Các phương pháp tìm gần đúng ma trận nghịch đảo

Bùi Tiến Thành - MSSV 20190081 Chu Thị Ngân - MSSV 20195904

CTTN Toán tin K64

Tháng Mười một, 2020

Muc luc

- Dăt vấn đề
 - Tai sao phải giải gần đúng?
 - Các phương pháp đưa ra
 - Ý tưởng và công thức lặp
 - Điều kiên hôi tu và công thức sai số
 - Thuật toán và chương trình
 - - Ý tưởng chung
 - Các phương pháp
 - Công thức lặp và điều kiên hôi tu
 - Công thức sai số
 - Thuật toán và chương trình
- - Công thức lặp và điều kiên hôi tu
 - Công thức sai số

Tại sao phải giải gần đúng?

Các phương pháp giải đúng:

- Bắt buộc phải duyệt toàn bộ các phần tử của ma trận và phải lưu toàn bộ ma trận trong bộ nhớ, đặc biệt với các thuật toán đệ quy
- Không thể kiểm soát sai số tính toán do giới hạn tính toán của máy tính
- ⇒ Giải pháp?

Các phương pháp đưa ra

- Phương pháp Newton
- Phương pháp lặp Jacobi
- Phương pháp lặp Gauss-Seidel

Muc luc

- - Tai sao phải giải gần đúng?
 - Các phương pháp đưa ra
- Phương pháp Newton
 - Ý tưởng và công thức lặp
 - Điều kiện hội tụ và công thức sai số
 - Thuật toán và chương trình
- - Ý tưởng chung
 - Các phương pháp
 - - Công thức lặp và điều kiên hôi tu
 - Công thức sai số
 - Thuật toán và chương trình
- - Công thức lặp và điều kiên hôi tu
 - Công thức sai số

Ý tưởng và công thức lặp

Ý tưởng

Từ phương pháp Newton cho ax = 1:

$$x_{n+1}=x_n*(2-ax_n)$$
 với $n\in\mathbb{N}$

Áp dụng vào ma trận với E là ma trận đơn vị cùng cấp:

Công thức lặp

$$X_{k+1} = X_k(2E - AX_k)$$
 với $k \in \mathbb{N}$

Điều kiện hội tụ và công thức sai số

Điều kiên hôi tu

$$\|A^{-1} - X_k\| \le \|A^{-1}\| \|E - AX_0\|^{2^k} \xrightarrow{k \to \infty} 0$$
 nếu $\|E - AX_0\| < 1$

Công thức sai số

Khi $||E - AX_0|| \le q < 1$:

$$||A^{-1} - X_k|| \le \frac{||X_0||}{1 - a}q^{2^k}$$

Input, output

- Input: Ma trận A, xấp xỉ đầu X_0 và sai số ε . Giả thiết coi như các điều kiên hôi tu thỏa mãn.
- Output: Ma trận xấp xỉ A^{-1}
- Code:

https://github.com/bu1th4nh/TALENTED-K64MI/blob/master/ MI3040/report-code/newton.py

Mã giả

Algorithm 1: Phương pháp Newton tìm ma trân nghịch đảo

```
Input: Ma trận A, X_0, \varepsilon
Output: Ma trân X^* = A^{-1} là ma trân nghịch đảo
begin
     Nhập A, X_0, \varepsilon;
     a \leftarrow ||E - AX_0||;
     q2k \leftarrow q;
     X \longleftarrow X_0
     while \frac{\|X_0\|*q2k}{1-q} > \varepsilon do
     X \leftarrow X(2E - AX);

q2k \leftarrow q2k^2;
     end
```

Đưa ra X chính là ma trận nghịch đảo;

end

Muc luc

- - Tai sao phải giải gần đúng?
 - Các phương pháp đưa ra
 - Ý tưởng và công thức lặp
 - Điều kiên hôi tu và công thức sai số
 - Thuật toán và chương trình
- Giới thiệu các phương pháp tìm nghịch đảo ma trận chéo trội
 - Ý tưởng chung
 - Các phương pháp
 - Công thức lặp và điều kiên hôi tu
 - Công thức sai số
 - Thuật toán và chương trình
- - Công thức lặp và điều kiên hôi tu
 - Công thức sai số

Ý tưởng chung

Ý tưởng

Dưa phương trình AX = E về dạng công thức lặp sau:

$$X_{k+1} = BX_k + D$$

Ta cũng chứng minh được nếu ||B|| < 1 thì với giá trị xấp xỉ đầu bất kì thì X luôn hội tụ về nghiệm (Phương pháp lặp đơn).

 \longrightarrow Vậy làm thế nào để $\|B\| < 1$?

Các phương pháp được lựa chọn

- Phương pháp lặp Jacobi (dựa trên phương pháp lặp đơn)
- Phương pháp lặp Gauss Seidel (dựa trên phương pháp lặp Siedel)

Muc luc

- - Tai sao phải giải gần đúng?
 - Các phương pháp đưa ra

 - Ý tưởng và công thức lặp
 - Điều kiên hôi tu và công thức sai số
 - Thuật toán và chương trình
- - Ý tưởng chung
 - Các phương pháp
 - Phương pháp lặp Jacobi
 - Công thức lặp và điều kiện hội tụ
 - Công thức sai số
 - Thuật toán và chương trình
- - Công thức lặp và điều kiên hôi tu
 - Công thức sai số

Công thức lặp và điều kiện hội tụ

Đặt: $T = diag\{\frac{1}{A_{11}}, \frac{1}{A_{22}}, ..., \frac{1}{A_{nn}}\}$ là ma trận đường chéo cấp n, ta có:

Công thức lặp

$$X_{k+1} = (E - TA)X_k + T$$

Điều kiện hội tụ

 $\|E - TA\| < 1$ thì ma trận A phải chéo trội, nghĩa là:

$$\sum_{j=1, j
eq i}^{n} |A_{ij}| < |A_{ii}| \; orall i = \overline{1, n}$$
 chéo trội hàng

hoặc
$$\sum_{i=1}^{n}|A_{ij}|<|A_{jj}|$$
 $\forall j=\overline{1,n}$ chéo trội cột

Công thức sai số

Cho
$$B = E - TA$$
, $B_1 = E - AT$

Trường hợp chéo trội hàng: Với
$$\|B\|_{\infty} \leq q < 1$$

$$\left\|X_{k}-X^{*}\right\|_{\infty}\leq\frac{q}{1-q}\left\|X_{k}-X_{k-1}\right\|_{\infty}$$

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1-q} \|X_1 - X_0\|_{\infty}$$

Trường hợp chéo trội cột: Cho
$$\lambda = \frac{\max|A_{ii}|}{\min|A_{ii}|}, \|B_1\|_1 \le q < 1$$

$$\|X_k - X^*\|_1 \le \lambda \frac{q}{1-q} \|X_k - X_{k-1}\|_1$$

$$||X_k - X^*||_1 \le \lambda \frac{q^k}{1 - q} ||X_1 - X_0||_1$$

Thuật toán chính

```
Algorithm 2: Phương pháp Jacobi tìm ma trân nghịch đảo
   Input: Ma trân A chéo trôi, sai số \varepsilon
   Output: Ma trân X^* = A^{-1} là ma trân nghich đảo
   begin
        Nhập A, \varepsilon:
        p \leftarrow checkDomination(A):
        T \leftarrow diag\{\frac{1}{\Delta_{11}}, \frac{1}{\Delta_{22}}, ..., \frac{1}{\Delta_{m}}\};
        B \longleftarrow E - TA, B_1 \longleftarrow E - AT:
        q \leftarrow \text{getNorm}(B, B_1, p);
        \lambda \leftarrow getLambda(A, p);
        X^* \leftarrow \text{iterate}(X_0 \leftarrow A, B, T, q, \lambda, p, \varepsilon);
        Trả về X^* là ma trân nghịch đảo;
```

end

Function checkDomination(A)

Input: Ma trân A

Output: Giá trị kiểm tra p bằng 1 nếu A chéo trội hàng, -1 nếu A chéo trôi côt, 0 khi A không chéo trôi

begin

row $dom \leftarrow 1$, $col dom \leftarrow 1$;

for i = 1 to n do

if
$$\sum_{j=1,j\neq i}^{n}|A_{ij}|>=|A_{ii}|$$
 then $row_dom\longleftarrow 0$;

if
$$\sum_{j=1,j\neq i}^{n} |A_{ji}| >= |A_{ii}|$$
 then $col_dom \longleftarrow 0$;

end

if
$$row_dom = 1$$
 then return 1;
if $col_dom = 1$ then return -1;
return 0;

end


```
Function getNorm(A, A_1, p)
```

Input: Ma trận A, giá trị kiếm tra p **Output:** $||A||_{\infty}$ nếu p = 1, $||A_1||_{1}$ nếu p = -1begin

if p=1 then return $||A||_{\infty}$; if p = -1 then return $||A_1||_1$;

end

Function getLambda(A, p)

Input: Ma trân A, giá tri kiểm tra p **Output:** $\lambda=1$ nếu p=1, $\lambda=\frac{\max|A_{ii}|}{\min|A_{ii}|}$ nếu p=-1

begin

if
$$p = 1$$
 then return 1;

 $max A \leftarrow |A_{11}|$;

 $max A = max(max A, |A_{ii}|);$

$$min_A \leftarrow |A_{11}|;$$
 for $i = 1$ to n do

for i = 1 to n do

18 / 37

Lặp - Đánh giá tiên nghiệm

```
Function iterate(X_0, B, T, q, \lambda, p, \varepsilon)
  Input: Ma trận xấp xỉ đầu X_0, B, T, hệ số q, \lambda, giá trị kiếm tra p
            và sai số \varepsilon
   Output: X^* là ma trận nghịch đảo theo đánh giá tiên nghiệm
   begin
       ak \leftarrow 1, X \leftarrow X_0:
       predecessor norm \leftarrow getNorm((BX_0 + T) - X_0, p);
       while \frac{\lambda*qk*predecessor\_norm}{1-a} > \varepsilon do
           X \longleftarrow BX + T;
          ak \leftarrow qk * q;
       end
       return X
  end
```

Lặp - Đánh giá hậu nghiệm

```
Function iterate(X_0, B, T, q, \lambda, p, \varepsilon)
  Input: Ma trân xấp xỉ đầu X_0, B, T, hê số q, \lambda, giá tri kiểm tra p
          và sai số \varepsilon
  Output: X* là ma trân nghịch đảo theo đánh giá hâu nghiệm
  begin
      old X \leftarrow X_0:
      while \frac{\lambda*q*getNorm(new\_X-old\_X,p)}{1-a}>\varepsilon do
          old X \leftarrow new X;
          new X \leftarrow B * old X + T;
      end
      return new X
  end
```

Chương trình

https://github.com/bu1th4nh/TALENTED-K64MI/blob/master/ MI3040/report-code/jacobian.py

Muc luc

- - Tai sao phải giải gần đúng?
 - Các phương pháp đưa ra

 - Ý tưởng và công thức lặp
 - Điều kiên hôi tu và công thức sai số
 - Thuật toán và chương trình
 - - Ý tưởng chung
 - Các phương pháp

 - Công thức lặp và điều kiên hôi tu
 - Công thức sai số
 - Thuật toán và chương trình
- Phương pháp lặp Gauss-Seidel
 - Công thức lặp và điều kiện hôi tu
 - Công thức sai số

Công thức lặp và điều kiện hội tụ

Đặt $B=E-T\!A$ với $T=diag\{\frac{1}{A_{11}},\frac{1}{A_{22}},...,\frac{1}{A_{nn}}\}$ tương tự phương pháp Jacobi

Công thức lặp - Phương pháp Gauss-Seidel nguyên bản [4]

$$X_i^{(k+1)} = \sum_{j=1}^{i-1} B_{ij} X_j^{(k+1)} + \sum_{j=i+1}^{n} B_{ij} X_j^{(k)} + T_i$$

với mọi $i = \overline{1, n}$ và A_i là dòng i của ma trận A

$$X_i^{k+1} = (1 - \omega)X_i^k + \omega \left[\sum_{j=1}^{i-1} B_{ij} X_j^{(k+1)} + \sum_{j=i+1}^n B_{ij} X_j^{(k)} + T_i \right]$$

với ω là hệ số điều chỉnh (relaxation factor)

Điều kiện hội tụ: Tương tự phương pháp Jacobi, tức là A phải chéo trất sới 37

Trường hợp chéo trội hàng

Cho:

$$q = \max_{1 \le i \le n} \frac{\sum_{j=i}^{n} |B_{ij}|}{1 - \sum_{i=1}^{i-1} |B_{ij}|} \le \|B\|_{\infty} < 1$$

$$||X_k - X^*||_{\infty} \le \frac{q}{1-q} ||X_k - X_{k-1}||_{\infty}$$

$$\|X_k - X^*\|_{\infty} \le \frac{q^k}{1-q} \|X_1 - X_0\|_{\infty}$$

Trường hợp chéo trội cột

Cho:

$$q = \max_{1 \le i \le n} rac{\sum\limits_{j=1}^{i} |B_{ji}|}{1 - \sum\limits_{j=i+1}^{n} |B_{ji}|} \le \|B\|_1 < 1$$
 $S = \max_{1 \le i \le n} \sum_{i=i+1}^{n} |B_{ji}|$

$$\|X_k - X^*\|_1 \le \frac{q}{(1-S)(1-q)} \|X_k - X_{k-1}\|_1$$

 $\|X_k - X^*\|_1 \le \frac{q^k}{(1-S)(1-q)} \|X_1 - X_0\|_1$

Thuật toán chính

```
Algorithm 3: Phương pháp Gauss-Seidel tìm ma trân nghịch đảo
  Input: Ma trân A chéo trôi, sai số \varepsilon, hệ số điều chỉnh \omega
  Output: Ma trân X^* = A^{-1} là ma trân nghich đảo
  begin
        Nhập A, \varepsilon:
        p \leftarrow checkDomination(A):
        T \longleftarrow diag\{\frac{1}{A_{11}}, \frac{1}{A_{22}}, ..., \frac{1}{A_{nn}}\};
        B \longleftarrow E - TA:
       S \leftarrow getSCoeff(B, p):
        q \leftarrow \text{getqCoeff}(B, p);
       X^* \leftarrow \text{iterate}(X_0 \leftarrow A, B, T, S, q, p, \omega, \varepsilon);
       Trả về X^* là ma trân nghịch đảo;
  end
```

Function getSCoeff(A, p)

```
Input: Ma trận A, giá trị kiểm tra p
Output: S = 0 nếu p = 1, \max_{1 \le i \le n} \sum_{j=i+1}^{n} |A_{ji}| nếu p = -1
begin
    if p = 1 then return 0;
   for i=1 to n do S \longleftarrow max(S, \sum\limits_{j=i+1}^{n}|A_{ji}|);
    return S
end
```

Trở về thuật toán chính

Input: Ma trận A, giá trị kiểm tra p

Output:
$$q = \max_{1 \le i \le n} \frac{\sum\limits_{j=i}^{n} |A_{ij}|}{1 - \sum\limits_{i=1}^{i-1} |A_{ij}|}$$
 nếu $p = 1$, $\max_{1 \le i \le n} \frac{\sum\limits_{j=1}^{i} |A_{ji}|}{1 - \sum\limits_{j=i+1}^{n} |A_{ji}|}$ nếu

$$p = -1$$

begin

 $a \leftarrow 0$:

for
$$i = 1$$
 to n do

$$Q1 \longleftarrow 0, Q2 \longleftarrow 0;$$

if
$$p = 1$$
 then $Q1 \leftarrow \sum_{j=i}^{n} |A_{ij}|$, $Q2 \leftarrow \sum_{j=1}^{i-1} |A_{ij}|$;

else
$$Q1 \leftarrow \sum_{j=1}^{i} |A_{ji}|, Q2 \leftarrow \sum_{j=i+1}^{n} |A_{ji}|;$$

 $q \leftarrow \max(q, \frac{Q1}{1-Q2});$

end

←□ → ←□ → ← 壹 → ← 壹 →

Lặp - Đánh giá tiên nghiệm

```
Function iterate(X_0, B, T, S, q, p, \omega, \varepsilon)
   Input: Ma trận xấp xỉ đầu X_0, B, T, hệ số S, q, giá trị kiểm tra p,
            hệ số điều chỉnh \omega và sai số \varepsilon
   Output: X* là ma trân nghich đảo theo đánh giá tiên nghiêm
   begin
        ak \leftarrow 1:
       X \longleftarrow X_0:
       X_1 \leftarrow \text{nextIteration}(X_0, B, T, \omega);
       predecessor norm \leftarrow getNorm(X_1 - X_0, p);
       while \frac{qk*predecessor\_norm}{(1-q)*(1-S)} > \varepsilon do
            X \leftarrow \text{nextIteration}(X, B, T, \omega);
            qk \leftarrow qk * q:
        end
        return X
```

Lặp - Đánh giá hậu nghiệm

```
Function iterate(X_0, B, T, S, q, p, \omega, \varepsilon)
  Input: Ma trận xấp xỉ đầu X_0, B, T, hệ số S, q, giá trị kiểm tra p,
           hê số điều chỉnh \omega và sai số \varepsilon
  Output: X* là ma trân nghịch đảo theo đánh giá hâu nghiệm
  begin
       old X \leftarrow X_0:
       new X \leftarrow nextIteration(X_0, B, T, \omega);
       while \frac{\lambda*q*getNorm(new\_X-old\_X,p)}{1-a}>\varepsilon do
           old X \leftarrow new X;
           new X \leftarrow nextIteration(X, B, T, \omega);
       end
       return new X
  end
```

Function nextlteration(old X, B, T, ω)

Input: Ma trận *old* X, B, T, và hệ số ω

Output: Đưa ra ma trận tiếp theo thu được từ ma trận ban đầu old X theo công thức lặp Gauss-Seidel

begin

$$new_X \leftarrow Ma$$
 trận không cấp n ;

for i = 1 to n do

$$new_{X_i} = \sum_{j=1}^{i-1} B_{ij} * new_{X_j} + \sum_{j=i+1}^{n} B_{ij} * old_{X_j} + T_i;$$

end

return
$$(1 - \omega) * old_X + \omega * new_X$$

end

Trở về thuật toán chính Trở về tiến trình lặp

Chương trình

https://github.com/bu1th4nh/TALENTED-K64MI/blob/master/ MI3040/report-code/gauss_seidel.py

Muc luc

- - Tai sao phải giải gần đúng? Các phương pháp đưa ra

 - Ý tưởng và công thức lặp
 - Điều kiên hôi tu và công thức sai số
 - Thuật toán và chương trình

 - Ý tưởng chung Các phương pháp
 - - Công thức lặp và điều kiên hôi tu
 - Công thức sai số
 - Thuật toán và chương trình
 - - Công thức lặp và điều kiên hôi tu
 - Công thức sai số

Ưu, nhược điểm

Phương pháp	Newton	Lặp Jacobi	Lặp Gauss-Seidel
Ưu điểm	Kiểm soát được sai số tính toán, sai số được cải thiện san Tốc độ hội tụ nhanh trong một số trường họ		
Nhược điểm	Khó tìm giá trị xấp xỉ đầu <i>X</i> 0	,	Yêu cầu ma trận phải chéo trộ

 \longrightarrow Tìm giá trị xấp xỉ đầu cho X_0 trong phương pháp Newton?

Ưu, nhược điểm

- 1	Phương pháp	Newton	Lăp Jacobi	Lặp Gauss-Seidel
	Filuong phap		• •	
	Ưu điểm	Kiểm soát được sai số tính toán, sai số được cải thiện sau n		
		Tốc độ hội tụ nhanh trong một số trường hợp		
	Nhược điểm	Khó tìm giá trị xấp xỉ đầu <i>X</i> 0	,	Yêu cầu ma trận phải chéo trộ

 \longrightarrow Tìm giá trị xấp xỉ đầu cho X_0 trong phương pháp Newton?

- Đặt $X_0 = \frac{A}{\|A\|_1 \|A\|_{\infty}}$ [3]
- Sử dụng kết quả của các phương pháp tính trực tiếp ma trận nghịch đảo làm xấp xỉ đầu

Câu hỏi?

Tài liệu tham khảo

- Richard L. Burden J. Douglas Faires. *Numerical Methods, 4th Edition*. Brooks / Cole, Cengage Learning, 2013, 2003, 1998.
- The Pennsylvania State University Jaan Kiusalaas. *Numerical Methods in Engineering With MATLAB*. Cambridge University Press, 2005.
- Thomas E. Phipps Jr. "The inversion of large matrices: The Pan and Reif algorithm provides a solution". In: *Byte Magazine* 11.04 (4-1986).
- Lê Trọng Vinh. *Giáo trình Giải tích số*. NXB Khoa học và kỹ thuật, 2007.

