A generic explanation of filtration and sigma field

Jingxiang Zou

October 2023

This short text is inspired by [DB06].

1 The model

Consider a simple binary code generating process which goes like this.

The code has a constant prefix 'A', followed by an 5 digit binary numbers which shall be given in a sequential generating process. Each step the process spits out a number, which is either 0 or 1, and this shall be filled in the corresponding digit of the code. Here are some sample codes:

A01011

A11101

A01000

For purpose of illustration let us denote the code as $Aa_1a_2a_3a_4a_5$

The whole process can be illustrated in by the following binary tree model:

We specified the corresponding time steps to be $t_i, i \in \{0, 1, 2, 3, 4, 5\}$

The sigma algebra at each time step is:

- 1. $F_{t_0} = \{A(_)(_)(_)(_)\}$, which is also the set of all possible codes that can be finally generated. This sigma field has 1 element.
- 2. $F_{t_1} = \{A(_)(_)(_)(_)(_), A(a_1 = 0)(_)(_)(_)(_), A(a_1 = 1)(_)(_)(_)\}$ with 1 + 2 = 3 elements

- 3. $F_{t_2} = \{A(_)(_)(_)(_)(_), A(a_1 = 0)(_)(_)(_), A(a_1 = 1)(_)(_)(_), A(a_1 = 0)(a_2 = 0)(_)(_), A(a_1 = 0)(a_2 = 1)(_)(_)\}, A(a_1 = 1)(a_2 = 0)(_)(_), A(a_1 = 1)(a_2 = 1)(_)(_)\}$ with $1 + 2 + 2^2 = 7$ elements.
- 4. $F_{t_4} = ...$
- 5. $F_{t_5} = ...$, which is also the sample space Ω , with $2^5 1 = 31$ elements.

Consider event $E_1 := \{A(a_1 = 0)(a_2 = 0)(a_3 = 0)(_)(_)\}$, this event is not F_{t_1} measurable (or mbl. in short) because F_{t_1} tells us nothing about information pertaining to a_2 and a_3 , which is depicted mathematically by the fact that $E_1 \notin F_{t_1}$.

The sigma field contains events of which you can verdict that whether it happens or it does not happen by the corresponding time step. For example, we know that

$$F_{t_2} = \{A(_)(_)(_)(_)(_), ..., A(a_1 = 1)(a_2 = 1)(_)(_)(_)\}$$

thus for any random time we go through the process, we can verdict at time step 2 that whether $E_2 := A(a_1 = 0)(_)(_)(_)(_)$ happens or not. The very fact that we can make such verdict implies that $A(a_1 = 0)(_)(_)(_)(_)$ is F_{t_2} mbl, as depicted by the fact that $E_2 \in F_{t_2}$.

Similarly, we can not verdict at time step 1 whether $E_1 := \{A(a_1 = 0)(a_2 = 0)(a_3 = 0)(_)\}$ happens or not, the fact that we may not make such verdict implies that E_1 is not F_{t_1} mbl.

We have $F \supseteq F_{t_j} \supseteq F_{t_i}$ for all $i \leq j$, meaning that "the information increases in time", never exceeding the whole set of events F. The family of sigma fields (F_{t_i}) $i \in \{0, 1, 2, 3, 4, 5\}$ is called filtration.

References

[DB06] Fabio Mercurio Damiano Brigo. Interest Rate Models – Theory and Practice With Smile, Inflation and Credit. Springer, New York, NY, 2006.