Fairness

: 얼굴 인식의 공정성에 대한 연구 조사

염지현

Margin을 결정하는 reinforcement learning

$Test \rightarrow$		Caucasian	Indian	Asian	African	Ava	Fairness	
Train↓	Method↓	Caucasian	maran	Asian	Affican	Avg	STD	SER
4:2:2:2	N-Softmax [46]	89.67	87.97	84.68	84.17	86.62	2.64	1.53
	RL-RBN(soft)	91.35	90.77	89.87	90.13	90.53	0.66	1.17
$5:\frac{5}{3}:\frac{5}{3}:\frac{5}{3}$	N-Softmax [46]	89.88	88.52	85.13	83.42	86.74	2.98	1.64
	RL-RBN(soft)	90.33	90.23	88.97	89.37	89.73	0.67	1.22
$6:\frac{4}{3}:\frac{4}{3}:\frac{4}{3}$	N-Softmax [46]	90.43	88.32	84.75	83.32	86.70	3.26	1.74
	RL-RBN(soft)	90.17	90.02	87.67	88.27	89.03	1.25	1.25
7:1:1:1	N-Softmax [46]	90.67	87.77	84.37	82.97	86.44	3.46	1.83
	RL-RBN(soft)	90.63	90.73	87.72	87.53	89.15	1.77	1.35

Table 2. Verification accuracy (%) on RFW [49] trained with varying racial distribution. We boldface STD (lower is better) and skewed error ratio (SER) (1 is the best) since this is the important fairness criterion.

[19] Racial faces in the wild: Reducing racial bias by information maximization adaptation network

Label이 없는 유색인종 이미지(target data)로부터 feature map 추출 후, 이미지별 cosine 유사도를 비교하여,

$$e(n_i, n_j) = \begin{cases} 1, & if \ s(i, j) > \lambda \\ 0, & otherwise \end{cases}$$

다음 식을 바탕으로 그래프 생성 → 하나의 ID 생성 및 부여

[19] Racial faces in the wild: Reducing racial bias by information maximization adaptation network

UDA(Unsupervised Domain Adaptation)

- UDA 알고리즘 착안한 이유(추측)
 - ID가 없는 FACE도 인식할 수 있도록 하기 위해
 - 백인 얼굴 인식 시, Convolution layer마다 얼굴 인식에서 불변하는 특징을 잡아내는 것이 핵심
 → Source domain, target domain 가중치를 공유함으로써 백인 얼굴 인식에서 불변하는 특징을 잘 잡아내는 가중치를 다른 인종에서도 동일하게 사용하여 인종 편향 감소

adaptation network

 $= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$ $= \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(x_i^t) p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$ $= H\left[\mathbf{O_t}|\mathbf{X_t}\right] - \gamma H\left[\mathbf{O_t}\right] \approx -I(\mathbf{X_t};\mathbf{O_t})$

이상적인 조건부 분포: $p(O_t|x_i^t) = [0,0,...,1,0,0]$ 와 같이 한 클 래스의 출력을 확대하는 것이 목표

- → 모든 target image에 대해 비슷한 확률 분포가 나오길 바람
- → 엔트로피 관점에서 봤을 때 사건마다 확률 분포가 같을 때 가장 큰 엔트로피 출력

adaptation network

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(x_i^t) p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$$

$$= H \left[\mathbf{O_t} | \mathbf{X_t} \right] - \gamma H \left[\mathbf{O_t} \right] \approx -I(\mathbf{X_t}; \mathbf{O_t})$$

Target image 예측 시,

이상적인 조건부 분포: $p(O_t|x_i^t) = [0,0,...,1,0,0]$ 와 같이 한 클 래스의 출력을 확대하는 것이 목표

- → 모든 target image에 대해 비슷한 확률 분포가 나오길 바람
- → 엔트로피 관점에서 봤을 때 사건마다 확률 분포가 같을 때 가장 큰 엔트로피 출력

$$= \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$$

$$= \sum_{i=1}^{N} \sum_{j=1}^{N_C} p(x_i^t) p(o_j^t | x_i^t) log p(o_j^t | x_i^t) - \gamma \sum_{j=1}^{N_C} p(o_j^t) log p(o_j^t)$$

$$= H \left[\mathbf{O_t} | \mathbf{X_t} \right] - \gamma H \left[\mathbf{O_t} \right] \approx -I(\mathbf{X_t}; \mathbf{O_t})$$

Target image 예측 시,

이상적인 조건부 분포: $p(O_t|x_i^t) = [0,0,...,1,0,0]$ 와 같이 한 클 래스의 출력을 확대하는 것이 목표

- → 모든 target image에 대해 비슷한 확률 분포가 나오길 바람
- → 엔트로피 관점에서 봤을 때 사건마다 확률 분포가 같을 때 가장 큰 엔트로피 출력

adaptation network

Target domain label이 존재하지 않기 때문에 이 단계에서 pseudo-label을 사용하여 예측 값을 비교!

Target image 예측 시,

이상적인 조건부 분포: $p(O_t|x_i^t) = [0,0,...,1,0,0]$ 와 같이 한 클 래스의 출력을 확대하는 것이 목표

- → 모든 target image에 대해 비슷한 확률 분포가 나오길 바람
- → 엔트로피 관점에서 봤을 때 사건마다 확률 분포가 같을 때 가장 큰 엔트로피 출력

adaptation network

MMD(Maximum Mean Discrepancy)

- Class를 대표하는 prototypes과 class에서 예외적인 criticisms를 찾아 데이터를 직관적으로 확인 가능
- Source domain과 target domain 간의 MMD를 통해 두 분 포 간의 불일치를 측정하는 도구(두 분포 간의 차이를 측정)

[22] Exploring racial bias within face recognition via per-subject adversarially-enabled data augmentation

Data augmentation 을 통한 dataset 생성 하는 것이 주목적

Seyma Yucer, Samet Akc, ay, Noura Al-Moubayed, and Toby P Breckon. Exploring racial bias within face recognition via persubject adversarially-enabled data augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 18–19, 2020.

[22] Exploring racial bias within face recognition via per-subject adversarially-enabled data augmentation

Seyma Yucer, Samet Akc, ay, Noura Al-Moubayed, and Toby P Breckon. Exploring racial bias within face recognition via persubject adversarially-enabled data augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 18–19, 2020.

[22] Exploring racial bias within face recognition via per-subject adversarially-enabled data augmentation

Seyma Yucer, Samet Akc, ay, Noura Al-Moubayed, and Toby P Breckon. Exploring racial bias within face recognition via persubject adversarially-enabled data augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pages 18–19, 2020.