Min Cost String

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Given a string S and $\mathbf{26}$ numbers that represents the cost of each letter. Print the minimum cost that can be achieved and the string S after replacing every '?' symbol in the string.

Note: The cost of the string will be the sum of the absolute difference of every two consecutive letters costs in the string. For example if cost of 'a' = 2 and cost of 'x' = 5 and cost of 'c' = 1, if the string was equal "axc" then the cost of that string will = |cost('a')-cost('x')| + |cost('x')-cost('c')| = |2-5| + |5-1| = 7.

if there are more than one string with minimum cost print the smallest lexicographical one.

Input

The first line contains a string S ($2 \le |S| \le 10^6$) where |S| is the length of S.

The second line will contain 26 numbers $(0 \le X_i \le 10^5)$ represents the cost of each letter from 'a' to 'z' respectively.

Output

Print the minimum cost that can be achieved by replacing every '?' in the first line followed by the string after the replacement.

Example

standard input	standard output
abc??def?gh	25
4 9 5 9 6 1 0 3 7 2 5 9 6 1 3 2 3 2 9 1 1 0 1 8 8 4	abcbbdeffgh

Note

Test 1:

we can get string "abcdddeffgh" with cost 25 too but its **not smallest string**. string "abcbbdeffgh" smallest one and smallest cost.