Tutorial 3: Cross Product, Solid Geometry, Numbers

Cross Product

Q1. Let $\mathbf{a} = (3, 4, -2)$, $\mathbf{b} = (0, -2, 2)$, and $\mathbf{c} = (-6, -8, 4)$. Then find

(a) $\mathbf{a} \times \mathbf{b}$ (b) $\mathbf{c} \times \mathbf{a}$ (c) The area of the triangle with sides \mathbf{a} and \mathbf{b}

Q2. Let **a**, **b**, **c** be defined as in Question 1. Let $\mathbf{d} = (0, 0, 1)$. Calculate, where possible,

(a) $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{d})$

(b) $(\mathbf{a} \cdot \mathbf{b}) \times \mathbf{d}$ (c) $\mathbf{d} \times (\mathbf{a} \times \mathbf{b})$

(d) The volume of the parallelepiped with sides **a**, **b**, and **d**.

Q3. Find vectors \mathbf{u} , \mathbf{v} and \mathbf{w} such that

$$\mathbf{u} \times (\mathbf{v} \times \mathbf{w}) \neq (\mathbf{u} \times \mathbf{v}) \times \mathbf{w}.$$

Q4. Let A be the area of a parallelogram defined by vectors **a** and **b**. Prove that

$$A^2 = \begin{vmatrix} \mathbf{a} \cdot \mathbf{a} & \mathbf{a} \cdot \mathbf{b} \\ \mathbf{b} \cdot \mathbf{a} & \mathbf{b} \cdot \mathbf{b} \end{vmatrix}.$$

Lines and Planes

Q5. Write the line that passes through (0,0,-1) and (1,0,-2) in vector and Cartesian form.

Q6. Consider the plane with Cartesian equation

$$2x + 4y - 7z = 5$$

(a) Write down a vector perpendicular to the plane.

(b) Does the point P(5,0,1) lie on the plane?

Q7. Write the plane containing the points A(3,2,1), B(2,-1,4), and C(5,1,1) in both vector and Cartesian form.

Q8. Find the intersection between the planes 2x - y + 3z = 2 and x + z = 1.

Q9. Consider the lines $\mathcal{L}_1: (x, y, z) = (0, 1, 1) + t(1, 1, 2), t \in \mathbb{R}$ and $\mathcal{L}_2: 4 - x = \frac{y - 1}{2} = z - 2$.

(a) Are these lines parallel?

(b) What is the shortest distance between the two lines?

(c) Are the lines skew?

Numbers

Q10. How many solutions do the following equations have in: (i) \mathbb{N} , (ii) \mathbb{Z} , (iii) \mathbb{F}_2 , (iv) \mathbb{C} ?

(a)
$$x^2 = 1$$

b)
$$x^2 + 1 = 0$$

(c)
$$x^2 + x = 0$$

(a)
$$x^2 = 1$$
 (b) $x^2 + 1 = 0$ (c) $x^2 + x = 0$ (d) $x^2 + x + 1 = 0$

Q11. Prove that if \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^3 , no two of which are parallel, then $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$ lies in the plane determined by \mathbf{v} and \mathbf{w} .