Problem 1 Fourier Series Representations

Determine the Fourier series representations of each of the following signals:

(a)
$$x(t) = \cos(4t) + \sin(6t), t \in \mathbb{R}$$
.

(b)
$$x(t) = \cos\left(\frac{\pi}{4}(t-1)\right), t \in \mathbb{R}.$$

(c)
$$x(t)$$
 is periodic with period 2 and

$$x(t) = e^{-t}, -1 < t \le 1.$$

(d) x(t) is periodic with period 4 and

$$x(t) = \frac{t}{2}, -2 < t \le 2.$$

(e) x(t) is periodic with period 1 and

$$x(t) = \begin{cases} -1, & \text{if } -\frac{1}{2} < t \le 0 \\ 1, & \text{if } 0 < t \le \frac{1}{2}. \end{cases}$$

Problem 2 Periodic Signal

Consider the signal

$$x(t) = \cos(2\pi t), \quad t \in \mathbb{R}.$$

Since $x(\cdot)$ is periodic with a fundamental period of 1, it is also periodic with a period of N, where N is any positive integer. What are the Fourier series coefficients of $x(\cdot)$ if we regard it as a periodic signal with period 3?

Problem 3 Properties of the Fourier Series

Let $x(\cdot)$ be a periodic signal with fundamental period T_0 and Fourier series coefficients $\{a_k\}$. For each of the following signals, derive the Fourier series coefficients and express them as a function of $\{a_k\}$:

(a)
$$y(t) = x(t - t_0), t \in \mathbb{R}$$
.

(b)
$$y(t) = x(-t), t \in \mathbb{R}$$
.

(c)
$$y(t) = x(t) + x^*(t), t \in \mathbb{R}$$
.

(d)
$$y(t) = x(t) + \frac{\mathrm{d}}{\mathrm{d}t}x(t), t \in \mathbb{R}.$$

(e)
$$y(t) = x(\alpha t), t \in \mathbb{R}$$
 for $\alpha > 0$.

Problem 4 Modulation Property of Fourier Series

Let $x(\cdot)$ and $y(\cdot)$ be continuous-time periodic signals with fundamental period T_0 and Fourier series representations

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\frac{2\pi}{T_0}kt} \quad \text{and} \quad y(t) = \sum_{k=-\infty}^{\infty} b_k e^{j\frac{2\pi}{T_0}kt}.$$

(a) Show that the Fourier series coefficients of the signal $z(t) = x(t)y(t), t \in \mathbb{R}$ with Fourier series representation

$$z(t) = \sum_{k=-\infty}^{\infty} c_k e^{j\frac{2\pi}{T_0}kt}$$

is given by the discrete convolution

$$c_k = \sum_{\ell = -\infty}^{\infty} a_{\ell} b_{k-\ell}.$$

(b) Use this result to compute the Fourier series coefficients of $z(t) = \cos^2(4t)$, $t \in \mathbb{R}$.

Problem 5 Fourier Transforms

Compute the Fourier transforms of each of the following signals:

(a)
$$x(t) = e^{-|t|}, t \in \mathbb{R}.$$

(b)
$$x(t) = \begin{cases} t, & \text{if } |t| \leq 2\\ 0, & \text{if } |t| > 2. \end{cases}$$

- (c) $x(t) = \operatorname{sinc}(t), t \in \mathbb{R}$.
- (d) $x(t) = \operatorname{sinc}^2(2t), t \in \mathbb{R}$.
- (e) $x(t) = e^{-t} I\{t \ge 0\}$, $t \in \mathbb{R}$, where $I\{\cdot\}$ denotes the indicator function, i.e., $I\{\text{statement}\} = 1$ if the statement is true and $I\{\text{statement}\} = 0$ otherwise.

(f)
$$x(t) = \begin{cases} 2\left(1 - \frac{|t|}{2}\right), & \text{if } |t| \leq 2\\ 0, & \text{otherwise.} \end{cases}$$

(g)
$$x(t) = I\{0 < t \le 1\} - I\{1 < t \le 2\}, t \in \mathbb{R}.$$

Problem 6 Properties of the Fourier Transform of Real-Valued Signals

Let $x(\cdot)$ be a real-valued signal.

- (a) If $x(\cdot)$ is odd, i.e., x(-t) = -x(t), $t \in \mathbb{R}$, show that its Fourier transform $\hat{x}(\cdot)$ is pure imaginary and odd.
- (b) If $x(\cdot)$ is even, i.e., x(-t) = x(t), $t \in \mathbb{R}$, show that its Fourier transform $\hat{x}(\cdot)$ is real and even.

Problem 7 Derivative of Bandlimited Signal

Let $x(\cdot)$ be a given signal with Fourier transform

$$\hat{x}(f) = \begin{cases} 1, & \text{if } |f| < 1 \\ 0, & \text{if } |f| > 1. \end{cases}$$

Define the signal $y(\cdot)$ as

$$y(t) = \frac{\mathrm{d}^2}{dt^2} x(t), \quad t \in \mathbb{R}.$$

What is the value of

$$\int_{-\infty}^{\infty} |y(t)|^2 \, \mathrm{d}t?$$

Problem 8 Inverse Filter

Let the signal $x(\cdot)$ be given by

$$x(t) = \operatorname{sinc}(8t), \quad t \in \mathbb{R}$$

and consider a filter $h(\cdot)$ with impulse response

$$h(t) = e^{-|t|}, \quad t \in \mathbb{R}.$$

(a) What is the Fourier transform $\hat{y}(\cdot)$ of the filtered signal

$$y(t) = (x * h)(t), \quad t \in \mathbb{R}?$$

(b) Find a filter $g(\cdot)$ of finite energy such that

$$z(t) = (y * g)(t) = x(t), \quad t \in \mathbb{R}.$$

Problem 9 LTI System 1

Consider an LTI system whose input and output satisfy

$$\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 2y(t) = x(t), \quad t \in \mathbb{R}.$$

(a) Determine the frequency response

$$\hat{h}(f) = \frac{\hat{y}(f)}{\hat{x}(f)}, \quad f \in \mathbb{R}$$

of the system.

- (b) If $x(t) = e^{-t}$ for $t \ge 0$ and x(t) = 0 for t < 0, determine the Fourier transform of the output $y(\cdot)$.
- (c) For the input in Part (b), determine the output $y(\cdot)$.

Problem 10 LTI System 2

Consider an LTI system whose input and output satisfy

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}y(t) + 4\frac{\mathrm{d}}{\mathrm{d}t}y(t) + 3y(t) = \frac{\mathrm{d}}{\mathrm{d}t}x(t) + 2x(t), \quad t \in \mathbb{R}.$$

(a) Determine the frequency response

$$\hat{h}(f) = \frac{\hat{y}(f)}{\hat{x}(f)}, \quad f \in \mathbb{R}$$

of the system.

- (b) If $x(t) = e^{-t}$ for $t \ge 0$ and x(t) = 0 for t < 0, determine the Fourier transform of the output $y(\cdot)$.
- (c) For the input in Part (b), determine the output $y(\cdot)$.