utad

Inteligência Artificial

Sistemas Baseados em Regras

Paulo Moura Oliveira

Departamento de Engenharias Gabinete F2.15, ECT-1

UTAD

email: <u>oliveira@utad.pt</u>

Preâmbulo

Nota Preliminar:

 Estes diapositivos enquadram-se na componente de Representação do Conhecimento e Raciocínio (Knowledge Representation and Reasoning), no contexto da Inteligência Artificial e dos Sistemas Inteligentes.

O que são Sistemas Baseados em Regras?

Sistemas Baseados em Regras (*Ruled Based Systems -* RBS) são muitas vezes conhecidos também como **Sistemas Baseados no Conhecimento** (*Knowledge Based Systems - KBS*).

✓ Em que consiste a construção de um RBS?

utad

O que é a Extração do Conhecimento?

Chama-se **Extração de Conhecimento** ao processo de adquirir conhecimento dos humanos e introduzi-lo nos sistemas ou máquinas

✓ A extração do conhecimento pode ser uma tarefa complicada. Aos especialistas nesta área chamam-se:

Porque é complicado extrair conhecimento?

Engenheiros do Conhecimento (Knowledge Engineers)

De uma forma geral o conhecimento dos peritos não é <u>explícito</u> mas sim <u>implícito</u>, ou seja a pessoa simplesmente sabe fazer uma determinada coisa.

Conhecimento Implícito

Conhecimento Explícito
para que possa ser armazenado e
manipulado num computador

O que é um Sistema Pericial (Expert System)?

✓ A extração e representação de conhecimento é fundamental para os chamados Sistemas Periciais (Expert Systems) :

Mas o que é um *Expert System*?

Uma tentativa de resposta <u>simples</u> a esta questão é a seguinte:

Sistema Pericial (Expert System) – é um sistema computacional capaz de emular peritos humanos, ou seja, capaz de: resolver problemas, de aprender e de tomar decisões.

Medicina

- Direito
- Meteorologia
- Processamento de Imagem
- Agricultura
- Engenharia (Controlo, Energia,...)

O que é um Sistema Pericial (Expert System)?

Dependendo da área de aplicação e do propósito dos sistemas periciais, estes podem ser construídos para:

✓ Os sistemas baseados em regras baseiam muitos sistemas periciais.

✓ Em que consiste a **utilização de** um RBS?

A Base de Conhecimento

A base de conhecimento de um SBR consiste em *factos* e *regras*.

Específicos do problema a que vão ser aplicados.

T(p)=VERDADEIRO

- A esta especificidade chama-se <u>domínio</u> do problema.
- A reivindicação de que alguma coisa é falsa ou verdadeira é chamada proposição, ou predicado, quando estão envolvidos variáveis.

Exemplo de um predicado: $o \ aquecedor \ \acute{e} \ ligado \ para \ ON \ \acute{e} \ VERDADEIRO$ $Cl\acute{a}usula \equiv p$

A Base de Conhecimento

- Os factos e as regras podem ser divididos em dois grupos:
 - Conhecimento Profundo relaciona-se com princípios básicos que se assumem <u>que não vão mudar</u>, como por exemplo as leis da física.
 - Conhecimento Superficial diz respeito a heurísticas que se sabem funcionar por experiência em problemas similares, mas que podem ser alteradas.

O tipo de regras que se mantêm na base de conhecimento tomam geralmente a forma de **regras If-Then**, e são chamadas **regras de produção**.

A Base de Conhecimento

Exemplo de regra geral:

```
If (alguma coisa é VERDADEIRA)
Then (outra coisa é VERDADEIRA)
```

Exemplo de regra com ação:

```
If (alguma coisa é VERDADEIRA)
Then (executar uma ação)
If T(frio)
Then T(aquecimento ON)
```

Definição do termo frio:

```
T(frio) = VERDADEIRO se a temperatura dum sensor é menor que 10°C
= FALSO se a temperatura dum sensor é maior ou igual a 10°C
```


A Base de Conhecimento

Antecedente da regra:

Contém uma <u>condição</u> que tem de ser satisfeita. Consequente da regra:

Contém a consequência do antecedente ser VERDADEIRO

Motor de Inferência

Num sistema CBR, uma regra:

- diz-se engatilhada (triggered) se o seu antecedente é VERDADEIRO.
- diz-se disparada se foi utilizada.

se não foi disparada diz-se que **falhou**, (antecedente falso ou não

selecionada.

Como decidir qual das regras engatilhadas se dispara? O **Motor de Inferência** controla quais as regras a disparar, podendo faze-lo usando várias formas, tais como:

- Encadeamento para a frente
 - Forward Chaining -
- Encadeamento para trás
 - Backward Chaining -

Encadeamento para a frente (Forward Chaining) – Data Driven

➤ No encadeamento para a frente (progressiva) o motor de inferência funciona por ciclos.

Em cada ciclo:

- 1. os factos na memória de trabalho são atualizados a partir da informação introduzida/deduzida desde o último ciclo
- 2. as **regras são examinadas** e todas as regras cujos antecedentes são satisfeitos **são engatilhadas.**

Ao conjunto de regras engatilhadas chama-se conjunto de conflito.

 O conflito tem de ser resolvido de forma a que só uma regra seja disparada (nesse ciclo).

Encadeamento para a frente (Forward Chaining) – <u>Data Driven</u>

O raciocínio começa a partir dos dados disponíveis (guiado por dados) e a memória de trabalho (working memory) é comparada com a parte esquerda (antecedente) das regras.

Encadeamento para a frente (Forward Chaining)

☐ Exemplo: Sistema de Segurança [1]

Base de dados das Regras

#		
	<i>If</i>	T(imagem contém uma cara)
	and	T(cara reconhecida)
R1	Then	T(abrir porta)
	and	~T(imagem contém uma cara)
	and	~T(cara reconhecida)
	I f	T(imagem contém uma cara)
$ _{R2}$	and	~T(cara reconhecida)
KZ	Then	T(alertar guarda)
	and	~T(imagem contém uma cara)
	If	~T(imagem contém uma cara)
R3	Then	~T(abrir porta)
	and	~T(alertar guarda)

Base de dados dos Factos:

#	
F1	~T(imagem contém uma cara)
F2	~T(cara reconhecida)
F3	~T(abrir porta)
F4	~T(alertar guarda)

 Inicialmente, quando o sistema arranca, só a regra 3 está engatilhada.

Encadeamento para a Frente (Forward Chaining)

- ☐ Exemplo: Sistema de Segurança (cont.) [1]
 - Suponha que um visitante chega à porta, o sistema muda a base de factos para passar a conter $T(imagem\ contém\ uma\ cara)$, mas o teste de reconhecimento facial falha e o predicado $\sim T(cara\ reconhecida)$ mantém-se inalterado na base dos factos.

Base de dados dos Factos:

#	
F1	T(imagem contém uma cara)
F2	~T(cara reconhecida)
F3	~T(abrir porta)
F4	~T(alertar guarda)

Encadeamento para a Frente (Forward Chaining)

- ☐ Exemplo: Sistema de Segurança (cont.) [1]
 - Suponha que um visitante chega à porta, o sistema muda a base de factos para passar a conter $T(imagem\ contém\ uma\ cara)$, mas o teste de reconhecimento facial falha e o predicado $\sim T(cara\ reconhecida)$ mantém-se inalterado na base dos factos.

Regra 1

O 1º antecedente da regra 1 é verificado, mas o 2º não.

<u>Regra 2</u>

Ambos antecedentes da regra são verificados e a regra é engatilhada.

Regra 3

O antecedente da regra não é verificado.

#		
R1	If and Then and	T(imagem contém uma cara) T(cara reconhecida) T(abrir porta) ~T(imagem contém uma cara)
R2	and If and Then and	~T(cara reconhecida) T(imagem contém uma cara) ~T(cara reconhecida) T(alertar guarda) ~T(imagem contém uma cara)
R3	If Then and	~T(imagem contém uma cara) ~T(abrir porta) ~T(alertar guarda)

Encadeamento para a Frente (Forward Chaining)

☐ Exemplo: Sistema de Segurança (cont.) [1]

Ciclo	Memória	Conjunto Conflito	Regra Disparada
1	T(imagem contém uma cara); ~T(cara reconhecida)	R2	R2
2			
3			

Encadeamento para a frente (Forward Chaining)

- ☐ Exemplo: Sistema de Segurança (cont.) [1]
 - Como a única regra engatilhada é a 2^a , esta é disparada e o predicado $\sim T($ alertar guarda) é alterado para T(alertar guarda) na base de factos.

#		
R2	If and Then and	T(imagem contém uma cara) ~T(cara reconhecida) T(alertar guarda) ~T(imagem contém uma cara)

#	
F1	~T(imagem contém uma cara)
F2	~T(cara reconhecida)
F3	~T(abrir porta)
F4	T(alertar guarda)

- A regra 2 faz o *reset* de *T*(*imagem contém cara*) para ~*T*(*imagem contém cara*) de forma a impedir o seu disparo indefinidamente.
- O sistema de visão vai alterar o facto novamente para *T(imagem contém cara)* até que o visitante seja admitido por intervenção manual ou se vá embora.

Resolução de Conflitos

✓ No caso da existência de um conflito, ou seja mais do que uma regra engatilhada num ciclo é necessário utilizar uma estratégia de resolução de conflitos. Apresentam-se de seguida algumas das mais utilizadas:

Primeira a chegar, primeira a ser atendida (First-come, first-served)

A primeira regra que se determine ter o antecedente satisfeito é disparada.

Ordenação por Antiguidade

A regra que tiver sido disparada há mais tempo é disparada.

Dar prioridades às regras

As regras são ordenadas por prioridades de forma a que a de prioridade mais elevada (decidido pelo projetista) fique em primeiro lugar.

e.g. Especificidade: Regra com maior número de condições deve ter prioridade.

Resolução de Conflitos

Dar prioridades aos dados

Os dados ou factos são ordenados por prioridades. A regra que utilize o facto com maior prioridade é disparada.

Ordenação por Especificidade

A regra mais específica (com mais factos verificados) é disparada.

.... etc.

Encadeamento para a frente (Forward Chaining)

- ☐ Exemplo: Previsão do Tempo [2]
 - Considere um sistema simplificado para prever o tempo (a partir de um barómetro) baseado no seguinte conjunto de regras e de factos. Pretende-se aplicar ao encadeamento para a frente.

#	
R1	If T(ciclone) Then T(nuvens)
R2	If T(anticiclone) Then T(céu limpo)
R3	If T(pressão baixa) Then T(ciclone)
R4	If T(pressão alta) Then T(anticiclone)
R5	If T(seta para baixo) Then T(pressão baixa)
R6	If T(seta para cima) Then T(pressão alta)

#	
F1	T(seta para cima)

Encadeamento para a frente (Forward Chaining)

☐ Exemplo: Previsão do Tempo (cont.) [2]

Ciclo	Memória Trabalho	Conjunto Conflito	Regra Disparada
1	T(seta para cima)	R6	R6
2	T(seta para cima); T(pressão alta)	R6, R4	R4
3	T(seta para cima); T(pressão alta); T(anticiclone)	R6, R4,R2	R2
4	T(seta para cima); T(pressão alta); T(anticiclone); T(céu limpo)	R6, R4,R2	Paragem

Encadeamento para trás (Backward Chaining) – Goal Driven

➤ Na cadeia para trás (regressiva), parte-se do objetivo (goal) retrocedendo para verificar como este pode ser atingido. Este processo chama-se raciocínio a partir de objetivos.

O raciocínio começa a partir do estado objetivo (guiado por objetivos) e a memória de trabalho (working memory) é comparada com a parte direita das regras (consequente).

Encadeamento para trás (Backward Chaining) – Goal Driven

- ☐ Exemplo: Previsão do Tempo [2]
 - Considere um sistema simplificado para prever o tempo (a partir de um barómetro) baseado no seguinte conjunto de regras e de factos. Pretende-se aplicar ao encadeamento para trás.

#	
R1	If T(ciclone) Then T(nuvens)
R2	If T(anticiclone) Then T(céu limpo)
R3	If T(pressão baixa) Then T(ciclone)
R4	If T(pressão alta) Then T(anticiclone)
R5	If T(seta para baixo) Then T(pressão baixa)
R6	If T(seta para cima) Then T(pressão alta)

#	
F1	T(céu limpo)

Encadeamento para trás (Backward Chaining) – Goal Driven

☐ Exemplo: Previsão do Tempo [2]

Ciclo	Memória Trabalho	Conjunto Conflito	Regra Disparada
1	T(céu limpo)	R2	R2
2	T(céu limpo); T(anticiclone)	R2,R4	R4
3	T(céu limpo); T(anticiclone); T(pressão alta)	R2,R4,R6	R6
4	T(céu limpo); T(anticiclone); T(pressão alta); T(seta para cima)	R2,R4,R6	Paragem

Exemplo: Classificação de animais

• Considere um sistema simplificado classificar animais baseado no seguinte conjunto de regras e de factos. Pretende-se aplicar ao encadeamento: i) para a frente e ii) para trás.

#	
R1	If T(animal tem penas) Then T(animal é um pássaro)
R2	If T(animal voa) and T (animal põe ovos) Then T(animal é um pássaro)
R3	If T(animal é um pássaro) and T (animal é voador exímio) Then T(animal é um albatroz)

#	
F1	T(animal voa)
F2	T(animal tem penas)
F3	T(animal é voador exímio)

Exemplo: Classificação de animais

• Considere um sistema simplificado classificar animais baseado no seguinte conjunto de regras e de factos. Pretende-se aplicar ao encadeamento: i) para a frente e ii) para trás.

i)

Ciclo	Memória Trabalho	Conjunto Conflito	Regra Disparada
1	T(animal voa); T(animal tem penas); T(animal é voador exímio);	<i>R1</i>	R1
2	T(animal voa); T(animal tem penas); T(animal é voador exímio); T(animal é um pássaro)	R1,R3	R3
3	T(animal voa); T(animal tem penas); T(animal é voador exímio); T(animal é um pássaro); T(animal é um albatroz)	R1,R3	Paragem

Exemplo: Classificação de animais

ii) O Animal é um Albatroz

Ciclo	Memória Trabalho	Conjunto Conflito	Regra Disparada
1	T(animal é um albatroz)	<i>R3</i>	<i>R3</i>
2	T(animal é um albatroz); T(animal é um pássaro); T(animal é voador exímio);	R3,R1	<i>R1</i>
3	T(animal é um albatroz); T(animal é um pássaro); T(animal é voador exímio); T(animal tem penas)	R3,R1,R2	R2
4	T(animal é um albatroz); T(animal é um pássaro); T(animal é voador exímio); T(animal tem penas); T(animal põe ovos)	R3,R1,R2	Paragem