

Irrasjonale likninger

Nikolai Bjørnestøl Hansen

OSLO METROPOLITAN UNIVERSITY
STORBYUNIVERSITETET

Irrasjonale likninger

- 1 Irrasjonale likninger
 - Implikasjonspiler
 - Irrasjonale likninger

■ Vi har tidligere lært to logiske symboler:

■ Vi har tidligere lært to logiske symboler:

 \vee , eller $A \vee B$ betyr «A er sann eller B er sann (eller begge er sanne).»

Vi har tidligere lært to logiske symboler:

```
\lor, eller A \lor B betyr «A er sann eller B er sann (eller begge er sanne).» \land, og A \land B betyr «Både A og B er sanne.»
```


- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - \implies , impliserer $A \implies B$ betyr «Hvis A er sann, må B også være sann.»

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - \implies , impliserer $A \implies B$ betyr «Hvis A er sann, må B også være sann.»
 - Vi kan også si «A medfører B» eller «A impliserer B».

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - \implies , impliserer $A \implies B$ betyr «Hvis A er sann, må B også være sann.»
 - Vi kan også si «A medfører B» eller «A impliserer B».
 - Symbolet ⇒ kalles en implikasjonspil

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - ⇒ , impliserer A ⇒ B betyr «Hvis A er sann, må B også være sann.»
 - Vi kan også si «A medfører B» eller «A impliserer B».
 - Symbolet ⇒ kalles en implikasjonspil
- Vi kan også skrive pilen andre veien, hvis B medfører A: A ← B.

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - ⇒ , impliserer A ⇒ B betyr «Hvis A er sann, må B også være sann.»
 - Vi kan også si «A medfører B» eller «A impliserer B».
 - Symbolet ⇒ kalles en implikasjonspil
- Vi kan også skrive pilen andre veien, hvis B medfører A: A ← B.
- Hvis vi har både $A \implies B \text{ og } A \iff B$, skriver vi $A \iff B$, og sier at A og B er ekvivalente.

- Vi har tidligere lært to logiske symboler:
 - \lor , eller $A \lor B$ betyr «A er sann eller B er sann (eller begge er sanne).» \land , og $A \land B$ betyr «Både A og B er sanne.»
- Vi skal nå lære et nytt symbol:
 - ⇒ , impliserer A ⇒ B betyr «Hvis A er sann, må B også være sann.»
 - Vi kan også si «A medfører B» eller «A impliserer B».
 - Symbolet ⇒ kalles en implikasjonspil
- Vi kan også skrive pilen andre veien, hvis B medfører A: A ← B.
- Hvis vi har både $A \implies B \text{ og } A \iff B$, skriver vi $A \iff B$, og sier at A og B er ekvivalente.
- Det betyr «A er sann hvis og bare hvis B er sann.»

«Det har regnet, så det er glatt på veien!»

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.
- Den originale setningen forteller oss også at det nettopp har regnet.

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.
- Den originale setningen forteller oss også at det nettopp har regnet.
- Og konkluderer med at det derfor er glatt på veien.

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.
- Den originale setningen forteller oss også at det nettopp har regnet.
- Og konkluderer med at det derfor er glatt på veien.
- Den motsatte implikasjonen trenger ikke gjelde.

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.
- Den originale setningen forteller oss også at det nettopp har regnet.
- Og konkluderer med at det derfor er glatt på veien.
- Den motsatte implikasjonen trenger ikke gjelde.
- «Det er glatt på veien, så det må ha regnet!»

- «Det har regnet, så det er glatt på veien!»
- Med implikasjonspil: «Det har regnet» ⇒ «Det er glatt på veien».
- Implikasjonspilen brukes om den generelle påstanden om at når det regner blir det glatt på veien.
- Den originale setningen forteller oss også at det nettopp har regnet.
- Og konkluderer med at det derfor er glatt på veien.
- Den motsatte implikasjonen trenger ikke gjelde.
- «Det er glatt på veien, så det må ha regnet!»
- Det kan for eksempel ha snødd.

False equivalence

Jesus Christ Adolf Hitler

They both have mustaches, but that does not make them the same

Falsk ekvivalens er når $A \Longrightarrow C$ og $B \Longrightarrow C$, og du derfor påstår at $A \Longleftrightarrow B$.

False equivalence

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C$ og $B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:

False equivalence

Jesus Christ Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C$ og $B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»

False equivalence

Jesus Christ Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C$ og $B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Er Hitler» ⇒ «Har bart»

False equivalence

Jesus Christ

Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C \circ g B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Er Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» ⇔ «Er Hitler».

False equivalence

Jesus Christ

Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C$ og $B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Er Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» ⇔ «Er Hitler».
- Eksempel fra «Erasmus Montanus»:

False equivalence

Jesus Christ Ad

Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \Longrightarrow C$ og $B \Longrightarrow C$, og du derfor påstår at $A \Longleftrightarrow B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Er Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» «Er Hitler».
- Eksempel fra «Erasmus Montanus»:
 - «En sten kan ikke fly.»

False equivalence

Jesus Christ They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C \circ g B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Fr Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» ⇔ «Er Hitler».
- Eksempel fra «Erasmus Montanus»:
 - «En sten kan ikke fly.»
 - «Morlille kan ikke fly.»

False equivalence

Jesus Christ

Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C \circ g B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Fr Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» ⇔ «Er Hitler».
- Eksempel fra «Erasmus Montanus»:
 - «En sten kan ikke fly.»
 - «Morlille kan ikke fly.»
 - Derfor «Morlille er en sten.»

False equivalence

Jesus Christ Adolf Hitler

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C$ og $B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Er Hitler» ⇒ «Har bart»
 - Derfor «Er Jesus» ⇔ «Er Hitler».
- Eksempel fra «Erasmus Montanus»:
 - «En sten kan ikke fly.»
 - «Morlille kan ikke fly.»
 - Derfor «Morlille er en sten.»
- I virkeligheten er ofte situasjonen mer avansert.

False equivalence

Adolf Hitler Jesus Christ

They both have mustaches, but that does not make them the same

- Falsk ekvivalens er når $A \implies C \circ g B \implies C$, og du derfor påstår at $A \iff B$.
- Wikipedias eksempel:
 - «Er Jesus» ⇒ «Har bart»
 - «Fr Hitler» ⇒ «Har bart»
 - Derfor «Fr Jesus» ← «Fr Hitler»
- Eksempel fra «Erasmus Montanus»:
 - «En sten kan ikke fly.»
 - «Morlille kan ikke fly.»
 - Derfor «Morlille er en sten.»
- I virkeligheten er ofte situasjonen mer avansert.
- Det er da vanskeligere å legge merke til en falsk ekvivalens

✓ Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.

- ✓ Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.
- Vi har også $x + 2 = 5 \implies x = 3$. Hvis x + 2 er 5, må x = 3.

- Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.
- Vi har også $x + 2 = 5 \implies x = 3$. Hvis x + 2 er 5, må x = 3.
- Vi kan derfor skrive $x = 3 \iff x + 2 = 5$.

- Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.
- Vi har også $x + 2 = 5 \implies x = 3$. Hvis x + 2 er 5, må x = 3.
- Vi kan derfor skrive $x = 3 \iff x + 2 = 5$.
- Det er ingenting spesielt med tallene 3 og 5, og vi kan skrive

$$a+c=b+c \iff a=b$$
.

- Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.
- Vi har også $x + 2 = 5 \implies x = 3$. Hvis x + 2 er 5, må x = 3.
- Vi kan derfor skrive $x = 3 \iff x + 2 = 5$.
- Det er ingenting spesielt med tallene 3 og 5, og vi kan skrive

$$a+c=b+c \iff a=b$$
.

Dette er en av reglene vi bruker når vi løser likninger.

Implikasjonspiler, eksempel, plussing

- Vi har $x = 3 \implies x + 2 = 5$. Hvis x er 3 må x + 2 være 5.
- Vi har også $x + 2 = 5 \implies x = 3$. Hvis x + 2 er 5, må x = 3.
- Vi kan derfor skrive $x = 3 \iff x + 2 = 5$.
- Det er ingenting spesielt med tallene 3 og 5, og vi kan skrive

$$a+c=b+c \iff a=b$$
.

- Dette er en av reglene vi bruker når vi løser likninger.
- Den forteller oss at likningen er like sann dersom vi plusser på det samme på begge sider.

Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.

- ✓ Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.

- ✓ Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.
- Denne regelen bruker vi også når vi løser likninger. Likningen er like sann dersom vi ganger med det samme på begge sider.

- Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.
- Denne regelen bruker vi også når vi løser likninger. Likningen er like sann dersom vi ganger med det samme på begge sider.
- Det er ikke helt likegyldig hva vi ganger med, derimot.

- ✓ Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.
- Denne regelen bruker vi også når vi løser likninger. Likningen er like sann dersom vi ganger med det samme på begge sider.
- Det er ikke helt likegyldig hva vi ganger med, derimot.
- Vi har $x = 7 \implies 0x = 0$, men $0x = 0 \implies x = 7$.

- ✓ Vi har $x = 7 \implies 2x = 14$. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.
- Denne regelen bruker vi også når vi løser likninger. Likningen er like sann dersom vi ganger med det samme på begge sider.
- Det er ikke helt likegyldig hva vi ganger med, derimot.
- Vi har $x = 7 \implies 0x = 0$, men $0x = 0 \implies x = 7$.
- Regelen er, dersom $c \neq 0$:

$$a \cdot c = b \cdot c \iff a = b$$
.

- Vi har x = 7 ⇒ 2x = 14. Hvis x er 7 må 2x være 14.
- Vi har også $2x = 14 \implies x = 7$. Hvis 2x er 14, må x = 7.
- Denne regelen bruker vi også når vi løser likninger. Likningen er like sann dersom vi ganger med det samme på begge sider.
- Det er ikke helt likegyldig hva vi ganger med, derimot.
- Vi har $x = 7 \implies 0x = 0$, men $0x = 0 \implies x = 7$.
- Regelen er, dersom $c \neq 0$:

$$a \cdot c = b \cdot c \iff a = b$$
.

■ I rasjonale likninger kan vi få falske løsninger fordi vi ganger med et uttrykk som er lik 0.

■ Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4$ kan x = -2.

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4$ kan x = -2.
- For likninger med flere løsninger bruker vi «eller, ∨» for å lage ekvivalens.

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4$ kan x = -2.
- For likninger med flere løsninger bruker vi «eller, ∨» for å lage ekvivalens.
- Vi har

$$x^2 = 4 \iff x = 2 \lor x = -2.$$

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4$ kan x = -2.
- For likninger med flere løsninger bruker vi «eller, ∨» for å lage ekvivalens.
- Vi har

$$x^2 = 4 \iff x = 2 \lor x = -2.$$

Hvis $x^2 = 4$ må x = 2 eller x = -2.

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4$ kan x = -2.
- For likninger med flere løsninger bruker vi «eller, ∨» for å lage ekvivalens.
- Vi har

$$x^2 = 4 \iff x = 2 \lor x = -2.$$

- Hvis $x^2 = 4$ må x = 2 eller x = -2.
- Og hvis x = 2 eller x = -2 må $x^2 = 4$.

- Vi har $x = 2 \implies x^2 = 4$. Hvis x = 2 må x^2 være 4.
- Vi har ikke $x^2 = 4 \implies x = 2$. Dersom $x^2 = 4 \text{ kan } x = -2$.
- For likninger med flere løsninger bruker vi «eller, ∨» for å lage ekvivalens.
- Vi har

$$x^2 = 4 \iff x = 2 \lor x = -2.$$

- Hvis $x^2 = 4$ må x = 2 eller x = -2.
- Og hvis x = 2 eller x = -2 må $x^2 = 4$.
- Vi har

$$a = b \implies a^2 = b^2$$

og

$$a = \pm b \iff a^2 = b^2$$
.

- 1 Irrasjonale likninger
 - Implikasjonspiler
 - Irrasjonale likninger

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Løse irrasjonale likninger

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Løse irrasjonale likninger

For å løse irrasjonale likninger må vi bli kvitt rottegnet.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Løse irrasjonale likninger

- For å løse irrasjonale likninger må vi bli kvitt rottegnet.
- Det gjør vi ved å opphøye.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Løse irrasjonale likninger

- For å løse irrasjonale likninger må vi bli kvitt rottegnet.
- Det gjør vi ved å opphøye.
- Siden $a = b \implies a^2 = b^2$ kun går én vei, kan det introdusere falske løsninger.

Definisjon

En irrasjonal likning er en likning hvor den ukjente er under et rottegn.

Eksempler:

- Likningen $\sqrt{3x-3} = 2x+1$ er en irrasjonal likning.
- Likningen $\sqrt[3]{x} = 2$ er en irrasjonal likning.
- Likningen $x^2 2x = \sqrt{3}$ er ikke en irrasjonal likning.

Løse irrasjonale likninger

- For å løse irrasjonale likninger må vi bli kvitt rottegnet.
- Det gjør vi ved å opphøye.
- Siden $a = b \implies a^2 = b^2$ kun går én vei, kan det introdusere falske løsninger.
- Vi må teste løsningene til slutt.

OSL^OME,

$$\text{Løs }\sqrt{5-x}=x-3.$$

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

For å bli kvitt rottegnet, opphøyer vi begge sidene i 2, og får

$$5-x=(x-3)^2$$
.

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

For å bli kvitt rottegnet, opphøyer vi begge sidene i 2, og får

$$5-x=(x-3)^2$$
.

Vi åpner parentesen og får

$$5 - x = x^2 - 6x + 9$$
.

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

For å bli kvitt rottegnet, opphøyer vi begge sidene i 2, og får

$$5-x=(x-3)^2$$
.

Vi åpner parentesen og får

$$5 - x = x^2 - 6x + 9.$$

■ Vi flytter 5 - x over, og får andregradslikningen

$$x^2 - 5x + 4 = 0.$$

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

For å bli kvitt rottegnet, opphøyer vi begge sidene i 2, og får

$$5-x=(x-3)^2$$
.

Vi åpner parentesen og får

$$5 - x = x^2 - 6x + 9$$
.

■ Vi flytter 5 - x over, og får andregradslikningen

$$x^2 - 5x + 4 = 0$$

Vi løser denne med andregradsformelen og får $x = 1 \lor x = 4$.

Nikolai Bjørnestøl Hansen Irrasjonale likninger 20. juli 2020 8 / 11

$$\text{Løs }\sqrt{5-x}=x-3.$$

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

Vi fant svarene x = 1 eller x = 4.

Løs
$$\sqrt{5 - x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.

Løs
$$\sqrt{5 - x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.

Løs
$$\sqrt{5 - x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1}$$

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4}$$

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1}=\sqrt{4}=2$$

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3$$
.

Oppgave

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3.$$

$$\sqrt{5-4}$$

Oppgave

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3$$
.

$$\sqrt{5-4}=\sqrt{1}$$

Oppgave

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3$$
.

$$\sqrt{5-4} = \sqrt{1} = 1$$

Oppgave

Løs
$$\sqrt{5-x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3$$
.

$$\sqrt{5-4} = \sqrt{1} = 1 = 4-3.$$

Oppgave

Løs
$$\sqrt{5 - x} = x - 3$$
.

- Vi fant svarene x = 1 eller x = 4.
- Men vi opphøyde likningen, og kan derfor ha introdusert falske løsninger.
- Vi må teste om løsningene stemmer ved å sette inn.
- Vi setter inn x = 1:

$$\sqrt{5-1} = \sqrt{4} = 2 \neq 1-3$$
.

Vi setter inn x = 4:

$$\sqrt{5-4} = \sqrt{1} = 1 = 4-3$$
.

Kun x = 4 er derfor en faktisk løsning for likningen.

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

For å bli kvitt kvadratroten må vi først få kvadratroten alene.

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- For å bli kvitt kvadratroten må vi først få kvadratroten alene.
- Vi flytter over -x 1 til andre siden og får

$$\sqrt{x+7}=x+1.$$

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- For å bli kvitt kvadratroten må vi først få kvadratroten alene.
- Vi flytter over -x 1 til andre siden og får

$$\sqrt{x+7}=x+1.$$

Vi opphøyer i 2 for å bli kvitt kvadratroten:

$$x + 7 = (x + 1)^2$$

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- For å bli kvitt kvadratroten må vi først få kvadratroten alene.
- Vi flytter over -x 1 til andre siden og får

$$\sqrt{x+7}=x+1.$$

Vi opphøyer i 2 for å bli kvitt kvadratroten:

$$x + 7 = (x + 1)^2$$

■ Vi regner ut parentesen og flytter alt over på høyresiden:

$$0 = x^2 + x - 6$$
.

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- For å bli kvitt kvadratroten må vi først få kvadratroten alene.
- Vi flytter over -x 1 til andre siden og får

$$\sqrt{x+7} = x + 1$$
.

Vi opphøyer i 2 for å bli kvitt kvadratroten:

$$x + 7 = (x + 1)^2$$

■ Vi regner ut parentesen og flytter alt over på høyresiden:

$$0 = x^2 + x - 6$$
.

Vi løser andregradslikningen og får x = 2 eller x = -3.

Nikolai Bjørnestøl Hansen Irrasjonale likninger 20. juli 2020 10 / 11

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

■ Vi fant løsningene x = 2 og x = -3.

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7} - 2 - 1$$

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7}-2-1=3-2-1$$

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7} - 2 - 1 = 3 - 2 - 1$$

= 0

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7} - 2 - 1 = 3 - 2 - 1$$

= 0

■ Vi setter inn x = -3:

$$\sqrt{-3+7}-(-3)-1$$

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7} - 2 - 1 = 3 - 2 - 1$$

= 0

■ Vi setter inn x = -3:

$$\sqrt{-3+7}-(-3)-1=4+3-1$$

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7}-2-1=3-2-1$$

= 0

■ Vi setter inn x = -3:

$$\sqrt{-3+7} - (-3) - 1 = 4+3-1$$

 $\neq 0$

Oppgave

Løs
$$\sqrt{x+7} - x - 1 = 0$$
.

- Vi fant løsningene x = 2 og x = -3.
- Vi må teste for falske løsninger ved å sette inn.
- Vi setter inn x = 2:

$$\sqrt{2+7}-2-1=3-2-1$$

= 0

■ Vi setter inn x = -3:

$$\sqrt{-3+7} - (-3) - 1 = 4+3-1$$

 $\neq 0$

Kun x = 2 er derfor en faktisk løsning for likningen.

OSLO METROPOLITAN UNIVERSITY STORBYUNIVERSITETET