Chap 4. The Greedy Approach

- 1. Minimum Spanning Trees
- 2. Dijkstra's Algorithm for Single-Source Shortest Paths
- 3. Scheduling
- 5. The Greedy Approach Vs Dynamic Programming: The Knapsack Problem

Introduction

- Want to solve optimization problems
 - Using dynamic programming and greedy approach
- Dynamic Programming
 - A recursive property is used to divide an instance into smaller instances
- Greedy approach
 - Arrives at a solution by making a sequence of choices, each of which simply looks the best at the moment. That is, each choice is locally optimal.

Introduction

- □ <u>탐욕적인 알고리즘(Greedy algorithm)</u>은 결정을 해야 할 때마다 그 순간에 가장 좋다고 생각되는 것을 해답으로 선택함으로써 최종적인 해답에 도달한다.
- □ 그 순간의 선택은 그 당시(local)에는 최적이다. 그러나 최적이라고 생각했던 해답들을 모아서 최종적인(global)해답을 만들었다고 해서, 그 해답이 궁극적으로 최적이라는 보장이 없다.
- □ 따라서 탐욕적인 알고리즘은 항상 최적의 해답을 주는지를 반드시 검증해야 한다.

탐욕적인 알고리즘 설계 절차

1. Selection procedure (선정과정)

• 현재 상태에서 가장 좋으리라고 생각되는(greedy criterion) 해답을 찾아서 해답모음(solution set)에 포함시킨다.

2. Feasibility check (적정성 점검)

새로 얻은 해답모음이 적절한지를 결정한다.

3. Solution check (해답 점검)

새로 얻은 해답모음이 최적의 해인지를 결정한다.

□ Problem: 동전의 개수가 최소가 되도록 거스름 돈을 주는 문제

Greedy Algorithm

Coins

Amount owed: 36 cents

Step

Total Change

1. Grab quarter

2. Grab first dime

3. Reject second dime

4. Reject nickel

5. Grab penny

Fall 2015

- □ 최적의 해를 얻지 못하는 경우
 - 12 cent 짜리 동전을 새로 발행했다고 하자.
 - 이 알고리즘을 적용하여 거스름돈을 주면,
 항상 동전의 개수는 최소가 된다는 보장이 없다.
 - 보기: 거스름돈 액수 = 16 cent
 - 탐욕알고리즘의 결과: 12 cent × 1개 = 12 cent, 1 cent × 4개 = 4 cent
 - 동전의 개수 = 5개 ⇒ 최적(optimal)이 아님!
 - 최적의 해: 10 cent × 1개, 5 cent × 1개, 1 cent × 1개가 되어 동전의 개수는 3개가 된다.

Coins

Amount owed: 16 cents

Step

Total Change

1. Grab 12-cent coin

2. Reject dime

3. Reject nickel

4. Grab four pennies

그래프 용어

- □ 비방향성 그래프(undirected graph) G = (V,E),
 - *V*는 정점(vertex)의 집합
 - E는 이음선(edge)의 집합
- □ 경로(path)
- □ 연결된 그래프(connected graph) 어떤 두 정점 사이에도 경로가 존재
- □ 부분그래프(subgraph)
- □ 가중치 포함 그래프(weighted graph)
- □ 순환경로(cycle)
- □ 순환적그래프(cyclic graph), 비순환적그래프(acyclic graph)
- □ 트리(tree) 비순환적이며, 비방향성 그래프
- □ 뿌리 있는 트리(rooted tree) 한 정점이 뿌리로 지정된 트리

예: 연결된 가중치 비방향그래프

Spanning Tree

- □ Spanning Tree (신장트리)
 - A connected subgraph that contains all the vertices in G and is a tree
 - 연결된, 비방향성 그래프 G에서 순환경로를 제거하면서 연결된 부분그래프가 되도록 이음선을 제거
 - 따라서 신장트리는 G안에 있는 모든 정점을 다 포함하면서 트리가 되는 연결된 부분그래프

Spanning Tree

- □ Minimum spanning tree (최소비용 신장트리)
 - A spanning tree with minimum weight
 - 최소의 가중치를 가진 부분그래프는 반드시 트리가 되어야 한다.
 왜냐하면, 만약 트리가 아니라면, 분명히 순환경로(cycle)가 있을 것이고,
 그렇게 되면 순환경로 상의 한 이음선을 제거하면 더 작은 비용의
 신장트리가 되기 때문이다.
 - 관찰: 모든 신장트리가 최소비용 신장트리는 아니다.

(a) A connected, weighted, undirected graph G

(b) If (v₄,v₅) were removed from this subgraph, the graph would remain connected.

(c) A spanning tree for G

(d) A minimum spanning tree for G

- □ 최소비용신장트리의 적용 예
 - 도로 건설 (road construction)
 - 도시들을 모두 연결하면서 도로의 길이가 최소가 되도록 하는 문제
 - 통신 (telecommunications)
 - 전화선의 길이가 최소가 되도록 전화 케이블 망을 구성하는 문제
 - 배관 (plumbing)
 - 파이프의 총 길이가 최소가 되도록 연결하는 문제

Brute-force method

- 알고리즘
 - 모든 신장트리를 다 고려해 보고, 그 중에서 최소비용이 드는 것을 고른다.
- 분석
 - 이는 최악의 경우, 지수보다도 나쁘다.
 - 이유?

Greedy approach

Problem: 비방향성 그래프 G = (V,E)가 주어졌을 때,
 F⊆E를 만족하면서,
 (V,F)가 G의 최소비용신장트리(MST)가 되는 F를 찾는 문제.

Algorithm

High-level Algorithm

```
F := \Phi_i
                               // initialize set of edges to empty
Y := \{v_1\};
                               // initialize set of vertices to
                               // contain only the first one
While (the instance is not solved) {
   select a vertex in V-Y that is nearest to Y;
                               // selection procedure and
                               // feasibility check
   add the vertex to Y;
   add the edge to F;
                 // solution check
   if (Y == V)
       the instance is solved;
```


• 그래프의 인접행렬식 표현

$$W[i][j] = \begin{cases} 0 음선의 가중치 & v_i 에서 v_j 로의 이음선이 있다면 \\ \infty & v_i 에서 v_j 로의 이음선이 없다면 \\ 0 & i = j 이면 \end{cases}$$

	1	2	3	4	5
1	0	1	3	00	∞
2	1	0	3	6	∞
1 2 3 4 5	1 3	3	0	4	2
4	00	6	4	0	5
5	00	00	2	5	0

• 추가적으로 nearest[1..n]과 distance[1..n] 배열 유지

nearest[i] = Y에 속한 정점 중에서 v_i 에서 가장 가까운 정점의 인덱스

 $distance[1..n] = v_i$ 와 nearest[i]를 잇는 이음선의 가중치

```
void prim(int n, const number W[][], set_of_edges& F) {
  index i, vnear; number min; edge e;
  index nearest[2..n]; number distance[2..n];
  F = \Phi_i
                                   // 초기화
  for(i=2; i <= n; i++) {
                                 // vi에서 가장 가까운 정점을 v1으로 초기화
// vi과 v1을 잇는 이음선의 가중치로 초기화
     nearest[i] = 1;
     distance[i] = W[1][i];
                                // n-1개의 정점을 Y에 추가한다
  repeat(n-1 times) {
     min = "infinite";
     for(i=2; i <= n; i++) // 각 정점에 대해서
        if (0 <= distance[i] <= min) { // distance[i]를 검사하여
           min = distance[i]; // 가장 가까이 있는 vnear을
                       // 찾는다.
           vnear = i;
     e = edge connecting vertices indexed by vnear and nearest[vnear];
     add e to F;
                        // 찾은 노드를 Y에 추가한다.
     distance[vnear] = -1;
     for(i=2; i <= n; i++)
     if (W[i][vnear] < distance[i]) { // Y에 없는 각 노드에 대해서
        distance[i] = W[i][vnear]; // distance[i]를 갱신한다.
        nearest[i] = vnear;
```

- Every-case Time Complexity Analysis
 - 단위연산: repeat-루프 안에 있는 두 개의 for-루프 내부에 있는 명령문
 - 입력크기: 마디의 개수, n
 - 분석: repeat-루프가 *n*-1번 반복되므로
 - $T(n) = 2(n-1)(n-1) \in \Theta(n^2)$

- □ 최적여부의 검증 (Optimality Proof)
 - Prim의 알고리즘이 찾아낸 신장트리가 최소비용(minimal)인지를 검증. 다시 말하면, Prim의 알고리즘이 최적(optimal)인지를 보여야 한다.

Definition 4.1

비방향성 그래프 G = (V, E)가 주어지고, 만약 E의 부분집합 F에 MST가 되도록 이음선을 추가할 수 있으면, F는 <u>유망하다(promising)</u>라고 한다.

• Lemma 4.1:

G = (V, E)는 연결되고, 가중치 포함 비방향성 그래프라고 하고, F는 E의 유망한 부분집합이라고 하고, Y는 F안에 있는 이음선 들에 의해서 연결이 되어 있는 정점의 집합이라고 하자. 이때, Y에 있는 어떤 정점과 V - Y에 있는 어떤 정점을 잇는 이음선 중에서 가중치가 가장 작은 이음선을 e라고 하면, $F \cup \{e\}$ 는 유망하다.

Optimality Proof (Lemma 4.1)

- F가 유망하기 때문에 $F \subseteq F$ 이면서 (V, F)가 최소비용신장트리(MST)가 되는 이음선의 집합 F가 반드시 존재한다.
- 경우 1: 만일 $e \in F$ 라면, $F \cup \{e\} \subseteq F$ 가 되고, 따라서 $F \cup \{e\}$ 도 유망하다.
- 경우 2: 만일 $e \notin F$ '라면, (V, F)는 신장트리이기 때문에, $F' \cup \{e\}$ 는 반드시 순환 경로를 하나 포함하게 되고, e는 반드시 그 순환경로 가운데 한 이음선이 된다.
 - 그러면 Y에 있는 한 정점에서 V- Y에 있는 한 정점을 연결하는 어떤 다른 이음선 $e' \in F'$ 가 그 순환경로 안에 반드시 존재하게 된다.
 - 여기서 만약 $F' \cup \{e\}$ 에서 e'를 제거하면, 그 순환경로는 없어지게 되며, 다시 신장트리가 된다. 그런데 e는 Y에 있는 한 정점에서 V-Y에 있는 한 정점을 연결하는 최소의 가중치(weight)를 가진 이음선이기 때문에, e의 가중치는 반드시 e'의 가중치 보다 작거나 같아야 한다. (실제로 반드시 같게 된다.)
 - 그러면 $F' \cup \{e\}$ $\{e'\}$ 는 최소비용신장트리(MST)이다.
 - 결론적으로 e'는 F안에 절대로 속할 수 없으므로 (F안에 있는 이음선들은 Y안에 있는 정점들 만을 연걸함을 기억하라), $F \cup \{e\} \subseteq F' \cup \{e\} \{e'\}$ 가 되고, 따라서 $F \cup \{e\}$ 유망하다.

□ Theorem 4.1

- 정리: Prim의 알고리즘은 항상 최소비용신장트리를 만들어 낸다.
- 증명: (수학적귀납법)
 매번 반복이 수행된 후에 집합 F가 유망하다는 것을 보이면 된다.
 - ◆ 출발점: 공집합은 당연히 유망하다.
 - ◆ 귀납가정: 어떤 주어진 반복이 이루어진 후, 그때까지 선정하였던 이음선의 집합인 F가 유망하다고 가정한다
 - ◆ 귀납절차: 집합 $F \cup \{e\}$ 가 유망하다는 것을 보이면 된다. 여기서 e는 다음 단계의 반복 수행 시 선정된 이음선 이다. 그런데, 위의 보조정리 1에 의하여 $F \cup \{e\}$ 은 유망하다고 할 수 있다. 왜냐하면 이음선 e는 Y에 있는 어떤 정점을 V-Y에 있는 어떤 정점 으로 잇는 이음선 중에서 최소의 가중치를 가지고 있기 때문이다.

증명 끝.

High-level Algorithm

```
F := \Phi;
                                          // initialize set of edges
                                          // to empty
create disjoint subsets of V, one for each
vertex and containing only that vertex;
sort the edges in E in nondecreasing order;
While (the instance is not solved) {
   select next edge;
                                          // selection procedure
   if (the edge connects 2 vertices
        in disjoint subsets) {
                                 // feasibility check
       merge the subsets;
       add the edge to F;
   if (all the subsets are merged) // solution check
      the instance is solved;
```

Determining a MST

- 1. Edges are sorted by weight
 - (v_1, v_2) 1
 - (v3, v5) 2
 - (v1, v3) 3
 - (v2, v3) 3
 - (v3, v4) 4
 - (v4, v5) 5
 - (v2, v4) 6

2. Disjoint sets are created

 (v_5)

- 3. (v1, v2) is selected
- 4. (v3, v5) is selected
- 5. (v1, v3) is selected

 (v_3)

 (v_5)

6. (v2, v3) is selected

7. (v3, v4) is selected

□ 서로소 집합 추상 데이터 타입 (disjoint set abstract data type) index *i*; set_pointer *p*, *q*;

initial(n): n개의 서로소 부분집합을 초기화 (하나의 부분집합에 1에서 n사이의 인덱스가 정확히 하나 포함됨)

p = find(i): 인덱스 i가 포함된 집합의 포인터 p를 넘겨줌

merge(p, q): 두 개의 집합을 가리키는 p와 q를 합병

equal(p, q): p와 q가 같은 집합을 가리키면 true를 넘겨줌

```
void kruskal(int n, int m, set_of_edges E, set_of_edges& F) {
    index i, j;
    set_pointer p, q;
        edge e;
    Sort the m edges in E by weight in nondecreasing order;
    F = \Phi;
    initial(n);
    while (number of edges in F is less than n-1) {
       e = edges with least weight not yet considered;
       i, j = indices of vertices connected by e;
       p = find(i);
       q = find(j);
       if (!equal(p,q)) {
            merge(p,q);
            add e to F;
```

- Worst-Case Time-Complexity Analysis
 - 단위연산: 비교문
 - 입력크기: 정점의 수 *n*과 이음선의 수 *m*
 - 1. 이음선 들을 정렬하는데 걸리는 시간: $\Theta(m \lg m)$
 - 2. 반복문 안에서 걸리는 시간: 루프를 m번 수행한다. 서로소인 집합 자료구조(disjoint set data structure)를 사용하여 구현하고, find, equal, merge 같은 동작을 호출하는 횟수가 상수이면, m개의 이음선 반복에 대한 시간복잡도는 $\Theta(m \lg m)$ 이다.
 - 3. n개의 서로소인 집합(disjoint set)을 초기화하는데 걸리는 시간: $\Theta(n)$
 - 그런데 여기서 $m \ge n$ 1이기 때문에, 위의 1과 2는 3을 지배하게 되므로, $W(m, n) = \Theta(m \lg m)$ 가 된다.
 - 그러나, 최악의 경우에는 모든 정점이 다른 모든 정점과 연결이 될 수 있기 때문에, $m = \frac{n(n-1)}{2} \in \Theta(n^2)$ 가 된다. 그러므로, 최악의 경우의 시간복잡도는 $W(m,n) \in \Theta(n^2 \lg n^2) = \Theta(2n^2 \lg n) = \Theta(n^2 \lg n)$
 - 최적여부의 검증(Optimality Proof)
 - Prim의 알고리즘의 경우와 비슷함. (교재 참조)

Minimum Spanning Tree

두 알고리즘의 비교

	W(m,n)	sparse graph	dense graph
Prim	$\Theta(n^2)$	$\Theta(n^2)$	$\Theta(n^2)$
Kruskal	$\Theta(m \lg m)$ and $\Theta(n^2 \lg n)$	$\Theta(m \lg m)$	$\Theta(n^2 \lg n)$

• 연결된 그래프에서의 m은 $n-1 \le m \le \frac{n(n-1)}{2}$ 의범위를 갖는다.

Minimum Spanning Tree

□ 토론사항

 알고리즘의 시간복잡도는 그 알고리즘을 구현하는데 사용하는 자료구조에 좌우되는 경우도 있다.

Prim 의 알고리즘	W(m,n)	sparse graph	dense graph
Heap	$\Theta(m \lg n)$	$\Theta(n \lg n)$	$\Theta(n^2 \lg n)$
Fibonacci heap	$\Theta(m+n \lg n)$	$\Theta(n \lg n)$	$\Theta(n^2)$

- 가중치가 있는 방향성 그래프에서 한 특정 정점에서 다른 모든 정점으로 가는 최단경로 구하는 문제
- □ 시작점 v₁
- □ 알고리즘

- Define touch & length
 - touch[i] = index of vertex v in Y such that the edge $\langle v, v_i \rangle$ is the last edge on the current shortest path from v_i to v_i using only vertices in Y as intermediates
 - length[i] = length of the current shortest path from v_1 to v_i using only vertices in Y as intermediates

```
void dijkstra (int n, const number W[][], set_of_edges& F) {
   index i, vnear; edge e;
  index touch[2..n]; number length[2..n];
   F = \Phi;
  for(i=2; i <= n; i++) { // For all vertices, initialize v1 to be the last
      touch[i] = 1;
                              // vertex on the current shortest path from v1,
     length[i] = W[1][i];  // and initialize length of that path to be the
                               // weight on the edge from v1.
  repeat(n-1 times) {
                              // Add all n-1 vertices to Y.
     min = "infinite";
     for (i=2; i \le n; i++) // Check each vertex for having shortest path.
         if (0 <= length[i] <= min) {
             min = length[i];
            vnear = i;
      e = edge from vertex indexed by touch[vnear]
          to vertex indexed by vnear;
      add e to F;
     for(i=2; i <= n; i++)
         if (length[vnear] + W[vnear][i] < length[i]) {</pre>
             length[i] = length[vnear] + W[vnear][i];
             touch[i] = vnear; // For each vertex not in Y, update its shortest
                               // path. Add vertex indexed by vnear to Y.
     length[vnear] = -1;
```

- □ 분석
 - $T(n) = 2 (n-1)^2 \in \Theta(n^2)$.
- □ 최적여부의 검증(Optimality Proof)
 - Prim의 알고리즘의 경우와 비슷함.

- Goal of scheduling
 - Minimize the total time they spend both waiting and being served (time in the system)
 - 2 examples
 - A hair stylist customers for different treatments (serving times)
 - Schedule with deadlines
 - Each job has the same amount of time to complete, but has a deadline

- Minimizing total time in the system
 - Ex 4.2 There are 3 jobs: $t_1 = 5$, $t_2 = 10$, $t_3 = 4$

Job

- 1 5 (service time)
- 2 5 (wait for job 1) + 10 (service time)
- 3 5 (wait for job 1) + 10 (wait for job 2) + 4 (service time)
- Schedule Total time in the system

$$[1, 2, 3]$$
 $5 + (5+10) + (5+10+4) = 39$

$$[1, 3, 2]$$
 $5 + (5+4) + (5+4+10)$ $= 33$

$$[2, 1, 3]$$
 $10 + (10+5) + (10+5+4) = 44$

$$[2, 3, 1]$$
 $10 + (10+4) + (10+4+5) = 43$

$$[3, 1, 2]$$
 $4 + (4+5) + (4+5+10) = 32$

$$[3, 2, 1]$$
 $4 + (4+10) + (4+10+5)$ = 37

→ Intuition: Execute the shortest jobs first

Fall 2015

Algorithm

```
Sort the jobs by service time in nondecreasing order;

While (the instance is not solved) {

schedule the next job; // selection procedure and

// feasibility check

if (there are no more jobs) // solution check

the instance is solved;

}
```

Time complexity

• $W(n) = \Theta(n \lg n)$

□ Theorem 4.3

The only schedule that minimizes the total time in the system is one that schedules jobs in nondecreasing order by service time

• Proof (by contradiction)

If they are not scheduled in nondecreasing order,

then for at least one *i* where $1 \le i \le n-1$, $t_i > t_{i+1}$

We can rearrange our original schedule by changing i-th, (i+1)-st

$$T' = T + t_{i+1} - t_i$$

T <= total time in the original schedule

T' <= total time in the rearranged schedule

Because $t_i > t_{i+1}$, T' < T \rightarrow *Contradict!!*

- Multiple-Server Scheduling Problem
 - m servers
 - Order the jobs be service time in nondecreasing order

```
server 1 jobs 1, (1+m), (1+2m), (1+3m), ......

server 2 jobs 2, (2+m), (2+2m), (2+3m), .....

:

server i jobs i, (i+m), (i+2m), (i+3m), .....

:

server m jobs m, (m+m), (m+2m), (m+3m), .....
```

- The jobs end up being processed in the following order
 - 1, 2, 3,, m, 1+m, 2+m,,m+m, 1+2m,

Scheduling with Deadlines

• Ex 4.3

Job	Deadline	Profit
1	2	30
2	1	35
3	2	25
4	1	40

Schedule	Total Profit
[1, 3]	30 + 25 = 55
[2, 1]	35 + 30 = 65
[2, 3]	35 + 25 = 60
[3, 1]	25 + 30 = 55
[4,1]	40 + 30 = 70
[4, 3]	40 + 25 = 65

- Feasible sequence
 - all the jobs in the sequence start by their deadlines
- Feasible set
 - if there exists at least one feasible sequence for the jobs in the set
- Optimal sequence
 - a feasible sequence with maximum total profit
- Optimal set of jobs
 - the set of jobs in the optimal sequence

Algorithm

□ Ex 4.4

Job	Deadline	Profit
1	3	40
2	1	35
3	1	30
4	3	25
5	1	20
6	3	15
7	2	10

- 1. S is set to \emptyset
- 2. S is set to {1} because the sequence [1] is feasible
- 3. S is set to {1,2} because the sequence [2,1] is feasible
- 4. {1,2,3} is rejected because there is no feasible sequence for this set
- 5. S is set to {1,2,4} because the sequence [2,1,4] is feasible
- 6. {1,2,4,5} is rejected because there is no feasible sequence for this set
- 7. {1,2,4,6} is rejected because there is no feasible sequence for this set
- 8. {1,2,4,7} is rejected because there is no feasible sequence for this set

Lemma 4.3

- Let S be a set of jobs. Then S is feasible iff the sequence obtained by ordering the jobs in S according to nondecreasing deadlines is feasible
- Proof:

```
(충분) Suppose S is feasible & there is at least one feasible sequence
Suppose [.., x, y, ..] and y has a smaller deadline than x
So the new sequence [.., y, x, ..] is feasible
(필요) Of course. S is feasible if the ordered sequence is feasible
```

■ Ex 4.5

- To determine whether {1,2,4,7} is feasible,
 Lemma 4.3 says we need to only check the feasibility of the sequence
 [2, 7, 1, 4]
 (1) (2) (3) (3) -- deadlines
- Because job 4 is not scheduled by its deadline, the sequence is not feasible.
 By Lemma 4.3, the set is not feasible.

Algorithm 4.4: Scheduling with Deadlines

Problem: determine the schedule with maximum total profit
Inputs: n (the number of jobs);
array of integers deadline[1..n] (in non-decreasing order)

Output: an optimal sequence J for the jobs

```
void schedule (int n, const int deadline[],
    sequence_of_integers& j) {
    index i;
    sequence_of_integer K;
    J = [1];
    for (i=2; i<=n; i++){
        K=J with i added according to nondecreasing values of deadline[i];
        if (K is feasible)
            J = K;
    }
}</pre>
```

□ Ex 4.6

Job	Deadline
1	3
2	1
3	1
4	3
5	1
6	3
7	2

- 1. J is set to [1]
- 2. K is set to [2,1] and is determined to be feasible J is set to [2,1] because K is feasible
- 3. K is set to [2,3,1] and is rejected because it is not feasible
- 4. K is set to [2,1,4] and is determined to be feasible

 J is set to [2,1,4] because K is feasible
- 5. K is set to [2,5,1,4] and is rejected because it is not feasible
- 6. K is set to [2,1,6,4] and is rejected because it is not feasible
- 7. K is set to [2,7,1,4] and is rejected because it is not feasible

- Worst-Case Time Complexity Analysis
 - Basic operation: a comparison operation
 - Input size: *n*, the number of jobs
 - Analysis
 - It takes a time of $\Theta(n \lg n)$ to sort the jobs
 - In each iteration of the for *i* loop, do at most *i*−1 comparisons to add the *i*-th job to K, and at most *i* comparisons to check if K is feasible
 - Therefore, the worst case is

$$\sum_{i=2}^{n} [(i-1)+i] = n^2 - 1 \in \Theta(n^2)$$

■ Because this time dominates the sorting time, $W(n) \in \Theta(n^2)$

탐욕적인 방법과 동적계획법의 비교

탐욕적인 접근방법	동적계획법
최적화 문제를 푸는데 적합	최적화 문제를 푸는데 적합
알고리즘이 존재할 경우	때로는 불필요하게 복잡
보통 더 효율적	
단일출발점 최단경로 문제:	단일출발점 최단경로 문제:
$\Theta(n^2)$	$\Theta(n^3)$
알고리즘이 최적인지를	최적화 원칙이 적용되는지를
증명해야 함	점검해 보기만 하면 됨
배낭 빈틈없이 채우기 문제	0-1 배낭 채우기 문제를 푼다
는 풀지만,0-1 배낭 채우기	
문제는 풀지 못함	

Problem:

```
S = \{item_1, item_2, ..., item_n\},
W_i = item_i의 무게
p_i = item_i의 가치
W = \text{배낭에 넣을 수 있는 최대 무게}
라고 할 때, \sum_{item_i \in A} w_i \leq W를 만족하면서
\sum_{item_i \in A} p_i 가 최대가 되도록
A \subseteq S가 되는 A를 결정하는 문제이다.
```

- □ 무작정 (탐욕적) 알고리즘
 - n개의 물건에 대해서 모든 부분 집합을 다 고려한다.
 - 그러나 불행하게도 크기가 n인 집합의 부분집합의 수는 2^n 개이다.
 - **→** Proof? (2 ways)

□ The 0-1 Knapsack Problem (1)

- 가장 비싼 물건부터 우선적으로 채운다.
- 애석하게도 이 알고리즘은 최적이 아니다!

• 왜 아닌지 보기: W = 30 lb

품목	무게	값
item ₁	25 lb	\$10
item ₂	10 lb	\$9
item ₃	10 lb	\$9

■ 탐욕적인 방법: *item*₁⇒ 25 lb ⇒ \$10

■ 최적인 해답: $item_2 + item_3 \Rightarrow 20 \text{ lb} \Rightarrow 18

- □ The 0-1 Knapsack Problem (2)
 - 무게 당 가치가 가장 높은 물건부터 우선적으로 채운다.
 - 그래도 최적이 아니다!
 - 왜 아닌지 보기: W = 30 lb

품목	무게	값	값어치
item ₁	5 lb	\$50	\$10/lb
item ₂	10 lb	\$60	\$6/lb
item ₃	20 lb	\$140	\$7/lb

- 탐욕적인 방법: $item_1 + item_3 \Rightarrow 25 \text{ lb} \Rightarrow 190
- 최적인 해답: $item_2 + item_3 \Rightarrow 30 \text{ lb} \Rightarrow 200

The Fractional Knapsack Problem

- 물건의 일부분을 잘라서 담을 수 있다.
- 탐욕적인 접근방법으로 최적해를 구하는 알고리즘을 만들 수 있다.
- $item_1 + item_3 + (5/10) * item_2 = $50 + $140 + (5/10) * 60 $\Rightarrow $220 (30 \text{ lb})$
- Optimal!

Dynamic Programming Approach (0-1 Knapsack Problem)

• i > 0 이고 w > 0일 때, 전체 무게가 w가 넘지 않도록 i번째까지의 항목 중에서 얻어진 최고의 이익(optimal profit)을 P[i][w]라고 하면,

$$P[i][w] = \begin{cases} maximum (P[i-1][w], p_i + P[i-1][w-w_i]) & \text{(if } w_i \le w) \\ P[i-1][w] & \text{(if } w_i > w) \end{cases}$$

여기서 P[i-1][w]는 i번째 항목을 포함시키지 않는 경우의 최고 이익이고, $p_i + P[i-1][w-w_i]$ 는 i번째 항목을 포함시키는 경우의 최고 이익이다. 위의 재귀 관계식이 최적화 원칙을 만족하는지는 쉽게 알 수 있다.

- 그러면 어떻게 최대 이익 P[n]/W] 값을 구할 수 있을까?
 - int P[0..n][0..W]의 2차원 배열을 만든 후, 각 항을 계산하여 넣는다
 - 여기서 P[0][w] = 0, P[i][0] = 0으로 놓으면 되므로, 계산해야 할 항목의 수는 $nW \in \Theta(nW)$

Refinement of Dynamic Programming

- 여기서 n과 W와는 아무런 상관관계가 없다. 만일 (임의적으로) W = n!이라고 한다면, 수행시간은 $\Theta(n \times n!)$ 이 된다. 그렇게 되면 이 알고리즘은 앞에서 얘기한 무작정 알고리즘보다도 나을게 하나도 없다.
- 그럼 이 알고리즘을 최악의 경우에 $\Theta(2^n)$ 시간에 수행될 수 있도록, 즉 무작정 알고리즘 보다 느리지 않고, 때로는 훨씬 빠르게 수행될 수 있도록 개량할 수 있을까?
 - 착안점은 P[n][W]를 계산하기 위해서 (n-1)번째 행을 모두 계산할 필요가 없다는데 있다.

● P[n][W]는 아래 식으로 표현할 수 있다

$$P[n][W] = \begin{cases} maximum(P[n-1][W], p_n + P[n-1][W-w_n]) & (\text{if } w_n \leq W) \\ P[n-1][W] & (\text{if } w_n > W) \end{cases}$$

- 따라서 (n-1)번째 행에서는 P[n-1][W]와 $P[n-1][W-w_n]$ 항만 필요
- i-번째 행에 어떤 항목이 필요한지를 결정한 후에, 다시 (i-1)번째 행에 필요한 항목을 결정
 - o P[i][w]는 P[i-1][w]와 P[i-1][w-w_i]로 계산
- 이런 식으로 n=1이나 $w \le 0$ 일 때까지 계속해 나가면 된다.

- □ Ex 4.7
 - W=30 lb

품목	무게	값
item ₁	5 lb	\$50
$item_2$	10 lb	\$60
item ₃	20 lb	\$140

- We need P[3][W] = P[3][30]
 - To compute P[3][30] -- $max(P[3-1][30], p_3 + P[3-1][30-w_3])$

$$= \max(P[2][30], p_3 + P[2][10])$$

■ To compute $P[2][30] - max(P[2-1][30], p_2 + P[2-1][30-w_2])$

$$= \max(P[1][30], p_2 + P[1][20])$$

- To compute $P[2][10] max(P[2-1][10], p_2 + P[2-1][10-w_2])$
 - $= \max(P[1][10], p_2 + P[1][0])$

Compute row 1

$$P[1][w] = \max_{\substack{\{P[0][w], \$50 + P[0][w-5]\}\\ P[0][w] \\ = \$50 \quad (\text{if } w_1 = 5 \le w)\\ \$0 \quad (\text{if } w_1 = 5 > w)} }$$

■ Therefore

$$P[1][0] = \$0; P[1][10] = \$50; P[1][20] = \$50; P[1][30] = \$50$$

• Compute row 2

$$P[2][10] = \max_{0 \le 10} (P[1][10], \$60 + P[1][0]) \text{ (if } w_2 = 10 \le 10)$$

$$P[1][10] \qquad \text{(if } w_2 = 10 > 10)$$

$$= \$60$$

■ P[2][30] =
$$\max(P[1][30], \$60+P[1][20])$$
 (if $w_2 = 10 \le 30$)
= $\$60 + \$30 = \$110$

• Compute row 3

■ P[3][30] =
$$\begin{cases}
max(P[2][30], \$140 + P[2][10]) \text{ (if } w_3 = 20 \le 30) \\
P[1][10] \text{ (if } w_3 = 20 > 30)
\end{cases}$$
= \$140 + \$60 = \$200

- The modified algorithm compute only 7 entries
- The original algorithm compute $3 \times 30 = 90$ entries

- Efficiency in the worst case
 - Compute at most 2^{i} entries in the (n i)-th row
 - Therefore the total number is $1 + 2 + 2^2 + ... + 2^{n-1} = 2^n 1$.
 - 따라서 최악의 경우의 수행시간은 $\Theta(2^n)$
 - The number of entries computed is in O(nW)
 - What about the number of the modified algorithm?
 - If n = W+1, and $w_i = 1$ for all i, then the total number of entries is about

$$1 + 2 + 3 + ... + n = n (n+1) / 2 = (W+1)(n+1) / 2$$

- For arbitrary large values of n and W, Θ (nW)
- Combining these 2 results, the worst case is in $O(min(2^n, nW))$

- 분할정복 방법으로도 이 알고리즘을 설계할 수도 있고, 그 최악의 경우 수행시간은 $\Theta(2^n)$ 이다.
 - 아직 아무도 이 문제의 최악의 경우 수행시간이 지수(exponential)보다 나은 알고리즘을 발견하지 못했고, 아직 아무도 그러한 알고리즘은 없다라고 증명한 사람도 없다.
 - **NP**문제