מתמטיקה בדידה אביב תשפ"א

תרגיל בית מספר 10

13/06/2021 : תאריך פרסוס: 03/06/2021

:הוראות והערות

- יש להגיש סריקה של הקובץ המקורי עם המסגרות, בכתב יד קריא וברור.
- ניתן להגיש את שיעורי הבית בקובץ שכתוב בעורך טקסט כמו word או בעורי פתרון מוקלד יהיה זהה להיקף שניתןלתרגילים הכתובים בכתב יד.
 - ההגשה בפורמט PDF בלבד.
- סריקה מטושטשת, סריקת דפים בבלאגן או במהופך, כתיבה לא ברורה של התרגיל וכדומה יגררו הורדת נקודות. לאחר הגשת התרגיל במודל בדקו שהתרגיל הועלה בצורה תקינה.
 - החלק השני של שיעורי הבית הוא אמריקאי, המענה עליו דרך מערכת המודל.
 - לרשימת הנהלים המלאה ראה באתר הקורס.

תרגיל 1. היעזרו בנוסחת הבינום ופתרו את הסעיפים הבאים. א. פתחו את הביטוי $(2x-3)^4$.

ב. יהי $r \in \mathbb{R}$ קבוע כלשהו. מצאו ביטוי ללא סכימה לסכום הבא:

$$\sum_{k=0}^{n} k r^k \binom{n}{k}$$

ג. יהי $r\in\mathbb{R}$ קבוע כלשהו. מצאו ביטוי ללא סכימה לסכום הבא:
$\sum_{k=0}^{n} k(k-1)r^k \binom{n}{k}$
ד. יהי $r \in \mathbb{R}$ קבוע כלשהו. מצאו ביטוי ללא סכימה לסכום הבא: $\sum_{k=0}^n P(k) r^k \binom{n}{k}$
$P(k) = 3k^3 + 2k^2 - 3k + 2$ כאשר

	2. פתרו את הטעיפים הבאים באמצעות עיקרון שובך היונים.			
מקטע של 100. כיצד	הוכיחו כי קיים מקטע שמתחלק ב־	שנסכמים למספר 300. תחילה הוכיחו כי קיים נ	יביים מסודרים במעגל סכומם שווה 200. רמז:	א. יהיו 101 מספרים שלמים חיו מספרים עוקבים על המעגל ש תוכלו להסיק את הדרוש?
מקיימת כי	$T\subseteq S$ ענ $T\subseteq S$ ענ	שיים. הראו כי קיימת תו	קבוצה של מספרים ממ $\left \sum_{x\in T}x-m ight \leq$	ב. תהי $S=\{z_1,\ldots,z_{100}\}\subseteq \mathbb{R}$ ב. קיים שלם $m\in \mathbb{Z}$ עבורו $m\in \mathbb{Z}$

-הראיחי	הסעיפים	אח	פתרנ	3	ירנול
וובאיט.	ווטעיניט	216	יבו נו ו	•2	ו גיע

	:ל 3. פתרו את הסעיפים הבאים	רגי
באורך n ישנן שבהן מספר זוגי של A ? מספר זוגי של A וגם כ $\{A,B,C\}$	$\{D,D\}$ ז. כמה מחרוזות מעגל הא"ב $\{B\}$	Į.

ב. כמה פונקציות $f \in \{1,\dots,n\} o \{1,\dots,k\}$ ישנן שהן על?

הערה:	ילים EAT, ME, PINK, TINY!	ג. כמה תמורות של הא"ב האנגלי A,B,C,\ldots,Z לא מכילות את המ תמורה זהו סידור ללא חזרות של כל האותיות A,B,C,\ldots,Z

אמתים. בכמה דרכים $n \geq n$ שני קצותיה צבועים באותו ל תשובה ללא סכימה.	4 עם $C_n = \langle \{1,2,\ldots,n\}$ שונים כך שאין קשת ש אטו את הביטוי כדי לקב	באמצעות $d \geq 3$ צבעים	את קודקודי הגרף ו	ניתן לצבוע

תרגיל 4. הוכיחו קומבינטורית את הזהות,

$$\sum_{r=0}^{n} (-1)^r \binom{2n-r}{r} 2^{2n-2r} = 2n+1$$

. רמז: התבוננו בבעיה הקומבינטורית של מספר הווקטורים הבינארים באורך 2n שבהם לא מופיע אחד לפני אפס