Sequence Listing

```
<110> ASHKENAZI, AVI J
    BOTSTEIN, DAVID
    DODGE, KELLY H.
    GURNEY, AUSTIN L.
    KIM, KYUNG JIN
    LAWRENCE, DAVID A.
    PITTI, ROBERT
    ROY, MARGARET A
    TUMAS, DANIEL B
    WOOD, WILLIAM I.
```

<120> DcR3 Polypeptide, A TNFR Homolog

<130> P1134R2 REVISED

<140> US 09/157,289

<141> 1998-09-18

<150> US 60/059,288

<151> 1997-09-18

<150> US 60/094,640

<151> 1998-07-30

<160> 18

<210> 1

<211> 300

<212> PRT

<213> Homo sapiens

<400> 1

Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val 1 5 10

Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val
20 25 30

Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu
35 40 45

Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg
50 55 60

Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro 65 70 75

Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr
80 85 90

Cys	Asn	Val	Leu	Cys 95	Gly	Glu	Arg	Glu	Glu 100	Glu	Ala	Arg	Ala	Cys 105
His	Ala	Thr	His	Asn 110	Arg	Ala	Cys	Arg	Cys 115	Arg	Thr	Gly	Phe	Phe 120
Ala	His	Ala	Gly	Phe 125	Cys	Leu	Glu	His	Ala 130	Ser	Cys	Pro	Pro	Gly 135
Ala	Gly	Val	Ile	Ala 140	Pro	Gly	Thr	Pro	Ser 145	Gln	Asn	Thr	Gln	Cys 150
Gln	Pro	Cys	Pro	Pro 155	Gly	Thr	Phe	Ser	Ala 160	Ser	Ser	Ser	Ser	Ser 165
Glu	Gln	Cys	Gln	Pro 170	His	Arg	Asn	Cys	Thr 175	Ala	Leu	Gly	Leu	Ala 180
Leu	Asn	Val	Pro	Gly 185	Ser	Ser	Ser	His	Asp 190	Thr	Leu	Cys	Thr	Ser 195
Cys	Thr	Gly	Phe	Pro 200	Leu	Ser	Thr	Arg	Val 205	Pro	Gly	Ala	Glu	Glu 210
Cys	Glu	Arg	Ala	Val 215	Ile	Asp	Phe	Val	Ala 220	Phe	Gln	Asp	Ile	Ser 225
Ile	Lys	Arg	Leu	Gln 230	Arg	Leu	Leu	Gln	Ala 235	Leu	Glu	Ala	Pro	Glu 240
Gly	Trp	Gly	Pro	Thr 245	Pro	Arg	Ala	Gly	Arg 250	Ala	Ala	Leu	Gln	Leu 255
Lys	Leu	Arg	Arg	Arg 260	Leu	Thr	Glu	Leu	Leu 265	Gly	Ala	Gln	Asp	Gly 270
Ala	Leu	Leu	Val	Arg 275	Leu	Leu	Gln	Ala	Leu 280	Arg	Val	Ala	Arg	Met 285
Pro	Gly	Leu	Glu	Arg 290	Ser	Val	Arg	Glu	Arg 295	Phe	Leu	Pro	Val	His 300

<210> 2

<211> 1114

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 1090

<223> Unknown base

<400> 2 tccgcaggcg gaccgggggc aaaggaggtg gcatgtcggt caggcacagc 50 agggtcctgt gtccgcgctg agccgcgctc tccctgctcc agcaaggacc 100 atgagggcgc tggaggggcc aggcctgtcg ctgctgtgcc tggtgttggc 150 getgeetgee etgetgeegg tgeeggetgt acgeggagtg geagaaacae 200 ccacctaccc ctggcgggac gcagagacag gggagcggct ggtgtgcgcc 250 cagtgccccc caggcacctt tgtgcagcgg ccgtgccgcc gagacagccc 300 cacgacgtgt ggcccgtgtc caccgcgcca ctacacgcag ttctggaact 350 acctggagcg ctgccgctac tgcaacgtcc tctgcgggga gcgtgaggag 400 gaggcacggg cttgccacgc cacccacaac cgtgcctgcc gctgccgcac 450 cggcttcttc gcgcacgctg gtttctgctt ggagcacgca tcgtgtccac 500 ctggtgccgg cgtgattgcc ccgggcaccc ccagccagaa cacgcagtgc 550 cagcegtgee ecceaggeae etteteagee ageageteea geteagagea 600 gtgccagccc caccgcaact gcacggccct gggcctggcc ctcaatgtgc 650 caggetette eteccatgae accetgtgea ceagetgeae tggetteece 700 ctcagcacca gggtaccagg agctgaggag tgtgagcgtg ccgtcatcga 750 ctttgtggct ttccaggaca tctccatcaa gaggctgcag cggctgctgc 800 aggeeetega ggeeeeggag ggetggggte egacaceaag ggegggeege 850 geggeettge agetgaaget gegteggegg etcaeggage teetggggge 900 gcaggacggg gcgctgctgg tgcggctgct gcaggcgctg cgcgtggcca 950 ggatgcccgg gctggagcgg agcgtccgtg agcgcttcct ccctgtgcac 1000 tgatcctggc cccctcttat ttattctaca tccttggcac cccacttgca 1050 ctgaaagagg cttttttta aatagaagaa atgaggtttn ttaaaaaaaa 1100 aaaaaaaaa aaaa 1114

<210> 3 <211> 491

<220>

```
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 62, 73, 86, 98
<223> unknown base
<400> 3
 geogagacag ecceacgacg tgtggcccgt gtccaccgcg ccactacacg 50
 cagttetgga antaactgga genetgeege tactgnaacg teetetgngg 100
 ggagcgtgag gaggaggcac gggcttgcca cgccacccac aaccgtgcct 150
 geogetgeeg caeeggette ttegegeaeg etggtttetg ettggageae 200
 gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 250
 gaacacgcag tgcctagccg tgccccccag gcaccttctc agccagcage 300
 tccagctcag agcagtgcca gccccaccgc aactgcacgg ccctgggcct 350
 ggccctcaat gtgccaggct cttcctccca tgacaccctg tgcaccagct 400
 gcactggctt cccctcagc accagggtac caggagctga ggagtgtgag 450
 cgtgccgtca tcgactttgt ggctttccag gacatctcca t 491
<210> 4
<211> 73
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 4
 geogagacag ceceaegacg tgtggeeegt gtecaeegeg ceaetacaeg 50
 cattctggaa ctacctggag cgc 73
<210> 5
<211> 271
<212> DNA
<213> Unknown
```

```
<223> Unknown organism
<220>
<221> unsure
<222> 42, 62, 73, 86, 98, 106, 120, 122, 153, 167, 184, 220, 233
<223> unknown base
<400> 5
geogagacag ecceacgacg tgtggecegt gtecacegeg enactacaeg 50
 cagttctgga antaactgga genetgeege tactgnaacg teetetgngg 100
 ggagentgag gaggaggean gngettgeea egecaceeac aacegegeet 150
 gengetgeag caeeggntte ttegegeaeg etgntttetg ettggageae 200
 gcatcgtgtc cacctggtgn cggcgtgatt gcnccgggca cccccagcca 250
 gaacacgcat gcaaagccgt g 271
<210> 6
<211> 201
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 182
<223> unknown base
<400> 6
 gcagttctgg aactacctgg agcgctgccg ctactgcaac gtcctctgcg 50
 gggagcgtga ggaggaggca cgggcttgcc acgccaccca caaccgtgcc 100
 tgccgctgcc gcaccggctt cttcgcgcac gctggtttct gcttggagca 150
 cgcatcgtgt ccacctggtg ccggcgtgat tnccccgggc acccccagcc 200
 a 201
<210> 7
<211> 277
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

```
<220>
<221> unsure
<222> 142
<223> unknown base
<400> 7
 gaggggcccc caggagtggt ggccggaggt gtggcagggg tcaggttgct 50
 ggtcccagcc ttgcaccctg agctaggaca ccagttcccc tgaccctgtt 100
 cttccctcct ggctgcaggc acccccagcc agaacacgca gnccagccgt 150
 gcccccagg cacettetea gccagcaget ccageteaga gcagtgccag 200
 ccccaccgca actgcacggc cctgggcctg gccctcaatg tgccaggctc 250
 ttcctcccat gacaccctgt gcaccag 277
<210> 8
<211> 199
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 8
 gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 50
 gaacacgcag gcctagccgt gcccccagg caccttctca gccagcagct 100
 ccagctcaga gcagtgccag ccccaccgca actgcacggc cctgggcctg 150
 geocteaatg tgecaggete tteeteecat gacaccetgt geaccaget 199
<210> 9
<211> 226
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 4, 9, 12, 165
<223> unknown base
<400> 9
 agengtgene encaggeace tteteageea geagtteeag eteagageag 50
```

<210> 12 <211> 22 <212> DNA

```
tgccagcccc accgcaactg cacggccctg ggcctggccc tcaatgtgcc 100
aggetettee teccatgaca egetgtgeac eagetgeact ggetteecec 150
tcagcaccag ggtancagga gctgaggagt gtgagcgtgc cgtcatcgac 200
 tttgtggctt tccaggacat ctccat 226
<210> 10
<211> 283
<212> DNA
<213> Homo sapiens
<220>
<221> Unsure
<222> 1-283
<223> Unknown organism
<220>
<221> unsure
<222> 27, 64, 140
<223> unknown base
<400> 10
 cttgtccacc tggtgccggc gtgattnccc gggcaccccc agccagaaca 50
 cgcagtgcca gccntccccc caggcacctt ctcagccagc agctccagct 100
 cagagcagtg ccagccccac cgcaactgca acgccctggn ctggccctca 150
 atgtgccagg ctcttcctcc catgacaccc tgtgcaccag ctgcactggc 200
 ttccccctca gcaccagggt accaggaget gaggagtgtg agcgtgccgt 250
 catcgacttt gtggctttcc aggacatctc cat 283
<210> 11
<211> 21
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 11
 cacgctggtt tctgcttgga g 21
```

```
<213> Unknown
<220>
<223> Unknown organism
<400> 12
 agctggtgca cagggtgtca tg 22
<210> 13
<211> 53
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 13
 cccaggcacc ttctcagcca gccagcagct ccagctcaga gcagtgccag 50
 ccc 53
<210> 14
<211> 24
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 14
acacgatgcg tgctccaagc agaa 24
<210> 15
<211> 17
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 15
 cttcttcgcg cacgctg 17
<210> 16
 <211> 16
 <212> DNA
 <213> Unknown
 <220>
 <223> Unknown organism
```

<400> atca		gg c	acca	g 16										
<210> <211> <212> <213>	461 PRT	•	pien	ıs										
<400> Met 1	17 Ala	Pro	Val	Ala 5	Val	Trp	Ala	Ala	Leu 10	Ala	Val	Gly	Leu	Glu 15
Leu	Trp	Ala	Ala	Ala 20	His	Ala	Leu	Pro	Ala 25	Gln	Val	Ala	Phe	Thr 30
Pro	Tyr	Ala	Pro	Glu 35	Pro	Gly	Ser	Thr	Cys 40	Arg	Leu	Arg	Glu	Tyr 45
Tyr	Asp	Gln	Thr	Ala 50	Gln	Met	Cys	Cys	Ser 55	Lys	Cys	Ser	Pro	Gly 60
Gln	His	Ala	Lys	Val 65	Phe	Cys	Thr	Lys	Thr 70	Ser	Asp	Thr	Val	Cys 75
Asp	Ser	Cys	Glu	Asp 80	Ser	Thr	Tyr	Thr	Gln 85	Leu	Trp	Asn	Trp	Val 90
Pro	Glu	Cys	Leu	Ser 95	Cys	Gly	Ser	Arg	Cys 100	Ser	Ser	Asp	Gln	Val 105
Glu	Thr	Gln	Ala	Cys 110	Thr	Arg	Glu	Gln	Asn 115	Arg	Ile	Cys	Thr	Cys 120
Arg	Pro	Gly	Trp	Tyr 125	Cys	Ala	Leu	Ser	Lys 130	Gln	Glu	Gly	Cys	Arg 135
Leu	Cys	Ala	Pro	Leu 140	Arg	Lys	Cys		Pro 145		Phe	Gly	Val	Ala 150
Arg	Pro	Gly	Thr	Glu 155	Thr	Ser	Asp	Val	Val 160	Cys	Lys	Pro	Cys	Ala 165
Pro	Gly	Thr	Phe	Ser 170	Asn	Thr	Thr	Ser	Ser 175		Asp	Ile	Cys	Arg 180
Pro	His	Gln	Ile	Cys 185		Val	Val	Ala	Ile 190		Gly	Asn	Ala	Ser 195
Ärg	Asp	Ala	Val	Cys 200		Ser	Thr	Ser	Pro 205		Arg	Ser	Met	Ala 210

Pro	Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser	Gln 225
His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255
Gly	Asp	Phe	Ala	Leu 260	Pro	Val	Gly	Leu	Ile 265	Val	Gly	Val	Thr	Ala 270
Leu	Gly	Leu	Leu	Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285
Gln	Val	Lys	Lys	Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300
Pro	His	Leu	Pro	Ala 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315
Gln	Gln	His	Leu	Leu 320	Ile	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330
Leu	Glu	Ser	Ser	Ala 335	Ser	Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345
Asn	Gln	Pro	Gln	Ala 350	Pro	Gly	Val	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360
Ala	Arg	Ala	Ser	Thr 365		Ser	Ser	Asp	Ser 370	Ser	Pro	Gly	Gly	His 375
Gly	Thr	Gln	Val	Asn 380		Thr	Cys	Ile	Val 385		Val	Cys	Ser	Ser 390
Ser	Asp	His	Ser	Ser 395		Cys	Ser	Ser	Gln 400		Ser	Ser	Thr	Met 405
Gly	Asp	Thr	Asp	Ser		Pro	Ser	Glu	Ser		Lys	Asp	Glu	Gln 420
Val	Pro	Phe	. Ser	Lys 425		Glu	Cys	Ala	Phe		Ser	Gln	. Leu	Glu 435
Thr	Pro	Glu	Thr	Leu 440		Gly	Ser	Thr	Glu 445		Lys	Pro	Leu	Pro 450
Leu	Gly	Val	. Pro	Asp 455		Gly	Met	Lys	Prc 460		-			

<210><211><211><212><213>	293 PRT	ŗ	apier	ıs										
<400> Met 1		Lys	Leu	Leu 5	Cys	Cys	Ala	Leu	Val 10	Phe	Leu	Asp	Ile	Ser 15
Ile	Lys	Trp	Thr	Thr 20	Gln	Glu	Thr	Phe	Pro 25	Pro	Lys	Tyr	Leu	His 30
Tyr	Asp	Glu	Glu	Thr 35	Ser	His	Gln	Leu	Leu 40	Cys	Asp	Lys	Cys	Pro 45
Pro	Gly	Thr	Tyr	Leu 50	Lys	Gln	His	Cys	Thr 55	Ala	Lys	Trp	Lys	Thr 60
Val	Cys	Ala	Pro	Cys 65	Pro	Asp	His	Tyr	Tyr 70	Thr	Asp	Ser	Trp	His 75
Thr	Ser	Asp	Glu	Cys 80	Leu	Tyr	Cys	Ser	Pro 85	Val	Cys	Lys	Glu	Leu 90
Gln	Tyr	Val	Lys	Gln 95	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	Cys 105
Glu	Cys	Lys	Glu	Gly 110	Arg	Tyr	Leu	Glu	Ile 115	Glu	Phe	Cys	Leu	Lys 120
His	Arg	Ser	Cys	Pro 125	Pro	Gly	Phe	Gly	Val 130	Val	Gln	Ala	Gly	Thr 135
Pro	Glu	Arg	Asn	Thr 140	Val	Cys	Lys	Arg	Cys 145	Pro	Asp	Gly	Phe	Phe 150
Ser	Asn	Glu	Thr	Ser 155	Ser	Lys	Ala	Pro	Cys 160	Arg	Lys	His	Thr	Asn 165
Cys	Ser	Val	Phe	Gly 170	Leu	Leu	Leu	Thr	Gln 175	Lys	Gly	Asn	Ala	Thr 180
His	Asp	Asn	Ile	Cys 185	Ser	Gly	Asn	Ser	Glu 190	Ser	Thr	Gln	Lys	Cys 195
Gly	Ile	Asp	Val	Thr 200	Leu	Cys	Glu	Glu	Ala 205	Phe	Phe	Arg	Phe	Ala 210
Val	Pro	Thr	Lys	Phe 215	Thr	Pro	Asn	Trp	Leu 220	Ser	Val	Leu	Val	Asp 225

Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255
Leu	Trp	Lys	His	Gln 260	Asn	Lys	Ala	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270
Ile	Gln	Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285
Gly	His	Ala	Asn	Leu 290	Thr	Phe	Glu							

Page 12