Universidade Federal de Santa Catarina, INE/UFSC INE 5366 - Arquitetura de Computadores I

Terceira Avaliação 2006.1

Matrícula: Aluno(a):

Parte I [valor: 3,0 pontos]

- 1. [0,5 cada item] Responda sucintamente as perguntas abaixo:
- a) A técnica de "polling" (consulta) pressupõe a existência de pelo menos dois registradores para fins de gerenciamento de entrada e saída, um registrador de dados (data_reg) e um registrador de status (status_reg). Afirmação: "A técnica de 'polling' consiste em monitorar o data_reg periodicamente e atualizar condicionalmente o conteúdo do status_reg". A afirmação é verdadeira ou falsa ? Justifique.
- b) Um sistema de memória usa endereços de 32 bits. Ele possui uma cache com 4096 blocos. A cache é do tipo 4-way. Cada bloco contém 8 palavras. Cada palavra contém 4 bytes. Quantos bits tem a etiqueta (TAG) a ser armazenada? Justifique mostrando os cálculos mais relevantes.
- O diagrama abaixo ilustra o protocolo assíncrono para a leitura de uma palavra da memória e seu envio a c) um dispositivo de E/S, onde o conteúdo do barramento é mostrado em hexadecimal. Afirmação: "A representação binária do dado lido é 0000 0000 1010 1010 ? A afirmação é verdadeira ou falsa ? Justifique.

d) Assuma o conteúdo abaixo para dois dos registradores do coprocessador 0 do MIPS:

0000 0000 0000 0000 **0001 0000** 0**000 00**00 Cause = Status = 0000 0000 0000 0000 **1101 0000** 000**0** 00**00**

Afirmação: "O conteúdo acima indica que há três interrupções pendentes das quais somente uma pode ser atendida e que a CPU pode atendê-la imediatamente." A afirmação é verdadeira ou falsa ? Justifique.

e) O pseudo-código a seguir define um método de busca de um elemento da lista ligada L cujo valor é k, onde head[L] denota o primeiro elemento da lista, next[x] representa o sucessor de x na lista e key[x] representa o valor armazenado na posição x da lista. Afirmação: "A execução do respectivo código em uma CPU real resulta em uma alta localidade temporal na área de instruções e uma baixa localidade espacial na área de dados". Justifique.

```
LIST-SEARCH (L, K)
x \leftarrow head[L]
while x \neq NIL and key[x] \neq k
   do x \leftarrow next[x]
return x
```

f) Um controlador de interrupções tem 4 entradas de requisição de interrupções: IRQ 0, IRQ 1, IRQ 2 e IRQ 3. Um sinal de entrada genérico IRQ i está ativo se estiver em nível lógico "1". O controlador tem como saída um vetor de interrupção de oito bits A[7:0], onde os dois bits menos significativos A[1:0] representam em binário o número i da requisição de maior prioridade, dentre todas as requisições de interrupção ativas. Dadas duas requisições ativas IRQ i e IRQ j, o codificador de prioridade atribui maior prioridade à requisição IRQ i se i < j. Complete a tabela verdade do codificador de prioridade. *Lembrete*: Um valor na tabela pode ser "1" (ativado), "0" (desativado) ou "X" (irrelevante).

IRQ0	IRQ1	IRQ2	IRQ3	A1	A0
				0	0
				0	1
				1	0
				1	1

Parte II [valor: 4,1 pontos]

2. [16 x 0,1 = 1,6] Seja a seqüência de referências à memória dadas pelos <u>endereços</u>: 0x04, 0x10, 0x20, 0x14, 0x50, 0x44, 0x4C. Suponha uma cache com mapeamento direto, inicialmente vazia, cujo tamanho total é de 16 palavras, sendo que cada bloco contém 4 palavras. Mostre o conteúdo final da cache, depois de aplicada tal seqüência de endereços. A cache é representada na tabela da direita, onde cada linha representa um bloco. Parte do conteúdo da memória principal é mostrado, de forma simbólica, na tabela da esquerda.

Parte do conteúdo da memoria principal é			
Endereço (0x)	End. [7:0] (0b)	Conteúdo	
0000 0000		α	
0000 0004		β	
0000 0008		χ	
0000 000C		δ	
0000 0010		ε	
0000 0014		ф	
0000 0018		γ	
0000 001C		η	
0000 0020		K	
0000 0024		L	
0000 0028		M	
0000 002C		N	
0000 0040		W	
0000 0044		X	
0000 0048		Y	
0000 004C		Z	
0000 0050		P	
0000 0054		Q	
0000 0058		R	
0000 005C		S	

00		
01		
10		
11		

3. [0,5] Dois subsistemas de memória S1 e S2 têm a mesma configuração, exceto pela política de atualização da memória principal. S1 usa *write through* combinada com buffer de escrita (BE). S2 usa *write back*. O tempo de escrita no BE, (T_{BE}) é inferior ao tempo de escrita na cache (T_{CA}). Seja T_{MP} o tempo de escrita na memória principal. O BE acomoda até 10 requisições de escrita. Em um programa P, 5 instruções store são executadas no intervalo T_{MP}, no pior caso. <u>Afirmação</u>: "Ao executar-se o programa P, S2 tem desempenho inferior a S1". A afirmação é verdadeira ou falsa ? **Justifique usando como argumentos os tempos, o tamanho do BE, a taxa de escritas do programa P e as diferenças nas políticas de atualização.**

4. [1,0 ponto: 0,125 por item] Suponha uma cache (inicialmente vazia) com um total de oito blocos, cada um contendo uma palavra, do tipo 2-way, usando o critério LRU. Mostre o estado final da cache, depois de aplicada a seguinte seqüência de endereços: 0x04, 0x20, 0x1C, 0x14, 0x10, 0x0C, 0x04, 0x24, 0x28, 0x18, 0x08. A cache é representada na tabela da direita, onde cada linha representa um conjunto. Parte do conteúdo da memória principal é mostrado, de forma simbólica, na tabela da esquerda.

Endereço (0x)	End. [7:0] (0b)	Conteúdo
0000 0004		K
0000 0008		Т
0000 000C		P
0000 0010		0
0000 0014		N
0000 0018		S
0000 001C		M
0000 0020		L
0000 0024		Q
0000 0028		R

00	
01	
10	
11	

- 5. [1,0: 0,4+0,4+0,2] Um subsistema de memória consiste de uma cache e uma memória principal. Há I instruções no programa, das quais 15% são do tipo "load" e 5% do tipo "store". Suponha que a CPU tem um pipeline ideal, que completa uma instrução a cada ciclo (sem "hazards"). Assumindo que a taxa de acertos é de 90% e que a penalidade de uma falta é de 10 ciclos, tanto para leitura de instruções, como para leitura ou escrita de dados, calcule:
- a) O número médio de ciclos de parada por instrução gerados pelas faltas no acesso a instruções.

Resultado: CPI stall (instruções) =

Cálculos:

b) O número médio de **ciclos de parada por instrução** gerados pelas faltas no acesso a dados.

Resultado: CPI stall (dados) =

Cálculos:

c) O número médio de ciclos por instrução total, incluindo o efeito das faltas.

Resultado: CPI total =

Cálculos:

Parte III [valor: 3,9 pontos]

- 6. [0,4+0,5+0,5= 1,4] Seja um sistema com as seguintes características: 32 bits de endereço; o tamanho da cache é de T bytes; cada bloco contém 2^b bytes; a cache é do tipo n-way. Calcule as funções abaixo e mostre os principais passos intermediários para chegar ao seu equacionamento, a título de justificativa.
 - a) O número de bits de endereço utilizados para *indexar* a cache como função de T, b e n.

índice =

b) O número de bits necessários para TAG como função de T e n.

tag =

c) O número de bits necessários para implementar um bloco como função de T, b e n.

#bits/bloco =

- 7. [0,3+0,4 = 1,0] Seja um subsistema de memória composto por uma única cache e uma memória principal (MP), conectadas através de um barramento (bus). Suponha que se gaste um único ciclo para enviar o endereço à MP. A MP tem uma latência de 10 ciclos para cada novo acesso e gasta um ciclo para efetuar cada transferência. Um bloco de informação da cache contém 16 palavras. Calcule a penalidade de uma falta (em ciclos) para os seguintes cenários. Indique as parcelas do cálculo, a título de justificativa.
 - a) Cenário 1: MP, bus e cache têm todos a largura de uma palavra

Penalidade =

b) Cenário 2: MP, bus e cache têm todos largura de 4 palavras

Penalidade =

c) Cenário 3: Cache e bus têm largura de uma palavra. MP tem 4 bancos de memória entrelaçada, cada banco com largura de uma palavra

Penalidade =

- 8. [0,5] <u>Afirmação</u>: "Em um sistema com apenas um nível de cache, durante a execução de uma instrução *store*, nunca pode ocorrer um acesso de *leitura* na memória principal." A afirmação é verdadeira ou falsa. Justifique mostrando a impossibilidade de ocorrência de eventos mutuamente exclusivos ou mostrando as condições exatas de causa e efeito entre os eventos.
- 9. $[2 \times 0.5 = 1.0]$ As afirmações abaixo são verdadeiras ou falsas ? Justifique.
 - a) Lembre que o escalonamento dinâmico de pipeline (dynamic pipeline scheduling) baseia-se nas noções de estação de reserva (ER) ou reservation station e buffer de reordenamento (BR) ou reorder buffer.
 Afirmação: "As ERs e o RB não possuem suporte para implementar o renomeamento de registradores, o qual é de responsabilidade única do compilador-otimizador".
 - b) As máquinas M1 e M2 têm a mesma arquitetura do conjunto de instruções (ISA). Ambas têm suporte para emissão dinâmica múltipla, mas <u>não têm</u> suporte para escalonamento dinâmico. Suas microarquiteturas têm diferentes caminhos de atalho (*forwarding*). <u>Afirmação</u>: "O código executável de um dado programa, compilado e otimizado para a máquina M1, executa corretamente e com o mesmo desempenho na máquina M2". <u>Justifique usando como argumentos a compatibilidade binária, a detecção de hazards na emissão dinâmica e a falta de suporte para escalonamento dinâmico.</u>