增加的习题2

- 1.有一谐振功率放大器,已知晶体管的 g_c =2000ms, V_{bZ} =0.5V, V_{cc} =12V,谐振回路电阻 R_P =130Ω,集电极效率 η_c =74.6%,输出功率 P_{\sim} =500mW,工作于欠压状态,试求:
- (1) V_{CM} , θ_{C} , I_{C1} , I_{CO} , I_{CM}
- (2) 为了提高效率 η_c ,在保证 V_{CC} 、 R_P 、 P_o 不变的条件下,将通角 θ_C 减小到 60^o ,计算对于 θ_C = 60^o 的 I_{C1} , I_{CM} , η_C
- (3),采用什么样的措施能达到将 $\theta_{\rm c}$ 变为 60° 的目的?
- 2.已知谐振高频功率放大器的晶体管饱和临界线的斜率 g_{cr} =0.9S, V_{bz} = 0.6V,电压电源 V_{cc} =18V, V_{bb} = -0.5V, 输入电压振幅 V_{bm} =2.5V, I_{CM} =1.8A, 放大器工作于临界工作状态 试求: (1)电源 V_{cc} 提供的输入功率 P_{o}
 - (2)输出功率 P~
 - (3)集电极损耗功率 $P_{\rm C}$
 - (4)集电极效率 η_C
 - (5)输出回路的谐振电阻 R_P
- 3. 某谐振高频功率放大器,晶体管饱和临界线的斜率 g_{cr} =0.5S, V_{bZ} =0.6V, 电压电源 V_{CC} =24V, V_{bb} = -0.2V, 输入电压振幅 V_{bm} =2V, 输出回路谐振电阻 R_P =50Ω,输出功率 P_o =2W, 试求 (1) ① I_{CM} =?(集电极电流最大值)
 - ②V_{CM}=?(输出电压振幅)
 - ③ η_C=?(集电极效率)
 - (2) 判断放大器工作于什么状态?
 - (3) 当 R_P 变为何值时,放大器工作于临界状态,这时输出功率 P_{\sim} ,集电极效率 $\eta_{\rm C}$ =?