

Hypothesis Testing

Let's look at the topics we are going to discuss in this article

- What is a hypothesis?
- Types of hypothesis
- Hypothesis testing

Level of significance

Types of errors

p value

One & two tail tests

Degree of freedom

Data analysis

What is a hypothesis?

- An educated guess
- A tentative point of view
- A proposition not yet tested
- A preliminary explanation
- A preliminary Postulate
- A hypothesis is a claim (assumption) about a population parameter.

According to Various authors,

- "A hypothesis is a conjectural statement of the relation between two or more variables". (Kerlinger, 1956)
 - "Hypotheses are single tentative guesses, good hunches assumed for use in devising theory or planning experiments intended to be given a direct experimental test when possible". (Eric Rogers, 1966)
- "Hypothesis is a formal statement that presents the expected relationship between an independent and dependent variable." (Creswell, 1994)
 - A hypothesis is a logical supposition, a reasonable guess, an educated conjecture. It provides a tentative explanation for a phenomenon under investigation." (Leedy and Ormrod, 2001).

A Hypothesis:

- must make a prediction
- must identify at least two variables
- should have an elucidating power
- should strive to furnish an acceptable explanation or accounting of a fact
- must be falsifiable meaning hypotheses must be capable of being refuted based on the results of the study
- must be formulated in simple, understandable terms
- should correspond with existing knowledge
- In general, a hypothesis needs to be unambiguous, specific, quantifiable, testable and generalizable.

Types of hypothesis

It can be categorized in different ways. Based on their formulation it is categorised into the following,

- Null Hypotheses and
- Alternate Hypotheses

The Null Hypothesis, H₀

- States the claim or assertion to be tested
- Is always about a population parameter, not about a sample statistic
- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected
- It states that independent variables have no effect and there will be no difference b/w the two groups.

The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

• It states that independent variable has an effect and there will be a difference b/w the two groups.

Hypothesis testing

6 Steps in Hypothesis Testing:

- 1. State the null hypothesis, H₀ and the alternative hypothesis, H₁
- 2. Choose the level of significance, α , and the sample size, n
- 3. Determine the appropriate test statistic (two-tail, one-tail, and Z or t distribution) and sampling distribution
- 4. Determine the critical values(mainly three criteria, (i) significance level,(ii) degree of freedom,(iii) One or two tailed test,that divide the rejection and non rejection regions
- 5. Collect data and compute the value of the test statistic
- 6. Make the statistical decision and state the managerial conclusion. If the test statistic falls into the non rejection region, do not reject the null hypothesis H₀. If the test statistic falls into the rejection region, reject the null hypothesis. Express the managerial conclusion in the context of the problem.

Terms used in hypothesis testing and their significance:

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
- Indicates the percentage of sample means that is outside the cut-off limits (critical value)
- It is the max. value of probability of rejecting null hypothesis when it is true.
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region

Level of significance = α

Errors in Making Decision

Type I Error

- Reject a true null hypothesis
- Considered a serious type of error
- The probability of Type I Error is α
- Called level of significance of the test
- · Set by the researcher in advance

Type II Error

- Fail to reject a false null hypothesis
- The probability of Type II Error

No study is perfect, there is always the chance for error

Decision

	\Box	Accept	Reject
Null Hypothesis	True	Correct Decision Probability is 1-α, called confidence level	TYPE I ERROR probability of making error is a (always known) minimize by decreasing a (the significance level)
	False	TYPE II ERROR probability of making error is β (rarely known)	Correct Decision probability is 1-β, called power of test
ž	Fa	minimize β by increasing difference of alternative hypothesis, increasing sample size, increasing α, or by choosing a different test	power is determined by signficance level, alternative hypothesis, sample size, and nature of test

 $\boldsymbol{\alpha}$ - level of significance

 $1-\beta$ - power of the test

There is only 5 chance in 100 that the result termed "significant" could occur by chance alone $\alpha = 0.0$

The probability of making a Type $I(\alpha)$ can be decreased by altering the level of significance.

It will be more difficult to find a significant result

The power of the test will be decreased the risk of a Type II error will be increased.

Type I & II Error Relationship

- Type I and Type II errors cannot happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false
- If Type I error probability (α) 1 , then

Type II error probability (β)

Factors affecting type II error

All else equal:

β ↑ when the difference between hypothesized parameter and its true value ■

The probability of making a Type II (β) can be decreased by increasing the level of significance.

it will increase the chance of a Type I error

To which type of error you are willing to risk?

Degree of Freedom

- The number or bits of "free" or unconstrained data used in calculating a sample statistic or test statistic
- It refers to the scores in a distribution that are free to change without changing the mean of distribution.
- A sample mean (X) has `n' degree of freedom
- A sample variance (s²) has (n-1) degrees of freedom
- This no. is used to determine power ,because the more subjects the greater the power

One-Tail Test

- In many cases, the alternative hypothesis focuses on a particular direction
- Determines whether a particular population parameter is larger or smaller than some predefined value
- Uses one critical value of test statistic

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

This is an upper-tail test since the alternative hypothesis is focused on the upper tail above the mean of 3

Two tailed test

- Two-tailed Test
 - Determines the likelihood that a population parameter is within certain upper and lower bounds
- May use one or two critical values

Confidence interval and significance test

The Chi-Square Test for Independence

- The second chi-square test, the chi-square test for independence, can be used and interpreted in two different ways:
 - 1. Testing hypotheses about the relationship between two variables in a population, or
 - 2. Testing hypotheses about differences between proportions for two or more populations.