Rényi relative entropies and sufficiency of quantum channels

Anna Jenčová Mathematical Institute, Slovak Academy of Sciences

Beyond IID, Cambridge, July 2018

Dedicated to the memory of Dénes Petz

Classical Rényi relative entropies

For p,q probability measures over a finite set X, $0 < \alpha \neq 1$:

$$D_{\alpha}(p\|q) = \frac{1}{\alpha - 1} \log \sum_{x} p(x)^{\alpha} q(x)^{1 - \alpha}$$

In the limit $\alpha \to 1$: relative entropy

$$S(p||q) = \sum_{x} p(x) \log(p(x)/q(x))$$

- introduced as the unique family of divergences satisfying a set of postulates
- fundamental quantities appearing in many information theoretic tasks

Standard quantum Rényi relative entropies

For density matrices ρ, σ , $0 < \alpha \neq 1$,

$$D_{\alpha}(\rho \| \sigma) = \frac{1}{\alpha - 1} \log \operatorname{Tr} \rho^{\alpha} \sigma^{1 - \alpha}$$

In the limit $\alpha \to 1$: quantum (Umegaki) relative entropy

$$S(\rho \| \sigma) = \operatorname{Tr} \rho(\log(\rho) - \log(\sigma))$$

- obtained from Petz quasi-entropies^{1,2}
- defined for normal states of a von Neumann algebra, using the relative modular operator

¹D. Petz, Rep. Math. Phys., 1986

²D. Petz, Publ. RIMS, Kyoto Univ., 1985

Standard quantum Rényi relative entropies

It follows from the properties of quasi-entropies that: if $\alpha \in (0,2]$

- ▶ strict positivity: $D_{\alpha}(\rho \| \sigma) \ge 0$ with equality iff $\rho = \sigma$;
- ► data processing inequality:

$$D_{\alpha}(\rho \| \sigma) \geq D_{\alpha}(\Phi(\rho) \| \Phi(\sigma))$$

for any quantum channel Φ

- ▶ joint lower semicontinuity
- ▶ joint (quasi)-convexity: the map

$$(\rho, \sigma) \mapsto \exp\{(\alpha - 1)D_{\alpha}(\rho \| \sigma)\}$$

is jointly convex.

Equality in DPI: sufficient quantum channels

Let the quantum states ρ, σ and a channel Φ be such that

$$S(\Phi(\rho)\|\Phi(\sigma)) = S(\rho\|\sigma) < \infty$$

This condition was introduced as a quantum extension of classical sufficient statistics:

A statistic T is sufficient with respect to a pair of probability distributons $\{p,q\}$ if

- ▶ the conditional expectation satisfies $E_p[\cdot|T] = E_q[\cdot|T]$
- ▶ an equivalent Kullback-Leibler characterization by the classical relative entropy:

$$S(p^T || q^T) = S(p || q) \text{ (if } < \infty)$$

D. Petz, CMP, 1986

D. Petz, Quart. J. Math. Oxford, 1988

Sufficient quantum channels

Let ρ,σ be quantum states (normal states of a von Neumann algebra), σ faithful. Assume that $S(\rho\|\sigma)<\infty$

Theorem

The following are equivalent.

- There is a quantum channel Ψ such that

$$\Psi \circ \Phi(\rho) = \rho, \qquad \Psi \circ \Phi(\sigma) = \sigma$$

We say in this case that Φ is sufficient (reversible) with respect to $\{\rho, \sigma\}$.

Sufficient quantum channels: divergences

A divergence D characterizes sufficiency if

$$D(\Phi(\rho)\|\Phi(\sigma)) = D(\rho\|\sigma) < \infty$$

implies that Φ is sufficient with respect to $\{\rho, \sigma\}$.

The following divergences characterize sufficiency:

- relative entropy
- ▶ D_{α} , with $\alpha \in (0,2)^{3,4}$
- ▶ a class of f-divergences (in finite dimension)^{5,6}

⁵Hiai, Mosonyi, Petz, Bény, 2011

³D. Petz, Quart. J. Math. Oxford, 1988

⁴AJ and D. Petz, 2006

Sufficient quantum channels: universal recovery channel

The Petz recovery channel is defined as

$$\Phi_{\sigma}(Y) = \sigma^{1/2} \Phi^* (\Phi(\sigma)^{-1/2} Y \Phi(\sigma)^{-1/2}) \sigma^{1/2}$$

Note that we always have $\Phi_{\sigma} \circ \Phi(\sigma) = \sigma$.

Theorem

 Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if

$$\Phi_{\sigma} \circ \Phi(\rho) = \rho.$$

Sufficient quantum channels: a conditional expectation

Note that by the last condition, ρ (and σ) must be invariant states of the channel $\Phi_{\sigma} \circ \Phi$.

There is a conditional expectation E, $\sigma \circ E = \sigma$, such that Φ is sufficient with respect to $\{\rho,\sigma\}$ if and only if $\rho \circ E = \rho$.

Structure of the states⁷: in finite dimensions (or on $B(\mathcal{H})$), there is a decomposition

$$U\sigma U^* = \bigoplus_n \lambda_n \sigma_n^L \otimes \sigma_n^R, \qquad \sigma_n^L, \sigma_n^R \text{ states}, \ \lambda_n \text{ probabilities}$$

such that Φ is sufficient with respect to $\{\rho,\sigma\}$ iff

$$U\rho U^* = \bigoplus \mu_n \rho_n^L \otimes \sigma_n^R, \qquad \rho_n^L \text{ states, } \mu_n \text{ probabilities}$$

Sufficient quantum channels: applications

Characterization of equality in various entropic inequalities:

- strong subadditivity: characterization of quantum Markov states⁸
- monotonicity of quantum Fisher information, Holevo quantity, etc.

Approximate version - recoverability 9:

$$S(\rho \| \sigma) - S(\Phi(\rho) \| \Phi(\sigma)) \ge d(\rho \| \tilde{\Phi}_{\sigma} \circ \Phi(\rho))$$

d some divergence measure, $\tilde{\Phi}_{\sigma}$ a modification of Petz recovery channel

⁸Hayden, Josza, Petz, Winter, 2004

⁹O. Fawzi and R. Renner, 2014; M. M. Wilde, 2015; Junge et. al, 2015; .. ✓ ०००

Sandwiched Rényi relative entropy

Another version:

for density matrices ρ, σ :

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \frac{1}{\alpha - 1}\log\operatorname{Tr}\ \left[\left(\sigma^{\frac{1 - \alpha}{2\alpha}}\rho\sigma^{\frac{1 - \alpha}{2\alpha}}\right)^{\alpha}\right]$$

M. Müller-Lennert et al., J. Math. Phys., 2013

M. M. Wilde et al., Commun. Math. Phys., 2014

- ▶ satisfies DPI (+ other properties) if $\alpha \in [1/2, 1) \cup (1, \infty)$
- $\blacktriangleright \lim_{\alpha \to 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- operational interpretation for $\alpha > 1$: strong converse exponents in quantum hypothesis testing ¹⁰

¹⁰M. Mosonyi, and T. Ogawa, Commun. Math. Phys., 2017 → (2) → (2) → (2)

The purpose of the rest of this talk

Extend the sandwiched Rényi relative entropies to normal states of von Neumann algebras and show some properties

▶ the standard version D_{α} (quasi-entropies) is defined in this setting and has an operational interpretation in hypothesis testing as in finite dimensions¹¹

In this general setting, prove that \tilde{D}_{α} characterize sufficiency of channels, for $\alpha \in (1/2,1) \cup (1,\infty)$.

Extensions of \tilde{D}_{α} to von Neumann algebras

Let ρ, σ be normal states on a von Neumann algebra \mathcal{M} .

Two constructions, using noncommutative L_p -spaces:

- ▶ Araki-Masuda divergences, defined for $\alpha \in [1/2, 1) \cup (1, \infty]$, uses Araki-Masuda L_p -spaces¹²
- ▶ sandwiched Rényi relative entropies, defined for $\alpha > 1$, uses Kosaki L_p -spaces¹³

¹²M. Berta, V. B. Scholz, and M. Tomamichel, Ann. H. Poincaré, 2018

¹³AJ, Ann. H. Poincaré, 2018

Haagerup L_p -spaces

For $1 \leq p \leq \infty$, $L_p(\mathcal{M})$ - Haagerup L_p -space, with norm $\|\cdot\|_p$

- $\blacktriangleright \mathcal{M} \simeq L_{\infty}(\mathcal{M});$
- the predual $\mathcal{M}_* \simeq L_1(\mathcal{M})$: $\rho \mapsto h_\rho$, $\operatorname{Tr} h_\rho = \rho(1)$;
- $L_2(\mathcal{M})$ a Hilbert space: $\langle h, k \rangle = \operatorname{Tr} k^* h$

If $\mathcal{M} = \mathcal{B}(\mathcal{H})$, we can use the Schatten classes:

$$L_p(\mathcal{M}) = \{X \in \mathcal{B}(\mathcal{H}), \operatorname{Tr}|X|^p < \infty\}, \quad \|X\|_p = (\operatorname{Tr}|X|^p)^{1/p}$$

The standard form

Standard form: $(\lambda(\mathcal{M}), L_2(\mathcal{M}), J, L_2(\mathcal{M})^+)$

a representation of \mathcal{M} on $L_2(\mathcal{M})$ by left multiplication:

$$\lambda(x)h = xh, \qquad x \in \mathcal{M}, \ h \in L_2(\mathcal{M})$$

Any $\rho \in \mathcal{M}_*^+$ has a unique vector representative $h_\rho^{1/2}$ in $L_2(\mathcal{M})^+$:

$$ho(a)=\langle\,ah_
ho^{1/2},h_
ho^{1/2}\,
angle$$

Kosaki L_p -spaces with respect to a faithful normal state

Let σ be a faithful normal state:

continuous embedding

$$\mathcal{M}
ightarrow L_1(\mathcal{M}), \quad x \mapsto h_{\sigma}^{1/2} x h_{\sigma}^{1/2}$$

▶ Put

$$L_{\infty}(\mathcal{M},\sigma) := h_{\sigma}^{1/2} \mathcal{M} h_{\sigma}^{1/2}, \qquad \|h_{\sigma}^{1/2} x h_{\sigma}^{1/2}\|_{\infty,\sigma} = \|x\|_{\infty}$$

▶ let $\rho \in \mathcal{M}_*^+$, then $h_\rho \in L_\infty(\mathcal{M}, \sigma)$ iff $\rho \leq \lambda \sigma$ and

$$\|h_{\rho}\|_{\infty,\sigma} = \inf\{\lambda > 0, \rho \le \lambda\sigma\}.$$

Kosaki L_p -spaces with respect to a faithful normal state

Let 1 :

- ▶ $(L_{\infty}(\mathcal{M}, \sigma), L_1(\mathcal{M}))$ compatible pair of Banach spaces
- interpolation space

$$L_p(\mathcal{M},\sigma):=\textit{C}_{1/p}(\textit{L}_{\infty}(\mathcal{M},\sigma),\textit{L}_1(\mathcal{M})), \text{ with norm } \|\cdot\|_{p,\sigma}$$

▶ Let 1/p + 1/q = 1, then

$$L_{p}(\mathcal{M}, \sigma) = \{h_{\sigma}^{1/2q} k h_{\sigma}^{1/2q}, \ k \in L_{p}(\mathcal{M})\},$$
$$\|h_{\sigma}^{1/2q} k h_{\sigma}^{1/2q}\|_{p,\sigma} = \|k\|_{p}$$

A definition of \tilde{D}_{α} , $\alpha > 1$

Extension to non-faithful σ : by restriction to support $s(\sigma) = e$

$$L_p(\mathcal{M},\sigma)=\{h\in L_1(\mathcal{M}),\ h=ehe\in L_p(e\mathcal{M}e,\sigma|_{e\mathcal{M}e})\}.$$

For normal states ρ , σ and $1 < \alpha < \infty$:

$$ilde{D}_{lpha}(
ho\|\sigma) = \left\{egin{array}{ll} rac{lpha}{lpha-1}\log(\|h_
ho\|_{lpha,\sigma}) & ext{if } h_
ho \in L_lpha(\mathcal{M},\sigma) \ & \infty & ext{otherwise}. \end{array}
ight.$$

Some properties of $ilde{D}_{lpha}$

Using complex interpolation, we can prove

- ▶ strict positivity: $\tilde{D}_{\alpha}(\rho \| \sigma) \geq 0$, with equality iff $\rho = \sigma$.
- ▶ joint lower semicontinuity (on $L_1(\mathcal{M})^+ \times L_1(\mathcal{M})^+$)
- if $\rho \neq \sigma$ and $\tilde{D}_{\alpha}(\rho \| \sigma) < \infty$, then

$$\alpha' \mapsto \tilde{D}_{\alpha'}(\rho \| \sigma)$$
 is strictly increasing for $\alpha' \in (1, \alpha]$.

quasi-convexity

Relation to the standard version D_{α} , limit values

For normal states ρ, σ , $\alpha > 1$:

$$D_{2-1/\alpha}(\rho\|\sigma) \leq \tilde{D}_{\alpha}(\rho\|\sigma) \leq D_{\alpha}(\rho\|\sigma)$$

$$\downarrow \downarrow$$

Limit values:

$$\lim_{lpha o 1} ilde{D}_lpha(
ho\|\sigma)=\mathcal{S}(
ho\|\sigma)$$
 $\lim_{lpha o \infty} ilde{D}_lpha(
ho\|\sigma)= ilde{D}_\infty(
ho\|\sigma)$ relative max entropy

Data processing inequality

- $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ positive, trace-preserving. Let $\sigma_0 = \Phi(\sigma)$.
 - Φ is a contraction $L_1(\mathcal{M}) \to L_1(\mathcal{N})$.
 - if $0 \le \rho \le \lambda \sigma$, then also $0 \le \Phi(\rho) \le \lambda \sigma_0$, hence

$$\Phi(L_{\infty}(\mathcal{M},\sigma)^{+}) \to L_{\infty}(\mathcal{N},\sigma_{0})^{+}$$

- ▶ this extends to a map $x \mapsto y$, $\Phi(h_{\sigma}^{1/2}xh_{\sigma}^{1/2}) = h_{\sigma_0}^{1/2}yh_{\sigma_0}^{1/2}$ (adjoint of) the Petz recovery channel Φ_{σ}
- ▶ Φ defines a contraction $L_{\infty}(\mathcal{M}, \sigma) \to L_{\infty}(\mathcal{N}, \sigma_0)$.

 Φ defines a contraction $L_p(\mathcal{M}, \sigma) \to L_p(\mathcal{N}, \sigma_0)$ for all $1 \le p \le \infty$.

¹⁴D. Petz, Quart. J. Math. Oxford, 1984

Data processing inequality

For $\alpha > 1$, normal states ρ , σ , positive, trace-preserving Φ :

$$\tilde{D}_{\alpha}(\rho \| \sigma) \geq \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma))$$

Consequently, by the limit $\alpha \to 1$:

For normal states ρ , σ ,

$$S(\rho \| \sigma) \ge S(\Phi(\rho) \| \Phi(\sigma))$$

holds for any positive trace-preserving map Φ .

A. Müller-Hermes, D. Reeb, Ann. H. Poincaré, 2017 (for $\mathcal{M}=B(\mathcal{H})$)

The Araki-Masuda divergences

The Araki-Masuda L_p -norm: defined on $L_2(\mathcal{M})$

▶ for $2 \le p \le \infty$, $\xi \in L_2(\mathcal{M})^+$,

$$\|\xi\|_{p,\sigma}^{\mathit{AM}} = \sup_{\omega \in \mathcal{M}_*^+, \omega(1) = 1} \|\Delta_{\omega,\sigma}^{1/2 - 1/p} \xi\|_2$$

if $s(\omega_{\xi}) \leq s(\sigma)$ and is infinite otherwise

• for $1 \le p < 2$,

$$\|\xi\|_{\rho,\sigma}^{AM} = \inf_{\omega \in \mathcal{M}_*^+, \omega(1) = 1, s(\omega) > s(\omega_{\mathcal{E}})} \|\Delta_{\omega,\sigma}^{1/2 - 1/p} \xi\|_2$$

The Araki-Masuda divergences

For normal states ρ , σ and $\alpha \in [1/2, 1) \cup (1, \infty)$:

$$\tilde{D}_{\alpha}^{AM}(\rho\|\sigma) = \frac{2\alpha}{\alpha - 1}\log(\|h_{\rho}^{1/2}\|_{2\alpha,\sigma}^{AM})$$

- ▶ can be defined using any *-representation of $\mathcal M$ on a Hilbert space $\mathcal H$ and any vector $\xi \in \mathcal H$ representing ρ
- duality relation: for 1/p + 1/q = 1

$$|\langle \eta, \xi \rangle| \le \|\eta\|_{p,\sigma}^{AM} \|\xi\|_{q,\sigma}^{AM}, \qquad \xi, \eta \in \mathcal{H}$$

▶ if $1 , there is a (unique) unit vector <math>\eta_0 \in \mathcal{H}$ such that

$$\langle \eta, \eta_0 \rangle = \|\eta\|_{p,\sigma}^{AM} \|\eta_0\|_{q,\sigma}^{AM}$$

$ilde{D}_{lpha}^{AM}$ and $ilde{D}_{lpha}$

Araki-Masuda L_p -norms can be introduced by interpolation:

▶ For $2 \le p \le \infty$: a continuous embedding $\mathcal{M} \to L_2(\mathcal{M})$

$$x \mapsto h_{\sigma}^{1/2}x, \qquad x \in \mathcal{M}$$

the interpolation norm $\|\cdot\|_{p,\sigma}^{AM}$ in $C_{1/p}(\mathcal{M}, L_2(\mathcal{M}))$.

▶ For $1 \le p \le 2$: a continuous embedding $L_2(\mathcal{M}) \to L_1(\mathcal{M})$

$$k\mapsto kh_{\sigma}^{1/2}, \qquad k\in L_2(\mathcal{M})$$

the interpolation norm $\|\cdot\|_{p,\sigma}^{AM}$ in $C_{1/p}(L_2(\mathcal{M}), L_1(\mathcal{M}))$.

$ilde{D}_{lpha}^{AM}$ and $ilde{D}_{lpha}$

For
$$1 < \alpha < \infty$$
,

$$\tilde{D}_{\alpha}(\rho\|\sigma) = \tilde{D}_{\alpha}^{AM}(\rho\|\sigma)$$

For
$$1/2 < \alpha < 1$$
: $h_{\sigma}^{\frac{1-\alpha}{2\alpha}}h_{\rho}^{1/2} \in L_{2\alpha}(\mathcal{M})$ and
$$\tilde{D}_{\alpha}(\rho\|\sigma) := \tilde{D}_{\alpha}^{AM}(\rho\|\sigma) = \frac{2\alpha}{\alpha-1}\log\|h_{\sigma}^{\frac{1-\alpha}{2\alpha}}h_{\rho}^{1/2}\|_{2\alpha}$$

Limit values:

- $\blacktriangleright \lim_{\alpha \nearrow 1} \tilde{D}_{\alpha}(\rho \| \sigma) = S(\rho \| \sigma)$
- ▶ $\lim_{\alpha \to 1/2} \tilde{D}_{\alpha}(\rho \| \sigma) = -\log F(\rho, \sigma)$ Uhlmann's fidelity

Data processing inequality for \tilde{D}_{α} , $\alpha \in (1/2, 1)$

We have to assume that $\Phi: L_1(\mathcal{M}) \to L_1(\mathcal{N})$ is trace preserving and completely positive, with Stinespring representation:

$$\Phi^* = T^*\pi(\cdot)T$$

 π a *-representation, T an isometry

▶ Let $p = 2\alpha$, 1/p + 1/q = 1. Let $\rho = \omega_{\eta}$ and let $\omega := \omega_{\eta_0}$ be such that $\langle \eta, \eta_0 \rangle = \|\eta\|_{\rho,\sigma}^{AM} \|\eta_0\|_{\sigma,\sigma}^{AM}$. Then

$$\langle \, \eta, \eta_0 \, \rangle = \langle \, T\eta, \, T\eta_0 \, \rangle \leq \| \, T\eta \|_{p,\Phi(\sigma)}^{AM} \| \, T\eta_0 \|_{q,\Phi(\sigma)}^{AM}$$

• we obtain, with $\alpha^* = \alpha/(2\alpha - 1) > 1$:

$$\begin{split} \tilde{D}_{\alpha}(\rho \| \sigma) &\geq \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega \| \sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega) \| \Phi(\sigma)) \\ &> \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma)) \end{split}$$

Characterizations of sufficient channels by $ilde{D}_{lpha}$

Theorem

The sandwiched Rényi relative entropies \tilde{D}_{α} characterize sufficiency for $\alpha \in (1/2,1) \cup (1,\infty)$.

AJ, Ann. H. Poincaré, 2018; AJ, arXiv:1707.00047

That is:

$$\tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = \tilde{D}_{\alpha}(\rho\|\sigma) < \infty$$

implies that

$$\Psi \circ \Phi(\rho), \qquad \Psi \circ \Phi(\sigma).$$

for some channel Ψ .

Let $\alpha > 1$.

the assumption

$$\tilde{D}_{\alpha}(\Phi(\rho)\|\Phi(\sigma)) = \tilde{D}_{\alpha}(\rho\|\sigma) < \infty$$

implies that $h_{\rho} \in L_{\alpha}(\mathcal{M}, \sigma)$ and Φ is a contraction preserving its norm.

▶ An easy proof for $\alpha = 2$: $L_2(\mathcal{M}, \sigma)$ is a Hilbert space, Φ_σ is the adjoint of Φ

By properties of contractions on Hilbert spaces:

$$\Phi_{\sigma}\circ\Phi(h_{\rho})=h_{\rho}$$

(note that positivity of Φ is enough for this)

For general $\alpha > 1$, use interpolation:

Let τ be a normal state, $s(\tau) \leq s(\sigma)$. Put

$$h_\tau(z) = h_\sigma^{(1-z)/2} h_\tau^z h_\sigma^{(1-z)/2} \in L_1(\mathcal{M}), \quad 0 \leq \text{Re}(z) \leq 1,$$

continuous function, analytic in 0 < Re(z) < 1.

If the equality

$$\|\Phi(h_{\tau}(1/\alpha))\|_{\alpha,\Phi(\sigma)} = \|h_{\tau}(1/\alpha)\|_{\alpha,\sigma}$$

holds for some $\alpha > 1$, then it holds for all $\alpha > 1$.

By assumptions $h_{\rho}=th_{\tau}(1/\alpha)$ for some state τ , t>0 -normalization, and we have

$$\|\Phi(h_{\tau}(1/\alpha)\|_{\alpha,\Phi(\sigma)} = \|h_{\tau}(1/\alpha)\|_{\alpha,\sigma}.$$

Then the equality holds also for $\alpha = 2$, so that

 Φ is sufficient with respect to $\{\omega, \sigma\}$, where

$$h_{\omega} = s h_{ au}(1/2) = s h_{\sigma}^{1/4} h_{ au}^{1/2} h_{\sigma}^{1/4}, \qquad s > 0.$$

Ok, but this is not what we wanted to prove!

Assume $\mathcal{M} = \mathcal{B}(\mathcal{H})$, replace h_{ρ} by the density operator ρ .

There is a decomposition $U\sigma U^* = \bigoplus_n \lambda_n \sigma_n^L \otimes \sigma_n^R$ such that Φ is sufficient with respect to $\{\rho, \sigma\}$ iff

$$U\rho U^* = \bigoplus_n \mu_n \rho_n^L \otimes \sigma_n^R$$

But we have such a decomposition for $\omega=s\sigma^{1/4}\tau^{1/2}\sigma^{1/4}$, hence also for $\rho=t\sigma^{1/2\beta}\tau^{1/\alpha}\sigma^{1/2\beta}$, which imlies the result.

(In the general case, we use the characterization by conditional expectations.)

The case $\alpha \in (1/2,1)$

Let $\alpha \in (1/2,1)$. Then

$$h_{\sigma}^{\frac{1-\alpha}{2\alpha}}h_{\rho}^{1/2}=h_{\tau}^{1/2\alpha}u\in L_{2\alpha}(\mathcal{M})$$

for some $\tau \in \mathcal{M}_*^+$ and partial isometry $u \in \mathcal{M}$.

We recall the inequality

$$\begin{split} \tilde{D}_{\alpha}(\rho \| \sigma) &\geq \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma)) + \tilde{D}_{\alpha^*}(\omega \| \sigma) - \tilde{D}_{\alpha^*}(\Phi(\omega) \| \Phi(\sigma)) \\ &\geq \tilde{D}_{\alpha}(\Phi(\rho) \| \Phi(\sigma)) \end{split}$$

for $\alpha^* > 1$ and some state ω .

• Actually, we have $h_{\omega}=th_{\tau}(1/\alpha^*)$.

The case $\alpha \in (1/2,1)$

▶ By assumptions, we obtain

$$ilde{D}_{lpha^*}(\omega \| \sigma) = ilde{D}_{lpha^*}(\Phi(\omega) \| \Phi(\sigma))$$

- ▶ since $\alpha^* > 1$, this implies that Φ is sufficient with respect to $\{\omega, \sigma\}$.
- use the decompositions (conditional expectations) as before.