Assignment 7
Due: December 3, 2019

Question1 (1 points)

Let \mathcal{V} be a vector space, and $\mathbf{v} \in \mathcal{V}$. Show $\mathbf{v} = \mathbf{0}$ if $L(\mathbf{v}) = 0$ for all $L \in \mathcal{V}^*$.

Question2 (1 points)

Show the second dual \mathcal{V}^{**} is isomorphic to the original vector space \mathcal{V} .

Question3 (1 points)

Let \mathcal{M} be a metric space with d being the metric. Show the following is a metric on \mathcal{M} .

$$d^*(x,y) = \ln(1 + d(x,y))$$
 for $x, y \in \mathcal{M}$

Question4 (1 points)

Show the following defines a valid norm on \mathbb{R}^n , and is the limiting case of the ℓ_p norm

$$\|\mathbf{x}\|_{\infty} = \max_{1 \le i \le n} \{|x_i|\}$$

This is known as the infinity norm or maximum norm.

Question5 (2 points)

- (a) (1 point) If $\|\cdot\|$ is an operator norm on $\mathbb{R}^{n\times n}$, show $\|\mathbf{I}\|=1$, where **I** is the identity.
- (b) (1 point) Is there a vector norm that induces the Frobenius norm as an operator norm?

Question6 (4 points)

(a) (1 point) Show the following is a valid inner product for the vector space $\mathbb{R}^{m \times n}$.

$$\langle \mathbf{A}, \mathbf{B} \rangle = \operatorname{trace} \left(\mathbf{A}^{\mathrm{T}} \mathbf{B} \right)$$

(b) (1 point) Show the following is true for all $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{m \times n}$.

$$\left(\operatorname{trace}\left(\mathbf{A}^{T}\mathbf{B}\right)\right)^{2} \leq \operatorname{trace}\left(\mathbf{A}^{T}\mathbf{A}\right)\operatorname{trace}\left(\mathbf{B}^{T}\mathbf{B}\right)$$

(c) (1 point) Suppose \mathcal{B} is a basis for a finite-dimensional inner product space \mathcal{V} . Show if

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
 for all $\mathbf{v} \in \mathcal{B}$, then $\mathbf{u} = \mathbf{0}$.

(d) (1 point) Show that if \mathcal{V} is an inner product space, then

$$|\langle \mathbf{u}, \mathbf{v} \rangle| = ||\mathbf{u}|| \, ||\mathbf{v}||$$
 where $\mathbf{u}, \mathbf{v} \in \mathcal{V}$.

if and only if the vectors \mathbf{u} and \mathbf{v} are scalar multiple of each other.

Question7 (1 points)

Let **A** be an $m \times n$ matrix with linearly independent row vectors. Find a matrix representation for the orthogonal projection of \mathbb{R}^n onto the row space of **A**.

Question8 (2 points)

Let $\mathbf{A} = \begin{bmatrix} 3 & 1 & 1 \end{bmatrix}$, and let \mathbf{V} be the nullspace of \mathbf{A} .

- (a) (1 point) Find a matrix representation for the orthogonal projection of \mathbb{R}^3 onto \mathbf{V}^{\perp} .
- (b) (1 point) Find a matrix representation for the orthogonal projection of \mathbb{R}^3 onto \mathbf{V} .

Assignment 7
Due: December 3, 2019

Question9 (1 points)

Show $\mathbf{A}^{\mathrm{T}}\mathbf{A}$ is invertible when \mathbf{A} is a rectangular matrix with linearly independent columns.

Question10 (1 points)

Consider solving a rectangular system $\mathbf{A}\mathbf{x} = \mathbf{b}$, where \mathbf{A}^{-1} does not exist. It is clear that

$$(\mathbf{A}^{\mathrm{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathrm{T}}$$

is a left inverse of A but not a right-inverse. Discuss what does the following represent

$$\mathbf{A} \left(\mathbf{A}^{\mathrm{T}} \mathbf{A} \right)^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{b}$$

where **A** has linearly independent columns.

Question11 (1 points)

Find the QR factorization of

$$\begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

Question12 (4 points)

(a) (1 point) State the geometric and algebraic multiplicity of each eigenvalue of

$$\mathbf{A} = \begin{bmatrix} 19 & -9 & -6 \\ 25 & -11 & -9 \\ 17 & -9 & -4 \end{bmatrix}$$

Determine whether A is diagonalizable. If A is diagonalizable, find a matrix P s.t.

$$\mathbf{D} = \mathbf{P}^{-1} \mathbf{A} \mathbf{P}$$

(b) (1 point) For a scalar t, determine the matrix exponential $e^{\mathbf{A}t}$, where

$$\mathbf{A} = \begin{bmatrix} -\alpha & \beta \\ \alpha & -\beta \end{bmatrix} \quad \text{with} \quad \alpha + \beta \neq 0.$$

- (c) (1 point) Show \mathbf{A} and \mathbf{A}^{T} have the same eigenvalues.
- (d) (1 point) Show that if **A** is a real symmetric matrix, then **A** has only real eigenvalues.

Question13 (0 points)

(a) (1 point (bonus)) Norms are basic tools for defining and analysing limiting behaviour in a vector space \mathcal{V} . Recall a sequence of vectors $\{\mathbf{u}_k\} \subset \mathcal{V}$ is said to converge to \mathbf{u} if

$$\|\mathbf{u}_k - \mathbf{u}\| \to 0$$

This depends on the choice of the norm, that is, \mathbf{u}_k might approach \mathbf{u} with one norm but not with another. Fortunately, this is impossible in finite-dimensional spaces. Given two valid norms $\|\cdot\|$ and $\|\cdot\|_{\star}$ for a finite-dimensional space \mathcal{V} , show there are positive constants α and β such that

$$\alpha \leq \frac{\|\mathbf{v}\|}{\|\mathbf{v}\|_{\star}} \leq \beta$$
 for all non-zero vector $\mathbf{v} \in \mathcal{V}$.