Beginning Activities for Section 7.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 1 (Properties of Relations)

- **1.** The relation R is not reflexive on A provided that there exists an $x \in A$ such that $(x, x) \notin R$ (or equivalently, $x \not R x$).
- **2.** The relation R is not symmetric provided that there exist $x, y \in A$ such that $(x, y) \in R$ and $(y, x) \notin R$ (or x R y and y R x).
- **3.** The relation R is not transitive provided that there exist $x, y, z \in A$ such that $(x, y) \in R$, $(y, z) \in R$, and $(x, z) \notin R$ (or x R y, y R z, and $x \not R z$).
- **4.** The directed graph should have a loop at each of the four vertices, an arrow from 1 to 3, and an arrow from 3 to 2.

The loops at each vertex show that for each $x \in A$, $x \in A$, $x \in A$, and so the relation R is reflexive.

The relation R is not symmetric since 1 R 3 but 3 R 1, and the relation R is not transitive since 1 R 3 and 3 R 2 but 1 R 2.

5. The directed graph should have a loop at vertex 2, an arrow from 1 to 4, an arrow from 4 to 1, an arrow from 2 to 4 and an arrow from 4 to 2. The relation T is not reflexive since $a \in A$ and $a \mathbb{Z} a$.

The relation T is symmetric since whenever there is an arrow from a vertex a to a vertex b, there is an arrow from b to a. This means that for all $a, b \in A$, if a T b, then b T a is a true conditional statement.

The relation T is not transitive since 1 T 4 and 4 T 2 but 1 T 2.

Note: There are other properties of relations that we will not study in this text. Two such properties are:

- A relation R on a set A is **irreflexive** provided that for all $x, y \in A$, if x R y, then $x \neq y$. This means that no element in A is related to itself. One such example is the "less than" relation on the real numbers.
- A relation R on a set A is **antisymmetric** provided that for all $x, y \in A$, if x R y and y R x, then x = y. One such example is the "less than or equal to" relation on the real numbers.

Beginning Activities for Section 7.2

Mathematical Reasoning: Writing and Proof, Version 3

Beginning Activity 2 (Review of Congruence Modulo *n*)

1. Let $n \in \mathbb{N}$. If a and b are integers, then we say that a is congruent to b modulo n provided that n divides a - b. So,

$$a \equiv b \pmod{n}$$
 means $(\exists k \in \mathbb{Z}) (a - b = nk)$

$$a \equiv b \pmod{n}$$
 means $(\exists k \in \mathbb{Z}) (a = b + nk)$

2. Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then we have determined an ordered pair $(a, b) \in \mathbb{Z} \times \mathbb{Z}$. So, congruence modulo n determines the following subset of $\mathbb{Z} \times \mathbb{Z}$:

$$\{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a \equiv b \pmod{n}\}.$$

So, this is a relation on \mathbb{Z} .

- **3.** Theorem 3.4 states that the relation of congruence modulo n is reflexive, symmetric, and transitive.
- **4. Theorem 3.31**. Let $n \in \mathbb{N}$ and let $a \in \mathbb{Z}$. If a = nq + r and $0 \le r < n$ for some integers q and r, then $a \equiv r \pmod{n}$.

Corollary 3.32. If $n \in \mathbb{N}$, then each integer is congruent, modulo n, to precisely one of the integers $0, 1, 2, \ldots, n-1$.

5. Symmetric Property: Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$.

Proof. Let $a, b \in \mathbb{Z}$ and let $n \in \mathbb{N}$ and assume that $a \equiv b \pmod{n}$. We will prove that $b \equiv a \pmod{n}$. Since $a \equiv b \pmod{n}$, we know that $n \mid (a - b)$ and hence that there exists an integer k such that

$$a - b = nk$$
.

If we multiply both sides of this equation by -1, we get

$$(-1) (a - b) = (-1) nk$$

$$b-a=n(-k)$$
.

Since $-k \in \mathbb{Z}$, this last equation implies that $n \mid (b-a)$ and hence that $b \equiv a \pmod{n}$. We have thus proven that if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$. This means that the relation of congruence modulo n is a symmetric relation.

