Input:
$$\lambda_2; v_p = v^{(i,j)}, R^{(i)}, S^{(j)}, \forall \ 0 \leqslant i < j \leqslant T$$

Output: $w_p = w^{(i,j)}, \forall \ 0 \leqslant i < j \leqslant T$

1 Algorithm 2D Fused Lasso ()

2 Define $d(p,p')$ as distance from p to p'

3 Define $D(k,k') = \min_{p \in G_k} d(p,p')$

4 Define $c_{k,k'} = \sum_{p \in G_k} \sum_{p' \in G'_k} I[d(p,p') = 1]$

5 Define $N_k = |G_k|$

6 Define $\overline{w}_k = \frac{1}{N_k} \sum_{p \in G_k} w_p$

7 Define γ_k as the agreed value in γ_k

8 Init γ_k is the agreed value in γ_k

8 Init γ_k is the agreed value in γ_k

9 while γ_k is the agreed value in γ_k

10 Descent Cycle

11 Fusion Cycle

12 Smoothing Cycle

13 end

1 Procedure Descent Cycle

14 Iteratively consider derivatives of γ_k only and fix all other parameters:

1 γ_k if the model cost reduces.

1 Procedure Fusion Cycle

2 Iteratively consider to merge γ_k and γ_k where γ_k if the model cost reduces.

1 Procedure Fusion Cycle

2 Iteratively consider to merge γ_k and γ_k where γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

2 γ_k if the model cost reduces.

3 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

2 γ_k if the model cost reduces.

3 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

2 γ_k if the model cost reduces.

1 γ_k if the model cost reduces.

2 γ_k if the model cost reduces.

3 If model cost reduces by merging γ_k and γ_k we introduce a new group γ_k if γ_k i