AI in videogames

Inteligencia Artificial en los Sistemas de Control Autónomo

Objectives

- Introduce the role of AI in videogames
- Describe the main AI methods used in videogames

Bibliography

Desarrollo de Videojuegos. Desarrollo de componentes. Capítulo 1. UCLM.

Table of Contents

Introduction

What is AI?

AI is about making computers able to perform the thinking tasks that humans and animals are capable of.

I. Millington, ``AI for games"

AI is a key component in any videogame: Emotional stimulus

- AI provides a challenge
- Hard enough to be a challenge ...
- ... easy enough to avoid frustration

AI in videogames aims to give fun

- Classical AI seeks optimal solutions
- AI in videogames optimizes fun: Realistic behavior

Basic concepts

Turing test

Turing test: Is a person able to distinguish between another person and an AI?

Turing test in videogames: Does an AI play like a human?

• Chess games, shooters, etc

Better AI with more computational resources

• Computational resources are limited

Basic concepts

Intelligence illusion

Balance between intelligence and computational resources

- Intelligence, in videogames, is subjective
- AI in videogames seeks intelligence illusion

Many naïve (yet very useful) techniques

- Modify NPC state: More life, stamina or speed
- Damage vs. impact point

Basic concepts

Complexity fallacy

Complex behaviors are better?

• Good AI matches the right behavior to the right algorithm

Study case: Pac-Mac

- Ghosts with two states: normal and frightened (FSM)
- In normal state ghosts moves in a straight line
- When finds a junction semi-randomly chooses a route
 - Blinky (red): Follows Pac-Man (no path-planning)
 - Pinky (pink): Goes to four tiles ahead Pac-Man
 - Inky (blue): Takes Pac-Man and Blinky's positions
 - Clyde (orange): Random

AI in videogames

Main AI applications

Main applications

- NPC control
- Path-planning (Demo)
- Search and planning

AI in videogames

Advanced AI applications

Advanced applications:

- NPC behavior learning
- Player modeling
- Games as AI benchmarks
- Procedural-content generation
- Computational narrative
- Believable agents
- AI-assisted game design

Model of AI

Overview

- Movement
- Decision making
- Strategy
- Infrastructure

Model of AI

Details

- Movement: Algorithms that turn decisions into motion
 - How to move from point A to point B?: Path-planning algorithms
- Decision making: What to do next?
 - Each NPC has a range of actions: Attacking, hiding, exploring, patroling, ...
 - Select the action
 - Implementation done with movement and animations
- Strategy: Team coordination
 - Group decision making ...
 - ... even though each individual makes its own decision
- Infrastructure: Support features
 - Perception, interfaces to animation and physics engine, etc
 - Resources management

Overview

Basic techniques

- Classic search algorithms
- Finite State Machines

Advanced techniques

- Agents
- Fuzzy logic
- Artificial Neural Networks
- Genetic Algorithms

AI techniques in videogames

Search algorithms (I)

Almost any problem in AI is a search problem

- Search the best path
- Search the best attack
- Search the best strategy
- Search the best move

Any AI search algorithm can be used

• A*, Minimax, Depth-first, Dijkstra, ...

The issue is to express the problem in terms of a search task

Search algorithms (II)

Finite State Machines (FSM) (I)

A FSM contains a set of states, transitions and triggering events that rules the transitions

Features:

- Easy and fast method
- Easy debugging
- Intuitive
- Flexible

Finite State Machines (FSM) (II)

Agents

Agent definition

An agent is an goal-oriented entity able to perceive its environment and act on it

Agent properties

- Autonomy
- Social skills
- Reactivity
- Proactivity

Related concepts: Learning and reasoning

Fuzzy logic (I)

Fuzzy logic

Fuzzy logic, in opposition to digital logic, considers different levels of truee values

Properties

- Closer to human reasoning
- A fact can be true and false
- Deals with imprecise linguistic terms

Fuzzy logic (II)

Application examples

Fun control

```
IF temperature IS very cold THEN stop fan
IF temperature IS cold THEN turn down fan
IF temperature IS normal THEN maintain level
IF temperature IS hot THEN speed up fan
```

Game control

IF distance IS [very small, small] AND enemy_strengh IS [low, regular] THEN attack

Artificial Neural Networks (I)

A neuron has a cell body ...

- ... a branching input structure (dendrite) and
- ... a branching output structure (axon)

Axons connect to dendrites via synapses

Artificial Neural Networks (II)

- a_j Normalized input ($0 \le a_j \le 1$)
- W_j Weight of input j ($0 \le W_j \le 1$)
- W₀ Bias
 - g Activation function

Neuron model

$$\alpha_i = g\left(\sum_{j=0}^n W_{j,i}\alpha_j\right)$$

Artificial Neural Networks (III)

Genetic Algorithms (I)

Large number of Evolutionary Algorithms

- There is no ``canonical" algorithm
- They all imitate biological evolution
- Stochastic search (interesting for videogames)

They use a population

• Each individual represents a (potential) solution

Population is modified

Mutation and crossover

Selection that imitates natural selection

• Based on a **fitness** function

Iterative process

Genetic Algorithms (II)

Possible basic algorithm initialization

(Demo)

