Ultracold molecule assembly

Yichao Yu

Ni Group/Harvard

Aug 11, 2017

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

- Strong and tunable interaction
- Rich internal energy levels
- High filling fraction
- Single site detection and manipulation

Applications

- Simulation of many-body system
- Quantum computation

Applications

- Simulation of many-body system
- Quantum computation

Applications

- Simulation of many-body system
- Quantum computation

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

- MOT (Na + Cs)
- Loading single atoms
- Raman sideband cooling
- Merge traps
- Make molecules!

Atom loading and cooling

Setup

Setup

Wave function size mismatch

Molecule

Atom

Goal of cooling

- Single initial state
- Shrink wavefunction size

Raman sideband cooling of Sodium

Raman sideband cooling of Sodium

Difficulties

- High initial temperature $(40\mu K)$
- High recoil heating (High Lamb Dicke parameter)

Raman sideband cooling of Sodium

Difficulties

- High initial temperature $(40\mu K)$
- High recoil heating (High Lamb Dicke parameter)

Axis	Ground state probability
1 (Axial)	93.1(2.5)%
2 (Radial)	91.9(2.3)%
3 (Radial)	92.9(2.5)%

3D ground state: 79.5(3.6)%Loss after cooling: 15%

Total 3D ground state preparation fidelity: 67.6(3.1)%

Rabi flopping (radial)

Rabi flopping (radial)

Good agreement in ground state probability between spectrum and Rabi flopping data.

Rabi flopping (axial)

Conclusion

67.6(3.1)% ground state preparation fidelity (79.5(3.6)% without loss)

Improvements

- Reduce off-resonance scattering from Raman beams
- Reduce magnetic field fluctuation
- Reduce loss during cooling

Aug 11, 2017

Axial matrix element

15 / 16

Radial 2 matrix element

Radial 3 matrix element

17 / 16