Serie 6

Sunday, April 8, 2018

13:17

Aufgabe 1

$$f(x) = e^{x^2} + x^{-3} = 10$$

umformen: f(x) = ext x x -10
Intervalle mit Nullstellen

$$f'(x) = 2xe^{x^2} + .3x^{-4}$$

$$= 2xe^{x^2} - \frac{3}{x^4}$$

Newtonverfahren

No	Val	(Startwert 2)
1	1.7950	<u> </u>
2	1.6251	$\times_{nm} = \times_n = \overline{f(x)}$
3	1.5306	
4	1.5068	

Newtonverfahren (vereinfacht)

No	Val	
4	0.4847	(Startwert 0.5)
2	0.4856	$*_{n} = *_{n} - \frac{f(x)}{f(x_{o})}$
3	0.4856	
4	0.4856	

Sekantenverfahren

No	Ven
1	1.2
2	1 8610
3	1.3494
4	1.4326
	, , , , , , , , , , , , , , , , , , ,

$$\frac{f(\times n) - f(\times n - n)}{\times n - \times n - 1}$$
Interval [-1.0, -1.2]