Correction

- 1.a u^n est un endomorphisme de E et on sait qu'image et noyau d'un endomorphisme sont des sous-espaces vectoriels.
- $\begin{aligned} \text{1.b} \qquad \forall \vec{y} \in F_{n+1} = \operatorname{Im} u^{n+1}, \ \exists \vec{x} \in E \ \ \text{tel que} \ \ \vec{y} = u^{n+1}(\vec{x}) \ \ \text{donc} \ \ \vec{y} = u^n(u(\vec{x})) \in \operatorname{Im} u^n = F_n \ . \ \text{Ainsi} \ \ F_{n+1} \subset F_n \ . \end{aligned}$ $\forall \vec{x} \in G_n = \ker u^n \ , \ \text{on a} \ \ u^{n+1}(\vec{x}) = u(u^n(\vec{x})) = u(\vec{o}) = \vec{o} \ \ \text{donc} \ \ \vec{x} \in \ker u^{n+1} = G_{n+1} \ . \ \text{Ainsi} \ \ G_n \subset G_{n+1} \ . \end{aligned}$
- 2. $F \subset E$. Pour tout $n \in \mathbb{N}$, $\vec{o} \in F_n$ car F_n est un sous-espace vectoriel de E, donc $\vec{o} \in F$. Soit $\lambda, \mu \in \mathbb{R}$ et $\vec{x}, \vec{y} \in F$. Pour tout $n \in \mathbb{N}$, $\vec{x}, \vec{y} \in F_n$, or F_n est un sous-espace vectoriel de E donc

 $G \subset E$. $\vec{o} \in G_1$ car $\vec{u}(\vec{o}) = \vec{o}$ donc $\vec{o} \in G$.

 $\lambda \vec{x} + \mu \vec{y} \in F_n$ et donc $\lambda \vec{x} + \mu \vec{y} \in F$.

Soit $\lambda, \mu \in \mathbb{R}$ et $\vec{x}, \vec{y} \in G$. Il existe $n, m \in \mathbb{N}$ tel que $\vec{x} \in G_n$ et $\vec{y} \in G_m$.

Posons $p = \max(n, m)$. On a $G_n, G_m \subset G_n$ donc $\vec{x}, \vec{y} \in G_n$.

Or G_n est un sous-espace vectoriel de E dont $\lambda \vec{x} + \mu \vec{y} \in G_n$ puis $\lambda \vec{x} + \mu \vec{y} \in G$.

 $\text{2.b} \qquad \text{Soit } \vec{x} \in F \text{ . Pour tout } n \in \mathbb{N} \text{ , on a } \vec{x} \in F_{\scriptscriptstyle n} \text{ donc } u(\vec{x}) \in F_{\scriptscriptstyle n+1} \text{ . Ainsi } \forall n \in \mathbb{N} \,^*, \ u(\vec{x}) \in F_{\scriptscriptstyle n} \text{ .}$

De plus $F_0 = \operatorname{Im} u^0 = \operatorname{Im} \operatorname{Id} = E$, donc $u(\vec{x}) \in F_0$. Ainsi $u(\vec{x}) \in F_n$ pour tout $n \in \mathbb{N}$ et donc $u(\vec{x}) \in F$.

Soit $\vec{x} \in G$. Il existe $n \in \mathbb{N}$ tel que $\vec{x} \in G_n$ c'est à dire tel que $u^n(\vec{x}) = \vec{o}$.

Si n>0, alors $u^{n-1}(u(\vec{x}))=\vec{o}$ donc $u(\vec{x})\in G_{n-1}$ puis $u(\vec{x})\in G$.

Si n=0, alors $u^0(\vec{x})=\vec{o}$ donc $\vec{x}=\vec{o}$ car $u^0=\operatorname{Id}$. Mais alors $u(\vec{x})=\vec{o}$ et donc $u(\vec{x})\in G$.

2.c Si u est un automorphisme de E alors pour tout $n \in \mathbb{N}$, u^n l'est aussi.

On a donc $F_n = E$ car u^n surjectif et $G_n = \{\vec{o}\}$ car u^n injectif. Au final F = E et $G = \{\vec{o}\}$.

3.a Par récurrence sur $p \in \mathbb{N}$.

Pour p = 0: ok

Supposons la propriété établie au rang $p \ge 0$.

La suite (F_n) est décroissante donc $F_{n+\nu+1} \subset F_{n+\nu}$.

Soit $\vec{y} \in F_{n+n}$, $\exists \vec{x} \in E$ tel que $\vec{y} = u^{n+p}(\vec{x})$.

Or $u^n(\vec{x}) \in F_n = F_{n+1}$ donc $\exists \vec{a} \in E$ tel que $u^n(\vec{x}) = u^{n+1}(\vec{a})$ et donc

$$\vec{y} = u^p(u^n(\vec{x})) = u^p(u^{n+1}(\vec{a})) = u^{n+p+1}(\vec{a}) \in F_{n+p+1}$$
. Ainsi $F_{n+p} \subset F_{n+p+1}$.

Par double inclusion, $F_{n+p} = F_{n+p+1}$, puis par HR, $F_n = F_{n+p+1}$.

Récurrence établie.

3.b L'ensemble $A = \{n \in \mathbb{N} \mid F_n = F_{n+1}\}$ est une partie de \mathbb{Z} , non vide (via l'hypothèse du 4.) et minorée, elle possède donc un plus petit élément.

Puisque la suite (F_n) est décroissante et stationnaire à partir du rang r(u) donc $F = \bigcap_{n \in \mathbb{N}} F_n = F_{r(u)}$.

3.c Soit $\vec{x} \in E$. On a $u^{r(u)}(\vec{x}) \in F_{r(u)}$. Or $F_{r(u)} = F_{2r(u)}$ donc il existe $\vec{a} \in E$ tel que $u^{r(u)}(\vec{x}) = u^{2r(u)}(\vec{a})$.

Posons alors $\vec{y} = u^{r(u)}(\vec{a})$ et $\vec{z} = \vec{x} - \vec{y}$.

Clairement $\vec{x} = \vec{y} + \vec{z}$ et $\vec{y} \in F_{r(u)} = F$.

De plus $u^{r(u)}(\vec{z}) = u^{r(u)}(\vec{x}) - u^{r(u)}(\vec{y}) = u^{r(u)}(\vec{x}) - u^{2r(u)}(\vec{a}) = \vec{o}$ donc $\vec{z} \in G_{r(u)}$.

4.a Par récurrence sur $p \in \mathbb{N}$.

Pour p = 0: ok

Supposons la propriété établie au rang p > 0.

On a déjà $G_{n+p} \subset G_{n+p+1}$ car (G_n) est croissante.

Soit
$$\vec{x} \in G_{n+p+1}$$
. On a $u^{n+p+1}(\vec{x}) = \vec{o}$ donc $u^p(\vec{x}) \in G_{n+1}$.

Or $G_{n+1}=G_n$ donc $u^p(\vec{x})\in G_n$ et donc $u^{n+p}(\vec{x})=\vec{o}$ i.e. $\vec{x}\in G_{n+p}$. Aines $G_{n+p+1}\subset G_{n+p}$.

Par double inclusion $G_{n+p}=G_{n+p+1}$. Par HR, $G_{n+p+1}=G_n$. Récurrence établie.

4.b Soit
$$A = \{ n \in \mathbb{N} / G_{n+1} = G_n \}$$
.

A est une partie de $\mathbb Z$, minorée par 0 et par l'hypothèse de la question 3., non vide.

Elle possède donc un plus petit élément.

La suite (G_n) est croissante et stationnaire à partir du rang s(u) donc $G = \bigcup_{n \in \mathbb{N}} G_n = G_{s(u)}$.

4.c Soit
$$\vec{x} \in F_{s(u)} \cap G$$
. Il existe $\vec{a} \in E$ tel que $\vec{x} = u^{s(u)}(\vec{a})$ et on a $u^{s(u)}(\vec{x}) = \vec{o}$.

On a alors
$$u^{2s(u)}(\vec{a}) = u^{s(u)}(\vec{x}) = \vec{o} \ \ \text{donc} \ \ \vec{a} \in G_{2s(u)}$$
 . Or $G_{2s(u)} = G_{s(u)} \ \ \text{donc} \ \ \vec{x} = u^{s(u)}(\vec{a}) = \vec{o}$.

Ainsi $F_{s(u)} \cap G \subset \{\vec{o}\}$, l'autre inclusion est aussi vraie car $F_{s(u)}$ et G sont des sous-espaces vectoriels donc $F_{s(u)} \cap G = \{\vec{o}\}$.

5.a On sait déjà
$$G_n \subset G_{n+1}$$
.

Soit
$$\vec{x} \in G_{n+1}$$
. On a $\vec{u}^{n+1}(\vec{x}) = \vec{o}$.

$$\vec{u}^n(\vec{x}) \in F_n = F_{n+1}$$
 donc $\exists \vec{a} \in E$ tel que $\vec{u}^n(\vec{x}) = \vec{u}^{n+1}(\vec{a})$.

$$u^{n+1}(\vec{x}) = \vec{o} \ \text{ donne alors } \ \vec{u}^{n+2}(\vec{a}) = \vec{o} \ \text{ donc } \ \vec{a} \in G_{n+2} = G_{n+1} \ \text{puis } \ u^{n+1}(\vec{a}) = \vec{o} \ \text{ i.e. } \ u^{n}(\vec{x}) = \vec{o} \ .$$

Ainsi $G_{n+1} \subset G_n$ et finalement $G_n = G_{n+1}$.

5.b On sait déjà
$$F_{n+1} \subset F_n$$
.

Soit $\vec{y} \in F_n$. Il existe $\vec{a} \in E$ tel que $\vec{y} = u^n(\vec{a})$.

$$\vec{u}(\vec{y}) = u^{n+1}(\vec{a}) \in F_{n+1} = F_{n+2}$$
 donc il existe $\vec{b} \in E$ tel que $\vec{u}^{n+1}(\vec{a}) = u^{n+2}(\vec{b})$.

On a alors
$$u^{n+1}(\vec{a} - u(\vec{b})) = \vec{o}$$
 donc $\vec{a} - u(\vec{b}) \in G_{n+1} = G_n$ d'où $u^n(\vec{a} - u(\vec{b})) = \vec{o}$.

Ainsi
$$\vec{y} = u^n(\vec{a}) = u^{n+1}(\vec{b}) \in F_{n+1}$$
. Finalement $F_n \subset F_{n+1}$ puis $F_n = F_{n+1}$.

6.a Les questions 5.a et 5.b permettent d'affirmer respectivement que $s(u) \le r(u)$ et que $r(u) \le s(u)$. Par suite r(u) = s(u).

6.b
$$F = F_{r(u)} = F_{s(u)}$$
 et $G = G_{r(u)} = G_{s(u)}$.

Les relations $E=F+G_{r(u)}$ et $F_{s(u)}\cap G=\left\{ \overrightarrow{o}\right\}$ donne E=F+G et $F\cap G=\left\{ \overrightarrow{o}\right\}$ donc F et G sont supplémentaires.

6.c Pour alléger, posons
$$p=r(u)=s(u)$$
 . On a $F=F_p$ et $G=G_p$.

Soit $\vec{x} \in \ker u_{\mathbb{F}}$. On a $\vec{x} \in F$ et $\vec{u}(\vec{x}) = \vec{o}$.

Puisque $\vec{x} \in F = F_n$, il existe $\vec{a} \in E$ tel que $\vec{x} = u^p(\vec{a})$.

$$\vec{u}(\vec{x}) = \vec{o} \ \text{ donne alors } \ u^{^{p+1}}(\vec{a}) = \vec{o} \ \text{ donc } \ \vec{a} \in G_{^{p+1}} \text{. Or } \ G_{^{p+1}} = G_{^p} \ \text{ donc } \ \vec{a} \in G_{^p} \text{ puis } \ \vec{x} = u^p(\vec{a}) = \vec{o} \ .$$

Ainsi $\ker u_{|F} = \{\vec{o}\}$. Ainsi $u_{|F}$ est injectif.

Soit $\vec{y} \in F = F_n$. Il existe $\vec{a} \in E$ tel que $\vec{y} = u^p(\vec{a})$.

Or
$$F_p = F_{p+1}$$
 donc $\exists \vec{b} \in E$ tel que $u^p(\vec{a}) = u^{p+1}(\vec{b})$ et donc $\vec{y} = u(\vec{x})$ avec $\vec{x} = u^p(\vec{b}) \in F_p$.

Ainsi $u_{|F}$ est surjectif. Au final $u_{|F}$ est un automorphisme.

Soit
$$\vec{x} \in G = G_p$$
. On a $u^p(\vec{x}) = \vec{o}$ donc $(u_{|G})^p = 0$. $u_{|G}$ est nilpotent.