

Digitale Schaltungen

1. Transistorgleichungen

1.1. Bipolar

$$I_F = I_{ES} \left(\exp \left(\frac{U_{BE}}{U_T} \right) - 1 \right)$$

Vorteil: bessere Treiberverstärkung durch Exponentialfunktion Nachteile:

- langsames Abschalten durch Sättigung mit Ladungsträgern → ECL-Schaltung / Differentielles ECL / Feedback-ECL Differenzverstärker

1.2. MOS-Transistoren

Tier in Go Translocoron			
Verstärkung:	$\beta = K' \frac{W}{L} \text{ mit } K'$	$= \frac{\mu \varepsilon_{ox} \varepsilon_0}{t_{0x}} \qquad [\beta] = \frac{A}{V^2}$	
	Kanalweite	W	
	Kanallänge	L	
Elektronenbeweglichkeit		$\mu_n \approx 250 \cdot 10^{-4} \frac{m^2}{V_s}$ $\mu_p \approx 100 \cdot 10^{-4} \frac{m^2}{V_s}$	
		$\mu_p \approx 100 \cdot 10^{-4} \frac{m^2}{Vs}$	
rel. Dielektrizität des Gateoxyds		$\varepsilon_{ox} \approx 3,9$	
Die	elektrizitätskonstante	$\varepsilon_0 = 8.8541878 \cdot 10^{-12} \frac{As}{Vm}$	
	Gateoxyddicke	t_{ox}	
	Verstärkung	$\beta = \frac{\mu_n \varepsilon_{ox} \varepsilon_0}{t_{ox}} \cdot \frac{W}{L} = K' \frac{W}{L}$	
	Kapazität	$C_G = \varepsilon_{ox} \varepsilon_0 \frac{WL}{t_{ox}}$	
	Verzögerungszeit	$\begin{split} \beta &= \frac{\mu_{n}\varepsilon_{ox}\varepsilon_{0}}{t_{ox}} \cdot \frac{W}{L} = K'\frac{W}{L} \\ C_{G} &= \varepsilon_{ox}\varepsilon_{0}\frac{WL}{t_{ox}} \\ t_{pHL} &\propto \frac{C_{L}t_{ox}L_{p}}{W_{p}\mu_{p}\varepsilon_{ox}(V_{DD} - V_{th})} \end{split}$	
 große Kanalweite ⇒ große Drain-Störme 			

- \Rightarrow schnelle Schaltgeschwindigkeit (da $i_d \propto \beta \propto \frac{W}{T}$) Aber: große Fläche.
- nMos schaltet schneller als pMOS, da nMOS und pMOS unterschiedliche Majoritätsladungsträger haben. Die Beweglichkeit der Löcher ist im Allgemeinen geringer als die der Elektronen.
- nMOS zum Entladen, pMOS zum Aufladen

nMos (p-dotiertes Substrat, n-dotierte Drain/Source), schlechter pull up (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \leq 0 \\ \beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \leq U_{gs} - U_{th} \geq u_{ds} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases} \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \leq U_{gs} - U_{th} \leq u_{ds} \end{cases}$$

pMos (n-dotiertes Substrat, p-dotierte Drain/Source), schlechter pull down (Pegeldegenerierung)

$$I_d = \begin{cases} 0, & \text{für } U_{gs} - U_{th} \geq 0 \\ -\beta[(u_{gs} - U_{th}) \cdot u_{ds} - \frac{1}{2}u_{ds}^2], & \text{für } 0 \geq U_{gs} - U_{th} \leq u_d \\ -\frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U_{th})^2, & \text{für } 0 \geq U_{gs} - U_{th} \geq u_d \\ \frac{1}{2}\beta \cdot (u_{gs} - U$$

2. Sequentielle Logik

t_{Setup}	Stabilitätszeit vor der aktiven Taktflanke
t_{hold}	Stabilitätszeit nach der aktiven Taktflanke
$t_{\sf c2q}$	Eingang spätestens nach t_{c2q} am Ausgang verfüg
Min. Taktperiode	$t_{clk} \ge t_{1,c2q} + t_{logic,max} + t_{2,setup}$
	(bei Verletzung: neue Pipelinestufe
	aber dadurch höhere Latenz)
Max. Taktfrequenz	$f_{max} = \left\lfloor rac{1}{t_{clk}} ight floor$ (Nicht aufrunden)
Holdzeitbedingung	$t_{hold} \le t_{c2q} + t_{logic,min}$
	(bei Verletzung zwei Inverter einfügen)
Durchsatz	$\frac{1Sample}{t_{clk}, pipe} = f$
Latenz	$t_{clk} \cdot \# Pipelinestufen (das zwischen den FFs)$

2.1. Zeitmessungen

2.1. Zeitmessungen Ersatzwiderstand für den Transistor: $R_{\rm on} pprox rac{1}{eta(|U_{\rm gs,p}|-|U_{\rm th,p}|)}$

Guardband: $t_{guard} = t_{clk} - t_{p.max}$

2.1.1. Propagation-Delay Zeit, die beim Umschalten zwischen 50% der Eingangsspannung und 50% der Ausgangsspannung vergeht

$$t_p = \frac{t_{\rm p,LH} + t_{\rm p,HL}}{2} = \ln 2R_{\rm on}C_L$$

Für eine Treiberstufe: $t_p = \ln 2 \frac{R_{\rm OI}}{S} (S \cdot C_{\rm int} + C_L)$ mit Kanalweitenskalierung $S = \sqrt[N]{\frac{C_L}{C_S}}$

$$t_{\rm p,LH} \approx \frac{C_L t_{\rm ox} L}{W \mu \varepsilon (U_{\rm DD} - \left| U_{\rm th,p} \right|)} \ \ {\rm Falls} \ W \to \infty \ \ {\rm gilt} \ {\rm trotzdem} \ t \neq 0, \ {\rm da}$$

interne Gate-Kapazität so wächst!

2.1.2. Rise- and Fall-Time

Zeit, die beim Umschalten eines Signals von 10% auf 90% vergeht

2.1.3. Lastkapazitäten

Umladen von parasitären Lastkapazitäten braucht Zeit. Diese setzen sich

- Eingangs/Gate-Kapazität der nachfolgenden Stufe
- Drain-Kapazität
- Leiterbahn-Kapazitäten

2.1.4. Elmore-Delay

Es müssen alle Kapazitäten berücksichtigt werden und alle Widerstände auf gemeinsamen Pfaden. Es sollen dann die RC Konstanten aufaddiert

Beispiel:
$$\tau = R_C \cdot C_2 + (R_C + R_B)C_1 + (R_C + R_B + R_A)C_L$$

Nur bei synchronen(taktgesteuerten) Schaltungen möglich!

- Aufteilen langer kombinatorischer Pfade durch Einfügen zusätzlicher Registerstufen
 - → Möglichst Halbierung des längsten Pfades
- Zeitverhalten beachten (evtl. Dummy-Gatter einfügen)
- Durchsatz erhöht sich entsprechend der Steigerung der Taktfrequenz
- Gesamtlatenz wird eher größer
- Taktfrequenz erhöht sich

2.3. Latch

 $SB = RB = Q = QB \Rightarrow Latch schwingt$ $t_{\rm rise} \neq t_{\rm fall} \Rightarrow {\sf Schwingung klingt ab}$

3. Statische CMOS-Schaltungen

3		
	Vorteile	Nachteile
3	Wenige Transistoren	zusätzliche Inverter
		oder Transmission Gates für Pegelregeneration
	Kleiner Flächenverbrauch	Verdrahtungsaufwand hoch
	Geringe Verlustleistung	Langsam

5. Dynamische CMOS-Schaltungen

Vorteile	Nachteile
Nur ein Logikblock	Ladungsverlust durch Leckströme und
statt zwei benötigt	und Charge-Sharing

Damit die Pegelregeneration gewährleistet ist, sollten Gatter immer abwechselnd mit NMOS und PMOS-Technik kaskadiert werden. Alternativ kann auch ein statische Schaltung benutzt werden.

5.1. Master-Slave-Flip-Flop

Achtung mit Clock-Gating bei dynamischen Registern, sonst Datenverlust durch Leckströme

6. CMOS Verlustleistung

Inverterschaltvorgang $V_A:0\to 1$:

6.1. Dynamische Verlustleistung

 $P_{dyn} = P_{cap} + P_{short}$

Kapazitive Verluste $P_{cap} = \alpha_{01} f C_L V_{DD}^2$ $P_{short} = \alpha_{01} f \beta_n \tau (V_{DD} - 2V_{tn})^3$ Kurzschlussstrom

Schalthäufigkeit $\alpha_{0 \rightarrow 1} = \frac{\text{Schaltvorgänge(pos. Flanke)}}{\text{\# Betrachtete Takte}}$ Schalthäufigkeit (periodisch) $\alpha = \frac{f_{\text{switch}}}{f_{\text{clk}}}$ Abhängig von den Signalflanken, mit Schaltfunktionen verknüpft

 $\approx V_{DD}1/\propto \text{Schaltzeit: } \frac{VDD2}{VDD1} = \frac{t_{D1}}{t_{D2}} \text{ (bei Schaltnetzen } t_{log} \text{)}$ $\text{Verzögerungszeit} \propto \frac{C_L t_{ox} L_p}{W_p \mu_p \varepsilon (V_{DD} - V_{th})}$

Steigend mit: Kapazitiver Last, Oxiddicke, Kanallänge, Schwellspannung Sinkend mit: Kanalweite, Ladungsträger Beweglichkeit, Oxyd Dielektrizität, Versorgungsspannung

6.2. Statische Verlustleistung

Abhängigkeit: V_{DD} \uparrow : P_{stat} \uparrow $V_{th} \uparrow: P_{stat} \downarrow$ (aber nicht proportional)

Sub-Schwellströme

 $I_D = I_0 \exp\left(\frac{V_{\rm gs} - V_T}{nV_{\rm Temp}}\right) \left(1 - \exp\left(V_{\rm ds} - V_{\rm Temp}\right)\right) \mbox{ für } V_{\rm gs} < V_{\rm T} \label{eq:local_local_temp}$ Leckströme/Gate-Ströme (Sperrströme, da Gate-Oxit nicht richtig isoliert):

$$I_{\mathsf{Gate}} \sim \exp\left(t_{\mathsf{ox}}^{-1}\right)$$

Optimierung durch:

- Clock-Gating: Nicht benötigte Blöcke können innerhalb einer Taktflanke an- und abgeschaltet werden
- Power-Gating: Nicht benötigte Bereiche können abgeschaltet werden, Daten müssen jedoch zuvor abgespeichert werden
- Dynamic Voltage Frequency Scaling: Versorgungsspannung und Frequenz ↓⇒ Dynamic Power ↓

Die Schwellspannung kann durch Substratvorspannung (Bulk) verändert werden

7. Speicher

7.1. DRAM-Zelle

Information wird nur temporär in Kondensator gespeichert. Es muss regelmäßig aufgefrischt werden.

7.2. SRAM-Zelle TODO

7.3. Flash-Zelle

Elektronen werden durch eine hohe Spannung am Gate und Drain auf das Floating-Gate gezogen. Zur Speicherung wird keine Spannung benötigt. Beim Lesen mit mittlerer Spannung verschieben die Elektronen im Floating-Gate die Thresholdspannung.

Das Oxid wird beim Laden/Entladen beschädigt (geringe Lebenszeit). deswegen muss die Nutzung auf allen Speicherzellen verteilt werden.

7.4. Phase-Change-Memory

Bei Raumtemperatur kann das Phase-Change-Material sich bei Raumtemperatur stabil in zwei Zuständen befinden: Amorph und Kristallin. Die Zustände können durch eine Reset(Melt)temperatur bzw. der Crystaltemperatur gewechselt werden

8. Fehlertoleranz

Es können verschiedene Fehler entstehen:

• Manufacturing Variability (V_T)

- · Soft-Errors (Fehler, die auftreten und wieder verschwinden)
- Alterung und Transistorperformanz (langsamer werdend)

a) Permanente Fehler: Stuck-At(0/1), Stuck-Open, Bridge-Fault (Ursache: Elektromigration)

b) Transiente Fehler: Kurzfristig falsche Werte, Single Event Transient/Upset (Ursache: natürliche Strahlung bsplw. alpha-Strahlen)

Single Event Transient: kurzer falscher Spannungswert durch Zeitverletzung durch Nebensprechen oder Alterung

Single Event Upset: Übernahme eines falschen Wertes durch Umkippen in ein ElinElon

8.1. Fehlermaskierung

Fehlersensitivität: Fehler ist am Ausgang bemerkbar

Logikmaskierung: Wert ist irrelevant für den Ausgang

Transiente Maskierung: Logische Maskierung an späterer Stufe verhindert falsche Ausbreitung

9. Synchrone und Ansynchrone Schaltungen

9.1. Synchrone Schaltungen

Taktverteilung meistens durch H-Baumstruktur, um alle Register in gleicher Zeit zu erreichen.

Taktabweichungen durch:

- Clock-Generation
- Devices
- Interconnect Temperatur
- Kapazitive Lasten
- Koppelkapazität zu benachbarten Leitungen

Clock-Skew	Clock-Jitter
Örtlicher Unterschied zw. Regionen	Zeitliche Unterschiede zw. aufeinanderfolgenden Taktflank
Einsatz zur Verteilung der Stromlast auf größeren Zeitraum ⇒ Verkleinerung des IR-Drops	
Ausgleich von Unterschieden bei Pipelinestufen	

9.2. Asynchrone Schaltungen

Wie kann man einen sinnvollen Zeitpunkt finden um das Ergebnis aus einem asynchronen Zweig in ein Register zu übernehmen?

- Delay-Modul mit fester Zeit (start/done)
- Handshake-Protokoll mit redundanter Codierung (aber ständiger Querstrom!)
- Handshake-Protokoll mit Stromsensor (falls kein Strom mehr fließt → Schaltung fertig)

9.3. Kombination von asynchronen und synchronen Schaltun-

+ einfache Timing-Analyse + schneller	Synchrone Schaltung	Asynchrone Schaltung
cimedia riming rimaryse	+ einfache Timing-Analyse	+ schneller
+ einfache Verifikation + keine glob. Taktverteilun	+ einfache Verifikation	+ keine glob. Taktverteilung
- glob. Taktverteilung - schwierige Verifikation	- glob. Taktverteilung	- schwierige Verifikation
- keine Timing-Analyse		- keine Timing-Analyse

Synchronisierung durch:

- asynchroner FIFO-Speicher mit Füllstandsüberwachung
- Handshake-Protokoll (Request/Acknoledgement)

Bei großen Schaltungen wird meistens die Globally-Asynchron-Locally-Synchron (GALS) Methodik benutzt. Hier werden synchrone Inseln mit asynchroner Technik verbunden.

10. Dynamische Rekonfiguration

Meist auf Field Programmable Gate Array-Chips (FPGA) realisiert und für Hardware-Beschleuniger benutzt.

tightly coupled (in CPU-Pfad) \Leftrightarrow loosely coupled (außerhalb)

Lookuptable (LUT): Speichern Ausgangswerte unabhängig von Eingangswerten

Configurable Logic Block (CLB): Block von der die Logik rekonfiguriert werden kann

Nachteile:

- Großer Overhead
- Große kapazitive Last und somit hohe Verlustleistung und geringere maximale Taktfrequenz

Das Ergebnis der Timinganalyse kann sich zwischen Pre- und Post-Layout durch Verdrahtung etc. unterscheiden.

Bei Timingverletzungen müssen zusätzliche Pipelinestufen eingefügt werden (evtl. durch Hyperregister in Switch-Box) Pipelining in Rückkopplungsschleifen:

Partiell rekonfigurierbare Region (PRR) kann mehrere rekonfigurierbare Module (RM) enthalten

Alle statischen Leitungen in PRR müssen in allen RM vorkommen!