Math of Big Data, 2018

Prof: Gu

Name:

Forest Kobayashi

	HW #:		1					
	Day:		Mon. Tue. Wed. Thu. Fri.					
	Date:		05/15/2018					
	No.	Points	Acknowledgments					
	1							
	2							
	Total							
This Assignment is (check one): On Time Late, without deduction Late, with deduction								

Feel free to work with other students, but make sure you write up the homework and code on your own (no copying homework *or* code; no pair programming). Feel free to ask students or instructors for help debugging code or whatever else, though.

The starter code for problem 2 part c and d can be found under the Resource tab on course website.

Note: You need to create a Github account for submission of the coding part of the homework. Please create a repository on Github to hold all your code and include your Github account username as part of the answer to problem 2.

Problem 1. (Linear Transformation)

Let $\mathbf{y} = A\mathbf{x} + \mathbf{b}$ be a random vector. Show that expectation is linear:

$$\mathbb{E}[\mathbf{y}] = \mathbb{E}[A\mathbf{x} + \mathbf{b}] = A\mathbb{E}[\mathbf{x}] + \mathbf{b}.$$

Also show that

$$\operatorname{cov}[\mathbf{y}] = \operatorname{cov}[A\mathbf{x} + \mathbf{b}] = A\operatorname{cov}[\mathbf{x}]A^{\top} = A\mathbf{\Sigma}A^{\top}.$$

Solution

Problem 2.

Given the dataset $\mathcal{D} = \{(x,y)\} = \{(0,1),(2,3),(3,6),(4,8)\}$

- (a) Find the least squares estimate $y = \boldsymbol{\theta}^{\top} \mathbf{x}$ by hand using Cramer's Rule.
- (b) Use the normal equations to find the same solution and verify it is the same as part (a).
- (c) Plot the data and the optimal linear fit you found.
- (d) Find randomly generate 100 points near the line with white Gaussian noise and then compute the least squares estimate (using a computer). Verify that this new line is close to the original and plot the new dataset, the old line, and the new line.

Solution