

Zeta Functions as Knot Invariants

Minh-Tâm Quang Trinh

Howard University

O. Kivinen, M. Trinh. The Hilb-vs-Quot conjecture. Crelle's Journal (2025), 44 pp.

- 1 The Riemann Hypothesis
- 2 Weil's Rosetta Stone
- 3 From Curves to Knots
- 4 Cherednik's New Hypothesis

Also featuring:

M. Trinh. From the Hecke category to the unipotent locus. 88 pp. arXiv:2106.07444

P. Galashin, T. Lam, M. Trinh, N. Williams. Rational noncrossing Coxeter–Catalan combinatorics. *Proc. London Math. Soc.* (2024), 50 pp.

1 The Riemann Hypothesis

(Euler ${\sim}1730s)$ $\,$ Proof of the infinitude of primes:

If there were finitely many, then we'd have

$$\prod_{\text{prime } p > 0} \left(1 + \frac{1}{p} + \frac{1}{p^2} + \dots \right) = \sum_{n=1}^{\infty} \frac{1}{n}.$$

But the series diverges—a contradiction.

He also implicitly studied the $zeta\ function$

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

For
$$s > 1$$
, we have $\zeta(s) = \prod_{p} \left(1 + \frac{1}{p^s} + \frac{1}{p^{2s}} + \cdots\right)$.

What if we allow s to be complex?

(Riemann 1859) A unique C-valued function ζ that is

- holomorphic (complex-differentiable) when $s \neq 1$.
- given by $\sum_{n=1}^{\infty} \frac{1}{n^s}$ when Re(s) > 1.

He checked that $\zeta(n) = 0$ for $n = -2, -4, -6, \dots$ by relating these zeros to poles of the gamma function.

He speculated from examples that all other zeros of ζ live on the *critical line* $\mathrm{Re}(s) = \frac{1}{2}$.

Location of zeros \iff distribution of prime numbers.

Wikipedia

(Hardy 1914) Infinitely many zeros on the line.

(Pratt-Robles-Zaharescu-Zeindler 2020) Among *nontrivial zeros*, over five-twelfths on the line.

(Dedekind ~1860s) Generalize the formula

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

by replacing **Z** with other rings R.

Thus R is a set with operations + and \cdot resembling addition and multiplication.

$$\zeta_R(s) = \sum_{\substack{\text{ideals } I \subseteq R \\ |R/I| < \infty}} \frac{1}{|R/I|^s}$$

An *ideal* I is the collection of all finite linear combos $c_1 \cdot x_1 + \cdots + c_k \cdot x_k$ for some fixed $x_1, x_2, \ldots \in R$.

The quotient R/I is the set of translates $y + I \subseteq R$.

Note For ζ_R to make sense, the number of I such that |R/I|=n must be finite for each n>0.

Ex Every ideal of Z takes the form

 $n\mathbf{Z} = \{\text{multiples of } n\} \text{ for some integer } n \geq 0.$

For instance, the ideal generated by 30 and 2025 is

$$\{c_1 \cdot 30 + c_2 \cdot 2025 \mid c_1, c_2 \in \mathbf{Z}\} = 15\mathbf{Z}.$$

We see that

$$\zeta_{\mathbf{Z}}(s) = \sum_{\substack{n\mathbf{Z}\subseteq\mathbf{Z}\\n>0}} \frac{1}{|\mathbf{Z}/n\mathbf{Z}|^s} = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$

In other rings, ideals may not simplify so nicely.

Why care?

(Hilbert-Polyá ~1910s) To prove RH, prove that

$$\{e^{i\gamma}\mid \tfrac{1}{2}+i\gamma \text{ is a nontrivial zero of }\zeta\}$$

is the set of eigenvalues of an infinite unitary matrix.

($\implies e^{i\gamma}$ on the unit circle of \mathbf{C} \implies γ real.)

(Weil $\sim 1940s$) Fix a particular prime p.

Can we prove an analogue for ζ_R , for certain rings R appearing in algebraic geometry modulo p?

(Grothendieck–Deligne ~1960s–70s) Yes

2 Weil's Rosetta Stone Algebraic geometry studies varieties: shapes cut out by polynomial equations.

For simplicity, we'll stick to (affine) hypersurfaces

$$V_f = {\vec{a} = (a_0, a_1, \dots, a_d) \mid f(\vec{a}) = 0},$$

cut out by a single polynomial $f \in \mathbf{Z}[x_0, x_1, \dots, x_d]$.

 V_f is *smooth* at $\vec{a} \mod p$ when $\frac{\partial f}{\partial x_i}(\vec{a}) \not\equiv 0 \pmod{p}$ for some i. Else, *singular*.

Ex For d = 1, hypersurfaces are plane curves, like

$$f(x,y) = y^2 - x^3 - c$$
 for constant c.

For which c is V_f smooth everywhere mod p?

The ring of polynomial functions on V_f mod p is

$$R_{f,p} := rac{\mathbf{F}_p[x_0, \dots, x_d]}{\mathbf{F}_p[x_0, \dots, x_d] \cdot f}, \quad \text{where } \mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}.$$

In a letter to his sister, Weil described a dictionary:

$$\begin{array}{lll} \mathbf{Z} & R_{f,p} & V_f \bmod p \\ \\ n\mathbf{Z} & \text{ideals} & \text{subvarieties} \\ p\mathbf{Z} & \text{maximal ideals} & \text{points} \\ \end{array}$$

The first and last columns: a Rosetta stone between number theory and algebraic geometry.

Conj (Weil 1948) Assume V_f is smooth everywhere. Then zeros of $\zeta_{R_{f,p}}(s)$ have $\mathrm{Re}(s) \in \{\frac{1}{2}, \frac{3}{2}, \dots, \frac{2d-1}{2}\}$. Weil proved it for many cases.

Set $\zeta_{f,p}(s) := \zeta_{R_{f,p}}(s)$ for convenience.

(Grothendieck ~1964)
$$\zeta_{f,p}(s)$$
 is a rational function in ${f q}:=p^{-s}.$

In fact: polynomials $\phi_0, \phi_1, \dots, \phi_{2d-1}$ such that

$$\zeta_{f,p}(s) = \frac{\phi_1(\mathsf{q}) \cdot \phi_3(\mathsf{q}) \cdots \phi_{2d-1}(\mathsf{q})}{\phi_0(\mathsf{q}) \cdot \phi_2(\mathsf{q}) \cdots \phi_{2d-2}(\mathsf{q})}.$$

 ϕ_k is the charpoly of a certain operator on a certain vector space, describing the *étale topology* of V_f .

Conj For all k, the roots of $\phi_k(q)$ live on the <u>circle</u>

$$|\mathbf{q}| = p^{-k/2}.$$

⇒ Weil's Riemann Hypothesis.

(Deligne 1974) True for all f (smooth mod p).

Ex Taking
$$d = 1$$
 and $f(x, y) = y^2 - x^3 - c$:

$$\phi_0(t) = 1 - p\mathbf{q}$$

$$\phi_1(t) = 1 - a_n\mathbf{q} + p\mathbf{q}^2 \quad \text{for some integer } a_n,$$

giving
$$\zeta_{f,p}(s) = \frac{1 - a_p p^{-s} + p^{1-2s}}{1 - p^{1-s}}$$
. It turns out:

- $|a_p| \le 2p^{1/2}$.
- So the two roots of $\phi_1(q)$ satisfy $|q| = p^{-1/2}$.
- So the zeros of $\zeta_{f,p}(s)$ satisfy $\operatorname{Re}(s) = \frac{1}{2}$.

What if V_f has singularities?

Simplest case: f(x, y) with unique singularity at (0, 0). It turns out that here,

$$\zeta_{f,p}(s) = \zeta_{f,p}^{\times}(s) \cdot \zeta_{f,p}^{0}(s),$$

where:

- $\zeta_{f,p}^{\times}$ satisfies Weil's Riemann Hypothesis.
- $\zeta_{f,p}^0$ is analogous to $\zeta_{f,p}$, with the power-series ring

$$R_{f,p}^0 := \frac{\mathbf{F}_p[\![x,y]\!]}{\mathbf{F}_p[\![x,y]\!] \cdot f}$$

in place of $R_{f,p}$.

Does
$$\zeta_{f,p}^0(s) = \sum_{\substack{I \subseteq R_{f,p}^0 \\ |R_{f,p}^0/I| < \infty}} \frac{1}{|R_{f,p}^0/I|^s}$$
 satisfy a RH?

Ex For $f = y^2 - x^3$,

$$\zeta_{f,p}^0(s) = \frac{1-p^{1-2s}}{1-p^{-s}} = \frac{1+p\mathsf{q}^2}{1-\mathsf{q}}.$$

Ex For $f = y^3 - x^4$,

$$\zeta_{f,p}^0(s) = \frac{1 + p \mathsf{q}^2 + p^2 \mathsf{q}^3 + p^2 \mathsf{q}^4 + p^3 \mathsf{q}^6}{1 - \mathsf{q}}.$$

Here, not all roots satisfy $|\mathbf{q}| = p^{-1/2}$.

WolframAlpha

3 From Curves to Knots For general f(x, y),

it turns out there's $\Phi_f(\mathsf{t},\mathsf{q}) \in \mathbf{Z} \left[\mathsf{t},\mathsf{q}, \frac{1}{1-\mathsf{q}} \right]$ such that

$$\zeta_{f,p}^0(s) = \frac{\Phi_f(p, p^{-s})}{1 - p^{-s}} \quad \text{for almost all } p.$$

These polynomials have many surprising features.

(Piontkowski 2007) Take $f = y^n - x^{n+1}$.

Then $\Phi_f(1,1) = \frac{(2n)!}{(n+1)!n!}$, the *n*th Catalan number.

Ex If
$$f = y^3 - x^4$$
, then

$$\begin{split} &\Phi_f({\bf t},{\bf q}) = 1 + {\bf t}{\bf q}^2 + {\bf t}^2{\bf q}^3 + {\bf t}^2{\bf q}^4 + {\bf t}^3{\bf q}^6, \\ &\Phi_f(1,1) = 5. \end{split}$$

The Φ_f also arise from knot/link invariants.

A *knot* is an embedding of a circle into \mathbb{R}^3 or S^3 .

A *link* is a generalization allowing multiple circles.

Two links are isotopic when we can deform one into the other without self-intersections.

 ${\bf Chmutov-Duzhin-Mostovoy}$

Let
$$S_{\epsilon}^3 = \{(x, y) \in \mathbf{C}^2 \mid |x|^2 + |y|^2 = \epsilon\}$$
. The subset

$$L_f = \{(x, y) \in S_{\epsilon}^3 \mid f(x, y) = 0\}$$

is a link in S^3_{ϵ} when $\epsilon > 0$ is small enough.

Ex If $f = y^n - x^m$, then L_f is the (m, n) torus link. It's a knot when m and n are coprime.

Wolfram Language

Ex If $f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7$, then L_f is the closure of the braid

Cherednik-Danilenko

Conj (Oblomkov-Shende ~2010)

$$\Phi_f(1, \mathbf{q}^2) = \lim_{\mathbf{a} \to 0} \left[(\mathbf{q}/\mathbf{a})^{\mu} \, \mathbb{P}_{L_f}(\mathbf{a}, \mathbf{q}) \right],$$

where $\mu \in \mathbf{Z}$ and \mathbb{P} is the *HOMFLYPT invariant*, discovered in 1986 and defined by the *skein rules*:

$$\mathbf{aP} - \mathbf{a}^{-1} \mathbf{P} = (\mathbf{q} - \mathbf{q}^{-1}) \mathbf{P}_{5} \zeta$$

$$\mathbb{P}_{\bigcirc} = 1$$

Full statement incorporates a, by upgrading Φ_f .

(Maulik 2012) True for all plane curves.

Proof sketch Blow up the singularity repeatedly. Control Φ_f via wall crossing and L_f via skein algebra.

Conj (Oblomkov-Rasmussen-Shende ~2013)

$$\Phi_f(\mathsf{t}^2,\mathsf{q}^2) = \lim_{\mathsf{a}\to 0} \left[(\mathsf{q}/\mathsf{a})^{\mu} \, \mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q}) \right],$$

where ${\bf P}$ is a refinement of $\mathbb P,$ discovered in the 2000s by Khovanov–Rozansky.

 ${\bf P}$ is defined by categorifying (1)–(2). Unknown how to categorify Maulik's proof.

Melissa Zhang

(Kivinen-T 2025) True for $f = y^3 - x^m$ with $3 \nmid m$. Cor (Kivinen-T) New closed formula for $\mathbf{P}_{\text{torus}(m,3)}$.

$Proof\ Sketch$

1 Recursions that compute $\mathbf{P}_{\text{torus}(m,n)}(\mathsf{a},\mathsf{t},\mathsf{q})$, due to Elias–Hogancamp–Mellit.

Elias-Hogancamp

Encoding of braids into grid diagrams, due to Mellit.

2 For m, n coprime, yields a sum over $\frac{(m+n-1)!}{m!n!}$ many rational Dyck paths.

At the same time, $R_{f,p}^0 \simeq \mathbf{F}_p[\![u^m,u^n]\!]$.

We relate Dyck paths to $R_{f,p}^0$ -submodules $M \subseteq \mathbf{F}_p[\![u]\!]$.

3 We then relate

$$\sum_{M} \frac{1}{|\mathbf{F}_{p}[\![u]\!]/M|^{s}} \quad \text{and} \quad \sum_{I} \frac{1}{|R_{f,p}^{0}/I|^{s}}$$

Uses Serre duality. For now, requires $min(m, n) \leq 3$.

Big Picture I study special functions that appear in

- algebraic geometry
- knot theory
- ullet combinatorics

Using *representation theory*, we can decompose them into simpler functions, like in Fourier analysis.

(Hikita 2016) The Dyck-path decomposition of Φ_f arises from representation theory of symmetric groups.

Another case:

(T 2021) Generalizations of \mathbb{P} and \mathbf{P} arising from representation theory of *Coxeter groups*.

(Galashin-Lam-T-Williams 2024) Ideas from (T) solve conjectures in Coxeter combinatorics from 2012.

4 Cherednik's New Hypothesis

Recall: For $f = y^3 - x^4$ and prime p, the roots of

$$\Phi_f(p, \mathbf{q}) = 1 + p\mathbf{q}^2 + p^2\mathbf{q}^3 + p^2\mathbf{q}^4 + p^3\mathbf{q}^6$$

do not all satisfy $|\mathbf{q}| = p^{-1/2}$.

Conj (Cherednik 2018) For any plane curve f:

$$0 < t \le \frac{1}{2} \implies \text{all roots of } \Phi_f(t, \mathsf{q}) \text{ satisfy} \\ |\mathsf{q}| = t^{-1/2}.$$

Would imply arithmetic constraints on $\mathbf{P}_{L_f}(\mathsf{a},\mathsf{t},\mathsf{q}).$

Dream (Cherednik) Related to the Lee–Yang theorem on zeros of *partition functions* in statistical mechanics.

$$f = y^3 - x^4, \qquad t = 2, 1, \frac{1}{2}$$

$$t = 2, 1, \frac{1}{6}$$

$$f = y^4 - 2x^3y^2 - 4x^5y + x^6 - x^7,$$

$$t = 1, \frac{1}{2}, \frac{1}{4}$$

Thank you for listening.