

Matemática Discreta

Adriana Padua Lovatte

Grafos e Árvores

- Grafos e Suas Representações
- Árvores e suas Representações
- Árvores de Decisão
- Códigos de Huffman

Definição: Uma **árvore** é um grafo conexo acíclico com um nó especial, denominado raiz da árvore.

OBS: caso não haja raiz a árvore é chamada de, **árvore sem**

raiz ou árvore livre.

Quantos caminhos existem entre quaisquer dois nós de uma árvore?

Dica: a árvore é conexa?

lembre-se que a árvore é acíclica!

Profundidade do nó: comprimento do caminho da raiz ao nó.

A raiz tem profundidade 0.

Profundidade da árvore: maior profundidade de um nó

Folha: nó sem filhos

Nós internos: nó que não são folhas

Floresta: conjunto de arvores desconexas

Árvore binária: com no máximo dois filhos cada nós. Árvore binária cheia

Árvore binária completa

Ex:

- Altura da árvore?
- Profundidade do nó D?
- Filhos de B?
- Filho a esquerda de C?
- Comprimento do caminho de D à I?

Aplicações:

Operações:

Ex: Monte a árvore para (2 + 3)-(y*2).

Representação de árvores:

Representação de árvores binárias:

	Filho	Filho
	esquerdo	direito
1	2	3
2	4	5
3	0	6
4	0	0
5	0	0
6	0	0

Algoritmo de Percurso em Árvore:

- Pré-ordem
- Ordem Simétrica
- Pós-ordem

Para análise, note que a própria definição de árvore e recursiva.

Algoritmo recursivo Pré-ordem

```
PRÉ-ORDEM (Árvore binária com raiz p)
Se \begin{subarray}{c} Se \begin{subarray}{c} Se \begin{subarray}{c} Faiz \neq nulo \end{subarray} então \\ visita p \\ Pré-Ordem(p. esquerda) \\ Pré-Ordem(p. direita) \\ fim do se \\ \end{subarray}
```

Note que o primeiro nó a ser visitado é a raiz

Algoritmo recursivo Ordem-Simétrica

```
EM-ORDEM (Árvore binária com raiz p)
Se \begin{subarray}{c} Se \begin{subarray}{c} Se \begin{subarray}{c} raiz \neq nulo \então \\ Em-Ordem(p.esquerda) \\ visita p \\ Em-Ordem(p.direita) \\ fim do se \end{subarray}
```

Primeiro é percorrido a sub-árvore da esquerda, depois a raiz e depois a sub-árvore da direita.

Algoritmo recursivo Pós-ordem

```
POS - ORDEM (Árvore binária com raiz p)
Se \ \textbf{raiz} \neq \textbf{nulo} \ então
Pos - Ordem(p. esquerda)
Pos - Ordem(p. direita)
visita \ p
fim \ do \ se
```

Note que o último nó a ser visitado é a raiz

Diga a sequência impressa pelo algoritmo de pré-ordem para a seguinte árvore.

Com a árvore desenhada escreva como ficaria a saída dos algoritmos de **Ordem-simétrica** e **Pós-Ordem**?

Ex: Escreva as saídas dos algoritmos de **Pré-Ordem**, **Ordem**-**simétrica** e **Pós-Ordem** para a seguinte árvore.

Resultados sobre Árvores:

- Prove que o número de arcos é sempre um a menos que o número de nós.
- Prove que, em qualquer árvore com n nós, o número total de extremidades de arcos é 2n – 2.

Prove que, em uma árvore binária cheia, o número total de nós é 2 h+1 - 1, onde h é a altura.

Lista Mínima de Exercícios

Seção 5.2: 4, 7, 9, 12, 14, 16, 33, 34, 39, 40, 42, 43, 48