Assignment- 9-9.3-7

AI24BTECH11004-Bheri Sai Likith Reddy

Question: Find the area of the region enclosed by the curves $y^2 = x$, $x = \frac{1}{4}$, y = 0 and x = 1. (12,2022)

Solution: The parameters of the conic are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \mathbf{u} = -\frac{1}{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}, f = 0$$

for the line $x - \frac{1}{4} = 0$ parameters are $h_2 = \begin{pmatrix} \frac{1}{4} \\ 0 \end{pmatrix}, m = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$: w substituting in equation 9.1.1.3 we get $k_i = 1, -1$

that means points of intersection are $a_0 = \begin{pmatrix} \frac{1}{4} \\ \frac{1}{2} \end{pmatrix} and a_1 = \begin{pmatrix} \frac{1}{4} \\ \frac{-1}{2} \end{pmatrix}$ similarly point of intersentions with x=1 are $a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $a_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$

hence area of the region between the two lines and the parabola is

$$\int_{\frac{1}{4}}^{1} \sqrt{x} dx - \int_{\frac{1}{4}}^{1} 0 dx = \frac{7}{6}$$

hence therefore required area is $\frac{7}{12}$ since the parabola is symmetric about x axis.

Point	Description
$a_0(0.25, 0.5), a_0(0.25, 0.5)$	Point of intersection of the line
	$x=0.25$ and the parabola $y^2 = x$
$a_2(1,1), a_3(1,-1)$	Point of intersection of the line
	$x=0.25$ and the parabola $y^2 = x$
	Point of intersection of the line $x=1$
	and the parabola $y^2 = x$

1

