

W3 : Completion et performance des puits

Formation certifiante en Management de la chaine de valeur de l'EP et Ingénierie pétrolière – Du 04 Décembre au 08 Décembre 2016

Well Productivity & Wellbore Interface

PPLCTE

Summary

- **▶** Well completion
 - Concerned area
 - Main factors influencing completion design
 - Main types of completion configuration
- ► About fluids in reservoir
- Overall approach of the well flow potential
- ▶ Main phases in completion
- ▶ Reservoir-Wellbore Interface
- **▶** Artificial Lift
- ▶ Well servicing
- Appendix: Answers to exercises

Well completion

Sommaire

- **▶** Concerned area
- **▶** Completion design
- ► Main types of completion configuration

Well completion: Concerned area

To "complete" a well:

- The hole being made by a driller
- To put it in production
- Taking into account reservoir conditions

\Rightarrow Well completion:

- Crossroad between: drilling
 - reservoir engineering
 - production

Well completion: Concerned area

= Make the well produce for the first time:

- Drilling in the producing formation
- Connecting the pay-zone and the borehole
- Treating the pay-zone
- Equipping the well
- Putting the well on stream
- Assessing the well

+ Operations on the well at a later date:

- Measurement
- Maintenance
- Workover

RWI (reservoir-wellbore interface)

IFPTraining

Well completion

Well completion: Concerned area

Greatly influenced by:

- The way the well has been designed and drilled
- Production problems the reservoir might cause

⇒ Work in close collaboration with:

- The driller
- The reservoir engineer
- The production staff

Parameters related to well purpose:

Exploration well

▶ Prime objective:

- To prove the presence of oil or/and gas:
 - Nature and characteristics of the fluids in place in the reservoir (including the water)

▶ Other objective:

- To know characteristics of the pay-zone:
 - Initial pressure and temperature
 - Approximate permeability and productivity

Means:

- Wireline logging
- Test string

⇒Decision to develop or not Well suspended or abandoned

Parameters related to well purpose (cont.):

Confirmation well (or appraisal or delineation)

Objectives:

- Refine the results from the exploration well:
 - Strictly representative sample
 - Pressure, permeability and well productivity
- Determination of the off wellbore reservoir characteristics:
 - Off wellbore permeability
 - Heterogeneity, discontinuity, faults
 - Reservoir boundaries, possible water drive

Means: well testing

- Designed with the help of knowledge from exploration well
- Usually more complete
- ⇒ Longer duration for the testing

Well completion

Parameters related to well purpose (cont.):

Development well

Types of development wells:

- **Production wells**
- Injection wells
- (Observation wells)

▶ Objective (depending on the well type):

- To produce the reservoir
- To inject fluid for pressure maintenance or sweeping effect
- (run some measurement tools)
- ⇒ Flow potential

▶ Note: importance of testing to:

- Asses the condition of the well
- Obtain further information about the reservoir

Parameters related to environment

- Area, Country
- Well location
-

⇒ Constraints

IFPTraining

Well completion

Parameters related to drilling

- Drilling rig used
- Well profile
- Drilling and casing program*
- Drilling in the pay-zone(s) & drilling fluid:
 - Formation damage ⇒ prevention restoration
 - Others considerations
- Cementing the production casing

Available diameters according to the drilling and casing

program

Well completion

Parameters related to reservoir

- ▶ Reservoir pressure and its change*
- ▶ Interfaces between fluids and their changes*
- Number of levels to be produced
- ► Rock characteristics & Fluid type
- ▶ Production profile & Number of wells required

Change in the reservoir pressure versus cumulative

production

Well completion

IFPTraining

Fluids distribution in a homogenous reservoir

Interface change with cumulative production

Influence of a highly permeable drain on a W/O contact

a) Stable cone

Oil Well hp ho H

b) Water encroachment in well

H: Pay zone thickness

h_o: Thickness occupied by oil

h_p: Well penetration

Well completion

19

Parameters related to production

- Safety
- Flowing well or artificial lift
- Operating conditions
- Anticipated measurement, maintenance or workover operations

Parameters related to completion technique

- ► Interdependent choices
- ► Function of the other parameters
- => Compromise

Well completion

2

▶ From main purposes decided by:

- Company operation management
- Reservoir engineering department
- As:

For exploration or appraisal well:

- Level to be tested
- Type of test

For development well:

- Level(s) to be produced
- Production profile

Well completion

Completion design (cont.)

▶ The problem is to design the best possible completion in order to:

- Optimise productivity (or injectivity)
- Ensure reliability and safety
- Optimise equipment lifetime
- Be able to adapt the well to future change
- Minimise costs (investment, operating, workover)

⇒ Compromise or modified purposes

- Local constraints
- Effluent characteristics
- Reservoir characteristics
- Number of producing formations
- Available diameter, borehole profile
- Necessity for treatment operations
- Necessity to maintain reservoir pressure, for artificial lifting
- Later operations

IFPTraining

Well completion

Completion design (cont.)

- ▶ Importance of data gathering
- ▶ But the job is not easy since data are:
 - Very numerous
 - Sometimes tardily known
 - Sometimes contradictory
 - Negociable or not

Summary

Main types of completion configuration

- Preamble
- Basic requirements
- Configuration of the reservoir-wellbore interface
- Configuration of production string(s)

Main parameters for completion design (reminder)

- Type of well:
 - Exploration
 - Confirmation or appraisal (or delineation)
 - Development
- Well purpose:
 - Production
 - Injection
 - Observation
- Production way:
 - Naturally flowing well
 - Artificial lift
- Interface between fluids
- Number of zones to be produced:
 - (all together)
 - separately
- Anticipated measurement, maintenance or workover operations

IFPTraining

Objective

Well completion

- To choose the best suited configuration:
 - Greatest possible flow potential
 - At the lowest cost

⇒ Compromise

- Compromise taking into account:
 - Costs:
 - Capital expenditure (CAPEX)
 - Operating expenditure (OPEX)
 - Relativity
 - Anticipation

and also:

- Flowrate per well*
- Risk:
 - In relation with the flowrate
 - In relation with safety
- Cultural factor

Statistics on oil production (end of 2000)

(from World Oil august 2001)

Well completion

31

Basic requirements

- Borehole wall stability
- Selectivity of fluid or pay zone(s)
 (including selectivity of the zone to be treated, if any, and treatment efficiency)
- Minimal restrictions along flow path, so well flow potential optimisation
- Well safety
- Flow adjustment
- Operations to be performed at a later date (measurement, maintenance, etc.) without having to resort to workover
- Easy workover when necessary

Configuration of the reservoir-wellbore interface

▶ Choice between:

- Open hole*
- Cased hole*

▶ Take also into account (if the problem arises):

- Perforation method
- Sand control method
- Stimulation method
- "Conventional" drain (vertical or slanted) or horizontal drain

IFPTraining

Open hole completion

Well completion

Cased hole completion

Main types of completion configuration

Configuration of production string(s)

Well completion

Configuration of production string(s)

► Conventional completion*:

- Single zone
- Multi zones:
 - Parallel dual string
 - Tubing annulus
 - Alternate selective

▶ Tubingless completions*:

- Single zone
- Multi zones

Well completion

- Miniaturised completions
- ▶ Example of equipment for a naturally flowing well (single zone completion)*

IFPTraining

37

Single zone completion

With tubing and packer

With tubing alone

Multi zones completion

a: Parallel dual tubing strings

b: Tubing - annulus completion

Well completion

Multi zones completion (cont.)

c: Alternate selective completion Single production string 00599_A_A (tubing) Upper packer (single) Circulating device Closed Upper perforated reservoir -Lower packer (single) Plug Landing nipple (for plug) Lower perforated reservoir (a) (b)

Tubingless completion

Well completion

IFPTraining

Synthesis: example of equipment for a naturally flowing

well

Initial completion

(case of a cased hole configuration)

- Checking the cement job
- Remedial cementing (if needed)
- Re-establishing the pay zone-borehole communication
- Well testing
- Treating the pay zone :
 - Stimulation (acidizing, fracturing)
 - Sand control
- Equipment installation
- Putting the well on stream & Assessing performance
- Moving the rig

Operations to be performed at a later date

- Measurements
- Maintenance
- Workover
- Abandonment

IFPTraining

46

About fluids in reservoir

Summary

- ► Fluids flow and repartition in the reservoir
- ► Characterisation of the fluids in the reservoir

About fluids in reservoir

Absolute permeability (k_a) & Darcy law

Definition:

The permeability k_a characterises the fluid flow trough a given porous media, the rock containing only this fluid

Quantification - Darcy's law:

$$Q = \frac{k_a}{\Delta} X A X \frac{\left(P_{input} - P_{output}\right)}{L}$$

k_a is directly related to the size of the connection between the pores (unit: Darcy or milliDarcy - mD)

μ is the viscosity of the flowing fluid (unit: centipoise - cP)

Careful, permeability is not directly related to porosity:

Example: pumice stone has a very high porosity but no permeability as the pores are not connected together

About fluids in reservoir

IFPTraining

Saturation

Definition:

S = Relative amount of fluids inside the pores

S_w = Water volume / Total pore volume = water saturation

S_o = Oil volume / Total pore volume = oil saturation

S_g = Gas volume / Total pore volume = gas saturation

$$S_w + S_o + S_g = 1$$

Linked to the surface properties of the rock (wettability)

Practical cases:

Water/Oil: Water is often the wetting fluid

Oil/Gas: Oil is the wetting fluid

Water/Gas: Water is always the wetting fluid

Wettability: several experiments

The table is air wet (grease) θ >90°

Undefined wettability $\theta = 90^{\circ}$

The table is water wet (potato) θ <90°

Wings of a butterfly is never wet by water

Modification of the wettability by a surface tensio-agent

Consequences: It will be difficult to wash the oil during a water flooding

About fluids in reservoir

Relative permeability concept

Definition of effective permeability (k,) relative permeability (k,):

Extension of Darcy's law to each fluid with
$$k_{rf} = k_f / k_a$$
:
$$Q_{oil} = \frac{k_a \times k_{r.oil}}{\mu_{oil}} \times A \times \frac{\left(P_{input}^{oil} - P_{output}^{oil}\right)}{L}$$

Oil, water and gas permeability Use of the relative permeability*

Irreducible saturations:

S_{wi}: irreducible water saturation

S_{or}: residual oil saturation

S_{gc}: critical gas saturation

Mobility of the fluids at their maximum saturations

Oil:
$$M_o = \frac{k_a \times k_{ro.max}}{\mu_o}$$

Water:

$$M_{w} = \frac{k_{a} \times k_{rw.max}}{\mu_{w}}$$

Mobility ratio:
$$R_{w/o} = M_w / M_o = \frac{k_{rw.max}}{\mu_w} \times \frac{\mu_o}{k_{ro.max}}$$

Viscosity (μ_f) & Mobility (M_f) of the different fluids

Viscosity:

- μ_w : From 0.3 cP to 1 cP Mainly function of temperature (note: μ_w = 1 cP at 20°C and 1 atm)
- μ_{o} : 0.3 cP to several hundred cP (or more) Mainly function of:
 - oil composition
 - temperature
- μ_g : From 0.01 cP to 0.03 cP (or more) Mainly function of pressure
- ▶ Mobility of the different fluids (for $S_g > S_{gc}$, $S_w > S_{wi} & S_o > S_{or}$):
 - $M_g >> M_w \approx or > or >> M_o$ (depending on the oil viscosity)

About fluids in reservoir

Capillarity

$$h = \frac{2\sigma \times \cos\theta}{\rho gr}$$

ρ: water density

σ: surface tensionθ: contact angler: radius of the capillary tube

20

Capillarity and fluids distribution in the reservoir

Example of an oil reservoir

oil zone : So = 1 -Swi
example 20% < Swi < 25%

Oil
Grain

Z | Irreducible saturation | Swi

The transition zone is high when:

- The difference of density of the two fluids is low (so higher transition zone between water and oil than between water and gas)
- The pore diameters are smalls

Effect of capillarity on S_w

About fluids in reservoir

Pressure - Volume diagram: decompressing an oil

About fluids in reservoir

IFPTraining

Pressure – Volume diagram

Bubble point pressure of an oil: pressure at which the first bubbles of gas evolves from the oil when the pressure decreases at a given temperature

Dew point pressure: pressure, at a given temperature, at which the first drops of condensate appear in a gas when the pressure varies

Pressure – Temperature diagram

About fluids in reservoir

IFPTraining

PT diagram in function of the gas composition

Phase envelops of different effluents from oil or gas

About fluids in reservoir

IFPTraining

Phase envelops of different effluents from oil or gas

PVT terminology: glossary

- PVT study of a fluid
- Saturation curve of a fluid
- Bubble point curve
- Dew point curve
- Critical point
- Bubble point & bubble pressure at T_{given}: P_B
- Dew point & dew point pressure at T_{given}: P_{DP}
- Standard conditions (gas) :
 - Atmospheric pressure and 15 °C
 Or
 - Atmospheric pressure and 60 °F (careful: 60 °F = 15.6 °C ≠ 15 °C)
- Stock tank oil conditions (oil) → STO
- Solution GOR: R_{s(P,T)}*
- B_{o(P,T)} & FVF, B_{g(P,T)}*

About fluids in reservoir

IFPTraining

18

Illustration of the PVT terms R_s, B_o & B_g

R_{s(P&T)}: Solution gas/oil ratio (see definition here after)

B_{o(P&T)}: **Oil Formation Volume Factor** (*Bulk oil*) (see definition here after)

B_{g(P&T)}: Gas Formation Volume Factor (*Bulk gas*) (see definition here after)

Definitions of the PVT terms R_s, B_o & B_g (1/2)

R_{s(P&T)}: Solution gas/oil ratio at P&T

- Ratio between the "Volume of gas (expressed at standard conditions) in solution in the oil at P&T that evolves from it when pressure and temperature are reduced to standard conditions " and the "Corresponding dead oil volume (measured at standard conditions)"
- Expressed in Sm³/m³ ou scf/bbl; caution!: "dimensionless" but "with units" (the value of the ratio depends on the units: 1 Sm³/m³ ≈ 5.6 scf/bbl)!
- Very variable from one oil to another (from 0 to more than 300 Sm³/m³ or 2000 scf/bbl)

B_{o(P&T)}: Oil Formation Volume Factor (Bulk oil)

- Ratio between the "Volume of oil occupied at P&T conditions by the corresponding volumes of dead oil and it associated gas (free at standard conditions) which is in solution in the oil at P&T conditions" and the "Corresponding dead oil volume (measured at standard conditions)"
- Expressed in m³/m³ or bbl/bbl; term "dimensionless" and "unit-less" (the value of the ratio does not depend on the units, although keep in mind it is a ratio between a "Reservoir volume" and a "Standard conditions volume")
- It is usually in the range of 1 to 2, depending mainly of R_s and T

IFPTraining

20

About fluids in reservoir

Definitions of the PVT terms R_s , $B_o \& B_g$ (2/2)

B_{g(P&T)}: Gas Formation Volume Factor (Bulk gas)

- Ration between the "Volume occupied by the free gas at P&T conditions" and the "Volume of this same mass of free gas at standard conditions"
- Express:
 - In the metric system: in m³/Sm³ (term "dimensionless" and "unit-less", although keep in mind it is a ratio between a "Reservoir volume" and a "Standard conditions volume")
 - In the US oil field system: in cft/Scft (term "dimensionless" and "unit-less", although keep in mind it is a ratio between a "Reservoir volume" and a "Standard conditions volume") or in bbl/scf or bbl/Mcf (caution!, in this case "dimensionless" but "with units"!)
- In m³/Sm³ or cft/Scft, it is usually in the range of 1/P_{bara} or 14.7/P_{psia} (with a correction factor usually between 0.7 and 1.2 depending on the non-perfect gas nature and the temperature)

Example of calculation of PVT terms B_o & R_s

Formation volume factor of the oil:

 $B_{o(P\&T Reservoir)} =$ Solution gas/oil ratio:

 $R_{s(P\&T Reservoir)} =$

About fluids in reservoir

Some "Production operations" terminology

- $GOR = \frac{G}{}$ Production GOR: Gas produced / Oil produced:
 - Beware of the units: Sm^3/m^3 or scf/bbl (with $1 Sm^3/m^3 \approx 5.6 scf/bbl$)
 - Caution! Do not confuse the production GOR (GOR_{prod}) with the solution GOR (R_S):
 - if $P_{BH} > P_{B}$, then $GOR_{prod} = R_{S}$
 - If there is also free gas flowing from the reservoir, GOR_{prod} > R_s

• WOR =
$$\frac{W}{O}$$

WLR or watercut =
$$\frac{W}{O + W}$$
 with $WLR = \frac{WOR}{1 + WOR}$

• GLR =
$$\frac{G}{O + W}$$
 with GLR = $\frac{GOR}{1 + WOR}$ = GOR (1 – WLR)

• BSW (Basic Sediment & Water) =
$$\frac{5 \& W}{O + S \& W}$$

GPM: Caution Gallons of condensate Per thousand scf of gas (note: thousand = M)

> Grams of condensate Per standard M³ of gas or

Composition of hydrocarbons

OIL =
$$\epsilon$$
 (C₁ to C₄) + C₅⁺

LIGHT oils (d<=0.86) Gas + Oil (surface conditions)

MEDIUM oils (0,86<d<0,92) Gas/Oil << (surface conditions)

HEAVY oils (d>0,92) ε Gas & Oil (surface conditions)

GAS =
$$C_1 + C_2$$
 to $C_4 + \varepsilon C_5^+$

DRY gas

WET gas

Gas CONDENSATE

Gas (surface conditions)

Gas & ε Condensate (surface conditions)

Gas & Condensate (surface conditions)

C₁ methane

C₂ ethane

C₃ propane

C₄ butane

C₅ pentane

C₆ hexane

C₇ heptane

IFPTraining

About fluids in reservoir

Light and heavy oils

Type of Oil	Light	Medium	Heavy
Density (g/cm³)	0.80 to 0.82	0.83 to 0.90	0.91 to 1
° API	45	35	25 to 10
Volume Factor (volume reservoir/surface)	3 to 2	1.5	1.1 to 1
Gas/Oil Ratio (m³ gaz/m³ oil)	300 to 200	100	10 to 0
Viscosity (cP)	< 1 cP	several cP	up to 1 Po

Viscosity of water at 20°C and 1 atm. = 1cP

Viscosity of gas 1/100 cP

Overall approach of the well flow potential

Summary

- ▶ Base equations
- ▶ Productivity and flow efficiency
- ► Analysis of the different terms & Resulting conclusions
- Performance curves
- ► Extension of PI notion

Base equations

▶ Well flow potential:

$$Q = f\left(P_R, P_{BH}, \frac{h k}{\mu}, S\right)$$

- ► If steady-state (or pseudo steady-state) flow:
 - Case of an oil flow: $Q = PI (P_R P_{BH})$
 - Case of a gas flow (empirical law): $Q = C (P_R^2 P_{BH}^2)^n$ with 0.5 < n < 1 with PI & C function of hk/ μ and S
- ▶ P_{BH required} & P_{BH available}
 - $P_{BH \text{ required}} = P_{sep} + \Delta P_{fl} + P_{Hfl} + (\Delta P_{choke}) + \Delta P_{tbg} + P_{Htbg}$
 - $P_{BH \text{ available}} = P_R \Delta P_R$

with $\Delta P_R = Q/PI$ if oil flowrate

Productivity index

(case of a liquid in steady-state and radial flow and for $P_{BH} > P_{B}$)

Bo : Oil bulk volume : Reservoir thickness

P_{BH}: Bottomhole pressure in well (when flowing)

P_R: Reservoir pressure

Q : Stock tank oil flowrate (Qsto)

Q_{BH}: Bottomhole flowrate : Well drainage radius : Wellbore radius

Overall approach of the well flow potential

Productivity Index & Flow efficiency

(case of a liquid in steady-state and radial flow)

- $PI = \frac{2\pi hk}{B\mu \left(Ln \frac{R}{\mu} + S \right)}$ Actual PI (PI) for a steady-state and radial flow:
- ► Flow efficiency (Fe):

From a "Production" point of view:

$$\text{Fe} = \frac{\text{PI}}{\text{PI}_{\text{th}}} = \left[\frac{\text{Q}}{(\text{P}_{\text{R}} - \text{P}_{\text{BH}})}\right] \times \left[\frac{(\text{P}_{\text{R}} - \text{P}_{\text{BH}})_{\text{th}}}{\text{Q}_{\text{th}}}\right] = \left[\frac{(\text{P}_{\text{R}} - \text{P}_{\text{BH}})_{\text{th}}}{(\text{P}_{\text{R}} - \text{P}_{\text{BH}})}\right]_{\text{Q=Cst}} = \left[\frac{\text{Q}}{\text{Q}_{\text{th}}}\right]_{\Delta \text{P=Cst}}$$

From a "Reservoir engineering" point of view and for a steady-state and radial flow:

$$FE = \frac{PI}{PI_{th}} = \frac{2\pi hk}{B\mu \left(Ln\frac{R}{r_w} + S\right)} \frac{2\pi hk}{B\mu Ln\frac{R}{r_w}} = \frac{Ln\frac{R}{r_w}}{Ln\frac{R}{r_w} + S}$$

Simplified form (for Ln R/r_w between 7 and 8):
$$FE = \frac{PI}{PI_{th}} \approx \frac{7}{7+S}$$
 to $\frac{8}{8+S}$

(usually it is considered that Ln R/ $r_w \approx 7.6$)

Relationship between skin factor S and flow efficiency Fe

(case of a liquid in steady-state and radial flow & for Ln R/rw = 7.6)

Overall approach of the well flow potential

IFPTraining

Parameter included in the global skin S

(steady-state and radial flow)

- S = 0:
 - No damage
 - Well fully open (open hole) on all the height of the pay zone
 - Well drilled perpendicular to the pay zone ("vertical")
 - No turbulence (laminar flow)
- S_d (damage):

 - O < S_d < + ∞ S_d = f(k_d/k_o, r_d) After treatment: S_{d after treatment}: + ∞ to 0
- S_p (perforation):

 - $-1 < S_p < 0$ (or + 1) $S_p = f(penetration, phasing, SPF, k_v/k_h)$
- $S_p = \{(perietration, priasing, SPF, k_v/k_h)\}$ S_{pp} (partial penetration): $0 < S_{pp} < + 7 \text{ (or more)}$ $S_{pp} = f(h_p/h_u, pattern, k_v/k_h)$ S_{θ} (deviation or inclination of a slanted well):
 - $(-3 \text{ to}) 1.5 < S_{\theta} < 0$
 - $\dot{S}_{\theta} = f(\theta, k_v/k_h)$
- S_t* (turbulence)
- $\mathbf{S}_{\text{global (from well test)}} = \mathbf{f(\ S}_{\text{d}},\ \mathbf{S}_{\text{p}},\ \mathbf{S}_{\text{pp}},\ \mathbf{S}_{\theta},\ldots)$
 - don't confuse S_{global} and S_d

 $S_{global} > 0$ don't automatically imply $S_d > 0$

& perhaps - 2 (or even - 4)

Turbulence effect

Practical formulas for PI & Fe (for Ln R/rw =7.6*)

(case of a liquid in steady-state and radial flow)

$$PI_{(m^3/d/bar)} = \frac{h_{(m)} x k_{(mD)}}{18.7 x B_o x \mu_{(cP)} x (7.6 + S)}$$

with: $18.7 \times 7.6 = 142$

 $PI_{\text{(bbl/d/psi)}} = \frac{h_{\text{(ft)}} x k_{\text{(mD)}}}{141 x B_o x \mu_{\text{(cP)}} x (7.6 + S)}$

with: $141 \times 7.6 = 1072$

 $FE \approx \frac{7.6}{7.6 + 9}$

Note: $1 \text{ m}^3/\text{d/bar} \approx 0.43 \text{ bbl/d/psi} \approx 1 \text{ bbl/d/psi} \approx 2.3 \text{ m}^3/\text{d/bar}$

*: Ln R/rw = 7.6 correspond to a drainage radius of 200 m (656 ft) for 8" 1/2 drilling diameter

Overall approach of the well flow potential

Fluid path from the reservoir to the process facilities

 P_R = Reservoir pressure

 ΔP_R = Pressure losses in the reservoir

 P_{BH} = Bottomhole pressure

P_{Htbg} = Hydrostatic pressure in the tubing = Pressure losses in the tubing ΔP_{tbg} ΔP_{choke} = Pressure losses in the choke

 P_{Hfl} Hydrostatic pressure in the flowlines = Pressure losses in the flowlines ΔP_{fl}

 Pressure at the surface treatment facility inlet P_{sep}

$$P_{BH required} = P_{sep}^* + \Delta P_{fl} + P_{Hfl} + (\Delta P_{choke}) + \Delta P_{tbg} + P_{Htbg}^*$$
 [outflow]

$$P_{BH \text{ available}} = P_R - \Delta P_R$$
 [inflow]

with
$$\Delta P_R = Q/PI$$
 if oil flowrate

Multistage separation

Overall approach of the well flow potential

Hydrostatic pressure

▶ Hydrostatic pressure:

or
$$P_{h(MPa)} = \frac{9.81 \times Z_{(m)} \times d_{(kg/I)}}{1000}$$

$$P_{h(bar)} = \frac{9.81 \times Z_{(m)} \times d_{(kg/l)}}{100} \text{ ou } \frac{Z_{(m)} \times d_{(kg/l)}}{10.2}$$

•
$$P_{h(psi)}$$
 = 0.052 x $MW_{(ppg)}$ x $Z_{(ft)}$
or
= 0.433 x SG x $Z_{(ft)}$

Note: 1 MPa = 10 bar

Note: 1 bar = 0.1 MPa

Conversion factors:

or

Study of BHP_{required} (1/4)

▶ Oil well (3000 m – 10,000 ft)

bar psi

- $\mathsf{P}_{\mathsf{sep}}$
- ΔP_{fl}
- P_{H fl}
- \bullet ΔP_{tbg}
- P_{H tbg}

Note:

- 560 scuft = 100 bbl 1 atm = 14.7 psia
- $P_H(psi) = 0.433 \times SG \times Z(ft) = 0.052 d(ppg) \times Z(ft)$
- Water density at 20°C or 68°F: 1 kg/l = 8.33 ppg = 62.3 lbs/ft³
- Air density at 60°F & 14.7 psia: 0.0764 lbs/ft³ = 1.23 g/l

IFPTraining

Overall approach of the well flow potential

Study of BHP_{required} (2/4)

► Gas well (3000 m – 10,000 ft)

bar psi

- P_{sep}
- ΔP_{fl}
- $P_{H fl}$
- ΔP_{tbg}
- P_{H tbg}

Study of BHP_{required} (3/4)

Gas well (3000 m – 10 000 ft): Determination of WHP (in bar)

IFPTraining

16

Study of BHP_{required} (4/4)

Overall approach of the well flow potential

Gas well (3000 m – 10 000 ft): Determination of WHP (in psi)

Effect of a damage around the wellbore: example

(case of a liquid in steady-state and radial flow)

Data: $P_R = 360 \text{ bar}$, $k_O = 90 \text{ mD}$ & $\Delta P_{th} = 20 \text{ bar}$ for $Q = 300 \text{ m}^3/\text{d}$

		For $\Delta P_R = 20$ bar				
		&				
	$k_{(1-0.1 \text{ m})} = 90 \text{ mD}$	$k_{(1-0.1 \text{ m})} = 9 \text{ mD}$	k _(1-0.1 m) = 900 mD	$k_{(1-0.1 \text{ m})} = 9 \text{ mD}$		
Flow rate	Q = 300 m ³ /d	Q = 300 m ³ /d	Q = 300 m ³ /d	$Q' = Q \times \dots$		
riow rate	Q = 300 m ³ /a	Q = 300 m ³ /d	Q = 300 m ³ /a	=		
ΔP _(1000 – 100 m)						
ΔP _(100 - 10 m)						
ΔP _(10-1 m)						
ΔP _(1-0.1 m)						
$\Delta P_{R} = \Delta P_{(1000-0.1 \text{ m})}$	20			20		
$\Delta P_{(1-0.1 \text{ m})}/\Delta P_R$						
P _{BH} =		_				
FE [flow efficency]						

IFPTraining

Overall approach of the well flow potential

Effect of a damage around the wellbore: example

(case of a liquid in steady-state and radial flow)

Exercise N° 1 US field Unit

Data: $P_R = 3600 \text{ psi}$, $k_O = 90 \text{ mD}$ & $\Delta P_{th} = 200 \text{ psi}$ for Q = 2000 bpd

FE [flow efficency]

Infinite extent reservoir (or boundaries not yet reached)

"PBH versus Ln r" diagram (excluding capacity and skin effects):

 $P_i - P_{wf} = f(t)$ transient flow

Infinite extent reservoir (or boundaries not yet reached)

(cont)

"P_{wf} versus log t" diagram (excluding capacity and skin effects):

• For "t great enough": $P_{wf} = P_i - m \log t \implies transient flow$

Overall approach of the well flow potential

Case of a limited reservoir with constant pressure at the

boundaries

In this case, it is considered that the pressure at the limit of the reservoir is maintained constant (perfect water drive or water flooding with perfect pressure maintenance for example)

"PBH versus Ln r" diagram (excluding capacity and skin effects):

• For "t > t_e ": P_{wf} = cst & $P_i - P_{wf}$ = cst \Rightarrow steady state flow

(this type of flow is usually not reached during a well test when drilling, the well test duration being too short)

Case of a limited reservoir with constant pressure at the

boundaries (cont.)

► "P_{wf} versus t" diagram (excluding capacity and skin effects):

- ① Transient flow (reservoir acting as infinite): $P_{wf} = P_{1h} m \log t$
- **2**Transition zone
- ③ Steady state flow: $P_{wf} = cst$
- For "t > t_e ": $P_{wf} = cst$ & $P_i P_{wf} = cst$ \Rightarrow steady state flow

IFPTraining

Overall approach of the well flow potential

Case of a limited reservoir with no flow at the

boundaries

In this case, the reservoir is considered fully isolated from the outside by barriers allowing no communication (perfectly sealed reservoir)

► "P_{BH} versus Ln r" diagram (excluding capacity and skin effects):

For t > t_e, production is obtain only by decompression

P = average pressure in the reservoir (once the well is shut back)

• For " $t > t_e$ ": $P_{wf} = f(t)$ but

(this type of flow is usually not fully reached during a well test when drilling, the well test duration being too short)

IFPTraining

Case of a limited reservoir with no flow at the

boundaries (cont.)

"Pwf versus t" diagram (excluding capacity and skin effects):

- ① Transient flow (reservoir acting as infinite): $P_{wf} = P_{1h} m \log t$
- **②Transition zone**
- 3 Pseudo steady state flow: $P_{wf} = P_0 m^* t$

- the relative position of the well compared to the limits
- For "t > t_e ": $P_{wf} = f(t)$ but $\overline{p} P_{wf} = cst \implies$ pseudo steady state flow

Overall approach of the well flow potential

IFPTraining

Theoretical formulas

	Transient flow	Pseudo steady state flow	Steady state flow
	Infinite reservoir (or boundaries not yet reached)	No flow boundaries	Constant pressure boundaries
"P _r "	$P_r = P_i = P^* = cst$	$P_r = \overline{P} = f(t)$	$P_r = P_i = cst$
P_{wf}	$P_{wf} = P_{1h} - m \log t$	$P_{wf} = P_0 - m * t$	$P_{wf} = P_0 = cst$
"P _r " - P _{wf}	$P_i - P_{wf} = f(t) = \alpha \log t + \beta$	$\overline{P} - P_{wf} = cst$	$P_i - P_{wf} = cst$
"PI"	$q = f(t) = \frac{4\pi kh}{B\mu \left(Ln \frac{Kt}{r_w^2} + 0.81 + 28 \right)}$ $\Rightarrow \text{the flow rate can't be}$ $\text{characterised by a Pl}$	$PI = \frac{q}{P \cdot P_{wf}} = cst = \frac{2\pi kh}{B\mu \left(Ln\frac{r_o}{r_w} + S - 0.75\right)}$	$PI = \frac{q}{P_i \cdot P_{wf}} = cst = \frac{2\pi kh}{B \mu \left(Ln \frac{r_e}{r_w} + S \right)}$
"J"	$\frac{L_{1}\frac{Kt}{v_{w}}+0.81}{L_{1}\frac{Kt}{r_{w}^{2}}+0.81+2S}$ with $K=\frac{k}{\Phi \mu c_{t}}$	$J = \frac{Ln \frac{r_e}{r_w} - 0.75}{Ln \frac{r_e}{r_w} + S - 0.75}$	$J = \frac{Ln\frac{r_e}{r_w}}{Ln\frac{r_e}{r_w} + S}$
S		$S = \left(\frac{1-J}{J}\right) \left(Ln\frac{r_e}{r_w} - 0.75\right)$	$S = \left(\frac{1 - J}{J}\right) Ln \frac{r_e}{r_w}$

- With P* extrapolate on the Horner plot for (t $_{p}$ + $\Delta t)/$ Δt = 1
- With \overline{P} worked out from P^* with an suitable method, for example M.B.H. method (Mathew Brons Hazebrock)
- Furthermore:

Practical formulas for:

- Practical units defined in the table next page
- $Ln(R/r_w) = 7.6$ i.e. $log(R/r_w) = 3.3$ or R = 200 m if r_w

 $= 0.1 \, \text{m}$

	Transient flow	Pseudo steady state flow	Steady state flow
	Infinite reservoir (or boundaries not yet reached)	No flow boundaries	Constant pressure boundaries
PI practical	"PI"= 21:3 B μ log $\frac{8 \times 10^{-4} \text{ kt}}{\Phi \mu \text{ c, } r_u^2}$ $+ 0.87 \text{ s}$ \Rightarrow the flowrate can't be characterised by a PI	PI = $\frac{k h}{B \mu (128 + 18.7 S)}$	PI = $\frac{k h}{B \mu (142 + 18.7 S)}$
J practical	$J = \frac{\log \left[\frac{8 \times 10^{-4} \text{ k t}}{\Phi \mu \text{c}_{\text{c}} \text{c}_{\text{w}}^{2}}\right]}{\log \left[\frac{8 \times 10^{-4} \text{ k t}}{\Phi \mu \text{c}_{\text{t}} \text{r}_{\text{w}}^{2}}\right] \cdot 0.87 \text{S}}$	$J = \frac{6.85}{6.85 + S}$	$J = \frac{7.6}{7.6 + S}$
S practical		$S = 6.85 \left(\frac{1-J}{J}\right)$	$S = 7.6 \left(\frac{1 - J}{J} \right)$

Furthermore: $\Delta P_{skin practical} = 18.7 \frac{q B \mu}{k h} S$

Overall approach of the well flow potential

Practical units

Parameters	Practical French units	Value in SI units
A (area)	m²	1 m²
C (compressibility)	bar-1	10 ⁻⁵ Pa ⁻¹
C (capacity)	m³/bar	10 ⁻⁵ m ³ -Pa ⁻¹
h, r, l (height, radius, length)	m	1 m
k (permeability)	mD	0.987 x 10 ⁻¹⁵ m ²
K (diffusivity)	mD.bar/cP	0.987 x 10 ⁻⁷ x m ² .s ⁻¹
m (slope of a straight line)	bar/cycle log ₁₀	10 ⁵ Pa/cycle log ₁₀ (or 2.3 x 10 ⁵ Pa/cycle ln)
P (pressure)	bar	10 ⁵ Pa
q (flowrate)	m³/j	(1 / 86,400) m ³ .s ⁻¹
t (time)	h	3600 s
T (temperature)	°K	1°K
μ (viscosity)	сР	10 ⁻³ Pa.s (*)
Ø (porosity)	fraction	fraction

Curves "Flow efficiency versus skin" (for Ln $R/r_w = 7.6$)

S	- 5	- 4	- 3	- 2	-1	0	1	2	3	4	6	8	10	15	20	25	30
J st	2.92	2.11	1.65	1.36	1.15	1	0.88	0.79	0.72	0.66	0.56	0.49	0.43	0.34	0.28	0.23	0.20
J _{pst}	3.7	2.4	1.78	1.41	1.17	1	0.87	0.77	0.70	0.63	0.53	0.46	0.41	0.31	0.26	0.22	0.19

with

J_{st} = Flow efficiency in steady state flow

J_{pst} = Flow efficiency in pseudo steady state flow

Overall approach of the well flow potential

Analysis of the different terms & Resulting conclusion

SECONDARY RECOVERY:

- PRESSURE MAINTENANCE:
 - To (avoid or) limit problems (- Help for flowing)
- SWEEPING EFFECT

- ΔP_{FL} , ΔP_{tbg} optimisation
- P_{sep} optimisation
- If oil well, > P_{Htbg}: ARTIFICIAL LIFT
 - **3** "Z": PUMPING
 3 "ρ": GAS LIFT
- If gas well, compressor at the surface (if necessary)

Note: For an oil well (with $P_{BH} > P_B$): $Q = PI (P_R - P_{BH})$

PI, C

STIMULATION

• S_d > 0: matrix treatment

- ACIDIZING

- Solvents

• k natural small or very small:

- HYDRAULIC FRAC

- (Horizontal drain)

• μ high or very high:

- THERMAL METHODS

(classified as "SECONDARY or even

TERTIARY RECOVERY)

For a gas well (empirical law):

$$Q = C(P_R^2 - P_{RH}^2)^n$$
 with 0.5 < n < 1

with PI & C function of hk/ μ & S

Overall approach of the well flow potential

3

Analysis of the different terms & Resulting conclusion (cont.)

► Decreasing P_{RH}:

- Case of an oil well:
 - Moderate P_{sep}
 - Small ΔP_{tbg}
 - Decreasing P_H: pumping, gas-lift
- ⇒ Artificial lift

- Case of a gas well:
 - Small ΔP_{tbg}
 - Recompression on surface

Increasing productivity:

Acidizing, fracturing...

⇒ Stimulation

► Slowing down the decline of P_R:

Water (or gas) injection

⇒ Secondary recovery

IPR curve in monophasic flow

(Inflow Performance Response curve)

IPR: Inflow performance response curve

SIP curve in monophasic flow

(System Intake Performance curve: outflow)

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IFPTraining

Overall approach of the well flow potential

IPR & SIP curves in monophasic flow

(Inflow & outflow)

IPR: Inflow performance response curve

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IPR & SIP curves in polyphasic flow

IPR: Inflow performance response curve

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IFPTraining

Overall approach of the well flow potential

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IFPTraining 45

IPR: Inflow performance response curve

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IFPTraining

Overall approach of the well flow potential

What can be done if Q wanted > Q potential?: example 3

IPR: Inflow performance response curve

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

IFPTraining

Overall approach of the well flow potential

Effect of the time on IPR & SIP curves

IPR: Inflow performance response curve

SIP: System intake performance curve (also called "VLP": Vertical lift performance)

Well flow potential (SI field unit)

Exercise (1/4)

During a long duration well test on an exploration well equipped with a 2"3/8 tubing a flow rate of $200 \text{ m}^3/\text{d}$ of anhydrous oil has been obtained under the following conditions:

- $P_R = 395$ bar at 4080 m vertical & $P_{RH} = 375$ bar
- $P_{sep} = 25 \text{ bar}$ & $\Delta P_{flowline} + \Delta P_{choke} = 20 \text{ bar}$
- $P_{H \text{ tbg}} = 320 \text{ bar (SG}_{average} = 0.8)$ & $\Delta P_{tbg} = 10 \text{ bar}$

Questions (1/2):

- Calculate the practical or actual productivity index (PI_{actual})
 What do you think of it, knowing that the theoretical productivity index (PI_{th}) calculated by the reservoir department is equal to 45 m³d⁻¹bar⁻¹ (m³/d/bar)
- 2) For the development wells to be drilled, what is the tubing diameter to be selected to be able to produce 400 m³/d during 8 years under the following conditions (let consider that, on development wells, it will be possible after an appropriated treatment to obtain a Pl_{actual} equal to 40 m³d⁻¹bar⁻¹):

$$P_{\text{sep}}$$
 = 15 bar & $\Delta P_{\text{flowline}}$ = 5 bar

No water produced (anhydrous production)

reservoir pressure decline: 4 bar/year

available tubing: 2"3/8, 2"7/8, 3"1/2, 4"1/2 (corresponding inside diameters: 2", 2"1/2, 3" & 4")

IFPTraining

50

Overall approach of the well flow potential

Well flow potential (SI field unit)

Exercise (2/4)

Questions (2/2):

3) For the tubing diameter selected question 2, what is the liquid flow rate (oil + water) that it is possible to produce after these 8 years in the following conditions:

water % in the liquid:
$$30 \%$$
 & $SG_{water} = 1.05$

$$PI_{liquid}$$
 equal to PI_{oil} that is to say: $PI_{liquid} = 40 \text{ m}^3\text{d}^{-1}\text{bar}^{-1}$

4) For the tubing diameter selected question 2, what is the liquid flow rate (oil + water) that it is possible to produce after these 8 years in the following conditions:

water % in the liquid: 20 %
$$\,$$
 & $\,$ SG $_{water}$ = 1.05

$$PI_{liquid}$$
 equal to PI_{oil} that is to say: $PI_{liquid} = 40 \text{ m}^3\text{d}^{-1}\text{bar}^{-1}$

5) What can be done if we want, despite the presence of water, to continue to produce a liquid flow rate (oil + water) equal to 400 m³/d during these 8 years?

Well flow potential (SI field unit)

Exercise (3/4)

Explo well	Development well (after 8 years, P _R decline = 4 bar/year)						
$Q_o = 200 \text{ m}^3/\text{d}$ $PI_O = \text{m}^3 \text{d}^{-1} \text{bar}^{-1}$	$Q_0 = 400 \text{ m}^3/\text{d}$ & $PI_0 = 40 \text{ m}^3\text{d}^{-1}\text{bar}^{-1}$ WLR = 0	$PI_L = 40 \text{ m}^3 \text{d}^{-1} \text{bar}^{-1} \text{ & WLR} = 0.30$ $\Phi_{\text{tubing}} = Q_2 \text{ answer}$					
$\Phi_{\text{tubing}} = 2"3/8$	Φ_{tubing} = ?	Q _L = ?					
P _{sep} =							
$\Delta P_{fl} =$							
$\Delta P_{choke} =$							
$\Delta P_{tbg} =$							
P _{H tbg} =							
P _{BH req} =							
P _R =							
- ΔP _R =							
P _{BH avail} =							
verall approach of the well flow potenti		IFP Training					

Overall approach of the well flow potential

Well flow potential (SI field unit)

Exercise (4/4)

Explo well	Development well (after	8 years, P _R decline = 4 bar/year)
$Q_o = 200 \text{ m}^3/\text{d}$ $PI_O = \text{m}^3\text{d}^{-1}\text{bar}^{-1}$ $\Phi_{\text{tubing}} = 2"3/8$	$PI_L = 40 \text{ m}^3\text{d}^{-1}\text{bar}^{-1} \text{ & WLR} = 0.20$ $\Phi_{\text{tubing}} = 3"1/2$ $G_{\text{water}} = 1.05$ $G_{\text{water}} = 1.05$	
$P_{\text{sep}} = \Delta P_{\text{fl}} = \Delta P_{\text{fl}}$		
$\Delta P_{\text{choke}} = \Delta P_{\text{tbg}} =$		
P _{H tbg} =		
P _{BH req} =		
$P_R = -\Delta P_R =$		
P _{BH avail} =		
all approach of the well flow potential		IFPT

Main assumptions

IPR (Inflow Performance Relationship) according to J.V. VOGEL Solution-gas drive reservoir

- Reservoir shut-in pressure = Bubble pressure
- Circular reservoir, uniform and isotropic porous medium
- No skin effect
- Oil and gas at the same pressure and with constant properties (viscosity)
- No flow of water

Empirical equation:

$$\frac{q_o}{(q_o)_{max}} = 1 - 0.2 \frac{P_{wf}}{P_{r=b}} - 0.8 \left(\frac{P_{wf}}{P_{r=b}}\right)^2$$

- Comments, limits:
 - Deviation between anticipated flowrate and actual flowrate may be significant if:
 - Oil is very viscous
 - Reservoir shut-in pressure is greater than bubble pressure
 - There is some skin effect
 - Otherwise, deviation is smaller than 20 % and even 10 %
 - Approach still valid for the liquid flowrate (oil + water) if BSW < 10 %
 - Regularly make again a match point

IFPTraining

Overall approach of the well flow potential

IPR Curve

IPR curve: Curve $\frac{P_{wf}}{}$ versus

- How to use the IPR curve:
 - To use this method, a match point must be known
 - Using the curve (or the equation), calculate $(q_o)_{max}$
 - From there, it is possible to calculate the flowrate for any bottomhole pressure

IPR Curve: example

► IPR curve: Curve $\frac{P_{wf}}{P_{r=b}}$ versus $\frac{q_o}{(q_o)_{max}}$

- Example:
 - A well is producing 120 m³/d with a bottomhole pressure equal to 75 bar, reservoir pressure is 100 bar (with P_r = P_{bubble} of oil)
 - What would be the flowrate for a bottomhole pressure equal to 25 bar ?

IFPTraining

Overall approach of the well flow potential

For $P_b < P_{wf} < P_r$ and for $P_{wf} < P_b < P_r$

Case where Pr > Pb according to D. PATTON and M. GOLAN

- - Monophasic flow, so:

$$q = PI(P_r - P_{wf})$$

• In particular, for $P_{wf} = P_b$:

$$q_b = PI (P_r - P_b)$$

that is to say:

$$q_b = q \frac{P_r - P_b}{P_r - P_{wf}}$$

▶ For $P_{wf} < P_b < P_r$:

$$q = q_b + q'$$

with

$$q_b = PI(P_r - P_b)$$

$$q' = \left[q_{max} - q_b\right] \left[1 - 0.2 \frac{P_{wf}}{P_b} - 0.8 \left(\frac{P_{wf}}{P_b}\right)^2\right]$$

- using P_h (and not P_r) in the ratio

So q' is defined from Vogel curve provided:

- using the ratio

$$\frac{\mathbf{q} - \mathbf{q_b}}{\mathbf{q_{max}} - \mathbf{q_b}} = \frac{\mathbf{q'}}{\mathbf{q_{max}} - \mathbf{q_b}}$$
 instead of

 \mathbf{P}_{wf}

$$\frac{\mathbf{q_o}}{\left(\mathbf{q_o}\right)_{\text{max}}}$$

Synthesis

- If there is a match point for $P_{wf} > P_b$ and an other for $P_{wf} < P_b$:
 - q can be calculated for any P_{wf}
- If there is only one match point and provided we consider there is continuity between the two cases:
 - if the match point is for $P_{wf} > P_h$:

with pq_{max} =
$$\mathbf{q}_b + \frac{\mathbf{pq}_{max} - \mathbf{q}_b}{1.8}$$
 = pseudo maximum flowrate = flowrate for $P_{wf} = 0$ and PI at $P_{wf} > P_b$ that is to say:

$$pq_{max} = PI \times P_r$$
 or or $q_b \frac{P_r}{P_r - P_b}$ $q \frac{P_r}{P_r - P_{wf}}$

If the match point is for $P_{wf} < P_b$:

• If the match point is for
$$P_{wf} < P_b$$
:

$$q_{max} - q_{b} = q / \left[1.8 \frac{P_{r}}{P_{b}} - 0.8 - 0.2 \frac{P_{wf}}{P_{b}} - 0.8 \left(\frac{P_{wf}}{P_{b}} \right)^{2} \right] (b)$$

$$q_{b} = 1.8 \left(\frac{P_{r}}{P_{b}} - 1 \right) (q_{max} - q_{b})$$
(c)

Overall approach of the well flow potential

IFPTraining

Graphical representation

IFPTraining

In practice

• If
$$P_{wf(m.p)} > P_b$$

$$\mathbf{q}_{b} = \mathbf{q}_{m.p} \frac{\mathbf{P}_{r} - \mathbf{P}_{b}}{\mathbf{P}_{r} - \mathbf{P}_{wf(m.p)}}$$

$$\mathbf{q}_{\text{max}} = \mathbf{q}_{\text{b}} + \frac{\mathbf{p}\mathbf{q}_{\text{max}} - \mathbf{q}_{\text{b}}^{\text{r}} - \mathbf{q}_{\text{b}}^{\text{wf(m.p)}}}{1.8}$$
 = ① + [②-①]/1.8 (a)

$$\bigcirc$$
 For $P_{wf} < P_b$:

For	Work out	Read on the chart	Work out
P _{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	$q = q_b + R(q_{max} - q_b)$ $= 0 + [R \times 4]$

IFPTraining

Overall approach of the well flow potential

In practice (cont)

• If
$$P_{wf(m.p)} < P_b$$

$$\frac{\mathbf{q}_{\text{max}} - \mathbf{q}_{\text{b}}}{1.8 \frac{P_{\text{r}}}{P_{\text{b}}} - 0.8 - 0.2 \frac{P_{\text{wf(m.p)}}}{P_{\text{b}}} - 0.8 \left(\frac{P_{\text{wf(m.p)}}}{P_{\text{b}}}\right)^{2}} \tag{b}$$

$$\frac{\mathbf{q}_{b}}{\text{8 For } P_{wf} < P_{b}:} = 1.8 \left(\frac{\mathbf{P}_{r}}{\mathbf{P}_{b}} - 1 \right) \left(\mathbf{q}_{max} - \mathbf{q}_{b} \right)$$

For	Work out	Read on the chart	Work out
P _{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	$q = q_b + R(q_{max} - q_b)$ $= ? + [R x ©]$

(c)

Determination of the IPR curve of a well

Exercise (1/6)

- Let consider two wells on the same reservoir (P_r = 100 bar, P_b = 50 bar)
 - produce $120 \text{ m}^3/\text{d}$ for $P_{wf} = 75 \text{ bar}$ well number 1
 - produce $120 \text{ m}^3/\text{d}$ for $P_{wf} = 25 \text{ bar}$ • well number 2
- For each well, draw the curve "flowrate versus bottomhole pressure"

Overall approach of the well flow potential

Determination of the IPR curve of a well

Exercise (2/6)

$$q_{max} = q_b + \frac{pq_{max} - q_b}{1.8} = 0 + [2-0]/1.8$$

$$q_{\text{max}} - q_{\text{b}} = 3 - 0 = [2-0]/1.8$$

 \circ For $P_{wf} < P_b$:

For	Work out	Read on the chart	Work out
\mathbf{P}_{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	$= q_b + R(q_{max} - q_b)$ $= 0 + [R x 4]$

If $P_{wf(m.p)} < P_b$:

(an.p)
$$\frac{q_{m,p}}{q_{max} - q_{b}} = \frac{q_{m,p}}{1.8 \frac{P_{r}}{P_{b}} - 0.8 - 0.2 \frac{P_{wf(m,p)}}{P_{b}} - 0.8 \left(\frac{P_{wf(m,p)}}{P_{b}}\right)^{2}}$$

For $P_{wf} < P_b$:

For	Work out	Read on the chart		Work out
P_{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	q	= q_b + R $(q_{max} - q_b)$ = $?$ + [R x 6]

Determination of the IPR curve of a well

Exercise (3/6)

▶ Well N° 1:

- The match point P_{wf} = 75 bar, $q = 120 \text{ m}^3/\text{d}$ is above the bubble pressure
- So: $q_b = q_{m,p} \frac{P_r P_b}{P_r P_{wf(m,p)}}$

 - $q_{\text{max}} = q_b + \frac{pq_{\text{max}} q_b}{1.8} = 0 + [2-0]/1.8$
 - $q_{\text{max}} q_{\text{b}} = 3 0 = [2 0]/1.8$
 - \circ For $P_{wf} < P_b$:

For	Work out	Read on the chart	Work out
P _{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	$q = q_b + R(q_{max} - q_b)$
50			
37.5			
25			
12.5			
0			

Overall approach of the well flow potential

Determination of the IPR curve of a well

Exercise (4/6)

► Well N° 2:

- The match point Pwf = 25 bar, q = 120 m3/d is below the bubble pressure
- So:

$$\boxed{\frac{q_{max} - q_b}{1.8 \frac{P_r}{P_b} - 0.8 - 0.2 \frac{P_{wf(m,p)}}{P_b} - 0.8 \left(\frac{P_{wf(m,p)}}{P_b}\right)^2}$$

- \$ For $P_{wf} < P_b$:

For	Work out	Read on the chart	Work out
P _{wf}	$\frac{P_{wf}}{P_{b}}$	$R = \frac{q - q_b}{q_{max} - q_b}$	$q = \overline{q_b} + R \overline{(q_{max} - q_b)}$ $= 0 + [R \times 4]$
50			
37.5			
25			
12.5			
0			

Determination of the IPR curve of a well

Exercise (5/6)

► Graphical representation for well N° 1 and well N° 2:

Reservoir-wellbore interface

(excluding "Wellbore treatments")

SUMMARY

- ▶ Main configurations of the reservoir-wellbore interface (for memory)
- ▶ Drilling & casing the pay zone
- ▶ Evaluating the cement job
- Remedial cementing
- Perforating
- ▶ The special case of horizontal wells
- ▶ Skin: exercises

IFPTraining

Reservoir-wellbore interface

Main configurations of the reservoir-wellbore interface

(for memory)

▶ Basic requirements:

- Borehole wall stability
- Selectivity of fluid or pay zone(s) (including selectivity of the zone to be treated, if any, and treatment efficiency)
- Minimal restrictions along flow path, so well flow potential optimisation

▶ Configuration of pay zone-borehole connection:

- Open hole completions*
- Cased hole completions*

IFPTraining

Open hole completion

Reservoir-wellbore interface

IFPTraining

Cased hole completion

Drilling & casing the pay zone

Well safety

- ▶ Density of the fluid in the well
- Safety equipment*
- Operating precautions

IFPTraining

Reservoir-wellbore interface

Safety equipment

Wellhead for 6" drilling phase

Fluids used to drill in the pay zone

Reservoir-wellbore interface

Constraints

- Safety constraints
- Drilling constraints
- ► Formation damage constraints:
 - Influence on the productivity*
 - Restoration or prevention

⇒ Required characteristics

• (see "Completion fluids")

Influence of near wellbore permeability on productivity

index (in radial flow)

Borehole diameter : 8 " 1/2
Drainage radius : 500 m (≈ 1 700 ft)

- Tn: Thickness of "plugged" zone from the borehole (8"1/2 drilling)
- k_o: Natural permeability of the formation
- k_p : Permeability of "plugged" zone
- PI_o: Theoretical productivity index (without "plugged" zone)
- PI: Actual productivity index (taking into account "plugged" zone)

IFPTraining

12

...,...

Completion fluids

▶ When?

- Drilling in
- Completion
- Treatment
- Workover

▶ Required characteristics:

- Specific gravity ⇒ overpressure
- Viscosity
- Filtration rate
- Compatibility
- Stability
- Preparation and handling
- Price

Completion fluids (cont.)

▶ Main completion fluids*:

•	Foams	SG = 0.2 to 0.3
•	Oil base	SG = 0.8 to 1
•	Water base, solid free	SG = 1 to 2.3
•	Water base, solid laden	SG = 1 to 2.3

IFPTraining

Main completion fluids

► Foam:

Reservoir-wellbore interface

- 0.20 dense foam to 0.30
- ▶ Oil base:
 - 0.80 0.90 diesel or crude to
 - oil-base or inverted-emulsion mud 0.85 0.95 to
 - direct emulsion mud 0.85 1 to

Main completion fluids (cont.)

► Water base without solids(*):

```
1.03
             to
                              water - seawater - brackish water
 1
                  1.16
                              fresh water + KCl
             to
 1
                  1.20
                              fresh water + NaCl
             to
 1
                  1.30
                              fresh water + MgCl<sub>2</sub>
             to
 1
             to 1.40
                              fresh water + CaCl<sub>2</sub>
                              fresh water + KCl + NaCl
 1.16
                  1.20
             to
 1.20
                              fresh water + NaCl + CaCl<sub>2</sub>
                  1.40
             to
1.20
             to 1.51
                              fresh water + NaCl + NaBr
                              fresh water + CaCl<sub>2</sub> + CaBr<sub>2</sub>
1.40
             to 1.70
1.70
                              fresh water + CaBr<sub>2</sub>
             to 1.80
1.80
             to 2.30
                              fresh water + CaBr<sub>2</sub> + ZnBr<sub>2</sub>
```

(*): Pay attention to the crystallisation point, especially with mixtures

IFPTraining

Reservoir-wellbore interface

Main completion fluids (cont.)

Water base plus solids:

•	1	to	1.70	fresh water + CaCO ₃
•	1	to	1.80	fresh water + FeCO ₃ (siderite)
•	1	to	1.80	drilling mud + CaCO ₃ or FeCO ₃
•	1	to	2.30	drilling mud + barite
	1 ———	to-	2 30	fresh water + resins
	1	· CO	2.30	Tresti Water + resitis
	1	to	2.30	oil-base mud or
				inverted or direct emulsion mud

- Viscosifiers
- Defoamer
- Fluid-loss control agent
- Emulsifiers (mud containing oil, etc.)
- Weighting material
- Anticorrosion (bactericides, antioxidants)

IFPTraining

Reservoir-wellbore interface

Annulus fluids

Functions and requirements:

- To protect the casing ⇒ "Non corrosive" fluids
- No settling ⇒ Free solid fluids
- To decrease efforts on packer, casing, tubing
- Help to well control

▶ Main fluids (depending on the required specific gravity):

- **Brine**
- Water
- Diesel oil
- Oil

▶ Protection against corrosion:

- High pH (> 9.5)
- Oxygen scavener
- Film-forming and antibacterial products:
 - Problem of compability between products

Drilling and casing diameters

- **▶** Effect on productivity index:
 - Small impact of drilling diameter on PI (unless sand control process)
- **Considerations relative to equipment:**
 - What is important is to have the place required for the production equipment

IFPTraining

Reservoir-wellbore interface

Main objectives of a primary cementing

- Selectivity
- ▶ Borehole holding
- Protection of the casing

Primary casing cementing procedure

Reservoir-wellbore interface

Major flaws encountered after primary cementing

► Inadequate filling:

- Incorrect estimate of volume (caved hole, ...)
- losses during displacement
- Unexpected setting

▶ Inadequate seal and/or strength:

- Insufficient distance between float collar and shoe
- **Excessive displacement**
- Incomplete displacement of the mud by the slurry (centring, pumping rate, spacer, caved hole, ...)
- Gas kick
- No or partially setting
- Poor quality slurry
- Deterioration with time

IFPTraining

Reservoir-wellbore interface

Evaluating methods

Sign during cement job:

Irregularities

Direct evaluation:

- Pressure test
- Negative pressure test

Indirect evaluation:

- Temperature logs
- Acoustic logs:
 - CBL-VDL (Cement Bond Log Variable Density Log)
 - CET (Cement Evaluation Tool)
 - USIT (UltraSonic Imager Tool)

CBL-VDL*:

- Low-frequency acoustic wave (20 khz)
- Vertical path (3 to 5 ft)
- CBL = Amplitude and transit time of the 1st wave
- VDL = Complete wave train (positive peaks)
- Good cement job if CBL low and VDL "formation"
- Poor cement job if CBL strong and VDL "casing"

Be careful:

A large number of parameters affect measurements

Principle of the CBL - VDL & standard presentation of a recording

Reservoir-wellbore interface

CET

CET*:

- High-frequency acoustic wave (500 khz)
- Measure of the casing radial (horizontal) resonance according 8 directions
- Provides:
 - Average casing diameter and ovalisation
 - Mini and maxi compressive strength of the cement
 - "Image" of the cement sheath
- Good cement job if quick attenuation
 - ⇒ black stripe
- Poor cement job if slow attenuation
 - ⇒ white stripe

Standard representation of a CET recording

Ultrasonic reflection principles

Ultrasonic decay rate

Acoustic Impedance of material in contact with casing

IFPTraining

USIT & CBL/VDL

Reservoir-wellbore interface

Good Cement

Mud channel & contaminated cement

Summary

Perforating

- **▶** Objective & Existing processes
- ▶ Perforating methods & Corresponding types of guns
- Shaped charges
- ► Main parameters affecting the productivity of a zone produced by perforating
- ► Specific points in the operating technique

Objective & existing processes

▶ Objective:

• To re-establish the best possible connection between the pay zone and the borehole

Existing processes:

- Bullet
- Mechanical perforator
- Hydraulic perforator
- . . .
- Shaped charges*

Note: - Pay attention to productivity*

& perforating method

- Efficiency function of gun selection

Shaped charge

Perforation tunnel & Crushed zone

Reservoir-wellbore interface

Reservoir-wellbore interface

Overbalanced pressure perforating before equipment:

Method

▶ Principle:

- Before equipment installation
- Well full of completion fluid
- Advantages (see also advantages of corresponding carriers):
 - Good penetration
 - Multiple shot directions
- Drawbacks (see also drawbacks of corresponding carriers):
 - Overbalanced conditions ⇒ plugging
 - Subsequent cleaning hard to do
 - (Safety condition not as good for further operations)

Overbalanced pressure perforating before equipment:

Corresponding carriers

Retrievable casing guns (run with an electrical cable):

- Leakproof guns
- Run with electric cable
- Shot density: 4 (to 12 and more) SPF
- Phasing: 90° 120° 180°
- Unit length: 6 to 11 ft
- Can be assembled together

Advantages:

- Good reliability
- Charges isolated from fluid and pressure
- No debris in the well
- Selective firing
- No casing deformation

Drawbacks:

- Limited length run in at one time
- Difficult run in highly deviated well

High shot density

Standard density

Reservoir-wellbore interface

9

Underbalanced pressure perforating after equipment:

Method

Principle:

- After equipment installation, Christmas tree included
- Well full of "light" liquid

Advantages (see also advantages of corresponding carriers):

- No or reduced plugging
- Well equipment in place (safety)

Drawbacks (see also drawbacks of corresponding carriers):

- Small gun ⇒ small shaped charges (*) ⇒ smaller penetration (*)
- Only one shot direction (depending the gun size) (*)
- Leave debris in the well (if semi or fully expendable carriers)
- Mind out excessive ΔP :
 - reservoir deconsolidation
 - carrier possibly dragged up
- (*) Except for pivot gun

Underbalanced pressure perforating after equipment:

Corresponding carriers

Retrievable through tubing guns* (run with an electrical cable):

- Refer to "Retrievable casing gun"
- - Small charge ⇒ small or very small penetration (except for "pivot guns")
 - Gun expansion ⇒ risk to get stuck when pulling up

Semi* or fully expendable carriers (run with an electrical cable):

- Thinner carrier ⇒ charges a little bigger
- But:
 - No selective firing
 - Leave debris in the well
 - Casing and cement sheath possibly damaged
 - More restricted in pressure and temperature

And, for both of them:

Difficult run in in highly deviated well

Scallop gun

Pivot gun

Enerjet

Reservoir-wellbore interface

TCP perforating

(TCP = Tubing Conveyed Perforator)

- Principle*:
 - Guns run in directly with the tubing
 - Underbalanced pressure when fired

Advantages:

- Good penetration
- No or reduced plugging
- Perforating in one single operation:
 - Very long stretch of casing High shot density
- No problem in highly deviated well

Drawbacks:

- "Trash dump" has to be drilled No access opposite the pay zone for wireline job's
- Charges performances decrease with temperature and time
- Impossible to check that all the charges have been fired
- If "misfire":
 - Time-consuming
 - Safety problems

Basic TCP procedure

Time-temperature ratings for explosives

Reservoir-wellbore interface

TCP perforating

(TCP = Tubing Conveyed Perforator)

▶ In practice, mainly used with a temporary string:

- To perforate a long stretch of casing
- When gravel packing:
 - Large diameter perforations
 - High shot density
- To perform perforations and DST (Drill Test Stem) in one single operation:
 - Gain in safety
 - Gain in time
 - but:
 - Risk to damage the recorders

TCP perforating

(TCP = Tubing Conveyed Perforator)

Specific equipment:

- Guns: cf "retrievable guns"
- Firing head
- Gun release system(*)
- Circulating devices (with or without a rupture disk)
- Isolation device
- Shock absorbers
- Depth reference

*: equipment actuated:

- Mechanically
- Hydraulically
- Electrically
- Automatically

IFPTraining

Reservoir-wellbore interface

Choice of the method

Trade-off between:

Well constraints:

- Plugging (whether or not?, thickness of the damage zone)
- Risk of sand intrusion
- Type of effluents
- Reservoir characteristics
- State of the well (casing, cement job)
- Safety

And optimum perforating conditions(*):

- Underbalanced shooting
- Clean fluid in the well
- Large-diameter perforator
- High-performance charges
- Clearing as soon as possible after shooting

*: Conditions which are not necessarily compatible with one another

Shaped charges principle

▶ Five components:

Note: - Velocity of jet of gas: 7000 m/s (20, 000 ft/s)

- Velocity of slug: 300 to 1000 m/s (1000 to 3000 ft/s)

- ► Perforation dimensions dependent on: Pressure on target: 30,000 MPa (5 . 106 psi)
 - Amount of explosive load
 - Type and angle of the metal cone
 - Distance "shape charge target" (stand-off)
 - Density of the target

IFPTraining

43

Reservoir-wellbore interface

Safety

▶ Electrical system check before perforating

▶ Basic safety (1/2):

- Perforation not performed:
 - During storms
 - At night, except if...
- If perforating carried out with "overbalanced pressure before equipment installation":
 - Completion fluid
 - Drilling BOPs
 - High-pressure pump connected to the well
 - Monitoring of the well stability when:
 - Firing
 - Pulling out

▶ Basic safety (2/2):

- If perforating carried out with "underbalanced pressure after equipment installations":
 - Production wellhead and lubricator
 - Monitoring of the wellhead pressure when:
 - Firing
 - Pulling out

▶ Further precautions when loading, starting to run in and concluding pulling out:

- All radio broad casting cutted-off (depending the type of fire system)
- Non-essential personnel out of the way
- Nobody in the line of fire (if it is possible)
- Extra care when pulling out if misfire

IFPTraining

Reservoir-wellbore interface

Other operating points

▶ Perforation depth adjustment:

By reference to logs

▶ Cleaning the perforations:

- Well clearing
- Back surging*
- Washing tool*
- Acid washing

Reservoir-wellbore interface

Washing tool

of hole

Other operating points (cont.)

► Monitoring the result:

- Flow rate measurement (test separator)
- Well testing

Reservoir-wellbore interface

Production logging

49

Advantages in producing reservoirs

▶ For a low permeability formation:

- Advantages in comparison with an hydraulic frac:
 - Horizontal extension
 - Frac residual permeability
 - Control of the orientation
 - No problem of vertical extension (when interface)
 - ⇒ Improved productivity
- Drawbacks if:
 - Thick reservoir
 - Low vertical/horizontal permeability ratio
 - But multidrains*

IFPTraining

52

Reservoir-wellbore interface

Single layer and direction multidrains well

Advantages in producing reservoirs

- For a thin formation:
 - Horizontal drain length versus vertical drain length
- For a plugged formation:
 - (Secondary consequence)
- With regard to turbulence effect
- ▶ With regard to critical flowrate (coning):
 - Productivity index
 - Drain/interface position

IFPTraining

Reservoir-wellbore interface

Advantages in producing reservoirs

- ▶ For an insufficiently consolidated formation:
 - Fluid velocity
 - Accumulation capacity
 - Screen plugging
- For a multilayers reservoir*:
- ▶ For a naturally fractured, heterogeneous formation, etc.:
 - Fractures interception, etc.
- With regard to recovery:
 - Drainage area*
 - Secondary recovery:
 - Injection capacity
 - Injection distribution

Multi layers multidrains well

IFPTraining

Reservoir-wellbore interface

Single layer and multidirectional multidrains well

▶ Generally speaking, if appropriate conditions:

- Faster recovery rate
- and/or
- Fewer wells
- and/or
- Help to solve certain production problems
 - Lower differential pressure (P_R P_{BH})
 - Increased recovery rate

IFPTraining

Reservoir-wellbore interface

Problems specific to the payzone-borehole connection

▶ Configuration:

- Basic configurations:
 - Open hole
 - Pre-perforated liner
 - Partially pre-perforated liner + inflatable packers*
 - · Cemented liner then perforating
- Configuration selection:
 - Function of:
 - Initial conditions
 - Parameters evolution

Partially pre-perforated liner + inflatable packers

Reservoir-wellbore interface

Problems specific to the payzone-borehole connection (cont.)

▶ Liner running in:

Enough but not too much centralizers

▶ Liner cementing (if necessary):

Usual precautions

and:

- Cleaning of the horizontal part
- Enough centralizers
- Prevention of the water migration from the slurry

▶ Perforating:

- High cost
- Methods: cf logging in horizontal hole
- If TCP are used:
 - Guns have to be pulled out after fire
 - Mind the curve radius
- Don't get stuck

Problems specific to the payzone-borehole connection

(cont.)

► Sand control:

- Higher critical flowrate
- Screens alone

or

- Gravel packing (with specific screens or implementation techniques)
- Consolidation not really applicable

Stimulation:

• Be careful to selectivity problems

▶ Production string(s) configuration:

 Usually, single tubing string completion* (without or with zones selection) Possibly, multiple tubing strings completion*

Reservoir-wellbore interface

62

Selective completion in an horizontal monodrain well

Selective completion in a multidrains well

Reservoir-wellbore interface

Dual tubing string completion in a multidrains well

Multi lateral well: TAML(*) junction classification

- "A multi-lateral well is one in which there is more than one horizontal or near horizontal lateral well drilled from a single main bore and connected back to that main bore."TAML 1997
 - Level 1:
 - Open / unsupported junction (Barefoot mother-bore & lateral bore or with slotted liner in either bore)

- Level 2:
 - Mother bore cased and cemented
 - Lateral bore open (Lateral bore either barefoot or with slotted liner in openhole)

IFPTraining

(*): TAML group (North Sea): Technology Advanced Multi-Lateral group

Reservoir-wellbore interface

Multi lateral well: TAML(*) junction classification (cont.)

- Level 3:
 - Mother bore cased and cemented
 - Lateral bore cased but not cemented (Lateral liner anchored to mother-bore with a liner hanger but not cemented)

- Level 4:
 - Mother bore cased and cemented
 - Lateral bore cased and cemented (Both bore cemented at the junction but no pressure integrity: cement not considered as a sealing mechanism)

(*): TAML group (North Sea): Technology Advanced Multi-Lateral group

Multi lateral well: TAML(*) junction classification (cont.)

Level 5:

 Pressure integrity at the junction achieved <u>with the completion</u> (Cement <u>not</u> acceptable as not considered as a sealing mechanism)

(*): TAML group (North Sea): Technology Advanced Multi-Lateral group

Reservoir-wellbore interface

68

Multi lateral well: TAML(*) junction classification (cont.)

• Level 6:

Integral junction: pressure integrity
 at the junction achieved <u>with the casings</u>
 (Cement <u>not</u> acceptable as not considered
 as a sealing mechanism)

Level 6S:

 Integral junction: downhole splitter with pressure integrity (Large main bore with two or more smaller lateral bores)

Equipment of naturally flowing wells

Sommaire

- Main configurations of production string
- Production wellhead
- ► Tubing (Production string)
- Packers
- Downhole accessories
- Subsurface safety valves
- > Synthesis: example of equipment for a naturally flowing well
- Running procedure
- ► Intelligent completion

Main parameters for completion design

▶ Main parameters for completion design:

- Type of well: exploration, confirmation (or appraisal or delineation) or development
- Well purpose: production, injection or observation
- Naturally flowing well or artificial lift
- Interface between fluids
- Number of zones to be produced: (all together), separately
- Anticipated measurement, maintenance or workover operations

▶ To choose the best suited configuration:

- Greatest possible flow rate
- At the lowest cost
- ⇒ Compromise

Main parameters for completion design (cont.)

► Compromise taking into account:

- Costs:
 - Capital expenditure (CAPEX)
 - Operating expenditure (OPEX)
- Relativity
- Anticipation
- and also:
- Flowrate per well*
- Risk:

Equipment of naturally flowing wells

- In relation with the flowrate
- In relation with safety
- Cultural factor

IFPTraining

Functions to be carried out and corresponding pieces of equipment

FUNCTIONS	PIECES OF EQUIPMENT						
TO BE CARRIED OUT	Production wellhead	Tubing	Packer + annular fluid	Downhole accessories	SSSV		
Safety							
among which : • casing protection							
Flowrate: • adjustment • optimization							
Operations on the well							

Single-zone completion

IFPTraining

Equipment of naturally flowing wells

Multi-zones completion

completion

IFPTraining

Summary

Production wellhead

- General configuration of a wellhead
- Tubing-head spool & Tubing hanger
- Christmas tree (Xmas tree)

General configuration of a wellhead

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

General configuration of a wellhead (cont.)

Casing-head & tubing-head spools

 ${\it Equipment of naturally flowing wells}$

Casing-head & tubing-head spools (cont.)

Tubing-head spool & tubing hanger

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Tubing head spool assembly: Details

Equipment of naturally flowing wells

IFPTraining

1

Tubing hanger for dual completion (segmented hanger)

Production wellhead: general configuration

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

IFPTraining

Gate valve

Surface safety valve

Equipment of naturally flowing wells

Choke assembly

00693_a_X

 ${\it Equipment of naturally flowing wells}$

Solid block Christmas tree

completion (surface wellhead) (ESP: electrical submerged

pump)

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Specific production wellhead: Subsea production wellhead

completion (subsea wellhead) (ESP: electrical submerged

pump)

Equipment of naturally flowing wells

g

Christmas tree selection

Working pressure:

- Maximum pressure (expressed in psi) at which the Xmas-tree can be used
- Some value (API specification): 2000 3000 5000 10,000 15,000
- Has to be equal or greater than the maximum expected pressure:
 - If gas or gassy oil: $WP \ge PR PHgas + BHM$ (Bull Heading Margin)
 - (common value for BHM: 500 psi or 35 bar)
 - If hydraulically set packer: check also with the pressure required to set the packer

Nominal diameter:

- · Minimum inside diameter through it
- Has to be equal or greater than the tubing ID

And metallurgy, packing material

Tubing... or production string

- Tubing characteristics
- Choosing the tubing

Tubing characteristics

Nominal diameter & **Geometrical characteristics:**

- Nominal diameter*
- Inside diameter and thickness
- Drift diameter*
- Maximum outside diameter
- Pipe length:
 - Range 1: 20 24 ft (6.10 7.32 m)
 - Range 2: 28 32 ft (8.53 9.75 m)
 - Pup joints: 2 4 6 8 10 12 ft (0.61 1.22 1.83 2.44 3.05 3.66 m)

Connections & Thread:

- API connections & Premium joints*
- Nominal weight*

IFPTraining

Equipment of naturally flowing wells

Nominal diameter & drift diameter

Nominal diameter:

inches	1.050	1.315	1.660	1.900	2.063	2 3/8	2 7/8	3 1/2	4	4 1/2
mm	26.7	33.4	42.2	48.3	52.4	60.3	73.0	88.9	101.6	114.3

Drift diameter:

Note: 23/8 = 2.375 2 7/8 = 2.875

	Diameter	Mandre	l length	Mandrel diameter			
	Diameter	in	mm	in	mm		
Tubing	2 7/8 or less	42	1067	ID - 3/32	ID - 2.38		
Tubing	3 1/2 or more	42	1067	ID - 1/8	ID - 3.18		
	8 5/8 or less	6	152	ID – 1/8	ID - 3.18		
Casing	9 5/8 to 13 3/8	12	305	ID - 5/32	ID - 3.97		
	16 or more	12	305	ID - 3/16	ID - 4.76		

Examples of tubing connections

(e)

(f)

- a. API integral joint
- b. API non-upset
- c. API external upset
- d. Elastomer joint
- e. VAM joint
- f. CS Hydril joint

 ${\it Equipment of naturally flowing wells}$

VAM TOP joint

(d)

Connection Yield Strength = 100% Pipe Body Yield Strength for standard design

Connection Yield Strength = 100% Pipe Body Yield Strength for standard design

IFPTraining

Thickness		Nominal weight (#)							
mm	inch	with API NU (or VAM) connection	with API EU connection						
6.45	0.254	9.20	9.30						
9.52	0.375	12.70	12.95						

Equipment of naturally flowing wells

Tubing characteristics (cont.)

▶ Grades of steel & metallurgical characteristics:

- API standard steel and grades for tubings: H40, J55, C75, L80, N80, C90, P105*
- Improved grades of steel (proprietary grades)
- Stainless, alloys and special pipe

Mechanical characteristics:

- Main characteristics:
 - Body yield strength
 - Burst or internal yield pressure
 - Collapse pressure
- Deduced from:
 - Nominal diameter
 - Nominal weight
 - Grade
 - Connection

		GRADE									
PROPERTIES	H40	J55	C75 ¹	L80 ¹	N80	C90	P105				
Color band identification ²	1 black	1 green	1 blue	1 red + 1 brown	1 red	1 purple	1 white				
Minimum yield stress											
(MPa)	276	379	517	552	552	620	724				
(psi)	40 000	55 000	75 000	80 000	80 000	90 000	105 000				
Maximum yield stress											
(MPa)	552	552	620	655	758	724	930				
(psi)	80 000	80 000	90 000	95 000	110 000	105 000	135 000				
Minimum tensile stress											
(MPa)	414	517	655	655	689	689	827				
(psi)	60 000	75 000	95 000	95 000	100 000	100 000	120 000				

^{1.} Special corrosion.

IFPTraining

Equipment of naturally flowing wells

Choosing the tubing - Nominal diameter

► Main parameters to consider:

- Flowrate / pressure losses*
- Lifting capacity:
 - ⇒ V > Vmin
- Erosion:
 - ⇒ V < Vmax
- Operations in or through the tubing:
 - ⇒ tubing & downhole accessories drift diameter > tool OD
- Casing size:
 - \Rightarrow tubing and accessoiries max. O.D. < casing drift \emptyset

▶ Don't forget:

- The value of these parameters depends also of :
 - The nominal weight
 - The connection

^{2.} Special clearance couplings (smaller diameter) must have a black line at the centre of the colour band.

Tubing diameters and potential flow rates

Nominal tubing	Nominal weight	Inside diameter		Drift		1	Oil rate	Gas flow rate (P = 15 MPa ≅ <u>2200 psi</u>)		
diameter	(lb/ft)	(mm)	(in)	(mm)	(in)	(m³/d)	(bbl/d)	`	(10 ⁶ scuft/d)	
2 3/8	4.6	50.7	1.945	48.3	1.901	150	900	150	5	
	6.4	62	2.441	59.6	2.347	275	1700	275	10	
2 7/8	9.2	76	2.992	72.8	2.867	450	2800	450	16	
3 1/2	11.0	88.3	3.476	85.1	3.351	700	4400	700	25	
4	12.6	100.5	3.958	97.4	3.833	1000	6300	1000	<i>35</i>	
4 1/2	17	124.3	4.892	121.1	4.767	1700	11,000	1700	<i>60</i>	
5 1/2	29	157.1	6.184	153.9	6.059	3000	19,000	3000	105	
7	47	220.5	8.681	216.5	8.525	7000	44,000	6000	210	

9 5/8 CRITERIA a) OIL : $\Delta P_{friction} \leq 0.25$ MPa/1000 m (10 psi / 1000 ft) & velocity ≤ 2 m / s (6.5 ft / s) b) GAS : Δ P_{friction} \leq 1 MPa/1000 m (40 psi / 1000 ft) & velocity \leq 10 m / s (33 ft /s)

IFPTraining

Equipment of naturally flowing wells

Grade & Nominal weight

► Main parameters to consider:

- Tensile strength:
 - Depth
 - Tubing pressure test when running in
 - Additional stress due to tubing breathing
 - Workover
- Burst and collapse pressure
- Thickness:
 - Erosion
 - Corrosion

IFPTraining 40

Grade & Nominal weight (cont.)

Other parameters relative to the connection between the tubing and the packer:

- If the tubing is fixed in the packer:
 - Tension or compression
- If the tubing is free to slide in the packer:
 - Stretching or shortening movements
- Buckling, if any
- Differential of pressure on the packer

IFPTraining

Equipment of naturally flowing wells

Connection & Metallurgy

▶ Main parameters to consider:

- Oil and gas
- Pressure, Temperature
- Corrosion:
 - CO₂, H₂S*
 - Connate water

Material selection guideline

Equipment of naturally flowing wells

IFPTraining

- Packer fluids (or annular fluids)
- Main packer types
- Permanent production packers
- Retrievable packers
- Choosing the packer

IFPTraining

Equipment of naturally flowing wells

Packer fluids (or annular fluids)

Functions and requirements:

- To protect the casing ⇒ "non corrosive" fluids
- No settling \Rightarrow free solid fluids
- To decrease efforts on packer, casing, tubing
- Help to well control

▶ Main fluids (depending on the required specific gravity):

- **Brine**
- Water
- Diesel oil
- Oil

Protection against corrosion:

- High PH (> 9.5)
- Oxygen scavenger
- Film-forming and antibacterial products (problem of compatibility between products)

- Seal
- Anchoring device
- Setting mechanism
- Type of tubing-packer connection
- Mean of retrieval

▶ Classification (based on the mean of retrieval):

- Permanent packers
- Retrievable

IFPTraining

Equipment of naturally flowing wells

Example of permanent production packers: 415 D packer

- ▶ Description of the 415 D packer*
- ▶ Setting the 415 D packer:
 - On pipe string*
 - On electric cable*
- ► Tubing to 415 D packer connection*
- ▶ Drilling out the 415 D packer*
- ▶ For more information: example of classification*

Permanent or drillable production packer:

415 D Packer

Packer

 ${\it Equipment of naturally flowing wells}$

Tubing to permanent packer connection

Locator seal assembly

Anchor seal assembly

Washover mill for a permanent packer

 ${\it Equipment of naturally flowing wells}$

Baker permanent packers: Classification

Baker permanent packers: Classification (cont.)

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Retrievable packers

- ▶ Hydraulically set*
- ▶ Mechanically set*

Retrievable hydraulic packer

IFPTraining

5!

Dual retrievable packer

Retrievable mechanical packer

Compression setting

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Circulating devices

- Sliding sleeve (SS) or Sliding side door (SSD)*
- Side pocket mandrel (SPM)*
- Ported landing nipple*

IFPTraining

50

Sliding sleeve & Shifting tool

Equipment of naturally flowing wells

Sliding sleeve

Side pocket mandrel & Kickover tools

IFPTraining

6

Ported landing nipple

Equipment of naturally flowing wells

Landing nipples & corresponding accessories

- ► Landing nipple & tool components*
- ► Landing nipple classification*:
 - Full bore:
 - Simple
 - Selective
 - Top no-go
 - Bottom No-Go
- ▶ Top or bottom no-go landing nipple & accessories (blanking plug & equalising check valve): example*

Equipment of naturally flowing wells

Landing nipple (LN) & tool components: example

Landing nipple classification

FULL BORE selective simple top no-go

BOTTOM NO-GO

IFPTraining

Equipment of naturally flowing wells

Top or bottom NO-GO landing nipple & accessories (blanking plug & equalising check valve): example

Bottom NO-GO landing nipple & plugs

Example of "landing nipple & tubing" compatibility

nipple	Nominal Ø		2.8	1 F	2.7	5 F	2.7	5 R	2.5	6 F	2.5	6 R		
ng nip	Seal b	ore Ø	<i>in</i> mm	2.812	71.42	2.750	69.85	2.750	69.85	2.562	65.07	2.562	65.07	
Landing	Botton	n no-go (ø in mm					2.697	68.50			2.442	62.03	
FB-2 or RB-2 in mm			2.865	72.77	2.802	71.17	2.740	69.60	2.625	66.68	2.552	64.82		
Compatibility between landing nipples				Yes										
(۱	7.70 #	ID 3.068 77.93	Drift 2.943 74.75		Yes									
	77.93 74.75 ID Drift 9.20 # 2.992 2.867 Yes 76.00 72.82													
Compatibility wi	10.20 #	ID 2.922 74.22	Drift 2.797 71.04	No No because of the Yes										
Com	12.70 #	ID 2.750 69.85	Drift 2.625 66.68		No (Yes) Yes									

IFPTraining

Equipment of naturally flowing wells

Other downhole accessories

- Perforated tube
- Safety joint
- Slip joint
- Disconnecting joint*
- Blast joint & Flow coupling*
- Etc.

Tubing seal receptacle

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Blast joint & Flow coupling

Subsurface safety valves

- Subsurface Safety Valve (SSSV) terminology & technology
- SCSSV testing procedure

73

Subsurface safety valves: terminology &

technology

- Surface Safety Valves (SSV): for memory
- SubSurface Safety Valve (SSSV):
 - SubSurface Controlled subsurface Safety Valves (SSCSV)*:
 - Pressure differential safety valves (or velocity safety valve)*
 - Pressure operated valves (or ambient safety valves)*
 - Surface Controlled Subsurface Safety Valves (SCSSV)*:
 - WireLine Retrievable valves (WLR)
 - Tubing Retrievable valves (TR) (or Tubing Mounted: TM)

& also:

Equipment of naturally flowing wells

SubSurface Tubing-Annulus safety valves (SSTA)*

IFPTraining

Surface Controlled Subsurface Safety Valve (SCSSV)

WLR

Equalising WLR SCSSV

Equipment of naturally flowing wells

Tubing-Annulus Subsurface Safety valve (SSTA)

SCSSV testing procedure - Implementation

Test:

- With the well pressure
- On plug

Implementation:

- Well shut in (wing valve)
- SCSSV closure
- Bleed of at the wellhead to have:
 - The atmospheric pressure

 - The wanted ΔP
- Observation
- If SCSSV with equalising device:
 - Opening the SCSSV by pressurising the control line
 - Observation
 - And, if test "on plug", plug removing
- If not:
 - Pumping in the tubing to equalise pressure
 - And ditto

IFPTraining

Equipment of naturally flowing wells

Testing criteria & periodicity

Testing criteria (API RP 14B):

- Liquid: 400 cc/min i.e. 24 l/h [≈ 0.1 gal/min or 14 . 10^{-3} scfm]
- Gas: 15 scfm [\approx 425 l/min or 25.5 m³/h]

▶ Testing periodicity:

- Each time the valve has been removed
- Every year
- Special rules if simultaneous activities (drilling, completion, production, etc.)

Synthesis: example of equipment for a naturally flowing

well

Example of equipment for a naturally flowing well: upper

part

Equipment of naturally flowing wells

IFPTraining

Example of equipment for a naturally flowing well: lower

part

Running procedure function of:

- Selected pay zone-borehole connection and, for cased hole, when perforating is done
- "Special" operations on the pay zone (sand control, stimulation job)
- Number of level to be produced separately
- Chosen equipment : type of packer, etc.

▶ Pay zone- borehole connection:

- Cased hole, perforation done before equipment installations
- No "special" operations, one single level

▶ Equipment*:

Equipment of naturally flowing wells

- Permanent packer run beforehand
- Circulating device
- "WLR" SCSSV

IFPTraining

0.0

Running procedure: selected case

Preliminary operations

▶ If needed, reconditioning the wellhead:

- Tubing-head spool installation
- Rams adaptation

► Checking the borehole:

- Tagging cement
- Cleaning the casing wall*
- Displacing completion fluid

► Cased Hole Logging:

- Correlation log & Cement bond log
- Supplementary logs for reservoir purposes

▶ If needed, reconditioning the BOPs:

- Rams corresponding to tubing
- Perforating

Scrappers

87

Equipment of naturally flowing wells

Running subsurface equipment (case of a permanent packer set prior to running the tubing)

Setting the packer (and below-packer extension):

- Choice of the setting depth
- Setting on wireline or on drillpipes
- If wireline setting: junk basket + gauge ring run*

► Assembling and running the equipment (and testing while running in):

- Safety
- Removing wear bushing
- Picking-up and final checking of the equipment
- Screwing
- Possibly, testing while running in the equipment

Junk catcher

Running subsurface equipment (case of a permanent packer set prior to running the tubing – cont.)

▶ Inserting the scssv landing nipple and continuing to run in:

- Landing nipple protected by a separation sleeve
- Continuing to run in, usually without the control line

▶ Spacing out the production string:

- Necessity of spacing out
- Locating the packer
- Spacing out calculation*

IFPTraining

89

Spacing out calculations

Equipment of naturally flowing wells

Running subsurface equipment (case of a permanent

packer set prior to running the tubing - cont.)

- Pulling the tubing up to the SCSSV landing nipple
- Connecting the control line
- Running in again and inserting selected tubings and pup joints
- Screwing the tubing hanger, connecting the control line on it
- Connecting the landing pipe
- Landing of the tubing hanger in the tubing head spool
- Testing the production string (and the annulus)

Equipment of naturally flowing wells

Main differences in running procedure in the case of an hydraulic packer (run in directly on the tubing)

- Assembling and running the equipment (and testing while running in)
- Inserting the SCSSV landing nipple and finishing to run the equipment
- Partial testing of the production string
- Setting the packer and ending installation of the bottom hole equipment:
 - Positioning tubing hanger
 - Setting packer
 - Landing tubing hanger (if not already done)
 - Testing tubing (& annulus)

Installing the Christmas tree

- Replacing the BOPs by the Christmas tree:
 - Safety
 - Unbolting BOPs
 - Mounting adapter and Christmas tree
- ▶ Testing the production wellhead*

Equipment of naturally flowing wells

Bringing the well on stream

▶ Pumping in annular and clearing fluids:

- Opening circulating valve
- Displacing fluids
- Closing circulating device and pressure testing
- Setting and testing the SCSSV
- ► Clearing the well:
 - Choice of the flowrate and duration
 - Beware: bleed off or watch on places where liquid is trapped*

Tubing head spool assembly: Details on sealing elements

Moving out the rig &

Final completion report

► Moving out the rig:

- After putting back the well in safe condition:
 - Mechanical safety barriers

► Final completion report:

- Identification of the well
- Purpose

Equipment of naturally flowing wells

- Important facts or event and results obtained
- Final state of the well
- Detailed account of the operations

95

For each zone*:

- 1 valve with several positions actuated from the surface:
 - Open, closed and x positions
- 1 monitoring P, T tubing (and annulus):
 - Bounded up with the valve

or

Separate mandrel

Note: If monitoring P annulus (in addition to P tubing):

- Knowledge of the flow rate through the valve from ΔP (calibration)
- Possibility of making a build-up (well test)

IFPTraining

97

Equipment of naturally flowing wells

Elements of intelligent completion

Intelligent completion with sand control

Equipment of naturally flowing wells

IFPTraining

ICV Pressure drop versus Liquid flow rate for each ICV setting position

IPR combined with ICV Pressure drop

at each ICV setting position

Equipment of naturally flowing wells

10

Principle (cont.)

Supplementary tools:

- Metering:
 - Venturi meter (slick line retrievable):
 - In front of each zone
 - Or, common system at the top and difference by closing / opening the different zones
- Gradiomanometer, etc.

▶ But:

- Cost
- Reliability
- Running in very long:
 - Hydraulic and electric connections
 - ...

Principle (cont.)

- "Less" intelligent version:
 - Valves:
 - Only with 2 positions (open/closed)
 - Without sensors
 - And, usually, no "mandrel with sensors " combined with
- ▶ 1st intelligent completion run in:
 - September 97:
 - By SAGA
 - P18 well, Snorre A
 - SCRAMS system
 - Has been working 6 months

IFPTraining

Equipment of naturally flowing wells

Main applications

- Commingled production or Sequential production *
- Auto gas-lift *
- ▶ To manage drawdown
- ▶ To control water or gas coning
- ▶ To control water, gas or steam injection

Commingled production versus Sequential production

Auto gas-lift

Attractive fields for intelligent completion

Deep offshore development:

- Well number optimization (multi-zones completions)
- Well testing without re-entries

Multilateral wells:

- Better control of each branch, of cross-flow
- Make easier well neutralization, if necessary

▶ Water and/or gas entry control:

So better recovery ratio

Injection well:

Better allocation of the injection, so better recovery ratio

IFPTraining

Equipment of naturally flowing wells

Attractive fields for intelligent completion (cont.)

Better recovery:

- Refer to previous points
- ▶ Better reservoir knowledge (appreciation phases, early production, production):
 - Interference measurement
 - Water level behavior
 - Effect of water injection
- ➤ ⇒ More and more intelligent completions*

Number of intelligent completion installations in the

world

Equipment of naturally flowing wells

100

Miscellaneous

- ► Alternative Borehole Liner*
- **▶** Expandable Completion Liner*
- Expandable Sand Screen*

Alternative borehole liner (Petroline)

Allows the selective isolation of problem section without loss of hole size

IFPTraining

11

 ${\it Equipment\ of\ naturally\ flowing\ wells}$

Expandable Completion Liner (Petroline)

Expandable Completion Liner (Petroline)

(cont.)

Equipment of naturally flowing wells

Expandable Sand Screen (Petroline)

Expandable Sand Screen (Petroline)

(cont.)

 ${\it Equipment of naturally flowing wells}$

IFPTraining

11!

Content

- Pumping
- ▶ Gas lift
- ► Choosing an artificial lift process

- Principle & types of pumping
- Sucker rod pumping
- Centrifugal pumping with an Electric Submersible Pump (ESP)
- Other methods of pumping
- Measurements on pumped wells
- Defining a pump installation

IFPTraining

Principle of pumping

Principle :

- Energy input *
- Pump placed below the dynamic level
- Usually, no packer

Increase of pressure required from the pump (\triangle Ppump)

```
■ Data:

• P<sub>R</sub> = 190 bar at Z = 2000 m

• PI = 5 m³/j/bar

• Gradient<sub>static</sub> = 0,075 bar/m

• Gradient<sub>flowing</sub> = 0.08 bar/m

• Q<sub>wanted</sub> = 300 m³/j

• WHP<sub>wanted</sub> = 20 bar

■ Questions:

• WHP<sub>shut</sub> =

• For Q = Q<sub>wanted</sub>:

- △P<sub>R</sub> =

- BHP<sub>flowing</sub> =

- "WHP no art. lift" =

= - △P<sub>pump</sub> =
```


Artificial lift

IFPTraining

Types of pumping

Types of pumping:

- Sucker rod pumping
- Centrifugal pumping with an Electric Submersible Pump (ESP)
- Hydraulic pumping:
 - Plunger pump
 - Jet pump
 - Centrifugal turbine pump
- "Progressive" or "progressing" cavity pump

IFPTraining

Sucker rod pumping

- **▶** Basic configuration: <u>**</u>
 - · Positive-displacement pump: cylinder & plunger
 - Rods
 - Pumping unit: PU
- Sucker rod pumping cycle: **
 - Upstroke
 - Downstroke
- ▶ Flow rate (Q):
 - Q = S x N x A

with: S = stroke

N = number of stroke per time unit (pumping rate)

A = area of the plunger

Efficiency factor

Sucker rod pumping cycle

		Weight supported by : rods tubing			
	during upstroke	rods + "fluid"	tubing		
	during downstroke	rods	tubing + "fluid"		

Artificial lift

Choosing pumping parameter

▶ Operating problems:

- Dynamic level*
- Free gas*
- Tubing breathing and buckling*
- Fatigue⇒ tapered rod string*
- Resonance

Dynamic level & pump depth

Gas anchor

Effect of pumping cycle on the tubing

& Mechanical anchor

IFPTraining

1

Artificial lift

Fatigue & tapered rod string

► Fatigue depends on:

- Maximum tension Tmax :
 - Tmax = Rod weight+Fluid weight
- Ratio between minimum tension Tmin and maximum tension Tmax:
 - Tmin = Rod weight
- Number of cycle

Tension supported by a tapered rod string

Choosing pumping parameter (cont.)

Depth of the pump

Pumping parameters:

- Plunger diameter
- Pumping rate
- Stroke

Artificial lift

Downhole equipment

▶ Special equipment for the tubing:

- Tubing anchor (for memory)
- Gas anchor (for memory)

Sucker rod pumps:

- API spec 11 Ax pump designation*:
 - R pumps (rod pumps or inserted pumps)
 - T pumps (tubing pumps)
- Basic pump bore:
 - 1"1/4, 1"1/2, 1"3/4, 1"25/32, 2", 2"1/4, 2"1/2, 2"3/4

R & T pumps (Rod & Tubing)

IFPTraining

Rod pump seating assembly

00991_a_X

Hydraulic pumping (cont.)

Jet pumps

Artificial lift

Hydraulic pumping (cont.)

▶ Turbo-pums

"Progressives" or "progressing" cavity pumps

Principle *

Principle of a progressive cavity pump

IFPTraining

Artificial lift

"Progressives" or "progressing" cavity pumps (cont.)

Movement of the fluid *

The geometry of the elastomeric stator and eccentric metallic rotor assembly is such as it forms a series of cavities parted one from the other.

When the rotor turns, these cavities move axially (progress), inducing a pumping movement of the fluid entered in these cavities on the intake

These « progressives » cavities being parted, PCP are volumetric pump.

Movement of the fluid

"Progressives" or "progressing" cavity pumps (cont.)

► Example of pump performance (1/2):

Series	Pump		ISO	Flow at		Head	
	Model		Code	500 RPM		Capability	
			m ³ /j		bfpd	m	ft
2 3/8"	15 TP 1200		15/12	16	100	1200	4000
EUE	30 TP	600	30/6	27	168	600	2000
	30 TP	1300	30/13	27	168	1300	4250
1	30 TP	2000	30/20	27	168	2000	6600
1	80 TP	1200	80/12	85	536	1200	4000
	80 TP 1600		80/16	85	536	1600	5220
2 7/8"	60 TP	1300	60/13	66	417	1300	4250
EUE	60 TP	2000	60/20	66	417	2000	6600
	60 TP	2600	60/26	66	417	2600	8500
	100 TP	600	100/6	109	684	600	2000
	100 TP	1200	100/12	109	684	1200	4000
	100 TP	1800	100/18	109	684	1800	5900
	240 TP 900		240 /9	238	1494	900	2950
3 1/2"	3 1/2" 120 TP 2000		120/20	122	770	2000	6600
EUE	120 TP	2600	120/26	122	770	2600	8500
1	200 TP 600 200 TP 1200 200 TP 1800 300 TP 800		200/6	196	1232	600	2000
			200/12	196	1232	1200	4000
			200/18	196	1232	1800	5900
			300/8	300	1885	800	2600

Models are designated by two numbers. The first one is an approximation of the capacity in m³/d at 500 rpm and zero head, the second one indicates the nominal head capability in meters.

Series are designated by the size of the API stator thread

IFPTraining

Artificial lift

"Progressives" or "progressing" cavity pumps (cont.)

► Example of pump performance (2/2):

Series	Pump	19	50	Flow at		Head	
	Model	Co	ode	500 RPM		Capability	
1				m³/j	bfpd	m	ft
4"	180 TP 100	0 180	0/10	190	1193	1000	3300
NU	180 TP 200	0 180)/20	190	1193	2000	6600
	180 TP 300	0 180	0/30	190	1193	3000	9850
	225 TP 160	0 225	5/16	225	1410	1600	5300
	225 TP 240	0 225	5/24	225	1410	2400	7900
	300 TP 120	0 300)/12	300	1885	1200	4000
	300 TP 180	0 300	0/18	300	1885	1800	5900
	400 TP 900	40	0/9	400	2515	900	2950
	400 TP 13!	0 400	/13.5	400	2515	1350	4450
	600 TP 600	60	0/6	600	3770	600	2000
	600 TP 900	60	0/9	600	3770	900	2950
	840 ML 500	84	0/5	840	5280	500	1650
	840 ML 100	0 840	0/10	840	5280	1000	3300
	840 ML 150	0 840)/15	840	5280	1500	4900
5"	430 TP 200	0 430)/20	430	2703	2000	6600
CSG	750 TP 120	0 750)/12	750	4710	1200	4000
	1000 TP 860	100	0/8.6	1000	6280	860	2800

Models are designated by two numbers. The first one is an approximation of the capacity in m³/d at 500 rpm and zero head, the second one indicates the nominal head capability in meters.

Series are designated by the size of the API stator thread

"Progressives" or "progressing" cavity pumps (cont.)

Performance curve:

Artificial lift

IFPTraining

"Progressives" or "progressing" cavity pumps (cont.)

FIELD OF APPLICATION:

- Flow rate (at 500 RPM):
 - 0 / 3800 bpd (0 / 600 m³/d)
- Delivery head:
 - 0 / 5500 ft (0 / 1650 m)
- Corresponding pump diameter and tubings:
 - 3.70 " 4.25 " • Pump: 2.87 " 4.72 "
 - Tubing: 2 3/8 " 2 7/8 " 3 1/2 " 4 "
- Maximum temperature:
 - 100 / 120 °C
- Weak point: stator elastomer
- Recommanded for viscous or sand-laden oil

Gas lift

- Principle & Types of gas lift
- Well considerations in continuous gas lift
- Surface equipment for a gas lifted well

Gas lift principle

- ► Gas injection into the tubing:
 - At its "base"
 - Through the casing-tubing annulus
- ▶ To aerate the formation fluid

IFP Training

30

Artificial lift

Types of gas lift

- ► According to injection method:
 - Continuous gas lift*
 - Intermittent gas lift*
- ► According to surface injection circuit:
 - Closed circuit*
 - Open circuit
- ► According to the type of completion:
 - Single or multi-zone completion*
 - Concentric completion*
 - Self gas lift*

Continuous gas lift & Intermittent gas lift

Surface facilities for a closed circuit gas lift

Gas lift in dual completion

Artificial lift

IFPTraining

Concentric gas-lift

Artificial lift

Pressure gradients in producing wells

Operating conditions

- ▶ Injection parameters and optimisation *:
 - Injection flow rate
 - Injection depth
 - Injection pressure
- ▶ injection depth optimisation with time, in relation with the reservoir depletion*

IFPTraining

38

Flowing pressure gradients: effect of GLR increase

Artificial lift

Flowing pressure gradients: effect of WHP increase

Determination of operating parameters

(continuous gas-lift)

Aa

 P_R = 260 bar, WOR = 1, GLR _{natural} = 100 scf/bbl, PI_L = 3 m³/d/bar, $Q_{L\,wanted}$ = 240 m³/d with P_{WH} = 20 bar

Injection optimisation with time

in relation with the reservoir depletion

WOR = 1, GLR $_{natural}$ = 100 scf/bbl, PI $_{L}$ = 3 m 3 /d/bar, Q $_{Lwanted}$ = 240 m 3 /d \Rightarrow ΔP_{R} = Q $_{L}$ / PI $_{L}$ = 240/3 = 80 bar, P $_{WH\ wanted}$ = 20 bar

The design has been done for P_{R "in10 years"} = 260 bar, how to produce the same flow rate in only 5 years with P_{R "in 5 years"} = 280 bar?

Artificial lift

IFPTraining

4

Unloading the well at start up

- Need for unloading valves& positioning the unloading valves*
- ► Synthesis: Unloading sequence*

Unloading the well (after a workover) (1/8)

 $P_R = 260$ bar, WOR = 1, GLR _{natural} = 100 scf/bbl, $PI_L = 3$ m³/d/bar, $Q_{Lwanted} = 240$ m³/d with $P_{WH} = 20$ bar

Unloading the well (after a workover) (2/8)

Artificial lift

 P_R = 260 bar, WOR = 1, GLR _{natural} = 100 scf/bbl, PI_L = 3 m³/d/bar, $Q_{Lwanted}$ = 240 m³/d with P_{WH} = 20 bar

Unloading the well (after a workover) (3/8)

Unloading the well (after a workover) (4/8)

Artificial lift

 P_R = 260 bar, WOR = 1, GLR _{natural} = 100 scf/bbl, PI_L = 3 m³/d/bar, $Q_{L\,wanted}$ = 240 m³/d with P_{WH} = 20 bar

Unloading the well (after a workover) (5/8)

Unloading the well (after a workover) (6/8)

Artificial lift

 P_R = 260 bar, WOR = 1, GLR _{natural} = 100 scf/bbl, PI_L = 3 m³/d/bar, $Q_{L\,wanted}$ = 240 m³/d with P_{WH} = 20 bar

Unloading the well (after a workover) (7/8)

 $P_R = 260 \text{ bar}$, WOR = 1, GLR _{natural} = 100 scf/bbl, $PI_L = 3 \text{ m}^3/\text{d/bar}$, $Q_{L \text{wanted}} = 240 \text{ m}^3/\text{d}$ with $P_{WH} = 20 \text{ bar}$ $\Rightarrow \Delta P_R = Q_L / PI_L = 240/3 = 80 \text{ bar}$ & $P_{BH} = P_R - \Delta P_R = 260 - 80 = 180 \text{ bar}$

Unloading the well (after a workover) (8/8)

 P_R = 260 bar, WOR = 1, GLR _{natural} = 100 scf/bbl, PI_L = 3 m³/d/bar, $Q_{Lwanted}$ = 240 m³/d with P_{WH} = 20 bar $\Rightarrow \Delta P_R = Q_L / PI_L = 240/3 = 80 \text{ bar } \& P_{BH} = P_R - \Delta P_R = 260 - 80 = 180 \text{ bar }$

Unloading the well at start up (continuous gas lift)

Tubing & casing pressure recording

(during gas-lift unloading)

Gas-lift valve technology

- Principle*
- Casing pressure operated valve*
- Tubing pressure operated valve*

IFPTraining

Gas-lift valve

Artificial lift

"Casing operated" gas-lift valve

Artificial lift

"Tubing pressure operated" gas-lift valve

Gas-lift valves naming convention

Function	Kick-off / Unloading		Continuous Injection	Mandrel sealing
Туре	Operated by injected gas pressure	Operated by tubing pressure	Simple orifice	Plug
Name	P Pressure operated or casing operated (IPO = Injection Pressure Operated)	F Fluid operated or tubing operated (PPO = Production Pressure operated	O or DKO	D or Dummy

Suppliers coding			
MACCO	CM1-BK	DKO	
CAMCO	BK ou BK1	DKO2	

Artificial lift

Wireline Retrievable Gas-Lift Valves

Unloading valve:

- Is used to temporarily allow gas injection into the tubing at an intermediate depth during unloading
 - Opens when pressure exceeds opening pressure
 - Gas rate through the valve, when open, is limited by a port
 - Valve must close after gas uncovers next valve

IFPTraining

60

Gas Lift valves function (cont.)

Operating valve:

- Injects gas at final injection depth during normal operations, stays permanently opened
 - Usually a simple orifice on high productivity wells (PI > 0.5 bpd/psi): controls gas injection rate while avoiding valve throttling and allowing a larger rate span
 - On low productivity wells, resorting to a P type gas lift valve is advisable

Dummy:

Artificial lift

Is a solid plug to seal mandrel and protect its polished bore

Gas lift valve port selection

- ► Function: Gas injection rate limitation
- ▶ Charts allow to determine the required port size depending on*:
 - Required gas rate (after correction, see here below)
 - Upstream pressure = casing pressure at depth
 - Downstream pressure = tubing pressure at depth
- Gas rate, expressed in standard volumes, must be corrected for*:
 - The actual gas specific gravity (chart done for SG = 0.65)
 - The actual temperature at valve depth
- Such port will allow for some gas rate flexibility*

IFPTraining

Gas rate through different orifice diameter

IFPTraining 63

Artificial lift

Correction factor for gas flow capacities chart

Artificial lift

IFPTraining

Gas rate span of gas-lift valves at 80 bar - 1 200 psi

NOVATM Technical Specifications

- NACE approved Stainless Steel material
- Industry Standard 1" and 1-1/2" valve
- Compatible with existing side-pocket mandrels, latches and slickline tools.
- Compatible with existing unloading valves.
- Erosion resistant material options.

P1 = UPSTREAM PRESSURE P2 = DOWNSTREAM PRESSURE

IFPTraining

Opening pressure and closing pressure of a gas lift valve

▶ Forces balance at valve opening:

- A_b = bellows area, nitrogen pressured to P_b
- A_s = seat area, subject to P_{tubing}
- $A_b A_s$ = area subject to P_{casing}

$$\begin{split} &P_b \times A_b = P_{csgo} \times (A_b - A_s) + P_{tbg} \times A_s \\ &P_{csgo} \times (A_b - A_s) = P_b \times A_b - P_{tbg} \times A_s \\ &P_{csgo} \times (1 - As/A_b) = P_b \times 1 - P_{tbg} \times A_s/A_b \\ &A_s/A_b = valve \ characteristic \ provided \ by \ manufacturer \\ &P_{csgo} = \left[P_b - P_{tbg} \times (A_s/A_b)\right] / \left[1 - (A_s/A_b)\right] \end{split}$$

Just before closing, P_{csgc} applies on $(A_b - A_s)$ as above and also on sea

$$P_{csgc} = P_b$$

Casing operated gas lift valve spread: difference between "Opening" and "Closing" pressure

Tubing equipment specific to gas lift

Valve mandrel :

- Conventional mandrel*
- Side pocket mandrel* & kickover ou positioning tool*
- Mandrels with concentric valves *

Check valve

- ▶ Annulus safety valve* :
 - together with a tubing safety valve
- ▶ Tubing-head spool*

Side pocket mandrel

IFPTraining

Artificial lift

Wellhead equipment for continuous gas lift

Wellhead equipment for intermittent gas lift

Artificial lift

IFPTraining

Gas lift well surface indicators & recorders (manual operations)

Symbols:

- **PI: Pressure Indicator**
- **TI: Temperature Indicator**
- PR: Pressure Recorder (Casing and **Tubing pressures)**
- Manual gas injection choke
- **Orifice flowmeter**
- FR: Flow Recorder

IFPTraining 73

Tubing & casing pressure recording

Artificial lift

Artificial lift

Economic criteria

▶ The problem is to recover the oil:

- The fastest
- In the largest amount
- At the lowest cost

► Initial investment cost:

- Specific cost
- Extra cost due to artificial lift problem

▶ Operating and maintenance cost:

- Specific cost
- Extra cost due to artificial lift problem

▶ Example*

Cost of artificial lift: example

Gas lift:

• Investment:

 Well: SPM + valves 4 to 30 k \$ Platform: compression 0 to 20 M \$ per field

Exploitation:

0 to 0,1 \$ per Sm³ [0 to 2.8 \$ per k.scf] HP gas 2 to 10 k \$ per well & per year (on average) Wireline Workover 0

Electrical submersible pump:

• Investment:

• Well: pump + cable 60 to 160 k \$ per well Platform: electrical supply 0 to 0.1 m \$ per field

Exploitation:

 Electrical power 0 to 0.1 \$ per kWh

 Workover 40 to 160 k \$ per well & per year (on average)

Artificial lift

Technical criteria

▶ Energy:

- **Availability**
- Access cost

Dynamic head and flow rate

Other criteria:

- General environment
- Surface infrastructure and immediate environment
- Well architecture
- **Effluent characteristics**

Artificial lift

- Based on criteria as:
 - Qualitative and quantitative
 - Difficult to access, vary with time
- ▶ Be careful not to be misled by previous experiences
- ▶ A temporary system can be selected:
 - ⇒ be sure it does not become permanent without having been reassessed

IFPTraining

80

Main advantages:

- The most widespread technology, relatively simple and well known in the industry
- Well suited to low and moderate flow rates
- The flow rate can be changed easily
- Compatible with very low bottomhole pressure
- Subsurface problem can be solved by a relatively lightweight servicing unit
- Suited to isolated wells
- Standard units are simple and durable:
 - \Rightarrow low operating expenses
- Long stroke units very useful for viscous and gassy crudes

IFPTraining

0

Sucker rod pumping (cont.)

Main drawbacks:

Artificial lift

- Possible flow rate decreases severely with the depth required for the pump
- Reduced volumetric efficiency in wells with high GOR
- Standard units are too bulky and heavy for offshore platforms
- Initial investment cost is high for large capacity pumps
- Major problem of rod strength when there is a corrosive effluent
- Ill suited to "crooked" well profiles

Electric submersible pumping

▶ Main advantages:

- High flow rates are possible at shallow or average depths
- Well suited to production with a high water cut
- Surface equipment takes up little space
- Daily monitoring problems reduced to a minimum
- Good energy efficiency

IFPTraining

Electric submersible pumping (cont.)

Main drawbacks:

Artificial lift

- Output capacity strongly influenced by depth
- Limited in temperature and consequently in depth
- Ill suited to low flow rates
- Tubing must be pulled in the event of trouble:
 - ⇒ operating costs and downtime costly , especially offshore
- Not usually recommended when the GOR is high
- Performs poorly in the presence of sand
- Little flexibility

Main advantages:

- Suited to great depths and deviated wells
- Pump (depending on the installation) can be pumped up to the surface
- Driving fluid can serve as a carrier fluid for injecting an additive

And, for the plunger pump:

- The size and rate of the pump can easily be modified to adapt to well conditions
- Viscous heavy crudes benefit from being mixed with a lighter driving oil
- Production is possible with extremely low bottomhole pressures

And, for the jet pump:

- High production flow rate is possible
- No moving part inside the well
- Only minor problems if sand or gas are present

IFPTraining

86

Hydraulic pumping (cont.)

Main drawbacks:

Artificial lift

- Initial investment in surface equipment is quite high and its maintenance is fairly expensive
- High pressure pump feed circuit (with consequent safety risks)
- Well testing causes problems, especially regarding assessment of produced fluids
- Completion with multiple tubings may be required

And, for the plunger pump:

- Rapid wear and tear on the pump if the fluid is corrosive or abrasive
- Efficiency drastically lowered if free gas is present

And, for the jet pump:

- Low efficiency, 25 to 30 % (70 % for plunger pumps)
- Need for bottomhole flowing pressure of over 3.5 MPa (500 psi), otherwise detrimental cavitation takes place in the flow nozzle
- Is prone to form emulsions or foam

Main advantages:

- Well suited to average or high flow rates
- Suited to wells with a good PI and relatively high bottomhole pressure
- Well equipment is simple and gas lift valves can be retrieved by wireline
- Initial investment can be low:
 - if a source of high pressure gas is available
 - no longer true if compressors need to be installed
- No production problems when sand is present
- An additive can be injected (corrosion inhibitor) at the same time as the gas
- Suited to deviated wells
- Suited to starting up wells

Artificial lift

Continuous gas lift (cont.)

Main drawbacks:

- Need for bottomhole pressure that is not too low:
 - sometimes the artificial lift method has to be changed at the end of the well's lifetime
- The required injection gas volume may be excessive for wells with a high water cut
- Need for high pressure gas:
 - Can be costly
 - Increases safety risks
- Can not be applied if the casing is in bad shape
- Gas processing facilities (dehydration, sweetening) can compound compression costs
- Foaming problems may get worse
- Surface infrastructure is particularly expensive if wells are scattered over a large area
- Rather low efficiency, especially in a deep well

Well servicing & workover

Sommaire

- ► Main types of operations
- **▶** Wireline work
- Pumping
- Coiled tubing
- Snubbing
- ▶ Operation on killed wells

Main types of operations

Main types of operations

▶ Means & types of operation

- Measurement operations
- Maintenance operations
- Remedial jobs & Workover operations

Means of operation

"Light" means of operation:

- Wireline unit
- Pumping unit

▶ "Heavy" means of operation:

Coiled tubing unit

Snubbing unit

Pulling unit

Workover unit

On live wells

On "killed" wells

Note:

- "Killed" well = inappropriate term, prefer "neutralised" well
- Coiled tubing, snubbing (pulling) units can be considered as "light" means compared to workover unit

Well servicing & workover

Types of operation

- ▶ Operations on the well itself
- Due to:
 - Production considerations
 - Reservoir considerations
 - Trouble during an operations
- ⇒ Measurement

Maintenance

Remedial job & Workover

Wireline work

- Principle and area of application
- Surface equipment
- The wireline tool string
- Wireline tools

Principle

Well servicing & workover

- ▶ Work on a live producing or injecting well
- By means of a steel cable:
 Slick line or braided line

 - Electric cable
- To run in and pull out:
 - Tools (safety device, gas-lift valve, etc.)
 - Measurements instruments
- ▶ Refer to figures here after for a general view of the equipment*

IFPTraining

Principle: Example of wireline equipment

Principle: Example of wireline equipment (cont.)

Well servicing & workover

Advantages, drawbacks & limitations

► Advantages:

- No well killing
- Operations performed quickly
- Money saving:
 - Production hardly or not stopped
 - Pay zone not damaged (no killing) Relatively low cost

Drawbacks and limitations:

- Requires highly qualified personnel
- Difficult if highly deviated, sand production, viscous effluent
- Not possible if hard deposits
- Limited possibilities afforded by the cable:
 - Moderate tension
 - No rotation, no circulation

Main types of job

Monitoring and cleaning:

- The tubing (inside diameter, corrosion, etc.)
- The bottomhole (sediment top, etc.)

Measurement operations:

- Bottomhole temperature and pressure
- Sampling
- Locating interfaces
- **Production logs**

Running or pulling out tools & operations in the well:

- Safety valves, bottomhole choke, plugs
- Gas-lift valve
- Actuating circulating device
- Fishing
- Perforating

IFPTraining

Well servicing & workover

Cable

- Slick line:
 - 0.066", 0.072", 0.082", 0.092" et 0.105"
- ▶ Braided (or stranded) line

Hydraulic winch and its motor or engine

- Drum
- Depth indicator
- Motor/engine and transmission:
 - Mechanical
 - Hydraulic

Well servicing & workover

Required winch horsepower

Winch	Recommended maximum depth			
horsepower	without jarring		with jarring	
	(m)	(ft)	(m)	(ft)
9	2000	6700	500 (by hand)	1700
14	3000	10,000	2000	6700
22	5000	16,700	2500	8300
48	5000	16,700	5000	16,700

Operations	Running in	Pulling out
Amerada recorder	1 m/s (3 ft/s)	1 m/s (3 ft/s)
Sampler	1 m/s (3 ft/s)	maximum
Well control	2 m/s (7 ft/s)	2 m/s (3 ft/s)
Setting mandrels	Depending on well	Depending on well
Paraffin removal	Depending on well	Depending on well
Caliper	Unimportant	20 to 22 m/min (70 ft/min)

Well servicing & workover

Surface equipment lay-out

Lubricator, Stuffing box & Double BOP

Lay-out & Lubricator

Stuffing box & Double BOP

- ► Stuffing box(*)
- ▶ Tool trap
- **▶** BOP or wireline valve^(*)

(*): If braided line:

- Special stuffing box (grease/oil injection control head)
- Special dual BOP (with lower set of rams inverted and grease injection between them)

IFPTraining

Well servicing & workover

Wireline tool string

- rope socket
- stems:
 - 2, 3 or 5 ft (0.61, 0.91 or 1.52 m)
- jars
 - Mecanical
 - Hydraulic
- knuckle joint
- Miscellaneous components
 - quick lock coupling
 - · ...

Knuckle joint & Quick-lock coupling

Quick lock coupling

Well servicing & workover

2:

Main categories of wireline tools

- Checking and maintenance tools
- ► Running (or setting) and pulling tools
- ► Lock mandrels, downhole tool and other particular tools
- **▶** Fishing tools

Checking and maintenance tools

- gauge cutters*
- scratcher*
- swaging tool*
- calliper
- ▶ Tubing end locator*
- sand bailer*

Well servicing & workover

Some checking and maintenance tools

Gauge cutter

Nipple brush

Swaging tool

Some checking and maintenance tools (cont.)

Tubing end locator

Well servicing & workover

IFPTraining

Running (or setting) and pulling tools

► Mains kind of tools:

- Running tools
- **Pulling tools**
- **Combination tools**

► Tools equipped with pins:

- Two kind of shear pins:
 - To attach the downhole tool directly to the running tool
 - To release dogs under normal operating conditions or as a safety precaution
- Pins sheared by*:
 - Upward jarring
 - Downward jarring

► Particular tools:

- Shifting tool*: for operating sliding sleeve
- Kickover tool*: for side pocket mandrel
- Hanging tool without jarring (for recorders)
- Swabbing tool
- Perforator:
 - Mechanical
 - Explosive charge

Well servicing & workover

Sliding sleeve & Shifting tool

Sliding sleeve

Shifting tool

Side pocket mandrel & Kickover tools

Well servicing & workover

Fishing tools

- **▶** Wireline cutter
- **▶** Wireline finder
- ▶ Wireline grab*
- ► Impression block*
- Overshot*
- Magnet
- ..

Some fishing tools

Overshot

Well servicing & workover

▶ To connect a pump to the wellhead in order to inject a treatment fluid into:

- The tubing
- The vicinity of the borehole

Well servicing & workover

In fact

▶ This practice is not usually well suited to oil wells:

- Necessity to squeeze the effluent in the tubing but:
 - Its needs injectivity
 - Its may damage the pay zone
- Or to circulate through a circulating device but:
 - Risk of leak afterwards
 - If direct circulation, . . .
 - if reverse circulation, . . .

However it can be advantageous for gas well:

- Have fewer injectivity problems
- Treatment fluid can settle down by gravity

Coiled tubing

- Principle and area of application
- ▶ Coiled tubing equipment
- Operating considerations

▶ To run a continuous pipe into a live well:

- A pipe coiled up on a reel
- With the help of an injection head
- Through a safety assembly:
 - Stripper
 - BOP stack
- ▶ Refer to figures here after for a general view*

IFPTraining

37

Well servicing & workover

Coiled tubing unit: General view

Coiled tubing unit: General view (cont.)

Well servicing & workover

Area of application

► Changing the hydrostatic pressure:

- Circulating a "light" fluid:
 - Underbalanced perforation
 - Well start-up
- Gas injection:
 - Well kick-off (nitrogen)
 - "Temporary" gas lift
- Through diameter optimisation
- Circulating a "heavy" fluid:
 - Well killing

Well cleaning:

- Tubing: scale, wax or salt removal, etc.
- Bottomhole: sand washing, etc

Matrix stimulation treatment:

Acidizing, solvent

▶ Horizontal well:

Well logging and perforating

Other operations:

- Fishing job
- "Temporary" concentric tubing: inhibition injection, gas lift, etc.
- Cementing
- Underreaming
- Drilling

Well servicing & workover

IFPTraining

Coiled tubing equipment: General view

Coiled tubing equipment: General view (cont.)

Well servicing & workover

Coiled tubing equipment: General view (cont.)

- Ø: 2.5 m (8 ft) ⇒ 6 000 m of 1" (20,000 ft)
- Driven by an hydraulic motor
- Rotating seal ring

▶ Pipe:

- Continuous metal pipe (longitudinal welding)
- Jointed together by radial welding
- Ø: 3/4", 1", 1 1/4", 1 1/2", etc.*

Well servicing & workover

4

Injector head & Safety assembly

Gooseneck Two chains with half slips ⇒ friction Activated hydraulically

Well servicing & workover

Safety assembly (Stripper & BOP): Stripper

Stripper:

- Sealing elements:
 - In two parts
 - Can be changed during stripping
 - Actuated hydraulically

Safety assembly (Stripper & BOP): BOP

BOP:

- Blind rams
- Cutters
- Slip rams
- Pipe rams
- Equalising and circulating valves

49

IFPTraining

Well servicing & workover

Procedure to cut the coiled tubing

- ▶ Stop coiling up or down
- ▶ Close slips rams & pipe rams
- ▶ Cut the coiled tubing
- ▶ Coil up the upper part of the coiled tubing
- Close blind rams
- ► Circulate through the kill line to neutralise the well

Ancillary surface equipment & downhole accessories

► Ancillary surface equipment:

- Hydraulic crane
- Hydraulic power pack
- Control cab
- Nitrogen unit

▶ Downhole accessories*:

- Connecting devices
- Check valves
- Jet tools
- Hydraulic motors
- Overshots

Well servicing & workover

Connecting devices

Crimping splice/roll-on connector

Screwed connector

Ball and seat check valve

Well servicing & workover

Equipment to drill with a coiled tubing unit

Snubbing

- ▶ Principle and area of application
- ▶ Snubbing equipment
- **▶** Operating considerations

Principle and area of application

▶ Principle:

• To run "conventional" tubing pipes (each length screwed on the previous one) into a live well

▶ Need for:

- A check valve at the bottom of the tubing
- A sealing system on the Christmas tree
- A handling system
- ▶ Refer to figures here after for a general view*

IFPTraining

57

Well servicing & workover

Snubbing: General view

Snubbing: General view (cont.)

Well servicing & workover

IFPTraining

Snubbing: General view (cont.)

Well servicing & workover

Advantages, Drawbacks & Area of application

Advantages (compared to coiled tubing):

- The pipe does not work in the plastic range
- Possibility to rotate from the surface
- By the past: bigger diameters available

Main drawbacks (compared to coiled tubing):

- More dangerous for the team
- Heavier and bulkier
- Tripping takes longer

Area of application:

As with a coiled tubing unit of big diameter

and

- Can perform or make easier some special operations:
 - Fishing job with fishing tool requiring small right or left rotation
 - Pulling out the tubing string without having to neutralise the well
 - Etc.

Snubbing equipment - Pipe handling system

► Must allow to:

• Push the pipe into the well

Or

Support it

3 phases :

- Snub (or "light pipe ")*
- Equilibrium(balance point)
- Strip (or "heavy pipe ")

IFPTraining

63

Well servicing & workover

Snub phase running in sequence

Pipe handling system (cont.)

- **▶** Double acting jacks
- Stationary slips
- ▶ Travelling slips
- **Access window**
- ▶ Hanger flange*
- ▶ Rotary table*

Well servicing & workover

Hanger flange & Rotary table

Hanger flange

Rotary table

Types of snubbing units

- ► (Cable unit)*
- ▶ Long stroke unit*
- ▶ Short stroke unit*

IFPTraining

Well servicing & workover

Rig assist snubbing unit (cable unit)

Snubbing unit with hydraulic jacks

Short stroke

IFPTraining

Well servicing & workover

Pipe handling capacity

- ► Maximum stroke (if no buckling problem):
 - Long stroke unit: $\approx 11 \text{ m} (36 \text{ ft})$
 - Short stroke unit: $\approx 3 \text{ m} (8 \text{ to } 10 \text{ ft})$
- ► Maximum hoisting capacity (pull):
 - 80 000 to 300 000 lb. and more (350 to 1 300 kN)
- ► Maximum snubbing capacity (push):
 - Usually: half of the hoisting capacity
- ▶ Tubing size range: at least 3 1/2", eventually 7 5/8" or more
- **▶** Tripping speed:
 - Stripper only: 10 m/min (30 ft/min)Through BOP: 2.5 m/min (7.5 ft/min)
- ▶ Performance of long & short stroke units: examples*

PERFORMANCE DATA				
	MODEL HRL 75	MODEL HRL 120	MODEL HRL 300	
Maximum Hang Load (pull)	75,390 lb	120,750 lb	314,970 lb	
Maximum Snub Load (push)	32,985 lb	63,030 lb	164,190 lb	
Stroke	36'	36'	36'	
Tubing Size Range (1)	3/4 to 3 1/2" OD	3/4 to 5 1/2" OD	3/4 to 7" OD	
Rotary Torque (standard)	1000 ft/lb	1000 ft/lb	3500 ft/lb	
Block Speed Down (max.)	360 ft/min	259 ft/min	188 ft/min	
Block Speed Up (max.)	280 ft/min	206 ft/min	205 ft/min	
Horse Power	235 HP	235 HP	Ti ∫ 308 HP	
Engine (standard)	6V71N	6V71 N	Twin \{ 8V71 N	
Cylinder (one)	8" Bore – 6"Rod – 18' Stroke	10 1/8" Bore – 7" Rod – 18' Stroke	11 9/16" Bore – 8" Rod – 18' Stroke	
Full Guide Tube	yes	yes	yes	
Performance	100 to 130 joints per hour in ideal conditions			

⁽¹⁾ Tubing size range can be increased if hang weight remains within weight range of particular unit

Short stroke unit performance data

PERFORMANCE DATA				
	MODEL HRL 150	MODEL HRL 225	MODEL HRL 300	
Maximum Hang Load (pull)	150,720 lb	235,560 lb	318,360 lb	
Maximum Snub Load (push)	91,720 lb	100,000 lb	100,000 lb	
Stroke	8' - 10'	8' – 10'	8' – 10'	
Tubing Size Range (1)	3/4 to 3 1/2" OD	3/4 to 5 1/2" OD	3/4 to 7" OD	
Rotary Torque (standard)	1000 ft/lb	3500 ft/lb	3500 ft/lb	
Jack Speed Down (light load)	259 ft/min	520 ft/min	369 ft/min	
Jack Speed Up (light load)	404 ft/min	536 ft/min	410 ft/min	
Horse Power	235 HP	320 HP	320 HP	
Engine (standard)	6V71N	8V71 N	8V71 N	
Cylinder (four)	4" Bore – 2" 1/2 Rod	5" Bore – 3" 1/2 Rod	5 13/16" Bore – 4" Rod	
Full Guide Tube	yes	yes	yes	
Performance	80 to 100 joints per hour in ideal conditions			

¹⁾ Tubing size range can be increased if hang weight remains within weight range of particular unit

Well servicing & workover

▶ Basic components:

- Stripper (cup type)*
- Upper stripping BOP
- Spacer spool
- Lower stripping BOP
- Safety BOP
- Equalising and bleed-off lines

▶ Other components:

- Hanger flange
- Spherical or annular type BOP
- Shear ram BOP
- Blind ram BOP
- Extra stripping or safety BOP

▶ General view*

Refer to:

" BOPs sequence when running pipes into the hole "*

IFPTraining

Well servicing & workover

Stripper (cup type)

BOPs sequence when running pipes into the hole

Safety stack

► Auxiliary pump:

- **BOP**
- Equalising and bleed-off valves
- Slips
- Winch
- Rotary table

Well servicing & workover

Downhole accessories

► Check valves:

- Screwed on the tubing, or In a landing nipple
- Placed far enough from the end of the pipe ⇒ Warning signal
- Jetting tools
- **▶** Drilling bit
- ▶ Hydraulic motor
- ▶ Fishing tools

BOPs sequence when running pipes into the hole

& Buckling

- ▶ BOPs sequence when running pipes into the hole (for memory)
- **▶** Buckling:

Well servicing & workover

- During the snub phase
- Maximum tendency at:
 - The beginning of the running in
 - The end of the pulling out
- Function of:
 - Wellhead pressure
 - Pipe size
 - Illustration *

IFPTraining

79

Buckling at the beginning of the running in

Jumping over the balance point (when the travelling

system has only one set of single acting slips)

- **▶** When running in:
 - Pipe filling
 - Action on the wellhead pressure
- ▶ When pulling out:
 - Action on the wellhead pressure
- ► Example *

IFPTraining

Well servicing & workover

Tripping speed

- **▶** Stripper only:
 - 10 m/min (30 ft/min)
- ► Through BOPs:
 - 2.5 m/min (7.5 ft/min)

Operation on neutralised wells

- Preamble
- ► Means of acting on killed wells
- ► General procedure of an operation
- Workover on depleted reservoirs
- ▶ Fishing tools

The tubing and/or its equipment have to be pulled out

> So:

Necessity to "kill the well" beforehand, or, more exactly to "neutralise the well"

▶ Techniques used during the intervention:

Basically, the same as during initial completion

However, particular care:

- To proceed to the well control
- To redefine the new completion

▶ A workover is usually required if:

IFPTraining

Well servicing & workover

Means of acting on neutralised wells

Depend mainly on:

- Depth of the well
- Equipment installed in the well
- Job that needs to be done

► Types of units:

- Crane
- Pulling* or servicing units
- Workover rig

Criteria of choice:

- Hoisting capacity
- Pumping capacity & safety equipment
- Possibility of rotation & ancillary equipment
- Daily cost
- Geographical availability

- Usually, the Christmas tree is "simplified"
- No installation of safety device for the intervention (no BOP, ...)
- Pulling operations consist of:
 - Pull out pumps (electrical, mechanical)
 - Change the sucker rods (mechanical pumping)
- The pulling unit is just a "crane"

IFPTraining

Means of acting on killed wells (cont.)

▶ Beware, necessity of an appropriate specialised equipment:

- Specific safety equipment (BPV, gray valve, etc.)
- Hoisting, pipe make up & fishing equipment suitable for small diameter drill pipe and tubing
- Wireline equipment
- Etc.

Well servicing & workover

General procedure of an operation

► Mainly function of:

- Equipment installed
- Its condition
- What needs to be done
- How the operation is actually going on

IFPTraining

Well servicing & workover

Preamble (cont.)

► However, main steps involved:

- (a) : Preparing the well
- (b) : Putting the well under safe conditions
- (c) : Installing the servicing or workover unit
- (d) : Neutralising the well
- (e) : Replacing the Xmas tree by the BOPs
- (f) : Removing completion equipment
- (g) : Downhole operations
- (h) : Running in completion equipment
- (i) : Replacing the BOPs by the Xmas tree
- (j) : Well start-up
- (k) : Moving out the servicing or workover unit

Note: possibly, inversion between: - steps (b, c) and step (d)

- step (j) and step (k)

▶ More tricky operations (from a safety point of view):

- Installing the servicing or workover unit
- Neutralising the well
- Replacing the Christmas tree with the BOPs
- "Unsetting" the packer

And:

- Perforating ou reperforating
- High pressure (...) pumping
- Replacing BOPs by the Christmas tree
- Well start-up
- Moving out the servicing unit

IFPTraining

Well servicing & workover

Preparing the well

before the servicing or workover unit arrives

▶ Wireline checking:

- Gauge cutter
- Sediment tag
- Etc.

Preparing the well

before the servicing or workover unit arrives (cont.)

▶ Pressure testing:

- Wellhead:
 - P_{test} > P_{max} planned during neutralisation
 - With a safety factor (1.5 if possible)
 - Depending on the actual state of the equipment
 - P_{test} < WP of the weakest equipment
- Tubing:
 - See above + acceptable ΔP on the plug
 - Careful: plug retrieval: potential problem
- Annulus:
 - Preferably, at $P \le P_{test}$ during initial completion

IFPTraining

9:

Well servicing & workover

Preparing the well

before the servicing or workover unit arrives (cont.)

And, possibly:

▶ Circulating device opening:

- To neutralise the well (if neutralisation scheduled by circulating)
- By wire line:
 - Opening of the circulation device
 - Or, failing that, perforating the tubing

Putting the well(s) under provisional safe conditions

Wells involved:

- Function of the installation configuration (cluster):
 - ⇒ nearby wells

▶ Placing "plugs":

- Downhole plug
- SCSSV
- **BPV**
- Etc.

Normally, at least two among which one downhole; if not, workover fluid

Well isolation:

- All valves closed
- Lines isolated and dismantled
- Nearby equipment decompressed

Well servicing & workover

Installing the workover unit (or servicing unit)

- ▶ Followed by the set up and testing of pumping and return lines
- ▶ Christmas tree not yet removed to be replaced by the BOPs

Neutralising the well

For more information, refer to the appendix "Considerations on neutralising the well"

▶ Workover fluid:

- Fluid type: brine, ...
- Specific gravity to have a safety margin of 5 to 15 bar (75 to 200 psi)
- Volume concerned = Global volume*

Well servicing & workover

Neutralising the well: Volumes involved = Global volume

*IFP*Training

Neutralising the well (cont.)

▶ Displacing the fluid:

- Circulating:
 - As deep as possible
 - With choke adjustment on the return to keep P_{BH} > P_R (if no downhole plug in place)
- Squeezing:
 - Field of application:
 - Circulating method "impossible" or "not adapted" (holes in the tubing; wireline not possible:collapsed tubing, fish; etc.)
 - Very good injectivity
 - Procedure:
 - Injectivity test
 - Squeeze itself
- Mind out: at this step neutralisation is only partial

IFPTraining

Well servicing & workover

Neutralising the well (cont.)

Observing the well:

- No more wellhead pressure
- Stable level
- No gas cutting (bubbles, etc.)

► Final neutralisation phase:

- Concerned volume:
 - Volume trapped under the packer

And possibly:

 Tubing & annulus volume below the circulating device Or

Annulus volume

To be done as soon as feasible once the Xmas tree has been replaced by the BOPs

Replacing the Xmas tree with the BOPs

Safety barriers:

- On the tubing side:
 - Workover fluid
 - Downhole plug, SCSSV, BPV
- On the annulus side:
 - Workover fluid (if circulating) or annulus fluid (if squeezing; in this case, constitute an actual safety barrier or not, depending on its specific gravity)
 - Packer, tubing hanger

As quickly as possible:

- Personnel mobilised
- **Equipment ready**
- Appropriate handling & hoisting equipment available
- Wellhead bolts checked, etc.

Followed by a BOPs test

Well servicina & workover

Removing completion equipment

- Tubing safety device on the rig floor
- Procedure function of:
 - The type of equipment & its condition*
- ▶ In the program, provide alternatives in case of operating difficulties
- Circulate as soon as possible the volume trapped under the packer
- Check the well's stability during all the job:
 - Take care to avoid swabbing (particularly when pulling out the packer)
 - Keep the well full & compare the filling volume with the pulled out steel volume

Examples of procedure for removing completion

equipment

Retrievable packer

- Packer unsetting^(*)
- Pulling out slowly and:
 - Checking levels (trip tank)
 - Filling up every 10 stands of pipe (if no trip tank)
 - Beware of swabbing

(*) If unsetting failed:

- Cutting tubing
- Pulling out tubing
- 1/2 safety joint running in
- Packer washover
- Packer fishing and pulling out

Permanent packer

- Locator picking up or tubing anchor unlatching or tubing cutting
- Pulling out slowly and:
 - Checking levels (trip tank)
 - Filling up every 10 stands of pipe (if no trip tank)
- Packer milling tool running in
- Milling out
- Packer pulling out, slowly and :
 - Checking levels (trip tank)
 - Filling up every 10 stands of pipe (if no trip tank)

IFPTraining 103

Well servicina & workover

Downhole operations

Bottom hole checking with:

- A drill bit and/or a scrapper
- ▶ Possibly:
 - Screen washing over
 - Drilling out (sediment, bridge plug, well deepening)
 - Cement job evaluating, logging
 - Remedial cementing
 - Perforation plugging
 - Cement plug or bridge plug setting
 - Pressure testing
 - Perforating, reperforating
 - Etc.

Recompleting the well

- ▶ Running in completion equipment
- ▶ Replacing the BOPs by the Xmas tree
- ▶ Well start up
- ▶ Moving out the servicing or workover unit
 - After (or before) the well start-up
 - Safety barriers in place

Well servicing & workover

Basic problems on workover on depleted reservoirs

- ▶ Losses and/or formation damage during the workover
- Kick-off after workover:
 - All the more difficult since the losses are great

Losses and/or formation damage: Main solutions

"Light" workover fluid:

- Oil base fluids, diesel (SG > 0.8)
- Foam (SG < 0.2)

- between these? But:

- mind the specific gravity of the annular fluid

"Temporary" blocking agents:

• Unstable with temperature

Or

Highly soluble in acid

But: never 100 % destructible

IFPTraining

Well servicing & workover

Losses and/or formation damage: Main solutions (cont.)

Working with a "lost" level:

- Level not at surface but monitored
- Monitoring:
 - Level checking: (wireline), echometry

Or

- Filling flowrate
- But: may lead to huge losses and consequently to formation damage and kick-off problems

Losses and/or formation damage: Main solutions (cont.)

Suited downhole equipment*

(if the intervention concerned only the equipment above the packer)

- Work on a live well*:
 - Coiled tubing
 - **Snubbing**

IFPTraining

Well servicing & workover

Downhole equipment suited to depleted reservoir:

Example of equipment & Procedure for pulling out the tubing

- 1. A plug is set in the landing nipple of the fixed part of the disconnectable joint (beforehand a plug can also be set in the top no-go landing nipple)
- 2. The circulating device is opened or the production string is perforated just above the disonnectable joint
- 3. The workover fluid is circulated into the well
- 4. A BPV is set in the tubing hanger
- 5. The Christmas tree is removed
- 6. The BOPs are installed
- 7. The BPV is replaced by a TWCV
- 8. The BOPs are tested (between the TWCV and the blind rams); a tubing is screwed into the tubing hanger and the pipe-ram BOPs are tested against on the tubing
- 9. The tubing hanger is unlocked (tie-down screws)
- 10. The upper part of the production string is pulled out

Work on a live well in case of a depleted reservoir

Coiled tubing

Well servicing & workover

Snubbing

Kick-off after the workover

- ▶ No problem if the aim of the workover was to "install" an artificial lift system
- ► Coiled tubing & nitrogen
- ► Swabbing, rocking, etc.

Causes of fishing operation

- ▶ Retrievable packer which cannot be unset
- ▶ Stuck packer
- Broken tubing
- Unscrew string
- Stuck string
- Cemented string
- ▶ Etc.

IFPTraining 113