Generalized Iterative Closest Point

Mündliche Prüfung in der Vorlesung Autonome Roboter bei Prof. Dr.-Ing. Michael Blaich 15.07.2024

Johannes Brandenburger, Moritz Kaltenstadler, Fabian Klimpel

Agenda

- 1. Einführung
- 2. Theorie
- 3. Demo: Eigene Implementierung in Python
- 4. Implementierung in ROS
- 5. Experiment
 - 1. Aufbau
 - 2. Durchführung
 - 3. Ergebnisse
 - 4. ...
- 6. Fazit

Theorie

- Einzige wirkliche Quelle: "Generalized-ICP" von Segal, Haehnel & Thrun (2010)
 - ▶ Ziel: Iterative-Closest-Point-Algorithmus (ICP) verbessern
 - ▶ Standard-ICP & point-to-plane in **generelles Framework** überführen
 - Probabilistische Betrachtung
 - Nutzung **Oberflächenstruktur** aus beiden Scans (Kovarianzmatrizen) ightarrow **plane-to-plane**

Theorie - Mathematische Grundlagen

Kovarianzmatrix

- beschreibt die Streuung von Zufallsvariablen
- für Punkte in Punktwolken: Verteilung der Punkte in der Umgebung

Maximum Likelihood Estimation (MLE)

- Schätzverfahren für Parameter von Wahrscheinlichkeitsverteilungen
- der Paramter wird ausgewählt, der die beobachteten Daten am wahrscheinlichsten macht
- oft verwendet um: $\arg\max_p\dots/\arg\min_p\dots$ zu finden

Theorie - Standard-ICP

- Iterative Closest Point (ICP) ist ein Algorithmus, um die Transformation zwischen zwei Punktwolken zu schätzen
- vergleicht korrespondierende Punkte in beiden Wolken
- minimiert die quadratischen Abstände korrespondierender Punkte

```
1 T \leftarrow T_0
 2 while not converged do
        for i \leftarrow 1 to N do
           m_i \leftarrow \texttt{FindClosestPointInA}(T \cdot b_i)
 4
           if ||m_i - b_i|| \le d_{\max} then
 5
          | | w_i \leftarrow 1
           else
 7
            |w_i \leftarrow 0|
 8
           end
 9
        end
10
       \arg\min_{T} \left\{ \sum_{i} w_{i} (\parallel T \cdot b_{i} - m_{i} \parallel)^{2} \right\}
11
12 end
```


Abbildung 1: Standard-ICP (Igor Bogoslavskyi, 2021)

Theorie - Standard-ICP, point-to-plane, Generalized-ICP

- **point-to-point** (Standard-ICP)
- point-to-plane
 - vergleicht Punkt mit Ebene durch Normalenvektor
- Generalized-ICP
 - quasi "plane-to-plane"
 - vergleicht die Kovarianzmatrizen der nächsten Punkte \rightarrow probabilistisch
 - ▶ wenn in Ebene → Kovarianzmatrix ist "flach"

Abbildung 2: Kovarianzmatrizen (eigene Darstellung)

Theorie - GICP-Algorithmus

```
1 T \leftarrow T_0
 2 while not converged do
       for i \leftarrow 1 to N do
         \mid m_i \leftarrow \texttt{FindClosestPointInA}(T \cdot b_i)
       d_i^{(T)} \leftarrow b_i - T \cdot m_i // Residuum / Abstand
      \|\mathbf{if}\| d_i^{(T)}\| \leq d_{\max}  then
       \mid C_i^A \leftarrow \texttt{computeCovarianceMatrix}(T \cdot b_i)
       C_i^B \leftarrow \mathsf{computeCovarianceMatrix}(m_i)
           else
 9
          C_i^A \leftarrow 0; \quad C_i^B \leftarrow 0
10
         end
11
       end
12
       \left| \ T \leftarrow \arg\min_T \left\{ \sum_i d_i^{(T)^T} \left( C_i^B + T C_i^A T^T \right)^{-1} d_i^{(T)} \right\} \right. \quad // \ \text{Maximum Likelihood Estimation} 
14 end
```

Theorie - GICP-Algorithmus

Variationen für Kovarianzmatrizen

$$\begin{aligned} C_i^A \leftarrow \text{computeCovarianceMatrix}(T \cdot b_i) \\ C_i^B \leftarrow \text{computeCovarianceMatrix}(m_i) \end{aligned}$$

- für **Standard-ICP** (point-to-point):
 - $C_i^A \leftarrow 0$
 - $C_i^B \leftarrow 1$ \longrightarrow keine Oberflächenstruktur berücksichtigt
- für point-to-plane:
 - $C_i^A \leftarrow 0$
 - $C_i^B \leftarrow P_i^{-1} \longrightarrow P_i$ ist die Projektionsmatrix auf die Ebene (beinhaltet Normalenvektor)
- für **plane-to-plane** (im Paper vorgeschlagene Methode):
 - ► computeCovarianceMatrix berechnet Kovarianzmatrix unter Betrachtung der nächsten 20 Punkte
 - verwendet **PCA** (Principal Component Analysis/Hauptkomponentenanalyse)

Abbildung 3: Plane-to-plane (Segal et al., 2009)

Theorie - GICP-Algorithmus

Paper Ergebnisse (Segal et al., 2009)

- GICP **genauer** bei simulierten und realen Daten
- immer noch relativ schnell und einfach
- Nutzen von Oberflächenstruktur minimiert Einfluss von falschen Korrespondenzen
- Parameter-Wahl für d_{\max} nicht mehr so kritisch o leichter einsetzbar in **unterschiedlichen** Szenarien

Abbildung 4: Durchschnittsfehler als Funktion von $d_{\rm max}$ (Segal et al., 2009)

Demo: Eigene Implementierung in Python

- Paper sehr mathematisch
- zwar Implementierungen auf GitHub, aber nicht wirklich lesbar
- daher eigene Implementierung vor allem für Verständnis
- eigene 2D-GICP-Funktion
 - ▶ Input: Punktwolken A und B, ...
 - Output: Transformationsmatrix T, \dots
- Version 1:
 - Visualisierung mit generierten Input-Wolken
 - iterativ durch die Steps klicken
- Version 2:
 - ► Simulation eines Roboters mit LiDAR-Sensor
 - ► Live-Berechnung der Transformation + Visualisierung
- \rightarrow LIVE DEMO
- \rightarrow CODE OVERVIEW

(Bild-)Quellen

Igor Bogoslavskyi. (2021). https://nbviewer.org/github/niosus/notebooks/blob/master/icp.ipynb Segal, A. V., Hähnel, D., & Thrun, S. (2009). Generalized-ICP. *Robotics: Science and Systems*. https://api.semanticscholar.org/CorpusID:231748613