Постановка задачи

Дано ориентированное дерево из N вершин, найти количество его топологических сортировок.

Решение

Дерево имеет рекурсивную структуру, рассмотрим решение задачи для некоторого дерева с корнем v и поддеревьями T_1, T_2, \ldots, T_n . Обозначим за ts_i количество топологических сортировок поддерева T_i , а за k_i — число вершин в поддереве T_i .

Для начала рассмотрим случай, когда n=2.

Рис. 1: Рассматриваемое дерево при n=2

Любая топологическая сортировка данного дерева будет иметь вид

$$v, v_1, v_2, \ldots, v_{k_1+k_2}$$

где $v_1, v_2, \ldots, v_{k_1 + k_2} \in T_1 \cup T_2$. Тогда число таких сортировок вычисляется как

$$ts_1 \cdot ts_2 \cdot N$$

где N — число способов объединить последовательности вершин двух поддеревьев, полученные их топологической сортировкой, не нарушая исходный порядок в каждой из них.

N вычисляется как $C^{k_1}_{k_1+k_2}$, потому что для объединения последовательностей необходимо выбрать k_1 из k_1+k_2 позиций, на которые будут размещены элементы первого поддерева в исходном порядке, а на свободные поместить элементы второго поддерева также с сохранением порядка.

Упростим $C_{k_1+k_2}^{k_1}$:

$$C_{k_1+k_2}^{k_1} = \frac{(k_1+k_2)!}{k_1!(k_1+k_2-k_1)!} = \frac{(k_1+k_2)!}{k_1!k_2!}$$

Получаем

$$ts_1 \cdot ts_2 \cdot \frac{(k_1 + k_2)!}{k_1!k_2!}$$

Обобщим до произвольного числа поддеревьев.

- n = 1: ts_1
- n=2: рассмотрен выше.

Рис. 2: Рассматриваемое дерево при $n\geqslant 2$

• n > 2: расширим подсчет N до произвольного числа поддеревьев. Сначала вычислим N для первых двух поддеревьев, потом для объединения первых двух и третьего поддеревьев, и так далее. Пусть $F(n,m) = \frac{(n+m)!}{n!m!}$. Получим

$$\prod_{i=1}^{n} t s_{i} \cdot \prod_{i=2}^{n} F(k_{1} + \dots + k_{i-1}, k_{i})$$

Нетрудно вывести из описанной формулы рекуррентное соотношение.

Реализация

Мемоизация тривиальна: начнем подсчет с листьев, в ходе алгоритма послойно поднимаясь до корня.

Теорема. Описанный алгоритм позволяет вычислить количество топологических сортировок дерева из N вершин за $O(N^3)$.

Доказательство. Обозначим за n_i число детей вершины i, за k_i — размер поддерева с корнем в вершине i.

Восстановим описанную при построении алгоритма формулу для дерева с корнем в вершине i с $m=n_i$ детьми j_1,\ldots,j_m :

$$\prod_{s=1}^{m} ts_{s} \cdot \prod_{s=2}^{m} F(k_{j_{1}} + \dots + k_{j_{s-1}}, k_{j_{s}})$$

Вычисление факториала n требует O(n) операций, поэтому вычисление второго из произведений ограничивается сверху $O(mk_i)$. Это следует из того, что сумма размеров поддеревьев не превосходит размера самого дерева. Таким образом и вся формула вычисляется за $O(mk_i)$, так как вычисление первого произведения требует лишь O(m) операций.

Очевидно, что количество операций для каждой вершины не превысит $O(N^2)$. Так как вершин в дереве ровно N, получаем итоговую асимптотику $O(N^3)$.