Praktikum z ekonometrie - Týden 7 Mixed effect models

VŠE Praha

Tomáš Formánek

Content

- Introduction
- 2 LME model example
- 3 LME model in matrix form
- 4 More complex LME models
- **5** LME models in R

Linear mixed model (LME) is a generalization of linear model

• Standard linear model looks like:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \varepsilon_i$$

where $1 < i < n$.

• In a mixed model, we often use a nesting (hierarchical) structure: there are multiple groups (or panels or individuals) of observations. For example:

 y_{ij} - observation for *i*-th individual within *j*-th group.

Also, we can group the observations at multiple levels:

 y_{tij} - time period t, country i, region j (group of countries).

• Please note that indices are ordered (left to right) from individual to highest level of aggregation. (alternative notations/orderings exist in literature).

Linear mixed model (LME) is a generalization of linear model

• y_{ij} - e.g. observation for *i*-th individual within *j*-th group.

$$y_{ij} = \boldsymbol{x}_{ij}\boldsymbol{\beta} + \varepsilon_{ij}$$

where $1 \le i \le n_j$ and the number of individuals may differ across groups j.

- One or more β -coefficients can vary across groups.
- Nested/hierarchical structure of the LME model:
 - Individuals i (Level 1) are nested
 - within j groups (Level 2).

Longitudinal data and LME models

• Longitudinal data: series of measurements are performed on each individual (say, over time). Several individuals are sampled.

 y_{ij} - i-th observation of the j-th individual.

$$y_{ij} = \boldsymbol{x}_{ij}\boldsymbol{\beta} + \varepsilon_{ij}$$

where $1 \le i \le n_j$: the number of observations i can differ across individuals j.

- One or more β -coefficients can vary across individuals.
- The same nesting/hierarchical framework applies to longitudinal data and their LME-based analysis:
 - Observations i (Level 1) are nested
 - within j individuals (Level 2).
 - \bullet If appropriate, individuals can be nested in groups (Level 3) \dots

- Mixed models are called "mixed", because the β -coefficients are a mix of fixed parameters and random variables
 - The terms "fixed" and "random" are being used in the statistics-biostatistics sense.
 - A fixed coefficient is an unknown constant to be estimated.
 - A random coefficient is one which varies from group to group (longitudinal data: by individuals...at Level 2).
- LME models can have some added complexity:
 - Correlations between different random coefficients.
 - Multiple levels of nesting
- Random coefficients are not estimated, but they can be predicted.

LME model example

- Data:
 - London Education Authority Junior School Project dataset, 48 different schools (j) and 887 different students (i). We predict 5th-year math scores.
- We may start by simply ignoring the school grouping (*single-mean* model):

$$y_{ij} = \beta_0 + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$

where y_{ij} is the observed math 5_{ij} score of i-th student at school j, β_0 is the mean math score across our population (being sampled). ε_{ij} is the individual deviation from overall mean.

In our sample, M = 48 and n_j may differ among schools.

Population mean math score & the variance of ε are estimated by taking their sample counterparts.

LME model example - continued

• The school effect (differences among schools) may be incorporated in the model by allowing the mean of each school to be represented by a separate parameter (fixed effect)

$$y_{ij} = \beta_{0j} + \varepsilon_{ij}, \quad i = 1, \dots, n_j, \quad j = 1, \dots, M, \quad \varepsilon_{ij} \sim N(0, \sigma_{\varepsilon}^2)$$

where β_{0j} is the school-specific mean math score. ε_{ij} is the individual deviation from the school-specific mean.

- R syntax: $lm(math5 \sim School-1, data=...)$
- M = 48 school-specific intercepts are estimated,
- Estimated intercepts only model the specific sample of schools, while -usually- the main interest is in the population from which the sample was drawn.
- Regression does not provide an estimate of the between-school variability, which is also of central interest.

LME model with random intercept

- Random effects model can solve the above problems by treating the school effects as random variations around a population mean.
- Fixed effects model can be reparametrized as:

$$y_{ij} = \beta_{0j} + \varepsilon_{ij}$$

$$y_{ij} = \beta_0 + (\beta_{0j} - \beta_0) + \varepsilon_{ij},$$

now, the random effect u_{0j} can replace the the fixed effect β_{0j} :

$$\beta_{0j} = \beta_0 + u_{0j} \Rightarrow u_{0j} = \beta_{0j} - \beta_0$$
. Hence:
 $y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}$.

- u_{0j} is the school-specific deviation from overall mean β_0 . u_{0j} is a random variable, specific for the j-th school, with zero mean and unknown variance σ_u^2 .
 - u_{0j} is a random effect, because it is associated with the particular sample units (schools are selected at random from the population).

LME model with random intercept

• The random effects model is given as:

$$y_{ij} = \beta_0 + u_{0j} + \varepsilon_{ij}, \qquad u_{0j} \sim N(0, \sigma_u^2), \qquad \varepsilon_{ij} \sim N(0, \sigma_\varepsilon^2),$$

and we assume u_{0j} are *iid* and independent from ε_{ij} .

- Observations in the same school share the same random effect u_{0j} , hence they are (positively) correlated with $corr = \sigma_u^2/(\sigma_u^2 + \sigma_{\varepsilon}^2)$.
- This random effects model has three parameters: β_0 , σ_u^2 and σ_{ε}^2 . (regardless of M, the number of schools).
- Note that the random effect u_{0j} "looks like" a parameter, but we are interested in estimating σ_u^2 .
- However, upon observed data (and estimated model), we do make predictions for \hat{u}_j .

LME model with random intercept

• Random effects model with random intercept:

Exogenous regressors are also used in LMEs (like in LRMs). For example, math5 grades depend on math3 ($3^{\rm rd}$ year grades).

$$y_{ij}=\beta_0+\beta_1\,x_{ij}+u_{0j}+\varepsilon_{ij},$$
 i.e.
$$\mathtt{math5}_{ij}=\beta_0+\beta_1\,\mathtt{math3}_{ij}+u_{0j}+\varepsilon_{ij},$$

- Intercept is random.
- Slope of the regression line for each school is fixed at β_1math3 has a *fixed effect*.

LME model: ICC

• ICC: Intra class correlation (in a LME regression model)

$$\label{eq:icc} \text{ICC} = \frac{\text{Intercept variance}}{\text{Intercept variance} + \text{Residual variance}}$$

- ICC: Proportion of variance in the outcome variable that occurs between "groups" (schools) to the total variability present.
- Correlation between two "individuals" (students) randomly selected from the same "group" (school).
- Example 1

math5_{ij} =
$$\beta_0 + \beta_1$$
 math3_{ij} + $u_{0j} + \varepsilon_{ij}$,
where $\sigma_u^2 = \text{var}(u_{0j})$ and $\sigma_\varepsilon^2 = \text{var}(\varepsilon_{ij})$.
Here, ICC = $\frac{\sigma_u^2}{\sigma_u^2 + \sigma_\varepsilon^2}$ measures correlation between math5 observations (randomly chosen) within a given school.

LME model: ICC

• ICC: Intra class correlation (in a LME regression model)

$$\label{eq:icc} \text{ICC} = \frac{\text{Intercept variance}}{\text{Intercept variance} + \text{Residual variance}}$$

• Example 2

In a longitudinal study, y_{ij} measures the *i*-th response of the *j*-th individual.

$$y_{ij} = \beta_0 + \boldsymbol{x}_{ij}\boldsymbol{\beta} + u_{0j} + \varepsilon_{ij},$$

Here, ICC measures correlation between y_{ij} observations for a given individual.

• ICC is interpreted as the correlation between two **appropriately defined** observations from the same cluster/group (individual in a longitudinal study).

LME model with random intercept and slope

• Random effects model with random intercept and slope:

If teaching is different from school to school, it would make sense to have different slopes for each of the schools.

Instead of fixed effects (using interaction terms math3:School), we use random slopes: $u_{1j} = \beta_{1j} - \beta_1$.

$$y_{ij} = \beta_0 + u_{0j} + \beta_1 x_{ij} + u_{1j} x_{ij} + \varepsilon_{ij},$$

i.e.

$$\mathtt{math5}_{ij} = \underbrace{\beta_0 + \beta_1 \mathtt{math3}_{ij}}_{fixed} + \underbrace{u_{0j} + u_{1j} \, \mathtt{math3}_{ij}}_{random} + \varepsilon_{ij},$$

- We can test whether this extra complexity is justified.
- u_{0j} and u_{1j} are often correlated, their independence can be tested.
- Fitted values of math 5_{ij} can be produced, along with \hat{u}_{0j} and \hat{u}_{1j} .

LME model in matrix form

• Linear models

$$y = X\beta + \varepsilon$$
 $\varepsilon \sim N(0, \sigma_{\varepsilon}^2 I),$

• can be generalized into LME models

$$m{y} = m{X}m{eta} + m{Z}m{u} + m{arepsilon} \qquad m{u} \sim N(m{0}, m{G}) \qquad m{arepsilon} \sim N(m{0}, m{R}),$$

where (for balanced panels):

X is a $(n \times k)$ matrix, k is the number of fixed effects,

Z is a $(n \times p)$ matrix, p is the number of random effects,

G is a $(p \times p)$ variance-covariance matrix of the random effects,

 \boldsymbol{R} is a $(n \times n)$ variance-covariance matrix of errors.

Independence between \boldsymbol{u} and $\boldsymbol{\varepsilon}$ is assumed,

Often, $\mathbf{R} = \sigma_{\varepsilon}^2 \mathbf{I}$, can be generalized for group-wise correlations, \mathbf{G} is diagonal if $random\ effects$ are mutually independent.

More complex LME models - brief outline

Different types of LME models exist:

- LME models with (multilevel) nested effects,
- LME models with crossed effects,
- Complex behavior of the error term in LME models can be addressed.
- LME models with non-Gaussian (Binary, Poisson, etc.).

LME models with (multilevel) nested effects

Multi-level model example: we follow a total of 48 individual states within 9 regions and across 17 years.

- GDP_{tij} represents individual GDP per capita measurements for: t-th time period, e.g. with values $(t = 1990, \dots, 2006)$. i-th state nested within region j $(i = 1, \dots, M_j)$, j-th region $(j = 1, \dots, 9)$,
- We fit GDP as a function of productivity P and unemployment U. We treat states as nested within regions, so we have 2 levels of random intercepts: one due to the regions, and another due to the state within region (random slopes can be added as well).
- $GDP_{tij} = \beta_0 + \beta_1 P_{tij} + \beta_2 U_{tij} + u_{0i(j)} + v_{0j} + \varepsilon_{tij}$.

LME models with crossed random effects

Crossed random effects example:

- Grunfeld (1958) analyzed data on 10 large U.S. corporations, collected annually from 1935 to 1954 to investigate how investment I depends on market value M and capital stock C.
- Here, we want *random effects* for a given firm and year. However, we want the year effect to be the same across all firms, i.e. not nested within firms.
- $\mathbf{I}_{it} = \beta_0 + \beta_1 \, \mathbf{M}_{it} + \beta_2 \, \mathbf{C}_{it} + u_{0i} + v_{0t} + \varepsilon_{it}$. where $i = 1, \dots, 10$ and firms are followed over $t = 1, \dots, 20$ years. (note the usual "it" index ordering is used here)

LME models in R

• {lme4} package https://www.jstatsoft.org/article/view/v067i01/0

• {nlme} package
https://cran.r-project.org/web/packages/nlme/nlme.pdf

• Finch, Bolin, Kelley: Multilevel Modeling Using R (2014).