Aufgabe 3 (6 Punkte). Das Cox-Ross-Rubenstein (CRR)-Modell ist wie folgt spezifiziert. Fixiere Zahlen $N \in \mathbb{N}$, -1 < a < b und $r \geq 0$. Der Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) ist gegeben durch

$$\Omega = \{1+a, 1+b\}^N \,,$$

$$\mathcal{F} = \mathcal{P}(\Omega)$$

und ein Wahrscheinlichkeitsmaß P auf (Ω, \mathcal{F}) , so dass $P(\{\omega\}) > 0$ für alle $\omega \in \Omega$. Der Numéraire-Prozess $(\widetilde{S_n^0})_{n=0,\dots,N}$ ist gegeben durch

$$\widetilde{S}_n^0 := (1+r)^n$$

und der Preis eines Finanzinstruments $(\widetilde{S}_n)_{n=0,\dots,N}$ ist definiert als $\widetilde{S}_0:=1$ und

$$\widetilde{S}_n(\omega) := \omega_1 \cdots \omega_n \quad \text{für} n = 1, \dots, N.$$

Die Filtration $\mathcal{F} = (\mathcal{F}_n)_{n=0,\dots,N}$ ist gegeben durch

$$\mathcal{F}_n := \sigma(\widetilde{S}_0, \dots, \widetilde{S}_n)$$
.

Das Ziel dieser Aufgabe ist es zu beweisen, dass das CRR-Modell arbitragefrei ist, genau dann wenn $r \in (a,b)$ ist und, dass es in diesem Fall sogar vollständig ist.

1. Ein äquivalentes Wahrscheinlichkeitsmaß $Q \sim P$ wird als Martingalmaß bezeichnet, wenn der Prozess

$$\left(\frac{\widetilde{S}_n}{\widetilde{S}_n^0}\right)_{n=0,\dots,N}$$

ein Q-Martingal ist. Wir führen die Renditen $(T_i)_{i=1,\ldots,N}$ ein als

$$T_i := \frac{\widetilde{S}_i}{\widetilde{S}_{i-1}} \,.$$

Zeigen Sie, dass ein äquivalentes Wahrscheinlichkeitsmaß $Q \sim P$ ein Martingalmaß ist, genau dann wenn

$$E_Q[T_{i+1}|\mathcal{F}_i] = 1 + r$$
 für alle $i = 0, ..., N - 1$.

Lösung: Wir folgen dem Beweis von Theorem 5.39 aus [HF16]. Q ist genau dann ein Martingalmaß, wenn $(\widetilde{S}_n/\widetilde{S}_n^0)$ ein Q-Martingal ist, also genau dann, wenn $E_Q[\widetilde{S}_{i+1}/\widetilde{S}_{i+1}^0|\mathcal{F}_i] = \widetilde{S}_i/\widetilde{S}_i^0$ oder mit der Definition von \widetilde{S}_n^0 genau dann, wenn $E_Q[\widetilde{S}_{i+1}|\mathcal{F}_i] = (1+r)\widetilde{S}_i$. Da -1 < a < b gilt $\widetilde{S}_i > 0$ und wir können dadurch teilen, sodass wir erhalten, dass $E_Q[\widetilde{S}_{i+1}|\mathcal{F}_i]/\widetilde{S}_i = 1+r$. Außerdem ist \widetilde{S}_n nach Definition von \mathcal{F} \mathcal{F}_n -messbar. Als Verkettung von messbaren Funktionen ist auch $1/\widetilde{S}_n$ \mathcal{F}_n -messbar. Mit den Rechenregeln für die bedingte Erwartung können wir $1/\widetilde{S}_n$ \mathcal{F}_n in die bedingte Erwartung reinziehen. Mit der Definition der Renditen T_i erhalten wir $E_Q[T_{i+1}|\mathcal{F}_i] = 1+r$ und somit die zu zeigende Aussage.

3. Angenommen, $Q \sim P$ ist ein äquivalentes Martingalmaß. Zeigen Sie, dass die Renditen $(T_i)_{i=1,...,N}$ unabhängig und identisch verteilt sind mit

$$Q(T_1 = 1 + a) = 1 - q$$
 und $Q(T_1 = 1 + b) = q$,

wobei $q \in (0,1)$ gegeben ist durch

$$q = \frac{r - a}{b - a} \,.$$

Aus Teilaufgabe 1 folgt, dass $E_Q[T_{i+1}|\mathcal{F}_i] = 1+r$, wobei $T_{i+1} \in \{1+a, 1+b\}$, also $(1+a)(1-E_Q[\mathbb{1}_{\{T_{i+1}=1+b\}}|\mathcal{F}_i]) + (1+b)E_Q[\mathbb{1}_{\{T_{i+1}=1+b\}}|\mathcal{F}_i] = 1+r$.

Durch Einsetzen von $q = E_Q[\mathbb{1}_{\{T_{i+1}=1+b\}}|\mathcal{F}_i]$ und auflösen nach q ergibt sich $E_Q[\mathbb{1}_{\{T_{i+1}=1+b\}}|\mathcal{F}_i] = q = \frac{r-a}{b-a}$. Das heißt, allerdings, die T_i sind unabhängig und identisch verteilt, was noch genauer gezeigt werden sollte. Für i=0 erhalten wir außerdem $q=Q(T_1=1+b)$.

2. Angenommen, es existiert ein äquivalentes Martingalmaß $Q \sim P$. Zeigen Sie, dass $r \in (a,b)$ ist.

Da $Q \sim P$ und $P(\{\omega\}) > 0$ gilt 0 < q < 1, also $0 < \frac{r-a}{b-a} < 1$ und somit a < r < b.

4. Folgern Sie, dass ein äquivalentes Martingalmaß $Q \sim P$ eindeutig ist, sofern es existiert.

Gibt es ein anderes äquivalentes Martingalmaß $Q' \sim P$, so muss nach Teilaufgabe 3 auch hierfür gelten, dass $Q'(\omega_i = 1 + b) = q = 1 - Q'(\omega_i = 1 + a)$. Da die Mengen $\{\omega_i\}$ unabhängig sind, muss für alle $\omega \in \Omega$ gelten, dass $Q'(\{\omega\}) = \prod_{i=1}^N Q'(\{\omega_i\}) = q^k(1-q)^{N-k} = Q(\{\omega\})$, wobei k zählt, wie oft sich der Preis erhöht hat. Somit gilt auf ganz Ω , dass Q' = Q, also ist das Martingalmaß eindeutig.

5. Nehmen Sie nun an, dass $r \in (a,b)$ ist. Zeigen Sie, dass ein äquivalentes Martingalmaß $Q \sim P$ existiert.

Sei $r \in (a, b)$ und Q wie in Teilaufgabe 4, also $Q(\{\omega\}) = q^k \cdot (1 - q)^{N - k}$. Wieder gilt für alle i = 1, ..., N, dass $Q(\{\omega_i = 1 + b\}) = q$, sodass die Renditen T_i unter Q unabhängig und identisch verteilt sind. Nach Teilaufgabe 2 ist Q hierdurch ein Martingalmaß.

References

[HF16] HANS FÖLLMER, Alexander S.: Stochastic Finance: An Introduction in Discrete Time. 4th REV. ed. de Gruyter, 2016 (de Gruyter Textbook). – ISBN 311046344X; 9783110463446