

Time Series

Time series data

- Time series data consists of a sequence of observations gathered over a period. It can be categorized into two types:
 - Regular interval, such as hourly or daily observations.
 - Irregular intervals, such as transaction times.

Date	Covid case
5/31/2021	344
5/30/2021	185
5/29/2021	199
5/28/2021	347
5/27/2021	384
5/26/2021	363
•••	•••

Time	Temperature
2022-09-20 12:00	15.3
2022-09-20 13:00	14.5
2022-09-20 14:00	14.5
2022-09-20 15:00	13.8
2022-09-20 16:00	13.0
2022-09-20 17:00	12.7
	•••

Time	Transaction ID	Amount
2022-03-10 15:14:32	363211	450
2022-03-10 16:05:45	363212	1260
2022-03-10 20:29:08	363213	3140
2022-03-10 20:51:27	363214	250
2022-03-11 01:33:18	363215	980
2022-03-11 07:22:23	363216	740

Store Date/Time as string type

	date	weekly_sales
0	17/05/2021	238
1	10/05/2021	214
2	03/05/2021	195
3	27/04/2021	208
4	20/04/2021	220
5	13/04/2021	206

• Limitation:

sales_df.sort_values("date")

	date	weekly_sales
2	03/05/2021	195
1	10/05/2021	214
5	13/04/2021	206
0	17/05/2021	238
4	20/04/2021	220
3	27/04/2021	208

Unable to sort data by date.

	date	weekly_sales
0	17/05/2021	238
1	10/05/2021	214
2	03/05/2021	195
5	13/04/2021	206

Cannot select data by date.

Outline

- Python Datetime module
 - Datetime object
 - o Conversion between string and datetime
 - Timedelta object
- Pandas
 - Function to_datetime()
 - DatetimeIndex
 - Subset selection
 - Information extraction
 - o Method resample()

Python datetime module

Python build-in datetime module includes different data types.

import datetime as dt

Data type (class)	Description	
date	Stores calendar date(year, month, day).	
time	Stores time of day as hours, minutes, seconds, and microseconds.	
datetime	Store both date and time.	
timedelta	Represents the difference between two datetime values.	
Tzinfo	Base type for storing time zone information.	

Datetime object

Use datetime() with three arguments year, month and day to create a datetime object.

Use method now() to create a datetime object.

```
datetime_now = dt.datetime.now()

datetime_now

datetime.datetime(2021, 7, 6, 11, 21, 35, 146825)

1 microsecond = 1 × 10-6 seconds.

year

month

day

microseconds

microseconds
```

Datetime object - attributes

Access attributes

```
mydt = dt.datetime(year = 2021, month = 7, day = 6, hour = 11, minute = 21)
mydt
datetime.datetime(2021, 7, 6, 11, 21)
print(mydt.year)
print(mydt.month)
print(mydt.day)
print(mydt.hour)
print(mydt.minute)
2021
11
21
```


Datetime object - methods

Some datetime methods

Methods	Description	
isocalendar()	Returns a tuple year, week, and weekday	
isoweekday()	Returns the day of the week as integer where Monday is 1 and Sunday is 7	
ctime()	Returns a string representation of date and time	
strptime()	Returns a DateTime object corresponding to the date string	
strftime()	Returns a string representation of the DateTime object with the given format	

- Datetime methods: https://www.geeksforgeeks.org/python-datetime-datetime-class/
- strptime stands for string-parse-time.
- strftime stands for string-format-time.

Common datetime formats

Examples

General form	Example
mm/dd/yy	03/28/21
dd/mm/yy	28/03/21
dd.mm.yyyy	28.03.2021
dd-mmm-yyyy	28-Mar-2021
hh:mm	01:02
hh:mm:ss.s	01:02:34.75
yyyy-mm-dd hh:mm	2021-03-28 01:02
yyyy-mm-dd hh:mm:ss.s	2021-03-28 01:02:34.7

Datetime object - strptime()

Convert a string to a datetime object by using strptime().

```
s1 = '2019-01-03'
t1 = dt.datetime.strptime(s1, '%Y-%m-%d')
t1
datetime.datetime(2019, 1, 3, 0, 0)
print(type(s1))
print(type(t1))
<class 'str'>
<class 'datetime.datetime'>
```

Directive	Meaning
%Y	Four-digit year
% y	Two-digit year
%m	Two-digit month [01,12]
%d	Two-digit day [01,31]
%Н	Hour (24-hour clock) [00,23]
%M	Two-digit minute [00,59]
%S	Two-digit minute [00,59]

Datetime object - strptime()

Other formats

```
s2 = '03/01/2019'
t2 = dt.datetime.strptime(s2, '%d/%m/%Y')
t2
datetime.datetime(2019, 1, 3, 0, 0)
s3 = '03/01/19'
t3 = dt.datetime.strptime(s3, '%d/%m/%y')
t3
datetime.datetime(2019, 1, 3, 0, 0)
s4 = '10:30 03/01/19'
t4 = dt.datetime.strptime(s4, '%H:%M %d/%m/%y')
t4
datetime.datetime(2019, 1, 3, 10, 30)
```

Directive	Meaning
%Y	Four-digit year
% y	Two-digit year
%m	Two-digit month [01,12]
%d	Two-digit day [01,31]
%Н	Hour (24-hour clock) [00,23]
%M	Two-digit minute [00,59]
%S	Two-digit minute [00,59]

Datetime object - strftime()

Convert a datetime object to a string by using strftime().

```
t5 = dt.datetime(2019,1,3)
t5
datetime.datetime(2019, 1, 3, 0, 0)
s5 = t5.strftime('%d-%m-%Y')
s5
```


Timedelta object

- Timedelta is used to represent the duration between two timestamps.
- A timedelta object can be created by two datetime objects.

Example-1

```
t1 = dt.datetime(2021, 6, 15)
t2 = dt.datetime(2021, 7, 6)
```

```
diff_12 = t2 - t1
diff_12
```

datetime.timedelta(days=21)

```
diff_12.days Attribute "days"
21
```

Example-2

```
t3 = dt.datetime(2021, 6, 15, 10, 12, 40)
t4 = dt.datetime(2021, 6, 15, 10, 13, 20)
```

```
diff_34 = t4 - t3
diff_34
```

datetime.timedelta(seconds=40)

```
diff_34.seconds Attribute "seconds"
```

40

Exercise

Exercise.A

(A.1) Create a datetime object named dt_start with the following arguments: year = 2022, month = 8, day = 15.

(A.2) Convert the following variable str1 to a datetime object named dt_end .

str1 = "2022-11-13"

(A.3) How many days between dt_start and dt_end?

Outline

- Python Datetime module
 - Datetime object
 - Conversion between string and datetime
 - Timedelta object
- Pandas
 - Function to_datetime()
 - DatetimeIndex
 - Subset selection
 - Information extraction
 - Method resample()

Pandas data types

Pandas dtype mapping

Pandas dtype	Python type	Usage
int64	int	Integer numbers
float64	float	Floating point numbers
object	str or mixed	Text or mixed numeric and non-numeric values
bool	bool	True/False values
datetime	datetime	A specific time point
timedelta	timedelta	Duration between two points in time
period	-	A time span

Pandas - to_datetime

BI

Use the function to_datetime() to convert a column to a datetime type.

https://pandas.pydata.org/docs/reference/api/pandas.to_datetime.html

DatetimeIndex

Use parse_dates() to specify a list of column names that should be parsed as dates.

```
covid_df = pd.read_csv("../dataset/covid_2021.csv", parse_dates=["date"], index_col = 0)
covid_df.head(10)
```

	positive
date	
2021-01-01	345
2021-01-02	523
2021-01-03	443
2021-01-04	936
2021-01-05	788
2021-01-06	708
2021-01-07	735
2021-01-08	649
2021-01-09	414
2021-01-10	435

DatetimeIndex - subset selection

- A DatetimeIndex contains date-related properties and supports convenient slicing.
 - Select a subset by month

2024 05 44

covid_df.loc['2021-05',:] positive date 2021-05-01 251 2021-05-02 296 2021-05-03 510 2021-05-04 463 2021-05-05 494 2021-05-06 509 2021-05-07 438 2021-05-08 352 2021-05-09 351 2021-05-10 523

Select a subset by a range

	positive
date	
2021-05-25	427
2021-05-26	363
2021-05-27	384
2021-05-28	347
2021-05-29	199
2021-05-30	185
2021-05-31	344
2021-06-01	386

DatetimeIndex - slice data using iloc and loc

- Use loc: Data for "end_index" will be included.
- Use iloc: Data for "end_index" will not be included.

positive
date

2021-01-01 345
2021-01-02 523
2021-01-03 443
2021-01-04 936
2021-01-05 788

df.iloc[start_indx : end_index]

DatetimeIndex - line chart

Use plot() to plot a line chart.

Exercise

(B.1) Import dataset fashion.csv and set the column Date as DatetimeIndex.

(B.2) Draw a line chart to show Tiger_of_Sweden's sales in 2016.

(B.3) Use a multiple line chart to show the sales of Eton, Levi_s, and Tiger_of_Sweden from 2014 to 2016.

Information extraction

Attributes

Attribute	Description
year	The year of the datetime.
month	The month as January=1, December=12.
day	The day of the datetime.
hour	The hours of the datetime.
weekday	The day of the week with Monday=0, Sunday=6.
quarter	The quarter of the date.

Methods

Method	Description
<pre>month_name()</pre>	Return the month names
day_name()	Return the day of the week.

DatetimeIndex - information extraction

Add new columns.

```
covid_df["month"] = covid_df.index.month
covid_df
```

	positive	month	
date			
2021-01-01	345	1	
2021-01-02	523	1	
2021-01-03	443	1	
2021-01-04	936	1	
2021-01-05	788	1	
2021-06-26	105	6	
2021-06-27	108	6	
2021-06-28	227	6	
2021-06-29	213	6	
2021-06-30	262	6	

<pre>covid_df["day_of_week"] = covid_df.index.day_name()</pre>	
covid_df	

	positive	month	day_of_week
date			
2021-01-01	345	1	Friday
2021-01-02	523	1	Saturday
2021-01-03	443	1	Sunday
2021-01-04	936	1	Monday
2021-01-05	788	1	Tuesday
2021-06-26	105	6	Saturday
2021-06-27	108	6	Sunday
2021-06-28	227	6	Monday
2021-06-29	213	6	Tuesday
2021-06-30	262	6	Wednesday

DatetimeIndex - information extraction

Calculate group statistics

covid_df	.d_df			
covid_df				

	positive	month	day_of_week
date			
2021-01-01	345	1	Friday
2021-01-02	523	1	Saturday
2021-01-03	443	1	Sunday
2021-01-04	936	1	Monday
2021-01-05	788	1	Tuesday
2021-06-26	105	6	Saturday
2021-06-27	108	6	Sunday
2021-06-28	227	6	Monday
2021-06-29	213	6	Tuesday
2021-06-30	262	6	Wednesday

day of week Friday 480.538462 Monday 521.153846 Saturday 335.961538 Sunday 325.000000 Thursday 476.760000 Tuesday 506.115385 Wednesday 501.961538 Name: positive, dtype: float64

→ Group data by day of the week to compare patterns between weekdays and weekends.

DatetimeIndex - resampling

- The method resample() is used for frequency conversion of time series data.
- The method resample() will return a Resampler object, which contains functions to aggregate data.

Step1: Get a Resampler object

```
covid_rs = covid_df resample('M')
type(covid_rs)
Aggregate daily data to
monthly data
```

pandas.core.resample.DatetimeIndexResampler

Step 2: Call an aggregate function

DatetimeIndex - resampling

Use to_period() to cast to index at a particular frequency.

```
covid_month.index = covid_month.index.to_period('M')
covid month
date
2021-01
           13138
2021-02
            8709
2021-03
           24853
2021-04
           16610
2021-05
           12082
2021-06
            5966
Freq: M, Name: positive, dtype: int64
```


Resampling - frequencies

Alias	Description
Н	hourly frequency
T or min	minutely frequency
S	secondly frequency
D	calendar day frequency
В	business day frequency
W	weekly frequency
M	month end frequency
MS	month start frequency
Q	quarter end frequency
QS	quarter start frequency
Α	year end frequency
AS	year start frequency

Resampling - more examples

• Example-1: Calculate weekly total number of positive cases

	positive	month	day_of_week
date			
21-01-01	345	1	Friday
21-01-02	523	1	Saturday
L1-01-02	020	•	Gaturday
21-01-03	443	1	Sunday
01 01 04	006	4	Manday
21-01-04	936	T.	Monday
21-01-05	788	1	Tuesday
			•
1-06-26	105	6	Saturday
00 -0	100	ŭ	cataraay
021-06-27	108	6	Sunday
021-06-28	227	6	Mondov
UZ 1-UU-ZO	221	6	Monday
021-06-29	213	6	Tuesday
2004 06 20	060	6	Moderandov
2021-06-30	262	О	Wednesday

Resampling - more examples

• Example-2: Use size() to calculate the number of complaints per day

	Unique Key	Closed Date	Agency	Agency Name	Complaint Type	Descriptor	Location Type	
Created Date								
2013- 10-04 00:00:10	26428033	10/04/2013 01:20:52 AM	NYPD	New York City Police Department	Blocked Driveway	Partial Access	Street/Sidewalk	
2013- 10-04 00:00:28	26426115	10/04/2013 04:17:32 AM	NYPD	New York City Police Department	Noise - Commercial	Loud Talking	Club/Bar/Restaurant	
2013- 10-04 00:00:45	26428987	10/04/2013 01:25:01 AM	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Talking	Street/Sidewalk	
2013- 10-04 00:01:05	26428083	10/04/2013 02:13:50 AM	NYPD	New York City Police Department	Illegal Parking	Posted Parking Sign Violation	Street/Sidewalk	
2013- 10-04 00:01:13	26426013	10/07/2013 04:07:16 PM	DPR	Department of Parks and Recreation	Maintenance or Facility	Structure - Outdoors	Park	
2013- 10-31 01:53:44	26590930	NaN	DOHMH	Department of Health and Mental Hygiene	Rodent	Condition Attracting Rodents	Vacant Lot	
2013- 10-31 01:56:23	26595721	10/31/2013 02:21:48 AM	NYPD	New York City Police Department	Noise - Vehicle	Car/Truck Horn	Street/Sidewalk	
2013- 10-31 02:00:24	26594139	10/31/2013 02:40:32 AM	NYPD	New York City Police Department	Noise - Commercial	Loud Music/Party	Club/Bar/Restaurant	
2013- 10-31 02:01:04	26593698	NaN	NYPD	New York City Police Department	Illegal Parking	Commercial Overnight Parking	Street/Sidewalk	
2013- 10-31 02:08:41	26589651	NaN	NYPD	New York City Police Department	Noise - Street/Sidewalk	Loud Talking	Street/Sidewalk	

Resample or groupby

Date	Sales	day_of_week
01/01	120	Monday
02/01	100	Tuesday
03/01	110	Wednesday
04/01	130	Thursday
05/01	120	Friday
06/01	150	Saturday
07/01	120	Sunday
08/01	130	Monday
09/01	120	Tuesday
10/01	160	Wednesday
11/01	120	Thursday
12/01	140	Friday
13/01	140	Saturday
14/01	100	Sunday

Date	Sales
07/01	850
14/01	910

Dataframe.groupby("day_of_week").Sales.sum()

day_of_week	Sales
Monday	250
Tuesday	220
Wednesday	270
Thursday	250
Friday	260
Saturday	290
Sunday	220

Exercise

Exercise.C

(C.1) Use the dataframe obtained in Exercise B. Group the data by year and calculate the total annual sales of each brand. Store the result in a new variable named year_df.

Hint: resample("Y").sum()

(C.2) Use the year as the index of year_df .

Hint: to_period()

(C.3) Display the result obtained in (C.2) with a heatmap.

- . Question: In which year did Tiger of Sweden have the highest annual sales?
- Answer:

