Introduction

In the database schema described by this document, elements of a pipeline are broken down into physical entities, processes, calculations, and "compositions". Compositions are entities that are defined by their makeup and are thus immutable--for example, a pool; if you change the ratios of the components in a pool, you have in fact created a *different* pool. Processes and calculations are also immutable--"changing" anything about them creates a new instance of them--while physical entities are mutable in that their contents can change, and they can be discarded/retired/etc. This schema is, undeniably, much more complex than that originally proposed for the 16S process alone, and that is its main drawback. However, it has the following advantages:

- 1. It accommodates both 16S and shotgun pipelines with minimal duplication of structure or information
- 2. It provides a generalized model of the type that Austin requested
 - This generalized model should allow a great deal of flexibility for adding new pipelines
- 3. It tracks process history at the well level rather than the plate level
 - This is necessary to accommodate plate rotations, cherry-picking (not currently performed but anticipated in the future) and interleaving
 - Note that interleaving of four 96-well plates on a single 384-well plate (e.g. first well contains contents from input plate 1, second well contains contents from input plate 2, and so on) already occurs in the shotgun pipeline, and thus must be supported
- 4. It models the fact that a plate or well can undergo *changes* to its contents
 - This means that treating wells and their contents as interchangeable is inadequate
 - Note that this situation occurs in the shotgun pipeline when a given plate first contains normalized gDNA and then is added to to produce prepped library contents
- 5. It can represent multiple measurements of the same type made on a single entity
 - This is necessary since sometimes plates are re-quantified if the first quantification seems dodgy
- 6. It correctly reflects the fact that some processes occur on multiple entities at the same time
 - For example, Greg notes that quantification can be performed on up to three 384-well plates at one time

Besides its complexity, a drawback of this schema is that many processes in the current pipelines ARE in fact conducted at the plate level (e.g., in the 16S pipeline there is a 1:1 relationship between a gDNA plate and a library prep plate), and while this schema can certainly *reflect* this relationship, it cannot *enforce* it with database constraints.

Database Preparation

The following actions would necessary before recording any lab processes in the database.

- 1. Populate protocol
 - primer_template_creation
 - primer_working_plate_creation
 - sample_plating
 - gdna_extraction
 - 16S_library_prep
 - shotgun_library_prep
 - pico_green_quantification
 - qpcr_quantification
 - gdna_normalization
 - manual_pooling
 - automated_pooling
- 2. Populate equipment_type
 - echo
 - mosquito
 - tm 300 8 channel pipette head
 - tm 50 8 channel pipette head
 - o etc?
- 3. Populate equipment
 - · the echo
 - o mosquito 1
 - o mosquito 2
 - etc
- 4. Populate plate_configuration
 - 96-well deep-well plate
 - o 96-well microtiter plate
 - 384-well microtiter plate
 - etc
- 5. Populate composition_type

- reagent
- primer_set
- sample
- gdna
- library_prep
- pool
- 6. Populate reagent composition type
 - · master mix specifics
 - water specifics
 - kappa hyper plus kit specifics
 - · shotgun stubs specifics
- 7. Populate sample_composition_type
 - · experimental sample
 - blank
 - vibrio positive control
 - o etc?
- 8. Populate primer template info
 - 1. Populate primer set
 - EMP 16S primers
 - I5 shotgun primers
 - I7 shotgun primers
 - 2. Create marker gene primer set record for EMP 16S primers
 - TODO: Is there a need for an analogous subtable for the shotgun primers?
 - 3. Create process record for primer_template_creation
 - will only be one process for this unless/until new primer sets are invented later
 - no need for a specific process subtype here
 - 4. Create plate record for each plate template in each of the primer sets, e.g.
 - plate 1 of EMP 16S primer set
 - plate 2 of EMP 16S primer set
 - ..
 - plate 8 of EMP 16S primer set

- plate 1 of I5 shotgun primer set
- plate 1 of I7 shotgun primer set
- hmmm, discarded doesn't make sense for templates
- 5. Create container and well records for each well on each plate template
 - container 's latest_upstream_process_id will be process for primer template creation
 - hmmm, remaining volume doesn't make sense for templates
- 6. Create composition and primer_set_composition records for each distinct barcode in each primer set
 - composition 's upstream_process_id will be process for primer_template_creation
 - hmmm, currently total volume is required, but doesn't make sense for templates
- 9. Populate working primer plate info
 - 1. Create process and primer_working_plate_creation_process records for working plate creation
 - all steps below this can be created automatically by lab manager software in the future when new working plates are made; manual creation is necessary only for those currently in use
 - currently have primer_set_id on primer_working_plate_creation_process;
 could theoretically be in conflict with primer_set_id on primer_set_composition as db itself does not enforce consistency
 - 2. Create plate record for each working plate in the primer set
 - 3. Create container and well records for each well on each working plate
 - container 's latest_upstream_process_id will be generic process for primer working plate creation process
 - 4. Create composition and primer_composition records for contents of each well on each working plate
 - composition 's upstream_process_id will be generic process for primer working plate creation process

16S Run

1. Preparation

- 1. Create reagent composition record for each reagent to be used in process
 - Could also be done just before use, if necessary/preferred

2. Sample plate creation

- 1. Create process record for sample_plating
 - no need for a specific process subtype here unless there are details you want to capture
- 2. Create plate record for each new sample plate
- 3. Create container and well records for each well on new sample plate
 - latest_upstream_process_id will be process id for sample_plating
- 4. Create composition and sample_composition records for contents of each well of sample plate
 - upstream process id will be process id for sample_plating
 - content_type_id
 will be sample, blank, etc, and content_id
 will be, for example, a given sample's sample_id in Qiita

3. gDNA extraction

- 1. Create process and gdna_extraction_process records for gdna extraction process
- 2. Create plate record for each new gdna plate
- 3. Create container and well records for each well on new gdna plate
 - latest upstream process id will be generic for gdna extraction process
- 4. Create composition and gdna composition records for contents of each well of gdna plate
 - upstream process id will be generic for gdna extraction process

4. 16S library preparation

- 1. Create process and 16s library prep process records for library prep
- 2. Create plate record for each new library prep plate
 - Note: if I misunderstand, and prep is done in the plate produced by the gdna extraction, then new plates would NOT be created--this step would be skipped
- 3. Create container and well records for each well on new library prep plate\
 - Note: if I misunderstand, and prep is done in the plate produced by the gdna extraction, then
 new plates would NOT be created--this step would be replaced by simply updating the
 latest upstream process id to generic for 16s library prep process

- 4. Create composition and 16s_library_prep_composition records for contents of each well of library prep plate
 - this happens even if same plate as gdna extraction is used--the CONTENTS of the wells would now different, so new compositions would be necessary
 - upstream process id will be generic for 16s library prep process

5. Quantification

- 1. Create process and quantification process records quantification process
 - could get away without quantification_process table since it holds no special info; I only have it in there to enforce that concentration_calculation and normalization_process must be linked to quantification process and not some other kind. Could maybe enforce this with a trigger instead
- 2. Create concentration calculation record for contents of each well that is quantified
 - upstream process id is NOT generic; is directly quantification process id
 - quantitated_composition_id is generic for relevant16s library prep composition
 - must be generic because same concentration_calculation table holds other
 measurements, e.g. of shotgun_library_prep_composition s for shotgun process
 - Note that the <u>upstream_process_id</u> on each <u>composition</u> being quantified, and the latest_upstream_process_id on each <u>container</u> containing the stuff being quantified is NOT updated, because the act of quantifying the contents does not change them

6. Plate pool creation

- 1. Create process and pooling process records for pooling process
- 2. Create container and tube records for each new plate pool
 - latest_upstream_process_id will be generic for pooling_process
- 3. Create composition and pool_composition records for each library prep plate being pooled
 - upstream_process_id will be generic for pooling_process
 - container id will be container_id of the new tube
- 4. Create pool_composition_component record for contents of each well in each library prep plate being pooled

- output pool composition id NOT generic; is directly pool composition id
- input composition id s are generic of each 16s library prep composition
- 7. Sequencing pool creation
 - 1. Create process and pooling process records for pooling process
 - 2. Create container and tube records for new sequencing pool
 - latest upstream process id will be generic for pooling process
 - 3. Create composition and pool_composition records for new sequencing pool
 - upstream process id will be generic for pooling process
 - container_id will be container_id of the new tube
 - 4. Create pool_composition_component record for contents of each well in each library prep plate being pooled
 - output_pool_composition_idNOT generic; is directly pool_composition id
 - input_composition_id s are generic of pool_composition for each plate pool
- 8. TODO: create run info record

Shotgun Run

Same as 16S run up through step 3 ("gDNA extraction"), then followed by 16S run step 5 ("Quantification"), except read gdna_composition for 16s_library_prep_composition.

- 1. Normalization
 - 1. Create process and normalization_process records for each gdna plate being normalized
 - quantitation process id is NOT generic; is directly quantification process id
 - 2. Create plate record for each new normalized gdna plate
 - 3. Create container and well records for each well on new normalized gdna plate
 - latest upstream process id will be generic for normalization process
 - 4. Create composition and normalized_gdna_composition records for contents of each well of new normalized gdna plate
 - upstream process id will be generic for normalization process

- 2. Shotgun library preparation
 - 1. Create process and shotgun_library_prep_process records for each normalized gdna plate being prepped
 - normalization_process_id is NOT generic; is directly the
 normalization process id
 - 2. **Update** latest_upstream_process_id of each container for each well of normalized gdna plate being prepped to generic of shotgun library prep process
 - Note that no new plate , well , or container records are created!
 - 3. Create composition and shotgun_library_prep_composition records for contents of each well of normalized gdna plate being prepped
 - upstream_process_id will be generic for shotgun_library_prep_process

Now perform 16S run step 5 ("Quantification"), except read shotgun_library_prep_composition for 16s_library_prep_composition. Then return to 16S run at step 6 ("Plate pool creation") and follow remainder of 16S steps, but read shotgun_library_prep_composition for 16s_library_prep_composition throughout.

Query Use-Cases

- What is in this tube I'm holding?
 - 1. Look up the tube's external identifier in tube
 - 2. Look up tube 's container id in container
 - 3. Look up the container 's container_id and latest_upstream_process_id (as upstream process id) in composition
 - 4. If you want to know more about the details of the composition, check its composition_type_id and look up the composition id in the subtype composition table for that composition type
 - if you have a tube, at the moment this will *de facto* be a <code>pool_composition</code>, so look up <code>composition_id</code> in <code>pool_composition</code>, then look up <code>pool_composition_id</code> (as <code>output_composition_id</code>) in <code>pool_composition_components</code> to find <code>input_composition_id</code> s for everything that went into it
 - If you then follow *those* composition_id s back into the composition table and then to their relevant subtype composition tables, you should be able to follow the make-up of those contents all the way back to the sample plate
 - Example: input_composition_id holds composition_id that leads to
 shotgun library prep composition id that links to

normalized_gdna_composition_id that links to gdna_composition_id that links to sample composition id

- 2. What is in this plate I'm holding?
 - 1. Hah, this is a trick question! Plates are just aggregations of wells, and every well could be holding something from a completely different source!
 - 2. So ... ask about a particular well instead
- 3. Ok, what is in well B6 of this plate I'm holding, smarty-pants?
 - 1. Look up the plate's external_identifier in plate
 - 2. Look up plate id , "B", and "6" in well
 - 3. Look up well 's container_id in container
 - 4. Then start at substep 3 of use-case 1 ("What's in this tube I'm holding?") and proceed as described there
- 4. What primer set was used for this pool?
 - 1. Again, this is sort of a trick question, because there's no *a priori* reason why all the primers used have to come from the same set, but hey, let's roll with it
 - CAVEAT: the only way to be sure all primers used for every input come from the same set would be to look them all up
 - 2. Assuming the pool is in a tube, complete the steps for use-case 1 ("What's in this tube I'm holding?")
 - 3. Follow one of the input_composition_id s back to composition and on back until you reach its underlying entry in the 16S_library_prep_composition or shotgun_library_prep_composition table
 - 4. Look up the relevant primer composition id (from primer_composition_id), i5_primer_composition_id, or i7_primer_composition_id) in primer composition
 - 5. Look up the <code>primer_set_id</code> for that <code>primer_composition</code> in <code>primer_set</code> and read the human-readable <code>external_identifier</code>
- 5. What primer working plate was used for this pool?
 - 1. Complete the steps 2-4 for use-case 4, keeping in mind the caveat
 - 2. Look up the primer composition 's composition id in composition
 - 3. Look up the composition 's container id in container
 - 4. Check the container 's container_type_id and look up the container_id in the subtype container table for that container type
 - Since as far as I know primers only hang around in plates, the relevant container is de facto

going to be a well. Look up the <code>plate_id</code> for that <code>well</code> in <code>plate</code> and read the human-readable <code>external identifier</code>

- 6. Ok, but what masters was this working plate made from?
 - 1. Complete steps 1 and 2 of use-case 5 ("What primer working plate was used for this pool?")
 - 2. Find the upstream process id
 - You could theoretically look this id up in the process table, find the relevant process_type, and look up the process_id in the subtype process table for that process type
 - However, for a primer working plate, the process_type for this better be primer working plate creation, so look ...
 - 3. Look up the upstream_process_id (as process_id) in primer working plate creation process and find the master set order number
- 7. This primer working plate is all screwed up; who do I blame?
 - 1. Complete steps 1-2 of use-case 6 ("Ok, but what masters was this working plate made from?")
 - 2. Look up the upstream process id (as process id) in process
 - 3. Find the run personnel id for the no-good who made this working plate
- 8. I quantified this 16s library prep plate twice; which set of measurements did I actually use in the plate pooling step?
 - 1. Again, this is sort of a trick question, because there's no *a priori* reason why all the pooling components have to be based on measurements from a single quantification run, but hey, let's roll with it
 - CAVEAT: the only way to be sure all measurements used come from the same quantification run would be to look them all up
 - 2. Assuming you start with a tube containing the pool for a single plate, follow steps 1-3 of use-case 1 ("What is in this tube I'm holding?")
 - 3. Look up the upstream_process_id of the plate pool composition in the pooling_process
 - Note that this is like step 2 of use-case 6 ("Ok, but what masters was this working plate made from?"): you *could* do the extra step of looking the upstream_process_id up in process_type_id it has, but if you're looking at a pool, well, it better be a pooling process

- 4. Look up the quantification process id in the quantification process table
 - if you want to know what the concentration values it produced were, get all records from the concentration calculation table that have that quantification process id
- 5. Look up the process_id from the quantification_process table in the process table to find out when the particular quantification run was performed and by whom
- 9. I got interrupted while prepping this shotgun plate, and I can't remember where I was in the process. Did I already library prep it, or just normalize it?
 - 1. See use-case 2 ("What is in this plate I'm holding?")
 - 2. But carrying on anyway, follow steps 1-3 of use-case 3 ("Ok, what is in well B6 of this plate I'm holding, smarty-pants?")
 - 3. Look up container 's latest_upstream_process_id in process
 - 4. Look up process 's process_type_id in process_type to find out if it was gdna normalization or shotgun library prep