

Tugas Mandiri 7

Pengantar Sistem Digital

2023-2024 Gasal

MIF, AFK

Petunjuk Pengerjaan

- Kerjakan dengan tulisan tangan.
- Tuliskan Nama, Kelas, dan NPM pada setiap lembar jawaban.
- Tuliskan penjelasan dari cara mendapatkan jawaban tersebut.
- Tugas mandiri dikumpulkan Kamis, 23 November 2023 pukul 23.59 pada slot yang sudah disediakan di SCELE.
- Penalti sebesar 2 poin akan dikenakan untuk keterlambatan setiap menit.
 Contoh: telat 5 menit, maka dikenakan penalti sebesar 10 poin. Jika terlambat selama > 50 menit, tugas mandiri tidak akan dinilai.

Pengumpulan Submisi

Kumpulkan jawaban dengan format PDF *file*. Hasil pekerjaan di-*scan* atau difoto dan dimasukan ke dalam satu *file* berformat .pdf.

Berikut format penamaan file:

Contoh:

• TM7_MIF_2306123456_MuhammadIrfanFirmansyah.pdf

Format penamaan file yang salah akan diberikan penalti sebesar 5 poin.

Rilis - 16/11/2023

- 1. (16 poin) Jawablah pertanyaan-pertanyaan berikut:
 - a. (2 poin) Jelaskan apa yang dimaksud dengan register?
 - b. (2 poin) Jelaskan mengapa flip-flop digunakan untuk membuat sebuah register?
 - c. (2 poin) Jelaskan apa yang dimaksud dengan microoperations?
 - d. (10 poin) Dalam sistem digital, microoperations pada umumnya dibagi menjadi 4 tipe, jelaskan masing-masing tipe microoperations berikut dan berikan contohnya dalam bentuk Register Transfer Language:
 - I. Transfer Microoperations
 - II. Arithmetic Microoperations
 - III. Logic Microoperations
 - IV. Shift Microoperations
- 2. (20 poin) Diberikan tiga register berukuran 8-bit **R0**, **R1** = 0100 0101 dan **R2** = 1101 0111, tentukan nilai **R0** untuk masing-masing microoperation di bawah ini

a.
$$R0 \leftarrow R1 + \overline{R2} + 1$$

b.
$$R0 \leftarrow \overline{R1 \wedge R2}$$

c.
$$R0 \leftarrow slR1$$

d.
$$R0 \leftarrow \overline{R1} \oplus \overline{R2}$$

e.
$$R0 \leftarrow asr R2$$

- 3. (24 poin) Diberikan tiga register berukuran 8-bit dengan keadaan awal sebagai berikut:
 - $R_A = 1010 \ 0101$
 - $R_R = 1100 \ 1100$
 - $R_{c} = 01101001$

Selanjutnya, akan dijalankan secara berurutan 6 microoperations sebagai berikut:

a.
$$R_A \leftarrow \overline{R_A} + \overline{R_C}$$

b.
$$R_{B} \leftarrow cir \overline{R_{B}}$$

$$\mathbf{c.} \ \ R_{\mathcal{C}} \leftarrow R_{\mathcal{B}} \oplus R_{\mathcal{C}}$$

$$\text{d. } R_{A} \leftarrow R_{A} + \overline{R_{C}} + 1$$

e.
$$R_B \leftarrow \overline{R_B \vee \overline{R_C}}$$

$$\text{f.} \quad R_{\mathcal{C}} \leftarrow \overline{\overline{R_{\mathcal{B}}} \oplus \overline{R_{\mathcal{C}}}}$$

Tuliskanlah isi dari setiap register setelah masing-masing microoperation dilakukan dan jelaskan juga bagaimana cara mendapatkannya secara singkat.

- 4. (40 poin) Diberikan register A, input B, dan control input Cx dan Cy.
 - a. (10 poin) Ubahlah kode python di bawah ini menjadi register transfer statements!

```
if Cx == 1:
    if Cy == 0:
        A = ~A | B
    else:
        A = ~B
else:
    if Cy == 0:
        A = A ^ B
    else:
        A = ~(A & B)
```

Notes:

- ~ adalah operasi bitwise NOT
- adalah operasi bitwise OR
- & adalah operasi bitwise AND
- adalah operasi bitwise XOR
- b. (30 poin) Buatlah sebuah state table satu dimensi berdasarkan register transfer yang sudah didefinisikan pada bagian a! (lanjutkan tabel sesuai kebutuhan)

Control Input		Present State	Input	Next State
Сх	Су	A(t)	B(t)	A(t+1)
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
•••	•••	•••	•••	•••