Model Documentation of the 'AC1'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^5 u$$
 $\in \mathbb{R}^3 w \in \mathbb{R}^3 z$ $\in \mathbb{R}^2 y \in \mathbb{R}^3$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t)$$
(1c)

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
	0 1.132 0 -1.0
A	$\begin{bmatrix} 0 & -0.0538 & -0.1712 & 0 & 0.0705 \end{bmatrix}$
	0 0 0 1.0 0
	$\begin{bmatrix} 0 & 0.0485 & 0 & -0.8556 & -1.013 \end{bmatrix}$
	$\begin{bmatrix} 0 & -0.2909 & 0 & 1.0532 & -0.6859 \end{bmatrix}$
В	
	$\begin{bmatrix} -0.12 & 1.0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 4.419 & 0 & -1.665 \\ 0.0000 & 0.0000 \end{bmatrix}$
	$\begin{bmatrix} 1.575 & 0 & -0.0732 \end{bmatrix}$
B_1	$\begin{bmatrix} 0 & 0 & 0 \\ 0.12 & 1.0 & 0 \end{bmatrix}$
	$\begin{bmatrix} -0.12 & 1.0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 \\ 4.419 & 0 & -1.665 \end{bmatrix}$
	$\begin{bmatrix} 4.419 & 0 & -1.003 \\ 1.575 & 0 & -0.0732 \end{bmatrix}$
	$\begin{bmatrix} 1.373 & 0 & -0.0732 \end{bmatrix} \begin{bmatrix} 0 & 0.70710678 & 0 & 0 & 0 \end{bmatrix}$
C_1	0 0 0.70710678 0 0
C	
	$\begin{bmatrix} 0 & 1.0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 1.0 & 0 & 0 \end{bmatrix}$
D_{11}	$[0 \ 0 \ 0]$
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
D_{12}	$\begin{bmatrix} 0.70710\overline{6}78 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0.70710678 & 0 \end{bmatrix}$
D_{21}	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

AC1 Y. S. Hung and A. G. J. MacFarlane, "Multivariable feedback A quasicalssical approach", Springer-Verlag, "Lecture Notes in Control and Information Sciences", 1982

4 Simulation

Figure 1: Simulation of the AC1.

References

[1] . S. Hung and A. G. J. MacFarlane, "Multivariable feedback A quasiclassical approach", Springer-Verlag, "Lecture Notes in Control and Information Sciences", 1982