

QEMU中RISC-V SoC的新增与实现

--基于NucLei SOC 在QEMU中的扩展

PLCT 王俊强

wangjunqiang@iscas.ac.cn

目录

- | QEMU与RISC-V
- | NucLei Soc简述
- | QEMU中NucLei Soc的添加
- | GD32V103F Board for RTOS
- | HummingBird Board for Linux

QEMU RISC-V

- ▶QEMU是一款开源的模拟器及虚拟机监管器(Virtual Machine Monitor, VMM)
- ▶RISC-V是一个基于精简指令集(RISC)原则的开源指令集架构(ISA)

Fedora Desktop for RISC-V

QEMU RISC-V

QEMU对RISC-V支持

Features	support
Hardware Virtualization	soon* <u>kvm-riscv</u>
TCG Guest	Yes
MTTCG	Yes
TCG Host	No

Booting Linux	support
Debian	64
Fedora	64
OpenEmbedded	32/64
Buildroot	32/64

32bit Suppo	cpu type:	
none	empty machine	any
opentitan	RISC-V Board compatible with OpenTitan	lowrisc-ibex
sifive_e	RISC-V Board compatible with SiFive E SDK	rv32
sifive_u	RISC-V Board compatible with SiFive U SDK	sifive-e31
spike	RISC-V Spike board (default)	sifive-e34
virt	RISC-V VirtIO board	sifive-u34
64bit Suppo	orted machines are:	cpu type:
	orted machines are: cicle-kit Microchip PolarFire SoC Icicle Kit	cpu type: any
		1 ' ''
microchip-i	cicle-kit Microchip PolarFire SoC Icicle Kit	any
microchip-i none	cicle-kit Microchip PolarFire SoC Icicle Kit empty machine	any rv64
microchip-i none sifive_e	cicle-kit Microchip PolarFire SoC Icicle Kit empty machine RISC-V Board compatible with SiFive E SDK	any rv64 sifive-e51

privileged 1.10.0 privileged 1.11.0 v extension 0.7.1

Extension	Version
1	2.1
E	2.1
M	2.0
Α	2.1
F	2.2
D	2.2
V	0.7.1
С	2.0
Н	0.3?
Counters	2.0
Zifencei	2.0
Zicsr	2.0

Extension支持(参考)

NucLei Soc简述

来自: www.nucleisys.com/product.php

NucLei Soc简述

SOC系列	RISC-V支持
N200	RV32I/E/M/A/C
N300	RV32I/E/M/A/C/F/D/P
N600	RV32I/M/A/C/F/D/P
NX600	RV64I/M/A/C/F/D/P
UX600(MMU)	RV64I/M/A/C/F/D/P
N900	RV32I/M/A/C/F/D/P/V
NX900	RV64I/M/A/C/F/D/P/V
UX900(MMU)	RV64I/M/A/C/F/D/P/V

▶工具链: RISC-V GNU Toolchain

▶软件环境-验证环境

► <u>Nuclei SDK</u>

➤ Nuclei Linux SDK

>RT-Thread Nuclei BSP

▶文档来源: Nuclei User Center

RTOS

SYSTIMER

ECLIE

Linux
CLINT
PLIC

QEMU中NucLei Soc的添加

- ➤CPU模拟
 - CPU Model
 - 指令与CSR
- ▶内存模拟
- ▶中断模拟
 - ECLIC
- ▶外设模拟
 - rcu
 - systimer
 - uart(示例)

UX600系统框架图示例

QEMU Object Model (QOM)

Features:

- System for dynamically registering types
- Support for single-inheritance of types
- Multiple inheritance of stateless interfaces

来自: QOM DOC

注册:

```
type_init(function)

module_init(function, type)

register_module_init(function, type);

QTAILQ_INSERT_TAIL(I, e, node);
```

```
typedef struct MyDevice
{
    DeviceState parent;
    int reg0, reg1, reg2;
} MyDevice;
```

```
typedef struct MyDeviceClass
{
    DeviceClass parent;
    void (*init) (MyDevice *obj);
} MyDeviceClass;
```

```
static void my_device_class_init(ObjectClass *oc, void *data)
{
}
static void my_device_init(Object *obj)
{
}
```

```
#define TYPE_MY_DEVICE "my-device"
static const TypeInfo my_device_info = {
    .parent = TYPE_DEVICE,
    .name = TYPE_MY_DEVICE,
    .instance_size = sizeof(MyDevice),
    .instance_init = my_device_init,
    .instance_finalize = my_device_finalize,
    .class_size = sizeof(MyDeviceClass),
    .class_init = my_device_class_init,
};
```

```
static void my_device_register_types(void)
{
    type_register_static(&my_device_info);
}
type_init(my_device_register_types)
```

```
DEFINE_TYPES(device_types_info)
```


CPU虚拟化

Task 1 CPU Name 建立

Supported Cores:

n201 n201e

n203 n203e

n205 n205e

n305

n307 n307fd

n600 n600f n600fd

nx600 nx600f nx600fd

ux600 ux600f ux600fd

Task 2 ADD Instructions

Instructions Extension:

V-Extension for 1.0.0

P-Extension

NICE(Nuclei Instruction Co-

Unit Extension)

Task 3 ADD CSRs

CSR地址 读写属性 名称

0x307 MRW mtvt

0x7eb MRW pushmsubm

0x7ec MRW mtvt2

0x7ed MRW jalmnxti

0x7ee MRW pushmcause

0x7ef MRW pushmepc

.....


```
typedef struct RISCVCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/
    CPUNegativeOffsetState neg;
    CPURISCVState env;

    /* Configuration Settings */
    struct {
    } cfg;
} RISCVCPU;
```

```
typedef struct RISCVCPUClass {
    /*< private >*/
    CPUClass parent_class;
    /*< public >*/
    DeviceRealize parent_realize;
    DeviceReset parent_reset;
} RISCVCPUClass;
```

```
#define DEFINE_CPU(type_name, initfn)
        .name = type name,
        .parent = TYPE_RISCV_CPU,
        .instance init = initfn
static const TypeInfo riscv cpu type infos[] = {
        .name = TYPE RISCV CPU,
        .parent = TYPE CPU,
        .instance size = sizeof(RISCVCPU),
        .instance init = riscv cpu init,
        .abstract = true,
        .class size = sizeof(RISCVCPUClass),
        .class_init = riscv_cpu_class_init,
   DEFINE CPU(TYPE RISCV CPU ANY,
                                                riscv any cpu init),
#if defined(TARGET RISCV32)
   DEFINE CPU(TYPE RISCV CPU BASE32,
                                                riscv base32 cpu init),
   DEFINE CPU(TYPE RISCV CPU SIFIVE E31,
                                                rv32imacu_nommu_cpu_init),
#elif defined(TARGET RISCV64)
   DEFINE_CPU(TYPE_RISCV_CPU_BASE64,
                                                riscv_base64_cpu_init),
                                                rv64gcsu_priv1_10_0_cpu_init),
   DEFINE CPU(TYPE RISCV CPU SIFIVE U54,
#endif
};
DEFINE TYPES(riscv cpu type infos)
```



```
typedef struct RISCVCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/
    CPUNegativeOffsetState neg;
    CPURISCVState env;

    /* Configuration Settings */
    struct {
    } cfg;
} RISCVCPU;
```

```
typedef struct RISCVCPUClass {
    /*< private >*/
    CPUClass parent_class;
    /*< public >*/
    DeviceRealize parent_realize;
    DeviceReset parent_reset;
} RISCVCPUClass;
```

```
#define TYPE_RISCV_CPU_BASE32
                                        RISCV CPU TYPE NAME("rv32")
#define TYPE RISCV CPU BASE64
                                        RISCV CPU TYPE NAME("rv64")
static void rv32imafcu nommu cpu init(Object *obj)
   CPURISCVState *env = &RISCV CPU(obj)->env;
   set misa(env, RV32 | RVI | RVM | RVA | RVF | RVC | RVU);
   set priv version(env, PRIV VERSION 1 10 0);
   set resetvec(env, DEFAULT RSTVEC);
   set feature(env, RISCV FEATURE PMP);
static void rv64gcsu priv1 10 0 cpu init(Object *obj)
   CPURISCVState *env = &RISCV CPU(obj)->env;
   set misa(env, RV64 | RVI | RVM | RVA | RVF | RVD | RVC | RVS | RVU);
   set priv version(env, PRIV VERSION 1 10 0);
   set resetvec(env, DEFAULT_RSTVEC);
   set feature(env, RISCV FEATURE MMU);
   set feature(env, RISCV FEATURE PMP);
static void set misa(CPURISCVState *env, target ulong misa)
   env->misa mask = env->misa = misa;
static void set feature(CPURISCVState *env, int feature)
   env->features |= (1ULL << feature);
```



```
typedef struct RISCVCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/
    CPUNegativeOffsetState neg;
    CPURISCVState env;

    /* Configuration Settings */
    struct {
    } cfg;
} RISCVCPU;
```

```
typedef struct RISCVCPUClass {
    /*< private >*/
    CPUClass parent_class;
    /*< public >*/
    DeviceRealize parent_realize;
    DeviceReset parent_reset;
} RISCVCPUClass;
```

```
struct CPURISCVState {
   target_ulong gpr[32];
   uint64_t fpr[32]; /* assume both F and D extensions */
   target_ulong pc;
   target_ulong priv_ver;
   target ulong misa;
   target ulong misa mask;
   uint32 t features;
   target ulong mstatus;
   target ulong mip;
#ifdef TARGET RISCV32
   target_ulong mstatush;
#endif
   target ulong mie;
   target ulong mideleg;
   target_ulong sptbr; /* until: priv-1.9.1 */
   target ulong satp; /* since: priv-1.10.0 */
   /* Fields from here on are preserved across CPU reset. */
   QEMUTimer *timer; /* Internal timer */
};
```



```
typedef struct RISCVCPU {
    /*< private >*/
    CPUState parent_obj;
    /*< public >*/
    CPUNegativeOffsetState neg;
    CPURISCVState env;

    /* Configuration Settings */
    struct {
    } cfg;
} RISCVCPU;
```

```
typedef struct RISCVCPUClass {
    /*< private >*/
    CPUClass parent_class;
    /*< public >*/
    DeviceRealize parent_realize;
    DeviceReset parent_reset;
} RISCVCPUClass;
```

```
typedef struct CPUClass {
   /*< private >*/
   DeviceClass parent class;
   /*< public >*/
   ObjectClass *(*class by name)(const char *cpu model);
   void (*parse features)(const char *typename, char *str, Error **errp);
   int reset_dump_flags;
   bool (*has work)(CPUState *cpu);
   void (*do interrupt)(CPUState *cpu);
   const VMStateDescription *vmsd;
   const char *gdb_core_xml_file;
   gchar * (*gdb arch name)(CPUState *cpu);
   const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
   void (*cpu exec enter)(CPUState *cpu);
   void (*cpu exec exit)(CPUState *cpu);
   bool (*cpu exec interrupt)(CPUState *cpu, int interrupt request);
   void (*disas set info)(CPUState *cpu, disassemble info *info);
   vaddr (*adjust watchpoint address)(CPUState *cpu, vaddr addr, int len);
   void (*tcg initialize)(void);
   /* Keep non-pointer data at the end to minimize holes. */
   int gdb num core regs;
   bool gdb stop before watchpoint;
} CPUClass:
```


以N307FD为示例:

运行结果:

```
wang@lelouch:~/workroom/qemu/plct-qemu/build$ ./riscv32-softmmu/qemu-system-riscv32 -cpu ?
any
nuclei-n201
nuclei-n201e
nuclei-n203
nuclei-n203e
nuclei-n205e
nuclei-n205e
nuclei-n205c
nuclei-n305
nuclei-n307
nuclei-n307fd
nuclei-n600
nuclei-n600fd
```

```
wang@lelouch:~/workroom/qemu/plct-qemu/build64$ riscv64-softmmu/qemu-system-riscv64 -cpu ?
any
nuclei-nx600
nuclei-nx600fd
rv64
```


RISC-V CPU指令扩展

Tiny Code Generator (TCG)

将源处理器机器代码转换为虚拟机运行所需的机器代码块(如x86机器代码块)

RISC-V CPU指令扩展

31		20 19	$15 \ 14$	12	11 7	7 6	0
	imm[11:0]	rs1		funct3	rd	opcode	
	12	5		3	5	7	
	I-immediate [11:0]	src	AD	DI/SLTI[U]	dest	OP-IMM	
	I-immediate [11:0]	src	ANI	OI/ORI/XO	RI dest	OP-IMM	

ADDI Instructions

ADDI adds the sign-extended 12-bit immediate to register rs1. Arithmetic overflow is ignored and the result is simply the low XLEN bits of the result. ADDI rd, rs1, 0 is used to implement the MV rd, rs1 assembler pseudoinstruction.

来自: Unprivileged ISA

addi rd, rs1, immediate
x[rd] = x[rs1] + sext(immediate)

```
target/riscv/decode insn32.inc.c
target/riscv/insn32.decode
                                   static void decode insn32 extract i(D
# Fields:
                                   isasContext *ctx, arg_i *a, uint32_t
%rs1
         15:5
                                   insn)
%rd
         7:5
                                       a->imm = sextract32(insn, 20, 12);
                                       a \rightarrow rs1 = extract32(insn, 15, 5);
                                       a \rightarrow rd = extract32(insn, 7, 5);
# immediates:
%imm i 20:s12
                                                       typedef struct
# Argument sets:
                                                           int imm;
                                                           int rd;
   imm rs1 rd
                                                           int rs1;
                                                       } arg i;
# Formats 32:
                                        imm=%imm i
@i
                                                           %rs1 %rd
# *** RV32I Base Instruction Set ***
addi
       ..... 000 .... 0010011 @i
```


RISC-V CPU指令扩展

target/riscv/decode_insn32.inc.c

target/riscv/insn trans/trans rvi.inc.c

```
static bool trans addi(DisasContext *ctx, arg addi *a)
    return gen arith imm fn(ctx, a, &tcg gen addi tl);
#define tcg gen addi tl tcg gen addi i32
void tcg gen addi i32(TCGv i32 ret, TCGv i32 arg1, int32 t arg2)
    /* some cases can be optimized here */
   if (arg2 == 0) {
       tcg gen mov i32(ret, arg1);
    } else {
        TCGv_i32 t0 = tcg_const_i32(arg2);
        tcg_gen_add_i32(ret, arg1, t0);
       tcg temp free i32(t0);
}
```

参考:

Backend Ops Frontend Ops

Nuclei Soc CSR扩展

N级别处理器内核自定义CSR 部分:

MDM	T	4 A A A A TIME TO THE THE TIME A TIME
MKW	msaveepc2	自定义寄存器用于保存第二级嵌套 NMI
		或异常的 mepc
		注意: 此寄存器只有配置了两级异常嵌套
		恢复才会存在
MRW	msavecause2	自定义寄存器用于保存第二级嵌套 NMI
		或异常的 mcause
		注意: 此寄存器只有配置了两级异常嵌套
		恢复才会存在
MRW	msavedcause1	自定义寄存器用于保存第一级嵌套异常
		的 mdcause
		注意: 此寄存器只有配置了两级异常嵌套
		恢复才会存在
MRW	msavedcause2	自定义寄存器用于保存第二级嵌套异常
		的 mdcause
		注意: 此寄存器只有配置了两级异常嵌套
		恢复才会存在
MRW	pushmsubm	自定义寄存器用于将 msubm 的值存入堆
		栈地址空间
MRW	mtvt2	自定义寄存器用于设定非向量中断处理
		模式的中断入口地址
MRW	jalmnxti	自定义寄存器用于使能 ECLIC 中断,该
		寄存器的读操作能处理下一个中断同时
		返回下一个中断 Handler 的入口地址,
		并跳转至此地址。
	MRW MRW MRW	MRW msavedcause2 MRW msavedcause1 MRW msavedcause2 MRW pushmsubm MRW mtvt2

来自:《Nuclei N级别指令架构手册》

```
* csrr <-> riscv csrrw(env, csrno, ret value, 0, 0);
* csrrw <-> riscv_csrrw(env, csrno, ret_value, value, -1);
* csrrs <-> riscv_csrrw(env, csrno, ret_value, -1, value);
* csrrc <-> riscv csrrw(env, csrno, ret value, 0, value);
```

target/riscv/insn32.decode

```
# Fields:
%rs1 15:5
      7:5
%rd
%csr 20:12
# Formats 32:
                                 %csr %rs1 %rd
@csr ..... .... ... ... ...
# *** RV32I Base Instruction Set ***
csrrw ...... ..... 001 ..... 1110011 @csr
csrrs ..... 010 ..... 1110011 @csr
csrrc ..... 011 .... 1110011 @csr
csrrwi ...... 101 .... 1110011 @csr
csrrsi ..... 110 .... 1110011 @csr
csrrci ..... 111 .... 1110011 @csr
```



```
static bool trans csrrw(DisasContext *ctx, arg csrrw *a)
static bool trans csrrs(DisasContext *ctx, arg csrrs *a)
static bool trans_csrrc(DisasContext *ctx, arg_csrrc *a)
static bool trans csrrwi(DisasContext *ctx, arg csrrwi *a)
static bool trans csrrsi(DisasContext *ctx, arg csrrsi *a)
static bool trans csrrci(DisasContext *ctx, arg csrrci *a)
```

```
gen helper csrrw
gen helper csrrs
gen helper csrrc
```



```
DEF HELPER 3(csrrw, tl, env, tl, tl)
DEF HELPER_4(csrrs, tl, env, tl, tl, tl)
DEF HELPER 4(csrrc, tl, env, tl, tl, tl)
```


Nuclei Soc CSR扩展

```
struct riscv_csr_operations

riscv_csr_predicate_fn predicate

riscv_csr_read_fn read

riscv_csr_write_fn write

riscv_csr_op_fn op
```

target/riscv/cpu bits.h

```
#define CSR_PUSHMSUBM 0x07eb
#define CSR_MTVT2 0x07ec
#define CSR_JALMNXTI 0x07ed
#define CSR_PUSHMCAUSE 0x07ee
#define CSR_PUSHMEPC 0x07ef
```

s[†]

target/riscv/csr.c

```
/* Control and Status Register function table */
static riscv_csr_operations csr_ops[CSR_TABLE_SIZE] = {
   /* User Floating-Point CSRs */
   [CSR FFLAGS] =
                             { fs, read fflags,
                                                     write fflags
                             { fs, read frm,
   [CSR_FRM] =
                                                     write frm
                             { fs, read fcsr,
   [CSR FCSR] =
                                                     write fcsr
   /* User Timers and Counters */
   [CSR CYCLE] =
                             { ctr, read instret
   [CSR_INSTRET] =
                             { ctr, read instret
};
```

CSR PUSHMCAUSE:

处理器 定义了通过 pushmcause 寄存器 csrrwi 操作实现的 CSR 指令,存储 mcause 的值到堆栈指针作为基地址的memory 空间以如下指令为例介绍此CSR指令:

csrrwi x0, PUSHMCAUSE, 1

该指令的操作是将mcause寄存器的值存到SP(堆栈指针)+1*4的地址。

The memory API models the memory and I/O buses and controllers of a QEMU machine.

- > ordinary RAM
- memory-mapped I/O (MMIO)
- > memory controllers that can dynamically reroute physical memory regions to different destinations

来自: memory API

Types of regions	initialize
RAM	memory_region_init_ram()
MMIO	memory_region_init_io()
ROM	memory_region_init_rom().
ROM device	memory_region_init_rom_device()
IOMMU region	memory_region_init_iommu()
container	memory_region_init()
alias	memory_region_init_alias()
reservation region	memory_region_init_io()

MemoryRegion

```
QTAILQ_HEAD(, MemoryRegion) subregions

const MemoryRegionOps *ops

MemoryRegion *alias

hwaddr alias_offset
```


MemoryRegion ROOT — system_memory:

```
MemoryRegion *get_system_memory(void)
```

RAM:

ROM:

分配/挂载:

10:

Table 5-1 Address Allocation of SoC

	Component	Address Spaces	Description
Core Private Peripherals	TIMER	0x0200_0000 ~ 0x0200_0FFF	TIMER Unit address space.
_	ECLIC	oxoCoo_oooo \sim oxoCoo_FFFF	ECLIC Unit address space.
	DEBUG	0x0000_0000 ~ 0x0000_0FFF	DEBUG Unit address space.
Memory	ILM	0x8000_0000 ~	ILM address space.
Resource	DLM	0x9000_0000 ~	DLM address space.
	ROM	0x0000_1000 ~ 0x0000_1FFF	Internal ROM.
	Off-Chip QSPIo Flash Read	0x2000_0000 ~ 0x3FFF_FFFF	QSPIo with XiP mode read-only address space.
	GPIO	0x1001_2000 ~ 0x1001_2FFF	GPIO Unit address space.
	UARTo	0x1001_3000 ~ 0x1001_3FFF	First UART address space.
	QSPIo	0x1001_4000 ~ 0x1001_4FFF	First QSPI address space.
	PWMo	0x1001_5000 ~ 0x1001_5FFF	First PWM address space.
Peripherals	UART1	0x1002_3000 ~ 0x1002_3FFF	Second UART address space.
	QSPI1	0x1002_4000 ~ 0x1002_4FFF	Second QSPI address space.
	PWM1	0x1002_5000 ~ 0x1002_5FFF	Second PWM address space.
QSPI2 PWM2	QSPI2	0x1003_4000 ~ 0x1003_4FFF	Third QSPI address space.
	PWM2	0x1003_5000 ~ 0x1003_5FFF	Third PWM address space.
	I2C Master	0x1004_2000 ~ 0x1004_2FFF	I2C Master address space.
Default slave	e The other space is write-ignored and read-as zero.		

```
static const struct MemmapEntry {
    hwaddr base;
    hwaddr size;
} nuclei memmap[] = {
                                              0x1000 },
     [NUCLEI DEBUG] = {
                                   0x0,
     [NUCLEI ROM] = {
                               0x1000,
                                              0x1000 },
     [NUCLEI TIMER] = \{0 \times 20000000,
                                              0x1000 },
     [NUCLEI\_ECLIC] = \{ 0xc000000,
                                             0 \times 10000 },
     [NUCLEI GPIO] = \{ 0 \times 10012000 \}
                                              0x1000 },
     [NUCLEI UART0] = { 0 \times 10013000,
                                              0x1000 },
                                              0x1000 },
     [NUCLEI QSPI0] = \{ 0 \times 10014000 \}
     [NUCLEI_PWM0] = \{ 0x10015000, \}
                                              0 \times 1000 },
     [NUCLEI UART1] = { 0 \times 10023000,
                                              0x1000 },
     [NUCLEI QSPI1] = \{ 0 \times 10024000 \}
                                              0x1000 },
     [NUCLEI PWM1] = \{ 0 \times 10025000 \}
                                              0x1000 },
     [NUCLEI QSPI2] = { 0 \times 10034000,
                                              0x1000 },
     [NUCLEI_PWM2] = \{ 0x10035000,
                                              0x1000 },
     [NUCLEI_XIP]
                      = \{ 0 \times 20000000, 0 \times 100000000 \},
     [NUCLEI ILM]
                      = \{ 0 \times 800000000,
                                             0x20000 },
                      = \{ 0 \times 900000000,
                                             0x20000 },
     [NUCLEI DLM]
};
```


Table 5-1 Address Allocation of SoC

	Component	Address Spaces	Description
Core Private Peripherals	TIMER	0x0200_0000 ~ 0x0200_0FFF	TIMER Unit address space.
	ECLIC	$oxoCoo_oooo \sim oxoCoo_FFFF$	ECLIC Unit address space.
	DEBUG	0x0000_0000 ~ 0x0000_0FFF	DEBUG Unit address space.
Memory	ILM	0x8000_0000 ~	ILM address space.
Resource	DLM	0x9000_0000 ~	DLM address space.
	ROM	0x0000_1000 ~ 0x0000_1FFF	Internal ROM.
	Off-Chip QSPIo Flash Read	0x2000_0000 ~ 0x3FFF_FFFF	QSPIo with XiP mode read-only address space.
	GPIO	0x1001_2000 ~ 0x1001_2FFF	GPIO Unit address space.
UARTO	UARTo	0x1001_3000 ~ 0x1001_3FFF	First UART address space.
	QSPIo	0x1001_4000 ~ 0x1001_4FFF	First QSPI address space.
	PWMo	0x1001_5000 ~ 0x1001_5FFF	First PWM address space.
Peripherals	UART1	0x1002_3000 ~ 0x1002_3FFF	Second UART address space.
	QSPI1	0x1002_4000 ~ 0x1002_4FFF	Second QSPI address space.
	PWM1	0x1002_5000 ~ 0x1002_5FFF	Second PWM address space.
	QSPI2	0x1003_4000 ~ 0x1003_4FFF	Third QSPI address space.
	PWM2	0x1003_5000 ~ 0x1003_5FFF	Third PWM address space.
	I2C Master	0x1004_2000 ~ 0x1004_2FFF	I2C Master address space.
Default slave	e The other space is write-ignored and read-as zero.		

```
ILM DLM示例:
MemoryRegion *sys mem = get system memory();
memory region init ram(&s->soc.ilm, NULL, "riscv.nuclei.ram.ilm",
                      memmap[NUCLEI ILM].size, &error fatal);
memory region add subregion(sys mem,
                      memmap[NUCLEI ILM].base, &s->soc.ilm);
memory region init ram(&s->soc.dlm, NULL, "riscv.nuclei.ram.dlm",
                      memmap[NUCLEI DLM].size, &error fatal);
memory region add subregion(sys mem,
                      memmap[NUCLEI DLM].base, &s->soc.dlm);
/* Mask ROM */
memory region init rom(&s>internal rom, OBJECT(dev), "riscv.nuclei.
irom", memmap[NUCLEI ROM].size, &error fatal);
memory region add subregion(sys mem,
                      memmap[NUCLEI ROM].base, &s->internal rom);
hw/riscv/sifive gpio.c
memory region init io(&s->mmio, obj, &gpio ops, s,
            TYPE SIFIVE GPIO, SIFIVE GPIO SIZE);
sysbus init mmio(SYS BUS DEVICE(obj), &s->mmio);
hw/riscv/nuclei hbrid.c
object property set bool(OBJECT(&s->gpio), true, "realized", &err);
sysbus mmio map(SYS BUS DEVICE(&s>gpio),0,memmap[NUCLEI GPI0].base);
```


中断虚拟化

ECLIC:Enhanced Core Local Interrupt Controller

- ▶ ECLIC 只服务于一个处理器内核,为该处理器内核私有
- ▶ 兼容CLIC
- ▶ 支持4096个中断源
- ▶ 支持向量和非向量处理
- ▶ 支持中断响应、嵌套、咬尾
- **>**

中断虚拟化

表 6-6 ECLIC 寄存器的单元内地址偏移量

	属性	名称	宽度
0x0000	可读可写	cliccfg	8位
0x0004	只读,写忽略	clicinfo	32 位
oxooob	可读可写	mth	8位
0x1000+4*i	可读可写	clicintip[i]	8位
0x1001+4*i	可读可写	clicintie[i]	8位
0x1002+4*i	可读可写	clicintattr[i]	8位
0x1003+4*i	可读可写	clicintctl[i]	8位

```
struct IRQState {
    Object parent_obj;

    qemu_irq_handler handler;
    void *opaque;
    int n;
};
typedef struct IRQState *qemu_irq;
```

```
static inline void cpu_interrupt(
CPUState *cpu, int mask)

void cpu_reset_interrupt(CPUState
 *cpu, int mask)
```

```
qemu_irq qemu_allocate_irq(qemu_irq_handler handler, void *opaque, int n)
void riscv_cpu_do_interrupt(CPUState *cs)
```

```
typedef struct NucLeiECLICState {
   /*< private >*/
    SysBusDevice parent obj;
   /*< public >*/
   MemoryRegion mmio;
    uint32_t num_sources;
   /* config */
   uint32_t sources_id;
   uint8 t cliccfg;
   uint32 t clicinfo;
   uint8 t mth;
   uint8 t *clicintip;
   uint8 t *clicintie;
   uint8 t *clicintattr;
   uint8 t *clicintctl;
    ECLICPendingInterrupt *clicintlist;
    uint32 t aperture size;
    QLIST HEAD(, ECLICPendingInterrupt) pending list;
    size_t active_count;
   /* ECLIC IRQ handlers */
    qemu irq *irqs;
} NucLeiECLICState;
```

```
void qemu_set_irq(qemu_irq irq, int level);
```


中断虚拟化(非向量化)

irq_entry入口函数:

```
sw ra,0(sp)
.....
csrwi 0x7ee,11
csrwi 0x7ef,12
csrwi 0x7eb,13
csrrw ra,0x7ed,ra
csrci mstatus,8
csrw 0x7c4,t0
csrw mepc,t0
.....
lw ra,0(sp)
.....
mret
```

```
0x7c4 MRW msubm
0x7eb MRW pushmsubm
0x7ec MRW mtvt2
0x7ed MRW jalmnxti
0x7ee MRW pushmcause
0x7ef MRW pushmepc
```

咬尾流程

中断虚拟化(向量化)

嵌套流程

mstatus的MIE域

mstatus

寄存器中的 MIE 域表示机器模式下的全局中断使能:

当MIE 域的值为1时,表示中断的全局开关打开,中断能够被正常响应;

当MIE 域的值为 0 时,表示全局关闭中断,中断被屏蔽,无法被响应。

nuclei-sdk/demo_eclic

eclic_msip_handler

```
8000115a <eclic msip handler>:
8000115c:
            df86
                                     sw ra,252(sp)
8000117e:
            dd7e
                                     sw = t6,184(sp)
80001180:
            b502
                                     fsd ft0,168(sp)
800011a6:
            a87e
                                     fsd ft11,16(sp)
800011aa:
            342027f3
                                         a5, mcause
                                 csrr
            341027f3
800011b6:
                                         a5,mepc
                                 csrr
            7c4027f3
800011c2:
                                         a5,0x7c4
                                 csrr
800011ce:
                                    li ra,8
            40a1
800011d0:
            3000a073
                                         mstatus, ra
                                 csrs
80001224:
            3004b073
                                         mstatus, s1
                                 csrc
8000122e:
            7c449073
                                         0x7c4,s1
                                 csrw
80001236:
            34149073
                                 csrw
                                         mepc,s1
8000123e:
            34249073
                                         mcause, s1
                                 csrw
80001244:
            50fe
                                     lw ra, 252(sp)
            5fea
                                     lw t6,184(sp)
80001266:
80001268:
            302a
                                     fld ft0,168(sp)
8000128e:
            2fc2
                                     fld ft11,16(sp)
80001292:
            30200073
                                 mret
```


外设虚拟化—UART

寄存器名称	偏移地址	描述
UART_TXDATA	0x000	发送数据寄存器
UART_RXDATA	0x004	接收数据寄存器
UART_TXCTRL	0x008	发送控制寄存器
UART_RXCTRL	0x00C	接收控制寄存器
UART_IE	0x010	UART中断使能寄存器
UART_IP	0x014	UART中断等待标志寄存器
UART_DIV	0x018	波特率生成分频系数

```
static const MemoryRegionOps uart_ops = {
    .read = uart_read,
    .write = uart_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
    .valid = {
        .min_access_size = 4,
        .max_access_size = 4
    }
};
```

UART后端设置:

UART描述:

```
typedef struct NucLeiUARTState {
   /*< private >*/
   SysBusDevice parent obj;
   /*< public >*/
   qemu irq irq;
   MemoryRegion mmio;
   CharBackend chr;
   uint8 t rx fifo[8];
   unsigned int rx fifo len;
   uint32 t txdata;
   uint32 t rxdata;
   uint32 t txctrl;
   uint32 t rxctrl;
   uint32 t ie;
   uint32 t ip;
   uint32 t div;
} NucLeiUARTState;
```


Uart 实现

寄存器读操作:

```
static uint64 t
uart read(void *opaque, hwaddr offset, unsigned int siz
e)
   NucLeiUARTState *s = opaque;
   uint64 t value = 0;
   uint8_t fifo val;
   switch (offset)
    case NUCLEI_UART_REG_TXDATA:
       return 0;
   case NUCLEI UART REG RXDATA:
        if (s->rx_fifo_len) {
           fifo val = s->rx fifo[0];
           memmove(s->rx_fifo, s->rx_fifo + 1, s-
>rx_fifo_len - 1);
            s->rx fifo len--;
           qemu_chr_fe_accept_input(&s->chr);
           update irq(s);
            return fifo_val ;
        return 0x80000000;
   case NUCLEI_UART_REG_TXCTRL:
        value = s->txctrl;
        break;
```

寄存器写操作:

UART中断:

```
static void update_irq(NucLeiUARTState *
s)
    int cond = 0;
    s \rightarrow txctrl = 0x1;
    if (s->rx_fifo_len)
        s->rxctrl &= ~0x1;
     else
        s \rightarrow rxctrl = 0x1;
    if ((s->ie & NUCLEI_UART_IE_TXWM) ||
        ((s-
>ie & NUCLEI UART IE RXWM) && s-
>rx_fifo_len)) {
        cond = 1;
    if (cond ) {
        qemu_irq_raise(s->irq);
    } else {
        qemu_irq_lower(s->irq);
```


GD32V103F Board

微控制器: GD32VF103VBT6(32位RISC-V处理器)

内核: 芯来科技Bumblebee内核(RV32IMAC)

主频: 108MHz

内存:内置128KB Flash、32KB SRAM

工作电压: 2.6~3.6V

外设资源: Timer(高级16位定时器*1,通用16位定时器*4)

U(S)ART*5、I2C*2、SPI*3、CAN*2、USBFS*1、ADC*2(16路外部通道)、DAC*2、EXMC*1

GD32V103F Board

微控制器: GD32VF103VBT6 (32位RISC-V处理器)

内核: 芯来科技Bumblebee内核(RV32IMAC)

主频: 108MHz

内存:内置128KB Flash、32KB SRAM

工作电压: 2.6~3.6V

外设资源: Timer(高级16位定时器*1,通用16位定时器*4)

U(S)ART*5、I2C*2、SPI*3、CAN*2、USBFS*1、ADC*2(16路外部通道)、DAC*2、EXMC*1

gd32v103f

GD32V103F Board

qemu-system-riscv32 -nographic -machine gd32vf103_rvstar \ -kernel ../os/rtthread/rt-thread/bsp/nuclei/gd32vf103_rvstar/rtthread.elf -nodefaults -serial stdio

```
/wang@lelouch:~/workroom/qemu$ ./out/qemu-nuclei32/bin/qemu-system-riscv32 -nographic -machine gd32vf103_rvstar -kernel ../os
rtthread/rt-thread/bsp/nuclei/gd32vf103 rvstar/rtthread.elf -nodefaults -serial stdio
initialize rti board start:0 done
          Thread Operating System
          4.0.3 build Sep 9 2020
2006 - 2020 Copyright by rt-thread team
do components initialization.
initialize rti board end:0 done
initialize rt_work_sys_workqueue_init:0 done
initialize rt hw pin init:0 done
initialize libc system init:0 done
initialize finsh system init:0 done
msh >ps
                                stack size max used left tick error
thread
        pri status
         20 running 0x000000f8 0x00000800
                                              21% 0x0000000a 000
sys work 23 suspend 0x00000098 0x00000800
tidle0
                    0x00000088 0x0000018c
                                                    0x00000006 000
          4 suspend 0x00000098 0x00000200
                                              29%
                                                    0x0000000a 000
```


So the CoreMark/MHz can be caculated by:

(Iterations*1000000/total ticks) = 3.761170 CoreMark/MHz

GD32V103F Board

Final values of the	variables used in the benchmark:		
Int_Glob:	5		
should be:	5		
Bool_Glob:	1 dhrystono		
should be:	dhrystone		
Ch_1_Glob:	A		
should be:	A		
Ch_2_Glob:	В		
should be:	В		
Arr_1_Glob[8]:	7 7		
should be:	5000010		
Arr_2_Glob[8][7]: should be:	Number Of Runs + 10		
Ptr Glob->	Nullber_OI_Rulls + 10		
Ptr Comp:	536883328		
should be:	(implementation-dependent)		
Discr:	0		
should be:	0		
Enum_Comp:	2		
should be:	2		
<pre>Int_Comp:</pre>	17		
should be:	17		
Str_Comp:	DHRYSTONE PROGRAM, SOME STRING		
should be:	DHRYSTONE PROGRAM, SOME STRING		
Next_Ptr_Glob->	F36003330		
Ptr_Comp: should be:	536883328		
Discr:	(implementation-dependent), same as above 0		
should be:	0		
Enum Comp:	1		
should be:	î .		
Int Comp:	18		
should be:	18		
Str_Comp:	DHRYSTONE PROGRAM, SOME STRING		
should be:	DHRYSTONE PROGRAM, SOME STRING		
Int_1_Loc:	5		
should be:	5		
Int_2_Loc:	13		
should be:	13		
Int_3_Loc: should be:	7 7		
Enum Loc:	1		
should be:	ī		
Str 1 Loc:	DHRYSTONE PROGRAM, 1'ST STRING		
should be:	DHRYSTONE PROGRAM, 1'ST STRING		
Str_2_Loc:	DHRYSTONE PROGRAM, 2'ND STRING		
should be:	DHRYSTONE PROGRAM, 2'ND STRING		
(*) User Cycle for	total run through Dhrystone with loops 5000000:		
1620000031			
So the DMIPS/MHz can be caculated by:			
	Cycle/Number_Of_Runs)/1757 = 1.756642 DMIPS/MHz		

```
CPU Frequency 108254227 Hz
                                                                                  CPU Frequency 108254227 Hz
Start to run coremark for 5000 iterations
                                                            coremark
2K performance run parameters for coremark.
                                                                                  *********************************
CoreMark Size : 666
                                                                                  Single Precision C Whetstone Benchmark Opt 3 32 Bit
Total ticks
                : 1329373412
                                                                                  Calibrate
Total time (secs): 12.280106
                                                                                         1.36 Seconds
                                                                                                               1 Passes (x 100)
Iterations/Sec : 407.162599
                                                                                         6.78 Seconds
                                                                                                               5 Passes (x 100)
Iterations
                : 5000
Compiler version : GCC9.2.0
                                                                                  Use 7 passes (x 100)
Compiler flags : -02 -flto -funroll-all-loops -finline-limit=600 -ftree-dominator-
opts -fno-if-conversion2 -fselective-scheduling -fno-code-hoisting -fno-common -funr
                                                                                            Single Precision C/C++ Whetstone Benchmark
oll-loops -finline-functions -falign-functions=4 -falign-jumps=4 -falign-loops=4
Memory location : STACK
                                                                                  Loop content
                                                                                                                 Result
seedoro
                : 0xe9f5
[0]crclist
                : 0xe714
                                                                                  N1 floating point -1.12475013732910156
[0]crcmatrix
                : 0x1fd7
                                                                                  N2 floating point -1.12274742126464844
[0]crcstate
                : 0x8e3a
[0]crcfinal
                : 0xbd59
                                                                                  N3 if then else
                                                                                                   1.000000000000000000
Correct operation validated. See readme.txt for run and reporting rules.
                                                                                  N4 fixed point
                                                                                                    12.0000000000000000000
CoreMark 1.0 : 407.162599 / GCC9.2.0 -02 -flto -funroll-all-loops -finline-limit=600 N5 sin.cos etc.
                                                                                                     0.49909299612045288
 -ftree-dominator-opts -fno-if-conversion2 -fselective-scheduling -fno-code-hoisting N6 floating point 0.99999982118606567
 -fno-common -funroll-loops -finline-functions -falign-functions=4 -falign-jumps=4 - N7 assignments
                                                                                                     3.000000000000000000
falign-loops=4 / STACK
                                                                                  N8 exp, sqrt etc. 0.75110614299774170
                                                                                  MWIPS
Print Personal Added Addtional Info to Easy Visual Analysis
     (Iterations is: 5000
                                                                                  MWIPS/MHz
     (total ticks is: 1329373412
 (*) Assume the core running at 1 MHz
```

	dhrystone	coremark	whetstone
QEMU benchmark	1.756642 DMIPS/MHz	3.761170 CoreMark/MHz	0.068MWIPS/MHz
SDK/app.rst	1.273270 DMIPS/MHz	3.081076 CoreMark/MHz	0.046MWIPS/MHz

whetstone

MOPS Seconds

0.089

0.619

0.296

3.706

2.539

0.002

2.245

9.497

9.497

0.000

MFL0PS

7.371

0.068

379846.656

7.446

0.157

0.116

562.837

1.518

1.519

1.487

HummingBird Board

- a: FPGA_RESET
- b: FPGA_PROG
- c: MCU_WKUP
- d: MCU_RESET
- el: User button I
- €2: User button 2
- e3: User button header
- YI: GCLK
- Y2: RTC_CLK
- I: MCU_FLASH
- 2: FPGA_FLASH
- 3: FPGA_JTAG
- 4: MCU_JTAG
- 5: Power switch

蜂鸟FPGA评估板

蜂鸟FPGA评估板

主芯片FPGA型号为Xilinx XC7A100T

板载双晶振设计: 100MHz主时钟和32.768KHz RTC时钟

配备两颗MT41K128M16JT-125K DDR III 颗粒

备独立的MCU_FLASH芯片,此Flash用于存储RISC-V内核运行的程序文件配备独立的FPGA_Flash芯片,此Flash用于存储mcs格式的比特流文件

配备用户LEDs、按键及拨码开关

配备独立的32个MCU GPIO

配备多达126个引出的FPGA GPIO,用于用户自定义使用

配备了FPGA_GPIO电平选择跳线接口,可以选择1.8V\2.5V\3.3V接口电平

HummingBird Board

```
sifive_u_machine_init

create_fdt

riscv_find_and_load_firmware

riscv_load_initrd
```

```
cpus {
 #address-cells = <1>;
 #size-cells = <0>;
 timebase-frequency = <32768>;
 cpu0: cpu@0 {
  device type = "cpu";
  reg = <0>;
  status = "okay";
  compatible = "riscv";
  riscv,isa = "rv64imac";
  mmu-type = "riscv,sv39";
  clock-frequency = <8000000>;
  cpu0 intc: interrupt-controller {
   #interrupt-cells = <1>;
   interrupt-controller;
   compatible = "riscv,cpu-intc";
```

```
qemu fdt add subnode(fdt, "/cpus");
    qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
        SIFIVE CLINT TIMEBASE FREQ);
    gemu fdt setprop cell(fdt, "/cpus", "#size-cells", 0x0);
    qemu fdt setprop cell(fdt, "/cpus", "#address-cells", 0x1);
    for (cpu = ms \rightarrow smp.cpus - 1; cpu >= 0; cpu--) {
        int cpu phandle = phandle++;
        nodename = g strdup printf("/cpus/cpu@%d", cpu);
        char *intc = g strdup printf("/cpus/cpu@%d/interrupt-
controller", cpu);
        char *isa;
        qemu fdt add subnode(fdt, nodename);
        /* cpu 0 is the management hart that does not have mmu */
        if (cpu != 0) {
            qemu_fdt setprop string(fdt, nodename, "mmu-
type", "risev, sv39");
            isa = riscv isa string(&s->soc.u cpus.harts[cpu - 1]);
        } else {
            isa = riscv_isa_string(&s->soc.e_cpus.harts[0]);
        qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
        qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
        qemu fdt setprop string(fdt, nodename, "status", "okay");
        qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
        qemu fdt setprop string(fdt, nodename, "device type", "cpu");
        gemu fdt add subnode(fdt, intc);
        qemu fdt setprop cell(fdt, intc, "phandle", cpu phandle);
        qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
        qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
        qemu fdt setprop cell(fdt, intc, "#interrupt-cells", 1);
        g_free(isa);
        g free(intc);
        g free(nodename);
```


HummingBird Board

```
$qemu-system-riscv64 \
-M nuclei u \
-nographic \
-m 1G \
-bios none \
-icount shift=0 \
-append "root=/dev/ram rw console=ttyS0
earlycon=sbi" \
-kernel ~/workroom/risc-v/nuclei/nuclei-linux-
sdk/work/opensbi/platform/nuclei/ux600/firm
ware/fw payload.elf \
-initrd ./rootfs riscv64.img
```

```
wang@lelouch:~/workroom/qemu$ ./run hbird linux.sh
OpenSBI v0.7
Platform Name
                    : Nuclei UX600
Platform Features : timer,mfdeleg
Platform HART Count : 1
Boot HART ID
                    : rv64imafdcsu
BOOT HART Features : pmp,scounteren,mcounteren
Firmware Base
                    : 0xa0000000
Firmware Size
                    : 76 KB
Runtime SBI Version: 0.2
MIDELEG: 0x00000000000000222
MEDELEG : 0x0000000000000b109
       : 0x00000000a0000000-0x00000000a001ffff (A)
       : 0x00000000000000000-0xffffffffffffff (A,R,W,X)
    0.000000] OF: fdt: Ignoring memory range 0xa0000000 - 0xa0200000
    0.000000] Linux version 5.7.0-13090-gad29b1fc8e7b (wang@lelouch) (riscv-nuclei-linux-qnu-gcc (GCC) 9.2.0, GNU ld (GNU Bi
nutils) 2.32) #3 Mon Nov 23 14:11:23 CST 2020
     0.000000] initrd not found or empty - disabling initrd
     0.000000] Zone ranges:
     0.0000001
                DMA32
                          [mem 0x00000000a0200000-0x00000000afffffff]
                Normal empty
     0.000000] Movable zone start for each node
    0.000000] Early memory node ranges
               node 0: [mem 0x00000000a0200000-0x00000000afffffff]
    0.000000] Initmem setup node 0 [mem 0x00000000a02000000-0x00000000affffffff]
    0.000000] software IO TLB: mapped [mem 0xabc7c000-0xafc7c000] (64MB)
    0.000000] SBI specification v0.2 detected
    0.000000] SBI implementation ID=0xl Version=0x7
    0.000000] SBI v0.2 TIME extension detected
    0.000000] SBI v0.2 IPI extension detected
    0.000000] SBI v0.2 RFENCE extension detected
    0.000000] riscv: ISA extensions acim
     0.000000] riscv: ELF capabilities acim
```


Future Work

GitHub: https://github.com/isrc-cas/plct-qemu

- ▶代码版本更新和上游推送
- ▶UX600系列, UX900系列支持
- ▶SPI,ADC,QSPI,DMA等必要外设实现
- ▶CLINT,PLIC,ECLIC等配置模块切换
- ▶P-Extensions实现
- >.....

欢迎实习生加入(。・∀・)/゙

https://zhuanlan.zhihu.com/p/271625260

谢谢

wangjunqiang@iscas.ac.cn