Herbst 24 Themennummer 2 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Es sei $f: \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar. Es sei ferner f(0) = 0 ein lokales Minimum von f. Zeigen Sie, dass

$$f(x) = \int_{0}^{1} (1-t)x^{2} f''(tx) dt$$

für alle $x \in \mathbb{R}$ gilt.

b) Es sei $n \geq 1$ eine natürliche Zahl. Das Standardskalarprodukt auf dem \mathbb{R}^n wird mit $\langle \cdot, \cdot \rangle$ bezeichnet. Sei $F : \mathbb{R}^n \to \mathbb{R}$ zweimal stetig differenzierbar. Sei ferner F(0) = 0 ein lokales Minimum von F. Die Hessematrix von F im Punkt $z \in \mathbb{R}^n$ bezeichnen wir mit $H_F(z)$. Zeigen Sie, dass

$$F(x) = \int_{0}^{1} (1 - t) \langle x, H_F(tx) x \rangle dt$$

für alle $x \in \mathbb{R}^n$ gilt.

Lösungsvorschlag:

a) Der Integrand ist nach den Voraussetzungen stetig, wir können also partiell integrieren. Außerdem gilt f(0) = 0 = f'(0) weswegen wir

$$\int_{0}^{1} (1-t)x^{2} f''(tx) dt = (1-t)x f'(tx) \Big|_{t=0}^{t=1} + \int_{0}^{1} x f'(tx) dt$$
$$= 0 - x f'(0) + f(tx) \Big|_{t=0}^{t=1} = f(x) - f(0) = f(x)$$

erhalten. Dies war zu zeigen.

b) Sei $x \in \mathbb{R}^n$ beliebig aber fest gewählt. Für x=0 ist die Aussage klar, wir betrachten also $x \neq 0$. Wir betrachten die Funktionen $g: \mathbb{R} \to \mathbb{R}^n, y \mapsto yx$ und $h: \mathbb{R} \to \mathbb{R}, h=F \circ g$. Als Verkettung zweimal stetig differenzierbare Funktionen ist h ebenfalls zweimal stetig differenzierbar. Es gilt h(0) = F(0) = 0 und h hat bei 0 ein lokales Minimum, denn es gibt ein $\delta > 0$ mit $||y|| < \delta \implies F(y) \geq F(0)$ und für $\varepsilon = \frac{\delta}{||x||}$ gilt $|z| < \varepsilon \implies ||zx|| < \delta \implies F(zx) \geq F(0) \implies h(z) \geq h(0)$. Damit können wir Teil a) auf h anwenden. Wir bestimmen h' und h''. Mit der Kettenregel gilt $h'(y) = \langle \nabla F(g(y)), x \rangle$, da Dg(y) = x für alle $y \in \mathbb{R}$ gilt. Wir erhalten außerdem $h''(y) = \langle \partial_y \nabla F(g(y)), x \rangle = \langle H_F(yx)x, x \rangle = (H_F(yx)x)^T x = x^T H_F(yx)x = \langle x, H_F(yx)x \rangle$, weil die Hessematrix einer C^2 -Funktion an jeder Stelle symmetrisch ist. Mit a) folgt $F(x) = h(1) = \int_0^1 (1-t)h''(t) dt = \int_0^1 (1-t)\langle x, H_F(tx)x \rangle dt$, wie behauptet. $\mathcal{J}.\mathcal{F}.\mathcal{B}$.