Rajalakshmi Engineering College

Name: Harini Nagarajan

Email: 240701167@rajalakshmi.edu.in

Roll no: 240701167 Phone: 9363551582

Branch: REC

Department: I CSE AG

Batch: 2028

Degree: B.E - CSE

NeoColab_REC_CS23231_DATA STRUCTURES

REC_DS using C_Week 5_COD_Question 1

Attempt : 1 Total Mark : 10 Marks Obtained : 10

Section 1: Coding

1. Problem Statement

John is learning about Binary Search Trees (BST) in his computer science class. He wants to create a program that allows users to delete a node with a given value from a BST and print the remaining nodes using an inorder traversal.

Implement a function to help him delete a node with a given value from a BST.

Input Format

The first line of input consists of an integer N, representing the number of nodes in the BST.

The second line consists of N space-separated integers, representing the values of the BST nodes.

The third line consists of an integer V, which is the value to delete from the BST.

Output Format

Sample Test Case

if(root==NULL){

return createNode(key);

The output prints the space-separated values in the BST in an in-order traversal, after the deletion of the specified value.

If the specified value is not available in the tree, print the given input values inorder traversal.

Refer to the sample output for formatting specifications.

```
Input: 5
1051527
15
Output: 2 5 7 10
Answer
#include <stdio.h>
#include <stdlib.h>
struct TreeNode {
  int data:
struct TreeNode* left;
  struct TreeNode* right;
struct TreeNode* createNode(int key) {
  struct TreeNode* newNode = (struct TreeNode*)malloc(sizeof(struct
TreeNode));
  newNode->data = key;
  newNode->left = newNode->right = NULL;
  return newNode;
struct TreeNode* insert(struct TreeNode* root,int key){
```

```
\if(key<root->data){
    root->left=insert(root->left,key);
  else{
    root->right=insert(root->right,key);
  return root;
}
struct TreeNode* findMin(struct TreeNode* root){
  while(root && root->left != NULL){
   root=root->left;
  return root;
}
struct TreeNode* deleteNode(struct TreeNode* root,int key){
  if(root == NULL){
    return root;
  if(key<root->data){
    root->left=deleteNode(root->left,key);
  else if(key>root->data){
    root->right=deleteNode(root->right,key);
  else{
    if(root->left == NULL){
      struct TreeNode* temp=root->right;
      free(root);
      return temp;
    else if(root->right == NULL){
      struct TreeNode* temp=root->left;
      free(root);
      return temp;
    struct TreeNode* temp=findMin(root->right);
    root->data=temp->data;
```

```
240701767
   root->right=deleteNode(root->right,temp->data);
  return root;
void inorderTraversal(struct TreeNode* root){
  if(root == NULL){
    return;
  inorderTraversal(root->left);
  printf("%d ",root->data);
  inorderTraversal(root->right);
}
int main()
  int N, rootValue, V;
  scanf("%d", &N);
  struct TreeNode* root = NULL;
  for (int i = 0; i < N; i++) {
    int key;
    scanf("%d", &key);
    if (i == 0) rootValue = key;
    root = insert(root, key);
  scanf("%d", &V);
  root = deleteNode(root, V);
  inorderTraversal(root);
  return 0;
```

Status: Correct Marks: 10/10

2,40701767

240/01/6/

240701767

240/01767