МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

ПРОГРАММА ЭКЗАМЕНА

Государственный экзамен по математике

Выполнил работу: Никита МОКРОВ

Содержание

1	Mar	гематический анализ	3
	1.1	Теорема Больцана-Вейрштрасса и критерий Коши сходимости числовой последовательности.	3
	1.2	Ограниченность функий, непрерывной на отрезке, достижение точных верхней и нижней граней	4
	1.3	Теоремы о промежуточных значениях непрерывной функции	6
	1.4	Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируемых функций.	6
	1.5	Формула Тейлора с остатоным членом в форме Пеано или Лагранжа	6
	1.6	Исследование функции одной переменной при помощи первой и второй про- изводныз на монотонность, локальные экстремумы, выпуклость. Необходи- мые и достаточные условия	6
	1.7	Теорема о равномерной непрерывности функции, непрерывной на компакте.	6
	1.8	Достаточные условия дифференцируемости функции нескольких переменных.	6
	1.9	Теорема о неявной функции, заданной одним уравнением.	6
	1.10	Экстремумы функций нескольких переменных. Необходимые и достаточные условия.	6
	1.11	Свойства интеграла с переменным верхним пределом. Формула Ньютона-Лейбница.	6
	1.12	Равномерная сходимость функциональных последовательностей и рядов. Непрерывность, интегрируемость и дифференцируемость суммы функционального ряда.	6
	1.13	Степенные ряды. Радиусы сходимости. Бесконечная дифференцируемость суммы степенного ряда. Ряд Тейлора.	6
	1.14	Формула Грина. Потенциальные векторные поля на плоскости	6
	1.15	Формула Остроградского-Гаусса. Соленоидальные векторные поля	6
	1.16	Формула Стокса	6
	1.17	Достаточные условия сходимости тригонометрического ряда Фурье в точке.	6
	1.18	Достаточные условия равномерной сходимости тригонометрического ряда Фурье	6
	1.19	Непрерывность преобразования Фурье абсолютно интегрируемой функции. Преобразование Фурье произовдной и произовдная преобразования Фурье	6
2	Лин	иейная алгебра	6
	2.1	Углы между прямыми и плоскостями. Формулы расстония от точки до прмямой и плоскости, между прямыми в пространстве	6

	2.2	Общее решение системы линейных алгебраических уравнений. Теорема Кронеке Капелли.	-
	2.3	Линейное отображение конечномерных линейных пространств, его матрица. Свойства собственныз векторов и собственных значений линейных преобразований.	6
	2.4	Самосопряженныме преобразования евклидовых пространств, свойсвта их собственных значений и собственных векторов.	6
	2.5	Приведение квадратичных форм в линейном пространстве к каноническому виду	6
	2.6	Положительно определенные квадратичные форму. Критерий Сильвестра	6
3	Дис	фференициальные уравнения	6

Введение

В данном документе собран материал для подготовки к государственному экзамену по математике в МФТИ. Курс математического анализа базируется на книгах Г.Н. Яковлева ?? и лекциях Р.Н. Карасева ??. Курс линейной алгебры и аналитической геометрии основан на лекциях и методичках П.А. Кожевникова ??. Курс дифференциальных уравнений собран из книг ??.

1. Математический анализ

1.1 Теорема Больцана-Вейрштрасса и критерий Коши сходимости числовой последовательности.

Определение 1. Предел любой подпоследотвальности даной последовательности называют *частичным пределом*

Теорема 1. Любая ограниченная последовательность имеет хотя бы один частичный предел.

 $\exists a, b; \forall n: a < x_n < b$. Тогда построим последовательность вложенных отрезков $[a_k, b_k], k \in \mathbb{N}$ путем деления отрезка попалам, начиная с [a, b], и выбирая на каждой итерации правый отрезок, если он содержит бесконечное число членов последовательности в нем, и левый в противном случае. Причем,

$$\lim_{k \to \infty} (b_k - a_k) = \lim_{k \to \infty} \frac{b - a}{2^k} = 0$$

Следовательно, по теореме Кантора они имеют одну общую точку

$$c = \lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k$$

Рассмотрев последовательно каждый отрезок и выбрав в нем один член последоватльности, по номеру больший, чем предыдуший, мы смоделировали подпоследовательность, которая будет стремиться к c по теореме о трех последовательностях (о двух милиционерах).

Определение 2. Наибольший (наименьший) частичный предел последовательности называется ее *верхним (ниженим) пределом*.

Следствие 1. Любая ограниченная последовательность имеет верхний и нижний предел.

 \triangleright Число c из теоремы 1 очевидно является верхним пределом. Если при построении вложенных отрезков первым выбирать левый, то получим нижний предел.

Лемма 1. Если последоватльность $\{x_n\}$ сходится, то она удовлетворяет условию Коши:

$$\forall \varepsilon \quad \exists N_{\varepsilon} : \forall n, m \ge N_{\varepsilon} \quad |x_n - x_m| < \varepsilon. \tag{1}$$

$$|x_n - x_m| \le |x_n - x_0| + |x_m - x_0| \le \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \le \varepsilon$$

Теорема 2. Если числовая последовательность удовлетворяет условию Коши, то она имеет конечный предел.

ightharpoonup Положив $\varepsilon=1$ и $m=N_1$, очевидно следует ограниченность последовательности, удовлетворяющая условю Коши. Тогда по теореме 1 существует сходящаяся подпоследовательность. Пусть $\lim_{k\to\infty} x_{n_k}=x_0$. Тогда из очевидного неравенства $|x_n-x_0|\leq |x_n-x_{n_p}|+|x_{n_p}-x_0|$ следует, что $\lim_{n\to\infty} x_n=x_0$.

Следствие 2 (Критерий Коши). Числовая последовтельность сходится тогда и только тогда, когда она удовлетворяет условию Коши.

1.2 Ограниченность функций, непрерывной на отрезке, достижение точных верхней и нижней граней.

Определение 3. *Точной верхней гранью множетсва* X (sup X) называется такое число M:

- 1. $\forall x \in X \quad x < M$;
- 2. $\forall M' < M \quad \exists x_{M'} \in X : x_{M'} > M'$.

По аналогии вводится inf X.

Теорема 3. Любое множество действительных чисел может иметь лишь одну точную верхнюю (нижнюю) грань.

Доказывая от противного, получим противоречие со вторым условием в опр. 3.

Теорема 4. У любого непустого множества действительных чисел ограниченного сверху (снизу), существует точная верхняя (нижняя) грань, являющаяся действительным числом.

- \triangleright Пусть $a \in X$ и $\exists b : x \leq b \ \forall x \in X$. Тогда отрезок [a,b] содержит хотя бы один элемент из X. Рассмотрим нетривиальный случай a < b. Построим последовательность вложенных отрезков $[a_n, b_n]$, по аналогии из теоремы 1, таких что
 - 1. $x \leq b_n \quad \forall x \in X \ \forall n \in \mathbb{N}$;
 - $2. \ \forall a_n \quad \exists x_n \in X: \quad x_n > a_n.$

Значит мы получим точку c, к которой стягиваются отрезки и которая по определению будет являться точной верхней гранью. Аналогично доказаывается существование точной нижней грани.

- 5 -	
-------	--

- 1.3 Теоремы о промежуточных значениях непрерывной функции.
- 1.4 Теоремы о среднем Ролля, Лагранжа и Коши для дифференцируемых функций.
- 1.5 Формула Тейлора с остатоным членом в форме Пеано или Лагранжа.
- 1.6 Исследование функции одной переменной при помощи первой и второй производныз на монотонность, локальные экстремумы, выпуклость. Необходимые и достаточные условия.
- 1.7 Теорема о равномерной непрерывности функции, непрерывной на компакте.
- 1.8 Достаточные условия дифференцируемости функции нескольких переменных.
- 1.9 Теорема о неявной функции, заданной одним уравнением.
- 1.10 Экстремумы функций нескольких переменных. Необходимые и достаточные условия.
- 1.11 Свойства интеграла с переменным верхним пределом. Формула Ньютона-Лейбница.
- 1.12 Равномерная сходимость функциональных последовательностей и рядов. Непрерывность, интегрируемость и дифференцируемость суммы функционального ряда.
- 1.13 Степенные ряды. Радиусы сходимости. Бесконечная дифференцируемость суммы степенного ряда. Ряд Тейлора.
- 1.14 Формула Грина. Потенциальные векторные поля на плоскости.
- 1.15 Формула Остроградского-Гаусса. Соленоидальные векторные поля.
- 1.16 Формула Стокса.
- 1.17 Достаточные условия сходимости тригонометрического ряда Фурье в точке.
- 1.18 Достаточные условия равномерной сходимости тригонометрического ряда Фурье.