NIS2312-01 Fall 2023-2024

信息安全的数学基础(1)

Answer 1-4

2023 年 9 月 27 日

Assignment 1

Problem 1

设 a,b 是任意两个正整数,则:

- (1) a,b 的所有公倍数就是 [a,b] 的所有倍数;
- (2) $[a,b] = \frac{ab}{(a,b)}$.

解:

- (1) 设正整数 c = [a, b], 正整数 d 为 a, b 的任意公倍数, 即 $a \mid d, b \mid d$. 故对于两个正整数 c, d, 由定理 3(带余除法) 可知一定存在整数 q, r 使得 d = qc + r, 其中 $0 \le r \le c 1$. 由于 $a \mid c$, $a \mid d$ 和 r = d qc, 故有 $a \mid r$, 同理有 $b \mid r$, 故 $r \not\in a, b$ 的公倍数. 又因为 $r \le c 1$, 故 r = 0, 即 d = qc, 证毕.

Problem 2

- (1) 利用辗转相除法计算 13 和 31 的最大公因数;
- (2) 设 a,b 是任意两个互素的正整数, 证明 $\gcd(a,a+b^2)=1$ 且 $\gcd(ab,a^2+b^2)=1$.

解:

(1) 我们有

$$31 = 2 \times 31$$
 +5
 $13 = 2 \times 5$ +3
 $5 = 1 \times 3$ +2
 $3 = 1 \times 2$ +1
 $2 = 2 \times 1$

因此 13 和 31 的最大公因数为 1.

(2) 由定理 10 可知, 根据 gcd(a,b) = 1, 有 $gcd(a,b^2) = 1$, 由定理 12 的注 12.1 可知, $gcd(a,a+b^2) = gcd(a,b^2) = 1$; 同样根据定理 12 的注 12.1 可知 $gcd(a,a^2+b^2) = gcd(a,b^2) = 1$, 同理 $gcd(b,a^2+b^2) = 1$, 故由推论 11 的 (1) 得到结论 $gcd(ab,a^2+b^2) = 1$.

Assignment 2

Problem 1

若 $a \equiv b \pmod{m_i}$, $i = 1, 2, \ldots, k$, 证明

$$a \equiv b \pmod{[m_1, m_2, \dots, m_k]}$$
.

证明: 因为 $a \equiv b \pmod{m_i}$, 故 $m_i \mid a-b$, 其中 $i=1,2,\ldots,k$, 则 a-b 是 m_1,m_2,\ldots,m_k 的公倍数. 又因为 $[m_1,m_2,\ldots,m_k]$ 整除 m_1,m_2,\ldots,m_k 的公倍数, 即 $[m_1,m_2,\ldots,m_k] \mid a-b$, 故 $a \equiv b \pmod{[m_1,m_2,\ldots,m_k]}$.

Problem 2

设 m, n 是两个互素的正整数. $x_1, x_2, \ldots, x_{\phi(m)}$ 是模 m 的一个简化剩余系, $y_1, y_2, \ldots, y_{\phi(n)}$ 是模 n 的一个化剩余系, 证明 $my_1 + nx_1, my_1 + nx_2, \ldots, my_1 + nx_{\phi(m)}, \ldots, my_{\phi(n)} + nx_1, my_{\phi(n)} + nx_2, \ldots, my_{\phi(n)} + nx_{\phi(m)}$ 是模 mn 的一个简化剩余系.

证明: 首先证明这 $\varphi(m)\varphi(n)$ 个数都与 mn 互素. 只需证明对任意 $1 \le i \le \varphi(n), 1 \le j \le \varphi(m)$ 都有 $(my_i + nx_j, mn) = 1$ 即可. 利用反证法. 假设存在 $1 \le i' \le \varphi(n), 1 \le j' \le \varphi(m)$ 使得 $my_{i'} + nx_{j'}$ 与 mn 不互素, 则必定存在素数 p 使得 $p \mid my_{i'} + nx_{j'}$ 且 $p \mid mn$. 现证明 $p \mid mn$ 不成立, 从而可推出假设不成立. 若 $p \mid mn$ 成立, 则由推论 11 第 (3) 条知必有 $p \mid m$ 或 $p \mid n$.

情形 1. 若 $p \mid m$, 则 $p \mid nx_{j'}$. 因 $p \nmid x_{j'}$ (否则 $p \mid m$, $x_{j'}$ 的因子, 这与 $(m, x_{j'}) = 1$ 矛盾), 故 $p \mid n$, 这与 (m, n) = 1 矛盾;

情形 2. 若 $p \mid n$, 则 $p \mid my_{i'}$. 因 $p \nmid y_{i'}$, 故 $p \mid m$, 这与 (m, n) = 1 矛盾.

因此, $p \nmid m$ 且 $p \nmid n$, 从而 $p \mid mn$ 不成立, 从而假设不成立. 于是, 对任意 $1 \leq i \leq \varphi(n), 1 \leq j \leq \varphi(m)$ 都有 $(my_i + nx_j, mn) = 1$.

其次证明对于模 mn 的一个简化剩余系, 其元素均有 $my_i + nx_j$ 的形式, 其中 $1 \le i \le \varphi(n), 1 \le j \le \varphi(m)$. 进一步, 由注 22.1 第 (1) 条 () 以及定理 28(这 $\varphi(mn)$ 个数对模 mn 两两不同余) 可知, 若能证明对任意 $x,y \in \mathbb{Z}$ 使得 (my + nx, mn) = 1 时必有 (x,m) = (y,n) = 1 则定理成立. 由 (my + nx, mn) = 1 可得 (my + nx, m) = (my + nx, n) = 1 (否则若 (my + nx, m) = d > 1 则显然 $(my + nx, mn) \ge d$). 于是由定理 3 或注 12.1 可得 (nx, m) = (my, n) = 1.

Assignment 3

RSA 和 Rabin 密码算法的结果分别参考课件 slice 的第 50 页和第 51 页.

引理 54

映射 $f: A \to B$ 是一一映射的充分必要条件是 f 是可逆映射. 证明:

必要性: 假设 f 是可逆映射, 则 f 存在逆映射 $f^{-1}: B \to A$. 对于 $\forall b \in B$, 我们都有 $f^{-1}(b) = a \in A$, 则 $f(a) = f(f^{-1}(b)) = b$, 因此 f 是满射; 假设 $a_1, a_2 \in A$ 且满足 $f(a_1) = f(a_2)$, 则有 $a_1 = f^{-1}(f(a_1)) = f^{-1}(f(a_2)) = a_2$, 故 f 是单射. 因此 f 是一一映射.

充分性: 若 f 是一一映射, 故根据 f 的满射性质有, 对于任意给定的 $b \in B$ 我们都能找到 $a \in A$ 使得 f(a) = b, 同时因为 f 是单射, 则 a 是唯一确定的; 因此定义映射 $g: B \to A$, 其中 g(b) = a, 则 f(g(b)) = f(a) = b 和 g(f(a)) = g(b) = a, 因此 f 是可逆映射.

引理 55

设 $f:A\to B$ 和 $g:B\to C$ 都是一一映射,则 $g\circ f:A\to C$ 也是一一映射,并且 $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$.

证明: 因为 f,g 都是一一映射, 根据引理 54 可知 f,g 都是可逆映射, 分别记为

 f^{-1}, g^{-1} . 因此直接检验

$$\begin{split} (g \circ f) \circ (f^{-1} \circ g^{-1}) &= g \circ f \circ f^{-1} \circ g^{-1} \\ &= g \circ (f \circ f^{-1}) \circ g^{-1} \\ &= g \circ \mathrm{id}_B \circ g^{-1} \\ &= g \circ g^{-1} \\ &= \mathrm{id}_C \end{split}$$

同理可以得到 $(f^{-1} \circ g^{-1}) \circ (g \circ f) = id_A$, 其中 id_A , id_B 和 id_C 分别是集合 A, B 和 C 的 恒等映射. 故 $g \circ f : A \to C$ 是可逆映射, 因此是一一映射.

Assignment 4

Problem

验证下列集合 G 与给定的运算能否构成群, 即判断是否满足群定义中的四个条件.

- (1) $G = \mathbb{C}$ 为复数集, 运算为复数域上的乘法.
- (2) $G = \mathbb{Z}$ 为整数集, 运算为整数上的减法.
- (3) $G = \mathbb{R}$ 为实数集, 运算为 \star , 其定义如下:

$$a \star b = (a+1)(b+1) - 1, \forall a, b \in \mathbb{R}.$$

证明:

- (1) 对于代数结构 (ℂ,∗), 我们有:
 - (a) 由于复数乘复数的结果仍然是复数, 故代数结构满足封闭性.
 - (b) 对于 $\forall a, b, c \in \mathbb{C}$, 都有 a * (b * c) = (a * b) * c, 故结合律成立.
 - (c) 对于 $\forall a \in \mathbb{C}$, 我们有 a * 1 = 1 * a = a, 则 1 是单位元.
 - (d) 但除了 0 以外的元素才有逆元: $a \in \mathbb{C} \setminus \{0\}$ 的逆元 1/a.

因此该代数结构不构成群.

- (2) 对于代数结构 $(\mathbb{Z}, -)$, 我们有:
 - (a) 由于整数相减的结果仍然是整数, 故代数结构满足封闭性.

- (b) 对于 $\forall a, b, c \in \mathbb{Z}$, 等式 a (b c) = a b + c = (a b) c 成立当且仅当 c = 0, 故结合律不成立.
- (c) 设 id $\in \mathbb{Z}$ 为单位元, 对于 $\forall a \in \mathbb{Z}$, 我们有 a id = id a = a, 即 id = 0 且 id = 2a, 故不存在单位元.

因此该代数结构不构成群.

- (3) 对于代数结构 (ℝ,★), 我们有:
 - (a) 由于实数之间的加减乘的结果仍然是实数, 故代数结构满足封闭性.
 - (b) 对于 $\forall a, b, c \in \mathbb{R}$, 都有 $a \star (b \star c) = a \star ((b+1)(c+1)-1) = (a+1)((b+1)(c+1)-1+1)-1 = (a+1)(b+1)(c+1)-1$, 同时也有 $(a \star b) \star c = (a+1)(b+1)(c+1)-1$, 则 $a \star (b \star c) = (a \star b) \star c$, 故结合律成立.
 - (c) 假设 $id \in \mathbb{R}$ 是单位元, 对于 $\forall a \in \mathbb{R}$, 我们有 $a \star id = id \star a = a$, 即 (a+1)id = 0, 则 0 是单位元.
 - (d) $\forall a \in \mathbb{R}$, 其逆元为 a^{-1} 满足 $a \star a^{-1} = 0$, 即 $(a+1)(a^{-1}+1)-1=0 \Rightarrow (a+1)(a^{-1}+1)=1$, 但 a=-1 时上式不成立, 故 -1 没有逆元.

因此该代数结构不构成群.