reading group summer 24 Place-Based Drivers of Mortality: Evidence from Migration (2021)

vaidehi

jk: Amy Finkelstein, Matthew Gentzkow, and Heidi Williams

July 2024

Introduction

- mortality rates vary highly across the US
- health capital + current environment factors
- Chetty et al (2016) showed weak correlation between mortality and environmental conditions
- this paper: identifying causal effect of current location
- movers in Medicare data
- main outcome: life expectancy at the age of 65

Preview of results

- moving from an area at the 10th percentile of estimated place effects to an area at the 90th percentile would increase life expectancy at age 65 by 1.1 years
- findings suggest that health capital also plays an important role
- equalising place effects across areas would reduce the cross-sectional variation in life expectancy at age 65 by 15 percent
- but equalising health capital across areas would reduce the cross-sectional variation by about 70 percent.
- areas with positive place effects tend to have higher-quality hospitals, more primary care physicians and specialists per capita, and higher health care utilisation

- ullet ${\cal J}$ locations indexed by j, individuals indexed by i
- mortality hazard rate modelled using Gompertz specifiation

$$\log\left(m_{ij}(a)\right) = \beta a + \gamma_j + \theta_i \tag{1}$$

• γ : place effect, θ : health capital, β : age effect

Two key assumptions

- Age, place effects, health capital are additively separable strong assumption,
- ullet γ_j and θ_i are time-invariant

Some math

- Non-movers average mortality rate: $\bar{m}_j(a) = \exp\left[\beta a + \gamma_j + \bar{\theta}_j\right]$
- ullet $\gamma_j + ar{ heta}_j$: avg. mortality index of place j
- avg. life expectancy of area j: $L_j = 65 + \int_{65}^{\infty} S_j(a) da$
- where S(a) is the survival function, $S_j(a) = \exp\left[-\int_{65}^a \bar{m}_j(y)dy\right]$

6

Treatment effect

- counterfactual mortality rates: $\bar{m}_{j}^{*}(a) = \exp\left[\beta a + \gamma_{j} + \bar{\theta}\right]$
- counterfactual life expectancy: $L_j^* = 65 + \int_{65}^{\infty} S_j^*(a) da$, $S_j^*(a) = \exp\left[-\int_{65}^a \bar{m_j}^*(y) dy\right]$
- treatment effect: $\Delta=L_j^*-\bar{L}_j$, where \bar{L}_j is the life expectancy computed using average values of both γ and θ over population of non-movers

7

Health capital

$$\theta_i = X_i \psi + H_i \lambda + \eta_{j(i)}^{nm} + \eta_{o(i)}^{\mathsf{orig}} + \eta_{j(i)}^{\mathsf{dest}} + \tilde{\eta}_i \tag{2}$$

- η s fixed effects from hypothetical regression of θ on X, H, fixed effects for non-movers' locations, movers' origins, and movers' destinations
- By construction:
- $E(\tilde{\eta}_i \mid X_i, H_i, o(i), j(i)) = 0$ for movers
- $E(\tilde{\eta}_i \mid X_i, H_i, j(i)) = 0$ for non-movers
- \bullet Not structural: picks up causal effects and effects of unobservables correlated with X and H

Combine equations 1 and 2

$$\log(m_i(a)) = \beta a + X_i \psi + H_i \lambda + \tau_{o(i)}^{\text{orig}} + \tau_{j(i)}^{\text{dest}} + \tau_{j(i)}^{nm} + \tilde{\eta}_i$$
(3)

, with $au_{o(i)}^{\rm orig}=\gamma_{o(i)}^{\rm orig}$, $au_{j(i)}^{\rm dest}=\gamma_{j(i)}^{\rm dest}+\eta_{j(i)}^{\rm dest}$ for movers, $au_{j(i)}^{nm}=\gamma_{j(i)}^{nm}+\eta_{j(i)}^{nm}$ for non-movers

- This is the main estimating equation.
- MLE \rightarrow consistency: $\hat{m}_j(a) = \exp(\hat{\beta}a + \bar{X}_j\hat{\psi} + \bar{H}_j\hat{\lambda} + \hat{\tau}_{j(i)}^{nm})$
- with consistent estimates of γ_j , estimate $\bar{\theta}$ as mean of $\bar{X}_a\hat{\psi} + \bar{H}_a\hat{\lambda} + \hat{\tau}_j^{nm} \hat{\gamma}_j$ across non-movers
- ullet Key issue: unobservables correlated with X_i and H_i that distinguish movers from non-movers

Main Idea: Selection Correction

- allow for $\eta_j^{dest} \neq 0$
- standard approach: 2 assumptions.
- equal selection: relationship between observables and treatment is similar to that between unobservables and treatment
- ullet R² assumption: the overall importance of the unobservables relative to the observables is small

Main Idea: Selection Correction in this setting

- $h_i = H_i \lambda$: observed health index
- Estimate $\hat{\lambda}$ from equation 3 and then estimate following equation using \hat{h}_i :

$$h_i = \beta^h a + X_i \psi^h + h_{o(i)}^{\text{orig}} + h_{j(i)}^{\text{dest}} + \tilde{h}_i$$
(4)

- Two assumptions in this setting:
 - Proportional selection
 - Relative importance

Assumption 1: Proportional Selection

- Selection on unobservables is proportional to selection on observables
- $\operatorname{corr}(T_{ij}, h_{j(i)}^{\operatorname{dest}}) = \varphi_1 \operatorname{corr}(T_{ij}, \eta_{j(i)}^{\operatorname{dest}})$
- ullet $\varphi_1=1 \implies$ equal selection

Assumption 2: Relative Importance

- Variance of these unobservables relative to the variance of the destination observables is proportional to the corresponding ratio for movers' origins
- $\bullet \ \frac{\operatorname{std}(\eta_{(i)}^{\operatorname{orig}})}{\operatorname{std}(h_{j(i)}^{\operatorname{orig}})} = \varphi_2 \frac{\operatorname{std}(\eta_{j(i)}^{\operatorname{dest}})}{\operatorname{std}(h_{j(i)}^{\operatorname{dest}})}$
- Better than the \mathbb{R}^2 assumption

Wrapping up

- Baseline assumption: $\varphi_1 = \varphi_2 = 1$
- simple but ugly math yields that A1 $\iff \eta_j^{dest} = \frac{1}{\varphi_1} \frac{\operatorname{std}(\eta_{j(i)}^{\operatorname{dest}})}{\operatorname{std}(h_{j(i)}^{\operatorname{dest}})} h_j^{dest}$
- A2 $\iff \hat{\eta_j}^{\text{dest}} = \frac{1}{\varphi_1 \varphi_2} \frac{\hat{\text{std}}(\tau_{j(i)}^{\text{orig}})}{\hat{\text{std}}(hj(i)^{\text{orig}})} \hat{h_j}^{\text{dest}}$
- \bullet and finally, $\hat{\gamma}_j = \hat{\tau}_j^{dest} \hat{\eta}_j^{dest}$ is consistent for γ_j

Data

- 100 % panel of Medicare beneficiaries from 1999 to 2014
- time-variant observed indicators: zipcode of residence for each year, enrollment in Medicare Advantage, Part A, Part B, and Medicaid, age
- time-invariant unobserved indicators: race, gender
- entire universe of Medicare claims
- date of death if person died during the period

Data

- unit of area: commuting zones (CZs); 709 in the US, aggregated counties that approximate local labour markets
- CZs within states aggregated to larger areas if not enough movers have chosen these destinations
- total health-care utilisation measured as total inpatient and outpatient spending
- ullet observable H_i : vector of indicators for 27 Chronic Conditions + log(utilisation + 1)
- ullet observable X_i : race, gender, interaction
- H_i , X_i are measured at year $t^* 1$, where t^* is year of move for movers, first year for which there is no missing data in $t^* 1$ for non-movers

Sample Restrictions

- movers: only move once during this period, survive through the end of the move year
- non-movers: random 10% sample of non-movers with complete data
- final sample: 2.3 million movers, 4.3 million non-movers
- movers tend to be older, female, white, and less health

Preliminary evidence of selection

 \bullet mean of residuals from a regression of observed health index on age and demographics for movers to destination j

Figure 1:

Results: Estimated Treatment Effects

- most favourable: major cities like Chicago
- least favourable: rural areas in the deep South and Southwest

FIGURE 3. LIFE EXPECTANCY TREATMENT EFFECTS

Notes: The map shows the EB-adjusted estimates of life-expectancy treatment effects $(L_j^* - \bar{L})$. Note that small CZs have been aggregated within state (see online Appendix Figure A.1) and a single life expectancy estimate is reported for each aggregate CZ.

Results: Estimated Treatment Effects vs Average Life Expectancy

• positively correlated

Figure 3:

Results: Interpreting these numbers

Cross-CZ standard deviation of:	
(1) Age 65 life expectancy (L_j)	0.79 [0.76, 0.83]
(2) Treatment effects $(L_j^* - \bar{L})$	0.44 [0.32, 0.55]
(3) Health capital effects	0.73 [0.60, 0.83]
(4) Correlation of treatment and health capital effects	-0.04 [-0.15, 0.09
Share variance would be reduced if:	
(5) Place effects were made equal	0.15 [-0.10, 0.46
(6) Health capital was made equal	0.69 [0.53, 0.83]

- moving from a twenty-fifth percentile area to a seventy-fifth percentile area would increase life expectancy by 0.60 years; moving from a tenth to a ninetieth percentile area would increase life expectancy by 1.1 years
- about 15 percent of the cross-CZ variance in life expectancy would be eliminated if place effects were made equal across areas
- about 70 percent of the variation would be eliminated if health capital were equalised

Results: Heterogeneity by income and race

- using Medicaid enrollment as proxy for low income
- the standard deviation of life expectancy is larger for individuals on Medicaid compared to those not on Medicaid, and larger for non-White individuals compared to White individuals
- decomposition: the difference is mostly driven by differences in health capital and less so by place effects
- suggesting that variation in area life expectancy for low-income individuals is strongly correlated with health behaviors such as smoking and exercise

Results: Correlates of treament effects

- positively correlated with quality and quantity of healthcare
- negatively correlated with pollution, extreme temperatures, crime, and accidents
- positively correlated with good health behaviours: demand or sorting stories
- positively correlated with education and income: also demand or sorting stories

Figure 4:

Defending the assumptions 1

Assumption: Additive Separability

- health capital and current location affect the level of mortality multiplicatively
- the level of mortality of individuals with poor health capital will vary more across areas than that of individuals who have better health capital
- test: check whether place effects differ across subsets of enrollees partitioned by gender, age at move, health at move
- results: mixed. some deviations of additivity that are statistically significant.

Defending the assumptions 2

Assumption: Time-invariant Health Capital

- reasonable for this population and for the time frame
- threats: immediate changes to behaviour due to the move that have significant impacts on health capital
- defence: literature suggests that threats will be modest
- inelastic health behaviours, smaller impacts, gradual impact
- in order to show that place effects have an immediate impact on mortality, then estimate a logit model for mortality 1, 2, 3, & 4 years after the move

Defending the assumptions 3

Assumption: Selection Assumptions

- ullet assumption: proportional importance, arphi=1
- test: subset H_i into K groups. Imagine that H_i^{-k} is observable and H_i^k is unobservable.
- $\bullet \text{ want to check that } \frac{\operatorname{std}(\eta_{j(i),k}^{\operatorname{dest}})}{\operatorname{std}(h_{j(i),l}^{\operatorname{dest}})} = \frac{\operatorname{std}(\eta_{j(i),k}^{\operatorname{orig}})}{\operatorname{std}(h_{j(i),k}^{\operatorname{orig}})}, \forall k$
- ullet also relax assumption that constant =1 and re-estimate: results are not sensitive to this baseline assumption

Robustness Checks

- model with coefficients that are different for movers and non-movers
- add some controls, interaction terms
- restrict sample to significant moves, exclude moves to neighbouring CZs
- exclude CA, AZ, FL: snowbirds
- and more...

Conclusion

- significant impacts of current location on mortality
- equalising place effects would reduce the cross-sectional variation in life expectancy at 65 by 15 percent (but less than what equalising health capital would achieve)
- areas with positive place effects tend to have higher-quality hospitals, more primary care physicians and specialists per capita, and higher health care utilisation
- caveat: short-run, partial equilibrium impacts of place on life expectancy for an elderly population (future work for you?!!)
- other caveat: mortality is an absorbing state: assumptions stronger than those in panel analysis
- also important: what aspects of health capital and current environments are important causal determinants of life expectancy

See ya

Parts I didn't understand/try to understand

- sampling error corrections with empiral Bayes procedure and Bayesian bootstrap
- stuff in the appendix
- \bullet exact relationship between the R^2 assumption and the relative importance assumption