Lista 5 - Estimadores não viesados e EQM

Professor: Pedro M.A. Junior

28 de agosto de 2025

1. Sejam X_1, X_2, X_3 uma amostra aleatória da variável aleatória X com $\mathbb{E}(X) = \theta$ e Var(X) = 1. Consideremos os estimadores

$$\widehat{\theta}_1 = \bar{X} = \frac{X_1 + X_2 + X_3}{3},$$

$$\widehat{\theta}_2 = \frac{1}{2}X_1 + \frac{1}{4}X_2 + \frac{1}{4}X_3.$$

- (a) Calcule $\mathbb{E}(\widehat{\theta}_1)$ e $Var(\widehat{\theta}_1)$
- (b) Calcule $\mathbb{E}(\widehat{\theta}_2)$ e $Var(\widehat{\theta}_2)$
- (c) Verifique se $\widehat{\theta}_1$ e $\widehat{\theta}_2$ são estimadores não viesados para θ
- (d) Qual o melhor estimador entre $\widehat{\theta}_1$ e $\widehat{\theta}_2$
- 2. Sejam X_1, \ldots, X_n variáveis aleatórias i.i.d. com distribuição de Bernoulli, ou seja, $X_i \sim \text{Bernoulli}(p)$, com 0 .
 - (a) Mostre que $\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ é um estimador não viesado de p.
 - (b) Calcule o EQM de \hat{p}
- 3. Sejam X_1, \ldots, X_n variáveis aleatórias i.i.d. com distribuição Poisson (λ) , com $\lambda > 0$.
 - (a) Mostre que $\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} X_i$ é um estimador não viesado de λ .
 - (b) Calcule o EQM de $\hat{\lambda}$
- 4. Seja X_1, \ldots, X_n uma amostra aleatória de

$$f(x|\theta) = (1 - \theta) + \frac{\theta}{2\sqrt{x}}, \quad 0 < x < 1; 0 < \theta < 1$$

- (a) Mostre que \bar{X} é um estimador viesado de θ e encontre seu viés
- (b) Estude o comportamento deste viés quando $n \to \infty$
- (c) Calcule o EQM de \bar{X}
- 5. Sejam X_1, \ldots, X_n variáveis aleatórias independentes com mesma função de densidade:

$$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0, \quad \lambda > 0.$$
 (1)

- (a) Verifique se \bar{X} é um estimador não viesado (E.N.V) de λ
- (b) Calcule o EQM de \bar{X}
- 6. Sejam X_1,\ldots,X_n variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) com fdp dada por

$$f(x \mid \theta) = \sigma x^{\sigma - 1}, \quad 0 < x < 1 \text{ e } \sigma > 0$$

- (a) Mostre que \bar{X} é um estimador não viesado (E.N.V) de $\frac{\sigma}{\sigma+1}$
- (b) Calcule o EQM de \bar{X}
- 7. Sejam X_1, \ldots, X_n variáveis aleatórias independentes e identicamente distribuídas (i.i.d.) com distribuição uniforme $X_i \sim U(0,\theta)$, onde $0 < \theta < \infty$. Mostre que $\hat{\theta} = 2\bar{X}$, onde $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$, é um estimador não viesado de θ .
- 8. Seja X_1, X_2, \ldots, X_n uma amostra aleatória de uma população com média θ e variância σ^2 . Considere os seguintes estimadores da média populacional θ : $T_1 = \frac{1}{n} \sum_{i=1}^n X_i$ e $T_2 = \frac{1}{n+1} \sum_{i=1}^n X_i$
 - (a) Mostre que T_1 é um estimador não viesado para θ .
 - (b) Determine o viés de T_2 .
 - (c) O estimador T_2 é assintoticamente não viesado? Justifique.
- 9. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim N(0, \theta), \quad 0 < \theta < \infty$. Mostre que $\hat{\theta} = n^{-1} \sum_{i=1}^{n} X_i^2$ é um estimador não viesado de θ .

10. Sejam $X_1 \dots, X_n$ v.a.'s que, dado θ , são condicionalmente i.i.d. com distribuição comum binomial negativa (k, θ) , ou seja,

$$P(X_1 = m \mid \theta) = {m-1 \choose k-1} \theta^k (1-\theta)^{m-k}, m = k, k+1 \dots$$

Construa um estimador não viesado para $1/\theta$.

- 11. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição da variável aleatória X, em que $X \sim N(\mu, 1)$. Considere os estimador $\hat{\mu} = \bar{X}$. Encontre o EQM de $\hat{\mu}$ como função de μ .
- 12. Seja X_1, \ldots, X_n uma amostra aleatória de $X \sim N(\mu, 1)$. Encontre um estimador não viesado para $\theta = \mu^2$.
- 13. Sejam X_1, \ldots, X_n uma amostra aleatória de $X \sim N(0, \sigma^2)$. Seja $S^2 = \sum_{i=1}^n X_i^2$. Considere os estimadores,

$$\hat{\sigma}_c^2 = c S^2$$

- (a) Encontre o EQM do estimador acima
- (b) Encontre o valor de c que minimiza o EQM em (a)
- 14. Sejam X_1, \ldots, X_n uma amostra aleatória de tamanho n da distribuição de uma variável aleatória $X \sim U(0, \theta)$. Considere os estimadores $\hat{\theta}_1 = c_1 \bar{X}$ e $\hat{\theta}_2 = c_2 X_{(n)}$.
 - (a) Encontre c_1 e c_2 que tornam os estimadores não viciados.
 - (b) Encontre e compare os EQMs dos dois estimadores.