based on c_1 , then the value c_2 of C_2 is also examined. If $c_2 \in [1, L-1]$, then no elements have been inserted to C_2 and the value c_2 corresponds to z as defined in description of the insertion operation. We also know that only two increments are stored in C_1 and we can

• If $c_1 \geq 2L$ and the membership cannot be eliminated

recover their values. If $c_2 = 1$ and $c_1 = 4L - 2$ then both increments are 2L - 1 so if $2L - 1 \neq v_{g_i(x)}$ the membership is eliminated. Otherwise, we use $z = c_2$ to compute z+L-1 and $c_1-z-L+1$. If $z+L-1 \neq v_{g_i(x)}$

compute z+L-1 and $c_1-z-L+1$. If $z+L-1 \neq v_{g_i(x)}$ and $c_1-z-L+1 \neq v_{g_i(x)}$, then the membership is eliminated. This is referred to as additional check II

in Table IV.