LẬP TRÌNH MẠNG

Thông tin giảng viên

- Nguyen Van Hieu
 - Email: <u>nvhieu@dut.udn.vn</u>
 - Chuyên ngành: Kỹ thuật thông tin và xử lý tín hiệu
 - Bộ môn Kỹ thuật Máy tính

Lập trình mạng

- Thông tin học phần:
 - **Cấu trúc:**
 - ✓ Hằng tuần: Bài giảng + Điểm danh/Bài tập nhỏ
 - ✓ Bài tập lớn 2 lần
 - ✓ Kiểm tra giữa kỳ (GK) + Thi cuối kỳ (CK)
 - Đánh giá:
 - ✓ Điểm danh/Bài tập (20%) + GK (30%) + CK (50%)
- Tài liệu:
 - Sách: Network Programming for Microsoft Windows, 2nd Edition, Anthony Jones, JimOhlund, Microsoft Press 2002

Mục tiêu

- Kiến thức:
 - Giải thích được mô hình lập trình mạng
 - Trình bày được các bộ giao thức Internet
 - Các ứng dụng có kết nối sử dụng ngôn ngữ lập trình mạng
- Kỹ năng:
 - Lập trình Socket cơ bản trên nền công nghệ C/C++
 - Lập trình Socket với .NET framwork và C#
 - Phát triển được ứng dụng có kết nối sử dụng ngôn ngữ lập trình mạng

1 Tổng quan

- Mang máy tính
 - Phân lớp giao thức và bộ giao thức TCP/IP
- Nguyên lý các lớp trong bộ giao thức TCP/IP:
 - Bộ giao thức: 5 lớp
- Nguyên lý lớp ứng dụng mạng và tiến trình xử lý thông tin
- Khái niệm SOCKET và lập trình mạng

- Khái niệm
- Chuyển tin qua mạng máy tính
- Phân lớp giao thức
- Mô hình mạng máy tính

- Tập hợp các máy tính kết nối với nhau
 - Dựa trên một kiến trúc mạng nhất định
 - Mục đích: trao đổi dữ liệu
 - Máy tính: máy trạm, máy chủ, bộ định tuyến
 - Kết nối: thông qua các phương tiện truyền các tuyến cáp (cáp đồng, cáp quang) hoặc không dây
- Phương tiện truyền dẫn vật lý:
 - Hữu tuyến: cáp đồng (tín hiệu điện), cáp quang (ánh sáng)
 - Vô tuyến: sóng hồng ngoại (remote), sóng radio (wifi, di động)

- Trao đổi dữ liệu trong mạng máy tính:
 - Truyền thông tin giữa các máy tính trong mạng
 - Tương tự gửi thư tín qua hệ thống bưu điện
 - Máy nguồn: gửi dữ liệu
 - Máy đích: nhận dữ liệu
 - Phân loại máy tính: máy chủ (server) và máy trạm (client)
- Kiến trúc mạng:
 - Cấu trúc liên kết (topology): trật tự/cách thức các máy tính kết nối với nhau thông qua các đường truyền vật lý
 - Giao thức mạng: cách thức các máy tính trao đổi dữ liệu với nhau như thế nào?

- Phân loại mạng máy tính:
 - Mạng cá nhân
 - → PAN Personal Area Network
 - Mạng cục bộ
 - → LAN Local Area Network
 - Mạng đô thị
 - → MAN Metropolitian Area Network
 - Mạng diện rộng
 - → WAN Wide Area Network

The Internet

CHUYỂN TIN QUA MẠNG MÁY TÍNH

- Quá trình chuyển thông tin giữa các nút mạng: 5 thành phần
 - Thông tin (Message)
 - Người gửi (Sender)
 - Người nhận (Receiver)
 - Phương tiện truyền dẫn (Transmission medium)
 - Giao thức (Protocol)

CHUYỂN TIN QUA MẠNG MÁY TÍNH

- Các nhiệm vụ trong quá trình chuyển tin
 - Tổ chức dữ liệu
 - Chuyển dữ liệu thành tín hiệu
 - Phát hiện lỗi/ sửa lỗi, kiểm soát tải đường truyền
 - Định danh/đánh địa chỉ để phân biệt các máy trong mạng
 - Định tuyến/tìm đường đi cho dữ liệu qua hệ thống mạng
 - ***** ...

PHÂN LỚP GIAO THỰC

Giao thức:

Tập các quy tắc mà theo đó cả máy nguồn và đích đều phải tuân thủ để việc trao đổi thông tin hiệu quả

Phân lớp giao thức:

- Phân chia tập nhiều nhiệm vụ phức tạp thành các nhóm nhiệm vụ chuyên biệt và đơn giản hơn
- Tổ chức thành các lớp (layer) xử lý nhóm nhiệm vụ:
 - Các lớp độc lập nhau
 - Liên hệ chặt chẽ với các lớp liền kề để sử dụng/cung cấp dịch vụ
- Mỗi lớp có thể được triển khai nhiều cách khác nhau để thực hiện một hoặc vài nhiệm vụ
 - Cho phép độc lập thay thế các thiết bị đã triển khai trên một lớp

PHÂN LỚP GIAO THỰC

- Truyền tin trong kiến trúc phân lớp giao thức:
 - Bên gửi: tại mỗi lớp, thêm tiêu đề (header) chứa thông tin dùng cho việc xử lý dữ liệu và chuyển cho lớp dưới
 - Bên nhận: xử lý dữ liệu theo thông tin trong phần tiêu đề, loại bỏ tiêu đề và chuyển dữ liệu cho lớp trên
- → Ngăn xếp các giao thức

PHÂN LỚP GIAO THỰC

- Truyền tin trong kiến trúc phân lớp giao thức:
 - Các lớp đồng cấp ở mỗi bên sử dụng chung giao thức
 J điều khiển quá trình truyền tin với kết nối logic giữa chúng

MÔ HÌNH MẠNG MÁY TÍNH

Application Several application Presentation Application protocols Session Several transport Transport Transport protocols **Internet Protocol** Network Network and some helping protocols Data link Data link Underlying LAN and WAN technology **Physical Physical** TCP/IP Protocol Suite OSI Model

NGUYÊN LÝ CÁC LỚP TRONG TCP/IP

- Nguyên lý các lớp
- Giao tiếp giữa các tiến trình ứng dụng
- Mô hình trao đổi thông tin

ĐỊNH DANH TRÊN KIẾN TRÚC PHÂN LỚP

ĐỊNH DANH TRÊN KIẾN TRÚC PHÂN LỚP

Lớp ứng dụng:

- Tên miền định danh (chuỗi ký tự dễ nhớ với người dùng) cho máy chủ cung cấp dịch vụ
- Thiết bị mạng không dùng tên miền khi truyền tin

Lớp giao vận:

- Số hiệu cổng định danh cho các dịch vụ khác nhau
- Số hiệu cổng: từ 0-65535
- Ví du:
 - ❖ Web-80
 - DNS-53
 - Email (SMTP-25, SMTPS-465, POP-110, POP3S-995, IMAP-143, IMAPS-993)

ĐỊNH DANH TRÊN KIẾN TRÚC PHÂN LỚP

- Lớp mạng:
 - Địa chỉ IP định danh cho các máy trạm, máy chủ, bộ định tuyến
 - Có thể dùng trong mạng nội bộ và mạng Internet
 - Địa chỉ IPv4: 32bits, 4 số có giá trị từ 0-255 phân biệt nhau bởi 1 dấu '.'
 - Dịa chỉ IPv6: 128 bits, 8 nhóm, các nhóm phân biệt nhau bởi dấu ':'
- Lớp liên kết dữ liệu:
 - Địa chỉ MAC định danh cho các máy trạm, máy chủ, thiết bị mạng
 - Chỉ dùng trong mạng nội bộ

NGUYÊN LÝ LỚP ỨNG DỤNG

- Nguyên lý chung
- ☐ Tiến trình trao đổi dữ liệu
- Giao tiếp giữa các tiến trình
- Các mô hình trao đổi thông tin

NGUYÊN LÝ LỚP ỨNG DỤNG

- Cung cấp dịch vụ mạng cho người dùng
- Phối hợp hoạt động của chương trình client và chương trình server
 - Client: cung cấp giao diện cho người dùng
 - Server: đáp ứng dịch vụ
- Một số dịch vụ tiêu biểu: Web, Email, Lưu trữ và chia sẻ file (FTP)...
- Các mô hình trao đổi thông tin:
 - Client/Server
 - Ngang hàng
 - Mô hình lại
- Giao thức ứng dụng → hoạt động trên các thiết bị đầu cuối

NGUYÊN LÝ LỚP ỨNG DỤNG

- Tiến trình: gồm có 2 tiến trình giao tiếp với nhau qua môi trường mạng:
 - Client: cung cấp giao diện và gửi thông điệp yêu cầu dịch vụ
 - Server: cung cấp dịch vụ và trả thông điệp đáp ứng
- Ví dụ: ứng dụng Web
 - Web browser (trình duyệt Web): Chrome, Edge, Firefox...
 - Web server: Apache, NGINX, Microsoft IIS, Tomcat ...

GIAO TIẾP GIỮA CÁC TIẾN TRÌNH ỨNG DỤNG

- Định danh cho tiến trình bởi
 - Địa chỉ IP, số hiệu cổng (port)
 - Ví dụ: 203.162.31.118:80 or 222.255.130.178:443
- Tiến trình
 - Client: gửi yêu cầu thông qua IP và port của server
 - Server: xử lý và gửi trả kết quả

GIAO TIẾP GIỮA CÁC TIẾN TRÌNH ỨNG DỤNG

- Sử dụng "socket": SAP của lớp giao vận
 - Sử dụng socket để gọi dịch vụ của lớp giao vận để thực thi các tiến trình trao đổi thông tin

Mô hình client-server

- Client
 - Gửi yêu cầu truy cập dịch vụ đến máy chủ
 - Không liên lạc trực tiếp với các client khác
- Server
 - Thường xuyên online để chờ y/c đến từ máy trạm

- Mô hình peer-to-peer (trao đổi ngang hàng) P2P
 - Sử dụng một lớp ảo bên trên cấu trúc mạng vật lý
 - Các nút mạng ở lớp ảo tạo thành tập con của của các nút mạng ở lớp vật lý
- Không có máy chủ trung tâm
 - Các máy có vai trò ngang nhau
 - Hai máy bất kỳ có thể liên lạc trực tiếp với nhau

Mô hình (P2P) không có cấu trúc

- Không áp đặt một cấu trúc cụ thể lên mạng thuộc lớp ảo
- Các nút mạng hình thành các kết nối ngẫu nhiên với nhau

Uu/nhược điểm

- Dễ xây dựng và cho phép tối ưu hóa hóa cục bộ trên lớp ảo
- Ön định khi gặp tình trạng tỷ lệ "churn" cao
- Truy vấn tìm kiếm dữ liệu phải được flood trong mạng → hao tốn tài nguyên

Mô hình (P2P) có cấu trúc

- Lớp ảo được tổ chức thành một cấu trúc liên kết cụ thể và giao thức
- Cấu trúc P2P phổ biến nhất là xây dựng bảng băm phân tán (DHT)

🔲 Thuận lợi

Bất kỳ node nào cũng có thể tìm kiếm file hoặc tài nguyên trên mạng một cách hiệu quả

- Mô hình kết hợp (hybrid)
 - Kết hợp của các mô hình clientserver và mô hình peer-to-peer
 - Mô hình phổ biến là một server trung tâm giúp các peer tìm thấy nhau
- Thuận lợi
 - Mô hình kết hợp có hiệu suất tốt

Hybrid P2P-Network (eDonkey)

NGUYÊN LÝ LỚP GIAO VẬN

- Đặc điểm lớp giao vận
- Giao thức UDP

Giao thức TCP

So sánh TCP và UDP

NGUYÊN LÝ LỚP GIAO VẬN

- Cài đặt và hoạt động trên các thiết bị đầu cuối
 - Cung cấp dịch vụ để các ứng dụng mạng trao đổi dữ liệu

ĐẶC ĐIỂM LỚP GIAO VẬN

- 🔲 Hai dạng dịch vụ giao vận
 - Hướng liên kết TCP
 - Không liên kết UDP
- 🔲 Đơn vị dữ liệu
 - Datagram (UDP)
 - Segment (TCP)
- Một liên kết lớp giao vận → một phiên UDP/TCP được xác định bởi bộ 5 thông số (5- tuple):
 - Địa chỉ IP nguồn
 - Địa chỉ IP đích
 - Số hiệu cổng nguồn
 - Số hiệu cổng đích
 - Giao thức (TCP/UDP,...)

GIAO THỨC UDP

- Đặc điểm
 - Hướng không liên kết/không kết nối
 - ❖ Không cần thiết lập liên kết → giảm độ trễ
 - Không cần lưu lại trạng thái liên kết ở bên gửi và bên nhận -> đơn giản
 - ♦ Phần đầu đoạn tin nhỏ → giảm kích thước header
 - ❖ Không có quản lý tắc nghẽn → cố gắng gửi dữ liệu nhanh và nhiều nhất
 - Không bảo đảm được độ tin cậy

GIAO THỨC TCP

- Đặc điểm
 - Hướng liên kết/kết nối: bắt tay ba bước (3-way handshake)
 - Truyền dữ liệu theo dòng byte: sử dụng bộ đệm (buffer)
 - Truyền theo kiểu pipeline > tăng hiệu quả truyền dẫn, giảm độ trễ
 - ❖ Kiểm soát luồng → giảm tình trạng quá tải bên nhận (nếu có)
 - Kiểm soát tắc nghẽn
 - Độ tin cậy cao

GIAO THỨC UDP VÀ TCP

TCP	UDP
Secure	Unsecure
Connection-Oriented	Connectionless
Slow	Fast - COSCO
Guaranteed transmittion	No Guarantee
Used by crtical applications	Used by real-time applications
Packet reorder mechanism	No reorder mechanism
Flow control COTT	No flow control
Error Checking	No Error Checkin
20 Bytes Header	8 Bytes Header
Acknowledgement Mechanism	No Acknowledgement
Three-way handshake (SYN, SYN-ACK, ACK)	No hanshake
DNS, HTTP, HTTPs, FTP, SMTP, Telnet, SNMP	DNS, DHCP, TFTP, SNMP, RIP, VOIP

GIAO THỨC UDP VÀ TCP

NGUYÊN LÝ LỚP MẠNG

- Nguyên lý chung lớp mạng
- Địa chỉ IP
- IPv4 và IPv6

Dịnh dạng tiêu đề (header)

NGUYÊN LÝ CHUNG LỚP MẠNG

 Cung cấp các cơ chế để kết nối các hệ thống mạng với nhau (internetworking – Internet)

NGUYÊN LÝ CHUNG LỚP MẠNG

- Giao thức Internet: Internet Protocol (IP)
 - Định danh: sử dụng địa chỉ IP để gán cho các nút mạng -> máy trạm, máy chủ, bộ định tuyến/router
 - Khuôn dạng dữ liệu
- Dịnh tuyến:
 - ❖ Tìm các tuyến đường tốt nhất qua các bộ định tuyến trung gian để gửi thông tin → thuật toán/giao thức (RIP, OSPF, IGRP hoặc EIGRP)
- Chuyển tiếp:
 - Bộ định tuyến sẽ quyết định gửi dữ liệu theo đường nào

NGUYÊN LÝ CHUNG LỚP MẠNG

- Dịnh tuyến chuyển tiếp:
 - Sử dụng bảng chuyển tiếp
 - Bộ định tuyến đọc giá trị trong phần header của gói tin đến
 - Xác định cổng ra để chuyển tiếp gói tin

ĐỊA CHỈ IP

- Dặc điểm:
 - Mỗi địa chỉ IP được gán cho một cổng duy nhất
 - Địa chỉ IP có tính duy nhất trong mạng
- Chuyển đổi địa chỉ (IPv4)
 - NAT : Network Address Translation
 - Chuyển đổi địa chỉ trên gói tin giữa IP cục bộ và IP công cộng
 - PAT : Port Address Translation
 - Dynamic NAT (overloading): sử dụng thêm số hiệu cổng ứng dụng trong quá trình chuyển đổi
- Lợi ích:
 - Tiết kiệm địa chỉ IP công cộng
 - Che giấu địa chỉ riêng
 - Giảm chi phí cấu hình khi thay đổi ISP

IPv4 và IPv6

IPv4

Address Size:

32-bit number

Address Format:

Dotted Decimal Notation: 192.168.1.1

Prefix Notation:

255.255.255.0 /24

Number of addresses:

2**32 = 4,294,967,296

IPv6

Address Size:

128-bit number

Address Format:

Hexadecimal Notation: fe80::94db:946e:8d4e:129e

Prefix Notation:

/64

Number of addresses:

2**128 = 340,282,366,920,938,463,463,374,607, 431,768,211,456

ĐỊNH DẠNG TIÊU ĐỀ (HEADER)

IPv4 Header

Field's Name Kept from IPv4 to IPv6
Fields Not Kept in IPv6
Name and Position Changed in IPv6
New Field in IPv6

IPv6 Header

THƯ VIỆN LẬP TRÌNH WINSOCK

- ☐ Bộ giao thức TCP/IP và WinSock
- Giới thiệu WinSock
- Môi trường lập trình WinSock

BỘ GIAO THỨC TCP/IP VÀ WINSOCK

BỘ GIAO THỨC TCP/IP VÀ WINSOCK

The Winsock 2.0 hierarchy

GIỚI THIỆU WINSOCK

WinSock

- Windows Socket
- Bộ thư viện liên kết động của Microsoft
- Cung cấp các API hỗ trợ xây dựng các ứng dụng mạng hiệu năng cao
- Chạy trên nền bộ giao thức TCP/IP

GIỚI THIỆU WINSOCK

Thành phần trong WinSock

- Phiên bản hiện tại: WinSock 2.2
- Thư viện liên kết động: WS2_32.DLL
- Provider
 - Providers chế độ người dùng có thể được xếp chồng lên providers sẵn có để mở rộng các chức năng
- WinSock Kernel Mode Driver (AFD.SYS)
 - Driver chay ở Kernel Mode
 - Quản lý kết nối, bộ đệm, tài nguyên liên quan đến socket
 - Giao tiếp với driver điều khiển thiết bị thông qua Transport Driver Interface (TDI)

GIỚI THIỆU WINSOCK

- Lập trình WinSock
 - Lập trình mạng: Lập trình Socket > tương tác với đối tượng SOCKET.
 - Thiết lập một SOCKET trước khi muốn trao đổi dữ liệu giữa các ứng dụng khác nhau
 - Liên kết logic giữa các SOCKET → kênh truyền dữ liệu giữa hai ứng dụng.

MÔI TRƯỜNG LẬP TRÌNH WINSOCK

- Header cho C++
 - WinSock API: WINSOCK2.H and WS2_32.LIB
- Visual Studio C++
 - Compile chương trình thông qua terminal
- https://learn.microsoft.com/en-us/windows/win32/api/winsock2/