Systems Biology from Genes to Ecosystems Pattern Formation

(Lecture by Associate Prof. Christian Fleck¹, Period 2; 2014/15)

Exercise sheet

1) Solving simple partial differential equations

- A (1 points): Find the general solution of $\partial_x u(x,y) = 0$
- B (1 points): Find the general solution of $\partial_x \partial_y u(x,y) = 0$
- **2) Diffusion with advection** Diffusion plus advection (transport by a flux) is described by the equation:

$$D\partial_x^2 C = v\partial_x C$$

Here C(x) is the concentration of molecules and v being the velocity of the flux and D the diffusion constant. The boundary conditions on a 1-d domain read:

$$D \partial_x C|_{x=0} = -\alpha + vC$$

$$D \partial_x C|_{x=1} = -\beta C + vC$$

- A (2 points): Find the general solution. Hint: A constant solves the PDE as well as $e^{v/Dx}$
- B (2 points): Specify the general solution by determining the unknown constants using the boundary conditions.
- C (2 points): What is the result for C(x=0) and C(x=1)?
- **3) Eigenvalues and eigenvectors** Solve the following system of ordinary differential equations:

$$\dot{x} = x + y
\dot{y} = 4x - 2y$$

Rewrite this in vector notation. Make the Ansatz $\vec{x}(t) = (x, y)^T = \vec{v}e^{\lambda t}$.

- A (2 points): Determine the Eigenvalues.
- B (2 points): Determine the Eigenvectors.
- C (2 points): Determine the full solution using the initial condition $\vec{x}(t=0) = (x_0, y_0)^T = (2, -3)^T$.

¹Christian.Fleck@wur.nl

4) Turing instability of a reaction-diffusion system Consider the following system:

$$\frac{\partial u}{\partial t} = au^2v - bu + D_u\Delta u$$

$$\frac{\partial v}{\partial t} = c - au^2v + D_v\Delta v$$

A (4 points): Rescale length by the systems size L and time by L^2/D_u . Hint: $\partial_t \to D_u/L^2\partial_t$ and $\Delta \to 1/L^2\Delta$. Rewrite the equations further by rescaling u and v by c/b. Bring the system into the form:

$$\begin{array}{lcl} \frac{\partial u}{\partial t} & = & \gamma f(u,v) + \Delta u \\ \frac{\partial v}{\partial t} & = & \gamma g(u,v) + d\Delta v \end{array}$$

with $\gamma = L^2 b/D$ and

$$f(u,v) = \alpha u^2 v - u$$

$$g(u,v) = 1 - \alpha u^2 v$$

How do the parameters α and d read in terms of the original parameters a, b and c?

- B (2 points): Determine the homogeneous steady states (u_0, v_0) .
- C (2 points): Determine the Jacobian J. What is the sign structure of it?
- D (2 points): What are the constraints on the parameters to ensure a stable homogeneous steady state?
- E (2 points): What are the necessary and sufficient conditions on the parameters to ensure a diffusive (Turing) instability?
- F (2 points): The solution of the linearized systems in terms of the eigenfunctions of the Laplace operator (Fourier modes, $\Delta \vec{W}_k = -k^2 \vec{W}_k$) lead to the equation $[\gamma J k^2 D] \vec{W}_k = \lambda \vec{W}_k$. Determine the eigenvalues $\lambda(k)$.
- G (2 points): Find the zeros of the dispersion relation, i.e, $\lambda(k) = 0$. Hint: This is equivalent to find the zeros of $h(k) = dk^4 \gamma(df_u + g_v)k^2 + \gamma^2(f_ug_v f_vg_u)$. Why?

2