Mike Douglas

Director of Delivery Engineering

ABOUT ME

- Mike Douglas
- Solution Consultant and Director of Delivery Engineering at Lunavi
- Microsoft MVP Developer Technologies Azure DevOps
- Organizer of Omaha DevOps Meetup
- Competitive Robotics Club Coordinator for 4th 6th Graders
- AIM Events Steering Committee
- UNO ISQA Curriculum Advisor
- Mentor at Do Space
- @mikedouglasdev on twitter

LATE TO THE PARTY

- My Microservices Focus
 - Azure Platform as a Service (PAAS)
 - Azure Functions (Serverless)
- Dragging feet on Kubernetes
 - Required high level of sophistication
 - AKS had limited enterprise features

CHALLENGES WITH PAAS AND SERVERLESS AND MICROSERVICES

- Public by default / Access Restrictions
- Service to Service Communication
- ARM Templates
- Debugging and Local Development

KUBERNETES AND AKS – HOW DOES AKS ADDRESS THE PROBLEMS

- Public by default / Access Restrictions
 - More granular control of each service
- Service to Service Communication
 - Easy management
 - Mutual TLS
- ARM Templates
- Debugging and Local Development

KUBERNETES AND AKS

- What additional challenges / problems does Kubernetes and AKS create?
 - Complexity
 - Docker, Kubernetes, HELM, Az PS, many more,
 - "image" management
 - Security
 - Operations and Management

WHAT IS KUBERNETES AND AKS

KUBERNETES AND AKS

What is it?

- Kubernetes open source orchestration tool for deploying, managing, and scaling container applications
- AKS (Azure Kubernetes Service) Managed Kubernetes Service
 - You don't worry about underlying servers
 - You also don't pay for the management servers

INFRASTRUCTURE RESOURCES

KUBERNETES AND AKS – INFRASTRUCTURE RESOURCES

- Control Plane nodes that provide the core Kubernetes services and orchestration of application workloads
- Nodes run your workloads
- Node Pools nodes that are grouped together with the same configuration

WORKLOAD RESOURCES

Pods

- unit of work in Kubernetes. A single pod hosts one or more containers
- Share same network, process, and memory space
- Pods can't be created directly.
 They are managed by other resources called controllers


```
apiVersion: apps/v1
kind: Deployment
metadata:
 name: ratings-api
spec:
  selector:
   matchLabels:
      app: ratings-api
  template:
    metadata:
     labels:
        app: ratings-api # the label for the pods and the deployments
    spec:
      containers:
      - name: ratings-api
        image: acrMDDemo.azurecr.io/ratings-api:v1 # IMPORTANT: update with your own repository
        imagePullPolicy: Always
        ports:
        - containerPort: 3000 # the application listens to this port
                                                                                                                             environment variable
        env:
        - name: MONGODB URI # the application expects to find the MongoDB connection details in this environment variable
          valueFrom:
            secretKeyRef:
              name: mongosecret # the name of the Kubernetes secret containing the data
              key: MONGOCONNECTION # the key inside the Kubernetes secret containing the data
        resources:
          requests: # minimum resources required
            cpu: 250m
            memory: 64Mi
          limits: # maximum resources allocated
            cpu: 500m
            memory: 256Mi
        readinessProbe: # is the container ready to receive traffic?
```

Services

- Provides stable networking for pods
- Enables communication between nodes, pods, and users of your application

```
apiVersion: v1
     kind: Service
 3
     metadata:
        name: ratings-api
 5
     spec:
 6
        selector:
          app: ratings-api
 8
        ports:

    protocol: TCP

 9
10
          port: 80
11
          targetPort: 3000
        type: ClusterIP
12
```


Replica Set

Manages a replicated set of pods.

• Replica Set is managed by the deployment

Replica Set

Replicas:
3

Pod (1)

Pod (2)

Pod (4)

Namespaces

- Logical isolation boundary
- Virtual group of pods/services
- Examples: environments, products, type, etc.

SERVICE TYPES

Cluster IP - Creates internal IP to group pods – internal only

 NodePort - Creates port mapping so NodePort can be directly accessible with node IP and port

 LoadBalancer - Creates load balancer resource, configures external IP address

ExternalName - Creates a specific DNS entry for easier application access

KUBERNETS AND AKS - NETWORKING

- Kubenet basic / default option Azure manages the VNET resources
 - Use for smaller and test workloads
 - Nodes get IP from the VNET
 - Pods get an IP from different address space than nodes
 - Source IP is NAT'd to node's primary IP
 - Can let AKS create VNET or specify
- Azure CNI advanced
 - Use for larger, production workloads
 - Every pod gets an IP from subnet and can be accessed directly
 - Traffic to endpoints in the same VNET isn't NAT'd to node's primary
 IP

MICROSERVICES

MICROSERVICES

- What problem are we trying to solve?
 - Independently deploy and release
 - Smaller changes
- What problems do they cause?
 - Not just architecture
 - Forces changes to engineering practices, people, and culture
 - Can't just create a distributed "monolith"

Benefits

- Containerized
- Easy independent deployments
- Easy to control access restrictions
- Public, backend, cross API communication

- Tools for Cross Cutting Concerns
 - Service Mesh
 - API Gateway
 - Dapr

Dapr

Dapr: Build apps using any language with any framework

MICROSERVICES IN AKS DEMO

Dapr Demo

Scaling in AKS

PIPELINES

AKS PIPELINES

- Building and Packaging
- Deployments
- Secure DevOps

AKS PIPELINES

SECURE DEVOPS

Aqua

LINKS

- Kubernetes Cheat Sheet
 - https://linuxacademy.com/site-content/uploads/2019/04/Kubernetes-Cheat-Sheet_07182019.pdf
- Hands On Labs
 - https://aksworkshop.io/
 - https://kubesec.aksworkshop.io/ (some items in lab are outdated)
- Azure Pipelines HOL
 - https://docs.microsoft.com/en-us/learn/modules/deploy-kubernetes/
- Dapr
 - https://dapr.io/

QUESTIONS?

