Statistiques spatiales en écologie, Partie 2

Philippe Marchand, Université du Québec en Abitibi-Témiscamingue

14 janvier 2021

Corrélation spatiale d'une variable

La corrélation entre les mesures d'une variable prises à des points rapprochés est une caractéristique dans de nombreux jeux de données. Ce principe est parfois appelé "première loi de la géographie" et exprimé par la citation de Waldo Tobler: "Everything is related to everything else, but near things are more related than distant things." (Tout est relié, mais les choses rapprochées le sont davantage que celles éloignées).

En statistique, nous parlons souvent d'autocorrélation pour désigner la corrélation qui existe entre les mesures d'une même variable prises à différents moments (autocorrélation temporelle) ou différents lieux (autocorrélation spatiale).

Dépendance intrinsèque ou induite

Il existe deux types fondamentaux de dépendance spatiale sur une variable mesurée y: une dépendance intrinsèque à y, ou une dépendance induite par des variables externes influençant y, qui sont elles-mêmes corrélées dans l'espace.

Par exemple, supposons que l'abondance d'une espèce soit corrélée entre deux sites rapprochés:

- cette dépendance spatiale peut être induite si elle est due à une corrélation spatiale des facteurs d'habitat qui favorisent ou défavorisent l'espèce;
- ou elle peut être intrinsèque si elle est due à la dispersion d'individus entre sites rapprochés.

Dans plusieurs cas, les deux types de dépendance affectent une variable donnée.

Si la dépendance est simplement induite et que les variables externes qui en sont la cause sont incluses dans le modèle expliquant y, alors les résidus du modèle seront indépendants et nous pouvons utiliser toutes les méthodes déjà vues qui ignorent la dépendance spatiale.

Cependant, si la dépendance est intrinsèque ou due à des influences externes non-mesurées, alors il faudra tenir compte de la dépendance spatiale des résidus dans le modèle.

Différentes façons de modéliser les effets spatiaux

Dans cette formation, nous modéliserons directement les corrélations spatiales de nos données. Il est utile de comparer cette approche à d'autres façons d'inclure des aspects spatiaux dans un modèle statistique.

D'abord, nous pourrions inclure des prédicteurs dans le modèle qui représentent la position (ex.: longitude, latitude). De tels prédicteurs peuvent être utiles pour détecter une tendance ou un gradient systématique à grande échelle, que cette tendance soit linéaire ou non (par exemple, avec un modèle additif généralisé).

En contraste à cette approche, les modèles que nous verrons maintenant servent à modéliser une corrélation spatiale dans les fluctuations aléatoires d'une variable (i.e., dans les résidus après avoir enlevé tout effet systématique).

Les modèles mixtes utilisent des effets aléatoires pour représenter la non-indépendance de données sur la base de leur groupement, c'est-à-dire qu'après avoir tenu compte des effets fixes systématiques, les données d'un même groupe sont plus semblables (leur variation résiduelle est corrélée) par rapport aux données de groupes différents. Ces groupes étaient parfois définis selon des critères spatiaux (observations regroupées en sites).

Cependant, dans un contexte d'effet aléatoire de groupe, tous les groupes sont aussi différents les uns des autres, ex.: deux sites à 100 km l'un de l'autre ne sont pas plus ou moins semblables que deux sites distants de 2 km.

Les méthodes que nous verrons ici et dans les prochains parties de la formation nous permettent donc ce modéliser la non-indépendance sur une échelle continue (plus proche = plus corrélé) plutôt que seulement discrète (hiérarchie de groupements).

Modèles géostatistiques

La géostatistique désigne un groupe de techniques tirant leur origine en sciences de la Terre. Elle s'intéresse à des variables distribuées de façon continue dans l'espace, dont on cherche à estimer la distribution en échantillonnant un nombre de points. Un exemple classique de ces techniques provient du domaine minier, où l'on cherchait à créer une carte de la concentration du minerai sur un site à partir d'échantillons pris à différents points du site.

Pour ces modèles, nous supposerons que z(x,y) est une variable spatiale stationnaire mesurée selon les coordonnées x et y.

Variogramme

Un aspect central de la géostatistique est l'estimation du variogramme γ_z de la variable z. Le variogramme est égal à la moitié de l'écart carré moyen entre les valeurs de z pour deux points (x_i, y_i) et (x_j, y_j) séparés par une distance h.

$$\gamma_z(h) = \frac{1}{2} E \left[(z(x_i, y_i) - z(x_j, y_j))^2 \right]_{d_{ij} = h}$$

Dans cette équation, la fonction E avec l'indice $d_{ij} = h$ désigne l'espérance statistique (autrement dit, la moyenne) de l'écart au carré entre les valeurs de z pour les points séparés par une distance h.

Si on préfère exprimer l'autocorrélation $\rho_z(h)$ entre mesures de z séparées par une distance h, celle-ci est reliée au variogramme par l'équation:

$$\gamma_z = \sigma_z^2 (1 - \rho_z)$$

où σ_z^2 est la variance globale de z.

Notez que $\gamma_z = \sigma_z^2$ si nous sommes à une distance où les mesures de z sont indépendantes, donc $\rho_z = 0$. Dans ce cas, on voit bien que γ_z s'apparente à une variance, même s'il est parfois appelé "semivariogramme" ou "semivariance" en raison du facteur 1/2 dans l'équation ci-dessus.

Modèles théoriques du variogramme

Plusieurs modèles paramétriques ont été proposés pour représenter la corrélation spatiale en fonction de la distance entre points d'échantillonnage. Considérons d'abord une corrélation qui diminue de façon exponentielle:

$$\rho_z(h) = e^{-h/r}$$

Ici, $\rho_z = 1$ pour h = 0 et la corréaltion est multipliée par $1/e \approx 0.37$ pour chaque augmentation de r de la distance. Dans ce contexte, r se nomme la portée (range) de la corrélation.

À partir de l'équation ci-dessus, nous pouvons calculer le variogramme correspondant.

$$\gamma_z(h) = \sigma_z^2 (1 - e^{-h/r})$$

Voici une représentation graphique de ce variogramme.

En raison de la fonction exponentielle, la valeur de γ à des grandes distances s'approche de la variance globale σ_z^2 sans exactement l'atteindre. Cette asymptote est appelée palier (sill) dans le contexte géostatistique et représentée par le symbole s.

Finalement, il n'est parfois pas réaliste de supposer une corrélation parfaite lorsque la distance tend vers 0, en raison d'une variation possible de z à très petite échelle. On peut ajouter au modèle un effet de pépite (nugget), noté n, pour que γ s'approche de n (plutôt que 0) si h tend vers 0. Le terme pépite provient de l'origine minière de ces techniques, où une pépite d'un minerai pourrait être la source d'une variation abrupte de la concentration à petite échelle.

En ajoutant l'effet de pépite, le reste du variogramme est "compressé" pour conserver le même palier, ce qui résulte en l'équation suivante.

$$\gamma_z(h) = n + (s - n)(1 - e^{-h/r})$$

Dans le package gstat que nous utiliserons ci-dessous, le terme (s-n) est le palier partiel ($partial\ sill$, ou psill) pour la partie exponentielle.

En plus du modèle exponentiel, deux autres modèles théoriques courants pour le variogramme sont le modèle gaussien (où la corrélation suit une courbe demi-normale), ainsi que le modèle sphérique (où le variogramme augmente de façon linéaire au départ pour ensuite courber et atteindre le palier à une distance égale à sa portée r). Le modèle sphérique permet donc à la corrélation d'être exactement 0 à grande distance, plutôt que de s'approcher graduellement de zéro dans le cas des autres modèles.

Modèle	ho(h)	$\gamma(h)$
Exponentiel	$\exp\left(-\frac{h}{r}\right)$	$s\left(1-\exp\left(-\frac{h}{r}\right)\right)$
Gaussien	$\exp\left(-\frac{h^2}{r^2}\right)$	$s\left(1-\exp\left(-\frac{h^2}{r^2}\right)\right)$
Sphérique $(h < r)$ *	$1 - \frac{3}{2} \frac{h}{r} + \frac{1}{2} \frac{h^3}{r^3}$	$s\left(\frac{3}{2}\frac{h}{r} - \frac{1}{2}\frac{h^3}{r^3}\right)$

^{*} Pour le modèle sphérique, $\rho = 0$ et $\gamma = s$ si $h \ge r$.

Variogramme empirique

Pour estimer $\gamma_z(h)$ à partir de données empiriques, nous devons définir des classes de distance, donc grouper différentes distances dans une marge $\pm \delta$ autour d'une distance h, puis calculer l'écart-carré moyen pour les paires de points dans cette classe de distance.

$$\hat{\gamma_z}(h) = \frac{1}{2N_{\text{paires}}} \sum \left[\left(z(x_i, y_i) - z(x_j, y_j) \right)^2 \right]_{d_{ij} = h \pm \delta}$$

Nous verrons dans la partie suivante comment estimer un variogramme dans R.

Modèle de régression avec corrélation spatiale

L'équation suivante représente une régression linéaire multiple incluant une corrélation spatiale résiduelle:

$$v = \beta_0 + \sum_i \beta_i u_i + z + \epsilon$$

Ici, v désigne la variable réponse et u les prédicteurs, pour ne pas confondre avec les coordonnées spatiales x et y.

En plus du résidu ϵ qui est indépendant entre les observations, le modèle inclut un terme z qui représente la portion spatialement corrélée de la variance résiduelle.

Voici une suggestions d'étapes à suivre pour appliquer ce type de modèle:

- 1. Ajuster le modèle de régression sans corrélation spatiale.
- 2. Vérifier la présence de corrélation spatiale à partir du variogramme empirique des résidus.
- 3. Ajuster un ou plusieurs modèles de régression avec corrélation spatiale et choisir celui qui montre le meilleur ajustement aux données.

Modèles géostatistiques dans R

##

##

##

##

##

##

##

##

##

##

##

\$ CHR2

\$ LIME2

\$ DEPTHCM

\$ PCLAY1

\$ PCLAY2

\$ MG1

\$ OM1

\$ PH1

\$ CEC1

\$ PHOS1

\$ POT1

\$ DEP2LIME : num

Le package *gstat* contient des fonctions liées à la géostatistique. Pour cet exemple, nous utiliserons le jeu de données oxford de ce package, qui contient des mesures de propriétés physiques et chimiques pour 126 échantillons du sol d'un site, ainsi que leurs coordonnées XCOORD et YCOORD.

```
library(gstat)
data(oxford)
str(oxford)
   'data.frame':
                    126 obs. of 22 variables:
   $ PROFILE : num 1 2 3 4 5 6 7 8 9 10 ...
##
##
   $ XCOORD
               : num 100 100 100 100 100 100 100 100 100 ...
##
   $ YCOORD
                      2100 2000 1900 1800 1700 1600 1500 1400 1300 1200 ...
##
   $ ELEV
               : num 598 597 610 615 610 595 580 590 598 588 ...
##
   $ PROFCLASS: Factor w/ 3 levels "Cr", "Ct", "Ia": 2 2 2 3 3 2 3 2 3 3 ...
   $ MAPCLASS : Factor w/ 3 levels "Cr", "Ct", "Ia": 2 3 3 3 3 2 2 3 3 3 ...
##
   $ VAL1
               : num
                      3 3 4 4 3 3 4 4 4 3 ...
   $ CHR1
               : num
                      3 3 3 3 3 2 2 3 3 3 ...
##
##
   $ LIME1
               : num
                      4 4 4 4 4 0 2 1 0 4 ...
##
                      4 4 5 8 8 4 8 4 8 8 ...
   $ VAL2
               : num
```

4 4 4 2 2 4 2 4 2 2 ...

4 4 4 5 5 4 5 4 5 5 ...

61 91 46 20 20 91 30 61 38 25 ...

20 20 20 20 20 20 20 20 40 20 ...

15 25 20 20 18 25 25 35 35 12 ... 10 10 20 10 10 20 10 20 10 10 ...

20 22 17 23 27 27 21 14 27 20 ...

63 58 55 60 88 168 99 59 233 87 ...

5.7 5.6 5.8 6.2 8.4 6.4 7.1 3.8 5 9.2 ...

7.7 7.7 7.5 7.6 7.6 7 7.5 7.6 6.6 7.5 ...

196 157 115 172 238 164 312 184 123 282 ...

13 9.2 10.5 8.8 13 9.3 10 9 15 12.6 ...

Supposons que nous souhaitons modéliser la concentration de magnésium (MG1), représentée en fonction de la position spatiale dans le graphique suivant.

```
library(ggplot2)
ggplot(oxford, aes(x = YCOORD, y = XCOORD, size = MG1)) +
    geom_point() +
    coord_fixed()
```


Notez que les axes x et y ont été inversés par souci d'espace. La fonction $\mathsf{coord_fixed}()$ de ggplot2 assure que l'échelle soit la même sur les deux axes, ce qui est utile pour représenter des données spatiales.

Nous voyons tout de suite que ces mesures ont été prises sur une grille de 100 m de côté. Il semble que la concentration de magnésium soit spatialement corrélée, bien qu'il puisse s'agir d'une corrélation induite par une autre variable. Nous savons notamment que la concentration de magnésium est reliée négativement au pH du sol (PH1).

```
ggplot(oxford, aes(x = PH1, y = MG1)) +
  geom_point()
```


La fonction variogram de *gstat* sert à estimer un variogramme à partir de données empiriques. Voici le résultat obtenu pour la variable MG1.

```
var_mg <- variogram(MG1 ~ 1, locations = ~ XCOORD + YCOORD, data = oxford)
var_mg</pre>
```

```
gamma dir.hor dir.ver
##
               dist
                                                 id
       np
      225 100.0000 1601.404
                                    0
## 1
                                             0 var1
                                    0
##
  2
      200 141.4214 1950.805
                                             0 var1
##
      548 215.0773 2171.231
                                    0
                                             0 var1
      623 303.6283 2422.245
                                    0
##
                                             0 var1
## 5
      258 360.5551 2704.366
                                    0
                                             0 var1
      144 400.0000 2948.774
                                    0
##
                                             0 var1
      570 427.5569 2994.621
                                    0
                                             0 var1
##
      291 500.0000 3402.058
                                    0
                                             0 var1
## 9
      366 522.8801 3844.165
                                    0
                                             0 var1
## 10 200 577.1759 3603.060
                                    0
                                             0 var1
## 11 458 619.8400 3816.595
                                    0
                                             0 var1
       90 670.8204 3345.739
                                    0
## 12
                                             0 var1
```

La formule MG1 ~ 1 indique qu'aucun prédicteur linéaire n'est inclus dans ce modèle, tandis que l'argument locations indique quelles variables du tableau correspondent aux coordonnées spatiales.

Dans le tableau obtenu, gamma est la valeur du variogramme pour la classe de distance centrée sur dist, tandis que np est le nombre de paires de points dans cette classe. Ici, puisque les points sont situés sur une grille, nous obtenons des classes de distance régulières (ex.: 100 m pour les points voisins sur la grille, 141 m pour les voisins en diagonale, etc.).

Nous nous limitons ici à l'estimation de variogrammes isotropiques, c'est-à-dire que le variogramme dépend seulement de la distance entre les deux points et non de la direction. Bien que nous n'ayons pas le temps de le voir aujourd'hui, il est possible avec *gstat* d'estimer séparément le variogramme dans différentes directions.

Nous pouvons illustrer le variogramme avec plot.

```
plot(var_mg, col = "black")
```


Si nous voulons estimer la corrélation spatiale résiduelle de MG1 après avoir inclus l'effet de PH1, nous pouvons ajouter ce prédicteur à la formule.

```
var_mg <- variogram(MG1 ~ PH1, locations = ~ XCOORD + YCOORD, data = oxford)
plot(var_mg, col = "black")</pre>
```


En incluant l'effet du pH, la portée de la corrélation spatiale semble diminuer, alors que le plateau est atteint autour de 300 m. Il semble même que le variogramme diminue au-delà de 400 m. En général, nous supposons que la variance entre deux points ne diminue pas avec la distance, à moins d'avoir un patron spatial périodique.

La fonction fit.variogram accepte comme arguments un variogramme estimé à partir des données, ainsi qu'un modèle théorique décrit dans une fonction vgm, puis estime les paramètres de ce modèle en fonction des données. L'ajustement se fait par la méthode des moindres carrés.

Par exemple, vgm("Exp") indique d'ajuster un modèle exponentiel.

```
vfit <- fit.variogram(var_mg, vgm("Exp"))
vfit</pre>
```

```
## model psill range
## 1 Nug 0.000 0.00000
## 2 Exp 1951.496 95.11235
```

Il n'y a aucun effet de pépite, car psill = 0 pour la partie Nug (nugget) du modèle. La partie exponentielle a un palier à 1951 et une portée de 95 m.

Pour comparer différents modèles, on peut donner un vecteur de noms de modèles à vgm. Dans l'exemple suivant, nous incluons les modèles exponentiel, gaussien ("Gau") et sphérique ("Sph").

```
vfit <- fit.variogram(var_mg, vgm(c("Exp", "Gau", "Sph")))
vfit</pre>
```

```
## model psill range
## 1 Nug 0.000 0.00000
## 2 Exp 1951.496 95.11235
```

La fonction nous donne le résultat du modèle le mieux ajusté (plus faible somme des écarts au carré), qui est ici le même modèle exponentiel.

Finalement, nous pouvons superposer le modèle théorique et le variogramme empirique sur un même graphique.

Régression avec corrélation spatiale

Nous avons vu ci-dessus que le package *gstat* permet d'estimer le variogramme des résidus d'un modèle linéaire. Dans notre exemple, la concentration de magnésium était modélisée en fonction du pH, avec des résidus spatialement corrélés.

Un autre outil pour ajuster ce même type de modèle est la fonction ${\tt gls}$ du package nlme, qui est inclus avec l'installation de R.

Cette fonction applique la méthode des moindres carrés généralisés (generalized least squares) pour ajuster des modèles de régression linéaire lorsque les résidus ne sont pas indépendants ou lorsque la variance résiduelle n'est pas la même pour toutes les observations. Comme les estimés des coefficients dépendent de l'estimé des corrélations entre les résidus et que ces derniers dépendent eux-mêmes des coefficients, le modèle est ajusté par un algorithme itératif:

- 1. On ajuste un modèle de régression linéaire classique (sans corrélation) pour obtenir des résidus.
- 2. On ajuste le modèle de corrélation spatiale (variogramme) avec ses résidus.
- 3. On ré-estime les coefficients de la régression en tenant compte maintenant des corrélations.

Les étapes 2 et 3 sont répétées jusqu'à ce que les estimés soient stables à une précision voulue.

Voici l'application de cette méthode au même modèle pour la concentration de magnésium dans le jeu de données oxford. Dans l'argument correlation de gls, nous spécifions un modèle de corrélation exponentielle en fonction de nos coordonnées spatiales et indiquons que nous voulons aussi estimer un effet de pépite.

En plus de la corrélation exponentielle corExp, la fonction gls peut aussi estimer un modèle gaussien (corGaus) ou sphérique (corSpher).

```
library(nlme)
gls_mg <- gls(MG1 ~ PH1, oxford,
              correlation = corExp(form = ~ XCOORD + YCOORD, nugget = TRUE))
summary(gls mg)
## Generalized least squares fit by REML
##
     Model: MG1 ~ PH1
##
     Data: oxford
##
         AIC
                  BIC
                        logLik
     1278.65 1292.751 -634.325
##
##
  Correlation Structure: Exponential spatial correlation
    Formula: ~XCOORD + YCOORD
##
##
    Parameter estimate(s):
##
         range
                    nugget
  478.0322964
                 0.2944753
##
##
  Coefficients:
##
##
                  Value Std.Error
                                     t-value p-value
   (Intercept) 391.1387 50.42343 7.757084
##
                           6.15662 -6.673079
                                                    0
##
               -41.0836
##
##
    Correlation:
##
       (Intr)
## PH1 -0.891
##
## Standardized residuals:
##
          Min
                       Q1
                                              Q3
                                                        Max
                                 Med
## -2.1846957 -0.6684520 -0.3687813
                                     0.4627580
##
## Residual standard error: 53.8233
## Degrees of freedom: 126 total; 124 residual
```

Pour comparer ce résultat au variogramme ajusté ci-dessus, il faut transformer les paramètres donnés par gls. La portée (range) a le même sens dans les deux cas et correspond à 478 m pour le résultat de gls. La variance globale des résidus est le carré de Residual standard error. L'effet de pépite ici (0.294) est exprimé comme fraction de cette variance. Finalement, pour obtenir le palier partiel de la partie exponentielle, il faut soustraire l'effet de pépite de la variance totale.

Après avoir réalisé ces calculs, nous pouvons donner ces paramètres à la fonction vgm de gstat pour superposer ce variogramme estimé par gls à notre variogramme des résidus du modèle linéaire classique.

Est-ce que le modèle est moins bien ajusté aux données ici? En fait, ce variogramme empirique représenté par les points avait été obtenu à partir des résidus du modèle linéaire ignorant la corrélation spatiale, donc c'est un estimé biaisé des corrélations spatiales réelles. La méthode est quand même adéquate pour vérifier rapidement s'il y a présence de corrélations spatiales. Toutefois, pour ajuster simultanément les coefficients de la régression et les paramètres de corrélation spatiale, l'approche des moindres carrés généralisés (GLS) est préférable et produira des estimés plus justes.

Finalement, notez que le résultat du modèle gls donne aussi l'AIC, que nous pouvons utiliser pour comparer l'ajustement de différents modèles (avec différents prédicteurs ou différentes formes de corrélation spatiale).

Exercice

##

richness

Le fichier bryo belg.csv est adapté des données de l'étude:

wetland

forest

Neyens, T., Diggle, P.J., Faes, C., Beenaerts, N., Artois, T. et Giorgi, E. (2019) Mapping species richness using opportunistic samples: a case study on ground-floor bryophyte species richness in the Belgian province of Limburg. *Scientific Reports* 9, 19122. https://doi.org/10.1038/s41598-019-55593-x

Ce tableau de données indique la richesse spécifique des bryophytes au sol (richness) pour différents points d'échantillonnage de la province belge de Limbourg, avec leur position (x, y) en km, en plus de l'information sur la proportion de forêts (forest) et de milieux humides (wetland) dans une cellule de 1 km² contenant le point d'échantillonnage.

```
bryo_belg <- read.csv("data/bryo_belg.csv")
head(bryo_belg)</pre>
```

У

```
## 1 9 0.2556721 0.5036614 228.9516 220.8869

## 2 6 0.6449114 0.1172068 227.6714 219.8613

## 3 5 0.5039905 0.6327003 228.8252 220.1073

## 4 3 0.5987329 0.2432942 229.2775 218.9035

## 5 2 0.7600775 0.1163538 209.2435 215.2414

## 6 10 0.6865434 0.0000000 210.4142 216.5579
```

Pour cet exercice, nous utiliserons la racine carrée de la richesse spécifique comme variable réponse. La transformation racine carrée permet souvent d'homogénéiser la variance des données de comptage afin d'y appliquer une régression linéaire.

- a) Ajustez un modèle linéaire de la richesse spécifique transformée en fonction de la fraction de forêt et de milieux humides, sans tenir compte des corrélations spatiales. Quel est l'effet des deux prédicteurs selon ce modèle?
- b) Calculez le variogramme empirique des résidus du modèle en (a). Semble-t-il y avoir une corrélation spatiale entre les points?

Note: L'argument cutoff de la fonction variogram spécifie la distance maximale à laquelle le variogramme est calculé. Vous pouvez ajuster manuellement cette valeur pour bien voir le palier.

- c) Ré-ajustez le modèle linéaire en (a) avec la fonction gls du package nlme, en essayant différents types de corrélations spatiales (exponentielle, gaussienne, sphérique). Comparez les modèles (incluant celui sans corrélation spatiale) avec l'AIC.
- d) Quel est l'effet de la fraction de forêts et de milieux humides selon le modèle en (c)? Expliquez les différences entre les conclusions de ce modèle et du modèle en (a).