LIMIT 2 CONTINUITY

Poerared &: BIPLAB BASAK

MECTURE 1: Limit of functions

LECTURE 2: Limit of functions

LECTURE 3: Continuitj

LECTURE 4: Continuit

LECTURE 5: Uhiform Continuits.

Définition : Let f be a veal lalued function défined on (a,b) except possibly at $c \in (a,b)$. We say that limit of f is LER at & approached to C (or, at x=c), Drillen lim f(n) = L if for every sequence $(x_n)_{n=1}^{\infty}$ in (9,b) which $x_n + C$ + h and $x_n - h$ - h are $f(x_n) \longrightarrow 2 \Leftrightarrow n \longrightarrow \infty.$

héheralization 5

- (i) Let CER be such that f is Letited on (a,c) but f is not defined on (c,b) for some 9,b ER. We sag lem f(x) = L if for every sequence $(x_n)_{n=1}^{\infty}$ in (q,c) which $x_n \to c$, whe have $f(x_n) \to L$ of $n \to \infty$.
- (ii) Let CER be Such that f is Letited on (C,b) but f is not defined on (a,b) for some a,b ER. We sag lim f(x) = L if for every sequence $(x_n)_{n=1}^{\infty}$ in (c,b) when $(x_n) = L$ of $n \to \infty$.

Note o-

- (i) The function may not be defined at 'C'.
- (ii) Even if f(c) is defined, f(c) may not be equal to L.
- (iii) If $\lim_{n\to c} f(n) = L \in \mathbb{R}$ then we say the limit of f at x = c exists and if finite.

By a real valued function f' we mean a function $f: A \rightarrow \mathbb{R}$ where f is an interval function $f: A \rightarrow \mathbb{R}$ where f is an interval (a,b), (a,∞) , $(-\infty,b)$, (9,b), (9,b), $(-\infty,\infty) = \mathbb{R}$, etc. (union of interval)

In this case a limit point of an intervent (9,0) is either a point of the intervent or it is a boundary point of the intervent.

Since lémit of a Sequence is usique, by defisition it follows that limit of a function (if exists) is unique. Example: (i) $f: \mathbb{R} \rightarrow \mathbb{R}$ $f(x) = \begin{cases} x^{\nu} & x \neq 2 \\ 1 & x = 2 \end{cases}$ làm f(x) = ?Let (x_n) be a sequence in R S.f. $x_n + 2$ & $x_n \rightarrow 2$ => 2 = 4 => f(xn) -> 4 $\lim_{n\to 2} f(n) = 4 + f(2)$ f(n) = x (ii) $f:(0,1) \rightarrow \mathbb{R}$ $\lim_{n\to 0} f(n) = ?$ $\chi_n \rightarrow 0 \Rightarrow f(x_n) \rightarrow 0$ (xn) in (01) 8.8. 3 but i. $\lim_{n\to 0} f(n) = 0 / f(0)$ is not defined.

Lémit at 200 - Let f: (a, s) -> R be a function. We say the limit of the function f(x) is LER of x appoints to \varnothing , withen $\lim_{n\to\infty} f(n) = L$ if for any sequence (xn) in (a, ∞) with $x_n \to \infty$, we have $\lim_{n\to\infty} f(x_n) = L$. [Similarly, whe can define limit at $-\infty$.] Intitute limit: Let A = R be any set, and 'a' be a limit Point of A. Let f: A-> R be à tunction. We Say the limit of f(x) is as ay approached to a' Dritten lim $f(n) = \infty$ of for any sequence (x_n) in Hwith $x_n \neq a \in x_n \rightarrow a$, we have $f(x_n) \rightarrow \infty$ Examples : $f(x) = \frac{1}{x}.$ (i) f: R> 50} -> R Find lim f(x).

Take $x_n = \frac{1}{n}$ Alen $f(x_n) = n$ Here $\chi_n \rightarrow 0$ 2 $f(\chi_n) \rightarrow \infty$ If we like, $y_n = -\frac{1}{n}$ then $f(x_n) = -n$ Here In -> 0 & f(yn) -> - 0 i làm f(x) does not exist. (i) $f: \mathbb{R} \setminus \{0\} \rightarrow \mathbb{R}$ $f(x) = \frac{1}{2\nu}$, Find $\lim_{n \to 0} f(x)$ For any sequence (xn) in Rigoz with Nn ->0 =) xn -> 0 $=) \frac{1}{\chi_{n}^{2}} \xrightarrow{9} 3 9 1 \rightarrow 3$ or $f(x_n) \rightarrow \infty$ $=) \lim_{n\to\infty} f(a_n) = \infty$. $\lim_{n\to 0} f(x) = \infty$.

(iii)
$$f: \mathbb{R} \setminus So_{3} \to \mathbb{R}$$
 $f(x) = Sin \frac{1}{x^{N}} \cdot Find \underset{N \to 0}{lim} f(x)$
 $\therefore 2ef x_{n} = \frac{1}{\sqrt{2\pi n}} \quad 2 \quad J_{n} = \frac{1}{\sqrt{2\pi n + \frac{\pi}{2}}}$
 $\therefore Ten x_{n} \to 0 \quad 2 \quad J_{n} = \frac{1}{\sqrt{2\pi n + \frac{\pi}{2}}}$
 $\therefore Ten x_{n} \to 0 \quad 2 \quad J_{n} \to 0$
 $f(x_{n}) = Sin (2\pi n) = 0 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (2\pi n) = 1 \to 0$
 $f(J_{n}) = Sin (J_{n}) = 1 \to 0$
 $f(J_{n}) = 1$

Let (2n) be a sequence in R1203 B.d. 2n ->0 \Rightarrow $0 \leq | 2 \ln 3 in (\frac{1}{2n^2}) | \leq | 2 \ln 3 in (\frac{1}{2n^2}) |$ \Rightarrow $0 \leq |f(x_n)| \leq |f(x_n)|$ Since $|x_n| \rightarrow 0$ of $n \rightarrow \infty$, whe have $|f(x_n)| \rightarrow 0$: f(xn) -> 0 of h-> os i. lim f(n) = 0.

 (\dot{V}) $f: \mathbb{R} \to \mathbb{R}$, f(x) = [x] or [x][2] or [2] is the greatest integer $\leq x$. $f(x) = n \quad \text{if} \quad n \leq x < n+1, \quad n \in Z.$ Find lim f(x). Soln: - Let $2n = 1 + \frac{1}{n+1}$. Then $2n \to 1 + \frac{1}{n+1}$ $f(x_n) = [x_n] = 1 \rightarrow 1 \text{ of } h \rightarrow \infty.$ If we choose, $3n = 1 - \frac{1}{n+1}$. Then $3n \rightarrow 1$ of $h \rightarrow 2$ f(7n) = [7n] = 0 -> 0 o o h n -> 2 lèm f(n) does not exist.

Ohe sided limit? For simplicitz oblume f is a real Inlued frenction defined on an open intervenle (c,d) for some C, L CR. Then the right hand limit of f(n) at x = c is L if for any sequence (x_n) in (c,d) with $x_n \rightarrow c$ implies $f(x_n) \rightarrow l$. We write $\lim_{n\to c+} f(n) = 1$. Let f be a real valued function defined on (b,c) for some b, C E R. Then we define the left hand limit of f(x) at x = C is L if for eny sequence (x_n) in (b,c) with $x_n \rightarrow c$ of $n \rightarrow \infty$ implied $f(x_n) \rightarrow 1$ of $h \rightarrow \infty$. We write $\lim_{x\to c^-} f(x) = 1$.

```
Example: J: R-> P
                                  f(n) = [n].
      lèm f(x) 2 lim f(x) for h \in \mathbb{Z}.

x \to h +
Soly: f(x) = n if n \leq x \leq n+1 \forall n \in \mathbb{Z}.
 Let n \in \mathbb{Z}. Let \mathcal{X}_m \in (n, n+1) be such that \mathcal{X}_m \to \mathcal{N} of m \to \infty. e^{-1}
       f(xm) = [xm] = n \rightarrow n \quad \forall \quad m \rightarrow \infty
  \lim_{x\to h^+} f(x) = h
                                      Such that Im -> n of m-> a
Let Jm e (n-1, n) be
  f(Jm) = [Jm] = n-1 \longrightarrow n-1 \quad \text{as} \quad m \to \infty
     \lim_{n\to n^-} f(n) = n-1
```