

HARMONIC DRIVE LLC

Integrated Drive Technology CANopen Firmware Manual

HARMONIC DRIVE LLC CANopen Firmware Manual

The Harmonic Drive LLC (HDLLC) Integrated Actuators include a single axis controller module for brushless DC (BLDC) motors. It offers field-oriented control (FOC) with a +24V DC supply, a single or dual absolute encoder depending on the model and I/O. A CAN interface allows communication with a CANopen master.

Features

- Single axis field-oriented control for BLDC/PMSM motors
- RSA/RSF Series: +7...30V DC supply voltage
- FHA-C Mini Series: +7...28V DC supply voltage
- LPA, SHA Series +24V...72V DC supply voltage
- Single or dual absolute encoders depending on model
- · CAN interface
- · CANopen CiA 402 drive profile
- PP, PV, CSP, CSV, CST modes
- · Hard Stop Homing Modes
- Bode Plot, Step Response (CAN mode)
- · Inputs:

RSA/RSF: 1 programmable input (NPN/PNP)

FHA-C mini, LPA, SHA series: 2 opto-isolated inputs (NPN/PNP)

Outputs:

RSA/RSF: 1 programmable IO

FHA-C mini, LPA, SHA series: 2 programmable IO

- Brake on SHA
- · Motor Torque Off (MTO) on LPA, SHA series

Simplified Block Diagram

*When available as described in the actuator's specification

Contents

1	PREF	ACE	7
	1.1 G	SENERAL FEATURES OF THIS CANOPEN IMPLEMENTATION	7
	1.2 A	BBREVIATIONS USED IN THIS MANUAL	8
	1.3 F	IRMWARE UPDATE	9
2	СОМІ	MUNICATION	10
	2.1 R	EFERENCE MODEL	10
	2.2 N	IMT State Machine	11
	2.3 S	YSTEM MODEL	12
	2.4 C	DBJECT DICTIONARY	13
3	COMI	MUNICATION AREA	15
	3.1 D	DETAILED OBJECT SPECIFICATIONS	
	3.1.1	Object 1000h: Actuator Type	15
	3.1.2	Object 1001 _h : Error Register	
	3.1.3	Object 1005 _h : COB-ID SYNC Message	
	3.1.4	Object 1008 _h : HDLLC Actuator Type	
	3.1.5	Object 1009 _h : HDLLC Hardware Version	
	3.1.6	Object 100A _h : HDLLC Firmware Version	
	3.1.7	Object 1010 _h : Store Parameters	
	3.1.8	Object 1011 _h : Restore Parameters	
	3.1.9	Object 1014 _h : COB-ID Emergency Object	
	3.1.10	Object 1015 _h : Inhibit Time EMCY Object 1016 _h : Consumer Heartbeat Time	
	3.1.11 3.1.12	Object 1015 _h : Consumer Heartbeat Time	
	3.1.12	Object 1017ħ. Producer Heartbeat Time Object 1018ħ: Identity Object	
	3.1.13	Object 1010 _h . Terror Behavior	
	3.1.15	Objects 1400 _h – 1403 _h : Receive PDO Communication Parameter	
	3.1.16	Objects 1600 _h – 1603 _h : Receive PDO Mapping Parameter	
	3.1.17		
	3.1.18	Objects 1A00 _h – 1A03 _h : Transmit PDO Mapping Parameter	
4		ICATION SPECIFIC	
•		DETAILED OBJECT SPECIFICATIONS	
	4.1.1	Object 2005 _h : Limit Switches	
	4.1.2	Object 2000 _h : Status Flags	
	4.1.3	Object 200E _h : Supply Voltage	
	4.1.4	Object 200F _h : Driver Temperature	
	4.1.5	Object 2010 _h : Motor Settings	
	4.1.6	Object 2015 _h : Brake Settings	30
	4.1.7	Object 2020 _h : Limits	31
	4.1.8	Object 2025 _h : Homing Mode Settings	33
	4.1.9	Object 2030 _h : Torque Mode Settings	33
	4.1.10	Object 2040 _n : Velocity Mode Settings	34
	4.1.11	Object 2050₁: Position Mode Settings	35
	4.1.12	Object 2055 _ի : Commutation Mode	
	4.1.13	Object 2056₁: Velocity Ramp Mode	
	4.1.14	Object 2060₁: Open Loop Settings	
	4.1.15	Object 2080 _n : Encoder Settings	
	4.1.16	,	
	4.1.17	Object 2095 _h : Velocity Window Settings	38

	4.1.18	Object 2096 _h : Position Window Settings	
	4.1.19	Object 2100₁: Home Offset Display	
	4.1.20	Object 2702h: Digital Inputs	
	4.1.21	Object 2703 _h : Device Digital Outputs	
	4.1.22	Object 2704 _h : CAN Bit Rate	
	4.1.23	Object 2705 _h : Node ID	
	4.1.24	Object 2706 _h : User Variables	
	4.1.25	Object 270E _h : Analog Inputs	
	4.1.26	Object 5FFF _h : Bootloader Mode	42
5	PROF	ILE SPECIFIC AREA	43
	5.1 D	ETAILED OBJECT SPECIFICATIONS	43
•	5.1.1	Object 605A _h : Quick Stop Option Code	
	5.1.2	Object 605Bh: Shutdown Option Code	
	5.1.3	Object 605Ch: Disable Operation Option Code	
	5.1.4	Object 605Dh: Halt Option Code	
	5.1.5	Object 605E _h : Fault Reaction Option Code	
	5.1.6	Object 6060 _h : Modes of Operation	
	5.1.7	Object 6061 _h : Modes of Operation Display	46
	5.1.8	Object 608F _h : Position Encoder Resolution	47
	5.1.9	Object 60FD _h : Digital Inputs	48
	5.1.10	Object 6502h: Supported Drive Modes	48
6	PROF	FILE POSITION MODE	50
	6.1 D	ETAILED OBJECT SPECIFICATIONS	50
	6.1.1	Object 6040h: Control Word	
	6.1.2	Object 6041 _h : Status Word	
	6.1.3	Object 6062 _h : Position Demand Value	
	6.1.4	Object 6063 _h : Position Actual Internal Value	
	6.1.5	Object 6064 _h : Position Actual Value	
	6.1.6	Object 6067 _h : Position Window	
	6.1.7	Object 606B _h : Velocity Demand Value	
	6.1.8	Object 606Ch: Velocity Actual Value	
	6.1.9	Object 607A _h : Target Position	
	6.1.10	Object 607D _h : Software Position Limit	
	6.1.11	Object 6081h: Profile Velocity (for pp mode)	
	6.1.12	Object 6082h: End Velocity	
	6.1.13	Object 6083 _h : Profile Acceleration	
	6.1.14	Object 6084h: Profile Deceleration	
	6.1.15	Object 6085 _h : Quick Stop Deceleration	58
(6.2 Ex	XAMPLE OF PP MODE OPERATION	59
7	PROF	FILE VELOCITY MODE	60
	7.1 D	ETAILED OBJECT SPECIFICATIONS	60
	7.1.1	Object 6040h: Control Word	
	7.1.1 7.1.2	Object 6041 _h : Status Word	
		•	
	7.1.3	Object 6062 _h : Position Demand Value	
	7.1.4	Object 6063 _h : Position Actual Internal Value	
	7.1.5	Object 6064 _h : Position Actual Value	
	7.1.6	Object 606B _h : Velocity Demand Value	63
	7.1.7	Object 606C _h : Velocity Actual Value	64
	7.1.8	Object 607D _h : Software Position Limit	64

	7.1.9	Object 6083 _h : Profile Acceleration	64
	7.1.10	Object 6085 _h : Quick Stop Deceleration	65
	7.1.11	Object 60FF _h : Target Velocity	65
	7.2 E	XAMPLE OF PV MODE OPERATION	66
8		NG MODE	
		OMING METHODS.	
	8.1.1	Homing Method 17 and 18: Homing without Index Pulse Homing Method 35: Current Position as Home Position	
	8.1.2 8.1.3	Homing Method -1: Single Ended Clockwise Hard Stop Homing	
	8.1.4	Homing Method -2: Single Ended Counterclockwise Hard Stop Homing	
	8.1.5	Homing Method -3: Double Ended Clockwise Hard Stop Homing	
	8.1.6	Homing Method -4: Double Ended Counterclockwise Hard Stop Homing	
	8.1.7	Homing Method -5: Double Ended Clockwise Hard Stop Homing (compute scaler)	
	8.1.8	Homing Method -6: Double Ended Counterclockwise Hard Stop Homing (compute scaler)	
	8.1.9	Teach Mode	
	8.1.10	Parameter Saving After Homing	71
	8.2 D	ETAILED OBJECT SPECIFICATIONS	72
	8.2.1	Object 6040 _h : Control Word	72
	8.2.2	Object 6041 _h : Status Word	
	8.2.3	Object 606C _h : Velocity Actual Value	
	8.2.4	Object 607C _h : Home Offset	
	8.2.5	Object 6098 _h : Homing Method	
	8.2.6	Object 6099h: Homing Speeds	
	8.2.7	Object 609Ah: Homing Acceleration	
	8.2.8	Object 2100 _h : Home Offset Display	
		XAMPLE OF HOMING IN HM MODE	
9	CYCL	IC SYNCHRONOUS POSITION MODE	78
	9.1 D	ETAILED OBJECT SPECIFICATIONS	78
	9.1.1	Object 6040h: Control Word	<i>78</i>
	9.1.2	Object 6041 _h : Status Word	
	9.1.3	Object 6062 _h : Position Demand Value	
	9.1.4	Object 6063 _h : Position Actual Internal Value	
	9.1.5	Object 6064 _h : Position Actual Value	
	9.1.6	Object 606C _h : Velocity Actual Value	
	9.1.7	Object 607A _h : Target Position	
	9.1.8	Object 607D _h : Software Position Limit	
	9.1.9 9.1.10	Object 6080 _h : Position Offset	
		Object 60C2 _h : Interpolation Time Period	
10) CY	CLIC SYNCHRONOUS VELOCITY MODE	85
	10.1 D	ETAILED OBJECT SPECIFICATIONS	85
	10.1.1	Object 6040h: Control Word	85
	10.1.2	Object 6041 _h : Status Word	
	10.1.3	Object 606Ch: Velocity Actual Value	
	10.1.4	Object 60FF _h : Target Velocity	
	10.1.5	Object 607D _h : Software Position Limit	
	10.1.6	Object 60B1 _h : Velocity Offset	
	10.1.7	Object 60C2 _h : Interpolation Time Period	
		XAMPLE OF CSV MODE OPERATION	
11	CY	CLIC SYNCHRONOUS TORQUE MODE	91

11.1	DETAILED OBJECT SPECIFICATIONS	91
11	1.1.1 Object 6040h: Control Word	91
11	1.1.2 Object 6041 _h : Status Word	92
11	1.1.3 Object 6071 _h : Target Torque	93
11	1.1.4 Object 6077½: Torque Actual Value	94
11	1.1.5 Object 60B2 _h : Torque offset	94
11.2	EXAMPLE OF CST MODE OPERATION	94
12	IO SUMMARY	95
12.1	. IO PORT MAPPING	95
12.2	DIGITAL INPUT AS LIMIT SWITCH	97
12.3	LED FOR NMT STATE	97
12.4	MOTOR TORQUE OFF	98
13	EMERGENCY MESSAGES (EMCY)	99
13.1	FORMAT OF EMCY MESSAGES	99
13.2	ERROR CODE	99
14	SDO ABORT CODES	101
15	FIGURES INDEX	103
16	TABLES INDEX	103
17	DOCUMENT REVISION	106
18	SUPPLEMENTAL DIRECTIVES	107
18.1	Producer Information	107
18.2		
18.3	TRADEMARK DESIGNATIONS AND SYMBOLS	107
18.4	Target User	107
18.5		
18.6	DISCLAIMER: INTENDED USE	108
18.7	Supplemental Documents & Tools	108

1 Preface

This document specifies objects and modes of operation of the HDLLC actuator BLDC/PMSM motor control module with CANopen firmware. The CANopen firmware is designed to fulfill the CANopen DS402 and DS301 standards. This manual assumes that the reader is already familiar with the basics of the CANopen protocol, defined by the DS301 and DS402 standards of the CAN-CiA.

If necessary, it is always possible to convert the actuator from a CANopen version into an HDL version by loading the actuator HDL CAN firmware with the firmware update function of the HDL-IDE.

1.1 General Features of this CANopen Implementation

Main Characteristics

- Communication according to standard CiA-301 V4.1
- CAN bit rate: 20...1000kBit/s
- CAN ID: 11 bit
- Node ID: 1...127 (use vendor specific objects for changing the node ID)
- NMT services: NMT slave

SDO Communication

- 1 server
- Expedited transfer
- Segmented transfer
- No block transfer

PDO Communication

- Producer
- Consumer
- RPDOs
 - Supported RPDOs: 1, 2, 3, 4
 - Transmission modes: asynchronous, synchronous.
 - Dynamic mapping with max. 3 mapping entries.
 - Default mappings: according to CiA-402 for first three PDOs, HDLLC specific for other PDOs of each axis.
- TPDOs
 - Supported TPDOs: 1, 2, 3, 4
 - Transmission modes: asynchronous, asynchronous with event timer, synchronous.
 - Dynamic mapping with max. 3 mapping entries.
 Default mappings: according to CiA-402 for first three PDOs, HDLLC specific for other PDOs.

Further Characteristics

SYNC: consumer

• Emergency: producer

· Heartbeat: consumer and producer

1.2 Abbreviations used in this Manual

	Abbreviations				
CAN	CAN Controller area network				
CHGND Chassis ground / earth ground					
COB	Communication object				
CST	Cyclic synchronous torque mode				
CSV	Cyclic synchronous velocity mode				
CSP	Cyclic synchronous position mode				
EMCY	Emergency object				
FOC	Field Oriented Control				
FSA	Finite state automaton				
FSM	Finite state machine				
hm	Homing mode				
ID	Identifier				
LSB Least significant bit					
MSB	Most significant bit				
NMT	Network management				
PDO	Process data object				
PDS Power drive system					
PMSM	Permanent Magnet Synchronous Motor				
pp	Profile position mode				
pv	Profile velocity mode				
RPDO Receive process data object					
RTR Remote Transmission Request					
SDO	Service data object				
TPDO	Transmit process data object				
rw	Read and write				
ro	Read only				

Table 1: Abbreviations used in this Manual

1.3 Firmware Update

The software running on the microprocessor consists of two parts, a bootloader and the CANopen firmware itself. Whereas the bootloader is installed during production and testing and remains un-touched throughout the whole lifetime, the CANopen firmware can easily be updated by the user. The new firmware can be loaded into the module via the firmware update function of the HDL-IDE. Entering boot mode is also possible by writing 12345678_h to object $5FFF_h$ and use the CAN interface for a firmware update with the HDL-IDE.

2 Communication

2.1 Reference Model

The application layer comprises a concept to configure and communicate real-time-data as well as the mechanisms for synchronization between actuators. The functionality which the application layer offers to an application is logically divided over different service data objects (SDO) in the application layer. A service object offers a specific functionality and all the related services.

Applications interact by invoking services of a service object in the application layer. To realize these services this object exchanges data via the CAN Network with peer service object(s) using a protocol.

The application and the application layer interact with service primitives.

Service Primitives			
Primitive	Definition		
Request Issued by the application to the application layer to request a service.			
Indication	Issued by the application layer to the application to report an internal event detected by the application layer or indicate that a service is requested.		
Response	Issued by the application to the application layer to respond to a previously received indication.		
Confirmation	Issued by the application layer to the application to report the result of a previously issued request.		

Table 2: Service Primitives

A service type defines the primitives that are exchanged between the application layer and the cooperating applications for a particular service of a service object. Unconfirmed and confirmed services are collectively called remote services.

Service Types			
Туре	Definition		
Local service	Involves only the local service object. The application issues a request to its local service object that executes the requested service without communicating with peer service object(s).		
Unconfirmed service Involves one or more peer service objects. The application issues a req its local service object. This request is transferred to the peer service of that each passes it to their application as an indication. The result confirmed back.			
Confirmed service	Can involve only one peer service object. The application issues a request to its local service object. This request is transferred to the peer service object that passes it to the other application as an indication. The other application issues a response that is transferred to the originating service object that passes it as a confirmation to the requesting application.		
Provider initiated service	Involves only the local service object. The service object (being the service provider) detects an event not solicited by a requested service. This event is then indicated to the application.		

Table 3: Service Types

2.2 NMT State Machine

The finite state machine (FSM) or simply state machine is a model of behavior composed of a finite number of states, transitions between those states, and actions. It shows which way the logic runs when certain conditions are met.

Starting and resetting the actuator is controlled via the state machine. The NMT state machine consists of the states shown in Figure 1.

Figure 1: NMT State Machine

After power-on or reset the actuator enters the Initialization state. After the actuator initialization is finished, the actuator automatically transits to the **Pre-operational** state and indicates this state transition by sending the boot-up message. This way the actuator indicates that it is ready to work. An actuator that stays in Pre-operational state may start to transmit SYNC-, time stamp- or heartbeat message. In contrast to the PDO communication that is disabled in this state, the actuator can communicate via SDO.

The PDO communication is only possible within the **Operational** state. During Operational state the actuator can use all supported communication objects.

An actuator that was switched to the **Stopped** state only reacts on received NMT commands. In addition, the actuator indicates the current NMT state by supporting the error control protocol during Stopped state.

The transitions between states are made by issuing a network management (NMT) communication object to the actuator. The NMT protocols are used to generate state machine change commands (e.g. to start and stop the actuator), detect remote actuator boot-ups and error conditions.

The Heartbeat message of a CANopen actuator contains the actuator status of the NMT state machine and is sent cyclically by the CANopen actuator.

The NMT state machine (or DS301 state machine) is not to be confused with the DS402 state machine. There is only one NMT state machine for the entire system, but for each actuator, there is a DS402 state machine which controls the actuator. There are no links between these state machines, with one exception: When the NMT state machine is being switched to the stopped state, all DS402 state machines that are in OPERATION ENABLED state will be switched to FAULT state.

Figure 2: Communication Architecture

2.3 System Model

A CANopen device mainly consists of the following parts:

- Communication: This function unit provides the communication objects and the appropriate functionality to transport data items via the underlying network structure.
- Object dictionary: The object dictionary is a collection of all the data items which have an influence on the behavior of the application objects, the communication objects and the state machine used on this actuator.
- Application: The application comprises the functionality of the actuator with respect to the interaction with the process environment.

Figure 3: System Model

2.4 Object Dictionary

The most important part of an actuator profile is the object dictionary description. The object dictionary is essentially a grouping of objects accessible via the network in an ordered pre-defined fashion. Each object within the dictionary is addressed using a 16-bit index. The overall layout of the standard object dictionary is shown in Table 4:

Object Dictionary			
Index	Object		
0000 _h	Not used.		
0001 _h - 001F _h	Static data types.		
0020 _h - 003F _h	Complex data types.		
0040 _h - 005F _h	HDLLC specific complex data types.		
$0060_h - 007F_h$	Actuator profile specific static data types.		
0080h - 009Fh	Actuator profile specific complex data types.		
00A0 _h – 0FFF _h	Reserved for further use.		
1000 _h – 1FFF _h	Communication profile area.		
2000 _h – 5FFF _h	HDLLC specific profile area.		
6000 _h – 9FFF _h	Standardized actuator profile area.		
A000 _h – BFFF _h	Standardized interface profile area.		
C000h – FFFFh	Reserved for further use.		

Table 4: Object Dictionary

The communication profile area at indices 1000_h through 1FFF_h contains the communication specific parameters for the CAN network. These entries are common to all actuators.

The HDLLC segment at indices 2000h through 5FFFh contains HDLLC specific objects. These objects control the special features of the HDLLC actuator.

The standardized actuator profile area at indices 6000_h through $9FFF_h$ contains all data objects common to a class of actuators that can be read or written via the network. They describe the actuator parameters and the actuator functionality of the actuator profile.

3 Communication area

The communication area contains all objects that define the communication parameters of the CANopen actuator according to the DS301 standard.

3.1 Detailed object specifications

3.1.1 Object 1000h: Actuator Type

This object contains information about the actuator type. The object 1000_h describes the type of actuator and its functionality. It is composed of a 16-bit field which describes the actuator profile that is used and a second 16-bit field which provides additional information about optional functionality of the actuator.

Object Description				
Index	Data Type			
1000 _h	Actuator type	Variable	UNSIGNED32	

Table 5: Object Description (1000_h)

Entry Description				
Sub-index Access PDO Mapping Value Range Default Value				
0	ro	no	UNSIGNED32	00420192 _h

Table 6: Entry Description (1000_h)

3.1.2 Object 1001_h: Error Register

This object contains error information. The CANopen device maps internal errors into object 1001_h. It is part of an emergency object.

Object Description				
Index Name		Object Type	Data Type	
1001 _h	Error register	Variable	UNSIGNED8	

Table 7: Object Description (1001_h)

Entry Description				
Sub-index Access PDO Mapping Value Range Default Val				Default Value
0	ro	no	UNSIGNED8	0

Table 8: Entry Description (1001_h)

Error Register Bits			
Definition			
Generic error			
Current			
Voltage			
Temperature			
Communication error			
Actuator profile specific			
Reserved (always 0)			
HDLLC specific			

Table 9: Error Register Bits

3.1.3 Object 1005_h: COB-ID SYNC Message

This object defines the COB-ID of the synchronization object (SYNC). Further, it defines whether the module generates the SYNC.

	Value Definition				
Bit	Name	Definition			
30	Generate	O: Actuator does not generate SYNC message 1: Actuator generates SYNC message			
29	Frame	Not supported, always set to 0.			
28 11	29 bit ID	Not supported, always set to 0.			
10 0	11 bit ID	11 bit COB-ID.			

Table 10: Value Definition (1005_h)

	Object Description				
Index	Name Object Type Data Type				
1005 _h	COB-ID SYNC message	Variable	UNSIGNED32		

Table 11: Object Description (1005_h)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value					
0	rw	no	UNSIGNED32	80h	

Table 12: Entry Description (1005h)

3.1.4 Object 1008_h: HDLLC Actuator Type

This object contains the HDLLC actuator type.

Object Description				
Index Name Object Type Data Type				
1008 _h	HDLLC Actuator Type	Variable	Visible String	

Table 13: Object Description (1008_h)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0	ro	no	_	Depends on actuator		

Table 14: Entry Description (1008_h)

3.1.5 Object 1009_h: HDLLC Hardware Version

This object contains the hardware version description.

Object Description				
Index	Name	Object Type	Data Type	
1009h	HDLLC Hardware Version	Variable	Visible String	

Table 15: Object Description (1009_h)

Entry Description						
Sub-index	Sub-index Access PDO Mapping Value Range Default Value					
0	ro	no	_	Depends on actuator, e.g. 1.0.		

Table 16: Entry Description (1009_h)

3.1.6 Object 100A_h: HDLLC Firmware Version

This object contains the firmware version description.

Object Description				
Index Name Object Type Data Type				
100A _h	HDLLC Firmware Version	Variable	Visible String	

Table 17: Object Description (100A_h)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value					
0 ro no — Depends on actuator, e.g. 1.0.					

Table 18: Entry Description (100A_h)

3.1.7 Object 1010_h: Store Parameters

This object supports the saving of parameters in non-volatile memory. By read access the actuator provides information about its saving capabilities.

There are several parameter groups:

- Sub-index 0h: contains the largest sub-index that is supported.
- Sub-index 1_h: saves all parameters.
- Sub-index 2h: saves communication parameters 2704h and 2705h.
- Sub-index 3_h: saves actuator profile parameters (not used).
- Sub-index 4h: saves actuator 0 parameters.

٨			_
ľ	ľ	ľ	ᆫ

In order to avoid storage of parameters by mistake, storage is only executed when a specific signature is written to the appropriate sub-Index. This signature is "save" $(65766173_h, \text{ see also table 19})$.

Save Signature				
e v a s				
65 _h	76 _h	61 _h	73 _h	

Table 19: Save Signature

On reception of the correct signature in the appropriate sub-index the drive stores the parameter and then confirms the SDO transmission (initiate download response). If the storing failed, the drive responds with an abort SDO transfer (abort code: 06060000_h). If a wrong signature is written, the actuator refuses to store and responds with abort SDO transfer (abort code: $0800002x_h$).

On read access, each sub-index provides information if it is possible to store the parameter group. It reads 1 if yes and 0 if no.

Object Description					
Index Name Object Type Data Type					
1010 _h	Store Parameters	Array	UNSIGNED32		

Table 20: Object Description (1010_h)

	Entry Description								
Sub-index	Description	Default Value							
00 _h	Highest supported sub-index	ro	no	UNSIGNED8	4				
01 _h	Save all parameters	rw	no	UNSIGNED32	1				
02 _h	Save communication parameters	rw	no	UNSIGNED32	1				
03 _h	Save actuator profile parameters	rw	no	UNSIGNED32	0				
04 _h	Save motor axis 0 parameters	rw	no	UNSIGNED32	1				

Table 21: Entry Description (1010_h)

3.1.8 Object 1011_h: Restore Parameters

With this object the default values of parameters according to the communication or actuator profile are restored. By read access the actuator provides information about its capabilities to restore these values.

There are several parameter groups:

- Sub-index 0h: contains the largest sub-index that is supported.
- Sub-index 1_h: restores all parameters (factory reset).
- Sub-index 2h: no function.
- Sub-index 3h: restores actuator profile parameters (not used).
- Sub-index 4h: restores actuator 0 parameters.

-	_	4 -
N	n	ro
	v	

In order to avoid restoring the parameters by mistake, restoring is only executed when a specific signature is written to the appropriate sub-Index. This signature is "load" (64616F6Ch, see also table22).

Load Signature					
d a o l					
64h 61h 6Fh 6Ch					

Table 22: Load Signature

On reception of the correct signature in the appropriate sub-index the actuator restores the parameter and then confirms the SDO transmission (initiate download response). If the restoring failed, the actuator responds with an abort SDO transfer (abort code: 06060000_h). If a wrong signature is written, the actuator refuses to restore and responds with abort SDO transfer (abort code: $0800002x_h$).

On read access, each sub-index provides information if it is possible to restore the parameter group. It reads 1 if yes and 0 if no.

After the default values have been restored, they will become active after the next rest or power cycle of the actuator.

Object Description					
Index Name Object Type Data Type					
1011 _h	Restore parameters	Array	UNSIGNED32		

Table 23: Object Description (1011h)

	Entry Description							
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value			
00 _h	Highest supported sub-index	ro	no	UNSIGNED8	4			
01 _h	Restore all parameters	rw	no	UNSIGNED32	1			
02 _h	Restore communication parameters	rw	no	UNSIGNED32	1			
03 _h	Restore actuator profile parameters	rw	no	UNSIGNED32	0			
04 _h	Restore actuator axis 0 parameters	rw	no	UNSIGNED32	1			

Table 24: Entry Description (1011_h)

3.1.9 Object 1014_h: COB-ID Emergency Object

This object defines the COB-ID of the emergency object (EMCY).

Object Description					
Index Name Object Type Data Type					
1014 _h	COB-ID emergency object	Variable	UNSIGNED32		

Table 25: Object Description (1014_h)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value					
0	rw	no	UNSIGNED32	80 _h + Node ID	

Table 26: Entry Description (1014_h)

3.1.10 Object 1015_h: Inhibit Time EMCY

The inhibit time for the EMCY message can be adjusted via this entry. The time has to be a multiple of 100μ s.

Object Description					
Index Name Object Type Data Type					
1015h	COB-ID emergency object	Variable	UNSIGNED16		

Table 27: Object Description (1015h)

Entry Description				
Sub-index Access PDO Mapping Value Range Default Value				
0	rw	no	UNSIGNED16	0

Table 28: Entry Description (1015_h)

3.1.11 Object 1016_h: Consumer Heartbeat Time

The consumer heartbeat time defines the expected heartbeat cycle time and thus has to be higher than the corresponding producer heartbeat time configured on the module producing this heartbeat. The monitoring starts after the reception of the first heartbeat. If the consumer heartbeat time is 0 the corresponding entry is not used. The time has to be a multiple of 1ms.

	Value Definition				
Bits	Name	Definition			
31 24	Reserved	_			
23 16	Node ID	Heartbeat Producer Node ID			
15 0	Heartbeat time	Time in 1ms			

Table 29: Value Definition (1016_h)

Object Description						
Index Name Object Type Data Type						
1016h	Consumer heartbeat time	Array	UNSIGNED32			

Table 30: Object Description (1016_h)

Entry Description					
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value
0	Number of entries	rw	no	UNSIGNED8	1
1	Consumer heartbeat time1	rw	no	UNSIGNED32	0

Table 31: Entry Description (1016_h)

3.1.12 Object 1017_h: Producer Heartbeat Time

The producer heartbeat time defines the cycle time of the heartbeat. The producer heartbeat time is 0 if it is not used. The time has to be a multiple of 1ms.

Object Description				
Index Name Object Type Data Type				
1017 _h	Producer heartbeat time	Variable	UNSIGNED16	

Table 32: Object Description (1017_h)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value					
0	rw	no	UNSIGNED16	0	

Table 33: Entry Description (1017_h)

3.1.13 Object 1018_h: Identity Object

The object 1018_h contains general information about the actuator:

- The HDLLC ID (sub-index 01h) contains the CiA assigned value of 443h.
- The HDLLC specific product code (sub-index 2_h) identifies a specific actuator version.
- The HDLLC specific revision number (sub-index 3_h) consists of a major revision number and a minor revision number.

Object Description				
Index Name Object Type Data Type				
1018h Identity object Record Identity				

Table 34: Object Description (1018h)

Entry Description						
Sub-index	ex Description Access PDO Mapping Value Range Default Value					
00h	Number of entries	ro	no	0 3	3	
01 _h	Vendor ID	ro	no	UNSIGNED32	0443 _h	
02 _h	Product code	ro	no	UNSIGNED32	e.g.10008 h	
03 _h	Revision number	ro	no	UNSIGNED32	e.g. 20003h for version 2.3	

Table 35: Entry Description (1018_h)

3.1.14 Object 1029_h: Error Behavior

If an actuator failure is detected in operational state, the actuator can be configured to enter alternatively the stopped state or remain in the current state in case of an actuator failure. Actuator failures include the following errors:

- · Communication error
- · Application error

Object Description				
Index Name Object Type Data Type				
1029h Error behavior Array UNSIGNED				

Table 36: Object Description (1029h)

	Entry Description						
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value		
00h	Number of error classes	ro	no	_	2		
01 _h	Communication error	rw	no	UNSIGNED8	0 (enter stopped state)		
02 _h	Application error	rw	no	UNSIGNED8	1 (remain in current state)		

Table 37: Entry Description (1029_h)

3.1.15 Objects 1400_h – 1403_h: Receive PDO Communication Parameter

This object contains the communication parameters for the RPDOs which the actuator is able to receive. The sub-index 00_h contains the number of valid entries within the communication record. Its value normally is 2, as this object consists of two other entries.

Sub-index 01n contains the COB-ID used by this PDO (in bits 10. . . 0). Bit 30 (RTR bit) defines if this PDO uses RTRs. As RTRs are not supported for PDOs by this CANopen implementation, this bit must always be set in order to turn off RTR support for this PDO. Bit 31 defines if this PDO is active or not. If this bit is set, the PDO is inactive, and if this bit is clear, the PDO is active. Before making any changes to a PDO definition, set this bit to inactivate the PDO.

Sub-Index 02_h contains the transmission type of the RPDO. This can be FF_h or FE_h for event-driven, or 1...240 for synchronous (1 means that the PDO will be processed with every SYNC message, and 4 for example means that the PDO will be processed with every 4th SYNC message).. Other values are not supported.

Object Description						
Index	Name	Object Type	Data Type			
1400 _h - 1403 _h	Receive PDO parameter	RECORD	RPDO CommPar			
1400 _h	RPDO 1	RECORD	RPDO CommPar			
1401 _h	RPDO 2	RECORD	RPDO CommPar			
1402 _h	RPDO 3	RECORD	RPDO CommPar			
1403 _h	RPDO 4	RECORD	RPDO CommPar			

Table 38: Object Description (1400h)

	Entry Description					
Sub-index	Description	Access	Value Range	Default Value		
00 _h	Largest sub-index supported	ro	2	2		
01 _h	COB-ID used by PDO	rw	UNSIGNED32	Index 1400 _h : 40000200 _h + Node-ID Index 1401 _h : 40000300 _h + Node-ID Index 1402 _h : 40000400 _h + Node-ID Index 1403 _h : 40000500 _h + Node-ID		
02 _h	Transmission type	rw	UNSIGNED8	Index 1400 _h : FF _h Index 1401 _h : FF _h Index 1402 _h : FF _h Index 1403 _h : FF _h		

Table 39: Entry Description (1400h)

3.1.16 Objects 1600_h – 1603_h: Receive PDO Mapping Parameter

These objects contain the mapping parameters for the RPDOs the actuator is able to receive. The sub-index 00_h contains the number of valid entries within the mapping record. This number of entries is also the number of the application variables which shall be received with the corresponding RPDO. The sub-indices from 01_h to the number of entries contain the information about the mapped application variables. These entries describe the PDO contents by their index, sub-index and length.

Object Description						
Index	Name	Object Type	Data Type			
1600 _h - 1603 _h	Receive PDO mapping parameter	RECORD	PDO Mapping			
1600 _h	RPDO 1	RECORD	PDO Mapping			
1601 _h	RPDO 2	RECORD	PDO Mapping			
1602 _h	RPDO 3	RECORD	PDO Mapping			
1603 _h	RPDO 4	RECORD	PDO Mapping			

Table 40: Object Description (1600h)

	Entry Description					
Sub-index	Description	Access	Value Range	Default Value		
00 _h	Number of mapped application objects in PDO	rw	0 3	Index 1600 _h : 1 Index 1601 _h : 2 Index 1602 _h : 2 Index 1603 _h : 2		
01 _h	Mapping entry 1	rw	UNSIGNED32	Index 1600 _h : 60400010 _h Index 1601 _h : 60400010 _h Index 1602 _h : 60400010 _h Index 1603 _h : 60400010 _h		
02 _h	Mapping entry 2	rw	UNSIGNED32	Index 1600 _h : 0 Index 1601 _h : 60600008 _h Index 1602 _h : 607A0020 _h Index 1603 _h : 60FF0020 _h		
03 _h	Mapping entry 3	rw	UNSIGNED32	Index 1600 _h : 0 _h Index 1601 _h : 0 _h Index 1602 _h : 0 _h Index 1603 _h : 0 _h		

Table 41: Entry Description (1600_h)

Before making changes to PDO definitions, first mark the PDO as inactive by setting bit 31 of its COB-ID (see section 3.1.15). Then, set its number of mapped PDO entries to zero (sub-index 0 of the appropriate PDO mapping object). Now, the mappings themselves can be changed. After that, set the number of map objects to the desired value, and finally activate the PDO by clearing bit 31 of its COB-ID.

3.1.17 Objects 1800_h – 1803_h: Transmit PDO Communication Parameter

This object contains the communication parameters for the TPDOs which the actuator is able to transmit. The subindex 00_h contains the number of valid entries within the communication record. Its value normally is 5, as this object consists of five other entries.

Sub-index 01n contains the COB-ID used by this PDO (in bits 10. . . 0). Bit 30 (RTR bit) defines if this PDO uses RTRs. As RTRs are not supported for PDOs by this CANopen implementation, this bit must always be

set in order to turn off RTR support for this PDO. Bit 31 defines if this PDO is active or not. If this bit is set, the PDO is inactive, and if this bit is clear, the PDO is active. Before making any changes to a PDO definition, set this bit to inactivate the PDO.

Sub-index 02h contains the transmission type of the RPDO. This can be FFh or FEh for event-driven, or 1 ...240 for synchronous (1 means that the PDO will be sent with every SYNC message, and 4 for example means that the PDO will be sent with every 4th SYNC message). Other values are not supported.

Sub-index 03h contains the inhibit time, given in 0.1ms. After a TPDO has been sent, it will not be sent again before the inhibit time has elapsed.

Sub-index 04h is not used.

Sub-index 05_h contains the event timer value in milliseconds. When this is set to a value greater than 0 the TPDO will be sent repeatedly each time the event timer has elapsed. For example, when this value is set to 250, the TPDO will be sent every 250ms. It will also be sent when the value has changed before the event timer has elapsed, but not before the inhibit time has elapsed

Object Description						
Index	Name	Object Type	Data Type			
1800 _h – 1803 _h	Transmit PDO communication parameter	RECORD	TPDO CommPar			
1800h	TPDO 1	RECORD	TPDO CommPar			
1801 _h	TPDO 2	RECORD	TPDO CommPar			
1802 _h	TPDO 3	RECORD	TPDO CommPar			
1803 _h	TPDO 4	RECORD	TPDO CommPar			

Table 42: Object Description (1800_h)

	Entry Description							
Sub-index	Description	Access	Value Range	Default Value				
00 _h	Largest sub-index supported	ro	5	5				
01 _h	COB-ID	rw	UNSIGNED32	Index 1800h: 40000180h + Node-ID Index 1801h: 40000280h + Node-ID Index 1802h: 40000380h + Node-ID Index 1803h: 40000480h + Node-ID				
02 _h	Transmission type	rw	UNSIGNED8	Index 1800 _h : FF _h Index 1801 _h : FF _h Index 1802 _h : 01 _h Index 1803 _h : 01 _h				
03 _h	Inhibit time	rw	UNSIGNED16	0				
04 _h	Compatibility entry	ro	UNSIGNED8	0				
05 _h	Event timer	rw	UNSIGNED16	0				

Table 43: Entry Description (1800_h)

3.1.18 Objects 1A00_h – 1A03_h: Transmit PDO Mapping Parameter

These objects contain the mapping parameters for the TPDOs the actuator is able to transmit. The sub-index 00_h contains the number of valid entries within the mapping record. This number of entries is also the number of the application variables which shall be transmitted with the corresponding TPDO. The sub-indices from 01_h to the number of entries contain the information about the mapped application variables. These entries describe the PDO contents by their index, sub-index and length.

Object Description							
Index	Name	Object Type	Data Type				
1A00 _h - 1A03 _h	Transmit PDO mapping parameter	RECORD	PDO Mapping				
1A00 _h	TPDO 1	RECORD	PDO Mapping				
1A01 _h	TPDO 2	RECORD	PDO Mapping				
1A02 _h	TPDO 3	RECORD	PDO Mapping				
1A03 _h	TPDO 4	RECORD	PDO Mapping				

Table 44: Object Description (1A00h)

	Entry Description						
Sub-index	Description	Access	Value Range	Default Value			
OO _h	Number of Mapped application objects in PDO	rw	0 3	Index 1A00 _h : 1 Index 1A01 _h : 2 Index 1A02 _h : 2 Index 1A03 _h : 2			
01 _h	Mapping entry 1	rw	UNSIGNED32	Index 1A00 _h : 60410010 _h Index 1A01 _h : 60410010 _h Index 1A02 _h : 60410010 _h Index 1A03 _h : 60410010 _h			
02 _h	Mapping entry 2	rw	UNSIGNED32	Index 1A00h: 0 Index 1A01h: 60610008h Index 1A02h: 60640020h Index 1A03h: 606C0020h			
03 _h	Mapping entry 3	rw	UNSIGNED32	Index 1A00 _h : 0 _h Index 1A01 _h : 0 _h Index 1A02 _h : 0 _h Index 1A03 _h : 0 _h			

Table 45: Entry Description (1A00h)

Before making changes to PDO definitions, first mark the PDO as inactive by setting bit 31 of its COB-ID (see section 3.1.17). Then, set its number of mapped PDO entries to zero (sub-index 0 of the appropriate PDO mapping object). Now, the mappings themselves can be changed. After that, set the number of map objects to the desired value, and finally activate the PDO by clearing bit 31 of its COB-ID.

4 Application Specific

The application segment contains application specific objects. These objects control the special features of the actuators.

4.1 Detailed object specifications

4.1.1 Object 2005_h: Limit Switches

This object defines which limit switches are to be used. Bit 0 stands for the left and bit 1 stands for the right limit switch. If a bit is set, the corresponding limit switch will not be used. This object has to be set to the value 3 if limit switches are not connected. The object can only be written when the drive is in the SWITCHED_ON_DISABLED state (but is always readable).

The limit switches can also be inverted using bit 2 and bit 3:

- · Bit 2 inverts the left limit switch
- · Bit 3 inverts the right limit switch

Object Description						
Index	Index Name Object Type Data Type					
2005h	2005 _h Limit switches Variable UNSIGNED32					

Table 46: Object Description (2005_h)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0	rw	no	0 15	0		

Table 47: Entry Description (2005h)

	Bit Definitions					
Bit	Definition					
0	Left limit switch deactivated, if set.					
1	Right limit switch deactivated, if set.					
2	Left limit switch inverted, if set.					
3	Right limit switch inverted, if set.					

Table 48: Bit Definitions (2005_h)

4.1.2 Object 200D_h: Status Flags

This object provides information about the actual module status flags. (0: not active, 1: active). This object is organized bit-wise. The bits have the following meaning:

	Status	Flags
Bit	Name	Definition
0	OVERCURRENT	Motor current too high.
1	UNDERVOLTAGE	Supply voltage too low.
2	OVERVOLTAGE	Supply voltage too high.
3	OVERTEMPERATURE	Driver temperature too high.
4	MOTORHALTED	Motor halted due to error.
5	DRIVER_ENABLED	Motor driver is enabled.
6	DRIVER_ERROR	Motor driver error.
7	INIT_ERROR	Error during motor initialization.
8	STOP_MODE	Drive in stop mode.
9	VELOCITY_MODE	Drive in velocity mode.
10	POSITION_MODE	Drive in position mode.
11	TORQUE_MODE	Drive in torque mode.
12	VELOCITY_WINDOW_ERROR	Velocity window has been exceeded.
13	POSITION_WINDOW_ERROR	Position window has been exceeded.
14	POSITION_END	Target position reached.
15	MODULE_INITIALIZED	Drive successfully initialized.
16	BRAKE_ACTIVE	Brake output on.
17	IIT_EXCEEDED_1	IIT1 limit has been exceeded.
18	IIT_EXCEEDED_2	IIT2 limit has been exceeded.
19	unused	
20	HOMED	Homing successfully finished.
21	HOMING	Homing active.
22	MIN_POS_LIMIT	Minimum position limit reached.
23	MAX_POS_LIMIT	Maximum position limit reached.
24	HOMING_ERROR	Error during homing.

Table 49: Status Flags (200D_h)

Object Description					
Index Name Object Type Data Type					
200Dh Status Flags Variable UNSIGNED					

Table 50: Object Description (200D_h)

	Entry Description						
Sub- index							
0	Status Flags	no	0	4294967295	0		ro

Table 51: Entry Description (200D_h)

4.1.3 Object 200E_h: Supply Voltage

The actual supply voltage in 100mV.

Object Description						
Index	Index Name Object Type Data Type					
200E _h	200Eh Supply Voltage Variable UNSIGNED3.					

Table 52: Object Description (200E_h)

	Entry Description						
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
0	Supply Voltage	no	0	Depends on actuator	240	[100mV]	ro

Table 53: Entry Description (200E_h)

4.1.4 Object 200F_h: Driver Temperature

The actual temperature of the motor driver.

Object Description					
Index	Name	Object Type	Data Type		
200F _h	Driver Temperature	Variable	SIGNED32		

Table 54: Object Description (200F_h)

Entry Description									
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access		
0	Driver Temperature	no	-20	120	0	[degree C]	ro		

Table 55: Entry Description (200F_h)

4.1.5 Object 2010_h: Motor Settings

Object Description							
Index	Name	Object Type	Data Type				
2010 _h	Motor Settings	Variable	Record				

Table 56: Object Description (2010_h)

	Entry Description									
Sub-		PDO								
index	Name	Mapping	Min	Max	Default	Unit	Access			
1	Motor Poles	no	2	254	Depends on actuator		rw			
2	Gear Ratio	no	1	200	Depends on actuator		rw			

Table 57: Entry Description (2010_h)

4.1.6 Object 2015_h: Brake Settings

SHA series actuators come with a safety brake. This Object contains all settings for configuring the brake output

Object Description							
Index	Name	Object Type	Data Type				
2015 _h	Brake Settings	Variable	Record				

Table 58: Object Description (2015_h)

Entry Description									
Sub-		PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access		
1	BrakeMode	no	0	2	0		rw		

Table 59: Entry Description (2015_h)

Brake modes:

- 0: Apply (brake is engaged)
- 1: Hold (low current to maintain the brake release)
- 2: Release (high current for initial brake release)

For SHA-20 actuator, there are only two brake modes:

- 0: Apply (brake is engaged)
- 1: Release (current applied to maintain the brake release)

4.1.7 Object 2020h: Limits

This object contains the software limits for torque, velocity and acceleration.

Object Description								
Index Name Object Type Data Type								
2020h	Limits	Variable	Record					

Table 60: Object Description (2020_h)

	Entry Description										
Sub-		PDO									
index	Name	Mapping	Min	Max	Default	Unit	Access				
1	MaxTorque	no	0	Depends on actuator	Depends on actuator	[mA] (peak)	rw				
2	MaxVelocity	no	0	Depends on actuator	Depends on actuator	[rpm]	rw				
3	MaxAcceleration	no	0	Depends on actuator	Depends on actuator	[rpm/s]	rw				
4	DigitalInput Threshold	no	0	24000	10000	[mV]	rw				

Table 61: Entry Description (2020_h)

	Maximum V	alues for Object 2020h	
Unit(Ratio)	MaxTorque (Current Threshold, mA _{Pk})	MaxVelocity(rpm)	MaxAcceleration (rpm/s)
RSF5(30)	3252		
RSF5(50)	3111	10000	400000
RSF5(100)	2404		
RSA8(30)	5656		
RSA8(50)	5656	8500	100000
RSA8(100)	4949		
FHA-8(30)	4242		
FHA-8(50)	4666	6000	100000
FHA-8(100)	3394		
FHA-11(30)	11029		
FHA-11(50)	11595	6000	100000
FHA-11(100)	7918		
FHA-14(30)	20927		
FHA-14(50)	23190	6000	100000
FHA-14(100)	17392		
LPA-20(51)	18948	5000	100000
LPA-20(101)	16261	3000	100000
SHA-20(51)	21069		
SHA-20(81)	18665		
SHA-20(101)	16968	3232	100000
SHA-20(121)	15271		
SHA-20(161)	12867		
SHA-25(51)	36057		
SHA-25(81)	36057		
SHA-25(101)	36057	3864	100000
SHA-25(121)	32522		
SHA-25(161)	26866		
SHA-32(51)	36057		
SHA-32(81)	36057		
SHA-32(101)	36057	2576	100000
SHA-32(121)	36057		
SHA-32(161)	36057		

Table 62: Maximum Values for Object (2020_h)

Object 2025_h: Homing Mode Settings

Configuration settings for hard stop homing modes (homing modes -1 ... -6)

Object Description						
Index	Name	Object Type	Data Type			
2025h	Homing Mode Settings	Variable	Record			

Table 63: Object Description (2025_h)

	Entry Description										
Sub-		PDO									
index	Name	Mapping	Min	Max	Default	Unit	Access				
01 _h	HomingState	no	0	255	0		ro				
02 _h	PositionOffset_CW	no	0	2147483647	40000		rw				
03 _h	PositionOffset_CCW	no	0	2147483647	40000		rw				
04 _h	CurrentThreshold	no	0	3000	Depends on actuator	[mA]	rw				
05 _h	TeachPositionLimit	no	0	3	0		rw				

Table 64: Entry Description (2025_h)

Homing States: 0: NOT_HOMED

1: HOMED

2: START

3: MOVE_TO_END_POSITION

4: CHECK_NEGATIVE_STOP

5: CHECK_POSITIVE_STOP

253: STOP_TORQUE 254: STOP_VELOCITY 255: STOP_POSITION

4.1.9 **Object 2030**_h: Torque Mode Settings

This object contains all torque regulation parameters and all values that need to be monitored for tuning the torque regulation loop.

Object Description						
Index	Name	Object Type	Data Type			
2030h	Torque Mode Settings	Variable	Record			

Table 65: Object Description (2030_h)

	Entry Description										
Sub-		PDO									
index	Name	Mapping	Min	Max	Default	Unit	Access				
1	ActualCurrent	no	-2147483648	2147483647	0	[mA] (peak)	ro				
2	TargetCurrent	no	Depends on actuator	Depends on actuator	0	[mA] (peak)	ro				
3	RampTargetCurrent	no	Depends on actuator	Depends on actuator	0	[mA] (peak)	ro				
4	P_Parameter	no	0	65535	500		rw				
5	I_Parameter	no	0	65535	5000		rw				
6	PI_Torque_Error	no	-2147483648	2147483647	0	[mA]	ro				
7	PI_Torque_Error_Sum	no	-2147483648	2147483647	0		ro				
8	PI_Flux_Error	no	-2147483648	2147483647	0	[mA]	ro				
9	PI_Flux_Error_Sum	no	-2147483648	2147483647	0		ro				

Table 66: Entry Description (2030_h)

4.1.10 Object 2040_h: Velocity Mode Settings

This object contains all velocity regulation parameters. It also contains all values that need to be monitored for tuning the velocity regulation loop.

Object Description					
Index	Name	Object Type	Data Type		
2040h	Velocity Mode Settings	Variable	Record		

Table 67: Object Description (2040_h)

	Entry Description								
Sub-		PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access		
1	ActualVelocity	no	-2147483648	2147483647	0	[rpm]	ro		
2	TargetVelocity	no	-200000	200000	0	[rpm]	ro		
3	RampTargetVelocity	no	-2147483648	2147483647	0	[rpm]	ro		
4	MotorHaltedVelocity	no	0	200000	5	[rpm]	rw		
5	P_Parameter	no	0	65535	Depends		rw		
					on actuator				
6	I_Parameter	no	0	65535	Depends		rw		
					on actuator				
7	VelocityError	no	-2147483648	2147483647	0	[rpm]	ro		
8	VelocityErrorSum	no	-2147483648	2147483647	0		ro		

Table 68: Entry Description (2040_h)

4.1.11 Object 2050_h: Position Mode Settings

This object contains all position regulation parameters. It also contains all values that need to be monitored for tuning the position regulation loop.

Object Description					
Index	Name	Object Type	Data Type		
2050h	Position Mode Settings	Variable	Record		

Table 69: Object Description (2050_h)

	Entry Description								
Sub-		PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access		
1	ActualPosition	no	-2147483648	2147483647	0		rw		
2	TargetPosition	no	-2147483648	2147483647	0		ro		
3	RampTargetPosition	no	-2147483648	2147483647	0		ro		
4	P_Parameter	no	0	65535	100		rw		
5	Position_Error	no	-2147483648	2147483647	0		ro		
6	TargetReachedVelocity	no	0	200000	500	[rpm]	rw		
7	TargetReachedDistance	no	0	100000	5		rw		
8	PositionScaler	no	-32768	32767	32767		rw		
9	ActualPositionSelection	no	0	1	0		rw		
10	ActualMotorPosition	no	-2147483648	2147483647	0		ro		
11	ActualGearboxPosition	no	-2147483648	2147483647	0		ro		
12	RawMotorEncoderPosition	no	-2147483648	2147483647	0		ro		
13	RawGearboxEncoderPosition	no	-2147483648	2147483647	0		ro		

Table 70: Entry Description (2050h)

4.1.12 Object 2055_h: Commutation Mode

Select a commutation mode that fits best to the actuator encoders. Possible values are

- 0: Disable
- 1: Open loop
- 2: Encoder

Object Description						
Index	Name	Object Type	Data Type			
2055 _h	Commutation Mode	Variable	Record			

Table 71: Object Description (2055_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Commutation Mode	no	0	2	2		rw

Table 72: Entry Description (2055_h)

4.1.13 Object 2056_h: Velocity Ramp Mode

An activated ramp allows a defined acceleration for velocity and position mode, and always be active as the default

Object Description						
Index	Name	Object Type	Data Type			
2056h	Velocity Ramp Mode	Variable	UNSIGNED8			

Table 73: Object Description (2056_h)

Entry Description							
Sub-	Sub- PDO PDO						
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Velocity Ramp Mode	no	0	1	1		rw

Table 74: Entry Description (2056_h)

4.1.14 Object 2060_h: Open Loop Settings

This object contains the actual commutation angle

Object Description						
Index	Name	Object Type	Data Type			
2060h	Open Loop Settings	Variable	Record			

Table 75: Object Description (2060_h)

Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
1	ActualAngle	no	-32768	32767	0		ro

Table 76: Entry Description (2060_h)

4.1.15 Object 2080h: Encoder Settings

This object contains all encoder specific settings and the actual commutation angle

Object Description						
Index	Name	Object Type	Data Type			
2080h	Encoder Settings	Variable	Record			

Table 77: Object Description (2080h)

	Entry Description						
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
1	ActualAngle	no	-32768	32767	0		ro
2	StepsPerRotation	no	0	2147483647	Depends on actuator (Refer to Table 126)		rw
3	Offset	no	0	2147483647	0		rw
4	Direction	no	0	1	1		rw
5	InitMode	no	0	2	1		rw
6	InitDelay	no	0	10000	1000	[ms]	rw
7	InitVelocity	no	-200000	200000	200	[rpm]	rw

Table 78: Entry Description (2080_h)

4.1.16 Object 2090h: Ilt Monitor Settings

This object controls the IIt monitor functions. The actual current is being monitored, and these values are being squared and summed up periodically over the configured winding time using a 1ms cycle. If one of the limits gets exceeded during this time, the actuator will be stopped and the IIt error flag will be set. The IIt error flag can be reset by writing any value to sub-index 7.

There are two IIt windows (see Figure 4). The first one directly uses the actual current, and the second one uses the actual current divided by $\sqrt{2}$ (less power over longer time). Sub-indices 3 and 6 show the actual integration sums.

Object Description				
Index	Name	Object Type	Data Type	
2090h	IIt Monitor Settings	Variable	Record	

Table 79: Objects Description (2090h)

	Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access	
1	WindingTime_1	no	100 0	60000	3000	[ms]	rw	
2	IItLimit_1	no	0	54000000	Depends on actuator	[A ² ms]	rw	
3	IItSum_1	no	0	4294967295	_	[mA]	ro	
4	WindingTime_2	no	100 0	60000	6000	[ms]	rw	
5	IItLimit_2	no	0	54000000	Depends on actuator	[A ² ms]	rw	
6	IItSum_2	no	0	4294967295	_	[mA]	ro	
7	ClearExceededFlags	no	0	255	0	_	rw	

Table 80: Entry Description (2090_h)

(I₁: sub-index 2; I₂: sub-index 5; t₁: sub-index 1; t₂: sub-index 4)

Figure 4 IIt Monitor Windows

4.1.17 Object 2095h: Velocity Window Settings

This object configures the maximum difference between actual velocity and ramp velocity. If this value is exceeded and error flag is set and the motor will be stopped. The error flag can be reset by writing any value to sub index2 of this object

Object Description				
Index	Name	Object Type	Data Type	
2095h	Velocity Window Settings	Variable	Record	

Table 81: Object Description(2095h)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
1	VelocityWindow	no	0	65535	Depends on actuator	[rpm]	rw
2	ClearVelocityWindowError	no	0	255	0		rw

Table 82: Entry Description (2095_h)

4.1.18 Object 2096h: Position Window Settings

This object configures the maximum difference between actual position and ramp position. If this value is exceeded an error flag is set and the motor will be stopped. The error flag can be reset by writing any value to sub-index 2 of this object.

Object Description				
Index	Name	Object Type	Data Type	
2096h	Position Window Settings	Variable	Record	

Table 83: Object Description (2096_h)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
1	PositionWindow	no	0	4294967295	Depends on actuator	[rpm]	rw
2	ClearPositionWindowError	no	0	255	0	_	rw

Table 84: Entry Description (2096_h)

4.1.19 Object 2100_h: Home Offset Display

This object shows the home offset. The value is given in encoder increments.

Object Description				
Index	Name	Object Type	Data Type	
2100 _h	Home Offset Display	Variable	SIGNED32	

Table 85: Object Description (2100h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Home Offset Display	no	-2147483648	2147483647	0		ro

Table 86: Entry Description (2100_h)

4.1.20 Object 2702_h: Digital Inputs

Object Description					
Index	Name	Object Type	Data Type		
2702 _h	Digital Inputs	Variable	UNSIGNED32		

Table 87: Object Description (2702h)

		Entry [Descrip	tion			
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
0	Digital Inputs	yes	0	15	0		ro

Table 88: Entry Description (2702h)

	Bit mapping					
Bit	Input					
0	IO ₁ (configurable I/O used as input)					
1	IO ₂ (configurable I/O used as input)					
2	IN₃ (optically isolated input)					
3	IN4 (optically isolated input					

Table 89: Bit Mapping (2702h)

4.1.21 Object 2703h: Device Digital Outputs

With this object the digital outputs (general purpose outputs) can be set. The bits of sub index 1 control the outputs of the module. The bits of sub index 2 determine which outputs can be switched. The number of available digital outputs depends on the module type.

Object Description					
Index Name Object Type Data Type					
2703h	Device Digital Outputs	Variable	ARRAY		

Table 90: Object Description (2703h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
1	Physical outputs	yes	0	2147483647	0	_	rw
2	Output mask	no	0	2147483647	0	_	rw

Table 91: Entry Description (2703_h)

Bit mapping					
Bit	Output				
0	OUT1 (configurable I/O used as output)				
1	OUT2 (configurable I/O used as output)				

Table 92:Bit Mapping(2703_h)

Refer to **IO** port mapping for the bit mapping variance of RSF-5 and RSA-8 actuator.

4.1.22 Object 2704h: CAN Bit Rate

With this object it is possible to change the CAN bit rate.

To do this, first write the new value to this object. Then, store the new setting by writing the save signature to object 1010_h. After that, reset the module. The new setting then becomes active.

(Available bit rates: 20, 50, 125, 250, 500, 1000 in kBit/s)

Object Description						
Index	Index Name Object Type Data Type					
2704 _h	CAN Bit Rate	Variable	UNSIGNED16			

Table 93: Object Description (2704h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	CAN Bit Rate	no	20	1000	1000		rw

Table 94: Entry Description (2704_h)

4.1.23 Object 2705_h: Node ID

The node ID can be selected using this object to change the node ID, first write the new node ID to this object. Then, store the new setting by writing the save signature to object 1010_h sub index 2. After that, reset the module. The new setting then becomes active.

Object Description					
Index	Name	Data Type			
2705h	Node ID	Variable	UNSIGNED8		

Table 95: Object Description (2705_h)

Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
0	Node ID	no	1	127	1		rw

Table 96: Entry Description (2705_h)

4.1.24 Object 2706h: User Variables

Object Description					
Index Name Object Type Data Type					
2706h	User Variables	Variable	Record		

Table 97: Object Description (2706_h)

	Entry Description							
Sub-		PDO						
index	Name	Mapping	Min	Max	Default	Unit	Access	
1	Address	no	0	255	0		rw	
2	Data	no	-2147483648	2147483647	0		rw	
3	Store	no	0	4294967295	305419896		rw	

Table 98: Entry Description (2706h)

4.1.25 Object 270Eh: Analog Inputs

Object Description					
Index	Name	Object Type	Data Type		
270E _h	Analog Inputs	Variable	Record		

Table 99: Object Description (270E_h)

	Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access	
1	ADC_phase_A	no	0	4095	0		ro	
2	ADC_phase_B	no	0	4095	0		ro	
3	ADC_Vsupply*	no	0	4095	0		ro	
4	ADC_Temp*	no	0	4095	0		ro	
5	ADC_IN_1*	yes	0	4095	0		ro	
6	ADC_IN_2*	yes	0	4095	0		ro	

Table 100: Entry Description (270Eh)

4.1.26 Object 5FFF_h: Bootloader Mode

This object resets the module into the bootloader mode. Write the hex code 12345678_h into this object to perform the reset and update the firmware.

Object Description						
Index	Index Name Object Type Data Type					
5FFF _h	Bootloader mode	Variable	UNSIGNED32			

Table 101: Object Description (5FFF_h)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0	rw	no	12345678 _h	0		

Table 102: Entry Description (5FFF_h)

^{*}Depends on actuator since there are some minor differences in subindex mapping

5 Profile specific area

The profile segment contains <u>CiA-402</u> standard motion control objects. These objects control the motion control functions of the actuator. Since it is not possible to operate the modes in parallel, the user is able to activate the required function by selecting a mode of operation. The control device writes to the modes of operation object in order to select the operation mode. The drive device provides the modes of operation display object to indicate the actual activated operation mode. Controlword, statusword, and set-points are mode-specific. This implies the responsibility of the control device to avoid inconsistencies and erroneous behavior.

The following operating modes (selectable via object 6060h, please see 5.1.6) are implemented on the actuator:

- Profile position mode (pp)
- Profile velocity mode (pv)
- · Homing mode (hm)
- Cyclic synchronous position mode (csp)
- Cyclic synchronous velocity mode (csv)
- · Cyclic synchronous torque mode (cst)

5.1 Detailed object specifications

5.1.1 Object 605A_h: Quick Stop Option Code

This object indicates what action is performed when the quick stop function is executed. The slow down ramp is the deceleration value of the used mode of operation. The following quick stop option codes are supported in the current version of the CANopen firmware:

	Value Definition				
Value	Definition				
1	Slow down on slow down ramp and transit into switch on disabled				
2	Slow down on <i>quick stop ramp</i> and transit into switch on disabled				
5	Slow down on slow down ramp and stay in quick stop active)				
6	Slow down on <i>quick stop ramp</i> and stay in <i>quick stop active</i>				

Table 103: Value Description (605A_h)

Object Description			
Index	Name	Object Type	Data Type
605A _h	Quick Stop Option Code	Variable	SIGNED16

Table 104: Object Description (605Ah)

Entry Description				
Sub-index Access PDO Value Default Value Mapping Range				Default Value
0	rw	no	1/2/5/6	2

Table 105: Entry Description (605A_h)

5.1.2 Object 605B_h: Shutdown Option Code

This object indicates what action is performed if there is a transition from *operation enabled* state to ready to *switch on* state. The shutdown option code always has the value 0 as only this is supported.

Value Definition			
Value	Definition		
0	Disable drive function (switch off the power stage)		

Table 106: Value Description (605B_h)

Object Description				
Index Name Object Type Data Type				
605B _h	Shutdown Option Code	Variable	UNSIGNED16	

Table 107: Object Description (605B_h)

Entry Description				
Sub-index	Access	PDO Mapping	Value Range	Default Value
0	rw	no	0	0

Table 108: Entry Description (605Bh)

5.1.3 Object 605Ch: Disable Operation Option Code

This object indicates what action is performed if there is a transition from *operation enabled* state to *switched on* state. The disable operation option code always has the value 1 as only this is supported. The slow down ramp is the deceleration value of the used mode of operation.

Value Definition		
Value	Definition	
1	Slow down on slow down ramp	

Table 109: Value Description (605Ch)

Object Description			
Index	Name	Object Type	Data Type
605Ch	Disable Operation Option Code	Variable	UNSIGNED16

Table 110: Object Description (605Ch)

Entry Description				
Sub-index	Access	PDO Mapping	Value Range	Default Value
0	rw	no	1	1

Table 111: Entry Description (605C_h)

5.1.4 Object 605Dh: Halt Option Code

This object indicates what action is performed when the halt function is executed. The slow down ramp is the deceleration value of the used mode of operation. The halt option code always has the value 1 as only this is supported.

Ī	Value Definition			
ĺ	Value	Definition		
ĺ	1	Slow down on slow down ramp and stay in operation enabled		

Table 112: Value Description (605Dh)

Object Description					
Index Name Object Type Data Type					
605Dh	Halt Option Code	Variable	UNSIGNED16		

Table 113: Object Description (605Dh)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	rw	no	1	1		

Table 114: Entry Description (605Dh)

5.1.5 Object 605Eh: Fault Reaction Option Code

This object indicates what action is performed when fault is detected in the power drive system. The slow down ramp is the deceleration value of the used mode of operation. The fault reaction option code always has the value 2 as only this is supported.

Value Definition				
Value	Definition			
2	Slow down on quick stop ramp			

Table 115: Value Description (605Eh)

Object Description					
Index Name Object Type Data Type					
605E _h	Fault Reaction Option Code	Variable	UNSIGNED16		

Table 116: Object Description (605Eh)

Entry Description							
Sub-index Access PDO Value Default Value Range							
0	rw	no	2	2			

Table 117: Entry Description (605E_h)

5.1.6 Object 6060_h: Modes of Operation

This object indicates the requested operation mode. Supported operating modes are:

Value Definition				
Value	Mode			
0	No mode			
1	Profile position mode (pp)			
3	Profile velocity mode (pv)			
6	Homing mode (hm)			
8	Cyclic synchronous position mode (csp)			
9	Cyclic synchronous velocity mode (csv)			
10	Cyclic synchronous torque mode (cst)			

Table 118: Value Description (6060_h)

The motor will not run when the operating mode is set to 0. It will be stopped when the motor is running in one of the supported operating modes and the operating mode is then switched to 0.

Object Description					
Index Name Object Type Data Type					
6060h	Modes of Operation	Variable	SIGNED8		

Table 119: Object Description (6060_h)

Entry Description					
Sub-index Access PDO Value Range Default Value Mapping					
0	rw	yes	see table 118	0	

Table 120: Entry Description (6060h)

5.1.7 Object 6061_h: Modes of Operation Display

This object shows the operating mode that is currently set.

Value Definition				
Value	Mode			
0	No mode			
1	Profile position mode (pp)			
3	Profile velocity mode (pv)			
6	Homing mode (hm)			
8	Cyclic synchronous position mode (csp)			
9	Cyclic synchronous velocity mode (csv)			
10	Cyclic synchronous torque mode (cst)			

Table 121: Value Description (6061_h)

The motor will not run when the operating mode is set to 0. It will be stopped when the motor is running in one of the supported operating modes and the operating mode is then switched to 0

Object Description					
Index	Name	Object Type	Data Type		
6061 _h	Modes of Operation Display	Variable	SIGNED8		

Table 122: Object Description (6061_h)

Entry Description						
Sub-index Access PDO Value Range Default Value Mapping						
0	rw	yes	see table 121	0		

Table 123: Entry Description (6061_h)

5.1.8 Object 608Fh: Position Encoder Resolution

This object defines the resolution of the encoder. The position encoder resolution is calculated by the following formula:

Position encoder resolution = Encoder increments / Motor revolutions.

Object Description						
Index Name Object Type Data Ty						
608F _h	Position Encoder Resolution	Array	UNSIGNED32			

Table 124: Object Description (608F_h)

	Entry Description							
Sub-		PDO						
index	Name	Mapping	Min	Max	Default	Unit	Access	
1	Encoder increments	no	0	131072	Depends on actuator		rw	
2	Motor revolutions	no	1	1	1		ro	

Table 125: Entry Description (608F_h)

	Position Encoder Resolution										
Actuator Family	Encoder	Encoder Bit Resolution	Encoder Counts								
RSF	Absolute	14(motor)	16384								
RSA	Absolute	14(motor)	16384								
FHA-C mini	Dual Absolute	15(motor)/14(gear)	32768/16384								
LPA	Dual Absolute	17(motor)/16(gear)	131072/65536								
SHA	Dual Absolute	17(motor)/16(gear)	131072/65536								

Table 126: Position Encoder Resolution

5.1.9 Object 60FD_h: Digital Inputs

This object contains the states of the digital inputs of the module. Starting from bit 0, every bit reflects the state of one digital input. The number of valid bits depends on the number of digital inputs of the module.

	Object Description										
Index Name Object Type Data Type											
60FD _h	Digital Inputs	Variable	UNSIGNED32								

Table 127: Object Description (60FD_h)

Entry Description											
Sub-index Access PDO Value Range Default Val											
0	ro	yes	UNSIGNED32	0							

Table 128: Entry Description (60FD_h)

5.1.10 Object 6502h: Supported Drive Modes

This object provides information on the supported drive modes (0: not supported, 1: supported). This object is organized bit-wise. The bits have the following meaning:

	Value Definition
Bit	Mode
0	Profile position mode (pp)
1	Velocity mode (vI), not used
2	Profile velocity mode (pv)
3	Torque mode (tq), not used
4	Reserved
5	Homing mode (hm)
6	Interpolated position mode (ip), not used
7	Cyclic synchronous position mode (csp)
8	Cyclic synchronous velocity mode (csv)
9	Cyclic synchronous torque mode (cst)
10-15	Reserved
16-31	Reserved

Table 129: Value Definition (6502_h)

	Object Description										
Index	Name	Object Type	Data Type								
6502 _h	Supported Drive Modes	Variable	UNSIGNED32								

Table 130: Object Description (6502_h)

	Entry Description												
Sub- index	PDO Name Mapping Min Max Default Unit Acces												
0	Supported Drive Modes	no	0	FFFFFFFh	3A5 _h		ro						

Table 131: Entry Description (6502_h)

6 Profile Position Mode

A target position is applied to the trajectory generator. It is generating a position demand value for the position control loop described in the position control function.

Please refer to object 6060h (section 5.1.6) for information about how to choose an operation mode. Object 6061h (section 5.1.7) shows the operation mode that is set.

6.1 Detailed Object Specifications

The following text offers detailed object specifications. For a better understanding, it is necessary to see how the state machine works.

Figure 5: DS402 Finite State Machine

Notes on state transitions:

- Commands directing a change in state are processed completely and the new state achieved before additional state change commands are processed.
- Transitions 0 and 1 occur automatically at drive power-on or reset. Transition 14 occurs automatically, too. All other state changes must be directed by the host.
- Drive function disabled indicates that no current is being supplied to the motor.
- Drive function enabled indicates that current is available for the motor and profile position and profile velocity reference values may be processed.

6.1.1 Object 6040_h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The $\underline{\text{CiA-402}}$ state machine can be controlled using this object. Please refer to $\underline{\text{Figure 5}}$ for detailed information.

	Structure of the Control Word													
15	11	11 10 9 8 7 6 4 3 2 1 0												
	nu	r	oms	h	fr	oms		ео	qs	ev	so			
MSB	•		•								LSB			

Legend: nu=not used; r=reserved; oms=operation mode specific; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 132: Structure of the Control Word in pp Mode

	Operation Mode specific Bits in pp Mode								
Bit	Name Definition								
4	New set point	0-to-1: the next positioning will be started.							
5	Change immediately	Not supported.							
6	Absolute / relative	New position is absolute. New position is relative.							
9	Change set point	Not supported.							

Table 133: Operation Mode specific Bits in pp Mode

Command Coding												
Command	Bits of Control Word Transitions											
	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0							
Shutdown	0	х	1	1	0	2,6,8						
Switch on	0	0	1	1	1	3						
Switch on & enable operation	0	1	1	1	1	3, 4						
Disable voltage	0	х	х	0	х	7,9,10,12						
Quick stop	0	х	0	1	х	7,10,11						
Disable operation	0	0	1	1	1	5						
Enable operation	0	1	1	1	1	4, 16						
Fault reset	0-to-1	Х	Х	Х	Х	15						

Table 134: Command Coding

Object Description											
Index	Name	Data Type									
6040 _h	ControlWord	Variable	UNSIGNED16								

Table 135: Object Description (6040_h in pp Mode)

Entry Description											
Sub-index Access PDO Mapping Value Range Default Value											
0	rw	yes	See command coding above.								

Table 136: Entry Description (6040_h in pp Mode)

6.1.2 Object 6041h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to Figure 5 for detailed information. The object is structured as defined below.

For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

Structure of the Status Word															
15	5 14 13 12 11 10 9 8 7 6 5 4 3 2 1										0				
dir	mot	on	ns	ila	tr	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB															LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; tr=target reached; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 137: Structure of the Status Word in pp Mode

	HDLLC Specific Bits				
Bit Name Definition					
14	Motor activity	Motor stands still. Motor rotates.			
15	Direction of rotation	This bit shows the direction of rotation.			

Table 138: HDLLC Specific Bits

	Operation Mode specific Bits in pp Mode				
Bit Name Definition					
10	10 Target reached Set when the motor is within the position window.				
12 Set point acknowledged 0: Set point processed. 1: Set point still in process.					
13	Following error	Not supported.			

Table 139 Operation Mode specific Bits in pp Mode

State Coding				
Status word	FSA state			
xxxx xxxx x0xx 0000b	Not ready to switch on			
xxxx xxxx x1xx 0000 _b	Switch on disabled			
xxxx xxxx x01x 0001 _b	Ready to switch on			
xxxx xxxx x01x 0011 _b	Switched on			
xxxx xxxx x01x 0111 _b	Operation enabled			
xxxx xxxx x00x 0111 _b	Quick stop active			
xxxx xxxx x0xx 1111 _b	Fault reaction active			
xxxx xxxx x0xx 1000 _b	Fault			

Table 140: State Coding

Object Description					
Index Name Object Type Data Type					
6041 _h	StatusWord	Variable	UNSIGNED16		

Table 141: Object Description (6041_h in pp Mode)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0 rw yes See state coding above.						

Table 142: Entry Description (6041_h in pp Mode)

6.1.3 Object 6062_h: Position Demand Value

This object provides the demanded position value. The value is given in encoder steps. Object 6062_h indicates the actual position that the motor should have. It is not to be confused with objects 6063_h and 6064_h .

Object Description						
Index	Name	Object Type	Data Type			
6062 _h	Position Demand Value	Variable	SIGNED32			

Table 143: Object Description (6062_h)

	Entry Description						
Sub- PDO PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Demand Value	yes	-2147483648	2147483647	0		ro

Table 144: Entry Description (6062_h)

6.1.4 Object 6063_h: Position Actual Internal Value

This object provides the actual position value of the motor.

Object Description					
Index	Name	Object Type	Data Type		
6063h	Position Actual Internal Value	Variable	SIGNED32		

Table 145: Object Description (6063_h)

	Entry Description						
Sub- PDO PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Actual Internal Value	yes	-2147483648	2147483647	0		ro

Table 146: Entry Description (6063_h)

6.1.5 Object 6064_h: Position Actual Value

This object provides the actual value of the position measurement device. It always contains the same value as object 6063_h .

Object Description					
Index Name Object Type Data Type					
6064h	Position Actual Value	Variable	SIGNED32		

Table 147: Object Description (6064_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Actual Value	yes	-2147483648	2147483647	0		ro

Table 148: Entry Description (6064_h)

6.1.6 Object 6067_h: Position Window

This object indicates the configured symmetrical range of accepted positions relative to the target position. If the actual value of the position encoder is within the position window, this target position is regarded as having been reached. The value is given in increments. If the value of the position window is FFFFFFFh, the position window control is switched off. If this object is set to zero, the target reached event will be signaled when the demand position (6062_h) has reached the target position (6064_h) . When the position window is set to a value greater than zero, the target reached event will be signaled when the actual encoder position value (6064_h) is within $(target_position$

Object Description						
Index Name Object Type Data Type						
6067 _h	Position Window	Variable	UNSIGNED32			

Table 149: Object Description (6067_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Window	no	0	4294967295	4294967295		rw

Table 150: Entry Description (6067_h)

6.1.7 Object 606B_h: Velocity Demand Value

This object shows the velocity output value of the ramp generator.

Object Description						
Index	Name	Object Type	Data Type			
606B _h	Velocity Demand Value	Variable	SIGNED32			

Table 151: Object Description (606Bh)

	Entry Description								
Sub-		PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access		
0	Velocity Demand Value	no	-2147483648	2147483647	0	[rpm]	ro		

Table 152: Entry Description (606B_h)

6.1.8 Object 606Ch: Velocity Actual Value

This object shows the actual velocity value derived from the velocity sensor.

	Object Description							
Index Name Object Type Data Typ								
606C _h	Velocity Actual Value	Variable	SIGNED32					

Table 153: Object Description (606C_h)

	Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access	
0	Velocity Actual Value	yes	-2147483648	2147483647	0	[rpm]	ro	

Table 154: Entry Description (606Ch)

6.1.9 Object 607Ah: Target Position

The target position is the position that the drive should move to in profile position mode using the actual settings of motion control parameters (such as velocity, acceleration, deceleration, etc.). The value of this object is interpreted as absolute or relative depending on the abs/rel flag in the ControlWord.

Object Description							
Index Name Object Type Data Type							
607A _h	Target Position	Variable	SIGNED32				

Table 155: Object Description (607A_h)

Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
0	Target Position	yes	-2147483648	2147483647	0		rw

Table 156: Entry Description (607A_h)

6.1.10 Object 607Dh: Software Position Limit

This object indicates the configured maximum and minimum software position limits. These parameters define the absolute position limits for the position demand value and the position actual value. Every new target position is checked against these limits. The limit positions are always relative to the machine home position. Before being compared with the target position, they are corrected internally by the home offset as follows:

Corrected min position limit = min position limit — home offset Corrected max position limit = max position limit — home offset

Object Description							
Index	Name	Object Type	Data Type				
607D _h	Software Position Limit	Array	SIGNED32				

Table 157: Object Description (607Dh)

	Entry Description								
Sub-		PDO							
index	Name	Mapping	Min	Max	Default	Unit	Access		
1	Min Position Limit	no	-2147483648	2147483647	-2147483648		rw		
2	Max Position Limit	no	-2147483648	2147483647	2147483647		rw		

Table 158: Entry Description (607Dh)

6.1.11 Object 6081_h: Profile Velocity (for pp mode)

This object indicates the configured velocity normally attained at the end of the acceleration ramp during a profiled motion and is valid for both directions of motion. The profile velocity is the maximum velocity used when driving to a new position.

Object Description							
Index Name Object Type Data Type							
6081 _h	Profile Velocity (pp)	Variable	UNSIGNED32				

Table 159: Object Description (6081_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Profile Velocity	no	0	200000	6000	[rpm]	rw

Table 160: Entry Description (6081_h)

6.1.12 Object 6082h: End Velocity

This object indicates the configured velocity normally attained at the end of the deceleration ramp during a profiled motion and is valid for both directions of motion. The end velocity is the velocity used when reaching the new position.

Object Description							
Index Name Object Type Data Type							
6082h	End Velocity	Variable	SIGNED32				

Table 161: Object Description (6082h)

Entry Description											
Sub-		PDO PDO									
index	Name	Mapping	Min	Max	Default	Unit	Access				
0	End Velocity	no	-200000	200000	500	[rpm]	rw				

Table 162: Entry Description (6082h)

6.1.13 Object 6083_h: Profile Acceleration

This object indicates the configured acceleration. Object 6083_h sets the maximum acceleration to be used in profile positioning mode, and profile velocity mode.

Object Description										
Index	Name	Object Type	Data Type							
6083h	Profile Acceleration	Variable	UNSIGNED32							

Table 163: Object Description (6083h)

	Entry Description											
Sub-	PDO PDO											
index	Name	Mapping	Min	Max	Default	Unit	Access					
0	Profile Acceleration	no	0	100000	Depends	[rpm/s]	rw					
					on							
					actuator							

Table 164: Entry Description (6083h)

6.1.14 Object 6084_h: Profile Deceleration

This object indicates the configured deceleration, which will be the same as the Profile Acceleration.

Object Description										
Index	Name	Object Type	Data Type							
6084 _h	Profile Deceleration	Variable	UNSIGNED32							

Table 165: Object Description (6084_h)

	Entry Description												
Sub-	PDO PDO												
index	Name	Mapping	Min	Max	Default	Unit	Access						
0	Profile Deceleration	no	0	100000	Depends	[rpm/s]	ro						
					on								
					actuator								

Table 166: Entry Description (6084h)

6.1.15 Object 6085_h: Quick Stop Deceleration

This object indicates the configured deceleration used to stop the motor when the quick stop function is activated and the quick stop code object $605A_h$ is set to 2 (or 6).

Object Description									
Index	Name	Object Type	Data Type						
6085h	Quick Stop Deceleration	Variable	UNSIGNED32						

Table 167: Object Description (6085h)

	Entry Description												
Sub-		PDO											
index	Name	Mapping	Min	Max	Default	Unit	Access						
0	Quick Stop Deceleration	no	0	100000	Depends	[rpm/s]	rw						
					on								
					actuator								

Table 168: Entry Description (6085_h)

6.2 Example of pp Mode Operation

The following is an example of running in pp mode (the values are decimal), assume that the actuator has been reset and then switched to pre-operational or operational by NMT commands.

- If limit switches are not connected, first disable the limit switch inputs by writing 3 to object 2005h.
- Select pp mode by writing 1 to object 6060h.
- Write 6 to object 6040h to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040h to switch to SWITCHED_ON state.
- Write 15 to object 6040_h to switch to OPERATION_ENABLED state.
- Write the desired target position (e.g. 500000) to object 607Ah.
- Mark the new target position as active by writing 31 to object 6040h and observe motion commencing.
- Reset the activation by writing 15 to object 6040_h (this can be done while the actuator is still moving).

7 Profile Velocity Mode

The profile velocity mode is used to control the velocity of the drive independent of the position. It contains limit functions and trajectory generation.

The profile velocity mode covers the following sub-functions:

- Demand value input via trajectory generator.
- · Monitoring of the profile velocity using a window-function.
- · Monitoring of velocity actual value using a threshold.

The operation of the reference value generator and its input parameters include:

- · Profile velocity
- · Profile acceleration
- · Motion profile type

7.1 **Detailed Object Specifications**

7.1.1 Object 6040h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The <u>CiA-402</u> state machine can be controlled using this object. Please refer to <u>Figure 5</u> for detailed information.

In pv mode the control word does not contain any operation mode specific bits.

Structure of the Control Word												
15	11	11 10 9 8 7 6 4 3 2 1 0									0	
	nu	r	r	h	fr		r		ео	qs	ev	so
MSB												LSB

Legend: nu=not used; r=reserved; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 169: Structure of the Control Word in pv Mode

	Comman	d Codir	ng			
Command		Bits of 0	Control '	Word		Transitions
	Bit 7	Bit 0				
Shutdown	0	х	1	1	0	2,6,8
Switch on	0	0	1	1	1	3
Switch on & enable operation	0	1	1	1	1	3, 4
Disable voltage	0	х	х	0	х	7,9,10,12
Quick stop	0	х	0	1	х	7,10,11
Disable operation	0	0	1	1	1	5
Enable operation	0	1	1	1	1	4, 16
Fault reset	0-to-1	х	х	Х	х	15

Table 170: Command Coding

	Object	t Description	
Index	Name	Object Type	Data Type
6040h	Controlword	Variable	UNSIGNED16

Table 171: Object Description (6040_h in pv Mode)

Entry Description										
Sub-index Access PDO Mapping Value Range Default Value										
0	rw	y yes See command coding above.								

Table 172: Entry Description (6040_h in pv Mode)

7.1.2 Object 6041h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to <u>Figure 5</u> for detailed information. The object is structured as defined below. For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

	Structure of the Status Word														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dir	mot	on	ns	ila	tr	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB															LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; tr=target reached; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 173: Structure of the Status Word in pv Mode

	HDLLC Specific Bits			
Bit Name Definition				
14 Motor activity 0: Motor stands still. 1: Motor rotates.				
15	Direction of rotation	This bit shows the direction of rotation.		

Table 174: HDLLC Specific Bits

	Operation Mode specific Bits in pv Mode				
Bit	Bit Name Definition				
10	Target reached Indicates that the target speed has been reached.				
12	12 Speed Not supported.				
13	Max. slippage error	Not supported.			

Table 175: Operation Mode Specific Bits in pv Mode

State Coding				
Status word	FSA state			
xxxx xxxx x0xx 0000b	Not ready to switch on			
xxxx xxxx x1xx 0000 _b	Switch on disabled			
xxxx xxxx x01x 0001 _b	Ready to switch on			
xxxx xxxx x01x 0011 _b	Switched on			
xxxx xxxx x01x 0111 _b	Operation enabled			
xxxx xxxx x00x 0111 _b	Quick stop active			
xxxx xxxx x0xx 1111 _b	Fault reaction active			
xxxx xxxx x0xx 1000b	Fault			

Table 176: State Coding

Object Description				
Index Name Object Type Data Type				
6041 _h	StatusWord	Variable	UNSIGNED16	

Table 177: Object Description (6041h in pv Mode)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0 rw yes See state coding above						

Table 178: Entry Description (6041_h in pv Mode)

7.1.3 Object 6062_h: Position Demand Value

This object provides the demanded position value. The value is given in encoder steps. Object 6062_h indicates the actual position that the motor should have. It is not to be confused with objects 6063_h and 6064_h .

Object Description					
Index	Name	Object Type	Data Type		
6062h	Position Demand Value	Variable	SIGNED32		

Table 179: Object Description (6062h)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Demand Value	yes	-2147483648	2147483647	0		ro

Table 180: Entry Description (6062_h)

7.1.4 Object 6063_h: Position Actual Internal Value

This object provides the actual position value of the motor.

Object Description					
Index	Data Type				
6063 _h	Position Actual Internal Value	Variable	SIGNED32		

Table 181: Object Description (6063_h)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Actual Internal Value	yes	-2147483648	2147483647	0		ro

Table 182: Entry Description (6063_h)

7.1.5 Object 6064_h: Position Actual Value

This object provides the actual value of the encoder. It always contains the same value as object 6063_h.

Object Description					
Index	Data Type				
6064 _h	Position Actual Value	Variable	SIGNED32		

Table 183: Object Description (6064_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Position Actual Value	yes	-2147483648	2147483647	0		ro

Table 184: Entry Description (6064h)

7.1.6 Object 606B_h: Velocity Demand Value

This object provides the velocity output value of the ramp generator

Object Description						
Index Name Object Type Data						
606B _h	Velocity Demand Value	Variable	SIGNED32			

Table 185: Object Description (606Bh)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Velocity Demand Value	no	-2147483648	2147483647	0	[rpm]	ro

Table 186: Entry Description (606Bh)

7.1.7 Object 606C_h: Velocity Actual Value

This object shows the actual velocity value derived from the velocity sensor.

	Object Description						
Index	Name	Object Type	Data Type				
606Ch	Velocity Actual Value	Variable	SIGNED32				

Table 187: Object Description (606C_h)

Entry Description							
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access
0	Velocity Actual Value	yes	-2147483648	2147483647	0	[rpm]	ro

Table 188: Entry Description (606Ch)

7.1.8 Object 607D_h: Software Position Limit

This object indicates the configured maximum and minimum software position limits. These parameters define the absolute position limits for the position demand value and the position actual value. Every new target position is checked against these limits. The limit positions are always relative to the machine home position. Before being compared with the target position, they are corrected internally by the home offset as follows:

Corrected min position limit = min position limit — home offset Corrected max position limit = max position limit — home offset

Object Description					
Index	Name	Object Type	Data Type		
607D _h	Software Position Limit	Array	SIGNED32		

Table 189: Object Description (607Dh)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
1	Min Position Limit	no	-2147483648	2147483647	-2147483648		rw
2	Max Position Limit	no	-2147483648	2147483647	2147483647		rw

Table 190: Entry Description (607D_h)

7.1.9 Object 6083_h: Profile Acceleration

This object indicates the configured acceleration. Object 6083_h sets the maximum acceleration to be used in profile positioning mode, and profile velocity mode.

Object Description					
Index	Name	Object Type	Data Type		
6083h	Profile Acceleration	Variable	UNSIGNED32		

Table 191: Object Description (6083h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Profile Acceleration	no	0	Table 62	Depends on actuator	[rpm/s]	rw

Table 192: Entry Description (6083_h)

7.1.10 Object 6085h: Quick Stop Deceleration

This object indicates the configured deceleration used to stop the motor when the quick stop function is activated and the quick stop code object $605A_h$ is set to 2 (or 6).

Object Description					
Index	Name	Object Type	Data Type		
6085 _h	Quick Stop Deceleration	Variable	UNSIGNED32		

Table 193: Object Description (6085_h)

	Entry Description						
Sub-		PDO	. A:			11. %	
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Quick Stop Deceleration	no	0	Same as Profile Acceleration Table 62	Depends on actuator	[rpm/s]	rw

Table 194: Entry Description (6085h)

7.1.11 Object 60FF_h: Target Velocity

This object indicates the configured target velocity and is used as input for the trajectory generator. Object $60FF_h$ sets the target velocity when using profile velocity mode. The drive then accelerates or decelerates to that velocity using the acceleration and deceleration set by objects 6083_h and 6084_h .

Object Description					
Index	Name	Object Type	Data Type		
60FFh	Target Velocity	Variable	SIGNED32		

Table 195: Object Description (60FF_h)

Entry Description							
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Target Velocity	yes	-200000	200000	0	[rpm]	rw

Table 196: Entry Description (60FF_h)

7.2 Example of pv Mode Operation

The following is an example of running in pv mode the values are decimal. Assume that the actuator had been reset and then switched to pre-operational or operational by NMT commands

- Select pv mode by writing 3 to object 6060_h (Modes_of_Operation).
- Write 6 to object 6040_h (Controlword) to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040h to switch to SWITCHED_ON state.
- Write the desired target velocity (e.g. 2000) to object 60FF_h (Target_Velocity).
- Write 15 to object 6040_h to switch to OPERATION_ENABLED state. The motor now accelerates to the target velocity.
- Stop the motor by writing 0 to object 60FFh.

8 Homing mode

This chapter describes the method by which a drive seeks the home position (reference point). There are various methods of achieving this using limit switches at the ends of travel or a home switch in mid-travel. Some methods also use the index (zero) pulse train from an incremental encoder. The user may specify the speeds, acceleration and the method of homing.

There is no output data except for those bits in the statusword which return the status or result of the homing process and the demand to the position control loops.

There are four sources of the homing signal available: these are positive and negative limit switches, the home switch and the index pulse from an encoder.

<u>Figure 6</u> shows the defined input objects as well as the output objects. The user can specify the speeds, acceleration and method of homing. The home offset object $607C_h$ allows displacing the zero in point the coordinate system for the home position.

Figure 6: Homing Mode Function

Choosing a homing mode determines the following things:

- The homing signal (positive limit switch, negative limit switch, and home switch).
- The direction of actuation where appropriate.
- The position of the index pulse.

The home position and the zero position are offset by the home offset (see object 607Ch, section 0).

There are four sources of homing signals available:

- Negative and positive limit switches.
- · Home switch.
- Index pulse of an encoder

For the operation of positioning drives, an exact knowledge of the absolute position is normally required

8.1 Homing Methods

A subset of different standard CANopen homing methods are supported. The homing method that is to be used can be chosen via object 6098h (section 8.2.5).

	Supported Homing Methods
Method	Description
0	No homing (default value for object 6098h).
17	Search the left end switch.
18	Search the right end switch.
35	The actual position is used as home position. All position values (objects 6062_h , 6063_h , and 6064_h) are set to zero, but the motor will not move.
-1	Single Ended Clockwise Hard Stop Homing
-2	Single Ended Counterclockwise Hard Stop Homing
-3	Double Ended Clockwise Hard Stop Homing
-4	Double Ended Counterclockwise Hard Stop Homing
-5	Double Ended Clockwise Hard Stop Homing with scaler calculation
-6	Double Ended Counterclockwise Hard Stop Homing with scaler calculation

Table 197: Supported CANopen Homing Methods

When using homing methods that need end switch inputs or home switch inputs, please take care of their configuration (object 2005_h).

8.1.1 Homing Method 17 and 18: Homing without Index Pulse

For these methods the home position only depends on the relevant home or limit switch transitions.

Homing Methods 17, 18					
Method Description					
17	Search the left end switch.				
18	Search the right end switch.				

Table 198: Homing Methods 17,18

8.1.2 Homing Method 35: Current Position as Home Position

In this method, the current position shall be taken to be the home position. This method does not require the actuator to be in operation enabled state.

8.1.3 Homing Method -1: Single Ended Clockwise Hard Stop Homing

For this homing method, the motor is driving with a constant positive velocity $(6099_h:2)$ clockwise into a hardstop (1) as shown in Figure 7. While driving into the hardstop, the actual motor current is measured and compared with the current threshold $(2025_h:4)$. If the current threshold is reached, the motor moves back by -PositionOffset_CW $(2025_h:2)$ encoder steps (2). Then the motor is stopped and the actual position (6064_h) is set to 0. The max position limit $(607D_h:2)$ is also set to 0. The velocity is limited to $(6099_h:1)$. The min position limit $(607D_h:1)$ will not be changed during this homing method and can be set before homing to limit the position range.

Figure 7: Single ended homing CW

Upon completion, the motor can be moved in torque, velocity, or position mode within the position limits 607D_h:1 and 607D_h:2(3).

8.1.4 Homing Method -2: Single Ended Counterclockwise Hard Stop Homing

For this homing method, the motor is driving with a constant negative velocity $(6099_h:2)$ counterclockwise into a hardstop (1) as shown in Figure 8. While driving into the hardstop, the actual motor current is measured and compared with the negative current threshold $(2025_h:4)$. If the negative current threshold is reached, the motor moves back by +PositionOffset_CCW $(2025_h:3)$ encoder steps (2). Then the motor is stopped and the actual position (6064_h) is set to 0. The min position limit $(607D_h:1)$ is also set to 0. The velocity is limited to $(6099_h:1)$. The max position limit $(607D_h:2)$ will not be changed during this homing method and can be set before homing to limit the position range.

Figure 8: Single ended homing CCW

Upon completion, the actuator can be moved in torque, velocity, or position mode within the position limits $607D_h$:1 and $607D_h$:2(3).

8.1.5 Homing Method -3: Double Ended Clockwise Hard Stop Homing

For this homing method, the motor is driving with a constant positive velocity (6099h:2) clockwise into a hardstop (1) as shown in Figure 9. While driving into the hardstop the actual motor current is measured and compared with the current threshold (2025h:4). If the current threshold is reached, the motor moves back by -PositionOffset_CW (2025h:2) encoder steps (2). There, the actual position (6064h) and the max position limit (607Dh:2) are marked and the motor drives in the negative (counter clockwise) direction with a constant negative velocity (3). If the negative current threshold is reached, the motor moves back by +PositionOffset_CCW (2025h:3) encoder steps (4). Then the motor is stopped and the min position limit (607Dh:1) and the actual position value (6064h) are set to 0. The velocity is limited to (6099h:1).

Figure 9: Double ended homing CW

Upon completion, the motor can be moved in torque, velocity, or position mode within the position limits $607D_h$:1 and $607D_h$:2(5).

8.1.6 Homing Method -4: Double Ended Counterclockwise Hard Stop Homing

For this homing method, the motor is driving with a constant negative velocity (6099_h:2) counterclockwise into a hardstop (1) as shown in Figure 10. While driving into the hardstop the actual motor current is measured and compared with the negative current threshold (2025_h:4). If the negative current threshold is reached, the motor moves back by +PositionOffset_CCW (2025_h:3) encoder steps (2). There, the actual position (6064_h) and the min position limit (607D_h:1) are set to 0 and the motor drives in the positive (clockwise) direction with a constant positive velocity (3). If the positive current threshold is reached, the motor moves back by -PositionOffset_CW (2025_h:2) encoder steps (4). Then the motor is stopped and the max position limit (607D_h:2) is set to the actual position value (6064_h). The velocity is limited to (6099_h:1).

Figure 10: Double ended homing CCW

Upon completion, the motor can be moved in torque, velocity, or position mode within the position limits $607D_h$:1 and $607D_h$:2 (5).

8.1.7 Homing Method -5: Double Ended Clockwise Hard Stop Homing (compute scaler)

Homing method -5 uses the same homing process as homing method -3, but in addition the position scaler 2050_h:8 is automatically calculated and stored in the module. Thereby, the hardstop offsets (2) and (4) are used as unscaled encoder steps and the position limit range (5) of the application is scaled to 0 and 65535.

8.1.8 Homing Method -6: Double Ended Counterclockwise Hard Stop Homing (compute scaler)

Homing method -6 uses the same homing process as homing method -4, but in addition the position scaler 2050_h:8 is automatically calculated and stored in the module. Thereby, the hardstop offsets (2) and (4) are used as unscaled encoder steps and the position limit range (5) of the application is scaled to 0 and 65535.

8.1.9 Teach Mode

For certain applications, the homing range can be defined directly in teach mode without the hardstops

- 1. Jog the actuator to the min position, write2025h:05=1 to mark the min software limit (607Dh:1) as 0.
- 2. Then jog the actuator to the max position, write 2025_h:05=2 to set the max software limit (607D_h:2) as the actual position
- 3. If the scaled homing range is needed, write 2025_h:05=3 to update the position scaler, and the max software limit (607D_h:2) will be changed to 65535

8.1.10 Parameter Saving After Homing

For RSF, RSA and FHA-Mini series actuators, the new homing parameters will be saved automatically to flash after each homing sequence, including Position Scaler (2050_h :8), Min Position Limit ($607D_h$:1), Max Position Limit ($607D_h$:2), PositionOffset_CW (2025_h :2) and PositionOffset_CCW (2025_h :3).

For LPA and SHA series actuators, due to the longer flash saving time, all of the new homing parameters will only be updated in RAM and there is no automatic flash saving after homing. The homing parameters can be saved manually through SDO in Pre-operational mode when the PDOs are disabled.

8.2 Detailed Object Specifications

8.2.1 Object 6040_h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The <u>CiA-402</u> state machine can be controlled using this object. Please refer to <u>Figure 5</u> for detailed information.

Structure of the Control Word											
15	11	10	9	8	7	6	4	3	2	1	0
	nu	r	oms	h	fr	oms		ео	qs	ev	so
MSB									•		LSB

Legend: nu=not used; r=reserved; oms=operation mode specific; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 199: Structure of the Control Word in hm Mode

Operation Mode specific Bits in hm Mode					
Bit	Name	Definition			
4	Homing operation start	0: stop homing 1: start homing;			
8	Halt	Not supported.			

Table 200: Operation Mode specific Bits in hm Mode

Command Coding							
Command		Transitions					
	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0		
Shutdown	0	х	1	1	0	2,6,8	
Switch on	0	0	1	1	1	3	
Switch on & enable operation	0	1	1	1	1	3, 4	
Disable voltage	0	х	х	0	х	7,9,10,12	
Quick stop	0	х	0	1	х	7,10,11	
Disable operation	0	0	1	1	1	5	
Enable operation	0	1	1	1	1	4, 16	
Fault reset	0-to-1	х	х	Х	х	15	

Table 201: Command Coding

Object Description						
Index	Name	Object Type	Data Type			
6040h	Controlword	Variable	UNSIGNED16			

Table 202: Object Description (6040_h in hm Mode)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	rw	Yes	See command coding above.			

Table 203: Entry Description (6040_h in hm Mode)

8.2.2 Object 6041_h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to <u>Figure 5</u> for detailed information. The object is structured as defined below. For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

Structure of the Status Word															
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dir	mot	on	ns	ila	tr	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB															LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; tr=target reached; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 204: Structure of the Status Word in hm Mode

	HDLLC Specific Bits					
Bit	t Name Definition					
14	Motor activity	O: Motor stands still. Hotor rotates.				
15	Direction of rotation	This bit shows the direction of rotation.				

Table 205: HDLLC Specific Bits

	Operation Mode specific Bits in hm Mode						
Bit	Name	Definition					
10	Target reached	Set when the zero position has been found or homing has been stopped by setting controlword bit 4 to zero.					
12	Home attained	Set when zero position has been found.					
13	Homing error	Not supported.					

Table 206: Operation Mode specific Bits in hm Mode

State Coding					
Status word	FSA state				
xxxx xxxx x0xx 0000b	Not ready to switch on				
xxxx xxxx x1xx 0000 _b	Switch on disabled				
xxxx xxxx x01x 0001 _b	Ready to switch on				
xxxx xxxx x01x 0011 _b	Switched on				
xxxx xxxx x01x 0111 _b	Operation enabled				
xxxx xxxx x00x 0111 _b	Quick stop active				
xxxx xxxx x0xx 1111 _b	Fault reaction active				
xxxx xxxx x0xx 1000 _b	Fault				

Table 207: State Coding

	Object Description							
Object Description								
Index	Name	Object Type	Data Type					
6041 _h	StatusWord	Variable	UNSIGNED16					

Table 208: Object Description (6041h in hm Mode)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	rw	Yes	See state coding above.			

Table 209: Entry Description (6041_h in hm Mode)

8.2.3 Object 606Ch: Velocity Actual Value

This object shows the actual velocity value derived from the encoder.

Object Description						
Index	Name	Object Type	Data Type			
606Ch	Velocity Actual Value	Variable	SIGNED32			

Table 210: Object Description (606C_h)

Entry Description								
Sub-		PDO						
index	Name	Mapping	Min	Max	Default	Unit	Access	
0	Velocity Actual Value	yes	-2147483648	2147483647	0	[rpm]	ro	

Table 211: Entry Description (606C_h)

8.2.4 Object 607Ch: Home Offset

This object indicates the configured difference between the zero position for the application and the machine home position/home switch (found during homing). While homing, the machine home position is found and once the homing is completed, the zero position is offset from the home position by adding the home offset to the home position. The effect of setting the home position to a non-zero value depends on the selected homing method. Negative values indicate the opposite direction.

Object Description						
Index	Name	Object Type	Data Type			
607Ch	Home Offset	Variable	SIGNED32			

Table 212: Object Description (607Ch)

Entry Description									
Sub- index	Name	PDO Mapping	Min	Max	Default	Unit	Access		
0	Home Offset	no	-2147483648	2147483647	0		rw		

Table 213: Entry Description (607Ch)

8.2.5 Object 6098h: Homing Method

The actual homing method.

Object Description								
Index Name Object Type Data Type								
6098h Homing Method Variable SIGNED8								

Table 214: Object Description (6098h)

	Entry Description										
Sub-	Sub- PDO PDO										
index	x Name Mapping Min Max Default Unit Acce										
0	Homing Method	no	-6	35	0		rw				

Table 215: Entry Description (6098_h)

8.2.6 Object 6099_h: Homing Speeds

This object indicates the configured speeds used during fast and slow homing procedure. In most homing modes, the home switch is searched with the fast speed first. When the home switch has been found, the motor will be decelerated to the slow speed (using the homing acceleration, object $609A_h$) to search for the exact switch point. When the switch point has been found the motor will be stopped at that point.

Object Description									
Index Name Object Type Data Type									
6099h Homing Speeds Array UNSIGNED32									

Table 216: Object Description (6099_h)

	Entry Description											
Sub-		PDO										
index	Name	Mapping	Min	Max	Default	Unit	Access					
1	Fast Homing Speed	no	0	4294967295	1000		rw					
2	Slow Homing Speed	no	0	4294967295	500		rw					

Table 217: Entry Description (6099h)

8.2.7 Object 609A_h: Homing Acceleration

This object indicates the configured acceleration and deceleration to be used during homing operation.

Object Description								
Index Name Object Type Data Type								
609A _h	Homing Acceleration	Variable	UNSIGNED32					

Table 218: Object Description (609Ah)

	Entry Description										
Sub-	Sub- PDO PDO										
index	dex Name Mapping Min Max Default Unit Access										
0	Homing Acceleration	no	0	100000	2000	[rpm/s]	rw				

Table 219: Entry Description (609A_h)

8.2.8 Object 2100h: Home Offset Display

This object shows the home offset. The value is given in encoder increments.

Object Description							
Index Name Object Type Data Type							
2100 _h Home Offset Display Variable SIGNED3:							

Table 220: Object Description (2100h)

	Entry Description										
Sub-	Sub- PDO PDO										
index	ndex Name Mapping Min Max Default Unit Acce										
0	Home Offset Display	no	-2147483648	2147483647	0		ro				

Table 221: Entry Description (2100h)

8.3 Example of Homing in hm Mode

With the actuator having been reset and then switched to pre-operational or operational by NMT commands, the following is an example of hard-stop homing in hm mode (the values are decimal):

- Select hm mode by writing 6 to object 6060h.
- Write 6 to object 6040h to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040h to switch to SWITCHED_ON state.
- Write 15 to object 6040h to switch to OPERATION_ENABLED state.
- Select homing method -1 (or -2) by writing -1 (or -2) to object 6098h.
- Set the homing speeds by writing e.g. 500 to object 6099h sub index 1 and e.g. 200 to object 6099h sub index 2.
- Write 31 to object 6040h to start the homing process.
- When homing has finished, write 15 to object 6040h again.

9 Cyclic Synchronous Position Mode

The cyclic synchronous position mode is used to directly control the position of the motor. It contains limit functions, but not a trajectory generator. The trajectory generator is located in the control device (the master), not in the drive device. In cyclic synchronous manner, the control device provides a target position to the drive device, which performs position control, velocity control and torque control.

The main control parameters are the target position (object $607A_h$, see section 0) and the interpolation time period (object $60C2_h$, see section 9.1.10). The drive automatically sets the velocity in such a manner that the next target position is reached within the interpolation time period. Acceleration and deceleration ramps are not used in this mode.

The cyclic synchronous position mode covers the following sub-functions:

- · Position demand value input directly via an object.
- · Monitoring of the position.
- Limiting the position using the software limits or the hardware limit switches.

9.1 Detailed Object Specifications

9.1.1 Object 6040h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The <u>CiA-402</u> state machine can be controlled using this object. Please refer to <u>Figure 5</u> for detailed information. The cyclic synchronous position mode does not use any mode specific bits of the control word.

	Structure of the Control Word											
15 9 8 7 6 4 3 2 1 0												
nu	nu h fr nu eo qs ev so											
MSB	MSB LSB											

Legend: nu=not used; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 222: Structure of the Control Word in csp Mode

Command Coding										
Command		Bits of	Contro	Word		Transitions				
	Bit 7	Bit3	Bit 2	Bit 1	Bit 0					
Shutdown	0	Х	1	1	0	2,6,8				
Switch on	0	0	1	1	1	3				
Switch on & enable operation	0	1	1	1	1	3,4				
Disable voltage	0	х	х	0	Х	7,9,10,12				
Quick stop	0	х	0	1	Х	7,10,11				
Disable operation	0	0	1	1	1	5				
Enable operation	0	1	1	1	1	4, 16				
Fault reset	0-to-1	Х	Х	Х	Х	15				

Table 223: Command Coding

	Object Description									
Index Name Object Type Data Type										
6040h	6040h Controlword Variable UNSIGNED16									

Table 224: Object Description (6040_h in csp Mode)

Entry Description									
Sub-index Access PDO Mapping Value Range Default Value									
0 rw yes See command coding above									

Table 225: Entry Description (6040_h in csp Mode)

9.1.2 Object 6041_h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to <u>Figure 5</u> for detailed information. The object is structured as defined below.

For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

	Structure of the Status Word														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dir	mot	or	ns	ila	r	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB															LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; r=reserved; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 226: Structure of the Status Word in csp Mode

	Specific Bits					
Bit	Name	Definition				
14	4 Motor activity 0: Motor stands still.					
	1: Motor rotates.					
15	Direction of rotation	This bit shows the direction of rotation.				

Table 227: Specific Bits

	Operation Mode specific Bits in csp Mode					
Bit	Name	Definition				
10	Reserved	Not used.				
12	Target position ignored	Target position ignored. Target position used as input to position controller.				
13	Following error	No following error. Following error.				

Table 228: Operation Mode specific Bits in csp Mode

State Coding				
Status word	FSA state			
xxxx xxxx x0xx 0000b	Not ready to switch on			
xxxx xxxx x1xx 0000b	Switch on disabled			
xxxx xxxx x01x 0001 _b	Ready to switch on			
xxxx xxxx x01x 0011 _b	Switched on			
xxxx xxxx x01x 0111 _b	Operation enabled			
xxxx xxxx x00x 0111 _b	Quick stop active			
xxxx xxxx x0xx 1111 _b	Fault reaction active			
xxxx xxxx x0xx 1000b	Fault			

Table 229: State Coding

Object Description							
Index	Name	Object Type	Data Type				
6041 _h	StatusWord	Variable	UNSIGNED16				

Table 230: Object Description (6041_h in csp Mode)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	rw	yes	See state coding above			

Table 231: Entry Description (6041_h in csp Mode)

9.1.3 Object 6062_h: Position Demand Value

This object provides the demanded position value. The value is given in microsteps. Object 6062_h indicates the actual position that the motor should have. It is not to be confused with objects 6063_h and 6064_h .

Object Description					
Index	Name	Object Type	Data Type		
6062 _h	Position Demand Value	Variable	SIGNED32		

Table 232: Object Description (6062_h)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	ro	yes	SIGNED32	no		

Table 233: Entry Description (6062h)

9.1.4 Object 6063_h: Position Actual Internal Value

This object provides the actual value of the encoder or the motor. Please use the sensor selection object $608F_h$ (see section 5.1.8) for selecting the motor or the encoder first. Object 6063_h indicates the actual position of the encoder or the motor, re-scaled to the microstep resolution. The value is given in microsteps.

Object Description						
Index	Name	Object Type	Data Type			
6063 _h	Position Actual Internal Value	Variable	SIGNED32			

Table 234: Object Description (6063_h)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	ro	yes	SIGNED32	no		

Table 235: Entry Description (6063_h)

9.1.5 Object 6064_h: Position Actual Value

This object provides the actual value of the position measurement device. It always contains the same value as object 6063_h .

Object Description						
Index	Name	Object Type	Data Type			
6064h	Position Actual Value	Variable	SIGNED32			

Table 236: Object Description (6064_h)

Entry Description						
Sub-index	Access	PDO Mapping	Value Range	Default Value		
0	ro	yes	SIGNED32	no		

Table 237: Entry Description (6064_h)

9.1.6 Object 606C_h: Velocity Actual Value

This object shows the actual velocity value of the motor. The value is given in units of rpm.

Object Description						
Index	Name	Object Type	Data Type			
606Ch	Velocity Actual Value	Variable	SIGNED32			

Table 238: Object Description (606C_h)

Entry Description						
Sub-index Access PDO Mapping Value Range Default Value						
0	ro	yes	SIGNED32	no		

Table 239: Entry Description (606C_h)

9.1.7 Object 607A_h: Target Position

The target position is the position that the drive should move to in cyclic synchronous position mode using the current interpolation time period. In csp mode this value is always interpreted as an absolute value.

Object Description						
Index	Name	Object Type Data Ty				
607A _h	Target Position	Variable	SIGNED32			

Table 240: Object Description (607A_h in csp Mode)

Entry Description					
Sub-index	Sub-index Access PDO Mapping Value Range Default Va				
0	rw	yes	SIGNED32	0	

Table 241: Entry Description (607A_h in csp Mode)

9.1.8 Object 607D_h: Software Position Limit

This object indicates the configured maximal and minimal software position limits. These parameters define the absolute position limits for the position demand value and the position actual value. Every new target position is checked against these limits. The limit positions are always relative to the machine home position. Before being compared with the target position, they are corrected internally by the home offset as follows:

Corrected_min_position_limit = min_position_limit - home_offset

Corrected_max_position_limit = max_position_limit - home_offset

Object Description						
Index	Name	Object Type	Data Type			
607D _h Software Position Limit		Array	SIGNED32			

Table 242: Object Description (607Dh)

Entry Description							
Sub-index	x Description Access PDO Mapping Value Range Defau						
1	Minimum Position Limit	rw	no	SIGNED32	-2147483648		
2	Maximum Position Limit	rw	no	SIGNED32	2147483647		

Table 243: Entry Description (607Dh)

9.1.9 Object 60B0_h: Position Offset

This object provides an offset to the target position (object $607A_h$, see section 9.1.7). The value is given in microsteps and will be added to the target position.

Object Description					
Index	Name	Data Type			
60B0 _h	Position Offset	Variable	SIGNED32		

Table 244: Object Description (60B0h)

Entry Description					
Sub-index	ub-index Access PDO Mapping		Value Range	Default Value	
0	rw	yes	-2147483648 2147483647	0	

Table 245: Entry Description (60B0h)

9.1.10 Object 60C2_h: Interpolation Time Period

This object indicates the interpolation cycle time. The interpolation time period (sub-index 01_h) is given in $10^{interpolation_time_index}$ s. The interpolation time index (sub-index 02_h) is dimensionless.

Object Description					
Index	Name	Object Type	e Data Type		
60C2 _h	Offset Torque	Record	Interpolation time period record (0080h)		

Table 246: Object Description (60C2h)

Entry Description								
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value			
0	Highest sub-index supported	ro	no	UNSIGNED8	2			
1	Interpolation time period value	rw	no	UNSIGNED8	1			
2	Interpolation time index	rw	no	-3 3	-3			

Table 247: Entry Description (60C2_h)

9.2 Example of csp Mode Operation

The following is an example of running in pp mode (the values are decimal), assume that the actuator has been reset and then switched to pre-operational or operational by NMT commands

- Write the new interpolation time period to 60C2h:1 and 60C2h:2
- Select CSP mode by writing 8 to object 6060h.
- Write 6 to object 6040h to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040h to switch to SWITCHED_ON state.
- Write the desired target position (e.g. 500000) to object 607Ah.
- Write 15 to object 6040_h to switch to OPERATION_ENABLED state. The motor now accelerates to the target position.
- Write the new target position to object 607A_h.in each Interpolation time interval.

10 Cyclic Synchronous Velocity Mode

The cyclic synchronous velocity mode is used to directly control the velocity of the motor. It contains limit functions, but not a trajectory generator. The trajectory generator is located in the control device (the master), not in the drive device. In cyclic synchronous manner, the control device provides a target velocity to the drive device, which performs position control, velocity control and torque control.

The main control parameters are the target velocity (object $60FF_h$, see section $\underline{10.1.4}$) and the interpolation time period (object $60C2_h$, see section $\underline{10.1.7}$). The drive automatically sets the acceleration in such a manner that the next target velocity is reached within the interpolation time period. Acceleration and deceleration ramps are not used in this mode.

The cyclic synchronous velocity mode covers the following sub-functions:

- Velocity demand value input directly via an object.
- Monitoring of the position.
- Limiting the position using the software limits or the hardware limit switches.

10.1 Detailed Object Specifications

10.1.1 Object 6040h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The <u>CiA-402</u> state machine can be controlled using this object. Please refer to <u>Figure 5</u> for detailed information. The cyclic synchronous velocity mode does not use any mode specific bits of the control word.

Structure of the Control Word									
15 9 8 7 6 4 3 2 1 0									
nu		h	fr	r	nu	ео	qs	ev	so
MSB									LSB

Legend: nu=not used; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 248: Structure of the Control Word in csv Mode

Command Coding							
Command		Bits of (Control '	Word		Transitions	
	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0		
Shutdown	0	х	1	1	0	2,6,8	
Switch on	0	0	1	1	1	3	
Switch on & enable operation	0	1	1	1	1	3, 4	
Disable voltage	0	х	х	0	х	7,9,10,12	
Quick stop	0	х	0	1	х	7,10,11	
Disable operation	0	0	1	1	1	5	
Enable operation	0	1	1	1	1	4, 16	
Fault reset	0-to-1	х	Х	Х	Х	15	

Table 249: Command Coding

Object Description					
Index Name Object Type Data Type					
6040 _h	Controlword	Variable	UNSIGNED16		

Table 250: Object Description (6040_h in csv Mode)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value					
0	0 rw Yes See command coding above.				

Table 251: Entry Description (6040h in csv Mode)

10.1.2 Object 6041h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to <u>Figure 5</u> for detailed information. The object is structured as defined below.

For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

	Structure of the Status Word														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dir	mot	on	ns	ila	r	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB								•							LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; r=reserved; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 252: Structure of the Status Word in csv Mode

	Specific Bits				
Bit	Name	Definition			
14	Motor activity	0: Motor stands still.			
	1: Motor rotates.				
15	Direction of rotation	This bit shows the direction of rotation.			

Table 253: Specific Bits

	Operation Mode specific Bits in csv Mode					
Bit Name Definition						
10	Reserved	Not used.				
12	Target position ignored	Target velocity ignored. Target velocity used as input to velocity controller.				
13	Reserved	Not used.				

Table 254: Operation Mode Specific Bits in csv Mode

State	State Coding						
Status word	FSA state						
xxxx xxxx x0xx 0000 _b	Not ready to switch on						
xxxx xxxx x1xx 0000 _b	Switch on disabled						
xxxx xxxx x01x 0001 _b	Ready to switch on						
xxxx xxxx x01x 0011 _b	Switched on						
xxxx xxxx x01x 0111 _b	Operation enabled						
xxxx xxxx x00x 0111 _b	Quick stop active						
xxxx xxxx x0xx 1111 _b	Fault reaction active						
xxxx xxxx x0xx 1000b	Fault						

Table 255: State Coding

Object Description						
Index	Name	Data Type				
6041 _h	Status Word	Variable	UNSIGNED16			

Table 256: Object Description (6041h in csv Mode)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value				Default Value	
0	0 rw yes See state coding above				

Table 257: Entry Description (6041_h in csv Mode)

10.1.3 Object 606Ch: Velocity Actual Value

This object shows the actual velocity value of the motor. The value is given in units of rpm.

Object Description							
Index Name		Object Type Data Typ					
606Ch	Velocity Actual Value	Variable	SIGNED32				

Table 258: Object Description (606Ch)

Entry Description					
Sub-index Access PDO Mapping Value Range Default Value				Default Value	
0	ro	yes	SIGNED32	no	

Table 259: Entry Description (606C_h)

10.1.4 Object 60FF_h: Target Velocity

In csv mode the target velocity specifies the velocity that is to be reached within the interpolation time period. The values are given in units of rpm.

	Object Description						
Index	Name	Object Type	Data Type				
60FF _h	Target Velocity	Variable	SIGNED32				

Table 260: Object Description (60FF_h)

Entry Description					
Sub-index	Access	PDO Mapping	Value Range	Default Value	
0	rw	yes	SIGNED32	0	

Table 261: Entry Description (60FF_h)

10.1.5 Object 607Dh: Software Position Limit

This object indicates the configured maximal and minimal software position limits. These parameters define the absolute position limits for the position demand value and the position actual value. Every new target position is checked against these limits. The limit positions are always relative to the machine home position. Before being compared with the target position, they are corrected internally by the home offset as follows:

Corrected_min_position_limit = min_position_limit - home_offset Corrected_max_position_limit = max_position_limit - home_offset

	Object De	scription	
Index	Name	Object Type	Data Type
607D _h	Software Position Limit	Array	SIGNED32

Table 262: Object Description (607Dh)

Entry Description									
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value				
1	Minimum Position Limit	rw	no	SIGNED32	-2147483648				
2	Maximum Position Limit	rw	no	SIGNED32	2147483647				

Table 263: Entry Description (607Dh)

10.1.6 Object 60B1h: Velocity Offset

This object provides an offset to the target velocity (object 60FF_h, see section 10.1.4). The value will be added to the target velocity.

	Obje	ct Description	
Index	Name	Object Type	Data Type
60B1 _h	Velocity Offset	Variable	INTEGER32

Table 264: Object Description (60B1_h)

		E	ntry Description	
Sub-index	Access	PDO Mapping	Value Range	Default Value
0	rw	yes	-2147483648 2147483647	0

Table 265: Entry Description (60B1_h)

10.1.7 Object 60C2_h: Interpolation Time Period

This object indicates the interpolation cycle time. The interpolation time period (sub-index 01_h) is given in $10^{interpolation_time_index}$ s. The interpolation time index (sub-index 02_h) is dimensionless.

Object Description									
Index	Name	Object Type	Data Type						
60C2 _h	Offset Torque	Record	Interpolation time period record (0080h)						

Table 266: Object Description (60C2h)

	Entry Description										
Sub-index	Description	Access	PDO Mapping	Value Range	Default Value						
0	Highest sub-index supported	ro	no	UNSIGNED8	2						
1	Interpolation time period value	rw	no	UNSIGNED8	1						
2	Interpolation time index	rw	no	-3 3	-3						

Table 267: Entry Description (60C2_h)

10.2 Example of csv Mode Operation

- Write the new interpolation time period to 60C2h:1 and 60C2h:2
- Select CSV mode by writing 9 to object 6060_h.
- Write 6 to object 6040h to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040_h to switch to SWITCHED_ON state.
- Write the desired target velocity (e.g. 2000) to object 60FFh.
- Write 15 to object 6040h to switch to OPERATION_ENABLED state. The motor now accelerates to the target velocity.
- Write the new target velocity to object 60FF_h.in each Interpolation time interval
- Stop the motor by writing 0 to object 60FFh.

11 Cyclic Synchronous Torque Mode

The cyclic synchronous torque mode is used to directly control the torque of the motor, without the need for position or velocity control. It contains limit functions, but not a trajectory generator.

The cyclic synchronous torque mode covers the following sub-functions:

- · Demand value input directly via an object.
- · Monitoring and limiting the torque.

11.1 Detailed Object Specifications

11.1.1 Object 6040h: Control Word

This object indicates the received command controlling the power drive system finite state automaton (PDS FSA). The <u>CiA-402</u> state machine can be controlled using this object. Please refer to <u>Figure 5</u> for detailed information. The cyclic synchronous torque mode does not use any mode specific bits of the control word.

Structure of the Control Word									
15	9	9 8 7 6 4 3 2 1 0							
	nu	h	h fr nu eo qs ev so						
MSB									LSB

Legend: nu=not used; h=halt; fr=fault reset; eo=enable operation; qs=quick stop; ev=enable voltage; so=switch on.

Table 268: Structure of the Control Word in cst Mode

Command Coding									
Command	Bits of Control Word Transitions								
	Bit 7	Bit 3	Bit 2	Bit 1	Bit 0				
Shutdown	0	х	1	1	0	2,6,8			
Switch on	0	0	1	1	1	3			
Switch on & enable operation	0	1	1	1	1	3, 4			
Disable voltage	0	х	Х	0	х	7,9,10,12			
Quick stop	0	х	0	1	х	7,10,11			
Disable operation	0	0	1	1	1	5			
Enable operation	0	1	1	1	1	4, 16			
Fault reset	0-to-1	Х	Х	Х	Х	15			

Table 269: Command Coding

Object Description								
Index	Name Object Type Data Type							
6040 _h	Controlword	Variable	UNSIGNED16					

Table 270: Object Description (6040_h in cst Mode)

			Entry Descripti	on
Sub-index	Access	PDO Mapping	Value Range	Default Value
0	rw	yes	See command	coding above.

Table 271: Entry Description (6040_h in cst Mode)

11.1.2 Object 6041h: Status Word

This object provides the status of the PDS FSA. It reflects the status of the <u>CiA-402</u> state machine. Please refer to <u>Figure 5</u> for detailed information. The object is structured as defined below.

For more information about the coding please refer to the <u>CANopen Drives and motion control device profile</u>, part 2.

							S	truct	ure of	the S	tatus	Wor	ď		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
dir	mot	on	ns	ila	r	rm	ms	w	sod	qs	ve	f	oe	so	rtso
MSB															LSB

Legend: dir=direction of rotation; mot=motor activity; oms=operation mode specific; ila=internal limit active; r=reserved; rm=remote; ms=manufacturer spec; w=warning; sod=switch on disabled; qs=quick stop; ve=voltage enabled; f=fault; oe=operation enabled; so=switch on; rtso=ready to switch on.

Table 272: Structure of the Status Word in cst Mode

	HDLLC Specific Bits							
Bit	Name Definition							
14	Motor activity	Motor stands still. Motor rotates.						
15	Direction of rotation	This bit shows the direction of rotation.						

Table 273: HDLLC Specific Bits

	Operation Mode specific Bits in cst Mode				
Bit	Name	Definition			
10	Reserved	Not used.			
12	Target torque ignored	O: Target torque ignored. 1: Target torque used as input to control loop.			
13	Reserved	Not used.			

Table 274: Operation Mode Specific Bits in cst Mode

	State Coding
Status word	FSA state
xxxx xxxx x0xx 0000b	Not ready to switch on
xxxx xxxx x1xx 0000 _b	Switch on disabled
xxxx xxxx x01x 0001 _b	Ready to switch on
xxxx xxxx x01x 0011 _b	Switched on
xxxx xxxx x01x 0111 _b	Operation enabled
xxxx xxxx x00x 0111 _b	Quick stop active
xxxx xxxx x0xx 1111 _b	Fault reaction active
xxxx xxxx x0xx 1000b	Fault

Table 275: State Coding

Object Description				
Index	Name	Object Type	Data Type	
6041 _h	StatusWord	Variable	UNSIGNED16	

Table 276: Object Description (6041h in cst Mode)

			Entry Descripti	on
Sub-index	Access PDO Mapping Value Range Default Value			
0	rw	yes	es See state coding above	

Table 277: Entry Description (6041_h in cst Mode)

11.1.3 Object 6071_h: Target Torque

This object gives the target motor current.

Object Description				
Index	Index Name Object Type Data Type			
6071 _h	Target Torque	Variable	SIGNED32	

Table 278: Object Description (6071_h)

	Entry Description						
Sub-		PDO					
index	Name	Mapping	Min	Max	Default	Unit	Access
0	Target Torque	yes	Depends on actuator	Depends on actuator	0	[mA]	rw

Table 279: Entry Description (6071_h)

11.1.4 Object 6077_h: Torque Actual Value

The actual motor current.

Object Description				
Index	Name	Object Type	Data Type	
6077 _h	Torque Actual Value	Variable	SIGNED32	

Table 280: Object Description (6077_h)

	Entry Description						
Sub- index	Name PDO Mapping Min Max Default Unit Access						
0	Torque Actual Value	yes	-2147483648	2147483647	0	[mA]	ro

Table 281: Entry Description (6077_h)

11.1.5 Object 60B2h: Torque offset

The actual set torque offset.

Object Description				
Index	ndex Name Object Type Data Type			
60B2 _h	Torque offset	Variable	SIGNED32	

Table 282: Object Description (60B2h)

Entry Description							
Sub- index	Name Mapping Min Max Default Unit Access				Access		
0	Torque offset	no	-2147483648	2147483647	0	[mA]	rw

Table 283: Entry Description (60B2_h)

11.2 Example of cst Mode Operation

With the actuator having been reset and then switched to pre-operational or operational by NMT commands, the following is an example of running in cst mode (the values are decimal):

- If you do not have any limit switches connected, first disable the limit switch inputs by writing 3 to object 2005h.
- Select cst mode by writing 10 to object 6060h.
- Write 6 to object 6040h to switch to READY_TO_SWITCH_ON state.
- Write 7 to object 6040h to switch to SWITCHED_ON state.
- Write 15 to object 6040h to switch to OPERATION_ENABLED state.
- Write the desired torque (e.g. 1000) to object 6071h to start the motor.
- To stop the motor, write 0 to object 6071h.

12 IO Summary

12.1 IO port mapping

IO ports can be used for simple signal conditioning or status indicator near the actuator. There are typically 2 or 4 IO ports in each actuator with 3 different categories—Programmable IO, Programmable Input and Opto-isolated Input as shown in the table 284

Actuator (IO QTY)	¹ Programmable IO	² Programmable input	³ Opto isolated input
RSF-5 (2)	IO1	IN2	-
RSA-8 (2)	IO1	IN2	-
FHA-8/11/14 (4)	IO1, IO2	-	IN3, IN4
LPA-20 (4)	IO1, IO2	-	IN3, IN4
SHA-20/25/32 (4)	IO1, IO2	-	IN3, IN4

¹Programmable IO: Analog Input, Digital Input or Digital Output

Table 284: IO Summary

The general electrical s	pecification of each type of IO port is as below:
IO port type	Descriptions
Programmable IO	A: Analog Input
(Non-isolated)	input 0-10.5V→ADC 0-4095 (12-bit resolution)
	allowed range -0.5V-24V
	typical value 4.1V, with pull-up
	B: Digital Input
	Logic '0': <0.8V
	Logic '1': >2V
	With PULL_IN option to support NPN or PNP sensor
	Programmable threshold
	C: Digital Output (open drain)
	Logic '0': switch on, output is pulled down, max 1A
	Logic '1': switch off, pulled up by supply voltage (24V typical,30V max)
Programmable Input	A: Analog Input
(Non-isolated,	input 0-10.5V→ADC 0-4095 (12-bit resolution)
without Output)	allowed range -0.5V-24V
	typical value 4.1V, with pull-up
	B: Digital Input
	Logic '0': <0.8V
	Logic '1': >2V
	With PULL_IN option to support NPN or PNP sensor
	Programmable threshold
Opto-isolated Input	Digital Input
	'Logic '0': 0-18 V
	Logic '1': 19-24V, typical 24V
	Max Frequency: 20kHz

Table 285: The electrical specification of IO ports

²Programmable Input: Analog Input or Digital Input

³Opto-Isolated Input: Digital input referred to the isolated ground (or COM port)

There are two different actuator groups that have different IO channel configurations.

The RSF-5 and RSA-8 have one programmable IO and one programmable input.

- a. The single programmable IO can be configured to either become the function of an input or output.
- b. The single programmable input can support NPN, and PNP sensors by a programmable threshold. The port mapping is as below

IO port Number	Mapping Objects
IO1	A. Analog reading from Object 270E _h :05
(Non-isolated)	B. Digital input, read from 2702 _h →bit0
	with programmable threshold 2020 _h :04
	C. Digital Output, please refer to table 287, 288 for more detail
	Logic 1, to enable digital output, and the port will be connected
	to GND
	Logic 0 , to disable digital output, and the port will be pulled up by 5V
	or by external voltage
IN2	A. Analog reading from Object 270E _h :06
(Non-isolated)	B. Digital input, read from 2702 _h →bit 1
	with programmable threshold 2020 _h :04
	C. No Digital Output

Table 286: Group1, RSF-5 and RSA-8 actuator with two IO ports

The detailed Digital Output mapping for RSF-5 and RSA-8 are as below

	Bit3	Bit2	Bit1	Bit0
Digital Output 2703h:01	PULLUP2	NA	NA	DOUT1
Output Mask 2703h:02	MASK-PULLUP2	NA	NA	MASK-DOUT1

Table 287: Digital Output mapping 2703h for RSF-5

	Bit3	Bit2	Bit1	Bit0
Digital Output 2703 _h :01	PULLUP2	PULLUP1	NA	DOUT1
Output Mask 2703 _h :02	MASK-PULLUP2	MASK-PULLUP1	NA	MASK-DOUT1

Table 288: Digital Output mapping 2703h for RSA-8

The FHA, LPA and SHA series have a total of 4 IO ports

- a. There are two programmable IOs, which can each be programmed as an analog input, a digital input or a digital output;
- b. These actuators include two opto-isolated inputs that can support NPN and PNP sensors.

IO port Number	Mapping Objects
IO1	A. analog reading from Object 270E _h :05
(Non-isolated)	B. Digital input, read from 2702 _h →Bit0
	C. Digital Output, please refer to table 290 for more detail
	Logic 1, to enable digital output, and the port will be connected to GND
	Logic 0 , to disable digital output, and the port will be pulled up by 5V
	or by external voltage
IO2	A. analog reading from Object 270E _h :06
(Non-isolated)	B. Digital input, read from 2702 _h →Bit1
	C. Digital Output, please refer to table 290 for more detail
	Logic 1, to enable digital output, and the port will be connected to GND
	Logic 0 , to disable digital output, and the port will be pulled up by 5V
	or by external voltage
IN3	Digital input, read from 2702 _h →Bit2
(Isolated)	
IN4	Digital input, read from 2702 _h →Bit3
(Isolated)	

Table 289: Group 2, FHA, LPA and SHA actuators with four IO ports

The detailed Digital Output mapping for FHA, LPA and SHA actuators are as below

	Bit3	Bit2	Bit1	Bit0
Digital Output 2703 _h :01	NA	NA	DOUT2	DOUT1
Output Mask 2703h:02	NA	NA	MASK-DOUT2	MASK-DOUT1

Table 290: Digital Output mapping 2703h for FHA, LPA and SHA actuators

12.2 Digital Input as Limit switch

When the limit switches are enabled in Object 2005_h the left switch (negative) and right switch (positive) are tied internally to Bit0 and Bit1 respectively of Digital Input 2702_h.

Bit0: IN1 (REF_L) Bit1: IN2 (REF_R)

12.3 LED for NMT State

A green LED is used to show the state of NMT state machine.

Green LED	NMT State
Green LED blinks slow, on for 200ms in every 1s	STOPPED
Green LED blinking fast, 200ms on and 200ms off	PRE-OP
Green LED on (solid)	OP

Table 291: LED for NMT state

12.4 Motor Torque Off

LPA and SHA actuators include the Motor Torque Off protection which is designed to STO (Safe Torque Off) specification but has not undergone certification. MTO1 and MTO2 ports should be connected to +24V and 0VDC separately. The actuator will be disabled when either MTO port is open.

Figure 11: Motor Torque Off connection

13 Emergency Messages (EMCY)

The module sends an emergency message if an error occurs. The message contains information about the error type. The module can map internal errors and object 1001_h (error register) is part of every emergency object.

13.1 Format of EMCY Messages

The COB-ID of an EMCY is 80_h +ID of the node. So for example it is 81_h for node #1. The first two bytes contain the error code with LSB first. The third data byte contains the content of the error register (object 1001_h). The other five bytes can contain additional information, depending on the error code.

EMCY								
COB-ID	1	2	3	4	5	6	7	8
0x80 _h +Node ID	Error	code	Error register	Additional bytes			es	
	LSB	MSB	(1001 _h)		#	1#	‡5	

Table 292: Format of EMCY Messages

13.2 Error Code

The following tables shows all EMCY error coders used by.

	Emergency Messages (EMCY)							
Error code	Additional byte)	Description		
	1	2	3	4	5			
0000 _h	0	0	0	0	0	Fault reset The fault reset command has been executed.		
4310 _h	1	0	0	0	0	IIT 1 error The motor driver has been switched off because the IIT 1 limit has been reached.		
4310 _h	2	0	0	0	0	IIT 2 error The motor driver has been switched off because the IIT 2 limit has been exceeded.		
5441 _h	0	255	0	0	0	Shutdown switch active The enable signal is missing (due to the shutdown switch) and the motor driver has been switched off.		
6320 _h	0	255	0	0	0	Parameter error The data in the received PDO is either wrong or cannot be accepted due to the internal state of the drive.		
8100 _h	0	255	0	0	0	Communication error General CAN bus communication error.		

Error code	1	Additio	nal	byte)	Description
	1	2	3	4	5	
8110 _h	1	255	0	0	0	CAN controller overflow The receive message buffer of the CAN controller hardware is full and some CAN messages are lost.
8110 _h	2	255	0	0	0	CAN Tx buffer overflow The software CAN transmit buffer is full and thus some CAN messages are lost.
8110 _h	3	255	0	0	0	CAN Rx buffer overflow The software CAN receive buffer is full and so some CAN messages are lost.
8120 _h	0	255	0	0	0	CAN error passive The CAN controller has detected communication errors and has entered the CAN Error passive state.
8130 _h	0	255	0	0	0	Heartbeat or lifeguard error The module did not receive a heartbeat or lifeguard message in time.
8140 _h	0	255	0	0	0	CAN controller recovered from bus-off state The CAN controller has detected too many errors and has changed into the bus-off state. The drive has been stopped and disabled. This message is sent after the CAN controller has recovered from bus-off state and is bus-on again.
8210 _h	0	255	0	0	0	PDO not processed due to length error A PDO sent to the module could not be processed because too few bytes were supplied.
8220h	0	255	0	0	0	PDO length exceeded A PDO sent to the module could not be processed because too many bytes were supplied.
8611 _h	1	0	0	0	0	Position window following error The deviation between motor position counter and encoder position counter has exceeded the position following error window.
8611 _h	2	0	0	0	0	Velocity window following error The deviation between commanded velocity and measured velocity has exceeded the velocity following error window.
FF00h	0	0	0	0	0	Undervoltage The supply voltage is too low to drive a motor.
FF01 _h	1	0	0	0	0	Positive software limit The actual position is outside the range defined by object 607Dh.
FF01 _h	2	0	0	0	0	Negative software limit The actual position is outside the range defined by object 607D _h .

Table 293: Emergency Messages (EMCY)

14 SDO Abort Codes

Trying to access an object via SDO read or SDO write may result in an error. In such a case an SDO abort transfer message containing an abort code will be sent. The following table lists all SDO abort codes defined by the CiA-301 standard. Not all of these are used by the HDLLC actuators.

	SDO Abort Codes
Abort code	Description
05030000 _h	Toggle bit not alternated.
05040000 _h	SDO protocol timed out.
05040001 _h	Client/server command specifier not valid or unknown.
05040002h	Invalid block size.
05040003 _h	Invalid sequence number.
05040004 _h	CRC error.
05040005 _h	Out of memory.
06010000 _h	Unsupported access to an object.
06010001 _h	Attempt to read a write only object.
06010002h	Attempt to write a read only object.
06020000 _h	Object does not exist in object dictionary.
06040041 _h	Object cannot be mapped to the PDO.
06040042h	The number and length of the objects to be mapped would exceed the PDO length.
06040043 _h	General parameter incompatibility reason.
06040047 _h	General internal incompatibility in the device.
06060000 _h	Access failed due to a hardware error.
06070010 _h	Data type does not match, length of service parameter does not match.
06070012 _h	Data type does not match, length of service parameter too high.
06070013 _h	Data type does not match, length of service parameter too low.
06090011 _h	Sub-index does not exist.
06090030 _h	Invalid value for parameter.
06090031 _h	Value of parameter too high.
06090032 _h	Value of parameter too low.
06090036h	Maximum value is less than minimum value.
060A0023 _h	Resource not available.
0800000h	General error.
08000020h	Data cannot be transferred or stored to the application.
08000021 _h	Data cannot be transferred or stored to the application because of local control.

Abort code	Description
08000022h	Data cannot be transferred or stored to the application because of the present device state.
08000023 _h	Object dictionary dynamic generation failed or no object dictionary is present.
08000024 _h	No data available.

Table 294: SDO Abort Codes

15 Figures Index

FIGURE 1: NMT STATE MACHINE	11
FIGURE 2: COMMUNICATION ARCHITECTURE	12
FIGURE 3: SYSTEM MODEL	13
Figure 4 IIT Monitor Windows	38
FIGURE 5: DS402 FINITE STATE MACHINE	50
FIGURE 6: HOMING MODE FUNCTION	67
Figure 7: Single ended homing CW	69
Figure 8: Single ended homing CCW	69
FIGURE 9: DOUBLE ENDED HOMING CW	70
FIGURE 10: DOUBLE ENDED HOMING CCW	71
FIGURE 11: MOTOR TORQUE OFF CONNECTION	98

16 Tables Index

TABLE 1: ABBREVIATIONS USED IN THIS MANUAL	8
TABLE 2: SERVICE PRIMITIVES	
TABLE 3: SERVICE TYPES	
TABLE 4: OBJECT DICTIONARY	13
TABLE 5: OBJECT DESCRIPTION (1000H)	15
TABLE 6: ENTRY DESCRIPTION (1000 _H)	15
TABLE 7: OBJECT DESCRIPTION (1001 _H)	
TABLE 8: ENTRY DESCRIPTION (1001 _H)	
TABLE 9: ERROR REGISTER BITS	16
TABLE 10: VALUE DEFINITION (1005 _H)	16
TABLE 11: OBJECT DESCRIPTION (1005 _H)	16
TABLE 12: ENTRY DESCRIPTION (1005 _H)	16
TABLE 13: OBJECT DESCRIPTION (1008 _H)	17
TABLE 14: ENTRY DESCRIPTION (1008 _H)	17
TABLE 15: OBJECT DESCRIPTION (1009 _H)	17
TABLE 16: ENTRY DESCRIPTION (1009 _H)	17
TABLE 17: OBJECT DESCRIPTION (100A _H)	18
TABLE 18: ENTRY DESCRIPTION (100A _H)	18
TABLE 19: SAVE SIGNATURE	18
TABLE 20: OBJECT DESCRIPTION (1010 _H)	19
TABLE 21: ENTRY DESCRIPTION (1010 _H)	19
TABLE 22: LOAD SIGNATURE	
TABLE 23: OBJECT DESCRIPTION (1011 _H)	20
TABLE 24: ENTRY DESCRIPTION (1011 _H)	
TABLE 25: OBJECT DESCRIPTION (1014 _H)	20
TABLE 26: ENTRY DESCRIPTION (1014 _H)	20
TABLE 27: OBJECT DESCRIPTION (1015 _H)	20
TABLE 28: ENTRY DESCRIPTION (1015 _H)	20
TABLE 29: VALUE DEFINITION (1016 _H)	21
TABLE 30: OBJECT DESCRIPTION (1016 _H)	21
TABLE 31: ENTRY DESCRIPTION (1016 _H)	21
TABLE 32: OBJECT DESCRIPTION (1017 _H)	21
TABLE 33: ENTRY DESCRIPTION (1017 _H)	21
TABLE 34: OBJECT DESCRIPTION (1018 _H)	22
TABLE 35: ENTRY DESCRIPTION (1018 _H)	
TABLE 36: OBJECT DESCRIPTION (1029 _H)	
TABLE 37: ENTRY DESCRIPTION (1029 _H)	22
TABLE 38: OBJECT DESCRIPTION (1400)	23

TABLE 39: ENTRY DESCRIPTION (1400H)	23
TABLE 40: OBJECT DESCRIPTION (1600 _H)	
TABLE 41: ENTRY DESCRIPTION (1600 _H)	
TABLE 42: OBJECT DESCRIPTION (1800 _H)	
TABLE 43: ENTRY DESCRIPTION (1800 _H)	
TABLE 44: OBJECT DESCRIPTION (1A00 _H)	
TABLE 45: ENTRY DESCRIPTION (1A00 _H)	
TABLE 46: OBJECT DESCRIPTION (2005 _H)	
Table 47: Entry Description (2005 _H)	
TABLE 48: BIT DEFINITIONS (2005 _H)	
TABLE 49: STATUS FLAGS (200D _H)	
TABLE 50: OBJECT DESCRIPTION (200D _H)	
TABLE 51: ENTRY DESCRIPTION (200D _H)	
TABLE 52: OBJECT DESCRIPTION (200E _H)	
TABLE 53: ENTRY DESCRIPTION (200E _H)	
TABLE 54: OBJECT DESCRIPTION (200F _H)	
TABLE 55: ENTRY DESCRIPTION (200F _H)	
TABLE 56: OBJECT DESCRIPTION (2010 _H)	
Table 57: Entry Description (2010 _H)	
TABLE 58: OBJECT DESCRIPTION (2015 _H)	
TABLE 59: ENTRY DESCRIPTION (2015 _H)	
TABLE 60: OBJECT DESCRIPTION (2020 _H)	
TABLE 61: ENTRY DESCRIPTION (2020 _H)	31
TABLE 62: MAXIMUM VALUES FOR OBJECT (2020 _H)	
TABLE 63: OBJECT DESCRIPTION (2025 _H)	
TABLE 64: ENTRY DESCRIPTION (2025 _H)	
TABLE 65: OBJECT DESCRIPTION (2030 _H)	
Table 66: Entry Description (2030 _H)	
TABLE 67: OBJECT DESCRIPTION (2040 _H)	
TABLE 68: ENTRY DESCRIPTION (2040 _H)	
TABLE 69: OBJECT DESCRIPTION (2050 _H)	
TABLE 70: ENTRY DESCRIPTION (2050 _H)	
TABLE 71: OBJECT DESCRIPTION (2055 _H)	
TABLE 72: ENTRY DESCRIPTION (2055 _H)	
TABLE 73: OBJECT DESCRIPTION (2056 _H)	
TABLE 74: ENTRY DESCRIPTION (2056 _H)	
TABLE 75: OBJECT DESCRIPTION (2060 _H)	
TABLE 76: ENTRY DESCRIPTION (2060 _H)	36
TABLE 77: OBJECT DESCRIPTION (2080 _H)	36
TABLE 78: ENTRY DESCRIPTION (2080 _H)	37

Table 79: Objects Description (2090 _H)	37	TABLE 134: COMMAND CODING	51
TABLE 80: ENTRY DESCRIPTION (2090 _H)	37	TABLE 135: OBJECT DESCRIPTION (6040 _H IN PP MODE)	51
TABLE 81: OBJECT DESCRIPTION(2095 _H)	38	TABLE 136: ENTRY DESCRIPTION (6040 _H IN PP MODE)	52
TABLE 82: ENTRY DESCRIPTION (2095 _H)	38	TABLE 137: STRUCTURE OF THE STATUS WORD IN PP MODE	52
TABLE 83: OBJECT DESCRIPTION (2096 _H)	38	TABLE 138: HDLLC SPECIFIC BITS	52
TABLE 84: ENTRY DESCRIPTION (2096 _H)	39	TABLE 139 OPERATION MODE SPECIFIC BITS IN PP MODE	52
TABLE 85: OBJECT DESCRIPTION (2100H)	39	TABLE 140: STATE CODING	53
TABLE 86: ENTRY DESCRIPTION (2100H)	39	TABLE 141: OBJECT DESCRIPTION (6041 _H IN PP MODE)	53
TABLE 87: OBJECT DESCRIPTION (2702 _H)	39	TABLE 142: ENTRY DESCRIPTION (6041H IN PP MODE)	53
TABLE 88: ENTRY DESCRIPTION (2702 _H)	39	TABLE 143: OBJECT DESCRIPTION (6062 _H)	53
TABLE 89: BIT MAPPING (2702 _H)	39	TABLE 144: ENTRY DESCRIPTION (6062 _H)	53
TABLE 90: OBJECT DESCRIPTION (2703 _H)	40	TABLE 145: OBJECT DESCRIPTION (6063 _H)	54
TABLE 91: ENTRY DESCRIPTION (2703 _H)	40	TABLE 146: ENTRY DESCRIPTION (6063 _H)	54
TABLE 92:BIT MAPPING(2703 _H)	40	TABLE 147: OBJECT DESCRIPTION (6064 _H)	54
TABLE 93: OBJECT DESCRIPTION (2704 _H)	40	TABLE 148: ENTRY DESCRIPTION (6064 _H)	54
Table 94: Entry Description (2704 _H)		TABLE 149: OBJECT DESCRIPTION (6067 _H)	
TABLE 95: OBJECT DESCRIPTION (2705 _H)		TABLE 150: ENTRY DESCRIPTION (6067 _H)	
Table 96: Entry Description (2705 _H)		TABLE 151: OBJECT DESCRIPTION (606B _H)	
TABLE 97: OBJECT DESCRIPTION (2706 _H)		TABLE 152: ENTRY DESCRIPTION (606B _H)	
Table 98: Entry Description (2706 _H)		TABLE 153: OBJECT DESCRIPTION (606CH)	
TABLE 99: OBJECT DESCRIPTION (270E _H)		TABLE 154: ENTRY DESCRIPTION (606C _H)	
Table 100: Entry Description (270E _H)		TABLE 155: OBJECT DESCRIPTION (607A _H)	
Table 101: Object Description (5FFF _H)		TABLE 156: ENTRY DESCRIPTION (607A _H)	
Table 102: Entry Description (5FFF _H)		TABLE 157: OBJECT DESCRIPTION (607D _H)	
Table 103: Value Description (605A _H)		TABLE 158: ENTRY DESCRIPTION (607D _H)	
Table 104: Object Description (605A _H)		TABLE 159: OBJECT DESCRIPTION (6081 _H)	
Table 105: Entry Description (605A _H)		TABLE 160: ENTRY DESCRIPTION (6081 _H)	
Table 106: Value Description (605B _H)		TABLE 161: OBJECT DESCRIPTION (6082 _H)	
Table 107: Object Description (605B _H)		TABLE 162: ENTRY DESCRIPTION (6082 _H)	
Table 108: Entry Description (605B _H)		TABLE 163: OBJECT DESCRIPTION (6083 _H)	
Table 109: Value Description (605C _H)		TABLE 164: ENTRY DESCRIPTION (6083 _H)	
TABLE 110: OBJECT DESCRIPTION (605CH)		TABLE 165: OBJECT DESCRIPTION (6084 _H)	
Table 111: Entry Description (605C _H)		TABLE 166: ENTRY DESCRIPTION (6084 _H)	
TABLE 112: VALUE DESCRIPTION (6050-H)		TABLE 167: OBJECT DESCRIPTION (6085H)	
TABLE 113: OBJECT DESCRIPTION (605D _H)		TABLE 168: ENTRY DESCRIPTION (6085 _H)	
TABLE 114: ENTRY DESCRIPTION (605D _H)		TABLE 169: STRUCTURE OF THE CONTROL WORD IN PV MODE	
Table 115: Value Description (605E _H)		TABLE 170: COMMAND CODING	
TABLE 116: OBJECT DESCRIPTION (605E _H)		TABLE 171: OBJECT DESCRIPTION (6040 _H IN PV MODE)	
TABLE 117: ENTRY DESCRIPTION (605E _H)		TABLE 172: ENTRY DESCRIPTION (6040 _H IN PV MODE)	
Table 118: Value Description (6060 _H)		TABLE 173: STRUCTURE OF THE STATUS WORD IN PV MODE	
TABLE 119: OBJECT DESCRIPTION (6060H)		TABLE 174: HDLLC SPECIFIC BITS	
Table 120: Entry Description (6060 _H)		TABLE 175: OPERATION MODE SPECIFIC BITS IN PV MODE	
Table 121: Value Description (6061 _H)		TABLE 176: STATE CODING	
TABLE 122: OBJECT DESCRIPTION (6061 _H)		TABLE 177: OBJECT DESCRIPTION (6041 _H IN PV MODE)	
TABLE 123: ENTRY DESCRIPTION (6061 _H)		TABLE 177: OBJECT DESCRIPTION (6041H NTV MODE)	
TABLE 124: OBJECT DESCRIPTION (608F _H)		TABLE 179: OBJECT DESCRIPTION (6062 _H)	
TABLE 125: ENTRY DESCRIPTION (608F _H)		TABLE 179. OBJECT DESCRIPTION (0002H)	
TABLE 126: POSITION ENCODER RESOLUTION		TABLE 181: OBJECT DESCRIPTION (6063 _H)	
TABLE 120: POSITION ENCODER RESOLUTION		TABLE 181: OBJECT DESCRIPTION (6063H)	
TABLE 127: OBJECT DESCRIPTION (60FD _H)		TABLE 183: OBJECT DESCRIPTION (6064 _H)	
TABLE 128: ENTRY DESCRIPTION (60PDH)		TABLE 183: OBJECT DESCRIPTION (6064H)	
TABLE 130: OBJECT DESCRIPTION (6502H)		TABLE 185: OBJECT DESCRIPTION (606B _H)	
TABLE 131: ENTRY DESCRIPTION (6502 _H)			
TABLE 131: ENTRY DESCRIPTION (6502H) TABLE 132: STRUCTURE OF THE CONTROL WORD IN PP MODE		TABLE 186: ENTRY DESCRIPTION (606B _H)	
TABLE 133: OPERATION MODE SPECIFIC BITS IN PP MODE	JI	Table 188: Entry Description (606C _H)	04

	OBJECT DESCRIPTION (607D _H)		TABLE 244: OBJECT DESCRIPTION (60BO _H)	
TABLE 190:	ENTRY DESCRIPTION (607D _H)	64	Table 245: Entry Description (60BO _H)	
Table 191:	OBJECT DESCRIPTION (6083 _H)	64	Table 246: Object Description (60C2 _H)	
TABLE 192:	ENTRY DESCRIPTION (6083 _H)	65	TABLE 247: ENTRY DESCRIPTION (60C2 _H)	83
Table 193:	OBJECT DESCRIPTION (6085 _H)	65	TABLE 248: STRUCTURE OF THE CONTROL WORD IN CSV MODE	85
Table 194:	ENTRY DESCRIPTION (6085 _H)	65	TABLE 249: COMMAND CODING	85
TABLE 195:	OBJECT DESCRIPTION (60FF _H)	65	TABLE 250: OBJECT DESCRIPTION (6040 _H IN CSV MODE)	86
TABLE 196:	ENTRY DESCRIPTION (60FF _H)	65	TABLE 251: ENTRY DESCRIPTION (6040 _H IN CSV MODE)	86
TABLE 197:	SUPPORTED CANOPEN HOMING METHODS	68	TABLE 252: STRUCTURE OF THE STATUS WORD IN CSV MODE	86
TABLE 198:	HOMING METHODS 17,18	68	TABLE 253: SPECIFIC BITS	86
TABLE 199:	STRUCTURE OF THE CONTROL WORD IN HM MODE .	72	TABLE 254: OPERATION MODE SPECIFIC BITS IN CSV MODE	86
TABLE 200:	OPERATION MODE SPECIFIC BITS IN HM MODE	72	TABLE 255: STATE CODING	87
TABLE 201:	COMMAND CODING	72	TABLE 256: OBJECT DESCRIPTION (6041 _H IN CSV MODE)	87
TABLE 202:	OBJECT DESCRIPTION (6040 _H IN HM MODE)	73	TABLE 257: ENTRY DESCRIPTION (6041 _H IN CSV MODE)	87
TABLE 203:	ENTRY DESCRIPTION (6040 _H IN HM MODE)	73	TABLE 258: OBJECT DESCRIPTION (606C _H)	87
TABLE 204:	STRUCTURE OF THE STATUS WORD IN HM MODE.	73	TABLE 259: ENTRY DESCRIPTION (606C _H)	87
TABLE 205:	HDLLC SPECIFIC BITS	73	TABLE 260: OBJECT DESCRIPTION (60FF _H)	
	OPERATION MODE SPECIFIC BITS IN HM MODE		TABLE 261: ENTRY DESCRIPTION (60FF _H)	
	STATE CODING		TABLE 262: OBJECT DESCRIPTION (607D _H)	
	OBJECT DESCRIPTION (6041 _H IN HM MODE)		TABLE 263: ENTRY DESCRIPTION (607D _H)	
	ENTRY DESCRIPTION (6041 _H IN HM MODE)		TABLE 264: OBJECT DESCRIPTION (60B1 _H)	
	OBJECT DESCRIPTION (606C _H)		TABLE 265: ENTRY DESCRIPTION (60B1 _H)	
	ENTRY DESCRIPTION (606C _H)		Table 266: Object Description (60C2 _H)	
	OBJECT DESCRIPTION (607C _H)		TABLE 267: ENTRY DESCRIPTION (60C2 _H)	
	ENTRY DESCRIPTION (607C _H)		TABLE 268: STRUCTURE OF THE CONTROL WORD IN CST MODE!	
	OBJECT DESCRIPTION (6098 _H)		TABLE 269: COMMAND CODING	
	ENTRY DESCRIPTION (6098 _H)		TABLE 270: OBJECT DESCRIPTION (6040 _H IN CST MODE)	
	OBJECT DESCRIPTION (6099 _H)		TABLE 271: ENTRY DESCRIPTION (6040 _H IN CST MODE)	
	ENTRY DESCRIPTION (6099 _H)		TABLE 272: STRUCTURE OF THE STATUS WORD IN CST MODE	
	OBJECT DESCRIPTION (609A _H)		TABLE 273: HDLLC SPECIFIC BITS	
	ENTRY DESCRIPTION (609A _H)		TABLE 274: OPERATION MODE SPECIFIC BITS IN CST MODE	
	OBJECT DESCRIPTION (2100 _H)		TABLE 275: STATE CODING	
	ENTRY DESCRIPTION (2100 _H)		TABLE 276: OBJECT DESCRIPTION (6041 _H IN CST MODE)	
	STRUCTURE OF THE CONTROL WORD IN CSP MOD		TABLE 277: ENTRY DESCRIPTION (6041 _H IN CST MODE)	
	COMMAND CODING		TABLE 278: OBJECT DESCRIPTION (6071 _H)	
	OBJECT DESCRIPTION (6040 _H IN CSP MODE)		TABLE 279: ENTRY DESCRIPTION (6071 _H)	
	ENTRY DESCRIPTION (6040 _H IN CSP MODE)		TABLE 280: OBJECT DESCRIPTION (6077 _H)	
	STRUCTURE OF THE STATUS WORD IN CSP MODE.		TABLE 281: ENTRY DESCRIPTION (6077 _H)	
	SPECIFIC BITS		TABLE 282: OBJECT DESCRIPTION (60B2 _H)	
	OPERATION MODE SPECIFIC BITS IN CSP MODE		TABLE 283: ENTRY DESCRIPTION (60B2 _H)	
	STATE CODING		TABLE 284: IO SUMMARY	
	OBJECT DESCRIPTION (6041 _H IN CSP MODE)		TABLE 285: THE ELECTRICAL SPECIFICATION OF IO PORTS	
	ENTRY DESCRIPTION (6041 _H IN CSP MODE)		TABLE 286: GROUP1, RSF-5 AND RSA-8 ACTUATOR WITH TWO	
	OBJECT DESCRIPTION (6062 _H)		IO PORTS	
	ENTRY DESCRIPTION (6062 _H)		TABLE 287: DIGITAL OUTPUT MAPPING 2703 _H FOR RSF-5	
	OBJECT DESCRIPTION (6063 _H)		TABLE 288: DIGITAL OUTPUT MAPPING 2703 _H FOR RSA-8	90
			TABLE 289: GROUP 2, FHA, LPA AND SHA ACTUATORS WITH	07
	OBJECT DESCRIPTION (6064)		FOUR IO PORTS TABLE 290: DIGITAL OUTPUT MAPPING 2703 _H FOR FHA, LPA	J /
	ENTRY DESCRIPTION (6064 _H)		•	07
	OBJECT DESCRIPTION (606CH)		AND SHA ACTUATORS	
	ENTRY DESCRIPTION (606C _H)		TABLE 291: LED FOR NMT STATE	
	OBJECT DESCRIPTION (607A _H IN CSP MODE)		TABLE 292: FORMAT OF EMCY MESSAGES	
	ENTRY DESCRIPTION (607A)		TABLE 293: EMERGENCY MESSAGES (EMCY)	
	OBJECT DESCRIPTION (607D _H)		TABLE 294: SDO ABORT CODES	UZ
1 ABLE 243 :	ENTRY DESCRIPTION (607D _H)	ŏZ		

17 Document Revision

Version	Date	Author	Description
03222020	Mar 20 th , 2020	BPC/AIZ	Initial revised and updated.
08302022	Aug 30 th , 2022	AZ	100Ch, 100Dh are removed, no node guard. 200Dh Status flag updated. 2020h:04 Digital Input threshold. 2015h brake settings. 2025h:05 Teach mode for homing. 270Eh:05 and 270Eh:06 for AIN1 AIN2 with PDO mapping. 2090h, Ilt1 Ilt2 monitor. 2095h Velocity following window. 2096h position following window. 6060h mode of operation, torque mode (=4) removed. 6061h mode of operation display, torque mode (=4) removed. IO mapping updated. EMCY messages updated. SDO Abort codes.
12072022	Dec 7 th ,2022	AZ	Format of EMCY message added.
01092023	Jan 9 th , 2023	AZ	200Dh Status flag, Velocity/Position window, IIT1/IIT2 bit added. Section 8.1.10 on parameter saving after homing added.

18 Supplemental Directives

18.1 Producer Information

18.2 Copyright

Harmonic Drive LLC owns the content of this user manual in its entirety, including but not limited to pictures, logos, trademarks, and resources. © Copyright 2022 Harmonic Drive LLC. All rights reserved. Electronically published by Harmonic Drive LLC.

Redistributions of source or derived format (for example, Portable Document Format or Hypertext Markup Language) must retain the above copyright notice, and the complete Datasheet User Manual documentation of this product including associated Application Notes; and a reference to other available product-related documentation.

18.3 Trademark Designations and Symbols

Trademark designations and symbols used in this documentation indicate that a product or feature is owned and registered as trademark and/or patent either by Harmonic Drive LLC or by other manufacturers, whose products are used or referred to in combination with Harmonic Drive LLC's products and Harmonic Drive LLC's product documentation.

This CANopen Firmware Manual is a non-commercial publication that seeks to provide concise scientific and technical user information to the target user. Thus, trademark designations and symbols are only entered in the Short Spec of this document that introduces the product at a quick glance. The trademark designation /symbol is also entered when the product or feature name occurs for the first time in the document. All trademarks and brand names used are property of their respective owners.

18.4 Target User

The documentation provided here, is for programmers and engineers only, who are equipped with the necessary skills and have been trained to work with this type of product.

The Target User knows how to responsibly make use of this product without causing harm to himself or others, and without causing damage to systems, in which the user incorporates the product.

18.5 Disclaimer: Life Support Systems

Harmonic Drive LLC does not authorize or warrant any of its products for use in life support systems, without the specific written consent of Harmonic Drive LLC.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

Information given in this document is believed to be accurate and reliable. However, no responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties which may result from its use. Specifications are subject to change without notice.

18.6 Disclaimer: Intended Use

The data specified in this user manual is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given.

In particular, this also applies to the stated possible applications or areas of applications of the product. Harmonic Drive LLC products are not designed for and must not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death (safety-Critical Applications) without Harmonic Drive LLC's specific written consent.

Harmonic Drive LLC products are not generally designed nor intended for use in military or aerospace applications or environments or in automotive applications unless specifically designated for such use by Harmonic Drive LLC. Harmonic Drive LLC conveys no patent, copyright, or other trademark right to this product. Harmonic Drive LLC assumes no liability for any patent and/or other trademark rights of a third party resulting from processing or handling of the product and/or any other use of the product.

18.7 Supplemental Documents & Tools

This product documentation is related and/or associated with additional tool kits, firmware and other items, as provided on the website at: www.harmonicdrive.net.

Harmonic Drive.net / 978-532-1800

Harmonic Drive LLC Headquarters/Manufacturing 42 Dunham Ridge, Beverly, MA 01915

New York Office

100 Motor Parkway Suite 116, Hauppauge, NY 11788

Chicago Office

137 N. Oak Park Ave. Suite 410, Oak Park, IL 60301

California Office

333 W. San Carlos St. Suite 1070, San Jose, CA 95110

Group Companies Harmonic Drive Systems, Inc. 6-25-3 Minami-Ohi, Shinagawa-ku Tokyo 141-0013, Japan

Harmonic Drive SE Hoenbergstrasse, 14, D-65555 Limburg/Lahn Germany

© 2022 Harmonic Drive. All rights reserved. Harmonic Drive is a registered trademark of Harmonic Drive LLC.