

AES core

The AES core is reused and downloaded from the below URL.

URL: tee-hardware/hardware/teehw/optvsrc/AES at master · uec-hanken/tee-hardware (github.com)

Use guide waveforms are presented below.

AES-GCM FSM

1. IDLE:

 -----ghash----ghash_result_wen = 1'b0 ghash_result_dec_wen = 1'b0 temp_wen = 1'b0 hash_key_wen = 1'b0 ghash_input_signal[0] = 1'b0 ghash_input_signal[1] = 1'b0 gctr_init = 1'b0 gctr_hashkey_proc = 1'b0 gctr_y0 = 1'b0 y0_wen = 1'b0 -----aes_gcm----aes_gcm_ready = 1'b1 aes_gcm_tag_valid = 1'b0

aes_gcm_result_valid = 1'b0

2. HASHKEY

- -----ghash------(oResult_valid) ? hash_key_wen = 1'b1 : hash_key_wen = 1'b0 -----gctr------
- (oResult_valid) ? gctr_init = 1'b0 : gctr_init = 1'b1
- gctr_hashkey_proc = 1'b1

AAD

- -----ghash-----ghash_input_signal[0] = 1'b1
- (iAad_valid)? ghash_result_wen = 1'b1 : ghash_result_wen = 1'b0
- hash_key_wen = 1'b0 -----gctr------
- gctr_init = 1'b0 gctr_hashkey_proc = 1'b0 -----aes_gcm-----
- aes_gcm_ready = 1'b1

4. CIPHER

- ----ghash----ghash_input_signal[0] = 1'b0
- (iEncDec)? ghash_input_signal[1] = 1'b0 : ghash_input_signal[1] = 1'b1
- temp_wen =1'b1
- (iEncDec & oResult_valid) ghash_result_wen = 1'b1 : ghash_result_wen = 1'b0
- (~iEncDec) ghash_result_dec_wen = ~temp & ~ghash_result_wen : ghash_result_dec_wen = 1'b0
- (gctr_result_valid & iBlock_last_delay | ~iBlock_valid) gctr_init = 1'b0 : gctr_init = 1'b1
- -----aes_gcm-----
- (gctr_result_valid) aes_gcm_ready = 1'b1 : aes_gcm_ready = 1'b0
- aes_gcm_result_valid = oResult_valid

5. TAG1

- -----ghash-----
- ghash_input_signal[0] = 1'b0
- ghash_input_signal[1] = 1'b0
- ghash_result_wen = 1'b0
- -----gctr------(oResult_valid) ? gctr_init = 1'b0 : gctr_init = 1'b1
- gctr_y0 = 1'b1
- (oResult_valid) ? y0_wen = 1'b1 : y0_wen = 1'b0
- -----aes_gcm------
- aes_gcm_ready = 1'b0
- aes_gcm_result_valid = 1'b0

TAG2

- ----ghash-----
- ghash_input_signal[0] = 1'b1
- ghash_result_wen = 1'b1
- -----gctr------gctr_init = 1'b0
- gctr_y0 = 1'b0
- y0_wen = 1'b0
- -----aes_gcm-----
- aes_gcm_tag_valid = 1'b1

7. AES_ONLY:

- -----gctr------
- gctr_init = 1'b1
- -----aes_gcm------
- (oResult_valid) aes_gcm_ready = 1'b1 : aes_gcm_ready = 1'b0
- (oResult_valid) aes_gcm_result_valid = 1'b1 : aes_gcm_result_valid = 1'b0

GCTR FSM

1. IDLE

- counter_wen = 1'b0
 block_wen = 1'b0
 IV_wen = 1'b0
 key_wen = 1'b0
 hashkey_wen = 1'b0
 aes_core_init = 1'b0
 aes_core_next = 1'b0
 gctr_result_valid = aes_core_output_valid

2. INIT_AES

- block_wen = 1'b1
 IV_wen = 1'b1
 key_wen = 1'b1
- hashkey_wen = 1'b1
- aes_core_init = 1'b1gctr_result_valid = 1'b0

WAIT_KEY

- block_wen = 1'b0
 IV_wen = 1'b0
 key_wen = 1'b0
 hashkey_wen = 1'b0
- aes_core_init = 1'b0

4. CIPHER

- counter_en = 1'b1
- aes_core_next = 1'b1

Multiplication in GF(2¹²⁸)

Each element is a vector of 128 bits. The i^{th} bit of an element X is denoted as X_i . The leftmost bit is X_i , and the rightmost bit is X_{127} . The multiplication operation uses the special element R = 11100001||0, and is defined in Algorithm 1. The argument righshift() moves the bits of its argument one bit to the right. More formally, whenever W = rightshift(V), then $W_i = V_{i-1}$ for $1 \le i \le 127$ and $W_0 = 0$.

What we want to compute:

oY = gf_mul(iHashKey, iCtext) xor iY

```
Algorithm 1 Multiplication in GF(2^{128}). Computes the value of Z = X \cdot Y, where X, Y and Z \in GF(2^{128}).
```

```
Z \leftarrow 0, V \leftarrow X
\mathbf{for} \ i = 0 \ \text{to} \ 127 \ \mathbf{do}
\mathbf{if} \ Y_i = 1 \ \mathbf{then}
Z \leftarrow Z \oplus V
\mathbf{end} \ \mathbf{if}
\mathbf{if} \ V_{127} = 0 \ \mathbf{then}
V \leftarrow \mathbf{rightshift}(V)
\mathbf{else}
V \leftarrow \mathbf{rightshift}(V) \oplus R
\mathbf{end} \ \mathbf{if}
\mathbf{end} \ \mathbf{for}
```

AES core

The AES core is reused and downloaded from the below URL.

URL: tee-hardware/hardware/teehw/optvsrc/AES at master · uec-hanken/tee-hardware (github.com)

AES Encryption 128b Key

AES Encryption 256b Key

AES Decryption 128b Key

AES Decryption 256b Key