#### Non-Linear Data Structures

#### **AVL Balanced Trees**

# AVL Tree Definition

- An AVL Tree is a special case of a height balanced binary tree, where for each node in the tree, the difference in height of its two subtrees is at most one.
- A perfectly balanced binary tree is an AVL tree but not the reverse.
- The operations defined for binary search trees work also for AVL trees, except for the insert and delete operations, where a rebalance may be needed after the operation is done.
- AVL trees have an average search length that is almost identical to the perfectly balanced (minimum height) trees.
- The height of an AVL tree never exceeds 1.45 (log<sub>2</sub> n).





- Use the binary tree node generic class: BTNode<E>, as defined before. Add an integer balance factor field.
- The balance factor of a node is defined as the height of its right subtree minus the height of its left subtree.
- BF element left Left child Right child

current

0

- Use two BTNode<E> pointer variables:
  - root -- points to the root node of the tree.
  - current -- points to the current element node in the tree.
- Use one integer variable:
  - count -- stores the number of nodes in the tree.



## AVL Tree Implementation Using a Linked Structure (cont.)

- Operations implemented for the BST are still applicable to the AVL tree.
- The insert, and remove operations need slight changes.
- After the insertion or removal of a node, check for the AVL balance conditions and adjust the tree accordingly.

## **AVL Tree**The Insert Operation

- Given an AVL tree with a root node, n.
   Let L and R be the left and right subtrees of n, respectively.
   Let h<sub>L</sub> and h<sub>R</sub> be the heights of L and R, respectively.
- Suppose that a new node is to be inserted in the left subtree,
   L, then three cases are identified:
  - 1.  $h_L = h_R : L \& R$  become of unequal height, the tree is still AVL.
  - 2.  $h_1 < h_R : L \& R$  become of equal height, the tree is still AVL.
  - 3.  $h_L > h_R$ : The balance is violated, the tree must be rebalanced.
- The rebalancing action is a transformation to restore the balance, where the only movements allowed are in the vertical direction, called rotation. Two cases are possible:

#### **AVL** Tree

#### Case1: The Single Rotation

- The new node is inserted at the leftmost branch of the tree, as shown.
- A similar case exists when the new node is inserted at the rightmost branch of the tree ( the mirror image).
- Rebalancing for both cases is done through a single rotation operation.



#### **AVL** Tree

#### Case2: The Double Rotation

- A new node inserted in the middle of left branch of the tree, as shown.
- A similar case exists when a new node is inserted in the middle of right branch of the tree (the mirror image).
- Rebalancing for both cases is done through a double rotation operation.



## AVL Tree The Insert Algorithm

- 1. Follow the search path until it is verified that the key to be inserted is not in the tree.
- 2. Insert the new node, and determine the resulting balance factor.
- 3. Retreat along the search path and check the balance factor at each node:
  - Suppose that a node, p, is reached from the left branch with indication that it increased its height (BF = -2).
  - Check the balance factor of the left child of p:
    - 1. If it is -1, this is case1 → rebalance using a single rotation.
    - Otherwise, this is case2 → rebalance using double rotation.
  - Similarly, for the right branch, just reverse all the red color text.

# 

## AVL Tree Examples of the Insert Operation (cont.)



## AVL Tree Examples of the Insert Operation (cont.)



## **AVL Tree**The Insert Operation -- Performance

The expected height of a constructed AVL tree when all n!
 permutations of n keys occur with equal probability is difficult to get
 mathematically, but test results show it to have an average:

$$h = log_2(n) + C,$$
 (C \simeq 0.25)

- The rebalancing operation is O(1)
- Rebalancing is needed once for approximately every two insertions.
- Use AVL trees only if **searching** is more frequent than insertion.

## **AVL Tree**The Remove Operation

- Given an AVL tree with a root node, n.
   Let L and R be the left and right subtrees of n, respectively.
   Let h<sub>L</sub> and h<sub>R</sub> be the heights of L and R, respectively.
- Suppose that a node is to be removed from the left subtree,
   L, then three cases are identified:
  - 1.  $h_L = h_R : L \& R$  become of unequal height, the tree is still AVL.
  - 2.  $h_L > h_R : L \& R$  become of equal height, the tree is still AVL.
  - 3.  $h_L < h_R$ : The balance is violated, the tree must be rebalanced.
- Rebalancing is done through the same rotation operations used for insertion, namely, single or double rotations.

#### AVL Tree

#### The Remove Algorithm

- 1. Follow the search path until it is verified that the key to be removed is in the tree.
- 2. Remove the node.
- 3. Retreat along the search path and check the balance factor at each node:
  - Suppose that a node, p, is reached from the left branch with indication that it changed its height (BF =  $\pm 2$ ).
  - Check the balance factor of the right child of p:
    - 1. If it is >=0, this is case1 → rebalance using a single rotation.
    - 2. Otherwise, this is case2 → rebalance using double rotation.
  - Similarly, for the right branch, just reverse all the red color text.

# AVL Tree Examples of the Remove Operation



# AVL Tree Examples of the Remove Operation



# AVL Tree Examples of the Remove Operation



## **AVL Tree**The Remove Operation -- Performance

- While insertion of a single key may require at most one rotation, removal of a single key may require a rotation at every node along the search path.
- The worst case is to remove the rightmost node of a Fibonacci tree.
- The rebalancing operation is O(1)
- Tests show that a rotation is required for every five deletions.
- Use AVL trees only if searching is more frequent than insertion or deletion.

## AVL Tree The Fibonacci Tree

- Fibonacci trees are the worst case of AVL trees.
- Definition:
  - 1. The empty tree is the Fibonacci tree of height 0.
  - 2. A single node is the Fibonacci tree of height 1.
  - 3. If  $T_{h-1}$  and  $T_{h-2}$  are Fibonacci trees of heights h-1 and h-2, respectively, then  $T_h = \langle \rangle$  > is a Fibonacci tree of height h.
  - 4. No other trees are Fibonacci trees.

