Chap. 3 Configuration du réseau et des services réseaux

Partie 1: Introduction aux réseaux sous Linux

1.1 Présentation des réseaux sous Linux

- Les systèmes Linux sont souvent utilisés dans des environnements de serveurs ou de systèmes embarqués, où la configuration réseau est essentielle.
- Les administrateurs système doivent être capables de configurer des interfaces réseau, des services réseau (DNS, DHCP, NTP, SSH), et diagnostiquer les problèmes de réseau.

1.2 Composants d'un réseau sous Linux

- Interface réseau : Chaque machine Linux a une interface réseau, comme eth0, enp0s3, ou wlan0 pour le réseau filaire ou sans fil.
- **Protocole TCP/IP**: Il est crucial de comprendre l'architecture TCP/IP (Transmission Control Protocol / Internet Protocol) qui est le fondement du réseau Internet et des réseaux locaux.
 - IP: L'adresse IP (version 4 ou 6) permet d'identifier une machine sur un réseau.
 - Masque de sous-réseau : Permet de définir la plage d'adresses d'un réseau.
 - Passerelle (Gateway) : C'est la machine qui permet de relier le réseau local à d'autres réseaux.

1.3 Commandes de base pour la gestion réseau

- ifconfig: Affiche ou configure les interfaces réseau.
 - Exemple : ifconfig pour voir les interfaces réseau et leurs informations.
- ip : Utilisée pour configurer les interfaces réseau.
 - Exemple: ip a pour afficher les interfaces réseau et ip addr add 192.168.1.10/24 dev eth0 pour ajouter une adresse IP à une interface.
- ping : Utilisé pour tester la connectivité entre des machines.
 - Exemple: ping 192.168.1.1 pour tester la connexion à la passerelle.

Partie 2 : Configuration des interfaces réseau sous Linux

2.1 Configurer les interfaces réseau statiques

Sous Linux, les interfaces réseau peuvent être configurées de manière statique ou dynamique.

2.1.1 Configurer une adresse IP statique

- 1. Modifier le fichier de configuration des interfaces :
 - Sur Debian/Ubuntu: /etc/network/interfaces
 - Sur RHEL/CentOS: /etc/sysconfig/network-scripts/ifcfg-eth0

Exemple pour Debian/Ubuntu:

```
auto eth0 iface eth0 inet static address 192.168.1.10 netmask 255.255.255.0 gateway 192.168.1.1
```

- address: L'adresse IP statique.
- netmask: Le masque de sous-réseau.
- gateway: La passerelle par défaut.
- 2. Après modification, redémarrer l'interface réseau pour appliquer la configuration :

```
sudo systemctl restart networking
```

2.1.2 Configurer une adresse IP dynamique (DHCP)

Sous Linux, l'interface réseau peut aussi être configurée pour recevoir une adresse IP automatiquement via DHCP. Voici un exemple pour Debian/Ubuntu :

```
auto eth0
iface eth0 inet dhcp
```

Après cette configuration, redémarrez l'interface avec :

```
sudo systemctl restart networking
```

2.2 Vérification de la configuration réseau

- Utilisez ip a pour vérifier l'adresse IP affectée à l'interface réseau.
- Utilisez ping pour tester la connectivité réseau.

Partie 3 : Services réseau sous Linux (1h30)

3.1 Serveur DNS

Le DNS (Domain Name System) est utilisé pour résoudre les noms de domaine en adresses IP.

3.1.1 Installation d'un serveur DNS (BIND9)

1. Installez BIND9:

```
sudo apt update
sudo apt install bind9
```

2. Configurer /etc/bind/named.conf.local pour définir les zones DNS:

```
zone "example.com" {
    type master;
    file "/etc/bind/db.example.com";
};
```

3. Créez un fichier de zone DNS, par exemple /etc/bind/db.example.com:

```
$TTL 86400
   IN SOA nsl.example.com. admin.example.com. (
       2023040801 ; Serial
                 ; Refresh
       86400
       7200
                  ; Retry
       1209600
                 ; Expire
       86400 )
                 ; Minimum TTL
           ns1.example.com.
ns1 IN A
            192.168.1.10
            192.168.1.20
www IN A
```

4. Redémarrez BIND9 pour appliquer les modifications :

```
sudo systemctl restart bind9
```

5. Testez la configuration DNS avec dig ou nslookup:

```
dig @192.168.1.10 www.example.com
```

3.2 Serveur DHCP

Le serveur DHCP (Dynamic Host Configuration Protocol) attribue automatiquement des adresses IP aux clients d'un réseau.

3.2.1 Installation du serveur DHCP

1. Installez le serveur DHCP:

```
sudo apt install isc-dhcp-server
```

2. Configurez /etc/dhcp/dhcpd.conf:

```
subnet 192.168.1.0 netmask 255.255.255.0 {
   range 192.168.1.100 192.168.1.200;
   option routers 192.168.1.1;
   option domain-name-servers 192.168.1.10;
}
```

3. Démarrez le service DHCP:

```
sudo systemctl start isc-dhcp-server
```

3.3 Serveur NTP (Network Time Protocol)

Le serveur NTP permet de synchroniser l'heure sur les machines d'un réseau.

3.3.1 Installation et configuration d'un serveur NTP

1. Installez le serveur NTP:

sudo apt install ntp

2. Configurez /etc/ntp.conf pour définir les serveurs NTP:

server 0.pool.ntp.org
server 1.pool.ntp.org

3. Redémarrez le service NTP:

sudo systemctl restart ntp

3.4 Serveur SSH

Le serveur SSH (Secure Shell) permet de se connecter à distance à une machine de manière sécurisée.

3.4.1 Installation du serveur SSH

1. Installez OpenSSH:

sudo apt install openssh-server

2. Vérifiez que le service SSH est en fonctionnement :

Merit Dal

sudo systemctl status ssh

Explication et TP samedi