

A regime-switching framework for portfolio optimization

4th Industrial-Academic Workshop on Optimization and Artificial Intelligence in Finance

The Fields Institute, Toronto, ON

Giorgio Costa

University of Toronto

Department of Mechanical and Industrial Engineering

Joint work with Roy H. Kwon

November 13, 2018

Introduction

What is this presentation about?

- ► Markets follow a cyclical behaviour alternating between bullish and bearish states.
- ► Can we hedge against these cycles?
 - ⇒ To do so, we must identify the parameters governing these cycles
- ► We will explore a typical asset allocation problem that incorporates the cyclical behaviour of markets via a simple machine learning algorithm.

Introduction

What tools will we need?

- ► Portfolio Optimization: We will use mean—variance optimization and risk parity for asset allocation.
- ► <u>Hidden Markov Models</u>: This will be used to incorporate information about the market state into our portfolio.
- ► <u>Factor Models</u>: This will serve to explain the rate of returns of our financial assets through simple linear regression.

What are optimal portfolios?

- ▶ We wish to select the best combination of assets (portfolio), as outlined by our objective.
- ► However, we are constrained by our budget, as well as other investment considerations.
- ► We wish to find this optimal portfolio out of all the possible portfolios being considered.
 - ⇒ Formulate an optimization problem!

Mean–Variance Optimization (MVO)

- \blacktriangleright We wish to have a portfolio with an expected rate of return R
- ▶ What is the lowest level of risk we can observe?

$$\min_{x} \quad \boldsymbol{x}^{T} \boldsymbol{\Sigma} \boldsymbol{x}$$
s.t.
$$\boldsymbol{\mu}^{T} \boldsymbol{x} \geq R,$$

$$\boldsymbol{1}^{T} \boldsymbol{x} = 1,$$

Mean–Variance Optimization (MVO)

- \blacktriangleright We wish to have a portfolio with an expected rate of return R
- ▶ What is the lowest level of risk we can observe?

$$\begin{array}{ccc} \min_{x} & \boldsymbol{x}^{T}\boldsymbol{\Sigma}\boldsymbol{x} & \Big\} & \text{Portfolio Risk} \\ \text{s.t.} & \boldsymbol{\mu}^{T}\boldsymbol{x} \geq R & \Big\} & \text{Target Return} \\ & \mathbf{1}^{T}\boldsymbol{x} = 1 & \Big\} & \text{Budget} \end{array}$$

where

- $\Rightarrow x \in \mathbb{R}^n$ is the vector of asset weights,
- $\Rightarrow \Sigma \in \mathbb{R}^{n \times n}$ is the asset covariance matrix,
- $\Rightarrow \mu \in \mathbb{R}^n$ are the asset expected returns,

Risk Parity

- ► Risk parity seeks to find portfolios based on a risk-weighted basis.
- ▶ Does not require estimated returns as an input, improving stability.
- ▶ Each asset should have the same risk contribution.
- ▶ By design, the resulting portfolio is well-diversified.

Decomposing the risk measure

- ▶ Our risk measure is the portfolio standard deviation: $\sigma_p = \sqrt{\boldsymbol{x}^T \boldsymbol{\Sigma} \boldsymbol{x}}$
- ▶ We can partition it to find individual contributions:

$$\sigma_p = \sqrt{\boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}} = \sum_{i=1}^n RC_i,$$

$$RC_i = x_i \frac{\partial \sigma_p}{\partial x_i} = x_i \frac{(\boldsymbol{\Sigma} \boldsymbol{x})_i}{\sqrt{\boldsymbol{x}^{\top} \boldsymbol{\Sigma} \boldsymbol{x}}},$$

 $\Rightarrow RC_i$ is the risk contribution of asset *i*.

Finding risk parity portfolios

▶ We can achieve risk parity by taking a least-squares approach

$$\min_{\boldsymbol{x}} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(x_i (\boldsymbol{\Sigma} \boldsymbol{x})_i - x_j (\boldsymbol{\Sigma} \boldsymbol{x})_j \right)^2$$
s.t.
$$\mathbf{1}^{\top} x = 1,$$

$$x > 0.$$

▶ If short selling is not allowed, we are guaranteed to find a unique solution.

Hidden Markov Models

What are Hidden Markov Models (HMMs)?

- ▶ What if we believe that asset returns are governed by hidden market regimes?
- ► Could we use observed market returns to discern between these regimes?
- ▶ We can encode regime-dependent information into our optimization inputs.
 - ⇒ Regime-dependent asset expected returns and covariance matrix.

Factor Models

Typical factor model of asset returns

$$oldsymbol{r}_t = oldsymbol{\mu} + oldsymbol{V}^T oldsymbol{f}_t + oldsymbol{\epsilon}_t$$

- $ightharpoonup r_t \in \mathbb{R}^n$ are the returns of the n assets.
- $ightharpoonup \mu \in \mathbb{R}^n$ are the asset expected returns.
- ▶ $f_t \sim \mathcal{N}(\mathbf{0}, F) \in \mathbb{R}^m$ are the **centered** factors.
- ▶ $V \in \mathbb{R}^{m \times n}$ is the matrix of factor loadings.
- $ightharpoonup \epsilon_t \sim \mathcal{N}(\mathbf{0}, oldsymbol{D}) \in \mathbb{R}^n$ are the residuals.

Factor Models

Typical factor model of asset returns

► Expected returns:

$$\mathbb{E}[r] = \mu$$
 (the intercept of regression!)

► Covariance matrix:

$$\mathrm{Cov}(r) = \boldsymbol{\Sigma} = \boldsymbol{V}^T \boldsymbol{F} \boldsymbol{V} + \boldsymbol{D}$$

Regime-Switching Factor Model

Two-state factor model of asset returns

$$\boldsymbol{r}_t = I_{1t}(\boldsymbol{\mu}_1 + \boldsymbol{V}_1^T \boldsymbol{f}_{1t} + \boldsymbol{\epsilon}_{1t}) + I_{2t}(\boldsymbol{\mu}_2 + \boldsymbol{V}_2^T \boldsymbol{f}_{2t} + \boldsymbol{\epsilon}_{2t})$$

- $ightharpoonup r_t \in \mathbb{R}^n$ are the returns of the n assets.
- ▶ $I_{it} = 1$ when the current market state $s_t = i$ and $I_{it} = 0$ otherwise.
- $\blacktriangleright \mu_i \in \mathbb{R}^n$ are the regime-dependent asset expected returns.
- ▶ $f_{it} \sim \mathcal{N}(\mathbf{0}_i, F_i) \in \mathbb{R}^m$ are the regime-switching factors.
- ▶ $V_i \in \mathbb{R}^{m \times n}$ is the matrix of regime-dependent factor loadings.
- $ightharpoonup \epsilon_{it} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{D}_i) \in \mathbb{R}^n$ are the regime-dependent residuals.

Regime-Switching Factor Model

Derive the regime-dependent portfolio parameters:

► Expected returns:

$$\mathbb{E}[r \mid s_t = i] = \boldsymbol{\mu}_{s_i} = \gamma_{i1} \; \boldsymbol{\mu}_1 + \gamma_{i2} \; \boldsymbol{\mu}_2$$

▶ Covariance matrix:

$$\Sigma_{s_i} = \gamma_{i1}(\boldsymbol{V}_1^T \boldsymbol{F}_1 \boldsymbol{V}_1 + \boldsymbol{D}_1) + \gamma_{i2}(\boldsymbol{V}_2^T \boldsymbol{F}_2 \boldsymbol{V}_2 + \boldsymbol{D}_2) + \gamma_{i1}(1 - \gamma_{i1})\boldsymbol{\mu}_1 \boldsymbol{\mu}_1^T + \gamma_{i2}(1 - \gamma_{i2})\boldsymbol{\mu}_2 \boldsymbol{\mu}_2^T - \gamma_{i1}\gamma_{i2}(\boldsymbol{\mu}_1 \boldsymbol{\mu}_2^T + \boldsymbol{\mu}_2 \boldsymbol{\mu}_1^T).$$

 $\Rightarrow \gamma_{ij}$ is the probability of transitioning from state i to state j,

$$\gamma_{ij} = \mathbb{E}[I_j \mid s_t = i]$$

Key Findings

This is a summary of the key findings

- ▶ We seek to create portfolios adapted to the current market environment.
- ► We can do this by calculating regime-dependent parameters through a regimeswitching factor model.
- ▶ Using these parameters during optimization implicitly capture the cyclical nature of the market.

Experimental setup

- ▶ We use the Fama—French 3-factor model as the basis.
- ▶ We used historical asset data to estimate our parameters.
- ▶ We have **three** optimization models and **three** investment strategies

 \Rightarrow MVO \Rightarrow Nominal

 \Rightarrow Minimum variance \Rightarrow Robust

⇒ Risk parity ⇒ Regime-switching

Experimental setup

- ▶ We have 9 different portfolios (three per optimization model).
- ▶ We rebalance our portfolios every 6 months.
- ► Each time we rebalance, we re-calibrate our factor model and re-estimate the expected returns and covariance matrix.

Example of estimated regime changes for the out-of-sample test

Computational Experiments: Minimum Variance

Computational Experiments: Risk Parity

Summary of Results

	MVO			Minimum Variance			Risk Parity		
	Nominal	Robust	RS	Nominal	Robust	RS	Nominal	Robust	RS
Ann. Return	0.099	0.138	0.129	0.086	0.075	0.099	0.070	0.069	0.072
Sharpe Ratio	0.900	0.983	1.211	0.791	0.633	0.950	0.511	0.488	0.530
Avg. Turnover	1.602	1.880	1.698	1.355	1.622	1.376	0.022	0.083	0.072

Conclusion

- ▶ We use a data-driven approach that can be built onto a generic factor model.
- ► A regime-switching factor model encodes the cyclical behaviour of the market into our estimated parameters:
 - ⇒ Regime-dependent expected returns,
 - ⇒ Regime-dependent covariance matrix.
- ▶ The resulting portfolios are tailored to the current market environment.
- ➤ We can attain higher risk-adjusted returns.