Tipos Abstractos de Datos Técnicas algorítmicas de Divide y vencerás y Vuelta atrás

Isabel Pita.

Facultad de Informática - UCM

12 de septiembre de 2023

Tipos de Datos

- Seleccionar correctamente los tipos de datos utilizados para resolver el problema.
- El uso adecuado del tipo de datos puede ser la diferencia entre obtener un veredicto AC o TLE.
- Es necesario conocer las características de cada tipo (sus puntos fuertes, debilidades y la complejidad en tiempo y espacio) y saber usarlo.

TADs lineales I

 Array estático (tipo v[MAX])/dinámico (vector), es el tipo que más se utiliza.

Operaciones de la librería (<algorithm>):

- Ordenar: $sort(\mathcal{O}(n\log(n)))$, partial_sort, stable_sort.
- Búsqueda: lower_bound, upper_bound, binary_search Complejidad $\mathcal{O}(\log(n))$.

 Siendo n el número de elementos del vector.
- Listas enlazadas (list). No suelen utilizarse porque el acceso a los elementos es muy ineficiente. Sólo resultan interesantes si se pide hacer inserciones en cualquier lugar de la lista de forma dinámica

TADs lineales II

- Pilas (stack). Operaciones:
 - ullet pop(), push(), top(), empty(). Complejidad $\mathcal{O}(1)$
- Colas (queue). Operaciones:
 - ullet pop(), push(), front(), empty(). Complejidad $\mathcal{O}(1)$
- Colas dobles (deque). Operaciones:
 - front(), back(),pop_front(), pop_back(), push_front(), push_back(), empty(). Complejidad $\mathcal{O}(1)$

TADs no lineales

- Diccionarios ordenados: map/set.
 Operaciones (siendo n el número de elementos de la colección)
 - insert, erase, operator[], find, count. Complejidad: $\mathcal{O}(\log(n))$
- Diccionarios no ordenados unordered_map/unordered_set.
 Operaciones
 - insert, erase, operator[], find, count. Complejidad: $\mathcal{O}(1)$
- Colas de prioridad priority_queue. Librería queue.
 Operaciones: (siendo n el número de elementos de la colección)
 - top $(\mathcal{O}(1))$, push $(\mathcal{O}(\log(n)))$, pop $(\mathcal{O}(\log(n)))$, empty $\mathcal{O}(1))$

Cola de prioridad

 Una cola de prioridad obtiene el objeto más prioritario de la colección. Pueden ser de máximos o de mínimos.

Cola prioridad	Obj. prioritario	$a_1 < \ldots < a_n$	$b_1 > \ldots > b_n$
máximos	derecha	a_n	b_n
mínimos	izquierda	a_1	b_1

 La cola de prioridad implementada en la STL es una cola de máximos.

```
priority_queue<int, vector<int>> cm; // less
priority_queue<int, vector<int>, greater<int>> cm;
```

Los objetos función greater y less se encuentran en la librería <functional>

Definir un orden en TADs y funciones

Se define el orden en un objeto función:

```
class ord{
public:
 ord(){}
bool operator() (const type& a, const type& b) const
      // Aqui la comparacion
};
Ejemplos de uso:
sort(v.begin(), v.end(), ord());
map<string, int, ord> mp;
```

Divide y vencerás

- El problema se hace más sencillo dividiéndolo en partes más pequeñas.
- Son soluciones recursivas.
- Las soluciones más usadas se basan en la búsqueda binaria (sobre vectores ordenados):
 - Comprobar si existe un elemento en un vector.
 - Encontrar los valores en que una función se hace cero (Método de bisección). Se aplica sobre un rango de valores [a..b] tal que $f(a) < 0 \land f(b) > 0$ o $f(a) > 0 \land f(b) < 0$. Se calcula el valor de la función en el punto medio del intervalo y se selecciona uno de los dos subintervalos como solución.
 - Búsqueda en un espacio de soluciones ordenado de forma lineal.

Vuelta atrás (Backtraking)

- Método que explora todo el árbol de soluciones de un problema.
- La complejidad de los algoritmos de vuelta atrás es exponencial o factorial. Por lo tanto solo debe utilizarse cuando no existe otro método conocido para resolver el problema (o es muy costoso de implementar) y los datos de entrada son pequeños.

Complejidad en tiempo vs tamaño de los datos

n	Worst AC Algorithm	Comment
$\leq [1011]$	$O(n!), O(n^6)$	e.g. Enumerating permutations (Section 3.2)
$\leq [1518]$	$O(2^n \times n^2)$	e.g. DP TSP (Section 3.5.2)
$\leq [1822]$	$O(2^n \times n)$	e.g. DP with bitmask technique (Section 8.3.1)
≤ 100	$O(n^4)$	e.g. DP with 3 dimensions + $O(n)$ loop, ${}_{n}C_{k=4}$
≤ 400	$O(n^3)$	e.g. Floyd Warshall's (Section 4.5)
$\leq 2K$	$O(n^2 \log_2 n)$	e.g. 2 -nested loops $+$ a tree-related DS (Section 2.3)
$\leq 10K$	$O(n^2)$	e.g. Bubble/Selection/Insertion Sort (Section 2.2)
$\leq 1M$	$O(n\log_2 n)$	e.g. Merge Sort, building Segment Tree (Section 2.3)
$\leq 100M$	$O(n), O(\log_2 n), O(1)$	Most contest problem has $n \leq 1M$ (I/O bottleneck)

Table 1.4: Rule of thumb time complexities for the 'Worst AC Algorithm' for various single-test-case input sizes n, assuming that your CPU can compute 100M items in 3s.

¹Competitive programming 3. S. Halim, F. Halim.

Límites

- Familiarity with these bounds:
 - $-2^{10} = 1,024 \approx 10^3, 2^{20} = 1,048,576 \approx 10^6.$
 - 32-bit signed integers (int) and 64-bit signed integers (long long) have upper limits of $2^{31}-1\approx 2\times 10^9$ (safe for up to ≈ 9 decimal digits) and $2^{63}-1\approx 9\times 10^{18}$ (safe for up to ≈ 18 decimal digits) respectively.
 - Unsigned integers can be used if only non-negative numbers are required. 32-bit unsigned integers (unsigned int) and 64-bit unsigned integers (unsigned long long) have upper limits of 2³² − 1 ≈ 4 × 10⁹ and 2⁶⁴ − 1 ≈ 1.8 × 10¹⁹ respectively.
 - If you need to store integers ≥ 2⁶⁴, use the Big Integer technique (Section 5.3).
 - There are n! permutations and 2^n subsets (or combinations) of n elements.
 - The best time complexity of a comparison-based sorting algorithm is $\Omega(n \log_2 n)$.
 - Usually, $O(n \log_2 n)$ algorithms are sufficient to solve most contest problems.
 - The largest input size for typical programming contest problems must be < 1M.
 Beyond that, the time needed to read the input (the Input/Output routine) will be the bottleneck.
 - A typical year 2013 CPU can process $100M = 10^8$ operations in a few seconds.

²Competitive programming 3. S. Halim, F. Halim.

Ejercicios y cuestiones

Describe como implementarías los siguientes algoritmos e indica que coste tendrían.

- ① Dado un array de tamaño n-1 que contiene los números [1..n] entre los que falta uno. Determina que número falta.
- ② Determina si un array contiene uno o más pares de elementos duplicados. Estudia diferentes posibilidades para los valores del vector y da la mejor solución para cada caso.
- Oado un vector de valores enteros ordenados indica si existen dos valores en el vector cuya suma sea un valor x.
- **1** Dado un vector de valores enteros, no ordenados, mostrar los valores que estén en un rango [a..b] en orden creciente.
- O Describe cómo implementarías dos pilas con un array.