HOMEWORK 26

Note: * marked problems might be slightly more difficult or interesting than the unmarked ones.

- (1) Let X be the subspace of \mathbb{R}^2 consisting of the horizontal segment $[0,1] \times \{0\}$ together with all the vertical segments $\{r\} \times [0,1-r]$ for r a rational number r in the interval [0,1]. Show that X deformation retracts to any point (a,0) for $a \in [0,1]$, but not to any other point.
- (2) Show that a homotopy equivalence $f: X \to Y$ induces a bijection between the set of path components of X and the set of path components of Y, and that f restricts to a homotopy equivalence from each path component of X to the corresponding path component of Y.
- (3) Show that any two deformation retractions r_t^0 and r_t^1 of a space X onto a subspace A can be joined by a continuous family of deformations retractions r_t^s , $0 \le s \le 1$, of X onto A, where continuity means that the map $X \times I \times I \to X$ sending (x, s, t) to $r_t^s(x)$ is continuous.
- (4) Let $X \subset \mathbb{R}^m$ be the union of convex open sets X_1, X_2, \ldots, X_n such that $X_i \cap X_j \cap X_k \neq \emptyset$ for all i, j, k. Show that X is simply connected.
- (5) Show that there does not exist a covering map from \mathbb{RP}^2 to the torus.
- (6) Topology (Munkres), Chapter 9, Section 59, Exercise (4).
- (7) Topology (Munkres), Chapter 9, Section 60, Exercise (5).