1 Introduction

Definition 1.1. Let $\mathbb{R}^2 = \{(x.y) | x, y \in \mathbb{R}\}$. Let us consider the following operations of addition and multiplication:

• Sum: given two $(a, b), (c, d) \in \mathbb{R}^2$ we define the sum "+" by components

$$(a,b) + (c,d) := (a+b,c+d).$$
 (1)

• Product: given two $(a,b),(c,d) \in \mathbb{R}^2$ we define the product by

$$(a,b)(c,d) = (ac - bd, ad + bc).$$
 (2)

We define the set \mathbb{C} as $(\mathbb{R}^2, +,)$.

Proposition 1.1. The set \mathbb{C} of complex numbers is an abelian field.

Proposition 1.2. Let \mathbb{C} be defined in the second way. Then,

- 1. \mathbb{C} is an abelian ring.
- 2. If we define f as

$$f: (\mathbb{C}, +,) \longrightarrow (\mathbb{R}^2, +,), (x, y) \longmapsto x + yi,$$
 (3)

then f is a morphism of rings.

3. The function f is, in fact, an isomorphism and \mathbb{C} is an abelian field.

Proposition 1.3. The subset of \mathbb{C} generated by numbers of the form $\underline{x} = (x,0)$ is isomorph to the set of real numbers.

Theorem 1.4. \mathbb{C} is not an ordered field.

Proposition 1.5. For all $z, w \in \mathbb{C}$, we have:

- 1. $\bar{\bar{z}} = z$.
- 2. $\overline{z+w} = \overline{z} + \overline{w}$.
- 3. $\overline{zw} = \bar{z}\bar{w}$.
- 4. $z\bar{z} \in \mathbb{R}$. In particular, if z = a + bi, then $z\bar{z} = a^2 + b^2$.
- 5. $z \in \mathbb{R} \Leftrightarrow z = \bar{z}$.
- 6. The inverse element of $z \in \mathbb{C}^*$ in multiplication is $z^{-1} = \bar{z}/(z\bar{z})$.

Proposition 1.6. Let $z \in \mathbb{C}$. Then,

$$\operatorname{Re}\{z\} = \frac{z + \bar{z}}{2}, \qquad \operatorname{Im}\{z\} = \frac{z - \bar{z}}{2i}$$
 (4)

Proposition 1.7. Let $z, w \in \mathbb{C}$ and the following distance function.

$$\tilde{d}: \mathbb{C} \times \mathbb{C} \longrightarrow \mathbb{R}
(z, w) \longmapsto \tilde{d}(z, w) := |z - w|$$
(5)

Then, (\mathbb{C}, \tilde{d}) is a metric space.

Lemma 1.8. The set $B = \{B_r(z_0) \mid r \in \mathbb{R}^+, z_0 \in \mathbb{R}^2\}$ is a basis of the topology of \mathbb{R}^2 as a metric space. The set $D = \{D_r(z_0) \mid r \in \mathbb{R}^+, z_0 \in \mathbb{C}\}$ is a basis of the topology of \mathbb{C} as a metric space.

Proposition 1.9. The sets \mathbb{C} and \mathbb{R}^2 with the topology of metric space are homeomorphs.

(1) **Proposition 1.10.** Let $z, w \in \mathbb{C}$. Then,

- 1. $|z| \ge 0$.
- 2. $|z| = 0 \Leftrightarrow z = 0$.
- 3. $-|z| \le \text{Re}\{z\} \le |z| \text{ and } -|z| \le \text{Im}\{z\} \le |z|.$
- 4. |zw| = |z||w|.
- 5. If $w \neq 0$, |z/w| = |z|/|w|.
- 6. $|z+w| \le |z| + |w|$.
- 7. $|z+w| \ge ||z| |w||$.
- 8. $|\operatorname{Re}\{zw\}| \le |z||w| \text{ and } |\operatorname{Im}\{z\}| \le |z||w|.$
- 9. $|z \pm w|^2 = |z|^2 + |w|^2 \pm 2 \operatorname{Re} \{z\bar{w}\}.$
- 10. $|z^n| = |z|^n$

Proposition 1.11. Let $z \in \mathbb{C}$ and r_{θ} its polar form. Then,

$$z^n = (r^n)_{n\theta}. (6)$$

Proposition 1.12. Let $z, w \in \mathbb{C}$. Then,

- 1. $\arg zw = \arg[z] + \arg[w] + 2\pi k$.
- 2. $\arg z^n = n \arg z + 2\pi k$.

Theorem 1.13. Let $n \in \mathbb{N}^*$ and $z \in \mathbb{C}$. Then, there exist $w_1, \ldots, w_n \in \mathbb{C}$ such that $w_i^n = z$ for all $i \in \{1, \ldots, n\}$, and $w_i \neq w_j$ for all $i \neq j$. Besides, if $\omega \in \mathbb{C}$ satisfies $\omega^n = z$, then $\omega = w_k$ for some $k \in \{1, \ldots, n\}$.

Proposition 1.14. Let $\{z_n\} = \{a_n + ib_n\}$ be a sequence of complex numbers. Then, it converges if and only if $\{a_n\}$ and $\{b_n\}$ converge.

Proposition 1.15. $\sum_{n=1}^{\infty} z_n$ converges if and only if $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ converge.

Proposition 1.16. $\sum_{n=1}^{\infty} |z_n|$ converges if and only if $\sum_{n=1}^{\infty} |a_n|$ and $\sum_{n=1}^{\infty} |b_n|$ converge.

2 Continuity

Definition 2.1. A sequence of complex numbers is an application of the form

$$\mathbb{N}_{\geq m} \longrightarrow \mathbb{C} \\
n \longmapsto z_n$$
(7)

We denote it by $\{z_n\}_{n=m}^{\infty}$

Theorem 2.1. Let $z_n = z_n + iy_n$ be the general term of a sequence $\{z_n\}_{n=0}^{\infty}$ and $L = L_x + iL_y \in \mathbb{C}$. Then,

$$\{z_n\}_{n=0}^{\infty} \to L \Leftrightarrow \{x_n\}_{n=0}^{\infty} \to L_x \land \{y_n\}_{n=0}^{\infty} \to L_z.$$
 (8)

Theorem 2.2. Let $\{z_n\}_{n=0}^{\infty}$ be a convergent sequence. Then, it is a Cauchy sequence.

Theorem 2.3. Let $z_n = x_n + iy_n$ be the general term of a sequence $\{z_n\}_{n=0}^{\infty}$. Then,

 $\{z_n\}_{n=0}^{\infty}$ is a Cauchy sequence $\Leftrightarrow \{x_n\}_{n=0}^{\infty}, \{y_n\}_{n=0}^{\infty}$ are **Theorem 3.3** (Abel's Theorem). Let be the following (9)

Theorem 2.4. The field \mathbb{C} of complex numbers is complete.

Proposition 2.5. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \Omega$. Then, $f = \text{Re}\{f\} + i \text{Im}\{f\}$ is continuous at z_0 if and only if $Re\{f\}$ and $Im\{f\}$ are continuous at z_0 .

Proposition 2.6. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \Omega$. Then, f is continuous at z_0 if and only if for all sequence $\{z_n\}_{n=1}^{\infty}$ of Ω convergent at z_0 it is true that the sequence $\{f(z_n)\}_{n=1}^{\infty}$ converges to $f(z_0)$.

Proposition 2.7. Let $f, g : \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be two continuous function at a point $z_0 \in \mathbb{C}$ and $\lambda \in \mathbb{C}$. Then, λf , f + g, and fg are continuous at z_0 . The function f/g is continuous at z_0 if $g(z_0) \neq 0$.

Functions 3

Definition 3.1. A topology is an ordered pair (X, τ) , where X is a set and τ a collection of subsets of X satisfying the following properties:

- 1. The empty set and X belong to τ .
- 2. Any arbitrary (finite or infinite) union of members of τ still belongs to τ .
- 3. The intersection of any finite number of members of τ still belongs to τ .

The elements of τ are called *open sets* and the collection τ is called the topology on X.

Proposition 3.1. The radius of convergence can be calculated as follows

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}.$$
 (10)

Theorem 3.2 (Cauchy-Hadamard Theorem). Let

$$S = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
 (11)

be the following complex power series with $a_n, z_0 \in \mathbb{C}$ and $R \in [0, +\infty) \cup \{+\infty\}$ the radius of convergence. Then,

- 1. If $|z-z_0| < R$ then S converges. In fact, for all r < R we have S converges uniformly at the disc $D_r(z_0)$.
- 2. If $|z z_0| > R$ then S diverges.
- 3. The function f(z) = S(z) is derivable at $D_R(z_0)$ and its formal derivative is

$$f'(z) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}, \qquad (12)$$

with the same radius of convergence.

$$\sum_{n=0}^{\infty} f_n(z_0) g_n(z_0),$$

where f,g_n are complex functions. If $\sum_{n=0}^{\infty} f_n(z_0)$ is uniformly converging at $\Omega \subseteq \mathbb{C}$ and exists $M \geq 0$ such that for $z_0 \in \Omega$,

$$|g_1(z_0)| + \sum_{n=1}^{\infty} |g_n(z_0) - g_{n+1}(z_0)| \le M,$$
 (13)

then the original series converges uniformly in Ω .

Theorem 3.4 (Weierstrass' criterion). Let $f_n, n \in \mathbb{N}$ be a sequence of functions defined at $\Omega \subseteq \mathbb{C}$ such that $|f_n(z)| < M_n$ for all $z \in \Omega$, $n \ge 1$, and certain constant M_n , satisfying $\sum_{n=0}^{\infty} M_n < \infty$. Then, $\sum_{n=0}^{\infty} f_n(z_0)$ is uniformly convergent at Ω for all $z_0 \in \overline{\Omega}$.

Proposition 3.5. Let $\emptyset \neq \Omega \subseteq \mathbb{C}$. Then,

- 1. Every connected component of Ω is a closed of Ω with a subspace topology.
- 2. Two connected components are the same or are disjoint.
- 3. Every connected of Ω is one and only one connected component.
- 4. Ω is the disjoint union of its connected components.

Theorem 3.6 (Analytic prolongation Principle). Let $f:\Omega\subseteq\mathbb{C}\longrightarrow\mathbb{C}$ an analytic function and $z_0\in\Omega$ such that $f^{(n)}(z_0 = 0)$ for all $n \in \mathbb{N}$. Then, f(z) = 0(z)at the connected component of Ω that contains z_0 (the function can be zero also out Ω , but we are not studying

Lemma 3.7. Given two sequences $\{a_n\}, \{b_n\} \subseteq \mathbb{C}$ such that $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$ are convergent, with at least one of them absolutely convergent, then

$$\left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} a_k b_{n-k}\right). \tag{14}$$

Proposition 3.8. Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defined at $D_R(0)$ for certain $R \in \mathbb{R}^+$. Then, f is analytic at $\Omega = D_R(0)$.

Proposition 3.9. The radius of convergence of e^z is infinite.

Proposition 3.10. $e^z = e^x$ for all $x \in \mathbb{R}$.

Proposition 3.11. $e^{z+w} = e^z e^w$ for all $z, w \in \mathbb{C}$.

Proposition 3.12. For all $z \in \mathbb{C}$ we have $e^z \neq 0$.

Proposition 3.13. The image of e^z is \mathbb{C}^* .

Proposition 3.14. The derivative of e^z is e^z .

Proposition 3.15. $\overline{e}^z = e^{\overline{z}}$.

Proposition 3.16. $|e^z| = e^{\text{Re}\{z\}}$.

Proposition 3.17 (Euler's Formula). If $\theta \in \mathbb{R}$, then e^{xi} has modulus one and we have that

$$e^{xi} = \cos x + i\sin x. \tag{15}$$

Proposition 3.18. The following function

$$\exp: (\mathbb{R}, +) \longrightarrow (\mathbb{C}^*, \cdot)$$

$$x \longmapsto e^{xi}$$
(16)

is a morphism of groups and its image is \mathbb{T} .

Proposition 3.19. The complex exponential function is a periodic function with period $2\pi i$.

Proposition 3.20. Let $a \in \mathbb{C}^*$. Then, $e^z = a$ has infinite solutions.

Proposition 3.21. For all $z \in \mathbb{C}$,

$$\sin^2 z + \cos^2 z = 1. \tag{17}$$

Proposition 3.22. For all $z \in CC$,

$$\cos(-z) = \cos(z), \qquad \sin(-z) = -\sin(z). \tag{18}$$

Proposition 3.23. For all $z, w \in \mathbb{C}$,

 $\cos(z \pm w) = \cos z \cos w \mp \sin z \sin w$, $\sin(z \pm w) = \sin z \cos w + \cos z \sin w$ (28) $\sin(z \pm w) = \sin z \cos w + \cos z \sin w$ (29) $\sin(z \pm w) = \sin z \cos w + \cos z \sin w$ (19) $\cos z \sin w + \cos z \sin w$ (19) $\cos z \cos w + \cos z \cos w + \cos z \cos w$

Proposition 3.24. The functions $\cos z, \sin z$ have period of 2π .

Proposition 3.25. Let $z_0 \in \mathbb{C}$. Then, z_0 is root of $\sin z$ ($\cos z$) if and only if it is a root of $\sin x$ ($\cos x$).

Proposition 3.26. For all $z \in \mathbb{C}$,

$$\sinh^2 z - \cosh^2 z = 1. \tag{20}$$

Proposition 3.27. For all $z \in CC$.

$$\cosh(-z) = \cosh(z), \qquad \sinh(-z) = -\sinh(z). \quad (21)$$

Proposition 3.28. For all $z, w \in \mathbb{C}$,

 $\cosh(z \pm w) = \cosh z \cosh w \pm \sinh z \sinh w, \qquad \sinh(z \pm w)$ (22)

Proposition 3.29. For all $z \in \mathbb{C}$,

$$\cosh z = \cos(iz), \cos z = \cosh(iz) \qquad \sinh z = -i\sin(iz), \sin z = -i$$
(23)

Proposition 3.30. The roots of the function $\sinh z$ are of the form $z_n = n\pi$ and those for the function $\cosh z$ are of the form $w_n = (2n+1)\pi/2i$.

Proposition 3.31. Given $z \in \mathbb{C}$ we can define $\ln z$ from the natural logarithm of a real number as

$$\ln z = \ln|z| + i\arg z = \ln|z| + i\operatorname{Arg}z + 2\pi ki. \tag{24}$$

Proposition 3.32. Let $z, w \in \mathbb{C}$ two numbers. Then,

- 1. $\ln(zw) = \ln z + \ln w + 2\pi ki, k \in \mathbb{Z}$.
- 2. If we want to stay in the principal argument,

$$\ln(zw) = \begin{cases} \ln z + \ln w, & \text{if } \operatorname{Arg} z + \operatorname{Arg} w < 2\pi \\ \ln z + \ln w - 2\pi i, & \text{if } \operatorname{Arg} z + \operatorname{Arg} w \ge 2\pi \end{cases}$$
(25)

3. SEARCH MORE PROPERTIES

Proposition 3.33. If $a = \alpha + \beta i$ and $z = re^{\theta i}$, then

$$z^{a} = e^{\alpha \ln r - \beta(\theta + 2\pi k)} e^{\beta \ln r + \alpha(\theta + 2\pi k)}, \qquad (26)$$
$$|z^{a}| = e^{\alpha \ln |z| - \beta(\arg z + 2\pi k)}, \qquad \arg(z^{a}) = \beta \ln |z| + \alpha(\arg z + 2\pi k)$$

Proposition 3.34. Let $z, w \in \mathbb{C}$. Then,

1.
$$(e^b)^a = e^{a(b+2\pi ki)}$$

4 Derivatives

Definition 4.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in \mathbb{C}$ a point. We define the *derivative of* f at z_0 as

$$f'(z_0) := \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}$$
(28)

Proposition 4.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a function and $z_0 \in CC$ a point. If f is derivable at z_0 , then it is continuous at z_0 .

Theorem 4.2. Let $f, g : \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be two functions and $z_0 \in \Omega$ a point. Then, the following statements are true.

- 1. If f is constant at Ω , then f is derivable at z_0 and $f'(z_0) = 0$.
- 2. If f(z) = z in every point of Ω , then f is derivable at z_0 and $f'(z_0) = 1$.
- 3. If f,g are derivable at z_0 and $\alpha,\beta \in \mathbb{C}$, then $\sinh(z\pm w)=\sinh(z\log \sinh w \cdot \text{theodoluble} \cdot \text{who and } (\alpha f+\beta g)'(z_0)=$ $(22) \qquad \alpha f'(z_0)+\beta g'(z_0).$

4. If f, g are derivable at z_0 , then fg is derivable at z_0 and

$$(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0).$$
 (29)

5. If f, g are derivable at z_0 and $g(z_0) \neq 0$, then f/g is derivable at z_0 and

$$\left(\frac{f}{g}\right)'(z_0) = \frac{f'(z_0)g(z_0) - f(z_0)g'(z_0)}{g(z_0)^2}.$$
 (30)

Theorem 4.3. Let $f: \Omega_1 \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be a derivable function at a point $z_0 \in \mathbb{C}$ and $g: \Omega_2 \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be another derivable function at a point $f(z_0) \in \Omega_2$. Then, $g \circ f$ is derivable at z_0 and

$$(g \circ f)'(z_0) = g'(f(z_0))f'(z_0). \tag{31}$$

Theorem 4.4. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ a function of class $C^1(\Omega)$ with Ω an open set, injective, and derivable at every point of Ω with non-zero derivative. Then,

- 1. $\Omega' = f(\Omega)$ is an open subset of \mathbb{C} .
- 2. The inverse function f^{-1} exist, it is well defined and it is derivable at Ω' .
- 3. If $z \in \Omega$ and z' = f(z), then

$$(f^{-1})'(z') = \frac{1}{f'(z)}.$$
 (32)

Proposition 4.5. A determination of $\ln z$ with $z \in \mathbb{C}$ is continuous except in a semiline.

Theorem 4.6. Let $\Omega \subseteq \mathbb{C}$ be an open set and $\phi \in C(\Omega)$, such that $e^{\phi(z)} = z$ for all $z \in \Omega$. Then, we have $\phi \in H(\Omega)$ and

$$\phi'(z) = \frac{1}{z}, \forall z \in \Omega. \tag{33}$$

Proposition 4.7. A determination of $\ln z$ with $z \in \mathbb{C}$ is holomorphic except in a semiline.

Proposition 4.8. Let $I = [\theta, \theta + 2\pi)$ a determination of the logarithm, $\ln_I z$. Then, $\ln_I z$ is holomorphic except in the semiline $L_\theta = \{re^{\theta i} \in \mathbb{C} \mid r \geq 0\}$.

Theorem 4.9. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be an analytic function in Ω . Then, f is holomorphic in Ω . In particular, given a point $z_0 \in \mathbb{C}$, $f'(z_0) = a_1$ where a_1 is the first coefficient of the power series that represents f in a neighborhood of z_0 .

Proposition 4.10. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ a function of class $C^1(\Omega)$. Then, for all $z_0 \in \Omega$

$$f(z_0 + h) = f(z_0) + \left(\frac{\partial f}{\partial z}\right)_{z_0} h + \left(\frac{\partial f}{\partial \bar{z}}\right)_{z_0} \bar{h} + o(|h|^2).$$
(34)

5 Line integrals

Definition 5.1. Let $I = [a, b] \subseteq \mathbb{R}$ be a closed interval. We define a *curve* as an application of the form

$$\gamma: I \longrightarrow \mathbb{C}
t \longmapsto \gamma_1(t) + i\gamma_2(t)$$
(35)

Theorem 5.1. Let $f: \Omega \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ be an holomorphic function of class $C^1(\Omega)$ with Ω an open set and $\phi: I \longrightarrow \Omega$ a basic curve. Then, $\psi = f \circ \phi$ is a basic curve (hence a derivable curve) and its real derivative is

$$\psi'(t) = f'(\phi(t))\phi'(t). \tag{36}$$

6 Fourier transform

Definition 6.1. Let $f \in L^1(\mathbb{R})$ be a function and $\xi \in \mathbb{R}$ a number. We define the Fourier transform of f at the point ξ as

$$\hat{f}(\xi) := \int_{\mathbb{D}} f(x) e^{-i\xi x} dx.$$
 (37)

Proposition 6.1. Let $f \in L^1(\mathbb{R})$ be a function. Then, the application

$$\mathscr{F}{f}: \mathbb{R} \longrightarrow \mathbb{C}$$

$$\xi \longmapsto \hat{f}(\xi) \tag{38}$$

is a well defined application.

Theorem 6.2. Let $f \in L^1(\mathbb{R})$ be a function. Then, the following statements are true.

1. The Fourier transform of f satisfies

$$\mathscr{F}{f} \in L^{\infty}(\mathbb{R}), \qquad \|\mathscr{F}{f}\|_{\infty} \le \frac{1}{\sqrt{2\pi}} \|f\|_{1}. \tag{39}$$

2. $\mathscr{F}{f}$ is \mathbb{C} linear, that is, for all $\alpha, \beta \in \mathbb{C}$ and $f, g \in L^1(\mathbb{R})$,

$$\mathscr{F}\{\alpha f + \beta q\} = \alpha \mathscr{F}\{f\} + \beta \mathscr{F}\{q\}. \tag{40}$$

3. For all $\xi \in \mathbb{R}$,

$$\hat{\bar{f}}(\xi) = \overline{\hat{f}(-\xi)}.\tag{41}$$

4. For all $\xi \ni \mathbb{R}$,

$$\hat{f}(\lambda \xi) = \frac{1}{\lambda} \hat{f}\left(\frac{\xi}{\lambda}\right). \tag{42}$$

5. For all $a \in \mathbb{R}$,

$$\hat{f}(\xi - a) = e^{-ia\xi} \hat{f}(\xi). \tag{43}$$

- 6. If $\{f_n\}_{n\in\mathbb{N}}\subseteq L^1(\mathbb{R}), f\in L^1(\mathbb{R}) \text{ and } f_n\to f$ in $L^1(\mathbb{R})$ when $n\to\infty$, then $\mathscr{F}\{f_n\}\to\mathscr{F}\{f\}$ uniformly in \mathbb{R} .
- 7. The Fourier transform $\mathscr{F}\{f\}$ is a continuous function in \mathbb{R} , $\mathscr{F}\{f\} \in C(\mathbb{R})$.

such that there exists its derivative $f' \in L^1(\mathbb{R})$ and $\lim_{|x|\to\infty} |f(x)| = 0$. Then,

$$\hat{f}'(\xi) = i\xi \hat{f}(\xi). \tag{44}$$

Theorem 6.4. Let $f \in L^1(\mathbb{R})$ be a function. Then, there exists a sequence of functions $\phi \in \mathcal{D}(\mathbb{R})$ such that

$$\lim_{h \to \infty} \int_{\mathbb{T}} |f - \phi_n| \, \mathrm{d}x = 0, \tag{45}$$

that is, we have convergence of ϕ_n to f with norm $\|\cdot\|_1$.

Proposition 6.5. Let $f \in L^1(\mathbb{R})$ be a function. Then, $\hat{f} \in C(\mathbb{R}).$

Proposition 6.6. Let $f \in L^1(\mathbb{R})$ be a function. Then, $\left| f(\xi) \right| \le \|f\|_1.$

Theorem 6.7. Let $f \in L^1(\mathbb{R})$ be a function. Then,

$$\lim_{|x| \to \infty} \hat{f}(x) = 0. \tag{46}$$

Theorem 6.8. The application Fourier transform goes from $L^1(\mathbb{R})$ to $C_0(\mathbb{R})$, that is, $\mathscr{F}\{f\}: L^1(\mathbb{R}) \longrightarrow$ $C_0(\mathbb{R})$.

Proposition 6.9. Let $f, g \in S(\mathbb{R})$ be two functions, $\lambda \in \mathbb{C}$ a number, and $P : \mathbb{R} \longrightarrow \mathbb{C}$ a polynomial of complex coefficients. Then,

- 1. $f + g \in S(\mathbb{R})$.
- 2. $\lambda f \in S(\mathbb{R})$.
- 3. $fg \in S(\mathbb{R})$.
- 4. $Pf \in S(\mathbb{R})$.

Theorem 6.10. Let $I, J \subseteq \mathbb{R}$ be two intervals with Icompact and J open. Let $f: I \times J \longrightarrow \mathbb{R}$ be a function such that

- 1. $f(\cdot, \lambda)$ is Riemann-integrable in I for all $\lambda \in J$,
- 2. $f(x,\cdot)$ is derivable in J for all $x \in I$.

If $\partial_{\lambda} f$ is continuous in $I \times J$, then

- 1. $\partial_{\lambda} f(\cdot, \lambda)$ is Riemann-integrable for all $\lambda \in J$.
- 2. $F(\lambda) = \int f(x,\lambda) dx$ is derivable with continuous derivative in J for all $\lambda \in J$ and it satisfies the rule of derivation over the integral sign.

$$F'(\lambda) = \frac{\mathrm{d}}{\mathrm{d}\lambda} \int_{I} f(x,\lambda_0) \, \mathrm{d}x = \int_{I} \frac{\partial f}{\partial \lambda}(x,\lambda_0) \, \mathrm{d}x \,, \forall \lambda_0 \in \underset{Then \ \widehat{f*g} = \sqrt{2\pi} \widehat{f}\widehat{g}.$$

Proposition 6.11. Let $f \in S(\mathbb{R})$. Then,

- 1. $S(\mathbb{R}) \subset L^1(\mathbb{R})$.
- 2. $\widehat{xf}(\xi) = (iD_{\varepsilon}\widehat{f})(\xi)$ for all $\xi \in \mathbb{R}$.

Proposition 6.3. Let $f \in L^1(\mathbb{R})$ be a function **Proposition 6.12.** The Fourier transform \mathscr{F} restricted to $S(\mathbb{R})$ is an automorphism, that is, if $f \in$ $S(\mathbb{R})$ then $\mathscr{F}\{f\} = \hat{f} \in S(\mathbb{R})$.

> **Lemma 6.13.** If $G(x) = e^{-x^2/2}$, then $\hat{G}(\xi) = e^{-\xi^2/2}$. We observe hence that G is a fixed point of \mathscr{F} .

Lemma 6.14. If $f, g \in S(\mathbb{R})$, then

$$\int_{\mathbb{T}_0} f(\xi)\hat{g}(\xi) \,d\xi = \int_{\mathbb{T}_0} \hat{f}(\tau)g(\tau) \,d\tau.$$
 (48)

Lemma 6.15. Let $f, g \in S(\mathbb{R})$ and $\lambda \in \mathbb{R}$. Then,

- 1. $q(\lambda x)\hat{f}(x)$ converges to $q(0)\hat{f}(x)$ uniformly in \mathbb{R}
- 2. $f(\lambda x)\hat{g}(x)$ converges to $f(0)\hat{g}(x)$ uniformly in \mathbb{R} when $\lambda \to \infty$.

Lemma 6.16. Let $f, g \in s(\mathbb{R})$. Then,

$$f(0) \int_{\mathbb{R}} \hat{g}(\xi) \,d\xi = g(0) \int_{\mathbb{R}} \hat{f}(\xi) \,d\xi.$$
 (49)

Lemma 6.17. Let $f \in s(\mathbb{R})$ be a function. Then,

$$f(0) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{D}} \hat{f}(\xi) \,d\xi.$$
 (50)

Theorem 6.18 (Inversion of \mathscr{F} in $S(\mathbb{R})$). Let \mathscr{F} : $S(\mathbb{R}) \longrightarrow S(\mathbb{R}), \text{ defined by } \mathscr{F}\{f\} = \hat{f} \text{ with } \hat{f} \in S(\mathbb{R}).$ Then, F is an linear isomorphism in the vector space $S(\mathbb{R})$ and $\mathscr{F}^4 = Id$. In particular, $\mathscr{F}^{-1} = \mathscr{F}^3$ and if $f \in S(\mathbb{R})$, then

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \mathscr{F}\{f\}(\xi) e^{ix\xi} d\xi = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f} e^{ix\xi} d\xi.$$
(51)

In fact, F is an homemorphism (its inverse is continuous) if we consider $S(\mathbb{R})$ as the metric space $(S(\mathbb{R}), \|\cdot\|_{n,m}).$

Theorem 6.19 (Tonelli's Theorem). Let $f: I \times J \longrightarrow$ \mathbb{R}^2 two functions with $I, J \subseteq \mathbb{R}$ such that $f(x, y) \geq 0$ for all $(x, y) \in I \times J$. Then,

$$\int_{I \times J} f \, \mathrm{d}x \, \mathrm{d}y = \int_{I} \int_{J} f(x, y) \, \mathrm{d}y \, \mathrm{d}x = \int_{J} \int_{I} f(x, y) \, \mathrm{d}x \, \mathrm{d}y.$$
(52)

Besides, if these integrals are finite, then $f \in L^1(\mathbb{R})$.

Theorem 6.21. Let $f \in L^p(\mathbb{R}), 1 \leq p \leq +\infty$ and $\phi \in S(\mathbb{R})$. Then, $f * \phi \in C^{\infty}(\mathbb{R})$.

Theorem 6.22. Let $f \in L^p(\mathbb{R}), 1 \leq p < +\infty$ with supp f compact and $\phi \in D(\mathbb{R})$. Then, $f * \phi \in D(\mathbb{R})$ and supp $\{f * \phi\} \subseteq \text{supp } f + \text{supp } \phi$.

Theorem 6.23. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous function with compact support $\{\phi_{\epsilon}\}$ approximation of the unity. Then, when $\epsilon \to 0$ $f * \phi_{\epsilon}$ converges uniformly in \mathbb{R} to f.

Theorem 6.24 (Weierstrass polynomial approximation). Let $f:[a,b] \to \mathbb{R}$ be a continuous function. Then, there exist polynomials P_n with $n \in \mathbb{N}$ such that P_n converge uniformly to f in [a,b].

Theorem 6.25. Let $f \in L^p(\mathbb{R})$ be a function. Then, there exists a sequence of function $f_n \in D(\mathbb{R})$ of the form $f_n \to f$ with norm $\|\cdot\|_p$ (that is, convergence in L^p), and if $f \in C^k(\mathbb{R})$ with $k \geq 0$, then

$$\lim_{n \to \infty} ||f_n - f||_{C^k(\mathbb{R})} = 0, \tag{53}$$

with $||f||_{C^k(\mathbb{R})} = \max_{0 \le l \le k} \left(\sup_{x \in \mathbb{R}} \left| D^l f(x) \right| \right)$ being a norm.

Lemma 6.26. Let $f \in L^1(\mathbb{R})$ be a function such that for all $\phi \in S(\mathbb{R})$ it is satisfied that $\int_{\mathbb{R}} f(x)\phi(x) dx = 0$. Then, $f \equiv 0$.

Theorem 6.27 (Inversion theorem in $L^1(\mathbb{R})$). Let $f \in L^1(\mathbb{R})$ be a function such that $\hat{f} \in L^1(\mathbb{R})$. Then,

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(\xi) e^{ix\xi} d\xi, \forall x \in \mathbb{R}.$$
 (54)