IMO 1970

Day 1

- 1 M is any point on the side AB of the triangle ABC. r, r_1, r_2 are the radii of the circles inscribed in ABC, AMC, BMC. q is the radius of the circle on the opposite side of AB to C, touching the three sides of AB and the extensions of CA and CB. Similarly, q_1 and q_2 . Prove that $r_1r_2q = rq_1q_2$.
- 2 We have $0 \le x_i < b$ for i = 0, 1, ..., n and $x_n > 0, x_{n-1} > 0$. If a > b, and $x_n x_{n-1} ... x_0$ represents the number A base a and B base b, whilst $x_{n-1} x_{n-2} ... x_0$ represents the number A' base a and B' base b, prove that A'B < AB'.
- 3 The real numbers a_0, a_1, a_2, \ldots satisfy $1 = a_0 \le a_1 \le a_2 \le \ldots b_1, b_2, b_3, \ldots$ are defined by $b_n = \sum_{k=1}^n \frac{1 \frac{a_{k-1}}{a_k}}{\sqrt{a_k}}$.
 - a.) Prove that $0 \le b_n < 2$.
 - **b.)** Given c satisfying $0 \le c < 2$, prove that we can find a_n so that $b_n > c$ for all sufficiently large n.

IMO 1970

Day 2

- 1 Find all positive integers n such that the set $\{n, n+1, n+2, n+3, n+4, n+5\}$ can be partitioned into two subsets so that the product of the numbers in each subset is equal.
- 2 In the tetrahedron ABCD, $\angle BDC = 90^{o}$ and the foot of the perpendicular from D to ABC is the intersection of the altitudes of ABC. Prove that:

$$(AB + BC + CA)^2 \le 6(AD^2 + BD^2 + CD^2).$$

When do we have equality?

3 Given 100 coplanar points, no three collinear, prove that at most 70% of the triangles formed by the points have all angles acute.