•

POMDPs

• We've been living a lie:

7

s = observe(env)

85% accurate

-1 Lister sate +10 opening good -100 opening tiger

Lister until expected value of one of the doors is positive

Use Bayes rule to update tiger probabilities based on observations we get from listening

Alleatory

Alleatory

Alleatory

Epistemic (Static)

Alleatory

Epistemic (Static)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Interaction

Alleatory

Epistemic (Dynamic)

Interaction

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space

- S State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward

Alleatory

- S State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward

• *S* - State space

 $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ - Transition probability distribution

• *A* - Action space

ullet $R: \mathcal{S} imes \mathcal{A}
ightarrow \mathbb{R}$ - Reward

• \mathcal{O} - Observation space

• *S* - State space

 $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ - Transition probability distribution

• A - Action space

ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ - Reward

• \mathcal{O} - Observation space

•
$$Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$$
 - Observation probability distribution

$$0 = \{TL, TR\}$$

$$Z(o(s, a, s'))$$

$$Z(o(a, s'))$$

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- *A* Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- \mathcal{O} Observation space
- $Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ Observation probability distribution

Alleatory

- *S* State space
- $ullet T: \mathcal{S} imes \mathcal{A} imes \mathcal{S} o \mathbb{R}$ Transition probability distribution
- A Action space
- ullet $R:\mathcal{S} imes\mathcal{A} o\mathbb{R}$ Reward
- \mathcal{O} Observation space
- $Z: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \times \mathcal{O} \rightarrow \mathbb{R}$ Observation probability distribution

Alleatory

Epistemic (Static)

Epistemic (Dynamic)

Tiger POMDP Definition

$$S = \{TL, TR\}$$

$$A = \{OC, OR, L\}$$

$$O = \{TL, TR\}$$

$$R(5,a) = \{OC, OR, L\}$$

$$to if a = \{OC, OR\} \text{ and } a \neq S \}$$

$$-100 if a = \{OL, OR\} \text{ and } a = S \}$$

$$T(5|15,a) = \{OC, Sif a = L, Si = S \}$$

$$OC, Sif a \neq L$$

$$OC, Sif a = L \text{ and } o \neq S \}$$

$$V = 0.95$$

$$P(s_{t_{\!\scriptscriptstyleoldsymbol{t}}} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid o_0, a_0, \dots, o_t, a_t) = P(s_{t+1} \mid a_t, o_{t+t})????$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid o_0, a_0, \dots, o_t, a_t) = P(s_{t+1} \mid a_t, o_{t+t})????$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid o_0, a_0, \ldots, o_t, a_t) = P(s_{t+1} \mid a_t, o_{t+t})????$$

$$ullet \ b_0(s) \equiv P(s_0=s)$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid o_0, a_0, \ldots, o_t, a_t) = P(s_{t+1} \mid a_t, o_{t+t})????$$

$$ullet \ b_0(s) \equiv P(s_0=s)$$

$$ullet h_t \equiv (b_0,a_0,o_1,a_1,\ldots,a_{t-1},o_t)$$

$$P(s_{t_1} \mid s_0, a_0, \dots, s_t, a_t) = T(s_{t+1} \mid s_t, a_t)$$

$$P(s_{t_1} \mid o_0, a_0, \dots, o_t, a_t) = P(s_{t+1} \mid a_t, o_{t+t})????$$

$$ullet \ b_0(s) \equiv P(s_0=s)$$

$$ullet h_t \equiv (b_0,a_0,o_1,a_1,\ldots,a_{t-1},o_t)$$

$$ullet \ b_t(s) \equiv P(s_t = s \mid h_t)$$

Bayesian Belief Updates

$$b_{+} = T(b_{++1}a_{++1}o_{+})$$

$$b_{+} = P(s_{+}|h_{+}) = P(s_{+}|h_{++1}a_{++}) P(s_{+}|h_{++1}a_{++})$$

$$= P(o_{+}|s_{+}|h_{++1}a_{++}) P(s_{+}|h_{++1}a_{++})$$

$$= P(o_{+}|s_{+}|h_{++1}a_{++}) P(s_{+}|h_{++1}a_{++})$$

$$= P(o_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{+}|s_{++1}a_{++}) P(s_{++1}|h_{++1})$$

$$= P(o_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{+}|s_{++1}a_{++}) P(s_{++1}|h_{++1})$$

$$= P(s_{+}|h_{++1}a_{++1}) P(s_{+}|h_{++1}a_{++1})$$

$$= P(o_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{+}|s_{++1}a_{++1}) P(s_{++1}|h_{++1})$$

$$= P(s_{+}|h_{++1}a_{++1}) P(s_{+}|h_{++1}a_{++1})$$

$$= P(s_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{+}|s_{++1}a_{++1}) P(s_{++1}|h_{++1}a_{++1})$$

$$= P(s_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{++1}|a_{++1}s_{+})$$

$$= P(s_{+}|a_{++1}s_{+}) \sum_{s_{++1}} P(s_{++1}|a$$

Filtering Loop

$$b = b_0$$
 $loop$
 $receiving o$
 $for s' \in S$
 $b'(s') \leftarrow Z(ola,s') \geq T(s'(s,a)b(s)$
 $b' \leftarrow b'/ \geq b'(s')$
 $b \leftarrow b'$

Tiger Example