Lubrication

Bearing Failure Patterns and Trouble-shooting

Bearing Failure analysis

False Brinelling

Holcim Group Support

- Elliptical wear marks in an axial direction at each ball position with a bright finish and sharp demarcation
- Often surrounded by a ring of brown debris

False Brinelling

- Vibrations in stationary machines leading to micro motion between rolling elements & raceways
- When the bearing is not turning, an oil film cannot be formed to prevent raceway wear

False Brinelling

- eliminate or absorb external vibration
- use lubricants containing anti-wear additives

Symptoms

- Discoloration of the rings, rolling elements and cages from gold to blue
- Temperatures in excess of 200°C can anneal ring and rolling element materials, reducing the bearing capacity and causing early failure

DEA

- In extreme case, the bearing components will deform
- Temperature rise can also degrade or destroy **lubricant**

Holcim Group Support

- Heavy electrical heat loads
- Inadequate heat paths
- Insufficient cooling or lubrication when loads and speed are excessive

- Thermal or overload controls
- Adequate heat paths
- Supplemental cooling

Outer Ring Fracture

- Typically a crack spreads evenly in the circumferential direction, with several fractured pieces often originating
- With axial load, fractures usually occur a little beyond the middle of the raceway
- Outside outer ring shows irregular load pattern

Outer Ring Fracture

Causes

 Poor support of the rings in the bearing housing

Outer Ring Fracture

Remedies

- Improvement in bearing mounting
- Follow mounting instructions for appropriate recommendations

DEA

Misalignment

Symptoms

 A wear path not parallel to raceway edges on the raceway of the no rotating ring

Misalignment

- Bent shafts
- Burrs or dirt on shaft or housing shoulders
- Shaft threads that are not square with shaft seats
- Locking nuts with faces that are not square to the thread axis

Misalignment

- Inspect shafts and housings for run-out of shoulders and bearing seats
- Use single point-turned or ground threads on non-hardened shafts and ground threads only on hardened shafts
- Use precision grade locknuts

Slippage Tracks

- Spotted smear marks
- Roughening of rolling elements or raceways

Slippage Tracks

- Rolling elements slide on the raceways when the load is low and lubrication is poor
- Occasionally occurs if load zones are too short, causing rolling elements to
- Also, fast changes in speed brake in the unloaded zone and accelerate again when entering the load zone

Slippage Tracks

- Select bearings with lower load carrying capacity
- Preload bearings
- Reduce bearing clearance
- Improve lubrication

Tight Fits

Symptoms

 A heavy rolling element wear path in the bottom of the raceway

Tight Fits

Causes

- Excessive loading of the rolling elements when interference fits exceed the radial clearance at operating temperatures
- Continued operation under such conditions leads to rapid wear and fatigue

DEA

Tight Fits

- Decrease total interference with better matching of bearings to shafts and housings
- Consider operating temperatures
- Increased radial clearance in bearing selection

Axial Cracks

- Inner ring partly or completely cracked in the axial direction
- Slightly rounded fractured edges indicate that the fracture originated during operation and was cycled (cracked edges may break off after prolonged operation)
- Sharp edged cracks indicate fracture during dismounting

Axial Cracks

- Bearing slippage
- Rotation of inner ring on the shaft
- Inadequate lubrication
- Too tight of fit to shaft
- Grooved shaft
- Out-of-roundness
- Grazing against surrounding parts

Axial Cracks

- Improve lubrication with additives or increased oil quantities
- Select suitable fit
- Avoid grazing
- Provide for better seating conditions
- Consider special heat treatment for rings

Normal Fatigue

- Often referred to as spalling; indicated by the fracture of the running surfaces and subsequent removal of small discrete particles of material from the inner ring, outer ring or rolling elements
- Spalling is progressive, and once initiated will spread with continued operation
- Always accompanied by a noticeable increase in vibration

Normal Fatigue

Causes

 Bearing has remained in operation beyond its calculated fatigue life

Normal Fatigue

Remedies

 Replace the bearing and/or consider redesigning to use a bearing with a greater calculated fatigue life

True Brinelling

- Brinell marks appear as indentations in the raceways, increasing bearing vibration (noise)
- Severe brinell marks can cause premature fatigue failure

True Brinelling

- Static overload of the bearing
- Severe impact to the bearing
- Using a hammer to install the bearing
- Dropping or striking assembled equipment
- Pressing a bearing onto the shaft by applying force to the outer ring

True Brinelling

- Observe static load ratings in making bearing selection
- Install bearings using appropriate equipment and by applying force only to the ring being press-fitted

Contamination

Symptoms

 Denting of rolling elements and raceways, causing vibration

Contamination

- Air-born dust, dirt or abrasive substances from contaminated work areas
- Dirty hands or tools
- Foreign matter in lubricants or cleaning solutions

Contamination

Holcim Group Support

- Clean work areas, tools, fixtures and hands reduce the risks
- Isolate bearing assembly area from any grinding operations
- Leave bearings in their original packaging until time of installation
- For contaminated operating environments, sealing arrangements should be considered

Lubricant Failure

- Discolored rolling elements (blue/brown) and rolling element tracks
- Excessive wear of rolling elements, rings, and cages follow, resulting in overheating and catastrophic failure

Lubricant Failure

- Restricted lubricant flow
- Excessive temperatures that degrade the lubricant

Lubricant Failure

Holcim Group Support

- Use of the appropriate and correct amount of **lubricant**
- Ensure proper bearing fit
- Control preload to reduce bearing temperatures

Corrosion

Symptoms

- Corrosion results from the chemical attack on bearing materials by hostile fluids or atmospheres
- Red/brown stains or deposits on rolling elements, raceways or cages
- Increased vibration followed by wear
- Increase in radial clearance or loss of preload

Corrosion

Causes

 Exposing bearings to corrosive fluids or atmospheres

Corrosion

- Divert corrosive fluids away from bearing areas
- Use integrally sealed bearings
- Consider external seals for particularly hostile environments

Fluting

Symptoms

 Brownish marks parallel to the axis on a large part of the raceway, or covering the entire raceway circumference

Fluting

- Electrical Fluting occurs when a current is passed through the bearing, instead of to a grounded source.
- Constant passage of alternating or direct current
- Even low currents

Fluting

- Prevent currents from flowing through the bearing by means of grounding or insulating
- Use current insulated bearings

Excessive Loads

Symptoms

- Heavy rolling element wear paths
- Evidence of overheating
- Widespread fatigue areas (spalling)
- Symptoms are the same as normal fatigue, although showing heavier ball wear paths, greater evidence of overheating, and a more widespread and deeper spalling (fatigue area)

Excessive Loads

Causes

Excessive loading of the bearing

Excessive Loads

- Reduce the load
- Redesign using a bearing with greater capacity

Lip Fractures

Symptoms

 Supporting lips are partly or completely broken off or cracked

Lip Fractures

- Axial load unacceptably high
- Lip insufficiently supported
- Axial shock load
- Mounting damage

Lip Fractures

- Ensure good lip support design
- Keep load within specified limits
- Observe appropriate mounting instructions & procedures

Fretting

Symptoms

- Fretting, the generation of fine metal particles which oxidize, leaving a distinctive brown color
- Wear at the fitting surfaces causing noise & runout problems
- Possible fatigue fracture
- Possible disturbance of floating bearing function

Fretting

Causes

 Micro motion between fitted parts where the fits are too loose in relation to the acting forces

Fretting

Remedies

 Follow mounting instructions for appropriate fit recommendations

Symptoms

- Partial or large-area welding and deep scratches in the lip and roller face areas
- Also lubricant coking in this area

DEA

- Inadequate lubrication with high loads and high speeds (quantity or operating viscosity of lubricant too low)
- Inadequate lubrication
 with high loads
 and low speeds (when
 there is no hydrodynamic
 lubricating film between
 the roller face and lip)

Holcim Group Support

- Detrimental preload due to heat expansion
- Skewing of rollers due to raceway wear or ring tilting
- Axial load too high on cylindrical roller bearings
- Axial preload too high for out-of-square mating surfaces

- Improve lubrication (increase viscosity, EP additives, increase quantity)
- Ensure correct adjustment of bearings

Holcim Group Support

Symptoms

- Balls will show a grooved wear band caused by the ball riding over the outer edge of the raceway
- Failure mode is very similar to that of heavy interface (tight) fits.

- Angular contact ball bearings are designed to accept an axial load in one direction only
- When loaded in the opposite direction, the elliptical contact area on the outer ring is truncated by the low shoulder on that side of the outer ring

- Result is excessive stress and an increase in temperature, followed by increased vibration and early failure
- A thrust load applied to the wrong bearing face results in a wear band on the balls.

Remedies

 Ensure proper installation of angular contact bearings

