### CE2130: MECHANICS OF SOLIDS AND STRUCTURES

 $\frac{\mathsf{TERM}\;\mathsf{PROJECT}}{}\to$ 

# STRESS TRAJECTORIES OF A HIGHWAY BRIDGE WITH TRAPEZOIDAL DEAD LOAD

→ REVANTH KUMAR PAIDI (CE21BTECH11036)

# CAD MODEL VIEW OF A SIMPLIFIED HIGHWAY BRIDGE



 The above figure shows a simplified highway bridge structure with trapezoidal loading

## CE2130: Mechanics of Solids and Structures

### > Term Project

> Plotting Storess. Torajectories of a highway bridge Subjected to Torapezoidal dead load (downwards)

Diagnam:



This can be simply drawn as: -



### → Assumptions =

Length of bridge = 10C breadth: b

Depth = d=2C

⇒ we can divide Trapigoidal loading unto unitormly distributed loading and triangular Loading.

for udl: 0/12 200 (: Acting downwords)

for linearly variying load = 92 (9-90) & (Assume = 9=290)

920 Nox (Acting downwoods)

: by combining both:

Finding Bending Moment and Shear force -

=) We know :

$$\frac{d^{4}y}{dx^{4}} = \frac{q(x)}{EI} \Rightarrow \frac{d^{4}y}{dx^{4}} = \frac{-90}{EI} - \frac{90x}{EI}$$

$$V(x) = \frac{d^3y}{dx^{-3}} = \frac{-90x}{EI} - \frac{90x^2}{2EI} + C$$

$$M(x) = \frac{d^2y}{dx^2} = -\frac{90x^2}{2EI} - \frac{90x^3}{6EI} + Cx + d$$

Boundary conditions:

$$O = -\frac{90L^2}{2EI} - \frac{90L^3}{6EI} + CL + O$$

$$C = \frac{2v_0L}{2EL} + \frac{2v_0L^2}{6EL}$$

So, 
$$V(\chi) = +\frac{40}{EI} \left[ -\frac{\chi^2}{2} - \chi + \frac{L}{2} + \frac{L^2}{6} \right]$$

$$\|M(x) = -\frac{90}{EI} \left[ \frac{x^2}{2} + \frac{x^3}{6} - \frac{Lx}{2} - \frac{L^2x}{6} \right]$$

$$\frac{1+ \text{ in a } \text{ Retarngular Cross-section.}}{\text{Try} = \frac{V(x)Q}{\text{Ib}} \Rightarrow V(x) \left(C+Y\right) \stackrel{b}{\Rightarrow} \left(C-Y\right) \frac{V(x) \cdot \left(c^2 - y^2\right) \cdot 6}{\text{bd}^3}$$

$$\frac{bd^3 \cdot b}{12} \cdot b$$

$$\frac{bd^3 \cdot b}{12} \cdot b$$

$$\frac{7}{2} = \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \cdot \frac{1}{2} \cdot$$

And: 
$$\sigma_{\chi\chi} = \frac{M(\chi)y}{I} \Rightarrow \frac{M(\chi)y \cdot 12}{bd^3}$$

the axis by Op

anix by 
$$Op$$
:
$$tam(20p) = \frac{2 \ln y}{\sqrt{x} - \sqrt{y}} = \frac{3 V(x) \left[1 - \frac{y^2}{c^2}\right] \cdot 6d^3}{M(x) y \cdot 12}$$

$$\tan(20p) = V(n) \left[1 - \frac{y^2}{c^2}\right] \cdot \frac{1}{b\lambda} \times bd^{3/2} \times 3$$

$$=) V(n) \left[ 1 - \frac{y^2}{c^2} \right] \chi c^2$$

$$\tan (20p) = -\frac{90}{EI} \left[ 2 + \frac{\pi^2}{2} - \frac{L}{2} - \frac{L^2}{6} \right] \cdot \left[ 1 - \frac{y^2}{c^2} \right]$$

$$-\frac{90}{EI} \left[ \frac{\chi^4}{2} + \frac{\pi^2}{6} - \frac{L}{2} - \frac{L^2}{6} \right] \cdot \frac{\chi y}{c^2}$$

$$\tan (20p) = \left[ x - \frac{L}{2} \right] \left[ 1 - \frac{y^2}{c^2} \right] \cdot \left[ \frac{x^2 - L^2}{2} - \frac{L^2}{6} \right] \left[ 1 - \frac{y^2}{c^2} \right]$$

$$\left[ x - \frac{L}{2} + \frac{x^2}{6} - \frac{L^2}{6} \right] \left[ \frac{xy}{c^2} \right] + \left[ x - \frac{L}{2} + \frac{x^2}{6} - \frac{L^2}{6} \right] \left[ \frac{xy}{c^2} \right]$$

$$Op = \frac{L}{2} \tan^{-1} \left\{ \left[ x - \frac{L}{2} \right] \left[ 1 - \frac{y^2}{c^2} \right] + \left[ \frac{x^2 - L^2}{2} - \frac{L^2}{6} \right] \left[ 1 - \frac{y^2}{c^2} \right] \right\}$$

$$\left[ x - \frac{L}{2} + \frac{x^2}{6} - \frac{L^2}{6} \right] \left[ \frac{xy}{c^2} \right] + \left[ \frac{x^2 - L^2}{2} - \frac{L^2}{6} \right] \left[ \frac{xy}{c^2} \right]$$

As, Length  $(L) = 10 C \Rightarrow 10 m$  {Assume:  $C = 1m^2y$   $C = \frac{1}{2}$  {i. d = depth of beany

Taking Pantions at := ( $\chi$ )  $\Rightarrow \chi = 0, 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C, 10C$ 

And Subsituting 'y' as:

 $\Rightarrow y = 1,0.8,0.6,0.4,0.2,0,-0.2,-0.4,-0.6,-0.8,-1$ 

#### ❖ FINDING (Op) BY USING MS EXCEL

### $\rightarrow$ PRINCIPAL STRESS STATE CAN BE ACHIEVED BY ROTAING THE AXIS BY AN ANGLE OF $\Theta$ p.

#### DATA

| X | у    | Өр  |
|---|------|-----|
|   |      |     |
| 0 | 1    | 45  |
| 0 | 0.8  | 45  |
| 0 | 0.6  | 45  |
| 0 | 0.4  | 45  |
| 0 | 0.2  | 45  |
| 0 | 0    | 45  |
| 0 | -0.2 | -45 |
| 0 | -0.4 | -45 |
| 0 | -0.6 | -45 |
| 0 | -0.8 | -45 |
| 0 | -1   | -45 |

| X | У    | Өр       |
|---|------|----------|
|   |      |          |
| 1 | 1    | 0        |
| 1 | 0.8  | 11.68092 |
| 1 | 0.6  | 22.83523 |
| 1 | 0.4  | 31.79954 |
| 1 | 0.2  | 38.86426 |
| 1 | 0    | 45       |
| 1 | -0.2 | -38.8643 |
| 1 | -0.4 | -31.7995 |
| 1 | -0.6 | -22.8352 |
| 1 | -0.8 | -11.6809 |
| 1 | -1   | 0        |

| X | У    | Өр       |
|---|------|----------|
|   |      |          |
| 2 | 1    | 0        |
| 2 | 0.8  | 5.618264 |
| 2 | 0.6  | 12.60775 |
| 2 | 0.4  | 21.41434 |
| 2 | 0.2  | 32.36039 |
| 2 | 0    | 45       |
| 2 | -0.8 | -5.61826 |
| 2 | -0.6 | -12.6077 |
| 2 | -0.4 | -21.4143 |
| 2 | -0.2 | -32.3604 |
| 2 | -1   | 0        |

| X | У    | Өр       |
|---|------|----------|
| 3 | 1    | 0        |
| 3 | 0.8  | 3.245969 |
| 3 | 0.6  | 7.547511 |
| 3 | 0.4  | 13.98411 |
| 3 | 0.2  | 25.25361 |
| 3 | 0    | 45       |
| 3 | -0.8 | -3.24597 |
| 3 | -0.6 | -7.54751 |
| 3 | -0.4 | -13.9841 |
| 3 | -0.2 | -25.2536 |
| 3 | -1   | 0        |

| x | У    | Өр       |
|---|------|----------|
|   |      |          |
| 4 | 1    | 0        |
| 4 | 0.8  | 1.829392 |
| 4 | 0.6  | 4.309417 |
| 4 | 0.4  | 8.307612 |
| 4 | 0.2  | 17.14699 |
| 4 | 0    | 45       |
| 4 | -0.8 | -1.82939 |
| 4 | -0.6 | -4.30942 |
| 4 | -0.4 | -8.30761 |
| 4 | -0.2 | -17.147  |
| 4 | -1   | 0        |

| X | у    | Өр       |
|---|------|----------|
|   |      |          |
| 5 | 1    | 0        |
| 5 | 0.8  | 0.71576  |
| 5 | 0.6  | 1.694987 |
| 5 | 0.4  | 3.325874 |
| 5 | 0.2  | 7.462705 |
| 5 | 0    | 45       |
| 5 | -0.8 | -0.71576 |
| 5 | -0.6 | -1.69499 |
| 5 | -0.4 | -3.32587 |
| 5 | -0.2 | -7.4627  |
| 5 | -1   | 0        |

| X | У    | Өр       |
|---|------|----------|
|   |      |          |
| 6 | 1    | 0        |
| 6 | 0.8  | -0.39561 |
| 6 | 0.6  | -0.93746 |
| 6 | 0.4  | -1.84374 |
| 6 | 0.2  | -4.18994 |
| 6 | 0    | -45      |
| 6 | -0.2 | 4.189938 |
| 6 | -0.4 | 1.84374  |
| 6 | -0.6 | 0.937464 |
| 6 | -0.8 | 0.395609 |
| 6 | -1   | 0        |

| X | у    | Өр       |
|---|------|----------|
|   |      |          |
| 7 | 1    | 0        |
| 7 | 0.8  | -1.80782 |
| 7 | 0.6  | -4.25922 |
| 7 | 0.4  | -8.21472 |
| 7 | 0.2  | -16.9888 |
| 7 | 0    | -45      |
| 7 | -0.8 | 1.807822 |
| 7 | -0.6 | 4.259221 |
| 7 | -0.4 | 8.214723 |
| 7 | -0.2 | 16.98877 |
| 7 | -1   | 0        |

| x | У    | Өр       |
|---|------|----------|
| 8 | 1    | 0        |
| • |      | U        |
| 8 | 0.8  | -4.18862 |
| 8 | 0.6  | -9.62089 |
| 8 | 0.4  | -17.2473 |
| 8 | 0.2  | -28.7528 |
| 8 | 0    | -45      |
| 8 | -0.8 | 4.188621 |
| 8 | -0.6 | 9.620891 |
| 8 | -0.4 | 17.24732 |
| 8 | -0.2 | 28.75283 |
| 8 | -1   | 0        |

| х | у    | Өр       |
|---|------|----------|
|   |      |          |
| 9 | 1    | 0        |
| 9 | 0.8  | -10.3878 |
| 9 | 0.6  | -20.9798 |
| 9 | 0.4  | -30.2636 |
| 9 | 0.2  | -38.0473 |
| 9 | 0    | -45      |
| 9 | -0.8 | 10.38783 |
| 9 | -0.6 | 20.97983 |
| 9 | -0.4 | 30.26361 |
| 9 | -0.2 | 38.04735 |
| 9 | -1   | 0        |

| X  | У    | Өр  |
|----|------|-----|
|    |      |     |
| 10 | 1    | -45 |
| 10 | 0.8  | -45 |
| 10 | 0.6  | -45 |
| 10 | 0.4  | -45 |
| 10 | 0.2  | -45 |
| 10 | 0    | -45 |
| 10 | -0.8 | 45  |
| 10 | -0.6 | 45  |
| 10 | -0.4 | 45  |
| 10 | -0.2 | 45  |
| 10 | -1   | 45  |

Hence, by using these values(data) we can plot stress trajectories.

. Plotting stress Trajectories of Traphyoidal Load on highway bridge. -> Compressive Paincipal Storess - Tensile Principal Strens 10.40 0.8CX 0.69

### > Clean Representation of Storess Inajectories:



- > Storess Trajectories: A System of orthogonal curves which display the Variation of Principal Storesses thoroughout the bean
- -> Solid Lines Tensile Panincipal Staresses
- -> Dashed Lines compressive Principal Storesses
- > These lines intersect one another at gright angles.