ID	TITULO		RESUMEN			OTRAS CLAVE ARCHIVO	IDIOMA
	Computational Thinking and Educational Robotics		In the context o			PRIMARY-SCH 01_sensors-22	
2	Evaluation of Computational Thinking Using Four E	Paucar-Curasma, R; Villalba-Condori, K; Arias-Cha	The Developme	2022	Educational Ro	MATHEMATIC 02_1390-162-F	1
3	Programming Approaches to Computational Thinki	Kynigos, C; Grizioti, M	During the last	2018	Logo geometry	03_infedu-17-2	2. 0
4	A simple interactive robot to promote computational	Funk, M; Cascalho, J; Santos, AI; Pedro, F; Medeir	This paper desc	2022	educational rob	04_fcomp-04-1	0
5	Improving Computational Thinking in Secondary St	Montes-Leon, H; Hijon-Neira, R; Perez-Marin, D; M	The teaching-le	2020	Computational	05_naza,+244	4 1
6	On Teaching Programming Fundamentals and Cor	Piedade, J; Dorotea, N; Pedro, A; Matos, JF	This study aims	2020	computational t	SCHOOL 06_education-	1 0
7	Robotics and computational thinking in Education:	Ybarra, LAC; Soares, M	This article pres	2022	blended teachir	07_mayarafa,+	2
8	Reflections about a didactic sequence of algorithm	Stock, BS; Basso, MVD	This article pres		mathematics ed	<u> </u>	
	Coding to learn Mathematics in 5th grade: impleme			2021	computational t	COMPUTATION 09_485441-Te	x 1
10	Educational Robotics Intervention to Foster Compu	Gerosa, A; Koleszar, V; Tejera, G; Gomez-Sena, L	Computational	2022	computational t	EXECUTIVE FU10_fpsyg-13-90	0
11	The Effect of Unplugged Coding Activities on Comp	Tonbuloglu, B; Tonbuloglu, I	The purpose of		unplugged codi		
	Generic Tasks for Algorithms	Milicic, G; Wetzel, S; Ludwig, M	Due to its links	2020	computational t	COMPUTATION 12_futureintern	0
	Integrating Computational Thinking into Elementary		Using an examp		Computational		9 0
	Primary Mathematics Teachers' Understanding of 0		Computational		Artificial intellig	_	1 0
15	Developing Computational Thinking: Design-Based	Wang, DQ; Luo, LQ; Luo, J; Lin, SH; Ren, GJ	As research pro	2022	computational t	SCIENCE; K-1215_applsci-12-	1 0
16	Robot programming versus block play in early child	Yang, WP; Ng, DTK; Gao, HY	Programmable	2022	block play; com	BEHAVIORAL- 16_Brit J Educ	a 0
17	Exploring the intersection of algebraic and computa	Brating, K; Kilhamn, C	This article inve	2021	Algebraic think	STUDENTS 17_Exploring the	0
18	Elementary Students' First Approach to Computation	Kjallander, S; Mannila, L; Akerfeldt, A; Heintz, F	Digital compete		K-12 education		1 0
19	Exploring Measurement through Coding: Children's	Welch, LE; Shumway, JF; Clarke-Midura, J; Lee, V	Programming a	2022	early childhood	LENGTH MEAS 19_education-	1 0
20	Developing Computational Thinking Teaching Strat	Araya, R; Isoda, M; Moris, JV	COVID-19 has	2021	COVID-19; con	20_ijerph-18-1	0
21	Coding in Primary Grades Boosts Children's Execu	Arfe, B; Vardanega, T; Montuori, C; Lavanga, M	Several program	2019	coding; comput	COMPUTATION 21_fpsyg-10-02	2 0
22	Investigating Preschool Educators' Implementation	Otterborn, A; Schonborn, KJ; Hulten, M	Modern prescho			COMPUTATION 22_s10643-019	
23	Effects of a Pair Programming Educational Robot-E	Hsu, TC; Chang, C; Wu, LK; Looi, CK	Using education	2022	interdisciplinary	RELIABILITY; \23_fpsyg-13-88	0
24	The Cognitive Benefits of Learning Computer Prog	Scherer, R; Siddiq, F; Viveros, BS	Does computer	2019	cognitive skills;	PROBLEM-SOI 24_Scherer_et	0
25	Enriching Elementary School Mathematical Learnir	Araya, R	The steepest de	2021	elementary ma	25_mathematic	0
26	Computer Literacy in Early Childhood Education: D	Berciano-Alcaraz, A; Salgado-Somoza, M; Jimenez	Objective. In thi	2022	Early childhood	ROBOTICS 26_document.r	1
28	Comparing learners' knowledge, behaviors, and att	Sun, D; Ouyang, F; Li, Y; Zhu, CF	Background Un	2021	STEM education	COMPUTATION 28_s40594-02°	1 0
29	Discovering Concepts of Geometry through Robotic	Kim, YR; Park, MS; Tjoe, H	In recent years,	2021	Educational rob	EDUCATIONAL 29_1205-3778	- 0
30	Teacher-student interaction supporting students' cr	Olsson, J; Granberg, C	Studies have sh	2022	Programming;	COMPUTATION 30_Teacher stu	0
31	Variables in early algebra: exploring didactic potent	Kilhamn, C; Brating, K; Helenius, O; Mason, J	In this paper we	2022	Variables; Early	31_s11858-022	2 0
32	Developing an Interactive Environment through the	Munoz, L; Villarreal, V; Morales, I; Gonzalez, J; Nie	The article is th	2020	educational rob	EDUCATIONAL 32_sensors-20	- 0
33	Systematic Design and Rapid Development of Moti	Altanis, I; Retalis, S; Petropoulou, O	During the last	2018	technology enh	COMPUTER G 33_education-0	0 0
34	Conceptual development in early-years computing	Kallia, M; Cutts, Q	Background an	2022	Grounded cogr	CONCRETE; M 34_Conceptua	0
35	A Pilot Experience with Software Programming Env	Arroyo, AC; Montes, MR; Quilis, JDS	Software progra		cloud computin	EDUCATION 35_applsci-11-	0
	Making programming part of teachers' everyday life		Purpose The co			QUALITATIVE 36_10-1108_IJ	
	Remaking and reinforcing mathematics and technology		Purpose The pu			COMPUTATION 37_10-1108_IJ	
	Programming as a language for young children to		Natural languag			EARLY-CHILDI 38_Brit J Educ	