MAT - 1. a 2. opravný termín 2011/2012

created by Hadza [tpc, Vagabund, SimenEw a spol.] v1.1

1. opravný termín 2011/2012, Skupina D

Příklad 1 (10b). Buď S symetrická grupa na množině $R-\{0,1\}$, tj. grupa všech permutací na množině $R-\{0,1\}$ s operací skládání. Určete podgrupu grupy S generovanou permutací $\{f_1,f_2\}$, kde $f_1(x)=\frac{x}{x-1}$, $f_2(x)=\frac{x-1}{x}$.

Řešení

Generování množiny permutací $\langle \{f_1, f_2\} \rangle$ z permutací f_1, f_2 nad operací \circ se systematicky provede postupným vyplňováním Caleyho tabulky. Pokud se při vyplňování tabulky vypočte nová permutace f_n , je tabulka rozšířena o tuto permutaci a dopočteny příslušné buňky.

0	f_1	f_2	f_3	f_4	f_5	f_6
f_1	f_3	f_5	f_1	f_6	f_2	f_4
f_2	f_4	f_6	f_2	f_5	f_1	f_3
f_3	f_1	f_2	f_3	f_4	f_5	f_6
f_4	f_2	f_1	f_4	f_3	f_6	f_5
f_5	f_6	f_4	f_5	f_2	f_3	f_1
f_6	f_5	f_3	f_6	f_1	f_4	f_2

postupný výpočet tabulky:

$$f_1 \circ f_1 = f_1(f_1(x)) = x$$
 ... je nová permutace, takže $f_3 = x$. $f_2 \circ f_1 = f_2(f_1(x)) = \frac{1}{x}$... je nová permutace, takže $f_4 = \frac{1}{x}$. :

pozn. jelikož operace o není komutativní $f \circ g \neq g \circ f$, je nutné poctivě vypočítat vždy obě varianty $f_2 \circ f_1$ i $f_1 \circ f_2$.

Po vypočtení tabulky jsme dostali 6 permutací, které tvoří podgrupu generovanou permutacemi f_1, f_2 :

$$f_1(x) = \frac{x}{x-1}$$

$$f_2(x) = \frac{x-1}{x}$$

$$f_3(x) = x \text{ (je neutrálním prvkem)}$$

$$f_4(x) = \frac{1}{x}$$

$$f_5(x) = 1 - x$$

$$f_6(x) = \frac{-1}{x-1}$$

Výsledek $\langle \{f_1, f_2\} \rangle = \{f_1, f_2, f_3, f_4, f_5, f_6\}.$

Příklad 2 (15b). Najděte všechny rozklady množiny $M = \{x, y, z\}$ takové, že jim odpovídající ekvivalence jsou kongruence na algebře $A = (\{x, y, z\}, f)$, kde f(x) = y, f(y) = f(z) = z.

Řešení

1. Relace odpovídající kongruencím na algebře A, kde kongruence: $a, b \in M, (a, b) \in R \Rightarrow (f(a), f(b)) \in R$.

$$R_{1} = \{(x, x), (y, y), (z, z), (y, z), (z, y)\}$$

$$R_{2} = \{(x, x), (y, y), (z, z)\}$$

$$R_{3} = \{(x, x), (y, y), (z, z), (x, y), (y, x), (x, z), (z, x), (y, z), (z, y)\} = M \times M$$

2. Nalezení rozkladů množiny M indukované relacemi R, M/R.

$$M/R_1 = \{\{x\}, \{y, z\}\}\$$

$$M/R_2 = \{\{x\}, \{y\}, \{z\}\}\}$$

$$M/R_3 = \{\{x, y, z\}\}$$

Výsledkem jsou tedy tři rozklady množiny M.

Příklad 3 (15b). V Euklidovském prostoru R^4 nalezněte ortonormální bázi podprostoru W generovaného vektory $u_1 := (1, 1, 1, 1), u_2 := (1, 1, 1, -1), u_3 := (1, -1, -1, 1), u_4 := (-1, 1, 1, 1).$

Řešení

1. Nejpřímočařejším postupem je napsat si vektory jako řádky matice a provést Gaussovu eliminaci. Nenulové řádky pak tvoří bázi (el. transformace nemění lineární obal).

$$B_1=\{(1,1,1,1),(0,1,1,1),(0,0,0,1)\}$$
není ortogonální, není ortonormání. $B_2=\{(1,0,0,0),(0,1,1,0),(0,0,0,1)\}$ je ortogonální, není ortonormální.

2. Provedení ortonormalizace, vstupem je báze (tvořena linearně nezávislými vektory), která bude převedena na ortonormální bázi.

Ortonormalizace např. pro B_2 :

$$\begin{split} f_1 &= (1,0,0,0), \ f_2 = (0,1,1,0), \ f_3 = (0,0,0,1) \\ \boldsymbol{\varphi_1} &= \frac{f_1}{|f_1|} = \frac{(1,0,0,0)}{\sqrt{1^2 + 0^2 + 0^2 + 0^2}} = \frac{(1,0,0,0)}{\sqrt{1^2}} = (1,0,0,0) \\ h_{21} &= (f_2,\varphi_1) = 0 \cdot 1 + 1 \cdot 0 + 1 \cdot 0 + 0 \cdot 0 = 0 \\ h_2 &= f_2 - h_{21} \cdot \varphi_1 = (0,1,1,0) - 0 \cdot (1,0,0,0) = (0,1,1,0) - (0,0,0,0) = (0,1,1,0) \\ \boldsymbol{\varphi_2} &= \frac{h_2}{|h_2|} = \frac{(0,1,1,0)}{\sqrt{0^2 + 1^2 + 1^2 + 0^2}} = \frac{(0,1,1,0)}{\sqrt{2}} = (0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0) \\ h_{31} &= (f_3,\varphi_1) = 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 0 \\ h_{32} &= (f_3,\varphi_2) = 0 \cdot 0 + 0 \cdot \frac{1}{\sqrt{2}} + 0 \cdot \frac{1}{\sqrt{2}} + 1 \cdot 0 = 0 \\ h_3 &= f_3 - h_{31} \cdot \varphi_1 - h_{32} \cdot \varphi_2 = (0,0,0,1) - 0 \cdot (1,0,0,0) - 0 \cdot (0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0) = (0,0,0,1) \\ \boldsymbol{\varphi_3} &= \frac{h_3}{|h_3|} = \frac{(0,0,0,1)}{\sqrt{(0^2 + 0^2 + 0^2 + 1^2)}} = \frac{(0,0,0,1)}{\sqrt{(1^2)}} = (0,0,0,1) \end{split}$$

Výsledná ortonormální báze je $B=\{(1,0,0,0),(0,\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}},0),(0,0,0,1)\}$, prostor W je 3-dimenzionální .

Příklad 4 (15b). Uvažujte jazyk L s rovností, jedním binárním predikátovým symbolem p a jedním funkčním symbolem f. Buď \mathcal{R} realizace jazyka L, jejímž univerzem je množina \mathbf{R} všech reálných čísel a v níž platí: $p_{\mathcal{R}}(a,b) \Leftrightarrow a \leq b, f_{\mathcal{R}}(a,b) = a+b$. Uvažujte teorii $T = \{p(f(x,y), f(y,z)) \Rightarrow (p(x,z)), p(x,f(y,x))\}$ a formuli $\varphi = p(x,f(x,y))$.

- 1) Rozhodněte, zda $\mathcal{R} \models T$, tj. zda \mathcal{R} je modelem teorie T. (10b)
- 2) Dokažte, že $T \models \varphi$, tj. že φ je důsledkem teorie T. (5b)

Řešení

1. Realizace \mathcal{R} je modelem teorie T, pokud každá formule ψ z T je pravdivá v realizaci \mathcal{R} ($\mathcal{R} \models \psi$).

vyšetření formule: p(x, f(y, x))

 $x \le y + x$

 $0 \le y$ tato formule neplatí pro y, která jsou menší jak nula, tudíž formule je nepravdivá v realizaci \mathcal{R} , tím pádem realizace \mathcal{R} není modelem teorie T.

2. Formule φ je důsledkem teorie T, pokud je formule φ pravdivá v každé realizaci \mathcal{R} , která je modelem teorie T.

. . .

Příklad 5 (10b). Dokažte zapsáním formálního důkazu (s použitím věty o dedukci), že platí: $A \to B, B \to C \vdash A \to C$

Řešení

- 1. axiom 1: $(B \to C) \to (A \to (B \to C))$
- 2. VD: $B \to C \vdash A \to (B \to C)$
- 3. axiom 2: $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 4. MP: $B \to C \vdash (A \to B) \to (A \to C)$
- 5. VD: $A \rightarrow B, B \rightarrow C \vdash (A \rightarrow C)$

Příklad 6 (15b). Jaký je nejmenší počet hran grafu se 7 uzly, jehož každý uzel má stupeň 2, 4 nebo 6 a každý z těchto stupňů je zastoupen? Nakreslete takový graf.

Řešení

$$2|H| = 2 + 4 + 6 + 4n$$

pro $n = 2 \Rightarrow |H| = 10$
Nejmenší počet hran grafu je 10.

2. opravný termín 2011/2012, Skupina A

Příklad 1 (15b). Dokažte, že platí $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \psi)$. Zvolte si dva předpoklady. Na předpoklad aplikujte axiom substituce a potom metodu odloučení. Stejný postup aplikujte na druhý předpoklad. Poté aplikujte metodu odloučení na předchozí výsledky, a poté použijte dvakrát větu o dedukci.

Řešení

- 1. předpoklad: $\forall x\varphi \vdash \forall x\varphi$
- 2. axiom subst.: $\vdash \forall x \varphi \rightarrow \varphi$
- 3. MP: $\forall x\varphi \vdash \varphi$
- 4. předpoklad: $\forall x(\varphi \to \psi) \vdash \forall x(\varphi \to \psi)$
- 5. axiom subst.: $\vdash \forall x(\varphi \to \psi) \to (\varphi \to \psi)$
- 6. MP: $\forall x(\varphi \to \psi) \vdash \varphi \to \psi$
- 7. MP 3,6: $\forall x(\varphi \to \psi), \forall x\varphi \vdash \psi$
- 8. VD: $\forall x(\varphi \to \psi \vdash \forall x\varphi \to \psi$
- 9. VD: $\vdash \forall x(\varphi \to \psi) \to (\forall x\varphi \to \psi)$

Příklad 2 (15b). Převeďte formule do prenexního tvaru a rozhodněte, zda jsou ekvivalentní. Formule jsou dvě následující: . . .

Řešení

. . .

Příklad 3 (15b). Je dán grupoid s tří prvkovou množinou a s jednou operací o, která splňuje zákon o krácení. Sestavte tabulku pro tuto operaci. Zároveň grupoid není grupou, ukažte, že neplatí asociativní zákon.

Řešení

0	A	В	С
A	A	С	В
В	В	A	С
С	С	В	A

asociativni zákon:
$$\forall x, y, z \in M : (x \circ y) \circ z = x \circ (y \circ z)$$

$$(A \circ B) \circ C = A \circ (B \circ C)$$

$$(C) \circ C = A \circ (C)$$

$$A = B$$

 $A \neq B \Rightarrow$ neplatí asoc. zákon pro operaci $\circ.$

Příklad 4 (10b). Je dána grupa (\mathbb{Z} , 1, 2, f), kde \mathbb{Z} je množina celých čísel, 1, 2 jsou konstanty a f je unární operace definována f(x) = 3x. Určete podgrupu < 6 > generovanou prvkem 6.

Řešení

$$<6>=<\{1,2,6\}>=\{1,2,3,6,9,18,27\dots\}=\{3^n,2\cdot 3^n|\ \mathrm{kde}\ n\in\mathbb{N}_0\}$$

pozn. \mathbb{N}_0 značí množinu přirozených čísel včetně nuly

Příklad 5 (15b). V obci Skorošice se koná amatérský fotbalový turnaj, kterého se účastní 9 týmů. V dopolední části turnaje každý tým odehrál 2 zápasy. Kolik zápasů v odpolední části musí každý tým odehrát, aby si zahráli co nejvíce zápasů, avšak celkový počet odehraných zápasů musí být menší jak 32.

Řešení

2|H|=9npro n=6rovnice platí $32>\frac{9\cdot 6}{2}$ Stupeň uzlu vyšel 6, tedy odpoledne každý tým odehraje 4 zápasy.