Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and Yoshua Bengio

Overview

Image captioning using high level VGG19 features

Soft and Hard Attention

Focus will be on the decoder

Architecture

Soft Attention

Deterministic

Based on Bahdanau's et al., 2014 attention mechanism

Trained using backpropagation

$$e_{ti} = f_{att}(G_i, h_{t-1})$$

$$e_{ti} = f_{att}(G_i, h_{t-1})$$

$$exp(e_{ti})$$

$$p_{ti} = \frac{exp(e_{ti})}{\sum\limits_{k=1}^{L} exp(e_{tk})}$$

$$e_{ti} = f_{att}(G_i, h_{t-1})$$

$$p_{ti} = \frac{exp(e_{ti})}{\sum\limits_{k=1}^{L} exp(e_{tk})}$$

$$z_t = \beta_t \sum_{j=1}^{L} p_{tj} G_j$$

$$e_{ti} = f_{att}(G_i, h_{t-1})$$

$$p_{ti} = \frac{exp(e_{ti})}{\sum\limits_{k=1}^{L} exp(e_{tk})}$$

$$z_t = \beta_t \sum_{j=1}^{L} p_{tj} G_j$$

$$\beta_t = \sigma(f_{\beta}(h_{t-1}))$$

$$e_{ti} = f_{att}(G_i, h_{t-1})$$

$$p_{ti} = \frac{exp(e_{ti})}{\sum_{k=1}^{L} exp(e_{tk})}$$

$$z_t = \beta_t \sum_{j=1}^{L} p_{tj} G_j$$

$$\beta_t = \sigma(f_{\beta}(h_{t-1}))$$

 $(z_t, E_{y_{t-1}}, h_{t-1})$ used as input

Doubly Stochastic Attention

To encourage the model to look at various parts of the image

$$L_d = -log(P(y|x)) + \lambda \sum_{i=1}^{L} (1 - \sum_{t=1}^{C} p_{ti})^2$$

Positive Example

Negative Example

Hard Attention

Stochastic

 Assign a multinoulli distribution to the attention weights **p** and view the weighted input **z** as a random variable

- Gradient estimated using Monte Carlo
- Trained using the REINFORCE learning rule

We would like to maximize

We would like to maximize

=
$$log \sum_{s} p(s|G)p(y|s,G)$$
 where $p(s_{t,i} = 1|s_{j < t},G) = p_{ti}$

We would like to maximize

=
$$log \sum_{s} p(s|G)p(y|s,G)$$
 where $p(s_{t,i} = 1|s_{j< t},G) = p_{ti}$
 $\geq \sum_{s} p(s|G) \log p(y|s,G) = L_{s}$

log p(y|G)

We would like to maximize

$$= log \sum_{s} p(s|G)p(y|s,G) \quad \text{where } p(s_{t,i} = 1|s_{j < t},G) = p_{ti}$$

$$\geq \sum_{s} p(s|G) \ log \ p(y|s,G) = L_{s}$$

$$\frac{\partial L_{s}}{\partial W} = \sum_{s} \frac{\partial p(s|G)}{\partial W} log \ p(y|s,G) + p(s|G) \ \frac{\partial log \ p(y|s,G)}{\partial W}$$

$$\frac{\partial L_S}{\partial W} = \sum_{s} \frac{\partial p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$

$$\frac{\partial L_S}{\partial W} = \sum_{s} \frac{\partial p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$
$$\frac{\partial \log p(s|G)}{\partial W} = \frac{1}{p(s|G)} \frac{\partial p(s|G)}{\partial W}$$
$$\frac{\partial p(s|G)}{\partial W} = p(s|G) \frac{\partial \log p(s|G)}{\partial W}$$

$$\frac{\partial L_{S}}{\partial W} = \sum_{s} \frac{\partial p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$

$$\frac{\partial \log p(s|G)}{\partial W} = \frac{1}{p(s|G)} \frac{\partial p(s|G)}{\partial W}$$

$$\frac{\partial p(s|G)}{\partial W} = p(s|G) \frac{\partial \log p(s|G)}{\partial W}$$

$$\frac{\partial L_{S}}{\partial W} = \sum_{s} p(s|G) \frac{\partial \log p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$

$$\frac{\partial L_{S}}{\partial W} = \sum_{s} \frac{\partial p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$

$$\frac{\partial \log p(s|G)}{\partial W} = \frac{1}{p(s|G)} \frac{\partial p(s|G)}{\partial W}$$

$$\frac{\partial p(s|G)}{\partial W} = p(s|G) \frac{\partial \log p(s|G)}{\partial W}$$

$$\frac{\partial L_{S}}{\partial W} = \sum_{s} p(s|G) \frac{\partial \log p(s|G)}{\partial W} \log p(y|s,G) + p(s|G) \frac{\partial \log p(y|s,G)}{\partial W}$$

$$\frac{\partial L_{S}}{\partial W} = \sum_{s} p(s|G) \left[\frac{\partial \log p(s|G)}{\partial W} \log p(y|s,G) + \frac{\partial \log p(y|s,G)}{\partial W} \right]$$

This means that Monte Carlo Sampling can be performed!

This means that Monte Carlo Sampling can be performed!

$$s_t' \sim Multinoulli(\{p_i\})$$

$$\frac{\partial L_{S}}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(s^{'n}|G)}{\partial W} \log p(y|s^{'n},G) + \frac{\partial \log p(y|s^{'n},G)}{\partial W} \right]$$

This means that Monte Carlo Sampling can be performed!

$$s_t' \sim Multinoulli(\{p_i\})$$

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(s^n|G)}{\partial W} \log p(y|s^n, G) + \frac{\partial \log p(y|s^n, G)}{\partial W} \right]$$

The issue is that the variance in this estimate is too high.

This means that Monte Carlo Sampling can be performed!

$$s'_{t} \sim Multinoulli(\{p_{i}\})$$

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(s^n|G)}{\partial W} \log p(y|s^n, G) + \frac{\partial \log p(y|s^n, G)}{\partial W} \right]$$

The issue is that the variance in this estimate is too high.

$$b_k = 0.9 \times b_{k-1} + 0.1 \times \log p(y|s_k', G)$$

Where **k** corresponds to the mini-batch number

This means that Monte Carlo Sampling can be performed!

$$s'_{t} \sim Multinoulli(\{p_{i}\})$$

$$\frac{\partial L_{S}}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\frac{\partial \log p(s^{'n}|G)}{\partial W} \log p(y|s^{'n},G) + \frac{\partial \log p(y|s^{'n},G)}{\partial W} \right]$$

The issue is that the variance in this estimate is too high

$$b_k = 0.9 x b_{k-1} + 0.1 x log p(y|s_k', G)$$

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\lambda_r(\log p(y|s^n, G) - b) \frac{\partial \log p(s^n|G)}{\partial W} + \frac{\partial \log p(y|s^n, G)}{\partial W} \right]$$

 The authors further reduce the variance by adding an entropy term to the attention weights

 The authors further reduce the variance by adding an entropy term to the attention weights

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\lambda_r(\log p(y|s^n, G) - b) \frac{\partial \log p(s^n|G)}{\partial W} + \frac{\partial \log p(y|s^n, G)}{\partial W} + \lambda_e \frac{\partial H[s^n]}{\partial W} \right]$$

 The authors further reduce the variance by adding an entropy term to the attention weights

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\lambda_r (\log p(y|s^n, G) - b) \frac{\partial \log p(s^n|G)}{\partial W} + \frac{\partial \log p(y|s^n, G)}{\partial W} + \lambda_e \frac{\partial H[s^n]}{\partial W} \right]$$

Where
$$H[s^n]$$
 is simply $\sum_{j=1}^{L} p_j \log(p_j)$

 The authors further reduce the variance by adding an entropy term to the attention weights

$$\frac{\partial L_S}{\partial W} \approx \frac{1}{N} \sum_{n=1}^{N} \left[\lambda_r (\log p(y|s^n, G) - b) \frac{\partial \log p(s^n|G)}{\partial W} + \frac{\partial \log p(y|s^n, G)}{\partial W} + \lambda_e \frac{\partial H[s^n]}{\partial W} \right]$$

Where
$$H[s^n]$$
 is simply $\sum_{j=1}^{L} p_j \log(p_j)$

With 0.5 probability, s is set to its soft attention value

Positive Example

Negative Example

Training Procedure

VGG19 is used as the encoder

14x14x512 feature map from the 5th conv layer is used

Evaluated on Flickr8k, Flickr30k, and COCO

Results

Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, \dagger indicates a different split, (—) indicates an unknown metric, \circ indicates the authors kindly provided missing metrics by personal communication, Σ indicates an ensemble, a indicates using AlexNet

		BLEU				
Dataset	Model	BLEU-1	BLEU-2	BLEU-3	BLEU-4	METEOR
Flickr8k	Google NIC(Vinyals et al., 2014) [†] Σ	63	41	27	_	_
	Log Bilinear (Kiros et al., 2014a)°	65.6	42.4	27.7	17.7	17.31
	Soft-Attention	67	44.8	29.9	19.5	18.93
	Hard-Attention	67	45.7	31.4	21.3	20.30
Flickr30k	Google NIC ^{†οΣ}	66.3	42.3	27.7	18.3	
	Log Bilinear	60.0	38	25.4	17.1	16.88
	Soft-Attention	66.7	43.4	28.8	19.1	18.49
	Hard-Attention	66.9	43.9	29.6	19.9	18.46
COCO	CMU/MS Research (Chen & Zitnick, 2014) ^a	_	_	_	_	20.41
	MS Research (Fang et al., 2014)†a	_	_	_	_	20.71
	BRNN (Karpathy & Li, 2014)°	64.2	45.1	30.4	20.3	_
	Google NIC [†] ◦∑	66.6	46.1	32.9	24.6	-
	Log Bilinear [◦]	70.8	48.9	34.4	24.3	20.03
	Soft-Attention	70.7	49.2	34.4	24.3	23.90
	Hard-Attention	71.8	50.4	35.7	25.0	23.04

Conclusions

Hard attention seems to outperform soft attention

 It is not clear whether the improvement was driven due to a better encoder

Lack of ablation studies

Interesting approach nonetheless

Thank you!

References

- 1. Xu, Kelvin, et al. "Show, attend and tell: Neural image caption generation with visual attention." International Conference on Machine Learning. 2015.
- 2. Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).
- 3. https://www.slideshare.net/xavigiro/deep-learning-for-computer-vision-attention-models-upc-2016
- 4. http://cs231n.stanford.edu/
- 5. https://github.com/kelvinxu/arctic-captions/blob/master/capgen.py

Discussion Points (Kayvan Tirdad)

- Very strong work and journal paper, cited over 2300 times!
- First version appeared in ICML 2015 then the final version appeared in PMLR 2016
- Author's original code is in Theano but there are different implementations using tensorflow available on the web, check it out
- This work is mainly based on "Karpathy, Andrej and Li, Fei-Fei. Deep visual-semantic alignments for generating image descriptions. CVPR 2015.", but that work used an object detection approach instead of attention
- There is some criticism against BLEU so the authors used METEOR as another metric. Soft and hard attention outperform the other approaches. Interestingly, soft attention obtains a better result with METEOR. However, the difference in real-world application is negligible
- Authors didn't provide a clue which attention mechanism is superior, and why?
- Length of the caption is a tricky issue while training, due to number of times that the LSTM should be run. To remedy this, the authors used a dictionary for storing captions of equal length