

# Class 8

#### **Alcohols**

Reactions of Alcohols Phenols Ethers

#### References

Blackman A, Bottle S, Schmid G, Mocerino M and Wille U (2019a), *Chemistry*, 4th edn, John Wiley & Sons, Milton, Qld.

Blackman A, Southam D, Lawrie G, Williamson N, Thompson C and Bridgeman A (2019b), *Chemistry: core concepts*, 2nd edn, John Wiley & Sons, Milton, Qld.



# **Alcohols**

Alcohols contain the functional group –OH, called hydroxyl or hydroxy group

This hydroxyl group is bonded to an  $sp^3$  hybridised carbon atom The oxygen atom is also  $sp^3$  hybridised

Two  $sp^3$  hybrid orbitals overlap to form  $\sigma$  bonds to carbon and

hydrogen

The remaining two  $sp^3$  hybrid orbitals each contain an unshared pair of electrons



# **Alcohols**

- Contain the hydroxy functional group,
   OH.
- Alcohols can be classified as primary, secondary or tertiary depending on the type of C atom that the OH group is bonded to.



# **Naming Alcohols**

Alcohols are named the same way as alkanes, with some differences

The parent alkane is the longest chain of carbon atoms containing the -OH group

Change the suffix of the parent alkane from -e to -ol, and use a number to show the location of the -OH group

Name and number any substituents and list them in alphabetical order





# **Naming Alcohols**

- 1. Name the Parent Chain octane
- 2. Add the Suffix octanol
- 3. Add the Prefix dimethyloctanol
- 4. Include the Locant 3,5-dimethyloctan-4-ol
  - 3,5-dimethyl-4-octanol





# **Naming Alcohols**

To derive common names for alcohols, we name the alkyl group bonded to the -OH group and add the word alcohol

# DEAKIN DEAKIN COLLEGE DEAKIN UNIVERSITY



# **Naming Alcohols**

**Compounds with** 2 -OH groups are named as diols



**Compounds with** 3 –OH groups are named as triols





### **Physical Properties of Alcohols**

Both the C-O and O-H bonds of an alcohol are polar covalent, so alcohols are polar molecules. This is demonstrated for methanol below.





# **Physical Properties of Alcohols**

Alcohols associate in the liquid state by hydrogen bonding



DEAKIN COLLEGE DEAKIN UNIVERSITY

# **Physical Properties of Alcohols**

Alcohols have higher boiling points and water solubility than do hydrocarbons of similar molar mass.

| Structural formula                                                                              | Name            | Molar<br>mass | Total<br>electrons | Boiling<br>point (°C) | Solubility in water |
|-------------------------------------------------------------------------------------------------|-----------------|---------------|--------------------|-----------------------|---------------------|
| CH <sub>3</sub> OH                                                                              | methanol        | 32            | 18                 | 65                    | infinite            |
| CH <sub>3</sub> CH <sub>3</sub>                                                                 | ethane          | 30            | 18                 | -89                   | insoluble           |
| CH <sub>3</sub> CH <sub>2</sub> OH                                                              | ethanol         | 46            | 26                 | 78                    | infinite            |
| $\mathrm{CH_{3}CH_{2}CH_{3}}$                                                                   | propane         | 44            | 26                 | -42                   | insoluble           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> OH                                              | propan-1-ol     | 60            | 34                 | 97                    | infinite            |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                 | butane          | 58            | 34                 | 0                     | insoluble           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                              | butan-1-ol      | 74            | 42                 | 117                   | 8 g/100 g           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                 | pentane         | 72            | 42                 | 36                    | insoluble           |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH              | pentan-1-ol     | 88            | 50                 | 138                   | 2.3 g/100 g         |
| HOCH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH                            | butane-1,4-diol | 90            | 50                 | 230                   | infinite            |
| CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub> | hexane          | 86            | 50                 | 69                    | insoluble           |

Source: Blackman et al. (2019b:913).





# **Alcohols**

Preparation and reactions of alcohols are closely related.





# Fermentation of sugars







Source: Blackman et al. (2019a:1134)



# **Preparation of Alcohols**

#### From alkenes

Acid catalysed hydration of alkenes

$$H_2C = CH_2 + H_2O \xrightarrow{acid} CH_3CH_2OH$$

# From haloalkanes Nucleophilic substitution with a hydroxide ion

$$(CH_3)_3C-Br + H_2O \Longrightarrow (CH_3)_3C-OH + HBr$$
2-bromo-2-methylpropane
 $(tert$ -butyl bromide)

 $(tert$ -butyl alcohol)



#### The reaction is known as an S<sub>N</sub>1 reaction:

- 1. The Br separates from the molecule, taking the bonding electrons to form a Br ion, and leaving a tertiary carbocation. (In this example, Br is a leaving group - an atom or group of atoms that is displaced, taking the bonding electrons. This can happen because the tertiary carbocation left behind is very
- 2.The nucleophilic H<sub>2</sub>O attacks the carbocation, creating an oxonium ion (oxygen with bonds and a positive charge).
- 3. The bromide ion attacks the positively charged oxonium ion, causing the removal of a proton. The products of the reaction are a tertiary alcohol and HBr.



# **Preparation of Alcohols**

#### Reduction of carbonyl compounds Aldehydes are reduced to primary alcohols

Ketones are reduced to secondary alcohols

$$\begin{array}{c|c} O \\ \hline \\ butanal \\ H \end{array} \begin{array}{c} 1. \ NaBH_4 \\ \hline \\ 2. \ H_2O^* \end{array} \\ \begin{array}{c} OH \\ \hline \\ butan-1-ol (85\%) \end{array}$$

#### Carboxylic acids and esters can be reduced to form primary alcohols



# **Acidity of alcohols**

$$CH_3CH_2\overset{\frown}{O} - H \overset{\longleftarrow}{+} \overset{\frown}{O} - H \rightleftharpoons CH_3CH_2\overset{\frown}{O} \overset{-}{-} + H \overset{\frown}{-} \overset{+}{O} \overset{+}{-} H$$

$$K_{\rm a} = \frac{[{\rm CH_3CH_2O^-}][{\rm H_3O^+}]}{[{\rm CH_3CH_2OH}]} = 1.3 \times 10^{-16}$$
  
p $K_{\rm a} = 15.9$ 





# **Reactions of Alcohols**

# **Acidity of alcohols**

| Compound            | Structural formula                   | p <i>K</i> a |                |
|---------------------|--------------------------------------|--------------|----------------|
| hydrogen chloride   | HCl                                  | <b>-7</b>    | stronger       |
| acetic acid         | CH <sub>3</sub> COOH                 | 4.74         | 4              |
| methanol            | CH <sub>3</sub> OH                   | 15.5         |                |
| water               | H <sub>2</sub> O                     | 15.7         |                |
| ethanol             | CH₃CH₂OH                             | 15.9         |                |
| propan-2-ol         | (CH <sub>3</sub> ) <sub>2</sub> CHOH | 17           |                |
| 2-methylpropan-2-ol | (CH <sub>3</sub> ) <sub>3</sub> COH  | 18           | weaker<br>acid |

(a) Also given for comparison are  $pK_a$  values for water, acetic acid and hydrogen chloride.

Source: Blackman et al. (2019b:918).

# **Basicity of alcohols**



# **Reactions of Alcohols**

#### **Reaction with active metals Important!**

Alcohols react with Li, Na, K and other active metals to form metal alkoxides.

Alkoxide ions are good nucleophiles.

$$2CH_3OH + 2Na \longrightarrow 2CH_3O^-Na^+ + H_2$$
  
sodium methoxide

Source: Blackman et al. (2019b:918).



Conversion to haloalkanes by reaction with hydrohalic acids (HX, where X is usually Cl or Br)

$$\begin{array}{c} \text{CH}_3 \\ \text{CH}_3 \text{COH} + \text{HCI} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{2-methylpropan-2-ol} \\ \end{array} \xrightarrow{\begin{array}{c} 25 \text{ °C} \\ \text{CH}_3 \text{CCI} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{2-methylpropane} \end{array}} \begin{array}{c} \text{CH}_3 \text{CCI} \\ \text{CH}_3 \text{CCI} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{2-methylpropane} \\ \end{array}$$



# **Reactions of Alcohols**

### Reaction with thionyl chloride

### Reaction with phosphorus halides

$$3$$
 OH + PBr<sub>3</sub>  $\longrightarrow$   $3$  Br + H<sub>3</sub>PO<sub>2</sub>

**Dehydration** of an alcohol occurs when the alcohol is heated with an acid catalyst.

An —H and an —OH are lost from *adjacent* carbon atoms.

Thus dehydration of an alcohol produces an alkene.

Dehydration an alcohol is the opposite of electrophilic addition of water to an alkene.



# **Reactions of Alcohols**

When isomeric alkenes are obtained, the more stable alkene is generally the major product

The more stable alkene has the greater number of substituents on the double bond

The acid-catalysed dehydration of alcohols follows Zaitsev's rule (check β-elimination in chapter 18)

OH
$$CH_3CH_2CHCH_3 \xrightarrow{85\% H_3PO_4} \xrightarrow{heat} CH_3CH = CHCH_3 + CH_3CH_2CH = CH_2$$

$$but-2-ene \qquad but-1-ene \qquad (80\%) \qquad (20\%)$$



# **Reactions of Alcohols**

#### Oxidation of 1° and 2° alcohols

Oxidation of a 1° alcohol gives an aldehyde or carboxylic acid, depending on the experimental conditions.

2° alcohols are oxidised to ketones.

3° alcohols are not easily oxidised.

Source: Blackman et al. (2019b:924).



#### **Ester formation**

Condensation of alcohols with carboxylic acids, acid chlorides or anhydrides produces esters.

$$\begin{array}{c} O \\ \parallel \\ CH_3CH_2CH_2COH \ + \ HOCH_2CH_3 \end{array} \quad \begin{array}{c} \text{acid catalyst} \\ \hline \text{heat} \end{array} \quad \begin{array}{c} O \\ \parallel \\ CH_3CH_2CH_2COCH_2CH_3 \ + \ H_2O \end{array}$$
 butanoic acid ethanol (bp = 163 °C) (bp = 78 °C) (fragrance of pineapple)

# DEAKIN COLLEGE DEAKIN UNIVERSITY

# **Phenols**

Phenols contain a hydroxyl group bonded directly to a carbon atom of an aromatic ring.

They are solids, with low melting points and are slightly soluble in water.

Note that benzyl alcohol is not a phenol!



# **Phenols**

# **Acidity of phenols**

Phenols are much more acidic than alcohols.

phenol 
$$O^- + H_3O^+ K_a = 1.02 \times 10^{-10}$$
  $pK_a = 9.99$ 
 $CH_3CH_2OH + H_2O \implies CH_3CH_2O^- + H_3O^+ K_a = 1.3 \times 10^{-16}$   $pK_a = 15.9$ 

ethanol  $pK_a = 15.9$ 

Source: Blackman et al. (2019a:1149).



# **Phenols**

### **Acidity of phenols**

Phenols are much more acidic than alcohols because the phenoxide anion is resonance stabilised. Source: Blackman et al. (2019a:1149).

These two Kekulé structures are equivalent.

the negative charge onto carbon atoms of the ring.

# **Phenols**

# **Acidity of phenols**

Substituents that withdraw electrons from the aromatic ring increase the acidity.

| Name                 | p <i>K</i> a |                         |
|----------------------|--------------|-------------------------|
| 2,4,6-trinitrophenol | 0.42         | stronge<br>acid         |
| acetic acid          | 4.76         | $\langle \cdot \rangle$ |
| 4-nitrophenol        | 7.15         |                         |
| 4-chlorophenol       | 9.41         |                         |
| phenol               | 9.99         |                         |
| 4-methoxyphenol      | 10.21        |                         |
| 4-methylphenol       | 10.26        | weaker<br>acid          |







# **Ethers**

Ethers contain an atom of oxygen bonded to 2 carbon atoms.

Oxygen is  $sp^3$  hybridised with bond angles of approximately  $109.5^{\circ}$ .

The organic groups are usually alkyl or aryl and the oxygen atom may be part of an open chain or a ring.



# Ethers

The -OR group bonded to the parent alkane is named as an alkoxy group

Common names are derived by listing the alkyl groups bonded to oxygen in alphabetical order and adding the word ether

Source: Blackman et al. (2019a:1154).

# **Ethers**

substituents can be listed alphabetically followed by the word 'ether'



ethyl phenyl ether ethoxybenzene



# **Ethers**

Ethers are moderately polar compounds. However, only weak forces of attraction exist between ether molecules.



Source: Blackman et al. (2019a:1155).

# **Ethers**

Ethers form hydrogen bonds with water.

They are more soluble in water than hydrocarbons of similar molar mass.







# **Ethers**

Ethers have lower boiling points than alcohols with a similar number of electrons.

| Structural formula                                                | Name                | Total<br>electrons | Boiling<br>point (°C) | Solubility<br>in water |
|-------------------------------------------------------------------|---------------------|--------------------|-----------------------|------------------------|
| $CH_3CH_2OH$                                                      | ethanol             | 26                 | 78                    | infinite               |
| CH <sub>3</sub> OCH <sub>3</sub>                                  | dimethyl ether      | 26                 | -24                   | 7.8 g/100 g            |
| $\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}OH}$                             | butan-1-ol          | 42                 | 117                   | 7.4 g/100 g            |
| CH <sub>3</sub> CH <sub>2</sub> OCH <sub>2</sub> CH <sub>3</sub>  | diethyl ether       | 42                 | 35                    | 8 g/100 g              |
| $\mathrm{CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}OH}$                       | pentan-1-ol         | 50                 | 138                   | 2.3 g/100 g            |
| $CH_3CH_2CH_2CH_2OCH_3$                                           | butyl methyl ether  | 50                 | 71                    | slight                 |
| CH <sub>3</sub> OCH <sub>2</sub> CH <sub>2</sub> OCH <sub>3</sub> | 1,2-dimethoxyethane | 50                 | 84                    | infinite               |

Source: Blackman et al. (2019a:1156).





# **Reactions of Ethers**

# Ethers resemble hydrocarbons in their resistance to chemical reactions.

They do not react readily with oxidising agents or reducing agents.

They are not affected by most acids or bases at moderate temperature.

Because of their good solvent properties and general inertness to chemical reaction, ethers are excellent solvents in which to carry out organic reactions.



# **Summary**

#### Reactions of alcohols

Alcohols are polar compounds.

Their boiling points are higher than those of hydrocarbons of similar molar mass.

Boiling points of alcohols increase with increasing molar mass.

Alcohols are more soluble in water than hydrocarbons of similar molar mass.



# **Summary**

#### **Phenols**

The functional group is an –OH group bonded directly to a C atom of a benzene ring.

Phenol and their derivatives are weak acids.

They have  $pK_a$  values of approx. 10.0.

They are considerably stronger acids than alcohols, which have  $pK_a$  values of 16-18.

