#### **Tutorial-6 (Solutions)**

Q-1:



Fig. 1a

Applying mesh analysis, for mesh 1

$$I_1 = 4A \tag{1}$$

For mesh 2,

$$(j10 - j5)I_2 - j10I_1 + 60 \angle 30^\circ = 0$$
 (2)

Solving eq.1 and eq.2 gives

$$I_2 = -12\angle -60^\circ + 8 = 10.58\angle 79.1^\circ A \tag{3}$$

a. For the current source, the current through it is  $I_1 = 4 \angle 0^\circ A$  and the voltage across it is:

$$V_1 = 20I_1 + j10(I_1 - I_2) = 183.9 + j20 = 184.984 \angle 6.21^{\circ}V$$

The average power suppled by the current source is

$$P_1 = \frac{1}{2}(184.984) \times (4) \times \cos(6.21^{\circ} - 0^{\circ}) = 367.8W$$

b. The current through the voltage source is:

$$I_2 = -12\angle -60^\circ + 8 = 10.58\angle 79.1^\circ A$$

The power delivered by the voltage source is

$$P_2 = \frac{1}{2} \times 10.58 \times 60 \times \cos(30^\circ - 79.1^\circ) = 207.8W$$

In view of the direction of I<sub>2</sub> and the polarity of the voltage

source, the circuit is delivering average power to the voltage source.

c. For the resistor, the current through it is  $I_1$  and the voltage across it is  $20 I_1$ . Hence,

$$P_3 = \frac{1}{2} \times 80 \times 4 = 160W$$

d. For the inductor, the current through it is  $I_1$ - $I_2$ =10.58 $\angle$ -79.1° The voltage across it is j10( $I_1$ - $I_2$ )=10.58 $\angle$ -79.1° +90° hence, the average power absorbed by inductor is

$$P_4 = \frac{1}{2} \times 105.8 \times 10.58 \times \cos(90^\circ) = 0$$

e. For the capacitor, the current through it is I2 and the voltage across it is  $-j5I_2$  =52.9 $\angle$ 79.1° – 90°. The average power absorbed by the capacitor is

$$P_5 = \frac{1}{2} \times 52.9 \times 10.58 \times \cos(-90^\circ) = 0$$

Q-2: The impedance seen by the load is: 
$$Z = 2j + \frac{(2+2j)(-2j)}{2} = 2\Omega$$

For maximum power transfer, the load impedance should be  $2\Omega$ 

Q-3:



 $V_{\rm th}$ : Using source transformation, we get,



Fig. 3b  $I = \frac{100 - (j \ 0.2V_X)}{20 - j10} = \frac{100 + j0.2V_X}{20 - j10}$ 

Applying KVL for circuit shown in Fig. 3b -

• 
$$100 - V_X - I(-j10) - (-j0.2V_X) = 0$$
  

$$\Rightarrow 100 - V_X + \left(\frac{100 + j0.2V_X}{20 - j10}\right)(j10) + j0.2V_X = 0$$

$$\Rightarrow (100 - V_X)(20 - j10) + j1000 - 2V_X + j0.2V_X(20 - j10) = 0$$

$$\Rightarrow 2000 - j1000 - 20V_X + j10V_X + j1000 - 2V_X + j4V_X + 2V_X = 0$$
  
$$\Rightarrow V_X = 67.11 + j46.98 = 81.92 \angle 35^{\circ}$$

• 
$$V_{\text{th}} = 100 \angle 0^{\circ} - V_X = 100 \angle 0^{\circ} - (81.92 \angle 35^{\circ})$$
  

$$\Rightarrow V_{\text{th}} = 32.89 - j46.98 = 57.35 \angle -55^{\circ} \text{ V}$$



Fig. 3c

- As shown in Fig. 3c,  $I_{SC} = \frac{100}{20} + 0.02V_X = 5 + 0.02(100) = 7 A$
- $Z_{\text{th}} = \frac{V_{\text{th}}}{I_{\text{sc}}} = 57.35 \angle -55^{\circ}/7 \implies Z_{\text{th}} = (4.699 j6.711)\Omega$
- Thevenin's equivalent circuit (shown in Fig. 3d):

$$V_{\rm th} = 57.35 \angle - 55^{\circ} \,\text{V} \text{ and, } Z_{\rm th} = 4.699 - j6.711 \,\Omega$$



Fig. 3d

**Q-4:** It is clear that the clock signal arriving at the JK Flip-flop should be inverted before being connected to the T Flip-flop for the desired behaviour. Now, the table describing the transitions of the JK Flip-flop and the input to the T Flip-flop is as follows:

| Q(k) | J | K | Q(k+1) | T |
|------|---|---|--------|---|
| 0    | 0 | 0 | 0      | 0 |
| 0    | 0 | 1 | 0      | 0 |
| 0    | 1 | 0 | 1      | 1 |
| 0    | 1 | 1 | 1      | 1 |
| 1    | 0 | 0 | 1      | 0 |
| 1    | 0 | 1 | 0      | 1 |
| 1    | 1 | 0 | 1      | 0 |
| 1    | 1 | 1 | 0      | 1 |



Fig. 4a. State transition of JK flip-flop

Fig. 4b. The Karnaugh map for T

The minimal SOP is: T = JQ(k)' + KQ(k)



Fig. 4c. JK flip flop using positive edge triggered T flip-flop and NAND gates

#### **Q-5:** a)



| Presen | t state | Input | Next | state | F | lip-Flo | p Inpu         | ıts            |
|--------|---------|-------|------|-------|---|---------|----------------|----------------|
| A      | В       | Y     | A    | В     | J | K       | J <sub>B</sub> | K <sub>B</sub> |
| 0      | 0       | 0     | 0    | 0     | 0 | X       | 0              | X              |
| 0      | 0       | 1     | 0    | 1     | 0 | X       | 1              | X              |
| 0      | 1       | 0     | 1    | 1     | 1 | X       | X              | 0              |
| 0      | 1       | 1     | 1    | 0     | 1 | X       | X              | 1              |
| 1      | 0       | 0     | 1    | 0     | X | 0       | 0              | X              |
| 1      | 0       | 1     | 1    | 1     | X | 0       | 1              | X              |
| 1      | 1       | 0     | 0    | 1     | X | 1       | X              | 0              |
| 1      | 1       | 1     | 0    | 0     | X | 1       | X              | 1              |
|        |         |       |      |       |   |         |                |                |

Fig. 5. Sequential circuit using 2 JK flip-flops

Fig. 5a. JK flip-flop state table



$$A(t+1) = A'B + AB' = A XOR B$$



Fig. 5c. B(t+1) = Y'B + YB' = Y XOR B

# c) To solve J<sub>A</sub>

| AB | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 0  | 0  | 1  | Х  | X  |
| 1  | 0  | 1  | х  | х  |

Fig. 5d.

$$J_A = B(t)$$

# To solve $K_A$



Fig. 5e.

$$K_A = B(t)$$

### To solve J<sub>B</sub>

| AB | 00 | 01 | 11 | 10 |
|----|----|----|----|----|
| 0  | 0  | X  | X  | 0  |
| 1  | 1  | X  | X  | 1  |

Fig. 5f.

$$J_{B} = Y(t)$$

To solve K<sub>B</sub>



Fig. 5g.

$$K_B = Y(t)$$

Note: Characteristic table for JK flip-flop

| Flip-Flop Input |   | Next State |          |  |
|-----------------|---|------------|----------|--|
| J               | K | Q(t+1)     | Q'(t +1) |  |
| 0               | 0 | Q(t)       | Q(t)     |  |
| 0               | 1 | 0          | 1        |  |
| 1               | 0 | 1          | 0        |  |
| 1               | 1 | Q'(t)      | Q(t)     |  |

Fig. 5h.

| Present State | Next State | Flip-Flop Inpu |   |
|---------------|------------|----------------|---|
| Q(t)          | Q(t+1)     | J              | K |
| 0             | 0          | 0              | Х |
| 0             | 1          | 1              | X |
| 1             | 0          | X              | 1 |
| 1             | 1          | X              | 0 |

Fig. 5i.

**Q-6:** The circuit takes 4-bit input word (X, Y, Z, P) with P as the least significant bit (LSB) and outputs '1' for inputs  $\{0, 1, 3, 4, 5, 6, 7, 8, 9, A, B, D\}$ 

a)



| ZP\^ | T |   |   |   |
|------|---|---|---|---|
|      | 1 | 1 |   | 1 |
|      | 1 | 1 | 1 | 1 |
|      | 1 | 1 |   | 1 |
|      |   | 1 |   | 1 |

Fig. 6a.

Fig. 6b.

b) Minimized SOP:

$$X'Z' + X'P + Z'P + X'Y + XY'$$
 **OR**

$$X'Z' + Y'P + Z'P + X'Y + XY'$$
 **OR**

$$Y'Z' + X'P + Z'P + X'Y + XY'$$
 OR

$$Y'Z' + Y'P + Z'P + X'Y + XY'$$

c) Minimized POS: (X' + Y' + P)(X' + Y' + Z')(X + Y + Z' + P)