Supporting Data-Driven Mathematics

Online databases made easy (for simple datasets)

Katja Berčič FAU Erlangen-Nürnberg

Some Famous Online Combinatorial Math Databases

findstat.org

This site is supported by donations to The OEIS Foundation.

founded in 1964 by N. J. A. Sloane

The On-Line Encyclopedia of Integer Sequences® (OEIS®)

Enter a sequence, word, or sequence number:

),2,3,6,11,23,47,106,235

Search Hints Welcome Video

oeis.org

The Other 80% (or more)

[N,i] < 1/	V	E	Tr	W?	B ?	C. J. C. IAG
C4[5,1]	5	10		W		120
X TO Y TO	11	1. \		7/2	1	12 2 CF 2 2 CF 2
<u>C4[6,1]</u>	6	12	4-5	U	7	48
<u>C4[8,1]</u>	8	16		U	110	7. Jr \ 7. Jr \ 7.
<u>C4[9,1]</u>	9	18	-	W	NB	72 (1995) (1995)
<u>C4[10,1]</u>	10	20	DT	U	NB	320
<u>C4[10,2]</u>	10	20	DT	W	Bip	240
<u>C4[12,1]</u>	12	24	DT	U	Bip	768
<u>C4[12, 2]</u>	12	24	DT	W	NB	48 - 20 - 20
C4[13,1]	13	26	DT	W	NB	52
C4[14,1]	14	28	DT	U	NB	(2^8)(7^1)
C4[14,2]	14	28	DT	W	Bip	336
C4[15,1]	15	30	DT	W	NB	60
C4[15,2]	15	30	DT	W	NB	120// \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
<u>C4[16,1]</u>	16	32	DT	U	Bip	(2^12)
C4[16,2]	16	32	DT	W	Bip	384
C4[17,1]	17	34	DT	W	NB	68
C4[18,1]	18	36	DT	U	NB	(2^10)(3^2)
C4[18, 2]	18	36	DT	W	Bip	144
C4[20,1]	20	40	DT	U	Bip	(2^12)(5^1)
<u>C4[20,2]</u>	20	40	DT	W	Bip	80
C4[20,3]	20	40	DT	W	NB	320
C4[20,4]	20	40	SS	U	Bip	(2^8)(3^1)(5^1)
C4[21,1]	21	42	DT	W	NB	84 - 28 - 28
C4[21,2]	21	42	DT	W	NB	336

Wilson, Potočnik; A Census of edge-transitive tetravalent graphs

- Graphs of order 4 to 300 (18 MB)
- Graphs of order 302 to 500 (66 MB)
- Graphs of order 502 to 600 (69 MB)
- <u>Graphs of order 602 to 700</u> (84 MB)
- Graphs of order 702 to 800 (114 MB)
- Graphs of order 802 to 900 (147 MB)
- Graphs of order 902 to 1000 (183 MB)
- Graphs of order 1002 to 1050 (164 MB)
- Graphs of order 1052 to 1100 (113 MB)
- Graphs of order 1102 to 1150 (103 MB)
- Graphs of order 1152 to 1200 (234 MB)
- Graphs of order 1202 to 1250 (137 MB)
- Graphs of order 1252 to 1280 (131 MB)

Potočnik, Spiga, Verret; A census of small connected cubic vertex-transitive graphs

```
CubicVT:=[ [] : i in [1..1280]];
CubicVT[6,1] := Graph<6 | \{2,5\}, \{1,3\}, \{2,6\}, \{1,4\}, \{3,5\}, \{4,6\}, \{2,3\},
\{1,6\}, \{4,5\}\}>;
CubicVT[6,2] := Graph<6 | \{\{1,3\}, \{1,5\}, \{2,6\}, \{5,6\}, \{4,5\}, \{2,4\}, \{1,2\}, \{1,2\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{1,4\}, \{
{3,4}, {3,6}}>;
CubicVT[8,1] := Graph<8 | \{\{2,8\}, \{1,5\}, \{1,7\}, \{7,8\}, \{4,8\}, \{5,6\}, \{6,7\},
\{4,5\}, \{1,2\}, \{2,3\}, \{3,4\}, \{3,6\}\}>;
CubicVT[8,2] := Graph<8 | \{\{1,8\}, \{2,6\}, \{6,8\}, \{4,7\}, \{1,4\}, \{4,5\}, \{5,8\},
\{1,2\}, \{2,7\}, \{3,7\}, \{3,5\}, \{3,6\}\}>;
CubicVT[10,1] := Graph<10 | \{\{4,6\}, \{3,5\}, \{2,6\}, \{4,8\}, \{5,6\}, \{3,4\}, \{1,5\}, \{4,8\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\}, \{6,6\},
\{1,10\}, \{2,10\}, \{7,9\}, \{3,7\}, \{9,10\}, \{1,7\}, \{2,8\}, \{8,9\}\}>;
CubicVT[10,2] := Graph<10 | \{4,6\}, \{3,5\}, \{3,6\}, \{4,5\}, \{8,10\}, \{1,3\}, \{6,8\},
\{1,9\}, \{5,7\}, \{7,10\}, \{9,10\}, \{2,4\}, \{1,7\}, \{2,8\}, \{2,9\}\}>;
CubicVT[10,3] := Graph<10 | \{\{2,6\}, \{6,7\}, \{4,8\}, \{3,9\}, \{1,3\}, \{4,10\}, \{6,8\}, \{4,10\}, \{6,8\}, \{4,10\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,8\}, \{6,
\{5,9\}, \{1,4\}, \{1,2\}, \{2,5\}, \{7,10\}, \{3,7\}, \{8,9\}, \{5,10\}\}>;
CubicVT[12,1] := Graph<12 | \{\{12,10\}, \{11,7\}, \{3,9\}, \{3,7\}, \{11,9\}, \{2,4\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{11,9\}, \{
\{6,10\}, \{1,9\}, \{12,5\}, \{1,5\}, \{11,6\}, \{7,8\}, \{6,8\}, \{3,5\}, \{4,10\}, \{12,2\},
{4,8}, {1,2}}>;
```

Beginnings

Janoš Vidali

Janoš's SageMath package

Compare objects (both ways!)

```
sage: G = CVTGraph(10, 3)
sage: G.is_isomorphic(graphs.PetersenGraph())
True
```

Use the object info to query the database

```
sage: gen = info.all(is_partial_cube, orderby=order) # sort by num. of vcs.
sage: next(gen) # first matching graph
3-Cube: cubic vertex-transitive graph on 8 vertices, number 2
sage: next(gen) # second matching graph
6-Prism: cubic vertex-transitive graph on 12 vertices, number 3

sage: info.count(cvt_index) # number of graphs in the CVT census
111360
sage: info.count(cvt_index, groupby=girth) # break down by girth
{3: 160, 4: 5754, 5: 100, 6: 58674, 7: 192, 8: 13529, 9: 219,
10: 25806, 11: 80, 12: 5423, 13: 37, 14: 1365, 15: 12, 16: 9}
```


∨ Choose columns

order	CVT	diameter	girth	is arc transitive	is cayley	is hamiltonian
20	7	5	6	true	false	true
24	II	6	4	false	true	true
48	29	9	4	false	true	true
120	60	15	4	false	true	true

discretezoo.xyz

Professur für Wissens--repräsentation und -verarbeitung

Anything you can do, we can do META!

FRIEDRICH-ALEXANDER
UNIVERSITÄT
ERLANGEN-NÜRNBERG

Michael Kohlhase

Florian Rabe

Tom Wiesing

From a dataset to an online database

Anatomy of a schema theory

Take-away points

If you would like to use this project for your data, please contact me!

katja.bercic@fau.de

You can also help with gathering information about math datasets:

mathdb.mathhub.info

A big thanks goes to OpenDreamKit. It made the existence of this project possible and gave it a big boost.

```
namespace http://data.mathhub.info/schemas ■
theory MatrixS : ?MDDL =
  meta ?MDDL?schemaGroup "Joe" |
  mat: matrix int 2 2 |
    meta ?Codecs?codec MatrixAsArray IntIdent |
    tag ?MDDL?opaque |
  trace: int |
    meta ?Codecs?codec IntIdent |
  orthogonal: bool |
    meta ?Codecs?codec BoolIdent |
  eigenvalues: list int I
    meta ?Codecs?codec ListAsArray IntIdent |
    tag ?MDDL?opaque |
```