

Frequency control and stability requirements on hydro power plants

Sigurd Hofsmo Jakobsen
Department of electrical engineering
October 29, 2019

Outline

Problem

Methodology Paper I

Simple test system Paper I

Conclusions and further work

 The power system frequency measures the power balance.

- The power system frequency measures the power balance.
- It is the responsibility of the TSOs to control the frequency.

- The power system frequency measures the power balance.
- It is the responsibility of the TSOs to control the frequency.
- However, it is the power plant owners who can control the frequency.

- The power system frequency measures the power balance.
- It is the responsibility of the TSOs to control the frequency.
- However, it is the power plant owners who can control the frequency.
- The TSOs pay all power plant owners above a certain size to provide frequency control.(droop $\rho = \Delta f/\Delta P$)

Hydro power plant

Implementation of the frequency containment process

- r(s) Reference frequency
- e(s) Control error
- f(s) Frequency
- c(s) Control signal
- g(s) Guide vane opening
- $\Delta P_m(s)$ Mechanical power

Implementation of the frequency containment process

- r(s) Reference frequency
- e(s) Control error
- f(s) Frequency
- c(s) Control signal
- g(s) Guide vane opening
- $\Delta P_m(s)$ Mechanical power

The frequency containment process $G_p(s)$ in the power system

- $G_J(s)$ represents the swing dynamics of the power plant.
- $v_l(s)$ represents stochastic load.

Stability requirements for frequency control

Stability margin from control theory:

$$\max |S(j\Omega)| < M_s$$
 (1)

— where:

$$S(s) = \frac{1}{1 + G_D(s)G_J(s)}$$
 (2)

Performance requirements for frequency control

We want to contain frequency

- We want to contain frequency deviations.
$$\Delta\omega(s) = \frac{G_J}{1+G_p(s)G_J(s)}\Delta P_e(s)$$
 (3)

Future of frequency control

- Power plants have to show that they fulfill:
 - Stability requirement S(s) < M_s
 - Performance requirement $G_1(s) < M_p$
- To do this they need models of:
 - $G_p(s)$
 - and *G_J(s)*

Industry proposed tests

- Time consuming.
- Use system estimate for $G_J(s)$.
- Input r(s)
- Output $\Delta P_e(s)$

 $v_l(s)$

Example from real tests

- The power plant needs to be disconnected
- Takes up to 20 hours.

Example from real tests

- The power plant needs to be disconnected
- Takes up to 20 hours.
- Only one sine test needed with system identification.

— Can we do the tests easier?

- Can we do the tests easier?
- The power system is never really in steady state.

- Can we do the tests easier?
- The power system is never really in steady state.
- Can the power plant dynamics be identified from normal operation measurements?

Outline

Problem

Methodology Paper I

Simple test system Paper II

Conclusions and further work

Background

¹Dinh Thuc Duong et al. "Estimation of Hydro Turbine-Governor's Transfer Function from PMU Measurements". In: IEEE PES General Meeting. Boston: IEEE, July 2016

Methodology

- Collect data from PMUs.
- Preprocess data.
- Calculate power and frequency from the measurements.
- Identify dynamics.
- Validate models.

Estimated droop and bandwidth

Dataset	Droop[%]	Bandwidth[mHz]
Fall 2015	10	4.16
Spring 2016	8	2.41

Main contributions to the research questions

 Promising results for 19 datasets.

Main contributions to the research questions

- Promising results for 19 datasets.
- Developed code for interfacing with the PMU data.

Outline

Problem

Methodology Paper I

Simple test system Paper II

Conclusions and further work

 Create a model for analysing the identifiability of hydro power plant dynamics.

— From the PMU we get

- From the PMU we get
 - Power: $\Delta P_e(s)$.

- From the PMU we get
 - Power: $\Delta P_e(s)$.
 - Frequency: $\Delta f(s) \approx 2\pi \Delta \omega(s)$.

- From the PMU we get
 - Power: $\Delta P_e(s)$.
 - Frequency: $\Delta f(s) \approx 2\pi \Delta \omega(s)$.
- We need to model how $\Delta P_e(s)$ and $\Delta f(s)$ is related through the power system.

- From the PMU we get
 - Power: $\Delta P_e(s)$.
 - Frequency: $\Delta f(s) \approx 2\pi \Delta \omega(s)$.
- We need to model how $\Delta P_e(s)$ and $\Delta f(s)$ is related through the power system.
- We also need to model the power plant consisting of $G_p(s)$ and $G_J(s)$.

Power plant model

- Model for $G_p(s)$
- Model for $G_J(s)$

$$G_J(s) = \frac{1}{2Hs + K_d} \tag{6}$$

Power system model

- The frequency and power system angle is related.
- The angle and power is related.
- On matrix form.

$$\Delta\theta(s) = \frac{2\pi f_s}{s} f(s) \qquad (7)$$

$$P_k pprox \sum_{m \in \Omega_k} x_{km}^{-1} \theta_{km}$$
 (8)

$$\mathbf{P} = \mathbf{Y}\theta \tag{9}$$

Test system

Figure: Single line diagram

Test system

Simulation Result

Main contributions

- Developed simple test system for analysing power plant identifiability using PMUs.
- Developed simple test system used in the proceeding papers for simulations.

Outline

Problem

Methodology Paper I

Simple test system Paper I

Conclusions and further work

Conclusions

- The requirements can be checked using PMU-measurements, however, the results will be biased for faster dynamics.
- The requirements can be checked using control system measurements in normal operation, however, the results may be biased for faster dynamics.
- The requirements can be checked using measurement from normal operation with extra excitation

Further work

- Validate approaches in the lab
- Solve the delay condition.
- Handle backlash.
- Investigate the alternative requiremens.