Лабораторна робота № 1: побудова довірчих інтервалів

Нехай ω_1 та ω_2 — це незалежні рівномірно розподілені на [0,1] випадкові величини (в.в.). Пара незалежних в.в. (ξ_1,ξ_2) , які мають стандартний нормальний розподіл (тобто N(0,1)), генеруються за допомогою перетворення:

$$\xi_1 = \sqrt{-2\ln\omega_1} \sin(2\pi\omega_2), \qquad \xi_2 = \sqrt{-2\ln\omega_1} \cos(2\pi\omega_2)$$

(в.в. N(0,1) можна генерувати і за допомогою вбудованого в комп'ютер генератора). Позначимо $a = \mathbf{M} \xi_i = 0, \ \sigma^2 = \mathbf{D} \xi_i = 1$.

Нехай спостерігається вибірка $\overline{X} = (X_1, ?, X_n)_{, \text{де}} X_i$? $(0,1)_{.}$

Всі довірчі інтервали будувати із достовірністю $1-\gamma=0.99$. Цьому випадку відповідає $z_{\gamma}=2.575$.

Завдання 1. Кожне з наступних трьох завдань виконувати для n = 100, $n = 10\,000$ та $n = 1\,000\,000$. В усіх трьох випадках дослідити, чи потрапляють математичне сподівання та дисперсія у побудовані довірчі інтервали, а також оцінити, як змінюється довжина інтервалу при збільшенні n.

- А. Побудувати довірчий інтервал для математичного сподівання a у припущенні, що спостерігаються в.в. $\{X_i\}$, які мають нормальний розподіл, але дисперсія σ^2 невідома.
- В. Побудувати довірчий інтервал для математичного сподівання a у припущенні, що спостерігаються в.в. $\{X_i\}$, розподіл яких невідомий.
- С. Побудувати довірчий інтервал для дисперсії σ^2 у припущенні, що спостерігаються в.в. $\{X_i\}$, які мають нормальний розподіл.

Завдання 2: обчислення інтегралу чотирьома способами із дослідженням швидкості збіжності. Потрібно обчислити наступний інтеграл:

$$Q = \mathbf{P}\{\xi < \eta\}$$

де ξ та η — в.в., які мають функції розподілу (ф.р.) F(x) та G(x) відповідно. Припустимо, що $\xi \ge 0$ та $\eta \ge 0$ з ймовірністю 1 і існують щільності $f(u) = F'(u), \ u \ge 0, \ _{\text{Ta}} g(u) = G'(u), \ u \ge 0$. Виберемо наступні ф.р.:

$$F(u) = 1 - e^{-(\alpha u)^4}, \quad G(u) = 1 - e^{-u^2}, \quad u \ge 0$$

Тоді ймовірність Q обчислюється за формулою:

$$Q = \mathbf{P}\{\xi < \eta\} = \int_{0}^{\infty} F(u) dG(u) = \int_{0}^{\infty} \left(1 - e^{-(\alpha u)^{4}}\right) 2u e^{-u^{2}} du \quad \boxed{?}_{\alpha \to 0} 2\alpha^{4} \int_{0}^{\infty} u^{5} e^{-u^{2}} du = 0$$

$$\|v = u^2, \ dv = 2u \, du\| = 2\alpha^4 \int_0^\infty u^5 \, e^{-u^2} \, du = \alpha^4 \int_0^\infty v^2 \, e^{-v} \, dv = \alpha^4 \, \Gamma(3) = 2\alpha^4$$
(1)

3ауваження 1. Нехай $\omega_1, \omega_2,$? — послідовність незалежних однаково розподілених на відрізку [0,1] в.в. (послідовність псевдовипадкових чисел). Тоді $\xi = F^{-1}(\omega)$ і $\eta = G^{-1}(\omega)$. Тобто

$$\xi_i = \frac{1}{\alpha} (-\ln \omega_i)^{\frac{1}{4}}, \quad \eta_i = (-\ln \omega_i)^{\frac{1}{2}}, \quad i = 1, 2, ?$$

Зауваження 2. Загальна схема обчислення ймовірності Q виглядає наступним чином. Нехай $\hat{q}_1, \hat{q}_2, \ref{2}$ — незміщені оцінки ймовірності Q . Позначимо

$$\hat{Q}_n = \frac{1}{n} \sum_{i=1}^n \hat{q}_i, \quad \hat{\sigma}_n^2 = \frac{1}{n-1} \left(\sum_{i=1}^n \hat{q}_i^2 - n \, \hat{Q}_n^2 \right)$$

Кількість реалізацій n^* алгоритму, які потрібно здійснити для обчислення ймовірності Q із заданою достовірністю $1-\gamma$ та відносною похибкою ϵ обчислюється за формулою:

$$n^* = \min \left\{ n \ge n_0 : n \ge \frac{z_{\gamma}^2 \, \hat{\sigma}_n^2}{\varepsilon^2 \, \hat{Q}_n^2} \right\},\,$$

де n_0 — початкова кількість реалізацій, яка потрібна для "стабілізації" дисперсії, а z_γ — це коефіцієнт, який знаходиться з рівняння $2\Phi(z)=1-\gamma$ ($\Phi(z)$ — це функція Лапласа).

В усіх наведених вище випадках обчислення вести із достовірністю 0.99 та відносною похибкою 1%, тобто $z_{\gamma} = 2.575$ і $\epsilon = 0.01$. Розглядаються три можливі значення параметра α : 1, 0.1 та 0.01. Потрібно виконати наступні завдання.

А. При кожному $\alpha = 1; 0.1; 0.01$ обчислити точне значення ймовірності $Q = Q(\alpha)$.

В. Стандартний метод Монте-Карло (метод 1):

$$Q(\alpha) = \mathbf{M} I(\xi < \eta)_{, \text{ тобто}} \hat{q}_i = I(\xi_i < \eta_i)_{, \text{ де}} I(\cdot)_{-\text{ індикаторна функція.}}$$

$$Q(\alpha) = \int_{0}^{\infty} [1 - G(u)] dF(u) = \mathbf{M}[1 - G(\xi)]$$
C. Memod 2: , TOOTO $\hat{q}_i = 1 - G(\xi_i) = e^{-\xi_i^2}$.

$$Q(\alpha) = \int_{0}^{\infty} F(u) dG(u) = \mathbf{M} F(\eta)$$
D. Memod 3: $\hat{q}_{i} = F(\eta_{i}) = 1 - e^{-(\alpha \eta_{i})^{4}}$

E. Memo∂ 4:

$$Q(\alpha) = \int_{0}^{\infty} F(u) dG(u) = \int_{0}^{\infty} F(u) g(u) du = \int_{0}^{\infty} F(u) \frac{g(u)}{h(u)} h(u) du = \mathbf{M} \left[F(\beta) \frac{g(\beta)}{h(\beta)} \right]$$

де β — невід'ємна в.в. із щільністю $h(u),\ u\geq 0$. Використовуючи співвідношення (1), маємо

$$F(u)g(u) = \left(1 - e^{-(\alpha u)^4}\right) 2u e^{-u^2} \sum_{\alpha \to 0} 2\alpha^4 u^5 e^{-u^2}$$

У співвідношенні (1) було показано, що 0 . Тому як щільність $h(u),\ u\geq 0$, раціонально вибрати $h(u)=u^5\,e^{-u^2},\ u\geq 0$. Легко показати, що саме таку щільність має в.в. $\beta=\sqrt{\theta^{(1)}+\theta^{(2)}+\theta^{(3)}}$, де $\theta^{(1)},\ \theta^{(2)}$ та $\theta^{(3)}$ — незалежні в.в., які мають показниковий розподіл з параметром 1, тобто $\theta^{(i)}=-\ln\omega_i$. Звідси випливає, що

$$\hat{q}_{i} = \left[1 - e^{-(\alpha \beta_{i})^{4}}\right] \frac{2 \beta_{i} e^{-\beta_{i}^{2}}}{\beta_{i}^{5} e^{-\beta_{i}^{2}}} = \frac{2}{\beta_{i}^{4}} \left[1 - e^{-(\alpha \beta_{i})^{4}}\right]$$

 $\beta = \sqrt{\theta_i^{(1)} + \theta_i^{(2)} + \theta_i^{(3)}} \quad , \quad \text{причому} \quad \theta_i^{(1)} = -\ln \omega_{3i-2}, \; \theta_i^{(2)} = -\ln \omega_{3i-1}, \; \theta_i^{(3)} = -\ln \omega_{3i}, \\ i = 1, 2, \red{?} .$