Utilice el método de diferencias divididas de Newton para resolver el siguiente problema de interpolación de Hermite. Buscamos el polinomio que ajusta a los siguientes valores: p(1)=2, p'(1)=3, p(2)=6, p'(2)=7, p''(2)=8

Polinomio de Hermite:

Suponga que tenemos n+1 números distintos x_0 , x_1 ,..., x_n en [a,b] y enteros no negativos m_0 , m_1 ,..., m_n , y $m = m ax \{m_0, m_1, ..., m_n\}$. El **polinomio osculante** que aproxima una función $f \in C^m[a,b]$ en x_i , para cada i=0,...,n, es el polinomio de **menor grado** que tiene los mismos valores que la función f y todas sus derivadas de orden menor o igual que m_i en cada x_i . El grado de este polinomio osculante es el máximo

$$M = \sum_{i=0}^{n} m_i + n$$

Ya que el número de condiciones que se satisfacen es $\sum_{i=0}^{n} m_i + (n+1)$ y un polinomio de grado M tiene M+1 coeficientes que se puedan usar para satisfacer estas condiciones.

Sean x_0 , x_1 ,..., x_n n+1 números distintos en [a,b] y para cada i=0,1,...,n, sea m_i un entero no negativo. Suponga que $f \in C^m[a,b]$ donde $m=m \acute{a} x \ m_i \ 0 \le i \le m_i$.

Polinomio de Hermite:

El <u>polinomio osculante</u> que se aproxima a f es el polinomio P(x) de menor grado, tal que:

$$\frac{d^{k}P(x_{i})}{dx^{k}} = \frac{d^{k}f(x_{i})}{dx^{k}} \quad para \ cada \ i = 0,1,...,n \ y \ k = 0,1,...,m_{i}$$

- n=0 el polinomio osculante que se aproxima a fes el m₀-ésimo polinomio de Taylor para fen x₀.
 m_i = 0 para cada i, el polinomio osculante es el n-ésimo polinomio de
 - $m_i=0$ para cada i, el polinomio osculante es el n-ésimo polinomio de Lagrange que interpola f en $x_0, x_1, ..., x_n$.

Polinomio de Hermite:

Cuando $m_i = 1$, para cada i = 0,1,...,n nos da los <u>polinimios de Hermite</u>. Para una función f determinada, estos polinomios concuerdan con f en $x_0, x_1,..., x_n$. Además, puesto que sus primeras derivadas concuerdan con las de f, tienen la misma "forma" que la función en $(x_i, f(x_i))$, en el sentido en el que las *rectas tangentes* al polinomio y la función concuerdan.

Teorema: Si $f \in C^1[a,b]$ y x_0 , x_1 ,..., $x_n \in [a,b]$ son distintos, el único polinomio de menor grado que concuerda con f y f' en x_0 , x_1 ,..., x_n es el polinomio de Hermite de grado a lo sumo 2n + 1 dado por:

 $H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \widehat{H}_{n,j}(x),$

Donde cada $L_{n,j}(x)$ denota el j-ésimo coeficiente del polinomio de Lagrange de grado n, y

$$H_{n,j}(x) = \left[1 - 2(x - x_j)L'_{n,j}(x)\right]L^2_{n,j}(x) \ y \ \widehat{H}_{n,j}(x) = (x - x_j)L^2_{n,j}(x)$$

Además, si $f \in C^{2n+2}[a,b]$, entonces:

$$f(x) = H_{2n+1}(x) + \frac{(x - x_0)^2 \dots (x - x_n)^2}{(2n+2)!} f^{2n+2}(\xi(x))$$

Polinomio de Hermite usando diferencias divididas:

Este método utiliza la conexión entre la n-ésima diferencia dividida y la n-ésima derivada de f. Suponga que los diferentes números $x_0, x_1, ..., x_n$ están dados junto con los valores de fyf en estos números. Defina una nueva sucesión $z_0, z_1, ..., z_{2n+1}$ mediante: $z_{2i} = z_{2i+1} = x_i$ para cada i=0, 1, ..., n y construya la tabla de diferencias divididas.

Puesto que $z_{2i} = z_{2i+1} = x_i$ para cada i, no podemos definir $f[z_{2i}, z_{2i+1}]$ con la fórmula de diferencias divididas. Sin embargo, si suponemos, con base en el teorema 3.6 (Burden 10ma edición), que la sustitución razonable en estas situaciones es $f[z_{2i}, z_{2i+1}] = f'(z_{2i}) = f'(x_i)$.

Es decir:
$$f[x_i, x_i, ..., x_i] = \frac{f^k(x_i)}{k!}$$

$$k \text{ veces}$$

$$f[z_0, z_1, ..., z_k] = \begin{cases} \frac{f^k(x_0)}{k!} & \text{si } z_0 = z_1 = \cdots = z_k \\ \frac{(f[x_0, x_1, ..., x_{k-1}] - f[x_1, x_2, ..., x_k])}{x_0 - x_k} & \text{si } z_0 \neq z_k \end{cases}$$

Utilice el método de diferencias divididas de Newton para resolver el siguiente problema de interpolación de Hermite. Buscamos el polinomio que ajusta a los siguientes valores: p(1)=2, p'(1)=3, p(2)=6, p'(2)=7, p''(2)=8

z	f(z)	Primeras diferencias divididas	Segundas diferencias divididas
$z_0=x_0$	$f[z_0] = f(x_0)$	$f[z_0, z_1] = f'(x_0)$	
$z_1 = x_0$	$f[z_1] = f(x_0)$		$f[z_0, z_1, z_2] = \frac{f[z_1, z_2] - f[z_0, z_1]}{z_2 - z_0}$
		$f[z_1, z_2] = \frac{f[z_2] - f[z_1]}{z_2 - z_1}$	$f[z_2, z_3] - f[z_1, z_2]$
$z_2 = x_1$	$f[z_2] = f(x_1)$	$f[z_2, z_3] = f'(x_1)$	$f[z_1, z_2, z_3] = \frac{f[z_2, z_3] - f[z_1, z_2]}{z_3 - z_1}$
$z_3=x_1$	$f[z_3] = f(x_1)$	f[-] f[-]	$f[z_2, z_3, z_4] = \frac{f[z_3, z_4] - f[z_2, z_3]}{z_4 - z_2}$
		$f[z_3, z_4] = \frac{f[z_4] - f[z_3]}{z_4 - z_3}$	$f[z_4, z_5] - f[z_3, z_4]$
$z_4 = x_2$	$f[z_4] = f(x_2)$	$f[z_4, z_5] = f'(x_2)$	$f[z_3, z_4, z_5] = \frac{f[z_4, z_5] - f[z_3, z_4]}{z_5 - z_3}$
$z_5 = x_2$	$f[z_5] = f(x_2)$		

$$P_H = 2 + 3(x - 1) + 1(x - 1)^2 + 2(x - 1)^2(x - 2) + (-1)(x - 1)^2(x - 2)^2$$

$$P_H = -x^4 + 8x^3 - 20x^2 + 23x - 8$$

Comprobación:

$$P_{H}(1) = -(1)^{4} + 8(1)^{3} - 20(1)^{2} + 23(1) - 8 = -1 + 8 - 20 + 23 - 8 = 2$$

$$P_{H}'(1) = -4(1)^{3} + 24(1)^{2} - 40(1) + 23 = 3$$

$$P_{H}(2) = -(2)^{4} + 8(2)^{3} - 20(2)^{2} + 23(2) - 8 = -16 + 64 - 80 + 46 - 8 = 6$$

$$P'_{H}(2) = -4(2)^{3} + 24(2)^{2} - 40(2) + 23 = -32 + 96 - 80 + 23 = 7$$

$$P''_{H}(2) = -12(2)^{2} + 48(2) - 40 = -48 + 96 - 40 = 8$$