Linear Convolution Using DFT (FFT)

Recall that linear convolution is

$$x_3[n] = \sum_{m=-\infty}^{\infty} x_1[m]x_2[n-m]$$

- When the length of $x_1[n]$ is L and the length of $x_2[n]$ is P, then the length of $x_3[n]$ is L+P-1.
- ➤ Linear convolution with finite length sequences is frequently used in practice, eg., low-pass filter, or generally, an FIR filter.
- How to compute linear convolution efficiently?

Circular Convolution Using FFT

- First, let us note that circular convolution can be computed more efficiently by using FFT.
- \triangleright Direct circular convolution of two length-N sequences: takes the time complexity of $O(N^2)$.
- Circular convolution by FFT and inverse FFT:
 - ➤ Apply FFT to the length-N signal (forward transform to the frequency domain).
 - Perform multiplication in the frequency domain.
 - Apply inverse FFT (inverse transform to the time domain).
- \triangleright As both FFT and inverse FFT take $O(N \log(N))$ and multiplication takes O(N), the time complexity is $O(N \log(N))$.

Linear Convolution Using FFT

- ➤ However, linear convolution cannot be speeded up directly by FFT, because multiplication in the frequency domain of DFT (FFT) implies circular convolution but not linear convolution.
- How to speed up linear convolution by FFT?
- > **Trick**: Seeking the relationships between the linear convolution and the circular convolution.

Block convolution (for implementing an FIR filter)

- FIR filtering is equivalent to perform the linear convolution using a finite-length sequence.
- Block convolution:
 - Segment the signal into segments of length L.
 - Each *L*-length sequence is processed separately and the results are then combined.
 - When *L* is large enough, we usually use circular convolution (instead of linear convolution) to compute the result of each section, because circular convolutions can be computed efficiently by using FFT/IFFT.

Overlapping-add Method

A popular block convolution method is the overlappingadd method.

Property

A linear convolution of two finite-length sequences (with lengths being L and P respectively) is equivalent to a circular convolution of the two N-point (N = L + P-1) sequences obtained when padding zeros to the end of the two sequences.

Property used for Overlapping-add Method

• Let x[n] and y[n] be signals of length L and P, respectively. Assume that $\hat{x}[n]$ and $\hat{y}[n]$ are the length-N signals consisting of the entries of x[n] and y[n], respectively, with N = L + P - 1. Then the length-N circular convolution of $\hat{x}[n]$ and $\hat{y}[n]$ is equal to the linear convolution of x[n] and y[n] for $0 \le n < N$.

Pf: Denote the circular convolution result as $\hat{z}[n]$.

$$\hat{z}[n] = \sum_{m=0}^{L+P-2} \hat{x}[m] \, \hat{y}[(n-m) \bmod N] = \sum_{m=0}^{L-1} x[m] \, \hat{y}[(n-m) \bmod N],$$

since $\hat{x}[m] = 0$ for m > L. Then, also note that $\hat{y}[n] = 0$ when n > P. By separating the above into two terms, we have

$$\hat{z}[n] = \sum_{m=0}^{n} x[m] \, \hat{y}[(n-m) \bmod N] + \sum_{m=n+1}^{L-1} x[m] \, \hat{y}[(n-m) \bmod N]$$

$$= \sum_{m=0}^{L-1} x[m] \, y[n-m] + \sum_{m=n+1}^{L-1} x[m] \, \hat{y}[n-m+N], 0 \le n < N.$$

The second term is zero because n-m+N>n-L+N=n-L+L+P-1>p for $m\in [n+1,L-1]$. So, $\hat{z}[n]=\sum_{m=0}^n x[m]\,y[n-m]$, same as the linear convolution result.

Overlapping-add method (for implementing an FIR filter)

When segmenting into length-L non-overlapping segments, the signal x[n] can be represented as

$$x[n] = \sum_{r=-\infty}^{\infty} x_r[n - rL]$$

where the r-th segment is

$$x_r[n] = \begin{cases} x[n+rL] & 0 \le n \le L-1 \\ 0 & otherwise \end{cases}$$

Because convolution is a linear operation, it follows that

$$y[n] = x[n] * h[n] = \sum_{r=-\infty}^{\infty} x_r[n] * h[n] = \sum_{r=-\infty}^{\infty} y_r[n-rL]$$

where $y_r[n] = x_r[n] * h[n]$.

So, we can compute the output segments $y_r[n]$ for every r. Adding the output segments then constitutes the output signal.

For example, consider two sequences h[n] and x[n] as follows.

Segmenting x[n] into L-length sequences. Each segment is padded by P-1 zero values.

Circular convolution is performed for each segment. (using the FFT/IFFT for speedup)

Overlapping-add method: Adding the outputs $y_r[n]$, where adjacent segments overlaps P-1 points.

Overlapping-add method (for implementing an FIR filter)

- Since $x_r[n]$ is of length L and h[n] is of length P, each output segment $y_r[n]$ has length L+P-1
- As we use zero-padding to form two N point sequences, N = L + P-1, for both $x_r[n]$ and h[n], we performing N-point circular convolution (instead of linear convolution) to compute $y_r[n]$.
- In practice, we can also choose N as an integer power of 2 and N > L + P 1 when applying a radix-2 FFT algorithm.

Overlapping-save method (for implementing an FIR filter)

Can we perform L-point circular convolution, instead of (L + P - 1)-point circular convolution?

Property:

If a L-point sequence is circularly convolved with a P-point sequence (P < L), the first (P-1) points of the result are "incorrect", while the remaining points are identical to those that would be obtained by linear convolution.

Property used for Overlapping-save Method

Suppose an L-point sequence x[n] is circularly convolved with an P-point sequence y[n] (P < L). Then, the last L - P + 1 points of the result are identical to those that obtained by linear convolution.

(remark: the circular convolution used here is the L-point circular convolution, where the length-P signal is zero-padded to length-L).

pf: Denote the circular convolution result be z[n]. Note that P < L.

$$z[n] = \sum_{m=0}^{L-1} y[m] x[(n-m) \bmod L] = \sum_{m=0}^{P-1} y[m] x[(n-m) \bmod L]$$
$$= \sum_{m=0}^{n} y[m] x[(n-m) \bmod L] + \sum_{m=n+1}^{P-1} y[m] x[(n-m) \bmod L]$$

When $P-1 \le n \le L-1$ (i.e., the last L-P+1 points), the second term disappears, and the first term is equal to the linear-convolution result,

$$\sum_{m=0}^{n} y[m] x[n-m].$$

Overlapping-save method (for implementing an FIR filter)

 \triangleright Separating x[n] as overlapping sections of length L, so that each section overlaps the preceding section by (P-1) points.

Then the r-th segment is

$$x_r[n] = x[n+r(L-P+1)-P+1], \quad 0 \le n \le L-1$$

See the figures for more details.

Example of overlapping-save method

Example of overlapping-save method (continue)

Result of circularly convolving each section with h[n]. The portions of each filter section are discarded in forming the linear convolution.

Review of the block-convolution materials

Slides from **ECE 4270** of School of Electrical and Computer Engineering, Georgia Institute of Technology 2004

ECE 4270 Fundamentals of Digital Signal Processing

Lecture 21: Block Convolution

School of Electrical and Computer Engineering Georgia Institute of Technology Summer 2004

Linear Convolution Example Again

In a Circular (Aliased) Convolution, Some Parts of the Output Equal the Linear Convolution, and Some Don't ...

Aliased Convolution - 1

 If we tried to implement the convolution on the previous slide by multiplying the L-point DFTs of the two sequences, the output would be the linear convolution, but repeated (aliased) every L samples:

$$\tilde{x}_3[n] = \sum_{r=-\infty}^{\infty} x_3[n-rN] = x_3[n \text{ modulo } N] = x_3[((n))_N]$$

 If we examine the values in the principal interval of n=0,...,L-1, what do we find?

Aliased Convolution - 2 $x_3[n]$ 0 L $x_3[n+L]$ x

Aliased Convolution - 3

Another way to view it: the second block of L samples is aliased back onto the first block of L samples

Aliased Convolution - 4

Terminology: Fast Convolution

 We can accomplish the convolution of two finitelength sequences by computing the convolution sum directly:

$$y[n] = \sum_{n=0}^{L+P-2} x[m] h[n-m]$$

 Or by computing the DFT of each sequence, multiplying DFTs, and computing the inverse DFT of the product:

$$y[n] = DFT_N^{-1} \left\{ DFT_N(x[n]) \bullet DFT_N(h[n]) \right\} \quad N \ge L + P - 1$$

 The latter approach is called "fast convolution" because (assuming FFTs are used), it often requires fewer multiplications

Filtering Long Sequences

- Sometimes we want to filter a sequence that is very long
 - could save up all the samples, then either
 - » do a really long time-domain convolution, or
 - » use really big DFTs to do it in the frequency domain
 - but big DFTs may become impractical; besides
 - we get long *latency*: we have to wait a long time to get any output
- Sometimes we want to filter a sequence of indefinite length
 - and then even the methods above don't work

Using Linearity to Filter a Long Signal - 2

- We can then perform a linear operation on the long signal by
 - performing it on each of the shorter segments, and
 - combining them, using linear shift-invariance, to form the complete output signal
- Specifically, for linear filtering:

$$x[n] = \sum_{r=0}^{\infty} x_r [n - rL] \to y[n] = x[n] * h[n] = \sum_{r=0}^{\infty} y_r [n - rL]$$
$$y_r[n] = x_r[n] * h[n]$$

Using Linearity to Filter a Long Signal - 1

 Any long sequence can be broken up into shorter blocks:

Block Convolution - Overlap Add Method

h[n]

Segmenting the Input in OLA

Filtering the Segments

- The Overlap-Add (OLA) method calls for filtering each segment separately, then adding the results
- The filtering of the individual segments can be done by any legitimate means
 - time-domain convolution
 - frequency domain "fast convolution" using DFTs (implemented with the FFT algorithm)
 - » DFT size N should be at least L+P-1 so that you get a linear convolution result for each individual segment

Putting the Output Pieces Together

Block Filtering with Circular Convolution

- Alternatively, we can use a smaller DFT and allow the convolution of the segments to be circular instead of linear
 - $-N = \max\{L,P\}$
 - fewer multiplications per DFT this way
- We saw earlier that in this case, only some of the output values of the circular convolution are equal to samples of the linear convolution
- The Overlap-Save (OLS) method of block convolution uses circular convolutions and retains only the "good" samples to build up the output

Linear Convolution Example Again

Aliased Convolution - 2

Aliased Convolution - 1

 If we tried to implement the convolution on the previous slide by multiplying the L-point DFTs of the two sequences, the output would be the linear convolution, but repeated (aliased) every L samples:

$$\tilde{x}_3[n] = \sum_{r=-\infty}^{\infty} x_3[n-rN] = x_3[n \text{ modulo } N] = x_3[((n))_N]$$

 If we examine the values in the principal interval of n=0,...,L-1, what do we find?

OLS Method - Segmenting the Input

OLS Method - Extracting the Output

Efficient Computation of the DFT: The Fast Fourier Transform, or FFT

Computation Required

- We'll count complex multiplies; the number of complex adds is about the same
- Let μ(N) be the number of multiplies needed to compute an N-point DFT using an FFT algorithm, and let β(N) be the number of multiplies needed to compute an N-point DFT in brute-force fashion
- Thus we start with

$$\beta(N) = N^2$$

The Goal of "the" FFT Algorithm ...

- ... is to compute the DFT of size N with significantly fewer than N^2 complex multiplications and additions
- To accomplish this, researchers have come up with entire families of fast algorithms; these are <u>collectively</u> referred to as "the" fast Fourier transform (FFT) algorithm
- The first (or at least most timely) FFT algorithm was published by Jim Cooley and John Tukey in 1965 and is now referred to as the radix-2 Cooley-Tukey FFT algorithm
 - this is the main version we will consider ...

Computation of the DFT

 In order for the DFT to be useful for linear filtering, nonlinear filtering, spectrum analysis, etc., we need efficient computation algorithms for

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn} \quad k = 0, 1, \dots, N-1$$

• Using the above directly requires N complex multiplications and N-1 complex additions for each of the N DFT values $\Rightarrow \beta(N) = N^2$ complex multiplications. For example,

$$N = 1024 \implies \beta(1024) \approx 10^6$$