

Providing SLOs for Resource-Harvesting VMs in Cloud Platforms

李超

2021/12/14

Reference: Ambati's Slides

饮水思源•爱国荣校

01

Evictable VMs

02

Characterization

03

Harvest VMs

04

SLOs for Harvest VMs

05

Harvest Hadoop

06

Lessons and Conclusion

Public Cloud Platforms (Azure)

- Cloud Platforms offer compute resources as virtual machines (VMs)
 - Users can keep the VMs from seconds to years and request more VMs
 - Cloud platforms provide **illusion of infinite scalability** (无限拓展的假象)

to allow user growth, handle hardware failures etc.

Hard to monetize (货币化) capacity

Evictable VMs

- Unallocated resources are leveraged as spot VMs with relaxed Service Level Objectives (SLOs)
 - Spot VMs can be **revoked** (evicted, 撤回) anytime for regular-priority VMs
 - They cost 50%~90% less than regular-priority VMs

Proposal: Harvest VMs and SLOs for Them

- Harvest VM a new class of evictable VMs
 - Allocated with a minimum size (physical resources)
 - Dynamically grows and shrinks to harvest unallocated resources
 - Only evicted if its minimum size is needed for a regular VM

- different from Burstable VMs
 - Burstable VMs only burst for brief time up to their max size after accumulating credits
 - Harvest VMs grow to consume all unallocated resources at all times

Characterizing Unallocated Resources

- Allocate hypothetical (假设的) VMs with idle resources
 - Characterized from Microsoft Azure
 - Compute unallocated resources for each host server

Characterization: Temporal patterns

- Unallocated resources for a region
 - 1-hour shows diurnal pattern (nights have more)
 - 1-day shows weekly patterns (weekends have more)
 - Fewer servers have enough unallocated capacity over longer horizon

Characterization: Cluster behaviors

- Unallocated resources at region level are stable
- Unallocated resources at cluster level can change abruptly

Characterization: Servival Rate

- Smaller amount of resources more widely available
- Larger amounts of resources may last longer

Characterization: Key Takeaways

- Many unallocated resources are available for harvesting
 - Dynamic temporal (时间的) and spatial (空间的) behaviors

Unallocated resources not evenly distributed across clusters

Many additional unallocated resources beyond spot VMs size

Filling with spot VMs takes many more VMs (and many more evictions)

Harvest VMs

- User picks minimun/maximum size
- Harvest unallocated resources dynamically
 - Dynamic physical cores & Fixed numbers of virtual cores

 T_0 : All unallocated first

*T*₁: *Grow* when VM leaves

T₂: Shrink when new VM lands in host

*T*₃: *Evicted* if providers needs minimum

Evaluation: Spot VMs vs Harvest VMs

Requires around 3.7x more evictable VMs on average than Harvest VMs to fill unallocated capacity across all clusters

Evaluation: Cost Comparison

Harvest VMs 91% cheaper than regular VMs and 45% cheaper than spot VMs

SLOs for Harvest VMs

- Hard to provision just enough VMs with variable resources
 - Key: VMs survival rate

- Example SLO: User requests 100 Harvest VMs in Shanghai
 - 85% of them survive for 1 hour
 - 30% of them survive for 1 month
 - An average of 8.5 cores in each host server (each Harvest VM)
 - 95% confidence intervals (80-90% survive for 1-hour)

Evaluation: SLOs for Harvested Cores

Prediction accuracy is very high i.e. average cores SLO would be accurate

Evaluation: SLOs for Survival Rate

Short-term predictions have an avg error < 2% and < 6% for longer terms

SLO Predictor Features

Random Forest Regressor

- Features
 - Total VMs in the cluster
 - Total cores/memory allocated and available
 - Cluster characteristics (generation, number of racks,...)
 - Auto-regressive (e.g., values 1 day ago)
 - Moving average (average values for the last week)

Evaluation: Random Forest vs MLP

Random Forest yields an (overall) accuracy of ~98% with mean error of ~0.2 cores

Evaluation: Model for Region or Cluster

SLO Predictor Features

Random Forest Regressor

- Features
 - Total VMs in the cluster
 - Total cores/memory allocated and available
 - Cluster characteristics (generation, number of racks,...)
 - Auto-regressive (e.g., values 1 day ago)
 - Moving average (average values for the last week)

Building Application on Harvest VMs

- Applications can naively use Harvest VMs
 - Leverage fault tolerance for evictions
 - Run using minimum resources available and change dynamically
- Extend Hadoop run many applications (Spark, MapReduce,...)

Lessons

- Adapting applications is the main blocker
- When a Harvest VM gets 40 virtual cores, it becomes unbalanced
 - 2 cores/16GB of memory ==> 40 cores/16GB of memory
- Allowing multiple Harvest VMs per server
 - Add the maximum size of each Harvest VM
- Impact to regular VMs
 - Optimization to reduce impact in creation time
- New VM family

Conclusion

- Characterization shows many unallocated resources for harvesting
 - Dynamic temporal and spatial behaviors
- Harvest VMs successful at leveraging unallocated resources
- We provide SLOs for the availability of harvested resources
 - Our prediction models show high accuracy (~98%)
- Harvest Hadoop can adjust to changing harvested resources
- Harvest VMs and Harvest Hadoop running in production in Azure
 - 91% cheaper than regular VMs
 - 45% cheaper than spot VMs and with 73% fewer evictions

