SeasonScope: A Comprehensive System for Season Classification and Captioning for Outdoor Images

COMS W4995 Deep Learning for Computer Vision

Haowen Xu (hx2364) Jennifer Duan (jd3794) Shiying Chen (sc5299)

Introduction

- Season classification on outdoor images is challenging due to varying geographic and temporal factors
- SeasonScope aims to not only classify the images into four seasons but also enrich them with descriptive captions

Dataset

- Season Images: https://storage.googleapis.com/4995-dlcv-project-data/season_images.zip
 - Use Unsplash API to scrape 24,000 outdoor images (6,000 per season)
 - Label each image with corresponding season
- Image Captions: https://storage.googleapis.com/4995-dlcv-project-data/season_captions.txt
 - Use BLIP model to create captions for 6,000 images (1,500 per season)

Season Classification

- Transfer Learning using Pre-trained Models
 - o VGG19
 - o Resnet-50
 - GoogLeNet
 - DenseNet
 - EfficentNetV2
- Customized CNN Model

ResNet-50

Resnet-50 Model architecture

ResNet-50 Result

- The training loss consistently decreases across 10 epochs, indicating learning progress, while the validation accuracy improves from 64.35% to a peak of 69.725%.
- The final test accuracy is 68.8%
- The training process seems to be on the right track, but there is still room for improvement, especially in achieving higher and more stable validation accuracy.

VGG19

VGG19 Result

- The VGG-19 model shows a steady learning curve over 10 epochs for the 4 season classification task, with consistent decreases in loss and increases in validation accuracy.
- Despite an occasional dip, the model recovers and reaches a final validation accuracy of 60.3%.
- Final test accuracy is 60.3%

GoogLeNet

GoogLeNet Result

- The GoogLeNet model's performance improves steadily during training, with best validation accuracy reaching up to 76.14%. After epoch 5, the model starts to be overfitting.
- The model achieves 73.72% on test accuracy.
- The model is performing well but appears to have hit a limit in its learning progress.

DenseNet

It connects each layer to every other layer directly. This ensures maximum information flow between layers, improving efficiency and reducing the vanishing gradient problem.

DenseNet Result

- Shows significant improvement in training loss and accuracy over five epochs, indicating that the model is learning effectively from the training data.
- However, the validation results tell a different story: despite an initial drop in validation loss and a peak in validation accuracy in the first epoch, both validation loss and accuracy worsen in subsequent epochs.
- This divergence between training and validation performance suggests that the model is overfitting to the training data.

EfficientNetV2

	EfficientNet (2019)	ResNet-RS (2021)	DeiT/ViT (2021)	EfficientNetV2 (ours)
Top-1 Acc.	84.3%	84.0%	83.1%	83.9%
Parameters	43M	164M	86M	24M

(b) Parameter efficiency.

Optimized Training: Designed with an improved training process, which makes it more efficient and faster to train than its predecessors.

Better Performance: Shown better performance on several benchmarks compared to its predecessors. It achieves this superior performance even though it requires less computational resources, making it a more efficient model.

EfficientNetV2 Result

The training results indicate that the EfficientNetV2 model has performed well on the 4-season classification task.

- The training and validation loss consistently decreased
- The training and validation accuracy improved steadily
- The model was not only able to fit the training data well but also generalize to unseen validation data.
- No apparent sign of overfitting or underfitting

The training process appears to be successful and stable, making the model a strong candidate for this classification task.

Result: Classification

• Achieved over 96% accuracy on test dataset

Testing Loss: 0.1029 - Testing Accuracy: 0.9613

Customized CNN Model

A simple CNN that takes in 3-channel images. It consists of:

- Two convolutional layers
- After each convolution, ReLU activation is applied
- A max-pooling layer with a 2x2 kernel size to reduce spatial dimensions by half.
- Dropout is applied after each convolutional layer (25% after the first and 50% after the second) to prevent overfitting
- The flattened output of the convolutional layers is fed into two fully connected layers
- A log softmax function

Customized CNN Model Result

Both training and validation accuracies have consistently improved across the 6 epochs, indicating effective learning and good generalization to unseen data.

The training loss and validation loss have both decreased well, further demonstrating model effectiveness.

The model appears robust and well-performing for this classification task.

Result: Classification

• Achieved over 95% accuracy on test dataset

Testing Loss: 0.1287 - Testing Accuracy: 0.9593

Image Captioning

Method: Image Captioning

Use CNN model for feature extraction: Inception V3

Method: Image Captioning

- Use LSTM for caption generation
 - Two inputs: CNN features and tokenized captions
 - Pass word embeddings into LSTM for sequence processing
 - Merge CNN features and LSTM outputs
 - Pass the merged output into dense decoder layers
 - Output a probability distribution via softmax for the next word in the caption

Result: Image Captioning

1000

Captions generated for test images are contextually accurate and descriptive

<matplotlib.image.AxesImage at 0x7fe080511150> 1000 1200 1400 1600

<START> autumn leaves in the shade <END>

Conclusion

- We are able to achieve high test accuracy (over 95%) using EfficientNetV2 model and our customized CNN model in season classification tasks
- Our image captioning model can generate contextually accurate and descriptive captions for unseen outdoor images relevant to seasons

Discussion

Data

- Collect more images that incorporate more variances in lightness, angle, color, as well as number of objects in the frame
- Create more referenced captions for each image to make the training vocabularies more diverse

Model

- Explore the possibility of utilizing CNN model with better season classification performance to improve feature extraction prior to caption generation
- Use rigorous evaluation metrics to provide quantitative measures on generated captions

Thank you for your listening!