

Exercise 4D

```
Question 6:
```

Since, $\angle P$, $\angle Q$ and $\angle R$ are the angles of a triangle.

So,
$$\angle P + \angle Q + \angle R = 180^{\circ}$$
(i)

Now,
$$\angle P - \angle Q = 42^{\circ}$$
 [Given]

$$\Rightarrow \angle P = 42^{\circ} + \angle Q \dots (ii)$$

and
$$\angle Q - \angle R = 21^{\circ}$$
 [Given]

$$\Rightarrow \angle R = \angle Q - 21^{\circ}$$
(iii)

Substituting the value of $\angle P$ and $\angle R$ from (ii) and (iii) in (i), we get,

$$\Rightarrow$$
 42° + \angle Q + \angle Q + \angle Q - 2° = 180°

$$\Rightarrow 3 \angle Q + 21^{\circ} = 180^{\circ}$$

$$\Rightarrow$$
 3 \angle Q = 180 $^{\circ}$ - 21 $^{\circ}$ = 159 $^{\circ}$

$$\angle Q = 159/3 = 53^{\circ}$$

$$\therefore \angle P = 42^{\circ} + \angle Q$$

$$=42^{\circ}+53^{\circ}=95^{\circ}$$

$$\angle R = \angle Q - 21^{\circ}$$

$$=53^{\circ}-21^{\circ}=32^{\circ}$$

$$\therefore$$
 ∠P = 95°, ∠Q = 53° and ∠R = 32°.

Question 7:

Given that the sum of the angles A and B of a ABC is 116° , i.e., $\angle A$ +

$$_{\angle}B = 116^{\circ}.$$

Since, $\angle A + \angle B + \angle C = 180^{\circ}$

So,
$$116^{\circ} + \angle C = 180^{\circ}$$

$$\Rightarrow$$
 $\angle C = 180^{\circ} - 116^{\circ} = 64^{\circ}$

Also, it is given that:

$$\angle A - \angle B = 24^{\circ}$$

$$\Rightarrow \angle A = 24^{\circ} + \angle B$$

Putting, $\angle A = 24^{\circ} + \angle B$ in $\angle A + \angle B = 116^{\circ}$, we get,

$$\Rightarrow$$
 24° + \angle B + \angle B = 116°

$$\Rightarrow$$
 2 \angle B + 24 $^{\circ}$ = 116 $^{\circ}$

$$\Rightarrow 2 \angle B = 116^{\circ} - 24^{\circ} = 92^{\circ}$$

$$\angle B = 92/2 = 46^{\circ}$$

Therefore, $\angle A = 24^{\circ} + 46^{\circ} = 70^{\circ}$

$$\therefore \angle A = 70^{\circ}, \angle B = 46^{\circ} \text{ and } \angle C = 64^{\circ}.$$