Statistics: Tutorial sheet 3

Mandatory Exercises

Exercise 1. Find sufficient statistics for random samples from the following distributions. Use both the Factorization Theorem and the formula for exponential families (when applicable).

- a. Beta (α,β)
- b. $Poisson(\lambda)$
- c. Uniform(a,b)

Exercise 2. Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x \mid \mu, \sigma) = \frac{1}{\sigma} e^{-(x-\mu)/\sigma}, \quad \mu < x < \infty, \ 0 < \sigma < \infty.$$

Find the sufficient statistics for (μ, σ) .

Exercise 3. Find the MME, based on the lowest moment possible, of θ based on a random sample of the following pdfs. Hint: recognizing the pdfs as corresponding to familiar distributions will help in calculating the required moment(s).

- a. $f(x \mid \theta) = \frac{1}{x!}e^{-\theta}\theta^x$, where $x = 0, 1, \dots$ and $\theta > 0$.
- b. $f(x \mid \theta) = \theta x^{\theta-1}$, where 0 < x < 1 and $\theta > 0$.
- c. $f(x \mid \theta) = \theta^2 x e^{-\theta x}$, where x > 0 and $\theta > 0$.

Practice Exercises

Exercise 1. We have the statistical model $\{Poisson(\lambda) \mid \lambda > 0\}$.

- a. Show that $T(X) = \sum_{i=1}^{n} X_i$ is sufficient by calculating the conditional distribution of X given T(X).
- b. Show that $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is sufficient by using the factorization theorem.

Exercise 2. Let X_1, \ldots, X_n be iid distributed with cdf

$$P(X \le x) = \begin{cases} 0 & x < 0 \\ (x/\beta)^{\alpha} & 0 \le x \le \beta \\ 1 & x > \beta \end{cases}$$

a. Find the pdf of X_1 .

- b. Find a two-dimensional sufficient statistic for (α, β) .
- c. Is this statistical model an exponential family?
- d. What system of equations do you have to solve to find the method of moment estimators for α and β ? Note, don't actually solve them!

Exercise 3. Let X_1, \ldots, X_n be a random sample from a population belonging to the exponential family

$$g(x \mid \theta) = h(x)c(\theta)e^{\sum_{j=1}^{m} w_j(\theta)t_j(x)}.$$

Prove that $T(\mathbf{X}) = (\sum_{i=1}^n t_1(X_i), \dots, \sum_{i=1}^n t_m(X_i))$ is a sufficient statistic for θ_0 by using the factorization theorem.

Exercise 4. Suppose we have the statistical model $\{g(x \mid \theta) \mid \theta > 0\}$, where

$$g(x \mid \theta) = \theta x^{\theta - 1}$$
 if $0 \le x \le 1$.

- a. Find a sufficient statistic for θ .
- b. Find the moment estimator for θ_0 .
- c. Is the moment estimator based on a sufficient statistic? What does this tell us?