

Tipos de dato en Oracle

Al igual que en otros lenguajes SQL y mas exáctamente Oracle 18c tiene sus propios tipos de dato.

Es importante destacar que SQL es técnicamente un Estándar de datos por el cual muchos lenguajes se rigen.

Cadenas de Caracteres

SQL 2003	ORACLE 11g	DB2 9.5	SQL Server 2008	PostgreSQL 8.x	MySQL 5.x
(especificación)					
CHAR [ACTER] [(n)]	CHAR[ACTER][(n)]	CHAR[ACTER][(n)]	CHAR[ACTER][(n)]	CHAR[ACTER][(n)]	CHAR[(M)]
CHAR[ACTER]	CHAR[ACTER]	CHAR[ACTER]	CHAR[ACTER]	CHAR[ACTER]	VARCHAR (M) 6
VARING(n) ó	VARING(n) ó	VARING(n) ó	VARING(n) ó	VARING(n) ó	TINYTEXT 6
VARCHAR(n)	VARCHAR(n) ó	VARCHAR(n) ó	VARCHAR[(n)]	VARCHAR(n)	TEXT Ó
	VARCHAR2 (n)	LONGVARCHAR	TEXT		MEDIUMTEXT 6
					LONGTEXT
CLOB Ó	CLOB ó	CLOB[(n)[K M,G]]	VARCHAR (MAX)	TEXT	BINARY[(M)]
CHARACTER LARGE	LONG[VARCHAR]				VARBINARY (M)
OBJECT					

Longitudes de Caracteres

Tipo de dato	DB2
CHAR	1-254
VARCHAR	1-32672
LONG VARCHAR	1-32700
CLOB	2 GB
GRAPHIC	1-127
VARGRAPHIC	1-16, 336
LONG VARGRAPHIC	16,350

Longitudes de Caracteres

Tipo de dato	MySQL
CHAR	1-255
VARCHAR	1-65535
TINYTEXT	0-255
TEXT	0-65535
MEDIUM TEXT	0-16777215
LONGTEXT	0- 4294967295

Tipo de dato	PostgreSQL
CHAR	1 GB
VARCHAR	1-GB
TEXT	1-GB

Tipos de dato Numérico exacto

Al definir un atributo de una tabla con un tipo de dato numérico exacto se puede definir 2 elementos:

- Precisión: Número total de dígitos: Parte entera + parte decimal
- Escala: Número de dígitos que formarán a la parte decimal.

Tipo de dato Numérico exacto

SQL 2003	ORACLE 11g	DB2 9.5	SQL Server 2008	PostgreSQL 8.x	MySQL 5.x
(especificación)					
INT[EGER]	NUMBER (n)	INT[EGER] ó	INT[EGER] ó	INTEGER Ó	INT[(M)] 6
		BIGINT	BIGINT	BIGSERIAL Ó	MEDIUMINT[(M)] ó
				SERIAL Ó	BIGINT[(M)]
				BIGINT	
SMALLINT	SMALLINT	SMALLINT	SMALLINT Ó	SMALLINT	SMALLINT[(M)] ó
	NUMBER (n)		TINYINT		TINYINT[(M)]
NUMERIC[(P[,S])]	NUMERIC	NUMERIC	NUMERIC	NUMERIC	
Ó	[(P[,S])] ó	[(P[,S])] ó	[(P[,S])] ó	[(P[,S])] ó	
DEC[IMAL]	DEC[IMAL]	DEC[IMAL]	DEC[IMAL]	DEC[IMAL]	
[(P[,S])]	[(P[,S])] ó	[(P[,S])]	[(P[,S])]	[(P[,S])]	
	NUMBER[(P[,S])]		MONEY		
			SMALLMONEY		

Tipos de Dato numérico Aproximados

Se emplean cuando no se conoce con exactitud los valores de la precisión y/o escala que puede tener los valores de una columna.

EN ORACLE

- INTEGER, SMALLINT se convierten a NUMBER (38)
- NUMERIC, DECIMAL se convierten a NUMBER (38)
- El rango se define de 1x10⁻¹³⁰a 9.x10¹²⁵ (38 nueves).

Se recomienda que todos los tipos de datos de tipo numérico sean de tipo "NUMBER", ya que es el Estándar de Oracle

SQL 2003 (especificación)	ORACLE 11g	DB2 9.5	SQL Server 2008	PostgreSQL 8.x	MySQL 5.x
FLOAT[(P)]	FLOAT[(P)] 6 NUMBER	FLOAT[(P)]	FLOAT[(P)]		FLOAT[(P[,S])]
REAL	REAL NUMBER	REAL	REAL	REAL	REAL[(P[,S])]
DOUBLE PRECISION	DOUBLE PRECISION NUMBER	DOUBLE [PRECISION]	DOUBLE PRECISION	DOUBLE PRECISION	DOUBLE [PRECISION]

Cadenas Binarias

Se emplean para almacenar secuencia de bytes en la base de datos, es decir, se almacenan archivos binarios: fotos, música, videos, huellas, documentos, etc.

SQL 2 (especific		ORACLE 11g	DB2 9.5	SQL Server 2008	PostgreSQL 8.x	MySQL 5.x
BLOB Ó BINARY OBJECT	LARGE	BLOB Ó LONGRAW Ó RAW(n)	BLOB[(n)[K M G]]	VARBINARY(MAX) Ó VARBINARY[(n)] Ó IMAGE	BYTEA	BINARY[(n)] ó VARBINARY(M) ó TINYBLOB ó BLOB ó MEDIUM BLOB ó LONG BLOB

Tipo de dato	DB2
BLOB	2 GB

Tipo de dato	SQL Server
BINARY	8000
VARBINARY	8000
IMAGE	2147483647
VARBINARY (MAX)	2 GB

Primeros Pasos

1.- Abrir una Terminal

```
su -l oracle
sqlplus / as sysdba
startup
exit
sqlplus / as sysdba
```


De Dibujitos al Código

Los diagramas (En Cualquier notación), nos ayudan bastante para la creación del código SQL, algunos entornos nos permiten pasar directamente del modelo al código con algunos ajustes extras

De Dibujitos al código Usando la sentencia "CREATE TABLE"

Estudiante

- Estudiante_Id
- Edad
- Correo_electrónico
- Carrera
- Promedio
- Estatura

```
CREATE TABLE estudiante(
    estudiante_id NUMBER(10),
    edad NUMBER(10),
    correo_electronico VARCHAR2(40),
    carrera VARCHAR2(40),
    promedio NUMBER(3,2),
    estatura NUMBER(2,3)
);
```


De Dibujitos al código Usando la sentencia "CREATE TABLE"

Estudiante

- Estudiante_Id
- Edad
- Correo_electrónico
- Carrera
- Promedio
- Estatura

```
CREATE TABLE estudiante(
    estudiante_id NUMBER(10) PRIMARY KEY,
    edad NUMBER(10),
    correo_electronico VARCHAR2(40),
    carrera VARCHAR2(40),
    promedio NUMBER(3,2),
    estatura NUMBER(2,3)
);
```


Ejemplo

AUTOMOVIL

num_puertas
marca

año

```
CREATE TABLE automovil(
    automovil_id NUMBER(5) PRIMARY KEY,
    color VARCHAR2(40),
    num_ruedas NUMBER(10),
    num_puertas NUMBER(10),
    marca VARCHAR2(20),
    año NUMBER(4)
);
```


EJERCICIO 1

USUARIO

₱ USUARIO_ID	VARCHAR(40)	NOT NULL
→ NOMBRE	VARCHAR(40)	NOT NULL
→ APELLIDO_PATERNO	VARCHAR(40)	NOT NULL
→ APELLIDO_MATERNO	VARCHAR(40)	NOT NULL
NUM_MATRICULA	NUMERIC(18,0)	NOT NULL
→ NUM_SEMESTRE	NUMERIC(18,0)	NULL
→ USERNAME	VARCHAR(40)	NOT NULL
→ PASSWORD	VARCHAR(40)	NOT NULL
→ CON_PRESTAMO	CHAR(2)	NOT NULL
→ CON_PRESTAMO_VENCIDO	CHAR(2)	NOT NULL

BIBLIOTECA

IUMERIC(10,0)	NOT NULL
ARCHAR(20)	NOT NULL
HAR(5)	NOT NULL
ARCHAR(40)	NOT NULL
	ARCHAR(20) HAR(5) ARCHAR(40) ARCHAR(40) ARCHAR(40)

EJERCICIO 2

COMPUTADORA

♣ COMPUTADORA_ID	NUMERIC(40,0)	NOT NULL
→ MARCA	VARCHAR(40)	NOT NULL
→ AÑO	VARCHAR(40)	NOT NULL
→ MODELO	VARCHAR(40)	NOT NULL
◆ PROCESADOR	VARCHAR(40)	NOT NULL
	VARCHAR(40)	NOT NULL
◆ MARCA_TARJETA_GRAFICA	VARCHAR(40)	NULL

TELEVISION

TELEVISION_ID	NUMERIC(40,0)	NOT NULL
◆ MODELO	VARCHAR(40)	NOT NULL
♠ AÑO	VARCHAR(40)	NOT NULL
RESOLUCION	VARCHAR(40)	NOT NULL
MARCA	VARCHAR(40)	NOT NULL

Ejercicio

Teniendo el siguiente modelo:

CANCION		
♣ CANCION_ID	NUMERIC(10,0)	NOT NULL
AÑO FOTO LETRA NOMBRE	DATE BINARY(40) VARCHAR(40) VARCHAR(40)	NULL NULL NULL NOT NULL

- Crear la tabla
- Modificar la columna nombre por "Nombre_cancion"
- Agregar la columna "Álbum de tipo varchar2"
- Agregar la columna "Artista" de tipo Varchar2
- Eliminar la columna Letra

