Lecture 16

Define L':= { f: Sm |fex)|dx < 09 all the functions in this set are called "L1 integrable" or "obsolutely integrable"

Are PDF's in the set L1? \\ \fix=x^2 \opi L'

If JEL' and I f, the "Formier transform" of f:

f(w) = Se-iz Twx fex) dx = 7 [f]

This is called "forward formier Townsform" or "formier analysis". X is called the "time dominant" and one for is called the frequency dominant. One of Formier's ideas is that functions on L's am be de amposed onto a run of same and and pluse shifts, Arg [f (mega)]. Enega

Further, if f & L', then we com do a "reverse / chiverse farmer transform" to vestore our original function f:

 $f(x) = \int_{\mathbb{R}} e^{i\mathbf{k}\mathbf{a} \times \mathbf{w}} f(\mathbf{w}) d\mathbf{w} = \mathcal{F}^{-1}[\hat{f}]$

This is called the "inverse former transformil or Former Syntams".

Former Inversion this of fand that are in La, then fand that are

	We define the Characteristic Junction (chf) for tV x as:
	We define the Characteristic Junction (chf) for tV x as: $\Phi_{\mathbf{x}}(t) := E[e^{itx}] = \int_{\mathbf{R}} e^{itx} f(x) dx$
	E e (*X) This is the Former trumsfirm with a different frequency unit t= -2 Tow.
	The season why we bother to take this Crazy-broking turns formation is that there are really powerful properties of the Chif that will build us to folke problems. Here are the main properties:
	$\Phi_{x}(0) = E\left[e^{i(0)X}\right] = E\left[i\right] = i \forall X, \ \forall t$
	(1) OR(t) = Oy(t) (1) X = Y "Uniquenes"
	Pe If y=ax+6 where a,6 GR dy(t)=E[eit(ax+6)]=E[eiatxit]
	$= e^{its} \mathcal{E}[e^{itx}] = e^{its} \phi_x(t') = e^{its} \phi_x(at)$
	B X, X2 are independent. $T = X_1 + X_2$
	$\phi_{\tau}(t) = E\left[e^{it(x_1+x_2)}\right] = E\left[e^{itx_1}e^{itx_2}\right] = E\left[e^{itx_1}\right] = E\left[e^{itx_2}\right] = \phi_{x_1}(t)\phi_{x_2}(t)$
	(Pg) "Moment Generation", we are able to interchange defendation and integration the
	"Moment Generation" We are aske to interchange deformation and integration the $\Phi_x'(t) = \frac{1}{4t} \left[e^{itx} \right] = E \left[\frac{1}{4t} \left[e^{itx} \right] \right] = E \left[cix e^{itx} \right]$
.9	$\phi_{x}'(0) = E \operatorname{Lix}] = \operatorname{E[x]} = \frac{\phi_{x}'(0)}{c}$
	$Q''(t) = dt \left[E[cxe^{itx}]\right] = E[ixe^{itx}] = E[ixe^{itx}]$
	$\phi_{\chi}^{"}(\circ) = E\left[i^{2}\chi^{2}\right] = E\left[\chi^{2}\right] = \frac{\phi_{\chi}^{"}(\circ)}{i^{2}} \dots \dots \phi_{\chi}^{"}(h)(o)$
	(ELY) = (h)(o)

PS Ope(t) & t-1, 1) is the Chj exist tx, +t $|\phi_{x}(t)|$ **e1** pwg: $|E[e^{itx}]| = |\int_{\mathbb{R}} e^{itx} f_{x}(x) dx| \leq \int_{\mathbb{R}} |e^{itx} f_{x}(x) dx|$ $\leq \int |e^{itx}| |f_x(x)| dx = \int |cos(tx) + i sin(tx)| f_x(x) dx$ = $\int_{D} \sqrt{(x^2(tx) + f_{mn}^2(tx))} f_X(x) dx = \int_{D} f_X(x) dx = 1$ (P) Inversion: of \$\phi(t) \in L' then \frac{1}{2} \text{ fine } \equiv \phi(t) dt P7 Levy's CDF formula Prosensation P(x + [a, L]) = aw n e ita ith & (t) dt (Pa) Levy's Continuity Thin in dustribution to x" (dewild xy d) x) as: lim Fxy(x) = Fx(n) + n "posurbuse envergence"

 $\lim_{n\to\infty} \phi_{x_n}(t) = \phi_{x_n}(t) \Rightarrow x_n \xrightarrow{d_n} x$

If I large \$x_n(t) = \$\phi_x(t) = \pi_x(t) = \pi_x \frac{4}{2} \pi

