Geometric Algorithms Assignment 1

Laura Baakman (s1869140)

September 8, 2014

\mathbf{A}

The Euclidean distance between the n-dimensional points \boldsymbol{a} and \boldsymbol{b} is defined as:

$$d(\boldsymbol{a}, \boldsymbol{b}) = \sqrt{\sum_{i=1}^{n} (a_i - b_i)^2}.$$
 (1)

My implementation of this formula is provided in Listing 1.

The length of the polygonal line created by drawing line segments between consecutive points from the list $[p_0, \ldots, p_n]$ is:

$$\sum_{i=0}^{n} d(\boldsymbol{p_i}, \boldsymbol{p_{i+1}}). \tag{2}$$

The first step of my implementation computes the list pairs, which contains all pairs of points between which the distance should be computed. Actually computing this distance, using the function euclidean_distance and summing the results gives the length of the requested line, see Listing 2.

Listing 1: An implementation of the Euclidean distance.

Listing 2: Compute the length of the polygonal path between consecutive points.

Figure 1: The three points P_1 , P_2 and P_3 . The dashed line represents the path L from points P_1 , through P_2 to P_3 .

\mathbf{B}

A general sketch of the situation is provided in Figure 1. To determine whether L makes a turn and in what direction we can use the angle θ .

Since we are not interested in the exact angle, we only need to know whether θ is zero and if not what its sign is. To do this we can take the cross-product of the vectors v_1 and v_2 . The crossproduct of two identical vectors is, no turn, is zero. If the crossproduct is smaller than zero we made a right turn, if it is larger than zero we made a right turn.

The formal expression, see Listing 3 for the derivation, is then:

$$-x_2y_1 + x_3y_1 + x_1y_2 - x_3y_2 - x_1y_3 + x_2y_3. (3)$$

Where x_2 is the first element of the vector that represents the point P_2 .

Listing 3: Generation of the formal expression.

```
p1 = {p1x, p1y, 0};

p2 = {p2x, p2y, 0};

p3 = {p3x, p3y, 0};

v1 = b - a;

v2 = c - a;

Cross[v1, v2]
```