Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Binary Search Trees

(the sum, the product and the functor)

Oles Hodych

Melbourne Scala User Group

28 May 2018

Contents

- Sets and recursive definitions.
- Choosing the right abstraction.
- Product and sum types.
- Processing set elements, functoriality.
- A set for anything.

A set is an unordered collection of objects, called *elements* or *members* of a set.

A set is an unordered collection of objects, called *elements* or *members* of a set.

A set is said to *contain* its elements.

A set is an unordered collection of objects, called *elements* or *members* of a set.

A set is said to *contain* its elements.

The $a \in A$ notation denotes that a is an element of set A.

A set is an unordered collection of objects, called *elements* or *members* of a set.

A set is said to *contain* its elements.

The $a \in A$ notation denotes that a is an element of set A.

The $a \notin A$ notation denotes that a is not an element of set A.

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Set properties

• Sets are *unordered* collections.

Set properties

- Sets are *unordered* collections.
- Sets contain no duplicate elements.

Problem statement

- Create a data abstraction for representing a finite set of elements.
- Implement set operations:
 - adjoin(x, S) produces a new set that has all elements of set S and element x;
 - contains?(x, S) a predicate that checks if $x \in S$;

Examples of sets

$$S = \{2, 1, 3, 4\}$$

$$\bullet \ [a,b] = \{x \, | \, a \leqslant x \leqslant b\}$$

$$\bullet \mathbb{N}_0 = \{0, 1, 2, \ldots\}$$

Recursive definition of sets and other structures

Basis step:

Specify the initial collection of elements.

Recursive step:

Specify the rules for forming new elements from already present ones.

Basis step:

 $3 \in S$.

Recursive step:

if
$$x \in S$$
 and $y \in S$ then $(x + y) \in S$

Basis step:
$$S_0 = \{3\}$$

Basis step:
$$S_0 = \{3\}$$

Recursive step 1:
$$S_1 = \{3, 6\}$$

$$3 + 3$$

Basis step:
$$S_0 = \{3\}$$

Recursive step 1:
$$S_1 = \{3, 6\}$$
 3 + 3

Recursive step 2:
$$S_2 = \{3, 6, 9, 12\}$$
 $3 + 6$ and $6 + 6$

Basis step:
$$S_0 = \{3\}$$

Recursive step 1:
$$S_1 = \{3, 6\}$$

$$S_2 = \{3, 6, 9, 12\}$$
 $3+6 \text{ and } 6+6$

Recursive step 2:
$$S_2 = \{3, 6, 9, 12\}$$
 3 + 6 and 6 + 6

Recursive step 3:
$$S_4 = \{3, 6, 9, 12, 15, 18, 21, 24\}$$
 $3+12, 6+9, 6+12, 9+12$ and $12+12$

3 + 3

Basis step:
$$S_0 = \{3\}$$

Recursive step 1:
$$S_1 = \{3, 6\}$$
 3 + 3

Recursive step 2:
$$S_2 = \{3, 6, 9, 12\}$$
 $3 + 6$ and $6 + 6$

Recursive step 3:
$$S_4 = \{3, 6, 9, 12, 15, 18, 21, 24\}$$
 $3+12, 6+9, 6+12, 9+12$ and $12+12$

...

Structural induction

Basis step:

Show that statement P holds for instances that represents our structure at its basis step.

Inductive step:

Inductive hypothesis: P holds for all instances of out structure after applying k recursive steps.

Show that P(x) holds for all new instances formed by applying the k+1 recursive step.

Problem statement, simplified

- Create a data abstraction for representing a finite set of *integers*.
- Implement set operations:
 - adjoin(x, S) produces a new set that has all elements of set S and element x;
 - contains?(x, S) a predicate that checks if $x \in S$;

```
type IntSet = List[Int]
def contains_?(x: Int, set: IntSet): Boolean = ???
def adjoin(x: Int, set: IntSet): IntSet = ???
```

```
idef contains_?(x: Int, set: IntSet): Boolean =
if (set.isEmpty)
false
velse
x.equals(set.head) || contains_?(x, set.tail)
```

```
1 def adjoin(x: Int, set: IntSet): IntSet =
2    if (contains_?(x, set))
3        set
4    else
5        x:: set
```

But what is the complexity of these operations?

But what is the complexity of these operations?

• Linear time inclusion (adjoin) of a new number into a set, O(n).

But what is the complexity of these operations?

- Linear time inclusion (adjoin) of a new number into a set, O(n).
- Linear time search to check (contains?) if a number is present in a set, O(n).

But what is the complexity of these operations?

- Linear time inclusion (adjoin) of a new number into a set, O(n).
- Linear time search to check (contains?) if a number is present in a set, O(n).
- Linear space growth characteristics, O(n).

The advantages of using a binary search tree as the data structure for implementing a set:

The advantages of using a binary search tree as the data structure for implementing a set:

• Logarithmic time inclusion (adjoin) of a new number into a set, $O([log_2 n])$.

The advantages of using a binary search tree as the data structure for implementing a set:

- Logarithmic time inclusion (adjoin) of a new number into a set, $O(\lceil log_2 n \rceil)$.
- Logarithmic time search to check (contains?) if a number is present in a set, $O(\lceil log_2 n \rceil)$.

The advantages of using a binary search tree as the data structure for implementing a set:

- Logarithmic time inclusion (adjoin) of a new number into a set, $O([log_2 n])$.
- Logarithmic time search to check (contains?) if a number is present in a set, $O(\lceil log_2 n \rceil)$.
- Linear space growth characteristics, O(n).

$$|S| = 15$$

$$|S| = 15$$

15 vs. 4

$$|S| = 15$$

$$|S| = 1,000,000,000$$

$$|S| = 15$$

$$|S| = 1,000,000,000$$

Recursive definition of tree structures, full binary tree

Basis step:

A single node forms a full binary tree.

Recursive step:

If T_1 and T_2 are disjoint full binary trees then there is a full binary tree $T_1 \cdot T_2$, which consists of a root node r together with edges connecting this root to the roots of the left subtree T_1 and the right subtree T_2 . Sets and recursive definitions

Choosing the right abstraction

Product and sum types

Processing set elements, functoriality

A set for anything

Recursive definition of tree structures, full binary tree

Basis step: •

Recursive definition of tree structures, full binary tree

Basis step:

Recursive step 1:

Basis step:

Recursive step 1:

Recursive step 2:

Basis step:

Recursive step 1:

Recursive step 2:

Basis step:

Recursive step 1:

Recursive step 2:

Basis step:

Recursive step 1:

Recursive step 2:

. . .

Full binary search tree

$$S = \{5, 7, 9, 12, 15\}$$

Sets and recursive definitions
Choosing the right abstraction
Product and sum types
Processing set elements, functoriality
A set for anything

Recursively defined functions for recursively defined structures

Let's introduce some functions on full binary trees.

Recursively defined functions for recursively defined structures

Let's introduce some functions on full binary trees.

- $h: T_{FB} \to \mathbb{N}_0$ to compute the height of a full binary tree.
- $n: T_{FB} \to \mathbb{N}$ to compute the number of nodes in a full binary tree.

Recursive definition of h(T)

Basis step:

If T is a full binary tree consisting only of a root node then its height is 0.

That is h(T) = 0.

Recursive definition of h(T)

Basis step:

If T is a full binary tree consisting only of a root node then its height is 0.

That is h(T) = 0.

Recursive step:

If T_1 and T_2 are full binary trees then a full binary tree $T = T_1 \cdot T_2$ has the height of $h(T) = 1 + max(h(T_1), h(T_2))$.

Recursive definition of n(T)

Basis step:

If T is a full binary tree consisting only of a root node then n(T) = 1.

Recursive definition of n(T)

Basis step:

If T is a full binary tree consisting only of a root node then n(T) = 1.

Recursive step:

If T_1 and T_2 are full binary trees then a full binary tree $T = T_1 \cdot T_2$ has $n(T) = 1 + n(T_1) + n(T_2)$ nodes.

Sets and recursive definitions
Choosing the right abstraction
Product and sum types
Processing set elements, functoriality
A set for anything

Recursively defined functions for recursively defined structures

Observation: functions on hierarchical recursively defined structures can only be defined recursively.

Sets and recursive definitions
Choosing the right abstraction
Product and sum types
Processing set elements, functoriality
A set for anything

Hierarchical data by means of type hierarchies

Hierarchical data by means of type hierarchies

IntSet

```
type Set = IntSet
sealed trait IntSet {
    def contains_?(x: Int): Boolean
    def adjoin(x: Int): IntSet
}
```

Empty set

```
case object Empty extends IntSet {
    def contains_?(x: Int): Boolean =
        false

def adjoin(x: Int): IntSet =
    NonEmpty(x, Empty, Empty)
}
```

Non empty set, operation contains?

```
case class NonEmpty(el: Int,
left: IntSet,
right: IntSet) extends IntSet {

def contains_?(x: Int): Boolean =
if (x < el) left contains_? x
else if (x > el) right contains_? x
else true

def adjoin(x: Int): IntSet = ...

IntSet = ...
```

Non empty set, operation adjoin

IntSet in action

```
scala> val set = NonEmpty(7, Empty, Empty)
set: NonEmpty = NonEmpty(7, Empty, Empty)
```

IntSet in action

```
scala> val set = NonEmpty(7, Empty, Empty)
set: NonEmpty = NonEmpty(7, Empty, Empty)
```

```
scala > val set 2 = set adjoin 5 adjoin 12
set 2: NonEmpty = NonEmpty(7, NonEmpty(5, Empty, Empty), NonEmpty(12, E
```

Empty and non empty set, improving toString

```
case object Empty extends IntSet {
    ...
    override def toString = "."
}
```

Empty and non empty set, improving toString

```
case object Empty extends IntSet {
    ...
    override def toString = "."
}
```

IntSet back in action

```
scala> val set = NonEmpty(7, Empty, Empty)
set: NonEmpty = {.7.}
```

IntSet back in action

```
scala> val set = NonEmpty(7, Empty, Empty)
set: NonEmpty = {.7.}
```

```
scala > val set2 = set adjoin 5 adjoin 12
 set2: IntSet = \{\{.5.\}7\{.12.\}\}
```

```
def adjoin(x: Int): IntSet = NonEmpty(x, Empty, Empty)

def adjoin(x: Int): IntSet =
    if (x < el) NonEmpty(el, left adjoin x, right)
    else if (x > el) NonEmpty(el, left, right adjoin x)
    else this
}

set adjoin 3
```



```
def adjoin(x: Int): IntSet = NonEmpty(x, Empty, Empty)

def adjoin(x: Int): IntSet =
   if (x < el) NonEmpty(el, left adjoin x, right)
   else if (x > el) NonEmpty(el, left, right adjoin x)
   else this
}

set adjoin 3
```



```
def adjoin(x: Int): IntSet = NonEmpty(x, Empty, Empty)

def adjoin(x: Int): IntSet =
    if (x < el) NonEmpty(el, left adjoin x, right)
    else if (x > el) NonEmpty(el, left, right adjoin x)
    else this
}

set adjoin 3
```



```
def adjoin(x: Int): IntSet = NonEmpty(x, Empty, Empty)

def adjoin(x: Int): IntSet =
    if (x < el) NonEmpty(el, left adjoin x, right)
    else if (x > el) NonEmpty(el, left, right adjoin x)
    else this
}

set adjoin 3
```


Implementing h(T) and n(T)

Basis step:

$$h(T) = 0$$

Recursive step:

$$h(T) = 1 + max(h(T_1), h(T_2))$$

Implementing h(T) and n(T)

Basis step:

$$h(T) = 0$$

Recursive step:

$$h(T) = 1 + max(h(T_1), h(T_2))$$

Basis step:

$$n(T) = 1$$

Recursive step:

$$n(T) = 1 + n(T_1) + n(T_2)$$

Which subtype represents an empty set?

```
sealed trait IntSet {
    def isEmpty: Boolean
case object Empty extends IntSet {
    def isEmpty: Boolean = true
case class NonEmpty (...) extends IntSet {
    def isEmpty: Boolean = false
```

Cartesian product (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

Cartesian product (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \times B = \{(1, 1), (1, 2), (3, 1), (3, 2)\}$

Cartesian product (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \times B = \{(1, 1), (1, 2), (3, 1), (3, 2)\}$

Product type (Type Theory):

$$A \times B$$

Cartesian product (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \times B = \{(1, 1), (1, 2), (3, 1), (3, 2)\}$

Product type (Type Theory):

$$A \times B$$

 $\mathtt{Rational} = \mathtt{Int} \times \mathtt{Int}$

Cartesian product (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \times B = \{(1, 1), (1, 2), (3, 1), (3, 2)\}$

Product type (Type Theory):

$$A \times B$$

 $Rational = Int \times Int$

 ${\tt NonEmpty} = {\tt Int} \times {\tt IntSet} \times {\tt IntSet}$

Union (Set Theory):

$$A=\{1,3\},\,B=\{1,2\}$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \cup B = \{1, 3, 2\}$

Union (Set Theory):

$$A=\{1,3\},\,B=\{1,2\}$$

$$A \bigcup B = \{1, 3, 2\}$$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid JB = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A^* = \{(1, a), (3, a)\}, B^* = \{(1, b), (2, b)\}$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid B = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

$$A^* = \{(1, a), (3, a)\}, B^* = \{(1, b), (2, b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1, a), (3, a), (1, b), (2, b)\}$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \cup B = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

$$A^* = \{(1, a), (3, a)\}, B^* = \{(1, b), (2, b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1, a), (3, a), (1, b), (2, b)\}$$

$$A + B$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid JB = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1,3\}, B = \{1,2\}$$

$$A^* = \{(1,a), (3,a)\}, B^* = \{(1,b), (2,b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1,a), (3,a) (1,b), (2,b)\}$$

$$A + B$$
IntSet = Empty + NonEmpty

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid B = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

$$A^* = \{(1, a), (3, a)\}, B^* = \{(1, b), (2, b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1, a), (3, a), (1, b), (2, b)\}$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid JB = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

$$A^* = \{(1, a), (3, a)\}, B^* = \{(1, b), (2, b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1, a), (3, a), (1, b), (2, b)\}$$

$$A+B$$

$$\label{eq:another model} \mbox{IntSet} = \mbox{Empty} + \mbox{NonEmpty}$$

$$\mbox{IntSet} = \mbox{Empty} \mid \mbox{NonEmpty}(\mbox{O, Empty, Empty}) \mid \dots$$

$$\mbox{Boolean} = \mbox{true} \mid \mbox{false}$$

Union (Set Theory):

$$A = \{1, 3\}, B = \{1, 2\}$$

 $A \mid JB = \{1, 3, 2\}$

Disjoint union or tagged union (Set Theory):

$$A = \{1,3\}, B = \{1,2\}$$

$$A^* = \{(1,a), (3,a)\}, B^* = \{(1,b), (2,b)\}$$

$$A \coprod B = A^* \bigcup B^* = \{(1,a), (3,a) (1,b), (2,b)\}$$

$$A+B$$

IntSet = Empty + NonEmpty
IntSet = Empty | NonEmpty(0, Empty, Empty) | ...
Boolean = true | false
Int = 1 | 2 | 3 | ...

Sealed type hierarchies for Sum and Prod types

```
sealed trait IntSet {
case object Empty extends IntSet {
case class NonEmpty(el: Int
                    left: IntSet,
                    right: IntSet) extends IntSet {
```

Decomposition of compound data, pattern matching

```
e match {
    case p1 => e1
    case p2 => e2
    ...
    case pn => en
}
```

http://www.scala-lang.org/files/archive/spec/2.12/08-pattern-matching.html

Implementing h(T) with pattern matching

```
def height(set: IntSet): Int = set match {
   case Empty =>
      0
   case NonEmpty(_, left, right) =>
      1 + Math.max(height(left), height(right))
   }
}
```

Implementing n(T) with pattern matching

```
def size(set: IntSet): Int = set match {
case Empty =>
0
case NonEmpty(_, left, right) =>
1 + size(left) + size(right)
}
```

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Processing elements in sets

How do we go about doing something with elements in our IntSet?

Double each element

```
def double(set: IntSet): IntSet = set match {
    case Empty =>
        set
    case NonEmpty(el, left, right) =>
        NonEmpty(2 * el, double(left), double(right))
}
```

Double each element in action

Square each element

```
def square(set: IntSet): IntSet = set match {
   case Empty =>
        set
   case NonEmpty(el, left, right) =>
        NonEmpty(el * el, square(left), square(right))
}
```

Square each element in action

Processing elements in sets

Can processing of elements in IntSet be generalised?

Mapping elements

```
sealed trait IntSet {
    def contains_?(x: Int): Boolean
    def adjoin(x: Int): IntSet

def map(f: Int => Int): IntSet = this match {
    case Empty =>
        this
    case NonEmpty(el, left, right) =>
        NonEmpty(f(el), left map f, right map f)
}
NonEmpty(f(el), left map f, right map f)
}
```

Mapping elements in action

```
scala> val set = Empty include 7 include 5 include ( 12) include 9 include 15 set: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\ scala> set map (x=>2*x) res10: IntSet = \{\{.10.\}14\{\{.18.\}24\{.30.\}\}\} scala> set map (x=>x*x) res11: IntSet = \{\{.25.\}49\{\{.81.\}144\{.225.\}\}\}
```

Mapping elements in action, alternative syntax

```
scala> set map { x=>2*x } res12: IntSet = {{.10.}14{{.18.}24{.30.}}}} scala> set map { 2*_ } res13: IntSet = {{.10.}14{{.18.}24{.30.}}}
```

Mapping is not easy...

The presented implementation of map is invalid!

Mapping is not easy...

The presented implementation of map is invalid!

```
scala > val set = Empty include 7 include 5 ... include 15 set: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\ scala > set map \{x \Rightarrow if (x > 7) - x else x \} res14: IntSet = \{\{.5.\}7\{\{.-15\{.-12.\}\} - 9.\}\}
```

Mapping is not easy...

The presented implementation of map is invalid!

```
scala > val set = Empty include 7 include 5 ... include 15 set: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\ scala > set map \{x \Rightarrow if (x > 7) - x else x\} res14: IntSet = \{\{.5.\}7\{\{.-15\{.-12.\}\} - 9.\}\}
```

```
scala> set map { x \Rightarrow 1 }
res14: IntSet = {{.1.}1{{.1.}}}}
```

Category theory, simplistic view

Major tools in the categorical toolbox:

- Abstraction
- Composition
- Identity

A category is a bunch of objects with morphisms between them.

- Objects are primitives, have no structure or properties.
- **Arrows** morphisms, are primitives, join objects, have the beginning and the end.

• Identity – for every object there is an identity arrow.

Category theory, axioms

• Left identity $id_a \circ f = f$

• Right identity $f \circ id_a = f$

Category theory and programming

- Objects are types.
- Arrows are functions.

Sets and recursive definitions
Choosing the right abstraction
Product and sum types
Processing set elements, functoriality
A set for anything

Morphisms, intuition

A **morphism** is a structure-preserving map from one mathematical object to another.

Sets and recursive definitions
Choosing the right abstraction
Product and sum types
Processing set elements, functoriality
A set for anything

Homomorphisms, intuition

A **homomorphism** is a structure-preserving map between two algebraic structures of the same type.

Functors, intuition

A **functor** is a *homomorphism* between categories in the category theory.

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Functors, intuition

What defines the structure in a category?

Functors, intuition

What defines the structure in a category?

Arrows and their composition!

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Functors, intuition

Functors must map objects to objects and arrows to arrows while preserving composition!

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Functors, further intuition

A Functor is a collection of many morphisms for mapping all objects and all arrows.

Functors, programming

Objects are **types**, arrows are **functions** between types.

Functors, programming

Objects are **types**, arrows are **functions** between types.

Functors are mappings between types and functions.

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Functors, Int and IntSet

 $Int \bigcirc$

 $\bigcap IntSet$

Functors, Int and IntSet

Functors, Int and IntSet

Functors, Int and IntSet

Functors, Int and IntSet, wishful thinking

```
scala > val set = Empty include 7 include 5 ... include 15 set: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\ scala > set map \{x \Rightarrow x\} res23: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\
```

Functors, Int and IntSet, wishful thinking

```
scala > val set = Empty include 7 include 5 ... include 15 set: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\ scala > set map \{x \Rightarrow x\} res23: IntSet = \{\{.5.\}7\{\{.9.\}12\{.15.\}\}\}\
```

```
\begin{array}{l} \text{scala> set map } \{x \Longrightarrow 1\} \\ \text{res} 24: \text{IntSet} = \{.1.\} \end{array}
```

Making IntSet functorial

```
1 sealed trait IntSet {
2    ...
3    def map(f: Int ⇒ Int): IntSet = this match {
4        case Empty ⇒
5        this
6        case NonEmpty(el, left, right) ⇒
7        ????
8    }
9 }
```

Making IntSet functorial

```
1 sealed trait IntSet {
2    ...
3    def map(f: Int => Int): IntSet = this match {
4        case Empty =>
5        this
6        case NonEmpty(el, left, right) => {
7        val l = left map f
8        val v = f(el)
9        val r = right map f
10        l union r adjoin v
11       }
12    }
13 }
```

```
1 sealed trait IntSet {
       def union (other: IntSet): IntSet
  case object Empty extends IntSet {
      def union(other: IntSet): IntSet = other
10
  case class NonEmpty(...) extends IntSet {
12
      def union(other: IntSet): IntSet = ???
13
14 }
```

Properties of a functor

Properties of a functor

• set map
$$\{x \Rightarrow x\} == set$$

Properties of a functor

```
• set map \{x \Rightarrow x\} == set
```

Functors, functoriality

IntSet is functorial!

Generic sets

```
type Set = IntSet
trait IntSet {...}
```

Generic sets

```
type Set = IntSet
trait IntSet {...}
```

```
type Set[+A] = Tree[A]

trait Tree[+A] {...}
```

Generic sets, type hierarchy

```
1 type Set[+A] = Tree[A]
3 sealed trait Tree[+A] {
  case object Empty extends Tree[Nothing] {
    override def toString = "."
  case class NonEmpty [A] (a: A,
                           left: Tree[A],
11
                           right: Tree[A]) extends Tree[A] {
12
    override def toString: String =
13
       "{" + left + a + right + "}"
14
15 }
```

Generic sets, operations

Generic sets, operation adjoin

Generic sets, operation contains?

Generic sets, operation union

Generic sets, operation map

 $A \bigcirc$

 $\bigcap Tree[A]$

 $B \subset$

 $\bigcap Tree[B]$

 $B \bigcirc$

 $\bigcap Tree[B]$

$$B \bigcirc \longrightarrow \bigcirc Tree[B]$$

 $String \bigcirc$

 \bigcirc Tree[String]

Int ()

 $\bigcap Tree[Int]$

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

A bit of coding...

Let's run some code!

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Some final thoughts on binary search trees

Full binary search trees become unbalanced over time, and may even degenerate into a list.

Some final thoughts on binary search trees

Full binary search trees become unbalanced over time, and may even degenerate into a list.

• They require maintenance – rebalancing.

Some final thoughts on binary search trees

Full binary search trees become unbalanced over time, and may even degenerate into a list.

- They require maintenance rebalancing.
- There are more efficient structures: B-trees and red-black trees.

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Looking back

What have we touched on today?

• The representation problem.

- The representation problem.
- ADTs and how sealed type hierarchies of traits, case objects and case classes can model them.

- The representation problem.
- ADTs and how sealed type hierarchies of traits, case objects and case classes can model them.
- Persistent data structures.

- The representation problem.
- ADTs and how sealed type hierarchies of traits, case objects and case classes can model them.
- Persistent data structures.
- Functoriality and what it means.

- The representation problem.
- ADTs and how sealed type hierarchies of traits, case objects and case classes can model them.
- Persistent data structures.
- Functoriality and what it means.
- Used both more OO and more functional approach to modelling data structures and their operations.

- The representation problem.
- ADTs and how sealed type hierarchies of traits, case objects and case classes can model them.
- Persistent data structures.
- Functoriality and what it means.
- Used both more OO and more functional approach to modelling data structures and their operations.
- Scala objects as modules.
- Implicit function arguments.

Sets and recursive definitions Choosing the right abstraction Product and sum types Processing set elements, functoriality A set for anything

Q&A