模式识别第九章非监督学习方法

郭园方 北京航空航天大学计算机学院

引言

- * 监督学习 (supervised learning): 用已知类别的样本训练分类器,以求对训练集数据达到某种最优,并能推广到对新数据的分类。
- * 非监督学习 (unsupervised learning): 样本数据类别未知,需要根据样本间的相似性对样本集进行分类(聚类, clustering)

监督与非监督学习方法比较

- * 监督学习方法必须要有训练集与测试样本。在训练集中找规律,而对测试样本使用这种规律;而非监督学习只有一组数据,在该组数据集内寻找规律。
- * 监督学习方法的目的是识别事物,给待识别数据加上标注(label)。因此训练样本集必须由带标注的样本组成。而非监督学习方法只有要分析的数据集本身,没有标注。如果发现数据集呈现某种聚集性,则可按自然的聚集性分类,但不以与某种预先的分类标注对上号为目的。

主要的非监督学习方法

- *基于概率密度函数估计的直接方法:设法找到各类别在特征空间的分布参数再进行分类。如直方图方法。
- *基于样本间相似性度量的间接聚类方法:设法定出不同类别的核心或初始类核,然后依据样本与这些核心之间的相似性度量将样本聚集成不同类别。

基于概率密度函数估计的方法

*划分整个空间为N个区域,使得每个区域的概率密度函数是单峰的

*例: 玉米与杂草

基于概率密度函数估计的方法

多维分布

基于相似性度量的聚类方法

根据样本间的相似性,使某种准则函数最大(小) C均值方法(k均值方法) 使准则

$$J(e) = \sum_{i=1}^{c} \sum_{y \in \Gamma_i} \left\| y - m_i \right\|^2$$
 最小

单峰子集的分离方法

- *思想:把特征空间分为若干个区域,在每个区域上混合概率密度函数是单峰的,每个单峰区域对应一个类别。
- *一维空间中的单峰分离:对样本集K_N={x_i}应用 直方图/Parzen窗方法估计概率密度函数,找 到概率密度函数的峰以及峰之间的谷底,以 谷底为阈值对数据进行分割。

一维空间中的单峰子集分离

t = $\underset{k=1}{\overset{L}{\operatorname{argmin}}} p(k)$

灰度图像二值化算法示例

Count: 65024 Min: 8 Mean: 103.269 Max: 248

StdDev: 71.057 Mode: 48 (10396)

多维空间投影方法

- *多维空间y中直接划分成单峰区域比较困难, 把它投影到一维空间x中来简化问题。
- * 投影方法举例:

如何确定合适的投影方向U

- *使投影{x=u^Ty}的方差最大:方差越大,类之间分离的程度也可能越大
- * 样本协方差矩阵的最大本征值对应的本征向量满足这样的要求
- * 存在问题:这样投影有时并不能产生多峰的边缘密度函数

投影方法算法步骤

- * 计算样本y协方差矩阵的最大本征值对应的本征向量u,把样本数据投影到u上,得到v=u^Ty
- * 用直方图/Parzen窗法求边缘概率密度函数p(v)
- * 找到边缘概率密度函数的各个谷点,在这些谷点 上作垂直于u的超平面把数据划分成几个子集
- *如果没有谷点,则用下一个最大的本征值代替
- * 对所得到的各个子集进行同样的过程,直至每个子集都是单峰为止

设数据集 Υ 划分为c个子集 Γ_i , $i=1,2,\dots,c$

每个子集中样本数为 N_i ,总样本数为N。

考查类条件概率密度的加权估计值:

$$f(y \mid \Gamma_i) = \frac{N_i}{N} p(y \mid \Gamma_i)$$

定义指标

$$J = \frac{1}{2} \int \sum_{i=1}^{c} \sum_{j=1}^{c} \left[f(y \mid \Gamma_i) - f(y \mid \Gamma_j) \right]^2 p(y) dy$$

它反映了 $f(y|\Gamma_i)$ 和 $f(y|\Gamma_j)$ 之间的"距离"。

目标:求使J最大的子集划分

$$p(y \mid \Gamma_i) = \frac{1}{N_i} \sum_{j=1}^{N_i} k(y, y_i), \ y_j \in \Gamma_i$$
 (Parzen 窗法)

考查某个样本 y_{k} , 若它原属于 Γ_{j} , 从 Γ_{j} 移入 Γ_{i} , 得新的 $\widetilde{\Gamma}_{j}$ 和 $\widetilde{\Gamma}_{i}$,

则显然

$$f(y \mid \widetilde{\Gamma}_i) \ge f(y \mid \Gamma_i)$$

$$f(y \mid \widetilde{\Gamma}_j) \ge f(y \mid \Gamma_j)$$

记
$$f(y \mid \widetilde{\Gamma}_i) = f(y \mid \Gamma_i) + \Delta f_i,$$

则
$$\Delta f_i = -\Delta f_i = \frac{1}{N} k(y, y_k)$$

把 y_k 从 Γ_i 移入 Γ_i 引起的指标变化量:

$$\Delta J = \int \left\{ f(y \mid \widetilde{\Gamma}_{i}) - f(y \mid \widetilde{\Gamma}_{j}) \right\}^{2} - \left[f(y \mid \Gamma_{i}) - f(y \mid \Gamma_{j}) \right]^{2}$$

$$+ \sum_{k=1 \atop k \neq i,j}^{c} \left[(f(y \mid \Gamma_{k}) - f(y \mid \widetilde{\Gamma}_{j}))^{2} - (f(y \mid \Gamma_{k}) - f(y \mid \Gamma_{j}))^{2} \right]$$

$$+ (f(y \mid \Gamma_{k}) - f(y \mid \widetilde{\Gamma}_{i}))^{2} - (f(y \mid \Gamma_{k}) - f(y \mid \Gamma_{i}))^{2} \right] p(y) dy$$

$$= \int \left[2c\Delta f_{i} \right]^{2} p(y) dy + 2c \int \left[f(y \mid \Gamma_{i}) - f(y \mid \Gamma_{j}) \right] \Delta f_{i} p(y) dy$$

通过把 y_k 从 Γ_j 移入 Γ_i ,使J增大,故应选择使 ΔJ 尽可能大的 Γ_i 移入,

即选择
$$f(y_k | \Gamma_i) = \max_l f(y_k | \Gamma_l)$$

以使 $[f(y|\Gamma_i) - f(y|\Gamma_j)]$ 最大,从而使 ΔJ 最大。

若存在两个(或以上)子集的 $f(y_k | \Gamma_i)$ 最大(相等),则可移入其中任一

类。

算法步骤:

- (1) 初始划分 Υ
- (2) 对每个样本 y_k , $k=1,\cdots,N$, 逐一计算 $f(y_k | \Gamma_i)$, 并归入使 $f(y_k | \Gamma_i)$ 最大的子集中。
- (3) 重复(2),直到不再有样本发生转移。

类别分离的间接方法

- * 目标: 类内元素相似性高, 类间元素相似性低
- * 该类方法的两个要点:
 - * 相似性度量
 - * 准则函数
- * 相似性度量:

样本间相似性度 量:特征空间的 某种距离度量

样本与样本聚类间相似性度量

$$\delta(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i - \mathbf{x}_j)^T (\mathbf{x}_i - \mathbf{x}_j)$$

$$\delta(\mathbf{x}_i, K_j)$$

总结

不同的聚类方法实际上反映了对聚类(及数据)的不同理解:

- 混合模型:数据服从混合分布,聚类对应于各分布
- 单峰子集: 聚类即概率分布中的单峰, 即样本分布相对集中的区域
- 间接方法:相似的样本聚类,不同聚类的样本不相似

动态聚类方法

* 距离函数: 进行相似性度量

*准则函数:评价聚类结果的质量

* 迭代, 直到准则函数取得极值

K均值算法

- *给定D维空间上的数据集 $\{x_1,\ldots,x_N\}$,并不知道这些数据集所对应的类型和标号,通过聚类方法将这些数据集划分成K类。
- *对于K个聚类中的每一类,分别建立一个代表点 μ_k ,将每一个样本划归到离该样本最近的 μ_k 所代表的聚类。
- *目的:最小化一个准则函数 J

- *对于样本x_n,定义一个聚类标注r_n,即如果x_n 属于第k个聚类,则
- * 准则函数: $r_{nk}=1$, and $r_{nj}=0$ for $j\neq k$

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2$$

- * 两步走策略
 - * 第一步: 初始化 μ_k 按照最优化准则产生 r_{nk}

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 \qquad r_{nk} = \begin{cases} 1 & \text{if } k = \arg\min_{j} \|\mathbf{x}_n - \boldsymbol{\mu}_j\|^2 \\ 0 & \text{otherwise.} \end{cases}$$

* 第二步: 根据产生的 r_{nk} 按照最优准则产生 μ_k

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} r_{nk} \|\mathbf{x}_n - \boldsymbol{\mu}_k\|^2 \longrightarrow 2 \sum_{n=1}^{N} r_{nk} (\mathbf{x}_n - \boldsymbol{\mu}_k) = 0 \longrightarrow \boldsymbol{\mu}_k = \frac{\sum_{n=1}^{N} r_{nk} \mathbf{x}_n}{\sum_{n=1}^{N} r_{nk}}$$

* 第三步: 根据产生的 μ_k , 按照最优准则产生 r_{nk}

迭代 r_{nk} — Expectation 迭代 μ_k — Maximization

初始划分:一般可先选代表点,再进行初始分类。

代表点选择方法:

- 1. 经验选择
- 2. 随机分成c类,选各类重心作为代表点
- 3. "密度"法。

计算每个样本的一定球形邻域内的样本数作为"密度",选"密度"最大的样本点作为第一个代表点,在离它一定距离之外选最大"密度"点作为第二个代表点,...,依次类推。

- 4. 用前 c 个样本点作为代表点。
- 5. 用c-1聚类求c个代表点:各类中心外加离它们最远的样本点,从1类开始。

. . .

C 均值聚类方法用于非监督模式识别的问题:

- 1. 要求类别数已知;
- 2. 是最小方差划分,并不一定能反映内在分布;
- 3. 与初始划分有关,不保证全局最优。

如何获取类别C

一种实验确定方法:

对 $c=1,2,3,\cdots$,取类,求 $J_e(c)$,如图找其中的拐点(图中 $\hat{c}=3$)

(此方法并不总有效)

ISODATA分法

算法步骤:

- (1) 初始化,聚类数c,中心 m_i , $i=1,\cdots,c$ (期望聚类数k)
- (2) 把所有样本分到距离最近的类中, Γ_i , $i=1,\dots,c$
- (3) 若某个类 Γ_j 中样本数过少 $\left(N_j < \theta_N\right)$,则去掉这一类(合入其它类),

$$置 c = c - 1$$

$$m_{j} = \frac{1}{N_{j}} \sum_{y \in \Gamma_{j}} y, \quad y = 1, \dots, c$$

(5) 计算第 ② 类样本与其中心的平均距离

$$\overline{\delta}_{j} = \frac{1}{N_{j}} \sum_{y \in \Gamma_{j}} \| y - m_{j} \|, \quad j = 1, \dots, c$$

和总平均距离

$$\overline{\delta} = \frac{1}{N} \sum_{j=1}^{c} N_{j} \overline{\delta}_{j}$$

(6) 若是最后一次迭代 (由参数 I 确定),则程序停止;

若 $c \le k/2$,则转(7)(分裂);

若 $c \ge 2k$,或是偶数次迭代,则转(8)(合并)。

7-1 对每个类,求各维标准偏差
$$\sigma_j = \left[\sigma_{j1}, \sigma_{j2}, \dots, \sigma_{jd}\right]^T$$

$$\sigma_{ji} = \sqrt{\frac{1}{N_j} \sum_{y_k \in \Gamma_j} (y_{ki} - m_{ji})^2}, \quad j = 1, \dots, c, \quad i = 1, \dots, d$$

- 7-2 对每个类,求出标准偏差最大的分量 $\sigma_{j \max}$, $j = 1, \dots, c$
- 7-3 若对 $\sigma_{j \max}$, $j = 1, \dots, c$, 存在 $\sigma_{j \max} > \theta_s$ (标准偏差参数

且
$$\overline{\delta}_j > \overline{\delta}$$
 且 $N_j > 2(\theta_N + 1)$

或
$$c \leq k/2$$

则 Γ_j 分裂为两类,中心分别为 m_j^+ 和 m_j^- , 置 c = c + 1

$$m_{\mathcal{I}}^{\dagger} = m_{\mathcal{I}} + r_{\mathcal{I}}, \quad m_{\mathcal{I}} = m_{\mathcal{I}} - r_{\mathcal{I}}$$

其中
$$r = k\sigma_{j \max}$$
, $0 < k \le 1$

(8)(合并)

8-1 计算各类中心之间的距离

$$\delta_{ij} = \left\| m_i - m_j \right\|, \quad i, j = 1, \dots, c, \quad i \neq j$$

8-2 比较 δ_{ij} 与 θ_c (合并参数),对小于 θ_c 者排序:

$$\delta_{i_1j_1} < \delta_{i_2j_2} < \dots < \delta_{i_lj_l}$$

8-3 把 m_{i_1} 和 m_{j_1} 合并:

$$m_{l} = \frac{1}{N_{i_{l}} + N_{j_{l}}} \left[N_{i_{l}} m_{i_{l}} + N_{j_{k}} m_{j_{k}} \right]$$

并置c = c - 1. 每次迭代中避免同一类被合并两次。

ISODATA分法

(9) 若是最后一次迭代,则终止。

否则转(2). (必要时可调整算法参数)。

基于样本与聚类间相似性度量的动态聚类算法

C均值方法的缺点:用均值代表类,适用于近似球状分布的类改进:

用核 $K_j = k(y, V_j)$ 来代表一个类 $\Gamma_j \circ V_j$ 是参数集。核 k_j 可以是一个函数、一个点集或某种分类模型。

定义样本 y 到类 Γ_i (核 k_i) 之间的相似性度量 $\Delta(y,k_i)$

准则函数
$$J_k = \sum_{i=1}^{c} \sum_{v \in \Gamma_i} \Delta(y, k_j)$$

基于样本与聚类间相似性度量的动态聚类算法

- (1) 初始划分,得到初始核 k_j , $j=1,\dots,c$
- (2) 按以下规则把各样本分类:

若
$$\Delta(y, k_j) = \min_{k=1,\dots,c} \Delta(y, k_k)$$

则
$$y \in \Gamma_i$$

(3) 更新 k_i , $j = 1, \dots, c$, 若 k_i 不变,则终止;否则转(2)。

C 均值可看作 k_i 为 m_i , Δ 为欧氏距离下的特例。

核函数示例

1. 正态核函数:

$$k_{k}(y,v_{j}) = \frac{1}{(2\pi)^{d/2} |\hat{\Sigma}_{j}|^{1/2}} \exp\left\{-\frac{1}{2} (y - m_{j})^{T} \hat{\Sigma}_{j}^{-1} (y - m_{j})\right\}$$

$$\Delta(y,k_{j}) = \frac{1}{2} (y - m_{j})^{T} \hat{\Sigma}_{j}^{-1} (y - m_{j}) + \frac{1}{2} \log|\hat{\Sigma}_{j}|$$

核函数示例

2. 主轴核函数:

用 K-L 变换得到样本子集的主轴方向作为核:

$$k(y, V_j) = U_j^T y$$

 $U_j^T = \begin{bmatrix} u_1, u_2, \cdots, u_{d_j} \end{bmatrix}$ 是 $\hat{\Sigma}_j$ 的 d_j 个最大本征值的本征向量系统。

$$\Delta(y,k_j) = \left[(y-m_j) - U_j V_j^T (y-m_j) \right]^T \left[(y-m_j) - U_j V_j^T (y-m_j) \right]$$

分级聚类方法

- * 聚类划分序列: N个样本自底向上逐步合并 成一类
 - * 每个样本自成一类 (划分水平1)
 - * K水平划分的进行: 计算已有的c=N-K+2个类的类间距离矩阵 $\mathbf{D}^{(K-1)}=[d_{ij}]^{(K-1)}$,其最小元素记作 $\mathbf{d}^{(K-1)}$,相应的两个类合并成一类
 - * 重复第2步,直至形成包含所有样本的类(划 分水平N)

分级聚类方法

- * 划分处于K水平时,类数c=N-K+1,类间距离矩阵 $\mathbf{D}^{(K)}=[d_{ii}]^{(K)}$,其最小元素记作 $\mathbf{d}^{(K)}$
- *如果d(K)>阈值d^T,则说明此水平上的聚类是适宜的

分级聚类树表示方法

两聚类间的距离度量

- * 聚类K_i与K_j间的距离度量
 - * 最近距离: $\Delta(K_i, K_j) = \min_{\mathbf{x} \in K_i} \delta(\mathbf{x}, \mathbf{y})$ $\mathbf{y} \in K_i$
 - * 最远距离: $\Delta(K_i, K_j) = \max_{\mathbf{x} \in K_i} \delta(\mathbf{x}, \mathbf{y})$ $\mathbf{y} \in K_j$
 - *均值距离: $\Delta(K_i, K_j) = \delta(\mathbf{m}_i, \mathbf{m}_j)$

非监督学习的一些问题

直接方法: 概率密度函数的估计问题

根本原因:已知信息的不足

解决办法: 先验知识

多次试算

改进算法。(如 SOM,Fuzzy C-means)

事先确定类别数

对相似性度量的依赖性

具体实现及应用

- * K均值聚类算法
- *基于非监督学习的医学图像分割

- * 数字图像
 - * M行N列构成的一个像素矩阵 (M×N)
- * 像素
 - * R, G, B
- * 数字图像就是一个三维矩阵

* K=2

* K=3

* K=10

问题

* K均值算法如何改进?

谢谢