LASER dataset for the samples A, B, C, D and perovskite

```
In[384]:=
       titles = {"Sample A", "Sample B", "Sample C", "Sample D", "Perovskite"};
         Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                      Documents/com~apple~CloudDocs/LM
                      MANO/Notebooks/NP/esperimento/LASER/laser_``.txt", #],
                 "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                 "NumberPoint" → ".", CharacterEncoding → "UTF8"]][
              All, Range[1, 2]][All, \langle |"\lambda (nm)" \rightarrow 1, "I" \rightarrow 2| \rangle] & /@
           {"sample_A", "sample_B", "sample_C",
            "sample D",
            "perovskite2"};
In[386]:=
       data = Transpose[{#[All, "λ (nm)"], #[All, "I"]} // Normal] & /@ data;
In[387]:=
       lamPk = FindPeaks[#, 100, Automatic, 0.1] & /@
            (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@
              (Transpose[#] & /@ data)) // Normal;
In[388]:=
       Rule @@@ Transpose[{titles, Column@Flatten@Take[#, All, 1] & /@ lamPk}] //
         Association // Dataset
Out[388]=
```

Sample A	374.073 460.5
Sample B	374.278 554.3
Sample C	374.38 672.472 673.291
Sample D	374.073 550.409
Perovskite	571.504

0.05

420

440

460

480

500

A 0.148411 0.00155118

 σ | 18.7921 0.226815

465.551 0.226788

95.6765

2052.8

82.8519

	DF	SS	MS	
Model	3	68.4555	22 .8	3185
Error	664	0.122707	0.00	00184799
Uncorrected Total	667 6	38.5782		
Corrected Total	666	45.7676		

	Estimate	Standard Error t-Statistic P-			Valu€
Α	0.808636	0.00162721	496.945	0.	
μ	554.26	0.0307381	18 031.7	0.	
σ	13.2287	0.0307377	430.374	0.	

	DF	SS	MS
Model	3	3.95992	1.31997
Error	651	0.0298337	0.0000458
Uncorrected Total	6543	3.98976	
Corrected Total	653	2.54211	

	Estimate	Standard Error	t-Statistic	P-	Value
Α	0.192741	0.000803042	240.013	0.	
μ	672.052	0.0663241	10132.9	0.	
σ	13.786	0.0663233	207.861	0.	

	DF	SS	MS	
Model	3	44.8615	14.9538	
Error	891	0.282091	0.0003166	
Uncorrected Total	894 4	45.1436		
Corrected Total	893	30.961		

	Estimate	Standard Error	t-Statistic F	D _	Value
Α	0.600014	0.00195221	307.352	0.	
μ	549.599	0.0590979	9299.8	0.	
σ	15.7305	0.0590969	266.181	0.	

	DF	SS	MS
Model	3	23.804	7.93468
Error	439	1.16107	0.0026448
Uncorrected Total	442 2	24.9651	
Corrected Total	441 1	17.4937	

	Estimate	Standard Error	t-Statistic P-	- Value
Α	0.643393	0.00830639	77.4576	3.85314
μ	574.345	0.10877	5280.35	0.
σ	7.29657	0.108786	67.0728	7.79074

UV dataset for the samples A, B, C, D

557.167

```
In[394]:=
       titles = {"Sample A", "Sample B", "Sample C", "Sample D"};
         Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                      Documents/com~apple~CloudDocs/LM
                      MANO/Notebooks/NP/esperimento/uvNewCorrect/sample``.txt",
                   #], "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                 "NumberPoint" → ".", CharacterEncoding → "UTF8"]][All, Range[1, 2]][
             All, \langle | "\lambda (nm)" \rightarrow 1, "I" \rightarrow 2 | \rangle ] \& /@ {"A", "B", "C", "D"};
In[396]:=
       data = Transpose[{#[All, "λ (nm)"], #[All, "I"]} // Normal] & /@ data;
In[397]:=
       lamPk = FindPeaks[#, 50, Automatic, 0.05] & /@
            (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@
               (Transpose[#] & /@ data)) // Normal;
In[398]:=
       Rule @@@Transpose[{titles, Column@Flatten@Take[#, All, 1] & /@ lamPk}] //
         Association // Dataset
Out[398]=
                          406.842
        Sample A
                          467.259
                          407.046
        Sample B
                          553.686
                          407.251
        Sample C
                          672.677
                          407.046
        Sample D
```

```
ListLinePlot[data, PlotRange → All, AxesLabel → {"λ (nm)", "I"}] // Show[#,
            ListPlot[lamPk, PlotLabels → titles], ImageSize → Large, PlotRange → All] &
Out[399]=
                                                                   Sample B
        8.0
        0.6
        0.4
                                                                   Sample C
        0.2
                                                                   Sample D
                                                                   Sample A
                                                                                                     \lambda (nm)
                                                                          800
                                                                                               1000
In[400]:=
        lamIntervals = {{440, 500}, {480, 650}, {600, 750}, {500, 650}};
        valsInt =
           Cases[#1, \{x_, y_\} / ; #2[1]] \le x \le #2[2]] &@@@Transpose[{data, lamIntervals}];
In[402]:=
        Transpose[{valsInt, {467.25, 553.68, 672.47, 557.4}}]
Out[402]=
                                                      , FittedModel 0.875347 e^{-0.00256873 (-\ll 18 \gg + \lambda)^2}
        \{ \text{FittedModel} \mid 0.106529 \ e^{-0.00153351} \ (-\ll 19 \gg + \lambda)^2 \ | 
                          0.191232 e^{-0.00237737} (-\ll 18 \gg + \lambda)^2 , FittedModel 0.157592 e^{-0.00236518} (-\ll 18 \gg + \lambda)^2
         FittedModel
In[403]:=
        \{Show[Plot[#1[\lambda], \{\lambda, #3[1], #3[2]]\}, ImageSize \rightarrow Medium, PlotLabel \rightarrow #4],
               ListPlot[#2, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All],
              Column[{#1["ANOVATable"], "", #1["ParameterTable"]}]} &@@@
           Transpose[{fitFn, valsInt, lamIntervals, titles}] // TableForm
        ... General: Exp [-1422.88] is too small to represent as a normalized machine number; precision may be lost.
        ... General: Exp [-2189.75] is too small to represent as a normalized machine number; precision may be lost.
                                                                                                              0
        ... General: Exp [-4855.1] is too small to represent as a normalized machine number; precision may be lost.
        ... General: Further output of General::munfl will be suppressed during this calculation.
```

In[399]:=

	DF	SS	MS
Model	3	1.61686	0.538954
Error	269	0.0121337	0.00004510
Uncorrected Total	272 1	1.629	
Corrected Total	271	0.182624	

	Estimate	Standard Error	t-Statistic	P- Valu	ıe
Α	0.106529	0.000721465	147.656	1.7627)
μ	467.477	0.145401	3215.09	0.	
σ	18.0569	0.176268	102.44	1.5823	

	DF	SS	MS
Model	3	84.6172	28.2057
Error	754	0.171484	0.000227432
Uncorrected Total	757 8	34.7887	
Corrected Total	756	57.893	

	Estimate	Standard Erro	Standard Error t-Statistic P-			
Α	0.875347	0.00175761	498.033	0.		
μ	553.295	0.0323471	17104.9	0.		
σ	13.9517	0.0323466	431.317	0.		

	DF	SS	MS
Model	3	4.10082	1.36694
Error	651	0.039738	0.00006104
Uncorrected Total	654 4	4.14056	
Corrected Total	653	2.48463	

	Estimate Standard Error t-Statistic P-				Value
Α	0.191232	0.000903615	211.63	0.	
μ	671.905	0.0791273	8491.44	0.	
σ	14.5023	0.0791263	183.28	0.	

	DF	SS	MS
Model	3	2.85658	0.952194
Error	664	0.0145978	0.00002198
Uncorrected Total	667 2	2.87118	
Corrected Total	666 1	1.77811	

	Estimate Standard Error t-Statistic P-			Value	
Α	0.157592	0.000535448	294.318	0.	
μ	556.035	0.057043	9747.66	0.	
σ	14.5396	0.0570424	254.891	0.	

```
In[406]:=
```

{Show[Plot[fiti[λ], { λ , 300, 900}, ImageSize → Large, PlotRange → All, PlotLabel → "Sample A"], ListPlot[selVal, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All], Column[{fiti["ANOVATable"], "", fiti["ParameterTable"]}]} // TableForm

 \odot General: 0.721808 2.52765 \times 10⁻³⁰⁸ is too small to represent as a normalized machine number; precision may be lost.

... General: Exp [-709.51] is too small to represent as a normalized machine number; precision may be lost.

•

... General: Exp [-710.752] is too small to represent as a normalized machine number; precision may be lost.

••• General: Further output of General::munfl will be suppressed during this calculation.

Out[406]//TableForm=

DF SS MS Model 35.2949 3.92165 2655 0.31184 0.000117454 Error Uncorrected Total 2664 35.6067 Corrected Total 2663 30.6546

	Estimate	Standard Error	t-Statistic F	P-Value	
A ₁	0.721808	0.0020422	353.446	0.	
μ_1	407.373	0.0199268	20 443.5	0.	
σ_1	6.95133	0.0245919	282.668	0.	
A_2	0.0842021	0.000954082	88.2545	0.	
μ_2	457.219	0.520148	879.017	0.	
σ_{2}	32.0018	0.635717	50.3396	0.	
A_3	0.0301523	0.000588465	51.2389	0.	
μ_3	606.328	2.20443	275.05	0.	
σ_{3}	70.8791	2.38818	29.6792	2.04606	$\times 10^{-167}$

Green, red and UV LEDs spectra

406.637

UV LED

```
In[407]:=
       titles = {"Green LED", "Red LED", "UV LED"};
       data =
         Dataset[Import[ToString@StringForm["/Users/giovannigravili/Library/Mobile
                      Documents/com~apple~CloudDocs/LM
                      MANO/Notebooks/NP/esperimento/LEDs/``LedTxt.txt", #],
                 "Table", "HeaderLines" → 0, "FieldSeparators" → "\t",
                 "NumberPoint" → ".", CharacterEncoding → "UTF8"]][All, Range[1, 2]][
             All, \langle | "\lambda (nm)" \rightarrow 1, "I" \rightarrow 2 | \rangle ] \& /@ {"green", "red", "uv"};
In[409]:=
       data = Transpose[{\#[All, "\lambda (nm)"], \#[All, "I"]} // Normal] & /@ data;
In[410]:=
       lamPk = FindPeaks[#, 100, Automatic, 0.05] & /@
            (TimeSeriesResample@TimeSeries[#2, {#1}] &@@@
               (Transpose[#] & /@ data)) // Normal;
In[411]:=
       Rule @@@ Transpose[{titles, Column@Flatten@Take[#, All, 1] & /@ lamPk}] //
          Association // Dataset
Out[411]=
        Green LED
                             560.854
        Red LED
                             686.398
```

Out[415]=

{FittedModel

FittedModel

```
In[412]:=
       ListLinePlot[data, PlotRange \rightarrow All, AxesLabel \rightarrow {"\lambda (nm)", "I"}] // Show[#,
           ListPlot[lamPk, PlotLabels → titles], ImageSize → Large, PlotRange → All] &
Out[412]=
       0.20
                                                           Red LED
       0.15
                                                           UV LED
       0.10
                                                           Green LED
       0.05
                                                                                       \lambda (nm)
          200
                                                                800
In[413]:=
       lamIntervals = {{500, 650}, {580, 800}, {360, 450}};
       valsInt =
         Cases[\#1, \{x\_, y\_\} \ /; \#2[\![1]\!] \le x \le \#2[\![2]\!]] \& @@@Transpose[\{data, lamIntervals\}];
In[415]:=
       Transpose[{valsInt, {560.9, 686.4, 406.6}}]
```

0.183749 $e^{-0.00299913 (-\ll 18 \gg + \lambda)^2}$, FittedModel 0.10579 $e^{-0.00947149 (-\ll 18 \gg + \lambda)^2}$

 $0.0623024 \ e^{-0.00275522 \ (-\ll 18 \gg + \lambda)^2}$

In[416]:=

 $\{\text{Show}[\text{Plot}[\#1[\lambda], \{\lambda, \#3[1]], \#3[2]]}\}, \text{ImageSize} \rightarrow \text{Medium}, \text{PlotLabel} \rightarrow \#4],$ ListPlot[#2, PlotStyle → {Orange, PointSize[Small]}], PlotRange → All], Column[{#1["ANOVATable"], "", #1["ParameterTable"]}]} &@@@

Transpose[{fitFn, valsInt, lamIntervals, titles}] // TableForm ... General: Exp [-1155.2] is too small to represent as a normalized machine number; precision may be lost. ... General: Exp [-3532.45] is too small to represent as a normalized machine number; precision may be lost. ... General: Exp [-1063.13] is too small to represent as a normalized machine number; precision may be lost. General: Further output of General::munfl will be suppressed during this calculation. Out[416]//TableForm= Green LED 0.06 DF SS MS 0.137573 Model 0.412719 0.05 664 0.00884482 0.000013 Uncorrected Total 667 0.421563 0.04 Corrected Total 666 0.26772 0.03Estimate Standard Error t-Statistic P-A 0.0623024 0.000433495 143.721 5238.78 0. μ | 567. 0.108231 σ 13.4712 0.10823 124.469 0. 0.01 520 540 560 580 600 640 Red LED 0.20 DF SS Model 3.36313 1.12104 0.15 954 0.0776968 0.0000814 Error **Uncorrected Total** 957 3.44083 Corrected Total 956 2.59732 0.10 Estimate Standard Error t-Statistic P-Value A 0.183749 0.00110745 165.92 μ | 684.39 0.0898578 7616.37 0.05 σ | 12.9118 | 0.0898569 143.693 0. 750 800 600 650 700

· ·		10/11	- D		
0.12		UV LI	ED		
0.12		3			
ļ			~		
0.10		<i>i</i> /	1		
-		1	<u>;</u>		
0.08		/	1		
ţ			()		
0.06		į.	1		
0.00		<i> </i>	<i>;</i>		
ļ.		<i> </i>	4		
0.04		F	\ \		
+		F	R.		
0.02		F	\:\;		
ļ		4	/,	Acres 1	
-	and the second second			- Mandel or politic	1770a
-	380	400	420	440	

	DF	SS	MS
Model	3	0.665053	0.221684
Error	412	0.00903571	0.0000219
Uncorrected Total	415 (0.674089	
Corrected Total	414 (0.451651	

	Estimate Standard Error t-Statistic P-Value				
Α	0.10579	0.000744038	142.184	0.	
μ	407.296	0.0590058	6902.65	0.	
σ	7.26567	0.0590055	123.136	0.	

Calculation of the concentration

```
\lambda = UnitConvert[672.84 \text{ nm}, "SIBase"]
Out[496]=
          \textbf{6.7284} \times \textbf{10}^{-7} \; \textbf{m}
          c = c // UnitConvert[#, "SIBase"] & // N
Out[497]=
          2.99792 \times 10^8 \text{ m/s}
In[498]:=
          v = UnitConvert[c / \lambda, "SIBase"]
Out[498]=
          4.45563 \times 10^{14} \, \text{per second}
In[499]:=
         m0 = UnitConvert | electron PARTICLE | mass |, "SIBase" |
Out[499]=
          9.109383632 \times 10^{-31} \text{ kg}
In[500]:=
         meCdS = 0.21 m0
Out[500]=
          1.91297 \times 10^{-31} \text{ kg}
In[501]:=
          meCdSe = 0.13 m0
Out[501]=
          1.18422 \times 10^{-31} \text{ kg}
In[502]:=
          mhCdS = 0.8 m0
          mhCdSe = 0.45 m0
Out[502]=
          7.28751 \times 10^{-31} \text{ kg}
Out[503]=
          4.09922 \times 10^{-31} \text{ kg}
          h = UnitConvert[h, "SIBase"] // N
Out[504]=
          6.62607 \times 10^{-34} \text{ kg m}^2/\text{s}
```

```
In[505]:=
                                 e = UnitConvert | electron PARTICLE | electric charge | , "SIBase" | // N
Out[505]=
                                    -1.60218 \times 10^{-19} \text{ s A}
In[506]:=
                                 r = UnitConvert[3 nm , "SIBase"] // N
 Out[506]=
                                   3. \times 10^{-9} \text{ m}
In[507]:=
                                 egCdS = UnitConvert[2.45 eV , "SIBase"]
Out[507]=
                                   3.92533 \times 10^{-19} \text{ kg m}^2/\text{s}^2
In[508]:=
                                  egCdSe = UnitConvert[1.74 eV , "SIBase"]
Out[508]=
                                   2.78779 \times 10^{-19} \text{ kg m}^2/\text{s}^2
In[509]:=
                                 b = UnitConvert[0.24 eV , "SIBase"]
Out[509]=
                                  3.84522 \times 10^{-20} \text{ kg m}^2/\text{s}^2
In[510]:=
                                  eq = h v = (x egCdS + (1 - x) egCdSe - b x (1 - x)) +
                                                   \frac{h^2}{8 e r^2} \left( \frac{1}{x \text{ meCdS} + (1-x) \text{ meCdSe}} + \frac{1}{x \text{ mhCdS} + (1-x) \text{ mhCdSe}} \right)
Out[510]=
                                   2.95233 \times 10^{-19} \text{ kg m}^2/\text{s}^2 = (1 - x) x \left( -3.84522 \times 10^{-20} \text{ kg m}^2/\text{s}^2 \right) + 3.84522 \times 10^{-10} \text{ kg m}^2/\text{s}^2
                                            \left( -3.806 \times 10^{-32} \; kg^2 m^2 / \; (s^3 A) \; \right) \; \left( \frac{1}{(1-x) \; \left( \; 1.18422 \times 10^{-31} \; kg \; \right) \; + x \; \left( \; 1.91297 \times 10^{-31} \; kg \; \right)} \; + \right) \; \left( \frac{1}{(1-x) \; \left( \; 1.18422 \times 10^{-31} \; kg \; \right) \; + x \; \left( \; 1.91297 \times 10^{-31} \; kg \; \right)} \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.91297 \times 10^{-31} \; kg \; \right) \; + \left( \; 1.9
                                                               \frac{1}{(1-x)\left(4.09922\times10^{-31} \text{ kg}\right)+x\left(7.28751\times10^{-31} \text{ kg}\right)} +
                                             (\textbf{1}-\textbf{x}) \ \left(\ \textbf{2.78779} \times \textbf{10}^{-19} \ \text{kg} \ \text{m}^2 / \, \text{s}^2\ \right) + \textbf{x} \ \left(\ \textbf{3.92533} \times \textbf{10}^{-19} \ \text{kg} \ \text{m}^2 / \, \text{s}^2\ \right)
In[511]:=
                                  eqn = eq /. Quantity[a_, b_] → QuantityMagnitude[Quantity[a, b]] // Simplify;
In[512]:=
                                  NSolve[eqn, x, Reals, WorkingPrecision → 10]
Out[512]=
                                  \{\{x \rightarrow -1.348837209\}, \{x \rightarrow 2.555383712 \times 10^6\}\}
```

Calculations debugging

```
Out[513]=
                                                                               2.95233 \times 10^{-19} \text{ kg m}^2/\text{s}^2
In[514]:=
                                                                               (x \text{ egCdS} + (1 - x) \text{ egCdSe} - b x (1 - x)) /. \{x \rightarrow 0.9\}
 Out[514]=
                                                                                 3.77697 \times 10^{-19} \text{ kg m}^2/\text{s}^2
In[515]:=
Out[515]=
                                                                                 -\,3.806\times 10^{-32}\;kg^2m^2\!/\;(s^3A)
In[516]:=
                                                                                 \left(\frac{1}{x \text{ meCdS} + (1-x) \text{ meCdSe}} + \frac{1}{x \text{ mhCdS} + (1-x) \text{ mhCdSe}}\right) / \cdot \{x \rightarrow 0.9\}
Out[516]=
                                                                                 6.86949 \times 10^{30} / kg
In[517]:=
                                                                               \frac{h^2}{8 \; e \; r^2} \; \left( \frac{1}{x \; \text{meCdS} + (1-x) \; \text{meCdSe}} + \frac{1}{x \; \text{mhCdS} + (1-x) \; \text{mhCdSe}} \right) \; / \cdot \; \{x \to 0.9\} \; / / \; \left( \frac{1}{x \; \text{meCdS} + (1-x) \; \text{meCdSe}} + \frac{1}{x \; \text{mhCdS} + (1-x) \; \text{mhCdSe}} \right) \; / \cdot \; \{x \to 0.9\} \; / / \; \left( \frac{1}{x \; \text{meCdS} + (1-x) \; \text{meCdSe}} + \frac{1}{x \; \text{mhCdS} + (1-x) \; \text{mhCdSe}} \right) \; / \; \langle x \to 0.9 \rangle \; / / \; \langle x \to 0.9 \rangle \; / \; \langle x \to 0.9 \rangle \; / \langle x \to 0.9 \rangle \; / \; \langle x \to 0.9 \rangle \; 
                                                                                         ScientificForm
Out[517]//ScientificForm=
                                                                                 -2.61453\times 10^{-1}\; kg\,m^2\!/\; (\,s^3A)
```

In[518]:=