

FATIGUE OF MATERIALS & STRUCTURES

G. Hénaff

FATIGUE CRACK PROPAGATION

Opening modes

Standard specimens

Compact tension specimen

Fatigue crack propagation test

- Pre-cracked specimens
- Crack length monitoring of the crack length as a function of the number of aplled cycles (optical, compliance, potential drop)

Crack length monitoring

Optical method (direct)

Variation of Compliance

Potential drop (requires a calibration)

Propagation curves

Use of LEFM

Static or monotonic loading: the stress intensity factor accounts for the stress/strain field at the crack tip

Use of LEFM

Idea: consider the *stress intensity factor range* △*K* as the *driving force* for crack growth under cylic loading

A Rational Analytic Theory of Fatigue

PAUL C. PARIS

Assistant Professor of Civil Engineering

MARIO P. GOMEZ* and WILLIAM E. ANDERSON Research Engineers, Boeing Airplane Company

The Trend in Engineering 13, 9-14 (1961)

$$\Delta \mathbf{K} = \alpha \times \Delta \sigma \times \sqrt{\pi a}$$

$$= \alpha \times (\sigma_{\text{max}} - \sigma_{\text{min}}) \times \sqrt{\pi a}$$

$$= \mathbf{K}_{\text{max}} - \mathbf{K}_{\text{min}}$$

NB: even when $\Delta \sigma$ is kept constant, ΔK increases during crack growth

Stress intensity factor

COMPACT TENSION SPECIMEN

$$\Delta K = \frac{\Delta P}{B\sqrt{W}} \frac{(2+\alpha)}{(1-\alpha)^{3/2}} \left[0.886 + 4.64 \times -13.32 \times^2 + 14.72 \times^3 -5.6 \times^4 \right]$$

$$\alpha = a/W$$

WHERE $\Delta P = P_{max} - P_{min}$ FOR R > 0

 $\Delta P = P_{max}$ FOR R ≤ 0

THIS EXPRESSION IS VALID FOR a/W ≥ 0.2

CENTER CRACKED PANEL SPECIMEN

$$\Delta K = \frac{\Delta P}{B} \sqrt{\frac{\pi \alpha}{2W}} SEC \frac{\pi \alpha}{2}$$
 WHERE $\alpha = 2a/W$

THIS EXPRESSION IS VALID FOR 2a/W < 0.95

LEFM concepts

Principle of similarity: a given value of ΔK (for a wide variety of σ and a values) induces the same cyclic stress/strain field at the crack tip, therefore the same damage and as a consequence the same crack growth rate

Principle of similarity

Paris correlation

Conclusion

On the basis of the experimental data given, it is evident that rates of crack growth—for example, those in 2024-T3 and 7075-T6 skins of aircraft structure—may be computed by the theory presented over a wide range of nominal stress levels and crack sizes. The ramifications of such broad correlation imply an analytic theory of fatigue based on a concept of growth from initial imperfections through which structural life may be predicted.

Transposability of laboratory data to structures

da/dN-∆K curve

Mechanisms

Cyclic deformation at the crack tip

Cyclic plastic zone size

Example: at R=0, the cyclic PZ size is 4 times smaller than the monotonic PZ size.
$$r_{p_{cyclic}} \propto \frac{\Delta}{2c}$$

Propagation mechanisms: fatigue striations

- Periodic markings on fracture surfaces;
- Intermediate crack growth rate range (5x10⁻⁸ 10⁻⁵ m/cycle);
- Clearly defined in Aluminum alloys, much less in high strength alloys;
- No striation in inert environment.

Propagation mechanisms: fatigue striations

Striations afte fatigue at R=0.1 in a 2024 T351 alloy from the teardown of a A320 MSN004 wing: tip, maximum stress 400 MPa (a) and 300 MPa (b); engine area maximum stress 275 MPa (c) et 300 MPa (d) (Thèse F. Billy, ENSMA)

21

Mécanismes de Propagation : Stries de Fatigue

Striations in a precipition-hardened martensitic stainless steel used in aerostructures (thèse L. Dimithe-Aboumou, ENSMA)

Striation formation: Laird mechanism

Striation formation: Pelloux mechanism

Dr. Regis Pelloux 1931 - 2015

→ Accounts for

the absence of

striation in

vacuum

Irreversible slip (oxidation)

G. Hénaff - 2016

Propagation mechanisms in the nearthreshold region

More brittle aspect of the fracture surfaces(cleavage-like fracture, intergranular decohesions,....)

Factors of influence

Influence of load ratio

27

Crack closure

Experimental evidence that a fatigue crack, even when loaded in tension (R>0) can be partially closed during the lower part of the loading cycle.

FATIGUE CRACK CLOSURE UNDER CYCLIC TENSION

racture Mechanics, 1970, Vol. 2, pp. 37-45. Pergamon Press. Printed in Great Britain

WOLF ELBER Institut für Festigkeit, Mülheim, Germany

Partially closed crack

Hyp: a crack can propagate only when it is fully open \Rightarrow da/dN fonction of ΔK_{eff}

Elber (1970): $\Delta K_{eff} = U \times \Delta K$

For the 2024 T351 alloy in Paris regime: $U = a + b \times R$

Crack closure sources

Plasticity-Induced Closure

The material flow from the bulk that accumulates on the crack flanks, thereby giving rise to the premature contact as noted by Sun and Sehitoglu

Roughness-Induced Closure

Garcia and Sehitoglu modelled roughness-induced crack closure as a contact problem with random distribution of surface asperities.

Opening kinematics

FEM Simulation of the crack opening in a CCT specimen (after Chermahini et al. 1988).

Experimental measurement of the crack opening load

Experimental measurement of the crack opening load

Compliance offset(%)=
$$\frac{[(open-crack compliance)-(compliance)]}{(open-crack compliance)} \times 100$$

Influence of metallurgical parameters

Grain size

The coarser the grain, the higher the threshold \leftrightarrow crack closure effect

Yield strength

The higher the yield strength, the lower the threshold ←→ crack closure effect

Influence of environment

A moist environment induces a loss of resistance

36

Propagation assistée par l'hydrogène

Fatigue Crack Propagation Laws

Empirical Laws:

$$\frac{\mathbf{da}}{\mathbf{dN}} = \mathbf{C} \times \Delta \mathbf{K}^{\mathbf{m}}$$

$$\frac{da}{dN} = \frac{C \times \Delta K^{m}}{((1-R)K_{c} - \Delta K)}$$

Paris

Forman

Theoretical approaches:

$$\frac{d\mathbf{a}}{d\mathbf{N}} = \mathbf{A} \times \frac{\Delta \mathbf{K}^4}{\mu \sigma_0^2 \mathbf{U}}$$

Cumulative damage at the crack tip

$$\frac{da}{dN} = A \times \frac{\Delta K^4}{\epsilon_f E^2 \sigma_y^2 \rho}$$

Manson-Coffin at the crack tip (McClintock, Antolovitch,...)

$$\frac{da}{dN} = \frac{1}{2}CTOD = \frac{\Delta K^2}{2E\sigma_y}$$

CTOD (Pelloux)

Intrinsic fatigue crack growth (inert, Δ K $_{\rm eff}$)

Short cracks

Def: cracks for which at least one dimension is small with respect to other dimensions (geometry, grain size,...)

Kitagawa diagram

Kitagawa Diagram

