On Compositional safety verification with Max-SMT

Fabian Böller with David Korzeniewski

RWTH Aachen

fabian.boeller@rwth-aachen.de

SS 2017

Overview

Introduction

Example execution

Terms

Safety verification

Prove that an assertion is always true at a location

Terms

Safety verification

Prove that an assertion is always true at a location

Non-compositional safety verification

Safety verification where the whole program is analyzed in one step

Terms

Safety verification

Prove that an assertion is always true at a location

Non-compositional safety verification

Safety verification where the whole program is analyzed in one step

Compositional safety verification

Safety verification where program parts are analyzed semi-independently and composed

Motivation

Scalability ← Loss in precision

Algorithms

Example program

Program

$$V = \{x, y, i\}, \ \mathcal{L} = \{\ell_0, \ell_1, \ell_2\}, \ \mathcal{T} = \{t_i \mid i \in \{1, \dots, 6\}\}$$

Task

Prove that the program is safe for $x \neq y$ at t_6

CheckSafe on $\{\ell_2\}$ for $x \neq y$

 t_6 does not already imply $x \neq y$ t_6 is not an initial transition Call CondSafe, get x > y as precondition

CheckSafe on $\{\ell_0\}$ for x > y

 t_2 does not already imply x > y t_2 is not an initial transition Call CondSafe

CheckSafe on $\{\ell_0\}$ for x > y

No precondition, since y > x contradicts x > yPath is maybe safe, but not for x > y

CheckSafe on $\{\ell_1\}$ for x > y

 t_4 does not already imply x > y t_4 is not an initial transition Call CondSafe, get $i > 0 \land x > y$ as precondition

CheckSafe on $\{\ell_0\}$ for i > 0

 t_1 does not already imply i > 0 t_1 is not an initial transition Call CondSafe, get i > 0 as precondition

CheckSafe on initial SCC for i > 0

 t_0 does already imply i > 0

CheckSafe on initial SCC for i > 0

Path is safe for i > 0

CheckSafe on $\{\ell_0\}$ for i > 0

Path is safe for i > 0

CheckSafe on $\{\ell_0\}$ for $x \geq y$

 t_1 does already imply $x \ge y$

CheckSafe on $\{\ell_0\}$ for $x \ge y$

Path is safe for $x \ge y$

CheckSafe on $\{\ell_1\}$ for x > y

Path is safe for x > y

Narrow on $\{\ell_2\}$

Add $x \leq y$ to t_2

Add $x \le y$ to t_5

CheckSafe on $\{\ell_2\}$ for $x \neq y$

Call CondSafe, get y > x instead of x > y as precondition

CheckSafe on $\{\ell_0\}$ for y > x

 t_2 does already imply y > x

CheckSafe on $\{\ell_0\}$ for y > x

Path is safe for y > x

CheckSafe on $\{\ell_0\}$ for y > x

Program is safe for $x \neq y$

References

Brockschmidt, Marc and Larraz, Daniel and Oliveras, Albert and Rodriguez-Carbonell, Enric and Rubio, Albert (2015)

Compositional Safety Verification with Max-SMT

Proceedings of FMCAD'15

The End