Задача о минимизации затрат на пересылку данных по компьютерной сети

По компьютерной сети из компьютеров C_1, C_2, \ldots, C_n требуется за секунду переслать Z МБайт с компьютера C_1 на C_n . Известны максимальные пропускные способности D_{ij} МБайт/с для всех имеющихся каналов связи между компьютерами, конфигурация сети, а также стоимость A_{ij} пересылки 1 Мбайта с компьютера C_i на C_j .

Составить схему пересылки данных с C_1 на C_n , при которой пропускная способность ни одного канала не превышена и суммарные затраты на пересылку минимальны.

$$\begin{cases} f = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij} x_{ij} \to \min \\ \sum_{j=1}^{n} x_{1j} = Z \\ \sum_{j=1}^{n} x_{ij} - \sum_{j=1}^{n} x_{ji} = 0, \ i = \overline{2, n-1} \\ x_{ij} \le D_{ij}, \ i = \overline{1, n}, \ j = \overline{1, n} \\ x_{ij} \ge 0, \ i = \overline{1, n}, \ j = \overline{1, n} \end{cases}$$

$$A = \begin{pmatrix} 0 & 127 & 83 \\ 46 & 0 & 34 \\ 53 & 129 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 0 & 50 & 29 \\ 50 & 0 & 7 \\ 32 & 9 & 0 \end{pmatrix}, \ Z = 33$$

Решение Имеем следующую задачу ЛП:

$$\begin{cases} f = 127x_{12} + 83x_{13} + 46x_{21} + 34x_{23} + 53x_{31} + 129x_{32} \to \min \\ x_{12} + x_{13} = 33 \\ x_{21} + x_{23} - x_{12} - x_{32} = 0 \\ x_{11} \leqslant 0 \\ x_{12} \leqslant 50 \\ x_{13} \leqslant 29 \\ x_{21} \leqslant 50 \\ x_{22} \leqslant 0 \\ x_{23} \leqslant 7 \\ x_{31} \leqslant 32 \\ x_{32} \leqslant 9 \\ x_{33} \leqslant 0 \\ x_{ij} \geqslant 0, \ i = \overline{1, 3}, j = \overline{1, 3} \end{cases}$$

Приведем к каноническому виду:

$$\begin{cases} f = -127x_{12} - 83x_{13} - 46x_{21} - 34x_{23} - 53x_{31} - 129x_{32} \to \max \\ x_{12} + x_{13} = 33 \\ x_{21} + x_{23} - x_{12} - x_{32} = 0 \\ x_{11} + s_1 = 0 \\ x_{12} + s_2 = 50 \\ x_{13} + s_3 = 29 \\ x_{21} + s_4 = 50 \\ x_{22} + s_5 = 0 \\ x_{23} + s_6 = 7 \\ x_{31} + s_7 = 32 \\ x_{32} + s_8 = 9 \\ x_{33} + s_9 = 0 \\ x_{ij}, s_k \geqslant 0, \ i = \overline{1, 3}, j = \overline{1, 3}, k = \overline{1, 9} \end{cases}$$

Тут достаточно гауссовских преобразований, чтобы получить специальную ЗЛП.

$$\begin{cases} f = -3099 + 12x_{23} - 175x_{22} - 34x_{23} - 53x_{31} - 90s_3 \to \max \\ x_{12} - s_3 = 4 \\ x_{21} + x_{23} - x_{32} - s_3 = 4 \\ x_{11} + s_1 = 0 \\ s_2 + s_3 = 46 \\ x_{13} + s_3 = 29 \\ -x_{23} + x_{32} + s_3 + s_4 = 46 \\ x_{22} + s_5 = 0 \\ x_{23} + s_6 = 7 \\ x_{31} + s_7 = 32 \\ x_{32} + s_8 = 9 \\ x_{33} + s_9 = 0 \\ x_{ij}, s_k \geqslant 0, \ i = \overline{1, 3}, j = \overline{1, 3}, k = \overline{1, 9} \end{cases}$$

Базисные переменные - $[x_{12},x_{21},x_{11},s_2,x_{13},s_4,x_{22},s_6,s_7,s_8,x_{33}]$ Итерация симплекс-метода:

B	x_0	x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}	x_{31}	x_{32}	x_{33}	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9
f	-3099	0	0	0	0	0	-12	53	175	0	0	0	90	0	0	0	0	0	0
x_{12}	4	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0
x_{21}	4	0	0	0	1	0	1	0	-1	0	0	0	-1	0	0	0	0	0	0
x_{11}	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
s_2	46	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
x_{13}	29	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
s_4	46	0	0	0	0	0	-1	0	1	0	0	0	1	1	0	0	0	0	0
x_{22}	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
s_6	7	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0
s_7	32	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
s_8	9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
x_{33}	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1

Таблица не оптимальна (есть отрицательные числа в строке f), не является неразрешимой (нет столбцов, состоящих только из отрицательных чисел).

Столбец x_{23} является ведущим, т.к в строке f отрицательное число

Строка x_{21} является ведущей, т.к $\frac{4}{1}=\min_{a_{0q}>0}\frac{a_{i0}}{a_{iq}}=\min\{4,7\}$

Преобразование...

B	x_0	x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}	x ₃₁	x_{32}	x_{33}	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_9
f	-3051	0	0	0	12	0	0	53	163	0	0	0	78	0	0	0	0	0	0
x_{12}	4	0	1	0	0	0	0	0	0	0	0	0	-1	0	0	0	0	0	0
x_{21}	4	0	0	0	1	0	1	0	-1	0	0	0	-1	0	0	0	0	0	0
x_{11}	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
s_2	46	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
x_{13}	29	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
s_4	50	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0
x_{22}	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0
s_6	3	0	0	0	-1	0	0	0	1	0	0	0	1	0	0	1	0	0	0
s_7	32	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
s_8	9	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
x_{33}	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1

Проверка на оптимальность: все числа в строке f неотрицательны, тем самым имеем оптимальное базисное решение (0, 4, 29, 0, 0, 4, 0, 0, 0, 46, 0, 50, 0, 3, 32, 9, 0) оптимально.

Вернемся к исходной задаче: так как мы при приведении задачи $\Pi\Pi$ к канонической форме умножали целевую функцию на -1, теперь также умножим ответ на -1

$$X^* = \begin{pmatrix} 0 & 4 & 29 \\ 0 & 0 & 4 \\ 0 & 0 & 0 \end{pmatrix}, \ f^* = -(-3051) = 3051$$