Datum: 28.04.2023

Tägliche Übungen

a)	Setze für die Variabel b den Wert -10 ein und berechne die Lösung für y : $y=2\cdot b+3$	b)	Setze für die Variabel z den Wert 9 ein und berechne die Lösung für y: $y = 4 \cdot z + 5 \cdot z$
c)	Setze für die Variabel x den Wert -2 ein und berechne die Lösung für y: $y = 5 \cdot x + 1$	d)	Setze für die Variabel z den Wert -11 ein und berechne die Lösung für y: $y = 5 \cdot z + 3$
e)	Setze für die Variabel a den Wert 11 ein und berechne die Lösung für y: $y = 2 \cdot a - 5 \cdot a$	f)	Setze für die Variabel z den Wert 6 ein und berechne die Lösung für y: $y=z+1$
g)	Setze für die Variabel x den Wert -11 ein und berechne die Lösung für y: $y = 2 + 4 \cdot x$	h)	Setze für die Variabel b den Wert -9 ein und berechne die Lösung für y: $y = 5 - 3 \cdot b$
i)	Setze für die Variabel z den Wert 4 ein und berechne die Lösung für y: $y = 4 \cdot z + 4$	j)	Setze für die Variabel a den Wert -7 ein und berechne die Lösung für y: $y = 2 \cdot a + a$
k)	Setze für die Variabel z den Wert -1 ein und berechne die Lösung für y: $y = 2 \cdot z + z$	1)	Setze für die Variabel z den Wert -1 ein und berechne die Lösung für y: $y = 2 \cdot z - 5 \cdot z$

m)	Setze für die Variabel z den Wert 5 ein und berechne die Lösung für y: $y=z-1$	n)	Setze für die Variabel z den Wert -6 ein und berechne die Lösung für y: $y=1-z$
o)	Setze für die Variabel a den Wert -11 ein und berechne die Lösung für y: $y = 5 - 2 \cdot a$	p)	Setze für die Variabel z den Wert 9 ein und berechne die Lösung für y: $y = 3 - 3 \cdot z$
q)	Setze für die Variabel z den Wert -7 ein und berechne die Lösung für y: $y = 4 \cdot z - 1$	r)	Setze für die Variabel a den Wert -2 ein und berechne die Lösung für y: $y = 5 \cdot a + 5$

Datum: 28.04.2023

Lösungen Tägliche Übungen

	$b = -10 \to y \qquad \qquad = 2 \cdot b + 3$		$z = 9 \to y \qquad = 4 \cdot z + 5 \cdot z$
a)	$y = 2 \cdot (-10) + 3$	b)	$y = 4 \cdot 9 + 5 \cdot 9$
	y = -17		y = 81
	$y = -17$ $x = -2 \to y \qquad = 5 \cdot x + 1$		$z = -11 \rightarrow y \qquad \qquad = 5 \cdot z + 3$
(c)	$y = 5 \cdot (-2) + 1$	d)	$y = 5 \cdot (-11) + 3$
	y = -9	ĺ	y = -52
	$y = -9$ $a = 11 \to y$ $= 2 \cdot a - 5 \cdot a$		$y = -52$ $z = 6 \rightarrow y \qquad = z + 1$
e)	$y = 2 \cdot 11 - 5 \cdot 11$	f)	y = 6 + 1
	y = -33		y = 7
	$y = -33$ $x = -11 \to y$ $= 2 + 4 \cdot x$		$y = 7$ $b = -9 \to y \qquad = 5 - 3 \cdot b$
g)	$y = 2 + 4 \cdot (-11)$	h)	$y = 5 - 3 \cdot (-9)$
	$y = -42$ $z = 4 \rightarrow y \qquad = 4 \cdot z + 4$		y = 32
	$z = 4 \to y \qquad = 4 \cdot z + 4$		$y = 32$ $a = -7 \rightarrow y \qquad = 2 \cdot a + a$
i)	$y = 4 \cdot 4 + 4$	j)	$y = 2 \cdot (-7) + (-7)$
	y = 20		$y = -21$ $z = -1 \to y$ $= 2 \cdot z - 5 \cdot z$
	$z = -1 \to y \qquad \qquad = 2 \cdot z + z$		$z = -1 \to y \qquad \qquad = 2 \cdot z - 5 \cdot z$
k)	$y = 2 \cdot (-1) + (-1)$	1)	$y = 2 \cdot (-1) - 5 \cdot (-1)$
	$y = -3$ $z = 5 \to y \qquad = z - 1$		$y = 3$ $z = -6 \to y \qquad = 1 - z$
	$z = 5 \rightarrow y$ $= z - 1$		$z = -6 \to y \qquad = 1 - z$
m)	y = 5 - 1	n)	y = 1 - (-6)
	$y = 4$ $a = -11 \to y \qquad = 5 - 2 \cdot a$		$y = 7$ $z = 9 \to y \qquad = 3 - 3 \cdot z$
	$a = -11 \to y \qquad \qquad = 5 - 2 \cdot a$		$z = 9 \to y \qquad = 3 - 3 \cdot z$
0)	$y = 5 - 2 \cdot (-11)$	p)	$y = 3 - 3 \cdot 9$
	$y = 27$ $z = -7 \to y \qquad = 4 \cdot z - 1$		$y = -24$ $a = -2 \rightarrow y \qquad = 5 \cdot a + 5$
			$\begin{vmatrix} \mathbf{a} = -2 \to y \\ = 5 \cdot \mathbf{a} + 5 \end{vmatrix}$
q)	$y = 4 \cdot (-7) - 1$	r)	$y = 5 \cdot (-2) + 5$
	y = -29		y = -5