Théorème de Dirichlet

Théorème de Dirichlet

Soit f une application de IR dans C, de période 2π et de classe \mathcal{C}^1 par morceaux.

On note a_k et b_k les coefficients de Fourier trigonométriques de f.

Pour tout n de \mathbb{N} , on note S_n le polynôme de Fourier de f d'indice n.

On rappelle que
$$S_n$$
 est défini par : $\forall x \in \mathbb{R}, S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + \sum_{k=1}^n b_k \sin kx$.

On pose :
$$\forall x \in \mathbb{R}$$
, $\tilde{f}(x) = \frac{1}{2}(f(x^{-}) + f(x^{+}))$, avec $f(x^{-}) = \lim_{t \to x, t < x} f(t)$ et $f(x+) = \lim_{t \to x, t > x} f(t)$.

L'application \tilde{f} (la "régularisée" de f) coı̈ncide donc avec f en tout point où f est continue.

Dans cette question, x est un réel donné.

1. Soit g une application continue par morceaux de [a, b] dans \mathbb{C} (avec a < b).

Pour tout réel strictement positif t, on pose $I_t(g) = \int_a^b g(u) \sin tu \, du$.

Montrer que $\lim_{t\to+\infty} I_t(g) = 0$.

Indication : on commencera par supposer que g est en escaliers sur [a, b]. [S]

2. On pose, pour tout $u \text{ de }]0,\pi], g(u) = \frac{1}{2\sin\frac{u}{2}}(f(x+u) + f(x-u) - 2\tilde{f}(x)).$

Montrer que g se prolonge en une application continue par morceaux sur $[0, \pi]$. [S]

- 3. Montrer que pour tout u de $\mathbb{R} 2\pi \mathbb{Z}$, on a l'égalité : $\frac{1}{2} + \sum_{k=1}^{n} \cos ku = \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}}$. [S]
- 4. En déduire la valeur de l'intégrale $J_n = \int_0^\pi \frac{\sin(n+\frac{1}{2})u}{\sin\frac{u}{2}} du$. [S]
- 5. Montrer que $S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})(x u)}{2\sin\frac{x u}{2}} f(u) du$ [S]
- 6. Montrer que $S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} f(u + x) du$. [S]
- 7. Montrer que $S_n(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} (f(u+x) + f(x-u)) du$. [S]
- 8. En déduire que $S_n(x) \tilde{f}(x) = \int_0^{\pi} g(u) \sin(n + \frac{1}{2}) u \, du$ [S]
- 9. En déduire que $\lim_{n\to+\infty} S_n(x) = \tilde{f}(x)$. Conclusion? [S]

Théorème de Dirichlet

Corrigé du problème

1. – On suppose que l'application q est en escaliers sur [a, b].

Il existe donc une subdivision $x_0 = a < x_1 < \cdots < x_n = b$ de [a, b] et une suite $\lambda_1, \ldots, \lambda_n$ de $\mathbb C$ telles que : $\forall k \in \{1, \ldots, n\}, \forall x \in]x_{k-1}, x_k[, g(x) = \lambda_k.$

Pour tout réel
$$t \neq 0$$
, on a alors : $I_t(g) = \sum_{k=1}^n \lambda_k \int_{x_{k-1}}^{x_k} \sin tu \, \mathrm{d}u = \sum_{k=1}^n \lambda_k \left[-\frac{1}{t} \cos tu \right]_{x_{k-1}}^{x_k}$

On en déduit
$$|I_t(g)| \leq \frac{2}{t} \sum_{k=1}^n |\lambda_k|$$
 et donc $\lim_{t \to +\infty} I_t(g) = 0$.

– On suppose maintenant que g est continue par morceaux sur [a, b].

On se donne un réel ε strictement positif. On sait qu'il existe une application φ , en escaliers sur [a,b], et telle que : $\forall x \in [a,b], |g(x)-\varphi(x)| \leq \varepsilon$.

On peut alors écrire : $|I_t(g)| = |I_t(g - \varphi) + I_t(\varphi)| \le |I_t(g - \varphi)| + |I_t(\varphi)|$.

Or
$$|I_t(g-\varphi)| \leq \int_a^b |g(u)-\varphi(u)| du \leq (b-a)\varepsilon$$
.

Puisque φ est en escaliers, il existe $t_0 > 0$ tel que : $t \ge t_0 \Rightarrow |I_t(\varphi)| \le \varepsilon$.

On en déduit : $\forall t \geq t_0, |I_t(g)| \leq (b-a+1)\varepsilon.$

Ce résultat prouve que $\lim_{t\to +\infty} I_t(g) = 0$.

[Q]

2. Comme f, l'application $u\mapsto f(x+u)+f(x-u)-2\tilde{f}(x)$ est \mathcal{C}^1 par morceaux sur \mathbb{R} .

Il s'ensuit que g est de classe C^1 par morceaux sur $\mathbb{R} - 2\pi \mathbb{Z}$ et en particulier sur $]0, \pi]$.

Il reste à montrer que la fonction g est prolongeable par continuité en 0 à droite.

Puisque f est de classe C^1 par morceaux sur \mathbb{R} , l'application f' possède une limite à gauche et une limite à droite (toutes deux finies) au point x.

Notons les respectivement $f'(x^+)$ et $f'(x^-)$.

On a les développements limités, quand \boldsymbol{u} tend vers 0 par valeurs positives :

$$f(x+u) = f(x^+) + uf'(x^+) + o(u)$$
 et $f(x-u) = f(x^-) - uf'(x^-) + o(u)$

On en déduit, toujours quand $u \to 0^+$:

$$f(x+u) + f(x-u) - 2\tilde{f}(x) = u(f'(x^{+}) - f'(x^{-})) + o(u)$$

D'autre part, $2\sin\frac{u}{2} = u + o(u)$.

On en déduit, quand $u \to 0^+ : g(u) = f'(x^+) - f'(x^-) + o(1)$.

Ainsi l'application g est prolongeable par continuité en 0 à droite. [Q]

Page 2 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

3. On constate effectivement, après simplifications, que :

$$2\sin\frac{u}{2}\left(\frac{1}{2} + \sum_{k=1}^{n}\cos ku\right) = \sin\frac{u}{2} + \sum_{k=1}^{n}\left(\sin(k + \frac{1}{2})u - \sin(k - \frac{1}{2})u\right) = \sin(n + \frac{1}{2})u$$

Si $u \in \mathbb{R} - 2\pi \mathbb{Z}$, c'est-à-dire si sin $\frac{u}{2} \neq 0$, le résultat en découle en divisant par $2\sin\frac{u}{2}$. [Q]

4. Avec la question précédente :
$$J_n = \int_0^{\pi} \left(1 + 2\sum_{k=1}^n \cos ku\right) du = \pi + 2\sum_{k=1}^n \underbrace{\left[\frac{1}{k}\sin ku\right]_0^{\pi}}_{0} = \pi.$$

[Q]

5. On utilise les expressions des coefficients a_k et b_k : $a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) du$

Et pour tout
$$k \ge 1$$
: $a_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cos ku \, du$ et $b_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \sin ku \, du$.

On en déduit :

$$S_n(x) = \frac{a_0}{2} + \sum_{k=1}^n a_k \cos kx + \sum_{k=1}^n b_k \sin kx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \sum_{k=1}^n (\cos ku \cos kx + \sin ku \sin kx) \right) f(u) du$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} \left(\frac{1}{2} + \sum_{k=1}^n \cos(k(x-u)) \right) f(u) du = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n+\frac{1}{2})(x-u)}{2\sin\frac{x-u}{2}} f(u) du$$

[Q]

6. Dans l'expression précédente de S_n , on effectue le changement de variable $\theta = u - x$.

On trouve:
$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})(x - u)}{2\sin\frac{x - u}{2}} f(u) du = \frac{1}{\pi} \int_{-\pi - x}^{\pi - x} \frac{\sin(n + \frac{1}{2})\theta}{2\sin\frac{\theta}{2}} f(\theta + x) d\theta.$$

Mais la fonction à intégrer est 2π -périodique, et on intègre ici sur l'intervalle $[-\pi - x, \pi - x]$ qui est de longueur 2π . Il est donc équivalent d'intégrer sur $[-\pi, \pi]$.

En revenant à la variable muette u, on obtient : $S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} f(x + u) du$.

7. On utilise le résultat précédent et on effectue le changement de variable $u \to -u$.

On trouve:
$$S_n(x) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} f(x+u) du = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} f(x-u) du.$$

On prend alors la demi-somme :
$$S_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sin(n+\frac{1}{2})u}{2\sin\frac{u}{2}} (f(x+u) + f(x-u)) du$$
.

Page 3 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.

Théorème de Dirichlet

Mais la fonction intégrée est paire. On peut donc se limiter à $[0, \pi]$ et écrire :

$$S_n(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} (f(u + x) + f(x - u)) du$$

[Q]

8. On se souvient que $J_n = \int_0^\pi \frac{\sin(n+\frac{1}{2})u}{\sin\frac{u}{2}} du = \pi$.

On peut donc écrire :

$$S_n(x) - \tilde{f}(x) = \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} (f(u+x) + f(x-u)) du - \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})u}{\sin\frac{u}{2}} \tilde{f}(x) du$$
$$= \frac{1}{\pi} \int_0^{\pi} \frac{\sin(n + \frac{1}{2})u}{2\sin\frac{u}{2}} (f(u+x) + f(x-u) - 2\tilde{f}(x)) du$$
$$= \int_0^{\pi} g(u) \sin(n + \frac{1}{2})u du$$

[Q]

9. On sait que l'application g est continue par morceaux sur $[0, \pi]$.

On peut donc appliquer le résultat de la première question, avec ici $t = n + \frac{1}{2}$ et conclure que la suite de terme général $S_n(x) - \tilde{f}(x)$ converge vers 0.

Autrement dit : $\lim_{n \to +\infty} S_n(x) = \tilde{f}(x)$. Et le résultat est valable pour tout réel x.

On a ainsi démontré le théorème de Dirichlet : Pour toute application $f : \mathbb{R} \to \mathbb{C}$, 2π périodique et \mathcal{C}^1 par morceaux, la suite des polynômes de Fourier de f converge sur \mathbb{R} (au sens de la convergence simple) vers la "régularisée" \tilde{f} de f.

En terme de série, on obtient : $\forall x \in \mathbb{R}, \ \frac{a_0(f)}{2} + \sum_{k=1}^{+\infty} a_k(f) \cos kx + \sum_{k=1}^{+\infty} b_k \sin kx = \tilde{f}(x).$

Page 4 Jean-Michel Ferrard www.klubprepa.net ©EduKlub S.A.