Theoretische Informatik I

Übungsblatt 8: Prädikatenlogik

Duale Hochschule Baden-Württemberg – Lörrach Studiengang Informatik – TIF21

 $X, \chi - \mathrm{Chi}$

$$\Psi$$
, ψ – Psi

 Ω , ω – Omega

- 1. Geben Sie mit Begründung an, ob folgende Formeln erfüllbar sind und ob sie allgemeingültig
 - (a) $F_1 := p(c)$

Hierbei ist c ein nullstelliges Funktionssymbol und p ist ein einstelliges Prädikatssymbol.

$$\begin{split} \Sigma &:= (F_\Sigma, P_\Sigma, \alpha_\Sigma, Var_\Sigma) & \alpha_\Sigma(c) := 0 & \alpha_\Sigma(p) := 1 \\ F_\Sigma &:= \{c\} & \\ P_\Sigma &:= \{p\} & \\ Var_\Sigma &:= \{\} \end{split}$$

$$\alpha_{\Sigma}(p) := 1$$

Lösung:

Sei $S_1 := (U_1, I_1)$ mit

$$U_1 := \{1,2\} \hspace{1cm} I_1(c) := 2 \hspace{1cm} I_1(p) := \{2\}$$

$$I_1(c) := 2$$

$$I_1(p) := \{2\}$$

Weiter sei β die leere Abbildung.

Dann gilt

$$\begin{aligned} valt_{S_1,\beta}(c) &= 2 \\ valf_{S_1,\beta}(p(c)) &= \mathfrak{W}, \end{aligned}$$

damit ist (S_1,β) ein Modell für $F_1,$ also ist F_1 erfüllbar.

Sei $S_2 := (U_2, I_2)$ mit

$$U_2 := \{1, 2\}$$
 $I_2(c) := 1$ $I_2(p) := \{2\}$

$$I_2(c) :=$$

$$I_2(p) := \{2\}$$

Weiter sei γ die leere Abbildung.

Dann gilt

$$\begin{aligned} valt_{S_2,\gamma}(c) &= 1 \\ valf_{S_2,\gamma}(p(c)) &= \mathfrak{F}, \end{aligned}$$

damit ist (S_2, γ) kein Modell für F_1 , also ist F_1 nicht allgemeingültig.

(b) $F_2 := p(x)$

Hierbei ist x eine Variable und p ist ein einstelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_{\Sigma}, P_{\Sigma}, \alpha_{\Sigma}, Var_{\Sigma}) & \alpha_{\Sigma}(p) := 1 \\ F_{\Sigma} &:= \{\} \\ P_{\Sigma} &:= \{p\} \\ Var_{\Sigma} &:= \{x\} \end{split}$$

Lösung:

Sei $S_1 := (U_1, I_1)$ mit

$$U_1 := \{1, 2\} \qquad \qquad I_1(p) := \{2\}$$

Weiter sei

$$\beta(x) := 2$$

Dann gilt

$$\begin{aligned} valt_{S_1,\beta}(x) &= 2 \\ valf_{S_1,\beta}(p(x)) &= \mathfrak{W}, \end{aligned}$$

damit ist (S_1,β) ein Modell für $F_2,$ also ist F_2 erfüllbar.

Sei $S_2 := (U_2, I_2)$ mit

$$U_2 := \{1,2\} \hspace{1cm} I_2(p) := \{2\}$$

Weiter sei

$$\gamma(x) := 1$$

Dann gilt

$$\begin{aligned} valt_{S_2,\gamma}(x) &= 1 \\ valf_{S_2,\gamma}(p(x)) &= \mathfrak{F}, \end{aligned}$$

damit ist (S_2,γ) kein Modell für $F_2,$ also ist F_2 nicht allgemeingültig.

(c)
$$F_3 := p(f(x))$$

Hierbei ist x eine Variable, f ist ein einstelliges Funktionssymbol und p ist ein einstelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_\Sigma, P_\Sigma, \alpha_\Sigma, Var_\Sigma) & \alpha_\Sigma(f) := 1 & \alpha_\Sigma(p) := 1 \\ F_\Sigma &:= \{f\} & \\ P_\Sigma &:= \{p\} & \\ Var_\Sigma &:= \{x\} & \end{split}$$

Lösung:

Sei $S_1 := (U_1, I_1)$ mit

$$U_1:=\{1,2\} \qquad \qquad I_1(f):=\{1,2\} \to \{1,2\} \qquad \qquad I_1(p):=\{2\}$$

$$1\mapsto 2$$

$$2\mapsto 1$$

Weiter sei

$$\beta(x) := 1$$

Dann gilt

$$\begin{split} valt_{S_1,\beta}(x) &= 1 \\ valt_{S_1,\beta}(f(x)) &= 2 \\ valf_{S_1,\beta}(p(f(x))) &= \mathfrak{W}, \end{split}$$

damit ist (S_1,β) ein Modell für $F_3,$ also ist F_3 erfüllbar.

Sei $S_2 := (U_2, I_2)$ mit

$$U_2:=\{1,2\} \qquad \qquad I_2(f):=~\{1,2\} \rightarrow \{1,2\} \qquad \qquad I_2(p):=\{2\}$$

$$1\mapsto 2$$

$$2\mapsto 1$$

Weiter sei

$$\gamma(x) := 2$$

Dann gilt

$$\begin{split} valt_{S_2,\gamma}(x) &= 2 \\ valt_{S_2,\gamma}(f(x)) &= 1 \\ valf_{S_2,\gamma}(p(f(x))) &= \mathfrak{F}, \end{split}$$

damit ist (S_2,γ) kein Modell für $F_3,$ also ist F_3 nicht allgemeingültig.

(d) $F_4 := (p(g(d,f(y))) \wedge \neg q(c,f(x)))$

Hierbei sind x und y Variablen, c und d sind nullstellige Funktionssymbole, f ist ein einstelliges Funktionssymbol, g ist ein zweistelliges Funktionssymbol, g ist ein zweistelliges Prädikatssymbol und g ist ein zweistelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_\Sigma, P_\Sigma, \alpha_\Sigma, Var_\Sigma) & \qquad \alpha_\Sigma(c) := 0 & \qquad \alpha_\Sigma(p) := 1 \\ F_\Sigma &:= \{c, d, f, g\} & \qquad \alpha_\Sigma(d) := 0 & \qquad \alpha_\Sigma(q) := 2 \\ P_\Sigma &:= \{p, q\} & \qquad \alpha_\Sigma(f) := 1 \\ Var_\Sigma &:= \{x, y\} & \qquad \alpha_\Sigma(g) := 2 \end{split}$$

Lösung:

Sei
$$S_1 := (U_1, I_1)$$
 mit

$$\begin{array}{ll} U_1 := \{1,2\} & I_1(c) := 2 & I_1(p) := \{2\} \\ I_1(d) := 1 & I_1(q) := \{(2,1)\} \\ I_1(f) := \{1,2\} \rightarrow \{1,2\} \\ & 1 \mapsto 2 \\ & 2 \mapsto 1 \\ I_1(g) := \{1,2\} \times \{1,2\} \rightarrow \{1,2\} \\ & (1,1) \mapsto 2 \\ & (1,2) \mapsto 1 \\ & (2,1) \mapsto 1 \\ & (2,2) \mapsto 1 \end{array}$$

Weiter sei

$$\beta(x) := 1 \qquad \qquad \beta(y) := 2$$

Dann gilt

$$\begin{split} valt_{S_1,\beta}(x) &= 1 \\ valt_{S_1,\beta}(y) &= 2 \\ valt_{S_1,\beta}(c) &= 2 \\ valt_{S_1,\beta}(d) &= 1 \\ valt_{S_1,\beta}(f(x)) &= 2 \\ valt_{S_1,\beta}(f(y)) &= 1 \\ valt_{S_1,\beta}(g(d,f(y))) &= 2 \\ valf_{S_1,\beta}(g(d,f(y))) &= \mathfrak{B} \\ valf_{S_1,\beta}(q(c,f(x))) &= \mathfrak{F} \\ valf_{S_1,\beta}(\neg q(c,f(x))) &= \mathfrak{B} \\ valf_{S_1,\beta}((p(g(d,f(y))) \wedge \neg q(c,f(x)))) &= \mathfrak{B}, \end{split}$$

damit ist (S_1,β) ein Modell für $F_4,$ also ist F_4 erfüllbar.

 $\begin{array}{lll} \mathrm{Sei}\; S_2 := (U_2, I_2) \; \mathrm{mit} \\ & U_2 := \{1, 2\} & I_2(c) := 2 & I_2(p) := \{2\} \\ & I_2(d) := 1 & I_2(q) := \{(2, 2)\} \\ & I_2(f) := \{1, 2\} \to \{1, 2\} \\ & 1 \mapsto 2 \\ & 2 \mapsto 1 \\ & I_2(g) := \{1, 2\} \times \{1, 2\} \to \{1, 2\} \\ & (1, 1) \mapsto 2 \\ & (1, 2) \mapsto 1 \\ & (2, 1) \mapsto 1 \\ & (2, 2) \mapsto 1 \end{array}$

Weiter sei

$$\gamma(x) := 1 \qquad \qquad \gamma(y) := 2$$

Dann gilt

$$\begin{aligned} valt_{S_2,\gamma}(x) &= 1 \\ valt_{S_2,\gamma}(y) &= 2 \\ valt_{S_2,\gamma}(c) &= 2 \\ valt_{S_2,\gamma}(d) &= 1 \\ valt_{S_2,\gamma}(f(x)) &= 2 \\ valt_{S_2,\gamma}(f(y)) &= 1 \\ valt_{S_2,\gamma}(g(d,f(y))) &= 2 \\ valf_{S_2,\gamma}(g(d,f(y))) &= \mathfrak{B} \\ valf_{S_2,\gamma}(q(c,f(x))) &= \mathfrak{B} \\ valf_{S_2,\gamma}(\neg q(c,f(x))) &= \mathfrak{F} \\ valf_{S_2,\gamma}((p(g(d,f(y))) \wedge \neg q(c,f(x)))) &= \mathfrak{F}, \end{aligned}$$

damit ist (S_2,γ) kein Modell für $F_4,$ also ist F_4 nicht allgemeingültig.

(e) $F_5 := (p(c) \wedge \forall x q(x,d))$

Hierbei ist x eine Variable, c und d sind nullstellige Funktionssymbole, p ist ein einstelliges Prädikatssymbol und q ist ein zweistelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_{\Sigma}, P_{\Sigma}, \alpha_{\Sigma}, Var_{\Sigma}) & \alpha_{\Sigma}(c) := 0 & \alpha_{\Sigma}(p) := 1 \\ F_{\Sigma} &:= \{c, d\} & \alpha_{\Sigma}(d) := 0 & \alpha_{\Sigma}(q) := 2 \\ P_{\Sigma} &:= \{p, q\} & Var_{\Sigma} := \{x\} \end{split}$$

Lösung:

Sei $S_1 := (U_1, I_1)$ mit

Weiter sei

$$\beta(x) := 1$$

Dann gilt

$$\begin{split} valt_{S_1,\beta}(x) &= 1 \\ valt_{S_1,\beta}(c) &= 2 \\ valt_{S_1,\beta}(d) &= 1 \\ valf_{S_1,\beta}(p(c)) &= \mathfrak{W} \\ valf_{S_1,\beta}(q(x,d)) &= \mathfrak{W} \\ valf_{S_1,\beta}(\forall xq(x,d)) &= \mathfrak{W} \\ valf_{S_1,\beta}((p(c) \wedge \forall xq(x,d))) &= \mathfrak{W}, \end{split}$$

damit ist (S_1,β) ein Modell für $F_5,$ also ist F_5 erfüllbar.

Sei $S_2 := (U_2, I_2)$ mit

Weiter sei

$$\gamma(x) := 1$$

Dann gilt

$$\begin{split} valt_{S_2,\gamma}(x) &= 1 \\ valt_{S_2,\gamma}(c) &= 2 \\ valt_{S_2,\gamma}(d) &= 1 \\ valf_{S_2,\gamma}(p(c)) &= \mathfrak{W} \\ valf_{S_2,\gamma}(q(x,d)) &= \mathfrak{W} \\ valf_{S_2,\gamma}(\forall xq(x,d)) &= \mathfrak{F} \\ valf_{S_2,\gamma}((p(c) \wedge \forall xq(x,d))) &= \mathfrak{F}, \end{split}$$

damit ist (S_2,γ) kein Modell für $F_5,$ also ist F_5 nicht allgemeingültig.

 $\text{(f)} \ F_6 := \forall x (p(x) \vee \neg p(x))$

Hierbei ist x eine Variable und p ist ein einstelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_\Sigma, P_\Sigma, \alpha_\Sigma, Var_\Sigma) \\ F_\Sigma &:= \{\} \\ P_\Sigma &:= \{p\} \\ Var_\Sigma &:= \{x\} \end{split}$$

Lösung:

Sei $\mathcal{S}=(\mathcal{U},\mathcal{I})$ eine beliebige Struktur für F_6 und v eine beliebige Variablenbelegung. Sei $u\in\mathcal{U}$ beliebig. Es ist

$$valt_{\mathcal{S},v_n^u}(x) = u.$$

Fall 1: $u \notin \mathcal{I}(p)$, also $valt_{\mathscr{S}, \nu_x^u}(x) \notin \mathcal{I}(p)$. Dann gilt nach Definition

$$valf_{\mathscr{S}, v_{x}^{u}}(p(x)) = \mathfrak{F},$$

also

$$valf_{\mathscr{S}, \sigma_x^u}(\neg p(x)) = \mathfrak{W},$$

also

$$valf_{\mathscr{L},\nu^{\underline{a}}}((p(x)\vee\neg p(x)))=\mathfrak{B}.$$

Fall 2: $u\in\mathcal{I}(p),$ also $valt_{\mathcal{S},v_x^u}(x)\in\mathcal{I}(p).$ Dann gilt nach Definition

$$valf_{\mathscr{S}, v_x^u}(p(x)) = \mathfrak{W},$$

also

$$valf_{\mathscr{S}, \nu_x^u}((p(x) \vee \neg p(x))) = \mathfrak{W}.$$

In beiden Fällen gilt also

$$valf_{\mathscr{S},\nu_x^{\nu_x}}((p(x)\vee\neg p(x)))=\mathfrak{W},$$

wobe
i $u\in\mathcal{U}$ beliebig ist. Damit ist auch nach Definition

$$\operatorname{valf}_{\mathscr{S},v}(\forall x(p(x) \vee \neg p(x))) = \mathfrak{W}.$$

Also ist (\mathcal{S}, v) ein Modell für F_6 .

Da die Struktur (\mathcal{S}, v) beliebig war, ist jede Struktur ein Modell für F_6 , also ist F_6 allgemeingültig, und damit auch erfüllbar.

(g) $F_7 := \forall x (p(x) \land \neg p(x))$

Hierbei ist x eine Variable und p ist ein einstelliges Prädikatssymbol. Formal:

$$\begin{split} \Sigma &:= (F_{\Sigma}, P_{\Sigma}, \alpha_{\Sigma}, Var_{\Sigma}) & \alpha_{\Sigma}(p) := 1 \\ F_{\Sigma} &:= \{\} \\ P_{\Sigma} &:= \{p\} \\ Var_{\Sigma} &:= \{x\} \end{split}$$

Lösung:

Sei $S_1 := (U_1, I_1)$ mit

$$U_1 := \mathbb{N} \qquad \qquad I_1(p) := \{ n \in \mathbb{N} \mid n \text{ gerade} \}$$

Weiter sei $\beta(x) := 5725$.

Dann gilt

$$valf_{S_1,\beta}(F_7) = \mathfrak{F},$$

damit ist (S_1,β) kein Modell für F_7 , also ist F_7 nicht allgemeingültig. Wir wollen nun noch sehen, wie es um die Erfüllbarkeit bestellt ist. Sei $S_2:=(U_2,I_2)$ mit

$$U_2 := \emptyset$$
 $I_2(p) := \emptyset$

Weiter sei $\gamma(x) := 3798$.

Dann gilt

$$valf_{S_2,\gamma}(F_7) = \mathfrak{W}.$$

Dies klingt im ersten Moment unlogisch, bei der Auswertungsvorschrift des Allquantors ist jedoch von »falls für alle $u \in U_2$ gilt« die Rede. Da U_2 keine Elemente besitzt, ist diese Aussage wahr (es lohnt sich, hierüber einen Moment nachzudenken). Die Wahl eines leeren Universums ist die einzige Möglichkeit, diese Formel zu $\mathfrak W$ auswerten zu lassen. Allerdings haben wir in unserer Definition einer Struktur gefordert, dass das Universum eine nichtleere Menge sein soll. Daher ist S_2 wenn man es genau nimmt (und das tun wir ja) gar keine zulässige Struktur. Und daher ist die Formel doch unerfüllbar.

(h) $F_8 := \forall x \forall y \forall z ((x < y) \rightarrow ((x + z) < (y + z)))$

Hierbei sind x, y und z Variablen, **+(*) ist ein zweistelliges Funktionssymbol in Infixnotation und *<(*) ein zweistelliges Prädikatssymbol in Infixnotation. Formal:

$$\begin{split} \Sigma &:= (F_\Sigma, P_\Sigma, \alpha_\Sigma, Var_\Sigma) & \qquad \alpha_\Sigma(+) := 2 & \qquad \alpha_\Sigma(<) := 2 \\ F_\Sigma &:= \{+\} & \qquad P_\Sigma := \{<\} & \qquad Var_\Sigma := \{x,y,z\} \end{split}$$

Lösung:

Die Schwierigkeit bei dieser Aufgabe besteht darin, sich von den bekannten Symbolen »<« und »+« nicht in die Irre führen zu lassen. Es sind syntaktisch eben nur Symbole ohne Bedeutung. Eine Bedeutung erhalten sie erst durch eine Struktur. Zunächst erhalten wir mit der naheliegenden Interpretation ein Modell. Um die Verwirrung nicht zu vergrößern, führen wir für die Kleiner-Relation und die Addition künstlich neue Relationsund Funktionsnamen ein: E_1 bzw. h_1 . E_1 ist eine Relation (im Gegensatz zu »<«, das hier nur ein syntaktisches Symbol ist) und h_1 ist eine Funktion (im Gegensatz zu »+«, das hier ebenfalls nur ein syntaktisches Symbol ist).

Sei $U_1 := \mathbb{Z}, \, E_1 := \{(m,n) \in \mathbb{Z} \times \mathbb{Z} \mid m < n \}$ (also ist $E_1 \subseteq U_1 \times U_1$ die »normale« Kleiner-Relation) und

$$h_1 := U_1 \times U_1 \to U_1$$

$$(x,y) \mapsto x + y$$

(also ist h_1 die normale Addition auf \mathbb{Z}). Sei weiter I_1 die Interpretationsfunktion

$$I_1(<) := E_1, I_1(+) := h_1$$

Dies setzen wir nun zur Struktur S_1 zusammen: $S_1 \vcentcolon= (U_1, I_1).$

Sei $\beta(x) := 576$, $\beta(y) := -7152$, $\beta(z) := 2254$ (wir machen uns bewusst, dass die Variablenbelegung bei dieser Formel keine Rolle spielen kann). Offenbar gilt nun

$$valf_{S_1,\beta}(\forall x\forall y\forall z((x< y)\rightarrow ((x+z)<(y+z))))=\mathfrak{W}.$$

Damit ist S_1 ein Modell für ${\cal F}_8,$ also ist ${\cal F}_8$ erfüllbar.

Da uns aber die Formel F_8 nicht zwingen kann, die Symbole »<« und »+« so zu interpretieren, wie man es auf den ersten Blick vermutet, können wir folgende (zugegebenermaßen sinnfreie) Struktur angeben, die keinen Bezug zur üblichen Kleiner-Relation und zur Addition hat. Wir verwenden als Universum noch nicht einmal eine Menge von Zahlen.

Sei $U_2:=\{\Box, \triangledown\},\, E_2:=\{(\Box, \triangledown)\}$ (also $E_2\subseteq U_2\times U_2)$ und

$$\begin{split} h_2 := U_2 \times U_2 \to U_2 \\ (\square, \square) &\mapsto \square \\ (\square, \triangledown) &\mapsto \square \\ (\triangledown, \square) &\mapsto \square \\ (\triangledown, \triangledown) &\mapsto \square \end{split}$$

(also ist h_2 eine konstante Funktion). Sei weiter I_2 die Interpretationsfunktion

$$I_2(<) := E_2, I_2(+) := h_2$$

Dies setzen wir nun zur Struktur S_2 zusammen: $S_2 := (U_2, I_2).$

Sei $\gamma(x) := \square$, $\gamma(y) := \nabla$, $\gamma(z) := \square$ (wieder spielt die Variablenbelegung keine Rolle).

Es gilt $(\Box, \nabla) \in E_2$. Weiter ist $h_2(\Box, \Box) = \Box$ und $h_2(\Box, \nabla) = \Box$, aber es gilt $(\Box, \Box) \notin E_2$. Deshalb ist

$$valf_{S_2,\gamma_{xyz}^{\square \triangledown \square}}(((x < y) \rightarrow ((x+z) < (y+z)))) = \mathfrak{F}$$

und folglich

$$valf_{S_2,\gamma}(\forall x \forall y \forall z ((x < y) \rightarrow ((x+z) < (y+z)))) = \mathfrak{F}.$$

Damit ist S_2 kein Modell für ${\cal F}_8,$ also ist ${\cal F}_8$ nicht allgemeingültig.

Damit haben wir gezeigt, dass die Formel F_8 erfüllbar, aber nicht allgemeingültig ist. Die Aufgabe ist damit gelöst. Wir möchten aber noch interessehalber eine weitere Struktur betrachten. Wir untersuchen die ganze Situation für die Moduloarithmetik, in der unsere Rechner üblicherweise rechnen. Um die Situation nicht zu unübersichtlich zu machen, betrachten wir einen 2-Bit-Rechner, das Ganze funktioniert aber auch für 32- und 64-Bit-Rechner.

Sei $U_3 := \mathbb{Z}/4\mathbb{Z}$, also $U_3 = \{[0]_{\sim_4}, [1]_{\sim_4}, [2]_{\sim_4}, [3]_{\sim_4}\}.$

$$\begin{split} E_3 := \{ ([0]_{\sim_4}, [1]_{\sim_4}), ([0]_{\sim_4}, [2]_{\sim_4}), ([0]_{\sim_4}, [3]_{\sim_4}), \\ ([1]_{\sim_4}, [2]_{\sim_4}), ([1]_{\sim_4}, [3]_{\sim_4}), \\ ([2]_{\sim_4}, [3]_{\sim_4}) \} \end{split}$$

(also ist $E_3\subseteq U_3\times U_3$ die Kleiner-Relation, die unser Rechner bei vorzeichenlosen »Ganzzahlen« verwendet) und

$$\begin{split} h_3 &:= \quad U_3 \times U_3 \rightarrow U_3 \\ &([x]_{\sim_4}, [y]_{\sim_4}) \mapsto [x+y]_{\sim_4} \end{split}$$

(also ist h_3 die normale Addition auf $\mathbb{Z}/4\mathbb{Z}$). Sei weiter I_3 die Interpretationsfunktion

$$I_3(<) := E_3, I_3(+) := h_3,$$

Dies setzen wir nun zur Struktur S_3 zusammen: $S_3 := (U_3, I_3)$.

Sei $\delta(x) := [2]_{\sim_4}, \ \delta(y) := [0]_{\sim_4}, \ \delta(z) := [1]_{\sim_4}$ (wieder spielt die Variablenbelegung keine Rolle).

Es gilt $([2]_{\sim_4}, [3]_{\sim_4}) \in E_3$. Weiter ist $h_3([2]_{\sim_4}, [1]_{\sim_4}) = [3]_{\sim_4}$ und $h_3([3]_{\sim_4}, [1]_{\sim_4}) = [0]_{\sim_4}$, aber es gilt $([3]_{\sim_4}, [0]_{\sim_4}) \notin E_3$. Deshalb ist

$$valf_{S_3, \delta_x^{[2] \sim_4} i_y^{[3] \sim_4} [1] \sim_4} (((x < y) \to ((x+z) < (y+z)))) = \mathfrak{F}$$

und folglich

$$valf_{S_3,\delta}(\forall x \forall y \forall z ((x < y) \rightarrow ((x+z) < (y+z)))) = \mathfrak{F}.$$

Damit ist S_3 kein Modell für F_8 .

Falls Sie Probleme beim Verständnis hatten, kann es hilfreich sein, wenn wir die Formel F_8 zunächst in Präfixnotation umformen:

$$\forall x \forall y \forall z (\langle (x,y) \rightarrow \langle (+(x,z),+(y,z)) \rangle$$

und noch die Funktions- und Prädikatssymbole wechseln (g:=+,q:=<). Damit erhalten wir

$$F_{8}^{'}:=\forall x\forall y\forall z(q(x,y)\rightarrow q(g(x,z),g(y,z))).$$

Bei dieser Formel ist jeder Bezug zu der üblichen Arithmetik verschwunden. Übertragen Sie nun (in Gedanken oder auf Papier) die Lösung auf diese modifizierte Formel $F_8^{'}$.