컴퓨터 응용통계 8장 이표본 t-test

최경미

이표본 t-test

사과냐? 배냐?

두 집단의 평균 비교

- 가설 H_0 : $\mu_1 = \mu_2$ VS. H_1 : $\mu_1 \neq \mu_2$
- 분산이 작으면, 평균이 달라 보이고, 분산이 크면, 평균이 같아 보임.
- 분산이 다를 때는

독립인 두 표본의 평균비교

- 등분산성(equal variances) 검정
- ① 등분산이면 등분산 이표본 T -검정
- ② 분산이 다르면 이분산(non-equal variances) 이표본 T -검정

N(80,16) QF N(100,1

8.1 이분산 T -검정

- $Y_1, Y_2, \dots, Y_{n_2} \sim \text{iid N}(\mu_2, \sigma_2^2)$
- 독립표본

•
$$\sigma_1^2 \neq \sigma_2^2$$
 가정

• **가설** H_0 : $\mu_1 = \mu_2$ VS. H_1 : $\mu_1 \neq \mu_2$

$$ar{X} = rac{1}{n_1} \sum_{i=1}^{n_1} X_i$$
 , $ar{Y} = rac{1}{n_2} \sum_{i=1}^{n_2} Y_i$

$$S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2$$
, $S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2$

$$E[\bar{X} - \bar{Y}] = \mu_1 - \mu_2$$

$$Var(\bar{X} - \bar{Y}) = Var(\bar{X}) + (-1)^2 Var(\bar{Y}) - 2Cov(\bar{X}, \bar{Y}) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}$$

$$Var(\widehat{\overline{X}} - \overline{Y}) = \frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}$$

$$se(\bar{X} - \bar{Y}) = \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$$

$$t = \frac{z}{\sqrt{\frac{\chi^2(r)}{r}}} \sim t(r)$$

검정통계량
$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim t(df)$$

Satterthwaite의 자유도
$$df = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

$$\mu_1 - \mu_2$$
의 100(1- α)% 신뢰구간

$$\left(\bar{X} - \bar{Y} - t_{\alpha/2} (df) \sqrt{S_1^2/n_1 + S_2^2/n_2}\right)$$

$$\bar{X} - \bar{Y} + t_{\alpha/2} (df) \sqrt{S_1^2/n_1 + S_2^2/n_2}$$

기각역
$$R: |T| \ge t_{\frac{\alpha}{2}}(df)$$

유의확률
$$p -$$
값 = $P(|T| \ge |t_0|)$

예제 8.2 mtcars자료 표8.1에서 4기통 차와 6기통 차의 평균연비 비교

> x<-c(22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26.0, 30.4, 21.4), $n_1 = 11$

 $y < -c(21.0, 21.0, 21.4, 18.1, 19.2, 17.8, 19.7), n_2 = 7$

> mean(y)

> sd(x)

> sd(y)

- > mydata<-c(x,y)
- > m<-length(x)
- > n<-length(y)</pre>
- > mygroup < -c(rep("4",m),rep("6",n))</pre>
- > boxplot(mydata~mygroup, ylab="mpg")

실린더 수↩	평균↩	표준편차↩		
4↩	26.66↩	4.51↩		
6↩	19.74	1.45↩		


```
> # 평균 검정↩
                      H_0: \mu_1 = \mu_2 VS. H_1: \mu_1 \neq \mu_2
> t.test(x,y)
         Welch Two Sample t-test←
                                                              검정통계량, 자유도, 유의확률↩
data: x and y←
t = 4.7191, df = 12.956, p-value = 0.0004048\leftarrow
.: 평균 다름
alternative hypothesis: true difference in means is not equal to 0년
                                                                         H_1: \mu_1 \neq \mu_2 \leftarrow
95 percent confidence interval:
  3.751376 10.090182
                              신뢰구간↩
sample estimates:←
mean of x mean of y \leftarrow
                             표본평균↩
 26.66364 19.74286
```

$(\mu_1 - \mu_2)$ 에 대한 추론

• $(\mu_1 - \mu_2)$ 의 95% 신뢰구간= (3.75, 10.09)

$$26.66 - 19.74 - t_{0.025} (12.956) \sqrt{\frac{(4.51)^2}{11} + \frac{(1.45)^2}{7}} = 3.75$$

$$26.66 - 19.74 + t_{0.025} (12.956) \sqrt{\frac{(4.51)^2}{11} + \frac{(1.45)^2}{7}} = 10.09$$

• 가설
$$H_0$$
: $\mu_1 = \mu_2$ VS. H_1 : $\mu_1 \neq \mu_2$

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{s_1^2/n_1 + s_2^2/n_2}} = \frac{(26.66 - 19.74) - 0}{\sqrt{(4.51)^2/11 + (1.45)^2/7}} = 4.7191,$$

$$df = 12.956$$

$$|T| \geq t_{0.025}(12.956) = qt(0.975, 12.956) = 2.16$$

$$p - \text{Theorem } P(|T| \geq |4.7191|)$$

$$= 2 * pt(-4.7191, 12.956) = 0.0004048 < 0.05$$

$$H_0 \text{ Theorem } H_0 \text{ Theorem } H_0$$

8.2 등분산 T -검정

- $X_1, X_2, \dots, X_{n_1} \sim \text{iid N}(\mu_1, \sigma_1^2)$
- $Y_1, Y_2, \dots, Y_{n_2} \sim \text{iid N}(\mu_2, \sigma_2^2)$
- 독립표본
- $\sigma_1^2 = \sigma_2^2 = \sigma^2$ 가정
- **가설** H_0 : $\mu_1 = \mu_2$ VS. H_1 : $\mu_1 \neq \mu_2$
- 공통분산 (pooled var)

$$s_p^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{(n_1 - 1) + (n_2 - 1)}, \quad se(\bar{X} - \bar{Y}) = s_p \sqrt{1/n_1 + 1/n_2}$$

- 검정통계량 $T = \frac{(\bar{X} \bar{Y}) (\mu_1 \mu_2)}{s_p \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 2)$
- $\mu_1 \mu_2$ 의 100(1- α)% 신뢰구간

$$\left(\bar{X} - \bar{Y} - t_{\alpha/2} (n_1 + n_2 - 2) s_p \sqrt{1/n_1 + 1/n_2}, \\ \bar{X} - \bar{Y} + t_{\alpha/2} (n_1 + n_2 - 2) s_p \sqrt{1/n_1 + 1/n_2}\right)$$

- 기각역 $R: |T| \ge t_{\alpha/2} (n_1 + n_2 2)$
- 유의확률 $p \text{값} = P(|T| \ge |t_0|)$

N(80,9)와 N(100,9)

NOTE

$$S_{1}^{2} = \frac{1}{n_{1}-1} \sum_{i=1}^{n_{1}} (X_{i} - \bar{X})^{2}, \quad S_{2}^{2} = \frac{1}{n_{2}-1} \sum_{i=1}^{n_{2}} (Y_{i} - \bar{Y})^{2}$$

$$S_{p}^{2} = \frac{(n_{1}-1)S_{1}^{2} + (n_{2}-1)S_{2}^{2}}{(n_{1}-1) + (n_{2}-1)}$$

$$E[\bar{X} - \bar{Y}] = \mu_{1} - \mu_{2}$$

$$Var(\bar{X} - \bar{Y}) = \frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}} = \sigma^{2} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)$$

$$Var(\bar{X} - \bar{Y}) = S_{p} \left(\frac{1}{n_{1}} + \frac{1}{n_{2}}\right)$$

$$Se(\bar{X} - \bar{Y}) = S_{p} \sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}$$

예제 8.2 mtcars자료 표8.1에서 4기통 차와 6기통 차의 평균연비 비교

> x<-c(22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26.0, 30.4, 21.4)

>y<-c(21.0, 21.0, 21.4, 18.1, 19.2, 17.8, 19.7)

> mean(y)

> sd(x)

> sd(y)

- > mydata<-c(x,y)
- > m<-length(x)
- > n<-length(y)
- > mygroup<-c(rep("4",m),rep("6",n))</pre>
- > boxplot(mydata~mygroup, ylab="mpg")

실린더 수↩	평균↩	표준편차↩		
4↩	26.66↩	4.51₽		
6↩	19.74₽	1.45↩		

 H_0 : $\mu_1 = \mu_2$ vs. H_1 : $\mu_1 \neq \mu_2$

```
> # 예제 8.3 ←
                                                          자료 가져오기↩
          x <- mtcars[mtcars$cyl=="4", "mpg"]
          y <- mtcars[mtcars$cyl=="6", "mpg"]
        > t.test(x,y, var.equal=TRUE)
                                          등분산 검정 표시하기←
                 Two Sample t-test←
        data: x and y
                                                              검정통계량, 자유도, 유의확률↔
        t = 3.8952, df = 16, p-value = 0.001287←
        .. 평균 다름
alternative hypothesis: true difference in means is not equal to 0←
                                                                            H_1: \mu_1 \neq \mu_2 \leftarrow
\mu_1 - \mu_2 95 percent confidence interval:
          3.154286 10.687272← 、
                                   신뢰구간↩
                                                             df = n_1 + n_2 - 2 = 16
        sample estimates:←
        mean of x mean of y \leftarrow
                                   표본평균↩
         26.66364 19.74286
```

$(\mu_1 - \mu_2)$ 에 대한 추론

$$df = (11-1)+(7-1)=16$$

$$s_p^2 = \frac{(11-1)(4.51)^2 + (7-1)(1.45)^2}{(11-1) + (7-1)} = 13.501$$

$$(\mu_1 - \mu_2)$$
의 95% 신뢰구간

$$26.66 - 19.74 - t_{0.025} (16) \sqrt{13.501} \sqrt{\frac{1}{11} + \frac{1}{7}} = 3.15$$

$$26.66 - 19.74 + t_{0.025} (16) \sqrt{13.501} \sqrt{\frac{1}{11} + \frac{1}{7}} = 10.69$$

$$CI = (3.15, 10.69)$$

$$H_0$$
: $\mu_1 = \mu_2$ vs. H_1 : $\mu_1 \neq \mu_2$

$$T = T = \frac{(26.66 - 19.74) - 0}{\sqrt{13.501}\sqrt{1/11 + 1/7}} = 3.8952, \text{ df} = 16$$
$$|T| \ge t_{0.025}(16) = qt(0.975, 16) = 2.12$$
$$p - \frac{7}{44} = P(|T| \ge |3.8952|) = 0.001287$$

8.3 등분산성 검정을 위한 F -통계량

• 독립표본

$$X_1, X_2, \dots, X_{n_1} \sim \text{iid N}(\mu_1, \sigma_1^2)$$

$$Y_1, Y_2, \dots, Y_{n_2} \sim \text{iid } N(\mu_2, \sigma_2^2)$$

•
$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ 또는 H_0 : $\frac{\sigma_1^2}{\sigma_2^2} = 1$ H_1 : $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$
$$V_1 = \frac{(n_1 - 1)S_1^2}{\sigma_1^2} \sim \chi^2(n_1 - 1) , V_2 = \frac{(n_2 - 1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$$

$$F = \frac{V_1/r_1}{V_2/r_2} = \frac{\frac{(n_1 - 1)S_1^2}{\sigma_1^2}/(n_1 - 1)}{\frac{(n_2 - 1)S_2^2}{\sigma_2^2}/(n_2 - 1)} = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$
 검정통계량 $F = \frac{S_1^2}{S_2^2}$

R 예제 H_0 : $\sigma_1^2 = \sigma_2^2$ H_1 : $\sigma_1^2 \neq \sigma_2^2$ 또는 H_0 : $\frac{\sigma_1^2}{\sigma_2^2} = 1$ H_1 : $\frac{\sigma_1^2}{\sigma_2^2} \neq 1$

```
> # 예제 8.4←
      > x<-<u>c(</u>22.8, 24.4, 22.8, 32.4, 30.4, 33.9, 21.5, 27.3, 26.0, 30.4, 21.4)←
                                                                                n_1 = 11
      > y<-<u>c(</u>21.0, 21.0, 21.4, 18.1, 19.2, 17.8, 19.7)←
      > var.test(x,y) ←
                                                                    검정통계량, 자유도 n_1, n_2, 유의확률\leftarrow
                F test to compare two variances←
      data: x and y←
      F = 9.6261, num df = 10, denom df = 6, p-value = 0.01182←
                                                                              < \alpha = 0.05 이므로, H_0 기각함
      alternative hypothesis: true ratio of variances is not equal to 14
                                                                               \rightarrow H_1: \sigma_1^2 \neq \sigma_2^2 \leftarrow
      95 percent confidence interval:←
         1.762592 39.198688←
1 ∉
                                      신뢰구간씓
      sample estimates:←
      ratio of variances ←
                                                      s_1^2/s_2^2
                                     \sigma_1^2 \ / \ \sigma_2^2 \leftarrow
                  9.626086
```

혼자 풀기

1. R의 mtcars에서 트랜스미션 자동(automatic) 19대와 수동(manual) 13대 차량의 mpg (연비)를 하여 SAS PROC TTEST을 실행한 결과, <표1>과 <표2>를 얻었다. 틀린 설명은 어느 것인가?←

 $\langle \pm 2 \rangle \text{ ttest}$ $H_0: \mu_1 = \mu_2 \ H_1: \mu_1 \neq \mu_2$

Method←	Variances←	DF←	t Value←	<u>Pr</u> > t ←	:-	
Pooled←	Equal	30←	-4.11←	p= 0.0003← ←	$\alpha = 0.05$	평균 다름
Satterthwaite←	Unequal←	18.332←	-3.77←	p= 0.0014← ←	in ci	

- ① 독립인 <u>이표본에서</u> 평균을 비교하는 문제이고 검정통계량은 t이다. ←
- ② 유의수준 0.05에서 자동과 수동의 분산이 같다고 보기 어렵다. ←
- ③ 검정통계량은 t=-4.11이다. ←
- ④ 유의수준 0.05에서 두 집단의 평균이 다르다고 말할 수 있다.←
- ⑤ 답 없음←

혼자 풀기 (시험)

14. R의 InsectSprays에서 spray B와 spray F를 뿌렸을 때 죽은 벌레 수가 다음과 같이 주어졌다. 정규분포를 가정할 때, spray B와 F를 뿌릴 때, 죽은 벌레 수가 같다고 말할 수 있을지 검정하자. 옳은 것을 모두 고르라. var.test(x,y); t.test(x,y); t.test(x,y,var.equal=T)를 사용하자.

- a. 등분산 검정의 유의확률은 p= 0.2294이다.
- b. 두 평균의 동일성 검정에 대한 검정통계량 t = -0.61259의 자유도는 19.498이고, 유의확률은 p = 0.5472이다.
- c. 두 평균의 동일성 검정에 대한 검정통계량 t=-0.61259의 자유도는 22이고, 유의확률은 p=0.5464이다.
- d. 유의수준 0.05에서 spray B와 F를 뿌릴 때, 죽은 벌레 수의 차이가 유의하게 다르다.
- ① a b ② a c ③ a b d ④ a c d ⑤ 위 보기 중 답 없음

В	11, 17, 21, 11, 16, 14, 17, 17, 19, 21, 7, 13
F	11, 9, 15, 22, 15, 16, 13, 10, 26, 26, 24, 13

x <- subset(InsectSprays, spray=="B", c(count))

y <- subset(InsectSprays, spray=="F", c(count))

x<-InsectSprays[InsectSprays\$spray=="B", "count"]

y<-InsectSprays[InsectSprays\$spray=="F", "count"]

x < -c(11, 17, 21, 11, 16, 14, 17, 17, 19, 21, 7, 13)

y <- c(11, 9, 15, 22, 15, 16, 13, 10, 26, 26, 24, 13)

실전 보고서 (과제)

R의 InsectSprays에서 B,F를 뿌릴 때, 죽는 벌레 수가 동일한지 검정하기 위하여, 유의수준 0.05에서 이표본 T-검정을 실시해보자. 그림1은 자료의 상자도표이다.

커저를 상자도표 그림에 놓고, 복사 붙이기

자르기로 크기 조절, 가운데 정렬

그림1. 살충제 B,F의 상자도표

두 스프레이를 뿌릴 때 죽은 평균 벌레수가 동일한지 알아보기 위하여, 다음과 같이 <mark>가설</mark>을 세우자.

 $H_0: \ \mu_B = \mu_F \ H_1: \mu_B \neq \mu_F$

삽입 => 수식 => 선택해서 입력

표본크기는 각각 n_1 ,=? n_2 =??이고, 표본평균은 \bar{x} =?, \bar{y} =?이고, 표본표준편차는 s_X =?, s_Y =?이다. 등분산 검정에 대한 유의확률 p=?가 유의수준 α =0.05보다 (크므로, 작으므로), (등분산이다, 이분산이다.)

(등분산 T-검정, 이분산 T-검정)을 이용하여 계산한 평균차이 $(\mu_B - \mu_F)$ 에 대한 95% 신뢰구간은 (?,??)이고, 검정통계량은 T=?이며, 유의확률은 p=?이다. 따라서 유의수준 0.05 에서 귀무가설을 (기각한다, 기각하지 않는다.)즉, 유의수준 0.05에서 살충제 B와 F의 효과는 (같다, 다르다.)

부록

코드와 결과 붙이기

삽입 => 표 => 한 칸 선택

(시험) 문제 두 표본이 $X_1, X_2, \cdots, X_{n_1} \sim \text{iid N}(\mu_1, \sigma_1^2), Y_1, Y_2, \cdots, Y_{n_2} \sim \text{iid N}(\mu_2, \sigma_2^2)$ 일 때,

$$\bar{X} = \frac{1}{n_1} \sum_{i=1}^{n_1} X_i \text{ , } \bar{Y} = \frac{1}{n_2} \sum_{i=1}^{n_2} Y_i \text{ , } S_1^2 = \frac{1}{n_1 - 1} \sum_{i=1}^{n_1} (X_i - \bar{X})^2 \text{ , } S_2^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ , } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2 - 1} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{ . } S_p^2 = \frac{1}{n_2} \sum_{i=1}^{n_2} (Y_i - \bar{Y})^2 \text{$$

 $\frac{(n_1-1)S_1^2+(n_2-1)S_2^2}{(n_1-1)+(n_2-1)}$ 에 대한 옳은 설명은 무엇인가?

$$(2) \frac{(n-1)S_2^2}{\sigma_2^2} \sim \chi^2(n_2 - 1)$$

③
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 일 때, $T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{s_p \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$

$$\textcircled{4} \ \sigma_1^2 \neq \sigma_2^2 \ \textcircled{2} \ \textcircled{1}, \ T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_1^2/n_1 + S_2^2/n_2}} \sim \mathsf{t}(df), \qquad df = \frac{\left(S_1^2/n_1 + S_2^2/n_2\right)^2}{\frac{\left(S_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(S_2^2/n_2\right)^2}{n_2 - 1}}$$

(5)
$$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

8.5 쌍체 비교법 (paired t-test) (생략)

- 두 약 A와 B의 생물학적 동등성을 검정하는 문제를 생각해보자.
- 체중이나 체질에 따라서 사람마다 두 약의 약효가 다르게 나타날 수 있기 때문에, 한 사람에게 두 약을 모두 투여한 후, 그 차이가 0인지를 검정한다.
- 이때, 앞서 투약되는 약의 잔여효과(carryover effect)가 나중에 투약되는 약의 효과에 영향을 미치지 않도록, 각 사람에게 투약되는 두 약의 순서를 랜덤하게 정해야 한다.

$$A_1$$
 $B_1 \leftarrow$

$$A_2 \quad B_2 \leftarrow$$

$$B_3$$
 $A_3 \leftarrow$

$$A_{n-1}$$
 B_{n-1}

$$B_n A_n \leftarrow$$

$$d_i = A_i - B_i$$
, i=1,...,n

$$H_0$$
: $\mu_d = 0$ vs. H_1 : $\mu_d \neq 0$

$$T = \frac{\bar{d}}{s_d/\sqrt{n}}$$

$$\bar{d} \pm t_{\alpha/2} (n-1) \frac{s_d}{\sqrt{n}}$$

$$R: |T| \ge t_{\alpha/2} (n-1)$$

$$p - \stackrel{\text{T}}{\sqcup} = P(|T| \ge |t_0|)$$

예제 8.6 두 간호사의 심장 신호를 측정 비교 (생략)

ld:↩	1	2	3	4	5	6	7	8	9	10	11	12↩ ←
A←	4.8,	5.6,	6.0,	6.4 _,	6.5,	6.6,	6.8,	7.0,	7.0,	7.2,	7.4,	7.6←
B←□												l l

