Chapitre 31

Dénombrement

31	Dénombrement	1
	31.12Exemple: parcours d'une fourmi	2
	31.19Exemple	2
	31.20Exemple	2
	31.27Exemple	2
	31.28Exemple	
	31.32Exemple	3
	31.33Exemple	3
	31.38Nombre de combinaisons	3
	31.40Exemple	
	31.41 k -listes strictement croissantes de $[\![1,n]\!]$	į
	31.43Exemple	
	31.45Exemple	4
	31.48Exemple	4

31.12 Exemple: parcours d'une fourmi

Exemple 31.12

La fourmi Donald se promène sur un grillage du plan de taille $2 \times p$ dont chaque arête est de longueur 1. Combien de chemins de longueur minimale peut-elle emprunter pour gagner le point d'arrivée depuis son point de départ ?

Compter ce nombre de chemins revient à dénombrer le nombre de mots de p+2 lettres contenant exactement p lettres D et 2 lettres B.

Pour constuire un tel mot, il suffit de choisir la place des deux B.

On a p+1 choix pour le premier B.

Pour chaque choix de position $k \in [1, p+1]$, il reste p+2-k choix pour le second B.

Le nombbre de choix possible final est donc :

$$\sum_{k=1}^{p+1} (p+2-k) = \sum_{k=1}^{p+1} k$$
$$= \frac{(p+1)(p+2)}{2}$$

31.19 Exemple

Exemple 31.19

Combien y-a-t-il de couples (x, y) dans $[1, n]^2$ avec $x \neq y$?

Etape 1 : On choisit $x \in [1, n]$, soit n choix.

Etape 2 : On choisit $y \in [1, n] \setminus \{x\}$, soit n - 1 choix.

Au total n(n-1) choix (principe des bergers).

31.20 Exemple

Exemple 31.20

A partir d'un alphabet de p lettres, combien de mots de n lettres peut-on former qui ne contiennent jamais deux lettres identiques consécutives?

Etape 1 : On choisit la première lettre : p possibilités.

Etape 2 : On choisit la deuxième lettre : p-1 possibilités.

Etape 3: On choisit la troisième lettre : p-1 possibilités.

Au total : $p(p-1)^{n-1}$ possibilités.

31.27 Exemple

Exemple 31.27

De combien de façon peut-on tirer 5 cartes successivement avec remise dans un jeu de 52 cartes?

Il s'agit de compter le nombre de 5-listes d'un ensemble de cardinal 52, soit 52^5 possibilités.

31.28 Exemple

Exemple 31.28

Combien y-a-t-il de mots de 7 lettres contenant le mot "OUPS"?

Etape 1: Choix de la place du mot "OUPS": 4 choix possibles.

Etape 2 : On complète avec un mot de 3 lettres.

Cela revient à compter le nombre de 3-listes d'un ensemble à 26 éléments : 26^3 possibilités.

Aut total : 4×26^3 possibilités.

31.32Exemple

De combien de façon peut-on tirer 5 cartes successivement sans remise dans un jeu de 52 cartes?

Cela revient à compter le nombre de 5-arrangements d'un ensemble de cardinal 52, soit $\frac{52!}{(52-5)!}$

31.33 Exemple

De combien de façons peut-on asseoir n personnes sur un banc rectiligne? Autour d'une table ronde?

- Sur un banc rectiligne, cela revient à calculer le nombre de n-arrangements d'un ensemble de cardinal n, soit n! choix.
- En choisissant arbitrairement la place d'une personne (par exemple Jack), il suffit de compléter par un (n-1)-arrangement d'un ensemble à n-1 éléments, soit (n-1)! choix.

Nombre de combinaisons 31.38

Soit $p \in \mathbb{N}$ et notons n = |E|. Il y a $\binom{n}{p}$ p-combinaisons de E.

Pour construire une p-combinaison :

- On choisit un p-arrangement de $E: \frac{n!}{(n-p)!}$ possiblités. On choisit l'ensemble des éléments qui constituent cet arrangement.

Or toute permutation du p-arrangement conduit à la même combinaison. Il y a donc $|S_p| = p!$ arrangements qui donne la même combinaison (il n'y en a pas d'autres).

On a donc $\frac{n!}{(n-p)!p!}$ p-combinaisons.

31.40 Exemple

De combien de façon peut-on tirer 5 cartes simultanément dans un jeu de 52 cartes?

Il s'agit de compter le nombre de 5-combinaisons d'un ensemble de cardinal 52. Il y en a $\binom{52}{5}$.

k-listes strictement croissantes de [1, n]31.41

Pour tout $k \in [1, n]$, il existe $\binom{n}{k}$ familles d'entiers (i_1, \ldots, i_k) pour lesquelles $1 \le i_1 < \cdots < i_k \le n$.

Pour tout ensemble à k éléments de [1, n] distincts, il existe une unique manière de les ordonner. Réciproquement tout k-uplet (i_1, \ldots, i_k) avec $1 \le i_1 < \cdots < i_k \le n$ fournit un sous-ensemble à k eléments distincts de [1, n]. Il y a donc en tout $\binom{n}{k}$ familles recherchées.

31.43 Exemple

Combien le mot "BOROROS" a-t-il d'anagrammes?

Construire un anagramme de "BOROROS" c'est construire un mot de 7 lettres composé de 1 B, 3 O, 2 R et 1

Etape 1: $\binom{7}{1}$ choix pour la place de B.

Etape 2: $\binom{6}{3}$ choix pour la place des O.

Etape 3: $\binom{3}{2}$ choix pour la place des R.

Etape 4: $\binom{1}{1}$ choix pour la place de S.

$$\binom{7}{1} \binom{6}{3} \binom{3}{2} \binom{1}{1} = 7 \times \frac{6!}{3!3!} \times \frac{3!}{2!}$$
$$= 7 \times 5 \times 4 \times 3$$

Exemple 31.45

Un jeu de tarot contient 78 cartes:

- 21 atouts
- 1 excuse
- 14 cartes de chaque couleur (coeur, pique, trèfle, carreau)

Combien de tirages simultanés de 6 cartes d'un tel jeu peut-on obtenir contenant 2 atouts et 4 trèfles? Et ensuite, contenant exactement un atout et au moins 3 as?

Pour construire une telle main:

Etape 1: $\binom{21}{2}$ choix pour les atouts. Etape 2: $\binom{14}{4}$ choix pour les trèfles.

Au total $\binom{21}{2}\binom{14}{4}$ mains possibles. $\binom{21}{1}\binom{4}{3}\binom{78-21-4}{2} + \binom{21}{1}\binom{4}{4}\binom{78-21-4}{1}$.

31.48Exemple

1. Soit
$$A = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 7 & 8 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$
. De combien de façons peut-on extraire la matrice $\begin{pmatrix} 0 & 0 & 0 \end{pmatrix}$ de A ?

2. Soit
$$A = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
. De combien de façons peut-on extraire la matrice $\binom{1}{1}$ de A ?

- 1. Disjonctions de cas : Si on extrait par rapport à la deuxième ligne : $\binom{5}{3}$. Si on extrait par rapport à la troisième ligne : $\binom{4}{3}$. Au total: $\binom{5}{3} + \binom{4}{3}$ choix possibles.
- 2. Avec le même principe :

$$\binom{4}{2} + \binom{5}{2} + \binom{3}{2} + \binom{4}{2} + \binom{5}{2}$$