DIS 11B

1 Probabilistic Bounds

CS 70, Spring 2024, DIS 11B

1 > (6 = x J9

Note 17

A random variable X has variance Var(X) = 9 and expectation $\mathbb{E}[X] = 2$. Furthermore, the value of X is never greater than 10. Given this information, provide either a proof or a counterexample for the following statements.

(a)
$$\mathbb{E}[X^{2}] = 13$$
.
 $Var(x) = \mathbb{E}[x^{2}] - (\mathbb{E}[x])^{2} = \mathbb{E}[x^{2}] - 4$
 $\mathbb{E}[x^{2}] = 9 + 4 = 13$
(b) $\mathbb{P}[X = 2] > 0$.
 $P[X = 2] > 0$.
 $P[X = 0] = \frac{1}{4}$
(c) $\mathbb{P}[X \ge 2] = \mathbb{P}[X \le 2]$.
 $P[X \ge 2] = \mathbb{P}[X \le 2]$.
 $P[X \le 2] = \frac{1}{3} + \frac{1}{4} = \frac{1}{12}$
(d) $\mathbb{P}[X \le 1] \le 8/9$.
 $P[X \ge 2] = \frac{1}{3} + \frac{1}{4} = \frac{1}{12}$
(e) $\mathbb{P}[X \ge 6] \le 9/16$.
 $P[X \ge 2] = \frac{9}{16}$
 $P[X \ge 2] \le \frac{9}{16}$

2 Vegas

Note 17

On the planet Vegas, everyone carries a coin. Many people are honest and carry a fair coin (heads on one side and tails on the other), but a fraction p of them cheat and carry a trick coin with heads on both sides. You want to estimate p with the following experiment: you pick a random sample of n people and ask each one to flip their coin. Assume that each person is independently likely to carry a fair or a trick coin.

one to flip their coin. Assume that each person is independently likely to carry

(a) Let
$$X$$
 be the proportion of coin flips which are heads. Find $\mathbb{E}[X]$.

 $X_1 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1+p \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+p \\ 2 & 1 \end{bmatrix}$
 $X_1 = \begin{bmatrix} 1+p \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+p \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+p \\ 2 & 1 \end{bmatrix}$

(b) Given the results of your experiment, how should you estimate p? (*Hint*: Construct an unbiased estimator for p using part (a). Recall that \hat{p} is an unbiased estimator if $\mathbb{E}[\hat{p}] = p$.)

$$2E[x] - 1 = P$$

$$P = E(2x - 1)$$

$$\hat{p} = 2x - 1$$

(c) How many people do you need to ask to be 95% sure that your answer is off by at most 0.05?

3 Working with the Law of Large Numbers

Note 17

(a) A fair coin is tossed multiple times and you win a prize if there are more than 60% heads. Which number of tosses would you prefer: 10 tosses or 100 tosses? Explain.

(b) A fair coin is tossed multiple times and you win a prize if there are more than 40% heads. Which number of tosses would you prefer: 10 tosses of 100 tosses? Explain.

(d) A fair coin is tossed multiple times and you win a prize if there are exactly 50% heads. Which number of tosses would you prefer 10 tosses or 100 tosses? Explain.