Introduction to Differential Geometry Notes

Phillip Kim

2023-05-10

1 What is a curve?

Def'n 1.1.1

Parameterized curve in \mathbb{R}^n is map $\gamma(t):(\alpha,\beta)\longrightarrow\mathbb{R}^n$ for some α,β with $-\infty\leq\alpha<\beta<\infty$

Level curves in \mathbb{R}^n

i.e. $y^2 - x^2 = 0 \leftarrow \text{parabola in } \mathcal{R}^2$

The level curve above is at "level" 0. In general, we could have a level curve at level 'c' f(x,y) = c

smooth function $f:(\alpha,\beta)\longrightarrow \mathcal{R}^n$ is said to be smooth if derivative $\frac{d^nf}{dt^n}$ exists $\forall n\geq 1$ and $t\in(\alpha,\beta)$

Def'n 1.1.5

If γ is a parameterized curve, first derivative $\dot{\gamma}$ is called the tangent vector of γ at point $\gamma(t)$