Depends on how we implement make_set, find_set, and union

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\rightarrow a \rightarrow b \rightarrow c$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\rightarrow a \rightarrow b \rightarrow c$ find_set(b):

Depends on how we implement make_set, find_set, and union Using linked list:

$$\{a,b,c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$

Depends on how we implement make_set, find_set, and union Using linked list:

$$\{a, b, c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$ make_set(v):

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \stackrel{\longleftarrow}{\operatorname{head}} \rightarrow a \rightarrow b \rightarrow c \qquad \begin{array}{ll} \operatorname{find_set}(b) \colon O(1) \\ & \operatorname{make_set}(v) \colon O(1) \end{array}$$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$ make_set(v): $O(1)$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \qquad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b)$$

Depends on how we implement make_set, find_set, and union

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union:

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Depends on how we implement make_set, find_set, and union

Using linked list:

$$\{a,b,c\} \quad \text{head} \to a \to b \to c \quad \text{find_set}(b) \colon O(1)$$

$$\text{make_set}(v) \colon O(1)$$

$$\{d,e\} \quad \text{head} \to d \to e$$

$$\text{union}(a,b) \quad \text{head} \to a \to b \to c \to d \to e$$

Cost of union: O(length of the shorter list)

Using an array to implement it:

Depends on how we implement make set, find set, and union

Using linked list:

$$\{a, b, c\}$$
 head $\to a \to b \to c$ find_set(b): $O(1)$ make_set(v): $O(1)$

$$\{d,e\}$$
 head $\to d \to e$ union (a,b) head $\to a \to b \to c \to d \to e$

Cost of union: O(length of the shorter list)

Using an array to implement it:

vertex	1	2	3	4	5	union	1	2	3	4	5
head	1	1	1	4	4		1	1	1	1	1

Worst-case cost for union:

Worst-case cost for union: O(|V|).

Worst-case cost for union: O(|V|). What about the cost for lines 6-9?

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles.

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times At most |V| vertices are involved in union operations, so the total cost of lines 6-9:

Worst-case cost for union: O(|V|). What about the cost for lines 6-9?

Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times At most |V| vertices are involved in union operations, so the total cost of lines 6-9: $O(|V|\log |V|)$

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times

At most |V| vertices are involved in union operations, so the total cost of lines 6-9: $O(|V| \log |V|)$

Total cost of the algorithm:

Worst-case cost for union: O(|V|). What about the cost for lines 6-9? Consider a single $v \in V$. Once it's touched in some union operation, the size of the set at least doubles. Since the maximum size of a set can be |V|, each v is touched at most $O(\log |V|)$ times

At most |V| vertices are involved in union operations, so the total cost of lines 6-9: $O(|V|\log |V|)$

Total cost of the algorithm: $O(|E| \log |V|)$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

 $\{a\}$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

$$\{a\}$$
 C_a

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

$$\{a\}$$
 C_a $\{a,b\}$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

$$\{a\}$$
 C_a $\{a,b\}$ C_a

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

$$\{a\}$$
 C_a $\{a,b\}$ C_a $\{a,b,c\}$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

The linked-list implementation is good enough, but there exist better data structures to improve the worst-case cost for union

Directed tree disjoint set:

Definition

 $\pi(x)$: parent of x

root node: x s.t. $\pi(x) = x$

• $make_set(v)$

make_set(v)

def make_set(v): $\pi(v) := v;$ $\operatorname{rank}(v) = 0;$

```
• make_set(v)

def make_set(v):

\pi(v) := v;

\operatorname{rank}(v) = 0;

Cost: O(1)
```

```
    make_set(v)
    def make_set(v):
     π(v) := v;
     rank(v) = 0;
    Cost: O(1)
    find_set(v)
```

```
• make_set(v)
  def make_set(v):
     \pi(v) := v;
      rank(v) = 0;
  Cost: O(1)
• find_set(v)
  def find_set(v):
      while v \neq \pi(v):
       v := \pi(v);
      return v;
```

```
\bullet make_set(v)
  def make_set(v):
      \pi(v) := v;
      rank(v) = 0;
  Cost: O(1)
• find_set(v)
  def find_set(v):
      while v \neq \pi(v):
       v := \pi(v);
      return v;
  Cost: O(depth of the node in the tree)
```

```
\bullet make_set(v)
  def make_set(v):
      \pi(v) := v;
      rank(v) = 0;
  Cost: O(1)
• find_set(v)
  def find_set(v):
      while v \neq \pi(v):
       v := \pi(v);
      return v;
```

Cost: O(depth of the node in the tree)

what about union?

• union:

• union:

• union:

Option 1

• union:

$$b^0$$
 c^0
 e^0
 d^2
 f^1
 h^0

Option 1

$$b^{0}$$
 c^{0}
 e^{0}
 d^{2}
 f^{1}
 g^{0}
 h^{0}

Option 2

union:

Option 1

$$b^{0}$$

$$c^{0}$$

$$e^{0}$$

$$d^{2}$$

$$h^{0}$$

$$c^{0}$$

$$d^{2}$$

$$d^{2$$

better!

• union:

Option 1
$$c^0$$
 e^0 d^2 f^1 g^0 h^0 Option 2 d^2 e^0 f^1 g^0 h^0 better!

Basic idea: attach the smaller ranked tree to a larger one

def union(x, y):

def union(x, y):

$$r_x := \text{find_set}(x), \ r_y := \text{find_set}(y);$$

```
def union(x, y):

r_x := \text{find\_set}(x), r_y := \text{find\_set}(y);

if rank(r_x) > rank(r_y):
```

```
def union(x, y):

r_x := \text{find\_set}(x), r_y := \text{find\_set}(y);

if rank(r_x) > rank(r_y):

\pi(r_y) := r_x;
```

```
\begin{aligned} \textbf{def } & \operatorname{union}(x,y) \textbf{:} \\ & r_x := \operatorname{find\_set}(x), \ r_y := \operatorname{find\_set}(y); \\ & \textbf{if } & \operatorname{rank}(r_x) > \operatorname{rank}(r_y) \textbf{:} \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\
```


$$b^{0} \xrightarrow{x^{0}} x^{0} e^{0} \xrightarrow{f^{1}} f^{1} \Longrightarrow b^{0} \xrightarrow{x^{0}} e^{0} \xrightarrow{f^{1}} f^{1}$$


```
\begin{aligned} \textbf{def } & \text{union}(x,y) \text{:} \\ & r_x := \text{find\_set}(x), \ r_y := \text{find\_set}(y); \\ & \textbf{if } & \text{rank}(r_x) > \text{rank}(r_y) \text{:} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\
```



```
def union(x, y):
       r_x := \text{find\_set}(x), r_y := \text{find\_set}(y);
       if rank(r_x) > rank(r_v):
        \pi(r_y) := r_x;
       else:
              \pi(r_{\mathsf{x}}) := r_{\mathsf{v}};
      if \operatorname{rank}(r_x) == \operatorname{rank}(r_y):

\operatorname{rank}(r_y) := \operatorname{rank}(r_y) + 1;
```

Cost: dominated by find_set

$$b^{0} x^{0} e^{0} f^{1} \Longrightarrow b^{0} x^{0} e^{0} f^{1} \Longrightarrow b^{0} x^{0} e^{0} f^{1} \downarrow y^{0}$$

$$b^{0} x^{0} e^{0} f^{1} \Longrightarrow b^{0} x^{0} e^{0} f^{1} \downarrow y^{0}$$

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1.

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging,

the number of nodes is
$$\geq 2^{k-1} + 2^{k-1} = 2^k$$

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $2^{k-1}+2^{k-1}=2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $> 2^{k-1} + 2^{k-1} = 2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

• the cost of find_set:

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $> 2^{k-1} + 2^{k-1} = 2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

• the cost of find_set: $O(\log |V|)$

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $> 2^{k-1} + 2^{k-1} = 2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

- the cost of find_set: $O(\log |V|)$
- the cost of union:

Observation

Root note with rank k is formed by the merge of two rank k-1 trees

Lemma

Any root node of rank k has at least 2k nodes in it

Proof.

By induction: base case has k = 0 and $2^0 = 1$.

Assume the statement is true for k-1. By observation: after merging, the number of nodes is $> 2^{k-1} + 2^{k-1} = 2^k$

By the lemma, if we have |V| nodes, the maximum rank is $\log |V|$. So

- the cost of find_set: $O(\log |V|)$
- the cost of union: $O(\log |V|)$

```
1 def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
      Set A := \{ \};
      for v \in V:
          make_set(v);
                                                                         // O(|V|)
      Sort E in increasing order of edge weights ;
                                                                 // O(|E| \log |V|)
      for (u, v) \in E:
          if find_set(u) \neq find_set(v):
             A := A \cup \{(u, v)\};
              union(u, v);
```

Lines 6-9:

```
1 def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
      Set A := \{ \};
      for v \in V:
         make_set(v);
                                                                       // O(|V|)
      Sort E in increasing order of edge weights ;
                                                                // O(|E| \log |V|)
      for (u, v) \in E:
          if find_set(u) \neq find_set(v):
             A:=A\cup\{(u,v)\};
             union(u, v);
```

```
1 def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
      Set A := \{ \};
      for v \in V:
         make_set(v);
                                                                         // O(|V|)
      Sort E in increasing order of edge weights ;
                                                                 // O(|E| \log |V|)
      for (u, v) \in E:
          if find_set(u) \neq find_set(v):
             A := A \cup \{(u, v)\};
             union(u, v);
```

Lines 6-9: $O(|E| \log |V|)$

Total cost:

```
1 def Kruskal_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
      Set A := \{ \};
      for v \in V:
         make_set(v);
                                                                      // O(|V|)
      Sort E in increasing order of edge weights ;
                                                               // O(|E| \log |V|)
      for (u, v) \in E:
          if find_set(u) \neq find_set(v):
                                                             directed Tree Distal
                                         Linked list
              A:=A\cup\{(u,v)\};
              union(u, v);
                                make_set
                                                                 6 (I)
                                              0 (I)
                                              ou)
                                                               0 (log [v1)
  Lines 6-9: O(|E| \log |V|)
                                              (JVI)
                                                              ( ( ( ( ) ( ) ( )
  Total cost: O(|E| \log |V|)
```

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Mar 3, 2022

14

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

14

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Intuition: iteratively grows the tree

Let S be the set included in the tree so far

Let S be the set included in the tree so far

$$cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e$$

Let S be the set included in the tree so far

$$\operatorname{cost}(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } \operatorname{prev}(\cdot) \text{ is used to keep track of the tree}$$

Let S be the set included in the tree so far

$$cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}$$

def PRIM_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$):

Let S be the set included in the tree so far

```
\operatorname{cost}(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } \operatorname{prev}(\cdot) \text{ is used to keep track of the tree}
```

def PRIM_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$):

```
for v \in V:
\begin{array}{c} \cot(v) := \infty; \\ \operatorname{pre}(v) = \operatorname{nil}; \end{array}
```

Let S be the set included in the tree so far

 $\operatorname{cost}(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } \operatorname{prev}(\cdot) \text{ is used to keep track of the tree}$

def PRIM_MST(undirected G = (V, E), weights $w = (w_e)_{e \in E}$):

```
for v \in V:
\begin{vmatrix} \cos(v) := \infty; \\ \text{prev} := \text{nil}; \end{vmatrix}
```

Pick any initial vertex u_0 ;

```
Let S be the set included in the tree so far
```

 $\operatorname{cost}(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } \operatorname{prev}(\cdot) \text{ is used to keep track of the tree}$

def PRIM_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$):

```
for v \in V:

\begin{vmatrix}
\cot(v) := \infty; \\
\text{prev} := \text{nil};
\end{vmatrix}
```

Pick any initial vertex u_0 ;

 $cost(u_0) := 0;$

```
Let S be the set included in the tree so far \operatorname{cost}(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } \operatorname{prev}(\cdot) \text{ is used to keep track of the tree} def \operatorname{PRIM\_MST}(undirected\ G = (V, E),\ weights\ w = (w_e)_{e \in E}):

\left[\begin{array}{c} \operatorname{for}\ v \in V \colon\\ & \operatorname{cost}(v) := \infty;\\ & \operatorname{prev}\ := \operatorname{nil}; \end{array}\right]
\left[\begin{array}{c} \operatorname{Pick\ any\ initial\ vertex\ } u_0;\\ & \operatorname{cost}(u_0) := 0;\\ & H := \operatorname{make\_queue}(V); \end{array}\right]
\left[\begin{array}{c} //\ \operatorname{keys\ are\ cost}(v) \\ \end{array}\right]
```

```
Let S be the set included in the tree so far
cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}
def PRIM_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    for v \in V:
         cost(v) := \infty;
        prev := nil;
    Pick any initial vertex u_0;
    cost(u_0) := 0;
    H := \text{make\_queue}(V);
                                                                      // keys are cost(v)
    while H is not empty:
```

Mar 3, 2022

```
Let S be the set included in the tree so far
cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}
def PRIM_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    for v \in V:
         cost(v) := \infty;
        prev := nil;
     Pick any initial vertex u_0;
    cost(u_0) := 0;
     H := \text{make\_queue}(V);
                                                                      // keys are cost(v)
    while H is not empty:
         v = \text{delete\_min}(H);
```

```
Let S be the set included in the tree so far
cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}
def PRIM_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    for v \in V:
         cost(v) := \infty;
         prev := nil;
     Pick any initial vertex u_0;
    cost(u_0) := 0;
     H := \text{make\_queue}(V);
                                                                      // keys are cost(v)
    while H is not empty:
         v = \text{delete\_min}(H);
         for e := (v, z) \in E:
```

```
Let S be the set included in the tree so far
cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}
def PRIM_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    for v \in V:
         cost(v) := \infty;
         prev := nil;
     Pick any initial vertex u_0;
    cost(u_0) := 0;
     H := \text{make\_queue}(V);
                                                                      // keys are cost(v)
    while H is not empty:
         v = \text{delete\_min}(H);
         for e := (v, z) \in E:
              if cost(z) > w_e:
```

```
Let S be the set included in the tree so far
cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}
def PRIM_MST (undirected G = (V, E), weights w = (w_e)_{e \in E}):
    for v \in V:
         cost(v) := \infty;
        prev := nil;
    Pick any initial vertex u_0;
    cost(u_0) := 0;
    H := \text{make\_queue}(V);
                                                                     // keys are cost(v)
    while H is not empty:
         v = \text{delete\_min}(H);
         for e := (v, z) \in E:
              if cost(z) > w_e:
             cost(z) := w_e;
```

Let S be the set included in the tree so far $cost(v) := \min_{e=(u,v) \text{ s.t. } u \in S} w_e \text{ and } prev(\cdot) \text{ is used to keep track of the tree}$ **def** PRIM_MST (undirected G = (V, E), weights $w = (w_e)_{e \in E}$): for $v \in V$: $cost(v) := \infty;$ prev := nil;Pick any initial vertex u_0 ; $cost(u_0) := 0;$ $H := \text{make_queue}(V)$; // keys are cost(v)**while** *H* is not empty: $v = \text{delete_min}(H);$ for $e := (v, z) \in E$: if $cost(z) > w_e$: $cost(z) := w_e;$ prev(z) := v;

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	®/nit	7/ <i>f</i>	2) f	6/ <i>f</i>		$\frac{\infty}{2}$	
								' '

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>		2/d	4/d

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/f		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/f		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/f			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			

Set S	a	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/f		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			
f, d, g, h, e	∞ /nil	8/ <i>d</i>	1/e					

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			
f, d, g, h, e	∞/nil	8/ <i>d</i>	1/e					
f, d, g, h, e, c	8/ <i>c</i>	8/ <i>d</i>						

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			
f, d, g, h, e	∞/nil	8/ <i>d</i>	1/e					
f, d, g, h, e, c	8/ <i>c</i>	8/ <i>d</i>						
f, d, g, h, e, c, b	4/b							

Set S	а	b	С	d	е	f	g	h
{}	∞/nil	∞/nil	∞/nil	∞/nil	∞/nil	0/nil	∞/nil	∞/nil
f	∞/nil	∞/nil	7/f	2/f	6/ <i>f</i>		∞/nil	∞/nil
f, d	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>		2/d	4/d
f, d, g	∞/nil	8/ <i>d</i>	7/f		6/ <i>f</i>			4/d
f, d, g, h	∞/nil	8/ <i>d</i>	7/f		2/h			
f,d,g,h,e	∞/nil	8/ <i>d</i>	1/e					
f,d,g,h,e,c	8/ <i>c</i>	8/ <i>d</i>						
f,d,g,h,e,c,b	4/b							
f, d, g, h, e, c, b, a								

Greedy algorithms

Huffman Encoding (Textbook Section 5.2)

Huffman Encoding

An encoding scheme used in, e.g., MP3 encoding

Data: a string S of symbols over an alphabet Γ

Goal: find a binary encoding e of Γ resulting in minimum encoded length of S

Denote the encoded string by S_e

Different encodings

Consider $\Gamma = \{a, b, c\}$

Stats on S: a appears 45 times, b 16 times, and c twice

Fixed-length encoding

$$a \to 00$$
 $e_1: b \to 01 |S_{e_1}| = 45 \times 2 + 16 \times 2 + 2 \times 2 = 126$
 $c \to 10$

Variable-length encoding

$$\begin{array}{ccc} a \rightarrow 0 \\ e_2: & b \rightarrow 10 & |S_{e_2}| = 45 \times 1 + 16 \times 2 + 2 \times 2 = 81 \\ & c \rightarrow 11 \end{array}$$

$$a \rightarrow 0$$

ullet Be careful! $e_2: b
ightarrow 1$ Decoding will lead to ambiguity c
ightarrow 01

Prefix-free encoding

$$a \rightarrow 0$$

Consider the bad encoding $e_2: b \to 1$ How to decode 010110? $c \to 01$

To avoid ambiguity, we need the encoding to be prefix-free

Definition

An encoding is **prefix-free** if no codeword is a prefix of any other codewords