Frequency Synthesizers (1/2)

ZHAO BO

Institute of VLSI Design

Zhejiang University

Email: zhaobo@zju.edu.cn

Web: person.zju.edu.cn/zhaobo

Channel Selection

- □ For example, Bluetooth has 80 1-MHz channels in the range of 2.400 GHz to 2.480 GHz.
- □For each channel, the corresponding frequency is allocated to the user, requiring that the LO frequency be set by a frequency synthesizer.

LO Frequency Error

- □Narrow, tightly-spaced channels in wireless standards tolerate little error in transmit and receive carrier frequencies
- □A slight shift leads to significant spillage of a high-power interferer into a desired channel.

 | A slight shift leads to significant spillage of a high-power | A slight shift leads to significant spillage of a slight shift leads to significant spillage of a slight shift leads to significant spillage of a slight shift shift leads to significant spillage of a slight shift shif

Conceptual Picture

The output frequency is generated as a multiple of a precise reference, f_{REF}, and this multiple is changed by the channel selection command so as to cover the carrier frequencies required by the standard

Reciprocal Mixing

- □If the control voltage of a VCO is periodically disturbed, then the output spectrum contains sidebands symmetrically disposed around the carrier (spurs)
- □Upon downconversion mixing, the desired channel is convolved with the carrier and the interferer with the sideband

Frequency Settling

- □When the digital channel selection command changes value, the synthesizer takes a finite time to settle to a new output frequency, which is called the "lock time"
- ☐ This settling time directly determines the channel switching time of a transmitter or receiver

 [B. Razavi, RF Microelectronics]

Integer-N Frequency Synthesizer

- □Integer-N synthesizers produce an output frequency that is an integer multiple of the reference frequency
- \Box If N increases by 1, then f_{out} increases by f_{REF} ; i.e., the minimum channel spacing is equal to the reference frequency

Integer-N Frequency Synthesizer

- □The principal drawback of the integer-N architecture is that the channel spacing is equal to the reference frequency
- □A rule of thumb for the settling of PLLs is 100 times the reference period
- □The lock time (≈100 input cycles) and the loop bandwidth are tightly related to the channel spacing

Charge Injection/Clock Feedthrough

- □ As the switches turn on, they absorb this charge and as they turn off, they dispel this charge, in both cases through their source and drain terminals
- □The clock feedthrough relates to the gate-drain overlap capacitance of the switches

Spurs

□The issues such as charge sharing, channel length modulation, and Up and Down current mismatch lead to spurs □There is trade-off between the loop bandwidth and the level of reference spurs

Spur Reduction

- □A key point in devising spur reduction techniques is that the disturbance of the control voltage occurs primarily at the phase comparison instant
- \Box We therefore surmise that the output sidebands (spurs) can be lowered if V_{cont} is isolated from the disturbance for that duration

Spur Reduction

- \Box Unfortunately, the isolation of V_{cont} from the disturbance also eliminates the role of R_1 , leading to an unstable PLL
- \square By switching R₁-C₁ with C₂, the role of R₁ is maintained

PLL Based Modulation

- □FSK and PSK modulation can be realized by means of a VCO that senses the binary data
- □In open-loop modulation, the VCO center frequency drifts with time and temperature with no bound

□One remedy is to phaselock the VCO periodically to a reference so as to reset its center frequency

Noise Issue

- \square User B receives a weak signal around f_1 from user A while user C, located in the close proximity of user B, transmits a high power around f_2 and significant broadband noise
- □The noise transmitted by user C corrupts the desired signal around f₁

Direct-Conversion TX

- □Each stage in the signal path contributes noise, producing high output noise in the RX band even if the baseband LPF suppresses the out-of-channel DAC output noise
- □The far-out phase noise of the LO also manifests itself as broadband noise at the PA output

□The maximum noise that a GSM transmitter is allowed to emit in the GSM receive band, namely, -129 dBm/Hz

[B. Razavi, RF Microelectronics]

PLL Modulation

□If the PLL bandwidth is only large enough to accommodate the signal, then the broadband noise traveling to the antenna arises primarily from the far-out phase noise of the VCO. So this architecture need only minimize the broadband noise of one building block (VCO)

Nx PLL Modulation

- □Adding a feedback divider to the PLL proportionally reduces the carrier frequency
- □But the PLL multiplies the phase by a factor of N, altering the signal bandwidth and modulation

Offset PLL Modulation

 \Box An "offset mixer," MX_1 , downconverts the output to a center frequency of f_{REF} , and the result is separated into quadrature phases, mixed with the baseband signals, and applied to the PFD

Offset PLL Modulation

- □The local oscillator waveform driving the offset mixer must be generated by another PLL
- □The presence of two VCOs on the same chip raises mutual injection pulling between them. To ensure a sufficient difference between their frequencies, the offset frequency, f_{REF}, must be chosen high enough

Oscillator Pulling

□The PA output exhibits very large swings, which couple to the oscillator through the silicon substrate, package parasitics, and traces on the PCB.

□In order to avoid injection pulling, the PA output frequency and the oscillator frequency must be made sufficiently different

VCO Pulling

- □The instantaneous output voltage of the PA is simply an amplified replica of that of the VCO
- □The overall effect on the VCO is typically negligible

Divider

- ☐ The divider modulus, N, must change in unity steps
- ☐ The first stage of the divider must operate as fast as the VCO
- ☐ The divider input capacitance load the VCO
- ☐ The divider must consume low power

□A buffer can be inserted at the input and/or output of the divider but at the cost of greater power dissipation

Pulse Swallow Divider

- □Dual-modulus prescaler: provides a divide ratio of N+1 or N
- □Swallow counter: divides its input frequency by a factor of S, which controls the modulus of the prescaler
- □ Program counter: has a constant modulus, P. When it counts P pulses at its input, it resets the swallow counter

Pulse Swallow Divider

- □Adding the total number of the pulses at the prescaler input in the two modes, we have (N+1)S+N(P-S)=NP+S
- □Sensing the high-frequency input, the prescaler proves the most challenging (Power Scaling Techniques)

 [B. Razavi, RF Microelectronics]

Pulse Swallow Divider with ÷2

- □f_{REF}=fch/2. The lock speed and the loop bandwidth are therefore scaled down by a factor of two, making the VCO phase noise more pronounced
- □The reference sideband lies at the edge of the adjacent channel rather than in the middle of the channel [B. Razavi, RF Microelectronics]

Swallow Counter

- □Cascaded $\div 2$ stages count the input and the NAND gates compare the count with the digital input, $D_nD_{n-1}\cdots D_1$
- \Box Once the count reaches the digital input, Y goes high, setting the RS latch. The latch output then disables the $\div 2$ stages

Divide-by-3 Circuit

- □Note that a ÷2 circuit can be realized as a D-flipflop placed in a negative feedback loop
- $\Box A \div 3$ circuit, on the other hand, requires two flipflops

Divide-by-2/3 Circuit

- □The $\div 2/3$ circuit employs an OR gate to permit $\div 3$ operation if the modulus control MC=0 or $\div 2$ operation if MC=1
- □In the MC=1 case, only FF2 divides the clock by 2 while FF1 plays no role

Divide-by-2/3 Circuit

- \Box It is possible to rearrange the $\div 2/3$ stage so as to reduce the loading on the second flipflop
- ☐ The delay between the two FFs is also reduced

□This circuit has a 40% speed advantage over the previous one

Divide-by-3/4 Circuit

 \Box It is possible to rearrange the $\div 2/3$ stage so as to reduce the loading on the second flipflop

□The critical path (around FF2) contains a greater delay in this circuit than in the ÷3 stage

Other Dividers

□Divide-by-8/9 circuit:

° 2/3

□Divide-by-15/16 circuit:

Critical Path

□As the prescaler operates at a high frequency, the delay of critical path should be considered

□Nowadays, the digital design tools can help to analyze the delay issue of critical path (Slack>0)

Current Mode Logic (CML)

□CML derives its speed from the property that a differential pair can be rapidly enabled and disabled through its tail current source

CML NOR & XOR

Low-Voltage XOR

- The XOR gate can avoid stacking to realize low-voltage operation $I_{D3} = \overline{A+B}$ $I_{D6} = \overline{\overline{A}+\overline{B}}$
- The summation of I_{D3} and I_{D6} at node X is equivalent to an OR operation, and the flow of the sum through R_D produces an inversion. $V_{out} = \overline{(\overline{A+B}+\overline{A}+\overline{B})}$

$$= \overline{A}B + A\overline{B}$$

CML Latch

□The speed advantage of CML circuits is especially pronounced in latches

 \square In the latch mode, the positive feedback of regeneration pair M_3 and M_4 amplifies the difference between V_X and V_Y

CML Divide-by-2 Circuit

□A ÷2 circuit can be constructed by placing two D latches in a negative feedback loop

Class-AB Latch

□With low supply voltage, the tail current can be removed

- □The bias of the clocked pair is defined by a current mirror and the clock is coupled capacitively
- \Box Large clock swings allow transistors M_5 and M_6 to operate in the class AB mode, i.e., their peak currents well exceed their bias current. This attribute improves the speed of the divider

Inductive Peaking

□From a small-signal perspective, we observe that the inductors rise in impedance at higher frequencies, allowing more of the currents produced by the transistors to flow through the capacitors and hence generate a larger output voltage.