M1P1 Analysis I

Problem Sheet 1

- 1. For real numbers x, y, z, consider the following inequalities.
 - (a) $|x + y| \le |x| + |y|$
- (e) $|x| \le |y| + |x y|$
- (b) $|x+y| \ge |x| |y|$
- $(f) \quad |x| \geq |y| |x y|$
- (c) $|x + y| \ge |x| |y|$ (c) $|x + y| \ge |y| - |x|$
- (g) $|x y| \le |x z| + |y z|$
- (d) $|x-y| \ge \left| |x| |y| \right|$

Prove (a) from first principles. Why is it called the "triangle inequality"?

Deduce (b,c,d,e,f,g) from (a).

- 2.* Fix nonempty $S \subset \mathbb{R}$ with an upper bound. Give proofs or counterexamples to the following statements.
 - (a) If $S \subset \mathbb{Q}$ then $\sup S \in \mathbb{Q}$.
 - (b) If $S \subset \mathbb{R} \setminus \mathbb{Q}$ then $\sup S \in \mathbb{R} \setminus \mathbb{Q}$.
 - (c) If $S \subset \mathbb{Z}$ then $\sup S \in \mathbb{Z}$.
 - (d) There exists a max S if and only if $\sup S \in S$.
 - (e) $\sup S = \inf(\mathbb{R} \backslash S)$.
 - (f) $\sup S = \inf(\mathbb{R}\backslash S)$ if and only if S is an interval of the form $(-\infty, a)$ or $(-\infty, a]$.
- 3. Suppose that u is an upper bound for the nonempty subset $S \subset \mathbb{R}$. Prove that $u = \sup S$ if and only if $\forall \epsilon > 0$, $\exists s \in S$ such that $s > u \epsilon$.
- 4. Without looking at your notes, say out loud (ideally to a friend) the definition of $a_n \to a$ in English (not maths!).

Pass back and forwards between maths and English (e.g. $\forall \epsilon > 0 \iff$ "However close I want to get", etc.).

Write down your definition. Now check your notes. Are there any subtle differences (things in a different order, \forall replaced by \exists , etc?) If so they're VERY important. Is your definition still correct? There are many correct – and incorrect – ways of writing the same definition.

If it's only nearly correct, it's very wrong – can you find a counterexample ?

- 5. Give without proof examples of sequences (a_n) , (b_n) with the following properties.
 - (i) Neither of a_n, b_n is convergent, but $a_n + b_n$, $a_n b_n$ and a_n/b_n all converge.
 - (ii) a_n converges, b_n is un bounded, but a_nb_n converges.
 - (iii) a_n converges, b_n bounded, but $a_n b_n$ diverges.
- 6. Let $a_n = \frac{n}{n+2}$. Does the sequence $(a_n)_{n\geq 1}$ converge or not? Prove your answer. It will be a mess first time, but now prove it again. Keep iterating until you converge to a short, clean, easy-to-understand logical proof that the precise definition given in lectures is satisfied (or is not satisfied).

You should prepare starred questions * to discuss with your personal tutor.