nameAlgorytm

Spis treści

1.	Wstę	р									3			
2.	Rozp	Rozproszone uczenie na urządzeniu końcowym												
	2.1.	Implen	ementacja								4			
3.	Syste	m wery	yfikacji użytkownika								6			
	3.1.	Wstępi	one przetwarzanie obrazu								6			
	3.2.	3.2. Weryfikacja użytkownika									6			
		3.2.1.	Procedura weryfikacji								6			
		3.2.2.	Ekstraktor cech								6			
Bil	bliogr	afia									7			
W	kaz sy	zmboli i	i skrótów			_	_				8			

1. Wstęp

Coraz częściej urządzenia internetu rzeczy stają się głównymi urządzeniemi komputerowymi(cytat). Sensory, w które wyposarzone są te urządznia (takie jak aparat, mikrofon, GPU), w połączniu z faktem, że urządznia te są używane codzienie, gromadzą niebywałą ilość, zazwyczaj prywatnych, danych. Modele wyuczone na takich danych dadzą znakomitą poprawę użyteczności jednak ze względu na wrażliwy charakter danych wiąze się z ryzykiem i wysoką odpowiedzialnością ich przechechowywania w scentralizowanej lokalizacji albo nawet całkowitym brakiem dostępu do tych danych.

Urządznia IoT często gromadzą wrażliwe dane i dostęp do takich urządznien przez niewłaściwe osoby grozi nieodwracalnymi stratami dla właściciela urządznia. Nowe urządznia wyposarzone w odpowiednie sensory pozwalają na uwirzytelnienie dostępu nie tylko po haśle ale i przez weryfikacje biometryczną. Zabezpieczenia biometryczne mogą się opierać również na rozpoznawaniu linii papilarnych, głosu, skanowaniu żył, czy też tęczówki lub siatkówki oka. W szeczólności popularnym rozwiązaniem jest weryfikcja urzytkownika przez biometrie twarzy (jakis cytat).

W tej pracy zostanie zbadana metoda uczenia opisana w (cite) w implementacji systemu rozpoznawania twarzy systemu na urządznia IoT.

Główne kontrybucje tej pracy to 1) Implementacja i weryfikacja algorytmu Federated Averaging dla zadań klasyfikacji obrazów oraz weryfikacji twarzy

2. Rozproszone uczenie na urządzeniu końcowym

Federated Learning Problemy odpowiednie do zastosowania federated learningu moją następujące właściwości:

- 1) Trening na rzeczywistych danych gromadzonych na urządzniach mobilnych dają znaczą przewagę nad treningiem na ogólno dostępnych danych proxy dostępnych w centrach danych.
 - 2) Te dane są prywatne albo są zbyt duże do przetrzywywnia ich w centrach danych
- 3) Dla zadań nadzorowanych, etykiety danych powstają samoistnie z interakcji użytkownika z użrządzeniem.

Optymalizacja Algorytmy optymalizacji mogące być sastosowane do optymalizajic na urządzniach IoT mają kilka cech wyróżniających je od znanych już algorytmów rozporoszonej optymalizacji:

- **Non-IID** Dane trenujące on danym urządzniu są zazwyczaj zależne od konkretnego użytkownika i dlatego lokalny zbiór danych zebrany na dowolnym urządzeniu nie będzie reprezentatywny w stosunku do dystrybucji całej populacji
- **Niezbalansowany** Podobnie, niektórzy urzytkownicy będą o wiele częściej korzystali z aplikacji aparatu niż inni, co będzie prowadziło do różnic w wielkości zebranych lokalnych zbiorów danych trenujących.
- **Masywnie rozporszony** Spodziewa się, że liczba finalnych użytkowników biorąca udział w optymalizacji będzie większa niż średnia liczba przykładów trenujących przypadająca na jednego klienta.
- **Ograniczona komunikacja** Urządznia IoT są pomimo założenia, że mają dostęp do internetu mogą być ograniczone wolnym albo kosztownym łączem sieciowym.

W tej pracy główna uwaga zostanie poświęcona na rozwiązanie doprowadznie systemu do działania w środowisku danych Non-IID oraz ograniczonej komunkiacji.

2.1. Implementacja

Algorytm 1 opisany został zaimplementowany w języku Python. Do implementacji modeli neuronowych i algorytmów uczących został wykorzystany framework PyTorch [1]. Poprawność implementacji została sprawdzona na zadaniu klasyfikacji obrazów wykorzystując prostą sieć konwolucyją oraz popularny zbiór danych CIFAR10.

Sieć konwolucyjna Jako obiekt treningu omawianego algorytmu zastała użyta niewielka sieć neuronowa zawierająca dwie warstwy konwolucyjne z filtrami o szerokości 5x5 (pierwsza z 32 kanałami, druga z 64, po każdej dodatkowa warstwa 2x2 max pooling), po których następuje dwuwarstowy percepron i na końcu wartswa przeształcenia liniowego, co daje w sumie 10^6 miliona parametrów. Model został modsumowany w tabeli

Algorytm 1 Federated Averaging. The K clients are indexed by k; B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

Server executes:

```
initialize w_0

for each round t = 1, 2, ... do

m \leftarrow \max(C \cdot K, 1)

S_t \leftarrow (random set of m clients)

for each client k \in S_t in parallel do

w_{t+1}^k \leftarrow ClientUpdate(k, w_t)

w_{t+1} \leftarrow \sum_{k=1}^K \frac{n_k}{n} w_{t+1}^k

ClientUpdate (k, w): // Run on client k

\mathscr{B} \leftarrow (split \mathscr{P}_k into batches of size B)

for each local epoch i from 1 to E do

for batch b \in \mathscr{B} do

w \leftarrow w - \eta \nabla \ell(w; b)

return w to server
```

CIFAR10 CIFAR10 jest popularnym syntetycznym zbiorem danych. Zbiór danych składa się z 60 000 kolorowych obrazów podzielonych na 10 klas, z 6000 obrazami przypadającymi na jedną klase. Zawarte są w nim obrazy o szerokości i wyskości 32 pikseli. Standordowo zbiór dzieli się na dwa zbalansowane klasowo podzbiory: testowy i trenigowy zawierających odpowiednio 10000 i 50000 oetykietowanych przykładów. Na rysunku 1 znajduje się 10 losowo wybranych obrazów, dla każdej z 10 klas.

Protokół treningowy Do sprawdzenia poprawności implementacji została zaimplementowana procedura treningowa wzorowana na [2]. Zbiór trengowy został podzielony pomiędzy 100 użytkowników tak żeby każdy zawierał po 500 przykładów trenujących. Z powodu braku naturalnego podziału danych na tak dużą liczbę klientów rozważany jest tutaj nieco mnie wymagający przypadek, w którym dane każdego użytkowanika są zbalansowane oraz IID.

Naszym celem była maksymalizacja dokładności z jaką model klasyfikował obrazy pochodzące ze zbioru testowego. Badanie jakości końcowego modelu globalengo odbywało się już nie w sposób rozproszony, a na serwerze stosując cały dostępny zbiór testowy.

Obrazy uległy standardowemu preprocessingu, który się składał z losowemu obcinanu obrazów do wielkości 24x24 pikselu, loswemu odbiciu lustrzanemu oraz standardowej normalizacji.

Zaimplementowany algorym został porównany do standardowego algorytmu SGD.

Ewaluacja

Rysunek 1. 10 przykładowych obrazów dla każdej z 10 klas zbioru CIFAR10

3. System weryfikacji użytkownika

Zadaniem systemu jest weryfikacja użytkownika, cz zostały przedstiawione w następnej sekcji.

3.1. Wstępne przetwarzanie obrazu

3.2. Weryfikacja użytkownika

Weryfikacja twarzy jest zadaniem przyrównania twarzy kandydata to innej, i weryfikacja czy nastąpiło ich dopasowanie. Jest to mapowanie jeden-do-jednego: należy sprawdzić czy jest to ta sama osoba.

3.2.1. Procedura weryfikacji

3.2.2. Ekstraktor cech

Bibliografia

- [1] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga i A. Lerer, *Automatic Differentiation in PyTorch*, w *NeurIPS Autodiff Workshop*, 2017.
- [2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson i B. A. y Arcas, *Communication-Efficient Learning of Deep Networks from Decentralized Data*, 2016. arXiv: 1602.05629 [cs.LG].

Wykaz symboli i skrótów

EiTI – Wydział Elektroniki i Technik Informacyjnych

PW – Politechnika Warszawska