Strata MAKING DATA WORK FEBRUARY 11-13, 2014 · SANTA CLARA, CA

Recap • February 26, 2014

BINGO						
	text analytics	big data	data cloud	Cassandra	data volume	
	realtime analytics	visualization	Whirr	ZooKeeper	unstructured data	
	NoSQL	Kafka	FREE	columnar database	big data science	
	Sqoop	in-memory analytics	BASE	Map/Reduce	geospatial analysis	
	small data	in-memory database	yottabyte	HBase	data velocity	

The game draws a new Bingo! card when loaded. Click RELOAD to make a new card. Enable your browser's JavaScript feature to see the card. This page may not work with old versions Microsoft Internet Explorer; please upgrade.

Brian Granger (Cal Poly SLO)

"Compose and share reproducible stories that involve code and data"

Interactive visualization

coming in IPython 2.0

- Vincent/Vega/d3
- mpld3
- plotly

Architecture

- js in browser
- asynchronous, bi-directional JSON messaging (WebSockets/ZeroMQ)
- kernel (Python interpretter)

Multilanguage support

coming soon, a drop down menu for what kernel language you'd like to use

- Julia
- R
- Matlab / Octave
- Scala

- Brian Granger's slides are an IPython notebook
- Lots of examples at **nbviewer.ipython.org**

Scikit-learn

Olivier Grisel (Parietal, INRIA)

Machine learning in Python

from INRIA

Classification

For classification, as in the labeling iris task, linear regression is not the right approach as it will give too much weight to data far from the decision frontier. A linear approach is to fit a sigmoid function or **logistic** function:

$$y = \operatorname{sigmoid}(X\beta - \operatorname{offset}) + \epsilon = \frac{1}{1 + \exp(-X\beta + \operatorname{offset})} + \epsilon$$

This is known as LogisticRegression.

dplyr and ggvis

Hadley Wickham (RStudio)

More awesome R packages from Hadley.

- data manipulation
- interactive visualization

Twitter's Observability stack

Yann Ramin (Twitter)

- "Moving beyond logging" (logging and parsing are expesive)
- Instrument applications to collect runtime statistics

~

Just like you design for testability, design for monitoring

Stack

- instrumentation (Ostrich, Finagle)
- storage (Cassandra[†])
- query engine (Cuckoo)
- vizualization
- analytics

 $^{^\}dagger$ cassandra-like key/value store, fronted by an API over caches, queues, storage

Ostrich

Increment a counter

Stats.incr("some_important_counter")

Ostrich

Store the value of a variable at a particular time

```
Stats.addGauge("current_temperature") {
   myThermometer.temperature
}
```

Ostrich

Record running time

```
Stats.time("translation") {
  document.translate("de", "en")
}
```

Keys

(service,source(host,process),metric)

Zipkin tracing for distributed systems (modeled after Google Dapper)

Trained systems

Chris Ré (Stanford)

Examples of trained systems:

- IBM's Watson
- Google's Knowlege Graph
- Netflix recommender engine

- RDBMS + machine learning, stats, optimization
- combining structured and unstructured data

DeepDive

Extracting structured information from unstructured sources such as raw text

DeepDive: Web-scale Knowledge-base Construction using Statistical Learning and Inference

Feature engineering

"Good features allow a simple model to beat a complex model"

Brainwash: A Data System for Feature Engineering

^

[†] similar to what we observe in challenges

Industry strategy: copy Google

Google	Open
MapReduce	Hadoop
GFS	HDFS
BigTable	HBase
Dremel	Impala
Pregel	Giraph

Giraph

Avery Ching (Facebook)

"iterative graph processing system"

Model of Computation

Two phases

- compute on each vertex
- send messages to other vertices

~

...iterate until halting criterea reached

Examples

- Page rankfriends of friends

Matei Zaharia (MIT, DataBricks)

Spark is a next-generation Hadoop, in-memory computing

- Written in Scala
- APIs for Scala, Java and Python
- Shark, distributed SQL query engine for Spark (like Hive)
- can read from HDFS, HBase or Cassandra
- Runs on top of Hadoop YARN, Mesos or EC2

Berkeley Data Analytics Stack

 $A meet \ Talwalkar (UC \ Berkeley)$

BDAS is a suite of software created by the **AMPLab**

Data-intensive distributed computing stack

- Queries / Machine Learning / Graph processing
- Task scheduler
- Distributed storage
- Resource management

MLBase

MLBase is a machine learning libraries that run over Spark (like Mahout/Hadoop)

Jawbone UP

Monica Rogati (Jawbone)

Quantified Self

- 50 million nights of sleep
- 500 billion steps

THE END

