Criação e simulação de algoritmos com repetição simples e aninhadas

Oficina de Programação para alunos do ensino médio

Representações de objetos

Um **modelo** é construído ao se **identificar padrões e atributos essenciais** de objetos.

Quais as **características essenciais** das figuras?

disponível em: https://loja.grupoa.com.br/ebcomputacao-na-educacaobasica9786581334048-p1006668

Desafio "Quem sou eu?"

Separados em duplas, cada aluno escolhe um personagem.

Escrever uma lista das **atributos** de seu personagem = {cor_de_cabelo, cor_olhos, gênero, usa_óculos, Qtde_acessorios, possui_bigode}

Cada aluno escolhe uma característica para responder sobre o seu próprio personagem;

Ganha quem **descobrir** primeiro o personagem escondido;

Classificação em conjuntos

Diferentes características podem gerar diferentes agrupamentos:

Quantidade de personagens ?

Lista de nomes?

QTDE Conjuntos separados por cor de cabelo?

Conjuntos separados por gênero?

Juvenal possui acessório no cabelo?

Cor do cabelo da Luka Maluca?

Classificação em conjuntos

Os objetos podem ser classificados em conjuntos, que podem ser atômicos (números, palavras, valores-verdade) ou estruturados (registros, listas e grafos)

Quantidade de personagens = 4

Lista de nomes = {"Senhor Fabiano", "Luka Maluka", "Juvenal", "Cereja"}

QTDE de Conjuntos separados por cor de cabelo = 3

Conjuntos separados por gênero = { {"Senhor Fabiano", "Juvenal"}, {Luka Maluka", "Cereja"}}

Juvenal possui acessório no cabelo = Verdadeiro

Cor do cabelo da Luka Maluca = "loiro"

Tipos de dados em computação

- inteiros: números inteiros (0, 1, 2, 3...)
- o reais: números inteiros e decimais (0; 1,2; 2,1; 3)

- caracteres: números reais, letras e outros símbolos ("pizza", 'carro, "Vasco")
- Iógico: comandos de VERDADEIRO ou FALSO

Tipos de dados

Atributos de um personagem ={cor_de_cabelo, cor_olhos, gênero, usa_óculos, Qtde_acessorios, possui_bigode}

inteiro

real

caracteres

lógico

IDENTIFICADORES

A utilização de nomes na programação é fundamental para se **identificar e referenciar** recursos num programa.

Usualmente estes são **palavras** cujo **Significado** costuma se referir ao valor que este representa.

Isso é fundamental para que não haja confusão na interpretação.

Na cozinha, quando nos referimos a modelos de panelas diferentes (frigideira, forma de bolo, caçarola), indiretamente estamos identificando, através de padrões e atributos essenciais.

Seria como se todos os utensílios tivessem nomes.

Podemos imaginar uma variável como **utensílios e alimentos dispostos na bancada**.

Eles têm a capacidade de guardar certo **tipo de alimento.**

O nome da variável é como uma **etiqueta** colada na frente, identificando.

Variáveis

São **locais com um nome**dentro da **memória** do computador,
criados em um algoritmo para **armazenar** um **determinado dado**;

Cada dado pode ser de um **tipo diferente** e, por isso precisamos
mostrar ao nosso algoritmo logo no
início o que esperar armazenar;

Entrada/Saída de dados: Os algoritmos precisam interagir com o usuário.

Na cozinha de um restaurante, um **pedido**, juntamente com os **ingredientes necessários** para o seu preparo, são considerados os **dados de entrada**.

o **prato elaborado**resultante do pedido,
juntamente com adereços
como **bandejas**, **arranjos e outros artifícios** para embelezar
o prato, representam a **saída**.

Entrada/Saída de dados

Em portugol, utilizamos o comando enviado pelo usuário.

E o comando **escreva()** para retornar um dado para o usuário.

Se quisermos saber a altura de uma pessoa, devemos escrever para o usuário, guardar a resposta do usuário em uma variável chamada altura e imprimir a resposta para o usuário, como :

```
inteiro altura;

escreva ("Informe a sua
altura");
leia (altura);
escreva ("Sua altura é:",
altura);
```

Agora, podemos retomar o exemplo de algoritmo "Calcular idade":

Inicio inteiro idade; inteiro ano;	Inicio do algoritmo Declarando uma variável de nome idade com o tipo de dado inteiro
escreva ("Em que ano você nasceu ?"); ————————————————————————————————————	Recebe um dado do usuário
leia (ano);	Lê o dado recebido pelo usuário e armazena o valor na variável ano
idade = 2022 - ano;	Variável idade recebe o resultado a operação de subtração entre o inteiro 2022 e o valor armazenado na variável ano
escreva ("Sua idade é:", idade); Fim	Retorna o valor da variável idade Fim do algoritmo

Roteiro para construir um algoritmo

Entender o problema:

O que está sendo solicitado?

Identificar saídas:

O que deve ser calculado, processado, impresso?

Identificar entradas:

Quais dados o usuário precisa fornecer para fazer os cálculos?

Identificar o Processamento

Quais cálculos necessários para que as entradas se transformem nos dados de saída?

Escrever os comandos em sequência:

Qual a ordem de execução ?

Desafio: Balança do Q-sabor

O restaurante a quilo K-Sabor cobra R\$39,90 por quilo de refeição.

Construa um algoritmo que leia o peso do prato montado pelo cliente (em quilos) e imprima o valor a pagar.

Assuma que a balança já desconta o peso do prato.

Não esqueça o **roteiro** para construir um algoritmo:

- I. Entenda o problema;
- 2. Identifique as saídas;
- 3. Identifique as entradas;
- 4. Identifique o processamento necessário;
- 5. Escrever os comandos em sequências.

As estruturas de repetição são muito utilizadas em desenvolvimento de softwares. Entender como funciona é muito importante para resolver problemas que precisam executar tarefas repetidas vezes.

Estruturas de repetição

São estruturas que permitem **executar mais de uma vez o mesmo comando** ou conjunto de comandos de acordo com uma **condição** ou com um **contador**.

Existem 3 estruturas de repetição básica para praticamente todas as linguagens de programação:

While (enquanto),
Do While (faça enquanto),
For (para)

Enquanto (WHILE)

- Repete um bloco de código enquanto uma condição permanecer verdadeira
- Caso a condição seja falsa, os comandos dentro do while não serão executados e a execução continuará com os comandos após o while
- A repetição do while é controlada por uma condição que verifica alguma variável. Porém para que o while funcione corretamente é importante que essa variável sofra alteração dentro do while. Ex: um contador.
- O Após entrar dentro da repetição, o bloco de comandos sempre será executado, mesmo que dentro do bloco a variável que está controlando a execução seja alterada.

Algoritmo "Par ou ímpar"

```
    inicio
        inteiro contador
        contador = 0
        enquanto contador < 10 faz
        se (contador % 2 == 0)
        Escreva (contador ,"É par")
        Senão
        Escreva (contador ,"É ímpar")
        contador = contador + 1
        fimenquanto
        fim</li>
```


Faça enquanto

- Muito parecido com o while, porém tem uma diferença crucial: condição é verificada após executar o bloco de comandos.
- Há uma bloco de comandos e logo depois uma verificação. Assim caso a variável condicional for alterada dentro do bloco de comandos, isso afetará a validação da condição.
- O A escolha entre while e do while é mínima, então dependerá do bom senso do programador, que optará pela estrutura que deixar o algoritmo mais simples e legível.

Algoritmo "Ler Senha"

```
Inicio
    Inteiro senha_user, senha_cadastro
    senha_user = 0
    senha_cadastro = 100
enquanto(1){
    faça{
        ler()senha_user)
    }enquanto(senha_user != senha cadastro)
    escreva("senha Válida)
}
fim
```


Para (FOR)

- O For é utilizado para executar um conjunto de comandos executado por um número X de vezes.
- É passada uma situação inicial, uma condição e uma ação a ser executada a cada repetição.
- Uma variável é inicializada com uma valor inicial.
- Essa variável é utilizada para controlar a quantidade de vezes em que o conjunto de comandos será executado.
- E ao final do conjunto de comandos a variável sempre sofrerá uma alteração, aumentando ou diminuindo de acordo com a lógica utilizada.

Algoritmo "Calcular Média"

```
Inicio
    real nota, media, somaNotas = 0.0
    inteiro contador

para(contador = 1; contador <= 20; contador += 1){
    escreva("Digite uma nota: ")
    leia(nota)
    somaNotas = somaNotas + nota
}
    media = somaNotas / 20
    escreva("Média: ", media</pre>
Fim
```

Exercícios:

Resolva os exercícios abaixo, utilizando a estrutura de repetição adequada

- Escreva um algoritmo para imprimir os 100 primeiros números pares.
- O Escreva um algoritmo que receba a idade de 10 pessoas e calcule a média de idade.

Referências Bibliográficas

BAZILIO, C. Programando na cozinha. Disponível em: https://carlosbazilio.gitbooks.io/programando-na-cozinha/content/pt-br/. Último acesso em: 02/11/2022.

CAVALHEIRO, S.; FOSS, L.; AGUIAR, M.S; DU BOIS, A.R.; PERNAS, A.M.; REISER, R.H.S.; PIANA, C.F.B.; MAZZINI, A.R.A. Explorando o pensamento computacional para a qualificação do ensino fundamental. In: RAABE, A; ZORZO, A.; BLIKSTEIN, P. (org.). **Computação na educação básica**: fundamentos e experiências. Porto Alegre: Penso, 2020.336 p.

RAABE, A; ZORZO, A.; BLIKSTEIN, P. (org.). **Computação na educação básica**: fundamentos e experiências. Porto Alegre: Penso, 2020.336 p.

VILARIM, Gilvan de Oliveira. Algoritmos: Programação para Iniciantes — 3ª Edição. Rio de Janeiro: Editora Ciência, 2017