Bank Loan Case Study Final Project - 2

PROJECT DESCRIPTION:

In this project i.e. Bank Loan Case Study, I provided support in the effort to perform an exploratory data analysis (EDA) for a bank. In order to conduct the analysis and identify the answer to the problem statement, we will take into consideration the various forms of EDA (univariate, bivariate, and multivariate analysis) in this section., and by giving the data to the development teams. I am utilising a variety of Python queries during this process to obtain the relevant data.

APPROACH:

I initially examined the objective to find the relevant data that the team needed and then I imported the data into Jupyter Notebook and using different queries to find necessary solutions for the bank. By using the below Steps for EDA

- Understanding the datasets provided by the bank.
- Checking for missing data.
- Using the appropriate approach (mean, median or mode) to impute the missing data.

 Dropping columns with maximum null values.
- Identifying the outliers in the dataset.
- Drawing data summary such as plotting graphs, heatmaps, etc.
- Providing insights for the bank based on my understandings.

TECH-STACK USED:

I carried out the project using Jupyter Notebook.

INSIGHTS:

• I identify and clarify the main objective and by using Jupyter Notebook, I learn more about real-time analytics and obtain insights by applying various python queries on this project. I identified the bank database info that was provided. I gained various insights into the real time bank loan case analysis.

RESULTS:

By the completion of the project, I had improved my Excel skills, learned how to work with real-world data and experienced how to approach and resolve problems.

Based on the data provided, I was able to achieve a number of results which are listed below.

1. Understanding the datasets.

Importing and checking the datasets provided by the bank.

2. Cleaning the data:

Counting the number of missing values in each column of the application data.csv dataset.

calculate the percentage of missing values in each column

```
missing_data = app_data.isnull().mean() * 100
```

filter the columns with more than 50% missing values

```
columns_to_drop = missing_data[missing_data > 50].sort_values(ascending=False)
```

Some columns contains missing data more then 50% therefore I decided to drop these columns.

```
print(columns_to_drop)
COMMONAREA_AVG
                            69.872297
COMMONAREA_MEDI
                            69.872297
COMMONAREA MODE
                            69.872297
NONLIVINGAPARTMENTS MEDI
                            69.432963
NONLIVINGAPARTMENTS AVG
                            69.432963
NONLIVINGAPARTMENTS_MODE
                            69.432963
FONDKAPREMONT MODE
                            68.386172
LIVINGAPARTMENTS_MEDI
                            68.354953
LIVINGAPARTMENTS_AVG
                            68.354953
LIVINGAPARTMENTS MODE
                            68.354953
FLOORSMIN MODE
                            67.848630
FLOORSMIN_MEDI
                            67.848630
FLOORSMIN_AVG
                            67.848630
YEARS_BUILD_MODE
                            66.497784
YEARS_BUILD_AVG
                            66.497784
YEARS_BUILD_MEDI
                            66.497784
OWN_CAR_AGE
                            65.990810
LANDAREA_AVG
                            59.376738
LANDAREA MEDI
                            59.376738
```

```
# Dropping the columns with huge missing data
app_data.drop(columns= columns_to_drop.index ,inplace=True)
```

Result: Columns reduced from 122 numbers to 81 numbers.

Checking the missing values in data frame.

app_data.isnull().sum()	
SK_ID_CURR	0
TARGET	0
NAME_CONTRACT_TYPE	0
CODE_GENDER	ø
FLAG_OWN_CAR	0
FLAG_OWN_REALTY	0
CNT_CHILDREN	0
AMT_INCOME_TOTAL	0
AMT_CREDIT	0
AMT_ANNUITY	12
AMT_GOODS_PRICE	278
NAME_TYPE_SUITE	1292
NAME_INCOME_TYPE	ø
NAME_EDUCATION_TYPE	0
NAME_FAMILY_STATUS	0
NAME_HOUSING_TYPE	0
REGION_POPULATION_RELATIVE	ø
DAYS_BIRTH	ø
DAYS_EMPLOYED	ø
DAYS_REGISTRATION	ø
DAYS_ID_PUBLISH	ø
FLAG_MOBIL	ø
FLAG_EMP_PHONE	0
FLAG WORK PHONE	0

Checking the outliers by plotting a Box plot for AMT_ANNUITY.

sns.boxplot(app_data.AMT_ANNUITY)

plt.show()

AMT_ANNUITY have a lot of outliers therefore we fill the missing values using median median_value = app_data['AMT_ANNUITY'].median()

Result: 24903.0

median value

app data['AMT ANNUITY'] = app data['AMT ANNUITY'].fillna(median value)

Checking the outliers by plotting a Box plot for AMT_GOODS_PRICE
 sns.boxplot(app_data.AMT_GOODS_PRICE)

plt.show()

AMT_GOODS_PRICE have a lot of outliers so we fill the missing values using median.

median_value = app_data['AMT_GOODS_PRICE'].median()
median_value

Result: 450000.0

app_data['AMT_GOODS_PRICE'] =
app_data['AMT_GOODS_PRICE'].fillna(median_value)

- NAME_TYPE_SUITE is a categorical value, using mode ('unaccompanied') to fill the null values.
- Checking the outliers by plotting a Box plot for CNT FAM MEMBERS.

sns.boxplot(app data.CNT FAM MEMBERS)

CNT_FAM_MEMBERS have a lot of outliers therefore we fill the missing values using median

median_value = app_data['CNT_FAM_MEMBERS '].median()
median_value

Result: 2.0

app_data['CNT_FAM_MEMBERS']=
app data['CNT FAM MEMBERS'].fillna(median value)

Checking percentages of each category for OCCUPATION_TYPE

app data['OCCUPATION TYPE'].value counts(normalize=True)*100

Laborers	26.139636
Sales staff	15.205570
Core staff	13.058924
Managers	10.122679
Drivers	8.811576
High skill tech staff	5.390299
Accountants	4.648067
Medicine staff	4.043672
Security staff	3.183498
Cooking staff	2.816408

Cleaning staff	2.203960
Private service staff	1.256158
Low-skill Laborers	0.991379
Waiters/barmen staff	0.638499
Secretaries	0.618132
Realty agents	0.355722
HR staff	0.266673
IT staff	0.249147
Name: OCCUPATION_TYPE,	dtype: float64

• Finding null values and filling the null value with 'unknown'.

```
app data['OCCUPATION TYPE'].isnull().sum()
```

```
Result: 96391
```

```
app_data['OCCUPATION_TYPE']=
app_data['OCCUPATION_TYPE'].fillna('Unknown')
app_data['OCCUPATION_TYPE'].value_counts(normalize=True)*100
```

Unknown	31.345545
Laborers	17.946025
Sales staff	10.439301
Core staff	8.965533
Managers	6.949670
Drivers	6.049540
High skill tech staff	3.700681
Accountants	3.191105
Medicine staff	2.776161
Security staff	2.185613
Cooking staff	1.933589
Cleaning staff	1.513117
Private service staff	0.862408
Low-skill Laborers	0.680626
Waiters/barmen staff	0.438358
Secretaries	0.424375
Realty agents	0.244219
HR staff	0.183083
IT staff	0.171051
Name: OCCUPATION_TYPE,	dtype: float64

Plotting a chart of the different categories of OCCUPATION TYPE

```
occupation_counts = app_data['OCCUPATION_TYPE'].value_counts()
# Create a bar chart
fig, ax = plt.subplots()
ax.bar(occupation_counts.index, occupation_counts.values)
# Set chart title and axis labels
ax.set_title('Counts of Occupations')
ax.set_xlabel('Occupation Type')
ax.set_ylabel('Count')
# Rotate x-axis labels for better visibility
plt.xticks(rotation=90)
plt.show()
```


Checking client's SOCIAL_CIRCLE

app_data[['OBS_30_CNT_SOCIAL_CIRCLE','DEF_30_CNT_SOCIAL_CIRCLE', 'OBS 60 CNT SOCIAL CIRCLE','DEF 60 CNT SOCIAL CIRCLE']].describe()

	OBS_30_CNT_SOCIAL_CIRCLE	DEF_30_CNT_SOCIAL_CIRCLE	$OBS_60_CNT_SOCIAL_CIRCLE$	DEF_60_CNT_SOCIAL_CIRCLE
count	306490.000000	306490.000000	306490.000000	306490.000000
mean	1.422245	0.143421	1.405292	0.100049
std	2.400989	0.446698	2.379803	0.362291
min	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000
50%	0.000000	0.000000	0.000000	0.000000
75%	2.000000	0.000000	2.000000	0.000000
max	348.000000	34.000000	344.000000	24.000000

Replacing the missing values with median values for the social surroundings

#Making a list of all variables pertaining to client's social surroundings

SOCIAL CIRCLE =

['OBS_30_CNT_SOCIAL_CIRCLE','DEF_30_CNT_SOCIAL_CIRCLE', 'OBS_60_CNT_SOCIAL_CIRCLE','DEF_60_CNT_SOCIAL_CIRCLE']

#Replacing the missing values

app data.fillna(app data[SOCIAL CIRCLE].median(),inplace = True)

For EXT_SOURCE

pd.set_option('display.max_rows', 10)

#Since EXT SOURCE 1 is already dropped

app_data[['EXT_SOURCE_2','EXT_SOURCE_3']]

	EXT_SOURCE_2	EXT_SOURCE_3
0	0.262949	0.139376
1	0.622246	NaN
2	0.555912	0.729567
3	0.650442	NaN
4	0.322738	NaN
	Sin	542
307506	0.681632	NaN
307507	0.115992	NaN
307508	0.535722	0.218859
307509	0.514163	0.661024
307510	0.708569	0.113922

307511 rows × 2 columns

app_data[['EXT_SOURCE_2','EXT_SOURCE_3']].describe()

	EXT_SOURCE_2	EXT_SOURCE_3
count	3.068510e+05	246546.000000
mean	5.143927e-01	0.510853
std	1.910602e-01	0.194844
min	8.173617e-08	0.000527
25%	3.924574e-01	0.370650
50%	5.659614e-01	0.535276
75%	6.636171e-01	0.669057
max	8.549997e-01	0.896010

#Replacing the missing values with median values for EXT_SOURCE_2

median_value = app_data['EXT_SOURCE_2'].median()

median_value

Result: 0.5659614260608526

app_data['EXT_SOURCE_2'] = app_data['EXT_SOURCE_2'].fillna(median_value)

```
#Replacing the missing values with median values for EXT_SOURCE_2
median_value = app_data['EXT_SOURCE_3'].median()
median_value
```

Result: 0.5352762504724826

:app_data['EXT_SOURCE_3'] = app_data['EXT_SOURCE_3'].fillna(median_value)

Statistics for DAYS_LAST_PHONE_CHANGE

app data.DAYS LAST PHONE CHANGE.describe()

```
307510.000000
count
mean:
         -962.858788
std
           826.808487
min
        -4292.000000
25%
        -1570.000000
50%
          -757.000000
75%
         -274.000000
max
             0.000000
Name: DAYS_LAST_PHONE_CHANGE, dtype: float64
```

app data['DAYS_LAST_PHONE_CHANGE'].value_counts(normalize=True)

```
0.0
          0.122507
-1.0
          0.009144
-2.0
          0.007538
-3.0
          0.005733
-4.0
          0.004179
-4051.0
          0.000003
-3593.0
         0.000003
-3622.0
          0.000003
-3570.0
          0.000003
-3538.0
          0.000003
Name: DAYS LAST PHONE CHANGE, Length: 3773, dtype: float64
```

using mode value = 0 (most occurring) to fill the missing data

```
app_data['DAYS_LAST_PHONE_CHANGE'] =
app_data['DAYS_LAST_PHONE_CHANGE'].fillna(0)
```

For Previous Application data

prev app data.count()median value

SK_ID_PREV	1670214
SK_ID_CURR	1670214
NAME_CONTRACT_TYPE	1670214
AMT_ANNUITY	1297979
AMT_APPLICATION	1670214
DAYS_FIRST_DUE	997149
DAYS_LAST_DUE_1ST_VERSION	997149
DAYS_LAST_DUE	997149
DAYS TERMINATION	997149
NFLAG_INSURED_ON_APPROVAL	997149
Length: 37, dtype: int64	

prev app data.isnull().sum()

Checking missing value percentage for previous application data

missing_percentage = prev_app_data.isnull().sum() / len(prev_app_data) * 100 print(missing_percentage.sort_values(ascending=True))

SK_ID_PREV	0.000000	NAME_CONTRACT_TYPE	0.000000
NAME_YIELD_GROUP	0.000000	SK_ID_CURR	0.000000
NAME_SELLER_INDUSTRY	0.000000	AMT_CREDIT	0.000060
SELLERPLACE_AREA	0.000000	PRODUCT_COMBINATION	0.020716
CHANNEL_TYPE	0.000000	CNT_PAYMENT	22.286366
NAME_PRODUCT_TYPE	0.000000	AMT_ANNUITY	22.286665
NAME_PORTFOLIO	0.000000	AMT_GOODS_PRICE	23.081773
NAME_GOODS_CATEGORY	0.000000	DAYS_LAST_DUE	40.298129
NAME_CLIENT_TYPE	0.000000	DAYS_LAST_DUE_1ST_VERSION	40.298129
CODE_REJECT_REASON	0.000000	DAYS_FIRST_DUE	40.298129
DAYS_DECISION	0.000000	DAYS_FIRST_DRAWING	40.298129
NAME_CONTRACT_STATUS	0.000000	NFLAG_INSURED_ON_APPROVAL	40.298129
NAME_CASH_LOAN_PURPOSE	0.000000	DAYS_TERMINATION	40.298129
NAME_PAYMENT_TYPE	0.000000	NAME_TYPE_SUITE	49.119754
AMT_APPLICATION	0.000000	AMT_DOWN_PAYMENT	53.636480
NFLAG_LAST_APPL_IN_DAY	0.000000	RATE_DOWN_PAYMENT	53.636480
FLAG_LAST_APPL_PER_CONTRACT	0.000000	RATE_INTEREST_PRIMARY	99.643698
HOUR_APPR_PROCESS_START	0.000000	RATE_INTEREST_PRIVILEGED	99.643698
WEEKDAY_APPR_PROCESS_START	0.000000	dtype: float64	

Dropping columns with missing value more then 50%

```
col_to_drop2 = missing_percentage[missing_percentage > 50].index.tolist()
print(col_to_drop2)
```

```
Result: ['AMT_DOWN_PAYMENT', 'RATE_DOWN_PAYMENT', 'RATE_INTEREST_PRIMARY', 'RATE_INTEREST_PRIVILEGED']

prev_app_data.drop(columns= col_to_drop2 ,inplace=True)
```

	SK_ID_PREV	SK_ID_CURR	NAME_CONTRACT_TYPE	AMT_ANNUITY	AMT_APPLICATION	AMT_CREDIT	AMT_GOODS_PRICE	WEEKDAY_APPR_PROCESS_START
0	2030495	271877	Consumer loans	1730.430	17145.0	17145.0	17145.0	SATURDAY
1	2802425	108129	Cash loans	25188.615	607500.0	679671.0	607500.0	THURSDAY
2	2523466	122040	Cash loans	15060.735	112500.0	136444.5	112500.0	TUESDAY
3	2819243	176158	Cash loans	47041.335	450000.0	470790.0	450000.0	MONDAY
4	1784265	202054	Cash loans	31924.395	337500.0	404055.0	337500.0	THURSDAY

Replacing missing values

```
prev_app_data.NAME_TYPE_SUITE.value_counts()
```

Unaccompanied 508970
Family 213263
Spouse, partner 67069
Children 31566
Other_B 17624
Other_A 9077
Group of people 2240

Name: NAME_TYPE_SUITE, dtype: int64

prev_app_data['NAME_TYPE_SUITE'] =

prev_app_data['NAME_TYPE_SUITE'].fillna('Unaccompanied')

prev_app_data.NAME_TYPE_SUITE.value counts()

Unaccompanied 1329375
Family 213263
Spouse, partner 67069
Children 31566
Other_B 17624
Other_A 9077
Group of people 2240

Name: NAME_TYPE_SUITE, dtype: int64

Filling the missing values with mode for PRODUCT_COMBINATION

```
prev_app_data['PRODUCT_COMBINATION'] =
prev_app_data.PRODUCT_COMBINATION.fillna(prev_app_data.PRODUCT_COMB
INATION.mode()[0])
```

Replacing the null values with median

```
prev_app_data["AMT_GOODS_PRICE"].fillna(prev_app_data["AMT_GOODS_PRICE"].me dian(), inplace=True)
prev_app_data["AMT_ANNUITY"].fillna(prev_app_data["AMT_ANNUITY"].median(), inplace=True)
prev_app_data["CNT_PAYMENT"].fillna(prev_app_data["CNT_PAYMENT"].median(), inplace=True)
```

Part 2

Identifying outliers

sns.boxplot(app_data.AMT_ANNUITY)

plt.show()

sns.boxplot(app data.AMT GOODS PRICE)

plt.show()

sns.boxplot(app_data.CNT_FAM_MEMBERS)

plt.show()

sns.boxplot(app data.AMT CREDIT)

plt.show()

Distribution of bin for AMT_INCOME

Define the bin labels

```
bin_labels = ['0-50K', '50K-100K', '100K-150K', '150K-200K', '200K-250K', '250K-300K', '300K-350K', '350K-400K', '400K-450K', '450K-500K', '>500K']
```

Perform the binning using pd.cut

```
app_data['Income Bin'] = pd.cut(app_data['AMT_INCOME_TOTAL'], bins=bin_edges,
labels=bin_labels)
```

Calculate the frequency count for each bin

```
bin counts = app data['Income Bin'].value counts().sort index()
```

Plot a bar chart of the bin frequencies

```
bin_counts.plot(kind='bar', figsize=(10, 6))
plt.title('Distribution of AMT_INCOME')
plt.xlabel('Income Range')
plt.ylabel('Frequency')
plt.xticks(rotation=45)
plt.show()
```


Distribution of CREDIT_AMOUNT

create bins

bins = range(0, int(app_data['AMT_CREDIT'].max()), 100000)

create histogram

plt.hist(app_data['AMT_CREDIT'], bins=bins, edgecolor='black')

add labels and title

plt.xlabel('Credit Amount')

plt.ylabel('Frequency')

plt.title('Distribution of Credit Amount')

Identifying data imbalance

Count the number of observations for each target class

target counts = app data['TARGET'].value counts()

Calculate the ratio of data imbalance

```
imbalance_ratio = target_counts[1] / target_counts[0]
```

print("Ratio of data imbalance: {:.2f}".format(imbalance ratio

Ratio of data imbalance: 0.09

target_counts = app_data['TARGET'].value_counts()

print(target_counts)

0 - 282686

1 - 24825

Name: TARGET, dtype: int64

Calculate the ratio of target variable

target ratio = app data["TARGET"].value counts(normalize=True)

plot a bar chart of the ratio

fig, ax = plt.subplots()

ax.bar(target_ratio.index.astype(str), target_ratio.values*100, color=['red', 'green'])

ax.set_title("Data Imbalance in Target Variable")

ax.set xlabel("Target")

ax.set ylabel("Percentage")

 $ax.set_ylim([0,100])$

plt.show()

Univariate Analysis

```
# Merge datasets using SK_ID_CURR as the key

merged_data = pd.merge(app_data[['SK_ID_CURR', 'TARGET']],

prev_app_data[['SK_ID_CURR', 'WEEKDAY_APPR_PROCESS_START']],

on='SK_ID_CURR', how='inner')
```

Group by weekday and target, and count the number of occurrences in each group grouped_data = merged_data.groupby(['WEEKDAY_APPR_PROCESS_START', 'TARGET']).size().reset_index(name='count')

Pivot the table to have weekday as columns and target as index pivoted_data = grouped_data.pivot(index='TARGET', columns='WEEKDAY APPR PROCESS START', values='count')

Plot the heatmap

sns.heatmap(pivoted_data, annot=True, fmt='g')

Graphical representations of clients data

```
import seaborn as sns
columns = ['NAME_FAMILY_STATUS', 'NAME_EDUCATION_TYPE',
    'NAME_HOUSING_TYPE', 'NAME_INCOME_TYPE', 'OCCUPATION_TYPE']
for col in columns:
    plt.figure(figsize=(10,6))
    plt.title(f''Count of Defaulters by {col}'')
    sns.heatmap(app_data.pivot_table(index=col, columns='TARGET',
    values='SK_ID_CURR', aggfunc='count', fill_value=0), annot=True, fmt='g',
    cmap='Blues')
    plt.show()
```

Family status

Housing Type

Occupation Type

Based on the analysis, we can conclude the following insights:

- Clients who have payment difficulties tend to have lower credit amounts and lower incomes compared to those who do not have payment difficulties.
- Clients who own a car or real estate are less likely to have payment difficulties compared to those who do not own these assets.
- Clients who have a higher family size tend to have a higher chance of payment difficulties.
- Clients who have lower education levels tend to have a higher chance of payment difficulties.
- Clients who are in the "Laborers" or "Low-skill Laborers" occupation tend to have a higher chance of payment difficulties.
- Clients who have a higher number of past loans or applications tend to have a higher chance of payment difficulties.
- Clients who have a lower age tend to have a higher chance of payment difficulties.
- Clients who apply for cash loans or revolving loans tend to have a higher chance of
 payment difficulties compared to those who apply for consumer loans or loans for specific
 purposes.

With the information obtained from the provided data, the banks can utilise these insights to evaluate and manage risk when deciding whether to grant loans to clients.