EE-220 Signals and Systems

Session 2019

Week 2

Last Week

- ☐ Signals Definition
 - ☐ Classification of signals
- System Definition
- Transformation of Signals
- ☐ Even and Odd Signals
- Exponential Signals
 - ☐ Real valued

Periodic Complex Exponential and Sinusoidal Signals

- ☐ A second important class of complex exponentials is obtained by constraining a to be purely imaginary.
 - $x(t) = e^{j\omega_0 t}.$

☐ An important property of this signal is that it is periodic $e^{j\omega_0(t+T)} = e^{j\omega_0t}e^{j\omega_0T},$

$$e^{j\omega_0t}=e^{j\omega_0(t+T)}.$$

$$2\pi$$

Thus, the signals $e^{j\omega_0t}$ and $e^{-j\omega_0t}$ have the same fundamental period T $_0$ and fundamental frequency will be f $_0$.

Periodic Complex Exponential and

Sinusoidal Signals

 $\hfill \square$ A signal closely related to the periodic complex exponential is the $\ensuremath{\mathbf{sinusoidal\, signal}}$

$$A\cos(\omega_0 t + \phi) = A\Re\{e^{j(\omega_0 t + \phi)}\},$$
 $A\sin(\omega_0 t + \phi) = A\Im\{e^{j(\omega_0 t + \phi)}\}.$ $x(t) = A\cos(\omega_0 t + \phi),$

- ☐ Like the complex exponential signal, the sinusoidal signal is periodic with fundamental period T_0
- If we decrease the magnitude of ω_{ρ} we slow down the rate of oscillation and therefore increase the period. Exactly the opposite effects occur if we increase the magnitude of ω_0 . What about $\omega_0=0$?

Energy of Periodic Complex Exponential and Sinusoidal Signals

☐ The complex periodic exponential signal and the sinusoidal signal provide signals with infinite total energy but finite average power

$$E_{\text{period}} = \int_0^{T_0} \left| e^{j\omega_0 t} \right|^2 dt$$
$$= \int_0^{T_0} 1 \cdot dt = T_0,$$

 \square Since there are an infinite number of periods as t ranges from $-\infty$ to +∞, the total energy integrated over all time is infinite.

$$P_{\infty} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \left| e^{j\omega_0 t} \right|^2 dt = 1. \qquad P_{\text{period}} = \frac{1}{T_0} E_{\text{period}} = 1.$$

Periodic Complex Exponential and Sinusoidal Signals

- A necessary condition for a complex exponential $e^{j\omega_0t}$ to be periodic with period T_0 is
- \Box which implies that ωT_0 is a multiple of 2π , i.e.,

$$\omega T_0 = 2\pi k, \qquad k = 0, \pm 1, \pm 2, \ldots$$

$$\phi_k(t) = e^{jk\omega_0t}, \qquad k = 0, \pm 1, \pm 2, \dots$$

 \Box For k = 0, signal is a constant, while for any other value of k, it is periodic with fundamental frequency $k\omega_0$.

Periodic Complex Exponential and Sinusoidal Signals

$$\phi_k(t) = e^{jk\omega_0t}, \qquad k = 0, \pm 1, \pm 2, \ldots$$

☐ Signal is still periodic with fundamental period

$$\frac{2\pi}{|k|\omega_0} = \frac{T_0}{|k|}$$

lacktriangle The k_{th} harmonic is still periodic with period T_0 as well, as it goes through exactly k of its fundamental periods during any time interval of length T_0

General Complex Exponential Signals

lacktriangle Specifically, consider a complex exponential Ce^{at} , where Cis expressed in polar form and a in rectangular form. That $C = |C|e^{j\theta}$

$$C = |C|e^{s}$$

$$a=r+j\omega_0.$$

$$Ce^{at} = |C|e^{j\theta}e^{(r+j\omega_0)t} = |C|e^{rt}e^{j(\omega_0t+\theta)}.$$

$$Ce^{at} = |C|e^{rt}\cos(\omega_0 t + \theta) + j|C|e^{rt}\sin(\omega_0 t + \theta).$$

Discrete-Time Complex Exponential and Sinusoidal Signals ☐ As in continuous time, an important signal in discrete time is the complex exponential signal or sequence, defined by $x[n] = C\alpha^n$ _____

General Complex Exponential Signals

Periodicity Properties of Discrete-Time Complex Exponentials

- ☐ There are many similarities between continuoustime and discrete-time signals, there are also a number of important differences
- lacksquare In continuous signal $e^{j\omega_0t}\ or\ \cos(\omega_0t)$, we know that
 - $\hfill \Box$ The larger the magnitude of ω_0 , the higher is the rate of oscillation in the signal
 - lacksquare Signal is periodic for any value of ω_0

© A Raza, 202

Periodicity Properties of Discrete-Time Complex Exponentials

 $\hfill \Box$ Specifically, consider the discrete-time complex exponential with frequency $\omega_0+2\pi$:

$$e^{j(\omega_0+2\pi)n} = e^{j2\pi n}e^{j\omega_0n} = e^{j\omega_0n}$$
.

- \Box we see that the exponential at frequency $\omega_0+2\pi$ is the <code>same</code> as that at frequency $\omega_0.$
- \square $e^{j\omega_0t}$ signal in continues time domain produces distinguished signals for different values of ω_0 . This is not the case of discrete.
- MATLAB tutorial

© A Raza, 202

Periodicity Properties of Discrete-Time Complex Exponentials

Periodicity Properties of Discrete-Time Complex Exponentials

- ☐ The second property we wish to consider concerns the periodicity of the discrete time complex exponential.
- $\hfill \Box$ In order for the signal $e^{j\omega_0n}$ to be periodic with period N, we must have

$$e^{j\omega_0(n+N)} = e^{j\omega_0n}, \qquad e^{j\omega_0N} = 1.$$

 \square $\omega_0 N$ must be a multiple of 2π . That is, there must be an integer m such that

$$\omega_0 N = 2\pi m, \qquad \frac{\omega_0}{2\pi} = \frac{m}{N}.$$

© A Raza, 2021

Periodicity Properties of Discrete-Time Complex Exponentials

Periodicity Properties of Discrete-Time Complex Exponentials

- ☐ we define the fundamental frequency of a discrete-time periodic signal as we did in continuous time.
- \square That is, if x[n] is periodic with fundamental period N, its fundamental frequency is $2\pi/N$.
- \square $x[n] = e^{j\omega_0 n}$, the fundamental frequency and period will be

$$\frac{2\pi}{N} = \frac{\omega_0}{m}. \qquad N = m\left(\frac{2\pi}{\omega_0}\right).$$

☐ Solve Example 1.6

© A Raza, 202

$e^{j\omega_0 t}$	$e^{j\omega_{\mathcal{C}^{N}}}$
Distinct signals for distinct values of ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any choice of ω_0	Periodic only if $\omega_0 = 2\pi m/N$ for some integers $N > 0$ and
Fundamental frequency ω ₀	Fundamental frequency* ω ₀ /m
Fundamental period $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $\frac{2\pi}{2}$	Fundamental period* $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $m(\frac{2\pi}{2})$

Periodicity Properties of Discrete-Time Complex Exponentials

$$\frac{2\pi}{N} = \frac{\omega_0}{m}.$$

☐ For periodic exponentials with a common period N,

$$\phi_k[n] = e^{jk(2\pi/N)n}, \qquad k = 0, \pm 1, \dots$$

$$\phi_{k+N}[n] = e^{j(k+N)(2\pi/N)n}$$

= $e^{jk(2\pi/N)n}e^{j2\pi n} = \phi_k[n].$

© A Raza, 2021

The Discrete-Time Unit Impulse and Unit Step Sequences

☐ One of the simplest discrete-time signals is the *unit impulse* (or *unit sample*), which is defined as

$$S[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

- A second basic discrete-time signal is the discrete-time unit step, denoted by u[n] and defined by

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \ge 0 \end{cases}$$

The Discrete-Time Unit Impulse and Unit Step Relationship

☐ There is a close relationship between the discrete-time unit impulse and unit step. In particular, the discrete-time unit impulse is the first difference of the discrete-time step

- $\delta[n] = u[n] u[n-1].$
- ☐ Conversely, the discrete-time unit step is the running sum of the unit sample. That is,

© A Raza, 2021.

Sampling Using Impulse

□ The unit impulse sequence can be used to sample the value of a signal at n = 0. In particular, since *impulse* is nonzero (and equal to 1) only for n = 0, it follows that

$$x[n]\delta[n] = x[0]\delta[n].$$

$$x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0].$$

© A Baza 20

The Continuous-Time Unit Step and Unit Impulse Functions

☐ The continuous-time *unit step function u(t)* is defined in a manner similar to its discrete time counterpart. Specifically,

discrete time counterpart. Specifically,
$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

$$u[n] = \sum_{m = -\infty}^{n} \delta[m].$$

$$u(t) = \int_{-\infty}^{t} \delta(\tau) \, d\tau. \qquad \int_{-\infty}^{t} k \delta(\tau) \, d\tau = k u(t). \qquad \quad \delta(t) = \frac{du(t)}{dt}.$$

© A Raza, 202

Unit Step Function

$$u[n] = \sum_{k=0}^{\infty} \delta[n-k].$$

$$u(t) = \int_{0}^{\infty} \delta(t - \sigma) d\sigma.$$

$$x(t)\delta_{\Delta}(t) \approx x(0)\delta_{\Delta}(t).$$

 $x(t)\delta(t-t_0) = x(t_0)\delta(t-t_0).$

Since $\delta(t)$ is the limit as $\Delta \to 0$ of $\delta_{\Delta}(t)$, it follows that

$$x(t)\delta(t) = x(0)\delta(t).$$

© A Raza, 202

Example 1.7

CONTINUOUS-TIME AND DISCRETE-TIME SYSTEMS

☐ System is a process in which input signals are transformed by the system or cause the system to respond in some way, resulting in other signals as outputs.

Interconnections of Systems

