PD / PI / PID Controller Design

10-Step Process (with PID Position-Control Example)

Copyright © 2022

Prof. Leo Stocco, P.Eng Electrical & Computer Engineering University of British Columbia

1) Controller Dynamics

• No dynamics → Proportional Control

2) System Model

- Linearize
- 2nd Order Approximation
- State-Space Model and/or Transfer Function

3) Integrate

Transform Speed → Position

4) Sensor Model

- Often just a Sensor Gain
- Include Sensor Dynamics if present

5) Controller Feedback Gain

- Compensate for Sensor Gain
- Entire Feedback Path must have Unity Gain

6) Controller Feedback Dynamics

- Control Frequency from ISR Execution Time + Safety Factor
- Implement PID Controller for Worst-Case Execution Time

Initial System Model

- Many blocks cancel out
- Simple mathematical equivalent
- Use to CHECK model (GH)

Find Kappa

- Use margin(GH)
- Kappa = Ultimate Gain using P-Control

Generate Nyquist Contour

- Use nyqlog(KGH)
- · Marginally Stable reference figure
- GXO = PXO

Find PXO

- Use margin(GH) or margin(KGH)
- GXO affected by Gain
- PXO NOT affected by Gain

Zero Location

• z = PXO/10

PD Controller (zero @ -z)

- Kp = 1
- Kd = 1/z 1/p

PI Controller (zero @ -z)

- Kp = 1/z
- Ki = 1

PID Controller (double-zero @ -z)

- Kp = 2/z 1/p
- Ki = 1
- $Kd = 1/z^2 Kp/p$

Controller Dynamics

- Use margin(KDGH) to find new PXO
- Use new PXO to adjust Zero(s)
- Re-compute Controller Dynamics
- Repeat until PXO stops changing

Multiple Solutions

- When phase = -180 at multiple frequencies you get multiple solutions
- Choose lowest frequency solution (closest to jω axis on pole-zero plot)

Corner Frequency

- · Results from zero placement
- · Large PM at that frequency
- · Peak in Phase Bode plot
- Lookup frequency on Nyquist or Bode

Corner Frequency

- Remove K to simplify math
- Use freqresp()
- Find gain of **DGH** at wc

Applying Gain K0

- · Corner intersects 0dB iso-line
- PM maximized

Plot Step Response

- Compute Closed-Loop transfer function
- Plot step response for range of K values

Choose best compromise

Consult RCGs

Root Locus (DGH)

- Never include gain K in RL plots
- · Zoom in on Dominant Roots
- OL Poles & Zeros as expected?
- · Least stable poles attracted to zeros?

Step 8a: Heuristic Tune

- Controller Gain K ↑
 - ↑ Kp, Ki, Kd Simultaneously Poles follow Root Locus
- Proportional Gain Kp ↑
 - ↓ Rise Time & Steady-State Error
 - ↑ Overshoot
- · Integral Gain Ki ↑
 - ↓ Steady-State Error
 - ↑ Overshoot, Settle Time
- Derivative Gain Kd ↑
 - ↓ Overshoot, Settle Time
 - · Destabilizes when too large
 - · Depends on filter pole

Adjust Individual Gains

- #1 Ki & K
 - · Balance overshoot & steady-state error
- #2 Kp & K
 - · Balance rise time & stability
- #3 Kd & K
 - Maximize stability

Repeat until satisfied

- · Small increments
- · Record good combinations

Generate Bode & Nyquist plots

- · Evaluate GM
- Evaluate PM

Check

• Higher margins → Reduced sensitivity

Transfer to Simulink

- Control System Toolbox / LTI System block for transfer functions
- · Non-linearities convenient to model in Simulink

Add Non-Linearities

- Discontinuities / Saturation for Voltage / Current limits
- Math Operations / Floor for resolution
- User Defined Functions / MATLAB function for custom equations (Gravity / Friction)
- · Explore all Simulink libraries for other features

Results Not Acceptable

- · Adjust RCGs
- Go to Step 7

Replace Step Input with Sine Input

- Evaluate Delay
- · Overshoot eliminated by moving target
- Better tracking when **STABILTY REDUCED**

Results Not Acceptable

- Adjust RCGs
- Go to Step 7

Results similar?

- Fix bugs
- Repeat process

Results acceptable?

- Heuristic Tune
- Use Intended System during tuning