CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

Today

- A missing exercise
- Definitions and facts about numbers
- Direct proof

* Exercise 5

Determine if the following argument is valid:

Solution

- It is valid.
- Assume the premises are true.
- Namely, p<->q is true and q xor r is true.
- Since p <->q is true, we know p and q must be the same truth value.
- Since q xor r is true, we know q and r must be different truth values.
- Thus, p and r must be different truth values.
- Thus p and r can be either (true and false), or (false and true)
- Thus q ∨ r, namely, the conclusion, is true.

Definitions and facts about numbers

Symbols

- Integers Z
- Natural numbers N
- Real numbers R
- | X |
- sum Σ
- a | b
- b mod a

Formal definitions

- Even/Odd numbers
- Rational/Irrational numbers
- Prime/Composite numbers

Even/odd numbers

We say an integer n is even if: $\exists k \in \mathbf{Z}$ such that n = 2k

How can you define an odd number?

Rational/Irrational numbers

We say a real number r is rational if $\exists m, n \in \mathbf{Z}$ such that r = n/m.

(and n and m have no common divisor).

Prime/Composite numbers

We say a natural number n is prime if n > 1, and

$$\forall r, s \in \mathbb{N}, n = rs \rightarrow (r = 1 \lor s = 1)$$

d n

We say a non-zero integer d divides an integer n, if

 $\exists k \in \mathbf{Z}$, such that n = k * d.

Direct proof

Methods of mathematical proof

Statements	Method of proof
Proving existential statements	Constructive proof
(Disproving universal statements)	Non-constructive proof
Proving universal statements	Direct proof
(Disproving existential statements)	Proof by mathematical induction
	Well-ordering principle
	Proof by exhaustion
	Proof by cases
	Proof by contradiction

Even + odd = odd

Proposition

• Sum of an even integer and an odd integer is odd.

- Proof.
 - Suppose n is an even number, and m is an odd number, we need to show n+m is odd
 - since n is an even number, n = 2k for some integer k
 - since m is an odd number, m = 2k'+1 for some integer k'
 - Thus n+m = 2(k+k')+1 which shows n+m is odd.
- QED.

n is odd $\Rightarrow n^2$ is odd

Proposition

• The square of an odd integer is odd.

- Proof.
 - Suppose n is an odd number. We want to show that n^2 is an odd number.
 - Since n is odd, n = 2k+1 for some integer k
 - $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
 - Thus n^2 is odd
- QED.

Odd = difference of squares

Proposition

 Every odd integer is equal to the difference between the squares of two integers

Workout

Write a formal statement.

 \forall integer k, \exists integers m,n such that $(2k+1)=m^2-n^2.$

Try out a few examples.

$$1 = 1^{2} - 0^{2}$$

$$3 = 2^{2} - 1^{2}$$

$$5 = 3^{2} - 2^{2}$$

$$7 = 4^{2} - 3^{2}$$

$$-1 = 0^{2} - (-1)^{2}$$

$$-3 = (-1)^{2} - (-2)^{2}$$

$$-5 = (-2)^{2} - (-3)^{2}$$

$$-7 = (-3)^{2} - (-4)^{2}$$

Find a pattern.

$$(k+1)^2 - k^2 = (k^2 + 2k + 1) - k^2 = 2k + 1 = \text{odd}$$

- Proof.
 - Suppose x is an odd number, we need to show:
 - There exists two integers m and n such that x = m² n²
 - Since x is odd, we can write x = 2k+1 for some integer k
 - Let m = k+1, and n = k. Then, we have m^2 n^2 = 2k+1
 x
- QED.

If a|b and b|c, then a|c

Proposition

ullet (Transitivity) For integers a,b,c, if a|b and b|c, then a|c.

- Proof.
 - Suppose a, b, c are three integers and a|b, b|c.
 - Since a|b, we have b = ak for some integer k
 - Since b|c, we have c = bk' for some integer k'
 - Thus, c = a (k*k')
 - Thus a c.
- QED.

Summation

Proposition

•
$$1+2+3+\cdots+n=n(n+1)/2$$
.

Proof

- Formal statement. \forall natural number n, prove that
 - $1+2+3+\cdots+n=n(n+1)/2.$
- $S = 1 + 2 + 3 + \cdots + n$

$$\implies S = n + (n-1) + (n-2) + \cdots + 1$$

(addition on integers is commutative)

$$\implies 2S = (n+1) + (n+1) + (n+1) + \dots + (n+1)$$

n terms

(adding the previous two equations)

$$\implies 2S = n(n+1)$$

(simplifying)

$$\implies S = n(n+1)/2$$

(divide both sides by 2)

Break

Exercises

Problem 4. [5 points]

Prove that the sum of the squares of any two consecutive odd integers is even.

- Proof.
 - We need to prove the following:
 - for any integer n, (2n+1)^2 + (2n+3)^2 is even
 - We know $(2n+1)^2 + (2n+3)^2 = 8n^2 + 20n + 2 = 2(4n^2 + 10n+1)$
 - Thus, $(2n+1)^2 + (2n+3)^2$ is even
- QED.

Problem 5. [5 points]

Suppose that x and y are real numbers. Prove that x = y if and only if $xy = (x + y)^2/4$.

- Proof.
 - Suppose that x and y are real numbers.
 - We need to prove (1) x = y -> xy = (x+y)^2/4 and (2) xy = (x+y)^2/4 -> xy
 - #1 is clearly true
 - To show #2, we assume $xy=(x+y)^2/4$. Thus $x^2 2xy + y^2 = 0$. Thus, $(x-y)^2=0$. Thus x=y
- QED

Problem 5. Direct proof (points = 5)

Suppose a, b and c are integers. If a^2lb and b^3lc , then a^6lc .

Problem 5. Direct proof (points = 5)

Suppose a, b and c are integers. If a²lb and b³lc, then a⁶lc.

- Proof.
 - Assume a^2 | b and b^3 | c
 - We have b = k a^2 for some integer k, and c = k' b^3 for some integer k'.
 - Thus, $c = (k' k^3) a^6$
- QED

That is all for today

 Proof techniques — direct proof. Commonly used for proving "for all x, P(x) -> Q(x)".

Thank you!