Econ 205 - Cheat Sheet Statistics for Business and Economics

Descriptive statistics:

Mean: $\bar{x} = average(DATA)$, Median = median(DATA), Mode = mode(DATA)

Variance: $\sigma^2 = var.p \, (\text{DATA}), \, s^2 = var.s \, (\text{DATA}), \, s^2 = \sigma^2 \left(\frac{N}{n-1}\right) \, \text{or} \, \sigma^2 = s^2 \left(\frac{n-1}{N}\right)$

Standard deviation: $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}} = stdev.s(DATA) = \sigma \sqrt{\frac{N}{N-1}}$

 $\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{N}} = stdev.p(DATA) = s\sqrt{\frac{n-1}{N}}$

Coefficient of variation: $CV = \frac{s}{\bar{x}}$ or $CV = \frac{\sigma}{u}$

Percentile location: $L_P = (n+1) \frac{P}{100}$

Covariance: σ_{XY} = Covariance in Data Analysis Toolpak, $s_{XY} = \sigma_{XY} \frac{N}{n-1}$,

Correlation coefficient: ρ_{XY} =correlation in Data Analysis Toolpak

Regression model: $y = \beta_0 + \beta_1 x + \varepsilon$

Regression line: $\hat{y} = b_0 + b_1 x$ in Data Analysis Toolpak -; add trendline

Probability:

Rule of complements: $P(A^c) = 1 - P(A)$

Multiplication formulat: $P(A \text{ and } B) = P(A|B) \times P(B)$

Addition formulat: P(A or B) = P(A) + P(B) - P(A and B)Conditional probability: $P(A|B) = \frac{P(A \text{ and } B)}{P(B)} = \frac{P(A|B) \times P(B)}{P(B)}$

Independence: A and B are independent if $P(A \text{ and } B) = P(A) \times P(B)$ or when P(A|B) =

Mean (aka expected value) of a discrete distribution: $\mu =_{i=1}^{n} x_i P(x_i)$

E[c] = c, Var[c] = 0;

E[X + c] = E[X] + c, Var[X + c] = Var[X];

 $E[cX] = cE[X], Var[cX] = c^2Var[X]$

Distributions:

Binomial distribution: $P(X = x) = binom.dist(x, n, \pi, 0)$ and $P(X \le x) = binom.dist(x, n, \pi, 1)$

Mean of binomial distribution: $\mu = E[X] = n \times \pi$ and $\sigma^2 = Var[X] = n \times \pi \times (1 - \pi)$ Uniform distribution: $X \sim U[a,b]$, then density is $f = \frac{1}{b-a}$ and $E[X] = \frac{a+b}{2}$ and $V[X] = \frac{a+b}{2}$ $\frac{1}{12}(b-a)^2$

Normal distribution and t-distribution:
$$X \sim N(\mu, \sigma) : P(X < x) = P\left(\frac{X - \mu}{\sigma} < \frac{x - \mu}{\sigma}\right)$$

 $Z = \frac{X - \mu}{\sigma} \sim N\left(0, 1\right)$: $P\left(Z < z\right) = norm.s.dist\left(z\right)$ or the π^{th} percentile $P_{\pi} = norm.s.inv\left(\pi\right)$ -if σ unknown then: $T = \frac{X - \mu}{s} \sim T\left(n - 1\right)$: $P\left(T \le t\right) = t.dist\left(t, n - 1, 1\right)$ and the π^{th} percentile

 $P_{\pi} = t.inv\left(\pi, n-1\right)$

Central limit theorem:

If
$$X \sim N(\mu, \sigma)$$
 then $\bar{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$ and $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$

If
$$X \sim ?(\mu, \sigma)$$
 then $\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ and $\sigma_{\bar{X}} = \frac{\sigma}{\sqrt{n}}$ if $n \geq 30$

If proportion $\pi \sim$?, then sample proportion $\hat{p} \sim N\left(\pi, \sqrt{\frac{\pi(1-\pi)}{n}}\right)$ if $n\pi \geq 5$ and $n(1-\pi) \geq 5$

Confidence intervals:

Confidence intervals:
$$CI_{\alpha} \text{ (z): } \left[\bar{x} \pm \overbrace{z_{\alpha/2} \times \frac{\sigma}{\sqrt{n}}}^{W} \right] \text{ and conf. int. (t): } \left[\bar{x} \pm \overbrace{t_{\alpha/2} \times \frac{s}{\sqrt{n}}}^{W} \right]$$

Sample size formula: $n = (\bar{z} \times \frac{\sigma}{W})^2$

Hypothesis testing:
$$z_{obs}$$
 formula: $z_{obs} = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$ or $z_{obs} = \frac{\hat{p} - \pi}{\sqrt{\frac{\pi(1 - \pi)}{n}}}$

 t_{obs} formula: $t_{obs} = \frac{\bar{x} - \mu_0}{s/\sqrt{n}}$.

Two sample tests:

Case 1: equal variances
$$\sigma_1^2 = \sigma_2^2$$
: $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{s_P^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$, where $s_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ and

$$v = n_1 + n_2 - 2$$

Case 2: unequal variances
$$\sigma_1^2 \neq \sigma_2^2$$
: $t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}}$, where $v = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} / n_2\right)^2}{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2} / n_2\right)^2}$

Regression Analysis:

Coefficient of determination: $R^2 = \frac{SSR}{SST}$