RELATÓRIO 2: RETIFICADOR DE MEIA ONDA E ONDA COMPLETA SEM FILTRO

Professo	or: Egídio Raimundo Neto
Monitor	es: Danilo de Oliveira Palma, Fábio Luiz Fiorita Pontes, Heytor Danie
Vicente	Rizo, Hyago Vieira Lemes Barbosa Silva, Isadora Silva Brandão, Letíci
Calixto A	Alves, Marina Ribeiro Barba e Raissa Lara Moura Brito Borin.
Nomes:	
_	

1. INTRODUÇÃO

1.1 RETIFICADOR DE MEIA ONDA

Circuitos eletrônicos fazem uso de baterias para a sua alimentação. Devido ao alto custo da bateria, se comparado ao uso da energia elétrica, tornase necessário um circuito que transforme a tensão alternada da rede de distribuição elétrica em uma tensão contínua que substitua uma bateria. O diodo é um componente importante nessa transformação.

O emprego do diodo nestas aplicações dá-se de muitas formas. A aplicação mais conhecida é o circuito retificador, etapa fundamental na conversão de tensão alternada em tensão contínua.

Há três formas clássicas para se construir um circuito retificador: o retificador de meia onda, que usa apenas um diodo para eliminar um dos semiciclos da tensão alternada, o retificador de onda completa usando transformador com Center Tap e dois diodos e o retificador de onda completa em ponte que, com a utilização de quatro diodos, dispensa o uso do Center Tap no transformador. A retificação em onda completa aproveita os dois semiciclos da tensão alternada.

Como a forma de onda a ser retificada é senoidal, devemos definir os seus valores médio e eficaz:

VALOR EFICAZ: O valor eficaz está relacionado com a energia gasta no transporte de cargas elétricas e pode ser determinado pela expressão:

$$\mathsf{E}_{(rms)} = \sqrt{\frac{1}{2\pi} \int_{0}^{2\pi} [\mathsf{E}_{(m)} sen(wt)]^{2} d(wt)}$$

VALOR MÉDIO: o valor médio está relacionado com o trabalho realizado para transportar cargas elétricas e pode ser determinado pela expressão:

$$E_{(av)} = \frac{1}{2\pi} \int_0^{2\pi} E(m) sen(wt) d(wt)$$

As expressões anteriores aplicadas às formas de onda senoidal, meia senoide e pulso senoidal resultam nas fórmulas apresentadas na tabela a seguir, que permitem o cálculo dos valores médio e eficaz das correspondentes formas de onda.

Forma de Onda			
Valor Médio	0	Ε _(m) π	$\frac{2 E_{(m)}}{\pi}$
Valor Eficaz	$\frac{E_{(m)}}{\sqrt{2}}$	E _(m) 2	$\frac{E_{(m)}}{\sqrt{2}}$

A figura a seguir ilustra o processo de retificação em meia onda sem filtro. A especificação do diodo semicondutor a ser utilizado nos retificadores é feita basicamente em função dos seus parâmetros VRRM. IFRM, IF(AV) e IFSM:

- o VRRM (Peak Recurrent Reverse Voltage): fornecido no datasheet do componente, este valor deve ser maior do que a Tensão de Pico Inversa (PIV) a que o diodo estiver submetido quando em polarização reversa.
- o IFRM (Recurrent Peak Forward Current): fornecido no datasheet do componente, este valor deve ser maior do que a corrente de pico repetitiva a que o diodo estiver submetido quando em polarização direta.
- o IF(AV) (Forward Current Avarege): fornecido no datasheet do componente, este valor deve ser maior do que a corrente média que circula pelo diodo quando em polarização direta.
- o IFSM (Peak Forward Surge Current): Fornecido no datasheet do componente, este valor deve ser maior do que a corrente de surto a que o diodo for submetido o equipamento for ligado.

Os parâmetros do circuito retificador de meia onda podem ser determinados como a seguir:

Tensão de Pico Inversa (PIV):

Corrente de Pico Repetitiva pelo Diodo (I_{D(m)}):

Corrente Direta Média pelo Diodo (ID(av)): Usando a equação que calcula o valor médio de meia senoidal, encontramos:

$$I_{D(av)} = \frac{I_{D(m)}}{\pi}$$

Fator de Ondulação ou Fator de ripple: O sinal retificado em meia onda ou em onda completa apresenta um valor médio (componente dc) e uma tensão de ondulação (componente ac). O fator de ripple é definido por:

$$r = \frac{tens\~{a}o \ de \ ondula\~{c}\~{a}o \ (rms)}{tens\~{a}o \ m\'{e}dia \ (dc)}$$

O fator de ripple normalmente é expresso em porcentagem.

Para retificadores de meia onda, temos:

$$V_{o(rms)} = \frac{V_{o(m)}}{2} \qquad \qquad V_{o(av)} = \frac{V_{o(m)}}{\pi} \qquad \qquad V_{r(rms)} = \sqrt{V_{o(rms)}^2 - V_{o(av)}^2}$$

O que resulta em um fator de ripple de 121%.

1.2 RETIFICADOR ONDA COMPLETA

A principal diferença entre a retificação em meia onda e a de onda completa está no rendimento do circuito, uma vez que o retificador de meia onda ceifa uns dos semiciclos do sinal aplicado a sua entrada, enquanto que o retificador de onda completa aproveita os dois semiciclos do sinal aplicado a sua entrada.

Devido a essa característica o retificador de onda completa está presente na maioria das fontes de alimentação comercias.

A figura a seguir ilustra o processo de retificação de onda completa sem filtro, utilizando o retificador em ponte. São mostradas as formas de onda na entrada do circuito retificador, no diodo e na carga.

Os parâmetros do circuito retificador de onda completa com CT são determinados como a seguir:

Tensão de Pico Inversa (PIV):

Corrente de Pico Repetitiva pelo Diodo $(I_{D(m)})$:

ID(av) e ID(surto): Equivalente aos conceitos de meia onda citados nas páginas 4 e 5.

Fator de Ondulação ou Fator de ripple: Para retificadores de onda completa, temos:

$${\rm V_{o(rms)}} = \frac{{\rm V_{o(m)}}}{\sqrt{2}} \hspace{0.5cm} {\rm V_{o(av)}} = \frac{2{\rm V_{o(m)}}}{\pi} \hspace{0.5cm} {\rm V_{r(rms)}} = \sqrt{{\rm V_{o(rms)}^2 - V_{o(av)}^2}} \hspace{0.5cm} \%r = \frac{V_{r(rms)}}{V_{o(av)}} \hspace{0.5cm} x100$$

O que resulta em um fator de ripple de 48%.

2 – PARTE TEÓRICA

1) Dado o circuito retificador de meia onda a seguir, calcule o que se pede e esboce as formas de onda solicitadas, com indicação dos valores correspondentes às escalas de amplitude e tempo. Considere o diodo de Silício:

Dados: $R_L = 1k\Omega$ e $T_1 = 127 V_{(ef)} / (9 + 9) V_{(ef)}$

Calcule:

a)
$$V_{o(m)} =$$
 []

b)
$$V_{o(av)} =$$
 []

c)
$$V_{o(rms)} =$$
 []

d)
$$V_{r(rms)} =$$
 []

f)
$$I_{D(av)} =$$
 []

g)
$$I_{D(m)} =$$
 []

i)
$$N_p / N_s =$$
 []

$$j) \qquad \mathsf{P}_{\mathsf{o}(\mathsf{rms})} \; = \; \underline{\hspace{1cm}} \hspace{1cm} [\hspace{1cm}]$$

- Demonstre que a potência eficaz entregue pelo retificador à k) carga é igual a soma das potências média e de ripple dissipada por R_L.
- I) Utilizando o datasheet do diodo 1N4007, verifique se ele poderá ser utilizado na construção do retificador analisado.

Agora, esboce as formas de onda solicitadas:

a) Forma de onda da tensão no secundário do transformador:

b) Forma de onda da tensão pelo diodo D₁:

c) Forma de onda da tensão na carga R_L:

2) Dado o circuito retificador de onda completa a seguir, calcule o que se pede e

esboce as formas de onda solicitadas, com indicação dos valores correspondentes às escalas de amplitude e tempo. Considere o diodo de Silício:

Dados: $R_L = 1k\Omega$ e $T_1 = 127 V_{(ef)} / (9 + 9) V_{(ef)}$

Calcule:

a)
$$V_{o(m)} =$$
 []

b)
$$V_{o(av)} =$$
 []

c)
$$V_{o(rms)} =$$
 []

d)
$$V_{r(rms)} =$$
 []

f)
$$I_{D(m)} = ____ [$$
]

g)
$$I_{D(av)} =$$
 []

- 3) Agora, esboce as formas de onda solicitadas:
- a) Forma de onda da corrente pelo diodo D₁:

b) Forma de onda da corrente pelo diodo D₂:

c) Forma de onda da corrente na carga R_L:

d) Forma de onda da tensão pela carga R_L :

e) Forma de onda da tensão sobre o diodo D₁:

f) Forma de onda da tensão sobre o diodo D₂:

3 – SIMULAÇÃO

Utilizando o Software Multisim 13.0 – da National Instruments monte o circuito a seguir (use o Diodo 1N4007). Por simulação e utilizando um osciloscópio, visualize e esboce as formas de onda das tensões no secundário do transformador, sobre o diodo e sobre a carga. Meça, utilizado o menu MEASURE do osciloscópio, os valores de pico (positivo e negativo) das tensões sobre a carga e sobre o diodo, o valor médio e eficaz da tensão na carga e calcule o PIV dos diodos e o fator de ripple do circuito retificador. Utilizando agora o multímetro, meça a corrente média na carga e refaça a medida dos valores médios e eficazes das tensões na carga e no secundário do transformador. Obs:Utilize os valores do exercício teórico.

Para S1 aberta:

Com o Osciloscópio	Com o Multímetro:
a) $V_{o(+)} =$	a) $I_{o(av)} =$
b) $V_{o(-)} =$	b) $*V_{o(av)} =$
c) $V_{D(+)} =$	c) $*V_{o(rms)} =$
d) $V_{D(-)} =$	d) $*V_{r(rms)} =$
e) $V_{o(av)} =$	
f) $V_{o(rms)} =$	
Calcule:	
g) $V_{r(rms)} =$	
h) PIV =	
i) %r =	

Para S1 fechada:

Com o Osciloscópio	Com o Multímetro:
a) $V_{o(av)} =$	a) $I_{o(av)} =$
b) $V_{o(rms)} =$	b) $*V_{o(av)} =$
Calcule:	c) $*V_{o(rms)} =$
c) $V_{r(rms)} =$	d) $*V_{r(rms)} =$
d) PIV =	e) $V_{s(at-at)(rms)} =$
e) %r =	f) $V_{s(av)} =$

Agora, esboce as formas de onda solicitadas para chave S1 fechada:

a) Forma de onda da tensão sobre o diodo D₁:

b) Forma de onda da tensão sobre o diodo D2:

c) Forma de onda tensão na carga R_L:

4 – PARTE PRÁTICA

- 1) Monte o circuito estudado na parte de simulação deste relatório e faça as seguintes medidas, cálculos e esboços de acordo com o tipo de retificação solicitada, indicando os valores correspondentes às escalas de amplitude e tempo: Para o retificador de onda completa, desenhe as formas de onda nas tabelas abaixo, chamando o monitor para conferir caso alguma seja diferente das encontradas na teoria e simulação.
 - a) Forma de onda da tensão sobre o diodo D₁:

b) Forma de onda da tensão sobre o diodo D2:

c) Forma de onda tensão na carga R_L:

OBS.: Para realização da medida da tensão eficaz de ripple, ajustar o acoplamento do Osciloscópio para ac e efetuar a medida da Valor Eficaz da tensão na carga.

Meia Onda:

a) $V_{0(+)} =$ ____[

b)
$$V_{o(-)} =$$
 []

d)
$$V_{D(-)} =$$
 []

f)
$$V_{o(av)} =$$
 []

g)
$$V_{r(rms)} =$$
 []

h)
$$V_{o(rms)} = ____ [$$
 [

$$I_{o(av)} = ___ [$$

k)
$$V_{s(rms)} =$$
 [

Onda Completa:

a)
$$V_{o(+)} =$$
 []

b)
$$V_{o(-)} =$$
 []

c)
$$V_{D(+)} =$$
 []

d)
$$V_{D(-)} =$$
 []

f)
$$V_{o(av)} =$$
 []

g)
$$V_{r(rms)} =$$
 []

h)
$$V_{o(rms)} =$$
 []

$$J_{O(av)} =$$
 []

$$V_{s(rms)} =$$
 []

Agora compare os dois tipos de retificador e comente os resultados da
medidas feitos em ambos, dizendo em cada caso se a medida foi igual, metade
o dobro, ou se não tem nenhuma relação entre elas, justifique também caso a
caso o motivo da relação entre as duas.

5 – DATASHEET – 1N4007

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT			
V_{RRM}	repetitive peak reverse voltage							
	1N4007G		-	1000	V			
$I_{F(AV)}$	average forward current	averaged over any 20 ms period; T _{amb} = 75 °C; see Fig.2	-	1.00	А			
		averaged over any 20 ms period; T _{amb} = 100 °C; see Fig.2	-	0.75	А			
I _F	continuous forward current	T _{amb} = 75 °C; see Fig.2	_	1.00	Α			
I _{FRM}	repetitive peak forward current		-	10	Α			
I _{FSM}	non-repetitive peak forward current	half sinewave; 60 Hz	_	30	Α			

ELECTRICAL CHARACTERISTICS

 T_j = 25 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
V _F	forward voltage	I _F = 1 A; see Fig.3	1.1	٧
V _{F(AV)}	full-cycle average forward voltage	I _{F(AV)} = 1 A	0.8	٧
I _R	reverse current	$V_R = V_{Rmax}$	10	μΑ
		V _R = V _{Rmax} ; T _{amb} = 100 °C	50	μА