

THEO GEVERS

MASTER AI

UNIVERSITY OF AMSTERDAM

Lectures/Theory

- 06-02-2018, 17:00-19:00, C0.05, **Introduction** (*Szeliski 1*)
- 13-02-2018, 17:00-19:00, C0.05, **Image Formation** (*Szeliski: 2.1.1 + 2.1.2 + 2.2 + 2.3.2 + 2.3.3*)
- 20-02-2018, 17:00-19:00, C0.05, **Color and Image Processing** (*Szeliski: 3.1 + 3.2 + 3.3*)
- 27-02-2018, 17:00-19:00, C0.05, **Feature Detection, Motion and Classification** (Szeliski: 4, 8.1.1 + 8.1.3 + 8.2.1 + 8.4; Bengio: 4 + 5.1 + 5.2 + 5.3 + 5.7 + 5.8 + 5.9)
- 06-03-2018, 17:00-19:00, C0.05, **Object Recognition: BoW and Deep Learning** (*Szeliski:* 5.1.1 + 5.1.4 + 5.1.5 + 5.2 + 5.3 + 5.4, 6.1 + 6.3, 14.1 + 14.2.1 + 14.3 + 14.4.1; Bengio: 7.2 + 7.4 + 9.1 + 9.2 + 9.3)
- 13-03-2018, 17:00-19:00, C0.05, **ConvNets, Stereo and 3D Reconstruction** (*Szeliski:* 11.1 + 11.2 + 11.3 + 11.4, 12.1 + 12.2: Bengio: 12.1 + 12.2)
- 20-03-2018, 17:00-19:00, C0.05, **Applications** (*Szeliski: 12.6.2 + 12.6.3 + 12.2.4*)
- 26-03-2018, Monday, 9:00-12:00, **Written Exam**

Today's class

Object Recognition (ConvNets)

Object Detection

Stereo Vision

Object Recognition using Deep Learning

Artifical Model (1943 McCulloch/Pitts)

The Neuron

Inputs:
$$\vec{x} = x_1, x_1, ..., x_n$$

Weights:
$$\overrightarrow{w} = w_1, w_1, ..., w_n$$

Logit:
$$z = \sum_{i=1}^{\infty} w_i x_i + b$$

Output:
$$y = f(z)$$

Output:
$$y = f(\vec{x} \cdot \vec{w} + b)$$

Linear Perceptron

Inputs
$$x_1, x_1, ..., x_n$$

Weights
$$w_1, w_1, ..., w_n$$

Logit
$$z = \sum_{i=1}^{n} w_i x_i + b$$

$$f(z) = \begin{cases} -1 & \text{if } z < 0\\ 1 & \text{if } z \ge 0 \end{cases}$$

Example of a linear decision boundary for binary classification.

Linear Perceptron

Inputs $x_1, x_1, ..., x_n$

Weights $w_1, w_1, ..., w_n$

Logit $z = \sum_{i=1}^{n} w_i x_i + b$

$$f(z) = \begin{cases} -1 & \text{if } z < 0\\ 1 & \text{if } z \ge 0 \end{cases}$$

Sigmoid, Tanh, and ReLU Neurons

Sigmoid

$$\sigma(x)=1/(1+e^{-\mathsf{z}})$$

tanh tanh(z)

ReLU max(0,z)

Feed-forward Neural Networks

$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$

 $y - f(vv \cdot x + b)$

Weight matrix nxm: W

Inputs:

$$\vec{x} = x_1, x_1, ..., x_n$$

Ouputs:

$$\vec{y} = y_1, y_1, ..., y_m$$

Bias:

$$\vec{b}$$

Softmax Output Layer

$$y_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Noisy Input Cell

Input Cell

Backfed Input Cell

- Hidden Cell
- Probablistic Hidden Cell
- Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Different Memory Cell
- Kernel
- Convolution or Pool

Radial Basis Network (RBF)

Long / Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Auto Encoder (AE)

Denoising AE (DAE)

Sparse AE (SAE)

Single layer feed-forward NN

Figure: Single layer feed forward NN

CIFAR-10

10 labels

50,000 training images, each image is tiny: 32x32 **10,000** test images.

$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$

10 numbers, indicating class scores

[32x32x3] array of numbers i.e. 3072 numbers total

Output=10x1 Weights=10x3072 Bias=10x1
$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$

Input=3072x1

10 numbers, indicating class scores

[32x32x3] array of numbers 0...1 (3072 numbers total)

Output=3x1 Weights=3x4 Bias=4x1
$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$
Input=4x1

(cat/dog/ship)

Input=4x1

16

Output=3x1 Weights=3x4 Bias=4x1
$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$
Input=4x1

(cat/dog/ship)

Input=4x1

matrix multiply + bias offset

0.01 -0.05 0.1 0.05 -15 0.0 0.7 0.2 0.05 0.16 0.2 22 + -0.45 -0.2 0.0 0.03 -44 -0.3 56

Softmax Output Layer

$$y_i = \frac{e^{z_i}}{\sum_j e^{z_j}}$$

 \overrightarrow{y}

$$\vec{y} = f(\vec{W} \cdot \vec{x} + \vec{b})$$

[32x32x3] array of numbers 0...1 (3072 numbers total)

$$f(x_i, W, b) = Wx_i + b$$

Example trained weights of a linear classifier trained on CIFAR-10:

"3-layer Neural Net", or

"2-hidden-layer Neural Net"

"Fully-connected" layers

Object Recognition using ConvNets

Convolutional Neural Networks (CNN, ConvNet, DCN)

- Fully connected NN's: e.g. input layer is 200x200x3 color image = 120,000 weights!!
- CNN = a multi-layer neural network with
 - Local connectivity
 - Share weight parameters across spatial positions

Convolutional Layer (1)

Convolutional Layer (1)

Input volume of convolutional layer: width w_{in} , height h_{in} , depth d_{in} , zero padding p

This input volume is processed by k filters. Filters are defined by: spatial extent e, stride s

Output volume parameters:

width
$$w_{out} = \left(\frac{w_{in} - e + 2p}{s}\right) + 1$$
, height $h_{out} = \left(\frac{h_{in} - e + 2p}{s}\right) + 1$, depth $d_{out} = k$

Max Pooling

Pooling layer parameters:

spatial extent *e*, stride *s*

Resulting dimensions:

width
$$w_{out} = \left(\frac{w_{in} - e}{s}\right) + 1$$
, height $h_{out} = \left(\frac{h_{in} - e}{s}\right) + 1$

Rectified Linear Unit (ReLU)

Input Image

Feature Maps

Feature Maps After Contrast Normalization

Standard ConvNets Architecture

Input Image

VGGNet 16

CNN Models Dr Mohamed Loey

LeNet [LeCun et al. 1998]

Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-1 from 1993

AlexNet (2013 ImageNet Winner)

- Similar framework to LeCun'98 but:
 - Bigger model (8 hidden layers, 650,000 units, 60,000,000 params)
 - More data (10⁶ vs. 10³ images)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

VGG Net (2014 ImageNet Winner)

VGGNet (2014)

CNN Models Dr Mohamed Loey

AlexNet and VGGNet

Features

Transfer Learning

 Improvement of learning in a new task through the transfer of knowledge from a related task that has already been learned.

Learning and Transferring Mid-Level Image Representations using Convolutional Neural Networks [Oquab et al. CVPR 2014]

Training Convolutional Neural Networks

- Backpropagation + stochastic gradient descent with momentum
 - Neural Networks: Tricks of the Trade
- Data augmentation
- Dropout
- Batch normalization
- Initialization
 - Transfer learning

Data Augmentation (Jittering)

- Create virtual training samples
 - Horizontal flip
 - Random crop
 - Color casting
 - Geometric distortion

ImageNet Challenge 2012-2016

22.5 15 7.5 0 2010 2011 2012 2013 2014 Human ArXiv 2015

E2E: Classification: ResNet

AUM/MISS

ImageNet Classification top-5 error (%)

He, Raming, Xangyu Zhang, Sheoping Ren, and Jan San. "Seen freedom Learning for breast Recognition." arXiv preprint arXiv:1512.03388 (2015). 38564.

Tools

- Caffe
- cuda-convnet2
- Torch
- MatConvNet
- Pylearn2
- TensorFlow

Today's class

Object Detection

Stereo

3D Reconstruction

Window-based models Generating and scoring candidates

Discriminative Classifier Construction

Nearest neighbor

10⁶ examples

Shakhnarovich, Viola, Darrell 2003 Berg, Berg, Malik 2005...

Neural networks

AlexNet 2013 VGGNet 2014

. . .

Support Vector Machines

Guyon, Vapnik Heisele, Serre, Poggio, 2001,...

Boosting

Viola, Jones 2001, Torralba et al. 2004, Opelt et al. 2006,...

Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, Hebert 2003

. .

The Viola/Jones Face Detector

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade for fast rejection of non-face windows

- P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.
- P. Viola and M. Jones. *Robust real-time face detection*. IJCV 57(2), 2004.

~14000 citations!

Image Features

"Rectangle filters"

Value =

 \sum (pixels in white area) – \sum (pixels in black area)

Fast computation with integral images

- The integral image
 computes a value at
 each pixel (x,y) that is
 the sum of the pixel
 values above and to the
 left of (x,y), inclusive
- This can quickly be computed in one pass through the image

Computing Sum within a Rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as:

$$sum = A - B - C + D$$

 Only 3 additions are required for any size of rectangle!

Output of Face Detector on Images

Profile Detection

Summary: Viola/Jones Detector

- Rectangle features
- Integral images for fast computation
- Boosting for feature selection
- Attentional cascade for fast rejection of negative windows

Window-based Detection: Strengths

- Sliding window detection and global appearance descriptors:
 - Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Window-based Detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- With so many windows, false positive rate better be low

Limitations (continued)

Not all objects are "box" shaped

Segmentation as Selective Search for Object Detection

Jasper Uijlings, Koen van de Sande, Theo Gevers, Arnold Smeulders: Selective Search for Object Recognition. International Journal of Computer Vision 104(2): 154-171 (2013)

Selective Search for Recognition

- Design criteria
 - High recall
 - Coarse locations are sufficient
 - ⇒ Bounding boxes
 - Fast to compute
 - ⇒ Efficient low-level features
 - ⇒ <10s per image
 </p>

Selective Search: Approach

Hypotheses based on hierarchical grouping

Group adjacent regions on color/texture cues

Example 1

Example 2

Selective Search on ILSVRC2011

- Apply to ILSVRC2011 train set
- Object hypotheses are class-independent

	ILSVRC2011 train
With bounding box annotations	315,525 images
Average #boxes/image	1,565
Average recall	98.5%

Localisation System Training

- Use positives and mirrored positives
- Use object hypotheses to create difficult initial negatives (at most 7,500)
- Add 2 iterations of false positives (from 4,000 images)

- Features: Bag-of-words, sample every pixel, SIFT, "ColorSIFT" and RGB-SIFT, pyramid up to level 3, codebook size 4096
- Histogram Intersection Kernel with Fast Approximation

Summary

- Adopted segmentation as selective search strategy for object localisation:
 - High recall: >96% with ~1,500 locations
 - Coarse locations are sufficient: bounding boxes
 - Fast to compute: <10s per image</p>
 - Class-independent
 - Enables the use of bag-of-words features

R-CNN: Regions with CNN features

- Trained on ImageNet classification
- Finetune CNN on PASCAL

R-CNN: Regions with CNN features

Fast R-CNN

Fast RCNN [Girshick, R 2015] https://github.com/rbgirshick/fast-rcnn

Faster R-CNN

Application: Deap Learning Image Intrinsics

Recovering Lightness: Retinex

• Image Intensity: $I = e\rho$

ullet Take Logarithm: $\log I = \log e + \log
ho$ OR I = e +
ho

• Use Laplacian:

$$d = \nabla^2 I = \nabla^2 e + \nabla^2 \rho \qquad \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

• Sharp changes in reflectance ρ $\nabla^2 \rho$ has 2 infinite spikes near edges and $\nabla^2 \rho = 0$ elsewhere

• Smooth changes in illumination e^{2} $\nabla^{2}e \approx 0$ everywhere

Solving the Inverse Problem

Image
$$I = e + \rho$$
 Laplacian
$$I = e + \rho$$

$$I = \nabla^2 I = \nabla^2 e + \nabla^2 \rho$$
 Thresholding
$$I = T(d) \approx \nabla^2 \rho$$
 Lightness
$$I(x, y)$$

Find lightness l(x,y) from t(x,y):

Poisson's Equation
$$\nabla^2 l = t$$

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) l(x, y) = t(x, y)$$

We have to find g(x,y) which satisfies

$$l(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} t(u,v)g(x-u,y-v)dudv$$
$$l(x,y) = t(x,y) * g(x,y)$$

RetiNet: Retinex-Inspired ConvNet

Qualitative Results: MIT Dataset

RetiNet: Conclusion

Advantage

- + Can capture most of the color information & shading
- + Colors are more vivid and eliminates most of the color artifacts
- + Fast and memory efficient
- + Sharp Edges

Application

Semantic Image Segmenation

Application: Semantic Segmentation and Style Transfer

Semantic Segmentation

- Deep fully convolution network: SegNet
 - Encoder: learn low-level features in images
 - Decoder: reconstruct the image structure with labels

Semantic Segmentation: SegNet

Badrinarayanan, et al., "SegNet: A deep convolutional Encoder-Decoder Architecture for Image Segmentation.

Style Transfer

Application: Face Analysis

Emotions

Facial Action Units

- Charles Darwin, 1872
- Ekman & Friesen, 1978

Face Analysis

Face Analysis by Deep Learning

Sightcorp

CNN Model: Multi-Task Supervised

CNN Model: Results

Input Image

Lighting

Surface Normals

Reconstruction

Conclusion: Deep Learning in Computer Vision

- Object classification, detection and segmentation
- Optical flow
- Color constancy
- Intrinsic image decomposition
- 3D and slam
- Human behavior analysis
- Etc...

Computer Vision 1 (total #slides 89 | Lecture 6)

Summary

- 1. Object Recognition (ConvNets)
- 2. Object Detection
- 3. Stereo Vision (Next Week)