SVM part I

Peng Zhang

June 1, 2019

OUTLINES

- General class of regularization problem
- Kernel
- Reproducing kernel Hilbert Space.
- Support Vector Classifier

2 / 25

$$\min_{f \in \mathcal{H}} \left[\sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f) \right]$$
 (1)

- L(y, f(x)) is a loss function.
- J(f) is a penalty functional.
- ${\cal H}$ Hilbert space.

For case: $J(f) = \int_{\mathcal{R}^p} \frac{|\tilde{f}(s)|^2}{\tilde{G}(s)} ds$, solutions have the form:

$$f(X) = \sum_{k=1}^{K} \alpha_k \phi_k(X) + \sum_{i=1}^{N} \theta_i G(X - x_i).$$
 (2)

The solution is finite dimensional, while defined over an infinite-dimensional space

- < □ > < □ > < 亘 > < 亘 > □ ■ 9 < @

Kernel

Definition

A function $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is called kernel if

(1) it is symmetric, i.e
$$K(x, y) = K(y, x)$$

(2)it is positive definite, that is
$$\sum_{i=1}^{N} \sum_{j=1}^{N} c_i c_j K(x_i, x_j) \ge 0$$
 for any $N \in \mathcal{N}$,

$$x_1, \cdots, x_n \in R^p$$
, $c_1, \cdots, c_n \in R$

- Sums of kernels are kernels.
- Products of kernels are kernels.

Kernel

Definition

A function $K: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$ is called kernel if

(1) it is symmetric, i.e
$$K(x, y) = K(y, x)$$

(2) it is positive definite, that is
$$\sum\limits_{i=1}^{N}\sum\limits_{j=1}^{N}c_{i}c_{j}K(x_{i},x_{j})\geq0$$
 for any $N\in\mathcal{N}$,

$$x_1, \cdots, x_n \in R^p, c_1, \cdots, c_n \in R$$

- Sums of kernels are kernels.
- Products of kernels are kernels.

Samples:

- Polynomial kernel: $K(x, y) = (1 + \langle x, y \rangle)^d$.
- Exponential kernel: $K(x, y) = \exp(\langle x, y \rangle)$.
- Gaussian kernel: $K(x, y) = \exp(-\nu ||x y||^2)$
- Neural network: $K(x,y) = \tanh(\kappa_1 < x, y > +\kappa_2)$

 Peng Zhang
 SVM part I
 June 1, 2019
 4 / 25

\mathcal{H} :reproducing kernel Hilbert space(RKHS)

Definition

 \mathcal{H} is Hilbert space if \mathcal{H} is a complete metric space with respect to the distance function induced by the inner product $\langle x, y \rangle_{\mathcal{H}}$.

 $\langle x, y \rangle_{\mathcal{H}}$ satisfies:

- conjugate symmetric: $\langle x, y \rangle = \overline{\langle y, x \rangle}$
- linear: $\langle ax_1 + bx_2, y \rangle = a \langle x_1, y \rangle + b \langle x_2, y \rangle$
- positive definite: $< x, x>_{\mathcal{H}} \ge 0$ and $< x, x>_{\mathcal{H}} = 0 \Leftrightarrow x = 0$

Theorem

A reproducing Hilbert space defines a positive kernel. Conversely, a positive definite kernel defines a reproducing Hilbert space.

\mathcal{H} :reproducing kernel Hilbert space(RKHS)

- Given kernel K(x, y), function $K_x \in \mathcal{H} : R^p \to R$ is $K_x(z) = K(x, z)$, associated with inner product $\langle K_x, K_y \rangle_{\mathcal{H}} = K(x, y)$ -reproducing.
- Suppose kernel K has an eigen-expansion(Mercer's Theorem):

$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y)$$
 (3)

6 / 25

Peng Zhang SVM part I June 1, 2019

\mathcal{H} :reproducing kernel Hilbert space(RKHS)

- Given kernel K(x, y), function $K_x \in \mathcal{H} : R^p \to R$ is $K_x(z) = K(x, z)$, associated with inner product $\langle K_x, K_y \rangle_{\mathcal{H}} = K(x, y)$ -reproducing.
- Suppose kernel K has an eigen-expansion(Mercer's Theorem):

$$K(x,y) = \sum_{i=1}^{\infty} \gamma_i \phi_i(x) \phi_i(y)$$
 (3)

• $f \in \mathcal{H}$:

$$f(x) = \sum_{i=1}^{\infty} c_i \phi_i(x). \tag{4}$$

associated with inner product $\langle f, g \rangle_{\mathcal{H}} = \sum_{i=0}^{\infty} \frac{c_i d_i}{\gamma_i}$

6 / 25

Peng Zhang SVM part I June 1, 2019

Penalty functional: $J(f) = \langle f, f \rangle_{\mathcal{H}}$

Problem:

$$\min_{f \in \mathcal{H}} \left[\sum_{i=1}^{N} L(y_i, f(x_i)) + \lambda J(f) \right]$$

becomes into:

$$\min_{\{c_i\}_1^{\infty}} \left[\sum_{i=1}^N L(y_i, \sum_{j=1}^\infty c_j \phi_j(x_i)) + \lambda \sum_{j=1}^\infty c_j^2 / \gamma_j \right]. \tag{5}$$

Solution form, which is proved in Ex.5.15, is:

$$f(x) = \sum_{i=1}^{N} \alpha_i K_{x_i}(x) = \sum_{i=1}^{N} \alpha_i K(x, x_i).$$
 (6)

It is finite-dimensional.

Matrix form

 $[f(x_1), \cdots, f(x_N)]^T = \mathbf{K}\alpha$

$$J(f) = \langle f, f \rangle_{\mathcal{H}} = \langle \sum_{i=1}^{N} \alpha_{i} K_{x_{i}}(z), \sum_{j=1}^{N} \alpha_{j} K_{x_{j}}(z) \rangle$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} \langle K_{x_{i}}(z), K_{x_{j}}(z) \rangle = \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$

$$= \alpha^{T} K \alpha$$

$$f(x_{i}) = \sum_{j=1}^{N} \alpha_{i} K(x_{i}, x_{j})$$

8 / 25

L(y, f(x)): squared error loss

Penalized least squares problem (PLSP):

$$\begin{aligned} & \min_{\alpha} L(y, \boldsymbol{K}\alpha) + \lambda \alpha^{T} \boldsymbol{K}\alpha \\ & \min_{\alpha} (y - \boldsymbol{K}\alpha)^{T} (y - \boldsymbol{K}\alpha) + \lambda \alpha^{T} \boldsymbol{K}\alpha \end{aligned}$$

Solution of α , f(x) are

$$\hat{\alpha} = (\mathbf{K} + \lambda I)^{-1} y \tag{7}$$

$$\hat{f}(x) = \sum_{i=1}^{N} \hat{\alpha}_i K(x, x_i). \tag{8}$$

 ${\sf Peng} \ {\sf Zhang}$

Polynomial kernel: $K(x, y) = (\langle x, y \rangle + 1)^d$

For, $x, y \in \mathbb{R}^p$, has $M = \binom{p+d}{d}$ eigen-functions. Sample (p = 2, d = 2, M = 6):

•
$$K(x,y) = 1 + 2x_1y_1 + 2x_2y_2 + x_1^2y_1^2 + x_2^2y_2^2 + 2x_1x_2y_1y_2$$

•
$$h(x)^T = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

$$K(x,y) = \sum_{m=1}^{M} h_m(x)h_m(y)$$

$$f(x) = \sum_{m=1}^{M} \beta_m h_m(x)$$

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ②

Polynomial kernel: $K(x, y) = (\langle x, y \rangle + 1)^d$

Penalized polynomial regression problem (PPRP):

$$\min_{\{\beta_m\}_1^M} \sum_{i=1}^N \left(y_i - \sum_{m=1}^M \beta_m h_m(x_i) \right)^2 + \lambda \sum_{m=1}^M \beta_m^2$$
 (9)

$$\min_{\beta} (y - \mathbf{H}\beta)^{T} (y - \mathbf{H}\beta) + \lambda \beta^{T} \beta.$$
 (10)

 Peng Zhang
 SVM part I
 June 1, 2019
 11 / 25

Polynomial kernel: $K(x, y) = (\langle x, y \rangle + 1)^d$

Penalized polynomial regression problem (PPRP):

$$\min_{\{\beta_m\}_1^M} \sum_{i=1}^N \left(y_i - \sum_{m=1}^M \beta_m h_m(x_i) \right)^2 + \lambda \sum_{m=1}^M \beta_m^2$$
 (9)

$$\min_{\beta} (y - \mathbf{H}\beta)^{T} (y - \mathbf{H}\beta) + \lambda \beta^{T} \beta.$$
 (10)

Solution of β and f(x) are:

$$\hat{\beta} = (\lambda I + \mathbf{H}^T \mathbf{H})^{-1} \mathbf{H}^T y$$

$$\hat{f}(x) = \sum_{m=1}^{M} \hat{\beta}_m h_m(x)$$

This problem is equivalent to penalized least squares problem (PLSP) by Ex.5.16

4 D F 4 DF F 4 E F 4 E F 9) Q (*

June 1, 2019

11 / 25

Gaussian kernel: $K(x,y) = e^{-\nu||x-y||^2}$

- Eigen-decomposition: $\mathbf{K} = \mathbf{\Phi} \mathbf{D}_{\gamma} \mathbf{\Phi}^{T}$.
- The *i*th columns of Φ is the empirical estimates of the eigen expansion function $\hat{\phi}_i(x)$.
- Feature space representation: $h_i(x) = \sqrt{(\hat{\gamma}_i)}\hat{\phi}_i(x)$, $i = 1, \dots, N$.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

 Peng Zhang
 SVM part I
 June 1, 2019
 12 / 25

L(y, f(x)): SVM Hinge Loss

$$L(y, f(x)) = [1 - yf(x)]_+$$

$$\min_{\alpha_0, \boldsymbol{\alpha}} \Big(\sum_{i=1}^{N} [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} \boldsymbol{\alpha}^T \boldsymbol{K} \boldsymbol{\alpha} \Big)$$

A finite dimensional solution of the form

$$f(x) = \alpha_0 + \sum_{i=1}^{N} \alpha_i K(x, x_i)$$
(11)

 Peng Zhang
 SVM part I
 June 1, 2019
 13 / 25

OUTLINES

- General class of regularization problem
- Kernel
- Reproducing kernel Hilbert Space.
- Support Vector Classifier

15 / 25

FIGURE 12.1. Support vector classifiers. The left panel shows the separable case. The decision boundary is the solid line, while broken lines bound the shaded maximal margin of width $2M = 2/\|\beta\|$. The right panel shows the nonseparable (overlap) case. The points labeled ξ_j^* are on the wrong side of their margin by an amount $\xi_j^* = M\xi_j$; points on the correct side have $\xi_j^* = 0$. The margin is maximized subject to a total budget $\sum \xi_i \leq \text{constant}$. Hence $\sum \xi_j^*$ is the total distance of points on the wrong side of their margin.

Peng Zhang SVM part I June 1, 2019

Given N pairs $(x_1, y_1), (x_2, y_2), \dots, (x_N, y_N)$, with $x_i \in \mathcal{R}^p$, $y_i \in \{-1, 1\}$, the hyperplane is

$${x: f(x) = x^T \beta + \beta_0 = 0}.$$

Class are separable

Purpose: find a function $f(x) = x^T \beta + \beta_0$, which meet,

$$\begin{cases} f(x_i) > 0, & \text{if } y_i > 0 \\ f(x_i) < 0, & \text{if } y_i < 0 \end{cases} \Leftrightarrow y_i f(x_i) > 0$$

and the margin as big as possible.

$$\begin{aligned} & \max_{\beta,\beta_0,||\beta||=1} M \\ & \text{subject to:} y_i(x_i^T\beta+\beta_0) \geq M, i=1,\cdots,N. \end{aligned}$$

or

$$\begin{aligned} & \min_{\beta,\beta_0} ||\beta|| \\ & \text{subject to:} y_i(x_i^T \beta + \beta_0) \geq 1, i = 1, \cdots, N. \end{aligned}$$

June 1, 2019

Class are overlap

Introduce the slack variables $\xi = (\xi_1, \xi_2, \cdots, \xi_N)$,

$$\min_{\beta,\beta_0,\xi} ||\beta||$$
subject to: $y_i(x_i\beta^T + \beta_0) \ge 1 - \xi_i, \quad \xi_i \ge 0, \quad \sum \xi_i \le constant, \forall i$

 ξ_i is the proportional amount by which the prediction $f(x_i) = x_i^T \beta + \beta_0$ is on the wrong side of its margin.

 $\xi_i = 0$: correct side;

 $\xi_i > 1$: Misclassifications.

18 / 25

Peng Zhang SVM part I June 1, 2019

Computing the Support Vector Classifier

$$\begin{aligned} & \min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^{N} \xi_i \\ & \text{subject to:} \xi_i \geq 0, \quad y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i, \forall i \end{aligned}$$

 Peng Zhang
 SVM part I
 June 1, 2019
 19 / 25

Computing the Support Vector Classifier

$$\begin{aligned} & \min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^N \xi_i \\ & \text{subject to:} \xi_i \geq 0, \quad y_i(x_i^T \beta + \beta_0) \geq 1 - \xi_i, \forall i \end{aligned}$$

$$L_{p} = \frac{1}{2}||\beta||^{2} + C\sum_{i=1}^{N} \xi_{i} - \sum_{i=1}^{N} \alpha_{i}[y_{i}(x_{i}^{T}\beta + \beta_{0}) - (1 - \xi_{i})] - \sum_{i=1}^{N} \mu_{i}\xi_{i}$$

$$L_{D}(\beta_{0}, \xi, \alpha, \mu) = \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2}\sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_{i}\alpha_{i'}y_{i}y_{i}'x_{i}^{T}x_{i'}$$

with $\beta = \sum_{i=1}^{N} \alpha_i y_i x_i$.

Maximizing L_D is a simpler convex quadratic programming problem than the primal.

Peng Zhang SVM part I June 1, 2019 19 / 25

Support vectors

The solution for β has the form, $\hat{\beta} = \sum_{i=1}^{N} \hat{\alpha}_i y_i x_i$ Support vectors: observations with nonzero coefficients $\hat{\alpha}_i$. points on the wrong side of the boundary; points on the correct side of the boundary but close to it. The number of support vector should be as small as possible.

Support Vector Machines

Basis functions $h_m(x)$, $m=1,\dots,M$, with $h(x_i)\equiv (h_1(x_i),\dots,h_M(x_i))$, try to produce the function $f(x)=h(x)^T\beta+\beta_0$.

$$\begin{aligned} & \min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^N \xi_i \\ & \text{subject to:} \xi_i \geq 0, \quad y_i (h(x_i)^T \beta + \beta_0) \geq 1 - \xi_i, \forall i \end{aligned}$$

 Peng Zhang
 SVM part I
 June 1, 2019
 21 / 25

Support Vector Machines

Basis functions $h_m(x)$, $m=1,\dots,M$, with $h(x_i)\equiv (h_1(x_i),\dots,h_M(x_i))$, try to produce the function $f(x)=h(x)^T\beta+\beta_0$.

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^N \xi_i$$
subject to: $\xi_i \ge 0$, $y_i(h(x_i)^T \beta + \beta_0) \ge 1 - \xi_i, \forall i$

$$L_D = \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{i'=1}^{N} \alpha_i \alpha_{i'} y_i y_i' < h(x_i), h(x_{i'}) >$$

$$\beta = \sum_{i=1}^{N} \alpha_i y_i h(x_i)$$

$$N$$

 $f(x) = h(x)^{T} \beta + \beta_{0} = \sum_{i=1}^{N} \alpha_{i} y_{i} < h(x), h(x_{i}) > +\beta_{0}$

SVM as a Penalization Method

$$\begin{aligned} & \min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^N \xi_i \\ & \text{subject to:} \xi_i \geq 0, \quad y_i f(x_i) \geq 1 - \xi_i, \forall i \end{aligned}$$

Constraint: $\xi_i \geq 0$ and $\xi_i \geq 1 - y_i f(x_i)$, minimal value of ξ_i : $\xi_i = \max(0, 1 - y_i f(x_i))$

SVM as a Penalization Method

$$\min_{\beta,\beta_0,\xi} \frac{1}{2} ||\beta||^2 + C \sum_{i=1}^N \xi_i$$

subject to: $\xi_i \ge 0$, $y_i f(x_i) \ge 1 - \xi_i, \forall i$

Constraint: $\xi_i \geq 0$ and $\xi_i \geq 1 - y_i f(x_i)$, minimal value of ξ_i :

$$\xi_i = \max(0, 1 - y_i f(x_i))$$

Equivalently to penalization method:

$$\min_{\beta,\beta_0} \sum_{i=1}^{N} [1 - y_i f(x_i)]_+ + \frac{\lambda}{2} ||\beta||^2$$

with $\lambda = 1/C$.

TABLE 12.1. The population minimizers for the different loss functions in Figure 12.4. Logistic regression uses the binomial log-likelihood or deviance. Linear discriminant analysis (Exercise 4.2) uses squared-error loss. The SVM hinge loss estimates the mode of the posterior class probabilities, whereas the others estimate a linear transformation of these probabilities.

Loss Function	L[y, f(x)]	Minimizing Function
Binomial Deviance	$\log[1 + e^{-yf(x)}]$	$f(x) = \log \frac{\Pr(Y = +1 x)}{\Pr(Y = -1 x)}$
SVM Hinge Loss	$[1 - yf(x)]_+$	$f(x) = \text{sign}[\Pr(Y = +1 x) - \frac{1}{2}]$
Squared Error	$[y - f(x)]^2 = [1 - yf(x)]^2$	$f(x) = 2\Pr(Y = +1 x) - 1$
"Huberised" Square Hinge Loss	-4yf(x), $yf(x) < -1[1 - yf(x)]_+^2 otherwise$	$f(x) = 2\Pr(Y = +1 x) - 1$

Thank You

Peng Zhang SVM part I June 1, 2019 25 / 25