

Curso de Tecnologia em Sistemas de Computação Disciplina: Redes de Computadores II AP3 – 2º semestre de 2018 – GABARITO

(a) A rede da empresa é dada pelo endereço de rede 155.192.0.0/13, a ser dividida nas subredes R_1 (com 20000 estações), R_2 (com 120000 estações), R_3 (com 120000 estações), R_4 (com 120000 estações) e R_5 (com 70000 estações). Mostre que é impossível realizar esta divisão.

Resposta:

O endereço de rede de cada uma das subredes deve satisfazer um valor máximo de máscara de subrede, para que elas tenham pelo menos tantos endereços quanto a quantidade de estações desejada — R_1 deve utilizar, no máximo, máscara / 17 (e, por isso conter pelo menos 32768 endereços), R_2 , no máximo máscara / 15 (ao menos 131072 endereços), R_3 , no máximo máscara / 15 (ao menos 131072 endereços) e R_5 , no máximo máscara / 15 (ao menos 131072 endereços). Isto significa que, em qualquer alocação que satisfaça todas as subredes, serão necessários no mínimo 557056 endereços. No entanto, a rede principal (155.192.0.0/13) possui apenas 524288 endereços, logo é impossível realizar essa divisão.

(b) A rede da empresa é dada pelo endereço de rede 149.77.240.0/20, a ser dividida nas subredes R_1 (com 400 estações), R_2 (com 200 estações), R_3 (com 900 estações), R_4 (com 700 estações) e R_5 (com 800 estações). Você deixou esta tarefa com o estagiário e ele lhe apresentou as seguintes propostas de subdivisão:

	Proposta 1	Proposta 2
R_1	149.77.252.0/23	149.78.0.0/22
R_2	149.77.254.0/24	149.77.252.0/22
R_3	149.77.240.0/22	149.77.248.0/22
R_4	149.77.248.0/22	149.77.244.0/22
R_5	149.77.244.0/22	149.77.240.0/22

Determine quais destas subdivisões são válidas e quais não são, e justifique as que não estiverem de acordo.

Resposta:

A proposta 1 é válida, pois todas as subredes possuem endereços de rede válidos, suas faixas de endereços estão contidas na faixa de endereços 149.77.240.0/20 da rede principal, não se sobrepõem, e receberam pelo menos tantos endereços quanto requisitado. Já a proposta 2 não satisfaz o segundo destes requisitos, pois o endereço da rede R_1 (149.78.0.0/22) não pertence à rede original.

Considere que, em um certo instante, o nó A possui o seguinte vetor de distâncias:

Vetor de distâncias de A							
В	$\mid C \mid$	D	E	F	G	H	
1	9	8	11	3	19	∞	

e recebe dos seus vizinhos os seguintes vetores de distâncias:

Vetor de distâncias de B								
A	C	D	\mathbf{E}	F	G	Н		
1	10	5	10	2	4	3		
	Vetor de distâncias de C							
A	В	D	\mathbf{E}	F	G	Н		
9	10	13	20	10	12	11		
	Vetor de distâncias de D							
A	В	С	\mathbf{E}	F	G	Н		
8	5	13	13	3	5	4		

(a) De posse destes vetores de distâncias e da topologia da vizinhança do nó A, calcule a sua tabela de distâncias.

(b) Determine o vetor de distâncias atualizado do nó A após o cálculo desta tabela.

Resposta:

Vetor de distâncias de A						
В	\mathbf{C}	D	\mathbf{E}	F	$\mid G \mid$	Η
1	9	6	11	3	5	4

(c) O nó A irá enviar este vetor de distâncias atualizado para outros nós da rede? Se sim, para quais? Justifique sua resposta.

Resposta:

A irá enviar seu vetor de distâncias para outros nós, pois ele sofreu atualização. Ele irá enviá-lo para todos os seus vizinhos: B, C e D.

(a) Utilizando o algoritmo de Dijkstra, calcule os caminhos mais curtos a partir do nó F, destacado em verde, para todos os outros nós da rede. Construa uma tabela igual à mostrada em aula que mostra o funcionamento do algoritmo de forma iterativa.

Resposta:

	N'	d _A p _A	$d_{\mathrm{B}}p_{\mathrm{B}}$	$d_{\mathrm{C}}p_{\mathrm{C}}$	$ m d_Dp_D$	$d_{\rm E}p_{\rm E}$	$ m d_Gp_G$	$\mathrm{d_H}\mathrm{p_H}$
0	F	2 F	∞ -	∞ -	∞ -	∞ -	1 F	4 F
1	FG	2 F	7 G	∞ -	3 G	11 G		4 F
2	FGA		5 A	∞ -	3 G	11 G		4 F
3	FGAD		5 A	∞ -		11 G		4 F
4	FGADH		5 A	∞ -		11 G		
5	FGADHB			9 B		8 B		
6	FGADHBE			9 B				
7	FGADHBEC							

(b) Construa a tabela de roteamento do nó F, isto é, para cada roteador de destino, indique o enlace de saída utilizado por F para encaminhar pacotes para este destino.

Resposta:

Destino	A	В	C	D	E	G	Н
Enlace de saída	(F,A)	(F,A)	(F,A)	(F,G)	(F,A)	(F,G)	(F,H)

Considere um mecanismo NAT cujo endereço IP na rede pública é 53.85.10.33 e que gerencia as conexões da rede privada, que ocupa a faixa 192.168.0.0/16. Suponha que o NAT possui a seguinte tabela de tradução de endereços, onde cada regra é identificada por um número:

	(IP, porta) da estação local	(IP, porta) da estação remota	Porta pública no NAT
(1)	192.168.0.1, 32723	116.45.224.201, 13132	9901
(2)	192.168.0.2, 31399	210.166.70.191, 19035	18663
(3)	192.168.0.1, 13726	42.206.20.114, 15815	8888
(4)	192.168.0.2, 24188	13.184.233.164, 19981	20405
(5)	192.168.0.2, 3216	183.175.249.150, 27662	12869
(6)	192.168.0.1, 10737	187.244.176.86, 17355	1025
(7)	192.168.0.2, 17664	226.152.61.176, 12221	31011
(8)	192.168.0.3, 13150	204.70.200.6, 24436	1026
(9)	192.168.0.4, 13895	65.173.96.198, 9690	24371
(10)	192.168.0.1, 16331	131.155.93.12, 14136	1027

Determine se cada uma das afirmações a seguir é verdadeira ou falsa e justifique usando apenas uma frase:

- $\sqrt{}$ O emprego do NAT interfere com o uso de aplicações P2P, mas não de navegadores Web, pelas estações da rede local.
 - Aplicações P2P precisam receber pedidos de conexão, que em geral serão descartados pelo NAT, ao contrário de navegadores Web, que somente necessitam iniciar conexões.
- O Um pacote enviado pela estação 192.168.0.2 na porta 24188, com destino à estação 13.184.233.164, porta 19981 exigirá que o NAT crie uma nova entrada para encaminhá-lo.
 - Não será necessário criar uma nova entrada pois o cabeçalho do pacote é compatível com a entrada (4) da tabela de tradução do NAT.
- √ A estação 192.168.0.2 é incapaz de hospedar um servidor Web, acessível de qualquer estação da Internet através da porta 80 (HTTP). Toda tentativa de conexão com este servidor Web iniciará com o envio de um pacote para o NAT com porta de destino 80, o que significa que este pacote será descartado e a conexão não será aberta.
- √ As estações 192.168.0.1 e 192.168.0.2 serão vistas por todas as estações na Internet como sendo uma única estação. De fato, em todas as comunicações de ambas as estações com a Internet, elas irão compartilhar o IP 53.85.10.33, de modo que elas serão indistinguíveis.
- √ Um pacote com origem 183.175.249.150, porta 27662 e destino 53.85.10.33, porta 12869 será encaminhado para a rede local. Conforme a tabela de tradução do NAT, ele será encaminhado para a estação 192.168.0.2 na porta 3216.

(a) A longo prazo, qual a taxa de transmissão que uma estação alcança se somente ela possuir dados para transmitir? E se todas as estações possuírem dados para transmitir?

transmitam a uma taxa constante de 40 Mbps (Mbits por segundo) quando acessam o meio.

Resposta:

Em ambos os cenários, a estação em questão somente pode acessar o meio em um slot a cada 6, e deve ficar em silêncio nos slots restantes. Isto leva a uma taxa de transmissão de $0 \cdot 5/6 + 40 \cdot 1/6 = 6$ Mbps.

(b) Suponha que, a partir do instante t = 35.0 ms, a estação 3 deseja transmitir um total de 2.52 Mbits, e a partir do instante t = 272.0 ms, a estação 5 deseja transmitir um total de 0.36 Mbits. Determine o retardo inicial de ambas as transmissões (isto é, o tempo que cada estação aguarda para iniciar a transmissão após adquirir os dados a serem enviados) e o instante de tempo em que cada transmissão termina.

Resposta:

A estação 3 irá iniciar sua transmissão no instante $t=60.0~\rm ms$, com um retardo inicial de 25.0 ms, e irá encerrar sua transmissão no instante $t=423.0~\rm ms$. Já a estação 5 irá iniciar sua transmissão no instante $t=300.0~\rm ms$, com um retardo inicial de 28.0 ms, e irá encerrar sua transmissão no instante $t=309.0~\rm ms$.

- $\sqrt{\ }$ O mecanismo de *interleaving* tem como principal objetivo aliviar o problema de perdas de pacotes na rede.
 - O *interleaving* divide um pacote original em blocos e espalha os blocos em diferentes pacotes a serem transmitidos, fazendo com que a perda de um pacote seja espalhada em diferentes blocos no fluxo de dados original.
- O A técnica de interleaving insere redundância no fluxo de pacotes transmitidos e portanto aumenta a taxa de transmissão da aplicação.
 - A técnica de interleaving consiste na divisão dos pacotes originais em pedaços e reorganização desses pedaços construindo os novos pacotes que serão transmitidos, de forma que não é inserida nenhuma informação redundante.
- $\sqrt{}$ Um pacote de uma aplicação *streaming* que chega no receptor depois do tempo que foi escalonado para tocar é considerado um pacote perdido.
 - Um pacote que chega atrasado não pode ser tocado pois, para que a qualidade de uma aplicação multimídia seja mantida, os pacotes devem ser tocados seguindo o mesmo intervalo de tempo em que foram gerados.
- O objetivo do mecanismo de FEC é aliviar o problema do atraso aleatório entre os pacotes de dados, ou seja, reduzir o jitter da rede.
 - O objetivo do FEC é aliviar o problema de perdas de pacote pela rede, enviando informação redundante que pode ser utilizada para recuperar pacotes perdidos.
- $\sqrt{}$ Se o retardo fim-a-fim entre um usuário A e um usuário B é constante então o jitter é igual a zero.

O jitter é a variação do retardo fim-a-fim entre os pacotes transmitidos de um usuário A para um usuário B, portanto se o retardo fim-a-fim é constante, não existe variação e o jitter é zero.