Project Planning Phase

Project Planning Details

(Product Backlog, Sprint Planning, Stories, Story points)

Date	17 November 2023
Team Id	Team-592467
Project Name	AI Enable car parking using OpenCV
Maximum Marks	20 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks):

Use the below template to create product backlog and sprint schedule

Sprint	Functional Requirement (Epic)	User Story Number	User Story/Task	Story Points	Priority	Team Members
Sprint-1	Project setup and Infrastructure	USN-1	Prepare the necessary tools and frameworks to initiate the AI-enabled Car Parking Project.		High	Vivek
Sprint-1	Development environment	USN-2	Collect diverse data essential for training the OpenCV learning model	2	Medium	Srujan
Sprint-2	Data collection	USN-3	Organize and pre-process collected datasets, splitting them into training and validation sets.	2	Medium	Thalir
Sprint-2	Data pre- processing	USN-4	Explore OpenCV architectures, choose the best model for the Car Parking Project.	4	Medium	Thalir
Sprint-3	Model development	USN-5	Train and evaluate the selected OpenCV model with preprocessed datasets.	4	High	Mahesh
Sprint-3	Training	USN-6	Try and implement various augmentation techniques to improve the model's efficiency.	5	High	Mahesh
Sprint-4	Model deployment and Integration	USN-7	Deploy the OpenCV model as a web service. Integrate its API into a user-friendly interface.	3	Medium	Srujan
Sprint-5	Testing and quality assurance.	USN-8	Thoroughly test the model and web interface, tune hyperparameters, and optimize using testing results and user feedback	3	Medium	Vivek

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	5	3 Days	28 Oct 2023	30 Oct 2023	20	30 Oct 2023
Sprint-2	6	4 Days	31 Oct 2023	3 Nov 2023	18	4 Nov 2023
Sprint-3	9	1 Week	4 Nov 2023	10 Nov 2023	19	11 Nov 2023
Sprint-4	3	4 Days	11 Nov 2023	14 Nov 2023	18	14 Nov 2023
Sprint-5	3	3 Days	15 Nov 2023	17 Nov 2023	16	18 Nov 2023

Velocity:

Imagine we have a 29-days sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

$$AV = \frac{sprint\ duration}{velocity} = \frac{20}{10} = 2$$

$$AV = 21/26 = 0.80$$

Burndown Chart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containing measurable progress over time.

Board section:

We have completed sprint 1 and 2. So we can see the remaining tasks on board.

Backlog section:

Timeline:

