Project Perfume

Chris Chen, Peter Liu, Yueqi Xu

Research Questions

- Does the prestige of the **brands** contribute to the most of the perfume's retail **price**?
- Does the customer rating, seller, and seller rating contribute to the perfume's retail price?
- Does the perfume's department (female, male, or unisex), scents (woody, floral, fruity, etc.), and notes potentially leads to difference in retail prices?

Response and Predictors

Response

Price

Predictors

- Brand
- Volume
- Concentration
- Department
- Scent
- Base note
- Middle note
- Item rating
- Seller
- Seller rating
- # of seller rating

Data cleaning: Remove Nonsense

- The data contains no NA, which is good!
- Lots of typos
- Characters in other languages (Arabian, Latin, etc.)
- Nonsense induced by web page crawling. For instance, considering Yves Saint Laurent (A famous cosmetic brand, often abbreviated into YSL) into three different brands.
- 889 observations after removing nonsenses

Data Cleaning: Merging Categorical Covariates

- Covariate **Brand** originally contain 148 levels.
- We converted it into a categorical variable called **big_brand** with 2 levels:
- 1 (Big Brand): brand that contains more than 10 listed individual perfumes;
- **0 (Niche brand)**: otherwise.

Data Cleaning: Merging Categorical Covariates

- Covariate Seller originally contains 115 levels.
- We converted it into a categorical variable called is_noon with two levels:
- 1 (Noon): the perfume is sold by noon official
- **0 (Non-noon)**: the perfume is sold by individual sellers

Data Cleaning

Base Notes & Middle Notes:

We counted the total number of distinct notes in base notes and middle notes, and stored this information in a new variable called **Complexity**.

base_note	middle_note
Oakmoss, Patchouli and Vetiver	Hazelnut, Jasmine, Cashmir Wood, Cedar and Honey
Vanilla, Sandalwood And Patchouli	Wild Jasmine and Red Lily
Lemon, Mint and Wood Moss	Sandalwood and Cedar
Cashmere Wood, Moss And Rippled Sand Accord	Blue Coral Aquaspace Accord And Geranium

Data Modeling: Outliers

Im(old_price ~ . , data = perfume)

Data Modeling: Interaction

Data Modeling: Interaction

scentFruity	0.035429	*
scentOriental	0.147821	
scentSpicy	0.046392	*
scentWoody	0.282736	
concEDT	2.63e-13	***
num_sel_ratings	0.164150	
genderUnisex	1.78e-07	***
genderWomen	0.205283	
big_brand	4.84e-11	***
is_noon	0.257784	
comp	0.019893	*

Model Selection: First Round

```
Im.1 = Im(old_price ~ ., data = perfume_original)
```

Im.2 = Im(old_price ~ ., data = perfume)

Im.3 = Im(old_price ~ . - is_noon, data = perfume)

Im.4 = Im(old_price ~ . - is_noon - item_rating, data = perfume)

Im.5 = Im(old_price ~ . - is_noon - item_rating - num_sel_ratings, data = perfume)

rses <dbl></dbl>	r2s <dbl></dbl>	mses <dbl></dbl>	ges <dbl></dbl>	Cps <dbl></dbl>	aics <dbl></dbl>	bics <dbl></dbl>
216.3359	0.1194184	45804.19	1994.036	47798.23	10864.87	10949.14
175.1131	0.1754292	29999.69	1329.843	31993.73	10343.11	10427.07
175.1453	0.1751258	30049.85	1252.077	31926.59	10342.42	10421.71
175.0719	0.1758177	30063.75	1172.838	31823.19	10340.78	10415.41
175.1381	0.1751940	30125.62	1095.477	31767.77	10340.39	10410.36

Model Selection: Merging Scent/Gender

	Estimate	Pr(> t)	
(Intercept)	66.1517	0.536637	
big_brand	85.9311	7.87e-11	***
comp	-4.4495	0.021694	*
concEDT	-121.6950	1.08e-13	***
m1	1,1437	7.57e-05	***
genderUnisex	-159.7660	1.06e-07	***
genderWomen	-21.7679	0.229617	
seller_rating	58.8679	0.021826	*
scentFloral	-12.3393	0.614361	
scentFresh	-115.8323	0.000789	***
scentFruity	-64.5532	0.034821	*
scentOriental	-40.8892	0.158060	
scentSpicy	-51.5216	0.056153	
scentWoody	-26.3411	0.285910	

avg_price <dbl></dbl>	count <int></int>
317.9231	78
344.5989	266
223.6600	40
293.3083	66
307.5211	83
285.9680	97
305.5562	154
	<pre><dbl> 317.9231 344.5989 223.6600 293.3083 307.5211 285.9680</dbl></pre>

Model Selection: Second Round

rses <dbl></dbl>	r2s <dbl></dbl>	mses <dbl></dbl>	ges <dbl></dbl>	Cps <dbl></dbl>	aics <dbl></dbl>	bics <dbl></dbl>
216.3359	0.1194184	45804.19	1994.036	47798.23	10864.87	10949.14
175.1131	0.1754292	29999.69	1329.843	31993.73	10343.11	10427.07
175.1453	0.1751258	30049.85	1252.077	31926.59	10342.42	10421.71
175.0719	0.1758177	30063.75	1172.838	31823.19	10340.78	10415.41
175.1381	0.1751940	30125.62	1095.477	31767.77	10340.39	10410.36

rses <dbl></dbl>	r2s <dbl></dbl>	mses <dbl></dbl>	ges <dbl></dbl>	Cps <dbl></dbl>	aics <dbl></dbl>	bics <dbl></dbl>
175.1131	0.1754292	29999.69	1486.2950	31329.53	10343.11	10427.07
175.5700	0.1711208	30431.66	786.3479	31213.92	10340.31	10391.62
175.4785	0.1719850	30439.21	706.9752	31143.25	10338.51	10385.15
175.5352	0.1714500	30498.18	628.8285	31123.99	10338.03	10380.01

Final Model

Price = 23.34

- +85.56·big_brand
- 111.02·I(concentration = EDT)
- 4.44·comp
- + 56.85·seller_rating
- + 1.21.volume
- 146.3·I(gender = Unisex)
- 85.37·I(scent = fresh)

```
lm(formula = old_price ~ big_brand + conc + comp + seller_rating +
   ml + is.unisex + is.fresh, data = perfume3)
Residuals:
  Min
          10 Median
                            Max
-397.8 -130.0 -8.3 117.3 651.9
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
              23.3471
                        104.0130 0.224 0.82246
bia_brand
            85.5629
                        12.9732 6.595 7.84e-11 ***
concEDT
             -111.0210
                         13.5369 -8.201 9.83e-16 ***
               -4.4408 1.9320 -2.298 0.02180 *
comp
seller_rating 56.8586
                         25.5389 2.226 0.02628 *
                          0.2797 4.332 1.67e-05 ***
ml
               1.2119
is.unisex
             -146.3030
                         27.4428 -5.331 1.28e-07 ***
is.fresh
            -85.3706
                         28.5594 -2.989 0.00289 **
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' '1
Residual standard error: 175.5 on 776 degrees of freedom
Multiple R-squared: 0.1789, Adjusted R-squared: 0.1714
F-statistic: 24.15 on 7 and 776 DF, p-value: < 2.2e-16
```

Final Model


```
F test to compare two variances

data: set1 and set2
F = 1.0389, num df = 461, denom df = 321, p-value = 0.7152
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
    0.8475178    1.2689219
sample estimates:
ratio of variances
    1.038948
```

```
Durbin-Watson test
```

data: lm.11

DW = 1.8654, p-value = 0.0573

alternative hypothesis: true autocorrelation is not 0

Final Model


```
lm(formula = old_price ~ big_brand + conc + comp + seller_rating +
   ml + is.unisex + is.fresh, data = perfume3)
Residuals:
  Min
         10 Median 30 Max
-397.8 -130.0 -8.3 117.3 651.9
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 23.3471
                       104.0130
                                 0.224 0.82246
big_brand 85.5629 12.9732 6.595 7.84e-11 ***
concEDT
                       13.5369 -8.201 9.83e-16 ***
            -111.0210
comp
              -4.4408 1.9320 -2.298 0.02180 *
seller_rating 56.8586
                        25.5389 2.226 0.02628 *
                       0.2797 4.332 1.67e-05 ***
ml
               1.2119
is.unisex -146.3030
                       27.4428 -5.331 1.28e-07 ***
is.fresh -85.3706
                        28.5594 -2.989 0.00289 **
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 175.5 on 776 degrees of freedom
Multiple R-squared: 0.1789, Adjusted R-squared: 0.1714
F-statistic: 24.15 on 7 and 776 DF, p-value: < 2.2e-16
```

Conclusion

- The prestige of the **brands** contribute the most to the perfume's retail **price**.
- The **customer rating** and **seller** do not contribute to the perfume's retail **price**. However, **seller rating does**.
- The perfume's department (female/male/unisex), scents
 (woody/floral/fruity/etc...), and notes leads to difference in retail prices
 and customer ratings.

Thanks

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**,and infographics & images by **Freepik**