1 21st of September 2018 — A. Frangioni

1.1 Mathematical background for optimization problems

Definition 1.1 (Minimum problem). Let X be a set, called **feasible region** and let $f: X \to \mathbb{R}$ be any function, called **objective function** we call **problem** the following

$$(P) f_* = \min\{f(x) : x \in X\}$$

Definition 1.2 (Feasible solution). Let $x \in F$ be a solution of the minumim problem in which the domain is a superset of $X \subset F$. We say that x is a **feasible solution** if $x \in X$. On the other hand, x is **unfeasible** if $x \in F \setminus X$.

Definition 1.3 (Optimal solution). Under the same hypothesis of the above definition, we define x_* such that $f(x_*) = f_*$ an **optimal solution**, where $f_* \leq f(x) \, \forall x \in X, \, \forall v > f_* \, \exists \, x \in X \, s.t. \, f(x) < v$.

It is possible to find problems where there is no optimal solution at all.

Example 1.1. There are two cases in which it is not possible to find an optimal solution:

- 1. The domain is empty, which may be not trivial to prove, since it is an NP-hard problem sometimes;
- 2. We want to find the minimum of the objective function but it is unbounded below $(\forall M \exists x_M \in X \text{ s.t. } f(x_M) \leq M)$. On the other hand, we need to maximize the function, but it is unbounded above.

We can now rewrite the problem of solving an optimization problem as:

- 1. Finding x_* and proving it is optimal
- 2. Or proving $X = \emptyset$
- 3. Or constructively prove $\forall M \exists x_M \in X \text{ s.t. } f(x_M) \leq M$.

Most of the times we consider optimal a solution which is close to the true optimal value, modulo some error.

Definition 1.4 (Absolute error). We call **absolute error** the gap between the real value and the one we obtained. Formally,

$$f(\bar{x}) - f_* \le \varepsilon$$

Definition 1.5 (Relative error). We define as **relative error** the absolute error, normalized by the true value of the function

$$(f(\bar{x}) - f_*)/|f_*| \le \varepsilon$$

Let us consider an iterative algorithm that moves towards the optimum. It may happen that the function decreases and decreases along a certain direction but its non-continuity leads to the impossibility of reaching the optimum. As an example, let us take the following

$$f(x) = \begin{cases} x & \text{if } x > 0\\ 1 & \text{if } x = 0 \end{cases}$$

Definition 1.6 (Totally ordered set). We say that set X is **totally ordered** if $\forall x, y \in X$, either $f(x) \leq f(y)$ or $f(y) \leq f(x)$.

Definition 1.7 (Infima and suprema). Given a totally ordered set R and one of its subsets $(say S \subseteq R)$

s is the **infimum** of $S \Leftrightarrow \underline{s} = \inf S \quad \Leftrightarrow \quad \underline{s} \leq s \ \forall s \in S \ \land \ \forall t > \underline{s} \ \exists \ s \in S \ s.t. \ s \leq t$

 $s \ \textit{is the \bf supremum} \ \textit{of} \ S \Leftrightarrow \bar{s} = \sup S \quad \Leftrightarrow \quad \bar{s} \geq s \ \forall s \in S \ \land \ \forall t < \bar{s} \ \exists \ s \in S \ \textit{s.t.} \ s \geq t$

What happens if we have more than one objective function? We are provided with two tools in order to reduce them into one:

SCALARIZATION: using a linear combination of the two functions: $f(x) = \alpha f_1(x) + \beta f_2(x)$;

BUDGETING: $f(x) = f_1(x)$, $X := X \cup \{f_2(x) \le b\}$, which intuitively corresponds to taking into account only one objective function, provided that the values of the othr functions are not too high.

Definition 1.8 (Extended real). In the case of unbounded functions the value of infima or suprema are ∞ , and we call **extended reals** $\overline{\mathbb{R}} = -\infty \cup \mathbb{R} \cup +\infty$.

We are interested in studying sequences, because iterative methods start from a certain point and move towards the optimal, hopefully.

Definition 1.9 (Limit). Given a sequence $\{x_i\}$ the **limit** for $i \to \infty$ is defined as

$$\lim_{i \to \infty} v_i = v \iff \forall \varepsilon > 0 \; \exists \; h \; s.t. \; |v_i - v| \le \varepsilon \; \forall i \ge h$$

It may happen that a sequence has or does not have a limit. For example $\{\frac{1}{n}\}$ has limit 0 for $n \to +\infty$, while $\{(-1)^n\}$ does not.

Fact 1.1. Let us be given a monotone sequence, then the sequence does have a limit.

Notice that given a sequence either it is monotone or it can be "split" into two monotone sequences (for example $\{(-1)^n\}$ can be transformed into $\{(-1)^{2n}\}$ and $\{(-1)^{2n+1}\}$ and these two sequences are both monotone).

Definition 1.10 (Euclidean vector space). We call Euclidean space

$$\mathbb{R}^n := \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} : x_i \in \mathbb{R}, i = 1, \dots, n \right\}$$

Equivalently, we can characterize the Euclinean space as Cartesian product of \mathbb{R} n times: $\mathbb{R}^n = \mathbb{R} \times \mathbb{R} \times \dots \mathbb{R}$.

The main operations on elements of the Euclidean space (vectors) are:

SUM:
$$x + y := \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

SCALAR MULTIPLICATION:
$$\alpha x = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

In order to be able to compute limits in a vector space we need to use norms (see ??).

Fact 1.2. The norms on a vector space have the following properties:

- 1. $||x|| \ge 0$ and $\forall x \in \mathbb{R}^n$, $||x|| = 0 \iff x = 0$;
- 2. $\|\alpha x\| = |\alpha| \|x\|, \ \forall x \in \mathbb{R}^n, \ \alpha \in \mathbb{R};$
- 3. $||x+y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{R}^n$ (triangle inequality).

Definition 1.11 (Ball). We term **ball** centered in \bar{x} and having ε as radius as the set of points that are close enough to $x \in \mathbb{R}^n$: $B(\bar{x}, \varepsilon) = \{x \in \mathbb{R}^n : ||x - \bar{x}|| \le \varepsilon\}.$

In Figure 1.1 we may observe the different shapes of the same ball varying the value of p in the p-norm.

Definition 1.12 (Scalar product). Let $x, y \in \mathbb{R}^n$ we define the **scalar product** between these two vectors

$$\langle x, y \rangle := y^T x = \sum_{i=1}^n x_i y_i = x_1 y_1 + \dots + x_n y_n$$

Fact 1.3. A scalar product has the following properties:

1.
$$\langle x, y \rangle = \langle y, x \rangle \quad \forall x, y \in \mathbb{R}^n \ (symmetry)$$

FIGURE 1.1: The shapes of balls centered in the origin of radius 1 varying the value of p.

$$2. < x, x \ge 0, \ \forall x \in \mathbb{R}^n, < x, x \ge 0 \iff x = 0;$$

$$\beta$$
. $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle, \ \forall x \in \mathbb{R}^n, \alpha \in \mathbb{R};$

4.
$$\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle, \ \forall x, y, z \in \mathbb{R}^n$$
.

Fact 1.4 (Cauchy-Schwartz inequality). Let $x, y \in \mathbb{R}^n$. The following holds:

$$|\langle x, y \rangle|^2 \le \langle x, x \rangle < y, y \rangle \equiv |\langle x, y \rangle| \le ||x|| \, ||y||, \, \forall x, y \in \mathbb{R}^n$$

An important characterization of the scalar product is the one that uses angles:

 $< x,y> = \|x\| \, \|y\| \cos \theta$: $x\perp y \iff < x,y> = 0$ and $< x,y> > 0 \iff$ "x and y point in the same direction"

We have now all the tools to define the notion of limit of a sequence in \mathbb{R}^n .

Definition 1.13 (Limit of a sequence in the Euclidean space). Let $\{x_i\} \subset \mathbb{R}^n$ be a sequence in \mathbb{R}^n . The **limit** of $\{x_i\}$ for $i \to +\infty$ is the following:

$$\lim_{i \to \infty} x_i = x \equiv \{x_i\} \to x$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists h \; s.t. \; d(x_i, x) \le \varepsilon \; \forall i \ge h$$

$$\updownarrow$$

$$\forall \varepsilon > 0 \; \exists h \; s.t. \; x_i \in \mathcal{B}(x, \varepsilon) \; \forall i \ge h$$

$$\updownarrow$$

$$\lim_{i \to \infty} d(x_i, x) = 0$$