Contents

1	计算 1.1	二维计算几何														 	1
	1.2 1.3 1.4	圆的面积模板 多边形相关 半平面交					 	 	 	 	 		 			 	. 2
	1.5 1.6	最大面积空间最近点对	5包				 	 	 	 	 		 			 	3
	1.7 1.8 1.9	凸包与点集章 Farmland . Voronoi 图						 	 	 	 		 			 	. 4
	1.9 1.10 1.11	三维计算几位		作.			 	 	 	 	 		 			 	. 5
	1.12	三维凸包 长方体表面点	点距离	 			 	 	 	 	 		 		:	 	5
	1.14 1.15 1.16	三维向量操作	作矩阵				 	 	 	 	 		 			 	6
2	数据 2.1	:结构 动态凸包 (只	古快任	λ)													7
	2.1 2.2 2.3	Rope 用法 Treap					 	 	 	 	 		 			 	. 7
	2.4 2.5	可持久化 Tr					 	 	 	 	 		 			 	. 7
	$\frac{2.5}{2.6}$	Link-Cut Tr K-D Tree N	ee				 	 	 	 	 		 			 	. 7
	2.8 2.9	K-D Tree Fa 树链剖分 .	arthest														
3	字符 3.1	事相关 Manacher				 	 	 	 	 	 		 			 	9
	3.2																
	3.3	巨缀自动机															
	3.3 3.4 3.5	- 122 N/L LET					 	 	 	 	 		 			 	. 9
4	3.4 3.5 图论 4.1	后缀数组 环串最小表示 带花树	· · · · ·			 	 	 	 	 	 		 			 	9 9 9
4	3.4 3.5 图论 4.1 4.2 4.3	后缀数组 环串最小表示 带花树 最大流 KM				 	 	 	 	 	 	 	 	 		 	9 9 9 10 10
4	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5	后缀数组 环串最小表示 带花树 最大流 KM	osaraju Stoer-V	 Vagn			 	 	 	 	 	 	 	 		 	9 9 9 10 10 10 10
4	3.4 3.5 图论 4.1 4.2 4.3 4.4	后环 带表示 带表	osaraju Stoer-W														9 9 10 10 10 10 10 10
4	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	后环 带最大 KM 与小 搜形态 大小 投下 B B B B B B B B B B B B B B B B B B	osaraju Stoer-V ·····	Vagn	er												9 9 10 10 10 10 10 10 11 11 11
	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11	后环 带最大 KM 2-SA 局致 B 树流 与小 搜形态 以级图知 大小线图知 以现	osaraju Stoer-W	Vagn	er												9 9 10 10 10 10 10 10 10 11 11 11
4 5	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	后环 带最大 KM 2-SA 局致 B 树流 与小 搜形态 以级图知 大小线图知 以现	osaraju Stoer-W 小生成枫	√agn													9 9 10 10 10 10 10 10 11 11 11 12 12
	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5.1 5.2 5.3 5.4	后环 带最低 5 表	osaraju Stoer-W 小生成树	Vagn													9 9 9 9 10 10 10 10 10 11 11 11 12 12 12 12 13 13 13 13
	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 5.1 5.2 5.3 5.5 5.6	后环 带最	osaraju Stoer-W ····································	√agn													9 9 9 10 10 10 10 10 11 11 12 12 12 12 13 13 13 13 14
	3.4 3.5 图 4.1 4.2 4.3 4.4 4.5 4.4 4.7 4.8 4.9 4.10 5.1 5.2 5.3 5.5 5.6 5.7 8.5 5.9	后环 带最K 2-全 x 最	osaraju Stoer-W ····································	·····································	er												9 9 9 9 9 10 10 10 10 10 11 11 12 12 12 13 13 13 13 14 14 14 14 14
	3.4 3.5 图论 4.1 4.2 4.3 4.4 4.6 4.7 4.8 4.9 4.11 数 1 5.5.3 5.5.6 5.7 5.8 5.9 5.10 5.11	后环	osaraju Stoer-W 小生成树	·····································													9 9 9 9 100 100 100 100 111 112 122 12 123 133 134 144 144 144 144 144 144 144 14

	5.15 5.16	Romberg 积分公式 5.16.1 级次为 5.16.2 概数次为 5.16.3 机物物心量 5.16.5 向常用的 5.16.6 树的计	三角 程求根 2 : 式式 : 式式	·····································		 				 		 	 	 	 15 16 16 16 17 17 17 17 17 17
6	其他 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	Extended LIS 生成 nCk nextPermutat Josephus 数与 表达式求值 直线下的整点 Java 多项式 long long 乘法	ion i逆 Jose 个数 :取模	ephus	数	 			 	 		 	 	 	 18 19 19 19 19 19 19 19 20 20
7	Ten 7.1 7.2 7.3 7.4 7.5 7.6	Java Eclipse 配置 泰勒级数				 	 20 20 20 20 20 20 20 21								

Call It Magic

Shanghai Jiao Tong University 2 Call It Magic

1 计算几何

1.1 二维计算几何基本操作

```
const double PI = 3.14159265358979323846264338327950288;
           double arcSin(const double &a) { return (a <= -1.0) ? (-PI / 2) : ((a >= 1.0) ? (PI / 2) : (asin(a))); } double arcCos(const double &a) {
            counter arccos(const double &a) {
  return (a <= -1.0) ? (PI) : ((a >= 1.0) ? (0) : (acos(a))); }
struct point { double x, y; // something omitted
  point rot(const double &a) const { // counter-clockwise
               point rot(const gouble &a) const { // counter-clockwise return point(x * cos(a) - y * sin(a), x * sin(a) + y * cos(a)); } point rot90() const { return point(-y, x); } // counter-clockwise point project(const point &pi, const point &p2) const { const point &p = *this; return p1 + (p2 - p1) * (dot(p2 - p1, q - p1) / (p2 - p1).norm()); } bool onSeg(const point &a, const point &b) const { // a, b inclusive const point &a const point &b) const { // a, b inclusive const point &a const po
10
11
\frac{12}{13}
                const point &c = *this; return sign(dot(a - c, b - c)) <= 0 && sign(det(b - a, c - a)) == 0; } double distlP(const point &p1, const point &p2) const { // dist from *this to line p1->p2 const point &q = *this; return fabs(det(p2 - p1, q - p1)) / (p2 - p1).len(); } double distSP(const point &p1, const point &p2) const { // dist from *this to segment [p1, p2]}
14
15
16
17
18
19
                     const point &q = *this;
                    if (dot(p2 - p1, q - p1) < EPS) return (q - p1).len(); if (dot(p1 - p2, q - p2) < EPS) return (q - p2).len(); return distLP(p1, p2);
20
21
22
                bool inAngle(const point &p1, const point &p2) const { // det(p1, p2) > 0 const point &q = *this; return det(p1, q) > -EPS && det(p2, q) < EPS;
\frac{1}{23}
^{-24}
25
26
            bool lineIntersect(const point &a, const point &b, const point &c, const point &d, point &e) {
\frac{1}{27}
                double s1 = det(c - a, d - a), s2 = det(d - b, c - b);
if (!sign(s1 + s2)) return false; e = (b - a) * (s1 / (s1 + s2)) + a; return true;
28
29
            int segIntersectCheck(const point &a, const point &b, const point &c, const point &d, point &o) {
30
\frac{31}{32}
                static double s1, s2, s3, s4;
                 static int iCnt:
                int d1 = sign(s1 = det(b - a, c - a)), d2 = sign(s2 = det(b - a, d - a)); int d3 = sign(s3 = det(d - c, a - c)), d4 = sign(s4 = det(d - c, b - c)); if (d1 d2) = -2 && (d3 ~ d4) = -2) &
\frac{33}{34}
35
                     o = (c * s2 - d * s1) / (s2 - s1); return true;
37
                 if (d1 == 0 && c.onSeg(a, b)) o = c, ++iCnt;
                if (d2 == 0 && d.onSeg(a, b)) o = d, ++iCnt;
if (d3 == 0 && a.onSeg(c, d)) o = a, ++iCnt;
40
41
                if (d4 == 0 && b.onSeg(c, d)) o = b, ++iCnt;
42
                return iCnt ? 2 : 0; // 不相交返回 0, 严格相交返回 1, 非严格相交返回 2
43
44
            struct circle {
45
                point o; double r, rSqure;
                 bool inside(const point &a) { return (a - o).len() < r + EPS; } // 非严格
46
                bool contain(const circle &b) const { return sign(b.r + (o - b.o).len() - r) <= 0; } // 非严格
47
48
                 bool disjunct(const circle &b) const { return sign(b.r + r - (o - b.o).len()) <= 0; } // 非严格
                int isCL(const point &p1, const point &p2, point &a, point &b) const {
   double x = dot(p1 - o, p2 - p1), y = (p2 - p1).norm();
   double d = x * x - y * ((p1 - o).norm() - rSqure);
   if (d < -EPS) return 0; if (d < 0) d = 0;
\frac{49}{50}
\frac{51}{52}
                    point q1 = p1 - (p2 - p1) * (x / y);

point q2 = (p2 - p1) * (sqrt(d) / y);

a = q1 - q2; b = q1 + q2; return q2.len() < EPS ? 1 : 2;
53
54
55
56
               int tanCP(const point &p, point &a, point &b) const { // 返回切点, 注意可能与 p 重合 double x = (p - o).norm(), d = x - rSqure; if (d < -EPS) return 0; if (d < 0) d = 0; point q1 = (p - o) * (rSqure / x), q2 = ((p - o) * (-r * sqrt(d) / x)).rot90(); a = o + (q1 - q2); b = o + (q1 + q2); return q2.len() < EPS ? 1 : 2;
57
58
59
60
61
62
63
           bool checkCrossCS(const circle &cir, const point &p1, const point &p2) { // 非严格 const point &c = cir.o; const double &r = cir.r; return c.distSP(p1, p2) < r + EPS &k (r < (c - p1).len() + EPS || r < (c - p2).len() + EPS);
64
65
66
67
68
           bool checkCrossCC(const circle &cir1, const circle &cir2) { // 非严格
69
               const double &r1 = cir1.r, &r2 = cir2.r, d = (cir1.o - cir2.o).len();
70
               return d < r1 + r2 + EPS && fabs(r1 - r2) < d + EPS;
71
72
73
74
75
76
77
            int isCC(const circle &cir1, const circle &cir2, point &a, point &b) {
                const point &c1 = cir1.o, &c2 = cir2.o;
                 double^{x} = (c1 - c2).norm(), y = ((cirí.rSqure - cir2.rSqure) / x + 1) / 2;
                double d = cir1.rSqure / x - y * y;
if (d < -EPS) return 0; if (d < 0) d = 0;
               point q1 = c1 + (c2 - c1) * y, q2 = ((c2 - c1) * sqrt(d)).rot90();
a = q1 - q2; b = q1 + q2; return q2.len() < EPS ? 1 : 2;
78
79
80
           vector<pair<point, point> > tanCC(const circle &cir1, const circle &cir2) {
```

```
// 注意: 如果只有三条切线, 即 s1=1, s2=1, 返回的切线可能重复, 切点没有问题
              vector<pair<point, point> > list;
               if (cir1.contain(cir2) || cir2.contain(cir1)) return list;
             if (ciri.contain(ciri) || ciri.contain(ciri) return list;
const point &cl = ciri.o, &c2 = cir2.o;
double r1 = cir1.r, r2 = cir2.r; point p, a1, b1, a2, b2; int s1, s2;
if (sign(r1 - r2) == 0) {
   p = c2 - c1; p = (p * (r1 / p.len())).rot90();
   list.push_back(make_pair(c1 + p, c2 + p)); list.push_back(make_pair(c1 - p, c2 - p));
} cleat
                 p = (c2 * r1 - c1 * r2) / (r1 - r2);
s1 = cir1.tanCP(p, a1, b1); s2 = cir2.tanCP(p, a2, b2);
                  if (s1 >= 1 && s2 >= 1)
                      list.push_back(make_pair(a1, a2)), list.push_back(make_pair(b1, b2));
               p = (c1 * r2 + c2 * r1) / (r1 + r2);
              s1 = cir1.tanCP(p, a1, b1); s2 = cir2.tanCP(p, a2, b2); if (s1 >= 1 && s2 >= 1)
  96
97
98
99
                 list.push_back(make_pair(a1, a2)), list.push_back(make_pair(b1, b2));
              return list:
          bool distConvexPIn(const point &p1, const point &p2, const point &p3, const point &p4, const point &q) {
    point o12 = (p1 - p2).rot90(), o23 = (p2 - p3).rot90(), o34 = (p3 - p4).rot90();
    return (q - p1).inAngle(o12, o23) || (q - p3).inAngle(o23, o34)
    || ((q - p2).inAngle(o23, p3 - p2) && (q - p3).inAngle(p2 - p3, o23));
100
101
102
103
104
           double distConvexP(int n, point ps[], const point &q) { // 外部点到多边形的距离 int left = 0, right = n; while (right - left > 1) { int mid = (left + right) / 2; if (distConvexPIn(ps[left + n - 1) % n], ps[left], ps[mid], ps[(mid + 1) % n], q))
105
106
107
              right = mid; else left = mid; return q.distSP(ps[left], ps[right % n]);
108
109
110
          double areaCT(const circle &cir, point pa, point pb) {
  pa = pa - cir.o; pb = pb - cir.o; double R = cir.r;
  if (pa.len() < pb.len()) swap(pa, pb); if (pb.len() < EPS) return 0;
  point pc = pb - pa; double a = pa.len(), b = pb.len(), c = pc.len(), S, h, theta;
  double cosB = dot(pb, pc) / b / c, B = acos(cosB);
  double cosC = dot(pa, pb) / a / b, C = acos(cosC);</pre>
111
112
113
114
\frac{115}{116}
              S = C * 0.5 * R * R; h = b * a * sin(C) / c;
if (h < R && B < PI * 0.5) S -= acos(h / R) * R * R - h * sqrt(R * R - h * h);
119
              } else if (a > R) {
  theta = PI - B - asin(sin(B) / R * b);
120
                  S = 0.5 * b * R * sin(theta) + (C - theta) * 0.5 * R * R;
               } else S = 0.5 * sin(C) * b * a;
124
125
126
           circle minCircle(const point &a, const point &b) {
127
             return circle((a + b)^* * 0.5, (b - a).len() * 0.5);
128
129
           circle minCircle(const point &a, const point &b, const point &c) { // 纯角三角形没有被考虑
              double a2( (b - c).norm() ), b2( (a - c).norm() ), c2( (a - b).norm() );
131
              if (b2 + c2 <= a2 + EPS) return minCircle(b, c);
               if (a2 + c2 <= b2 + EPS) return minCircle(a, c);
133
               if (a2 + b2 <= c2 + EPS) return minCircle(a, b);
             double A = 2.0 * (a.x - b.x), B = 2.0 * (a.y - b.y);
double D = 2.0 * (a.x - c.x), E = 2.0 * (a.y - c.y);
double C = a.norm() - b.norm(), F = a.norm() - c.norm();
point p((C * E - B * F) / (A * E - B * D), (A * F - C * D) / (A * E - B * D));
134
\frac{136}{137}
              return circle(p, (p - a).len());
138
139
          forcicle minCircle(point P[], int N) { // 1-based
  if (N == 1) return circle(P[1], 0.0);
  random_shuffle(P + 1, P + N + 1); circle 0 = minCircle(P[1], P[2]);
  Rep(i, 1, N) if(!0.inside(P[i])) { 0 = minCircle(P[1], P[i]);
    Foru(j, 1, i) if(!0.inside(P[i])) { 0 = minCircle(P[i], P[j]);
    Foru(k, 1, j) if(!0.inside(P[k])) 0 = minCircle(P[i], P[j], P[k]); }
140
141
146
147
```

1.2 圆的面积模板

Shanghai Jiao Tong University 3 Call It Magic

1.3 多边形相关

```
struct Polygon { // stored in [0, n)
          int n; point list[MAXN];
          Polygon cut(const point &a, const point &b) {
 \frac{3}{4}
\frac{5}{6}
\frac{6}{7}
            static Polygon res:
            static point o;
res.n = 0:
            for (int i = 0; i < n; ++i) {
 8
              int s1 = sign(det(list[i] - a, b - a));
int s2 = sign(det(list[(i + 1) % n] - a, b - a));
10
               if (s1 <= 0) res.list[res.n++] = list[i];
11
               if (s1 * s2 < 0) {
12
                  lineIntersect(a, b, list[i], list[(i + 1) % n], o);
13
                  res.list[res.n++] = o;
\frac{14}{15}
            } return res;
16
17
18
19
         bool contain(const point &p) const { // 1 if on border or inner, 0 if outter
            static point A, B;
int res = 0;
20
            for (int i = 0; i < n; ++i) {
^{-21}
              A = list[i]; B = list[(i + 1) % n];
22
               if (p.onSeg(A, B)) return 1;
              if (sign(A,y - B.y) <= 0) swap(A, B);
if (sign(p.y - A.y) > 0) continue;
if (sign(p.y - B.y) <= 0) continue;
res += (int)(sign(det(B - p, A - p)) > 0);
^{25}_{26}
27
28
29
            return res & 1;
         bool convexContain(const point &p) const { // sort by polar angle
  for (int i = 1; i < n; ++i) list[i] = list[i] - list[0];</pre>
30
31
            point q = p - list[0];
if (sign(det(list[1], q)) < 0 || sign(det(list[n - 1], q)) > 0) return false;
32
33
            int 1 = 2, r = n - 1;
\frac{34}{35}
              int mid = (1 + r) >> 1;
               double d1 = sign(det(list[mid], q)), d2 = sign(det(list[mid - 1], q));
38
               if (d1 <= 0) {
39
40
                    if (sign(det(q - list[mid - 1], list[mid] - list[mid - 1]) \le 0) \le 0)
41
                      return true:
\frac{42}{43}
              } else r = mid - 1;
} else l = mid + 1;
\frac{44}{45}
            return false:
46
47
          double isPLAtan2(const point &a, const point &b) {
48
49
            double k = (b - a).alpha(); if (k < 0) k += 2 * PI;
50
         point isPL_Get(const point &a, const point &b, const point &s1, const point &s2) {
  double k1 = det(b - a, s1 - a), k2 = det(b - a, s2 - a);
  if (sign(k1) == 0) return s1;
  if (sign(k2) == 0) return s2;
\frac{51}{52}
53
54
55
56
57
58
59
            return (s1 * k2 - s2 * k1) / (k2 - k1);
         int isPL_Dic(const point &a, const point &b, int 1, int r) {
  int s = (det(b - a, list[1] - a) < 0) ? -1 : 1;</pre>
            while (1 <= r) {
60
              int mid = (1 + r) / 2;
              if (det(b - a, list[mid] - a) * s <= 0) r = mid - 1;
else l = mid + 1;</pre>
61
63
            return r + 1:
65
         int isPL_Find(double k, double w[]) {
66
            if (k <= w[0] || k > w[n - 1]) return 0;
```

```
int 1 = 0, r = n - 1, mid;
 69
                 while (1 <= r) {
                    mid = (1 + r) / 2;
 70
 71
                    if (w[mid] >= k) r = mid - 1;
 72
                     else l = mid + 1;
 \frac{73}{74}
                } return r + 1;
            bool isPL(const point &a, const point &b, point &cp1, point &cp2) { // O(logN) static double w[MAXN * 2]; // pay attention to the array size for (int i = 0; i < n; ++i) list[i + n] = list[i]; for (int i = 0; i < n; ++i) w[i] = w[i + n] = isPLAtan2(list[i], list[i + 1]); int i = isPL_Find(isPLAtan2(a, b), w); int j = isPL_Find(isPLAtan2(b, a), w); double k1 = det(b - a, list[i] - a), k2 = det(b - a, list[j] - a); if (sign(k1) * sign(k2) > 0) return false; // no intersection
 75
76
77
78
79
 80
 81
                if (sign(k1) == 0 || sign(k2) == 0) { // intersect with a point or a line in the convex if (sign(k1) == 0) {
                       if (Sign(det(b - a, list[i + 1] - a)) == 0) cp1 = list[i], cp2 = list[i + 1];
 86
87
88
                        else cp1 = cp2 = list[i];
                       return true;
                    if (sign(k2) == 0) {
 89
                      if (sign(det(b - a, list[j + 1] - a)) == 0) cp1 = list[j], cp2 = list[j + 1]; else cp1 = cp2 = list[j];
 90
 \frac{91}{92}
 93
                    return true:
 94
                if (i > j) swap(i, j);
int x = isPL_Dic(a, b, i, j), y = isPL_Dic(a, b, j, i + n);
cp1 = isPL_Get(a, b, list[x - 1], list[x]);
cp2 = isPL_Get(a, b, list[y - 1], list[y]);
                 return true;
100
101
             double getI(const point &0) const {
102
                if (n <= 2) return 0;
103
                point G(0.0, 0.0);
                double S = 0.0, I = 0.0;
for (int i = 0; i < n; ++i) {
104
105
                    const point &x = list[i], &y = list[(i + 1) % n];
106
                    double d = det(x, y);
G = G + (x + y) * d / 3.0;
108
                S += d;
} G = G / S;
110
                for (int' 1 = 0; i < n; ++i) {
   point x = list[i] - G, y = list[(i + 1) % n] - G;
   I += fabs(det(x, y)) * (x.norm() + dot(x, y) + y.norm());</pre>
111
112
113
114
                 return I = I / 12.0 + fabs(S * 0.5) * (0 - G).norm();
115
116
117
         };
```

1.4 半平面交

```
struct Border {
          truct border \
point pi, p2; double alpha;
Border(): p1(), p2(), alpha(0.0) {}
Border(const point &a, const point &b): p1(a), p2(b), alpha( atan2(p2.y - p1.y, p2.x - p1.x) ) {}
bool operator == (const_Border_&b) const_{ } return sign(alpha - b.alpha) == 0; }
           bool operator < (const Border &b) const {
              int c = sign(alpha - b.alpha); if (c != 0) return c > 0;
return sign(det(b.p2 - b.p1, p1 - b.p1)) >= 0;
10
        point isBorder(const Border &a, const Border &b) { // a and b should not be parallel
12
          point is; lineIntersect(a.p1, a.p2, b.p1, b.p2, is); return is;
13
14
15
16
17
        bool checkBorder(const Border &a, const Border &b, const Border &me) {
          point is; lineIntersect(a.p1, a.p2, b.p1, b.p2, is);
return sign(det(me.p2 - me.p1, is - me.p1)) > 0;
       double HPI(int N, Border border[]) {
    static Border que[MAXN * 2 + 1];    static point ps[MAXN];
    int head = 0, tail = 0, cnt = 0; // [head, tail)
    sort(border, border + N); N = unique(border, border + N) - border;
    for (int i = 0; i < N; ++i) {
        Border &cur = border[i];
    }
}</pre>
18
19
              while (head + 1 < tail && !checkBorder(que[tail - 2], que[tail - 1], cur)) --tail; while (head + 1 < tail && !checkBorder(que[head], que[head + 1], cur)) ++head;
           } while (head + 1 < tail && !checkBorder(que[tail - 2], que[tail - 1], que[head])) --tail;
           while (head + 1 < tail && !checkBorder(que[head], que[head + 1], que[tail - 1])) ++head;
           if (tail - head <= 2) return 0.0;
```

Shanghai Jiao Tong University 4 Call It Magic

```
30 | Foru(i, head, tail) ps[cnt++] = isBorder(que[i], que[(i + 1 == tail) ? (head) : (i + 1)]);
31 | double area = 0; Foru(i, 0, cnt) area += det(ps[i], ps[(i + 1) % cnt]);
32 | return fabs(area * 0.5); // or (-area * 0.5)
33 | }
```

1.5 最大面积空凸包

```
inline bool toUpRight(const point &a, const point &b) {
        int c = sign(b.y - a.y); if (c > 0) return true;
 3
        return c == 0 && sign(b.x - a.x) > 0;
 5
      inline bool cmpByPolarAngle(const point &a, const point &b) { // counter-clockwise, shorter first if they
        share the same polar angle
int c = sign(det(a, b)); if (c != 0) return c > 0;
        return sign(b.len() - a.len()) > 0;
      double maxEmptyConvexHull(int N, point p[]) {
        static double dp[MAXN][MAXN];
11
        static point vec[MAXN];
12
        static int seq[MAXN]; // empty triangles formed with (0,0), vec[o], vec[seq[i]]
13
        double ans = 0.0;
\frac{14}{15}
        Rep(o, 1, N) {
          int totVec = 0;
          Rep(i, 1, N) if (toUpRight(p[o], p[i])) vec[++totVec] = p[i] - p[o];
sort(vec + 1, vec + totVec + 1, cmpByPolarAngle);
\frac{16}{17}
18
19
          Rep(i, 1, totVec) Rep(j, 1, totVec) dp[i][j] = 0.0;
          Rep(k, 2, totVec) {
  int i = k - 1;
21
             while (i > 0 \& \& sign(det(vec[k], vec[i])) == 0) --i;
\frac{22}{23}
             int totSeq = 0;
for (int j; i > 0; i = j) {
               seq[++totSeq] = i;
for (j = i - 1; j > 0 && sign(det(vec[i] - vec[k], vec[j] - vec[k])) > 0; --j);
^{24}
25
26
27
28
               double v = det(vec[i], vec[k]) * 0.5;
               if (j > 0) v += dp[i][j];
dp[k][i] = v;
29
                cMax(ans, v);
30
            } for (int i = totSeq - 1; i >= 1; --i) cMax(dp[k][seq[i]], dp[k][seq[i + 1]]);
31
32
        } return ans:
33
```

1.6 最近点对

```
int N: point p[maxn]:
      bool cmpByX(const point &a, const point &b) { return sign(a.x - b.x) < 0; } bool cmpByY(const int &a, const int &b) { return p[a].y < p[b].y; } double minimalDistance(point *c, int n, int *ys) {
 3
         double ret = 1e+20;
         if (n < 20) {
            Foru(i, 0, n) Foru(j, i + 1, n) cMin(ret, (c[i] - c[j]).len());
            sort(ys, ys + n, cmpByY); return ret;
         } static int mergeTo[maxn];
10
         int mid = n / 2; double xmid = c[mid].x;
\frac{11}{12}
          ret = min(minimalDistance(c, mid, ys), minimalDistance(c + mid, n - mid, ys + mid));
          merge(ys, ys + mid, ys + mid, ys + n, mergeTo, cmpByY);
13
14
15
16
17
          copy(mergeTo, mergeTo + n, ys);
         Forn(i, 0, n) {
 while (i < n && sign(fabs(p[ys[i]].x - xmid) - ret) > 0) ++i;
            Foru(j, i + 1, n)
              if (sign(p[ys[j]].y - p[ys[i]].y - ret) > 0) break;
else if (sign(fabs(p[ys[j]].x - xmid) - ret) <= 0) {
  ret = min(ret, (p[ys[i]] - p[ys[j]]).len());
  if (++cnt >= 10) break;
\frac{18}{19}
20
21
^{22}
\frac{23}{24}
        } return ret;
25
26
27
      double work() {
         sort(p, p + n, cmpByX); Foru(i, 0, n) ys[i] = i; return minimalDistance(p, n, ys);
```

1.7 凸包与点集直径

```
vector<point> convexHull(int n, point ps[]) { // counter-clockwise, strict
        static point qs[MAXN * 2];
        sort(ps, ps + n, cmpByXY);
if (n <= 2) return vector(ps, ps + n);</pre>
         int k = 0;
        10
        return vector<point>(qs, qs + k);
11
12
      double convexDiameter(int n, point ps[]) {
  if (n < 2) return 0; if (n == 2) return (ps[1] - ps[0]).len();</pre>
13
14
        double k, ans = 0;
        for (int x = 0, y = 1, nx, ny; x < n; ++x) {
for(nx = (x == n - 1) ? (0) : (x + 1); ; y = ny) {
   ny = (y == n - 1) ? (0) : (y + 1);
}
15
              if (sign(k = det(ps[nx] - ps[x], ps[ny] - ps[y])) \le 0) break;
          } ans = max(ans, (ps[x] - ps[y]).len());
if (sign(k) == 0) ans = max(ans, (ps[x] - ps[ny]).len());
\frac{20}{21}
        } return ans;
22
```

1.8 Farmland

```
struct node { int begin[MAXN], *end; } a[MAXN]; // 按对 p[i] 的极角的 atan2 值排序
          bool check(int n, point p[], int b1, int b2, bool vis[MAXN][MAXN]) {
   static pii l[MAXN * 2 + 1]; static bool used[MAXN];
             fint tp(0), *k, p, p1, p2; double area(0.0);
for (1[0] = pii(b1, b2); ; ) {
    vis[p1 = 1[tp].first][p2 = 1[tp].second] = true;
            vis[p1 = l[tp].first][p2 = l[tp].second] = true;
area += det(p[p1], p[p2]);
for (k = a[p2].begin; k != a[p2].end; ++k) if (*k == p1) break;
k = (k == a[p2].begin)? (a[p2].end - 1): (k - 1);
if ((l[++tp] = pii(p2, *k)) == l[0]) break;
} if (sign(area) < 0 || tp < 3) return false;
Rep(i, 1, n) used[i] = false;
for (int i = 0; i < tp; ++i) if (used[p = l[i].first]) return false; else used[p] = true;
return true; // a face with tp vertices</pre>
10
11
12
13
14
15
\frac{16}{17}
          int countFaces(int n, point p[]) {
   static bool vis[MAXN][MAXN]; int ans = 0;
18
              Rep(x, 1, n) Rep(y, 1, n) vis[x][y] = false;
19
             Rep(x, 1, n) for (int *itr = a[x].begin; itr != a[x].end; ++itr) if (!vis[x][*itr])
\frac{20}{21}
                 if (check(n, p, x, *itr, vis)) ++ans;
             return ans:
22
```

1.9 Voronoi 图

不能有重点, 点数应当不小于 2

```
#define Oi(e) ((e)->oi)
         #define Dt(e) ((e)->dt)
         #define On(e) ((e)->on)
          #define Op(e) ((e)->op)
        #define Dn(e) ((e)->dn)
#define Dp(e) ((e)->dp)
        #define Dp(e) ((e)->dp)
#define Other(e, p) ((e)->oi == p ? (e)->dt : (e)->oi)
#define Next(e, p) ((e)->oi == p ? (e)->on : (e)->dn)
#define Next(e, p) ((e)->oi == p ? (e)->op : (e)->dp)
#define V(p1, p2, u, v) (u = p2->x - p1->x, v = p2->y - p1->y)
#define C2(u1, v1, u2, v2) (u1 * v2 - v1 * u2)
#define C3(p1, p2, p3) ((p2->x - p1->x) * (p3->y - p1->y) - (p2->y - p1->y) * (p3->x - p1->x))
#define Dot(u1, v1, u2, v2) (u1 * u2 + v1 * v2)
#define Dot(u1, v1, u2, v2) (u1 * u2 + v1 * v2)
#define dis(a,b) (sqrt( (a->x - b->x) * (a->x - b->x) + (a->y - b->y) * (a->y - b->y) ))
const int mayn = 110024
          const int maxn = 110024;
16
17
          const int aix = 4;
          const double eps = 1e-7:
18
          int n, M, k;
19
         struct gEdge {
             int u, v; double w;
             bool operator <(const gEdge &e1) const { return w < e1.w - eps; }
          } E[aix * maxn], MST[maxn];
             double x, y; int index; edge *in;
             bool operator <(const point &p1) const { return x < p1.x - eps || (abs(x - p1.x) <= eps && y < p1.y -
                        eps); }
```

Shanghai Jiao Tong University 5 Call It Magic

```
struct edge { point *oi, *dt; edge *on, *op, *dn, *dp; };
 29
        point p[maxn], *Q[maxn];
 30
        edge mem[aix * maxn], *elist[aix * maxn];
 31
        int nfree:
        void Alloc_memory() { nfree = aix * n; edge *e = mem; for (int i = 0; i < nfree; i++) elist[i] = e++; }
void Splice(edge *a, edge *b, point *v) {</pre>
 32
 33
           edge *next:
           if (Oi(a) == v) next = On(a), On(a) = b; else next = Dn(a), Dn(a) = b;
 35
          if (Oi(next) == v) Op(next) = b; else Dp(next) = b;
if (Oi(b) == v) On(b) = next, Op(b) = a; else Dn(b) = next, Dp(b) = a;
 38
 39
 40
           edge *e = elist[--nfree];
           e->on = e->op = e->dn = e->dp = e; e->oi = u; e->dt = v;
 42
          if (!u->in) \hat{u}->in = e:
 43
          if (!v->in) v->in = e;
 44
          return e:
 \frac{45}{46}
        edge *Join(edge *a, point *u, edge *b, point *v, int side) {
 47
           edge *e = Make_edge(u, v);
 48
          if (side == 1) {
             if (Oi(a) == u) Splice(Op(a), e, u);
              else Splice(Dp(a), e, u);
             Splice(b, e, v);
 51
 52
 53
             Splice(a, e, u);
if (0i(b) == v) Splice(0p(b), e, v);
 55
             else Splice(Dp(b), e, v);
 56
57
          } return e;
       void Remove(edge *e) {
  point *u = Oi(e), *v = Dt(e);
 \frac{58}{59}
          if (u->in == e) u->in = e->on;
 60
          if (v->in == e) v->in = e->dn;
 61
          if (Oi(e->on) == u) e->on->op = e->op; else e->on->dp = e->op; if (Oi(e->op) == u) e->op->on = e->on; else e->op->dn = e->on;
 62
 63
          if (0i(e->dn) == v) e->dn->op = e->dp; else e->dn->dp = e->dp; if (0i(e->dp) == v) e->dp->on = e->dn; else e->dn->dn = e->dn;
 64
           elist[nfree++] = e;
        void Low_tangent(edge *e_1, point *o_1, edge *e_r, point *o_r, edge **1_low, point **0L, edge **r_low,
 68
          point **OR) {
for (point *d_1 = Other(e_1, o_1), *d_r = Other(e_r, o_r); ; )
             if (C3(o_1, o_r, d_1) < -eps) e_1 = Prev(e_1, d_1), o_1 = d_1, d_1 = Other(e_1, o_1); else if (C3(o_1, o_r, d_r) < -eps) e_r = Next(e_r, d_r), o_r = d_r, d_r = Other(e_r, o_r);
 70
 71
72
73
74
75
76
77
             else break:
           *OL = o_1, *OR = o_r; *l_low = e_1, *r_low = e_r;
        void Merge(edge *lr, point *s, edge *rl, point *u, edge **tangent) {
   double l1, l2, l3, l4, r1, r2, r3, r4, cot_L, cot_R, u1, v1, u2, v2, n1, cot_n, P1, cot_P;
   point *0, *D, *0R, *0L; edge *B, *L, *R;
          Low tangent(lr, s, rl, u, &l, &cd, &R, &cdR);
for (*tangent = B = Join(L, OL, R, OR, O), O = OL, D = OR; ; ) {
   edge *El = Next(B, O), *Er = Prev(B, D), *next, *prev;
   point *1 = Other(El, O), *r = Other(Er, D);
 \frac{78}{79}
             82
 83
84
 85
             if (!BL && !BR) break:
 86
             if (BL) {
                r (BL) {
double dl = Dot(11, 12, 13, 14);
for (cot_L = dl / cl; ; Remove(El), El = next, cot_L = cot_n) {
    next = Next(El, 0); V(Other(next, 0), 0, ul, vl); V(Other(next, 0), D, u2, v2);
    n1 = C2(ul, v1, u2, v2); if (!(n1 > eps)) break;
    cot_n = Dot(u1, v1, u2, v2) / n1;
 87
 88
                   if (cot_n > cot_L) break;
 93
             } if (BR) {
 94
95
                 double dr = Dot(r1, r2, r3, r4);
                for (cot_R = dr / cr; ; Remove(Er), Er = prev, cot_R = cot_P) {
   prev = Prev(Er, D); V(Other(prev, D), O, u1, v1); V(Other(prev, D), D, u2, v2);
96
97
                   P1 = C2(u1, v1, u2, v2); if (!(P1 > eps)) break; cot_P = Dot(u1, v1, u2, v2) / P1;
 98
 99
                   if (cot_P > cot_R) break;
100
101
102
             } 1 = Other(E1, 0); r = Other(Er, D);
             if (!BL || (BL && BR && cot_R < cot_L)) B = Join(B, 0, Er, r, 0), D = r; else B = Join(El, 1, B, D, 0), 0 = 1;
103
104
105
        void Divide(int s, int t, edge **L, edge **R) {
107
          edge *a, *b, *c, *ll, *lr, *rl, *rr, *tangent;
109
           int n = t - s + 1;
          if (n == 2) *L = *R = Make_edge(Q[s], Q[t]);
110
          else if (n == 3) {
```

```
a = Make_edge(Q[s], Q[s + 1]), b = Make_edge(Q[s + 1], Q[t]);
                Splice(a, b, Q[s + 1]);
double v = C3(Q[s], Q[s + 1], Q[t]);
114
               if (v > eps)   c = Join(a, Q[s], b, Q[t], 0), *L = a, *R = b; else if (v < -eps) c = Join(a, Q[s], b, Q[t], 1), *L = c, *R = c;
115
116
             else *L = a, *R = b;
} else if (n > 3) {
               else if (n > 3) {
   int split = (s + t) / 2;
   Divide(s, split, &ll, &lr); Divide(split + 1, t, &rl, &rr);
   Merge(lr, Q[split], rl, Q[split + 1], &tangent);
   if (Di(tangent) == Q[s]) ll = tangent;
   if (Dt(tangent) == Q[t]) rr = tangent;
   if (Dt(tangent) == Q[t])
119
120
121
126
127
          void Make_Graph() {
            edge *start, *e; point *u, *v;
for (int i = 0; i < n; i++) {
128
129
130
               start = e = (u = &p[i]) ->in;
131
                do{ v = Other(e, u);
132
133
               if (u < v) E[M++] \cdot u = (u - p, v - p, dis(u, v)); // M < aix * maxn} while ((e = Next(e, u)) != start);
134
135
136
          int b[maxn];
          int Find(int x) { while (x != b[x]) \{ b[x] = b[b[x]]; x = b[x]; \} return x; }
         void Kruskal() {
            memset(b, 0, sizeof(b)); sort(E, E + M);
for (int i = 0; i < n; i++) b[i] = i;</pre>
             for (int i = 0, kk = 0; i < M && kk < n - 1; i++) {
                int m1 = Find(E[i].u), m2 = Find(E[i].v);
142
143
               if (m1 != m2) b[m1] = m2, MST[kk++] = E[i];
144
145
        }
void solve() {
    scanf("%d", &n);
    for (int i = 0; i < n; i++) scanf("%lf%lf", &p[i].x, &p[i].y), p[i].index = i, p[i].in = NULL;
    Alloc_memory(); sort(p, p + n);
    for (int i = 0; i < n; i++) Q[i] = p + i;
    edge *L, *R; Divide(0, n - 1, &L, &R);
}
146
147
148
149
            M = 0; Make_Graph(); Kruskal();
          int main() { solve(); return 0; }
```

1.10 三维计算几何基本操作

```
struct point { double x, y, z; // something omitted
  friend point det(const point &a, const point &b) {
    return point(a.y * b.z - a.z * b.y, a.z * b.x - a.x * b.z, a.x * b.y - a.y * b.x);
            friend double mix(const point &a, const point &b, const point &c) {
              return a.x * b.y * c.z + a.y * b.z * c.x + a.z * b.x * c.y - a.z * b.y * c.x - a.x * b.z * c.y - a.y
                         * b.x * c.z;
           double distLP(const point &p1, const point &p2) const {
  return det(p2 - p1, *this - p1).len() / (p2 - p1).len();
10
11
12
13
            double distFP(const point &p1, const point &p2, const point &p3) const {
           point n = det(p2 - p1, p3 - p1); return fabs( dot(n, *this - p1) / n.len() );
14
        double distLL(const point &p1, const point &p2, const point &q1, const point &q2) {
   point p = q1 - p1, u = p2 - p1, v = q2 - q1;
   double d = u.norm() * v.norm() - dot(u, v) * dot(u, v);
15
            if (sign(d) == 0) return p1.distLP(q1, q2);
            double s = (dot(p, u) * v.norm() - dot(p, v) * dot(u, v)) / d;
            return (p1 + u * s).distLP(q1, q2);
         double distSS(const point &p1, const point &p2, const point &q1, const point &q2) {
          louble distSS(const point &pl, const point &p2, const point &q1, const point p = q1 - p1, u = p2 - p1, v = q2 - q1; double d = u.norm() * v.norm() - dot(u, v) * dot(u, v); if (sign(d) == 0) return min( min((p1 - q1).len(), (p1 - q2).len()); min((p2 - q1).len(), (p2 - q2).len())); double s1 = (dot(p, u) * v.norm() - dot(p, v) * dot(u, v)) / d; double s2 = (dot(p, v) * u.norm() - dot(p, u) * dot(u, v)) / d; if (s1 < 0.0) s1 = 0.0; if (s1 > 1.0) s1 = 1.0; if (s2 < 0.0) s2 = 0.0; if (s2 > 1.0) s2 = 1.0; point r1 = p1 + u * s1 : point r2 = q1 + v * s2;
30
31
            point r1 = p1 + u * s1; point r2 = q1 + v * s2;
            return (r1 - r2).len();
33
34
        bool isFL(const point &p, const point &o, const point &q1, const point &q2, point &res) { double a = dot(o, q2 - p), b = dot(o, q1 - p), d = a - b;
```

Shanghai Jiao Tong University 6 Call It Magic

```
36 | if (sign(d) == 0) return false;
37 | res = (q1 * a - q2 * b) / d;
38 | return true;
39 | bool isFF(const point &p1, const point &o1, const point &p2, const point &o2, point &a, point &b) {
40 | point e = det(o1, o2), v = det(o1, e);
41 | double d = dot(o2, v); if (sign(d) == 0) return false;
42 | point q = p1 + v * (dot(o2, p2 - p1) / d);
43 | point q = p1 + v * (dot(o2, p2 - p1) / d);
44 | a = q; b = q + e;
45 | return true;
46 | }
```

1.11 凸多面体切割

```
vector<vector<point> > convexCut(const vector<vector<point> > &pss, const point &p, const point &o) {
 \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}
        vector<vector<point> > res;
        vector<point> sec:
        for (unsigned itr = 0, size = pss.size(); itr < size; ++itr) {
          const vector < point > &ps = pss[itr];
          int n = ps.size();
           vector < point > qs;
           bool dif = false;
          for (int i = 0; i < n; ++i) {
  int d1 = sign( dot(o, ps[i] - p) );
  int d2 = sign( dot(o, ps[(i + 1) % n] - p) );</pre>
 9
10
11
12
13
14
15
16
17
             if (d1 <= 0) qs.push_back(ps[i]);
if (d1 * d2 < 0) {
               point q;
isFL(p, o, ps[i], ps[(i + 1) % n], q); // must return true
               qs.push_back(q);
sec.push_back(q);
18
             if (d1 == 0) sec.push_back(ps[i]);
19
             else dif = true;
             dif |= dot(o, det(ps[(i + 1) % n] - ps[i], ps[(i + 2) % n] - ps[i])) < -EPS;
\overline{21}
22
23
24
25
26
27
28
29
           if (!qs.empty() && dif)
             res.insert(res.end(), qs.begin(), qs.end());
       if (!sec.empty()) {
  vector<point> tmp( convexHull2D(sec, o) );
          res.insert(res.end(), tmp.begin(), tmp.end());
30
       return res;
31
32
33
      vector<vector<point> > initConvex() {
       35
36
37
38
39
40
41
42
43
        return pss:
```

1.12 三维凸包

不能有重点

```
stamp = 0; for (int v = 3; v < n; ++v) {
                   vector<Facet> tmp; ++stamp;
for (unsigned i = 0; i < facet.size(); i++) {</pre>
19
                       a = facet[i].a; b = facet[i].b; c = facet[i].c;
                       20
\frac{21}{22}
23
24
25
26
                  else tmp.pusn_back(lacetij/, } facet = tmp; for (unsigned i = 0; i < tmp.size(); i++) {
    a = facet[i].a; b = facet[i].b; c = facet[i].c;
    if (mark[a][b] == stamp) facet.push_back(Facet(b, a, v));
    if (mark[b][c] == stamp) facet.push_back(Facet(c, b, v));
    if (mark[c][a] == stamp) facet.push_back(Facet(a, c, v));
28
29
30
31
               } return facet;
32
            #undef volume
33
34
35
36
37
         namespace Gravity {
  using ConvexHull3D::Facet;
            point findG(point ps[], const vector<Facet> &facet) {
  double ws = 0; point res(0.0, 0.0, 0.0), o = ps[ facet[0].a ];
  for (int i = 0, size = facet.size(); i < size; ++i) {</pre>
39
                   const point &a = ps[ facet[i].a ], &b = ps[ facet[i].b ], &c = ps[ facet[i].c ];
point p = (a + b + c + o) * 0.25; double w = mix(a - o, b - o, c - o);
40
41
                    ws += w; res = res + p * w;
               } res = res / ws;
43
44
45
               return res;
```

1.13 长方体表面点距离

```
int r;
void turn(int i, int j, int x, int y, int z, int x0, int y0, int L, int W, int H) {
    if (z == 0) r = min(r, x * x + y * y);
    else {
        if (i >= 0 && i < 2) turn(i + 1, j, x0 + L + z, y, x0 + L - x, x0 + L, y0, H, W, L);
        if (j >= 0 && j < 2) turn(i, j + 1, x, y0 + W + z, y0 + W - y, x0, y0 + W, L, H, W);
        if (i <= 0 && i >-2) turn(i - 1, j, x0 - z, y, x - x0, x0 - H, y0, H, W, L);
        if (j <= 0 && j >-2) turn(i, j - 1, x, y0 - z, y - y0, x0, y0 - H, L, H, W);
    }
}

int calc(int L, int H, int W, int x1, int y1, int z1, int x2, int y2, int z2) {
    if (z1 != 0 && z1 != H)
    if (y1 == 0 || y1 == W) swap(y1, z1), swap(y2, z2), swap(W, H);
    if (z1 == H) z1 = 0, z2 = H - z2;
    r = INF; turn(0, 0, x2 - x1, y2 - y1, z2, -x1, -y1, L, W, H);
    return r;
}
```

1.14 最小覆盖球

```
namespace MinBall {
       int outCnt:
       point out[4], res;
       double radius;
       void ball() {
         static point q[3];
         static double m[3][3], sol[3], L[3], det;
         int i, j;
res = point(0.0, 0.0, 0.0);
         switch (outCnt) {
\frac{12}{13}
          case 1:
            res = out[0];
14
15
            break;
          case 2:
            res = (out[0] + out[1]) * 0.5;
17
            radius = (res - out[0]).norm();
            break:
          case 3:
           ase 3:

q[0] = out[1] - out[0];

q[1] = out[2] - out[0];

for (i = 0; i < 2; ++i)

for (j = 0; j < 2; ++j)

m[i][j] = dot(q[i], q[j]) * 2.0;
20
\frac{21}{22}
23
^{24}
```

Shanghai Jiao Tong University 7 Call It Magic

```
for (i = 0; i < 2; ++i) sol[i] = dot(q[i], q[i]); det = m[0][0] * m[1][1] - m[0][1] * m[1][0];
\frac{28}{29}
                  if (sign(det) == 0)
                      return;
                 reuin,

L[0] = (sol[0] * m[1][1] - sol[1] * m[0][1]) / det;

L[1] = (sol[1] * m[0][0] - sol[0] * m[1][0]) / det;

res = out[0] + q[0] * L[0] + q[1] * L[1];

radius = (res - out[0]).norm();
\frac{30}{31}
32
33
34
35
                 q[0] = out[1] - out[0];
q[1] = out[2] - out[0];
q[2] = out[3] - out[0];
38
39
                  for (i = 0; i < 3; ++i)
                 for (1 = 0; 1 < 3; ++1)
  for (j = 0; j < 3; ++j)
    m[i][j] = dot(q[i], q[j]) * 2;
  for (i = 0; i < 3; ++i)
    sol[i] = dot(q[i], q[i]);
  det = m[0][0] * m[i][i] * m[i][0] - m[0][1] * m[1][2] * m[2][0]
    + m[0][2] * m[2][i] * m[i][0] - m[0][2] * m[i][i] * m[2][0]
    - m[0][i] * m[i][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1];
    det = m[0][0] * m[1][0] * m[2][0] - m[0][0] * m[1][1] * m[2][0]</pre>
40
^{41}_{42}
43
44
45
46
47
                  if (sign(det) == 0)
48
                     return;
                  for (j = 0; j < 3; ++j) {
  for (i = 0; i < 3; ++i)
49
                      m[i][j] = sol[i];
L[j] = (m[0][0] * m[1][1] * m[2][2] + m[0][1] * m[1][2] * m[2][0]
\frac{51}{52}
                              + m[0][2] * m[2][1] * m[1][0] - m[0][2] * m[1][1] * m[2][0]
- m[0][1] * m[1][0] * m[2][2] - m[0][0] * m[1][2] * m[2][1])
53
54
55
56
57
58
59
60
                      / det;
for (i = 0; i < 3; ++i)
                          m[i][j] = dot(q[i], q[j]) * 2;
                 res = out[0];
for (i = 0; i < 3; ++i)
res += q[i] * L[i];
radius = (res - out[0]).norm();
61
62
63
64
65
          void minball(int n, point pt[]) {
              if (outCnt < 4)
                 for (int i = 0; i < n; ++i)
if ((res - pt[i]).norm() > +radius + EPS) {
69
70
71
72
73
74
75
76
77
78
79
                          out[outCnt] = pt[i];
                          minball(i, pt);
                          --outCnt;
if (i > 0) {
                             point Tt = pt[i];
memmove(&pt[1], &pt[0], sizeof(point) * i);
                             pt[0] = Tt;
80
82
          pair<point, double> main(int npoint, point pt[]) { // 0-based
83
\begin{array}{c} 84 \\ 85 \\ 86 \\ 87 \\ 88 \end{array}
              random_shuffle(pt, pt + npoint);
             radius = -1;
for (int i = 0; i < npoint; i++) {
   if ((res - pt[i]).norm() > EPS + radius) {
    outOnt = 1;
                      out[0] = pt[i];
                     minball(i, pt);
91
92
93
              return make_pair(res, sqrt(radius));
94
```

1.15 三维向量操作矩阵

• 绕单位向量 $u = (u_x, u_y, u_z)$ 右手方向旋转 θ 度的矩阵:

$$\begin{bmatrix} \cos\theta + u_x^2(1 - \cos\theta) & u_x u_y(1 - \cos\theta) - u_z \sin\theta & u_x u_z(1 - \cos\theta) + u_y \sin\theta \\ u_y u_x(1 - \cos\theta) + u_z \sin\theta & \cos\theta + u_y^2(1 - \cos\theta) & u_y u_z(1 - \cos\theta) - u_x \sin\theta \\ u_z u_x(1 - \cos\theta) - u_y \sin\theta & u_z u_y(1 - \cos\theta) + u_x \sin\theta & \cos\theta + u_z^2(1 - \cos\theta) \end{bmatrix}$$

$$= \cos \theta I + \sin \theta \begin{bmatrix} 0 & -u_z & u_y \\ u_z & 0 & -u_x \\ -u_y & u_x & 0 \end{bmatrix} + (1 - \cos \theta) \begin{bmatrix} u_x^2 & u_x u_y & u_x u_z \\ u_y u_x & u_y^2 & u_y u_z \\ u_z u_x & u_z u_y & u_z^2 \end{bmatrix}$$

- 点 a 绕单位向量 $u=(u_x,u_y,u_z)$ 右手方向旋转 θ 度的对应点为 $a'=a\cos\theta+(u\times a)\sin\theta+(u\otimes u)a(1-\cos\theta)$
- 关于向量 v 作对称变换的矩阵 $H = I 2\frac{vv^T}{-T}$
- 点 a 对称点: $a' = a 2 \frac{v^T a}{v^T v} \cdot v$

1.16 立体角

对于任意一个四面体 OABC, 从 O 点观察 $\triangle ABC$ 的立体角 $\tan \frac{\Omega}{2} = \frac{\min(\vec{a}, \vec{b}, \vec{c})}{|a||b||c|+(\vec{a}\cdot\vec{c})|b|+(\vec{b}\cdot\vec{c})|a|}$.

2 数据结构

2.1 动态凸包 (只支持插入)

2.2 Rope 用法

2.3 Treap

```
struct node { int key, prio, size; node *ch[2]; } base[MAXN], *top, *root, *null, nil;
typedef node *tree;
tree newNode(int key) {
    static int seed = 3312;
    top->key = key; top->prio = seed = int(seed * 48271LL % 2147483647);
    top->size = 1; top->ch[0] = top->ch[1] = null; return top++;
}
void Rotate(tree &x, int d) {
    tree y = x->ch[id]; x->ch[id] = y->ch[d]; y->ch[d] = x; y->size = x->size;
    x->size = x->ch[0]->size + 1 + x->ch[1]->size; x = y;
```

Shanghai Jiao Tong University 8 Call It Magic

2.4 可持久化 Treap

```
inline bool randomBySize(int a, int b) {
       static long long seed = 1;
return (seed = seed * 48271 % 2147483647) * (a + b) < 2147483647LL * a;
 3
     tree merge(tree x, tree y) {
       if (x == null) return y; if (y == null) return x;
tree t = NULL:
       if (randomBySize(x->size, y->size)) t = newNode(x), t->r = merge(x->r, y);
else t = newNode(y), t->l = merge(x, y->l);
       update(t); return t;
10
11
12
     void splitByKey(tree t, int k, tree &1, tree &r) { // [-\infty, k)[k, +infty)
13
       if (t == null) l = r = null;
       else if (t->key < k) 1 = newNode(t), splitByKey(t->r, k, 1->r, r), update(1);
15
                              r = newNode(t), splitByKey(t->1, k, 1, r->1), update(r);
16
17
     void splitBySize(tree t, int k, tree &1, tree &r) { //[1,k)[k,+\infty)
18
       static int s; if (t == null) l = r = null;
19
       else if ((s = t->1->size + 1) < k) l = newNode(t), splitBySize(t->r, k - s, l->r, r), update(1);
20
                                              r = newNode(t), splitBySize(t->1, k, 1, r->1), update(r);
```

2.5 左偏树

```
tree merge(tree a, tree b) {
          if (a == null) return b:
          if (b == null) return a;
 \frac{4}{5} \frac{6}{7} \frac{7}{8}
          if (a->key > b->key) swap(a, b);
          a->rc = merge(a->rc, b);
          if (a\rightarrow lc\rightarrow dist < a\rightarrow rc\rightarrow dist) swap(a\rightarrow lc, a\rightarrow rc);
          a->dist = a->rc->dist + 1;
          return a:
10
11
       void erase(tree t) {
\frac{12}{13}
          tree x = t\rightarrow fa, y = merge(t\rightarrow lc, t\rightarrow rc);
          if (y != null) y \rightarrow fa = x;
^{14}_{15}_{16}_{17}
          if (x == null) root = y;
          for ((x->lc == t ? x->lc : x->rc) = y; x != null; y = x, x = x->fa) {
   if (x->lc->dist < x->rc->dist) swap(x->lc, x->rc);
18
19
             if (x->rc->dist + 1 == x->dist) return;
             x \rightarrow dist = x \rightarrow rc \rightarrow dist + 1;
20
```

2.6 Link-Cut Tree

```
struct node { int rev; node *pre, *ch[2]; } base[MAXN], nil, *null;
typedef node *tree;

#define isRoot(x) (x->pre->ch[0] != x && x->pre->ch[1] != x)

#define isRight(x) (x->pre->ch[1] == x)
inline void MakeRev(tree t) { if (t != null) { t->rev ^= 1; swap(t->ch[0], t->ch[1]); } }
inline void PushDown(tree t) { if (t->rev) { MakeRev(t->ch[0]); MakeRev(t->ch[1]); t->rev = 0; } }
inline void Rotate(tree x) {
```

```
tree y = x->pre; PushDown(y); PushDown(x);
           int d = isRight(x);
           if (!isRoot(y)) y->pre->ch[isRight(y)] = x; x->pre = y->pre;
          if ((y->ch[d] = x->ch[!d]) != null) y->ch[d]->pre = y;
x->ch[!d] = y; y->pre = x; Update(y);
13
\frac{14}{15}
        inline void Splay(tree x) {
         PushDown(x); for (tree y; !isRoot(x); Rotate(x)) {
    y = x->pre; if (!isRoot(y)) Rotate(isRight(x) != isRight(y) ? x : y);
\frac{16}{17}
18
19
        20
22
23
           Update(x);
        inline tree Access(tree t) {
\begin{array}{c} 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \end{array}
          tree last = null; for (; t != null; last = t, t = t->pre) Splay(t),t->ch[1] = last, Update(t);
          return last:
        inline void MakeRoot(tree t) { Access(t); Splay(t); MakeRev(t); }
inline tree FindRoot(tree t) { Access(t); Splay(t); tree last = null;
for (; t != null; last = t, t = t->ch[0]) PushDown(t); Splay(last); return last;
32
33
34
       inline void Join(tree x, tree y) { MakeRoot(y); y->pre = x; }
inline void Cut(tree t) {Access(t); Splay(t); t->ch[0]->pre = null; t->ch[0] = null; Update(t);}
        inline void Cut(tree x, tree y) {
          tree upper = (Access(x), Access(y));
          if (upper == x) { Splay(x); y->pre = null; x->ch[1] = null; Update(x); }
else if (upper == y) { Access(x); Splay(y); x->pre = null; y->ch[1] = null; Update(y); }
else assert(0); // impossible to happen
39
       inline int Query(tree a, tree b) { // query the cost in path a <-> b, lca inclusive
Access(a); tree c = Access(b); // c is lca
int v1 = c->ch[1]->maxCost; Access(a);
int v2 = c->ch[1]->maxCost;
\frac{40}{41}
\frac{42}{43}
44
45
46
47
48
          return max(max(v1, v2), c->cost);
          null = &nil; null->ch[0] = null->ch[1] = null->pre = null; null->rev = 0;
Rep(i, 1, N) { node &n = base[i]; n.rev = 0; n.pre = n.ch[0] = n.ch[1] = null; }
```

2.7 K-D Tree Nearest

```
struct Point { int x, y; };
      struct Rectangle {
       int lx , rx , ly , ry;
void set(const Point &p) { lx = rx = p.x; ly = ry = p.y; }
       void merge(const Point &o) {
          1x = min(1x, o.x); rx = max(rx, o.x); 1y = min(1y, o.y); ry = max(ry, o.y);
       } void merge(const Rectangle &o) {
       lx = min(lx , o.lx); rx = max(rx , o.rx); ly = min(ly , o.ly); ry = max(ry , o.ry);
} LL dist(const Point &p) {
10
         if (p.x < 1x) res += sqr(1x - p.x); else if (p.x > rx) res += sqr(p.x - rx); if (p.y < 1y) res += sqr(1y - p.y); else if (p.y > ry) res += sqr(p.y - ry);
12
13
          return res:
14
15
16
17
     struct Node { int child[2]; Point p; Rectangle rect; };
const int MAX_N = 11111111;
      const LL INF = 100000000;
      int n, m, tot, root; LL result;
      Point a[MAX_N], p; Node tree[MAX_N];
      int build(int s, int t, bool d) {
       int k = ++tot, mid = (s + t) >> 1;
       nth_element(a + s, a + mid , a + t, d ? cmpXY : cmpYX);
       tree[k].p = a[mid]; tree[k].rect.set(a[mid]); tree[k].child[0] = tree[k].child[1] = 0;
       tree[k].child[0] = build(s, mid , d ^ 1), tree[k].rect.merge(tree[tree[k].child[0]].rect);
if (mid + 1 < t)</pre>
         tree[k].child[1] = build(mid + 1, t, d ^ 1), tree[k].rect.merge(tree[tree[k].child[1]].rect);
30
31
      int insert(int root, bool d) {
       if (root == 0) {
\frac{33}{34}
          tree[++tot].p = p; tree[tot].rect.set(p); tree[tot].child[0] = tree[tot].child[1] = 0;
35
        } tree[root].rect.merge(p);
36
        if ((d && cmpXY(p, tree[root].p)) || (!d && cmpYX(p, tree[root].p)))
           tree[root].child[0] = insert(tree[root].child[0], d ^ 1);
        else tree[root].child[1] = insert(tree[root].child[1], d ^ 1);
```

Shanghai Jiao Tong University 9 Call It Magic

```
return root;
40
41
      void query(int k, bool d) {
42
         if (tree[k].rect.dist(p) >= result) return;
43
        cMin(result, dist(tree[k].p, p));
if ((d && cmpXY(p, tree[k].p)) || (!d && cmpYX(p, tree[k].p))) {
44
45
46
47
48
49
           if (tree[k].child[0]) query(tree[k].child[0], d ^ 1);
if (tree[k].child[1]) query(tree[k].child[1], d ^ 1);
         } else {
           if (tree[k].child[1]) query(tree[k].child[1], d ^ 1);
if (tree[k].child[0]) query(tree[k].child[0], d ^ 1);
50
51
5\overline{2}
      void example(int n) {
        root = tot = 0; scan(a); root = build(0, n, 0); // init, a[0...n-1]
53
54
55
56
         scan(p); root = insert(root, 0); // insert
         scan(p); result = INF; ans = query(root, 0); // query
```

2.8 K-D Tree Farthest

输入 n 个点, 对每个询问 px, py, k, 输出 k 远点的编号

```
struct Point { int x, y, id; };
       struct Rectangle {
         int lx, rx, ly, ry;
         void set(const Point &p) { lx = rx = p.x; ly = ry = p.y; }
         void merge(const Rectangle &o) {
 5
6
7
8
9
           1x = min(1x, o.1x); rx = max(rx, o.rx); 1y = min(1y, o.1y); ry = max(ry, o.ry);
        LL dist(const Point &p) { LL res = 0;
           res += max(sqr(rx - p.x), sqr(lx - p.x));
res += max(sqr(ry - p.y), sqr(ly - p.y));
10
           return res:
11
12
      }; struct Node { Point p; Rectangle rect; };
const int MAX_N = 111111;
const LL INF = 1LL << 60;</pre>
13
\frac{16}{17}
      int n, m;
Point a[MAX_N], b[MAX_N];
      Node tree[MAX_N * 3];
18
19
      Point p; // p is the query point pair<LL, int> result[22];
      void build(int k, int s, int t, bool d) {
  int mid = (s + t) >> 1;
23
24
25
26
         nth_element(a + s, a + mid , a + t, d ? cmpX : cmpY);
         tree[k].p = a[mid];
         tree[k].rect.set(a[mid]);
         if (s < mid)
           build(k << 1, s, mid , d ^ 1), tree[k].rect.merge(tree[k << 1]. rect);</pre>
28
         if (mid + 1 < t)
29
           build(k << 1 | 1, mid + 1, t, d ^ 1), tree[k].rect.merge(tree[k << 1 | 1]. rect);
30
31
      void query(int k, int s, int t, bool d, int kth) {
32
        if (tree[k].rect.dist(p) < result[kth].first) return;</pre>
         pair<LL, int> tmp(dist(tree[k].p, p), -tree[k].p.id);
for (int i = 1; i <= kth; i++) if (tmp > result[i]) {
    for (int j = kth + 1; j > i; j--) result[j] = result[j - 1]; result[i] = tmp;
33
\frac{34}{35}
\frac{36}{37}
           break:
38
         int mid = (s + t) >> 1;
         if ((d && cmpX(p, tree[k].p)) || (!d && cmpY(p, tree[k].p))) {
   if (mid + 1 < t) query(k << 1 | 1, mid + 1, t, d ^ 1, kth);
   if (s < mid) query(k << 1, s, mid , d ^ 1, kth);</pre>
39
40
41
42
43
                                   query(k << 1, s, mid , d ^ 1, kth);
           if (mid + 1 < t) query(k << 1 | 1, mid + 1, t, d ^ 1, kth);
44
\frac{45}{46}
47
      void example(int n) {
48
         scan(a); build(1, 0, n, 0); // init, a[0...n-1]
         scan(p, k); // query
Rep(j, 1, k) result[j].first = -1;
49
50
         query(1, 0, n, 0, k); ans = -result[k].second + 1;
51
52
```

2.9 树链剖分

```
int N, fa[MAXN], dep[MAXN], que[MAXN], size[MAXN], own[MAXN];
int LCA(int x, int y) { if (x == y) return x;
    for (;; x = fa[own[x]]) {
        if (dep[x] < dep[y]) swap(x, y); if (own[x] == own[y]) return y;
        if (dep[own[x]] < dep[own[y]]) swap(x, y);
    } return -1;
}

void Decomposion() {
    static int path[MAXN]; int x, y, a, next, head = 0, tail = 0, cnt; // BFS omitted
    for (int i = 1; i <= N; ++i) if (own[a = que[i]] == -1)
    for (x = a, cnt = 0;; x = next) { next = -1; own[x] = a; path[++cnt] = x;
        for (edge e(fir[x]); e; e = e->next) if ((y = e->to) != fa[x])
        if (next == -1) { tree[a].init(cnt, path); break; }
}
```

3 字符串相关

3.1 Manacher

3.2 KMP

 $next[i] = \max\{len|A[0...len-1] = A$ 的第 i 位向前或后的长度为 len 的串} $ext[i] = \max\{len|A[0...len-1] = B$ 的第 i 位向前或后的长度为 len 的串}

3.3 后缀自动机

```
struct node { int len; node *fa, *go[26]; } base[MAXNODE], *top = base, *root, *que[MAXNODE];
typedef node *tree;
inline tree newNode(int len) {
    top->len = len; top->fa = NULL; memset(top->go, 0, sizeof(top->go)); return top++;
} inline tree newNode(int len, tree fa, tree *go) {
    top->len = len; top->fa = fa; memcpy(top->go, go, sizeof(top->go)); return top++;
} void construct(char *A, int N) {
    tree p = root = newNode(0), q, up, fa;
    for (int i = 0; i < N; ++i) {
        int w = A[i] - 'a'; up = p; p = newNode(i + 1);
        for (; up && !up->go[w]; up = up->fa) up->go[w] = p;
        if (!up) p->fa = root;
    else { q = up->go[w];
```

Shanghai Jiao Tong University 10 Call It Magic

```
if (up->len + 1 == q->len) p->fa = q;
else { fa = newNode(up->len + 1, q->fa, q->go);
    for (p->fa = q->fa = fa; up && up->go[w] == q; up = up->fa) up->go[w] = fa;
}
}
}
static int cnt[MAXLEN]; memset(cnt, 0, sizeof(int) * (N + 1));
for (tree i(base); i != top; ++i) ++cnt[i->len];
Rep(i, 1, N) cnt[i] += cnt[i - 1];
for (tree i(base); i != top; ++i) Q[ cnt[i->len]-- ] = i;
}
```

3.4 后缀数组

```
待排序的字符串放在 r[0\dots n-1] 中, 最大值小于 m. r[0\dots n-2]>0, r[n-1]=0. 结果放在 sa[0\dots n-1].
```

```
namespace SuffixArrayDoubling {
  int wa[MAXN], wb[MAXN], wv[MAXN], ws[MAXN];
                                              int cmp(int *r, int a, int b, int l) { return r[a] == r[b] && r[a + 1] == r[b + 1]; } void da(int *r, int *sa, int n, int m) {//the last char must be '$' int i, j, p, *x = wa, *y = wb, *t; for (i = 0; i < m; i++) ws[i] = 0; for (i = 0; i < n; i++) ws[x[i] = r[i]]++;
       ^{3}_{4}_{5}_{6}
       8
                                                           for (i = 1; i < m; i++) ws[i] += ws[i - 1];
for (i = n - 1; i >= 0; i--) sa[--ws[x[i]]] = i;
                                                          for (i = n - 1; 1 >= 0; 1--) sa(--ws[x[1]]) = 1;
for (j = 1, p = 1; p < n; j *= 2, m = p) {
  for (p = 0, i = n - j; i < n; i++) y[p++] = i;
  for (i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa[i] - j;
  for (i = 0; i < n; i++) wv[i] = x[y[i]];
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m; i++) ws[i] = 0;
  for (i = 0; i < m
 11
 12
13
 14 \\ 15 \\ 16 \\ 17 \\ 18
                                                                        for (i = 0; i < m; i++) ws[ij = 0;
for (i = 0; i < n; i++) ws[wiv[i]]++;
for (i = 1; i < m; i++) ws[i] += ws[i - 1];
for (i = n - 1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
for (t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i++)
    x[sa[i]] = cmp(y, sa[i - 1], sa[i], j) ? p - 1 : p++;</pre>
 19
 20
                           \overline{21}
 22
^{25}_{26}
```

3.5 环串最小表示

```
int minimalRepresentation(int N, char *s) { // s must be double-sized and O-based
int i, j, k, l; for (i = 0; i < N; ++i) s[i + N] = s[i]; s[N + N] = 0;
for (i = 0, j = 1; j < N; ) {
    for (k = 0; k < N && s[i + k] == s[j + k]; ++k);
    if (k >= N) break; if (s[i + k] < s[j + k]) j += k + 1;
    else l = i + k, i = j, j = max(l, j) + 1;
} return i; // [i, i + N) is the minimal representation
}</pre>
```

4 图论

4.1 带花树

```
namespace Blossom {
  int n, head, tail, S, T, lca;
  int natch[MAXN], Q[MAXN], pred[MAXN], inq[MAXN], inb[MAXN];
  vector<int> link[MAXN];
  inline void push(int x) { Q[tail++] = x; inq[x] = true; }
  int findCommonAncestor(int x, int y) {
    static bool inPath[MAXN]; for (int i = 0; i < n; ++i) inPath[i] = 0;
    for (; ; x = pred[ match[x] ]) { x = label[x]; inPath[x] = true; if (x == S) break; }
  for (; ; y = pred[ match[y] ]) { y = label[y]; if (inPath[y]) break; } return y;
  }
  void resetTrace(int x, int lca) {</pre>
```

```
while (label[x] != lca) { int y = match[x]; inb[ label[x] ] = inb[ label[y] ] = true;
  x = pred[y]; if (label[x] != lca) pred[x] = y; }}
          void blossomContract(int x, int y) {
            lca = findCommonAncestor(x, y);
            | Toru(i, 0, n) inb[i] = 0; resetTrace(x, lca); resetTrace(y, lca); if (label[x] != lca) pred[x] = y; if (label[y] != lca) pred[y] = x; Foru(i, 0, n) if (inb[ label[i] ]) { label[i] = lca; if (!inq[i]) push(i); }
16
17
18
19
        \frac{20}{21}
                  for (x = y; x >= 0; x = z) {
y = pred[x], z = match[y]; match[x] = y, match[y] = x;
} return true; }} return false;
30
31
32
          int findMaxMatching() {
33
34
35
36
37
38
            int ans = 0; Foru(i, 0, n) match[i] = -1; for (S = 0; S < n; ++S) if (match[S] == -1) if (findAugmentingPath()) ++ans;
            return ans:
```

4.2 最大流

```
namespace Maxflow {
           int h[MAXNODE], vh[MAXNODE], S, T, Ncnt; edge cur[MAXNODE], pe[MAXNODE];
void init(int _S, int _T, int _Ncnt) { S = _S; T = _T; Ncnt = _Ncnt; }
int maxflow() {
              nt maxIOW() {
    static int Q[MAXNODE]; int x, y, augc, flow = 0, head = 0, tail = 0; edge e;
    Rep(i, 0, Ncnt) cur[i] = fir[i]; Rep(i, 0, Ncnt) h[i] = INF; Rep(i, 0, Ncnt) vh[i] = 0;
    for (Q[++tail] = T, h[T] = 0; head < tail; ) {
        x = Q[++head]; ++vh[ h[x] ];
    }
</pre>
                   for (e = fir[x]; e; e = e->next) if (e->op->c)
10
                      if (h[y = e->to] >= INF) h[y] = h[x] + 1, Q[++tail] = y;
11
               } for (x = S; h[S] < Ncnt; ) {
12
                   for (e = cur[x]; e; e = e->next) if (e->c)
13
                      if (h[y = e^->to] + 1 == h[x]) \{ cur[x] = pe[y] = e; x = y; break; \}
14
15
16
17
18
                      if (-vh[ h[x] ] == 0) break; h[x] = Ncnt; cur[x] = NULL;
for (e = fir[x]; e; e = e->next) if (e->c)
    if (_cMin( h[x], h[e->to] + 1  ) ) cur[x] = e;
                       ++vh[h[x]];
                   ++vn[ n[x] ];
if (x! = S) x = pe[x]->op->to;
} else if (x == T) { augc = INF;
for (x = T; x! = S; x = pe[x]->op->to) cMin(augc, pe[x]->c);
for (x = T; x! = S; x = pe[x]->op->to) {
19
                          pe[x]->c -= augc; pe[x]->op->c += augc;
\frac{24}{24}
                      } flow += augc;
25
26
27
28
               } return flow;
```

4.3 KM

Shanghai Jiao Tong University 11 Call It Magic

18 | }

4.4 2-SAT 与 Kosaraju

注意 Kosaraju 需要建反图

```
namespace SCC {
         int code[MAXN * 2], seq[MAXN * 2], sCnt;
void DFS_1(int x) { code[x] = 1;
 2
3
            for (edge e(fir[x]); e; e = e->next) if (code[e->to] == -1) DFS_1(e->to);
 \frac{4}{5} \frac{6}{7}
            seq[++sCnt] = x;
         } void DFS_2(int x) { code[x] = sCnt;
            for (edge e(fir2[x]); e; e = e->next) if (code[e->to] == -1) DFS_2(e->to); }
 8
          void SCC(int N) {
            sCnt = 0; for (int i = 1; i <= N; ++i) code[i] = -1;
            for (int i = 1; i <= N; ++i) if (code[i] =-1) DFS_1(i);

sCnt = 0; for (int i = 1; i <= N; ++i) code[i] = -1;

for (int i = N; i >= 1; --i) if (code[seq[i]] == -1) {
10
^{11}_{12}
13
               ++sCnt; DFS_2(seq[i]); }
14
^{15}_{16}
                        - 2i - 1
- 2i
      }//
              false
      // Jusset

bool TwoSat() { SCC::SCC(N + N);

// if code[2i - 1] = code[2i]: no solution

// if code[2i - 1] > code[2i]: i selected. else i not selected
17
18
19
```

4.5 全局最小割 Stoer-Wagner

```
int minCut(int N, int G[MAXN][MAXN]) { // O-based
           static int weight[MAXN], used[MAXN]; int ans = INT_MAX;
 \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array}
           while (N > 1) {
             for (int i = 0; i < N; ++i) used[i] = false; used[0] = true;
for (int i = 0; i < N; ++i) weight[i] = G[i][0];</pre>
               int S = -1, T = 0;
               for (int _r = 2; _r <= N; ++_r) { // N - 1 selections
                 int i = 0; i < N; ++i) if (!used[i])
if (x == -1 || weight[i] > weight[x]) x = i;
for (int i = 0; i < N; ++i) weight[i] += G[x][i];
S = T; T = x; used[x] = true;</pre>
 9
10
11
12
13
14
15
16
              } ans = min(ans, weight[T]);
for (int i = 0; i < N; ++i) G[i][S] += G[i][T], G[S][i] += G[i][T];</pre>
              G[S][S] = 0; --N;
              for (int i = 0; i <= N; ++i) swap(G[i][T], G[i][N]);
for (int i = 0; i < N; ++i) swap(G[T][i], G[N][i]);
17
18
           } return ans;
```

4.6 欧拉路

4.7 最大团搜索

```
namespace MaxClique { // 1-based
           int g[MAXN][MAXN], len[MAXN], list[MAXN], mc[MAXN], ans, found;
              if (len[size] == 0) { if (size > ans) ans = size, found = true; return; }
             ir (len[size] == 0) { ir (size > ans) ans = size, found = true; return; }
for (int k = 0; k < len[size] &k !found; ++k) {
  if (size + len[size] - k <= ans) break;
  int i = list[size][k]; if (size + mc[i] <= ans) break;
  for (int j = k + 1, len[size + 1] = 0; j < len[size]; ++j) if (g[i][list[size][j]])
  list[size + 1][len[size + 1]++] = list[size][j];</pre>
10
                 DFS(size + 1):
11
\overline{12}
13
14
          int work(int n) {
             mc[n] = ans = 1; for (int i = n - 1; i; --i) { found = false; len[1] = 0;
15
                 for (int j = i + 1; j \le n; ++j) if (g[i][j]) list[1][len[1]++] = j;
16
17
             } return ans;
18
19
```

4.8 最小树形图

```
namespace EdmondsAlgorithm { // O(ElogE + V^2) !!! O-based !!!
             struct enode { int from, c, key, delta, dep; enode *ch[2], *next;
} ebase[maxm], *etop, *fir[maxn], nil, *null, *inEdge[maxn], *chs[maxn];
            typedef enode *edge; typedef enode *tree;
int n, m, setFa[maxn], deg[maxn], que[maxn];
inline void pushDown(tree x) { if (x->delta) {
   x->ch[0]->key += x->delta; x->ch[0]->delta += x->delta;
                x->ch[1]->key += x->delta; x->ch[1]->delta += x->delta; x->delta = 0;
            ff
tree merge(tree x, tree y) {
   if (x == null) return y; if (y == null) return x;
   if (x->key > y->key) swap(x, y); pushDown(x); x->ch[1] = merge(x->ch[1], y);
   if (x->ch[0]->dep < x->ch[1]->dep) swap(x->ch[0], x->ch[1]);
   x->dep = x->ch[1]->dep + 1; return x;
10
13
14
15
             void addEdge(int u, int v, int w) {
  etop->from = u; etop->c = etop->key = w; etop->delta = etop->dep = 0;
  etop->next = fir[v]; etop->ch[0] = etop->ch[1] = null;
  fir[v] = etop; inEdge[v] = merge(inEdge[v], etop++);
\frac{16}{17}
18
19
20
21
22
23
            yoid deleteMin(tree &r) { pushDown(r); r = merge(r->ch[0], r->ch[1]); }
int findSet(int x) { return setFa[x] == x ? x : setFa[x] = findSet(setFa[x]); }
             void clear(int V, int E) {
                null = &nil; null -> ch[0] = null -> ch[1] = null; null -> dep = -1;
25
26
27
28
                n = V; m = É; etop = ebase; Foru(i, 0, V) fir[i] = NULL; Foru(i, 0, V) inEdge[i] = null;
             int solve(int root) { int res = 0, head, tail;
  for (int i = 0; i < n; ++i) setFa[i] = i;</pre>
                for (int i = 0; i < n; ++i) setra[i] = 1;
for (; ;) { memset(deg, 0, sizeof(int) * n); chs[root] = inEdge[root];
for (int i = 0; i < n; ++i) if (i != root && setFa[i] == i) {
   while (findSet(inEdge[i]->from) == findSet(i)) deleteMin(inEdge[i]);
   ++deg[ findSet((chs[i] = inEdge[i])->from) ];
29
30
31
32
33
34
35
36
                    for (int i = head = tail = 0; i < n; ++i)
    if (i != root && setFa[i] == i && deg[i] == 0) que[tail++] = i;
while (head < tail) {
37
38
                        int x = findSet(chs[que[head++]]->from);
                        if (--deg[x] == 0) que[tail++] = x;
39
                    } bool found = false;
40
                     for (int i = 0; i < n; ++i) if (i != root && setFa[i] == i && deg[i] > 0) {
                        int j = i; tree temp = null; found = true; do {setFa[j = findSet(chs[j]->from)] = i;
\frac{1}{42}
^{43}_{44}
                           deleteMin(inEdge[j]); res += chs[j]->key;
inEdge[j]->key -= chs[j]->key; inEdge[j]->delta -= chs[j]->key;
45
                       temp = merge(temp, inEdge[j]);
} while (j != i); inEdge[i] = temp;
46
47
48
                } if (!found) break;
} for (int i = 0; i < n; ++ i) if (i != root && setFa[i] == i) res += chs[i]->key;
49
                return res:
50
51
52
         inamespace ChuLiu { // O(V ^ 3) !!! 1-based !!!
int n, used[maxn], pass[maxn], eg[maxn], more, que[maxn], g[maxn][maxn];
void combine(int id, int &sum) { int tot = 0, from, i, j, k;
for (; id != 0 && !pass[id]; id = eg[id]) que[tot++] = id, pass[id] = 1;
for (from = 0; from < tot && que[from] != id; from++);</pre>
                 if (from == tot) return; more = 1;
                 for (i = from; i < tot; i++) {
                    sum += g[eg[que[i]]][que[i]]; if (i == from) continue;
                    for (j = used[que[i]] = 1; j <= n; j++) if (!used[j])
```

Shanghai Jiao Tong University 12 Call It Magic

```
if (g[que[i]][j] < g[id][j]) g[id][j] = g[que[i]][j];</pre>
\frac{62}{63}
                  for (i = 1; i <= n; i++) if (!used[i] && i != id)
                     for (j = from; j < tot; j++) {
  k = que[j]; if (g[i][id] > g[i][k] - g[eg[k]][k])
  g[i][id] = g[i][k] - g[eg[k]][k];
64
65
66
67
68
69
70
71
72
73
74
75
76
             fy
void clear(int V) { n = V; Rep(i, 1, V) Rep(j, 1, V) g[i][j] = inf; }
int solve(int root) {
   int i, j, k, sum = 0; memset(used, 0, sizeof(int) * (n + 1));
   for (more = 1; more; ) {
      more = 0; memset(eg, 0, sizeof(int) * (n + 1));
      for (i = 1; i <= n; i++) if (!used[i] && i != root) {
        for (j = 1, k = 0; j <= n; j++) if (!used[j] && i != j)
            if (k == 0 || g[j][i] < g[k][i]) k = j;
            er[i] = k;</pre>
77
78
79
80
                           eg[i] = k;
                      } memset(pass, 0, sizeof(int) * (n + 1));
                      for (i = 1; i <= n; i++) if (!used[i] && !pass[i] && i != root)
                          combine(i, sum);
                  } for (i = 1; i \le n; i++) if (!used[i] \&\& i != root) sum += g[eg[i]][i];
81
82
                  return sum;
\frac{83}{84}
```

4.9 离线动态最小生成树

 $O(Qlog^2Q)$. (qx[i],qy[i]) 表示将编号为 qx[i] 的边的权值改为 qy[i], 删除一条边相当于将其权值改为 ∞ , 加入一条边相当于将其权值从 ∞ 变成某个值.

```
const int maxn = 100000 + 5:
       const int maxm = 1000000 + 5:
       const int maxq = 1000000 + 5;
       const int qsize = maxm + 3 * maxq;
       int n, m, Q, x[qsize], y[qsize], z[qsize], qx[maxq], qy[maxq], a[maxn], *tz; int kx[maxn], ky[maxn], kt, vd[maxn], id[maxm], app[maxm];
       bool extra[maxm];
       solution:
woid init() {
    scanf("%d%d", &n, &m); for (int i = 0; i < m; i++) scanf("%d%d", x + i, y + i, z + i);
    scanf("%d", &Q); for (int i = 0; i < Q; i++) { scanf("%d%d", qx + i, qy + i); qx[i]--; }</pre>
10
11
12^{-1}
       int find(int x) {
13
14
15
16
         int root = x, next; while (a[root]) root = a[root];
while ((next = a[x]) != 0) a[x] = root, x = next; return root;
       inline bool cmp(const int &a, const int &b) { return tz[a] < tz[b]; }
17
       void solve(int *qx, int *qy, int Q, int n, int *x, int *y, int *z, int m, long long ans) {
18
          int ri, rj;
             for (int i = 1; i <= n; i++) a[i] = 0; z[qx[0]] = qy[0];
20
21
             for (int i = 0; i < m; i++) id[i] = i;
^{22}
             tz = z; sort(id, id + m, cmp);
            for (int i = 0; i < m; i++) {
    ri = find(x[id[i]]); rj = find(y[id[i]]);
    if (ri != rj) ans += z[id[i]], a[ri] = rj;
} printf("%164d\n", ans);</pre>
\frac{23}{24}
25
26
27
          return;
} int tm = kt = 0, n2 = 0, m2 = 0;
          for (int i = 1; i <= n; i++) a[i] = 0; for (int i = 0; i < Q; i++) {
            ri = find(x[qx[i]]); rj = find(y[qx[i]]); if (ri != rj) a[ri] = rj;
32
33
          for (int i = 0; i < m; i++) extra[i] = true;
          for (int i = 0; i < Q; i++) extra[qx[i]] = false;
35
          for (int i = 0; i < m; i++) if (extra[i]) id[tm++] = i;
          tz = z; sort(id, id + tm, cmp);
36
37
          for (int i = 0; i < tm; i++) {
   ri = find(x[id[i]]); rj = find(y[id[i]]);</pre>
38
            if (ri != rj)
   a[ri] = rj, ans += z[id[i]], kx[kt] = x[id[i]], ky[kt] = y[id[i]], kt++;
39
40
41
42
          for (int i = 1; i <= n; i++) a[i] = 0;
         for (int i = 1; i <= n; i++) a[i] = 0;
for (int i = 0; i < kt; i++) a[find(kx[i])] = find(ky[i]);
for (int i = 1; i <= n; i++) if (a[i] == 0) vd[i] = ++n2;
for (int i = 1; i <= n; i++) if (a[i] != 0) vd[i] = vd[find(i)];
int *Nx = x + m, *Ny = y + m, *NZ = z + m;
for (int i = 0; i < m; i++) app[i] = -1;
for (int i = 0; i < m; i++)</pre>
43
44
45
48
            if (app[qx[i]] == -1)
49
          Nx[m2] = vd[x[qx[i]]], Ny[m2] = vd[y[qx[i]]], Nz[m2] = z[qx[i]], app[qx[i]] = m2, m2++; for (int i = 0; i < Q; i++) {
50
51
            z[qx[i]] = qy[i];
```

4.10 弦图

- 任何一个弦图都至少有一个单纯点,不是完全图的弦图至少有两个不相邻的单纯点.
- 弦图最多有 n 个极大团。
- 设 next(v) 表示 N(v) 中最前的点. 令 w* 表示所有满足 $A \in B$ 的 w 中最后的一个点. 判断 $v \cup N(v)$ 是否为极大团, 只需判断是否存在一个 w, 满足 Next(w) = v 且 |N(v)| + 1 < |N(w)| 即可.
- 最小染色: 完美消除序列从后往前依次给每个点染色, 给每个点染上可以染的最小的颜色. (团数 = 色数)
- 最大独立集: 完美消除序列从前往后能选就选,
- 最小团覆盖: 设最大独立集为 $\{p_1, p_2, \dots, p_t\}$, 则 $\{p_1 \cup N(p_1), \dots, p_t \cup N(p_t)\}$ 为最小团覆盖. (最大独立集数 = 最小团覆盖数)

```
class Chordal { // 1-Based, G is the Graph, must be sorted before call Check_Chordal
public: // Construct will sort it automatically
int v[Maxn], id[Maxn]; bool inseq[Maxn]; priority_queue<pair<int, int> > pq;
vector<int> Construct Perfect_Elimination_Sequence(vector<int> *G, int n) { // O(m + nlogn)
vector<int> seq(n + 1, 0);
for (int i = 0.1 for m, thi) inseq[i] = false, sext(C[i] begin()) C[i] end()) v[i] = 0.
                vector(alm) seq(in 1, 0),
for (int i = 0; i <= n; ++i) inseq[i] = false, sort(G[i].begin(), G[i].end()), v[i] = 0;
int cur = n; pair<int, int> Mx; while(!pq.empty()) pq.pop(); pq.push(make_pair(0, 1));
for (int i = n; i >= 1; --i) {
                    while (!pq.empty() && (Mx = pq.top(), inseq[Mx.second] || Mx.first != v[Mx.second])) pq.pop();
                     id[Mx.second] = cur;
int x = seq[cur--] = Mx.second, sz = (int)G[Mx.second].size(); inseq[x] = true;
12
                    for (int j = 0; j < sz; ++j) {
  int y = G[x][j]; if(!inseq[y]) pq.push(make_pair(++v[y], y));</pre>
13
14
15
                } return seq;
16
17
18
             bool Check_Chordal(vector<int> *G, vector<int> &seq, int n) { // O(n + mlogn), plz gen seq first
                bool isChordal = true;
19
                 for (int i = n - 1; i >= 1 && isChordal; --i) {
20
21
22
                    int x = seq[i], sz, y = -1;
if ((sz = (int)G[x].size()) == 0) continue;
                   for(int j = 0; j < sz; ++j) {
   if (id[G[x][j]] < i) continue;
   if (y == -1 | | id[y] > id[G[x][j]]) y = G[x][j];
} if (y == -1) continue;
23
24
25
26
27
28
29
30
                     for (int j = 0; j < sz; ++j) {
  int y1 = G[x][j]; if (id[y1] < i) continue;</pre>
                        if (y1 == y || binary_search(G[y].begin(), G[y].end(), y1)) continue; isChordal = false; break;
31
32
                } return isChordal:
         };
```

Shanghai Jiao Tong University 13 Call It Magic

4.11 小知识

- 平面图: 一定存在一个度小于等于 5 的点. E < 3V 6. 欧拉公式: V + F E = 1 + 连通块数
- 图连通度:
 - 1. k- 连通 (k-connected): 对于任意一对结点都至少存在结点各不相同的 k 条路
 - 2. 点连通度 (vertex connectivity): 把图变成非连通图所需删除的最少点数
 - 3. Whitney 定理: 一个图是 k- 连通的当且仅当它的点连通度至少为 k
- Lindstroem-Gessel-Viennot Lemma: 给定一个图的 n 个起点和 n 个终点, 令 $A_{ij}=$ 第 i 个起点到第 j 个终点的路径条数、则从起点到终点的不相交路径条数为 det(A)
- 欧拉回路与树形图的联系: 对于出度等于入度的连通图 $s(G) = t_i(G) \prod_{i=1}^n (d^+(v_i) 1)!$
- 密度子图: 给定无向图, 选取点集及其导出子图, 最大化 $W_e + P_v$ (点权可负).

-
$$(S, u) = U$$
, $(u, T) = U - 2P_u - D_u$, $(u, v) = (v, u) = W_e$
- $ans = \frac{Un - C[S, T]}{2}$, 解集为 $S - \{s\}$

• 最大权闭合图: 选 a 则 a 的后继必须被选

$$-P_u > 0, (S, u) = P_u, P_u < 0, (u, T) = -P_u$$

- ans = $\sum_{P_u > 0} P_u - C[S, T]$, 解集为 $S - \{s\}$

- 判定边是否属于最小割:
 - 可能属于最小割: (u,v) 不属于同一 SCC
 - 一定在所有最小割中: (u,v) 不属于同一 SCC, 且 S,u 在同一 SCC, u,T 在同一 SCC

5 数学

5.1 单纯形 Cpp

 $\max \{cx | Ax \le b, x \ge 0\}$

```
const int MAXN = 11000, MAXM = 1100;
      // here MAXN is the MAX number of conditions, MAXM is the MAX number of vars
 3
      int avali[MAXM], avacnt:
      double A[MAXN][MAXM];
     double b[MAXN], c[MAXM];
double* simplex(int n, int m) {
      // here n is the number of conditions, m is the number of vars
        int r = n, s = m - 1;
         static double D[MAXN + 2][MAXM + 1];
\frac{12}{13}
         static int ix[MAXN + MAXM];
         for (int i = 0; i < n + m; i++) ix[i] = i;
        for (int i = 0; i < n; i++) {
  for (int j = 0; j < m - 1; j++) D[i][j] = -A[i][j];
  D[i][m - 1] = 1;
  D[i][m] = b[i];
^{14}_{15}
^{16}_{17}
          if (D[r][m] > D[i][m]) r = i;
18
19
20
        for (int j = 0; j < m - 1; j++) D[n][j] = c[j]; D[n + 1][m - 1] = -1; for (double d; ; ) {
^{-21}
22
23
          if (r < n) {
             int t = ix[s]; ix[s] = ix[r + m]; ix[r + m] = t;
             D[r][s] = 1.0 / D[r][s];
             for (int j = 0; j \le m; j++) if (j != s) D[r][j] *= -D[r][s];
27
             avacnt = 0;
for (int i = 0; i <= m; ++i)
28
                if(fabs(D[r][i]) > EPS)
```

5.2 单纯形 Java

```
int[] ix = new int[n + m];
        for (int i = 0; i < n + m; i++) ix[i] = i;
       for (int i = 0; i < n; i++) {
  for (int j = 0; j < m - 1; j++) D[i][j] = -A[i][j];
  D[i][m - 1] = 1; D[i][m] = b[i]; if (D[r][m] > D[i][m]) r = i;
10 \\ 11 \\ 12
       for (int j = 0; j < m - 1; j++) D[n][j] = c[j]; D[n + 1][m - 1] = -1;
        for (double d; ; ) {
          if (r < n) {
            for (int j = 0; j <= m; j++) if (j != s) D[i][j] += D[r][j] * D[i][s];
D[i][s] *= D[r][s];
17
18
19
          \hat{r} = -1; s = -1;
          for (int j = 0; j < m; j++) if (s < 0 || ix[s] > ix[j]) {
   if (D[n + 1][j] > EPS || D[n + 1][j] > -EPS && D[n][j] > EPS) s = j;
          if (s < 0) break;
24
25
26
27
28
29
          for (int i = 0; i < n; i++) if (D[i][s] < -EPS) {
   if (r < 0 || (d = D[r][m] / D[r][s] - D[i][m] / D[i][s]) < -EPS
                   || d < EPS && ix[r + m] > ix[i + m])
30
          if (r < 0) return null; // 非有界
        } if (D[n + 1][m] < -EPS) return null; // 无法执行
        double[] x = new double[m - 1];
        for (int i = m; i < n + m; i++) if (ix[i] < m - 1) x[ix[i]] = D[i - m][m];
       return x; // 值为 D[n][m]
```

5.3 FFT

```
namespace FFT {
    #define mul(a, b) (Complex(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x))
    struct Complex {}; // something omitted
    void FFT(Complex P[], int n, int oper) {
    for (int i = 1, j = 0; i < n - 1; i++) {
        for (int s = n; j ^= s >>= 1, -j & s; );
        if (i < j) swap(P[i], P[j]);
    }
    for (int d = 0; (1 << d) < n; d++) {
        int m = 1 << d, m2 = m * 2;
    }
}</pre>
```

Shanghai Jiao Tong University 14 Call It Magic

```
double p0 = PI / m * oper;
                 Complex unit_p0(cos(p0), sin(p0));
for (int i = 0; i < n; i += m2) {
\frac{12}{13}
\frac{14}{15}
                    Complex unit(1.0, 0.0);
                    for (int j = 0; j < m; j++) {
    Complex &P1 = P[i + j + m], &P2 = P[i + j];
16
17
18
19
20
                       Complex t = mul(unit, P1);
P1 = Complex(P2.x - t.x, P2.y - t.y);
P2 = Complex(P2.x + t.x, P2.y - t.y);
                        unit = mul(unit, unit_p0);
\frac{21}{22}
           1111
           vector<int> dofFT(const vector<int> &a, const vector<int> &b) {
  vector<int> ret(max(0, (int) a.size() + (int) b.size() - 1), 0);
  static Complex A[MAXB], B[MAXB], C[MAXB]
23
24
25
26
              int len = 1; while (len < (int)ret.size()) len *= 2;</pre>
              for (int i = 0; i < len; i++) A[i] = i < (int)a.size() ? a[i] : 0;
              for (int i = 0; i < len; i++) B[i] = i < (int)b.size() ? b[i] : 0;
28
              FFT(A, len, 1); FFT(B, len, 1);
              for (int i = 0; i < len; i++) C[i] = mul(A[i], B[i]); FFT(C, len, -1);
\frac{29}{30}
             for (int i = 0; i < (int)ret.size(); i++)
ret[i] = (int) (C[i].x / len + 0.5);</pre>
31
32
33
34
              return ret;
35
```

5.4 整数 FFT

```
1 | namespace FFT {
 2 | // 替代方案: 23068673(= 11 * 2<sup>21</sup> + 1), 原根为 3
        const int MOD = 786433, PRIMITIVE_ROOT = 10; // 3 * 2^{18} + 1
        const int MAXB = 1 << 20;
        int getMod(int downLimit) { // 或者现场自己找一个 MOD
 5
         for (int c = 3; ; ++c) { int t = (c << 21) | 1; if (t >= downLimit && isPrime(t)) return t;
        int modInv(int a) { return a <= 1 ? a : (long long) (MOD - MOD / a) * modInv(MOD % a) % MOD; }
        void NTT(int P[], int n, int oper) {
10
          for (int i = 1, j = 0; i < n - 1; i++) {
  for (int s = n; j ^= s >>= 1, -j & s;);
  if (i < j) swap(P[i], P[j]);
11
\frac{12}{13}
14 \\ 15 \\ 16 \\ 17
          for (int d = 0; (1 << d) < n; d++) {
   int m = 1 << d, m2 = m * 2;
   long long unit_p0 = powMod(PRIMITIVE_ROOT, (MOD - 1) / m2);
            if (oper < 0) unit_p0 = modInv(unit_p0);
for (int i = 0; i < n; i += m2) {</pre>
18
19
               long long unit = 1;
              22
25
                 unit = unit * unit_p0 % MOD;
26
27
28
29
        }}}}
        vector<int> mul(const vector<int> &a, const vector<int> &b) {
         30
31
32
33
\frac{34}{35}
                i] * inv % MOD;
37
38
```

5.5 扩展欧几里得

```
ax + by = q = qcd(x, y)
```

```
1 void exgcd(LL x, LL y, LL &a0, LL &b0, LL &g) {
2 LL a1 = b0 = 0, b1 = a0 = 1, t;
3 while (y != 0) {
4 t = a0 - x / y * a1, a0 = a1, a1 = t;
5 t = b0 - x / y * b1, b0 = b1, b1 = t;
6 t = x % y, x = y, y = t;
```

```
7 | } if (x < 0) a0 = -a0, b0 = -b0, x = -x;
8 | g = x;
9 | }
```

5.6 线性同余方程

- 中国剩余定理: 设 m_1, m_2, \cdots, m_k 两两互素, 则同余方程组 $x \equiv a_i \pmod{m_i}$ for $i = 1, 2, \cdots, k$ 在 $[0, M = m_1 m_2 \cdots m_k)$ 内有唯一解. 记 $M_i = M/m_i$,找出 p_i 使得 $M_i p_i \equiv 1 \pmod{m_i}$,记 $e_i = M_i p_i$,则 $x \equiv e_1 a_1 + e_2 a_2 + \cdots + e_k a_k \pmod{M}$
- 多变元线性同余方程组: 方程的形式为 $a_1x_1 + a_2x_2 + \cdots + a_nx_n + b \equiv 0 \pmod{m}$, 令 $d = (a_1, a_2, \cdots, a_n, m)$, 有解的充要条件是 dlb, 解的个数为 $m^{n-1}d$

5.7 Miller-Rabin 素性测试

```
bool test(LL n, int base) {
        LL m = n - 1, ret = 0; int s = 0;
for (; m % 2 == 0; ++s) m >>= 1; ret = pow_mod(base, m, n);
         if (ret == 1 || ret == n - 1) return true;
         for (--s; s >= 0; --s) {
          ret = multiply_mod(ret, ret, n); if (ret == n - 1) return true;
        } return false;
      LL special[7] = {
10
                                   25326001LL.
         3215031751LL,
                                   25000000000LL,
        2152302898747LL,
                                   3474749660383LL, 341550071728321LL};
                                                        test[] = \{2\}

test[] = \{2, 3\}

test[] = \{31, 73\}
       * n < 2047
15
       * n < 1,373,653
       * n < 9,080,191
                                                       test[] = {31, 73}

test[] = {2, 3, 5}

test[] = {2, 7, 61}

test[] = {2, 13, 23, 1662803}

test[] = {2, 3, 5, 7, 11}

test[] = {2, 3, 5, 7, 11, 13}

test[] = {2, 3, 5, 7, 11, 13, 17}

test[] = {2, 3, 5, 7, 11, 13, 17, 19, 23}
       * n < 25,326,001
       * n < 4,759,123,141
       * n < 1,122,004,669,633
       * n < 2,152,302,898,747

* n < 3,474,749,660,383

* n < 341,550,071,728,321
       * n < 3,825,123,056,546,413,051
      bool is_prime(LL n) {
  if (n < 2) return false;</pre>
        if (n < 4) return true;
        if (!test(n, 2) || !test(n, 3)) return false;
        if (n < special[0]) return true;
         if (!test(n, 5)) return false;
         if (n < special[1]) return true;
        if (!test(n, 7)) return false;
if (n == special[2]) return false;
        if (n < special[3]) return true;
if (!test(n, 11)) return false;</pre>
        if (n < special[4]) return true
         if (!test(n, 13)) return false;
         if (n < special[5]) return true;
         if (!test(n, 17)) return false;
         if (n < special[6]) return true;
         return test(n, 19) && test(n, 23) && test(n, 29) && test(n, 31) && test(n, 37);
```

5.8 PollardRho

```
LL pollardRho(LL n, LL seed) {
    LL x, y, head = 1, tail = 2; x = y = random() % (n - 1) + 1;
    for (;;) {
        x = addMod(multiplyMod(x, x, n), seed, n);
        if (x == y) return n; LL d = gcd(myAbs(x - y), n);
        if (1 < d && d < n) return d;
        if (i + head == tail) y = x, tail <<= 1;
    }
} vector<LL> divisors;

9 void factorize(LL n) { // 需要保证 n > 1
    if (isPrime(n)) divisors.push_back(n);
    else { LL d = n;
        while (d >= n) d = pollardRho(n, random() % (n - 1) + 1);
    factorize(n / d); factorize(d);
} }
}
```

Shanghai Jiao Tong University 15 Call It Magic

5.9 多项式求根

```
const double error = 1e-12;
         const double infi = 1e+12;
int n; double a[10], x[10];
double f(double a[], int n, double x) {
            double tmp = 1, sum = 0;
for (int i = 0; i \le n; i++) sum = sum + a[i] * tmp, tmp = tmp * x;
            return sum:
         double binary(double 1, double r, double a[], int n) {
  int s1 = sign(f(a, n, 1)), sr = sign(f(a, n, r));
  if (s1 = 0) return r;
10
11
^{12}_{13}
            if (sl * sr > 0) return infi;
             while (r - 1 > error) {
^{14}_{15}
               double mid = (1 + r) / 2;
                int ss = sign(f(a, n, mid));
^{16}_{17}
                if (ss == 0) return mid;
               if (ss * sl > 0) l = mid; else r = mid;
18
            } return 1;
19
        yoid solve(int n, double a[], double x[], int &nx) {
   if (n == 1) { x[1] = -a[0] / a[1]; nx = 1; return; }
   double da[10], dx[10]; int ndx;
   for (int i = n; i >= 1; i--) da[i - 1] = a[i] * i;
   solve(n - 1, da, dx, ndx); nx = 0;
   if (ndx == 0).
20
21
22
23
24
25
26
27
28
            if (ndx == 0) {
               double tmp = binary(-infi, infi, a, n);
            if (tmp < infi) x[++nx] = tmp; return; double tmp = binary(-infi, dx[1], a, n); if (tmp < infi) x[++nx] = tmp;
            for (int i = 1; i <= ndx - 1; i++) {
  tmp = binary(dx[i], dx[i + 1], a, n);
  if (tmp < infi) x[++nx] = tmp;</pre>
30
\frac{31}{32}
33
            } tmp = binary(dx[ndx], infi, a, n);
\frac{34}{35}
            if (tmp < infi) x[++nx] = tmp;
        int main() {
    scanf("%d", &n);
    for (int i = n; i >= 0; i--) scanf("%lf", &a[i]);
\frac{36}{37}
38
39
            int nx; solve(n, a, x, nx);
for (int i = 1; i <= nx; i++) printf("%0.6f\n", x[i]);</pre>
40
            return 0:
```

5.10 线性递推

```
for a_{i+n} = (\sum_{i=0}^{n-1} k_i a_{i+j}) + d, a_m = (\sum_{i=0}^{n-1} c_i a_i) + c_n d
```

```
vector<int> recFormula(int n, int k[], int m) {
         vector < int > c(n + 1, 0);
         if (m < n) c[m] = 1;
         else {
\begin{array}{c} 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{array}
            static int a[MAX_K * 2 + 1];
            vector<int> b = recFormula(n, k, m >> 1);
            for (int i = 0; i < n + n; ++i) a[i] = 0;
           int s = m & 1;
for (int i = 0; i < n; i++) {
  for (int j = 0; j < n; j++) a[i + j + s] += b[i] * b[j];
  c[n] += b[i];
} c[n] = (c[n] + 1) * b[n];</pre>
10
11
12
13
            for (int i = n * 2 - 1; i >= n; i--) {
\frac{14}{15}
              int add = a[i]; if (add == 0) continue;
               for (int j = 0; j < n; j++) a[i - n + j] += k[j] * add;
           c[n] += add;
} for (int i = 0; i < n; ++i) c[i] = a[i];
^{16}_{17}
\frac{18}{19}
```

5.11 原根

原根 g: g 是模 n 简化剩余系构成的乘法群的生成元. 模 n 有原根的充要条件是 $n=2,4,p^n,2p^n$, 其中 p 是奇质数, n 是正整数

```
vector<int> findPrimitiveRoot(int N) {
   if (N <= 4) return vector<int>(1, max(1, N - 1));
```

```
static int factor[100];
         int phi = N, totF = 0;
{ // check no solution and calculate phi
            int M = N, k = 0;
           if (~M & 1) M >>= 1, phi >>= 1;
if (~M & 1) return vector<int>(0);
            for (int d = 3; d * d <= M; ++d) if (M % d == 0) {
              if (++k > 1) return vector<int>(0);
10
11
12
           for (phi -= phi / d; M % d == 0; M /= d); } if (M > 1) {
13
              if (++k > 1) return vector<int>(0); phi -= phi / M;
14
15
         } { // factorize phi
           int M = phi;
            for (int d = 2; d * d <= M; ++d) if (M % d == 0) {
               for (; M % d == 0; M /= d); factor[++totF] = d;
           } if (M > 1) factor[++totF] = M;
         } vector<int> ans;
         for (int g = 2; g <= N; ++g) if (Gcd(g, N) == 1) {
bool good = true;
for (int i = 1; i <= totF && good; ++i)
if (powMod(g, phi / factor[i], N) == 1) good = false;
if (!good) continue;
            for (int i = 1, gp = g; i <= phi; ++i, gp = (LL)gp * g % N)
    if (Gcd(i, phi) == 1) ans.push_back(gp);</pre>
         } sort(ans.begin(), ans.end());
30
         return ans;
```

5.12 离散对数

 $A^x \equiv B \pmod{(C)}$, 对非质数 C 也适用.

5.13 平方剩余

- Legrendre Symbol: 对奇质数 p, $\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{ 是平方剩余} \\ -1 & \text{ 是非平方剩余} = a^{\frac{p-1}{2}} \bmod p \\ 0 & a \equiv 0 \pmod p \end{cases}$
- 若 p 是奇质数, $(\frac{-1}{p}) = 1$ 当且仅当 $p \equiv 1 \pmod{4}$
- 若 p 是奇质数, $(\frac{2}{p}) = 1$ 当且仅当 $p \equiv \pm 1 \pmod{8}$
- 若 p,q 是奇素数且互质, $(\frac{p}{q})(\frac{q}{p}) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}}$
- Jacobi Symbol: 对奇数 $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}, (\frac{a}{n}) = (\frac{a}{p_1})^{\alpha_1} (\frac{a}{p_2})^{\alpha_2} \cdots (\frac{a}{p_k})^{\alpha_k}$

Shanghai Jiao Tong University 16 Call It Magic

• Jacobi Symbol 为 -1 则一定不是平方剩余, 所有平方剩余的 Jacobi Symbol 都是 1, 但 1 不一定是平方剩余

 $ax^2 + bx + c \equiv 0 \pmod{p}$, 其中 $a \neq 0 \pmod{p}$, 且 p 是质数

```
inline int normalize(LL a, int P) { a %= P; return a < 0 ? a + P : a; }
       vector<int> QuadraticResidue(LL a, LL b, LL c, int P) {
         int h, t; LL r1, r2, delta, pb = 0;
            = normalize(a, P); b = normalize(b, P); c = normalize(c, P);
         if (P == 2) { vector<int> res;
           if (c % P == 0) res.push_back(0);
if ((a + b + c) % P == 0) res.push_back(1);
           return res:
        } delta = b * rev(a + a, P) % P:
         a = normalize(-c * rev(a, P) + delta * delta, P);
if (powMod(a, P / 2, P) + 1 == P) return vector<int>(0);
         for (t = 0, h = P / 2; h % 2 == 0; ++t, h /= 2);
         r1 = powMod(a, h / 2, P);
         if (t > 0) { do b = random() % (P - 2) + 2;
14
15
16
17
18
19
20
21
         while (powMod(b, P / 2, P) + 1 != P); }
for (int i = 1; i <= t; ++i) {
        LL d = r1 * r1 % P * a % P;

for (int j = 1; j <= t - i; ++j) d = d * d % P;

if (d + 1 == P) r1 = r1 * pb % P; pb = pb * pb % P;

} r1 = a * r1 % P; r2 = P - r1;

r1 = normalize(r1 - delta, P); r2 = normalize(r2 - delta, P);
         if (r1 > r2) swap(r1, r2); vector<int> res(1, r1);
         if (r1 != r2) res.push_back(r2);
         return res;
```

5.14 N 次剩余

• 若 p 为奇质数, a 为 p 的 n 次剩余的充要条件是 $a^{\frac{p-1}{(a,p-1)}} \equiv 1 \pmod{p}$.

 $x^N \equiv a \pmod{p}$, 其中 p 是质数

```
vector<int> solve(int p, int N, int a) {
   if ((a %= p) == 0) return vector<int>(1, 0);
   int g = findPrimitiveNoot(p), m = modLog(g, a, p); // g ^ m = a (mod p)
   if (m == -1) return vector<int>(0);
   LL B = p - 1, x, y, d; exgcd(N, B, x, y, d);
   if (m % d!= 0) return vector<int>(0);
   vector<int> ret; x = (x * (m / d) % B + B) % B; // g ^ B mod p = g ^ (p - 1) mod p = 1
   for (int i = 0, delta = B / d; i < d; ++i) {
        x = (x + delta) % B; ret.push.back((int)powMod(g, x, p));
   }
   sort(ret.begin(), ret.end());
   ret.resize(unique(ret.begin(), ret.end()) - ret.begin());
   return ret;
}</pre>
```

5.15 Romberg 积分

5.16 公式

5.16.1 级数与三角

•
$$\sum_{k=1}^{n} k^4 = \frac{n(n+1)(2n+1)(3n^2+3n-1)}{30}$$

•
$$\sum_{k=1}^{n} k^5 = \frac{n^2(n+1)^2(2n^2+2n-1)}{12}$$

• 错排:
$$D_n = n!(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + \frac{(-1)^n}{n!}) = (n-1)(D_{n-2} - D_{n-1})$$

•
$$\tan \alpha \pm \tan \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}$$

•
$$\cos n\alpha = \binom{n}{0}\cos^n\alpha - \binom{n}{2}\cos^{n-2}\alpha\sin^2\alpha + \binom{n}{4}\cos^{n-4}\alpha\sin^4\alpha \cdots$$

•
$$\sin n\alpha = \binom{n}{1}\cos^{n-1}\alpha\sin\alpha - \binom{n}{2}\cos^{n-3}\alpha\sin^3\alpha + \binom{n}{5}\cos^{n-5}\alpha\sin^5\alpha\cdots$$

•
$$\sum_{n=1}^{N} \cos nx = \frac{\sin(N + \frac{1}{2})x - \sin\frac{x}{2}}{2\sin\frac{x}{2}}$$

•
$$\sum_{n=1}^{N} \sin nx = \frac{-\cos(N+\frac{1}{2})x + \cos\frac{x}{2}}{2\sin\frac{x}{2}}$$

•
$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$
 for $x \in (-\infty, +\infty)$

•
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} \cdots$$
 for $x \in (-\infty, +\infty)$

•
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} \cdots$$
 for $x \in (-\infty, +\infty)$

•
$$\arcsin x = x + \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}$$
 for $x \in [-1, 1]$

•
$$\arccos x = \frac{\pi}{2} - \sum_{n=1}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}$$
 for $x \in [-1,1]$

•
$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} \cdots \text{ for } x \in [-1, 1]$$

•
$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} \cdots$$
 for $x \in (-1,1]$

•
$$\int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = \begin{cases} \frac{(n-1)!!}{n!!} \times \frac{\pi}{2} & n$$
是偶数
$$\frac{(n-1)!!}{n!!} & n$$
是奇数

$$\bullet \int_{0}^{+\infty} \frac{\sin x}{x} dx = \frac{\pi}{2}$$

$$\bullet \int_{0}^{+\infty} e^{-x^2} \mathrm{d}x = \frac{\sqrt{\pi}}{2}$$

• 傅里叶级数: 设周期为 2T. 函数分段连续. 在不连续点的值为左右极限的平均数

$$-a_n = \frac{1}{T} \int_{-T}^{T} f(x) \cos \frac{n\pi}{T} x dx$$

$$-b_n = \frac{1}{T} \int_{-T}^{T} f(x) \sin \frac{n\pi}{T} x dx$$
$$-f(x) = \frac{a_0}{2} + \sum_{n=1}^{+\infty} (a_n \cos \frac{n\pi}{T} x + b_n \sin \frac{n\pi}{T} x)$$

- Beta 函数: $B(p,q) = \int_{0}^{1} x^{p-1} (1-x)^{q-1} dx$
 - 定义域 $(0,+\infty)$ × $(0,+\infty)$, 在定义域上连续

$$-B(p,q) = B(q,p) = \frac{q-1}{p+q-1}B(p,q-1) = 2\int_{0}^{\frac{\pi}{2}}\cos^{2p-1}\phi\sin^{2p-1}\phi\mathrm{d}\phi = \int_{0}^{+\infty}\frac{t^{q-1}}{(1+t)^{p+q}}\mathrm{d}t = \int_{0}^{1}\frac{t^{p-1}+t^{q-1}}{(1+t)^{(p+q)}}-B(\frac{1}{2},\frac{1}{2}) = \pi$$

- Gamma 函数: $\Gamma = \int_{0}^{+\infty} x^{s-1} e^{-x} dx$
 - 定义域 $(0,+\infty)$, 在定义域上连续
 - $-\Gamma(1) = 1, \Gamma(\frac{1}{2}) = \sqrt{\pi}$
 - $\ \Gamma(s) = (s-1)\Gamma(s-1)$
 - $-B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$
 - $-\Gamma(s)\Gamma(1-s) = \frac{\pi}{\sin \pi s}$ for s>0
 - $-\Gamma(s)\Gamma(s+\frac{1}{2}) = 2\sqrt{\pi} \frac{\Gamma(s)}{2^{2s-1}} \text{ for } 0 < s < 1$
- 积分: 平面图形面积、曲线弧长、旋转体体积、旋转曲面面积 y=f(x)、 $\int\limits_a^b f(x)\mathrm{d}x$, $\int\limits_a^b f(x)\mathrm{d}x$, $\int\limits_a^b f^2(x)\mathrm{d}x$ $\int\limits_a^b f^2(x)\mathrm{d}x$

$$r = r(\theta), \theta \in [\alpha, \beta], \quad \frac{1}{2} \int_{\alpha}^{\beta} r^{2}(\theta) d\theta, \quad \int_{\alpha}^{\beta} \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta, \quad \frac{2}{3} \pi \int_{\alpha}^{\beta} r^{3}(\theta) \sin \theta d\theta,$$

$$2\pi \int_{\alpha}^{\beta} r(\theta) \sin \theta \sqrt{r^{2}(\theta) + r'^{2}(\theta)} d\theta$$

5.16.2 三次方程求根公式

对一元三次方程 $x^3 + px + q = 0$, 令

$$A = \sqrt[3]{-\frac{q}{2} + \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}}$$

$$B = \sqrt[3]{-\frac{q}{2} - \sqrt{(\frac{q}{2})^2 + (\frac{p}{3})^3}}$$

$$\omega = \frac{(-1 + i\sqrt{3})}{2}$$

则 $x_j = A\omega^j + B\omega^{2j}$ (j = 0, 1, 2). 当求解 $ax^3 + bx^2 + cx + d = 0$ 时, 令 $x = y - \frac{b}{3a}$, 再求解 y, 即转化为 $y^3 + py + q = 0$ 的形式. 其中,

$$p = \frac{b^2 - 3ac}{3a^2}$$

$$q = \frac{2b^3 - 9abc + 27a^2d}{27a^3}$$

卡尔丹判别法: 令 $\Delta = (\frac{q}{2})^2 + (\frac{p}{3})^3$. 当 $\Delta > 0$ 时, 有一个实根和一对个共轭虚根; 当 $\Delta = 0$ 时, 有三个实根, 其中两个相等; 当 $\Delta < 0$ 时, 有三个不相等的实根.

5.16.3 椭圆

17

- 椭圆 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 其中离心率 $e = \frac{c}{a}$, $c = \sqrt{a^2 b^2}$; 焦点参数 $p = \frac{b^2}{a}$
- 椭圆上 (x,y) 点处的曲率半径为 $R = a^2b^2(\frac{x^2}{a^4} + \frac{y^2}{b^4})^{\frac{3}{2}} = \frac{(r_1r_2)^{\frac{3}{2}}}{ab}$, 其中 r_1 和 r_2 分别为 (x,y) 与两焦点 F_1 和 F_2 的距离.
- 椭圆的周长 $L = 4a \int_0^{\frac{\pi}{2}} \sqrt{1 e^2 \sin^2 t} dt = 4a E(e, \frac{\pi}{2}),$ 其中

$$E(e, \frac{\pi}{2}) = \frac{\pi}{2} \left[1 - \left(\frac{1}{2}\right)^2 e^2 - \left(\frac{1 \times 3}{2 \times 4}\right)^2 \frac{e^4}{3} - \left(\frac{1 \times 3 \times 5}{2 \times 4 \times 6}\right)^2 \frac{e^6}{5} - \cdots \right]$$

- 设椭圆上点 M(x,y), N(x,-y), x,y>0, A(a,0), 原点 O(0,0), 扇形 OAM 的面积 $S_{OAM}=\frac{1}{2}ab\arccos\frac{x}{a}$ 弓形 MAN 的面积 $S_{MAN}=ab\arccos\frac{x}{a}-xy$.
- 设 θ 为(x,y)点关于椭圆中心的极角,r为(x,y)到椭圆中心的距离,椭圆极坐标方程,

$$x = r\cos\theta, y = r\sin\theta, r^2 = \frac{b^2a^2}{b^2\cos^2\theta + a^2\sin^2\theta}$$

5.16.4 抛物线

- 标准方程 $y^2 = 2px$, 曲率半径 $R = \frac{(p+2x)^{\frac{3}{2}}}{\sqrt{p}}$
- 弧长: 设 M(x,y) 是抛物线上一点,则 $L_{OM}=\frac{p}{2}[\sqrt{\frac{2x}{p}(1+\frac{2x}{p})}+\ln(\sqrt{\frac{2x}{p}}+\sqrt{1+\frac{2x}{p}})]$
- 弓形面积: 设 M,D 是抛物线上两点,且分居一,四象限. 做一条平行于 MD 且与抛物线相切的直线 L. 若 M 到 L 的距离为 h. 则有 $S_{MOD}=\frac{2}{9}MD\cdot h$.

5.16.5 重心

- 半径 r, 圆心角为 θ 的扇形的重心与圆心的距离为 $\frac{4r\sin\frac{\theta}{2}}{3\theta}$
- 半径 r, 圆心角为 θ 的圆弧的重心与圆心的距离为 $\dfrac{4r\sin^3\frac{\theta}{2}}{3(\theta-\sin\theta)}$
- 椭圆上半部分的重心与圆心的距离为 $\frac{4b}{3\pi}$
- 抛物线中弓形 MOD 的重心满足 $CQ=\frac{2}{5}PQ,\,P$ 是直线 L 与抛物线的切点, Q 在 MD 上且 PQ 平行 x 轴, C 是重心

5.16.6 向量恒等式

- $\overrightarrow{a} \cdot (\overrightarrow{b} \times \overrightarrow{c}) = \overrightarrow{b} \cdot (\overrightarrow{c} \times \overrightarrow{a}) = \overrightarrow{c} \cdot (\overrightarrow{a} \times \overrightarrow{b})$
- $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = (\overrightarrow{c} \times \overrightarrow{b}) \times \overrightarrow{a} = \overrightarrow{b} (\overrightarrow{a} \cdot \overrightarrow{c}) \overrightarrow{c} (\overrightarrow{a} \cdot \overrightarrow{b})$

5.16.7 常用几何公式

- 三角形的五心
 - 重心 $\overrightarrow{G} = \overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}$
 - 内心 $\overrightarrow{I} = \frac{a\overrightarrow{A} + b\overrightarrow{B} + c\overrightarrow{C}}{a + b + c}$, $R = \frac{2S}{a + b + c}$
 - $\not \! \text{N-ù } x = \frac{\overrightarrow{A} + \overrightarrow{B} \frac{\overrightarrow{B}\overrightarrow{C} \cdot \overrightarrow{A}\overrightarrow{C}}{2}\overrightarrow{A}\overrightarrow{B}^T}{\frac{2}{2}}, \ y = \frac{\overrightarrow{A} + \overrightarrow{B} + \frac{\overrightarrow{B}\overrightarrow{C} \cdot \overrightarrow{A}\overrightarrow{C}}{2}\overrightarrow{A}\overrightarrow{B}^T}{\frac{2}{2}}, \ R = \frac{abc}{4S}$
 - # $\stackrel{\triangle}{H} = 3\overrightarrow{G} 2\overrightarrow{O}$
 - 旁心 (三个) $\frac{-a\overrightarrow{A}+b\overrightarrow{B}+c\overrightarrow{C}}{-a+b+c}$
- 四边形: 设 D_1, D_2 为对角线, M 为对角线中点连线, A 为对角线夹角
 - $-a^2+b^2+c^2+d^2=D_1^2+D_2^2+4M^2$
 - $-S = \frac{1}{2}D_1D_2\sin A$
 - $-ac+bd=D_1D_2$ (内接四边形适用)
 - Bretschneider 公式: $S = \sqrt{(p-a)(p-b)(p-c)(p-d) abcd\cos^2(\frac{\theta}{2})}$, 其中 θ 为对角和

5.16.8 树的计数

• 有根数计数: 令 $S_{n,j} = \sum_{1 \le i \le n/j} a_{n+1-ij} = S_{n-j,j} + a_{n+1-j}$

于是, n+1 个结点的有根数的总数为 $a_{n+1} = \frac{\sum\limits_{1 \leq j \leq n} j \cdot a_j \cdot S_{n,j}}{n}$

附: $a_1 = 1, a_2 = 1, a_3 = 2, a_4 = 4, a_5 = 9, a_6 = 20, a_9 = 286, a_{11} = 1842$

• 无根树计数: 当 n 是奇数时, 则有 $a_n - \sum_{1 \le i \le \frac{n}{2}} a_i a_{n-i}$ 种不同的无根树

当 n 是偶数时,则有 $a_n - \sum_{1 \le i \le \frac{n}{2}} a_i a_{n-i} + \frac{1}{2} a_{\frac{n}{2}} (a_{\frac{n}{2}} + 1)$ 种不同的无根树

• Matrix-Tree 定理: 对任意图 G, 设 mat[i][i] = i 的度数, mat[i][j] = i 与 j 之间边数的相反数, 则 mat[i][j] 的任意余子式的行列式就是该图的生成树个数

5.17 小知识

- 勾股数: 设正整数 n 的质因数分解为 $n = \prod p_i^{a_i}$, 则 $x^2 + y^2 = n$ 有整数解的充要条件是 n 中不存在形如 $p_i \equiv 3 \pmod{4}$ 且指数 a_i 为奇数的质因数 p_i . $(\frac{a-b}{2})^2 + ab = (\frac{a+b}{2})^2$.
- 素勾股数: 若 m 和 n 互质, 而且 m 和 n 中有一个是偶数, 则 $a=m^2-n^2,\,b=2mn,\,c=m^2+n^2,\,$ 则 a、b、c 是素勾股数.
- Stirling 公式: $n! \approx \sqrt{2\pi n} (\frac{n}{n})^n$

- Pick 定理: 简单多边形, 不自交, 顶点如果全是整点. 则: 严格在多边形内部的整点数 $+\frac{1}{2}$ 在边上的整点数 -1= 面积
- Mersenne 素数: p 是素数且 2^p 1 的数是素数. (10000 以内的 p 有: 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941)
- Fermat 分解算法: 从 $t = \sqrt{n}$ 开始, 依次检查 $t^2 n, (t+1)^2 n, (t+2)^2 n, \ldots$, 直到出现一个平方数 y, 由于 $t^2 y^2 = n$, 因此分解得 n = (t-y)(t+y). 显然, 当两个因数很接近时这个方法能很快找到结果, 但如果遇到一个素数, 则需要检查 $\frac{n+1}{t} \sqrt{n}$ 个整数
- 牛顿迭代: $x_1 = x_0 \frac{f(x_0)}{f'(x_0)}$
- 球与盒子的动人故事: (n 个球, m 个盒子, S 为第二类斯特林数)
 - 1. 球同, 盒同, 无空: dp
 - 2. 球同, 盒同, 可空: dp
 - 3. 球同, 盒不同, 无空: $\binom{n-1}{m-1}$
 - 4. 球同, 盒不同, 可空: $\binom{n+m-1}{n-1}$
 - 5. 球不同, 盒同, 无空: S(n, m)
 - 6. 球不同, 盒同, 可空: $\sum_{k=1}^{m} S(n,k)$
 - 7. 球不同, 盒不同, 无空: m!S(n,m)
 - 8. 球不同, 盒不同, 可空: mⁿ
- 组合数奇偶性: 若 $(n\&m)=m, 则 \binom{n}{m}$ 为奇数, 否则为偶数
- 格雷码 $G(x) = x \otimes (x >> 1)$
- Fibonacci 数:

$$-F_0 = F_1 = 1, F_i = F_{i-1} + F_{i-2}, F_{-i} = (-1)^{i-1}F_i$$

$$-F_i = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

- $-\gcd(F_n, F_m) = F_{\gcd(n,m)}$
- $-F_{i+1}F_i F_i^2 = (-1)^i$
- $F_{n+k} = F_k F_{n+1} + F_{k-1} F_n$
- 第一类 Stirling 数: $\binom{n}{k}$ 代表第一类无符号 Stirling 数, 代表将 n 阶置换群中有 k 个环的置换个数; s(n,k) 代表有符号型, $s(n,k)=(-1)^{n-k}\binom{n}{k}$.

$$-(x)^{(n)} = \sum_{k=0}^{n} {n \brack k} x^k, (x)_n = \sum_{k=0}^{n} s(n,k) x^k$$

$$- \begin{bmatrix} n \\ k \end{bmatrix} = n \begin{bmatrix} n-1 \\ k \end{bmatrix} + \begin{bmatrix} n-1 \\ k-1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 1, \begin{bmatrix} n \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ n \end{bmatrix} = 0$$

$$- {n \brack n-2} = \frac{1}{4}(3n-1){n \brack 3}, {n \brack n-3} = {n \brack 2}{n \brack 4}$$

$$-\sum_{k=0}^{a} {n \brack k} = n! - \sum_{k=0}^{n} {n \brack k+a+1}$$

$$-\sum_{p=k}^{n} {n \brack p} {p \choose k} = {n+1 \brack k+1}$$

Shanghai Jiao Tong University 19 Call It Magic

• 第二类 Stirling 数: $\binom{n}{k} = S(n,k)$ 代表 n 个不同的球, 放到 k 个相同的盒子里, 盒子非空.

$$- {n \brace k} = \frac{1}{k!} \sum_{j=0}^{k} (-1)^{j} {k \choose j} (k-j)^{n}$$

$$- {n+1 \brace k} = k {n \brack k} + {n \brack k-1}, {0 \brack 0} = 1, {n \brack 0} = {0 \brack n} = 0$$

$$- 奇偶性: (n-k)& \frac{k-1}{2} = 0$$

• Bell 数: B_n 代表将 n 个元素划分成若干个非空集合的方案数

Bernoulli 数

$$-B_0 = 1, B_1 = \frac{1}{2}, B_2 = \frac{1}{6}, B_4 = -\frac{1}{30}, B_6 = \frac{1}{42}, B_8 = B_4, B_{10} = \frac{5}{66}$$

$$-\sum_{k=1}^{n} k^m = \frac{1}{m+1} \sum_{k=0}^{m} {m+1 \choose k} B_k n^{m+1-k}$$

$$-B_m = 1 - \sum_{k=0}^{m-1} {m \choose k} \frac{B_k}{m-k+1}$$

• 完全数: x 是偶完全数等价于 $x = 2^{n-1}(2^n - 1)$, 且 $2^n - 1$ 是质数.

6 其他

6.1 Extended LIS

```
int G[MAXN][MAXN];
void insertYoung(int v) {
    for (int x = 1, y = INT_MAX; ; ++x) {
        Down(y, *G[x]); while (y > 0 && G[x][y] >= v) --y;
        if (++y > *G[x]) { ++*G[x]; G[x][y] = v; break; }
        else swap(G[x][y], v);
    }
}

int solve(int N, int seq[]) {
    Rep(i, 1, N) *G[i] = 0;
    Rep(i, 1, N) insertYoung(seq[i]);
    printf("%d\n", *G[i] + *G[2]);
    return 0;
}
```

6.2 生成 nCk

```
1 void nCk(int n, int k) {
2 for (int comb = (1 << k) - 1; comb < (1 << n); ) {
3 int x = comb & -comb, y = comb + x;
    comb = (((comb & -y) / x) >> 1) | y;
5 }
6 }
```

6.3 nextPermutation

```
boolean nextPermutation(int[] is) {
   int n = is.length;
   int n = is.length;
   for (int i = n - 1; i > 0; i--) {
      if (is[i - 1] < is[i]) {
         int j = n; while (is[i - 1] >= is[--j]);
         swap(is, i - 1, j); // swap is[i - 1], is[j]
        rev(is, i, n); // reverse is[i, n)
        return true;
      }
    }
   return false;
}
```

6.4 Josephus 数与逆 Josephus 数

```
1    int josephus(int n, int m, int k) { int x = -1;
2        for (int i = n - k + 1; i <= n; i++) x = (x + m) % i; return x;
3     }
4     int invJosephus(int n, int m, int x) {
5        for (int i = n; ; i--) { if (x == i) return n - i; x = (x - m % i + i) % i; }
6     }
</pre>
```

6.5 表达式求值

6.6 直线下的整点个数

```
求 \sum_{i=0}^{n-1} \lfloor \frac{a+bi}{m} \rfloor
```

```
LL count(LL n, LL a, LL b, LL m) {
   if (b == 0) return n * (a / m);
   if (a >= m) return n * (a / m) + count(n, a % m, b, m);
   if (b >= m) return (n - 1) * n / 2 * (b / m) + count(n, a, b % m, m);
   return count((a + b * n) / m, (a + b * n) % m, m, b);
}
```

Shanghai Jiao Tong University 20 Call It Magic

6.7 Java 多项式

```
class Polvnomial {
                          final static Polynomial ZERO = new Polynomial(new int[] { 0 });
                            final static Polynomial ONE = new Polynomial(new int[] { 1 });
                           final static Polynomial X = new Polynomial(new int[] { 0, 1 });
   6
7
8
9
                           static Polynomial valueOf(int val) { return new Polynomial(new int[] { val }); } Polynomial(int[] coef) { this.coef = Arrays.copyOf(coef, coef.length); } Polynomial add(Polynomial o, int mod); // omitted
                            Polynomial subtract(Polynomial o, int mod); // omitted
10
                           Polynomial multiply(Polynomial o, int mod); // omitted Polynomial scale(int o, int mod); // omitted
11
12
13
14
15
16
                          public String toString() {
  int n = coef.length; String ret = "";
  for (int i = n - 1; i > 0; --i) if (coef[i] != 0)
  ret += coef[i] + "x" + i + "+";
                                   return ret + coef[0];
17
18
                           static Polynomial lagrangeInterpolation(int[] x, int[] y, int mod) {
                                 int n = x.length; Polynomial ret = Polynomial.ZERO;
for (int i = 0; i < n; ++i) {</pre>
19
20
                                          Polynomial poly = Polynomial.valueOf(y[i]);
for (int j = 0; j < n; ++j) if (i != j) {
    poly = poly.multiply(
21
22
23
24
25
26
27
28
                                                          Polynomial.X.subtract(Polynomial.valueOf(x[j]), mod), mod);
                                         conjustation for substitution of the conjustation of the conj
                                  } return ret;
```

6.8 long long 乘法取模

```
1 LL multiplyMod(LL a, LL b, LL P) { // 需要保证 a 和 b 非负
        LL t = (a * b - LL((long double)a / P * b + 1e-3) * P) % P;
        return t < 0 : t + P : t;
}
```

6.9 重复覆盖

```
struct node { int x, y; node *1, *r, *u, *d; } base[MAX * MAX], *top, *head;
         typedef node *link;
         int row, col, nGE, ans, stamp, cntc[MAX], vis[MAX]; void removeExact(link c) { c->1->r = c->r; c->r->l = c->l;
           for (link i = c->d; i != c; i = i->d)
                 for (link j = i-r; j = i; j = j-r) j-d-u = j-u, j-u-d = j-d, --cntc[j-y];
         void resumeExact(link c) {
             for (link i = c->u; i != c; i = i->u)
  for (link j = i->l; j != i; j = j->l) j->d->u = j, j->u->d = j, ++cntc[j->y];
10
             c \to 1 \to r = c; c \to r \to 1 = c;
12^{-1}
13
14
15
         void removeRepeat(link c) { for (link i = c->d; i != c; i = i->d) i->l->r = i->r, i->r->l = i->l; }
void resumeRepeat(link c) { for (link i = c->u; i != c; i = i->u) i->l->r = i; i->r->l = i; }
         void testmenepea(link c) { lof (link i = c-d, i := c, i = 1-2d) | 1-21-21 = 1, 1-21-21 = 1
int calcf() { int y, res = 0; ++stamp;
for (link c = head->r; (y = c->y) <= row && c != head; c = c->r) if (vis[y] != stamp) {
    vis[y] = stamp; ++res; for (link i = c->d; i != c; i = i->d)
    for (link j = i->r; j != i; j = j->r) vis[j->y] = stamp;
17
18
19
20
21
         void DFS(int dep) { if (dep + calcH() >= ans) return;
22
23
24
             if (head->r->y > nGE || head->r == head) { if (ans > dep) ans = dep; return; }
            link c = NULL;
for (link i = head->r; i->y <= nGE && i != head; i = i->r)
if (!c || cntc[i->y] < cntc[c->y]) c = i;
for (link i = c->d; i != c; i = i->d) {
25
26
27
28
                 removeRepeat(i);
                for (link j = i \rightarrow r; j != i; j = j \rightarrow r) if (j \rightarrow y \leftarrow nGE) removeRepeat(j); for (link j = i \rightarrow r; j != i; j = j \rightarrow r) if (j \rightarrow y \rightarrow nGE) removeExact(base + j \rightarrow y);
                for (link j = i \rightarrow 1; j != i; j = j \rightarrow 1) if (j \rightarrow y) \rightarrow nGE) resumeExact(base + j \rightarrow y); for (link j = i \rightarrow 1; j != i; j = j \rightarrow 1) if (j \rightarrow y) \leftarrow nGE) resumeRepeat(j);
34
```

6.10 星期几判定

```
1 int getDay(int y, int m, int d) {
2 if (m <= 2) m += 12, y--;
3 if (y < 1752 || (y == 1752 && m <= 9) || (y == 1752 && m == 9 && d < 3))
4 return (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 + 5) % 7 + 1;
5 return (d + 2 * m + 3 * (m + 1) / 5 + y + y / 4 - y / 100 + y / 400) % 7 + 1;
6 }
```

6.11 LCSequence Fast

7 Templates

7.1 vim 配置

在.bashrc 中加入 export CXXFLAGS="-Wall -Wconversion -Wextra -g3"

```
1 set nu ru nobk cindent si
2 set mouse=a sw=4 sts=4 ts=4
3 set hlsearch incsearch
4 set whichwrap=b,s,<,>,[,]
5 syntax on
6 nmap <C-A> ggVG
7 nmap <C-C> "+y
9
10 autocmd_BufNewFile_*.cpp_Or_-/Templates/cpp.cpp
11 map F99>_:!g++\nu_-ou/x_-wall_-Wconversion_-Wextra_-g3_-<CR>
12 map <F9>_:!y*+\nu_-ou/x_-in_-<CR>
13 map <F8>_:!./\lambda_i < in_-<CR>
14 map <F3>_::.\lambda_i < in_-<CR>
15 map <F3>_::vnew_\lambda_i < in_-<CR>
16 map <F4>_:!(gedit_\lambda_u\delta) < CR>
```

7.2 C++

```
#pragma comment(linker, "/STACK:10240000")
       #include <cstdlib>
       #include <cstring>
       #include <iostream>
#include <algorithm>
       #define Rep(i, a, b) for(int i = (a); i <= (b); ++i)
#define Foru(i, a, b) for(int i = (a); i < (b); ++i)
        using namespace std;
       typedef long long LL;
typedef pair<int, int> pii;
       namespace BufferedReader {
   char buff[MAX_BUFFER + 5], *ptr = buff, c; bool flag;
 \frac{12}{13}
14
15
          bool nextChar(char &c) {
  if ( (c = *ptr++) == 0 ) {
               int tmp = fread(buff, 1, MAX_BUFFER, stdin);
buff[tmp] = 0; if (tmp == 0) return false;
16
17
                ptr = buff; c = *ptr++;
 18
            } return true;
          bool nextUnsignedInt(unsigned int &x) {
 \frac{22}{23}
\frac{24}{24}
             for (;;){if (!nextChar(c)) return false; if ('0'<=c && c<='9') break;}
             for (x=c-'0'; nextChar(c); x = x * 10 + c - '0') if (c < '0' | | c > '9') break;
             return true;
 ^{25}
          bool nextInt(int &x) {
```

Shanghai Jiao Tong University 21 Call It Magic

```
27 | for (;;) { if (!nextChar(c)) return false; if (c=='-' || ('0'<=c && c<='9')) break; }
28 | for ((c=='-') ? (x=0,flag=true) : (x=c-'0',flag=false); nextChar(c); x=x*10+c-'0')
29 | if (c<'0' || c>'9') break;
30 | if (flag) x=-x; return true;
31 | }
32 | ;
33 | #endif
```

7.3 Java

```
import java.io.*:
      import java.util.*;
      import java.math.*;
      public class Main {
        public void solve() {}
          tokenizer = null; out = new PrintWriter(System.out);
           in = new BufferedReader(new InputStreamReader(System.in));
          solve();
11
          out.close();
12
13
14
15
16
17
18
19
20
21
22
23
24
25
        public static void main(String[] args) {
          new Main().run();
        public StringTokenizer tokenizer;
public BufferedReader in;
        public String next() {
          while (tokenizer == null || !tokenizer.hasMoreTokens()) {
  try { tokenizer = new StringTokenizer(in.readLine()); }
             catch (IOException e) { throw new RuntimeException(e); }
          } return tokenizer.nextToken();
```

7.4 Eclipse 配置

Exec=env UBUNTU_MENUPROXY= /opt/eclipse/eclipse preference general keys 把 word completion 设置成 alt+c, 把 content assistant 设置成 alt + /

7.5 泰勒级数

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \cdots \qquad \qquad = \sum_{i=0}^{\infty} x^i$$

$$\frac{1}{1-cx} = 1 + cx + c^2 x^2 + c^3 x^3 + \cdots \qquad \qquad = \sum_{i=0}^{\infty} c^i x^i$$

$$\frac{1}{1-x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots \qquad \qquad = \sum_{i=0}^{\infty} x^{ni}$$

$$\frac{x}{(1-x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots \qquad \qquad = \sum_{i=0}^{\infty} ix^i$$

$$\sum_{k=0}^{n} {n \brace k! z^k \over (1-z)^{k+1}} = x + 2^n x^2 + 3^n x^3 + 4^n x^4 + \cdots \qquad \qquad = \sum_{i=0}^{\infty} i^n x^i$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots \qquad \qquad = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \frac{1}{4}x^4 - \cdots$$

$$= \sum_{i=1}^{\infty} (-1)^{i+1} \frac{x^i}{i}$$

$$\ln \frac{1}{1-x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 + \frac{1}{4}x^4 + \cdots$$

$$= \sum_{i=1}^{\infty} (-1)^i \frac{x^{2i+1}}{(2i+1)!}$$

$$\cos x = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \cdots$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

$$\tan^{-1} x = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$$

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots$$

$$\frac{1}{(1-x)^{n+1}} = 1 + (n+1)x + {n+1 \choose 2}x^2 + \cdots$$

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + \cdots$$

$$\frac{1}{2x}(1 - \sqrt{1-4x}) = 1 + x + 2x^2 + 5x^3 + \cdots$$

$$\frac{1}{\sqrt{1-4x}} \left(\frac{1-\sqrt{1-4x}}{2x}\right)^n = 1 + (2+n)x + {n+1 \choose 2}x^2 + \cdots$$

$$\frac{1}{1-x} \ln \frac{1}{1-x} = x + \frac{3}{2}x^2 + \frac{11}{6}x^3 + \frac{25}{12}x^4 + \cdots$$

$$\frac{1}{2} \left(\ln \frac{1}{1-x}\right)^2 = \frac{1}{2}x^2 + \frac{3}{4}x^3 + \frac{11}{24}x^4 + \cdots$$

$$\frac{x}{1-x-x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots$$

$$= \sum_{i=0}^{\infty} H_{i-1}x^i$$

7.6 积分表

- $d(\tan x) = \sec^2 x dx$
- $d(\cot x) = \csc^2 x dx$
- $d(\sec x) = \tan x \sec x dx$
- $d(\csc x) = -\cot x \csc x dx$

- $d(\arcsin x) = \frac{1}{\sqrt{1-x^2}} dx$
- $d(\arccos x) = \frac{-1}{\sqrt{1-x^2}} dx$
- $d(\arctan x) = \frac{1}{1+x^2} dx$
- $d(\operatorname{arccot} x) = \frac{-1}{1+x^2} dx$
- $d(\operatorname{arcsec} x) = \frac{1}{x\sqrt{1-x^2}} dx$
- $d(\operatorname{arccs} x) = \frac{-1}{u\sqrt{1-x^2}} dx$
- $\int cu \, \mathrm{d}x = c \int u \, \mathrm{d}x$
- $\int (u+v) dx = \int u dx + \int v dx$
- $\int x^n \, \mathrm{d}x = \frac{1}{n+1} x^{n+1}, \quad n \neq -1$
- $\int \frac{1}{x} dx = \ln x$
- $\int e^x dx = e^x$
- $\int \frac{\mathrm{d}x}{1+x^2} = \arctan x$
- $\int u \frac{\mathrm{d}v}{\mathrm{d}x} \mathrm{d}x = uv \int v \frac{\mathrm{d}u}{\mathrm{d}x} \mathrm{d}x$
- $\int \sin x \, \mathrm{d}x = -\cos x$
- $\int \cos x \, \mathrm{d}x = \sin x$
- $\int \tan x \, \mathrm{d}x = -\ln|\cos x|$
- $\int \cot x \, \mathrm{d}x = \ln|\cos x|$
- $\int \sec x \, dx = \ln|\sec x + \tan x|$
- $\int \csc x \, \mathrm{d}x = \ln|\csc x + \cot x|$
- $\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 x^2}, \quad a > 0$
- $\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} \sqrt{a^2 x^2}, \quad a > 0$
- $\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} \frac{a}{2} \ln(a^2 + x^2), \quad a > 0$
- $\int \sin^2(ax) dx = \frac{1}{2a} (ax \sin(ax)\cos(ax))$

- $\int \cos^2(ax) dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax))$
- $\int \sec^2 x \, dx = \tan x$
- $\int \csc^2 x \, \mathrm{d}x = -\cot x$
- $\int \sin^n x \, \mathrm{d}x = -\frac{\sin^{n-1} x \cos x}{n} + \frac{n-1}{n} \int \sin^{n-2} x \, \mathrm{d}x$
- $\bullet \int \cos^n x \, \mathrm{d}x = \frac{\cos^{n-1} x \sin x}{n} + \frac{n-1}{n} \int \cos^{n-2} x \, \mathrm{d}x$
- $\int \tan^n x \, \mathrm{d}x = \frac{\tan^{n-1} x}{n-1} \int \tan^{n-2} x \, \mathrm{d}x, \quad n \neq 1$
- $\int \cot^n x \, dx = -\frac{\cot^{n-1} x}{n-1} \int \cot^{n-2} x \, dx$, $n \neq 1$
- $\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \sec^{n-2} x \, dx, \quad n \neq 1$
- $\int \csc^n x \, \mathrm{d}x = -\frac{\cot x \csc^{n-1} x}{n-1} + \frac{n-2}{n-1} \int \csc^{n-2} x \, \mathrm{d}x, \quad n \neq 1$
- $\int \sinh x \, dx = \cosh x$
- $\int \cosh x \, dx = \sinh x$
- $\int \tanh x \, dx = \ln|\cosh x|$
- $\int \coth x \, dx = \ln |\sinh x|$
- $\int \operatorname{sech} x \, \mathrm{d}x = \arctan \sinh x$
- $\int \operatorname{csch} x \, \mathrm{d}x = \ln \left| \tanh \frac{x}{2} \right|$
- $\int \sinh^2 x \, \mathrm{d}x = \frac{1}{4} \sinh(2x) \frac{1}{2}x$
- $\int \cosh^2 x \, \mathrm{d}x = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$
- $\int \operatorname{sech}^2 x \, \mathrm{d}x = \tanh x$
- $\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} \sqrt{x^2 + a^2}, \quad a > 0$
- $\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 x^2|$
- $\bullet \quad \int \operatorname{arccosh} \frac{x}{a} \mathrm{d}x = \begin{cases} x \operatorname{arccosh} \frac{x}{a} \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0 \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0 \end{cases}$

Call It Magic

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0$$

•
$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int (a^2 - x^2)^{3/2} dx = \frac{x}{8} (5a^2 - 2x^2) \sqrt{a^2 - x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{a^2 - x^2} = \frac{1}{2a} \ln \left| \frac{a + x}{a - x} \right|$$

•
$$\int \frac{\mathrm{d}x}{(a^2 - x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 - x^2}}$$

•
$$\int \sqrt{a^2 \pm x^2} \, \mathrm{d}x = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 - a^2}} = \ln\left|x + \sqrt{x^2 - a^2}\right|, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|$$

•
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx-2a)(a+bx)^{3/2}}{15b^2}$$

•
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx$$

•
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} - \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0$$

•
$$\int \frac{\sqrt{a^2 - x^2}}{x} dx = \sqrt{a^2 - x^2} - a \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

•
$$\int x\sqrt{a^2 - x^2} \, dx = -\frac{1}{3}(a^2 - x^2)^{3/2}$$

•
$$\int x^2 \sqrt{a^2 - x^2} \, dx = \frac{x}{8} (2x^2 - a^2) \sqrt{a^2 - x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = -\frac{1}{a} \ln \left| \frac{a + \sqrt{a^2 - x^2}}{x} \right|$$

•
$$\int \frac{x^2 dx}{\sqrt{a^2 - x^2}} = -\frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0$$

•
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} - a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|$$

•
$$\int \frac{\sqrt{x^2 - a^2}}{x} dx = \sqrt{x^2 - a^2} - a \arccos \frac{a}{|x|}, \quad a > 0$$

•
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2}$$

•
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|$$

•
$$\int \frac{\mathrm{d}x}{x\sqrt{x^2 - a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0$$

•
$$\int \frac{x \, \mathrm{d}x}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2}$$

•
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2x^3}$$

•
$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 - 4ac}} \ln \left| \frac{2ax + b - \sqrt{b^2 - 4ac}}{2ax + b + \sqrt{b^2 - 4ac}} \right|, & \text{if } b^2 > 4ac \\ \frac{2}{\sqrt{4ac - b^2}} \arctan \frac{2ax + b}{\sqrt{4ac - b^2}}, & \text{if } b^2 < 4ac \end{cases}$$

•
$$\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0 \\ \frac{1}{\sqrt{-a}} \arcsin \frac{-2ax - b}{\sqrt{b^2 - 4ac}}, & \text{if } a < 0 \end{cases}$$

•
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax - b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

•
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} - \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}}$$

$$\bullet \int \frac{\mathrm{d}x}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{-1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0 \\ \frac{1}{\sqrt{-c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 - 4ac}}, & \text{if } c < 0 \end{cases}$$

•
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{2}x^2 - \frac{2}{15}a^2)(x^2 + a^2)^{3/2}$$

•
$$\int x^n \sin(ax) dx = -\frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) dx$$

- $\int x^n \cos(ax) dx = \frac{1}{a} x^n \sin(ax) \frac{n}{a} \int x^{n-1} \sin(ax) dx$
- $\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} \frac{n}{a} \int x^{n-1} e^{ax} dx$
- $\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} \frac{1}{(n+1)^2} \right)$
- $\int x^n (\ln ax)^m dx = \frac{x^{n+1}}{n+1} (\ln ax)^m \frac{m}{n+1} \int x^n (\ln ax)^{m-1} dx$