Основы теории множеств. І Семестр

Лектор: Селиванов Виктор Львович Автор конспекта: Буглеев Антон

2022

1 Мощность. Характеристическая функция

Def. Мощностью |A| называется число элементов в A.

Def. Фиксируем произвольное множество U, элементами которого являются множества $A_1, ..., A_n$.

 ${f Xapaktepuctuчeckoй\ функцией\ (индикатором)}$ множества $X\subset$

$$U$$
 называют функцию $\chi_X(u) = egin{cases} 1, u \in X \\ 0, u
otin X \end{cases}$

Основные свойства, если $A, B \subset U$:

1.
$$\chi_{A \cap B} = \chi_A \cdot \chi_B$$

2.
$$\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$$

3.
$$\chi_{A \triangle B} = \chi_A + \chi_B - 2\chi_{A \cap B}$$

4.
$$\chi_{A^c} = \chi_A$$

Theorem. $|A_1 \cup ... \cup A_n|$ равно

$$\sum_{i} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{k}| - \dots$$

Proof.

$$\chi_{A_1 \cup ... \cup A_n} = 1 - (1 - \chi_{A_1}) \cdot ... \cdot (1 - \chi_{A_n})$$

Раскрыв скобки получаем

$$\sum_{i} \chi_{A_{i}} - \sum_{i < j} \chi_{A_{i}} \chi_{A_{j}} + \sum_{i < j < k} \chi_{A_{i}} \chi_{A_{j}} \chi_{A_{k}} - \dots$$
$$\sum_{i} |A_{i}| - \sum_{i < j} |A_{i} \cap A_{j}| + \sum_{i < j < k} |A_{i} \cap A_{j} \cap A_{K}| - \dots$$

что и требовалось.

Theorem. $|A_1 \triangle ... \triangle A_n|$ равно

$$\sum_{i} |A_{i}| - 2 \sum_{i < j} |A_{i}A_{j}| + 4 \sum_{i < j < k} |A_{i}A_{j}A_{k}| - \dots$$

Def. Множества называются **Равномощными**, если между ними можно установить взаимно-однозначное соответствие.

2 Отношения

Def. Отношением называется любое множество $R\subset A\times B$, где A и B - какие-то множества

Def. Бинарное отношение - отношение вида $R \subset X \times X$

Свойства отношений:

- 1. $\forall x \in X : xRx$ (рефлексивность)
- 2. $\forall x, y \in X : xRy \Rightarrow yRx$ (симметричность)
- 3. $\forall x, y, z \in X : xRy \land yRz \Rightarrow xRz$ (транзитивность)
- 4. $\forall x, y \in X : xRy \land yRx \Rightarrow a = b$ (антисимметричность)
- 5. $\forall x, y \in X : xRy \lor yRx$ (связность)

Def. Отношение эквивалентности - всякое симметричное, рефлексивное и транзитивное отношение

Пример: X - множество прямых в плоскости, тогда всякие прямые $a,b\in X$ находятся в отношении эквивалентности $(a\sim b)$.

Отношение равномощности есть отношение эквивалентности. Примеры:

1. Множество бесконечных последовательностей единиц и нулей равномощно множеству всех подмножеств натуральных чисел. ((010101...) соответствует ряду чётных чисел)

2. Множество подмножеств любого множества U = P(U) равномощно множеству всех функций, которые ставят в соответствие каждому элементу $x \in U$ либо 0, либо 1. Другими словами, каждому $(X \subset P(U))$ соответствует своя характеристическая функция

Def. Отношение частичного порядка - всякое рефлексивное, транзитивное и антисимметричное отношение.

Пример: пусть $X = \mathcal{P}(M)$ - множество всех подмножеств множества M. Два произвольные множества $A, B \subset X$ находятся в отношении частичного порядка $(A \leq B)$.

Def. Отношение линейного порядка - всякое связное отношение частичного порядка.

3 Счётные множества

Def. Множество называется *счётным*, если оно равномощно \mathbb{N} .

Пример: множество \mathbb{Z} счётно, так как множество \mathbb{Z} можно представить в виде: $\{0,1,-1,2,-2,\dots\}$.

Theorem. Подмножество счётного множества конечно или счётно.

Proof. Возьмём счётное множество $A = \{a_0, a_1, a_2, \dots\}$. Множество B образуем следующим образом: вычёркиваем из A те элементы, которые $\notin B$, сохраняя порядок оставших. Очевидно, оставшиеся члены образуют бесконечную последовательность (тогда B - счётно, так как сохранился пронумерованный порядок), либо B конечно. \square

Theorem. Всякое бесконечное множество содержит счётное множество.

Proof. Пусть имеется бесконечное множество B. Возьмём некоторый элемент $b_1 \in B$. Так как B бесконечно, возьмём какой-либо другой элемент $b_2 \in B$, и так далее. Множество $\{b_1, b_2, \ldots, b_n\} \subset B$ является счётным.

Theorem. Объединение конечного или счётного числа конечных или счётных множеств конечно или счётно.

4 Числовые структуры теории множеств

Натуральные числа

Def. Определим N как мощности конечных множеств

$$0 = |\varnothing| \tag{1}$$

$$1 = |\{0\}| \tag{2}$$

$$|A| + |B| = |(\{0\} \times A) \cup (\{1\} \times B)| \tag{3}$$

$$|A| \cdot |B| = |A \times B|, 0 = |\varnothing|, 1 = |\{0\}|$$
 (4)

Свойства операций +, ::

- 1. + ассоциативна и коммутативна
- 2. ассоциативна, коммутативна и дистрибутивна
- 3. 0, 1 нейтральны относительно сложения и умножение соответсвенно
- 4. $0 < 1 < 2 < \dots$ и между соседями нет других натуральных чисел

5.
$$(P(0) \land \forall x : P(X) \Rightarrow P(x+1) \Rightarrow \forall P(x)$$

Целые числа

 $\mathbf{Def.}$ Определим $\mathbb Z$ как

$$(\mathbb{N} \times \mathbb{N})/\sim$$
, где $(a,b)\sim (c,d) \Leftrightarrow a-b=c-d \Leftrightarrow a+c=b+d$

Рассмотрим $[a,b] = \{(x,y) \mid (x,y) \sim (a,b)\}$

Некоторые свойства:

1.
$$[a,b] + [c,d] = [a+c,b+d]$$

$$2. \ [a,b]\tilde{\cdot} = [ac+bd,ad+bc]$$

Рациональные числа

Def. Определим \mathbb{Q} как

$$(\mathbb{Z} \times \mathbb{N} \setminus \{0\}) / \sim$$
, где $(a, b) \sim (c, d) \Leftrightarrow ad = bc$

Некоторые свойства:

- 1. $[a, b] \tilde{+} [c, d] = [ad + bc, bd]$
- 2. $[a, b]\tilde{\cdot}[c, d] = [ac, bd]$
- 3. $[a, b] \leq [c, d] \Leftrightarrow ad \leq bc$
- 4. $\tilde{0} = [0, 1]; \tilde{1} = [1, 1]$

Вещественные числа

Def. Последовательность рациональных есть отображение $f: \mathbb{N} \to \mathbb{Q}$

Def. Определим \mathbb{R} как $\mathbb{R} = S/\sim$, где S - множество всех последовательностей Коши $\{q_i\}$ рациональных чисел.

Т.е.
$$\forall n \; \exists \; m \; \forall i, j > m : |q_i - q_j| < 2^{-n}$$
, где $\{q_i\} \sim \{r_i\} \Leftrightarrow \lim_i (q_i - r_i) = 0$

Комплексные числа

Def. Поле комплексных чисел есть наименьшеее расширение поля вещественных чисел, обладающие элементов i, таким, что $i^2 = -1$. $\mathbb{C} = \mathbb{R} \times \mathbb{R}$

Свойства:

1.
$$(x,y)\tilde{+}(z,w) = (x+z,y+w)$$

2.
$$(x,y)\tilde{\cdot}(z,w) = (xz - yw, xw + yz)$$

5 ZFC – система Цермело-Френкеля