Summary of Submissions 3rd GPPS Turbomachinery CFD Workshop (GPPS 2023)

Xiao He Imperial College London

Imperial College London

References:

- 1. He, X., & Klausmann, F. RANS Capabilities for Transonic Axial Compressor: A Perspective from GPPS CFD Workshop. Preprint available on ResearchGate. (2023)
- 2. He, X. On the Consistency of RANS CFD in Predicting Axial Compressor Flows: A Perspective from the GPPS RANS CFD Workshop. Preprint available on ResearchGate. (2023)

Description of Workshop Test Case

Description of Workshop Test Case

Numerical model and flow physics

③ Shock front; ④ Trailing edge separation

Submission Statistics of Workshops

Submission Statistics of Workshops

As of GPPS 2022 workshop:

- 14 participants, 5 countries,11 organizations, 12 solvers
- ☐ Turbulence model: mostly SA or SST branch of models
- □ ≥2nd order accuracy in space
- ☐ Inlet BC: mostly using the official inlet.bc file

ID	Org.	Solver (Version)	Type	Grid ID	Turb, model	Convect.	R-S model	Wall func.	In. BC
1	SJTU	CFX (20.1)	C	01	SA-noft2	HR	MP	Yes	O. U5
2	SJTU	CFX (20.1)	C	01	SST-2003	HR	MP	Yes	0, 0
3	SJTU	FineTurbo (14.1)	Č	01	SST ^a	Roe	MP	No	0, 0
4	SJTU	FineTurbo (14.1)	C	01	SST ^a	JST	MP	No	0,0
5	SJTU	FineTurbo (14.1)	C	O1 (F)	SA-fv3-noft2a	JST	MP	No	0,0
6	SJTU	FineTurbo (14.1)	C	O1 (F)	SA-fv3-RC-noft2a	JST	MP	No	0,0
7	SJTU	FineTurbo (14.1)	C	O1 (F)	EARSMko2012-Sa	JST	MP	No	0,0
8	IC	HADES (1.3)	I	01	SA-noft2a	JST	1D Giles	Yes	0,0
9	THU	SU2 (7.1.0)	O	01	SA-R-noft2b	JST	MP	No	0,0
10	THU	SU2 (7.1.0)	O	O1	SST	JST	MP	No	0, 0
11	CARDC	ASPAC (1.0)	I	O1 (M)	SA	Roe	MP	No	O, O/U1
12	BUAA	HGAE (12.0)	I	O1 (M)	SΛ ^a	Roe	MP	No	O, U2
13	NWPU	Turbostream (2.4)	C	П	SA	JST	MP	Yes	O, U3
14	NWPU	TurboXD (2.4)	I	12	SA	JST	1D Giles	Yes	O, U3
15	NWPU	SU2 (7.1.1)	O	13	SST	JST	MP	No	U, U4
16	BUAA	MAP (6.0)	I	14	SA-noft2-RC ^c	LDFSS	NRMP	No	O, U5
17	BUAA	MAP (6.0)	I	14	SST-2003-RC	LDFSS	NRMP	No	O, U5
18	AEAC	Fluent (19.2)	C	15	SST-2003-Helicity	PBCS	MP	No	E, O
19	IHI	UPACS Turbo (2.5.5.2)	I	16	SA	Roe	MP	No	O, U6
20	IHI	UPACS Turbo (2.5.5.2)	I	16	SA	Roe	NRMP	No	O, U6
21	IHI	UPACS Turbo (2.5.5.2)	I	16	SA-R-H-QCR2000d	Roe	NRMP	No	O, U6
22	IC	HADES (1.3)	I	O2	SA-noft2 ^a	JST	1D Giles	Yes	E, P
23	IC	HADES (1.3)	I	O2	SA-R-noft2 ^a	JST	1D Giles	Yes	E, P
24	IC	HADES (1.3)	I	O2	SA-RC-noft2a	JST	1D Giles	Yes	E, P
25	IC	HADES (1.3)	I	O2	SA-PG _ω -noft2 ^a	JST	1D Giles	Yes	E, P
26	IC	HADES (1.3)	I	O2	SA-QCR2000-noft2a	JST	1D Giles	Yes	E, P
27	IC	HADES (1.3)	I	O2	SA-QCR2020-noft2a	JST	1D Giles	Yes	E, P
28	SJTU	CFX (20.1)	C	O2 (F)	SST-2003	HR	MP	Yes	O, O
29	SJTU	CFX (20.1)	C	O2 (F)	EARSMko2005	HR	MP	Yes	O, O
30	NWPU	FineTurbo (13.2)	C	O2 (F)	SA-fv3-noft2a	JST	MP	No	U, N/A
31	Cadence	FineTurbo (17.1)	C	O3	EARSMko2012-Sa	JST	MP	No	E, O
32	Cadence	FineTurbo (17.1)	C	O3	EARSMko2012-S ^a	JST	1D Giles	No	E, O
33	Cadence	FineTurbo (17.1)	C	O3	EARSMko2012-Sa	JST	2D Giles	No	E, O
34	Siemens	Turbostream (3.6.3)	C	17	SA-Helicity-noft2	JST	MP	Yes	O, N/A
35	ADS	Code Leo (9.0)	C	18	Wilcox1998	Ni	NRMP	No	U, N/A

^a The turbulence model is solved in the relative frame attached to the blade.

b The "R" term only switches on in rotating frame.

^c The vorticity magnitude in the source term is replaced by the strain rate magnitude, and the van Direst near-wall treatment is used.

^d The coefficients of the "R" term and the "H" term are re-calibrated using the performance characteristics data of a multistage compressor [31].

Validation: Experiment versus CFD

Validation: Performance Characteristics

Validation: Performance Characteristics

Validation: Performance Characteristics

Validation: Radial Profiles

Geometric error: rotor casing pinch

(a) Illustration of rotor casing pinch.

(b) Radial profiles at the rotor exit (left) and the stage exit (right).

Geometric error: stator hub cavity (major contributor)

(a) Illustration of stator hub cavity.

(b) Radial profiles at the rotor exit (left) and the stage exit (right).

Turbulence model deficiency

(a) FineTurbo results (submission ID 4 to 7).

(b) HADES results (submission ID 22 to 27).

Turbulence model deficiency

(c) CFX results (submission ID 28, 29).

(d) SU2 results (submission ID 9, 10).

Unsteady effect

w/o cavity; He et al. (2023), GPPS J

w cavity; Deng et al. (2023), GPPS-TC-2023-0027

GPPS 2021 Geometry Verification: CFD versus CFD

Verification: Performance Characteristics

Imperial College London

Verification: Performance Characteristics

$$\epsilon_{ij} = \frac{1}{n} \sum_{k=1}^{n} \left| \frac{q_i^{(k)} - q_j^{(k)}}{q_{exp}^{(k)}} \right| \times 100\%$$

Qols: TPR, TTR, efficiency at PE and NS conditions

Verification: Radial Profiles

Verification: Radial Profiles

Verification: Stage Exit Contours

Verification: Periodic Surface Contours

Verification: Investigation of Inconsistency

- Turbulence model inconsistency
- Special flavor of a model is used (standard ver. recommended)
- Reference frame: relative vs. absolute (recommended)
- Wall distance calculation
- Rotor-stator interface model inconsistency
- Slightly different treatment for non-reflection property, turbulence model quantity, numerical stability, grid type compatibility, etc.
- Wall function inconsistency
- Blending functions, pressure gradient corrections, etc.
- Other factors
- Inlet BC for turbulence models, iterative convergence, transition modeling, static aeroelastic deformation, etc.

(a) Plane normal to the axis

(b) Meridional plane

→ Incorrect: calc. along grid line
→ Incorrect: calc. in local block

Inaccurate: calc. globally based on wall grid point

→ Correct: calc. globally based on wall grid area

Conclusions

Conclusions

Grid Convergence Study

- Rule of thumb: 1M / 3M grid points per blade passage for preliminary/detailed analysis of compressor
- Grid convergence achieved using one turbulence model can be applied to another

Validation (CFD vs. EXP)

- Overall uncertainty (w ≥ fine grid): Total pressure ratio: ±2.3%; Isentropic efficiency: ±2.3% (absolute) (these numbers were ±12% and ±3% in 1994 IGTI workshop)
- Key factors to improve accuracy: (1) Geometric error control: stator hub cavity; (2) turbulence model improvement (e.g., non-linear, RC correction, etc.)

Verification (CFD vs. CFD)

- Contemporary turbo solvers achieve qualitative but not quantitative consistency: relative difference ranging from [0.4%, 2.5%] for SA model and [0.2%, 0.8%] for SST model
- Key factors to improve consistency: (1) standard turbulence model implementation, especially check reference frame and wall distance calculation; (2) documentation of R-S model and wall functions; (3) Open-source turbo solver

Summary of Submissions 3rd GPPS Turbomachinery CFD Workshop (GPPS 2023)

Questions & Answers

Imperial College London