SEQUENCE LISTING

```
<110> Roche Diagnostics GmbH
           F. Hoffmann-La Roche AG
 5
     <120> Conjugate of a tissue non-specific alkaline phosphatase
           and dextran, process for the production of such conjugate and
           its use
10
     <130> 21323
     <140>
     <141>
15
     <150> EP02016244
     <151> 2002-07-22
     <160> 18
20
    <170> PatentIn Ver. 2.1
     <210> 1
     <211> 42
     <212> DNA
25
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:primer apNup
30
     <400> 1
     cacagaattc tgcatctctg ggctccaggg ataaagcagg tc
     42
35
     <210> 2
     <211> 31
     <212> DNA
     <213> Artificial Sequence
40
     <220>
     <223> Description of Artificial Sequence:primer apCdw
     <400> 2
     tctggatccg ggccctcaga acaggacgct c
45
     <210> 3
     <211> 1637
50
     <212> DNA
     <213> Homo sapiens
     <220>
     <223> hutns-AP, pcr-product
55
     <400> 3
     gaattetgea tetetggget ceagggataa ageaggtett ggggtgeace atgattteae
     60
```

cattettagt actggccatt ggcacetgce ttactaacte ettagtgcca gagaaagaga aagaccccaa gtactggcga gaccaagcgc aagagacact gaaatatgcc ctggagcttc agaagctcaa caccaacgtg gctaagaatg tcatcatgtt cctgggagat gggatgggtg 5 totocacagt gacggotgoo ogcatootoa agggtoagot coaccacaac cotggggagg agaccaggct ggagatggac aagttcccct tcgtggccct ctccaagacg tacaacacca 10 atgcccaggt ccctgacagc gccggcaccg ccaccgccta cctgtgtggg gtgaaggcca atgagggcac cgtgggggta agcgcagcca ctgagcgttc ccggtgcaac accacccagg 15 ggaacgaggt cacctccatc ctgcgctggg ccaaggacgc tgggaaatct gtgggcattg tgaccaccac gagagtgaac catgccaccc ccagcgccgc ctacgcccac tcggctgacc qqqactqqta ctcaqacaac gagatqcccc ctgagqcctt gagccaggqc tgtaaggaca 20 tegectacea geteatgeat aacateaggg acattgaegt gateatgggg ggtggeegga aatacatgta ccccaagaat aaaactgatg tggagtatga gagtgacgag aaagccaggg 25 gcacgaggct ggacggcctg gacctcgttg acacctggaa gagcttcaaa ccgagacaca agcactccca cttcatctgg aaccgcacgg aactcctgac ccttgacccc cacaatgtgg actacctatt gggtctcttc gagccggggg acatgcagta cgagctgaac aggaacaacg 30 960 tgacggaccc gtcactctcc gagatggtgg tggtggccat ccagatcctg cggaagaacc ccaaaggett ettettgetg gtggaaggag geagaattga eeaegggeae eatgaaggaa 1080 aagccaagca ggccctgcat gaggcggtgg agatggaccg ggccgtcggg caggcaggca 35 gcttgacctc ctcggaagac actctgaccg tggtcactgc ggaccattcc cacgtcttca 1200 catttggtgg atacacccc cgtggcaact ctatctttgg tctggccccc atgctgagtg 40 1260 acacagacaa gaagcccttc actgccatcc tgtatggcaa tgggcctggc tacaaggtgg 1320 tgggcggtga acgagagaat gtctccatgg tggactatgc tcacaacaac taccaggcgc 45 1380 agtotgotgt goodetgego cacgagacco acggegggga ggaegtggco gtottotoca 1440 agggcccat ggcgcacctg ctgcacggcg tccacgagca gaactacgtc ccccacgtga 1500 50 tggcgtatgc agcctgcatc ggggccaacc tcggccactg tgctcctgcc agctcggcag 1560 gcagccttgc tgcaggcccc ctgctgctcg cgctggccct ctaccccctg agcgtcctgt 1620 tctgagggcc cggatcc 55 1637

<210> 4 <211> 524

<212> PRT <213> Homo sapiens <220> 5 <223> hutns-AP, protein <400> 4 Met Ile Ser Pro Phe Leu Val Leu Ala Ile Gly Thr Cys Leu Thr Asn 10 Ser Leu Val Pro Glu Lys Glu Lys Asp Pro Lys Tyr Trp Arg Asp Gln Ala Gln Glu Thr Leu Lys Tyr Ala Leu Glu Leu Gln Lys Leu Asn Thr 15 Asn Val Ala Lys Asn Val Ile Met Phe Leu Gly Asp Gly Met Gly Val 55 Ser Thr Val Thr Ala Ala Arg Ile Leu Lys Gly Gln Leu His His Asn 20 Pro Gly Glu Glu Thr Arg Leu Glu Met Asp Lys Phe Pro Phe Val Ala 25 Leu Ser Lys Thr Tyr Asn Thr Asn Ala Gln Val Pro Asp Ser Ala Gly 105 Thr Ala Thr Ala Tyr Leu Cys Gly Val Lys Ala Asn Glu Gly Thr Val 30 Gly Val Ser Ala Ala Thr Glu Arg Ser Arg Cys Asn Thr Thr Gln Gly 35 Asn Glu Val Thr Ser Ile Leu Arg Trp Ala Lys Asp Ala Gly Lys Ser 150 145 165 170 40 45

Val Gly Ile Val Thr Thr Thr Arg Val Asn His Ala Thr Pro Ser Ala 175

Ala Tyr Ala His Ser Ala Asp Arg Asp Trp Tyr Ser Asp Asn Glu Met 180

Pro Pro Glu Ala Leu Ser Gln Gly Cys Lys Asp Ile Ala Tyr Gln Leu 205

Met His Asn Ile Arg Asp Ile Asp Val Ile Met Gly Gly Gly Arg Lys 215

Tyr Met Tyr Pro Lys Asn Lys Thr Asp Val Glu Tyr Glu Ser Asp Glu 240

Lys Ala Arg Gly Thr Arg Leu Asp Gly Leu Asp Leu Val Asp Thr Trp 255

Lys Ser Phe Lys Pro Arg His Lys His Ser His Phe Ile Trp Asn Arg 260

Thr Glu Leu Leu Thr Leu Asp Pro His Asn Val Asp Tyr Leu Leu Gly

			275					280					285							
5	Leu	Phe 290	Glu	Pro	Gly	Asp	Met 295	Gln	Tyr	Glu	Leu	Asn 300	Arg	Asn	Asn	Val				
J	Thr 305	Asp	Pro	Ser	Leu	Ser 310	Glu	Met	Val	Val	Val 315	Ala	Ile	Gln	Ile	Leu 320				
10	Arg	Lys	Asn	Pro	Lys 325	Gly	Phe	Phe	Leu	Leu 330	Val	Glu	Gly	Gly	Arg 335	Ile				
	Asp	His	Gly	His 340	His	Glu	Gly	Lys	Ala 345	Lys	Gln	Ala	Leu	His 350	Glu	Ala				
15	Val	Glu	Met 355	Asp	Arg	Ala	Val	Gly 360	Gln	Ala	Gly	Ser	Leu 365	Thr	Ser	Ser				
20	Glu	Asp 370	Thr	Leu	Thr	Val	Val 375	Thr	Ala	Asp	His	Ser 380	His	Val	Phe	Thr				
	Phe 385	Gly	Gly	Tyr	Thr	Pro 390	Arg	Gly	Asn	Ser	Ile 395	Phe	Gly	Leu	Ala	Pro 400				
25	Met	Leu	Ser	Asp	Thr 405	Asp	Lys	Lys	Pro	Phe 410	Thr	Ala	Ile	Leu	Tyr 415	Gly				
		_		420	_				425	_				430	Val					
30			435	_				440					445		Val					
35		450					455					460			Ser					
	465					470			_		475				Tyr	480				
40					485				_	490	_				Gly 495					
4.5	_			500					505				Gly	Pro 510	Leu	Leu				
45	Leu	Ala	Leu 515	Ala	Leu	Tyr	Pro	Leu 520	Ser	Val	Leu	Phe								
50	<21 <21	<210> 5 <211> 80 <212> DNA <213> Artificial Sequence																		
55	<22 <22		escr.	ipti	on o	f Ar	tifi	cial	Seq	uenc	e:pr	imer	APN	1_up						
			gta	ctgg	cgag	ac c	aagc	<400> 5 atccgaagta ctggcgagac caagcgcaag agacactgaa atatgccctg gagcttcag												

```
agctcaacac caacgtggct
    80
5
   <210> 6
    <211> 80
    <212> DNA
    <213> Artificial Sequence
10
    <223> Description of Artificial Sequence:primer APN2_up
    <400> 6
    ccacagtgac ggctgcccgc atcctcaagg gtcagctcca ccacaaccct ggggaggaga
15
    ccaggctgga gatggacaag
20
    <210> 7
    <211> 80
    <212> DNA
    <213> Artificial Sequence
25
    <220>
    <223> Description of Artificial Sequence:primer APN3 up
    <400> 7
    cccaggtccc tgacagcgcc ggcaccgcca ccgcctacct gtgtggggtg aaggccaatg
30
    agggcaccgt gggggtaagc
    80
35
    <210> 8
     <211> 80
    <212> DNA
    <213> Artificial Sequence
40
    <220>
    <223> Description of Artificial Sequence:primer APN1 dw
     <400> 8
    gcgggcagcc gtcactgtgg agacacccat cccatctccc aggaacatga tgacattctt
45
     agccacgttg gtgttgagct
     80
50
    <210> 9
     <211> 80
     <212> DNA
     <213> Artificial Sequence
55
     <223> Description of Artificial Sequence:primer APN2_dw
     <400> 9
```

```
ggcgctgtca gggacctggg cattggtgtt gtacgtcttg gagagggcca cgaaggggaa
     cttgtccatc tccagcctgg
 5
     <210> 10
     <211> 80
     <212> DNA
10
    <213> Artificial Sequence
     <223> Description of Artificial Sequence:APN3_dw
15
    <400> 10
     caggatggag gtgacctcgt tcccctgggt ggtgttgcac cgggaacgct cagtggctgc
     gcttacccc acggtgccct
     80
20
     <210> 11
     <211> 80
     <212> DNA
25
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:primer uppel
30
     <400> 11
     cacacagaat tcattaaaga ggagaaatta actatgaaat atctgctgcc aactgctgca
     gctggtctgc tgctcctggc
     80
35
     <210> 12
     <211> 81
     <212> DNA
40
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:primer dwpel
45
     <400> 12
     gtctcgccag tacttcggat ctttttcttt ttctggaacc agtgccatag ccggctgagc
     agccaggagc agcagaccag c
     81
50
     <210> 13
     <211> 501
     <212> DNA
55
     <213> Artificial Sequence
     <223> Description of Artificial Sequence:pelB-AP_N
```

```
<400> 13
    cacacagaat tcattaaaga ggagaaatta actatgaaat atctgctgcc aactgctgca
    gctggtctgc tgctcctggc tgctcagccg gctatggcac tggttccaga aaaagaaaaa
 5
    120
    gatccgaagt actggcgaga ccaagcgcaa gagacactga aatatgccct ggagcttcag
    aaqctcaaca ccaacgtggc taagaatgtc atcatgttcc tgggagatgg gatgggtgtc
     240
10
    tccacagtga cggctgcccg catcctcaag ggtcagctcc accacaaccc tggggaggag
     accaggetgg agatggacaa gttccccttc gtggccctct ccaagacgta caacaccaat
     360
     gcccaggtcc ctgacagcgc cggcaccgcc accgcctacc tgtgtggggt gaaggccaat
15
     420
     gagggcaccg tgggggtaag cgcagccact gagcgttccc ggtgcaacac cacccagggg
     aacgaggtca cctccatcct g
     501
20
     <210> 14
     <211> 41
     <212> DNA
25
     <213> Artificial Sequence
     <220>
     <223> Description of Artificial Sequence:primer
           mhuapQEup
30
     <400> 14
     atatagaatt cttagtgcca gagaaagaga aagaccccaa g
     41
35
     <210> 15
     <211> 47
     <212> DNA
     <213> Artificial Sequence
40
     <223> Description of Artificial Sequence:primer
           mhuapOEdw
45
     <400> 15
     atctggatcc ttactaagat ctgcctgccg agctggcagg agcacag
     47
50
     <210> 16
     <211> 1539
     <212> DNA
     <213> Artificial Sequence
55
     <220>
     <223> Description of Artificial Sequence: Fusionsgen
           pelB-tns-AP-deltaGPI
     <400> 16
```

```
atgaaatate tgetgeeaac tgetgeaget ggtetgetge teetggetge teageegget
    atggcactgg ttccagaaaa agaaaaagat ccgaagtact ggcgagacca agcgcaagag
5
    acactgaaat atgccctgga gcttcagaag ctcaacacca acgtggctaa gaatgtcatc
     atgttcctgg gagatgggat gggtgtctcc acagtgacgg ctgcccgcat cctcaagggt
    cagetecace acaaccetgg ggaggagace aggetggaga tggacaagtt cccettegtg
10
    gccctctcca agacgtacaa caccaatgcc caggtccctg acagcgccgg caccgccacc
    gcctacctgt gtggggtgaa ggccaatgag ggcaccgtgg gggtaagcgc agccactgag
     420
15
     cgttcccggt gcaacaccac ccaggggaac gaggtcacct ccatcctgcg ctgggccaag
     480
     gacgctggga aatctgtggg cattgtgacc accacgagag tgaaccatgc caccccagc
     gccgcctacg cccactcggc tgaccgggac tggtactcag acaacgagat gccccctgag
20
     gccttgagcc agggctgtaa ggacatcgcc taccagctca tgcataacat cagggacatt
     gacgtgatca tggggggtgg ccggaaatac atgtacccca agaataaaac tgatgtggag
25
     tatgagagtg acgagaaagc caggggcacg aggctggacg gcctggacct cgttgacacc
     tggaagaget teaaacegag acacaageae teccaettea tetggaaceg caeggaacte
     ctgacccttg acccccacaa tgtggactac ctattgggtc tcttcgagcc gggggacatg
30
     cagtacgage tgaacaggaa caacgtgacg gacccgtcac tctccgagat ggtggtggtg
     gccatccaga tcctgcggaa gaaccccaaa ggcttcttct tgctggtgga aggaggcaga
     1020
35
     attgaccacg ggcaccatga aggaaaagcc aagcaggccc tgcatgaggc ggtggagatg
     gaccgggccg tcgggcaggc aggcagcttg acctcctcgg aagacactct gaccgtggtc
     actgcggacc attcccacgt cttcacattt ggtggataca ccccccgtgg caactctatc
40
     tttggtctgg cccccatgct gagtgacaca gacaagaagc ccttcactgc catcctgtat
     ggcaatgggc ctggctacaa ggtggtgggc ggtgaacgag agaatgtctc catggtggac
45
     tatgctcaca acaactacca ggcgcagtct gctgtgcccc tgcgccacga gacccacggc
     ggggaggacg tggccgtctt ctccaagggc cccatggcgc acctgctgca cggcgtccac
     1440
     gagcagaact acgtccccca cgtgatggcg tatgcagcct gcatcggggc caacctcggc
50
     cactgtgctc ctgccagctc ggcaggcaga tcttagtaa
     1539
```

55 <210> 17 <211> 511 <212> PRT <213> Artificial Sequence <223> Description of Artificial Sequence: Protein

<220>

275

pelB-tns-AP-deltaGPI 5 <400> 17 Met Lys Tyr Leu Leu Pro Thr Ala Ala Gly Leu Leu Leu Ala Ala Gln Pro Ala Met Ala Leu Val Pro Glu Lys Glu Lys Asp Pro Lys 10 Tyr Trp Arg Asp Gln Ala Gln Glu Thr Leu Lys Tyr Ala Leu Glu Leu 15 Gln Lys Leu Asn Thr Asn Val Ala Lys Asn Val Ile Met Phe Leu Gly 55 Asp Gly Met Gly Val Ser Thr Val Thr Ala Ala Arg Ile Leu Lys Gly 70 75 20 Gln Leu His His Asn Pro Gly Glu Glu Thr Arg Leu Glu Met Asp Lys Phe Pro Phe Val Ala Leu Ser Lys Thr Tyr Asn Thr Asn Ala Gln Val 25 105 Pro Asp Ser Ala Gly Thr Ala Thr Ala Tyr Leu Cys Gly Val Lys Ala 30 Asn Glu Gly Thr Val Gly Val Ser Ala Ala Thr Glu Arg Ser Arg Cys 135 Asn Thr Thr Gln Gly Asn Glu Val Thr Ser Ile Leu Arg Trp Ala Lys 145 35 Asp Ala Gly Lys Ser Val Gly Ile Val Thr Thr Arg Val Asn His 170 Ala Thr Pro Ser Ala Ala Tyr Ala His Ser Ala Asp Arg Asp Trp Tyr 40 Ser Asp Asn Glu Met Pro Pro Glu Ala Leu Ser Gln Gly Cys Lys Asp 45 Ile Ala Tyr Gln Leu Met His Asn Ile Arg Asp Ile Asp Val Ile Met Gly Gly Gly Arg Lys Tyr Met Tyr Pro Lys Asn Lys Thr Asp Val Glu 235 50 Tyr Glu Ser Asp Glu Lys Ala Arg Gly Thr Arg Leu Asp Gly Leu Asp 245 Leu Val Asp Thr Trp Lys Ser Phe Lys Pro Arg His Lys His Ser His 55 265 Phe Ile Trp Asn Arg Thr Glu Leu Leu Thr Leu Asp Pro His Asn Val

280

285

	Asp	Tyr 290	Leu	Leu	Gly	Leu	Phe 295	Glu	Pro	GIY	Asp	Met 300	GIn	Tyr	GIU	ьeu
5	Asn 305	Arg	Asn	Asn	Val	Thr 310	Asp	Pro	Ser	Leu	Ser 315	Glu	Met	Val	Val	Val 320
	Ala	Ile	Gln	Ile	Leu 325	Arg	Lys	Asn	Pro	Lys 330	Gly	Phe	Phe	Leu	Leu 335	Val
10	Glu	Gly	Gly	Arg 340	Ile	Asp	His	Gly	His 345	His	Glu	Gly	Lys	Ala 350	Lys	Gln
15	Ala	Leu	His 355	Glu	Ala	Val	Glu	Met 360	Asp	Arg	Ala	Val	Gly 365	Gln	Ala	Gly
	Ser	Leu 370	Thr	Ser	Ser	Glu	Asp 375	Thr	Leu	Thr	Val	Val 380	Thr	Ala	Asp	His
20	Ser 385	His	Val	Phe	Thr	Phe 390	Gly	Gly	Tyr	Thr	Pro 395	Arg	Gly	Asn	Ser	11e 400
	Phe	Gly	Leu	Ala	Pro 405	Met	Leu	Ser	Asp	Thr 410	Asp	Lys	Lys	Pro	Phe 415	Thr
25	Ala	Ile	Leu	Tyr 420	Gly	Asn	Gly	Pro	Gly 425	Tyr	Lys	Val	Val	Gly 430	Gly	Glu
30	Arg	Glu	Asn 435	Val	Ser	Met	Val	Asp 440	Tyr	Ala	His	Asn	Asn 445	Tyr	Gln	Ala
	Gln	Ser 450	Ala	Val	Pro	Leu	Arg 455	His	Glu	Thr	His	Gly 460	Gly	Glu	Asp	Va]
35	Ala 465	Val	Phe	Ser	Lys	Gly 470	Pro	Met	Ala	His	Leu 475	Leu	His	Gly	Val	His 480
	Glu	Gln	Asn	Tyr	Val 485		His	Val	Met	Ala 490		Ala	Ala	Cys	Ile 495	
40	Ala	Asn	Leu	Gly 500	His	Сув	Ala	Pro	Ala 505		Ser	Ala	Gly	Arg 510	Ser	
45	<21 <21	0 > 1 1 > 2 2 > D 3 > A	2 NA	icia	l Se	quen	ce									
50		<220> <223> Description of Artificial Sequence:oligonucleotide														
55		<400> 18 agatcttagt aaggatccag at														