République Islamique de Mauritanie Ministère de l'Education Nationale et de la Réforme du Système Educatif Direction des Examens et des Concours

BACCALAUREAT 2021 Session Complémentaire Epreuve de MATHEMATIQUES Série : Sciences de la Nature Coefficient: 6 Durée : 4h

On considère la suite (u_n) définie par $u_0 = 2$, et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{n+2}{2n+2}u_n + \frac{n}{2n+2}$ et soit

$$v_n = \frac{u_n - 1}{n + 1}.$$

Pour chacune des cinq questions suivantes, une seule des réponses proposées est correcte.

Nº	Questions	Réponse A	Réponse B	. Réponse C	
1	La valeur de u ₂ est	76	$\frac{7}{5}$	7 4	0, 75pt
2	La suite (u,) est	Positive	Négative	Nulle	0,75pt
3	La valeur de u _{n+1} -1 est	$\frac{(n+2)u_n+n-1}{2n+2}$	$\frac{(n+2)(u_n-1)}{2n+2}$	un	0,5pt
4	La suite (v _n) est	Géométrique	Arithmétique	Ni arithmétique, ni géométrique	0 ,5pt
5 .	Le terme général de (v _n) est	1 2 ⁿ	$1+\frac{n}{2}$	$1+\frac{1}{2^n}$	0 ,5pt

Recopie sur la feuille de réponse et complète le tableau cicontre en choisissant la bonne réponse. Aucune justification n'est demandée

Question no	1	2	3	4	5
Réponse		136			

Exercice 2 (5 points)

Le plan complexe est rapporté à un repère orthonormé (O; u, v). On considère les points A, B et C d'affixes respectives : $z_A = 3i$, $z_B = 2 + 2i$ et $z_C = -3 - 3i$

1º a) Calculer $(2-i)^2$.

b) Résoudre, dans \mathbb{C} , l'équation $z^2 - (2+5i)z - 6+6i = 0$.

2° a) Ecrire sous forme trigonométrique chacun des nombres z et z c

b) Déterminer l'ensemble des points M du plan d'affixe z tel que |z-3i|=|z-2-2i|.

3° On pose $z_0 = z_C$ et $\forall n \in \mathbb{N}$, $z_{n+1} = \frac{1}{3}iz_n + 1 + 3i$ et $d_n = |z_n - z_A|$

a) Montrer que $z_1 = z_B$

b) Pour tout entier naturel n, on note M_n le point d'affixe z_n .

Montrer que : $\forall n \in \mathbb{N}$, $\frac{z_{n+1}-z_A}{z_n-z_A} = \frac{1}{3}i$ puis en déduire la nature du triangle AM_nM_{n+1}

c) Déduire que (d_n) est une suite géométrique dont on donnera la raison.

d) Exprimer en fonction de n la somme : $S_n = d_0 + d_1 + d_2 + ... + d_n$

Série Sciences de la Nature p1/2

1pt

1pt

0,5pt

0,5pt

0,5pt

0,5pt

0,5pt

0,5pt

Evapoine ?	(mainta
Exercice 3	(o pomis)

Soit f la fonction définie sur]0; + ∞ [par f(x) = $\frac{4x^2 + 1 + 2 \ln x}{2x^2}$ et (C) sa courbe

- représentative dans un repère orthonormé (O; i,j).
- 1°a) Montrer que $\lim_{x\to \infty} f(x) = -\infty$ puis interpréter graphiquement le résultat.
- b) Montrer que $\lim_{x\to +\infty} f(x) = 2$ et déduire que la courbe (C) admet une asymptote (D) à préciser.
- 2° a) Montrer que f'(x) = $\frac{-2 \ln x}{x^3}$.
- b) Dresser le tableau de variation de f.
- 3° Soit g la restriction de f sur l'intervalle $I = [1, +\infty]$.
- a) Montrer que g est une bijection de I sur un intervalle I que l'on déterminera.
- b) Dresser le tableau de variation de g-1.
- 4°a) Montrer que l'équation f(x) = 0 admet, dans \mathbb{R} , une unique solution x_0 et que $0,4 < x_0 < 0,5$.
- b) Construire (D), (C) et (C'), ((C') étant la courbe représentative de g-1).
- 5° a) Utiliser une intégration par parties pour calculer $I = \int_{1}^{e} \frac{\ln x}{x^2} dx$.
- b) En déduire l'aire A du domaine plan délimité par la courbe Γ , l'axe des abscisses et les droites d'équations respectives x = 1 et x = e.

Exercice 4 (6 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = (2x-4)(e^x-1)$. On note Γ sa courbe représentative dans un repère orthonormé $(0; \vec{i}, \vec{j})$.

- 1° Soit h la fonction définie sur \mathbb{R} par $h(x) = (2x-2)e^x 2$.
- a) Montrer que $\lim_{x\to-\infty} h(x) = -2$ et $\lim_{x\to+\infty} h(x) = +\infty$
- b) Calculer h'(x) puis dresser le tableau de variation de h.
- c) Montrer que l'équation h(x) = 0 admet dans \mathbb{R} une unique solution α et justifier que $1, 2 < \alpha < 1, 3$
- d) Déterminer le signe de h sur R
- 2° a) Calculer $\lim_{x \to +\infty} f(x)$ et vérifier que $\lim_{x \to +\infty} \frac{f(x)}{x} = +\infty$. Interpréter graphiquement.
- b) Montrer que $\lim_{x\to\infty} f(x) = +\infty$ et que la droite (Δ) d'équation y = -2x + 4 est une asymptote à Γ . Etudier la position relative entre (Δ) et Γ
- 3° a) Montrer que f'(x) = h(x), $\forall x \in \mathbb{R}$
- b) Dresser le tableau de variation de f.
- c) Vérifier que $f(\alpha) = -\frac{2(\alpha 2)^2}{\alpha 1}$
- 4° a) Déterminer les points d'intersection de Γ avec les axes de coordonnées.
- b) Construire (D) et Γ dans le repère (0, i, j). (on prendra $\alpha = 1.3$)

1pt

1pt

1pt

0,25pt

0,5pt

0,5pt

0,5pt

0,5pt

0,5pt

0,25p

1pt

0,5

0,5

0,7

0,7