

How to use Blender to generate a mesh with an awful geometry

Rita Pereira

ritapereira9795@gmail.com

João Castro

joaoctcastro@gmail.com

João Miguel Nóbrega

mnobrega@dep.uminho.pt

Institute for Polymers and Composites - University of Minho Guimarães, Portugal

Topics

_									
	1) Introduction								
	Blender a open source software								
	STL files overview								
7	 Most common STL file errors 								
Part	2) How to repair a STL geometry in Blender?								
	 Blender basics (workspace and shortcuts) 								
	 Tools and tips 								
	 Tools and unusual tips 								
	3) Case study								
2	Geometry preparation for mesh generation								
Part 2	Mesh generation with different refinement levels								
	Compare the original and corrected meshes								
	4) Conclusion								

Introduction

What is an STL file?

An **STL** file is a **triangulated surface** used mainly to describe the surface geometry of a 3D watertight model.

The (usual closed) surface of the CAD model is discretized by mesh of triangles, which comprises 3 elements:

- 1. Vertices (points)
- 2. Edges (lines between vertices)
- 3. Faces (triangles delimited by edges)

ASCII STL format

```
solid name

facet normal n_i n_j n_k
outer loop
   vertex v1_x v1_y v1_z
   vertex v2_x v2_y v2_z
   vertex v3_x v3_y v3_z
endloop
endfacet

endsolid name
```

Each triangle also has a normal vector, which defines the side of the triangle facing outward.

Introduction

The most common errors of STL files?

Holes or gaps in a mesh

Flipped normal

Intersecting and overlapping triangles

Bad edges

Noise shells

STL file quality

A correct STL-based model is characterized by **closed and connected triangles** that **don't overlap** and where every edge shared by two triangles. However, when converting from CAD to STL, **errors can frequently arise**.

Methodology validation

Check Surface Mesh

>> checkSurfaceMesh *.stl

Before STL correction

Surface mesh consists of **64 manifolds**!!

Surface mesh has **open boundaries**!!

Surface mesh has **non-manifold edges!!**

Surface mesh has some bad-quality triangles with

angles smaller than 1.0 deg!!

Found **self-intersecting parts** in the surface mesh!!

Found **overlapping parts** in the surface mesh!!

Found **6 checks** indicating potential problems.

End

CRheo@IPC WWW.crheo.org

After STL correction

Surface mesh consists of a **single manifold**.

No open edges found in the surface mesh.

Surface does not have **any non-manifold edges**.

Surface mesh consists of a **single region**.

No sliver triangles found.

No self-intersections found.

Surface passes all checks.

End

Methodology validation

>> Cartesian Mesh (cfMesh) -> checkMesh

Before STL correction

2 non-orthogonal and 2 skew faces Failed 1 mesh checks

After STL correction

Mesh OK

⊹ ○ iPC

CRheo@IPC WWW.crheo.org

Methodology validation

Mesh Refinement

		Mesh Refinement Level									
STL		1	2	3	4	5	6	7	8	9	10
Original	Mesh generation	✓	√	√	√	×	×	×	×	×	×
	checkMesh output	×	×	×	×	_	-	_	-	_	_
Competed	Mesh generation	√	\checkmark								
Corrected	checkMesh output	√	√	\checkmark	√	√	√	✓	\checkmark	✓	√

Conclusion

- Blender and the presented tools allows an efficient manipulation of the geometries.
- The **3D print toolbox** was able to detect and indicate the location of all errors pointed out by the **checkSurfaceMesh** utility.
- The errors reported by the **checkSurfaceMesh** utility and **Blender toolbox** limited the generation of appropriate computational meshes.
- **Blender and the presented tools** proved to be efficient to help solving some difficulties usually faced in preprocessing tasks.
- The **snappyHexMesh addon** proved to be efficient in creating the files needed to generate the computational mesh minimizing the user intervention.

References

- [1] Juretic, F. (2015). cfMesh User Guide. Creative Fields, Ltd www.cfmesh.com
- [2] OpenFOAM The open source CFD toolbox. Available from: https://www.openfoam.com [Accessed: 3 February 2021]
- [3] Community BO. Blender a 3D modelling and rendering package [Internet]. Stichting Blender Foundation, Amsterdam. Available from: http://www.blender.org/ [Accessed: 3 February 2021]
- [4] Blender Manual Add-ons Category Listings. Available from: https://docs.blender.org/manual/en/latest/addons/index.html [Accessed: 3 February 2021]
- [5] Liu, F., Zhou, H., & Li, D. (2009). Repair of STL errors. International Journal of Production Research, 47(1), 105-118.
- [6] Leong, K. F., Chua, C. K., & Ng, Y. M. (1996). A study of stereolithography file errors and repair. Part 1. Generic solution. The International Journal of Advanced Manufacturing Technology, 12(6), 407-414.
- [7] Szilvśi-Nagy, M., & Matyasi, G. Y. (2003). Analysis of STL files. Mathematical and computer modelling, 38(7-9), 945-960.
- [8] SnappyHexMesh GUI Addon for Blender Available from: https://snappyhexmesh-gui.readthedocs.io/en/latest/snappy_gui.html [Accessed: 3 February 2021]