1일차 정리

전체 Process(CRISP-DM)

알고리즘 한판 정리

	선형회귀	로지스틱회귀	KNN	SVM	Decision Tree	Random Forest	Gradient Boost (GBM, XGB, LGBM)
개념	✔오차를 최소화 하는 직선, 평면	✓오차를 최소화 하는 직선, 평면 ✓직선을 로지스틱 함수로 변환 (0~1 사이 값으로)	✔예측할 데이터와 train set과의 거리 계산 ✔가까운 [k개 이웃의 y] 의 평균으로 예측	✔마진을 최대화 하는 초평면 찾기 ✔데이터 커널 변환	✓정보전달량 = 부모 불순도 - 자식 불순도 ✓정보 전달량이 가장 큰 변수를 기준으로 split	✔ 여러 개의 트리 ✔ 각각 예측 값의 평균 ✔ 행과 열에 대한 랜덤 : 조금씩 다른 트리들 생성	✓ 여러 개의 트리 ✓ 트리를 더해서 하나의 모델로 생성 ✓ 더해지는 트리는 오차를 줄이는 모델
전제 조건	✓NaN조치 ✓가변수화 ✓x들 간 독립	✓ NaN조치 ✓ 가변수화 ✓ x들 간 독립	✓NaN조치 ✓가변수화 ✓스케일링	✓NaN조치 ✓가변수화 ✓스케일링	✓NaN조치 ✓가변수화	✓NaN조치 ✓가변수화	✓NaN조치 ✓가변수화
성능	✓변수 선택 중요 ✓x가 많을 수록 복잡	✓변수 선택 중요 ✓x가 많을 수록 복잡	✔주요 hyper-parameter - n_neighbors : k 작을수록 복잡 - metric : 거리계산법	✔주요 hyper-parameter - C : 클수록 복잡 - gamma : 클수록 복잡	✓주요 hp - max_depth : 클수록 복잡 - min_samples_leaf 작을수록 복잡	✓주요 hp 기본값으로도 충분! - n_estimators - max_features ✓기본값으로 생성된 모델 ==> 과적합 회피	✔주요 hp - n_estimators - learning_rate ✔XGB, LGBM : 과적합 회피를 위한 규제
							3

회귀모델 평가

오차의 크기

	ŷ : 예측값	오차	제곱 오차	절대값 오차	오차율
y	$\widehat{\mathcal{Y}}$	$y-\hat{y}$	$(y-\hat{y})^2$	$ y-\hat{y} $	$\left \frac{y - \hat{y}}{y} \right $
6	4				
5	6				
12	9				
2	2				
		평균	MSE RMSE	MAE	MAPE

딥러닝 개념 - 학습 절차

✓ model.fit(x_train, y_train) 하는 순간…

단계①: 가중치에 (초기)값을 할당한다.

■ 초기값은 랜덤으로 지정

단계② : (예측) 결과를 뽑는다.

단계③ : 오차를 계산한다.

단계④: 오차를 줄이는 방향으로 가중치를 조정

Optimizer: GD, Adam…

단계⑤: 다시 단계①로 올라가 반복한다.

- max iteration에 도달.(오차의 변동이 (거의) 없으면 끝.)
 - 가중치(weight)의 다른 용어 **파라미터(parameter)**

$$medv = 1 \cdot lstat + 3$$

medv	Istat	$\widehat{\mathbf{y}}$
20	10	13
10	11	14
8	15	18

$$mse = \frac{\sum (y - \hat{y})^2}{n} = \frac{7^2 + 6^2 + 8^2}{3}$$

 $w_1: 1 \to 0.8$ $w_0: 3 \to 3.3$

$$medv = w_1 \cdot lstat + w_0$$

forward propagation

back propagation

딥러닝 개념 - 학습 절차

✓ 30번 조정하며 최적의 Weight를 찾아가는 과정

모델의 오차가 줄어드는 과정

딥러닝 구조

딥러닝 코드 - Dense

Model: "sequential"

Layer (type)	Output Shape	Param #
dense (Dense)	(None, 1)	4

Total params: 4 (16.00 B)
Trainable params: 4 (16.00 B)
Non-trainable params: 0 (0.00 B)

Compile

✓컴파일(Compile)

- 선언된 모델에 대해 몇 가지 설정을 한 후
- 컴퓨터가 이해할 수 있는 형태로 변환하는 작업

```
model.compile
( optimizer = Adam(learning_rate = 0.1)
    , loss='mse')
```

✓ loss function(오차함수)

- Cost Function, Objective Function 과 같은(유사한) 의미
- 오차 계산을 무엇으로 할지 결정
- mse : mean squared error
 - 회귀모델: mse
 - 분류모델: cross entropy

학습 곡선

✓ 학습 곡선이란

■ **모델 학습이 잘 되었는지 파악**하기 위한 그래플

• 정답은 아니지만, 학습 경향을 파악하는데 유용.

■ 각 Epoch 마다 train error와 val error가 어떻게 줄어들고 있는지 확인

• Epoch = 10: train data를 10번 반복 학습 🖇

- 바람직한 학습 곡선
 - ① 초기 epoch에서는 오차가 크게 줄고
 - ② 오차 하락이 꺾이면서
 - ③ 점차 완만해짐
 - 그러나 학습곡선의 모양새는 다양함

딥러닝 구조 - Hidden Layer


```
# Sequential 타입 모델 선언(입력은 리스트로!)
model3 = Sequential([Input(shape = (nfeatures,)),
                   Dense(2, activation = 'relu'),
                   Dense(1) ])
Model: "sequential"
                    Output Shape
Laver (type)
                                     Param #
dense (Dense)
                    (None, 2)
dense_1 (Dense)
                   (None, 1)
______
Total params: 29
Trainable params: 29
Non-trainable params: 0
```

활성화 함수 Activation Function

✓ 그래서 활성화 함수는…

- Hidden Layer에서는 : 선형함수를 비선형 함수로 변환
- Output Layer에서는 : 결과값을 다른 값으로 변환해 주는 역할
 - 주로 분류Classification 모델에서 필요

Maxout
$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

ELU
$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

요약:회귀모델링

✓ 딥러닝 전처리

■ NaN 조치, 가변수화, 스케일링

✓ Layer

- 첫번째 Layer는 input_shape를 받는다.(분석단위의 shape)
 - 2차원 데이터셋의 분석단위 1차원 → shape는 (feature수,)
- Output layer의 node 수:1
- Activation Function
 - Hidden layer에 필요 :
 - 비선형 모델로 만들려고 → hidden layer를 여럿 쌓아서 성능을 높이려고.
 - 회귀 모델링에서 Output Layer에는 활성화 함수 필요하지 않음!

구분	Hidden Layer	Output Layer		Compile	
TE	Activation	Activation	Node수	optimizer	loss
Regression	relu	X	1	adam	mse