Heroes Of Pymoli Data Analysis

- Of the 1163 active players, the vast majority are male (84%). There also exists, a smaller, but notable proportion of female players (14%).
- Our peak age demographic falls between 20-24 (44.8%) with secondary groups falling between 15-19 (18.60%) and 25-29 (13.4%).

Note

 Instructions have been included for each segment. You do not have to follow them exactly, but they are included to help you think through the steps.

Out[1]:

	Purchase ID	SN	Age	Gender	Item ID	Item Name	
0	0	Lisim78	20	Male	108	Extraction, Quickblade Of Trembling Hands	3.53
1	1	Lisovynya38	40	Male	143	Frenzied Scimitar	1.56
2	2	Ithergue48	24	Male	92	Final Critic	4.88
3	3	Chamassasya86	24	Male	100	Blindscythe	3.27
4	4	Iskosia90	23	Male	131	Fury	1.44

Player Count

· Display the total number of players

0 576

Purchasing Analysis (Total)

- Run basic calculations to obtain number of unique items, average price, etc.
- Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
In [3]:
           1 items = purchase_data['Item ID'].unique()
            2 items_no = len(items)
           3 avg_price = purchase_data["Price"].mean()
              purchase_no = purchase_data['Purchase ID'].count()
              total_rev = purchase_data['Price'].sum()
              analysis_df = pd.DataFrame({"Number of Unique Items":[items_no],
                                                 "Average Price":avg_price,
           8
                                                "Number of Purchases":purchase_no,
                                                "Total Revenue":total_rev
           9
          10
              analysis_df["Average Price"] = analysis_df["Average Price"].map("${:,.2f}".format)
analysis_df["Total Revenue"] = analysis_df["Total Revenue"].map("${:,.2f}".format)
          13
              analysis df
          14
```

Out[3]:

	Number of Unique Items	Average Price	Number of Purchases	Total Revenue
0	183	\$3.05	780	\$2,379.77

Gender Demographics

- Percentage and Count of Male Players
- · Percentage and Count of Female Players
- · Percentage and Count of Other / Non-Disclosed

Out[4]:

	Total Count	Percentage of Players
Male	484	84.03%
Female	81	14.06%
Other / Non-Disclosed	11	1.91%

Purchasing Analysis (Gender)

- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. by gender
- · Create a summary data frame to hold the results
- Optional: give the displayed data cleaner formatting
- Display the summary data frame

```
1 | p_grouped = purchase_data.groupby("Gender")
In [5]:
            p_count = p_grouped['Purchase ID'].count()
          3 | p_mean = p_grouped['Price'].mean()
          4 p_total = p_grouped['Price'].sum()
            p_avgsum = p_total/gendercounts
            gender_analysis_df = pd.DataFrame({"Purchase Count":p_count,
          8
                                                 'Average Purchase Price":p_mean,
                                                "Total Purchase Value":p_total,
          9
         10
                                                "Avg Total Purchase per Person":p_avgsum
         11
                                               })
         12 gender_analysis_df["Average Purchase Price"]=gender_analysis_df["Average Purchase Price"].map("${:,.2f}".format)
         13 gender analysis df["Total Purchase Value"]=gender analysis df["Total Purchase Value"].map("${:,.2f}".format)
         14 gender_analysis_df["Avg Total Purchase per Person"]=gender_analysis_df["Avg Total Purchase per Person"].map("${:,
            gender_analysis_df
```

Out[5]:

Purchase Count Average Purchase Price Total Purchase Value Avg Total Purchase per Person

Gender	Gender			
Female	113	\$3.20	\$361.94	\$4.47
Male	652	\$3.02	\$1,967.64	\$4.07
Other / Non-Disclosed	15	\$3.35	\$50.19	\$4.56

Age Demographics

- · Establish bins for ages
- · Categorize the existing players using the age bins. Hint: use pd.cut()
- · Calculate the numbers and percentages by age group
- · Create a summary data frame to hold the results
- · Optional: round the percentage column to two decimal points
- · Display Age Demographics Table

```
In [6]:
            bins = [0, 9, 14, 19, 24, 29, 34, 39, 200]
            group_labels = ["<10", "10-14", "15-19", "20-24", "25-29", "30-34", "35-39", "40+"]
            purchase_data["Age Group"] = pd.cut(purchase_data["Age"], bins, labels=group_labels)
          4
            unique_players_df = purchase_data.drop_duplicates("SN")
          6
          7
            agecount = unique_players_df.groupby("Age Group")['SN'].count()
          8
            agepercentage = agecount/player no
         10 | age_df = pd.DataFrame({"Total Count":agecount, "Percentage of Players":agepercentage})
            age_df["Percentage of Players"]=age_df["Percentage of Players"].map("{:.2%}".format)
         12
        13
            age_df
        14
        15
```

Out[6]:

Total Count Percentage of Players

Age Group		
<10	17	2.95%
10-14	22	3.82%
15-19	107	18.58%
20-24	258	44.79%
25-29	77	13.37%
30-34	52	9.03%
35-39	31	5.38%
40+	12	2.08%

Purchasing Analysis (Age)

- Bin the purchase_data data frame by age
- Run basic calculations to obtain purchase count, avg. purchase price, avg. purchase total per person etc. in the table below
- · Create a summary data frame to hold the results
- · Optional: give the displayed data cleaner formatting
- · Display the summary data frame

```
In [7]:
           1 p_age_df = purchase_data.groupby("Age Group")
              p_age_count = p_age_df['Purchase ID'].count()
           3 p_age_mean = p_age_df['Price'].mean()
              p_age_total = p_age_df['Price'].sum()
              p_age_avgsum = p_age_total/agecount
              age_analysis_df = pd.DataFrame({"Purchase Count":p_age_count,
                                                     "Average Purchase Price":p_age_mean,
           9
                                                     "Total Purchase Value":p_age_total,
          10
                                                     "Avg Total Purchase per Person":p_age_avgsum
          11
                                                   })
          12
          13 | age_analysis_df["Average Purchase Price"]=age_analysis_df["Average Purchase Price"].map("${:,.2f}".format)
              age_analysis_df["Total Purchase Value"]=age_analysis_df["Total Purchase Value"].map("${:,.2f}".format)
age_analysis_df["Avg Total Purchase per Person"]=age_analysis_df["Avg Total Purchase per Person"].map("${:,.2f}".format)
          16 age_analysis_df
```

Out[7]:

Purchase Count	Average Purchase Price	Total Purchase Value	Avg Total Purchase per Person

23	\$3.35	\$77.13	\$4.54
28	\$2.96	\$82.78	\$3.76
136	\$3.04	\$412.89	\$3.86
365	\$3.05	\$1,114.06	\$4.32
101	\$2.90	\$293.00	\$3.81
73	\$2.93	\$214.00	\$4.12
41	\$3.60	\$147.67	\$4.76
13	\$2.94	\$38.24	\$3.19
	28 136 365 101 73 41	28 \$2.96 136 \$3.04 365 \$3.05 101 \$2.90 73 \$2.93 41 \$3.60	28 \$2.96 \$82.78 136 \$3.04 \$412.89 365 \$3.05 \$1,114.06 101 \$2.90 \$293.00 73 \$2.93 \$214.00 41 \$3.60 \$147.67

Top Spenders

- Run basic calculations to obtain the results in the table below
- · Create a summary data frame to hold the results
- Sort the total purchase value column in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
In [27]:
            p_spend_df = purchase_data.groupby("SN")
             p_spend_count = p_spend_df['Purchase ID'].count()
           3
           4
             p_spend_mean = p_spend_df['Price'].mean()
             p_spend_total = p_spend_df['Price'].sum()
           7
             topspenders_df = pd.DataFrame({"Purchase Count":p_spend_count,
           8
                                            "Average Purchase Price":p_spend_mean,
           9
                                            "Total Purchase Value":p_spend_total
          10
          11
          12 topspenders_df = topspenders_df.sort_values(by="Total Purchase Value", ascending=False)
          13 topspenders df["Average Purchase Price"]=topspenders df["Average Purchase Price"].map("${:,.2f}".format)
          14 topspenders_df["Total Purchase Value"]=topspenders_df["Total Purchase Value"].map("${:,.2f}".format)
         16 topspenders_df.head()
```

Out[27]:

Purchase Count Average Purchase Price Total Purchase Value

SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

Most Popular Items

- · Retrieve the Item ID, Item Name, and Item Price columns
- · Group by Item ID and Item Name. Perform calculations to obtain purchase count, item price, and total purchase value
- · Create a summary data frame to hold the results
- · Sort the purchase count column in descending order
- · Optional: give the displayed data cleaner formatting
- Display a preview of the summary data frame

```
1 | short_df = purchase_data.loc[:,['Item ID', 'Item Name', 'Price']]
In [25]:
             short df = short df.groupby(['Item ID', 'Item Name'])
             p_popular_count = short_df['Item ID'].count()
             p_popular_price = short_df['Price'].mean()
          5
             p_popular_total = short_df['Price'].sum()
          8 df = pd.DataFrame({"Purchase Count":p_popular_count,
                                 "Item Price":p_popular_price,
          9
                                 "Total Purchase Value":p_popular_total
          10
         11
          12
          popular_df = df.sort_values(by="Purchase Count", ascending=False)
         14
         popular_df['Item Price'] = popular_df['Item Price'].map("${:,.2f}".format)
         16 | popular_df['Total Purchase Value'] = popular_df['Total Purchase Value'].map("${:,.2f}".format)
             popular_df.head()
```

Out[25]:

Purchase Count Item Price Total Purchase Value

Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

Most Profitable Items

Purchase Count Item Price Total Purchase Value

- · Sort the above table by total purchase value in descending order
- Optional: give the displayed data cleaner formatting
- Display a preview of the data frame

```
In [13]: 1
    profitable_df = df.sort_values(by="Total Purchase Value", ascending=False)

profitable_df['Item Price'] = profitable_df['Item Price'].map("${:,.2f}".format)
profitable_df['Total Purchase Value'] = profitable_df['Total Purchase Value'].map("${:,.2f}".format)
profitable_df.head()
```

Out[13]:

Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80

Observable Trends

- The volume is higest in the 20-14 group, however the total spent per person is lower than the <10 and 35-39 groups.
- The top spenders are so mainly because of larger number of purchases and not because of higher average price of the items purchased.
- The most profitable items have both a higher than average price, and have sold more times.

```
In [ ]: 1
```