Blast

January 1, 2024

1 Governing equations

We consider Lagrangian fluid particles, for which we define the position $\mathbf{x}^+ = \mathbf{x}^+(t, \mathbf{y})$, the determinant of the Jacobian $J^+ = J^+(t, \mathbf{y})$, the density $\rho^+ = \rho^+(t, \mathbf{y})$, the velocity $\mathbf{u}^+ = \mathbf{u}^+(t, \mathbf{y})$, and the internal energy $e^+ = e^+(t, \mathbf{y})$. The Eulerian counterparts for the density, velocity, and internal energy are, respectively, $\rho = \rho(t, \mathbf{x})$, $\mathbf{u} = \mathbf{u}(t, \mathbf{x})$, and $e = e(t, \mathbf{x})$. Also consider the volume Ω_0 as the set of all \mathbf{y} vectors that make up the initial domain. The control volume $\Omega^+ = \Omega^+(t, \Omega_0)$ is then defined by

$$\Omega^+ = \{ \mathbf{x}^+ : \mathbf{y} \in \Omega_0 \}. \tag{1}$$

Note that $\Omega^+(0,\Omega_0) = \Omega_0$.

The governing equations for the Lagrangian fluid particles are derived in my hydrodynamics notes (see section on kinematics, Lagrangian governing equations, etc.). These are shown below

$$\frac{\partial \mathbf{x}^+}{\partial t} = \mathbf{u}^+,\tag{2}$$

$$\frac{\partial J^{+}}{\partial t} = J^{+} \left(\nabla \cdot \mathbf{u} \right)_{\mathbf{x} = \mathbf{x}^{+}}, \tag{3}$$

$$\frac{\partial J^+ \rho^+}{\partial t} = 0,\tag{4}$$

$$\rho^{+} \frac{\partial \mathbf{u}^{+}}{\partial t} = (\nabla \cdot \boldsymbol{\sigma})_{\mathbf{x} = \mathbf{x}^{+}}, \tag{5}$$

$$\rho^{+} \frac{\partial e^{+}}{\partial t} = (\boldsymbol{\sigma} : \nabla \mathbf{u})_{\mathbf{x} = \mathbf{x}^{+}}. \tag{6}$$

A note on notation. The products that involve a tensor au can be expressed in Einstein notation as

$$\nabla \cdot \boldsymbol{\tau} = \frac{\partial \tau_{ij}}{\partial x_i},\tag{7}$$

$$\boldsymbol{\tau} \cdot \nabla \alpha = \tau_{ij} \frac{\partial \alpha}{\partial x_j},\tag{8}$$

$$\mathbf{f} \cdot \boldsymbol{\tau} \cdot \nabla \alpha = f_i \tau_{ij} \frac{\partial \alpha}{\partial x_j},\tag{9}$$

$$\boldsymbol{\tau} : \nabla \mathbf{f} = \tau_{ij} \frac{\partial f_i}{\partial x_j}. \tag{10}$$

where α is a scalar and \mathbf{f} a vector. In these notes we'll mostly be using indices i and j for FE expansions, rather than for Einstein notation.

2 Finite element expansion

We introduce the coefficients $\hat{\mathbf{x}}_i = \hat{\mathbf{x}}_i(t)$, $\hat{\mathbf{u}}_i = \hat{\mathbf{u}}_i(t)$ and $\hat{e}_i = \hat{e}_i(t)$, as well as the Lagrangian basis functions $\phi_i^+ = \phi_i^+(\mathbf{y}) \in L^2$, and $w_i^+ = w_i^+(\mathbf{y}) \in H^1$. We note that $\hat{\mathbf{x}}_i$ and $\hat{\mathbf{u}}_i$ are each vectors, e.g., the components of $\hat{\mathbf{u}}_i$ are $\hat{u}_{i,\alpha} = \hat{u}_{i,\alpha}(t)$ for $\alpha = x, y, z$. We also note that ϕ_i^+ and w_i^+ have Eulerian counterparts $\phi_i = \phi_i(t, \mathbf{x})$ and $w_i = w_i(t, \mathbf{x})$, respectively (see more details in section on finite elements in my notes for numerical methods). The coefficients are used in the following expansions

$$\mathbf{x}^+ = \sum_{j}^{N_w} \hat{\mathbf{x}}_j w_j^+,\tag{11}$$

$$\mathbf{u}^+ = \sum_{j}^{N_w} \hat{\mathbf{u}}_j w_j^+,\tag{12}$$

$$e^{+} = \sum_{j}^{N_{\phi}} \hat{e}_{j} \phi_{j}^{+}. \tag{13}$$

We note that the expansion coefficients are the same for the Lagrangian and Eulerian variables. For example, for the Eulerian velocity, we have

$$\mathbf{u} = \sum_{j=1}^{N_w} \hat{\mathbf{u}}_j w_j. \tag{14}$$

3 Semi-discrete equations for x^+ and J^+

4 Semi-discrete equation for ρ^+

Equation (4) allows us to write

$$\rho^{+} = \frac{\rho_0^{+}}{I^{+}},\tag{15}$$

where $\rho_0^+ = \rho^+(0, \mathbf{y})$.

5 Semi-discrete equation for u⁺

Plugging in eq. (15) in eq. (5) we get

$$\rho_0^+ \frac{\partial \mathbf{u}^+}{\partial t} = (\nabla \cdot \boldsymbol{\sigma})_{\mathbf{x} = \mathbf{x}^+} J^+. \tag{16}$$

We then multiply both sides of the above by the basis functions for velocity and integrate over all space to obtain

$$\int_{\Omega_0} \rho_0^+ \frac{\partial \mathbf{u}^+}{\partial t} w_i^+ dV_y = \int_{\Omega_0} (\nabla \cdot \boldsymbol{\sigma})_{\mathbf{x} = \mathbf{x}^+} w_i^+ J^+ dV_y.$$
 (17)

For the left-hand side we have

$$\int_{\Omega_0} \rho_0^+ \frac{\partial \mathbf{u}^+}{\partial t} w_i^+ dV_y = \int_{\Omega_0} \rho_0^+ \sum_j^{N_w} \frac{d\hat{\mathbf{u}}_j}{dt} w_j^+ w_i^+ dV_y,
= \sum_j^{N_w} \frac{d\hat{\mathbf{u}}_j}{dt} \int_{\Omega_0} \rho_0^+ w_i^+ w_j^+ dV_y,
= \sum_j^{N_w} \frac{d\hat{\mathbf{u}}_j}{dt} m_{ij}^{(w)},$$
(18)

where

$$m_{ij}^{(w)} = \int_{\Omega_0} \rho_0^+ w_i^+ w_j^+ dV_y \tag{19}$$

is a mass bilinear form (which is independent of time). For the right-hand side we have

$$\int_{\Omega_0} (\nabla \cdot \boldsymbol{\sigma})_{\mathbf{x} = \mathbf{x}^+} w_i^+ J^+ dV_y = \int_{\Omega_0} (\nabla \cdot \boldsymbol{\sigma} w_i)_{\mathbf{x} = \mathbf{x}^+} J^+ dV_y$$

$$= \int_{\Omega^+} \nabla \cdot \boldsymbol{\sigma} w_i dV_x$$

$$= -\int_{\Omega^+} \boldsymbol{\sigma} \cdot \nabla w_i dV_x. \tag{20}$$

The second equality above follows from integration by substitution. Combining results we have

$$\sum_{i}^{N_w} \frac{d\hat{\mathbf{u}}_j}{dt} m_{ij}^{(w)} = -\int_{\Omega^+} \boldsymbol{\sigma} \cdot \nabla w_i \, dV_x. \tag{21}$$

We now introduce the vector \mathbf{U} whose components are $\hat{\mathbf{u}}_i$. We also introduce the matrix $\mathbf{M}^{(w)}$ whose components are $m_{ij}^{(w)}$. Thus, the left-hand side of eq. (21) can be written as $\mathbf{M}^{(w)} d\mathbf{U}/dt$. We also introduce the vector bilinear form

$$\mathbf{f}_{ij} = \int_{\Omega^+} \boldsymbol{\sigma} \cdot \nabla w_i \phi_j dV_x. \tag{22}$$

This is a *vector* bilinear form since \mathbf{f}_{ij} has components $f_{ij,\alpha} = f_{ij,\alpha}(t)$, for $\alpha = x, y, z$, where α denotes the first index of σ . We introduce the matrix \mathbf{F} , whose components are \mathbf{f}_{ij} . We also expand the field with constant value of one as follows

$$1 = \sum_{i}^{N_{\phi}} \hat{c}_i \phi_i. \tag{23}$$

If we define the vector **C** as that with components \hat{c}_i , we can show that

$$\mathbf{FC} = \sum_{j}^{N_{\phi}} \mathbf{f}_{ij} \hat{c}_{j}$$

$$= \sum_{j}^{N_{\phi}} \int_{\Omega^{+}} \boldsymbol{\sigma} \cdot \nabla w_{i} \phi_{j} \, dV_{x} \hat{c}_{j}$$

$$= \int_{\Omega^{+}} \boldsymbol{\sigma} \cdot \nabla w_{i} \left(\sum_{j}^{N_{\phi}} \hat{c}_{j} \phi_{j} \right) \, dV_{x}$$

$$= \int_{\Omega^{+}} \boldsymbol{\sigma} \cdot \nabla w_{i} \, dV_{x}. \tag{24}$$

The above is the negative of the right-hand side of eq. (21). Thus, combining all together we get

$$\mathbf{M}^{(w)}\frac{d\mathbf{U}}{dt} = -\mathbf{FC}.\tag{25}$$

We note that since both the Lagrangian and Eulerian velocities share the same coefficients \mathbf{U} , we now have a solution for both.

6 Semi-discrete equation for e^+

Plugging in eq. (15) in eq. (6) we get

$$\rho_0^+ \frac{\partial e^+}{\partial t} = (\boldsymbol{\sigma} : \nabla \mathbf{u})_{\mathbf{x} = \mathbf{x}^+} J^+.$$
 (26)

We then multiply both sides of the above by the basis functions for energy and integrate over all space to obtain

$$\int_{\Omega_0} \rho_0^+ \frac{\partial e^+}{\partial t} \phi_i^+ dV_y = \int_{\Omega_0} (\boldsymbol{\sigma} : \nabla \mathbf{u})_{\mathbf{x} = \mathbf{x}^+} \phi_i^+ J^+ dV_y.$$
 (27)

For the left-hand side we have

$$\int_{\Omega_{0}} \rho_{0}^{+} \frac{\partial e^{+}}{\partial t} \phi_{i}^{+} dV_{y} = \int_{\Omega_{0}} \rho_{0}^{+} \sum_{j}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} \phi_{j}^{+} \phi_{i}^{+} dV_{y},$$

$$= \sum_{j}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} \int_{\Omega_{0}} \rho_{0}^{+} \phi_{j}^{+} \phi_{i}^{+} dV_{y},$$

$$= \sum_{j}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} m_{ij}^{(\phi)} \tag{28}$$

where

$$m_{ij}^{(\phi)} = \int_{\Omega_0} \rho_0^+ \phi_j^+ \phi_i^+ dV_y \tag{29}$$

is a mass bilinear form (which is independent of time). For the right-hand side we have

$$\int_{\Omega_0} (\boldsymbol{\sigma} : \nabla \mathbf{u})_{\mathbf{x} = \mathbf{x}^+} \phi_i^+ J^+ dV_y = \int_{\Omega_0} (\boldsymbol{\sigma} : \nabla \mathbf{u} \phi_i)_{\mathbf{x} = \mathbf{x}^+} J^+ dV_y$$

$$= \int_{\Omega^+} \boldsymbol{\sigma} : \nabla \mathbf{u} \phi_i dV_x. \tag{30}$$

Combining results we have

$$\sum_{j}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} m_{ij}^{(\phi)} = \int_{\Omega^{+}} \boldsymbol{\sigma} : \nabla \mathbf{u} \phi_{i} \, dV_{x}. \tag{31}$$

We no show that

$$\boldsymbol{\sigma} : \nabla \mathbf{u} = \boldsymbol{\sigma} : \nabla \left(\sum_{k=1}^{N_w} \hat{\mathbf{u}}_k w_k \right) = \sum_{k=1}^{N_w} \hat{\mathbf{u}}_k \cdot \boldsymbol{\sigma} \cdot \nabla w_k, \tag{32}$$

and hence the previous result is written as

$$\sum_{j}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} m_{ij}^{(\phi)} = \sum_{k}^{N_{w}} \hat{\mathbf{u}}_{k} \cdot \int_{\Omega^{+}} \boldsymbol{\sigma} \cdot \nabla w_{k} \phi_{i} \, dV_{x}. \tag{33}$$

The above is finally re-written as

$$\sum_{i}^{N_{\phi}} \frac{d\hat{e}_{j}}{dt} m_{ij}^{(\phi)} = \sum_{k}^{N_{w}} \hat{\mathbf{u}}_{k} \cdot \mathbf{f}_{ki}. \tag{34}$$

Note that in the above there is a dot product in the right-hand side, that is, the right-hand side expanded out is

$$\sum_{k}^{N_w} \hat{\mathbf{u}}_k \cdot \mathbf{f}_{ki} = \sum_{k}^{N_w} \sum_{\alpha = x, y, z} \hat{u}_{k, \alpha} f_{ki, \alpha}.$$
 (35)

We now introduce the vector **E** whose components are \hat{e}_i . We also introduce the matrix $\mathbf{M}^{(\phi)}$ whose components are $m_{ij}^{(\phi)}$. Thus, eq. (34) can be succinctly written as

$$\mathbf{M}^{(\phi)} \frac{d\mathbf{E}}{dt} = \mathbf{F}^T \cdot \mathbf{U}. \tag{36}$$

Note again that on the right-hand side above there is a matrix-vector product *and* a dot product. We also note that since both the Lagrangian and Eulerian internal energies share the same coefficients **E**, we now have a solution for both.