ML Test

January 6, 2025

Research Knowledge Test

- Please complete all the questions and send your answers in a PDF file generated from Latex code via email within three (3) days of receipt.
- Please also include your Latex source code in the email.
- Each question is worth 10 points.

Statistical learning theory

1. Proof the following conclusion: For a binary classification problem, for all functions in the indicator function set (including the one minimizing the empirical risk), the empirical risk $R_{emp}(w)$ and the expected risk R(w) satisfy the following inequality with at least $1-\delta$ probability:

$$R(w) \le R_{emp}(w) + \sqrt{\frac{h \ln(2n/h) + \ln(4/\delta)}{n}}$$

where h is the VC dimension of the function set, and n is the number of amples.

- 2. According to VC (Vapnik-Chervonenkis) theory, What factors determine the consistency of empirical risk minimization?
- 3. As the sample size approaches infinity, what is the relation between the empirical risk $R_{emp}(f)$ and the true risk R(f)?
 - 4. Proof your conclusion in Q4
 - 5. Explain the following conclusions and proof them
 - (1) what is the convergence bound for a single function?
 - (2) what is the uniform convergence bound for a finite class of functions ?
- (3) what is the uniform convergence bound for both finite and infinite classes of functions?

Matrix

1. $f = a^T X b$, find $\frac{\partial f}{\partial X}$. Where a is an $m \times 1$ column vector, X is an $m \times n$ matrix, b is an $n \times 1$ column vector, and f is a scalar.

- 2. $f = a^T \exp(Xb)$, find $\frac{\partial f}{\partial X}$. Where a is an $m \times 1$ column vector, X is an $m \times n$ matrix, b is an $n \times 1$ column vector, exp represents the element-wise exponential, and f is a scalar
- 3. $f = \operatorname{tr}(Y^T M Y)$, $Y = \sigma(W X)$, find $\frac{\partial f}{\partial X}$. Where W is an $\ell \times m$ matrix, X is an $m \times n$ matrix, Y is an $\ell \times n$ matrix, M is an $\ell \times \ell$ symmetric matrix, σ represents an element-wise function, and f is a scalar.
- 4. $l = ||Xw y||^2$, find the least squares estimate of w, which is equivalent to finding the zero point of $\frac{\partial l}{\partial w}$. Where y is an $m \times 1$ column vector, X is an $m \times n$ matrix, w is an $n \times 1$ column vector, and l is a scalar.
- 5. Given samples $x_1, \ldots, x_N \sim \mathcal{N}(\mu, \Sigma)$, find the maximum likelihood estimate of the covariance matrix Σ . The mathematical formula is: $l = \log |\Sigma| + 1$ $\frac{1}{N}\sum_{i=1}^{N}(x_i-\bar{x})^T\Sigma^{-1}(x_i-\bar{x})$, find the zero point of $\frac{\partial l}{\partial \Sigma}$. Here, x_i is an $m\times 1$ column vector, $\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$ is the sample mean, Σ is an $m \times m$ symmetric positive definite matrix, l is a scalar, and log represents the natural logarithm.

 6. $l = -\mathbf{y}^T \log \operatorname{softmax}(Wx)$, find $\frac{\partial l}{\partial W}$. Here, \mathbf{y} is an $m \times 1$ column vector
- with one element equal to 1 and all others equal to 0, W is an $m \times n$ matrix, xis an $n \times 1$ column vector, l is a scalar, and log represents the natural logarithm.

The softmax function is defined as: $\operatorname{softmax}(\mathbf{a}) = \frac{\exp(\mathbf{a})}{\mathbf{1}^T \exp(\mathbf{a})}$

where $\exp(\mathbf{a})$ represents the element-wise exponential, and 1 represents a vector of all ones.

Analysis

- 1. Define real numbers using either the Cauchy sequence approach or the Dedekind cut approach.
- 2. (1) State the Closed Graph Theorem and the Inverse Operator Theorem, and prove that these two theorems are equivalent.
- (2) Using the theorem stated in (1), prove that if a linear operator (A) on a Hilbert space (H) satisfies $(\langle \varphi, A\psi \rangle = \langle A\varphi, \psi \rangle)$ for all $(\varphi, \psi \in H)$, then (A) is continuous.
- 3. Provide the definitions of a normed linear space and a Banach space, and give an example of a Banach space and proof it.
- 4. (1) Provide the definition of separability. (2) Prove that $(L^{\infty}[a,b])$ is not a separable space.
- 5. Prove that the subset \mathbb{Q} of \mathbb{R} is not the intersection of countably many open subsets.
 - 6. Proof the set [0,1] is uncountable.
- 7. Let (X, μ) be a measure space, and let f_n and f be square-integrable functions on it. Prove that $\lim_{n\to+\infty} |f_n-f|^2 = 0$ if and only if $\lim_{n\to+\infty} |f_n|^2 = 0$ |f|2 and $(f_n)n \ge 1$ converges to f in measure.
- 8. Let (M,μ) be a finite measure space, and define $\delta(f) = \int_M \frac{|f|}{1+|f|} d\mu$; $f \in$ (M,μ) .
 - (1) If $g \leq f$, prove that $0 \leq \delta(g) \leq \delta(f)$.
- (2) Prove that $\delta(f_1 + f_2) \leq \delta(f_1) + \delta(f_2)$, and that $\delta(f) = 0$ if and only if fis almost zero.

(3) Show that δ characterizes convergence in measure: $\lim_{i\uparrow\beta} \delta(f_i - f) = 0$ if and only if $(f_i)_{i\uparrow\beta}$ converges to f in measure.

Deep Learning

- 1. There is a fully connected neural network with n layer. Let's assume the loss function is the Mean Squared Error. The activate function is Sigmoid function. What are the gradient of W_l and b_l , where W_l is the weight of layer l(l < n), and b_l is the bias of layer l(l < n). Proof your conclusion.
- 2. If the neural network is CNN and the other conditions remind the same. What are the gradient of W_l and b_l ? Proof your conclusion.