Ingeniería Informática, 29–06–2004 Cálculo para la Computación (Primer parcial)

Apellidos y Nombre:	
DNI:	Grupo:

- 1. Resuelva en $\mathbb C$ la ecuación $\sec z + \cos z = rac{i}{2}$ y exprese las soluciones en forma binómica.
- 2. Consideremos la serie $\sum_{n=1}^{\infty} \frac{an^2 + b}{n!}.$
 - (a) Estudie la convergencia de la serie en función de los valores de a y b.
 - (b) Calcule el valor de a y b para que la serie sume e+1.
- 3. Calcule una serie de Fourier que aproxime a la función f(x)=x definida en el intervalo [1,2) y utilice dicho desarrollo para sumar la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1}$
- 4. Utilice el polinomio de Taylor de la función $f(x)=e^{-x}\sin x$ para aproximar el valor de la expresión $\frac{\sin 1}{e}$ con un error menor que una centésima.
- 5. Consideremos el campo escalar

$$f(x,y) = \left\{ egin{array}{ll} rac{x \log (1+y^2)}{x^2+y^2} & \mathrm{si} \ (x,y)
eq (0,0) \ 0 & \mathrm{si} \ (x,y) = (0,0) \end{array}
ight.$$

- (a) Estudie la continuidad y diferenciabilidad en todos los puntos de \mathbb{R}^2 .
- (b) Calcule el plano tangente en el punto (1,0) y utilícelo para dar una valor aproximado de la expresión $\frac{\log(1'01)}{1'01}$.

NO SE PUEDE UTILIZAR CALCULADORA

ES OBLIGATORIO ENTREGAR ESTA HOJA DEBIDAMENTE CUMPLIMENTADA