Требования к функциям sqrt() в стандарте POSIX (IEEE 1003.1-2013)

NAME

sqrt, sqrtf, sqrtl - square root function

SYNOPSIS

```
#include <math.h>
double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);
```

DESCRIPTION

EXI The functionality described on this reference page is aligned with the ISO C standard. Any conflict between the requirements described here and the ISO C standard is unintentional. This volume of POSIX.1-2008 defers to the ISO C standard.

■

These functions shall compute the square root of their argument x, \sqrt{x} .

An application wishing to check for error situations should set *errno* to zero and call *feclearexcept*(FE_ALL_EXCEPT) before calling these functions. On return, if *errno* is non-zero or *fetestexcept*(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an error has occurred.

RETURN VALUE

Upon successful completion, these functions shall return the square root of x.

For finite values of x < -0, a domain error shall occur, and $[MX] \boxtimes$ either a NaN (if supported), or \boxtimes an implementation-defined value shall be returned.

[MX] \boxtimes If x is NaN, a NaN shall be returned.

If x is ± 0 or ± 1 Inf, x shall be returned.

If x is -Inf, a domain error shall occur, and a NaN shall be returned. ∞

ERRORS

These functions shall fail if:

Domain Error

The finite value of x is < -0, $[MX] \boxtimes$ or x is $-Inf. \boxtimes$

If the integer expression (*math errhandling* & MATH ERRNO) is non-zero, then *errno* shall be set to [EDOM]. If the integer expression (*math_errhandling* & MATH_ERREXCEPT) is non-zero, then the invalid floating-point exception shall be raised.

Требования в стандарте IEEE 754-2008

The operation **squareRoot**(x) computes \sqrt{x} . It has a positive sign for all operands ≥ 0 , except that **squareRoot**(-0) shall be -0. The preferred exponent is floor(Q(x) / 2).

Operations on infinite operands are usually exact and therefore signal no exceptions, including, among others,

— squareRoot($+\infty$)

Except that squareRoot(-0) shall be -0, every numeric squareRoot result shall have a positive sign.

For operations producing results in floating-point format, the default result of an operation that signals the invalid operation exception shall be a quiet NaN that should provide some diagnostic information (see 6.2). These operations are:

g) squareRoot if the operand is less than zero

Изложение требований IEEE 754 2008 для sqrt()

Двоичные числа с плавающей точкой представляются в виде массивов бит длиной n, которые делятся на три части: один знаковый бит S, порядок E из k бит, мантисса M из (n-k-1) бит. Число $B=2^{k-1}-1$ называется смещением порядка.

Представляемое число при этом вычисляется по следующим правилам

- если $E \neq 0$ и $E \neq 2^k$ -1 (порядок не состоит из одних нулей или одних единиц) $x = (-1)^S \cdot 2^{(E-B)} \cdot (1 + M/2^{n-k-1})$ это нормализованные числа
- если E = 0 $x = (-1)^S \cdot 2^{(-B+1)} \cdot (M/2^{n-k-1})$ это денормализованные числа
- если $E = 2^k-1$ при M = 0, $x = (-1)^S \cdot \infty$ (используются для представления бесконечных или слишком больших по абсолютной величине результатов) при $M \neq 0$, x = NaN (не-число, используется для представления результатов, которым нельзя согласованно с остальными правилами приписать конечное или бесконечное значение). Различают сигнальное NaN и тихое NaN в сигнальном NaN первый mbn мантиссы равен 1, в тихом 0.

Для двоичных чисел с плавающей точкой стандарт требует поддерживать три типа

• binary32 (float): n = 32, k = 8

- binary64 (double): n = 64, k = 11
- binary 128 (quadruple): n = 128, k = 15

Результат любой поддерживаемой стандартом операции (в т.ч. и sqrt) должен быть корректно округленным к одному из представимых в рамках заданного типа чисел с плавающей точкой точным математическим результатом. При этом должно поддерживаться четыре режима округления.

- К ближайшему (режим по умолчанию) результат округляется к ближайшему представимому числу.
 - Если таких чисел два, выбирается то, которое имеет бит 0 в конце мантиссы (округление к четному).
 - Если точный результат отличается от максимального/минимального представимого числа меньше, чем на половину величины последнего бита мантиссы (т.е., меньше, чем на $2^{(2k-B-2)} \cdot 1/2^{n-k-1} \cdot 1/2$), то он округляется к максимальному/минимальному представимому числу, иначе, к $+/-\infty$.
- Вверх результат округляется к ближайшему сверху представимому числу, или к $+\infty$, если такого нет.
- Вниз результат окруляется к ближайшему снизу представимому числу, или к -∞. если такого нет.
- К нулю для положительных результатов применяется округление вниз, для отрицательных вверх.

Результатом вычисления sqrt с аргументом NaN должно быть NaN (тихое или сигнальное — в соответствии с аргументом).

Результатом вычисления sqrt с аргументом $+\infty$ должна быть $+\infty$.

Результатом вычисления sqrt с отрицательным аргументом (конечным или бесконечным, но не -0) должно быть сигнальное NaN.

Результатом вычисления sqrt с аргументом -0 должен быть -0.

Кроме того, по результатам вычислений должны выставляться следующие флаги.

- INVALID, в том случае, если один из аргументов яляется сигнальным NaN или все аргументы не NaN, а в результате получается NaN (для sqrt в случае отрицательного аргумента, кроме -0).
- DIVIDE-BY-ZERO, в том случае, результат в точности бесконечен (для sqrt нет таких ситуаций).
- OVERFLOW, в том случае, если получаемый результат конечен, но превосходит по абсолютной величине наибольшее представимое в заданном типе число (для sqrt нет таких ситуаций).
- UNDERFLOW, в том случае, если получаемый результат не 0 и по абсолютной величине меньше наименьшего нормализованного числа (для ыйке нет таких ситуаций).
- INEXACT, в том случае, если получаемый результат меняется при округлении (т.е., округленный результат не равен точному математическому).