

Experiment Control and Analysis for High-Resolution Tomography

N. Schwarz, F. De Carlo A. Glowacki, J.P. Hammonds, F. Khan*, K. Yue Advanced Photon Source Argonne National Laboratory, Argonne IL 60439 U.S

Introduction

Experiment control software for X-ray Computed Tomography (XCT).

XCT is a powerful technique for imaging 3D structures at the micro- and nano-levels.

Faster detector and added complexity because of experimental components requires use of automated software.

Rich feature set with the ability to control complete experimental workflow, i.e., from acquisition to analysis.

Outline

Features
System Architecture
Reconstruction Pipeline
Automation

Features - Overview

Features - Data Browser

Features - Annotations

Features - Tomography Scan

Features - Calibration

Features - Configurability

Detectors

Calibration Widgets

Architecture Overview

GStar - A widget library based on Qt1 provides EPICS aware widgets

SStar - A C++ wrapper around EPICS channel access API^{2, 3}, provides the core scanning functionality

DStar - Provides single interface to different data format libraries such as HDF5⁴

- 1. Qt. http://qt-project.org
- 2. EPICS, http://www.aps.anl.gov/epics.
- 3. Area Detector, http://cars9.uchicago.edu/software/epics.
- 4. Hierarchical Data Format version 5 (HDF5), 2000-2010. http://www.hdfgroup.org/HDF5.

Experiment Control and Analysis for High-Resolution Tomography - ICALEPCS 2013

Reconstruction Pipeline

1. GridRec - M. L. Rivers, ``tomoRecon: High-speed tomography reconstruction on workstations using multi-threading,' Proc. of SPIE 8506, Developments in X-Ray Tomography VIII, 85060U (2012).

Experiment Control and Analysis for High-Resolution Tomography - ICALEPCS 2013

Analysis Automation

A thin wrapper around user process

A common data format

Client starts the pipeline analysis by constructing a JMS message containing input data^{1, 2} - A HDF5 file with input parameters e.g. location of Hadoop file to process route - specify individual processing step

Next stage is triggered by passing a JMS³ message between the current and the next stage

- 1. Hierarchical Data Format version 5 (HDF5), 2000-2010. http://www.hdfgroup.org/HDF5
- 2. The Scientific Data Exchange, http://www.aps.anl.gov/DataExchange
- 3. Apache ActiveMQ, http://activemq.apache.org based implementation of JMS standard is used.

Effective end-to-end management of data acquisition and analysis for XPCS - ICALEPCS 2013

Conclusion

Feature rich and configurable control software

Being used at newly upgraded nano-tomography station at APS 32-ID beamline

Integration of the software with reconstruction application lowers the turn-around time between acquisition and analysis

Maximize utilization of the equipment and beam time Available at:

https://subversion.xor.aps.anl.gov/TXM/trunk/

Thanks

Questions?