AI 한국어 III TITION

Team | forAlgner 21기 강서연, 20기 윤시호, 20기 이우진

CONTENTS

문제 정의 및 해결 방안 Translation-based Approach

Translation-free Approach

결과 분석 및 향후 계획

Domain Adaptation

• 정형 데이터

- (Source) A 생산 라인의 품질 예측 모델을
- o (Target) B 생산 라인에 Domain Adapatation

• 이미지 데이터

- (Source) 실제 사진에 대한 segmentation 모델을
- (Target) 그림 이미지에 Domain Adaptation

• 자연어 데이터

- (Source) 뉴스 기사 요약 모델을
- (Target) 법률 문서에 Domain Adaptation

Project

・목표

네이버 쇼핑 리뷰 텍스트 긍정 / 부정 감성 이진 분류

- 데이터
 - 영어 텍스트 데이터(Labeld): IMDb, SST, Dynasent
 - 한국어 텍스트 데이터(Unlabeld): 네이버 쇼핑 리뷰 텍스트 데이터
- 제약 사항
 - 0.5B 규모 이상의 고성능 사전 학습 모델 사용 금지

Learning with MMD loss

- MMD(Maximum Mean Discrepancy)
 - <u>두 확률분포의 거리를 나타내는 지표</u>
 - Loss로 사용 시, 두 데이터의 latent space를 정렬시킬 수 있음

$$ext{MMD}^2(P,Q) = rac{1}{m^2} \sum_{i=1}^m \sum_{j=1}^m k(x_i,x_j) + rac{1}{n^2} \sum_{i=1}^n \sum_{j=1}^n k(y_i,y_j) - rac{2}{mn} \sum_{i=1}^m \sum_{j=1}^n k(x_i,y_j),$$

where
$$x_i \sim P, \, y_j \sim Q$$

여기서 커널은 Gaussian 커널을 사용

Learning with MMD loss

- Objective
 - o Source(한국어 번역, IMDb)와 Target(한국어, 네이버 쇼핑)의 embedding representation을 정렬
- Embedding Model
 - klue/bert-base
- Data
 - 한국어 번역 데이터(Labeled): Translated IMDb(20K)
 - 한국어 데이터(Unlabeled): 네이버 쇼핑 리뷰(20K)
- Training
 - Embedding + MLP Classifier
 - $\circ Total\ Loss = \mathcal{L}_{BCE} + \beta\ \mathcal{L}_{MMD}$

- Multi lingual direct (linguistic + field diff.)
 - Multi lingual embedding(Fix) + MLP Classifier
 - 영어 데이터로 학습
- Translation direct (field diff.)
 - Korean embedding + MLP Classifier
 - 번역 데이터로 학습
- Rich-resource case (Ideal)
 - Korean embedding + MLP Classifier
 - 네이버 쇼핑 데이터(Labeled, 20K)로 학습
- Low-resource case
 - Korean Embedding + MLP Classifier
 - 네이버 쇼핑 데이터(Labeled, 2K)로 학습

	Accuracy	F1-Score	AUC-ROC
Multi lingual direct	0.7948	0.8147	0.8949
Translation direct	0.8409	0.8393	0.9368
Rich-resource case	0.9316	0.9327	0.9771
Low-resource case	0.9240	0.9239	0.9684
With MMD	<u>0.9078</u>	<u>0.9078</u>	<u>0.9613</u>

2-stage pipeline

1) DANN (Domain-Adversarial Neural Network)

2) Free-Match

- Domain invariant feature 학습
- 소스 도메인과 타겟 도메인의 분포를 특징 공간 상에서 정렬
- 도메인 간의 격차를 1차적으로 해소

- 타겟 도메인 특화 성능 최적화
- 사전에 정렬된 모델을 기반으로 레이블 없는 타겟 데이터를 활용 (Semi-Supervised Learning; SSL)

DANN

Adversarial Learning을 통해 Domain invariant feature를 학습

- Feature Extractor (xlm-roberta-base): 입력을 저차원 feature 벡터로 매핑
- Sentiment Classifier: feature 벡터를 기반으로 감성 분석 수행
- Domain Discriminator: feature 벡터가 소스 도메인에서 왔는지, 타겟 도메인에서 왔는지 구별

DANN

Sentiment Classifier

Source 데이터의 레이블을 정확히 예측하도록 학습 VS

Domain Discriminator

Source와 Target을 최대한 잘 구별하도록 학습

$$Total\ Loss = \mathcal{L}_{sentiment} + \lambda\ \mathcal{L}_{domain}$$

DANN

Feature Extractor 감정 분류기 + 도메인 판별기 혼란이라는 두 가지 목표를 동시에 학습 (gradient reversal layer 사용)

- 도메인 구분이 불가능한 feature 생성
- 도메인 정보가 제거된, 순수하게 분류 작업에만 유용한 feature를 생성

$$Total\ Loss = \mathcal{L}_{sentiment} + \lambda\ \mathcal{L}_{domain}$$

Free - Match

DANN은 소스 도메인에서 학습된 지식을 정보가 없는 타겟 도메인으로 성공적으로 adaptation할 수 있으나, 도메인 정렬이 반드시 타겟 도메인에서의 <u>최고 성능</u>으로 직결되지는 않음

타겟 도메인 데이터 자체의 구조를 활용해 성능을 한 단계 더 끌어올리기 위한 Free-Match 도입!

Free - Match

Key Principle

Semi-Supervised Learning(SSL)에서 자기 적응 임계값 (SAT) 활용

- Semi-Supervised Learning(SSL)
 - 소수의 레이블 데이터와 다수의 레이블 없는 데이터를 함께 사용해 모델을 학습하는 방법
- Pseudo-Labeling
 - 레이블 없는 데이터에 대해서, 모델 스스로 생성한 예측값을 임시 정답(Pseudo-Label)으로 사용

Free - Match

Fix-Match

Fixed Threshold

모델의 예측 신뢰도가 사전에 정의된 값(예: 0.95)을 넘을 때만 유사 레이블로 인정하고 학습에 사용

Free-Match

Self Adaptation Threshold

threshold값을 고정하지 않고, 모델의 학습 상태에 따라 매 순간 동적으로 조절

Free - Match

Global Confidence

모델의 전반적인 예측 confidence.

학습이 진행될수록 threshold의 기본값을 상향 조정

• Local Confidence

클래스별 예측 분포.

모델이 어려워하는 클래스의 threshold는 낮추고,

자신있는 클래스의 threshold는 높여

학습 기회를 공평하게 부여

Free - Match

Exponential Moving Avaerage (EMA)

- SAT를 안정적으로 계산하기 위해 과거 추세 반영
- 개별 EMA 값 계산 방식

$$S_t = \alpha \cdot S_{t-1} + (1 - \alpha) \cdot V_t$$

- → a를 통해 과거 정보를 얼마나 반영할 것인지 조절
- global confidence와 local confidence 각각에 대해 EMA 적용
- → Threshold가 개별 batch에 의존하는 대신, 장기적인 추세에 따라 안정적으로 변화

Free - Match

Algorithm

1. Pseudo Labeling

레이블 없는 타겟 데이터에 대해 prediction → 가장 높은 확률의 클래스를 pseudo label로 선정

2. SAT Calculating

global confidence와 local confidence를 업데이트하여, 클래스별 동적 threshold 계산

3. Masking

각 데이터의 예측 신뢰도가 동적 threshold를 넘을 경우에만 학습에 사용

4. Backpropagation

$$Total\ Loss = \mathcal{L}_{SL} + \lambda\ \mathcal{L}_{SSL}$$

	Accuracy	F1-score	AUC-ROC
Multi lingual direct	0.7948	0.8147	0.8949
Rich-resource case (한국어 모델)	0.9316	0.9327	0.9771
DANN	0.8648	0.8644	0.9354
DANN + Free-Match	<u>0.9064</u>	<u>0.9064</u>	<u>0.9451</u>
With MMD	0.9078	0.9078	0.9613

DANN 학습 후

Free-Match 학습 후

04. 결과 분석 및 향후 계획

결과 분석

- DANN + FreeMatch 파이프라인
 - DANN을 통해 도메인 간 차이를 해소하여 안정적인 학습 기반 마련
 - FreeMatch가 타겟 도메인 데이터의 특성을 학습하여 성능 최적화
- Low resource 상황에서 레이블링 비용없이 타겟 도메인에 대한 고성능 모델 구현 가능
- 다양한 Domain Adaptation (DA) 문제에 적용 가능한 실용적인 DA 프레임워크

04. 결과 분석 및 향후 계획

향후 계획

- 테스크 확장
 - 이진 분류 → 다중 클래스 감성 분류 (1~5점 별점 기반)
 - 감정 범주 다양화: 기쁨 / 놀람 / 분노 / 슬픔 등으로 확장 가능
- 방법론 개선
 - 적대 학습의 불안정성 개선: Spectral Normalization 등의 정규화 추가

