

NEW YORK UNIVERSITY

MATH-104 CALCULUS

TUTOR: RAIYAN REZA STUDENT NAME: AMEEN

Calculus Practice 3: 5.3-5.9

March 24, 2024

Instructions

Go through this practice paper under the guidance of the tutor.

5.1

- 1. (a) Frame the problem of finding the area of a circle by approximating the area of a circle with areas of inscribed regular regular polygons inside the circle.
 - (b) How can we make this approximation exactly equal to the area of a circle.
 - (c) State your answer in part b) in terms of limits.
- 2. The area problem is defined as such. Given a function f that is continuous and non-negative on an interval [a,b], find the area between the graph of f and the interval [a,b] on the x-axis.
 - (a) How would you approximate the area A between the function f, which is non-negative and continuous, on an interval [a,b], and the x-axis? Provide a visual sketch.
 - (b) Under what condition would your approximation yield the exact area A?
 - (c) Use your answer in b, to compute the exact area, A. A is the area between the graph of the function $y = x^2$, which is nonnegative and continuous on $(-\infty, +\infty)$, and the x-axis on the interval [0,1].
 - (d) State the anti-derivative method of solving the area problem.
 - (e) The area A(x) under the graph of f and over the interval [a, x] is given. Find the function f and the value of a, when $A(x) = x^2 4$. (5.1, 27)

5.2

- 1. State the definition of an antiderivative.
- 2. Prove the following theorem. Suppose that F(x) and G(x) are antiderivatives of f(x) and g(x), respectively, and that C is a constant. Then:
 - (a) $\int cf(x) dx = cF(x) + C$
 - (b) $\int [f(x) + g(x)] dx = F(x) + G(x) + C$
 - (c) $\int [f(x) g(x)] dx = F(x) G(x) + C$
- 3. In each part, confirm that the formula is correct, and state a corresponding integration formula:
 - (a) $\frac{d\left[\sqrt{1+x^2}\right]}{dx} = \frac{x}{\sqrt{1+x^2}}$
 - (b) $\frac{d[xe^x]}{dx} = (1+x)e^x$ (5.2, 1 a), b))

- 4. Evaluate the integral and check your answer by differentiating.
 - (a) $\int x(1+x^3) dx$
- (5,2,15)
- (b) $\int (1+x^2)(2-x) dx$ (5,2, 18)
- (c) $\int \frac{\sin(x)}{(\cos(x))^2} dx$
- (5.2, 29)
- 5. Use the double-angle formula $cos(2x) = 2(cos(x))^2 1$ to evaluate the integral: $\int \frac{1}{1 + cos(2x)} dx$ (5.2,36)