Translucent Mode Transport

Tiago Duarte Esteves

Tuesday, 28-11-2017

Outline

- Dimensioning using ILP
 - Table Variables
 - Objective Function

Table Variables

	Description	of	notation	used	in	the	objecti	ive	function
--	-------------	----	----------	------	----	-----	---------	-----	----------

i	index for start node of a physical link	
j	index for end node of a physical link	
0	index for node that is origin of a demand	
d	index for node that is destination of a demand	
(i,j)	physical link between the nodes i and j	
(o,d)	demand between the nodes o and d	
с	Client traffic Type (1 to 5)	
L_{ij}^{od}	Number of ODU-o low speed signals from node o to node d	
	employing lightpath (i,j)	
f_{ij}^{od}	Number of 100 Gbit/s optical channels (number of flows) be-	
9	tween the link i and j for all demand pairs between o and d	
W_{od}	Number of lightpath channels between the nodes o and d	
В	Client signals granularities (1.25, 2.5, 10, 40, 100)	
D_{od}	Client traffic demands between the nodes o and d	
G	Network topology in form of adjacency matrix	
RD	Randwidth (D) (B) (E) (E) (E) (F)	. (

Objective Function

$$\sum_{(o,d)} W_{od} \tag{1}$$

 $\forall (o,d) : o < d$

subject to

$$\sum_{jn\{o\}} L_{ij}^{od} = D_{odc}$$

$$\sum_{ji} L_{ji}^{od} = \sum_{ji} L_{ji}^{od} \qquad \forall (o,d) : o < d, \forall i : i \neq o, d$$

$$\sum_{jn\{d\}} L_{ij}^{od} = D_{odc}$$

$$\sum_{(o,d):o< d} \left(B(c) \times L_{ij}^{od} \right) \leq \sum BD \times W_{ij}$$

$$\forall (o,d) : o < d$$
 (4)

 $\forall (i,j) (5)$

Objective Function

$$L_{ii}^{od} \geq 0$$
;

$$\forall (i,j), \forall (o,d) : o < d (6)$$

$$\sum_{jn\{o\}} f_{ji}^{od} = W_{od}$$

$$\forall (o,d) : o < d \ (7)$$

$$\sum_{jn\{o\}} f_{ji}^{od} = \sum_{jn\{d\}} f_{ji}^{od}$$

$$\forall (o,d) : o < d, \forall i : i \neq o, d \quad (8)$$

$$\sum_{jn\{d\}} f_{ji}^{od} = W_{od}$$

$$\forall (o,d) : o < d (9)$$

$$\sum_{(o,d):o < d} \left(f_{ij}^{od} + f_{ji}^{od} \right) \le 80G_{ij}$$

$$\forall (i,j): i < j \quad (10)$$