(a) Initialization:

we have
$$N_0(s_t) = 0$$
, $G_0(s_t) = 0$, $V_0(s_t) = 0$, $W_0(s_t) = 0$
 $V_0(s_t) = W_0(s_t) = 0$

we have
$$N_{i}(S_{t})=1$$
, $G_{i}=g_{t}^{(i)}$, $V_{i}=\frac{G_{i}}{N_{i}}=g_{t}^{(i)}$, $W_{i}=\frac{g_{t}^{(i)}}{N_{i}}=g_{t}^{(i)}=V_{i}$
So $V_{k}=W_{k}$ holds for $k=0$, $k=1$, $V_{k}=\frac{G_{k}}{N_{k}}$ holds for $k=1$

Maintanence:

Suppose at
$$k=i$$
, we have $Vi(st) = Wi(si)$, $Vi(st) = \frac{Gi(st)}{Ni(si)}$
At $k=i+1$:

$$N_{i+1}(St) = N_i(St) + 1$$

$$V_{i+1}(S_t) = G_{i+1}(S_t)/N_{i+1}(S_t)$$

$$V_{i+1} = \frac{N_i}{N_{i+1}} \left(V_i + \frac{1}{N_i} g_{t}^{(i+1)} \right)$$

$$= \frac{Nc}{Nc+1} V_{i} + \frac{1}{Nc+1} g_{t}^{(i+1)}$$

$$W_{i+1}(S_t) = W_i(S_t) + \frac{1}{N_{i+1}(S_t)} (g_t^{(i+1)} W_i(S_t))$$

$$= V_i^* + \frac{1}{N_{i+1}} (g_t^{(i+1)} V_i^*)$$

$$=\frac{N_{i}}{N_{i+1}}V_{2}+\frac{1}{N_{i+1}}g_{t}^{(i+i)}=V_{i+i}(s_{t})$$

Since the assumption holds for k=1, by incluction, $W_k(S_t) = V_k(S_t)$ holds for $k \ge 1$

In all. WR(St) = VR(St) holds for k>0