A. GLYCEROL AND FATTY ACIDS

- Glycerol is joined to three fatty acids by condensation reactions to form a triglyceride
- Triglycerides are the largest class of lipids and function primarily as long-term energy storage molecules
- Animals tend to store triglycerides as fats (solid), while plants tend to store triglycerides as oils (liquid)

Structure of glycerol

Types of fatty acid

(a) Saturated v unsaturated

Saturated	Unsaturated
O H H H H H H H H H H H H H H H H H H H	O H H H H H H H H H H H H H H H H H H H
No C=C bonds	Monounsaturated contain one C=C
 Contains the maximum number of H atoms ('full up') 	Polyunsaturated contain two or more C=C
	Do not contain the maximum number of H atoms (not 'full up')
You need to be able to draw these	You need to be able to recognise these
CO ₂ H (CH ₂) _n CH ₃	CO ₂ H (CH ₂) _n (C=C) _n CH ₃

Drawing a saturated fatty acid

hydrocarbon chain

(b) CIS unsaturated v TRANS UNSATURATED fatty acids

- Remember, that this only applies to unsaturated fatty acids
- You only need to look at the C=C for this

hydrogen atoms are bonded to carbons on the same side of a double bond

C-C-C-C-C-C-C-C-H

hydrogen atoms are bonded to carbons on opposite sides of a double bond

(so) more bends in fatty acid chains

(so) cannot pack closely together

(so) weaker attractive forces between chains

(so) more likely to be liquids (oils)

HEALTHIER!

(so) less bends in fatty acid chains

(so) can pack closely together

(so) **stronger** attractive forces between chains

(so) more likely to be solids (fats)

LESS HEALTHY!

Intake of SATURATED FATS and TRANS-UNSATURATED FATS have been positively correlated with rates of coronary heart disease (CHD).

B. DETERMINATION OF BODY MASS INDEX BY CALCULATION OR A NOMOGRAM

BMI = $\frac{\text{mass (kg)}}{\text{height }^2 \text{ (m)}}$

ВМІ	Conclusion
Below 18.5	Underweight
18.5 to 24.9	Normal weight
25.0 to 29.9	Overweight
30.0 or more	Obese

		Height (m) →																
		1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95	2.00	2.05	2.10	2.15	2.20
(kg)	140	71.4	66.6	62.2	58.3	54.7	51.4	48.4	45.7	43.2	40.9	38.8	36.8	35.0	33.3	31.7	30.3	28.9
=	135	68.9	64.2	60.0	56.2	52.7	49.6	46.7	44.1	41.7	39.4	37.4	35.5	33.8	32.1	30.6	29.2	27.9
Weight	130	66.3	61.8	57.8	54.1	58.8	47.8	45.0	42.4	40.1	38.0	36.0	34.2	32.5	30.9	29.5	28.1	26.9
š	125	63.8	59.5	55.6	52.0	48.8	45.9	43.3	40.8	38.6	36.5	34.6	32.9	31.3	29.7	28.3	27.0	25.8
	120	61.2	57.1	53.3	49.9	46.9	44.1	41.5	39.2	37.0	35.1	33.2	31.6	30.0	28.6	27.2	26.0	24.8
\downarrow	115	58.7	54.7	51.1	47.9	44.9	42.2	39.8	37.6	35.5	33.6	31.9	30.2	28.8	27.4	26.1	24.9	23.8
	110	56.1	52.3	48.9	45.8	43.0	40.4	38.1	35.9	34.0	32.1	30.5	28.9	27.5	26.2	24.9	23.8	22.7
	105	53.6	49.9	46.7	43.7	41.0	38.6	36.3	34.3	32.4	30.7	29.1	27.6	26.3	25.0	23.8	22.7	21.7
	100	51.0	47.9	44.4	41.6	39.1	36.7	34.6	32.7	30.9	29.2	27.7	26.3	25.0	23.8	22.7	21.6	20.7
	95	48.5	45.2	42.2	39.5	37.1	34.9	32.9	31.0	29.3	27.8	26.3	25.0	23.8	22.6	21.5	20.6	19.6
	90	45.9	42.8	40.0	37.2	35.2	33.1	31.1	29.4	27.8	26.3	24.9	23.7	22.5	21.4	20.4	19.5	18.6
	85	43.4	40.4	37.8	35.4	33.2	31.2	29.4	27.8	26.2	24.8	23.5	22.4	21.3	20.2	19.3	18.4	17.6
	80	40.8	38.0	35.6	33.3	31.3	29.4	27.7	26.1	24.7	23.4	22.2	21.0	20.0	19.0	18.1	17.3	16.5
	75	38.3	35.7	33.3	31.2	29.3	27.5	26.0	24.5	23.1	21.9	20.8	19.7	18.8	17.8	17.0	16.2	15.5
	70	35.7	33.3	31.1	29.1	27.1	25.7	24.2	22.9	21.6	20.5	19.4	18.4	17.5	16.7	15.9	15.1	14.5
	65	33.2	30.9	28.9	27.1	25.4	23.9	22.5	21.2	20.1	19.0	18.0	17.1	16.3	15.5	14.7	14.1	13.4
	60	30.6	28.5	26.7	25.0	23.4	22.0	20.8	19.6	18.5	17.5	16.6	15.8	15.0	14.3	13.6	13.0	12.4
	55	28.1	26.2	24.4	22.9	21.5	20.2	19.0	18.0	17.0	16.1	15.2	14.5	13.8	13.1	12.5	11.9	11.4
	50	25.5	23.8	22.2	20.8	19.5	18.4	17.3	16.3	15.4	14.6	13.9	13.1	12.5	11.9	11.3	10.8	10.3
		Underweight						Normal Weight					Overweight					
		Obese (Class I)					Obese (Class II)					Obese (Class III)						

The amount of **energy released** in respiration **per gram of fat (lipid)** is **DOUBLE** compared to **per gram of carbohydrate**

D. HOW A TRIGLYCERIDE IS DIFFERENT TO A PHOSPHOLIPID

Triglyceride	Phospholipid
Has three fatty acids	Has two fatty acids
Does not contain phosphate	A phosphate replaces the third fatty acid
Fully hydrophobic	Partly hydrophobic (the tail)

E. STEROIDS

You are not expected to learn their structure but are expected to recognise them as a type
of fat (lipid) that has four joined rings.

Fats have a very low proportion of oxygen to carbon

The amount of energy released in respiration per gram of fat (lipid) is DOUBLE compared to per gram of carbohydrate

Fats, carbohydrates and proteins ALL contain the elements C, H, and O

Proteins also contain the extra element N