Машинное обучение

Практическое задание 1 посвящено изучению основных библиотек для анализа данных, а также линейных моделей и методов их обучения. Вы научитесь:

- применять библиотеки NumPy и Pandas для осуществления желаемых преобразований;
- подготавливать данные для обучения линейных моделей;
- обучать линейную, Lasso и Ridge-регрессии при помощи модуля scikit-learn;
- реализовывать обычный и стохастический градиентные спуски;
- обучать линейную регрессию для произвольного функционала качества.

Библиотеки для анализа данных

NumPy

Во всех заданиях данного раздела запрещено использовать циклы и list comprehensions. Под вектором и матрицей в данных заданиях понимается одномерный и двумерный numpy.array соответственно.

```
In [50]:
```

```
import numpy as np
```

Реализуйте функцию, возвращающую максимальный элемент в векторе х среди элементов, перед которыми стоит нулевой. Для x = np.array([6, 2, 0, 3, 0, 0, 5, 7, 0]) ответом является 5. Если нулевых элементов нет, функция должна возвращать None.

```
In [51]:
```

```
x = np.array([6, 2, 0, 3, 0, 0, 5, 7, 0])
def max_element(arr):
    # Your code here
    zero = arr == 0
    print(arr[1:][zero[:-1]].max())
max_element(x)
```

5

Реализуйте функцию, принимающую на вход матрицу и некоторое число и возвращающую ближайший к числу элемент матрицы. Например: для X = np.arange(0,10).reshape((2, 5)) и v = 3.6 ответом будет 4.

In [52]:

```
X = np.arange(0,10).reshape((2, 5))
v = 3.6
def nearest_value(X, v):
    # Your code here
    X = X.ravel()
    Xv = np.abs(X - v).argmin()
    return X[Xv]
print(nearest_value(X, v))
```

4

Реализуйте функцию scale(X), которая принимает на вход матрицу и масштабирует каждый ее столбец (вычитает выборочное среднее и делит на стандартное отклонение). Убедитесь, что в функции не будет происходить деления на ноль. Протестируйте на случайной матрице (для её генерации можно использовать, например, функцию numpy.random.randint (http://docs.scipy.org/doc/numpy/reference/generated/numpy.random.randint.html)).

In [53]:

```
[[0 0 0 0]
[0 0 0 0]
[0 0 0 0]
[1 1 1 1]]
```

Реализуйте функцию, которая для заданной матрицы находит:

- определитель
- след
- наименьший и наибольший элементы
- норму Фробениуса
- собственные числа
- обратную матрицу

Для тестирования сгенерируйте матрицу с элементами из нормального распределения $\mathcal{N}(10,1)$

In [54]:

```
N = np.random.normal(10,1,size=(2,2))
def get_stats(X):
    # Your code here
    print(np.linalg.det(X))
    print(np.linalg.matrix_rank(N))
    print(str(np.min(X))+'<-->'+str(np.max(X)))
    print(np.linalg.norm(X,ord='fro'))
    print(np.linalg.eig(X))
    print(np.linalg.inv(X))
    print(np.trace(X))
get_stats(N)
```

Повторите 100 раз следующий эксперимент: сгенерируйте две матрицы размера 10×10 из стандартного нормального распределения, перемножьте их (как матрицы) и найдите максимальный элемент. Какое среднее значение по экспериментам у максимальных элементов? 95-процентная квантиль?

In [55]:

```
for exp_num in range(100):
    # Your code here
    N1 = np.random.normal(0,1,size=(10,10))
    N2 = np.random.normal(1,0,size=(10,10))
N = np.dot(N1,N2)
A = np.min(N)
B = np.max(N)
print(np.quantile(N,0.95))
```

3.3340584972788925

Pandas

Ответьте на вопросы о данных по авиарейсам в США за январь-апрель 2008 года.

Данные (https://www.dropbox.com/s/dvfitn93obn0rql/2008.csv?dl=0) и их описание (http://stat-computing.org/dataexpo/2009/the-data.html)

In [56]:

```
import pandas as pd
%matplotlib inline
df = pd.read_csv('2008.csv')
da = pd.read_csv('airports.csv')
```

Какая из причин отмены рейса (CancellationCode) была самой частой? (расшифровки кодов можно найти в описании данных)

In [57]:

Найдите среднее, минимальное и максимальное расстояние, пройденное самолетом.

In [58]:

```
# Your code here
df1 = df['Distance']
print(df1.sum()/len(df1))
print(df1.mean())
print(df1.min())
print(df1.max())
724.5082571428571
```

```
724.5082571428571
724.5082571428571
31
4962
```

Не выглядит ли подозрительным минимальное пройденное расстояние? В какие дни и на каких рейсах оно было? Какое расстояние было пройдено этими же рейсами в другие дни?

In [59]:

```
# Your code here
df2 = df[df.Distance == 31][['Year','Month','DayofMonth','FlightNum']]
print(df2)
print(df[(df.FlightNum == 64)|(df.FlightNum == 65)][['DayofMonth','Month','Year','Distance']].sort_values(by=['DayofMonth','Month','Year']))
```

00.2020					
	Year	Month	Dayof	Month	FlightNum
1116	2008	12		30	65
6958	2008	12		26	65
17349	2008	8		18	64
27534	2008	3		11	64
46082	2008	8		9	65
48112	2008	2		28	64
		Month	Month	Year	Distance
26109	Dayor	1	4	2008	571
3869		1	7	2008	82
		1	11		
48020				2008	1005
39438		2	5	2008	571
13155		2	7	2008	1747
57822		3	5	2008	1747
64319		3	5	2008	414
68338		3	8	2008	2454
9615		4	1	2008	533
30053		4	1	2008	82
64203		4	1	2008	82
65662		4	3	2008	123
69305		5	1	2008	1005
7891		6	4	2008	2381
12980		6	8	2008	82
54909		6	11	2008	581
68264		7	9	2008	386
33769		7	12	2008	1747
7977		9	7	2008	1747
		9	8		
46082				2008	31
52459		9	12	2008	581
8448		10	2	2008	123
66042		10	2	2008	372
1517		10	7	2008	680
47716		11	1	2008	281
33211		11	2	2008	1005
27534		11	3	2008	31
44810		12	2	2008	82
6778		12	7	2008	359
1389		13	3	2008	680
 47168		 19	· · · 7	2008	 581
501		20	3	2008	533
24750		21	8	2008	680
66529		21	12	2008	82
63028		22	1	2008	1747
67172		22	3		
				2008	533
15173		22	10	2008	1005
32173		23	2	2008	1747
29801		23	4	2008	123
2619		23	5	2008	2381
45031		23	8	2008	82
32242		23	9	2008	82
10113		24	7	2008	571
43132		24	7	2008	123
50184		25	1	2008	372
59015		26	2	2008	1005
6958		26	12	2008	31
37350		27	5	2008	82
48112		28	2	2008	31
32956		28	5	2008	2454
52618		29	4	2008	680
4466		29	6	2008	123
4400		23	O	2000	123

```
27.06.2020
                                                          3 piter
                     29
                                  2008
   43353
                               8
                                                571
   14646
                     29
                             11
                                  2008
                                               2454
   31375
                     30
                               3
                                  2008
                                              1005
   41044
                     30
                               3
                                  2008
                                               1747
                     30
                               9
                                  2008
   50888
                                                 82
                             12
   1116
                     30
                                  2008
                                                 31
   10833
                     31
                               3
                                  2008
                                                372
   55053
                     31
                               3
                                  2008
                                                123
```

[78 rows x 4 columns]

Из какого аэропорта было произведено больше всего вылетов? В каком городе он находится?

```
In [60]:
```

SJU

205.2

```
# Your code here
a = df.groupby('Origin').count()[['Year']].sort_values(by=['Year'], ascending=False)
print(a.iloc[0])
print(da[da.iata == 'ATL'])
        4134
Year
Name: ATL, dtype: int64
    iata
                                    airport
                                                 city state country
lat
880 ATL
         William B Hartsfield-Atlanta Intl Atlanta
                                                                USA 33.6
                                                         GΑ
40444
          long
880 -84.426944
In [61]:
# Your code here
print(df[['Origin', 'AirTime']].groupby('Origin').mean().sort_values(by=['AirTime'],
ascending=False).head(1))
        AirTime
Origin
```

Найдите аэропорт, у которого наибольшая доля задержанных (DepDelay > 0) рейсов. Исключите при этом из рассмотрения аэропорты, из которых было отправлено меньше 1000 рейсов (используйте функцию filter после groupby).

```
In [62]:
```

```
# Your code here
b = df[['Origin', 'DepDelay']].groupby(by=['Origin']).count().sort_values(by=['DepDe
lay'], ascending=False)
print(b[b.DepDelay > 1000])
```

	DepDelay
Origin	
ATL	4079
ORD	3391
DFW	2730
DEN	2353
LAX	2064
PHX	2011
LAS	1773
IAH	1770
DTW	1588
SF0	1374
EWR	1343
MCO	1324
SLC	1313
MSP	1233
CLT	1229
JFK	1172
BOS	1128
SEA	1114
LGA	1114
BWI	1018
PHL	1007

Линейная регрессия

В этой части мы разберемся с линейной регрессией, способами её обучения и измерением качества ее прогнозов.

Будем рассматривать датасет из предыдущей части задания для предсказания времени задержки отправления рейса в минутах (DepDelay). Отметим, что под задержкой подразумевается не только опоздание рейса относительно планируемого времени вылета, но и отправление до планируемого времени.

Подготовка данных

12. (0.5 балла) Считайте выборку из файла при помощи функции pd.read_csv и ответьте на следующие вопросы:

- Имеются ли в данных пропущенные значения?
- Сколько всего пропущенных элементов в таблице "объект-признак"?
- Сколько объектов имеют хотя бы один пропуск?
- Сколько признаков имеют хотя бы одно пропущенное значение?

In [63]:

```
# Your code here
import pandas as pd

df = pd.read_csv('2008.csv')
print(df.isnull().values.any())

d = df.isnull().sum()
print('Сумма пропущенных значений =',d.sum())
print(np.count_nonzero(df.isnull().values.sum(axis=1)))
print(np.count_nonzero(df.isnull().values.sum(axis=0)))
```

```
True
Сумма пропущенных значений = 355215
70000
16
```

Как вы понимаете, также не имеет смысла рассматривать при решении поставленной задачи объекты с пропущенным значением целевой переменной. В связи с этим ответьте на следующие вопросы и выполните соответствующие действия:

- Имеются ли пропущенные значения в целевой переменной?
- Проанализируйте объекты с пропущенными значениями целевой переменной. Чем вызвано это явление? Что их объединяет? Можно ли в связи с этим, на ваш взгляд, исключить какие-то признаки из рассмотрения? Обоснуйте свою точку зрения.

Исключите из выборки объекты с пропущенным значением целевой переменной и со значением целевой переменной, равным 0, а также при необходимости исключите признаки в соответствии с вашим ответом на последний вопрос из списка и выделите целевую переменную в отдельный вектор, исключив её из матрицы "объект-признак".

In [64]:

```
# Your code here
print('Пропущенные значения в целевой переменной: ',df['DepDelay'].values.any())
nan = df[(df.DepDelay.isnull() == True)|(df.DepDelay != 0)]['DepDelay'].sum()
dfd = df['DepDelay']
df = df.drop(['DepDelay'], axis='columns')
df = df.fillna(0)
dfd = dfd.fillna(0)
```

Пропущенные значения в целевой переменной: True

13. (0.5 балла) Обратите внимание, что признаки DepTime, CRSDepTime, ArrTime, CRSArrTime приведены в формате hhmm, в связи с чем будет не вполне корректно рассматривать их как вещественные.

Преобразуйте каждый признак FeatureName из указанных в пару новых признаков FeatureName_Hour, FeatureName_Minute, разделив каждое из значений на часы и минуты. Не забудьте при этом исключить исходный признак из выборки. В случае, если значение признака отсутствует, значения двух новых признаков, его заменяющих, также должны отсутствовать.

Например, признак DepTime необходимо заменить на пару признаков DepTime_Hour, DepTime_Minute. При этом, например, значение 155 исходного признака будет преобразовано в значения 1 и 55 признаков DepTime_Hour, DepTime_Minute соответственно.

In [65]:

```
# Your code here
for a in ['DepTime','CRSDepTime','ArrTime','CRSArrTime']:
    df[a+'_Hour'] = df[a]//100
    df[a+'_Minute'] = df[a]%100
df = df.drop(['DepTime','CRSDepTime','ArrTime','CRSArrTime'],axis='columns')
```

14. (0.5 балла) Некоторые из признаков, отличных от целевой переменной, могут оказывать чересчур значимое влияние на прогноз, поскольку по своему смыслу содержат большую долю информации о значении целевой переменной. Изучите описание датасета и исключите признаки, сильно коррелирующие с ответами. Ваш выбор признаков для исключения из выборки обоснуйте. Кроме того, исключите признаки TailNum и Year.

In [66]:

```
# Your code here
#Исключаются потому что имеют много пропусков
print(df.drop(['CancellationCode','CarrierDelay','WeatherDelay','NASDelay','Security
Delay','LateAircraftDelay'], 1))
#Исключаются по заданию
print(df.drop(['TailNum','Year'],1))
```

.00.2020						0_5.131		
um	\	Year	Month	DayofMonth	DayOfWeek	UniqueCarrier	FlightNum	TailN
0	\	2008	6	18	3	WN	242	N699
SW 1		2008	6	4	3	XE	2380	N159
80 2		2008	8	3	7	WN	1769	N464
WN 3		2008	1	23	3	00	3802	N465
SW 4		2008	5	4	7	WN	399	N489
WN 5		2008	1	3	4	В6	834	N640
ЈВ 6		2008	3	31	1	WN	1589	N387
SW 7		2008	4	22	2	DL	617	N37
65 8		2008	3	4	2	WN	454	N633
SW 9		2008	10	6	1	UA	270	N421
UA 10		2008	11	16	7	WN	3596	N325
SW 11		2008	3	6	4	АА	484	
0 12		2008	12	23	2	FL	52	N316
AT 13		2008	7	15	2	EV	4186	N722
EV 14		2008	1	29	2	WN	3589	N510
SW 15		2008	11	13	4	XE	2271	N141
77 16		2008	7	5	6	UA	532	N826
UA 17		2008	7	8	2	US	1632	N957
UW 18		2008	8	17	7	WN	101	N910
WN 19		2008	5	2	5	АА	2300	N5EM
AA 20		2008	5	19	1	NW	1405	N765
NC 21		2008	8	2	6	FL	15	N299
AT 22		2008	1	14	1	СО	1015	N186
11 23		2008	5	19	1	US	1528	N532
AU 24		2008	5	24	6	АА	33	N336
AA 25		2008	7	19	6	АА	1430	N503
AA 26		2008	9	23	2	US	989	N438
US 27		2008	1	22	2	НА	335	N481
HA 28		2008	3	24	1	YV	7230	N372
08 29		2008	3	24	1	YV	7293	N715

1.00.2020				•	5_pitei		
SF							
• • •	• • •	• • •	• • •	• • •	• • •	• • •	
69970 4X	2008	7	10	4	DL	1735	N70
69971 SW	2008	12	7	7	WN	1047	N730
69972 AW	2008	4	9	3	US	183	N652
69973 HA	2008	3	22	6	НА	179	N481
69974 07	2008	8	19	2	XE	2476	N175
69975 SA	2008	4	20	7	WN	2194	N733
69976 EV	2008	12	31	3	EV	5060	N917
69977 US	2008	4	6	7	US	1159	N443
69978 9E	2008	12	9	2	9E	2276	8888
69979 AS	2008	12	2	2	EV	5008	N823
69980 AA	2008	5	12	1	AA	413	N5DC
69981 CA	2008	1	2	3	ОН	5353	N917
69982 NB	2008	6	13	5	NW	1272	N329
69983 AE	2008	9	2	2	MQ	4506	N844
69984 MQ	2008	10	4	6	MQ	3110	N848
69985 UA	2008	12	11	4	UA	73	N820
69986 HA	2008	12	4	4	НА	392	N484
69987 39	2008	11	15	6	XE	2463	N231
69988 CA	2008	12	7	7	ОН	6581	N916
69989 32	2008	7	24	4	CO	284	N473
69990 MQ	2008	12	23	2	MQ	3092	N837
69991 US	2008	4	24	4	NW	241	N515
69992 UA	2008	11	4	2	UA	885	N219
69993 AE	2008	2	28	4	MQ	3547	N939
69994 CA	2008	1	26	6	ОН	5218	N655
69995 DL	2008	5	12	1	DL	794	N988
69996 SK	2008	5	11	7	00	6159	N776
69997 31	2008	9	24	3	YV	7058	N773
69998 US	2008	2	18	1	NW	641	N318

WN 69999 2008 12 6 6 N786 510 SW ActualElapsedTime CRSElapsedTime AirTime ... Cancelled Divert ed 0 57.0 65.0 46.0 0 0 1 124.0 138.0 108.0 0 0 2 138.0 155.0 125.0 0 0 3 102.0 111.0 79.0 0 0 4 148.0 160.0 136.0 0 0 5 171.0 164.0 0 153.0 0 6 0 74.0 75.0 55.0 0 7 342.0 371.0 302.0 0 0 8 174.0 180.0 164.0 0 0 9 199.0 210.0 177.0 0 0 10 173.0 175.0 146.0 0 0 11 0.0 155.0 0.0 1 0 12 233.0 225.0 218.0 0 0 13 94.0 98.0 69.0 0 0 14 62.0 70.0 50.0 0 0 0 15 129.0 129.0 101.0 0 16 141.0 141.0 117.0 0 0 59.0 0 17 132.0 81.0 0 18 178.0 190.0 163.0 0 0 19 171.0 180.0 145.0 0 0 20 76.0 55.0 0 81.0 0 21 320.0 294.0 314.0 0 0 22 79.0 68.0 47.0 0 0 23 95.0 106.0 71.0 0 0 24 0 371.0 360.0 340.0 0 25 134.0 145.0 121.0 0 0 26 0 128.0 121.0 101.0 0 27 35.0 34.0 0 21.0

27.06.2020			3_piter		
28	105.0	115.0	86.0	• • •	0
29 0	66.0	90.0	47.0	•••	0
• • •	•••	•••	• • •		• • •
69970 0	122.0	128.0	92.0	•••	0
69971 0	87.0	95.0	70.0	•••	0
69972 0	248.0	270.0	226.0	•••	0
69973 0	30.0	29.0	18.0	•••	0
69974 0	117.0	122.0	86.0	•••	0
69975 0	49.0	55.0	41.0	•••	0
69976 0	71.0	85.0	55.0	•••	0
69977 0	146.0	142.0	120.0	•••	0
69978 1	0.0	74.0	0.0	• • •	0
69979 0	47.0	50.0	31.0	•••	0
69980 0	264.0	255.0	243.0	•••	0
69981 0	100.0	108.0	84.0	•••	0
69982 0	130.0	139.0	108.0	•••	0
69983 0	61.0	75.0	41.0	•••	0
69984 0	52.0	45.0	23.0	• • •	0
69985 0	90.0	105.0	63.0	•••	0
69986 0	51.0	52.0	37.0	•••	0
69987 0	132.0	120.0	100.0	•••	0
69988 0	115.0	113.0	97.0	•••	0
69989 0	202.0	229.0	187.0	•••	0
69990 0	47.0	45.0	26.0	•••	0
69991 0	201.0	191.0	169.0	•••	0
69992 0	273.0	278.0	251.0	•••	0
69993 0	51.0	55.0	32.0	•••	0
69994 0	110.0	113.0	85.0	•••	0
69995 0	128.0	129.0	86.0	•••	0
69996 0	47.0	49.0	30.0	•••	0
69997	80.0	80.0	63.0	• • •	0

0
69998 234.0 219.0 192.0 ... 0
0
69999 60.0 65.0 46.0 ... 0

	DepTime_Hour	DepTime_Minute	CRSDepTime_Hour	CRSDepTime_Minute
\				
0	21.0	11.0	20	55
1	14.0	26.0	14	10
2	11.0	43.0	11	45
3	11.0	41.0	11	44
4	8.0	15.0	8	20
5	13.0	49.0	13	25
6	13.0	59.0	14	0
7	18.0	15.0	18	20
8	6.0	26.0	6	30
9	19.0	5.0	19	7
10	20.0	42.0	20	0
11	0.0	0.0	16	5
12	11.0	1.0	10	50
13	13.0	48.0	13	55
14	15.0	28.0	15	10
15	16.0	51.0	17	0
16	5.0	57.0	6	0
17	19.0	51.0	19	50
18	20.0	5.0	19	45
19	10.0	44.0	10	45
20	9.0	6.0	9	13
21	9.0	42.0	9	45
22	14.0	42.0	14	45
23	20.0	32.0	20	0
24 25	7.0	41.0	7	45
25 26	9.0	1.0	9	0
26 27	7.0 16.0	52.0 39.0	16	0 40
28	16.0	45.0	16	45
26 29	8.0	11.0	8	15
23	8.0		0	
69970	9.0	37.0	9	35
69971		1.0	21	50
69972		55.0	8	45
69973		3.0	13	6
69974		59.0	13	0
69975		40.0	18	10
69976		11.0	20	12
69977		40.0	8	35
69978		26.0	7	31
69979		8.0	9	15
69980		55.0	11	40
69981		22.0	10	48
69982		51.0	14	0
69983		51.0	13	55
69984	6.0	5.0	6	15
69985		15.0	6	18
69986		1.0	19	5
69987	6.0	51.0	6	59
69988	13.0	24.0	13	25
69989	0.0	28.0	0	30
69990	16.0	27.0	16	30
69991	9.0	14.0	9	20

27.06.2020			3 piter	
69992	7.0	54.0	<u>з_</u> ркеі 8	1
69993	14.0	10.0	14	0
69994	9.0	20.0	9	25
69995	18.0	29.0	18	40
69996	11.0	49.0	11	25
69997	10.0	12.0	10	12
69998	19.0	6.0	19	0
69999	8.0	59.0	9	0
		A T' M' '	CDCA T' II	CDCA T' M' I
a	ArrTime_Hour 23.0	ArrTime_Minute 8.0	CRSArrTime_Hour 23	CRSArrTime_Minute 0
0 1	17.0	30.0	17	28
2	15.0	1.0	15	20
3	13.0	23.0	13	35
4	12.0	43.0	13	0
5	16.0	40.0	16	9
6	14.0	13.0	14	15
7	20.0	57.0	21	31
8	8.0	20.0	8	30
9	0.0	24.0	0	37
10	0.0	35.0	23	55
11	0.0	0.0	19	40
12	15.0	54.0	15	35
13	15.0	22.0	15	33
14	16.0	30.0	16	20
15	19.0	0.0	19	9
16	9.0	18.0	9	21
17	22.0	3.0	21	11
18	1.0	3.0	0	55
19	15.0	35.0	15	45
20	9.0	27.0	9	29
21	12.0	2.0	11	59
22	16.0	1.0	15	53
23	22.0	7.0	21	46
24	10.0	52.0	10	45
25	12.0	15.0	12	25
26	10.0	0.0	10	1
27	17.0	14.0	17	14
28	19.0	30.0	19	40
29 	9.0	17.0	9	45
69970	10.0	39.0	10	43
69971	23.0	28.0	23	25
69972	16.0	3.0	16	15
69973	13.0	33.0	13	35
69974	14.0	56.0	15	2
69975	19.0	29.0	19	5
69976	21.0	22.0	21	37
69977	11.0	6.0	10	57
69978	0.0	0.0	7	45
69979	10.0	55.0	11	5
69980	14.0	19.0	13	55
69981	13.0	2.0	12	36
69982	17.0	1.0	17	19
69983	13.0	52.0	14	10
69984	6.0	57.0	7	0
69985	7.0	45.0	8	3
69986	19.0	52.0	19	57
69987	9.0	3.0	8	59
69988	14.0	19.0	14	18
69989	5.0	50.0	6	19

06.2020			3_piter	
69990	17.0	14.0	17	15
69991	12.0	35.0	12	31
69992	10.0	27.0	10	39
69993	15.0	1.0	14	55
69994	11.0	10.0	11	18
69995	21.0	37.0	21	49
69996	13.0	36.0	13	14
69997	11.0	32.0	11	32
69998	22.0	0.0	21	39
69999	9.0	59.0	10	5

\

69999		9.0	59.0		10
[70000		26 columns]			
	Month	DayofMonth		UniqueCarrier	FlightNum
0	6	18	3	WN	242
1	6	4	3	XE	2380
2	8	3	7	WN	1769
3	1	23	3	00	3802
4	5	4	7	WN	399
5	1	3	4	В6	834
6	3	31	1	WN	1589
7	4	22	2	DL	617
8	3	4	2	WN	454
9	10	6	1	UA	270
10	11	16	7	WN	3596
11	3	6	4	AA	484
12	12	23	2	FL	52
13	7	15	2	EV	4186
14	1	29	2	WN	3589
15	11	13	4	XE	2271
16	7	5	6	UA	532
17	7	8	2	US	1632
18	8	17	7	WN	101
19	5	2	5	AA	2300
20	5	19	1	NW	1405
21	8	2	6	FL	15
22	1	14	1	CO	1015
23	5	19	1	US	1528
24	5	24	6	AA	33
	7	19	6		
25				AA	1430
26	9	23	2	US	989
27	1	22	2	HA	335
28	3	24	1	YV	7230
29	3	24	1	YV	7293
	• • •		• • •	•••	4725
69970	7	10	4	DL	1735
69971	12	7	7	WN	1047
69972	4	9	3	US	183
69973	3	22	6	HA	179
69974	8	19	2	XE	2476
69975	4	20	7	WN	2194
69976	12	31	3	EV	5060
69977	4	6	7	US	1159
69978	12	9	2	9E	2276
69979	12	2	2	EV	5008
69980	5	12	1	AA	413
69981	1	2	3	OH	5353
69982	6	13	5	NW	1272
69983	9	2	2	MQ	4506
69984	10	4	6	MQ	3110
69985	12	11	4	UA	73
69986	12	4	4	НА	392

27.06.2020				3_piter			
69987	11	15	6	XE	2463	3	
69988	12	7	7	OH	6581		
69989	7	24	4	CO	284		
69990	12	23	2	MQ	3092		
69991	4	24	4	NW	241	L	
69992	11	4	2	UA	885	5	
69993	2	28	4	MQ	3547	7	
69994	1	26	6	ОН	5218	3	
69995	5	12	1	DL	794	1	
69996	5	11	7	00	6159	€	
69997	9	24	3	YV	7058		
69998	2	18	1	NW	641		
69999	12	6	6	WN	516	9	
	ActualElaps	sedTime	CRSElapsedTime	AirTime	ArrDelay	Origin	
\	'		·				
0		57.0	65.0	46.0	8.0	MDW	• • •
1		124.0	138.0	108.0	2.0	IAH	• • •
2		138.0	155.0	125.0	-19.0	MDW	• • •
3		102.0	111.0	79.0	-12.0	SLC	• • •
4		148.0	160.0	136.0	-17.0	LAS	• • •
5		171.0	164.0	153.0	31.0	PBI	• • •
6		74.0	75.0	55.0	-2.0	ABQ	• • •
7		342.0	371.0	302.0	-34.0	JFK	• • •
8		174.0	180.0	164.0	-10.0	MCO	• • •
9		199.0	210.0	177.0	-13.0	DEN	• • •
10		173.0	175.0	146.0	40.0	MDW	• • •
11		0.0	155.0	0.0	0.0	DFW	• • •
12 13		233.0 94.0	225.0	218.0	19.0	BWI	• • •
13 14		62.0	98.0	69.0 50.0	-11.0 10.0	ATL PHL	• • •
14 15		129.0	70.0 129.0	101.0	-9.0	MCI	• • •
16		141.0	141.0	117.0	-3.0	DEN	
10 17		132.0	81.0	59.0	52.0	CLT	
18		178.0	190.0	163.0	8.0	LAS	• • •
19		171.0	180.0	145.0	-10.0	LAX	
20		81.0	76.0	55.0	-2.0	DTW	
21		320.0	314.0	294.0	3.0	ATL	
22		79.0	68.0	47.0	8.0	IAH	
23		95.0	106.0	71.0	21.0	CLT	
24		371.0	360.0	340.0	7.0	JFK	
25		134.0	145.0	121.0	-10.0	DFW	
26		128.0	121.0	101.0	-1.0	CLT	
27		35.0	34.0	21.0	0.0	OGG	
28		105.0	115.0	86.0	-10.0	ORD	
29		66.0	90.0	47.0	-28.0	IAD	• • •
 69970		 122.0	128.0	 92.0	-4.0	 SLC	• • •
69971		87.0	95.0	70.0	3.0	SAN	• • •
69972		248.0	270.0	226.0	-12.0	PHX	
69973		30.0	29.0	18.0	-2.0	KOA	• • •
69974		117.0	122.0	86.0	-6.0	EWR	
69975		49.0	55.0	41.0	24.0	ONT	
69976		71.0	85.0	55.0	-15.0	ATL	• • •
69977		146.0	142.0	120.0	9.0	DCA	
69978		0.0	74.0	0.0	0.0	CHA	
69979		47.0	50.0	31.0	-10.0	MGM	
69980		264.0	255.0	243.0	24.0	ORD	
69981		100.0	108.0	84.0	26.0	ROC	
69982		130.0	139.0	108.0	-18.0	BZN	
69983		61.0	75.0	41.0	-18.0	DTW	

27.06.2020			3_piter		
69984	52.0	45.0	23.0	-3.0	SAN
69985	90.0	105.0	63.0	-18.0	SAN
69986	51.0	52.0	37.0	-5.0	HNL
69987	132.0	120.0	100.0	4.0	EWR
69988	115.0	113.0	97.0	1.0	CVG
69989	202.0	229.0	187.0	-29.0	OAK
69990	47.0	45.0	26.0	-1.0	SAN
69991	201.0	191.0	169.0	4.0	FLL
69992	273.0	278.0	251.0	-12.0	ORD
69993	51.0	55.0	32.0	6.0	DFW
69994	110.0	113.0	85.0	-8.0	CVG
69995	128.0	129.0	86.0	-12.0	ORD
69996	47.0	49.0	30.0	22.0	ORD
69997	80.0	80.0	63.0	0.0	DAY
69998 69999	234.0 60.0	219.0 65.0	192.0	21.0 -6.0	RSW
03333	00.0	05.0	46.0	-0.0	LAS
	SecurityDelay LateAircr	aftDelav Der	Time_Hour	DepTime	Minute \
0	0.0	0.0	21.0	-	11.0
1	0.0	0.0	14.0		26.0
2	0.0	0.0	11.0		43.0
3	0.0	0.0	11.0		41.0
4	0.0	0.0	8.0		15.0
5	0.0	11.0	13.0		49.0
6	0.0	0.0	13.0		59.0
7	0.0	0.0	18.0		15.0
8	0.0	0.0	6.0		26.0
9	0.0	0.0	19.0		5.0
10	0.0	0.0	20.0		42.0
11	0.0	0.0	0.0		0.0
12 13	0.0 0.0	0.0 0.0	11.0 13.0		1.0 48.0
13 14	0.0	0.0	15.0		28.0
15	0.0	0.0	16.0		51.0
16	0.0	0.0	5.0		57.0
17	0.0	0.0	19.0		51.0
18	0.0	0.0	20.0		5.0
19	0.0	0.0	10.0		44.0
20	0.0	0.0	9.0		6.0
21	0.0	0.0	9.0		42.0
22	0.0	0.0	14.0		42.0
23	0.0	21.0	20.0		32.0
24 25	0.0 0.0	0.0 0.0	7.0 9.0		41.0 1.0
26	0.0	0.0	7.0		52.0
27	0.0	0.0	16.0		39.0
28	0.0	0.0	16.0		45.0
29	0.0	0.0	8.0		11.0
	•••				
69970	0.0	0.0	9.0		37.0
69971	0.0	0.0	22.0		1.0
69972	0.0	0.0	8.0		55.0
69973	0.0	0.0	13.0		3.0
69974	0.0	0.0	12.0		59.0
69975 69976	1.0 0.0	23.0 0.0	18.0 20.0		40.0 11.0
69977	0.0	0.0	8.0		40.0
69978	0.0	0.0	7.0		26.0
69979	0.0	0.0	9.0		8.0
69980	0.0	0.0	11.0		55.0
69981	0.0	0.0	11.0		22.0

27.06.2020			3_piter	
69982	0.0	0.0	13.0	51.0
69983	0.0	0.0	13.0	51.0
69984	0.0	0.0	6.0	5.0
69985	0.0	0.0	6.0	15.0
69986	0.0	0.0	19.0	1.0
69987	0.0	0.0	6.0	51.0
69988	0.0	0.0	13.0	24.0
69989	0.0	0.0	0.0	28.0
69990	0.0	0.0	16.0	27.0
69991	0.0	0.0	9.0	14.0
69992	0.0	0.0	7.0	54.0
69993	0.0	0.0	14.0	10.0
69994	0.0	0.0	9.0	20.0
69995	0.0	0.0	18.0	29.0
69996	0.0	22.0	11.0	49.0
69997	0.0	0.0	10.0	12.0
69998	0.0	6.0	19.0	6.0
69999	0.0	0.0	8.0	59.0
\	CRSDepTime_Hour	CRSDepTime_Minute	ArrTime_Hour	ArrTime_Minute
ó	20	55	23.0	8.0
1	14	10	17.0	30.0
2	11	45	15.0	1.0
3	11	44	13.0	23.0
4	8	20	12.0	43.0
5	13	25	16.0	40.0
6	14	0	14.0	13.0
7	18	20	20.0	57.0
8	6	30	8.0	20.0
9	19	7	0.0	24.0
10	20	0	0.0	35.0
11	16	5	0.0	0.0
12	10	50	15.0	54.0
13	13	55	15.0	22.0
14	15	10	16.0	30.0
15	17	0	19.0	0.0
16	6	0	9.0	18.0
17	19	50	22.0	3.0
18	19	45	1.0	3.0
19	10	45	15.0	35.0
20	9	13	9.0	27.0
21	9	45	12.0	2.0
22	14	45	16.0	1.0
23	20	0	22.0	7.0
24	7	45	10.0	52.0
25	9	0	12.0	15.0
26	8	0	10.0	0.0
27	16	40	17.0	14.0
28	16	45	19.0	30.0
29	8	15	9.0	17.0
 69970	9	35	10.0	39.0
		50	23.0	
69971 69972	21 8	50 45	16.0	28.0 3.0
69972	13	6	13.0	33.0
69974	13	0	14.0	56.0
69975	18	10	19.0	29.0
69976	20	12	21.0	22.0
69977	8	35	11.0	6.0
69978	7	31	0.0	0.0
0,57,8	,	51	0.0	0.0

27.00.2020			2 milan	
27.06.2020		4-	3_piter	0
69979	9	15	10.0	55.0
69980	11	40	14.0	19.0
69981	10	48	13.0	2.0
69982	14	0	17.0	1.0
69983	13	55	13.0	52.0
69984	6	15	6.0	57.0
69985	6	18	7.0	45.0
69986	19	5	19.0	52.0
69987	6	59	9.0	3.0
69988	13	25	14.0	19.0
69989	0	30	5.0	50.0
69990	16	30	17.0	14.0
69991	9	20	12.0	35.0
69992	8	1	10.0	27.0
69993	14	0	15.0	1.0
69994	9	25	11.0	10.0
69995	18	40	21.0	37.0
69996	11	25	13.0	36.0
69997	10	12	11.0	32.0
69998	19	0	22.0	0.0
69999	9	0	9.0	59.0
_	CRSArrTime_Hour	CRSArrTime_Minute		
0	23	0		
1	17	28		
2	15	20		
3	13	35		
4	13	0		
5	16	9		
6	14	15		
7	21	31		
8	8	30		
9	0	37		
10	23	55		
11	19	40		
12	15	35		
13	15	33		
14	16	20		
15 16	19	9		
16	9	21		
17	21	11		
18	0	55		
19	15	45		
20	9	29		
21	11	59 53		
22	15	53		
23	21	46		
24 25	10	45		
25 26	12	25		
26 27	10	1		
27	17	14		
28	19 9	40		
29		45		
69970	10	43		
60071	10	75		

.06.2020		3_piter	
69977	10	57	
69978	7	45	
69979	11	5	
69980	13	55	
69981	12	36	
69982	17	19	
69983	14	10	
69984	7	0	
69985	8	3	
69986	19	57	
69987	8	59	
69988	14	18	
69989	6	19	
69990	17	15	
69991	12	31	
69992	10	39	
69993	14	55	
69994	11	18	
69995	21	49	
69996	13	14	
69997	11	32	
69998	21	39	
69999	10	5	
[70000 rows	x 30 columns]		
4			•

15. (1 балл) Приведем данные к виду, пригодному для обучения линейных моделей. Для этого вещественные признаки надо отмасштабировать, а категориальные — привести к числовому виду. Также надо устранить пропуски в данных.

В первую очередь поймем, зачем необходимо применять масштабирование. Следующие ячейки с кодом построят гистограммы для 3 вещественных признаков выборки.

In [67]:

```
df['DepTime_Hour'].hist(bins=20)
```

Out[67]:

<matplotlib.axes._subplots.AxesSubplot at 0x20717c71710>

In [68]:

df['TaxiIn'].hist(bins=20)

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x20716e21c18>

In [69]:

df['FlightNum'].hist(bins=20)

Out[69]:

<matplotlib.axes._subplots.AxesSubplot at 0x20717c29cc0>

Какую проблему вы наблюдаете на этих графиках? Как масштабирование поможет её исправить? Разный разброс единиц измерения.

Некоторые из признаков в нашем датасете являются категориальными. Типичным подходом к работе с ними является бинарное, или one-hot-кодирование (https://en.wikipedia.org/wiki/One-hot).

Реализуйте функцию transform_data, которая принимает на вход DataFrame с признаками и выполняет следующие шаги:

- 1. Замена пропущенных значений на нули для вещественных признаков и на строки 'nan' для категориальных.
- 2. Масштабирование вещественных признаков с помощью <u>StandardScaler (http://scikitlearn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html).</u>
- 3. One-hot-кодирование категориальных признаков с помощью <u>DictVectorizer (http://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html)</u> или функции <u>pd.get_dummies (http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html)</u>.

Метод должен возвращать преобразованный DataFrame, который должна состоять из масштабированных вещественных признаков и закодированных категориальных (исходные признаки должны быть исключены из выборки).

In [70]:

Примените функцию transform_data к данным. Сколько признаков получилось после преобразования?

```
In [71]:
```

```
# Your code here
df = transform_data(df)
```

16. (0.5 балла) Разбейте выборку и вектор целевой переменной на обучение и контроль в отношении 70/30 (для этого можно использовать, например, функцию <u>train_test_split (http://scikitlearn.org/stable/modules/generated/sklearn.cross_validation.train_test_split.html)).</u>

```
In [72]:
```

```
# Your code here
from sklearn.model_selection import train_test_split as tts
df_train, df_test, dfd_train, dfd_test = tts(df,dfd,test_size=0.3, random_state=42)
```

Scikit-learn

Теперь, когда мы привели данные к пригодному виду, попробуем решить задачу при помощи метода наименьших квадратов. Напомним, что данный метод заключается в оптимизации функционала MSE:

$$\mathit{MSE}(X,y) = rac{1}{l} \sum_{i=1}^l (< w, x_i > -y_i)^2
ightarrow \min_w,$$

где $\{(x_i,y_i)\}_{i=1}^l$ — обучающая выборка, состоящая из l пар объект-ответ.

Заметим, что решение данной задачи уже реализовано в модуле sklearn в виде класса <u>LinearRegression (http://scikit-</u>

learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.Linea

17. (**0.5 балла**) Обучите линейную регрессию на 1000 объектах из обучающей выборки и выведите значения MSE и R^2 на этой подвыборке и контрольной выборке (итого 4 различных числа). Проинтерпретируйте полученный результат — насколько качественные прогнозы строит полученная модель? Какие проблемы наблюдаются в модели?

Подсказка: изучите значения полученных коэффициентов w, сохраненных в атрибуте coef_ объекта LinearRegression.

∢

In [73]:

```
# Your code here
from sklearn.linear_model import LinearRegression as lr
from sklearn.metrics import mean squared error as mse
from sklearn.metrics import r2 score as r2
df_train2, df_test2, dfd_train2, dfd_test2 = df_train[:1000], df_test[:1000], dfd_tr
ain[:1000], dfd_test[:1000]
reg = lr().fit(df_train2, dfd_train2)
print(reg.score(df_train2,dfd_train2))
print(reg.intercept_)
print(reg.coef )
df_pred = reg.predict(df_train2)
tst_pred = reg.predict(df_test2)
print(mse(dfd_train2, df_pred), r2(dfd_train2, df_pred))
print(mse(dfd_test2, tst_pred), r2(dfd_test2, tst_pred))
1.0
-4.277973879678958
[-1.16701229e-03 -5.09156273e-01 -9.47968736e-03 ... -5.43689487e+00
 -7.18277818e+00 5.01179481e+00]
6.460137412647939e-23 1.0
175.5460895096415 0.905406190627801
```

Для решения описанных вами в предыдущем пункте проблем используем L1- или L2-регуляризацию, тем самым получив Lasso и Ridge регрессии соответственно и изменив оптимизационную задачу одним из следующих образов:

$$MSE_{L1}(X,y) = rac{1}{l} \sum_{i=1}^{l} (< w, x_i > -y_i)^2 + lpha ||w||_1
ightarrow \min_w, \ MSE_{L2}(X,y) = rac{1}{l} \sum_{i=1}^{l} (< w, x_i > -y_i)^2 + lpha ||w||_2^2
ightarrow \min_w,$$

где α — коэффициент регуляризации. Один из способов его подбора заключается в переборе некоторого количества значений и оценке качества на кросс-валидации для каждого из них, после чего выбирается значение, для которого было получено наилучшее качество.

18. (**0.5 балла**) Обучите линейные регрессии с L1- и L2-регуляризатором, подобрав лучшее значение параметра регуляризации из списка alpha_grid при помощи кросс-валидации с 5 фолдами на тех же 1000 объектах, что и в п.17. Выведите значения MSE и R^2 на обучающей и контрольной выборках. Удалось ли решить указанные вами ранее проблемы?

Для выполнения данного задания вам могут понадобиться реализованные в библиотеке объекты LassoCV (http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html), RidgeCV (http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeCV.html) и KFold (http://scikit-learn.org/stable/modules/generated/sklearn.cross_validation.KFold.html).

In [74]:

```
# Your code here
from sklearn.linear_model import LassoCV
from sklearn.model_model import RidgeCV
from sklearn.model_selection import KFold
cv = KFold(n_splits=2)
r = LassoCV(cv=2, random_state=42).fit(df_train2, dfd_train2)
print(r.score(df_train2, dfd_train2))
print(r.predict(df_train2))
clf = RidgeCV(alphas=[1, 1, 1, 1]).fit(df_train2, dfd_train2)
print(clf.score(df_train2, dfd_train2))
```

0.9462942091415065

[1.15829627e+02 -7.00511086e+00 -7.55324428e+00 -1.33025612e+01 7.95707463e-01 -3.66960114e-02 -4.13391257e+00 6.04455784e+00 2.34295769e+01 -1.60448652e+00 7.30400994e+01 3.30761804e+01 9.28975507e+00 1.01635558e+02 1.59843164e+01 -2.55639622e+00 1.92393752e+00 6.61891913e+00 -6.98780927e-01 8.72741906e+00-4.63226907e+00 -2.43018952e+00 -5.78189806e+00 5.63993980e+00 -3.70150237e+00 -2.46170583e+00 -7.04190020e+00 -4.39843828e+00 -2.20234640e+00 -1.56572392e+00 7.10504779e-01 1.47261157e+00 -4.21298893e+00 -5.00369229e+00 -3.13854057e+00 -3.41864127e-01 9.18000104e+00 -7.76344264e+00 -2.75044153e+00 1.85464937e-01 8.48979853e+01 9.98122800e+00 4.19459941e+01 1.57052589e+001.22766300e+01 -4.68902530e+00 1.29890890e+00 2.63262311e+02 -7.53687481e+00 -5.43187544e+00 -2.46124267e+00 2.55671475e+01 6.79120633e+00 2.76467348e+01 -2.34010670e+00 8.08835540e+00 -3.74677317e+00 -5.46056300e+00 1.03762917e+02 -5.56005205e+00 -1.02388060e+00 4.50020159e+01 -7.06873388e+00 4.09539499e+011.41592647e+01 -1.85183467e+00 -4.19235494e-01 2.53792140e+01 -7.12895595e+00 3.46562107e+01 3.48538389e+01 -1.46157296e+00 8.84334316e+00 -2.95079781e+00 -7.53848947e+00 3.35212054e+00 -4.15457144e-01 -1.71520128e+00 -9.51769050e-01 3.67200709e+01 1.47828183e+00 1.48610240e+01 -1.22722435e+00 4.40864636e+01 1.34413353e+01 -6.72658652e+00 7.32141585e+00 -2.74131947e+00 2.22845581e+01 1.89713718e+01 -2.08670514e+00 2.59382288e+01 8.57171728e+00 3.21217015e+00 7.48914990e+01 1.65357185e+01 3.89108613e+01 -1.70815720e-01 5.99496631e-01 7.01307546e+00 9.39288981e-01 -5.26897567e+00 1.42193180e+01 2.14501182e+01 7.37314402e+00 -7.21467964e+00 1.07375442e+01 9.78687495e+01 -1.74542632e+00 1.65953127e+01 2.30693461e+01 -8.77975155e+00 -7.01435085e+00 1.82164709e+01 1.20825286e+00 -3.24268581e+00 -6.47101364e+00 -9.99278177e-01 -2.50457571e+00 1.10221118e+01 6.31916136e+01 1.58261809e+01 9.96720830e-01 -3.53997879e+00 -9.12523452e-01 -3.57279654e+00 7.55389755e+01 -7.25898200e+00 -8.74416258e+00 6.24627647e-01 -1.08503748e+01 1.15336150e+00 -2.24954956e+00 8.52657359e+00 -2.85683202e+00 -4.80882866e+00 -5.64911761e+00 -8.54265914e+00 9.81431616e+01 1.66676557e+00 -2.05446437e+00 -4.53723775e+00 4.36259677e-01 6.96659347e+00 5.53629406e+00 -2.21101113e+00 1.26518928e+00 4.76785436e+00 2.15111232e+01 -2.27265747e+00 6.11237088e+00 -1.47239067e+00 2.08077913e+01 -2.41450191e+00 -2.47572414e+00 1.33269994e+00 -4.54928080e+00 4.16105701e+01 -1.53604201e+00 5.95452763e+00 -4.33377610e+00 -7.69115306e+00 3.63458239e-01 -1.63244737e+00 8.37511698e-01 -9.07202426e+00 -3.93286277e+00 -1.02137693e+00 -7.16536140e+00 1.43364867e+01 -1.26670982e+00 8.35677483e-01 -5.01789086e+00 -4.57935517e+00 1.06141686e+02 8.35253108e+00 -3.93075129e+00 1.46076576e+00 2.00402244e+00 1.58759720e+00 1.20940058e+02 -2.55847395e+00 2.21745232e-01 -7.67703251e+00 6.00277549e+01 -4.03575703e+00 9.12317952e+01 -1.93043381e+00 5.28696357e+01 -2.81305814e+00 -8.64320403e+00 1.94068599e+01 5.80440747e+00 4.04277092e+01 2.60392927e+01 -3.35946373e+00 3.76653080e+00 -6.58852294e-01 -6.78571399e+00 -2.32654143e+00 -2.35081978e+00 5.90749316e-01 -5.27689840e+00 7.60469962e+00 3.14614308e+00 -1.16802365e+00 -4.84505763e+00 -4.70534691e+00 3.11996719e+00 -3.13815697e+00 -5.33224637e+00 2.04370993e+01 2.07834460e+01 -6.86295147e+00 9.03441847e-02 -5.81751379e+00 -5.38647917e+00 1.25140433e+00 9.07155419e+00 -2.45023883e+00 2.34787092e+00 3.01082519e+01 3.29514699e+00 4.12294730e+01 -2.13022372e-01 -7.44059425e+00 2.52286505e+00 1.45153021e+01 -3.22537598e+00 -3.39197881e+00 -3.74510917e+00 7.49935238e+00 3.82010365e+00 -2.62689605e+00 -6.72906146e-01 -1.09463921e+01-6.28931521e+00 5.87811851e+00 -1.20806544e+01 6.29329959e+00

-3.51002205e+00 7.56646784e-01 4.06813472e+00 4.46699715e+00 -5.26175346e-01 -4.22128079e+00 6.10659232e+00 1.02346160e+00 3.40915692e+00 -1.16720411e+01 4.24078915e-01 3.48283596e+01 -2.64497418e+00 2.11019436e+01 6.62821352e+01 8.81543461e+00 -2.28066931e+00 1.52231898e+00 -5.42864057e+00 8.09970360e+01 4.82574041e+00 -5.35609304e-01 -3.73905730e+00 3.85279522e+00 5.66974209e+00 -8.89605006e+00 -4.39358784e+00 -2.33593741e+00 2.18883676e+01 -2.20536562e+00 -7.86288394e+00 1.09331503e+01 -5.90405232e+00 5.87816883e+00 5.40264080e-01 4.06062325e+01 8.03205174e-01 1.00666670e+01 6.93429381e+01 -5.42230294e+00 6.96511984e+01 5.25680616e-01 -2.02960908e+00 -8.45962557e+00 -7.39821310e+00 -6.91805293e-01 -1.75516123e+00 3.90203760e+01 1.74239683e+01 7.08446746e+01 -3.91963231e+00 5.06117300e+01 1.65069236e+00 -2.12088171e+00 -2.67767997e+00 2.17963078e+02 8.74080901e+01 4.43972171e+00 6.40597044e-02 8.26842501e+01 -4.39068013e+00 -3.74890491e+00 9.54533612e+01 1.14308743e+00 -6.99195502e+00 -4.65194882e+00 2.74382546e+01 -7.31305401e-01 -2.77518033e-01 -8.95978586e+00 1.89643327e+02 -7.27369365e+00 3.96470174e+00 -2.76464043e+00 3.09717564e-01 -3.41846562e+00 9.18001358e+01 5.32540497e+00 -8.37075603e+00 1.83477881e+00 -6.05001779e+00 -5.09794512e+00 6.87397239e+01 -6.65153587e+00 7.00050277e+00 -6.31809216e+00 5.37509785e-01 -1.38161786e+00 6.33988935e+00 9.27880042e-01 7.70954043e+00 -2.23471198e+00 6.75377957e+01 6.22304547e-01 -1.48534770e+00 2.54512702e-02 9.45130068e+01 -4.93943884e+00 -1.37336123e+00 7.59799199e+01 -6.39518661e+00 -6.11450569e+00 2.90954955e+00 -1.03826571e+01 -3.80040946e+00 2.03740891e+01 1.72922878e+00 -6.04044903e+00 1.69242190e+01 -1.30234364e+01 4.04157302e+01 1.05451836e+01 -2.31762168e+00 -6.43188290e+00 -9.56555490e+00 -1.81613989e+00 -3.26195410e-01 3.37891335e+00 -1.80968459e+00 -5.77956306e+00 -4.52632999e+00 -5.05664408e+00 1.13925677e+01 3.13385344e+01 5.31424463e+01 2.55171683e+00 1.05052006e+00 2.09910820e+01 -3.02314868e+00 -7.58517613e+00 4.49953661e+00 -3.76874539e+00 -1.82585853e+00 -1.46004768e-01 -6.24591963e+00 -7.13058035e-02 -1.28831825e+00 -4.46411653e-01 6.34184767e+00 -3.14023154e+00 6.09955508e+00 9.71616807e-01 -2.33256642e+00 -8.71208396e-01 3.90523769e+01 3.81918334e+00 1.69457286e+00 -4.14311920e+00 1.73238013e+01 2.02392529e+01 1.69704119e+01 -7.79170767e+00 -4.31268712e+00 5.90915030e+00 -7.72585743e-01 -3.78526086e+00 2.29316848e+01 -1.59082918e+00 -5.83537410e+00 6.52897741e+00 3.65845718e+00 -1.11175070e+00 -1.09611895e+00 -4.38754157e+00 -7.19531032e+00 -1.38181305e+00 2.47306215e+01 -1.00002234e+00 2.34236818e+01 -7.40776274e+00 2.83304458e+01 -1.17350552e+01 -3.16833354e+00 -6.73593570e+00 -2.56539914e+00 -7.82483796e+00 -7.64144957e-01 -4.75852269e+00 2.40080054e+01 3.73204405e+01 2.18084674e+00 1.92524387e+01 6.21778439e+00 -8.81054794e+00 -1.79894317e+00 -9.83016404e+00 1.95303628e+00 1.53949638e+02 5.74471363e+00 1.87395679e+01 -1.48414699e+00 5.84985740e+00 5.22323815e+00 -1.38945998e+00 -8.44455833e-01 -6.61002171e+00 3.13413180e+01 -1.72378630e+00 -3.20041009e+00 1.75110174e+01 3.51912253e+01 -1.41570701e+00 -4.45786153e+00 -2.06286294e+00 -4.69398578e+00 5.09064495e+00 -5.65784254e+00 9.56672209e+01 -7.01071159e+00 4.43498620e+00 -7.36955578e+00 7.44495118e+00 3.30699149e+00 5.30073140e+00 -2.75284728e+00 3.50336025e+01 -5.10703385e+00 2.62412736e+00 -1.05688742e+00 3.17251152e+00 2.81762787e+00 -4.22347067e+00 -1.84165660e+00 -1.09618262e+00 -1.03981981e+00 2.07131511e+01 5.53915930e+00 -5.63959613e-02 -8.61385240e+00 1.11735461e+01 -3.12334261e+00 -2.29931406e+00 -1.53078605e+00 -2.15405720e+00 6.38956684e+01 1.09235411e+00 5.07513515e+00 1.04606779e+01 6.50558303e+00 1.17120735e+01 5.53920805e+00 -2.95095791e+00 -5.59145826e+00 8.43248939e+01

1.97841343e+01 -1.34505961e+00 -1.41904097e+00 2.46519267e+00 -2.38130557e+00 7.57796699e+00 -5.03799324e+00 -2.30683659e+00 -1.45886006e-01 1.84589034e+01 1.56481687e+00 -9.23922393e-01 -4.27748845e+00 -3.73490022e+00 2.92563662e+00 9.95866665e-01 1.01124956e+01 5.96678239e+01 1.72529828e+00 9.58360033e+00 5.87956008e+01 -8.91930034e+00 -8.57179528e-01 -9.17066087e-01 -1.09821546e+01 -3.76516734e+00 -3.87394232e+00 -1.74947625e+00 7.92544015e-01 2.04324193e+01 4.94443738e+00 -6.57775525e-01 -4.37121109e+00 7.72306376e+00 6.66007230e+01 1.91708348e-01 9.53504815e+00 3.67149660e+00 2.52257664e+00 8.94585488e+00 -5.53042190e+00 -5.93544295e+00 3.62478319e+00 -3.49834803e+00 -2.04142232e+00 -7.20015372e+00 -2.36228029e+00 -5.69899320e+00 -1.48738560e-01 -3.86064432e+00 -2.87751919e+00 4.08217774e+01 -9.53821714e+00 -6.75886081e-01 2.16802574e+01 9.88012001e-02 -6.67570284e-01 2.33016266e+01 -5.16781278e+00 8.80269191e+00 -2.79802155e+00 6.75406586e+00 -3.35123424e+00 -1.26995006e+00 7.17417576e+01 -1.57574686e+00 1.77186106e+00 -2.46271185e+00 5.61064286e+01 1.29329734e+01 -1.56733138e-02 -4.22121828e+00 2.35592675e+00 1.38031310e+01 -1.89454459e+00 7.57002543e-01 5.89904620e+00 -3.67587994e+00 -3.94818612e+00 -4.94679744e-01 -1.63837831e+00 1.87481331e+01 -1.03384315e+00 3.39629748e-01 -6.85337515e+00 -2.20231408e+00 4.09982726e+00 3.70480995e+00 -3.80410733e-01 8.51067693e+00 -5.27496429e+00 -3.11354017e+00 -9.73046261e+00 4.25683689e+00 -8.04842444e+00 -4.72516032e+00 1.18781864e+02 -5.17239572e+00 -6.68250841e-01 -4.01050049e-014.75486031e+00 -2.07146326e+00 1.75288935e+01 -3.12001525e+00 -1.28980432e-01 -9.02971989e-01 2.80543083e+01 -5.28921174e+00 1.81354962e-01 -9.64713020e-01 3.91661388e+00 3.58006356e+00 -6.89133800e+00 3.71791790e+01 4.62162465e-01 3.92372741e+00 -4.21102795e+00 9.43853004e+01 1.84891670e+00 7.66501875e+00 1.75020703e+00 -1.15809193e+00 1.27362044e+00 5.73177406e+01 1.49951659e+01 -1.58610692e+01 -8.83595928e+00 8.23846867e+01 1.77467702e+00 -6.11265176e+00 -5.57247030e+00 -6.21627074e-01 -1.08920705e+00 -2.64346720e+00 -6.17977869e-01 -1.54093837e+00 -6.01949331e+00 1.54955860e+02 -1.65264728e-03 1.98752832e+00 -1.88080667e+00 1.92254336e+01 -6.37022460e+00 8.38071964e+00 -1.72323597e+00 -4.14803641e+00 -3.11764007e-01 -3.73153391e+00 1.60974562e+02 4.85607023e-01 -2.99240410e+00 -5.14874248e+00 -1.59968321e+00 6.19177130e+01 2.52370697e+00 -5.59321310e+00 1.58721077e+00 -1.35148741e+00 9.90750764e+01 3.88708421e+00 2.67329633e+00 1.44109767e+00 4.54619257e+00 5.10438916e+02 -6.32693667e-01 -7.62427064e+00 2.37903619e+00 3.58548404e+00 1.02688517e+00 -4.37673636e+00 -4.93119816e+00 1.01745022e+01 4.67227124e+00 5.03658145e+01 1.68074051e-01 -5.94981289e+00 -6.29855668e+00 7.31708777e+00 -1.09117932e+01 1.50917050e+00 3.64151031e+00 -2.22267976e+00 -3.26909771e+00 3.71614926e+01 2.92924388e+00 5.83700511e+01 -5.19942128e+00 2.89521307e+00 9.88393403e+00 4.17966986e+00 1.72288726e+01 1.59826631e-01 -5.90956916e+00 -1.06013671e+00 -1.70874345e+00 -6.69973173e+00 6.80029812e+00 1.99853193e+01 -8.04012841e+00 -1.24945487e+01 -4.81008235e+00 -4.78475177e-01 -6.64274973e+00 2.13975138e+01 -2.69441438e+00 2.62145870e+01 -3.16550362e+00 9.62506065e-01 7.97465414e+00 -9.09099401e-01 -5.49624748e+00 -2.12047608e+00 4.97022042e+00 -3.73070540e+00 -6.49672217e+00 1.90944668e+01 6.33714709e+00 -1.87525606e+00 -5.95442131e-02 -3.30000106e+00 -6.16427723e+00 6.77337783e+00 -4.28922730e+00 3.27771148e+00 -4.34056282e+00 1.37218922e+00 -2.98271717e+00 -6.61193964e+00 -7.21757129e+00 -3.96307694e-01 -5.51042546e-01 -5.77479295e+00 -6.09343711e+00 3.97866634e-01 -3.73594913e+00 -2.75631376e+00 2.14431321e+00 4.64785192e+00 8.85396965e+01 6.49070756e+00 -2.89662160e+00 -1.15696643e+01 2.04000468e+01 2.62341831e+00

3.82927251e+00 -5.51544727e+00 -2.21487733e+00 -1.00267198e+00 4.85102363e-01 -7.06677062e+00 -6.16863241e+00 4.73912899e+00 4.01428502e+01 1.74015278e+00 -7.55051386e+00 -3.14485132e+00 1.32116799e+01 5.16550707e-01 1.09130248e+00 2.03877339e-01 2.42657415e+01 -1.81551598e+00 -5.30799250e+00 2.01511145e+01 4.80354863e-01 -2.68387614e+00 -3.69426458e+00 -3.38744068e+00 3.64392202e+01 1.30209278e+01 -5.56629000e-01 -4.04384344e+00 -1.78843474e+00 1.32402512e+01 -6.03576479e+00 4.53837383e+01 -2.09819636e+00 -2.44546899e+00 -7.55762500e+00 -3.03517375e+00 -1.96957321e+00 -8.35449565e-01 -7.86445164e+00 -2.49343540e+00 9.51155153e+00 -2.52079630e+00 -2.88861112e+00 -2.69180971e+00 -4.35647273e-01 2.53735371e+01 -1.70995253e+00 1.06182909e+01 3.37304434e+01 -1.76487091e+00 5.49586682e+01 2.52458301e+01 -3.28104291e+00 -6.32315866e-01 -4.20685746e+00 -2.45032873e+00 8.43670587e-01 3.33790319e+00 7.03902387e-01 7.48691340e+00 -3.00204577e+00 -1.10069045e-01 -8.69450707e+00 -8.96114778e-01 1.02902118e+02 3.88581649e-01 2.06084565e+00 -6.79088053e-01 -8.03324609e-01 6.98164953e+01 8.50690997e+01 4.11967337e+01 -2.18309526e-01 5.35190753e-01 -7.87568163e+00 -1.88660345e+00 -8.36579255e+00 1.37013478e+01 3.68194120e+01 2.24770508e+00 6.87212475e+00 -1.13581690e+00 4.40794065e+00 -5.32265154e-01 1.78917595e+01 8.26761801e-01 -1.52189964e+00 -2.51340071e+00 -1.73813437e+00 2.69083805e+00 1.05928019e+01 9.35486919e+00 7.13806228e+00 1.10797967e+01 -3.43434467e+00 1.01120897e+02-7.39673872e+00 -1.69016536e+00 9.90329755e+00 -3.39957824e+00 1.15496501e+02 -5.99764603e+00 1.88283885e+01 -3.08617874e+00 5.53027705e+00 -8.19939647e+00 2.16085378e+01 6.92589101e+01 5.45195754e+00 -9.15130857e+00 -3.18954155e+00 1.89577026e+01 1.23376755e+02 -1.14637430e+00 5.80897688e+00 4.62093600e+00 6.38384959e+01 5.48920804e-01 -1.01021240e+01 -5.54182286e+00 4.44846212e-01 1.07050700e+01 -2.77086862e+00 -2.87451617e+00 1.72169920e+01 -3.40617346e+00 -3.52763418e+00 4.70778179e+00 3.74410710e+01 5.30619825e+00 8.78268445e-01 -2.32579117e+00 2.99145338e-01 -3.05725667e+00 5.74007319e+00 4.40195041e+01 3.35174520e+00 -7.21968063e+00 6.44730689e+00 1.19465438e+00 -2.05048982e+00 1.55136392e+01 7.86152422e+00 -2.12260679e+00 8.90497080e+00 2.84729396e+01 4.46967489e+00 -3.25492265e+00 -1.96165356e+00 -5.25078078e+00 1.98626884e+01 -1.20707909e+00 -1.60705120e+00 -3.28054009e+00 -1.26237287e+01 -1.29378327e+00 1.22184507e+01 -1.93768590e+00 -3.04959167e+00 -5.57677465e+00 2.43635669e+01 -1.39843716e+00 -2.45879664e+00 6.90830861e+00 2.47367685e-01 1.05630979e+01 1.46297986e+01 4.71736432e+01 4.15501536e+01 1.69154639e+01 2.54354691e+01 1.33569123e+01 8.93415161e+01 4.15504116e+00 2.34217996e+01 6.13780354e+01 -6.85401420e+00 4.87373085e+01 8.14421109e+00 1.06136890e+00 4.47966848e+01 1.75226565e+01 -4.73034493e+00 1.26393652e+00 -2.93747641e+00 4.50415159e+01 3.48035015e+01 -1.67843101e+00 3.98831765e+00 -2.36966161e+00 -6.73802408e+00 1.61603334e+00 -1.36553710e+01 -1.00559354e+01 2.98946161e+01 -4.55753407e+00 -6.20825718e+00 -4.76277781e+00 5.63718843e-01 -9.43908575e-01 3.94877742e+01 4.63435332e+00 -7.29773209e+00 -3.48187258e+00 5.91859262e+00 -3.13362629e+00 7.57009255e+00 1.49660879e+00 1.00161133e+01 -5.97538001e+00 -3.27318488e-01 1.00790149e+01 7.24359458e+00 1.24938529e+00 2.63846324e+00 5.06729727e+00 -2.47081613e+00 -2.02080176e+00 -1.39042970e+00 4.97502108e+00 -7.40832240e+00 -1.96474608e+00 -4.48354872e+00 3.05828324e+01 -2.12067439e+00 -1.75047739e-01 -3.10261213e+00 -1.14072344e+01 4.53914283e+01 -6.03957204e+00 -2.82499363e+00 -2.49318875e+00 9.51395639e-01 1.02408175e+01 1.18577674e+01 -2.53887832e+00 8.86317420e+01 8.49059781e-01 -2.21289172e+00 1.36778897e-01 3.79743596e+00 9.51626488e+00 -9.32845012e-01 -7.69497710e+00

```
-4.31297437e+00 -1.13140051e+01 2.33547269e+01 5.72271628e+01 -3.99726112e+00 5.51302633e-01 3.29486405e+01 1.63008754e+01 -4.81735170e+00 5.39533413e+01 -9.66091626e+00 -6.46468585e-01 -1.10649308e+00 -9.98509908e-02 -5.92498701e-01 1.22689412e+01 -7.58572647e+00 -7.78328033e+00 -6.34476198e+00 -1.35436993e+00 -4.27755888e+00 4.63415735e+01 -3.72077440e+00 2.79974039e+00 2.30019692e+00 -3.26694853e+00 -1.74948323e+00 1.36024857e+00] 0.9903576962542506
```

Градиентный спуск

В предыдущем разделе мы использовали существующие реализации методов обучения линейной регрессии с регуляризацией и без. Тем не менее, подобные реализации, как правило, имеются лишь для ограниченного набора стандартных методов. В частности, при выходе функционала качества за пределы стандартного множества необходимо самостоятельно реализовывать составляющие процесса решения оптимизационной задачи. Именно этому и посвящен данный раздел задания.

Пусть необходимо минимизировать следующий функционал (Mean Square Percentage Error — модифицированный <u>RMSPE (https://www.kaggle.com/c/rossmann-store-sales/details/evaluation)</u>):

$$MSPE(\{x_i,y_i\}_{i=1}^l,\ w) = rac{1}{l}\sum_{i=1}^ligg(rac{y_i-\langle w,x_i
angle}{y_i}igg)^2,$$

где $\{x_i,y_i\}_{i=1}^l$ — обучающая выборка, w — вектор весов линейной модели. Будем также рассматривать функционал MSPE с L2-регуляризацией:

$$MSPE(\{x_i,y_i\}_{i=1}^l,\ w) = rac{1}{l} \sum_{i=1}^l \left(rac{y_i - \langle w, x_i
angle}{y_i}
ight)^2 + ||w||_2^2.$$

19. (0 баллов) Добавьте к объектам обеих выборок из п. 16 единичный признак.

```
In [75]:
```

```
# Your code here
df['sign']=1
dfd['sign']=1
```

20. (1 балл) Реализуйте функции, которые вычисляют:

- прогнозы линейной модели;
- функционал MSPE и его градиент;
- ullet регуляризованный MSPE и его градиент.

In [76]:

```
# возвращает вектор прогнозов линейной модели с вектором весов w для выборки X def make_pred(X, w):
    return np.dot(X,w)
   pass
```

In [77]:

```
# возвращает значение функционала MSPE для выборки (X, y) и вектора весов w def get_func(w, X, y):

MSPE = (y - make_pred(X, w)) / y
return np.dot(MSPE, MSPE) / y.shape[0]
pass
```

In [78]:

In [79]:

```
# возвращает значение регуляризованного функционала MSPE для выборки (X, y) и вектор а весов w

def get_reg_func(w, X, y):
    L = (y - make_pred(X, w)) / y
    return np.dot(L, L) / y.shape[0] + np.dot(w, w)
    pass
```

In [80]:

```
# возвращает градиент регуляризованного функционала MSPE для выборки (X, y) и вектор а весов w

def get_reg_grad(w, X, y):
   return get_grad(w, X, y) + 2 * w
   pass
```

21. (1 балл) Реализуйте метод градиентного спуска для описанных функционалов (MSPE и его регуляризованный вариант). Функция должна принимать следующие параметры:

- X матрица "объект-признак";
- y вектор целевой переменной;
- w0 начальное значение вектора весов;
- step size значение темпа обучения;
- max iter максимальное число итераций;
- eps значение, используемое в критерии останова;
- is_reg бинарный параметр, принимает значение True в случае наличия регуляризации функционала, False в противном случае.

Процесс должен быть остановлен, если выполнено хотя бы одно из следующих условий:

- было выполнено заданное количество итераций max iter;
- ullet евклидова норма разности векторов w на соседних итерациях стала меньше, чем eps.

Функция должна возвращать полученный в результате оптимизации вектор w и список значений функционала на каждой итерации.

In [81]:

```
def grad_descent(X, y, w0, step_size, max_iter, eps, is_reg):
    # Your code here
    arr = []
    for i in range(0, max_iter, 1):
        if np.linalg.norm(w0) > eps:
            if is_reg:
                  w0 = w0 - step_size * get_reg_grad(w0, X, y)
                  arr.append(get_reg_func(w0, X, y))
        else:
                  w0 = w0 - step_size * get_grad(w0, X, y)
                  arr.append(get_func(w_new, X, y))
        return w0, arr
```

Обучите линейную регрессию с функционалом MSPE на обучающей выборке при помощи метода градиентного спуска и изобразите кривые зависимости значения функционала от номера итерации для различных:

- значений размера шага из набора [0.001, 1, 10];
- способов начальной инициализации вектора весов (нули, случайные веса).

Проанализируйте полученные результаты — влияют ли данные параметры на скорость сходимости и итоговое качество? Если да, то как?

In [82]:

```
# Your code here
df_train2 = df_train[:5768]
dfd_train2 = dfd_train[:5768]
w1, a = grad_descent(df_train2, dfd_train2, np.zeros(df_train2.shape[1]), 1, 1, 0.00
1, False)
print(w1, a)
```

```
[0. 0. 0. ... 0. 0. 0.] []
```

22. (**0.5 балла**) Обучите линейную регрессию с функционалом MSPE и его регуляризованным вариантом на обучающей выборке при помощи метода градиентного спуска и изобразите кривые зависимости значения функционала от номера итерации. Исследуйте зависимость скорости сходимости от наличия регуляризации. Обоснуйте, почему так происходит.

In [83]:

```
# Your code here
import matplotlib.pyplot as plt
plt.figure()
w2, L = grad_descent(df_train2, dfd_train2, np.zeros(df_train2.shape[1]), 1, 1, 0.1,
False)
plt.plot(range(len(L)), L, 'rs')
```

Out[83]:

[<matplotlib.lines.Line2D at 0x207156b7278>]

Метод градиентного спуска может быть весьма трудозатратен в случае большого размера обучающей выборки. Поэтому часто используют метод стохастического градиентного спуска, где на каждой итерации выбирается случайный объект из обучающей выборки и обновление весов происходит только по этому объекту.

23. (1 доп. балл) Реализуйте метод стохастического градиентного спуска (SGD) для описанных функционалов (MSPE и его регуляризованный вариант). Функция должна иметь параметры и возвращаемое значение, аналогичные оным функции grad_descent из п.21. Кроме того, должен использоваться аналогичный критерий останова.

In [84]:

```
def sgd(X, y, w0, step_size, max_iter, eps, is_reg):
    # Your code here
    X0 = X.iloc[0].values.reshape(1, -1)
    y0 = np.asarray(y.iloc[0]).reshape(1, -1)[0,:]
    arr2 = []
    for i in range(max_iter):
        if np.linalg.norm(w0) > eps:
            ii = np.random.randint(0, high=X.shape[0], size=1)[0]
            X1 = X.iloc[ii].values.reshape(1, -1)
            y1 = np.asarray(y.iloc[ii]).reshape(1, -1)[0,:]
            if is reg:
                w0 = w0 - step_size * get_reg_grad(w0, X1, y1)
                arr2.append(get_reg_func(w0, X1, y1))
            else:
                w0 = w0 - step\_size * get\_grad(w0, X1, y1)
                arr2.append(get_func(w0, X1, y1))
    return w0, arr2
```

Обучите линейную регрессию с функционалом MSPE и его регуляризованным вариантом на обучающей выборке при помощи метода стохастического градиентного спуска, подобрав при этом размер шага, при котором метод будет сходиться. Нарисуйте график сходимости. Выведите значения $MSPE, MSE, R^2$ на контрольной выборке.

In [85]:

```
# Your code here
ww = np.random.rand(df_train.shape[1])
ff = plt.figure()
aa = ff.add_subplot(1, 1, 1)
ww, L2r = sgd(df_train, dfd_train, ww, 0.0003, 20000, 0.0001, True)
plt.plot(range(len(L2r)), L2r, 'rs')
ww, L2 = sgd(df_train, dfd_train, ww, 0.008, 20000, 0.0001, False)
plt.plot(range(len(L2)), L2, 'rs')
preds = make_pred(df_test, ww)
preds
```

c:\users\hp\appdata\local\programs\python\python35\lib\site-packages\ipy
kernel_launcher.py:3: RuntimeWarning: divide by zero encountered in true
_divide

This is separate from the ipykernel package so we can avoid doing imports until

Out[85]:

array([nan, nan, nan, ..., nan, nan, nan])

24. (0.5 доп. балла) Аналогично п.22 исследуйте зависимость скорости сходимости метода SGD от наличия регуляризации. Обоснуйте, почему так происходит.

In [86]:

```
# Your code here
fff = plt.figure()
ww, L3 = sgd(df_train, dfd_train, ww, 0.0003, 20000, 0.0001, False)
plt.plot(range(len(L3)), L3, 'rs')
w_opt, Loss = sgd(df_train, dfd_train, ww, 0.008, 20000, 0.0001, True)
plt.plot(range(len(L3)), L3, 'rs')
```

Out[86]:

[<matplotlib.lines.Line2D at 0x207156e63c8>]

25. (**0.5 балла**) Обучите стандартную линейную регрессию с функционалом качества MSE на обучающей выборке и выведите значение MSPE полученного решения на контрольной выборке. Как оно соотносится с аналогичным результатом для решения, полученного в п.22? Почему?

In [88]:

Здесь вы можете поделиться своими мыслями по поводу этого задания.

In []:

А здесь — вставить вашу любимую картинку.

In []:			