MS_2_chapter_3_

NikolayNikolaev

2023-03-21

Distribuzione di Gauss Bivariata

Generazione di determinazioni dalla Normale Bivariata

```
N (0,0,3,3,2)
ρ<sub>12</sub>= 0.67
```

require(mvtnorm)

Loading required package: mvtnorm

```
set.seed(1234)
sigma1 <- matrix(c(3,2,2,3), ncol=2);
sigma1</pre>
```

```
## [,1] [,2]
## [1,] 3 2
## [2,] 2 3
```

```
## [,1] [,2]
## [1,] -1.7816127 -0.2971177
## [2,] 0.3049418 -3.1251971
## [3,] 1.0070981 1.0840293
## [4,] -1.2677859 -1.2396778
## [5,] -1.4633761 -1.7889620
## [6,] -1.3891508 -1.9103445
## [7,] -1.2161674 -0.3754547
## [8,] 1.4843338 0.4145543
## [9,] -1.3899805 -1.7901664
## [10,] 0.1384960 3.3915029
```

cov(x)

```
## [,1] [,2]
## [1,] 1.3874831 0.9333147
## [2,] 0.9333147 3.4732530
```

var(x)

```
## [,1] [,2]
## [1,] 1.3874831 0.9333147
## [2,] 0.9333147 3.4732530
```

require(skimr)

Loading required package: skimr

skim_without_charts(x)

Table 1: Data summary

Name	X
Number of rows	10
Number of columns	2
Column type frequency:	
numeric	2
Group variables	None

Variable type: numeric

skim_variable	n_missing	complete_rate	mean	sd	p0	p25	p50	p75	p100
V1	0	1	-0.56	1.18	-1.78	-1.39	-1.24	0.26	1.48
V2	0	1	-0.56	1.86	-3.13	-1.79	-0.81	0.24	3.39

sd(x[,1])

[1] 1.177915

sd(x[,2])

[1] 1.863667

• Diagramma a dispersione dei valori ottenuti

```
plot(x[,1], x[,2], main = "Realizzazioni da Normale Bivariata <math>N(0,0,3,3,2)")
```

Realizzazioni da Normale Bivariata N(0,0,3,3,2)

Curve di livello

```
x1 <- x2 <- seq(-10, 10, length = 51)
dens <- matrix(dmvnorm(expand.grid(x1, x2),
sigma = sigma1),
ncol = length(x1))
contour(x1,
x2,
dens,
main = "Livelli della dist. N(0,0,3,3,2)",
col="blue",
xlab = "x1",
ylab = "x2")</pre>
```

Livelli della dist. N(0,0,3,3,2)

