EP2 - Relatório

Pêndulo Descida na Rampa

Guilherme Costa Vieira - NUSP 9790930

João Gabriel Basi - NUSP 9793801

Juliano Garcia de Oliveira - NUSP 9277086

Pedro Pereira - NUSP 9778794

Raphael R. Gusmão - NUSP 9778561

Victor Chiaradia Gramuglia Araujo - NUSP 9793756

1. Introdução

O EP2 consiste em escolher 2 de 4 experimentos que foram discutidos em sala e modelá-los. Isto é, observar um fenômeno, fazer as medições necessárias, utilizar uma modelagem matemática e finalmente analisar os dados e simular o fenômeno, que é a síntese computacional.

Os experimentos escolhidos foram a rampa e o pêndulo (Movimento harmônico). A principal características do movimento da rampa é que o movimento é causado apenas pela aceleração da gravidade, enquanto no pêndulo movimentos são sua periodicidade.

Utilizou-se o método de Euler e sua variação Euler-Cromer como métodos numéricos básicos para simular os movimentos. Esses dois métodos são iterativos aproximam a função usando equações diferenciais. Os dados relevantes aos experimentos foram obtidos usando o aplicativo Physics Toolbox Suite (PTS), cronômetro, transferidor e inclinômetro.

2. Experimentos

Rampa

Para realizar esse experimento foi escolhido a rampa de acesso da Biblioteca Brasiliana Guita e José Mindlin. Foi s medido as dimensões dos azulejos da rampa (40 cm X 40 cm) com uma trena, foi escolhido o tamanho do percurso (6 m / 15 azulejos) e medida sua inclinação (8,5°). Nas posições 2 m (1/3 do percurso) e 4 m (2/3 do percurso) foi colocado um ímã para ajudar na medição do tempo do percurso, no final da rampa foi feita uma barreira de mochilas para que o experimento parasse no mesmo ponto. O medidor de dados (um celular rodando o PTS em modo multi relatório (magnetômetro e acelerômetro linear) foi colocado em cima de um skate (segurado por fita)) percorreu a rampa passando em cima dos imãs.

Pêndulo

Para realizar o movimento harmônico foi necessário escolher uma árvore protegida do vento, pois este se provou um problema sério na primeira realização do experimento. Após escolher a árvore certa, um barbante de 1,5 metros foi preso em um galho da árvore e na outra extremidade do barbante foram presos 3 imãs. Um celular foi colocado embaixo do ponto de repouso do pêndulo e com o magnetômetro do PTS foi registrado a intensidade do campo magnético criado pelos ímãs presos no pêndulo. Com essa medição pode-se inferir o período do pêndulo, com o transferidor foi possível repetir o experimento com um ângulo de 45°.

A visualização do experimento pode ser observada no canal:

https://www.youtube.com/user/RaphaelRGusmao/videos

(Devido à grande quantidade de pós-produção, não pusemos o link instantâneo para o vídeo, para caso alguma alteração/correção seja feita após a entrega deste relatório.)

3. Método

3.1 Descrição do algoritmo

O programa (EP2) tem como objetivo receber dados dos experimentos pêndulo e rampa e calcular as estatísticas pertinentes ao experimentos. O programa considera que rampa e o pêndulo possuem as características mencionadas anteriormente.

Após a leitura dos dados, calcula-se o dicionário de estados da rampa (tempo, posição e velocidade) e do pêndulo (tempo, ângulo e velocidade) usando o algoritmo de euler.

Então, plota-se:

Para a rampa:

- Para cada instância do arquivo ison:
 - O gráfico da posição simulada por tempo.
 - o O gráfico da velocidade simulada por tempo.
 - Os valores observados.
 - o O erro entre o observado e o calculado.
 - O arquivo csv pertinente ao experimento.
- Uma animação que representa o movimento.

Para o pêndulo:

- Para cada instância do arquivo json:
 - O gráfico do ângulo simulado pelo tempo.
 - o O gráfico da velocidade simulada pelo tempo.
 - Os valores observados.
 - O erro entre o observado e o calculado.
 - O arquivo csv pertinente ao experimento.
- Uma animação que representa o movimento.

3.2 Implementação do algoritmo

Python 3.6 foi usado para a criação do código pois é a versão mais atualizada da linguagem. O programa recebe um arquivo .json com os dados do experimento realizado. O arquivo contém um vetor que contém dois vetores, um guarda os dados do pêndulo e o outro guarda os dados da rampa. Os dados estão organizados em vetores e cada um destes possui as seguintes informações:

Para o vetor do pêndulo:

- "csv": Identificador do experimento.
- "fTime": O tempo total do experimento.
- "times": Os tempos em que o pêndulo passou pelo medidor de dados.

Abaixo está um exemplo de entrada no formato json para o pêndulo:

Para o vetor da rampa:

- "csv": Identificador do experimento.
- "fTime": O tempo total do experimento.
- "times": Os tempos em que o medidor de dados passou pelos imãs.
- "obsTime": tempo medido pelo cronômetro.

Abaixo está um exemplo de entrada no formato json para a rampa:

```
{
   "csv" : "rampa1",
      "fTime" : 3.81,
      "times" : [ 2.17 , 2.98 ],
      "obsTime" : 3.41
}
```

O programa utiliza o paradigma de orientação à objetos. Segue abaixo na figura 1 uma representação geral do programa usando UML:

Figura 1 - Diagrama UML das classes do programa

As classes (**Pendulum** e **Ramp**) possuem os métodos __statesEuler(), plotGraph() e __showAnimation():

Método __statesEuler():

Para a classe *Ramp* o método recebe um objeto, ângulo da rampa em radianos, o coeficiente de atrito da rampa e o passo.

Com essas informações a função calcula o vetor de estados (contém a posição, a velocidade e o instante atual) para cada momento analisado usando o método de Euler e o método de Euler-Cromer .

Foi utilizada a seguinte equação diferencial na criação do algoritmo:

$$\frac{d^2y}{dt^2} = g(sen(\theta) - \mu * cos(\theta))$$

E $v(t+\Delta t)$ usando Euler é dado por:

$$v(t + \Delta t) = v(t) + g * (sen(\theta) - \mu * cos(\theta)) * \Delta t$$

Onde:

y = espaço percorrido

t = tempo

g = aceleração da gravidade (9,8 m/s²)

 θ = inclinação da rampa (8,5° = 0,148353 rad)

 μ = coeficiente de atrito cinético (estimado em 0,055)

Para a classe **Pendulum** o método recebe um objeto, ângulo inicial em radianos, o comprimento do pêndulo em metros e o passo.

Com essas informações a função irá calcular o vetor de estados (contém o ângulo, a velocidade e o instante atual) para cada momento analisado usando o método de Euler e o método de Euler-Cromer.

Foi utilizada a seguinte equação do movimento do pêndulo simples na criação do algoritmo.

$$\frac{d^2\theta}{dt^2} = -\frac{g}{l} * sen(\theta) - \gamma * \frac{d\theta}{dt}$$

E $v(t+\Delta t)$ usando Euler é dado por:

$$v(t + \Delta t) = v(t) - (\frac{g}{l} * sen(\theta) + \gamma * v(t)) * \Delta t$$

Onde:

 θ = ângulo do pêndulo em relação à reta normal

t = tempo

g = aceleração da gravidade (9,8 m/s²)

I = comprimento do fio

 γ = coeficiente de resistência do ar (estimado em 0,052)

Método plotGraph():

Método público responsável por plotar os gráficos os relevantes para cada experimento (mencionados em 3.1). As classes **Pendulum** e **Ramp** possuem implementações diferentes. Recebe um objeto como argumento.

Método __showAnimation():

Este método usa a biblioteca matplotlib para animar os dois experimentos.

4. Verificação do Programa

O coeficiente de atrito (µ) foi calculado da seguinte maneira:

$$Fr = m * a$$

$$Fr = P * sen(\theta) - Fa$$

$$Fa = N * \mu$$

$$P = m * g$$

$$N = P * cos(\theta)$$

Substituindo:

$$a = -q * sen(\theta) - \mu * q * cos(\theta)$$

Também temos que

$$s = s_0 + v_0 * t + \frac{(a * t^2)}{2}$$

como $s_0 = 0, v_0 = 0$ temos

$$s = \frac{(a * t^2)}{2}$$

então

$$s = -g * t^2 * \frac{sen(\theta) + \mu * cos(\theta)}{2}$$

como

$$g = 9.8m/s^2$$
$$s_f = 6$$
$$\theta = 0.148353$$

média dos tempos finais: $t_f=3.621$

temos que:

$$\mu = 0.055$$

O algoritmo utilizado para simular o pêndulo e a rampa se baseiam nos métodos de Euler / Euler-Cromer. Para provar que esses métodos são bons, é necessário definir alguns termos:

Seja **f** a função que indica empiricamente a velocidade do objeto, e seja **g** a função de Euler que aproxima a função **f** iterativamente.

Para provar que nosso método é bom, é necessário provar que |f(t)-g(t)| é pequeno, sendo ${\bf t}$ o tempo.

Perceba que, utilizando a expansão de taylor

$$f(t + \Delta t) = f(t) + \Delta t * f'(t) + \frac{\Delta t^2}{2} * f''(K)$$

com K constante pertencendo a $[t, t + \Delta t]$ (Sem perda de generalização, usando que delta é positivo).

Definindo g como

$$g(t + \Delta t) = f(t) + \Delta t * f'(t)$$

é possível notar que

$$|f(t + \Delta t) - g(t + \Delta t)| = |\frac{\Delta t^2}{2} * f''(K)| = \frac{\Delta t^2}{2} |f''(K)|$$

Supondo que a segunda derivada de f é limitada em todo R por M, isto é, que

$$|f''(x)| \leqslant M \quad \forall x \in \mathbb{R}$$

temos que

$$|f(t + \Delta t) - g(t + \Delta t)| \leqslant \frac{\Delta t^2}{2} * M$$

Implicando que a função para todo valor definido é

$$\mathcal{O}(\Delta t^2)$$

5. Dados

Abaixo estão ilustrados duas saídas do programa. A figura 2 é uma saída usando os dados obtidos de um experimento na rampa. No primeiro gráfico, em vermelho, temos os pontos observados, e em azul a linha do espaço simulado, usando o método de Euler. Em verde também é possível observar a velocidade simulada. Os dois outros gráficos são os dados obtidos pelo PTS, sendo que o primeiro é o acelerômetro linear e o segundo o magnetômetro.

Figura 2 - Experimento da rampa, com os dados experimentais e simulados (usando $\Delta t=0.05s$)

Na figura 3 abaixo está a saída do programa para o experimento do pêndulo, onde é possível observar em vermelho as posições onde o pêndulo possui amplitude 0 (observado). Em verde temos a velocidade simulada e em azul o ângulo simulado, e é fácil de observar que ambos vão diminuindo sua respectiva amplitude, devido ao amortecimento.

Figura 3 - Experimento do pêndulo, com os dados experimentais e simulados (usando $\Delta t=0.05s$)

Vale acrescentar que esses gráficos podem ser melhor visualizados rodando o próprio programa. A descrição do EP2 especifica vários gráficos sobrepostos, o que às vezes dificulta a visualização ao transformar em imagem.

6. Análise

Os conceitos físicos em questão nos dados obtidos pelo programa são fáceis de serem relacionados após uma análise dessas informações.

Em primeiro lugar, vemos a relação entre o erro para cada tipo de movimento, e que uma boa modelagem matemática do movimento (em conjunto com um bom algoritmo de aproximação numérica como o método de Euler) permite um erro bastante aceitável, em ambos os experimentos.

Uma análise bastante condizente para mostrar que a simulação faz sentido, no movimento do pêndulo, é observar a curva que descreve a velocidade simulada. Por exemplo, analisando a figura 3, é fácil observar que os picos e vales da velocidade estão bem alinhados com os dados obtidos experimentalmente: os pontos vermelhos estão bem no ponto onde há um pico ou um vale da velocidade simulada. E isso é bastante condizente com o que se esperava, já que a velocidade possui maior intensidade exatamente quando a amplitude do pêndulo está no 0.

A proximidade entre a variação do ângulo simulado e os pontos obtidos experimentalmente é outro fator que mostra que a simulação está coerente com o esperado, já que os pontos onde o ângulo está em 0 radianos são os mesmos onde foi observado no experimento através do magnetômetro.

No nosso programa, além de usar o método de Euler para a simulação, usamos também o algoritmo de Euler Cromer para comparar os erros, como especificado na descrição do EP2. Analisando o erro médio, temos:

- Rampa
 - Erro médio (Euler) = 0.217611
 - Erro médio (Euler-Cromer) = 0.299978
- Pêndulo
 - Erro médio (Euler) = 0.043380
 - Erro médio (Euler-Cromer) = 0.042973

E optamos por manter por padrão o Euler, porém a simulação usando Euler-Cromer também é exibida nos gráficos, em pontilhado.

7. Interpretação

A partir dos dados coletados é possível verificar que o algoritmo escrito consegue simular os movimentos (pêndulo e rampa) de forma precisa (erro relativamente baixo), logo podemos concluir que o sistema físico analisado não possui variáveis significativas que não foram consideradas no algoritmo. Em suma, o modelo matemático é uma boa simulação da realidade.

Temos duas sugestões principais: Em primeiro lugar, discutir mais em sala sobre cada movimento especificado no EP, principalmente sobre como modelar a força de resistência de cada um deles, que achamos que foi explicado muito rápido. Em segundo lugar, é que as notas dos EPs demoram muito para sair, o que dificulta o planejamento e escrita do relatório já que não temos retorno rápido e não sabemos o que precisamentos melhorar / consertar.

8. Crítica

Em termos técnicos, o grupo aprendeu a fazer animações usando a biblioteca matplotlib e aplicar conceitos sobre herança e métodos abstratos em Python. Também ganhou-se experiência na criação de efeitos especiais no programa Adobe After Effects CC.

Na realização do experimento houve problemas com os arquivos gerados pelo PTS no modo multi relatório, já que o PTS repetiu os valores da coluna no CSV, dando um aspecto de gráfico "quadrado". Repetimos o experimento pelo menos 11 vezes, e em todos os CSV's gerados no multi relatório houve esse problema. No experimento da rampa o skate usado fazia uma trajetória não retilínea o que foi resolvido usando um peso no skate para alinhar a trajetória. No experimento do pêndulo foi preciso mudar de árvore em outro local, pois o vento mudava a trajetória do pêndulo.

9. Log

Para a realização do experimento foram necessárias 6 horas divididas em um dia.

Para a edição do vídeo foram 12 horas divididas em 5 dias.

Para criação do algoritmo foram necessárias 15 horas divididas em 2 dias.

Para a criação do relatório foram horas divididas 10 em 2 dias.

10. Contribuição dos Autores

- Guilherme Costa Vieira: Participação no vídeo, criação do relatório;
- João Gabriel Basi: Participação no vídeo, criação do código, criação do relatório;
- Juliano Garcia de Oliveira: Participação no vídeo, criação do código, criação do relatório;
- Pedro Leyton Pereira: Participação no vídeo, edição do vídeo, criação do relatório;
- Raphael dos Reis Gusmão: Participação no vídeo, edição do vídeo;
- Victor Chiaradia Gramuglia Araujo: Participação no vídeo, criação do relatório.

11. Agradecimentos

Agradecimento especial para Roberto Hirata Junior professor associado do Instituto de Matemática e Estatística da Universidade de São Paulo (IME-USP) por sua participação especial no vídeo do experimento.

Agradecemos nosso colega Allan Rocha do Bacharelado de Ciência da Computação do IME-USP por sua ajuda na filmagem do experimento.

12. Bibliografia

Euler Method

https://en.wikipedia.org/wiki/Euler_method

Euler-Cromer Method

https://en.wikipedia.org/wiki/Semi-implicit_Euler_method

Gould, Harvey, Jan Tobochnik, and Wolfgang Christian. An Introduction to Computer Simulation Methods Third Edition (revised). 2007

29.7. abc — Abstract Base Classes in python https://docs.python.org/3/library/abc.html

Animation guide - Matplotlib http://matplotlib.org/1.3.0/examples/animation/index.html

Anexo 1 - EP Relato - 08/05/2017

Planejamento

O grupo planejou como executar os experimentos em questão, escolhendo dois dentre os movimentos harmônico (pêndulo), o circular uniforme e a descida na rampa.

Pêndulo

Para o movimento harmônico, a ideia inicial é utilizar dois celulares: Um no pêndulo propriamente dito, e outro para ser a lanterna. Usando um barbante como apoio, a obtenção dos dados seria feita através do Light Meter do Physics toolbox. Com os picos de luz, espera-se obter os dados do período e frequência. Uma outra ideia é usar um imã ao invés da lanterna do celular e usar o Magnetometer do Physics toolbox para medir quando o ímã estiver próximo, de modo similar ao LED.

Movimento Circular Uniforme

No movimento circular, a ideia é utilizar um ventilador ou um cooler para a rotação. O objeto em rotação para a medição seria um LED, e um celular parado mediria a intensidade de luz. Uma outra ideia é usar um ímã como partícula em movimento no ventilador, e usar o Magnetometer do Physics toolbox para medir quando o ímã estiver próximo, como no movimento harmônico.

Descida na Rampa

Por fim, no movimento da descida de rampa seria algo mais simples, utilizando um carrinho, barbante e o celular para medir a passagem do tempo e a inclinação da rampa.

Anexo 2 - Gráficos gerados pelo programa

