- ub. 1. (1) $\sum_{n=1}^{\infty} \frac{\sin(n) + \cos(n)}{n^2} , \left| \frac{\sin(n) + \cos(n)}{n} \right| \leq \frac{2}{n^2} \quad \forall n \in \mathbb{N}, \text{ og } 2 \cdot \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ er konvergent.}$ $\text{Per } 4.2c(i) \text{ er } \sum_{n=1}^{\infty} \left| \frac{\sin(n) + \cos(n)}{n^2} \right| \text{ beowergent og } \text{ ti er } \sum_{n=1}^{\infty} \frac{\sin(n) + \cos(n)}{n^2}$ absolut konvergent.
 - (2) $\sum_{n=1}^{\infty} \cos(n\pi) \frac{2}{n+5} = \sum_{n=1}^{\infty} (-1)^n \frac{2}{n+5}$, $\left| (-1)^n \frac{2}{n+5} \right| = \frac{2}{n+5} \ge \frac{2}{6n}$ $\forall n \in \mathbb{N}$.

 Reklyjan $\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n}$ or divergent, so rehlyjan er ildi absolut lanvergent. Fylgjan $\frac{2}{n+5} > 0$ $\forall n \in \mathbb{N}$ og er monotomt fallandi, ti $\frac{2}{n+5} \ge \frac{2}{(n+1)+5}$.

Umfrant tot er $\lim_{n\to\infty}\frac{2}{n+5}=0$. Per 4.38 er rehkjan ti konvergent, so vit kenkludera treytaðan konvergens.

- (3) $\sum_{n=1}^{\infty} (-2)^n \frac{1}{n^2+7} , \qquad \left| (-2)^n \frac{1}{n^2+7} \right| = \frac{2^n}{n^2+7} \rightarrow \infty \quad \text{tá } n \rightarrow \infty . \quad \text{Tiskil gongur } (-2)^n \frac{1}{n^2+7} \quad \text{ibhit in the part } per \quad \text{4.19.}$
- 2. Vis, at $\sum_{n=1}^{\infty} \frac{1}{n \cdot l_{nm}}$ er divergent við integralleriterið. Fundtiónin $f(\infty) = \frac{1}{\infty l_{nm}}$, $\infty \ge 2$, er kontinuert og fallandi.

$$\int_{2}^{t} \frac{1}{x \ln x} dx = \int_{\ln x}^{\ln x} \frac{1}{u} du$$

$$= \left[\ln (u) \right]_{\ln x}^{\ln x}$$

$$= \ln (\ln (u)) - \ln (\ln (u))$$

$$\Rightarrow \infty \quad \text{tá} \quad t \Rightarrow \infty.$$

Per 4.33(ii) er $\sum_{n=1}^{\infty} \frac{1}{n \cdot \ln (n)}$ divergent.

3. (1) Vis, at $\sum_{n=1}^{\infty} n e^{-n^2}$ er konvergent við integralkriteriið.

Fulltionin $f(x) = \frac{x}{e^{x^2}}$ er kontinuert og fallandi á $[1, \infty)$. $f'(x) = e^{-x^2} - 2x^2e^{-x^2} = (1-2x^2)e^{-x^2} \angle 0$ tó $x > \frac{1}{\sqrt{2}}$.

$$\int_{1}^{t} x e^{-x^{2}} dx = \int_{1}^{t^{2}} \frac{e^{-u}}{2} du \qquad u = x^{2}$$

$$= \left[-\frac{e^{-u}}{2} \right]_{1}^{t^{2}}$$

$$= \frac{1}{2e} - \frac{e^{-t^{2}}}{2} \rightarrow \frac{1}{2e} \quad ta \quad t \rightarrow \infty$$

 $= \frac{1}{2e} - \frac{e}{2} \rightarrow \frac{1}{2e} \quad \text{tá} \quad t \rightarrow 0$ Per 4.35(i) er $\sum_{n=1}^{\infty} ne^{-n^2}$ konvergent.

(2) Finn
$$N \in \mathbb{N}_1$$
 so at S_N approbrimerar summin við einum fráviki í mesta legi 0,001.
Vit legen $f(N_{11}) \neq 0,001$.

$$(N+1) \cdot e^{-(N+1)^2} \leq 0.001$$
 $(N > 1.8185.$

(3) Vit fac
$$S_2 + \int_1^{\infty} x e^{-x^2} dx = e^{-1} + 2e^{-4} + \frac{1}{2}e^{-4} = 0.40457$$

4. Finn eine approbrimetion on
$$\sum_{n=1}^{\infty} \frac{1}{n^{q}}$$
 við frávik á í merta legi 0,02.

Per uppáva 162 er
$$S_N = \frac{1}{(N+1)^{N-1}} \frac{4}{4-1} = \frac{4}{3} \frac{1}{(N+1)^3}$$
. Vit loyse N.

$$\frac{4}{3} \frac{1}{(N+1)^3} \leq \frac{1}{50} \iff \frac{4 \cdot 56}{3} \leq (N+1)^3$$

$$(=> N \ge \sqrt[3]{\frac{200}{3}} - 1 = 3,6548.$$

Altso
$$N \ge 4$$
, so er $S_{4} \simeq \sum_{n=1}^{\infty} \frac{1}{n^{4}}$.

$$S_{4} = \sum_{n=1}^{4} \frac{1}{n^{4}} = \frac{22369}{20736} = 1,07875.$$

5.
$$\sum_{n=1}^{\infty} (1)^{n-1} \frac{1}{n} \quad \text{er konvergent}.$$

Toot er givið, at $b_n = \frac{1}{n}$, $n \ge 1$, er positiv og monotont fallandi umfrant, at $b_n \to 0$ tá $n \to \infty$. Per 4.38 fãa vil vurdered

$$b_{N+1} = \frac{1}{N+1} \leq o_{1} \circ 1$$

So
$$S_{qq} \approx \sum_{n=1}^{\infty} (-1)^{n-1} G_n$$
.

(3) Sama men vit $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^n}$.

So $S_3 \approx \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n^n}$. Vit hera, at $S_3 = 0.78704$.

(4) Konvergensnrin & in er négv skjótari enn hjá no, so rekkja í (3) leggur négv minni liðir afturet, meðan no konvergerer seint.