References

References.pdf contains full references of 3d-building-reconstruction. The pdf version of papers mentioned can be found here (Code: lugr)

Main references

- Wei, Zizhuang, et al. "Aa-rmvsnet: Adaptive aggregation recurrent multi-view stereo network." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2021.
- Wang, Fangjinhua, et al. "PatchmatchNet: Learned Multi-View Patchmatch Stereo." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
- Yao, Yao, et al. "Mvsnet: Depth inference for unstructured multi-view stereo." *Proceedings of the European Conference on Computer Vision (ECCV)*. 2018.
- Yao, Yao, et al. "Recurrent mysnet for high-resolution multi-view stereo depth inference." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

Other references

These are literatures that we read in the preliminary study period which may not be directly used in the project, but influenced the chose of method.

- Ma, Xinjun, et al. "EPP-MVSNet: Epipolar-Assembling Based Depth Prediction for Multi-View Stereo." *Proceedings of the IEEE/CVF International Conference on Computer Vision*. 2021.
- Yu, Zehao, and Shenghua Gao. "Fast-mvsnet: Sparse-to-dense multi-view stereo with learned propagation and gauss-newton refinement." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.
- Gu, Xiaodong, et al. "Cascade cost volume for high-resolution multi-view stereo and stereo matching." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2020.
- Ding, Yikang, et al. "TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers." *arXiv preprint arXiv:2111.14600* (2021).
- Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." *arXiv* preprint arXiv:2103.14030 (2021).
- Schonberger, Johannes L., and Jan-Michael Frahm. "Structure-from-motion revisited." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2016
- Li, Xinke, et al. "Campus3d: A photogrammetry point cloud benchmark for hierarchical understanding of outdoor scene." *Proceedings of the 28th ACM International Conference on Multimedia*. 2020.
- Liao, Yuqing, et al. "Reproducibility Companion Paper: Campus3D: A Photogrammetry Point Cloud Benchmark for Outdoor Scene Hierarchical Understanding." *Proceedings of the 29th ACM International Conference on Multimedia*. 2021.
- PyTroch implementation of MVSNet, https://github.com/xy-guo/MVSNet_pytorch