Лекционни записки по Математически Анализ

проф. Надежда Рибарска Набрани от Никола Юруков

18 октомври 2015 г.

Съдържание

	_	е ${f rosop}$	3 3
2	\mathbb{R}^n		4
	2.1	Отворено множество	4
	2.2	Затворено множество	4

1 Преговор

1.1 \mathbb{R}^n

 \mathbb{R}^n е множеството $\{x = (x_1, x_2, ..., x_n) : x_i \in \mathbb{R}i = 1, 2, ..., n\}.$

Сега нека имаме векторите $x=(x_1,x_2,...,x_n)$ и $y=(y_1,y_2,...,y_n)$, тогава имаме $x+y=(x_1+y_1,x_2+y_2,...,x_n+y_n)$ тоест покоординатно събиране. При умножение със скалар (т.е. число от някакво поле) $\lambda \in \mathbb{R}$ имаме $\lambda x=(\lambda x_1,\lambda x_2,...,\lambda x_n)$. Дължина (или също евклидова норма) на вектор е $\|x\|=\sqrt{\sum_{i=1}^n x_i^2}$, а разстоянието между два вектора е $\rho(x,y)=\|x-y\|=\sqrt{\sum_{i=1}^n (x_i-y_i)^2}$. Свойства на дължината:

- 1. $||x|| \ge 0, ||x|| = 0 \iff x = \mathbf{0} =$ нулевия вектор. Положителна дефинитност.
- $2. \|\lambda x\| = |\lambda| \cdot \|x\|$
- 3. $||x + y|| \le ||x|| + ||y||$. Неравенство на Δ .

Пример:

- $||(x_1, x_2)||_1 = |x_1| + |x_2|$
- $||(x_1, x_2)||_{\infty} = \max\{|x_1|, |x_2|\}$
- $\|(x_1, x_2)\|_p = \sqrt[p]{|x_1|^p + |x_2|^p}$ и 1

По-общо имаме

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

За упражнение можем да проверим, че горните норми удовлетворяват свойствата на дължините.

Сега ще дефинираме отворено кълбо $\mathcal{B}_r(x_0)$ с център x_0 и радиус r.

$$\mathcal{B}_r(x_0) = \{ x \in \mathbb{R}^n : ||x - x_0|| < r \}$$

Скаларно произведение:

$$\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$$
 $cos(\langle x, y \rangle) = \langle \frac{x}{\|x\|}, \frac{y}{\|y\|} \rangle$

Неравенство на Коши-Буняковски-Шварц:

$$|\langle x, y \rangle| \le ||x|| ||y||$$

Тук е моментът да си припомним и общата форма на неравенството на триъгълника (н-во на Минковски), която се доказва с помощта на н-вото на Юнг(Young) и Хьолдер(Hölder). Неравенство на Хьолдер(Hölder):

$$\sum_{k=1}^n |x_k y_k| \le \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} \left(\sum_{k=1}^n |y_k|^q\right)^{\frac{1}{q}}$$
 за всички $(x_1,\dots,x_n), (y_1,\dots,y_n) \in \mathbb{R}^n$

Неравенство на Минковски:

$$\left(\sum_{k=1}^{n} |x_k + y_k|^p\right)^{\frac{1}{p}} \le \left(\sum_{k=1}^{n} |x_k|^p\right)^{\frac{1}{p}} + \left(\sum_{k=1}^{n} |y_k|^p\right)^{\frac{1}{p}}$$

2 Топология в \mathbb{R}^n

2.1 Отворено множество

Дефиниция 2.1. $U \subset \mathbb{R}^n$ се нарича отворено, ако за $\forall x \in U$ съществува $\epsilon > 0$, такова че $\mathcal{B}_{\epsilon}(x) \subset U$.

 \emptyset и \mathbb{R}^n са отворени

Ако $U_1, U_2, ..., U_n$ са отворени $\Rightarrow \bigcap_{i=1}^n U_i$ е отворено.

Ако $U_{\alpha}, \forall \alpha \in A$ са отворени $\Rightarrow \bigcup_{\alpha \in A} U_{\alpha}$ е отворено.

Пример 2.2. Отворените къдба са отворени множества.

 $\mathcal{B}_r(x_0), r>0$. Взимаме си произволно x от кълбото, т.е. растоянието между x и x_0 е помалко от r. Нека $\epsilon:=r-\|x_0-x\|>0$. Тогава $\mathcal{B}_\epsilon(x)\subset\mathcal{B}_r(x_0)$. Нека $y\in\mathcal{B}_\epsilon(x)\Rightarrow\|x-y\|<\epsilon$.

$$||x_0 - y|| \le ||x - y|| + ||x - x_0|| < \epsilon + ||x - x_0||$$

 $||x_0 - y|| \le r - ||x_0 - x|| + ||x - x_0||$
 $||x_0 - y|| < r$

Пример 2.3. Нека имаме **непрекъсната** функция $g: \mathbb{R}^n \to \mathbb{R}$, тогава $U = \{x \in \mathbb{R}^n : g(x) > 0\}$ е отворено.

Доказателство. Взимаме произволна точка $x_0 \in U$, следователно $\epsilon = g(x_0) > 0$, тогава $\exists \delta \ \forall x \in \mathcal{B}_{\delta}(x_0) : |g(x) - g(x_0)| < \epsilon \quad \Rightarrow g(x) > g(x_0) - \epsilon = 0 \quad \Rightarrow x \in U$.

2.2 Затворено множество

Дефиниция 2.4. F е затворено, ако $\mathbb{R}^n \setminus F$ е отворено.

 \emptyset , \mathbb{R}^n са затворени.

Ако $F_1, F_2, ..., F_n$ са затворени $\Rightarrow \bigcup_{i=1}^n F_i$ е затворено.

Ако $F_{\alpha}, \forall \alpha \in A$ са затворени $\Rightarrow \bigcap_{\alpha \in A} F_{\alpha}$ е затворено.

Дефиниция. Затворено кълбо.

$$\overline{\mathcal{B}_r(x_0)} = \{ x \in \mathbb{R}^n : ||x - x_0|| \le r \}$$

Затворените кълба са затворени множества.

F е затворено \iff F съдържа границите на всички редици, съставяеми от негови елементи. Или на математически език, $\forall \{x_m\}_{m=1}^{\infty} \in F$, границата $x_m \to x_l \in F$.