RESIT PAPER

PROBLEM 1

An engineer decided to use a geothermal source from the yard to keep her Scottish house warm during the winter. The designed heat pump extracts water from the well at 15° C and discharges at 8° C. As working fluid, she decided to use propane (C₃) - see Figure below, that will transfer heat into a constant stream of cold air ($m_{air} = 2 \text{ kg/s}$, $C_{p,air} = 1.004 \text{ kJ/(kg.K)}$) at 12° C.

a) Calculate enthalpies and entropies of streams 1-4.

[8 Marks]

- b) For a mass flow rate of C_3 (m_{C3}) of 0.1 kg/s, calculate the required water flow rate (m_W). The heat capacity (C_P) of water is 4.1813 kJ/(kg.K). [2 Marks]
- c) Assuming that all heat extracted in the condenser is transferred to the air stream ($m_{air} = 2 \text{ kg/s}$), calculate the temperature of this heated stream (T_{out}^{air}). [5 Marks]
- d) Nearby the engineer's house, a geothermal reservoir was mapped and the following data was gathered,

Temperature (°C)	25	40	63	100	155	245
Depth (m)	0	200	400	600	800	1000

i. Calculate the temperature gradient of this reservoir.

[2 Marks]

ii. Binary cycle geothermal power plants operate at a temperature above 100°C. Assuming there is no heat losses in the production well, what is the ideal depth for a source geothermal fluid of 143°C?

[3 Marks]

iii. Describe how binary cycle geothermal power plants operate.

[5 Marks]

To solve this problem, you should assume that the saturated liquid streams are incompressible, and therefore dh = vdP (where h, v and P are specific enthalpy, specific volume and pressure, respectively). Quality of the vapour stream is expressed as,

$$x_j = \frac{\psi_i - \psi_f}{\psi_g - \psi_f}$$
 with $\psi = h, s$

where s is the specific entropy.

RESIT PAPER

Solution: (a)

Stage 1: is at $P_1 = 3$ bar and $T_1 = 0$ °C $\Rightarrow T_{sat} = -14.16$ °C $< T_1$, thus C_3 is at

[1/8] superheated state (SHF). Thus, from SHF table, $h_1 = 477.1 \text{ kJ}.\text{kg}^{-1}$ and

[1/8] $\mathbf{s_1} = \mathbf{1.851kJ.(kg.K)^{-1}}$

Stage 2: At $P_2 = 7$ bar and $T_2 = 40$ °C $\Rightarrow T_{sat} = 13.41$ °C $< T_2$, thus C_3 is at

[1/8] superheated state (SHF). Thus, from SHF table $h_2 = 534.8 \, kJ.kg^{-1}$ and

[1/8] $s_2 = 1.901kJ.(kg.K)^{-1}$

Stage 3: At $P_3 = 7$ bar and $T_3 = 10^{\circ}\text{C} \Rightarrow T_{sat} = 13.41^{\circ}\text{C} > T_2$, thus C_3 is

[1/8] a sub-cooled fluid. Thus, from saturated table, $h_3 = 129.6 \, kJ.kg^{-1}$ and

[1/8] $s_2=0.495 \text{ kJ}(kg.K)^{-1}$.

[1/8] **Stage 4:** At

 $P_4 = 3 \ bar \Rightarrow Isenthalpic expansion, thus <math>h_4 = h_3 = 129.6 \ kJ.kg^{-1}$.

In order to calculate the entropy, we first need to calculate the quality of the fluid,

$$x_4 = \frac{h_4 - h_f}{h_q - h_f} = \frac{129.6 - 60.3}{453.6 - 60.3} = 0.1762$$

$$x_4 = 0.1762 = \frac{s_4 - s_f}{s_q - s_f} = \frac{S_4 - 0.244}{1.762 - 0.244} \Rightarrow s_4 = 0.5115 \frac{kJ}{kg.K}$$

[1/8]

Solution: (b)

The heat exchange in the evaporator can be expressed as:

$$-\dot{m}_{C3}(h_1 - h_4) = (h_w^{out} - h_w^{in}) = \dot{m}_w C_{p,w} (T_w^{out} - T_w^{in})$$
$$-10^{-1} (477.1 - 129.6) = \dot{m}_w \times 4.1813 \times (8 - 15) \Rightarrow \dot{m}_w = 1.1873 \frac{kg}{s}$$

[2/2]

Solution: (c)

The heat exchange in the condenser is expressed as

$$Q_H = \dot{m}_{C3}(h_2 - h_3) = 40.52 \frac{kJ}{ka}$$

[2/5] Assuming that there is no heat loss,

$$Q_4 = 40.52 = \dot{m}_{air}C_{p,air}(T_{out}^{air} - T_{in}^{air}) = 2 \times 1.004 \times (T_{out}^{air} - 12) \Rightarrow T_{out}^{air} = 32.18$$
°C [3/5]

Solution: (d - i)

$$\nabla T = \frac{\partial T}{\partial z} = \frac{T_n - T_1}{z_n - z_1} = \frac{245 - 25}{1000 - 0} = 0.22 \frac{\text{°C}}{m}$$

RESIT PAPER

Solution: (d-ii)

The depth can be obtained via linear interpolation at $100 \le T \le 155$ °C. At 143°C the [3/3] depth is **756.36m**

Solution: (d - iii)

- Binary cycle geothermal power plants are often operated between $107 \le T \le 182$ °C; [1/5]
 - The produced hot brine vaporises the working fluid and is isentropically expanded in the turbine;

[2/5]

• Working fluids often used in geothermal plants are organic chemical species with low boiling temperature.

[2/5]