

HiperFET[™] Power MOSFETs

IXFK180N10 IXFX180N10

$V_{DSS} = 100V$ $I_{D25} = 180A$ $R_{DS(on)} \le 8m\Omega$

Single MOSFET Die

N-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Diode

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	T _J = 25°C to 150°C	100	V		
V _{DGR}	$T_J = 25^{\circ}\text{C to } 150^{\circ}\text{C}, R_{GS} = 1\text{M}\Omega$	100	V		
V _{gss}	Continuous	±20	V		
V _{GSM}	Transient	±30	V		
I _{D25}	T _c = 25°C (Chip Capabitlty)	180	Α		
I _{LRMS}	Leads Current Limit, RMS $T_{C} = 25^{\circ}C$, Pulse Width Limited by T_{JM}	160 720	A A		
I _A E _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	180 3	A J		
dV/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	5	V/ns		
$\overline{\mathbf{P}_{D}}$	T _c = 25°C	560	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	0° C S C		
T _L T _{SOLD}	1.6mm (0.062 in.) from Case for 10s Plastic Body for 10s	300 260	°C		
M _d	Mounting Force (PLUS247) MountingTorque (TO-264)	20120/4.527 1.13/10	N/lb. Nm/lb.in.		
Weight	PLUS247 TO-264	6 10	g g		

Symbol Test Conditions (T _J = 25°C, Unless Otherwise Specified)			Chara Min.	racteristic Values . Typ. Max.		
BV _{DSS}	$V_{GS} = 0V, I_D = 3mA$		100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 8mA$		2.0		4.0	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				±100	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$	T _J = 125°C			100 2	μA mA
R _{DS(on)}	$V_{gs} = 10V, I_{D} = 0.5 \cdot I_{D25}, Not$	te 1			8	mΩ

G = Gate	D = Drain
S = Source	TAB = Drain

Features

- International Standard Packages
- High Current Handling Capability
- Avalanche Rated
- $^{\bullet} \ \, \mathsf{Low} \,\, \mathsf{R}_{\mathsf{DS}(\mathsf{on})} \,\, \mathsf{HDMOS^{\mathsf{TM}}} \,\, \mathsf{Process}$
- Fast intrinsic diode
- Low Package Inductance

Advantages

- Easy to Mount
- Space Savings
- High Power Density

Applications

- DC-DC Converters
- Battery Chargers
- Switched-Mode and Resonant-Mode Power Supplies
- DC Choppers
- AC Motor Drives
- Temperature and Lighting Controls

• • • • • • • • • • • • • • • • • • • •			aracteristic Values		
$(T_J = 25)$	5°C, L	Inless Otherwise Specified)	Min.	Тур.	Max.
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 60A, Note 1$	45	76	S
C _{iss})			10.90	nF
\mathbf{C}_{oss}	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		3.55	nF
C _{rss}	<u> </u>			1.94	nF
$\mathbf{t}_{d(on)}$)	Resistive Switching Times		50	ns
t _r	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		90	ns
$\mathbf{t}_{d(off)}$				140	ns
t _f	J	$R_{G} = 1\Omega$ (External)		65	ns
$\mathbf{Q}_{g(on)}$)			390	nC
\mathbf{Q}_{gs}	}	$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$		55	nC
\mathbf{Q}_{gd}				195	nC
R _{thJC}					0.22 °C/W
\mathbf{R}_{thCS}				0.15	°C/W

Source-Drain Diode

SymbolTest ConditionsCharacteristics $(T_J = 25^{\circ}C, Unless Otherwise Specified)$ Min.			acteristic Values Typ. Max.		
Is	$V_{GS} = 0V$			180	Α
I _{sm}	Repetitive, Pulse Width Limited by T_{JM}			720	Α
V _{SD}	$I_F = 100A, V_{GS} = 0V, Note 1$			1.5	V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = 90A$, -di/dt = $100A/\mu s$ $V_R = 50V$, $V_{GS} = 0V$		1.1 13	250	ns μC A

Note 1: Pulse Test, $t \le 300\mu s$; Duty Cycle, $d \le 2\%$.

TO-264 (IXFK) Outline 1 - GATE 2, 4 - DRAIN (COLLECTOR) 3 - SOURCE (EMITTER) SYM MIN MAX MIN MAX A .185 .209 4.70 5.31 A1 .102 .118 2.59 3.00 b1 .087 .102 2.21 2.59 b2 .110 .126 2.79 3.20 c .017 .029 0.43 0.74 D 1.007 1.047 25.58 26.59 E .760 .799 19.30 20.29 e .2158SC 5.46 BSC J .000 .010 0.00 0.25 K .000 .010 0.00 0.25 C .779 .842 19.79 21.39 L .179 .842 19.79 21.39 L .138 3.10 3.51 Q .240 .256 6.10 6.50 Q .240 .256 6.10 6.50 Q .241 .350 .346 8.38 8.79 ØR .155 .933 .216 2.36

Fig. 1. Output Characteristics @ 25°C 180 $V_{GS} = 10V$ 160 140 120 I_D - Amperes 100 80 6V 60 40 20 5V 0.6 0.0 0.2 0.4 0.8 1.0 12 1 4 16 V_{DS} - Volts

@ 25°C 350 $V_{GS} = 10V$ 9V 300 250 ID - Amperes 200 150 6V 100 50 0.0 0.5 1.0 1.5 2.0 2.5 3.5 4.5 V_{DS} - Volts

Fig. 2. Extended Output Characteristics

Fig. 3. Output Characteristics @ 125°C 180 $V_{GS} = 10V$ 9V 160 8V 140 120 I_D - Amperes 100 6V 80 60 40 . 5V 20 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Fig. 8. Transconductance $T_J = -40^{\circ}C$ 25°C s - Siemens 125°C g I_D - Amperes

IXYS Reserves the Right to Change Limits, Test Conditions, and Dimensions.

Fig. 13. Forward-Bias Safe Operating Area $@T_C = 25^{\circ}C$

Fig. 14. Forward-Bias Safe Operating Area $@T_C = 75^{\circ}C$

