International Journal of Pure and Applied Mathematics

Volume 33 No. 1 2006, 7-21

2

FREQUENCY OF FIBONACCI NUMBERS MODULO 3^k THAT ARE CONGRUENT TO 8 (mod 27)

W.C. Shiu^{1 §}, C.I. Chu²

¹Department of Mathematics Hong Kong Baptist University

224 Waterloo Road, Kowloon Tong, HONG KONG, P.R. CHINA

e-mail: wcshiu@hkbu.edu.hk

²1340 Dunrobin Road

Naperville, IL 60540, USA

e-mail: cichu1340@yahoo.com

Abstract: In this paper, the frequency in $\mathbb{Z}_{\pi(3^k)}$ of some Fibonacci numbers that are congruent to 8 (mod 27) will be discussed, where $\pi(3^k)$ is the period of the Fibonacci sequence modulo 3^k . The frequency of 8 modulo 3^k is determined.

AMS Subject Classification: 11B39, 11B50, 11K36

Key Words: Fibonacci sequence, frequencies of Fibonacci numbers

1. Introduction

Let $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$, denote the sequence of classical Fibonacci numbers. We recall some useful formulas for F_n :

$$F_{-n} = (-1)^{n+1} F_n; (1.1)$$

$$F_{n+m} = F_{m-1}F_n + F_mF_{n+1}; (1.2)$$

$$F_{qn+r} = \sum_{i=0}^{q} {q \choose i} (F_n)^i (F_{n-1})^{q-i} F_{r+i}, \text{ for } q \ge 0.$$
 (1.3)

In this paper, we shall be interested in the cases q=3, r=-1 and q=3, r=0:

Received: September 29, 2006

© 2006 Academic Publications

[§]Correspondence author

$$F_{3n-1} = (F_{n-1})^3 + 3(F_n)^2 F_{n-1} + (F_n)^3; (1.4)$$

$$F_{3n} = F_n[3(F_{n-1})^2 + 3F_nF_{n-1} + 2(F_n)^2]. \tag{1.5}$$

It is well known that for $m \geq 2$, the sequence $\{F_n \pmod m\}_{n \in \mathbb{Z}}$ is a periodic sequence in \mathbb{Z}_m [2]. Let $\pi(m)$ be the period of this sequence. It was shown in [2] that, for $m = 3^k$ we have the following theorem.

Theorem 1.1. $\pi(3^k) = 8 \times 3^{k-1}$.

For $b \in \mathbb{Z}_{3^k}$, let $\nu(3^k, b)$ denote the number of frequency of b as a residue in one period of the sequence $\{F_n \bmod 3^k\}$. In [1], it was proved the following result.

Theorem 1.2. For $k \geq 3$, we have

$$\left\{ \begin{array}{ll} \nu(3^k,b) = 2 & \text{if } b \not\equiv 1,8,19,26 \pmod{27}; \\ \nu(3^k,b) = 8 & \text{if } b \equiv 1 \text{ or } 26 \pmod{27}. \end{array} \right.$$

It remains to consider $\nu(3^k, b)$ with $b \equiv 8$ or 19 (mod 27). Since $\nu(3^k, b) = \nu(3^k, 3^k - b)$ (see [1]), we only consider the case $b \equiv 8 \pmod{27}$ in this paper.

We shall prove that $\nu(3^k, 8) = 20$ for $k \geq 5$ and derive formulas for certain b such that $b \equiv 8 \pmod{27}$. Also we give a proof that the set of certain generalized Fibonacci numbers modulo 3^k is \mathbb{Z}_{3^k} .

2. $F_{6+24\ell} \mod 3^k$

In [1] we have a complete answer for $\nu(3^k,b)$, where $b \equiv F_n \pmod{27}$ and n satisfies $F_{n+3^{-1}\pi} \not\equiv F_n \pmod{3^k}$ or $F_{n+3^{-1}\pi} \equiv F_n \pmod{3^k}$ but $F_{n+3^{-2}\pi} \not\equiv F_n \pmod{3^k}$. In this paper we shall be interested in $\nu(3^k,b)$, where $b \equiv F_n \pmod{3^k}$ and n satisfies $F_{n+3^{-r}\pi} \equiv F_n \pmod{3^k}$ and $r \geq 2$.

Recall the following propositions in [1].

Proposition 2.1. Let $k \geq 2$. Then $F_{n+3^{-1}\pi(3^k)} \equiv F_n \pmod{3^k}$ if and only if $n \equiv 2, 6 \pmod{8}$.

Proposition 2.2. Let $k \geq 4$. Then $F_{n+3^{-2}\pi(3^k)} \equiv F_n \pmod{3^k}$ if and only if $n \equiv 6$, 18 (mod 24).

Thus to find a necessary and sufficient condition for n to satisfy $F_{n+3^{-r}\pi(3^k)} \equiv F_n \pmod{3^k}$ with $k \geq 2r \geq 6$ we need to consider $n \equiv 6$ or 18 (mod 24). Since if $n \equiv 18 \pmod{24}$, then $F_n \equiv 19 \pmod{27}$, so we only consider $n \equiv 6 \pmod{24}$. We shall use $n(\ell) = 6 + 24\ell$ to denote this n for non-negative integer ℓ .

Using (1.3) one can establish the following result.

Proposition 2.3. Let $F_{24} = 9a$ and $F_{23} = 1 + 9b$. Then for positive integer m, we have

$$F_{24m} = \sum_{j=1}^{m} A_j {m \choose j} 3^{2j}, \quad F_{24m-1} = 1 + \sum_{j=1}^{m} B_j {m \choose j} 3^{2j},$$

where $A_j = \sum_{i=1}^j {j \choose i} F_i a^i b^{j-i}$, $B_j = \sum_{i=0}^j F_{i-1} {j \choose i} a^i b^{j-i}$, a = 5152 and b = 3184.

By using (1.2) and Proposition 2.3, we have the following result.

Proposition 2.4. Let $\ell \geq 1$, a = 5152 and b = 3184. Then

$$F_{n(\ell)} = F_{6+24\ell} = 8 + \sum_{j=1}^{\ell} \left(\sum_{i=0}^{j} {j \choose i} F_{6+i} \ a^{i} b^{j-i} \right) {\ell \choose j} 3^{2j}.$$

After taking modulo 3^k we have the following result.

Corollary 2.5. Let $\ell \geq 1$. Then

.

$$F_{n(\ell)} \equiv 8 + \sum_{j=1}^{\min\{\ell, \lfloor \frac{k-1}{2} \rfloor\}} \left(\sum_{i=0}^{j} \binom{j}{i} F_{6+i} \ a^i b^{j-i} \right) \binom{\ell}{j} 3^{2j} \pmod{3^k}$$

For k=6 we get $F_{6+24}\equiv 3^5+8\pmod{3^6}$. Combining with Corollary 2.5 we get the following result.

Corollary 2.6. $F_{6+24\ell} \equiv 3^5\ell + 8\ell(\ell-1)3^4 + 8 \equiv 3^5\ell - 3^4\ell(\ell-1) + 8 \pmod{3^6}, \ \ell \ge 0.$

Remark 2.1. One can easily check that there are four different types of $F_{6+24\ell} \pmod{3^6}$, namely 8, 251, 332 and 494.

Corollary 2.7. There are at least 3^{k-2} of ℓ 's with $0 < n(\ell) < \pi(3^k)$ such that $F_{n(\ell)} \equiv 8 \pmod{27}$. In fact $F_{n(\ell)} \equiv 8 \pmod{81}$.

We recall the following lemma, see [1].

Lemma 2.8. Let $k \geq 1$. Suppose $1 \leq n \leq \pi(3^k)$ with $n \not\equiv 2,6 \pmod{8}$. If $F_n \equiv b \pmod{3^k}$, then there exists n' in $\{n, n+\pi(3^k), n+2\pi(3^k)\}$ such that $F_{n'} \equiv b \pmod{3^{k+1}}$. Moreover, the sets $\{F_n, F_{n+\pi(3^k)}, F_{n+2\pi(3^k)}\}$ and $\{b, b+3^k, b+2\times 3^k\}$ are equal in $\mathbb{Z}_{3^{k+1}}$.

Theorem 2.9. If $k \geq 3$ and $0 \leq b \leq 3^k - 1$ is such that $b \equiv 8 \pmod{27}$, then there are at least two distinct odd numbers n, n' with $1 \leq n, n' \leq \pi(3^k)$ with $F_n \equiv F_{n'} \equiv b \pmod{3^k}$.

Proof. Write b uniquely as $8 + 3^3 a_3 + 3^4 a_4 + \cdots + 3^{k-1} a_{k-1}$, where $0 \le a_i \le 2$.

Since $F_{11} \equiv 8 \pmod{3^3}$, by Lemma 2.8, $\{8, 8+3^3, 8+2\times3^3\}$ and $\{F_{11}, F_{11+\pi(3^3)}, F_{11+2\pi(3^3)}\}$ are equal in \mathbb{Z}_{3^4} . Thus we can choose $n_1 \in \{11, 11+\pi(3^3), 11+2\pi(3^3)\}$ which is clearly odd such that $1 \leq n_1 \leq \pi(3^4)$ and $b_1 = 8+3^3a_3 \equiv F_{n_1} \pmod{3^4}$. Then apply Lemma 2.8 to $\{b_1, b_1+3^4, b_1+2\times3^4\}$ to find n_2 which is odd and $1 \leq n_2 \leq \pi(3^5)$ so that $b_2 = b_1+3^4a_4 \equiv F_{n_2} \pmod{3^5}$. Continuing in this fashion, we can find odd n such that $1 \leq n \leq \pi(3^k)$ and $F_n \equiv b \pmod{3^k}$. Take $n' = \pi(3^k) - n$. Clearly n' is odd and $1 \leq n' \leq \pi(3^k)$. Hence $F_{n'} = F_{\pi(3^k)-n} \equiv F_{-n} \equiv (-1)^{n+1}F_n \equiv F_n \pmod{3^k}$.

Remark 2.2. We shall see later that there are exactly two such odd integers n and n'.

For each $b, 1 \le b \le 27$, define $\omega(3^k, b) = |\{n \mid F_n \equiv b \pmod{27}, 1 \le n \le \pi(3^k)\}|$. We have in [1] the following result.

Lemma 2.10. For $k \ge 3$, $\omega(3^k, 8) = 5 \times 3^{k-3}$.

Theorem 2.11. For $k \geq 3$, there are exactly 3^{k-2} even n's in $[0, \pi(3^k))$ such that $F_n \equiv 8 \pmod{27}$. Indeed $F_n \equiv 8 \pmod{81}$. Moreover, such even number n must be of the form $6 + 24\ell$, $0 \leq \ell \leq 3^{k-2} - 1$

Proof. Since there are exactly two odd n's, namely, 11 and 61 in $\mathbb{Z}_{\pi(3^3)}$ such that $F_n \equiv 8 \pmod{27}$. Thus there are at least $2 \times 3^{k-3}$ odd n's in $\mathbb{Z}_{\pi(3^k)}$ such that $F_n \equiv 8 \pmod{27}$. Also by Corollary 2.7, there are at least 3^{k-2} even n's of the form $6+24\ell$ such that $F_n \equiv 8 \pmod{27}$. Hence by the definition of $\omega(3^k,8)$ and Lemma 2.10 we have $5 \times 3^{k-3} = \omega(3^k,8) \ge 2 \times 3^{k-3} + 3^{k-2} = 5 \times 3^{k-3}$. Hence we have exactly $2 \times 3^{k-2}$ odd n's and exactly 3^{k-2} even n's of the form $6+24\ell$ in $\mathbb{Z}_{\pi(3^k)}$ with

$$F_n \equiv 8 \pmod{27}$$
.

Those $2 \times 3^{k-2}$ odd n's with $F_n \equiv 8 \pmod{27}$ in the proof above are those described in the proof of Theorem 2.9. Since those odd n's come from n = 11 or 61 in $\mathbb{Z}_{\pi(3^3)}$, we have the corollary.

Corollary 2.12. For $k \geq 3$, $b \equiv 8 \pmod{27}$ there are exactly two distinct odd numbers n, n' such that $1 \leq n, n' \leq \pi(3^k)$ with the property that $F_n \equiv F_{n'} \equiv b \pmod{3^k}$.

3. Definition of a_r and b_r

Since $3^{-r}\pi(3^k) = \pi(3^{k-r})$ if k > r, we have therefore

$$F_{3^{-r}\pi(3^k)} \equiv 0 \pmod{3^{k-r}}, \text{ and } F_{3^{-r}\pi(3^k)-1} \equiv 1 \pmod{3^{k-r}}.$$
 (3.1)

Using mathematical induction we have the following result.

Theorem 3.1. For $k \geq 2r$, $F_{3-r_{\pi}(3^k)-1} \equiv 3^{k-r}b_r + 1 \pmod{3^k}$ and $F_{3^{-r}\pi(3^k)} \equiv 3^{k-r}a_r \pmod{3^k}$, where $a_r, b_r \in \mathbb{Z}_{3^r}$ depend only on r.

We shall fix a_r and b_r as integers in the range $[0, 3^r - 1]$. It was shown in [1] that $a_1 = 1$ and $b_1 = 1$; $a_2 = 4$ and $b_2 = 7$.

Proposition 3.2. For $r \geq 2$, we have

$$F_{\pi(3^r)} = \sum_{j=1}^{3^{r-2}} A_j \binom{3^{r-2}}{j} 3^{2j}, \quad F_{\pi(3^r)-1} = 1 + \sum_{j=1}^{3^{r-2}} B_j \binom{3^{r-2}}{j} 3^{2j};$$

and

£

$$F_{\pi(3^r)} \equiv \sum_{j=1}^{r-1} A_j {3^{r-2} \choose j} 3^{2j} \pmod{3^{2r}},$$

$$F_{\pi(3^r)-1} \equiv 1 + \sum_{j=1}^{r-1} B_j {3^{r-2} \choose j} 3^{2j} \pmod{3^{2r}}.$$

This follows from Proposition 2.3 and the fact that $\pi(3^r)$ = Proof. $24 \times 3^{r-2}$.

Lemma 3.3. Let $r \geq 2$. For $j \geq 1$, $\binom{3^{r-2}}{i} 3^{2j}$ is divisible by 3^r .

Proof. Note that $\binom{3^{r-2}}{j} = \frac{3^{r-2}}{j} \binom{3^{r-2}-1}{j-1}$. If 3 and j are relatively prime,

then $\binom{3^{r-2}}{j}$ has 3^{r-2} as a factor. Hence $\binom{3^{r-2}}{j}3^{2j}$ is divisible by 3^r . Next, if $j=3^mc$ for some positive integers c and m with g.c.d.(3,c)=1, then one can show that $2c\cdot 3^m-2-m\geq 0$. Thus $\binom{3^{r-2}}{j}3^{2j}=\frac{3^{r-2+2j}}{j}\binom{3^{r-2}-1}{j-1}$ has 3^r as a factor.

To compute a_r and b_r for $r \geq 3$ we can simply take k = 2r and then calculate

$$a_r \equiv 3^{-r} F_{3^{-r}\pi(3^{2r})} \pmod{3^r}$$
 and $b_r \equiv 3^{-r} \left(F_{3^{-r}\pi(3^{2r})-1} - 1 \right) \pmod{3^r}$.

Proposition 3.4. For $r \geq 3$, we have

$$a_r \equiv \sum_{j=1}^{r-1} \frac{A_j}{j} {3^{r-2} - 1 \choose j-1} 3^{2j-2} \pmod{3^r},$$

$$b_r \equiv \sum_{j=1}^{r-1} \frac{B_j}{j} {3^{r-2} - 1 \choose j-1} 3^{2j-2} \pmod{3^r},$$

where A_j and B_j are as defined in Proposition 2.3.

Proof. These follow from Lemma 3.3 and the fact that if $r \geq 3$, then $3^{r-2} > r$.

Remark 3.1. We have $a_r \equiv A_1 \pmod{3^2}$. We can directly compute $A_1 \equiv 4 \pmod{9}$. So $a_r \equiv 4 \pmod{9}$ for $r \geq 2$. Similarly, one can show that $b_r \equiv 7 \pmod{9}$ for $r \geq 2$.

More generally for $s, \lambda \in \mathbb{N}$, since $F_{\lambda \pi(3^s)} \equiv 0 \pmod{3^s}$ and $F_{\lambda \pi(3^s)-1} \equiv 1 \pmod{3^s}$, we let

$$F_{\lambda\pi(3^s)} = 3^s a_{s,\lambda} \text{ and } F_{\lambda\pi(3^s)-1} = 1 + 3^s b_{s,\lambda}.$$

Applying equations (1.4) and (1.5), we have

$$a_{r,\lambda} = a_{r-1,\lambda} + 3^{r-1} (2a_{r-1,\lambda}b_{r-1,\lambda} + a_{r-1,\lambda}^2) + 2 \times 3^{2r-3} a_{r-1,\lambda}^3 + 3^{2r-2} (a_{r-1,\lambda}b_{r-1,\lambda}^2 + a_{r-1,\lambda}^2 b_{r-1,\lambda});$$
(3.2)

$$b_{r,\lambda} = b_{r-1,\lambda} + 3^{r-1} (a_{r-1,\lambda}^2 + b_{r-1,\lambda}^2) + 3^{2r-3} (a_{r-1,\lambda}^3 + b_{r-1,\lambda}^3) + 3^{2r-2} a_{r-1,\lambda}^2 b_{r-1,\lambda}.$$
(3.3)

For $r \geq 3$, we have

$$a_{r,\lambda} \equiv a_{r-1,\lambda} + 3^{r-1} (2a_{r-1,\lambda}b_{r-1,\lambda} + a_{r-1,\lambda}^2) \pmod{3^r};$$
 (3.4)

$$b_{r,\lambda} \equiv b_{r-1,\lambda} + 3^{r-1} (a_{r-1,\lambda}^2 + b_{r-1,\lambda}^2) \pmod{3^r}.$$
 (3.5)

Lemma 3.5. For $r \geq 1$ and $\lambda \in \mathbb{N}$, we have $a_{r,\lambda} \equiv \lambda a_r \pmod{3^r}$ and $b_{r,\lambda} \equiv \lambda b_r \pmod{3^r}$.

Proof. Suppose that $k \geq 2r$. For convenience let s = k - r. From Theorem 3.1, we have $F_{\pi(3^s)} \equiv 3^s a_r \pmod{3^k}$ and $F_{\pi(3^s)-1} \equiv 1 + 3^s b_r \pmod{3^k}$. From (1.3) we have

$$\begin{split} F_{\lambda\pi(3^s)} &= \sum_{i=0}^{\lambda} \binom{\lambda}{i} (F_{\pi(3^s)})^i (F_{\pi(3^s)-1})^{\lambda-i} F_i \\ &= \sum_{i=1}^{\lambda} \binom{\lambda}{i} (F_{\pi(3^s)})^i (F_{\pi(3^s)-1})^{\lambda-i} F_i. \end{split}$$

In particular when k = 2r, we have

$$3^{r} a_{r,\lambda} = F_{\lambda \pi(3^{r})} \equiv \sum_{i=1}^{\lambda} {\lambda \choose i} (3^{r} a_{r})^{i} (1 + 3^{r} b_{r})^{\lambda - i} F_{i} \pmod{3^{2r}}.$$

Hence we have $a_{r,\lambda} \equiv \lambda a_r (1 + 3^r b_r)^{\lambda - 1} F_1 \equiv \lambda a_r \pmod{3^r}$.

Similarly from $1 + 3^r b_{r,\lambda} = F_{\lambda\pi(3^r)-1} \equiv (1 + 3^r b_r)^{\lambda} F_{-1} \pmod{3^{2r}}$, we get $b_{r,\lambda} \equiv \lambda b_r \pmod{3^r}$.

Lemma 3.6. For $r \geq 3$ and $\lambda \in \mathbb{N}$, we have $a_{r-1,\lambda} \equiv \lambda a_r \pmod{3^r}$ and $b_{r-1,\lambda} \equiv \lambda b_r + \lambda^2 3^{r-1} \pmod{3^r}$.

Proof. From Remark 3.1 we have $a_{r-1} \equiv 1 \pmod{3}$ and $b_{r-1} \equiv 1 \pmod{3}$. By Lemma 3.5 we have $a_{r-1,\lambda} \equiv \lambda a_{r-1} \pmod{3^{r-1}}$ and $b_{r-1,\lambda} \equiv \lambda b_{r-1} \pmod{3^{r-1}}$. By (3.4) and (3.5) we have $a_{r,\lambda} \equiv a_{r-1,\lambda} \pmod{3^r}$ and $b_{r,\lambda} \equiv b_{r-1,\lambda} + 2\lambda^2 \times 3^{r-1} \pmod{3^r}$.

Remark 3.2. By putting $\lambda=1$ into Lemma 3.5 and Lemma 3.6 we get $a_r\equiv a_{r-1}\pmod{3^{r-1}}$ and $b_r\equiv b_{r-1}\pmod{3^{r-1}}$ for $r\geq 3$. One may check that both congruences hold for r=2. Hence $a_r\equiv a_s\pmod{3^s}$ and $b_r\equiv b_s\pmod{3^s}$ for $r\geq s\geq 1$. Also by equations (3.2) and (3.3) we get $a_{r,\lambda}\equiv a_{s,\lambda}\pmod{3^s}$ and $b_{r,\lambda}\equiv b_{s,\lambda}\pmod{3^s}$ for $r\geq s\geq 1$ and $\lambda\in\mathbb{N}$.

4. Necessary and Sufficient Condition

Lemma 4.1. For $k \geq 2r$ and $\lambda \geq 0$, we have $F_{n+3^{-r}\lambda\pi} \equiv F_n + 3^{k-r}\lambda(b_rF_n + a_rF_{n+1}) \pmod{3^k}$. Here $\pi = \pi(3^k)$ and a_r and b_r are defined in Theorem 3.1.

Proof. From (1.2) we have

$$F_{n+\lambda\pi(3^s)} = F_n F_{\lambda\pi(3^s)-1} + F_{n+1} F_{\lambda\pi(3^s)} = F_n + 3^s (b_{s,\lambda} F_n + a_{s,\lambda} F_{n+1}).$$
 (4.1)

By putting s = k - r, we have

$$F_{n+3^{-r}\lambda\pi} = F_{n+\lambda\pi(3^{k-r})} = F_n + 3^{k-r}(b_{k-r,\lambda}F_n + a_{k-r,\lambda}F_{n+1}).$$

Since $k-r \geq r$, from Remark 3.2 we have $b_{k-r,\lambda}F_n + a_{k-r,\lambda}F_{n+1} \equiv b_{r,\lambda}F_n + a_{r,\lambda}F_{n+1} \pmod{3^r}$. By Lemma 3.5 we have $F_{n+3^{-r}\lambda\pi} \equiv F_n + 3^{k-r}\lambda(b_rF_n + a_rF_{n+1}) \pmod{3^k}$.

Corollary 4.2. For $k \geq 2r$, $F_{n+3^{-r}\pi(3^k)} \equiv F_n \pmod{3^k}$ if and only if

$$b_r F_n + a_r F_{n+1} \equiv 0 \pmod{3^r}.$$
 (4.2)_r

Corollary 4.3. For $k \geq 2r$, $F_{n+3^{-r}\pi(3^k)} \equiv F_n \pmod{3^k}$ if and only if $F_{n+3^{-r}\ell\pi(3^k)} \equiv F_n \pmod{3^k}$ for any integer ℓ .

Proof. For $\ell \geq 0$, it is obvious. For $\ell < 0$, the corollary follows from $F_{n-3^{-r}\pi(3^k)} \equiv F_{n+3^{-r}(3^r-1)\pi(3^k)} \pmod{3^k}$.

Proposition 4.4. For $k \geq 2r \geq 6$, suppose $n = n(\ell)$ satisfies $(4.2)_r$. If $F_n \equiv F_{n+\lambda\pi(3^s)} \pmod{3^k}$ for $s \leq r-1$, then $\lambda \equiv 0 \pmod{3}$. Moreover, when s = r-1 and k = 2r, the converse holds.

Proof. From (4.1) and Lemma 3.6 we have

$$F_{n+\lambda\pi(3^s)} - F_n = 3^s (b_{s,\lambda} F_n + a_{s,\lambda} F_{n+1})$$

$$\equiv 3^s [\lambda(b_{s+1} F_n + a_{s+1} F_{n+1}) + \lambda^2 3^s F_n] \pmod{3^{2s+1}}.$$

If $F_n \equiv F_{n+\lambda\pi(3^s)} \pmod{3^k}$, then $F_n \equiv F_{n+\lambda\pi(3^s)} \pmod{3^{2s+1}}$. Since n satisfies $(4.2)_r$, by Remark 3.2 n satisfies $(4.2)_{s+1}$ as well. So we have $\lambda^2 F_n \equiv 0 \pmod{3}$. Since $n = n(\ell)$ is not divisible by 4, $F_n \not\equiv 0 \pmod{3}$. We have $\lambda^2 \equiv 0 \pmod{3}$. Hence $\lambda \equiv 0 \pmod{3}$.

When s = r - 1, the converse is clear.

By the same argument used in the above proof we have the following proposition.

Proposition 4.5. For $k \geq 2r + 1 \geq 7$, suppose $n = n(\ell)$ satisfies $(4.2)_{r+1}$. If $F_n \equiv F_{n+\lambda\pi(3^s)} \pmod{3^k}$ for $s \leq r$, then $\lambda \equiv 0 \pmod{3}$. Moreover, when s = r and k = 2r + 1, the converse holds.

5. Existence of Solutions of $(4.2)_r$

In this section, we shall prove that $(4.2)_r$ has solutions. For a, b positive and 3/g.c.d.(a, b), we define the so-called generalized Fibonacci sequence $G_n = bF_n + aF_{n+1}$, $n = 0, 1, 2, \ldots$ It satisfies $G_{n+2} = G_{n+1} + G_n$ with initial values $G_0 = a$ and $G_1 = a + b$. Then it is easy to establish the following properties.

Proposition 5.1.

- 1. $\{G_n \pmod{3^k}\}$ is periodic with period $\pi(3^k)$.
- 2. $G_{n+3^{-1}\pi(3^k)\lambda} \equiv 3^{k-1}\lambda G_{n+2} + G_n \pmod{3^k}$, for $\lambda \ge 1$.
- 3. There exist three distinct $n_1, n_2, n_3 \in \mathbb{Z}_8$ such that $G_{n_1} \equiv 0 \pmod{3}$, $G_{n_2} \equiv 1 \pmod{3}$, $G_{n_3} \equiv 2 \pmod{3}$ and $G_{n_i+2} \not\equiv 0 \pmod{3}$ for i = 1, 2, 3.

Proof. (1) and (2) follow from the definition of G_n and Lemma 4.1. For (3), observe that for all ordered pairs $(a,b) \in \mathbb{Z}_3^2 \setminus \{(0,0)\}$ the sequence $\{G_n \pmod{3}\}_{n \in \mathbb{Z}} = \{0,1,1,2,0,2,2,1,\dots\}$. Hence we can choose n_i , i=1,2,3, satisfying the requirements.

Theorem 5.2. For $k \geq 1$, the set of all the generalized Fibonacci numbers modulo 3^k is \mathbb{Z}_{3^k} . Here we assume that $3 \nmid g.c.d.(a,b)$.

Proof. By Proposition 5.1, there are three distinct $n_i \in \mathbb{Z}_8$ so that $G_{n_i+2} \not\equiv 0 \pmod 3$, i=1,2,3. Let $A=\{G_s \pmod 3^k \mid s\equiv n_i \pmod 8\}$, $1\leq i\leq 3,\ 0\leq s<\pi(3^k)\}$. We want to show that $A=\mathbb{Z}_{3^k}$. Since A has at most $3\times\frac{\pi(3^k)}{8}=3^k$ elements, we only need to show that A has 3^k distinct elements.

It suffices to show that $G_s \not\equiv G_t \pmod{3^k}$ for all $s \not\equiv t \pmod{\pi(3^k)}$ and $s \pmod{8}, t \pmod{8} \in \{n_1, n_2, n_3\}$. We shall prove this by induction on k.

The assertion clearly holds for k=1. Assume the assertion holds for k-1 with k>1. Let s,t be taken from $\{n_1,n_2,n_3\}$ (mod 8) with $s\not\equiv t\pmod{\pi(3^k)}$. If $s\not\equiv t\pmod{\pi(3^{k-1})}$, then by the induction hypothesis, $G_s\not\equiv G_t\pmod{3^{k-1}}$, hence $G_s\not\equiv G_t\pmod{3^k}$.

Thus we assume that $s \equiv t \pmod{\pi(3^{k-1})}$ but $s \not\equiv t \pmod{\pi(3^k)}$. Hence $s = t + \lambda \pi(3^{k-1})$ with $\lambda = 1$ or 2. Applying Lemma 4.1 and the definition of G_n we have

$$G_{t+\lambda\pi(3^{k-1})} = G_{t+\frac{\lambda\pi(3^k)}{2}} \equiv 3^{k-1}\lambda G_{t+2} + G_t \pmod{3^k}.$$

By the choice of t we have that $G_{t+2} \not\equiv 0 \pmod{3}$, hence $G_s = G_{t+\lambda\pi(3^{k-1})} \not\equiv G_t \pmod{3^k}$. This completes the induction.

Corollary 5.3. For $k \geq 1$, the set of all Fibonacci numbers modulo 3^k is \mathbb{Z}_{3^k} .

Corollary 5.4. The equation $(4.2)_r$, i.e., $b_r F_n + a_r F_{n+1} \equiv 0 \pmod{3^r}$, has solutions $n \in \mathbb{Z}_{\pi(3^r)}$ for $r \geq 1$.

Later we shall prove that there are exactly two $n \in \mathbb{Z}_{3r}$ satisfying the equation $(4.2)_r$.

Consider a generalized Fibonacci sequence $G_n = bF_n + aF_{n+1}$ for $3 \not\mid g.c.d.(a,b)$. By Proposition 5.1 (2) we get $G_{n+\frac{\pi}{3}} \equiv G_n + 3^{k-1}(ax_n + by_n)$ (mod 3^k), where $\pi = \pi(3^k)$, $n \in \mathbb{Z}_8$, $0 \le x_n, y_n \le 2$ with $(x_n, y_n) \ne (0, 0)$. Moreover, x_n and y_n depend only on n mod 8. It is easy to check that

$${ax_n + by_n}_{n=0}^7 \equiv {2a + b, 2b, 2a, 2a + 2b, a + 2b, b, a, a + b} \pmod{3}$$

It is just a shift of the sequence $\{F_n\}_{n\geq 0} \equiv \{0,1,1,2,0,2,2,1,\dots\} \pmod 3$. Thus, for $n\in\mathbb{Z}_8$, there are two n's such that $G_{n+\frac{\pi}{3}}\equiv G_n\pmod {3^k}$; three n's such that $G_{n+\frac{\pi}{3}}\equiv G_n+3^{k-1}\pmod {3^k}$; and three n's that satisfy $G_{n+\frac{\pi}{3}}\equiv G_n+2\times 3^{k-1}\pmod {3^k}$.

Theorem 5.5. Let $G_n = 7F_n + 4F_{n+1}$ and $b \not\equiv 4, 5 \pmod{9}$. For $k \geq 2$, there are only two n's in $\mathbb{Z}_{\pi(3^k)}$ such that $G_n \equiv b \pmod{3^k}$.

Proof. Since $\{G_n\}_{n\geq 0} \equiv \{4, 2, 6, 8, 5, 4, 0, 4, 4, 8, 3, 2, 5, 7, 3, 1, 4, 5, 0, 5, 5, 1, 6, 7; 4, 2, ...\}$ (mod 9), the theorem is true for k=2.

By the above discussion, $G_{n+\frac{\pi}{3}} \equiv G_n \pmod{3^k}$ only if $n \equiv 0$ or 4 (mod 8). For these cases, $G_n \equiv 4$ or 5 (mod 9).

Using the same approach that leads to the proofs of Theorems 4.6 and 4.7 in [1], replacing the Fibonacci sequence $\{F_n\}$ by $\{G_n\}$ we get the assertion.

Corollary 5.6. For $r \geq 1$, let $G_n(r) = b_r F_n + a_r F_{n+1}$, where a_r and b_r are defined in Theorem 3.1. Then $G_n(r) \equiv 0 \pmod{3^k}$ has exactly two solutions $n \in \mathbb{Z}_{\pi(3^k)}$ for $k \geq 1$.

Proof. For r=1, $G_n(1)=b_1F_n+a_1F_{n+1}=F_{n+2}$. From Theorem 1.2, $\nu(3^k,b)=2$ for $b\equiv 0\pmod 3$, for $k\geq 1$. Hence the corollary is true in this case.

For $r \geq 2$, from Remark 3.1 we have $a_r \equiv 4$ and $b_r \equiv 7 \pmod{9}$. If k = 1, then $G_n(r) \equiv F_{n+2} \pmod{3}$ and corollary holds. For $k \geq 2$, the corollary follows from Theorem 5.5.

Remark 5.1. One can easily see that $G_6 \equiv G_{18} \equiv 0 \pmod{9}$. Thus, $G_n \equiv 0 \pmod{3^k}$ only if $n = 6 + 24\ell$ or $18 + 24\ell$ for some ℓ . Thus there is a unique n in \mathbb{Z}_{3^r} of the form $6 + 24\ell$ satisfying equation $(4.2)_r$. In the following we shall find the unique value of $\ell_r \in [0, 3^{r-2})$ such that $n(\ell_r)$ satisfies the equation $(4.2)_r$.

6. Formula of ℓ_r

Let $k \geq 4$. For each $0 \leq \ell < 3^{k-4}$ and $0 \leq i \leq 8$, we note that $n(\ell + 3^{k-4}i) = 6 + 24(\ell + 3^{k-4}i) = n(\ell) + 3^{-2}\pi(3^k)i$. So by Proposition 2.2 $F_{n(\ell + 3^{k-4}i)} \equiv F_{n(\ell)} \pmod{3^k}$.

Now we put all those ℓ such that $0 \le \ell < 3^{k-2}$ in the array:

Each of the nine elements in each column when taking $n(\ell)$ will all yield the same F-value (mod 3^k). For abbreviation, we shall say ℓ yields $F_{n(\ell)}$ value. Therefore, we only need to consider those ℓ such that $0 \le \ell \le 3^{k-4} - 1$.

Proposition 6.1. Suppose k > 4.

- 1. Suppose the integer $\ell \in [0, \frac{1}{2}(3^{k-4}-1)]$. Then there exists an integer $\bar{\ell} \in [0, \frac{1}{2}(3^{k-4}-1)]$ with $\ell + \bar{\ell} = \frac{1}{2}(3^{k-4}-1)$ such that $F_{n(\ell)} \equiv F_{n(\bar{\ell})} \pmod{3^k}$. Moreover, $\ell \neq \bar{\ell}$ unless k is even and $\ell = \frac{1}{4}(3^{k-4}-1)$.
- 2. If the integer $\ell \in (\frac{1}{2}(3^{k-4}-1), 3^{k-4})$, then there exists an integer $\bar{\ell} \in (\frac{1}{2}(3^{k-4}-1), 3^{k-4})$ with $\ell + \bar{\ell} = \frac{1}{2}(3^{k-3}-1)$ such that $F_{n(\ell)} \equiv F_{n(\bar{\ell})} \pmod{3^k}$. Moreover, $\ell \neq \bar{\ell}$ unless k is odd and $\ell = \frac{1}{4}(3^{k-3}-1)$.

Proof. Let $\pi = \pi(3^k)$. By (1.2) we note that

$$F_{\frac{\pi}{2}-m} = F_{\frac{\pi}{2}-1}F_{-m} + F_{\frac{\pi}{2}}F_{-m+1} \equiv -F_{-m} \equiv (-1)^{m+2}F_m$$
$$\equiv (-1)^m F_m \pmod{3^k}.$$

Thus m is even if and only if $F_{\frac{\pi}{2}-m} \equiv F_m \pmod{3^k}$.

- 1. Suppose $\ell \in [0, \frac{1}{2}(3^{k-4} 1)]$. Put $\overline{\ell} = \frac{1}{2}(3^{k-4} 1) \ell$. Then it is straightforward to verify that $n(\overline{\ell}) + 4 \times \frac{\pi}{3^2} = \frac{\pi}{2} n(\ell)$. Since $n(\ell)$ is even, $F_{n(\overline{\ell})} \equiv F_{n(\ell)} \pmod{3^k}$.
- 2. Suppose $\ell \in (\frac{1}{2}(3^{k-4}-1), 3^{k-4})$. Put $\overline{\ell} = \frac{1}{2}(3^{k-3}-1) \ell$. Then we have $n(\overline{\ell}) + \frac{\pi}{3} = \frac{\pi}{2} n(\ell)$. Hence $F_{n(\overline{\ell})} \equiv F_{n(\ell)} \pmod{3^k}$.

The integer $\bar{\ell}$ defined in Proposition 6.1 is called the *conjugate* of ℓ .

Proposition 6.1 implies that integers $\ell \in [0, 3^{k-4})$ are in pairs in the above sense except for the special one $\frac{1}{4}(3^{k-4}-1)$ if k is even or $\frac{1}{4}(3^{k-3}-1)$ if k is odd.

Note that if $n(\ell)$ is a solution of $(4.2)_r$, then since $n(\ell+3^{k-r-2})=n(\ell)+\frac{\pi(3^k)}{3r}$ by Corollary 4.2, $n(\ell+3^{k-r-2})$ is also a solution of $(4.2)_r$.

Suppose k = 2r and $r \ge 3$. Let $l_i = \ell_r + 3^{r-2}i$, $0 \le i < 3^{r-2}$, where $\ell_r \in [0, 3^{r-2})$ is such that $n(\ell_r) = 6 + 24\ell_r$ is the unique solution of $(4.2)_r$ in $\mathbb{Z}_{\pi(3^r)}$. Then by Corollary 4.3 $\{l_0, l_1, \ldots, l_{3^{r-2}-1}\}$ is a sequence in $[0, 3^{2r-4})$ such that $F_{n(l_i)}$ all have the same value modulo 3^{2r} . By the uniqueness of the solution (in $\mathbb{Z}_{\pi(3^r)}$) of $(4.2)_r$, these $n(l_i)$'s constitute all the solutions of $(4.2)_r$ in $[0, 3^{2r-4})$.

Let ℓ be one of the l_i 's and $\bar{\ell}$ be its conjugate. Suppose $\ell \in [0, \frac{1}{2}(3^{k-4} - 1)]$. By the proof of Proposition 6.1, Proposition 2.1, Proposition 2.2 and Corollary 4.3 we have

$$\begin{split} F_{n(\overline{\ell}) + \frac{\pi}{3^r}} &= F_{-n(\ell) + \frac{\pi}{2} - 4 \times \frac{\pi}{3^2} + \frac{\pi}{3^r}} \equiv F_{\frac{\pi}{2} - (n(\ell) - \frac{\pi}{3^r})} \equiv F_{n(\ell) - \frac{\pi}{3^r}} \\ &\equiv F_{n(\ell)} \equiv F_{n(\overline{\ell})} \pmod{3^k}. \end{split}$$

We have the same result if $\ell \in (\frac{1}{2}(3^{k-4}-1), 3^{k-4})$. Hence $n(\overline{\ell})$ is also a solution of equation $(4.2)_r$ in $[0, 3^{2r-4})$.

So, we have $\{l_i \mid 0 \le i \le 3^{r-2} - 1\} = \{\overline{l_i} \mid 0 \le i \le 3^{r-2} - 1\}$. Thus $\min\{\overline{l_i} \mid 0 \le i \le 3^{r-2} - 1\} = \ell_r$. Let $m = \lfloor \frac{1}{3^{r-2}} (\frac{1}{2}(3^{2r-4} - 1) - \ell_r) \rfloor$. By Proposition 6.1, $\overline{l_m} = \min\{\overline{l_i} \mid 0 \le i \le 3^{r-2} - 1\}$. Since $0 \le \ell_r \le 3^{r-2} - 1$, $\frac{1}{2}(3^{r-2} - 1) - 1 \le m \le \frac{1}{2}(3^{r-2} - 1)$. Suppose $m = \frac{1}{2}(3^{r-2} - 1)$. Since $\ell_r = \overline{l_m} = \frac{1}{2}(3^{2r-4} - 1) - \ell_r - 3^{r-2}m$,

Suppose $m = \frac{1}{2}(3^{r-2} - 1)$. Since $\ell_r = \overline{l_m} = \frac{1}{2}(3^{2r-4} - 1) - \ell_r - 3^{r-2}m$, $\ell_r = \frac{1}{4}(3^{r-2} - 1)$. Moreover, since ℓ_r is an integer, r must be even. Suppose $m = \frac{1}{2}(3^{r-2} - 1) - 1$. Similarly, we have $\ell_r = \frac{1}{4}(3^{r-1} - 1)$ and hence r is odd. Combining the cases of r = 1 and r = 2, we have the following result.

Theorem 6.2. For $r \geq 1$, let $n(\ell_r)$ be the unique solution of equation $(4.2)_r$ in $\mathbb{Z}_{\pi(3^r)}$. Then

$$\ell_r = \begin{cases} \frac{1}{4}(3^{r-1} - 1) & \text{if } r \text{ is odd;} \\ \frac{1}{4}(3^{r-2} - 1) & \text{if } r \text{ is even.} \end{cases}$$

Thus, $\ell_r = \ell_{r+1}$ for odd r, while $\ell_{r+1} = \ell_r + 2 \times 3^{r-2}$ for even r.

7. Frequency of $F_{n(\ell_r)}$ in \mathbb{Z}_{3^k} for k=2r or 2r+1

Let $L_k(b)$ be the set of ℓ in $[0, 3^{k-4})$ that yields F-value b modulo 3^k . From Corollary 2.12, we have $\nu(3^k, b) = 9|L_k(b)| + 2$.

Theorem 7.1. For $r \geq 3$, $L_{2r}(b) = \{\ell_r + 3^{r-2}i \mid 0 \leq i \leq 3^{r-2} - 1\}$, where $b \equiv F_{n(\ell_r)} \pmod{3^{2r}}$ and ℓ_r is defined in Section 4. Hence $\nu(3^{2r}, b) = 3^r + 2$.

Proof. It is straightforward to verify that $\{\ell_r + 3^{r-2}i \mid 0 \le i \le 3^{r-2} - 1\} \subseteq L_{2r}(b)$. For r = 3, $\ell_3 = 2$ and n(2) = 54. It is clear that $L_6(F_{54}) = \{2, 5, 8\}$. Assume that $L_{2r}(b) = \{\ell_r + 3^{r-2}i \mid 0 \le i \le 3^{r-2} - 1\}$ for $r \ge 3$, where $b \equiv F_{n(\ell_r)} \pmod{3^{2r}}$.

Now we let $b \equiv F_{n(\ell_{r+1})} \pmod{3^{2r+2}}$. If r is odd, then $\ell_r = \ell_{r+1}$ and hence $F_{n(\ell_{r+1})} = F_{n(\ell_r)}$. If r is even, then $\ell_{r+1} = \ell_r + 2 \times 3^{r-2}$. Hence $n(\ell_{r+1}) = n(\ell_r) + 2\pi(3^r)$. By (4.1) and Lemma 3.5 we have

$$F_{n(\ell_{r+1})} = F_{n(\ell_r)} + 3^r (b_{r,2} F_{n(\ell_r)} + a_{r,2} F_{n(\ell_r)+1})$$

$$\equiv F_{n(\ell_r)} + 2 \times 3^r (b_r F_{n(\ell_r)} + a_r F_{n(\ell_r)+1}) \equiv F_{n(\ell_r)} \pmod{3^{2r}}.$$

So $b \equiv F_{n(\ell_{r+1})} \equiv F_{n(\ell_r)} \pmod{3^{2r}}$ for both cases.

Let $c \in L_{2r+2}(b)$. We have $F_{n(c)} \equiv b \pmod{3^{2r}}$. Thus $c \equiv c' \pmod{3^{2r-4}}$ for some $c' \in L_{2r}(b)$. So $c = c' + 3^{2r-4}j$ for some j with $0 \le j \le 8$. Also $c' = \ell_r + 3^{r-2}i$ for some i with $0 \le i \le 3^{r-2} - 1$. Hence $c = \ell_r + 3^{r-2}i + 3^{2r-4}j = \ell_{r+1} + 3^{r-2}(i + 3^{r-2}j)$. Since $n(c) = n(\ell_{r+1}) + (i + 3^{r-2}j)\pi(3^r)$ and $F_{n(c)} \equiv b \pmod{3^{2r+2}}$, by Proposition 4.4 $\lambda = i + 3^{r-2}j \equiv 0 \pmod{3}$. That is, $i \equiv 0 \pmod{3}$. Hence $c \in \{\ell_{r+1} + 3^{r-1}i' \mid 0 \le i' \le 3^{r-1} - 1\}$. This completes the induction.

For k = 2r + 1, we can verify that the set $\{\ell \in [0, 3^{k-4}) \mid n(\ell) \text{ is a solution of } (4.2)_r\}$ is the union of the following sets:

$$A_0 = \{ \ell_r + 3^{r-1}i \mid 0 \le i \le 3^{r-2} - 1 \};$$

$$A_1 = \{ \ell_r + 3^{r-2} + 3^{r-1}i \mid 0 \le i \le 3^{r-2} - 1 \};$$

$$A_2 = \{ \ell_r + 2 \times 3^{r-2} + 3^{r-1}i \mid 0 \le i \le 3^{r-2} - 1 \}.$$

All members in each sets yield the same F-value modulo 3^{2r+1} .

Case 1. Suppose r is odd. Then $\ell_r = \ell_{r+1} = \frac{1}{4}(3^{r-1} - 1) \in A_0$. Let $c = \ell_{r+1} + 3^{r-2} \in A_1$. Then it is easy to see that the conjugate of c is $\overline{c} = \ell_r + 2 \times 3^{r-2} + 3^{r-1}i$, where $i = \frac{1}{2}(3^{r-2} - 3)$. Thus, $A_1 \cup A_2 \subseteq L_{2r+1}(b)$, where $b \equiv F_{n(c)} \pmod{3^{2r+1}}$.

Case 2. Suppose r is even. Then $\ell_{r+1} = \frac{1}{4}(3^r - 1) = \ell_r + 2 \times 3^{r-2} \in A_2$. For $d = \ell_r$, the conjugate of d is $\overline{d} = \ell_r + 3^{r-2} + 3^{r-1}i \in A_1$, where $i = \frac{1}{2}(3^{r-2} - 1)$. In this case we have $A_0 \cup A_1 \subseteq L_{2r+1}(b)$, where $b \equiv F_{n(d)} \pmod{3^{2r+1}}$.

Theorem 7.2. Same notation as above. For odd r,

$$L_{2r+1}(b) = \begin{cases} A_1 \cup A_2 & \text{if } b \equiv F_{n(\ell_{r+1} + 3^{r-2})} \pmod{3^{2r+1}}; \\ A_0 & \text{if } b \equiv F_{n(\ell_r)} = F_{n(\ell_{r+1})} \pmod{3^{2r+1}}. \end{cases}$$

For even r,

$$L_{2r+1}(b) = \begin{cases} A_0 \cup A_1 & \text{if } b \equiv F_{n(\ell_r)} \pmod{3^{2r+1}}; \\ A_2 & \text{if } b \equiv F_{n(\ell_{r+1})} \pmod{3^{2r+1}}. \end{cases}$$

Proof. For $b \equiv F_{n(\ell_{r+1}+3^{r-2}j)} \pmod{3^{2r+1}}$, where $0 \leq j \leq 2$, we have that $b \equiv F_{n(\ell_r)} \pmod{3^{2r}}$. Hence each $c \in L_{2r+1}(b)$ comes from $A_0 \cup A_1 \cup A_2$. Thus for odd r, we only need to show that $F_{n(\ell_{r+1})} \not\equiv F_{n(\ell_{r+1}+3^{r-2})} \pmod{3^{2r+1}}$; and for even r, we only need to show that $F_{n(\ell_{r+1})} \not\equiv F_{n(\ell_{r+1}-2\times 3^{r-2})} \pmod{3^{2r+1}}$.

Case 1. When r is odd, since $F_{n(\ell_{r+1}+3^{r-2})} = F_{n(\ell_{r+1})+\pi(3^r)}$, the assertion follows from Proposition 4.5.

Case 2. When r is even, since

$$\begin{split} F_{n(\ell_{r+1}-2\times 3^{r-2})} &\equiv F_{n(\ell_{r+1})-2\pi(3^r)+\pi(3^{2r+1})} \\ &= F_{n(\ell_{r+1})+(3^{r-1}-2)\pi(3^r)} \pmod{3^{2r+1}}, \end{split}$$

by Proposition 4.5, we have the assertion.

Corollary 7.3. Suppose $r \geq 3$. We have:

$$\nu(3^{2r+1}, F_{n(\ell_{r+1})}) = 3^r + 2,$$

$$\nu(3^{2r+1}, F_{n(\ell_{r+1}+3^{r-2})}) = 2 \times 3^r + 2$$

for odd r and $\nu(3^{2r+1}, F_{n(\ell_r)}) = 2 \times 3^r + 2$ for even r.

8. Frequency of 8 in \mathbb{Z}_{3^k}

Suppose that $k \ge 6$ and $b \equiv 8 \pmod{27}$. If $b \ne 8$, 251, 332 and 494 modulo 3^6 , then by Remark 2.1 we have that $\nu(3^k, b) = 2$.

In general we do not have formula for $\nu(3^k, b)$, where $b \equiv 8 \pmod{27}$ and k arbitrary. In [1], we observed that $\nu(3^8, 332) = \nu(3^9, 332) = 83$ but $\nu(3^{10}, 332) = 2$. As one can verify from Corollary 2.5 that $F_{n(\ell)} \equiv 332$

(mod 3^{10}) has no solution in ℓ . This means that b = 332 is no longer generated from $n(\ell)$ for $k \geq 10$. Thus $\nu(3^k, 332) = 2$ if $k \geq 10$.

If $b = 8 = F_{n(0)}$ which appears in \mathbb{Z}_{3^k} for every $k \geq 5$, then we have the following theorem.

Theorem 8.1. For $k \ge 5$, $\nu(3^k, 8) = 20$.

Proof. We first note that for k=5, $\nu(3^5,8)=20$ (please see [1]). Since $F_{n(0)}=8$, $\nu(3^k,8)\geq 20$ for $k\geq 6$.

We shall prove the theorem by contradiction. Suppose k is the first positive integer such that $\nu(3^k,8)>20$. Thus $\nu(3^{k-1},8)=20$. In $[0,3^{k-5})$, 0 and $\frac{1}{2}(3^{k-5}-1)$ are the only integers that yield F-value 8 (mod 3^{k-1}). Suppose $F_{n(\ell)}\equiv 8\pmod{3^k}$, for $\ell\in[0,3^{k-4})$. Then $F_{n(\ell)}\equiv 8\pmod{3^{k-1}}$. Since $\ell\in[0,3\times3^{k-5})$ and $F_{n(\ell)}\equiv 8\pmod{3^{k-1}}$, $\ell=0,\frac{1}{2}(3^{k-5}-1),3^{k-5},3^{k-5}+\frac{1}{2}(3^{k-5}-1)=\frac{1}{2}(3^{k-4}-1),2\times3^{k-5}$, or $2\times3^{k-5}+\frac{1}{2}(3^{k-5}-1)$. Thus, if there are integers in $[0,3^{k-4})$ that yield F-value 8 (mod 3^k) except for these $\ell=0$ and $\ell=\frac{1}{2}(3^{k-4}-1)$, then they must be from the other four. Since they are in pairs, they must come from 3^{k-5} or $2\times3^{k-5}$.

Now $n(3^{k-5}) = 6 + 24 \times 3^{k-5} = 6 + \frac{\pi(3^k)}{27}$ and $n(2 \times 3^{k-5}) = 6 + \frac{2\pi(3^k)}{27}$. One can use Lemma 4.1 with $a_3 = 22$ and $b_3 = 16$ to obtain that

$$F_{n(3^{k-5})} \equiv 8 + 3^{k-1} \pmod{3^k} \quad \text{and} \quad F_{n(2\times 3^{k-5})} \equiv 8 + 2\times 3^{k-1} \pmod{3^k},$$

which both cannot be congruent to 8 (mod 3^k). This is clearly a contradiction.

References

- W.C. Shiu, C.I. Chu, Distribution of Fibonacci numbers mod 3^k, The Fibonacci Quarterly, 43 (2005), 22-28.
- [2] D.D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.