Министерство науки и высшего образования Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

"НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО"

Факультет	Программной Инженерии и Компьютерной Техники
Направление подготовки (специальность)	
Дисциплина	Компьютерные сети

ЛАБОРАТОРНАЯ РАБОТА 1 ОТЧЕТ

Выполнил студент:	Касьяненко Вера Михайловна (368283)
Группа:	
Преподаватель:	Болдырева Елена Александровна (157150)

Содержание

ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ	2
ОТЧЕТ О ХОДЕ ВЫПОЛНЕНИЯ	3
οι τοι ο πομε συπτοντιεπιστ	
2 АКПІЛІЕНИЕ	2.7

АИНДИВИДУАЛЬНОЕ ЗАДАНИЕ

ИСУ: 368283

- 1. Первый байт 192 для первой подсети и 193 для второй подсети.
- 2. Второй байт 113.
- 3. Третий байт 28.
- 4. Четвертый байт это номер компьютера в локальной сети (таблицы 1.1 и 1.2).

Таблица 1.1

Хост	ІР-адрес	Маска подсети
PC0	192.113.28.2	255.255.255.0
PC1	192.113.28.3	255.255.255.0
PC2	192.113.28.4	255.255.255.0
PC3	192.113.28.5	255.255.255.0
PC4	192.113.28.6	255.255.255.0

Таблица 1.2

Хост	ІР-адрес	Маска подсети
PC5	193.168.28.2	255.255.255.0
Laptop0	193.168.28.3	255.255.255.0
PC6	193.168.28.4	255.255.255.0

ОТЧЕТ О ХОДЕ ВЫПОЛНЕНИЯ

Построенная схема с присвоенными адресами (представлена на рисунке 1):

Pисунок 1 — Топология построенной сети с присвоенными адресами Перейдем в режим симуляции и настроим фильтры на работу с ARP и ICMP (представлено на рисунке 2).

Рисунок 2 – Фильтры в режиме симуляции

Проверим работу сети с помощью ping-запроса с 192.113.28.2 на 192.113.28.5 прошёл успешно. Подтверждение представлено на рисунке 3.

Рисунок 3 – Панель статуса успешного запроса

Так как ARP-таблица хоста 192.113.28.2 пуста, можно увидеть, что первым отправляется пакет протокола ARP (представлено на рисунке 4).

Pисунок 4 — Окно событий режима симуляции Формат пакета ARP-запроса представлен на рисунке 5.

Pисунок $5-\Phi$ ормат пакета ARP-запроса

Мы видим, что каждый хост в подсети получает запрос и проверяет на соответствие свой IP-адрес. Если он не совпадает с указанным адресом в запросе, то запрос игнорируется. В нашем случае на ARP-запрос ответит только хост 192.113.28.5 (представлено на рисунке 6).

Рисунок 6 – Вид рабочей области

Формат пакета ARP-ответа, пришедшего на хост 192.113.28.2, представлен на рисунке 7.

Рисунок 7 – Формат пакета ARP-ответа

Далее видим, что отправляется ICMP-сообщение ping-запроса. Просмотрим содержимое пакета ICMP-эхо-запроса на рисунке 8. Тип ICMP-сообщения — 8 (эхо-запрос).

Рисунок 8 – Формат пакета ІСМР-эхо-запроса

Просмотрим содержимое пакета ICMP-эхо-ответа на рисунке 9. Тип ICMP-сообщения – 0 (эхо-ответ).

Рисунок 9 – Формат пакета ICMP-эхо-ответа Просмотрим записи ARP-таблицы узла 192.113.28.5 на рисунке 10.

Теперь рассмотрим ситуацию, когда узел-источник и узел-приемник находятся в разных сетях. Открываем "Command Promt", имитирующую командную строку, на компьютере 192.113.28.3 и посылаем на хост 193.113.28.4 ping-запрос.

```
PC>ping 193.113.28.4
Pinging 193.113.28.4 with 32 bytes of data:
```

Рисунок 11 – Командная строка узла 192.113.28.3

Инициируется ARP-запрос маршрутизатору, который пересылает пакеты в сеть назначения (представлено на рисунке 12).

Рисунок 12 – Вид рабочей области Рассмотрим формат пакета ARP-запроса на рисунке 13.

Рисунок 13 – Формат пакета ARP-запроса

Мы видим, что все узлы игнорируют пакет, кроме маршрутизатора, которому этот пакет предназначался (представлено на рисунке 14).

Рисунок 14 – Вид рабочей области

Видим, что маршрутизатор формирует ARP-ответ, указывая свой физический адрес, и отправляет его обратно узлу 192.113.28.3 (представлено на рисунке 15).

Рисунок 15 – Вид рабочей области

После получения ARP-ответа мы видим, что хост 192.113.28.3 посылает ICMP-сообщение ping-запроса через маршрутизатор в сеть назначения. Рассмотрим содержимое пакета на рисунке 16.

Рисунок 16 – Формат пакета ІСМР-эхо-запроса

Поскольку маршрутизатор вынужден сперва узнать физический адрес получателя, прежде чем он сможет отправить ping-запрос по назначению, мы увидим, что пакет с ping-запросом, пришедший на маршрутизатор, отклонен (представлено на рисунке 17).

Рисунок 17 – Вид рабочей области

Далее видим, что узлы подсети, которым пакет не предназначен, его игнорируют (представлено на рисунке 18).

Рисунок 18 – Вид рабочей области

Видим, что узел 193.113.28.4 формирует ARP-ответ и отправляет его обратно маршрутизатору (представлено на рисунке 19).

Рисунок 19 – Вид рабочей области

Просмотрим в окне событий маршруты запроса ARP и ICMP: через какие устройства прошли пакеты (представлено на рисунке 20).

Рисунок 20 – Окно событий режима симуляции

Далее видим, что узел 192.113.28.3 снова пытается отправить ping-запрос во внешнюю сеть узлу 193.113.28.4 и достигает узла назначения (представлено на рисунке 21).

Рисунок 12 – Вид рабочей области

Далее видим, что узел формирует ping-ответ, который отправляется обратно узлу 192.113.28.3 (представлено на рисунке 22).

Pисунок 12 - Bид рабочей области Просмотрим содержимое пакета ping-ответа на рисунке 23.

Рисунок 23 – Формат пакета ІСМР-эхо-ответа

Просмотрим в окне событий маршруты запроса ICMP: через какие устройства прошли пакеты (представлено на рисунке 24).

Vis.	Time (sec)	Last Device	At Device	Туре	Info
	0.000		192.113.28.3	ICMP	
	0.001	192.113.28.3	Switch1	ICMP	
	0.002	Switch1	Router0	ICMP	
	0.003	Router0	Switch2	ICMP	
	0.004	Switch2	193.113.28.4	ICMP	
	0.005	193.113.28.4	Switch2	ICMP	
	0.006	Switch2	Router0	ICMP	
	0.007	Router0	Switch1	ICMP	

Рисунок 24 – Окно событий режима симуляции

На рисунке 26 представлен результат выполнения ping-запроса в программе "Command Promt".

```
PC>ping 193.113.28.4
Pinging 193.113.28.4 with 32 bytes of data:

Request timed out.
Reply from 193.113.28.4: bytes=32 time=8ms TTL=127
Reply from 193.113.28.4: bytes=32 time=8ms TTL=127
Reply from 193.113.28.4: bytes=32 time=8ms TTL=127
Ping statistics for 193.113.28.4:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
    Minimum = 8ms, Maximum = 8ms, Average = 8ms
```

Рисунок 26 – Командная строка узла 192.113.28.3

Просмотрим маршрут пакета с помощью команды tracert (представлено на рисунке 27).

```
PC>tracert 193.113.28.4

Tracing route to 193.113.28.4 over a maximum of 30 hops:

1 53 ms 62 ms 61 ms 192.113.28.1
2 125 ms 125 ms 123 ms 193.113.28.4

Trace complete.
```

Рисунок 27 – Вывод программы tracert

Отправим ping-запрос на несуществующий хост (представлено на рисунке 28).

```
PC>ping 193.113.28.7

Pinging 193.113.28.7 with 32 bytes of data:
```

Рисунок 28 – Командная строка узла 192.113.28.6

Видим, что формируется ARP-запрос (представлено на рисунке 29).

Рисунок 29 – Вид рабочей области

Видим, что все узлы игнорируют пакет, кроме маршрутизатора, которому этот пакет предназначался (представлено на рисунке 30).

Рисунок 30 – Вид рабочей области

Узел 192.113.28.6 получает ARP-ответ с MAC-адресом маршрутизатора и отправляет ping-запрос на узел 193.113.28.7 (представлено на рисунке 31).

Рисунок 31 – Вид рабочей области

Видим, что маршрутизатор формирует ARP-запрос по адресу 193.113.28.7 (представлено на рисунке 32).

Рисунок 32 – Вид рабочей области

Все узлы подсети игнорируют пакет, и маршрутизатор не получает никакого ответа (представлено на рисунке 33).

Рисунок 33 – Вид рабочей области

Посмотрим ответ на ping-запрос в командной строке узла-источника 192.113.28.6: «превышено время ожидания» (представлено на рисунке 34).

```
PC>ping 193.113.28.7

Pinging 193.113.28.7 with 32 bytes of data:

Request timed out.

Request timed out.

Request timed out.

Request timed out.

Request timed out.
```

Рисунок 34 – Командная строка узла 192.113.28.3

Попробуем отправить ping-запрос в несуществующую сеть (представлено на рисунке 35).

```
PC>ping 194.113.28.8

Pinging 194.113.28.8 with 32 bytes of data:
```

Рисунок 35 – Командная строка узла 192.113.28.3

Видим, что формируется ARP-запрос (представлено на рисунке 36).

Рисунок 36 – Вид рабочей области

Все узлы игнорируют пакет, кроме маршрутизатора, которому этот пакет предназначался (представлено на рисунке 37).

Рисунок 37 – Вид рабочей области

Узел 192.113.28.6 получает ARP-ответ с MAC-адресом маршрутизатора и отправляет ping-запрос (представлено на рисунке 38).

Рисунок 31 – Вид рабочей области

Видим, что при попадании ping-запроса на маршрутизатор, пакет уничтожается и формируется новое ICMP-сообщение (представлено на рисунке 38).

Рисунок 38 – Вид рабочей области

Посмотрим содержимое пакета, сформированного маршрутизатором на рисунке 39.

Рисунок 39 – Формат пакета ICMP «хост недостижим»

Просмотрим результат ping-запроса в командной строке узла *192.113.28.6*: «хост назначения недостижим» на рисунке 40.

```
PC>ping 194.113.28.8

Pinging 194.113.28.8 with 32 bytes of data:

Reply from 192.113.28.1: Destination host unreachable.

Reply from 192.113.28.1: Destination host unreachable.

Reply from 192.113.28.1: Destination host unreachable.

Reply from 192.113.28.1: Destination host unreachable.
```

Рисунок 40 – Командная строка узла 192.113.28.6

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы была создана и настроена топология сети, включающая две подсети с разными IP-адресами. Проведенные тестирования с использованием протоколов ARP и ICMP подтвердили корректность работы сетевого оборудования и маршрутизации.

При взаимодействии между различными подсетями было выявлено, что для передачи данных необходим маршрутизатор, так как без него устройства из разных сетей не могут обмениваться пакетами. Анализ ARP-запросов показал корректный обмен MAC-адресами, а маршрутизатор успешно выполнял свою функцию перенаправления трафика в нужную сеть. В случае попытки отправки пакетов в несуществующую сеть или к недоступному хосту формировались ICMP-ответы с уведомлением о невозможности доставки.

В результате лабораторной работы были изучены ключевые механизмы взаимодействия в компьютерных сетях, принципы работы ARP и ICMP.