

www.nagpurstudents.org

B.E. (Information Technology) Fourth Semester (C.B.S.)

Theory of Computation

P. Pages: 3 NRT/KS/19/3385

Time: Three Hours

* 0 7 8 3 *

Max. Marks: 80

Notes: 1. All questions carry marks as indicated.

- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- 4. Solve Question 5 OR Questions No. 6.
- 5. Solve Question 7 OR Questions No. 8.
- 6. Solve Question 9 OR Questions No. 10.
- 7. Solve Question 11 OR Questions No. 12.
- 8. Due credit will be given to neatness and adequate dimensions.
- 9. Assume suitable data whenever necessary.
- 10. Illustrate your answers whenever necessary with the help of neat sketches.
- 1. a) Construct DFA equivalent to NFA $(\{p, q, r, s\}, \{0, 1\}, p, \{s\}, \delta)$ where δ is given by.

δ	0	1
p	p, q	p
q	r	r
r	S	1
S	S	S

- b) Differentiate between:
 - i) NFA and DFA

- ii) Grammar and Language
- iii) Mealy and Moore machine

OR

- 2. a) Construct Moore machine and transition table for count number of a's % 3 (a mod 3) over $\Sigma = \{a, b\}$. Also construct its equivalent Melay machine.
 - 5

7

6

8

6

b) Construct DFA which is equivalent to following NFA over $\Sigma = \{0, 1\}$.

1

3. a) Construct equivalent LLG for the RLG given below.

 $S \rightarrow 0A \mid 1B$

 $A \rightarrow 0C | 1A | 0$

 $B \rightarrow 1B \mid 1A \mid 1$

 $C \rightarrow 0 \mid 0A$

NagpuiStudents

b) Prove that $L = \{a^n b^{n+m} c^m \mid n, m \ge 1\}$ is not regular.

5

c) Prove that regular language is closed under union operation.

3

4

OR

4. a) Convert the grammar with the following productions to CNF.

 $S \rightarrow ABa$

 $A \rightarrow aab$

 $B \rightarrow Ac$

b) Convert the grammar with the following productions to GNF.

4

 $E \rightarrow E + T \mid T$

 $T \rightarrow T * F | F$

 $F \rightarrow (E) | id$

c) Construct a regular expression corresponding to the automata given below.

6

5. a) Convert following regular expression and language to its equivalent grammar.

8

- i) $((a+b)(a+b))^*$
- ii) $L = \{a^n b^m c^m d^n | n, m >= 1\}.$
- b) Differentiate between Non-Deterministic pushdown Automata & deterministic pushdown Automata.

5

OR

6. a) Explain closure properties of CFL.

6

b) Construct DPDA that accepts the language of strings with the same number of zeros & ones over $\Sigma = \{0, 1\}$.

7

7. a) Explain how TM work as a comparator. Consider & strings to show all the cases of comparison.

7

b) Explain in detail different types of TM.

6

OR

2

NagpuiStudents

8. a) Design a TM to find 2's complement of n digit binary number.

7

b) Write short note on any two.

6

- i) Counter machine
- ii) Multitape TM
- iii) Offline TM
- iv) Multidimensional TM
- **9.** a) Consider PC

Consider PCP system that described by the following test.

$$A = \{10, 01, 0, 100, 1\}$$

$$\mathbf{B} = \{101, 100, 10, 0, 010\}$$

Does this PCP have solution?

b) Define Ackermann's function Compute

6

7

7

OR

- **10.** a) State which of the following PCP's have a solution.
 - i) $\{(01, 011), (1, 10), (1, 11)\}$
 - ii) $\left\{ \left(b^3, ab^2\right), \left(b^3, bab^3\right) \right\}$.
 - b) What do you mean by recursion? Explain the properties of Recursive and Recursively enumerable languages.
 - 6
- 11. a) What is primitive recursive function? Explain the category of basic function.
- 6

b) Explain Mod and Div functions with example.

8

OR

12. a) Show that the function $g(x, y) = x^y$ is primitive recursive.

6

b) Write short note on **any two.**

8

- i) μ recursive function.
- ii) Bounded minimization.
- iii) Unbounded minimization

3

The secret of getting ahead is getting started. ~ Mark Twain

