Adapter Modules for NLP

Chiyu Zhang

@ UBC DL-NLP Reading Group

1. Parameter-Efficient Transfer Learning for NLP

N. Houlsby, A. Giurgiu, S. Jastrzębski, B. Morrone, Q. de Laroussilhe, A. Gesmundo, M. Attariyan, S. Gelly

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks

Mahabadi, R. K., Ruder, S., Dehghani, M., & Henderson, J.

Background

Transfer Learning for NLP

Ingredients:

- A large pretrained model (BERT)
- Fine-tuning

Background

Parameter-efficient Transfer Learning

Ingredients:

- A large pretrained model (BERT)
- Fine-tuning

Houlsby et al. Adapter Module

BERT + Adapters

- Solution: Train tiny adapter modules at each layer
 - (i) Good performance,
 - (ii) Not require simultaneous access to all datasets,
 - (iii) A small number of additional parameters per task.

BERT + Adapters

· Solution: Train tiny adapter modules at each layer

BERT + Adapters

Solution: Train tiny adapter modules at each layer

Layer 000000 Feedforward Bottleneck up-project Nonlinearity $m \bigcirc \bigcirc$ Feedforward down-project d 000000

The total # of parameters added per layer: 2md+d+m, m << d

Results on GLUE Benchmark

Parameter-Efficient Transfer Learning for NLP

	Total num params	Trained params / task	CoLA	SST	MRPC	STS-B	QQP	$MNLI_{m}$	$MNLI_{mm}$	QNLI	RTE	Total
BERTLARGE	9.0×	100%	60.5	94.9	89.3	87.6	72.1	86.7	85.9	91.1	70.1	80.4
Adapters (8-256)	1.3×	3.6%	59.5	94.0	89.5	86.9	71.8	84.9	85.1	90.7	71.5	80.0
Adapters (64)	1.2×	2.1%	56.9	94.2	89.6	87.3	71.8	85.3	84.6	91.4	68.8	79.6

Table 1. Results on GLUE test sets scored using the GLUE evaluation server. MRPC and QQP are evaluated using F1 score. STS-B is evaluated using Spearman's correlation coefficient. CoLA is evaluated using Matthew's Correlation. The other tasks are evaluated using accuracy. Adapter tuning achieves comparable overall score (80.0) to full fine-tuning (80.4) using $1.3\times$ parameters in total, compared to $9\times$. Fixing the adapter size to 64 leads to a slightly decreased overall score of 79.6 and slightly smaller model.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks

Mahabadi, R. K., Ruder, S., Dehghani, M., & Henderson, J.

Motivation

- 1. Share information across multiple adapters
- 2. Positive transfer to low-resource and related tasks.

Propose a parameter-efficient method for multi-task fine-tuning based on

hypernetworks and adapter layers.

HYPERFORMER, HYPERFORMER++

Problem formulation

$$\mathcal{D}_{ au} \! = \! \{ (oldsymbol{x_{ au}^i}, \! y_{ au}^i) \}_{i=1}^{N_{ au}}$$

A large-scale pretrained language model: $f_{m{ heta}}(.)$

Standard multi-task fine-tuning:

Problem formulation

Proposed model:

- a. A parametric task embedding: $\{oldsymbol{I_{ au}}\}_{ au=1}^{T}$
- Feed task embeddings to <u>hypernetworks</u>
 parameterized by v that generate the task-specific adapter layers
- Insert <u>adapter modules</u> within the layers of a pretrained model.

- 1. Pre-trained LM: T5 (an encoder-decoder Transformer)
- Task conditional adapter layers;
- 3. Task conditional layer normalizations;
- 4. Hypernetworks that generate task-specific parameters

Task conditional adapter layers

Conditional adapter modules, in which we generate the adapters weights based on input task embeddings using shared hypernetworks.

h is the input dimension, and *d* is the bottleneck dimension for the adapter layer.

$$A_{\tau}^{l}(\boldsymbol{x})\!=\!LN_{\tau}^{l}\!\left(\boldsymbol{U_{\tau}^{l}}\!\left(\mathrm{GeLU}(\boldsymbol{D_{\tau}^{l}}(\boldsymbol{x}))\right)\right)\!+\!\boldsymbol{x},$$

Adapter weights $(oldsymbol{U_{ au}^l},\ oldsymbol{D_{ au}^l})$ through a hypernetwork

Task conditional layer normalizations

$$LN_{ au}^{l}(\boldsymbol{x_{ au}^{i}}) = \boldsymbol{\gamma_{ au}^{l}} \odot \frac{\boldsymbol{x_{ au}^{i}} - \boldsymbol{\mu_{ au}}}{\boldsymbol{\sigma_{ au}}} + \boldsymbol{\beta_{ au}^{l}},$$

 γ_{τ}^{l} and β_{τ}^{l} are learnable parameters with the same dimension as x_{τ}^{i} . Values of μ_{τ} and σ_{τ} show the mean and standard deviation of training data for the τ -th task.

 $\gamma_{ au}^{l}$, $oldsymbol{eta}_{ au}^{l}$ via a hypernetwork as a function of task embeddings

Task Conditioned Hypernetworks

Share information across adapter modules

Generate the parameters of task conditional adapter layers and layer normalization using hypernetworks.

- a. Learned task embedding $I_{\tau} = h_I(z_{\tau})$,
- b. Removing task prefixes in T5, use task embedding.
- c. Task conditioned hypernetworks: simple linear layers

Layer norm
$$B_{\tau}, \gamma_{\tau}$$

$$L_{t}$$

$$I_{\tau}$$
Feed forward up projection
$$D_{\tau}^{l}$$
Nonlinearity
$$D_{\tau}^{l}$$
Projection
$$D_{\tau}^{l}$$
Adapter Layer

$$(\gamma_{\boldsymbol{\tau}}^{l}, \beta_{\boldsymbol{\tau}}^{l}) := h_{LN}^{l}(\boldsymbol{I_{\boldsymbol{\tau}}}) = (\boldsymbol{W}^{\gamma^{l}}, \boldsymbol{W}^{\beta^{l}}) \boldsymbol{I_{\boldsymbol{\tau}}}, \qquad \boldsymbol{W}^{\gamma^{l}} \in \mathbb{R}^{h \times t} \text{ and } \boldsymbol{W}^{\beta^{l}} \in \mathbb{R}^{h \times t}$$

$$(oldsymbol{U_{ au}^l}, oldsymbol{D_{ au}^l})\!:=\!h_A^l(oldsymbol{I_{ au}})\!=\!\left(oldsymbol{W^{U^l}}, oldsymbol{W^{D^l}}
ight)\!oldsymbol{I_{ au}}, \quad oldsymbol{W^{U^l}} \in \mathbb{R}^{(d imes h) imes t} \; ext{and} \; oldsymbol{W^{D^l}} \in \mathbb{R}^{(h imes d) imes t}$$

Share hypernetworks across transformer layers

- a. Layer id embeddings $\mathcal{I} = \{m{l_i}\}_{i=1}^L$
- b. Adapter position embeddings $\mathcal{P}\!=\!\{oldsymbol{p_j}\}_{j=1}^2$
- c. Learned task embedding:

$$I_{\tau} = h'_I(z_{\tau}, l_i, p_j),$$

The hypernetwork is able to produce distinct weights for each task, adapter position, and layer of a transformer.

Experiments

Datasets:

GLUE:

multiple tasks of paraphrase detection (MRPC, QQP), sentiment classification (SST-2), natural language inference (MNLI, RTE, QNLI), semantic textual similarity benchmark (STS-B), and linguistic acceptability (CoLA).

Results

Model	#Total params	#Trained params / per task	CoLA	SST-2	MRPC	QQP	STS-B	MNLI	QNLI	RTE	Avg
				Single-	Task Training						
T5 _{SMALL} Adapters _{SMALL} ₹	8.0× 1+8×0.01	100% 0.74%	46.81 40.12	90.47 89.44	86.21/90.67 85.22/89.29	91.02/87.96 90.04/86.68	89.11/88.70 83.93/83.62	82.09 81.58	90.21 89.11	59.42 55.80	82.06 79.53
T5 _{BASE} Adapters _{BASE} ₹	$\begin{array}{ c c } 8.0 \times \\ 1 + 8 \times 0.01 \end{array}$	100% 0.87%	54.85 59.49	92.19 93.46	88.18/91.61 88.18/91.55	91.46/88.61 90.94/88.01	89.55/89.41 87.44/87.18	86.49 86.38	91.60 92.26	67.39 68.84	84.67 84.88
				Multi-	Task Training						
T5 _{SMALL} ♠ Adapters† _{SMALL} HYPERFORMER _{SMALL} HYPERFORMER++ _{SMALL}	1.0× 1.05× 1.45× 1.04×	12.5% 0.68% 5.80% 0.50%	50.67 39.87 47.64 53.96	91.39 90.01 91.39 90.59	84.73/88.89 88.67/91.81 90.15/92.96 84.24/88.81	89.53/86.31 88.51/84.77 88.68/85.08 88.44/84.46	88.70/88.27 88.15/87.89 87.49/86.96 87.73/87.26	81.04 79.95 81.24 80.69	89.67 89.60 90.39 90.39	59.42 60.14 65.22 71.01	81.69 80.85 82.47 82.51
T5 _{BASE} ♠ Adapters† _{BASE} HYPERFORMER _{BASE} HYPERFORMER++ _{BASE}	1.0× 1.07× 1.54× 1.02×	12.5% 0.82% 6.86% 0.29%	54.88 61.53 61.32 63.73	92.54 93.00 93.80 94.03	90.15/93.01 90.15/92.91 90.64/93.33 89.66/92.63	91.13/88.07 90.47/87.26 90.13/87.18 90.28/87.20	88.84/88.53 89.86/89.44 89.55/89.03 90.00/89.66	85.66 86.09 86.33 85.74	92.04 93.17 92.79 93.02	75.36 70.29 78.26 75.36	85.47 85.83 86.58 86.48

Few-shot Learning

Dataset	* Samples	P.S. Range	Adapters and	Tryes of or the late of the la
Dataset	2000	ral Language	and the second second	
	4	79.60±3.3	79.54±2.8	82.00±4.9
	16	80.03±2.3	83.25±1.7	86.55 ± 1.4
C-:T-:1	32	81.97 ± 1.3	85.06 ± 1.1	85.85 ± 1.4
SciTail	100	84.04 ± 0.7	$88.22{\scriptstyle\pm1.3}$	88.52 ± 0.7
	500	88.07 ± 0.7	91.27 ± 0.8	91.44±0.6
	1000	88.77 ± 1.0	$91.75{\scriptstyle\pm0.8}$	92.34±0.5
	2000	$91.01{\scriptstyle\pm1.0}$	$92.72{\scriptstyle\pm0.5}$	$93.40{\scriptstyle \pm 0.2}$
	4	57.78±10.9	51.11±9.2	60.74±16.66
	16	77.04±7.2	74.81±5.4	76.29 ± 4.45
CD	32	80.0±7.6	74.81±5.9	81.48 ±6.2
CB	100	85.93±5.4	80.74 ± 7.6	87.41±2.96
	250	85.19 ± 4.7	$86.67_{\pm 5.0}$	89.63 ±4.32

Sentiment Analysis						
	4	77.23±3.0	81.55±1.9	81.77±1.8		
	16	82.74 ± 1.7	82.54 ± 1.0	84.06±0.7		
D. (D.D.)	32	$83.42{\scriptstyle\pm1.0}$	$83.39 \pm \scriptstyle{0.8}$	84.64±0.4		
IMDB	100	$84.58{\scriptstyle\pm0.6}$	$83.35 \pm \scriptstyle{0.8}$	84.74±0.4		
	500	84.99 ± 0.3	$85.37{\scriptstyle\pm0.5}$	86.00 ± 0.2		
	1000	85.50 ± 0.1	$86.27{\scriptstyle\pm0.4}$	86.37 ± 0.4		
	2000	$86.01{\scriptstyle\pm0.2}$	$86.57{\scriptstyle\pm0.2}$	86.60 ± 0.1		
	4	76.85±14.3	81.37±13.1	90.25±1.0		
	16	87.84 ± 1.5	91.08 ± 0.2	90.36 ± 1.2		
37.1 1 1 1	32	89.22 ± 0.7	91.09 ± 0.5	91.15 ±0.5		
Yelp polarity	100	90.19 ± 0.7	90.15 ± 0.7	91.06±0.6		
	500	90.92 ± 0.2	91.52 ± 0.2	92.09 ± 0.4		
	1000	91.32 ± 0.2	$92.26{\scriptstyle\pm0.6}$	92.50±0.2		
	2000	91.68 ± 0.1	92.36 ± 0.4	92.70±0.1		

Low-resource Learning

Figure 2: Results on GLUE for the various number of training samples per task (100,500,1000,2000,4000). We show mean and standard deviation across 5 seeds.

Ablation Studies

Model variant	GLUE	
HyperFormer _{small}	82.47	
 Adapter blocks 	68.37	
 Conditional layer norm 	79.83	
 Task projector 	81.56	
- T5 Layer norm	81.29	
- Conditional layer norm, T5 Layer norm	78.92	

Table 4: Impact when removing different components of our framework. We report the average results on GLUE.

Visualization

Figure 3: Visualization of learned task embeddings by HYPERFORMER++_{BASE}.