YAO-LUN YANG

yao-lun.yang@riken.jp | yaolunyang.astro@gmail.com | https://yaolun.github.io

CONTACT INFORMATION

Star and Planet Formation Laboratory

+8148-467-1411

Advisor: Dr. Ciska Kemper

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

RESEARCH INTERESTS

Astrochemistry, Infall & Outflows, Early Stage Star Formation, Radiative Transfer Modeling, Atomic and Molecular Spectroscopy, and Infrared & Radio Astronomy.

PROFESSIONAL APPOINTMENTS

Mar. 2022 – present	Research Scientist (indefinite term)
	Star and Planet Formation Laboratory, RIKEN
Feb. 2022 – Jun. 2022	Visiting Scholar
	University of Virginia, USA
Feb. 2020 – Feb. 2022	Virginia Initiative on Cosmic Origins (VICO) Postdoctoral Fellow
	University of Virginia, USA
Aug. 2019 – Jan. 2020	Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow
	Host: Nami Sakai; RIKEN, Japan

EDUCATION

2019 Ph.D. Astronomy

The University of Texas at Austin, U.S.A. Advisors: Prof. Neal J. Evans II and Dr. Joel D. Green Dissertation: The Three-dimensional Structure and Kinematics of Protostellar Envelopes

2015 M.A. Astronomy

The University of Texas at Austin, U.S.A.

Advisor: Prof. Neal J. Evans II

Thesis: The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models

2012 B.S. Physics

National Taiwan University, Taiwan

Project: Molecular Hydrogen in Diffuse Interstellar Medium of the Large Magellanic Cloud

AWARDS, FUNDING (TOTAL: \$550,632 AS PI), AND RECOGNITIONS

Grants-in-Aid for Scientific Research for Research Activity Start-up (¥2,2	200,000 as PI) JSPS 2022
JWST Cycle 1 GO Grant - (\$187,562 as PI)	STScI 2021
SOFIA Cycle 9 GO Grant - (\$134,000 as PI)	SOFIA 2021
Virginia Initiative on Cosmic Origins (VICO) Postdoctoral Fellowship	University of Virginia 2019
Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowsh	ip Japan 2019
Concentration in Teaching and Mentoring	UT-Austin 2018
Professional Development Award (\$600)	UT-Austin 2018
University Graduate Continuing Fellowship (\$80,000)	UT-Austin 2017–2019
SOFIA Cycle 6 GO Grant - (\$41,000 as PI and \$39,000 as co-I)	SOFIA 2017
Fred T. Goetting, Jr. Memorial Endowed Presidential Fellowship (\$10,000	UT-Austin 2016
Summer Internship (\$14,120)	STScI 2016
Outstanding Thesis Award (\$1,000) School of Gradua	te Studies, UT-Austin 2016
SOFIA Cycle 4 GO Grant - (\$56,000 as PI and \$33,000 as co-I)	SOFIA 2015

PUBLICATIONS

First-Author and Significant Contribution Refereed Journal Articles

- [12] Salyk, C., Yang, Y.-L., Pontoppidan, K. M., et al. 2024, "CORINOS II. JWST-MIRI detection of warm molecular gas from an embedded, disk-bearing protostar", accepted to ApJ, arXiv:2407.15303
- [11] Pontoppidan, K. M., Evans, N., Bergner, J., Yang, Y.-L. 2024, "A Constrained Dust Opacity for Models of Dense Clouds and Protostellar Envelopes", RNAAS, 8, 3
- [10] Zhang, Z. E., Yang, Y.-L., Zhang, Y., et al. 2023, "The Perseus ALMA Chemistry Survey (PEACHES). II. Sulfur-bearing Species and Dust Polarization Revealing Shocked Regions in Protostars in the Perseus Molecular Cloud", ApJ, 946, 113
- [9] Evans, N. J. II, Yang, Y.-L., Green, J. D., et al. 2023, "Models of Rotating Infall for the B335 Protostar", ApJ, 943, 90
- [8] Yang, Y.-L., Green, J. D., Pontoppidan, K. M., et al. 2022, "CORINOS I: JWST/MIRI Spectroscopy and Imaging of a Class 0 protostar IRAS 15398-3359", ApJL, 941, L13
- [7] Yang, Y.-L., Evans, N. J. II, Karska, A., et al. 2022, "Atomic Shocks in the Outflow of L1551 IRS 5 Identified with SOFIA-upGREAT Observations of [O I]", ApJ, 925, 93
- Yang, Y.-L., Sakai, N., Zhang, Y., et al. 2021, "The Perseus ALMA Chemistry Survey (PEACHES).
 I. The Complex Organic Molecules in Perseus Embedded Protostars", ApJ, 910, 20
- [5] Yang, Y.-L., Evans, N. J. II, Smith, A. et al. 2020, "Constraining the Infalling Envelope Models of Embedded Protostars: BHR71 and its Hot Corino", ApJ, 891, 1
- [4] Yang, Y.-L., Green, J. D., Evans, N. J. II, et al. 2018, "CO in Protostars (COPS): Herschel-SPIRE Spectroscopy of Embedded Protostars", ApJ, 860 174
- [3] Yang, Y.-L., Evans, N. J. II, Green, J. D. et al. 2017, "The Class 0 Protostar BHR71: Herschel Observations and Dust Continuum Models", ApJ, 835, 259
- [2] Green, J. D., Yang, Y.-L., et al. 2016, "The CDF Archive: Herschel PACS and SPIRE Spectroscopic Data Pipeline and Products for Protostars and Young Stellar Objects", AJ, 151, 75
- [1] Larson, R. L., Evans, N. J., Green, J. D., & Yang, Y.-L. 2015, "Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission", ApJ, 806, 70

Other Refereed Journal Articles

- [31] Hsu, S.-Y., Lee, C.-F., Liu, S.-Y., et al. 2024, "ALMASOP. The Localized and Chemically rich Features near the Bases of the Protostellar Jet in HOPS 87", accepted to ApJ, arXiv:2409.14445
- [30] Gavino, S., Jørgensen, J. K., Sharma, R., Yang, Y.-L., et al. 2024, "Early Planet Formation in Embedded Disks (eDisk). XI. A high-resolution view toward the BHR 71 Class 0 protostellar wide binary", accepted to ApJ, arXiv:2407.17249
- [29] Murillo, N. M., Fuchs, C. M., Harsono, D., et al. 2024, "The factors that influence protostellar multiplicity I: Gas temperature, density, and mass in Perseus with Nobeyama", accepted to A&A, arXiv:2407.14702
- [28] Neufeld, D. A., Manoj, P., Tyagi, H., et al. 2024, "JWST/MIRI Detection of Suprathermal OH Rotational Emissions: Probing the Dissociation of the Water by Lyα Photons near the Protostar HOPS 370", ApJ, 966, 2

- [27] Federman, S. A., Megeath, S. T., Rubinstein, A. E., et al. 2024, "Investigating Protostellar Accretion-driven Outflows across the Mass Spectrum: JWST NIRSpec Integral Field Unit 3-5 μm Spectral Mapping of Five Young Protostars", ApJ, 966, 1
- [26] Brunken, N. G. C., Rocha, W. R. M., van Dishoeck, E. F., **et al.** 2024, "JWST observations of ¹³CO₂ ice: Tracing the chemical environment and thermal history of ices in protostellar envelopes", A&A, 685, 27
- [25] Narang, M., Manoj, P., Tyagi, H., et al. 2024, "Discovery of a Collimated Jet from the Low-luminosity Protostar IRAS 16253-2429 in a Quiescent Accretion Phase with the JWST", ApJL, 962, L16
- [24] Nazari, P., Rocha, W. R. M., Rubinstein, A. E., et al. 2024, "Hunt for complex cyanides in protostellar ices with JWST: Tentative detection of CH₃CN and C₂H₅CN", A&A, 68, A71
- [23] Rubinstein, A. E., Tyagi, H., Nazari, P., et al. 2023, "IPA. Class 0 Protostars Viewed in CO Emission Using JWST/NIRSpec", submitted to ApJ, arXiv:2312.07807
- [22] Hsu, S.-Y., Liu, S.-Y., Johnstone, D., et al. 2023, "ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): The Warm–Envelope Origin of Hot Corinos", ApJ, 956, 120
- [21] Artur de la Villarmois, E., Guzmán, V. V., Yang, Y.-L., et al. 2023, "The Perseus ALMA Chemical Survey (PEACHES). III. Sulfur-bearing species tracing accretion/ejection processes in young protostars", A&A, 678, A124
- [20] Fedriani, R., Tan, J. C., Telkamp, Z., et al. 2023, "The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars", ApJ, 942, 7
- [19] Law, C.-Y., Tan, J. C., Gorai, P., et al. 2022, "Isolated Massive Star Formation in G28.20-0.05", ApJ, 939, 120
- [18] De Simone, M., Ceccarelli, C., Codella, C., et al. 2022, "Tracking the ice mantle history in the Solar-type Protostars of NGC 1333 IRAS 4", ApJL, 935, L14
- [17] Zhang, Y., Tanaka K. E. I., Tan, J. C., Yang, Y.-L., et al. 2022, "Massive Protostars in a Protocluster A Multi-Scale ALMA View of G35.20-0.74N", ApJ, 936, 68
- [16] Cheng, Y., Tobin, J. J., Yang, Y.-L., et al. 2022, "Disks and Outflows in the Intermediate-mass Star Forming Region NGC 2071 IR", ApJ, 933, 178
- [15] Bouvier, M., Ceccarelli, C., López-Seplucre, A., Sakai, N., Yamamoto, S., & Yang, Y.-L. 2022, "The chemical nature of Orion protostars: Are ORANGES different from PEACHES? ORANGES II", ApJ, 929, 10
- [14] van Gelder, M. L., Nazari, P., Tabone, B., et al. 2022, "Importance of source structure on complex organics emission. I. Observations of CH₃OH from low-mass to high-mass protostars", A&A, A67, 22
- [13] Hsu, S.-Y., Liu, S.-Y., Liu, T., et al. 2022, "ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP): A Hot Corino Survey toward Protostellar Cores in the Orion Cloud", ApJ, 927, 218
- [12] Liu, H. B., Tsai, A.-L., Chen, W. P., et al. 2021, "Millimeter-sized Dust Grains Appear Surviving the Water-sublimating Temperature in the Inner 10 au of the FU Ori Disk", ApJ, 923, 270
- [11] Yun, H.-S., Lee, J.-E., Evans, N. J. II, et al. 2021, "TIMES II: Investigating the Relation Between Turbulence and Star-forming Environments in Molecular Clouds", ApJ, 921, 31
- [10] Bouvier, M, López-Seplucre, A., Ceccarelli, C, et al. 2021, "ORion Alma New GEneration Survey (ORANGES) I. Dust continuum and free-free emission of OMC-2/3 filament protostars", A&A, 653, A117

- [9] Yun, H.-S., Lee, J.-E., Choi, Y., et al. 2021, "TIMES I: A Systematic Observation in Multiple Molecular Lines Toward the Orion A and Ophiuchus Clouds", ApJS, 256, 16
- [8] Liu, M., Tan, J. C., De Buizer, J. M., et al. 2020, "The SOFIA Massive (SOMA) Star Formation Survey. III. From Intermediate- to High-Mass Protostars", ApJ, 904, 75
- [7] Hsu, S.-Y., Liu, S.-Y., Liu, T., et al. 2020, "ALMA Survey of Orion Planck Galactic Cold Clumps (ALMASOP) I. Detection of New Hot Corinos with ACA", ApJ, 898, 107
- [6] Liu, H. B., Mérand, A, Green, J. D., Pérez, S., Hales, A. S., Yang, Y.-L., et al. 2019, "Diagnosing 0.1-10 au Scale Morphology of the FU Ori Disk using ALMA and VLTI/GRAVITY", ApJ, 884, 97
- [5] Yi, H-.W., Lee, J-.L., Liu, T, et al. 2018, "Planck Cold Clumps in the λ Orionis complex. II. Environmental effects on core formation", ApJS, 236, 2
- [4] Karska, A, Kaufman, M. J., Kristensen, L. E., et al. 2018, "The Herschel-PACS Legacy of Low-mass Protostars: Far-IR Gas Properties and Their Origin in FUV-illuminated C-shocks", ApJS, 235, 30
- [3] Liu, T, Kim, K.-T., Juvela, M, et al. 2018, "The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17", ApJS, 234, 28
- [2] Green, J. D., Jones, O. C., Keller, L. D., el al. 2016, "The Mid-infrared Evolution of the FU Orionis Disk", ApJ, 832, 4
- [1] Naslim, N., Kemper, F., Madden, S. C., et al. 2015, "Molecular Hydrogen Emission in the Interstellar Medium of the Large Magellanic Cloud", MNRAS, 446, 2490—2504

Non-refereed Research Articles

- [7] Sakai, N & Yang, Y.-L., 2021, "Chemical Diversity in Young Protoplanetary Disk", ngVLA-J Memo Series
- [6] Yang, Y.-L., Evans, N. J., Smith, A., et al. 2020, "Direct Infall Signatures and Complex Organic Molecules toward an Isolated Embedded Protostar BHR 71", Origins: From the Protosun to the First Steps of Life, Proceedings of the International Astronomical Union, 345, 312. doi:10.1017/S1743921319001571
- [5] Gutermuth, R., Offner, S., Arce, H., et al. 2019, "Dense Cores, Stellar Feedback and the Origins of Clustered Star Formation", Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 467, BAAS, 51, 467
- [4] Green, J., Yang, Y.-L., Megeath, T., et al. 2019, "Variability in the Assembly of Protostellar Systems", Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 372, BAAS, 51, 372
- [3] Tobin, J., Offner, S., Sheehan, P., et al. 2019, "Measuring Protostar Masses: The Key to Protostellar Evolution", Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 189, BAAS, 51, 189
- [2] Tobin, J., Kounkel, M., Offner, S., et al. 2019, "The Formation and Evolution of Multiple Star Systems", Astro2020: Decadal Survey on Astronomy and Astrophysics, science white papers, no. 187, BAAS, 51, 187
- [1] Yang, Y.-L., Evans, N. J., & Green, J. 2015, "The Structure of Class 0 Protostars: BHR71 in Herschel View", Frank N. Bash Symposium 2015 (BASH2015), 30

SELECTED OBSERVING PROGRAMS (AS PI OR SIGNIFICANT CO-I)

James Webb Space Telescope (JWST)

- HEFE: High Angular Resolution observations of Stellar Emergence in Filamentary Environments (PI: T. Megeath)
 - Cycle 3 Large Program (as co-PI, 175 hrs NIRCAM / NIRSpec IFU / MIRI MRS)
- Mapping the distribution of ices in the host environments of protostellar hot corinos (PI: J. Jørgensen)
 - Cycle 3 Medium Program (as co-I, 67.5 hrs NIRCAM / NIRSpec MOS)
- The JWST View of Icy Volatiles In Disks (PI: J. Bergner)

 Cycle 3 Medium Program (as co-I, 39.4 hrs NIRSpec IFU / MIRI MRS)
- Cask-strength clouds: high percentage of methanol and HDO ices (PI: M. Drozdovskaya) Cycle 2 (as co-I, 8.7 hrs NIRCAM / NIRSpec MOS)
- EPISODE: EC 53, the only known periodically variable infant starto chase the outburst in the next dynamical event (PI: J.-E. Lee)
 - Cycle 2 (as co-I, 6.4 hrs MIRI MRS and NIRSpec IFU)
- Blazing the Trails of COMs Ices to Gas Cycle 1 (as PI, 24.6 hrs MIRI MRS)
- Investigating Protostellar Accretion Across the Mass Spectrum (PI: T. Megeath)

 Cycle 1 Medium Program (as co-I, 65.5 hrs MIRI MRS and NIRSpec IFU)

Acatama Large Millimeter/submillimeter Array (ALMA)

- Toward a complete census of methanol budget in isolated protostars Cycle 9 & 10 (as PI, 17.8/16.9/44.0 hrs of 12m/ACA/TP)
- Testing the origin of warm carbon-chain chemistry in Perseus protostars Cycle 10 (as PI, 54.5 hrs of ACA)
- A hybrid approach to measure the 3D infall kinematics in an isolated protosellar core Cycle 10 (as PI, 4.8/5.5 hrs of 12m/ACA)
- COMPASS: Complex Organic Molecules in Protostars with ALMA Spectral Surveys Cycle 9 Large Program (as co-I, PI: Jes Jørgensen, 125 hrs)
- Directly measuring the progression of infall from the envelope to the disk-forming region of BHR 71 Cycle 7 & 8 (as PI, 18.7 hrs)
- Direct Detection of Infall in a Protostellar System Cycle 4 (as PI, 0.9 hr)
- Spatiochemically Profiling the Inner Coma of C/2021 A1 (Leonard) Cycle 8 (as co-I, PI: Maria Drozdovskaya, 45.7 hrs)

Very Large Array (VLA)

• Do Twins Always Look the Same?: Testing the Chemical Difference in a Protobinary 2021 A (as PI, 15 hrs)

Stratospheric Observatory for Infrared Astronomy (SOFIA)

• Probing the Radiative Cooling from Shocks and PDRs in Intermediate- and High-mass Protostars Cycle 9 (as PI, 23.1 hrs FIFI-LS) • Exploring Protostellar Winds with [OI]: Constraining models of shocked gas and PDR using L1551-IRS5

Cycle 4 & 6 (as PI, 5.3 hrs & 4.1 hrs GREAT)

• The Evolution of FU Orionis Disks

Cycle 4 & 6 (as co-I, PI: Joel Green, 3 hrs & 3.9 hrs FORCAST)

Submillimeter Telescope (SMT)

• Surveying the Chemical Diversity toward Taurus Embedded Protostars 2022A (as PI, 40 hrs) & 2020B (as PI, 60 hrs)

Gemini-South

• High Velocity Jets in the Outflow of BHR 71 2020A (as co-PI, 6 hrs IGRINS)

APEX/FLASH⁺, 7.5 hrs (as PI)

Harlan J. Smith Telescope/DIAFI, 4 nights (as on-site observer)

IRTF/TEXES, 2014–2016, 4 nights (as co-I & on-site observer)

INVITED TALKS

Astrophysics: The James Webb Space Telescope: from first light to new world views,				
	The Pontifical Ac	eademy of Sciences, Vatican City 2024		
ngVLA-J Science Working Group meeting,		NAOJ, Toyko, Japan 2023		
Japan Geoscience Union Meeting 2023	3,	Chiba, Japan 2023		
EA-ALMA Science Workshop 2023,		New Taipei City, Taiwan 2023		
Colloquium,		ASIAA, Taipei, Taiwan 2023		
Dust, Ice, and Gas (DIG) Astrochemis	stry Meeting,	IASES (virtual), India/Japan 2022		
Colloquium,	Chalmers University	of Technology (virtual), Sweden 2022		
SOFIA tele-talk,		SOFIA (virtual), USA 2022		
SMA Seminar,		SAO/CfA (virtual), USA 2021		
Astrochemistry Seminar,		NAOJ (virtual), Japan 2020		
Colloquium,		NTHU, Hsinchu, Taiwan 2020		
Seminar at Center of Astronomy and	Gravitation,	NTNU, Taipei, Taiwan 2020		
Colloquium,		ASIAA, Taipei, Taiwan 2020		
ZUNA talk,		NRAO, VA, USA 2020		
APEC Seminar,		IPMU, Chiba, Japan 2019		
Star Formation Mini Symposium,	Kyung Hee	University, Suwan, South Korea 2019		
Colloquium,		NTHU, Taiwan 2019		
Review talk, From Star to Planet Form	$\mathbf{nation} \ \mathbf{II},$	Göteborg, Sweden 2019		
CAS seminar,	Center for Astrocl	nemical Studies, MPE, Germany 2019		

SELECTED CONTRIBUTED TALKS

IAU-Kavli Symposium: Astrochemistry VII,	Traverse City, Michigan, USA 2023
First Science Results of JWST,	STScI, Baltimore, USA 2022
Next Generation Astrochemistry,	University of Tokyo, Tokyo, Japan 2022
Molecules in Extreme Environments: Near and Far.	NAOJ. Tokvo. Japan 2022

From Clouds to Planets II: The Astrochemical Link. Berlin, Germany 2022 240th AAS Meeting, Pasadena (hybrid), CA 2022 NBIA Workshop on Radiation Transfer in Astrophysics, Copenhagen (hybrid), Denmark 2022 Hokkaido (hybrid), Japan 2021 Workshop on Interstellar Matter 2021, Astrochemistry in the JWST Era, Leeds (virtual), UK 2021 2021 COSPAR, virtual space, Earth 2021 virtual space, Earth 2020 Astrochemical Frontier. 2019 ALMA EA Development Workshop, NAOJ, Tokyo, Japan 2019 Early Planet Formation in Embedded Disks. University of Tokyo, Tokyo, Japan 2019 2018 ALMA EA Science/Development Workshop, Osaka Pref. University, Osaka, Japan 2018 TUNA Talk, NRAO/UVa, VA 2018 6th GMT Science Meeting: Stars Birth & Death, Honolulu, HI 2018 72nd International Symposium on Molecular Spectroscopy, UIUC, IL 2017 Star Formation 2016, Splinter session, Exeter, UK 2016 Workshop on Dense Cores, Monterey, CA 2014 Seminars at UT-Austin, NRAO/UVa, ASIAA, Subaru Telescope, IfA/U of Hawaii, Leiden Observatory, ESO-Garching, MPIA, STScI, East Asia Observatory, CfA/Harvard, U of Arizona, Kyung Hee University, Osaka University, and Osaka Perfecture University

STUDENTS MENTORING

- Moe Mishima (undergraduate, U of Tokyo, 2024-present)
 Analyze the outflow and jet signatures from the H₂, [Fe II], and [Ne II] lines using JWST MIRI MRS observations in the CORINOS program.
- Philip (Teddy) Oakley (undergraduate, UVA, 2023-present, co-advised with Prof. Jonathan Tan):
 Lead the analysis of the SOMA/FIFI-LS survey to investigate the feedback of massive protostars
 from emission of shocks and PDRs.
- Jenny Margot Ramos Lázaro (CASSUM summer student, National University of San Marcos, Peru, 2021-present):
 - Characterize the carbon-chain chemistry in Taurus embedded protostars using SMT observations.
- Lianis Reyes Rosa (graduate student, UVA, 2021–2023, co-advised with Prof. Jonathan Tan): Investigate the feedback of massive protostars from emission of shocks and PDRs.
- Neha Bagalkot (undergraduate, UVA, 2021–2021, co-advised with Prof. Zhi-Yun Li): Continuum and line radiative transfer calculations of star-forming cores.
- Pichaya Tositrakul (undergraduate, UVA, 2021): Characterize the impact of dust optical depth to measurements of molecular abundance.
- Eva Greco (CASSUM summer student, UVA, 2020):
 Study ALMA observations of CO outflows associated with a clustered massive star-forming regions, involving ALMA imaging and spectral analyses.
- Alyssa Ramos (undergraduate, UT-Austin, 2018):
 Exploratory study on the complex organic molecules at the early phase of star formation, involving an archival study using the ALMA archive and simulating synthetic spectra of COMs.
- Rebecca Larson (undergraduate, UT-Austin, 2014–2016):
 Constrain the decay of turbulence shocks with Herschel observations of starless molecular clouds.
 This project results in a publication on ApJ.

SERVICE AND PROFESSIONAL SOCIETY MEMBERSHIP

- Star and Planet Formation Science Lead for PRIMA-J team
- SOC of Session F3.4 in COSPAR 2024
- Founder and organizer of the "Astrochemistry Get-together Workshop" serving the astrochemistry community in the greater Tokyo area
- Referee for ApJ, ApJS, MNRAS, and Nature Astronomy
- Subject-matter expert reviewer in NASA peer reviews (2021×2, 2022)
- External expert reviewer for JWST, HST, and ALMA Large Program
- Memeber of the ISSI International Team "Provenances of our Solar System's relics"
- Affiliate of the eDisk ALMA Large Program
- SOC of Astrochemistry Discussions
- Organizer of astro-ph at RIKEN, 2023-present
- Organizer of astro-ph and astrochem-ph discussion at UVA, 2020–2022
- Organizer of UVA/NRAO Star Formation Group Meeting, 2021–2022
- Member of the Astronomical Society of Japan, 2022–present
- Member of the American Astronomical Society, 2017–2022
- AAS Meeting Chambliss Judge, 2019

PRESS RELEASES

- Space telescope probes chemistry around a newborn star, Mar. 2022
- CORINOS I paper by Seoul National University (Korean), Dec. 2022
- CORINOS I paper by RIKEN, (Japanese), Dec. 2022
- Nature Astronomy, "JWST takes stock of the freezer", Nov. 2022
- New Scientist, "JWST reveals young star that may be about to give birth to a planet", Aug. 2022
- UVA Today, "UVA Astronomers Will Map the Unmapped in Outer Space", Apr. 2022
- UVA Arts & Sciences Magazine March-April 2022, "Mapping the Unmapped in Outer Space", Mar. 2022
- UVA Today, "Like Peas in a Pod: UVA Astronomer's Survey of Young Stars Published", Apr. 2021
- RIKEN, "Amounts of organic molecules in planetary systems differ from early on", Apr. 2021

OUTREACH ACTIVITIES

- Talk, "Peering into the Origin of Solar System with JWST", Space Cafe Tokyo, Mar. 2023
- Talk, "Snow-covered Baby Stars and NASA's Next Generation Space Telescope", Science on Screen, The Gem Theater, Mar. 2022
- Talk, "JWST and Snow-covered Baby Stars", Massanutten Regional Library, Nov. 2021
- Organizer & Presenter, Astronomy on Tap ATX, Austin, TX, 2016–2019

 Monthly astronomy talk held in a local bar joined by more than 250 audience
- Guest Host & Presenter, Astronomy on Tap Taipei, Taipei, Taiwan, 2019, 2020
- Talk, "How to Make A Star", Westcave Preserve, Jan. 2015

(Last update on September 25, 2024)