Parameter Estimation Fitting Probability Distributions Method of Moments

MIT 18.443

Dr. Kempthorne

Spring 2015

Outline

- Parameter Estimation
 - Method of Moments
 - Examples (Poisson, Normal, Gamma Distributions)

Method of Moments

One-Sample Model

• $X_1, X_2, ..., X_n$ i.i.d. r.v.'s. with density function $f(x \mid \theta)$ Joint density of $X = (X_1, X_2, ..., X_n)$ is given by:

$$f(x_1,\ldots,x_n\mid\theta) = f(x_1\mid\theta)\times\cdots\times f(x_n\mid\theta) = \prod_{i=1}^n f(x_i\mid\theta)$$

Population and Sample Moments

- $\mu_k = E[X^k]$: kth population moment, where k is a positive integer.
- $\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n x_i^k$: kth sample moment.

Method of Moments

Method of Moments

- **①** Calculate low-order moments, as functions of θ
- Set up a system of equations setting the population moments (as functions of the parameters in step 1) equal to the sample moments, and derive expressions for the parameters as functions of the sample moments.
- 3 Insert the sample moments into the solutions of step 2.

Outline

- Parameter Estimation
 - Method of Moments
 - Examples (Poisson, Normal, Gamma Distributions)

Example: Gamma Distribution

Example 8.4.A Poisson Distribution

For $X1, X_2, \ldots, X_n$ i.i.d. $Poisson(\lambda)$,

- $\lambda = E[X]$
- $\hat{\mu}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i$
- Method of Moments Estimate: $\hat{\lambda}_{MOM} = \overline{X}$.
- Note: $Var(X) = E[X^2] (E[X])^2 = \mu_2 [\mu_1]^2 = \lambda$. So, an alternative is $\hat{\lambda}^*_{MOM} = \hat{\mu}_2 - \hat{\mu}_1^2$.

Method of Moments: Poisson Distribution

Method-of-Moments Estimate: $\hat{\lambda}_{MOM} = \overline{X}$.

- The sampling distribution of $\hat{\lambda}_{MOM}$ is well-defined.
- $n\hat{\lambda}_{MOM} = S = \sum_{i=1}^{n} X_i$ where X_i iid $Poisson(\lambda)$.
- $S \sim Poisson(n\lambda)$.
- Because $E[S] = n\lambda$ and $Var[S] = n\lambda$, it follows that

$$E[\hat{\lambda}_{MOM}] = \lambda$$
 and $Var[\hat{\lambda}_{MOM}] = \lambda/n$.

- $\hat{\lambda}_{MOM}$ is **unbiased**.
- As $n \to \infty$, $\hat{\lambda}_{MOM} \to \lambda$ and the sampling distribution concentrates about λ , with the standard deviation:

$$\sigma_{\hat{\lambda}_{MOM}} = \sqrt{\frac{\lambda}{n}}$$
 (the standard error of $\hat{\lambda}$)

• For large *n*, by the Central Limit Theorem (CLT),

$$\left[\frac{\hat{\lambda}_{MOM} - \lambda}{\sigma_{\hat{\lambda}_{MOM}}}\right] \xrightarrow{\mathcal{L}} N(0, 1).$$

MIT 18.443 ParameterEstimationFittingProbabilityDistributionsMethodofOgogpw

Method of Moments: Normal Distribution

Example 8.4.B Normal Distribution

- For $X1, X_2, ..., X_n$ i.i.d. $Normal(\mu, \sigma^2)$, $\mu_1 = E(X) = \mu$ $\mu_2 = E(X^2) = \mu^2 + \sigma^2$
- Solve for $\theta = (\mu, \sigma^2)$ $\mu = \mu_1$ $\sigma^2 = \mu_2 - \mu_1^2$
- $\hat{\mu} = \hat{\mu}_1 = \overline{X} = \frac{1}{n} \sum_{i=1}^n x_i$
- $\hat{\sigma}^2 = \hat{\mu}_2 \hat{\mu}_1^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 \overline{X}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \overline{X})^2$
- Sampling distributions:

$$\hat{\mu} \sim N(\mu, \sigma^2/n)$$

$$(\frac{n}{\sigma^2})\hat{\sigma}^2 \sim \chi^2_{n-1} \text{ (independent of } \hat{\mu})$$

Gamma Distribution as Sum of IID Random Variables

- Define W_1, \ldots, W_K i.i.d. $Gamma(\alpha, \lambda)$ random variables
- Density function:

$$f(w \mid \alpha, \lambda) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} w^{\alpha - 1} e^{-\lambda w}, w > 0$$

Moment-generating function:

$$M_{W_j}(t) = E[e^{tW_j}] = (1 - \frac{t}{\lambda})^{-\alpha}$$

• Moment-generating function of $V = W_1 + W_2 + \cdots + W_k$:

$$egin{array}{lll} M_V(t) &=& E[e^{tV}] = E[e^{t(W_1+\cdots W_k)}] \ &=& E[e^{tW_1}]E[e^{tW_2}]\cdots E[e^{tW_k}] \ &=& (1-rac{t}{\lambda})^{-Klpha} \end{array}$$
 So $V\sim ext{Gamma}(klpha,\lambda).$

Gamma Distribution as Sum of IID Random Variables

- The Gamma distribution models the total waiting time for k successive events where each event has a waiting time of $Gamma(\alpha/k, \lambda)$.
- $Gamma(1, \lambda)$ is an $Exponential(\lambda)$ distribution
- $Gamma(k, \lambda)$ is distribution of sum of K iid $Exponential(\lambda)$ r.v.s

Moments of Gamma Distribution

- $W \sim \text{Gamma}(\alpha, \lambda)$ with mgf $M_W(t) = E[e^{tW}] = (1 \frac{t}{\lambda})^{-\alpha}$
- $\mu_1 = E[W] = M'_W(t=0) = \frac{\alpha}{\lambda}$
- $\mu_2 = E[W^2] = M_W''(t=0) = \frac{\alpha(\alpha+1)}{\lambda^2}$
- $\mu_2 \mu_1^2 = Var[W] = M_W''(t=0) (E[W])^2 = \frac{\alpha}{\lambda^2}$

Method-of-Moments(MOM) Estimator

$$\bullet \ \hat{\lambda}_{MOM} = \frac{\hat{\mu}_1}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{W}}{\hat{\sigma}_W^2}$$

$$\hat{\alpha}_{MOM} = \hat{\lambda}\mu_1 = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{W}^2}{\hat{\sigma}_W^2}$$

Method-of-Moments (MOM) Estimator

$$\bullet \ \hat{\lambda}_{MOM} = \frac{\hat{\mu}_1}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{W}}{\hat{\sigma}_W^2}$$

$$\hat{\alpha}_{MOM} = \hat{\lambda}\mu_1 = \frac{\hat{\mu}_1^2}{\hat{\mu}_2 - \hat{\mu}_1^2} = \frac{\overline{W}^2}{\hat{\sigma}_W^2}$$

NOTE:

- MOM Estimator of λ is ratio of sample mean to variance (units=?)
- MOM Estimator of α is ratio of squared sample mean to variance (units=?)
- λ is the **rate** parameter and α is the **shape parameter**.
- What are the sampling distributions of $\hat{\lambda}$ and $\hat{\alpha}$?

MIT 18.443 ParameterEstimationFittingProbabilityDistributionsMethodofOgogpw

Method-of-Moments: Consistency

Parameter Estimation Context

- Suppose X_1, \ldots, X_n are iid with density/pmf function $f(x \mid \theta)$.
- Let $\hat{\theta}_n = \hat{\theta}(\mathbf{X}_n)$ be an estimate of θ based on $\mathbf{X}_n = (X_1, \dots, X_n)$

Definition The estimate $\hat{\theta}_n$ is **consistent** for θ if for any $\epsilon > 0$, $\lim_{n \to \infty} P(|\hat{\theta}_n - \theta| > \epsilon) = 0$.

Consistency of Method-of-Moments Estimates

- If μ_k is finite, then $\hat{\mu}_k$ is consistent for μ_k .
- Suppose the method-of-moments equations provide a one-to-one estimate of θ given the first k^* sample moments. Then, if the first k^* population moments exist, the method-of-moments estimate is consistent.

MIT 18.443 ParameterEstimationFittingProbabilityDistributionsMethodofOgogopu

Method-of-Moments: Sampling Distributions

Sampling Distribution of Method-of-Moments Estimates

 \bullet For special cases, the sampling distribution of $\hat{\theta}_{MOM}$ is exactly known by probability theory

E.g., Normal, Binomial, Poisson, Exponential

 In general, Bootstrap (Monte Carlo simulation) methods provide approximations to the sampling distributions of MOM estimates.

E.g., $Gamma(\alpha, \lambda)$ distribution, unknown α (shape)

- Limiting distributions can be derived
 - Apply Central Limit Theorem to obtain limiting distribution of sample moments.
 - Apply transformation of variables to obtain limiting distribution of MOM estimates.

MIT OpenCourseWare http://ocw.mit.edu

18.443 Statistics for Applications

Spring 2015

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.