计算机组成原理

PRINCIPLES OF COMPUTER ORGANIZATION

第7次课: 3.3.2 定点二位乘法

杜国栋

信息科学与工程学院计算机科学与工程系gddu@ysu.edu.cn

定点数的乘法 原码一位乘

例 已知X=-0.1011, Y=0.1001, 求[X×Y]_原

|X| = 0.1011, |Y| = 0.1001

按原码一位乘法运算规则,求[X×Y]原的数值部分。

 $|X| \times |Y| = 0.01100011$, $\overline{m}Zs = Xs \oplus Ys = 1 \oplus 0 = 1$

最后求得[X×Y]_原 = 1.01100011

部分积	乘 数
0. 0 0 0 0 +) 0. 1 0 1 1	1 0 0 <u>1</u>
0. 1 0 1 1 0. 0 1 0 1 +) 0. 0 0 0 0	1 1 0 0
0. 0 1 0 1 0. 0 0 1 0 +) 0. 0 0 0 0	1 1 1 0
0. 0 0 1 0 0. 0 0 0 1 +) 0. 1 0 1 1	0 1 1 1
0. 1 1 0 0 0. 0 1 1 0	0 0 1 1
高 位 积	低位积

已知
$$[x]_{\stackrel{?}{\Rightarrow}} = x_0.x_1...x_n$$
,求 $[x \cdot y]_{\stackrel{?}{\Rightarrow}}$?

1) 被乘数 x 符号任意,乘数 y 符号为正

$$[x]_{\frac{1}{2}} = x_0 \cdot x_1 x_2 \cdots x_n = 2 + x = 2^{n+1} + x \pmod{2}$$

$$[y]_{\frac{1}{2}} = 0 \cdot y_1 y_2 \cdots y_n = y$$

则

$$[x]_{\frac{1}{1}} \cdot [y]_{\frac{1}{1}} = [x]_{\frac{1}{1}} \cdot y = (2^{n+1} + x) \cdot y = 2^{n+1} \cdot y + xy$$

由于
$$y=0$$
. $y_1y_2\cdots y_n=\sum_{i=1}^n y_i2^{-i}$,则 $2^{n+1}\cdot y=2\sum_{i=1}^n y_i2^{n-i}$,且 $\sum_{i=1}^n y_i2^{n-i}$ 是一个大于或等于 1

的正整数,根据模运算的性质,有2ⁿ⁺¹·y=2(mod 2),故

$$[x]_{**} \cdot [y]_{**} = 2^{n+1} \cdot y + xy = 2 + xy = [x \cdot y]_{**} \pmod{2}$$
$$[x \cdot y]_{**} = [x]_{**} \cdot [y]_{**} = [x]_{**} \cdot y$$

即

已知
$$[x]_{\stackrel{?}{\Rightarrow}} = x_0.x_1...x_n$$
,求 $[x \cdot y]_{\stackrel{?}{\Rightarrow}}$?

2) 被乘数 x 符号任意,乘数 y 符号为负

$$[x]_{**} = x_0. \ x_1x_2 \cdots x_n$$

$$[y]_{**} = 1. \ y_1y_2 \cdots y_n = 2 + y \ (\text{mod } 2)$$

$$y = [y]_{**} - 2 = 1. \ y_1y_2 \cdots y_n - 2 = 0. \ y_1y_2 \cdots y_n - 1$$

$$x \cdot y = x(0. \ y_1y_2 \cdots y_n) - x$$

$$[x \cdot y]_{**} = [x(0. \ y_1y_2 \cdots y_n)]_{**} + [-x]_{**}$$
将上式 $0. \ y_1y_2 \cdots y_n$ 视为一个正数,正好与上述情况相同。

则
$$[x(0. y_1y_2\cdots y_n)]_{+} = [x]_{+}(0. y_1y_2\cdots y_n)$$

所以 $[x \cdot y]_{+} = [x]_{+}(0. y_1y_2\cdots y_n) + [-x]_{+}$

$$[x \times y]_{ih} = [x]_{ih} (0.y_1y_2 \cdots y_n) - [x]_{ih} \times y_0$$

则

故

例题 1: 已知[x]¾=1.0101, [y]¾=0.1101, 求[x·y]¾?

例题 1: 已知 $[x]_{\stackrel{.}{\scriptscriptstyle +}}$ =1.0101, $[y]_{\stackrel{.}{\scriptscriptstyle +}}$ =0.1101,求 $[x\cdot y]_{\stackrel{.}{\scriptscriptstyle +}}$?

因为 y>0,所以利用公式 $[x \cdot y]_{\hat{i}} = [x]_{\hat{i}} \cdot [y]_{\hat{i}} = [x]_{\hat{i}} \cdot (0.y_1...y_n)$ 可得结果,此时与原码一位乘类似。

考虑到运算部分积可能出现绝对值大于1的情况,注意此时并不是溢出,可通过后续右移解决,故部分积和被乘数取双符号位。

部分积	乘数(v1v2v3v4)				
00.0000					
+11.0101	110 <u>1</u>				
11.0101					
11.1010					
11.1101	<u>1</u> 11 <u>0</u>				
+11.0101					
11.0010	<u>01</u> 11 <u>1</u>				
11.1001					
+11.0101	0011				
10.1110	0011				
11.0111	0001				
	最终结果: 1.01110001				

例题 2: 已知[x]¾=0.1101, [y]¾=1.0101, 求[x·y]¾?

例题 2: 已知 $[x]_{*}=0.1101$, $[y]_{*}=1.0101$, 求 $[x\cdot y]_{*}$?

因为 y<0, 索引利用公式 $[x\cdot y]_{\hat{n}} = [x]_{\hat{n}} \cdot (0.y_1...y_n) + [-x]_{\hat{n}}$ 可得结果,此时与原码一位乘类似,只不过最后需要进行 $[-x]_{\hat{n}}$ 修正。

部分积	乘数(v ₁ v ₂ v ₃ v ₄)
00.0000	
+00.1101	010 <u>1</u>
00.1101	
00.0110	
00.0011	<u>1</u> 01 <u>0</u>
+00.1101	
01.0000	<u>01</u> 0 <u>1</u>
00.1000	
00.0100	0010
00.0100	0001
+11.0011 修正	
11.0111	
	最终结果: 1.01110001

已知
$$[x]_{\stackrel{?}{\Rightarrow}} = x_0.x_1...x_n$$
,求 $[x \cdot y]_{\stackrel{?}{\Rightarrow}}$?

按补码乘法校正法规则,其基本算法可用一个统一的公式表示为

$$[x \cdot y]_{\frac{1}{1}} = [x]_{\frac{1}{1}} (0. y_1 y_2 \cdots y_n) - [x]_{\frac{1}{1}} \cdot y_0$$

当 $y_0 = 0$ 时,表示乘数 y 为正,无须校正,即

$$[x \cdot y]_{\dagger h} = [x]_{\dagger h} (0. y_1 y_2 \cdots y_n)$$

当 $y_0 = 1$ 时,表示乘数 y 为负,则

$$[x \cdot y]_{**} = [x]_{**} (0. y_1 y_2 \cdots y_n) - [x]_{**}$$

$$[x \cdot y]_{\#} = [x]_{\#} (y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n}) - [x]_{\#} \cdot y_0$$

$$= [x]_{\#} (-y_0 + y_1 2^{-1} + y_2 2^{-2} + \dots + y_n 2^{-n})$$

$$= [x]_{\#} [-y_0 + (y_1 - y_1 2^{-1}) + (y_2 2^{-1} - y_2 2^{-2}) + \dots + (y_n 2^{-(n-1)} - y_n 2^{-n})]$$

$$= [x]_{\#} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \dots + (y_n - y_{n-1}) 2^{-(n-1)} + (0 - y_n) 2^{-n}]$$

$$= [x]_{\#} [(y_1 - y_0) + (y_2 - y_1) 2^{-1} + \dots + (y_{n+1} - y_n) 2^{-n}]$$

其中, $y_{n+1}=0$ 。

已知
$$[x]_{\stackrel{?}{\Rightarrow}} = X_0.X_1...X_n$$
,求 $[x \cdot y]_{\stackrel{?}{\Rightarrow}}$?

$$[x \cdot y]_{\dagger h} = [x]_{\dagger h} [(y_1 - y_0) + (y_2 - y_1)2^{-1} + \dots + (y_n - y_{n-1})2^{-(n-1)} + (y_{n+1} - y_n)2^{-n}]$$

其中, $y_{n+1}=0$;

当 y>0 时, y₀=0; 当 y<0 时, y₀=1;

$y_i y_{i+1}$	$y_{i+1} - y_i$	操作
00	0	新部分积=原部分积右移一位
01	1	新部分积=(原部分积加[x]*之后,再右移一位)
10	-1	新部分积=(原部分积加[-x]**之后,再右移一位)
11	0	新部分积=原部分积右移一位

例题 3: 已知[x]+=1.0101, [y]+=1.0011, 利用 Booth 算法求[x·y]+?

例题 3: 已知 $[x]_{4}$ =1.0101, $[y]_{4}$ =1.0011,利用 Booth 算法求 $[x \cdot y]_{4}$?

由
$$[x \cdot y]_{\stackrel{?}{\Rightarrow}} = [x]_{\stackrel{?}{\Rightarrow}} [(y_1 - y_0) + (y_2 - y_1)2^{-1} + ... + (y_n - y_{n-1})2^{-(n-1)} + (y_{n+1} - y_n)2^{-n}]$$
可得。 $y_0 = 1$, $y_5 = 0$ (附加位)

部分积	乘数 y_0y_n (补码,单符号)	附加位 y _{n+1}
00.0000		<u>0</u>
+00.1011	1001 <u>1</u>	
00.1011	<u>1,1001</u>	<u>1</u>
00.0101		
00.0010	<u>11</u> 10 <u>0</u>	<u>1</u>
+11.0101		
11.0111	11110	<u>0</u>
11.1011	111110	
11.1101		
+00.1011		<u>0</u>
00.1000	<u> </u>	
		最终结果: 0.10001111

$$[x \cdot y]_{\nmid k} = 1011111110$$
 $x \cdot y = -01000 \ 0010 = (-82)_{16} = (-130)_{10}$

定点数的乘法 原码二位乘

被乘数X和乘数Y为用原码表示的纯小数

 X_0 、 Y_0 为符号位

$$[X]_{\mathbb{R}} = X_0 . X_{-1} X_{-2} ... X_{-(n-1)}$$

 $[Y]_{\mathbb{R}} = Y_0 . Y_{-1} Y_{-2} ... Y_{-(n-1)}$

两位乘数位有四种组合:

$$Y_{i+1}Y_i = 00$$
 对应十0

$$Y_{i+1}Y_i=01$$
 对应+ $|X|$

$$Y_{i+1}Y_i=10$$
 对应+2|X|

$$Y_{i+1}Y_i=11$$
 对应+3|X|

			•	
Y_{i+1}	$\mathbf{Y}_{\mathbf{i}}$	C		操作
0	0	0	+0,	右移2次,C=0
0	0	1	+ X ,	右移2次,C=0
0	1	0	+ X ,	右移2次,C=0
0	1	1	+2 X ,	右移2次,C=0
1	0	0	+2 X ,	右移2次,C=0
1	0	1	$- \mathbf{X} $,	右移2次,C=1
1	1	0	$- \mathbf{X} $,	右移2次,C=1
1	1	1	+0,	右移2次,C=1

原码二位乘法的法则表

定点数的乘法 原码二位乘

【例】

设X=+0.100111, Y=-0.100111, 利用原码求积。

定点数的乘法 原码二位乘

【例】

设X = +0.100111, Y = -0.100111, 利用原码求积。

【解】

$$[X]_{\text{\mathbb{R}}} = 0.100111$$

 $[Y]_{\text{$\mathbb{R}$}} = 1.100111$

 $[-|X|]_{h}=1.011001$

原码二位乘法的运算过程

符	号	位			D)				1	4			操作
0	0	0	0	0	0	0	0	0	1 0	0	1	1	1	C=0
1	1	1	0	1	1	0	0	1	٠					$-\mathbf{x}$
1	1	1	0	1	1	0	0	1						C=1
1	1	1	1	1	0	1	1	0	0 1	1	0	0	_1/	→右移二位
0	0	1	0	0	1	1	1	0				_	_ \	+2X
0	0	1	0	0	0	1	0	0						<u>C=0</u>
0	0	0	0	1	0	0	0	1	0 0	0	1	1	0	→右移二位
0	0	1	0	0	1	1	1	0						+2X
0	0	1	0	1	1	1	1	1				L	,	C=0
0	0	0	0	1	0	1	1	1	1 1	0	0	0	1	→右移二位

乘积的符号为: 0⊕ 1=1, [X·Y]_原=1.010111110001

阵列乘法器

有问题欢迎随时跟我讨论

办公地点: 西校区信息馆423

邮 箱: gddu@ysu.edu.cn