Verification of Network Theorems

Exp. No: Date:

Aim: To verify the 1. Thevenin's Theorem

2. Superposition Theorem

Thevenin's Theorem

Apparatus required:

S.No	Name of the	Range/	Type	Quantity	
	equipment	Specification			
1	Resistors		Carbon	4	
			composite		
2	Bread board	30V, 1A	-	1	
3	Regulated power	(0-30)V, 2A	-	1	
	supply				
4	Multimeter		Digital	1	
5	Connecting wires	1/22 guage	Copper	Adequate	

Procedure:

- 1. Connect the circuit as shown in fig 1(a)
- 2. Switch on the RPS and apply some input voltage (say 5V), observe the **load current** (I_L).
- 3. Now reconnect the circuit as shown in Fig 1(b) and apply the same input voltage as in step 2 and observe the **Short circuit current (I**_{SC}).
- **4.** Now reconnect the circuit as shown in fig1 (c) and apply the same input Voltage as in step 2 and observe the **Open circuit voltage** (V_{OC}) which is nothing but the thevenin's voltage (V_{Th}).
- 5. Now compute the thevenin's equivalent resistance

$$R_{Th} = V_{Th}/I_{SC}$$
.

6. Compute the load current applying thevenin's theorem as

$$I_L=V_{Th}/(R_{Th}+R_L)$$
.

7.	Compare the above load current with its observed value in step (2) and
	verify the theorem.
8.	Adjust the input voltage to a new value and repeat the procedure from
	step (2) to step (7) Take at least five sets of readings.
Circu	nit diagram:

Circuit diagram for Load current (IL)

Circuit diagram for Short circuit current (Isc)

Circuit diagram for Open circuit Voltage (Voc OR VL)

Tabular column:

S. No	V	Observed	I_{SC}	V_{Th}	Computed load	Error	% Error
		load current		(OR)	current		
		$\mathbf{I}_{\mathbf{L}}$		V_{oc}	$I_L = V_{Th}/(R_{Th} + R_L)$		

Theoretical calculations:

$$V_{Th} = I R_3$$

 \triangleright *I* is the circuit current when R_L is

removed

$$I = \frac{V}{R_1 + R_2}$$

 $\triangleright V_{Th}$ is the drop across R_3 when R_L is removed

$$R_{Th} = (R_1 /\!/ R_3) + R_2 (OR) R_{Th} = V_{Th} / I_{SC}$$

$$I_{SC} = \frac{V_{Th}}{R_{Th}}$$

$$I_L = \frac{V_{Th}}{R_{Th} + R_L}$$

Precautions:

- 1. Set the current adjustment knob of the RPS in maximum position and voltage coarse and voltage fine adjustment knobs in minimum position.
- 2. While using multimeter as a voltmeter or ammeter insert the connecting probes in proper sockets.

Result:

Superposition Theorem

Aim: To verify Superposition Theorem

Apparatus required:

S.No	Name of the	Range/	Type	Quantity
	equipment	Specification		
1	Resistors		Carbon	3
			composite	
2	Bread board	30V, 1A	-	1
3	Regulated	(0-30)V, 2A	-	1
	power supply			
4	Multimeter		Digital	1
5	Connecting	1/22 guage	Copper	Adequate
	wires			

Procedure:

- 1. Connect the circuit as shown in the Fig 2(a), apply some input voltage V₁ resistor.
- 2. Connect the circuit as shown in fig 2(b), and apply the same voltage V_1 as in step1 and observe the current(I_1) through the $1k\Omega$ resistor.
- 3. Connect the circuit as shown in fig 2(c), and apply the same voltage V_2 as in step1 and observe the current (I_2) through the $1k\Omega$ resistor.
- 4. Compare I with (I_1+I_2) taking care of signs properly to verify the theorem.
- 5. Repeat the procedure from step1 to step4 for five different combinations of voltages V_1 and V_2

Circuit Diagram for $I_{L^{\prime}}$

Circuit Diagram for \boldsymbol{I}_1

Circuit Diagram for I $_{2}\,$

Circuit diagram for super position theorem

Tabular column:

S. No	V_1	V_2	Observed	I_1	I_2	Computed	Error	% Error
			load			load current		
			current I _L			$\mathbf{I_L} = \mathbf{I_1} + \mathbf{I_2}$		

Theoretical calculations:

$$I_1 = V_1 / [(R_2 /\!/ R_3) + R_1]$$

 $ightharpoonup I_1$ is the circuit current when V_2 is replaced with its internal resistance

$$I_2 = V_2 / \left[(R_1 /\!/ R_3) + R_2 \right]$$

 \triangleright I₂ is the circuit current when V₁ is replaced with its internal resistance

$$I_{L\,=\,}I_3=I_1+I_2$$

Precautions:

- 1. Set the current adjustment knob of the RPS in maximum position and voltage coarse and voltage fine adjustment knobs in minimum position.
- 2. While using multimeter as a voltmeter or ammeter insert the connecting probes in proper sockets.

Result: