GRADUATION THESIS

Analyze and design software to checking weld quality using image processing technology and segmentation deep learning

NGUYEN THO DIEP

diep.nt168121@sis.hust.edu.vn

Major: Information Technology Specialization: Information Technology

Supervisor:	TS. Trinh Anh Phuc
	Signature
Department:	Computer science
School:	School of Information and Communication Technology

ACKNOWLEDGMENTS

I have received a lot of help and support through the work of this thesis.

First, I would like to express my gratitude to my supervisor TS. Trinh Anh Phuclecturer in the School of Information and Communication Technology at the Hanoi University of Science and Technology for his guidance and advice throughout the research.

Second, I would like to acknowledge my colleagues from my internship at ST4I Co., especially my boss, Mr. Pham Anh Duong for giving me the advice and the opportunities to focus on my thesis.

During my 5 years in Hanoi University of Science and Technology, it is impossible not to thank my friends. They have supported me a lot in study, as well as in life. Together we created unforgettable memories in student life.

And finally, I would like to thank my friends and my parents for encouraging and supporting me throughout my study.

ABSTRACT

Locating and identifying printed circuit board (PCB) mounted components based on machine vision is an important and challenging issue for automated PCB inspection and PCB recycling. Through that, we can determine product quality quickly, helping to reduce manpower as well as costs in industrial production. In this project, we propose a depth image-based PCB segmentation method to segment and identify components in a PCB by classification method.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION	1
1.1 Overview	1
1.2 Solution	3
1.3 The order of execution	4
CHAPTER 2. TECHNOLOGY	5
2.1 Theory of machine learning	5
2.1.1 What is machine learning?	5
2.1.2 Basic Machine Learning Concepts	6
2.1.3 Workflow	7
2.1.4 Grouping Machine Learning Algorithms	7
2.1.5 Some Machine Learning Algorithms	10
2.1.6 Applications of Machine Learning	11
2.2 Neural Network	11
2.2.1 Overview	11
2.2.2 Perceptrons.	11
2.2.3 Neural network architecture	13
2.2.4 Neural Network Application.	14
2.3 Convolutional Neural Network	14
2.3.1 Basic classes of convolutional neural networks	14
2.3.2 The structure of a convolutional neural network	21
2.4 Overview OpenCV and Tensorflow	22
2.4.1 OpenCV	22
2.4.2 Tensorflow	24
2.4.3 Keras	27

2.5 Test program	29
2.5.1 C#	29
2.5.2 MVVM	30
CHAPTER 3. BUILD FORECAST MODELS	32
3.1 Data construction	32
3.1.1 Overview	32
3.1.2 Classification of errors	36
3.2 Building predictive models	43
3.3 Model training	45
3.3.1 Optimal function	45
3.3.2 Loss function	45
CHAPTER 4. TESTING AND ASSESSING THE RESULTS	47
4.1 Training environment	47
4.2 Data training	48
4.3 Training process	48
4.4 Evaluate	48
4.5 Experiment	51
CHAPTER 5. CONCLUSION AND FUTURE WORK	56
REFERENCE	57

LIST OF FIGURES

Figure 1.1	Circuit board (PCB) sample	1
Figure 1.2	Optical inspection system(AOI)	2
Figure 1.3	PCB Inspection Testing Techniques	2
Figure 2.1	What is Machine learning?	5
Figure 2.2	Machine learning workflow	7
Figure 2.3	Supervised Learning	8
Figure 2.4	Unsupervised Learning	9
Figure 2.5	Construction of biological neurons	12
Figure 2.6	Perceptron model	12
Figure 2.7	Neural network architecture	13
Figure 2.8	Example convolutional layer works with stride equal to two .	15
Figure 2.9	Example padding in convolution layer	16
Figure 2.10	Example of pooling layer	17
Figure 2.11	Graph of Relu activation function	18
Figure 2.12	Graph of Leaky ReLU activation function	20
Figure 2.13	Full connection layer	21
Figure 2.14	The structure of a convolutional neural network	21
Figure 2.15	Advantages of Tensorflow	25
Figure 2.16	The disadvantage of Tensorflow	26
Figure 2.17	What is Keras	27
Figure 2.18	Top deeplearning libraries 2018	28
Figure 2.19	The processing in MVVM	30
Figure 3.1	Sample of Image in Taishodo	32
Figure 3.2	Camera Hikvision	33
Figure 3.3	Lens 25mm	34
Figure 3.4	Some other devices	35
Figure 3.5	Quality soldering feet image	36
Figure 3.6	The tin bridge error	37
Figure 3.7	The too much tin error	39
Figure 3.8	The solder leg swelling error	40
Figure 3.9	Image and label of the dataset	42
Figure 3.10	Proposed model architecture	44
Figure 4-1	Info of environment	47

Figure 4.2	Training process
Figure 4.3	ROC-AUC Graph
Figure 4.4	Predictive model evaluation results
Figure 4.5	Main interface
Figure 4.6	Load image module
Figure 4.7	Load image module
Figure 4.8	Quality soldering feet(OK)
Figure 4.9	The tin bridge error(NG) $\dots \dots \dots$
Figure 4.10	Solder weld swelling error(NG)
Figure 4.11	The too much tin error(NG)

LIST OF TABLES

Bång 3.1	Error classification with color	•	•	•	•	•		•	•	•	•	•	•	•	43
Bảng 4.1	The samples of training and testing														48

LIST OF ABBREVIATIONS

Abriviation	Full Expression
AI	Artificial Intelligence
AOI	Automated Optical Inspection
AUC	Area Under The Curve
CNN	Convolutional Neural Network
NN	Neural Network
MVVM	Model - View - ViewModel
SVM	Support Vector Machine

CHAPTER 1. INTRODUCTION

1.1 Overview

PCB (Printed Circuit Board)(figure 1.1) is a multi-layer and non-conductive printed circuit board in which all the electronic components are connected together on a circuit board and with a base underneath. When there is no PCB, the components are connected by wires, which increases the complexity and the reliability is not high, so it is not possible to create a circuit as large as the motherboard. In a PCB, all the components are connected wirelessly and are wired internally, thus reducing the complexity of the overall circuit design. PCBs are used for power supply and connections between components. PCB can customize any specifications according to user requirements. You can encounter PCB in many electronic devices such as: TV, mobile phone, digital camera, computer parts such as: Graphics card, Motherboard... It is also used in many fields. such as: Medical equipment, industrial machinery, automotive industry, lighting...

Figure 1.1: Circuit board (PCB) sample

In the electronics industry, error checking on printed circuit boards (PCBs) is an important factor in ensuring product accuracy and safety. Currently, there are many techniques and devices used for error checking on PCBs, including in-circuit testing (ICT), X-ray inspection (figure 1.3), and automated optical inspection (AOI) (figure 1.2). These techniques allow for quick and efficient error detection during