Abstract algebra Quiz #1 (Mar. 28, 2022)

Provide a suitable explanation for all your answers. It must be **accurate** at every step. (10 points per each problem)

1. Suppose that a ring R has a unique element e such that xe = x for all $x \in R$. Show that ey = y for all $y \in R$.

Proof. (idea)

$$ey = y \iff ey - y = 0 \iff ey - y + e = e \iff x(ey - y + e) = x \text{ for all } x \in R.$$

(proof) Let y be any element in R. For all $x \in R$, we have

$$x(ey - y + e) = x(ey) - xy + xe = (xe)y - xy + x = x.$$

By the uniqueness of e, ey - y + e should be e, thus ey = e for all $y \in R$.

- 2. Let R be a ring with $1 \neq 0$ and $a, b \in R$. Assume that neither a nor b is a zero divisor. If ab is a unit, show that a and b are units. then a = b.
 - *Proof.* (i) Let x be the unit of ab. Then abx = 1 (so a(bx) = 1). Multiplying a on the right hand side of either side yields that abxa = a, thus a(bxa 1) = 0. Since a is nonzero and is not a zero divisor, bxa 1 = 0, that is, (bx)a = 1. It says that a is a unit and $a^{-1} = bx$.
 - (ii) Since x is the unit of ab, we also have that xab = 1. In (i), we showed that bxa = 1. It says that b is a unit and $b^{-1} = xa$.
- 3. Describe all ring homomorphisms from $\mathbb{Z} \times \mathbb{Z}$ to \mathbb{Z} .

Proof. First, find necessary conditions for homomorphisms to satisfy. Let f be a nonzero homomorphism. Since $(1,0)^2 = (1,0)$, we have that $f((1,0)) = f((1,0))^2$. Hence f((1,0)) = 0 or 1. Similarly, f((0,1)) = 0 or 1. Furthermore, since $(1,1)^2 = (1,1)$ and (1,1) = (1,0) + (0,1), we also have that $f((1,1)) = f((1,1))^2$ and f((1,1)) = f((1,0)) + f((0,1)). So, the possible candidates are

- (i) f((1,0)) = 0, f((0,1)) = 0
- (ii) f((1,0)) = 1, f((0,1)) = 0
- (iii) f((1,0)) = 0, f((0,1)) = 1

Next, show that all these cases indeed yield homomorphisms.

In case of (i), f(m, n) = 0, hence f is the zero map.

In case of (ii), f((m, n) = m, hence f is the projection to the first component.

In case of (iii), f((m, n) = n, hence f is the projection to the second component.

4. Prove or disprove that $2\mathbb{Z}$ is isomorphic to $3\mathbb{Z}$ as rings.

Proof. Let $f: 2\mathbb{Z} \to 3\mathbb{Z}$ be any bijection. Letting f(2) = 3m, f(4) = f(2+2) = 6m and $f(4) = f(2 \times 2) = f(2)^2 = 9m^2$. Since $6m = 9m^2$, it follows that m = 0. But this is absurd since f(2n) = nf(2) = 0 for all $n \in \mathbb{Z}$. Hence there are no isomorphisms.