GATE ASSIGNMENT 4

Dishank Jain AI20BTECH11011

Download latex-tikz codes from

https://github.com/Dishank422/EE3900/blob/main/ Gate-Assignment4/latex code.tex

1 EC 1999 Q.2.1

The Fourier representation of an impulse train represented by $s(t) = \sum_{n=-\infty}^{\infty} d(t - nT_0)$ is given by

(a)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp - \frac{j2\pi nt}{T_0}$$
(b)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp - \frac{j\pi nt}{T_0}$$

(b)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp - \frac{j\pi nt}{T_0}$$

(c)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp \frac{j\pi nt}{T_0}$$

(c)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp \frac{j\pi nt}{T_0}$$
(d)
$$\frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp \frac{j2\pi nt}{T_0}$$

2 Solution

We observe that s(t) is periodic with period T_0 . Thus it's Fourier representation as a sum of complex exponentials is given by

$$s(t) = \sum_{n = -\infty}^{\infty} a_n exp \frac{j2\pi nt}{T_0}$$
 (2.0.1)

where, a_k is given by

$$a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} s(t) exp - \frac{j2\pi nt}{T_0} dt$$
 (2.0.2)

Between $-\frac{T_0}{2}$ and $\frac{T_0}{2}$, we can say that s(t) = d(t).

$$\implies a_n = \frac{1}{T_0} \int_{-\frac{T_0}{2}}^{\frac{T_0}{2}} d(t) exp - \frac{j2\pi nt}{T_0} dt \qquad (2.0.3)$$

$$=\frac{1}{T_0}$$
 (2.0.4)

$$\implies s(t) = \frac{1}{T_0} \sum_{n=-\infty}^{\infty} exp \frac{j2\pi nt}{T_0}$$
 (2.0.5)

Therefore option (d) is the correct option.