Formelsammlung Mathematik

November 2016

Dieses Buch ist unter der Lizenz Creative Commons CC0 veröffentlicht.

0 1 2 3	0000 0001 0010 0011	0 1 2 3	0 1 2 3
4	0100	4	4
5	0101	5	5
6	0110	6	6
7	0111	7	7
8	1000	8	10
9	1001	9	11
10	1010	A	12
11	1011	B	13
12	1100	C	14
13	1101	D	15
14	1110	E	16
15	1111	F	17

$$\begin{split} &\sin(-x) = -\sin x \\ &\cos(-x) = \cos x \end{split}$$

$$&\sin(x+y) = \sin x \cos y + \cos x \sin y \\ &\sin(x-y) = \sin x \cos y - \cos x \sin y \\ &\cos(x+y) = \cos x \cos y - \sin x \sin y \\ &\cos(x-y) = \cos x \cos y + \sin x \sin y \end{split}$$

$$&e^{\mathrm{i}\varphi} = \cos \varphi + \mathrm{i}\sin \varphi$$

Polarkoordinaten

$$\begin{aligned} x &= r \cos \varphi \\ y &= r \sin \varphi \\ \varphi &\in (-\pi, \pi] \\ \det J &= r \end{aligned}$$

Zylinderkoordinaten

$$x = r_{xy} \cos \varphi$$
$$y = r_{xy} \sin \varphi$$
$$z = z$$
$$\det J = r_{xy}$$

Kugelkoordinaten

$$\begin{split} x &= r \sin \theta \, \cos \varphi \\ y &= r \sin \theta \, \sin \varphi \\ z &= r \cos \theta \\ \varphi &\in (-\pi, \pi], \; \theta \in [0, \pi] \\ \det J &= r^2 \sin \theta \end{split}$$

$$\theta = \beta - \pi/2$$

$$\beta \in [-\pi/2, \pi/2]$$

$$\cos \theta = \sin \beta$$

$$\sin \theta = \cos \beta$$

Inhaltsverzeichnis

1 Grundlagen			1.3.1 Definitionen
1.1 Komplexe Zahlen			1.3.2 Boolesche Algebra
	1.1.1 Rechenoperationen	4	1.3.3 Teilmengenrelation
	1.1.2 Betrag	4	1.3.4 Induktive Mengen
	1.1.3 Konjugation	4	2 Anhang
1.2	Logik	4	2.1 Mathematische Konstanten
	1.2.1 Aussagenlogik	4	2.2 Physikalische Konstanten
	1.2.2 Prädikatenlogik	5	2.3 Griechisches Alphabet
1.3			2.4 Frakturbuchstaben

Grundlagen 1

1.1 Komplexe Zahlen

1.1.1 Rechenoperationen

$$\frac{z_1}{z_2} = \frac{z_1 \overline{z}_2}{z_2 \overline{z}_2} = \frac{z_1 \overline{z}_2}{|z_2|^2},$$

$$\frac{1}{z_2} = \frac{\overline{z}}{z_2} = \frac{\overline{z}}{|z_2|^2}.$$

$$\frac{z_2}{z} = \frac{z_2 z_2}{z \overline{z}} = \frac{|z_2|^2}{|z|^2}.$$

$$(1.2)$$

1.1.2 **Betrag**

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$|z_1 z_2| = |z_1| |z_2|,$$

 $z_2 \neq 0 \implies \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|},$

$$z\,\overline{z}=|z|^2.$$

1.1.3 Konjugation

Für alle $z_1, z_2 \in \mathbb{C}$ gilt:

$$\overline{z_1+z_2}=\overline{z}_1+\overline{z}_2, \qquad \overline{z_1-z_2}=\overline{z}_1-\overline{z}_2,$$

$$\overline{z_1 z_2} = \overline{z}_1 \, \overline{z}_2, \qquad z_2 \neq 0 \implies \overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z}_1}{\overline{z}_2},$$

$$\overline{\overline{z}} = z, \qquad |\overline{z}| = |z|, \qquad z\,\overline{z} = |z|^2,$$

$$\operatorname{Re}(z) = \frac{z + \overline{z}}{2}, \quad \operatorname{Im}(z) = \frac{z - \overline{z}}{2i},$$

$$\overline{\cos(z)} = \cos(\overline{z}), \qquad \overline{\sin(z)} = \sin(\overline{z}),$$

$$\overline{\exp(z)} = \exp(\overline{z}).$$

1.2 Logik

1.2.1 Aussagenlogik

1.2.1.1 **Boolesche Algebra**

Distributivgesetze:

$$A \lor (B \land C) = (A \lor B) \land (A \lor C),$$

$$A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C).$$

1.2.1.2 Zweistellige Funktionen

Es gibt 16 zweistellige boolesche Funktionen.

(1.4)1.2.1.3 Darstellung mit Negation, Konjunktion und Disjunktion (1.5)

$$A \Rightarrow B \iff \overline{A} \lor B,\tag{1.14}$$

$$(A \Leftrightarrow B) \iff (\overline{A} \wedge \overline{B}) \vee (A \wedge B), \tag{1.15}$$

$$A \oplus B \iff (\overline{A} \wedge B) \vee (A \wedge \overline{B}).$$
 (1.16)

(1.6)1.2.1.4 Tautologien

Modus ponens:

(1.1)

(1.3)

$$(1.8) (A \Rightarrow B) \land A \implies B (1.17)$$

Modus tollens: (1.9)

$$(1.10) (A \Rightarrow B) \wedge \overline{B} \implies \overline{A} (1.18)$$

Modus tollendo ponens: (1.11)

$$(A \lor B) \land \overline{A} \implies B \tag{1.19}$$

Modus ponendo tollens:

$$\overline{A \wedge B} \wedge A \implies \overline{B} \tag{1.20}$$

Kontraposition:

$$A \Rightarrow B \iff \overline{B} \Rightarrow \overline{A}$$
 (1.21)

Beweis durch Widerspruch:

$$(\overline{A} \Rightarrow B \wedge \overline{B}) \implies A \tag{1.22}$$

Zerlegung einer Äquivalenz: (1.12)

$$(1.13) (A \Leftrightarrow B) \iff (A \Rightarrow B) \land (B \Rightarrow A) (1.23)$$

Kettenschluss:

$$(A \Rightarrow B) \land (B \Rightarrow C) \implies (A \Rightarrow C)$$
 (1.24)

Ringschluss:

$$\begin{array}{l} (A\Rightarrow B) \wedge (B\Rightarrow C) \wedge (C\Rightarrow A) \\ \Longrightarrow (A\Leftrightarrow B) \wedge (A\Leftrightarrow C) \wedge (B\Leftrightarrow C) \end{array}$$

Ringschluss, allgemein:

$$(A_1 \Rightarrow A_2) \land \dots \land (A_{n-1} \Rightarrow A_n) \land (A_n \Rightarrow A_1)$$

$$\Rightarrow \forall i, j [A_i \Leftrightarrow A_j]$$

$$(1.26)$$

1.2. LOGIK 5

Tabelle 1.1: Rechenoperationen

Name	Operation	Polarform	kartesische Form
Identität	z	$= r e^{i\varphi}$	= a + bi
Addition	$z_1 + z_2$		$=(a_1+a_2)+(b_1+b_2)i$
Subtraktion	$z_1 - z_2$		$=(a_1-a_2)+(b_1-b_2)i$
Multiplikation	$z_{1}z_{2}$	$= r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$	$= (a_1a_2 - b_1b_2) + (a_1b_2 + a_2b_1)i$
Division	$\frac{z_1}{z_2}$	$= \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)}$	$= \frac{a_1a_2 + b_1b_2}{a_2^2 + b_2^2} + \frac{a_2b_1 - a_1b_2}{a_2^2 + b_2^2}i$
Kehrwert	$\frac{1}{z}$	$= \frac{1}{r} e^{-i\varphi}$	$=\frac{\ddot{a}}{a^2+b^2}-\frac{b}{a^2+b^2}$ i
Realteil	$\operatorname{Re}(z)$	$=\cos\varphi$	=a
Imaginärteil	$\operatorname{Im}(z)$	$=\sin\varphi$	= b
Konjugation	\overline{z}	$= r e^{-\varphi i}$	=a-bi
Betrag		= r	$=\sqrt{a^2+b^2}$
Argument	arg(z)	$=\varphi$	$= s(b)\arccos\left(\frac{a}{r}\right)$

$$s(b) := \begin{cases} +1 & \text{if } b \ge 0, \\ -1 & \text{if } b < 0 \end{cases}$$

Tabelle 1.2: Boolesche Algebra

Disjunktion	Konjunktion	
$A \lor A \Leftrightarrow A$	$A \wedge A \Leftrightarrow A$	Idempotenzgesetze
$A \lor 0 \Leftrightarrow A$	$A \wedge 1 \Leftrightarrow A$	Neutralitätsgesetze
$A \lor 1 \Leftrightarrow 1$	$A \wedge 0 = 0$	Extremalgesetze
$A \vee \overline{A} \Leftrightarrow 1$	$A \wedge \overline{A} \Leftrightarrow 0$	Komplementärgesetze
	'	
$A \lor B \Leftrightarrow B \lor A$	$A \wedge B \Leftrightarrow B \wedge A$	Kommutativgesetze
$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$	Assoziativgesetze
$\overline{A \vee B} \Leftrightarrow \overline{A} \wedge \overline{B}$	$\overline{A \wedge B} \Leftrightarrow \overline{A} \vee \overline{B}$	De Morgansche Regeln
$A \lor (A \land B) \Leftrightarrow A$	$A \wedge (A \vee B) \Leftrightarrow A$	Absorptionsgesetze

1.2.2	Prädikatenlogik		Aquivalenzen:	
			$\forall x \forall y [P(x,y)] \iff \forall y \forall x [P(x,y)],$	(1.33)
			$\exists x \exists y [P(x,y)] \iff \exists y \exists x [P(x,y)],$	(1.34)
1.2.2.1	Rechenregeln		$\forall x [P(x) \land Q(x)] \iff \forall x [P(x)] \land \forall x [Q(x)],$	(1.35)
			$\exists x [P(x) \lor Q(x)] \iff \forall x [P(x)] \lor \forall x [Q(x)],$	(1.36)
			$\forall x[P(x) \Rightarrow Q] \iff \exists x[P(x)] \Rightarrow Q,$	(1.37)
Verneim	ing (De Morgansche Regeln):		$\forall x[P \Rightarrow Q(x)] \iff P \Rightarrow \forall x[Q(x)],$	(1.38)
	$\overline{P(x)} \iff \exists x [\overline{P(x)}],$	(1.27)	$\exists x [P(x) \Rightarrow Q(x)] \iff \forall x [P(x)] \Rightarrow \exists x [Q(x)].$	(1.39)
	$\overline{P(x)}$ $\iff \forall x [\overline{P(x)}].$	(1.28)	Implikationen:	
-	$(x) \longrightarrow (x[x(x)])$	(1.20)	$\exists x \forall y [P(x,y)] \implies \forall y \exists x [P(x,y)],$	(1.40)

Verallgemeinerte Distributivgesetze:

thigementer to Distributivg eserve:
$$\forall x[P(x)] \lor \forall x[Q(x)] \implies \forall x[P(x) \lor Q(x)], \tag{1.41}$$

$$P \lor \forall x[Q(x)] \iff \forall x[P \lor Q(x)], \tag{1.29}$$

$$\exists x[P(x) \land Q(x)] \implies \exists x[P(x)] \land \exists x[Q(x)], \tag{1.42}$$

 $P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$ $(1.30) \quad \forall x [P(x) \Rightarrow Q(x)] \implies (\forall x [P(x)] \Rightarrow \forall x [Q(x)]),$

$$P \wedge \exists x [Q(x)] \iff \exists x [P \wedge Q(x)].$$
 (1.30) $\forall x [P(x) \Rightarrow Q(x)] \implies (\forall x [P(x)] \Rightarrow \forall x [Q(x)]),$ (1.43) Verallgemeinerte Idempotenzgesetze: $\forall x [P(x) \Leftrightarrow Q(x)] \implies (\forall x [P(x)] \Leftrightarrow \forall x [Q(x)]).$ (1.44)

 $\exists x \in M [P] \iff (M \neq \{\}) \land P$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 0 & \text{wenn } M = \{\}. \end{cases}$$

$$\forall x \in M [P] \iff (M = \{\}) \lor P$$

$$\iff \begin{cases} P & \text{wenn } M \neq \{\}, \\ 1 & \text{wenn } M = \{\}. \end{cases}$$

(1.31) **1.2.2.2 Endliche Mengen**

(1.32) Sei
$$M = \{x_1, \dots, x_n\}$$
. Es gilt:

$$\forall x \in M [P(x)] \iff P(x_1) \land \dots \land P(x_n), \qquad (1.45)$$

$$\exists x \in M [P(x)] \iff P(x_1) \lor \dots \lor P(x_n). \qquad (1.46)$$

1.2.2.3 Beschränkte Quantifizierung

$$\forall x \in M [P(x)] :\iff \forall x [x \notin M \lor P(x)] \\ \iff \forall x [x \in M \Rightarrow P(x)],$$
 (1.47)

$$\exists x \in M [P(x)] :\iff \exists x [x \in M \land P(x)], \tag{1.48}$$

$$\forall x \in M \backslash N [P(x)] \iff \forall x [x \notin N \Rightarrow P(x)]. \quad (1.49)$$

1.2.2.4 Quantifizierung über Produktmengen

$$\forall (x,y) [P(x,y)] \iff \forall x \forall y [P(x,y)], \tag{1.50}$$

$$\exists (x,y) [P(x,y)] \iff \exists x \exists y [P(x,y)]. \tag{1.51}$$

Analog gilt

$$\forall (x, y, z) \iff \forall x \forall y \forall z, \tag{1.52}$$

$$\exists (x, y, z) \iff \exists x \exists y \exists z \tag{1.53}$$

usw.

1.2.2.5 Alternative Darstellung

Sei $P\colon G\to\{0,1\}$ und $M\subseteq G$. Mit P(M) ist die Bildmenge von P bezüglich M gemeint. Es gilt

$$\forall x \in M [P(x)] \iff P(M) = \{1\}$$

$$\iff M \subseteq \{x \in G \mid P(x)\}$$
(1.54)

und

$$\exists x \in M [P(x)] \iff \{1\} \subseteq P(M) \\ \iff M \cap \{x \in G \mid P(x)\} \neq \{\}.$$
 (1.55)

1.2.2.6 Eindeutigkeit

Quantor für eindeutige Existenz:

$$\exists! x [P(x)] :\iff \exists x [P(x) \land \forall y [P(y) \Rightarrow x = y]] \iff \exists x [P(x)] \land \forall x \forall y [P(x) \land P(y) \Rightarrow x = y].$$
 (1.56)

1.3 Mengenlehre

1.3.1 Definitionen

Teilmengenrelation:

$$A \subseteq B :\iff \forall x [x \in A \implies x \in B].$$
 (1.57)

Gleichheit:

$$A = B :\iff \forall x [x \in A \iff x \in B]. \tag{1.58}$$

Vereinigungsmenge:

$$A \cup B := \{ x \mid x \in A \lor x \in B \}. \tag{1.59}$$

Schnittmenge:

$$A \cap B := \{ x \mid x \in A \land x \in B \}. \tag{1.60}$$

Differenzmenge:

$$A \setminus B := \{ x \mid x \in A \land x \notin B \}. \tag{1.61}$$

Symmetrische Differenz:

$$A\triangle B := \{x \mid x \in A \oplus x \in B\}. \tag{1.62}$$

1.3.2 Boolesche Algebra

Distributivgesetze:

$$M \cup (A \cap B) = (M \cup A) \cap (M \cup B), \tag{1.63}$$

$$M \cap (A \cup B) = (M \cap A) \cup (M \cap B). \tag{1.64}$$

1.3.3 Teilmengenrelation

Zerlegung der Gleichheit:

$$A = B \iff A \subseteq B \land B \subseteq A. \tag{1.65}$$

Umschreibung der Teilmengenrelation:

$$A \subseteq B \iff A \cap B = A$$

$$\iff A \cup B = B$$

$$\iff A \setminus B = \{\}.$$
(1.66)

Kontraposition:

$$A \subseteq B = \overline{B} \subseteq \overline{A}. \tag{1.67}$$

1.3.4 Induktive Mengen

Mengentheoretisches Modell der natürlichen Zahlen:

$$0 := \{\}, \quad 1 := \{0\}, \quad 2 := \{0, 1\}, 3 := \{0, 1, 2\}, \quad \text{usw.}$$
 (1.68)

Nachfolgerfunktion:

$$x' := x \cup \{x\}. \tag{1.69}$$

Vollständige Induktion: Ist A(n) mit $n \in \mathbb{N}$ eine Aussageform, so gilt:

$$A(n_0) \wedge \forall n \ge n_0 [A(n) \Rightarrow A(n+1)]$$

$$\Rightarrow \forall n \ge n_0 [A(n)].$$
(1.70)

1.3. MENGENLEHRE

Tabelle 1.3: Boolesche Algebra

Vereinigung $A \cup A = A$ $A \cup \{\} = A$ $A \cup G = G$ $A \cup \overline{A} = G$	Schnitt $A \cap A = A$ $A \cap G = A$ $A \cap \{\} = \{\}$ $A \cap \overline{A} = \{\}$	Idempotenzgesetze Neutralitätsgesetze Extremalgesetze
$A \cup A = G$ $A \cup B = B \cup A$ $(A \cup B) \cup C = A \cup (B \cup C)$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $A \cup (A \cap B) = A$	$ A \cap A = \{\} $ $ A \cap B = B \cap A $ $ (A \cap B) \cap C = A \cap (B \cap C) $ $ A \cap B = A \cup B $ $ A \cap (A \cup B) = A $	Komplementärgesetze Kommutativgesetze Assoziativgesetze De Morgansche Regeln Absorptionsgesetze
G: Grundmenge		

2 Anhang

2.1 Mathematische Konstanten

- 1. Kreiszahl $\pi = 3.14159\ 26535\ 89793\ 23846\ 26433\ 83279\dots$
- 2. Eulersche Zahl $e = 2.71828\ 18284\ 59045\ 23536\ 02874\ 71352\dots$
- 3. Euler-Mascheroni-Konstante $\gamma = 0.57721\ 56649\ 01532\ 86060\ 65120\ 90082\dots$
- 4. Goldener Schnitt, $(1+\sqrt{5})/2$ $\varphi = 1.61803\ 39887\ 49894\ 84820\ 45868\ 34365\dots$
- 5. 1. Feigenbaum-Konstante $\delta = 4.66920\ 16091\ 02990\ 67185\ 32038\ 20466\dots$
- 6. 2. Feigenbaum-Konstante $\alpha = 2.50290~78750~95892~82228~39028~73218\dots$

2.2 Physikalische Konstanten

- 1. Lichtgeschwindigkeit im Vakuum $c=299\;792\;458\;\mathrm{m/s}$
- 2. Elektrische Feldkonstante $\varepsilon_0 = 8.854\,187\,817\,620\,39\times 10^{-12}\,\mathrm{F/m}$
- 3. Magnetische Feldkonstante $\mu_0 = 4\pi \times 10^{-7} \; \mathrm{H/m}$
- 4. Elementar ladung $e = 1.602\,176\,6208(98)\times 10^{-19}\,{\rm C}$

2.3 Griechisches Alphabet

$\begin{array}{c} A \\ B \\ \Gamma \\ \Delta \end{array}$	$egin{array}{c} lpha \ eta \ \gamma \ \delta \end{array}$	Alpha Beta Gamma Delta	N Ξ О П	$ \begin{array}{c} \nu \\ \xi \\ o \\ \pi \end{array} $	Ny Xi Omikron Pi
Ε Ζ Η Θ	$egin{array}{c} arepsilon \ \zeta \ \eta \ heta \end{array}$	Epsilon Zeta Eta Theta	$\begin{array}{c} R \\ \Sigma \\ T \\ Y \end{array}$	$egin{array}{c} arrho \ \sigma \ arrho \ arrho \end{array}$	Rho Sigma Tau Ypsilon
Ι Κ Λ Μ	$egin{array}{c} \iota & & \ \kappa & & \ \lambda & & \ \mu & & \end{array}$	Jota Kappa Lambda My	Φ Χ Ψ Ω	$\varphi \\ \chi \\ \psi \\ \omega$	Phi Chi Psi Omega

2.4 Frakturbuchstaben

A a B b C c D d	21 a	O o	O o
	23 b	P p	P p
	C c	Q q	Q q
	D d	R r	R r
$\begin{array}{c} E \ e \\ F \ f \\ G \ g \\ H \ h \end{array}$	E e F f G g H	$\begin{array}{ccc} S & s \\ T & t \\ U & u \\ V & v \end{array}$	S s T t U u V v
I i	I i	$\begin{array}{c} W\ w\\ X\ x\\ Y\ y\\ Z\ z \end{array}$	W w
J j	I j		X r
K k	K t		Y y
L l	L l		3 3
${ m M\ m}$ ${ m N\ n}$	M m N n		