Artificial Intelligence

Knowledge Representation

Knowledge Representation Topics

- 1. Knowledge
- 2. Knowledge Representation (KR)
- 3. KR Using Predicate Logic
- 4. KR Using Rules

Knowledge

Knowledge is the information about a domain that can be used to solve problems in that domain.

- To solve many problems requires much knowledge, and this knowledge must be represented in the computer.
- As part of designing a program to solve problems, we must define how the knowledge will be represented.
- A representation of some piece of knowledge is the internal representation of the knowledge.
- A representation scheme specifies the form of the knowledge.
- A knowledge base is the representation of all of the knowledge that is stored by an agent.

Knowledge

An answer to the question, "how to represent knowledge", requires an analysis to distinguish between knowledge "how" and knowledge "that".

- knowing "how to do something".
- e.g. "how to drive a car"

is a Procedural knowledge.

- knowing "that something is true or false".
- e.g. "that is the speed limit for a car on a motorway" is a Declarative knowledge.

knowledge and Representation

- are two distinct entities. They play a central but distinguishable roles in intelligent system.
- Knowledge is a description of the world.

 It determines a system's competence by what it knows. (Quantity)
- Representation is the way knowledge is encoded.

 It defines a system's performance in doing something. (Quality)
- Different types of knowledge require different kinds of representation.
- The Knowledge Representation *models/mechanisms* are often based on:
 - **♦ Logic**
 - **◊ Frames**
 - **♦ Rules**
 - **◊ Semantic Net**

1. Knowledge

- Knowledge is a progression that starts with data which is of limited utility.
- By organizing or analyzing the data, we understand what the data means, and this becomes *information*.
- The interpretation or evaluation of information yield knowledge.
- An understanding of the principles embodied within the knowledge is wisdom.
 - Knowledge Progression

■ Data is viewed as collection of disconnected facts

Example: It is raining.

■ Information emerges when *relationships among facts* are established and understood; Provides answers to "who", "what", "where", and "when".

Example: The temperature dropped 15 degrees and then it started raining.

■ **Knowledge** emerges when *relationships among* patterns are identified and understood; Provides answers as "how".

Example: If the humidity is very high and the temperature drops substantially, then atmospheres is unlikely to hold the moisture, so it rains.

- Wisdom is the pinnacle of understanding, uncovers the *principles of relationships that describe patterns*. Provides answers as "why".
- Example: Encompasses understanding of all the interactions that happen between raining, evaporation, air currents, temperature gradients and changes.

Knowledge Model (Bellinger 1980)

• A knowledge model tells, that as the degree of "connectedness" and "understanding" increases, we progress from data through information and knowledge to wisdom.

- The distinctions between data, information, knowledge, and wisdom are not very discrete.
- They are more like shades of gray, rather than black and white (Shedroff, 2001).
- "data" and "information" deal with the past; they are based on the gathering of facts and adding context.
- "knowledge" deals with the present that enable us to perform.
- "wisdom" deals with the future, acquire vision for what will be, rather than for what is or was.

Mapping between Facts and Representation

- Knowledge is a collection of "facts" from some domain.
- We need a representation of "facts" that can be manipulated by a program.
- Normal English is insufficient, too hard currently for a computer program to draw inferences in natural languages.
- Thus some symbolic representation is necessary.
- Therefore, we must be able to map "facts to symbols" and "symbols to facts" using forward and backward representation mapping.
- **Example**: Consider an English sentence

Facts Representations

- ♦ **Spot is a dog** A *fact* represented in *English sentence*
- ♦ dog (Spot)
 Using forward mapping function the above fact is represented in logic
- ♦ \(\mathbf{x} : \dog(\mathbf{x}) \rightarrow \text{hastail (x)} \) A logical representation of the fact that
 "all dogs have tails"

Now using **deductive mechanism** we can generate a new representation of object :

- hastail (Spot)
 A new object representation
- ♦ Spot has a tail Using backward mapping function to [it is new knowledge] generate English sentence

Logic

Logic is concerned with the truth of statements about the world.

Generally each statement is either TRUE or FALSE.

Logic includes: Syntax, Semantics and Inference Procedure.

♦ Syntax:

Specifies the *symbols* in the language about how they can be combined to form sentences.

The facts about the world are represented as sentences in logic.

◊ Semantic:

Specifies how to assign a truth value to a sentence based on its *meaning* in the world.

It Specifies what facts a sentence refers to.

A fact is a claim about the world, and it may be TRUE or FALSE.

♦ Inference Procedure:

Specifies *methods* for computing new sentences from the existing sentences.

Logic as a KR Language

Logic is a language for reasoning, a collection of rules used while doing logical reasoning.

Logic is studied as KR language in artificial intelligence.

- ♦ **Logic** is a formal system in which the formulas or sentences have true or false values.
- ♦ Logics are of different types: Propositional logic, Predicate logic, Temporal logic, Modal logic, Description logic etc;
 They represent things and allow more or less efficient inference.
- Propositional logic and Predicate logic are fundamental to all logic.
 - Propositional Logic is the study of statements and their connectivity.
 - Predicate Logic is the study of individuals and their properties.

2.1 Logic Representation

Logic can be used to represent simple facts.

The *facts* are claims about the world that are *True* or *False*.

To build a Logic-based representation:

- ♦ **User** defines a set of primitive *symbols* and the associated *semantics*.
- ♦ Logic defines ways of putting symbols together so that user can define legal sentences in the language that represent TRUE facts.
- ♦ **Logic** defines ways of inferring *new sentences* from existing ones.
- ♦ Sentences either *TRUE* or *false* but not both are called *propositions*.
- ♦ A declarative sentence expresses a *statement* with a proposition as content;

example: the declarative "snow is white" expresses that snow is white; further, "snow is white" expresses that snow is white is TRUE.

Propositional Logic (PL)

- A **proposition** is a sentence, written in a language, that has a truth value (i.e., it is true or false) in a world.
- A proposition is built from atomic propositions using logical connectives.
- An atomic proposition, (or atom), is a Symbol that starts with a lower-case letter.
- an atom is something that is true or false.
- For example:
 - sunny
 - AI_is_fun,
 - lit_l₁,
 - live_outside

Propositional Logic (PL)

- A proposition is a statement, which in English would be a declarative sentence.
- Every proposition is either TRUE or FALSE but not Both.

Examples:

- (a) The sky is blue.
- (b) Snow is cold.
- (c) 12 * 12=144
- **‡** A sentence is smallest unit in propositional logic.
- **‡** If proposition is true, then truth value is "true".
- **‡** If proposition is false, then truth value is "false".

Example:

Sentence	Truth value	Proposition (Y/N)			
"Grass is green"	"true"	Yes			
"2 + 5 = 5"	"false"	Yes			
"Close the door"	-	No			
"Is it hot out side ?"	-	No			
"x > 2" where x is variable	-	No			
"x = x"	-	(since x is not defined) No			
		(don't know what is "x" and "=";			

"3 = 3" or "air is equal to air" or

"Water is equal to water"

has no meaning)

- Propositions can be built from simpler propositions using logical connectives.
- A proposition is either an atomic proposition or a compound proposition of the form:
- $\neg p$ (read "not p") -- the **negation** of p
- $p \wedge q$ (read "p and q")--the **conjunction** of p and q
- pVq (read "p or q")--the **disjunction** of p and q
- $p \rightarrow q$ (read "p implies q")--the **implication** of q from p
- $p \leftarrow q$ (read "p if q")--the **implication** of p from q
- $p \leftrightarrow q$ (read "p if and only if q" or "p is equivalent to q")
 - where p and q are propositions.

Propositional Logic Terms

Statement

 Simple statements (sentences), TRUE or FALSE, that does not contain any other statement as a part, are basic propositions;

■Symbols

- lower-case letters, p, q, r, are symbols for simple statements (basic propositions).
- Large, compound or complex statement are constructed from basic propositions by combining them with connectives.

Connective or Operator

The connectives join simple statements into compounds, and joins compounds into larger compounds.

Example of a formula : $((((a \land \neg b) \lor c \rightarrow d) \leftrightarrow \neg (a \lor c))$

Connectives and Symbols in decreasing order of operation priority

Connective	Symbols			nbo	ols	Read as
assertion	Р					"p is true"
negation	¬р	~	!		NOT	"p is false"
conjunction	p ∧ q	•	&&	&	AND	"both p and q are true"
disjunction	Pvq	П	T		OR	"either p is true, or q is true, or both "
implication	$\mathbf{p} \rightarrow \mathbf{q}$)	⇒		ifthen	"if p is true, then q is true" " p implies q "
equivalence	\leftrightarrow	=	\Leftrightarrow		if and only if	"p and q are either both true or both false"

Note: The propositions and connectives are the basic elements of propositional logic.

Truth Value

- The truth value of a statement is its TRUTH or FALSITY
- Example :

```
p is either TRUE or FALSE,
~p is either TRUE or FALSE,
p v q is either TRUE or FALSE, and so on.
```

```
use " T " or " 1 " to mean TRUE.
use " F " or " 0 " to mean FALSE
```

Truth table defining the basic connectives:

p	q	¬р	٦q	p ^ q	pvq	p→q	$\mathbf{p}\leftrightarrow\mathbf{q}$	d→b
Т	T	F	F	T	T	T	Т	T
T	F	F	Т	F	T	F	F	T
F	T	T	F	F	Т	Т	F	F
F	F	T	T	F	F	T	Т	T

 $\mathbf{p} \rightarrow \mathbf{q}$ is equivalent to $\neg \mathbf{p} \lor \mathbf{q}$

Tautologies

A proposition that is always true is called a "tautology". e.g.,

(PV¬P) is always true regardless of the truth value of the proposition P

Contradictions

A proposition that is always false is called a "contradiction". e.g., (P \(\neg P \)) is always false regardless of the truth value of the proposition P.

Contingencies

A proposition is called a "contingency", if that proposition is neither a *tautology* nor a *contradiction*. e.g., **(P** V **Q)** is a contingency.

Antecedent, Consequent

These two are parts of conditional statements.

In the conditional statements, $\mathbf{p} \rightarrow \mathbf{q}$, the

1st statement or "if - clause" (here p) is called antecedent, 2nd statement or "then - clause" (here q) is called consequent.

Argument

An argument is a demonstration or a proof of some statements.

Example: "That bird is a crow; therefore, it's black."

- Any argument can be expressed as a compound statement.
- •In logic, an argument is a set of one or more meaningful declarative sentences (or "propositions") known as the *premise* along with another meaningful declarative sentence (or "proposition") known as the *conclusion*.
- Premise is a proposition which gives reasons, grounds, or evidence for accepting some other proposition, called the conclusion.
- Conclusion is a proposition, which is purported to be established on the basis of other propositions (Premises).
- Take all the premises, conjoin them, as the antecedent of argument, and the conclusion as the consequent.
- This implication statement is :

If (premise1 ∧ premise2) -> conclusion