

ulm university universität

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24+3 Punkte

Analysis 1 für Informatiker und Ingenieure - Übungsblatt 8 -

Abgabe: Freitag, den 16.6.2017 um 08:10 im Hörsaal 22

Aufgabe 1: (4 Punkte)

Es sei $n \in \mathbb{N}$ und die Funktionen f_1, \dots, f_n seien differenzierbar in $a \in \mathbb{R}$. Gib eine Produktregel für n Faktoren an, also eine Formel für

$$\left(\prod_{i=1}^{n} f_i\right)'(a)$$

und zeige diese (zum Beispiel durch vollständige Induktion).

Aufgabe 2: (2 Punkte)

Das Volumen eines Zylinders mit Radius r und Höhe h ist gegeben durch die Formel $V = \pi r^2 h$. Wie würde sich ein Messfehler von x%, der beim Radius gemacht wurde, (in etwa) auf das Volumen

übertragen?

Wie würde sich ein Messfehler von y%, der bei der Höhe gemacht wurde, (in etwa) auf das Volumen übertragen?

Aufgabe 3: (4 Punkte)

In der Vorlesung wurde gezeigt, dass $\arcsin(x)' = \frac{1}{\sqrt{1-x^2}}$. Leite analog eine Formel für $\arccos(x)'$ her. Zeige anschließend für $x \in (-1,1)$ die Identität

$$\arcsin(x) = \frac{\pi}{2} - \arccos(x)$$

Aufgabe 4: (7 Punkte)

(a) Zeige, dass für alle $a, b \in \mathbb{R}$ mit $b \ge a \ge 1$ gilt, dass

$$\sqrt[3]{b} - \sqrt[3]{a} \le \frac{1}{3}(b-a)$$

- (b) Zeige, dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 2x^7 + x^5 \sin(x) + 2x$ genau eine Nullstelle hat.
- (c) Es sei $I = [0, \infty)$ und $f, g : I \to \mathbb{R}$ stetig und differenzierbar. Ferner gelte f(0) = g(0) und $f'(x) \ge g'(x)$ für alle $x \in I$. Zeige, dass dann $f(x) \ge g(x)$ für alle $x \in I$ gilt.

ulm university universität

Dr. Gerhard Baur Erik Hintz Sommersemester 2017 24+3 Punkte

Aufgabe 5: (7 Punkte)

- (a) Berechne alle Nullstellen sowie lokale Maximal- und Minimalstellen für die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = 2x^3 + 3x^2 12x$.
- (b) Berechne alle lokalen und globalen Minima/Maxima für die Funktion $f:[-0.5,2]\to\mathbb{R}$ mit $f(x)=e^{-x}(x^2+x+1)$.
- (c) Es seien $a_1, \ldots, a_n \in \mathbb{R}$. Für welches $x \in \mathbb{R}$ wird der Ausdruck $\sum_{k=1}^{n} (x a_k)^2$ minimal?

Aufgabe 6: (3 Zusatzpunkte)

Es sei eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ mit $f(x_0) = x_0$ für ein $x_0 \in \mathbb{R}$ gegeben. Ferner sei f differenzierbar in x_0 mit $|f'(x_0)| < 1$. Wir betrachten nun die Folge von Funktionen $(f_n)_{n \in \mathbb{N}}$ (das heißt, für jedes $n \in \mathbb{N}$ ist $f_n : \mathbb{R} \to \mathbb{R}$ eine Funktion), die rekursiv durch $f_0 := f$ und $f_n := f(f_{n-1})$ (es ist also $f_0(x) = f(x)$ und $f_n(x) = f(f_{n-1}(x))$ für $x \in \mathbb{R}$) definiert ist. Zeige, dass $\lim_{n \to \infty} f'_n(x_0) = 0$ gilt.