INTRODUCTION TO

DEPENDENT TYPES

Carl Factora cfactora@indiana.edu

WHAT IS A DEPENDENT TYPE?

WIR MÜSSEN WISSEN. WIR WERDEN WISSEN.

[D. HILBERT]

We must know. We will know.

- Brief Intro to Intuitionistic Logic
- Curry-Howard-DeBruijn Isomorphism
- Some Proofs
- ▶ the λ -Cube (λ → to λ C)
- Extra: "All You Need Is..."

EITHER MATHEMATICS IS TOO BIG FOR THE HUMAN MIND, OR THE HUMAN MIND IS MORE THAN A MACHINE.

[K. GÖDEL]

- "A logic where people matter..." [R. Harper]
- "... where double-negation, excluded third, and indirect proof are the casualties." [C. Factora]
- Works on the idea that not every logical expression is either true or false
- Negation and Disjunction are quite a bit different from their Classical Logic counterparts

EITHER MATHEMATICS IS TOO BIG FOR THE HUMAN MIND, OR THE HUMAN MIND IS MORE THAN A MACHINE.

[K. GÖDEL]

- ▶ Negation (e.g. ¬A) reads "We cannot prove A."
 - ▶ ¬¬A reads "We cannot prove that we cannot prove A."
 - Not equivalent to A, which is read "We have a proof of A."
 - We no longer have access to indirect proof methods.
- Disjunction (e.g. A v B) must be treated with caution.
 - A v ¬A is not a logical tautology

*mind the lack of orange on this slide

**special case of modus ponens

TIME FOR A LITTLE BIT OF ORANGE

• Q: What is a proposition?

• Q: What is a proposition?

A: Something we can prove.

• Q: What is a proposition?

A: Something we can prove.

$$((A \rightarrow B) \land A) \rightarrow B$$

• Q: What is a type?

A: Something we can inhabit.

• Q: What is a type?

A: Something we can inhabit.

$$((A \rightarrow B) \land A) \rightarrow B$$

• Q: What is a proof?

• Q: What is a proof?

A: Something that proves a proposition.

• Q: What is a proof?

A: Something that proves a proposition.

$$((A \rightarrow B) \land A) \rightarrow B$$

CP, ^-elimination, modus ponens

• Q: What is a term?

A: Something that inhabits a type.

Q: What is a term?

A: Something that inhabits a type.

Assume, Pair Deconstruction, Apply

 $\lambda c: (A \rightarrow B) \land A \cdot (fst(c))(snd(c)) : ((A \rightarrow B) \land A) \rightarrow B$

 $\lambda c: (A \rightarrow B) \land B \cdot (fst(c))(snd(c)) : ((A \rightarrow B) \land A) \rightarrow B$

 $\lambda c: (A \to B) \land B \cdot (fst(c))(snd(c)) : ((A \to B) \land A) \to B$

":" is read "is a proof of"

 $\lambda c: (A \to B) \land B \cdot (fst(c))(snd(c)) : ((A \to B) \land A) \to B$

":" is read "is of type"

 $\lambda c: (A \to B) \land B \cdot (fst(c))(snd(c)) : ((A \to B) \land A) \to B$

":" is read "is a proof of"

":" is read "is of type"

NOW, WHY DIDN'T I THINK OF THAT?

[P. MARTIN-LÖF]

PAT Interpretation: propositions as types, proofs as terms

NOW, WHY DIDN'T I THINK OF THAT?

[P. MARTIN-LÖF]

PAT Interpretation: propositions as types, proofs as terms

Proposition = Type

Proof = Term

Simplification = Evaluation

TIME FOR SOME PROOFS

$$A \land B \rightarrow B \land A$$

•

 $: A \wedge B \rightarrow B \wedge A$

$A \wedge B \rightarrow B \wedge A$

 $[c:A \land B]$

?2

•

 $B \wedge A$

?1

: $A \wedge B \rightarrow B \wedge A$

$A \wedge B \rightarrow B \wedge A$

 $[c:A \land B]$

(snd(c), fst(c)):

 $B \wedge A$

?1

: $A \wedge B \rightarrow B \wedge A$

$A \wedge B \rightarrow B \wedge A$

$$[c:A \land B]$$

$$(snd(c), fst(c))$$
:

$$B \wedge A$$

 $\lambda c. (snd(c), fst(c)) : A \wedge B \rightarrow B \wedge A$

AND NOW, WITH QUANTIFIERS

?

 $\neg \exists x : S . P_x \rightarrow \forall x : S . \neg P_x$

We use the notation Px to say that P is a proposition over x.

 $[\text{ne:} \neg \exists x : S .P_x]$

•

•

 $?_2$

 $\forall x : S . \neg P_x$

 $\neg \exists x : S . P_x \rightarrow \forall x : S . \neg P_x$

?

$$[\text{ne:} \neg \exists x : S .P_x] \quad [x : S]$$

•

 $\neg P_X$

?2

?3

•

 $\forall x : S . \neg P_x$

(ne)

?

 $\neg \exists x : S . P_x \rightarrow \forall x : S . \neg P_x$

$[\mathbf{ne}: \neg \exists \mathbf{x}: \mathbf{S} . \mathbf{P}_{\mathbf{x}}]$	[x:S]	$[p:P_X]$	
$?_3$	•		(n)
$?_3$	•	$\neg P_X$	¬(p)
$?_2$	•	$\forall x : S . \neg P_x$	(ne)
$?_1$	• ¬∃ _X :	$: S .P_X \to \forall X : S . \neg P_X$	(ne)

$[ne: \neg \exists x : S .P_x]$	[x:S]	$[p:P_x]$	
ne(x,p)	•		(12)
?3	•	$\neg P_X$	-(p)
$?_2$	•	$\forall x : S . \neg P_x$	-(X)
?1	• ¬∃x:	$S . P_X \rightarrow \forall x : S . \neg P_X$	-(ne)

	$ne: \neg \exists x : S .P_x$	[x:S]	$[p:P_X]$	
ne(x,p)	•		(n)
λp.ne	e(x,p)	•	$\neg P_X$	(b)
	? 2	•	$\forall x : S . \neg P_X$	(x) (ne)
	1	• ¬∃ _X :	$S.P_X \rightarrow \forall X:S.\neg P_X$	(IIC)

$$[ne:\neg\exists x:S.P_x] \quad [x:S] \quad [p:P_x]$$

$$ne(x,p) \quad \vdots \quad \bot$$

$$\lambda p.ne(x,p) \quad \vdots \quad \neg P_x$$

$$(x)$$

$$\lambda x.\lambda p.ne(x,p) \quad \vdots \quad \forall x:S.\neg P_x$$

$$(ne)$$

$$?_1 \quad \vdots \quad \neg\exists x:S.P_x \rightarrow \forall x:S.\neg P_x$$

$\neg \exists X : S . P_X \rightarrow \forall X : S . \neg P_X$

$$[ne:\neg\exists x:S.P_x] \quad [x:S] \quad [p:P_x]$$

$$ne(x,p) \quad \vdots \quad \qquad \bot$$

$$\lambda p.ne(x,p) \quad \vdots \quad \neg P_x \quad (x)$$

$$\lambda x.\lambda p.ne(x,p) \quad \vdots \quad \forall x:S.\neg P_x \quad (ne)$$

$$\lambda ne.\lambda x.\lambda p.ne(x,p) \quad \vdots \quad \neg \exists x:S.P_x \rightarrow \forall x:S.\neg P_x$$

PI AND SIGMA

 Π represents a *generalized* function. This is essentially what allows us to model the behavior the universal quantifier, \forall .

Σ represents a *generalized* pair. This allows us to model the behavior of the existential quantifier, ∃.

PI AND SIGMA

 $\Pi x:A . B$ is equivalent to $A \rightarrow B$, iff x does not appear free in B.

 $\Sigma x:A$. B is equivalent to $A \wedge B$, iff x does not appear free in B.

PI AND SIGMA

$\neg \Sigma X : S . P_X \rightarrow \Pi X : S . \neg P_X$

"Hello World!": String

DEPENDENT TYPES

The concept of dependent types refers to the existence of a dependency between types and terms, generally excluding terms depending on terms.

In this case, the particular dependency refers to "meaning" (i.e., the meaning of types).

DEPENDENT TYPES

IT'S WRONG TO CALL THE /\-CALCULUS THE UNIVERSAL PROGRAMMING LANGUAGE... THAT'S TOO LIMITING.

[P. WADLER]

IT'S WRONG TO CALL THE /\-CALCULUS THE UNIVERSAL PROGRAMMING LANGUAGE... THAT'S TOO LIMITING.

[P. WADLER]

Abstractions create dependency.

- Possible system variations:
 - terms depending on terms (danger; no types)
 - terms depending on types
 - types depending on types
 - types depending on terms

((λ x . x x)) (λ x . x x))

[__] 1937 - forever

$$((\lambda x:A \rightarrow B . x x)$$

$$(\lambda x:A \rightarrow B . x x)$$

[Type-check Error] R.I.P.

- Possible (type) system variations:
 - terms depending on terms (a basic type system)
 - terms depending on types
 - types depending on types
 - types depending on terms
- How about a system with all of the above? How can we model the relationship they have with each other?

THE LAMBDA CUBE

Another application...

 $\lambda x:\alpha . x$

TERMS DEPENDING ON TERMS

THERE MIGHT BE OTHER APPLICATIONS...

[A. CHURCH]

- No more infinite loops
- ► Lambda Term $(\Lambda) = x:T || \lambda x:T.\Lambda || (\Lambda \Lambda)$
- ► Simple Type (T) = $\alpha \parallel T \rightarrow T$
- **Examples:**
 - $\lambda x: \alpha. \lambda y: \beta. x: \alpha \rightarrow \beta \rightarrow \alpha$ [K-Combinator]
 - (λx:α.λy:β.x) a b : α

 $\lambda\alpha:*.\lambda x:\alpha.x$

TERMS DEPENDING ON TYPES

THERE MIGHT BE OTHER APPLICATIONS...

[A. CHURCH]

- Addition of terms depending on types
- ► Lambda Term (Λ) = x:T $\| \lambda x$:T. $\Lambda \| (\Lambda \Lambda) \| \lambda \alpha$:*. $\Lambda \| (\Lambda T)$
- ► Type (T) = $\alpha \parallel T \rightarrow T \parallel \Pi \alpha$:*. T
- Examples:
 - λα:*.λβ:*.λx:α.λy:β.x: Πα:*. Πβ:*. α→β→α [Polymorphic K-Combinator]
 - $(\lambda\alpha:*.\lambda\beta:*.\lambda x:\alpha.\lambda y:\beta.x) t_1 t_2 a b:t_1$

 $\lambda \alpha : * . \alpha \rightarrow \alpha$

TYPES DEPENDING ON TYPES

THERE MIGHT BE OTHER APPLICATIONS...

[A. CHURCH]

- Addition of types depending on types
- ► Lambda Term $(\Lambda) = x:T || \lambda x:T.\Lambda || (\Lambda \Lambda)$
- ► Type (T) = $\alpha \parallel T \rightarrow T \parallel \lambda \alpha$:*. T \ \ (TT)
- **Example:**
 - $\lambda \alpha : *. \alpha \rightarrow \alpha$

[cannot be inhabited]

 $(\lambda\alpha: *. \alpha \rightarrow \alpha) t_1 = \beta (t_1 \rightarrow t_1)$

[can be inhabited]

 $\Pi x:\alpha . P_x$

TYPES DEPENDING ON TERMS

THERE MIGHT BE OTHER APPLICATIONS...

[A. CHURCH]

- Addition of types depending on terms
- Lambda Term $(\Lambda) = x:T || \lambda x:T.\Lambda || (\Lambda \Lambda)$
- ► Type (T) = $\alpha \parallel T \rightarrow T \parallel \Pi x:T. T$
- Q: "So, what do types depending on terms give us?"
- A: "Πx:α. P_x , (i.e., we get quantified propositions)."

We use the notation Px to say that x can appear free in P

OF THE ABOVE

THERE MIGHT BE OTHER APPLICATIONS...

[A. CHURCH]

- ► How to get to λC (start with $\lambda \rightarrow$):
 - Move "up" :: λ2
 - Move "right" :: λω
 - Move "in" :: λP
- In this talk, we took one path:
 - λ → to λ 2 to λ ω (i.e., λ ω+ λ 2) to λ C (i.e., λ ω+ λ P)

CONCLUSION

terms depending on terms

→

simply-typed λ-calculus

terms depending on types

 \rightarrow polymorphic λ -calculus (System F)

types depending on types

 \rightarrow

higher-order λ-calculus

types depending on terms

 \rightarrow

predicate λ-calculus

CONCLUSION

terms depending on terms

 \rightarrow

simply-typed λ-calculus

terms depending on types

 \rightarrow

polymorphic terms

types depending on types

type constructors (polymorphic types)

types depending on terms

 \rightarrow

generalized types

CONCLUSION

- Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics 1984: Elsevier Science.
- Henk Barendregt. Lambda Calculi with types 1992: Handbook of Logic in Computer Science, pp. 117-309, Oxford University Press.
- [3] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development: CoqÁrt: the Calculus of Inductive Constructions 2004: Springer.
- [4] Alonzo Church. A formulation of the simple theory of types 1940: Journal of Symbolic Logic, 5, pp. 56-68.
- [5] Thierry Coquand and Gérard Huet. The Calculus of Constructions 1988: Information and Computation, 76, pp. 95-120.
- Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur 1972: PhD thesis, Université Paris VII.
- [7] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types 1989: Cambridge University Press, pp. 82-86.
- [8] William Howard. The formulae-as-types notion of construction 1980: Seldin and Hindley, pp. 479-490.
- [9] Per Martin-Löf. Intuitionistic Type Theory 1980: Bibliopolis
- [10] Rob Nederpelt and Herman Geuvers. Type Theory and Formal Proof 2014: Cambridge University Press.
- [11] Luis Sanchis. Functionals defined by Recursion 1967: Notre Dame Journal of Formal Logic VIII, pp. 161-174.

FURTHER READING

SO, WHAT YOU'RE SAYING IS, ALL I NEED IS PI?

[D.P. Friedman]

Π IS LIKE THE TWISTED SISTER OF Λ .

[C. FACTORA]

- $\bot :: \Pi\alpha:* . \alpha$
- $\rightarrow :: \lambda \alpha : * . \alpha \rightarrow \bot$
- $\rightarrow :: \lambda \alpha :* . \lambda \beta :* . \alpha \rightarrow \beta$
- ▶ $\Lambda :: \lambda \alpha :* . \lambda \beta :* . \Pi \gamma :* . (\alpha \rightarrow \beta \rightarrow \gamma) \rightarrow \gamma$
- ► V :: $\lambda\alpha$:* . $\lambda\beta$:* . $\Pi\gamma$:* . $(\alpha \rightarrow \gamma) \rightarrow (\beta \rightarrow \gamma) \rightarrow \gamma$
- ▶ \forall :: $\lambda \sigma$:* . $\lambda \rho$: σ →* . Πx : σ . ρ_x
- \rightarrow $\exists :: \lambda \sigma: * . \lambda \rho: \sigma \rightarrow * . \Pi \alpha: * . (\Pi x: \sigma . \rho_x \rightarrow \alpha) \rightarrow \alpha$

WOULD YOU LIKE SOME PI?

$A \wedge B \rightarrow B \wedge A$

$$[c:A \land B]$$

$$(snd(c), fst(c))$$
:

$$B \wedge A$$

 $\lambda c. (snd(c), fst(c)) : A \wedge B \rightarrow B \wedge A$

Proof.
$$\Pi C: *.(A \rightarrow B \rightarrow C) \rightarrow C \rightarrow \Pi C: *.(B \rightarrow A \rightarrow C) \rightarrow C$$

$$[e:\Pi C:*.(A\rightarrow B\rightarrow C)\rightarrow C], [c:*], [f:B\rightarrow A\rightarrow C]$$

$$\frac{e\,c\,(\lambda(a,b)\,.f\,b\,a):C}{\lambda f\,.e\,c(\lambda(a,b)\,.f\,b\,a):(B\rightarrow A\rightarrow C)\rightarrow C}(f)$$

$$\frac{\lambda(c,f)\,.e\,c(\lambda(a,b)\,.f\,b\,a):\Pi C:*.(B\rightarrow A\rightarrow C)\rightarrow C}{\lambda(e,c,f)\,.e\,c(\lambda(a,b)\,.f\,b\,a):\Pi C:*.(B\rightarrow A\rightarrow C)\rightarrow C}(e)$$

$\neg \Sigma X : S . P_X \rightarrow \Pi X : S . \neg P_X$

$$[ne:\neg \Sigma x:S.P_x] \quad [x:S] \quad [p:P_x]$$

$$ne(x,p) \quad \vdots \quad \qquad \bot$$

$$\lambda p.ne(x,p) \quad \vdots \quad \neg P_x$$

$$\lambda x.\lambda p.ne(x,p) \quad \vdots \quad \Pi x:S.\neg P_x$$

$$(ne)$$

$$\lambda ne.\lambda x.\lambda p.ne(x,p) \quad \vdots \quad \neg \Sigma x:S.P_x \to \Pi x:S.\neg P_x$$

Proof.
$$\neg(\Pi a: *.(\Pi x: S. P_x \to a)) \to \Pi x: S. \neg P_x$$

$$[ne: \neg(\Pi a: *.(\Pi x: S. P_x \to a) \to a)], [x: S], [p: P_x]$$

$$\frac{ne(\lambda a. \lambda y: \Pi x: S. P_x \to \alpha. yxp) : \bot}{\lambda p. ne(\lambda a. \lambda y: \Pi x: S. P_x \to \alpha. yxp) : \neg P_x} (p)$$

$$(x)$$

 $\lambda x . \lambda p . ne(\lambda a . \lambda y : \Pi x : S . P_x \to \alpha . yxp) : \Pi x : S . \neg P_x$ (x)

 $\lambda ne \cdot \lambda x \cdot \lambda p \cdot ne(\lambda a \cdot \lambda y : \Pi x : S \cdot P_x \to \alpha \cdot yxp) : \neg \Sigma x : S \cdot P_x \to \Pi x : S \cdot \neg P_x$

THANKS FOR LISTENING! QUESTIONS?

Carl Factora | cfactora@indiana.edu