AUTOTUNING: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel

phrb@ime.usp.br

Journée au Vert POLARIS, March 2018

OUTLINE

- 1. Autotuning
- 2. Applying Design of Experiments to Autotuning
- 3. Perspectives

AUTOTUNING: OPTIMIZING PROGRAM CONFIGURATIONS

Architectures for High Performance Computing

How to write efficient code for each of these?

Autotuning

The process of automatically finding a configuration of a program that optimizes an objective

Configurations

- Program configuration
 - Algorithm, block size, . . .
- · Source code transformation
 - Loop unrolling, tiling, rotation, . . .
- Compiler configuration
 - -02, vectorization, . . .
- ...

Objectives

- Execution time
- Memory & power consumption
- . . .

AUTOTUNING: SEARCH SPACES

Search Spaces

Represent the effect of all possible configurations on the objectives

Can be difficult to explore, with multiple local optima and undefined regions

Hölder Table function

AUTOTUNING: EXPLORING SEARCH SPACES

Issue 1: Exponential Growth

Simple factors can generate large spaces:

- 30 boolean factors
- 2³⁰ combinations

Issue 2: Geometry

- · Discrete or continuous factors
- "Smoothness"
- Interactions between factors

Issue 3: Measurement Time

Time to compile:

- Benchmark GPU applications: 1~10s
- Benchmark FPGA applications: 1~10min
- Industrial FPGA applications: 1~10h

AUTOTUNING: MULTIPLE APPROACHES

Popular Approaches

- Exhaustive
- Meta-Heuristics
- Machine Learning

System	Domain	Approach
ATLAS	Dense Linear Algebra	Exhaustive
INSIEME	Compiler	Genetic Algorithm
Active Harmony	Runtime	Nelder-Mead
ParamILS	Domain-Agnostic	Stochastic Local Search
OPAL	Domain-Agnostic	Direct Search
OpenTuner	Domain-Agnostic	Ensemble
MILEPOST GCC	Compiler	Machine Learning
Apollo	GPU kernels	Decision Trees

Main Issues

- These approaches assume:
 - A large number of function evaluations
 - Search space "smoothness"
 - Good solutions are reachable
- After optimizing:
 - Learn nothing about the search space
 - Can't explain why optimizations work

APPLYING DESIGN OF EXPERIMENTS TO AUTOTUNING

Our Approach

Using efficient experimental designs to overcome issues related to exponential growth, geometry, and measurement time

Design Requirements

- Support a large number of factors (Exponential Growth)
- Support continous and discrete factors (Geometry)
- Minimize function evaluations (Measurement Time)

Main Design Candidates

Screening Designs:

- Estimate main effects
- Aim to minimize runs
- Assume interactions are negligible

Mixed-Level Designs:

- Factors have different number of levels
- Many optimality criteria

SCREENING DESIGNS

A Plackett-Burman screening design for 7 2-level factors:

Run	Α	В	С	D	Е	F	G
1	1	-1	1	-1	-1	1	1
2	1	1	1	-1	1	-1	-1
3	-1	1	-1	-1	1	1	1
4	-1	1	1	1	-1	1	-1
5	1	-1	-1	1	1	1	-1
6	1	1	-1	1	-1	-1	1
7	-1	-1	1	1	1	-1	1
8	-1	-1	-1	-1	-1	-1	-1

Screening Designs

Plackett-Burman designs for 2-level factors:

- Orthogonal arrays of strength 2
- Estimate the main effects of n factors with n + 1 runs

Construction:

- For n + 1 multiple of 4
- Identical to a fractional factorial design if
 n + 1 is a power of two

LOOKING AT DATA: CUDA COMPILER FLAGS

CUDA Compiler Flags

- Rodinia Benchmark
- 15 factors, few with multiple levels
- 10⁶ combinations
- 1~10s to measure
- Screening Experiment:
 - 15 "2-level" factors
 - 4 "dummy" factors

MIXED-LEVEL DESIGNS

A multi-level design for 1 2-level factor and 3 3-level factors:

Run	Α	В	С	D
1	1	1	1	3
2	1	1	2	1
3	1	1	3	2
4	1	2	1	2
5	1	2	2	3
6	1	2	3	1
7	1	3	1	1
8	1	3	2	2
9	1	3	3	3
10	2	1	1	1
11	2	1	2	2
12	2	1	3	3
13	2	2	1	3
14	2	2	2	1
15	2	2	3	2
16	2	3	1	2
17	2	3	2	3
18	2	3	3	1
_				_

Mixed-Level Designs

Strategy 1: Contractive Replacement

- Find specific sets of k-level columns of a design
- Contract the set into a new factor with more levels
- Maintain orthogonality of the design

Strategy 2: Direct Construction

Directly generate small mixed-level designs by solving Mixed Integer Programming problems

LOOKING AT DATA: FPGA COMPILER PARAMETERS

FPGA Compiler Parameters

- CHStone Benchmark
- 141 factors, most with multiple levels
- 10¹²⁸ combinations
- 1~10min to measure
- Multiple objectives
- Search with Meta-Heuristics:
 - Unstructured data difficults analysis
 - We are working on obtaining more data

PERSPECTIVES

Perspectives

- Short term:
 - Study small, balanced, orthogonal multi-level designs for large numbers of factors
 - Iteratively drop least significant factors with user input
- Long term:
 - Use such designs to autotune industrial-level FPGA applications
 - Provide an autotuning shared library to applications

Takeaway

Target Scenario: FPGA Compiler Parameters

- Large search space
- Large measurement time
- Factors with multiple levels

Our Approach

Using efficient experimental designs to overcome issues related to exponential growth, geometry, and measurement time

Main Design Candidates

Screening & Mixed-Level designs

AUTOTUNING: A DESIGN OF EXPERIMENTS APPROACH

Pedro Bruel

phrb@ime.usp.br

Journée au Vert POLARIS, March 2018