Non-protein-coding RNAs as a regulators of development in tunicates

cavh

December 4, 2017

miRNA families origin and evolutionary perspective

miRNAs in clusters

Methods

The starting point to detect the miRNA clusters on those species was the generation of GFF3 files with the genome coordinates of the miRNA elements. At the same time, current genome annotations from each specie was retrieved in order to determine at the same time, the position of annotated elements on those genomes. Given those elements, for each one that are not part of miRNAs annotation was designed as \mathcal{P}_j elements, and in another way ones that are annotated as miRNAs, was identified as \mathcal{M}_i . In this way, ordered elements \mathcal{M}_i and \mathcal{M}_{i+1} are part of a cluster $\mathcal{C}_k \neg \mathcal{M}_i \prec \mathcal{P}_j \prec \mathcal{M}_{i+1}$. in this way each \mathcal{C}_k cluster was identified indepentently and it was composed by sets of miRNA elements M_i with a $|P_k| \geq 2$. The M_i elements have a correspondent index T_i that maps into the hexadecimal alphabet. Those T_i elements could be aligned in the next steps by an implementation of a Needleman-Wunsch [?] algorithm, which have taken into account: 1:1 matches and insertions 1:- or -:1, but not 1:1 (mis)-matches, where the alignment program penalizes harder than a insertion. The alignment score was calculated by this score matrix:

$$D_{ij} = \max \begin{cases} D_{i-1,j-1} + 2 & \text{Matches} \\ D_{i-1,j-1} - (4) & \text{(Mis)-matches} \\ D_{i-1,j} - (1) & \text{Insertion}(a) \\ D_{i,j-1} - (1) & \text{Insertion}(b) \end{cases}$$
(1)

In this case, all the sequences that contains at least one M_i miRNA family represented by T_i were collected and next, aligned in a pairwise way with all possible combinations of sequences. All the resulting alignments for each T_i index and cleaned, taking only ones that reported alignments scores (\mathcal{G}) \geq third quartile of the data (located in the 75% or greater percentage of the score distribution), creating a subset \mathcal{B} with the best scored pairwise alignments.

With \mathcal{B} an implementation of multiple alignments, implemented by Reztlaff (2017) was applied in order to detect the conserved blocks in all pairwise alignments. In this way the implementation allowed the detection of those conserved blocks of $M_i \subseteq \mathcal{B}$.

Results

Applying the last strategy to detect miRNA's clusters granted the option to study the conserved elements along chordate's genomes. As shown in Figure ??, directly with the location form those miRNA elements have been possible to identify the number and the length of those identified regions along all the studied genomes. In this case, the cluster that contains the greatest number of miRNAs elements (60) is located on *D. rerio* genome: Chromosome 4:28738556-28754891, for tunicates on *C. intestinalis*: Chromosome 7:4153284-4156782 with 23 elements, and in *B. floridae*: Bf_V2_118: 216744-220351 only 5 miRNAs have been detected. According to this data, complemented by the information from Figure ??, the estimation along all chordate groups shown that in cluster's detected on tunicates is possible to identify clusters that contain more miRNA's elements per

Mb, in comparison to Cephalochordata and Vertebrata. In complement, Table 1 describe the families miRNAs located inside the largest clusters fore each specie.

Clade	Specie	Chr	Start	End	Size(Mb)	No. miRNAs	Elements
С	B. floridae	Bf_V2_118	216744	220351	3607	5	bfl-mir-4869, bfl-mir-4857, bfl-mir-4862, bfl-mir-4856b, bfl-mir-4856a
Т	O. dioica	scaffold_3	2222857	2223714	857	6	odi-mir-1497e, odi-mir-1497d-2, odi-mir-1497d-1, odi-mir-1497c, odi-mir-1497b, odi-mir-1497a
T	B. schlosseri C. intestinalis	chrUn 7	40003 4153284	41320 4156782	1317 3498	2 23	mir-233, mir-10 cin-mir-4006d, cin-mir-4006c, cin-mir-4001b-2, cin-mir-4000i, cin-mir-4001e, cin-mir-4001d, cin-mir-4006f, cin-mir-4006b, cin-mir-4000b-2, cin-mir-4000b-1, cin-mir-4000b-1, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d, cin-mir-4000d-2, cin-mir-4000d-2, cin-mir-4000d-2, cin-mir-4006a-2, cin-mir-4006a-3,
Т	C. savignyi	reftig_16	3924783	3925336	553	3	cin-mir-4006a-1 csa-mir-216b, csa-mir-216a, csa-mir-217
Τ	C. savignyi	$reftig_1$	1335375	1336487	1112	3	csa-mir-92b, csa- mir-92c, csa-mir- 92a

dre-mir-430c-18, dre-mir-430b-4, dre-mir-430a-15, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430a-10, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430a-15, dre-mir-430c-18, dre-mir-430b-3, dre-mir-430a-10, dre-mir-430c-18, dre-mir-430b-8, dre-mir-430a-15, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430a-17, miR-430,dre-mir-430b-20, dre-mir-430a-10,dre-mir-430c-18, dre-mir-430b-5, dre-mir-430i-3, dre-mir-430c-18, dre-mir-430b-3, dre-mir-430a-10, dre-mir-430c-18, dre-mir-430b-8, dre-mir-430a-11, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430i-3, dre-mir-430c-18, dre-mir-430b-19, dre-mir-430a-10, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430a-17, miR-430,dre-mir-430b-20, dre-mir-430a-10,dre-mir-430c-18, dre-mir-430b-5, dre-mir-430i-3, dre-mir-430c-18, dre-mir-430b-19. dre-mir-430a-10, dre-mir-430c-18, dre-mir-430b-5, dre-mir-430a-15, dre-mir-430c-18, dre-mir-430b-3, dre-mir-430a-10,dre-mir-430c-18, dre-mir-430b-8, dre-mir-430a-15, dre-mir-430c-18,

dre-mir-430b-5

dre-mir-430a-18,

V

7

mir-233

Table 1: Details of biggest miRNA cluster for chordate species

1882777

Comparison between miRNA clusters have been calculated in order to access to the most conserved set of miRNA families inside in a cluster. Conserved blocks have been detected on all species and the following miRNAs are inside a cluster and also sharing conserved blocks with another species: let-7, mir-1, MIR1122, mir-130, mir-132, mir-133, mir-135, mir-146, mir-15, mir-17, mir-181, mir-183, MIR1846, mir-186, mir-19, mir-193, mir-216, mir-219, mir-23, mir-24, mir-242, mir-25, mir-27, mir-286, mir-29, mir-2985-2, mir-30, mir-34, mir-395, mir-454, mir-489, MIR535, mir-8, mir-9. Details about the nature of this elements are described on Figure 1 Working....

Figure 1: Multiple alignments of cluster's found along chordate species. Left plot summarize the let-7 alignment and its adjacent miRNA families, represented by different color schemes (see legend for details), right plot corresponds to miR-8 family. Bfl: B. floridae, Cin: C. intestinalis, Csa: C. savignyi, Dre: D. rerio and Lch: L. chalumnae.

To complete the tree of loss and gain of families

Methods

The initial eight chordates genomes from chordate species: Branchiostoma floridae, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi, Danio rerio, Didemnum vexillum, Latimeria chalumnae and Oikopleura dioica, were analyzed through homology searches at sequence level and a posterior validation by secondary structure alignments against pre-build metazoan-covariance models, as reported by [8]. The final set of miRNAs was generated on a GFF file, reporting all the genome coordinates from each miRNA element. Given these information, miRNA families names were obtained from miRBase, with the miFam.dat file, which contains the relationships between miRNA specific annotations for each specie and their correspondent miRNA family. These annotations were compared against the last report of miRNAs families reported by [3]. In case that the obtained miRNA family was not included neither miRBase or miRNAs matrix, a new label were designed to detect those specific elements. At the same time, from the reported matrix was considered the reported families from the following vertebrates: Anolis carolinensis, Petromyzon marinus and Xenopus tropicalis. At the same time, two new reports of miRNAs on tunicates were included on this matrix from: Salpa thompsoni [4] and Halocynthia roretzi [9]. At now, three new genomes from the Molgula sp. genus were reported [7] and the genome sequences have been obtained from ANISEED ¹ [1].

For the latter species, homology BLAST searches were performed. All hairpin sequences from miRBase (v. 21) [5] were used as queries against those genomes. After that, in order to obtain the best miRNA candidates, mature sequences were searched on previously detected hairpin candidates. This strategy also include the new reported genome from *Ciona robusta* reported on ANISEED.

In this way, the initial miRNA matrix from [3] was updated with the information retrieved from detection of miRNAs families and also, with the inclusion from candidates in new reported genomes (*H. roretzi*, *S. thompsoni*, *M. occidentalis*, *M. occulta* and *M. occulta*). Moreover, the phylogenetic distribution from Tunicate clade have been obtained from [6]. And the final tree has been completed with the inclusion of one cephalochordata (*B. floridae*) and five vertebrates (*A. carolinensis*, *D. rerio*, *L. chalumnae*, *P. marinus* and *X. tropicalis*).

Additionally, in the final matrix only families that have presence in at least two species were considered, except for the miRNAs families that belongs from Protostomata group (Prot). This updated matrix and the phylogenetic distribution of the species in Newick format were the input files for Count program [2] in order to reconstruct the corresponding miRNAs family history by the implemented Dollo parsymony.

Results

The updated matrix of miRNAs reported 208 families, as shown in Figure??. Along the complete distribution of miRNAs families is important to note the presence of let-7 family in all species but at the same time, the 10 most conserved miRNAs families are present in at least 72% of the species, in this case for: mir-34, -31, -190, -216, -153, -1, -8, -7 and -124. From this particular list of miRNAs, in overall O. dioica and H. roretzi has been lost about 50% and 60% of the latter conserved families, respectively. At the same time, the state of annotations from this conserved families on Protostomata, Cephalochordata and Craniata are without evident lost and only mir-34 could not be identified on P. marinus. The general trend in Craniata shows an increment of conserved families, sometimes with the possibility of trace the presence from P. marinus and identifying 14 conserved candidates along all the clade (mir-128, -138, -143, -145, -15, -181, -199, -204, -221, -24, -26, -27, -451 and -456). Specifically, exists 23 miRNAs that have been identified only on tunicates and not in the other studied species, but from those candidates only 7 (mir-1497, -281, -1473, -200, -92, -1502 and -4079) are previously reported as tunicate specific, the other ones have been reported also in vertebrates (mir-1277, -297, -3533, -466, -467, -568, -374, -450, -876, -8915, -3149, -355, -340, -553) and in insects (mir-3 and mir-11). Working...need to confirm this distribution of species because Simion P et al replied: Dear Cristian, This work is unfortunately still completely unpublished, so if you want to cite it, you will probably have to write something like "Simion et al., work in progress'. I am sorry to not be able to help you more with this citation. We have however another phylogenomic paper on tunicates that is on the verge of being published, so maybe you will soon be able to cite that one instead of the poster." some ideas to cite another resource? Maybe from Federico Chapter?

¹https://www.aniseed.cnrs.fr/

/homes/biertank/cristian/Desktop/Tunicata_miRNA_Chapter

Figure 2: Absence/Presence Matrix of miRNAs families along Bilaterian species. **Prot**: Protostomata, **Brfl**: B. floridae, **Oidi**: O. dioica, **Dvex**: D. vexillum, **Ciin**: C. intestinalis, **Cisa**: C. savignyi, **Ciro**: C. robusta, **Sath**: S. thompsoni, **Mata**: M. occulata, **Mlta**: M. occulta, **Mlis**: M. occidentalis, **Bosc**: B. schlosseri, **Haro**: H. roretzi, **Pema**: P. marinus, **Dare**: D. rerio, **Lach**: L. chalumnae, **Xetr**: X. tropicalis and **Anca**: A. carolinensis.

/homes/biertank/cristian/Desktop/Tunicata_miRNA_Chapter/

Figure 3: Dollo parsymony of miRNAs families distribution in some chordates genomes

References

- [1] Matija Brozovic, Christelle Dantec, Justine Dardaillon, Delphine Dauga, Emmanuel Faure, Mathieu Gineste, Alexandra Louis, Magali Naville, Kazuhiro R. Nitta, Jacques Piette, Wendy Reeves, Céline Scornavacca, Paul Simion, Renaud Vincentelli, Maelle Bellec, Sameh Ben Aicha, Marie Fagotto, Marion Guéroult-Bellone, Maximilian Haeussler, Edwin Jacox, Elijah K. Lowe, Mickael Mendez, Alexis Roberge, Alberto Stolfi, Rui Yokomori, C. Titus Brown, Christian Cambillau, Lionel Christiaen, Frédéric Delsuc, Emmanuel Douzery, Rémi Dumollard, Takehiro Kusakabe, Kenta Nakai, Hiroki Nishida, Yutaka Satou, Billie Swalla, Michael Veeman, Jean-Nicolas Volff, and Patrick Lemaire. Aniseed 2017: extending the integrated ascidian database to the exploration and evolutionary comparison of genome-scale datasets. *Nucleic Acids Research*, page gkx1108, 2017.
- [2] Miklós Csűös. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. *Bioinformatics*, 26(15):1910–1912, 2010.
- [3] Jana Hertel and Peter Stadler. The Expansion of Animal MicroRNA Families Revisited. *Life*, 5(1):905–920, 2015.
- [4] Nathaniel K. Jue, Paola G. Batta-Lona, Sarah Trusiak, Craig Obergfell, Ann Bucklin, Michael J. O'neill, and Rachel J. O'neill. Rapid evolutionary rates and unique genomic signatures discovered in the first reference genome for the southern ocean salp, salpa thompsoni (Urochordata, Thaliacea). Genome Biology and Evolution, 8(10):3171–3186, 2016.
- [5] Ana Kozomara and Sam Griffiths-Jones. mirbase: annotating high confidence micrornas using deep sequencing data. *Nucleic Acids Research*, 42(D1):D68–D73, 2014.
- [6] P. Simion, C. Scornavacca, J. Coulcher, S. Darras, C. Dantec, J. Piette, P. Lemaire, E.J.P. Douzery, and F. Delsuc. Tunicate phylofenomics: Building a large molecular dataset to reconstruct evolutionary relationships among fast-evolving tunicates. In *Molecules as documents of evolutionary history: 50 years after*, Roscoff Marine Station, May 2016.
- [7] Alberto Stolfi, Elijah K Lowe, Claudia Racioppi, Filomena Ristoratore, C Titus Brown, Billie J Swalla, and Lionel Christiaen. Divergent mechanisms regulate conserved cardiopharyngeal development and gene expression in distantly related ascidians. *eLife*, 3:e03728, sep 2014.

- [8] C. A. Velandia-Huerto, A. A. Gittenberger, F. D. Brown, P. F. Stadler, and C. I. Bermudez-Santana. Automated detection of ncRNAs in the draft genome sequence of a colonial tunicate: the carpet sea squirt Didemnum vexillum. *BMC Genomics*, 17:691, Aug 2016.
- [9] Kai Wang, Christelle Dantec, Patrick Lemaire, Takeshi A. Onuma, and Hiroki Nishida. Genome-wide survey of miRNAs and their evolutionary history in the ascidian, Halocynthia roretzi. *BMC Genomics*, 18(1):314, 2017.