Elementary Row Operations

Gauss Transforms

What is τ ?

$$egin{bmatrix} 1 & 0 \ - au & 1 \end{bmatrix} egin{bmatrix} v_1 \ v_2 \end{bmatrix} = egin{bmatrix} v_1 \ 0 \end{bmatrix}$$

More generally, which matrix to multiply on the left to create zeros below v_k ?

$$\begin{bmatrix} v_1 \\ \vdots \\ v_k \\ v_{k+1} \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} v_1 \\ \vdots \\ v_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Gauss Transforms

Suppose $v \in \mathbb{R}^n$ with $v_k \neq 0$. If

$$\tau^{T} = [0, \ldots, 0, \tau_{k+1}, \ldots, \tau_{n}], \quad \tau_{i} = \frac{v_{i}}{v_{k}}, \quad i = k+1:n,$$

Define: $M_k = I_n - \tau e_k^T$, then

$$M_{k}v = \begin{bmatrix} 1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 1 & 0 & & 0 \\ 0 & & -\tau_{k+1} & 0 & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & -\tau_{n} & 0 & \cdots & 1 \end{bmatrix} \begin{bmatrix} v_{1} \\ \vdots \\ v_{k} \\ v_{k+1} \\ \vdots \\ v_{n} \end{bmatrix} = \begin{bmatrix} v_{1} \\ \vdots \\ v_{k} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Upper Triangularizing a Matrix

$$A = \begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 10 \end{bmatrix}$$

1. Make zeros below the diagonal of 1st column:

$$M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \implies M_{1}A = \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & -6 & -11 \end{bmatrix}$$

2. Make zeros below the diagonal of the above matrix

$$M_{2} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{bmatrix} \implies M_{2}M_{1}A = \begin{bmatrix} 1 & 4 & 7 \\ 0 & -3 & -6 \\ 0 & 0 & 1 \end{bmatrix}$$
here we have

Remarks on upper triangularization

1. At the start of the kth loop we have a matrix

$$A^{(k-1)} = M_{k-1} \cdots M_1 A$$

that is upper triangular in columns 1 through k-1

2. The multipliers in the kth Gauss transform M_k are based on $A^{(k-1)}(k+1:n,k)$ and $a_{kk}^{(k-1)}$ must be non-zero in order to proceed

Solving simultaneous linear systems: Matrix view

$$\begin{bmatrix} 3 & 5 \\ 6 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 9 \\ 4 \end{bmatrix}$$

Idea: Keep making zeros below the main diagonal. Then matrix becomes upper triangular, which can be solved using backward sweep.

Existence of LU factorization

If no zero pivots are encountered, then Gauss transforms M_1, \ldots, M_{n-1} are generated such that

is upper triangular. This is
$$2^{k}$$
 is upper triangular. This is 2^{k} is upper triangular. This is 2^{k} is only in sign.

If $M_{k} = I_{n} \cap \tau^{(k)} e_{k}^{T}$, then $M_{k}^{-1} = I_{n} + \tau^{(k)} e_{k}^{T}$, and $M_{k} M_{k}^{T}$

$$A = LU, = \left(I_{n} - \tau^{k} e_{k}^{T} \right) \left(I_{n} + \tau^{k} e_{k}^{T} \right)$$

$$= I_{n} - \tau^{k} e_{k}^{T} + \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T}$$
where
$$L = M_{1}^{-1} \cdots M_{n-1}^{-1}$$

$$This is $2^{k} e_{k}^{T}$

$$= I_{n} - \tau^{k} e_{k}^{T} + \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T}$$

$$= I_{n} - \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T}$$

$$= I_{n} - \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T}$$

$$= I_{n} - \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T} \tau^{k} e_{k}^{T} e_$$$$

LU Factorization

If $A \in \mathbb{R}^{n \times n}$ and $\det(A(1:k,1:k)) \neq 0$ for k=1:n-1, then there exists a unit lower trianguar $L \in \mathbb{R}^{n \times n}$ and an upper triangular $U \in \mathbb{R}^{n \times n}$ such that A = LU. If this is the case and A is nonsingular, then the factorization is unique and

 $\det(A) = u_{11}u_{22}\cdots u_{nn}.$

Lu can't proceed after kth step if akk is zero, but this is not possible because =) Itaii + 6, in particular, aii are diagonal entries of A(1:K/1:K)

Simplify L

$$L = M_1^{-1} \cdots M_{n-1}^{-1}$$

Construction of *L* is not complicated:

$$L = M_1^{-1} \cdots M_{n-1}^{-1}$$

$$= (I_n - \tau^{(1)} e_1^T)^{-1} \cdots (I_n - \tau^{(n-1)} e_{n-1}^T)^{-1}$$

$$= (I_n + \tau^{(1)} e_1^T) \cdots (I_n + \tau^{(n-1)} e_{n-1}^T)$$
Here $\tau^k = [0, \cdots, 0, \tau^{k+1}, \cdots, \tau^n]^T$.

L looks complicated but it is not.

Have a look at "mix" terms:

$$\tau^{(i)}e_i^T\tau^{(j)}e_j^T$$

Simplify L

Does these "mix" terms:

survive?
$$e_i^{T} = [o, o, ..., 1, o, ..., o]$$
, $f(i) = [o, o, ..., o, \tau_{j+1}, \tau_{j+2}, ..., \tau_{n}]^{T}$

For $j7$, $e_i^{T} = 0$

Henu, L now becomes after removing the mixed terms, we get:

$$L = I_n + \sum_{k=1}^{n-1} \tau^{(k)} e_k^T, \quad L(k+1:n,k) = \tau^{(k)}(k+1:n)$$
This means =)
$$\begin{cases} L_{k+1} \\ L_{k+2} \\ L_{k+2} \end{cases} = \begin{bmatrix} \tau^{(k)}(k+1) \\ \tau^{(k+1)} \\ \tau^{(k)} \end{cases}$$