A functional MRI mind-reading game

Charles Zheng and Yuval Benjamini

Stanford University

March 28, 2015

Section 1

Introduction

Functional MRI

Functional MRI

Stimuli x	Response y
$ \begin{pmatrix} 1.0 \\ 0 \\ 3.0 \\ 0 \\ -1.2 \end{pmatrix} $	$\begin{pmatrix} 1.2 \\ 0 \\ -1.8 \\ -1.2 \end{pmatrix}$
$\begin{pmatrix} 0 \\ -2.2 \\ -3.1 \\ 4.5 \\ 0 \end{pmatrix}$	$\begin{pmatrix} -1.2 \\ -1.9 \\ 0.5 \\ 0.6 \end{pmatrix}$

Encoding vs Decoding

- Encoding: predict y from x.
- Decoding: reconstruct x from y (mind-reading).

A mind-reading game: Classification

A mind-reading game: Classification

A mind-reading game: Identification

Test Data (new images!)

Statistical formulation I

Training data.

- Given training classes $S_{\text{train}} = \{ \text{train}:1, \dots, \text{train}:k \}$ where each class train: i has features $x_{\text{train}:i}$.
- For $t = 1, ..., T_{train}$, choose class label $z_{train:t} \in S_{train}$; generate

$$y_{\mathsf{train}:t} = f(x_{z_{\mathsf{train}:t}}) + \epsilon_t$$

where f is an unknown function, and ϵ_t is i.i.d. from a known or unknown distribution.

Test data.

- Given test stimuli $S_{\text{test}} = \{\text{test:}1, \dots, \text{test:}\ell\}$ with features $\{x_{\text{test:}1}, \dots, x_{\text{test:}\ell}\}$
- Task: for $t = 1, ..., T_{\text{test}}$, label $y_{\text{test}:t}$ by stimulus $\hat{z}_{\text{test}:t} \in S_{\text{train}}$; try to minimize misclassification rate

Statistical formulation II

- f is an unknown function
- P is a known or unknown distribution over image features
- Training data. Draw $x_{\text{train}:i} \sim P$ for i = 1 hdots, k.
- Test data. Draw $x_{\text{train}:i} \sim P$ for $i = 1 \text{ hdots}, \ell$.
- Theoretical question: Analyze average misclassification rate when classes are generated this way

Toy example I

- Features x are one-dimensional real numbers, as are responses y. Parameter β is also a real number.
- Model is linear: $y \sim N(x\beta, \sigma_{\epsilon}^2)$

Suppose we estimated $\hat{\beta}$ from training data.

Generate features $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$ iid $N(0, \sigma_x^2)$.

Hidden labels $z_{\text{test}:t}$ are iid uniform from S_{train} . Generate $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$

Information given

Classify $\hat{y}_{\text{test}:t}$

$$\hat{\mu}_{\mathsf{test}:i} = \hat{\beta} x_{\mathsf{test}:i}$$

Classification

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} \ell_{\hat{\mu}_{z}}(y_{\text{test}:t})$$

Classification

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z}(\hat{\mu}_{z} - y_{\text{test}:t})^{2}$$

Classification

Misclassification

Toy example I

- Generate features $x_{\text{test}:1}, \dots, x_{\text{test}:\ell}$ iid $N(0, \sigma_x^2)$.
- Hidden labels $z_{\text{test}:t}$ are iid uniform from S_{train} . Generate $y_{\text{test}:t} \sim N(\beta x_{z_{\text{test}:t}}, \sigma_{\epsilon}^2)$
- ullet Classify $\hat{y}_{ ext{test}:t}$ by maximum likelihood assuming \hat{eta} is correct. Thus:

$$\hat{z}_{\text{test}:t} = \operatorname{argmin}_{z} (\hat{\beta} x_{z} - y_{\text{test}:t})^{2}$$

Toy example I: Questions

- We know the prediction error is minimized when $\hat{\beta}=\beta$. Is it also true that misclassification error in the mind-reading game is minimized when $\hat{\beta}=\beta$?
- ② Even if the answer to 1. is yes, should we estimate $\hat{\beta}$ using the same methods as in least-squares regression?

Toy example I: Analysis

• The expected misclassification error is the same if we take $T_{\text{test}} = 1$. Then let (x_*, y_*) be the feature-response pair in the test set, where

$$y_* = x_* \beta + \epsilon_*$$

• Denote the features for the incorrect classes as $x_1, \ldots, x_{\ell-1}$.

Ignore the possibility of ties. The response y_* is misclassified if and only if

$$\min_{i=1,...,\ell-1} |y_* - x_i \hat{\beta}| < |y_* - x_* \hat{\beta}|$$

equivalently

$$\cup_{i=1,\ldots,\ell-1} E_i$$

where E_i is the event

$$|x_*\beta + \epsilon_* - x_i\hat{\beta}| < |x_*(\beta - \hat{\beta}) + \epsilon_*|$$

with probability

$$\Pr[E_i] = \left| \Phi\left(\frac{x_*\hat{\beta}}{\sqrt{\hat{\beta}\sigma_x^2}}\right) - \Phi\left(\frac{x_*(2\beta - \hat{\beta}) + 2\epsilon_*}{\sqrt{\hat{\beta}\sigma_x^2}}\right) \right|$$

Toy example I: Analysis

• Use the following conditioning

$$\mathbf{E}[\mathsf{misclassification}] = \mathbf{E}[\mathbf{E}[\Pr_{x_1, \dots, x_\ell}[\cup_i E_i] | x_* = x, \epsilon_* = \epsilon]]$$

An exact expression for expected misclassification is therefore

$$\left|1-\int_{X}\int_{\epsilon}\left(1-\left|\Phi\left(rac{x\hat{eta}}{\sqrt{\hat{eta}\sigma_{x}^{2}}}
ight)-\Phi\left(rac{x(2eta-\hat{eta})+2\epsilon}{\sqrt{\hat{eta}\sigma_{x}^{2}}}
ight)
ight|
ight)^{\ell-1}d\Phi(rac{\epsilon}{\sigma_{\epsilon}})d\Phi(rac{x}{\sigma_{x}})$$

• Question 1: Is this minimized at $\hat{\beta} = \beta$?