Efficient Middleware for Byzantine Fault Tolerant Database Replication

Rui Garcia¹

Rodrigo Rodrigues²

Nuno Preguiça¹
² MPI-SWS

¹ CITI / DI – FCT – Universidade Nova de Lisboa

1. Motivation

Databases are central in computing infrastructures Byzantine faults occur in practice:

- · Software bugs
- · Hardware errors
- Intrusions

Goal:

Efficient database BFT replication

Challenges:

Avoid serializing every operation through BFT Exploit weaker consistency (snapshot isolation)

3. Limitations

Database systems use locks ⇒
 Need to avoid deadlocks in the system

Two solutions

- · Single master
- Multi-master
- (2) Read-only transactions execute in all replicas Execute read-only transaction in f+1 replicas Striping transactions among different replicas

2. Basic solution

- Only run begin/commit as BFT operations
- Replicas must confirm tentative execution

4. Multi-master

- · At commit, execute all operations at non-masters
- Non-masters may have to undo local transactions

5. Single master

- · Optimization: non-masters execute penultimate op
- · At commit, only one operation left to execute

6. Read-only operations

- Read from f+1 ⇒ correct reply
- · Commit confirmed locally if all reads ok

7. Evaluation and conclusions

First solution for efficient BFT DBMS without trusted central components

Good performance results

- · Modest overhead for R-W
- Striping for improving read-only performance

Several new techniques can be reused