

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
(Accredited by NAAC with "A" Grade, NBA (EEE,ECE & ME) & ISO9001:2008 CertifiedInstitution)

QUESTION BANK(DESCRIPTIVE)

Subject Name with Code: Differential Equations & Vector Calculus - 22A0002T

Course&Branch: B.Tech & Common to All

Year & Semester: I B.Tech II Sem Regulation: RG22

		<u>UNIT- I</u>
1	۵)	*** Linear Diferential Equations of Second Order***
1		Solve $(D^2 + a^2)y = \cos ax$
	b)	Solve $(D-2)^2y = 8(e^{2x} + \sin 2x + x^2)$
2	a)	Solve $\frac{d^2y}{dx^2} + \frac{dy}{dx} + y = (1 - e^x)^2$
	b)	Solve $y'' + 4y' + 4y = 3sinx + 4cosx y(0) = 1, y'(0) = 0$
3	a)	Solve $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = e^{3x} + \sin 2x$
	b)	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + y = xe^x \sin x$
4	(a)	Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 3y = e^x \cos x$
		Using the method of variation of parameters, solve $\frac{d^2y}{dx^2} + 4y = tan2x$
5	(a)	Solve $\frac{d^3y}{dx^3} + y = 3 + e^{-x} + 5e^{2x}$
	(b)	Solve by the method of variation of parameters $y'' + y = cosecx$
6		Solve the Simultaneous equations $\frac{dx}{dt} + 2y + sint = 0$, $\frac{dy}{dt} - 2x - cost = 0$. Given that $x = 0$ and $y = 1$ when $t = 0$
7		Solve the Simultaneous equations $\frac{dx}{dt} + \frac{dy}{dt} - 2y = 2cost - 7sint$, $\frac{dx}{dt} - \frac{dy}{dt} + 2x = 4cost - 3sint$
8		In an L-C-R circuit, the charge q on a plate of a condenser is given by $L \frac{d^2q}{dt^2} + R \frac{dq}{dt} + \frac{q}{c} =$
		Esinpt. The circuit is tuned to resonance so that $p^2 = \frac{1}{LC}$. If initially the current i and the
		charge q be zero. Show that for small values of $\frac{R}{L}$. The current in the circuit at time t is given
		(-)
		by $\left(\frac{Et}{2L}\right)$ sinpt.
9		A condenser of capacity C discharged through an inductance L and resistance R in series and
		the charge q at time t satisfies the equation $L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{c} = 0$. Given that $L = \frac{d^2q}{dt^2} + \frac{dq}{dt} + \frac{dq}{dt} + \frac{dq}{dt} = 0$.
		0.25 heneries, $R = 250$ ohms, $C = 2 \times 10^{-6}$ farads and that when t=0, charge q is 0.0020
		coulombs and the current $\frac{dq}{dt} = 0$, obtain the value of q in terms of t.

10	A body weighing 10kg is hung from a string. A pull of 20kg, weight will stretch the spring to
	10cm. The body is pulled down to 20cm below the static equilibrium position and then
	released. Find the displacement of the body from its equilibrium position at time t second, the
	maximum velocity and the period of oscillation.

<u>UNIT- II</u>					
		*** Partial Differential Equtations***			
1	a)	Form the PDE by eliminating arbitrary function from $z = x+y+f(xy)$.			
	b)	Solve $(y^2 + z^2) p + x (y q - z) = 0$.			
2	a)	Form the PDE by eliminating arbitrary functions from $z = f(y/x) + \emptyset(xy)$.			
	b)	Solve $p - q = \log(x + y)$			
3	a)	Form the PDE by eliminating arbitrary function from $z = y^2 + 2f(\frac{1}{x} + \log y)$.			
	b)	Solve $x^2(y-z) p + y^2 (z-x) q = z^2 (x-y)$.			
4	a)	Form the PDE by eliminating arbitrary constants a, b from $2z = x^2/a^2 + y^2/b^2$.			
	b)	Solve $z = p^2 + q^2$.			
5	a)	Form the PDE by eliminating arbitrary constants a,b from $z = xy + y\sqrt{x^2 - a^2} + b$.			
	b)	Solve $p^2 + pq = z^2$			
6	a)	Solve $(y + z) p - (z + x) q = x - y$.			
	b)	Solve $p^2 + q^2 = x + y$			
7	a)	Form the PDE by eliminating arbitrary constants a,b,c, from $1 = x^2/a^2 + y^2/b^2 + z^2/c^2$.			
	b)	Solve $p^2 + q^2 = x^2 + y^2$			
8	a)	Solve $3p^2 - 2q^2 = 4pq$			
	b)	Form the PDE by eliminating arbitrary function from $xyz = f(x + y + z)$			
9	a)	Solve $(x^2 - y^2 - z^2) p + 2xy q = 2xz$.			
	b)	Solve $xp - y^2q^2 = 1$.			
10	a)	Solve $xp - yq = y^2 - x^2$			
	b)	Solve $q = px + p^2$			