

FORM PTO 1390
(REV. 5-93)

US DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY DOCKET NUMBER
2001_1023AU.S. APPLICATION NO.
09/1889722
Grants under 37 CFR 1.14
NEWTRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. §371International Application No.
PCT/JP00/08253International Filing Date
November 22, 2000Priority Date Claimed
November 24, 1999

Title of Invention

A HUMAN NUCLEAR PROTEIN HAVING A WW DOMAIN AND A POLYNUCLEOTIDE ENCODING THE PROTEIN

Applicant(s) For DO/EO/US

Seishi KATO, Akihiko KOMURO, Yutaka HIROSE

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a FIRST submission of items concerning a filing under 35 U.S.C. §371.
2. This is a SECOND or SUBSEQUENT submission of items concerning a filing under 35 U.S.C. §371.
3. This express request to begin national examination procedures (35 U.S.C. §371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. §371(b) and PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. §371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. §371(c)(2)). ATTACHMENT A
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. §371(c)(3)).
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19.
9. An unexecuted executed oath or declaration of the inventor(s) (35 U.S.C. §371(c)(4)). ATTACHMENT B
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. §371(c)(5)).

Items 11. to 14. below concern other document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98. ATTACHMENT C
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A FIRST preliminary amendment. ATTACHMENT D

A SECOND or SUBSEQUENT preliminary amendment.
14. Other items or information: DISKETTE CONTAINING SEQUENCE LISTING

THE COMMISSIONER IS AUTHORIZED
TO CHARGE ANY DEFICIENCY IN THE
FEE FOR THIS PAPER TO DEPOSIT
ACCOUNT NO. 25-1075

U.S. APPLICATION NO. (if known)	INTERNATIONAL APPLICATION NO.	ATTORNEY'S DOCKET NO.		
NEW	09/889722	PCT/JP00/08253		
15. [X] The following fees are submitted		CALCULATIONS		
BASIC NATIONAL FEE (37 CFR 1.492(a)(1)-(5)):				
Neither international preliminary examination fee nor international search fee paid to USPTO and International Search Report not prepared by the EPO or JPO		\$1000.00		
International Search Report has been prepared by the EPO or JPO		\$ 860.00		
International preliminary examination fee not paid at USPTO but international search paid to USPTO		\$ 710.00		
International preliminary examination fee paid to USPTO but claims did not satisfy provisions of PCT Article 33(1)-(4)		\$ 690.00		
International preliminary examination fee paid at USPTO and all claims satisfied provisions of PCT Article 33(1)-(4)		\$ 100.00		
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$860.00		
Surcharge of \$130.00 for furnishing the oath or declaration later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(e)).		\$		
Claims	Number Filed	Number Extra	Rate	
Total Claims	-20 =		X \$18.00	\$
Independent Claims	- 3 =		X \$80.00	\$
Multiple dependent claim(s) (if applicable)		+ \$270.00	\$	
TOTAL OF ABOVE CALCULATIONS =		\$860.00		
<input type="checkbox"/> Small Entity Status is hereby asserted. Above fees are reduced by 1/2.		\$		
SUBTOTAL =		\$860.00		
Processing fee of \$130.00 for furnishing the English translation later than <input type="checkbox"/> 20 <input checked="" type="checkbox"/> 30 months from the earliest claimed priority date (37 CFR 1.492(f)).		+ \$		
TOTAL NATIONAL FEE =		\$860.00		
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40 per property +		\$		
TOTAL FEES ENCLOSED =		\$860.00		
		Amount to be refunded \$		
		Amount to be charged \$		

- a. A check in the amount of \$860.00 to cover the above fees is enclosed. A duplicate copy of this form is enclosed.
- b. Please charge my Deposit Account No. 23-0975 in the amount of \$ _____ to cover the above fees.
A duplicate copy of this sheet is enclosed.
- c. The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. 23-0975.

NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.

19. CORRESPONDENCE ADDRESS	<p>By: <u>Warren Cheek Jr.</u> Warren M. Cheek, Jr., Registration No. 33,367</p> <p>WENDEROTH, LIND & PONACK, L.L.P. 2033 "K" Street, N.W., Suite 800 Washington, D.C. 20006-1021 Phone:(202) 721-8200 Fax:(202) 721-8250</p> <p>July 20, 2001</p>
<p>[CHECK NO.] <u>45544</u> [2001_1023A]</p>	

09/889722

JC18 Rec'd PCT/PTO 20 JUL 2001

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Seishi KATO et al. : Attn: BOX PCT

Serial No. NEW : Docket No. 2001_1023A

Filed July 20, 2001 :

A HUMAN NUCLEAR PROTEIN HAVING A WW
DOMAIN AND A POLYNUCLEOTIDE ENCODING

THE PROTEIN

[Corresponding to PCT/JP00/08253

Filed November 22, 2000]

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents,
Washington, DC 20231

Sir:

Prior to calculating the filing fee, please amend the above-identified application as follows:

IN THE SPECIFICATION

Page 1, immediately after the title, please insert:

This application is a 371 of PCT/JP00/08253 filed November 22, 2000.

IN THE CLAIMS

Please amend the claims as follows:

5. (Amended) An expression vector expressing the polynucleotide of claim 2 in *in vitro* translation or in host cells.

protein of claim 1, and which polynucleotide comprises the nucleotide sequence of SEQ ID NO. 2.

Please add the following new claims:

8. An expression vector expressing the polynucleotide of claim 3 in *in vitro* translation or in host cells.

9. A transformed cell producing the human nuclear protein of claim 1, which is a cell transformed with an expression vector which expresses a polynucleotide encoding the protein of claim 1, and which polynucleotide consists of the nucleotide sequence of SEQ ID NO. 2.

REMARKS

The specification has been amended to reflect the 371 status. In addition, the claims have been amended to remove the multiple dependencies to reduce the PTO filing fee.

Attached hereto is a marked-up version of the changes made to the specification and claims by the current amendment. The attached pages are captioned "Version with markings to show changes made".

Favorable action on the merits is solicited.

Respectfully submitted,

Seishi KATO et al.

By Warren Cheek Jr.
Warren M. Cheek, Jr.
Registration No. 33,367
Attorney for Applicants

WMC/dlk
Washington, D.C. 20006-1021
Telephone (202) 721-8200
Facsimile (202) 721-8250
July 20, 2001

CLAIMS

1. An isolated and purified human nuclear protein comprising the amino acid sequence of SEQ ID NO: 1.

5

2. A polynucleotide encoding the protein of claim 1, which comprises the nucleotide sequence of SEQ ID NO: 2.

3. The polynucleotide of claim 2, consisting of the nucleotide sequence of SEQ ID NO: 2.

10

4. A human genomic DNA fragment with which a polynucleotide of SEQ ID NO:3 or a partial contiguous sequence thereof hybridizes under stringent conditions.

15

(Amended)

5. An expression vector expressing the polynucleotide of claim 2 ~~or 3~~ in *in vitro* translation or in host cells.

20

6. A transformed cell producing the human nuclear protein of claim 1, which is ~~transformants with the expression vector of claim 5.~~

7. An antibody against the human nuclear protein of claim 1.

a cell transformed with an expression vector which expresses a polynucleotide encoding the protein of Claim 1, and which Comprises the nucleotide sequence of SEQ. ID NO. 2.

polynucleotide

Rec'd PCT/PTO 19 OCT 2001
09/889722

3

THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Seishi KATO et al.

Serial No. 09/889,722

Filed July 20, 2001

A HUMAN NUCLEAR PROTEIN HAVING A
WW DOMAIN AND A POLYNUCLEOTIDE
ENCODING THE PROTEIN

[Corresponding to PCT/JP00/08253

Filed November 22, 2000]

THE COMMISSIONER IS AUTHORIZED
TO CHARGE ANY DEFICIENCIES IN THE
FEE FOR THIS PAPER TO DEPOSIT
ACCOUNT NO. 29-4872

AMENDMENT AND REPLY TO NOTIFICATION OF MISSING REQUIREMENTS
UNDER 35 USC 371

Assistant Commissioner for Patents,
Washington, DC 20231

Sir:

In response to the PTO Notification of Missing Requirements Under 35 USC 371 dated September 10, 2001, submitted herewith is a Declaration for the above application executed by the inventors.

Enclosed is a paper and computer readable copy of the Sequence Listing. Please replace the Sequence Listing originally filed with the attached substitute Sequence Listing. No new matter is added.

Also enclosed are the PTO surcharge of \$130.00 required by 37 CFR 1.492(e), and a copy of the PTO notice.

It is respectfully submitted that the application is now complete, and early indication thereof is now requested.

Respectfully submitted,
Seishi KATO et al.

By Warren Cheek Jr.
Warren M. Cheek, Jr.
Registration No. 33,367
Attorney for Applicants

WMC/dlk
Washington, D.C. 20006-1021
Telephone (202) 721-8200
Facsimile (202) 721-8250
October 19, 2001

1

Version with Markings to
Show Changes Made

DESCRIPTION

A Human Nuclear Protein having a WW Domain and A Polynucleotide encoding the Protein

5 This application is a 371 of PCT/JP00/08253 Filed November 22, 2000.

Technical Field

The present invention relates to a novel protein having a WW domain
10 and existing in human cell nuclei, a polynucleotide encoding this protein, and
an antibody against this protein. The protein and antibody of the present
invention are useful for diagnosis and therapy of various diseases, and the
polynucleotide of the present invention is useful as a probe for genetic diagnosis
or as a genetic source for gene therapy. Further, the polynucleotide can be
15 used as a genetic source for large-scale production of the protein of this
invention.

Background Art

20 The term "nuclear protein" is a generic name of proteins functioning in
cell nucleus. In nucleus there are genomic DNA serving as a plan of organism,
and nuclear proteins are involved in replication, transcriptional regulation etc.
of these genomic DNA. Typical nuclear proteins whose functions have been
25 revealed include a transcription factor, a splicing factor, an intranuclear
receptor, a cell cycle regulator and a tumor suppressor. These factors are
closely related not only to life phenomena such as development and
differentiation but also to diseases such as cancers (New Medical Science,
"Tensha No Shikumi To Shikkan" (Mechanism of Transcription and Diseases) ed.
30 by Masahiro Muramatsu). Accordingly, these nuclear proteins are expected as

DESCRIPTION

**A Human Nuclear Protein having a WW Domain and
A Polynucleotide encoding the Protein**

5

Technical Field

The present invention relates to a novel protein having a WW domain
10 and existing in human cell nuclei, a polynucleotide encoding this protein, and
an antibody against this protein. The protein and antibody of the present
invention are useful for diagnosis and therapy of various diseases, and the
polynucleotide of the present invention is useful as a probe for genetic diagnosis
or as a genetic source for gene therapy. Further, the polynucleotide can be
15 used as a genetic source for large-scale production of the protein of this
invention.

Background Art

20

The term "nuclear protein" is a generic name of proteins functioning in
cell nucleus. In nucleus there are genomic DNA serving as a plan of organism,
and nuclear proteins are involved in replication, transcriptional regulation etc.
of these genomic DNA. Typical nuclear proteins whose functions have been
25 revealed include a transcription factor, a splicing factor, an intranuclear
receptor, a cell cycle regulator and a tumor suppressor. These factors are
closely related not only to life phenomena such as development and
differentiation but also to diseases such as cancers (New Medical Science,
"Tensha No Shikumi To Shikkan" (Mechanism of Transcription and Diseases) ed.
30 by Masahiro Muramatsu). Accordingly, these nuclear proteins are expected as

target proteins for developing low-molecular pharmaceutical preparations that regulate transcription and translation of specific genes, and it is desired to obtain as many nuclear proteins as possible.

- 5 The WW domain belongs to a new family of protein-protein interaction motifs resembling SH2, SH3, PH and PTB domains. It is known that this domain consists of about 40 amino acid residues containing 2 conserved tryptophan residues, and like the SH3 domain, binds to a proline-rich amino acid sequence (H. I. Chen and M. Sudol., Proc. Natl. Sci. 92, 7819-7823, 1995).
- 10 As a result of X-ray crystallographic analysis of a WW domain/ligand conjugate, it was revealed that the three-dimensional structure of the WW domain is different from that of SH3 (M. J. Macias et al., Nature, 382, 646-649, 1996). Like other protein motifs, the WW domain is contained in the cytoskeleton system (P. Bork and M. Sudol TIBS, 19, 531-533, 1994), in proteins participating in the signal transduction system (H. I. Chen and M. Sudol., Proc. Natl. Sci., 92, 7819-7823, 1995), in a ubiquitin-protein ligase in the protein degradation system (O. Staub et al., EMBO J., 15, 2371-2380, 1996) and in a transcription activator (P. Bork and M. Sudol, TIBS, 19, 531-533, 1994), and is believed to play an important role in the intracellular signal transduction system.
- 15 20

The object of the present invention is to provide a novel protein present in human cell nucleus, a polynucleotide encoding this protein, and an antibody against this nuclear protein.

25

Disclosure of Invention

To achieve the object described above, the present application provides
30 the following inventions (1) to (7):

- (1) An isolated and purified human nuclear protein comprising the amino acid sequence of SEQ ID NO: 1.
- 5 (2) A polynucleotide encoding the protein of the invention (1), which comprises the nucleotide sequence of SEQ ID NO: 2.
- 10 (3) The polynucleotide of the invention (2), consisting of the nucleotide sequence of SEQ ID NO: 2.
- (4) A human genomic DNA fragment with which a polynucleotide of SEQ ID NO:3 or a partial contiguous sequence thereof hybridizes under stringent conditions.
- 15 (5) An expression vector expressing the polynucleotide of the invention (2) or (3) in *in vitro* translation or in host cells.
- (6) A transformed cell producing the human nuclear protein of the invention (1), which is transformant with the expression vector of the invention
20 (5).
- (7) An antibody against the human nuclear protein of the invention (1).

25

Best Mode for Carrying Out the Invention

The protein of the invention (1) can be obtained by a method of isolation thereof from human organs, cell lines etc., by a method of preparing the peptide through chemical synthesis on the basis of the amino acid sequence set forth in
30 SEQ ID NO: 1 or by a method of production thereof by recombinant DNA

technique using the polynucleotide encoding the amino acid sequence of SEQ ID NO: 1, among which the method with recombinant DNA technique is preferably used. For example, a vector harboring the polynucleotide of the invention (2) or (3) is subjected to *in vitro* transcription to prepare RNA which is then used as a template in *in vitro* translation, whereby the protein can be expressed *in vitro*. Further, by integrating the polynucleotide in a conventional method into a suitable expression vector, the protein encoded by the polynucleotide can be expressed in a large amount in prokaryotes such as *E. coli*, *Bacillus subtilis* etc. or eucaryotes such as yeasts, insect cells and mammalian cells.

To produce the protein of the invention (1) by expressing the DNA through *in vitro* translation, the polynucleotide of the invention (2) or (3) is integrated in a vector harboring an RNA polymerase promoter (the invention (5)) and added the vector to an *in vitro* translation system such as a rabbit reticulocyte lysate or a wheat germ extract containing an RNA polymerase compatible with said promoter, whereby the protein of the invention (1) can be produced *in vitro*. The RNA polymerase promoter includes e.g. T7, T3 and SP6. The vector harboring such RNA polymerase promoter includes e.g. pKA1, pCDM8, pT3/T7 18, pT7/3 19, and pBluescript II.

To produce the protein of the invention (1) by expressing the DNA in microorganisms such as *E. coli*, the polynucleotide of the invention (2) or (3) is integrated in an expression vector harboring an origin capable of replication in microorganisms, a promoter, a ribosome-binding site, a DNA cloning site, a terminator etc. to prepare the expression vector (the invention (5)) which is then used for transformation of host cells, and by culturing the resulting transformant (the invention (6)), the protein encoded by said polynucleotide can be produced in a large amount in the microorganism. If an initiation codon and a termination codon have been added respectively to sites upstream and

downstream from an arbitrary translated region in said expression vector, a protein fragment containing the arbitrary region can be obtained by expressing the DNA. Alternatively, it can also be expressed as a fusion protein with another protein. By cleaving this fusion protein with a suitable protease, the 5 part of only the protein encoded by said polynucleotide can be obtained. The expression vector for *E. coli* includes e.g. pUC series vectors, pBluescript II, pET expression system vectors and pGEX expression system vectors.

To produce the protein of the invention (1) by expressing the DNA in 10 eucaryotes, the translated region of the polynucleotide of the invention (2) or (3) is integrated in an eucaryotic expression vector harboring a promoter, a splicing region, a poly(A)-additional site etc. to prepare the expression vector (the invention (5)) which is then used for transforming eucaryotic cells (the invention (6)), whereby the protein of the invention (1) can be produced in the eucaryotic 15 cells. The expression vector includes e.g. pKAI, pCDM8, pSVK3, pMSG, pSVL, pBK-CMV, pBK-RSV, EBV vector, pRS and pYES2. If vectors such as pIND/V5-His, pFLAG-CMV-2, pEGFP-N1 and pEGFP-C1 are used, the protein of the present invention can also be expressed as a fusion protein having various tags such as His tag, FLAG tag and GFP added thereto. As the 20 eucaryotic cells, mammalian cultured cells such as simian renal cells COS7 and Chinese hamster ovary cells CHO, budding yeasts, fission yeasts, silkworm cells and Xenopus oocytes are generally used, but insofar as the protein of the invention (1) can be expressed, any eucaryotic cells can be used. For introducing the expression vector into eucaryotic cells, conventional methods 25 such as the electroporation method, calcium phosphate method, liposome method and DEAE-dextran method can be used.

For isolating and purifying the protein of the invention (1) from a culture after expression of the desired protein in the procaryotic or eucaryotic 30 cells, separation techniques known in the art can be used in combination.

Such techniques include e.g. treatment with a denaturant such as urea or a surfactant, sonication, enzymatic digestion, salting-out or solvent precipitation, dialysis, centrifugation, ultrafiltration, gel filtration, SDS-PAGE, isoelectric focusing, ion-exchange chromatography, hydrophobic chromatography, affinity chromatography and reverse phase chromatography.

The protein of the invention (1) encompasses peptide fragments (each consisting of 5 or more amino acid residues) containing any partial amino acid sequence from the SEQ ID NO: 1. Such a peptide fragment can be used as an antigen for preparing the antibody of the present invention. Further, the protein of the invention (1) encompasses fusion proteins with another arbitrary protein. For example, fusion proteins with glutathione-S-transferase (GST) or green fluorescent protein (GFP), described in the Examples, can be mentioned.

The polynucleotide (cDNA) of the invention (2) or (3) can be cloned from a cDNA library derived from e.g. human cells. The cDNA is synthesized using poly(A)⁺RNA as a template extracted from human cells. The human cells may be either cultured cells or cells excised by an operation etc. from the human body. The cDNA can be synthesized by any methods such as the Okayama-Berg method (Okayama, H. and Berg, P., Mol. Cell Biol., 2, 161-170, 1982) and the Gubler-Hoffman method (Gubler, U. and Hoffman, J. Gene, 25, 263-269, 1983), but for efficiently obtaining full-length clones, the Capping method (Kato, S. et al., Gene, 150, 243-250, 1994) described in the Examples is preferably used.

The polynucleotide of the invention (2) comprises the nucleotide sequence of SEQ ID NO: 2, and for example, the polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 3 has a 2669-bp nucleotide sequence containing a 2115-bp open reading frame (ORF). This ORF encodes a protein consisting of 704 amino acid residues. The polynucleotide of the invention (3)

comprises the 2115-bp nucleotide sequence (SEQ ID NO:2) constituting this ORF. By expressing the cDNA of the invention (2) or (3) in *E. coli* or animal cultured cells, an about 80-kDa protein was obtained. This protein binds to a C-terminal domain of RNA polymerase II, so it is considered to participate in transcriptional regulation.

Since the protein of the invention (1) is expressed in any tissues, the same clone as the polynucleotide of the invention (2) or (3) can be easily obtained from a human cDNA library prepared from human cells by screening the library with an oligonucleotide probe synthesized on the basis of the nucleotide sequence of the polynucleotide set forth in SEQ ID NO: 2 or 3. Alternatively, the objective cDNA can also be synthesized by polymerase chain reaction (PCR) by use of such oligonucleotides as primers.

Generally, polymorphism of human genes occurs frequently due to individual variations. Accordingly, those polynucleotides where in SEQ ID NO: 2 or 3, one or more nucleotides have been added, deleted and/or substituted with other nucleotides fall under the scope of the invention (3) or (4).

Accordingly, those proteins where in SEQ ID NO: 1, one or more amino acids have been added, deleted and/or substituted with other amino acids as a result of such alterations to nucleotides also fall under the scope of the invention (1) insofar as they have the activity of a protein having the amino acid sequence of SEQ ID NO: 1.

The polynucleotide of the invention (2) or (3) encompasses DNA fragments (10 bp or more) containing any partial nucleotide sequence from the sequence of SEQ ID NO: 2 or 3. Further, DNA fragments consisting of a sense or antisense strand thereof fall under the scope of this invention. These DNA fragments can be used as probes for genetic diagnosis.

The invention (4) is concerned with a human genomic DNA fragment with which the polynucleotide of SEQ ID NO: 3 or a partial contiguous sequence thereof hybridizes under stringent conditions. As used herein, the stringent conditions are that enables specific and detectable binding between the polynucleotide of SEQ ID NO: 3 or a partial contiguous sequence thereof (30 bp or more) and chromosome-derived genomic DNA. The stringent conditions are defined in terms of salt concentration, organic solvent (e.g., formamide), temperature and other known conditions. That is, stringency is increased by a decrease in salt concentration, by an increase in organic solvent concentration, or by an increase in hybridization temperature. For example, the stringent salt concentration is usually about 750 mM or less NaCl and about 75 mM or less trisodium citrate, more preferably about 500 mM or less NaCl and about 50 mM or less trisodium citrate and most preferably about 250 mM or less NaCl and about 25 mM or less trisodium citrate. The stringent organic solvent concentration is about 35 % or more formamide, most preferably about 50 % or more formamide. The stringent temperature condition is about 30 °C or more, more preferably about 37 °C or more and most preferably about 42 °C or more. The other conditions include hybridization time, the concentration of a detergent (e.g. SDS), the presence or absence of carrier DNA, etc., and by combining these conditions, varying stringency can be established. Further, the conditions for washing after hybridization also affects stringency. The washing conditions are also defined in terms of salt concentration and temperature, and the stringency of washing is increased by a decrease in salt concentration or by an increase in temperature. For example, the stringent salt condition for washing is about 30 mM or less NaCl and about 3 mM or less trisodium citrate, most preferably about 15 mM or less NaCl and about 1.5 mM or less trisodium citrate. The stringent temperature condition for washing is about 25 °C or more, more preferably about 42 °C or more and most preferably about 68 °C or more. The genomic DNA fragment of the invention (4) can be

isolated for example by subjecting a genome library prepared from human chromosomal DNA to screening by the above stringent hybridization with said polynucleotide as a probe and subsequent washing.

5 The genomic DNA fragment of the invention (4) comprises expression-regulating regions (promoter/enhancer and suppressor sequences, etc.) for the region coding for the protein of the invention (1). These expression-regulating regions are useful as a material for screening a material regulating *in vivo* expression of the protein of the invention (1).

10 The antibody of the invention (7) can be obtained from serum in an animal immunized with the protein of the invention (1) as an antigen. The antigen used may be a peptide chemically synthesized on the basis of the amino acid sequence of SEQ ID NO: 1 or the protein expressed in the eucaryotic or
15 procaryotic cells. Alternatively, the antibody can be prepared by introducing the above-described expression vector for eucaryotic cells through an injection or a gene gun into animal muscles or skin and then collecting serum (e.g., an invention in JP-7-313187A). As the animal, a mouse, rat, rabbit, goat, chicken or the like is used. If a hybridoma is produced by fusing myeloma cells with B
20 cells collected from the spleen in the immunized animal, a monoclonal antibody against the protein of the invention (1) can be produced by the hybridoma.

Examples

25 The present invention will be described in more detail by reference to the Examples, which however are not intended to limit the scope of the present invention. Basic procedures for DNA recombination and enzymatic reaction were in accordance with those described in a literature (Molecular Cloning, A
30 Laboratory Manual, Cold Spring Harbor Laboratory, 1989). Unless otherwise

specified, the restriction enzymes and various modifying enzymes used were products of Takara Shuzo Co., Ltd. The buffer composition in each enzymatic reaction, as well as reaction conditions, was followed instructions attached to the kits. Synthesis of cDNA was conducted according to a literature (Kato, S. 5 et al., Gene, 150, 243-250, 1994).

(i) cDNA cloning

As a result of large-scale determination of the nucleotide sequences of cDNA clones selected from a human full-length cDNA library (described in 10 WO97/03190), clone HP03494 was obtained. This clone had a structure made of a 291-bp 5'-untranslated region, a 2115-bp ORF and a 263-bp 3'-untranslated region (SEQ ID NO: 3). The ORF encodes a protein consisting of 704 amino acid residues.

Using the amino acid sequence (SEQ ID NO: 1) of this protein, a protein 15 database was searched, but none of known proteins had homology to this protein. Further examination of GenBank by using the nucleotide sequence of its cDNA indicated that some ESTs (e.g. Accession No. A1758365) have 90 % or more homology thereto, but they are partial sequences, so whether or not they code for the same protein as the protein of this invention cannot be judged.

20 Examination of motif sequences indicated that as shown in Table 1, the region of from the 43- to 78-positions has homology to WW domains. Tryptophan residues at the 49- and 72-positions and a proline residue at the 75-position are amino acid residues conserved in every known WW domain.

Table 1

Protein	Position	Amino Acid Sequence	Accession No.
Conserved Sequence		—W— G—YY-N— W—P—	
HP03494	43	ELVHAGWEKWSRRENRPYFYFNRFNTNQSLWEMPVLGQHD	
Npw38	46	EGLPPSWYKVFDPSGCLPYWWADTDLVSWLSPHDPNV	BAA76400
Yap_Human	171	VPLPAGWEMAKTSS. GQRYFLNHIDQTTTWQDPRKAMLS	P46937
Yap_Chick-1	169	VPLPPGWEMAKTPS. GQRYFLNHIDQTTTWQDPRKAMLS	P46936
Yap_Mouse-1	156	VPLPAGWEMAKTSS. GQRYFLNHNDQTTTWQDPRKAMLS	P46938
Ned4_Mouse-1	40	SPLPPGWEERQDV. GRTYYVNHESSRTQWKRPSPDDDL	P46935
Ned4_Human-1	218	SPLPPGWEERQDIL. GRTYYVNHESSRTQWKRPPTQDNL	P46934
Ned4_Mouse-2	196	SGLPPGWEEKQDOR. GRSYYVDHNSKTTTWSKPTMQDDP	P46935
Ned4_Human-2	375	SGLPPGWEEKQDER. GRSYYVDHNSRTTTWKPTVQATV	P46934
Dmd_Human	3055	TSVQGPWERAISPN. KVPYYINHETQTTCDHPKMTELY	P11532
Dmd_Mouse	3048	TSVQGPWERAISPN. KVPYYINHETQTTCDHPKMTELY	P11531
FE65_Rat	42	SDLPAGWMRVQDTS. GTYYWHI. PTGTTQWEPPGRASPS	P46933
Msb1/Human	249	I VLPNNWKTARDPE. GK I YYHVITRQTQWDPPTWESPG	
IQGA_Human	679	GDNNNSKWKHWVKG. GYYYYHNLETQEGGWDEPPNFVQN	P46940
FBP11-1_Mouse	1WTEHKSPD. GRTYYNTETKQSTWEKPDDLKTP	U40747
FBP11-2_Mouse	36	LLSKCPWKTYSKSDS. GKPYYYNSQTKESRWAKP.	U40747

(ii) Northern blotting

Multi tissue Northern Blot (Clontech) having human tissue poly(A)⁺RNA blotted thereon was used as an mRNA source. As the probe, an EcoRI-NotI fragment of full-length HP03494 cDNA, labeled with a radioisotope by a random primer labeling kit (Pharmacia), was used. The conditions for Northern blotting hybridization followed the protocol attached to the kit. An about 3-kb hybridization band was obtained from the heart, brain, placenta, lung, liver, skeletal muscle, kidney, pancreas, spleen, thymus, prostate, testicle, ovary, small intestine, colon and peripheral blood, suggesting that this protein is a housekeeping one.

(iii) Protein synthesis by *in vitro* translation

A plasmid vector harboring the polynucleotide (cDNA) of this invention was used to perform *in vitro* transcription/translation by a TNT rabbit reticulocyte lysate kit (a product of Promega). The expression product was

labeled with a radioisotope by adding [³⁵S] methionine. Any reaction was conducted according to the protocol attached to the kit. 2 µg of the plasmid was reacted at 30 °C for 90 minutes in a 25 µl reaction solution containing 12.5 µl TNT rabbit reticulocyte lysate, 0.5 µl buffer (attached to the kit), 2 µl amino acid mixture (not containing methionine), 2 µl (0.35 MBq/µl) of [³⁵S] methionine (Amersham), 0.5 µl of T7 RNA polymerase and 20 U of RNasin. Then, 2 µl SDS sampling buffer (125 mM Tris-HCl, pH 6.8, 120 mM 2-mercaptoethanol, 2 % SDS solution, 0.025 % bromophenol blue, 20 % glycerol) was added to 3 µl of the reaction solution, and the mixture was treated by heating at 95 °C for 3 minutes and subjected to SDS-polyacrylamide gel electrophoresis. By autoradiography, the molecular weight of the translated product was determined. As a result, the translation product, which had a molecular weight of 80 kDa almost similar to the molecular weight (80,618) deduced from the ORF, was formed.

15

(iv) Expression of GST fusion protein in *E. coli*

The translated region was amplified by PCR where pHP03494 was used as a template while a 26-mer sense primer (SEQ ID NO: 4) starting at a translation initiation codon and having an EcoRI recognition site added thereto and a 26-mer antisense primer (SEQ ID NO: 5) terminating at a termination codon having a SalI recognition site added thereto were used respectively as primers. The PCR product was digested with restriction enzyme EcoRI and inserted into EcoRI site in vector pGEX-5X-1 (Pharmacia). After its nucleotide sequence was confirmed, the resulting plasmid was used for transforming *E. coli* BL21. The transformant was cultured at 37 °C for 5 hours in LB medium, and IPTG was added thereto at a final concentration of 0.4 mM, followed by culturing at 37 °C for 2.5 hours. The microorganism was separated by centrifugation and lysed in a lysing solution (50 mM Tris-HCl (pH 7.5), 1 mM EDTA-1 % Triton X-100, 0.2 % SDS, 0.2 mM PMSF), frozen once at -80 °C, thawed, and disrupted by sonication. After centrifugation at 1000 x g for 30

minutes, glutathione Sepharose 4B was added to the supernatant and incubated at 4 °C for 1 hour. After the beads were sufficiently washed, a fusion protein was eluted with an eluent (10 mM Tris-50 mM glutathione). As a result, a GST-HP03494 fusion protein having a molecular weight of about 110 kDa was obtained.

5 (v) Preparation of antibody

Domestic rabbits were immunized with the above fusion protein as the antigen to give antiserum. First, an antiserum fraction precipitating by 40 % saturation with ammonium sulfate was applied onto a GST affinity column to remove GST antibody. Then, the unadsorbed fraction was purified by a GST-HP03494-antigen column.

10 (vi) Western blotting

15 A lysate of human fibrosarcoma cell line HT-1080 was separated by SDS-PAGE, blotted onto a PVDF membrane, blocked for 1 hour at room temperature with 0.05 % Tween 20-PBS (TPBS) containing 5 % skim milk, and incubated with the antibody diluted 10,000-fold with TPBS. The sample was washed 3 times with TPBS and then incubated for 1 hour with horseradish peroxidase-labeled goat anti-rabbit IgG diluted 10,000-fold with TPBS. The sample was washed four times with TPBS and detected by luminescence with an ECL reagent (Amersham), to give a signal with a molecular weight of 80 kDa. This molecular weight agreed with the molecular weight of the *in vitro* translated protein product in the rabbit cell-free translation system.

20 25 (vii) Expression of GFP fusion protein

The translated region was amplified by PCR where pHPO3494 was used as a template while a 26-mer sense primer (SEQ ID NO: 4) starting at a translation initiation codon having an EcoRI recognition site added thereto and 30 a 26-mer antisense primer (SEQ ID NO: 5) terminating at a termination codon

having a *Sall* recognition site added thereto were used respectively as primers. The PCR product was digested with restriction enzymes *EcoRI* and *Sall* and inserted into *EcoRI* site in GFP fusion protein expression vector pEGFP-C2 (Clontech). After the nucleotide sequence was confirmed, HeLa cells were
5 transfected by the lipofection method with the resulting plasmid pEGFP-C2-HP03494. Under a fluorescence microscope, the cells transfected with pEGFP-C2 showed fluorescence on the whole of the cells, whereas the cells transfected with pEGFP-C2-HP03494 showed fluorescence on their nuclei only. This result indicated that HP03494 is a protein present in nucleus.

10

(viii) Binding to a C-terminal domain (CTD) of RNA polymerase II

The translated region coding for WW domain was amplified by PCR where pH03494 was used as a template while a 33-mer sense primer (SEQ ID NO: 6) starting at a translation initiation codon with a *BamHI* recognition site added thereto and a 33-mer antisense primer (SEQ ID NO: 7) terminating at a termination codon with an *EcoRI* recognition site added thereto were used respectively as primers. The PCR product was digested with restriction enzymes *BamHI* and *EcoRI* and then inserted into *BamHI-EcoRI* sites in vector pGEX-5X-1 (Pharmacia). The resulting plasmid was subjected to expression in
20 *E. coli* in the same manner as in (iv), to give a fusion protein GST-HP03494WW consisting of GST and HP03494 WW domain, and this fusion protein was separated by SDS-PAGE, then transferred onto a PVDF membrane, incubated with ³²P-labeled GST-CTD or ³²P-labeled GST-pCTD (GST-phosphorylated CTD) phosphorylated depending on a nuclear extract (Hirose, Y and Manley, J. L.,
25 Nature, 395, 93-96, 1998), and detected by the Far Western method (Kaelin, Jr. et al., Cell, 70, 351-364, 1992). It was revealed that the WW domain on HP03494 binds more strongly to phosphorylated CTD. This result suggested that the protein of this invention is involved in regulating transcription.

Industrial Applicability

This invention provides an isolated and purified human nuclear protein existing in human cell nucleus, a polynucleotide (human cDNA and genomic DNA fragment) encoding this protein, and an antibody against this nuclear protein. The protein and antibody of this invention are useful for diagnosis and therapy of morbid states such as cancers. By use of the present polynucleotide, the present protein can be expressed in a large amount. By screening a low-molecular compound binding to the present protein, a new type of pharmaceutical preparation such as antitumor agent can be searched for.

CLAIMS

1. An isolated and purified human nuclear protein comprising the amino acid sequence of SEQ ID NO: 1.

5

2. A polynucleotide encoding the protein of claim 1, which comprises the nucleotide sequence of SEQ ID NO: 2.

3. The polynucleotide of claim 2, consisting of the nucleotide sequence of

10 SEQ ID NO: 2.

4. A human genomic DNA fragment with which a polynucleotide of SEQ ID NO:3 or a partial contiguous sequence thereof hybridizes under stringent conditions.

15

5. An expression vector expressing the polynucleotide of claim 2 or 3 in *in vitro* translation or in host cells.

20

6. A transformed cell producing the human nuclear protein of claim 1, which is transformants with the expression vector of claim 5.

7. An antibody against the human nuclear protein of claim 1.

DECLARATION AND POWER OF ATTORNEY FOR U.S. PATENT APPLICATION

(X) Original () Supplemental () Substitute (X) PCT () DESIGN

As a below named inventor, I hereby declare that: my residence, post office address and citizenship are as stated below next to my name; that I verily believe that I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

Title: A HUMAN NUCLEAR PROTEIN HAVING A WW DOMAIN AND A POLYNUCLEOTIDE ENCODING THE PROTEIN

of which is described and claimed in:

(the attached specification, or
 the specification in application Serial No. _____, filed July 20, 2001, and with amendments through _____
_____, or
 the specification in International Application No. PCT/JP00/08253, filed November 22, 2000, and as amended on _____
(if applicable).

I hereby state that I have reviewed and understand the content of the above-identified specification, including the claims, as amended by any amendment(s) referred to above.

I acknowledge my duty to disclose to the Patent and Trademark Office all information known to me to be material to patentability as defined in Title 37, Code of Federal Regulations, §1.56.

I hereby claim priority benefits under Title 35, United States Code, §119 (and §172 if this application is for a Design) of any application(s) for patent or inventor's certificate listed below and have also identified below any application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

COUNTRY	APPLICATION NO.	DATE OF FILING	PRIORITY CLAIMED
Japan	1999-332572	November 24, 1999	Yes

I hereby claim the benefit under Title 35, United States Code §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code §112, I acknowledge the duty to disclose information material to patentability as defined in Title 37, Code of Federal Regulations, §1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

APPLICATION SERIAL NO.	U.S. FILING DATE	STATUS: PATENTED, PENDING, ABANDONED

And I hereby appoint Michael R. Davis, Reg. No. 25,134; Matthew M. Jacob, Reg. No. 25,154; Warren M. Cheek, Jr., Reg. No. 33,367; Nils Pedersen, Reg. No. 33,145; Charles R. Watts, Reg. No. 33,142; and Michael S. Huppert, Reg. No. 40,268, who together constitute the firm of WENDEROTH, LIND & PONACK, L.L.P., as well as any other attorneys and agents associated with Customer No. 000513, to prosecute this application and to transact all business in the U.S. Patent and Trademark Office connected therewith.

I hereby authorize the U.S. attorneys and agents named herein to accept and follow instructions from NISHIZAWA & ASSOCIATES as to any action to be taken in the U.S. Patent and Trademark Office regarding this application without direct communication between the U.S. attorneys and myself. In the event of a change in the persons from whom instructions may be taken, the U.S. attorneys named herein will be so notified by me.

Direct Correspondence to Customer No:

000513

PATENT TRADEMARK OFFICE

Direct Telephone Calls to:

WENDEROTH, LIND & PONACK, L.L.P.
2033 "K" Street, N.W., Suite 800
Washington, D.C. 20006-1021

Phone:(202) 721-8200
Fax:(202) 721-8250

Full Name of First Inventor	FAMILY NAME <u>KATO</u>	FIRST GIVEN NAME <u>Seishi</u>	SECOND GIVEN NAME
Residence & Citizenship	CITY <u>Kanagawa</u>	STATE OR COUNTRY <u>Japan</u>	COUNTRY OF CITIZENSHIP <u>JP</u> <u>Japan</u>
Post Office Address	ADDRESS <u>46-50, Wakamatsu 3-chome, Sagamihara-shi, Kanagawa, Japan</u>	CITY	STATE OR COUNTRY
			ZIP CODE
Full Name of Second Inventor	FAMILY NAME <u>KOMIURA</u>	FIRST GIVEN NAME <u>Akihiko</u>	SECOND GIVEN NAME
Residence & Citizenship	CITY <u>Kanagawa</u>	STATE OR COUNTRY <u>Japan</u>	COUNTRY OF CITIZENSHIP <u>JP</u> <u>Japan</u>
Post Office Address	ADDRESS <u>2759-2, Kamitsuruma, Sagamihara-shi, Kanagawa, Japan</u>	CITY	STATE OR COUNTRY
			ZIP CODE
Full Name of Third Inventor	FAMILY NAME <u>HIROSE</u>	FIRST GIVEN NAME <u>Yutaka</u>	SECOND GIVEN NAME
Residence & Citizenship	CITY <u>Ishikawa</u>	STATE OR COUNTRY <u>Japan</u>	COUNTRY OF CITIZENSHIP <u>JP</u> <u>Japan</u>
Post Office Address	ADDRESS <u>D-8 Wakunami-shukusha, 7-10, Wakunami 2-chome, Kanazawa-shi, Ishikawa, Japan</u>	CITY	STATE OR COUNTRY
			ZIP CODE
Full Name of Fourth Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME
Residence & Citizenship	CITY	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP
Post Office Address	ADDRESS	CITY	STATE OR COUNTRY
			ZIP CODE
Full Name of Fifth Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME
Residence & Citizenship	CITY	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP
Post Office Address	ADDRESS	CITY	STATE OR COUNTRY
			ZIP CODE
Full Name of Sixth Inventor	FAMILY NAME	FIRST GIVEN NAME	SECOND GIVEN NAME

Residence & Citizenship	CITY	STATE OR COUNTRY	COUNTRY OF CITIZENSHIP	
Post Office Address	ADDRESS	CITY	STATE OR COUNTRY	ZIP CODE

I further declare that all statements made herein of my own knowledge are true, and that all statements on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

1st Inventor Seishi Kato Date August 28, 2001
 Seishi KATO

2nd Inventor Akihiko Komuro Date August 28, 2001
 Akihiko KOMURO

3rd Inventor Yutaka Hirose Date August 28, 2001
 Yutaka HIROSE

4th Inventor _____ Date _____

5th Inventor _____ Date _____

6th Inventor _____ Date _____

The above application may be more particularly identified as follows:

U.S. Application Serial No. _____ Filing Date July 20, 2001

Applicant Reference Number 00-F-061PCT-US/YS Atty Docket No. 2001_1023A

Title of Invention A HUMAN NUCLEAR PROTEIN HAVING A WW DOMAIN AND A POLYNUCLEOTIDE ENCODING THE PROTEIN

09/889722

JC18 Rec'd PCT/PTO 20 JUL 2001

1 / 13

SEQUENCE LISTING

<110> Japan Science and Technology Corporation

<120> Human nucleoprotein having a WW domain and
a polynucleotide encoding the protein

<130> 00-F-061PCT

<140> PCT/JP00/08253

<141> 2000-11-22

<150> JP11-332572

<151> 1999-11-24

<160> 7

<170> PatentIn Ver. 2.0

<210> 1

<211> 704

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Asn Glu Asn His Gly Ser Pro Arg Glu Glu Ala Ser Leu Leu

1 5 10 15

Ser His Ser Pro Gly Thr Ser Asn Gln Ser Gln Pro Cys Ser Pro Lys

20 25 30

Pro Ile Arg Leu Val Gln Asp Leu Pro Glu Glu Leu Val His Ala Gly

35	40	45
Trp Glu Lys Cys Trp Ser Arg Arg Glu Asn Arg Pro Tyr Tyr Phe Asn		
50	55	60
Arg Phe Thr Asn Gln Ser Leu Trp Glu Met Pro Val Leu Gly Gln His		
65	70	75
Asp Val Ile Ser Asp Pro Leu Gly Leu Asn Ala Thr Pro Leu Pro Gln		
85	90	95
Asp Ser Ser Leu Val Glu Thr Pro Pro Ala Glu Asn Lys Pro Arg Lys		
100	105	110
Arg Gln Leu Ser Glu Glu Gln Pro Ser Gly Asn Gly Val Lys Lys Pro		
115	120	125
Lys Ile Glu Ile Pro Val Thr Pro Thr Gly Gln Ser Val Pro Ser Ser		
130	135	140
Pro Ser Ile Pro Gly Thr Pro Thr Leu Lys Met Trp Gly Thr Ser Pro		
145	150	155
160		
Glu Asp Lys Gln Gln Ala Ala Leu Leu Arg Pro Thr Glu Val Tyr Trp		
165	170	175
Asp Leu Asp Ile Gln Thr Asn Ala Val Ile Lys His Arg Gly Pro Ser		
180	185	190
Glu Val Leu Pro Pro His Pro Glu Val Glu Leu Leu Arg Ser Gln Leu		
195	200	205
Ile Leu Lys Leu Arg Gln His Tyr Arg Glu Leu Cys Gln Gln Arg Glu		
210	215	220
Gly Ile Glu Pro Pro Arg Glu Ser Phe Asn Arg Trp Met Leu Glu Arg		
225	230	235
240		
Lys Val Val Asp Lys Gly Ser Asp Pro Leu Leu Pro Ser Asn Cys Glu		
245	250	255
Pro Val Val Ser Pro Ser Met Phe Arg Glu Ile Met Asn Asp Ile Pro		
260	265	270

Ile Arg Leu Ser Arg Ile Lys Phe Arg Glu Glu Ala Lys Arg Leu Leu
275 280 285
Phe Lys Tyr Ala Glu Ala Ala Arg Arg Leu Ile Glu Ser Arg Ser Ala
290 295 300
Ser Pro Asp Ser Arg Lys Val Val Lys Trp Asn Val Glu Asp Thr Phe
305 310 315 320
Ser Trp Leu Arg Lys Asp His Ser Ala Ser Lys Glu Asp Tyr Met Asp
325 330 335
Arg Leu Glu His Leu Arg Arg Gln Cys Gly Pro His Val Ser Ala Ala
340 345 350
Ala Lys Asp Ser Val Glu Gly Ile Cys Ser Lys Ile Tyr His Ile Ser
355 360 365
Leu Glu Tyr Val Lys Arg Ile Arg Glu Lys His Leu Ala Ile Leu Lys
370 375 380
Glu Asn Asn Ile Ser Glu Glu Val Glu Ala Pro Glu Val Glu Pro Arg
385 390 395 400
Leu Val Tyr Cys Tyr Pro Val Arg Leu Ala Val Ser Ala Pro Pro Met
405 410 415
Pro Ser Val Glu Met His Met Glu Asn Asn Val Val Cys Ile Arg Tyr
420 425 430
Lys Gly Glu Met Val Lys Val Ser Arg Asn Tyr Phe Ser Lys Leu Trp
435 440 445
Leu Leu Tyr Arg Tyr Ser Cys Ile Asp Asp Ser Ala Phe Glu Arg Phe
450 455 460
Leu Pro Arg Val Trp Cys Leu Leu Arg Arg Tyr Gln Met Met Phe Gly
465 470 475 480
Val Gly Leu Tyr Glu Gly Thr Gly Leu Gln Gly Ser Leu Pro Val His
485 490 495
Val Phe Glu Ala Leu His Arg Leu Phe Gly Val Ser Phe Glu Cys Phe

500	505	510
Ala Ser Pro Leu Asn Cys Tyr Phe Arg Gln Tyr Cys Ser Ala Phe Pro		
515	520	525
Asp Thr Asp Gly Tyr Phe Gly Ser Arg Gly Pro Cys Leu Asp Phe Ala		
530	535	540
Pro Leu Ser Gly Ser Phe Glu Ala Asn Pro Pro Phe Cys Glu Glu Leu		
545	550	555
Met Asp Ala Met Val Ser His Phe Glu Arg Leu Leu Glu Ser Ser Pro		
565	570	575
Glu Pro Leu Ser Phe Ile Val Phe Ile Pro Glu Trp Arg Glu Pro Pro		
580	585	590
Thr Pro Ala Leu Thr Arg Met Glu Gln Ser Arg Phe Lys Arg His Gln		
595	600	605
Leu Ile Leu Pro Ala Phe Glu His Glu Tyr Arg Ser Gly Ser Gln His		
610	615	620
Ile Cys Lys Lys Glu Glu Met His Tyr Lys Ala Val His Asn Thr Ala		
625	630	635
Val Leu Phe Leu Gln Asn Asp Pro Gly Phe Ala Lys Trp Ala Pro Thr		
645	650	655
Pro Glu Arg Leu Gln Glu Leu Ser Ala Ala Tyr Arg Gln Ser Gly Arg		
660	665	670
Ser His Ser Ser Gly Ser Ser Ser Ser Ser Ser Glu Ala Lys Asp		
675	680	685
Arg Asp Ser Gly Arg Glu Gln Gly Pro Ser Arg Glu Pro His Pro Thr		
690	695	700

<210> 2

<211> 2112

<212> DNA

<213> Homo sapiens

<400> 2

atggccaatg agaatcacgg cagcccccg gаггаагсgt ccctgctgag tcactcccc 60
'ggtaсctcca atcагагccca gcccгtct ccaaагccaa tccgcctggt tcaggacctc 120
ccagaggагc тggtgcatgc aggctggag aагtgcтgga gccggaggga гаатcgtccc 180
tactacttca accgattcac caaccagtcc ctgtggaga tgcccgtgct gggcagcac 240
gatgtgattt cggaсccttt gggctgaat gcgacccac tgcccaaga ctcaagctt 300
gtggaaactc ccccgctga gaacaагccc agaaагcggc agtctcgga agagcagcca 360
agcggcaatg gtgtgaagaa gcccagatt гааatcccag tgacacccac aggccagtc 420
gtgcccagct ccccgagtat cccaggaacc ccaacgctga agatgtggg tacgtccct 480
gaagataaac аgcaggcагc tctcctacga cccactgagg tctactggga cctggacatc 540
cagaccaatg ctgtcatcaa gcaccgggg ccttcaгagg tgctgcccc gcatccgaa 600
gtggaactgc tccgctctca gctcatcctg aagctcggc agcactatcg ggagctgtc 660
cagcagcгag agggcattga gcctccacgg gagtcttca accgctggat gctggagcgc 720
aaggтggtag acaaaggatc tgacccctt tgcccagca actgtgaacc agtctgtca 780
ccttccatgt ttctgtaaa catgaacgac attccatca gtttatcccg aatcaagg 840
cgggaggaag ccaagcgcct gctcttaaa tatgcggagg cccgcaggcg gctcatcag 900
tccaggагtг cтtccctga cагtaggaag gtggtcaaat ggaatgtgg aгacacc 960
agctggcttc ggaaggacca ctcaгccctc aaggaggact acatggatcg cctggagcat 1020
ctgcggaggc agtctggccc ccacgtctcg gcccagcca aggactccgt ggaaggcatc 1080
tgcagtaaga tctaccacat ctccctggag tacgtcaaac ggtatccgaga гаагcacctt 1140
gccatcctca agaaaaacaa catctcagag gaggtggagg cccctgaggt ggagccccgc 1200
ctagtgtact gctacccagt ccggctggct gtgtctgcac cgcccatgcc cagcgtggag 1260
atgcacatgg agaacaacgt ggtctgcac cggтataagg gagagatggt caaggtcагc 1320
cgcaactact tcagcaagct gtggctccct taccgctaca gctgcattga tgactctgcc 1380
tttгагагgt tccctgccccg ggtctgggt ctтtccgac ggtaccagat gatgtcggc 1440
gtggccctc acgaggggac tggccctgag ggatcgtgc ctgtcatgt ctтtгaggcc 1500

ctccaccgac tcttggcgt cagcttcgag tgcttcgcct cacccctcaa ctgctacttc 1560
 cgccagtaact gttctgcctt ccccgacaca gacggctact ttggctcccg cgggcccgtc 1620
 ctagactttg ctccactgag tggttcattt gaggccaacc ctcccttcgt cgaggagctc 1680
 atggatgccca tggtctctca ctttgagaga ctgcttgaga gctcacccgga gcccctgtcc 1740
 ttcatcgtgt tcatccctga gtggcggaa cccccaacac cagcgctcac ccgcataggag 1800
 cagagccgct tcaaacgccca ccagttgatc ctgcctgcct ttgagcatga gtacccgagt 1860
 ggctcccagc acatctgcaa gaaggaggaa atgcaactaca aggccgtcca caacacggct 1920
 gtgctcttcc tacagaacga ccctggctt gccaaatgggg cgccgacgcc tgaacggctg 1980
 caggagctga gtgctgccta ccggcagtca ggccgcagcc acagctctgg ttcttcctca 2040
 tcgtcctccct cggaggccaa ggaccgggac tcgggccgtg agcagggtcc tagccgcgag 2100
 cctcacccca ct 2112

<210> 3

<211> 2669

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (292)..(2406)

<400> 3

acacaagatg gcggcagcgg cgctggggag ggcgaggcgg aggcggcaaa acggggcggtc 60
 gagcagaacg tgttagcccg tccccccag tccgctccgg gcagctgctg atgcaaggaa 120
 tccccctgggc tcccgtccac tccactgctg accagcccat tcgcctgtgc tgagtcttcc 180
 tgcaggcctt tccttgccctc tgtgggaccc tgtgggggtc catccggctg gagaagaaaa 240
 gcctctcatg ctaacgttgc agacccaga gggcctgtg tgggtgtgaa g atg gcc 297

Met Ala

aat gag aat cac ggc agc ccc cg_g gag gaa gc_g tcc ct_g ct_g agt cac 345
 Asn Glu Asn His Gly Ser Pro Arg Glu Glu Ala Ser Leu Leu Ser His
 5 10 15

tcc cca ggt acc tcc aat cag agc cag ccc tgt tct cca aag cca atc 393
 Ser Pro Gly Thr Ser Asn Gln Ser Gln Pro Cys Ser Pro Lys Pro Ile
 20 25 30

cgc ctg gtt cag gac ctc cca gag gag ctg gt_g cat gca ggc tgg gag 441
 Arg Leu Val Gln Asp Leu Pro Glu Glu Leu Val His Ala Gly Trp Glu
 35 40 45 50

aag tgc tgg agc cgg agg gag aat cgt ccc tac tac ttc aac cga ttc 489
 Lys Cys Trp Ser Arg Arg Glu Asn Arg Pro Tyr Tyr Phe Asn Arg Phe
 55 60 65

acc aac cag tcc ctg tgg gag atg ccc gt_g ctg ggg cag cac gat gt_g 537
 Thr Asn Gln Ser Leu Trp Glu Met Pro Val Leu Gly Gln His Asp Val
 70 75 80

att tcg gac cct ttg ggg ctg aat gc_g acc cca ctg ccc caa gac tca 585
 Ile Ser Asp Pro Leu Gly Leu Asn Ala Thr Pro Leu Pro Gln Asp Ser
 85 90 95

agc ttg gt_g gaa act ccc ccg gct gag aac aag ccc aga aag cgg cag 633
 Ser Leu Val Glu Thr Pro Pro Ala Glu Asn Lys Pro Arg Lys Arg Gln
 100 105 110

ctc tcg gaa gag cag cca agc ggc aat ggt gt_g aag aag ccc aag att 681
 Leu Ser Glu Glu Gln Pro Ser Gly Asn Gly Val Lys Lys Pro Lys Ile
 115 120 125 130

gaa atc cca gt_g aca ccc aca ggc cag tcg gt_g ccc agc tcc ccc agt 729
 Glu Ile Pro Val Thr Pro Thr Gly Gln Ser Val Pro Ser Ser Pro Ser
 135 140 145

atc cca gga acc cca acg ctg aag atg tgg ggt acg tcc cct gaa gat 777

Ile Pro Gly Thr Pro Thr Leu Lys Met Trp Gly Thr Ser Pro Glu Asp
 150 155 160
 aaa cag cag gca gct ctc cta cga ccc act gag gtc tac tgg gac ctg 825
 Lys Gln Gln Ala Ala Leu Leu Arg Pro Thr Glu Val Tyr Trp Asp Leu
 165 170 175
 gac atc cag acc aat gct gtc atc aag cac cgg ggg cct tca gag gtg 873
 Asp Ile Gln Thr Asn Ala Val Ile Lys His Arg Gly Pro Ser Glu Val
 180 185 190
 ctg ccc ccg cat ccc gaa gtg gaa ctg ctc cgc tct cag ctc atc ctg 921
 Leu Pro Pro His Pro Glu Val Glu Leu Leu Arg Ser Gln Leu Ile Leu
 195 200 205 210
 aag ctt cgg cag cac tat cgg gag ctg tgc cag cag cga gag ggc att 969
 Lys Leu Arg Gln His Tyr Arg Glu Leu Cys Gln Gln Arg Glu Gly Ile
 215 220 225
 gag cct cca cgg gag tct ttc aac cgc tgg atg ctg gag cgc aag gtg 1017
 Glu Pro Pro Arg Glu Ser Phe Asn Arg Trp Met Leu Glu Arg Lys Val
 230 235 240
 gta gac aaa gga tct gac ccc ctg ttg ccc agc aac tgt gaa cca gtc 1065
 Val Asp Lys Gly Ser Asp Pro Leu Leu Pro Ser Asn Cys Glu Pro Val
 245 250 255
 gtg tca cct tcc atg ttt cgt gaa atc atg aac gac att cct atc agg 1113
 Val Ser Pro Ser Met Phe Arg Glu Ile Met Asn Asp Ile Pro Ile Arg
 260 265 270
 tta tcc cga atc aag ttc cgg gag gaa gcc aag cgc ctg ctc ttt aaa 1161
 Leu Ser Arg Ile Lys Phe Arg Glu Glu Ala Lys Arg Leu Leu Phe Lys
 275 280 285 290
 tat gcg gag gcc gcc agg cgg ctc atc gag tcc agg agt gca tcc cct 1209
 Tyr Ala Glu Ala Ala Arg Arg Leu Ile Glu Ser Arg Ser Ala Ser Pro
 295 300 305

gac agt agg aag gtg gtc aaa tgg aat gtg gaa gac acc ttt agc tgg	1257		
Asp Ser Arg Lys Val Val Lys Trp Asn Val Glu Asp Thr Phe Ser Trp			
310	315	320	
ctt cgg aag gac cac tca gcc tcc aag gag gac tac atg gat cgc ctg	1305		
Leu Arg Lys Asp His Ser Ala Ser Lys Glu Asp Tyr Met Asp Arg Leu			
325	330	335	
gag cat ctg cgg agg cag tgt ggc ccc cac gtc tcg gcc gca gcc aag	1353		
Glu His Leu Arg Arg Gln Cys Gly Pro His Val Ser Ala Ala Ala Lys			
340	345	350	
gac tcc gtg gaa ggc atc tgc agt aag atc tac cac atc tcc ctg gag	1401		
Asp Ser Val Glu Gly Ile Cys Ser Lys Ile Tyr His Ile Ser Leu Glu			
355	360	365	370
tac gtc aaa cgg atc cga gag aag cac ctt gcc atc ctc aag gaa aac	1449		
Tyr Val Lys Arg Ile Arg Glu Lys His Leu Ala Ile Leu Lys Glu Asn			
375	380	385	
aac atc tca gag gag gtg gag gcc cct gag gtg gag ccc cgc cta gtg	1497		
Asn Ile Ser Glu Glu Val Ala Pro Glu Val Glu Pro Arg Leu Val			
390	395	400	
tac tgc tac cca gtc cgg ctg gct gtg tct gca ccg ccc atg ccc agc	1545		
Tyr Cys Tyr Pro Val Arg Leu Ala Val Ser Ala Pro Pro Met Pro Ser			
405	410	415	
gtg gag atg cac atg gag aac aac gtg gtc atc cgg tat aag gga	1593		
Val Glu Met His Met Glu Asn Asn Val Val Cys Ile Arg Tyr Lys Gly			
420	425	430	
gag atg gtc aag gtc agc cgc aac tac ttc agc aag ctg tgg ctc ctt	1641		
Glu Met Val Lys Val Ser Arg Asn Tyr Phe Ser Lys Leu Trp Leu Leu			
435	440	445	450
tac cgc tac agc tgc att gat gac tct gcc ttt gag agg ttc ctg ccc	1689		
Tyr Arg Tyr Ser Cys Ile Asp Asp Ser Ala Phe Glu Arg Phe Leu Pro			

455	460	465	
cg g gtc tgg tgt ctt ctc cga cgg tac cag atg atg ttc ggc gtg ggc			1737
Arg Val Trp Cys Leu Leu Arg Arg Tyr Gln Met Met Phe Gly Val Gly			
470	475	480	
ctc tac gag ggg act ggc ctg cag gga tcg ctg cct gtg cat gtc ttt			1785
Leu Tyr Glu Gly Thr Gly Leu Gln Gly Ser Leu Pro Val His Val Phe			
485	490	495	
gag gcc ctc cac cga ctc ttt ggc gtc agc ttc gag tgc ttc gcc tca			1833
Glu Ala Leu His Arg Leu Phe Gly Val Ser Phe Glu Cys Phe Ala Ser			
500	505	510	
ccc ctc aac tgc tac ttc cgc cag tac tgt tct gcc ttc ccc gac aca			1881
Pro Leu Asn Cys Tyr Phe Arg Gln Tyr Cys Ser Ala Phe Pro Asp Thr			
515	520	525	530
gac ggc tac ttt ggc tcc cgc ggg ccc tgc cta gac ttt gct cca ctg			1929
Asp Gly Tyr Phe Gly Ser Arg Gly Pro Cys Leu Asp Phe Ala Pro Leu			
535	540	545	
agt ggt tca ttt gag gcc aac cct ccc ttc tgc gag gag ctc atg gat			1977
Ser Gly Ser Phe Glu Ala Asn Pro Pro Phe Cys Glu Glu Leu Met Asp			
550	555	560	
gcc atg gtc tct cac ttt gag aga ctg ctt gag agc tca ccg gag ccc			2025
Ala Met Val Ser His Phe Glu Arg Leu Leu Glu Ser Ser Pro Glu Pro			
565	570	575	
ctg tcc ttc atc gtg ttc atc cct gag tgg cgg gaa ccc cca aca cca			2073
Leu Ser Phe Ile Val Phe Ile Pro Glu Trp Arg Glu Pro Pro Thr Pro			
580	585	590	
g c g ctc acc cgc atg gag cag agc cgc ttc aaa cgc cac cag ttg atc			2121
Ala Leu Thr Arg Met Glu Gln Ser Arg Phe Lys Arg His Gln Leu Ile			
595	600	605	610
ctg cct gcc ttt gag cat gag tac cgc agt ggc tcc cag cac atc tgc			2169

Leu Pro Ala Phe Glu His Glu Tyr Arg Ser Gly Ser Gln His Ile Cys			
615	620	625	
aag aag gag gaa atg cac tac aag gcc gtc cac aac acg gct gtg ctc			2217
Lys Lys Glu Glu Met His Tyr Lys Ala Val His Asn Thr Ala Val Leu			
630	635	640	
ttc cta cag aac gac cct ggc ttt gcc aag tgg gcg ccg acg cct gaa			2265
Phe Leu Gln Asn Asp Pro Gly Phe Ala Lys Trp Ala Pro Thr Pro Glu			
645	650	655	
cgg ctg cag gag ctg agt gct gcc tac cgg cag tca ggc cgc agc cac			2313
Arg Leu Gln Glu Leu Ser Ala Ala Tyr Arg Gln Ser Gly Arg Ser His			
660	665	670	
agc tct ggt tct tcc tca tcg tcc tcg gag gcc aag gac cgg gac			2361
Ser Ser Gly Ser Ser Ser Ser Ser Ser Glu Ala Lys Asp Arg Asp			
675	680	685	690
tcg ggc cgt gag cag ggt cct agc cgc gag cct cac ccc act taa			2406
Ser Gly Arg Glu Gln Gly Pro Ser Arg Glu Pro His Pro Thr			
695	700	705	
cataatccctgc ggggaggagg agccccaggg gtgctagtct ggactgctgg gactcgggcc			2466
cctggggcct cagagggacc ccggctgccca ctgacatatg aagattatgg ttctgccagg			2526
gctccccctcc ctgcctgtcc ccaagtccctc acctcaaact ccctccaagt cccatgtata			2586
taggtccctga tgccctccca accccgcccc tcaccctgtt gccaccttgt ttcatgtta			2646
aaaggaaata cagaaacccc ccc			2669

<210> 4

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<213> Synthesized oligonucleotide

<400> 4

ccgaaattcat ggc当地atgag aatcac

26

<210> 5

<211> 26

<212> DNA

<213> Artificial sequence

<220>

<213> Synthesized oligonucleotide

<400> 5

ccgtcgactt aagtgggtg aggctc

26

<210> 6

<211> 33

<212> DNA

<213> Artificial sequence

<220>

<213> Synthesized oligonucleotide

<400> 6

cgaggatccg ttcaaggacct cccagaggacg cta

33

<210> 7

<211> 33

<212> DNA

<213> Artificial sequence

<220>

<213> Synthesized oligonucleotide

<400> 7

cgagaattcc gaaatcacat cgtgctgccc cag

33

SEQUENCE LISTING

<110> Japan Science and Technology Corporation

<120> Human nucleoprotein having a WW domain and
a polynucleotide encoding the protein

<130> 09/889,722

<140> PCT/JP00/08253

<141> 2000-11-22

<150> JP11-332572

<151> 1999-11-24

<160> 7

<170> PatentIn Ver. 2.0

<210> 1

<211> 704

<212> PRT

<213> Homo sapiens

<400> 1

Met Ala Asn Glu Asn His Gly Ser Pro Arg Glu Glu Ala Ser Leu Leu
1 5 10 15
Ser His Ser Pro Gly Thr Ser Asn Gln Ser Gln Pro Cys Ser Pro Lys
20 25 30
Pro Ile Arg Leu Val Gln Asp Leu Pro Glu Glu Leu Val His Ala Gly
35 40 45
Trp Glu Lys Cys Trp Ser Arg Arg Glu Asn Arg Pro Tyr Tyr Phe Asn
50 55 60
Arg Phe Thr Asn Gln Ser Leu Trp Glu Met Pro Val Leu Gly Gln His
65 70 75 80
Asp Val Ile Ser Asp Pro Leu Gly Leu Asn Ala Thr Pro Leu Pro Gln
85 90 95
Asp Ser Ser Leu Val Glu Thr Pro Pro Ala Glu Asn Lys Pro Arg Lys
100 105 110
Arg Gln Leu Ser Glu Glu Gln Pro Ser Gly Asn Gly Val Lys Lys Pro
115 120 125
Lys Ile Glu Ile Pro Val Thr Pro Thr Gly Gln Ser Val Pro Ser Ser
130 135 140
Pro Ser Ile Pro Gly Thr Pro Thr Leu Lys Met Trp Gly Thr Ser Pro
145 150 155 160
Glu Asp Lys Gln Gln Ala Ala Leu Leu Arg Pro Thr Glu Val Tyr Trp
165 170 175
Asp Leu Asp Ile Gln Thr Asn Ala Val Ile Lys His Arg Gly Pro Ser
180 185 190
Glu Val Leu Pro Pro His Pro Glu Val Glu Leu Leu Arg Ser Gln Leu
195 200 205
Ile Leu Lys Leu Arg Gln His Tyr Arg Glu Leu Cys Gln Gln Arg Glu
210 215 220
Gly Ile Glu Pro Pro Arg Glu Ser Phe Asn Arg Trp Met Leu Glu Arg
225 230 235 240
Lys Val Val Asp Lys Gly Ser Asp Pro Leu Leu Pro Ser Asn Cys Glu

09/889722

245	250	255
Pro Val Val Ser Pro Ser Met Phe Arg Glu Ile Met Asn Asp Ile Pro		
260	265	270
Ile Arg Leu Ser Arg Ile Lys Phe Arg Glu Glu Ala Lys Arg Leu Leu		
275	280	285
Phe Lys Tyr Ala Glu Ala Ala Arg Arg Leu Ile Glu Ser Arg Ser Ala		
290	295	300
Ser Pro Asp Ser Arg Lys Val Val Lys Trp Asn Val Glu Asp Thr Phe		
305	310	320
Ser Trp Leu Arg Lys Asp His Ser Ala Ser Lys Glu Asp Tyr Met Asp		
325	330	335
Arg Leu Glu His Leu Arg Arg Gln Cys Gly Pro His Val Ser Ala Ala		
340	345	350
Ala Lys Asp Ser Val Glu Gly Ile Cys Ser Lys Ile Tyr His Ile Ser		
355	360	365
Leu Glu Tyr Val Lys Arg Ile Arg Glu Lys His Leu Ala Ile Leu Lys		
370	375	380
Glu Asn Asn Ile Ser Glu Glu Val Glu Ala Pro Glu Val Glu Pro Arg		
385	390	400
Leu Val Tyr Cys Tyr Pro Val Arg Leu Ala Val Ser Ala Pro Pro Met		
405	410	415
Pro Ser Val Glu Met His Met Glu Asn Asn Val Val Cys Ile Arg Tyr		
420	425	430
Lys Gly Glu Met Val Lys Val Ser Arg Asn Tyr Phe Ser Lys Leu Trp		
435	440	445
Leu Leu Tyr Arg Tyr Ser Cys Ile Asp Asp Ser Ala Phe Glu Arg Phe		
450	455	460
Leu Pro Arg Val Trp Cys Leu Leu Arg Arg Tyr Gln Met Met Phe Gly		
465	470	475
Val Gly Leu Tyr Glu Gly Thr Gly Leu Gln Gly Ser Leu Pro Val His		
485	490	495
Val Phe Glu Ala Leu His Arg Leu Phe Gly Val Ser Phe Glu Cys Phe		
500	505	510
Ala Ser Pro Leu Asn Cys Tyr Phe Arg Gln Tyr Cys Ser Ala Phe Pro		
515	520	525
Asp Thr Asp Gly Tyr Phe Gly Ser Arg Gly Pro Cys Leu Asp Phe Ala		
530	535	540
Pro Leu Ser Gly Ser Phe Glu Ala Asn Pro Pro Phe Cys Glu Glu Leu		
545	550	560
Met Asp Ala Met Val Ser His Phe Glu Arg Leu Leu Glu Ser Ser Pro		
565	570	575
Glu Pro Leu Ser Phe Ile Val Phe Ile Pro Glu Trp Arg Glu Pro Pro		
580	585	590
Thr Pro Ala Leu Thr Arg Met Glu Gln Ser Arg Phe Lys Arg His Gln		
595	600	605
Leu Ile Leu Pro Ala Phe Glu His Glu Tyr Arg Ser Gly Ser Gln His		
610	615	620
Ile Cys Lys Lys Glu Glu Met His Tyr Lys Ala Val His Asn Thr Ala		
625	630	640
Val Leu Phe Leu Gln Asn Asp Pro Gly Phe Ala Lys Trp Ala Pro Thr		
645	650	655
Pro Glu Arg Leu Gln Glu Leu Ser Ala Ala Tyr Arg Gln Ser Gly Arg		
660	665	670
Ser His Ser Ser Gly Ser Ser Ser Ser Ser Ser Glu Ala Lys Asp		
675	680	685
Arg Asp Ser Gly Arg Glu Gln Gly Pro Ser Arg Glu Pro His Pro Thr		
690	695	700

09/889722

<210> 2
<211> 2112
<212> DNA
<213> Homo sapiens

<400> 2
atggccaatg agaatcacgg cagccccgg gaggaagcgt ccctgcttag tcactccca 60
ggtacctcca atcagagcca gcctgttct ccaaagccaa tccgcctggc tcaggaccc 120
ccagaggagc tggtcatgc aggctggag aagtgcgg agcggaggaa gaatcgccc 180
tactacttca accgattcac caaccagtc ctgtggaga tgccctgtgc gggcagcac 240
gatgtgattt cggaccctt gggctgaat gcgacccac tgcccaaga ctcaagctt 300
gtgaaaactc ccccgctga gaacaagccc agaaagcgc agctctcgga agagcagcca 360
agccgcaatg gtgtgaagaa gccaaagatt gaaatcccag tgacacccac aggcagtcg 420
gtgcccagct ccccaagtat cccaggaacc ccaacgctga agatgtggg tacgtccct 480
gaagataaac agcaggcagc tctcctacga cccactgagg tctactggg cctggacatc 540
cagaccaatg ctgtcatcaa gcacggggg cttcagagg tgctgcccc gcatccgaa 600
gtgaaactgc tccgctctca gtcatactg aagcttcggc agcactatcg ggagctgtgc 660
cagcagcggagc agggcattga gcctccacgg gagtcttca accgctggat gctggagcgc 720
aagtggtag acaaaggatc tgacccctg ttgcccagca actgtgaacc agtcgtgtca 780
cctccatgt ttcgtgaaat catgaacgac attcctatca gtttatccc aatcaagttc 840
cgggaggaag ccaagccct gctttaaa tatgcggagg cgcggcggc gctcatcgag 900
tccaggagtg catccctga cagtaggaag gtggtaaat ggaatgtgg agacacccctt 960
agctggcttc ggaaggacca ctacgcctcc aaggaggact acatggatcg cctggagcat 1020
ctgcccggc agtgtggccc ccacgtctcg gccgcagcca aggactccgt ggaaggcatc 1080
tgcagtaaga tctaccacat ctccctggag tacgtcaaac ggtatccgaga gaagcacctt 1140
gccatccctca aggaaaacaa catctcagag gaggtggagg cccctgaggt ggagccccgc 1200
ctagtgtact gctaccagt cccgctggct gtgtctgcac cgcccatgcc cagcgtggag 1260
atgcacatgg agaacaacgt ggtctgcac ccgtataagg gagagatggt caaggtcagc 1320
cgcaactact tcagcaagct gtggctcctt taccgtaca gtcgttgcatt tgactctgcc 1380
tttgagaggt tccgtcccg ggtctgggt cttctccgac ggtaccagat gatgttcggc 1440
gtgggcctct acgaggggac tgccctgcag ggtatcgctc ctgtgcattgt ctttgggccc 1500
ctccaccgac tcttggcgt cagcttcgag tgcttcgcct caccctcaaa ctgctacttc 1560
cgccagttact gttctgcctt ccccgacaca gacggctact ttggctcccg cggccctgc 1620
ctagactttg ctccactgag tggttcattt gaggccaacc ctcccttctg cgaggagctc 1680
atggatgcca tggctctca ctttgagaga ctgttgcata gtcacccggc gcccctgtcc 1740
ttcatcggt tcatccctga gtggcgggaa ccccaacac cagcgctcac ccgcattggag 1800
cagagccgt tcaaacgcca ccagttgatc ctgcctgcct ttgagcatga gtaccgcgt 1860
ggctcccgac acatctgcaa gaaggaggaa atgcactaca aggccgtcca caacacggct 1920
gtgtctttcc tacagaacga ccctggctt gccaagtggg cgccgacgcc tgaacggctg 1980
caggagctga gtgtctgccta ccggcagtca ggccgacgcc acagctctgg ttcttcctca 2040
tcgtccctctt cggaggccaa ggaccgggac tcggggctgt agcagggtcc tagccgcgag 2100
cctcaccctca ct 2112

<210> 3
<211> 2669
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> (292)..(2406)

<400> 3
acacaagatg gcggcagcgg cgctgggag ggcgaggcgg aggccggaaa acggccggtc 60

09/889722

gagcagaacg	tgttagcccg	tcccctccag	tccgctccgg	gcagctgctg	atgcaaggaa	120	
tcccctgggc	tcccgtccac	tccactgctg	accagccat	tcgcctgtgc	tgagtcttcc	180	
tgcaggcctt	tccttgccctc	tgtgggaccc	tgtggggtc	catccggctg	gagaagaaaa	240	
gcctctcatg	ctaacgttgc	agacccccaga	gggtccctgtg	tgggtgtgga	g atg gcc	297	
					Met Ala		
					1		
aat gag aat	cac ggc agc	ccc cgg	gag gaa	gcf tcc	ctg ctg	agt cac	345
Asn Glu Asn His	Gly Ser Pro Arg	Glu Glu Ala	Ser Leu Leu	Ser His			
5	10	15					
tcc cca ggt acc tcc	aat cag agc	cag ccc	tgt tct	cca aag cca	atc	393	
Ser Pro Gly Thr Ser Asn Gln	Ser Gln Pro Cys	Ser Pro Lys	Pro Ile				
20	25	30					
cgc ctg gtt cag gac	ctc cca gag	gag ctg	gtg cat	gca ggc	tgg gag	441	
Arg Leu Val Gln Asp	Leu Pro Glu	Leu Val His	Ala Gly Trp	Glu			
35	40	45	50				
aag tgc tgg agc	cgg agg gag	aat cgt	ccc tac	tac ttc	aac cga	489	
Lys Cys Trp Ser Arg	Arg Glu Asn Arg	Pro Tyr	Tyr Phe	Asn Arg	Phe		
55	60	65					
acc aac cag tcc	ctg tgg gag	atg ccc	gtg ctg	ggg cag	cac gat	537	
Thr Asn Gln Ser	Leu Trp Glu	Met Pro	Val Leu	Gly Gln	His Asp Val		
70	75	80					
att tcg gac cct	ttg ggg ctg	aat gcg	acc cca	ctg ccc	caa gac	585	
Ile Ser Asp Pro	Leu Gly Leu	Asn Ala	Thr Pro	Leu Pro	Gln Asp Ser		
85	90	95					
agc ttg gtg gaa	act ccc ccg	gct gag	aac aag	ccc aga	aag cgg	633	
Ser Leu Val Glu	Thr Pro Ala	Glu Asn Lys	Pro Arg	Lys Arg	Gln		
100	105	110					
ctc tcg gaa gag	cag cca agc	ggc aat	ggt gtg	aag aag	ccc aag att	681	
Leu Ser Glu Glu	Gln Pro Ser	Gly Asn Gly	Val Lys	Lys Pro	Lys Ile		
115	120	125	130				
gaa atc cca	gtg aca cca	ggc cag	tcg gtg	ccc agc	tcc ccc agt	729	
Glu Ile Pro Val	Thr Pro Thr	Gly Gln	Ser Val	Pro Ser	Ser Pro Ser		
135	140	145					
atc cca gga acc	cca acg ctg	aag atg	tgg ggt	acg tcc	cct gaa gat	777	
Ile Pro Gly Thr	Pro Thr Leu	Lys Met	Trp Gly	Thr Ser	Pro Glu Asp		
150	155	160					
aaa cag cag gca	gct ctc cta	cga ccc	act gag	gtc tac	tgg gac	825	
Lys Gln Ala	Ala Leu	Leu Arg	Pro Thr	Glu Val	Tyr Trp Asp Leu		
165	170	175					
gac atc cag acc	aat gct gtc	atc aag	cac cgg	ggg cct	tca gag	873	
Asp Ile Gln Thr	Asn Ala Val	Ile Lys	His Arg	Gly Pro	Ser Glu Val		
180	185	190					
ctg ccc ccg	cat ccc gaa	gtg gaa	ctg ctc	cgc tct	cag ctc atc	921	
Leu Pro Pro His	Pro Glu Val	Glu Leu	Leu Arg	Ser Gln	Leu Ile Leu		
195	200	205	210				
aag ctt cgg cag	cac tat	cgg gag	ctg tgc	cag cag	cga gag	969	
Lys Leu Arg Gln	His Tyr Arg	Glu Leu	Cys Gln	Gln Arg	Glu Gly Ile		
215	220	225					
gag cct cca	cggtctt	aaac	cgctgg	atgtctg	gagcgcaag	1017	
Glu Pro Pro Arg	Glu Ser Phe	Asn Arg	Trp Met	Leu Glu	Arg Lys Val		
230	235	240					
gta gac aaa gga	tct gac	ccc ctg	ttg ccc	agc aac	tgt gaa cca	1065	
Val Asp Lys Gly	Ser Asp Pro	Leu Leu	Pro Ser	Asn Cys	Glu Pro Val		
245	250	255					
gtg tca cct tcc	atg ttt	cgt gaa	atc atg	aac gac	att cct atc	1113	
Val Ser Pro Ser	Met Phe Arg	Glu Ile	Met Asn	Ile Pro	Ile Arg		
260	265	270					

09/889722

tta tcc cga atc aag ttc cgg gag gaa gcc aag cgc ctg ctc ttt aaa Leu Ser Arg Ile Lys Phe Arg Glu Glu Ala Lys Arg Leu Leu Phe Lys 275 280 285 290	1161
tat gcg gag gcc gcc agg cgg ctc atc gag tcc agg agt gca tcc cct Tyr Ala Ala Ala Arg Arg Leu Ile Glu Ser Arg Ser Ala Ser Pro 295 300 305	1209
gac agt agg aag gtg gtc aaa tgg aat gtg gaa gac acc ttt agc tgg Asp Ser Arg Lys Val Val Lys Trp Asn Val Glu Asp Thr Phe Ser Trp 310 315 320	1257
ctt cgg aag gac cac tca gcc tcc aag gag gac tac atg gat cgc ctg Leu Arg Lys Asp His Ser Ala Ser Lys Glu Asp Tyr Met Asp Arg Leu 325 330 335	1305
gag cat ctg cgg agg cag tgt ggc ccc cac gtc tcg gcc gca gcc aag Glu His Leu Arg Arg Gln Cys Gly Pro His Val Ser Ala Ala Ala Lys 340 345 350	1353
gac tcc gtg gaa ggc atc tgc agt aag atc tac cac atc tcc ctg gag Asp Ser Val Glu Gly Ile Cys Ser Lys Ile Tyr His Ile Ser Leu Glu 355 360 365 370	1401
tac gtc aaa cgg atc cga gag aag cac ctt gcc atc ctc aag gaa aac Tyr Val Lys Arg Ile Arg Glu Lys His Leu Ala Ile Leu Lys Glu Asn 375 380 385	1449
aac atc tca gag gag gtg gag gcc cct gag gtg gag ccc cgc cta gtg Asn Ile Ser Glu Glu Val Glu Ala Pro Glu Val Glu Pro Arg Leu Val 390 395 400	1497
tac tgc tac cca gtc cgg ctg gct gtg tct gca ccg ccc atg ccc agc Tyr Cys Tyr Pro Val Arg Leu Ala Val Ser Ala Pro Pro Met Pro Ser 405 410 415	1545
gtg gag atg cac atg gag aac aac gtg gtc tgc atc cgg tat aag gga Val Glu Met His Met Glu Asn Asn Val Val Cys Ile Arg Tyr Lys Gly 420 425 430	1593
gag atg gtc aag gtc agc cgc aac tac ttc agc aag ctg tgg ctc ctt Glu Met Val Lys Val Ser Arg Asn Tyr Phe Ser Lys Leu Trp Leu Leu 435 440 445 450	1641
tac cgc tac agc tgc att gat gac tct gcc ttt gag agg ttc ctg ccc Tyr Arg Tyr Ser Cys Ile Asp Asp Ser Ala Phe Glu Arg Phe Leu Pro 455 460 465	1689
cgg gtc tgg tgt ctt ctc cga cgg tac cag atg atg ttc ggc gtg ggc Arg Val Trp Cys Leu Leu Arg Arg Tyr Gln Met Met Phe Gly Val Gly 470 475 480	1737
ctc tac gag ggg act ggc ctg cag gga tcg ctg ctc gtg cat gtc ttt Leu Tyr Glu Gly Thr Gly Leu Gln Gly Ser Leu Pro Val His Val Phe 485 490 495	1785
gag gcc ctc cac cga ctc ttt ggc gtc agc ttc gag tgc ttc gcc tca Glu Ala Leu His Arg Leu Phe Gly Val Ser Phe Glu Cys Phe Ala Ser 500 505 510	1833
ccc ctc aac tgc tac ttc cgc cag tac tgt tct gcc ttc ccc gac aca Pro Leu Asn Cys Tyr Phe Arg Gln Tyr Cys Ser Ala Phe Pro Asp Thr 515 520 525 530	1881
gac ggc tac ttt ggc tcc cgc ggg ccc tgc cta gac ttt gct cca ctg Asp Gly Tyr Phe Gly Ser Arg Gly Pro Cys Leu Asp Phe Ala Pro Leu 535 540 545	1929
agt ggt tca ttt gag gcc aac cct ccc ttc tgc gag gag ctc atg gat Ser Gly Ser Phe Glu Ala Asn Pro Pro Phe Cys Glu Glu Leu Met Asp 550 555 560	1977
gcc atg gtc tct cac ttt gag aga ctg ctt gag agc tca ccg gag ccc Ala Met Val Ser His Phe Glu Arg Leu Leu Glu Ser Ser Pro Glu Pro 565 570 575	2025

09/889722

ctg tcc ttc atc gtg ttc atc cct gag tgg cg ^g gaa ccc cca aca cca	2073
Leu Ser Phe Ile Val Phe Ile Pro Glu Trp Arg Glu Pro Pro Thr Pro	
580 585 590	
gcg ctc acc cgc atg gag cag agc cgc ttc aaa cgc cac cag ttg atc	2121
Ala Leu Thr Arg Met Glu Gln Ser Arg Phe Lys Arg His Gln Leu Ile	
595 600 605 610	
ctg cct gcc ttt gag cat gag tac cgc agt ggc tcc cag cac atc tgc	2169
Leu Pro Ala Phe Glu His Glu Tyr Arg Ser Gly Ser Gln His Ile Cys	
615 620 625	
aag aag gag gaa atg cac tac aag gcc gtc cac aac acg gct gtg ctc	2217
Lys Lys Glu Glu Met His Tyr Lys Ala Val His Asn Thr Ala Val Leu	
630 635 640	
tcc cta cag aac gac cct ggc ttt gcc aag tgg gcg ccg acg cct gaa	2265
Phe Leu Gln Asn Asp Pro Gly Phe Ala Lys Trp Ala Pro Thr Pro Glu	
645 650 655	
cgg ctg cag gag ctg agt gct gcc tac cgg cag tca ggc cgc agc cac	2313
Arg Leu Gln Glu Leu Ser Ala Ala Tyr Arg Gln Ser Gly Arg Ser His	
660 665 670	
agc tct ggt tct tcc tca tcg tcc tcg gag gcc aag gac cgg gac	2361
Ser Ser Gly Ser Ser Ser Ser Ser Glu Ala Lys Asp Arg Asp	
675 680 685 690	
tcg ggc cgt gag cag ggt cct agc cgc gag cct cac ccc act taa	2406
Ser Gly Arg Glu Gln Gly Pro Ser Arg Glu Pro His Pro Thr	
695 700	
catatcctgc ggggaggagg agccccaggg gtgctagtct ggactgctgg gactcccc 2466	
cctggggcct cagagggacc ccggctgcc catgacatatg aagattatgg ttctgccagg 2526	
gctccccctcc ctgcctgtcc ccaagtcctc acctcaaact ccctccaagt cccatgtata 2586	
taggtcctga tgccttccca acccccggccc tcaccctgtt gccacccttgtt ttcatttgtta 2646	
aaaggaaata cagaaacccc ccc	2669

<210> 4
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthesized oligonucleotide

<400> 4
ccgaattcat ggccaaatgag aatcac 26

<210> 5
<211> 26
<212> DNA
<213> Artificial sequence

<220>
<223> Synthesized oligonucleotide

<400> 5
ccgtcgactt aagtgggtg aggctc 26

<210> 6
<211> 34

09/889722

<212> DNA
<213> Artificial sequence

<220>
<223> Synthesized oligonucleotide

<400> 6
cgaggatccg ttcaggacct cccagaggac gcta

34

<210> 7
<211> 33
<212> DNA
<213> Artificial sequence

<220>
<223> Synthesized oligonucleotide

<400> 7
cgagaattcc gaaatcacat cgtgctgcc cag

33