Matematiska Institutionen KTH

Tentamen på kursen SF1604 (och 5B1109), för D1, Mars 29, 2008.

Inga hjälpmedel ät tillåtna.

12	poäng totalt eller mer ger minst omdömet	Fx
15	poäng totalt eller mer ger minst betyget	E
18	poäng totalt eller mer ger minst betyget	D
22	poäng totalt eller mer ger minst betyget	C
28	poäng totalt eller mer ger minst betyget	В
32	poäng totalt eller mer ger minst betyget	A

Bonuspoäng: För omdömet Fx och betygen E, D, och C får maximalt 5 bonuspoäng tiigodoräknas från lappskrivningar höstterminen 2007. För betygen A och B för inga bonuspoäng tillgodoräknas.

Generellt gäller att för full poäng krävs korrekta och väl presenterade resonemang.

PROBLEM:

DEL I

1. (3p) Bestäm för vilka värden på talet a som följande homogena ekvationssystem har triviala lösningar.

$$\begin{cases} x + y + z = 0 \\ x - y + 2a^2z = 0 \\ 2x + 2y + 2z = 0 \end{cases}$$

Svar: alla. 2p rätt svar, 1p rätt förklaring.

2. (3p) Bestäm parameterformen för den linjen i planet med ekvationen x+3y-z=5 som passerar genom punkten (0,2,1) och är vinkelrät mot (1,1,1).

```
Linjen är vinkelrätt mot (1,1,1) och (1,3,-1). Detta betyder att linjen är parallel till (1,1,1) \times (1,3,-1) = (4,-2,-2). Svar: x=4t,y=-2t+2,z=-2t+1, 2p rätt svar, 1p rätt förklaring.
```

3. (3p) Bestäm dimension och ange en bas för det minsta delrum till \mathbb{R}^4 som innehåller vektorerna

$$(1,3,2,5), (0,2,0,8), (2,0,1,0)$$
 och $(2,2,1,8)$

De 4 vektorerna är linjärt beroende eftersom (2,2,1,8)=(0,2,0,8)+(2,0,1,0). Vektorerna (1,3,2,5),(0,2,0,8),(2,0,1,0) är linjärt oberoende och spannar upp ett 3-dimensionellt vektorrum,

Svar: $\dim = 3$, bas: (1, 3, 2, 5), (0, 2, 0, 8), (2, 0, 1, 0), (2, 0, 1

4. (3p) Betrakta vektorummet $V = Span\{(1,0,0,0),(1,1,0,0),(1,1,1,0)\}$ i \mathbb{R}^4 . Bestäm projektionen av vektorn (3,1,1,0) på V.

```
Eftersom (3, 1, 1, 0) = (1, 0, 0, 0) + (1, 1, 0, 0) + (1, 1, 1, 0) är (3, 1, 1, 0) \in V vilket ger proj_V(3, 1, 1, 0) = v. 2p rätt svar, 1p rätt förklaring.
```

5. (3p) Bestäm egenvärden och egenvktorer till följande matris:

$$A = \left(\begin{array}{ccc} 0 & 3 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & -1 \end{array}\right).$$

Matrisen har $\lambda = 0, 1, -1$ som egenvärde. Egenvektorerna är (resp.) $\{(t, 0, 0), t \in \mathbf{R}\}, \{(3t, t, 0), t \in \mathbf{R}\}, \{(2t, -t, t), t \in \mathbf{R}\}.$ 2p rätt svar, 1p rätt förklaring.

DEL II

6. (4p) Betrakta den linjära funktionen

$$f: \mathbb{R}^3 \to \mathbb{R}^3, f(x, y, z) = (x - z, z - x, x - y).$$

(a) (1p) Bestäm matrisen $[F]_B$ med avseende på den kanoniska basen $\{(1,0,0),(0,1,0),(0,0,1)\}$.

$$[F]_B = \left(\begin{array}{rrr} 1 & 0 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{array}\right).$$

- (b) (2p)Välj en annan bas $B' = (v_1, v_2, v_3)$ och bestäm basbytesmatrisen från B till B'.
- (c) (1p) Bestäm matrisen $[F]_{B'}$ med avseende till basen B'.
- 7. (4p) Betrakta följande andragradskurva:

$$C: x^2 + 4y^2 - 4xy + 6x - 12y + 9 = 0.$$

(a) (2) Bestäm den kanoniska formen (d.v.s. den huvudaxelformen) av C.

$$Q_C = \left(\begin{array}{cc} 1 & -2 \\ -2 & 4 \end{array}\right).$$

som har egenvärde 0, 5. De normerade egenvektorerna $(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}), (\frac{-1}{\sqrt{5}}, \frac{2}{\sqrt{5}})$ utgör en ON bas. Basbytet:

$$x = \frac{2}{\sqrt{5}}x_1 - \frac{1}{\sqrt{5}}y_1, y = \frac{1}{\sqrt{5}}x_1 + \frac{2}{\sqrt{5}}y_1$$

 $\operatorname{ger} C: 5y_1^2 - \frac{39}{\sqrt{5}}y_1 + 9 = 0.$

Basbytet $x_2=\overset{\cdot}{x_1},y_1=y_2+\frac{3}{\sqrt{5}},$ ger huvudaxelformen:

$$5y_2^2 = 0 (parabola).$$

(b) (2) Rita C (i koordinatena (x, y).) Vi använder inversbasbiten till:

$$x = \frac{2}{\sqrt{5}}x_2 - \frac{1}{\sqrt{5}}y_2 - \frac{3}{\sqrt{5}}, y = \frac{1}{\sqrt{5}}x_2 + \frac{2}{\sqrt{5}}y_2 - \frac{6}{5}$$

Man ser att C består av dubbel linjen x - 2y - 3 = 0.

8. (4p) Låt $r \subset \mathbb{R}^3$ vara linjen definierad av:

$$r: x - y = z - 1 = 0$$

Bestäm samtliga linjer s som är parallela till (1,0,-1) och sådana att distansen till linjen r är lika med ett, d(s,r)=1. (3p) Rätt metod=1, rätt förklaring=1, rätt svar=1. Finns det ändligt många sådana linjer?(1p)

$$r = t(1,1,0) + (0,0,1), s = t(1,0,1) + (a,b,c).$$
$$d(r,s) = d(\pi,(a,b,c))$$

där π är planet med normal vektorn $(1,1,0)\times(1,0,1)=(-1,1,-1)$ och som går genom P=(0,0,1). Man ser att $\pi:-x+y-z+1=0$ och

$$d(\pi, (a, b, c)) = \frac{|-a + b - c - 1|}{\sqrt{3}} = 1$$

Svar s=t(1,0,1)+(a,b,c), där $a-b+c=1\pm\sqrt{3}$. Det finns två oändligt dimensionella familjer av sådana linjer.

DEL III

9. (5 p)

Bestäm
$$A^{1000}$$
 om $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$.

Egenvärden av A är $\lambda=4,2.$ med egenvektorer: Span(1,1),Span(1,-1). Vi får:

$$A = CDC^{-1} = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{pmatrix}.$$

$$A^{1000} = CD^{1000}C^{-1} = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 4^{1000} & 0 \\ 0 & 2^{1000} \end{array}\right) \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{-1}{2} \end{array}\right). = \left(\begin{array}{cc} 2^{1999} + 2^{999} & 2^{1999} - 2^{999} \\ 2^{1999} - 2^{999} & 2^{1999} + 2^{999} \end{array}\right)$$

Rätt metod=2p, rätt förklaring 2p, rätt svar 1p.

10. (4p) Låt $M_3(\mathbb{R})$ vara vektorrummet av alla reella 3×3 matriser. Betrakta funktionen:

$$T: M_3(\mathbb{R}) \to M_3(\mathbb{R}), T(A) = A^T.$$

(a) Visa att ± 1 är de enda egenvärderna till [T].(2p) Låt

$$A = \left(\begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array}\right)$$

 $A^T=\lambda A$ ger $a=\lambda a, e=\lambda e, i=\lambda i.$ Om $a\neq 0, e\neq 0$, eller $i\neq 0$ då är $\lambda=1.$ Om $a=e=i=0, d=\lambda b, b=\lambda d, g=\lambda c, c=\lambda g, f=\lambda h, h=\lambda f.$ Då är $b=\lambda^2 b$ och om $b\neq 0$ $\lambda=\pm 1.$ Om b=0 då väljer vi en bland c,f,h som är skild från 0.

(b) Hitta en bas B till $M_3(\mathbb{R})$ sådan att $[T]_B$ är en diagonalmatris. (2p) Egenrummet till $\lambda=1$ består av alla symmetriska matriser och egenrummet till $\lambda=-1$ består av alla antisymmetriska matriser. Basen är

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$