrium

* Suppose a mediator computes the best combined strategy $\sigma \in \Delta(\Pi_1 \times \Pi_2)$ for P1 and P2, and shares σ_1 with P1 and σ_2 with P2

* The strategy is a CE if $\forall \pi'_1 \in \Pi_1$

$$\sum_{\pi_2} P_{\sigma}(\pi_1, \pi_2) u_1(\pi_1, \pi_2) \ge \sum_{\pi_2} P_{\sigma}(\pi_1, \pi_2) u_1(\pi'_1, \pi_2)$$

* And the same for s2.

Game of Chicken

	Dare	Chicken out
Dare	(0, 0)	(7, 2)
Chicken out	(2, 7)	(6, 6)

Pareto Optimal and Pareto Dominated

- * An outcome $u(\overrightarrow{\sigma}) = (u_1(\overrightarrow{\sigma}), ..., u_1(\overrightarrow{\sigma}))$ is Pareto optimal if there is no other outcome that all players would prefer, i.e., each player gets higher utility
 - * At least one player would be disappointed in changing strategy
- * An outcome $u(\vec{\sigma}) = (u_1(\vec{\sigma}), ..., u_1(\vec{\sigma}))$ is Pareto dominated by another outcome if all the players would prefer the other outcome

Summary

- * Vocabulary
- Pure/Mixed Strategies (and calculating them)
- Zero-Sum Games
- Dominant vs Dominated Strategies
- Strict/Weak Nash Equilibrium
- * Prisoner's dilemma
- Correlated Equilibrium
- Pareto Optimal/Dominated
- Social Welfare

To Go Further

- Repeated games
- Stackelberg games
- Cooperative games
- * Allocation, fairness
- * Auctions
- Mechanism design