第5回模試テロ

- 【1】(1) x の方程式 $\log_x(5x+6) = 2$ を解け.
 - (2) $f(x) = 3x^2 + \int_0^1 x f(t)dt + 1$ を満たす関数 f(x) を求めよ.
- 【2】点 A で外接する 2 円 K_1 , K_2 の中心をそれぞれ O_1 , O_2 とする. O_1 を通る K_2 の接線のうち 1 本を l とする. l と K_2 との接点を B, l と K_1 との 2 交点を B に近い順に C, D とする. また, 直線 AD と直線 BO_2 との交点を E, 直線 AD と K_2 との 2 交点のうち A でないものを F とする.
 - (1) \triangle CAD と \triangle EBD は相似であることを示せ.
 - (2) CE と BF は平行であることを示せ.
- [3] $0 \le \theta < 2\pi$ とする.
 - (1) $y = 2\sin\theta \cos 2\theta$ とする. y の最大値と最小値を求めよ.
 - (2) a を実数の定数とする. θ の方程式 $2\sin\theta \cos 2\theta a = 0$ が異なる 2 解をもつように a の値の範囲を定めよ.
- 【4】i を虚数単位とする. 複素数 z の方程式 $z^3 = 8i$ を解け.
- 【5】正の整数 X が以下の条件を満たすとき, X はU
 - $n \in n \geq 2$ を満たす自然数とする. X は n 桁の整数である.
 - X の各桁を上の位から順に $X_1, X_2, ..., X_n$ とする.
 - すべての自然数 $1 \le k \le n$ に対して, $1 \le X_k \le 5$
 - すべての自然数 $1 \le k \le n-1$ に対して, $|X_{k+1} X_k| \le 1$

例えば, 21, 334 は**ルンルン数**であり, 2, 456, 31415 は**ルンルン数**ではない.

- (1) 2 桁のルンルン数の個数を求めよ.
- (2) 5 桁のルンルン数の個数を求めよ.