Shubhayu Shrestha 1001724804

Professor Trevor Bakker

CSE 3320-002: Operating Systems

17 March 2021

Assignment 2 - Threads

Part 1:

Problem Statement and Evaluation Metrics:

For part 1 I was given two character strings, and I was required to write a threaded program to

find out the number of substrings, s2, in a main string, s1.

Choice of Threading Libraries:

My choice of threading libraries for this experiment was utilizing pthreads as this was the thread

library I was most comfortable using and understood the most, after gaining experience from my

1325 Object Oriented Programming course. Furthermore, this library was already set up in the

provided VM.

Design of the Experiment:

For this experiment, I wrote a program, utilizing the substring provided in the class

GitHub, that will check the main string from a file in which it will compare another string to the

main string, iterating through the main string and finding the number of substrings in the file.

The main goal of this experiment was to see if utilizing multiple threads would affect the elapsed

time. By setting the number of threads as a define, it allowed me to change the number of threads

utilized and split up the work amongst them. When collecting the data, I ran the program 50 times for each thread and collected the data and then averaged the times for comparison.

I compiled and ran my code utilizing the provided hamlet.txt program:

Collected Data:

Data for One Thread:

Trial Number	Elapsed Time (in milliseconds)
1	1.07
2	1.033
3	1.023
4	0.967
5	0.956
6	1.02
7	1.054
8	0.994
9	1.157
10	1.128
11	1.047
12	1.033
13	1.05
14	1.067
15	1.056
16	0.921
17	1.023
18	1.502
19	1.009

1.178 1.003 1.116 1.015 1.085 1.347 1.049 1.07 1.047
1.178 1.003 1.116 1.015 1.085 1.347 1.049 1.07
1.178 1.003 1.116 1.015 1.085 1.347 1.049
1.178 1.003 1.116 1.015 1.085
1.178 1.003 1.116 1.015
1.178 1.003 1.116
1.178 1.003
1.178
-
1.036
1.113
0.998
0.995
1.034
1.039
1.038
1
1.017
1.13
1.028
1.041
1.025
0.945
0.937
0.976
1.05
1.25
0.991
0.997
0.997
1.028

Data for Two Threads:

Trial Number	Elapsed Time (in milliseconds)
1	0.93
2	0.886
3	0.929
4	0.872
5	0.975
6	0.902
7	0.947
8	0.981
9	0.959
10	0.915
11	0.858
12	0.904
13	0.859
14	0.974
15	0.908
16	0.901
17	0.91
18	0.869
19	0.895
20	0.831
21	0.881
22	0.866
23	0.851
24	1.019
25	0.966
26	0.913
27	0.827
28	0.925
29	0.892
30	0.89
31	0.908

Average:	0.90452
50	0.962
49	0.869
48	0.861
47	0.86
46	0.928
45	0.852
44	0.9
43	0.832
42	0.856
41	1.102
40	0.875
39	0.923
38	0.875
37	0.855
36	0.963
35	0.891
34	0.902
33	0.861
32	0.916

Data for Four Threads:

Trial Number	Elapsed Time (in milliseconds)
1	0.913
2	0.947
3	0.959
4	0.807
5	0.87
6	0.914
7	0.837
8	0.893
9	0.906
10	0.794
11	0.875
12	0.835
13	0.835
14	0.823
15	0.896
16	1.15
17	0.869
18	0.882
19	0.81
20	0.795
21	0.803
22	0.913
23	0.804
24	0.871
25	0.791
26	0.794
27	0.823
28	0.797
29	0.851
30	0.823
31	0.867

Average:	0.8538
50	0.839
49	0.876
48	0.892
47	0.822
46	0.746
45	0.805
44	0.854
43	0.799
42	0.81
41	0.812
40	0.888
39	0.795
38	0.905
37	0.805
36	0.793
35	0.813
34	0.78
33	1.102
32	0.807

Data Analysis:

When collecting the data, I separated the data collection to three parts, with each being a different number of threads: 1, 2, 4. After I completed 50 trials for each thread and calculated the average elapsed time for each thread for comparison and to find an overall trend. I found the average elapsed time for 1 thread to be 1.0537 milliseconds, for 2 threads it took 0.90452 milliseconds, and finally for 4 threads it took 0.84198 milliseconds. As shown, with the averages, there is a decrease in elapsed time, hence multithreading and searching for substrings utilizing more threads causes a decrease in elapsed time, as it splits the necessary work. This trend is supported by the graph as well, showing a decrease in elapsed time to complete when increasing the number of threads.

Part 2:

Problem Statement and Evaluation Metrics:

We needed to implement the producer-consumer algorithm, utilizing two threads, in order to read characters from a text file named "message.txt" and print the contents of the file to the user, utilizing a queue with the size of 5.

Choice of Threading Libraries:

My choice of threading libraries for this experiment was utilizing pthreads as this was the thread library I was most comfortable using and understood it the most, after gaining experience from my 1325 Object Oriented Programming course.

Design of the Experiment:

For this experiment, I utilized two semaphores, as this would help us coordinate the activity between multiple concurrently running threads. The two semaphores I utilized were for the producer and the consumer. The producer function was utilized to read from the message.txt file and store the contents of the file into a buffer with the size of 5, which was set as a define at the beginning of the program. The consumer function was utilized to read from the buffer and ultimately print out the contents of the file. The semaphores were utilized to make sure that there was no overlapping between the two processes.

I compiled and ran my code:

./a.out

gcc part2.c -lpthread

Collected Data:	
N/A	
Data Analysis:	
N/A	

Conclusion:

In this program, by utilizing the semaphores, I was able to discover how they are utilized to coordinate the different concurrent activities done by threads and how utilizing two semaphores can work together, reading a file and outputting the contents of the file.