Diplomová práce

Využití holofonního prostorového zvuku pro účel rozšířené reality

Bc. Tomáš Mudruňka Ing. Josef Pavlíček, Ph.D.

KII PEF ČZU - Praha 2017

Cíle práce

Prostudovat možnosti využití prostorového zvuku pro AR

Demonstrovat využití na mobilní aplikaci

x(t)

Použitá data

- HRIR model z multimediální laboratoře MIT
 - KEMAR, Bill Gardner a Keith Martin
- Vlastní měření na lidech

Výsledky měření

- Přes 1000 naměřených absolutních úhlových odchylek (MAE)
- Výsledky zpracovány pomocí R
- Odhalena chybná měření
 - Obráceně nasazená sluchátka
- Hustota pravděpodobnosti MAE:

Statistické výsledky

Kumulativní distribuční funkce absolutních úhlových odchylek (ECDF)

Důležité body ECFD

- pro MAE $<= 22.5^{\circ}$, ECDF = 60%
- pro MAE <= 45°, ECDF = 86%
- pro MAE <= 90°, ECDF = 97%</p>

Interpretace výsledků

- Sever od jihu rozlišíme s pravděpodobností 97%
 - (dostatečné při hladině významnosti $\alpha = 0.05$)
- Všechny 4 světové strany rozlišíme s pravděpodobností 86%
- 4 světové strany a 4 vedlejší světové strany (např. severo-západ) rozlišíme s pravděpodobností 60%
- (v reálné aplikaci na to máme víc pokusů)

Dodatečná analýza výsledků po odevzdání práce

- Závislost chyb na směru
- V reálném využití kompenzována pohybem hlavy

Mobilní aplikace

- NorthDog Audio Compass
- Pro Android
- Zatím ve fázi prototypu
- Vývoj pokračuje
- Inspirace NorthPaw

Vybrané zdroje

- GARDNER, Bill, MARTIN, Keith, "HRTF Measurements of a KEMAR DummyHead Microphone" [online], 2000, [cit. 23.11.2017], Dostupné z: sound.media.mit.edu/resources/KEMAR.html
- BEGAULT, D.R., "3D sound for virtual reality and multimedia", AP Professional, 1994
- BLAUERT, J., "Spatial hearing: the psychophysics of human sound localization, MIT Press, 1997