Lista nr 7 z matematyki dyskretnej

1. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

$$s_n = a_0 + a_1 + a_2 + \ldots + a_n$$

 $Wskaz \acute{o}wka$: Trzeba użyć funkcji tworzącej $\frac{1}{1-x}$.

- 2. Wyznacz funkcje tworzące ciągów:
 - (a) $a_n = n^2$
 - (b) $a_n = n^3$

Wskazówka: Przyda się funkcja tworząca $\frac{1}{1-x}$.

3. (+) Wyznacz funkcję tworzącą ciągu: $\binom{n+k}{k}$.

 $Wskaz \acute{o}wka$: Odpowiednia potęga funkcji $\frac{1}{1-x}$

- 4. Oblicz funkcje tworzące ciągów:
 - (a) $a_n = n$ dla parzystych n i $a_n = 1/n$ dla nieparzystych n
 - (b) $H_n = 1 + 1/2 + \ldots + 1/n \ (H_0 = 0).$
- 5. Niech A(x) będzie funkcją tworzącą ciągu a_n . Znajdź funkcję tworzącą ciągu b_n postaci $(a_0,0,0,a_3,0,0,a_6,\ldots)$, czyli takiego, że dla każdego naturalnego k, $b_{3k}=a_{3k}$ oraz $b_{3k+1}=b_{3k+2}=0$.

Wskazówka: Użyj zespolonych pierwiastków stopnia 3 z 1.

6. Niech A(x) będzie funkcją tworzącą ciągu a_n . Podaj postać funkcji tworzącej dla ciągu

 $(a_k, a_{k+1}, a_{k+2}, \ldots)$. Tzn. szukamy funkcji tworzącej dla ciągu $< b_n > = E^k < a_n >$.

- 7. Podaj postać funkcji tworzącej dla liczby podziałów liczby naturalnej n (czyli rozkładów liczby n na sumę składników naturalnych, gdy rozkładów różniących się kolejnością nie uważamy za różne):
 - (a) na dowolne składniki,
 - (b) na różne składniki nieparzyste,

- (c) na składniki mniejsze od m,
- (d) na różne potęgi liczby 2.
- 8. (+) Niech p_n oznacza liczbę podziałów liczby naturalnej n, w których każdy składnik nieparzysty występuje nieparzystą liczbę razy a każdy parzysty parzystą, np. $p_4 = 2$, bo interesujące nas podziały to 1 + 3 i 2 + 2. Podaj funkcję tworząca dla ciągu p_n .
- 9. Sprawdź prawdziwość następujących relacji:

$$n^2 \in O(n^3); \ n^3 \in O(n^{2.99}); \ 2^{n+1} \in O(2^n); \ (n+1)! \in O(n!); \ \log_2 n \in O(\sqrt{n}); \ \sqrt{n} \in O(\log_2 n).$$

- 10. Niech $f, g, h: N \to R$. Pokaż,że:
 - (a) jeśli f(n) = O(g(n)) i g(n) = O(h(n)), to f(n) = O(h(n)),
 - (b) f(n) = O(g(n)) wtedy i tylko wtedy, gdy $g(n) = \Omega(f(n))$,
 - (c) $f(n) = \Theta(g(n))$ wtedy i tylko wtedy, gdy $g(n) = \Theta(f(n))$.
- 11. Niech f i g będą dowolnymi wielomianami o stopniach k i l takimi, że k < l.

Pokaż, że wówczas f(n) = o(g(n)).

Hiperpłaszczyzna w R^n zadana jest wzorem $a_1x_1+a_2x_2+\ldots+a_nx_n=b$, gdzie przynajmniej jedno a_i jest niezerowe. Na ile maksymalnie obszarów można podzielić n-wymiarową przestrzeń R^n za pomocą m hiperpłaszczyzn? Wyprowadź rozwiązanie za pomocą odpowiedniej zależności rekurencyjnej.