Algorithms II Cheat Sheet

Tips

Apply an algorithm you know in a clever way, don't write a new algorithm.

Notation

```
A \in [10] \equiv A \in [1..10]
{a, b c} is a set of vertices
G{a, b, c} is a graph
```

Big O

Notation	Intuitive meaning	Analogue
	f grows at most as fast as g	<u> </u>
$f(n) \in \Omega(g(n))$	f grows at least as fast as g	\geq
$f(n) \in \Theta(g(n))$	f at the same rate as g	=
$f(n) \in o(g(n))$	f grows strictly less fast than g	<
$f(n) \in \omega(g(n))$	f grows strictly faster than g	>

Notation	Formal definition
$f(n) \in O(g(n))$	$\exists C, n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \Omega(g(n))$	$\exists c, n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$
$f(n) \in \Theta(g(n))$	$\exists c, C, n_0 : \forall n \geq n_0 : c \cdot g(n) \leq f(n) \leq C \cdot g(n)$
$f(n) \in o(g(n))$	$\forall C \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \leq C \cdot g(n)$
$f(n) \in \omega(g(n))$	$\forall c \colon \exists n_0 \colon \forall n \geq n_0 \colon f(n) \geq c \cdot g(n)$

Interval Scheduling

A **request** is a pair of integers (s, f) with $0 \le s \le f$. We call s the **start time** and f the **finish time**.

A set A of requests is **compatible** if for all distinct (s, f), $(s', f') \in A$, either $s' \ge f$ or $s \ge f'$ — that is, the requests' time intervals don't overlap.

Interval Scheduling Problem

Input: An array \mathcal{R} of n requests $(s_1, f_1), \ldots, (s_n, f_n)$.

Desired Output: A compatible subset of \mathcal{R} of maximum possible size.

Algorithm: GREEDYSCHEDULE

Input: An array \mathcal{R} of n requests.

Output: A maximum compatible subset of \mathcal{R} .

ı begin

```
Sort \mathcal{R}'s entries so that \mathcal{R} \leftarrow [(s_1, f_1), \dots, (s_n, f_n)] where f_1 \leq \dots \leq f_n.

Initialise A \leftarrow [], lastf \leftarrow 0.
```

foreach $i \in \{1, \ldots, n\}$ do

if $s_i >$ lastf then

Append (s_i, f_i) to A and update lastf $\leftarrow f_i$.

Return A

Complexity:

Step 2 takes O(n log n)

Steps 3–6 all take O(1) time and are executed at most n times.

 $\ \, :. \ \, totalrunning time \ \, = \ \, O(nlogn) \, + \, O(n)O(1) \, \, = \, O(nlogn).$

Interval Scheduling

Formal GreedySchedule

 $A^+:= \operatorname{argmin} \{f: (s,f) \in R, A \cup \{(s,f)\} \text{ is compatible} \} \text{ for all } A \subseteq R,$

 $A_0 := \emptyset, \qquad A_{i+1} := A_i \cup \{A_i^+\}$

 $t := \max\{i: A_i \text{ is defined}\}\$

Interval Scheduling Proofs

Lemma: Greedy Schedule always outupts A_t

Proof: By induction form the following loop invariant. At the start of the i'th iteration of 4-7:

- A is equal to $A_t \cap \{(s_1, f_1), ..., (s_{i-1}, f_{i-1})\}$
- last is equal to the latest finish time of any request in A (or 0 if A = [])

Lemma: A_t is a compatible set

Proof: Instant by induction; A_0 is compatible, and if A_i is compatible then so is $A_{i+1} = A_i \cup A^+$ by the definition of A_i^+

Lemma: A_t is a maximum compatible subset of the Array R (look in pseudocode)

Proof:

Base case for i = 1: A_0^+ is the fastest finishing request in R by definition

Inductive step: Suppose A_i finishes faster than B_i . Let B_i^+ be the (i+1)'st fastetst-finishing element of B. Since A_i finishes faster than B_i , $A_i \cup \{B_i^+\}$ is compatible. Hence by definition, A_i^+ exists and finishes no later than B_i^+

Theorem: GreedySchedule outputs A_t , which is a maximum compatible set.

Proof: putting all of the above proofs together, we prove the theorem.

Graph Theory

Definitions:

Graph: G = (V, E)

Edge: $\mathcal{E} = \mathcal{E}(\mathcal{G})$ is a set of edges contained in $\{\{u,v\}: u,v\in V, u\neq v\}$

Vertex: V = V(G) is a set of vertices

Subgraph: $H = (V_H, E_H)$ of G is a graph with $V_H \subset V$ and $E_H \subset E$

Induced Subgraph: is a subgraph if $E_H = \{e \in E : e \subseteq V_H\}$

Component: H of G is a maximal connected induced subgraph of G.

Degree: d(v) = |N(v)|

Neighbourhood: $N(v) = \{w \in V : \{v, w\} \in E\}$

Walk: sequence of vertices $v_0...v_k$ such that $\{v_i, v_{i+1}\} \in E$ for all $i \le k-1$

Length: the value of k (see above walk definition)

Euler Walk: a walk that contains every edge in G exactly once.

Isomorphism: two graphs are isomorphic if there is a bijection $f: V_1 \to V_2$ such that $\{f(u), f(v)\} \in E_2$ if and only if $\{u, v\} \in E_1$

Path: is a walk in which no vertices repeat

Connected: A graph is connected if any two vertices are joined by a path

Digraph: is a pair G = (V, E), V is a set of vertices and E is a set of edges contained in $\{(u, v) : u, v \in V, u \neq v\}$

Strongly connected: G is .. if for all $u, v \in V$, there is a path from u to v and a path from v to u.

Weakly connected:

In-Neighbourhood: $N^-(v) = \{u \in V(G) : (u, v) \in E(G)\}\$

Out-Neighbourhood: $N^+(v) = \{w \in V(G) : (v, w) \in E(G)\}$

Cycle: is a walk $W = w_0...w_k$ with $w_0 = w_k$ and $k \geq 3$, in which every vertex appears at most once except for w_0 and w_k (which appear twice)

Hamilton cycle: is a cycle containing every vertex in the graph

Bijection:

Graph Theory

Theorem: If G has an Euler walk, then either:

- every vertex of G has even degree; or
- all but two vertices v_0 and v_k have even degree, and any euler walk must have v_0 and v_k as endpoints

Theorem: let G = (V, E) be a digraph with no isolated vertices, and let $U, v \in V$. Then G has an Euler walk from u to v if and only if G is weakly connected and either:

- u = v and every vertex of G has equal in- and out-degrees; order
- $u \neq v, d^+(u) = d^-(u) + 1, d^-(v) = d^+(v) + 1$ and every other vertex of G has equal in- and out-degrees

m ODEs ————	
1st Order Linear	Use integrating factor,
	$I = e^{\int P(x)dx}$
Separable:	$\int P(y)dy/dx = \int Q(x)$
HomogEnEous:	$\frac{dy/dx = f(x,y) = f(xt,yt)}{dy/dx}$
_	sub $y = xV$ solve, then sub
	V = y/x
Exact:	If $M(x,y) + N(x,y)dy/dx =$
	0 and $M_y = N_x$ i.e.
	$\langle M, N \rangle = \overset{\circ}{\nabla} F$ then $\int_{T} M +$
	$\int_{\mathcal{U}} N = F$
Order Reduction	Let $v = dy/dx$ then check
	other types
	If purely a function of y,
	$\frac{dv}{dx} = v \frac{dv}{dy}$
Variation of Parameters	
J	$F \text{ contains } \ln x, \sec x, \tan x,$
	÷
Bernoulli	$y' + P(x)y = Q(x)y^n$
	$\div y^n$
	$y^{-n}y' + P(x)y^{1-n} = Q(x)$
	$Let \ U(x) = y^{1-n}(x)$
	$\frac{dU}{dx} = (1-n)y^{-n}\frac{dy}{dx}$
	$\frac{\frac{dU}{dx}}{\frac{1}{1-n}} = (1-n)y^{-n} \frac{dy}{dx}$ $\frac{1}{1-n} \frac{du}{dx} + P(x)U(x) = Q(x)$
	$solve \ as \ a \ 1st \ order$
Cauchy-Euler	$x^n y^n + a_1 x^{n-1} y^{n-1} + \dots +$
	$a_{n-1}y^{n-2} + a_n y = 0$
	guess $y = x^r$
3 Cases:	
1) Distinct real roots	$y = ax^{r_1} + bx^{r_2}$
2) Repeated real roots	$y = Ax^r + y_2$
	$Guess \ y_2 = x^r u(x)$
	Solve for $u(x)$ and choose
	one $(A = 1, C = 0)$
3) Distinct complex root	$ts y = B_1 x^a \cos(b \ln x) + $

 $B_2 x^a \sin(b \ln x)$

Laplace Transforms

$$\begin{split} \overline{L[f](s)} &= \int_0^\infty e^{-sx} f(x) dx \\ f(t) &= t^n, n \geq 0 & F(s) = \frac{n!}{s^{n+1}}, s > 0 \\ f(t) &= e^{at}, a \ constant & F(s) = \frac{1}{s-a}, s > a \\ f(t) &= \sin bt, b \ constant & F(s) = \frac{b}{s^2+b^2}, s > 0 \\ f(t) &= \cos bt, b \ constant & F(s) = \frac{s}{s^2+b^2}, s > 0 \\ f(t) &= t^{-1/2} & F(s) = \frac{\pi}{s^{1/2}}, s > 0 \\ f(t) &= \delta(t-a) & F(s) = e^{-as} \\ f' & L[f'] &= sL[f] - f(0) \\ f'' & L[f''] &= s^2 L[f] - sf(0) - f'(0) \\ L[e^{at} f(t)] & L[f](s-a) \\ L[u_a(t) f(t-a)] & L[f]e^{-as} \end{split}$$

Vector Spaces

- $v_1, v_2 \in V$
- 1. $v_1 + v_2 \in V$
- $2. k \in \mathbb{F}, kv_1 \in V$
- 3. $v_1 + v_2 = v_2 + v_1$
- 4. $(v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$
- 5. $\forall v \in V, 0 \in V \mid 0 + v_1 = v_1 + 0 = v_1$
- 6. $\forall v \in V, \exists -v \in V \mid v + (-v) = (-v) + v = 0$
- 7. $\forall v \in V, 1 \in \mathbb{F} \mid 1 * v = v$
- 8. $\forall v \in V, k, l \in \mathbb{F}, (kl)v = k(lv)$
- 9. $\forall k \in \mathbb{F}, k(v_1 + v_2) = kv_1 + kv_2$
- 10. $\forall v \in V, k, l \in \mathbb{F}, (k+l)v = kv + lv$