אלגברה ב – צורה רציונלית

נושאים:

- 1. רענון על פירוק T-ציקלי
 - 2. הצורה הרציונלית

<u>רענון על פירוק T-ציקלי</u>

* המוטיבציה – ראינו כי כדי לקבל צורת ג'ורדן, צריך שהפולינום האופייני יתפרק לגורמים לינאריים. זה כמובן לא תמיד מתקיים (אם V מ"ו מעל שדה שאינו סגור אלגברית). כן נרצה לקבל צורה "קנונית" (למשל כדי לדעת אם שתי מטריצות הן דומות).

תזכורת:

- זה מרחב . Z(v,T) מסומן $v,T(v),T^2(v),...$ זה מרחב הנפרש ע"י , $v\in V$. 3 ממימד סופי שהוא T-אינווריאנטי.

 $V = Z(v_1; T) \oplus ... \oplus Z(v_r; T)$

 $k \ge 2$ - ל p_{k-1} מחלק את p_k ב.

כמו כן, rוהפולינומים ל p_i ל ל- p_i ל ל- והעובדה שrכמו כן, כמו כן ל- והעובדה ש

 $p_{\scriptscriptstyle \perp}$ הוא למעשה הפולינום המינימלי של T. הערה: נשים לב שהפולינום $p_{\scriptscriptstyle \perp}$ הוא למעשה הפולינום המינימלי של T. מספיק מסקנה: כדי להבין איך T פועל על V (ז"א למצוא צורה קנונית למטריצה של T), מספיק להבין איך T פועל על מרחב T-ציקלי.

הצורה הרציונלית

. $V\!=\!Z(u\,;T)$ ונסמן T אופרטור. נניח כי V הוא מרחב T אופרטורי, יהי T אופרטור. נניח כי יהי ע מרחב $\deg(p_u)\!=\!k$ ונסמן ה

טענה (ראינו בתרגול קודם):

- .($v_i = T^{i-1}(u)$ ז"א B B B, נסמן בסיס של ע, T(u), ..., $T^{k-1}(u)$.1
- הוא הפולינום המינימלי. אופייני של T. (ראינו שזה הפולינום המינימלי. זה p_u .2 הפולינום האופייני כי הדרגה שלו היא המימד של ∇).

- ל
$$T(v_i)=v_{i+1}$$
 איך נראית המטריצה ? $[T]_B$ נסמן ? $[T]_B$ איך נראית המטריצה . $1\leq i\leq k-1$, $T(v_k)=T^k(u)=-a_{k-1}T^{k-1}(u)-...-a_1T(u)-a_0I(u)=-a_{k-1}v_k-...-a_1v_2-a_0v_1$

מטריצה מצורה או נקראת "מטריצה (מ) מורה או נקראת "מטריצה (מ) המטריצה המייצגת היא:
$$[T]_{\scriptscriptstyle B} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & -a_1 \\ 0 & 1 & 0 & \dots & -a_2 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -a_{k-1} \end{pmatrix}$$

. p_u המתאימה לפולינום (companion matrix) נלווית"

שם ורק אם ורק אם וקטור U -ציקלי אם ורק אם יש W , יש ב W וקטור U -ציקלי אם ורק אם יש

 $_{
m U}$ בסיס של $_{
m U}$ בו $_{
m U}$ מיוצג ע"י המטריצה הנלוות של הפולינום המינימלי של

יעבור T אופרטור כללי על מרחב וקטורי V, נקבל את התוצאה הבאה:

הערה: הצגה זו נקראת "הצורה הקנונית הרציונלית". הפולינומים $p_i^{\it n_g}$ נקראים המחלקים האלמנטריים של T.

הוכחה: ממשפט הפירוק הפרימרי, $W_k \oplus W_k \oplus W_k$ וכל $W_i \oplus W_k$ הוא W_i הוא הואריאנטי, עם פולינום מינימלי $p_i^{r_i}$ ממשפט הפירוק הציקלי עבור W_i נקבל

היא מטריצת בלוקים . $W_i = Z(u_{i,1};T) \oplus ... \oplus Z(u_{i,s_i};T)$ המטריצה המייצגת את . $W_i = Z(u_{i,1};T) \oplus ... \oplus Z(u_{i,s_i};T)$ של מטריצות נלוות המתאימות לפולינומים המתקבלים בפירוק הציקלי. T מיוצגת כבלוקים של ייצוגי T_i וזה משלים את ההוכחה.

.V אופרטור הגזירה על D-1 $V=span_R\{1,x,\sin(x),\cos(x),xsin(x),xcos(x)\}$ ו יהי הצורה על יהי מה הצורה הקנונית הרציונלית של

. פתרון: המטריצה המייצגת את אופרטור הגזירה בבסיס לעיל (לפי הסדר) היא:

לכן $(D^2+I)(x\sin(x))=x\sin(x)+D(\sin(x)+x\cos(x))=2\cos(x)$ לכן $x\sin(x)$ מתקיים $(\lambda^2+I)^2$ אינו אופרטור האפס, ז"א בפולינום המינימלי מופיע $(\lambda^2+I)^2$ מצד שני, עבור $(\lambda^2+I)^2$ אינו אופרטור האפס, ז"א בפולינום המינימלי הוא בהכרח הפולינום האופייני. לפי $D(D^2+I)(x)=1$ לכן הפולינום המינימלי הוא בהכרח הפולינום האופייני. לפי $(D^2+I)(x)=1$ אווער $(D^2+I)(x)=1$ מתקיים $(D^2+I)(x)=1$ לכן הפולינום המינימלי הוא $(D^2+I)(x)=1$ מוער $(D^2+I)(x)=1$ המרחב $(D^2+I)(x)=1$ המרחב $(D^2+I)(x)=1$ הוא $(D^2+I)(x)=1$

כאשר כל (כאשר כל הנגזרות ונשים במטריצה (כאשר כל $S=\{v\,,D(v),D^2(v),D^3(v)\}$

שורה היא וקטור אחר מ
$$(S-a)$$
. נחפש ערכים $\begin{pmatrix} a & b & c & d \\ c-b & a+d & -d & c \\ -a-2d & 2c-b & -c & -d \\ b-3c & -a-3d & d & -c \end{pmatrix}$ נחפש ערכים

נקבל מטריצה a=c=1,b=d=0 שהמטריצה תהיה מדרגה מלאה. עבור a,b,c,d sin(x)+xsin(x) לכן הצורה הרציונלית היא: