Tehtäviä epäyhtälöistä

Tehtäviä neliöiden ei-negatiivisuudesta

- **1.** Olkoon $a \in \mathbb{R}$. Osoita, että $4a^2 \geqslant 4a 1$.
- **2.** Olkoot $a, b, c \in \mathbb{R}$. Osoita, että $a^2 + b^2 + c^2 \geqslant ab + bc + ca$.
- **3.** Osoita, että kaikilla $x \in \mathbb{R}$ on $\cos^4 x + \sin^4 x \geqslant \frac{1}{2}$.
- 4. Olkoot a, b, c ja d reaalilukuja. Osoita, että

$$ab + cd \leqslant \sqrt{a^2 + c^2} \sqrt{b^2 + d^2}.$$

Milloin tässä epäyhtälössä vallitsee yhtäsuuruus?

5. Olkoot a, b, c ja d reaalilukuja. Osoita, että pienin luvuista

$$a-b^2, b-c^2, c-d^2$$
 ja $d-a^2$

on pienempi tai yhtä suuri kuin $\frac{1}{4}.$

6. Etsi kaikki ne reaalilukuviisikot $\langle x, y, u, v, w \rangle$, joille

$$\begin{cases} y^2 + u^2 + v^2 + w^2 = 4x - 1, \\ x^2 + u^2 + v^2 + w^2 = 4y - 1, \\ x^2 + y^2 + v^2 + w^2 = 4u - 1, \\ x^2 + y^2 + u^2 + w^2 = 4v - 1, \\ x^2 + y^2 + u^2 + v^2 = 4w - 1. \end{cases}$$

7. Määritä yhtälön $x^8-x^7+2x^6-2x^5+3x^4-3x^3+4x^2-4x+\frac{5}{2}=0$ reaalisten juurien lukumäärä.

Tehtäviä aritmeettis-geometrisesta epäyhtälöstä

- 8. Olkoon $a \in \mathbb{R}_+$. Osoita, että $a^2 + \frac{1}{a^2} \geqslant 2$. Milloin tässä epäyhtälössä vallitsee yhtäsuuruus?
- 9. Olkootaja bei-negatiivisia reaalilukuja. Osoita, että $a+4b\geqslant 4\sqrt{ab}.$
- **10.** Olkoot $a, b \in \mathbb{R}_+$. Osoita, että $(a+b)\left(\frac{1}{a} + \frac{1}{b}\right) \geqslant 4$.
- 11. Osoita, että jos α on terävä kulma, niin

$$\tan \alpha + \cot \alpha \geqslant 2$$
.

12. Osoita, että jos $a, b, c \in \mathbb{R}_+$, niin

$$(a+b)(b+c)(c+a) \geqslant 8abc.$$

13. Osoita, että jokaisella kokonaisluvulla n > 1 on

$$1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2n-1) < n^n.$$

- **14.** Olkoot $x, y, z \in \mathbb{R}_+$. Osoita, että $\sqrt[3]{xyz} \geqslant \frac{3}{\frac{1}{x} + \frac{1}{x} + \frac{1}{x}}$.
- 15. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$\sqrt{\frac{ab+bc+ca}{3}} \geqslant \sqrt[3]{abc}.$$

16. Olkoot $a, b \in \mathbb{R}_+$ ja $n \in \mathbb{Z}_+$. Osoita, että $\sqrt[n+1]{ab^n} \leqslant \frac{a+nb}{n+1}$.

17. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$\frac{9}{2(a+b+c)} \leqslant \frac{1}{a+b} + \frac{1}{b+c} + \frac{1}{c+a}.$$

18. Pisteet M ja N sijaitsevat kolmion $\triangle ABC$ sivulla BC siten, että $\widehat{BAM} = \widehat{CAN}$. Osoita, että

$$\frac{MB}{MC} + \frac{NB}{NC} \geqslant 2\frac{AB}{AC}.$$

19. a) Etsi rationaalilukukertoiminen kolmen muuttujan x, y ja z polynomi Q(x, y, z), jolle

$$x^{3} + y^{3} + z^{3} - 3xyz = (x + y + z)Q(x, y, z).$$

b) Osoita, että jos a, b ja c ovat positiivisia reaalilukuja, niin

$$\frac{a+b+c}{3} \geqslant \sqrt[3]{abc}.$$

Milloin tässä epäyhtälössä vallitsee yhtäsuuruus?

20. Olkoot $a, b \in \mathbb{R}_+$ sellaisia, että a + b = 1. Osoita, että

$$\left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2 \geqslant \frac{25}{2}.$$

21. a) Olkoot $a, b, c \in \mathbb{R}_+$ sellaisia, että $a + b + c \geqslant 3$. Onko tällöin välttämättä

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \leqslant 3?$$

b) Olkoot $a,b,c\in\mathbb{R}_+$ sellaisia, että $a+b+c\leqslant 3$. Onko tällöin välttämättä

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \geqslant 3$$
?

22. Olkoot a, b ja c reaalilukuja, joille a > b > c > 0. Osoita, että

$$\frac{c}{a-b} + \frac{a-c}{b-c} + \frac{b}{c} \geqslant 5.$$

23. Olkoon $n \ge 2$ kokonaisluku ja olkoot a_1, a_2, \ldots, a_n ei-negatiivisia reaalilukuja. Osoita, että

$$a_n \left(\frac{a_1 + a_2 + \ldots + a_{n-1}}{n-1} \right)^{n-1} \le \left(\frac{a_1 + a_2 + \ldots + a_n}{n} \right)^n.$$

24. Olkoot x, y ja z sellaisia positiivisia reaalilukuja, että xyz=32. Mikä tällöin on lausekkeen $x^2 + 4xy + 4y^2 + 2z^2$ pienin mahdollinen arvo?

Tehtäviä suuruusjärjestysepäyhtälöstä

a)
$$a^3 + b^3 + c^3 \ge a^2b + b^2c + c^2a$$
.

b)
$$a^4 + b^4 + c^4 \ge a^2bc + b^2ca + c^2ab$$

25. Olkoot
$$a, b, c \in \mathbb{R}_+$$
. Osoita, että:
a) $a^3 + b^3 + c^3 \geqslant a^2b + b^2c + c^2a$.
b) $a^4 + b^4 + c^4 \geqslant a^2bc + b^2ca + c^2ab$.
c) $\frac{a+b+c}{abc} \leqslant \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

26. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että:

$$\frac{a^3 + b^3 + c^3}{a^2 + b^2 + c^2} \geqslant \frac{a + b + c}{3} \geqslant \sqrt{\frac{ab + bc + ca}{3}}.$$

27. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$a+b+c \leqslant \frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab}.$$

28. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$\frac{a^8 + b^8 + c^8}{a^3b^3c^3} \geqslant \frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

29. Olkoot a_1, a_2, a_3, \ldots pareittain erisuuria positiivisia kokonaislukuja. Osoita, että jokaisella $n \in \mathbb{Z}_+$ on

$$\sum_{\ell=1}^{n} \frac{a_{\ell}}{\ell^2} \geqslant \sum_{\ell=1}^{n} \frac{1}{\ell}.$$

30. Aritmeettis-geometrisen epäyhtälön todistaminen suuruusjärjestysepäyhtälöllä.

a) Olkoot $z_1, z_2, \dots, z_n \in \mathbb{R}_+$. Osoita, että

c) Olkoot
$$\varrho, x_1, x_2, \ldots, x_n \in \mathbb{R}_+$$
. Osoita:

$$\frac{c_1}{c_n} + \frac{c_2}{c_1} + \frac{c_3}{c_2} + \ldots + \frac{c_n}{c_{n-1}} \geqslant n.$$

$$\frac{\varrho x_1}{\varrho^n x_1 x_2 \cdots x_n} + \varrho x_2 + \varrho x_3 + \ldots + \varrho x_n \geqslant n.$$

b) Olkoot $y_1, y_2, \dots, y_n \in \mathbb{R}_+$. Osoita, että

$$\frac{y_1}{y_1y_2\cdots y_n} + y_2 + y_3 + \ldots + y_n \geqslant n.$$

$$\frac{x_1 + x_2 + \ldots + x_n}{n} \geqslant \sqrt[n]{x_1 x_2 \cdots x_n}.$$

Tehtäviä Cauchyn-Schwarzin epäyhtälöstä

31. Olkoot $a_1, a_2, \ldots, a_n \in \mathbb{R}_+$. a) Osoita, että

$$\left(\sum_{k=1}^{n} a_k\right) \left(\sum_{k=1}^{n} \frac{1}{a_k}\right) \geqslant n^2.$$

- b) Osoita, että $a_1 + a_2 + \ldots + a_n \leq \sqrt{n} \sqrt{a_1^2 + a_2^2 + \ldots + a_n^2}$.
- **32.** Olkoot $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Osoita, että jos $a_1 + a_2 + \ldots + a_n = n$, niin $a_1^4 + a_2^4 + \ldots + a_n^4 \geqslant n$.
- **33.** Olkoot $a_1, a_2, \ldots, a_n \in \mathbb{R}$. Osoita, että

$$a_1 + a_2 + \ldots + a_n \leqslant \sqrt{\sqrt[3]{a_1^2 + \sqrt[3]{a_2^2 + \ldots + \sqrt[3]{a_n^2}}} \sqrt{\sqrt[3]{a_1^4 + \sqrt[3]{a_2^4 + \ldots + \sqrt[3]{a_n^4}}}.$$

34. Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$\frac{a^2}{b+c} + \frac{b^2}{c+a} + \frac{c^2}{a+b} \geqslant \frac{a+b+c}{2}.$$

- **35.** Polynomin P kertoimet ovat positiivisia reaalilukuja. Osoita, että kaikilla positiivisilla reaaliluvuilla a ja b pätee $\sqrt{P(a)P(b)} \geqslant P(\sqrt{ab})$.
- **36.** Olkoot $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$, missä $n \in \mathbb{Z}_+$, ja oletetaan, että $a_1 + a_2 + \ldots + a_n \geqslant a_1b_1 + a_2b_2 + \ldots + a_nb_n$. Osoita, että tällöin

$$a_1 + a_2 + \ldots + a_n \leqslant \frac{a_1}{b_1} + \frac{a_2}{b_2} + \ldots + \frac{a_n}{b_n}.$$

- **37.** Olkoot $a, b, c, d \in \mathbb{R}_+$. Osoita, että $\sqrt{ab} + \sqrt{cd} \leqslant \sqrt{(a+d)(b+c)}$.
- **38.** Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että $9a^2b^2c^2 \leqslant (a^2b + b^2c + c^2a)(ab^2 + bc^2 + ca^2)$.

39. Olkoot $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \ (n \in \mathbb{Z}_+)$ reaalilukuja. Osoita, että

$$\sqrt{(a_1 + b_1)^2 + \ldots + (a_n + b_n)^2} \leqslant \sqrt{a_1^2 + \ldots + a_n^2} + \sqrt{b_1^2 + \ldots + b_n^2}$$

40. Olkoot $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}_+, n \in \mathbb{Z}_+$. a) Osoita, että

$$\sqrt{a_1^2 + b_1^2} + \sqrt{a_2^2 + b_2^2} + \ldots + \sqrt{a_n^2 + b_n^2} \geqslant \sqrt{(a_1 + a_2 + \ldots + a_n)^2 + (b_1 + b_2 + \ldots + b_n)^2}$$

41. Olkoot x, y ja z ei-negatiivisia reaalilukuja. a) Osoita, että

$$(x+y+z)\sqrt{2} \leqslant \sqrt{x^2+y^2} + \sqrt{y^2+z^2} + \sqrt{z^2+x^2}.$$

b) Oletetaan lisäksi, että $xyz \neq 0$. Osoita, että

$$2\sqrt{3} \leqslant \sqrt{x^2 + y^2 + z^2} + \sqrt{\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}}.$$

c) Oletetaan lisäksi, että $0 < x \le y \le z$. Osoita, että

$$\sqrt{y^2 + z^2} \leqslant x\sqrt{2} + \sqrt{(y-x)^2 + (z-x)^2}.$$

Sekalaisia epäyhtälötehtäviä

- **42.** Olkoot a>b>0. Osoita, että lukujen a+b ja a-b käänteislukujen keskiarvo on suurempi kuin luvun a käänteisluku.
- 43. Kumpi luvuista

$$\frac{10^{2006}+1}{10^{2007}+1}$$
 ja $\frac{10^{2007}+1}{10^{2008}+1}$

on suurempi?

44. Olkoot a, b ja c sellaisia reaalilukuja, että abc = 1. Osoita, että enintään kaksi luvuista

$$2a - \frac{1}{b}, 2b - \frac{1}{c}$$
 ja $2c - \frac{1}{a}$

voivat olla suurempia kuin yksi.

45. a) Olkoot a > b > 1. Osoita, että

$$\frac{a}{b} + \frac{1}{a} > \frac{1}{b} + 1.$$

b) Olkoot $a, b \in \mathbb{R}_+$. Osoita, että $a^3 + b^3 \geqslant a^2b + ab^2$. c) Olkoot 0 < a < b. Osoita, että

$$\frac{3a+b}{\sqrt{a}} > \frac{a+3b}{\sqrt{b}}.$$

- **46.** Etsi ne reaaliluvut $x \neq 1$, joille $\frac{1}{1-x} > 1 + x$.
- **47.** Olkoot $x \ge -1$ reaaliluku ja $n \in \mathbb{Z}_+$. Osoita, että $1 + nx \le (1 + x)^n$.
- 48. Olkoot x>1 reaaliluku. Osoita, että $\frac{1}{x-1}+\frac{1}{x}+\frac{1}{x+1}>\frac{3}{x}$.
- **49.** Olkoot $a, b, c \in \mathbb{R}_+$. Osoita, että

$$\frac{a}{b+c} + \frac{b}{c+a} + \frac{c}{a+b} \geqslant \frac{3}{2}.$$

50. Olkoot a, b, c ja d sellaisia positiivisia reaalilukuja, että a+b+c+d=4. Osoita, että tällöin

$$\sqrt{a+b+c} + \sqrt{a+b+d} + \sqrt{a+c+d} + \sqrt{b+c+d} \ge 6$$