Chalmers et al. Genome Medicine (2017) 9:34 DOI 10.1186/s13073-017-0424-2

Genome Medicine

CrossMark

RESEARCH Open Access

Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden

TMB Paper Review

2018/05/08

Kijin Kim

2017/04 Published

GENOMIC TESTING

INSIGHTS & TRIALS

PARTNERSHIPS

ABOUT US

The Rel Pursuit Better

WE NEVER GIVE UP. We strive imore for cancer patients - through richer science, deeper insights, an stronger partnerships - providing cancer care today, and fueling bet cancer care tomorrow.

Get Started

Testing Overview

Financial Services & Support

Order a Test

Molecular Profiling

Tumor Mutational Burde

Jump to a Test

FoundationOne CDx™

FoundationOne®

FoundationOne*Heme

FoundationACT*

FoundationFocus™ CDx BRCA

Helping Predict Response with Tumor Mutational Burden

Cancer immunotherapies have the potential to treat cancer by harnessing the power of our own immune systems. But right now, only about 20-40% of people respond to this important class of therapy. Learn about a quantitative clinical biomarker, tumor mutational burden (TMB), that can help identify patients who may be more likely to benefit from cancer immunotherapies. 3

LEARN MORE ABOUT TMB --

Immune Checkpoint Blockade Immunotherapy

RESPONSE RATES TO SINGLE-AGENT PD-1/PD-L1 INHIBITION

TMB (Tumor Mutational Burden)

= Measurement of somatic mutations within a tumor

Companion Diagnostic, Pharmacogenomic, and Cancer Biomarkers

Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers 2

Aaron M. Goodman^{1,2,3}, Shumei Kato^{1,2}, Lyudmila Bazhenova¹, Sandip P. Patel¹, Garrett M. Frampton⁴, Vincent Miller⁴, Philip J. Stephens⁴, Gregory A. Daniels¹, and Razelle Kurzrock^{1,2}

Molecular Cancer Therapeutics

SD, stable disease; PD, progressive disease; CR, complete response; PR, partial response

2017/11 Published

Chalmers et al. Genome Medicine (2017) 9:34 DOI 10.1186/s13073-017-0424-2

Genome Medicine

RESEARCH Open Access

CrossMark

Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden

Zachary R. Chalmers^{1†}, Caitlin F. Connelly^{1†}, David Fabrizio¹, Laurie Gay¹, Siraj M. Ali¹, Riley Ennis¹, Alexa Schrock¹, Brittany Campbell⁴, Adam Shlien⁴, Juliann Chmielecki¹, Franklin Huang², Yuting He¹, James Sun¹, Uri Tabori⁴, Mark Kennedy¹, Daniel S. Lieber¹, Steven Roels¹, Jared White¹, Geoffrey A. Otto¹, Jeffrey S. Ross¹, Levi Garraway^{2,3}, Vincent A. Miller¹, Phillip J. Stephens¹ and Garrett M. Frampton^{1*}

Objective

■ TMB in WES → TMB in Smaller gene set

Understanding landscape of TMB based on > 100,000 CGP data

Identifying association between certain gene mutation and TMB

WES vs CGP in TMB analysis

- -29 samples sequenced both on exome and gene panel (CGP)
- Gene panel targets 315 genes (1.1 Mb of coding genome) using
 FoundationOne CDx™
- WES sequence both tumor and normal, CGP only tumor

Downsampling simulation

Percent deviation (%) = $\frac{\text{simulated} - \text{expected}}{\text{expected}} \times 100$

Sampling 1000 times for each TMB (binomial distribution) and sequencing amounts

TCGA data analysis

- WES profiles from 8917 cancer specimens
- Calculate TMB from 315 gene set (1.1 Mb of coding genome)
- Highly correlated ($R^2 = 0.98$)

CGP TMB analysis

- Used FoundationOne CDx™
- -Used 92,439 samples (only tumor) which has >300x exon coverage
- -541 distinct cancer types
- Median : 3.6 mutations/Mb
- -TMB increase with aging

Disease indications with greater than 5% of specimens showing high TMB (>20 mutations/Mb)

Disease type	Specimen count	Median TMB
skin basal cell carcinoma	92	47.3
skin squamous cell carcinoma (scc)	266	45.2
skin melanoma	879	14.4
unknown primary melanoma	1324	12.6
lung large cell carcinoma	74	12.2
lymph node lymphoma diffuse large b cell	348	10.0
lung large cell neuroendocrine carcinoma	288	9.9
lung small cell undifferentiated carcinoma	913	9.9
lung squamous cell carcinoma (scc)	2102	9.0
lung non-small cell lung carcinoma (nos)	2636	8.1
bladder carcinoma (nos)	77	8.1
unknown primary squamous cell carcinoma (scc)	606	7.6
lung sarcomatoid carcinoma	130	7.2
unknown primary urothelial carcinoma	188	7.2
bladder urothelial (transitional cell) carcinoma	1218	7.2
head and neck melanoma	59	6.3
lung adenocarcinoma	11855	6.3
lymph node lymphoma b-cell (nos)	88	6.3
unknown primary undifferentiated small cell carcinoma	117	6.3

TMB and MSI

Α

TMB increase-associated genes and mutations

PMS2 promoter region mutation

PMS2 Promoter Mutation Status

Discussion

- 1.1Mb CGP assay agree well with WES TMB
- Filtering out germline alteration and rare variants is important to obtaining accurate measurement of TMB
- Sampling variation increase as sequenced size (Mb) decrease,
 especially at lower levels of TMB
- Extensive landscape of TMB across hundreds of genes including newly found TMB associated region, PMS2 promoter