

ES quick overview

- Developed: Germany in the 1970's
- Early names: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
 - numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
- relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

Representation Real-valued vectors
Recombination Discrete or intermediary
Mutation Gaussian perturbation
Parent selection Uniform random

 (μ,λ) or $(\mu+\lambda)$

step sizes

Self-adaptation of mutation

Survivor selection

Specialty

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Evolution Strategies

Introductory example

- Task: minimimise $f: R^n \to R$
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Introductory example: pseudocde

- Set t = 0
- Create initial point $x^t = \langle x_1^t, ..., x_n^t \rangle$
- REPEAT UNTIL (TERMIN.COND satisfied) DO
- Draw z_i from a normal distr. for all i = 1,...,n
- $y_i^t = x_i^t + z_i$
- IF $f(x^t) < f(y^t)$ THEN $x^{t+1} = x^t$
 - ELSE x^{t+1} = y^t
 - FI
 - Set t = t+1
- FI - Se

Introductory example: mutation mechanism

- z values drawn from normal distribution $N(\xi,\sigma)$
 - mean ξ is set to 0
 - variation σ is called mutation step size
- σ is varied on the fly by the "1/5 success rule":
- ullet This rule resets σ after every k iterations by
 - $-\sigma = \sigma/c$ if $p_s > 1/5$
 - $-\sigma = \sigma \cdot c$ if $p_s < 1/5$
 - $-\sigma = \sigma$ if $p_s = 1/5$
- where p_s is the % of successful mutations, $0.8 \le c < 1$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing
Evolution Strategies

Illustration of normal distribution

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Another historical example: the jet nozzle experiment

Task: to optimize the shape of a jet nozzle Approach: random mutations to shape + selection

Initial shape

Final shape

Genetic operators: mutations (2)

O.50

O.40

The one dimensional case

O.20

O.40 $\sigma = 1.5$ $\sigma = 3.0$ O.40 $\sigma = 3.0$ O.40

O.50

O.40

O.40

O.50

O.

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Representation

- Chromosomes consist of three parts:
 - Object variables: x₁,...,x_n
 - Strategy parameters:
 - Mutation step sizes: $\sigma_1,...,\sigma_{n_{\sigma}}$
 - Rotation angles: α₁,..., α_{nα}
- Not every component is always present
- \bullet Full size: \langle x₁,...,x_n, $\sigma_1,...,\sigma_n$, $\alpha_1,...,$ α_k \rangle
- where k = n(n-1)/2 (no. of i,j pairs)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutation

- Main mechanism: changing value by adding random noise drawn from normal distribution
- $x'_i = x_i + N(0,\sigma)$
- Key idea:
 - σ is part of the chromosome \langle x₁,...,x_n, σ \rangle
 - $-\sigma$ is also mutated into σ ' (see later how)
- \bullet Thus: mutation step size σ is coevolving with the solution x

Mutate σ first

- Net mutation effect: $\langle x, \sigma \rangle \rightarrow \langle x', \sigma' \rangle$
- Order is important:
 - first $\sigma \rightarrow \sigma'$ (see later how)
 - then $x \rightarrow x' = x + N(0,\sigma')$
- Rationale: new ⟨ x',σ'⟩ is evaluated twice
 - Primary: x' is good if f(x') is good
 - Secondary: $\boldsymbol{\sigma}'$ is good if the \boldsymbol{x}' it created is good
- Reversing mutation order this would not work

Mutation case 1: Uncorrelated mutation with one σ

- \bullet Chromosomes: $\langle \ x_1, \ldots, x_n, \ \sigma \ \rangle$
- $\sigma' = \sigma \cdot \exp(\tau \cdot N(0,1))$
- $x'_i = x_i + \sigma' \cdot N(0,1)$
- \bullet Typically the "learning rate" $\tau \propto$ 1/ $n^{1\!\!/2}$
- \bullet And we have a boundary rule $\sigma' < \epsilon_0 \Rightarrow \sigma' = \epsilon_0$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutants with equal likelihood

Big difference in effect to fitness on the two axis

Circle: mutants having the same chance to be created

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutation case 2: Uncorrelated mutation with n σ's

- \bullet Chromosomes: $\langle \ x_1,...,x_n,\ \sigma_1,...,\ \sigma_n\ \rangle$
- $\sigma'_i = \sigma_i \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$
- $x'_{i} = x_{i} + \sigma'_{i} \cdot N_{i} (0,1)$
- Two learning rate parameters:
 - τ' overall learning rate
 - τ coordinate wise learning rate
- $\tau \propto 1/(2 \text{ n})^{\frac{1}{2}}$ and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$
- And $\sigma_i' < \varepsilon_0 \Rightarrow \sigma_i' = \varepsilon_0$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutants with equal likelihood

Smaller difference in effect to fitness on the two axis

Ellipse: mutants having the same chance to be created

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutation case 3: Correlated mutations

- Chromosomes: $\langle x_1,...,x_n, \sigma_1,..., \sigma_n, \alpha_1,..., \alpha_k \rangle$
- where $k = n \cdot (n-1)/2$
- and the covariance matrix C is defined as:
 - $-c_{ii} = \sigma_i^2$
 - $-c_{ii} = 0$ if i and j are not correlated
 - $c_{ij} = \frac{1}{2} \cdot (\sigma_i^2 \sigma_j^2) \cdot tan(2 \alpha_{ij})$ if i and j are correlated
- Note the numbering / indices of the α 's

Correlated mutations cont'd

The mutation mechanism is then:

- $\sigma'_i = \sigma_i \cdot \exp(\tau' \cdot N(0,1) + \tau \cdot N_i(0,1))$
- $\alpha'_i = \alpha_i + \beta \cdot N(0,1)$
- x' = x + N(0,C')
 - $\textbf{\textit{x}}$ stands for the vector $\langle \ \textbf{\textit{x}}_1, \ldots, \textbf{\textit{x}}_n \ \rangle$
 - ${\bf C'}$ is the covariance matrix ${\bf C}$ after mutation of the α values
- $\tau \propto 1/(2 \text{ n})^{\frac{1}{2}}$ and $\tau \propto 1/(2 \text{ n}^{\frac{1}{2}})^{\frac{1}{2}}$ and $\beta \approx 5^{\circ}$
- σ_i ' < $\epsilon_0 \Rightarrow \sigma_i$ ' = ϵ_0 and
- $|\alpha'_{i}| > \pi \Rightarrow \alpha'_{i} = \alpha'_{i} 2 \pi \operatorname{sign}(\alpha'_{i})$

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Mutants with equal likelihood

Even smaller difference in effect to fitness on the two axis

Ellipse: mutants having the same chance to be created

Recombination

- Creates one child
- Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Using two selected parents to make a child
 - Selecting two parents for each position anew

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Names of recombinations

	Two fixed parents	Two parents selected for each i
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete

Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected
- Note that in ES "parent" means a population member (in GA's: a population member selected to undergo variation)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Survivor selection

- Applied after creating λ children from the μ parents by mutation and recombination
- · Deterministically chops off the "bad stuff"
- Basis of selection is either:
 - The set of children only: (μ, λ) -selection
 - The set of parents and children: $(\mu+\lambda)$ -selection

Survivor selection cont'd

- $(\mu + \lambda)$ -selection is an elitist strategy
- (μ,λ)-selection can "forget"
- Often (μ, λ) -selection is preferred for:
 - Better in leaving local optima
 - Better in following moving optima
 - Using the + strategy bad σ values can survive in $\langle x,\sigma\rangle$ too long if their host x is very fit
- Selective pressure in ES is very high ($\lambda \approx 7 \cdot \mu$ is the common setting)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Self-adaptation illustrated

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift!

Self-adaptation illustrated cont'd

Changes in the fitness values (left) and the mutation step sizes (right)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Prerequisites for self-adaptation

- μ > 1 to carry different strategies
- $\lambda > \mu$ to generate offspring surplus
- Not "too" strong selection, e.g., $\lambda \approx 7 \cdot \mu$
- (μ, λ) -selection to get rid of misadapted σ 's
- Mixing strategy parameters by (intermediary) recombination on them

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

Example application: the cherry brandy experiment

- Task to create a colour mix yielding a target colour (that of a well known cherry brandy)
- Ingredients: water + red, yellow, blue dye
- \bullet Representation: \langle w, r, y ,b \rangle no self-adaptation!
- Values scaled to give a predefined total volume (30 ml)
- $\bullet\,$ Mutation: lo / med / hi σ values used with equal chance
- Selection: (1,8) strategy

Example application: the Ackley function (Bäck et al '93)

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing Evolution Strategies

• The Ackley function (here used with n =30):

$$f(x) = -20 \cdot \exp\left(-0.2\sqrt{\frac{1}{n}} \cdot \sum_{i=1}^{n} x_i^2\right) - \exp\left(\frac{1}{n} \sum_{i=1}^{n} \cos(2\pi x_i)\right) + 20 + e$$

- Evolution strategy:
 - Representation:
 - -30 < x_i < 30 (coincidence of 30's!)
 - 30 step sizes
 - (30,200) selection
 - Termination : after 200000 fitness evaluations
 - Results: average best solution is 7.48 10 ⁻⁸ (very good)

Example application: cherry brandy experiment cont'd

- Fitness: students effectively making the mix and comparing it with target colour
- Termination criterion: student satisfied with mixed colour
- Solution is found mostly within 20 generations
- Accuracy is very good