

DEPARTAMENTO DE PROCESOS TECNOLÓGICOS E INDUSTRIALES

Asignatura: Elementos Finitos	Créditos: 8
Clave de la asignatura: PTI087F	Período escolar: Otoño 2024

1. INFORMACIÓN DEL PROFESOR

Nombre del profesor: Gaddiel Desirena López.

Correo electrónico: gdesirena@iteso.mx

2. DISPOSICIONES GENERALES PARA EL CURSO

- Se llevarán a cabo sesiones de manera virtual en la plataforma de Microsoft Teams los horarios martes y jueves de 18:00 a 20:00 hrs.
- Ejercicios en clase: estaremos desarrollando ejercicios en clase, algunos de ellos con un trabajo personal que se integrará en una plataforma compartida. Para obtener la calificación respectiva de Tareas y Participaciones en clase se deberán completar los ejercicios incluso si no se está presente en sesión a más tardar una semana después.
- Durante el desarrollo del curso el alumno deberá realizar lecturas en el idioma inglés.

3. PRERREQUISITOS

- Resistencia de Materiales, Transferencia de Calor, Álgebra Lineal, Métodos Numéricos.
- Conocimiento de programación para solución de problemas numéricos (Python-Numpy o Matlab).

4.PROPÓSITOS EDUCATIVOS

4.1 Objetivo General de la Asignatura

Que el alumno resuelva problemas de campos como esfuerzos, deformaciones, temperaturas, desplazamientos, flujos, aplicando el método del elemento finito.

4.2 Objetivos Específicos de la Asignatura

- Identificar los pasos principales del MEF, reconocer los procedimientos de Raleigh-Ritz y Galerkin y sus limitaciones.
- Seleccionar elementos, plantear ecuaciones de rigidez, aplicar propiedades físicas de materiales, hacer ensambles de matrices, aplicar cargas y condiciones de frontera, resolver sistemas de ecuaciones, interpretar resultados, modificar estructuras, cargas y condiciones en la frontera.
- Redactar descripciones del método y discutir sobre los resultados obtenidos.

Atributo de egreso	Criterio de Desempeño	Indicador(es)	Evidencia	Instrumentos de Evaluación
AE 1 Identifican, formulan y resuelven problemas del área de Ingeniería Mecánica mediante la aplicación de técnicas, conocimientos científicos y normas.	CD1.3 Interpreta resultados y su significado, reconociendo las limitaciones de los datos y modelos utilizados.	Que el alumno resuelva problemas de campos como esfuerzos, deformaciones, temperaturas, desplazamiento s, flujos, aplicando el método del elemento finito.	Problemas de los exámenes.	Exámenes

AE 2 Diseña e implementa productos y procesos relacionados con sistemas mecánicos que involucren fenómenos térmicos, fluidos, estructuras, mecanismos, elementos de máquinas y procesos de fabricación y prototipado. Estos son fundamentados en modelos físicos restringidos por uno o más parámetros de diseño y/o normas. Además, se respaldan con métodos numéricos y computacionales que permitan predecir su comportamiento.	CD2.3 Evalúa la factibilidad de una propuesta de diseño detallada.	Seleccionar elementos, plantear ecuaciones de rigidez, aplicar propiedades físicas de materiales, hacer ensambles de matrices, aplicar cargas y condiciones de frontera, resolver sistemas de ecuaciones, interpretar resultados, modificar estructuras, cargas y condiciones en la frontera.	Diversos modelados usando el método.	Exámenes y proyectos.
AE 4 Ing. Mecánica: Expresa con claridad y precisión conocimientos propios de ingeniería mecánica, intercambiando ideas con interlocutores diversos utilizando lenguaje escrito, verbal, simbólico y gráfico. Se comunica fluidamente en los idiomas castellano e inglés. Interpreta diagramas, dibujos, modelos y representaciones tridimensionales.	CD4.1 Redacta documentos donde presenta proyectos, diseños, análisis de ingeniería, así como procedimientos experimentales y sus resultados.	Redactar descripciones del método y discutir sobre los resultados obtenidos.	Texto desarrollado en los proyectos.	Proyectos.

5. PROGRAMA DEL CURSO

Tema	Contenidos	Actividades (BCD y TIE)	Productos para la evaluación	Competencias esperadas
1	Introducción al Método de los Elementos Finitos.	Lecciones magisteriales.	Entrega de tareas.	Conocer la nomenclatura propia del Método.
2	Solución de ecuaciones diferenciales usando el MEF en problemas unidimensionales.	Leer, resolver tareas, presentar soluciones al instructor.	Entrega de tareas.	Identificar elementos y nodos. Plantear las ecuaciones de los modelos, ensamblarlas y resolverlas. Aplicar condiciones de frontera.
3	Temas avanzados en problemas unidimensionales: simetría axial, sistemas no estacionarios, variaciones en los parámetros.	Lecciones magisteriales. Solución de ejemplos. Exposición de conceptos.	Tareas, primer examen parcial.	Resolver ecuaciones diferenciales con condiciones en la frontera con métodos aproximados.
4	Elementos triangulares: funciones de forma, coordenadas locales.	Exposición de conceptos. Planteamiento de modelos.	Solución de ejercicios.	Resolver problemas de transmisión de calor en dos dimensiones.

5	Otros elementos planos y su formulación.	Exposición de conceptos. Planteamiento de modelos.	Tareas, segundo examen parcial.	Reconocer elementos y sus características.
6	Elementos volumétricos: tetraedro y hexaedro. Problema de un solo elemento.	Exposición de conceptos. Planteamiento de modelos.	Solución de ejercicios.	Reconocer elementos y sus características.
7	Formulaciones para la mecánica de sólidos en elementos unidimensionales, elementos rectos en en el plano y elementos planos.	Exposición de conceptos. Planteamiento de modelos.	Tareas, tercer examen parcial.	Placas planas con diversas condiciones en la frontera
8	Formulaciones con combinación de fenómenos. Otros métodos derivados del Método de los Elementos Finitos.	Exposición de conceptos.	Solución de ejercicios.	Reconocer otros métodos así como sus fortalezas y debilidades.

6. CRITERIOS DE EVALUACIÓN

- Exámenes y proyectos. (70)
- Tareas y participaciones en clase. (30)
- Entregar las tareas a tiempo, ordenadas, limpias y completas.
- Presentar ante el profesor las tareas resueltas para su discusión y crítica.
- Modificar sistemas, datos, cargas, condiciones en la frontera, y obtener nuevos resultados.
- Uso de Python (preferentemente), Mathcad, Mathematica o algún sistema para la solución de problemas.

7. RECURSOS DE APOYO

7.1 Bibliografía

7.1 Dibliografia			
Título	Autor	Editorial, fecha	
The Finite Element Method	Darrell W. Pepper Juan C. Heinrich	CRC, USA, 2017	
A First Course in the Finite Element Method, 2 nd Ed.	Daryl L. Logan	PWS, USA, 1993	
Fundamentals of Finite Element Analysis	David V. Hutton	McGraw-Hill, USA, 2004	
Applied Finite Element Analysis, 2 nd Ed.	Larry J. Segerlind	John Wiley, USA, 1984	
Introducción al estudio del Elemento Finito en Ingeniería, 2ª Ed.	Tirupathi R. Chandrupatla Ashok D. Belegundu	Pearson, México, 1999	
The Finite Elelement Method Using MATLAB, 2 nd Ed.	Young W. Kwon Hyochoong Bang	CRC Press, USA, 2000	

7.2 Otros materiales de apoyo (material audiovisual, sitios de Internet, etc.).

Programas de cómputo como Python, MATLAB y Mathcad. Comsol.