

Data Classification Algorithms

a presentation by
B.Sivaselvan
Associate Professor, CSE
IIITD&M Kancheepuram

Classification

- Human beings learning from past experiences.
- A computer does not have "experiences
- Form of data analysis extracts models describing important data classes.
- Predict Future Trends
- Model (Classifier) is built to predict categorical labels (class labels)
- Model generated from training data
- Classifier used to predict labels for test data
- Supervised Learning mechanism

Classification Approaches

- learn a target function that can be used to predict the values of a discrete class attribute, e.g., approve or not-approved, and high-risk or low risk.
- 2 step process Training and Testing Phase
- Training (Learning Phase) Learn / Generate a model to describe predefined classes (labels) using tuples & attributes – associated labels.
- Classification a.k.a Learning from Examples
- Testing Phase New / Live data to be classified using the learnt model
- Eg: Biometric Fingerprint System,

Classification Algorithms

- Decision Tree Induction
- - learn decision trees from training data
- CART, ID3, SLIQ, .. famous DT classifiers
- Some More Applications:
- to predict high-risk patients and discriminate them from low-risk patients – more relevant in the covid era with critical ICU resource mgmt.
- to decide whether a bank loan application should approved, or to classify applications into two categories, approved and not approved

(1)	create a node N ;
(2)	if tuples in D are all of the same class, C , then
(3)	return N as a leaf node labeled with the class C ;
(4)	if <i>attribute_list</i> is empty then
(5)	return N as a leaf node labeled with the majority class in D ; // majority voting
(6)	apply Attribute_selection_method(D, attribute_list) to find the "best" splitting_criterion;
(7)	label node N with splitting_criterion;
(8)	<pre>if splitting_attribute is discrete-valued and</pre>
	multiway splits allowed then // not restricted to binary trees
(9)	$attribute_list \leftarrow attribute_list - splitting_attribute; // remove splitting_attribute$
(10)	for each outcome <i>j</i> of <i>splitting_criterion</i>
	// partition the tuples and grow subtrees for each partition
(11)	let D_j be the set of data tuples in D satisfying outcome j ; // a partition
(12)	if D_j is empty then
(13)	
(14)	else attach the node returned by Generate_decision_tree(D_i , attribute_list) to node N
	endfor
(15)	return N;
	(2) (3) (4) (5) (6) (7) (8) (10) (11) (12) (13) (14)

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquemanner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf
 - There are no samples left

Decision Tree Induction: An Example

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain)

$$SplitInfo_A(D) = -\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex.

$$SplitInfo_{income}(D) = -\frac{4}{14} \times \log_2(\frac{4}{14}) - \frac{6}{14} \times \log_2(\frac{6}{14}) - \frac{4}{14} \times \log_2(\frac{4}{14}) = 1.557$$

- gain_ratio(income) = 0.029/1.557 = 0.019
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM IntelligentMiner)

If a data set D contains examples from n classes, gini index, gini(D) is defined as

 $gini(D)=1-\sum_{j=1}^{n} p_{j}^{2}$

where p_i is the relative frequency of class j in D

If a data set D is split on A into two subsets D₁ and D₂, the gini index gini(D) is defined as

 $gini_A(D) = \frac{|D_1|}{|D|}gini(D_1) + \frac{|D_2|}{|D|}gini(D_2)$ • Reduction in Impurity:

 $\Delta gini(A) = gini(D) - gini(D)$ • The attribute provides the smallest $gini_{split}(D)$ (or the largest reduction in impurity) is chosen to split the node (need to enumerate all the possible splitting points for each attribute)

Computation of Gini Index

Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no" $gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$

Suppose the attribute income partitions D into I0 in D_1 : {low,

medium) and 4 in D_2

$$\begin{split} & gini_{income \in \{low, medium\}}(D) = \left(\frac{10}{14}\right) Gini(D_1) + \left(\frac{4}{14}\right) Gini(D_2) \\ & = \frac{10}{14} \left(1 - \left(\frac{7}{10}\right)^2 - \left(\frac{3}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{2}{4}\right)^2 - \left(\frac{2}{4}\right)^2\right) \\ & = 0.443 \\ & = Gini_{income} \in \{high\}(D). \end{split}$$

Gini_{low,high} is 0.458; Gini_{medium,high} is 0.450. Thus, split on the {low,medium} (and {high}) since it has the lowest Gini index

- All attributes are assumed continuous-valued
- May need other tools, e.g., clustering, to get the possible split values
- Can be modified for categorical attributes

Classifier Evaluation

Predictive accuracy

$$Accuracy = \frac{\text{Number of correct classifications}}{\text{Total number of test cases}}$$

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

where

TP: the number of correct classifications of the positive examples (true positive),

FN: the number of incorrect classifications of positive examples (false negative),

FP: the number of incorrect classifications of negative examples (false positive), and

TN: the number of correct classifications of negative examples (true negative).

Performance Measures contd...

	Classified Positive	Classified Negative
Actual Positive	TP	FN
Actual Negative	FP	TN

$$p = \frac{TP}{TP + FP}.$$
 $r = \frac{TP}{TP + FN}.$

- Precision p is the number of correctly classified positive examples divided by the total number of examples that are classified as positive.
- Recall r is the number of correctly classified positive examples divided by the total number of actual positive examples in the test set.

precision p = 100% and recall r = 1% one positive example correctly and no negative examples wrongly.

Difficult to compare two classifiers using two measures. F_1 score combines precision and recall into one measure

$$F_1 = \frac{2pr}{p+r}$$

F₁-score is the harmonic mean of precision and recall.

$$F_1 = \frac{2}{\frac{1}{p} + \frac{1}{r}}$$

The harmonic mean of two numbers tends to be closer to the smaller of the two. For F_1 -value to be large, both p and r much be large.

Receive operating characteristics curve

- It is commonly called the ROC curve.
- It is a plot of the true positive rate (TPR) against the false positive rate (FPR).

TP + FN

• True positive rate $TPR = \frac{TP}{T}$

• False positive ra
$$FPR = \frac{FP}{TN \perp FP}$$

Sensitivity and Specificity

- In statistics, there are two other evaluation measures:
 - Sensitivity: Same as TPR
 - $^{\circ}$ Specificity: Also called True Negative Rate (TNR) TN

 $TNR = \frac{TN}{TN + FP}$

• Then we have FPR = 1 - specificity

Example ROC curves

Area under the curve (AUC)

- C₁ or C₂? Efficient dependent
 - It depends on which region you talk about.
- Can we have one measure?
 - Yes, we compute the area under the curve (AUC)
- If AUC for C_i is greater than that of C_j , it is said that C_i is better than C_i .
 - If a classifier is perfect, its AUC value is I
 - If a classifier makes all random guesses, its AUC value is 0.5.