Arquitetura e Organização

 Arquitetura de computador refere-se aos atributos de um sistema computacional visíveis a um programador. São os atributos que possuem impacto direto na execução lógica de um programa.

Ex: Conjunto de instruções, número de bits, mecanismos de entrada e saída, etc.

 Organização de computador refere-se às unidades operacionais e suas interconexões que percebam as especificações de arquitetura. São atributos transparentes ao programador.

Ex: sinais de controle, interfaces entre o computador e os periféricos e a tecnologia de memória utilizada.

Arquitetura e Organização - Diferenciação

- Especificar se um computador deve ou não ter uma instrução de multiplicação constitui uma decisão de projeto de **arquitetura**.
- Definir se essa instrução será implementada por uma unidade específica de multiplicação (não deu tempo de copiar o resto)

Famílias e modelos de Computadores

- Os fabricantes oferecem famílias de computadores cada qual com diferentes modelos com a mesma arquitetura, mas com diferenças na organização.
- Com isso, há uma variação de desempenho e de preço.
- Em microcomputadores, o custo de mudanças tanto na arquitetura como na organização é menor, por isso, é comum o surgimento de novas gerações de computadores com mudanças nesses dois aspectos.

????

- Para fins didáticos, a descrição de um computador pode adotar duas abordagens
- Do mais geral para o específico (top-down)
- Do específico para o mais geral (bottom-up)
- Em nossas aulas procuramos adotar a primeira abordagem descrevendo um sistema computacional de forma geral por sua estrutura e função e, depois, detalhando seus componentes.

Função de um Computador

- De forma geral, há quatro funções básicas desempenhadas por um computador:
 - Processamento de dados;
 - Armazenamento de dados;
 - Entrada e saída de dados;
 - Controle:

Estrutura de um computador

- Pode conter quatro componentes principais:
 - 1- Unidade Central de Processamento (CPU Central Processing Unit) também conhecida como processador;
 - 2- Memória Principal;
 - 3- E/S Entrada e Saída:
 - 4- Interconexão do Sistema
- O componente mais complexo é a CPU, que é constituída principalmente por:
 - 1- Unidade de Controle;
 - 2- Unidade Lógica e Aritmética (ULA ou ALU do inglês Arithmetic and Logic Unit);
 - 3- Registradores;
 - 4- Interconexão da CPU.

- Quando os processadores todos residem em um único chip, o termo computador multicore é usado.
- Cada unidade de processamento é chamada de core.
- Outra característica proeminente de computadores contemporâneos é o uso de múltiplas camadas de memória, chamada de memória cache, entre o processador e a memória principal.

- A placa de circuito impresso principal em um computador é chamada de placa de sistema ou placa mãe.
- Um chip é um pedaço único de material semicondutor, em geral de silício, no qual os circuitos eletrônicos e portas lógicas são fabricados. O produto resultante é referido como um circuito integrado.

Em linhas gerais, os elementos funcionais de um core (núcleo) são:

- Lógica de instrução: inclui as tarefas envolvidas em buscar instruções, e decodificar cada instrução a fim de determinar a operação de instrução e os locais de memória dos operandos.
- Unidade lógica e aritmética (ALU): executa a operação especificada por uma instrução.
- Lógica de load/store: gerencia a transferência de dados para e de uma memória principal através da cache.

CAI NA PROVA COM CERTEZA:

ARQUITETURA: O que o computador tem que ser feito para ser montado **ORGANIZAÇÃO:** Como os componentes são organizados seguindo a arquitetura Arquitetura é a planta da casa, organização são os móveis e como eles são organizados dentro da casa.

LEI DE MOORE: BARRAMENTO:

algebra, essa parte que a gente viu de arquitetura, parte da revisão de portas logicas. SÓ CAI NA PROVA O QUE A GENTE VIU NA SALA DE AULA (e a aula do dia 06/09)

→ Interrupção

Escalonamento de processo

Praticamente todos os computadores oferecem um mecanismo por meio do qual outros módulos (E/S, memória) podem interromper o processamento normal do processador.

Tipos

Programa	Gerada por alguma condição que ocorre como resultado da execução de uma instrução, como o <i>overflow</i> aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.
Timer	Gerada por um timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.
E/S	Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.
Falha de hardware	Gerada por uma falha como falta de energia ou erro de paridade de memória.

- São fornecidas em primeiro lugar como um modo de melhorar a eficiência do processamento.
- Com as interrupções, o processador pode estar engajado na execução de outras instruções enquanto uma operação de E/S está em andamento. Essa operação de E/S é realizada simultaneamente com a execução de instruções no programa do usuário.

(Pode terminar uma instrução enquanto começa uma).

Ex: Depois que essas poucas instruções tiverem sido executadas, o controle retorna ao programa do usuário.

Enquanto isso, o dispositivo externo está ocupado aceitando e imprimindo dados vindos da memória do computador.

Tratador de interrupção = dispositivo de E/S em particular, responsável por atender um desvio de programa para atender o processador que suspende uma operação.

→ Memórias

Uma variedade de tipos físicos da memória tem sido empregada. As mais comuns hoje em dia são: memória semicondutora, memória de superfície magnética, usada em HD e fitas, e óptica, utilizada em CD e DVD.

Para conseguir maior desempenho, a memória deve ser capaz de acompanhar a velocidade do processador. O custo da memória deve ser razoável em relação a outros componentes.

Visão geral do sistema de memória do computador

Localização	Desempenho
Interna (por exemplo, registradores do processador, memória principal, cache)	Tempo de acesso
Externa (por exemplo, discos ópticos, discos magnéticos, fitas)	Tempo de ciclo
	Taxa de transferência
Método de acesso	Tipo físico
Sequencial	Semicondutor
Direto	Magnético
Aleatório	Óptico
Associativo	Magneto-óptico
Unidade de transferência	Características físicas
Palavra	Volátil/não volátil
Bloco	Apagável/não apagável
Capacidade	Organização
Número de palavras	Módulos de memória
Número de bytes	

Visão Geral Do Sistema De Memória Do Computador

- O termo localização indica se a memória é interna ou externa ao computador.
- Uma característica óbvia da memória é a sua capacidade.
- Unidade de transferência= igual ao número de linhas elétricas que chegam e que saem do módulo de memória.
- O método de acesso das unidades de dados inclui:

Acesso sequencial

A memória é organizada em unidades de dados chamadas registros. O acesso é feito em uma sequência linear específica. Unidades de fita de backup utilizam esse método de acesso.

- O tempo de acesso é variável.
- Envolve um mecanismo compartilhado de leitura-escrita que é deslocado até o local desejado, rejeitando os registros intermediários.

Acesso direto:

Também envolve um mecanismo compartilhado de leitura-escrita, porém os blocos ou registros individuais têm endereço exclusivo com base na localização física.O acesso é realizado diretamente a uma vizinhança geral e para chegar ao destino utiliza-se o acesso sequencial.

O tempo de acesso é variável.

Acesso aleatório:

Cada local endereçável na memória tem um mecanismo de endereçamento exclusivo, fisicamente interligado. O tempo de acesso a determinado local é constante e independente da sequência de acessos anteriores. Método de acesso utilizado na memória principal e em algumas caches.

Associativo:

Tipo de memória de acesso aleatório que permite fazer uma comparação de um certo número de bits com uma combinação específica, fazendo isso com todas as palavras simultaneamente.

Uma palavra é recuperada de acordo com parte de seu conteúdo e não de acordo com seu endereço.

O tempo de acesso é constante.

Método utilizado em memórias caches.

→ Desempenho

Do ponto de vista do usuário, as duas características mais importantes da memória são capacidade e desempenho.

Três parâmetros de desempenho são usados:

- 1. Tempo de acesso (latência).
- 2. Tempo de ciclo de memória.
- 3. Taxa de transferência.

Diversas tecnologias são usadas para implementar sistemas de memória e, por meio desse espectro de tecnologias, existem as seguintes relações:

- 1. Tempo de acesso mais rápido, maior custo por bit.
- 2. Maior capacidade, menor custo por bit.
- 3. Maior capacidade, tempo de acesso mais lento.

→ A hierarquia de memória

Para sair desse dilema, é preciso não contar com um único componente ou tecnologia de memória, mas empregar uma hierarquia de memória. EX:

→ Princípios da memória cache

A memória cache é desenvolvida para combinar o tempo de acesso de memórias de alto custo e alta velocidade com as memórias de menor velocidade, maior tamanho e mais baixo custo.

• Intermediação Da Memória Cache -

Múltiplos Níveis de Cache

• Estrutura da cache/ Memória Principal

→ Drive de Disco

- Um drive de disco

→ Módulo de E/S

- Módulo que faz todo e qualquer tipo de comunicação com as E/S.

<u>Arquitetura Multinível e Linguagem de</u> <u>Máquina</u>

Instrução e Programa:

- Para realizar as tarefas desejadas pelo usuário, a máquina executa um conjunto de instruções.
- Uma instrução pode ser uma operação bem simples como: ler um valor, somar um valor, etc.
- Um conjunto de diversas instruções formam um programa ou software.

Ciclo de Processamento:

 Para processar uma instrução, o computador recebe uma entrada, executa um processamento a partir da entrada e envia um resultado para uma saída de dados.

Instrução e Programa:

- Os circuitos eletrônicos de um computador podem reconhecer e executar um conjunto limitado de instruções simples.
- Esse conjunto de instruções constitui o "vocabulário" que dá origem à linguagem entendida pelo computador: a linguagem de máquina, considerada de baixo nível pela proximidade com o hardware.

_