Ejercicio De Circuitos Eléctricos: Calculo de corriente en Amperios

Objetivos del ejercicio:

- Implementar la ley de Ohm para hallar la Corriente (I) eléctrica
- Aprender a medir la Corriente (I) en un circuito de múltiples resistencias

Recursos necesarios:

- Ground
- Bateria
- DC Ammeter
- Resistencias
- Cableado estándar

Ejemplo:

Para encontrar la corriente total del circuito equivalente, basta con usar la Ley de Ohm donde tenemos el voltaje (15V), la resistencia total = 400Ω , por lo tanto la corriente Total la obtenemos como:

I = V/R = 15/400 = 0.0375 Amps

Realiza los siguientes cálculos:

Calcular la corriente total en un circuito con un voltaje de 13 v y cinco resistencia cuyos valores son R1 = 40Ω , R2 = 100Ω , R3 = 120Ω , R4= 120Ω y R5 = 200Ω en serie:

Calcular el Voltaje total en un circuito con un una corriente total de 0.023 A y cinco resistencia cuyos valores son R1 = 104 Ω , R2 = 120 Ω , R3 = 140 Ω , R4= 160 Ω y R5 = 200 Ω en serie:_____

Calcular la resistencia total de un circuito con una Voltaje total de 15 v y con una corriente total de 0.23 A en un circuito en serie:

Realiza los siguientes cálculos:

Tomando en consideración el circuito mostrado realiza las siguientes operaciones:

A)Calcular	la Calcular la	corriente total	del circuito:	

B)Modifique el valor de la batería BAT2 a 40 v y calcule la corriente total del circuito:	
C)Modifique el valor de las resistencias R4 y R5 a un valor de 160Ω y 130Ω respectivamente corriente total del circuito:	alcule la

D)Modifique el valor de la Batería BAT2 a 50 v y las resistencias R3, R4 y R5 a un valor de 100Ω , 120Ω y 30Ω respectivamente calcule la corriente total del circuito:

Voltaje del circuito

Corriente Total del circuito

A)Con una corriente total	de 0.22A calcule el voltaje de la bat	ería BAT2 :
,	,	

- B)Modifique el valor a la resistencia R3 a 100Ω y con una corriente total de 0.51A calcule el voltaje de la batería BAT2 :
- C) Modifique valor a las resistencias R4 y R5 a un valor de 10Ω y 13Ω respectivamente y con una corriente total de 0.123 A calcule el voltaje de la batería BAT2:

Resistencia Total del circuito

A)Calcular la resistencia total con un Voltaje o	de 52 v y con una corriente total de 0.211 A:
--	---

- B)Calcular la resistencia total con un Voltaje de 50 v y con una corriente total de 0.1212 A:_____
- C)Calcular la resistencia total con un Voltaje de 20 v y con una corriente total de 0.872 A:

Tomando en consideración el circuito mostrado realiza las siguientes operaciones:

A)Calcular la	Calcular la corriente	total del circuito:	

B)Modifique el valor de la batería BAT3 a 60 v y calcule la corriente total del circuito:	
C)Modifique el valor de las resistencias R6 y R9 a un valor de 110Ω y 80Ω respectivamente	calcule la
corriente total del circuito:	

D)Modifique el valor de la Batería BAT3 a 45 v y las resistencias R7, R8 y R9 a un valor de 50Ω , 220Ω y 70Ω respectivamente calcule la corriente total del circuito:_____

Voltaje del circuito

Corriente Total del circuito

A)Con una corriente total de 0.112 A calcule el voltaje de la batería BAT3 :
--

- B)Modifique el valor a la resistencia R6 a 85Ω y con una corriente total de 0.812 A calcule el voltaje de la batería BAT3 :
- C) Modifique valor a las resistencias R6,R7 y R9 a un valor de 24Ω , 10Ω y 13Ω respectivamente y con una corriente total de 0.4573 A calcule el voltaje de la batería BAT3:_____

Resistencia Total del circuito

A	()Calcular	la resistencia	total con un	Voltaje d	e 61 v y con	una corriente tota	l de 0.1632 A:	

- B)Calcular la resistencia total con un Voltaje de 23 v y con una corriente total de 0.6632 A:
- C)Calcular la resistencia total con un Voltaje de 12 v y con una corriente total de 0.8721 A: