Cost-In =
$$\frac{1}{n} \leq (y-\hat{y})^2$$
 | Which is the second of the continuous of the con

$$MSE = (y-\hat{y})^2$$

Costfunction

- Regression
- Mean Squared from (Msō)
- Mean Absolute From (MAE)
- 3 Muber Koss
- RMSE 4

Ducaratic Equations

Mantagus

- 1) MSE is Diffumtiable
- (2) It has I local or global Minima
- 3 It converges faster

Not Robust to outlings

2 Mean Absolute Estos (MAE)

Advantages

1) Robust to outliers

Convergine honally ties time in MAE

() MSE

2

MAE

MSG

NO OUHIET

Hyperparents

$$\frac{1}{1} = \frac{1}{2} (y-\hat{y})^2 \quad \text{if } |y-\hat{y}| \leq |S|$$
Cost $fn = \frac{1}{2} (y-\hat{y})^2 \quad \text{if } |y-\hat{y}| \leq |S|$

Adventages

Disadvantages

1 hoss or Cost function For Classification Problems

Classification -> CROSS Entropy

Binary CROCS Entropy {Binary}

Caregories (ROSS Entropy (Mestalacs)

-> Sparce Corgonical CROSS Entropy
Lightherecord

The Binary (Ross Entropy for Koss
$$y = Achiel Value$$
 $f = Achiel Value$
 $f = Achiel Valu$

$$\hat{y} = \frac{1}{1+e^{-z}}$$
 =) Sigmoid Activetum

Acmal
$$\Leftarrow y_{ij} = [y_{11} \ y_{12} \ y_{13} - \cdots y_{1c}]$$

Value $[y_{21}, y_{22}, y_{23} - \cdots y_{2c}]$

Of
$$y_{ij} = \rho_{robabilines}$$

[0.1, 0.2, 0.3, 0.2, 0.2] $\leftarrow 1$

Cargonical $\Rightarrow [0.2, 0.3, 0.5]$

[Ross Entropy

This also gives the probability of other eargoins]

Kight Combination Activation applied				
	Hidden Layers	Olp Layer	Problem Statement	Loss function
(1)	Relu or its Variants	Sigmold	Bihany Classification	Binary Cross Entropy
3	Recu or its Variants	Softmax	Multi (lass	Categorical or Sparse (E
3	Relu or its Variants	hinear	Regnession	MSE, MAE, IWOW dois, RMSE