

FCC / ISED Test Report

FOR:

HUF

Model Name:

HUFGM2699

Product Description:

General Motors Keyfob

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

Applied Rules and Standards: 47 CFR Part: 15.231 RSS-210 & RSS-Gen Issue 5

REPORT #: EMC_HUFUS-004-17001_15.231

DATE: 2018-05-10

A2LA Accredited

IC recognized # 3462B-1

CETECOM Inc.

411 Dixon Landing Road • Milpitas, CA 95035 • U.S.A.

Phone: +1 (408) 586 6200 • Fax: +1 (408) 586 6299 • E-mail: info@cetecom.com • http://www.cetecom.com CETECOM Inc. is a Delaware Corporation with Corporation number: 2905571

TABLE OF CONTENTS

1	A	SSESSMENT	3
2	Α	DMINISTRATIVE DATA	4
	2.1 2.2 2.3	IDENTIFICATION OF THE TESTING LABORATORY ISSUING THE EMC TEST REPORT	4
3	E	QUIPMENT UNDER TEST (EUT)	5
	3.1 3.2 3.3 3.4 3.5	EUT SPECIFICATIONS EUT SAMPLE DETAILS TEST SAMPLE CONFIGURATION MODE OF OPERATION. JUSTIFICATION FOR WORST CASE MODE OF OPERATION	6
4	S	UBJECT OF INVESTIGATION	7
5	M	IEASUREMENT RESULTS SUMMARY	7
6	M	IEASUREMENT UNCERTAINTY	8
	6.1 6.2	ENVIRONMENTAL CONDITIONS DURING TESTING: DATES OF TESTING:	
7	M	IEASUREMENT PROCEDURES	9
	7.1	RADIATED MEASUREMENT	9
8	TI	EST RESULT DATA	12
	8.1 8.2 8.3 8.4 8.5	FIELD STRENGTH EMISSION BANDWIDTH RADIATED TRANSMITTER SPURIOUS EMISSIONS AND RESTRICTED BANDS 5 S PERIODIC OPERATION FREQUENCY STABILITY	15 18
9		EST SETUP PHOTOS	
10		EST EQUIPMENT AND ANCILLARIES USED FOR TESTING	
11		USTORY	22

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 3 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

1 Assessment

The following device was evaluated against the applicable criteria specified in FCC rules Parts 15.231 of Title 47 of the Code of Federal Regulations and the relevant ISED Canada standard RSS-210 & RSS-Gen Issue 5.

No deviations were ascertained.

Company	Description	Model #		
HUF	General Motors Keyfob	HUFGM2699		

Responsible for Testing Laboratory:

James Donnellan

2018-05-10	Compliance	(Lab Manager)	
Date	Section	Name	Signature

Responsible for the Report:

Kris Lazarov

201	8-05-10	Compliance (Senior EMC Engineer)	
	Date	Section	Name	Signature

The test results of this test report relate exclusively to the test item specified in Section3.

CETECOM Inc. USA does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item. The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM Inc. USA.

2018-05-10

Page 4 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

2 Administrative Data

2.1 Identification of the Testing Laboratory Issuing the EMC Test Report

Company Name:	CETECOM Inc.
Department:	Compliance
Street Address:	411 Dixon Landing Road
City/Zip Code	Milpitas, CA 95035
Country	USA
Telephone:	+1 (408) 586 6200
Fax:	+1 (408) 586 6299
Compliance Manager:	James Donnellan
Responsible Project Leader:	Kris Lazarov

2.2 Identification of the Client

Applicant's Name:	Huf Hülsbeck & Fürst GmbH & Co. KG
Street Address:	Steeger Str. 17
City/Zip Code	Velbert 42551
Country	Germany

2.3 Identification of the Manufacturer

Manufacturer's Name:	Same as applicant
Manufacturers Address:	
City/Zip Code	
Country	

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 5 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

3 Equipment Under Test (EUT)

3.1 EUT Specifications

Model No:	HUFGM2699		
HW Version :	3.2		
SW Version :	MRD 130		
FCC-ID:	YGOG20TB1		
IC-ID:	4008C-G20TB1		
FWIN:	MRD 130		
HVIN:	HUFGM2699		
PMN:	GM MY20 B1 KEYFOB		
Product Description:	General Motors Keyfob		
Frequency Range / number of channels:	433.2 MHz to 434.64 MHz / 3 channels		
Type(s) of Modulation:	ASK / FSK		
Modes of Operation:	Short term pulsed transmission		
Antenna Information as declared:	Internal PCB		
Max. Peak Output Power:	Radiated power: 90 dBuV/m		
Power Supply/ Rated Operating Voltage Range:	Vmin: 2.4 VDC/ Vnom: 3 VDC / Vmax: 3.3VDC		
Operating Temperature Range	-20 °C to 70 °C		
Other Radios included in the device:	125 kHz receiver only		
Sample Revision	□Prototype Unit; □Production Unit; ■Pre-Production		

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 6 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

3.2 EUT Sample details

EUT#	Serial Number	HW Version	SW Version	Notes/Comments
1	Engineering Sample	3.2	MRD 130	Test Code
2	Engineering Sample	3.2	MRD 130	Production code

3.3 Test Sample Configuration

Set-up#	EUT / AE used for set-up	Comments
1	EUT #1	
2	EUT #2	Powered with dummy battery

3.4 Mode of Operation

EUT Set-up#	Combination of AE used for test set up	Comments
1	ASK	Continuous ASK transmission at 433.2 MHz or 434.64 MHz
2 FSK		Continuous FSK transmission at 433.2 MHz or 434.64 MHz
3	Trigger	Short transmission triggered manually or with 125 kHz signal
4 CW		Unmodulated carrier at middle channel

3.5 Justification for Worst Case Mode of Operation

During the testing process, the EUT was tested with transmitter sets on low and high channels, and highest possible duty cycle. For radiated measurements, all data in this report shows the worst case between horizontal and vertical antenna polarizations and for all orientations of the EUT. It was determined during a pretesting that the worst emissions occur with the EUT at vertical orientation.

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 7 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

4 Subject of Investigation

The objective of the measurements done by CETECOM Inc. was to assess the performance of the EUT according to the relevant requirements specified in FCC rules Part 15.231 of Title 47 of the Code of Federal Regulations and Radio Standard Specification RSS-210 & RSS-Gen Issue 5 of ISED Canada.

This test report is to support a request for new equipment authorization under the FCC ID: YGOG20TB1, and IC ID: 4008C-G20TB1

5 Measurement Results Summary

Test Specification	Test Case	Temperature and Voltage Conditions	Mode	Pass	NA	NP	Result
§15.231(c) RSS-210 A1.1.3	Emission Bandwidth	Nominal	ASK FSK				Complies
§15.231(b) RSS-210 A1.1	Field strength	Nominal	ASK FSK	•			Complies
§15.231(b); §15.205 RSS-210 A1.1	TX Spurious emissions- Radiated	Nominal	ASK FSK				Complies
§15.231(a,2) RSS Gen 210 A1.1.1	5 s Periodic Operation	Nominal	Auto/Manu al Trigger				Complies
§2.1055; RSS-133 6.3	Frequency Stability	Extreme	CW				Complies
§15.207(a) RSS Gen 8.8	AC Conducted Emissions	Nominal	NA		•		See Note 2

Note1: NA= Not Applicable; NP= Not Performed.

Note2: This device does not connect to AC network; hence the test is not applicable.

Test Report #:

EMC_HUFUS-004-17001_15.231

Date of Report 2018-05-10

Page 8 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

6 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus, with 95% confidence interval (in dB delta to result), based on a coverage factor k=1.

Radiated measurement

9 kHz to 30 MHz ±2.5 dB (Magnetic Loop Antenna) 30 MHz to 1000 MHz ±2.0 dB (Biconilog Antenna) 1 GHz to 40 GHz ±2.3 dB (Horn Antenna)

Conducted measurement

150 kHz to 30 MHz ± 0.7 dB (LISN)

RF conducted measurement ±0.5 dB

According to TR 102 273 a multiplicative propagation of error is assumed for RF measurement systems. For this reason the RMS method is applied to dB values and not to linear values as appropriate for additive propagation of error. Also used: http://physics.nist.gov/cuu/Uncertainty/typeb.html. The above calculated uncertainties apply to direct application of the Substitution method. The Substitution method is always used when the EUT comes closer than 3 dB to the limit.

6.1 Environmental Conditions During Testing:

The following environmental conditions were maintained during the course of testing:

- Ambient Temperature: 20-25° C
- Relative humidity: 40-60%

6.2 Dates of Testing:

04/09/2018 - 04/12/2018

2018-05-10 Pa

Page 9 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

7 Measurement Procedures

7.1 Radiated Measurement

The radiated measurement is performed according to ANSI C63.10 (2013)

- The exploratory measurement is accomplished by running a matrix of 16 sweeps over the required frequency range with R&S Test-SW EMC32 for 4 positions of the turntable, two orthogonal positions of the EUT and both antenna polarizations. This procedure exceeds the requirement of the above standards to cover the 3 orthogonal axis of the EUT. A max peak detector is utilized during the exploratory measurement. The Test-SW creates an overall maximum trace for all 12 sweeps and saves the settings for each point of this trace. The maximum trace is part of the test report.
- The 10 highest emissions are selected with an automatic algorithm of EMC32 searching for peaks in the noise floor and ensuring that broadband signals are not selected multiple times.
- The maxima are then put through the final measurement and again maximized in a 90deg range of the turntable, fine search in frequency domain and height scan between 1m and 4m.
- The above procedure is repeated for all possible ways of power supply to EUT and for all supported modulations.
- In case there are no emissions above noise floor level only the maximum trace is reported as described above.
- The results are split up into up to 4 frequency ranges due to antenna bandwidth restrictions. A magnetic loop is used from 9 kHz to 30 MHz, a Biconilog antenna is used from 30 MHz to 1 GHz, and two different horn antennas are used to cover frequencies up to 40 GHz.

2018-05-10

Radiated Emissions Test Setup 30MHz-1GHz Measurements

Test Report #:

EMC_HUFUS-004-17001_15.231

Date of Report 2018-05-10

Page 11 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

7.1.1 Sample Calculations for Field Strength Measurements

Field Strength is calculated from the Spectrum Analyzer/ Receiver readings, taking into account the following parameters:

- 1. Measured reading in dBµV
- 2. Cable Loss between the receiving antenna and SA in dB and
- 3. Antenna Factor in dB/m

All radiated measurement plots in this report are taken from a test SW that calculates the Field Strength based on the following equation:

FS ($dB\mu V/m$) = Measured Value on SA ($dB\mu V$)- Cable Loss (dB)+ Antenna Factor (dB/m)

Example:

Frequency	Measured SA	Cable Loss	Antenna Factor	Field Strength
(MHz)	(dBµV)	(dB)	Correction (dB)	Result (dBµV/m)
1000	80.5	3.5	14	

Date of Report 2018-05-10

Page 12 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

8 Test Result Data

8.1 Field strength

8.1.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer settings:

- RBW ≥ DTS bandwidth
- VBW \geq 3 x RBW
- Span ≥ 3 x RBW
- Sweep = Auto couple
- Detector function = RMS
- Trace = Max hold
- Use peak marker function to determine the peak amplitude level

8.1.2 Limits:

Maximum Peak Output Power:

• §15.231(b) and RSS 210 A1.1: In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)			
260-470	3,750 to 12,500 Linear interpolations			

8.1.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
23° C	1	433.2 MHz / 434.64 MHz	3 V Battery

8.1.4 Measurement result:

Plot #	Fundamental frequency (MHz)	Modulation	Fundamental Field Strength (dBµV/m)	Corrected For Duty Cycle* (dBµV/m)	Limit (dBµV/m)	Result
1	433.2	ASK	90.25	77.85	80.00	Pass
2	433.2	FSK	90.44	78.04	80.00	Pass
3	434.64	ASK	90.24	77.84	80.00	Pass
4	434.64	FSK	90.37	77.97	80.00	Pass

^{*} The field strength results were corrected for the maximum for the device 24% duty cycle, by applying an offset of -12.4 dB calculated using the following formula: 20 * log (Duty Cycle) = 20 * log 0.24 = (-12.4 dB)

Date of Report

8.1.5 Measurement Plots:

2018-05-10

Date of Report 2018-05-10

Page 15 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

8.2 Emission Bandwidth

8.2.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer settings:

- Set RBW = 100 kHz
- Set the video bandwidth (VBW) ≥ 3 x RBW
- Detector = Peak
- Trace mode = Max hold
- Sweep = Auto couple
- Allow the trace to stabilize
- Measure the maximum width of the emission that is constrained by the frequencies associated with the two
 outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the
 maximum level measured in the fundamental emission.

8.2.2 Limits:

- FCC §15.231(c): The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. Bandwidth is determined at the points 20 dB down from the modulated carrier.
- RSS-210 A1.1.3: The 99% bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70 MHz and 900 MHz.

8.2.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23° C	1	433.2 MHz / 434.64 MHz	3 V Battery

8.2.4 Measurement result:

P	Plot#	Frequency (MHz)	Modulation	99% Emissions Bandwidth (MHz)	Limit (MHz)	Result
	1	433.2	ASK	0.108	1.082	Pass
	2	433.2	FSK	0.095	1.082	Pass
	3	434.64	ASK	0.108	1.082	Pass
	4	434.64	FSK	0.094	1.082	Pass

8.2.5 Measurement Plots:

2018-05-10

Page 17 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

8.3 Radiated Transmitter Spurious Emissions and Restricted Bands

8.3.1 Measurement according to ANSI C63.10 (2013)

Spectrum Analyzer Settings:

- Frequency = 9 KHz 30 MHz
- RBW = 9 KHz
- Detector: Peak
- Frequency = 30 MHz 1 GHz
- Detector = Peak / Quasi-Peak
- RBW= 120 KHz (<1GHz)
- Frequency > 1 GHz
- Detector = Peak / Average
- RBW = 1 MHz
- Radiated spurious emissions shall be measured for the transmit frequencies, transmit power, and data rate
 for the lowest, middle and highest channel in each frequency band of operation and for the highest gain
 antenna for each antenna type, and using the appropriate parameters and test requirements.
- The highest (or worst-case) data rate shall be recorded for each measurement.
- For testing at distance other than the specified in the standard, the limit conversion is calculated by using 40 dB/decade extrapolation factor as follow: Conversion factor (CF) = 40 log (D/d) = 40 log (300m / 3m) = 80dB

8.3.2 Limits:

• §15.231(b) and RSS 210 A1.1: In addition to the provisions of §15.205, the field strength of emissions from intentional radiators operated under this section shall not exceed the following:

Fundamental frequency (MHz)	Field strength of fundamental (microvolts/meter)	Field strength of spurious emissions (microvolts/meter)
40.66-40.70	2,250	225
70-130	1,250	125
130-174	¹ 1,250 to 3,750	¹ 125 to 375
174-260	3,750	375
260-470	¹ 3,750 to 12,500	¹ 375 to 1,250
Above 470	12,500	1,250

• FCC §15.205 & RSS-Gen 8.10: Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 19 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

• Radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209 (see §15.205(b)).

8.3.3 Test conditions and setup:

	Ambient Temperature	EUT Set-Up #	EUT operating mode	Power Input
Ī	23° C	1	433.2 MHz / 434.64 MHz	3 VDC

8.3.4 Measurement result:

Plot #	Channel #	Modulation	Scan Frequency	Limit	Result
1-4	433.2	ASK	9 kHz – 5 GHz	See section 8.3.2	Pass
5-8	433.2	FSK	9 kHz – 5 GHz	See section 8.3.2	Pass
9-12	434.64	ASK	9 kHz – 5 GHz	See section 8.3.2	Pass
13-16	434.64	FSK	9 kHz – 5 GHz	See section 8.3.2	Pass

Note: The field strength results were corrected for the maximum for the device 24% duty cycle, by applying an offset of -12.4 dB calculated using the following formula: 20 * log (Duty Cycle) = 20 * log 0.24 = (-12.4 dB)

8.3.5 Measurement Plots:

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 20 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

Test Report #: E

Date of Report

EMC_HUFUS-004-17001_15.231

2018-05-10 Page 21 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

dulation: ASK	,	Fun	damental	@ 433.2 MHz	100% D	uty Cycle			
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3465.6	33.96	53.98	20.02	200	1000	169	V	292	-7.8
3898.8	39.6	53.98	14.38	200	1000	300	Н	45	-6.
4332	38.62	53.98	15.36	200	1000	286	Н	86	-5.2
70+ 60+ 50+ 40+ 40+							Marian Andrews	FCC.1	1.55
30									
300	0 3200	340	0 :	3600 38	800 400	00	4200	4400 4	500
				Frequency	in MHz				
Pre	eview Result 1-	PK+ *	Critical_	_Freqs PK+	FCC 1	5	Fin	al_Result PK+	

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 22 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

Test Report #: EMC_HUFUS-004-17001_15.231

Date of Report

2018-05-10 Page 23 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

odulation: FS	SK	Fu	ndamental	@ 433.2 MHz	100% D	ıty Cycle			
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3465.4	34.81	53.98	19.17	200	1000	174	V	286	-7.8
3899	39.34	53.98	14.64	200	1000	274	Н	50	-6.1
4332.3	37.6	53.98	16.38	200	1000	300	Н	88	-5.2
ш//пар 10 дви//ш 40		المراجعة الم	A SECURITY OF THE SECURITY OF	10 m	111111111111111111111111111111111111111			FCC 1	
30) 	00 34	00 :	3600 38	00 400	0	4200	4400 4	-i 500
				Frequency	in MHz				
	Preview Result 1	I-PK+ ∗	Critical	_Freqs PK+	FCC 1:	5	Fina	al_Result PK+	

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 24 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

Note: The emissions at 869.28 MHz pass the FCC 15.231 limit of 62 dBµV/m applicable outside of the restricted bands.

Page 25 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

dulation: ASK		Fun	damental	@ 434.64 MHz	100% D	uty Cycle			
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3477.1	31.93	53.98	22.05	200	1000	152	Н	90	-7.8
3911.8 4346.6	37.71 33.72	53.98 53.98	16.27 20.26	200 200	1000 1000	270 286	H	67 81	-6.1 -5.2
80 80 70									
ndg 60								FCC ·	1.5
Level in dBµV/m					*			*	
40	1) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4			Januari da	Trapely pulled of the same and the		e in openyalow	Part of the state	4.
3000) 3200) 340	0 ;		300 400	0	4200	4400 4	- 1500
				Frequency	in MHz				

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 26 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

2018-05-10

Page 27 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

dulation: FS	K	Fu	ındamental	@ 434.64 MHz	100% D	uty Cycle			
Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
3477	31.93	53.98	22.05	200	1000	223	Н	91	-7.8
3911.6	37.29	53.98	16.69	200	1000	300	Н	44	-6.
4346.8	34.92	53.98	19.06	200	1000	263	Н	93	-5.2
Fevel in dBµV/m				p	*			FCC 1	1.5
-	Lan, and the Annual Sections has saled as to	446			and the second s	tana kaya da _P akatana fi s	1-13-1-1-1-1-1		
30-	00 320	00 34	00	3600 38		10	4200	4400 4	500
				Frequency	IN IVIH Z				

8.4 5 s Periodic Operation

8.4.1 Measurement according to FCC 15.231

Spectrum Analyzer settings:

- Center Frequency = Channel Frequency
- Span = Zero Span
- Set RBW = 3 kHz
- Set the video bandwidth (VBW) ≥ 3 x RBW
- Detector = Peak
- Trace mode = Max hold
- Trigger = Video
- Sweep Time = Sufficient to capture complete transmission
- Use marker delta to measure the duration of transmission

8.4.2 Limits:

- FCC §15.231 (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in paragraph (e) of this section, the intentional radiator is restricted to the transmission of a control signal such as those used with alarm systems, door openers, remote switches, etc. Continuous transmissions, voice, video and the radio control of toys are not permitted. Data is permitted to be sent with a control signal. The following conditions shall be met to comply with the provisions for this periodic operation:
 - (1) A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.
 - o (2) A transmitter activated automatically shall cease transmission within 5 seconds after activation.
- RSS-210 A1.1: Devices shall comply with the following for momentary operation:
 - A manually operated transmitter shall be equipped with a push-to-operate switch and be under manual control at all times during transmission. When released, the transmitter shall cease transmission within no more than 5 seconds of being released.
 - A transmitter that has been activated automatically shall cease transmission within 5 seconds of activation.

8.4.3 Test conditions and setup:

Ambient Temperature	EUT Set-Up#	EUT operating mode	Power Input
23° C	2	433.2 MHz Triggered	3 V Battery

8.4.4 Measurement result:

Plot #	Frequency (MHz)	Trigger	Total transmission time (s)	Limit (s)	Result
1	433.2	Manual	0.5	<5	Pass
2	433.2	Remote	0.2	< 5	Pass

8.4.5 Measurement Plots:

2018-05-10

Page 29 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

2018-05-10 Page 30 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

8.5 Frequency Stability

8.5.1 Measurement according to: FCC: CFR 47 Part 2.1055

The center frequency of transmission on middle channel was measured at the low and high supply voltage specified for the equipment in the range of 0 °C to 50 °C' at 10 °C intervals. The frequency stability was calculated using the following equation:

$$ppm error = \left(\frac{MCF_{MHz}}{ACF_{MHz}} - 1\right) * 10^6$$

where

 MCF_{MHz} is the Measured Carrier Frequency in MHz ACF_{MHz} is the Assigned Carrier Frequency in MHz

Spectrum Analyzer settings:

- RBW =30 kHz
- VBW ≥ 300Hz
- Set span = 10MHz
- Sweep time = auto couple
- Detector = Pk
- Trace mode = Clear Write
- Marker Stepsize = SWP POINTS
- Sweep Points = 10000 points
- Measure the frequency at the low and high edge (F low and F high)
- Calculate the center frequency MCF = F low + (F high F low)/2

8.5.2 Test conditions and setup:

Ambient Temperature (C)	EUT Set-Up#	EUT operating mode	Power Input (VDC)
23° C	2	CW	Dummy Battery

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 31 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

8.5.3 Measurement result:

Temperature (°C)	Supply Power (V)	MCF (MHz)	ACF (MHz)	Frequency Stability (ppm)
-20	2.4	433.9289	433.92	2.1
-20	3.3	433.9281	433.92	1.9
-10	2.4	433.9282	433.92	1.9
-10	3.3	433.9289	433.92	2.1
0	2.4	433.9284	433.92	1.9
0	3.3	433.9281	433.92	1.9
10	2.4	433.927	433.92	1.6
10	3.3	433.9279	433.92	1.8
20	2.4	433.925	433.92	1.2
20	3.3	433.9246	433.92	1.1
30	2.4	433.9222	433.92	0.5
30	3.3	433.9223	433.92	0.5
40	2.4	433.9211	433.92	0.3
40	3.3	433.9208	433.92	0.2
50	2.4	433.9184	433.92	-0.4
50	3.3	433.9189	433.92	-0.3
60	2.4	433.9169	433.92	-0.7
60	3.3	433.9172	433.92	-0.6
70	2.4	433.9162	433.92	-0.9
70	3.3	433.9164	433.92	-0.8

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 32 of 33

FCC ID: YGOG20TB1
IC ID: 4008C-G20TB1

9 <u>Test setup photos</u>

Setup photos are included in supporting file name: "EMC_HUFUS-004-17001_15.231_Setup_Photos.pdf"

10 Test Equipment And Ancillaries Used For Testing

Item Name	Equipment Type	Manufacturer	Model	Serial #	Calibration Cycle	Last Calibration Date
Antenna Biconilog 3142E	Biconlog Antenna	EMCO	3142E	166067	3 years	6/27/2017
Magnetic Loop Antenna	Loop Antenna	ETS Lindgren	6512	164698	3 years	7/8/2017
Antenna Horn 3115	Hom Antenna	ETS Lindgren	3115	35114	3 years	31/6/2017
Antenna Horn 3117-PA	Hom Antenna	ETS Lindgren	3117-PA	169547	3 years	8/8/2017
Digital Barometer	Compact Digital Barometer	Control Company	35519-055	91119547	2 Years	6/8/2017
FSV40	Spectrum Analyzer	R&S	FSV40	101022	2 years	5/7/2017
FSU26	Spectrum Analyzer	R&S	FSU26	200302	2 years	7/5/2017
Thermometer Humidity TM320	Thermometer Humidity	Dickson	TM320	1625369	1 Year	6/1/2017

Note: Equipment used meets the measurement uncertainty requirements as required per applicable standards for 95% confidence levels.

Calibration due dates, unless defined specifically, falls on the last day of the month. Items indicated "N/A" for cal status either do not specifically require calibration or is internally characterized before use.

EMC_HUFUS-004-17001_15.231

2018-05-10

Page 33 of 33

FCC ID: YGOG20TB1 IC ID: 4008C-G20TB1

11 History

Date	Report Name	Changes to report	Report prepared by
2018-05-10	EMC_HUFUS-004-17001_15.231	Initial Version	Kris Lazarov