Grundlagen

D 1.1Sigma-Algebra

- $\omega \in \mathcal{F}$
- $A \in \mathcal{F} \implies A^c \in \mathcal{F}$
- $A_1, A_2, \dots \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

D 1.2 Wahrscheinlichkeitsmass

- $\mathcal{P}[\omega] = 1$
- · σ Additivität $\mathcal{P}[A] = \sum_{i=1}^{\infty} \mathcal{P}[A_i]$ if $A = \bigcup_{i=1}^{\infty} A_i$ (disjunkte Vereinigung)

D 1.3 Wahrscheinlichkeitsraum

Sei ω ein Grundraum, \mathcal{F} eine σ -Algebra und \mathcal{P} ein Wahrscheinlichkeitsmass. Wir nennen das Tripel $(\omega, \mathcal{F}, \mathcal{P})$ Wahrscheinlichkeitsraum.

D 1.5 Laplace Modell

- $\mathcal{F} = \mathcal{P}(\omega)$
- $\mathbb{P} : \to [0,1]$ ist definiert durch

$$\forall A \in \mathcal{F} \ \mathbb{P}[A] = \frac{|A|}{|\omega|}$$

- **S 1.6** Für eine Sigma-Algebra \mathcal{F} auf ω gilt:
- $\cdot \emptyset \in \mathcal{F}$
- $A_1, A_2, \dots \in \mathcal{F} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$
- $A, B \in \mathcal{F} \implies A \cup B \in \mathcal{F}$
- $A, B \in \mathcal{F} \implies A \cap B \in \mathcal{F}$

S 1.7

- $\cdot \mathbb{P}[\emptyset] = 0$
- $A_1, \ldots A_k$ paarweise disjunkte Ereignisse, $\mathbb{P}[A_1 \cup \cdots \cup A_k] = \mathbb{P}[A_1] + \ldots \mathbb{P}[A_k]$
- $\mathbb{P}[A^c] = 1 \mathbb{P}[A]$
- $\mathbb{P}[A \cup B] = \mathbb{P}[A] \mathbb{P}[B] \mathbb{P}[A \cap B]$
- **S** 1.8 Seien $A, B \in \mathcal{F}$ dann gilt

$$A \subset B \implies \mathbb{P}[A] \leq \mathbb{P}[B]$$

S 1.9 Sei A_1, A_2, \ldots eine Folge von nicht notwendigerweise disjunkten Ereignissen, dann gilt:

$$\mathbb{P}[\bigcup_{i=1}^{\infty} A_i \le \sum_{i=1}^{\infty} \mathbb{P}[A_i]]$$

D 1.13 Bedingte Wahrscheinlichkeit

Sei $(\omega,\mathcal{F},\mathbb{P})$ ein Wahrscheinlichkeitsraum. Seien A, B zwei Ereignisse mit $\mathbb{P}[B]>0$

$$\mathbb{P}[A|B] = \frac{\mathbb{P}[A \cap B]}{\mathbb{P}[B]}$$

S 1.16 Gesetz der totalen Wahrscheinlichkeit

Sei B_1, \ldots, B_n eine Partition des Grundraumes ω , so dass $\mathbb{P}[B_i] > 0$ für jedes $1 \le i \le n$ gilt. Dann

gilt:

$$\forall A \in \mathcal{F} \ \mathbb{P}[A] = \sum_{i=1}^{n} \mathbb{P}[A|B_i] \mathbb{P}[B_i]$$

S 1.17 Satz von Bayes

Sei $B_1\dots B_n\in\mathcal{F}$ eine Partition von ω sodass, $\mathbb{P}[B_i]>0$ für jedes i gilt. Für jedes Ereignis A mit $\mathbb{P}[A]>0$ gilt

$$\forall i = 1, \dots n \ \mathbb{P}[B_i|A] = \frac{\mathbb{P}[A|B_i]\mathbb{P}[B_i]}{\sum_{j=1}^n \mathbb{P}[A|B_j]\mathbb{P}[B_j]}$$

D 1.18 Unabhängigkeit

Sei $(\omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Zwei Ereignisse A und B heissen unabhängig falls

$$\mathbb{P}\left[A \cap B\right] = \mathbb{P}\left[A\right] \mathbb{P}\left[B\right]$$

S 1.20

Seien A,B $\in \mathcal{F}$ zwei Ereignisse mit $\mathbb{P}[A], \mathbb{P}[B] > 0$. Dann sind folgende Aussagen äquivalent:

- 1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$
- 2. $\mathbb{P}[A|B] = \mathbb{P}[A]$
- 3. $\mathbb{P}[B|A] = \mathbb{P}[B]$

D 1.21

Sei I eine beliebige Indexmenge. Eine Familie von Ereignissen $(A_i)_{i \in I}$ heisst unabhängig falls

$$\forall J \subset I \text{endlich} \quad \mathbb{P}[\bigcap_{j \in J} A_j] = \prod_{j \in J} \mathbb{P}[A_j]$$

Bem:

Drei Ereignisse A,B und C sind unabhängig falls alle 4 folgenden Gleichungen erfüllt sind

- 1. $\mathbb{P}[A \cap B] = \mathbb{P}[A]\mathbb{P}[B]$
- 2. $\mathbb{P}[A \cap C] = \mathbb{P}[A]\mathbb{P}[C]$
- 3. $\mathbb{P}[B \cap C] = \mathbb{P}[B]\mathbb{P}[C]$
- 4. $\mathbb{P}[A \cap B \cap C] = \mathbb{P}[A]\mathbb{P}[B]\mathbb{P}[C]$

D 2.1 Zufallsvariable

Sei $(\omega, \mathcal{F}, \mathbb{P})$ ein Wahrscheinlichkeitsraum. Eine Zufallsvariable ist eine Abbildung $X:\omega\to\mathbb{R}$ so dass, für alle $a\in\mathbb{R}$ gilt

$$\{w\in\omega:X(w)\leq a\}\in\mathcal{F}$$

Bem:

Für Ereignisse im Bezug auf Z:V

- $\cdot \{X \le a\} = \{w \in \omega : X(w) \le a\}$
- $\{a < X < b\} = \{w \in \omega : a < X(w) < b\}$
- $X \in \mathbb{Z} = \{ w \in \omega : X(w) \in \mathbb{Z} \}$

$$\mathbb{P}[X \le a] = \mathbb{P}[\{X \le a\}] = \mathbb{P}[\{w \in \omega : X(w) \le a\}]$$

D 2.2 Verteilungsfunktion

Sei X eine Zufallsvariable auf einem W-Raum $(\omega, \mathcal{F}, \mathbb{P})$. Die Verteilungsfunktion von X ist eine

Funtkion $F_X : \mathbb{R} \to [0, 1]$, definiert durch

$$\forall a \in \mathbb{R} \ F_X(a) = \mathbb{P}[X \le a]$$

S 2.3 Einfache Identität

Seien a ; b zwei reelle Zahlen. Dann gilt

$$\mathbb{P}[a < X \le b] = F(b) - F(a)$$

T 2.4 Eigenschaften der Verteilungsfunktion

Sei X eine Z.V aif einem Wahrscheinlichkeitsraum. Die Verteilungsfunktion $F=F_X:\mathbb{R}\to [0,1]$ von X erfüllt folgende Eigenschaften

- · F ist monoton wachsend
- · F ist rechtsstetig
- · $\lim_{a\to-\infty} F(a) = 0$ und $\lim_{a\to\infty} F(a) = 1$

D 25

Seien $X_1 ldots X_n$ Zufallsvariablen auf einem W-Raum. Dann heissen $X_1, ldots X_n$ unabhängig falls

$$\forall x_1, x_2 \dots x_n \in \mathbb{R}$$

$$\mathbb{P}[X_1 \le x_1 \dots X_n \le x_n] = \mathbb{P}[X_1 \le x_1] \dots \mathbb{P}[X_n \le x_n]$$

S 2.7 Gruppieren von Zufallsvariablen

Seien $X_1 ldots X_n$ n unabhängige Zufallsvariablen. Seien $1 \le i_1 < i_2 < \cdots < i_k \le n$ Indizes und $\phi_1 ldots \phi_k$ Abbildungen. Dann sind

$$Y_1 = \phi_1(X_1 \dots X_{i_1}), Y_2 = \phi_2(X_{i_1+1}, \dots X_{i_2}), \dots$$

$$Y_k = \phi_k(X_{i_{k-1}+1} \dots X_{i_k})$$

unabhängig **D** 2.8

Eine Folge von Zufallsvariablen X_1, X_2, \ldots heisst

- · unabhängig falls $X_1, \ldots X_n$ unabhängig sind, für alle $n \in \mathbb{N}$
- unabhängig und identisch verteilt(uiv) falls sie unabhängig ist und die Zufallsvariablen dieselbe Verteilungsfunktion haben d.h

$$\forall i, j \ F_{X_i} = F_{X_i}$$

S 3.1 Wahrscheinlichkeit eines Punktes

Sei $X: \omega \to \mathbb{R}$ eine Zufallsvariable mit Verteilungsfunktion F. Für jdedes a in \mathbb{R} gilt

$$\mathbb{P}[X = a] = F(a) - F(-a)$$

D 3.2

Sei $A \in \mathcal{F}$ ein Ereignis. Wir sagen A tritt fast sicher ein falls

$$\mathbb{P}[A] = 1$$

D 3.4 Diskrete Zufallsvariable

Eine Zufallsvariable $X:\omega\to\mathbb{R}$ hiest diskret falls eine endliche oder abzählbare Menge $W\subset\mathbb{R}$ existiert, sodass

$$\mathbb{P}[X \in W] = 1$$

Bem: [3.5] Wenn der Grundraum ω endlich oder abzähbar ist, dann ist jede Zufallsvariable $X:\omega \to$

 \mathbb{R} diskret. D 3.6 Verteilung von X

Sei X eine diskrete Zufallsvariable mit Werten in einer endlichen oder abzähbaren Menge $W \subset \mathbb{R}$. Die Zahlenfolge $(p(x))_{x \in W}$ definiert durch

$$\forall x \in W \ p(x) := \mathbb{P}[X = x]$$

heisst Verteilung von X ${\color{red}|}{\bf S}$ 3.7 Die Verteilung $(p(x))_{x\in W}$ einer diskreten Zufallsvariable erfüllt

$$\sum_{x \in W} p(x) = 1$$

S 3.9 Sei X eine diskrete Zufallsvariable, dessen WErte in einer endlichen oder abzähbaren Menge W liegen, und deren Verteilung p ist. Dann ist die Verteilungsfunktion von X gegeben durch

$$\forall X \in \mathbb{R} \ F_X(x) = \sum_{y \le x_y \in W} p(y)$$

D 3.10 Bernoulli Verteilung

Es sei $0 \le p \le 1$. Eine Zufallsvariable X heisst Bernoulli Zufallsvariable mit Parameter p, wenn sie Werte in W = $\{0,1\}$ annimt und folgendes gilt

$$\mathbb{P}[X=0] = 1 - p \quad \text{und } \mathbb{P}[X=1] = p$$

D 3.11 Binomialverteilung

Sei $0 \le p \le 1$, sein $n \in \mathbb{N}$. Eine Zufallsvariable X heisst binomiale Zufallsvariable mit Paramtern n und p, wenn sie werte in $W = \{0, \dots, n\}$ annimt und folgendes gilt

$$\forall k \in \{0, ..., n\} \ \mathbb{P}[X = k] = \binom{n}{k} p^k (1 - p)^{n - k}$$

S 3.13 Sum von unab. Bern. und Binom. Z.V

Sei $0 \le p \le 1$, sein $n \in \mathbb{N}$. Seien X_1, \dots, X_n unabhängige Bernoulli Z.V mit Parameter p. Dann

$$S_n := X_1 + \cdots + X_n$$

eine binomialverteilte Z.V mit paramtern n
 und p. $\mathbf{Bem:}\ [3.14]$

Bin(1,p) ist gerade Ber(p) verteilt. Falls $X \sim Bin(m,p), Y \sim Bin(n,p)$ und X,Y unabhängig, dann ist $X + Y \sim Bin(m+n,p)$ verteilt.

D 3.15 Geometrische Verteilung

Es sei $0 . Eine Zufallsvariable X heisst geometrische Zufallsvariable mit Parameter p, falls sie Werte in <math>W = \mathbb{N} \setminus \{0\}$ annimt und folgendes gilt

$$\forall k \in \mathbb{N} \setminus \{0\} \ \mathbb{P}[X = k] = (1 - p)^{k - 1} \cdot p$$

Bem: [3.16]

Für p=1 und k = 1 erscheint in der obigen Gleichung $0^0 = 1$, es gilt $\mathbb{P}[X = 1] = p$ **S 3.18** Sei X_1, X_2, \ldots eine Folge von unendlich vielen unabhängigen Bernoulli Z.V mit Parameter p. Dann

$$T := \min\{n \ge 1 : X_n = 1\}$$

eine geometrisch verteilte Zufallsvariable mit Paramter p. ${\bf Bem:}~[3.18A]$

Sei T eine geometrische Verteilung mit Parameter p. Dann ist T>n, wenn die ersten n Bernoulli-Experimente fehlschlagen. Daher gilt

$$\mathbb{P}[T > n] = (1 - p)^n$$

S 3.20 Gedächnislosigkeit der Geo. Vert.

Sei $T \sim Geom(p)$ für 0 . Dann gilt

$$\forall n \geq 0 \quad \forall k \geq 1 \quad \mathbb{P}[T \geq n + k | T > n] = P[T \geq k]$$

D 3.21

Sei $\lambda>0$ eine positive reelle Zahl. Eine Zufallsvariable X heisst Poisson-Zufallsvariable mit Paramter λ , wenn sie Werte in $W=\mathbb{N}$ annimt und folgendes gilt

$$\forall k \in \mathbb{N} \ \mathbb{P}[X = k] = \frac{\lambda^k}{k!} \exp^{-\lambda}$$

S 3.23 Poisson-Approx. der Binom. verteil.

Sei $\lambda > 0$. Für jedes $n \ge 1$ seien $X_n \sim Bin(n, \frac{\lambda}{n})$ Zufallsvariablen. Dann gilt

$$\forall k \in \mathbb{N} \lim_{n \to \infty} \mathbb{P}[X_n = k] = \mathbb{P}[N = k]$$

D 3.25 Stetig verteilte Zufallsvariablen

Eine Zufallsvariable $X:\omega\to\mathbb{R}$ heisst stetig, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x)dx$$
 für alle a in $\mathbb R$

wobei $f: \mathbb{R} \to \mathbb{R}_+$ eine nicht-negative Funktion ist. Wir nennen dann f Dichte von X. **Bem:** [3.25A] f(x)dx ist die Wahrscheinlichkeit, dass X Werte in [x, x + dx] annimmt. **T 3.26**

Sei X eine Zufallsvariable. Die Verteilungsfunktion F_X sei stetig und Stückweise C^1 , d.h es gibt $x_0 = -\infty < x_1 < \cdots < x_{n-1} < x_n = +\infty$, sodass F_X auf jedem Intervall (x_i, x_{i+1}) Element von C^1 ist. Dann ist X eine stetige Zufallsvariable und die Dichte f kann konstruiert werden, indem man folgendes festlegt

$$\forall x \in (x_i, x_{i+1}) \ f(x) = F_X'(x)$$

D 3.27 Gleichverteilung auf [a.b

Eine stetige Zufallsvariable X heisst gleichverteilt auf [a,b] falls ihre Dichte gegeben ist durch

$$f_{a,b}(x) = \begin{cases} \frac{1}{b-a} & x \in [a,b] \\ 0 & x \notin [a,b] \end{cases}$$

Wir schreiben $X \sim \mathcal{U}([a,b])$

Bem: [3.27A]

· Die Wahrscheinlichkeit in einem Interval [c, c+

 $\ell] \subset [a,b]$ zu fallen ist lediglich abhängig von dessen Länge ℓ

$$\mathbb{P}[X \in [c, c + \ell]] = \frac{\ell}{b - a}$$

- Die Verteilungsfunktion X ist gegeben durch

$$F_X(x) = \begin{cases} 0 & x < a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x > b \end{cases}$$

D 3.28 Exponential verteilung mit $\lambda > 0$

Eine stetige Zufallsvariable T heisst exponentialverteilt mit Parameter $\lambda>0$ falls ihre Dichte gegeben ist durch

$$f_{\lambda}(x) = \begin{cases} \lambda \exp^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$

Bem: [3.28A] Die Grafik zeigt die Dichte und Verteilungsfunktion einer exponentialverteilten Zufallsvariable mit Parameter λ

T modelliert häufig die Lebensdauer oder Wartezeit eines allgemeinen Ergebnisses. Eigenschaften:

• Die Wahrscheinlichkeit des Wartens ist exponentiell klein:

$$\forall t \ge 0 \ \mathbb{P}[T > t] = \exp^{-\lambda t}$$

• T besitzt die Eigenschaft der Gedächnislosigkeit

$$\forall t, s > 0 \ \mathbb{P}[T > t + s | T > t] = [T > s]$$

D 3.29

Eine stetige Zufallsvariable X heisst normal verteilt mit Parametern m
 und $\sigma^2>0$ falls ihre Dichte gegeben ist durch

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp^{-\frac{(x-m)^2}{2\sigma^2}}$$

Bem: [3.29A]

Abbildung 3.3: Dichte einer normalverteilten Zufallsvariable mit Parameter m und σ^2

Zum Beispiel bei einer physikalischen Messung kann der parameter σ die Schwankung von X darstellen und generell zeigt ein kleines σ eine genaue Messung an und ein grosses σ eine ungenaue. Eigenschaften

· Seien $X_1, ..., X_n$ unabhängige normalverteilte Zufallsvariablen mit Parametern $(m_1, \sigma_1^2), ..., (m_n, \sigma_n^2)$ dann ist

$$Z = m_0 + \lambda_1 X_1 + \cdots + \lambda_n X_n$$

eine normalverteilte Zufallsvariable mit Parametern $m = m_0 + \lambda_1 m_1 + \cdots + \lambda_n m_n$ und $\sigma^2 = \lambda_1^2 \sigma_1^2 + \cdots + \lambda_n^2 \sigma_n^2$

· Wir sprechen im Fall von $X \sim \mathcal{N}(0,1)$, gerade von einer standardnormalverteilten Zufallsvariable. Man merke sich dann folgende Beziehung

$$Z = m + \lambda \cdot X$$

, wobei X eine normalverteilte Zufallsvariable mit Parametern m und σ^2 ist.

• Falls X normal verteilt mit Parametern m und σ^2 ist, dann liegt die "meiste "Wahrscheinlichkeits masse der Z.V im Intervall $[m-3\sigma,m+3\sigma].$ Es gilt gerade

$$\mathbb{P}[|X - m| \ge 3\sigma] \le 0.0027$$

D 4.1

Sei $X:\omega\to\mathbb{R}_+$ eine Zufallsvariable mit nichtnegativen Werten. Dann heisst

$$\mathbb{E}[X] = \int_0^\infty (1 - F_X(x)) dx$$

der Erwartungswert von X. **Bem:** [4.2] Der Erwartungswert kann sowohl endliche als auch nicht endliche Werte annehmen. **S 4.3** Sei X eine nicht-negative Zufallsvariable. Dann gilt

$$\mathbb{E}[X] \geq 0$$

D 4.4 Sei X eine Zufallsvariable. Falls $\mathbb{E}[|X|] < \infty$, dann heisst

$$\mathbb{E}[X] = \mathbb{E}[X_+] - \mathbb{E}[X_-]$$

Erwartungswert von X. S 4.6 Sei $X:\omega\to\mathbb{R}$ eine diskrete Zufallsvariable dessen Werte in W (endlich oder abzähbar) fast sicher liegen. Sei $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung. Dann gilt

$$\mathbb{E}[\phi(X)] = \sum_{x \in W} \phi(x) \cdot \mathbb{P}[X = x]$$

S 4.7 Sei $X:\omega\to\mathbb{R}$ eine diskrete Zufallsvariable mit Werten in W (endlich oder abzähbar). Für jedes $\phi:\mathbb{R}\to\mathbb{R}$ gilt

$$\mathbb{E}[\phi(X)] = \sum_{x \in W} \phi(x) \mathbb{P}[\phi(X = x)]$$

S 4.8 Sei X eine stetige Zufallsvariable mit Dichte

f. Dann gilt

$$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f(x) dx$$

T 4.9 Sei X eine stetige Zufallsvariable mit Dichte f. Sei $\phi : \mathbb{R} \to \mathbb{R}$ eine Abbildung, sodass $\phi(X)$ eine Zufallsvariable ist. Dann gilt

$$\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x) f(x) dx$$

T 4.10 linearität des Erwartungswert

Seien $X, Y : \omega \to \mathbb{R}$ Zufallsvariablen, sei $\lambda \in \mathbb{R}$. Falls die Erwartungswerte wohldefiniert sind gilt

•
$$\mathbb{E}[\lambda \cdot X] = \lambda \cdot \mathbb{E}[X]$$

•
$$\mathbb{E}[X+Y] = \mathbb{E}[X] + \mathbb{E}[Y]$$

Bem: [4.11] Die Zufallsvariablen müssen dabei nicht unabhängig sein. T 4.13 Seien X,Y zwei Zufallsvariablen. Falls X und Y unabhängig sind, dann gilt

$$\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$$

S 4.14 Stetige Extremwertformel

Sei X eine Zufallsvariable, sodass $X \geq 0$ fast sicher gilt. Dann gilt

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}[X \ge x] dx$$

Bem: [4.14A] Anwedungen: Ausrechnen von Erwartungswert einer exponential-verteilten Zufallsvariable. Sei T eine exponential-verteilte Zufallsvariable mit Paramter $\lambda > 0$

$$\mathbb{E}[T] = \int_0^\infty \mathbb{P}[X \ge x] dx = \int_0^\infty \exp^{-\lambda x} dx = \frac{1}{\lambda}$$

S 4.15 Diskrete Extremwertformel

Sei X eine diskrete Zufallsvariable mit Werten in $\mathbb{N} = \{0, 1, 2, \dots\}$. Dann gilt folgende Identität

$$\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}[X \ge n]$$

S 4.16

Sei X eine Zufallsvariable. Sei $f: \mathbb{R} \to \mathbb{R}_+$ eine Abbildung, sodass $\int_{-\infty}^{+\infty} f(x)dx = 1$. Dann sind folgende Aussagen äquivalent

- · X ist stetig mit Dichte f,
- Für jede stückweise stetige, beschränkte Abbildung $\phi: \mathbb{R} \to \mathbb{R}$ gilt

$$\mathbb{E}[\phi(X)] = \int_{-\infty}^{\infty} \phi(x)f(x)dx$$

T 4.17

Seien X,Y zwei diskrete Zufallsvariablen. Die folgenden Aussagen sind äquivalent

· X. Y sind unabhängig

• Für jedes $\phi: \mathbb{R} \to \mathbb{R}, \psi: \mathbb{R} \to \mathbb{R}$ beschränkt und stückweise stetig gilt

$$\mathbb{E}[\phi(X)\psi(Y)] = \mathbb{E}[\phi(X)]\mathbb{E}[\psi(Y)]$$

T 4.18

Seien X_1, \ldots, X_n n Zufallsvariablen. Die folgenden Aussagen sind äquivalent

- X_1, \ldots, X_n sind unabhängig
- · Für jedes $\phi_1(X_1), \dots \phi_n(X_n) : \mathbb{R} \to \mathbb{R}$ beschränkt gilt

$$\mathbb{E}[\phi_1(X_1), \dots \phi_n(X_n)] = \mathbb{E}[\phi_1(X_1)] \dots \mathbb{E}[\phi_n(X_n)]$$

S 4.19

Seien X,Y zwei Zufallsvariablen, sodass

gilt. Falls beide Erwartungswerte wohldefiniert sind folgt dann

$$\mathbb{E}[X] \leq \mathbb{E}[Y]f.s$$

T 4.20 Markow-Ungleichung

Sei X eine nicht-negative Zufallsvariable. Für jedes a>0 gilt dann

$$\mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

T 4.21 Jensen Ungleichung

Sei X eine Zufallsvariable. Sei $\phi \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion. Falls $\mathbb{E}[\phi(X)]$ und $\mathbb{E}[X]$ wohldefiniert sind, gilt

$$\phi(\mathbb{E}[X] \le \mathbb{E}[\phi(X)])$$

D 4.22 Sei X eine Zufallsvariable, sodass $\mathbb{E}[X^2] < \infty$. Wir definieren die Varianz von X durch

$$\sigma_X^2 = \mathbb{E}[(X - m)^2, \text{ wobei } m = \mathbb{E}[X]]$$

D
Ie Wurzel aus σ_X^2 nennen wir die Standardabweichung von X
 ${\bf S}$ 4.24

Sei X eine Zufallsvariable mit $\mathbb{E}[X^2] < \infty$. Dann gilt für jedes $a \geq 0$

$$\mathbb{P}[|X - m| \ge a] \le \frac{\sigma_X^2}{a^2}$$
, wobei $m = \mathbb{E}[X]$

S 4.25 Grundlegende Eigenschaften der Varianz

· Sei X eine Zufallsvariable mit $\mathbb{E}[X^2] < \infty$. Dann gilt

$$\sigma_X^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

- Sei X eine Zufallsvariable mit $\mathbb{E}[X^2]<\infty$ und sei $\lambda\in\mathbb{R}.$ Dann gilt

$$\sigma_{\lambda X}^2 = \lambda^2 \cdot \sigma_X^2$$

· Seien X_1, \ldots, X_n n-viele paarweise unabhängige Zufallsvariablen und $S = X_1 + \cdots +$ X_n . Dann gilt

$$\sigma_S^2 = \sigma_{X_1}^2 + \dots + \sigma_{X_n}^2$$

D 4.26

Seien X,Y zwei Zufallsvariablen mit endlichen zweiten Momenten $\mathbb{E}[X^2] < \infty$ und $\mathbb{E}[Y^2] < \infty$. Wir definieren die Kovarianz zwischen X und Y durch

$$Cov(X, Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Bem: [4.26A]

Es gilt X,Y unabhängig $\implies \text{Cov}(X, Y) = 0$

D 5.1

Seien X_1, \ldots, X_n n diskrete Zufallsvariablen, sei $W_i \subset \mathbb{R}$ endlich oder abzählbar, wobei $X_i \in W_i$ fast sicher gilt. Die gemeinsame Verteilung von (X_1, \ldots, X_n) ist eine Familie $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$, wobei jedes Mitglied definiert ist durch

$$p(x_1,\ldots,x_n) = \mathbb{P}[X_1 = x_1,\ldots,X_n = x_n]$$

S 5.2

Eine gemeinsame Verteilung von Zufallsvariablen X_1, \ldots, X_n erfüllt

$$\sum_{x_1 \in W_1, \dots, x_n \in W_n} p(x_1, \dots, x_n) = 1$$

S 5.3

Sei $n \geq 1$ und seien $\phi: \mathbb{R}^n \to \mathbb{R}$ Abbildungen. Seien X_1, \ldots, X_n n diskrete Zufallsvariablen in $(\Omega, \mathcal{F}, \mathbb{P})$, welche fast sicher Werte in endlichen oder abzählbaren Mengen W_1, \ldots, W_n annehmen. Dann ist $Z = \phi(X_1, \ldots, X_n)$ eine diskrete Zufallsvariable, welche fast sicher Werte in $W = \phi(W_1 \times \cdots \times W_n)$ annimmt. Zudem ist die Verteilung von Z gegeben durch

$$\forall z \in W \ \mathbb{P}[Z=z] =$$

$$\sum_{\substack{x_1 \in W_1, \dots, x_n \in W_n \\ \phi(x_1, \dots, x_n) = z}} \mathbb{P}[X_1 = x_1, \dots, X_n = x_n]$$

S 5.4

Seien X_1, \ldots, X_n n diskrete Zufallsvariablen mit gemeinsamer Verteilung $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. Für jedes i gilt

$$\forall z \in W_i \ \mathbb{P}[X_i = z] =$$

$$\sum_{x_1, \dots x_{i-1}, x_{i+1}, \dots x_n} p(x_1, \dots, x_{i-1}, z, x_{i+1}, \dots, x_n)$$

S 5.5

Seien X_1, \ldots, X_n n diskrete Zufallsvariablen mit gemeinsamer Verteilung $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. Sei $\phi : \mathbb{R}^n \to \mathbb{R}$, dann gilt

$$\mathbb{E}[\phi(X_1,\ldots,X_n)] =$$

$$\sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

solange die Summe wohldefiniert ist. S 5.6 Seien X_1, \ldots, X_n n diskrete Zufallsvariablen mit gemeinsamer Verteilung $p = (p(x_1, \ldots, x_n))_{x_1 \in W_1, \ldots, x_n \in W_n}$. Die folgenden Aussagen sind äquivalent

- $\cdot X_1, dots, X_n$ sind unabhängig
- $p(x_1, \dots, x_n) = \mathbb{P}[X_1 = x_1] \dots \mathbb{P}[X_n = x_n]$ für jedes $x_1 \in W_1, \dots, x_n \in W_n$

D 5.7

Sei $n \geq 1$. Wir sagen, dass die Zufallsvariablen $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ eine stetige gemeinsame Verteilung besitzen, falls eine Abbildung $f : \mathbb{R}^n \to \mathbb{R}_+$ existiert, sodass

$$\mathbb{P}[X_1 < a_1, \dots, X_n < b] =$$

$$\int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_n} f(x_1, \dots, x_n) dx_n \dots dx_1$$

für jedes $a_1, \ldots, a_n \in \mathbb{R}$ gilt. Obige Abbildung f nennen wir gerade gemeinsame Dichte von (X_1, \ldots, X_n) S 5.9

Sei f die geminsame Dichte der Zufallsvariablen (X_1, \ldots, X_n) . Dann gilt

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, \dots, x_n) dx_n \dots dx_1 = 1$$

Bem: [5.9a]

Nehme zum Beispiel zwei Zufallsvariablen X,Y. Intuitiv beschreibt f(x,y)dxdy dabei die Wahrscheinlichkeit, dass ein Zufallspunkt (X,Y) einem Rechteck $[x,x+dx]\times[y,y+dy]$ liegt. S 5.10 Sei $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung. Falls X_1,\ldots,X_n eine gemeinsame Dichte f besitzen, dann lässt sich der Erwartungswert der Zufallsvariable $Z=\phi(X_1,\ldots,X_n)$ mittels

$$\mathbb{E}[\phi(X,Y)] =$$

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x_1, \dots, x_n) \dots f(x_1, \dots, x_n) dx_1 \dots dx_n$$

berechnen (solange das Integral wohldefiniert ist)

T 5.11

Seien X_1, \ldots, X_n Zufallsvariablen mit Dichten f_1, \ldots, f_n . Dann sind folgende Aussagen äquivalent

- X_1, \dots, X_n sind unabhängig
- X_1, \ldots, X_n sind insgesamt stetig mit gemeinsamer Dichte

$$f(x_1,\ldots,x_n)=f_1(x_1)\ldots f_n(x_n)$$

Bem: [5.12]

Somit sind zwei unabhängige stetige Zufallsvariablen automatisch gemeinsam stetig.

Т 6.1

Sei $\mathbb{E}[|x_1|] < \infty$. Setze $m = \mathbb{E}[X_1]$ dann gilt

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = m \text{a.s.}$$

D 1.1

Ein Schätzer ist eine Zufallsvariable $T:\Omega\to\mathbb{R}$ der Form

$$T = t(X_1, \dots, X_n)$$

wobei $t: \mathbb{R}^n \to \mathbb{R}$ **D** 1.2

Ein Schätzer T heisst erwartungstreu für θ , falls für alle $\theta \in \Theta$ gilt

$$\mathbb{E}[T] = \theta$$

Bem: [1.2A]

Interpretation: Im Mittel(über alle denkbaren Realisationen \mathcal{W}) schätzt T also richtig, und zwar unabhängig davon, welches Model \mathbb{P}_{θ} zu Grunde liegt. **D 1.3** Sei $\theta \in \Theta$ und T ein Schätzer. Der Bias(erwartete Schätzfehler) von T im Modell \mathbb{P}_{θ} ist definiert als

$$\mathbb{E}_{\theta} - \theta$$

Der mittlere quadratische Schätzfehler(MSE) von T im Modell \mathbb{P}_{θ} ist definiert als

$$MSE_{\theta}[T] := \mathbb{E}[(T - \theta)^2]$$

Bem: [1.3A]

Man kannn den MSE zerlegen als

$$(MSE)_{\theta}[T] = \mathbb{E}_{\theta}[(T-\theta)^2] = \operatorname{Var}_{\theta}[T] + (\mathbb{E}_{\theta}[T] - \theta)^2$$

D 1.4

Die Likelihood-Funktion ist

$$L(x_1, \dots, x_n; \theta) := \begin{cases} p_x(x_1, \dots, x_n; \theta) & \text{falls disk} \\ f_x(x_1, \dots, x_n; \theta) & \text{falls stet} \end{cases}$$

0.1.5

Für jedes x_1, \ldots, x_n , sei $t_{ML}(x_1, \ldots, x_n) \in \mathbb{R}$ der Wert, der $\theta \mapsto L(x_1, \ldots, x_n; \theta)$ als Funktion von θ maximiert. D.h

$$L(x_1, ..., x_n; t_{ML}(x_1, ..., x_n)) = \max_{\theta \in \Omega} L(x_1, ..., x_n; \theta)$$

Ein Maximum-Likelihood-Schätzer (ML-Schätzer) T_{ML} für θ wird definiert durch

$$T_{ML} = t_{ML}(X_1, \dots, X_n)$$