

Decision Trees

Decision Tree Model

Cat classification example

	Ear shape (x ₁)	Face $shape(x_2)$	Whiskers (x ₃)	Cat
[3]	Pointy 🕊	Round 🕊	Present 🕊	1
	Floppy 🕊	Not round 🕊	Present	1
(£)	Floppy	Round	Absent 🕊	0
	Pointy	Not round	Present	0
	Pointy	Round	Present	1
(33)	Pointy	Round	Absent	1
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
V-EV	Floppy	Round	Absent	0
(3)	Floppy	Round	Absent	0
_				

Categorical (discrete values)

New test example

Ear shape Pointy Face shape. Round Whiskers: Present

Decision Tree

Decision Trees

Learning Process

4/4 cats

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity)

Decision 1: How to choose what feature to split on at each node?

Maximize purity (or minimize impurity)

Cat DNA

Νo

0/5 cats

Yes

- When a node is 100% one class.
- When splitting a node will result in the tree exceeding a maximum depth

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

- When a node is 100% one class
- When splitting a node will result in the tree exceeding a maximum depth
- When improvements in purity score are below a threshold
- When number of examples in a node is below a threshold

Measuring purity

Entropy as a measure of impurity

 p_1 = fraction of examples that are cats

Entropy as a measure of impurity

$$p_0 = 1 - p_1$$

$$H(p_1) = -p_1 log_2(p_1) - p_0 log_2(p_0)$$

$$= -p_1 log_2(p_1) - (1 - p_1) log_2(1 - p_1)$$

Note: " $0 \log(0)$ " = 0

Choosing a split: Information Gain

Choosing a split

$$p_1 = \frac{4}{5} = 0.8$$
 $p_1 = \frac{1}{5} = 0.2$
 $H(0.8) = 0.72$ $H(0.2) = 0.72$
 $H(0.5) - \left(\frac{5}{10}H(0.8) + \frac{5}{10}H(0.2)\right)$
 $= 0.28$

$$H(0.57) = 0.99 H(0.33) = 0.92$$

$$H(0.5) - \left(\frac{7}{10}H(0.57) + \frac{3}{10}H(0.33)\right)$$

$$= 0.03$$

$$p_1 = \frac{3}{4} = 0.75$$
 $p_1 = \frac{2}{6} = 0.33$
 $H(0.75) = 0.81$ $H(0.33) = 0.92$
 $H(0.5) - \left(\frac{4}{10}H(0.75) + \frac{6}{10}H(0.33)\right)$
 $= 0.12$

Information Gain

$$p_1^{\text{left}} = \frac{4}{5}$$
 $p_1^{\text{right}} = \frac{1}{5}$
 $w^{\text{left}} = \frac{5}{10}$ $w^{\text{right}} = \frac{5}{10}$

Information gain

$$= H(p_1^{\text{root}}) - \left(w^{\text{left}} H(p_1^{\text{left}}) + w^{\text{right}} H(p_1^{\text{right}}) \right)$$

Putting it together

- Start with all examples at the root node
- Calculate information gain for all possible features, and pick the one with the highest information gain
- Split dataset according to selected feature, and create left and right branches of the tree
- Keep repeating splitting process until stopping criteria is met:
 - When a node is 100% one class
 - When splitting a node will result in the tree exceeding a maximum depth
 - Information gain from additional splits is less than threshold
 - When number of examples in a node is below a threshold

Recursive algorithm

Decision Tree Learning

Using one-hot encoding of categorical features

Features with three possible values

	Ear shape (x_1)	Face shape (x_2)	Whiskers (x_3)	Cat (y)
	Pointy 🕊	Round	Present	1
	Oval	Not round	Present	1
**	Oval 🕊	Round	Absent	0
	Pointy	Not round	Present	0
	Oval	Round	Present	1
	Pointy	Round	Absent	1
	Floppy 🕊	Not round	Absent	0
	Oval	Round	Absent	1
	Floppy	Round	Absent	0
	Floppy	Round	Absent	0

3 possible values

One hot encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	0	Round	Present	1
	Oval	O	O	1	Not round	Present	1
	Oval	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
()	Floppy	0	1	0	Round	Absent	0
3	Floppy	0	1	0	Round	Absent	0

One hot encoding

If a categorical feature can take on k values, create k binary features (0 or 1 valued).

One hot encoding

	Ear shape	Pointy ears	Floppy ears	Oval ears	Face shape	Whiskers	Cat
	Pointy	1	0	0	Round	Present	1
	Oval	0	0	1	Not round	Present	1
**	Oval	0	0	1	Round	Absent	0
	Pointy	1	0	0	Not round	Present	0
	Oval	0	0	1	Round	Present	1
	Pointy	1	0	0	Round	Absent	1
	Floppy	0	1	0	Not round	Absent	0
	Oval	0	0	1	Round	Absent	1
V:V	Floppy	0	1	0	Round	Absent	0
	Floppy	0	1	0	Round	Absent	0

One hot encoding and neural networks

	Pointy ears	Floppy ears	Round ears	Face shape	Whiskers	Cat
	1	0	0	-Round 1	Present 1	1
	0	0	1	Not round 🖊	-Present 1	1
	0	0	1	Round 1	-Absent O	0
	1	0	0	Not round O	Present 1	0
	0	0	1	Round 1	Present 1	1
	1	0	0	Round 1	Absent 0	1
	0	1	0	Not round 0	Absent 0	1
	0	0	1	Round 1	Absent 0	1
V:V	0	1	0	Round 1	Absent 0	1
	0	1	0	Round 1	Absent 0	1

Decision Tree Learning

Continuous valued features

Continuous features

1	

	Ear shape	Face shape	Whiskers	Weight (lbs.)	Cat
	Pointy	Round	Present	7.2	1
	Floppy	Not round	Present	8.8	1
	Floppy	Round	Absent	15	0
	Pointy	Not round	Present	9.2	0
	Pointy	Round	Present	8.4	1
&	Pointy	Round	Absent	7.6	1
	Floppy	Not round	Absent	11	0
	Pointy	Round	Absent	10.2	1
V-EV	Floppy	Round	Absent	18	0
(3)	Floppy	Round	Absent	20	0

Splitting on a continuous variable

Decision Tree Learning

Regression Trees (optional)

Regression with Decision Trees: Predicting a number

	Ear shape	Face shape	Whiskers	Weight (lbs.)
	Pointy	Round	Present	7.2
	Floppy	Not round	Present	8.8
	Floppy	Round	Absent	15
	Pointy	Not round	Present	9.2
	Pointy	Round	Present	8.4
<u> </u>	Pointy	Round	Absent	7.6
	Floppy	Not round	Absent	11
(2)	Pointy	Round	Absent	10.2
V-EV	Floppy	Round	Absent	18
***	Floppy	Round	Absent	20
		V		\\
		\wedge		7

Regression with Decision Trees

Choosing a split

Weights: 7.2, 9.2, 8.4, 7.6, 10.2 Weights: 8.8, 15, 11, 18, 20

Variance: 1.47

Variance: 21.87

$$w^{\text{left}} = \frac{5}{10}$$
 $w^{\text{right}} = \frac{5}{10}$

$$w^{\text{right}} = \frac{5}{1}$$

$$20.51 - \left(\frac{5}{10} * 1.47 + \frac{5}{10} * 21.87\right)$$

$$= 8.84$$

Weights: 7.2, 15, 8.4, 7.6, 10.2, 18, 20

Weights: 8.8,9.2,11

Variance: 27.80

Variance: 1.37

$$v^{\text{left}} = \frac{7}{10}$$

$$w^{\text{left}} = \frac{7}{10}$$
 $w^{\text{right}} = \frac{3}{10}$

$$20.51 - \left(\frac{7}{10} * 27.80 + \frac{3}{10} * 1.37\right)$$
$$= 0.64$$

Weights: 7.2, 8.8, 9.2, 8.4

Weights: 15, 7.6, 11, 10.2, 18, 20

Variance: 0.75

Variance: 23.32

$$w^{\text{left}} = \frac{4}{10}$$

$$w^{\text{left}} = \frac{4}{10}$$
 $w^{\text{right}} = \frac{6}{10}$

$$20.51 - \left(\frac{4}{10} * 0.75 + \frac{6}{10} * 23.32\right)$$
$$= 6.22$$

Tree ensembles

Using multiple decision trees

Trees are highly sensitive to small changes of the data

Tree ensemble

New test example

Face shape Ear shape: Pointy Face shape: Not Round Round Not Round Whiskers: Present Cat Whiskers Absent Present

Prediction: Not cat Prediction: Cat

Prediction: Cat

Cat

Not Cat

Final prediction: Cat

Tree ensembles

Sampling with replacement

Sampling with replacement

Sampling with replacement

	Ear shape	Face shape	Whiskers	Cat
(2)	Pointy	Round	Present	1
	Floppy	Not round	Absent	0
	Pointy	Round	Absent	1
	Pointy	Not round	Present	0
	Floppy	Not round	Absent	0
(w)	Pointy	Round	Absent	1
(20)	Pointy	Round	Present	1
	Floppy	Not round	Present	1
3	Floppy	Round	Absent	0
(2.5)	Pointy	Round	Absent	1

Tree ensembles

Random forest algorithm

Generating a tree sample

Given training set of size m

For
$$b = 1$$
 to B

Use sampling with replacement to create a new training set of size \emph{m}

Train a decision tree on the new dataset

Bagged decision tree

Randomizing the feature choice

At each node, when choosing a feature to use to split, if n features are available, pick a random subset of k < n features and allow the algorithm to only choose from that subset of features.

$$K = \int n$$

Random forest algorithm

Tree ensembles

XGBoost

Boosted trees intuition

Given training set of size m

For b = 1 to B:

Use sampling with replacement to create a new training set of size m But instead of picking from all examples with equal (1/m) probability, make it more likely to pick examples that the previously trained trees misclassify

Train a decision tree on the new dataset

XGBoost (eXtreme Gradient Boosting)

- Open source implementation of boosted trees
- Fast efficient implementation
- Good choice of default splitting criteria and criteria for when to stop splitting
- Built in regularization to prevent overfitting
- Highly competitive algorithm for machine learning competitions (eq: Kaggle competitions)

Using XGBoost

Classification

```
→from xgboost import XGBClassifier

→model = XGBClassifier()

→model.fit(X_train, y_train)

→y_pred = model.predict(X_test)
```

Regression

```
from xgboost import XGBRegressor

model = XGBRegressor()

model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```


Conclusion

When to use decision trees

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast

Decision Trees vs Neural Networks

Decision Trees and Tree ensembles

- Works well on tabular (structured) data
- Not recommended for unstructured data (images, audio, text)
- Fast
- Small decision trees may be human interpretable

Neural Networks

- Works well on all types of data, including tabular (structured) and unstructured data
- May be slower than a decision tree
- Works with transfer learning
- When building a system of multiple models working together, it might be easier to string together multiple neural networks

© DeepLearning.AI Stanford ONLINE Andrew Ng