Завдання 3 з премету Спецкурс для ОМ-3

Коломієць Микола

20 травня 2023 р.

Зміст

1	Завдання 1	2
2	Завдання 2	3
3	Завдання 3	4
4	Завдання 4	5
5	Завдання 5	6
6	Завдання 6	7
7	Завдання 7	8
8	Завдання 8	9
9	Завдання 9	10
10	Завдання 10	11

Завдання

Нехай A_1,A_2,A_3 - набір замкнених підмножин трикутника $\Delta\subseteq\mathbb{R}^2$ з вершинами v_1,v_2 та $v_3.$ Нехай:

- 1. $\Delta = \bigcup_{k=1}^3 A_k$;
- 2. $\forall k \in \{1, 2, 3\} : v_k \in A_k;$
- 3. $\forall k, i \in \{1, 2, 3\} : [v_k, v_i] \subseteq A_k \cup A_i$.

Доведіть, що $\bigcap_{k=1}^3 A_k \neq \emptyset$.

Нехай
$$\bigcap_{k=1}^3 A_k = \emptyset$$

Завдання

Доведіть, що всі опуклі компакти з непорожньою внутрішністю в \mathbb{R}^n гомеоморфні.

Завдання

Нехай $A\subseteq B^n$ - непорожня замкнена множина. Доведіть, що існує неперервне відображення $T:B^n\to B^n$ таке, що F(T)=A, де F(T)- множина нерухомих точок відображення T.

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$(f(x), x) \ge 0 \quad \forall x \in S^{n-1}.$$

Доведіть, що існує точка $x_{0} \in B^{n}: f(x_{0}) = 0.$

Завдання

Нехай неперервне відображення $f:B^n \to \mathbb{R}^n$ має властивість:

$$f\left(S^{n-1}\right) \subseteq B^n$$

Доведіть, що існує точка $x_0 \in B^n : f(x_0) = x_0$.

Завдання

В банахових просторах ℓ_2, c_0 та C([-1,1]) побудувати приклади неперервних відображень, що відображають замкнену кулю в себе, але не мають нерухомих точок.

Завдання

Нехай H - нескінченновимірний гільбертовий простір. Доведіть, що оператор проектування на замкнену кулю не ε слабко неперервним.

Завдання

Нехай (X,d_X) , (Y,d_Y) — метричні простори, (Y,d_Y) — компактний простір. Нехай $f\in C(X\times Y)$ та $g(x)=\max_{y\in Y}f(x,y)$. Доведіть, що $g\in C(X)$.

Завдання

Нехай функція $\phi: X \times Y \to \mathbb{R}$ неперервна, Y- компакт. Доведіть, що відображення $T: X \to 2^Y$, задане співвідношенням

$$Tx = \left\{ \bar{y} \in Y : \phi(x, \bar{y}) = \inf_{y \in Y} \phi(x, y) \right\}$$

замкнене (X, Y) метричні простори).

Завдання

Нехай A,B - непорожні опуклі компакти з банахових просторів X,Y, відповідно. Функція $L:X\times Y\to\mathbb{R}-$ неперервна на $A\times B$ та опукла по x на A (для всіх $y\in B$), угнута по y на B (для всіх $x\in A$). Доведіть, що існує сідлова точка функції L на $A\times B$, тобто, існує $(x_0,y_0)\in A\times B$

$$L(x_0, y) \le L(x_0, y_0) \le L(x, y_0) \quad \forall x \in A \forall y \in B$$