Pre-LAB: Dehnbare Stoffe, Team 4

Justus Weyers, Milena Mensching

11. November 2022

1 Hookesches Gesetz

Das Hookesche Gesetz beschreibt die elastische Verformung dehnbarer Stoffe durch eine Kraft. Bei den Körper/ Stoff handelt es sich beispielsweise um eine Feder. Die Spannkraft F ist dabei proportional zur Längenänderung Δx .

$$\Rightarrow F \sim \triangle x$$
$$F = -k * \triangle x$$

2 Annahmen beim Hookeschen Modell

- Vernachlässigung von Energieumwandlung (z.B.: durch Reibung)
- Der Stoff muss dehnbar sein, die Elastizitätsgrenze darf jedoch nicht überschritten werden.

3 Experimentelle Ermittlung der Federkonstante

Die Federkonstante einer idealen Feder kann durch einen Zugversuch ermittelt werden. Dabei wird ein (im besten Fall geeichtes) Gewicht an eine befestigte, senkrecht hängende Feder gehangen (Gewichtskraft F_G wirkt). Die Längenveränderung wird mit Hilfe einer geeigneten Skala (wiederholt) gemessen.

$$F_G = F_k$$

$$|m * g| = |-k * \triangle \bar{x}|$$

$$\Rightarrow k = \frac{m * g}{k * \triangle \bar{x}}$$

4 Messunsicherheiten

mehrere Messungen	einmalige Messung
Standardabweichung des Mittelwerts $(\sigma_{\bar{x}})$	Ablesefehler (u_{skala})
evtl. Unsicherheit aus Gewichtsmessung (u_G)	evtl. Unsicherheit aus Gewichtsmessung (u_G)
Formeln:	
u_G abhängig von Art der Messung	u_G abhängig von Art der Messung
Mittelwert: $\bar{x} = \frac{1}{n} \sum_{i}^{n} x_i$	$u_{skala} = \frac{a}{2\sqrt{6}}$
Standardabweichung: $\sigma = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$	
Standardabweichung des Mittelwerts: $\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$	