

Tabelas Verdade Obtidas de Expressões Lógicas

 A partir da expressão lógica, obter a tabela verdade.

1ª Método: Detalhado

$$S = A\overline{B}C + A\overline{D} + \overline{A}BD$$

4 variáveis:

2⁴ = 16 combinações possíveis

Tabelas Verdade Obtidas de Expressões Lógicas

 A partir da expressão lógica, obter a tabela verdade.

1ª Método: Detalhado

$$S = A\overline{B}C + A\overline{D} + \overline{A}BD$$

4 variáveis:

2⁴ = 16 combinações possíveis

ABCD	$\mathbf{A}\overline{B}\mathbf{C}$	${f A} \overline{D}$	$\overline{A} \mathbf{B} \mathbf{D}$	\mathbf{S}
0000	0	0	0	0
0 0 0 1	0	0	0	0
0 0 1 0	0	0	0	0
0 0 1 1	0	0	0	0
0 1 0 0	0	0	0	0
0 1 0 1	0	0	1	1
0 1 1 0	0	0	0	0
0 1 1 1	0	0	1	1
1000	0	1	0	1
1001	0	0	0	0
1010	1	1	0	1
1011	1	0	0	1
1100	0	1	0	1
1 1 0 1	0	0	0	0
1110	0	1	0	1
1 1 1 1	0	0	0	0

Tabelas Verdade Obtidas de Expressões Lógicas

· A partir da expressão lógica, obter a tabela verdade.

2ª Método: Prático

$$S = \overline{A} + B + A\overline{B} \overline{C}$$

3 variáveis : 2³ = 8 combinações possíveis

• Exemplos:

a.1)
$$\overline{A}.\overline{B} \neq \overline{A}.\overline{B}$$

a.2) $\overline{A} + \overline{B} \neq \overline{A} + \overline{B}$

a.3)
$$\overline{A}.\overline{B} = \overline{A+B}$$

a.4) $\overline{A} + \overline{B} = \overline{A.B}$

a) Provar identidades:

A B	$\overline{A}.\overline{B}$	$\overline{A} + \overline{B}$	$\overline{A.B}$	$\overline{A+B}$
0 0				
0 1				
1 0				
1 1				

Nota:

(a.3) e (a.4) são os teoremas de DeMorgan, a ser visto mais adiante.

• Exemplos:

a.1)
$$\overline{A}.\overline{B} \neq \overline{A}.\overline{B}$$

a.2) $\overline{A} + \overline{B} \neq \overline{A} + \overline{B}$

a.3)
$$\overline{A}.\overline{B} = \overline{A} + \overline{B}$$

a.4) $\overline{A} + \overline{B} = \overline{A}.\overline{B}$

a) Provar identidades:

A B	$\overline{A}.\overline{B}$	$\overline{A} + \overline{B}$	$\overline{A.B}$	$\overline{A+B}$
0 0	1	1	1	1
0 1	0	1	1	0
1 0	0	1	1	0
1 1	0	0	0	0

Nota:
(a.3) e (a.4) são os
teoremas de DeMorgan,
a ser visto mais adiante.

b) Obter a tabela verdade para:

$$S = (A + B).(\overline{BC})$$

b) Obter a tabela verdade para:

$$S = (A + B).(\overline{BC})$$

АВС	S
0 0 0	0
0 0 1	0
0 1 0	1
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	0

c) Obter a tabela verdade para:

$$\mathbf{S} = \left[\overline{(A+B).C} \right] + \left[\overline{D.(B+C)} \right]$$

ABCD	S
0 0 0 0	
0 0 0 1	
0 0 1 0	
0 0 1 1	
0 1 0 0	
0 1 0 1	
0 1 1 0	
0 1 1 1	

$1\ 0\ 0\ 0$	
1001	
1 0 1 0	
1011	
1 1 0 0	
1 1 0 1	
1 1 1 0	
1111	

c) Obter a tabela verdade para:

$$\mathbf{S} = \left[\overline{(A+B).C} \right] + \left[\overline{D.(B+C)} \right]$$

ABCD	S
0 0 0 0	1
0 0 0 1	1
0 0 1 0	1
0 0 1 1	1
0 1 0 0	1
0 1 0 1	1
0 1 1 0	1
0 1 1 1	0

1000	1
1001	1
1010	1
1011	0
1 1 0 0	1
1101	1
1110	1
1111	0

d) Analisar o comportamento do circuito:

$$\mathbf{S} = \left(\overline{AC} + D + B\right) + \left(C.\overline{ACD}\right)$$

ABCD	\mathbf{S}
0 0 0 0	
0 0 0 1	
0 0 1 0	
0 0 1 1	
0 1 0 0	
0 1 0 1	
0 1 1 0	
0111	

1000	
1 0 0 1	
1 0 1 0	
1 0 1 1	
1 1 0 0	
1 1 0 1	
1110	
1111	

d) Analisar o comportamento do circuito:

$$\mathbf{S} = \left(\overline{AC} + D + B\right) + \left(C.\overline{ACD}\right)$$

ABCD	\mathbf{S}
0 0 0 0	0
0 0 0 1	0
0 0 1 0	1
0 0 1 1	1
0 1 0 0	0
0 1 0 1	0
0 1 1 0	1
0 1 1 1	1

$1\ 0\ 0\ 0$	0
1001	0
1010	1
1011	0
1 1 0 0	0
1101	0
1110	1
1111	0

Exercícios Propostos

Exercícios de 5 a 11 do final do capítulo 2, de "Idoeta".

