Math 534 Homework 1

Morgan Gribbins

January 23, 2020

1 Prove that $(a +_n b) +_n c = a +_n (b +_n c)$ for $a, b, c \in \{0, 1, ..., n-1\}$, thus finishing our proof from lecture that in the "numbers" definition of \mathbb{Z}/n , addition is associative.

Note that $[a] +_n [b] = [a + b]$. Therefore, $([a] +_n [b]) +_n [c] = ([a + b]) +_n [c] = [a + b] +_n [c] = [a + b + c]$. Additionally, $[a] +_n ([b] +_n [c]) = [a] +_n ([b + c]) = [a] +_n [b + c] = [a + b + c]$, so both sides are identical.

2 Show the following:

2.1 For $a, a', b, b' \in \mathbb{Z}$, if $a \cong a' \pmod{n}$ and $b \cong b' \pmod{n}$, then $ab \cong a'b' \pmod{n}$.

By the division algorithm, we can set $a = nq_1 + r_a$, $a' = nq_2 + r_a$, $b = nq_3 + r_b$, and $b' = nq_4 + r_b$. Therefore,

$$ab = (nq_1 + r_a)(nq_3 + r_b) = n^2q_1q_3 + nr_aq_3 + nr_bq_1 + r_ar_b$$
$$a'b' = (nq_2 + r_a)(nq_4 + r_b) = n^2q_2q_4 + nr_aq_4 + nr_bq_2 + r_ar_b,$$

which are congruent mod n as $r_a r_b \cong r_a r_b \pmod{n}$ trivially.

2.2 For $a, b, c \in \{1, ..., n-1\}$, show $a \cdot_n (b \cdot_n c) = (a \cdot_n b) \cdot_n c$.

By defining the binary operation $\cdot_n([a],[b]) = [a \cdot b]$, we get $[a] \cdot_n([b] \cdot_n[c]) = [a] \cdot_n([b \cdot c]) = [a] \cdot_n[b \cdot c] = [a \cdot b \cdot c]$ and $([a] \cdot_n[b]) \cdot_n[c] = ([a \cdot b]) \cdot_n c = [a \cdot b] \cdot_n c = [a \cdot b \cdot c]$, so the \cdot_n operation is associative.

2.3 For $a, c \in \mathbb{Z}$, if gcd(a, n) = 1 and gcd(c, n) = 1, then gcd(ac, n) = 1.

If gcd(a, n) = 1, then a and n are relatively prime, and if gcd(c, n) = 1, then c and n are relatively prime. The assertion gcd(ac, n) = 1 states that ac and n are relatively prime, which directly follows from the prior statements, by the fundamental theorem of arithmetic.

2.4 For $a, c \in \mathbb{Z}$, if gcd(a, n) = 1 and $a \cong c \pmod{n}$, then gcd(c, n) = 1.

The proposition that $a \cong c \pmod{n}$ implies that a and c vary by an integer multiple of n, i.e. a = kn + c for some integer k. Now, we have 1 = xa + yn for integers x,y by hypothesis. Substituting a = kn + c gives us 1 = x(kn + c) + yn = xc + (kx + y)n = 1, so gcd(c, n) = 1 because 1 is the smallest positive integer which can be written as a linear combination of c and n.

3 Let (G,\cdot) be a group. For $g\in G$ and $k\in\mathbb{N}$, define g^k as the result of combining g with itself k times using the binary operation of the group. Prove that $(g\cdot h)^2=g^2\cdot h^2$ if and only if $g\cdot h=h\cdot g$.

Note that $(g \cdot h)^2 = (g \cdot h) \cdot (g \cdot h) = g \cdot h \cdot g \cdot h$, by the associativity of a group.

Direct proof of (\Longrightarrow) :

Assume $(g \cdot h)^2 = g^2 \cdot h^2$. This implies that $g \cdot h \cdot g \cdot h = g \cdot g \cdot h \cdot h$. By applying g^{-1} on the left hand side of the equation and applying h^{-1} on the right hand side of the equation (by cancellation laws), we get

$$q^{-1} \cdot q \cdot h \cdot q \cdot h \cdot h^{-1} = q^{-1} \cdot q \cdot q \cdot h \cdot h \cdot h^{-1} = h \cdot q = q \cdot h.$$

Therefore, $(g \cdot h)^2 = g^2 \cdot h^2 \implies g \cdot h = h \cdot g$.

Direct proof of (\iff):

Assume $g \cdot h = h \cdot g$. Multiplying on the left of this equation by g and on the right by h gives $g \cdot g \cdot h \cdot h = g \cdot h \cdot g \cdot h$. The left side of this is equivalent to $g^2 \cdot h^2$, and the right side of this equation is equivalent to $(g \cdot h)^2$, which completes our proof via direct implication.

- 4 Let (G,\cdot) be a group.
- 4.1 Show that if $h \in G$ satisfies $h \cdot g = g$ for some $g \in G$, then h is the identity.

Assume that $h \cdot g = g$. Via cancellation laws, apply g^{-1} to the right of this equation to receive $h \cdot g \cdot g^{-1} = g \cdot g^{-1} = h \cdot e = e$, so h is the identity.

4.2 Fix $k \in G$. Show that if $h \cdot k = e$, then $h = k^{-1}$.

Assume that $h \cdot k = e$. Applying k^{-1} on both right sides gives $h \cdot k \cdot k^{-1} = e \cdot k^{-1} = h \cdot e = e \cdot k^{-1} = h = k^{-1}$, which is our conclusion.