SM5L1/5L2/5L3

DESCRIPTION

The SM5L1/5L2/5L3 is CMOS 4-bit single-chip micro-computers operated in single 1.5 V power supply. This microcomputer integrates 4-bit parallel processing function, ROM, RAM, display RAM, 15-stage divider, 2-kind of interrupt and 4-level of subroutine stack. With a built-in LCD drive circuit for maximum of 84/136/168/ (SM5L1/5L2/5L3) elements, a 2-mode standby function, and a melody generator circuit in a single chip, the SM5L1/5L2/5L3 permits the design of system configuration with a minimum of peripheral components. It can be used in a variety of products from handheld equipment to electrical appliances, such as audio timers, and also achieves low power consumption.

FEATURES

- ROM capacity: 2 048 x 8 bits (SM5L1)
 3 072 x 8 bits (SM5L2)
 4 096 x 8 bits (SM5L3)
- · RAM capacity:

69 x 4 bits (including 21 x 4 bits display RAM) (SM5L1)

130 x 4 bits (including 34 x 4 bits display RAM) (SM5L2)

170 x 4 bits (including 42 x 4 bits display RAM) (SM5L3)

- Instruction sets: 51
- · Subroutine nesting: 4 levels
- I/O port :

Input 1
Output 5
Input/output 8

· Interrupts :

Internal interrupt x 1 (INTA)

External interrupt x 1 (divider overflow)

- Built-in main clock oscillator for system clock
- Signal generation for real time clock

4-Bit Single-Chip Microcomputer (LCD Driver)

- · Built-in 15 stages divider for real time clock
- · Built-in LCD driver :

84 segments (SM5L1) / 136 segments (SM5L2) / 168 segments (SM5L3), 1/2 bias, 1/4 duty cycle

Built-in melody generator circuit :

Melody ROM

160 steps (SM5L1), 256 steps (SM5L2/5L3)

Generating time (at 32.768 kHz)

20 s (MAX.) (SM5L1)

32 s (MAX.) (SM5L2/5L3)

- Instruction cycle time: 61 µs (TYP., at 32.768 kHz)
- · Standby function
- · Supply voltage:

 $1.5 \text{ V} \pm 10\% \text{ (SM5L1)}$

1.5 V ± 20% (SM5L2/5L3)

· Packages :

60-pin QFP (QFP060-P-1414) (SM5L1)

72-pin QFP (QFP072-P-1010) (SM5L2)

80-pin QFP (QFP080-P-1420) (SM5L2/5L3)

■ Alan798 DDl4885 T8T

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

PIN CONNECTIONS

BLOCK DIAGRAM

Nomenclature

Acc : Accumulator
ALU : Arithmetic logic unit

B : RAM address register

C : Carry flag

DDC : Display boost circuit
HC : Backplate signal genera

HC : Backplate signal generator circuit IFA : External interrupt flag

IFD : Divider overflow flag

OSC : System clock oscillator

P0-P2 : Port registers

PC : Program counter
RAM : Data memory

RD, RE, RF : Mode registers

ROM : Program memory SB : Stack B register

SR : PC stack register

X : X register

194

-- 8180798 0014887 852 **--**

PIN DESCRIPTIONS

PIN NAME	1/0	FUNCTION
GND, V _M	ı	Power supply pins. The V _M pin applies a positive supply with respect to the GND.
T, T ₁ , T ₂	ı	LSI chip test pins. Cannot be used by the user. Connect T and T_2 pin to GND. Connect $\overline{T_1}$ pin to V_M .
RESET	ı	Input pin with built-in pull-up register. Hardware-reset the LSI chip when a Low level signal is input. Normally, a capacitor is connected between it and GND to form a power-on reset circuit.
OSCIN, OSCOUT, CK2	I/O	CR or crystal oscillator pins. Connect a CR or crystal oscillating element across [OSCIN - OSCOUT (crystal)] or [OSCIN - CK2 (CR)] to form a clock generator circuit. (Use of a CR or crystal oscillating element is determined by the mask option)
F	0	Melody output pin. Outputs the contents of a melody ROM with 12-musical scale (555 to 2114 Hz) in two octaves.
Ho-H ₃	0	Backplate output pins. Pins for the LCD's backplate signals.
S ₀ -S ₂₀ (SM5L1) S ₀ -S ₃₃ (SM5L2) S ₀ -S ₄₁ (SM5L3)	0	Pins for the LCD's segment signals.
INTA	1	Input pin for external interrupt. The IFA flag is set at the leading edge of INTA.
P0 ₀ -P0 ₃	0	Output pins. The accumulator Acc can be transferred to this port by instruction.
P10-P13, P20-P23	I/O	I/O pins which can switch to input or output pins in 4-bit units by instruction. They can be used as output pins when configured for a key matrix. The SM5Lx is forced to hardware-reset when all of P1o to P1o pins are High level. (By mask option)

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Power supply voltage	Vм	-0.3 to 2.0	V	
Fower supply voltage	V DD	-0.3 to 4.0	Ŭ	
Input voltage	Vı	-0.3 to $V_M + 0.3$	V	
Output voltage	Vo	−0.3 to V _M + 0.3	V	
	l 01	2	mA	1
Source output current for each pin	lo ₂	2	mA	2
Source output current for each pin	loз	2	mA	3
	lo ₄	2	mA	4
	los	2	mA	1
Sink output current for each pin	lo ₆	100	μA	2
Sink output current for each pin	l 07	2	mA	3
	los	2	mA	4
Total source output current	Іон	10	mA	
Total sink output current	loL	10	mA	
Operating temperature	Торя	0 to 50	°C	
Storage temperature	Тѕтс	-55 to 150	°C	

NOTES:

1. Applicable pins: P0o-P03

2. Applicable pins: P1o-P13, P2o-P23

3. Applicable pins: F

4. Applicable pins: Ho-H3, So-S20 (SM5L1), So-S33 (SM5L2), So-S41 (SM5L3)

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
		1.35 to 1.65 (SM5L1)		
Power supply voltage	Vм	1.2 to 1.8 (SM5L2/5L3)	V	
	V _{DD}	2.4 to 3.6		
Instruction cycle	Tsys	122 to 50	μs	1
Oscillation starting voltage	Vosc	1 4	V	1

NOTE:

Oscillation Circuit

Degree of fluctuation frequency : \pm 30% (V_M = 1.5 V, TopR = 25°C)

Crystal oscillation (frequency = 32.768 kHz)

CR oscillation (frequency = 40 kHz)

NOTE:

Mount the R, C and crystal as close to the LSI chip as possible to minimize the effects of stray capacitance.

196

m 8180798 0014889 625 **m**

^{1.} Use the crystal oscillation circuit

DC CHARACTERISTICS

 $(V_M = 1.5 \pm 0.1 \text{ V}. \text{ Ta} = 0 \text{ to } +50^{\circ}\text{C})$

PARAMETER	SYMBOL	CONDITIONS	MIN.*1	TYP.*2	MAX.*1	UNIT	NOTE
1002	V _{IH1}		0.8 х Vм		Vм	V	4
Input voltage	VIL1		0		0.2 x Vм	V	1
input voitage	V _{IH2}		Vм-0.25		Vм	V	_
	VIL2		0	- 100	0.25	\	2
	lies	$V_{iH} = V_M$			1.0		3
Input current	I _{IH2}	Vih = Vm		1.5/3/3		μΑ	4
	IIL1	V1L = 0 V		1.5/3/3			5
	V _{DD1}	Vм = 1.4 V	2.5				
Boost output voltage	V DD1	$RL = 5 M\Omega$	2.5				
Boost output voitage	V _{DD2}	V _M = 1.6 V	0.0			V	6
	V DD2	$RL = 5 M\Omega$	2.9				
	-1он1	Vон = Vм-0.5 V	100				-
Output current	lo _{L1}	Vol = 0.5 V	100			Δ	7
Output current	—Іон2	Vон = Vм-0.5 V	100			μΑ	
	lol2	Vol = 0.5 V	3.0				8
Output impedance	Осом	V _M = 1.5 V		15	-	10	9
Output impedance	Ds	Vм = 1.5 V		30		kΩ	10
	Ida			8/10/12	15	****	11
	Тонт			E/7/0	8		40
	(Halt mode)	V., 1 E V		5/7/8	0		12
Supply current	DH2	$V_{M} = 1.5 \text{ V}$		3/4/5	5	μΑ	40
	(Halt mode)	Tsys = 122 μ s		3/4/3	١		13
	los			1/1 5/0	3		4.4
	(Stop mode)			1/1.5/2	3		14

*1 : SM5L1's spec.

*2 : */*/* → SM5L1/5L2/5L3

NOTES:

- 1. Applicable pins: P10-P13, P20-P23
- 2. Applicable pins: OSCIN, RESET, T, INTA
- 3. Applicable pins: P20-P23
- 4. Applicable pins: T, INTA, P10-P13
- 5. Applicable pins : RESET
- 6. Applicable pins: VDD
- 7. Applicable pins: P0₀-P0₃, F
- 8. Applicable pins: P1₀-P1₃, P2₀-P2₃
- 9. Applicable pins: Ho-H3
- 10. Applicable pins : S_0 - S_{20} (SM5L1), S_0 - S_{33} (SM5L2), S_0 - S_{41} (SM5L3)
- 11. No-load condition. Supply current under the operation when driving a CR oscillator.
- No-load condition. Supply current when driving a CR oscillator and turning LCD ON placed the device in halt mode.

- No-load condition. Supply current when driving a CR oscillator and turning LCD OFF placed the device in halt mode.
- 14. No-load condition. Supply current when the entire system is inactivated.

SYSTEM CONFIGURATION A Resister and X Register

The A register (or accumulator: Acc) is a 4-bit general purpose register. The register is mainly used in conjunction with the ALU, C flag and RAM, to transfer numerical value and data to perform various operations. The A register is also used to transfer data between input and output pins.

The X register (or auxiliary accumulator) is a 4-bit register and can be used as a temporary register. It loads contents of the A register or its content is transferred to the A register.

When the table reference instruction PAT is used, the X and A registers load ROM data.

A pair of A and X registers can accommodate 8-bit data.

Fig. 1 Data Transfer Example Between A Register, and X Register

Arithmetic and Logic Unit (ALU) and Carry Signal Cy

The ALU performs 4-bit parallel operation.

Fig. 2 ALU

The ALU operates binary addition in conjunction with RAM, C flag and A register. The carry signal Cy is generated if a carry occurs during ALU operation. Some instructions use Cy: ADC instruction sets/clear the content of the C flag; ADX instruction causes the program to skip the next instruction. Note that Cy is the symbol for carry signal and not for C flag.

B Register and SB Register

B register (B_M, B_L)

The B register is an 8-bit register that is used to specify the RAM address.

The upper 4-bit section is called B_M register and lower 4-bit B_L.

· SB register

The SB register is an 8-bit register used as the save register for the B register. The contents of B register and SB register can be exchanged through EX instruction.

Fig. 3 B Register and SB Register

Data Memory (RAM)

The data memory (RAM) is used for data storage. The RAM capacity consists of

- SM5L1 : 69 x 4-bit (include 21 x 4-bit display RAM)
- SM5L2: 130 x 4-bit (include 34 x 4-bit display RAM)
- SM5L3 : 170 x 4-bit (include 42 x 4-bit display RAM)

Display RAM which outputs data to an external pin for driving the segments of the LCD. Therefore, by writing data to the display RAM, the LCD can be driven at 1/4 duty (1/2 bias) to enable automatic display of the LCD.

As shown in Fig. 7 the display RAM is connected to segment outputs

SM5L1 : Port S₀ to S₂₀
 SM5L2 : Port S₀ to S₃₃

• SM5L3 : Port So to S41

which correspond to the LCD backplate outputs H₀ to H₃. Data M₀ to M₃ for one column of the display RAM is output pins as a LCD drive waveform which corresponds to outputs H₀ to H₃. As a RAM, the display RAM operates exactly the same as other RAMs.

Вм Вь	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0																
1														_		
2									-							
8	So	S ₂	S ₄	S ₆	S ₈	S ₁₀	S ₁₂	S ₁₄	S ₁₆	S ₁₈	S ₂₀		L	L.,	L	I
9	S ₁	S₃	S 5	S ₇	S9	S ₁₁	S 13	S ₁₅	S 17	S 19		,				

^{*} The area surrounded by the thick line represents the display RAM where So to S20 corresponds to the segment output.

Fig. 4 RAM Organization (SM5L1)

Вм	- 0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
0																
1																
2																
3																
4															<u>-</u>	
5																
8	So	S ₂	S ₄	Se	S ₈	S ₁₀	S 12	S ₁₄	S ₁₆	S ₁₈	S20	S 22	S ₂₄	S ₂₆	S ₂₈	S30
9	S ₁	S₃	S₅	S ₇	S ₉	S11	S 13	S ₁₅	S ₁₇	S ₁₉	S ₂₁	S ₂₃	S ₂₅	S ₂₇	S ₂₉	S ₃₁
Α	S32						,	· · · · · · · · · · · · · · · · · · ·					_			
В	S33	1														

^{*} The area surrounded by the thick line represents the display RAM where So to So corresponds to the segment output.

Fig. 5 RAM Organization (SM5L2)

		_				_		-7	0	_	Α.	В	С	D	Е	F
Вм	0	1	2	3	4	5	6	1/	8	9	Α	В		ט		
0																
1																
2																
3																
4																_
5																
6																
7																
8	S₀	S2	S4	S ₆	Se	S ₁₀	S ₁₂	S ₁₄	S ₁₆	S ₁₈	S20	S ₂₂	S ₂₄	S ₂₆	S ₂₈	S30
9	S ₁	S3	S ₅	S ₇	S9	S ₁₁	S ₁₃	S ₁₅	S ₁₇	S ₁₉	S ₂₁	S ₂₃	S ₂₅	S 27	S ₂₉	S31
Α	S32	S ₃₄	S36	S38	S40											
В	S33	S35	S 37	S39	S41											

^{*} The area surrounded by the thick line represents the display RAM where So to S41 corresponds to the segment output.

Fig. 6 RAM Organization (SM5L3)

Fig. 7 Relationship between the Display RAM and LCD Segment Outputs / Backplate Outputs

Program Counter PC and Stack Register SR

A ROM address is specified by the program counter (PC). The PC comprises 12-bit where 6bit (Pu) are used to specify the page (see Fig. 8) and 6-bit (PL) are used to specify the step. Pu is a register and PL is a binary counter.

The table reference instruction PAT executes a similar operation to that of the subroutine jump and uses one level of the stack register.

Program Memory (ROM)

The ROM is used for program storage. The ROM capacity of the SM5Lx is 2 048/3 072/4 096-step (SM5L1/5L2/5L3). The ROM is organized into 32/48/64 (SM5L1/5L2/5L3)-page where one page is organized into 64-step.

Fig. 8 Program Counter PC and Stack Register SR

Page	00н	01н	02н	03н	04н	05н	06н	07н	08н	09н	ОАн	0Вн	ОСн	ОДн	0Ен	0Ен
Pu	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111
	Program start	First page of subroutine TRS		Standby release	Table reference page PAT					-						
Page	10н	11 _H	12н	13н	14н	15н	16н	17н	18н	19н	1Ан	1Вн	1Сн	1 DH	1Ен	1 FH
											011010					
•																Last page (SM5L1)
Page	20н	21н	22н	23н	24н	25н	26н	27н	28н	29н	2Ан	2Вн	2Сн	2DH	2Ен	2Fн
Pu	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111
																Last page (SM5L2)
Page	30н	31н	32н	33н	34н	35н	36н	37н	20.	20	0.0	0.0	00	0.0	05	
Pu	110000		110010						38H	39H	3 А н 111010	3BH	3CH	3DH	3EH	3F _H
10	110000	110001	110010	110011	110100	110101	110110	110111	111000	111001	111010	111011	111100	111101	111110	Last Page (SM5L3)

Fig. 9 ROM Organization

8180798 0014894 T92 **=**

Flags

The SM5Lx provides 3-flag (C flag and interrupt request flag <IFA, IF0>) which can be used to set or determine conditions.

Output Latch Registers and Mode Registers

The output latch registers are connected to the P0, P1 and P2 pins. By instruction, the contents of the Acc can be transferred to the output latch registers. The SM5Lx also contains mode registers RD, RE, and RF. Setting the value of each register enables the LCD or interrupt to be controlled. Setting a register is performed in the same way as the other output pins. The functions of the mode registers are shown in Table 1.

• INTA pin

INTA level can be loaded to $\mbox{\sc Acc}$ (bit 0), as follows.

LBLX 4

IN

In case, INTA level does not through the noise debounce circuit.

CAUTION:

Connecting considerations of I/O port

When using an I/O port as bidirectional bus such as data bus, avoid setting the I/O port to output when the target pin is also set to output.

Whenever the both output data conflict each other, system failure will be causes due to damage to circuits or instantaneous supply voltage drop.

Table 1 Mode Register Setting

REGI	STER	SET VALUE	MODE DECORIDATION						
TYPE	BIT	SEI VALUE	MODE DESCRIPTION						
	RD0	0	Clear the ME F/F to stop a melody.						
	NDO	1	Set the ME F/F to start a melody from a ROM pointer address.						
RD	RD1		Set by stop instruction (of melody code) and reset by TPB instruction.						
	RD2		Cat to "O" and						
	RD3	1 -	Set to "0" only.						
	RE0	0	Mask the interrupt based on the IFA flag.						
	neu	1	Accept the interrupt based on the IFA flag.						
RE	RE1	_	Set to "0" only.						
ne.	RE2	0	Mask the interrupt based on the IFD flag.						
	nez	1	Accept the interrupt based on the IFD flag.						
	RE3	_	No setting.						
	RF0	0	Turn off the LCD.						
	nio	1	Turn on the LCD.						
	RF1	0	Stop the function of a booster circuit.						
	I u i	1	Operate the function of a booster circuit.						
RF		0	Create the system clock frequency by dividing two the main oscillation						
	BF2		frequency.						
	1112	4	Create the system clock frequency by dividing four the main oscillation						
		<u> </u>	frequency.						
	RF3	_	Set to "0" only.						

System Clock Generator and Dividers

The main oscillation frequency which is input through " OSC_{IN} - OSC_{OUT} " or " OSC_{IN} - CK_2 " is divided into 2 or 4 to generate the system clock fsys (Fig. 10).

System clock fsys determines the execution instruction cycle so that the system clock period is the same as the instruction cycle.

However, the instruction execution cycle of two-

word instruction is twice that of one-word instructions.

Use of a CR oscillating element or a crystal oscillating element for the oscillator circuit is determined by the mask option. On the final stage of the divider, fc can be set to 1 Hz or 2 Hz (in case of 32 kHz crystal oscillation) depending on the mask option.

Fig. 10 System Clock Generator and Divider

Either of the system clock frequencies 16.384 kHz or 8.192 kHz (in case of 32.768 kHz oscillation) can be selected by the RF2 flag (See Table 2). The 8.192 kHz clock has slower command execution speed, but uses less power for the same function.

The system clock is initialized to 16.384 kHz after Hardware reset operation.

The Table 2 shows the relationship between the contents of RF2 flag for OSC resonator and the generated frequency, fsys.

10 kHz

FOR OSC RESONATOR	CONTENTS OF RF2 FLAG	GENERATED FREQUENCY favs
32.768 kHz crystal	0	16.384 kHz
oscillation	1	8.192 kHz
40 Id I= CD posillation	0	20 kHz
40 kHz CR oscillation	1	40.111

Table 2 OSC Resonator and Frequency fsys

FUNCTIONAL DESCRIPTION Melody Output Function

The built-in chip melody generation circuit provides a variety of sound signals. Fig. 11 shows the block diagram of the melody generating circuit.

The melody ROM can store notes, rest and stop

commands in 160/256/256 (SM5L1/5L2/5L3)-step (1 step consists of 6-bit), allowing the generation of 12-scale over two octaves (555 to 2 097 Hz) and the section of the time base for notes (125/62.5 ms).

Fig. 11 Melody Generating Circuit

CONTROL PROCEDURE

The binary counter for designating the address of the melody ROM can be arbitrarily set using the PRE instruction. A performance is started and stopped by the RD0-flag to "1" and "0".

The stop code generates a "rest tell signal", and at the same time, sets the RD1 flag. The end of the melody can be found by testing the RD1 flag.

Accordingly, to stop a performance at the end of melody, the RD0 flag must be clear upon detection of RD1 flag = 1.

Next step of PRE instruction, put the NOP instruction.

The following is an example of a melody generating program.

MELO	LAX	2	
	ATX		
	LAX	1	
	PRE		; Set the starting address of the melody at the 21st. Hexadecimal step.
	NOP		; Dummy command

	:		
	LBLX	0DH	
	LAX	1	
	OUT		; Start the melody
	TPB	1	; Executed for clear the RD1 flag
	NOP		; Dummy command
	:		
	:		
	LBLX	0DH	
L1	TPB	1	; Test the RD1 flag
	TR	L1	; Loop for detect the stop code
	LAX	0	
	OUT		; Stop the melody

Using these functions, the user can generate music, sound effects, alarm signals, etc. as desired, and any portion of the music can be repeated. Table 3 lists the melody output frequencies. The output frequency can be halved by making bit 5 (OCT) of the melody ROM 0 (Low). In Table 3, m0 to m3 show data in bits 1 to 4 of the melody ROM.

Table 3 Melody Output Frequency

	m ₃ m ₂ m ₁ m ₀	OUTPUT FREQUENCY (Hz)	CLOCK NUMBER *1	*2
do	0010	2114.1	15.5	7 8 8 8
si	0011	1985.9	16.5	8 8 9
la#	0100	1872.4	17.5	8 9 9 9
la	0101	1771.2	18.5	9 9 9 10
sol#	0110	1680.4	19.5	9 10 10 10
sol	0111	1560.4	21.0	10 11 10 11
fa#	1000	1489.5	22.0	11 11 11
fa	1001	1394.4	23.5	11 12 12 12
mi	1010	1310.7	25.0	12 13 12 13
re#	1011	1236.5	26.5	13 13 14
re	1100	1170.3	28.0	14 14 14 14
do#	1101	1110.8	29.5	14 15 15 15

^{*1} Number of clocks for one cycle

^{*2} The number (n) in the waveforms represents the number of periods of the oscillation frequency (32.768 kHz) from the crystal oscillator for the duration in that particular part of the waveform.

MELODY ROM INSTRUCTION

The melody ROM instruction is composed of 6-bit. This 6-bit instruction (1 set), corresponding to a musical note, generates a sound signal.

I	OCT	m_3	m_2	m_1	m_0

: Control the tone length. When "1", 125 ms; when "0", 62.5 ms.

125 ms, when 0, 02.5 ms.

OCT : When the octave is "1", the frequency is determined by m₃ -m₀.

When the octave is "0", 1/2 the frequency determined by m₃-m₀.

m₃ - m₀ : Frequency as shown in Table 3.

Pause when $m_3 = m_2 = m_1 = m_0 = 0$, stop instruction when $m_3 = m_2 = m_1$ = 0, $m_0 = 1$.

EXAMPLE OF WRITING ON THE MELODY ROM

An example of writing a tune such as the following, on the melody ROM will be shown.

MUSICAL SCALE	TONE LENGTH (ms)	OCT	m 3	m ₂	m ₁	mo
sol	375	0	0	1	1	1
la	125	0	0	1	0	1
sol	250	0	0	1	1	1
mi	250	0	1	0	1	0
do	375	1	0	0	1	0
re	125	1	1	1	0	0
do	250	1	0	0	1	0
la	250	0	0	. 1	0	1

ADDRESS	DATA	MUSICAL NOTE INSTRUCITON
00	00	pause
01	27	sol
02	27	sol
03	27	sol
04	25	la
05	27	sol
06	27	sol
07	2A	mi
08	2 A	mi
09	22	do
0 A	22	do
0B	22	do
0C	3C	re
0D	22	do
0E	22	do
0F	25	la
10	25	la
11	01	stop

The tone length of an initial musical note which is generated from ROM addressed data assigned by a PRE instruction has an error of maximum ±4 ms. Therefore, by applying a pause as an initial note, a melody performs with a precisely regulated tone length.

Standby Function

A standby function is available which temporary stops program execution to conserve power consumption. The state during which a program is in execution is called the operation mode and the state during which the execution is temporary stopped is called the standby mode.

The standby mode further contains two modes, the stop mode and the halt mode. The stop mode stops the system section. In the stop mode, the display

(LCD) is blanked. And the response speed of LCD returning to the display state (the operation) drops slightly.

The halt mode stops only system clock generator circuit (the state of the LCD is retained). This mode is used to activate the system immediately after a condition cause a release to the operation mode.

To enter the standby mode, select either stop mode or halt mode whichever appropriate. (Fig. 12)

Fig. 12 Operation Shift of Program

During the standby mode, the contents of the RAM and C flag are retained. The contents of the flags, registers and output latches shown below are also retained.

FLAG	REGISTER	OUTPUT LATCH REGISTER
IFA flag	Acc	P0 register
IFD flag	X register	P1 register
IME flag	Вм, В⊾ register	P2 register
	SP	
	SB	

A release from the standby mode to the operation mode is performed by a reset port input, an interrupt from the nonmaskable INTA, and divider. A maskable interrupt request cannot become a factor in releasing back to the operation mode. The mask setting is performed with RE register. (see Table 2)

CAUTION:

When all of P10 to P13 level are High, the SM5Lx is performed to release the standby mode and enter normally hardware reset operation. (Mask option)

Next, the transition of the standby mode and the release method from the standby mode are described.

TRANSITION FORM THE OPERATION MODE TO THE STANDBY MODE

The HALT instruction is executed to set the halt mode and the STOP instruction is executed to set the stop mode.

Since the interrupt is used to release from the standby mode, the mode does not transfer to the standby mode if any of the following conditions are satisfied during execution of the STOP or HALT instruction.

- a) RE0 is set and the INTA level is High.
- b) RE2 is set and the IFD flag is set.

If any of the conditions above is satisfied, the mode does not transfer to the standby mode even if the STOP or HALT instruction is executed and the instruction at the address following that of the STOP or HALT instruction is executed. Therefore, place the JUMP instruction which specifies step 0 on page 3 to the location at the address following that of the STOP or HALT instruction.

208

RELEASE FROM THE STANDBY MODE TO THE OPERATION MODE

Release based on an interrupt request from the INTA pin, or divider overflow. However, the reset is limited to a nonmaskable interrupt request.

The program restarts from step 0 on page 3. However, if the IME flag is set, the instruction at step 0 on page 3 is executed and a subroutine jump is performed to the interrupt processing routine specified on page 2 according to the type of interrupt.

Even if Low level input on INTA pin is removed before 900 command cycles, the stop mode is released.

However, the program will not jump to 20_H page (interrupt process routine).

Interrupt request flag IFA is not set: the program continues at step 0 of 03_H page.

Interrupts

Interrupts originate from an INTA input or divider overflow. The IFA, and IFD flags become interrupt request flags.

The interrupt block is composed of mask flags (RE0, RE2), the IME flag and interrupt processing circuit.

As shown in Fig. 13, resetting a mask flag enables the interrupt request flag to be independently masked. Thus, the mask flags can be used in a program to establish the interrupt priority. The priority for interrupts generated simultaneously is shown in Table 4.

Fig. 13 Interrupt Block

Table 4 Interrupt Event Summary

INTERRUPT REQUEST	JUMP DE	STINATION	PRIORITY	INTERRUPT	
(REQUEST FLAG)	PAGE	STEP	ORDER	ENABLE FLAG	
INTA input (IFA)	2	0	1	RE0	
Divider overflow (IFD)	2	4	2	RE2	

When the IME flag is set, the interrupt circuit activates according to the interrupt request and a subroutine jump is performed to the specified address. The jump destinations according to interrupt origin are shown in Table 4. When the IME flag is cleared, an interrupt is not accepted even if an interrupt request is generated. The interrupt timing are shown in Fig. 14 and Fig. 15. The timing chart shown in Fig. 14 shows the interrupt enable state when an interrupt request has been generated. In this case, the interrupt processing signal INT goes High, one instruction cycle after the interrupt request flag is set. When INT goes High, the contents of the program counter are pushed into the stack register and execution jumps to the specified address. At this time, the INT signal and the IME flag are cleared to establish the interrupt disable mode. The IME flag is set again when the RTNI instruction is executed

to establish the interrupt enable mode.

The timing chart shown in Fig. 15 shows the state when interrupts are enabled while multiple interrupts are generated. In this case, a subroutine jump is performed according to the interrupt having the highest priority. When returning from the subroutine by executing the RTNI instruction, the instruction (two words are executed for a two-word instruction) at the location of return is executed and the interrupt for the next highest priority is accepted.

If an interrupt request is generated during execution of a two-cycle instruction, the instruction is executed after which interrupt processing is performed. If consecutive LAX instructions are skipped or if the SKIP conditions are satisfied, the skip operation is terminated after which interrupt processing is performed.

Fig. 14 Interrupt Timing Chart

Fig. 15 Interrupt Timing Chart

NOTE:

Fig. 14 and Fig. 15 show the case where the interrupt request flags are not masked.

8180798 0014904 761 🚥

Hardware Reset Function

The hardware reset function mode activated two instruction cycles after the trailing edge from the RESET pin. When the RESET pin is changed from High to Low, the pulse which is input by the OSC_{IN} pin is counted 2¹⁵ times after which the reset mode clears and the program counter starts from address 0 on page 0.

The initialized status of the system after reset is shown in Table 5.

The following reset functions are available.

- The I/O port is set as an input port and the mode register RD, RE and RF are cleared. The output only port (P0) is cleared and output Low.
- The interrupt request flags (IFA, IFD) and the interrupt enable flag (IME) are clear and all interrupts become disabled.
- The program counter start from step 0 on page 0. For activate reset function, when power is turned on, you must be connect a capacitor (0.1 μ F, TYP.) across the RESET pin and GND.

Table 5 Reset Status

FLAG OR REGISTER, X-REGISTER	STATUS (in reset mode and at program start)
PC	0
SP	Level 1
RAM	Undefined
Acc	Undefined
X-register	Undefined
P0-P2 output latch registers	0
Divider	0
IFA flag	0
IFD flag	0
IME flag	0
C flag	Undefined
Вм, В∟ registers	Undefined
Register RD (bit 0)	0
Register RD (bit 1)	Undefined
Register RE (bit 2, 1, 0)	0
Register RF (bit 3, 2, 1, 0)	0

NOTE:

When all of P1 pins (P1o to P1o) level goes to High, the SM5Lx is performed to reset operation. (Mask option)

LCD Function

· Display segment

The SM5Lx contains a built-in circuit which directly drive a 1/4 duty, 1/2 bias LCD.

A sample LCD pattern is shown in Fig. 16.

Fig. 16 LCD Pattern

A segment of the LCD can be turned on or off by setting the corresponding bit in the display RAM (see Fig. 7) to "1" or "0". The displayed segments can assume any configuration containing up to a maximum of 84/136/168 (SM5L1/5L2/5L3) segments. An example of a 7-segment numeric display is shown in Fig. 17.

Fig. 17 Sample LCD Pattern for 7-Segment Numeric Display

LCD drive waveforms

The LCD drive waveforms for the LCD pattern of Fig. 17 displaying a "5" are shown in Fig. 18 (the segment output uses S_0 and S_1). For Fig. 18, 3 V is applied to the V_{DD} pin, and 1.5 V is applied to the V_M pin.

Fig. 18 LCD Drive Waveforms (frame frequency = 1/T = 64 Hz or 128 Hz)

* Frame frequency is selectable by mask option.

· Booster circuit

The device contains a booster circuit which generates a voltage two times higher than the 1.5 V power supply.

Then, it is necessary to apply external capacitors between DDC pin and Vcc pin as well as Vbb pin and GND (see Fig. 19).

Fig. 19 Booster Circuit

· Blank display

There are two way to blank the entire display to match the purpose.

(a) Blanking the display for a short time.

Set bit 0 of the RF register to "1": Display Set bit 0 of the RF register to "0": Blank state

(b) Blanking the display for a long period mainy to reduce supply current.

Set bit 0 and 1 of the RF register to "1": Display

Set bit 0 and 1 of the RF register to "0" : Blank state

When bit 1 of the RF register is set to "0", the booster circuit does not operate and the backplate outputs and segment outputs are dropped to VM level, and the display blanks. By stepping the function of the booster circuit, the supply current can be greatly reduced. However, when the display is blanked using method (b), the response speed of the LCD returning to the display state drops slightly. The RF register is on the blank state after initialization from hardware reset.

INSTRUCTION SET Definition of Symbols

The following symbols are used in descriptions for the instructions.

M : Contents of RAM at the address

specified by the B register

← : Transfer direction

U : Logical OR∩ : Logical AND⊕ : Logical XOR

Ai : ith bit of the Acc

Push : Content of the PC are decremented to

the stack register.

Pop : The decremented contents are

transferred back to the PC.

Pj : Pj register (j = 0, 1, 2, 3) Rj : Rj register (j = D, E, F)

ROM (): ROM contents for address within ()
Cy: Carry of ALU (different from the C flag)

- Each bit of a register can be represented.
 For example, the ith bit of X register and R(0) register are represented as Xi and R(0) i. (i = 0, 1, 2, 3, ...)
- Increment and decrement denote the binary addition of 1_H and F_H, respectively.
- To skip a certain instruction means that the instruction is ignored and that no operation is performed until the execution transfers to the next instruction. In other words, the instruction is regarded as a NOP instruction. Therefore, one cycle is required to skip a one-word instruction and two cycles are required to skip a two-word instruction.

Instruction Summary

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Instruction Summary				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
TL xy 00 to FF PL \leftarrow y (Is-Io) TRS x C0 to DF Push, Pu \leftarrow 01H PL \leftarrow x (Is, Is, Iz, In, Io, 0) Push, Pu \leftarrow 01H PL \leftarrow x (Is, Is, Iz, In, Io, 0) RTN 7D Pop RTNS 7E Pop, Skip the next step RTNL 7F Pop, IME \leftarrow 1 Data Transfer Instructions LAX x 10 to 1F Acc \leftarrow x (Is-Io) LBMX x 30 to 2F BM \leftarrow x (Is-Io) LBLX x 20 to 2F BL \leftarrow x (Is-Io) LDA x 50 to 53 Acc \leftarrow M BMI \leftarrow BMI \oplus x (In, Io) (i = 1, 0) EXC x 54 to 57 BMI \leftarrow BMI \oplus x (In, Io) (i = 1, 0) M \leftrightarrow Acc, BL \leftarrow BL \leftarrow T EXCI x 58 to 5B BMI \leftarrow BMI \oplus x (In, Io) (i = 1, 0) Kip if Cy = 1 (BL = FH \rightarrow 0) Kip if Cy = 1 (BL = 0 \rightarrow FH) EXAX 64 Acc \leftrightarrow X ATX 65 X \leftarrow Acc EXBM 66 BM \leftrightarrow Acc EXBM 67 BL \leftrightarrow Acc EXBM 68 B \leftrightarrow SB Arithmetic Instructions ADX x 00 to 0F Acc \leftarrow Acc+X (Is-Io), Skip if Cy = 1 ADD 7A Acc \leftarrow Acc+M+C, C \leftrightarrow Cy Skip if Cy = 1 COMA 79 Acc \leftarrow Acc Acc INCB 78 BL \leftarrow BL+1, Skip if BL = FH	TR x	80 to BF			
TRS x	TI VV	E0 to EF	, , ,		
THS x C0 to DF Pt \leftarrow x (I4, I3, I2, I1, I0, 0) Push, Pu \leftarrow x (I11-Ie) Pt \leftarrow y (I5-Io) RTN 7D Pop Pop, Skip the next step RTNL 7F Pop, IME \leftarrow 1 Data Transfer Instructions LAX x 10 to 1F Acc \leftarrow x (I3-Io) LBMX x 30 to 2F BM \leftarrow x (I3-Io) LBLX x 20 to 2F BL \leftarrow x (I3-Io) LDA x 50 to 53 Acc \leftarrow M BMI \leftarrow BMI \leftarrow X (I1, Io) (i = 1, 0) EXC x 54 to 57 M \leftarrow Acc, BL \leftarrow BL+1 BMI \leftarrow BMI \leftarrow BMI \leftarrow X (I1, Io) (i = 1, 0) Skip if Cy = 1 (BL = FH \rightarrow 0) M \leftarrow Acc, BL \leftarrow BL+FH BMI \leftarrow BMI \leftarrow X (I1, Io) (i = 1, 0) Skip if Cy = 1 (BL = 0 \rightarrow FH) EXAX 64 Acc \leftarrow X ATX 65 SK \leftarrow Acc EXBL 67 BL \leftarrow Acc EXBL 67 BL \leftarrow Acc EXBL 67 BL \leftarrow Acc EXBL 68 BL \leftarrow Acc EXBL 67 BL \leftarrow Acc Acc \leftarrow Acc	1L ^y	00 to FF	P _L ← y (15-10)		
CALL xy $FO \text{ to FF} \\ 00 to FF$	TDC v	C0 to DE	Push, Pu ← 01н		
CALL xy	ING X	COLODE	$P_L \leftarrow x \ (\ l_4,\ l_3,\ l_2,\ l_1,\ l_0,\ 0)$		
CALL xy $\begin{array}{cccccccccccccccccccccccccccccccccccc$		EO to EE	Push,		
PL ← y (Is-Io)	CALL xy		Pu ← x (l11-l6)		
RTNL 7E Pop, Skip the next step RTNL 7F Pop, IME ← 1 Data Transfer Instructions LAX x 10 to 1F Acc ← x (Is-Io) LBMX x 30 to 2F BM ← x (Is-Io) LBLX x 20 to 2F BL ← x (Is-Io) LDA x 50 to 53 BM ← Mi ⊕ x (Is, Io) (i = 1, 0) EXC x 54 to 57 M ↔ Acc BMi ← BMi ⊕ x (Is, Io) (i = 1, 0) M ↔ Acc, BL ← BL+1 EXCI x 58 to 5B BMi ← BMi ⊕ x (Is, Io) (i = 1, 0) Skip if Cy = 1 (BL = FH → 0) M ↔ Acc, BL ← BL+FH BMi ← BMi ⊕ x (Is, Io) (i = 1, 0) Skip if Cy = 1 (BL = 0 → FH) EXAX 64 Acc ↔ X ATX 65 x ← Acc EXBM 66 BM ↔ Acc EXBL 67 BL ↔ Acc EX 68 B ↔ SB Arithmetic Instructions ADX 00 to 0F Acc ← Acc+X (Is-Io), Skip if Cy = 1 ADC 7B Acc ← Acc + M+C, C ↔ Cy Skip if Cy = 1 COMA 79		00 to FF	P _L ← y (ls-lo)		
RTNL 7F Pop, IME ← 1 Data Transfer Instructions LAX x 10 to 1F Acc ← x (Is-Io) LBMX x 30 to 2F Bm ← x (Is-Io) LBLX x 20 to 2F BL ← x (Is-Io) LDA x 50 to 53 Acc ← M Bmi ← Bmi ⊕ x (In, Io) (i = 1, 0) M ↔ Acc Bmi ← Bmi ⊕ x (In, Io) (i = 1, 0) M ↔ Acc, BL ← BL+1 EXCI x 58 to 5B Bmi ← Bmi ⊕ x (In, Io) (i = 1, 0) Skip if Cy = 1 (BL = FH → 0) M ↔ Acc, BL ← BL+FH Bmi ← Bmi ⊕ x (In, Io) (i = 1, 0) Skip if Cy = 1 (BL = 0 → FH) EXAX 64 Acc ↔ X ATX 65 x ← Acc EXBM 66 Bm ↔ Acc EXBL 67 BL ↔ Acc EX 68 B ↔ SB Arithmetic Instructions ADX x 00 to 0F Acc ← Acc+x (Is-Io), Skip if Cy = 1 ADC 7B Acc ← Acc + M+C, C ↔ Cy Skip if Cy = 1 COMA 79 Acc ← Acc INCB 78 BL ← BL+1, Skip if BL = FH <td>RTN</td> <td>7D</td> <td>Pop</td>	RTN	7D	Pop		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RTNS	7E	Pop, Skip the next step		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RTNL	7F			
LBMX x 30 to 2F BM ← x (I₃-I₀) LBLX x 20 to 2F BL ← x (I₃-I₀) LDA x 50 to 53 Acc ← M BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) M ↔ Acc BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) M ↔ Acc, BL ← BL+1 BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = FH → 0) M ↔ Acc, BL ← BL+FH BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) EXCD x 5C to 5F BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = O → FH) Skip if Cy = 1 (BL = O → FH) EXAX 64 Acc ← Acc EXBM 66 BM ↔ Acc EXBL 67 BL ↔ Acc EX 68 B ↔ SB Arithmetic Instructions ADX 00 to 0F Acc ← Acc+x (I₃-I₀), Skip if Cy = 1 ADC 7B Acc ← Acc + M+C, C ↔ Cy Skip if Cy = 1 COMA 79 Acc ← Acc INCB 78 BL ← BL+1, Skip if BL = FH		Data Tra	nsfer Instructions		
LBLX x 20 to 2F BL ← x (I₃-I₀) LDA x 50 to 53 $Acc \leftarrow M$ BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) EXC x 54 to 57 $M \leftrightarrow Acc$ BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) M $\leftrightarrow Acc$, BL ← BL+1 EXCI x 58 to 5B $M \leftrightarrow Acc$, BL ← BL+1 EXCD x 5C to 5F $M \leftrightarrow Acc$, BL ← BL+FH BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = FH → 0) M $\leftrightarrow Acc$, BL ← BL+FH BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = 0 → FH) EXAX 64 $Acc \leftrightarrow X$ ATX 65 $x \leftarrow Acc$ EXBM 66 $BM \leftrightarrow Acc$ EXBM 66 $BM \leftrightarrow Acc$ EXBL 67 $BL \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $Acc \leftarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $B \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 65 $Acc \leftrightarrow Acc$ EX 65 $Acc \leftrightarrow Acc$ EX 66 $Acc \leftrightarrow Acc$ EX 66 $Acc \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$	LAX x	10 to 1F	Acc ← x (I₃-I₀)		
LBLX x 20 to 2F BL ← x (I₃-I₀) LDA x 50 to 53 $Acc \leftarrow M$ BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) EXC x 54 to 57 $M \leftrightarrow Acc$ BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) M $\leftrightarrow Acc$, BL ← BL+1 EXCI x 58 to 5B $M \leftrightarrow Acc$, BL ← BL+1 EXCD x 5C to 5F $M \leftrightarrow Acc$, BL ← BL+FH BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = FH → 0) M $\leftrightarrow Acc$, BL ← BL+FH BMi ← BMi ⊕ x (I₁, I₀) (i = 1, 0) Skip if Cy = 1 (BL = 0 → FH) EXAX 64 $Acc \leftrightarrow X$ ATX 65 $x \leftarrow Acc$ EXBM 66 $BM \leftrightarrow Acc$ EXBM 66 $BM \leftrightarrow Acc$ EXBL 67 $BL \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $Acc \leftarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $B \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 65 $B \leftrightarrow Acc$ EX 66 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 69 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$ EX 61 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 62 $B \leftrightarrow Acc$ EX 63 $B \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 64 $Acc \leftrightarrow Acc$ EX 65 $Acc \leftrightarrow Acc$ EX 65 $Acc \leftrightarrow Acc$ EX 66 $Acc \leftrightarrow Acc$ EX 66 $Acc \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 67 $B \leftrightarrow Acc$ EX 68 $B \leftrightarrow Acc$ EX 60 $B \leftrightarrow Acc$	LBMX x	30 to 2F	BM ← X (I3-I0)		
LDA x 50 to 53 $Acc \leftarrow M$ $Bmi \leftarrow Bmi \oplus x (I_1, I_0) (i = 1, 0)$ EXC x 54 to 57 $M \leftrightarrow Acc$ $Bmi \leftarrow Bmi \oplus x (I_1, I_0) (i = 1, 0)$ $M \leftrightarrow Acc$, $BL \leftarrow BL+1$ $M \leftrightarrow Acc$, $BL \leftarrow BL+1$ $M \leftrightarrow Acc$, $BL \leftarrow BL+1$ $M \leftrightarrow Acc$, $BL \leftarrow BL+FH$ $M \leftrightarrow Acc$, $M \leftrightarrow A$	LBLX x	20 to 2F			
EXC x $= 54$ to $= 57$ to $= 53$ $= 54$ to $= 57$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	LDA x				
$EXCI \times \begin{array}{c} \text{BMi} \leftarrow \text{BMi} \oplus \text{X} \left(1\text{I}, 1\text{o} \right) \left(1 = 1, 0 \right) \\ \text{M} \leftrightarrow \text{Acc}, \ B_L \leftarrow B_L + 1 \\ \text{BMi} \leftarrow \text{BMi} \oplus \text{X} \left(1\text{I}, 1\text{o} \right) \left(i = 1, 0 \right) \\ \text{Skip if Cy} = 1 \left(B_L = F_H \rightarrow 0 \right) \\ \text{M} \leftrightarrow \text{Acc}, \ B_L \leftarrow B_L + F_H \\ \text{BMi} \leftarrow \text{BMi} \oplus \text{X} \left(1\text{I}, 1\text{o} \right) \left(i = 1, 0 \right) \\ \text{Skip if Cy} = 1 \left(B_L = 0 \rightarrow F_H \right) \\ \text{EXAX} 64 \qquad \qquad Acc \leftrightarrow X \\ \text{ATX} 65 \qquad \qquad x \leftarrow \text{Acc} \\ \text{EXBM} 66 \qquad B_M \leftrightarrow \text{Acc} \\ \text{EXBL} 67 \qquad B_L \leftrightarrow \text{Acc} \\ \text{EX} 68 \qquad B \leftrightarrow \text{SB} \\ \hline \qquad \qquad$		54 to 57	ļ		
$\begin{array}{c} EXCIx & 58to5B & M \leftrightarrow Acc, B_L \leftarrow B_L + 1 \\ BMi \leftarrow BMi \oplus x (Ii, Io) (i = 1, 0) \\ Skip \; if \; Cy = 1 (B_L = FH \to 0) \\ M \leftrightarrow Acc, B_L \leftarrow B_L + FH \\ BMi \leftarrow BMi \oplus x (Ii, Io) (i = 1, 0) \\ Skip \; if \; Cy = 1 (B_L = 0 \to FH) \\ EXAX & 64 & Acc \leftrightarrow X \\ ATX & 65 & x \leftarrow Acc \\ EXBM & 66 & BM \leftrightarrow Acc \\ EXBL & 67 & B_L \leftrightarrow Acc \\ EXBL & 67 & B_L \leftrightarrow Acc \\ EX & 68 & B \leftrightarrow SB \\ \hline & & & & & Arithmetic \; Instructions \\ ADX \; x & 00 \; to \; 0F & Acc \leftarrow Acc + x (Is \text{-Io}), \\ Skip \; if \; Cy = 1 \\ ADD & 7A & Acc \leftarrow Acc + M \\ ADC & 7B & Acc \leftarrow Acc + M + C, \; C \leftrightarrow Cy \\ Skip \; if \; Cy = 1 \\ COMA & 79 & Acc \leftarrow Acc & Acc \\ INCB & 78 & BL \leftarrow BL + 1, \; Skip \; if \; BL = FH \\ \hline \end{array}$	EXC x		BMi ← BMi ⊕ x (1₁, 1₀) (i = 1, 0)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c} \text{Skip if Cy} = 1 \ (\text{BL} = \text{FH} \rightarrow 0) \\ \text{M} \leftrightarrow \text{Acc}, \ \text{BL} \leftarrow \text{BL+FH} \\ \text{Bwi} \leftarrow \text{Bwi} \oplus \text{x} \ (\text{In, lo)} \ (\text{i} = 1, 0) \\ \text{Skip if Cy} = 1 \ (\text{BL} = 0 \rightarrow \text{FH}) \\ \text{EXAX} \qquad 64 \qquad \qquad \text{Acc} \leftrightarrow \text{X} \\ \text{ATX} \qquad 65 \qquad \qquad \text{x} \leftarrow \text{Acc} \\ \text{EXBM} \qquad 66 \qquad \qquad \text{BM} \leftrightarrow \text{Acc} \\ \text{EXBL} \qquad 67 \qquad \qquad \text{BL} \leftrightarrow \text{Acc} \\ \text{EX} \qquad 68 \qquad \qquad \text{B} \leftrightarrow \text{SB} \\ \hline \qquad \qquad$	EXCLX	58 to 5B			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	FXCD x	5C to 5F	· ·		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	FXAX	64	l		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
			L		
		Ļ			
ADX x 00 to 0F Acc ← Acc+x (I₃-I₀), Skip if Cy = 1 ADD 7A Acc ← Acc+M ADC 7B Acc ← Acc + M+C, C ↔ Cy Skip if Cy = 1 COMA 79 Acc ← Acc INCB 78 BL ← BL+1, Skip if BL = FH			J		
ADX X 00 to 0F Skip if Cy = 1 ADD 7A $Acc \leftarrow Acc+M$ ADC 7B $Acc \leftarrow Acc+M+C$, $C \leftrightarrow Cy$ Skip if Cy = 1 COMA 79 $Acc \leftarrow Acc$ INCB 78 $Bcc \leftarrow Bcc+1$, Skip if $Bcc \rightarrow Cc$	Arthur		1000		
ADD 7A $Acc \leftarrow Acc+M$ ADC 7B $Acc \leftarrow Acc + M+C, C \leftrightarrow Cy$ Skip if $Cy = 1$ COMA 79 $Acc \leftarrow Acc$ INCB 78 $Bc \leftarrow Bc+1, Skip if Bc = Fh$	ADX x	00 to 0F			
ADC 7B Skip if Cy = 1 COMA 79 Acc \leftarrow Acc INCB 78 BL \leftarrow BL+1, Skip if BL = FH	ADD	7A	<u> </u>		
Skip if Cy = 1 COMA 79 $Acc \leftarrow \overline{Acc}$ INCB 78 $BL \leftarrow BL+1$, Skip if $BL = FH$	ADC	7D	$Acc \leftarrow Acc + M+C, C \leftrightarrow Cy$		
INCB 78 B _L ← B _L +1, Skip if B _L = F _H		/B			
	1	79			
DECB 7C $B_L \leftarrow B_L-1$, Skip if $B_L = 0$		78			
	DECB	7C	$B_L \leftarrow B_L-1$, Skip if $B_L = 0$		

MNEMONIC	MACHINE CODE	OPERATION		
		t Instructions		
TAM	6F	Skip if Acc = M		
TC x	6E	Skip if C = 1		
TM	48 to 4B	Skip if Mi = 1 (i = 3 to 0)		
TABL	6B	Skip if A = BL		
TPB x	4C to 4F	Skip if P (R) i = 1 (i = I ₁ , I ₀)		
TA	6C	Skip if IFA = 1, and (IFA \leftarrow 0)		
TD	69 02	Skip if IFD = 1, and (IFD ← 0)		
	Bit Manip	ulation Instructions		
SM x	44 to 47	Mi ← 1 (i = 3 to 0)		
RM x	40 to 43	Mi ← 0 (i = 3 to 0)		
SC	61	c ← 1		
RC	60	c ← 0		
IE	63	IME ← 1		
ID	62	IME ← 0		
	I/O Coi	ntrol Instructions		
INL	70	Acc ← P1i (i = 3 to 0)		
OUTL	71	P0i ← Acc (i = 3 to 0)		
ANP	72	$Pj \leftarrow Pj \cap Acc (j = 3 \text{ to } 0)$		
ORP	73	$Pj \leftarrow Pj \cup Acc (j = 3 \text{ to } 0)$		
IN	74	$Acc \leftarrow Pj (j = 3, 2, 1)$		
OUT	75	$Pj \leftarrow Acc (j = 3 \text{ to } 0)$		
OUT	75	$Rj \leftarrow Acc (j = F \text{ to } D)$		
Table Reference Instructions				
		Push		
PAT	6A	Pu ← (0, 4), Pt (X1, X0, Acc)		
PAI	00 to FF	(X, Acc) ← 17- 1 0		
		Pop		
	Divid	ler Instructions		
DR	69	DIV / f- f-) Roset		
υĸ	03	DIV (f ₇ -f ₀) Reset		
DTA	69	Acc ← Divider (f₃ to f₀)		
DIA	04	Acc Divider (13 to 10)		
Melody Control Instructions				
PRE	6B	Melody ROM pointer preset		
FRE		Melody ROM pointer ← X, A		
	Spec	ial Instructions		
STOP	76	Standby mode (STOP)		
HALT	77	Standby mode (HALT)		
NOP	00	No operation		

SYSTEM CONFIGURATION EXAMPLE

· Sports watch

· Watch and calculator

