Forecasting Electricity Demand in Seattle

Beating the Government Forecast

Michael Jehl Metis 2021 75%

Monthly electricity bill wasted

\$350 billion

Americans spend on electricity annually

7%

Electricity generated and distributed is lost

Building a time series forecasting model

with machine learning

Project Workflow

Time series preprocessing: Handling non-stationarity

Time Series Analysis Plots: Hourly Electricity Demand, February 2021 Autocorrelation Partial Autocorrelation 1.0 -1.00 0.75 -0.8 0.50 -0.6 0.4 0.25 0.00 0.2 -0.25 0.0 -0.50 -0.2 -0.75 -0.4 -

Modeling Workflow

Model Evaluation

Prophet RMSE = 86.06MWh

Prophet Outperforms Government Forecast

Model	RMSE	Forecast Bias
Prophet	86.06	+32.59
EIA	98.72	-55.81

- More accurate
- Less biased
- Potential savings
 up to \$1,397/hr

Impact

Enhanced forecasting tool

Better prepared for high-demand spikes

Lower operational costs

Thank you!

- mjehl1012@gmail.com
- **in** mjehl1012
- **7** mjehl1012

Appendix

Statistical Tests for Stationarity

ADF Test Results

- Null hypothesis: the series has a unit root
- P-value = 0.65
- Null hypothesis cannot be rejected

ADF indicates non-stationarity

KPSS Test Results

- Null hypothesis: the process is trend stationary
- P-value = 0.04
- Null hypothesis can be rejected

KPSS indicates non-stationarity

The series is non-stationary. Let's see how differencing at lag 1 and 24 can help.

