Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1.

Основи алгоритмізації»

«Дослідження аритметичних циклічних алгоритмів» Варіант 18

Виконав студент ІП-11 Лесів Владислав Ігорович

Перевірив Мартинова О.П.

Лабораторна робота 4

Дослідження аритметичних циклічних алгоритмів

Мета — дослідити особливості роботи аритметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант №18.

18. Знайти суму
$$n$$
 членів послідовності $a_n = \frac{a_{n-1}^2}{a_{n-1} + 3}$, якщо $a_1 = 2$.

Постановка задачі. Результатом розв'язку ϵ сума елементів заданої формулою послідовности. Для визначення результату повинне бути задане ціле число ϵ початковий елемент ϵ 1=2. Інших початкових даних для розв'язку не потрібно.

Побудова математичної моделі. Складемо таблицю імен змінних.

Змінна	Тип	Ім'я	Призначення
Кількість членів послідовности	Цілий	n	Початкове дане
Елемент послідовности	Дійсний	a	Проміжне
			значення
Сума елементів послідовности	Дійсний	S	Результат

Математичне формулювання задачі зводиться до обчислення елементів

послідовности за заданою рекурентною формулою $a_n = \frac{a_{n-1}^2}{a_{n-1} + 3}$ та додавання їх до загальної суми.

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блок-схеми.

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо дію обчислення початкового значення суми елементів та першого члена послідовности.

Крок 3. Деталізуємо дію обчислення значень елементів послідовности за заданою рекурентною формулою та знаходження суми цих елементів.

Псевдокод

крок 1

початок

введення п

обчислення початкового значення суми та першого члена

обчислення значення елементів за формулою та додавання до суми

виведення s

кінець

крок 2

початок

введення п

a := 2;

s=2;

обчислення значення елементів за формулою та додавання до суми

виведення s

кінець

```
крок 3
```

початок

```
введення n
a:=2;
s:=2;
повторити
для і від 1 до n-1
```

s:=s+a; все повторити

 $a:=(a^2)/(a+3);$

виведення s

кінець

Блок-схема

крок 1

крок 2

крок 3

Випробування алгоритму. Перевіримо правильність алгоритму на довільних конкретних значеннях початкових даних.

Блок	Дія	
	Початок	
1	Введення n=3	
2	a:=2; s:=2;	
3	Повторити від 1 до 2. Ітерація №1:	
	a:=0.8; s:=2.8;	
4	Ітерація №2:	
	$a:=\frac{16}{95}$; $s:=2\frac{92}{95}$;	
5	Виведення s=2.968421	
	Кінець	

Висновок. Отже, у цій роботі я дослідив особливості роботи аритметичних циклів та набув практичних навичок їх використання під час складання програмних специфікацій. У результаті лабораторної роботи було розроблено математичну модель, що відповідає постановці задачі; псевдокод та блок-схеми, які пояснюють логіку алгоритму. Використовуючи аритметичний цикл for для послідовного знаходження елементів послідовности та додавання їх до суми, отримуємо коректний результат.