Visão Computacional - Tech Challenge 4

Pós Tech em IA - FIAP

Augusto Vieira Favi - RM 355226

1. Introdução

Este documento apresenta o desenvolvimento de um sistema inovador de segurança que utiliza inteligência artificial para detectar objetos cortantes em tempo real através de câmeras de vigilância. O projeto nasceu da necessidade de tornar estabelecimentos comerciais mais seguros, oferecendo uma camada adicional de proteção através do monitoramento inteligente.

2. Desenvolvimento

A FIAP VisionGuard nos apresentou um desafio intrigante: desenvolver uma solução capaz de identificar objetos cortantes em tempo real através de câmeras de segurança.

Os principais desafios incluíam:

- Detectar objetos cortantes com alta precisão
- Minimizar falsos positivos
- Processar imagens em tempo real
- Criar um sistema confiável de alertas

Desenvolvi uma solução integrada que utiliza o modelo **YOLOv8**, conhecido por sua eficiência em detecção de objetos em tempo real. O sistema processa continuamente as imagens das câmeras de segurança e, quando detecta um objeto cortante, envia alertas imediatos por email com detalhes da ocorrência.

1. Sistema de Detecção

Nossa solução utiliza o YOLOv8 nano, treinado especificamente para reconhecer objetos cortantes. O modelo foi treinado com um dataset diversificado da comunidade Roboflow, contendo imagens de objetos cortantes em várias condições de iluminação e ângulos.

2. Processamento em Tempo Real

Implementamos um sistema robusto de processamento de vídeo que analisa as imagens das câmeras em tempo real, mantendo um bom equilíbrio entre precisão e velocidade de processamento.

3. Sistema de Alertas

Desenvolvemos um mecanismo inteligente de notificação que envia alertas por email quando objetos perigosos são detectados. O sistema inclui imagens do momento da detecção e informações relevantes sobre a ocorrência.

DATASET

Utilizamos um dataset especializado contendo imagens de objetos cortantes em diversas situações. Isso garantiu que nosso modelo fosse capaz de reconhecer estes objetos em diferentes condições reais.

TREINAMENTO

O treinamento foi realizado com parâmetros cuidadosamente selecionados:

- 50 épocas de treinamento
- Imagens redimensionadas para 640x640 pixels
- Lotes de 16 imagens

Estes parâmetros foram escolhidos para otimizar tanto a precisão quanto a eficiência do modelo.

SISTEMA DE ALERTAS

Desenvolvemos um sistema que não apenas detecta objetos perigosos, mas também:

- Captura imagens do momento da detecção
- Gera alertas detalhados
- Evita spam de notificações através de um sistema de cooldown
- Mantém um registro de todas as detecções

3. Resultados

O sistema demonstrou excelente desempenho em nossos testes, apresentando:

- Alta precisão na detecção de objetos cortantes
- Baixa taxa de falsos positivos
- Resposta em tempo real eficiente
- Sistema de alertas confiável

O projeto VisionGuard demonstrou ser uma solução viável e eficaz para aumentar a segurança em estabelecimentos comerciais. O sistema não apenas atende aos requisitos iniciais, mas também estabelece uma base sólida para futuras melhorias.

3. Referencias

- 1. Documentação do YOLOv8
- 2. Dataset Knife Dataset (Roboflow)
- 3. Documentação OpenCV
- 4. Biblioteca Python SMTP