AUTOMATIC GENERATION OF MODELS FOR DIFFERENTIAL CRYPTANALYSIS

<u>Luc Libralesso</u>, François Delobel, Pascal Lafourcade, Christine Solnon sso@uca.fr

CP 2021 October 2020

Symmetric cryptography (AES, DES, ...)

How to assess the security of the cipher?

Related-key differential cryptanalysis

Combinatorial optimization problem:

Single key: Find the differences in the

text that maximize $Pr[\delta Y | \delta X]$

Related key: Differences may also be

injected in the key

2-step solving process [Knu94]

Similar to abstract interpretation

Step 1

- Group bits in k-bit sequences
- Search for difference positions
- $\delta X = 1 \iff \delta X$ contains a difference
- Upper bounds on optimal probabilities

Step 2

Given a Step 1 solution:

- ▶ Integer variable $\delta X \in \{0...255\}$
- Maximizes the probabilities

What is challenging?

Step 2 is straightforward (thanks to table constraints), but **Step 1** is challenging:

- Many skills required
- ► Takes time to find accurate and efficient models
- May contain bugs
- Many redundancies

Can we automatize this process? (Al style)

- Describe the cipher into a unified language
- Push a button
- Obtain a MiniZinc model for solving the Step 1

Can we design such a button?

YES

Contribution 1 - A language to rule them all

A language to define ciphers (DAG):

Parameter: value taken by a variable

Operator: Parameterⁿ \rightarrow Parameter^m

(black-box function)

We test correctness of input/output pairs with a reference implementation.

Contribution 1 - A language to rule them all

A language to define ciphers (DAG):

Parameter: value taken by a variable

Operator: Parameterⁿ \rightarrow Parameter^m

(black-box function)

We test correctness of input/output pairs with a reference implementation.

Contribution 2 — Shaving

AES-128 3 rounds (before)

Iteratively apply rules:

- 1. Merge equal parameters
- 2. Suppress constant parameters
- 3. Suppress free parameters

AES-128 3 rounds (after)

Contribution 3 — constraint generation

- Relation between input and output difference positions
- ► Automatic generation of a Boolean table from executable functions

XOR semantic			Constraint	
$[0,255] \times [0,255] \rightarrow [0,255]$				$\{0,1\} \times \{0,1\} \times \{0,1\}$
а	b	$a \oplus b$	\rightarrow	abstraction (a,b,XOR(a,b))
(0	0	0)	\rightarrow	(0,0,0)
			\rightarrow	
(255	255	0)	\rightarrow	(1,1,0)

(0,0,0), (0,1,1), (1,0,1), (1,1,0), (1,1,1), (1,0,0), (0,1,0), (0,0,1)

Same semantics as handcrafted constraint: $a + b + XOR(a, b) \neq 1$

Contribution 4 — Additional constraints


```
XOR constraints:

\checkmark \quad a \oplus b \oplus d

\checkmark \quad b \oplus c \oplus e

\checkmark \quad d \oplus e \oplus f

\checkmark \quad a \oplus c \oplus f (combination)
```

Huge impact ([RS20, GL16, GLMS20]) **Time / abstraction trade-off**

Benchmark instances

Considered ciphers:

- Midori
- AES
- ▶ Craft
- Skinny
- Skiring

Total: 16 benchmarks, 254 instances¹

Considered attacks:

- Single-key
- Related-key

Considered problems:

- Step1-opt
- ► Step1-enum

¹Evaluate your favorite solver:

Performance measures

Quality: Model tightness

- Measure: Number of "false alarms" due to the abstraction
- Conclusion: Same quality as state-of-the-art models!

Efficiency:

- Measure: CPU time of 3 solvers (Picat SAT, Chuffed, Gurobi)
- ► Conclusion: Competitive with state-of-the-art models!

Conclusions

- Automatic generation of state-of-the-art MiniZinc models
- Evaluation on 4 ciphers, 2 attacks, and 2 problems (16 new benchmarks and 254 instances)

Further work:

- More ciphers
- More attacks (new challenging problems to solve)
- Integration of the Step 2
- Study the interest of using dynamic programming

source code: https://gitlab.limos.fr/iia_lulibral/tagada

AUTOMATIC GENERATION OF MODELS FOR DIFFERENTIAL CRYPTANALYSIS

<u>Luc Libralesso</u>, François Delobel, Pascal Lafourcade, Christine Solnon sso@uca.fr

CP 2021 October 2020

Stéphanie Delaune, Patrick Derbez, Paul Huynh, Marine Minier, Victor Mollimard, and Charles Prud'homme.

SKINNY with scalpel - comparing tools for differential analysis.

IACR Cryptol. ePrint Arch., 2020:1402, 2020.

D. Gérault and P. Lafourcade.

Related-key cryptanalysis of midori.

In INDOCRYPT, volume 10095 of LNCS, pages 287-304, 2016.

D. Gerault, P. Lafourcade, M. Minier, and C. Solnon.

Computing AES related-key differential characteristics with constraint programming.

Artif. Intell., 278, 2020.

Lars R Knudsen.

Truncated and higher order differentials.

In International Workshop on Fast Software Encryption, pages 196-211. Springer, 1994.

L. Rouguette and C. Solnon.

abstractXOR: A global constraint dedicated to differential cryptanalysis.

In 26th International Conference on Principles and Practice of Constraint Programming, volume 12333 of LNCS, pages 566-584, Louvain-la-Neuve, Belgium, September 2020, Springer.

Solving time (AES [GLMS20])

Solving time (Midori [GL16])

Solving time (Craft)

Solving time (SKINNY [DDH+20])

