Обнаружение мошеннических банковских операций

Групповой проект

Жоголева Елена Тенякова Роза Матюков Петр Маслоед Ирина

Описание задачи

Предсказать факты мошеннических транзакций

Дано: набор данных для машинного обучения, которой содержит данные о реальных транзакциях электронной коммерции Vesta.

Первичный анализ данных. Состав

Данные для обучения

- 433 признака
- 590540 наблюдений
- 45.1% пропущено
- 1.9 Гб памяти
- 388 вещественных признака
- 45 категориальных признака

Состав данных

- ✓ дата, сумма, ID транзакции
- информация о банковской карте
- ✓ адрес проведения транзакции

Тестовые данные

- 433 признака
- 506691 наблюдений
- 41.1% пропущено
- 1.6 Гб памяти
- 388 вещественных признака
- 45 категориальных признака

Особенности

- ✓ много пропущенных значений
- ✓ много зашифрованных значений

Первичный анализ. Категориальные признаки

Первичный анализ. Информация о карте

Первичный анализ. Данные об адресе

Первичный анализ. Сумма транзакции

✓ 3,4% - мошеннические операции

Выбор алгоритма для модели предсказания

Почему мы выбрали CatBoost?

- эффективен на больших объемах данных и признаков;
- работает с категориальными признаками "из коробки";
- best practice в ML;
- применяет кросс-валидацию и подбор параметров "из коробки";
- оптимизирует время обучения за счет использования GPU;
- содержит подробную документацию;

Построение модели. Шаги

Тайминг: 1.5 - 2 часа

Nº	Изменения
Baseline	Набор данных без изменений
Step 1	Удаление признаков по результатам анализа важности признаков и корреляции
Step 2	Добавление 3х агрегированных столбцов
Step 3	Удаление около 150 столбцов "V_"
Step 4	Добавление столбца с группами по суммам операций
Step 5	Добавление столбцов "день" и "час" на основе признака " TransactionDT"
Step 6	Blending&Stacking

BaseLine

Step 1

Много пропущенных значений

Решение:

удалить столбцы с пропущенными, более чем 95% значений: Много признаков с нулевым вкладом в модель и высокой корреляцией с другими

Решение:

удалить признаки с более чем 80% пропущенных значений (id_)

Важность признаков

Step 4

Step 5

Создание новых признаков

Решение:

Добавили признак с ранжированием суммы операций

Создание новых признаков

Решение:

Добавление признаков D и Hr

Step 6

Blending&Stacking

Модель	Kaggle private	Kaggle public
Базовый Catboost (минимальная очистка данных, без настроек)	0.903084	0.928801
Logistic Regression блендинг + Polynomial Features + 2 Random Forest	0.893371	0.923297
Logistic Regression блендинг + Polynomial Features + 2 Random Forest + 2 Catboost	0.913425	0.939829
Logistic Regression блендинг + Polynomial Features + 2 Random Forest + 5 Catboost	0.913484	0.939870
Logistic Regression блендинг + Polynomial Features + 5 Random Forest + 5 Catboost	0.909794	0.937535
Logistic Regression блендинг + Polynomial Features + 5 Catboost	0.910282	0.936811

Достигнутый результат

Лучший результат

Личный рейтинг

- 3190 место из 6355
- ✓ лучше, чем 50%

Публичный рейтинг

- ✓ 4031 место из 6355
- ✓ лучше, чем 35%

Выводы

- Работа в команде более эффективна. Можно параллельно проверять разные гипотезы.
- Обезличенные данные и большое количество пропусков ухудшают качество модели грамотная работа с пропущенными значениями и поиск возможности восстановить пропущенные значения - эффективны. Однако feature engineering затруднен тем, что невозможно оценить смысл признаков.
- Blanding&Stacking хорошее решение для увеличения эффективности.

Используемые материалы

- соревнование <u>IEEE-CIS Fraud Detection | Kaggle</u>
- описание данных <u>IEEE-CIS Fraud Detection | Kaggle</u>
- CatBoost documentation <u>CatBoost</u>
- анализ признаков shap <u>slundberg/shap: A game theoretic approach to explain the output of any machine</u>
 <u>learning model. (github.com)</u>
- статья по приемам feature engineering <u>IEEE-CIS Fraud Detection | Kaggle</u>
- Blanding&Stacking <u>https://machinelearningmastery.com/blending-ensemble-machine-learning-with-python/</u>

Спасибо за внимание!

Приложение 1. Blending & Stacking

Цель: на базовом датасете реализовать ансамбль из нескольких моделей и сравнить результат с традиционным EDA+feature engineering

Приложение 1. Blending & Stacking простой

Ha Kaggle часто применяют смешивание результатов из submission от разных моделей. Смешивают прямо csv файлы сабмитов.

TIP! Результаты проверяют на корреляцию Пирсона и стараются смешивать некоррелируемые результаты. Это дает лучшую оценку.

Приложение 1.Blending & Stacking - с обучением

Приложение 2. Blending & Stacking - результаты

В качестве начальной базовой модели был выбран Catboost. В качестве дополнительной - случайный лес, потому что он показывает хорошие результаты в классификации, сравнимые с бустинговыми моделями.

Модель	Kaggle private	Kaggle public
Базовый Catboost (минимальная очистка данных, без настроек)	0.903084	0.928801
Forest 500	0.881892	0.907618
Блендинг 0.5+0.5	0.892148	0.916442
Блендинг 0.6+0.4	0.884932	0.909389
Блендинг 0.7+0.3	0.885219	0.909625

Приложение 2. Blending & Stacking - результаты

Из-за того, что простой блендинг не обнадежил, было решено попробовать блендинг с обучением. В качестве мета-модели опробованы Catboost, Random Forest, Logistic Regression и по результатам выбрана последняя.

Модель	Kaggle private	Kaggle public
Базовый Catboost (минимальная очистка данных, без настроек)	0.903084	0.928801
Logistic Regression блендинг	0.906407	0.929961
Logistic Regression блендинг + Polynomial Features	0.906649	0.930168

Приложение 2. Blending & Stacking результаты

Логично теперь попробовать увеличить количество моделей. Причем стараясь их варьировать по гиперпараметрам и random_state

Модель	Kaggle private	Kaggle public
Базовый Catboost (минимальная очистка данных, без настроек)	0.903084	0.928801
Logistic Regression блендинг + Polynomial Features + 2 Random Forest	0.893371	0.923297
Logistic Regression блендинг + Polynomial Features + 2 Random Forest + 2 Catboost	0.913425	0.939829
Logistic Regression блендинг + Polynomial Features + 2 Random Forest + 5 Catboost	0.913484	0.939870
Logistic Regression блендинг + Polynomial Features + 5 Random Forest + 5 Catboost	0.909794	0.937535
Logistic Regression блендинг + Polynomial Features + 5 Catboost	0.910282	0.936811

Приложение 2. Blending & Stacking - выводы

Вывод Блендинг, в дополнение к EDA и Feature engineering, может улучшить итоговый результат на Kaggle. Но это потребует подобрать несколько отличающихся друг от друга моделей и провести ряд экспериментов.

Submission and Description	Private Score	Public Score	Use for Final Score
poly_blender_logreg_rf1-5_cb1-5.csv	0.909794	0.937535	
43 minutes ago by kuruhuru			
add submission details			
poly_blender_logreg_cb1-5.csv	0.910282	0.936811	
n hour ago by kuruhuru			
add submission details			
poly_blender_logreg_rf1-2_cb1-5.csv	0.913484	0.939870	
an hour ago by kuruhuru			
add submission details			
eb2.csv	0.824379	0.862850	
2 hours ago by kuruhuru			
add submission details			

Приложение 3. Тайминг на обучение

• CatBoost без использования GPU - 1,5 - 2 часа, в зависимости от количества признаков.

```
test: 0.9773506 best: 0.9773884 (985) total: 1h 21m 13s
995:
                                                                      remaining: 19.6s
996:
      test: 0.9773613 best: 0.9773884 (985) total: 1h 21m 17s
                                                                      remaining: 14.7s
      test: 0.9773556 best: 0.9773884 (985) total: 1h 21m 21s
                                                                      remaining: 9.78s
997:
998:
     test: 0.9773562 best: 0.9773884 (985) total: 1h 21m 26s
                                                                      remaining: 4.89s
      test: 0.9773517 best: 0.9773884 (985) total: 1h 21m 31s
999:
                                                                      remaining: Ous
hestTest = 0.9773883913
bestIteration = 985
Shrink model to first 986 iterations.
<cathoost.core.CatBoostClassifier at 0x7f83e47efh90>
```

• CatBoost без использования GPU - 1,5 - 2 часа, в зависимости от количества признаков.

```
997:
     learn: 0.9726263
                             test: 0.9711705 best: 0.9711780 (996)
                                                                     total: 6m 31s remaining: 785ms
                                                                     total: 6m 32s
                                                                                    remaining: 392ms
998: learn: 0.9726425
                              test: 0.9711669 best: 0.9711780 (996)
       learn: 0.9726501
                              test: 0.9711620 best: 0.9711780 (996)
                                                                     total: 6m 32s
                                                                                    remaining: Ous
bestTest = 0.9711779952
bestIteration = 996
Shrink model to first 997 iterations.
<catboost.core.CatBoostClassifier at 0x7f33910f87d0>
```

Приложение 4. Первичный анализ данных

Мошеннические операции среди обычных транзакций в разрезе сумм и дат операций

Приложение 5. Feature analysis with shap

