Digital Electronics and Systems

Question: Use Karnaugh map to find the minimum cost SOP and POS expressions for the function.

$$f(x_1,\ldots,x_4)=\overline{x}_1\overline{x}_3\overline{x}_4+x_3x_4+\overline{x}_1\overline{x}_2x_4+x_1x_2\overline{x}_3x_4$$

Assuming that there are also don't cares defined as $D = \sum (9, 12, 14)$.

Standard SOP

$$f(x_1, x_2, x_3, x_4) = \overline{x}_1 (x_2 + \overline{x}_2) \overline{x}_3 \, \overline{x}_4 + (x_1 + \overline{x}_1) (x_2 + \overline{x}_2) x_3 x_4 +$$

$$\overline{x}_1 \overline{x}_2 (x_3 + \overline{x}_3) x_4 + x_1 x_2 \overline{x}_3 x_4$$

 $f(x_1, x_2, x_3, x_4) = \overline{x_1}(x_2 + \overline{x_2}) \overline{x_3} \overline{x_4} + (x_1 + \overline{x_1})(x_2 + \overline{x_2})(x_3 x_4) + \overline{x_1} \overline{x_2}(x_3 + \overline{x_3}) x_4 + (x_1 x_2 x_3 x_4) + \overline{x_1} \overline{x_2}(x_3 + \overline{x_3}) x_4$

 $= x_{1} x_{2} x_{3} x_{4} + x_{1} x_{2} x_$

 $= \overline{x_{1}} \times_{2} \overline{x_{3}} \overline{x_{4}} + \overline{x_{1}} \overline{x_{4}} \overline{x_{3}} \overline{x_{4}} + \overline{x_{1}} \times_{4} \overline{x_{3}} \overline{x_{4}} + \overline{x_{1}} \overline{x_{4}} \overline{x_{3}} \overline{x_{4}} + \overline{x_{1}} \overline{x_{1}} \overline{x_{2}} \overline{x_{3}$

Product Term	Binary Value	Decimal Value	Minterm. No:
x1 x2 x3 x4	0100	4	m4
x1 x2 x3 x4	0000	0	mo
×1 ×2 ×3 ×4	1 1 1	15	m15
x1 x2 x3 x4	1011	1.1	m_{H}
5€1 ×2 ×3 ×4	0111	7	Ma
5C1 5C3 7C3 7C4	0011	3	ma
∞1 x x x x x x x 4	0001	1	·m
x_1 x_2 x_3 x_4	1101	13	w13

 $f(\infty), x(a, \infty), x(4) = 2m(0, 1,3,4,7,11,13,15)$ + D(9,1a,14)

Minimum cost SOP expression is

$$f = x_3x_4 + \overline{x}_1\overline{x}_3\overline{x}_4 + \overline{x}_2x_4 + x_1x_4$$

Standard POS expression

$$f = x_3 \overline{x_4} + x_1 \overline{x_4} + \overline{x_1} x_2 \overline{x_3} x_4$$

$$f = f = x_3 \overline{x_4} + x_1 \overline{x_4} + \overline{x_1} x_2 \overline{x_3} x_4$$

$$f = (\overline{x_3} + x_4)(\overline{x_1} + x_4)(x_1 + \overline{x_2} + x_3 + \overline{x_4})$$

This is the minimum cost POS expression.

Practice Problem:

Problem: Determine the minimum-cost SOP and POS expressions for the function $f(x_1, x_2, x_3, x_4) = \sum m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9).$

SOP expression

$$f = \overline{x}_1 x_2 + x_1 \overline{x}_2 + x_3 x_4 + x_1 \overline{x}_3 \overline{x}_4$$

POS
$$f = (x_1 + x_2)(x_3 + \overline{x}_4)(\overline{x}_1 + \overline{x}_2 + \overline{x}_3 + x_4)$$
 expression

 Question: Obtain the minimal SOP expression and minimal POS expression for the function

$$f = \sum_{m} (1,5,7,13,14,15,17,18,21,22,25,29) + D(6,9,19,23,30)$$

Minimal SOP expression. $f = \overline{x}_3 x_4 + \overline{x}_1 x_3 x_5 + x_2 x_3 \overline{x}_5$

This is the minimal POS expression.

MULTIPLE OUTPUT CIRCUITS

 Implement the given functions, f₁ and f₂ with minimum cost.

$$f_1 = x_1 \overline{x}_3 + \overline{x}_1 x_3 + x_2 \overline{x}_3 x_4$$
$$f_2 = x_1 \overline{x}_3 + \overline{x}_1 x_3 + x_2 x_3 x_4$$

$f_1 = x_1 \overline{x}_3 + \overline{x}_1 x_3 + x_2 \overline{x}_3 x_4$

No: of gales = 4

No: of inputs = 10

Total Cost = 14

$f_2 = x_1 \overline{x}_3 + \overline{x}_1 x_3 + x_2 x_3 x_4$

$$f_{1} = \sum_{x_{1}} (x_{2} + \overline{x_{2}}) \overline{x_{3}} (x_{4} + \overline{x_{4}})$$

$$+ \overline{x_{1}} (x_{2} + \overline{x_{4}}) x_{3} (x_{4} + \overline{x_{4}})$$

$$+ (x_{1} + \overline{x_{1}}) x_{2} \overline{x_{3}} x_{4}$$

$$= x_{1} x_{2} \overline{x_{3}} x_{4} + x_{1} x_{2} \overline{x_{3}} \overline{x_{4}} +$$

$$x_{1} \overline{x_{4}} \overline{x_{3}} x_{4} + x_{1} x_{4} \overline{x_{3}} \overline{x_{4}} +$$

$$\overline{x_{1}} x_{2} x_{3} x_{4} + \overline{x_{1}} x_{4} x_{3} \overline{x_{4}} +$$

$$\overline{x_{1}} x_{4} x_{3} x_{4} + \overline{x_{1}} x_{4} x_{3} \overline{x_{4}} +$$

$$\overline{x_{1}} x_{4} x_{3} x_{4} + \overline{x_{1}} x_{4} x_{3} \overline{x_{4}} +$$

$$\overline{x_{1}} x_{4} x_{5} x_{5} x_{4} + \overline{x_{1}} x_{4} x_{5} \overline{x_{4}} +$$

عدم عدم عدم عدم + عدم عدم عدم عدم

Product Term	Binary	Decimal	Minterno No:
x1 x2 553 x4	1101	. 13	. m13
201 202 23 24	1100	.12	m ₁₂
x1 75 75 74	1001	9	µ04
21 72 73 74	1000	8	μ.δ.
x1 x2 x3 x4	0 111.	7	my
可以双环	0110	6	m ₆
x1 1 x3 x4	0011	ء	ma
λί χ, x3 λί	0010	5	m _B
x1 x2 x3 x4	0101		

(a) Function f_1

$$f_{2} = x_{1} (x_{2} + x_{2}) x_{3} (x_{4} + x_{4}) + x_{1} (x_{2} + x_{3}) x_{4} + x_{1$$

Product Lerm	Binory	Decimal	Mintern No:
x1 x2 5c3 x4	1101	13	wis
x1 x2 x3 x4	11 00	12	w15
०८। ठ्यं ठ्यं ०८४	1001	9	Lood.
21 50 503 504	1000	8	ms
کرا عدم عدم عدم	0 111	7	m7
ير عدم عدم عدم	0110	6	me
×1 ×2 ×3 ×4	0011	3	m3
×1 ×2 ×3 ×4	0010	a.	ma
مرا عدم عدم عدم المحر عدم عدم	1111	।চ	m15

fa = 2m (2, 3, 6, 7, 8, 9, 12, 13, 15)

(b) Function f_2

If both functions are implemented separately,
 then total cost = 28

A less expensive realization is possible if the two circuits are combined into a single circuit with two outputs.

Because first two product terms are identical in both expressions, the AND gate that implement them need not be duplicated.

Combined circuit for f_1 and f_2

Total cost = 22

 Implement the given functions, f₃ and f₄ with minimum cost.

$$f_3 = \overline{x}_1 x_4 + x_2 x_4 + \overline{x}_1 x_2 x_3$$
$$f_4 = x_1 x_4 + \overline{x}_2 x_4 + \overline{x}_1 x_2 x_3 \overline{x}_4$$

$$f_3 = \overline{x}_1 x_4 + x_2 x_4 + \overline{x}_1 x_2 x_3$$

$$f_4 = x_1 x_4 + \overline{x}_2 x_4 + \overline{x}_1 x_2 x_3 \overline{x}_4$$

 $f_3 = \overline{x_1} \times_4 + x_2 \times_4 + \overline{x_1} \times_2 \times_3$ Convert it into standard SOP.

Binary	Decimal	Minterm No:
0111	7	^m 7
0011	3	m ₃
0001	١	w) 1
1.1.1.1	15	M15
1101	13	m ¹³
0101	5	w₽
0110	6	me
	0111	0111 7 0011 3 0001 1 1111 15 1101 13 0101 5

 $f_3 = \leq_m (m_1, m_3, m_5, m_6, m_7, m_{13}, m_{15})$

 $f_4 = x_1 x_4 + x_2 x_4 + x_1 x_2 x_3 x_4$ Convert it into standard sop

$$\therefore f_{4} = x_{1} (x_{2} + x_{2}) (x_{3} + x_{3}) x_{4} + (x_{1} + x_{1}) x_{4} (x_{3} + x_{3}) x_{4} + (x_{1} + x_{1}) x_{4} (x_{3} + x_{3}) x_{4} + x_{5}$$

$$= x_{1} x_{2} x_{3} x_{4} + x_{1} x_{2} \overline{x_{3}} x_{4} + x_{1} x_{2} \overline{x_{3}} x_{4} + x_{1} \overline{x_{2}} \overline{x_{3}} x_{4} + x_{1}$$

Product term	Binarey	Decimal	Minterm No:
x1 x2 x3 x4	\ 1 1 I	15	w12
x1 x2 x3 x4	1101	13	m13
x1 5c2 x3 x4	1011	11	m ₁₁
$x_1 \overline{x_2} \overline{x_3} x_4$	1001	9	md
$\overline{x_1}$ $\overline{x_2}$ $x_3 x_4$	0011	3	m ₃
河域 死 4	0001	١	m_l
$\overline{x_1}$ x_2 x_3 $\overline{x_4}$	0110	6	me

f4 = 2m (1, 3, 6, 9, 11, 13,15)

$$f_3 = \overline{x}_1 x_4 + x_2 x_4 + \overline{x}_1 x_2 x_3$$

$$f_4 = x_1 x_4 + \overline{x}_2 x_4 + \overline{x}_1 x_2 x_3 \overline{x}_4$$

(a) Optimal realization of f_3

(b) Optimal realization of f_4

$$f_3 = x_1 x_2 x_4 + \overline{x}_1 x_2 x_3 \overline{x}_4 + \overline{x}_1 x_4$$
$$f_4 = x_1 x_2 x_4 + \overline{x}_1 x_2 x_3 \overline{x}_4 + \overline{x}_2 x_4$$

Optimal realization of f_3 and f_4 together

Combined circuit for f_3 and f_4

Total cost = 23

Practice problem:

Text book : Fundamentals of Digital Logic with Verilog Design

Authors: Stephen Brown, Zvonko Vranesic

Chapter title: Optimized Implementation of Logic functions

Question No: 4.5, 4.6,4.10

Solve these problems.