21STEMSB2

HIMADRI MANDAL

December 31, 2021

§1 Solution

Solution. Let $\{p_1, \dots, p_k\}$ be the set of first k odd primes with $p_k < 10^{100} < p_{k+1}$. If $P(0) \neq 0$, choose a big n_0 , $P(2^{n_0}) = 2^{\nu_2(P(0))} \prod_i p_i^{\alpha_i}$ Note that $p_1^{\alpha_1} || P(2^{n_0})$, now $p_1^{\alpha_1} || P(2^{n_0 + \varphi(p_1^{\alpha_1 + 1})})$ because

$$a_k(2^{n_0+\varphi(p_1^{\alpha_1+1})})^k \equiv a_k(2^{n_0})^k \cdot (2^{\varphi(p_1^{\alpha_1+1})})^k \equiv a_k(2^{n_0})^k \pmod{p_1^{\alpha_1+1}}$$

and $\varphi(p_1^{\alpha_1})|\varphi(p_1^{\alpha_1+1})$. Therefore,

$$P(2^{n_0}) = P(2^{n_0 + \lambda \varphi(\prod_i p_i^{\alpha_i + 1})}).$$

This is not possible so P(0)=0. Now, $Q(x)\stackrel{\text{def}}{=}\frac{P(x)}{x}$, if $Q(0)\neq 0$ we could derive the same contradiction, continuing this way we see that $P(x)=x^n$ is the only solution. \square