一、选择题

1. 设总体 X 服从 B(m,p), X_1,X_2,\cdots,X_n 为来自总体X的一个样本,则()是 p 的无偏估计.

A.
$$p_1 = \frac{X_1}{m}$$

B.
$$\hat{p}_2 = \frac{\overline{X}}{m-1}$$

$$C. \quad \hat{p}_3 = \frac{X_1 + \overline{X}}{m}$$

C.
$$\hat{p}_3 = \frac{X_1 + \overline{X}}{m}$$
 D. $\hat{p}_4 = \frac{X_1 + 3\overline{X}}{2m}$

2. $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 是总体参数 θ 的两个估计量,说 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 有效,是指(

A.
$$E\hat{\theta}_1 = \theta, \perp \hat{\theta}_1 < \hat{\theta}_2$$
 B. $E\hat{\theta}_1 = \theta, \perp \hat{\theta}_1 > \hat{\theta}_2$

B.
$$E\hat{\theta}_1 = \theta, \pm \hat{\theta}_1 > \hat{\theta}_2$$

C.
$$E\hat{\theta}_1 = E\hat{\theta}_2 = \theta$$
, $\mathbb{E}D\hat{\theta}_1 < D\hat{\theta}_2$ D. $D\hat{\theta}_1 < D\hat{\theta}_2$

D.
$$D\hat{\theta}_1 < D\hat{\theta}_2$$

3. 样本 X_1, X_2, \cdots, X_n 取自总体X,且 $EX = \mu$, $DX = \sigma^2$,则()是总体方 差的无偏估计.

A.
$$\frac{1}{n} \sum_{i=1}^{n-1} (X_i - \overline{X})^2$$

B.
$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

C.
$$\frac{1}{n-1} \sum_{i=1}^{n-1} (X_i - \overline{X})^2$$
 D. $\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$

D.
$$\frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

4. 设样本 X_1, X_2, \cdots, X_n 取自总体 X,且 $EX = \mu$, $DX = \sigma^2$,样本均值、样本方

差分别为
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
, $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$. 则下面说法错误的是 ()

A.
$$\frac{1}{n}\sum_{i=1}^{n}(X_i-\overline{X})^2$$
是 σ^2 的无偏估计 B. \overline{X} 是 μ 的无偏估计

B.
$$\overline{X}$$
 是 μ 的无偏估计

C.
$$X_1, X_2, \dots, X_n$$
 都是 μ 的无偏估计 D. $S^2 \in \sigma^2$ 的无偏估计

D.
$$S^2$$
是 σ^2 的无偏估计

二、填空题

- 1. 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, X_3) 是来自总体 X 的一个样本,若 $\hat{\mu} = 0.2X_1 + aX_2 + 0.5X_3$ 是未知参数 μ 的无偏估计,则 a = _____.
- 2. 总体 $X \sim N(\mu, 0.3^2)$,容量 n = 9,均值 $\bar{X} = 5$,则未知参数 μ 的置信度为 0.95 的置信区间是______. ($u_{0.025} = 1.96$)
- 3. 在参数的点估计中,评价估计量的标准为 , 和 ...
- 4. (X_1, X_2) 是来自总体 X 的一个样本,样本的线性函数 $aX_1 + (1-a)X_2$ (a 为常数)是总体数学期望 EX 的无偏估计量,当 a = 时,其最有效。
- 5. 设总体 $X \sim N(\mu, \sigma^2)$, (X_1, X_2, \cdots, X_n) 是来自 X 的样本,则当 μ 已知时, σ^2 的置信系数为 $1-\alpha$ 的置信区间为_____.
- 6. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知,则求 μ 的置信度为 $1-\alpha$ 的置信区间所使用的枢轴变量是______,使用的分布是_____,置信区间为______.

三、判断题

- 1. 设总体分布类型已知,其未知参数的极大似然估计一定是无偏估计. ()
- 2. 任意事件 A 发生的频率依概率收敛于事件 A 发生的概率. ()

附加题: (判断题)老师每天都是这样滴~~~

一杯茶,一包烟, 一道积分算一天。

