Business Analytics Prescriptive Models

Based on

Business Analytics
With
Management Science
Models and Methods
by
Arben Asllani

CHAPTER 7

Business Analyticswith Shipment Models

Business Analytics with Management Science Models and Methods

Chapter Outline

- Chapter Objectives
- Prescriptive Analytics in Action: Danaos Corporation
- Introduction
- Transportation Models
- Example: National Xpress Corporation
- Sensitivity Analysis
- Transshipment Method
- Exploring Big Data with Shipment Model
- Wrap Up

Chapter Objectives

- Explain shipment models and their structure as special cases of mathematical programming
- Demonstrate the use of network diagrams for the transportation and transshipment problems
- Learn how to expand transshipment models by adding layers of warehouses or distribution centers
- Learn how to check for the feasibility of the transportation models before even attempting to formulate and solve the model
- Use Excel templates to set up and formulate transportation or transshipment models as linear programming models

Chapter Objectives

- Demonstrate the Solver solutions for the transportation and transshipment problems
- Discuss the benefits of using a network diagram to represent a transportation or transshipment model
- Perform sensitivity analysis and explain the meaning of the shadow price and reduced cost in the solution of transportation models
- Discuss practical recommendation when exploring big data with transportation and transshipment models

Prescriptive Analytics in Action

- Danaos Corporation is a leading international owner of containerships
 - Owns over 59 containerships
 - 345,000 20-foot standard containers
 - Global operations: chartering, crewing, and vessel management
- ORISMA (Operations Research in Ship Management)
 - Combines internal and external sources and information such as financial data, hydrodynamic models and weather forecasting
 - Led to optimum solutions at the operational, tactical and strategic level
 - Average net profit increase of 8%
 - Approximately \$1 million per vessel per year
 - The anticipated cost savings for the year 2012 for all ORISMA clients was estimated at \$500 million

Introduction

- Optimization of shipment
 - Shipment of goods from plants to warehouses, to distribution centers, or other destinations
 - Include organizational, intra-organizational, and inter-organizational shipments
 - Count for a significant part of costs
- Two types of shipment problems (both are LP models)
 - Transportation model (two layers of shipment: sources-destinations)
 - Transshipment model (more than two layers of shipment)
- Shipment models can be represented with network diagrams
 - Nodes (represent locations: cities, warehouses, machines)
 - Arcs (represent transfer: of goods, materials, people, funds)

General Formulation of the Transportation Model

Minimize
$$Z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

subject to:

$$\sum_{i=1}^{m} x_{ij} \ge D_j \text{ for all } j = 1, 2, 3, ..., n$$

$$\sum_{j=1}^{n} x_{ij} \le S_i \text{ for all } i = 1, 2, 3, ..., m$$

$$x_{ij} \ge 0$$

 x_{ij} = amount of units to transports from source i to destination j (decision variables)

m = number of sources

n = number of destinations

 c_{ij} = transportation cost per unit from source i to destination j

 D_j = amount of units demanded by destination j

 S_i = amount of units available at source i

Network Diagram of Transportation Models

- NXT is planning the next month shipments from its four production plans to its three warehouses
- Goal: To minimize the total shipping cost

Operational Data for the NXT Transportation Model

Plants	Warehouse 1	Warehouse 2	Warehouse 3	Monthly Production Capacity
Atlanta	\$60	\$35	\$ 65	75
Boston	\$ 55	\$30	\$70	85
Chicago	\$20	\$30	\$ 55	95
Denver	\$40	\$60	\$40	80
Monthly Demand	90	120	100	

Shipping cost per container, monthly demand and production

Diagram for the NXT Transportation Model

Solving Transportation Model with Solver (ch7_transportation_transshipment.xlsx)

d	A	В	С	D	E	F	G	Н
1	NXC Tra	ansportation Model						
2								
3	Parame	eters						
						Monthly Production		
4		From/To	Warehouse 1	Warehouse 2	Warehouse 3	Capacity		
5		Atlanta	60	35	65	75		
6		Boston	55	30	70	85		
7		Chicago	20	30	55	95		
8		Denver	40	60	40	80		
9		Monthly Demand	90	120	100			
10								
11	Decisio	ns						
12		From/To	Warehouse 1	Warehouse 2	Warehouse 3	Delivered		
13		Atlanta	0	0	0	0	=SUM(C13:	E13)
14		Boston	0	0	0	0	=SUM(C14:	E14)
15		Chicago	0	0	0	0	=SUM(C15:	E15)
16		Denver	0	0	0	0	=SUM(C16:	E16)
17		Received	0	0	0			
18			=SUM(C13:C16)	=SUM(D13:D16)	=SUM(E13:E16)		
19	Objecti	ve function						
20		0	=SUMPRODUCT(CS	:E8, C13:E16)				

Excel Template and Initial Calculations for the Transportation Mode

Solver Parameters for NXT Models

Final Solution for the NXT Transportation Model

1	Α	В	С	D	Е	F
1	NXC Tra	nsportation Model				
2						
3	Parame	ters				
						Monthly Production
4		From/To	Warehouse 1	Warehouse 2	Warehouse 3	Capacity
5		Atlanta	60	35	65	75
6		Boston	55	30	70	85
7		Chicago	20	30	55	95
8		Denver	40	60	40	80
9		Monthly Demand	90	120	100	
10						
11	Decision	ns				
12		From/To	Warehouse 1	Warehouse 2	Warehouse 3	Delivered
13		Atlanta	0	35	15	50
14		Boston	0	85	0	85
15		Chicago	90	0	5	9 5
16		Denver	0	0	80	80
17		Received	90	120	100	
18						
19	Objectiv	ve function				
20		10025				

Network Diagram for the Final Solution

Sensitivity Analysis: Changes in the Right-hand Side Values

- Transportation model has two types of constraints:
- 1. Demand Constraints
- 2. Supply Constraints

22	Constrair	its					
23			Final	Shadow	Constraint	Allowable	Allowable
24	Cell	Name	Value	Price	R.H. Side	Increase	Decrease
25	\$C\$17	Received Warehouse 1	90	30	90	5	15
26	\$D\$17	Received Warehouse 2	120	35	120	25	35
27	\$E\$17	Received Warehouse 3	100	65	100	25	15
28	\$F\$13	Atlanta Delivered	50	0	75	1E+30	25
29	\$F\$14	Boston Delivered	85	-5	85	35	25
30	\$F\$15	Chicago Delivered	95	-10	95	15	5
31	\$F\$16	Denver Delivered	80	-25	80	15	25

Sensitivity Analysis: Changes in the Decision Variables

6	Variable Cells
7	
8	Cell
9	\$C\$13 Atlan
10	\$D\$13 Atlan
11	\$E\$13 Atlan
12	\$C\$14 Bost
13	\$D\$14 Bost
14	\$E\$14 Bost
15	\$C\$15 Chic
16	\$D\$15 Chic
17	CEC1E Chic

18

19

20

allable	ceris	Final	Reduced	Objective	Allowable	Allowable
		FIIIdi	Reduced	Objective	Allowable	Allowable
Cell	Name	Value	Cost	Coefficient	Increase	Decrease
\$C\$13	Atlanta Warehouse 1	0	30	60	1E+30	30
\$D\$13	Atlanta Warehouse 2	35	0	35	5	5
\$E\$13	Atlanta Warehouse 3	15	0	65	10	5
\$C\$14	Boston Warehouse 1	0	30	55	1E+30	30
\$D\$14	Boston Warehouse 2	85	0	30	5	1E+30
\$E\$14	Boston Warehouse 3	0	10	70	1E+30	10
\$C\$15	Chicago Warehouse 1	90	0	20	30	30
\$D\$15	Chicago Warehouse 2	0	5	30	1E+30	5
\$E\$15	Chicago Warehouse 3	5	0	55	5	30
\$C\$16	Denver Warehouse 1	0	35	40	1E+30	35
\$D\$16	Denver Warehouse 2	0	50	60	1E+30	50
\$E\$16	Denver Warehouse 3	80	0	40	25	1E+30

The Transshipment Method

- Company ships products from its three plants to its six retail stores
 - Products are first distributed from three plants to the company's five warehouses
 - At warehouses products are stored according to potential retail destinations
 - Upon demand products are shipped to each of the six retail stores
 - Company produces 470 units per month (120 at plant 1,200 at plant 2, 150 at plant 3)
 - Monthly demand from the retail stores is 400 units (respectively 80, 40, 10, 20, 100, and 150)
- Minimize the shipment cost

Network Diagram for the Transshipment Problem

Shipment Costs Per Unite

From Plants to Warehouses

	Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly
From/To	1	2	3	4	5	Production
Plant 1	60	35	65	40	40	120
Plant 2	55	30	70	120	50	200
Plant 3	20	30	55	60	20	150
Total						470

From Warehouses to Retail Stores

	Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly
To/From	1	2	3	4	5	Demand
Retail store 1	30	70	70	10	10	80
Retail store 2	20	80	10	60	30	40
Retail store 3	80	40	30	100	30	10
Retail store 4	90	30	20	20	90	20
Retail store 5	10	40	70	60	50	100
Retail store 6	100	20	90	30	60	150
Total						400

General Formulation of the Transshipment Model

Minimize
$$Z = \sum_{i=1}^{m} \sum_{k=1}^{l} c_{ik} x_{ik} + \sum_{k=1}^{l} \sum_{j=1}^{n} c_{kj} y_{kj}$$

Subject to:

- $\sum_{k=1}^{l} y_{kj} \ge D_j$ for all j = 1, 2, 3, ..., n
- $\sum_{k=1}^{l} x_{ik} \le S_i$ for all i = 1, 2, 3, ..., m
- $\sum_{i=1}^{m} \sum_{k=1}^{l} x_{ik} \sum_{k=1}^{l} \sum_{j=1}^{n} y_{kj} = 0$
- $x_{ik} \ge 0$ and $y_{kj} \ge 0$

Solving Transportation Model with Solver(ch7_transportation_transshipment.xlsx)

1	Α	В	С	D	Е	F	G	Н	l J	K	L	M	N	0	Р	Q
3	Paran	neters: from Plan	ts to Warehou	ises					Decision variable	es:	Xik					
			Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly		Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly	Unused
4		From/To	1	2	3	4	5	Production	From/To	1	2	3	4	5	Production	Capacity
5		Plant 1	60	35	65	40	40	120	Plant 1	0	0	0	100	0	100	20
6		Plant 2	55	30	70	120	50	200	Plant 2	0	150	0	0	0	150	50
7		Plant 3	20	30	55	60	20	150	Plant 3	140	0	0	0	10	150	0
8		Total						470	Total	140	150	0	100	10		
9	Paran	neters: from Ware	ehouses to Re	tail Stores					Decision Variabl	es:	Ykj					
			Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly		Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly	Unmet
10		To/From	1	2	3	4	5	Demand	To/From	1	2	3	4	5	Demand	Demand
11		Retail store 1	30	70	70	10	10	80	Retail store 1	0	0	0	80	0	80	0
12		Retail store 2	20	80	10	60	30	40	Retail store 2	40	0	0	0	0	40	0
13		Retail store 3	80	40	30	100	30	10	Retail store 3	0	0	0	0	10	10	0
14		Retail store 4	90	30	20	20	90	20	Retail store 4	0	0	0	20	0	20	0
15		Retail store 5	10	40	70	60	50	100	Retail store 5	100	0	0	0	0	100	0
16		Retail store 6	100	20	90	30	60	150	Retail store 6	0	150	0	0	0	150	0
17		Total						400	Total	140	150	0	100	10		
18																
19 20									Objective function	on						
20									17800	=SUMPRODU	JCT(C5:G7, K5:	:O7)+SUMPRO	ODUCT(C11:G	16, K11:O16)		
	THE STREET															

Excel Template and Initial Solution for the Transshipment Model

Solver Parameters for the Transshipment Model

Final Solution for the NXC Transshipment Model

Decision variable	es:	Xik				
	Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly
From/To	1	2	3	4	5	Production
Plant 1	0	0	0	100	0	100
Plant 2	0	150	0	0	0	150
Plant 3	140	0	0	0	10	150
Total	140	150	0	100	10	
Decision Variabl	es:	Ykj				
	Warehouse	Warehouse	Warehouse	Warehouse	Warehouse	Monthly
To/From	1	2	3	4	5	Demand
Retail store 1	0	0	0	80	0	80
Retail store 2	40	0	0	0	0	40
Retail store 3	0	0	0	0	10	10
Retail store 4	0	0	0	20	0	20
Retail store 5	100	0	0	0	0	100
Retail store 6	0	150	0	0	0	150
Total	140	150	0	100	10	
Objective functi	on					
17800	=SUMPRODU	CT(C5:G7, K5	:O7)+SUMPR	ODUCT(C11:G	16, K11:O16)	

Network Diagram for the Final Solution of the Transshipment Model

Exploring Big Data with Shipment Models

- The availability of big data in the transportation industry
- Radio Frequency Identification (RFID) technology gives decision makers instant access to
 - Delivery times
 - Resource utilizations
 - Geographical coverages
 - Delivery statuses
- The implementation of advanced technologies in transportation and transshipment models allows decision makers to retrieve massive real-time information.

Wrap Up

- Two types of shipment problems:
 - Transportation
 - Transshipment
- Can be represented with network diagrams
- Can be formulated as a special case of LP models
- Requirement:
 - the amount of goods available generated by sources be greater than or equal to the demand for these goods
 - (specific situation) the amount of goods available generated
 by sources is exactly the same as the demand for these goods
 - then the logistics must assign shipments utilizing all products available and not exceeding market demand

Wrap Up

- In Transshipment Model:
 - Two sets of decision variables:
 - Number of units to be shipped from each source to each intermediary destination (warehouse, distribution center)
 - Number of units to be shipped from each intermediary destination to the final destination.
 - An equality constraint: balances the number of units entering an intermediary destination with the number of units leaving the same location
 - Value of the objective function: the sum of two or more scalar products of the costs of shipment with their respective decision variables.
- The solver methodology and sensitivity analysis are similar to the ones used in LP models.

End of The Lecture

Thank You