Лабораторная работа №5

Модель хищник-жертва

Латыпова Диана. НФИбд-02-21

Содержание

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	9
5	Выводы	17
Список литературы		18

Список иллюстраций

4.1	Нестационарное состояние(1). Julia	11
4.2	Нестационарное состояние(2). Julia	12
4.3	Нестационарное состояние(1). ОМ	13
4.4	Нестационарное состояние(2). ОМ	13
4.5	Стационарное состояние. Julia	15
4.6	Стационарное состояние. ОМ	16

Список таблиц

1 Цель работы

- Разобраться в системе "хищник-жертва".
- Реализовать модель "хищник-жертва".

2 Задание

Вариант 46:

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.25x(t) + 0.05x(t)y(t) \\ \frac{dy}{dt} = 0.6y(t) - 0.061x(t)y(t) \end{cases}$$

Постройте график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0\,=\,13, y_0\,=\,27$ Найдите стационарное состояние системы.

3 Теоретическое введение

Модель хищник-жертва (Модель Лотки — **Вольтерры)**- одна из классических моделей в экологии, описывающая взаимодействие между популяциями двух видов: хищниками и их жертвами. Эта модель предполагает, что изменение численности каждого вида пропорционально численности другого вида и зависит от параметров рождаемости, смертности и взаимодействия между видами [1].

Пусть x(t) - численность популяции хищников в момент времени t,y(t) - численность популяции жертв в момент времени t.

Тогда изменение численности популяции хищников по времени определяется уравнением:

$$\frac{dx}{dt} = \alpha * x - \beta * x * y$$

где α - коэффициент рождаемости хищников, β - коэффициент смертности хищников при взаимодействии с жертвами.

А изменение численности популяции жертв по времени определяется уравнением:

$$\frac{dy}{dt} = \gamma * y - \sigma * x * y$$

где γ - коэффициент рождаемости жертв, σ - коэффициент смертности жертв при взаимодействии с хищниками.

Стационарное состояние. В стационарном состоянии производные обоих

видов по времени равны нулю [2]:

$$\frac{dx}{dt} = 0$$

$$\frac{dy}{dt} = 0$$

Это означает, что численности видов остаются постоянными, то есть не меняются со временем.

4 Выполнение лабораторной работы

```
Для начала реализуем нестационарное состояние.
  Код на языке Julia (рис. 4.1) (рис. 4.2):
using Plots
using Differential Equations
# Начальные условия для численности жертв и хищников
x0 = 13
y0 = 27
# Параметры модели хищник-жертва
a = 0.25
b = 0.05
c = 0.6
d = 0.061
# Определение функции для системы дифференциальных уравнений
function ode_fn(du, u, p, t)
    x, y = u
  du[1] = -a * u[1] + b * u[1] * u[2] # Уравнение для изменения численности жертв
  du[2] = c * u[2] - d * u[1] * u[2] # Уравнение для изменения численности хищников
end
```

```
# Начальные условия и временной интервал
v0 = [x0, y0]
tspan = (0.0, 60.0)
# Определение задачи ОДУ
prob = ODEProblem(ode_fn, v0, tspan)
# Решение задачи
sol = solve(prob, dtmax=0.05)
X = [u[1] \text{ for } u \text{ in sol.} u] # Численность жертв
Y = [u[2] \text{ for } u \text{ in sol.} u] # Численность хищников
T = [t for t in sol.t] # Время
# Построение графика фазового портрета
plt = plot(
  dpi=300,
  legend=false)
plot!(
  plt,
  Χ,
  Υ,
  color=:blue)
savefig(plt, "out/lab5_1julia.png")
# Построение графиков изменения численности жертв и хищников по времени
plt2 = plot(
  dpi=300,
```

```
legend=true)

plot!(
  plt2,
  T,
  X,
  label="Численность жертв",
  color=:red)

plot!(
  plt2,
  T,
  Y,
  label="Численность хищников",
  color=:purple)

savefig(plt2, "out/lab5_2julia.png")
```


Рис. 4.1: Нестационарное состояние(1). Julia

Рис. 4.2: Нестационарное состояние(2). Julia

Код для ПО OpneModelica (рис. 4.3) (рис. 4.4):

```
model lab5_1
Real x;
Real y;
initial equation
x = 13;
y = 27;
equation
der(x) = -0.25*x + 0.05*x*y;
der(y) = 0.6*y - 0.061*x*y;
end lab5_1;
```


Рис. 4.3: Нестационарное состояние(1). ОМ

Рис. 4.4: Нестационарное состояние(2). ОМ

Реализуем стационарное состояние.

Код на языке Julia (рис. 4.5):

using Plots
using DifferentialEquations

Определение параметров модели

a = 0.25

b = 0.05

c = 0.6

d = 0.061

Вычисление начальных условий из уравнений равновесия

x0 = c / d

y0 = a / b

```
# Определение функции для системы дифференциальных уравнений
function ode_fn(du, u, p, t)
    x, y = u
  du[1] = -a*u[1] + b * u[1] * u[2] # Уравнение для изменения численности жертв
  du[2] = c * u[2] - d * u[1] * u[2] # Уравнение для изменения численности хищников
end
# Начальные условия и временной интервал
v0 = [x0, y0]
tspan = (0.0, 60.0)
# Определение задачи ОДУ
prob = ODEProblem(ode_fn, v0, tspan)
# Решение задачи
sol = solve(prob, dtmax=0.05)
# Извлечение результатов
X = [u[1] \text{ for } u \text{ in sol.} u]
Y = [u[2] \text{ for } u \text{ in sol.} u]
T = [t for t in sol.t]
# Построение графиков
plt2 = plot(
  dpi=300,
  legend=true)
```

plot!(

```
plt2,
T,
X,
label="Prey's count", # Численность жертв
color=:red)

plot!(
plt2,
T,
Y,
label="Predator's count", # Численность хищников
color=:purple)
```

savefig(plt2, "out/lab5_3julia.png") # Сохранение графика в файл

Рис. 4.5: Стационарное состояние. Julia

Код для ПО OpneModelica (рис. 4.6):

model lab5_2

```
Real x;
Real y;
initial equation
x = 0.6 / 0.061;
y = 0.25 / 0.05;
equation
der(x) = -0.25*x + 0.05*x*y;
der(y) = 0.6*y - 0.061*x*y;
end lab5_2;
```


Рис. 4.6: Стационарное состояние. ОМ

5 Выводы

Я разобралась в системе "хищник-жертва". А также реализовала модель "хищник-жертва" на языке программирования julia и на ПО OpenModelica. Нарисовала графики для нестационарного и стационарного состояния.

Список литературы

- 1. Система "хищник-жертва" [Электронный ресурс]. Wikimedia Foundation, Inc., 2023. URL: https://ru.wikipedia.org/wiki/%D0%A1%D0%B8%D1%81%D 1%82%D0%B5%D0%BC%D0%B0_%C2%AB%D1%85%D0%B8%D1%89%D0%B D%D0%B8%D0%BA_%E2%80%94_%D0%B6%D0%B5%D1%80%D1%82%D0%B2%D0%B0%C2%BB.
- 2. Стационарное состояние [Электронный pecypc]. Copyright © 2024 OpenModelica., 2017. URL: https://ru.wikipedia.org/wiki/%D0%A1%D 1%82%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%B0%D1%80%D0%BD%D0%BE%D1%81%D0%BE%D1%81%D1%82%D0%BE%D1%8 F%D0%BD%D0%B8%D0%B5.