

Lista 1 Geometria Analítica

<u>Vetores. Problemas Clássicos de Geometria.</u> Dependência linear. Base. Coordenadas. Mudança de base.

I. Seja ABCDEF um hexágono regular, como na Fig. 1. Expresse os vetores em cores vermelho e azul como combinações dos vetores $\vec{a} = \overrightarrow{BC}$, $\vec{b} = \overrightarrow{DE}$

Figura 1:

II. Seja ABCDA'B'C'D' um paralelepípedo, como na Fig. 2. Expresse os vetores em cores vermelho e azul como combinações dos vetores $\vec{a} = \overrightarrow{AD}$, $\vec{b} = \overrightarrow{BC'}$, $\vec{c} = \overrightarrow{D'B'}$

Figura 2:

Figura 3:

III. Seja \overrightarrow{ABCD} uma trapézia, como na Fig. 3 onde $\overrightarrow{AB} = 3\overrightarrow{DC}$, $\overrightarrow{AD} = 3\overrightarrow{AN}$, $4\overrightarrow{AM} = 3\overrightarrow{AB}$. Achar razão r em que ponto F divide segmento (C, N): $\overrightarrow{CF} = r\overrightarrow{FN}$.

IV. Seja \overrightarrow{ABC} um triângulo com medianas \overrightarrow{AD} , \overrightarrow{BE} , \overrightarrow{CF} . Demonstre que $\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \vec{0}$.

V. Prove se vetores $(\vec{u}, \vec{v}, \vec{w})$ são LI então vetores $(2\vec{u} + 3\vec{v}, 2\vec{u} + 3\vec{w}, -\vec{v} + \vec{w})$ são DL.

VI. Seja $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ é base e $E' = (\vec{e}'_1 = \vec{e}_1 + 2\vec{e}_2 + \vec{e}_3, \vec{e}'_2 = \vec{e}_1 - \vec{e}_2 + \vec{e}_3, \vec{e}'_3 = \vec{e}_2 + \vec{e}_3)$. Prove que E' é base e calcule coordenadas de vetor $\vec{u} = (1, -1, 1)_E$ na base novo E'.

VII. Sejam $E = (\vec{e}_1, \vec{e}_2, \vec{e}_3), F = (\vec{f}_1, \vec{f}_2, \vec{f}_3) \in G = (\vec{g}_1, \vec{g}_2, \vec{g}_3)$

$$\begin{cases} \vec{e}_1 = \vec{f}_1 - 2\vec{f}_2 \\ \vec{e}_2 = \vec{f}_1 + \vec{f}_3 \\ \vec{e}_3 = \vec{f}_2 - \vec{f}_3 \end{cases} \qquad \begin{cases} \vec{f}_1 = \vec{g}_1 + 2\vec{g}_2 \\ \vec{f}_2 = \vec{g}_1 - \vec{g}_3 \\ \vec{f}_3 = \vec{g}_2 - \vec{g}_3 \end{cases}$$

Obtenha as matrizes de mudança: M_{EF} , M_{FE} , M_{GF} , M_{FG} , M_{EG} e calcula coordenadas de vetor $\vec{v} = (1, 0, -1)_E$ em bases $F \in G$.

VIII. Calcula coordenadas de vetores azul em base preto em Figs. 1 e 2.