BİLGİ GÜVENLİĞİ DERSİ 4. HAFTA

OSI REFERANS MODELİ

DR. ÖĞR. ÜYESİ FURKAN ATLAN

INTERNET NEDİR?

İnternet, dünya genelinde bilgisayar ağlarını birbirine bağlayan ve

İnternet, 1960'larda hükümet araştırmacılarının bilgi paylaşma yolu olarak başladı. 60'lı yıllarda

bilgisayarl

Sovyetler Birliği'nin Sputnik uydusunu fırlatması, ABD Savunma Bakanlığı'nı nükleer bir saldırıdan sonra bile bilgilerin hâlâ vavılabileceği volları düsünmeye teşvik

etti.

Bu, sonuçta şu anda İnternet olarak bildiğimiz şeye dönüşen ağ olan ARPANET'in (İleri Araştırma Projeleri Ajansı Ağı) oluşumuna yol açtı. ARPANET büyük bir başarı elde etti ancak üyelik, Savunma Bakanlığı ile sözleşmesi olan bazı akademik ve araştırma kuruluşlarıyla sınırlıydı. Buna karşılık bilgi paylaşımını sağlayacak başka ağlar oluşturuldu.

1 Ocak 1983 İnternet'in resmi doğum günü olarak kabul ediliyor. Bundan önce, çeşitli bilgisayar ağlarının birbirleriyle iletişim kurmanın standart bir yolu yoktu.

TCP/IP ac oluşturuldi

protokolü

Ancak, internetin globalleşerek tüm dünyadaki kullanıcıların erişimine açılması ise 1990'lı

yıllara

İNTERNET NASIL ÇALIŞIR?

internet NASIL ÇALIŞIR?

İnternet, verilerin tutulduğu sunuculara erişim ile sağlanır.

İNTERNET NASIL ÇALIŞIR?

Kullanıcılar, IP adresleri ile diğer bilgisayarlardan ayırt edilir. Bir yönlendirici (router/modem) vasıtası ile internet ağına bağlanırlar.

Kullanıcıların talep ettikleri bilgi, ilgili sunucuya istek olarak gönderilir. Bu istek sonrasında kullanıcıya cevap olarak istediği bilgi iletilir.

internet nasil çalışır?

İnternetin globalleşebilmesinin en önemli 2 nedeni:

- Bilgisayarların teknik kullanıcılar yerine sıradan insanlar tarafından kullanılması
- Özellikle denizlerin ve okyanusların altından geçirilen fiber optik kabloların tüm ülkeleri birbirine bağlaması

Web Site

World Wide Web (www), internet üzerinde yayınlanan ve birbirleriyle bağlantılı olan dokümanlardan oluşan bir bilgi sistemidir.

Web sitesi, ortak bir alan adı (domain name) ile birbirine bağlanan ve web sunucularında saklanan web sayfalarıdır.

Web Site

Bir web sitesi kurmak için 2 bileşene ihtiyaç vardır. Bunlar:

Domain Name (Alan Adı) ve Barındırma (Hosting)

Alan Adı

Kurulacak olan web sitesinin, web tarayıcılardaki (Chrome, Mozilla) adres çubuğuna yazılacak olan kısımdır.

SLD: Second-level domain

TLD: Top-level domain

Barındırma

Web sitesindeki içeriklerin tutulduğu sunuculardır. Genellikle Windows ve linux için 2 farklı barındırma hizmeti verilir.

Web sitesi oluşturulurken kullanılan web geliştirme diline göre farklılık barındırabilir.

OSI MODELİ

OSI (Open Systems Interconnect model- Açık Sistemler Ara Bağlantı modeli), 1984 yılında ISO tarafından, bilgisayarların donanım ve işletim sistemi bağımsız bir şekilde birbirleriyle iletişim kurmasını sağlamak için oluşturulan standarttır.

OSI modelinin temel amacı, farklı ağ sistemlerinin birbiriyle iletişim kurabilmesi için daha kapsamlı ve standartlaştırılmış bir çerçeve sunmaktır.

OSI modeli, her biri belli bir görev için tasarlanmış 7 katmandan oluşur.

Bu katmanların her birinin farklı bir görevi olduğu gibi, her bir katmanda da farklı protokoller çalışır.

Protokoller, ağ iletişimini düzenleyerek, farklı ağ cihazları ve uygulamaları arasında uyumluluğu ve verimli veri alışverişini mümkün kılar.

Port, ağ iletişiminde, bir bilgisayar üzerinde çalışan belirli bir uygulama veya hizmet ile veri paketlerinin ilişkilendirilmesini sağlayan bir sanal bağlantı noktasıdır. Bilgisayarlar ve sunucular, birçok farklı ağ hizmeti ve uygulamayı aynı anda çalıştırabilir. Bu hizmet ve uygulamaların aynı anda, aynı ağ protokolleri (örneğin, TCP veya UDP) üzerinden iletişim kurabilmesi için her birine benzersiz bir kimlik veya "adres" atanması gerekir. İşte bu noktada portlar devreye girer.

Port numaraları, genellikle belirli bir protokol kullanan hizmet veya uygulamalar tarafından kullanılmak üzere ayrılmıştır. Portlar sayesinde, gelen veri paketleri doğru uygulamaya yönlendirilir. Örneğin, bir web sunucusu genellikle HTTP trafiği için 80 numaralı portu, HTTPS trafiği için ise 443 numaralı portu kullanır.

Portlar, 0'dan 65535'e kadar olan numaralarla tanımlanır.

Port numaralarının atama işlemine «Internet Assigned Numbers Authority (IANA)» isimli organizasyon karar verir.

OSI MODELİ-KATMANLAR

OSI MODELİ-KATMANLAR

OSI MODELİ-PROTOKOLLER

OSI MODELİ-KATMANLAR

application, presentation ve OSI modelindeki session katmanları yazılım odaklı katmanlardır. Bu katmanlarda daha çok, kullanıcıların arayüz uygulamaları ile işlem yapmala: **OSI Model** r. **Application Layer** Yazılım **Presentation Layer** Katmanları HTTP / HTTPS **Session Layer Transport Layer Network Layer Datalink Layer Physical Layer**

OSI MODELİ-KATMANLAR

OSI modelindeki network, data link ve physical katmanları donanım odaklı katmanlardır. Bu katmanlarda daha çok, ağ cihazlarının kullanılmasından ve kullanıcının göremediği işlemler vanılmasından doları hövlə bir isimlendirme

OSI Model verilmişt **Application Layer Presentation Layer Session Layer Transport Layer Network Layer Datalink Layer** Donanım **Physical Layer**

OSI MODELI-Taşıma Katmanı (Transport

OSI MODELI-Taşıma Katmanı (Transport

OSI MODELİ-Kapsülleme

OSI modeli, gönderen taraf için veriyi kapsüllerken (encapsulation), alıcı tarafı için de kapsülden çıkarma (de-

OSI Modeli-Fiziksel Katman

Verinin, 0 ve 1 gibi bitlerle temsil edildiği katmandır. Hub, repeater, RJ45 gibi donanımlar bu katmanda kullanılır. Veri ya elektri $Fiziksel\ Katman$

OSI Modeli-Veri Bağlantı Katmanı

Veri, veri bağlantısı protokolü (örneğin PPP, HDLC, MAC) tarafından işlenir ve hatasız iletim için paketleme ve hata

kontrolü gibi iş

OSI Modeli-Veri Bağlantı Katmanı

Data Link katmanının altında Media Access Control (MAC) ve Logical Link Control (LLC) alt katmanları yer alır.

Bu katmanlar sayesinde fiziksel katmandan gelen sinyallerin bozulup bozulmadığı kontrol edilir ve hedef-kaynak MAC adreslerin tutulmasına olanak sağlayan bir frame yapısı eklenir. (Switch cihazı bu katmanda kullanılan bir ağ donanımıdır)

OSI Modeli-Veri Bağlantı Katmanı

Switch cihazı, aynı ağdaki bilgisayarların haberleşmelerine olanak sağlar. Kendisine bağlı tüm bilgisayarların MAC adreslerini bir tabloda kaydeder. İç ağda haberleşirken, asıl faktör 'MAC a

Veri, ağ protokolü (örneğin IP) tarafından işlenir ve ağ adresleme bilgileri eklenir. Paket yönlendirme ve ağ kimlik doğrulama gibi işlemler gerçekleştirilir. Bu katmanın en önemli özelliği, veriyi paket olarak tanımlayıp dış ağa açmasıdır.

Network Katmani

Adresleme, verinin üzerine kaynak ve hedef makinelerin IP adreslerinin yazılmasıyla bir paket haline getirilmesi.

Yönlendirme, kaynak ve hedef makinelerin farklı ağlarda olması durumunda Router cihazları ile doğru adrese gitmesinin sağlanması.

Network Katmani

OSI Modeli-Ağ Katmanı IPv4 Header

IP V4 Paket Başlığı

offsets	Ootet	0								1									2								3							
Octet	Bit	0	1	2	3	4	5	6	チ	8	9	10	11	12	1.3	3 14	1.5	5	16 1)	11	8	19 2	0 2	1	22	23	24	25	2	26 27	28	29	30	31
0	0	versiyon (Sürüm)							DSCP ECN								Total Length (Toplam uzunluk)																	
4	32	Identification (Kimlik)											Flags Fragment Offset (Bayraklar) (Parçanın Bağıl Konumu)																					
8	64	Time To Live (Paket Ömrü)							Protocol								Header Checksum (Başlık Sağlama Toplamı)																	
12	96		Source IP Address (Kaynak IP Adres)																															
16	128		Destination IP address (Hedef IP Adres)																															
20	160		Options (IHL > 5 ise) (Secenekler)																															

Veri, taşıma protokolü (örneğin TCP, UDP) tarafından işlenir ve güvenilirlik ve sıraya koyma gibi özellikler eklenir. Segmentleme, hata kontrolü, akış kontrolü gibi işlemler uygulanabilir.

TCP protokolü, bağlantı güvenli bir protokoldür. Yani, segmentlerin karşı tarafa iletilmesi durumu için bir garanti verir. UDP ise I TCP rmez. Bu nedenle

Taşıma katmanının en önemli işlevi, veriyi segmentlere ayırırken bir port numarası eklemesidir. Bu sayede veri karşı tarafa gittiğinde eğer başka bir uygulama açıksa ya da başka bir transfer söz konusu ise hangi port'a gideceğini bildiği için sorunsuz bir şekilde iletilir.

Taşıma Katmanı

Segment (Kesím)

Taşıma Katmanı

Segment (Kesim)

Port Numarası	Taşıma Protokolü	Protokol
20/21	TCP	FTP
22	TCP	SSH
23	TCP	Telnet
25	TCP	SMTP
53	TCP/UDP	DNS
80	TCP	НТТР
161	UDP	SNMP
443	TCP	HTTPS

OSI Modeli-Oturum Katmanı

Veri, oturum protokolü (örneğin NetBIOS) tarafından işlenir ve oturum yönetimi bilgileri eklenir. Oturum açma/kapama, senl

OSI Modeli-Sunum Katmanı

Veri, sunum protokolü (örneğin ASN.1, XML) tarafından işlenir ve farklı sistemler arasında uyumlu hale getirilir. Veri sıkıştırma, şifreleme veya format dönüştürme gibi işlemler uygular Sunum Katmanı

OSI Referans Modelí Presantation Layer Application Layer (Sunum Katmanı) (uygulama Katmanı) Presantation Layer (Sunum Katmani) Protokoller Session Layer # GIF (Oturum Katmani) Transport Layer # MPEG (Tasıma Katmanı) # JPEG Network Layer (Ağ Katmanı) # TIFF DataLink Layer (Veri Bağı Katmanı) # ASCII Physical Layer (Fiziksel Katman)

OSI Modeli-Uygulama Katmanı

Bilgisayar uygulamaları ile network arasında bir ara birim sağlar.

Veri, uygulama tarafından oluşturulur ve bir uygulama protokolü (örneğin HTTP, FTP, SMTP) kullanılarak paketlenir.

Paket başlığı, alıcı ve gönderici bilgilerini, veri tipini ve diğer kontrol bilgilerini içerir.

OSI vs TCP/IP

TCP / IP Protokolü

OSI Referans Modelí

- Application Layer (uygulama Katmanı)
- Presantation Layer (Sunum Katmani)
- Session Layer (Oturum Katmanı)
- Transport Layer (Taşıma 4 Katmanı)
- Network Layer
 (Ağ Katmanı)
- 2 (veri Bağı Katmanı)
- Physical Layer (Fiziksel Katman)

TCP/IP Modeli

- 4pplication Layer (uygulama Katmanı)
- Transport Layer

 (Taşıma Katmanı)
- internet Layer (internet Katmanı)
- Link Layer (Link Katmanı)

TCP/IP Modelí Yení Versiyonu

- 5 Application Layer (Uygulama Katmanı)
- Transport Layer

 (Taşıma Katmanı)
- internet Layer (internet Katmanı)
- 2 DataLink Layer (Veri Bağı Katmanı)
- Physical Layer (Fiziksel Katman)

KAYNAKLAR

https://www.linuxdersleri.net/

https://www.youtube.com/@DeltanetAkademi