Tecniche combinatorie nel Modello di Ising bidimensionale

Alberto Botto Poala Relatore Prof. Marco Billò

14.04.2014

Un atomo può essere dotato di un piccolissimo momento magnetico per due motivi

- rotazione degli elettroni attorno al nucleo
- spin degli elettroni

Momento magnetico totale \rightarrow somma dei due momenti.

$ATOMO \approx PICCOLA CALAMITA$

Possono queste piccole calamite allinearsi e dare vita ad un campo magnetico sensibilmente più grande?

$\textbf{PARAMAGNETISMO} \rightarrow \leftarrow \textbf{FERROMAGNETISMO}$

Questa transizione di fase avviene

ightharpoonup ad una specifica temperatura T_C , detta temperatura di Curie

Questa transizione di fase avviene

- ightharpoonup ad una specifica temperatura T_C , detta temperatura di Curie
- ▶ Per T < T_C vi è allineamento.
 La suscettività magnetica segue la legge di Curie-Weiss

$$\chi_m = \frac{C\rho}{T - T_C}$$

con ${\cal C}$ costante del materiale e ρ la sua densità.

Questa transizione di fase avviene

- ightharpoonup ad una specifica temperatura T_C , detta temperatura di Curie
- ▶ Per $T < T_C$ vi è allineamento. La suscettività magnetica segue la legge di Curie-Weiss

$$\chi_m = \frac{C\rho}{T - T_C}$$

con C costante del materiale e ρ la sua densità.

▶ Per $T > T_C$ non vi è alcun allineamento

Questa transizione di fase avviene

- ightharpoonup ad una specifica temperatura T_C , detta temperatura di Curie
- ▶ Per T < T_C vi è allineamento. La suscettività magnetica segue la legge di Curie-Weiss

$$\chi_m = \frac{C\rho}{T - T_C}$$

con C costante del materiale e ρ la sua densità.

- ▶ Per $T > T_C$ non vi è alcun allineamento
- Il Modello di Ising nasce per studiare la dinamica di questo allineamento

Il problema del ferromagnetismo può essere formulato in una, due o tre dimensioni (o più).

▶ 1-D Catena monodimensionale periodica di atomi, studiata da Ernst Ising nel 1924, sotto la guida di Wilhelm Lenz.

La soluzione monodimensionale non presenta transizioni di fase.

Figura: Ernst Ising 1900-1998

La soluzione monodimensionale non presenta transizioni di fase.

Figura: Ernst Ising 1900-1998

 Ising riteneva che anche in più dimensioni non ci sarebbero state transizioni di fase. (cfr. Beitrag zur Theorie des Ferro und Paramagnetismus, 1924, BIBLIOTHECA AUGUSTANA on line)

▶ 2-D Reticolo di atomi. Venne risolta nel 1949 da Lars Onsager. Già in due dimensioni il modello mostra delle transizioni di fase.

Figura: Lars Onsager 1903-1976

▶ 3-D Esistono simulazioni numeriche ma la soluzione analitica non è ancora stata trovata

Modello di Ising - Soluzione di Vdovichenko

Cosa vedremo

► Solo Modello **2-D**

Modello di Ising - Soluzione di Vdovichenko

Cosa vedremo

- Solo Modello 2-D
- ▶ Sviluppo alta temperatura per Z(T)

Modello di Ising - Soluzione di Vdovichenko

Cosa vedremo

- Solo Modello 2-D
- Sviluppo alta temperatura per Z(T)
- ▶ Soluzione combinatoria di Vdovichenko per F(T)

II Reticolo

Reticolo quadrato periodico con $L \times L = N$ siti.

Figura: Reticolo periodico 3×3

▶ atomo → sito

II Reticolo

Reticolo quadrato periodico con $L \times L = N$ siti.

Figura: Reticolo periodico 3×3

- ightharpoonup atomo ightharpoonup sito
- ▶ sito *i*-esimo $\rightarrow \sigma_i = \pm 1$ (oppure spin \uparrow o \downarrow). Rappresenta il momento magnetico.

II Reticolo

Reticolo quadrato periodico con $L \times L = N$ siti.

Figura: Reticolo periodico 3 × 3

- ightharpoonup atomo ightharpoonup sito
- ▶ sito *i*-esimo $\rightarrow \sigma_i = \pm 1$ (oppure spin \uparrow o \downarrow). Rappresenta il momento magnetico.
- lacktriangle Scelta dell'Hamiltoniana

Approssimazioni

Interazione solo tra i primi vicini. La connessione è detta Link.

Figura: Schema delle interazioni

Funzione di Partizione nell'Ensemble Canonico

Scelta l'Hamiltoniana

$$H_{N} = -J\sum_{(i,j)}\sigma_{i}\sigma_{j} - J'\sum_{(i,k)}\sigma_{i}\sigma_{k}$$

e nota la definizone della **Funzione di Partizione** per l'Ensemble Canonico

$$\sum_{\sigma} e^{-\beta E_{\sigma}}$$

con $\sigma = \{\sigma_1, \sigma_2...\sigma_N\}$, si giunge facilmente alla Funzione di Partizione del nostro modello

$$Z_{N} = \sum_{\sigma} \exp[\beta J \sum_{(i,j)} \sigma_{i} \sigma_{j} + \beta J' \sum_{(i,k)} \sigma_{i} \sigma_{k}]$$

Sviluppo ad Alte Temperature

Si può manipolare questa espressione e ottenere

$$Z_N = (\cosh K \cosh K')^N \sum_{\sigma} \left(\prod_{(i,j)} (1 + v\sigma_i \sigma_j) \prod_{(i,k)} (1 + w\sigma_i \sigma_k) \right)$$

$$\operatorname{con} \begin{cases} v = \tanh J/kT = \tanh K \\ w = \tanh J'/kT = \tanh K' \end{cases}$$

Notiamo che v, $w < 1 \ \forall T \rightarrow$ sviluppo in serie

Cosa vuol dire sviluppare in serie Z_N in $v \in w$?

Sviluppo ad Alte Temperature

Esplicitiamo

$$\prod_{(i,j)} (1 + v\sigma_{i}\sigma_{j}) \prod_{(i,k)} (1 + w\sigma_{i}\sigma_{k}) =
(1 + v\sigma_{1}\sigma_{2}) \times (1 + v\sigma_{2}\sigma_{3}) \times ... \times (1 + v\sigma_{N-1}\sigma_{N})...
\times (1 + w\sigma_{1}\sigma_{L+1}) \times (1 + w\sigma_{2}\sigma_{L+2}) \times ... \times (1 + v\sigma_{L(L-1)}\sigma_{N})$$
(1)

Che cosa ottengo?

- **1**
- $\triangleright v\sigma_i\sigma_{i+1} e w\sigma_j\sigma_{L+j}$
- prodotti dei precedenti. Esempio (reticolo 4 × 4):

$$(v\sigma_5\sigma_6)(v\sigma_6\sigma_7)(v\sigma_{11}\sigma_{12})(w\sigma_1\sigma_5)(w\sigma_{10}\sigma_{14})$$

Configurazione grafica sul reticolo

Questi termini analitici hanno anche un significato geometrico. Ogni termine può essere disegnato sul reticolo evidenziando i link che contiene. Cosa vuol dire? Esempio precedente

$$(v\sigma_5\sigma_6)(v\sigma_6\sigma_7)(v\sigma_{11}\sigma_{12})(w\sigma_1\sigma_5)(w\sigma_{10}\sigma_{14})$$

Figura: Configurazione grafica sul reticolo

Configurazione grafica sul reticolo

Altro esempio più interessante

$$(v\sigma_1\sigma_2)(v\sigma_5\sigma_6)(v\sigma_6\sigma_7)(v\sigma_{10}\sigma_{11})(w\sigma_1\sigma_5)(w\sigma_2\sigma_6)(w\sigma_6\sigma_{10})(w\sigma_7\sigma_{11})$$

Figura: Configurazione grafica sul reticolo

Notiamo che $\begin{cases} \# \ v & \text{numero di link orizzontali} \\ \# \ w & \text{numero di link verticali} \end{cases}$

Perchè l'esempio appena visto è più interessante?

Ogni termine si può scrivere come

$$v^r w^s \sigma_1^{n_1} \sigma_2^{n_2} \sigma_3^{n_3} \dots$$

Perchè l'esempio appena visto è più interessante?

Ogni termine si può scrivere come

$$v^r w^s \sigma_1^{n_1} \sigma_2^{n_2} \sigma_3^{n_3} \dots$$

Non dimentichiamoci che

$$Z_N = (\cosh K \cosh K')^N \sum_{\sigma} \left(\prod_{(i,j)} (1 + v\sigma_i \sigma_j) \prod_{(i,k)} (1 + w\sigma_i \sigma_k) \right)$$

Perchè l'esempio appena visto è più interessante?

Ogni termine si può scrivere come

$$v^r w^s \sigma_1^{n_1} \sigma_2^{n_2} \sigma_3^{n_3} \dots$$

Non dimentichiamoci che

$$Z_N = (\cosh K \cosh K')^N \sum_{\sigma} \left(\prod_{(i,j)} (1 + v \sigma_i \sigma_j) \prod_{(i,k)} (1 + w \sigma_i \sigma_k) \right)$$

▶ Se n_i dispari allora si cancella.

Perchè l'esempio appena visto è più interessante?

Ogni termine si può scrivere come

$$v^r w^s \sigma_1^{n_1} \sigma_2^{n_2} \sigma_3^{n_3} \dots$$

Non dimentichiamoci che

$$Z_N = (\cosh K \cosh K')^N \sum_{\sigma} \left(\prod_{(i,j)} (1 + v \sigma_i \sigma_j) \prod_{(i,k)} (1 + w \sigma_i \sigma_k) \right)$$

- Se n_i dispari allora si cancella.
- ▶ n_i numero di volte che tocco il sito i-esimo \rightarrow sopravvivono solo i grafici chiusi.

Esempio di antisimmetria

Primo esempio

$$(v\sigma_{5}\sigma_{6})(v\sigma_{6}\sigma_{7})(v\sigma_{11}\sigma_{12})(w\sigma_{1}\sigma_{5})(w\sigma_{10}\sigma_{14}) =$$

$$= v^{3}w^{2}\sigma_{1}\sigma_{5}^{2}\sigma_{6}^{2}\sigma_{7}\sigma_{10}\sigma_{11}\sigma_{12}\sigma_{14}$$

$$\downarrow^{13} \qquad \qquad \downarrow^{15} \qquad \qquad \downarrow^{16} \qquad \qquad \downarrow^{16}$$

$$\downarrow^{1} \qquad \qquad \downarrow^{19} \qquad \qquad \downarrow^{$$

Figura: Configurazione grafica sul reticolo

Esempio di simmetria

Secondo esempio

$$(v\sigma_{1}\sigma_{2})(v\sigma_{5}\sigma_{6})(v\sigma_{6}\sigma_{7})(v\sigma_{10}\sigma_{11})(w\sigma_{1}\sigma_{5})(w\sigma_{2}\sigma_{6})(w\sigma_{6}\sigma_{10})(w\sigma_{7}\sigma_{11}) =$$

$$= v^{4}w^{4}\sigma_{1}^{2}\sigma_{2}^{2}\sigma_{5}^{2}\sigma_{6}^{4}\sigma_{7}^{2}\sigma_{10}^{2}\sigma_{11}^{2}$$

$$^{13} \bullet \qquad ^{14} \bullet \qquad ^{15} \bullet \qquad ^{16} \bullet$$

Figura: Configurazione grafica sul reticolo

Sopravvivono solo i termini con σ_i pari, quindi possiamo scrivere

$$v^r w^s \sigma_1^{n_1} \sigma_2^{n_2} \sigma_3^{n_3} \dots = v^r w^s$$

Ne avremo 2^N per ogni valore della coppia r, s. La funzione di partizione diventa

$$Z_N = 2^N (\cosh K \cosh K')^N \sum_P v^r w^s$$

con P insieme delle poligonali chiuse disgiunte. Quindi com'è fatta $\Phi(v,w) = \sum_P v^r w^s$?

I primi termini dello sviluppo

$$\sum_{P} v^{r} w^{s} = 1 + Nv^{2}w^{2} + Nv^{2}w^{4} + Nv^{4}w^{2} + \frac{Nv^{2}w^{6} + Nv^{6}w^{2}}{2} + \frac{1}{2}N(N+5)v^{4}w^{4} + \dots$$
(2)

Figura: Configurazione grafica dei primi termini dello sviluppo

I termini successivi

I termini
$$\frac{1}{2}N(N+5)v^4w^4$$
 sono

Figura: Configurazione grafica sul reticolo dei termini v^4w^4

Dallo sviluppo alla soluzione di Vdovichenko

- ▶ Abbiamo ottenuto lo sviluppo ad alte T per la Funzione di Partizione Z(T)
- ▶ Partiamo quindi con la Soluzione combinatoria di Vdovichenko per arrivare all'Energia Libera F(T)

Poniamo $J = J' \rightarrow v = w$.

$$\Phi(v, w) = 1 + Nv^{2}w^{2} + Nv^{2}w^{4} + Nv^{4}w^{2} + + Nv^{2}w^{6} + Nv^{6}w^{2} + \frac{1}{2}N(N+5)v^{4}w^{4} + \dots = = 1 + Nv^{4} + 2Nv^{6} + \frac{1}{2}N(N+9)v^{8} \dots = \Phi(v)$$
(3)

Anche la funzione di partizione si semplifica e diventa

$$Z_N = 2^N (1 - v^2)^{-N} \Phi(v) \tag{4}$$

con

$$\Phi(v) = \sum_{r} g_r v^r$$

L'unica incognita è g_r , numero di grafici disgiunti di perimetro r.

Dalle configurazioni grafiche ai cammini chiusi

La soluzione di Vdovichenko prevede di trasformare le configurazioni grafiche come dei **cammini chiusi**. Sorgono dei problemi:

Figura: Elemento di v^8 ambiguo

Dalle configurazioni grafiche ai cammini chiusi

Altro apparente problema

Figura: Altro grafico ambiguo

Generalizzazione del teorema di Gaussi

 Teorema di Gauss
 Angolo spazzato dalla tangente di una curva piana senza autointersezioni è 2π

Generalizzazione del teorema di Gaussi

- ▶ Teorema di Gauss Angolo spazzato dalla tangente di una curva piana senza autointersezioni è 2π
- Si può generalizzare ad una curva **con autointersezioni** e vale $2(k+1)\pi$, con k numero pesato dei nodi.

La definizione di maglia

Ricordiamo che

- ▶ maglia → una sola poligonale chiusa
- ▶ grafico → l'unione di una o più maglie disgiunte

Perché questa definizione?

Non cerchamo direttamente il grafico di perimetro r ma passiamo attraverso le maglie che lo compongono.

 f_r numero di maglie disegnabili con perimetro r allora per i grafici composti da due maglie vale

$$g_r^{(2)} = \frac{1}{2!} \sum_{r_1 + r_2 = r} f_{r_1} f_{r_2}$$

Grafici come unione di maglie

Vogliamo combinare

- quante maglie voglio $\rightarrow s$
- ▶ di tutte le lunghezze possibili $\rightarrow r_1, r_2...r_s$

$$\Phi(v) = \sum_{s=1}^{\infty} (-1)^s \frac{1}{s!} \sum_{r_1, r_2, \dots = 0}^{\infty} v^{r_1 + r_2 + \dots r_s} f_{r_1} \dots f_{r_s}$$

Questa espressione si può manipolare e ottenere uno sviluppo in serie di un esponenziale nella forma

$$\Phi(v) = \exp\left[-\sum_{r=0}^{\infty} v^r f_r\right]$$

indicando con $r = r_1 + r_2 + ... + r_s$ e con $f_r = f_{r_1} \times f_{r_2} \times ... \times f_{r_s}$

L'unica incognita è f_r , numero di maglie di lunghezza r.

Parametrizzazione delle poligonali

Come ci si muove su un reticolo?

► Layout dell'informazione:

$$(i,j,\mu)$$

dove i,j sono le coordinate del sito e μ indica la direzione ${\bf di}$ ingresso nel sito nel modo seguente

μ	1	2	3	4
direzione	\rightarrow		\leftarrow	\uparrow

Parametrizzazione delle poligonali - Funzione W

▶ Date le condzioni iniziali (i_0, j_0, μ_0) , definisco

$$W_r(i,j,\mu)=\#$$
 pesato di cammini da (i_0,j_0,μ_0) a (i,j,μ) lunghi r

Per chiudere i cammini basta chiedere

$$W_r(i_0,j_0,\mu)$$

e per definizione si torna al punto di partenza

Proprietà ricorsive di W

Ovviamente la funzione W gode di proprietà ricorsive

$$W_{r+1}(i,j,1) = W_r(i-1,j,1) + e^{-i\frac{\pi}{4}}W_r(i-1,j,2) + 0 + e^{i\frac{\pi}{4}}W_r(i-1,j,4)$$
(5)

Figura: Rappresentazione grafica dell'equazione ricorsiva

La matrice Λ

- ▶ Ho molte equazioni ricorsive al variare di posizione e direzione
- Sono tutte lineari

Deduco che esiste una matrice Λ tale per cui

$$W_{r+1}(i,j,\mu) = \sum_{i',j',\mu'} \Lambda(ij\mu|i'j'\mu') W_r(i',j',\mu')$$

che essendo ricorsiva diventa

$$W_{r+1}(i,j,\mu) = \sum_{i_0,j_0,\mu_0} \Lambda^{r+1}(ij\mu|i_0j_0\mu_0)W_0(i_0,j_0,\mu_0)$$

Notiamo che Λ è una matrice di grandi dimensioni.

Significato della matrice Λ

La matrice Λ è l'oggetto che mi permette di fare evolvere il sistema. I suoi coefficienti

$$\Lambda^r(i,j,\mu|i_0,j_0,\mu_0)$$

mi dicono se è possibile (e se sì con che fase) andare da (i_0, j_0, μ_0) a (i, j, μ) .

Ricordiamoci che la scelta di μ_0 non cambia il percorso, possiamo sceglierla come vogliamo. Poniamo

$$\mu_0 = \mu$$

Il significato di $\operatorname{Tr} \Lambda^r$

Quindi la traccia di Λ^r

$$\mathsf{Tr}\left(\mathsf{\Lambda}^{r}\right) = \sum_{i_{0}, j_{0}, \mu} \mathsf{\Lambda}^{r}(i_{0}, j_{0}, \mu | i_{0}, j_{0}, \mu)$$

è, a meno di un prefattore 1/2r, il numero di tutte le maglie di lunghezza r che possiamo evidenziare sul reticolo.

$$f_r = \frac{1}{2r} \operatorname{Tr} \left(\Lambda^r \right)$$

Come trovo $Tr(\Lambda^r)$?

La traccia è un invariante

Essendo la traccia un invariante possiamo calcolarla nella base diagonale, e otteniamo

$$f_r = \frac{1}{2r} \operatorname{Tr} (\Lambda^r) = \frac{1}{2r} \sum_a \lambda_a^r$$

dove λ_a autovalori di Λ , che sono le nostre nuove incognite.

Implementazione degli autovalori

Supponiamo di avere gli autovalori

$$\Phi(v) = \exp\left[-\sum_{r=0}^{\infty} v^r f_r\right] = \exp\left[-\frac{1}{2}\sum_{i}\sum_{r=1}^{\infty} \frac{1}{r}v^r \lambda_i^r\right]$$

Si riconosce lo sviluppo in serie di un logaritmo nella variabile $(v\lambda_i)$

$$\Phi(v) = \exp\left[\frac{1}{2}\sum_{i}\log(1-v\lambda_{i})\right] = \prod_{i}\sqrt{1-v\lambda_{i}}$$

Calcolo degli autovalori

Potremmo dimostrare che

$$\prod_{i} 1 - v\lambda_{i} = \det(\mathbf{1} - v\Lambda) = (1 + v^{2})^{2} - 2v(1 - v^{2}) \left(\cos \frac{2\pi p}{L} + \cos \frac{2\pi q}{L}\right)$$

e sostituendo questa espressione nella funzione di partizione

$$Z_{N}(T) = \left(\frac{1-v^{2}}{2}\right)^{-N} \prod_{p,q=0}^{L} \left[(1+v^{2})^{2} - 2v(1-v^{2}) \left(\cos\frac{2\pi p}{L} + \cos\frac{2\pi q}{L}\right) \right]^{\frac{1}{2}}$$
(6)

Dalla funzione di partizione all'energia libera

Ottenuta la funzione di partizione è sufficiente valutarne il logaritmo per ottenere l'energia libera

$$\frac{-F(T)}{kT} = \log(Z_N) =
= N\log(2) - N\log(1 - v^2) +
+ \frac{1}{2} \sum_{p,q=0}^{L} \log\left[(1 + v^2)^2 - 2v(1 - v^2) \left(\cos\frac{2\pi p}{L} + \cos\frac{2\pi q}{L} \right) \right]$$
(7)

Limite termodinamico per F(T)

Nel limite termodinamico in cui $L o \infty$ otteniamo

$$\begin{split} & \frac{-F(T)}{kT} = \\ & = N \log(2) - N \log(1 - v^2) + \\ & + \frac{N}{2(2\pi)^2} \int_0^{2\pi} d\omega_1 d\omega_2 \log\left[(1 + v^2)^2 - 2v(1 - v^2) (\cos \omega_1 + \cos \omega_2) \right] \end{split} \tag{8}$$

Notiamo che $F(T) \propto N$.

Nota l'energia libera si deriva la termodinamica, in particolare la **Temperatura di Curie**.

Singolarità di F(T)

Transizioni di fase \rightarrow Singolarità di F(T)

$$\begin{split} & \frac{-F(T)}{kT} = \\ & = N \log(2) - N \log(1 - v^2) + \\ & + \frac{N}{2(2\pi)^2} \int_0^{2\pi} d\omega_1 d\omega_2 \log\left[(1 + v^2)^2 - 2v(1 - v^2) (\cos \omega_1 + \cos \omega_2) \right] \end{split} \tag{9}$$

- ▶ Caso banale di $v = 1 \rightarrow T = 0$
- ▶ Minimo dell'argomento del logaritmo $\rightarrow \cos \omega_1 = \cos \omega_2 = 1$. Altre due singolarità ν_- e ν_+ .

Le soluzioni non banali v_- e v_+

Si cercano le radici del polinomio

$$(1+v^2)^2 - 4v(1-v^2) = (v^2 + 2v - 1)^2$$
 (10)

e si ottengono

$$\begin{cases} v_{-} = -(1+\sqrt{2}) & \to T_{C} = (0.166+0.590i)J/k \\ v_{+} = -1+\sqrt{2}, & \to T_{C} = 2.269J/k \end{cases}$$

Figura: Plot del polinomio (10)

Bibliografia

- Mussardo G., Il modello di Ising, introduzione alla teoria dei campi e delle transizioni di fase, Bollati Boringhieri, Torino, pp 174-176, 198-204.
- ► Ising E., Beitrag zur Theorie des Ferro und Paramagnetismus, BIBLIOTHECA AUGUSTANA on line.