Day 9 - Quadratic Formula & Applications

If a, b, and c are real numbers such that a \neq 0, then a quadratic equation is an equation that can be written in the form

$$ax^2 + bx + c = 0$$

PROPERTY

Zero Product Rule

If ab = 0, then a = 0 or b = 0.

FORMULA

The Quadratic Formula

Given a quadratic equation, $ax^2 + bx + c = 0$ (a $\neq 0$), the solutions are:

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

FORMULA

The Discriminant

Consider a quadratic equation $ax^2 + bx + c = 0$ where $a \neq 0$ and a, b, and c are real numbers. The radicand within the quadratic formula is called the **discriminant**.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

The discriminant is $b^2 - 4ac$.

SUMMARY

Using the Discriminant to Determine the Number and Type of Solutions to a Quadratic Equation

Case 1: If $b^2 - 4ac > 0$, there will be two real solutions.

- a. If $b^2 4ac$ is a perfect square, the solutions will be rational numbers.
- b. If $b^2 4ac$ is not a perfect square, the solutions will be irrational numbers.

Case 2: If $b^2 - 4ac \le 0$, there will be two imaginary solutions.

Case 3: If $b^2 - 4ac = 0$, there will be one rational solution.

Pythagorean Theorem

If a and b represent the lengths of the two legs in a right triangle, and c represents the length of the hypotenuse, then

$$a^2 + b^2 = c^2$$

