Corrigé du CCM 2005 Mah2 PSI Proposé par Abdelaziz KHOUTAIBI

Ι

- 1. $\chi_A(X) = (1 X)(2 X)(3 X)$, donc $sp(u) = \{1, 2, 3\}$ A admet trois valeurs propres réelles distincts, donc elle est diagonalisable dans $M_3(\mathbb{R})$
- 2. $e_1 = (-1, 1, 0); e_2 = (1, 1, -1); e_3 = (1, 1, 0)$
- 1ere methode 3. $det(e_1, e_2, e_3) = -2 \neq 0$
 - 2eme méthode Pour $i \in 1, 2, 3$,Soit $E_i = vect(u - \lambda_i Id_{\mathbb{R}^3})$, le sous espace propre associé a la valeur propre λ_i . u est diagonalisable donc $E = E_1 \oplus E_2 \oplus E_3$ donc $E_i = vect(e_i)$, on déduit que $\beta = (e_1, e_2, e_3)$ est une base de E.

 $mat_{\beta}(u) = diag(1,2,3) = D$

La formule de changement de matrice pour une application linéaire donne:

$$A = PDP^{-1}$$
 où $P = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ est la matrice de passage de la base canonique de \mathbb{R}^3 à la base β .

- Soit \mathcal{B} la base canonique de \mathbb{R}^3 . 4. (a) On a: $B = mat_{\mathcal{B}}(v) \Rightarrow B^2 = mat_{\mathcal{B}}(v^2)$ et $A = mat_{\mathcal{B}}(u)$, donc: $B^{2} = A \Longleftrightarrow v^{2} = u .$ $vu = vv^{2} = v^{3} = v^{2}v = vu.$

 - (b) $uv(e_i) = vu(e_i) = v(\lambda_i e_i) = \lambda_i v(e_i)$ d'où $v(e_i) \in Ker(u - \lambda_i id_{\mathbb{R}^3}) = vect(e_i)$ et parsuite v(i) est colinéaire à e_i ,c.à.d que e_i est un vecteur propre de v
 - (c) D'aprés 4-2 $\exists \alpha_i \in \mathbb{R}, v(e_i) = \alpha_i e_i$ et donc $mat_\beta = diag(\alpha_1, \alpha_2, \alpha_3) = V$ $v^2 = u \iff V^2 = D \iff \begin{cases} \alpha_1 = \pm 1 \\ \alpha_2 = \pm \sqrt{2} \\ \alpha_3 = \pm \sqrt{3} \end{cases}$
- 5. Soit B une solution de l'équation $X^2 = A$

D'aprés le question précédente $V = diag(\alpha_1, \alpha_2, \alpha_3)$ avec $\begin{cases} \alpha_1 = \pm 1 \\ \alpha_2 = \pm \sqrt{2} \\ \alpha_3 = \pm \sqrt{3} \end{cases}$, donc:

 $V \in \{diag(\varepsilon_1, \varepsilon_2\sqrt{2}, \varepsilon_3\sqrt{3})/(\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3\}, \text{ comme } B = PVP^{-1} \text{ alors} :$

 $B \in \{Pdiag(\varepsilon_1, \varepsilon_2\sqrt{3}, \varepsilon_3\sqrt{2})P - 1/(\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3\}$

Réciproquement si $B = P^{-1}diag(\varepsilon_1, \varepsilon_2\sqrt{3}, \varepsilon_3\sqrt{2})P, (\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3$, on a bien $B^2 = PD^2P^{-1} = A$ En conclusion l'ensemble des solutions de l'équation est :

 $\{Pdiag(\varepsilon_1, \varepsilon_2\sqrt{3}, \varepsilon_3\sqrt{2})P^{-1}/(\varepsilon_1, \varepsilon_2, \varepsilon_3) \in \{-1, 1\}^3\}, \text{ On trouve 8 solutions }$

$$\{Pdiag(\varepsilon_{1}, \varepsilon_{2}\sqrt{3}, \varepsilon_{3}\sqrt{2})P^{-1}/(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}) \in \{-1, 1\}^{3}\}, \text{ On trouve 8 solutions qui sont:}$$

$$X_{1} = \begin{pmatrix} \frac{1+\sqrt{3}}{2} & \frac{-1+\sqrt{3}}{2} & -\sqrt{2}+\sqrt{3} \\ \frac{-1+\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} & -\sqrt{2}+\sqrt{3} \\ 0 & 0 & \sqrt{2} \end{pmatrix}, X_{2} = \begin{pmatrix} \frac{1-\sqrt{3}}{2} & \frac{-1-\sqrt{3}}{2} & \sqrt{2}-\sqrt{3} \\ \frac{-1-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & \sqrt{2}-\sqrt{3} \\ 0 & 0 & -\sqrt{2} \end{pmatrix}$$

$$X_{3} = \{ \begin{pmatrix} \frac{1+\sqrt{3}}{2} & \frac{-1+\sqrt{3}}{2} & \sqrt{2}+\sqrt{3} \\ \frac{-1+\sqrt{3}}{2} & \frac{1+\sqrt{3}}{2} & \sqrt{2}+\sqrt{3} \\ 0 & 0 & -\sqrt{2} \end{pmatrix} \}$$

$$X_{4} = \{ \begin{pmatrix} \frac{-1-\sqrt{3}}{2} & \frac{1-\sqrt{3}}{2} & -\sqrt{2}-\sqrt{3} \\ \frac{1-\sqrt{3}}{2} & \frac{-1-\sqrt{3}}{2} & -\sqrt{2}-\sqrt{3} \\ 0 & 0 & \sqrt{2} \end{pmatrix} \}$$

1. facile

2. (a) Soit
$$g: x \mapsto \sum_{n=0}^{n} a_n x^n$$

La somme d'une série entière est de classe C^{∞} sur sonintervalle ouvert de convergence et la dérivation

$$\forall x \in]-r, r[, (1+x)g'(x) - \alpha g(x) = \sum_{0}^{\infty} ((k+1)a_{k+1} - (\alpha - k)a_k)x^k$$
y est une solution de (1) sur] $-r, r[$ si et seulement si :

$$\forall x \in]-r, r[, (1+x)y'(x) - \alpha g(x) = \sum_{k=0}^{\infty} ((k+1)a_{k+1} - (\alpha - k)a_k)x^k = 0$$

Or si une série entière est de somme nulle sur un intervalle ouvert centré en 0 alors cette série entière est nulle ,donc : $\forall k \in \mathbb{N}, (k+1)a_{k+1} = (\alpha - k)a_k$.

$$\prod_{i=0}^{k-1} (\alpha - i)$$

- (b) On montre par une récurrence simple sur k que: $\forall k \geq 1, a_k = a_0 \frac{\displaystyle\prod_{i=0} (\alpha i)}{n!}$.
- (c) Pour $a_0 = 1$, deux cas à distinguer:
 - $\alpha \in \mathbb{N}$, alors $\forall k \geq \alpha, a_k = 0$, donc la série entière est une fonction polynumiale, donc $\rho = +\infty$:
 - $\alpha \in \mathbb{R} \mathbb{N}$, alors la suite $\forall k \in \mathbb{N}, a_k \neq 0$ et $\left| \frac{a_{k+1}}{ak} \right| \underset{k \to +\infty}{\longrightarrow} 1$, la régle de d'Alembert donne $\rho = 1$.

 $I=]ho,
ho[\cap]-1,+\infty[$ est un intervalle non vide de $\mathbb R$ contenant]-1,1[, et g et f_{α} sont deux solutions de l'éq diff linéaire (1) , vérifiant $g(0)=f_{\alpha}(0)=1$, $g(0)=f_{\alpha}(0)=1$ de cauchy-lipshitz linéaire affirme l'unicité de la solution sur I de l'eq diff (1) vérifiant la condition initiale:y(0) = 1, d'où $g = f_{\alpha}$ sur I.

pour $\alpha \in \mathbb{N},]-\rho, \rho[=]-\infty, +\infty[$, or la fonction f_{α} est définie sur $]-1, +\infty[$, donc dans le cas général f_{α} coincide avec g sur I et non sur $]-\rho, \rho[$ comme le dit le sujet. Et dans le cas $\alpha \in \mathbb{R} - \mathbb{N}, I =]-\rho, \rho[$.

- $f_{\frac{1}{2}}(0) = 1 \Rightarrow b_0 = 1$ 3.
 - f étant développable en série entière à l'origine il en est de meme de f^2 et le developpement en série entiére $\sum_{k\geq 0} c_k x^k$ de f^2 s'obtient comme produit de cauchy de $\sum_{k=0}^{\infty} b_k x^k$ par elle meme, ce qui donne

$$\forall q \in \mathbb{N}, c_q = \sum_{k=0}^{q} b_k b_{q-k}$$

D'autre part On a $\forall x \in]-1,1[,f_{\frac{1}{2}}^2(x)=1+x$

L'unicitédu developpement en série ntière à l'origine donn alors:

$$c_1 = 2b_0b_1 = 1$$
 et $\forall q \ge 2, c_q = \sum_{k=0}^q b_k b_{q-k} = 0$

II.B

- (a) Par définition de l'entier p on a: $u^{p-1} \neq 0$, donc $\exists x_0 \in E, u^{p-1}(x_0) \neq 0$
 - (b) c'est une question classique:

Soit $(\lambda_0, \lambda_1, ..., \lambda_{p-1}) \in \mathbb{R}^p$ tq $\sum_{i=1}^p \lambda_k u^k(x_0) = 0$, montrons par récurrence fini sur i que $\forall i \in [1, n] \lambda_i = 0$

Base de récurence:
$$0 = f^{p-1} \left(\sum_{k=0}^{p-1} \lambda_k u^k(x_0) \right) = \sum_{k=0}^{p-1} \lambda_k u^{p+k-1}(x_0) = \lambda_0 u^{p-1}(x_0)$$

Comme $u^{p-1}(x_0) \neq 0$., alors $\lambda_0 = 0$ Hypothése de récurrence:Soit $j_i n[1, p-1]$, Supposons que: $\forall i \in [1, j-1], \lambda_i = 0$ et montrons que $\lambda_j = 0$

$$0 = f^{p-1-j} \left(\sum_{k=j}^{p-1} \lambda_k u^k(x_0) \right) = \sum_{k=j}^{p-1} \lambda_k u^{p+k-j-1}(x_0) = \lambda_j u^{p-1}(x_0), \text{ Or } u^{p-1}(x_0) \neq 0 \text{ d'où } \lambda_j = 0$$
Conclusion: $\forall i \in [1, n], \lambda_i = 0$

- (c) dim(E) = n et $(x_0, u(x_0), ..., u^{p-1}(x_0))$ est une famille libre de E à p vecteurs , donc $p \neq n$, car le cardinal d'une famille libre esr inférieur à la dimension. Ona $n - p \geq 0$,donc: $u^p = 0 \Rightarrow u^n = u^{n-p}u^p = 0$
- 2. (a) $v^{2p}=u^p=0$ et $v^{2(p-1)}=u^{p-1}\neq 0$, donc v est nilpotent d'indice de nilpotence $q\geq 2p-1$ D'aprés la question 2-1: $q\leq n$ donc $2p-1\leq n$ ie $p\leq \frac{n+1}{2}$
 - (b) n=2, il suffit de prendre une matrice nilpotente d'indice de nilpotence $p>\frac{3}{2}$ c.a.d p=2, par exemple: $M=\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

3.
$$w^2 = \left(\sum_{i=0}^{n-1} b_i u^i\right) \left(\sum_{j=0}^{n-1} b_i u^i\right) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} b_i u^i b_j u^i = \sum_{0 \le i, j \le n-1} b_i b_j u^{i+j}.$$

$$\sum_{0 \le i, j \le n-1} b_i b_j u^{i+j} = \sum_{q=0}^{2n-2} \sum_{k=0}^{q} b_k b_{k-q}$$
 D'aprés les relations de la question I-3, on alors : $(\pm w)^2 = w^2 = b_0 u^0 + 2b_0 b_1 u = I_E + u$

- 4. (a) D'aprés la question 1-1-2 la famille $(x_1, u(x_1), ..., u^{n-1}(x_1))$ est libre à n vecteurs ,donc c'est une base de E. $g(x_1) \in E$ donc il s'exprime dans la base précédente , c.à.d: $\exists (\alpha_0, ..., a \, lpha_{n-1}) \in \mathbb{R}^n, g(x_1) = \sum_{n=1}^{n-1} \alpha_i u_i(x_1)$
 - (b) $u = g^2 I_n \in \mathbb{R}[g]$, donc g commute avec u ie :gu = ug. Soit $h = \sum_{i=0}^{n-1} \alpha_i u_i$, montrons que g = h, il suffit pour cela de montrer que f et g coincident sur la base $(x_1, u(x_1), ..., u^{n-1}(x_1), \text{or: } h \in \mathbb{R}[u] \Rightarrow hu = uh$ $\forall i \in [0, n-1], h(u^i(x_1)) = u^i(h(x_1)) = u^i(g(x_1)) = g(u^i(x_1)), \text{d'où } h = g$.
 - (c) Soit $(\lambda_0, ..., \lambda_{n-1}) \in \mathbb{R}^n$ tq $\sum_{k=0}^{n-1} \lambda u^k = 0$, alors $\sum_{k=0}^{n-1} \lambda u^k(x_1) = 0$ et comme $(x_1, u(x_1), ..., u^{n-1}(x_1))$ est libre alors $\forall i \in [0, n-1], l \text{ ambd} a_i = 0$.

D'aprés la question 3
$$g=\sum_{i=0}^{n-1}\alpha_iu_i\Rightarrow g^2=\sum_{0\leq i,j\leq n-1}\alpha_i\alpha_ju^{i+j}=\sum_{0\leq i,j\leq n-1}\alpha_i\alpha_ju^{i+j}=\sum_{q=0}^{n-1}\beta_ku^q$$
 où

$$\beta_k = \sum_{k=0}^{q} \alpha_k \alpha_{q-k}$$

Or $g^2 = I_E + u$, comme $(I_E, u, ..., u^{n-1})$ est une base alors :

$$\beta_0 = \alpha_0^2 = 1, \beta_1 = 2\alpha_0\alpha_1 = 1 \text{ et } \sum_{k=0}^q \alpha_k\alpha_{q-k} \text{ pour } 2 \le q \le n-1$$

(d) Si $\alpha_0 = 1$ alors par ue récurrence facile on montre que $\alpha_k = b_k$ Si $0\alpha_0 = -1$ alors la suite $(\gamma_k) = (-\alpha_k)$ vérifie

$$\gamma_0^2 = 1, \gamma_0 \gamma_1 = 1$$
 et $\sum_{k=0}^q \gamma_k \gamma_{q-k} = 0$ pour $2 \le q \le n-1$. Donc $\gamma_k = b_k$, c.a.d $\alpha_k = -b_k$

On déduite que
$$g = \pm \sum_{k=0}^{n-1} b_k u^k = \pm w$$

5•
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} A = I_4 + N \text{ où } N = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 est nilpotente d'indice de nilpotence $p = 0$

4,
d'aprés ce qui précéde il y' a deux solution de l'équation $X^2 = A$ qui son
t $\pm B$ où $B = \sum_{k=0}^3 b_k N^k$

Les calculs donnent:

$$b_0 = 1, b_1 = \frac{1}{2}, b_2 = -\frac{1}{8}, b_3 = \frac{1}{16} \quad , B = \begin{pmatrix} 1 & \frac{1}{2} & \frac{-1}{8} & \frac{1}{16} \\ 0 & 1 & \frac{1}{2} & \frac{-1}{8} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

III

- 1. $\nu d = d\nu$, donc les sous espaces prores de d sont stables par ν (c'est du cours!!!) $\exists p \in \mathbb{N}^*, \nu^p = 0 \Rightarrow \nu^p_{\lambda} = 0$, donc ν_{λ} est nilpotent.
- 2. Soit $\lambda \in sp(d)$, alors ν_{λ} est nilpotent donc non injectif soit $x \in Ker\nu_{\lambda} \{0\}$, alors: $u(x) = d(x) + \nu(x) = \lambda x + \nu_{\lambda}(x) = \lambda x$, donc $\lambda \in sp(u)$. Comme $Sp(u) \subset \mathbb{R}_{+}^{*}$, alors $Sp(d) \subset \mathbb{R}_{+}^{*}$, donc 0 n'est pas une valeur propre de d et ,comme n est de dim finie alors d est inversible.
- 3. D'apré le cours ,d étant diagonalisable alors E est somme direct des sous espaces prpores de d,c.à.d: $E = \bigoplus_{i=1}^r E_{\lambda_i}$.

•
$$d(x) = \sum_{i=1}^{r} \lambda_i x_i$$

4. Soit
$$\delta \in \mathcal{L}(E)$$
 tq $\forall x = \sum_{i=1}^{r} x_i \in \bigoplus_{i=1}^{r} E_{\lambda_i} \delta(x) = \sum_{i=1}^{r} \sqrt{\lambda_i} x_i$, alors:

•
$$\delta^2 = d$$

• Soit
$$x = \sum_{i=1}^r x_i \in \bigoplus_{i=1}^r E_{\lambda_i}$$
 alors $\forall i \in [1, r], \nu(x_i) \in E_{\lambda_i}$; on a alors:

$$\nu\delta(x) = \sum_{i=1}^{r} \sqrt{\lambda_i} \nu(x_i) = \delta(\sum_{i=1}^{r} \nu(x_i)) = \delta\nu(x), \text{c.à.d.} \nu\delta = \delta\nu$$

5. •
$$det(\delta^2) = det(\delta)^2 = det(d)$$
, $det(d) \neq 0 \Rightarrow det(\delta \neq 0, donc \delta \in GL(E))$

•
$$\nu^p=0$$
 et $\nu et\delta^{-2}$ commutent ,
donc $(\nu\delta^{-2})^p=\nu^p\delta^{-2p}=0$, c.a.d que $\nu\delta^{-2}$ est nilpotent

6. On applique le résultat de la section II.B:

•
$$f = \nu \delta^{-2}$$
 endomorphismes nilopoptrent de E donc $w = \sum_{i=0}^{p-1} f^k$ vérifie:

$$w = P(f)$$
 où $P = \sum_{i=0}^{p-1} X^k \in \mathbb{R}_{n-1}[X]$ et $w^2 = I_E + f$.

•
$$v = \delta w$$
 vérifie $v^2 = \delta^2 w^2 = d + \nu = u$

1.
$$\forall X \in M_{n,1}(\mathbb{R}), ^t X^t M M X = ^t (MX) M X = ||MX||^2 \ge 0$$

- 2. (a) Si $A \in S_n^+$, soit $\lambda \in Sp_{\mathbb{R}}(A)$ alors $\exists X \neq 0, AX = \lambda X$, donc ${}^tXAX = \lambda^tXX_geq0$, or ${}^tXX = \|X\|^2 \geq 0$, donc $\lambda \geq 0$
 - Réciproquement suppososns $Sp_{\mathbb{R}}(A) \in \mathbb{R}_+$ alors: A étant une matrice symétrique réelle, elle est diagonalisable dans le groupe orthognal (c'est le théorème spectral!!!), c.a.d: $\exists P \in O_n(\mathbb{R}), ^tPAP = diag(\lambda_1, ..., \lambda_n) = D$ où $\lambda_1, ...\lambda_n$ sont les valeurs propres disticts ou non de A.

Soit
$$X \in M_{n,1}(\mathbb{R})$$
 et $Y = PX = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix}$, alors:
$${}^tXAX = {}^t(PX)D(PX) = {}^tYDY = \sum_{i=1}^n \lambda_i y_i^2 \ge 0$$

- (b) A est sem
lable à D ,
donc $tr(A) = tr(D) = \sum_{i=1}^{n} \lambda_i \ge 0$
 - Si $A \in GL(E) \cap S_n^+$ alors $det(A) = det(D) = \prod_{i=1}^n \lambda_i \neq 0$, donc $\forall i \in [1, n], \lambda_i > 0$
- 3. Avec les memes notations de la question 2, on a : $A = {}^t PDP = {}^t P\Delta P^t P\Delta P = B^2 \text{ où } \Delta = diag(\sqrt{\lambda_1},...,\sqrt{\lambda_i}) \text{ et } B = {}^t P\Delta P, \text{ de plus : } {}^t B = B \text{ et } Sp(B) = \{\sqrt{\lambda_1},...,\sqrt{\lambda_i}\} \subset \mathbb{R}_+, \text{donc } B \in S_n^+$
- 4. (a) question de cours facile
 - (b) 1ere methode: ${}^tXBCBX = {}^t(BX)C(BX)$, comme $C \in S_n^+$ alors: ${}^t(BX)C(BX) \ge 0$

• 2eme méthode:D'aprés la question 3, $C \in S_n^+ \Rightarrow \exists T \in S_n^+, C = T^2$, donc : $BCB = BTTB = {}^t(TB)(BT)$, la question 1 perme de conclure que $BCB \in S_n^+$ $tr(AC) = tr(B^2C) = tr(BBC) = tr(BCB) \ge 0$ car $BCB \in S_n^+$.

- (c) \bullet $A \in GL_n(\mathbb{R}) \Rightarrow B \in GL_n(E)$ $AC = B^2C \Rightarrow B^{-1}ACB = BCB$, donc AC est semblable à BCB, or $BCB \in S_n^+$, donc elle est digonalisable et par suite AC est diagnlisable.
 - Un contre exemlpe dans $M_2(\mathbb{R})$: $A = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \quad , C = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \text{ alors } A \in S_2^+ \text{ non invesible } , C \in S_2^+(\mathbb{R}) \quad , AC = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \text{ qui n'est pas diagonalsable dans } M_2(\mathbb{R}).$