A Deep Learning Based Discontinuous Galerkin Method for Hyperbolic Equations with Discontinuous Solutions and Random Uncertainties

Liyao Lyu

Department of Computational Mathematics, Science and Engineering, Michigan State University lyuliyao@msu.edu

Joint work with Shi Jin (SJTU) and Jingrun Chen (Soochow University) (arXiv:2107.01127)

August 12, 2021

Hyperbolic equations with discontinuous solutions and random uncertainties

$$u_t + \nabla_{\mathbf{x}} \cdot \mathbf{f}_{\omega}(u) = 0 \quad (t, \mathbf{x}, \boldsymbol{\omega}) \in [0, T] \times D \times \Omega$$

Difficulties

- Shock waves ← discontinuous Galerkin method¹
- High dimensional random space \leftarrow stochastic Galerkin method²

Curse of dimensionality!!!

¹cockburn1989tvbo.

²xiu2010numerical.

Machine-learning methods for PDEs

- Deep Ritz method³: variational formulation
- Deep Galerkin method⁴: least-squares formulation
- Physics-informed neural networks⁵: least-squares formulation in the discrete sense
- etc

³weinan2018deep.

⁴sirignano2018dgm.

⁵raissi2019physics.

Components

• Approximation: Approximate the PDE solution by neural network

$$u(x) \approx u(x;\theta)$$

- ullet Modeling: Build a loss function $\mathcal{J}(\theta)$ according to the PDE
- Optimization: Minimize the loss function

$$\theta^* = \arg\min_{\theta} \mathcal{J}(\theta)$$

Discontinuous element basis

The discontinuous element space is defined as

$$V_h^0 = \{ v : v |_{I_i} \in P^0(I_i), \quad 0 \le i < N \}$$

This can be formalized in a way like the Galerkin formulation

$$u_{h,\theta}(x) = \sum_{i=0}^{N-1} \mathcal{N}_{\theta}(x_{i+\frac{1}{2}}) \varphi_i(x), \quad \varphi_i(x) = \begin{cases} 1 & x_i \le x < x_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

Liyao Lyu (MSU) D2GM August 12, 2021 5 / 28

Weak formulation

Find $u_h(t, \mathbf{x}, \boldsymbol{\omega}) \in V_h^k$, such that, $\forall v_h \in V_h^k$ and all $0 \le i < N$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \left(u_h(t, \boldsymbol{x}, \boldsymbol{\omega}), v_h(\boldsymbol{x}) \right)_{l_i} - \left(\boldsymbol{f}(u_h(t, \boldsymbol{x}, \boldsymbol{\omega})), \nabla v_h(\boldsymbol{x}) \right)_{l_i} + \boldsymbol{f}(u_h(t, \boldsymbol{x}, \boldsymbol{\omega})) \cdot \mathbf{n} v_h(\boldsymbol{x}) \right)_{l_i} = 0 \\ \left(\frac{u_h(t_{n+1}, \boldsymbol{x}, \boldsymbol{\omega}) - u_h(t_n, \boldsymbol{x}, \boldsymbol{\omega})}{\Delta t}, v_h(\boldsymbol{x}) \right)_{l_i} - \left(\boldsymbol{f}(u_h(t_n, \boldsymbol{x}, \boldsymbol{\omega}))_{l_i}, v_h'(\boldsymbol{x}) \right)_{l_i} \\ + \hat{f}_{i+1} v_h(x_{i+1}^-) - \hat{f}_i v_h(x_i^+) = 0 \end{split}$$

Upwind flux

$$\hat{f}^{\text{upwind}}(u^-, u^+) = f(u^-)$$

Godunov flux

$$\hat{f}^{\text{God}}(u^-, u^+) = \begin{cases} & \min_{u^- \le u \le u^+} f(u), & \text{if } u^- < u^+ \\ & \max_{u^+ < u \le u^-} f(u), & \text{if } u^+ < u^+ \end{cases}$$

Liyao Lyu (MSU) D2GM

With random variables

- Trial function $u_{h,\theta}(t,x,\omega) = \sum_{j'=0}^K \sum_{i'=1}^{N-1} \mathcal{N}_{\theta}^{j'}(t,x_{i'+\frac{1}{2}},\omega) \varphi_{i'}^{j'}(x)$
- Test function $v_h(x) = \varphi_i^j(x)$

$$\begin{split} L_{i,j,n} \triangleq \frac{\mathcal{N}_{\theta}^{j}(t_{n+1}, x_{i+\frac{1}{2}}, \boldsymbol{\omega}) - \mathcal{N}_{\theta}^{j}(t_{n}, x_{i+\frac{1}{2}}, \boldsymbol{\omega})}{\Delta t} - \left(f(u_{h,\theta}(t_{n}, x, \boldsymbol{\omega})), \frac{\mathrm{d}\varphi_{i}^{j}(x)}{\mathrm{d}x}\right)_{I_{i}} \\ &+ \hat{f}_{i+1}\varphi_{i}^{j}(x_{i+1}^{-}) - \hat{f}_{i}\varphi_{i}^{j}(x_{i}^{+}) = 0 \end{split}$$

Loss function

$$\mathcal{L}(\theta) = h\Delta t \sum_{i,j,n} L_{i,j,n}^2$$

Monte-Carlo sampling over the indices

Boundary/Initial conditions

- Add a penalty term
- Build a DNN that satisfies the boundary condition exactly⁶
- For a grid-based method
 - Neumann

$$f_0 = f_1, \quad f_N = f_{N-1}$$

Periodic

$$f_0=f_{N-1}, \quad f_N=f_1$$

Linear conservation law

Consider

$$\begin{cases} 2d\pi u_t - \sum_{k=1}^d u_{x_k} = 0 & x \in [0, 1]^d \\ u(0, x) = \sin(2\pi \sum_{k=1}^d x_k) \end{cases}$$

with periodic boundary condition, and the exact solution $u(t,x) = \sin(t + 2\pi \sum_{k=1}^{d} x_k)$

First-order method

Trial solution that satisfies the initial condition

$$u_{h,\theta}(t,\mathbf{x}) = \sum_{\mathbf{i}} \left[t \mathcal{N}_{\theta}(t, \mathbf{x}_{\mathbf{i} + \frac{1}{2}}) + g(\mathbf{x}_{\mathbf{i} + \frac{1}{2}}) \right] \varphi_{\mathbf{i}}(\mathbf{x}) \quad \varphi_{\mathbf{i}}(\mathbf{x}) = \begin{cases} 1 & \mathbf{x} \in I_{\mathbf{i}} \\ 0 & \text{otherwise} \end{cases}$$

- 1D: $U_i(t) = t\mathcal{N}(t, x_{i+\frac{1}{2}}) + \sin(2\pi x_{i+\frac{1}{2}})$
- $\bullet \ 2\text{D:} \ U_{i_1,i_2}(t) = t \mathcal{N}(t,x^1_{i_1+\frac{1}{2}},x^2_{i_2+\frac{1}{2}}) + \sin(2\pi(x^1_{i_1+\frac{1}{2}}+x^2_{i_2+\frac{1}{2}})) \\$
- $\bullet \ \, 3\text{D:} \ \, U_{i_1,i_2,i_3}(t) = t\mathcal{N}(t,x^1_{i_1+\frac{1}{2}},,x^2_{i_2+\frac{1}{2}},x^3_{i_3+\frac{1}{2}}) + \sin(2\pi(x^1_{i_1+\frac{1}{2}}+x^2_{i_2+\frac{1}{2}}+x^3_{i_3+\frac{1}{2}})) \\$
- Boundary condition

$$U_0(t) = U_{N-1}(t), \quad U_N(t) = U_1(t)$$

Loss function

Semi-discrete scheme

$$\mathcal{L}_{\text{semi}}(\theta) = \sum_{i_{1},i_{2},i_{3},j} \left(6\pi \partial_{t} U_{i_{1},i_{2},i_{3}}(t_{j}) - \frac{U_{i_{1}+1,i_{2},i_{3}}(t_{j}) - U_{i_{1},i_{2},i_{3}}(t_{j})}{h} - \frac{U_{i_{1},i_{2}+1,i_{3}}(t_{j}) - U_{i_{1},i_{2},i_{3}}(t_{j})}{h} - \frac{U_{i_{1},i_{2},i_{3}}(t_{j}) - U_{i_{1},i_{2},i_{3}}(t_{j})}{h} \right)^{2}$$

Fully discrete scheme based on the forward Euler method

$$\mathcal{L}_{\text{FE}}(\theta) = \sum_{i_i, i_2, i_3, j} \left(6\pi \frac{U_{i_1, i_2, i_3}(t_{j+1}) - U_{i_1, i_2, i_3}(t_j)}{\Delta t} - \frac{U_{i_1, i_2, i_3}(t_j) - U_{i_1, i_2, i_3}(t_j)}{h} - \frac{U_{i_1, i_2, i_3}(t_j) - U_{i_1, i_2, i_3}(t_j)}{h} - \frac{U_{i_1, i_2, i_3}(t_j) - U_{i_1, i_2, i_3}(t_j)}{h} \right)^2$$

Livao Lvu (MSU) D2GM August 12, 2021

d	$h = \Delta t$	Fully discrete		Semi-discrete	
		error	order	error	order
	1/20	1.50 e-01	0.93	1.58 e-01	0.93
1	1/40	7.73 e-02	0.94	8.05 e-02	0.98
1	1/80	3.95 e-02	0.96	8.39 e-02	-0.05
	1/160	2.10 e-02	0.91	7.01 e-02	0.25
	1/20	1.72 e-01	0.90	1.81 e-01	0.91
2	1/40	8.90 e-02	0.95	8.89 e-02	1.03
	1/80	4.68 e-02	0.92	6.00 e-02	0.56
	1/160	2.57 e-02	0.86	5.40 e-02	0.15
3	1/20	1.92 e-01	0.90	2.02 e-01	0.89
	1/40	9.95 e-02	0.95	1.03 e-01	0.96
	1/80	5.20 e-02	0.93	6.94 e-02	0.57
	1/160	3.14 e-02	0.72	9.45 e-02	-0.44

Table: The averaged L^2 relative error and the convergence rate for the linear conservation law. Batchsize: 10000; Depth: 4 hidden layers and 2 shortcut connections. Width: 20 (1D), 40 (2D), 60 (3D)

$h = \Delta t$	error	order
1/10	3.64 e-01	
1/20	1.92 e-01	0.92
1/40	9.92 e-02	0.95
1/80	5.04 e-02	0.97
1/160	2.54 e-02	0.98
1/320	1.29 e-02	0.97
1/640	6.78 e-03	0.93
1/1280	4.24 e-03	0.67

Table: The averaged L^2 relative error and the convergence rate for the linear conservation law using fully discrete loss function and a wider (200 width) neural network with 883601 parameters in 3D.

Second-order method

Trial solution

$$u_{h,\theta}(t,x) = \sum_i \left[U_i^0 \varphi_i^0(x) + U_i^1 \varphi_i^1(x) \right]$$

where

$$\begin{split} \varphi_{i}^{0}(x) &= \begin{cases} 1 & x \in I_{i} \\ 0 & \text{otherwise} \end{cases}, \\ \varphi_{i}^{1}(x) &= \begin{cases} (x - x_{i + \frac{1}{2}}) & x \in I_{i} \\ 0 & \text{otherwise} \end{cases}, \\ U_{i}^{0}(t) &= t \mathcal{N}_{\theta_{0}}^{0}(t, x_{i + \frac{1}{2}}) + \sin(2\pi x_{i + \frac{1}{2}}), \\ U_{i}^{1}(t) &= t \mathcal{N}_{\theta_{1}}^{1}(t, x_{i + \frac{1}{2}}) + 2\pi \cos(2\pi x_{i + \frac{1}{2}}). \end{split}$$

Cont'd ...

Loss function

$$\mathcal{L}_{0}(\theta_{0}) = \sum_{i,j} \left(2\pi \frac{U_{i}^{0}(t_{j+1}) - U_{i}^{0}(t_{j})}{\Delta t} h + \hat{f}_{i+\frac{3}{2}} - \hat{f}_{i+\frac{1}{2}} \right)^{2}$$

$$\mathcal{L}_{1}(\theta_{1}) = \sum_{i,j} \left(2\pi \frac{U_{i}^{1}(t + \Delta t) - U_{i}^{1}(t)}{\Delta t} \frac{h^{3}}{12} + hu_{0} + \frac{h}{2} \hat{f}_{i+\frac{3}{2}} + \frac{h}{2} \hat{f}_{i+\frac{1}{2}} \right)^{2}$$

Optimization: ADMM⁷

$$\arg\min_{\{\theta_0,\theta_1\}} \mathcal{L}_0(\theta_0) + \mathcal{L}_1(\theta_1)$$

⁷boyd2011distributed.

$h = \sqrt{\Delta t}$	error	order
1/10	7.36 e-02	
1/20	1.45 e-02	2.34
1/40	2.33 e-03	2.63
1/80	6.31 e-04	1.88
1/160	2.11 e-04	1.57

Table: The averaged L^2 relative error and the convergence rate for the 1D linear conservation law solved by the second-order scheme. Batchsize: 10000; Total number of parameters: 12951.

Comparison

Burgers' Equation

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

with initial condition

$$u(0,x) = \begin{cases} 1 & x < 0 \\ 0 & x > 0 \end{cases}$$

and reflecting boundary condition

Numerical solution

$$u(t,x) = \begin{cases} \mathcal{N}_{\theta}(t,x_{i+\frac{1}{2}})\varphi_{i}(x) & t > 0 \ x \in (x_{i},x_{i+1}) \\ u(0,x_{i+\frac{1}{2}}) & t = 0 \end{cases}$$

Loss function

Semi-discrete scheme

$$\begin{split} \mathcal{L}_{\text{semi}}(\theta) &= \sum_{i,j} \left(\frac{\partial u_{\theta}(t_j, x_{i+\frac{1}{2}})}{\partial t} - \hat{f}^{\text{God}}(u_{\theta}(t_j, x_i^-), u_{\theta}(t_j, x_i^+)) \right. \\ &\left. + \hat{f}^{\text{God}}(u_{\theta}(t_j, x_{i+1}^-), u_{\theta}(t_j, x_{i+1}^+)) \right)^2 \end{split}$$

Fully-discrete scheme using the forward Euler method

$$\begin{split} \mathcal{L}_{\text{FE}}(\theta) &= \sum_{i,j} \left(\frac{u_{\theta}(t_{j+1}, x_{i+\frac{1}{2}}) - u_{\theta}(t_{j}, x_{i+\frac{1}{2}})}{\Delta t} - \hat{f}^{\text{God}}(u_{\theta}(t_{j}, x_{i}^{-}), u_{\theta}(t_{j}, x_{i}^{+})) \right. \\ &\left. + \hat{f}^{\text{God}}(u_{\theta}(t_{j}, x_{i+1}^{-}), u_{\theta}(t_{j}, x_{i+1}^{+})) \right)^{2} \end{split}$$

Liyao Lyu (MSU) D2GM August 12, 2021

Approximation error

	F 11 12 .	C . I
$h = \Delta t$	Fully discrete	Semi-discrete
1/10	9.87 e-02	3.82 e-01
1/20	4.88 e-02	3.37 e-01
1/40	3.48 e-02	3.03 e-01
1/80	2.58 e-02	3.12 e-01
1/160	1.84 e-02	1.91 e-01
1/320	1.73 e-02	3.86 e-01

Table: The averaged L^2 relative error and the convergence rate for the Burgers' equation. Batchsize: 10000; Width 20, Depth:4, Total number of parameters: 1341.

Solution profiles

Stochastic linear conservation law

$$2d\pi u_t - (1 + \exp((-\sum_{j=1}^s \omega_j)^2)) \sum_i u_{x_i} = 0$$

with periodic boundary condition and initial condition $u(0, \mathbf{x}, \boldsymbol{\omega}) = g(\mathbf{x}) = \sin\left(2\pi\sum_{i=1}^d x_i\right)$

Exact solution
$$u(t, \mathbf{x}, \boldsymbol{\omega}) = \sin\left(\left(1 + \exp\left(\left(-\sum_{j=1}^{s} \omega_{j}\right)^{2}\right)\right)t + 2\pi \sum_{j=1}^{d} x_{j}\right)$$

Numerical solution

$$u(t, \mathbf{x}, \boldsymbol{\omega}) = \sum_{i} \left[t \mathcal{N}_{\theta}(t, \mathbf{x}_{i + \frac{1}{2}}, \boldsymbol{\omega}) + g(\mathbf{x}_{i + \frac{1}{2}}) \right] \varphi_{i}(\mathbf{x})$$

Liyao Lyu (MSU) D2GM August 12, 2021 22 / 28

$$\begin{split} \mathcal{L}_{\text{FE}}(\theta) &= \sum_{i,j} \left(2\pi \frac{u_{\theta}(t_{j+1}, \boldsymbol{x}_{i+\frac{1}{2}}, \boldsymbol{\omega}) - u_{\theta}(t_{j}, \boldsymbol{x}_{i+\frac{1}{2}}, \boldsymbol{\omega})}{\Delta t} \right. \\ &\left. - \left(1 + \exp(-\sum_{j=1}^{s} \omega_{j})^{2} \right) \frac{u_{\theta}(t_{j}, \boldsymbol{x}_{i+1}, \boldsymbol{\omega}) - u_{\theta}(t_{j}, \boldsymbol{x}_{i}, \boldsymbol{\omega})}{h} \right)^{2} \end{split}$$

S	$h = \Delta t$	Expectation	Order	Variance	Order
100	1/40	1.53 e-01		2.07 e-01	
100	1/80	7.83 e-02	0.97	1.12 e-01	0.88
100	1/160	3.93 e-02	0.99	5.82 e-02	0.95
100	1/320	2.01 e-02	0.96	2.93 e-02	0.98

Solution profiles

Stochastic Burgers' equation

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

with initial condition

$$u(0,x,\omega) = \begin{cases} 1 + \epsilon \sum_{i=1}^{s} \omega_i & x < 0 \\ 0 & x > 0 \end{cases}$$

Exact solution

$$u(t,x,\omega) = \begin{cases} z & x < \frac{z}{2} \\ 0 & x > \frac{z}{2} \end{cases}$$

where $z = 1 + \epsilon \sum_{i=1}^{s} \omega_i$

DNN solution

$$u(t,x,\omega) = \begin{cases} \mathcal{N}_{\theta}(t,x_{i+\frac{1}{2}},\omega)\varphi_{i}(x) & t > 0 \ x \in (x_{i},x_{i+1}) \\ u(0,x_{i+\frac{1}{2}},\omega) & t = 0 \end{cases}$$

ϵ	5	h	L ² error		L ¹ error	
E			Expectation	Variance	Expectation	Variance
0.05	10	1/40	6.79 e-3	3.37 e-1	2.99 e-03	2.40 e-01
0.05	10	1/80	2.25 e-3	1.86 e-1	1.13 e-03	1.45 e-01
0.05	10	1/160	4.68 e-3	1.27 e-1	2.28 e-03	1.17 e-01
0.05	10	1/320	2.01 e-2	3.36 e-1	8.94 e-03	2.74 e-01
0.01	50	1/40	1.80 e-2	6.42 e-1	5.36 e-03	5.01 e-01
0.01	50	1/80	5.74 e-3	4.04 e-1	1.67 e-03	3.32 e-01
0.01	50	1/160	3.09 e-3	2.69 e-1	1.18 e-03	2.68 e-01
0.01	50	1/320	4.40 e-2	9.12 e-1	1.70 e-02	8.06 e-01
0.005	100	1/40	2.58 e-2	7.53 e-1	6.54 e-03	5.01 e-01
0.005	100	1/80	8.64 e-3	5.25 e-1	2.09 e-03	3.32 e-01
0.005	100	1/160	1.95 e-3	3.76 e-1	7.22 e-04	2.68 e-01
0.005	100	1/320	3.07 e-2	9.47 e-1	5.65 e-03	8.06 e-01
0.0025	200	1/40	2.58 e-2	7.53 e-1	7.56 e-03	7.52 e-01
0.0025	200	1/80	8.64 e-3	5.25 e-1	2.51 e-03	5.68 e-01
0.0025	200	1/160	1.95 e-3	3.76 e-1	8.30 e-04	5.51 e-01
0.0025	200	1/320	3.07 e-2	9.47 e-1	3.52 e-03	9.09 e-01

Table: Expectation and variance errors of the proposed method for the stochastic Burgers' equation when the MC method is used with the batchsize 50000.

Discretize-then-learn

- A stable and convergent scheme in the classical sense
- A neural network representation of the numerical solution
- A loss function in the least-squares sense
- Monte-Carlo sampling

Thank you for your attention!