情報アクセス論 第9回 「ソーシャル検索」

• • • ソーシャル検索とは?

- ○検索のプロセスに一般利用者のコミュニティ が積極的に関与
 - すべての利用者を同一に扱う従来の検索手法とは大きく異なる
- o 従来の検索手法との違い
 - 従来の検索は、利用者とシステムとのやり取り
 - ソーシャル検索は、利用者は他の利用者と直接的あるいは間接的にやり取り

・・・ソーシャルメディア

- ソーシャルメディアとは?
 - 利用者が作成するコンテンツ
 - Consumer Generated Media (CGM)と呼ばれる
 - 利用者が自分や他人のコンテンツに付与したタグ
 - 利用者がブックマークやタグを他のユーザと共有
- ソーシャルメディアの例:
 - ブログ,動画共有サイト, SNS (Social Networking Service),レビューサイト,Q&Aサイト,電子掲示板 ,ソーシャルブックマーク

・・・「タグ」と手動による索引付け

- 昔:図書館のカード目録
 - 索引語は検索しやすさを考慮して選ばれる
 - 専門家が索引語を生成
 - 質が非常に高い
 - 統制語彙から索引語が選ばれる(用語の統一)
- 今:ソーシャルメディアタギング
 - タグは必ずしも検索しやすさを考慮して選ばれない
 - 一般利用者がタグを生成
 - タグにはノイズや誤りが多い
 - フォークソノミーからタグの語が選ばれる

• • • 統制語彙とフォークソノミー

o 統制語彙

- 主題を表す索引語を、あらかじめ決められた閉 集合の中から選ぶ
 - 例:「オートバイ」→「バイク」「二輪車」「単車」「自動二輪」

o フォークソノミー

- folk(民衆)+taxonomy(分類法)を合わせた造語
- あるコンテンツに対して多くの利用者が自由にタ グを付与
- 付与されたタグによってコンテンツを分類・検索できる

• • | タグの種類

- o 内容に基づくタグ
 - 自動車, 立命館, 空
- コンテキストに基づくタグ
 - 京都, 金閣寺
- o 属性を示すタグ
 - ニコン(カメラの種類), 白黒(画像の種類), ホームページ(Webページの種類)
- 主観的なタグ
 - かわいい, すごい, 見事な
- 整理用のタグ
 - あとで読む、私の写真、README

タグの検索

- 利用者が付与したタグで検索するのは難しい
 - タグが数個しか付与されていない
 - タグ自体が非常に短い
- o ブーリアン・確率・ベクトル空間などの検索モ デルをそのまま使ってもうまく行かない
- 問合せとタグの語彙のミスマッチの問題を解 決する必要がある
 - 問合せ拡張と同様に「タグ」拡張を行うことで解 決できる
 - シソーラス、Web検索結果、問合せログなど

タグの推定

- ○タグ拡張の問題点
 - タグがまだ付与されていない場合は拡張ができない
 - タグには誤りやノイズが多い
- 人気が高いものは見つけやすいが、人気がないものは見つけにくい
 - タグが少ない、あるいはまったく無い
- タグが少ない、あるいは無いものに対して、タ グを自動で付与できないか?

タグを推定する手法

o TF·IDF

- 対象の中でTF・IDFの値が高いタグを提案
- テキストで表現できる対象に限られる

o 分類

- 各タグに対して2値の分類器を学習
- 良く使われるタグには有効
- MMR (Maximal Marginal Relevance)
 - 既存のタグに対して新規性があり、かつ対象に適合しているタグを見つける

$$MMR(t;T_i) = \left(\lambda Sim_{item}(t,i) - (1-\lambda) \max_{t \in T_i} Sim_{tag}(t_i,t)\right)$$

・・・タグクラウド

- ○検索は、関心がある対象を見つけるのに有効
- o ブラウジングは、タグがつけられた対象の集合を探索するのに有効
- タグの集合を可視化する様々な方法がある
 - タグのリスト
 - タグクラウド
 - アルファベット順
 - カテゴリ別
 - 人気順

タグクラウドの例 (はてなブックマークのタグー覧)

• • • 情報推薦・情報フィルタリング(1)

- ○情報過多/情報洪水/情報爆発(情報の氾濫)
 - すでにある膨大な情報の蓄積だけではなく、新 しい情報が次々に入ってくる
 - 蓄積された情報は検索システムで検索できる
 - 日々新たに入ってくる情報のすべてに目を通す のは不可能
 - 有用な情報は見落とすことなく手に入れたい

情報推薦・情報フィルタリング(2)

- ○次々と入ってくる新しい情報に対して、利用者の興味のある情報のみを選別して提示
 - 例:ハードディスクレコーダの自動録画機能
- 興味のない情報(有害情報など)の除外も含まれる
 - 例:スパムメール(迷惑メール)のフィルタリング
- 利用者の興味(情報要求)は「プロファイル」と呼ばれる(情報検索における問合せに相当)
 - 例:RSSリーダに登録したキーワード

情報推薦・情報フィルタリング のモデル

• • • 情報推薦・情報フィルタリングと情報検索

- ○情報検索の技術を応用可能
 - 興味をキーワードで表現すれば、それと照合することで実現可能
- o 情報検索との違い
 - 情報検索では、問合せは動的(短期的)で文書 集合は静的
 - 情報推薦・フィルタリングでは、プロファイルは静 的(長期的)で情報ストリームは動的
 - あらかじめ索引付けができない

情報推薦・情報フィルタリング の分類(1)

- o 内容に基づくフィルタリング (cognitive filtering)
 - 情報それ自身の内容と利用者のプロファイルを 比較し、その関係を基にフィルタリング
 - 情報検索の手法が適用できる
 - 例:図書館のSDIサービス, Googleアラート

使用中の Google アラート

検索用語	タイプ	頻度
"Dublin Core"	ニュース、ウェブ	1週間に1回
セマンティックウェブ	ニュース、ウェブ	1週間に1回
"ダブリンコア"	ニュース、ウェブ	1週間に1回
"ディジタルアーカイブ"	ニュース、ウェブ	1週間に1回
"情報図書館"	ニュース、ウェブ	1週間に1回
"情報検索"	ニュース、ウェブ	1週間に1回
ディジタル図書館	ニュース、ウェブ	1週間に1回

• 情報推薦・情報フィルタリング の分類(2)

o 社会的フィルタリング(social filtering)

- 情報の送信者の特徴や受信者(あるいは所属組織)との関係に基づくフィルタリング
 - 自分の上司からのメールは重要
 - スパムメールのフィルタリングにも使われる
- o 経済的フィルタリング(economic filtering)
 - 情報を得ることによる利益と、それに必要な対価の比に基づくフィルタリング
 - ・課金などだけでなく、情報の長さなど心理的な要因 も含む

• 情報推薦・情報フィルタリング の分類(3)

- o 協調フィルタリング(collaborative filtering)
 - ●「同じ興味を持つ人は同じ情報を求めている」
 - 自分が読んだ情報の印象などを記録し、他の ユーザのフィルタリングを手助けする
 - 例: Amazonの「おすすめ度」「カスタマーレビュー」 「この商品を買った人はこんな商品も買っています」
 - スパムフィルタリングへの応用
 - 他のユーザがスパムと判定したメールの送信元IP, ドメイン名,本文などをブラックリストに登録

• • 協調フィルタリングの手法

- ○ユーザAとユーザBの嗜好に高い相関がある場合
 - ユーザAが高く評価したものをユーザBに推薦

商品	Ken	Lee	Meg	Nan
a	1	4	2	2
þ	5	2	4	4
C			3	
d	2	5		5
е	4	1		1
f	?	2	5	?

• • • 相関係数法(1)

- o 評価値ベクトルの相関係数でユーザ間の類似 度を測る
 - Ken(K)とLee(L)の相関係数

$$r_{KL} = \frac{\sum_{i} (K_i - \overline{K})(L_i - \overline{L})}{\sqrt{\sum_{i} (K_i - \overline{K})^2} \sqrt{\sum_{i} (L_i - \overline{L})^2}}$$

K, Lはそのユーザの評価値の平均

• • • 相関係数法(2)

○ 各ユーザの評価値に類似度で重み付けして 足し合わせる

$$predict(K, f) = \overline{K} + \frac{\sum_{J \in user} (J_f - \overline{J}) r_{KJ}}{\sum_{J} |r_{KJ}|}$$

正の相関があるユーザの評価がより反映される

情報推薦・情報フィルタリング の研究課題

- プロファイル(利用者の嗜好)の抽出
 - 既に読んだ文書そのものを使う
 - ●情報の注視時間から興味を推測
- o 重要な情報を見落とさない工夫
 - ベイジアンフィルタリングによる機械学習
 - 単純ベイズ分類器をフィルタリングに応用
 - 利用者が過去に判定したスパム/非スパムメール中の単語の出現頻度から、新しいメールがスパムである確率を計算(使っていくうちに誤判定が減っていく)

・・・まとめ

近年利用者が増加しているソーシャルメディアを用いた検索技術について説明した

○ 一般利用者が付与する「タグ」と、その利用法 について述べた

o 情報推薦および情報フィルタリングの技術に ついて説明した