彭·惠毅

高等数学上期中试题集 (2021版)

彭康书院学业辅导与发展中心

一、 填空题

1.
$$\lim_{x\to 0} (1+2xe^x) =$$

2.
$$\lim_{n \to \infty} \left(\frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n} \right) = \underline{\hspace{1cm}}$$

3. 设 y =
$$(x + e^{-\frac{x}{2}})^{\frac{3}{2}}$$
,则 y'(0) =_____

4. 设函数
$$y = y(x)$$
由方程 $x = y^y$ 确定,则 $dy = _____$

5. 函数 $y = x + 2 \cos x$ 在[0, π /2]上的最大值为_____

二、 计算题

1. 求极限
$$\lim_{x\to\infty} \frac{\tan^2(3x)}{1-\cos(\sin x)}$$
.

4. 设
$$F(x) = \lim_{t \to \infty} t^2 \left[f(x + \frac{\pi}{t}) - f(x) \right] \sin(\frac{x}{t})$$
, 其中 f 二阶可导,求 $F(x)$, $F'(x)$.

6. 设
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
,证明其导函数 $f'(x)$ 在 $x = 0$ 处连续.

7. 求曲线
$$y = x^4 (12 \ln x - 7)$$
 的凹凸区间及拐点.

三、 解答题

 $\begin{cases} \sin\frac{1}{x^2-1}, x < 0 \\ \frac{x^2-1}{\cos\frac{\pi x}{2}}, x \ge 0 \end{cases}$ 的连续性;若有间断点,说明间断点的类型. (本题9分)讨论函数

四、 证明题

(本题 8 分)设 f(x) 在 $\left[0,+\infty\right)$ 上二阶可导,且 f(0)=0,f''(x)<0,证明:对任意两点 $x_1>0$ 和 $x_2>0$, 有 $f(x_1+x_2) < f(x_1) + f(x_2)$.

2. (本题 7 分)设 f(x) 在 $[0,+\infty)$ 上有三阶连续实导数,且 $f(0)=1, f(1)=2, f'(\frac{1}{2})=0$,证明:至少存 在一点 $\xi \in (0,1)$,使得 $|f^{(3)}(\xi)| \ge 24$.

一、选择题

- 1. $x \to 0$ 时,变量 $\frac{1}{r^2} \sin \frac{1}{r}$ 是 ()
 - A. 无穷小
- B. 无穷大
- C. 有界但非无穷小量 D. 无界但非无穷大
- - A. 极限不存在
- B. 极限存在但不连续 C. 连续

- D. 以上结论都不对
- 3. 己知 f(x) 是奇函数且 x < 0 时单增,则当 x > 0 时, f(x) 是(
 - A. 单增
- B. 单减
- C. 可能单增, 也可能单减
- D. 既非单增也非单减
- 4. 设 f(x),g(x) 都在 x=a 处取得最大值,则函数 F(x)=f(x)g(x) 在 x=a 处〔
 - A. 必取得极大值

B. 必取得极小值

C. 不可能取得极值

- D. 是否取得极值不能确定
- 5. 设 f(x) 在 x = a 的某邻域内有定义,则 f(x) 在 x = a 处可导的一个充分条件是(
 - A. $\lim_{h\to\infty} h[f(a+\frac{1}{h})-f(a)]$ 存在
- B. $\lim_{h\to 0} \frac{f(a+2h) f(a+h)}{h}$ 存在
- C. $\lim_{h\to 0} \frac{f(a+h) f(a-h)}{h}$ 存在
- D. $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在

二、填空题

- 8. 设 f(x) 定义域为[0,1],则 $f(\ln x)$ 的定义域为_
- 8. 以 $\lim_{x \to \infty} \left(\frac{x+a}{x-a}\right)^x = 9$,则a =

- 11. 函数 $f(x) = \frac{e^{\sqrt{-x}} \sin x}{|x|}$ 的第一类间断点 x =_______,第二类间断点 x =_______.
- 12. 已知 $x \to 0$ 时, $\sin x$ 与 ln(1+ax) 是等价无穷小,则 a =_____.

三、计算题

1. 求极限
$$\lim_{x\to 0} \frac{e^x \sin x - x(x+1)}{1-\cos x}$$

2. 设
$$y = \sin^2(\frac{1 - \ln x}{x})$$
, 求 y' .

3. 设函数
$$y = y(x)$$
 由
$$\begin{cases} x - e^t \sin t + 1 = 0 \\ y = t^3 + 2t \end{cases}$$
 确定,求 $\frac{d^2y}{dx^2}$.

4. 方程
$$\sin(xy)$$
 – $\ln \frac{x+1}{y}$ = 1表示平面上一条曲线,试求该曲线在 $x=0$ 处的切线方程与法线方程.

5. 求极限
$$\lim_{n\to\infty} \left(\frac{n+1}{n^2+1} + \frac{n+2}{n^2+2} + \dots + \frac{n+n}{n^2+n}\right)$$
.

三、(本题 9 分)设 $n \in N_+$,讨论函数 $f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ 在 x = 0 处的连续性与可导性以及 f'(x) 在 x = 0 处的连续性.

四、证明题(每题7分)

1. 设 $x_1 < -1$, $x_{n+1} + \sqrt{1-x_n} = 0$, 证明 $\{x_n\}$ 收敛并求 $\lim_{n \to \infty} x_n$.

选择题

1. x=2是函数 $f(x) = \arctan \frac{1}{2-x}$ 的())

- A. 连续点

- B. 可去间断点 C. 跳跃间断点 D. 第二类间断点

2. 设 $f(x) = \begin{cases} \frac{1 - \cos x}{\sqrt{x}} & x > 0 \end{cases}$, 其中 g(x) 有界,则 f(x) 在 x = 0 处(

- A. 极限不存在 B. 极限存在但不连续 C. 连续但不可导
- D. 可导

3. 函数 $f(x) = (x^2 - x - 2)|x^2 - x|$ 不可导点的个数是(

D. 3

4. 设 $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^2} = -1$,则在x = a处(

- A. f(x)的导数存在,且 $f'(a) \neq 0$
- B. f(x) 取得极大值

C. f(x)取得极小值

D. f(x) 的导数不存在

5. 设 f(x) 在 $(-\infty, +\infty)$ 内可导,周期为 4,且 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则曲线 y = f(x) 在点 (5, f(5))

- 处切线的斜率为(
 - A. 2
- B. -2

B. 1

D. -1

6. 在区间(a,b)内,f'(x)>0,f''(x)<0,则f(x)的图像在(a,b)内是(

- A. 单增且凸
- B. 单减且凸
- B. 单增且凹
- D. 单减且凹

解答题

1. 求极限 $\lim(\sqrt{2}\cdot\sqrt[4]{2}\cdot\sqrt[8]{2}\cdot\cdots\sqrt[2^n]{2})$

2. 设 $y = x \arctan x - \ln \sqrt{1 + x^2}$, 求 dy.

3. 求极限 $\lim_{x\to 0} \frac{1}{x} (\cot x - \frac{1}{x})$.

8. 设函数 $f(x) = \begin{cases} e^{2x} + b & x \le 0 \\ \sin ax & x > 0 \end{cases}$, 问 a, b 为何值时, f(x) 在 x = 0 处可导?并求 f'(x).

9. 设
$$f(x) = \frac{x^2}{2(x+1)^2}$$
, 求:

(1) 函数 f(x) 的单调区间和极值. (2) 曲线 y = f(x) 的凹凸区间、拐点及渐近线方程.

10. 设函数 f(x) 在 [-1,1] 上三阶可导,且 f(-1)=0, f(0)=0, f(1)=1, f'(0)=0,证明: 存 在 $\eta \in (-1,1)$,使得 $f'''(\eta) \geq 3$.

11. 设 f(x) 在 [0,1] 上可导,且 f(0)=0, f(1)=1,证明: 在 [0,1] 存在两点 x_1 , x_2 ,使得 $\frac{1}{f'(x_1)} + \frac{1}{f'(x_2)} = 2.$

填空题

1. $\lim_{x \to 0} (1 + 2xe^x)^{\frac{1}{x}} = \underline{\hspace{1cm}}$

2. $\lim_{n \to \infty} \sqrt[n]{1 + 2^n + 3^n} =$ ______.

5. 已知 (1,2) 是曲线 $y = ax^3 + bx^2$ 的拐点,则 $a = ______$, $b = ______$

选择题

1. 当x→0时, $ln(1+2\sin x)$ 与下列哪个表达式是等价无穷小(

A.极限不存在

B.极限存在但不连续 C.连续

D.以上结论都不成立

3. 己知 f(x) 在 x = 0 的某领域内连续,且 $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 2$,则在点 x = 0 处 f(x) (

A. 不可导

B. 可导且 f'(0) ≠ 0 C. 取得极大值 D. 取得极小值

4. 曲线 $y = (x-1)(x-2)^2(x-3)^3(x-4)^4$ 的拐点是 ()

A. (1,0)

B. (2,0)

C. (3,0) D. (4,0)

三、 解答题

1. 求极限 $\lim_{x\to 0} \frac{\sqrt{1+x\sin x} - \sqrt{\cos x}}{x^2}$

2. 设
$$y = \arctan \sqrt{x^2 - 1} - \frac{\ln x}{\sqrt{x^2 - 1}}$$
, 求 y' .

4. 设
$$y^x = e^{x+y}$$
, 求 dy .

6. 求曲线
$$y = x^4 (12 \ln x - 7)$$
 的凹凸区间及拐点.

7. 讨论函数
$$f(x) = \begin{cases} \frac{x(1+x)}{\cos(\frac{\pi}{2}x)} & x \le 0 \\ \sin(\frac{\pi}{x^2-4}x) & \text{的连续性, 并确定其间断点类型.} \end{cases}$$

- (1) 存在 $\xi \in (0,1)$, 使得 $f'(\xi) = 1$.
- (2) 存在 $\eta \in (-1,1)$, 使得 $f''(\eta) + f'(\eta) = 1$.

填空题

1. 若
$$f(x) = \begin{cases} \frac{\cos x}{x+2}, & x \ge 0 \\ \frac{\sqrt{a} - \sqrt{a-x}}{x}, & x < 0 \end{cases}$$

$$x = 0$$

3. 曲线 $y = y(x)$ 由参数方程 $\begin{cases} x = t^3 + 9t \\ y = t^2 - 2t \end{cases}$ 确定,则 $y = y(x)$ 的凸区间是_____.

4. 极限
$$\lim_{x\to 1} \frac{x^x - 1}{x \ln x} =$$
______.

5. 曲线
$$y = x \ln(e + \frac{1}{x})(x > 0)$$
 的渐近线方程为______.

二、 选择题

1. 设 f(x), $\varphi(x)$ 在 $(-\infty, +\infty)$ 内有定义, f(x) 为连续函数且 $f(x) \neq 0$, $\varphi(x)$ 有间断点,则(

- A. $\varphi(f(x))$ 必有间断点
- B. $(\varphi(x))^2$ 必有间断点

- C. $f(\varphi(x))$ 必有间断点
- D. $\frac{\varphi(x)}{f(x)}$ 必有间断点

2. 设 f(x) 为可导函数且满足 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则过曲线 y = f(x) 上点 (1, f(1)) 处的切线 的斜率为() A. 2

- C. 1 D. -2

3. 若 $\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^2} = -1$,则在点x = a处(

- A. f'(a) 存在,且 $f'(a) \neq 0$
- B. *f*(*x*)取得极大值
- C. f(x)取得极小值
- D. f(x) 的导数不存在

4. 设 $f(x) = \begin{cases} \frac{1 - \cos x}{\sqrt{x}}, & x > 0 \\ x^2 g(x), & x \le 0 \end{cases}$, 其中 g(x) 是有界函数,则 f(x) 在 x = 0 处 ()

A.极限不存在

B.极限存在,但不连续

B.连续,但不可导

D.可导

- 5. 下列命题中正确的是(
 - A. 若 $f''(x_0) = 0$,则 $(x_0, f(x_0))$ 一定是曲线 y = f(x) 的拐点
 - B. 若 $f'(x_0) = 0$,则 f(x) 在 x_0 处取得极值
 - C. 若 f(x) 可导,且在 x_0 处取得极值,则 $f'(x_0) = 0$
 - D. 若 f(x) 在 [a,b] 上取得最大值,则最大值一定是 f(x) 在 (a,b) 内的极大值

三、 计算题

1. 求极限 $\lim_{x\to 0} \frac{\arctan x - x}{\ln(1+2x^3)}$.

2. 读 $y = \tan 2x + 2^{\sin x}$, 求 $dy \Big|_{x=\frac{\pi}{2}}$

- 3. 设函数 y = y(x) 由 $e^y + 6xy + x^2 1 = 0$ 确定, 求 y''(0).
- 4. 讨论函数 $f(x) = \begin{cases} \frac{x(1+x)}{\cos \frac{\pi}{2}x}, & x < 0 \\ \sin \frac{1}{x^2-4}, & x \ge 0 \end{cases}$ 的连续性,并确定其间断点的类型.

- 5. 设函数 $f(x) = \begin{cases} \frac{g(x) e^{-x}}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 其中 g(x) 具有二阶连续导数,且 g(0) = 1, g'(0) = -1.
 - (1) 求 f'(x). (2) 讨论 f'(x)在 ($-\infty$, $+\infty$) 上的连续性.

6. 设 $f(x) = \frac{x^2}{2(x+1)^2}$, 求: (1) 函数 f(x) 的单调区间和极值. (2) 曲线 y = f(x) 的凹凸区间和拐点.

7. 设 f(x) 在 [-1,1] 上三阶可导,且 f(-1)=0, f(0)=0, f(1)=1, f'(0)=0, 证明:存在 $\xi \in (-1,1)$,使 $f'''(\xi) \ge 3$.

8. 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f(a) = f(b) = 1,试证:存在 $\xi, \eta \in (a,b)$,使 $e^{\xi-\eta}(f(\eta)-f'(\eta))=1$.

填空题

1. 设 $f(x) = \begin{cases} a + bx^2 & x \le 0 \\ \frac{\sin bx}{x} & x > 0 \end{cases}$ 在 $\left(-\infty, +\infty\right)$ 内连续,则常数 a = b 应满足______.

2. $\lim_{x \to 0} \frac{(1 + \tan x)^x - 1}{x \sin x} = \underline{\hspace{1cm}}.$

3. 曲线 $y = \frac{x^2 + 1}{x + 1} (x \neq -1)$ 的斜渐近线方程为_____

4. 函数 $y = xe^{-x}$ 的凸区间是

5. 若 $f(x) = \frac{e^x - a}{x(x-1)}$ 有无穷间断点 x = 0 和可去间断点 x = 1,则 $a = _$

二、 选择题

1. 设f(x), $\varphi(x)$ 在 $(-\infty,+\infty)$ 内有定义,f(x)为连续函数且 $f(x) \neq 0$, $\varphi(x)$ 有间断点,则(

A. $f(\varphi(x))$ 必有间断点

B. $\varphi(x)/f(x)$ 必有间断点

C. $\varphi(f(x))$ 必有间断点

D. $(\varphi(x))^2$ 必有间断点

2. 设函数 f(x) 可导且满足 $\lim_{x\to 0} \frac{f(1)-f(1-x)}{2x} = -1$,则过曲线 y = f(x) 上点 (1,f(1)) 处的切线的 斜率为()

3. 设f(x)有任意阶导数,且 $f'(x) = [f(x)]^2$,则 $f^{(n)}(x) = ($),(n > 2)

A. $[f(x)]^{2n}$ B. $(n!)[f(x)]^{2n}$ C. $(n!)[f(x)]^{n+1}$ D. $n[f(x)]^{n+1}$

4. 函数 $f(x) = (x^2 - x - 2)|x^3 - x|$ 不可导点的个数是(

C. 1

D. 0

5. 若 $\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^2} = -1$,则在点x = a处(

A. f(x)取得极小值

B. f(x) 的导数不存在

C. f'(a) 存在,且 $f'(a) \neq 0$

D. f(x) 取得极大值

三、 计算题

- 1. 求极限 $\lim_{n\to\infty} (n\sin\frac{1}{n})^{n^2}$.
- 3. 求曲线 $\begin{cases} x = 3t^2 + 2t + 3 \\ e^y \sin t y + 1 = 0 \end{cases}$ 在 t = 0 处的切线方程.

4. 求由方程 $\arctan \frac{y}{x} = \ln \sqrt{x^2 + y^2}$ 所确定的隐函数 y = y(x)的二阶导数.

- 5. 己知 $f(x) = e^{x^2}$, $f[\varphi(x)] = 1 x$, 且 $\varphi(x) \ge 0$.
 - ①求 $\varphi(x)$ 及其定义域; ②求 $\varphi'(-1)$.

6. 如图,从半径为R的圆铁片上剪去一个扇形做成一个漏斗,留下的扇形的中心角 φ 取多大时做成的漏斗的容积最大?

- 7. 设f(x), g(x)在[a,b]上二阶可导,且 $g''(x) \neq 0$, f(a) = f(b) = g(a) = g(b) = 0, 证明:
 - (1) 在(a,b)内 $g(x) \neq 0$. (2) 存在 $\xi \in (a,b)$,使 $\frac{f(\xi)}{g(\xi)} = \frac{f''(\xi)}{g''(\xi)}$

8. 设 f(x) 在 $[a,+\infty)$ 上二阶可导,f(a)>0, f'(a)<0, x>a 时 f''(x)<0, 证明:f(x)=0 在 $(a,+\infty)$ 上有且只有一个实根.

三、判断题(命题正确需给出证明,命题错误需举出反例)

1. 设a < b若 $\forall \delta \in (0, \frac{b-a}{2})$,有f在 $[a+\delta, b-\delta]$ 上一致连续,则f在(a,b)上一致连续.

2. 设可微函数 f 在 [a,b] 上是凸函数,则函数 f 的图形必位于曲线过 (a,f(a)) 切线的上方,即对任意 $x \in (a,b]$ 有 $f(x) \ge f(a) + f'(a)(x-a)$.

四、计算题

1. 设
$$x_1 = \frac{1}{2L}, L > 0, x_{n+1} = x_n (2-Lx_n), n = 1, 2, \cdots 求 \lim_{n \to \infty} x_n$$
.

2. 设方程 $e^{xy} + \sin x - y = 0$ 确定了函数 y = y(x), 求 $\frac{dy}{dx}|_{x=0}$ 和 $\frac{d^2y}{dx^2}|_{x=0}$.

3. 试确定常数a,b, 使极限 $\lim_{x\to 0} \frac{1+a\cos 2x+b\cos 4x}{x^4}$ 存在,并求出极限值.

五、证明题

1. $\stackrel{\text{def}}{=} x \in (0, \frac{\pi}{2})$ $\text{ iff}, \frac{2}{\pi} < \frac{\sin x}{x} < 1$.

- 2. 设函数 f(x) 在[0,1] 上连续,在(0,1) 上可导,且 f(0) = f(1) = 0, $f(\frac{1}{2}) = 1$,证明:
 - (1) $\exists \xi \in (\frac{1}{2},1)$,使得 $f(\xi) = \xi$.
 - (2) 对 $\forall \lambda \in R$,必 $\exists \eta \in (0,\xi)$,使得 $f'(\eta) \lambda [f(\eta) \eta] = 1$.

3. 设 f(x) 在 [0,1] 上可导,且 f(x) 的每一个零点都是简单零点(简单零点:若 $f(x_0)=0$,则 $f'(x_0)\neq 0$),证明: f(x) 在 [0,1] 上只有有限个零点.

一、填空题

1. 己知 $\lim_{x\to\infty} (\frac{x+a}{x-a})^x = 9$,则 a =______.

2. 设
$$f(x) = \begin{cases} (1-2x)^{\frac{1}{x}}, & x < 0 \\ b+1, & x = 0 \implies a = ____, b = _____$$
时, $f(x)$ 在 $(-\infty, +\infty)$ 内连续.
$$\frac{\sin ax}{x}, & x > 0 \end{cases}$$

- 3. 函数 $f(x) = \frac{e^{\frac{1}{1-x}} \sin x}{|x|}$ 的第一类间断点 x =________,第二类间断点 x =________.
- 4. 已知当 $x \to 0$, $\sin x$ 与 $\ln(1+ax)$ 是等价无穷小,则a =______.
- 5. 设 $y = \log_a[x(\sec x + \tan x)]$,则 dy =______.
- 6. $\lim_{n\to\infty} (1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^n}) \bullet \frac{\sqrt{n^2+1}}{n+1} = \underline{\hspace{1cm}}$
- 7. 函数 $y = x + 2\cos x$ 在 $[0, \frac{\pi}{2}]$ 上的最大值为______

二、计算题

1.
$$\lim_{x\to 0} \frac{1-\cos(x^2)}{x^3\sin x}$$
.

2. 己知
$$\lim_{x\to 0} \frac{\sqrt{1+f(x)\sin x}-1}{e^x-1} = A$$
,求 $\lim_{x\to 0} f(x)$.

3. 设数列
$$\{x_n\}$$
满足 $x_1 = 1, x_{n+1} = \frac{x_n + 2}{x_n + 1} (n \in N_+)$, 试证明 $\lim_{x \to \infty} x_n = \sqrt{2}$.

4. 设
$$\begin{cases} x = a(\cos t + t \sin t) \\ y = a(\sin t - t \cos t) \end{cases}, \quad \dot{x} \frac{dy}{dx}, \frac{d^2y}{dx^2}.$$

5. 设
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 说明其导函数 $f'(x)$ 在 $x = 0$ 处连续.

6. 当
$$0 < x < \frac{\pi}{2}$$
时,试证明 $\sin x > \frac{2}{\pi}x$.

7. 设 f(x) 在 [0,1] 上具有二阶导数,且满足条件 $|f(x)| \le a$, $|f''(x)| \le b$, 其中 a, b 都是非负常数, c 是 (0,1) 内任意一点,证明: $|f'(x)| \le 2a + \frac{b}{2}$.

8. 设 f(x) 在 x = 0 的领域内二阶可导,且 f'(0) = 0,试计算 $\lim_{x \to 0} \frac{f(x) - f(\ln(1+x))}{x^3}$

9. 设f(x)在 $(-\infty,+\infty)$ 内有界且可导,证明: 方程 $f'(x)(1+x^2)=2xf(x)$ 至少有一个实根.

彭康学导团 2.0 招新重启中, 欢迎大家加入官方招新答疑 群"彭小招 1.0", pick彭康学辅大家庭~

搜索微信公众号"彭康书院学导团"或扫描下方二维码, 关注我们,了解更多学业动态,掌握更新学习资料。

彭小招1.0

群号: 647383944

PKSTU 微信公众号

