

Vega research groups

Rough Bergomi model, ATM skew, Muravlev's representation of fBM

Dmitry Sotnikov, Nikita Fedyashin, Elizaveta Kulakova Vega Institute Foundation January 14, 2023

Outline

Forward variance swap

Bergomi model

Rough Bergomi model

Does ATM skew follow a power law?

Muravlev's representation of fBM

Forward variance swap

Payoff of the forward variance swap on [t, T] at time T is

$$h(S) = \sum_{i=1}^{n} \left(\log \frac{S_{t_i}}{S_{t_{i-1}}} \right)^2 - K, \quad t = t_0 < \ldots < t_n = T,$$

i.e. it is the forward on realized variance on [t, T]. For continuous time price model (under risk neutral measure with r = 0)

$$dS_t = \sigma_t S_t dW_t, \quad d\log S_t = -\frac{1}{2}\sigma_t^2 dt + \sigma_t dW_t,$$

the payoff can be approximated by $\int_t^T \sigma_u^2 du - K$, which fair price is equal to

$$K^* = \mathbb{E}_t \int_t^T \sigma_u^2 \, du.$$

Forward variance swap

The forward variance swap price can be rewritten in terms of *forward variances*:

$$K^* = \int_t^T \xi_t(u) du, \quad \xi_t(u) = \mathbb{E}_t \sigma_u^2.$$

On the other side, the integral can be calculated from SDE for $\log S_t$, hence

$$K^* = \int_t^T \xi_t(u) du = -2\mathbb{E}_t \log \left(\frac{S_T}{S_t}\right),$$

so the payoff of variance swap is proportional to the payoff of the European option with logarithmic payoff function $g(S_T) = \log S_T$.

Calibration of the variance curve

The logarithmic option can be approximated by puts and calls with the use of Carr-Madan formula¹, that holds for any k > 0:

$$g(x) = g(k) + g'(k)(x - k) +$$

$$+ \int_{K>k} g''(K)(x - K)^{+} dK + \int_{0 < K < k} g''(K)(K - k)^{+} dK.$$

Calibration of the initial variance curve $\xi_t(\cdot)$ can be done by the algorithm:

- Approximate variance swap prices by Carr-Madan formula.
- Interpolate the curve with respect to *T*.
- Differentiate it to obtain $\xi_t(u)$.

¹Carr, P. and Madan, D. (1998). Towards a theory of volatility trading. In: Robert A. Jarrow (ed), Volatility: New Estimation Techniques for Pricing Derivatives, pp. 417–427. London: RISK Publications.

Forward variance swap: remarks

- Along with variance swaps one can consider volatility swaps, the payoff of which is $\sqrt{\int_t^T \sigma_u^2 du} K$. In this case pricing problem is more intricate due to the nonlinearity of the square root function.
- One of the well known tradable volatility indices is VIX, the CBOE volatility index, defined as the square root of the fair price of a variance swap on the S&P index over a 30-days time interval:

$$ext{VIX}_t = \sqrt{\mathbb{E}_t \int_t^{t+30\, ext{days}} \sigma_u^2\,du}.$$

Futures and options on VIX were intoduced in 2004 and 2006 respectively.

Stochastic volatility model in forward variance curve form

Let S_t denote the stock price. The variance process can be written in terms of forward variances:

$$v_t = \sigma_t^2 = \xi_t(t), \quad \xi_t(u) = \mathbb{E}_t [v_u].$$

Under risk neutral measure the price and forward variance dynamics is described by the equations

$$\begin{cases} \frac{dS_t}{S_t} = \sqrt{\xi_t(t)} \, dB_t, \\ d\xi_t(u) = \varepsilon \lambda(t, u, \xi_t(u)) \, dW_t \end{cases}$$

with correlated Brownian motions $dB_t dW_t = \rho dt$.

Bergomi-Guyon expansion

The Bergomi–Guyon² small noise expansion provides asymptotics for *ATM skew*

$$\psi(T) = rac{\partial}{\partial k} \sigma_{BS}(k,T) igg|_{k=0} pprox \sigma_{VS} \left[rac{1}{2w^2} C^{x\xi} + rac{1}{8w^3} (4wC^\mu + 3(C^{x\xi})^2)
ight]$$

where $w=\int_0^T \xi_0(u)\,du,\;\sigma_{VS}=\sqrt{rac{w}{T}}$ and

$$C^{x\xi} = \int_0^T dt \int_t^T du rac{\mathbb{E}_t \left[d \log(S_t) d\xi_t(u)
ight]}{dt},$$

$$C^{\mu} = \int_0^T dt \int_t^T du rac{\mathbb{E}_t \left[d \log(S_t) d\xi_t(u)
ight]}{dt} rac{\delta C_t^{x\xi}}{\delta \xi_t(u)}.$$

²L. Bergomi and J. Guyon. Stochastic volatility's orderly smiles. Risk May, pages 60–66, 2012.

Bergomi model

n-factor Bergomi model 3 is a special case of model in variance forward curve form with

$$\xi_t(u) = \xi_0(u)\mathcal{E}\left(\sum_{i=1}^n \eta_i \int_0^t e^{-\kappa_i(u-s)} dW_s^{(i)}\right),\,$$

or, in differential form,

$$\frac{d\xi_t(u)}{\xi_t(u)} = \sum_{i=1}^n \eta_i e^{-\kappa_i(u-t)} dW_t^{(i)}.$$

The parameters of the model are $\{\eta_i\}, \{\kappa_i\}, \{\rho_{B,W^{(i)}}\}, \{\rho_{W^{(i)},W^{(j)}}\}.$

³L. Bergomi. Smile dynamics II. Risk October, pages 67–73, 2005.

Bergomi model

- For an appropriate fit on volatility surface one needs at least two factors, i.e. the model with 7 parameters.
- ATM skew in Bergomi model can be shown to have the following asymptotic behavior for $\tau \ll 1$:

$$\psi(\tau) \sim \sum_{i=1}^{n} \frac{\eta_i}{\kappa_i \tau} \left(1 - \frac{1 - e^{-\kappa_i \tau}}{\kappa_i \tau} \right),$$

i.e. it does not explode at $\tau = 0$.

 Forward variance processes can be considered as stochastic convolutions with exponential kernels.

Rough Bergomi model

The goal of *rough Bergomi (rBergomi) model*⁴ is to reproduce the exploding power law behavior of ATM skew for small maturities. It can be achieved by changing the convolution kernel from the exponential to the power law:

$$\xi_t(u) = \xi_0(u)\mathcal{E}\left(\eta \int_0^t \frac{dW_s}{(u-s)^{\gamma}} ds\right).$$

If $\xi_0(u)$ is constant, the variance process $v_t = v_0 \exp\left\{\eta V_t - \frac{\eta^2}{2}\mathbb{E}V_t^2\right\}$, where

 $V_t = \int_0^t \frac{dW_s}{(u-s)^{\gamma}} \, ds$ is a Volterra convolution process.

It can be shown that the ATM skew follows the power law for small values of τ :

$$\psi(\tau) \sim \frac{1}{\tau^{\alpha}}.$$

⁴Bayer, C., Friz, P., Gatheral, J.: Pricing under rough volatility, Quantitative Finance, 16(6):887–904, 2016.

Bergomi vs rBergomi

- rBergomi model is not Markovian, the variance process is not a semimartingale.
- According to the authors of the article, exponential kernels in Bergomi model approximate more realistic power-law kernels. Hence, the Bergomi model is just a Markovian engineering approximation to its rough alternative.
- Empirical analysis shows that for small maturities

$$\psi(\tau) \sim \frac{1}{\tau^{\alpha}}$$

for some
$$lpha \in \left(0, rac{1}{2}
ight)$$
 .

Validation of previously implemented method

• The idea of an exact approach is to find a joint distribution for Wiener and Volterra processes via Cholesky decomposition. If s < t:

$$\mathbb{E}[V_t V_s] = s^{2H} g\left(\frac{t}{s}\right) \quad \mathbb{E}[V_t W_s] = \rho \frac{\sqrt{2H}}{H+1/2} \left\{t^{H+1/2} - (t-\min(t,s))^{H+1/2}\right\}$$

Where
$$g(x) = 2H \int_0^1 \frac{ds}{(1-s)^{1/2-H}(x-s)^{1/2-H}}$$

• For validation of previous approach we implemented the exact method and applied Kolmogorov-Smirnov test at last moment.

As a result, we are sure that the hypothesis of equality of distributions should not be rejected.

But does ATM skew follow a power law?⁵

In the article for 4 models of the form

$$\frac{\xi_t(u)}{\xi_t(u)} = K(u-t) dW_t, \quad dB_t dW_t = \rho dt,$$

the quality of ATM curve fitness was compared for SPX, SX5E and DAX indices over the date range from 2020 Jan 1 to 2021 Dec 31. The considered models are

- 2-factor Bergomi, $K_{2fB}(au) = c_1 e^{-\kappa_1 au} + c_2 e^{-\kappa_2 au}$;
- Rough Bergomi, $K_{rB}(\tau) = \frac{w}{\tau^{\alpha}}$;
- Time shifted power law, $K_{TSPL}(au) = rac{w}{(au + \delta)^{lpha}}$;
- Power law of the function $I(x) = \frac{1 e^{-x}}{x}$, $K_{PLI}(\tau) = wI(\kappa \tau)^{\alpha}$.

⁵Guyon, Julien and El Amrani, Mehdi, Does the Term-Structure of Equity At-the-Money Skew Really Follow a Power Law? (July 27, 2022).

Models calibration process

- For T smaller than 3 years interpolate smiles using cubic spline.
- Calculate ATM skews at monthly maturities.
- Calculate initial forward variance $\xi_0(u)=\frac{d}{du}\left[u\mathrm{VS}(u)\right]$, where the variance swap rates are obtained via Carr-Madan approximation.
- Estimate ATM skew using Bergomi-Guyon representation. Integrals in the coefficients are computed with the use of Gaussian quadrature.
- Optimization of the model parameters using least-square minimization with ${\cal L}^2$ regularization to fit market data.
- Fit the power-law curve (PL).
- Root Mean Squared Error (RMSE) is then used as a fit quality metric.

Comparison results

- 2-factor Bergomi model performed better that rough Bergomi and power law in more than 99% cases.
- A strong seasonality of error is observed for rough Bergomi and power law models, the error is getting larger when time to maturity is close to 0.
- Often, the power-law decay has not enough flexibility to accurately fit both the short and long ATM skews.
- The distribution of the extrapolated zero-maturity ATM skew in 2fB, TSPL and PLI models resembles the lognormal that peaks around 1.5.

THE TERM-STRUCTURE OF ATM SKEW

Figure: Successful fit for all models.

Figure: rB and PL fails to fit the curve for the first maturity date T_1 close to 0.

Muravlev's representation⁶

Let $\xi=(\xi_{\beta})_{\beta>0}$ be Gaussian process with zero mean and auto-correlation function $R_{\xi}(\alpha,\beta)=(\alpha+\beta)^{-1}$, and B_t is an independent standard Brownian motion.

Let $\{Z_\beta\}_{\beta>0}$ be the family of processes, where $Z^\beta=(Z_t^\beta)_{t\geq0}$ is an Ornstein-Uhlenbeck process, i.e. a solution to the SDE:

$$dZ_t^{\beta} = -\beta Z_t^{\beta} dt + dB_t, \quad Z_0^{\beta} = \xi_{\beta}.$$

⁶A. A. Muravlev, "Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process", Russian Math. Surveys, 66:2 (2011), 439–441

Muravlev's representation⁷

Theorem 1

Process
$$\overline{B}^H=(\overline{B}^H_t)_{t\geq 0}$$
 with $H\in(0,\frac{1}{2})$
$$\overline{B}^H_t=c_H\int_0^\infty\beta^{-1/2-H}\left(Z^\beta_t-\xi_\beta\right)d\beta, \text{ where}$$
 $c_H=rac{[\Gamma(2H+1)\sin(\pi H)]^{1/2}}{\mathrm{B}(1/2+H,1/2-H)},$

is a fractional Brownian motion with Hurst parameter H.

⁷A. A. Muravlev, "Representation of a fractional Brownian motion in terms of an infinite-dimensional Ornstein–Uhlenbeck process", Russian Math. Surveys, 66:2 (2011), 439–441

Idea of the proof

It is sufficient to check that the auto-correlation function of \overline{B}^H is equal to the one of fBM.

Let us describe from where we have such representation. Recall Mandelbrot-van Ness representation of fBM with $H\in(0,\frac12)$:

$$B_t^H = c_H \int_{-\infty}^0 \left[\int_0^\infty \left(e^{-\beta(t-s)} - e^{\beta s} \right) \beta^{-1/2 - H} d\beta \right] dB_s$$
$$+ c_H \int_0^t \left[\int_0^\infty e^{-\beta(t-s)} \beta^{-1/2 - H} d\beta \right] dB_s$$

Idea of the proof

We use the stochastic Fubini theorem to interchange the order of integration.

$$B_{t}^{H} = c_{H} \int_{0}^{\infty} \beta^{-1/2 - H} \left(e^{-\beta t} - 1 \right) \left[\int_{-\infty}^{0} e^{\beta s} dB_{s} \right] d\beta$$

$$+ c_{H} \int_{0}^{\infty} \beta^{-1/2 - H} \left[\int_{0}^{t} e^{-\beta (t - s)} dB_{s} \right] d\beta =$$

$$= c_{H} \int_{0}^{\infty} \beta^{-1/2 - H} \left[\left(-1 + e^{-\beta t} \right) \int_{-\infty}^{0} e^{\beta s} dB_{s} + \int_{0}^{t} e^{-\beta (t - s)} dB_{s} \right] d\beta$$

Recall the solution to the Ornstein-Uhlenbeck SDE:

$$Z_t^{\beta} = \xi_{\beta} e^{-\beta t} + \int_0^t e^{-\beta (t-s)} dB_s$$

Idea of the proof

Take $X_{\beta}=\int_{0}^{\infty}e^{-\beta s}dB_{s}$ and calculate the correlation

$$\mathbb{E}X_{\alpha}X_{\beta}=\int_{0}^{\infty}e^{-(\alpha+\beta)s}ds=rac{1}{lpha+eta}$$

Thus it is exactly process ξ_{β} . And we get the wanted representation

$$egin{align} B^H_t &= c_H \int_0^\infty eta^{-1/2-H} \left[\left(-1 + e^{-eta t}
ight) \xi_eta + \int_0^t e^{-eta(t-s)} dB_s
ight] deta = \ &= c_H \int_0^\infty eta^{-1/2-H} \left[-\xi_eta + Z_t^eta
ight] deta \end{split}$$

Simulation of fBM via Muravlev's representation

We simulate this process as follows:

- Take uniform/non-uniform grid β_j and simulate values of ξ_{β_j} from the multivariate normal distribution,
- Simulate a trajectory of the Brownian motion at points $t_i=i\Delta t,$ $i=0,\ldots,n,$
- Simulate O-U processes with the above ξ_{β_j} as initial condition using Euler's scheme,
- Approximate the integral via Simpson's method.

Ornstein-Uhlenbeck trajectories

Analysis of simulation accuracy across different time grids

