Chapter 1

The Nature of Econometrics and Economic Data

The Nature of Econometrics and Economic Data (1 of 22)

What is econometrics?

- Econometrics is the use of statistical methods to analyze economic data.
- Econometricians typically analyze nonexperimental data.

Typical goals of econometric analysis:

- Estimating relationships between economic variables.
- Testing economic theories and hypotheses.
- Evaluating and implementing government and business policy.

Common applications

- Forecasting macroeconomic variables (interest rates, inflation rates, GDP).
- Forecasting non-macro variables (less visible).

The Nature of Econometrics and Economic Data (2 of 22)

Steps in econometric analysis

- 1) Economic model (this step is often skipped)
- 2) Econometric model

Economic models

- Maybe micro- or macromodels
- Often use optimizing behaviour, equilibrium modeling, ...
- Establish relationships between economic variables
- Examples: demand equations, pricing equations, ...

The Nature of Econometrics and Economic Data (3 of 22)

- Economic model of crime (Becker (1968))
 - Derives equation for criminal activity based on utility maximization.

- Functional form of relationship not specified.
- Equation could have been postulated without economic modeling.

The Nature of Econometrics and Economic Data (4 of 22)

- Model of job training and worker productivity
 - What is the effect of additional training on worker productivity?
 - Formal economic theory not really needed to derive equation:

Other factors may be relevant, but these are the most important.

The Nature of Econometrics and Economic Data (5 of 22)

- Econometric model of criminal activity
 - The functional form has to be specified.
 - Variables may have to be approximated by other quantities.

The Nature of Econometrics and Economic Data (6 of 22)

Econometric model of job training and worker productivity

- Most of econometrics deals with the **specification of the error** *u*.
- Econometric models may be used for hypothesis testing.
 - For example, the parameter β_3 represents the effect of training on wages.
 - How large is this effect? Is it different from zero?

The Nature of Econometrics and Economic Data (7 of 22)

- Econometric analysis requires data.
- There are several different kinds of economic data sets:
 - Cross-sectional data
 - Time series data
 - Pooled cross sections
 - Panel/Longitudinal data
- Econometric methods depend on the nature of the data used.
 - Use of inappropriate methods may lead to misleading results.

The Nature of Econometrics and Economic Data (8 of 22)

Cross-sectional data sets

- These may include samples of individuals, households, firms, cities, states, countries, or other units of interest at a given point of time or in a given period.
- Cross-sectional observations are more or less independent.
- An example is pure random sampling from a population.
- Sometimes pure random sampling is violated, for example, people refuse to respond in surveys, or sampling may be characterized by clustering.
- Cross-sectional data is typically encountered in applied microeconomics.

The Nature of Econometrics and Economic Data (9 of 22)

• Table 1.1: Cross-sectional data set on wages and other characteristics

The Nature of Econometrics and Economic Data (10 of 22)

• Table 1.2: Cross-sectional data on growth rates and country characteristics

The Nature of Econometrics and Economic Data (11 of 22)

Time series data

- This includes observations of a variable or several variables over time.
- Examples include stock prices, money supply, consumer price index, gross domestic product, annual homicide rates, automobile sales, and so on.
- Time series observations are typically serially correlated.
- Ordering of observations conveys important information.
- Data frequency may include daily, weekly, monthly, quarterly, annually, and so on.
- Typical features of time series include trends and seasonality.
- Typical applications include applied macroeconomics and finance.

The Nature of Econometrics and Economic Data (12 of 22)

 Table 1.3: Time series data on minimum wage, unemployment, and related data for Puerto Rico

The Nature of Econometrics and Economic Data (13 of 22)

Pooled cross sections

- Two or more cross sections are combined in one data set.
- Cross sections are drawn independently of each other.
- Pooled cross sections are often used to evaluate policy changes.
- Example:
 - Evaluating effect of change in property taxes on house prices.
 - Random sample of house prices for the year 1993.
 - A new random sample of house prices for the year 1995.
 - Compare before/after (1993: before reform, 1995: after reform).

The Nature of Econometrics and Economic Data (14 of 22)

• Table 1.4: Pooled cross sections on two years of housing prices

The Nature of Econometrics and Economic Data (15 of 22)

Panel or longitudinal data

- The same cross-sectional units are followed over time.
- Panel data have a cross-sectional and a time series dimension.
- Panel data can be used to account for time-invariant unobservables.
- Panel data can be used to model lagged responses.
- Example:
 - City crime statistics; each city is observed in two years.
 - Time-invariant unobserved city characteristics may be modeled.
 - Effect of police on crime rates may exhibit time lag.

The Nature of Econometrics and Economic Data (16 of 22)

• Table 1.5: Two-year panel data set on city crime statistics

The Nature of Econometrics and Economic Data (17 of 22)

Causality and the notion of ceteris paribus

Definition of causal effect of x on y:

"How does variable x change if variable y is changed but all other relevant factors are held constant"

- Ceteris paribus: "other relevant factors being equal."
- Most economic questions are ceteris paribus questions.
- It is important to define which causal effect one is interested in.
- It is useful to describe how an experiment would have to be designed to infer the causal effect in question.

The Nature of Econometrics and Economic Data (18 of 22)

Causal effect of fertilizer on crop yield

- "By how much will the production of soybeans increase if one increases the amount of fertilizer applied to the ground."
- Implicit assumption: all other factors that influence crop yield such as quality of land, rainfall, presence of parasites, and so on are held fixed.
- Experiment = Feasible
 - Choose several one-acre plots of land; randomly assign different amounts of fertilizer to the different plots; compare yields.
 - Experiment works because amount of fertilizer applied is unrelated to other factors influencing crop yields.

The Nature of Econometrics and Economic Data (19 of 22)

Measuring the return to education

- "If a person is chosen from the population and given another year of education, by how much will his or her wage increase?"
- Implicit assumption: all other factors that influence wages such as experience, family background, intelligence, and so on are held fixed.
- Experiment ≠ Infeasable
 - Choose a group of people; randomly assign different amounts of education to them (infeasable!); compare wage outcomes.
 - Problem without random assignment, amount of education is related to other factors that influence wages (e.g. intelligence).

The Nature of Econometrics and Economic Data (20 of 22)

Effect of law enforcement on city crime level

- "If a city is randomly chosen and given ten additional police officers, by how much would its crime rate fall?"
- Alternatively: "If two cities are the same in all respects, except that city A
 has ten more police officers than city B, by how much would the two
 cities' crime rates differ?"
- Experiment ≠ Infeasable
 - Randomly assign number of police officers to a large number of cities (virtually impossible, as no two cities are alike in all respects except size of police force!).
 - More importantly, in reality, the number of police officers occurs contemoraneously with determination of crime rate.

The Nature of Econometrics and Economic Data (21 of 22)

- Effect of the minimum wage on unemployment
 - "By how much (if at all) will unemployment increase if the minimum wage is increased by a certain amount (holding other things fixed)?"
- Experiment ≠ Infeasable
 - Government randomly chooses minimum wage each year and observes unemployment outcomes.
 - Experiment would theoretically work because level of minimum wage is unrelated to other factors determining unemployment.
 - In reality, the level of the minimum wage will depend on political and economic factors that also influence unemployment.