Exam 4 Chem 1142 Fall 2008

KEY Name:

Which of the following statements regarding the reaction represented by the equation above is correct?

MnO4 is oxidized by iodide ion. * MnO4 is red. by I

The oxidation number of manganese changes from +7 to +2.
$$+7 \rightarrow +4$$

e) The oxidation number of iodine changes from -1 to 0. VE.

Q2.
$$Cr_2O_7^{2-} + \frac{6}{2}e^- + \frac{14}{2}H^+ \rightarrow 2Cr^{3+} + \frac{7}{2}H_2O(1)$$

When the equation for the half reaction above is balanced with the lowest wholenumber coefficients, the coefficient for H₂O is

Q3. Which of the following must be true for a reaction that proceeds spontaneously from initial standard state conditions?

a)
$$\Delta G^{\circ} > 0$$
 and $K_{\rm eq} > 1$ b) $\Delta G^{\circ} > 0$ and $K_{\rm eq} < 1$ c) $\Delta S^{\circ} < 0$ and $K_{\rm eq} > 1$

b)
$$\Delta G^{\circ} > 0$$
 and $K_{\text{eq}} < 1$

c)
$$\Delta S^{\circ} < 0$$
 and $K_{\rm eq} > 1$

d)
$$\Delta G^{\circ} < 0$$
 and $K_{\text{eq}} > 1$ e) $\Delta G^{\circ} = 0$ and $K_{\text{eq}} = 1$

e)
$$\Delta G^{\circ} = 0$$
 and $K_{\text{eq}} = 1$

Q4. Which of the following produces an INCREASE in entropy of the system?

a)
$$H_2O(1) \rightarrow H_2O(s)$$

b)
$$2O_2(g) + 2SO(g) \rightarrow 2SO_3(g)$$

c)
$$2CH_3OH(g) + 3O_2(g) \rightarrow 2CO_2(g) + 4H_2O(l)$$

(d)
$$I_2(s) \rightarrow I_2(l)$$

e) None of the above.

liquids are "more disordered" than solids.

Q5. When a reaction is at equilibrium, which of the following statements is TRUE?

a)
$$\Delta G = \Delta G^{\circ}$$

b)
$$\ln K_{\rm eq} = 0$$

c)
$$\Delta G^{\circ} = 0$$

d)
$$Q = 0$$

$$\bigcirc \Delta G = 0$$

Q6. Which of the following statements about a salt bridge in a voltaic cell is TRUE?

- a) Free electrons flow through the salt bridge to maintain electrical neutrality in the two half-cells.
- b) The salt bridge allows the ions present in the two half-cells to mix extensively.
- c) The wire must be connected directly to the salt bridge in order for the salt bridge to be able to maintain electrical neutrality in the two half-cells.
- d) In some cases, a salt bridge functions as the anode.
- (e) Ions from the electrolyte in the salt bridge flow into each half-cell to maintain neutrality.

Q7. [10 pts.] Balance the following redox reaction in acidic solution using the halfreaction method:

Fe₃O₄(s) + ClO₃-(aq)
$$\rightarrow$$
 Fe³⁺(aq) + Cl-(aq)

(1)
$$(84^{+} + Fe_{3}O_{4} - 3Fe^{3+} + 4H_{2}O_{+} + e^{-})_{x}6$$

Q8. [10 pts.] Balance the following redox reaction in basic solution using the halfreaction method:

$$(6e^{-} + 14H^{+} + Cr_{2}O_{1}^{2} - 2Cr_{3}^{3} + 7H_{2}O) \times 1$$

$$(H_{2}O + SO_{3}^{2} - SO_{4}^{2} + 2H^{+} + 2e^{-}) \times 3$$

Q9. [10 pts.] Molten NaCl is electrolysed for 3.0 hours using an electrical current of 120 A. How many moles of Cl₂(g) are formed?

Q10. [6 pts.] Calculate E° for the following cell: Mg(s) | Mg²⁺(aq) | Ag⁺(aq) | Ag(s)

(Table 19-1 was provided on this exam!)

Q11. [10 pts.] Write the cell reaction for the following cell:

$$\underbrace{Mg(s) \mid Mg^{2+}(aq) \mid \mid Ag^{+}(aq) \mid Ag(s)}_{}$$

Q12. [10 pts.] A reaction has $\Delta H^0 = +30.3$ kJ/mol and $\Delta S^0 = +320$ J/mol K. Calculate ΔG° at 25°C, and 75 °C. At what temperature will the reaction become spontaneous?

$$Spont when $\Delta G^{\circ} = 0$

$$T' \stackrel{2^{\circ}c}{\rightarrow} 75^{\circ}c$$

$$\Rightarrow T = \frac{\Delta H^{\circ}}{\Delta S^{\circ}} = \frac{+30.3 \, \text{K}^{3} \text{mol}}{+0.320 \, \text{K}^{3} \text{mol} \cdot \text{K}} = 94.7 \, \text{K}$$

$$(-178.3^{\circ}c)$$$$

Q13. [10 pts.] Predict the sign of ΔS° (+ve, -ve, ≈ 0) for the following chemical reactions:

c)
$$CO(g) + H_2O(g) \rightarrow CO_2(g) + H_2(g)$$
 ≈ 0 (2 mol gas \rightarrow 2 mol gas)

Q14. [10 pts.] Determine the cell voltage produced by the following cell (where the reactants and products are not in their standard states!) at 298 K:

Useful Information: $E^{o}_{Cr^{3+},Cr} = -0.74 \text{ V}$, $E^{o}_{Cu^{2+},Cu} = +0.34 \text{ V}$

=> need n,Q.

Cell ran? Cathode(red):
$$(Cu^{2+}_{rag} + 2e^{-} \rightarrow Cu_{rs1}) + 3$$

Anode (ox): $(Cr_{rs1} \rightarrow Cr^{3+}_{rag} + 3e^{-}) \times 2$
 $3Cu^{2+}_{rag} + 2Cr_{rs1} \stackrel{6e}{\longrightarrow} 3Cu_{rs1} + 2Cr^{3+}_{rag}$

$$= n=6 \Rightarrow Q = \frac{\left[C_{1}^{34}\right]^{2}}{\left[C_{1}^{24}\right]^{3}} = \frac{0.045^{2}}{0.85^{3}} = 0.003297$$

BONUS QUESTION: A chemical reaction has $\Delta G^{\circ} = -3.4$ kJ/mol at 25 °C. What is its equilibrium constant?

$$\Delta G^{\circ} = -RT \ln K$$
 $\Rightarrow K = e^{-\Delta G^{\circ}/RT}$
 $= e^{-\frac{3400^{3}/m \cdot 1}{8.3145 \frac{3}{Mol \cdot K} \cdot 298K}}$
 $= e^{+1.3722}$
 $= 3.9$

(note:
$$\Delta 6^{\circ} = -ue$$
 implies $K > 1$ and Eccer = +ue)