(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-70778

(43)公開日 平成6年(1994)3月15日

(51)Int.Cl. ⁵ C 1 2 N 15/51	識別配号 ZNA	庁内整理番号	FΙ	技術表示箇所
C 0 7 K 13/00	21111	8517-4H	•	
C 1 2 N 1/21		7236-4B		•
C 1 2 P 21/02	С	8214-4B		
	_	8931-4B	C 1 2 N	15/ 00 A
			審查請求 未請求	京 請求項の数33(全 37 頁) 最終頁に続く
(21)出願番号	特顯平5-156087		(71)出願人	591063394
				財団法人東京都臨床医学総合研究所
(22)出願日	平成5年(1993)6月	11日		東京都文京区本駒込3丁目18番22号
		٠	(71)出願人	000144577
(31)優先権主張番号	特願平4-207391			株式会社三和化学研究所
(32)優先日	平 4 (1992) 7 月10日	1		愛知県名古屋市東区東外堀町35番地
(33)優先権主張国	日本(JP)		(71)出願人	390022998
,		•		東燃株式会社
				東京都千代田区一ツ橋1丁目1番1号
			(71)出願人	000170565
•				国際試薬株式会社
				兵庫県神戸市中央区浜辺通2丁目1番30号
			(74)代理人	弁理士 川口 義雄 (外2名)
				最終頁に続く

(54)【発明の名称】 非A非B型肝炎ウイルス抗原をコードする核酸断片

(57)【要約】

【構成】 非A非B型肝炎患者血漿より遺伝子工学的手法により得られた非A非B型肝炎ウイルスの構造及び非構造領域の抗原をコードするヌクレオチド配列を含む核酸断片、具体的には、配列表中配列番号1.2.3、4.5、6、7、8、9、10、11、12、13及び14に示されるアミノ酸配列の全部又は一部で表わされる非A非B型肝炎ウイルス抗原をコードするヌクレオチド配列を含む核酸断片、これらの核酸断片を含む発現ベクター、該発現ベクターを含む宿主細胞、該ウイルス抗原(ポリ)ペプチドの製法、並びにその組換えポリ(ペプチド)。

【効果】 非A非B型肝炎患者の診断及び非A非B型肝 炎ウイルスキャリヤーの検出に有用である。

【特許請求の範囲】

【請求項1】 非A非B型肝炎患者血漿より遺伝子工学的手法により得られた非A非B型肝炎ウイルスの構造及び非構造領域の抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項2】 配列番号1に示されるアミノ酸配列の全 部または一部で表わされる非A非B型肝炎ウイルス抗原 をコードするヌクレオチド配列を含む核酸断片。

【請求項3】 前記ヌクレオチド配列が配列番号1に示されるヌクレオチド番号1から700までの配列の全部または一部である請求項2記載の核酸断片。

【請求項4】 配列番号2に示されるアミノ酸配列の全部または一部で表わされる非A非B型肝炎ウイルス抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項5】 前記ヌクレオチド配列が配列番号2に示されるヌクレオチド番号1から909までの配列の全部または一部である請求項4記載の核酸断片。

【請求項6】 配列番号3に示されるアミノ酸配列の全部または一部で表わされる非A非B型肝炎ウイルス抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項7】 前記ヌクレオチド配列が配列番号3に示されるヌクレオチド番号1から852までの配列の全部または一部である請求項6記載の核酸断片。

【請求項8】 配列番号4に示されるアミノ酸配列の全 部または一部で表わされる非A非B型肝炎ウイルス抗原 をコードするヌクレオチド配列を含む核酸断片。

【請求項9】 前記ヌクレオチド配列が配列番号4に示されるヌクレオチド番号1から819までの配列の全部または一部である請求項8記載の核酸断片。

【請求項10】 配列番号5に示されるアミノ酸配列の 全部または一部で表わされる非A非B型肝炎ウイルス抗 原をコードするヌクレオチド配列を含む核酸断片。

【請求項11】 前記ヌクレオチド配列が配列番号5に 示されるヌクレオチド番号3から992までの配列の全 部または一部である請求項10記載の核酸断片。

【請求項12】 配列番号6に示されるアミノ酸配列の 全部または一部で表わされる非A非B型肝炎ウイルス抗 原をコードするヌクレオチド配列を含む核酸断片。

【請求項13】 前記ヌクレオチド配列が配列番号6に 示されるヌクレオチド番号1から594までの配列の全 部または一部である請求項12記載の核酸断片。

【請求項14】 配列番号7に示されるアミノ酸配列の 全部または一部で表わされる非A非B型肝炎ウイルス抗 原をコードするヌクレオチド配列を含む核酸断片。

【請求項15】 前記ヌクレオチド配列が配列番号7に 示されるヌクレオチド番号2から1141までの配列の 全部または一部である請求項14記載の核酸断片。

【請求項16】 配列番号8に示されるアミノ酸配列の 全部または一部で表わされる非A非B型肝炎ウイルス抗 原をコードするヌクレオチド配列を含む核酸断片。 【請求項17】 前記ヌクレオチド配列が配列番号8に 示されるヌクレオチド番号1から1134までの配列の 全部または一部である請求項16記載の核酸断片。

【請求項18】 配列番号9に示されるアミノ酸配列の 全部または一部で表わされる非A非B型肝炎ウイルス抗 原をコードするヌクレオチド配列を含む核酸断片。

【請求項19】 前記ヌクレオチド配列が配列番号9に 示されるヌクレオチド番号2から1663までの配列の 全部または一部である請求項18記載の核酸断片。

【請求項20】 配列番号10に示されるアミノ酸配列の全部または一部で表わされる非A非B型肝炎ウイルス抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項21】 前記ヌクレオチド配列が配列番号10 に示されるヌクレオチド番号2から667までの配列の全部または一部である請求項20記載の核酸断片。

【請求項22】 配列番号11に示されるアミノ酸配列 の全部または一部で表わされる非A非B型肝炎ウイルス 抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項23】 前記ヌクレオチド配列が配列番号11 に示されるヌクレオチド番号2から1120までの配列 の全部または一部である請求項22記載の核酸断片。

【請求項24】 配列番号12に示されるアミノ酸配列の全部または一部で表わされる非A非B型肝炎ウイルス 抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項25】 前記ヌクレオチド配列が配列番号12 に示されるヌクレオチド番号2から1174までの配列 の全部または一部である請求項24記載の核酸断片。

【請求項26】 配列番号13に示されるアミノ酸配列 の全部または一部で表わされる非A非B型肝炎ウイルス 抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項27】 前記ヌクレオチド配列が配列番号13 に示されるヌクレオチド番号2から1057までの配列 の全部または一部である請求項26記載の核酸断片。

【請求項28】 配列番号14に示されるアミノ酸配列 の全部または一部で表わされる非A非B型肝炎ウイルス 抗原をコードするヌクレオチド配列を含む核酸断片。

【請求項29】 前記ヌクレオチド配列が配列番号14 に示されるヌクレオチド番号2から646までの配列の 全部または一部である請求項28記載の核酸断片。

【請求項30】 請求項1~29のいずれか一項に記載の核酸断片が、プロモーターの下流に存在するベクター内のクローニング部位に導入された発現ベクター。

【請求項31】 請求項30記載の発現ベクターを含む 宿主細胞。

【請求項32】 組換え非A非B型肝炎ウイルス抗原 (ポリ) ペプチドの製造方法であって、

請求項1~29のいずれか一項に記載の核酸断片を適当な宿主細胞内で発現させ得る複製可能な発現ベクターを 構築する工程、

前記発現ベクターを宿主細胞内に導入して形質転換体を

得る工程、

前記核酸断片を発現させ得る条件下で前記形質転換体を 培養して前記組換え (ポリ) ペプチドを発現させる工 程、及び前記組換え (ポリ) ペプチドを回収する工程を 包含する方法。

【鯖求項33】 請求項32記載の方法により得られる 組換え(ポリ)ペプチド。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、非A非B型肝炎ウイルスの構造及び非構造領域の抗原をコードする核酸断片に関する。本発明はまた、該核酸断片を含む発現ベクター及び該ベクターを含む宿主細胞に関する。本発明はさらに、該抗原(ポリ)ペプチドの製造法及びそれによって得られる組換え(ポリ)ペプチドに関する。

[0002]

【従来の技術】一般にウイルス性肝炎の起因ウイルスとしては主として経口感染するA型肝炎ウイルス、血液を介して感染するB型肝炎ウイルスが広く知られている。また、B型肝炎ウイルスに付随して感染するD型(る)肝炎ウイルスの存在も知られている。

【0003】これらとは別に、長らく感染性が指摘されながらその病原因子の存在が解からなかった肝炎が存在し、複数のウイルスの存在が示唆されていたが、A型、B型肝炎ウイルスの存在と他の肝炎要因の除外診断によって非A非B型肝炎と総称されていた。この中で最近、経口感染によって肝炎を引き起こす非A非B型肝炎ウイルスが分離同定された。

【0004】一方、主として輸血を介して感染する非A 非B型肝炎は、B型肝炎ウイルスがワクチンの開発と、 輸血用血液のスクリーニングによってほぼ予防が可能と なった現在、輸血後肝炎の90%以上を占め、しかも感 染者の50%以上が慢性化し、肝硬変、肝癌への移行率 も高い事から重大な問題となっていた。

【0005】本ウイルスについては1989年に米国カ イロン社のChoo等が人血漿を感染させたチンパンジ 一の血漿を試料としてイムノスクリーニング法によって ウイルス遺伝子をクローニングし、クローニングされた ウイルス遺伝子を基に微生物を用いて発現させた抗原を 用いた抗体検査による診断法を開発した (Science 244: 359-362 (1989); Science 244:362-364 (1989); 特表平 2-500880号公報)。これを契機として、世界中 で活発な研究が開始され、ウイルスの全一次構造も明ら かにされており (Proc. Natl. Acad. Sci. 87:9524(199 0); Proc. Natl. Acad. Sci. 88:2451(1991); J. Viro l. 65, 1105(1991)) 、現在広くHepatitis C virus (HCV) という名称で呼ばれるように なっている。しかし当初カイロン社で開発されたc10 0-3抗原を用いた試薬では、慢性非A非B型肝炎患者 の70~80%しか検出できなかった(飯野四郎ら、医 学と薬学 26(1):87-95, 1991)。しかし、その後米国を初め、日本においても活発にHCV遺伝子のクローニングが行なわれ、ウイルス構造蛋白であるコア抗原を加えた第二世代の試薬の開発により、ほぼ90%の患者を検出することが可能となっている(河合忠ら、臨床検査機器・試薬 14(4):725-733, 1991)。しかしこの改良された第二世代の試薬においても散発性非A非B型肝炎患者においてはその40%程度が検出されるに留まっている。

【0006】一方、HCVの研究の進展と共に、ウイルス遺伝子間でかなり相同性の異なるものの存在が指摘され、少なくとも2種類以上の遺伝子型に分けられるのではないかと考えられるようになりつつある (Virus Gene 5:3, 243(1991); Proc. Natl. Acad. Sci. 88:10292(1991))。

[0007]

【発明が解決しようとする課題】上述したように、非A 非B型肝炎患者のかなりの部分が第二世代の、構造及び 非構造領域の抗原を組み合わせたHCV抗体検出試薬に よって診断可能となってきたが、依然としてこれらの試 薬によって検出できない患者が存在する。この原因が、 タイプの異なる非A非B型肝炎ウイルスによるものか、 全く別の病原因子によるものかは明らかではない。

【0008】また、インターフェロン投与等の非A非B型肝炎患者の治療法が登場するに伴って、単に抗体を検出するばかりでなく、治療効果の判定の為に、より意義のある遺伝子や抗原の測定が強く望まれている。ところが、非A非B型肝炎ウイルスにはタイプの異なるグループが存在することが明らかにされつつあり、また特にエンベロープと推定される領域においてはかなりの多様性を持つことも明らかにされつつある。ウイルス感染の指標としての抗体測定や抗原測定、遺伝子測定を行うに際しては、ウイルス抗原、および遺伝子の多様性が考慮される必要があるものと考えられる。

【0009】本発明の目的は、非A非B型肝炎ウイルスの構造および非構造領域の抗原をコードする新規な核酸断片を提供することである。

【0010】本発明の別の目的は、該核酸断片を含む発現ペクターを提供することである。

【OO11】本発明のさらに別の目的は、該発現ベクターを含む宿主細胞を提供することである。

【 O O 1 2】本発明の他の目的は、該宿主細胞を培養 し、該核酸断片を発現させて得られる該抗原(ポリ)ペ プチドの製造法を提供することである。

[0013]

【課題を解決するための手段】本発明者等は、上記目的を達成する為に、特定の非A非B型肝炎患者血漿中より 既報のものとは異なる非A非B型肝炎ウイルス遺伝子を クローニングすることに成功し、本発明を完成するに至った。

【0014】本発明を完成するに当たっては、非A非B型肝炎患者血漿よりRNAを抽出し、逆転写酵素を作用させcDNAを得、2種類のプライマーを用いてPCR(ポリメラーゼ連鎖反応; Science 230:1350(1985))を行うことによりDNAを増幅する。増幅に際して利用するプライマーについては、既報の配列(J. Virol. 65, 1105(1991); Proc. Natl. Acad. Sci. 87:9524(1990); Virus Gene 5:3 243(1991); J. General Virol, 72:2697(1991))をもとに設定した。増幅したDNAを大腸菌内で複製できるクローニンクベクターを用いてクローニングし、Sangerのジデオキシ鎖終止法(Science, 214, 1205(1981))を用いてヌクレオチド配列の決定を行った。

【0015】上記方法によって14種類のクローンを 得、各々C14-1, C14-2, C14-3, C4-1, C4-2, C14-4, C14-5, C14-6, C14-7, C14-8, C14-9, C14-10, C14-11及びC14-12と命名した。尚、C14 及びC4は、それぞれ単独の患者より得られた一連のク ローンである。得られた14種類のクローンのうちC1 4-7クローンを除く13種類のクローンは大腸菌JM 109株に移入した後、形質転換体としてそれぞれ微工 研菌寄第13029 号、同第13030 号、同第13031 号、同第 13027 号、同第13028 号、同第13032 号、及び同第1303 3号(以上、平成4年6月24日付け寄託)、並びに、 FERM P-13592、同P-13593、同P-13594、同P-13595、同P-13596、及 び同P-13597 (以上、平成5年4月9日付け寄 託)として工業技術院生命工学工業技術研究所に寄託さ れている。

【0016】得られた14種類のクローンは、図1及び 図2に示す如く、既報の非A非B型肝炎ウイルス遺伝子 のヌクレオチド配列との相同性比較により各々C14ー 1は5′非翻訳領域およびコア領域の一部分、С14-3. C4-1, C4-2及びC14-5はNS3領域、 C14-2はE2/NS1領域、C14-4はコア/E 1領域、C14-6はコア/E1/E2/NS1領域、 C 1 4-7 はNS 2 / NS 3 領域、C 1 4-8 はNS 4 /NS3領域、C14-9はNS4/NS5領域、C1 4-10、C14-11及びC14-12はNS5領域 と推定された。決定したクローンC14-1、C14-2, C14-3, C4-1, C4-2, C14-4, C 14-5, C14-6, C14-7, C14-8, C1 4-9, C14-10, C14-11及びC14-12 のヌクレオチド配列と推定アミノ酸配列をそれぞれ後記 配列表中配列番号1、2、3、4、5、6、7、8、 9、10、11、12、13及び14に示した。

【0017】得られた各クローンの特徴を以下に示す。

【0018】(1) クローン C14-1

701ヌクレオチドからなり、翻訳領域はヌクレオチド番号320~700(127アミノ酸)であり、5'非翻訳領域およびコア抗原領域の一部に相当する。

【0019】(2) クローン C14-2

910ヌクレオチドからなり、翻訳領域はヌクレオチド番号1~909(303アミノ酸)であり、E2/NS1領域の一部に相当する。

【0020】(3) クローン C14-3

852ヌクレオチドからなり、翻訳領域は1~852 (284アミノ酸)であり、NS2およびNS3抗原領域の一部に相当する。

【0021】(4) クローン C4-1

819ヌクレオチドからなり、翻訳領域はヌクレオチド番号1~819(273アミノ酸)であり、NS2およびNS3抗原領域の一部に相当する。

【0022】(5) クローン C4-2

992ヌクレオチドからなり、翻訳領域はヌクレオチド番号3~992(330アミノ酸)であり、NS3抗原領域の一部に相当する。

【0023】(6) クローン C14-4

596ヌクレオチドからなり、翻訳領域はヌクレオチド番号1~594(198アミノ酸)であり、コア抗原領域、およびE1抗原領域の一部に相当する。

【0024】(7)クローン C14-5

1143ヌクレオチドからなり、翻訳領域はヌクレオチド番号2~1141 (380アミノ酸) であり、NS3 抗原領域の一部に相当する。

【0025】(8) クローン C14-6

1134ヌクレオチドからなり、翻訳領域はヌクレオチド番号1~1134(378アミノ酸)であり、E1およびコア、E2/NS1領域の一部に相当する。

【0026】(9)クローン C14-7

1664ヌクレオチドからなり、翻訳領域はヌクレオチド番号2~1663 (554アミノ酸) であり、E2/ NS1およびNS2、NS3領域の一部に相当する。

【0027】(10) クローン C14-8

667ヌクレオチドからなり、翻訳領域はヌクレオチド番号2~667(222アミノ酸)であり、NS4及びNS3領域の一部に相当する。

【0028】(11)クローン C14-9

1120ヌクレオチドからなり、翻訳領域はヌクレオチド番号2~1120(373アミノ酸)であり、NS4およびNS5領域の一部に相当する。

【0029】(12) クローン C14-10

1174ヌクレオチドからなり、翻訳領域はヌクレオチド番号2~1174(391アミノ酸)であり、NS5領域の一部に相当する。

【0030】(13) クローン C14-11

1057ヌクレオチドからなり、翻訳領域はヌクレオチ

ド番号2~1057 (352アミノ酸) であり、NS5 領域の一部に相当する。

【0031】(14) クローン C14-12 648ヌクレオチドからなり、翻訳領域はヌクレオチド 番号2~646(215アミノ酸)であり、NS5領域 の一部に相当する。

【OO32】なお、非A非B型肝炎ウイルスゲノムのコ ード領域はコア/エンベロープの構造領域と非構造領域 (NS)とから構成されており、コード領域の5'端か SCORE, E1, E2/NS1, NS2, NS3, N S4、NS5の順に配列されている(J. Virology (199 1), 65:1105~1113) .

【0033】更にクローンC14-1、C14-2、C 14 - 3

> C4-1/ HCV1

HCVBK

5, C14-6, C14-7, C14-8, C14-9, C14-10, C14-11及びC14-12のヌ クレオチド配列および推定アミノ酸配列をそれぞれ既報 OHCV1 (Proc. Natl. Acad. Sci: (1991), 88:2451 ~2455) , HCVBK (J. Virology (1991), 65:1105 ~1113) , HCV-J1 (Proc. Natl. Acad. Sci. (19 90), $87:9524 \sim 9528$) , HC-J6 (J. GeneralVirolo gy (1991), 72: 2697~2704) 及びHC-J8 (Virolog y (1992)、188:331~341) の配列と相同性を比較した 結果を下表1、2、3、4、5、6、7、8、9、1… 0、11、12、13及び14に示した。

[0034]

【表1】

14-3, C4-1, C4-2, C14-4, C14- 表 1	【ひひろろ】更にグロ			1 1
相同性 (%) 日本	14-3, C4-1,	C4-2. C14-	4, C14-	
HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列				
C 1 4-1/ H C V 1 88.3 89.0 H C V B K 88.7 90.6 H C V J 1 88.3 90.6 H C - J 6 96.3 95.3 H C - J 8 91.0 92.1 [表2]				(%)
HCV1 88. 3 89. 0 HCVBK 88. 7 90. 6 HCV-J1 88. 3 90. 6 HC-J6 96. 3 95. 3 HC-J8 91. 0 92. 1 [表2] 表 2 相同性 (%) HCV遺伝子 全又クレオチド配列 全アミノ酸配列 C14-2ン HCV1 67. 5 72. 9 HCV-J1 69. 5 72. 9 HCV-J1 69. 5 72. 9 HC-J6 90. 7 90. 8 HC-J8 74. 4 86. 5 [表3] 表 3 相同性 (%) HCV遺伝子 全又クレオチド配列 全アミノ酸配列 C14-3ン HCV1 68. 2 75. 5 HCV1 68. 4 75. 5 HCV1 68. 4 75. 5 HCV1 68. 5 76. 2 HCV-J1 68. 5 76. 2 HC-J6 91. 8 97. 5 HC-J6 91. 8 97. 5		H C V 遺伝子	全ヌクレオチド配列	全アミノ酸配列
HCVBK 88.7 90.6 HCV-J1 88.3 90.6 HC-J6 96.3 95.3 HC-J8 91.0 92.1 [表2] 表 2 相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-2/ HCVJ 69.5 72.9 HCVJ 69.5 72.9 HC-J6 90.7 90.8 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3] 表 3 相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCVJ 68.2 75.5 HCVJ 68.4 75.5 HCVBK 68.4 75.5 HCVBK 68.4 75.5 HCVBK 68.5 76.2 HCV-J1 68.5 76.2 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J6 91.8 97.5 HC-J8 75.7 88.7 [表4] 表 4 相同性 (%)		C14-1/		
HCV-J1 888.3 90.6 HC-J6 96.3 95.3 HC-J8 91.0 92.1 [表2]		HCV1	88. 3·	89.0
HC-J6		HCVBK	88.7	90.6
HC-J8		HCV-J1	88.3	90.6
[表2] 表 2 相同性 (%)		H C — J 6	96.3	95.3
表 2 HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-2/ HCV1 67.5 72.9 HCVBK 69.8 75.2 HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3] 表 3 相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 [0037] 表 4 相同性 (%)		H C — J 8	91.0	92.1
相同性 (%)	[0035]		【表	2]
HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列			表 2	•
C14-2/ HCV1 67.5 72.9 HCVBK 69.8 75.2 HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3] 麦 3 相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J6 91.8 97.5 HC-J8 75.7 88.7			相同性	(%)
HCV1 67.5 72.9 HCVBK 69.8 75.2 HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3]		HCV遺伝子	全ヌクレオチド配列	全アミノ酸配列
HCVBK 69.8 75.2 HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3]		C 1 4 - 2/		:
HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [表3]	,	HCV1	67.5	72 <u>.</u> 9
H C - J 6 9 0 7 9 0 8 H C - J 8 7 4 4 86 5 5 [HCVBK	69, 8	75.2
HC-J8 74.4 86.5 [表3]		H C V - J 1	69.5	72.9
【83】 <u>表 3</u> 相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 【84】 表 4 相同性 (%)		H C - J 6	90.7	90.8
表 3		H C — J 8	74.4	86.5
相同性 (%) HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 【84】 表 4 相同性 (%)	[0036]		【表	3]
HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列 C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 [50037] 【表4】 本 相同性 (%)			表 3	
C14-3/ HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 【表4】 表 4 相同性 (%)			相同性	(%)
HCV1 68. 2 75. 5 HCVBK 68. 4 75. 5 HCVJ1 68. 5 76. 2 HC-J6 91. 8 97. 5 HC-J8 75. 7 88. 7 [84] 表 4 相同性 (%)		H C V遺伝子	全ヌクレオチド配列	全アミノ酸配列
HCVBK 68. 4 75. 5 HCV-J1 68. 5 76. 2 HC-J6 91. 8 97. 5 HC-J8 75. 7 88. 7 【84】 表 4 相同性 (%)		C 1 4 - 3 /		
HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 [表4] 表 4 相同性 (%)	•	HCV1	68.2	75.5
HC-J6 91.8 97.5 HC-J8 75.7 88.7 [84] 表 4 相同性 (%)		нслвк	68.4	75.5
HC-J8 75.7 88.7 【84】 <u>裹 4</u> 相同性 (%)		HCV-J1	68.5	76.2
【 0 0 3 7 】 【 表 4 】 <u> 表 4 </u> 相同性 (%)		HC-J6	91.8	97.5
<u>表 4</u> 相同性 (%)		H C - J 8	75.7	88.7
相同性 (%)	[0037]		【表	4]
			表 4	
HCV遺伝子 全ヌクレオチド配列 全アミノ酸配列				(%)
		H C V遺伝子	全ヌクレオチド配列	全アミノ酸配列

77.2

88.8

91.1

94. 1

	HCV-J1	90.4	93.8
	HC-J6	67. 8	73.6
	H C - J 8	66.6	74.6
[0038]	•	【表	5]
[0000]			
		表 5	45.3
		相同性	(%)
	HCV遺伝子	全ヌクレオチド配列	全アミノ酸配列
	C4-2/		
	HCV1	80.0	93.6
	нсувк	90.5	96.1
	HCV-J1	91.3	94.2
	HC-J6	71.8	86. 1
	H C – J 8	72. 2	85. 2
[0039]		【表	6]
		表 6	
		相同性	(%)
	HCV遺伝子	全ヌクレオチド配列	全アミノ酸配列
	C14-4/	-	,
	HCV1	65.8	70.2
•	HCVBK	66.3	65.7
	HCV-J1	64.9	66. 2
	HC-J6	90.8	92.4
	H C — J 8	72.8	74.7
[0040]		【表	7]
		表 フ	
		相同性	(%)
	H C V 遺伝子	相同性	
	HCV遺伝子 C14-5/		(%) 全アミノ酸配列
	C 1 4 - 5/	ーー相同性 相同性 全ヌクレオチド配列	全アミノ酸配列
	C 1 4 - 5 / H C V 1	相同性 全ヌクレオチド配列 73.6	全アミノ酸配列
	C14-5/ HCV1 HCVBK	相同性 全ヌクレオチド配列 73.6 72.0	全アミノ酸配列 86.3 86.1
	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1	相同性 全ヌクレオチド配列 73.6 72.0 71.5	全アミノ酸配列 86.3 86.1 85.3
	C14-5/ HCV1 HCVBK	相同性 全ヌクレオチド配列 73.6 72.0	全アミノ酸配列 86.3 86.1
	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1	相同性 全ヌクレオチド配列 73.6 72.0 71.5	全アミノ酸配列 86.3 86.1 85.3
[0041]	C14-5/ HCV1 HCVBK HCV-J1 HC-J6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5	全アミノ酸配列 86.3 86.1 85.3 95.3
[0041]	C14-5/ HCV1 HCVBK HCV-J1 HC-J6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7	全アミノ酸配列 86.3 86.1 85.3 95.3
[0041]	C14-5/ HCV1 HCVBK HCV-J1 HC-J6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9
[0041]	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 6 H C - J 8	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9
[0041]	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 6 H C - J 8	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9
[0041]	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C - J 8	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列
[0041]	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列
[0041]	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V 1 H C V B K	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列 67.2 62.8
[0041]	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V 1 H C V B K H C V - J 1	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列 67.2 62.8 62.8
[0041]	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V 1 H C V B K	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列 67.2 62.8 62.0 86.2
[0041]	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V 1 H C V B K H C V - J 1	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8] (%) 全アミノ酸配列 67.2 62.8 62.8
[0041]	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1 H C V B K H C V - J 1 H C - J 6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 <u>表 8</u> 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8】 (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1
	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1 H C V B K H C V - J 1 H C - J 6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 【表 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8】 (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1
	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1 H C V B K H C V - J 1 H C - J 6	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8} (%) 全アミノ酸配列 67.2 62.8 62.8 62.0 86.2 74.1
	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C - J 8	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8 長 明同性	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8} (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1 9}
	C 1 4 - 5 // H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 // H C V 1 H C V - J 1 H C V - J 6 H C - J 8 H C V 遺伝子	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8} (%) 全アミノ酸配列 67.2 62.8 62.8 62.0 86.2 74.1
	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V - J 1 H C - J 8 H C V - J 6 H C - J 8 H C V 遺伝子 C 1 4 - 7 / C 1 4 - 7 /	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8 表 9 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8 (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1 9 (%) 全アミノ酸配列
	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 2 G K H C V 1 H C C V V B J 1 H C C V J 5 H C - J 8 H C V 2 G K C C C C C C C C C C C C C C C C C C	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8 表 9 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8 (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1 9 (%) 全アミノ酸配列
	C 1 4 - 5 / H C V 1 H C V B K H C V - J 1 H C - J 8 H C V 遺伝子 C 1 4 - 6 / H C V - J 1 H C - J 8 H C V - J 6 H C - J 8 H C V 遺伝子 C 1 4 - 7 / C 1 4 - 7 /	相同性 全ヌクレオチド配列 73.6 72.0 71.5 91.5 78.7 表 8 相同性 全ヌクレオチド配列 65.2 65.5 63.5 87.8 70.8 表 9 相同性 全ヌクレオチド配列	全アミノ酸配列 86.3 86.1 85.3 95.3 92.9 8 (%) 全アミノ酸配列 67.2 62.8 62.0 86.2 74.1 9 (%) 全アミノ酸配列

```
HCV-J1
                          62.8
                                        67.0
                          9.0.6
             HC-J6
                                        95.1
             HC-J8
                          72.5
                                        79.1
[0043]
                                  【表10】
                               10
                               相同性
                                     (%)
             HCV遺伝子
                        全ヌクレオチド配列
                                      全アミノ酸配列
             C14-8/
             HCV1
                          68.0
                                        73.0
             HCVBK
                          66.0
                                        69.8
                          65.5
             HCV-J1
                                        70.3
             HC-J6
                          90.9
                                        96.8
             HC-J8
                          77. 3
                                        90.5
[0044]
                                  【表11】
                               1 1
                               相同性
                                      全アミノ酸配列
             HCV遺伝子
                        全ヌクレオチド配列
             C14-9/
             HCV1
                         66.7
                                        68.8
                                        72.1
             HCVBK
                          67.7
             HCV-J1
                          67.0
                                        71.8
             HC-J6
                          90.1
                                        95.7
             HC-J8
                          77.5
                                        87.4
[0045]
                                  【表12】
                               1 2
                               相同性
             HCV遺伝子
                        全ヌクレオチド配列
                                      全アミノ酸配列
             C14-10/
             HCV1
                          55.8
                                        58.8
             нсувк
                          54.6
                                        58.8
             HCV-J1
                          50.6
                                        60.3
             HC-J6
                          88. 9
                                        90.8
             HC-J8
                          70.0
                                        72.8
[0046]
                                  【表13】
                               13
                               相同性
             HCV遺伝子
                        全ヌクレオチド配列
                                      全アミノ酸配列
             C14-11/
                                       76.4
             HCV1
                          69.8
             HCVBK
                          69.7
                                        76.4
                          70.8
                                       78.3
             HCV-J1
             HC-J6
                          93.6
                                       96.0
             HC-J8
                          80.0
                                        87.5
[0047]
                                 【表14】
                              1 4
                               相同性
                                    (%)
             HCV遺伝子
                       全ヌクレオチド配列
                                      全アミノ酸配列
             C14-12/
             HCV1
                          67.6
                                       72.6
```

HCVBK

67. 2

73.0

 HCV-J1
 68.5
 73.5

 HC-J6
 94.1
 9.5.3

 HC-J8
 83.3
 87.4

これらの表より、クローンC14-1は公表された非A 非B型肝炎ウイルス遺伝子との間で、ヌクレオチド配列 で3. 7~11. 7%、アミノ酸配列で4. 7~11. 0%の相違を示した。またクローンC14-2ではそれ ぞれ9. 3~32. 5%、9. 2~27. 1%;クロー ンC14-3ではそれぞれ8.2~31.8%、2.5 ~24.5%; クローンC4-1ではそれぞれ9.6~ 33. 4%、5. 9~26. 4%; クローンC4-2で はそれぞれ8. 7~28. 2%、3. 9~14. 8%; クローンC14-4ではそれぞれ9.2~35.1%、 7. 6~34. 3%; クローンC14-5ではそれぞれ 8. 5~28. 5%、4. 7~13. 9%; クローンC 14-6ではそれぞれ12.2~36.5%、13.8 ~37. 2%; クローンC14-7ではそれぞれ9. 4 ~37. 3%、4. 9~33. 4%; クローンC14-8ではそれぞれ9、1~34、5%、3、2~30、2 %; クローンC14-9ではそれぞれ9.9~33.3 %、4. 3~31. 2%: クローンC14-10ではそ れぞれ11.1~49.4%、9.2~41.2%;ク ローンC14-11ではそれぞれ6.4~30.3%、 4. 0~23. 6%; クローンC14-12ではそれぞ れ5. 9~32. 8%、4. 7~27. 4%の相違が認 められた。このことは、C4、C14株は現在までに公 表されているHCV株とは別の株であることを示してい

【0048】従って、本発明は、非A非B型肝炎患者血 漿より遺伝子工学的手法により得られた非A非B型肝炎 ウイルスの構造及び非構造領域の抗原をコードするヌク レオチド配列を含む新規な核酸断片を提供する。

【0049】本発明の実施態様により、該核酸断片は、 後記配列表中配列番号 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13および14に示される アミノ酸配列の全部または一部で表わされる非A非B型 肝炎ウイルス抗原をコードするヌクレオチド配列を含 む。また、該ヌクレオチド配列には、遺伝暗号の縮重に 基づく全ての配列が包含される。このようなヌクレオチ ド配列の具体例は、配列番号1に示されるヌクレオチド 番号1から700までの配列の全部または一部、配列番 号2に示されるヌクレオチド番号1から909までの配 列の全部または一部、配列番号3に示されるヌクレオチ ド番号1から852までの配列の全部または一部、配列 番号4に示されるヌクレオチド番号1から819までの 配列の全部または一部、配列番号5に示されるヌクレオ チド番号3から992までの配列の全部または一部、配 列番号6に示されるヌクレオチド番号1から594まで の配列の全部または一部、配列番号フに示されるヌクレ オチド番号2から1141までの配列の全部または一

部、配列番号8に示されるヌクレオチド番号1から1134までの配列の全部または一部、配列番号9に示されるヌクレオチド番号2から1663までの配列の全部または一部、配列番号10に示されるヌクレオチド番号2から667までの配列の全部または一部、配列番号11に示されるヌクレオチド番号2から1120までの配列の全部または一部、配列番号12に示されるヌクレオチド番号2から1057までの配列の全部または一部、配列番号14に示されるヌクレオチド番号2から646までの配列の全部または一部マカる。

【0050】本発明はまた、上記核酸配列が、プロモーターの下流に存在するベクター内のクローニング部位に 導入された発現ベクターを提供する。さらに、本発明は 該発現ベクターを含む宿主細胞を提供する。

【0051】ベクターとしては、プラスミド、ファージ 等の慣用のベクターの他に、ウイルス(例えば、ワクシ ニアウイルス、パキュロウイルス等)が使用される。D NA発現により得られる組換え(ポリ)ペプチドが糖鎖 構造をもつようにするか否かによって、使用し得るプロ モーターおよび宿主の種類が決まる。すなわち、組換え (ポリ) ペプチドが糖鎖構造を含まないようにする場合 には、宿主として例えば大腸菌、枯草菌、放線菌等の原 核生物を用いることができ、また、プロモーターとして 例えばトリプトファン合成酵素オペロン(trp),ラ クトースオペロン(lac)、ラムダファージPL、P R 等を用いることができる。この場合には、一般に他の ペプチドとの融合体として得られるだろう。一方、組換 え(ポリ)ペプチドが糖鎖構造を含むようにする場合に は、宿主として例えば酵母、植物細胞、昆虫細胞、動物 細胞等の真核生物が挙げられ、またプロモーターとして 酵母等に慣用のプロモーター例えば3ーホスホグリセレ ートキナーゼ、エノラーゼ等の解糖系酵素に対するプロ モーターやアルコールデヒドロゲナーゼに対するプロモ ーター、哺乳動物細胞で使用され得るウイルスプロモー ター例えばポリオーマウイルス、アデノウイルス、サル ウイルスSV40、ワクシニアウイルス、サイトメガロ ウイルス等由来のプロモーターが挙げられる。

【 O O 5 2 】 ベクターはさらに、形質転換された細胞の 表現型選択を可能にするマーカー配列(例えばアンピシ リン、テトラサイクリン耐性遺伝子等)、複製開始点、 ターミネーター、リボソーム結合部位等を適宜含み得 る。

【 O O 5 3】本発明はさらに、組換え非A非B型肝炎ウイルス抗原(ポリ)ペプチドの製造方法を提供する。この方法は、具体的には、本発明の上述の核酸断片を適当

な宿主細胞内で発現させ得る複製可能な発現ベクターを 構築する工程、前記発現ベクターを宿主細胞内に導入し て形質転換体を得る工程、前記核酸断片を発現させ得る 条件下で前記形質転換体を培養して前記組換え(ポリ) ペプチドを発現させる工程、および前記組換え(ポリ) ペプチドを回収する工程を包含する。

【0054】形質転換体の培養条件は、使用する宿主細胞に依存して決定され、増殖可能な培地、培養温度、培養時間等が適宜選択される。また、培養物からの組換え(ポリ)ペプチドの精製は、慣用の技術例えば細胞の超音波破砕、可溶化抽出、硫安分画、各種クロマトグラフィー等により行うことができる。

【0055】本明細書中「組換え(ポリ)ペプチド」とは、発現ベクターに組み込んだ非A非B型肝炎ウイルス抗原をコードするDNAを発現させて得られる(ポリ)ペプチド自体または他の(ポリ)ペプチドとの融合(ポリ)ペプチドを意味する。

【0056】本発明には、上記方法で得られた組換え (ポリ)ペプチドも包含される。このような(ポリ)ペ プチドは、慣用のペプチド合成技術を用いることによっ て化学合成することも可能であり、これは当業者には自 明のことである。

【0057】本発明によって得られた組換えポリペプチドをSDSーポリアクリルアミド電気泳動後、ウエスターンブロット法により正常人血清及び非A非B型肝炎患者血清と反応させたところ、図4及び図5に示すように本組換えポリペプチドは非A非B型肝炎患者血清とのみ反応した。従って本組換えポリペプチドは非A非B型肝炎ウイルスに特異的な抗原であり、非A非B型肝炎の診断及び非A非B型肝炎ウイルスの検出に使用可能である。

[0058]

【実施例】以下の実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されない。 【0059】実施例1

RT-PCRによるHCV (#S 1 4) 遺伝子の検出慢性期非A非B型肝炎患者の血漿よりHCV遺伝子をクローニングする方法として少量の血漿でクローニングが可能なRT (リバース・トランスクリプターゼ) -PC R法を利用してHCV遺伝子のクローニングを行った。【0060】先ず、単一の慢性期の非A非B型肝炎患者血漿(#S 1 4) 100 μ lに6MのGT C液(6Mグアニジンチオシアネート、37.5 mlのエン酸ナトリウム、0.75%ザルコシル、0.2 Mメルカプトエタノール)200 μ lと酵母のt-RNA(10mg/ml)1 μ lを加え撹拌する。更に3M酢酸ナトリウム(pH7.5~8.0)30 μ l、TE飽和フェノール(pH7.5~8.0)30 μ l、クロロホルム/イソアミルアルコール(49:1)70 μ lを加え素早く混合し、10秒間撹拌した後、氷中に15分間静置する。遠心機で150

00 rpm、20分間 4 \mathbb{C} で遠心する。水層を採り、等量のイソプロピルアルコールと混合し-20 \mathbb{C} に 1 時間以上置く。これを 15000 rpm、20 \mathbb{C} 間 \mathbb{C} に \mathbb{C} に

【0061】cDNA合成はRNA10µ1をシリコン 処理チューブ (O. 5ml) に分注した後、70℃、3分 間加熱し、氷上で急冷する。次にRNaseインヒビタ 一(宝酒造) 1 μ I (5 0 単位/μ I)、d N T P (各 20mM) 1 μ I, 100mMDTT, 5 \times RT buffer (250mM Tris-HCI (pH8. 5), 375 mM KCI、15mM MgCl2) 4μI、ランダムオ リゴヘキサマープライマー(100pmol/ μ I) 1 μ I、逆転写酵素(BRL)(200単位 $/\mu$ I) $I\mu$ I を加え、滅菌水で計20μlに合わせる。42℃で2時 間反応後、94℃で5分間加熱し酵素を失活させた。こ のcDNAを用いてPCRを行った。PCRは検出DN Aの増幅感度と特異性を挙げる為に2ステップ法を用い た。即ち、先ず2種のプライマーで1回目のPCRをか ける (1st step PCR)。次にそのPCR産物のDNA配 列の内側に存在する2種のプライマーを用いて2回目の PCRをかける (2nd step PCR) 方法である。

【0062】C14-1領域、C14-2領域、C14 -3領域、C14-4領域、C14-5領域、C14-6領域、C14-7領域、C14-8領域、C14-9 領域、C14-10領域、C14-11領域、C14-12領域の12の領域についてプライマーを合成し、2 ステップ法に使用した。以下に使用したPCRプライマ ーを記述する。尚、それぞれの領域は既報の配列(J. V irol. 65, 1105-1113(1991); Proc. Natl. Acad. Sci. USA 87, 9524-9528 (1990); Virus Genes 5:3, 243-259 (1991); J. General Virol. 72, 2697-2704 (1991)) を参考に設定した。又それぞれの増幅領域と既報の配列 (HC-J6) との位置関係を図1及び図2に示す。 【0063】C14-1領域については、1st PCR に際してはプライマー14-1:5'-CGATTGG GGGCGA-3'及び14-2:5'-TTGCAA AATTAACCCCGTCCTCCAG-3'を使用 し、2nd PCRにはプライマー14-1と14-3:

【0064】C14-2領域については、1st PCR はプライマー14-8:5'-CACCAATGGCA GTTGGCACATCAAC-3'と14-9:5' -GGACTACCCGACCCTTGATGTACC

5' -CATGAGGTCGGCGAAGCCGC-

3'を用いた。

```
A-3'を使用し、2nd PCRはプライマー14-1
                                      AAGGTCATCGATACC-3'と14-5を用
0:5'-CTGTTCTACACCCACAGCTT
CAAC-3' &14-11:5' -GCGTGCAA
                                       【0067】C14-5領域については、1st PCR
GACGACCAACTTCTCTA-3'を用いた。
                                      はプライマー14-15:5'-CTGGTAGTGG
【0065】C14-3領域については、1st PCR
                                      AAAGAGCACCAAAGT-3' &14-16:
はプライマー14-12:5'-GAGCGGAGAC
                                      5' -TGCATGCACGTGGCGATGTA-
AGCTGCTTGCGGGGA-3' 214-13:
                                      3'を使用し、2nd PCRはプライマー14-17:
5' -ATAGGTGGAGTACGTGATGGG-
                                       5' -TCGCGTATGCCGCTCAGGGGTA
3'を使用し、2nd PCRはプライマー14-14:
                                      CAA-3' &14-18:5' -GTCAGGGTA
5' -TTCCCGTGTCCGCCCGA-3' &1
                                      ACCTCGTTGGTA-3'を用いた。
4-13を用いた。
                                       【0068】さらに、C14-6、C14-7、C14
【0066】C14-4領域については、1st PCR
                                      -8, C14-9, C14-10, C14-11及びC
はプライマー14-4:5'-TGGGCAGGATG
                                      14-12領域については、下記に示すPCRプライマ
GCTCCTGTC-3' &14-5:5'-GCCG
                                      一を用いた。
TTGTAGGTGACCAGTTC-3'を使用し、
                                       [0069]
2nd PCRはプライマー14-6:5'-TGGGT
                                       【表 1 5 】
            C14-6
              1 s t : 5' -TGGGCAGGATGGCTCCTGTC-3' (14-4)
                   5' -CTATCGGTCGTACCCACTAC-3' (14-19)
              2 nd: 5' -TGGGTAAGGTCATCGATACC-3' (14-6)
                   5' -TGAAACAGTACACTGGGCCACACAC - 3' (14-20)
            C 1 4 - 7
              1 s t : 5' -ACCTGCCCGCCTTGTCGACTGGT - 3' (14-21)
                   5' -ATAGGTGGAGTACGTGATGGG - 3' (14-13)
              2 n d : 5' -AAACATCGTGGACGTGCAAT-3' (14-22)
                   5' -GAATTCTGATGCCATGTGCCTTGGACA - 3' (14-23)
            C14-8-
              1 s t : 5' -GGATACACCGGTGACTTTGA-3' (14-24)
                   5' -CCCCAAAATGTTGAGAAGGATA-3' (14-25)
              2 n d : 5' -GATGCCCACTTCCTCTCCCA-3' (14-26)
                   5' -GTGCTAGTTGACAACGGACTGGT - 3' (14-27)
            C 1 4 - 9
              1 s t : 5' -AACACATGTGGAACTTCATCA - 3' (14-28)
                   5' -ATATGGGATGGGTCTGTTAGCATGGA-3' (14-29)
              2 nd: 5' -ACCTCGCAGGACTATCAACACTGCC -3' (14-30)
                   5' -GATCGGAAGGGAGCTGAGACCCGAC - 3' (14 - 31)
            C14 - 10
              1 s t : 5' -TAACGAGTGACAACCTTAA -3' (14-32)
                   5' -AAGCTGCGGACCTCCTTAGCCCC -3' (14-33)
              2 nd: 5' -ACGGAGTGCAGATCCATAGGTTTGCCCC-3' (14-34)
                   5' -TTGCAGAGTGGGGTGGAGTTAACTGGCA-3' (14-35)
            C14-11
              1 s t : 5' -GTCGTCTGCTGCTCAATGTC-3' (14-36)
                   5' -GTGTCTAACTGTTTCCCAGGCAGCC - 3' (14-37)
              2 nd: 5' -ATCAATCCGTTGAGCAACTC-3' (14-38)
                   5' -TGGTAGGGTCTCTGGTCAGGTAGTN - 3' (14-39)
            C14 - 12
              1 s t : 5' -CTAGCATGGGGAACACCATCACATG - 3' (14-40)
                   5' -TGTCTTTCATCCTCATCCGN-3' (14-41)
```

2 nd: 5' -GAGCCTTCACGGAGGCTATGAC-3' (14-42)

5' -TCGGGCACGCGACACGCTGTGATAN - 3' (14-43)

(NはG, A, T, Cのミックスを示す)。

【0070】PCRの条件は、0.5mlチューブ中に上 記cDNA合成反応液を20μIと10×PCR緩衝液 (100mM Tris-HCI (pH8. 3), 500 mMKCI、15mM MgCl2、0.1% gelatine) 8 μ I 、1 st stepプライマー 2 種(各 7 5 pmole)、 2mM dNTP 8μlを加え、滅菌水で100μlに する。94℃で10分間加熱し、Ampli Taq (Perkin-E Imer-Cetus) 1 μ I (5単位) を加え撹拌後、ミネラル オイルを重層し軽く遠心する。PCR反応は、変性94 ℃1分間、アニーリング55℃1分間、伸長72℃2分 間の条件で30サイクル行った。次に新しいO. 5mlチ ューブに1st PCR反応終了液10μ1、10×PC R緩衝液9μlを加え、2nd stepプライマー2種(各 75pmole)、2mM dNTP9µI、滅菌水で100 **μ∣とする。94℃で10分間加熱し、Ampli Taq 1** μ ! (5単位)を加え撹拌後、ミネラルオイルを重層し軽 く遠心し、先の条件で2nd PCRを行う。反応後、反 応液10µIをアガロースゲル電気泳動し、特異的に増 幅されたDNA断片を検出した。

【0071】<u>PCR産物(HCV#S14のDNA断</u> 片)のクローニングと塩基配列の決定

HCV遺伝子は複製時に変異が導入され易い可能性が考 えられた。そこでクローニング時に発生する人為的な変 異をできるだけ少なくする為にベクターとしてDBR3 2 2 (Sutchliffe, J. G., Cold Spring Harbor Sympos ium, 43, 77-90(1979)) を改変したベクター (pBM) を用いた。pBMはpBR322の制限酵素EcoR VサイトからBal Iサイトの間の配列を制限酵素で 欠失させ、EcoR 『サイトとHind IIIサイト間 CpUC119 (Vieria, J., Messing, J., Methods i n Enzymology, 153, 3-11 (1987)) のマルチクローニン グサイトのEcoR IサイトからHind IIIサイト までを組み込んだ (ΔpBR MCS)。次にpBR3 22のVsp IサイトからSca Iサイトの間の配 列をpUC119のVspIサイトからSca Iサイ ト間の配列に置き換え、この間のPst 「サイトを欠 失させ全長3122bpのベクターを作製した(図)

【0072】HCVのDNAが検出されたPCR反応液は全量を等量のクロロホルム/イソアミルアルコール(24:1)と混和し、遠心後、その水層を0.5mlチューブに移し、10分の1量の3M酢酸ナトリウム(pH5.2)、2倍量のエタノールを加え、エタノール沈殿した。沈殿物は10mlトリス塩酸-1ml EDTA(pH7.4)(TE) 300μ に溶解し、ウルトラフリーC3TK(日本ミリポアリミテッド)にて遠心遺し、残存プライマー除去、および脱塩を行った。処理液は $10\times T4$ DNAポリメラーゼ緩衝液(30mlト

リス酢酸、O. 66M酢酸カリウム、O. 1M酢酸マグ ネシウム、5mM DTT、1mg/ml·BSA) 2μl、 2mM dNPT1μ1、T4DNAポリメラーゼ4単位 (宝酒造) を加え滅菌水にて20µ1とし、12℃、1 5分間反応した。反応後、等量のフェノール/クロロホ ルム(25:24)、クロロホルム/イソアミルアルコ ール(24:1)でそれぞれ1回ずつ抽出を行い、水層 をエタノール沈殿した。沈殿物は、75%エタノールで 洗浄後、風乾し、10×イミダゾール緩衝液(0.5M イミダゾール塩酸 (pH6.4)、0.18M塩化マグ ネシウム、50mM DTT) 4μ1、24%ポリエチレ ングリコール6000 10μl、10mM ATP O. 5 μ I、 T 4 D N A キナーゼ (宝酒造) 2 O 単位を 加え滅菌水で40μ 1 とし、37℃、1時間反応して 5'末端をリン酸化した。クロロホルム/イソアミルア ルコール処理によって酵素を失活させ、水層をエタノー ル沈殿後、75%エタノ―ルで洗浄した。沈殿物は低融 点アガロースゲル電気泳動によりDNAを単離し、TE 飽和フェノールで2回抽出を行い、DNA断片をエタノ ール沈殿し75%エタノールで洗浄後、滅菌水10μ1 に溶解しその1µIをアガロースゲル電気泳動し、DN A断片量を決定した。

【0073】ここで得られたDNA断片はあらかじめ制限酵素Sma Iにて切断し、アルカリフォスファターゼ処理によりその5'末端の脱リン酸化を行ったpBMベクターとの連結反応を行う。

【0074】pBM(20µ1)は制限酵素反応液50 μ I (10mM Tris-HCI (pH8.0), 7mM MgCl2、20mM KCl、Sma I (宝酒造) 80単位)中で30℃、90分反応し、68℃、15分 加熱後エタノール沈殿する。沈殿物を75%エタノール で洗浄後、風乾し、10×アルカリフォスファターゼ緩 衝液 (100mM Tris-HCI (pH8.3)、1 mM ZnClo、10mM MgClo) 5μl、アルカ リフォスファターゼ(牛小腸由来:宝酒造)1単位に滅 菌水を加え50μ1とし、37℃、1時間反応させるこ とにより脱リン酸化した。500mM EDTA (pH 7. 5) O. 5 µ I、10%SDS2. 5 µ Iを加え、 更にプロテアーゼΚを終濃度50μg/mlとなるように 加え、56℃、30分反応し、酵素を失活させた後、低 融点アガロースゲル電気泳動によりベクターを単離し、 TE飽和フェノールで2回抽出を行い、エタノール沈段 して、75%エタノールで洗浄、風乾後、滅菌水50μ Iに溶解した。その1μ1をアガロースゲル電気泳動 し、ベクター量を決定し、終濃度 O. 1μg/mlのSm a Iクローニングペクターとした。

【0075】リン酸化したDNA断片はSma Iクローニングベクター25ngに対してモル比で15倍から2

○倍量加え、 10×577 ゲーション緩衝液(0.66M Tris-HCI(pH7.6)、50mM MgCI 2、50mM DTT) 2μ I、10mM 0.50mM MgCI 1 10mM 10mM

【0076】形質転換菌はLB-Ampプレート(1%パクトトリプトン、0.5%酵母エキス、0.5%塩化ナトリウム、1.5%寒天、アンピシリン50 μ g/ml)上で一夜培養した後、プレート上に出現したコロニーをそれぞれ3ml LB-Ampの入った15mlチューブで培養し、1.5mlの培養液を遠心して集菌し、プラスミドDNAのミニプレパレーション(Maniatisho,Moleculer Cloning: A Laboratory Manual, 1982)を行い、15 μ lのDNA液を調製した。内、2~3 μ lを制限酵素EcoR lとHind III各4単位、反応緩衝液(50mMTris-HCl(μ H7.5)、10ml MgCl2、1ml DTT、100ml NaCl)10 μ l中で37 $^{\circ}$ C、1時間反応させた後、アガロースゲル電気泳動を行い、挿入されたDNA断片の大きさを確認した。

【0077】各12の領域はC14-1が約710bp、C14-2領域が約950bp、C14-3領域が約850bp、C14-3領域が約850bp、C14-4領域が約600bp、C14-5領域が約1200bp、C14-6領域が約1134bp、C14-7領域が約1664bp、C14-8領域が約667bp、C14-9領域が約1120bp、C14-10領域が約1174bp、C14-11領域が約1057bp、C14-12領域が約648bpのDNA断片がそれぞれ確認された。

【0078】得られた12種類のDNAは更にSanger等のジデオキシターミネーション法(Science, 214, 1205-1210(1981))を用い、その塩基配列を決定した。又、このDNA塩基配列決定に使用したそれぞれの領域クローンをC14-1、C14-2、CT4-3、C14-4、C14-5、C14-6、C14-7、C14-8、C14-9、C14-10、C14-11、C14-12と命名した。又、決定した遺伝子の塩基配列及びそれより推定されるアミノ酸配列をC14-1は配列番号1として、C14-2は配列番号2、C14-3は配列番号3、C14-4は配列番号6、C14-5は配列番号7、C14-6は配列番号8、C14-7は配列番号9、C14-8は配列番号10、C14-9は

配列番号11、C14-10は配列番号12、C14-11は配列番号13、C14-12は配列番号14として示した。上記プラスミドは形質転換体としてC14-1は微工研菌寄第13029号、C14-2は同第13030号、C14-3は同第13031号、C14-4は同第13032号、C14-5は同第13033号として平成4年6月24日付けで、また、C14-6はFERM P-13592、C14-8は同P-13593、C14-9は同P-13594、C14-10は同P-13595、C14-11は同P-13596、C14-12は同P-13597として平成5年4月9日付けで工業技術院生命工学工業技術研究所に寄託されている。

【0079】実施例2

RT-PCRによるHCV (#4) 遺伝子の検出

上記実施例1で示したと同様の方法にて、実施例1とは 異なる単一の慢性非A非B型肝炎患者血漿からのHCV (#4)遺伝子のRT-PCRを行い、C4-1及びC 4-2領域の増幅DNA断片を検出した。

【0080】用いたプライマーを以下に示した。

【0081】 C4-1 領域については、1st PCRはプライマー4-1:5' -ATGGAGACTAAAC TCATCAC-3' &24-2:5' -ACTGTGC CGATGCCCAAGAT-3' を使用し、2nd PCRはプライマー4-3:5' -TACTTCTAGG ACCGGCCGAT-3' &214-13:5' -AT AGGTGGAGTACGTGATGGG-3' を用いた。

【0082】 C4-2 領域については、1st PCRはプライマー4-4:5' -TGGAGCGTATATGTCCAAGG-3' と4-5:5' -GACATGCATGCCATGATGTA-3' を使用し、2nd PCRはプライマー4-4と4-6:5' -CACATTTGGTCCCACGATGG-3' を用いた。

【 O O 8 3 】 <u>P C R 産物のクローニングと塩基配列の決</u> 定

クローニングに際しては、ベクターとしてpUC119を用い、そのSmaIサイトと、上記プライマーを用いてPCRにより増幅した遺伝子断片を実施例1で示した方法によってクローニングし、塩基配列を決定した。又、このDNA塩基配列決定に使用したそれぞれの領域クローンをC4-1、C4-2と命名した。決定した遺伝子の塩基配列及びそれより推定されるアミノ酸配列をC4-1は配列番号4として、C4-2は配列番号5として示した。上記プラスミドは形質転換体としてC4-1は微工研菌寄第13027号、C4-2は同第13028号として平成4年6月24日付で寄託されている。

【0084】実施例3

大腸菌を用いたHCV(#S14)由来遺伝子の発現 (その1)

a)発現プラスミドの構築

上記実施例1において得られたクローンC14-1のD NAを利用してプライマーB1:5'-CATGAGC ATAAATCCTAAACCTCAAAG-3' &B 2:5'-ATCTGCAGTTATAGGGTGTC GATGACCTTACCC-3'を用いて実施例1の PCR条件でPCRを行い、約380bpのDNA断片 を増幅した。PCR反応液は全量を実施例1の方法でク ロロホルム/イソアミルアルコール(24:1)で処理 し、その水層をエタノール沈殿し、ΤΕ300μ Ι に溶 解後、遠心瀘過し、残存プライマー除去及び脱塩を行 い、T4DNAポリメラーゼ処理後、T4DNAキナー ゼ処理によって5'末端を燐酸化した。得られたDNA 断片は反応緩衝液(50mM Tris-HCI(pH 7. 5) . 10mM MgCl2 . 1mM DTT, 1 OOmM NaCI)中でPst I20単位を加えて 消化し、低融点アガロースゲル電気泳動を行った。アガ ロースゲルよりDNAを単離し、TE飽和フェノールで 2回抽出後、エタノール沈殿し、減菌水10μ1に溶解 し、約3806pのDNA断片として精製した。ここで 得られたDNA断片は発現ペクターpKK223-3 (ファルマシア) をあらかじめ上述の条件にて制限酵素 Pst Iで切断し、更に実施例1に示した条件にて制 限酵素Sma Iで切断し、アルカリフォスファターゼ 処理によりその5'末端の脱燐酸化を行ったそのベクタ -25ngと実施例1の条件でT4DNAリガーゼによ り連結反応を行い、大腸菌JM105株を用い、形質転 換した。

バクトトリプトン、0.5%酵母エキス、0.5%NaCl、1.5%寒天、50μg/mlアンピシリン)上で一夜培養後、プレート上に出現したコロニーをそれぞれ3mlのLB-Ampの入った15mlチューブで培養し、その1.5mlを遠心して集菌し、プラスミドDNAのミニプレパレーション(Maniatis et al, Moleculer Cloning: A Laboratory Manual, 1982)を行い、15μlのDNA液を調製した。内2-3μlを制限酵素EcoRIとPst I各4単位、反応緩衝液(50mM TrisーHCl(pH7.5)、10mM MgCl2、1mM DTT、100mM NaCl)10μl中で37℃、1時間反応させた後、アガロースゲル電気泳動を行い、約380bpのDNA断片が挿入されて

【0085】形質転換菌はLB-Ampプレート(1%

【0086】b)ウエスタンブロット法による発現の確認及び非A非B型肝炎患者血清との反応

いるクローンを得た。

上記大腸菌クローンを3mlのLB-Amp培地で37 ℃、3時間前培養した後、その50μlを新しいLB-Amp培地5mlに接種し、37℃、2時間培養した。培 養液に終濃度2mMになるようにIPTG(和光純薬) を加え、更に37℃、3時間培養した。培養液1.5ml を13000rpm、2分間遠心し、集菌後、TE1mlで 菌を洗浄し、13000 rpm、2分間遠心し、再び集菌した。集菌したペレットに50µ lの滅菌水および50µ lの2×サンプル緩衝液(100mM TrisーHCl(pH6.8)、20%グリセロール、10%SDS、5%2ーメルカプトエタノール、0.2%ブロムフェノルブルー)を加え懸濁混和し、懸濁液を100℃、5分間煮沸後氷冷下で超音波処理し、-70℃で凍結融解を2回繰り返しサンプルとした。

【0087】上記サンプル30µ | をMINI PRO TEAN II Dual SlabCell (Bior ad) を用いてLaemmliの方法(Nature, 227, 6 80(1970)) に準じて15mA: 1.5時間SDSーポリ アクリルアミドゲル電気泳動を行った。泳動後、ゲルを 取り出し、PVDFメンブレン(ミリポア)を密着させ MINI TRANS BLOT Electroph oretic Transfer Cell (Bior ad) を用いて250mA、1.75時間転写した。転 写後、メンブレンを5%スキムミルク、2%BSAを含 む緩衝液 I' (10mM Na-phosphate (pH7. 0), 1%BSA, 0. 15M NaCI, 2. 5mM EDTA) に浸漬し、室温で2時間ブロッ キングした。5%スキムミルク、2%BSAを含む緩衝 液 I'で40倍希釈した血清検体にブロッキングしたメ ンブレンを入れ、室温で4時間反応させた。反応後、メ ンブレンを緩衝液川(10mM Na-phospha te (pH7. 0), 0. 15M NaCl, 0. 05 %Tween20)で3回洗浄後、2%スキムミルクを 含む緩衝液 I' で100mu/mlに希釈した抗人 I g G ー POD標識抗体液(ヤギ抗体)にいれ、室温で30分間 反応させた。反応後、メンブレンを取り出し、緩衝液川 で5回洗浄した。洗浄したメンブレンを発色液(20m M Tris-HCI (pH7. 5), 0. 5M Na CI、0.05%4-クロロ1ナフトール、0.018 %H2 O2 、16. 7%メタノール)に浸漬し、室温で 15分間反応させた。

【0088】結果を図4に示した。図4においては、非A非B型慢性肝炎患者血清5例(No. 1~No. 5)と健常人血清5例(No. 6~No. 10)についてウエスタンブロットを行った結果を示したが、非A非B型肝炎患者血清でのみ、全てに強い陽性反応が検出され、発現した抗原が、非A非B型肝炎患者の診断及び非A非B型肝炎ウイルスキャリヤーの検出に有用であることが示された。

【0089】<u>実施例4</u>

<u>大</u>陽菌を用いたHCV(#S14)由来遺伝子の発現 (その2)

a)発現プラスミドの構築

実施例1において得られたクローンC14-3とC14 -5のDNAを緩衝液(Takara Universal buffer H) 中でそれぞれ制限酵素EcoRI、PstI及びEco RIで消化し、アガロースゲル電気泳動によりそれぞれ 約930bpと約950bpのDNA断片を単離し、TE飽和フェノール及びクロロホルム処理後、エタノール沈殿し、滅菌水25μIに溶解することによって精製した。精製した各DNAをそれぞれ上記緩衝液中で制限時素Scalで消化し、アガロースゲル電気泳動によりまでれ約780bpと920bpのDNAを単離し、TE飽和フェノール及びクロロホルム処理後、エタノール沈殿することによって精製した。精製した2種類のDNA、及び予め上記緩衝液中、制限酵素EcoRIで消化したベクターpBIuescriptを混合し、T4DNAリガーゼにより連結反応を行い、大腸菌JM109株を用い、形質転換した。

【0090】形質転換菌はLB-Ampプレート(1%) パクトトリプトン、0.5%酵母エキス、1%NaC I、1. 5%寒天、50μg/mlアンピシリン)上でー 晩培養後、プレート上に出現したコロニーをそれぞれる mlのLB-Ampの入った15mlチューブで培養し、そ の1.5mlを遠心処理により集菌し、プラスミドのミニ プレパレーション (Maniatis et al, Moleculer Clonin g:A Laboratory Manual, 1982) を行い、20μlのDN: A液を調製した。調製したDNA液の4μΙを緩衝液 (Takara Universal Buffer H) 中EcoRIで消化 し、アガロースゲル電気泳動することによって約170 ObpのDNA断片が挿入されているクローン(28-14D)を得た。このクローン28-14DのDNAを 利用してプライマーF2:5'-CAGAATTCAT GGAAACACTCGACATCGCC-3'とプラ イマーR:5'-CACTGCAGTTATGAGAC AGCGTCTTGAGGGAC-3'を用いてPCR 反応を行った。PCR反応は、上記DNA1µIに10 ×PCR緩衝液(100mM Tris-HCI(pH 8. 3) 500mM KCI 15mM MgC 12、0.1%geratine) 5μ 1、プライマー F2、R(各240pM)、25mM dNTP 0. 2μl, Taq polymerase (Boehri nger) O. 2μl (1単位) を加え、滅菌水で50 μΙとした後撹拌し、ミネラルオイルを重層し、変性9 4℃0. 5分間、アニーリング55℃0. 5分間、伸長 72℃1分間の条件で44サイクル行った。反応後、反 応液の全量をTE飽和フェノール及びクロロホルム処理 し、その水層をエタノール沈殿し、滅菌水40μ Ι に溶 解し、緩衝液(Takara Universal Buffer Η) 5 μ I、 制限酵素EcoRI20単位、PstI20単位を加え て消化した。消化後1.5%アガロースゲル電気泳動に より約860bpのDNA断片を単離し、TE飽和フェ ノール及びクロロホルム処理後エタノール沈殿し、5 μ 1の滅菌水に溶解することにより精製DNAを得た。こ こで得られたDNA断片はその1μ | を、発現ベクター pKK223-3 (ファルマシア)を予め制限酵素Ec oRIとPst Iで切断し、上述の条件で精製した物1

μ I と混合し、T 4 D N A リガーゼにより連結し、大腸 菌 J M 1 O 9 株を用い、形質転換した。

【0091】形質転換菌は、LB $-Ampプレート(1%パクトトリプトン、0.5%酵母エキス、1%NaCl、1.5%寒天、<math>50\mu g/ml$ アンピシリン)上で一晩培養後、プレート上に出現したコロニーをそれぞれ3mlのLB-Ampの入った15mlチューブで培養し、その1.5mlを遠心処理により集菌し、プラスミドのミニプレパレーション(Maniatis et al, Moleculer Cloning:A Laboratory Manual, 1982)を行い、 20μ IのDNA液を調製した。調製したDNA液の 4μ Iを緩衝液(Takara Universal Buffer H)中EcoRI及びPstIで消化し、アガロースゲル電気泳動することによって約860bpのDNA断片が挿入されているクローンを得た。

【0092】b)ウエスタンブロット法による発現の確認及び非A非B型肝炎患者血清との反応

【0093】上記サンプルをMINI PROTEAN Il Dual Slab Cell (Biorad) を用いてLaemmliの方法 (Nature, 227, 680(197 0)) に準じて15mA, 1.5時間SDS-ポリアクリ ルアミドゲル電気泳動を行った。泳動後、ゲルを切り出 し、PVDFメンブレン(ミリポア)を密着させMIN I TRANS BLOT Electrophore tic Transfer Cell(Biorad) を用いて250mA、1.75時間転写した。転写後、 メンブレンを5%スキムミルク、2%BSAを含む緩衝 液 l' (10mM Na-phosphate (pH 7. 0) 1%BSA, 0. 15M NaCl, 2. 5 mM EDTA)に浸漬し、室温で2時間ブロッキング した。5%スキムミルク、2%BSAを含む緩衝液 1' で40倍希釈した血清検体にブロッキングしたメンブレ ンを入れ、室温で4時間反応させた。反応後、メンブレ ンを緩衝液川(10mM Na-phosphate (pH7. 0), 0. 15MNaCl, 0. 05%Tw een20)で3回洗浄後、2%スキムミルクを含む緩。 衝液 I'で100mu/mlに希釈した抗人 I g G ー P O D 標識抗体液(ヤギ抗体)に入れ、室温で30分間反応させた。反応後、メンブレンを取り出し、緩衝液口で5回洗浄した。洗浄したメンブレンを発色液(20 m M T r i s ー H C I (p H 7.5)、0.5 M N a C I、0.05%4ークロロ1ナフトール、0.018%H2O2、16.7%メタノール)に浸漬し、室温で15分間反応させた。

【0094】結果を図5に示した。図5においては、非A非B型慢性肝炎患者血清5例(No. 1~No. 5)と健常人血清5例(No. 6~No. 10)についてウエスタンブロットを行った結果を示したが、非A非B型肝炎患者血清でのみ、全てに強い陽性反応が検出され、発現した抗原が、非A非B型肝炎患者の診断に有用であることが示された。

[0095]

【発明の効果】本発明により、従来既報の配列と塩基配列、アミノ酸配列においてその相同性を異にするHCV

110

遺伝子がクローニングされた。本発明によって得られた 塩基配列は非A非B型肝炎患者の核酸診断への利用が期 待でき、又塩基配列をもとに作製されたポリペプチド は、非A非B型肝炎患者の抗体測定に応用できる他、モ ノクローナル抗体を作製することにより抗原検出系への 応用が期待できる。特に、エンベロープ領域においては ワクチンへの応用も考えられ、HCV感染症の診断、予 防に大きく貢献するものと考えられる。

[0096]

【配列表】

配列番号: 1 配列の長さ: 701 配列の型:核酸 鎖の数: 二本鎖

トポロジー:直鎖状

配列の種類: cDNA to genomic RNA

起源

生物名:C型肝炎ウイルス

120

配列

CACTCCACCA TAGATCACTC CCCTGTGAGG AACTACTGTC TTCACGCAGA AAGCGTCTAG 60
CCATGGCGTT AGTATGAGTG TCGTACAGCC TCCAGGCCCC CCCCTCCCGG GAGAGCCATA 120
GTGGTCTGCG GAACCGGTGA GTACACCGGA ATTGCCGGGA AGACTGGTC CTTTCTTGGA 180
TAAACCCACT CTATGCCCGG CCATTTGGGC GTGCCCCCGC AAGACTGCTA GCCGAGTAGC 240
GTTGGGTTGC GAAAGGCCTT GTGGTACTGC CTGATAGGGT GCTTGCGAGT GCCCCGGGAG 300
GTCTCGTAGA CCGTGCACC ATG AGC ACA AAT CCT AAA CCT CAA AGA AAA ACC 352

Met Ser Thr Asn Pro Lys Pro Gin Arg Lys Thr

1 5 10
CAC AGA AAC ACT AAC CGT CGC CCA CAA GAC GTT AAG TTT CCG GGC GGC 400

His Arg Asn Thr Asn Arg Arg Pro Gln Asp Val Lys Phe Pro Gly Gly GGC CAG ATC GTT GGC GGA GTA TAC TTG TTG CCG CGC AGG GGC CCT AGA 448 Gly Gln lle Val Gly Gly Val Tyr Leu Leu Pro Arg Arg Gly Pro Arg 35 TTG GGT GTG CGC ACG ACA AGG AAG ACT TCG GAG CGG TCC CAG CCA CGT Leu Gly Val Arg Thr Thr Arg Lys Thr Ser Glu Arg Ser Gln Pro Arg 50 55 GGG GAG CGC CAG CCC ATC CCC AAA GAT CGG CGC CCC GCT GGC AAG TCC Gly Glu Arg Gln Pro Ile Pro Lys Asp Arg Arg Pro Ala Gly Lys Ser 70 60 65 TGG GGA AAA CCA GGA TAC CCT TGG CCT CTA TAT GGG AAT GAG GGA CTT 592 Trp Gly Lys Pro Gly Tyr Pro Trp Pro Leu Tyr Gly Asn Glu Gly Leu 80 GGC TGG GCA GGA TGG CTC CTG TCC CCC CGA GGT TCC CGT CCC TCT TGG 640 Gly Trp Ala Gly Trp Leu Leu Ser Pro Arg Gly Ser Arg Pro Ser Trp 100 GGC CCC ACT GAC CCC CGG CAT AGG TCG CGC AAC GTG GGT AAG GTC ATC Gly Pro Thr Asp Pro Arg His Arg Ser Arg Asn Val Gly Lys Val lie

115

GAC ACC CTA ACG T Asp Thr Leu Thr 125

701

配列番号:2 配列の長さ:910 配列の型:核酸 鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA to genomic RNA

									起	源						
									生	物名	: C	型肝	炎ウ	イル	ス	
配列	ij															
TCG	TCA	GGA	TGC	CCC	GGA	CGC	CTG	TCC	GCC	TGC	CGC	AAT	ATC	GAT	GCC	48
Ser	Ser	Gly	Cys	Pro	Gly	Arg	Leu	Ser	Ala	Cys	Arg	Asn	He	Asp	Ala	
				5					10					15		
TTC	CGG	ATA	GGA	TGG	GGC	ACC	TTG	CGA	TAC	GAG	GAT	AAC	GTC	ACC	AAT	96
Phe	Arg	He	Gly	Trp	Gly	Thr	Leu	Arg	Tyr	Glu	Asp	Asn	Val	Thr	Asn	
			20					25					30			
CCA	GAA	GAT	ATG	AGA	CCA	TAT	TGC	TGG	CAC	TAC	CCA	CCA	AAA	CAG	TGT	144
Pro	Glu	Asp	Met	Arg	Pro	Tyr	Cys	Trp	His	Tyr	Pro	Pro	Lys	Gin	Cys	
		35					40					45				
GGC	AŢA	GTC	CCC	GCG	AGG	TCT	GTG	TGT	GGT	CCA	GTG	TAC	TGT	TTC	ACC	192
Gly	lle	Val	Pro	Ala	Arg	Ser	Val	Cys	Gly	Pro	Val	Tyr	Cys	Phe	Thr	
•	50					55					60					
CCC	AGC	CCG	GTA	GTA	GTA	GGC	ACG	ACC	GAT	AAA	CTT	GGA	GTG	CCT	ACC	240
Pro	Ser	Pro	Val	Va I	Val	Gly	Thr	Thr	Asp	Lys	Leu	Gly	Val	Pro	Thr	
65					70					75					80 -	
TAC	ACG-	TGG	GGA	GAG	AAT	GAG	ACA	GAT	GTC	TTC	CTG	TTG	AAC	AGC	ACC	288
Tyr	Thr	Trp	Gly	Glu	Asn	Glu	Thr	Asp	Val	Phe	Leu	Leu	Asn	Ser	Thr	
				85					90					95		
CGA	CCA	CCG	CAA	GGG	TCA	TGG	TTC	GGC	TGC	ACG	TGG	ATG	AAC	TCC	ACT	336
Arg	Pro	Pro	Gln	Gly	Ser	Trp	Phe	Gly	Cys	Thr	Trp	Met	Asn	Ser	Thr	
			100			-		105					110			
GGC	TTC	ACC	AAG	ACT	TGT	GGC	GCA	CCA	CCT	TGC	CGC	ACT	AGA	GCT	GAC	384
Gly	Phe	Thr	Lys	Thr	Cys	Gly	Ala	Pro	Pro	Cys	Arg	Thr	Arg	Ala	Asp	
		115					120					125				
TTC	AAT	GCC	AGC	ACG	GAC	CTG	TTG	TGC	CCC	ACA	GAC	TGT	TTT	AGG	AAG	432
Phe	Asn	Ala	Ser	Thr	Asp	Leu	Leu	Cys	Pro	Thr	Asp	Cys	Phe	Arg	Lys	
	130					135					140				•	
CAC	CCC	GAA	GCC	ACC	TAT	CTC	AAA	TGT	GGT	TCT	GGG	CCC	TGG	CTC	ACG	480
His	Pro	Glu	Ala	Thr	Tyr	Leu	Lys	Cys	Gly	Ser	Gly	Pro	Trp	Leu	Thr	
145					150					155					160	
CCA	AGG	TGC	CTG	GTC	GAC	TAC	CCC	TAC	AGG	CTT	TGG	CAĆ	TAC	CCC	TGC	528
Pro	Arg	Cys	Leu	Val	Asp	Tyr	Pro	Tyr	Arg	Leu	Trp	His	Tyr	Pro	Cys	
		•		165					170					175		
ACA	TTC	AAC	TTC		ATC	TTC	AAG	ATA	AGG	ATG	TAT	GTG	GGG	GGG	GTT	576
Thr	Phe	Asn	Phe	Thr	He	Phe	Lys	He	Arg	Met	Tyr	Val	Gly	Gly	Val	
			180				-	185					190			
GAG	CAC	AGG		ACG	GCC	GCG	TGC		TTC	ACT	CGT	GGG		CGC	TGC	624
	His															
		195					200				J	205	•	Ī	-	
GAC	TTG		GAC	AGG	GAC	AGA		CAA	TTG	TCT	CCT		TTG	CAC	TCC	672
	Leu															
•	210	-				215					220				•	

ACC	ACG	GAG	TGG	GCC	ATT	CTG	CCC	TGC	AGT	TAC	TCA	GAC	CTG	CCC	GCC	720
Thr	Thr	Glu	Trp	Ala	He	Leu	Pro	Cys	Ser	Tyr	Ser	Asp	Leu	Pro	Ala	
225					230					235					240	
			GGT													768
Leu	Ser	Thr	Gly		Leu	His	Leu	His		Asn	lle	Val	Asp		Gln	
				245					250		-			255		010
			GGC						•							816
ıyr	met	ıyr	Gly	Leu	3er	Pro	AIA		ınr	3er	ıyr	vai		Arg	irp	
GAG	TGG	GTA	260 GTA	CTC	TTA	TTC	CTG	265 CTC	TTA	ece	GAC	GCC.	270	GTC	TGC	864
			Val													004
uiu	11 P	275	101	Lou	LCu	1110	280	LCu	LCu	AIG	лор	285	VI P	, va	0,5	
GCC	TGC		TGG	ATG	стс	ATC		CTA	GGC	CAA	GCC		GCA	GCA	С	910
			Trp													
	290		•			295					300					
									۲	ポロ	ジー	: 直	鎖状		•	•
									西己	列の	種類	: cD	NA t	o ge	nomic	RNA
									起	源						
									生	物名	: C	型肝	炎ウ	イル	ス	
配列	_															
			GAG													48
Leu	Gly	Gln	Glu	_	Leu	Leu	Gly	Pro		Asp	Gly	Tyr	Thr	_	Lys	
000	TOO	400	OTT	5	000	000	ATO	400	10	TAC	ccc	CAC	CAC	15	ccc	0.6
			CTT													96
uly	11 p	AI E	20	Leu	міа	FIU	116	25	міа	ı yı	Ala	um	30	1111	Arg ,	
GGT	стс	CTG	GGC	ACT	ATA	GTG	GTG		ATG	ACG	GGG	CGC		AAG	ACA	144
			Gly													• • •
		35					40				•	45	•	•		
GAG	CAG	GCC	GGG	GAA	ATC	CAA	GTC	CTG	TCC	ACA	GTC	ACT	CAG	TCC	TTC	192
Glu	Gin	Ala	Gly	Glu	He	GIn	Val	Leu	Ser	Thr	Val	Thr-	Gln	Ser	Phe	,
	50					55					60					
CTC	GGA	ACA	TCC	ATA	TCG	GGG	GTC	TTA	TGG	ACT	GTT	TAC	CAC	GGA	GCT	240
Leu	Gly	Thr	Ser	He	Ser	Gly	Val	Leu	Trp	Thr	Val	Tyr	His	Gly	Ala	
65					70					75					80	
			ACT													288
Gly	Asn	Lys	Thr		Ala	Gly	Ser	Arg	•	Pro	Vai	ihr	GIn		lyr	
TOO	ACT	ccc	CAC	85	CAC	TTC	CTC	000	90	000	AGC	ccc	ccc	95	ACC	226
			GAG						•							336
Sei	361	міа	G l u 100	uly.	ASP	Leu	vai	105		FIU	361	710	110	diy	1111	
AAA	тст	TTG	GAG	CCA	TGC	ACG	TGT		GCA	GTC.	GAC	CTG		CTG	GTC	384
			Glu													001
_,-		115			0,0		120	,	,,, .			125	.,.			
ACG	CGG		GCT	GAT	GTC	ATC		GCT	CGA	AGA	CGC		GAC	AAG	CGG	432
			Ala													
	130				-	135			-	_	140	-	•	-	-	
GGA	GCG	CTA	CTC	TCC	CCG	AGA	CCT	CTC	TCG	ACC	TTG	AAG	GGG	TCC	TCG	480
			Leu													

配列番号:3 配列の長さ:852 配列の型:核酸 鎖の数:二本鎖

145

150

155

160

GGG	GGA	CCG	GTG	СТТ	TGC	ССТ	AGA	GGC	CAC	GCT	GTC	GGG	ATC	TTC	CGG	528	
Gly	Gly	Pro	Val	Leu	Cys	Pro	Arg	Gly	His	Ala	Val	Gly	lle	Phe	Arg		
				165					170					175			
GCA	GCT	GTG	TGC	TCT	CGG	GGC	GTG	GCC	AAG	TCC	ATA	GAC	TTC	ATC	CCC	576	
Ala	Ala	Val	Cys	Ser	Arg	Gly	Val	Ala	Lys	Ser	He	Asp	Phe	He	Pro		
			180					185					190				
GTT	GAA	ACA	CTC	GAC	ATC	GCC	ACG	CGG	TCT	CCC	ACT	TTC	AGT	GAC	AAC	624	
Val	Glu		Leu	Asp	ile	Ala	Thr	Arg	Ser	Pro	Thr	Phe	Ser	Asp	Asn		
		195					200					205					
								ACC								672	
Ser		Pro	Pro	Ala	Val		Gin	Thr	Tyr			Gly	Tyr	Leu	His		
	210					215					220						
								ACC								720	
		ınr	GIY	ser		Lys	3er	Thr	Lys		Pro	vai	AIA	ıyr,			
225		ccc	TAC	A A A	230	CTA	CTA	CTT	AAT	235	TCC	стс	CCT	ccc	240	760	
								Leu			•					768	
Ala	uiii	.u ı y	ıyı	245	Vai	Leu	Vai	Leu	250	710	361	vai	nia	255	1111		
CTG	GGG	TTT	GGG		TAT	TTG	TCC	AAG		CAT	GGC	ATC.	ΔΔΤ		AAC	816	
								Lys								010	
	۳.,		260		.,.		00.	265			٠.,		270		7.011		
ATT	CGG	ACT		GTC	AGA	ACT	GTG	ACG	ACC	GGG	GAG					852	
He	Arg	Thr	Gly	Val	Arg	Thr	Val	Thr	Thr	Gly	Glu					•	
		275					280										
									۲	ポロ	ジー	:直	鎖状				
									50	列の	種類	: cD	NA t	o ge	nomic	RNA	
									起								
									生	物名	: C	型肝	炎ウ	イル	ス		
配列		404	010	040	000	TOO	004	0.7.0	0 TT	000	ООТ	ATO.	400	000	T. T	40	
				•											TAT	48	
3ei 1	rile	MI K	uiu	5	uly	Ιτρ	AIE	Leu	10	на	FIO	116	1111	15	131		
	CAA	CAG	ACG		GGC	CTA	ΔΤΤ	GGC		ATC	ATC	ACC	AGC		ACG	96	
								Gly								30	
	4111	-	20	6	u.,	Lou	110	25	0,0			•••	30		• • • • • • • • • • • • • • • • • • • •		
GGT	CGG	GAC		AAC	CAG	GTC	GAG	GGA	GAG	GTT	CAG	GTG		тст	ACC	144	
								Gly									
_		35	-				40					45					
GCT	ACG	CAA	TCT	TTC	CTG	GCG	AÇC	TGC	GTT	AAC	GGC	GTG	TGT	TGG	ACT	192	
Ala	Thr	GIn	Ser	Phe	Leu	Ala	Thr	Cys	Val	Asn	Gly	Val	Cys	Trp	Thr		
	50					55			•		60						
GTC	TAC	CAT	GGC	GCC	GGC	TCA	AAG	ACC	CTA	GCC	GGC	CCA	AAG	GGC	CCA	240	
Val	Tyr	His	Gly	Ala	Gly	Ser	Lys	Thr	Leu	Ala	Gly	Pro	Lys	Gly	Pro		
65					70					75					80		
0.70	ACC	CAA	ATG	TAC	ACC	ΔΑΤ	GTA	GAC	CAG	GAC	CTC	GTC	GGC	TGG	CAG	288	
GIG					700	,,,,			0,								
			•					Asp									
			•														
Val	Thr	Gin	Met	Tyr 85	Thr	Asn	Val		G I n 90	Asp	Leu	Val	Gly	Trp 95	Gİn	336	

Ala Pro Ser Gly Ser Arg Ser Leu Thr Pro Cys Thr Cys Gly Ser Ser

105

110

100

配列番号:4 配列の長さ:819 配列の型:核酸 鎖の数:二本鎖 GAC CTT TAT TTG GTC ACG CGG CAT GCT GAC GTC ATT CCG GTG CGC CGG

Asp Leu Tyr Leu Vai Thr Arg His Ala Asp Val Ile Pro Val Arg Arg

384

7106		115			••••	VI P	120		, ASP	, , ,	110	125		AI E	, A1 E	
CGG	GGT			AGG	GGG	AGC			TCC	CCC	AGG			TCC	TAC	432
															Tyr	,52
	130			·	•	135					140				.,.	
TTG	AAG	GGT	TCC	TCA	GGT	GGT	CCA	CTG	CTC	TGC	CCC	TTG	GGG	CAT	GTC	480
Leu	Lys	Gly	Ser	Ser	Gly	Gly	Pro	Leu	Leu	Cys	Pro	Leu	Gly	His	Val	
145					150	ı				155					160	
GTG	GGC	ATC	TTC	CGG	GCC	GCT	GTG	TGC	ACC	CGG	GGG	GTT	GCG	AAG	GCG	528
Val	Gly	He	Phe	Arg	Ala	Ala	Val	Cys	Thr	Arg	Gly	Val	Ala	Lys	Ala	
				1.65					170					175		
															CCG	576
Val	Asp	Phe			Val	Glu	Ser		Glu	Thr	Thr	Met		Ser	Pro	
0.7.0	TTO	100	180		T 04	TOT	007	185	000	070	000		190	***		
				AAT												624
vai	rne	195	ASP	Asn	Ser	5er	200	Pro	Ala	vai	.Pro		Ser	rne	GIN	
GTG	GCC		CTG	CAC	GCT	CCT		GGC	AGC	GGC	AAG	205	ACT	AAG	стс	672
				His												072
	210					215	••••			٠.,	220	001		_,0	***	
CCG		GCA	TAT	GCA	GCC		GGG	TAC	AAG	GTG		GTC	СТС	AAC	CCG	720
Pro	Ala	Ala	Tyr	Ala	Ala	GIņ	Gly	Tyr	Lys	Val	Leu	Val	Leu	Asn	Pro	
225					230					235					240	
TCC	GTT	GCC	GCC	ACC	TTG	GGT	TTT	GGA	GCG	TAT	ATG	TCT	AAG	GCA	CAT	768
Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly	Ala	Tyr	Met	Ser	Lys	Ala	His	
				245					250					255		
				AAC												816
Gly	lle	Asp		Asn	lle	Arg	Thr		Val	Arg	Thr	He		Thr	Gly	
GCC			260					265					270			010
Ala																819
719									.	#o	ジー	・値	维北			
															nomic	RNA
									起					- 6-		, , , , , ,
											: C	型肝	炎ウ	イル	ス [・]	
配列	l															
CA	CAT	GGT	GTC	GAC	CCT	AAC	ATC	AGA	ACA	GGG	GTA	AGG	ACC	ATC	ACT	47
	His	Gly	Val	Asp	Pro	Asn	He	Arg	Thr	Gly	Val	Arg	Thr	He	Thr	
	1				5					. 10					15	
				ATT												95
Thr	Gly	Ala	Pro	lle	Thr	Tyr	Ser	Thr		Gly	Lys	Phe	Leu		Asp	
007	00 T	T 00	TAT	20					25					30		
				GGG												143
ыу	GIY	cys		Gly	Gly	Ala	ıyr		He	He	He	Cys		Glu	Cys	
CAC	TCA	ACT	35 GAC	ፐርር	ΔCT	TOO	ATC	40 TTG	GGC	ΔΤΤ	GGT.	V C v	.45	ቦፐቦ	GAC	101
His																191
		50		501	,	JU1	55	Luu	ury	.116	uiy	60	7 G I	Leu	voh	
CAA	GCG		ACG	GCT	GGA	GCG		CTC	GTC	GTG	стс		ACC	GCT	ACG	239
		-			'			•	_,,						u	200

配列番号:5 配列の長さ:992 配列の型:核酸 鎖の数:二本鎖

Glr	n Ala 65		ı Thr	Ala	Gly	Ala 70		, Leu	Val	Val	1 Let 75		a Thr	Ala	Thr	
CC1	CCG	GGA	TCA	GTC	ACC	GTG	CCG	CAT	CCC	: AA1	TATO	GAC	GAG	GTG	GCC	287
Pro	Pro	Gly	Ser	Val	Thr	Vai	Pro	His	Pro	Asr	116	Glu	ı Git	ı Val	Ala	
80)				85					90)				95	
TTG	TCT	AAC	ACT	GGA	GAG	GTT	CCC	TTC	TAT	GGC	AAA	GCC	: ATC	ccc	ATC	335
															lle	
				100					105		_			110		
GAG	GCC	ATC	AAG	GGG	GGG	AGG	CAT	CTC	ATC	TTC	TGC	CAT	TCC			383
															Lys	
			115		•			120			•		125			
AAA	TGT	GAC	GAG	CTC	GCC	GCA	AAG	CTG	TCG	GCC	сто	GGA	GTC	AAT	GCT	431
								Leu								
	•	130					135					140				
GTA	GCA			CGG	GGC	CTT		GTG	TCC	GTC	ATA			AGC	GGA	479
								Val								
	145				,	150	,				155				,	
GAC		GTT	GTT	GTG	GCA		GAC	GCT	CTA	ATG			TAC	ACT	GGC	527
								Ala								
160					165		,,,,			170		٠.,	.,.	••••	175	
		GAC	TCA	GTG		GAC	TGT	AAC	ACA			ACC	CAG	ACG		575
								Asn								0.0
•		•		180			-,-		185	-,-		••••		190		
GAT	TTC	AGC	TTG		CCC	ACC	TTC	ACC		GAG	ACG	ACG	ACC		CCT	623
								Thr								
•			195					200			••••	••••	205			
CAA	GAC	GCG		TCG	CGC	TCG	CAG	CGG	CGA	GGT	AGG	ACT		AGG	GGC	671
								Arg								• • • • • • • • • • • • • • • • • • • •
	•	210					215					220	,	0		
\GA	GGG	GGC	ATA	TAC	AGG	TTT		ACT	CCG	GGA	GAA		CCC	TCG	AGC	719
								Thr								• • • •
	225	•		•	Ū	230				•	235					
ΛTG	TTC	GAT	TCT	TCG	GTC	CTG	TGT	GAA	TGC	TAT	GAC	GCG	GGC	TGT	GCT	767
								Glu								
40		•			245		•			250	•				255	
GG	TAT	GAG	CTC	ACG	CCC	GCT	GAG	ACC	ACA		AGG	TTG	CGG	GCT		815
								Thr								
				260				•	265		•		- T	270	•	
AT	AAT	ACA	CCA		TTG	CCC	GTC	TGC	CAA	GAC	CGC	CTG	GAG		TGG	863
								Cys								
			275					280					285			
AA	GGC	GTG		ACA	GGC	СТС	ACC	CAC	ATA	GAT	GCC	CAC		TTG	TCC	911
								His								
	,	290			,		295					300				-
AG	ACT		CAG	GCA	GGA	GAC		TTC	CCC	TAC	CTG		·GCA	TAC	ČAG	959
								Phe								000
	305	-, -	• •		,	310			•	.,,	315	,	u	.,,	4 ,111	
СТ		GTG	TGT	GCC	AGG		CAG	GCT	CCA	CCT	510					992
								Ala								332
20	,	•	-,•		325	4	-111	, , . a		330						

配列番号:6 配列の長さ:596 配列の型:核酸 鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA to genomic RNA

起源

									生物	勿名	: C∄	世肝:	とウィ	イルフ	Z.	
配列																
CTA	ACG	TGC	GGC	TTT	GCC	GAC	CTC	ATG	GGG	TGC	ATC	CCC	GTT	GTA	GGC	48
Leu	Thr	Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly	Cys	He	Pro	Val	Val	Gly	
1				5					10					15		
GCC	CCG	CTT	GGC	GGC	GTT	GCC	AGA	GCT	CTC	GCG	CAC	GGC	GTG	AGA	GTC	96
Ala	Pro	Leu	Gly	Gly	Val	Ala	Arg	Ala	Leu	Ala	His	Gly	Va I	Arg	Va I	
			20					25					30			
CTG	GAG	GAC	GGG	GTT	AAT	TAT	GCA	ACA	GGG	AAC	TTA	CCT	GGT	TGC	TCC	144
Leu	Glu	Asp	Gly	Val	Asn	Tyr	Ala	Thr	Gly	Asn	Leu	Pro	Gly	Cys	Ser	
		35					40					45				•
TTT	TCT	ATC	TTC	TTG	CTG	GCC	CTA	CTG	TCC	TGC	ATC	ACC	ATT	CCG	GTC	192
Phe	Ser	He	Phe	Leu	Leu	Ala	Leu	Leu	Ser	Cys	He	Thr	He	Pro	Va I	
	50					55					60					
TCC																240
Ser	Ala	Val	Gln	۷a۱	Lys	Asn	Thr	Ser	Thr	Gly	Tyr	Met	Val	Thr	Asn	
65					70					75					80	
GAC	TGT	TCC	AAT	GAC	AGC	ATC	ACC	TGG	CAG	CTT	CAG	GCC	GCG	GTC	CTC	288
Asp	Cys	Ser	Asn	Asp	Ser	He	Thr	Trp	Gin	Leu	Gin	Ala	Ala		Leu	
				85					90					95		
CAC																336
His	Val	Pro	-	Cys	Val	Pro	Cys		Arg	Val	Gly	Asp		Ser	Arg	
			100					105					110			
TGC																384
Cys	Trp		Pro	Val	Ser	Pro		Val	Ala	Val	Gin		Pro	Gly	Ala	
		115					120					125				
CTC					•											432
Leu		ĢIn	Gly	Leu	Arg		His	He	Asp	Met		Val	Met	Ser	Αla	
	130					135					140					400
ACG																480
Thr	Leu	Cys	Ser	Ala		lyr	Val	Gly	Asp		Cys	Gly	GIY	AIA		
145	004	000			150			700	004	155		~.~	T00		160	F00
CTC																528
Leu	Ala	Ala	GIn		Phe	Val	He	Ser		Arg	HIS	HIS	Irp		val	
040	040	T00		165	***		***	00Т	170	000	4.70	LOT	004	175	007	F76
CAG																576
Gin	ASD	uys		υys	ser	116	ıyr		uly	на	116	ınr		nı S	Arg	
ATC		TOO	180	ATC	A.T.C	4.7		185					190			Enc
ATG						ΑI										596
Met	АІА		ASP	met	Met											
		195														

配列番号:7 配列の長さ:1143 配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類: cDNA to genomic RNA

46

生物名:C型肝炎ウイルス

配列

A GTG CTA GTA CTT AAT CCC TCG GTG GCT GCC ACC CTG GGG TTT GGG

	Val	Leu	Val	Leu	Asn	Pro	Ser	Val	Ala	Ala	Thr	Leu	Gly	Phe	Gly	
	1				5		•			10					15	
GCG	TAT	TTG	TCC	AAG	GCG	CAT	GGC	ATC	AAT	CCC	AAC	ATT	CGG	ACT	GGG	94
Ala	Tyr	Leu	Ser	Lys	Ala	His	Gly	He	Asn	Pro	Asn	He	Arg	Thr	Gly	
				20					25					30		
								TCC								142
Val	Arg	Thr		Thr	Thr	Gly	Glu	Ser	Ιļe	Thr	Tyr	Ser		Tyr	Ģly	
			35					40					45			
								TCG								190
Lys	Phe		Ala	Asp	Gly	Gly		Ser	Gly	Gly	Ala		Asp	He	lle	
		50					55					60				
								GAT								238
lle		Asp	Glu	Cys	His		Vai	Asp	Ala	Ihr		He	Leu	Gly	lie	
	65					70					75					
								ACA								286
_	Ihr	Val	Leu	Asp		Ala	Glu	Thr	Ala		Vai	Arg	Leu	Inr		
80		400			85			TO4	0.7.0	90		000		000	95	004
								TCA								334
Leu	Ala	ınr	Ala		Pro	Pro	GIY	Ser		inr	inr	Pro	HIS		ASN	
A T A	CAC	CAC	ATA	100	ΔΤΩ	000	CAT	CAC	105	CAC	ATO	000	TTO	110	ccc	382
								GAG								302
116	ulu	uiu	115	Ala	Leu	ч	піз	Glu 120	шіу	uiu	116	FIO	125	ıyı	шту	
AAG	ccc	ATO		стс	CCT	TAC	ATC	AAG	GGA	ccc	AGA	ር ል ር		ÁTT	TTC	430
								Lys								430
Lys	ліа	130	110	Leu	110	1 91	135	Lys	uıy	uly	МΕ	140	LUU	110	1110	
TGC	CAC		ΔAG	AAG	AAG	TGT		GAG	стс	GCG	GTG		CTT	CGG	GGC	478
								Glu	,							,470
0,0	145	00.	_,0	_,,	_,0	150	, iop	4.4	Lou	,u	155	.,		6	u.,	
ATG		TTG	AAC	GCT	GTG		TAC	TAC	AGA	GGG		GAC	GTC	TCC	ATA	526
								Tyr								
160					165		•	•	•	170		·			175	
	CCA	GCT	CAA	GGA		GTG	GTG	GTC	GTC	GCC	ACC	GAC	GCC	CTC	ATG	574
Пe	Pro	Ala	GIn	Gly	Asp	Val	Val	Val	Val	Ala	Thr	Asp	Ala	Leu	Met	
	:			180					185					190		
ACG	GGG	TAT	ACT	GGG	GAC	TTC	GAC	TCC	GTG	ATC	GAC	TGC	AAT	GTA	GCG	622
Thr	Gly	Tyr	Thr	Gly	Åsp	Phe	Asp	Ser	Val	He	Asp	Cys	Asn	Val	Ala	."
			195					200					205			
GTC	ACT	CAG	GCC	GTA	GAC	TTC	AGC	CTG	GAC	CCC	ACC	TTC	ACT	ATA	ACC	670
Val	Thr	Gin	Ala	Val	Asp	Phe	Ser	Leu	Asp	Pro	Thr	Phe	Thr	He	Thr	
		210					215		•			220				
ACA	CAG	ACT	GTC	CCT	CAA	GAC	GCT	GTC	TCA	CGC	AGC	CAG	CGC	CGG	GGG	718
Thr	Gln	Thr	Val	Pro	Gln	Asp	Ala	Val	Ser	Arg	Ser	Gln	Arg	Arg	Gly	
	225					230					235					
CGC	ACG	GGT	AGG	GGA	AGA	TTG	GGC	ATT	TAT	AGG	TAT	GTT	TCC	ACC	GGT	766
Arg	Thr	Gly	Arg	Gly	Arg	Leu	Glý	He	Tyr	Arg	Tyr	Val	Ser	Thr	Gly	
240					245					250					255	
GAA	CGA	GCC	TCA	GGG	ATG	TTT	GAC	AGT	GTA	GTG	CTC	TGT	GAG	TGC	TAC	814
Glu	Arg	Ala	Ser	Gly	Met	Phe	Asp	Ser	Val	Val	Leu	Cys	Glu	Cys	Tyr	
				260					265					270		

GAC	GCG	G GGG	GCC	TCA	TGG	TAT	GAG	CTT	ACA	CCG	TCC	GAG	ACT	ACC	GTC	862
Asp	Ala	a Gly	Ala	Ser	Trp	Tyr	Glu	Leu	Thr	Pro	Ser	Glu	Thr	Thr	Val	
			275	i				280					285	;		
AGG	CTI	AGG	GCG	TAT	TTC	AAC	ACG	CCT	GGC	TTG	CCT	GTG	TGC	CAA	GAC	910
Arg	Leu	ı Arg	Ala	Tyr	Phe	Asn	Thr	Pro	Gly	Leu	Pro	Val	Cys	Gin	Asp	
		290					295					300	1			
											CTC					958
His	Leu	Glu	Phe	Trp	Glu	Ala	Val	Phe	Thr	Gly	Leu	Thr	His	He	Asp	
	305					310					315					
											GAG					1006
		Phe	Leu	Ser		Thr	Lys	Gin	Ser	_	Glu	Asn	Phe	Ala		
320					325					330					335	
											GCG					1054
Leu	Ala	Ala	lyr		Ala	ihr	Val	Cys			Ala	Arg	Ala		Pro	
000	TOT	TOO		340	4.0	T00		T00	345		004	0 TT		350		1100
											CGA					1102
rio	261	111	355	vai	met	irp	Lys	360	Leu	ınr	Arg	Leu	365	Pro	inr	
CTC	GTG	GGC		ACA	ĊCT	стс	CTG		CGT	TTG	GGC	TOT				1143
											Gly		u i			1143
Lou	141	370	,,,	1111	110	LCu	375	1 7 1	ЛΙБ	LCu	ury	380				
							•,•		۲	ポロ	ジー		鎖状			
															nomic	RNA
										源		•				
									生	物名	: C	型肝	炎ウ	イル	ス	
配列	j															
CTA	ACG	TGC	GGC	TTT	GCC	GAC	CTC	ATG	GGG	TAC	ATC	CCC	GTT	GTA	GGC	48
Leu	Thr	Cys	Gly	Phe	Ala	Asp	Leu	Met	Gly	Tyr	He	Pro	Val	V,a I	Gly	•
1				5					10					15		
											CAC					96
Ala	Pro	Leu		Gly	Val	Ala	Arg		Leu	Ala	His	Gly		Arg	Val	
0.7.0	040	010	20			TAT		25	000				30			
											TTA					144
reu	ulu	ASP 35	uly	vai	ASI		40	ınr	ыу	ASI	Leu	45	uly	Gys	Ser	
TTT	TCT	- 00	TTC	TTG	CTG		. •	ete	TOO	TGC	ATC		ATT	ር ር ር	GTC	102
											He					192
	50		1110	Lou	Lou	55	Lou	Lou	001	0,0	60	1111	110	110	Val	
TCC		GTC	CAA	GTG	AAG		ACC	AGT	ACC	GGC	TAC	ATG	GTG	ACT	AAC	240
											Tyr					240
65					70					75					80	
GAC	TGT	TCC	AAT-	GAC	AGC	ATC	ACC	TGG	CAG	CTT	CAG	GCC	GCG	GTC		288
											Gin					
. 500				85					90					95		
	GTC	CCC	GGG	TGT	GTC	CCG	TGC	GAG	AGA	GTĢ	GGG	GAT	ACG	TCA	CGG	336
		-									Gly					
			100					105					110			
TGC	TGG	ATA	CCG	GTC	TCG	CCA	AAC	GTG	GCT	GTG	CAG	CGG	CCT	GGC	GCC	384
Cys	Trp	He	Pro	Val	Ser	Pro	Asn	Val	Ala	Val	Gln	Arg	Pro	Gly	Ala:	

配列番号:8 配列の長さ:1134 配列の型:核酸 鎖の数:二本鎖

115

120

125

CTC	ACG	CAG	GGC	TTG	CGG	ACG	CAC	ATC	GAC	ATG	GTT	GTG	ATG	TCC	GCC	432
Leu	Thr	Gin	Gly	Leu	Arg	Thr	His	He	Asp	Met	Val	Val	Met	Ser	Ala	
	130					135					140					
ACG	CTC	TGC	TCT	GCT	CTC	TAT	GTG	GGG	GAC	CTT	TGC	GGC	GGG	GCG	ATG	480 ·
Thr	Leu	Cys	Ser	Ala	Leu	Tyr	Val	Gly	Asp	Leu	Cys	Gly	Gly	Ala	Met	
145					150					155			,		160	
												CAC				528
Leu	Ala	Ala	Gln		Phe	Val	He	Ser	Pro	Arg	His	His	Trp	Phe	Val	
				165					170					175		
												ACT				576
Gin	Asp	Cys		Cys	Ser	He	Tyr		Gly	Ala	He	Thr		His	Arg	•
4.70	004	T00	180		4.70			185	***	000			190			
												ACC				624
met	AIA	195	ASP	met	Met	met		irp	ser	Pro	ınr	Thr	Inr	Met	He	
CTG	GCG		GCG	ATG	CGT	GTC	200	GAG	GTC	ATC	ATA	205 GAC	ATC	ATC	ACC	672
												Asp				072
Lou	210		AIG	IIIC L	AI E	215	110	uru	Vai	220	116	voh	116	116	361	
GGG		CAT	TGG	GGC	GTC		TŤC	GGC	CTA		TAC	TTC	TCT	ATG	CAG	720
												Phe				7,20
225					230			,		235	.,.				240	
GGG	GCG	TGG	GĆG	AAA	GTC	ATT	GTC	ATC	CTT	CTG	CTG	ACC	GCT	GGG		768
Gly	Ala	Trp	Ala	Lys	Val	He	Val	He	Leu	Leu	Leu	Thr	Ala	Gly	Val	
				245					250					255		
GAC	GCG	GAG	ACC	CTC	ACA	GTC	GGG	GGT	GCC	GCT	GGG	CGC	GCT	ACC	GGT	816
Asp	Ala	Glu	Thr	Leu	Thr	Val	Gly	Gly	Ala	Ala	Gly	Arg	Ala	Thr	Gly	
			260					265					270			
GGC	CTC	ACC	AGC	CTC	TTC	TCT	CCT	GGT	GCT	CGG	CAA	AAT	GTT	CAG	CTC	864
Gly	Leu		Ser	Leu	Phe	Ser	Pro	Gly	Ala	Arg	GIn	Asn	Val	Gln	Leu	
. ==		275					280					285				
												GCC				912
116		ınr	ASN	GIY	Ser		lyr	He	Asn	Arg		Ala	Leu	ASN	Cys	
AAT	290	CCT	TTC	A A C	A C C	295	TTO	ATO	ccc	000	300	TTC	TAC	400	400	060
												Phe				960
305	nop	110	Lou	ASII	310	uly	1 116	116	VIG	315	Leu	1 116	1 31	1111	320	
	TTT	AAC	TCG	TCA		TGC	ccc	GAA	CGC		TCC	GCC	TGC	CGC		1008
												Ala				
_				325					330					335		
ATC	GAT	GCC	TTC	CGG	ATA	GGA	TGG	GGC		TTG	CAA	TAC	GAG		AAT	1056
												Tyr				
			340					345					350			
GTC	ACC	AAT	CCA	ACA	GAT	ATG	AGA	CCA	TAT	TGC	TGG	CAC	TAC	CCA	CCA	1104
Val	Thr	Asn	Pro	Thr	Asp	Met	Arg	Pro	Tyr	Cys	Trp	His	Tyr	Pro	Pro	
		355					360					365				
AAA	CAG	TGT	GGC	ATA	GTC	CCC	GCG	AGG	TCT							1134
Lys	Gln	Cys	Gly	He	Val	Pro	Ala	Arg	Ser							
	370					375										

配列番号: 9 配列の長さ:1664 配列の型:核酸 鎖の数:二本鎖 トポロジー:直鎖状

起源

配列の種類: cDNA to genomic RNA 生物名: C型肝炎ウイルス

配列	ij															
C	GTT	CGA	TGG	GAG	TGG	GTA	GTA	CTC	TTG	TTC	CTG	CTC	TTG	GCG	GAC	46
	Val	Arg	Trp	Glu	Trp	Val	Val	Leu	Leu	Phe	Leu	Leu	Leu	Ala	Asp	
	1				5					10	•				15	
GCC	AGG	GTO	TGC	GCC	TGC	GTG	TGG	ATG	CTC	ATC	TTG	CTA	GGC	CAA	GCC	94
Ala	Arg	Val	Cys	Ala	Cys	Val	Trp	Met	Leu	He	Leu	Leu	Gly	Gin	Ala	
				20					25					30		
GAA	GCA	GCA	CTG	GAG	AAG	CTG	GTC	GTC	TTG	CAC	GCT	GCA	AGC	GCG	GCT	142
Glu	Ala	Ala			Lys	Leu	Val	Val	Leu	His	Ala	Ala		Ala	Ala	
			35					40					45			
					•			GTC								190
Ser	Cys			Phe	Leu	lyr		Val	He	Phe	Phe		Ala	Ala	Irp	
TAC	ATO	50		000	000	CTC	55	TTC	COT	400	TAT	60	070	A:OT	000	020
								TTG Leu								238
1 71	65	_	uly	AI B	Ala	70	FIU	Leu	MIA	1111	75	SEI	. Leu	1111	uly	
CTA			TTT	TGC	CTG		CTC	CTA	GCA	CTG		CAA	CAG	GCC	TAT	286
								Leu								200
80		,,,		0,0	85			Loù		90		•	• • • • • • • • • • • • • • • • • • • •	,	95	
GCT	TAT	GAC	ACA	TCT	GTG	CAT	GĠA	CAG	ATA		GTG	GCT	TTG	CTG		334
								Gln								
				100					105			٠.		110		
TTA	ATT	ACC	CTT	TTT	ACA	CTT	ACC	CCG	GCA	TAT	AAG	ACC	CTT	CTC	AGC	382
Leu	He	Thr	Leu	Phe	Thr	Leu	Thr	Pro	Ala	Tyr	Lys	Thr	Leu	Leu	Ser	
			115					120					125			
CGG	TGT	CTG	TGG	TGG	TTG	TGC	TAT	CTC	CTG	ACC	CTG	GGG	GAA	GCT	ATG	430
Arg	Cys	Leu	Trp	Trp	Leu	Cys	Tyr	Leu	Leu	Thr	Leu	Gly	Glu	Ala	Met	
		130					135					140				
								CAG			,					478
Val		Glu	Irp	Ala	۲ro		Met	G!n	Ala	Arg		Gly	Arg	Asp	Gly	
ACC	145	TOC	ecc	CTO	400	150	TTC	TGC	000	ССТ	155	CTC	T TT	CAT	ATA	FOC
								Cys								526
160	116	пр		Vai	165	ING L		Uys	F10	170	Vai	Vai	riie	wah	175	
	AAG	TGG	CTT	TTG		GTG	CTT	GGG	CCC		TAC	СТС	CTA	AGA		574
								Gly								• • •
	-,			180				,	185		.,.			190		
GCT	TTG	ACG	CGG		CCG	TAT	TTC	GTC		GCT	CÁC	GCT	CTG		AGG	622
								Val								
			195					200					205			
ATG	TGC	ACC	ATG	GTA	AGG	CAC	CTC	GCA	GGA	GGT	AGA	TAC	GTC	CAG	ATG	670
Met	Cys	Thr	Met	Val	Arg	His	Leu	Ala	Gly	Gly	Arg	Tyr	Val	Gln	Met	
		210					215					220				
ACG	CTA	ATT	GCC	CTT	GGT	AGA	TGG	ACC	GGC	ACT	TAC	ATC	TAT	GAC	CAC	718
Thr	Leu	Leu	Ala	Leu	Gly	Arg	Trp	Thr	Gly	Thr	Tyr	He	Tyr	Asp	His	
	225					230					235					
								GCT								766
Leu	Thr	Pro	Met	Ser	Asp	Trp	Ala	Ala	Ser	Gly	Leu	Arg	Asp	Leu	Ala	

240					245					250					255	
GTC	GCT	GTG	GAG	CCC	ATC	ATC	TTC	AGT	CCG	ATG	GAG	AAG	AAA	GTC	ATC	814
Val	Ala	Val	Glu	Pro	He	He	Phe	Ser	Pro	Met	Glu	Lys	Lys	Vai	He	
				260					265					270		
GTT	TGG	GGA	GCG	GAG	ACG	GCC	GCA	TGC	GGG	GAC	ATC	ATA	CAC	GGA	CTC	862
Val	Trp	Gly	Ala	Glu	Thr	Ala	Ala	Cys	Gly	Asp	Пe	lle	His	Gly	Leu	
	•	•	275					280	_				285			
CCC	GTG	TCC	GCC	CGA	CTT	GGT	CAG	GAG	ATC	CTC	CTT	GGC	CCA	GCT	GAT	910
								Glu								
		290		0			295					300			·	
GGC	TAT		ACC	AAG	GGG	TGG		CTT	СТС	GCC	CCC	ATC	ACT	GCC	TAC	958
								Leu								
,	305		••••	_, _	,	310	5				315					
GCC		CAG	ACG	CGG	GGT		CTG	GGC	ACC	ATA		GTG	AGC	ATG	ACG	1006
						•		Gly								
320	٠	.		Б	325			٠.,		330			•••		335	
	CGC	GAC	AAG	ACA		CAG	GCC	GGG	GAA		CAA	GTC	CTG	TCC		1054
								Gly								
u , ,	· 6	пор	_,0	340	u.u	•••		u.,	345		٠			350	••••	
GTC	ACT	CAG	TCC		стс	GGA	ACA	TCC		TCG	GGG	GTC	TTA		ACT	1102
								Ser								
• • •	****	4111	355	1110	LUG	u.,	••••	360			٠.,		365		••••	
GTT	TAC	CAC		GCT	GGC	AAC	AAG	ACT	CTA	GCC	GGC	TCA		GGC	CCG	1150
								Thr								
121	, , ,	370		AIG	uij	AOII	375		LUG	,,,,	u.,	380	,,, P	4,,		-
GTC	ACG		ATG	TAC	TCG	AGT		GAG	GGA	GAC	CTG		GGG	TGG	CCC	1198
								Glu							_	,
,	385	•		.,.	00.	390	,		٠.,	7,00	395		,			
AGC		ccc	GGG	ACC	AAA		TTG	GAG	CCA	TGC		TGT	GGA	GCG	GTC	1246
								Glu								
400			uı,	1117	405	001	Lou	4.4		410		0,0	ш.,	,,,,	415	
	ств	TAC	CTG	GTC		CGG	AAC	GCT	GAT		ATC	CCG	GCT	CGA		1294
								Ala								
лор			LCU	420	••••	W 5	7.011	,,, u	425					430	6	
CGC	GGG	GAC	AAG		GĠA	GCG	CTA	СТС		CCG	AGA	CCT	CTC		ACC	1342
								Leu								
ЛІБ	uly	Agb	435	VI P	uı,	Αια	200	440	001		VII P		445	001	••••	
TTG	AAG	ദദദ		TCG	GGG	GGA	CCG	GTG	CTT	TGC	CCT	AGA		CAC	GCT	1390
								Val								
Leu	Lys	450	361	361	uiy	uiy	455	741	Lou	Uys	110	460	uıy	1113	A14	
GTC	ຄຄຄ		TTC	CGG	GCA	GCT		TGC	TCT	CGG	GGC		GCC	AAG	TCC	1438
								Cys								1400
Vai	465	116	1110	NI B	A12	470	101	O, S	001	VI.P	475	· u	A. u	,.	001	
ATA		TTC	ATC	ccc	CTT		A C A	стс	GAC	ATC		ACG.	CGG	TCT	ccc	1486
								Leu								1700
	veh	FILE	116	רוט	485	aiu	1111	Leu	voh	490	141	1987	VI R	061	495	
480	TTO	ACT	GAC	440		VC*	004	CCA	CCT		CCC	CAG	ልቦቦ	TAT		1534
																1004
1111	riie	ગ્લા	ASP		ser	m	rro	Pro		VdI	FFU	um	1111		9111	
0.7.0	000	T	TT^	500	00-	٠		000	505	000			100	510	0.7.0	1500
ษเป	uuu	IAU	116	CAI	GCI	CCA	AUI	GGC	AGU	นนัน	AAG	AGI	AUU	AAA	uit	1582

配列番号:10 配列の長さ:667 配列の型:核酸 鎖の数:二本鎖

W- I	ΔI	т				D	ть	ΔI	C	C1	t	C	The	1	V- 1	
vai	uly	ıyr		HIS	Ala	Pro	ınr		Ser	Gly	Lys	Ser			vaı	
			515					520					525			•
CCT	GTC	GCC	TAC	GCC	GCC	CAG	GGG	TAC	AAA	GTG	CTA	GTG	CTT	AAT	CCC	1630
Pro	Val	Ala	Tyr	Ala	Ala	Gln	Gly	Tyr	Lys	Val	Leu	Val	Leu	Asn	Pro	
		530					535					540				••
TCG	GTG	GCT	GCC	ACC	CTG	GGG	TTT	GGG	GCG	TAT	Т					1664
								Gly								
	545		Alu	••••	LUU	550		u.,	n; u	.,,						
•	545					330				ـ قـ			· em .tr			
										ポロ						
											種類	: cD	NA t	o ge	enom i c	RNA
									赶	源						
									生	物名	: C	型肝	炎ウ	イル	ス	
配列	ij															
Α	ACA	AAG	CAG	TCG	GGG	GAG	AAC	TTC	GCT	TAT	TTG	GCA	GCC	TAT	CAG	46
	Thr	Lvs	Gln	Ser	Glv	Glu	Asn	Phe	Ala	Tyr	Leu	Ala	Ala	Tvr	Gln	
	1	_,-			5					10					15	
CCT	•	стс	TCC	ccc	-	ccc	AGA	ccc	ccc	CCC	ccc	TOT	TGG	GAC		94
																34
АІа	ınr	vai	Cys		Arg	АІА	Arg	AIA		Pro	Pro	Ser	ırp		vai	
				20					25					30		
ATG	TGG	AAG	TGC	TTG	ACT	CGA	CTT	AAG	CCC	ACG	CTC	GTG	GGC	CCT	ACA	142
Met	Trp	Lys	Cys	Leu	Thr	Arg	Leu	Lys	Pro	Thr	Leu	Val	Gly	Pro	Thr	
٠.			35					40					45			
CCT	CTC	CTG	TAT	CGT	TTG	GGC	TCT	GTT	ACC	AAC	GAG	GTC	ACC	CTC	ACA	190
Pro	Leu	Leu	Tyr	Arg	Leu	Gly	Ser	Val	Thr	Asn	Glu	Val	Thr	Leu	Thr	
		50	4			•	55					60				•
CAT	CCT		ACA	ΔΔΔ	TAC	ATC		ACG	TGC	ATG	CAA		GAC	стс	GAG	238
										Met						200
1113		Vai	****	Lys	1 91		Ala	1111	Uys	ine r		Ala	vsh	Leu	uiu	
27.0	65					70					75	***		000	0.7.0	
										GGA						286
Val	Met	Thr	Ser	Thr	Trp	Val	Leu	Ala	Gly	Gly	.Va I	Leu	Ala	Ala	Val	
80					85					90					95	
GCT	CGT	TAT	TGC	CTG	GCG	ACC	GGG	TGT	GTT	TCC	ATC	ATC	GGC	CGT	TTG	334
Ala	Arg	Tyr	Cys	Leu	Ala	Thr	Gly	Cys	Val	Ser	He	He	Gly	Arg	Leu	
				100		•			105				•	110		
CAT	ATC	AAC	CAG	CGA	GCC	GTC	GTT	GCA	CCG	GAC	AAG	GAG	GTC	CTT	TAT	382
His	He	Asn	Gin	Arg	Ala	Val	Val	Ala	Pro	Asp	Lvs	Glu	Val	Leu	Tvr	
			115	6				120					125		•	
GAG	CCT	TTT		GAG	ATG	GAG	GAA		GCC	TCT	AGA	വാ		ото	ΔΤΤ	430
																450
GIU	АТА		ASP	uıu	mer	uiu		cys	AIA	Ser	AIG		на	Leu	116	
		130					135					140				
										AAG						478
Glu	Glu	Gly	Gin	Arg	He	Ala	Glu	Met	Leu	Lys	Ser	Lys	He	Gln	Gly	
	145					150					155					
TTA	CTG	CAG	CAA	GCC	TCC	AAG	CAG	GCC	CAA	GAC	ATA	AAA	CCC	GCT	GTG	526
Leu	Leu	Gln	GIn	Ala	Ser	Lys	GIn	Ala	Gln	Asp	He	Lys	Pro	Ala	Val	
160					165	-				170					175	
	ACT	TCA	TGG	CCC		GTG	GAG	CAG	TTC	TGG	GCC	AAG	CAC	ATG		574
										Trp						- 11
util	1111	361	ıı þ		-ys	141	uıu	3111		ıιρ	nia	Lys	1113		ıιρ	
				180					185	00.		T.C.		190		
AAC	HC	ATC	AGT	GGC	ATC	CAA	TAC	CTT	GCA	GGA	CTG	FCA	ACA	CTG	CCG	622

配列番号:11

配列の型:核酸

鎖の数:二本鎖

配列の長さ:1120

Asn Phe lie Ser Gly lie Gin Tyr Leu Ala Gly Leu Ser Thr Leu Pro 200 GGG AAC CCC GCT GTG GCT TCC ATG ATG GCA TTC AGT GCC GCT CTC 667 Gly Asn Pro Ala Val Ala Ser Met Met Ala Phe Ser Ala Ala Leu 210 215 220 トポロジー:直鎖状 配列の種類: cDNA to genomic RNA 起源 生物名:C型肝炎ウイルス 配列 A GGG AAC CCC GCT GTG GCT TCC ATG ATG GCA TTC AGT GCC GCT CTC Gly Asn Pro Ala Val Ala Ser Met Met Ala Phe Ser Ala Ala Leu 1 10 ACC AGC CCT TTG TCA ACC AAC ACC ACT GTA CTC CTC AAC ATC CTG GGA 94 Thr Ser Pro Leu Ser Thr Asn Thr Thr Val Leu Leu Asn Ile Leu Gly GGC TGG CTG GCG TCC CAA ATT GCG CCA CCC GCG GGG GCC ACC GGC TTC Gly Trp Leu Ala Ser Gin lie Ala Pro Pro Ala Gly Ala Thr Gly Phe GTT GTC AGT GGT CTG GTG GGG GCT GCC GTG GGC AGC ATA GGC CTG GGT 190 Val Val Ser Gly Leu Val Gly Ala Ala Val Gly Ser lie Gly Leu Gly 55 AAG GTG CTG GTG GAC ATC CTG GCA GGG TAC GGT GCG GGC ATT TCG GGG 238 Lys Val Leu Val Asp lle Leu Ala Gly Tyr Gly Ala Gly lle Ser Gly 70 75 GCC CTC GTC GCA TIT AAG ATC ATG TCT GGC GAG AAG CCT TCC ATG GAG 286 Ala Leu Val Ala Phe Lys lle Met Ser Gly Glu Lys Pro Ser Met Glu 80 85 90 GAT GTC ATC AAC CTG TTG CCT GGG ATT CTG TCT CCG GGT GCC CTG GTG 334 Asp Val lie Asn Leu Leu Pro Gly lie Leu Ser Pro Gly Ala Leu Val 100 105 GTG GGA GTC ATC TGC GCG GCC ATT CTG CGC CGC CAC GTG GGA CCG GGG 382 Val Gly Vai lie Cys Ala Ala lie Leu Arg Arg His Val Gly Pro Gly 115 120 125 GAA GGC GCG GTT CAA TCG ATG AAT AGG CTC ATC GCC TTC GCT TCC AGG 430 Glu Gly Ala Val Gln Ser Met Asn Arg Leu IIe Ala Phe Ala Ser Arg 135 140 GGA AAC CAC GTC GCC CCC ACC CAC TAC GTG ACG GAG TCG GAT GCG TCG 478 Gly Asn His. Val Ala Pro Thr His Tyr Val Thr Glu Ser Asp Ala Ser 150 CAG CGA GTG ACC CAA ATG CTT GGC TCC CTT ACT ATA ACC AGC CTA CTC Gin Arg Val Thr Gin Met Leu Gly Ser Leu Thr lie Thr Ser Leu Leu 160 165 170 AGA AGA CTC CAC AAT TGG ATC ACT GAG GAC TGC CCT ATC CCA TGC GCC 574 Arg Arg Leu His Asn Trp Ile Thr Glu Asp Cys Pro Ile Pro Cys Ala 180 GGC TCG TGG CTC CGC GAC GTG TGG GAC TGG GTC TGC ACT ATC CTA ACA 622

Gly Ser Trp Leu Arg Asp Val Trp Asp Trp Val Cys Thr 11e Leu Thr 200

GAC TIT AAG AAC TGG CTG TCC TCC AAG TTG TTC CCA AAG ATG CTC GGC

205

670

Asp	Phe	Lys	Asn	Trp	Leu	Ser	Ser	Lys	Leu	Phe	Pro	Lys	Met	Leu	Gly.	
		210					215					220				
CTC	CCC	TTT	ATC	TCT	TGC	CAA	AAG	GGG	TAT	AAG	GGC	GTG	TGG	GCC	GGC	718
Leu	Pro	Phe	Пe	Ser	Cys	Gln	Lys	Gly	Tyr	Lys	Gly	Val	Trp	Ala	Gly	
	225					230					235					
ACT	GGT	ATC	ATG	ACC	ACA	CGG	TGT	CCT	TGC	GGT	GCC	AAC	ATC	TCT	GGC	766
Thr	Gly	He	Met	Thr	Thr	Arg	Cys	Pro	Cys	Gly	Ala	Asn	He	Ser	Gly	
240					245					250					255	
AAC	GTC	CGC	TTG	GGC	TCC	ATG	AGA	ATC	ACA	GGG	CCT	AAA	ACC	TGC	ATG	814
Asn	Val	Arg	Leu	Gly	Ser	Met	Arg	He	Thr	Gly	Pro	Lys	Thr	Cys	Met	
				260					265					270		
AAC	ACT	TGG	CAG	GĢG	ACC	TTC	CCC	ATC	AAT	TGT	TAC	ACG	GAG	GGC	CAG	862
Asn	Thr	Trp	Gln	Gly	Thr	Phe	Pro	He	Asn	Cys	Tyr	Thr	Glu	Gly	Gln	
			275					280					285			
TGC	ATG	CCG	AAA	CCC	GCG	CŤA	AAC	TTC	AAG	ACC	GCC	ATC	TGG	AGA	GTG	910
Cys	Met	Pro	Lys	Pro	Ala	Leu	Asn	Phe	Lys	Thr	Ala	He	Trp	Arg	Val	
		290					295					300				
GCG	GCC	TCA	GAA	TAC	GCG	GAG	GTG	ACG	CGG	CAC	GGG	TCA	TAC	TCC	TAC.	958
Ala	Ala	Ser	Glu	Tyr	Ala	Glu	Val	Thr	Arg	His	Gly	Ser	Tyr	Ser	Tyr	
	305					310					315					
ATA	ACG	GGA	TTG	ACC	ACT	GAC	AAT	TTG	AAG	GTT	CCC	TGC	CAA	CTG	CCC	1006
He	Thr	Gly	Leu	Thr	Thr	Asp	Asn	Leu	Lys	Val	Pro	Cys	Gln	Leu	Pro	
320					325					330					335	
TCG	CCA	GAG	TTT	TTC	TCC	TGG	GTG	GAT	GGA	GTG	CAA	ATT	CAT	AGG	TTC	1054
Ser	Pró	Glu	Phe	Phe	Ser	Trp	Val	Asp	Gly	Val	GIn	He	His	Arg	Phe	
				340					345					350		
GCT	CCT	ACG	CCA	AAG	CCG	TTT	TTC	CGG	GAT	GAG	GTC	TCG	TTT	TCC	GTT	1102
Ala	Pro	Thr	Pro	Lys	Pro	Phe	Phe	Arg	Asp	Glu	Val	Ser	Phe	Ser	Val	
			355					360				•	365			
GGA	CTC	AAC	TCG	TTT	GTC											1120
Gly	Leu	Asn	Ser	Phe	Val											
		370														•
									۲	ポロ	ジー	: 直	鎖状			
									50	列の	種類	: cD	NA t	o ge	nomic	RNA
									起	源						
									生	物名	: C	型肝	炎ウ	イル	ス	
配列	J															
Т	ACG	CCA	AAG	CCG	TTT	TTC-	CGG	GAT	GAG	GTC	TCG	TTT	TCC	GTT	GGA	46

配列の型:核酸 鎖の数:二本鎖

配列番号: 12 配列の長さ:1174

配列	J															
T	ACG	CCA	AAG	CCG	TTT	TTC	CGG	GAT	GAG	GTC	TCG	TTT	TCC	GTT	GGA	46
	Thr	Pro	Lys	Pro	Phe	Phe	Arg	Asp	Glu	Val	Ser	Phe	Ser	Val	Gly	
	1				5					10					15	
CTC	AAT	TCG	TTC	GTC	GTC	GGG	TCT	CAG	CTT	CCT	TGC	GAC	CCT	GAG	CCC	94
Leu	Asn	Ser	Phe	Val	۷a۱	Gly	Ser	Gln	Leu	Pro	Cys	Asp	Pro	Glu	Pro	
				20					25					30		
GAC	ACT	GAC	GTA	CTG	ATG	TCC	GTG	CTA	ACA	GAT	CCG	TCC	CAC	ATC	ACG	142
Asp	Thr	Asp	Vai	Leu	Met	Ser	Vaİ	Leu	Thr	Asp	Pro	Ser	His	He	Thr	
			35					40					45			
GCG	GAG	GCA	GCA	GCG	CGG	CGC	TTG	GCG	CGG	GGG	TCA	CCC	CCA	TCC	GAG	190
Ala	Glu	Ala	Ala	Ala	Arg	Arg	Leu	Ala	Arg	Gly	Ser	Pro	Pro	Ser	Glu	
		50					55					60				
GCA	AGC	TCC	TCA	GCG	AGC	CAG	TTG	TCA	GCG	CCA	TCG	CTG	CGA	GCC	ACC	238

Ala	Ser 65		Ser	Ala	Ser	Glr 70		Ser	Ala	Pro	Ser 75		Arg	, Ala	Thr	
TGC			CAC	cer	· ccc			CAT		GAC			: CAT	. cci		286
			His													
80		1111	1113	uly	85		ıyı	ASP	116	90 90		. Val	No.	MIC	95 95	
		ATO	GGG	cac			ACT	CCC	ATA			GAG	TOO	ACC		
																334
Leu	rne	mer	Gly		•	vai	Inr	Arg			ser	uiu	ser	_		
сто	CTT	OT0		100			TOA	4.70	105		440		100	110		200
			GAC													382
Vai	Vai	Leu	115	ryr	Leu	ASP	Ser	120		ulu	Lys	Lys	125		ıyr	
GAG	CCC	TCG	ATA	CCA	TCG	GAG	TAC	ATG	CTC	CCC	AAA	ACC	AAG	TTC	CCG	430
Glu	Pro	Ser 130	lle	Pro	Ser	Glu	Tyr 135		Leu	Pro	Lys	Thr 140		Phe	Pro	
CCA	GCC		CCA	GTC	TGG	GCA			GAT	TAC	. AAT			CTC	GTG	478
			Pro													1,0
	145				116	150	··· 8		7100	٠,,.	155			Luu	, vai	
GAA	TCG	TCC	AAG	AGG	CCA	GAC	TAC	CAA	CCG	CCC	ACC	GTT	GCG	GGC	TGC	526
Glu	Ser	Ser	Lys	Arg	Pro	Asp	Tyr	Gln	Pro	Pro	Thr	Val	Ala	Gly	Cys	
160					165					170					175	
GCT	CTC	CCC	CCA	CCT	AAG	AAG	ACC	CCG	ACG	CCC	CCC	CCA	AGG	AGG	CGC	574
Ala	Leu	Pro	Pro	Pro 180	Lys	Lys	Thr	Pro	Thr 185	Pro	Pro	Pro	Arg	Arg 190	Arg	
CGG	ACA	GTG	GGT	CTG	AGC	GAG	AGC	ACC	GTA	GCA	GAT	GCC	CTC	CAA	CAG	622
Arg	Thr	Val	Gly	Leu	Ser	Glu	Ser	Thr	Val	Ala	Asp	Ala	Leu	Gin	Gin	
			195					200					205			
CTG	GCC	ATC	AAG	ACC	TTC	GGC	CAG	CCC	CTC	CCA	AGC	GGT	GAT	CCA	GGC	670
Leu	Ala	He	Lys	Thr	Phe	Gly	Gln	Pro	Leu	Pro	Ser	Gly	Asp	Pro	Gly	
	٠	210					215					220				
CAT	TCC	ACG	GGG	GCG	GAC	GCC	GCC	GAT	TCC	GGC	GGT	CGG	ACG	CCC	CCC	718
His	Ser	Thr	Gly	Ala	Asp	Ala	Ala	Asp	Ser	Gly	Gly	Arg	Thr	Pro	Pro	
	225					230					235					
GAT	GAC	TCA	GCT	CTT	TCG	GAG	ACA	GGT	TCT	ACC	TCC	TCC	ATG	CCC	CCC	766
Asp	Asp	Ser	Ala	Leu	Ser	Glu	Thr	Gly	Ser	Thr	Ser	Ser	Met	Pro	Pro	
240					245					250					255	
CTC	GAG	GGG	GAG	CCT	GGG	GAC	CCA	GAC	CTG	GAG	CCC	GAG	CAG	GTA	GAG	814
Leu	Glu	Gly	Glu	Pro	Gly	Asp	Pro	Asp	Leu	Glu	Pro	Glu	Gln	Val	Glu	
				260					265				•	270		-
CTC	CAA	CCT	CCC	CCC	CAG	AGG	GGG	GGG	GCA	GCT	CCC	GGT	TCG	GAC	TCG	862
Leu	Gln	Pro	Pro	Pro	Gln	Arg	Gly	Gly	Ala	Ala	Pro	Gly	Ser	Asp	Şer	
			275					280	•				285			
GGG	TCT	TGG	TCG	ACT	TGC	TCC	GAA	GAG	GAT	GAC	TCC	GTC	GTG	TGC	TGC	910
Gly	Ser	Trp	Ser	Thr	Cys	Ser	Glu	Glu	Asp	Asp	Ser	Val	Val	Cys	Cys	
		290			-		295					300				
TCC	ATG	TCG	TAC	TCC	TGG	ACC	GGG	GCT	CTA	ATA	ACT	CCŢ	TGT	AGT	CCC	958
Ser	Met	Ser	Tyr	Ser	Trp	Thr	Gly	Ala	Leu	He	Thr	Pro	Cys	Ser	Pro	
	305					310					315					
AA	GAG	GAA	AAG	TTG	CCA	ATC	AAC	CCC	TTG	AGC	AAC	TCG	CTG	TTG	CGA	1006
3 lu	Glu	Glu	Lys	Leu	Pro	He	Asn	Pro	Leu	Ser	Asn	Ser	Leu	Leu	Arg	
320					325					330					335	

TAC	CAC	AAT	AAG	GTG	TAC	TGT	ACT	ACA	TCA	AAG	AGC	GCC	TCA	TTG	AGA	1054
Tyr	His	Asn	Lys	Val	Tyr	Cys	Thr	Thr	Ser	Lys	Ser	Ala	Ser	Leu	Arg	
				340					345					350		
GCT	AAA	AAG	GTG	ACT	TTC	GAC	AGG	ATG	CAA	GTG	CTC	GAC	GCC	CAT	TAT	1102 ·
Ala	Lys	Lys	Val	Thr	Phe	Asp	Arg	Met	Gln	Val	Leu	Asp	Ala	His	Tyr	
			355					360					365			
GAC	TCA	GTC	TTA	AAG	GAC	ATC	AAG	CTA	GCG	GCC	TCC	AAG	GTC	AGC	GCA	1150
Asp	Ser	Val	Leu	Lys	Asp	He	Lys	Leu	Ala	Ala	Ser	Lys	Val	Ser	Ala	
		370					375					380				
AGG	CTC	CTC	ACC	TTG	GAG	GAG	GCG									1174
Arg	Leu	Leu	Thr	Leu	Glu	Glu	Ala									
	385					390										
									_							

配列番号: 13 配列の長さ:1057 配列の型:核酸

鎖の数:二本鎖

トポロジー:直鎖状

配列の種類:cDNA to genomic RNA

生物名:C型肝炎ウイルス

									生	物名	: C	型肝	炎ウ	イル	ス	
配列	ļ															
G	CTG	TTG	CGA	TAC	CAC	AAT	AAG	GTG	TAC	TGT	ACT	ACA	TCA	AAG	AGC	46
	Leu	Leụ	Arg	Tyr	His	Asn	Lys	Val	Tyr	Cys	Thr	Thr	Ser	Lys	Ser	
	1				5					10					15	
GCC	TCA	TTG	AGA	GCT	AAA	AAG	GTG	ACT	TTC	GAC	AGG	ATG	CAA	GTG	CTC	94
Ala	Ser	Leu	Arg	Ala	Lys	Lys	Val	Thr	Phe	Asp	Arg	Met	Gln	Val	Leu	
				20					25					30		
GAC	GCC	CAT	TAT	GAC	TCA	GTC	ATT	AAG	GAC	ATC	AAG	CTA	GCG	GCC	TCC	142
Asp	Ala	His	Tyr 35	Asp	Ser	Val	Leu	Lys 40	Asp	He	Lys	Leu	Ala 45	Ala	Ser	
AAG	GTC	AGC	GCA	AGG	CTC	CTC	ACC	TTG	GAG	GAG	GCG	TGC	CGA	TTG	ACT	190
Lys	Val	Ser	Ala	Arg	Leu	Leu	Thr	Leu	Glu	Glu	Ala	Cys	Arg	Leu	Thr	
		50					55					60				
CCA	CCC	CAT	TCC	GCA	AGA	TCC	AAA	TAC	GGG	TTT	GGG	GCC	AAG	GAG	GTC ·	238
Pro	Pro	His	Ser	Ala	Arg	Ser	Lys	Tyr	Gly	Phe	Gly	Ala	Lys	Glu	Val	
	65					70					75					
CGC	AGC	TTG	TCC	GGG	AGG	GCC	GTC	AAC	CAC	ATC	AAG	TCC	GTG	TGG	AAG	286
Arg	Ser	Leu	Ser	Gly	Arg	Ala	Val	Asn	His	He	Lys	Ser	Val	Trp	Lys	
80					85					90					95	
									ATT							334
Asp	Leu	Leu	Glu	Asp	Pro	Gin	Thr	Pro	He	Pro	Thr	Thr	He		Ala	
				100					105					110		
									ACC							382
Lys	Asn	Glu		Phe	Cys	Val	Asp		Thr	Lys	Gly	Gly	-	Lys	Pro	
			115					120					125			400
									GGC							430
Ala	Arg		He	Val	lyr	Pro		Leu	Gly	Val	Arg		Uys	Glu	Lys	
		130					135			007		140	070		000	470
									CTT							478
Met		Leu	lyr	Asp	vai		GIN	Lys	Leu	Pro		Ата	vaı	мет	ыу	
00T	145				016	150	T00	000	007		155	0.7.0	046		OTO	F00
									GCT							526
	Ser	ıyr	ыгу	rhe		Tyr	Ser	۲ro	Ala		Arg	vai	Glu	rne		
160					165					170					175	

574

TTG AAA GCA TGG GCG GAC AAG AAA GAC CCT ATG GGT TTT TCG TAT GAT

	Leu	Lys	Ala	Trp		Asp	Lys	Lys	Asp		Met	Gly	Phe	Ser		Asp	
	400	CCA	TCC	TTT	180	TOA	400	CTC	ACT	185	ACA	CAC	ATC	AGA	190	CAC	622
																	022
·	Thr	AIE	Uys	195	ASP	Ser	1111	Vai	200	u iu	MI R	wsh	116	205	1111	uiu	
	GAG	TOO	ATA		CAG	GCC	TGC	TCC	CTG	CCC	GAG	GAG	GCC		ACT	909	670
									Leu								070
	4.0	00.	210	, , ,	4111	A i u	0,0	215	Luu	110	4,4	4,4	220	,,, P			
	ATA	CGC		CTG	ACT	GAG	AGA		TAC	GTA	GGA	GGG		ATG	TTC	AAC	718
									Tyr								*
		225					230					235					
Ÿ.	AGC		GGC	CAG	GCC	TGC		TAC	AGG	CGT	TGC	CGC	GCC	AGC	GGC	GTG	766
									Arg								
	240	•	·			245	•	•	Ĭ	Ī	250	_			·	255	
	CTC	ACT	ACT	AGC	ATG	GGG	AAC	ACC	ATC	ACA	TGC	TAT	GTG	AAG	GCC	CTA	814
	Leu	Thr	Thr	Ser	Met	Gly	Asn	Thr	He	Thr	Cys	Tyr	Val	Lys	Ala	Leu	
					260					265					270		
	GCG	GCT	TGC	AAG	GCT	GCG	GGG	ATA	GTT	GCG	CCC	ACA	ATG	CTG	GTA	TGC	862
	Ala	Ala	Cys	Lys	Ala	Ala	Gly	He	Val	Ala	Pro	Thr	Met	Leu	Val	Cys	
				275					280					285			
	GGC	GAT	GAC	CTG	GTT	GTC	ATC	TCA	GAA	AGC	CAG	GGG	ACT	GAA	GAG	GAC	910
	Gly	Asp	Asp	Leu	Val	Val	He	Ser	Glu	Ser	Gln	Gly	Thr	Glu	Glu	Asp	
			290					295					300				
	GAG	CGG	AAC	CTG	AGA	GCC	TTC	ACG	GAG	GCT	ATG	ACC	AGG	TAT	TCT	GCC	958
	Glu		Asn	Leu	Arg	Ala	Phe	Thr	Glu	Ala	Met	Thr	Arg	Tyr	Ser	Ala	
		305					310					315					
									GAA								1006
		Pro	Gly	Asp	Pro		Arg	Pro	Glu	Tyr		Leu	Glu	Leu	He		
	320					325					330					335	1051
•									GCA								1054
	Ser	Cys	Ser	Ser		vai	Ser	vaı	Ala		Ser	Pro	GIN	ыу		Arg	
	404				340					345					350		1057
	AGA																1057
지지품은 . 1.4	Arg									Ĺ	42° C)	٠:	: 直	邻什			
配列番号:14						-				•	•	-	_		0 00	nomic	DNA
配列の長さ:648 配列の型:核酸											源	1至大兒	. 00	וות נ	U gc	i ioni i c	MA
鎖の数:二本鎖												· C	型肝	おウ	イル	z	
14073X . — 47154	配列	1								_	123-121	. •	<i>n</i> (~ ,	1 ,,,		
			TAT	TCT	GCC	CCT	CCT	GGT	GAC	CCC	CCC	AGA	CCG	GAA	TAT	GAC	46
									Asp								
		1				5		•	•		10		•		•	15	
	CTG	GAG	CTG	ATA	ACA	TCT	TGT	TCC	TCA	AAT	GTG	TCT	GTG	GCA	ATC	AGC	94
	Leu	Glu	Leu	He	Thr	Ser	Cys	Ser	Ser	Asn	Val	Ser	Val	Ala	He	Ser	*
					20		-			25				-	30		
	CCA	CAG	GGC	CGC	CGC	AGA	TAC	TAC	CTG	TCC	AGA	GAC	CCT	ACC	ACT	CCA	142
	Pro	Gln	Gly	Arg	Arg	Arg	Tyr	Tyr	Leu	Ser	Arg	Asp	Pro	Thr	Thr	Pro	•
				35			•		.40					45			
	ATT	GCC	CGG	GCT	GCC	TGG	GAA	ACA	GTT	AGA	CAC	TCC	CCT	GTC	AAT	TCA	190

He	Ala		Ala	Ala	·Trp	Glu			Arg	His	Ser		Val	Asn	Ser	
		50					55					60				
TGG	CTG	GGA	AAC	ATC	ATC	CAG	TAC	GCT	CCA	ACC	ATA	TGG	GTT	CGC	ATG	238
Trp	Leu	Gly	Asn	He	He	Gln	Tyr	Ala	Pro	Thr	He	Trp	۷al	Arg	Met	
	65					70					75					
GTT	CTG	ATG	ACA	CAT	TTC	TTC	CCC	GTT	CTC	ATA	GCC	CAA	GAC	ACC	CTG	286
Val	Leu	Met	Thr	His	Phe	Phe	Pro	Va I	Leu	He	Ala	Gin	Asp	Thr	Leu	
80					85					90					95	•
GAC	CAG	AAC	CTA	AAT	Ш	GAA	ATG	TAC	GGA	TCG	GTG	TAC	TCC	GTG	AGT	334
Asp	Gin	Asn	Leu	Asn	Phe	Glu	Met	Tyr	Gly	Ser	Val	Tyr	Ser	Val	Ser	
				100					105					110		
CCT	TTG	GAC	CTC	CÇA	GCC	ATA	ATT	GAA	AGG	TTA	CAT	GGG	CTC	GAC	GCC	382
Pro	Leu	Asp	Leu	Pro	Ala	He	He	Glu	Arg	Leu	His	Gly	Leu	Asp	Ala	
			115					120					125			
TTT	TCT	CTG	CAC	ACA	TAC	ACT	CAC	CAC	GAA	CTG	ACG	CGG	GTG	GCT	TCG	430
Phe	Ser	Leu	His	Thr	Tyr	Thr	His	His	Glu	Leu	Thr	Arg	Val	Ala	Ser	
		130					135					140				
GCC	CTC	AGA	AAA	CTT	GGG	GCG	CCA	CCC	CTC	AGA	GCG	TGG	AÀG	AGC	CGG	478
Ala	Leu	Arg	Lys	Leu	Gly	Ala	Pro	Pro	Leu	Arg	Ala	Trp	Lys	Ser	Arg	
	145					150					155					
GCG	CGT	GCA	GTC	AGG	GCG	TCC	CTC	ATC	TCC	CAG	GGG	GGG	AGA	GCG	GCC	576
Ala	Arg	Ala	Val	Arg	Ala	Ser	Leu	lle	Ser	Gln	Gly	Gly	Arg	Ala	Ala	
160					165					170			•		175	
GTT	TGC	GGC	CGC	TAT	СТС	TTC	AAC	TGG	GCG	GTG	AAG	ACC	AAG	CTC	AAA	574
Val	Cyś	Gly	Arg	Tyr	Leu	Phe	Asn	Trp	Ala	Val	Lys	Thr	Lys	Leu	Lys	
				180					185					190		
CTC	ACT	CCA	TTG	CCG	GAG	GCA	CGC	CTC	CTG	GAT	TTA	TCC	AGT	TGG	TTC	622
Leu	Thr	Pro	Leu	Pro	Glu	Ala	Arg	Leu	Leu	Asp	Leu	Ser	Ser	Trp	Phe	
			195					200					205			
ACC	GTC	GGC	GCC	GGC	GGG	GGC	GAC	ΑT								648
Thr	Val	Gly	Ala	Gly	Gly	Gly	Asp									
		210					215									
_					,											

【図面の簡単な説明】

【図1】この図は、PCRによるHCV#S14株および#4株のクローニング戦略を示す。図中、各領域に付した上側の数字はHC-J6上のヌクレオチド配列の位置を示し、また下側の数字は使用したPCRプライマーの名称を示す。なお、括弧内の数字はDNA断片の長さ(bp)を示す。

【図2】この図は、PCRによるHCV#S14株のクローニング戦略を示す。図中、各領域に付した上側の数字はHC-J6上のヌクレオチド配列の位置を示し、また下側の数字は使用したPCRプライマーの名称を示す。なお、括弧内の数字はDNA断片の長さ(bp)を示

す。

【図3】この図は、クローニング用ベクター p B M の構築工程を示す。

【図4】この図は、慢性非A非B型肝炎患者血清5例 (No.1~No.5) と健常人血清5例 (No.6~No.10) について本発明発現抗原(実施例3参照)を用いてウエスタンブロッティングを行った結果を示す写真である。

【図5】この図は、慢性非A非B型肝炎患者血清5例 (No. 1~No. 5)と健常人血清5例 (No. 6~No. 10)について本発明発現抗原(実施例4参照)を用いてウエスタンブロッティングを行った結果を示す写真である。レーンMは分子量マーカーを示す。

[図1]

#:
$$\frac{2.0}{\text{Core}} = 1$$
 | $\frac{2.0}{\text{I}} = \frac{4.0}{\text{I}} = \frac{6.0}{\text{I}} = \frac{8.0}{\text{I}} = \frac{100(\text{n})}{\text{I}}$ | HCJ6.

#: $\frac{2.7727701}{\text{C}_14_4} = \frac{1.6}{14_1} = \frac{1.3}{14_1} = \frac{1.00(\text{n})}{14_1}

[図2]

[図3]

図 3

【図4】

図 4

【図5】

図 5

フロントページの続き

(51) Int. Cl. 5		識別記号	庁内整理番	持号 FI		技術表示	市箇所
//(C12N 1/21						·	
C12R						•	
(C 1 2 P	21/02						
C 1 2 R	·						
• • • • • • • • • • • • • • • • • • • •				•			
(72)発明者	野本 明	· 男		(72) 発	明者 三谷	隆彦	
	東京都文	京区本駒込三丁目	18番22号 財	村団	愛知!	具名古屋市東区東外堀町35番地	株式
	法人 東	京都臨床医学総合	研究所内		会社:	三和化学研究所内	
(72) 発明者	小原 道	法		(72) 発	明者 浅野	幸康	
	東京都文	京区本駒込三丁目	18番22号 郥	オ団	愛知!	具名古屋市東区東外堀町35番地	株式
	法人 東	京都臨床医学総合	研究所内		会社:	E和化学研究所内	
(72) 発明者	小原 恭	7		(72) 発	明者 槙	犁	
	東京都文	京区本駒込三丁目	18番22号 即	村団	埼玉県	県入間郡大井町西鶴ケ岡一丁目:	3番1
	法人 東	京都臨床医学総合	研究所内		号耳	東燃株式会社総合研究所内	
(72) 発明者	澤井 喜	-		(72) 発	明者 東 -	一博	
	•	古屋市東区東外堀	町35番地 棋	定	兵庫県	県神戸市西区室谷1丁目1番2	国際
	会社三和任	化学研究所内			試薬	朱式会社研究開発センター内	
(72) 発明者	黒野昌	*		(72) 発	明者森	告之	
(,,,,,,,,,		… 古屋市東区東外堀	町35番地 杉	k±t	兵庫リ	- 県神戸市西区室谷1丁目1番2	国際
	•	化学研究所内			試薬	未式会社研究開発センター内	
				(72) 発	明者 太田	陽介	
				(, - / /		· · · · · · · · · · · · · · · · · · ·	国際
						朱式会社研究開発センター内	

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-070778

(43) Date of publication of application: 15.03.1994

(51)Int.CI.

C12N 15/51 C07K 13/00 C12N 1/21 C12P 21/02 //(C12N 1/21 C12R 1:19) (C12P 21/02

C12R 1:19

(21) Application number: 05-156087

(71)Applicant: TOKYO MET GOV RINSHIYOU

IGAKU SOGO KENKYUSHO

SANWA KAGAKU KENKYUSHO

CO LTD

TONEN CORP

INTERNATL REAGENTS CORP

(22)Date of filing:

01.06.1993

(72)Inventor:

NOMOTO AKIO

OBARA MICHINORI OBARA KYOKO

SAWAI KIICHI

KURONO MASATSUNE MITANI TAKAHIKO ASANO YUKIYASU MAKI NOBORU AZUMA KAZUHIRO MORI HIROYUKI

OTA YOSUKE

(30)Priority

Priority number: 04207391

Priority date: 10.07.1992

Priority country: **JP**

(54) NUCLEIC ACID FRAGMENT CODING NON-A, NON-B HEPATITIS VIRUS ANTIGEN

(57) Abstract:

PURPOSE: To provide a new nucleic acid fragment useful for production of an antigen (poly)peptide specific to a non-A, non-B hepatitis virus.

CONSTITUTION: This invention is a nucleic acid fragment obtained from plasma of a non-A, non-B hepatitis patient according to the gene engineering technique and containing a nucleotide sequence coding an antigen of the structural and non-structural zone of a non-A, non-B hepatitis virus, e.g. a nucleic acid fragment containing a nucleotide sequence coding a non-A, non-B hepatitis virus antigen of an amino acid sequence represented by the formula. RNA is extracted from plasma of a non-A, non-B hepatitis patient and a reverse transcriptase is allowed to

CANTEST EXPLANENT CONTROL METHODS INFORMATION ACCURATES. SO

CONTROL OF GOVERNMENT TO THE CONTROL OF THE CONTROL OF CONTROL OF THE CONTROL OF

act thereon to obtain a cDNA. PCR is carried out by using two kinds of primers and the DNA is amplified.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] Although a non-A-non-B-hepatitis patient's most portion has become diagnosable with the HCV antibody detection reagent which combined the antigen of the structure and the non-structure field of the second generation as mentioned above, the patient who cannot still detect with these reagents exists. What this cause depends on the non-A-non-B-hepatitis virus from which a type differs, and the thing completely depended on another pathogen factor is not clear.

[0008] Moreover, the cure of non-A-non-B-hepatitis patients, such as interferon medication, follows on appearing, and measurement of the gene and antigen which it not only detects an antibody, but are more meaningful for the judgment of a curative effect is desired strongly. However, it is also shown clearly that it has remarkable versatility in the field which it is especially shown clearly that the group from which a type differs exists in a non-A-non-B-hepatitis virus, and is presumed to be an envelope. It faces performing antibody measurement as an index of virus infection, antigen measurement, and gene measurement, it is thought that viral antigen and the versatility of a gene need to be taken into consideration, and it is thought that for that it is necessary to acquire as many the virogene and its manifestation product of a kind as possible.

[0009] The purpose of this invention is offering the new nucleic-acid fragment which carries out the code of the structure of a non-A-non-B-hepatitis virus, and the antigen of a non-structure field.
[0010] Another purpose of this invention is offering the expression vector containing this nucleic-acid fragment.

[0011] Still more nearly another purpose of this invention is offering the host cell containing this expression vector.

[0012] Other purposes of this invention are offering the manufacturing method of this antigen (poly) peptide that cultivates this host cell, is made to discover this nucleic-acid fragment, and is obtained.

MEANS

[Means for Solving the Problem] In order to attain the above-mentioned purpose, this invention person etc. succeeds in carrying out cloning of the non-A-non-B-hepatitis virogene which is different from the thing of a previous report from the inside of specific non-A-non-B-hepatitis patient plasma, and came to complete this invention.

[0014] In completing this invention, RNA is extracted from non-A-non-B-hepatitis patient plasma, reverse transcriptase is made to act, cDNA is obtained, and DNA is amplified by performing PCR (polymerase-chain-reaction; Science 230:1350 (1985)) using two kinds of primers. About the primer used on the occasion of amplification, it set up based on the array (J.Virol.65, 1105(1991); Proc.Natl.Acad.Sci.87:9524(1990); Virus Gene 5:3 243(1991); J.General Virol, and 72:2697 (1991)) of a previous report. Cloning of the amplified DNA was carried out using the claw NINKU vector which can be reproduced within Escherichia coli, and the nucleotide sequence was determined using the dideoxy chain stopping method (Science, 214, 1205 (1981)) of Sanger. [0015] the above-mentioned method -- 14 kinds of clones -- obtaining -- Each C -- 14-1, C14-2, and C -- 14-3, C4-1, and C -- 4-2, C14-4, and C -- 14-5, C14-6, and C -- 14-7, C14-8, and C -- 14-9, C14-10, and C -- it was named 14-11 and C14-12 In addition, C14 and C4 are a series of clones obtained from the respectively independent patient. After importing 13 kinds of clones except C14-7 clone into 109 stocks of Escherichia coli jump on minus among 14 kinds of obtained clones, as a transformant -- respectively -- Fermentation Research Institute ***** 13029 a number -- said -- the 13030th a number -- said -- the 13031st a number -- said -- the 13027th a number -- said -- the 13028th a number -- said -- the 13032nd a number -- and -- said -- the 13033rd a number (above, deposition as of June 24, Heisei 4) -- and FERM P-13592 -- said -- P-13593 -- said -- P-13594 -- said -- P-13595 -- said -- P-13596 -- and -- said -- it ****s to National Institute of Bioscience and Human-Technology, the Agency of Industrial Science and Technology, as P-13597 (above,

[0016] As 14 kinds of obtained clones are shown in drawing 1 and drawing 2, C14-1 respectively by homology comparison with the nucleotide sequence of the non-A-non-B-hepatitis virogene of a previous report A part of 5' non-translating field and, and core region C14-3, C4-1, C4-2, and C14-5 NS3 field, ©14=2E2=/NS1 field, ©14=4==a=core*/E1-field and ©14=6==core*/E1-field and C14-7 -- NS2/NS3 field and C14-8 -- NS4/NS3 field and C14-9 -- NS4/NS5 field, C14-10, and C -- 14-11 and C14-12 were presumed to be NS5 fields the determined clone C -- 14-1, C14-2, and C -- 14-3, C4-1, and C -- 4-2, C14-4, and C -- 14-5, C14-6, and C -- 14-7, C14-8, and C -- 14-9, C14-10, and C -- the nucleotide sequence and presumed amino acid sequence of 14-11 and C14-12 It was shown in the array-among after-mentioned array table numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14, respectively.

[0017] The feature of each obtained clone is shown below.

deposition as of April 9, Heisei 5)

[0018] (1) Clone It consists of C14 -1701 nucleotide, and translation fields are the nucleotide numbers 320-700 (127 amino acid), and are equivalent to a part of 5' non-translating field and, and core antigen field.

[0019] (2) Clone It consists of C14 -2910 nucleotide, and translation fields are the nucleotide numbers 1-909 (303 amino acid), and are equivalent to a part of E2-/NS1 field.

[0020] (3) Clone It consists of C14 -3852 nucleotide, and translation fields are 1-852 (284 amino acid), and are equivalent to a part of NS2 and NS3 antigen field.

[0021] (4) Clone It consists of C4-1819 nucleotide, and translation fields are the nucleotide numbers 1-819 (273 amino acid), and are equivalent to a part of NS2 and NS3 antigen field.

[0022] (5) Clone It consists of C4 -2992 nucleotide, and translation fields are the nucleotide numbers 3-992 (330 amino acid), and are equivalent to a part of NS3 antigen field.

[0023] (6) Clone It consists of C14 -4596 nucleotide, and translation fields are the nucleotide numbers 1-594 (198 amino acid), and are equivalent to a part of core antigen field and E1 antigen field.

[0024] (7) Clone It consists of C14 -51143 nucleotide, and translation fields are the nucleotide numbers 2-1141 (380 amino acid), and are equivalent to a part of NS3 antigen field. [0025] (8) Clone It consists of C14 -61134 nucleotide, and translation fields are the nucleotide

- numbers 1-1134 (378 amino acid), and are equivalent to a part of E1 and core, and E2-/NS1 field. [0026] (9) Clone It consists of C14 -71664 nucleotide, and translation fields are the nucleotide numbers 2-1663 (554 amino acid), and are equivalent to a part of E2/NS1 and NS2, and NS3 field. [0027] (10) Clone It consists of C14 -8667 nucleotide, and translation fields are the nucleotide numbers 2-667 (222 amino acid), and are equivalent to a part of NS4 and NS3 field.
- [0028] (11) Clone It consists of C14 -91120 nucleotide, and translation fields are the nucleotide numbers 2-1120 (373 amino acid), and are equivalent to a part of NS4 and NS5 field.
- [0029] (12) Clone It consists of C14 -101174 nucleotide, and translation fields are the nucleotide numbers 2-1174 (391 amino acid), and are equivalent to a part of NS5 field.
- [0030] (13) Clone It consists of C14 -111057 nucleotide, and translation fields are the nucleotide numbers 2-1057 (352 amino acid), and are equivalent to a part of NS5 field.
- [0031] (14) Clone It consists of C14 -12648 nucleotide, and translation fields are the nucleotide numbers 2-646 (215 amino acid), and are equivalent to a part of NS5 field.
- [0032] In addition, the coding region of a non-A-non-B-hepatitis viral genome consists of a structure field of a core/envelope, and a non-structure field (NS), and is arranged from 5' edge of a coding region in order of CORE, E1 and E2/NS1, NS2, NS3, NS4 and NS5 (J.Virology (1991), 65:1105-1113).
- [0033] furthermore, the clone C -- 14-1, C14-2, and C -- 14-3, C4-1, and C -- 4-2, C14-4, and C -- 14-5, C14-6, and C -- 14-7, C14-8, and C -- 14-9, C14-10, and C -- the nucleotide sequence and presumed amino acid sequence of 14-11 and C14-12 HCV1 (Proc.Natl.Acad.Sci. (1991) --) of respectively a previous report 88:2451-2455 and HCVBK (it Virolog(ies) (1991) J. --) 65:1105 1113 and HCV-J1 (Proc.Natl.Acad.Sci. (1990) --) 87:9524-9528 and HC-J6 (it GeneralVirolog(ies) (1991) J. --) 72: The result which compared 2697-2704, and the array of HC-J8 (Virology (1992), and 188:331-341) and a homology was shown in the following tables 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14.

[0034]

[Table 1]

- Table 1 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-1/HCV1 88.3 89.0 HCVBK 88.7 90.6 HCV-J1 88.3 90.6 HC-J6 96.3 95.3 HC-J8 91.0 92.1 [0035] [Table 2]
- Table 2 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-2/HCV1 67.5 72.9 HCVBK 69.8 75.2 HCV-J1 69.5 72.9 HC-J6 90.7 90.8 HC-J8 74.4 86.5 [0036] [Table 3]
- Table 3 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-3/HCV1 68.2 75.5 HCVBK 68.4 75.5 HCV-J1 68.5 76.2 HC-J6 91.8 97.5 HC-J8 75.7 88.7 [0037] [Table 4]
- Table 4 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C4-1/HCV1 77.2 91.1 HCVBK 88.8 94.1 HCV-J1 90.4 93.8 HC-J6 67.8 73.6 HC-J8 66.6 74.6 [0038] [Table 5]
- Table 5 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C4-2/HCV1 80.0 93.6 HCVBK 90.5 96.1 HCV-J1 91.3 94.2 HC-J6 71.8 86.1 HC-J8 72.2 85.2 [0039] [Table 6]
- Table 6 Homology (%) HCV gene All nucleotide sequences All amino acid sequences C14-4/ HCV1 65.8 70.2 HCVBK 66.3 65.7 HCV-J1 64.9 66.2 HC-J6 90.8 92.4 HC-J8 72.8 74.7 [0040] [Table 7]
- Table 7 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-5/HCV1 73.6 86.3 HCVBK 72.0 86.1 HCV-J1 71.5 85.3 HC-J6 91.5 95.3 HC-J8 78.7 92.9 [0041] [Table 8]
- Table 8 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-6/HCV1 65.2 67.2 HCVBK 65.5 62.8 HCV-J1 63.5 62.0 HC-J6 87.8 86.2 HC-J8 70.8 74.1 [0042] [Table 9]
- Table 9 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-7/HCV1 62.7 66.1 HCVBK 63.1 66.6 HCV-J1 62.8 67.0 HC-J6 90.6 95.1 HC-J8 72.5 79.1 [0043] [Table 10]

Table 10 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-8/HCV1 68.0 73.0 HCVBK 66.0 69.8 HCV-J1 65.5 70.3 HC-J6 90.9 96.8 HC-J8 77.3 90.5 [0044] [Table 11]

Table 11 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-9/HCV1 66.7 68.8 HCVBK 67.7 72.1 HCV-J1 67.0 71.8 HC-J6 90.1 95.7 HC-J8 77.5 87.4 [0045] [Table 12]

Table 12 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-10/HCV1 55.8 58.8 HCVBK 54.6 58.8 HCV-J1 50.6 60.3 HC-J6 88.9 90.8 HC-J870.0 72.8 [0046] [Table 13]

Table 13 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-11/HCV1 69.8 76.4 HCVBK 69.7 76.4 HCV-J1 70.8 78.3 HC-J6 93.6 96.0 HC-J880.0 87.5 [0047] [Table 14]

Table 14 Homology (%) A HCV gene All nucleotide sequences All amino acid sequences C14-12/HCV1 67.6 72.6 HCVBK 67.2 73.0 HCV-J1 68.5 73.5 HC-J6 94.1 95.3 HC-J883.3 87.4 -- the nucleotide sequence showed and the amino acid sequence showed 4.7 - 11.0% of difference 3.7 to 11.7% between these front twists and the non-A-non-B-hepatitis virogene clone C14-1 was announced officially, saying By 9.2-27.1%; clone C14-3, 9.3 to 32.5% clone C14-2, respectively Moreover, 8.2 - 31.8%, In clone C4-1, respectively 2.5 - 24.5%; 9.6 - 33.4%, In clone C4-2, respectively 5.9 - 26.4%; 8.7 - 28.2%, In clone C14-4, respectively 3.9 - 14.8%; 9.2 - 35.1%, In clone C14-5, respectively 7.6 - 34.3%; 8.5 - 28.5%, In clone C14-6, respectively 4.7 - 13.9%; 12.2 - 36.5%, In clone C14-7, respectively 13.8 - 37.2%; 9.4 - 37.3%, In clone C14-8, respectively 4.9 - 33.4%; 9.1 - 34.5%, In clone C14-9, respectively 3.2 - 30.2%; 9.9 - 33.3%, In clone C14-10, respectively 4.3 - 31.2%; 11.1 - 49.4%, 9.2 - 41.2%; by 4.0-23.6%; clone C14-12, 5.9 - 32.8% and 4.7 - 27.4% of difference was accepted 6.4 to 30.3% clone C14-11, respectively. In this, C4 and C14 stock indicate it to be the HCV stock released by present that it is another stock.

[0048] Therefore, this invention offers the new nucleic-acid fragment containing the nucleotide sequence which carries out the code of the structure of the non-A-non-B-hepatitis virus obtained by

[0048] Therefore, this invention offers the new nucleic-acid fragment containing the nucleotide sequence which carries out the code of the structure of the non-A-non-B-hepatitis virus obtained by the genetic engineering-technique from non-A-non-B-hepatitis patient plasma, and the antigen of a non-structure field.

[0049] the operative condition of this invention -- this nucleic-acid fragment contains more the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array-among after-mentioned array table numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14 like Moreover, all the arrays based on the degeneracy of a genetic code are included by this nucleotide sequence. All or part of arrays to the nucleotide numbers 1-700 the example of such a nucleotide sequence is indicated to be to the array number 1 All or part of arrays to the nucleotide numbers 1-909 shown in the array number 2 All or part of arrays to the nucleotide numbers 1-852 shown in the array number 3 All or part of arrays to the nucleotide numbers 1-819 shown in the array number 4 All or part of arrays to the nucleotide numbers 3-992 shown in the array number 5 All or part of arrays to the nucleotide numbers 1-594 shown in the array number 6 All or part of arrays to the nucleotide numbers 2-1141 shown in the array number 7 All or part of arrays to the nucleotide numbers 1-1134 shown in the array number 8 All or part of arrays to the nucleotide numbers 2-1663 shown in the array number 9 All or part of arrays to the nucleotide numbers 2-667 shown in the array number 10 All or part of arrays to the nucleotide numbers 2-1120 shown in the array number 11 All or part of arrays to the nucleotide numbers 2-1174 shown in the array number 12 They are all of the arrays to the nucleotide numbers 2-1057 shown in the array number 13, or all or a part of arrays to the nucleotide numbers 2-646 shown in the array number 14 in part.

[0050] this invention offers the expression vector introduced into the cloning part in the vector to which the above-mentioned nucleic-acid array exists in a promotor's lower stream of a river again. Furthermore, this invention offers the host cell containing this expression vector.

[0051] As a vector, the viruses (for example, the vaccinia virus, a baculovirus, etc.) other than the vector of common use, such as a plasmid and a phage, are used. It is decided by whether it rearranges (poly) and a peptide has sugar chain structure to be obtained by DNA manifestation by the kind of the promotor who can use it, and host namely, -- the case where rearrange (poly) and it is

made for a peptide not to include sugar chain structure -- as a host -- for example, procaryotes, such as Escherichia coli, a Bacillus subtilis, and an Actinomyces, -- it can use -- moreover -- as a promotor -- for example, the tryptophan synthetase operon (trp), a lactose operon (lac), and the lambda phages PL and PR etc. -- it can use In this case, generally it will be obtained as a fusion object with other peptides. On the other hand, in rearranging (poly) and making it a peptide include sugar chain structure Eukaryotes, such as yeast, a plant cell, an insect cell, and an animal cell, are mentioned as a host. Moreover, the promotor to glycolysis enzymes, such as a promotor of the common use to yeast etc. as a promotor, for example, 3-phosphoglycerate kinase, and enolase, and the promotor to an alcohol dehydrogenase, The promotor of the origins, such as adenovirus, the virus promotor, for example, the polyoma virus, which may be used by the mammalian cell, ape virus simian virus 40, vaccinia virus, and a cytomegalovirus, is mentioned.

[0052] A vector may contain suitably the marker arrays (for example, an ampicillin, a tetracycline resistence gene, etc.) which make possible further phenotypic selection of the cell by which the transformation was carried out, the origin of replication, a terminator, a ribosome binding site, etc. [0053] this invention offers the manufacture method of a recombination non-A-non-B-hepatitis viralantigen (poly) peptide further. This method includes the process which specifically builds the expression vector which may make the above-mentioned nucleic-acid fragment of this invention discover within a suitable host cell, and which can be reproduced, the process which introduce the aforementioned expression vector in a host cell, and obtain a transformant, the process which the aforementioned transformant cultivates [process] under the conditions which may make the aforementioned nucleic-acid fragment discover, and make the aforementioned recombination (poly) peptide discover, and the process which collect the aforementioned recombination (poly) peptides. [0054] The culture condition of a transformant is determined depending on the host cell to be used. and the culture medium which can be increased, cultivation temperature, cultivation time, etc. are chosen suitably. Moreover, the technology of common use, for example, ultrasonic spallation of a cell, solubilization extraction, ammonium sulfate fractionation, various chromatographies, etc. can perform refining of the recombination (poly) peptide from a culture.

[0055] A "recombination (poly) peptide" means a fusion (poly) peptide with the peptide itself or other peptides (poly) which are made to discover DNA which carries out the code of the non-A-non-B-hepatitis viral antigen included in the expression vector, and are obtained (poly) among this specification.

[0056] The recombination (poly) peptide obtained by the above-mentioned method is also included by this invention. Such (poly) a peptide can also carry out chemosynthesis by using the peptide synthesis technology of common use, and this is things obvious at this contractor.

[0057] When [which was obtained by this invention] it rearranged and the polypeptide was made to react by the Western blot technique after SDS-polyacrylamide electrophoresis with a normal people blood serum and a non-A-non-B-hepatitis patient blood serum, as shown in <u>drawing 4</u> and <u>drawing 5</u>, this recombination polypeptide reacted only with the non-A-non-B-hepatitis patient blood serum. Therefore, this recombination polypeptide is an antigen specific with a non-A-non-B-hepatitis virus, and is usable to a diagnosis of non-A non-B hepatitis, and detection of a non-A-non-B-hepatitis virus.

EXAMPLE

[Example] Although the following examples explain this invention to a detail further, this invention is not limited to these examples.

[0059] The plasma more nearly little than the plasma of the detection chronic-stage non-A-non-B-hepatitis patient of the HCV (#S14) gene by example 1 radiographic-PCR as a method of carrying out cloning of the HCV gene performed cloning of a HCV gene using radiographic(reverse transcriptase)-PCR method in which cloning is possible.

[0060] First, t-RNA(10mg/(ml)) 1microl of 200micro (6M guanidine thiocyanate, a 37.5mM sodium citrate, 0.75% ZARUKOSHIRU, 0.2M mercaptoethanol) of 6 GTC liquid 1 of M and yeast is added and agitated to 100micro (#S14) of non-A-non-B-hepatitis patient plasma l of a single chronic term. Furthermore, after adding 3M sodium acetate (pH 5.2) 20microl, TE saturation phenol (pH 7.5-8.0) 30microl, and chloroform / isoamyl alcohol (49:1) 70microl, mixing quickly and agitating for 10 seconds, it puts for 15 minutes into ice. a centrifuge -- 15000 rpm -- it carries out centrifugal at 4 degrees C for 20 minutes A water layer is taken, and it mixes with equivalent isopropyl alcohol, and puts on -20 degrees C for 1 hour or more. this -- 15000 rpm -- centrifugal is carried out and it is made to precipitate at 4 degrees C for 20 minutes It dissolves in GTC(what diluted 6M GTC with sterilized water)100microl of 4M, and mixes with equivalent isopropyl alcohol, and precipitate is gently put on -20 degrees C for 1 hour or more. 15000 For rpm and 20 minutes, carry out centrifugal at 4 degrees C, and obtain precipitate. It was air-dry after washing by ethanol 1ml 70% with the room temperature, dissolved in the sterilized water of 10microl, and was used as RNA. [0061] After cDNA composition pours RNA10microl distributively in a siliconizing tube (0.5ml), 70 degrees C, it is heated for 3 minutes and quenched in Hikami. Next, RNase inhibitor (TAKARA SHUZO) 1microl (50 units /mul), dNTP(20 mM(s) each) 1microl, 100mMDTT, and 5xradiographic buffer (Tris-HCl (pH 8.5) 250mM [] --) 375mM(s) KCl, 15mM MgCl2 4microl, random oligo hexamer primer (100pmol/mul) 1microl, and 1micro (BRL) of reverse transcriptase 1 (200 units /mul) are added, and it doubles with a total of 20microl by the sterilized water. It heated for 5 minutes at 94 degrees C after the 2-hour reaction by 42 degrees C, and the enzyme was made to deactivate. PCR was performed using this cDNA. PCR used the 2 step method, in order to mention the amplification sensitivity and the singularity of Detection DNA. That is, 1st PCR is first applied by two sorts of primers (1st step PCR). Next, it is the method to which 2nd PCR is applied using two sorts of primers which exist inside the DNA array of the PCR product (2nd step PCR). [0062] The primer was compounded about the field of 12 of C14-1 field, C14-2 field, C14-3 field, C14-4 field, C14-5 field, C14-6 field, C14-7 field, C14-8 field, C14-9 field, C14-10 field, C14-11 field, and C14-12 field, and it was used for the 2 step method. The PCR primer used for below is described. In addition, each field set the array (J.Virol.65, 1105-1113(1991); Proc.Natl.Acad.Sci.USA 87, 9524-9528; (1990) Virus Genes 5:3, 243-259; (1991) J.General Virol.72, and 2697-2704 (1991)) of a previous report as reference. Moreover, the physical relationship of each amplification field and the array (HC-J6) of a previous report is shown in drawing 1 and drawing 2.

[0063] About C14-1 field, it is 1st. On the occasion of PCR, primer 14-1:5 '-CGATTGGGGGGGGA-3' and 14-2:5'-TTGCAAAATTAACCCCGTCCTCCAG-3' is used, and it is 2nd. A primer 14-1 and 14-3:5'-CATGAGGTCGGCGAAGCCGC-3' were used for PCR.

[0064] About C14-2 field, it is 1st. PCR uses primer 14-8:5'-

CACCAATGGCAGTTGGCACATCAAC-3' and 14-9:5'-

GGACTACCCGACCCTTGATGTACCA-3', and is 2nd. PCR used primer 14-10:5 '-CTGTTCTACACCCACAGCTTCAAC-3' and 14-11:5'-GCGTGCAAGACGACCAACTTCTCTA-3'

[0065] About C14-3 field, it is 1st. PCR uses primer 14-12:5'-

GAGCGGAGACAGCTGCTTGCGGGGA-3 and 14-13:5'-ATAGGTGGAGTACGTGATGGG-3', and is 2nd. PCR used primer 14-14:5'-TTCCCGTGTCCGCCCGA-3 and 14-13. [0066] About C14-4 field, it is 1st. PCR uses primer 14-4:5 '-TGGGCAGGATGGCTCCTGTC-3'

and 14-5:5'-GCCGTTGTAGGTGACCAGTTC-3', and is 2nd. PCR used primer 14-6:5'-TGGGTAAGGTCATCGATACC-3' and 14-5.

[0067] About C14-5 field, it is 1st. PCR uses primer 14-15:5'-CTGGTAGTGGAAAGAGCACCAAAGT-3' and 14-16:5'-TGCATGCACGTGGCGATGTA-3', and is 2nd. PCR used primer 14-17:5'-TCGCGTATGCCGCTCAGGGGTACAA-3' and 14-18:5'-GTCAGGGTAACCTCGTTGGTA-3'. [0068] Furthermore, the PCR primer shown below was used about C14-6, C14-7, C14-8, C14-9, C14-10, C14-11, and C14-12 field. [0069] [Table 15] C14-6 1st:5'-TGGGCAGGATGGCTCCTGTC-3'(14-4) 5'-CTATCGGTCGTACCCACTAC-3'(14-19) 2nd:5'-TGGGTAAGGTCATCGATACC-3'(14-6) 5'-TGAAACAGTACACTGGGCCACACAC -3'(14-20 C14-7 1st:5'-ACCTGCCCGCCTTGTCGACTGGT -3'(14-21) 5'-ATAGGTGGAGTACGTGATGGG -3'(14-13) 2nd:5'-AAACATCGTGGACGTGCAAT-3'(14-22) 5'-GAATTCTGATGCCATGTGCCTTGGACA -3'(14-23) C14-8 1st:5'-GGATACACCGGTGACTTTGA-3'(14-24) 5'-CCCCAAAATGTTGAGAAGGATA-3'(14-25) 2nd:5'-GATGCCCACTTCCTCTCCCA-3'(14-26) 5'-GTGCTAGTTGACAACGGACTGGT -3'(14-27) C14-9 1st:5'-AACACATGTGGAACTTCATCA -3'(14-28) 5'-ATATGGGATGGGTCTGTTAGCATGGA-3'(14-29 2nd:5'-ACCTCGCAGGACTATCAACACTGCC -3'(14-30) 5'-GATCGGAAGGGAGCTGAGACCCGAC -3'(14-31 C14-10 1st:5'-TAACGAGTGACAACCTTAA -3'(14-32) 5'-AAGCTGCGGACCTCCTTAGCCCC -3'(14-33) 2nd:5'-ACGGAGTGCAGATCCATAGGTTTGCCCC-3'(14-34) 5'-TTGCAGAGTGGGGTGGAGTTAACTGGCA-3'(14-35) C14-11 1st:5'-GTCGTCTGCTGCTCAATGTC-3'(14-36) 5'-GTGTCTAACTGTTTCCCAGGCAGCC -3'(14-37 2nd:5'-ATCAATCCGTTGAGCAACTC-3'(14-38) 5'-TGGTAGGGTCTCTGGTCAGGTAGTN -3'(14-39 C14-12 1st:5'-CTAGCATGGGGAACACCATCACATG -3'(14-40) 5'-TGTCTTTCATCCTCATCCGN-3'(14-41) 2nd:5'-GAGCCTTCACGGAGGCTATGAC-3'(14-42 5'-TCGGGCACGCGACACGCTGTGATAN -3'(14-43 (N shows the mix of G, A, T, and C). [0070] The conditions of PCR are 20microl, 10xPCR buffer-solution (100mM Tris-HCl (pH 8.3), 500mMKCl, 15mM MgCl2, and 0.1% gelatine) 8microl, and 1st about the above-mentioned cDNA composition reaction mixture in 0.5ml tube. Two sorts (75 pmole(s) each) of step primers, 2mM dNTP 8microl is added and it is made 100microl by the sterilized water. It heats for 10 minutes at 94 degrees C, and Ampli Taq1(Perkin-Elmer-Cetus) microl (five units) is added, after churning, multistory [of the mineral oil] is carried out and it carries out centrifugal lightly, a PCR reaction -denaturation 94-degree-C for [1 minute] and annealing 55degree C -- the conditions for 1 minute and for [extension 72 degrees-C] 2 minutes -- 30 cycle ***** Next, it is 1st to new 0.5ml tube. 9micro of PCR reaction end liquid 10microl and 10xPCR buffer solutions l is added, and it is 2nd. Two sorts (75 pmole(s) each) of step primers, 2mM It is referred to as 100microl by dNTP9microl and the sterilized water. Ampli Taq 1microl (five units) is added, after churning, multistory [of the mineral oil] is carried out, centrifugal is carried out [it heats for 10 minutes at 94 degrees C, and] lightly, and they are 2nd(s) at previous conditions. PCR is performed. Agarose gel electrophoresis of the 10micro of the reaction mixture I was carried out after the reaction, and the DNA fragment amplified specifically was detected. [0071] The determination HCV gene of cloning of a PCR product (DNA fragment of HCV#S14) and a base sequence was able to consider possibility that variation would be easy to be introduced at the

time of a duplicate. Then, in order to lessen artificial variation generated at the time of cloning as much as possible, the vector (pBM) which changed pBR322 (Sutchliffe, J.G., Cold Spring Harbor Symposium, 43, 77-90 (1979)) as a vector was used. pBM is the restriction enzyme EcoR of pBR322. From V site to Bal The deletion of the array between I sites is carried out by the restriction enzyme, and it is EcoR. It is EcoR of the multi-cloning site of pUC119 (Vieria, J., Messing, J., Methods in Enzymology, 153, and 3-11 (1987)) between I site and a Hind III site. From I site to the Hind III site was incorporated (deltapBR MCS). Next, Vsp of pBR322 From I site to Sca It is Sca from the VspI site of pUC119 about the array between I sites. It transposes to the array between I sites, and is Pst in the meantime. The deletion of the I site was carried out and the vector of overall-length 3122bp was produced (drawing 3).

[0072] The PCR reaction mixture by which DNA of HCV was detected mixed with the whole quantity with equivalent chloroform/isoamyl alcohol (24:1), moved the water layer to 0.5ml tube after centrifugal, added 3M sodium acetate (pH 5.2) of 1/10 amount, and the ethanol of quantitas duplex, and carried out ethanol precipitation. precipitate -- 10mM tris hydrochloric-acid-1mM EDTA(pH 7.4) (TE) 300microl -- dissolving -- ultra -- free -- centrifugal filtration was carried out in C3TK (Limited, Nihon Millipore), and residual primer removal and desalting were performed Processing liquid is 10xT4. DNA polymerase buffer-solution (30mM tris acetic-acid, 0.66M potassium acetate, 0.1M magnesium-acetate, 5mM DTT, 1mg[/ml] BSA) 2microl, 2mM dNPT1microl and T4 DNA-polymerase 4 unit (TAKARA SHUZO) was added, it was referred to as 20microl in the sterilized water, and 12 degrees C reacted for 15 minutes. It extracted by a unit of 1 time after the reaction, respectively by equivalent phenol/chloroform (25:24), and chloroform/isoamyl alcohol (24:1), and ethanol precipitation of the water layer was carried out. It is air-dry after washing by ethanol 75%, and precipitate is 10x imidazole buffer-solution (0.5M imidazole hydrochloric-acid (pH 6.4), 0.18M magnesium chloride, 50mM DTT) 4microl and the 24% polyethylene glycol 6000. 10microl, 10mM ATP 0.5microl and T4DNA kinase (TAKARA SHUZO) 20 unit was added, and it was referred to as 40microl by the sterilized water, and 37 degrees C, it reacted for 1 hour and the five prime end was phosphorized. By chloroform / isoamyl alcohol processing, the enzyme was made to deactivate and the water layer was washed by ethanol 75% after ethanol precipitation. Precipitate isolated DNA by low melting point agarose gel electrophoresis, performed extraction twice by TE saturation phenol, dissolved in 10micro of sterilized waters I after washing by ethanol 75%, carried out [ethanol precipitation of the DNA fragment was carried out, and] agarose gel electrophoresis of the 1microl, and determined the amount of DNA fragments.

[0073] The DNA fragment obtained here is a restriction enzyme Sma beforehand. It cuts in I and ligation with the pBM vector which performed dephosphorization of the five prime end by alkaline phosphatase processing is performed.

[0074] In 50micro (10mM Tris-HCl (pH 8.0), 7mM MgCl2, 20mM KCl, Sma I(TAKARA SHUZO) 80 unit) of restriction enzyme reaction mixture l, 30 degrees C, pBM (20microl) reacts for 90 minutes, and carries out after [15 minute heating] ethanol precipitation 68 degrees C. Precipitate was air-dried after washing by ethanol 75%, and the sterilized water was added to 10x alkaline phosphatase buffer-solution (100mM Tris-HCl (pH 8.3), 1mM ZnCl2, and 10mM MgCl2) 5microl and alkaline phosphatase (beef-round-casing origin; TAKARA SHUZO) 1 unit, it was referred to as 50microl, and dephosphorization of the 37 degrees C was carried out by making it react for 1 hour. 500mM(s) The vector was isolated by the low melting point agarose gel electrophoresis after 56 degrees' C having reacted [so that EDTA(pH 7.5) 0.5microl and 10%SDS2.5microl may be added and it may become 50microg //ml / final concentration about Protease K further] for 30 minutes and making an enzyme deactivate, 2 times extraction was performed by TE saturation phenol, ethanol precipitation was carried out, and it dissolved after washing and air-drying and in 50micro of sterilized waters l by 75% ethanol. Agarose gel electrophoresis of the 1microl is carried out, the amount of vectors is determined, and it is Sma with a final concentration of 0.1microg [/ml]. It considered as I cloning vector.

[0075] The DNA fragment which phosphorized is Sma. As opposed to I cloning vector 25ng by the mole ratio From 15 times to 20 time ****** 10x ligation buffer solution (Tris-HCl (pH 7.6) 0.66M []--) 50mM(s) MgCl2, 50mM DTT2microl, 10mM hexamine cobalt chloride 2microl, BSA(1mg/

(ml)) 2microl, 10mMATP1microl, and T4 DNA ligase (TAKARA SHUZO) 350 unit were added, it was referred to as 20microl by the sterilized water, and overnight ligation was performed at 16 degrees C. tRNA(10mg/(ml))0.5microl was added to this reaction mixture, it washed by ethanol 75% after ethanol precipitation, the precipitate was dissolved in the sterilized water of 10microl, and the transformation of 109 stocks of Escherichia coli [one stock of] jump on minus and SCS was carried out using the moiety. The susceptibility Escherichia coli stock (competent cell) used for a transformation used what was prepared based on the previous report (J.Mol.Biol., 166, and 577 (1983)).

[0076] a transformation bacillus -- a LB-Amp plate (1% bacto trypton and 0.5% yeast extract --) 0.5% sodium chloride, 1.5% agar, and ampicillin 50microg/ml, after carrying out overnight cultivation in a top It is 3ml about the colony which appeared on the plate, respectively. It cultivates by 15ml tube containing LB-Amp. Centrifugal [of the 1.5ml culture medium] was carried out, it carried out the harvest, mini-PUREPARESHON (Maniatis and others, Moleculer Cloning:A Laboratory Manual, and 1982) of plasmid DNA was performed, and the DNA liquid of 15microl was prepared. It is a restriction enzyme EcoR about inside and 2-3microl. I and Hind III In four units each and 10micro (50 mMTris-HCl (pH 7.5), 10mM MgCl2, 1mM DTT, 100mM NaCl) of reaction buffer solutions l, agarose gel electrophoresis was performed and 37 degrees C of sizes of the inserted DNA fragment were checked, after making it react for 1 hour.

[0077] About 710 bp(s) and C14-2 field 12 field each About 950 bp(s), [C14-1] About 600 bp(s) and C14-5 field About 1200 bp(s), [C14-3 field] [about 850 bp(s) and C14-4 field] About 1134 bp (s) and C14-7 field About 1664 bp(s), [C14-6 field] About 1174 bp(s) and C14-11 field were checked for about 1120 bp(s) and C14-10 field, and the DNA fragment of about 648 bp(s) was checked [C14-8 field/about 667 bp(s) and C14-9 field] for about 1057 bp(s) and C14-12 field, respectively.

[0078] 12 kinds of obtained DNA determined the base sequence using the dideoxy termination methods (Science, 214, and 1205-1210 (1981)), such as Sanger, further. Moreover, each field clone used for this DNA sequencing was named C14-1, C14-2, C14-3, C14-4, C14-5, C14-6, C14-7, C14-8, C14-9, C14-10, C14-11, and C14-12. Moreover, C14-1 makes the amino acid sequence presumed from the base sequence of a gene and it which were determined the array number 1. C14-2 -- the array number 2 and C14-3 -- the array number 3 and C14-4 -- the array number 6 and C14-5 -- the array number 7 and C14-6 -- the array number 8 and C14-7 -- the array number 9 and C14-8 -- the array number 10 and C14-9 -- the array number 11 and C14-10 -- the array number 12 -- C14-11 showed the array number 13 and C14-12 as an array number 14. For the above-mentioned plasmid, C14-1 is Fermentation Research Institute ****** 13029 as a transformant. Number, C14-2 -- said -the 13030th a number and C14-3 -- said -- the 13031st a number and C14-4 -- said -- the 13032nd a number and C14-5 -- said -- the 13033rd Attach as a number on June 24, Heisei 4, and it comes out. C14-6 [moreover,] -- FERM P-13592 and C14-8 -- said -- P-13593 -- C14-9 -- said -- P-13594 and C14-10 -- said -- P-13595 and C14-11 -- said -- P-13596 and C14-12 -- said -- P-13597 ***** -- it attaches on April 9, Heisei 5, comes out, and ****s to National Institute of Bioscience and Human-Technology, the Agency of Industrial Science and Technology

[0079] radiographic-PCR of the HCV (#4) gene from single chronic non-A-non-B-hepatitis patient plasma which is different from the detection above-mentioned example 1 of the HCV (#4) gene by example 2 radiographic-PCR having shown in an example 1 by the same method was performed, and the amplification DNA fragment of C4-1 and C4-2 field was detected.

[0080] The used primer was shown below.

[0081] About C4-1 field, it is 1st. PCR uses primer 4-1:5 '-ATGGAGACTAAACTCATCAC-3' and 4-2:5'-ACTGTGCCGATGCCCAAGAT-3', and is 2nd. PCR used primer 4-3:5 '-

TACTTCTAGGACCGGCCGAT-3' and 14-13:5'-ATAGGTGGAGTACGTGATGGG-3'.

[0082] About C4-2 field, it is 1st. PCR uses primer 4-4:5 '-TGGAGCGTATATGTCCAAGG-3' and 4-5:5'-GACATGCATGCATGTA-3', and is 2nd. PCR used a primer 4-4 and 4-6:5'-CACATTTGGTCCCACGATGG-3'.

[0083] On the occasion of cloning of a PCR product, and determination cloning of a base sequence, using pUC119 as a vector, by the method which indicated the gene fragment amplified by PCR using the above-mentioned primer to be the SmaI site in the example 1, cloning was carried out and the

base sequence was determined. Moreover, each field clone used for this DNA sequencing was named C4-1 and C4-2. C4-1 made the amino acid sequence presumed from the base sequence of a gene and it which were determined the array number 4, and C4-2 were shown as an array number 5. the above-mentioned plasmid -- as a transformant -- C4-1 -- Fermentation Research Institute ****** 13027 a number and C4-2 -- said -- the 13028th It ****s on June 24, Heisei 4 as a number. [0084] PCR was performed on the PCR conditions of an example 1 using primer B1:5'-CATGAGCATAAATCCTAAACCTCAAAG-3' and B2:5'-ATCTGCAGTTATAGGGTGTCGATGACCTTACCC-3' using DNA of clone C14-1 obtained in the construction above-mentioned example 1 of the HCV (#S14) origin gene expression (the 1) a manifestation plasmid using example 3 Escherichia coli, and the DNA fragment of about 380 bp(s) was amplified. PCR reaction mixture processed the whole quantity by chloroform/isoamyl alcohol (24:1) by the method of an example 1, carried out ethanol precipitation of the water layer, after the dissolution, centrifugal **** of it was carried out, it performed residual primer removal and desalting to TE300microl, and phosphorylated the five prime end by T4DNA kinase processing after T4 DNA-polymerase processing. The obtained DNA fragment is Pst in the reaction buffer solution (50mM Tris-HCl (pH 7.5), 10mM MgCl2, 1mM DTT, 100mM NaCl). I20 unit was added and digested and low melting point agarose gel electrophoresis was performed. DNA was isolated, and by TE saturation phenol, after 2 times extraction, ethanol precipitation was carried out, and it dissolved in 10micro of sterilization water l, and refined as a DNA fragment of about 380 bp(s) from agarose gel. The DNA fragment obtained here is a restriction enzyme Pst at above-mentioned conditions beforehand about an expression vector pKK 223-3 (Pharmacia). It is a restriction enzyme Sma at the conditions which cut by I and were further shown in the example 1. It cut by I, T4 DNA ligase performed ligation on condition that the vector 25ng which performed dephosphorization of the five prime end by alkaline phosphatase processing, and the example 1, and the transformation was carried out using 105 stocks of Escherichia coli jump on minus. [0085] It cultivates by 15ml tube into which 3ml LB-Amp went the colony which appeared on the plate after overnight cultivation, respectively on the LB-Amp plate (1% bacto trypton, 0.5% yeast extract, 0.5%NaCl, 1.5% agar, 50microg [/ml] ampicillin), and centrifugal [of the 1.5ml] is carried out, it carries out a harvest, and a transformation bacillus is mini-PUREPARESHON (Maniatis et al. Moleculer Cloning: A Laboratory Manual, 1982) of plasmid DNA. It carried out and the DNA liquid of 15microl It is a restriction enzyme EcoR about inner 2-3microl. I and Pst In I four units each, and 10micro (50mM Tris-HCl (pH 7.5), 10mM MgCl2, lmM DTT, 100mM NaCl) of reaction buffer solutions I, agarose gel electrophoresis was performed and 37 degrees C of clones in which the DNA fragment of about 380 bp(s) is inserted were obtained, after making it react for 1 hour. [0086] b) After carrying out preculture of the 37 degrees C of the reaction above-mentioned Escherichia coli clones with the check of a manifestation and non-A-non-B-hepatitis patient blood serum by western blotting by the 3ml LB-Amp culture medium for 3 hours, the 50microl was inoculated into 5ml of new LB-Amp culture media, and was cultivated 37 degrees C for 2 hours. IPTG (Wako Pure Chem) was added so that it might be set to final concentration 2mM to culture medium, and 37 more degrees C was cultivated for 3 hours. 1.5ml of culture medium -- 13000rpm and the 2-minute heart at long intervals -- carrying out -- after a harvest and TE1ml -- a bacillus -washing -- 13000 rpm -- the at-long-intervals heart was carried out for 2 minutes, and the harvest was carried out again The sterilized water of 50microl and 2x sample buffer solution (100mM Tris-HCl (pH 6.8), 20% glycerol, 10%SDS, a 5% 2-mercaptoethanol, 0.2% bromphenol blue) of 50microl were added to the pellet which carried out the harvest, suspension mixing was carried out, suspension was ultrasonicated under 100 degrees C and after [boiling during 5 minutes] icecooling, and freeze thawing was made twice into the repeat sample at -70 degrees C. [0087] It is MINI about the above-mentioned sample 30microl. PROTEAN II Dual According to the method (Nature, 227, 680 (1970)) of Laemmli, 15mA and 1.5-hour SDS polyacrylamide gel electrophoresis were performed using SlabCell (Biorad). Gel is taken out after migration, a PVDF membrane (Millipore) is stuck, and it is MINI. TRANS BLOT Electrophoretic Transfer 250mA was imprinted for 1.75 hours using Cell (Biorad). After the imprint, it was immersed in 5% skim milk and buffer-solution [which contains BSA 2%] I' (10mM Na-phosphate (pH 7.0), 1%BSA, 0.15M

NaCl, 2.5mM EDTA), and the membrane was blocked at the room temperature for 2 hours. The

membrane blocked in the blood serum sample diluted with 5% skim milk and buffer-solution [which contains BSA 2%] I' 40 times was put in, and it was made to react at a room temperature for 4 hours. The membrane was put into the anti-man IgG-POD labelled antibody liquid (goat antibody) diluted with buffer-solution I' which contains skim milk 2% after 3 times washing to 100 mu(s)/ml with the buffer solution II (10mM Na-phosphate (pH 7.0), 0.15M NaCl, 0.05%Tween20), and was made to react for 30 minutes at a room temperature after a reaction. The membrane was taken out after the reaction and the buffer solution II washed 5 times. It flooded with coloring liquid (20mM Tris-HCl (pH 7.5), 0.5M NaCl, 0.05%4-chloro 1 naphthol, 0.018%H2 O2, 16.7% methanol), and the washed membrane was made to react for 15 minutes at a room temperature.

[0088] The result was shown in <u>drawing 4</u>. It sets to <u>drawing 4</u> and they are five un-A un-B type chronic-hepatitis patient blood serums (No.1-No.5). Although the result which performed western blotting about five healthy people blood serums (No.6-No.10) was shown, it was shown that the antigen which the positive reaction strong against all was detected and was discovered only by the non-A-non-B-hepatitis patient blood serum is useful to a diagnosis of a non-A-non-B-hepatitis patient and detection of a non-A-non-B-hepatitis virus carrier.

[0089] In the construction example 1 of the HCV (#S14) origin gene expression (the 2) a manifestation plasmid using example 4 Escherichia coli Obtained DNA of clone C14-3 and C14-5 is digested by restriction enzymes EcoRI, PstI, and EcoRI in the buffer solution (Takara Universal buffer H), respectively. The DNA fragment of about 930 bp(s) and about 950 bp(s) was isolated by agarose gel electrophoresis, respectively, and after TE saturation phenol and chloroform processing, ethanol precipitation was carried out and it refined by dissolving in 25micro of sterilized waters 1. Each refined DNA was digested by the restriction enzyme ScaI in the above-mentioned buffer solution, respectively, DNA of about 780 bp(s) and 920bp(s) was isolated by agarose gel electrophoresis, respectively, and it refined by carrying out ethanol precipitation after TE saturation phenol and chloroform processing. Two kinds of refined DNA and the vector pBluescript digested by the restriction enzyme EcoRI are beforehand mixed among the above-mentioned buffer solution, and it is T4. The DNA ligase performed ligation and the transformation was carried out using 109 stocks of Escherichia coli jump on minus.

[0090] The transformation bacillus was cultivated by 15ml tube into which 3ml LB-Amp went the colony which appeared on the plate after cultivation overnight on the LB-Amp plate (1% bacto trypton, 0.5% yeast extract, 1%NaCl, 1.5% agar, 50microg [/ml] ampicillin), respectively, carried out the harvest of the 1.5ml by centrifugal processing, performed mini-PUREPARESHON (Maniatis et al, Moleculer Cloning: A Laboratory Manual, 1982) of a plasmid, and prepared the DNA liquid of 20microl. The clone (28-14D) in which the DNA fragment of about 1700 bp(s) is inserted was obtained by digesting and carrying out agarose gel electrophoresis of the 4microl of the prepared DNA liquid in [EcoRI] the buffer solution (Takara Universal Buffer H). The PCR reaction was performed using primer F2:5 '-CAGAATTCATGGAAACACTCGACATCGCC-3' and primer R:5'-CACTGCAGTTATGAGACAGCGTCTTGAGGGAC-3' using DNA of this clone 28-14D. a PCR reaction -- the above-mentioned DNA1microl -- the 10xPCR buffer solution (Tris-HCl (pH 8.3) 100mM [] --) 500mM(s) KCl, 15mM MgCl2, 0.1% geratine 5 microl, Primers F2 and R (240 pM(s) each), 25mM dNTP 0.2microl, Taq after adding polymerase(Boehringer)0.2microl (one unit) and being referred to as 50microl by the sterilized water -- agitating -- a mineral oil -- multistory -carrying out -- denaturation 94-degree-C for [0.5 minutes] and annealing 55degree C -- the conditions for 0.5 minutes and for [extension 72 degrees-C] 1 minute -- 44 cycle ***** the whole quantity of after a reaction and reaction mixture -- TE saturation phenol -- and chloroform processing was carried out, ethanol precipitation of the water layer was carried out, it dissolved in 40micro of sterilized waters l, and buffer-solution (Takara Universal Buffer H) 5microl, restriction enzyme EcoRI20 unit, and PstI20 unit were added and digested The DNA fragment of about 860 bp (s) was isolated by agarose gel electrophoresis after [digestion] 1.5%, after [chloroform processing] ethanol precipitation was carried out, and Refining DNA was obtained TE saturation phenol and by dissolving in the sterilized water of 5microl. The DNA fragment obtained here cut beforehand the expression vector pKK 223-3 (Pharmacia) by restriction enzymes EcoRI and PstI, and it mixed with 1micro of objects 1 refined on condition that the ****, the 1microl was connected by T4 DNA ligase, and it carried out the transformation using 109 stocks of Escherichia coli jump on minus.

[0091] The transformation bacillus was cultivated by 15ml tube into which 3ml LB-Amp went the colony which appeared on the plate after cultivation overnight on the LB-Amp plate (1% bacto trypton, 0.5% yeast extract, 1%NaCl, 1.5% agar, 50microg [/ml] ampicillin), respectively, carried out the harvest of the 1.5ml by centrifugal processing, performed mini-PUREPARESHON (Maniatis et al, Moleculer Cloning: A Laboratory Manual, 1982) of a plasmid, and prepared the DNA liquid of 20microl. The clone in which the DNA fragment of about 860 bp(s) is inserted was obtained by digesting and carrying out agarose gel electrophoresis of the 4microl of the prepared DNA liquid in [EcoRI and PstI] the buffer solution (Takara Universal Buffer H). [0092] b) After carrying out preculture of the 37 degrees C of the reaction above-mentioned Escherichia coli clones with the check of a manifestation and non-A-non-B-hepatitis patient blood serum by western blotting by the 3ml LB-Amp culture medium for 3 hours, the 50microl was inoculated into 5ml of new LB-Amp culture media, and was cultivated 37 degrees C for 2 hours. IPTG (Wako Pure Chem) was added so that it might be set to final concentration 2mM to culture medium, and 37 more degrees C was cultivated for 3 hours. 1.5ml of culture medium -- 13000rpm and the 2-minute heart at long intervals -- carrying out -- after a harvest and TE1ml -- a bacillus -washing -- 13000 rpm -- the at-long-intervals heart was carried out for 2 minutes, and the harvest was carried out again The sterilized water of 50microl and 2x sample buffer solution (100 mMTris-HCl (pH 6.8), 20% glycerol, 10%SDS, a 5%2-mercaptoethanol, 0.2% bromphenol blue) of 50microl were added to the pellet which carried out the harvest, suspension mixing was carried out, suspension was ultrasonicated under 100 degrees C and after [boiling during 5 minutes] icecooling, and freeze thawing was made twice into the repeat sample at -70 degrees C. [0093] It is MINI about the above-mentioned sample. PROTEAN II Dual Slab According to the method (Nature, 227, 680 (1970)) of Laemmli, 15mA and 1.5-hour SDS polyacrylamide gel electrophoresis were performed using Cell (Biorad). Gel is started after migration, a PVDF membrane (Millipore) is stuck, and it is MINI. TRANS BLOT Electrophoretic Transfer 250mA was imprinted for 1.75 hours using Cell (Biorad). After the imprint, it was immersed in 5% skim milk and buffer-solution [which contains BSA 2%] I' (10mM Na-phosphate (pH 7.0), 1%BSA, 0.15M NaCl, 2.5mM EDTA), and the membrane was blocked at the room temperature for 2 hours. The membrane blocked in the blood serum sample diluted with 5% skim milk and buffer-solution [which contains BSA 2%] I' 40 times was put in, and it was made to react at a room temperature for 4 hours. The membrane was put into the anti-man IgG-POD labelled antibody liquid (goat antibody) diluted with buffer-solution I' which contains skim milk 2% after 3 times washing to 100 mu(s)/ml with the buffer solution II (10mM Na-phosphate (pH 7.0), 0.15MNaCl, 0.05%Tween20), and was made to react for 30 minutes at a room temperature after a reaction. The membrane was taken out after the reaction and the buffer solution II washed 5 times. It flooded with coloring liquid (20mM Tris-HCl (pH 7.5), 0.5M NaCl, 0.05%4-chloro 1 naphthol, 0.018%H2 O2, 16.7% methanol), and the washed membrane was made to react for 15 minutes at a room temperature. [0094] The result was shown in drawing 5. It sets to drawing 5 and they are five un-A un-B type chronic-hepatitis patient blood serums (No.1-No.5). Although the result which performed western blotting about five healthy people blood serums (No.6-No.10) was shown, it was shown that the antigen which the positive reaction strong against all was detected and was discovered only by the non-A-non-B-hepatitis patient blood serum is useful to a diagnosis of a non-A-non-B-hepatitis patient.

CLAIMS

[Claim(s)]

[Claim 1] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the structure of the non-A-non-B-hepatitis virus obtained by the genetic engineering-technique from non-A-non-B-hepatitis patient plasma, and the antigen of a non-structure field.

[Claim 2] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 1.

[Claim 3] The nucleic-acid fragment according to claim 2 which are all or a part of arrays to the nucleotide numbers 1-700 the aforementioned nucleotide sequence is indicated to be to the array number 1.

[Claim 4] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 2.

[Claim 5] The nucleic-acid fragment according to claim 4 which are all or a part of arrays to the nucleotide numbers 1-909 the aforementioned nucleotide sequence is indicated to be to the array number 2.

[Claim 6] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 3.

[Claim 7] The nucleic-acid fragment according to claim 6 which are all or a part of arrays to the nucleotide numbers 1-852 the aforementioned nucleotide sequence is indicated to be to the array

[Claim 8] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 4.

[Claim 9] The nucleic-acid fragment according to claim 8 which are all or a part of arrays to the nucleotide numbers 1-819 the aforementioned nucleotide sequence is indicated to be to the array number 4.

[Claim 10] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 5.

[Claim 11] The nucleic-acid fragment according to claim 10 which are all or a part of arrays to the nucleotide numbers 3-992 the aforementioned nucleotide sequence is indicated to be to the array

[Claim 12] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 6.

[Claim 13] The nucleic-acid fragment according to claim 12 which are all or a part of arrays to the nucleotide numbers 1-594 the aforementioned nucleotide sequence is indicated to be to the array number 6.

[Claim 14] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 7.

[Claim 15] The nucleic-acid fragment according to claim 14 which are all or a part of arrays to the nucleotide numbers 2-1141 the aforementioned nucleotide sequence is indicated to be to the array

[Claim 16] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 8.

[Claim 17] The nucleic-acid fragment according to claim 16 which are all or a part of arrays to the nucleotide numbers 1-1134 the aforementioned nucleotide sequence is indicated to be to the array

[Claim 18] The nucleic-acid fragment containing the nucleotide sequence which carries out the code

of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 9.

[Claim 19] The nucleic-acid fragment according to claim 18 which are all or a part of arrays to the nucleotide numbers 2-1663 the aforementioned nucleotide sequence is indicated to be to the array number 9.

[Claim 20] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 10.

[Claim 21] The nucleic-acid fragment according to claim 20 which are all or a part of arrays to the nucleotide numbers 2-667 the aforementioned nucleotide sequence is indicated to be to the array number 10.

[Claim 22] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis virus antigen expressed with all or a part of amino acid sequence shown in the array number 11.

[Claim 23] The nucleic-acid fragment according to claim 22 which are all or a part of arrays to the nucleotide numbers 2-1120 the aforementioned nucleotide sequence is indicated to be to the array number 11.

[Claim 24] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 12.

[Claim 25] The nucleic-acid fragment according to claim 24 which are all or a part of arrays to the nucleotide numbers 2-1174 the aforementioned nucleotide sequence is indicated to be to the array number 12.

[Claim 26] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 13.

[Claim 27] The nucleic-acid fragment according to claim 26 which are all or a part of arrays to the nucleotide numbers 2-1057 the aforementioned nucleotide sequence is indicated to be to the array number 13.

[Claim 28] The nucleic-acid fragment containing the nucleotide sequence which carries out the code of the non-A-non-B-hepatitis viral antigen expressed with all or a part of amino acid sequence shown in the array number 14.

[Claim 29] The nucleic-acid fragment according to claim 28 which are all or a part of arrays to the nucleotide numbers 2-646 the aforementioned nucleotide sequence is indicated to be to the array number 14.

[Claim 30] The expression vector introduced into the cloning part in the vector to which a nucleic-acid fragment given in any 1 term of claims 1-29 exists in a promotor's lower stream of a river. [Claim 31] The host cell containing an expression vector according to claim 30.

[Claim 32] It is the manufacture method of a recombination non-A-non-B-hepatitis viral-antigen (poly) peptide. The process which builds the expression vector which may make any 1 term of claims 1-29 discover the nucleic-acid fragment of a publication within a suitable host cell, and which can be reproduced, How to include the process which introduces the aforementioned expression vector in a host cell, and obtains a transformant, the process which the aforementioned transformant is cultivated [process] under the conditions which may make the aforementioned nucleic-acid fragment discover, and makes the aforementioned recombination (poly) peptide discover, and the process which collects the aforementioned recombination (poly) peptides.

[Claim 33] It is obtained by the method according to claim 32, rearranges (poly), and is a peptide.

http://www6 indl ind of in/NSAPITMP2/web344/IMAGE/20031104174654764465

4/11/2603

4/11/2003

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
☐ BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
COLOR OR BLACK AND WHITE PHOTOGRAPHS				
GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.