Computerlinguistik II

Vorlesung im SoSe 2019 (M-GSW-10)

Prof. Dr. Udo Hahn

Lehrstuhl für Computerlinguistik Institut für Germanistische Sprachwissenschaft Friedrich-Schiller-Universität Jena

http://www.julielab.de

Two Paradigms for NLP

- Symbolic Specification Paradigm
 - Manual acquisition procedures
 - Lab-internal activities
 - Intuition and (few!) subjectively generated examples drive progress based on individual (competence) judgments
 - "I have a system that parses all of my nine-teen sentences!"

Symbolic Specification Paradigm

- Manual rule specification
 - Source: linguist's intuition
- Manual lexicon specification
 - Source: linguist's intuition
- Each lab has its own (home-grown) set of NLP software
 - Hampers reusability
 - Limits scientific progress
 - Waste of human and monetary resources (we "burnt" thousands of Ph.D. student all over the world ☺)

Shortcomings of the "Classical" Linguistic Approach

- Huge amounts of background knowledge req.
 - Lexicons (approx. 100,000 150,000 entries)
 - Grammars (>> 15,000 20,000 rules)
 - Semantics (>> 15,000 20,000 rules)
- As the linguistic and conceptual coverage of classical linguistic systems increases (slowly), it still remains insufficient; systems also reveal 'spurious' ambiguity, and, hence, tend to become overly "brittle" and unmaintainable
- More fail-soft behavior is required at the expense of ... ? (e.g., full-depth understanding)

Two Paradigms for NLP

Symbolic Openineation Faradigm

- Manual acquisition procedures
- Lab-internal activities
- Intuition and (few!) subjectively generated examples drive progress based on individual (competence) judgments
 - "I have a system that parses all of my nine-teen sentences!"

Empirical (Learning) Paradigm

- Automatic acquisition procedures
- Community-wide sharing of common knowledge and resources
- Large and ,representative' data sets drive progress according to experimental standards
 - "The system was tested on 1,7 million words taken from the WSJ segment of the MUC-7 data set and produced 4.9% parsing errors, thus yielding a statistically significant 1.6% improvement over the best result by parser X on the same data set & a 40.3% improvement over the baseline system!"

Empirical Paradigm

- Large repositories of language data
 - Corpora (plain or annotated, i.e., enriched by meta-data)
- Large, community-wide shared repositories of language processing modules
 - Tokenizers, POS taggers, chunkers, NE recognizers, ...
- Shared repositories of machine learning algos
- Automatic acquisition of linguistic knowledge
 - Applying ML algos to train linguistic processors by using large corpora with valid linguistic metadata (linguist as educated data supplier, "language expert") rather than manual intuition (linguist as creative rule inventor)
- Shallow analysis rather than deep understanding
- Large, community-wide self-managed, task-oriented competitions, comparative evaluation rounds
- Change of mathematics:
 - Statistics rather than algebra and logics

Paradigm Shift – We Exchanged our Textbooks...

POS Tagging

Penn Treebank Tag Set

Tag	Description	Examples	In total,
			45 tags
	sentence terminator	.!?	
DT	determiner	all an many such that the them these this	
JJ	adjective, numeral	first oiled separable battery-pow	vered
NN	common noun	cabbage thermostat investment	
PRP	personal pronoun	herself him it me one oneself theirs they	
IN	preposition	among out within behind into next	
VB	verb (base form)	ask assess assign begin break bring	
VBD	verb (past tense)	asked assessed assigned began broke	
WP	WH-pronoun	that what which who whom	

Transformation Rules for Tagging [Brill, 1995]

- Initial State: Based on a number of features, guess the most likely POS tag for a given word:
 - die/DET Frau/NOUN ,/COMMA die/DET singt/VFIN
- Learn transformation rules to reduce errors:
 - Change DET to PREL whenever the preceding word is tagged as COMMA
- Apply learned transformation rules:
 - die/DET Frau/NOUN,/COMMA die/PREL singt/VFIN

First 20 Transformation Rules

	Change Tag		
#	From	То	Condition
1	NN	VB	Previous tag is TO
2	VBP	VB	One of the previous three tags is MD
3	NN	VB	One of the previous two tags is MD
4	VB	NN	One of the previous two tags is DT
5	VBD	VBN	One of the previous three tags is VBZ
6	VBN	VBD	Previous tag is PRP
7	VBN	VBD	Previous tag is NNP
8	VBD	VBN	Previous tag is VBD
9	VBP	VB	Previous tag is TO
10	POS	VBZ	Previous tag is PRP
11	VB	VBP	Previous tag is NNS
12	VBD	VBN	One of previous three tags is VBP
13	IN	WDT	One of next two tags is VB
14	VBD	VBN	One of previous two tags is VB
15	VB	VBP	Previous tag is PRP
16	IN	WDT	Next tag is VBZ
17	IN	DT	Next tag is NN
18	JJ	NNP	Next tag is NNP
19	IN	WDT	Next tag is VBD
20	JJR	RBR	Next tag is JJ

Taken from: Brill (1995), Transformation-Based Error-Driven Learning

Towards Statistical Models of Natural Language Processing ...

- Shannon's Game
- Guess the next letter:

- Shannon's Game
- Guess the next letter:
- W

- Shannon's Game
- Guess the next letter:
- Wh

- Shannon's Game
- Guess the next letter:
- Wha

- Shannon's Game
- Guess the next letter:
- What

- Shannon's Game
- Guess the next letter:
- What d

- Shannon's Game
- Guess the next letter:
- What do

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We are

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We are now

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We are now entering

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We are now entering statistical

- Shannon's Game
- Guess the next letter:
- What do you think the next letter is?
- Guess the next word:
- We are now entering statistical territory

- zero-order approximation: letter sequences are independent of each other and all equally probable:
 - xfoml rxkhrjffjuj zlpwcwkcy ffjeyvkcqsghyd

- first-order approximation: letters are independent, but occur with the frequencies of English text:
 - ocro hli rgwr nmielwis eu ll nbnesebya th eei alhenhtppa oobttva nah

- second-order approximation: the probability that a letter appears depends on the previous letter
 - on ie antsoutinys are t inctore st bes deamy achin d ilonasive tucoowe at teasonare fuzo tizin andy tobe seace ctisbe

- third-order approximation: the probability that a certain letter appears depends on the two previous letters
 - in no ist lat whey cratict froure birs grocid pondenome of demonstures of the reptagin is regoactiona of cre

 Higher frequency trigrams for different languages:

- English: THE, ING, ENT, ION

- German: EIN, ICH, DEN, DER

- French: ENT, QUE, LES, ION

- Italian: CHE, ERE, ZIO, DEL

- Spanish: QUE, EST, ARA, ADO

Zipfsches Gesetz

Terminology

- Sentence: unit of written language
- Utterance: unit of spoken language
- Word Form: the inflected form that appears literally in the corpus
- Lemma: lexical forms having the same stem, part of speech, and word sense
- Types (V): number of distinct words that might appear in a corpus (vocabulary size)
- Tokens (N_T): total number of words in a corpus (note: V << N_T)
- Types seen so far (T): number of distinct words seen so far in corpus (note: T < V << NT)

- A model that enables one to compute the probability, or likelihood, of a sentence S, P(S).
- Simple: Every word follows every other word with equal probability (0-gram)
 - Assume |V| is the size of the vocabulary V
 - Likelihood of sentence S of length n is1/|V| × 1/|V| ... × 1/|V|
 - If English has 100,000 words, the probability of each next word is 1/100000 = .00001

Relative Frequency vs. Conditional Probability

- Smarter: Relative Frequency
 Probability of each next word is related to word frequency within a corpus (unigram)
 - Likelihood of sentence $S = P(w_1) \times P(w_2) \times ... \times P(w_n)$
 - Assumes probability of each word is independent of probabilities of other words

Relative Frequency vs. Conditional Probability

- Smarter: Relative Frequency
 Probability of each next word is related to word frequency within a corpus (unigram)
 - Likelihood of sentence $S = P(w_1) \times P(w_2) \times ... \times P(w_n)$
 - Assumes probability of each word is independent of probabilities of other words
- Even smarter: Conditional Probability
 Look at probability given previous words (n-gram)
 - Likelihood of sentence $S = P(w_1) \times P(w_2|w_1) \times ... \times P(w_n|w_{n-1})$
 - Assumes probability of each word is dependent on probabilities of previous words

Generalization of Conditional Probability via Chain Rule

- Conditional Probability for Two Events, A₁ and A₂
 - $P(A_1,A_2) = P(A_1) \cdot P(A_2|A_1)$
- Chain Rule generalizes to multiple (n) events
 - $P(A_1, ..., A_n) =$

$$P(A_1) \times P(A_2|A_1) \times P(A_3|A_1,A_2) \times ... \times P(A_n|A_1...A_{n-1})$$

- Examples:
 - P(the dog) = P(the) \times P(dog | the)
 - P(the dog bites) = P(the) × P(dog | the) × P(bites| the dog)

Relative Frequencies and Conditional Probabilities

- Relative word frequencies are better than equal probabilities for all words
 - In a corpus with 10K word types, each word would have P(w) = 1/10K
 - Does not match our intuitions that different words are more likely to occur
 - (e.g. "the" vs. "shop" vs. "aardvark")
- Conditional probability is more useful than individual relative word frequencies
 - dog may be relatively rare in a corpus
 - but if we see barking, P(dog|barking) may be lärge

Probability for a Word String

• In general, the probability of a complete string of words $w_1^n = w_1...w_n$ is

$$P(w_{1}^{n})$$

$$=P(w_{1})P(w_{2}/w_{1})P(w_{3}/w_{1} w_{2})...P(w_{n}/w_{1}...w_{n-1})$$

$$=\prod_{k=1}^{n}P(w_{k}|w_{1}^{k-1})$$

 But this approach to determining the probability of a word sequence gets to be computationally very expensive <u>and</u>
 suffers from sparse data

Markov Assumption (basic idea)

- How do we (efficiently) compute P(w_n|w₁ⁿ⁻¹)?
- Trick (!): Instead of P(rabbit|I saw <u>a</u>), we use P(rabbit|<u>a</u>).
 - This lets us collect statistics in practice via a bigram model: P(the barking dog) = P(the|<start>) × P(barking|the) × P(dog|barking)

Markov Assumption (the very idea)

- Markov models are the class of probabilistic language models that assume that we can predict the probability of some future unit without looking too far into the past
 - Specifically, for N=2 (bigram):
 - $P(w_1^n) \approx \prod_{k=1}^n P(w_k|w_{k-1}); w_0 := < start >$
- Order of a Markov model: length of prior context
 - bigram is first order, trigram is second order, ...

Statistical HMM-based Tagging

[Brants, 2000]

- State transition probability: Likelihood of a tag immediately following n other tags
 - P₁(Tag_i | Tag_{i-1} ... Tag_{i-n})
- State emission probability. Likelihood of a word given a tag
 - P₂(Word_i | Tag_i)
 - die/DET Frau/NOUN ,/COMMA die/DET or PREL singt/VFIN

Trigrams for Tagging

- State transition probabilities (trigrams):
 - $-P_1(DET \mid COMMA NOUN) = 0.0007$
 - $-P_1(PREL \mid COMMA NOUN) = 0.0$
- State emission probabilities:
 - $P_2(die | DET) = 0.7$
 - $-P_2(die|PREL) = 0.2$

Taken from (POS-annotated) corpora

- Compute probabilistic evidence for the tag being
 - DET: $P_1 \cdot P_2 = 0.0007 \cdot 0.7 = 0.00049$
 - PREL: $P_1 \cdot P_2 = 0.01 \cdot 0.2 = 0.002$
 - die/DET Frau/NOUN ,/COMMA die/PREL singt/VFIN

Inside (most) POS Taggers

- Lexicon look-up routines
- Morphological processing (not only deflection!)
- Unknown word handler, if lexicon look-up fails (based on statistical information)
- Ambiguity ranking (priority selection)

Chunking

Arginine methylation of STAT1 modulates IFN induced transcription

Chunking

[Arginine methylation] of [STAT1] modulates [IFN induced transcription]

Shallow Parsing

[Arginine methylation of STAT1]_{NP} [modulates]_{VP} [IFN induced transcription]_{NP}

Shallow Parsing

[[Arginine methylation]_{NP} [of STAT1]_{PP}]_{NP}

[Arginine methylation of STAT1]_{NP} [modulates]_{VP} [IFN induced transcription]_{NP}

Shallow Parsing

[[IFN induced]_{AP} [transcription]_N]_{NP}

[[Arginine methylation]_{NP} [of STAT1]_{PP}]_{NP}

[Arginine methylation of STAT1]_{NP} [modulates]_{VP} [IFN induced transcription]_{NP}

Deep Parsing

[[IFN induced]_{AP} [transcription]_N]_{NP}

 $[[Arginine]_{N} [methylation]_{N}]_{NP} [[of]_{P} [STAT1]_{N}]_{PP}]_{NP}$

[[Arginine methylation]_{NP} [of STAT1]_{PP}]_{NP}

[Arginine methylation of STAT1]_{NP} [[modulates]_V [IFN induced transcription]_{NP}]_{VP}

Deep Parsing

```
[ [[IFN]<sub>N</sub> [induced]<sub>A</sub>]<sub>AP</sub> [transcription]<sub>N</sub> ]<sub>NP</sub>
```

[[IFN induced]_{AP} [transcription]_N]_{NP}

```
[[Arginine]_{N} [methylation]_{N}]_{NP} [[of]_{P} [STAT1]_{N}]_{PP}]_{NP}
```

[[Arginine methylation]_{NP} [of STAT1]_{PP}]_{NP}

[Arginine methylation of STAT1]_{NP} [[modulates]_V [IFN induced transcription]_{NP}]_{VP}

Chunking Principles

- Goal: divide a sentence into a sequence of chunks (ako phrases)
- Chunks are non-overlapping regions of a text
 - [I] saw [a tall man] in [the park]
- Chunks are non-exhaustive
 - not all words of a sentence are included in chunks
- Chunks are non-recursive
 - a chunk does not contain other chunks
- Chunks are mostly base NP chunks

The Shallow Syntax Pipeline

BIO Format for Base NPs

а	DT	В	
mechanism	NN	I	
that	WDT	В	
increases	VBZ	О	
NF-kappa	NN	В	
\mathbf{B}/\mathbf{I}	NN	Ι	
kappa	NN	I	
В	NN	I	
dissociation	NN	Ι	
without	IN	0	
affecting	VBG	0	
the	DT	В	
NF-kappa	NN	I	
В	NN	I	
translocation	NN	Ι	
step	NN	Ι	

A Simple Chunking Technique

- Simple chunkers usually ignore lexical content
 - Only need to look at part-of-speech tags
- Basic steps in chunking
 - Chunking / Unchunking
 - Chinking
 - Merging / Splitting

Regular Expression Basics

- "|" OR operator (explicit OR-ing) - "[a|e|i|o|u]" matches any occurrence of vowels "[abc]" matches any occurrence of either "a", "b" or "c" (implicit OR-ing) - "gr[ae]y" matches "grey" or "gray" (but not "graey") "." matches arbitrary char - "d.g" matches "dag", "dig", "dog", "dkg" ... preceding expression/char may or may not occur - "colou?r" matches "colour" and "color" preceding expression occurs at least one time - "(ab)+" matches "ab", "abab", "ababab", ...
 - or arbitrary often

 "(ab)*" matches "_", "ab", "abab", "ababab", ...

preceding expression occurs null time

Chunking

- Define a regular expression that matches the sequences of tags in a chunk
 - <DT>? <JJ>* <NN.?>
- Chunk all matching subsequences
 - A/DT red/JJ car/NN ran/VBD on/IN the/DT street/NN
 - [A/DT red/JJ car/NN] ran/VBD

on/IN [the/DT street/NN]

- If matching subsequences overlap, the first one gets priority
- Unchunking is the opposite of chunking

Chinking

- A chink is a subsequence of the text that is not a chunk
- Define a regular expression that matches the sequences of tags in a chink
 - (<VB.?> | <IN>)+
- Chunk anything that is <u>not</u> a matching subsequence
 - A/DT red/JJ car/NN ran/VBD on/IN the/DT street/NN
 - [A/DT red/JJ car/NN]

```
ran/VBD on/IN [the/DT street/NN] chink
```

Merging

- Combine adjacent chunks into a single chunk
- Define a regular expression that matches the sequences of tags on both sides of the point to be merged
 - Merge a chunk ending in "JJ" with a chunk starting with "NN", i.e. left: <JJ>, right: <NN.>
- Chunk all matching subsequences
 - [A/DT red/JJ] [car/NN] ran/VBD on/IN the/DT street/NN
 - [A/DT red/JJ car/NN] ran/VBD

 on/IN the/DT street/NN
- Splitting is the opposite of merging

Concluding Remarks

- Chunking as the weakest form of syntactic structuring – relies on RegExs
- RegExs (formally) belong to the class of regular grammars
- Regular grammars and their (finite-state) automata have linear run-time complexity
- Standard CF grammars and their associated push-down automata have (at best) cubic runtime complexity
- Hence, there is a trade-off between different levels of richness of syntactic structures and gains/losses of run-time behavior

What are Named Entities?

- Names of persons
 - Dr. Jonathan Peeko, Professor Johnson
- Names of companies or organizations
 - Sony, United Nations, Texas Instruments, General Motors
- Names of locations
 - Paris, San Francisco, Rocky Mountains, Yellowstone Park
- Date and time expressions
 - Feb 17, 1973; 4.40p.m.; 16.40 Uhr; autumn 2000; last year
- Addresses
 - 7 Ugly Way, Wolverhampton UHO 1Q5
 - udo.hahn@uni-jena.de
- Names of proteins or genes or diseases,
 - chloramphenicol acetyltransferase, NF-kappa B, SARS
- Measure expressions
 - 420 kp, 21 l/m², 37%, 900€

What are Named Entities?

- Names of persons - Dr. Jonathan Peeko, Profesor John Names of a mpanies - Sony, Un named entities are e Park ntentionally excluded from the lexicon **year** Addre ₁/i-jena.de udo.hah Names of proteins or genes or diseases,
 - chloramphenicol acetyltransferase, NF-kappa B, SARS
- Measure expressions
 - 420 kp, 21 l/m², 37%, 900€