11) The set S of all $x \in [0,1]$ that can be represented without a 4 in its decimal expansion has measure 0.

Proof: Define S_n as containing all $x \in [0, 1]$ where the first n digits of its decimal representation $\neq 4$, thus $S = \lim_{n\to\infty} m(S_n)$. Since $0.4 = 0.3\overline{9}$, we have that $S_1 = [0, 4/10] \cup [5/10, 1]$, thus $m(S_1) = 9/10$. At each n, we eliminate a tenth of the numbers, so we have that $m(S_n) = \frac{9}{10}m(S_{n-1})$, thus $m(S_n) = (9/10)^n$, and thus $m(S) = \lim_{n\to\infty} (9/10)^n = 0$.

16) Let $\{E_k\}_{k\in\mathbb{N}}$ be a countable collection of measurable sets where

$$M = \sum_{k \in \mathbb{N}} m(E_k) < \infty$$

and define $E = \{x \in \mathbb{R}^d : x \in E_k \text{ for infinitely many } k\}$, then we have that E is measurable and m(E) = 0.

Proof: For all $x \in E$, we have that $x \in \bigcup_{k>N} E_k$ for arbitrary $N \in \mathbb{N}$, thus $E \subseteq \bigcup_{k>N} E_k$. Fix $\varepsilon > 0$, then for each E_k we can choose an open set O_k where $E_k \subseteq O_k$ and $m_*(O_k) < m_*(E_k) + \varepsilon/2^k$. [1] Define the open set $O = \bigcup_{k>N} O_k$, then $E \subseteq O$ and

$$m_*(O) = m_* \left(\bigcup_{k > N} O_k \right) \le \sum_{k > N} m_*(O_k) < \sum_{k > N} \left(m_*(E_k) + \frac{\varepsilon}{2^k} \right) < \sum_{k > N} m_*(E_k) + \varepsilon,$$

which implies

$$m_*(O \setminus E) = m_*(O) - m_*(E) < \sum_{k > N} m_*(E_k) + \varepsilon.$$

As $N \to \infty$, we have that $\sum_{k>N} m_*(E_k) \to 0$ since $M < \infty$, thus $m_*(O \setminus E) < \varepsilon$ and E is measurable. Since $E \subseteq \bigcup_{k>N} E_k$, we have $m_*(E) \le \sum_{k>N} m_*(E_k)$, but $\sum_{k>N} m_*(E_k) \to 0$, so $m_*(E) \le 0$, thus $m_*(E) = m(E) = 0$.

- **25)** Fix $\varepsilon > 0$ and let $E \subseteq \mathbb{R}^d$, then the following are equivalent:
 - (1) There exists an open set O where $E \subseteq O$ and $m_*(O \setminus E) < \varepsilon$
 - (2) There exists a closed set F where $F \subseteq E$ and $m_*(E \setminus F) < \varepsilon$

Proof: By **theorem 3.4**, we have that $(1) \implies (2)$.

Now assume (2) holds for E and let $F \subseteq E$ be a closed set where $m_*(E \setminus F) < \varepsilon$. We have that $F^{\complement} \setminus E^{\complement} \subseteq E \setminus F$, thus $m_*(F^{\complement} \setminus E^{\complement}) \le m_*(E \setminus F) < \varepsilon$. Since F^{\complement} is open and $E^{\complement} \subseteq F^{\complement}$, we have that (1) holds for E^{\complement} , and thus (2) does as well. But then we can choose $E = E^{\complement}$ and use the same argument to show that (1) holds for E. Thus (2) \Longrightarrow (1) and we are finished.

26) Fix measurable sets A and B with finite measure and let E be a set where $A \subseteq E \subseteq B$. If m(A) = m(B), then E is measurable.

Proof: Fix $\varepsilon > 0$. We can choose an open set O where $B \subseteq O$ and $m_*(O) - m_*(B) < \varepsilon/2$ and a closed set F where $F \subseteq A$ and $m_*(A) - m_*(F) < \varepsilon/2$, thus we have $m_*(O) - m_*(B) + m_*(A) - m_*(F) = m_*(O) - m_*(F) < \varepsilon$. Since $A \subseteq E$, we have $m_*(A) \le m_*(E)$ and thus $m_*(F) \le m_*(E)$. From this we have $m_*(O) - m_*(E) \le m_*(O) - m_*(F) < \varepsilon$, which shows $m_*(O \setminus E) < \varepsilon$ and thus E is measurable

References

[1] https://proofwiki.org/wiki/Measure_of_Set_Difference_with_Subset. Accessed on 9/17/24.