Corso di Fondamenti di Programmazione 1

Prova Pratica del 10-02-2023

Esercizio prova pratica - parte 2.

Consideriamo ora nuovamente la stessa tipologia di input della parte 1: un intero positivo **N** e due sequenze di **N** numeri interi positivi o negativi diversi da 0. Utilizziamo nuovamente le due sequenze per costruire dei numeri frazionari <u>ma in modo differente rispetto alla parte 1</u>: utilizziamo ogni elemento della prima sequenza come numeratore e lo combiniamo con tutti gli elementi della seconda sequenza utilizzandoli come denominatori, ottenendo così **N*N** numeri frazionari.

Ad esempio, supponendo che **N** sia 5 e che la prima sequenza letta sia: 1, 3, -6, 6, -1 mentre la seconda: 4, 6, 3, 12, -2 i numeri frazionari che otteniamo sono:

Notiamo che ciascun numero della prima sequenza viene utilizzato come numeratore per creare 5 numeri frazionari, ognuno avente come denominatore un elemento della seconda sequenza. In totale i numeri frazionari ottenuti sono infatti 25.

Il programma deve stampare SI se, tra i numeri frazionari così ottenuti, esistono esattamente **N** numeri frazionari **apparenti** diversi tra loro.

Un numero frazionario $\frac{A}{B}$ si dice apparente se il numeratore è multiplo del denominatore ovvero se A è multiplo di B. In altre parole, se dividendo il numeratore per il denominatore si ottiene un numero intero (positivo o negativo). Ad esempio: $\frac{-12}{3}$ e $\frac{3}{3}$ sono numeri frazionari apparenti perché 12 è multiplo di 3 e anche 3 è multiplo di sé stesso.

Nell'esempio riportato sopra, dunque, il programma stamperebbe NO perché i numeri frazionari distinti apparenti sono 7:

$$\frac{3}{3} \ \frac{-6}{6} \ \frac{-6}{3} \ \frac{-6}{-2} \ \frac{6}{6} \ \frac{6}{3} \ \frac{6}{-2}$$

Se invece ci fossero stati esattamente 5 numeri frazionari distinti il programma avrebbe stampato SI.

Se la prima sequenza fosse stata: 7, 5, 11, 13, 77 i numeri frazionari sarebbero stati:

il programma avrebbe stampato NO anche in questo caso perché non esiste alcun numero frazionario apparente.

Formato di input.

- Il programma riceve in input nell'ordine:
 - 1. un intero positivo N maggiore di 0
 - 2. una sequenza di N interi positivi o negativi e diversi da zero (i numeratori)
 - 3. una sequenza di N interi positivi o negativi e diversi da zero (i denominatori)

Corso di Fondamenti di Programmazione 1

Prova Pratica del 10-02-2023

Non serve controllare che N e gli interi nelle sequenze siano diversi da 0: si può assumere che sia così.

Formato di output.

• Il programma deve stampare SI oppure NO <u>IN MAIUSCOLO, SENZA SPAZI O ALTRE STAMPE</u> <u>E SENZA ANDARE A CAPO</u>.

Leggere attentamente gli esempi.

Input	Motivazione	Output
1 1 1	N=1 e l'numero frazionario costruibile è $\frac{1}{1}$ ed è un numero frazionario apparente.	SI
3 6 2 2 4 2	N=3 e i numeri frazionari costruibili sono: $\frac{6}{4}$, $\frac{6}{2}$, $\frac{6}{3}$, $\frac{2}{4}$, $\frac{2}{2}$, $\frac{2}{3}$, $\frac{2}{4}$, $\frac{2}{2}$, $\frac{2}{3}$ I numeri frazionari apparenti distinti sono tre: $\frac{6}{2}$, $\frac{6}{3}$, $\frac{2}{2}$	SI
3 3 1 2 3 1 2 3	N=3 e i numeri frazionari costruibili sono: $\frac{1}{1}$, $\frac{1}{2}$, $\frac{1}{3}$, $\frac{2}{1}$, $\frac{2}{2}$, $\frac{2}{3}$, $\frac{3}{1}$, $\frac{3}{2}$, $\frac{3}{3}$ I numeri frazionari apparenti distinti sono cinque: $\frac{1}{1}$, $\frac{2}{1}$, $\frac{2}{2}$, $\frac{3}{1}$, $\frac{3}{3}$	NO
2 1 1 1	N=2 e i numeri frazionari costruibili sono: $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ C'è soltanto un numero frazionario apparente distinto: $\frac{1}{1}$	NO
2 1 2 1	N=2 e i numeri frazionari costruibili sono: $\frac{1}{1}$, $\frac{2}{1}$, $\frac{1}{1}$, $\frac{2}{1}$ I numeri frazionari apparenti distinti sono due: $\frac{1}{1}$, $\frac{2}{1}$	SI
2 7 5 77 55	N=2 e i numeri frazionari costruibili sono: $\frac{7}{77}$, $\frac{7}{55}$, $\frac{5}{77}$, $\frac{5}{55}$ Non ci sono numeri frazionari apparenti.	NO
2 77 55 7 5	N=2 e i numeri frazionari costruibili sono: $\frac{77}{7}$, $\frac{77}{5}$, $\frac{55}{7}$, $\frac{55}{5}$ I numeri frazionari apparenti distinti sono due: $\frac{77}{7}$, $\frac{55}{5}$	SI
4 1 2 3 4	N=4 e i numeri frazionari costruibili sono: $\frac{1}{6}$, $\frac{1}{7}$, $\frac{1}{8}$, $\frac{1}{9}$, $\frac{2}{6}$, $\frac{2}{7}$, $\frac{2}{8}$, $\frac{2}{9}$, $\frac{3}{6}$, $\frac{3}{7}$, $\frac{3}{8}$, $\frac{3}{9}$, $\frac{4}{6}$, $\frac{4}{7}$, $\frac{4}{8}$, $\frac{4}{9}$. Non ci sono numeri frazionari apparenti.	NO
7 8 9		
4 6 7 8 9 1 2 3	N=4 e i numeri frazionari costruibili sono: $\frac{6}{1}, \frac{6}{2}, \frac{6}{3}, \frac{6}{4}, \frac{7}{1}, \frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{8}{1}, \frac{8}{2}, \frac{8}{3}, \frac{8}{4}, \frac{9}{1}, \frac{9}{2}, \frac{9}{3}, \frac{9}{4}$ I numeri frazionari apparenti distinti sono otto: $\frac{6}{1}, \frac{6}{2}, \frac{6}{3}, \frac{7}{1}, \frac{8}{1}, \frac{8}{2}, \frac{8}{4}, \frac{9}{3}$	NO