CIS 579 PROJECT: SELF-TAUGHT AI CONTROL

KENNETH YESH (KYESH@UMICH.EDU | 05502176)

FOR DR. ORTIZ, FALL 2017

BACKGROUND

- ROS Framework
- TurtleSim
 - Messeges
 - turtlesim/Pose
 - geometry_msgs/Twist

- Services
 - turtlesim/TeleportAbsolute
 - turtlesim/SetPen
 - turtlesim/Spawn
 - turtlesim/Kill

ALGORITHM: FEATURES

Low Level Feature	Description
xt	Turtle's x position from turtlesim/Pose message
yt	Turtle's y position from turtlesim/Pose message
theta	Turtle's theta position from turtlesim/Pose message
xg	Randomly generated x coordinate of goal
уд	Randomly generate y coordinate of goal

Derived Feature	Equation	Description
thetag	atan2(yg-yt, xg-xt)	Angle of the vector going from the current position to the turtle to the goal position
thetad	angleDiff(thetat,thetag)	The difference between the turtle's theta and the theta it needs to be pointing in to be driving towards the goal.
d	$\sqrt{(xg-xt)^2+(yg-yt)^2}$	The distance from the turtles current position to the goal

ALGORITHM: INITIAL POLICY

- Initial Policy:
 - $LinearVelocity = A \times thetad + B \times d$
 - $Angular Velocity = C \times thetad + D \times d$
- Score:
 - (5.0 distance(state.x, state.y, XG, YG))

ALGORITHM: NEW POLICY

 $LinearVelocity = A \times abs(thetad) + B \times d + E$

 $Angular Velocity = C \times thetad + D \times d + F$

RESULTS

FUTURE WORK

- Adding Time to the Reward Function
- More complicated Policies
- Single Parameter instead of random