МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

Філінюк В. С.

3BIT

до лабораторної роботи

Моделювання операційних підсилювачів з позитивним зворотнім зв`язком

Київ, КНУ ім. Тараса Шевченка, 2021

УДК 053.08 (002.21)

ББК 73Ц

I-72

Укладач: Філінюк В. С.

I-72 Звіт. Моделювання операційних підсилювачів з позитивним зворотнім зв`язком./ укл. Філінюк В. С.

КНУ ім. Т. Шевченка, 2021. – 21 с. (Укр. мов.)

У звіті наведено хід математичного моделювання лабораторної роботи та подальшу обробку результатів. Моделювання виконано у програмі LTspice

УДК 053.08 (002.21)

ББК 73Ц

©Київський Національний

Університет імені Тараса Шевченка,

2021

Реферат

Звіт про моделювання операційних підсилювачів з позитивним зворотнім зв'язком: 9 с.

Mema poботи — ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим позитивним зворотним зв`язком та способи виконання математичних операцій за допомогою схем з ОП

Об'єкт дослідження — операційні підсилювачі, диференціальне підсилення постійного струму

Предмет дослідження — теоретичні основи, принципи роботи, фізичний зміст і застосування операційних підсилювачів

Методи дослідження:

1) *Метод співставлення*, одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів

Зміст

_		•	•	
Leo	ретич	HI R	ΙЛОМ	OCTI
	PC:7: :	0	. 40.0	

	Основні означення	5		
Виконання роботи				
	Релаксаційний генератор	6		
	Генератор гармонічних коливань	7		
Висновк	и	9		
Джерела	3	9		

Теоретичні відомості

Операційний підсилювач (англ. operational amplifier) — це

диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення **зворотного зв`язку** полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв`язку (33) на його вхід. Якщо сигнал зворотного зв`язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 180$), то зворотний зв`язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$), то такий зворотний зв`язок називають позитивним (П33).

Операційним підсилювачем називають багатокаскадний диференціальний підсилювач постійного струму, який має в діапазоні частот до кількох десятків кілогерц коефіцієнт підсилення більший за 10^4 і за своїми властивостями наближається до уявного «ідеального» підсилювача. Під «ідеальним» розуміють такий підсилювач, який має:

- 1) нескінченний коефіцієнт підсилення за напругою диференціального вхідного сигналу ($K \rightarrow \infty$)
- 2) нескінченний вхідний імпеданс ($Z_{bx} \to \infty$)
- 3) нульовий вихідний імпеданс (Z_{bux} = 0)
- 4) рівну нулеві напругу на виході (U_{bux} = 0) при рівності напруг на вході ($U_{bux1} = \ U_{bux2}$)
- 5) нескінченний діапазон робочих частот

Компаратор — це електронний пристрій порівняння двох аналогових сигналів: U_{in1} та U_{in2} . При цьому на виході схеми формуються тільки два значення вихідного сигналу:

- а) напруга на виході максимальна, якщо різниця напруг між вхідними сигналами є додатньою
- б) напруга на виході мінімальна, якщо різниця напруг між вхідними сигналами є від'ємною

Передавальна характеристика компаратора — залежність вихідної напруги компаратора від напруги на його вході

Рівень включення (виключення) компаратора — значення напруги на вході компаратора $U_{in}=U_{on}$, при якій вихідна напруга U_{out} змінює своє значення від мінімального до максимального (при включенні); при виключенні $U_{in}=U_{off}$ і вихідна напруга змінюється від U_{max} до U_{\min}

Гістерезисний компаратор (тригер Шміта)— це електронний пристрій порівняння, у якого передавальна характеристика є неоднозначною, тобто рівні включення і виключення не збігаються (на відміну від звичайного компаратора), а відрізняються на величину, яку називають гістерезисом переключення

Генератори — це електронні пристрої, які формують на виході змінну напругу потрібної форми. На відміну від підсилювачів, у таких пристроїв немає входу. Їх вихідний сигнал з'являється у відповідь на підключення до них джерела живлення. Форма генерованої напруги може бути різноманітною: гармонічною, прямокутною, пилкоподібною або будьякою іншою

Виконання роботи

Релаксаційний генератор:

Наша схема:

Вхідний та вихідний сигнали:

Генератор гармонічних коливань:

Наша схема:

Вхідний та вихідний сигнали:

Висновки

В цій роботі ми дослідили як змінюється сигнал після проходження різних типів операційних підсилювачів з позитивним зворотнім зв'язком. Були розглянуті такі типи генераторів на базі ОП: релаксаційний та гармонічних коливань. Для дослідження обох типів використовувався імпульсний сигнал.

Отримані нами результати, а саме зміна фази та структура сигналу повністю відповідають очікуваним.

Джерела

- Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету. Слободянюк О.В.
- Вивчення радіоелектронних схем методом комп'ютерного моделювання. Ю. О. Мягченко