ÍNDICES

PROCESAMIENTO Y OPTIMIZACIÓN DE CONSULTAS

ÍNDICES

- Archivo ordenado que contiene una copia de uno o más atributos de una tabla.
- Para cada valor del atributo se tiene un puntero a donde se almacena el registro correspondiente.
- Objetivo: acelerar la lectura de datos de tablas
- Clave: la clave del incide se forma por uno o mas columnas de una tabla.
- Contenido: Valores de la clave de indexación; junto con los punteros a todos los bloques que contienen registros con esos valores.

ÍNDICES: EJEMPLO

PROCESAMIENTO Y OPTIMIZACIÓN DE CONSULTAS PROCESAMIENTO SIN ÍNDICES

Archivo Secuencial

- Se lee uno a uno los registros de Empleados
- Ello implica leer todos los bloques de disco
- Para cada registro se evalúa la condición de búsqueda
- Tengo que leer el 100% de los registros para obtener el resultado

Select	Nombre, Salario
From	Emp
Where	Salario > 30000

Nombre	Edad	Salario	Depto	a 4
José	20	10.000	** 1	1
Alicia	25	16.000	⇒ 2	
Antonio	34	30.000	** 1	P 2
Silvia	30	35.000	《 2	
María	28	29.000	** 1	3 3
Salvador	35	35.000	《 2	`

PROCESAMIENTO Y OPTIMIZACIÓN DE CONSULTAS PROCESAMIENTO CON ÍNDICES

Índice

- Se realiza la búsqueda en el índice
- Ello implica leer todos los bloques del índice del disco
- Para cada clave del índice se evalúa la condición de búsqueda
- Luego se leen los datos de la tabla desde el disco

TIPOS DE ÍNDICES

- Índice secundario
- Índice de agrupamiento
- Índice primario

ÍNDICE SECUNDARIO

ÍNDICE SECUNDARIO

- Archivo ordenado que se construye sobre uno o más atributos de una relación.
- Puede haber varios índices secundarios sobre un mismo archivo físico de datos.
- Nunca puede haber más de un índice sobre los mismos atributos de indexación
- Los índices secundarios pueden construirse tanto sobre atributos claves o sobre atributos no clave

EJEMPLO - Índice Secundario

CLASIFICACIÓN - Índice Secundario

- Los índices secundarios sobre atributos claves son índices densos
- Los índices secundarios sobre atributos no claves pueden ser densos o no densos

EJEMPLO - Índice Secundario : ÍNDICE **DENSO SOBRE ATRIBUTO CLAVE**

EJEMPLO - Índice Secundario : ÍNDICE **DENSO SOBRE ATRIBUTO NO CLAVE**

ÍNDICE DE AGRUPAMIENTO

ÍNDICE DE AGRUPAMIENTO

- Archivo ordenado que se construye según el atributo de ordenamiento físico del archivo de datos
- El atributo de ordenación del archivo puede tener valores repetidos

EJEMPLO - Índice de Agrupamiento

Índice de Agrupamiento

Son índices no densos

- Sólo se crea un registro en el índice por cada valor distinto del atributo de agrupamiento
- Se referencia el primer bloque del archivo de datos que contiene la primer tupla con ese valor
- Para encontrar el resto de las tuplas se lee secuencialmente el archivo hasta que se encuentre un registro que no cumpla la condición
- n índice = V (Atributo Indexación, Relación)

ÍNDICE PRIMARIO

ÍNDICE PRIMARIO

- Archivo ordenado que se construye según el atributo de ordenamiento físico del archivo de datos
- El atributo de ordenación del archivo debe ser clave

EJEMPLO - Índice Primario

Índice Primario

- Son índices no densos
- Sólo se crea un registro en el índice por cada bloque de disco del archivo de datos
- El número total de entradas del índice será igual al número de bloques de disco del archivo de datos
- n índice = b relación

TIPOS DE ÍNDICE - RESUMEN

Dadas las condiciones de los atributos de indexación, los índices más eficientes según el caso son:

Clave de Indexación	De Ordenación Física	<u>NO</u> Ordenación Física
Clave	Primario	Secundario
NO clave	Agrupamiento	Secundario

RESUMEN DE PROPIEDADES TIPOS DE ÍNDICE

Tipo	Cantidad de entradas del índice	Denso o No
Primario	Cantidad de bloques del archivo de datos n _{índice} = b _{relación}	No denso
Agrupamiento	Cantidad de valores distintos del atributo de agrupamiento n _{índice} = V (A, R)	No denso
Secundario (por clave)	Cantidad de registros del archivo de datos n _{índice} = n _{relación}	Denso
Secundario (por No clave)	Cantidad de registros o cantidad de valores distintos del atributo de indexación n _{índice} = n _{relación} ó n _{índice} = V (A, R)	Denso o No denso

ESTRUCTURAS DE ÍNDICES

ÍNDICES ESTRUCTURAS TÍPICAS

Índice Multi-nivel

 Mejora el rendimiento de los índices de un solo nivel particionando las búsquedas al generar "índices" sobre los índices en cada nivel.

Arboles B y B+

- Buen comportamiento en recuperación tanto por condiciones de igualdad como de orden. Buen comportamiento en la inserción
- Ocupa más disco.

Hash

- Muy buen comportamiento en la inserción y en la recuperación por condiciones de igualdad.
- No funciona bien para condiciones con relaciones de orden

ÍNDICES DE MÚLTIPLES NIVELES

EJEMPLO: 2 NIVELES

ÍNDICES DE MÚLTIPLES NIVELES EJEMPLO: 3 NIVELES

ÁRBOLES B

Un árbol B es un árbol de búsqueda con restricciones que garantizan que:

- El árbol este equilibrado
- El espacio desperdiciado por la eliminación no sea excesivo.

ESTRUCTURA

Cada nodo interno del árbol B tiene la forma

ÁRBOLES B+

 Un árbol B+ es una variación de la estructura de datos del árbol B, en donde los punteros de datos sólo se almacenan en los nodos hojas.

Esto permite lograr:

- Índices con menos niveles
- Índices con mayor capacidad

NODO INTERNO ESTRUCTURA

El <u>nodo interno</u> de un árbol B+ de **orden p** se tiene la siguiente forma:

NODO HOJA ESTRUCTURA

Los <u>nodos hojas</u> de un árbol B⁺ de **orden p** tiene la siguiente forma:

HASH

- Dividen el índice en cubetas según la clave de indexación
- Se usa una f(x) para determinar en qué cubeta se coloca una clave
- Las cubetas crecen mediante desbordamiento de bloques.

EJEMPLO - HASH

EJEMPLO – HASH (NUEVA TUPLA)

RESUMEN

- Los DMBS's implementan diferentes estrategias para organizar los registros de una tabla:
 - Registros desordenados con acceso secuencial.
 - Registros ordenados con acceso secuencial.
 - Registros Indexados por la PK con hash.
 - Registros Indexados por la PK con árbol B+.
 - Registros Indexados por otro atributo con índices.
 - Índices con Duplicados o con Valores Únicos