Dynamical stability of B-type Overcontact Systems •

Internship Advisors

Ph. D. Michael Abdul-Masih European Southern Observatory

Renieri Ferrari Universidad Nacional Autónoma de Honduras **José Simmonds** Universidad de Panamá

jose.simmonds@up.ac.pa

BACKGROUND

- **The Roche Model**: Region around a star in a binary system within which orbiting material is gravitationally bound to that star.
- <u>Tidal Effects</u>: Tidal forces can transfer angular momentum between the rotation of the individual stars and the orbit of the system.
- <u>Mass Transfer</u>: Mass transfer is the idea that material can move from one star to another.
- <u>The Overcontact Phase</u>: When both components of the binary systems are overfilling their Roche Lobel, are considered as an Overcontact binary.
- <u>Chemically Homogeneous Evolution in Massive</u>
 <u>Overcontact Binaries</u>: In overcontact systems they
 be benefit from the very large angular momentum
 reservoir from the orbit to help maintain the high
 rotation rates.

Why this is important?

How to determine Period?

V606 Cen

Parameters	Eccentric Orbit Case	Circular Orbit Case
Orbital Period, P (yr)	88.3(1.9)	85.9(1.3)
Rate of the period change, dot{P}(day yr-1)	-2.08(0.07)10-7	-2.22(0.06)10-7
	Complete Data	TESS Data
q (M2/M1)	0.54845(0.00074)	0.57434(0.0025)

VFTS352

 Parameters 	
Orbital Period, P (yr)	1.124152
Rate of the period change, dot{P}(day yr-1)	-0.050.10
q (M2/M1)	0.98
M2	25.1
M1	25.6
Period (days)	1.120

Almeida, L. A., Sana, H., Mink, S. E. D. 2015, The Astrophysical Journal, 812 (The Astrophysical Journal), 102

Using Period04 for plot the Light Curves of VFTS352

Results

Using Period04 for plot the Light Curves of V606 Cen

Orbital period of 1.4950935 days.When do 1/1.49=0.6711.approximately light curves are obtained

Conclusions

- Several systems have period changes suggesting that they are evolving towards a lower mass ratio.
- That being said, these findings may suggest that the observed overcontact binaries are originating from systems with longer initial periods
- We have performed a period stability study of known O+O type overcontact systems. Using archival photometric data and the software package PERIOD04, we calculated the periods of the systems over a time span of tens of years. For each system in our sample, we determined the rate at which the period is changing via a linear regression through the period measurements of each data subset.

Bibliography

•

- Abdul-Masih, Michael, Escorza, Ana, Menon, Athira, Pablo. [2208.01671] Constraining the
 overcontact phase in massive binary evolution -- II. Period stability of known O+O overcontact systems.
- Almeida, L. A., Sana, H., Mink, S. E. D. 2015, The Astrophysical Journal, 812 (The Astrophysical Journal), 102
- Qian, S.-B., Liu, L., Soonthornthum, B., Zhu, L.-Y., & He, J.-J.. 2007, The Astronomical Journal, 134 (The Astronomical Journal), 1475, https://dx.doi.org/10.1086/521432
- Li, F.-X., Liao, W.-P., Qian, S.-B. 2022, The Astrophysical Journal, 924 (The Astrophysical Journal), 30