

IN THE CLAIMS:

Please cancel Claim 18 without prejudice to or disclaimer of the subject matter presented therein. Please amend Claims 15, 19, and 25 as shown below.

1. (Previously Presented) A method for measuring fluorescence emitted from samples on a measuring surface of a substrate by illuminating said samples with excitation light, characterized in that

an excitation light illumination portion and a light detecting portion are moved independently of each other relative to said samples and are spaced apart in such a manner as to make it possible to prevent said excitation light from approaching said light detecting portion where measurements are made of said fluorescence, and

the fluorescence emitted from the samples is measured while said excitation light illumination portion and said light detecting portion are moved relative to said samples after illuminating said samples with said excitation light.

2 to 5. (Cancelled)

6. (Previously Presented) The method according to claim 1, wherein said samples are liquid filled in cells formed on said substrate.

7. (Previously Presented) The method according to claim 1, wherein said samples are substances attached, adsorbed onto, or trapped in said substrate.

8. (Previously Presented) The method according to claim 1, wherein said samples are DNA.

9. (Previously Presented) The method according to claim 1, wherein said samples are protein.

10. (Previously Presented) The method according to claim 1, wherein said samples are peptide nucleic acid.

11. (Previously Presented) The method according to claim 1, wherein said samples are fixed on probes arranged on said substrate.

12. (Original) The method according to claim 11, wherein said probes are DNA.

13. (Original) The method according to claim 11, wherein said probes are protein.

14. (Original) The method according to claim 11, wherein said probes are peptide nucleic acid.

15. (Currently Amended) The method according to claim 1, wherein said spacing between said excitation light illumination position portion and said light detecting

portion is variable and the period from the illumination of excitation light to the detection of fluorescence is **properly** adjustable.

16. (Previously Presented) The method according to claim 1, wherein the speed of relative movement is variable and the period from the illumination of excitation light to the detection of fluorescence is adjustable by varying said speed.

17. (Previously Presented) The method according to claim 1, wherein said samples on said measuring surface of said substrate are arranged on more than one circle or on the arcs thereof which are concentric with the central axis of said substrate and are different in radius from each other, the samples at the same distance from the central axis having the same or similar attributes and forming a group which can be discriminated from the other groups of samples.

18. (Cancelled)

19. (Currently Amended) A fluorometric device comprising;
an excitation light illumination portion where samples on a measuring surface of a substrate are illuminated with excitation light: light;
a light detecting portion where measurements of the fluorescence emitted from the samples is performed; and
means for varying spacing between said excitation light illumination portion and said light detecting portion,

wherein said excitation light illumination portion and said light detecting portion are spaced apart in such a manner as to make it possible to prevent said excitation light from approaching said light detecting portion.

20 to 23. (Cancelled)

24. (Previously Presented) The fluorometric device according to claim 19, wherein the varying of the spacing between said excitation light illumination portion and said light detecting portion adjusts the period of time from the excitation light illumination to the light detection.

25. (Currently Amended) The fluorometric device according to claim 19, comprising means for varying a moving speed of the samples, with which the period of time from the excitation light illumination to the light detection is properly adjustable.

26. (Cancelled)

27. (Cancelled)

28. (Previously Presented) A method for measuring fluorescence emitted from samples on a measuring surface of a substrate by illuminating said samples with excitation light, characterized in that

an excitation light illumination portion and a light detecting portion are placed in such a manner as to make it possible to prevent said excitation light from

approaching said light detecting portion where measurements are made of said fluorescence, and

the fluorescence emitted from the samples is measured while moving said excitation light illumination portion and said light detecting portion relative to the samples which are not moved.