✓ Which of the following is not a	a type of machine learning algorithm? *	1/1
Linear Regression Decision Tree		
Convolutional Neural Network K-Nearest Neighbors		~
✓ Deep learning models are: *		1/1
Shallow neural networks		
Neural networks with multiple h	idden layers	✓
Neural networks without hidden	layers	
Neural networks trained on sma	II datasets	
✓ Which activation function is conclusion of the conclusion of	ommonly used in the output layer of a	*1/1
ReLU		
Sigmoid		✓
Tanh		
Linear		

✓ OpenCV is a library for: *	1/1
Natural Language Processing	
Computer Vision	~
O Data Visualization	
Machine Learning	
✓ Which OpenCV function is used for image resizing? *	1/1
cv2.resize()	~
cv2.cvtColor()	
cv2.imshow()	
cv2.waitKey()	
✓ Tokenization in NLP refers to: *	2/2
Converting text into numbers	
Removing stop words	
Breaking text into individual words or phrases	✓
Converting text into a vector representation	

~	What is the purpose of stemming in NLP? *	2/2
0	To remove stop words	
•	To convert words to their root form	✓
0	To convert text into a vector representation	
0	To identify named entities	
~	What is the command to create a new Git repository? *	1/1
0	git init	✓
0	git clone	
0	git add	
0	git commit	
~	Which command is used to undo the last commit?*	1/1
•	git reset	✓
0	git revert	
0	git checkout	
0	git push	

✓ Which type of chart is best suited for visualizing trends over time? *	1/1
O Bar Chart	
O Pie Chart	
Line Chart	✓
Histogram	
✓ What is the purpose of a scatter plot? *	1/1
To show the distribution of a single variable	
To compare two or more variables	✓
To visualize trends over time	
To show the composition of a whole	
✓ Which algorithm is commonly used for clustering tasks? *	2/2
C Linear Regression	
K-means clustering	✓
O Decision Tree	
Support Vector Machine	

✓ What is the goal of model evaluation? *	2/2
To select the best model for a given taskTo train a model on a dataset	✓
To preprocess data for modelingTo deploy a model in production	
✓ Which type of neural network is commonly used for image recognition tools?	n * 1/1
tasks? Recurrent Neural Network (RNN) Convolutional Neural Network (CNN)	\ <u></u>
Long Short-Term Memory (LSTM) Autoencoder	¥
✓ What is the main purpose of using a dropout layer in a neural network	?* 1/1
To increase the learning rate To reduce the number of neurons	
To prevent overfittingTo increase the number of layers	~

✓ Which of the	e following is a popular deep learning framework? *	1/1
GitHub		
MySQL		
Excel		
TensorFlow		✓
✓ In deep lear	ning, what does "training" typically refer to? *	1/1
Creating ran	dom datasets	
Optimizing v	veights of the model using data	✓
Performing I	linear regression	
Formatting of	data into tables	
✓ What is the does it func	purpose of using backpropagation in deep learning, and how tion?	*2/2
O To store the	model's structure; functions by saving the neural network architectu	ıre
O To increase	the number of neurons; functions by duplicating layers	
To update the them	ne model's weights; functions by calculating gradients and adjusting	✓
To initialize	weights; functions by using random initialization	

✓	What is the "vanishing gradient problem," and how is it addressed in deep learning?	*2/2
•	When gradients become too small, slowing training; addressed using ReLU activation functions	✓
0	When layers disappear during backpropagation; addressed using dropout	
0	When weights become too large, slowing learning; addressed using gradient clipping	
0	When gradients grow too large, causing divergence; addressed using batch normalization	
/	Which of the following is a key challenge in computer vision? *	1/1
0	Option 1	
0	Real-time translation	
0	Speech recognition	
•	Understanding visual ambiguity	✓
~	Which algorithm is commonly used for face detection in computer vision?	*1/1
0	Naive Bayes	
•	Viola-Jones	✓
0	K-Nearest Neighbors	
0	Decision Trees	

✓ What is the purpose of Convolutional Neural Networks (CNNs) in computer vision?	*2/2
To perform data clustering	
To enhance audio quality	
To process and recognize patterns in images using convolutional layers	✓
To generate textual descriptions of images	
✓ Which technique is commonly used for reducing the dimensions of an image while preserving key features in computer vision?	*2/2
Pooling	✓
Gradient Descent	
Data Augmentation	
O Dropout	
✓ Word2Vec is an example of which NLP technique? *	1/1
Named entity recognition	
Machine translation	
Syntax tree generation	
Word embedding	✓

✓	Which of the following tasks involves analyzing the sentiment of a text? *	1/1
0	Machine translation	
0	Part-of-speech tagging	
•	Sentiment analysis	✓
0	Text summarization	
✓	Which NLP model is widely used for both machine translation and text generation due to its ability to handle sequential data?	*2/2
\bigcirc	Support Vector Machines	
•	Recurrent Neural Networks (RNNs)	✓
\bigcirc	Naive Bayes Classifier	
0	Random Forest	
✓	In the context of NLP, what is the Bag of Words (BoW) model, and what is its limitation?	*2/2
•	A model that represents text as a bag of individual words without considering their order; its limitation is that it ignores word sequence and semantics.	✓
0	A model that represents text as sequences of characters; its limitation is that it does not handle word meanings well.	
0	A model that ranks words by their frequency in a document; its limitation is that loses word frequency information.	it
0	A model used to translate text into vectors; its limitation is that it struggles with long texts.	

1/1
/
0/1
×
of

This form was created outside of your domain. - <u>Terms of Service</u> - <u>Privacy Policy</u>

Does this form look suspicious? Report

Google Forms