COMPUTING METHODS FOR PHYSICS 16 NOVEMBER 2021

You must submit your exam by following the instructions at http://www.roma1.infn.it/
people/rahatlou/cmp/

Bethe-Bloch Energy Loss

Provide a class Particle characterised by

- mass (in GeV)
- charge (in units of e)
- Three momentum

with proper data members, constructor, and accessor functions. Implement the following 3 member functions (with proper arguments if needed and proper return type): beta(), gamma(), betagamma().

Provide a class Material characterised by

- Density ρ (in g/cm³)
- · Atomic mass A
- charge Z (in units of e)
- mean ionisation energy <I> (in eV)

with proper data members, constructor, and accessor functions. Implement the member function dEdx (...), using a Particle object as argument, to compute the mean energy loss by a particle:

- for kinetic energy above 50 MeV use the Bethe-Bloch formula for the energy loss
- for kinetic energy below 50 MeV, assume an energy loss proportional to the particle momentum squared p^2

Provide a test application app.cc using these classes, to compute the mean energy loss $\langle dE/dx \rangle$ for a proton and an α particle of momentum p = 10 MeV, as a function of the penetration depth x (in cm) in silicon.

Plot the mean energy loss $\langle dE/dx \rangle$ as a function of x for both particles. Use red for the proton and blue for the α particle and provide a legend.

Evaluation will be based on: correct C++ syntax, proper return type and arguments of functions, data members and interface of classes, unnecessary void functions, correct mathematical operations, correct physics calculation and units.

Useful data:

	densita` [g/cm³]	<l> eV </l>	E _c [MeV]	Lungh. Radiazione X₀ [cm]	Lungh. Interazione X _I [cm]	Z	A	δ
Si	2.33	173	40	9.37	46.52	14	28	0

COMPUTING METHODS FOR PHYSICS 16 NOVEMBER 2021