Dimensionality reduction

AI FUNDAMENTALS

Nemanja Radojkovic Senior Data Scientist

Definition

"Dimensionality reduction is the process of reducing the number of variables under consideration by obtaining a set of principal variables."

Why?

Pro's

- Reduce overfitting
- Obtain independent features
- Lower computational intensity
- Enable visualization

Con's

Compression => Loss of information => loss of performance

Types

Feature selection (B?A)

- Selecting a subset of existing features, based on predictive power
- Non-trivial problem: Looking for the best "team of features", not individually best features!

Feature extraction (B?A)

- Transforming and combining existing features into new ones.
- Linear or non-linear **projections**.

Common algorithms

Linear (faster, deterministic)

Principal Component Analysis (PCA)

```
from sklearn.decomposition \
  import PCA
```

Latent Dirichlet Allocation

```
from sklearn.decomposition \
  import LatentDirichletAllocation
```

Non-linear (slower, non-deterministic)

Isomap

```
from sklearn.manifold import Isomap
```

 t-distributed Stochastic Neighbor Embedding (t-SNE)

```
from sklearn.manifold import TSNE
```

Principal Component Analysis (PCA)

Family: Linear methods.

Intuition:

- Principal components are directions of highest variability in data.
- Reduction = keeping only top #N principal components.

Assumption: Normal distribution of data.

Caveat: Very sensitive to outliers.

Code example:

```
from sklearn.decomposition import PCA
```

X_reduced = pca.fit_transform(X)

Use it wisely!

AI FUNDAMENTALS

Clustering

Nemanja Radojkovic Senior Data Scientist

What is clustering?

Cluster = Group of entities or events sharing similar attributes.

Clustering (AI) = The process of applying Machine Learning algorithms for automatic discovery of clusters.

Popular clustering algorithms

KMeans clustering

```
from sklearn.cluster import KMeans
```

Spectral clustering

```
from sklearn.cluster import SpectralClustering
```

DBSCAN

from sklearn.cluster import DBSCAN

How many clusters do I have?

-> Elbow method!

How many clusters do I have?

Cluster analysis and tuning

Unsupervised (no "ground truth", no expectations)

- Variance Ratio Criterion: sklearn.metrics.calinski_harabaz_score
 - "What is the average distance of each point to the center of the cluster AND what is the distance between the clusters?"
- Silhouette score: sklearn.metrics.silhouette_score
 - "How close is each point to its own cluster VS how close it is to the others?"

Supervised ("ground truth"/expectations provided)

- Mutual information (MI) criterion: sklearn.metrics.mutual_info_score
- Homogeneity score: sklearn.metrics.homogeneity_score

Explore, experiment and tune!

AI FUNDAMENTALS

Anomaly detection

AI FUNDAMENTALS

Nemanja Radojkovic Senior Data Scientist

Definition and use cases

- Detecting unusual entities or events.
- Hard to define what's odd, but possible to define what's normal.
- Use cases
 - Credit card fraud detection
 - Network security monitoring
 - Heart-rate monitoring

Approaches: Thresholding

Approaches: Rate of change

Approaches: Shape monitoring

Algorithms

Robust covariance (assumes normal distribution)

```
from sklearn.covariance import EllipticEnvelope
```

Isolation Forest (powerful, but more computationally demanding)

```
from sklearn.ensemble import IsolationForest
```

One-Class SVM (sensitive to outliers, many false negatives)

```
from sklearn.svm import OneClassSVM
```


Training and testing

Example: Isolation Forest

```
from sklearn.ensemble import IsolationForest
algorithm = IsolationForest()
# Fit the model
algorithm.fit(X)
# Apply the model and detect the outliers
results = algorithm.predict(X)
```

Evaluation

Precision = How many of the anomalies I have detected are TRUE anomalies?

Recall = How many of the TRUE anomalies I have managed to detect?

Example: Arrhythmia detection

Want to learn more?

AI FUNDAMENTALS

Selecting the right model

AI FUNDAMENTALS

Nemanja Radojkovic Senior Data Scientist

Model-to-problem fit

Type of Learning

- Target variable defined & known? => Supervised.
 - Classification?
 - Regression
- No target variable, exploration? => Unsupervised.
 - Dimensionality Reduction?
 - Clustering?
 - Anomaly Detection?

Defining the priorities

Interpretable models

- Linear regression (Linear, Logistic, Lasso, Ridge)
- Decision Trees

Well performing models

- Tree ensembles (Random Forests, Gradient Boosted Trees)
- Support Vector Machines
- Artificial Neural Networks

Simplicity first!

Using multiple metrics

Satisfying metrics

- Cut-off criteria that every candidate model needs to meet.
- Multiple satisfying metrics possible (e.g. minimum accuracy, maximum execution time, etc)

Optimizing metrics

- Illustrates the ultimate business priority (e.g. "minimize false positives", "maximize recall")
- "There can be only one"

Final model:

• Passes the bar on all satisfying metrics and has the best score on the optimization metric.

Interpretation

Global

- "What are the general decision-making rules of this model?"
- Common approaches:
 - Decision tree visualization
 - Feature importance plot

Local

- "Why was this specific example classified in this way?"
- LIME algorithm (Local Interpretable Model-Agnostic Explanations)

Model selection and interpretation

AI FUNDAMENTALS

