§5.1 APPROXIMATING AREAS §5.2 DEFINITE INTEGRALS
Math 1910

NAME:	
	August 29, 2017

RAPID REVIEW

(1) Approximations to the area under the graph of f over the interval [a, b]:

Right-endpoint	Left-endpoint	Midpoint
$R_{N} = \Delta x \sum_{j=0}^{\infty} f(x_{j})$	$L_{N} = \Delta x \sum_{j=0}^{(4)} f(x_{j})$	$M_{N} = \Delta x \sum_{j=0}^{N-1} $

(2) If f is continuous on [a, b], then the area A under the graph y = f(x) is defined as

- of the region between the graph of f and the x-axis. If (3) The **definite integral** is the on [a, b], then f is integrable over [a, b].
- (4) Some properties of definite integrals:

(a)
$$\int_{\alpha}^{b} (f(x) + g(x)) dx =$$

(b)
$$\int_{a}^{b} Cf(x)dx = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$$

(c)
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

(d)
$$\int_a^b f(x)dx + \int_b^c f(x)dx = \boxed{}$$

(5) Some formulas for computing integrals

(a)
$$\int_{a}^{b} C dx =$$

(b)
$$\int_{0}^{b} x dx =$$
 (13)

(b)
$$\int_0^b x dx =$$
 (13)
(c) $\int_0^b x^2 dx =$ (14)

(6) Comparison Theorem: If
$$f(x) \le g(x)$$
 on $[a, b]$, then $\int_a^b f(x) dx$

PROBLEMS

(1) Use the graph of g(x) given below to evaluate the following integrals.

- (a) $\int_0^3 g(x) dx$
- (b) $\int_{3}^{5} g(x) dx$
- (c) $\int_0^5 g(x) dx$
- (2) Find a formula for R_N for $f(x) = 3x^2 x + 4$ over the interval [0, 1].
- (3) Calculate $\int_{2}^{5} (2x+1) dx$ in three ways:
 - (a) As a limit $\lim_{N\to\infty} R_N$.
 - (b) Using geometry, interpreting this as the area under a graph.
 - (c) Using the properties of the integral.
- (4) Use the basic properties of the integral to calculate the following.
 - $(a) \int_1^4 6x^2 dx$
 - (b) $\int_{-2}^{3} (3x+4) dx$
 - (c) $\int_{1}^{3} |2x 4| dx$
- (5) Evaluate $\lim_{N\to\infty}\frac{1}{N}\sum_{j=1}^N\sqrt{1-\left(\frac{j}{N}\right)^2}$ by interpreting the limit as an area.