Harvard CS 121 and CSCI E-207 Lecture 10: Pushdown Automata

Harry Lewis

October 5, 2010

• Reading: Sipser, §2.2.

Context-free Grammars and Automata

What is the fourth term in the analogy:

Regular Languages: Finite Automata

as

Context-free Languages: ???

Sheila Greibach, AB Radcliffe '60 summa cum laude

Inverses of Phrase Structure Generators

Harvard PhD Thesis, 1963

Pushdown Automata

- = Finite automaton + "pushdown store"
- The pushdown store is a stack of symbols of unlimited size which the machine can read and alter only at the top.

Transitions of PDA are of form $(q, \sigma, \gamma) \mapsto (q', \gamma')$, which means:

If in state q with σ on the input tape and γ on top of the stack, replace γ by γ' on the stack and enter state q' while advancing the reading head over σ .

3

(Nondeterministic) PDA for "even palindromes"

$$\{ww^R: w \in \{a,b\}^*\}$$

$$(q,a,\varepsilon) \mapsto (q,a) \quad \text{Push a's}$$

$$(q,b,\varepsilon) \mapsto (q,b) \quad \text{and b's}$$

$$(q,\varepsilon,\varepsilon) \mapsto (r,\varepsilon) \quad \text{switch to other state}$$

$$(r,a,a) \mapsto (r,\varepsilon) \quad \text{pop a's matching input}$$

$$(r,b,b) \mapsto (r,\varepsilon) \quad \text{pop b's matching input}$$

So the precondition (q, σ, γ) means that

- the next $|\sigma|$ symbols (0 or 1) of the input are σ and
- ullet the top $|\gamma|$ symbols (0 or 1) on the stack are γ

(Nondeterministic) PDA for "even palindromes"

$$\{ww^R: w \in \{a,b\}^*\}$$

$$(q,a,\varepsilon) \mapsto (q,a) \quad \text{Push a's}$$

$$(q,b,\varepsilon) \mapsto (q,b) \quad \text{and b's}$$

$$(q,\varepsilon,\varepsilon) \mapsto (r,\varepsilon) \quad \text{switch to other state}$$

$$(r,a,a) \mapsto (r,\varepsilon) \quad \text{pop a's matching input}$$

$$(r,b,b) \mapsto (r,\varepsilon) \quad \text{pop b's matching input}$$

Need to test whether stack empty: push \$ at beginning and check at end.

$$(q_0, \varepsilon, \varepsilon) \mapsto (q, \$)$$

 $(r, \varepsilon, \$) \mapsto (q_f, \varepsilon)$

Language recognition with PDAs

A PDA accepts an input string

If there is a computation that starts

- in the start state
- with reading head at the beginning of string
- and the stack is empty

and ends

- in a final state
- with all the input consumed

A PDA computation becomes "blocked" (i.e. "dies") if

no transition matches both the input and stack

Formal Definition of a PDA

• $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$

 $Q = \mathsf{states}$

 $\Sigma = \text{input alphabet}$

 $\Gamma = \mathsf{stack} \; \mathsf{alphabet}$

 $\delta = \text{transition function}$

$$Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to P(Q \times (\Gamma \cup \{\varepsilon\})).$$

 $q_0 = \text{start state}$

F = final states

Computation by a PDA

- M accepts w if we can write $w=w_1\cdots w_m$, where each $w_i\in\Sigma\cup\{\varepsilon\}$, and there is a sequence of states r_0,\ldots,r_m and stack strings $s_0,\ldots,s_m\in\Gamma^*$ that satisfy
 - 1. $r_0 = q_0$ and $s_0 = \varepsilon$.
 - 2. For each i, $(r_{i+1}, \gamma') \in \delta(r_i, w_{i+1}, \gamma)$ where $s_i = \gamma t$ and $s_{i+1} = \gamma' t$ for some $\gamma, \gamma' \in \Gamma \cup \{\varepsilon\}$ and $t \in \Gamma^*$.
 - 3. $r_m \in F$.
- $L(M) = \{w \in \Sigma^* : M \text{ accepts } w\}.$

PDA for
$$\{w \in \{a,b\}^* : \#_a(w) = \#_b(w)\}$$

Equivalence of CFGs and PDAs

Thm: The class of languages recognized by PDAs is the CFLs.

I: For every CFG G, there is a PDA M with L(M) = L(G).

II: For every PDA M, there is a CFG G with L(G) = L(M).

Proof that every CFL is accepted by some PDA

Let
$$G = (V, \Sigma, R, S)$$

We'll allow a generalized sort of PDA that can push *strings* onto stack.

E.g.,
$$(q, a, b) \mapsto (r, cd)$$

Proof that every CFL is accepted by some PDA

Let
$$G = (V, \Sigma, R, S)$$

We'll allow a generalized sort of PDA that can push *strings* onto stack.

E.g.,
$$(q, a, b) \mapsto (r, cd)$$

Then corresponding PDA has just 3 states:

 $q_{
m start} \sim$ start state

 $q_{\mathrm{loop}}\sim$ "main loop" state

 $q_{
m accept} \sim$ final state

Stack alphabet = $V \cup \Sigma \cup \{\$\}$

CFL ⇒ **PDA**, Continued: The Transitions of the **PDA**

Transitions:

• $\delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S\$)\}$

"Start by putting S\$ on the stack, & go to q_{loop} "

• $\delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w)\}$ for each rule $A \to w$

"Remove a variable from the top of the stack and replace it with a corresponding righthand side"

• $\delta(q_{\text{loop}}, \sigma, \sigma) = \{(q_{\text{loop}}, \varepsilon)\}$ for each $\sigma \in \Sigma$

"Pop a terminal symbol from the stack if it matches the next input symbol"

• $\delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\}.$

"Go to accept state if stack contains only \$."

Example

• Consider grammar G with rules $\{S \to aSb, S \to \varepsilon\}$

(so
$$L(G) = \{a^n b^n : n \ge 0\}$$
)

Construct PDA

$$M = (\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\}, \{a, b\}, \{a, b, S, \$\}, \delta, q_{\text{start}}, \{q_{\text{accept}}\})$$

Transition Function δ :

• Derivation $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Corresponding Computation:

Proof That For Every PDA M there is a CFG G Such That

$$L(M) = L(G)$$

- ullet First modify PDA M so that
 - Single accept state.
 - All accepting computations end with empty stack.
 - In every step, push a symbol or pop a symbol but not both.

Design of the grammar G equivalent to PDA M

- Variables: A_{pq} for every two states p, q of M.
- Goal: A_{pq} generates all strings that can take M from p to q, beginning & ending w/empty stack.
- Rules:
 - For all states $p, q, r, A_{pq} \rightarrow A_{pr}A_{rq}$.
 - For states p,q,r,s and $\sigma,\tau\in\Sigma$, $A_{pq}\to\sigma A_{rs}\tau$ if there is a stack symbol γ such that $\delta(p,\sigma,\varepsilon)$ contains (r,γ) and $\delta(s,\tau,\gamma)$ contains (q,ε) .
 - For every state p, $A_{pp} \to \varepsilon$.
- Start variable: $A_{q_{\text{start}}q_{\text{accept}}}$.

Sketch of Proof that the Grammar is Equivalent to the PDA

- Claim: $A_{pq} \Rightarrow^* w$ if and only if w can take M from p to q, beginning & ending w/empty stack.
 - ⇒ Proof by induction on length of derivation.
 - Proof by induction on length of computation.
 - Computation of length 0 (base case): Use $A_{pp} \to \varepsilon$.
 - Stack empties sometime in middle of computation: Use $A_{pq} \to A_{pr} A_{rq}$.
 - Stack does not empty in middle of computation: Use $A_{pq} \rightarrow \sigma A_{rs} \tau$.