# On The Alignment Problem In Multi-Head Attention-Based Neural Machine Translation

#### Tamer Alkhouli, Gabriel Bretschner, and Hermann Ney

Human Language Technology and Pattern Recognition Group
Computer Science Department
RWTH Aachen University
D-52056 Aachen, Germany

<surname>@i6.informatik.rwth-aachen.de

### Alignment-based NMT

- Using explicit hard alignments to help translation.
- Useful when customer wants to enforce specific translation of certain words.
- Two steps: alignment generation and word generation.

$$p(e_{1}^{I}|f_{1}^{J}) = \sum_{b_{1}^{I}} p(e_{1}^{I}, b_{1}^{I}|f_{1}^{J})$$

$$\approx \max_{b_{1}^{I}} \prod_{i=1}^{I} \underbrace{p(e_{i}|b_{i}, b_{1}^{i-1}, e_{1}^{i-1}, f_{1}^{J})}_{\text{lexical model}} \cdot \underbrace{p(b_{i}|b_{1}^{i-1}, e_{1}^{i-1}, f_{1}^{J})}_{\text{alignment model}}.$$

$$(1)$$

<sup>\*:</sup> Alkhouli et al., Alignment-Based Neural Machine Translation, in WMT 2016.

# Self-Attentive Alignment Model

- Employ Transformer as the alignment model to predict source positions.
  - The output is a probability distribution over possible source jumps:

$$\Delta_i = b_i - b_{i-1}$$

• Use a single-head hard attention to replace multi-head source-to-target attention.

$$\alpha(j|b_{i-1}) = \begin{cases} 1, & \text{if } j = b_{i-1} \\ 0, & \text{otherwise.} \end{cases}$$

defined for the source positions  $j, b_{i-1} \in$ 

#### Transformer-Based Lexical Model

Add an additional alignment head to help generate words.



#### Experiments

|           |                           |            |      | WMT En→Ro            |         |      | BOLT Zh→En       |                    |  |
|-----------|---------------------------|------------|------|----------------------|---------|------|------------------|--------------------|--|
|           |                           |            |      | newstest2016         |         | test |                  |                    |  |
| #         | System                    | Layer size | PPL  | B/LEU <sup>[%]</sup> | TER [%] | PPL  | <b>B</b> LEU (%) | TER <sup>[%]</sup> |  |
|           | baselines                 |            |      |                      |         |      |                  |                    |  |
| 1         | Attention baseline        | 1000       | 10.2 | 24.7                 | 58.9    | 8.0  | 20.0             | 65.6               |  |
| 2         | Transformer baseline      | 2048       | 6.2  | 27.9                 | 54.6    | 6.0  | 22.5             | 62.1               |  |
| 3         | (Alkhouli and Ney, 2017)  | 200        | -    | 24.8                 | 58.1    | -    | -                | -                  |  |
| this work |                           |            |      |                      |         |      |                  |                    |  |
| 4         | RNN Attention alignbiased | 1000       | 7.2  | 26.4                 | 56.1    | 5.6  | 19.6             | 62.3               |  |
| 5         | Alignassisted Transformer | 2048       | 5.0  | 28.1                 | 54.3    | 4.7  | 22.7             | 61.8               |  |

Table 2: Translation results for the WMT 2016 English→Romanian task and the BOLT Chinese→English task. We include the lexical model perplexities.

## Dictionary-guided NMT

More accurate alignment.



Figure 1: An example from the Chinese→English system. The figures illustrate the accumulated attention weights of the baseline transformer model (left), the alignment-assisted transformer model (middle), and the alignment-assisted model guided by a dictionary entry. We simulate a scenario where the user wants to translate the Chinese word "强大" to "powerful". Both the baseline and alignment-assisted

# Inspiration

• Incorporate other source of attention heads, e.g., CNN, RNN, or linguistic features.