отображение F мы наложили несколько более сильные условия, потребовав непрерывности смешанных производных $\frac{d^2y}{du\ dv}$ и $\frac{d^2y}{dv\ du}$ и возможности применения формулы Грина для области Γ^*). Нетрудно убедиться и в том, что стремление к пределу в формуле (47.27) происходит равномерно в смысле, указанном в теореме 1 п. 46.1

Несмотря на простоту вывода формулы (47.27), следует отметить, что доказательство теоремы 1, приведенное в п. 46.1, идейно предпочтительнее, так как оно лучше раскрывает сущность вопроса, связанную с тем, что дифференцируемое отображение в малом достаточно хорошо аппроксимируется линейным отображением.

47.8. Криволинейные интегралы, не зависящие от пути интегрирования

Все кривые (контуры), рассматриваемые в этом пункте, будут всегда предполагаться кусочно-гладкими; для краткости это не будет каждый раз специально оговариваться.

Рассмотрим вопрос о том, когда криволинейным интеграл $\int Pdx + Qdy$ зависит только от точек A и B и не зависит от выбора \widehat{AB}

кривой \widehat{AB} , их соединяющей.

Теорема 3. Пусть функции P(x, y) и Q(x, y) непрерывны в плоской области G, тогда эквивалентны следующие три условия.

1. Для любого замкнутого контура γ , лежащего в G,

$$\int_{\gamma} Pdx + Qdy = 0.$$

2. Для любых двух точек $A \in G$ и $B \in G$ значение интеграла

$$\int_{\widehat{AB}} Pdx + Qdy$$

не зависит от кривой $\widehat{AB}\subset G$, соединяющей точки A и B.

3. Выражение P dx + Q dy является в G полным дифференциалом, m. e. $cywecm вует функция <math>u(M) = u(x, y), \ M = (x, y),$ определенная в G u такая, что

$$du = Pdx + Qdy.$$

B этом случае если $A \in G$ и $B \in G$, то

$$\int_{\widehat{AB}} Pdx + Qdy = u(B) - u(A)$$

для любой кривой \widehat{AB} , соединяющей в G эти точки.

Таким образом, выполнение каждого из условий 1, 2 и 3 необходимо и достаточно для выполнения каждого из двух остальных.