INSTRUCCIONS:

- 1. Responeu amb claredat d'exposició les següents questions. Totes les respostes han de ser degudament justificades.
- 2. El temps per realitzar la prova no s'allagarà sota cap circumstància.
- 3. Primer llegiu totes i cadascuna de les preguntes. Comenceu responent i deixant en net totes aquelles de les que us trobeu més segurs.
- 4. Si teniu dubtes sobre la interpretació d'algun enunciat, demaneu a la persona que estigui a l'aula en tasques de supervisió.

PROBLEMES:

- 1. [4 punts] Fixem $p \in \mathbb{R}$. Donat $U \subset \mathbb{R}$, diem que $U \in \tau_p$ si i només si $p \notin U$ o $\mathbb{R} \setminus U$ és finit.
 - (a) [1 punt] Comprova que τ_p és una topologia en \mathbb{R} (es diu topologia de Fort).
 - (b) [0.5 punt] Siguin $A = \{2\}$ i B = (0, 1] subconjunts de \mathbb{R} . Calcula els seus interiors, clausures i fronteres en la topologia de Fort segons el valor de $p \in \mathbb{R}$.
 - (c) [0.5 punt] Defineix la propietat de Hausdorff en un espai topològic X i comprova si (\mathbb{R}, τ_p) la satisfà o no.
 - (d) [1 punt] Caracteritza els subconjunts tancats per aquesta topologia a \mathbb{R} i fes una llista de tots els subconjunts densos de (\mathbb{R}, τ_p) .
 - (e) [1 punt] Si $p \neq q \in \mathbb{R}$, comprova que $\tau_p \neq \tau_q$ però (\mathbb{R}, τ_p) i (\mathbb{R}, τ_q) són homeomorfs.

Solució:

- (a) Comprovem les propietats que ha de complir τ per ser una topologia.
 - Primer veiem que $\emptyset \in \tau$ perquè $p \notin \emptyset$, i $\mathbb{R} \in \tau$ ja que $\mathbb{R} \setminus \mathbb{R} = \emptyset$ és finit.
 - Sigui $\{U_i\}_{i\in I}$, on $U_i \in \tau$ per tot $i \in I$. Si cap dels U_i conté $p, p \notin U_i$ per tot $i \in I$, aleshores $p \notin \bigcup U_i$, i $\bigcup U_i \in \tau$. Sinó, existeix un $j \in I$ tal que $\mathbb{R} \setminus U_j$ és finit, i aleshores $\mathbb{R} \setminus (\bigcup U_i) = \bigcap (\mathbb{R} \setminus U_i) \subset \mathbb{R} \setminus U_j$. I per tant $\mathbb{R} \setminus (\bigcup U_i)$ també és finit i $\bigcup U_i \in \tau$.
 - Sigui $\{U_i\}_{i=1,\dots,n}$ on $U_i \in \tau$ per tot $i=1,\dots,n$. Si $\mathbb{R} \setminus U_j$ és finit per tot i, aleshores $\mathbb{R} \setminus (\bigcap U_i) = \bigcup (\mathbb{R} \setminus U_i)$ és finit ja que és una unió finita de conjunts finits i $\bigcap U_i \in \tau$. Sinó, existeix $1 \leq j \leq n$ tal que $p \notin U_i$ i aleshores $p \notin \bigcap U_i$, així $\bigcap U_i \in \tau$.
- (b) Si $p \neq 2$ aleshores A és obert i Int(A) = A. Si p = 2 aleshores A no pot contenir cap obert no buit i $Int(A) = \varnothing$. Com que A és finit, el seu complementari és obert, i per tant A sempre és tancat. Aleshores Cl(A) = A. Així si $p \neq 2$, $Fr(A) = A \setminus A = \varnothing$ i si $p \neq 2$ aleshores $Fr(A) = A \setminus \varnothing = A$.
 - Si $p \notin B$ aleshores B és obert i Int(B) = B. Si $p \in B$ aleshores B no és obert i $Int(B) = B \setminus \{p\}$ és l'obert més gran contingut a B. Observem que els subconjunts finits són tancats ja que el seu complementari és obert. Com que B no és finit, no podrà estar contingut en cap tancat finit. Si $p \in B$ aleshores B és tancat i Cl(B) = B i si $p \notin B$ aleshores el tancat més petit que conté B és $Cl(B) = B \cup \{p\}$. Aleshores, en ambdues situacions, $Fr(B) = Cl(B) \setminus Int(B) = \{p\}$.

- (c) Un espai topològic X és Hausdorff si donats $x \neq y \in X$, existeixen oberts $U, V \subset X$ tals que $x \in U, y \in V$ i $U \cap V = \emptyset$.
 - Per provar que (\mathbb{R}, τ) és Hausdorff he de començar prenent $x \neq y \in \mathbb{R}$. Si considerem x = p, aleshores $y \in \{y\}$ és obert $(p \notin \{y\})$, $x \in \mathbb{R} \setminus \{y\}$ també és obert (el seu complementari és finit), i la seva intersecció és buida $(\{y\} \cap (\mathbb{R} \setminus \{y\}) = \varnothing)$. Si $x \neq p$ i $y \neq p$ aleshores $\{x\}$ i $\{y\}$ són dos oberts disjunts que contenen x i y respectivament.
- (d) El subconjunts tancats són els complementaris dels oberts, per tant, $C \subset \mathbb{R}$ és tancat si $p \in C$ o C és finit. Un subconjunt $D \subset \mathbb{R}$ és dens si $Cl(D) = \mathbb{R}$. Primer veiem que D no pot ser finit (aleshores és tancat , $Cl(D) = D \subsetneq \mathbb{R}$), però si D no és finit aleshores $Cl(D) = D \cup \{p\}$. Així, només tenim dues possibilitats si volem que $Cl(D) = \mathbb{R}$: $D = \mathbb{R}$ o $D = \mathbb{R} \setminus \{p\}$.
- (e) Les topologies τ_p i τ_q no són iguals si $p \neq q$, ja que $\{p\}$ és obert a τ_q però no a τ_p . Ara bé, anem a veure que són homeomorfes. Definim f(x) = x si $x \notin \{p,q\}$, f(p) = q i f(q) = p. Aleshores f és bijectiva, i la seva inversa és ella mateixa $(f \circ f = id)$. Provem $f: (X, \tau_p) \to (X, \tau_q)$ és tancada. Si $C \subset \mathbb{R}$ és finit aleshores f(C) també, i si $p \in C$ aleshores $f(p) = q \in f(C)$. Intercanviant el paper de p i q, la inversa $f: (X, \tau_q) \to (X, \tau_p)$ també és tancada, així $f: (X, \tau_p) \to (X, \tau_q)$ és contínua. En resum, f és un homeomorfisme. Una altra opció podria ser la següent. Sigui $f: (\mathbb{R}, \tau_p) \to (\mathbb{R}, \tau_q)$ definida per f(x) = x p + q. És bijectiva amb inversa $f^{-1}(x) = x + p q$. Anem a veure que són contínues. Ho comprovarem amb la família de tancats. Si $C \subset \mathbb{R}$ és finit aleshores $f^{-1}(C)$ també i f(C) també. Si $p \in C$ aleshores $f(p) = q \in f(C)$ i si $q \in C$ aleshores $p \in f^{-1}(C)$. Així f és tancada i contínua. Per tant, f és un homeomorfisme.
- 2. [2 punts] Sigui $f: X \to Y$ una aplicació entre espais topològics. Demostra els següents fets:
 - (a) L'aplicació f és tancada si i només si per tot $A \subset X$, $Cl(f(A)) \subset f(Cl(A))$.
 - (b) Si f és exhaustiva i tancada i $U \subset X$ és obert, aleshores $Fr(f(Cl(U))) \subset f(Cl(U)) \cap f(X \setminus U)$.

Solució:

- (a) Si f és tancada aleshores $f(Cl(A)) \subset Y$ és tancat ja que Cl(A) ho és. A més, $f(A) \subset f(Cl(A))$ ja que $A \subset Cl(A)$. Per tant com que la clausura de A és el tancat més petit que conté f(A) tenim $Cl(f(A)) \subset f(Cl(f(A)))$. Suposem ara que es compleix $Cl(f(A)) \subset f(Cl(A))$ per tot $A \subset X$. Sigui $C \subset X$ un subconjunt tancat, Cl(C) = C. Aleshores per hipòtesis $Cl(f(C)) \subset f(Cl(C)) = f(C)$. Tenim així la inclusió $Cl(f(C)) \subset f(C)$. Aleshores, com que sempre es compleix $f(C) \subset Cl(f(C))$, per doble inclusió hem demostrat que Cl(f(C)) = f(C) i per tant f(C) és tancat.
- (b) Com que f és tancada tenim que f(Cl(U)) és tancat, Cl(f(Cl(C))) = f(Cl(U)). Aleshores

$$\mathsf{Fr}(f(\mathsf{Cl}(U))) = f(\mathsf{Cl}(U)) \setminus \mathsf{Int}(f(\mathsf{Cl}(U))) = f(\mathsf{Cl}(U)) \cap (Y \setminus \mathsf{Int}(f(\mathsf{Cl}(U)))) = f(\mathsf{Cl}(U)) \cap \mathsf{Cl}(Y \setminus f(\mathsf{Cl}(U)))$$

Ara bé, com que f és exhaustiva tenim que $Y \setminus f(Cl(U)) \subset f(X \setminus Cl(U))$, i com que $U \subset Cl(U)$, aleshores $X \setminus Cl(U) \subset X \setminus U$. Així $Cl(Y \setminus f(Cl(U))) \subset Cl(f(X \setminus U)) = f(X \setminus U)$ ja que f és tancada i $X \setminus U$ tancat. En resum,

$$Fr(f(Cl(U))) = f(Cl(U)) \cap Cl(Y \setminus f(Cl(U))) \subset f(Cl(U)) \cap f(X \setminus U)$$

3. [2 punts] Sigui X un espai topològic. Definim la següent relació d'equivalència: $x \sim y$ si i només si $Cl(\{x\}) = Cl(\{y\})$. Sigui $p: X \to X / \sim l$ 'aplicació quocient. Prova els següents enunciats:

- (a) Si $A \subset X$ és obert o tancat, aleshores $p^{-1}(p(A)) = A$.
- (b) L'aplicació quocient és oberta i tancada.

Solució:

- (a) Sigui $A \subset X$. Sempre es compleix $A \subset p^{-1}(p(A)) = \{y \in X | CI(\{x\}) = CI(\{y\}), x \in A\}$. Anem a veure si A és obert o tancat, aleshores es compleix l'altra inclusió, $p^{-1}(p(A)) \subset A$. Sigui $z \in p^{-1}(p(A))$, aleshores $CI(\{x\}) = CI(\{z\})$ per algun $x \in A$. En particular, $x \in CI(\{z\})$ per algun $x \in A$. És a dir, $x \in A$ és un punt adherent a $\{z\}$. Si A és obert i $x \in A$, tenim que $A \cap \{z\} \neq \emptyset$, i per tant $z \in A$. Si A és tancat tenim que $z \in CI(\{z\}) = CI(\{x\}) \subset CI(A) = A$, i per tant, $z \in A$.
- (b) Sigui $A \subset X$ un subconjunt obert (resp. tancat). Aleshores p serà oberta (resp. tancada) si $p(A) \subset X/\sim$ és obert (resp. tancat). Ara, com que X/\sim té la topologia quocient induïda per p, $p(A) \subset X/\sim$ és obert (resp. tancat) sii $p^{-1}(p(A)) \subset X$ és obert (resp. tancat). Per l'apartat (a), tenim que $p^{-1}(p(A)) = A$ si A és obert o tancat, per tant, p és oberta (resp. tancada).
- 4. [2 punts] Siguin τ_1 i τ_2 dues topologies en un mateix conjunt X. Considerem l'aplicació diagonal $i: X \hookrightarrow X \times X$, i(x) = (x, x). Prenem la topologia producte $(X, \tau_1) \times (X, \tau_2)$ en $X \times X$. Sigui $\tau \subset \mathcal{P}(X)$ la topologia en X definida per la inclusió i, és a dir, la topologia menys fina per la qual i és contínua. Demostra que:
 - (a) La topologia τ és més fina, és a dir, $\tau_i \subset \tau$ per i = 1, 2.
 - (b) El conjunt $\mathcal{B} = \{U_1 \cap U_2 | U_1 \in \tau_1, U_2 \in \tau_2\}$ és una base per la topologia τ .

Solució:

- (a) Com que les projeccions $\pi_i\colon (X_1,\tau_1)\times (X_2,\tau_2)\to (X_i,\tau_i)$ per i=1,2 són contínues, podem composar amb la inclusió diagonal i i obtenim aplicacions contínues $\pi_1\circ i$ i $\pi_2\circ i$. Ara bé, aquestes composicions són la identitat com aplicacions de conjunts ja que $\pi_i(i(x))=\pi_i(x,x)=x$ per i=1,2. Aleshores $id=\pi_i\circ i\colon (X,\tau)\to (X,\tau_i)$ és contínua per i=1,2 i per tant els oberts a τ_i també ho són a τ . Així $\tau_i\subset \tau$ per i=1,2. Una altra manera de provar-ho. Si $i\colon X\hookrightarrow X\times X$ és contínua, aleshores $i^{-1}(U_1\times X)\in \tau$ si $U_1\subset X$ és obert a τ_1 ja que $U_1\times X$ és obert a $(X,\tau_1)\times (X,\tau_2)$. Però $i^{-1}(U_1\times X)=U_1$. De la mateixa manera $i^{-1}(X\times U_2)=U_2\in \tau$ si $U_2\in \tau_2$.
- (b) Com que τ és la topologia menys fina tal que i és contínua tenim que $U \in \tau$ sii $U = i^{-1}(W)$ amb $W \subset X \times X$ obert a $(X, \tau_1) \times (X, \tau_2)$. Donada una base $\mathcal C$ per la topologia producte, aquesta topologia τ tindrà una base $\mathcal B$ formada per $\mathcal B = \{i^{-1}(W) | W \in \mathcal C\}$ ja que $f^{-1}(\bigcup_{i \in I} W_i) = \bigcup_{i \in I} f^{-1}(W_i)$.

Una base C de la topologia producte està formada per productes d'oberts $U_1 \times U_2$ on $U_i \in \tau_i$ per i = 1, 2. Ara bé,

$$i^{-1}(U_1 \times U_2) = \{x \in X | (x, x) \in U_1 \times U_2\} = \{x \in X | x \in U_1 \cap U_2\} = U_1 \cap U_2$$

Per tant, $\mathcal{B} = \{U_1 \cap U_2 | U_1 \in \tau_1, U_2 \in \tau_2\}$ és una base per la topologia τ .