Problem Set #6

Danny Edgel Econ 709: Economic Statistics and Econometrics I Fall 2020

November 5, 2020

Collaborated with Sarah Bass, Emily Case, Michael Nattinger, and Alex Von Hafften

Question 1

Find $\mathbb{E}[\mathbb{E}[\mathbb{E}[Y|X_1,X_2,X_3]|X_1,X_2]|X_1]$

By the Law of Iterated Expectation,

$$\begin{split} \mathbb{E}[\mathbb{E}[\mathbb{E}[Y|X_1,X_2,X_3]|X_1,X_2]|X_1] &= \mathbb{E}[\mathbb{E}[Y|X_1,X_2]|X_1] \\ \mathbb{E}[\mathbb{E}[Y|X_1,X_2]|X_1] &= \mathbb{E}[Y|X_1] \end{split}$$

Thus, $\mathbb{E}[\mathbb{E}[Y|X_1, X_2, X_3]|X_1, X_2]|X_1] = \mathbb{E}[Y|X_1]$

Question 2

Prove that for any function h(x) such that $\mathbb{E}|h(X)e| < \infty$ then $\mathbb{E}[h(X)e] = 0$, where e = Y - m(X) and $m(X) = \mathbb{E}[Y|X]$

According to the conditioning theorem, if $\mathbb{E}|Y| < \infty$, then

$$\mathbb{E}[g(X)Y|X] = g(X)\,\mathbb{E}[Y|X]$$

Thus, Since $\mathbb{E}|h(X)e|<\infty$ trivially implies $\mathbb{E}|Y|<\infty$, we can use the Law of Iterated Expectation to solve:

$$\begin{split} \mathbb{E}[h(X)e] &= \mathbb{E}[h(X)Y - h(X)m(X)] = \mathbb{E}[h(X)Y] - \mathbb{E}[h(X)m(X)] \\ &= \mathbb{E}[\mathbb{E}[h(X)Y|X]] - \mathbb{E}[h(X)m(X)] = \mathbb{E}[h(X)\,\mathbb{E}[Y|X]] - \mathbb{E}[h(X)m(X)] \\ &= \mathbb{E}[h(X)m(X)] - \mathbb{E}[h(X)m(X)] = 0 \end{split}$$

 \therefore for any function h(x) such that $\mathbb{E}|h(X)e| < \infty$ then $\mathbb{E}[h(X)e] = 0$

Question 3

$$\mathbb{E}[Y|X] = \begin{cases} .4, & X = 0 \\ .3, & X = 1 \end{cases}$$

$$\mathbb{E}[Y^2|X] = \begin{cases} .4, & X = 0 \\ .3, & X = 1 \end{cases}$$

$$Var(Y|X) = \mathbb{E}[Y^2|X] - (\mathbb{E}[Y|X])^2 = \begin{cases} .24, & X = 0 \\ .21, & X = 1 \end{cases}$$

Question 4

Show that $\sigma^2(X)$ minimizes the mean-squared error and is thus the best predictor.

The variance of $\hat{\beta}_{OLS} = \mathbb{E}(Y|X)$ is

$$\sigma^{2}(X) = \mathbb{E}\left[\left(Y - h(X)\right)^{2}\right] = \sigma^{2}(X'X)^{-1}$$

Where $\sigma^2 = \mathbb{E}(\varepsilon|X)$ and h(X) is the predictor of Y, which, in this case, is E(Y|X). It is clear that minimizing the variance of $\hat{\beta}$ will also minimize mean-squared error. Thus, we can show that this minimizes mean-squared error among all linear unbiased estimators by comparing this variance to the variance of an arbitrary linear estimator, $\tilde{\beta} = a + Ay$. In order for $\tilde{\beta}$ to be unbiased, it must be the case that $\mathbb{E}(\tilde{\beta}) = \mathbb{E}(\tilde{\beta}|X) = \beta$. Thus,

$$\beta = \mathbb{E}(\tilde{\beta}|X) = \mathbb{E}(a + Ay|X) = a + A\,\mathbb{E}(y|x) = a + A\beta$$

This only holds if a=0, so $\tilde{\beta}=Ay$. Then, the variance of $\tilde{\beta}$ is:

$$\begin{split} \mathbb{E}(\tilde{\beta}|X) &= V(Ay|X) = AV(y|X)A' = \sigma^2 AA' \\ &= \sigma^2 \left[A - (X'X)^{-1} + (X'X)^{-1}X'\right] \left[A' - (X'X)^{-1} + (X'X)^{-1}X'\right] \\ &= \dots \text{ skipping intermediate steps for brevity} \\ &= \sigma^2 [A - (X'X)^{-1}X'][A - (X'X)^{-1}X']' + \sigma^2 (X'X)^{-1}X'X(X'X)^{-1} \\ &= \sigma^2 (X) + \sigma^2 [A - (X'X)^{-1}X'][A - (X'X)^{-1}X']' \\ &> \sigma^2 (X) \end{split}$$

Thus, $\sigma^2(X)$ minimizes the mean-squared error over any other linear estimator.

Question 5

Compute $\mathbb{E}[Y|X]$ and Var(Y|X) for a Poisson-distributed Y given X. Does this justify a linear regression model?

The conditional mean and variance are:

$$\mathbb{E}[Y|X] = x'\beta$$
, $Var(Y|X) = x'\beta$

A linear regression model is satisfied if the three Gauss-Markov assumptions are violated. Provided rank X = k, that is the case in this situation, because Var(Y|X) = x' implies that the model has constant variance, and:

$$\mathbb{E}[Y|X] = x'\beta \iff \mathbb{E}(\varepsilon|X) = 0$$

Thus, a linear regression model is justified.

Question 6

2.10 True. By the law of iterated expectations,

$$\mathbb{E}[X^2 e] = \mathbb{E}[\mathbb{E}[X^2 e | X]] = \mathbb{E}[X^2 \mathbb{E}[e | X]] = 0$$

- 2.11 False. Consider $X = \{-1, 1\}$ with constant error $e = \overline{e}$ and $\Pr(X = -1) = \Pr(X = 1) = \frac{1}{2}$. In this case, $\mathbb{E}[Xe] = 0$ and $\mathbb{E}[X^2e] = \overline{e}$
- 2.12 True. $\mathbb{E}[e] = 0$ by definition, so e is independent of X if and only if $\mathbb{E}[Xe] = \mathbb{E}[e] \mathbb{E}[X] = 0$. By the law of iterated expectations,

$$\mathbb{E}[Xe] = \mathbb{E}[\mathbb{E}[Xe|X]] = \mathbb{E}[X\,\mathbb{E}[e|X]] = 0$$

- 2.13 False. Consider the same example from 2.11. E[eX] = 0, but $\mathbb{E}[e|X] = \overline{e}$.
- 2.14 True. Using the law of iterated examples explanation from 2.12, $\mathbb{E}[e|X] = 0 \Rightarrow \mathbb{E}[Xe] = 0$.

Question 7

Let X and Y have the joint density $f(x,y)=\frac{3}{2}(x^2+y^2)$ on $0\leq x\leq 1,\ 0\leq y\leq 1$. Compute the coefficients of the best linear predictor $Y=\alpha+\beta X+e$. Compute the conditional expectation $m(x)=\mathbb{E}[Y|X=x]$. Are the best linear predictor and conditional expectation different?

The conditional expectation, $m(x) = \mathbb{E}[Y|X=x]$, can be calculated as:

$$f(y|x) = \frac{f(x,y)}{\int_0^1 f(x,y)dy} = \frac{\frac{3}{2}(x^2 + y^2)}{\int_0^1 \frac{3}{2}(x^2 + y^2)dy} = \frac{x^2 + y^2}{x^2 + \frac{1}{3}}$$

$$\mathbb{E}[Y|X = x] = \int_0^1 f(y|x)ydy = \int_0^1 \frac{x^2 + y^2}{x^2 + \frac{1}{3}}ydy = \frac{1}{x^2 + \frac{1}{3}} \left(x^2 \int_0^1 ydy + \int_0^1 y^3 dy\right)$$

$$= \frac{1}{x^2 + \frac{1}{3}} \left(\frac{1}{2}x^2 + \frac{1}{4}\right) = \frac{2x^2 + 1}{4x^2 + 4/3}$$

$$= \frac{6x^2 + 3}{12x^2 + 4}$$

And the coefficients α and β can be calculated as:

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} (\mathbb{E}(Y) - \mathbb{E}(X)\beta \\ \frac{\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)}{\mathbb{E}(X^2) - (\mathbb{E}(X))^2} \end{pmatrix} = \frac{1}{\mathbb{E}(X^2) - (\mathbb{E}(X))^2} \begin{pmatrix} \mathbb{E}(Y)\mathbb{E}(X^2) - \mathbb{E}(X)\mathbb{E}(XY) \\ \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y) \end{pmatrix}$$

Where:

$$\begin{split} f(x) &= \int_0^1 f(x,y) dy = \int_0^1 \frac{3}{2} (x^2 + y^2) dy = \frac{3}{2} x^2 + \int_0^1 \frac{3}{2} y^2 dy = \frac{3}{2} x^2 + \frac{1}{2} \\ \mathbb{E}(X) &= \int_0^1 f(x) x dx = \int_0^1 \frac{3}{2} x^3 dx + \frac{1}{2} \int_0^1 x dx = \frac{5}{8} \\ \mathbb{E}(X^2) &= \int_0^1 f(x) x^2 dx = \int_0^1 \frac{3}{2} x^4 dx + \frac{1}{2} \int_0^1 x^2 dx = \frac{7}{15} \\ \mathbb{E}(XY) &= \int_0^1 \int_0^1 f(x,y) xy dx dy = \int_0^1 \int_0^1 \frac{3}{2} (x^2 + y^2) xy dx dy \\ &= \dots \text{ (intermediate steps omitted for brevity)} \\ \mathbb{E}(XY) &= \frac{3}{8} \end{split}$$

Since X and Y have symmetric marginal distributions, $\mathbb{E}(X) = \mathbb{E}(Y)$. Thus,

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \frac{1}{\frac{7}{15} - \frac{25}{64}} \begin{pmatrix} \left(\frac{5}{8}\right) \left(\frac{7}{15}\right) - \left(\frac{5}{8}\right) \left(\frac{3}{8}\right) \\ \left(\frac{3}{8}\right) - \left(\frac{5}{8}\right) \left(\frac{5}{8}\right) \end{pmatrix} = \frac{1}{73} \begin{pmatrix} 55 \\ 15 \end{pmatrix}$$

Question 8