MI1121E

CALCULUS II

Version: 2024.1.0

1. GENERAL INFORMATION

Course title: Calculus II

Unit in charge Faculty of Mathematics and Informatics

Course ID: MI1121E
Course Units: 3(2-2-0-6)

Lecture: 30 hoursSeminar: 30 hours

Previous module: MI1111E Calculus I
Prerequisites: MI1111E Calculus I
Companion module: MI1131E Calculus III

2. DESCRIPTION

This course provides some applications of differential calculus in geometry, the basic ideas and techniques of parameter-dependent integrals, double integrals and triple integrals, line integrals of scalar fields and vector fields, surface integrals of scalar fields and vector fields, and vector fields.

3. OBJECTIVES AND EXPECTED OUTCOMES

Students who complete this module have the abilities to:

Objectives	bjectives Objectives description/Expected Outcomes	
[1]	[2]	[3]
M1	Master the basic knowledge of Caculus II and apply in practice to solve related exercises	
M1.1	Master the basic concepts such as: double integrals, triple integrals, line integrals, surface integrals, vector fields as well as applications of differential calculus	I/T
M1.2	Be able to apply the knowledge to solve exercises	T/U
M2	Achieve serious attitude and necessary skills for highly effective work	
M2.1	Be skilled at analyzing and solving problems with strong logical thinking; working independently and staying focused	T/U
M2.2	Identify some practical problems that can be solved by using tools of calculus.	I/T/U
M2.3	Gain serious working attitude, proactive creativity, adaptation to highly competitive working environment	I/T

4. COURSE MATERIALS

Textbooks

- [1] James Stewart (2016). *Calculus: Concepts and Contexts, eighth edition*. Thomson, Brooks/Cole Publishing Company
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2015). *Toán học cao cấp tập 2*. NXB Giáo dục.

References

- [1] Trần Bình (2005). Giải tích II. NXB Khoa học và Kỹ thuật.
- [2] Nguyễn Đình Trí, Trần Việt Dũng, Trần Xuân Hiển, Nguyễn Xuân Thảo (2017). *Bài tập Toán học cao cấp tập 2*. NXB Giáo dục.
- [3] Trần Thị Kim Oanh, Phan Xuân Thành, Lê Chí Ngọc, Nguyễn Thị Thu Hương (2022), Giải tích II: Hàm số nhiều biến số (bài giảng dành cho sinh viên các trường kĩ thuật), NXB Bách Khoa Hà Nội.
- [4] Khoa Toán Tin (2023), Slides bài giảng Giải tích 2 (tài liệu lưu hành nội bộ).

5. ASSESSMENT

Components	Evaluation method	Description	Rated outcome standards	Proportion
[1]	[2]	[3]	[4]	[5]
A1. Attendance point	Learning attitude and attendance of the students during the course	attitude of the		20%
A2. Periodic test mark (*)	A2.1. 1 st periodic test (KT1 mark, 15 scale) (Content: From the 1 st week to the 5 th week) A2.2. 2 nd periodic test (KT2 mark, 15 scale) (Content: From the 6 th week to the 10 th week)	Quizzes	M1.1, M1.2, M2.1, M2.2, M2.3	30%
A3. Final exam mark	Final exam	Essay	M1.1, M1.2, M2.1, M2.2, M2.3	50%

^(*) Periodic test mark (DKTDK) is calculated according to the formula DKTDK =1/3 (KT1+KT2) and will be adjusted by adding points for the performance of students during the course which vary from -1 to +1 according to the Rule of Faculty of Mathematics and Informatics accompanied with the Regulations of Higher Education of Hanoi University of Science and Technology.

6. COURSE PLAN

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
1	Chapter 1: Applications of differential calculus in geometry 1.1. Applications in plane geometry - Normal vector and equations for tangent lines and normal lines of a curve at a point. - Curvature: mean curvature, curvature at a point, formula of curvature at a point (no proof) and examples. - Envelope of a family of parametric curves: definition, formula, examples. 1.2. Applications in spatial geometry - Vector functions, derivative of vector functions $(\vec{r}(t) = x(t)\vec{i} + y(t)\vec{j} + z(t)\vec{k})$ and properties.	[3] M1.1 M1.2 M2.1 M2.2 M2.3	Lecturer: - Self- introduce the course outline - Explain teaching and learning methods; and forms of subject assessment - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to	[5] A1, A2.1, A3
3	- Curves: equations of tangent lines and normal planes at a point of curves, curvature at a point of curves (formulas) Surfaces: equations of tangent planes and normal lines at a point of surfaces (formulas). Chapter 2. Multiple integrals 2.1. Double integrals - Definition, geometric meaning, properties Calculations of double integrals in the Cartesian coordinate system Change of variables in double	M1.1 M1.2 M2.1 M2.2 M2.3	the content and progress of the subject Lecturer - Lecture, exchange questions and answers with students during the lecture Student: - Read in advance the next lesson - Master the basic concepts	A1, A2.1, A3
3	- Change of variables in double	M1.1	basic concepts	A1, A2.1,

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	integrals: general change of variables	M1.2	and apply to	A3
	formula, change of variables in polar	M2.1	solve exercises	
	coordinate system.	M2.2	according to	
		M2.3	the content and progress of the	
4	- Applications of double integrals:	M1.1	subject	A1, A2.1,
	Calculate the volume of an object, the	M1.2		A3
	area of a plane domain, the area of a	M2.1		
	surface (formulas and examples).	M2.2		
	2.2. Triple integrals	M2.3		
	- Definition, geometric meaning,	1412.3		
	properties.			
5	- Calculations of triple integrals in the	M1.1		A1, A2.1,
	Cartesian coordinate system.	M1.2		A3
	- Change of variables in triple integrals:	M2.1		
	general change of variables formula,	M2.2		
	change of variables in cylindrical coordinate system, change of variables	M2.3		
	in spherical coordinate system.			
6	- Applications: Calculate the volume of	M1.1		A1, A2.2,
	an object.	M1.2		A3
	Chapter 3. Parameter Dependent	M2.1		
	Integrals	M2.2		
	3.1. Definite Integrals depending on	M2.3		
	parameters	1012.3		
	- Definition			
	- Theorems on continuity.			
7	- Theorems on differentiation under	M1.1		A1, A2.2,
	integral sign, integration under integral	M1.2		A3
	sign.	M2.1		
	3.2. Improper Integrals depending on	M2.2		
	parameters	M2.3		
	- Definition	1,12,0		
	- Uniform convergence, Weierstrass			
	theorem.			
8	- Properties: continuity, differentiation	M1.1		A1, A2.2,
	under integral sign, integration under	M1.2		A3
	integral sign.	M2.1		
	3.3. Euler's integrals	M2.2		
	- Introduce Gamma function $(\Gamma(p))$ and	M2.3		
	properties: definiteness, continuity,			
	infinite differentiability.			

Week	Topics	Objective	Activities	Exercises
[1]		[3]	[4]	[5]
	$\Gamma(p+1) = p\Gamma(p) \forall p > 0,$ $\Gamma(p)\Gamma(1-p) = \frac{\pi}{\sin(p\pi)} (0 (no proof). - Beta function: Introduce Beta function (B(p,q)) with its two types and properties (no proof): symmetry. B(p,q) = \frac{p}{p+q-1}B(p,q-1), B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}.$			
9	Chapter 4. Line Integrals 4.1. Line integrals of scalar fields - Definition - Calculation 4.2. Line integrals of vector fields - Definition, physical meaning Properties	M1.1 M1.2 M2.1 M2.2 M2.3	- Lecture, exchange questions and answers with students during the lecture Student:	A1, A2.2, A3
10	 Relation of line integrals of scalar fields and line integrals of vector fields. Calculation Green's Theorem (proof for the case of a simple region). 	M1.1 M1.2 M2.1 M2.2 M2.3	- Read in advance the next lesson - Master the basic concepts and apply to solve exercises according to the content and progress of the subject	A1, A2.2, A3
11	 Path independence of line integrals (no proof); find a function u(x, y) such that du = Pdx + Qdy. Chapter 5. Surface integrals 5.1 Surface integrals of scalar fields Definition Calculation 	M1.1 M1.2 M2.1 M2.2 M2.3		A1, A3
12	 5.2 Surface integrals of vector fields - Definition, properties. - Relation of surface integrals of scalar fields and surface integrals of vector fields. - Calculation 	M1.1 M1.2 M2.1 M2.2 M2.3		A1, A3
13	- Ostrogradsky's Theorem, Stoke's Theorem (no proof). Chapter 6. Field Theory 6.1 Scalar Fields	M1.1 M1.2 M2.1 M2.2		A1, A3

Week	Topics	Objective	Activities	Exercises
[1]	[2]	[3]	[4]	[5]
	 Notions of scalar fields and level surfaces. Directional derivative: Definition, Theorem on relation between directional derivative and partial derivative. 	M2.3		
14	- Gradient: Definition of vector gradu	M1.1		A1, A3
	and theorem $\frac{\partial u}{\partial \vec{\ell}} = ch_{\vec{\ell}}$ grad u (no proof)	M1.2		
	and properties.	M2.1		
	6.2 Vector Fields	M2.2		
	 Notions of vector fields and flow lines, system of differential equations of flow lines. The flux, div, incompressible fields: the flux of a vector field across oriented surface S, div (divergence), properties, incompressible fields, source (point), sink (point). 	M2.3		
15	 Circulation and curl vector: the circulation of a vector field around an oriented closed curve, curl vector, curly point. Conservative vector fields: notions of conservative vector fields \(\vec{F} \), the potential function for \(\vec{F} \), conditions for a vector field to be conservative, conditions for an expression to be the total differential, path independence of spatial line integrals. 	M1.1 M1.2 M2.1 M2.2 M2.3		A1, A3
16	Summary			A1, A3

7. RULES OF THE MODULE

(Regulations of the course if any)

8. DATE OF APPROVAL:

Faculty of Mathematics and Informatics