1.Install Wireshark.

sudo apt update

sudo apt install -y wireshark tshark tcpdump

2. Start capturing on your active network interface.

ip route get 8.8.8.8 | awk '{print \$5; exit}' # Check for Interface

ip link show # or

ifconfig -a

3. Browse a website or ping a server to generate traffic.

Browse 2 websites (GUI Based Approach)

Google.com

https://db-ip.com/all/192.168.171

terminal: ping and a curl request (CLI Based Approach)

ping -c 4 google.com

curl -I https://www.google.com

5. Filter captured packets by protocol (e.g., HTTP, DNS, TCP).

Using (CLI):

show DNS packets

tshark -r ~/capture.pcap -Y dns

show HTTP packets

tshark -r ~/capture.pcap -Y http

show ICMP

tshark -r ~/capture.pcap -Y icmp

To extract just the top protocols seen:

tshark -r ~/capture.pcap -q -z io,phs

or use protocol hierarchy:

tshark -r ~/capture.pcap -q -z proto,colinfo,0

simpler: protocol hierarchy summary

tshark -r ~/capture.pcap -q -z io,phs,0,ip

6. Identify at least 3 different protocols in the capture.

- TCP
- DNS
- TLS
- UDP
- QUIC

8. Summarize your findings and packet details.

Protocols Observed

- **TCP (Transmission Control Protocol)** The dominant protocol, responsible for reliable data transfer between hosts.
- DNS (Domain Name System) Used to resolve domain names into IP addresses.
- QUIC / TLS Present during secure web browsing; indicates encrypted HTTPS communication over UDP.
- **UDP (User Datagram Protocol)** Used by QUIC and some DNS traffic for faster, connectionless delivery.

Key Observations

- Handshake and Termination:
 - Multiple SYN, SYN-ACK, and ACK packets confirm several TCP connection establishments.
 - FIN packets show graceful connection termination.

• Retransmissions:

 A few packets were marked as "suspected retransmissions", typical of network latency or temporary packet loss.

RST (Reset) Packets:

Some sessions ended abruptly, possibly due to timeouts or closed connections.

QUIC/TLS Handshake:

 TLS handshake messages and deprecated legacy version warnings confirm encrypted HTTPS traffic.

DNS Queries:

Several DNS packets show hostname lookups for visited websites.

Packet Summary (from Expert Info)

Severity	Description / Event	Protocol	Count
Warning	TCP segment not captured / RST / Handshake failure	e TCP	574
Note	Retransmissions, Keep-alive, Coalesced segments	TCP	20+
Chat	SYN, SYN-ACK, FIN – connection start and end	TCP	51 each
Deprecated	d Legacy TLS version field ignored	TLS	146
Protocol	Standard DNS request/response	DNS	131
Info	QUIC / UDP packets in encrypted traffic	QUIC / UDI	9 + 4

Interpretation

- The traffic primarily consists of **web-related communication**, where TCP manages reliable sessions and QUIC/TLS provides encrypted data exchange.
- DNS lookups occur prior to establishing web sessions.
- Retransmissions and RSTs are normal in short captures due to session resets or packet loss.
- Presence of TLS and QUIC confirms that most browsing occurred over secure HTTPS.

Conclusion

The Wireshark capture demonstrates active network behavior with multiple concurrent TCP and QUIC sessions, DNS resolution, and encrypted communication. The packet flow reflects a typical secure web-browsing session. Minor retransmissions and resets are expected in normal network conditions.