TABLE 2 Summary of genes that increase the HEMF production capacities by deletion

ORF	Gene	growth (OD ₆₀₀)	HEMF yield ×10 ⁴ (μAU)	HEMF production capacity*	PR [2] [†]	Description
Metabolism						
YOL086C	ADHI	2.76 ± 0.01	19.17 ± 0.88	6.95 ± 0.36	10.7	Alcohol dehydrogenase required for the reduction of acetaldehyde to ethanol
YGR204W	ADE3	1.59 ± 0.03	6.52 ± 0.39	4.10 ± 0.06	6.3	Cytoplasmic trifunctional enzyme involved in amino acid and nucleotide biosynthesis
YAR015W	ADEI	0.96 ± 0.13	2.89 ± 0.15	3.03 ± 0.25	4.7	Rrequired for 'de novo' purine nucleotide biosynthesis
YGR061C	ADE6	1.34 ± 0.11	3.87 ± 0.40	2.90 ± 0.28	4.5	Rrequired for 'de novo' purine nucleotide biosynthesis
YMR300C	ADE4	6.36 ± 0.45	7.94 ± 0.24	1.25 ± 0.05	1.9	Rrequired for 'de novo' purine nucleotide biosynthesis
YDR408C	ADE8	5.67 ± 0.53	6.98 ± 0.19	1.24 ± 0.08	1.9	Rrequired for 'de novo' purine nucleotide biosynthesis
Cellular transp	ort, transpo	rt facilities and tro	ansport routes			•
YMR038C	CCSI	3.90 ± 0.02	10.6 ± 0.75	2.73 ± 0.18	4.2	Copper chaperone for superoxide dismutase Sod1p, involved in oxidative stress protection
YGL095C	VPS45	2.74 ± 0.16	5.69 ± 0.02	2.08 ± 0.11	3.2	Essential for vacuolar protein sorting
YNL297C	MON2	1.53 ± 0.08	2.19 ± 0.01	1.44 ± 0.08	2.2	Peripheral membrane protein with a role in endocytosis and vacuole integrity
YPR139C	LOA1	5.77 ± 0.52	7.64 ± 0.74	1.32 ± 0.01	2.0	Lysophosphatidic acid acyltransferase involved in triacelglyceride homeostasis
Transcription						
YDR138W	HPR1	3.56 ± 0.03	5.97 ± 0.50	1.68 ± 0.13	2.6	Subunit of THO/TREX complexes that couple transcription elongation with mitotic
						recombination and with mRNA metabolism and export
YDR392W	SPT3	4.83 ± 0.12	6.12 ± 0.03	1.27 ± 0.03	2.0	Subunit of the SAGA and SAGA-like transcriptional regulatory complexes
Protein synthe	sis					
YAL035W	FUN12	3.66 ± 0.16	6.87 ± 0.40	1.88 ± 0.03	2.9	GTPase required for general translation initiation
Protein fate (fo	olding, modij	fication, destinatio	n)			
YGL058W	RAD6	3.26 ± 0.27	4.29 ± 0.07	1.32 ± 0.13	2.0	Ubiquitin-conjugating enzyme (E2) involved in protein degradation

^{*}HEMF production capacity : [HEMF yield $\times 10^4$ (μAU) / Growth (OD₆₀₀)]

Data are expressed as mean values \pm SD. Number of independent experiment = 2.

Values of Growth, HEMF yield, and HEMF production capacity in control wild type strain are 5.91 ± 0.38 , 3.84 ± 0.35 , and 0.65 ± 0.04 , respectively.

[†]PR [2]: HEMF production capacity ratio [2] (see Materials and Methods)