GETTING TO KNOW DATA (PART I)

SUPAPORN ERJONGMANEE

DEPARTMENT OF COMPUTER ENGINEERING FACULTY OF ENGINEERING KASETSART UNIVERSITY

1

TYPES OF DATA SETS

- Record
 - Relational records
 - Data matrix, e.g., numerical matrix, crosstabs
 - Document data: text documents: term-frequency vector
 - Transaction data

	team	coach	pla y	ball	score	game	wi n	lost	timeout	season
Document 1	3	0	5	0	2	6	0	2	0	2
Document 2	0	7	0	2	1	0	0	3	0	0
Document 3	0	1	0	0	1	2	2	0	3	0

Source:

J. Han, M. Kamber and J. Pei, "Chapter 2 Know Your Data" in Data Mining: Concepts and Techniques, Morgan Kaufmann, July 2011.

TYPES OF DATA SETS

- Graph and network
 - World Wide Web
 - Social or information networks
 - Molecular Structures

J. Han, M. Kamber and J. Pei, "Chapter 2 Know Your Data" in Data Mining: Concepts and Techniques, Morgan Kaufmann, July

3

TYPES OF DATA SETS (CONT.)

- Ordered
 - Video data: sequence of images
 - Temporal data: time-series
 - Sequential Data: transaction sequences
 - Genetic sequence data
- Others
 - Spatial data: maps
 - Image data
 - Video data

https://mesquiteproject.wikispaces.com/file/view/DNAMatrix.gif/518627818/DNAMatrix.gif

Source (edited):

J. Han, M. Kamber and J. Pei, "Chapter 2 Know Your Data" in Data Mining: Concepts and Techniques, Morgan Kaufmann, July 2011.

Data Objects

- Database columns -> attributes.
- Database rows -> data objects
 - Data sets are made up of data objects.
 - Also called samples , examples, instances, data points, objects, tuples.

 Data Objects
 - A data object represents an entity.
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses

Source (edited):

J. Han, M. Kamber and J. Pei, "Chapter 2 Know Your Data" in Data Mining: Concepts and Techniques, Morgan Kaufmann, July 2011.

5

Attributes

- Attribute (or dimensions, features, variables):
 - a data field, representing a characteristic or feature of a data object.
 - E.g., customer_ID, name, address
- Types:
 - Qualitative data
 - Quantitative data

Attributes

Samples

Source (edited):

J. Han, M. Kamber and J. Pei, "Chapter 2 Know Your Data" in Data Mining: Concepts and Techniques, Morgan Kaufmann, July 2011.

Data

- A set of values
- Type of data:
 - 1. Qualitative: characteristic or description data
 - Example: color, gender, country
 - 2. Quantitative: numerical data
 - Example: height, weight, temperature, area, scores

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 7

Department of Computer Engineering
Kasetsart University

7

Qualitative Data

- Also call categorical data
- Characteristic or description data
- Immeasurable
- Intervals between values may not be the same
- Can be separated further into
 - Nominal data, Ordinal Data

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 8

Department of Computer Engineering
Kasetsart University

Nominal Data

- Data separated in classes
 - Classes do not always relate to one another
 - Cannot really sort classes (not in order)
- Example:
 - Gender: male, female
 - Regions: America, Asia, Europe
 - Directions: North, East, West, South

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 9

Department of Computer Engineering
Kasetsart University

9

Nominal Data Example

Image source: https://encrypted-tbn1.gstatic.com/images?q=tbn:ANd9GcSOwQW4R12eGZJo71pTF-dqPJb7gVY8fSqMevQFNWw_3izPp_gi

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 10

Department of Computer Engineering Kasetsart University

Ordinal Data

- Data with ranks
 - Ranks are not actually numerical values (but some can be converted to numbers)
 - Can be sorted
- Immeasurable
- Intervals between values may not be the same
- Example:
 - Size: small, medium, large
 - Satisfaction degree: best, good, poor, worst

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide I I

Department of Computer Engineering
Kasetsart University

11

Ordinal Data Example 124 Responses 98% Customer Satisfaction Very Satisfied 88% Fairly Satisfied 10% Neither Satisfied or 1.5% Dissatisfied Fairly Dissatisfied 0% Very Dissatisfied 0.5% Image source: https://www2.barnsley.gov.uk/media/2624867/Customer%20Satisfaction%20graph,%20page%20content%20for%20detail.jpg Supaporn Erjongmanee Department of Computer Engineering Getting to Know Data fengspe@ku.ac.th Kasetsart University Slide 12

Quantitative Data

- Measurable
- Intervals between values are the same
- Can be separated further into
 - Interval data, Ratio Data

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 13

Department of Computer Engineering
Kasetsart University

13

Interval Data

- Ordered numerical values measured in <u>interval</u> with <u>loose</u> <u>zero</u> point
 - Mostly used differences (addition/subtraction) to compare.
 - Cannot be directly compared in ratio (division/multiplication)
- Example:
 - Temperature
 - Times

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 14

Department of Computer Engineering
Kasetsart University

Ratio Data

- Measurable
- Intervals between values are the same.
- Can be computed using
 - Difference (addition/subtraction)
 - Ratio (multiplication/division)
- Example:
 - Weight, Length, Revenue

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 16

Department of Computer Engineering
Kasetsart University

Ratio Data Example

Heathrow Temperature Forecast

Generated at: 19 Jan 12:00 UTC

Best Forecast 5% Confidence 95% Confidence

Image source: http://www.metraweather.com/~metracom/sites/default/files/Hourly_Forecast_Temperature_Heathrow.png

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 17

Department of Computer Engineering
Kasetsart University

17

Comparison: Type of Data

Comparison

	Nominal	Ordinal	Interval	Ratio
Can order values		✓	✓	✓
Can compute differences of values			✓	✓
Can add or subtract values			✓	✓
Can divide or multiple values				✓
Has fixed zero points				✓

Image source: https://www.mymarketresearchmethods.com/types-of-data-nominal-ordinal-interval-ratio/
Supaporn Erjongmanee Getting to Know Data
fengspe@ku.ac.th Slide 18

Department of Computer Engineering
Kasetsart University

Type of Data (2)

- I. Discrete Data
 - Countable values (positive, zero, negative)
 - Can be either numerical or categorical data
 - Can be finite or infinite sequences
- 2. Continuous Data
 - Specific value in ranges
 - Can be finite or infinite ranges
 - Ranges can be joint or disjoint.

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 19

Department of Computer Engineering
Kasetsart University

19

Questions to Ask about Data

- What are my data?
- What are the attributes of data?
 - For each attribute, what is its type?
 - Quantitative, Nominal, Ordinal, Interval
- Data type affects computation

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 20

Department of Computer Engineering
Kasetsart University

Mode (cont.)

- Be careful when used with continuous data
 - Difficult to specify detailed value (e.g., 65.3)
- Avoid if mode is not with the majority

Source: [2] Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 23

Department of Computer Engineering Kasetsart University

23

Median

- Middle value in the sorted data
- Can be used with outliers or skewed data

Let n = data size
median =
$$(\frac{n+1}{2})^{th}$$
 value

Median =
$$\frac{7+8}{2} = \frac{15}{2} = 7.5$$

Source: [2]

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 24

Department of Computer Engineering
Kasetsart University

Mean

- Most commonly used to measure of center
- Can be used for both discrete and continuous data

 $Mean = \frac{\sum_{i=1}^{n} x_i}{n}$

- Every value takes part in calculation
- Often stand for <u>typical value</u>
 - Located at center
- Minimize error in predicting other values

Source: [2]
Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 25

Department of Computer Engineering
Kasetsart University

25

Additional Measurement of Central Tendency

- Harmonic mean
 - Generally use for average rate
- Geometric mean
 - Generally, use for average compound growth rate

Geometric mean =
$$\sqrt[n]{a_0 a_1 a_2 \dots a_{n-1}}$$

Harmonic mean = $\frac{1}{\sum_{i=1}^{n} \frac{1}{x_i}}$

$$\mathbf{a}_0 = \mathbf{I} + \mathbf{r}_0$$

$$a_1 = 1 + r_1$$

•••

$$a_{n-1} = | +r_{n-1}|$$

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 26

Department of Computer Engineering Kasetsart University

Time to pick suitable measure of central tendency

Recommending....

Type of Data	Measure of Central Tendency
Nominal, Categorical	Mode
Ordinal	Median
Interval & Ratio (not skewed)	Mean
Interval & Ratio (skewed)	Median

Source: [2]
Supaporn Erjongmanee
fengspe@ku.ac.th

Getting to Know Data Slide 27

Department of Computer Engineering
Kasetsart University

27

Range

- Simplest form of variability measurements
- Beware of outliers

Range = Max - Min

12, 25, 27, 29, 36, 38, 40, 43, 50, 54, 62 Range = 62 - 12 = 50

Image source: http://www.regentsprep.org/regents/math/algtrig/ats I /Range.gif

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 32

32

Variance & Standard Deviation

- Average difference (squared distance) between all data and the mean
- Fit for
 - Continuous data
 - Quantitative data, not categorical data
- Avoid if data are skewed or have outliers
- Unit of variance is squared
- Standard deviation = $\sqrt{variance}$

Source: [4]
Supaporn Erjongmanee
fengspe@ku.ac.th

Getting to Know Data Slide 34

Population variance

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \mu)^2}{n}$$

Sample variance

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1} = \frac{(\sum_{i=1}^{n} x_{i}^{2}) - n\bar{x}^{2}}{n-1}$$

Sample variance (divided by n -1) is unbiased estimate of population variance

Department of Computer Engineering
Kasetsart University

34

Standard Deviation for Normal Data

How does standard deviation tell us about spread of normal data?

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 35

Department of Computer Engineering

Kasetsart University

Coefficient of Variation

Ratio between standard deviation and mean

$$cv_{student} = \frac{s}{\bar{x}} = \frac{6.22}{174.54} = 0.0356$$

VS.

$$cv_{elephant}$$
= 15.6

Population

Coefficient of variation $=\frac{\sigma}{\mu}$

Sample

Coefficient of variation = $\frac{s}{\bar{x}}$

Elephants have more variability in height than student

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 36

Department of Computer Engineering Kasetsart University

36

Mean Absolution Deviation

 Average absolute distance between all data and the mean

Mean absolution deviation $=\frac{\sum_{i=1}^{n}|x_i-\bar{x}|}{n}$

Image source: http://www.mathsisfun.com/data/images/mean-deviation.gif

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 37

Department of Computer Engineering
Kasetsart University

SD vs. IQR

Comparison between normal distribution and box plots

Image source: https://upload.wikimedia.org/wikipedia/commons/thumb/1/1a/Boxplot_vs_PDF.svg/250px-Boxplot_vs_PDF.svg.png

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 40

Department of Computer Engineering
Kasetsart University

40

Quartile in Excel

Quartile.exc vs. Quartile.inc

Source: http://datapigtechnologies.com/blog/index.php/why-excel-has-multiple-quartile-functions-and-how-to-replicate-the-quartiles-from-r-and-other-statistical-packages/

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 41

Department of Computer Engineering
Kasetsart University

Which Measurement of Variability to Use?

- Range Easiest to use. Not suitable for data with outliers
- Sample variance
- Sample standard deviation

- Most commonly-used

- Inter quartile range Good for data with outliers
- Coefficient of variation Tell more story about the data: how std is compared to the mean No unit

Sensitive when mean $\rightarrow 0$ Not suitable for multiple replicates of data

Supaporn Erjongmanee Getting fengspe@ku.ac.th

Getting to Know Data Slide 42 Department of Computer Engineering

Kasetsart University

42

OUTLIERS

- Out-of-the-norm data
- Threshold is needed to cut outliers

Source: [2]
Supaporn Erjongmanee
fengspe@ku.ac.th

Getting to Know Data Slide 43

Department of Computer Engineering Kasetsart University

Outliers

Outliers can be determined from IQR or SD

If data value > Q3 + 1.5IQR or data value < Q1 - 1.5IQR, we consider such value to be outlier.

If data value > mean + 3SD or data value < mean -3SD, we consider such value to be outlier.

 $Image\ source: https://upload.wikimedia.org/wikipedia/commons/thumb/I/Ia/Boxplot_vs_PDF.svg/250px-Boxplot_vs_PDF.svg.png$

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 44

Department of Computer Engineering
Kasetsart University

44

Are descriptive statistics enough?

- Descriptive statistics are not answer to everything
- Be careful of outlier and skewed data
- Always GRAPH your data
 - Histogram
 - Boxplot

Image sources: https://www.mathsisfun.com/data/images/histogram.gif http://www.johnquarto.com/wp-content/uploads/2013/09/Boxplot-PartyPeopleAll.png

Department of Computer Engineering Kasetsart University

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 45

Basic Data Visualization

- Histogram
- Boxplot
- Scatter plot

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 46

46

Histogram Specific bar graph representing <u>distribution of data</u> x-axis: bins of data values y-axis: <u>frequency</u> of data values Example: 854965 638145 [0,1] [2,3] [4,5] Data Value [8,9] [6,7] Image source: https://openclipart.org Supaporn Erjongmanee Department of Computer Engineering Getting to Know Data fengspe@ku.ac.th Slide 47 Kasetsart University

Scatter Plot

To visualize relationship between multiple variables

To measure relationship, we use correlation

Type of relation

Exponential

U-Shaped

Image source: https://support.minitab-express/1/help-and-how-to/graphs/scatterplot/create-the-graph/choose-a-scatterplot/
Supaporn Erjongmanee Getting to Know Data Slide 51

Department of Computer Engineering Kasetsart University

Correlation

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_x \sum_y (x - \mu_x)(y - \mu_y) p(x,y)}{\sigma_X \sigma_Y}$$

Range of ρ_{XY} : $-1 \le \rho_{XY} \le 1$

We use scatter plot to visualize correlation

Positive correlation

Negative correlation

No correlation

Image source: http://www.slideshare.net/AhmedShahid/t-tests-anovas-and-regression Supaporn Erjongmanee Getting to Know Data fengspe@ku.ac.th Slide 52

Department of Computer Engineering Kasetsart University

52

Correlation

$$\rho_{X,Y} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_x \sum_y (x - \mu_x)(y - \mu_y) p(x,y)}{\sigma_X \sigma_Y}$$
Correlation does not imply causation.

Range of $\rho_{X,Y}$: $-1 \le \rho_{X,Y} \le 1$

Correlation tells how two values track each other.

If X increases, how about Y?

Positive correlation Negative correlation No correlation

They may be hidden factor

Image source: http://www.slideshare.net/AhmedShahid/t-tests-anovas-and-regress Supaporn Erjongmanee Getting to Know Data fengspe@ku.ac.th Slide 53

Kasetsart University

Sample Correlation

$$\hat{\rho}_{X,Y} = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{(x-\bar{x})(y-\bar{y})}{s_X s_y} \right)$$

• Range of $\hat{p}_{X,Y}$: $-1 \le \hat{p}_{X,Y} \le 1$

Positive correlation

fengspe@ku.ac.th

Negative correlation

No correlation

Image source: http://www.slideshare.net/AhmedShahid/t-tests-anovas-and-regression
Supaporn Erjongmanee Getting to Know Data

Getting to Know Data Slide 54

Department of Computer Engineering
Kasetsart University

54

Summary

- To first explore data, we can find
 - Outliers
 - Centrality: Mean, Median, Mode
 - Variability: Range, Variance, Standard Deviation, Coefficient of Variation, Mean Absolute Deviation, Interquartile Range
 - Correlation
 - Visualization: Histogram, Boxplot, Scatter Plot

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 63

Department of Computer Engineering Kasetsart University

Reference

- I. http://www.socialresearchmethods.net/kb/sampprob.php
- https://statistics.laerd.com/statistical-guides/measures-central-tendency-mean-modemedian.php
- 3. http://blog.minitab.com/blog/michelle-paret/using-the-mean-its-not-always-a-slam-dunk
- 4. https://statistics.laerd.com/statistical-guides/measures-of-spread-standard-deviation.php
- 5. J.L. Devore and K.N.Berk, Modern Mathematical Statistics with Applications, Springer, 2012
- 6. https://support.office.com/en-sg/article/Add-change-or-remove-a-trendline-in-a-chart-072d130b-c60c-4458-9391-3c6e4b5c5812

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 65

Department of Computer Engineering
Kasetsart University

65

References

- Effectively Communicating Numbers: Selecting the Best Means and Manner of Display, Stephen Few, Principal, Perceptual Edge, 2005
- A.L. Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison-Wesley, 1994.

Supaporn Erjongmanee fengspe@ku.ac.th

Getting to Know Data Slide 66

Department of Computer Engineering Kasetsart University