Logistic Regression

An Introduction to LR classifier

Logistic Regression – Binary Classification

The sentiment analysis task is mainly a binary classification problem to predict whether a given sentence is positive of negative. In our demonstrations we denote '0' as negative and '1' as positive.

Logistic Regression – The points concept

- Each sentence is mapped to a point.
- O If the point is greater than 0.5 then positive else negative.

Logistic Regression – The points concept

Words/ Document s	going	to	today	i	am	it	is	rain	Points
Document 1	0	0.07	0.07	0	0	0.17	0.17	0.17	0.62
Document 2	0	0	0.07	0.07	0.07	0	0	0	0.41
Document 3	0	0.05	0	0.05	0.05	0	0	0	0.72

Logistic Regression – Learning algorithm

O A learning algorithm is a specific type of algorithm whose performance increases with time. Logistic regression is a type of learning algorithm. It learns from a training dataset, the pattern of the data and applies the learned logics on new data for prediction.

Logistic Regression – Linear Equation

Consider the equation:

$$y = a + bx_1 + cx_2 + \dots + dx_{2000}$$

a, b, c, d = coefficients

 $X_1, X_2, ..., X_{2000}$ = independent variables

y = dependent variable

Logistic Regression – The points concept

Words/ Document s	going	to	today	i	am	it	is	rain	Points
Document 1	0	0.07	0.07	0	0	0.17	0.17	0.17	0.62
Document 2	0	0	0.07	0.07	0.07	0	0	0	0.41
Document 3	0	0.05	0	0.05	0.05	0	0	0	0.72

Logistic Regression – Linear Equation

Consider the equation:

$$y = a + bx_1 + cx_2 + \dots + dx_{2000}$$

a, b, c, d = coefficients

 $X_1, X_2, ..., X_{2000}$ = independent variables

y = dependent variable

Logistic Regression – Optimal Coefficients

The algorithm finds the optimal values for the coefficients

Logistic Regression – Predicting Sentiment

If $y \ge 0.5 \rightarrow Positive sentiment$

If $y < 0.5 \rightarrow Negative sentiment$

Logistic Regression – Value range

For some values of the dependent variables, the value of y can be > 1 or < 0.

For that, we need some way to restrict the value of y within the range 0 and 1.

Logistic Regression – Value range

For y >= 0,
$$y = e^{(a+bx_1+cx_2+\cdots+dx_{2000})}$$

For y < 1, $y = \frac{e^{(a+bx_1+cx_2+\cdots+dx_{2000})}}{e^{(a+bx_1+cx_2+\cdots+dx_{2000})}+1}$

Logistic Regression – Value range

$$\ln\left(\frac{y}{y-1}\right) = a + bx_1 + cx_2 + \dots + dx_{2000}$$

Logistic Regression – Graph

Logistic Regression – Summary

- Coefficients.
- OBased on the calculated coefficients, new sentences are given points.
- Olf the point > 0.5, the sentence is predicted to be positive and vice versa