Unified GPU Programming in Julia: Vendor Abstraction and High-Level Control with KernelAbstractions

Julian Samaroo
Rabab Alomairy
with material by Valentin Churavy

Outline

- Results to show the power of Julia.
- How to program a GPU
- Matrix Multiplication Example (CUDA C++)
- Matrix Multiplication Example (CUDA.jl, AMDGPU.jl, oneAPI.jl and Metal.jl)
- Matrix Multiplication Example (KernelAbstractions.jl)
- 2D Heat Diffusion Simulation Using Stencil Computation in Julia
- 2D Gray-Scott Reaction-Diffusion Model Using Stencil Computation in Julia

2D Heat Diffusion Simulation in Julia

- The grid size is 10240x10240 and number of time steps 2000.
- Comparing performance of four Julia parallelism paradigms:

- Multithreading

- Blue bars correspond to CPU backend
- Green bars correspond to CUDA backend

Single A100 GPU in Perlmutter

2D Heat Diffusion Simulation in Julia

- · Performance gains
 - GPU faster than CPU
- Flexibility vs. Performance
 - CUDA is great
 - KernelAbstractions.jl is flexible with slight performance trade-off
- Ease of Use
 - Seamless integration
 - Keeping readability and maintainability

Single A100 GPU in Perlmutter

How to program a GPU

- Single-Instruction-Multiple-Threads (SIMT).
- SIMT is designed to allow GPUs to execute the same instruction across multiple threads
- Programming perspective is a thread
- Threads are grouped into blocks/warps
- Blocks can then be grouped into grids
- Threads within block can access shared memory and synchronize as needed
- GPUs are designed to maximize throughput.
- Transferring data from the CPU to the GPU is a necessary step and can be a bottleneck

SIMT Programming model

• Global thread ID: the position of the thread within block (threadIdx), the position of the block within the grid (blockIdx), and block dimension (blockDim)

Existing GPUs and their Software

Hardware	NVIDIA	AMD	Intel	Apple
Software	CUDA	ROCm	OneAPI	Metal

NVIDIA Ampere A100

- An NVIDIA A100 GPU contains 108 Streaming Multiprocessors (SMs)
- It has 40 MB L2 cache, which helps reduce latency
- It supports up to 80 GB of HBM2 memory with a maximum memory bandwidth of 2039 GB/s, essential for handling large data and reducing data transfer.
- It contains in total 6912 FP32/INT32 CUDA cores and 3456
 FP64 CUDA cores

NVIDIA H100: offers up to 30 TFLOPs of FP64 performance, which is over 3x the FP64 performance of the A100

GB200 Grace Blackwell Superchip: Provides 90
TFLOPS of FP64 performance

ASCI White supercomputer

Lawrence Livermore National Laboratory

Top #1 in 2007, 7.9 TFLOPS

NVIDIA A100 TENSOR CORE GPU SPECIFICATIONS (SXM4 AND PCIE FORM FACTORS)

	A100 40GB PCle	A100 80GB PCle	A100 40GB SXM	A100 80GB SXM	
FP64	9.7 TFLOPS				
FP64 Tensor Core	19.5 TFLOPS				
FP32	19.5 TFLOPS				
Tensor Float 32 (TF32)	156 TFLOPS 312 TFLOPS*				
BFLOAT16 Tensor Core	312 TFLOPS 624 TFLOPS*				
FP16 Tensor Core	312 TFLOPS 624 TFLOPS*				
INT8 Tensor Core	624 TOPS 1248 TOPS*				
GPU Memory	40GB HBM2	80GB HBM2e	40GB HBM2	80GB HBM2e	
GPU Memory Bandwidth	1,555GB/s	1,935GB/s	1,555GB/s	2,039GB/s	
Max Thermal Design Power (TDP)	250W	300W	400W	400W	
Multi-Instance GPU	Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB	Up to 7 MIGs @ 5GB	Up to 7 MIGs @ 10GB	
Form Factor	PCIe		SXM		
Interconnect	NVIDIA® NVLink® Bridge for 2 GPUs: 600GB/s **		NVLink: 600GB/s PCIe Gen4: 64GB/s		
	PCle Gen4: 64GB/s			Service -	
Server Options	Partner and NVIDIA- Certified Systems™ with		NVIDIA HGX™ A100- Partner and NVIDIA-		
ntory	1-8 GPUs		Certified Systems with 4,8, or 16 GPUs		
				(™ A100 with PUs	

^{*} With sparsity

³

Differences between a CPU and a GPU

- Handles all tasks independently
- Able to rapidly switch between tasks
- Can handle complex tasks well

- Relies on CPU for instructions
- Performs same tasks multiple times very fast
- Handles simple tasks extremely well

Vector Addition Example

CPU code

```
GPU (CUDA) kernel
```

```
vector_size = 1024
a = rand(1:4, vector_size)
b = rand(1:4, vector_size)
c = zeros(Int, vector_size)

function vadd(c, a, b)
    for i in 1:vector_size
        c[i] = a[i] + b[i]
    end
    return
end
```

```
da = CuArray(a)
db = CuArray(b)
dc = CUDA.zeros(Int, size(a))
function vadd(c, a, b)
 i = threadIdx().x + (blockIdx().x - 1) *
blockDim().x
    c[i] = a[i] + b[i]
    return
end
      threads=length(a) vadd(dc, da, db)
```

Enhanced GPU Vector Addition

• threadIdx().x + (blockIdx().x - 1) * blockDim().x = 3 + (3-1) * 256 = 515Gets the global index of the thread in a multidimensional grid gridDim().x = 2048

```
threadIdx().x t
```

```
da = CuArray(a)
db = CuArray(b)
dc = CUDA.zeros(Int, size(a))

function vadd(c, a, b)
    i = threadIdx().x + (blockIdx().x - 1) * blockDim().x
    c[i] = a[i] + b[i]
    return
end
@cuda threads=1024 blocks=cld(length(da),1024) vadd(dc, da, db)
```

Matrix Multiplication Example

 Matrix multiplication for computing each element of matrix C from matrices A and B can be written:

$$C_{i,j} = \sum_{k=0}^{l} A_{i,k} * B_{k,j}$$

```
for i in 0:m-1
    for j in 0:n-1
        C[i, j] = 0
        for k in 0:l-1
        C[i, j] += A[i, k] * B[k, j]
        end
    end
end
```


j = 0

Matrix Multiplication Example (CUDA C++)


```
    _global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

void MatMul(const Matrix A, const Matrix B, Matrix C)
        Matrix d A;
 5.
       d_A.width = A.width; d_A.height = A.height;
        size t size = A.width * A.height * sizeof(float);
        cudaMalloc(&d_A.elements, size);
        cudaMemcpy(d A.elements, A.elements, size, cudaMemcpyHostToDevice);
9.
10.
        Matrix d B;
11.
       d B.width = B.width; d B.height = B.height;
12.
        size = B.width * B.height * sizeof(float);
13.
        cudaMalloc(&d B.elements, size);
        cudaMemcpy(d B.elements, B.elements, size, cudaMemcpyHostToDevice);
14.
15.
16.
        Matrix d C;
17.
       d C.width = C.width; d C.height = C.height;
        size = C.width * C.height * sizeof(float);
18.
19.
        cudaMalloc(&d C.elements, size);
20.
21.
        dim3 dimBlock(BLOCK SIZE, BLOCK SIZE);
22.
        dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
23.
        MatMulKernel<<<dimGrid, dimBlock>>>(d A, d B, d C);
24.
25.
        cudaMemcpy(C.elements, d C.elements, size,
26.
                   cudaMemcpyDeviceToHost);
27.
28.
        cudaFree(d A.elements);
29.
        cudaFree(d B.elements):
30.
        cudaFree(d C.elements):
31. }
32.
     global void MatMulKernel(Matrix A, Matrix B, Matrix C)
34. {
35.
        float Cvalue = 0;
36.
        int row = blockIdx.y * blockDim.y + threadIdx.y;
37.
       int col = blockIdx.x * blockDim.x + threadIdx.x;
38.
        for (int e = 0; e < A.width; ++e)
39.
            Cvalue += A.elements[row * A.width + e]
                    * B.elements[e * B.width + col];
40.
41.
        C.elements[row * C.width + col] = Cvalue;
42. }
```


CUDA.jl


```
using CUDA
function MatrixMultiplication!(A,B,C)
    row = (blockIdx().x - 1) * blockDim().x + threadIdx().x
    col = (blockIdx().y - 1) * blockDim().y + threadIdx().y
    sum = zero(eltype(C))
                                                          a = rand(1024, 1024
b = rand(1024, 1024
    if row \langle = size(A, 1) & col < size(B, 2) \rangle
        for i = 1:size(A, 2)
                                             A = CuArray(a)
B = CuArray(b)

Allocate and transfer to GPU
             sum += A[row, i] * B[i, col]
        end
                                                          C = CUDA.zeros(1024, 1024) GPU resident
        C[row, coll] = sum
    end
                                                          threads = (16, 16)
                                                          blocks = (64, 64)
    return
end
                                                          @cuda threads=threads blocks=blocks
                                   Lunch GPU kernel
                                                          MatrixMultiplication!(A, B, C)
                                                          c = Array(C) Allocate and transfer to CPU
```

AMDGPU.jl


```
using AMDGPU
function MatrixMultiplication!(A, B,C)
    row = (workgroupIdx()).x - 1) * workgroupDim().x + workitemIdx().x
    col = (workgroupIdx()).y - 1) * workgroupDim(). y + workitemIdx()).y
    sum = zero (eltype(C))
                                                          a = rand(1024, 1024)
                                                          b = rand(1024, 1024)
    if row \langle = size(A, 1) 8\& col \langle = size(B, 2) \rangle
                                                          A = ROCArray(a)
        for 1 = 1:size(A, 2)
                                                          B = ROCArray(b)
            sum += A[row, i] * B[i, col]
                                                          C = AMDGPU.zeros(1024, 1024)
        end
        C[row, col] = sum
                                                          threads = (16, 16)
    end
                                                          blocks = (64, 64)
    return
                                                          @roc groupsize=threads gridsize=blocks
end
                                                          MatrixMultiplication!(A, B, C)
                                                          c = Array(C)
                                                                                                 15
```

oneAPI.jl and Metal.jl


```
using oneAPI
function MatrixMultiplication!(A,B,C)
    row = get global id(0)
    col = get_global_id(1)
    sum = zero(eltype(C))
    if row \langle = size(A, 1) & col \langle = size(B, 2) \rangle
        for i = 1:size(A, 2)
             sum += A[row, i] * B[i, col]
        end
        C[row, col] = sum
    end
    return
end
```

```
using Metal
function MatrixMultiplication!(A, B,C)
    row, col = thread position in grid 2d()
    sum = zero(eltype(C))
    if row \langle = size(A, 1) & col \langle = size(B, 2) \rangle
        for i = 1:size(A, 2)
             sum += A[row, i] * B[i, col]
        end
        C[row, col] = sum
    end
    return
end
```

iulia gets its Power from Extensible Compiler Design

Language design

Efficient execution

Julia: Dynamism and Performance
Reconciled by Design
Bezanson J. et al
(doi:10.1145/3276490)

Effective Extensible Programming: Unleashing Julia on GPUs

Besard T. et al

(doi:10.1109/TPDS.2018.2872064)

GPUs from different vendors are similar

- 1. All of them are **implicit vector** architectures
- 2. All of them are focused around **kernels**
 - => Programs that are launched on the host, and execute asynchronously on the device

KernelAbstractions.jl provides a shallow portability layer for GPUs from AMD, Intel, Apple and NVIDIA.

```
using CUDA
function gemm! (A,B,C)
   row = (blockIdx().x - 1) * blockDim().x + threadIdx().x
   col = (blockIdx().y - 1) * blockDim().y + threadIdx().y
   sum = zero(eltype(C))
using Metal
function gemm! (A,B,C)
   row, col = thread_position_in_grid_2d()
   sum = zero(eltype(C))
   if row <= size(A, 1) && col <= size(B, 2)</pre>
using AMDGPU
function gemm! (A.B.C)
    row = (workgroupIdx().x - 1) * workgroupDim().x + workitemIdx().x
    col = (workgroupIdx().y - 1) * workgroupDim().y + workitemIdx().y
    sum = zero(eltype(C))
   if row <= size(A, 1) && col <= size(B, 2)</pre>
        for i = 1:size(A, 2)
            @inbounds sum += AΓrow, i] * BΓi, col]
using oneAPI
function gemm! (A,B,C)
    row = get_global_id(0)
    col = get_global_id(1)
    sum = zero(eltype(C))
    if row <= size(A, 1) && col <= size(B, 2)</pre>
         for i = 1:size(A, 2)
             @inbounds sum += A[row, i] * B[i, col]
         end
         @inbounds C[row, col] = sum
    end
    return
end
```



```
using KernelAbstractions
@kernel function MatrixMultiplication kernel!(A, B, C)
    row, col = @index(Global, NTuple)
    sum = zero(eltype(C))
    if row \langle = size(A, 1) & col \langle = size(B, 2) \rangle
     for i = 1:size(A, 2)
          sum += A[row, i] * B[i, col]
     end
         C[row, col] = sum
     end
end
```

19

KernelAbstractions.jl


```
using KernelAbstractions
@kernel function MatrixMultiplication kernel!(A, B, C)
    row, col = @index(Global, NTuple)
    sum = zero(eltype(C))
    if row \langle = size(A, 1) & col \langle = size(B, 2) \rangle
     for i = 1:size(A, 2)
                                           # Allocate and initialize GPU arrays
          sum += A[row, i] * B[i, col]
                                           A = rand!(allocate(Backend, Type, 1024, 1024))
     end
                                           B = rand!(allocate(Backend, Type, 1024, 1024))
         C[row, col] = sum
                                           C = KernelAbstractions.zeros(Backend, Type, 1024, 1024)
     end
                                           # Compile the kernel for this workgroup (block) size
                                           workgroupsize = (16, 16)
end
                                           kernel! = MatrixMultiplication kernel!(Backend, workgroupsize)
                                           # Launch the kernel, and synchronize the current stream
                                           kernel!(A, B, C, ndrange=(size(C)))
                                           KernelAbstractions.synchronize(Backend)
                                                                                                     20
```

Kernel language — @kernel

KernelAbstractions defines a language valid within @kernel definitions

- @Const: Declares an argument to not be aliased or written to
- @index: Which kernel element are we operating upon?
- @localmem: Allocate local (shared) memory
- @synchronize: Synchronize warps/wavefronts
- @private: Allocate private memory for a lane
- @print: Unified printing of device-side data

-

Kernel language: Indexing

Indexing Method:

- @index(Global, Kind): Global index for accessing input arguments
- @index(Group, Kind): Which work-group does the lane belong to?
- @index(Local, Kind): Which item inside a work-group is this lane?

Indexing Kind:

- @index(Locale, Cartesian): Index as a CartesianIndex
- @index(Locale, NTuple): Index as a tuple
- @index(Locale, Linear): Index as a scalar

Thankyou