# <u>Unit-2</u> Physical Layer

#### Transmission media

The physical layer is the basis of all networks. Nature imposes two fundamental limits on all channels, and these determine their bandwidth. These limits are the Nyquist limit, which deals with noiseless channels, and the Shannon limit, which deals with noisy channels.

Transmission media can be guided or unguided. The principal guided media are twisted pair, coaxial cable, and fiber optics. Unguided media include radio, microwaves, infrared, and lasers through the air. An up-and-coming transmission system is satellite communication, especially LEO systems.

## Twisted pair

Although the bandwidth characteristics of magnetic tape are excellent, the delay characteristics are poor. Transmission time is measured in minutes or hours, not milliseconds. For many applications an on-line connection is needed. One of the oldest and still most common transmission media is twisted pair. A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form, just like a DNA molecule. Twisting is done because two parallel wires constitute a fine antenna. When the wires are twisted, the waves from different twists cancel out, so the wire radiates less effectively.

The most common application of the twisted pair is the telephone system. Nearly all telephones are connected to the telephone company (telco) office by a twisted pair. Twisted pairs can run several kilometers without amplification, but for longer distances, repeaters are needed. When many twisted pairs run in parallel for a substantial distance, such as all the wires coming from an apartment building to the telephone company office, they are bundled together and encased in a protective sheath. The pairs in these bundles would interfere with one another if it were not for the twisting. In parts of the world where telephone lines run on poles above ground, it is common to see bundles several centimeters in diameter.

Twisted pairs can be used for transmitting either analog or digital signals. The bandwidth depends on the thickness of the wire and the distance traveled, but several megabits/sec can be achieved for a few kilometers in many cases. Due to their adequate performance and low cost, twisted pairs are widely used and are likely to remain so for years to come.

Twisted pair cabling comes in several varieties, two of which are important for computer networks. Category 3 twisted pairs consist of two insulated wires gently twisted together. Four such pairs are typically grouped in a plastic sheath to protect the wires and keep them together. Prior to about 1988, most office buildings had one category 3 cable running from a central wiring closet on each floor into each office. This scheme allowed up to four regular telephones or two multiline telephones in each office to connect to the telephone company equipment in the wiring closet.



#### coaxial cable

Another common transmission medium is the coaxial cable (known to its many friends as just "coax" and pronounced "co-ax"). It has better shielding than twisted pairs, so it can span longer distances at higher speeds. Two kinds of coaxial cable are widely used. One kind, 50-ohm cable, is commonly used when it is intended for digital transmission from the start. The other kind, 75-ohm cable, is commonly used for analog transmission and cable television but is becoming more important with the advent of Internet over cable. This distinction is based on historical, rather than technical, factors (e.g., early dipole antennas had an impedance of 300 ohms, and it was easy to use existing 4:1 impedance matching transformers).

A coaxial cable consists of a stiff copper wire as the core, surrounded by an insulating material. The insulator is encased by a cylindrical conductor, often as a closely-woven braided mesh. The outer conductor is covered in a protective plastic sheath. A cutaway view of a coaxial cable is shown in

The construction and shielding of the coaxial cable give it a good combination of high bandwidth and excellent noise immunity. The bandwidth possible depends on the cable quality, length, and signal-to-noise ratio of the data signal. Modern cables have a bandwidth of close to 1 GHz. Coaxial cables used to be widely used within the telephone system for long-distance lines but have now largely been replaced by fiber optics on long-haul routes. Coax is still widely used for cable television and metropolitan area networks, however.



## Fiber optics

In the race between computing and communication, communication won. The full implications of essentially infinite bandwidth (although not at zero cost) have not yet sunk in to a generation of computer scientists and engineers taught to think in terms of the low Nyquist and Shannon limits imposed by copper wire. The new conventional wisdom should be that all computers are hopelessly slow and that networks should try to avoid computation at all costs, no matter how much bandwidth that wastes. In this section we will study fiber optics to see how that transmission technology works.

An optical transmission system has three key components: the light source, the transmission medium, and the detector. Conventionally, a pulse of light indicates a 1 bit and the absence of light indicates a 0 bit. The transmission medium is an ultra-thin fiber of glass. The detector generates an electrical pulse when light falls on it. By attaching a light source to one end of an optical fiber and a detector to the other, we have a unidirectional data transmission system that accepts an electrical signal, converts and transmits it by light pulses, and then reconverts the output to an electrical signal at the receiving end.

This transmission system would leak light and be useless in practice except for an interesting principle of physics. When a light ray passes from one medium to another, for example, from fused silica to air, the ray is refracted (bent) at the silica/air boundary, as shown in <u>Figure</u>. Here we see a light ray incident on the boundary at an angle a emerging at an angle b. The amount of refraction depends on the properties of the two media (in particular, their indices of refraction). For angles of incidence above a certain critical value, the light is refracted back into the silica; none of it escapes into the air. Thus, a light ray incident at

or above the critical angle is trapped inside the fiber, as shown in <u>Figure</u>, and can propagate for many kilometers with virtually no loss.



Wireless transmission

#### Radio, microwave, infrared

Radio waves are easy to generate, can travel long distances, and can penetrate buildings easily, so they are widely used for communication, both indoors and outdoors. Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.

Sometimes omnidirectional radio is good, but sometimes it is bad. In the 1970s, General Motors decided to equip all its new Cadillacs with computer-controlled antilock brakes. When the driver stepped on the brake pedal, the computer pulsed the brakes on and off instead of locking them on hard. One fine day an Ohio Highway Patrolman began using his new mobile radio to call headquarters, and suddenly the Cadillac next to him began behaving like a bucking bronco. When the officer pulled the car over, the driver claimed that he had done nothing and that the car had gone crazy.

Eventually, a pattern began to emerge: Cadillacs would sometimes go berserk, but only on major highways in Ohio and then only when the Highway Patrol was watching. For a long, long time General Motors could not understand why Cadillacs worked fine in all the other states and also on minor roads in Ohio. Only after much searching did they discover that the Cadillac's wiring made a fine antenna for the frequency used by the Ohio Highway Patrol's new radio system.

The properties of radio waves are frequency dependent. At low frequencies, radio waves pass through obstacles well, but the power falls off sharply with distance from the source, roughly as  $1/r^2$  in air. At high frequencies, radio waves tend to travel in straight lines and bounce off obstacles. They are also absorbed by rain. At all frequencies, radio waves are subject to interference from motors and other electrical equipment.



Above 100 MHz, the waves travel in nearly straight lines and can therefore be narrowly focused. Concentrating all the energy into a small beam by means of a parabolic antenna (like the familiar satellite TV dish) gives a much higher signal-to-noise ratio, but the transmitting and receiving antennas must be accurately aligned with each other. In addition, this directionality allows multiple transmitters lined up in a row to communicate with multiple receivers in a row without interference, provided some minimum spacing rules are observed. Before fiber optics, for decades these microwaves formed the heart of the long-distance telephone transmission system. In fact, MCI, one of AT&T's first competitors after it was deregulated, built its entire system with microwave communications going from tower to tower tens of kilometers apart. Even the company's name reflected this (MCI stood for Microwave Communications, Inc.). MCI has since gone over to fiber and merged with WorldCom.

Since the microwaves travel in a straight line, if the towers are too far apart, the earth will get in the way (think about a San Francisco to Amsterdam link). Consequently, repeaters are needed periodically. The higher the towers are, the farther apart they can be. The distance between repeaters goes up very roughly with the square root of the tower height. For 100-meter-high towers, repeaters can be spaced 80 km apart.



Unguided infrared and millimeter waves are widely used for short-range communication. The remote controls used on televisions, VCRs, and stereos all use infrared communication. They are relatively directional, cheap, and easy to build but have a major drawback: they do not pass through solid objects (try standing between your remote control and your television and see if it still works). In general, as we go from long-wave radio toward visible light, the waves behave more and more like light and less and less like radio.

On the other hand, the fact that infrared waves do not pass through solid walls well is also a plus. It means that an infrared system in one room of a building will not interfere with a similar system in adjacent rooms or buildings: you cannot control your neighbor's television with your remote control. Furthermore, security of infrared systems against eavesdropping is better than that of radio systems precisely for this reason. Therefore, no government license is needed to operate an infrared system, in contrast to radio systems, which must be licensed outside the ISM bands. Infrared communication has a limited use on the desktop, for example, connecting notebook computers and printers, but it is not a major player in the communication game.

Analog Modulation

# **Amplitude Modulation:**

In amplitude modulation, two different amplitudes are used to represent 0 and 1, respectively. In frequency modulation, also known as frequency shift keying, two (or more) different tones are used. (The term keying is also widely used in the industry as a synonym for modulation.) In the simplest form of phase modulation, the carrier wave is systematically shifted 0 or 180 degrees at uniformly spaced intervals. A better scheme is to use shifts of 45, 135, 225, or 315 degrees to transmit 2 bits of information

per time interval. Also, always requiring a phase shift at the end of every time interval, makes it is easier for the receiver to recognize the boundaries of the time intervals.



## **Frequency Modulation:**

Frequency modulation, FM is widely used for a variety of radio communications applications. FM broadcasts on the VHF bands still provide exceptionally high quality audio, and FM is also used for a variety of forms of two way radio communications, and it is especially useful for mobile radio communications, being used in taxis, and many other forms of vehicle.

In view of its widespread use, frequency modulation, FM, is an important form of modulation, despite many forms of digital transmission being used these days.

FM, frequency modulation has been in use for many years. However its advantages were not immediately apparent. In the early days of wireless, it was thought that a narrower bandwidth was required to reduce noise and interference. As FM did not perform well under these conditions, AM predominated and FM was not used. However, Edwin Armstrong, an American engineer looked at the use of wideband FM for broadcasting and introduced the idea against the trend of the thinking of the time.

Since its first introduction the use of frequency modulation, FM has grown enormously. Now wideband FM is still regarded as a very high quality transmission medium for high quality broadcasting. FM, frequency modulation is also widely used for communications where it is resilient to variations in signal strength.

## **Phase Modulation:**

Phase modulation is a form of modulation that can be used for radio signals used for a variety of radio communications applications. As will be seen later, phase modulation, and frequency modulation are closely linked together and it is often used in many transmitters and receivers used for a variety of radio communications applications from two way radio communications links, mobile radio communications and even maritime mobile radio communications.

Phase modulation is also the basis for many forms of digital modulation based around phase shift keying, PSK which is a form of phase modulation. As various forms of phase shift keying are the favoured form of modulation for digital or data transmissions, this makes phase modulation particularly important.

#### Forms of phase modulation

Although phase modulation is used for some analogue transmissions, it is far more widely used as a digital form of modulation where it switches between different phases. This is known as phase shift keying, PSK, and there are many flavours of this. It is even possible to combine phase shift keying and amplitude keying in a form of modulation known as quadrature amplitude modulation, QAM.

The list below gives some of the forms of phase shift keying that are used:

- PM Phase Modulation
- PSK Phase Shift Keying
- BPSK Binary Phase Shift Keying
- QPSK Quadrature Phase Shift Keying

Switching

#### **Circuit switching:**

When you or your computer places a telephone call, the switching equipment within the telephone system seeks out a physical path all the way from your telephone to the receiver's telephone. This technique is called circuit switching and is shown schematically in <u>Figure</u>. Each of the six rectangles represents a carrier switching office (end office, toll office, etc.). In this example, each office has three incoming lines and three outgoing lines. When a call passes through a switching office, a physical connection is (conceptually) established between the line on which the call came in and one of the output lines, as shown by the dotted lines.



#### Message Switching

An alternative switching strategy is message switching, illustrated in <u>Fig. 2-39(b)</u>. When this form of switching is used, no physical path is established in advance between sender and receiver. Instead, when the sender has a block of data to be sent, it is stored in the first switching office (i.e., router) and then

forwarded later, one hop at a time. Each block is received in its entirety, inspected for errors, and then retransmitted.

The first electromechanical telecommunication systems used message switching, namely, for telegrams. The message was punched on paper tape (off-line) at the sending office, and then read in and transmitted over a communication line to the next office along the way, where it was punched out on paper tape. An operator there tore the tape off and read it in on one of the many tape readers, one reader per outgoing trunk. Such a switching office was called a torn tape office. Paper tape is long gone and message switching is not used any more, so we will not discuss it further in this book.

## Packet Switching

With message switching, there is no limit at all on block size, which means that routers (in a modern system) must have disks to buffer long blocks. It also means that a single block can tie up a router-router line for minutes, rendering message switching useless for interactive traffic. Packet-switching networks place a tight upper limit on block size, allowing packets to be buffered in router main memory instead of on disk. By making sure that no user can monopolize any transmission line very long (milliseconds), packet-switching networks are well suited for handling interactive traffic. A further advantage of packet switching over message switching is shown in <u>Figure</u>: the first packet of a multipacket message can be forwarded before the second one has fully arrived, reducing delay and improving throughput. For these reasons, computer networks are usually packet switched, occasionally circuit switched, but never message switched.

Circuit switching and packet switching differ in many respects. To start with, circuit switching requires that a circuit be set up end to end before communication begins. Packet switching does not require any advance setup. The first packet can just be sent as soon as it is available.



Analog modulation

#### **Amplitude Modulation**

In amplitude modulation, two different amplitudes are used to represent 0 and 1, respectively.

## **Frequency Modulation**

In frequency modulation, also known as frequency shift keying, two (or more) different tones are used. (The term keying is also widely used in the industry as a synonym for modulation.) In the simplest form

of phase modulation, the carrier wave is systematically shifted 0 or 180 degrees at uniformly spaced intervals. A better scheme is to use shifts of 45, 135, 225, or 315 degrees to transmit 2 bits of information per time interval. Also, always requiring a phase shift at the end of every time interval, makes it is easier for the receiver to recognize the boundaries of the time intervals.

#### **Phase Modulation**

In the simplest form of phase modulation, the carrier wave is systematically shifted 0 or 180 degrees at uniformly spaced intervals. A better scheme is to use shifts of 45, 135, 225, or 315 degrees to transmit 2 bits of information per time interval. Also, always requiring a phase shift at the end of every time interval, makes it is easier for the receiver to recognize the boundaries of the time intervals.



Digital modulation

## **Frequency Shift Keying**

The radio layer moves the bits from master to slave, or vice versa. It is a low-power system with a range of 10 meters operating in the 2.4-GHz ISM band. The band is divided into 79 channels of 1 MHz each. Modulation is frequency shift keying, with 1 bit per Hz giving a gross data rate of 1 Mbps, but much of this spectrum is consumed by overhead. To allocate the channels fairly, frequency hopping spread spectrum is used with 1600 hops/sec and a dwell time of 625 µsec. All the nodes in a piconet hop simultaneously, with the master dictating the hop sequence.

To get around the problems associated with DC signaling, especially on telephone lines, AC signaling is used. A continuous tone in the 1000 to 2000-Hz range, called a sine wave carrier, is introduced. Its amplitude, frequency, or phase can be modulated to transmit information. In amplitude modulation, two different amplitudes are used to represent 0 and 1, respectively. In frequency modulation, also known as frequency shift keying, two (or more) different tones are used. (The term keying is also widely used in the industry as a synonym for modulation.) In the simplest form of phase modulation, the carrier wave is

systematically shifted 0 or 180 degrees at uniformly spaced intervals. A better scheme is to use shifts of 45, 135, 225, or 315 degrees to transmit 2 bits of information per time interval. Also, always requiring a phase shift at the end of every time interval, makes it is easier for the receiver to recognize the boundaries of the time intervals.

## **Phase Shift Keying**

The number of samples per second is measured in baud. During each baud, one symbol is sent. Thus, an n-baud line transmits n symbols/sec. For example, a 2400-baud line sends one symbol about every 416.667 µsec. If the symbol consists of 0 volts for a logical 0 and 1 volt for a logical 1, the bit rate is 2400 bps. If, however, the voltages 0, 1, 2, and 3 volts are used, every symbol consists of 2 bits, so a 2400-baud line can transmit 2400 symbols/sec at a data rate of 4800 bps. Similarly, with four possible phase shifts, there are also 2 bits/symbol, so again here the bit rate is twice the baud rate. The latter technique is widely used and called QPSK (Quadrature Phase Shift Keying)