Assignment #2

Problem 2.1: riscv stack frame

- a)
- 1. main: ; function entry label
- 2. addi sp,sp,-48
 - 48-byte allocation stack frame
 - sp := sp 48
- 3. sd s0,40(sp)
 - sd = store doubleword (64-bits)
 - save the old frame pointer (s0) into the stack at address sp + 40
 - s0 is placed at sp+40
- 4. addi s0,sp,48
 - set up a frame pointer at s0 := sp + 48
 - Since sp was decremented earlier by 48, s0 takes its old value
- 5. mv a5,a0
 - mv is a pseudoinstruction;
 - mv a5, a0 = addi a5, a0, 0
 - copy the incoming a0 (argc) into temporary register a5
- 6. sd a1,-48(s0)
 - sd = Store Doubleword
 - Store the incoming a1 (argy pointer) at the address (s0 48)
 - Because s0 = old_sp, s0 48 = new_so, this stores the argv at the bottom of the frame
- 7. sw a5,-36(s0)
 - sw = store word (32 bits)
 - stores the 32 bit value in a5 (argc) at s0 36
 - s0 36 is a slot reserved for local variables / saved arg
- 8. sw zero,-20(s0)

- store 0 (register) into s0 20
- The local variable 'rc' is initialized to zero in memory
- 9. lw a5,-20(s0)
 - lw = load word
 - load the word from s0 20 into the register a5
 - This loads 0 into the variable a5

10. mv a0, a5

- Move the value in a5 into the a0 register
- a0 is the standard register to hold a functions return value

11. ld s0,40(sp)

- Restore old s0 from the stack at s0 + 40 (64 bits)

12. addi sp,sp,48

- deallocate stack frame sp := sp + 48

13. jr ra

- jalr x0, ra, 0
- jump to the address in ra; return

b)

Higher Addresses	
(above-frame / caller area)	
saved s0 (sd s0,40(sp))	< Address = s0 - 8 = sp + 40 (8 bytes)
(padding / alignment)	
rc (sw zero,-20(s0))	< Address = s0 - 20 = sp + 28 (4 bytes)
argc (sw a5,-36(s0))	< Address = s0 - 36 = sp + 12 (4 bytes)
argv (sd a1,-48(s0))	< Address = s0 - 48 = sp + 0 (bottom)
(pointer, 8 bytes, 64-bit)	< Address = sp + 0 (8 bytes)
Lower addresses	