	Dore.
静电场中的电气质	西、电级系、电流
一、电低	\$50-V: 48414.000
	8-10
分学级电偶极子模型	1= 8=311347
毛板分子(电介质)	1
有权分子(电价质).	心。是或多数分子
毛板分目子作 粉 木及化	1 34农县 6934
有机分子取分极化	0 - FPds = 1
松似3强发量了路=一一个	P= 507 (R, C
ラ ウ・ナ	<u> </u>
P=E.XeE· 极似规律.	1 - (1 - 10 - 10 - 10 - 10 - 10 - 10 - 1
Xe极化率.	C= AFAC= S
9/d = - \$ P · d3	
三、D高斯定律 ※	王、梅桥容量。
gited = = (Equin + qin)	女公共 40 美 20 支
9€ Ed3 = Σ 90 in + (∮ς	To = 1000 = 200
	まりずー かきおお客
全了="忠己+产的各种大量.	We = I done = lowed
多B·ds = Equin. (D的高斯定律).	
B= E. B+ EXE = E. (1+ Xe) =	
全十Xe=Ev 相处介电系数.	
B=208/E· E=208/(全价电源量,破率).	
	deli得力

四、电波器. 电落.

始分身体材:U= UREOR

$$C = \frac{Q}{U} = 4\pi E_0 R$$

CAE: IF = IC = ICV INF = 10°F IFF = 10°F.

C= VA-1/A

平行极电容器: C= 至至 = 至5

桂形电容器:

L>>> R2-R1

$$U_A - U_B = \int_{R_1}^{R_2} \frac{\lambda}{2\pi \epsilon_0 \epsilon_V V} dV = \frac{\lambda}{2\pi \epsilon_0 \epsilon_V} \left| \frac{R_2}{V_R} \right|_{L_R}$$

$$C = \frac{\partial}{U_A - U_B} = \frac{\lambda L}{2\pi \epsilon_0 \epsilon_V R_1} = \frac{2\pi \epsilon_0 \epsilon_V}{\ln R_1}$$

五、电场容量

白家路储能公式

We = \(\frac{1}{2}CV^2 \rightarrow = \frac{Q^2}{2C} = \frac{1}{2}UQ

电能密度We.= - DE = - 12 E = - 12

We = I dwa = Jowedu = Juz EE du.