```
1 import numpy as np
```

- 2 import pandas as pd
- 3 import matplotlib.pyplot as plt
- 4 import matplotlib as mplt
- 5 import random
- 6 from math import  $\ensuremath{^*}$
- 7 import sklearn as svm
- 8 import seaborn as sns
- 9 import plotly as pl
- 10 import plotly.express as px
- 11 import plotly.graph\_objects as go
- 12 from plotly.subplots import make\_subplots
- 13 import matplotlib.ticker as plticker
- 14 %matplotlib inline

# Car prices dataset analysis

# → 1. Pre data analysis.

### Reading dateset and convertign into a dataframe

```
1 data = pd.read_csv("/content/car_prices_dataset.csv")
```

- 1 dataframe = pd.DataFrame(data)
- 2 dataframe.head()

| $\overline{\Rightarrow}$ |   | year | make  | model                        | trim          | body  | transmission | vin               | state | condition | odometer | color | interior | seller                                          | ı    |
|--------------------------|---|------|-------|------------------------------|---------------|-------|--------------|-------------------|-------|-----------|----------|-------|----------|-------------------------------------------------|------|
|                          | 0 | 2015 | Kia   | Sorento                      | LX            | SUV   | automatic    | 5xyktca69fg566472 | ca    | 5.0       | 16639.0  | white | black    | kia motors<br>america inc                       | 2050 |
|                          | 1 | 2015 | Kia   | Sorento                      | LX            | SUV   | automatic    | 5xyktca69fg561319 | ca    | 5.0       | 9393.0   | white | beige    | kia motors<br>america inc                       | 2080 |
|                          | 2 | 2014 | BMW   | 3<br>Series                  | 328i<br>SULEV | Sedan | automatic    | wba3c1c51ek116351 | ca    | 45.0      | 1331.0   | gray  | black    | financial<br>services<br>remarketing<br>(lease) | 3190 |
|                          | 3 | 2015 | Volvo | S60                          | T5            | Sedan | automatic    | yv1612tb4f1310987 | ca    | 41.0      | 14282.0  | white | black    | volvo na<br>rep/world<br>omni                   | 2750 |
|                          | 4 | 2014 | BMW   | 6<br>Series<br>Gran<br>Coupe | 650i          | Sedan | automatic    | wba6b2c57ed129731 | ca    | 43.0      | 2641.0   | gray  | black    | financial<br>services<br>remarketing<br>(lease) | 6600 |

Let us now fill all the missing of NaN values, so that we do not have any issues later on.

1 dataframe.dropna(inplace=True)

Let us now perform some inspective data analysis. In order to do so, we will persom some pandas funcions such as: info, describe.

```
{\bf 1} \ {\bf \#} \ {\bf Pandas} \ {\bf info} \ {\bf function}
```

2 dataframe.info()

3

4 # Pandas describe function 5 dataframe.describe()

```
<class 'pandas.core.frame.DataFrame'>
    RangeIndex: 558837 entries, 0 to 558836
    Data columns (total 16 columns):
```

|                                          |              | ,               |         |  |  |  |  |  |
|------------------------------------------|--------------|-----------------|---------|--|--|--|--|--|
| #                                        | Column       | Non-Null Count  | Dtype   |  |  |  |  |  |
|                                          |              |                 |         |  |  |  |  |  |
| 0                                        | year         | 558837 non-null | int64   |  |  |  |  |  |
| 1                                        | make         | 558837 non-null | object  |  |  |  |  |  |
| 2                                        | model        | 558837 non-null | object  |  |  |  |  |  |
| 3                                        | trim         | 558837 non-null | object  |  |  |  |  |  |
| 4                                        | body         | 558837 non-null | object  |  |  |  |  |  |
| 5                                        | transmission | 558837 non-null | object  |  |  |  |  |  |
| 6                                        | vin          | 558837 non-null | object  |  |  |  |  |  |
| 7                                        | state        | 558837 non-null | object  |  |  |  |  |  |
| 8                                        | condition    | 558837 non-null | float64 |  |  |  |  |  |
| 9                                        | odometer     | 558837 non-null | float64 |  |  |  |  |  |
| 10                                       | color        | 558837 non-null | object  |  |  |  |  |  |
| 11                                       | interior     | 558837 non-null | object  |  |  |  |  |  |
| 12                                       | seller       | 558837 non-null | object  |  |  |  |  |  |
| 13                                       | mmr          | 558837 non-null | float64 |  |  |  |  |  |
| 14                                       | sellingprice | 558837 non-null | float64 |  |  |  |  |  |
| 15                                       | saledate     | 558837 non-null | object  |  |  |  |  |  |
| dtypes: float64(4), int64(1), object(11) |              |                 |         |  |  |  |  |  |
|                                          |              |                 |         |  |  |  |  |  |

memory usage: 68.2+ MB

|       | year          | condition     | odometer      | mmr           | sellingprice  |     |
|-------|---------------|---------------|---------------|---------------|---------------|-----|
| count | 558837.000000 | 558837.000000 | 558837.000000 | 558837.000000 | 558837.000000 | 11. |
| mean  | 2010.038927   | 30.023612     | 68308.525898  | 13768.441200  | 13611.066531  |     |
| std   | 3.966864      | 13.975491     | 53401.402078  | 9680.303934   | 9749.600973   |     |
| min   | 1982.000000   | 0.000000      | 0.000000      | 0.000000      | 0.000000      |     |
| 25%   | 2007.000000   | 22.000000     | 28359.000000  | 7100.000000   | 6900.000000   |     |
| 50%   | 2012.000000   | 34.000000     | 52245.000000  | 12250.000000  | 12100.000000  |     |
| 75%   | 2013.000000   | 41.000000     | 99103.000000  | 18300.000000  | 18200.000000  |     |
| max   | 2015.000000   | 49.000000     | 999999.000000 | 182000.000000 | 230000.000000 |     |

Having basic data, we can have a general visualization of how the columns/values look together. It would be easier for us later on, to see what further analysis we can make.

1 sns.pairplot(dataframe)



Lets check all the columns, so we can know what data can we compare, and what will be the best comparisons.

# 2. In depth data analysis of self chosen values.

2.1 Brand (make) vs Total selling price for that brand. Lets see what brands are making the most.

A. Scatter plots.

Plotly scattter plot.

1 px.scatter(dataframe, x='make', y='sellingprice', title='Make vs Total Selling Price')



# Make vs Total Selling Price



# B. Histograms

# Matplotlib histogram

```
1 make_total_selling_price = dataframe.groupby('make')['sellingprice'].sum()
2
3 plt.figure(figsize=(20, 5))
4 plt.bar(make_total_selling_price.index, make_total_selling_price.values)
5 plt.xlabel('Make')
6 plt.ylabel('Total Selling Price (millions USD)')
7 plt.title('Make vs Total Selling Price')
8 plt.xticks(rotation=45, ha='right')
9 plt.tight_layout()
10 plt.show()
```



### Plotly histogram

1 px.histogram(dataframe, x='make', y='sellingprice', title='Make vs Total Selling Price')



### Make vs Total Selling Price



### 2.2 Comparison between body (car type) and seelingprice

### Matplotlib scatter plot

```
1 total_selling_price_by_car_type = dataframe.groupby('body')['sellingprice'].sum()
2 figure = plt.figure(figsize=(20, 5))
3 plt.scatter(total_selling_price_by_car_type.index, total_selling_price_by_car_type.values)
4 plt.xlabel('Car Type')
5 plt.ylabel('Total Selling Price (millions USD)')
6 plt.title('Car Type vs Total Selling Price')
7 plt.xticks(rotation=45, ha='right')
8 plt.tight_layout()
9 plt.show()
```



### 2. Matplotlib histogram plot

```
1 total_selling_price_by_car_type = dataframe.groupby('body')['sellingprice'].sum()
2 figure = plt.figure(figsize=(20, 5))
3 plt.bar(total_selling_price_by_car_type.index, total_selling_price_by_car_type.values)
4 plt.xlabel('Car Type')
5 plt.ylabel('Total Selling Price (millions USD)')
6 plt.title('Car Type vs Total Selling Price')
7 plt.xticks(rotation=45, ha='right')
8 plt.tight_layout()
9 plt.show()
```



## Plotly scatter plot.

1 px.scatter(dataframe, x='body', y='sellingprice', title='Car Type vs Total Selling Price')

<del>\_</del>

# Car Type vs Total Selling Price



### Plotly histogram

1 px.histogram(dataframe, x='body', y='sellingprice', title='Car Type vs Total Selling Price')



# Car Type vs Total Selling Price



#### 2.3 Condition vs total selling price for BMW.

# A. Histograms

### Matplotlib

```
1 condition_total_selling_price_bmw = dataframe[dataframe['make'] == 'bmw'].groupby('condition')['sellingprice'].sum()
2
3 plt.figure(figsize=(20, 5))
4 plt.bar(condition_total_selling_price_bmw.index, condition_total_selling_price_bmw.values)
5 plt.xlabel('Condition')
6 plt.ylabel('Total Selling Price (millions USD)')
7 plt.title('Condition vs Total Selling Price for BMW')
```





#### **Plotly**

1 px.histogram(dataframe[dataframe['make'] == 'bmw'], x='condition', y='sellingprice', title='Condition vs Total Selling Price



# Condition vs Total Selling Price for BMW



#### **B.** Line plots

# Matplotlib

```
1 condition_total_selling_price_bmw = dataframe[dataframe['make'] == 'bmw'].groupby('condition')['sellingprice'].sum()
2
3 plt.figure(figsize=(20, 5))
4 plt.plot(condition_total_selling_price_bmw.index, condition_total_selling_price_bmw.values, marker = "*",
5 markersize = 10)
6 plt.xlabel('Condition')
7 plt.ylabel('Total Selling Price (millions USD)')
8 plt.title('Condition vs Total Selling Price for BMW')
```





# Plotly

#### 16.11.2024, 10:15

 $\overline{z}$ 

```
14 )
15
16 # Show the plot
17 fig.show()
```

## Condition vs Total Selling Price for BMW



### 3. Pie charts.

For the final part of the charts lets use pie charts. For this we will have to choose the data for which we want to see what part of the whole it makes. As we have lot's of manufacturers and car types and it would look messy on a pie chart, we are going to use a part of the data for it.

First, lets get a reminder of the data/columns that we have in our dataframe

3.1 Marketshare by car brands. Make (car brand) vs sellingprice (for better visualization we are dropping all values where the marketshare is less than 3%)

#### Matplotlib

```
1 # Sample the dataframe (1/5 of the data)
 2 sampled_df = dataframe.sample(frac=0.2, random_state=42)
 4 # Calculate total selling price for each car make
 5 car_brands_market_share = sampled_df.groupby('make')['sellingprice'].sum()
 7 # Calculate market share percentage for each car make
 8 total_selling_price = car_brands_market_share.sum()
 9 car_brands_market_share = (car_brands_market_share / total_selling_price) * 10
10
11 # Filter out market shares below 3%
12 car_brands_market_share = car_brands_market_share[car_brands_market_share >= 3
13
14 # Create the pie chart
15 plt.figure(figsize=(12, 12)) # Adjust figure size as needed
16 \ \mathsf{plt.pie} (\mathsf{car\_brands\_market\_share}, \ \mathsf{labels=} \mathsf{car\_brands\_market\_share}. \mathsf{index},
           autopct='%1.1f%%', startangle=90, pctdistance=0.85, labeldistance=1.1)
17
18
19
```

20 ml+ +i+la/ Mankatchana by Can Brands (Campled Data Mankat Chana >- 3%)')

 $\overline{\Rightarrow}$ 

# Marketshare by Car Brands (Sampled Data, Market hare >= 3%)



### **Plotly**

```
1 sampled_df = dataframe.sample(frac=0.2, random_state=42)
2
3 # Group by 'make' and calculate total selling price for each make
4 car_brands_market_share = sampled_df.groupby('make')['sellingprice'].sum().reset_index()
5
6 # Calculate market share percentage
7 total_selling_price = car_brands_market_share['sellingprice'].sum()
8 car_brands_market_share['market_share_percentage'] = (car_brands_market_share['sellingprice'] / total_selling_price) * 100
9
10 # Filter out market shares below 3%
```