1 Yoneda Lemma

Lemma 1.1 (H_A or $\mathcal{A}(\underline{\ },A)$). For any category \mathcal{A} , fixing an object, $A \in \mathcal{A}$, there's a functor, $H_A: \mathcal{A}^{op} \to Set$ defined as:

- i For object $B \in \mathcal{A}$, F(B) := Hom(B, A)
- ii For any morphism in A, $g: X \to Y$,

$$H_A(g): \mathcal{A}(Y,A) \to \mathcal{A}(X,A) \text{ , as, } \forall p \in \mathcal{A}(Y,A) \text{ , } p \mapsto p \circ g \text{ i.e. } \Big(H_A(g)\Big)(p) := p \circ g$$

Proof. Prove that H_A is indeed a functor

Lemma 1.2. For a natural transformation α , it's a natural isomorphism iff each of its components is an isomorphism. phism.

Lemma 1.3. naturality in two variables simultaneously is equivalent to naturality in each variable independently(1.3.29 pg 39)

Theorem 1.1. Yoneda If A is a locally small category, for any object $A \in A$ and $X \in [A^{op}, Set]$, there's exists a natural isomorphism:

$$[\mathcal{A}^{op}, Set](H_A, X) \cong X(A)$$
 naturally in $A \in \mathcal{A}$

Explaination:

First, fix any category, A. Now, choose two things (independent of each other):

i an object, A from the category $\mathcal{A} = \mathcal{A}^{op}$

ii an object, $X \in [\mathcal{A}^{op}, Set]$, the presheaf category i.e. a functor $X:A^{op}\to Set$

Here, $[\mathcal{A}^{op}, Set](H_A, X)$ denotes morphisms $H_A \to X$ in $[\mathcal{A}^{op}, Set]$, i.e. natural transformations, $\alpha: A^{op}$

Each of these natural transformations is a collection of, morphisms in Set, hence each of their components is exactly a function. i.e. $\forall \alpha \in [\mathcal{A}^{op}, Set](H_A, X), \forall K \in \mathcal{A}, \alpha_K \text{ is a function } : H_A(K) \to X(K)$

X(A) is precisely a set, because X(A) is the image of (our chosen object,) A, under (our chosen functor,) X.

The key idea is that the choice of A and X completely determines all possible maps (i.e. natural transformations) from functor H_A to functor X.

Moreover, that this isomorphism is *natural* in A and X.

Meaning that $[A^{op}, Set](H_A, X)$ and X(A) are functorial in both A and X

Notation:

- Denoting the category of presheaves on \mathcal{A} by \mathcal{C} , i.e. $\mathcal{C} := [\mathcal{A}^{op}, Set]$
- using \hat{a} as a map i.e. $\hat{a} = b$ stands for $a \to b$
- using \tilde{a} as a map i.e. $\hat{a} = b$ stands for $a \to b$

To prove the theorem, first, going to show that $[A^{op}, Set](H_A, X)$ is isomorphic to X(A). And then that this isomorphism is natural.

Proof. Let a locally small category, \mathcal{A} be given.

Now, fix any object $A \in \mathcal{A}$ and a presheaf on $\mathcal{A}, X \in \mathcal{C}$

Showing isomorphism between $[A^{op}, Set](H_A, X)$ and X(A)

Define $\hat{}: \mathcal{C}(H_A, X) \to X(A)$ as the input's A-component, evaluated at the identity of A(in \mathcal{A}). i.e.

for natural transformation $\alpha: H_A \to X$, define $\hat{\alpha} := \alpha_A(1_A)$, an element of X(A)

Define $\tilde{}: X(A) \to [\mathcal{A}^{op}, Set](H_A, X)$ on element, $x \in X(A)$, by defining it's K-component for any $K \in \mathcal{A}$ as

$$\tilde{x}_K: H_A(K) \to X(K)$$
 as, for each $p \in H_A(K) = Hom_{\mathcal{A}^{op}}(A, K)$, $\tilde{x}_K(p) := (X(p))(x)$

Meaning that the \tilde{x}_K maps any arrow $p:K\to A$ to the image of x under the function $X(p):X(A)\to X(K)$.

Now, to show that $\tilde{x} = (\tilde{x}_K)_{K \in \mathcal{A}}$ is a natural transformation,

for any
$$q \in \mathcal{A}^{op}(K, L)$$
, the square $X(K) \xrightarrow{H_A(q)} H_A(L)$ $X(K) \xrightarrow{-\circ q} A(L, A)$ $X(K) \xrightarrow{X(q)} X(L)$ i.e. $X(K) \xrightarrow{X(q)} X(L)$ $X(K) \xrightarrow{X(q)} X(L)$ $X(K) \xrightarrow{-\circ q} X(L)$

So, for any $f: K \to A$, need that $\tilde{x}_L(f \circ q) = X(q) \circ \tilde{x}_K(f)$

Now, LHS= $\tilde{x}_L(f\circ q)=\Big(X(f\circ q)\Big)(x)$ while RHS= $X(q)\circ \tilde{x}_K(f)=\Big(X(q)\Big)\Big(X(f)(x)\Big)=\Big(X(q)\circ X(f)\Big)(x)$ And as X is a contravariant functor, $X(f\circ q)=X(q)\circ X(f)$, giving that LHS=RHS. Finally, to show isomorphism, need to show that $\hat{\ }$ and $\hat{\ }$ are mutually inverse,

for any
$$x \in X(A)$$
, $\hat{x} = \tilde{x}_A(1_A) = (X(1_A))(x) = 1_{X(A)}(x) = x$

And, for any $\alpha \in [\mathcal{A}^{op}, Set](H_A, X)$, $\tilde{\hat{\alpha}} = \alpha$ i.e. that each of their components are equal. As both $\tilde{\hat{\alpha}}$ and α are natural transformations between functors that go to the category Set, each of the components is a function.

So, need to show that for any
$$f \in \mathcal{A}(K, A) = H_A(K)$$
, $\left(\tilde{\hat{\alpha}}\right)_K(f) = \alpha_K(f)$

LHS=
$$\tilde{\alpha}_B(f) = (X(f))(\hat{\alpha}) = (X(f))(\alpha_A(1_A))$$
 and RHS= $\alpha_K(f) = \alpha_K(1_A \circ f)$

$$\mathcal{A}(A,A) \xrightarrow{-\circ f} \mathcal{A}(K,A)$$

Now, as α is a natural transformation, the square $\alpha_A \downarrow \qquad \qquad \downarrow_{\alpha_K} \qquad \text{commutes, for } 1_A, \text{ giving that}$ $X(A) \xrightarrow{X(f)} X(K)$

 $\alpha_K(1_A \circ f) = (X(f))(\alpha_A(1_A))$ thus, RHS=LHS, and the isomorphism is shown.

Showing naturality of this isomorphism

2 Cayley's Theorem

Definition 2.1 (Symmetric group on a set).

Proof.

Theorem 2.1. Cayley's Theorem Every group, (G, .) is isomorphic to a subgroup of symmetric group on G.

3 Embedding of a category in Presheaf category

Definition 3.1 (Embedding of a category). A category, \mathcal{A} is said to be embedded in a category, \mathcal{B} if there exists a functor $F: \mathcal{A} \to \mathcal{B}$ such that F is full, faithful and injective (on objects).