Devoir non surveillé: Intégration.

(A rendre pour lundi 23/03/2020)

On définit la fonction f_n sur [0;1] par :

$$f_0(x) = e^x$$
 et pour $n \neq 0$, $f_n(x) = \frac{1}{n!}(1-x)^n e^x$

On rappelle que $n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$, et que se nombre se lit « factorielle n » .

Soit (u_n) la suite définie sur \mathbb{N} par :

$$u_n = \int_0^1 f_n(x) \, \mathrm{d}x$$

- **1.** Calculer u_0 .
- **2.** Démontrer que, pour tout x de [0;1],

$$f_1'(x) = -f_0(x) + f_1(x)$$

En déduire que $u_1 - u_0 = -1$ et donner la valeur de u_1 .

3. Démontrer que, pour tout x de [0;1],

$$f'_{n+1}(x) = -f_n(x) + f_{n+1}(x)$$

En déduire que, pour tout $n \in \mathbb{N}$:

$$u_{n+1} = u_n - \frac{1}{(n+1)!}$$

4. En déduire que, pour tout n de \mathbb{N}^* , on a :

$$u_n = e - 1 - \sum_{p=1}^{n} \frac{1}{p!}$$

5. a. Montrer que, pour tout $x ext{ de } [0; 1]$,

$$0 \le f_n(x) \le \frac{\mathrm{e}^x}{n!}$$

b. En déduire que, pour tout n de \mathbb{N}^* ,

$$0 \le u_n \le \frac{\mathrm{e} - 1}{n!}$$

6. En déduire la valeur de la limite suivante :

$$\lim_{n\to +\infty} 1 + \sum_{p=1}^n \frac{1}{p!}$$