Final Assignment

Build a Personalized Online Course Recommender System with Machine Learning

R.G.B.Dhananjaya

Outline

Introduction and Background

• Exploratory Data Analysis

Content-based
 Recommender System
 using Unsupervised
 Learning

 Collaborative-filtering based Recommender
 System using Supervised learning

Conclusion

Appendix

Introduction

The AI Training Room is a global platform where learners can explore a wide range of technologies, including Machine Learning, AI, Data Science, Cloud, and App development. As the platform experiences rapid growth, with an expanding array of courses and an increasing number of learners, there is a need for an effective recommender system. The goal of this project is to develop a recommender system that assists learners in discovering relevant courses aligned with their interests, facilitating a personalized and effective learning journey.

Problem states and hypotheses

 The central challenge addressed in this project is the growing complexity for learners to identify courses aligning with their interests and establish a personalized learning trajectory amid the expanding volume of courses and learners. Our hypothesis posits that the development of a personalized recommender system, leveraging both course content and learners' historical interactions with courses, can enhance the discovery of courses matching individual interests and streamline the learning path. To achieve this, we aim to investigate and compare the efficacy of different unsupervised and supervised machine learning models, seeking to identify the most effective model for this specific task.

Exploratory Data Analysis

• Course counts per genre

Course enrollment distribution

- We have 233306 enrollments
- The histogram shows the enrolment distributions, e.g., how many users rated just 1 item or how many rated 10 items, etc.

20 most popular courses

 Used Pandas groupby() and size() methods on the item column to aggregate the rating count for each item, then use the sort_values() method to sort the course enrollment count, and use the slice method to get the top 20 courses.

TITLE	ENROLLS	ID
data privacy fundamentals	3624	DS0301EN
mapreduce and yarn	3670	BD0115EN
sql and relational databases 101	3697	DB0101EN
docker essentials a developer introduction	4480	CO0101EN
introduction to cloud	4983	CC0101EN
statistics 101	5015	ST0101EN
r for data science	5237	RP0101EN
build your own chatbot	5512	CB0103EN
deep learning 101	6323	ML0115EN
data visualization with python	6709	DV0101EN
blockchain essentials	6719	BC0101EN
data science hands on with open source tools	7199	DS0105EN
spark fundamentals	7551	BD0211EN
machine learning with python	7644	ML0101ENv3
data science methodology	7719	DS0103EN
data analysis with python	8303	DA0101EN
hadoop 101	10599	BD0111EN
big data 101	13291	BD0101EN
introduction to data science	14477	DS0101EN
python for data science	14936	PY0101EN

Content-based Recommender System using Unsupervised Learning

Flowchart of contentbased recommender system using user profile and course genres

Top-10 commonly recommended courses across all users

Course	Times recommended
TA0106EN	608
GPXX0IBEN	548
excourse22	547
excourse21	547
ML0122EN	544
excourse04	533
GPXX0TY1EN	533
excourse06	533
excourse31	524
excourse73	516

Evaluation results of user profilebased recommender system

 # The threshold can be fine-tuned to adjust the size of generated recommendations score_threshold = 10.0 Flowchart of contentbased recommender system using course similarity

Evaluation results of clustering-based recommender system

```
user in cluster 0 will be sugessted 3 courses as ['PY0101EN' 'CB0103EN' 'DA0101EN']
user in cluster 1 will be suggested 3 courses as ['DS0101EN' 'BD0101EN' 'PY0101EN']
user in cluster 2 will be suggested 3 courses as ['CO0301EN' 'CO0201EN' 'BC0101EN']
user in cluster 3 will be sugessted 3 courses as ['PY0101EN' 'ML0101ENv3' 'ML0115EN']
user in cluster 4 will be sugessted 3 courses as ['BD0111EN' 'BD0141EN' 'BD0115EN']
user in cluster 5 will be sugessted 3 courses as ['CB0103EN' 'DS0101EN' 'BD0101EN']
user in cluster 6 will be sugessted 3 courses as ['COO101EN' 'COO201EN' 'COO301EN']
user in cluster 7 will be sugessted 3 courses as []
user in cluster 8 will be sugessted 3 courses as ['COO101EN' 'PYO101EN' 'CCO101EN']
user in cluster 9 will be sugessted 3 courses as ['DS0101EN' 'RP0101EN' 'DS0103EN']
user in cluster 10 will be suggested 3 courses as ['COO101EN' 'LBO101ENv1' 'COO401EN']
user in cluster 11 will be sugessted 3 courses as ['RPO101EN' 'DSO101EN' 'DSO103EN']
```

Collaborative-filtering Recommender System using Supervised Learning Flowchart of KNN based recommend system

User-Item interaction matrix

	Machine Learning With Python	Machine Learning 101	Machine Learning Capstone	SQL with Python	Python 101
***		***			
1 user2	3.0	3.0	3.0	3.0	3.0
user3	2.0	3.0	3.0	2.0	
users user4	3.0	3.0	2.0	2.0	3.0
user5	2.0	3.0	3.0		
user6	3.0	3.0	?		3.0
***		***		***	

Predict the rating of user user6 to item Machine Learning Capstone

Flowchart of NMF based recommender system

Non-negative Matrix Factorization

User-item interaction matrix: A 10000 x 100

	item1		item100
user1			
user2	3.0	3.0	3.0
user3	2.0	2.0	-
user4	3.0	2.0	3.0
user5	2.0		-
user6	3.0		3.0

User matrix: **U** 10000 x 16

	feature1	 feature16
user1		
user2		
user3	***	 ***
user4	***	 ***
user6		

Item matrix: I 16 x 100

	item1	 item100
feature1		
feature2		
feature16		

Flowchart of Neural Network Embedding based recommender system

Explicit User and Item Feature Engineering

Visualization of the performance metric (such as RMSE) of different collaborative-filtering models built so far

