Week 9

Agenda

- 1. Wrap up supervised learning
- 2. K-means review
- 3. K-means notebook

datascience@berkeley

K-means

- Goal: assign each of N points/observations to one of K clusters, where K is determined a priori
- Each cluster has a centroid μ_k
- Loss function (Euclidean distance):

$$J = \sum_{i=1}^{N} \sum_{k=1}^{K} r_{ik} ||x_i - \mu_k||_2^2$$

- · How to minimize loss function:
 - Choose centroids μ_k
 - · Assign each data point to centroid
 - Realign centroid to center of mass
 - o Repeat last two steps until complete
- This process will converge to a local minimum
- · Pseudo-code:

Initially choose k points that are likely to be in different clusters;

Make these points the centroids of their clusters; FOR each remaining point p DO

find the centroid to which p is closest;
Add p to the cluster of that centroid;
Adjust the centroid of that cluster to account for p;

END;

- 1. Describe the training algorithm.
- 2. What is the training complexity? Prediction?
- Can K-means be trained online?
- 4. What might you use K-means for?

K-means

How Many Clusters?

- General principles
 - Similar to choosing k in k-Nearest neighbors
 - Structural knowledge important
 - Loss will decrease as k increases
- Automatic methods for determining k
 - Gap statistic
 - Intracluster correlation
 - o etc.

1. What might make for a 'good' number of clusters?

K-means

k-Means Clustering: Perspective

- Pros:
 - Fast, reasonable approximation for spherical data
 - Intuitive
 - Guaranteed to converge
 - Each point assigned to exactly one cluster
- · Cons:
 - Points assigned to exactly one cluster
 - Assignment can be sensitive
 - Clusters can be sensitive to data, especially outliers

1. Review.

Final Thoughts?