SEMANTIC BASED APPROACH FOR ENTITY MATCHING ON NOISY SEMI STRUCTURED DATA

Nikhil Acharya Supervisor- Diego Collarana

ENTITY MATCHING

- Match data instances referring to same real world entities.
- Match records from 2 or more data sources
- The task is critical in data integration and data cleaning

ID	Name	Telephone	Address	Items Purchased
233	Angelica J. Jordan	334-555-0178	111 Spring Ln, Greenville, AL	5556, 7611
452	Angie Jordan	202-555-5477	45 Krakow St, Washington, DC	2297
699	Andrew Jordan	334-555-0178	111 Spring Ln, Greenville, AL	1185, 2299, 3720
720	Angle Jrodon			5556
821	Angelica Jeffries Jordan	202-555-5477	397 Hope Blvd, Greenville, AL	7611

Table above contains shopping data of customers and multiple records can belong to same person

PROBLEM STATEMENT

Entity matching on RDF data

THE WHY

SEMANTIC INTEROPERABILITY CONFLICTS

RDF datasets can have different interoperability conflicts

- Variable date formats: dd/mm/yy or mm/dd/yy or dd/yy
- Different level of details : Kgs as grams / euros as cents
- Different formats: centrigrades or fahrenheit/ \$ or EUR
- Synonyms or Acronyms : David guetta/ D Guetta
- Different Notation: 2.5 or 2:5

HANDLING THE ABOVE CONFLICTS IS KEY FOR EFFICIENT ENTITY MATCHING!!!

DEEP MATCHER FEATURES

STRUCTURED DATA:

9	Name	City	Age
t_i	Dave Smith	New York	18

	Name	City	Age
2	David Smith	New York	18

(a) structured

Kingston ts4gcf133 4GB compactflash memory card (133x).

- 1. Attribute values are properly aligned
- Information that is associated only with the attribute
- 3. Restricted Length

TEXTUAL DATA:

Description

Kingston 133x high-speed 4GB compact flash card ts4gcf133, 21.5 MB per sec data transfer rate, dual-channel support, multi-platform compatibility.

Description

All attributes for entity mentions correspond to raw text entries

(b) textual

DIRTY DATA:

	Name	Brand	Price
1	Adobe Acrobat 8	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	299.99
	Name	Brand	Price
ŀ	100 Chilla (1900)		12-04-03-0

(c) dirty

1. Attribute values may be "injected" under the wrong attribute

ENTITY MATCHING USING DEEP MATCHER

- Cannot handle semantic conflicts
- RDF data cannot be used directly
- 2 dimensional data in specified format is mandatory
- Can handle noisy and raw textual data

DEEP MATCHER WITH CONFLICTS

Epochs=10 Dataset= ITunes

Conflicts	F1	Precision	Recall	Method
No	85.25	86.67	83.87	Hybrid
No	86.67	89.66	83.87	RNN
No	75.86	81.48	70.97	Attention
Yes	81.97	83.33	80.65	Hybrid
Yes	83.58	77.78	90.32	RNN
Yes	75.86	81.48	70.97	Attention
Yes	80.00	76.47	83.87	Hybrid

DEEP MATCHER FORMAT

- Left_ prefix for left record columns
- Right_ prefix for right record columns
- Labelling 1 and 0
- ID used like a primary key
- Sorting of columns

RDF REPRESENTATION

RDF representation can help sort conflicts!

PROBLEM IN HAND

MATCH

RDF IN SEMI STRUCTURED DATA ON DEEP MATCHER

OUR CONTRIBUTION

- Entity matching on RDF datasets (Deduce an approach)
- RDF data with conflicts sorted using sparql queries and re designing ontology
- Improves deep matcher accuracy on noisy semi structured data
- Last but not least a transformation algorithm suiting entity matching

THE HOW

ALGORITHM

INPUT

2 similar rdf datasets

Label indicating matched entity across (URI Mapping)

Defined interoperability conflicts

Python environment

OUTPUT

Transformed rdf data to csv

Modified RDF datasets with altered ontology and conflicts better handled

List of matched entities

PIPELINE

ITUNES ONTOLOGY

HANDLING ITUNES CONFLICTS

Date conflict:

- Sparql fetch
- Regex for identifying conflicts
- Fix a format
- Sparql update

Duration conflict

- Sparql fetch
- Identify all formats by regex
- Add entity, change ontology
- Sparql update

Price Conflict:

- Sparql fetch
- Calculate conversion
- Change ontology
- Sparql update

ACRONYM CONFLICT

- Sparql fetch entity with acronym
- Identify entities which depend on acronym entity and use subset feature to see if its the same entity represented with acronym
- String match
- Update individuals and map all similar individuals into one
- Update

UPDATED ITUNES ONTOLOGY

LABELLING AND ITS TRANSFORMATION

DATA TRANSFORMATION

Shortest path using Breadth first search from song (entity to be matched)

L1: (Song,hasalbum,Album), (Album,name,L1)

L2:(Song,hasalbum,Album),(Album,released,L2)

L3:(Song,songname,L3)

L4:(Song,hasalbum,Album),(Album,hastime,Time),(Time,duration,L4)

	↓					
L1	L2	L3	L4	L5		

DEEP MATCHER FOR STRUCTURED DATA

- 2 dim data as i/p
- Semantic interoperability conflicts are sorted
- Semi structured to structured
- Labelling

ID	Label	Left_L1	Left_L2	Left_L3	Right_L1	Right_L2	Right_L3

EXPERIMENTS

KG	Conflcits	F1	Precision	Recall	Method
No	No	85.25	86.67	83.87	Hybrid
No	Yes	79.31	85.19	74.19	Hybrid
Yes	Yes	82.76	88.89	77.42	Hybrid

Thank, You