

#### Graphs

- $\Box$  A graph is a pair (V, E), where
  - V is a set of nodes, called vertices
  - *E* is a collection of pairs of vertices, called edges
  - Vertices and edges are positions and store elements
- Example:

  - A vertex represents an airport and stores the three-letter airport code
    An edge represents a flight route between two airports and stores the mileage of the route



| Edge Types                                                                                                                                                                 |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| <ul> <li>Directed edge</li> <li>ordered pair of vertices (u,</li> <li>first vertex u is the origin</li> <li>second vertex v is the dest</li> <li>e.g., a flight</li> </ul> | ORD HIGHT PVD |
| <ul> <li>Undirected edge</li> <li>unordered pair of vertices</li> <li>e.g., a flight route</li> </ul>                                                                      | ORD 849 PVD   |
| <ul> <li>Directed graph</li> <li>all the edges are directed</li> <li>e.g., route network</li> </ul>                                                                        | miles         |
| <ul> <li>Undirected graph</li> <li>all the edges are undirecte</li> <li>e.g., flight network</li> </ul>                                                                    | ed            |
| © 2010 Goodrich, Tamassia                                                                                                                                                  | Graphs 3      |

















#### **Graph Connectivity**

- An undirected graph is said to be *connected* if there is a path between every pair of nodes. Otherwise, the graph is *disconnected*
- Informally, an undirected graph is connected if it hangs in one piece









#### **Connectivity in Directed Graphs (I)**

**Definition:** A directed graph is said to be **strongly connected** 

if for any pair of nodes there is a path from each one to the other



### Connectivity in Directed Graphs (II)

**Definition:** A directed graph is said to be **weakly connected** if the underlying undirected graph is connected



Each unilaterally connected graph is also weakly connected

There is no path between B and D





#### **Digraph Properties**

- □ A graph G=(V,E) such that
  - Each edge goes in one direction:
  - Edge (a,b) goes from a to b, but not b to a
- □ If G is simple,  $m \le n \cdot (n-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

© 2010 Goodrich, Tamassia

Directed Graphs

| Main Methods                                                                                                                                                                                                                                                                                                                                                                                                       | of the Graph AD                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| <ul> <li>Vertices and edges</li> <li>are positions</li> <li>store elements</li> <li>Accessor methods</li> <li>e.endVertices(): a list of the two endvertices of e</li> <li>e.opposite(v): the vertex opposite of v on e</li> <li>u.isAdjacentTo(v): true iff the and v are adjacent</li> <li>*v: reference to element associated with vertex v</li> <li>*e: reference to element associated with edge e</li> </ul> | vertex v (and its incident edges)  eraseEdge(e): remove edge |

#### **Graph Representation**

- For graphs to be computationally useful, they have to be conveniently represented in programs
- There are two computer representations of graphs:
  - Adjacency matrix representation
  - Adjacency lists representation

CS 103 22

#### **Adjacency Matrix Representation**

- In this representation, each graph of n nodes is represented by an n x n matrix A, that is, a two-dimensional array A
- The nodes are (re)-labeled 1,2,...,n
- A[i][j] = 1 if (i,j) is an edge
- A[i][j] = 0 if (i,j) is not an edge

CS 103 23

#### **Adjacency Matrix – undirected graph**



An undirected graph and its adjacency matrix representation.

## Example of Adjacency Matrix Directed graph??



#### Example of Adjacency Matrix Directed graph

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$



#### Another Example of Adj. Matrix

• Adj Matrix



#### **Another Example of Adj. Matrix**

• Re-label the nodes with numerical labels



CS 103 28

**Definition:** Let G = (V, E) be an undirected graph with |V| = n. Suppose that the vertices and edges of G are listed in arbitrary order as  $v_1, v_2, ..., v_n$  and  $e_1, e_2, ..., e_m$ , respectively.

**Definition:** Let G = (V, E) be an undirected graph with |V| = n. Suppose that the vertices and edges of G are listed in arbitrary order as  $v_1, v_2, ..., v_n$  and  $e_1, e_2, ..., e_m$ , respectively.

The incidence matrix of G with respect to this listing of the vertices and edges is the n×m zero-one matrix with 1 as its (i, j) entry when edge  $e_j$  is incident with  $v_i$ , and 0 otherwise.

**Definition:** Let G = (V, E) be an undirected graph with |V| = n. Suppose that the vertices and edges of G are listed in arbitrary order as  $v_1, v_2, ..., v_n$  and  $e_1, e_2, ..., e_m$ , respectively.

The incidence matrix of G with respect to this listing of the vertices and edges is the n×m zero-one matrix with 1 as its (i, j) entry when edge  $e_j$  is incident with  $v_i$ , and 0 otherwise.

In other words, for an incidence matrix  $M = [m_{ij}]$ ,

**Definition:** Let G = (V, E) be an undirected graph with |V| = n. Suppose that the vertices and edges of G are listed in arbitrary order as  $v_1, v_2, ..., v_n$  and  $e_1, e_2, ..., e_m$ , respectively.

The incidence matrix of G with respect to this listing of the vertices and edges is the n×m zero-one matrix with 1 as its (i, j) entry when edge  $e_j$  is incident with  $v_i$ , and 0 otherwise.

In other words, for an incidence matrix  $M = [m_{ij}]$ ,

```
m_{ij} = 1 if edge e_j is incident with v_i m_{ij} = 0 otherwise.
```

Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?

Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?



## Representing Graphs

Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?



#### Solution:

#### Representing Graphs

Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?

Solution: 
$$M = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$



#### Representing Graphs

Example: What is the incidence matrix M for the following graph G based on the order of vertices a, b, c, d and edges 1, 2, 3, 4, 5, 6?

Solution: 
$$M = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$



**Note:** Incidence matrices of undirected graphs contain two 1s per column for edges connecting two vertices and one 1 per column for loops.

#### Incident matrix of diagraph

Given a graph G with n, e & no self loops is matrix  $x(G)=[X_{ij}]$  or order n\*e where n vertices are rows & e edges are columns such that,

 $X_{ij}$ =1, if jth edge  $e_j$  is incident out i<sup>th</sup> vertex  $v_i$  $X_{ij}$ =-1, if jth edge  $e_j$  is incident into i<sup>th</sup> vertex  $v_i$ 

y<sub>1</sub> e<sub>1</sub> incident on i<sup>th</sup> vertex v<sub>i</sub>.



## Incident matrix of diagraph

 $X_{ij}$ =1, if jth edge  $e_j$  is incident out i<sup>th</sup> vertex  $v_i$   $X_{ij}$ =-1, if jth edge  $e_j$  is incident into i<sup>th</sup> vertex  $v_i$ 

Y =0 if ith adae a not incident on ith vertex v<sub>i</sub>.



# Incident matrix of diagraph



|            | e1 | e2 | e3 | e4 | e5 | е6 | e7 | e8                          |
|------------|----|----|----|----|----|----|----|-----------------------------|
| v1         | 1  | 0  | 0  | 0  | 0  | 1  | 0  | U                           |
| v2         | -1 | 1  | 0  | 0  | 0  | 0  | 1  | 1                           |
| <b>v</b> 3 | 0  | -1 | 1  | 1  | -1 | 0  | 0  | 0                           |
| ٧4         | 0  | 0  | -1 | -1 | 0  | 0  | 0  | 0                           |
| <b>v</b> 5 | 0  | 0  | 0  | 0  | 1  | -1 | -1 | 0                           |
| <b>v</b> 6 | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 0<br>1<br>0<br>0<br>0<br>-1 |

## **Adjacency Matrices**

• Can you determine if it is a directed graph?

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

#### **Pros and Cons of Adjacency Matrices**

- Pros:
  - Simple to implement
  - Easy and fast to tell if a pair (i,j) is an edge:
     simply check if A[i][j] is 1 or 0
- Cons:
  - No matter how few edges the graph has, the matrix takes  $O(n^2)$  in memory

#### **Adjacency Lists Representation**

- A graph of n nodes is represented by a onedimensional array L of linked lists, where
  - L[i] is the linked list containing all the nodes adjacent from node i.
  - The nodes in the list L[i] are in no particular order

#### Adjacency list – undirectd graph

An undirected graph and its adjacency list representation.



# **Example of Linked Representation** directed graph

L[0]: empty

L[1]: empty

L[2]: 0, 1, 4, 5

L[3]: 0, 1, 4, 5

L[4]: 0, 1

L[5]: 0, 1



#### **Pros and Cons of Adjacency Lists**

#### • Pros:

 Saves on space (memory): the representation takes as many memory words as there are nodes and edge.

#### • Cons:

It can take up to O(n) time to determine if a pair of nodes (i,j) is an edge: one would have to search the linked list L[i], which takes time proportional to the length of L[i].

#### Adjacency List Example

▶ What is the adjacency list for the following graph



#### Adjacency List Example

Adjacency list.





• What is the adjacency list of the following directed graph



• What is the adjacency list of the following directed graph







## **EXERCISE 3.3**

3. Draw a graph with the given adjacency matrix

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}$$

- 1. For the following graph,Find the degree of each vertex



- 1. For the following graph,Find the degree of each vertex



- 2. For the following directed graph,Find the in-degree and out-degree of each vertex



- 2. For the following directed graph,Find the in-degree and out-degree of each vertex



• A program to create the adjacency matrix for a graph

# **Graph Traversals**

Depth-First Search Breadth First Search





















































#### Sample Graph:



FIFO just after queue *Q* processing vertex

⟨a⟩



FIFO just after processing vertex queue Q

⟨a⟩ ⟨a,b,c⟩







81

just after

processing vertex



FIFO



83

just after

processing vertex

g

FIFO



84

just after

processing vertex

h

FIFO



85

just after

processing vertex

d



algorithm terminates: all vertices are processed

### Breadth first search - analysis

- Enqueue and Dequeue happen only once for each node. - O(V).
- Sum of the lengths of adjacency lists O(E) (for a directed graph)
- Initialization overhead O(V)

Total runtime O(V+E)

ref. Introduction to Algorithms by Thomas Cormen

### Depth first search - analysis

- initialization take time O(V).
- DFS-VISIT is called only once for each node (since it's called only for white nodes and the first step in it is to paint the node gray).
- the total cost of DFS-VISIT it O(E)

The total cost of DFS is O(V+E)

ref. Introduction to Algorithms by Thomas Cormen

# BFS and DFS - comparison

- Space complexity of DFS is lower than that of BFS.
- Time complexity of both is same O(|V|+|E|).