Introduction to Intel® Distribution of OpenVINO™ toolkit for Computer Vision Applications

100: Beginner-level Lesson 04

Introduction to Intel® Distribution of OpenVINO™ toolkit for Computer Vision Application

OpenVINO 100 - Course agenda

Lesson 1: Introduction, why do we need Artificial Intelligence (AI).

Lesson 2: What is Video, what is computer vision, how do we accelerate it on modern computers.

Lesson 3: How to accelerate Video processing

Lesson 4: How to accelerate Neural Network for vision applications

Lesson 5: Video Analytics pipeline

Lesson 6: Demos, OpenVINO at work

Lesson 7: The full flow, from Data to a product using Intel tools-Part 1.

Lesson 8: The full flow, from Data to a product using Intel tools-Part 2.

Lesson 9: Summary, intro to next course (200)

"features"

Need more layers, Need non-linear functions

There feature extractors are also just mathematical functions

Forward. Classify/Infer → Define Error

Forward. Classify/Infer → Define Error

TRAINING

Backward.. Update weights (Backpropagation)

Forward. Classify/Infer → Define Error

INFERENCE

IMAGE RECOGNITION

SPEECH RECOGNITION

Classification

Detection

Recognition

This is Joe

Segmentation

Huge amount of operations and memory required

e.g. Resnet50:

- 50 layers, 26M weights, 16M activations, 168MB of memory (FP32)
- 7 GFLOPs (7 Billions Floating point operations)
- Data itself is sometimes big (large images)

Huge amount of operations and memory required

Intel CPUs, iGPU, FPGA and VPUs can do it

- All our devices can execute neural networks
- Dedicated HW (VPU, FPGA sometimes) are usually more efficient

- DLDT Deep Learning Deployment Toolkit
 - Optimized libraries per device
 - Excellent performance across multiple platforms

- DLDT Deep Learning Deployment Toolkit
 - Optimized libraries per device
 - Excellent performance across multiple platforms

Resnet50 (Inferences/second)

System	Caffe	TensorFlow	OpenVINO
Apollo-Lake (Atom)	2	2	11
Coffee-Lake (Core, i7)	15	31	134
Coffee-Lake GPU			67

Intel® Distribution of OpenVINO™ toolkit

OS Support: CentOS* 7.4 (64 bit), Ubuntu* 16.04.3 LTS (64 bit), Microsoft Windows* 10 (64 bit), Yocto Project* version Poky Jethro v2.0.3 (64 bit), macOS* 10.13 & 10.14 (64 bit)

CORE

CELERON'

Platforms Support

ATOM

XEON.

MOVIDIUS

ARRIA* 10

Design Products &

AI in Production/

Developer Kits

Summary

- Deep Learning based Neural Networks are a very robust way to perform all kinds of vision related tasks.
- In order to get a working neural network model, a lot of data is being processed in a process called "Training"
- Inference is the forward path of the network, it provides the network result.
- DL models can be used for classification, detection, segmentation and many other tasks
- Intel platforms can execute neural networks, with very good performance
- The DLDT (Deep Learning Deployment Toolkit) is Intel SW to accelerate deep learning inference and is part of OpenVINO

