Curso de Ciência da Computação Pontifícia Universidade Católica de Minas Gerais

Sistemas Operacionais

Capítulo VIII - Deadlocks

O Problema de Deadlock

◆ Um conjunto de processos bloqueados, cada qual mantendo um recurso e esperando para receber um recurso mantido por outro processo do conjunto.

◆ Exemplo

- Sistema com 2 unidades de fita.
- \bullet P_1 e P_2 monopolizam um dispositivo cada e necessitam do outro.

◆ Exemplo

• semáforos A e B, iniciados em 1

```
P_0 P_1 wait (A); wait (B) wait (B);
```

Exemplo da Travessia da Ponte

- ◆ Tráfego em um sentido.
- ◆ Cada seção da ponte pode ser vista como um recurso.
- Se um deadlock acontece, pode ser resolvido se um carro recuar.
- ◆ Vários carros podem ter que recuar se o deadlock acontecer.
- ◆ Starvation é possível.

Modelo do Sistema

- ♦ Tipos de recurso R_1 , R_2 , . . . , $R_{\rm m}$ ciclos de CPU, espaço de memória, dispositivos de I/O
- ullet Cada tipo de recurso $R_{\rm i}$ tem $W_{\rm i}$ instâncias.
- ◆ Cada processo utiliza um recurso como se segue:
 - requisição
 - uso
 - liberação

Caracterização do Deadlock

Um Deadlock pode ocorrer se 4 condições existirem ao mesmo tempo:

- ◆ Exclusão Mútua: apenas um processo por vez pode usar o recurso.
- ◆ Posse e espera: um processo em posse de pelo menos um recurso está esperando por recursos adicionais mantidos por outros processos.
- ◆ Não preempção: um recurso só pode ser liberado voluntariamente pelo processo que o mantém, após ter completado sua tarefa.
- Espera circular: existe um conjunto $\{P_0, P_1, ..., P_n\}$ de processos em espera tal que P_0 espera por recurso mantido por P_1 , P_1 espera por recurso mantido por P_2 , ..., P_{n-1} espera por recurso mantido por P_n , e P_n espera por recurso mantido por P_0 .

Grafo de Alocação de Recursos

Um conjunto de vértices V e um conjunto de arestas E.

- ◆ V é particionado em 2 tipos:
 - $P = \{P_1, P_2, ..., P_n\}$, o conjunto de todos os processos no sistema
 - $R = \{R_1, R_2, ..., R_m\}$, o conjunto de todos os tipos de recursos no sistema
- aresta de pedido (direcionada) $P_1 \rightarrow R_j$
- lacktriangle aresta de atribuição (direcionada) $R_j \rightarrow P_i$
- ◆ Se o grafo não contém ciclos ⇒ não há deadlock.
- ◆ Se grafo contém ciclo ⇒
 - se apenas uma instância por tipo de recurso, há deadlock.
 - Se várias instâncias por tipo de recurso, há possibilidade de deadlock.

Grafo de Alocação de Recursos

◆ Processo

◆ Tipo de recurso com 4 instâncias

ullet P_i solicita instância de R_j

ullet P_i mantém instância de R_i

Grafo de Alocação de Recursos: Exemplo

Grafo de Alocação de Recursos com Deadlock

Grafo com Ciclo sem Deadlock

Métodos para Tratar Deadlocks

- ◆ Garantir que o sistema nunca entrará em estado de deadlock.
- ◆ Permitir que o sistema entre em deadlock e este seja recuperado.
- ◆ Ignorar o problema e fingir que deadlocks nunca acontecerão; usados pela maioria do S.O.s, incluindo o UNIX!!!