Домашнее задание 4 (матан)

Андрей Зотов

Август 2023

Задача 1

Ответ: a) $\frac{1}{40}$; b) $\frac{a^4}{2}$.

Решение. а) Т.к. область A - это область между графиками y = x и $y = x^2$ при $x \in [0,1]$, то y пробегает все значения из отрезка [0,1] и при фиксированном y переменная x пробегает все значения из отрезка $[y,\sqrt{y}]$. Поэтому:

b) Область интегрирования есть круг радиуса a с центром в точке (0,0), при этом под интегралом стоит функция f(x,y)=|xy|, которая является четной как по переменной x, так и по переменной y, поэтому если обозначить за I исходный интеграл, то интеграл по четвертинке круга $(x\geq 0,y\geq 0)$ будет равен $\frac{1}{4}I$ (а f(x,y)=xy в этой четверти). При этом x будет пробегать все значения из отрезка [0,a], а y (при фиксированном x) - из отрезка $[0,\sqrt{a^2-x^2}]$. Таким образом:

$$\frac{I}{4} = \int_{\substack{x^2 + y^2 \le a^2 \\ x \ge 0 \\ y \ge 0}} xy \, dx \, dy = \int_0^a \left(\int_0^{\sqrt{a^2 - x^2}} xy \, dy \right) \, dx = \int_0^a x \left(\frac{y^2}{2} \Big|_0^{\sqrt{a^2 - x^2}} \right) \, dx = \int_0^a x \left(\frac{a^2 - x^2}{2} \right) \, dx = \left(\frac{a^2 - x^2}{2}$$

Задача 2

Ответ: 0.

Решение. Учитывая, что область интегрирования квадрат $[0, \pi/2] \times [0, \pi/2]$, то получаем:

$$\int_{\substack{0 \le x \le \pi/2 \\ 0 \le y \le \pi/2}} \cos(x+y) \, dx \, dy = \int_{0}^{\pi/2} \left(\int_{0}^{\pi/2} \cos(x+y) \, dx \right) \, dy = \int_{0}^{\pi/2} \left(\int_{0}^{\pi/2} \cos(x+y) \, d(x+y) \right) \, dy = \int_{0}^{\pi/2} \left(\sin(x+y) \Big|_{x=0}^{x=\pi/2} \right) \, dx = \int_{0}^{\pi/2} \left(\sin(x+y) \Big|_{x=$$

$$= \langle \sin(\pi/2 + y) = \cos y \rangle = \int_{0}^{\pi/2} (\cos y - \sin y) \, dy = \sin y \Big|_{0}^{\pi/2} + \cos y \Big|_{0}^{\pi/2} = (1 - 0) + (0 - 1) = 0.$$

Задача 3

Otbet: $\frac{4\pi}{3\sqrt{abc}}$.

Решение. По условию фигура $ax^2 + by^2 + cz^2 \le 1$ эллипсоид, поэтому a,b,c>0. Объем этой фигуры будет равен:

$$V = \int_{ax^2 + by^2 + cz^2 \le 1} 1 \, dx \, dy \, dz$$

Т.к. a,b,c>0, то можно рассмотреть замену переменных $\tilde{x}=\sqrt{a}\cdot x, \tilde{y}=\sqrt{b}\cdot y, \tilde{z}=\sqrt{c}\cdot z$ или:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{a}}\tilde{x} \\ \frac{1}{\sqrt{b}}\tilde{y} \\ \frac{1}{\sqrt{c}}\tilde{z} \end{pmatrix},$$

при которой исходный эллипсоид преобразуется в шар радиуса 1: $\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2 \le 1$. Матрица Якоби этого отображения будет иметь вид:

$$J = \begin{pmatrix} \frac{\partial x}{\partial \bar{x}} & \frac{\partial x}{\partial \bar{y}} & \frac{\partial x}{\partial \bar{z}} \\ \frac{\partial y}{\partial \bar{x}} & \frac{\partial y}{\partial \bar{y}} & \frac{\partial y}{\partial \bar{z}} \\ \frac{\partial z}{\partial \bar{x}} & \frac{\partial z}{\partial \bar{y}} & \frac{\partial z}{\partial \bar{z}} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{a}} & 0 & 0 \\ 0 & \frac{1}{\sqrt{b}} & 0 \\ 0 & 0 & \frac{1}{\sqrt{c}} \end{pmatrix}$$

$$\downarrow \downarrow$$

$$|\det J| = \frac{1}{\sqrt{abc}}$$

И т.к. $dx dy dz = |\det J| d\tilde{x} d\tilde{y} d\tilde{z}$, то

$$V = \int_{ax^2 + by^2 + cz^2 \le 1} 1 \, dx \, dy \, dz = \int_{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2 \le 1} |\det J| \, d\tilde{x} \, d\tilde{y} \, d\tilde{z} = \frac{1}{\sqrt{abc}} \cdot \int_{\tilde{x}^2 + \tilde{y}^2 + \tilde{z}^2 \le 1} 1 \, d\tilde{x} \, d\tilde{y} \, d\tilde{z},$$

где интеграл справа - это объем шара радиуса 1, который равен $\frac{4\pi}{3}$ (вычислялось на лекции). Таким образом искомый объем будет:

$$V = \frac{4\pi}{3\sqrt{abc}}.$$

Задача 4

Ответ: а) условный максимум в точке (0.5, 0.5), b) условный максимум в точке $(\frac{b}{\sqrt{a^2+b^2}}, \frac{a}{\sqrt{a^2+b^2}})$ и условный минимум в точке $(-\frac{b}{\sqrt{a^2+b^2}}, -\frac{a}{\sqrt{a^2+b^2}})$.

Решение. а) Лагранжиан имеет вид: $\mathcal{L} = \alpha xy - \lambda(x+y-1)$. Поэтому grad $\mathcal{L} = (\frac{\partial \mathcal{L}}{\partial x}, \frac{\partial \mathcal{L}}{\partial y}) = (\alpha y - \lambda, \alpha x - \lambda)$ и значит условный экстремум должен удовлетворять системе:

$$\begin{cases} \alpha y - \lambda = 0 \\ \alpha x - \lambda = 0 \\ x + y - 1 = 0 \end{cases}$$

Видно, что если $\alpha=0$, то $\lambda=0$, но α и λ не могут быть равны нулю одновременно, поэтому $\alpha\neq 0$

$$x = y = \frac{\lambda}{\alpha}$$

$$\downarrow$$

$$\frac{\lambda}{\alpha} + \frac{\lambda}{\alpha} - 1 = 0$$

$$\downarrow$$

$$2\lambda = \alpha$$

$$\downarrow$$

$$x = 0.5, y = 0.5$$

Таким образом точка (0.5,0.5) - единственная критическая точка \mathcal{L} , лежащая на прямой x+y=1, причем z(0.5,0.5)=0.25. Рассмотрим какую-нибудь другую точку на прямой x+y=1, например (0,1), тогда z(0,1)=0< z(0.5,0.5)=0.25, поэтому точка (0.5,0.5) условный максимум исходной задачи. Требование существования α и λ одновременно не равных 0 выполняется - достаточно взять $\alpha=2$ и $\lambda=1$.

b) Лагранжиан имеет вид $\mathcal{L} = \alpha(\frac{x}{a} + \frac{y}{b}) - \lambda(x^2 + y^2 - 1)$. Поэтому grad $\mathcal{L} = (\frac{\alpha}{a} - 2\lambda x, \frac{\alpha}{b} - 2\lambda y)$ и значит условный экстремум должен удовлетворять системе:

$$\begin{cases} \frac{\alpha}{a} - 2\lambda x = 0\\ \frac{\alpha}{b} - 2\lambda y = 0\\ x^2 + y^2 - 1 = 0 \end{cases}$$

Видно, что если $\lambda=0$, то $\alpha=0$, но α и λ не могут быть равны нулю одновременно, поэтому $\lambda\neq 0$ (аналогично $\alpha\neq 0$)

$$\begin{cases} x = \frac{\alpha}{2\lambda a} \\ y = \frac{\alpha}{2\lambda b} \\ x^2 + y^2 - 1 = 0 \end{cases}$$

Отсюда получаем, что $y=\frac{a}{b}x$ и $\left(\frac{a}{b}\right)^2x^2+x^2-1=0 \Rightarrow x=\pm\frac{b}{\sqrt{a^2+b^2}} \Rightarrow y=\pm\frac{a}{\sqrt{a^2+b^2}}$. Таким образом имеем 2 критические точки \mathcal{L} , лежащие на окружности $x^2+y^2=1$: $A_1(\frac{b}{\sqrt{a^2+b^2}},\frac{a}{\sqrt{a^2+b^2}})$ и $A_2(-\frac{b}{\sqrt{a^2+b^2}},-\frac{a}{\sqrt{a^2+b^2}})$. И т.к. по условию a,b>0, то $z(A_1)>0$ и $z(A_2)<0$, т.е. A_1 точка условного максимума, а A_2 точка условного минимума исходной задачи. Требование существования α и λ одновременно не равных 0 выполняется необходимо взять такие α и λ , что $\frac{\alpha}{\lambda}=\frac{2ab}{\sqrt{a^2+b^2}}$ для точки A_1 и $\frac{\alpha}{\lambda}=-\frac{2ab}{\sqrt{a^2+b^2}}$ для точки A_2 .

Задача 5

Otbet:
$$r = \sqrt{\frac{S}{6\pi}}, h = 2\sqrt{\frac{S}{6\pi}}$$
.

Решение. Объем бочки будет $V(r,h) = \pi r^2 h$. Площадь поверхности бочки (с учетом дна и крышки) будет $S = 2\pi r^2 + 2\pi r h = 2\pi r (r+h)$, при этом считаем, что S > 0 фиксировано. Таким образом Лагранжиан имеет вид $\mathcal{L}(r,h) = \alpha \pi r^2 h - \lambda (S - 2\pi r (r+h))$. Поэтому grad $\mathcal{L} = (\frac{\partial \mathcal{L}}{\partial r}, \frac{\partial \mathcal{L}}{\partial h}) = (2\alpha \pi r h + \lambda (4\pi r + 2\pi h), \alpha \pi r^2 + 2\lambda \pi r)$. Т.е. оптимальное решение удовлетворяет системе:

$$\begin{cases} 2\alpha rh + \lambda(4r+2h) = 0\\ S = 2\pi r(r+h) \end{cases}$$

Если $\alpha=0$, то $\lambda=0$, но α и λ не могут быть равны нулю одновременно, поэтому $\alpha\neq 0$. Поэтому $r=-\frac{2\lambda}{\alpha}$ (при этом видно, что если $\lambda=0$, то r=0 и значит S=0, но мы исходим из того что S>0, поэтому $\lambda\neq 0$). Подставляя в первое уравнение системы выражение для r получаем

$$2\alpha \left(-\frac{2\lambda}{\alpha}\right)h + \lambda \left(4\left(-\frac{2\lambda}{\alpha}\right) + 2h\right) = 0$$

Т.к. $\lambda \neq 0$, то получаем:

$$-4h - \frac{8\lambda}{\alpha} + 2h = 0$$

Таким образом $h=-\frac{4\lambda}{\alpha},\ r=-\frac{2\lambda}{\alpha}\Rightarrow h=2r\Rightarrow S=6\pi r^2\Rightarrow r=r_{ext}=\sqrt{\frac{S}{6\pi}},\ h=h_{ext}=2\sqrt{\frac{S}{6\pi}}$ (корни берем со знаком + потому что r,h не могут быть отрицательными). Точка $(r_{ext},\ h_{ext})$ - единственный условный экстремум исходной задачи, при этом $V_{ext}=V(r_{ext},h_{ext})=\frac{S}{3}\cdot\sqrt{\frac{S}{6\pi}}>0$. Т.к. при $h=0,r=\sqrt{\frac{S}{2\pi}}$ поверхность бочки будет равна заданному S, а объем будет равен 0, т.е. меньше чем V_{ext} , то найденный условный экстремум - это условный максимум функции объема V(r,h). Требование существования α и λ одновременно не равных 0 выполняется - необходимо взять такие α и λ , что $\frac{\lambda}{\alpha}=-\frac{1}{2}\sqrt{\frac{S}{6\pi}}$.

Задача 6

Ответ: В точке (3, -4) функция z(x, y) достигает условного минимума z(3, -4) = -75, а в точке (-3, 4) - условного максимума z(3, -4) = 125.

Решение. Лагранжиан имеет вид $\mathcal{L} = \alpha(x^2 + y^2 - 12x + 16y) - \mu(x^2 + y^2 - 25)$. Поэтому grad $\mathcal{L} = (2\alpha x - 12\alpha - 2\mu x, 2\alpha y + 16\alpha - 2\mu y)$. Рассмотрим 2 основных случая:

І. $z(x,y) \to \max$. Тогда условный максимум должен удовлетворять системе:

$$\begin{cases} 2\alpha x - 12\alpha - 2\mu x = 0\\ 2\alpha y + 16\alpha - 2\mu y = 0\\ \alpha \ge 0\\ \mu(x^2 + y^2 - 25) = 0\\ x^2 + y^2 - 25 \le 0\\ \mu > 0 \end{cases}$$

I. а) $\mu=0\Rightarrow \alpha>0$ (т.к. μ и α не равны 0 одновременно) и тогда условный максимум должен удовлетворять системе:

$$\begin{cases} \alpha x = 6\alpha \\ \alpha y = -8\alpha \\ \alpha > 0 \\ x^2 + y^2 - 25 \le 0 \end{cases}$$

$$\updownarrow$$

$$\begin{cases} x = 6 \\ y = -8 \\ \alpha > 0 \\ x^2 + y^2 - 25 \le 0 \end{cases}$$

Т.к. $6^2 + (-8)^2 - 25 = 75 > 0$, то полученная система решений не имеет.

I. b) $\mu \neq 0 \Rightarrow x^2 + y^2 - 25 = 0$ и тогда условный максимум должен удовлетворять системе:

$$\begin{cases} 2\alpha x - 12\alpha - 2\mu x = 0\\ 2\alpha y + 16\alpha - 2\mu y = 0\\ \alpha \ge 0\\ x^2 + y^2 - 25 = 0\\ \mu > 0 \end{cases}$$

1

$$\begin{cases} x(\alpha - \mu) = 6\alpha \\ y(\alpha - \mu) = -8\alpha \\ \alpha \ge 0 \\ x^2 + y^2 - 25 = 0 \\ \mu > 0 \end{cases}$$

Если $\alpha=0$, тогда x=0, y=0 и очевидно система не имеет решений (решение обязано быть на окружности $x^2+y^2=25$). А если $\alpha\neq0$ (т.е. $\alpha>0$), тогда $x=-\frac{3}{4}y\Rightarrow\frac{9}{16}y^2+y^2-25=0\Rightarrow y^2\cdot\frac{25}{16}=25\Rightarrow y^2=16\Rightarrow y=\pm4\Rightarrow x=\mp3$. Таким образом получили 2 критические точки \mathcal{L} : $A_1(3,-4)$ и $A_2(-3,4)$. И т.к. $z(A_1)=25-36-64=-75$ и $z(A_2)=25+36+64=125$, условный максимум достигается в точке $A_2(-3,4)$ и равен $z(A_2)=125$. Помимо прочего также требуется чтобы существовали $\alpha,\mu>0$. Для существования условного максимума в точке $A_2(-3,4)$ достаточно положить $\alpha=1$ и $\mu=3$.

II. $z(x,y) \to \min$. В этом случае получается аналогичная система, только $\mu \le 0$. Проводя те же рассуждения, получим те же 2 условных экстремума. Таким образом условный минимум достигается в точке $A_1(3,-4)$ и равен $z(A_1) = -75$. Помимо прочего также требуется чтобы существовали $\alpha > 0, \mu < 0$. Для существования условного минимума в точке $A_1(3,-4)$ достаточно положить $\alpha = 1$ и $\mu = -1$.