

SE-2 COURSE PROJECT (PHASE 2 COVER SHEET)

Discussions Scheduled for Week 12 (Specific dates TBA by the TAs).

- Print 1 copy of this cover sheet and attach it to a printed copy of the documentation (SRS, ... etc.). You must submit softcopies of all your documents (as PDFs); details will be announced later.
- Please write all your names in <u>Arabic</u>.
- Please make sure that your students' IDs are correct.
- Handwritten Signatures for the attendance of all team members should be filled in <u>before</u> the discussion.
- o Please attend the discussion on time (announced separately), late teams will lose 3 grades.

Project Name:	Automated Insulin Pump
----------------------	------------------------

Team Information (typed not handwritten, except for the attendance signature):

	ID [Ordered by ID]	Full Name [In Arabic]	Attendance [Handwritten Signature]	Final Grade
1	20208197	محمد سعید وزیري		
2	20208200	محمد عبدالحي محمد محمد		
3	20208204	محمد فؤاد شعبان		
4	20208271	هاجر احمد عبدالقادر		
5	20208283	هبه سید مقبول سید		
6	20208292	يار ا ممدوح رشدي		

Grading Criteria:

Items			Notes
Functional Requirements & Non-Functional Requirements – including any updates, and all timing constraints.	1		
Bonus: System Architecture – including any applied Architectural Pattern(s).	1		
Use-Case Diagram(s) – including all use-cases for the system, and the detailed use-cases description, and any alternative scenarios.			
Sequence Diagram(s) – including varying fragments, interaction references/gates, different types of messages & constraints, etc.	2		

Collaboration/Communication Diagram(s) – including different types of messages, and the objects must have stereotypes indicating their categories based on the given class/object structuring criteria.	1	
State-Machine Diagrams – for all state dependent objects, and for the entire system too, including "when necessary" Events/Actions, Guards, Entry and Exit events/actions, Composite and Orthogonal states, Submachines, History States etc.	2	
Bonus: Object Diagrams – including object diagrams that illustrate the preconditions and the post-conditions of selected functions.	1	
Bonus: 2 Design Patterns Applied – <i>Including a typed description of the pattern and how is it applied.</i>	1	
Detailed Class diagram – including "when necessary" Classes, Attributes & Methods, Interfaces & Abstract Classes, Associations / Aggregations / Generalizations / Association Classes / Qualified Associations, Constraints - including also the categories of the classes based on the given class/object structuring criteria, and stereotypes indicating the type/category of each class. All necessary types/categories should be modelled.	2	
Stimuli/Response Identification (State Transition Table)	1	
Implementation & discussion. Marking the code will be based on the following criteria: 1) Requirements are fulfilled. 2) Correctly mapping design models into executable code. 3) Running correctly. 4) Detailed Testing. 5) Correct multithreading implementation and synchronization.	5	
N.B. I You must update and resubmit the initial part of the		

N.B. I .. You must update and resubmit the initial part of the documentation submitted in phase 1 (including the Functional / Non-Functional requirements, Use-case Diagrams & Descriptions, Activity Diagrams, Interaction Diagrams, Object Diagrams, .. etc.).

Teaching-Assistant's Signature:	
	15

-FUNCTIONAL REQUIREMENTS:

- 1-Firstly, nurse need to login to be able manage system.
- 2-The amount of insulin to be delivered shall be computed according to the current sugar reading as measured by the sensor
- 3-System compute dose by measuring the current level of blood sugar,
- 4- System Compare curren blood sugur with previously measured level, and computing the required dose.
- 5- The system shall maintain three displays
- 6Display 2- shows the last dose of insulin that was computed
- 7- Clock displays the current clock time.
- 8- System Display 1- a text display that shows system messages.
- 9- System allows nurse to see all the registered patients with their details data
- **4.Other Non-functional Requirements:**

4.1 Performance Requirements:

- o The controller shall run a self-test program every 30 seconds.
- The system shall measure the level of blood sugar and deliver insulin if required every 10 minutes.
- o The design of the reservoir compartment is such that only full reservoirs holding 100 ml of insulin may be inserted. When a new insulin reservoir has been inserted, the system is reset.
- •When switched on, the system is initialized.

4.2 Usability & Humanity REQS:

The nurse may replace the insulin reservoir with a new reservoir at any time

4.3 Security & Safety Requirements

- The system is password protected and also any update of new patient and order processing is done by only (nurse).

4.4 Software Quality Attributes:

- -Portability: The application will be easily portable on any window based system.
- -It is easy, available, secured Website.
- Ease to maintain both System & Database

4.5 Business Rules

-Only the nurse can add or view patient data(all doses, last dose,) in the firebase.

Design Patterns:

delegationDesignPattern

Delegation Design Pattern

System Architecture:

Use Case Diagram:

Nurse Use Case:

nurse use case

Insulin Pump Use Case:

Insulin Pump use case

C

Activity Diagrams:

Activate Wind

Insulin Pump Activity Diagram:

Sequence Diagram(s):

Page **12** of **21**

Collaboration Diagrams:

State-machine Diagram(s):

nurse State-machine Diagram:

nurse_state

Home ShowHistory ShowClock ShowLastDose ReplaceReservoir reset system | Colid-ShowButto | CilckClockButton | CilckClockButton

Insulin Pump state:

ax table_pump_state

	measure Blood sugar	normal Blood Sugar	Abnormal Blood Sugar	Pump Insulin	reset_comulative_dose
measure Blood sugar		when(BS<=120)	when(BS>120)		After (10 min)
normal Blood Sugar	after (1 min)				
Abnormal Blood Sugar	after (1 min)			when (BS<=4 ml&& CalculatedDose+CD < max dose day)	
Pump					
reset_co mulative_ dose					

Class diagram:

