Name: Prekshita Vasudeo Patil # Registration No.: 20MAI0073 # Link: https://github.com/prekshita19/DL-Assignments/tree/main/Assignment-5 # LSTM

In [1]: import numpy as np
 import pandas as pd
 import sklearn
 import matplotlib.pyplot as plt
 import seaborn as sns
 import scipy
 import keras
 import tensorflow as tf
 from keras.utils import to_categorical

In [2]: data = pd.read_csv("breast-cancer.data",header=None)
 data.columns = ['Class','age','menopause','tumor-size','inv-nodes','node-caps','data.columns'

In [3]: data

Out[3]:

	Class	age	menopause	tumor- size	inv- nodes	node- caps	deg- malig	breast	breast- quad	irradiat
0	no-recurrence- events	30- 39	premeno	30-34	0-2	no	3	left	left_low	no
1	no-recurrence- events	40 - 49	premeno	20-24	0-2	no	2	right	right_up	no
2	no-recurrence- events	40 - 49	premeno	20-24	0-2	no	2	left	left_low	no
3	no-recurrence- events	60 - 69	ge40	15-19	0-2	no	2	right	left_up	no
4	no-recurrence- events	40 - 49	premeno	0-4	0-2	no	2	right	right_low	no
281	recurrence- events	30 - 39	premeno	30-34	0-2	no	2	left	left_up	no
282	recurrence- events	30 - 39	premeno	20-24	0-2	no	3	left	left_up	yes
283	recurrence- events	60- 69	ge40	20-24	0-2	no	1	right	left_up	no
284	recurrence- events	40- 49	ge40	30-34	3-5	no	3	left	left_low	no
285	recurrence- events	50- 59	ge40	30-34	3-5	no	3	left	left_low	no

```
In [4]: | from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         for i in data:
              data[i] = le.fit_transform(data[i])
In [5]: | x= data.drop("irradiat",axis=1)
         y = data["irradiat"]
In [6]: x
Out[6]:
               Class age menopause tumor-size inv-nodes node-caps deg-malig breast breast-quad
            0
                   0
                       1
                                   2
                                              5
                                                        0
                                                                   1
                                                                             2
                                                                                    0
                                                                                                2
                                   2
                                                                             1
                                                                                                5
            1
                   0
                       2
                                              3
                                                        0
                                                                   1
                                                                                    1
                                   2
            2
                   0
                       2
                                              3
                                                        0
                                                                   1
                                                                             1
                                                                                    0
                                                                                                2
            3
                                   0
                                              2
                                                        0
                                                                             1
                                                                                    1
                                                                                                3
                   0
                       4
                                                                   1
                   0
                       2
                                   2
                                                        0
                                                                   1
                                                                                    1
                                                                                                4
                                   2
                                                                             1
          281
                   1
                       1
                                              5
                                                        0
                                                                   1
                                                                                    0
                                                                                                3
          282
                                   2
                                              3
                                                        0
                                                                   1
                                                                             2
                                                                                    0
                                                                                                3
                   1
                       1
                                   0
          283
                   1
                       4
                                              3
                                                        0
                                                                   1
                                                                             0
                                                                                    1
                                                                                                3
          284
                   1
                       2
                                   0
                                              5
                                                        4
                                                                   1
                                                                             2
                                                                                    0
                                                                                                2
                                   0
                                              5
                                                        4
                                                                             2
                                                                                    0
                                                                                                2
          285
                   1
                       3
                                                                   1
         286 rows × 9 columns
In [7]: y
Out[7]: 0
                 0
         1
                 0
         2
                 0
         3
                 0
         4
                 0
         281
                 0
         282
                 1
         283
                 0
         284
                 0
         285
         Name: irradiat, Length: 286, dtype: int32
In [8]: x.shape
Out[8]: (286, 9)
```

```
In [9]: y.shape
Out[9]: (286,)
In [10]: | from sklearn.model_selection import train_test_split
         xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.25,random_state=0)
In [11]: | xtrain1 = np.array(xtrain)
         xtest1 = np.array(xtest)
         ytrain1 = np.array(ytrain)
         ytest1 = np.array(ytest)
In [12]: xtrain1 = xtrain1.reshape(xtrain1.shape[0],xtrain1.shape[1],1)
         xtest1 = xtest1.reshape(xtest1.shape[0],xtest1.shape[1],1)
In [13]: xtrain1.shape
Out[13]: (214, 9, 1)
In [14]: |xtest1.shape
Out[14]: (72, 9, 1)
In [15]: ytrain1.shape
Out[15]: (214,)
In [16]: ytest1.shape
Out[16]: (72,)
In [17]: from keras.layers import LSTM, Dense, Activation, Flatten
         from keras.models import Sequential
```

```
In [18]: model = Sequential()
  model.add(LSTM(100,input_shape=(xtrain1.shape[1],1)))
  model.add(Dense(10))
  model.add(Dense(8))
  model.add(Dense(1))
  model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 100)	40800
dense (Dense)	(None, 10)	1010
dense_1 (Dense)	(None, 8)	88
dense_2 (Dense)	(None, 1)	9

Total params: 41,907 Trainable params: 41,907 Non-trainable params: 0

```
In [19]: model.compile(metrics= ["accuracy"],optimizer="adam",loss="categorical_crossentro")
```

```
In [20]: history = model.fit(xtrain1, ytrain1,batch size=10,epochs=250)
```

```
Epoch 1/250
22/22 [============= ] - 0s 9ms/step - loss: 2.8410e-08 - acc
uracy: 0.7617
Epoch 2/250
22/22 [============= ] - 0s 7ms/step - loss: 2.8410e-08 - acc
uracy: 0.7617
Epoch 3/250
22/22 [============= ] - 0s 6ms/step - loss: 2.8410e-08 - acc
uracy: 0.7617
Epoch 4/250
22/22 [============= ] - 0s 7ms/step - loss: 2.8410e-08 - acc
uracy: 0.7617
Epoch 5/250
uracy: 0.7617
Epoch 6/250
uracy: 0.7617
Epoch 7/250
```

```
In [21]: history = pd.DataFrame(history.history)
history
```

Out[21]:

	IOSS	accuracy
0	2.840969e - 08	0.761682
1	2.840969e - 08	0.761682
2	2.840969e - 08	0.761682
3	2.840969e - 08	0.761682
4	2.840969e - 08	0.761682
245	2.840969e - 08	0.761682
246	2.840969e - 08	0.761682
247	2.840969e - 08	0.761682
248	2.840969e-08	0.761682
249	2.840969e - 08	0.761682

250 rows × 2 columns

In [22]: history.plot(figsize=(15,10))

Out[22]: <AxesSubplot:>


```
In [23]: ypredict = np.argmax(model.predict(xtest1), axis=-1)
In [24]: from sklearn.metrics import accuracy_score
accuracy_score(ytest1,ypredict)
```

Out[24]: 0.76388888888888888

Name: Prekshita Vasudeo Patil # Registration No.: 20MAI0073 # Link: https://github.com/prekshita19/DL-Assignments/tree/main/Assignment-5 # RNN

In [1]: import numpy as np
 import pandas as pd
 import sklearn
 import matplotlib.pyplot as plt
 import seaborn as sns
 import scipy
 import keras
 import tensorflow as tf
 from keras.utils import to_categorical

In [2]: data = pd.read_csv("breast-cancer.data",header=None)
 data.columns = ['Class','age','menopause','tumor-size','inv-nodes','node-caps','data.columns'

In [3]: data

Out[3]:

	Class	age	menopause	tumor- size	inv- nodes	node- caps	deg- malig	breast	breast- quad	irradiat
0	no-recurrence- events	30- 39	premeno	30-34	0-2	no	3	left	left_low	no
1	no-recurrence- events	40 - 49	premeno	20-24	0-2	no	2	right	right_up	no
2	no-recurrence- events	40 - 49	premeno	20-24	0-2	no	2	left	left_low	no
3	no-recurrence- events	60 - 69	ge40	15-19	0-2	no	2	right	left_up	no
4	no-recurrence- events	40 - 49	premeno	0-4	0-2	no	2	right	right_low	no
281	recurrence- events	30 - 39	premeno	30-34	0-2	no	2	left	left_up	no
282	recurrence- events	30 - 39	premeno	20-24	0-2	no	3	left	left_up	yes
283	recurrence- events	60- 69	ge40	20-24	0-2	no	1	right	left_up	no
284	recurrence- events	40- 49	ge40	30-34	3-5	no	3	left	left_low	no
285	recurrence- events	50- 59	ge40	30-34	3-5	no	3	left	left_low	no

```
In [4]: | from sklearn.preprocessing import LabelEncoder
         le = LabelEncoder()
         for i in data:
              data[i] = le.fit_transform(data[i])
In [5]: | x= data.drop("irradiat",axis=1)
         y = data["irradiat"]
In [6]: x
Out[6]:
               Class age menopause tumor-size inv-nodes node-caps deg-malig breast breast-quad
            0
                   0
                       1
                                   2
                                              5
                                                        0
                                                                   1
                                                                             2
                                                                                    0
                                                                                                2
                                   2
                                                                             1
                                                                                                5
            1
                   0
                       2
                                              3
                                                        0
                                                                   1
                                                                                    1
                                   2
            2
                   0
                       2
                                              3
                                                        0
                                                                   1
                                                                             1
                                                                                    0
                                                                                                2
            3
                                   0
                                              2
                                                        0
                                                                             1
                                                                                    1
                                                                                                3
                   0
                       4
                                                                   1
                   0
                       2
                                   2
                                                        0
                                                                   1
                                                                                    1
                                                                                                4
                                   2
                                                                             1
          281
                   1
                       1
                                              5
                                                        0
                                                                   1
                                                                                    0
                                                                                                3
          282
                                   2
                                              3
                                                        0
                                                                   1
                                                                             2
                                                                                    0
                                                                                                3
                   1
                       1
                                   0
          283
                   1
                       4
                                              3
                                                        0
                                                                   1
                                                                             0
                                                                                    1
                                                                                                3
          284
                   1
                       2
                                   0
                                              5
                                                        4
                                                                   1
                                                                             2
                                                                                    0
                                                                                                2
                                   0
                                              5
                                                        4
                                                                             2
                                                                                    0
                                                                                                2
          285
                   1
                       3
                                                                   1
         286 rows × 9 columns
In [7]: y
Out[7]: 0
                 0
         1
                 0
         2
                 0
         3
                 0
         4
                 0
         281
                 0
         282
                 1
         283
                 0
         284
                 0
         285
         Name: irradiat, Length: 286, dtype: int32
In [8]: x.shape
Out[8]: (286, 9)
```

```
In [9]: y.shape
 Out[9]: (286,)
In [10]: | from sklearn.model_selection import train_test_split
         xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.25,random_state=0)
In [11]: xtrain1 = np.array(xtrain)
         xtest1 = np.array(xtest)
         ytrain1 = np.array(ytrain)
         ytest1 = np.array(ytest)
In [12]: xtrain1 = xtrain1.reshape(xtrain1.shape[0],xtrain1.shape[1],1)
         xtest1 = xtest1.reshape(xtest1.shape[0],xtest1.shape[1],1)
In [13]: xtrain1.shape
Out[13]: (214, 9, 1)
In [14]: xtest1.shape
Out[14]: (72, 9, 1)
In [15]: ytrain1.shape
Out[15]: (214,)
In [16]: ytest1.shape
Out[16]: (72,)
In [17]: from keras.layers import LSTM,Dense,Activation,Flatten
         from keras.models import Sequential
In [18]: | model = Sequential()
         model.add(LSTM(256,input_shape=(xtrain1.shape[1],1)))
         model.add(Dense(1, activation='softmax'))
         model.compile(loss='categorical_crossentropy', optimizer='adam')
```

```
In [19]: model.summary()
       Model: "sequential"
       Layer (type)
                               Output Shape
                                                     Param #
       ______
       lstm (LSTM)
                                (None, 256)
                                                     264192
       dense (Dense)
                                (None, 1)
                                                     257
       ______
       Total params: 264,449
       Trainable params: 264,449
       Non-trainable params: 0
In [20]: model.compile(metrics= ["accuracy"],optimizer="adam",loss="categorical_crossentro"
In [21]: history = model.fit(xtrain1, ytrain1,batch_size=10,epochs=250)
       Epoch 1/250
       22/22 [============= ] - 0s 13ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383
       Epoch 2/250
       22/22 [============== ] - 0s 12ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383 0s - loss: 0.0000e+00 - accura
       Epoch 3/250
       22/22 [============= ] - 0s 20ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383
       Epoch 4/250
       22/22 [============== ] - 0s 15ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383
       Epoch 5/250
       22/22 [============== ] - 0s 14ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383
       Epoch 6/250
       22/22 [============= ] - 0s 13ms/step - loss: 0.0000e+00 - ac
       curacy: 0.2383
       Epoch 7/250
```

ว่า/วา เ

In [22]: history = pd.DataFrame(history.history)
history

Out[22]:

	loss	accuracy
0	0.0	0.238318
1	0.0	0.238318
2	0.0	0.238318
3	0.0	0.238318
4	0.0	0.238318
245	0.0	0.238318
246	0.0	0.238318
247	0.0	0.238318
248	0.0	0.238318
249	0.0	0.238318

250 rows × 2 columns

In [23]: history.plot(figsize=(15,10))

Out[23]: <AxesSubplot:>


```
In [24]: ypredict = np.argmax(model.predict(xtest1), axis=-1)
In [25]: from sklearn.metrics import accuracy_score
accuracy_score(ytest1,ypredict)
```

Out[25]: 0.7638888888888888