

Linearizer for a PIN Diode Attenuator

Tom L. Davis
2730 Timberleaf
Carrollton, TX 75006
Citizenship: United States of America

Kim E. Beumer
3404 Waltham Dr.
Richardson, TX 75082
Citizenship: Netherlands

Carey Ritchey
1613 Duke Court
Plano, TX 75093
Citizenship: Canada

RELATED APPLICATIONS

The present application is related to concurrently filed commonly assigned United States patent application serial number [49581-P030US-10104106] entitled "Broadband PIN Diode Attenuator Bias Network," the disclosure of which is hereby incorporated herein by reference.

TECHNICAL FIELD

The invention relates generally to attenuator circuitry and, more particularly, to circuitry to provide attenuation control linearly with respect to an attenuation control signal.

BACKGROUND

A common requirement in radio frequency (RF) circuits is the control of RF signal levels. For example, often in RF systems, such as CATV cable television systems, RF signal levels vary significantly resulting in unpredictable and/or undesired operation of particular components thereof, such as receivers, tuners, repeaters, and the like. Accordingly, such systems often utilize controllable signal attenuators, such as at the input stage of one of the aforementioned components, in order to provide a relatively constant RF signal level as provided to such components.

Often the above mentioned controllable attenuators are provided with a voltage controlled RF attenuator such as a linear attenuator. A linear attenuator typically has three ports or interfaces; those being an RF input port, an RF output port, and a control input. Ideally, a linear attenuator provides attenuation (generally expressed in decibels) between the RF input and RF output ports that is a linear function of a control input. Other desirable attributes of a linear attenuator include maintaining a good impedance match at the RF ports with respect the circuit coupled thereto over the control and frequency range, providing a flat attenuation response over a wide band of frequencies, introducing little or no excess noise into the circuit, and generating little or no distortion in the signals attenuated thereby. In RF systems that operate with signals of more than one octave of RF spectrum (broadband) the attenuator must also ensure that, in addition to acting as an attenuator, the RF impedance (return loss) of both the input and output of the attenuator is held as close as possible to the desired system impedance. Failure to maintain a proper impedance match can greatly affect the system frequency response (power transfer) and noise figure.

However, prior art linear attenuators generally provide a tradeoff with respect to these desirable attributes and, therefore, often provide less than ideal operation in demanding system applications. For example, there is generally a trade off between providing a flat attenuation response across a broadband signal and maintaining a good impedance match throughout the control and frequency range. Similarly, previous attenuation circuit

implementations have experienced a trade off between providing attenuation that is a linear function of the control input and providing a low insertion loss. Specifically, PIN diode attenuator circuits are available that will provide decibel per volt linearization, but typically will have a minimum of approximately 3 to 4 dB insertion loss.

One common implementation of a linear attenuator consists of a two section embodiment including a PIN diode attenuator section and a linearizer section coupled to the PIN diode attenuator section. In such a configuration, a PIN diode network, such as a π network or a T network, and passive bias components form the PIN diode attenuator section and provide attenuation of signals passed therethrough in response to a control voltage applied to the attenuator section. Specifically, the PIN diodes exhibit a variable RF resistance that is inversely proportion to the DC current through the diode and, therefore, the arrangement of PIN diodes and the corresponding bias components provides a circuit in which variable attenuation is achieved in response to a control voltage applied to bias components.

Such a PIN diode attenuator transfer function of RF attenuation versus DC current is non-linear due to the non-linear RF resistance of the PIN diodes versus bias current. Accordingly, a linearizer section is provided to allow a linear control voltage applied to an input of the linearizer section to result in a corresponding linear attenuation response of an RF signal applied to the PIN diode attenuator section.

Next-generation digital cable set-top boxes, such as those conforming to the OPENCABLE tuner specifications from Cable Television Laboratories, Inc., must provide attenuation in a large dynamic range (gain control range), such as on the order of 30 dB of dynamic range and beyond, while maintaining the RF input impedance of the device, such as 75 ohms. However, PIN diode attenuator configurations, such as those described above, have heretofore been unable to adequately address such requirements. For example, previously known T attenuator structures are precluded for use in the above conditions as 30 dB of dynamic range is not available with commercially available PIN diodes in the prior art T

network configurations. Similarly, previously known π attenuator structures, although perhaps able to achieve a relatively large dynamic range, generally are not able to maintain the return loss or impedance match over this dynamic range. For example, typical prior art π attenuator structures result in poor return loss in designs with more than 15 dB of attenuation.

Moreover, the linearizer section of such prior art linear attenuators are not adapted to maximize the performance of the pin diode structures based on minimum insertion loss of the device and the linearity, or the decibel insertion loss per volt structure of the gain control, while maintaining an optimized impedance match for the return loss of the attenuator over its entire attenuation range. Specifically, prior art linearizer sections generally do not provide decibel per volt linear gain control functions in a linear attenuator having a minimum insertion loss and which maintains the return loss of the attenuator over a range of attenuation greater than 15 dB. For example, there are prior art linear attenuators available that will provide a decibel per volt linearization, but typically will result in the attenuator operating at 3 or 4 dB of minimum insertion loss. Additionally, there are prior art linear attenuators available which attempt to act as a linearizer, however these linear attenuators have been unable to achieve a return loss of better than approximately 10 dB over a relatively wide dynamic operating range, such as 30 dB of dynamic attenuation. Such insertion losses and return loss levels are unacceptable in demanding system applications, such as systems conforming to next generation specifications for cable television equipment.

One prior art solution attempting to meet the above goals is to use a circuit that has break points, e.g., a portion of the desired dynamic range is provided within a first circuit break point and another portion of the desired dynamic range is provided within a second circuit break point. However, this solution suffers from the disadvantage that the attenuator must generally be manually adjusted for the break points. Moreover, the break points typically cause discontinuities in the transfer curve.

Accordingly, a need exists in the art for a linearizer circuit which operates a corresponding attenuator circuit relatively linearly with respect to an attenuation control

signal, such as decibel per volt linearization, while ensuring that the attenuator circuit maintains a desired return loss over a relatively large dynamic range, such as on the order of 30 dB.

SUMMARY OF THE INVENTION

The present invention is directed to a system and method in which a simple linearizer circuit is provided which approximates the ideal linearizer for PIN diode networks which are configured to provide controllable attenuators having a relatively low insertion loss over a relatively large dynamic range. Linearizers of the present invention are provided for various PIN diode network topologies, including a π network and a T network.

It should be appreciated that, given a perfect linearizer, a PIN diode attenuator, having the PIN diodes arranged in an appropriate topology and having a bias components coupled thereto, can approach the ideal. Unfortunately, a perfect linearizer must provide control currents to the PIN diodes that are highly non-linear and vary over several orders of magnitude. Current linearizer designs are complex and usually deviate significantly from the ideal.

Preferred embodiments of the present invention provide a linearizer which controls PIN diode attenuators by the application of control (bias) current at two control ports of the PIN diode network. Although one of the difficulties in meeting the goals of maintaining good return loss and a very linear attenuation is that the currents that are required to control the PIN diodes have to be very non-linear, in developing the present invention it was recognized that the non-linear transfer characteristics that the linearizer is to generate are very close to matching the equations of a bipolar transistor differential pair. Accordingly, the preferred embodiment linearizer circuit utilizes bipolar differential pair circuit portions in providing linear control of an attenuator circuit.

The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily

utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
995
996
997
997
998
999
999
1000

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:

FIGURES 1A and 1B show PIN diode attenuator configurations such as may be controlled by linearizer circuitry of the present invention;

FIGURE 2 shows a bipolar transistor differential pair as may be utilized according to a preferred embodiment in providing control current output; and

FIGURE 3 shows a preferred embodiment linearizer circuit of the present invention.

DETAILED DESCRIPTION

The linearizer of the preferred embodiment of the present invention is adapted to operate with an attenuator topology having two attenuator control inputs. Although the complexity of the linearizer circuitry is increased by the preferred embodiment multiple control current configuration, this configuration allows control of diode currents independently of each other and, therefore, attenuator circuits may be controlled for optimized insertion loss and return loss at any given point of their dynamic range. Moreover, the recognition in developing the present invention that non-linear behavior exhibited by PIN diodes approximates the characteristics of a differential pair, such as a bipolar junction transistor differential pair or a MOSFET differential pair operated in the sub-threshold region, has been leveraged according to the preferred embodiment in providing a simplified multiple control signal output linearizer circuit according to the present invention.

A PIN diode attenuator operable with linearizers of the present invention is provided by connecting PIN diodes in a π network wherein the cathodes of all PIN diodes in the π network are DC grounded, such as through large value inductors coupling the cathodes to DC ground, providing a common cathode point bias voltage which is constant. This attenuator topology provides for a control current to be applied to the π network shunt diodes and series diode(s) separately. A preferred embodiment of a PIN diode π network is shown in FIGURE 1A and is described in detail in the above referenced patent application entitled "Broadband PIN Diode Attenuator Bias Network." Specifically, FIGURE 1A presents a complete circuit for an attenuator that employs an unbalanced, symmetrical π network of PIN diodes. RF input port (RF_{in}) and RF output port (RF_{out}) accept an RF signal to be attenuated using PIN diodes D1-D4 and output an attenuated RF signal, respectively. Attenuation control signal port SP_1 and attenuation signal control port SP_2 receive bias currents from the linearizer (I_1 and I_2 , respectively) to control the RF resistances of diodes D1-D4. Capacitors C1 and C2 are DC blocking capacitors and capacitors C3, C4, and C5 provide RF shorts to ground. Inductors L1, L2, and L3 pass bias currents but present a high impedance at RF frequencies.

Resistors R1 and R2 serve to decouple the anodes of diodes D1 and D4 and, thus, provide blocking of a possible RF leakage path.

Another embodiment of a PIN diode attenuator operable with linearizers of the present invention is provided by connecting the PIN diodes in a T network wherein the cathodes of all PIN diodes in the T network are DC grounded, such as through a large value inductor coupling the cathodes to DC ground, providing a common cathode point bias voltage which is constant. As with the preferred embodiment π network discussed above, the preferred embodiment T network arrangement provides for control current to be applied to the T network shunt diode and series diodes separately. A preferred embodiment of a PIN diode T network, having an RF input port, an RF output port, attenuation control signal port SP₁, and attenuation control signal port SP₂, is shown in FIGURE 1B and is described in detail in the above referenced patent application entitled "Broadband PIN Diode Attenuator Bias Network."

In developing a linearizer circuit according to the present invention for use with a PIN diode attenuator, such as those employing topologies as discussed above with respect to preferred embodiment PIN diode attenuators, it was necessary to determine how to generate proper input control currents for the attenuator to achieve a desired or commanded level of attenuation (A) while maintaining the RF input impedance of the device throughout the dynamic range of attenuation.

Initially it is noted that PIN diode RF resistance (R) is a function of the DC current (I) flowing through the diode. An accepted mathematical model of this operation of a PIN diode is represented below.

$$R = \frac{K}{I^a} + R_s \quad (1)$$

In the above equation, K, α , and R_s are constants which vary with diode type and packaging. Experimentation has revealed, however, that the series resistance (R_s) is normally on the order of one ohm and that the exponent α is usually just less than 1, such as on the order of 0.8 or 0.9 for typical PIN diodes.

Preferred embodiments of the present invention provide for a relatively large dynamic attenuation range, such as on the order of 30 dB. Accordingly, it is desirable to represent the commanded level of attenuation A in decibels as a scaled function that is mathematically convenient. The following linear scalar of A provides a suitable mathematical scaling.

$$\theta = \frac{\ln(10)}{20} A \quad (2)$$

Accordingly, θ is used herein as a scaled function of the commanded attenuation A (preferably in decibels) in solving for the appropriate control signals to be applied by a linearizer of the present invention to the control inputs of a PIN diode attenuator.

In developing a preferred embodiment linearizer, the following equations were used to represent the resistances PIN diodes disposed in a π attenuator circuit should ideally obey.

$$R_A = \frac{Z_0}{2} \sinh (\theta) \quad (3)$$

$$R_B = \frac{Z_0}{\tanh \left(\frac{\theta}{2} \right)} \quad (4)$$

Specifically, R_A represents the RF resistance (in ohms) of diodes disposed in a series configuration, e.g., diodes D2 and D3 of FIGURE 1A. Similarly, R_B represents the RF resistance (in ohms) of diodes disposed in a shunt configuration, e.g., diodes D1 and D4 of FIGURE 1B. Z_0 is the characteristic impedance of the system, such as might be 75 ohms in a typical CATV application.

Substituting the series and shunt resistances, equations (3) and (4), into the PIN diode model equation, equation (1), and solving for the current (I) provides the following equations, respectively, wherein the subscripts 1 and 2 represent the series and shunt elements, and wherein the multiplier 2 is provided to accommodate providing the control current to 2 series or shunt diodes of the preferred embodiment.

$$I_1 = 2 \left[\frac{2K_1}{Z_o \sinh(\theta) - 2R_{s1}} \right]^{\frac{1}{a_1}} \quad (5)$$

$$I_2 = 2 \left[\frac{K_2 \tanh\left(\frac{\theta}{2}\right)}{Z_o - R_{s2} \tanh\left(\frac{\theta}{2}\right)} \right]^{\frac{1}{a_2}} \quad (6)$$

It should be appreciated that the above equations provide a mathematical representation of the circuit bias currents as a function of commanded attenuation for a PIN diode attenuator such as that shown in FIGURE 1A. Moreover, it should be appreciated that

the above equations provide the inverse mathematical representation of the circuit bias currents as a function of commanded attenuation for a PIN diode attenuator such as that shown in FIGURE 1B, e.g., $1 / I_1$ and $1 / I_2$, respectively. Accordingly, the above equations may be utilized in designing a linearizer circuit for use with PIN diode attenuators.

5 However, it is readily apparent that the above circuit bias equations, equations (5) and (6), do not easily lend themselves to a circuit implementation. Specifically, these two equations are very complex and a straight forward, non-linear circuit implementation of these equations would be extremely complex and would likely suffer stability problems. Accordingly, in developing the preferred embodiment linearizer the above equations were simplified for circuit implementation.

Experimentation and simulation has shown that the circuit bias equations, equations (5) and (6), may be simplified in a number of ways. For example, as mentioned above, the constant α for typical PIN diodes has been found to be generally on the order of 0.8 or 0.9 and, therefore, the exponents $1/\alpha_1$ and $1/\alpha_2$ may be approximated as 1. The series resistance R_s is of a low enough value that its being dropped from the equations for purposes of simplification should still provide a suitable approximation.

Using the approximations discussed above, as well as assumptions as discussed below, the circuit bias equations, equations (5) and (6), were simplified as shown below.

$$I_1 = \frac{8K_1}{Z_o(\exp(\theta) - 1)} \quad (7)$$

$$I_2 = \frac{2K_2}{Z_o - R_{s2}} \tanh\left(\frac{\theta}{2}\right) \quad (8)$$

In simplifying circuit bias equation (5) to arrive at simplified circuit bias equation (7), it was appreciated that $\sinh(\theta) = (e^\theta - e^{-\theta})/2$. Making the assumption that $e^{-\theta}$ may be approximated as 1, $\sinh(\theta)$ was replaced by $(e^\theta - 1)/2$ in circuit bias equation (7). Similarly, in simplifying circuit bias equation (6) to arrive at simplified circuit bias equation (8), it was assumed that the hyperbolic tangent in the denominator could be assumed to be approximately one and, therefore, dropped from the circuit bias equation.

Having arrived at a simplified representation of the circuit bias currents to be provided to the diode attenuator for linearized operation, the simplified circuit bias equations, equations (7) and (8), were transformed into a non-linear circuit implementation. Specifically, in providing the preferred embodiment linearizer circuit implementation, the simplified circuit bias equations were related to a transistor differential pair, such as the differential pair of FIGURE 2. The differential pair of FIGURE 2 includes transistors Q_a and Q_b coupled in a circuit such that $I_a = e^{((V_a - V_e) / V_t)}$ and $I_b = e^{((V_b - V_e) / V_t)}$, where V_t is the thermal voltage.

The approximation for the series control signal (I_1) can be realized as the collector current I_b using the differential pair of FIGURE 2 by setting $V = V_t \theta$ and driving the emitter current, I_{EE} , so that the collector currents have the constant offset $I_a - I_b = (8 K_1) / Z_0$. The approximation for the shunt control signal (I_2) can be realized as the difference between the collector currents $I_b - I_a$ using the differential pair of FIGURE 2 by setting $V = V_t \theta$ and the emitter current $I_{EE} = (2 K_2) / (Z_0 - R_{S2})$. Accordingly, it should be appreciated that PIN diodes which are well modeled by equation (1) above, $0.7 \leq \alpha \leq 1$, $Z_0 \gg R_s$, are well suited for use in a diode attenuator for which control is provided by a linearizer of the present invention.

Directing attention to FIGURE 3, a preferred embodiment linearizer circuit utilizing differential pairs to provide a series control signal (I_1) and a shunt control signal (I_2) as described above is shown as linearizer circuit 300. Specifically, differential pair 301, including transistors $Q1$ and $Q2$, is utilized in linearizer circuit 300 in providing series control

signal I_1 and differential pair 302, including transistors Q3 and Q4, is utilized in linearizer circuit 300 in providing shunt control signal I_2 .

As discussed above, according to the preferred embodiment the base voltage for the transistors disposed in the differential pair is preferably set to $V_t \theta$. However, this control voltage has a temperature dependency because of the presence of V_t in the equation, where $V_t = k T / q$, where k is Boltzmann's constant and q is the charge of an electron. Accordingly, without compensating circuitry, changes in temperature would result in changes in the control currents provided by linearizer circuit 300. In order to compensate for this temperature behavior, the control voltage of the preferred embodiment is multiplied by a PTAT (Proportional To Absolute Temperature) quantity. For example, compensation for the temperature variant V_t may be done by multiplying the control voltage input and the PTAT voltage (V_1) in linear multiplier (M1). The resulting temperature compensated control voltage may then be used to drive the two differential pairs as described above.

It should be appreciated that although a base voltage differential across the transistors of the differential pairs is illustrated as being with respect to a ground (the base of transistors Q2 and Q3 illustrated as being at a ground potential), it should be appreciated that the voltage $V_t \theta$, may be provided as a differential voltage. For example, the ground coupled to the bases of transistors Q2 and Q3 may be a DC ground having a potential (whether positive or negative) with respect to zero potential ground. Accordingly, $V_t \theta$ may be provided as a differential potential.

In providing series control signal I_1 , the preferred embodiment linearizer circuit shown in FIGURE 3 synthesizes the simplified series circuit bias equation, equation (7), using transistors Q1, Q2, Q5, Q6, and Q7. Transistors Q1 and Q2 provide differential pair 301 while transistors Q5, Q6, and Q7 provide current mirror 311 used in providing series control current I_1 equal to the collector current of Q2. Gain block (G1) forces the difference of the collector current of Q1 and Q2 to be equal to the current I_{s1} by controlling the tail

current (I_{EE}) of differential pair Q1 and Q2. The collector current of transistor Q2 , which is the current I_1 as given by equation (5), is mirrored for output by transistor Q7.

It should be appreciated that current I_{s1} , $(8 K_1) / Z_0$ in the preferred embodiment, is dependent upon the characteristics of the particular PIN diodes utilized in implementing the attenuator controlled using linearizer circuit 300. Specifically, as discussed above with respect to the mathematical model of operation of PIN diodes, equation (1), the constant K_1 varies with diode type and packaging. Accordingly, a preferred embodiment of current source 321 providing current I_{s1} is programmable, such as by digital input or use of a control circuit, to accommodate the use of PIN diodes having different characteristics associated therewith. Similarly, preferred embodiment current sources of the present invention may include programmable or adjustable current adjustment to compensate for thermal variations of the PIN diode structures, such as by providing properly compensated control currents in response to monitored operational temperature.

In providing shunt control signal I_2 , the preferred embodiment linearizer circuit shown in FIGURE 3 synthesizes the simplified shunt circuit bias equation, equation (8), using transistors Q3, Q4, Q8, and Q9. Transistors Q3 and Q4 provide differential pair 302 while transistors Q8 and Q9 provide current mirror 312 used in providing shunt control current I_2 equal to the difference between the collector current of Q4 and the collector current of Q3. Tail current I_{EE} is set to the desired value as discussed above. The current mirror provided by transistors Q8 and Q9 subtracts the collector current of Q3 from Q4 to thereby provide the desired output shunt control current I_2 .

It should be appreciated that current I_{EE} , $(2 K_2) / (Z_0 - R_{S2})$ in the preferred embodiment, is dependent upon the characteristics of the particular PIN diodes utilized in implementing the attenuator controlled using linearizer circuit 300. Specifically, as discussed above with respect to the mathematical model of operation of PIN diodes, equation (1), the constants K_2 and R_{S2} vary with diode type and packaging. Accordingly, a preferred embodiment of current source 322 providing current I_{EE} is programmable, such as by digital

input or use of a control circuit, to accommodate the use of PIN diodes having different characteristics associated therewith. Similarly, preferred embodiment current sources of the present invention may include programmable current adjustment to compensate for thermal variations of the PIN diode structures, such as by providing properly compensated control currents in response to monitored operational temperature.

Having described a preferred embodiment linearizer circuit of the present invention in detail, it should be appreciated that various alterations may be made thereto in accordance with the principals of the present invention as disclosed herein. For example, in order to provide a linearizer circuit with relatively low power requirements, alternative embodiments of the present invention may utilize current multipliers between the linearizer circuit implementation and the control current outputs of the present invention. Accordingly, an alternative embodiment of linearizer circuit 300 includes a linear multiplication factor in current mirror 311 or after current mirror 312 to thereby provide a desired control current level which is greater than the operating currents of the differential pairs. Similarly, although the preferred embodiment linearizer circuit 300 has been discussed above with reference to a π network PIN diode attenuator, it should be appreciated that the disclosed linearizer circuit may be utilized with other attenuator configurations. For example, linearizer circuit 300 may be utilized in controlling a T network PIN diode attenuator by using appropriate circuits to compute the reciprocal of each of the output currents I_1 and I_2 .

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to

be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.