*4조* 

# ML 프로젝트

**Linking Writing Processes to Writing Quality** 

주제: 에세이 품질 예측

# 목차

### Ⅰ. 문제 정의

1) 대회 Overview

### Ⅱ . 데이터 전처리 및 분석

- 1) 접근순서
- 2) EDA

### Ⅲ. 베이스 모델 적용

- 1) 첫 번째 베이스라인 모델
- 2) 두 번째 베이스라인 모델

### Ⅳ. 성능 개선

- 1) 추가 피처 생성
- 2) 모델 훈련 및 성능검증
  - 3) 예측 및 결과 제출
    - 4) 한계점

# 1. 문제 정의

# 대회 Overview

# kaggle



#### 대회 목적

글쓰기 프로세스의 특징을 이용하여 에세이 품질을 예측

### 평가지표

**RMSE** 

(Root Mean Squared Error)

$$ext{RMSE} = \left(rac{1}{n}\sum_{i=1}^n (y_i - \hat{y}_i)^2
ight)^{1/2}$$

## 상금 수여

1) 리더보드 점수 - 3등 이내

2) 효율 점수(시간 단축) - 3등 이내

$$Efficiency = \frac{RMSE}{Base - min RMSE} + \frac{RuntimeSeconds}{32400}$$

### 요구사항

Code competition

✓ 반드시 캐글 notebook으로 제출해야 함.

✓ Submission 파일만 제출할 수 없음.

✓ 인터넷 엑세스 사용 안됨

# 대회 Overview

# 데이터 수집 절차

# kaggle

### 키스트로크 로그 프로그램

#### Prompt

While some people promote competition as the only way to achieve success, others emphasize the power of cooperation. Intense rivalry at work or play or engaging in competition involving ideas or skills may indeed drive people cither to avoid fasher or to achieve important victories. In a complex world, however, cooperation is much more likely to produce significant, lasting accomplishments.

Do people achieve more success by cooperation or by competition?

- · Write independently for 30 minutes.
- · Write at least 200 words.
- Write at least three paragraphs
- . Do not leave this page while writing.

Caution. Bonus (\$11.75) will not be paid if plagtarion in found in your entry or your array does not address the prompt quantion.

#### I believe that

#### (데이터 예시)

# id = 001519c8
train['revealed\_text'][0]

q qaqaqaqaq qaqaqaqaq qaqa $\cdot$  Qa qQaqaqa qaq qaqaq qaqaq qaqaqaqaqaq qaqaq q 

User ID

Time left: 30 minutes

Α

В

С

D



에세이 작성

30분 동안 200 단어 이상의 에세이 작성

키<u>스트로크 로그</u> 프로그램



평가 수행

글쓰기 과정을 추적하여 에세이를 평가



점수

5.0

4.5

3.0

1.5

mit

Word Count: 3

# 대회 Overview

# kaggle

# 데이터 수집 절차

#### 데이터 컬럼

| Event ID                | 어떤 이벤트가 발생된 인덱스 값                               |
|-------------------------|-------------------------------------------------|
| Down Time<br>/Up Time   | 키나 마우스를 누르거나 떼었을 때 시간( 단위 :<br>milliseconds)    |
| Action Time             | 키나 마우스가 눌러진 채, 지속된 시간(down<br>time과 up time 차이) |
| Activity                | 키나 마우스 활동 범주(고윳값 6개)                            |
| Down Event<br>/Up Event | 키 또는 마우스 중 어떤 것을 클릭 했는지                         |
| Text Change             | 키나 마우스의 누른 결과로<br>변경된 텍스트가 있는 경우                |
| Cursor Position         | 키 또는 마우스를 누른 후<br>텍스트 커서 위치의 문자 인덱스             |
| Word Count              | 키 또는 마우스를 누른 후 에세이 단어 개수                        |

#### 입력 데이터

```
# id = 0022f953
train['revealed_text'][1]
```

aga agagagagaa aga gagaga a ag gagaga Qag agag agaga agag a agagag agagag a ada ada adada adadada ada ada adada a adad adad adada adad adadad ada adada qq qqqqq qqqq qqqq. \n Qaqa qaa qaaa qa qaa qaa qaaqaaqa qa qaaqa qaaqa agaaa agaaaa - agaaaaa, agaa, agaaa, agaaaaaa aga ag agaa. Qaa agaaaaa aga agaa aa agaa agaa agaa agaa Q agaa\'a, Q agaa Q aga\'a agaagaagaagaa "aa agagagagaga" aga agag agaga agagaga agag a agaga agaga agagag aga agaga aga aga Qaaqaa qa qa qaaqaaqaa - aqa qa qaaqaa, Qaa qa qaaq aqa "a 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 999 aga agaa, ag ag agaa agaa a, aga agaagaaa ag agaa agaa - ag agaa agaa ag agaa qqqqqqqq qqq qqqqqq qqqqqqqqqqqqqqq,

- ✓ 실제로 작성된 단어는 모두 문자열 q로 변환됨
- ✓ 글의 문맥이나 문장력의 우수성을 파악하기 어려움

순수하게 🚾 메지장된 직성 패턴으로만, 평가해야 하는 대회임을 파악

# II. 데이터 전처리 및 분석

## 일반적인 분석 과정

문제 정의

데이터 전처리 및 분석

> 베이스 모델 적<del>용</del>

성능 개선 (<mark>피처 추가)</mark>

### ID별 log 데이터 파일(csv)

|    | id       | event_id | down_time | up_time | act |
|----|----------|----------|-----------|---------|-----|
| 0  | 001519c8 | 1        | 4526      | 4557    |     |
| 1  | 001519c8 | 2        | 4558      | 4962    |     |
| 2  | 001519c8 | 3        | 106571    | 106571  |     |
| 3  | 001519c8 | 4        | 106686    | 106777  |     |
| 4  | 001519c8 | 5        | 107196    | 107323  |     |
| 5  | 001519c8 | 6        | 107296    | 107400  |     |
| 6  | 001519c8 | 7        | 107469    | 107596  |     |
| 7  | 001519c8 | 8        | 107659    | 107766  |     |
| 8  | 001519c8 | 9        | 107743    | 107852  |     |
| 9  | 001519c8 | 10       | 107840    | 107978  |     |
| 10 | 001519c8 | 11       | 108008    | 108195  |     |
| 11 | 001519c8 | 12       | 108104    | 108259  |     |
| 12 | 001519c8 | 13       | 108229    | 108370  |     |
| 13 | 001519c8 | 14       | 108341    | 108486  |     |
| 14 | 001519c8 | 15       | 109296    | 109438  |     |
| 15 | 001519c8 | 16       | 109423    | 109559  |     |
| 16 | 001519c8 | 17       | 109560    | 109729  |     |

 id
 event\_id\_max
 up\_time\_max
 action\_time\_sum

 0
 001519c8
 2557
 1801969
 297243

<mark>피처 생성</mark>(groupby) 및 분석

> 베이스 모델 적<del>용</del>

성능 개선

적용한 분석 과정

문제 정의

## 데이터 컬럼

데이터 세트 형상: (8405898, 11)

|    | 피처              | 데이터 타입 | 결측값 개수 | 고윳값 개수  | 고뮷값                                            |
|----|-----------------|--------|--------|---------|------------------------------------------------|
| 0  | id              | object | 0      | 2471    | [001519c8, 0022f953, 0042269b, 0059420b, 00758 |
| 1  | event_id        | int64  | 0      | 12876   | [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 |
| 2  | down_time       | int64  | 0      | 1836078 | [4526, 4558, 106571, 106686, 107196, 107296, 1 |
| 3  | up_time         | int64  | 0      | 1835993 | [4557, 4962, 106571, 106777, 107323, 107400, 1 |
| 4  | action_time     | int64  | 0      | 3509    | [31, 404, 0, 91, 127, 104, 107, 109, 138, 187, |
| 5  | activity        | object | 0      | 50      | [Nonproduction, Input, Remove/Cut, Replace, Mo |
| 6  | down_event      | object | 0      | 131     | [Leftclick, Shift, q, Space, Backspace, ., ,,  |
| 7  | up_event        | object | 0      | 130     | [Leftclick, Shift, q, Space, Backspace, ., ,,  |
| 8  | text_change     | object | 0      | 4111    | [NoChange, q, , ,, ,, qqq qqqqq => , qqqqq     |
| 9  | cursor_position | int64  | 0      | 7803    | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |
| 10 | word_count      | int64  | 0      | 1327    | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, |

- ✓ 데이터 타입은 object와 int 타입으로 구분
- ✓ 결측값은 없음



### 타깃값 분포







✓ 타깃값의 불균형(Target Imbalance)을 확인※ Test data set의 ID는 총 3개

## ID별 EDA 시각화



✓ 단어 수가 증가할수록 score 점수도 증가하는 경향을 보임



- ✓ 작성시간이 증가함에 따라 score가 증가한다는 경향이 명확하지 않음
- ✓ 이상치 확인

# III. 베이스모델 적용

# 첫 번째 베이스라인 모델

# kaggle

### **XGBoost**

- ✓ 팀원 개개인이 만든 피처들을 사용해서 베이스라인 구축 완료
- ✓ RMSE: 0.734

| num_event_id -           | 1              | 0.85                | -0.17                 | -0.14                |                |                  | -0.66                    | -0.19        | -0.16        | -0.18        | -0.18        | 0.79         | 0.59    |
|--------------------------|----------------|---------------------|-----------------------|----------------------|----------------|------------------|--------------------------|--------------|--------------|--------------|--------------|--------------|---------|
| total_action_time -      | 0.85           | 1                   | 0.32                  | 0.32                 |                | 0.12             | -0.61                    | -0.16        | -0.14        | -0.15        | -0.15        | 0.73         | 0.55    |
| average_action_time -    | -0.17          | 0.32                | 1                     | 0.93                 | -0.0075        | -0.083           | 0.071                    | 0.063        | 0.041        | 0.047        | 0.054        | -0.055       | -0.049  |
| median_action_time -     | -0.14          | 0.32                | 0.93                  | 1                    | -0.026         | -0.13            | 0.06                     | 0.072        | 0.049        | 0.058        | 0.062        | -0.019       | -0.023  |
| writing_time -           |                |                     | -0.0075               | -0.026               | 1              | 0.33             | 0.15                     | 0.057        | 0.053        | 0.052        | 0.057        | 0.1          | 0.064   |
| num_of_P_Burst -         |                | 0.12                | -0.083                | -0.13                | 0.33           | 1                | -0.26                    | -0.27        | -0.23        | -0.25        | -0.25        | 0.019        | 0.097   |
| Proportion_of_P-Bursts - | -0.66          | -0.61               | 0.071                 | 0.06                 | 0.15           | -0.26            | 1                        | 0.38         | 0.34         | 0.36         | 0.36         | -0.55        | -0.3    |
| Median_RPT -             | -0.19          | -0.16               | 0.063                 | 0.072                | 0.057          | -0.27            | 0.38                     | 1            | 0.98         | 0.99         | 0.99         | -0.15        | -0.096  |
| Median_PRT -             | -0.16          | -0.14               | 0.041                 | 0.049                | 0.053          | -0.23            | 0.34                     | 0.98         | 1            | 0.99         | 0.99         | -0.12        | -0.071  |
| Median_PPT -             | -0.18          | -0.15               | 0.047                 | 0.058                | 0.052          | -0.25            | 0.36                     | 0.99         | 0.99         | 1            | 1            | -0.13        | -0.084  |
| Median_RRT -             | -0.18          | -0.15               | 0.054                 | 0.062                | 0.057          | -0.25            | 0.36                     | 0.99         | 0.99         | 1            | 1            | -0.13        | -0.08   |
| word_count -             | 0.79           | 0.73                | -0.055                | -0.019               | 0.1            | 0.019            | -0.55                    | -0.15        | -0.12        | -0.13        | -0.13        | 1            | 0.64    |
| score -                  | 0.59           | 0.55                | -0.049                | -0.023               | 0.064          | 0.097            | -0.3                     | -0.096       | -0.071       | -0.084       | -0.08        | 0.64         | 1       |
|                          | num_event_id - | total_action_time - | average_action_time - | median_action_time - | writing_time - | num_of_P_Burst - | Proportion_of_P-Bursts - | Median_RPT - | Median_PRT - | Median_PPT - | Median_RRT - | word_count - | score - |



- 0.4

- 0.0

- -0.2

- -0.4

- -0.6



# LightGBM(캐글러)

- 상위 캐글러의 코드에서 사용된 피처들을 도입하여 시도
- 다양한 피처를 사용해서 성능이 많이 향상됨
- RMSE: 0.611





IV. 성능 개선

# KeyStroke Measure

#### The Wolf Of SUTD (TWOS): A Dataset of Malicious Insider Threat Behavior Based on a Gamified Competition

Athul Harilal\*, Flavio Toffalini, Ivan Homoliak, John Castellanos, Juan Guarnizo, Soumik Mondal ST Electronics-SUTD Cyber Security Laboratory, Singapore University of Technology and Design, Singapore {athul\_harilal, ivan\_homoliak, mondal\_soumik}@sutd.edu.sg {flavio\_toffalini, john\_castellanos, juan\_guarnizo}@mymail.sutd.edu.sg

#### Martín Ochoa

Department of Applied Mathematics and Computer Science, Universidad del Rosario, Bogotá, Colombia martin.ochoa@urosario.edu.co

#### Abstract

In this paper we present the TWOS dataset that contains realistic instances of insider threats based on a gamified competition. The competition simulated user interactions in/among competing companies, where two types of behaviors (normal and malicious) were incentivized. For the case of malicious behavior, we designed sessions for two types of insider threats (masqueraders and traitors). The game involved the participation of 6 teams consisting of 4 students who competed with each other for a period of 5 days, while their activities were monitored considering several heterogeneous sources (mouse, keyboard, process and file-system monitor, network traffic, emails and login/logout). In total, we obtained 320 hours of active participation that included 18 hours of masquerader data and at least two instances of traitor data. In addition to expected malicious behaviors, students explored various defensive and offensive strategies such as denial of service attacks and obfuscation techniques, in an effort to get ahead in the competition.

Furthermore, we illustrate the potential use of the TWOS dataset in multiple areas of cyber security, which does not limit to malicious insider threat detection, but also areas such as authorship verification and identification, continuous authentication, and sentiment analysis. We also present several state-of-the-art features that can be extracted from different data sources in order to guide researchers in the analysis of the dataset. The TWOS dataset is publicly accessible for further research purposes.

Keywords: malicious insider threat, masquerader, traitor, multiplayer game, user behavior monitoring, feature extraction, authorship verification, continuous authentication, sentiment analysis.



# KeyStroke Measure

#### RESEARCH REPORT

# Analysis of Keystroke Sequences in Writing Logs

Mengxiao Zhu, Mo Zhang, & Paul Deane

Educational Testing Service, Princeton, NJ

The research on using event logs and item response time to study test-taking processes is rapidly growing in the field of educational measurement. In this study, we analyzed the keystroke logs collected from 761 middle school students in the United States as they completed a persuasive writing task. Seven variables were extracted from the keystroke logs and compared with different score and gender groups. Group comparisons were also made using methodologies borrowed from sequence mining. Students' composition strategies over the course of the writing process were also investigated. The findings of this study have implications for gaining deeper understanding of observed group differences and for designing interventions to close the achievement gaps among population groups.

Keywords Keystroke log; sequence analysis; writing assessment



#### XGBoost

하이퍼파라미터 범위 (Optuna를 통해 최적의 하이퍼파라미터를 추출)

```
param = {
    'lambda': trial.suggest_float('lambda', 1e-3, 0.1),
    'alpha': trial.suggest_float('alpha', 1e-3, 1.0),
    'colsample_bytree': trial.suggest_float('colsample_bytree', 0.4, 1);
    'subsample': trial.suggest_float('subsample', 0.4, 1),
    'learning_rate': trial.suggest_float('learning_rate',0.0001, 0.1),
    'n_estimators': trial.suggest_int('n_estimators', 100, 1000),
    'max_depth': trial.suggest_int('max_depth', 4,8),
    'min_child_weight': trial.suggest_int('min_child_weight', 2, 50),
```

최적의 하이퍼파라미터를 교차검증 진행

```
model = xgb.XGBRegressor(reg_lambda=0.062039020636607344,
                         alpha=0.892907254615829.
                         colsample_bytree=0.5927968006434249,
                         subsample=0.5758791677351336,
                         learning_rate=0.09032689672187355,
                         n_estimators=547,
                         max_depth=5,
                         min_child_weight=33)
```

### 모델별 예측 결과

하이퍼파라미터 범위 (Optuna를 통해 최적의 하이퍼파라미터를 추출)

```
param =
    'metric': 'rmse',
    'random_state': 42,
    'n_estimators': 10000,
    'reg_alpha': trial.suggest_float('reg_alpha', 1e-3, 10.0, log=True),
    'reg_lambda': trial.suggest_float('reg_lambda', 1e-3, 10.0, log=True),
    'colsample_bytree': trial.suggest_float('colsample_bytree', 0.5, 1),
    'subsample': trial.suggest_float('subsample', 0.5, 1),
    'learning_rate': trial.suggest_float('learning_rate', 1e-4, 0.1, log=True),
    'num_leaves' : trial.suggest_int('num_leaves', 2, 32),
    'min_child_samples': trial.suggest_int('min_child_samples', 1, 100)
```

최적의 하이퍼파라미터를 교차검증 진행

```
model = lgb.LGBMRegressor(num_leaves=18,
                             max_depth=15.
                           learning_rate=0.023691696274555238,
                           n_estimators=10000,
                           subsample=0.6377463608066083,
                          min_child_samples=43,
                             feature_fraction=0.75.
                           reg_alpha=0.3381890369449931,
                           reg_lambda=0.0022112993176679648,
                           colsample_bytree=0.5716208570394763,
                           random_state=42.
                           verbose=20,
                           metric=None)
```

# 캐글 대회를 위한 OOF Prediction 전략



※ 출처: 김용담 강사님 강의자료

# 모델별 예측 결과 2023-10-19 기준

kaggle





# 캐글 결과 제출

# Efficiency Score

|                | TeamName         | PublicScore | DateSubmitted            |
|----------------|------------------|-------------|--------------------------|
| EfficiencyRank |                  |             |                          |
| 1              | Rib~             | 0.594       | Wed Oct 18 03:45:45 2023 |
| 2              | Marlon Flügge    | 0.601       | Mon Oct 16 17:07:45 2023 |
| 3              | 【Z Lab数据实验室】最菜选手 | 0.605       | Sun Oct 8 12:41:45 2023  |
| 4              | Joseph Josia     | 0.604       | Fri Oct 6 16:19:24 2023  |
| 5              | Stochoshi G      | 0.601       | Thu Oct 12 20:08:06 2023 |
| 6              | sfnga            | 0.601       | Tue Oct 3 19:21:01 2023  |
| 7              | 3sigma           | 0.610       | Tue Oct 10 12:27:21 2023 |
| 8              | suk1yak1         | 0.612       | Wed Oct 4 14:38:50 2023  |
| 9              | Ryota            | 0.598       | Wed Oct 18 19:11:16 2023 |
| 10             | koyarocow        | 0.606       | Thu Oct 12 10:18:21 2023 |
| 11             | shige_skywalker  | 0.605       | Thu Oct 12 07:42:24 2023 |
| 12             | The Nam          | 0.604       | Tue Oct 17 20:11:34 2023 |
| 13             | Soo.Y            | 0.606       | Tue Oct 17 09:54:25 2023 |
| 14             | chimuichimu      | 0.601       | Sun Oct 15 02:49:56 2023 |
| 15             | Kwonys           | 0.605       | Mon Oct 16 05:26:09 2023 |
| 16             | Eunchae Koh      | 0.605       | Mon Oct 16 09:14:01 2023 |
| 22             | JJJI WON         | 0.607       | Tue Oct 17 07:47:05 2023 |

# 한계점

# kaggle





경청해주셔서 감사합니다.