

Esperimenti MIP per una classe di problemi di assegnamento quadratico

Laureando: Mattia Toffolon Relatore: Prof. Domenico Salvagnin

Padova, 18 luglio 2023

Indice

- Introduzione al problema di assegnamento quadratico
- Istanze Tai*c
- Modellazione algebrica
- Risultati sperimentali
- Conclusioni

Quadratic assignment problem

Il problema di ottimizzazione di assegnamento quadratico (QAP) consiste nell'assegnare \boldsymbol{n} unità in \boldsymbol{n} posizioni differenti. Sono noti il flusso di informazioni da trasferire da ogni unità alle altre e per ogni coppia di posizioni la distanza che le separa.

L'assegnamento ottimale è quello che rende **minima** la **somma dei prodotti flusso x distanza** relativi ad ogni coppia di unità.

Matematicamente, il problema può essere espresso come segue

$$\min_{\pi \in P(n)} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} b_{\pi_i \pi_j}$$

Istanze Tai*c

La classe di problemi QAP studiata è quella delle istanze **Tai*c**.

Tali istanze sono generate dal metodo **Densità di grigio**. Questo si fonda sull'uso di un'apposita griglia composta da *n* caselle ed un valore di densità per ottenere i parametri di distanza e flusso.

Le soluzioni a queste istanze possono essere visulizzate come griglie e combinate per ottenere la tonalità di grigio desiderata.

Figura: Esempio per un'istanza di dimensione 36 a densità 40%

Modellazione algebrica - 1

Le diverse fasi in cui si è articolata la modellazione algebrica del problema di ottimizzazione sono state:

- individuazione degli insiemi
- individuazione dei parametri
- individuazione delle variabili
- definizione dei vincoli e della funzione obiettivo
- linearizzazione del modello
- semplificazione del modello

Le ultime due fasi sono state necessarie per adattare il modello alla **forma MIP** e per **ridurre il costo computazionale** richiesto per risolvere le verie istanze del problema.

Modellazione algebrica - 2

Il risultato dalla modellazione algebrica è il seguente modello:

$$\begin{aligned} & \min \sum_{i \in I} \sum_{j \in I} b_{ij} \cdot y_{ij} \\ & \sum_{i \in I} x_i = n_1 \\ & y_{ij} \leq x_i & \forall i, j \in I \\ & y_{ij} \leq x_j & \forall i, j \in I \\ & y_{ij} \geq x_i + x_j - 1 & \forall i, j \in I \\ & x_i, y_{ij} \in \{0, 1\} & \forall i, j \in I \end{aligned}$$

Si nota come, dato n il numero di unità e di posizioni, è necessario prendere in esame n^2 variabili. Da qui deriva l'elevata complessità di risoluzione delle istanze del problema in oggetto.

Risultati sperimentali - 1

Tramite alcuni script *Python* ed il software risolutore *CPLEX* è stato possibile trovare le soluzioni ad alcune istanze del problema e ricavare i **tempi medi di risoluzione** riportati nella seguente tabella.

	9	16	25	36	42	45
10%	0.2	0.1	0.3	0.6	0.8	1.1
20%	0.1	0.1	0.3	0.9	5.0	13.0
30%	0.1	0.1	0.3	13.0	296.4	913.0
40%	0.1	0.2	1.6	66.9	1611.0	4896.7
50%	0.1	0.2	2.6	18.4	373.0	2942.4
60%	0.1	0.2	2.5	97.7	2209.5	6708.0
70%	0.1	0.1	0.7	70.8	1641.5	5853.2
80%	0.1	0.1	0.5	6.4	36.4	158.7
90%	0.1	0.1	0.3	8.0	1.3	5.7

Risultati sperimentali - 2

I dati ottenuti dalle sperimentazioni sono stati utilizzati per tracciare i seguenti grafici. Essi rappresentano l'andamento dei tempi rispetto alla dimensione dell'istanza e alla densità di grigio.

Risultati sperimentali - 3

Le soluzioni ottime delle istanze possono essere visulizzate come griglie "densità di grigio". Quelle qui riportate corrispondono alle soluzioni trovate per tre istanze differenti.

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16	17	18	19
20	21	22	23	24

(b) n=49 d=30%

(c)
$$n=36 d=70\%$$

Conclusioni

Risultati

- L'andamento dei tempi medi di risoluzione rispetto alla dimensione dell'istanza è generalmente esponenziale.
 Al variare del valore di densità si notano differenze minori.
- Tramite la visualizzazione per griglie si può confermare la validità delle soluzioni rispetto al metodo di generazione.

Possibili futuri sviluppi

- estensione del time limit imposto al risolutore CPLEX
- utilizzo di un calcolatore più potente per risolvere istanze di dimensioni maggiori
- ricerca di un modello più efficiente

Ringraziamenti

Grazie per l'attenzione!

Esperimenti MIP per una classe di problemi di assegnamento quadratico

Laureando: Mattia Toffolon Relatore: Prof. Domenico Salvagnin

Padova, 18 luglio 2023