Notes of the Introduction To Algorithms

Kai Zhao

December 1, 2015

Contents

Ι	Foundations				
1	The Role of Algorithms in Computing 1.1 Algorithms				
		1.1.1	Give a real-world example that requires sorting or a real-world example that requires computing a convex hull	8	
		1.1.2	Other than speed, what other measures of efficiency	0	
			might one use in a real-world setting?	8	
		1.1.3	Select a data structure that you have seen previously, and discuss its strengths and limitations	8	
		1.1.4	How are the shortest-path and traveling-salesman prob-		
		1.1.5	lems given similar? How they are different? Come up with a real-world problem in which only the	8	
		1.1.0	best solution will do. Then come up with one in which a solution that is "approximately" the best is good		
	1.2	Algori	enough	8 8	
2	Get	ting S	tarted	9	
3	Gro	owth o	f Functions	11	
4	Div	ide-an	d-conquer	13	
5	Pro	babilis	stic Analysis and Randomized Algorithms	15	
II	Sc	orting	and Order Statistics	17	
6	Hea	psort		19	

4	CONTENTS
III Data Structures	21
IV Advanced Design and Analysis Techniques	23
V Advanced Data Structures	25
VI Graph Algorithms	27
VII Selected Topics	29
VIII Appendix: Mathematical Background	31

Part I Foundations

The Role of Algorithms in Computing

1.1 Algorithms

Exercies

1.1.1 Give a real-world example that requires sorting or a real-world example that requires computing a convex hull.

Answer: One example that requires sorting is that teachers will sort our scores after the exam.

1.1.2 Other than speed, what other measures of efficiency might one use in a real-world setting?

Answer: cost, space, manpower, material resources. In different cases, each can be the key of measures of efficiency.

Reference: Reference

1.1.3 Select a data structure that you have seen previously, and discuss its strengths and limitations.

Answer: Array

strengths: access directly

limitations: costs lot when insert or delete

- 1.1.4 How are the shortest-path and traveling-salesman problems given similar? How they are different?
- 1.1.5 Come up with a real-world problem in which only the best solution will do. Then come up with one in which a solution that is "approximately" the best is good enough.
- 1.2 Algorithms as a technology

Getting Started

Growth of Functions

Divide-and-conquer

Probabilistic Analysis and Randomized Algorithms

16CHAPTER 5. PROBABILISTIC ANALYSIS AND RANDOMIZED ALGORITHMS

Part II Sorting and Order Statistics

Heapsort

Part III Data Structures

Part IV Advanced Design and Analysis Techniques

Part V Advanced Data Structures

Part VI Graph Algorithms

Part VII Selected Topics

Part VIII

Appendix: Mathematical Background