1. (10 points) (**Product of sequentially compact sets**) §11.2, p. 304, #8. Let A and B be sequentially compact subsets of \mathbb{R} . Prove that $A \times B$ is sequentially compact in \mathbb{R}^2 . (The Cartesian product $A \times B$ is the set $\{(a,b) \in \mathbb{R}^2 \mid a \in A \text{ and } b \in A\}$ B}.)

Proof. Let $a = \begin{bmatrix} a_h \\ b_h \end{bmatrix}$ be a sequence in $A \times B$.

Since A is sequentially compact, $\{a_h\}$ has a convergent subsequence $\{a_h\}$, say $a_h \to a$. Some B is sequentially compact, { bk.} has a convergent subsequence { bkiji, (=j \le 2 n \format,

bhi -> bo in B. Then $M_{k_i} = \begin{bmatrix} a_{k_i} \\ b_{k_i} \end{bmatrix} \longrightarrow \begin{bmatrix} a_0 \\ b_0 \end{bmatrix} \in A \times B$.

Hence, $A \times B$ is sequentially compact.

- 2. (15 points) (Continuity in terms of closed sets)
 - (a) Prove the lemma: Let X and Y be two sets. For any map $F: X \to Y$ and $C \subset Y$, $F^{-1}(Y \setminus C) = X \setminus F^{-1}(C)$. ("The inverse image preserves the complement.") (*Hint*: The easiest way to proceed is to write down a sequence of equivalent statements starting with $x \in F^{-1}(Y \setminus C)$ iff \cdots .)
 - (b) Let $F: \mathbb{R}^n \to \mathbb{R}^m$. Prove that F is continuous on domain \mathbb{R}^n if and only if for every closed subset C in \mathbb{R}^m , the inverse image $F^{-1}(C)$ is closed in \mathbb{R}^n .

iff
$$F(x) \in Y \setminus C$$
 (def of $F'()$)

iff $F(x) \notin C$ (def of complement in Y)

iff $X \notin F'(C)$ (def of $F'()$)

iff $X \notin X \setminus F'(C)$. (def of complement in X).

(b) (\Rightarrow)

Suppose $F: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and C is closed in \mathbb{R}^m .

Then $V:=\mathbb{R}^m \setminus C$ is open in \mathbb{R}^m , By $\forall h. 11.12$, $F'(V) = F'(\mathbb{R}^m \setminus C) = \mathbb{R}^n \setminus F'(C)$ is open in \mathbb{R}^n .

By the complementing characterization ($\forall h. 10.16$), F'(C) is closed in \mathbb{R}^n .

(b) (←)

Conversely, suppose the inverse image F'(C) of a closed set in \mathbb{R}^n is closed in \mathbb{R}^n . Let V be an open set in \mathbb{R}^n . Then $\mathbb{R}^n \setminus V$ is closed and so $F'(\mathbb{R}^n \setminus V) = \mathbb{R}^n \setminus F'(V)$ is closed. By the complementing characterization (Th. 10.16), F'(V) is open in \mathbb{R}^n . By Th. 11.12, $F: \mathbb{R}^n \to \mathbb{R}^n$ is continuous.

is not closed.

Another counterexample. $F: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{1}{x^2 + 1}$ is

(c) Let $A \subset \mathbb{R}^n$ and assume $F : \mathbb{R}^n \to \mathbb{R}^m$ is continuous on domain \mathbb{R}^n . If A is bounded, then its image F(A) is bounded.

True. Suppose $||u|| \le M$ for all $u \in A$.

Then $A \subseteq B_M(0)$ the closed ball of center 0and radius M. Since $\overline{B}_M(0)$ is closed and bounded,

it is sequentially compact. Therefore, $F(\overline{B}_M(0))$ is

sequentially compact by Th. II. 20. Thus, $F(\overline{B}_M(0))$ is closed and bounded, so $F(A) \subseteq F(\overline{B}_M(0))$ is

also bounded.

Alternative proof. Since A is bounded, clA is also bounded (A bounded \Rightarrow A \subset closed ball $B_{m}(0)$ \Rightarrow clA \subseteq $B_{m}(0)$ because the closure of A is the smallest closed set containing A). Thus, clA is closed and bounded, hence sequentially compact. By Th. 11.20, F(clA) is sequentially compact and therefore bounded.

(d) If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and C is sequentially compact in \mathbb{R}^m , then the inverse image $f^{-1}(C)$ is sequentially compact in \mathbb{R}^n .

False. The constant function $f: R \to R$, f(x) = a, is continuous and $C = \{a\}$ is closed and bounded and therefore sequentially compact, but $f'(C) = f'(\{a\}) = R$ is not sequentially compact, because R is not bounded.

6. (10 points) (**Sequentially compact**) §11.2, p. 304, # 7. Suppose that the function $f: \mathbb{R}^n \to \mathbb{R}$ is continuous and that $f(\vec{u}) \ge ||\vec{u}||$ for every point \vec{u} in \mathbb{R}^n . Prove that $f^{-1}([0,1])$ is sequentially compact.

Let $A = f^{-1}([0,1])$. If $u \in A$, then $f(u) \in [0,1]$,

Thus, A is bounded. Since A = f'([0, 1]) is the inverse image of a closed set under a continuous map. A is also closed. Being closed and bounded, A is compact.

7. (10 points) (Cubes versus balls)

Define K(u, r) to be the cube with center u and radius r in \mathbb{R}^n :

$$K(u,r) = \{x = (x_1, \dots, x_n) \in \mathbb{R}^n \mid |x_i - u_i| < r \text{ for all } i\}.$$

Prove that

$$B(0,r) \subset K(0,r) \subseteq B(0,\sqrt{n}r).$$

(*Hint*: Draw a picture of the 2-dimensional case when the cube is a square. Do the problem in \mathbb{R}^2 first.) $\mathcal{Notation}$ $\mathcal{B}(\mathfrak{o},r) = \mathcal{B}_{\mathfrak{o}}(\mathfrak{o})$

Proof.

Let $x \in B(0,r)$. Then ||x|| < r. So $|x_i| \le ||x|| < r$ for all i=1,...,n. Thus, $x \in K(0,r)$.

Ω

Suppose $x \in K(0,r)$. Then $|x_i| \le r$ for all i. So $|x| = \sqrt{\sum_{i=1}^{n} |x_{i}|^2} < \sqrt{nr^2} = \sqrt{n} r$. Thus, $x \in B(0, \sqrt{n}r)$.

This proves the two inclusions.