DATA SCIENCE AND BUSINESS ANALYTICS (GRIP Oct'22)

Task-1: Prediction using supervised ML

Name: Jeenia

Problem Statement: What will be predicted score if a student studies for 9.25hrs/day?

```
In []: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sn
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import mean_squared_error
    from sklearn.metrics import r2_score
```

In [2]: # Importing Dataset and visualizing Data
df = pd.read_csv('https://raw.githubusercontent.com/AdiPersonalWork
print('Data has been successfully imported')
df

Data has been successfully imported

Out[2]:

	Hours	Scores
0	2.5	21
1	5.1	47
2	3.2	27
3	8.5	75
4	3.5	30
5	1.5	20
6	9.2	88
7	5.5	60
8	8.3	81
9	2.7	25
10	7.7	85
11	5.9	62
12	4.5	41
13	3.3	42
14	1.1	17
15	8.9	95
16	2.5	30
17	1.9	24
18	6.1	67
19	7.4	69
20	2.7	30
21	4.8	54
22	3.8	35
23	6.9	76
24	7.8	86

Here, we have data for 25 students-study hours and score achieved. We will plot the data so that we can roughly find relationship between study hours and scores

```
In [3]: df.describe()
```

Out[3]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

Fig1- Scatter plot between number of hours studied and the percentage scored

```
In [4]: x= df['Hours']
    y= df['Scores']
    plt.xlabel("Hours studied")
    plt.ylabel("percentage score of student")
    plt.title("Hours v/s score")
    plt.scatter(x,y, color='blue')
```

Out[4]: <matplotlib.collections.PathCollection at 0x7f99eba9f3a0>

We can Observe that there is a positive linear relationship between study hours and scores

Fig2- Box Plot for the number of hour studied

```
In [5]: df.Hours.plot.box(color="teal", figsize=(8,8))
plt.title(" Boxplot of Number of Hours")
```

Out[5]: Text(0.5, 1.0, ' Boxplot of Number of Hours')

The plot shows that median hours of study by a student is almost 5 hours per day. It also shows that there is no outliers and that it is not normally distributed since median is not equal to mean

Fig3- Boxplot for scores

```
In [6]: df.Scores.plot.box(color="teal", figsize=(8,8))
plt.title("Box plot of Scores of Students")
```

Out[6]: Text(0.5, 1.0, 'Box plot of Scores of Students')

The plot shows that the percentage of score by a student is around 48%. It also shows that there is no outliers and that it is not normally distributed since median is not equal to mean.

Fig4- Correlation heat map of number of hours studied and the percentage scored

```
In [7]: corrmatrix= df.corr()
sn.heatmap(corrmatrix,annot=True)
plt.show
```

Out[7]: <function matplotlib.pyplot.show(close=None, block=None)>

The correlation coefficient obtained is 0.98 which implies that the hours of study and the percentage scored by a student is highly positively correlated.

Data Preparation

The next step is to divide the data into attributes(inputs) and labels(outputs)

```
In [8]: x=df.iloc[:,:-1].values
y=df.iloc[:,1].values
```

Now we have our attributes and and labels, the next step is to split the data into training and tests sets using train_test_split()method

Splitting data into training and testing sets

```
In [9]: x_train,x_test,y_train,y_test = train_test_split(x,y, test_size=0.2
```

```
In [10]: print("Dimension of training set of scores=",x_train.ndim)
print("Dimension of training set of hours=", y_train.ndim)
```

Dimension of training set of scores= 2 Dimension of training set of hours= 1

Training the algorithm

```
#from sklearn.linear_model import LinearRegression
model=LinearRegression()
model.fit(x_train,y_train)
print('The training is Completed')
```

Making prediction on training set and checking RMSE

```
In [12]: from sklearn.metrics import r2_score
y_pred =model.predict(x_test)
r2_score(y_test,y_pred)
```

Out[12]: 0.9601769396057881

```
In [16]: mean_squared_error(y_test,y_pred,squared=False)
```

Out[16]: 5.523661462438607

Model has an accuracy score of 0.9601 i.e, it's 96% good fit and it's RMSE is 5.52%

Fig5- Plotting the regression line and the test data

```
In [14]: line=model.coef_*x + model.intercept_
   plt.scatter(x,y,color="blue")
   plt.plot(x,line,color="green")
   plt.title("Plotting for the test data and regression line")
```

Out[14]: Text(0.5, 1.0, 'Plotting for the test data and regression line')

Prediction

```
In [15]: # To predict the score of a student if he/she studies 9.25 hours pe
Hours = 9.25
model.predict([[Hours]])
```

Out[15]: array([91.49342293])

A student scores 91.49% if she/he studies for 9.25 hours per day

```
In []:

In []:
```