ECE305

Dr.Anuj jain

Rule 10: Shifting takeoff point after a summing point. Consider a situation as show in Fig.

Now after shifting the takeoff point, let signal takingoff be 'z' as shown in the Fig.

Now
$$z = R_1 \pm y$$

But we want feedback signal as $x = R_1$ only.

So signal 'y' must be inverted and added to C₁ to keep feedback signal value same. And to add the signal, summing point must be introduced in series with takeoff signal. So modified configuration becomes as shown in the Fig.

Rule 11: Shifting takeoff point before a summing point:

Consider a situation as shown in the Fig.

Anuj Jain

Anuj Jain

Anuj Jain

cont....

Apply rule 3 Feedback loop

cont....

Apply rule 1 Blocks in series

$$(G1)(\frac{G2G3}{1+G2G3H1})(G4+\frac{G5}{G3})$$

H2

$$= (G1)(\frac{G2G3}{1 + G2G3H1})(G4 + \frac{G5}{G3})$$

$$= (G1)(\frac{G2G3}{1 + G2G3H1})(\frac{G4G3 + G5}{G3})$$

$$= \frac{G1G2(G4G3+G5)}{1+G2G3H1}$$

Apply rule 3

Feedback loop

Anuj Jain

R(s)
$$\frac{G1G2(G4G3+G5)}{1+G2G3H1+G1G2H2(G3G4+G5)}$$
 C(s)

$$\frac{C(S)}{R(S)} = \frac{G1G2(G4G3+G5)}{1+G2G3H1+G1G2H2(G3G4+G5)}$$

Apply rule 8

Shift take off point after block G4

Apply rule 1 Blocks in series

Anuj Jain

cont....

Anuj Jain

Feedback loop Apply rule 3 H2/ G4 G 2 G 3 G 4 G1 1 + G 3 G 4 H 3**C**(s) H1

Anuj Jain

Apply rule 1

Blocks in series

Anuj Jain

Apply rule 3

Feedback loop

Anuj Jain

R(s)
$$G1G2G3G4$$
 C(s) $1+G3G4H3+G2G3H2+G1G2G3G4H1$

$$\frac{C(S)}{R(S)} = \frac{G1G2G3G4}{1 + G3G4H3 + G2G3H2 + G1G2G3G4H1}$$

Simplify, by splitting 3rd summing point as given in Note 1

Apply Rule 3

Elimination of Feedback loop

Apply Rule 8

Shift take off point after block

cont....

Now which rule we have to use?

cont....

Apply Rule 1

Blocks in series

Apply Rule 3

Elimination of Feedback Loop

cont....

Apply Rule 1

Blocks in series

Apply Rule 3

Elimination of Feedback loop

R(s)
$$G1G4(G3+G2)$$
 C(s) $1+G4H1+G1G2H2+G1G2G4H1H2+G1G4(G2+G3)$

$$\frac{C(s)}{R(s)} = \frac{G1G4(G3+G2)}{1+G4H1+G1G2H2+G1G2G4H1H2+G1G4(G2+G3)}$$

Apply rule 2 Blocks in Parallel

Apply rule 3 Elimination of Feedback Loop

Example 9

cont....

Apply rule 1 Blocks in Series

Elimination of Feedback loop

40

R(s)
$$G2G3(G1+G4+G5)$$
 C(s) $1+G2H1+G3H2+G2G3H1H2+G2G3H3(G1+G4+G5)$

Example 9

$$\frac{C(s)}{R(s)} = \frac{G2G3(G1+G4+G5)}{1+G2H1+G3H2+G2G3H1H2+G2G3H3(G1+G4+G5)}$$

Example 10

Apply rule 2 Blocks in Parallel

Elimination of Feedback Loop

Shift take off point after block

Blocks in series

Blocks in Parallel

Blocks in Series

Elimination of Feedback loop

cont....

49

Apply rule 1

Blocks in series

R(s)
$$\frac{G1G2(1+G3)}{1+G2+G2H1(1+H2+H2G3)}$$
 C(s)

$$\frac{C(s)}{R(s)} = \frac{G1G2(1+G3)}{1+G2+G2H1(1+H2+H2G3)}$$

Thank You