

Проектирование БД

Лекция 6. Распределенные данные. Репликация

Репликация

• Репликация (replication) означает хранение копий одних и тех же данных на нескольких машинах, соединенных с помощью сети.

Причины репликации данных

- ради хранения данных географически близко к пользователям
- чтобы система могла продолжать работать при отказе некоторых ее частей
- для **горизонтального масштабирования** количества машин, обслуживающих запросы на чтение

Алгоритмы репликации изменений

- репликацию с одним ведущим узлом (single-leader)
- с несколькими ведущими узлами (multi-leader)
- без ведущего узла (leaderless)

Репликация с одним ведущим узлом

Репликация с одним ведущим узлом

Синхронная и асинхронная репликация

Создание новых ведомых узлов

- 1. Сделать согласованный снимок состояния БД ведущего узла на определенный момент времени
- 2. Скопировать снимок состояния на новый ведомый узел.
- 3. Ведомый узел подключается к ведущему и запрашивает все изменения данных, произошедшие с момента создания снимка.
- 4. Когда ведомый узел завершил обработку изменений данных, произошедших с момента снимка состояния, говорят, что он наверстал упущенное

Перебои в обслуживании узлов

- Отказ ведомого узла: наверстывающее восстановление
- Отказ ведущего узла: восстановление после отказа:
 - 1. установить отказ ведущего узла
 - 2. выбрать новый ведущий узел
 - з. настроить систему на использование нового ведущего узла

Реализация журналов репликации

- Операторная репликация
- Перенос журнала упреждающей записи (WAL)
- Логическая (построчная) журнальная репликация
- Триггерная репликация

Проблемы задержки репликации

- Чтение своих же записей
- Монотонные чтения
- Согласованное префиксное чтение

Читаем свои же записи

Монотонные чтения

Согласованное префиксное чтение

Репликация с несколькими ведущими узлами

Репликация с несколькими ведущими узлами

- разрешение приема запросов на запись более чем одному узлу
- multi-leader replication / master master replication / active/active replication
- каждый из ведущих узлов одновременно является ведомым для других ведущих.

Эксплуатация с несколькими ЦОДами

Офлайн-клиенты

- у каждого устройства есть своя локальная база данных, служащая ведущим узлом (она принимает запросы на запись)
- по сути, то же самое, что и репликация с несколькими ведущими узлами между ЦОДами
- для подобного режима эксплуатации создана СУБД
 CouchDB

Совместное редактирование

- предоставляют возможность нескольким людям редактировать документ одновременно
- прежде чем пользователь сможет отредактировать документ, запросить на этот документ блокировку
- Такая модель совместной работы эквивалентна репликации с одним ведущим узлом и выполнением транзакций на ведущем узле

Обработка конфликтов записи

Способы конвергентного разрешения конфликтов

- Присвоить каждой операции записи уникальный идентификатор, после чего просто выбрать операцию («победителя»)
- Присвоить уникальный идентификатор каждой реплике и считать, что у исходящих от реплик с большим номером операций записи есть приоритет перед теми, которые исходят от реплик с меньшим.
- Каким-либо образом слить значения воедино, например, выстроить их в алфавитном порядке, после чего выполнить их конкатенацию
- Написать код приложения, который бы разрешал конфликты позднее

Топологии репликации с несколькими ведущими узлами

А. Топология типа «кольцо»

Б. Топология типа «звезда»

В. Топология типа «каждый с каждым»

Replication overtakes

Репликация без ведущего узла

университет итмо

Запись в базу данных при отказе одного из узлов

Операции записи и чтения по кворуму

при наличии n реплик операция записи, чтобы считаться успешной, должна быть подтверждена w узлами, причем мы должны опросить как минимум r узлов для каждой операции. Если w + r > n, то можно ожидать: полученное при чтении значение будет актуальным, поскольку хотя бы один из r узлов, из которых мы читаем, должен оказаться актуальным.

Устойчивость к недоступности узлов

Обнаружение конкурентных операций записи

Спасибо за внимание!

www.ifmo.ru

ITSMOre than a UNIVERSITY