消息队列测试报告及JMeter压测说明

本次测试将使用JMeter对本团队开发的"想不出商城"系统内的购买服务进行测试。该服务对接了本团队自研的Flash-MQ消息队列引擎,通过测试该服务可对Flahs-MQ项目的消息丢失、消息重复、吞吐性能三大基本功能进行测试。

需要注意的是:

- 为模拟极端环境,加强对消息丢失率及消息重复率的严苛要求,单次购买流程将对消息队列进行4次发、收动作。若单次购买流程内的任何一次发、收动作异常,即本次购买失败。理论上在内部流程内,本次测试的吞吐量结果应*4计算。
- 因开发时间较短,本次的开发工作重心在消息队列之上,所以减少了对商城SpingBoot后端的性能优化,在吞吐量上,Flash-MQ理论性能应更加优秀。

测试环境

• 本次测试环境: Ryzen 4800U(8核16线程)、16GB内 存笔记本*1台,内网通信。 我们为虚拟机分配4核8线程、8GB内存搭建CentOS7.5服务器环境。用来运行MySQL、Reids、Nginx、JVM等服务。

我们将剩余资源(4核8线程、8GB内存)用来运行JMeter测压程序,对虚拟机内服务进行测压,用来模拟高并发情况。

测试流程

测试前准备:

1. 在模拟高并发的情况下,为解决Windows系统端口资源限制问题,需在注册表HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters内新建DWORD,名为

MaxUserPort, 值为十进制65534, 新建后重启电脑。

- 2. 因购买服务需用户登录,在测试之前需手动登录商城, 获取cookies中的JSESSIONID。
- 3. 创建商品,价格为100,库存为25000(小于测试的并发数,测试超卖情况)。创建该商品的对应秒杀活动,第1-100名商品1折销售,第101-500名5折,第501-1000名8折,第1001名后商品原价销售。

JMeter设置:

1. 在JMeter建立线程组,考虑到模拟并发环境内存资源紧缺,我们将线程数设置为30000, Ramp-Up时间设置为10,其他参数默认不变。

2. 在线程组内新建同步定时器,模拟用户组的数量为10000,其他参数默认不变。

3. 在线程组内新建HTTP信息头管理器,添加键值对:

KEY VALUE

cookie JSESSIONID="刚刚获取到的JSESSIONID"

4. 在线程组内新建HTTP请求,参数如下表,其他默认参数不变

KEY	VALUE	备注
协议	http	
服务器名称 或IP	192.168.83.130	此处为虚拟机内网IP
端口号	8000	此处为后端设置的端 口
HTTP请求	GET	
路径	/goods/2/buy	参数2为商品ID,此处 以2为例
路径内容编码	/goods/2/buy utf-8	

- 5. 在线程组内新建聚合报告。
- 6. 运行,运行结束后查看并保存聚合报告。

测试结果

预期结果:

- 聚合报告
 - 零异常率
 - 吞吐量10000/4 = 2500/sec以上
- MySQL数据库
 - 订单记录数为30000 (无少售/超售订单)
 - 状态字段'state'第1-25000条为0(已创建待付款),250001条后为2(无库存已取消)(无少售/超售订单)
 - 实付字段'pay'为100*0.1=10共100条,为 100*0.5=50共400条,为100*0.8=80共500条,

第1001条后为100共29000条(秒杀的正确排序)

实测结果:

- 聚合报告
 - 异常率0.00%
 - 吞吐量3839.8/sec 结合分析公式结果为 15359.2/sec

- MySQL数据库
- 订单记录数为30000 (无少售/超售订单)

SELECT count(1) FROM `order`;

```
mysql> SELECT count(1) FROM `order`;
+----+
| count(1) |
+----+
| 30000 |
+----+
1 row in set (0.01 sec)
```

• 状态字段'state'25000条为0(已创建待付款),5000条 后为2(无库存已取消)(无少售/超售订单)

```
SELECT count(1) FROM `order` WHERE state =
0;
```

```
mysql> SELECT count(1) FROM `order` WHERE state = 0;
+-----+
| count(1) |
+-----+
| 25000 |
+-----+
1 row in set (0.01 sec)
```

```
mysql> SELECT count(1) FROM `order` WHERE state = 2;
+-----+
| count(1) |
+------+
| 5000 |
+------+
1 row in set (0.01 sec)
```

• 实付字段'pay'为100*0.1=10共100条,为100*0.5=50共400条,为100*0.8=80共500条,第1001条后为100共29000条(秒杀的正确排序)

```
SELECT count(1) FROM `order` WHERE pay = 10;
SELECT count(1) FROM `order` WHERE pay = 50;
SELECT count(1) FROM `order` WHERE pay = 80;
SELECT count(1) FROM `order` WHERE pay =
100;
```

```
mysql> SELECT count(1) FROM `order` WHERE pay = 50;
+ ----+
| count(1) |
+ ----+
| 400 |
+ ----+
1 row in set (0.01 sec)
```

```
mysql> SELECT count(1) FROM `order` WHERE pay = 80;
+----+
| count(1) |
+----+
| 500 |
+----+
1 row in set (0.01 sec)
```

```
mysql> SELECT count(1) FROM `order` WHERE pay = 100;
+-----+
| count(1) |
+------+
| 29000 |
+------+
1 row in set (0.01 sec)
```

以上,均符合预期结果!!!

总结

在本次测试中,通过模拟高并发场景下请求购买服务,得到 Flash-MQ在实际应用中的测试数据。所有数据均符合预期, 验证了自研消息队列引擎Flash-MQ项目的消息零丢失、消息 零重复、单机吞吐性能万级等基本特性。