```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

df=pd.read_csv('adult.csv')
df.head(10)
```

С→ age workclass fnlwgt education education.num marital.status occupation rela 77053 0 90 HS-grad 9 Widowed No Exec-1 82 Private 132870 HS-grad 9 Widowed No managerial Some-? 186061 2 66 10 Widowed ? ι college Machine-54 140359 7th-8th 4 Divorced Private ι op-inspct Prof-Some-41 Private 264663 10 Separated college specialty Other-5 34 Private 216864 HS-grad 9 Divorced l service Adm-38 Private 150601 10th 6 Separated 6 ι clerical Prof-74 State-gov 88638 Doctorate 16 Never-married Oth specialty Prof-Federal-422013 68 HS-grad 9 Divorced No specialty gov Some-41 Private 70037 10 Never-married Craft-repair college

```
print("total rows:", df.shape[0])
dataset_row=df.shape[0]
print("total columns:", df.shape[1])
print("\n features:\n", df.columns.tolist())
print("\nmissing values:", df.isnull().sum().values.sum())
print("\n unique values:\n", df.nunique())
     total rows: 32561
     total columns: 15
      features:
      ['age', 'workclass', 'fnlwgt', 'education', 'education.num', 'marital.status', 'occupation', 'relationship', 'race', 'sex', 'capit
     missing values: 0
      unique values:
      age
                           73
     workclass
                       21648
     fnlwgt
     education
                          16
     education.num
                          16
     marital.status
     occupation
                          15
     relationship
                           6
     race
                           5
     sex
                           2
     capital.gain
                         119
     capital.loss
                          92
     hours.per.week
     native.country
                          42
     income
                           2
     dtype: int64
    4
```

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns): Column Non-Null Count Dtype # -------0 age 32561 non-null int64 1 workclass 32561 non-null object

2 fnlwgt 32561 non-null int64 3 education 32561 non-null object

```
education.num
                   32561 non-null int64
5
   marital.status 32561 non-null object
6
   occupation
                   32561 non-null object
   relationship
                   32561 non-null object
8
                   32561 non-null object
   race
                   32561 non-null object
   sex
10
  capital.gain
                   32561 non-null
                                  int64
11 capital.loss
                   32561 non-null int64
12 hours.per.week 32561 non-null int64
13 native.country 32561 non-null object
14 income
                   32561 non-null object
```

dtypes: int64(6), object(9)
memory usage: 3.7+ MB

df.describe()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week
count	32561.000000	3.256100e+04	32561.000000	32561.000000	32561.000000	32561.000000
mean	38.581647	1.897784e+05	10.080679	1077.648844	87.303830	40.437456
std	13.640433	1.055500e+05	2.572720	7385.292085	402.960219	12.347429
min	17.000000	1.228500e+04	1.000000	0.000000	0.000000	1.000000
25%	28.000000	1.178270e+05	9.000000	0.000000	0.000000	40.000000
50%	37.000000	1.783560e+05	10.000000	0.000000	0.000000	40.000000
75%	48.000000	2.370510e+05	12.000000	0.000000	0.000000	45.000000
max	90.000000	1.484705e+06	16.000000	99999.000000	4356.000000	99.000000

df_missing=(df=='?').sum()
print(df_missing)

age 0 workclass 1836 fnlwgt a education 0 education.num 0 marital.status 0 occupation relationship race 0 sex capital.gain 0 capital.loss 0 hours.per.week a native.country 583 income 0 dtype: int64

#droping row having missing values from dataset
df= df[df['workclass']!='?']
df= df[df['occupation']!='?']
df= df[df['native.country']!='?']
df.head()

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	ca
1	82	Private	132870	HS-grad	9	Widowed	Exec-managerial	Not-in-family	White	Female	0	
3	54	Private	140359	7th-8th	4	Divorced	Machine-op-inspct	Unmarried	White	Female	0	
4	41	Private	264663	Some-college	10	Separated	Prof-specialty	Own-child	White	Female	0	
5	34	Private	216864	HS-grad	9	Divorced	Other-service	Unmarried	White	Female	0	
6	38	Private	150601	10th	6	Separated	Adm-clerical	Unmarried	White	Male	0	

age 0
workclass 0
fnlwgt 0
education 0
education.num 0

marital.status occupation relationship race sex 0 capital.gain 0 capital.loss 0 hours.per.week 0 native.country 0 income 0 dtype: int64

print("total rows after droping rows:", df.shape[0])
print("numbers of rows drop:",dataset_row- df.shape[0])

total rows after droping rows: 30162 numbers of rows drop: 2399

Data preprocessing

from sklearn import preprocessing

df_categorical= df.select_dtypes(include=['object'])
df_categorical.head()

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	income	
1	Private	HS-grad	Widowed	Exec-managerial	Not-in-family	White	Female	United-States	<=50K	th
3	Private	7th-8th	Divorced	Machine-op-inspct	Unmarried	White	Female	United-States	<=50K	
4	Private	Some-college	Separated	Prof-specialty	Own-child	White	Female	United-States	<=50K	
5	Private	HS-grad	Divorced	Other-service	Unmarried	White	Female	United-States	<=50K	
6	Private	10th	Separated	Adm-clerical	Unmarried	White	Male	United-States	<=50K	

le=preprocessing.LabelEncoder()
df_categorical= df_categorical.apply(le.fit_transform)
df_categorical.head()

	workclass	education	marital.status	occupation	relationship	race	sex	native.country	income	
1	2	11	6	3	1	4	0	38	0	ıl.
3	2	5	0	6	4	4	0	38	0	
4	2	15	5	9	3	4	0	38	0	
5	2	11	0	7	4	4	0	38	0	
6	2	0	5	0	4	4	1	38	0	

df=df.drop(df_categorical.columns,axis=1)
df=pd.concat([df,df_categorical], axis=1)
df['income']=df['income'].astype('category')
df.head()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	education	marital.status	occupation	relatio
1	82	132870	9	0	4356	18	2	11	6	3	
3	54	140359	4	0	3900	40	2	5	0	6	
4	41	264663	10	0	3900	40	2	15	5	9	
5	34	216864	9	0	3770	45	2	11	0	7	
6	38	150601	6	0	3770	40	2	0	5	0	

df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 30162 entries, 1 to 32560
Data columns (total 15 columns):

	COTO / COCOT	-5 CO-LUMINIS / .	
#	Column	Non-Null Count	Dtype
0	age	30162 non-null	int64
1	fnlwgt	30162 non-null	int64
2	education.num	30162 non-null	int64
3	capital.gain	30162 non-null	int64
4	capital.loss	30162 non-null	int64
5	hours.per.week	30162 non-null	int64
6	workclass	30162 non-null	int64

```
education
                    30162 non-null
8
   marital.status
                    30162 non-null
                                    int64
9
   occupation
                    30162 non-null
                                    int64
10
   relationship
                    30162 non-null
                                    int64
11
                    30162 non-null
                                    int64
   race
                    30162 non-null
                                    int64
12
   sex
                                    int64
13
   native.country
                    30162 non-null
                    30162 non-null
14 income
                                    category
```

 ${\tt dtypes: category(1), int64(14)}$

memory usage: 3.5 MB

Visualization

sns.heatmap(df.corr(), cmap='RdGy')

input-20-33c73b4a87c1>:1: FutureWarning: The default value of numeric_only in DataFrame.corr is deprecated. In a future ver tmap(df.corr(), cmap='RdGy')

Splitting dataset

 ${\tt from \ sklearn.model_selection \ import \ train_test_split}$

X=df.drop('income', axis=1)
X=X.drop('sex', axis=1)
y=df['income']
X.head()

	age	fnlwgt	education.num	capital.gain	capital.loss	hours.per.week	workclass	education	marital.status	occupation	relation
1	82	132870	9	0	4356	18	2	11	6	3	
3	54	140359	4	0	3900	40	2	5	0	6	
4	41	264663	10	0	3900	40	2	15	5	9	
5	34	216864	9	0	3770	45	2	11	0	7	
6	38	150601	6	0	3770	40	2	0	5	0	

y.head()

Name: income, dtype: category Categories (2, int64): [0, 1]

```
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.20)
```

Applying RandomForest Algorithm

confusion matrix

from sklearn.ensemble import RandomForestClassifier

dt_default= RandomForestClassifier(max_depth=5)
dt_default.fit(X_train, y_train)

```
RandomForestClassifier
RandomForestClassifier(max_depth=5)
```

from sklearn.metrics import classification_report, confusion_matrix,accuracy_score

```
y_pred_default=dt_default.predict(X_test)
print("confusion matrix\n", confusion_matrix(y_test,y_pred_default))
print(classification_report(y_test,y_pred_default))
```

```
[[4319 181]
[ 731 802]]
             precision recall f1-score support
          0
                  0.86
                         0.96
                                    0.90
                                              4500
          1
                  0.82
                        0.52
                                    0.64
                                              1533
   accuracy
                                    0.85
                                              6033
  macro avg
                  0.84
                           0.74
                                     0.77
                                              6033
weighted avg
                 0.85
                           0.85
                                    0.84
                                              6033
```

print("accuracy score:", accuracy_score(y_test,y_pred_default))

accuracy score: 0.8488314271506713