Application of Dynamic Programming

Biological Sequence Alignment

Basics of molecular biology

Life as we know it: The Cell

Prokaryote cell Eukaryote cell		
Single Cell	Single or multi cell	
No nucleus	Nucleus	
No organelles	Organelles	
One piece of circular DNA	Chromosomes	
No mRNA post transcriptional modification	Exon-intron splicing	

Cell Information and Machinery

- A cell stores all the information needed to replicate itself
- Almost every cell in the human body contains the same set of genes
- What differentiates cells in your body?
 - Not all genes are expressed at the same time in the same way in all cells
- A cell is a machinery
- It collects and manufactures its own components
- It carries out its own replication
- It kicks the start of its new offspring
- Life inside a cell:
 - https://www.youtube.com/watch?v=wJyUtbn0O5Y

The Three Life-Critical Molecules

Central Dogma of Molecular Biology

Genotype

Phenotype

Information Flow

- Information flows from DNA through RNA to Synthesize Proteins in cells
- DNA
 - Holds information on how the cell works
- RNA
 - Acts to transfer short pieces of information to different parts of the cell
 - Provides templates to synthesize into proteins
- Proteins
 - Form the body's major components (hair, skin, etc.)
 - Often referred to as the workhorse of the cell

DNA

The four fundamental units of DNA are: Adenine (A), Guanine (G), Thymine (T), and Cytosine (C) They pair up on complementary strands: A-T and C-G. Like a four-letter alphabet.

DNA

RNA

- RNA is chemically similar to DNA, but T(hymine) is replaced with U(racil) and the ribose instead of deoxy-ribose
- Some forms of RNA can fold to create secondary structures
 - has implication for function
- DNA and RNA can pair with each other
 - Holds information on how the cell works

Forms of RNA

There are several forms of RNA:

- mRNA (messenger RNA)
 - carries a gene's information out of nucleus
- tRNA (transfer RNA)
 - transfer's mRNA's information onto a protein chain of amino acids
- rRNA (ribosomal RNA)
 - part of the ribosome, where proteins are synthesized

Translation

- Consecutive three Nucleotides is called a codon
- Codons map to amino acid
- Mapping often begins at start codon
- Mapping continues from 5' to 3' until stop codon

Ribosome translates RNA into protein

Venki Ramakrishnan @MRC
Nobel Prize in Chemistry 2009

https://www.youtube.com/watch?time_continue=123&v=q_n0lj3K_Ho

Amino Acid

Condensation Reaction

Protein Sequence

Ν

A directional sequence of amino acids/residues

M C R I P ..

H .0	Н .0	Н .0	H O. I
H₃N+ - °C - C ⊕	H³N+ - 4C - C €	H³N+ - ℃ - C ⊕	H₃N+ - °C - C ⊕
CH₂	CH₂	CH ₂	ĊH ₂
CH ₂			
			H
Ī		ОН	
NH ₂			Tryptophan (Trp, W)
(555)	0, 1	Н ,0	Н .0
н	H₃N+ -°C - C⊕	H₃N+ - °C - C ⊕	H ₃ N ⁺ - ^α C - C ⊕
H₃N* - °C - C.⊖	CH ₃	CH ₂	CH ₂
l o		ни и	OH
Glycine	Alanine	Histidine	Serine
			(Ser / S) H
اه آ	0, 1	اه آ	ا ہر ا
H ₃ N ⁺ - ^e C - C (⊕	H³N+ - C - C ⊖	H ₃ N* - C - C (9	H₃N* - °C - C ⊕
CH ₂	CH ₂	H - C - OH	CH ₂
CH ₂	COOH	CH,	SH
Glutamic Acid	Aspartic Acid	Threonine	Cysteine
(Glu / E)	(Asp / D)	(Thr / T)	(Cys / C)
Н	Н	н	н
H₃N+-°C-C⊕	H ₃ N+ - ℃ - C (e)	H ₃ N+ - C - C (e)	H ₃ N ⁺ - [∞] C - C ⊕
CH.	CH.	HC-CH-	CH CH
		1	CH ₃ CH ₃
	C=0 	CH ₂	3
	NH ₂	CH ₃	
Leucine (Leu / L)	Asparagine (Asn/N)	Isoleucine (Ile / I)	Valine (Val / V)
	H ₃ N ⁺ - ^a C - C	H ₃ N ⁺ - ^a C - C	H ₃ N ⁺ - C - C

20 naturally occurring amino acid residues

Evolution of biological sequences

Sequences Evolve

Sequence Variation Through Mutation

- How sequences sequence evolve?
 - Composition changes due to point mutation (substitutions)
 - Sequence lengths changes due to insertions/deletions
- Over millions of years this result in considerable divergence between present-day sequences derived from the same ancestral sequence.

Sequence similarity implies evolutionary relationship or homology

Similarity of Two Strings

S1 (16): AACTACTCCTAACACT

S2 (15): CTCCTACCTTACTTT

Inset spaces into or at the ends of to make them the same length

10-2-7=1

This is called **Alignment**

After aligning S1 and S2, we compute the "value" of the alignment

Value of alignment = #matches - #mismatches - #spaces

What is the best possible alignment?

One that maximizes

[#matches – #mismatches – #spaces]

Sequence Similarity: Optimization Problem

- Similarity of S1 and S2 is:
 arg max [#matches #mismatches #spaces]
 all alignments
- Can we enumerate all possible alignments?

How many alignments are possible for two sequences of length n?

How many alignments?

- Q: How many alignments are there of two sequences of length n each?
- Let's focus on spaces, say r of them and then we sum over all possible r
- Step 1: If we insert r spaces exactly into S1, then # ways to put n chars into (n+r) placeholders

$$\binom{n+r}{n} = \frac{(n+r)!}{n! r!}$$

- Step 2: Put chars of S2 but avoid a resulting space opposite of space
 - We already know where the n chars of S1 are
 - We only have to consider where to put spaces from S2

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

How many alignments?

Total number of alignments are:

$$\sum_{r=0}^{n} \binom{n+r}{n} \binom{n}{r}$$

Number of alignments are exponentially large and impossible to enumerate

Visualizing Alignment

S2

Features of Alignment Graph

- Let's assume S1(n) is arranged in row and S2(m) is arranged in column
- Each legal path from (0, 0) to (n, m) in the alignment graph defines an alignment of S1 and S2 and each alignment defines to a distinct legal path
- Move Rules:
 - Diagonal: Put the char i of S1 opposite the char j of S2
 - Horizontal: Put the char j of S2 opposite a space of S1
 - Vertical: Put the char i of S1 opposite a space of S2
- Intuition of the Move Rule:
 - Diagonal: Using up the chars of S1 and chars of S2
 - Horizontal: Using up the chars of S2 but nothing from S1
 - Vertical: Using up the chars of S1 but nothing from S2

S1: DAN---S2: ---ANN

Value of Alignment

S1: DAN S2: ANN

V = (-1-1+1) = -1

S1: -DAN S2: ANN-

V = (-1-1-1-1) = -4

S1: DAN---S2: ---ANN

V = (-1-1-1-1-1) = -6

How many paths possible from (0, 0) to (n, m)?

Optimal alignment has the largest edge sum from (0, 0) to (n, m)

S1: DAN-S2: -ANN

V = (-1+1+1-1) = 0

Is there a rule for computing optimal alignment?

Number of operations

Analysis of Number of Operations

- 3 lookups / node
- 3 additions / node
- 3 comparisons / node
- _____
 - 9 comparisons / node
- 9 operations / node no matter what the value of n and m are!
- Total operations = $9 * (n + 1) (m + 1) \sim 9nm$

How to identify the optimal path in the alignment graph?

Trackback / Backtrack

Dynamic Programming

Notations

- Let's say want to optimally align S1(n) and S2(m)
- For a string S, define
 - S(k) as the character at position k
 - S[1..k] as the prefix of S consisting of the first k characters of S
- Define
 - V(i, j) to be the value of optimal alignment of S1[1..i] and S2[1..j]

Ultimately, we want to compute V(n, m)

Think Recursively!

 Let's focus on character i of S1 and character j of S2 and ask where these characters appear in the optimal alignment A of S1[1..i] and S2[1..j]

- There are three cases:
 - Case 1: S1(i) and S2(j) align opposite to each other in A
 - Case 2: S1(i) appears to the left of S2(j) in A
 - Case 3: S1(i) appears to the right of S2(j) in A
- These cases cover all the possibilities

Case 1

When character S1(i) aligns opposite to S2(j) in A

- Either S1(i) and S2(j) are identical or not
- If S1(i) and S2(j) matches

$$V(i, j) = 1 + V(i-1, j-1)$$

If S1(i) and S2(j) mismatches

$$V(i, j) = -1 + V(i-1, j-1)$$

Case 1

When character S1(i) aligns opposite to S2(j) in A

Case 2 and Case 3

When character S1(i) appears to the left of S2(j) in A, then S2(j)
must be opposite of space

$$V(i, j) = -1 + V(i, j-1)$$

Symmetrically, when character S1(i) appears to the right of S2(j) in A,
 then S1(i) must be opposite of space

$$V(i, j) = -1 + V(i-1, j)$$

Putting it all together

Putting the three cases together

$$V(i, j) = MAX \begin{cases} 1 + V(i-1, j-1) \\ -1 + V(i-1, j-1) \\ -1 + V(i, j-1) \\ -1 + V(i-1, j) \end{cases}$$

The general recurrences are

$$V(i, j) = MAX \begin{cases} \delta(S1(i), S2(j)) + V(i-1, j-1) \\ \delta(-, S2(i)) + V(i, j-1) \\ \delta(S1(i), -) + V(i-1, j) \end{cases}$$

Putting it all together

The general recurrences are

$$V(i, j) = MAX \begin{cases} \delta(S1(i), S2(j)) + V(i-1, j-1) \\ \delta(-, S2(j)) + V(i, j-1) \\ \delta(S1(i), -) + V(i-1, j) \end{cases}$$

The Base cases are

$$V(i, 0) = \sum_{0 \le k \le i} \delta(S1(k), -)$$

$$V(0, j) = \sum_{0 \le k \le j} \delta(-, S2(k))$$

Can we implement this in a program?

Bottom-up Dynamic Programming

- Use **bottom-up** dynamic programming approach. We don't make explicit recursive calls, but only look up previously computed ∨ values (memoize).
- First we do the base case: V(i, 0), V(0, j)
- Now, V(1, 1) can be determined
- In general, to compute V(i, j) we need:
 V(i-1, j-1), V(i, j-1), V(i-1, j)

Needleman-Wunsch dynamic programming algorithm

DP table

• (n+1) x (m + 1) matrix of V values is a DP table

Time Complexity? ~ (nm)

BLOSUM62 substitution matrix

```
ARNDCOEGHILKMFPSTWYVBZX*
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 -2 -1 0 -4
R - 1 \quad 5 \quad 0 \quad -2 \quad -3 \quad 1 \quad 0 \quad -2 \quad 0 \quad -3 \quad -2 \quad 2 \quad -1 \quad -3 \quad -2 \quad -1 \quad -1 \quad -3 \quad -2 \quad -3 \quad -1 \quad 0 \quad -1 \quad -4
N-2 0 6 1 -3 0
                   0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 3 0 -1 -4
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 4 1 -1 -4
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 -3 -3 -2 -4
       0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2 0 3 -1 -4
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 -1 -2 -1 -4
H - 2 \quad 0 \quad 1 - 1 - 3 \quad 0 \quad 0 - 2 \quad 8 - 3 - 3 - 1 - 2 - 1 - 2 - 1 - 2 - 2 \quad 2 - 3 \quad 0 \quad 0 - 1 - 4
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 -3 -3 -1 -4
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1 -4 -3 -1 -4
K-1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2 0 1 -1 -4
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 1 -3 -1 -1 -4
F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 -3 -3 -1 -4
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 -2 -1 -2 -4
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2 0 0 0 -4
T 0-1 0-1-1-1-2-2-1-1-1-2-1 1 5-2-2 0-1-1 0-4
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1  1 -4 -3 -2 11  2 -3 -4 -3 -2 -4
Y -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 -3 -2 -1 -4
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 -3 -2 -1 -4
B -2 -1 3 4 -3 0 1 -1 0 -3 -4 0 -3 -3 -2 0 -1 -4 -3 -3 4 1 -1 -4
Z -1 0 0 1 -3 3 4 -2 0 -3 -3 1 -1 -3 -1 0 -1 -3 -2 -2 1 4 -1 -4
X 0 -1 -1 -1 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -2 0 0 -2 -1 -1 -1 -1 -4
```

Gap opening and gap extension

Needleman-Wunsch computes global alignment of two sequences

Local Alignment

Consider the following

Given S1(n) &S2(m)
 Find a substring αof S1 and a substring β of S2 such that

 $\nabla(\alpha, \beta)$ has the largest ∇ value

over all possible pairs of substrings α and β that can be extracted from S1 and S2 respectively

Can we efficiently compute local alignment?

Smith-Waterman Algorithm: Intuition

Smith-Waterman Algorithm: Notation

The general recurrences are

$$V(i, j) = MAX \begin{cases} 0 \\ \delta(S1(i), S2(j)) + V(i-1, j-1) \\ \delta(-, S2(i)) + V(i, j-1) \\ \delta(S1(i), -) + V(i-1, j) \end{cases}$$

- The Base cases are V(i, 0) = V(0, j) = 0
- Follow bottom-up approach to fill DP matrix
- Trace back until we hit the first base case

Smith-Waterman Algorithm: Example

S1=GTCTATCAC S2=ATCTCGTATGATG

Match = +2 Mismatch = -1 Space = -1

	0	A	T	С	T	С	G	T	Α	T	G	A	T	G
0	0	Q	Q	Q	Q.	<u>Q</u>	<u>Q</u>	Q	0	0	0	0	0	0
G	0	0>	Ò	0	Ò	Ŏ	2	1	0	0	2	1	0	2
T	0	0	2	1	2	1	1	4	3	2	1	1	3	2
C	0	0	1	4	3	4	3	3	3	2	1	0	2	2
T	0	0	2	3	6	5	4	5	4	5	4	3	2	1
A	0	2	2	2	5	5	4	4	7	6	5	6	5	4
T	0	1	4	3	4	4	4	6	5	9	8	7	8	7
C	0	0	3	6	5	6	5	5	5	8	8	7	7	7
A	0	2	2	5	5	5	5	4	7	7	7	10	9	8
C	0	1	1	4	4	7	6	5	6	6	6	9	9	8

