

이 학습목표

- Ⅲ 네트워크의 기초에 대해 설명할 수 있다.
- Ⅲ 네트워크의 설정에 대해 설명할 수 있다.

이 학습내용

- 🚻 네트워크의 기초
- 🚻 네트워크의 설정

네트워크의 기초

1 TCP/IP 프로토콜

■ 프로토콜

- 컴퓨터간에 정보를 주고받을 때의 통신방법에 대한 규칙과 약속
- 상호간의 접속이나 전달방식, 통신방식, 주고받을 자료의 형식, 오류 검출방식, 코드 변환방식, 전송속도 등에 대하여 정하는 것을 말함

예

▶ 대표적인 표준 프로토콜: 인터넷에서 사용하고 있는 TCP/IP

- TCP/IP라는 프로토콜에 따라 데이터를 주고받음
- TCP/IP 프로토콜은 4계층으로 구성
- 전송 계층의 TCP와 네트워크 계층의 IP로 전체 프로토콜을 대표하여 TCP/IP 프로토콜이라고 함

탈 등장 배경

- 네트워크는 서로 다른 기종의 컴퓨터로 구성되어 있어 각 네트워크 간에 공통으로 사용할 수 있는 프로토콜의 필요성 대두
 - → 인터넷에서 컴퓨터 간의 통신이 가능하도록 표준화한 통신규약인 TCP/IP 채택

네트워크의 기초

7

1 TCP/IP 프로토콜

전송 제어 프로토콜 (TCP, Transmission Control Protocol) 인터넷 프로토콜 (IP, Internet Protocol)

인터넷에서 사용하는 응용 프로그램은 대부분 TCP/IP 프로토콜을 이용하여 <mark>데이터를 교환</mark>

TCP/IP 프로토콜 계층

네트워크 접속 계층 이더넷, 802.11x MAC/LLC, SLIP, PPP 모뎀, NIC

네트워크의 기초

1 TCP/IP 프로토콜

📦 네트워크 접속 계층

- TCP/IP에서는 하위 계층인 물리 계층과 데이터 링크 계층을 특별히 정의하지 않았으며, 단지 모든 표준 및 임의 네트워크를 지원 가능
- 데이터 링크 계층의 역할을 하는 TCP/IP 프로토콜
 - 이 이더넷, 802.11x, MAC/LLC, SLIP, PPP 등
- 네트워크 접속 계층의 송신 측 컴퓨터와 수신 측 컴퓨터의 기능

송신 측 컴퓨터

상위 계층에서 전달받은 패킷에 물리적 주소인 MAC 주소 정보가 있는 헤더를 추가하여 프레임을 만든 후 그 프레임을 하위 계층인 물리 계층에 전달함

수신 측 컴퓨터

데이터 링크 계층에서 추가한 헤더를 제거하여 상위 계층인 네트워크 계층으로 전달함

네트워크의 기초

7 TCP/IP 프로토콜

📦 네트워크 계층(Network Layer)

- '인터넷 계층'이라고도 함
- 네트워크의 패킷 전송을 제어
- 데이터를 전송할 때 경로는 네트워크 계층에서 선택
 - TCP/IP 프로토콜에는 IP와 ARP, ICMP, IGMP가 있음
- TCP/IP에서 가장 중요한 프로토콜 중 하나인 IP의 기능

네트워크의 주소 체계 관리

데이터 그램 정의

전송에 필요한 경로 결정

네트워크 계층에서 패킷 정보

1 TCP/IP 프로토콜

🏴 전송 계층(Transport Layer)

- 상위 계층에서 볼 때 두 호스트 간의 데이터 전송을 담당하는 계층
- TCP와 UDP 프로토콜을 사용
- 네트워크 양단의 송수신 호스트 간에 신뢰성 있는 전송 기능 제공
 - OSI 참조 모델에서는 세션 계층의 일부와 전송 계층에 해당
- TCP/IP에는 시스템의 논리 주소와 포트가 있어 각 상위 계층의 프로세스를 연결하여 통신

TCP

전송되는 패킷에 오류와 중복이 없게 하고, 보낸 순서대로 상대편이 받을 수 있도록 신뢰성 있는 데이터 전송을 보장하는 프로토콜

신뢰성이 있는 만큼 헤더의 오류코드에 대응할 수 있는 각종 정보가 들어 있음

1 TCP/IP 프로토콜

■ 응용 계층(Application Layer)

- TCP/IP 프로토콜의 범위는 응용 계층의 프로토콜까지 포함
 - FTP(파일 전송)
 - 6 SMTP(이메일)
 - SNMP(Simple Network Management Protocol: 네트워크 관리) 등
- TCP/IP 프로토콜을 이용한 응용 프로그램 중에서 사용자가 직접 사용하는 인터넷 메일 프로그램(아웃룩 익스프레스)이나 웹브라우저(인터넷 익스플로러) 등을 응용 계층으로 분류 가능

네트워크의 기초

2 네트워크 주소

🏴 TCP/IP 주소의 구조

물리 주소	인터넷 주소	포트 주소
물리 주소(MAC 주소)는 링크 주소 또는 통신망에서 정의된 노드의 주소,	인터넷에서는 기존 물리 주소와는 별도로 각 호스트를 식별할 수 있는 유일한 주소를	수신지 컴퓨터까지 전송하려면 IP 주소와 물리 주소가 필요함
이더넷 네트워크 인터페이스 카드(NIC)	지정해야 함	[인터넷 통신의 최종 목적]
6바이트(48비트) 주소 등		한 프로세스가 다른 프로세스와 통신할 수 있도록 하는 것

📭 계층과 주소

2 네트워크 주소

● 일반적으로 네트워크 인터페이스는 거의 대부분 이더넷(Ethernet) 방식 사용

MAC 주소

IP 주소

호스트명

MAC: 'Media Access Control'의 약자

MAC 주소는 하드웨어를 위한 주소

이더넷 주소

하드웨어 주소

물리 주소

- 네트워크 인터페이스 카드(다른 말로 랜 카드)에 저장된 주소라고 생각하면 됨
- 콜론(☺이나 하이픈(-)로 구분되는 여섯 개의 16진수로 구성: 총 48비트
 - 🐧 앞의 세 자리는 제조사 번호, 뒤의 세 자리는 일련번호

네트워크의 기초

2 네트워크 주소

IP(internet protocol) 주소

- 우리가 보통 인터넷 주소라고 부르는 것
- 인터넷으로 연결된 네트워크에서 각 컴퓨터를 구분하기 위해 사용
- 1바이트의 크기를 가진 네 자리 숫자로 구성: 총 4바이트
- ▶ 192.168.100.5와 같이 숫자 네 가지와 마침표(.)로 구성
- IP 주소의 구분

네트워트 주소 부분

호스트 주소 부분

네트워트 구분

해당 네트워크 안에서 특정 컴퓨터 식별

 총 32비트(4바이트) 중 몇 비트를 네트워크 부분으로 사용하고 나머지 몇 비트를 호스트 부분으로 사용하는지에 따라 구분

A 클래스

B 클래스

C 클래스

- C 클래스의 구조
 - 한 앞의 3바이트: 네트워크 부분
 - 뒤의 1바이트: 호스트 부분으로 사용
 - 호스트 부분으로 사용할 수 있는 숫자: 1~254

2 네트워크 주소

📦 넷마스크와 브로드캐스트 주소

- 넷마스크: IP 주소에서 네트워크 부분을 알려주는 역할
- 넷마스크는 하나의 네트워크를 다시 작은 네트워크(서브넷)로 분리할 때도 사용 → 서브넷 마스크라고 부르기도 함

탈 넷마스크 예

- IP 주소와 넷마스크를 10진수에서 2진수로 바꾼 다음, 두 값을 가지고 AND 연산을 수행
- AND연산을 하면 네트워크 부분만 남고 호스트 부분은 0이 됨
- 넷마스크는 IP 주소와 AND 연산을 수행하여 네트워크 부분만 남기는 역할

2 네트워크 주소

📭 브로드캐스트 주소

- 같은 네트워크에 있는 모든 컴퓨터에 메시지를 보낼 때 사용하는 것
- 호스트 부분을 모두 1로 설정

▶ IP 주소에서 네트워크 부분이 192.168.100.0이면 브로드캐스트 주소는 192.168.100.255

■ 호스트 이름

- 사람은 숫자보다는 이름으로 된 것을 더 잘 기억하므로 나온 것
- 호스트 이름도 IP 주소처럼 두 부분으로 구성

▶ e-koreatech.ac.kr 이 네트워크 부분, www가 호스트 부분에 해당

📭 포트 번호

- 각 서비스를 구분해주는 것이 포트번호로 전송계층에서 사용하는 번호임
- /etc/services 파일에서 각 서비스 별로 포트번호가 무엇인지 정의
- TCP/IP 프로토콜의 4계층인 전송 계층에서 사용하는 번호
- 사용자가 네트워크 서비스 이용 시 사용자의 패킷은 IP 주소를 보고 해당 서버 컴퓨터를 찾아감
 - 서버 컴퓨터에 도착한 사용자의 패킷: 어떤 서비스인지 확인 후 해당 데몬에 패킷을 전달함

7 네트워크의 설정 개요

📦 네트워크의 관리

네트워크 설정에 필요한 주소

IP 주소

넷마스크와 브로드캐스트 주소 게이트웨이(라우터) 주소

DNS 주소

네트워크의 제어와 설정을 관리하는 데몬

IP 주소 설정

고정 라우트 설정

DNS 설정

- 유닉스와 리눅스에서 제공하던 스크립트 파일인 ifcfg 형식의 네트워크 설정 파일도 계속 지원
- 스크립트 방식으로 네트워크를 동작

systemctl start NetworkManager.service

도구	기능
네트워크 관리자	기본 네트워킹 데몬
nmcli 명령	네트워크 관리자를 사용하는 명령 기반 도구
[설정]-[네트워크]	gnome에서 제공하는 GUI 기반 도구
nm-connection- editor	네트워크 관리자를 사용하는 GUI 기반 도구로, [제어 판]-[네트워크]에서 설정할 수 없는 부분도 설정 가능
ip 명령	네트워크를 설정하는 명령을 제공

네트워크의 설정

7 네트워크의 설정 개요

📦 네트워크 관리자 설치하기

기본적으로 설치되나 그렇지 않은 경우 apt 명령으로 설치

[root@localhost ~]# sudo apt install network-manager

📦 네트워크 관리자 실행하기

- 시스템이 부팅할 때 자동 동작
- 동작 여부는 systemctl status 명령으로 확인 가능

📦 네트워크 관리자와 작업하기

- 네트워크 설정 정보를 연결 프로파일(connection profile)에 저장
- 사용자는 네트워크 관리자를 직접 제어하지 않고 명령 기반 도구나 GUI 기반 도구 사용

nmcli	Gnome의 [설정]-[네트워크]/ nm-connection-editor
명령 기반 도구	GUI 기반 도구

 이러한 도구를 사용, 네트워크 설정을 변경하면 네트워크 관리자가 자동적으로 인식

네트워크의 설정

7 네트워크의 설정 개요

■ GUI로 네트워크 설정하기

- Gnome의 [설정]-[네트워크]로 설정하기: 윈도의 제어판처럼 시스템과 네트워크 설정을 위한 기능 제공
 - 네트워크 설정은 우분투의 [프로그램표시]-[설정]에서 선택 가능

설정화면에서 네트워크 선택 시 네트워크 설정창이 뜸

네트워크에서 '유선' 항목의 설정을 선택 후 장치 설정창에서 IPv4를 선택

IP주소, 넷마스크. 게이트웨이, 네임서버 등을 설정

- nm-connection-editor로 설정하기: 터미널에서 실행할 경우
 - 편집 창을 통해 IPv4뿐만 아니라 이더넷, 802.11x 보안, IPv6, Proxy 등 네트워크와 관련된 다양한 기능을 설정함

네트워크의 설정

7 네트워크의 설정 개요

📦 nmcli 명령으로 네트워크 설정하기

- nmcli 명령으로 유선 네트워크뿐만 아니라 와이파이 등 무선 네트워크, 보안 등 네트워크와 관련된 거의 모든 설정을 관리할 수 있음
- 기능: 명령 기반으로 네트워크 관리자를 설정함
- 형식: nmcli [옵션] 명령 [서브 명령]
- · 옵션

-t	실행 결과를 간단하게 출력함	-v	nmcli의 버전을 출력함
-р	사용자가 읽기 좋게 출력함	-h	도움말을 출력함

🧖 명령[서브 명령]

general {status hostname}	네트워크 관리자의 전체적인 상태를 출력하고, 호스트명을 읽거나 변경 가능
networking {on off connectivity}	네트워크를 시작, 종료하고 연결 상태를 출력함
connection {show up down modify add delete relo ad load}	네트워크를 설정함
device {status show}	네트워크 장치의 상태를 출력함

🧖 사용 예

nmcli general nmcli networking on nmcli con add type Ethernet con-name test-net ifname ens33 ip4 192.168.1.10/24 gw4 192.168.1.254

네트워크의 설정

7 네트워크의 설정 개요

🏴 네트워크의 전체 상태 살펴보기: general(gen) 명령

 네트워크의 전체적인 상태는 nmcli의 general 명령으로 확인 가능하며 status가 없어도 같은 결과를 출력함

[root@localhost ~]# nmcli general status 상태 연결 WIFI-HW WIFI WWAN-HW WWAN 연결됨 전체 사용 사용 사용 사용

 출력 결과를 보면 네트워크가 연결되어 있고 와이파이와 인터넷(WWAN)을 사용한다는 것을 알 수 있음

🚅 네트워크 활성화·비활성화하기: networking(net) 명령

- 네트워크를 활성화(on)하거나 비활성화(off)함
- connectivity가 출력하는 네트워크 상태는 다음 중 하나임

	none(없음)	limited(제한적)	full(전체)	unknown(알수 없음)
L	호스트가 아직 네트워크에 연결되어 있지 않음	호스트가 네트워크에 연결되어 있지만 인터넷과 연결되지는 않았음	호스트가 네트워크에 연결되어 있고 인터넷도 사용 가능	네트워크 연결 상태를 알 수 없음

 nmcli net off를 실행하면 네트워크의 연결이 비활성화 / nmcli net on으로 다시 네트워크를 활성화함

네트워크의 설정

7 네트워크의 설정 개요

■ 네트워크 설정하기: connection(con) 명령

- 네트워크 설정과 관련된 거의 대부분의 기능을 수행
- o connection에서 사용하는 서브 명령

show	메모리와 디스크에 저장된 네트워크 연결 프로파일을 출력함 - 서브 명령을 지정하지 않을 경우: 기본적으로 show를 실행
up	네트워크 연결을 시작함
down	네트워크 연결을 중지함
modify	연결 프로파일에서 속성을 추가·수정·삭제함
add	새로운 연결을 생성함
delete	연결의 설정을 삭제함
reload	연결과 관련된 파일을 디스크에서 다시 읽어옴
load	디스크에서 하나 이상의 연결 파일을 읽어옴

네트워크의 설정

기 네트워크의 설정 개요

■ 네트워크 설정하기: connection(con) 명령

- 네트워크 연결 프로파일 출력하기: show (1)
- 연결 프로파일의 이름과 UUID, 네트워크 유형, 연결된 장치명을 출력

[root@localhost ~]# nmcli con show 이름 UUID 유형 장치 ens33 90341d0b-e3a6-44ba-855a-bd3b511e83cd 802-3-ethernet ens33

- 네트워크 연결 중지하기: down (2)
- nmcli connection down 명령은 네트워크의 연결을 중지시킴
- show 명령으로 확인
- 네트워크 연결 시작하기: up (3)
- 네트워크 연결 추가하기: add 4
- nmcli connection add 명령은 네트워크의 연결을 추가
- add 명령으로 연결을 추가한 후 새로운 인터넷을 시작하려면 up 명령을 사용함

7 네트워크의 설정 개요

■ 네트워크 설정하기: connection(con) 명령

- ⑤ 네트워크 연결 수정하기: modify(mod)
- nmcli connection modify 명령은 기존의 연결 프로파일을 수정
 nmcli connection modify connection-name setting.property
 value
- modify 명령에서 사용 가능한 setting과 property는 네트워크 관리자의 연결 프로파일에서 사용하는 설정과 속성으로 매우 다양한 값을 가지고 있음

🧖 설정과 속성의 예

설정	속성	값의 유형	기능
	autoconn ection	boolean (TRUE/ FALSE)	자원이 사용 가능해지면 네트워크 관리자가 자동으로 연결할지를 지정함
connecti	id	문자열	사용자가 읽을 수 있는 연결의 이름
on	Interface- name	문자열	네트워크 장치의 이름
	type	문자열	연결의 유형

7 네트워크의 설정 개요

■ 네트워크 설정하기: connection(con) 명령

- ⑥ 네트워크 연결 삭제하기: delete(del)
- nmcli connection delete 명령은 연결 프로파일을 삭제 nmcli connection delete connection-name
 - ⑦ 네트워크 연결 프로파일 읽어오기: reload, load

reload	디스크에서 모든 연결 프로파일을 다시 읽어옴
load	특정 연결 프로파일을 지정하여 읽어옴

 연결 프로파일이 수작업으로 수정되었을 경우, 네트워크 관리자에게 알려주기 위해 reload나 load 명령을 사용함

네트워크의 설정

7 네트워크의 설정 개요

- ① 네트워크 장치의 상태 보기: status
- status 명령은 네트워크 장치의 상태를 요약해서 출력함
 - ② 네트워크 장치의 상세 정보 보기: show
- show 명령 다음에 장치명을 지정하지 않은 경우: 전체 장치에 대한 상세 정보가 출력됨
- show 명령에 특정 장치를 지정한 경우: 해당 장치의 정보가 출력됨

7 네트워크의 설정 개요

📭 ip 명령으로 네트워크 설정하기

- ip 명령을 사용하여 네트워크 상태 확인, IP 주소 설정, 게이트웨이 설정 가능
- ip 명령으로 설정한 것은 시스템을 재시작하면 사라짐
- 기능: IP 주소, 게이트웨이, 네트워크 장치의 상태 등을 출력하고 관리함
- 형식: ip [옵션] 객체 [서브 명령]
- 🧆 옵션

-V	버전을 출력함
-s	자세한 정보를 출력함

🦠 객체[서브 명령]

address [add del show help]	장치의 IP 주소를 관리(ip-address)
route [add del help]	라우팅 테이블을 관리(ip-route)
link [set]	네트워크 인터페이스를 활성화, 비활성화

🧖 사용 예

ip addr show

ip addr add 192.168.1.20/24 dev ens33

ip route show

ip route add 192.168.2.0/24 via 192.168.1.1 dev ens33

7 네트워크의 설정 개요

📦 네트워크 장치의 주소 관리하기: address(addr) 명령

- address 명령은 IP 주소의 정보를 출력, 설정, 삭제
 - ① 네트워크 장치의 정보 보기: show
 - 네트워크 장치의 정보가 출력됨
 - show 명령 다음에 장치명을 지정하지 않은 경우: 전체 장치에 대한 상세 정보가 출력됨
 - show 명령에 특정 장치를 지정한 경우: 해당 장치의 정보가 출력됨
 - ② IP 주소 설정하기: add
 - add 명령은 네트워크 장치에 IP 주소를 설정
 - ns33 장치에 ip 명령으로 고정 IP 주소를 설정

[root@localhost ~]# ip addr add 192.168.1.20/24 dev ens33

→ 설정된 주소를 확인해보면 ens33 장치에 IPv4 주소가 두 개 설정되어 있음

7 네트워크의 설정 개요

■ 네트워크 장치의 주소 관리하기: address(addr) 명령

③ IP 주소 삭제하기: del

del 명령은 네트워크 장치에 설정된 IP 주소를 삭제함

네트워크의 설정

1 네트워크의 설정 개요

▶ 라우팅 테이블과 게이트웨이 주소 관리하기: route 명령

- ip route 명령은 라우팅 테이블을 출력하거나 게이트웨이를 설정하고 삭제
- 게이트웨이는 패킷을 보고 같은 네트워크로 보내는 것이 아니면 외부로 전송
- 게이트웨이 주소가 설정되어 있지 않으면 같은 네트워크가 아닌 컴퓨터와는 접속 불가
 - (1)

라우팅 테이블 보기: show

- 현재 설정된 라우팅 테이블 출력
 - (2)

라우팅 경로 설정하기: add

↑ 기본 게이트웨이에 경로를 추가함

[root@localhost ~]# ip route add 192,168,2,0/24 via 192,168,1,1 dev ens33

- → 192.168.2.0 네트워크를 192.168.1.1을 통해 접속한다는 의미임
- (3)

라우팅 경로 삭제하기: del

라우팅 테이블에서 경로 삭제함

7 네트워크의 설정 개요

₩ 네트워크 인터페이스 활성화·비활성화하기: link 명령

ip link set 명령 사용

down 네트워크 인터페이스 비활성화하기

state가 DOWN되고 IP 주소도 할당되지 않음

up 네트워크 인터페이스 활성화하기

state가 UP되고 IP 주소도 할당됨

■ 현재 설치된 네트워크 인터페이스 설정 확인하기: ifconfig

- 기능: 네트워크 인터페이스의 IP 주소를 설정함
- 형식: ifconfig [인터페이스명] [옵션] [값]
- 🦱 옵션

-a	시스템의 전체 인터페이스에 대한 정보를 출력
up/down	인터페이스를 활성화, 비활성화
netmask 주소	넷마스크 주소를 설정
broadcast 주소	브로드캐스트 주소를 설정

네트워크의 설정

기 네트워크의 설정 개요

📭 설정 확인 및 해제

우분투는 ifconfig 명령이 기본으로 설치되지 않으므로 net-tools 패키지를 설치

> user1@myubuntu:~\$ sudo apt install net-tools 패키지 목록을 읽는 중입니다... 완료 의존성 트리를 만드는 중입니다 (생략) net-tools (1.60+git20161116.90da8a0) 설정하는 중입니다 ... user1@myubuntu:~\$

📭 설정 확인현재 설치된 네트워크 인터페이스 설정 확인하기: ifconfig

사용 예

ifconfigens33 ifconfig ens33 192,168,1,2 netmask 255,255,255,0 broadcast 192.168.1.255

특정 네트워크 인터페이스 설정 확인하기: ifconfig ens33(특정 네트워크 인터페이스)

네트워크의 설정

2 네트워크 인터페이스의 설정

- 네트워크 인터페이스 사용 해제하기: down 옵션
- ➡️ 네트워크 인터페이스 활성화하기: up 옵션
- ➡️ 네트워크 인터페이스 설정하기

ifconfig 인터페이스명 IP 주소 netmask 넷마스크 주소 broadcast 브로드캐스트 주소

예: IP 주소를 기존의 192.168.1.194로 바꿔서 설정

[root@localhost~]# ifconfig ens33 192.168.1.194 netmask 255.255.255.0 broadcast 192.168.1.255

3 게이트웨이 및 DNS 설정

🏴 게이트웨이 설정하기: route

- 인터넷은 네트워크와 네트워크를 연결한 것으로 네트워크를 다른 네트워크와 연결할 때 연결점이 되는 장치가 게이트웨이
- 게이트웨이의 설정과 확인은 route 명령으로 수행
- 기능: 라우팅 테이블을 편집하고 출력함
- 형식: route [명령]
- 명령

add	라우팅 경로나 기본 게이트웨이를 추가
del	라우팅 경로나 기본 게이트웨이를 삭제

사용 예

route

route add default gw 192.168.1.1 dev ens33

네트워크의 설정

3 게이트웨이 및 DNS 설정

📭 route 명령으로 라우팅 테이블을 편집할 때 주로 사용하는 형식

기능	명령 형식과 사용 예
라우팅 경로 추가 (네트워크)	route add -net 네트워크 주소 netmask 넷마스크 dev 인터페이스명 route add -net 192.168.1.0 netmask 255.255.255.0 dev ens33
라우팅 경로 추가 (호스트)	route add -host 호스트 주소 dev 인터페이스명 route add -host 192.168.1.5 dev ens33
라우팅 경로 삭제 (네트워크)	route del -net 네트워크 주소 netmask 넷마스크 [dev 인터페이스명] route del -net 192.168.1.0 netmask 255.255.255.0
라우팅 경로 삭제 (호스트)	route del -host 호스트 주소 route del -host 192.168.1.5
기본 게이트웨이 추가	route add default gw 게이트웨이 주소 dev 인터페이스 명 route del default gw 192.168.1.1 dev ens33
기본 게이트웨이 삭제	route add default gw 게이트웨이 주소 route del default gw 192.168.1.1
루프백(lo) 추가	route add -net 127.0.0.0 netmask 255.0.0.0 dev lo

네트워크의 설정

3 게이트웨이 및 DNS 설정

➡ 라우팅 테이블 보기: route

[root@mail ~]# route Kernal IP routing table

Destination Gateway Genmask Flags Metric Ref Use **Iface** 192.168.1.0 0.0.0.0 255,255,255,0 U 0 ens33 0 0 192.168.124.0 0.0.0.0 255.255.255.0 U 0 0 0 virbr0

[root@mail ~]#

📭 라우팅 테이블의 출력 항목

기능	명령 형식과 사용 예
Destination	라우팅 대상 네트워크나 호스트의 주소
Gateway	게이트웨이 주소 또는 설정되어 있지 않으면 * 출력
Genmask	대상 네트워크의 넷마스크 255.255.255.255: 대상이 호스트인 경우 0.0.0.0: 기본(default) 경로
Flags	U: 경로 활성화(UP) H: 대상이 호스트 G: 게이트웨이로 사용 R: 동적 라우팅을 위한 경로 재생성 D: 데몬 또는 리다이렉트에 의해 경로 수정 M: 라우팅 데몬 또는 리다이렉트에 의해 경로 수정 A: addrconf에 의해 설치 C: 캐시 항목 I: 경로 거부

3 게이트웨이 및 DNS 설정

🚅 라우팅 테이블의 출력 항목

기능	명령 형식과 사용 예
Metrics	대상까지의 거리로 최근 커널에서는 사용되지 않지만 라 우팅 데몬에서 사용할 수도 있음
Ref	해당 경로를 대한 참조 수이지만 리눅스 커널에서는 사 용하지 않음
Use	경로를 탐색한 수
Iface	패킷이 전달되는 인터페이스 이름

3 게이트웨이 및 DNS 설정

📭 기본 게이트웨이 설정하기: add 명령

[root@localhost~]# route add default gw 192.168.1.1 dev eth0 [root@localhost~]# route Kernal IP routing table Destination Genmask Flags Metric Ref Use **Iface** Gateway default eth0 192.168.1.1 0.0.0.0 UG 0 0 0 192,168,0,0 255,255,255,0 U 0 0 0 eth0 [root@localhost ~]#

➡️ 기본 게이트웨이 삭제하기: del 명령

[root@localhost~]# route del default gw 192.168.0.1 [root@localhost~]# route Kernal IP routing table Destination Flags Ref Use **Iface** Gateway Genmask Metric 192.168.0.0 255,255,255,0 U 0 0 0 eth0 [root@localhost~]#

3 게이트웨이 및 DNS 설정

- 호스트명을 IP 주소로 바꾸는 역할을 수행
- 만약 DNS가 설정되어 있지 않으면 이름으로 서버에 접속할 수 없으며 직접 IP
 주소를 사용하여 접속 가능

📦 DNS 서버 지정하기

DNS 서버의 주소를 /etc/resolv.conf 파일에 저장

[root@localhost ~]# cat /etc/resolv.conf # Generated by NetworkManager nameserver 192.168.1.1 [root@localhost ~]#

nmcli 명령으로 DNS 설정하기

nmcli con mod connection-name ipv4.dns DNS 주소

3 게이트웨이 및 DNS 설정

- DNS 서버에 질의하기: nslookup
 - 기능: DNS 서버와 대화식으로 질의하고 응답을 받음
 - 형식: nslookup [도메인명]
 - 🧆 사용 예

nslookup nolookup www.daum.net

네트워크의 설정 실습 영상은 학습 콘텐츠에서 확인하실 수 있습니다.

^ố\ 핵심요약

1

네트워크의 기초

- ▲ 네트워크와 네트워크를 연결하는 데 사용하는 프로토콜인 TCP/IP는 '건송 제어 프로토콜 (TCP, Transmission Control Protocol)'과 '인터넷 프로토콜(IP, Internet Protocol)'을 의미함
- ▲ TCP/IP 주소의 구조
 - 물리 주소(MAC 주소)는 링크 주소 또는 통신망에서 정의된 노드의 주소, 이더넷 네트워크 인터페이스 카드(NIC) 6바이트(48비트) 주소 등을 말함
 - 인터넷에서는 기존 물리 주소와는 별도로 각 호스트를 식별할 수 있는 유일한 주소를 지정해야 함
 - 포트 주소는 한 프로세스가 다른 프로세스와 통신할 수 있도록 함

ố\ 핵심요약

2

네트워크의 설정

- ▲ 네트워크 관리자와 작업하기
 - 네트워크 설정 정보를 연결 프로파일(connection profile)에 저장함
 - 사용자는 네트워크 관리자를 직접 제어하지 않고 명령 기반 도구나 GUI 기반 도구를 사용함
 - nmcli는 네트워크 관리자를 사용하는 명령 기반 도구임
 - gnome의 [설정]-[네트워크]나 nm-connectioneditor는 GUI 기반 도구임