$$2\times(d)(f)(h) = \frac{X^2 - dfh}{2d_2 - fh2d(x)}$$

Sistema de Numeração

B

matec
$$(x^3)+(abc)$$

 $x^2-2b-ac_2$

 $\chi^{2}(4ab) + (2c)$

x2 + x3 (ac)

O que é Sistema de Numeração?

Sistemas de numeração são formas de representar quantidades usando símbolos.

$$2 = 0010 = II$$

DECIMAL	BINÁRIO	ROMANO	-
1	01010	I	
2	01010	II	-
3	01011	III	
4	01011	IV	
5	01101	V	Kb2
6	01010	VI	
7	11011	VII	
8	11011	VIII	Н
9	11110	IX	

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

$$X^{2}-2b-ac_{2}(X^{2})$$

Principais Sistemas de Numeração

 $\times^2 = 2 \times b^2$

n=2x2+(df)=45°

Sistema de Numeração Decimal

- → Sistema de base 10
- → Algarismos (0 à 9)
- → Valor Absoluto e Posicional

Posicional

$$\Rightarrow$$
 É o valor do número na posição em que ele está $(x^3) + (abc) - (2x)$

 $f = (x^2) + (2x) dh + abc (2x) = 15°$

 $X^2 - 2b - \alpha C_2(X^2)$

 $\times^2 = 2 \times b^2$

Sistema de Numeração Decimal

• Sistema Posicional - Classes e Ordens

CLASSES								
	MILHÕES		MILHARES		UNIDADES SIMPLES			
ORDENS								
19	29	39	4 9	5º	6 º	79	8ª	99
centena de milhão	dezena de milhão	unidade de milhão	centena de milhar	dezena de milhar	unidade de milhar	centena	dezena	unidade

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

h=2x2+(df)=45°

 $\frac{\chi^{2}(4ab)_{1}}{\chi^{2}+\chi^{3}(ab)}$

 $\times^2 = 2 \times b^2$

4x2(af)
3x2+dh

Sistema de Numeração Romano

Simbologia Básica

Símbolo	Valor
- I	1
V	5
Х	10
L	50
С	100
D	500
М	1000

 $f = (x^2) + (2x) dh + abc (2x) = 15°$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

$$\frac{4x^{2}(a_{1})}{3x^{2}+dn}$$
 $\frac{x^{2}(4a_{2})+6x^{2}}{x^{2}+x^{3}(a_{2})}$ $\frac{4x^{2}}{3x^{2}+dn}$

REGRAS DE ESCRITA - ADIÇÃO

- Letras iguais juntas XX = 10 + 10
 - Letra menor depois de uma maior

$$\times^2 = 2 \times b^2$$

$$f = (x^2) + (2x) dh + abc (2x) = 15^\circ$$

XV = 10 + 5

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_3(x^2)$

REGRAS DE ESCRITA - SUBTRAÇÃO

$$\times^2 = 2 \times b^2$$

 $z^2 = (x^2)(x^3) + (abc) - (2x)$

 $X^{2}-2b-\alpha C_{1}(X^{2})$

$$f = (x^2) + (2x) dh + abc (2x) = 15^\circ$$

Sistema de Numeração Romano

- → Um número só se repete até três vezes (III; XXX...)
- → Sistema sem 0 e sem boa representação para valores > 3999
- → Uso nos dias atuais

V, L e D nunca se repetem

$$\overline{V}$$
 = 5000, \overline{X} = 10000

- -> João Paulo II
- -> Séc. XXI

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_3(x^2)$

Sistema de Numeração Binário

 $X^{2}-2b-ac_{2}(X^{2})$

h=2x2+(df)=45°

 $\times^2 = 2 \times b^2$

Sistema de Numeração Binário

- → Sistema de base 2 (0 e 1)
- → Valor Posicional:

Bit	Potência de 2	Valor
1	2 º	1x1=1
1	21	1 x 2 = 2
0	2 ²	0 x 4 = 0
1	23	1 x 8 = 8

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$z^{2}=(x^{2})(x^{3})+(abc)-(2x)$$

 $x^{2}-2b-ac_{3}(x^{2})$

4x2(af)

Sistema de Numeração Binário

Decimal → Binário: dividir o número decimal por 2 repetidamente

Binário → Decimal: usar potências de 2

Ex:

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $x^2 - 2b - ac_2(x^2)$

$$\frac{\chi^{2}(4ab) + \chi^{2}(af)}{\chi^{2} + \chi^{3}(af)} = \frac{4\chi^{2}(af)}{3\chi^{2} + dh}$$

Operações Matemáticas

$$f = (x^2) + (2x) dh + abc (2x) = 15°$$

$$X^{2}-2b-ac_{2}(X^{2})$$

 $z^2 = (x^2)(x^3) + (abc) - (2x)$

$$\frac{4x^{2}(af)}{3x^{2}+dn}$$
 $\frac{x^{2}(4ab)+3c}{x^{2}+x^{3}(af)}$ $\frac{4x^{2}(af)}{3x^{2}+dn}$

Operações Matemáticas

 $X^{2}-2b-\alpha C_{2}(X^{2})$

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

4x2(af)

Sistema de Numeração Binário

- → Importância
- Computadores, sistemas digitais e eletrônicos
- → Leitura e Escrita
- Binário usa índice 2 Ex: 11012
- Decimal (equivalente) índice 10

Ex: 13₁₀

$$z^2 = (x^2)(x^3) + (abc) - (2x)$$

 $f = (x^2) + (2x) dh + abc (2x) = 15°$

 $X^{2}-2b-\alpha c_{2}(X^{2})$

$$\frac{\times^{2}(4ab)+(2c)}{\times^{2}+\times^{3}(ac)}$$

Obrigado!

infographics & images by Freepik 1

$$z^{2} = (x^{2})(x^{3}) + (abc) - (2x)$$

 $x^{2} - 2b - ac_{2}(x^{2})$

 $2\times(d)(f)(h) = \frac{X^2 - dfh}{2d_2 - fh2d(x)}$

 $X^{2}-2b-ac_{1}(X^{2})$

 $\frac{\chi^{2}(4ab) + (2c)}{\chi^{2} + \chi^{3}(ac)} = \frac{4\chi^{2}(af)}{3\chi^{2} + dh}$