Hyejin Kim

 $+82\text{-}10\text{-}4441\text{-}2958 \mid aadeliee@gm.gist.ac.kr \mid aadeliee22.github.io}$

Department of Physics and Photon Science,

Gwangju Institute of Science and Technology, Gwangju 61005, S. Korea

SUMMARY aadeliee2

Highly motivated PhD student trained in physics, mathematics, and computor science (machine learning, numerical computation) with 2 year of research experience.

Research interest: Condensed matter physics theory (CMT), both theoretical and numerical.

- o Strongly correlated quantum many-body system / Phase transition / Non-equilibrium quantum dynamics
- o Topological phase/order

EDUCATION

Aug. 2022 – pres.	Cornell University	NY, USA
	Physics PhD student	
Mar. 2018	Gwangju Institute of Science & Technology (GIST)	Gwangju, S. Korea
– Aug. 2022	B.S. Physics major, Mathematics minor	
	o Thesis: Variational Autoencoder for the metal-insulator transition in DMFT	
	o Magma Cum Laude. (GPA: 4.19/4.5, Major GPA: 4.47/4.5)	
Jul. – Aug. 2019	Boston University	MA, USA
	o Summer 2 session, GPA: 4.0/4.0	

PUBLICATIONS & PRESENTATIONS

Journal Articles	[Submitted] H. Kim, D. Kim, DH. Kim (2022). Minimal neural network to learn the metal-
	insulator transition in the dynamical mean-field theory, NPSM

Conferences [Online presentation] H. Kim, D. Kim, D.-H. Kim (2021). Interpretation of a minimal neural net-

work to learn the metal-insulator transition in the dynamical mean-field theory, In 2021 Korean

Physical Society Conference in Gwangju-Chonnam Branch

RESEARCH EXPERIENCE

Jul. 2020 – pres.	Computational Many-body Physics Group, GIST	Gwangju, S. Korea
	Undergraduate Research Intern (Advisor: Prof. Dong-Hee Kim)	
Feb. 2022 – pres.	$\circ\;$ Variational Autoencoder for the metal-insulator transition in the dynam	ical mean-field theory
	•••	
Dec. 2020 – Jan. 2022	 Interpretation of a minimal neural network to learn the metal-insulator transition in the dynamical mean-field theory 	
	 Interpretation on the network connectivity trained by the hybridization Discussed the relationship between phase indicator and the quasipartic 	,
Jul.– Aug. 2020	 Machine-learning accelerated Monte-Carlo algorithm for 2D spin model 	
	· · · Implementation of Self-learning Monte Carlo method with nontrivial	model.

Dec. 2019 Quantum Field & Gravity Theory Group, GIST

- Mar. 2020 Undergraduate Research Intern (Advisor: Prof. Keun-Young Kim)

,

o Implementation of AdS/DL correspondence

· · · Predicted bulk metric of holographic model of strongly correlated models.

AWARDS & HONORS

2020 – pres.	National Scholarship for Science & Engineering, Korea Student Aid Foundation, full fund
2018 – 2019	Korea Government Scholarship, GIST
2018 - 2020	Academic Scholarship to excellence, GIST
Jul. 2019	Scholarship for Summer session abroad, GIST, full fund
Jan. 2017	Encouragement Award, Korean Young Physicists' Tournament (KYPT)

TEACHING EXPERIENCE

Gwangju Institute of Science and Technology

Gwangju, S. Korea

Gwangju, S.Korea

Spring 2020

Teaching assistant

/ Spring 2021

· · · · General Physics & Rec. I: Lectured recitation class. Scoring homeworks, midterm & final exams.

o Machine Learning & Deep Learning: Project for implementing neural network classifier on CIFAR100.

Fall 2021

Teaching assistant

· · · General Physics & Rec. I: Lectured recitation class in English. Scoring homeworks.

RELEVANT COURSE PROJECT

	·
	Physics
Nov. 2021	o Nuclear & particle physics: Report & Presentation on 'Renormalization group with SFT, QFT approach'
Nov. 2020	o Thermal & statistical physics: Presentation on 'Quantum Ising model'
Apr. 2020	 Quantum physics I: Report on 'Exact solution of finite harmonic oscillator'
Jan. 2019	 Physical Biology of the Cell: Project on bacterial growth rate from microscopy data, gene expression and the effect of repressor
	Mathematics
Jun. 2020	Abstract Algebra: Report for geometric constructions
	Others

SKILLS

Jun. 2021

0111110	
Programming Languages	 Working knowledge of: Python, C/C++, PyTorch, Linux server (Linux Shell Script), LaTeX Familiar with: git, Cmake, Mathematica, TensorFlow2
	o Library: TRIQS (NRG ljubljana solver), trng4 (random number generator), fftw
Languages	o Korean (native), American English (advanced), German (basic)

EXTRA CURRICULAR ACTIVITIES

Attended programs

Jul. 2021

o KISTI N-Ways to GPU Programming Bootcamp

Club activities

o Physics club HOLICS

2019 – 2020 ··· President of the club

2019 ... Physics & Math seminar, half hour Presentation: mathematical analysis of Coanda effect.

2018 – 2020 ··· Physics study group: Classical dynamics, Quantum mechanics

2019 • Cooking club volunteer for school events

2018 – pres. • Piano & Badminton club activities

Extra activities

Nov. 2021 • Played piano for cousin's wedding

Mar. 2019 • GIST newspaper article: Review for course 'Physical Biology of the Cell', gistnews.co.kr/?p=3807