# MAT0120 - Álgebra I para Licenciatura

#### Lista 1

Professor: Kostiantyn Iusenko Monitor: Douglas de Araujo Smigly

#### 1° Semestre de 2021

### 1 Axiomática de $\mathbb{Z}$

(1) Dado um inteiro x, chamamos de *valor absoluto* de x o numero inteiro designado por |x| e definido por

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}.$$

Sejam  $a, b \in \mathbb{Z}$ . Prove que

- $(a) |a| \ge 0;$
- (b) |a| = 0 se, e somente se, a = 0;
- $(c) -|a| \le a \le |a|;$
- (d) |ab| = |a||b|;
- (e)  $|a+b| \le |a| + |b|$ ;
- $(f) ||a| |b|| \le |a b|.$
- (2) Prove que o conjunto  $S = \{m \in \mathbb{Z} \mid 7 < m < 8\}$  é vazio.
- (3) Um elemento  $a \in \mathbb{Z}$  é dito *inversível* se existir um elemento  $a' \in \mathbb{Z}$  tal que aa' = 1. Mostre que os únicos elementos inversíveis de  $\mathbb{Z}$  são  $1 \in -1$ .
- (4) Sejam  $p, q \in \mathbb{Z}$ .
  - (a) Prove que
    - (*i*)  $p \cdot (-q) = (-p) \cdot q = -(p \cdot q);$
    - $(ii) (-p) \cdot (-q) = p \cdot q.$
  - (b) Mostre que se a multiplicação em  $\mathbb Z$  tivesse sido definida satisfazendo  $(-p) \cdot (-q) = -(p \cdot q)$ , para todos  $p, q \in \mathbb N$ , então os números inteiros não satisfariam os seguintes axiomas:
    - (i) Propriedade cancelativa: para toda terna de inteiros a,b,c, com  $a \neq 0$ , tem-se que, se ab = ac, então b = c.
    - (ii) Propriedade distributiva: para toda terna de inteiros a, b, c de inteiros tem-se que a(b + c) = ab + ac.

1

(c) Se fosse válido que  $(-3) \cdot (-5) = -15$ , mostre que teríamos  $7 \cdot 2 = -16$ .

## 2 Indução Finita

- (1) Prove que se vale o Princípio da Indução Finita, então vale o Princípio da Boa Ordem.
- (2) Prove que se vale a segunda forma do Princípio da Indução Finita, então vale o Princípio da Boa Ordem.
- (3) Prove por indução que

(a) 
$$\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{6}, \forall n \ge 1;$$

(b) 
$$\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \ldots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$$
,  $\forall n \ge 1$ ;

- (c) [Designaldade de Bernoulli]  $(1+h)^n \ge 1 + nh$ , onde h > 0 está fixado e  $n \ge 0$ .
- (4) Prove por indução que
  - (a)  $n^3 + 2n$  é sempre divisível por 3 para todo  $n \ge 0$ ;
  - (b)  $5^n 4n + 15$  é sempre divisível por 16 para todo  $n \ge 0$ ;
  - (c)  $2n^3 + 3n^2 + 7n$  é sempre divisível por 6 para todo  $n \ge 0$ .
  - (d)  $4^{2n-1} + 1$  é sempre divisível por 5 para todo  $n \ge 1$ .
  - (e)  $6^{2n-2} + 3^{n+1} + 3^{n-1}$  é sempre divisível por 11 para todo  $n \ge 1$ .
- (5) Sejam a e r dois números inteiros. Dizemos que a sequência  $\{a_0, a_1, \ldots, a_n\}$ , onde  $a_1 = a, a_2 = a + r, a_3 = a + 2r, \ldots, a_n = a + (n-1)r$  é uma progressão aritmética de razão r. Prove, utilizando o princípio de indução finita, que a soma dos n primeiros termos de uma progressão aritmética é dada por:

$$\sum_{i=1}^{n} a_i = a + (a+r) + (a+2r) + \ldots + (a+(n-1)r) = \frac{n(2a+(n-1)r)}{2}$$

(6) Considere a seguinte sequência de somas:

$$\frac{1}{2!} = \frac{1}{2}$$

$$\frac{1}{2!} + \frac{2}{3!} = \frac{5}{6}$$

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} = \frac{23}{24}$$

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \frac{4}{5!} = \frac{119}{120}$$

e seja P(n) a soma

$$\frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \ldots + \frac{n-1}{n!}$$

Determine uma expressão para P(n) e, em seguida, utilizando o Princípio da Indução Finita, prove sua validade para  $n \ge 2$ .

2

(7) Prove que se  $n \ge 3$ , então a soma dos ângulos internos de um polígono regular de n lados é

$$(n-2) \cdot 180^{\circ}$$

(8) Sabe-se que a forma trigonométrica do número complexo z = a + bi é dada por

$$z = \rho(\cos\theta + i \sin\theta),$$

onde  $\theta = \arg z$  e  $\rho = |z| = \sqrt{a^2 + b^2}$ . Prove, utilizando o Princípio de Indução Finita, a fórmula de De Moivre, isto é, se  $z = \rho(\cos \theta + i \sin \theta)$ , então

$$z^n = \rho^n(\cos(n\theta) + i\sin(n\theta)), \quad \forall n \in \mathbb{N}.$$

(9) Seja  $a \neq 0 \in \mathbb{Z}$  e  $m \in \mathbb{N}$ . Definimos a potência não-negativa de a do seguinte modo:

$$a^{m} = \begin{cases} 1, & \text{se } m = 0 \\ a, & \text{se } m = 1 \\ a^{m-1} \cdot a, & \text{se } m > 1 \end{cases}$$

Prove que

- (a)  $a^m \cdot a^n = a^m + n, \forall m, n \in \mathbb{N};$
- (b)  $(a^m)^n = a^{m \cdot n}, \forall m, n \in \mathbb{N}.$
- (10) Prove que x y divide  $x^n y^n$  para quaisquer inteiros x, y distintos e  $n \ge 1$ .
- (11) Para todo inteiro  $n \ge 1$ , prove que

(a) 
$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^{n-1} + \frac{x^n}{1-x};$$

- (b)  $1+2+2^2+\ldots+2^{n-1}=2^n-1$  ([Dica:] Use o item anterior).
- (12) Seja *n* um inteiro positivo. Mostre que

(a) 
$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0;$$

$$(b) \sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

(13) Prove por indução finita para todo n > 1 que

(a) 
$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} > \frac{13}{24}$$
;

(b) 
$$\left(1-\frac{1}{4}\right)\cdot\left(1-\frac{1}{9}\right)\cdot\ldots\cdot\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n};$$

(c) 
$$1 \cdot 1! + 2 \cdot 2! + \ldots + n \cdot n! = (n+1)! - 1$$
,

(d) 
$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \ldots + \frac{1}{n\cdot (n+1)} = \frac{n}{n+1}$$
.

**(14)** 

(a) Considere a sequência de números inteiros  $(a_n)_{n>0}$  dada por

$$a_n = \begin{cases} 2, & \text{se } n = 0; \\ 3, & \text{se } n = 1; . \\ 3a_n - 2a_{n-1}, & \text{se } n \ge 2 \end{cases}$$

Mostre que

$$a_n = 2^n + 1$$
,  $\forall n \ge 0$ .

(b) Considere a sequência de números inteiros  $(b_n)_{n>0}$  dada por

$$b_n = \begin{cases} 0, & \text{se } n = 0; \\ 1, & \text{se } n = 1; . \\ 3b_n - 2b_{n-1}, & \text{se } n \ge 2 \end{cases}$$

Mostre que

$$b_n = 2^n - 1, \quad \forall n > 0.$$

(c) Considere a Sequência de Fibonacci  $(F_n)_{n>0}$  dada por

$$F_n = \begin{cases} 0, & \text{se } n = 0; \\ 1, & \text{se } n = 1; . \\ F_n + F_{n-1}, & \text{se } n \ge 2 \end{cases}$$

Mostre que

(i) 
$$F_n^2 - F_{n+1}F_{n-1} = (-1)^{n+1}$$
;

(ii) 
$$F_{n+1}F_{n+2} - F_nF_{n+3} = (-1)^n$$
.

(15) Prove que, se n é um múltiplo de 8, então  $F_n$  é múltiplo de 7. [Dica:] Prove que  $F_{n+8} = 7F_{n+4} - F_n$ .

(16) Prove que todo número natural pode ser representado como uma soma de diversos números de Fibonacci distintos.

(17) O que há de errado com a seguinte demonstração por indução de que para todo inteiro positivo n nós temos  $a^{n-1} = 1$ ?

Demonstração: Para  $n=1, a^{1-1}=a^0=1$ , correto. Assumindo o teorema válido para  $k \le n$ , temos para n+1:

$$a^{(n+1)-1} = a^n = \frac{a^{n-1} \cdot a^{n-1}}{a^{n-2}} = \frac{1 \cdot 1}{1} = 1,$$

como desejávamos.

(18) É dado um conjunto de *n* pontos em um círculo e cada par de pontos está ligado por um segmento. Acontece que três desses segmentos nunca se encontram no mesmo ponto. Em quantas partes eles dividem o interior do círculo?

(19) [Pizza de Steiner] Qual é o maior número de partes em que se pode dividir o plano com *n* cortes retos?

(20) Suponha um campeonato de futebol com n times onde todos jogam contra todos uma única vez. Prove por indução que o número total de jogos é  $\frac{n(n-1)}{2}$ .

(21) Faça uma conjectura sobre as somas das diagonais ascendentes no Triângulo de Pascal conforme indicado. Prove que sua conjectura é verdadeira.



(22) Prove que  $ab^n + cn + d$  será divisível pelo inteiro positivo m para todo  $n \ge 0$  quando a + d, (b-1)c e ab-a+c forem divisíveis por m.

[Observação:] Essa questão pode ser vista como uma "fábrica de exercícios" semelhantes aos itens do exercício 4.

(23) Sabe-se que  $x + \frac{1}{x} = d$  é um inteiro.

(a) Prove que  $x^n + \frac{1}{x^n}$  também é um inteiro, qualquer que seja o número natural n.

(b) Encontre todos os valores de  $d \geq 2$  tais que 194 é um termo da sequência

$$\left\{x+\frac{1}{x},x^2+\frac{1}{x^2},x^3+\frac{1}{x^3},\ldots\right\}.$$

5