Microprocessors & Interfacing

Analog Input/Output (III)

Lecturer: Annie Guo

Lecture Overview

- Analog input
 - Analog-to-Digital (A/D) Conversion
 - AVR ADC*
 - extended topic (new)

A/D Conversion

Sensor*

- Example
 - LDR (Light Dependent Resistor)

Data Acquisition and Conversion

- A transducer converts physical values to electrical signals, either voltages or currents.
- Signal conditioner performs the following tasks:
 - Isolation and buffering 隔离和缓冲
 - The input to ADC may need to be protected from dangerous voltages such as static charges or reversed polarity voltages.
 - Amplification **
 - To ensure the full-scale signal from the analog results in a full-scale signal to ADC.
 - Bandwidth limiting
 - The signal conditioning provides a low-pass filter to limit the range of frequencies that can be digitized.

Data Acquisition and Conversion (cont.)

- The sample-and-hold circuit samples the signal and holds it steady for A/D conversion.
 - What is the sample frequency?
- The ADC converts the sampled signal to digital data
 - The output of ADC connected to CPU through three-state buffers.

Shannon's Sampling Theorem

- To preserve the full information in the signal, it is necessary to sample at the frequency at least twice the maximum frequency of the signal.
 - This minimum sampling frequency is known as the Nyquist rate.
 - A signal can be exactly reproduced if it is sampled at a frequency greater than or equal to its Nyquist rate.

Aliasing

- If the sampling frequency is less than Nyquist rate, the waveform is said to be undersampled.
- Undersampled signal, when converted back into a continuous time signal, will exhibit a phenomenon called *aliasing*.

Sample Examples

Sampled at twice of the signal frequency.

Sample Examples

 Undersampled, with sample frequency less than twice of the signal frequency

Aliasing (cont.)

Aliasing

- the presence of unwanted components in the reconstructed signal. These components were not present when the original signal was sampled.
- See the demonstration below

Successive Approximation Converter

Successive Approximation A/D Converter (cont.)

- Each bit in the successive approximation register is tested, starting at the most significant bit and working toward the least significant bit.
 - As each bit is set, the output of the D/A converter is compared (by the comparator) with the analog input.
 - If the D/A output is lower than the input signal, the bit remains set and the next bit is tried.
- For an N-bit output, such a bit test needs to be performed N times.

Parallel A/D Converter

Parallel A/D Converter (cont.)

- For an N-bit output, the ADC consists of
 - an array of 2^N-1 comparators
 - produces a (2^N-1)-bit code
 - a 2^N-to-N decoder
 - converts 2^N-bit input code to N-bit binary value
- The design is
 - fast
 - hence called flash ADC
 - but more costly than the successive approximation ADC

Two-Stage Parallel A/D Converter*

Two-Stage Parallel A/D Converter*

- The input signal is converted in two steps:
 - First, a coarse estimate is found by the first parallel A/D converter. This digital value is sent to the D/A converter and the adder, where it is subtracted from the original analog value.
 - Next, the difference is converted by the second parallel converter and the result combined with that from the first ADC gives the digitized value.

Two-Stage Parallel A/D Converter*

- The two-stage ADC has nearly the performance of the parallel converter but without the need of 2^N –1 comparators.
- It offers high resolution and high-speed conversion for applications like video signal processing.

A/D Converter Specifications

Conversion time

- The time required to complete a conversion of the input signal.
- Determines the upper signal frequency limit that can be sampled without aliasing.

f_{MAX}=1/(2*conversion time)

Resolution

- the smallest analog input signal that can be digitized
- is determined by the number of bits used by DAC

A/D Converter Specifications (cont.)

Accuracy

- Describes how close the digital output is to the theoretically expected digital output for a given analog input.
- Determines how many bits in the digital output code represent useful information about the input signal.

An n-bit ADC may have less than n bits of accuracy!

A/D Converter Specifications (cont.)

- Linearity
 - The derivation in output codes from the real value

Non-linear

A/D Converter Specifications (cont.)

- Aperture time
 - The time that the A/D converter is "looking" at the input signal.
 - It is usually equal to the conversion time.

ADC on AVR MCU

- 10-bit successive approximation ADC
- Multiple channels
 - Allowing 8/16 single-ended voltage inputs
 - Each refers to 0V (GND)
- Multiple choices of supply voltage
- A brief description of its operation is presented in the next slides.
 - More information can be found from the MCU datasheet.

ADC Structural Diagram

ADMUX

- ADC Multiplexor Section Register
 - ADLAR (bit 5): ADC Left Adjust Result
 - When the bit is set, the conversion result in ADCH:ADCL aligned to the left; otherwise right
 - MUX4:0: Analog Channel Selection
 - Determine which analog channels are connected to ADC

Bit	7	6	5	4	3	2	1	0
(0x7C)	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

ADMUX (cont.)

- ADC Multiplexor Section Register
 - REFS1-0: voltage reference selection

Bit	7	6	5	4	3	2	1	0
(0x7C)	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

Table 26-3. Voltage Reference Selections for ADC

REFS1	REFS0	Voltage Reference Selection ⁽¹⁾				
0	0	AREF, Internal V _{REF} turned off				
0	1	VCC with external capacitor at AREF pin				
1	0	Internal 1.1V Voltage Reference with external capacitor at AREF pin				
1	1	Internal 2.56V Voltage Reference with external capacitor at AREF pin				

ADCSA

- ADC Control and Status Register
 - ADEN: ADC Enable
 - 1: enable; 0: disable
 - ADSC: Start Conversion
 - ADIE: ADC Interrupt Enable

Bit	7	6	5	4	3	2	1	0
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Initial Value	0	0	0	0	0	0	0	0

ADCSA (cont.)

- ADC Control and Status Register
 - ADPS2:0: ADC Prescaler Select Bits

Bit (0x7A) Read/Write Initial Value

	7	6	5	4	3	2	1	0
	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	0	0	0	0	0	0	0	0

Table 26-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

Example

- Convert an analog voltage input from POT to digital value and display the value on LEDs.
 - POT: potentiometer

Example (cont.)

```
.include "m2560def.inc"
.def temp=r16
   ser temp
   out DDRC, temp
   ; Vref=AVcc
   ldi temp, 1<<REFS0
    sts ADMUX, temp
   ;set prescaller to 128 and enable ADC
   ldi temp, (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(1<<ADEN)</pre>
    sts ADCSRA, temp
    ; Left-adjust, Ref. = AVCC, Single-ended on ADCO is default
   ldi temp, (1<<ADLAR) | (1<<REFS0)</pre>
    sts ADMUX, temp
```

Example (cont.)

```
new conversion:
    ; start conversion, with the single conversion mode
    lds temp, ADCSRA
    ori temp, (1<<ADSC)
    sts ADCSRA, temp
    ;wait until the conversion is complete
loop:
    lds temp, ADCSRA
    sbrc temp, ADSC; also the two lines can be used.
    jmp loop
    ; on completion of the conversion, display the digital output on Port C
    lds temp, ADCH
    out PORTC, temp
    rimp new conversion
```

Reading Material

- Chapter 13: Analog Input and Output. Microcontrollers and Microcomputers by Fredrick M. Cady.
- AVR Mega2560 Data Sheet.
 - ADC

Homework

1. The A/D converter conversion time is 100 us. What is the maximum frequency of a signal that can be digitalized without aliasing occurring?

Homework

2. Assume the successive approximation converter shown below is to convert a signal in the range of 0~5 volts into 3 bit binary integer. What is the output value from the converter if the input is 3.2 volts?

