ЛЕКЦИЯ 27

КРАЕВЫЕ ЗАДАЧИ ДЛЯ УРАВНЕНИЙ ЭЛЛИПТИЧЕСКОГО ТИПА

Пусть область $\Omega \subset R^3$ ограничена замкнутой поверхностью Γ , на которой задана некоторая функция f. Обозначим через Ω_e бесконечную область, внешнюю к Ω , также ограниченную поверхностью Γ . Пусть на поверхности задана непрерывная функция f. Рассмотрим постановку основных задач для уравнения Пуассона.

Внутренняя задача Дирихле для уравнения Пуассона. Найти функцию u, которая определена и непрерывна в $\overline{\Omega}$, удовлетворяет внутри Ω уравнению Пуассона

$$\Delta u = F \tag{1}$$

и принимает на поверхности Γ заданные значения f:

$$u|_{\Gamma} = f. \tag{2}$$

Если F=0 задача (1), (2) называется задачей Дирихле для уравнения Лапласа. Внешняя задача Дирихле состоит в определении функции u, удовлетворяющей уравнению (1) в Ω_e , непрерывной в $\overline{\Omega}_e$ и удовлетворяющей условию (2).

Внутренняя задача Неймана. Найти функцию u, непрерывную в $\overline{\Omega}$, которая удовлетворяет внутри Ω уравнению Пуассона (1) и производная которой по направлению внешней нормали к поверхности Γ равна заданной функции:

$$\left. \frac{\partial u}{\partial v} \right|_{\Gamma} = f \,. \tag{3}$$

Внешняя задача Неймана состоит в определении функции u, удовлетворяющей уравнению (1) в Ω_e и удовлетворяющей условию (3).

Третья внутренняя краевая задача. Найти функцию u, непрерывную в $\overline{\Omega}$, удовлетворяющую в Ω уравнению (1) и такую, что

$$\frac{\partial u}{\partial v} + \alpha u \Big|_{\Gamma} = f , \qquad (4)$$

где α — заданная непрерывная функция на Γ , принимающая только положительные значения.

Аналогично формулируется третья внешняя краевая задача.

Теорема 1. Решение задачи Дирихле, внутренней и внешней, единственно.

Доказательство. Рассмотрим сначала внутреннюю задачу Дирихле. Пусть u_1 и u_2 – два решения задачи. Тогда их разность $u=u_1-u_2$ определена и непрерывна в $\overline{\Omega}$, удовлетворяет уравнению Лапласа

$$\Delta u = 0$$

в области Ω и равна нулю на границе области. Любая непрерывная функция в замкнутой ограниченной области достигает своего максимального и минимального значения. Если функция u не равна тождественно нулю и хотя бы в одной точке u>0, то она достигает максимального положительного значения внутри области, что невозможно. Аналогично, ни в одной точке области функция u не может принимать отрицательных значений. Таким образом, $u\equiv 0$, то есть $u_1\equiv u_2$, решение, тем самым, единственно.

Рассмотрим теперь внешнюю задачу Дирихле. Снова пусть u_1 и u_2 — два решения задачи. Тогда их разность $u=u_1-u_2$ — гармоническая функция, равная нулю на Γ и $u(M)\to 0$ при $M\to \infty$, то есть для любого $\varepsilon>0$ найдётся такое число R>0, что $|u(M)|<\varepsilon$, если $r=\sqrt{x^2+y^2+z^2}\geq R$. Пусть P — произвольная точка бесконечной области Ω_e . Проведём сферу S с центром в начале координат и радиусом $r\geq R$ столь большим, чтобы точка P и поверхность Γ лежали внутри этой сферы. Тогда $|u(P)|<\varepsilon$, что следует из теоремы о максимуме и минимуме, примененной к области, заключенной

между Γ и S. В силу произвольности $\varepsilon > 0$ заключаем, что u(P) = 0, а так как точка P произвольная, u = 0 в Ω_e , то есть $u_1 \equiv u_2$. Теорема доказана.

Задача называется физически определенной, если малому изменению условий, определяющих решение задачи, соответствует малое изменение самого решения.

Теорема. Решение внутренней задачи Дирихле непрерывно зависит от граничных данных.

Доказательство. Пусть u_1 и u_2 — две непрерывные в $\overline{\Omega}$ функции, удовлетворяющие в Ω уравнению (1), $u_1\big|_{\Gamma}=f_1$, $u_2\big|_{\Gamma}=f_2$, причём $\big|f_1-f_2\big|\leq \varepsilon$ во всех точках поверхности Γ . Тогда, так как функция $u\equiv \varepsilon$ гармоническая, из следствия 3 к теореме о максимуме вытекает, что

$$|u_1 - u_2| \le \varepsilon$$
 внутри Ω ,

что и требовалось доказать.

Теорема. Решение внутренней задачи Неймана, имеющее непрерывные вплоть до границы производные первого порядка, определено с точностью до произвольной постоянной.

Доказательство. Пусть u_1 и u_2 — два решения задачи Неймана (1), (3) с одним и тем же граничным условием. Тогда их разность $u=u_1-u_2$ определена и непрерывна в $\overline{\Omega}$, удовлетворяет уравнению Лапласа в области Ω и её производная в направлении внешней нормали равна нулю на границе области: $\frac{\partial u}{\partial \nu}\Big|_{\Gamma} = 0$.

Воспользуемся первой формулой Грина для гармонических функций

$$\iiint_{\Omega} (\nabla u)^2 dx dy dz = \iint_{\Gamma} u \frac{\partial u}{\partial v} dy$$

Правая часть формулы равна нулю, следовательно и левая часть равна нулю. В силу непрерывности первых производных функции u, подынтегральная функция непрерывна и неотрицательна, следовательно

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial u}{\partial z} = 0,$$

то есть $u=u_1-u_2=$ const, что и требовалось доказать.

Теорема. Решение третьей внутренней краевой задачи, имеющее непрерывные вплоть до границы производные первого порядка, единственно.

Доказательство. Предположим, что u_1 и u_2 – два решения задачи (1), (4). Функция $u=u_1-u_2$ определена и непрерывна в $\overline{\Omega}$, удовлетворяет уравнению Лапласа в области Ω и на границе области выполнено условие

$$\frac{\partial u}{\partial v} + \alpha u \Big|_{\Gamma} = 0$$
.

Из первой формулы Грина получаем

$$\iiint_{\Omega} (\nabla u)^2 dx dy dz + \iint_{\Gamma} \alpha u^2 d\gamma = 0.$$

Так как обе подынтегральные функции неотрицательны, получаем, что u=const и u=0 на Γ . Делаем вывод, что u=0, то есть u_1 = u_2 .

ФУНКЦИЯ ГРИНА ЗАДАЧИ ДИРИХЛЕ

Пусть u — функция, гармоническая внутри ограниченной области Ω , непрерывная вместе с производными первого порядка в замкнутой области $\overline{\Omega}$. Тогда имеет место формула

$$u(x_0, y_0, z_0) = \frac{1}{4\pi} \iint_{\Gamma} \left(\frac{1}{r} \frac{\partial u}{\partial v} - u \frac{\partial}{\partial v} \frac{1}{r} \right) d\gamma \tag{5}$$

где r — расстояние от точки $M_0(x_0,y_0,z_0)$, лежащей внутри Ω , до переменной точки M(x,y,z) поверхности Γ .

Пусть известна функция $g(x_0,y_0,z_0,x,y,z)=g(M_0,M)$, обладающая следующими двумя свойствами: как функция переменной точки (x,y,z) она является гармонической внутри области Ω и имеет непрерывные первые производные вплоть до поверхности Γ ; на поверхности Γ функция g принимает значения $-1/(4\pi r)$.

Применим формулу Грина

$$\iiint_{\Omega} (u\Delta v - v\Delta u) dx dy dz = \iint_{\Gamma} \left(u \frac{\partial v}{\partial v} - v \frac{\partial u}{\partial v} \right) d\gamma . \tag{6}$$

к гармоническим функциям и и д. Получим

$$\iint_{\Gamma} \left(u \frac{\partial g}{\partial \nu} - g \frac{\partial u}{\partial \nu} \right) d\gamma = 0$$

или, в силу граничных значений для функции g,

$$\iint_{\Gamma} \left(u \frac{\partial g}{\partial v} + \frac{1}{4\pi r} \frac{\partial u}{\partial v} \right) d\gamma = 0$$

Вычитая это равенство из (5), получаем

$$u(x_0, y_0, z_0) = -\iint_{\Gamma} u \frac{\partial}{\partial \nu} \left(\frac{1}{4\pi r} + g \right) d\gamma.$$

Положим

$$G(M, M_0) = \frac{1}{4\pi r} + g(M, M_0)$$
(7)

Эта функция называется функцией Грина задачи Дирихле для уравнения Лапласа.

Функцией Грина задачи Дирихле для уравнения Лапласа называется функция $G(M,M_0)$, удовлетворяющая следующим условиям: $G(M,M_0)$ как функция точки M(x,y,z) гармоническая внутри области Ω , исключая точку $M_0(x_0,y_0,z_0)$, где она обращается в бесконечность; удовлетворяет граничному условию

$$G(M, M_0)_{\Gamma} = 0;$$

в области Ω функция G допускает представление (7), где r – расстояние между точками M и M_0 , функция g гармоническая внутри Ω по переменным (x,y,z).

Построение функции Грина сводится к нахождению её регулярной части g, которая определяется из решения задачи Дирихле

$$\Delta g = 0, \ g|_{\Gamma} = -\frac{1}{4\pi r}, \ (x_0, y_0, z_0) \in \Omega$$

Если функция Грина определена, то решение внутренней задачи Дирихле для уравнения Лапласа (если оно существует) даётся формулой

$$u(x_0, y_0, z_0) = -\iint_{\Gamma} f \frac{\partial G}{\partial \nu} d\gamma, \ u|_{\Gamma} = f.$$
(8)

Формула (8) выводится в предположении существования функции u — решения внутренней задачи Дирихле с граничными значениями f, непрерывного вместе с первыми производными вплоть до границы Γ . Искомая же функция в задаче Дирихле должна быть гармонической внутри области Ω и непрерывной в замкнутой области $\overline{\Omega}$. Таким образом, не давая доказательства существования решения, формула (8) даёт интегральное представление существующих достаточно гладких решений задачи Дирихле.

Некоторые свойства функции Грина

 $1. \Phi$ ункция Γ рина всюду положительна внутри области Ω .

В самом деле, функция G обращается в нуль на границе Γ и положительна на поверхности достаточно малой сферы, описанной из точки M_0 (так как $G(M,M_0) \to \infty$ при $M \to M_0$) . Из теоремы о максимуме и минимуме следует, что функция положительна во всей области Ω .

2. Функция g на поверхности Γ принимает отрицательные значения, поэтому g<0 в замкнутой области $\overline{\Omega}$ и, следовательно, внутри Ω

$$0 < G(M, M_0) < \frac{1}{4\pi r}$$
.

3. Функция Грина симметрична, то есть

$$G(M, M_0) = G(M_0, M).$$

Для доказательства применим формулу Грина (6) к функциям $u=G(M,M_1)$ и $v=G(M,M_2)$. За область интегрирования выберем область Ω ', полученную исключением из области Ω двух шаров радиуса ε с центрами в точках M_1 и M_2 и поверхностями S_1 и S_2 . Тройной интеграл по этой области будет равен нулю, так как функции u и v гармонические в Ω '. Поверхность области Ω ' состоит из Γ и двух сфер. Интеграл по Γ равен нулю в силу граничного условия. Таким образом, приходим к равенству

$$\iint_{S_1} \left[G(M, M_1) \frac{\partial}{\partial \nu} G(M, M_2) - G(M, M_2) \frac{\partial}{\partial \nu} G(M, M_1) \right] +$$

$$+ \iint_{S_1} \left[G(M, M_1) \frac{\partial}{\partial \nu} G(M, M_2) - G(M, M_2) \frac{\partial}{\partial \nu} G(M, M_1) \right] = 0.$$

Предел интеграла по сфере S_1 при $\varepsilon \to 0$ будет равен $-G(M_1, M_2)$, а предел интеграла по сфере S_2 равен $G(M_2, M_1)$, что и доказывает симметричность функции Грина.

Замечание. В случае плоскости функция Грина имеет вид

$$G(M.M_0) = \frac{1}{2\pi} \ln \frac{1}{r} + g(M, M_0), r = |M_0M|.$$

Решение внутренней задачи Дирихле выражается формулой

$$u(x_0, y_0, z_0) = -\int_{\Gamma} f \frac{\partial G}{\partial v} d\gamma, \ u|_{\Gamma} = f,$$

где Γ – кривая, ограничивающая плоскую область Ω .

Список литературы

- 1. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977. http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm.
- 2. Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Уравнения в частных производных математической физики. М.: Высшая школа, 1970. http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm