Mathematical and Computational Physics Lecture Notes

Jim Freericks Professor of Physics Georgetown University

January 2020

Contents

Pr	efac	e	9
	0.1	Introduction	11
	0.2	Devious trick number 1 (Add zero)	11
	0.3	Devious trick number 2 (Multiply by 1)	12
	0.4	· - · · · /	13
	0.5	Devious trick number 4 (Recognize abstracted identities)	13
	0.6	· · · · · · · · · · · · · · · · · ·	14
	0.7	Devious trick number 6 (index gymnastics)	14
	0.8	Important identities	15
	0.9	Problems	15
1	Irra	ational Numbers and Ratios	17
	1.1	Introduction and Course Goals	17
	1.2		17
	1.3		19
	1.4		19
	1.5		22
2	Eve	rything you want to know about series but were afraid	
	to a	• • •	27
	2.1	The geometric series	27
	2.2		28
	2.3		30
3	Inte	egrals and Limits	33
	3.1		33
	3.2		35
	3.3		38

4	CONTENTS
---	----------

	3.4	Numerical integration	38
4	Tan	gents and Logarithms	43
	4.1	Optimizations with constraints	43
	4.2	Trigonometric tables	
	4.3	Tables of logarithms	
5	Fundamental Theorem of Calculus and Manipulation of In-		
	tegr	als	51
	5.1	Fundamental theorem of calculus	51
	5.2	Product Rule	52
	5.3	Integration by Parts	53
	5.4	Inverse Chain Rule	54
	5.5	Inverse Functions	54
	5.6	Examples	56
6	Hov	v to integrate	57
	6.1	Elementary examples of integration	57
	6.2	Gaussian and Frullani integrals	60
7		tivariable Integration: Cubic, Cylindrical, and Spherical ordinates	63
	7.1	Arc Length and Area	
	7.2	Differential volume elements	
	7.3	Examples of volume and surface area integrals	
8	The	vanishing sphere and other multidimensional integrals	71
	8.1	Three-dimensional integrals	71
	8.2	The vanishing sphere	
	8.3	Moments of Inertia	
9	Fey	nman or Parametric Integration	79
	9.1	Powers and Gaussians	79
10	Vec	tor-valued functions	85
	10.1	Vector fields	85
	10.2	Examples of vector fields	88

CONTENTS 5

11	Surface Integrals	93
	11.1 How to construct the integral of a vector on a surface	. 93
12	The Divergence Theorem	99
	12.1 Defining divergence	. 99
	12.2 The divergence theorem	. 101
13	The Line Integral and the Curl	107
	13.1 Line Integrals	. 107
	13.2 Curl	. 110
14	Stokes Theorem	115
	14.1 Defining Stokes Theorem	. 115
	14.2 Examples of Stokes Theorem	. 117
15	Line Integrals and the Gradient	121
	15.1 Path Independence of the Line Integral	. 121
	15.2 Laplace's and Poisson's Equations	. 123
16	Laplace's equation	127
	16.1 A harder Laplace's equation problem	. 127
	16.2 Relaxation method	. 130
	16.3 Directional derivatives	. 132
17	The Laplacian in Cylindrical and Spherical Coordinates	135
	17.1 Cylindrical Coordinates, the hard way	. 135
	17.2 Cylindrical Coordinates, the easy way	. 138
	17.3 Spherical Coordinates	. 139
18	Introduction to complex numbers	143
	18.1 Manipulations of complex numbers	. 143
	18.2 Complex exponentials	. 144
	18.3 Cauchy-Riemann equations	. 146
19	Cauchy Theorem and Introduction to Residues	149
	19.1 Contour Integrals in the Complex Plane	
	19.2 Proof of Cauchy's Theorem	. 153

6 CONTENTS

20	The Residue theorem	155
	20.1 Calculating integrals via residues	. 155
	20.2 Examples of the residue theorem	. 156
21	Gaussian Elimination	163
	21.1 Solving m linear equations in n unknowns	. 163
	21.2 Concrete example of Gaussian elimination	
	21.3 General considerations about Gaussian elimination	. 166
22	Determinants	167
	22.1 Definition of a determinant	
	22.2 Properties of determinants	. 168
23	Inverse of a Matrix	173
24	Vector Spaces	179
	24.1 Definition of a vector space	
	24.2 Scalar product	
	24.3 Polynomials and functions as vectors	. 182
25	Scalar Products and Orthonormal Bases	185
26	Change of Bases	189
	26.1 Linear maps	. 189
	26.2 Changing the bases of a map	. 190
27	Eigenvalues and Eigenvectors	195
	27.1 Main Idea	
	27.2 Some Properties from the Spectral Theorem	
	27.3 Examples	. 197
28	Application of Eigenvalues and Eigenvectors	201
	28.1 Landau-Zener Problem	
	28.2 Quantum tunneling	
	28.3 Oscillations	. 204
29	First Order Linear Differential Equations	207
	29.1 Definition and Method of Solution	

CONTENTS 7

30	Nonlinear first-order differential equations	213
	30.1 Introduction to nonlinear differential equations	. 213
	30.2 Type 1: Reducible to Linear	. 214
	30.3 Type 2: Separable	. 214
	30.4 Type 3: Reducible to separable	. 215
	30.5 Type 4: Exact differential	
	30.6 Type 5: Reducible to exact	. 219
31	Applications of First-Order Differential Equations	
	31.1 Models of Air Resistance	. 221
	31.2 Newton's Law of Cooling	
	31.3 Variable Mass (Rocket) Problem	. 226
32	Linear differential equations	229
	32.1 Introduction	
	32.2 Basis Set of Solutions	
	32.3 The Wronskian	
	32.4 Method of variation of parameters	
	32.5 Example	. 233
33	Linear Differential Equations with Constant Coefficients	
	33.1 Description of the basic method	
	33.2 Examples	. 238
34	Method of Undetermined Coefficients	243
	34.1 Introduction	
	34.2 Example 1	
	34.3 Example 2	
	34.4 Example 3	
	34.5 Example 4	
	34.6 Example 5	. 248
35	The Frenet-Serret Apparatus	251
36	Dirichlet's Problem and Poisson's Theorem	259
37	Fourier Series and Separation of Variables	267
	37.1 Formalism	. 267
	37.9 Evamples	270

38 Applications of Poisson's Theorem	277