Sequential Logic Circuits

Hyunok Oh

Clock

Gate Delay

propagation delay

SR Latch

1 bit store

- Output is not defined when inputs are 1
- Output is feedback to input
- As input changes, output changes

S	R	Q	
0	0	Q _{prev} (no change)	
0	1	0	
1	0	1	
1	1	Undefined	

D Latch

- When C=0, no output changes
- When C=1, output changes as input D changes

С	D	Q
0	Х	Q _{prev} (no change)
1	0	0
1	1	1

D Flipflop

- **When clock is rising to 1, input is reflected in the circuit**
 - Consider the small propagation delay

Clock in Logisim

You can enable the clock and change clock frequency

Logging in Logisim

You can track input and output using logging module

- ** 'Table' tab shows the tracked values
- The logging results can be stored in a file

Logisim 실습

- Load sequential.circ in logisim, and verify the functionality of SR latch, D latch and D flipflop
- Check the output of D flipflop after connecting a clock to D flipflop.

Register

- **a** storage to store a binary
 - a set of flipflops
- When Load=1 and clock is rising, input is loaded into the register and the stored value is produced.

Logisim Lab

- Load sequential.circ in logisim and check 1-bit, 4-bit registers
- Connect a clock to 4-bit register and check the output

Binary Counter

Logisim Lab

Load sequential.circ in logisim and check 4-bit binary counter

Register File

- A set of registers in CPU
- Using register number, you can read from and write to a specific register
 - For 8 registers, 3 bits are used for register number
- For writing, give W_{address} and set write=1
- Data is provided through W_{data}

For reading, two n bits A_{data} , B_{data} are output values $A_{address and}$ $B_{address}$ are register number

Tristate Buffer

- There are three states of 0, 1, and Hi-Z (high-impedance)
 - Hi-Z: disconnected
 - It is a switch

Е	D	0
0	Χ	Hi-Z
1	0	0
1	1	0

RAM

- **Read** (write = 0)
- **Write** (write = 1)

ROM

- Read-Only Memory
- non-volatile

Logisim Lab

Load sequential.circ in logisim, and check memory

Memory Cell

$4 \times 4 \text{ RAM}$

Large RAM

Larger RAM

