ПРАВИТЕЛЬСТВО САНКТ-ПЕТЕРБУРГА КОМИТЕТ ПО НАУКЕ И ВЫСШЕЙ ШКОЛЕ

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «АВТОТРАНСПОРТНЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ КОЛЛЕДЖ»

ЛАБОРАТОРНАЯ РАБОТА №6

Изучение конструкции зубчатых редукторов

Специальность 190631 Техническое обслуживание и ремонт автомобильного транспорта

Дисциплина Техническая механика

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Санкт-Петербург 2013

Рекомендовано
методическим советом
Протокол №
от «»2013 г.

Исполнитель Морозова В.Н. Редактор Таланова Л.Д,

Аннотация

Методические указания составлены с учётом требований ФГОС третьего поколения и предлагают подробное описание организации проведения лабораторной работы «Изучение конструкции зубчатых редукторов». Указания предназначены студентам, осваивающим специальности 190631 Техническое обслуживание и ремонт автомобильного транспорта и 190103 Автомобиле- и тракторостроение в СПб ГБОУ СПО «АТЭМК». В методических указаниях рассмотрены двухступенчатый цилиндрический редуктор, конический и червячный редукторы.

Содержание

Введение		4
1 Цель и задачи лабораторной работы №6		5
1.1 Цель работы		5
1.2 Задачи работы		5
2. Содержание лабораторной работы		6
2.1 Теоретическая часть		6
2.2 Практическая часть		6
3 Оборудование		7
4 Нормативная и учебная литература		8
4.1 Учебная литература	8	
4.2 Нормативная литература	8	
5 Меры безопасности на рабочем месте		9
6 Рекомендации студентам по выполнению лабораторной работы		10
6.1 Основные теоретические положения		10
6.2 Условия и организация работы		16
6.3 Последовательность и технология выполнения работы		17
7 Вопросы для самоконтроля		18
Бланк отчёта о лабораторной работе №6		19

Введение

Государственный образовательный стандарт, формирующий государственные требования подготовки специалистов, включает в обязательный минимум специальных дисциплин курс «Техническая механика», являющийся теоретической базой для подготовки инженерно-технических работников. Все знания и навыки, полученные при изучении технической механики, найдут применение в процессе изучения специальных предметов.

Чтобы овладеть своей специальностью, специалисту необходимо иметь не только хорошую общетехническую подготовку, но и практические навыки. Курс лабораторных работ способствует детальной проработке изучаемого материала и усвоению основных опорных элементов изучаемого материала.

1 Цель и задачи лабораторной работы №6

1.1 Цель работы

Ознакомиться с конструкцией редуктора и назначением его деталей, определить основные параметры зубчатых пар редуктора путем их замера и расчета.

1.2 Задачи работы

- 1.2.1 Закрепление знаний по теме «Зубчатые передачи» раздела деталей машин.
- 1.2.2 Приобретение практических навыков для определения основных параметров редуктора.

2 Содержание лабораторной работы

- 2.1 Теоретическая часть
- 2.1.1 Изучение моделей зубчатых редукторов.
- 2.1.2 Ознакомление с материалами, для которых приводятся формулы для определения основных параметров редукторов.
 - 2.2 Практическая часть
- 2.2.1 Выполнение расчетов основных параметров двухступенчатого цилиндрического редуктора.
 - 2.2.2 Выполнение расчетов основных параметров конического редуктора.
 - 2.2.3 Выполнение расчетов основных параметров червячного редуктора.
 - 2.2.4 Заполнение бланка-отчета и защита работы.

3 Оборудование

3.1 Общие сведения

Схемы редукторов для проведения испытаний представлены в соответствии с рисунками 1,2,3.

4 Нормативная и учебная литература

4.1 Учебная литература

Олофинская, В.П. Детали машин. Краткий курс и тестовые задания: Учеб.пособие. – М.:ФОРУМ: ИНФРА-М, 2006. – 208 с.

Эрдеди, А.А. Детали машин: учебное пособие / А.А. Эрдеди, Н.А. Эрдеди. 11-е изд. стер.- М.: Высшая школа, 2010. – 320 с.

4.2 Нормативная литература

- **Инструкция по охране труда** для студентов в кабинете технической механики;

5 Меры безопасности на рабочем месте

Перед проведением лабораторной работы студенту необходимо:

- проверить правильность установки стола, стула;
- подготовить к работе рабочее место, убрав все лишнее со стола, а портфель или сумку с прохода;
- учебники и используемые приспособления разместить таким образом, чтобы исключить их падение и опрокидывание;
- обо всех замеченных нарушениях, неисправностях и поломках немедленно доложить преподавателю.

Запрещается приступать к работе в случае обнаружения несоответствия рабочего места установленным в данном разделе требованиям, а также при невозможности выполнить указанные в данном разделе подготовительные к работе действия.

Во время проведения лабораторной работы студентам необходимо:

- изучить содержание настоящих Методических указаний;
- находиться на своем рабочем месте;
- неукоснительно выполнять все указания преподавателя;
- соблюдать правила эксплуатации оборудования;
- соблюдать осторожность при обращении с оборудованием;
- постоянно поддерживать порядок и чистоту на своем рабочем месте.

6 Рекомендации студентам по выполнению лабораторной работы

6.1 Основные теоретические положения

6.1.1 Редукторы — это механизмы, служащие для понижения угловых скоростей и увеличения вращающих моментов и выполненные в виде отдельных агрегатов.

Двухступенчатые цилиндрические редукторы применяются при передаточных числах $u \le 40$.

Первая (быстроходная) ступень редуктора во многих случаях имеет косозубые колеса; вторая (тихоходная) ступень может быть выполнена с прямозубыми колесами. Не менее часто применяются редукторы, у которых обе ступени имеют колеса одинакового типа (прямозубые, косозубые, шевронные).

Двухступенчатый цилиндрический редуктор с прямозубыми колесами представлен в соответствии с рисунком 1.

Рисунок 1

6.1.2 Двухступенчатый зубчатый редуктор.

Согласно основной теореме зацепления для понижающих передач передаточное число и определяется по формуле:

$$\mathbf{u} = \mathbf{z}_2 / \mathbf{z}_1 \tag{1}$$

где z₁ – число зубьев шестерни;

 z_2 — число зубьев колеса.

Размеры зубчатого колеса выражают через модуль и число зубьев.

Нормальный модуль зацепления m_n, мм

$$m_n = 2a_w / (z_1 + z_2) * \cos\beta,$$
 (2)

где a_w – межосевое расстояние;

 β – угол наклона линии зуба;

 $\beta = 0 (\cos 0^0 = 1) -$ для прямозубых передач.

После измерения межосевого расстояния a_w , мм, его округляют до ближайшего значения по ГОСТ 2185-66.

1-ый ряд: 40, 50, 63, 80, 100, 125, 160, 200

2-ой ряд: 71, 90, 112, 140, 180, 224, 280

Нормальный модуль зацепления m_n , мм, после вычисления по формуле (2) округляют по ГОСТ 9563-60.

1-ый ряд: 1; 1,25; 2; 2,25; 3; 4; 6; 8; 10; 12.

2-ой ряд: 1,375; 1,75; 2,25; 2,75; 3,5; 4,5; 7.

Делительный d и начальный $d_{\rm w}$ диаметры, мм,

$$d = d_w = m_n z. (3)$$

Диаметр вершин зубьев d_a , мм,

$$d_a = d + 2m_{n.} \tag{4}$$

Диаметр впадин зубьев $d_{\rm f}$, мм,

$$d_f = d - 2.5 m_{n.} (5)$$

6.1.3 Конический зубчатый редуктор

Конические зубчатые колеса применяют в передачах, когда оси валов пересекаются под углом 90 градусов. Открытый конический редуктор представлен в соответствии с рисунком 5.

Рисунок 2

Основные геометрические соотношения для прямозубой конической передачи.

Передаточное число и

$$u = z_2 / z_1$$
 (6)

Угол делительного конуса шестерни δ_1 , град,

$$\delta_1 = \operatorname{arctg} \, z_1 \, / \, z_2. \tag{7}$$

Угол делительного конуса колеса δ_2 , град,

$$\delta_2 = 90^0 - \delta_1. {8}$$

Внешний окружной модуль те, мм,

$$m_e = p_e / \pi, \tag{9}$$

где $\pi = 3,14$;

ре - внешний окружной шаг.

Внешнее конусное расстояние R_e, мм,

$$R_e = 0.5 m_e \sqrt{ }$$
 (10)

Внешний делительный диаметр de, мм,

$$d_e = m_e z. (11)$$

Внешний диаметр вершин зубьев d_{ae} , мм,

$$d_{ae} = d_e + 2m_e \cos \delta. \tag{12}$$

Модуль нормальный т, мм, в среднем сечении

$$m \approx 0.857 \text{ m}_{e} \tag{13}$$

Средний делительный диаметр, мм,

$$d = mz. (14)$$

6.1.4 Червячный редуктор

Червячные передачи относят к передачам зацепления. Их применяют для передачи вращательного движения между валами, угол скрещивания осей составляет 90 градусов. Червячная передача — это зубчатая винтовая передача, движение в которой осуществляют по принципу винтовой пары.

Червячный редуктор с верхним расположением червяка представлен в соответствии с рисунком 3.

Рисунок 3

Основные геометрические соотношения для червячной передачи.

Передаточное число и

$$u = z_2/z_1. (15)$$

Расчетный модуль m, мм,

$$m = p/\pi, (16)$$

где р – осевой шаг червяка, мм.

Делительный диаметр червяка d_1 , мм,

$$d_1 = d_{a1} - 2m (17)$$

Делительный диаметр червячного колеса d_2 , мм,

$$d_2 = z_2 m \tag{18}$$

Межосевое расстояние а_w, мм,

$$a_{w} = 0.5 (d_1 + d_2) \tag{19}$$

Коэффициент диаметра червяка q

$$q = d_1 / m \tag{20}$$

Угол подъема витка винтовой линии ү, град,

$$\gamma = \arctan(z_1/q). \tag{21}$$

Диаметр впадин зубьев $d_{\rm f}$, мм,

$$d_f = d - 2,4m.$$
 (22)

Коэффициент полезного действия η

$$\eta = \operatorname{tg} \gamma / \operatorname{tg} (\gamma + \rho \Box), \tag{23}$$

где $\rho\Box$ - приведенный угол трения $(\rho\Box=1^{\circ}20\Box)$.

6.2 Условия и организация работы

Выполнение работы предусматривает теоретическую и практическую части. Выполнение практической части предполагает наличие у студентов знаний о редукторах.

В теоретической части лабораторной работы под руководством преподавателя студенты:

- знакомятся с рабочим местом;
- усваивают меры безопасности;
- изучают Методические рекомендации по проведению лабораторной работы;
 - знакомятся с учебной и нормативной литературой;
 - изучают назначение и принцип действия оборудования.

В практической части лабораторной работы под контролем преподавателя студенты:

- определяют параметры двухступенчатого зубчатого редуктора
- заносят результаты в соответствующую таблицу бланка отчета;
- определяют параметры конического редуктора;
- заносят результаты в соответствующие таблицу бланка отчета;
- определяют параметры червячного редуктора;
- заносят результаты в соответствующие таблицу бланка отчета;
- делают необходимые выводы;
- заполняют бланк отчёта о лабораторной работе.

После заполнения бланка отчёта о лабораторной работе студенты:

- отвечают на контрольные вопросы;
- сдают отчет преподавателю.

6.3 Последовательность и технология выполнения работы

- 6.3.1 Определение основных геометрических параметров для двухступенчатого цилиндрического зубчатого редуктора проводится:
 - сосчитать число зубьев шестерни;
 - сосчитать число зубьев колеса;
 - измерить межосевое расстояние;
 - измерить ширину венца шестерни;
 - измерить ширину венца колеса;
 - остальные геометрические параметры вычислить по формулам 1-5.
- 6.3.2 Определение основных геометрических параметров конического редуктора проводится:
 - сосчитать число зубьев шестерни;
 - сосчитать число зубьев колеса;
 - измерить внешний окружной шаг;
 - замерить ширину венцов шестерни;
 - замерить ширину венца колеса;
 - остальные геометрические параметры вычислить по формулам 6-14.
- 6.3.3 Определение основных геометрических параметров червячного редуктора проводится:
 - сосчитать число зубьев червяка;
 - сосчитать число зубьев колеса;
 - измерить осевой шаг червяка;
 - замерить диаметр вершин зубьев червяка;
 - замерить диаметр вершин зубьев колеса;
 - замерить длину нарезной части червяка;
 - замерить ширину венца колеса;
 - остальные геометрические параметры вычислить по формулам 15-23.

7 Вопросы для самоконтроля

- 1) Что называют редуктором? Каково назначение редуктора в приводе?
- 2) Почему цилиндрические зубчатые редукторы получили широкое применение в машиностроении?
 - 3) Какие основные параметры редуктора?
- 4) Каковы достоинства и недостатки прямозубых и косозубых цилиндрических передач, их назначение?
- 5) Каковы достоинства и недостатки прямозубой конической передачи, ее назначение?
 - 6) Каковы достоинства и недостатки червячной передачи, ее назначение?

БЛАНК ОТЧЁТА О ЛАБОРАТОРНОЙ РАБОТЕ №6

«Изучение конструкции зубчатых редукторов»

Ф.И.О. студента_	
Группа	
Дата	
Преподаватель	

1) Провести измерение и расчет основных параметров двухступенчатого редуктора и занести значения в таблицу 1.

Таблица 1 — Основные геометрические и кинематические параметры исследуемого двухступенчатого цилиндрического редуктора

Наименование параметра	Обозначение	Результат	
		І ступень	II ступень
Число зубьев шестерни	\mathbf{z}_1		
Число зубьев колеса	\mathbf{z}_2		
Передаточное число ступеней	u		
Общее передаточное число	u _{общ}		
редуктора			
Межосевое расстояние, мм	$a_{ m w}$		
Угол наклона линии зуба	β		
Модуль нормальный, мм	m_n		
Делительный диаметр, мм	d_1		
	d_2		
Диаметр вершин зубьев, мм	d_{a1}		
	d_{a2}		
Ширина венцов колес, мм	b_1		
	b_2		
Диаметр впадин зубьев	d_{fl}		
	d_{f2}		

2) Произвести измерение и расчет конического редуктора и занести значения в таблицу 2.

Таблица 2 — Основные геометрические и кинематические параметры исследуемого конического редуктора

Наименование параметра	Обозначение	Результат
Число зубьев шестерни	\mathbf{z}_1	
Число зубьев колеса	\mathbf{z}_2	
Передаточное число редуктора	u	
Угол делительного конуса, °		
шестерни	δ_1	
колеса	δ_2	
Внешний окружной шаг, мм	p _e	
Внешний окружной модель, мм	m _e	
Ширина зубчатого венца, мм		
шестерни	b_1	
колеса	b_2	
Внешнее конусное расстояние, мм	R _e	
Средний делительный диаметр, мм		
шестерни	\mathbf{d}_1	
колеса	d_2	
Внешний делительный диаметр, мм		
шестерни	d_{e1}	
колеса	d_{e2}	
Внешний диаметр вершин зубьев, мм		
шестерни	$\mathbf{d}_{\mathrm{ae1}}$	
колеса	d _{ae2}	

3) Произвести измерение и расчет червячного редуктора и занести значения в таблицу 3.

Таблица 3 — Основные геометрические и кинематические параметры исследуемого червячного редуктора

Наименование параметра	Обозначение	Результат
Число зубьев червяка	Z_1	
Число зубьев колеса	Z_2	
Передаточное число редуктора	u	
Осевой шаг червяка, мм	р	
Расчетный модуль, мм	m	
Диаметр вершин зубьев, мм		
червяка	d_{a1}	
колеса	d_{a2}	
Делительный диаметр, мм		
червяка	d_1	
колеса	d_2	
Межосевое расстояние, мм	$a_{ m w}$	
Коэффициент диаметра червяка	q	
Угол подъема витка винтовой линии, °	γ	
Диаметр впадин зубьев, мм		
червяка	d_{fl}	
колеса	d_{f2}	
Длина нарезной части червяка, мм	b ₁	
Ширина венца колеса, мм	b ₂	
КПД червячной передачи	η	

4) Сделать вывод	
Работу выполнил	Работу принял преподаватель
Студент группы	/
Номер по журналу, подпись	«»201
Номер по журналу, подпись «»201	