

Department of Electronics and Communication

PREDICT THE POSSIBLE HEALTH ISSUES IN PREGNANT WOMEN

Aaron lawrence lazrado - 4502 | EC002

INTRODUCTION

According to WHO, 810 women die every day in this world due to childbirth and pregnancy-related complications, while the majority (94%) of all maternal deaths occur in low and lower-middle-income countries. Due to the recent advancement in technology, the rate of maternal deaths is reducing, yet is a challenging task to ensure the safety of both mother and child during pregnancy. In such a scenario, the pregnancy-related risks can be reduced by forecasting the complications and by taking preventive measures. Thus, the use of predictive modeling became emergent to save the lives of millions of mothers and infants.

The common maternal complications responsible for the majority of maternal deaths are gestational diabetes, severe bleeding, infection, preeclampsia, eclampsia, prolonged labor, preterm labor, and unsafe abortion.

Algorithm

Support Vector Regression (SVR):

A Support Vector Regression (SVR) is a type of Support Vector Machine, and is a type of supervised learning algorithm that analyzes data for regression analysis.

In 1996, this version of SVM for regression was proposed by Christopher J. C. Burges, Vladimir N. Vapnik, Harris Drucker, Alexander J. Smola and Linda Kaufman. The model produced by SVR depends only on a subset of the training data, because the cost function for building the model ignores any training data close to the model prediction.

Implementation of program based on Algorithm

➤ Imported the packages / libraries to make it easier to write the program.

```
#Import the libraries
import numpy as np
import pandas as pd
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
```

> Load the dataset.

<pre>#Load the data #from google.colab import files # Use to load data on Google Colab #uploaded = files.upload() # Use to load data on Google Colab pregnancy_dataset = pd.read_csv('/content/bootcamp.csv') pregnancy_dataset.head()</pre>								
	Age	SystolicBP	DiastolicBP	BS	BodyTemp	HeartRate	RiskLevel	
0	25	130	80	15.0	98.0	86	1	
1	35	140	90	13.0	98.0	70	1	
2	29	90	70	8.0	100.0	80	1	
3	30	140	85	7.0	98.0	70	1	
4	35	120	60	6.1	98.0	76	О	

Plotted the models on a graph to see which has the best fit and returned the prediction

```
sns.set()
plt.figure(figsize=(6,6))
sns.distplot(pregnancy_dataset['Age'])
plt.title('Age of pregnant women')
plt.show()
/usr/local/lib/python3.8/dist-packages/seaborn/distributions.py:2619: Future
 warnings.warn(msg, FutureWarning)
                     Age of pregnant women
   0.035
   0.030
  0.025
   0.020
   0.015
  0.010
  0.005
   0.000
                              Age
```


> Splitting our Data into Testing and Training Data

```
#Splitting our Data into Testing and Training Data
X = pregnancy dataset.drop(columns = 'RiskLevel', axis=1)
Y = pregnancy dataset['RiskLevel']
print(X)
      Age
           SystolicBP DiastolicBP
                                            BodyTemp HeartRate
       25
                   130
                                     15.0
                                                98.0
       35
                   140
                                     13.0
                                                98.0
                                                              70
       29
                   90
                                      8.0
                                                100.0
                                                              80
       30
                                 85
                                       7.0
                                                98.0
                                                              70
                   140
       35
                   120
                                 60
                                       6.1
                                                98.0
                                                              76
1009
       22
                   120
                                                98.0
                                 60
                                      15.0
                                                              80
1010
       55
                   120
                                      18.0
                                                98.0
                                                              60
1011
       35
                   85
                                 60
                                      19.0
                                                98.0
                                                              86
                                                              70
1012
       43
                   120
                                      18.0
                                                98.0
1013
       32
                   120
                                 65
                                       6.0
                                                101.0
                                                              76
[1014 rows x 6 columns]
```

print(Y)

```
1009
1010
1011
1012
1013
Name: RiskLevel, Length: 1014, dtype: int64
                                                                  + Code
                                                                             + Text
scaler = StandardScaler()
scaler.fit(X)
StandardScaler()
standardized_data = scaler.transform(X)
print(standardized_data)
[[-0.36173812 0.91339632 0.25502279 1.90589019 -0.4852155
  0.38077697 1.45702716 0.97553854 1.29833966 -0.4852155 -0.53208757
[-0.06473208 -1.26112705 -0.46549297 -0.22053665 0.97388449 0.70481475]
  0.38077697 -1.53294248 -1.18600873 3.12099124 -0.4852155
  0.97478904 0.36976548 0.97553854 2.81721597 -0.4852155 -0.53208757]
```

```
X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.2, stratify=Y, random_state=2)
print(X.shape, X_train.shape, X_test.shape)

(1014, 6) (811, 6) (203, 6)

classifier = svm.SVC(kernel='linear')
classifier.fit(X_train, Y_train)

SVC(kernel='linear')
```

Building and training our model

```
X_train_prediction = classifier.predict(X_train)
training_data_accuracy = accuracy_score(X_train_prediction, Y_train)
print('Accuracy score of the training data : ', training_data_accuracy)
Accuracy score of the training data : 0.8606658446362515
```

Building and testing our model

```
X_test_prediction = classifier.predict(X_test)
test_data_accuracy = accuracy_score(X_test_prediction, Y_test)
print('Accuracy score of the test data : ', test_data_accuracy)
Accuracy score of the test data : 0.8374384236453202
```

We can now use the model to make predictions of the data. We can do this by using the .predict() method and passing in our testing features.

➤ Input module for the prediction model

```
# Input module
input data = (55,110,85,6.9,98,88)
# changing the input data to numpy array
input data as numpy array = np.asarray(input data)
# reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1,-1)
# standardize the input data
std data = scaler.transform(input data reshaped)
print(std data)
prediction = classifier.predict(std data)
print(prediction)
if (prediction[0] == 0):
  print('The pregnant patient is at low risk')
else:
  print('The pregnant patient is at high risk')
```

Output

```
[[ 1.86580715 -0.17386537 0.61528066 -0.55468943 -0.4852155 1.69433661]]
[0]
The pregnant patient is at low risk
```

```
# Input module
input data = (35,140,90,13,98,70)
# changing the input data to numpy array
input data as numpy array = np.asarray(input data)
# reshape the array as we are predicting for one instance
input data reshaped = input data as numpy array.reshape(1,-1)
# standardize the input data
std data = scaler.transform(input data reshaped)
print(std data)
prediction = classifier.predict(std data)
print(prediction)
if (prediction[0] == 0):
  print('The pregnant patient is at low risk')
else:
  print('The pregnant patient is at high risk')
```

THANK YOU

Reference: https://www.youtube.com/watch?v=xUE7SjVx9bQ&t=722s

https://colab.research.google.com/drive/1oxnhMTlomJ4HVhPuowpPFyMt1mwuOuQo?usp=sharing

https://datagy.io/python-support-vector-machines/

https://archive.ics.uci.edu/ml/machine-learning-databases/00639/Maternal%20Health%20Risk%20Data%20Set.csv