CME341 - October, 2018 Midterm Material up to end of Assignment 5

```
Date: Wednesday, October 10, 2018
Time = 1.00 hours
Text Books, Notes and Computer Files Only
```

Before starting the exam modify the second "initial" procedure in the test bench so that exam_dependent_seed is assigned the value on your answer sheet.

(2) 1. Consider the Verilog HDL below:

Report the 16 bit input to the Q4 register (For those that may not know, in this case the word "register" means a bank of 16 flip/flops.). For exam_dependent_seed = 8'HAA, Q4 = 16'HA5F0.

For this question the test bench is not used.

Figure 1: Circuit for Question 3

(2) 2. Re-design prototype student_circuit to make it describe a combinational logic circuit that uses the input much like a data selector to do the following:

Sets cct_output to zero while clear is high. Otherwise

If the input is equal to 8'b10 cct_output is to be the ones complement of cct_input.

If input is greater than 35 (in decimal) cct_output is to be the sum of the least significant 4 bits of the input. This means cct_output will be between 8'd0 and 8'd4, inclusive.

Otherwise cct_output is to be cct_input.

(2)

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H005b.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

3. Re-design the Verilog HDL prototype student_circuit to construct the circuit described in Figure 1.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H818d.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(2)

4. Re-design prototype student_circuit to describe a circuit with 8 flip/flops that does the following. The 8 flip/flops are organized into the 8 element vector goofy_counter[7:0]. goofy_counter is to be synchronously set to goofy_counter = 8'b1000_0001 when clear==1'b1. Otherwise goofy_counter is to progress through the sequence given below on each rising edge of input clk:

```
8'b1000_0001

8'b0100_0010

8'b0010_0100

8'b0001_1000

8'b1000_0001

8'b0010_0100

8'b0001_1000

8'b1000_0001

etcetera
```

Make cct_output = goofy_counter.

Note this circuit does not use cct_input.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'Hfde3.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.

(2)

5. Re-design prototype student_circuit to make cct_output equal to cct_input shifted two bits to the right (i.e. toward the least significant bit). The two least significant bits of cct_input are not used and the two most significant bits of cct_output are to be the same as the most significant bit of cct_input.

Note neither clk nor clear is used.

The accumulator output, i.e. accumulator_output, when counter_full_bar is low for seed = 8'HAA should be 16'H9166.

Once accumulator_output is correct for seed = 8'HAA report it for the seed on your answer sheet.