## Software-based programmed technical process control mechanism e.g.for communications modules

Patent number:

DE19740550

Publication date:

1998-04-16

Inventor:

HEBER TINO DR ING (DE); KIRSTE STEFFEN DR ING

(DE); HES KARL PROF DR ING (DE); WUCHERER

KLAUS DIPL ING (DE)

**Applicant:** 

SIEMENS AG (DE)

Classification:

- International:

G05B19/042; G05B19/414; G05B19/416; G05B19/04:

G05B19/414; G05B19/416; (IPC1-7): G05B19/04

- european:

G05B19/042M; G05B19/414A; G05B19/414S;

G05B19/416

Application number: DE19971040550 19970915

Priority number(s): DE19971040550 19970915; DE19962017837U

19961014

#### Abstract of DE19740550

The control mechanism is furnished with devices for controlling a technical process and/or with devices for controlling the movement of a machine tool, and receives a control program which is processed during a control operation. The control program is equipped with software modules which are processed by at least one CPU of the control mechanism during the control operation. The software modules are configured in such way, that they perform the process control and/or the movement control. The number of driving axles of the machine tool, which are connected to respective input/output arrangements of the control mechanism, and the mutual relationship of their operation is pref. predetermined and implemented in single- or multiple-axis modules of the movement control program.

Data supplied from the esp@cenet database - Worldwide



## (9) BUNDESREPUBLIK DEUTSCHLAND

## © OffenlegungsschriftDE 197 40 550 A 1

(5) Int. Cl.<sup>6</sup>: **G** 05 **B** 19/04



DEUTSCHES PATENTAMT ② Aktenzeichen:

197 40 550.9 15. 9. 97

② Anmeldetag:④ Offenlegungstag:

16. 4.98

68 Innere Priorität:

296 17 837.3

14. 10. 96

7 Anmelder:

Siemens AG, 80333 München, DE

(72) Erfinder:

Heber, Tino, Dr.-Ing., 09599 Freiberg, DE; Kirste, Steffen, Dr.-Ing., 09120 Chemnitz, DE; Heß, Karl, Prof. Dr.-Ing.habil., 09122 Chemnitz, DE; Wucherer, Klaus, Dipl.-Ing., 90610 Winkelhaid, DE

#### Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

(S) Steuerung

Die Erfindung betrifft eine Steuerung, welche versehen ist mit Mitteln zum Steuern eines technischen Prozesses und/oder mit Mitteln zur Steuerung der Bewegung einer Verarbeitungsmaschine und welcher ein Steuerprogramm zuführbar ist, das die Steuerung während eines Steuerbetriebs abarbeitet. Die Verwirklichung von Prozeßfunktionalitäten sowie von technologischen Bewegungsabläufen von Verarbeitungsmaschinen wird dadurch vereinfacht, daß das Steuerprogramm mit Software-Modulen versehen ist, welche mindestens eine CPU-Einheit der Steuerung während des Steuerbetriebs abarbeitet, wobei die Software-Module derart konfiguriert sind, daß diese zur Prozeßsteuerung und/oder zur Bewegungssteuerung dienen.

Die Erfindung wird angewandt bei SPS/NC-Steuerungen.





#### Beschreibung

Die Erfindung betrifft eine Steuerung, welche versehen ist mit Mitteln zum Steuern eines technischen Prozesses und/ oder mit Mitteln zur Steuerung der Bewegung einer Verarbeitungsmaschine und welcher ein Steuerprogramm zuführbar ist, das die Steuerung während eines Steuerbetriebs abarbeitet. Darüber hinaus betrifft die Erfindung ein Programmiergerät mit Mitteln zum Erstellen eines Steuerprogramms für eine derartige Steuerung.

Aus dem Siemens-Katalog ST 70, Ausgabe 1996, Kapitel 3, 4 und 8, ist eine speicherprogrammierbare Steuerung sowie ein Programmiergerät zum Erstellen eines Steuerprogramms für eine derartige speicherprogrammierbare Steuerung bekannt. Wesentliche Bestandteile dieser speicherprogrammierbaren Steuerung sind Baugruppen für zentrale Aufgaben (CPU-Einheiten) sowie Signal-, Funktions- und Kommunikationsbaugruppen. Die CPU-Einheit der speicherprogrammierbaren Steuerung arbeitet während des Steuerbetriebs zyklisch ein Steuerprogramm ab, welches ein Programmierer mit einem mit einem Software-Werkzeug versehenen Programmiergerät erstellt und welches zur Lösung einer Automatisierungsaufgabe vorgesehen ist. Während der zyklischen Bearbeitung liest die CPU-Einheit zunächst die Signalzustände an allen physikalischen Prozeßeingängen ab und bildet ein Prozeßabbild der Eingänge. Das Steuerprogramm wird weiter unter Einbeziehung interner Zähler, Merker und Zeiten schrittweise abgearbeitet, und schließlich hinterlegt die CPU-Einheit die errechneten Signalzustände im Prozeßabbild der Prozeßausgänge, von welchem diese Signalzustände zu den physikalischen Prozeßausgängen gelangen. Dieses Steuerprogramm umfaßt gewöhnlich Software- Funktionsbausteine, die einen Betrieb der Signal- und/oder Funktions- und/oder Kommunikationsbaugruppen ermöglichen. Eine dieser Funktionsbaugruppen in Form einer NC-Steuerungsbaugruppe ist zur Steuerung des technologischen Bewegungsablaufs einer Verarbeitungsmaschine einsetzbar. Dazu überträgt die CPU-Einheit, welche üblicherweise Prozeßsteuerungsfunktionalitäten verwirklicht, dieser NC-Steuerungsbaugruppe Parameter, z. B. Parameter in Form von Start/Stopp-Koordinaten der zu steuernden Antriebsachsen der Verarbeitungsmaschine. Ferner wählt die CPU-Einheit auf der NC-Steuerungsbaugruppe ablauffähige Verfahrensprogramme aus, die ein Prozessor der NC-Steuerungsbaugruppe zur Steuerung des Bewegungsablaufs einer Verarbeitungsmaschine abarbeitet.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Steuerung der eingangs genannten Art anzugeben, welche die Verwirklichung von Prozeßfunktionalitäten sowie von technologischen Bewegungsabläufen von Verarbeitungsmaschinen vereinfacht.

Darüber hinaus ist ein Programmiergerät zu schaffen, das die Erstellung eines Steuerprogramms für eine derartige Steuerung vereinfacht.

Diese Aufgabe wird im Hinblick auf die Steuerung mit den im kennzeichnenden Teil des Anspruchs 1, im Hinblick auf das Programmiergerät mit den im kennzeichnenden Teil des Anspruchs 6 angegebenen Maßnahmen gelöst.

Vorteilhaft ist, daß Prozeßsteuerungsfunktionalitäten von an sich bekannten speicherprogrammierbaren Steuerungen (SPS) und Bewegungsfunktionalitäten von an sich bekannten NC-Steuerungen bzw. NC-Steuerungsbaugruppen in einem einheitlichen, konfigurierbaren Steuerungssystem verwirklicht werden. Dadurch können projektabhängige Steuerungen als Varianten in einer Konfigurationsphase gebildet werden und es wird vermieden, separat zur Verfügung stehende "SPS-Technik" und "NC-Technik" zu einem System zusammenzufügen.

Vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den in den Unteransprüchen angegebenen Maßnahmen. Anhand der Zeichnung, in der ein Ausführungsbeispiel der Erfindung veranschaulicht ist, werden im folgenden die Erfindung, deren Ausgestaltungen sowie Vorteile näher erläutert.

40 Es zeigen:

Fig. 1 die Programmstruktur eines Software-Moduls,

Fig. 2a bis 4b Deklarationstabellen,

Fig. 5a bis 7b Bewegungsbefehlstabellen,

Fig. 8 eine Deklarationstabelle von Achsverbänden,

45 Fig. 9 eine Profildeklarationstabelle,

Fig. 10 eine Bewegungsattributstabelle,

Fig. 11 eine Bewegungsfunktionstabelle,

Fig. 12 eine Konfigurationselemententabelle,

Fig. 13 eine Variablendeklarationstabelle,

Fig. 14 eine Zugriffspfaddeklarationstabelle,

Fig. 15 eine Kommunikationsfunktionstabelle,

Fig. 16 den Prinzipaufbau einer Rutenwebmaschine,

Fig. 17a und 17b ein Bewegungsdiagramm einer Rutenwebmaschine und

Fig. 18 eine Steuerungsstruktur.

In Fig. 1 ist mit 1 ein Modul bezeichnet, welches im vorliegenden Beispiel zur Verwirklichung des Bewegungsablaufs einer Verarbeitungsmaschine vorgesehen ist und welches ein Programmierer auf einem hier nicht dargestellten Programmiergerät erstellt. Das Modul 1 ist Teil eines Steuerprogramms, das nach einer Übersetzung in eine geeignete Maschinensprache einer Steuerung on- oder offline in diese Steuerung übertragbar ist und das eine CPU-Einheit dieser Steuerung während des Steuerbetriebs abarbeitet. Das Modul 1 setzt sich aus einem Deklarationsteil 2, aus mindestens einem zyklischen Programm 3a, 3b und aus mindestens einem sequentiellen Programm 4a, 4b zusammen. Auf den Deklarationsteil 2 greifen alle Programme 3a, 3b, 4a, 4b des Moduls 1 zu und es sind in diesem Deklarationsteil 2 Programmnamen, Programmtypen, Variablen und/oder Datenstrukturen und/oder Bewegungsprofile hinterlegt. Die zyklischen Programme 3a, 3b sind zur Koordination der durch diese Programme 3a, 3b aufrufbaren sequentiellen Programme 4a, 4b vorgesehen. Für den Fall, daß Module zur Prozeßsteuerung vorgesehen sind, verwirklichen die zyklischen Programme derartiger Module Funktionalitäten einer speicherprogrammierbaren Steuerung. Unabhängig davon, ob die Module zur Verwirklichung von Prozeßfunktionalitäten und/oder zur Verwirklichung von Bewegungsfunktionalitäten einer Verarbeitungsmaschine dienen, arbeitet die CPU-Einheit der Steuerung diese Module ab. Innerhalb dieses Moduls 1 werden gewöhnlich lokale Variable, Eingangs- und Ausgangsvariable sowie sequentielle und zyklische Programme mit einem



Programmiergerät programmiert, konfiguriert und deklariert. Auf alle Variablen eines Moduls können die zu dem Modul gehörenden Programme uneingeschränkt zugreifen. Dazu sind Deklarationsvorschriften für die Module sowie für deren Variablen vorgesehen. Beispiele von derartigen Deklarationsvorschriften sind in den Fig. 2a, 2b, 3 und 4 gezeigt, in welchen in Tabellen 1 bis 4 eine Deklaration von Modulen, von Schlüsselwörtern für die Variablen, Beispiele für eine Variablendeklaration sowie eine Variablenprioritätsvergabe dargestellt sind.

Die zyklischen Programme 3a, 3b umfassen Sprachmittel mit geeigneten Anweisungen und Befehlen, wodurch sequentielle Programme gestartet und Funktionsbausteine parametriert werden. Im einzelnen sind insbesondere folgende Elemente der Sprache innerhalb einer Programmierung des zyklischen Ablaufs verfügbar:

- Operatoren wie beispielsweise Vergleichs- oder binäre Operatoren,
- Standortfunktionen wie z. B. Typwandlungsfunktionen für elementare Datentypen, mathematische Funktionen, binäre Funktionen sowie Funktionen für einen Zugriff auf Systemvariable,
- Standardfunktionsbausteine, z. B. Funktionsbausteine für eine Flankenerkennung, bistabile Funktionsbausteine oder Zähler- und Zeitbausteine, und
- Anweisungselemente in Form von Auswahl-, Wiederhol- und Sprunganweisungen sowie in Form von Steueranweisungen für Funktionen und Funktionsbausteine und Programme.

Die sequentiellen Programme 4a, 4b entsprechen jeweils einer nichtperiodischen Task. Innerhalb der Deklaration wird einem sequentiellen Programm die Priorität der Task zugeordnet. Sequentielle Programme werden von anderen Programmen gestartet und liefern beim Aufruf Rückgabewerte, mit denen sie systemintern verwaltet werden (z. B. Verriegelung gegen mehrfachen Aufruf). Ein Modul kann kein sequentielles Programm, ein sequentielles Programm oder mehrere sequentielle Programme aufweisen. Alle Bewegungsfunktionalitäten sind nur in sequentiellen Programmen verfügbar. Dadurch umfaßt ein sequentielles Programm den Befehlsumfang aller Bewegungsbefehle. Darüber hinaus kann ein sequentielles Programm auch Befehle für eine logische Verarbeitung aufweisen. In den Fig. 5a, 5b, 6, 7a und 7b sind Beispiele von Bewegungsfunktionalitäten gezeigt, wobei in Tabelle 5 allgemeine Bewegungsbefehle, in Tabelle 6 Interpolationsbewegungen und in Tabelle 7 Bewegungsbefehle für einen Master-Slave-Verbund dargestellt sind.

Jedes der zyklischen und sequentiellen Programme 3a, 3b, 4a, 4b umfaßt einen Variablen- und Konstantendeklarationsteil 5, in welchem anwenderspezifische Variablen und Konstanten zu vereinbaren sind. Es werden insbesondere vereinbart:

- Deklaration von lokalen Variablen mit elementaren Datentypen, z. B. ganzzahlige oder reelle Datentypen, Strings.
- Definition von abgeleiteten Datenstrukturen und Bewegungsprofilen,
- Deklaration von Systemvariablen (Achshandle),
- Zuordnung von Variablen zu logischen Geräteadressen,
- Vergabe von Zugriff-rechten für Variable, die für den Datenaustausch bereitgestellt werden,
- Mehrachskonfiguration durch Deklaration unterschiedlicher Achsverbände (Fig. 8),
- Definition von Bewegungsprofilen (Fig. 9).

In den Fig. 8 und 9 sind in Tabellen 8 und 9 Beispiele für eine Deklaration von Achszusammenhängen (Mehrachskonfiguration) und für eine Deklaration von Bewegungsprofilen dargestellt.

Neben der Deklaration von Variablen und Konstanten ist eine Deklaration von Funktionsbausteinen vorgesehen. Bei Anwendung der Funktionsbausteine ist implizit definiert, ob sie beim Aufruf eine schnelle zyklische Task benötigen oder ob sie sich in den Kontext des aufrufenden Programmes einordnen. Funktionsbausteine, die im Kontext des rufenden Programmes laufen, werden innerhalb dieses Programmes instanziert. Schnelle Funktionsbausteine sind innerhalb des Steuerungssystemes hinsichtlich Anzahl und Instanznamen fest vorgegeben. Funktionsbausteine werden periodisch ausgeführt und können mit neuen Parametern versehen werden. Die Ausführung schneller Funktionsbausteine obliegt nicht der Kontrolle der rufenden Task. Somit erfolgt die Ausführung unabhängig von den Regeln der Auswertung des Programmes, in dem der Funktionsbaustein parametriert wurde. Alle anderen Funktionsbausteine laufen im Kontext des rufenden Programmes, d. h., sie ordnen sich in die Reihenfolge der Auswertung der Sprachelemente des Programmes ein. Zur Verwirklichung von Bewegungsfunktionalitäten sind insbesondere folgende Sprachelemente vorgesehen:

- technologieorientierte Standardfunktionsbausteine (z. B. Nockenschaltwerk),
- Mechanismen für Mehrachskonfigurationen (Konfiguration unterschiedlichster Achsverbände über Achsmodule hinaus zu einem Gesamtsystem),
- bewegungsspezifisch erweiterte (abgeleitete) Datenstrukturen,
- Bewegungsattribute, -funktionen und -befehle.

In den Fig. 10 und 11 sind in Tabellen 10 und 11 Beispiele von wesentlichen Bewegungsattributen und Bewegungsfunktionen dargestellt.

Zur Konfiguration unterschiedlichster Achsverbände über Achsmodule hinaus zu einer Steuerung zum Steuern eines technischen Prozesses und/oder zur Steuerung der Bewegung einer Verarbeitungsmaschine sind Konfigurationselemente vorgebbar. Diese umfassen:

- Ressourcen in Form von Hardwaremitteln,
- Module.

 ${f X}$ 

10

15

30

35

40

- globale Variable,
- Zugriffspfade,

5

10

30

40

45

55

60

65

wobei innerhalb einer Konfiguration eine Deklaration von Ressourcen, eine Deklaration von globalen Variablen zur Kopplung von Modulen unterschiedlicher Ressourcen sowie eine Deklaration von Zugriffspfaden vorgebbar ist. In den Fig. 12 bis 14 sind in Tabellen 12 bis 14 Konfigurationselemente, eine Deklaration von globalen Variablen und eine Deklaration von Zugriffspfaden dargestellt. In einer Ressource selbst werden globale Variable zur Kopplung von Modulen innerhalb dieser Ressource und Module deklariert. Ein Zugriffspfad ist zur Verknüpfung einer Variablen mit einer Eingangs- oder Ausgangsvariablen eines Moduls, zur Verknüpfung einer Variablen mit globalen Variablen einer Ressource oder Konfiguration oder zur Verknüpfung einer Variablen mit einer direkt dargestellten Variablen vorgesehen. Neben einer Deklaration von globalen Variablen für einen Datenaustausch zwischen Modulen und Programmen (einer oder verschiedener Ressourcen) kann ein Datenaustausch über Funktionsbausteine erfolgen. In Fig. 15 sind in Tabelle 15 Beispiele von Kommunikationsfunktionen dargestellt.

Im folgenden wird die Projektierung einer konfigurierbaren Steuerung erläutert. Dazu wird auf Fig. 16 verwiesen, in welcher der Prinzipaufbau einer Rutenwebmaschine dargestellt ist, die zur Fertigung von sogenannten Wilton- und Boucleteppichen geeignet ist. Wesentliche Bestandteile dieser Rutenwebmaschine sind eine Weblade 6, ein Greiferpaar 7 für den Schußfadeneintrag, eine Schaftmaschine, ein Rutenapparat 9, ein Kett- und Polfadenspeicher 10, ein Gewebeabzug 11 und ein Gewebespeicher 12.

Bei der Festsetzung der Eingänge wird grundsätzlich zwischen zeitkritischen und zeitunkritischen Eingängen unterschieden. Zu den zeitkritischen Eingängen werden Wächtersignale (z. B. Schußfadenwächter, Rutenwächter, Stoppsignale etc.) gerechnet, die eine Reaktion der Steuerung in der untersten Zeitebene (IPO-Takt) erfordern. Signale, die die Not-Aus-Funktion der Steuerung auslösen (Not-Aus-Taster, Antriebsüberwachung), werden gesondert verarbeitet. Die übrigen Eingangssignale wie z. B. Bedienhandlungen, zeitunkritische Wächter (Gewebeabzug, Gewebespeicher etc.) werden im Hauptzyklus der entsprechenden Module verarbeitet.

Bei der Festsetzung von Zuständen wird grundsätzlich zwischen folgenden Betriebsbedingungen der Maschine unterschieden:

- 1) JOG freies Fahren der Achsen/Antriebe nach Bedienerauswahl,
- 2) JOG-Referenz Referieren der Achsen nach Bedienerauswahl oder entsprechend Voreinstellung,
- 3) AUTOMATIC (Programmabarbeitung):
- stationärer Betriebsfall (Weben),
- Routinen zur Behandlung von prozeß- oder maschinenbedingten Ausnahmesituationen.

Für den stationären Betriebsfall ist von einem Anwender ein technologischer Bewegungsablauf vorzugeben, z. B. ein Bewegungsablauf, wie in den Fig. 17a und 17b dargestellt:

- 1. Webfach 1 öffnen:
- a) Webschäfte in die Raststellung für den ersten Schuß und Weblade in die hintere Endlage bewegen;
- 2. Schußfaden und Rute eintragen:
- a) Bewegen der Greiferstangen in das Webfach,
  - b) Übergabe des mitgeführten Schußfadens von der linken an die rechte Greiferstange,
  - c) Rückbewegung der Greiferstangen,
- d) Rute in den oberen Teil des Webfaches eintragen;
- 3. Ansteuerung der Schneid-/Klemmeinrichtung:
- a) Abschneiden des Schußfadens und Fixierung bis zum nächsten Schußfadeneintrag;
- 4. Webfach schließen, Schußfaden und Rute anschlagen:
- a) Bewegen der Webschäfte in die Mittelstellung,
- b) Weblade in die vordere Endlage zum Anschlagen des Schußfadens und der Rute bewegen,
- 50 c) Neupositionieren des Ruteneintrags;
  - 5. Webfach 2 öffnen:
  - a) Bewegung der Webschäfte in die Raststellung für den zweiten Schuß und Weblade in die hintere Endlage bewegen;
  - 6. Schußfaden eintragen;
  - 7. Ansteuerung der Schneid-/Klemmeinrichtung;
  - 8. Webfach schließen, Schußfaden anschlagen;
  - 9. Fortsetzen im Zyklus (1).

Parallel zum Grundzyklus sind weitere Bewegungsvorgänge zu realisieren:

- 1. Rutenauszug:
  - a) Entfernen der letzten Rute vor dem Gewebeabzug und Einschieben in ein Rutenmagazin;
  - 2. Rutenquertransport;
  - a) Quertransport des Rutenmagazins zwischen den Bewegungen vom Ruteneintrag und Rutenauszug (Erhaltung des Rutenumlaufes);
  - 3. Gewebeabzug:
  - a) kontinuierlich zur Gewebebildung laufende Nadelwalze;
  - 4. Lieferung von Kett- und Polfäden:



- a) kontinuierliche Lieferung von zwei Kettfadensystemen und einem Polfadensystem;
- 5. Gewebeaufwicklung:
- a) Antrieb des Fertiggewebespeichers.

Darüber hinaus werden vom Anwender ebenfalls die Bewegungsfunktionalitäten der einzelnen Achsen/Antriebe, das Verhalten von Ausgangsgrößen und sonstiger physikalischer Größen gegenüber einer sogenannten Hauptwelle vorgegeben. Im vorliegenden Beispiel werden folgende Ausgangs- und Bewegungsfunktionalitäten vorgegeben:

| Achse/Antrieb                      | T                                                                                                                                           |                                                           | 1 |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---|
| oder Ausgangs-                     | - Beschreibung                                                                                                                              | - Parameter                                               |   |
| größe                              |                                                                                                                                             |                                                           | 1 |
| Hauptwelle                         | - kontinuierlich laufende<br>Rundachse<br>- Masterachse des Systems                                                                         | - Drehzahl<br>Hauptwelle                                  |   |
| Weblade                            | <ul> <li>mechanisch an die Hauptwelle<br/>gekoppelt</li> <li>Bewegungsfunktion wird me-<br/>chanisch realisiert</li> </ul>                  | - keine                                                   |   |
| linker Greifer                     | - Bewegungsfunktion entspre-<br>chend VDI-Richtlinie 2143<br>für Kurvenscheiben<br>- Polynom 9. Grades                                      | - Greiferweg<br>- Nullpunkt<br>- Winkel der<br>Hauptwelle |   |
| rechter Grei-<br>fer               | - linker Greifer                                                                                                                            | - linker Grei-<br>fer                                     |   |
| Schneid-/<br>Klemmeinrich-<br>tung | <ul> <li>digitales Ausgangssignal zur<br/>Ansteuerung der pneumati-<br/>schen Schneid-/Klemmeinrich-<br/>tung</li> </ul>                    | Hauptwelle                                                |   |
|                                    | <ul> <li>durch Winkelposition der<br/>Hauptwelle bestimmt</li> </ul>                                                                        |                                                           |   |
| Schaft 1, Pol-<br>faden            | - Bewegungsfunktion entspre-<br>chend VDI-Richtlinie 2143<br>für Kurvenscheiben<br>- Polynom 3. Grades                                      | - Schaftweg<br>- Nullpunkt<br>- Winkel der<br>Hauptwelle  |   |
| Schaft 2,<br>Füllfaden             | - Schaft 1                                                                                                                                  | - Schaft 1                                                |   |
| Schaft 3, Bin-<br>defaden          | - Schaft 1                                                                                                                                  | - Schaft 1                                                |   |
| Speicher Pol-<br>faden             | <ul> <li>kontinuierliches Abwickeln</li> <li>des Fadenspeichers bei</li> <li>Hauptwellenbewegung</li> <li>Drehzahl wird zwischen</li> </ul> | - Fadenspannung<br>(Grenzinitia-<br>toren)                |   |
|                                    | Grenzinitiatoren einge-<br>pendelt                                                                                                          | - Motordrehzahl                                           |   |



|    | Achse/Antrieb<br>oder Ausgangs- | - Beschreibung                                                                                                                                      | - Parameter                                            |
|----|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| 5  | größe                           |                                                                                                                                                     |                                                        |
| 10 | Speicher Füll-<br>faden         | <ul> <li>bei maximaler Fadenspannung<br/>Abwickeln des Speichers, bis<br/>minimale Fadenspannung er-<br/>reicht ist</li> </ul>                      | - Fadenspannung<br>(Grenzinitia-<br>toren)             |
| 15 |                                 | <pre>- Antrieb mit fest einge-<br/>stellter Drehzahl durch<br/>Start-/Stopp-Signal<br/>gesteuert</pre>                                              |                                                        |
| 20 | Speicher Bin-<br>defaden        | - Speicher Füllfaden                                                                                                                                | - Fadenspannung<br>(Grenzinitia-<br>toren)             |
| 25 | Nadelwalze                      | <ul> <li>kontinuierliche Drehbewegung<br/>im Verhältnis zur Hauptwelle</li> <li>Übersetzungsverhältnis wird<br/>durch Parameter bestimmt</li> </ul> | - Gewebedichte<br>(technologi-<br>sche Vorgabe)        |
| 30 | Gewebespeicher                  | - Drehbewegung von minimaler<br>Gewebespannung, bis maximale<br>Gewebespannung erreicht ist                                                         | - Gewebespan-<br>nung im<br>Fertigwaren-               |
| 35 |                                 | - Antrieb mit fest einge-<br>stellter Drehzahl durch<br>Start-/Stopp-Signal ge-<br>steuert                                                          | speicher<br>(Grenzinitia-<br>toren)                    |
| 40 | Ruteneintrag                    | - Bewegung entsprechend den<br>vorgegebenen Winkelbereichen<br>der Hauptwelle                                                                       | - keine                                                |
|    | Rutenauszug                     | <ul><li>Trapezprofil</li><li>Auszugsbewegung mit konstan-</li></ul>                                                                                 | - Geschwindig-                                         |
| 45 |                                 | ter Geschwindigkeit entspre-<br>chend den vorgegebenen Win-<br>kelbereichen der Hauptwelle<br>- Übergangsprofil ruckbegrenzt                        | keit und Be-<br>schleunigung<br>(Fadenklamme-<br>rung) |
| 50 | Rutenquer-<br>transport         | - Bewegung entsprechend den<br>vorgegebenen Winkelbereichen<br>der Hauptwelle                                                                       | - keine                                                |
| 55 |                                 | - Trapezprofil                                                                                                                                      |                                                        |

Entsprechend dem vorgegebenen technologischen Bewegungsablauf, den vorgegebenen Bewegungsfunktionalitäten der Achsen/Antriebe, dem Verhalten von Ausgangsgrößen und sonstiger physikalischer Größen konfiguriert der Programmierer Software-Module des Steuerprogramms, wobei im vorliegenden Beispiel zweckmäßig mehrere CPU-Einheiten zur Abarbeitung der Module während des Steuerbetriebs vorgesehen sind. Im Beispiel werden folgende Module konfiguriert:

- 1. Mehrachsmodul 0: Hauptwelle und Greifermechanismus
- a) Betriebsartenverwaltung

- ADJUST Routinen zur Behandlung von prozeß- oder maschinenbedingten Ausnahmesituationen, STATIC stationärer Betriebsfall "Weben",
- b) Auswertung und Umsetzung der Bedienanforderungen,



- c) logische Verknüpfung der für den Ablauf erforderlichen Ein- und Ausgänge,
- d) Programme zur Beschreibung der Bewegungen der angeschlossenen Achsen (Hauptwelle und Greifermechanismus).
- e) Aktivierung der erforderlichen Achsverbände bzw. Einzelachsbewegungen anderer Module,
- f) Überwachung von Maschinen- und Prozeßzuständen,
- g) Fehlerhandling zum System;2. Mehrachsmodul 1: Schaftmaschine
- a) Auswertung und Umsetzung der Befehlsanforderungen des Mehrachsmoduls 0.
- b) Programm zur Beschreibung der Bewegungen der angeschlossenen Achsen (Schaftmaschine);
- 3. Mehrachsmodul 2: Rutenapparat
- a) Auswertung und Umsetzung der Befehlsanforderungen des Mehrachsmoduls 0.
- b) Programm zur Beschreibung der Bewegungen der angeschlossenen Achsen (Rutenapparat),
- c) Überwachung der Prozeßzustände des Subsystems;
- 4. Einachsmodul 3: Nadelwalze
- a) das Modul enthält kein eigenes Programm,
- b) befindet sich in der Betriebsart "azyklischer Befehlsbetrieb" und hat damit ein Befehlsinterface zum Mehrachs-
- c) über dieses Interface erhält das Modul die Befehle für die Antriebsbewegung mit Angabe der Drehzahl und Drehrichtung;
- 5. Einachsmodul 4: Polfadenspeicher
- a) das Modul enthält das Programm zur Ansteuerung des Polfadenspeichers,
- b) Auswertung und Umsetzung der Befehlsanforderungen des Mehrachsmoduls 0,
- c) logische Verknüpfung der für den Ablauf erforderlichen Ein- und Ausgänge,
- d) Überwachung der Prozeßzustände des Subsystems;
- 6. E/A-Modul 5: Füll- und Bindekettenspeicher
- a) das Modul enthält ein eigenes Programm zur Ansteuerung der Füll- und Bindekettenantriebe (Antriebe werden durch Start-/Stopp-Signale gesteuert, die Drehzahl ist in den Antrieben definiert),
- b) logische Verknüpfung der für den Ablauf erforderlichen Ein- und Ausgänge,
- c) Überwachung der Prozeßzustände des Subsystems.

Im folgenden wird auf Fig. 18 verwiesen, in welcher eine Steuerungsstruktur zur Abarbeitung der Module dargestellt ist. Im Beispiel umfaßt die Steuerung ST sechs Teilsteuerungen St0 . . . St5, die jeweils mit einer CPU-Einheit versehen sind und die über einen geeigneten Bus Bu miteinander verbunden sind. Die CPU-Einheit der Teilsteuerungen StO bearbeitet das Mehrachsmodul 0, die CPU-Einheit der Teilsteuerung St1 das Mehrachsmodul 1. Entsprechend bearbeitet die CPU-Einheit der Teilsteuerung St2 das Mehrachsmodul 2, die CPU-Einheit der Teilsteuerung St3 das Einachsmodul 3, die CPU-Einheit der Teilsteuerung St4 das Einachsmodul 4 und die CPU-Einheit der Teilsteuerung St5 das E/A-Modul 5. An die Teilsteuerungen St0... St5 sind über geeignete Ausgabeeinheiten Ae Antriebe mit entsprechenden Antriebsachsen angeschlossen, welche gemäß den Vorgaben des Software-Module umfassenden Steuerprogramms in Wirkverbindung stehen. Eine Bedien- und Beobachtungsstation BB ist zum Bedienen und Beobachten des technischen Prozesses und/oder des Bewegungsablaufs der Rutenwebmaschine vorgesehen.

#### Patentansprüche

- 1. Steuerung, welche versehen ist mit Mitteln zum Steuern eines technischen Prozesses und/oder mit Mitteln zur Steuerung der Bewegung einer Verarbeitungsmaschine und welcher ein Steuerprogramm zuführbar ist, das die Steuerung während eines Steuerbetriebs abarbeitet, dadurch gekennzeichnet, daß das Steuerprogramm mit Software-Modulen versehen ist, welche mindestens eine CPU-Einheit der Steuerung während des Steuerbetriebs abarbeitet, wobei die Software-Module derart konfiguriert sind, daß diese zur Prozeßsteuerung und/oder zur Bewegungssteuerung vorgesehen sind.
- 2. Steuerung nach Anspruch 1, dadurch gekennzeichnet,
  - daß nach Maßgabe des technologischen Bewegungsablaufs der Verarbeitungsmaschine die Anzahl der an Ein-/Ausgabeeinheiten der Steuerung anschließbaren Antriebsachsen und das Zusammenwirken dieser Achsen vorgegeben sind und
  - daß gemäß der Vorgabe der Anzahl der Antriebsachsen und der Vorgabe des Zusammenwirkens dieser Achsen zur Bewegungssteuerung Ein- und Mehrachsmodule konfiguriert sind.
- 3. Steuerung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Software-Module mindestens ein zyklisches Programm und mindestens ein durch das zyklische Programm aufrufbares sequentielles Programm aufweisen, wobei
  - im Falle einer Bewegungssteuerung das sequentielle Programm für die Verwirklichung der Bewegungsfunktionen und das zyklische Programm zur Koordination der sequentiellen Programme vorgesehen ist und
  - im Falle einer Prozeßsteuerung das zyklische Programm zur Verwirklichung von Prozeßsteuerungsfunktionalitäten vorgesehen ist.
- 4. Steuerung nach Anspruch 3, dadurch gekennzeichnet, daß die Module jeweils versehen sind mit einem Deklarationsteil, auf welchen die Programme des jeweiligen Moduls zugreifen und in welchem Variablen und/oder Datenstrukturen und/oder Bewegungsprofile hinterlegt sind.
- 5. Steuerung nach Anspruch 3 oder 4, dadurch gekennzeichnet,
  - daß ein Programm mindestens mit einem Funktionsbaustein versehen ist und



5

10

15

20

25

30

40

- daß von einem Programm Funktionsbausteine aufrufbar sind.
- 6. Programmiergerät mit Mitteln zum Erstellen eines Steuerprogramms für eine Steuerung, welche Mittel zum Steuern eines technischen Prozesses und/oder Mittel zur Steuerung der Bewegung einer Verarbeitungsmaschine umfaßt, dadurch gekennzeichnet, daß die Mittel das Steuerprogramm mit Software-Modulen versehen, welche eine CPU-Einheit der Steuerung während des Steuerbetriebs abarbeitet, wobei die Software-Module derart konfigurierbar sind, daß diese zur Prozeßsteuerung und/oder zur Bewegungssteuerung vorgesehen sind.
- 7. Programmiergerät nach Anspruch 6, dadurch gekennzeichnet,

10

15

20

25

30

35

40

45

50

55

60

65

- daß nach Maßgabe des technologischen Bewegungsablaufs der Verarbeitungsmaschine die Anzahl der an Ein-/Ausgabeeinheiten der Steuerung anschließbaren Antriebsachsen und das Zusammenwirken dieser Achsen vorgebbar sind und
- daß gemäß der Vorgabe der Anzahl der Antriebsachsen und der Vorgabe des Zusammenwirkens dieser Achsen zur Bewegungssteuerung Ein- und Mehrachsmodule konfigurierbar sind.
- 8. Programmiergerät nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß die Mittel mindestens ein Software-Modul mit mindestens einem zyklischen Programm und mit mindestens einem durch das zyklische Programm aufrufbaren sequentiellen Programm versehen, wobei
  - im Falle einer Bewegungssteuerung das sequentielle Programm für die Verwirklichung der Bewegungsfunktionen und das zyklische Programm zur Koordination der sequentiellen Programme vorgesehen ist und
     im Falle einer Prozeßsteuerung das zyklische Programm zur Verwirklichung von Prozeßsteuerungsfunktionalitäten vorgesehen ist.
- 9. Programmiergerät nach Anspruch 8, dadurch gekennzeichnet, daß die Module jeweils versehen sind mit einem Deklarationsteil, auf welchen die Programme des jeweiligen Moduls zugreifen und in welchem Variablen und/oder Datenstrukturen und/oder Bewegungsprofile hinterlegt sind.
- 10. Programmiergerät nach Anspruch 8 oder 9, dadurch gekennzeichnet,
  - daß ein Programm mindestens mit einem Funktionsbaustein versehen ist und
  - daß von einem Programm Funktionsbausteine aufrufbar sind.
- 11. Anordnung mit mindestens einer Steuerung nach einem der Ansprüche 1 bis 5 und mit mindestens einem Programmiergerät nach einem der Ansprüche 6 bis 10, wobei die Steuerung und das Programmiergerät über einen Bus miteinander verbunden sind,

Hierzu 20 Seite(n) Zeichnungen



Nummer: Int. Cl.<sup>6</sup>: Offenlegungstag: **DE 197 40 550 A1 G 05 B 19/04**16. April 1998





| richtung<br>Modul |                           |                                                                                                                      | Demerkungen/ Verweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Modul             |                           |                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   |                           | MODUL Name: Modul_Bezeichner<br>(* Modulrumpf *)<br>END_MODUL                                                        | <ul> <li>das Bestimmungszeichen ON wird zur Festlegung<br/>des Modultypes (Modul_Bezeichner) auf logischer<br/>Ebene verwendet</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Variable          | lokale<br>Variable        | VAR END_VAR                                                                                                          | <ul> <li>lokale Variable des Moduls sind für alle<br/>zugehörigen Programme global</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | Eingangs-<br>variable     | VAR_INPUT END_VAR                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | Ausgangs-<br>variable     | VAR_OUTPUT END_VAR                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Programm          | aligemeine<br>Deklaration | PROGRAM Name (TYPE:= Typ, PRIORITY:= Wert, INTERVAL:=Zeitdauer, SYSSTART := starttyp) (* Programmumpf *) END_PROGRAM | <ul> <li>TYPE gibt den Typ des Programmes bzw. der zugehörigen Task an:</li> <li>NORM = periodische (zyklische) Task</li> <li>FAST = schnelle zyklische Task</li> <li>SEQ = sequentielle (nicht periodische) Task</li> <li>PRIORITY legt die Priorität zum bevorrechtigten oder nichtbevorrechtigten Aufruf der Task fest (Wert Typ: UINT (0,1,,5)</li> <li>Programme werden zur periodischen Ausführung im angegebenen INTERVALL (Zeitdauer) aufgerufen (Zeitdauer Typ INT entspricht dem vielfachen der Interpolationstask)</li> <li>die Angabe des Parameters SYSTART ist nur bei zyklischen Programmen zulässig und legt fest, ob Programme durch expliziten Aufruf (SYSTART:=USER) oder mit Initialisierung des Moduls (SYSTART:=INIT) gestartet werden (USER ist voreingestellt)</li> </ul> |



| zyklisches        | PROGRAM Name (TYPE:= NORM, | <ul> <li>Programm mit der höchsten Priorität und mit</li> </ul> |
|-------------------|----------------------------|-----------------------------------------------------------------|
| Programm          | PRIORITY:= Wert,           | SYSTART:=INIT wird Haupteintrittspunkt des                      |
| (ohne festes      | SYSSTART := starttyp)      | Moduls                                                          |
| Zeitraster)       | (* Programmrumpf *)        |                                                                 |
|                   | END_PROGRAM                |                                                                 |
| schnelles         | PROGRAM Name (TYPE:= FAST, | - in jedem Modul ist maximal ein zyklisches                     |
| zyklisches        | INTERVAL:=Zeitdauer,       | Programm vom Typ FAST programmierbar                            |
| <br>Programm      | SYSSTART := starttyp)      |                                                                 |
|                   | (* Programmrumpf *)        |                                                                 |
|                   | END_PROGRAM                |                                                                 |
| Programm          | PROGRAM Name (TYPE:= SEQ,  | - sequentielle Programme werden ausschließlich                  |
| m,                | PRIORITY:= Wert)           | Ober eine explizite Anweisung (CREATE)                          |
| <br>sequentieller | (* Programmrumpf *)        | gestartet                                                       |
| Abarbeitung       | END_PROGRAM                |                                                                 |

Tabelle 1: Deklaration von Modulen (Fortsetzung)

FIG 2b



Nummer: Int. Cl.6:

DE 197 40 550 A1 G 05 B 19/04 16. April 1998

| Offenlegungstag: |
|------------------|

| Deklaration                          | Schlüsselwort | Anwendungsbereich/ Bemerkungen                                                                                                                                                                             |
|--------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| lokale Variable                      | VAR           | Gebrauch innerhalb der Programm-<br>organisationseinheit                                                                                                                                                   |
| Eingangsvariablen (schreibgeschützt) | VAR_INPUT     | von außen geliefert, kann nicht in der Pro-<br>grammorganisationseinheit geändert werden                                                                                                                   |
| Eingangsvariablen                    | VAR_IN_OUT    | Variable kann im Programm geändert werden                                                                                                                                                                  |
| Ausgangsvariablen                    | VAR_OUTPUT    | von der Programmorganisationseinheit nach außen gelieferte Variable                                                                                                                                        |
| Konstante                            | CONSTANT      | <ul> <li>Konstante (kann nicht geändert werden)</li> <li>Deklaration erfordert Wertzuweisung</li> </ul>                                                                                                    |
| Speicherortzuweisung                 | AT            | <ul> <li>wird dieses Schlüsselwort nicht angegeben erfolgt<br/>eine automatische Zuweisung der Variablen zu einem<br/>Speicherort</li> </ul>                                                               |
| Ende der Variablen-<br>deklaration   | VAR_END       | <ul> <li>jede Variablendeklaration (unabhängig ihrer<br/>Eigenschaft) wird mit VAR END abgeschlossen</li> </ul>                                                                                            |
| gepufferte Variable                  | RETAIN        | <ul> <li>bei Warmstart nehmen die Variablen ihre gepufferten Werte an</li> <li>bei Kaltstart nehmen die Variablen die vorgegebenen bzw. die im System voreingestellten Initialisierungswerte an</li> </ul> |
| globale Variable                     | VAR_GLOBAL    | <ul> <li>werden globale Variable innerhalb eines Konfigurationselemente. Deklariert ist der Geltungsbereich der Variable auf das Element begrenzt indem sie definiert wurden.</li> </ul>                   |
| Zugriffspfad für<br>Variable         | VAR_ACCESS    | legt Variable fest, auf die durch die Kommunikationsdienste) zugegriffen werden kann                                                                                                                       |

Tabelle 2: Schlüsselwörter für eine Varaiablendeklaration

Nummer: Int. Cl.<sup>6</sup>: Offenlegungstag: **DE 197 40 550 A1 G 05 B 19/04**16. April 1998

| Beispiel                                                                            | Bemerkungen                                                                                                                                                     |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VAR  Bit: ARRAY [06] OF BOOL := 1,1,0,0,0,1,0;  END_VAR                             | - teilt 8 Speicherbits die Anfangswerte zu:  Bit[0] := 1,, Bit[7] := 0                                                                                          |
| VAR  Master: INT_AXIS:= log. Achsadresse;  Slave: AXIS:= log. Achsadresse;  END_VAR | <ul> <li>Deklaration eines Achshandle erfordert</li> <li>Zuordnung zur logischen Adresse der Achse</li> </ul>                                                   |
| VAR AT %QX5.1 : BOOL := 1; END_VAR                                                  | <ul> <li>boolesche Variable, direkt adressiert und mit<br/>Anfangswert = 1 initialisiert</li> </ul>                                                             |
| VAR  Zahl, Wert: INT;  mystring: STRING(10);  END_VAR                               | <ul> <li>mehrere Variable gleichen Typs mit Komma<br/>getrennt</li> <li>Zeichenkette mit einer Maximallänge von 10</li> </ul>                                   |
| VAR CONSTANT Wert: INT:= 103; END_VAR                                               | <ul> <li>Variable mit konstantem Wert</li> <li>Konstantendeklaration erfordert gleichzeitige<br/>Wertzuweisung</li> </ul>                                       |
| VAR RETAIN Status: ARRAY [03] OF INT := 1,5,0,0; END_VAR                            | <ul> <li>Deklariert als gepuffertes Feld mit den Kaltstart-Anfangswerten</li> <li>Status[0]:= 1, Status[1]:= 5</li> <li>Status[2]:= 0, Status[3]:= 1</li> </ul> |

Tabelle 3a: Beispiele für eine Variablendeklaration

## Fig 4a

| Bedeutung                                                                                                                                                             | Befehl                       | Beispiel                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------|
| Kommunikationspriorität bei<br>gleichzeitigen Zugriff<br>(0-5, 0 höchste Priorität, 3 voreingestellt)<br>Priorität nur für Variablen mit<br>Datenaustausch vorgesehen | % Priorität (nicht IEC 1131) | VAR_INPUT Stop: BOOL % 0; Zahl: INT % 5; END_VAR |

Tabelle 3b: Vergabe von Prioritäten

## Fig 4b

Nummer: Int. Cl.<sup>6</sup>: Offenlegungstag: **DE 197 40 550 A1 G 05 B 19/04**16. April 1998

| Bewegung     |                | Befehl                                                                                    | Bemerkungen                                                                                  |
|--------------|----------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Referieren   | Einachssystem  | REF                                                                                       | <ul> <li>verschiedene Referiermodi sind über</li> <li>Systemvariablen einstellbar</li> </ul> |
|              | Mehrachssystem | REF Achsindex,, Achsindex,                                                                | <ul> <li>gleichzeitiges Referieren aller Achsen</li> </ul>                                   |
| Positionier- | .0.            | POS (TYP or (Position), Geschwindigkeitoge)                                               | - Einachssystem                                                                              |
| bewegung     | keitsgeführt   |                                                                                           | <ul> <li>Geschwindigkeit aus Systemvariable</li> </ul>                                       |
|              |                |                                                                                           | - TYP: Positionsattribut                                                                     |
|              |                | POS (Achsindex1, TYP on (Position), Geschwindigkeitops)                                   | - Mehrachssystem                                                                             |
|              |                | :                                                                                         | <ul> <li>Achsbewegungen, die innerhalb eines</li> </ul>                                      |
|              |                | Achstndex <sub>11</sub> , TTP <sub>0pt</sub> (Position), Geschwindigkeit <sub>0pt</sub> ) | Bewegungsbefehls programmiert werden, starten                                                |
|              |                |                                                                                           | gleichzeitig                                                                                 |
|              |                | POS (Verbundname, Achsindex, (TYP or (Position),                                          | - Mehrachssystem                                                                             |
|              |                | Geschwindigkeit <sub>or</sub> )                                                           | <ul> <li>Fahren eines Verbundes innerhalb des</li> </ul>                                     |
|              |                |                                                                                           | Positionierbereiches der Masterachse                                                         |

Tabelle 5: Allgemeine Bewegungsbefehle -Einzelachse und Verbund;

RIG A



|                 | zeitgeführt            | POST (TYP or (Position), Zeit)                                      | - Einachssystem                                                                                                         |
|-----------------|------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
|                 |                        |                                                                     | - Zeit gibt die Dauer der Positionierbewegung an                                                                        |
|                 |                        | POST (Achsindex1, TYP or (Position), Zeit,                          | - Mehrachssystem                                                                                                        |
|                 |                        | <br>Achsindex <sub>11</sub> , TYP <sub>ort</sub> (Position), Zeit)  |                                                                                                                         |
| kontinuierliche | Einzelachsbewegung     | MOVE (TYP <sub>op</sub> (Geschwindigkeit));                         | - Einachssystem                                                                                                         |
| Bewegung        |                        |                                                                     | <ul> <li>Typ: Richtungsattribut</li> </ul>                                                                              |
|                 |                        | MOVE (Achsindex <sub>1</sub> , TYP <sub>on</sub> (Geschwindigkeit), | - Mehrachssystem                                                                                                        |
|                 |                        | <br>Achsindex, TYP on (Geschwindigkeit))                            | <ul> <li>wenn Bewegung gestartet und Geschwindigkeit<br/>erreicht, wird mit Programmabarbeitung fortgesetzt.</li> </ul> |
|                 | Bewegung im Verbund    | MOVE (Verbundname, Achsindex,                                       | - nur eine Achse programmierbar stellt den Master des                                                                   |
|                 |                        | TYP <sub>ort</sub> (Geschwindigkeit))                               | Verbundes dar                                                                                                           |
|                 | Verbund-               | MOVE (Verbundname)                                                  | - Achsindex muß eine externe Achse sein                                                                                 |
|                 | bewegung nach externer |                                                                     | - der Verbund wartet auf die Bewegung der externen                                                                      |
|                 | Masterachse            |                                                                     | Achse (Achsindex), um ihr unverzüglich zu folgen                                                                        |
| Achsstillstand  | Einachssystem          | STOP                                                                |                                                                                                                         |
|                 | Mehrachssystem für     | STOP (Achsindex1,, Achsindexa)                                      |                                                                                                                         |
|                 | Einzelachse            |                                                                     |                                                                                                                         |
|                 | Mehrachssystem für     | STOP (Verbundname)                                                  | <ul> <li>stoppt unverzüglich Achsverbund mit Verbundname</li> </ul>                                                     |
|                 | Veround                |                                                                     |                                                                                                                         |
|                 |                        | STOP (Verbundname, Achsindex, Position);                            | stoppt Achsverbund mit Verbundname mit dem                                                                              |
|                 |                        |                                                                     | Erreichen der angegebenen Achsposition                                                                                  |

Tabelle 5: Allgemeine Bewegungsbefehle -Einzelachse und Verbund; (Fortsetzung)



Nummer: Int. Cl.<sup>6</sup>:

Offenlegungstag:

**DE 197 40 550 A1 G 05 B 19/04 16.** April 1998

|                      |               | Befehl                                                                              | Bemerkingen                                               |
|----------------------|---------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Interpolation Gerade | Gerade        | LIPO (Achsindex <sub>1</sub> , Achsindex <sub>2</sub> , Achsindex <sub>3000</sub> , | <ul> <li>Linearinterpolation mit max. 3 Achsen</li> </ul> |
|                      |               | $TTP_{opt}$ (Endposition <sub>1</sub> ),                                            | - TTP: Positionsattribut                                  |
|                      |               | $TYP_{opt}$ (Endposition <sub>2</sub> ),                                            |                                                           |
|                      |               | TYP or (Endposition 3000), Geschwindigkeit)                                         |                                                           |
|                      | Kreis im      | CIPO (Achsindex 1, Achsindex 2, TYP on (Endposition)),                              |                                                           |
|                      | Uhrzeigersinn | TYP ox (Endposition,), Radius, Geschwindigkeit)                                     |                                                           |
|                      | (positiv)     |                                                                                     |                                                           |
|                      | Kreis gegen   | CIPON (Achsindex1, Achsindex2, TYPox (Endposition1),                                |                                                           |
|                      | Uhrzeigersinn | TYP ox (Endposition2), Radius,                                                      |                                                           |
|                      | (negativ)     | Geschwindigkeit)                                                                    |                                                           |

Tabelle 6:Interpolationsbewegungen

出いい

| Bewegung                       |                  | Befehi                                   | Bemerkungen                                                            |
|--------------------------------|------------------|------------------------------------------|------------------------------------------------------------------------|
| Masterumschaltung              |                  | SETIMASTER (Verbundname, Achsindex)      | <ul> <li>angegebender Achsindex wird Master für Verbundname</li> </ul> |
|                                |                  |                                          | - Umschaltung kann auch während der                                    |
| 77                             | 1 4 6 4          |                                          | Bewegung des Verbundes erfolgen                                        |
| Verbundmanipulanon Aunosen des | Authorem des     | DISABLE (Verbundname)                    | <ul> <li>alle Achsen des Verbundes können separat</li> </ul>           |
|                                | ver oundes       |                                          | verfahren werden                                                       |
|                                | Wiederherstellen | RESTORE (Verbundname)                    | <ul> <li>stellt die zuletzt aktive</li> </ul>                          |
|                                | des verbundes    |                                          | Verbundkonfiguration her                                               |
| tions-                         | Auf-             | SYNCON (Verbundname, Slaveindex)         | <ul> <li>synchronisiert eine DEFGEAR-Achse auf</li> </ul>              |
| Dewegungen                     | synchronisieren  | -                                        | eine sich bewegende Masterachse mit                                    |
|                                |                  |                                          | maximaler Beschlemigung (Systemvariable)                               |
|                                |                  | SYNCONT (Verbundname, Slaveindex, Zeit)  | <ul> <li>synchronisiert eine DEFGEAR-Achse auf</li> </ul>              |
|                                |                  |                                          | eine sich bewegende Masterachse in einer                               |
|                                |                  |                                          | vorgegebenen Zeit (impliziert                                          |
|                                |                  |                                          | Beschlemigung)                                                         |
|                                |                  | SYNCONP (Verbundname, Slaveindex,        | <ul> <li>synchronisiert eine DEFCAM-Achse mit</li> </ul>               |
| 1                              |                  | Profilmame)                              | einem Einfahrprofil in den Verbund                                     |
| 7                              | Ab-              | SYNCOFF (Verbundname, Slaveindex)        | <ul> <li>koppelt eine DEFGEAR-Achse mit</li> </ul>                     |
|                                | syncoronisieren  |                                          | maximaler Beschleunigung (Systemvariable)                              |
|                                |                  |                                          | aus dem Verbund                                                        |
|                                |                  |                                          | <ul> <li>ausgekoppelte Achsen sind separat</li> </ul>                  |
|                                |                  |                                          | verfahrbar                                                             |
|                                |                  | SYNCOFFT (Verbundname, Slaveindex, Zeit) | <ul> <li>koppelt eine DEFGEAR-Achse in einer vor-</li> </ul>           |
|                                |                  |                                          | gegebenen Zeit aus                                                     |
|                                |                  | SYNCOFFF (Verbundname, Slaveindex,       | <ul> <li>koppelt eine DEFCAM-Achse mit einem</li> </ul>                |
|                                |                  | Profilname)                              | Ausfahrprofil aus                                                      |

Tabelle 7: Bewegungsbefehle für den Master-Slave-Verbund

# FIG 7a



| Korrektur-     | einmalige Korrektur- | SHIFT (Achsindex, Position, Übergangsprofil)         | - Beschleunigen oder Verzögern einer Einzel-                      |
|----------------|----------------------|------------------------------------------------------|-------------------------------------------------------------------|
| pewegungen     | bewegung auf         |                                                      | achse oder des Masters eines Achsverbundes,                       |
|                | Staveachse           |                                                      | um eine Positionsverschiebung auf kürzestem                       |
|                |                      |                                                      | Weg (RSP) zu realisieren (Fehler!                                 |
|                |                      |                                                      | Verweisquelle konnte nicht gefunden                               |
|                |                      |                                                      | werden.)                                                          |
|                |                      |                                                      | - in Verbindung mit Funktion CHECKPOS ist                         |
|                |                      |                                                      | Druckmarkensynchronisation programmierbar                         |
|                | Korrektur der        | REDEF POS (Achsindex; TYP on (Position))             | - die aktuelle oder Sollposition einer Achse wird                 |
|                | Masterposition       |                                                      | ohne Bewegung auf eine neue absolute Position                     |
|                |                      |                                                      | definiert                                                         |
|                |                      |                                                      | <ul> <li>Neudefinition auch w\u00e4hrend der Bewegung</li> </ul>  |
|                |                      |                                                      | - irmerhalb Verbundbewegung kann nur Master-                      |
|                |                      |                                                      | position neudefiniert werden                                      |
|                |                      |                                                      | - Technologie: Bandmarkensynchronisation                          |
|                |                      |                                                      | - TTP <sub>orr</sub> : Soll- oder Istposition                     |
|                | Zurücksetzen der     | DELETE (Achsindex, Korrekturtyp)                     | - alle Korrekturen der benannten Achse                            |
|                | Korrektur            |                                                      | (Achsindex) werden zurückgesetzt                                  |
| Aussetz-Zyklus | Aussetzen mit        | REST (Verbundname, Slaveindex, n)                    | <ul> <li>Aussetzen der Slaveachse mit Zyklusbeginn für</li> </ul> |
|                | Zyklusbeginn         |                                                      | n Zyklen                                                          |
|                |                      |                                                      | - n ist vom Typ: INT                                              |
|                | Aussetzen an         | REST_ON_POS (Verbundname, Slaveindex, n, Position)   | - ohne Angabe der Position wirkt Befehl wie                       |
|                | definierter Ma-      |                                                      | REST                                                              |
|                | sterposition         |                                                      |                                                                   |
| Einsetz-Zyklus | Einsetzen mit        | INSERT (Verbundname, Slaveindex, n)                  | - Einsetzen der Slaveachse mit Zyklusbeginn für n                 |
|                | _                    |                                                      | Zyklen                                                            |
|                | an                   | INSERT_ON_POS (Verbundname, SlaveIndex, n, Position) | - ohne Angabe der Position wirkt Befehl wie                       |
|                |                      |                                                      | INSERT                                                            |
|                | Masterposition       |                                                      | <ul> <li>bei vorherigen programmierten Aussetzen muß</li> </ul>   |
|                |                      |                                                      | die gleiche Position verwendet werden                             |

Tabelle 7: Bewegungsbefehle für den Master-Slave-Verbund (Fortsetzung)

# FIG 7b



|                                          | Deklaration                                          | Bemerkungen                                            |
|------------------------------------------|------------------------------------------------------|--------------------------------------------------------|
| Master-Slave-Verbund (positionsgefilhrt) | Verbundname: DEFCAM:=Achsindex,                      | Masterachse ist die zuerst in der                      |
|                                          | ACTESTACES, ACTESTACES,                              | Leklaranon angegebene Achse (Achsindex <sub>1</sub> ,) |
|                                          |                                                      | im Verbund alle Profiltypen     zugelassen             |
| Master-Slave-Verbund                     | Verbundname: DEFGEAR:=Achsindex1,                    | Verbund mit Drehzahlgleichlauf                         |
| (Getriebeverbund                         | Achsindex2,, Achsindex,;                             | <ul> <li>im DEFGEAR-Verbund ist nur der</li> </ul>     |
| geschwindigkeitsgenihrt)                 |                                                      | Typ GPROFIL zugelassen                                 |
|                                          |                                                      | <ul> <li>elektron. Getriebe auch über</li> </ul>       |
|                                          |                                                      | DEFCAM-Verbund möglich                                 |
|                                          |                                                      | (positionsgeführt)                                     |
| Geometrieverbund                         | Verbundname: <b>DEFGEO</b> := $Achsindex_{I}$        | <ul> <li>Interpolationsbewegung nur mit den</li> </ul> |
| (Bahnachsen im kartesischen              | Achsindex <sub>2</sub> , Achsindex <sub>3opt</sub> ; | in DEFGEO deklarierten Achsen                          |
| roordinatensystem)                       |                                                      | möglich                                                |

Tabelle 8: Definition eines Achszusammenhangs

## の で 正



| <b>Definitionstyp</b> | Profildeklaration                                                                                                    | Bemerkungen                                                      |
|-----------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| tabellarisch          | Profilname: TPROFIL (Variable), Toleranzop)                                                                          | - Variable ist ein im Deklarationsteil definiertes<br>Feld       |
|                       |                                                                                                                      | <ul> <li>wenn in einem Verbund ein oder mehrere</li> </ul>       |
|                       |                                                                                                                      | TPROFIL'e verwendet werden ist für den                           |
|                       |                                                                                                                      | Master ebenfalls ein TPROFIL als Bezug zu                        |
|                       | -                                                                                                                    | definieren (in der Regel Wertefeld mit                           |
|                       |                                                                                                                      | konstanter Teilung)                                              |
| -                     |                                                                                                                      | - TPROFIL-Achsen in einem Verbund müssen                         |
|                       |                                                                                                                      | gleiche Felddimension besitzen                                   |
| geschlossen           | Profilname: FPROFIL (Bewegungsfunktion <sub>1</sub> , Toleranz <sub>1 og</sub> )                                     | <ul> <li>ermöglicht auch Definition eines</li> </ul>             |
| (vollståndiger        |                                                                                                                      | elektronisches Getriebes (Bewegungsfunktion                      |
| Zyklus)               |                                                                                                                      | 1 H)                                                             |
| konstantes            | Profilname: GPROFIL (Mastergeschwindigkeit <sub>11</sub>                                                             | - Programmierung eines gebrochen rationalen                      |
| Verhälfnis            | $TTP_{opt}$ (Slavegeschwindigkeit)),                                                                                 | Getriebeverhältnisses                                            |
|                       |                                                                                                                      | <ul> <li>der Verbundtyp der Achse bestimmt ob das</li> </ul>     |
|                       | Profilmame: $GPROFIL$ (Masterposition <sub>1</sub> , $TYP_{opt}(Slaveposition_1)$ )                                  | Bewegungsprofil drehzahl- oder winkel-                           |
|                       |                                                                                                                      | synchron ausgeführt wird                                         |
|                       |                                                                                                                      | <ul> <li>Typ: Richtungsattribut gibt an in welcher</li> </ul>    |
|                       |                                                                                                                      | Richtung die Slaveachse der Masterachse                          |
|                       |                                                                                                                      | folgen soll                                                      |
| stückweise            | Profilname: SPROFIL [0 Anzahi] :=                                                                                    | <ul> <li>nicht geschlossenes Masterintervall zulässig</li> </ul> |
|                       | (Master_Min, Master_Max,, Bewegungsfunktion,, Toleranz, op.),                                                        | - nicht definierte Bereiche werden mit der                       |
|                       | (Master_Min <sub>21</sub> Master_Max <sub>21</sub> , Bewegungsfunktion <sub>21</sub> , Toleranz <sub>2 op</sub> , ), | Bewegungsfunktion PO (Stillstand) ersetzt                        |
|                       | Master Min., Master Max., Reweamosshuktion, Tolorm?                                                                  | - stückweise Profilverschiebungen sind pro-                      |
|                       | of die um more thereasen frames and there is a little to the same                                                    | grammerbar                                                       |

Tabelle 9: Profildeklaration



| Bewegungsattribute |                                           |                                       |
|--------------------|-------------------------------------------|---------------------------------------|
| Positionsattribute | Absolut (Linear- oder Rundachse)          | Position                              |
|                    |                                           | A(Position)                           |
|                    | Inkremental (Linear- oder Rundachse)      | I(Position)                           |
|                    | Absolut in negativer Richtung (Rundachse) | RN(Position)                          |
|                    | Absolut in positiver Richtung (Rundachse) | RP(Position)                          |
|                    | Absolutposition auf direktem Weg anfahren | RSP(Position)                         |
|                    | (compared of provious and)                |                                       |
|                    | Sollposition                              | COM(Position)                         |
|                    | Istposition                               | CUR(Position)                         |
| Richtungsattribute | Bewegung in positiver Richtung            | Geschwindigkeit                       |
|                    | Geschwindigkeit ist immer Absolutwert     | oder                                  |
|                    |                                           | P(Geschwindigkeit)                    |
|                    | Bewegung in negativer Richtung            | N(Geschwindigkeit)                    |
|                    | Sollgeschwindigkeit                       | COM(Geschwindigkeit)                  |
|                    | Istgeschwindigkeit                        | CUR(Geschwindigkeit)                  |
| Auswahl des        | Trapezprofil (beschleunigungsbegrenzt)    | DYNPROF (Achsindex 1)                 |
| Übergangsprofils   | ruckbegrenzt                              | DYNPROF (Achsindex, 2)                |
| einer Achse        | parabolisch                               | DYNPROF (Achsindex, 3)                |
|                    |                                           | · · · · · · · · · · · · · · · · · · · |

Tabelle 10: Bewegungsattribute FIG 10

| Bewegungsfunktionen   | s= Slaveposition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Funktionsattribut(Parameterliste)                                                                                                                  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | φ =Masterpos. oder Zeitbasis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                    |
| Stillstand            | s=Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P0(Value)                                                                                                                                          |
| konstante Übersetzung | s=Value <sub>2</sub> *\psi+Value <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P1(Value <sub>2)</sub> , Value <sub>1opi</sub> )                                                                                                   |
| Polynom 2. Grades     | $s=Value_3*\phi^2+Value_2*\phi+Value_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P2(Value3, Value2opt, Value1opt)                                                                                                                   |
| Polynom 3. Grades     | $s=Value_4*\phi^3+Value_3*\phi^2+Value_2*\phi+Value_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P3(Values, Valuesops, Valuezops, Valuezops)                                                                                                        |
| Polynom 4. Grades     | $s=Value_3*\phi^4+Value_4*\phi^3+Value_3*\phi^2+Value_2*\phi$<br>+Value <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P4(Values, Valuetopn Valuesopn Valuesopn Valuesopn)                                                                                                |
| Polynom 5. Grades     | $s = Value_6 * \phi^5 + Value_5 * \phi^4 + Value_4 * \phi^3 + Value_5 * \phi^2 + Value_5 * \phi + Va$ | PS(Value <sub>6</sub> , Value <sub>50pt</sub> , Value <sub>40pt</sub> , Value <sub>30pt</sub> , Value <sub>20pt</sub> ,<br>Value <sub>10pt</sub> ) |
| einfache Sinuslinie   | $s = \frac{1}{2} \Big[ 1 - \cos \Big( Value \cdot \phi \cdot \pi \Big) \Big]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SO(Value)                                                                                                                                          |
| geneigte Sinuslinie   | $s = Value_1 \cdot \phi - \frac{1}{2\pi} \left[ 1 - \sin\left(Value_2 \cdot \phi \cdot 2\pi\right) \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $S1(Value_2, Value_1)$                                                                                                                             |

Tabelle 11: Bewegungsfunktionen

Nummer: Int. Cl.<sup>6</sup>: Offenlegungstag: **DE 197 40 550 A1 G 05 B 19/04**16. April 1998

| Deklarations-<br>richtung | Deklaration                                                                                     | Bemerkungen/ Verweise                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Konfiguration             | CONFIGURATION Name: END CONFIGURATION                                                           | entspricht dem Gesamtsystem                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| globale Variable          | VAR_GLOBAL END_VAR                                                                              | die Deklaration von globalen Variablen einer<br>Ressource benötigt die Verbindung zu einer<br>Modulvariablen                                                                                                                                                                                                                                                                                                                                                                           |
| Ressource                 | RESSOURCE Name: ON Hardware ID END RESSOURCE                                                    | eine Ressource faßt Softwaremodule zusammen,<br>die unter einer gemeinsamen Hardware laufen                                                                                                                                                                                                                                                                                                                                                                                            |
| Modul                     | DEFMODUL Name: ON Modul_Bezeichner modulvar: ressourcevar; modulvar: direkt. Adresse; END_MODUL | <ul> <li>das Bestimmungszeichen ON wird zur Festlegung des Modultypes (Modul_Bezeichner) auf logischer Ebene verwendet</li> <li>im Entwicklungssystem ist eine Beschreibungsdatei enthalten, die jedem Modul_Bezeichner ein funktional strukturiertes Software-Modul zuordnet</li> <li>innerhalb des Deklarationsrumpfes von Modulen werden die Modulvariablen mit Betriebsmitteln (direkte Adressierung) und globalen Variablen der Ressource oder Konfiguration verknüpft</li> </ul> |

Tabelle 12: Konfigurationselemente

## **FIG 12**

| Deklaration                           | Allgemeine Deklaration                                                 |
|---------------------------------------|------------------------------------------------------------------------|
| globale Variable<br>einer Ressource   | VAR_GLOBAL Name: Modulname. Variablenname: Typ; END VAR                |
| globale Variable der<br>Konfiguration | VAR_GLOBAL Name: Ressourcename. Modulname. Variablenname: Typ; END_VAR |

Tabelle 12: Deklaration von globalen Variablen

| Allgemeine Deklaration                                                               | Bemerkungen                                                                                                                                                                               |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VAR_ACCESS Name: Ressourcename_Modulname. Variablenname: Typ: Zugriff; END_VAR       | <ul> <li>Zugriff auf Ausgangsvariable eines Moduls</li> <li>Typ: elementarer oder abgeleiteter         Datentyp.     </li> <li>Zugriff: READ_WRITE oder         READ_ONLY     </li> </ul> |
| VAR_ACCESS Name: Ressourcename. Variablenname: Typ: Zugriff; END_VAR                 | Zugriff auf globale Variable einer Ressource                                                                                                                                              |
| VAR_ACCESS Name: Ressourcename. Modulname. % log. Speicherort: Typ: Zugriff; END_VAR | Zugriff auf direkt dargestellte Variable     log. Speicherort                                                                                                                             |

## Tabelle 14:Deklaration von Zugriffspfaden

## **FIG 14**

| Kommuni-<br>kationsart                                  | Funktionsbaustein-Aufruf                        | Bemerkungen                                                                                                                                                                                                                                                     |
|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gerätestatus                                            | status :=<br>STATUS(Gerät)                      | <ul> <li>einem Programm wird der Status des benannten Gerätes (Gerät) nach Aufforderung zur Verfügung gestellt</li> <li>Kommunikationspartner wird über Gerät angegeben</li> <li>der Status wird als Wert vom Typ: INT zurückgegeben</li> </ul>                 |
| Daten                                                   | wert:=READ                                      | - ein Programm fordert Daten ab                                                                                                                                                                                                                                 |
| lesen                                                   | (Variablenname, Gerät)                          | <ul> <li>der Zugriff kann von dem Modul, von dem die Daten gelesen werden, kontrolliert werden</li> <li>wert ist lokale Variable, die den Inhalt der gelesenen Variablen zugewiesen bekommt, und muß den selben Typ besitzen wie Variablenbezeichner</li> </ul> |
| Daten<br>schreiben                                      | WRITE (Variablenname,<br>Wert, Gerät)           | <ul> <li>von einem Programm werden die Werte in angebene Variable des Gerätes geschrieben</li> <li>wert muß den gleichen Datentyp wie Variablenname besitzen</li> </ul>                                                                                         |
| Program-<br>miertes<br>Melden<br>(nicht<br>quittierbar) | NOTIFY (Ereignis,<br>Meldung, Gerät)            | <ul> <li>bei Eintreten des definierten Ereignisses         (Ereignis) können Meldungen (Meldung) an das         angegebene Gerät (Gerät) ausgegeben werden</li> </ul>                                                                                           |
| quittierbar                                             | ALARM(Ereignis,<br>Meldung, Gerät,<br>Quittung) | - ausgegebene Meldung muß quittiert werden (Quittung)                                                                                                                                                                                                           |

Tabelle 15: Kommunikationfunktion





802 016/694



rig 178



Fig 17b



**Fig 18** 

