MATH592 Introduction to Algebraic Topology

Pingbang Hu

January 5, 2022

Contents

1 Homotopy 1

Lecture 1: Homotopies of Maps

05 Jan. 10:00

1 Homotopy

Definition 1. Let X, Y be topological spaces. Let $f, g: X \to Y$ continuous maps. Then a *homotopy* from f to g is a 1-parameter family of maps that continuously deforms f to g, i.e., it's a continuous function $F: X \times I \to Y$, where I = [0, 1], such that

$$F(x,0) = f(x), \quad F(x,1) = g(x).$$

We often write $F_t(x)$ for F(x,t).

If a homotopoy exists between f and g, we say they are homotopic and write

$$f \cong g$$
.

If f is homotopic to a constant map, we call it nullhomotopic.

Figure 1: The continuous deforming from f to g described by F_t

Remark. Later, we'll not state that a map is continuous explicitly, since it's almost always assumed in this context.

Example. We first see some examples.

1. Any two maps (continuous) with specification

$$f, g: X \to \mathbb{R}^n$$

are homotopic by considering

$$F_t(x) = (1-t)f(x) + tg(x).$$

We call it the straight line homotopy.

2. Let S^1 denotes the unit circle in \mathbb{R}^2 , and D^2 denotes the unit disk in \mathbb{R}^2 . Then the inclusion $f \colon S^1 \hookrightarrow D^2$ is nullhomotopic by considering

$$F_t(x) = (1-t)f(x)(+t \cdot 0).$$

Figure 2: The illustration of $F_t(x)$

We see that there is a homotopy from f(x) to 0 (the zero map which maps everything to 0), and since 0 is a constant map, hence it's actually a nullhomotopy.

3. The maps

are **not** homotopy.

Remark. It will essentially **flip** the orientation, hence we can't deform one to another continuously.

Exercise. We first see some exercises.

1. A subset $S \subseteq \mathbb{R}^n$ is star-shaped if

$$\exists x_0 \in S \text{ s.t. } \forall x \in S,$$

the line from x_0 to x lies in S.

Figure 3: Star-shaped illustration

Show that id: $S \to S$ is nullhomotopic.

Answer. Consider

$$F_t(x) \coloneqq (1-t)x + tx_0,$$

which essentially just concentrates all points x to x_0 .

2. Suppose

$$X \xrightarrow{f_1} Y \xrightarrow{g_1} Z$$

where

$$f_0 \stackrel{\smile}{\underset{F_t}{\hookrightarrow}} f_1, \quad g_0 \stackrel{\smile}{\underset{G_t}{\hookrightarrow}} g_1.$$

Show

$$g_0 \circ f_0 \cong g_1 \circ f_1$$
.

Answer. Consider $I \times X \to Z$. Then

$$\begin{array}{ccccc} X \times I & \to & Y \times I & \to & Z \\ (x,t) & \mapsto & (F_t(x),t) & \mapsto & G_t(F_t(x)). \end{array}$$

Remark. Noting that if one wants to be precise, you need to check the continuity of this construction.

3. How could you show 2 maps are **not** homotopic?

Answer.