Communications and Signal Processing 2015 Doctoral Qualifying Exam

Caution!!!

Use a separate answer booklet for Problem 1.

Problem 1. (50 points)

Caution!!!

Use a separate answer booklet for Problem 2.

Problem 2. (50 points) Suppose that a received signal consisting of K 4-QAM signals is modeled by

$$Y(t) = \text{Re}\left\{\sum_{k=1}^{K} \sqrt{2P_k} d_k e^{j(2\pi f_k t + \theta_k)}\right\} + N(t), \text{ for } 0 \le t < T,$$

where Re $\{\cdot\}$ denotes the real part, P_k 's are positive numbers, $d_k \in \{e^{j\frac{\pi}{4}}, e^{j\frac{3\pi}{4}}, e^{j\frac{5\pi}{4}}, e^{j\frac{7\pi}{4}}\}$ is a 4-QAM data symbol for $k = 1, 2, \dots, K$, $f_k > 0$ is the kth carrier frequency, θ_k is the kth carrier phase, and N(t) is real-valued additive white Gaussian noise with two-sided power spectral density $N_0/2$. When $f_k T \gg 1, \forall k$, answer the following questions.

- (a) (5 points) Rewrite $e^{i\theta}$ in terms of $\sin \theta$ and $\cos \theta$.
- (b) (5 points) Rewrite $Re\{x\}$ in terms of x and x^* , where x^* is the conjugation of the complex number x.
- (c) (10 points) Find the minimum value of $|f_k f_{k'}|$ such that

$$\frac{1}{2T} \int_{0}^{T} e^{j(2\pi f_{k}t + \theta_{k})} e^{-j(2\pi f_{k'}t + \theta_{k'})} dt$$

is exactly equal to zero.

(d) (10 points) Show that

$$\frac{1}{2T} \int_0^T e^{-j(2\pi f_k t + \theta_k)} e^{-j(2\pi f_{k'} t + \theta_{k'})} dt$$

is approximately equal to zero.

(e) (10 points) Using the results in (c) and (d), show that

$$\frac{1}{T} \int_0^T Y(t) e^{-\mathrm{j}(2\pi f_{k'} t + \theta_{k'})} dt$$

is approximately equal to $\sqrt{P_{k'}/2}d_{k'}$, when $N_0 = 0$.

(f) (5 points) Find the mean and the variance of the real part of

$$N_{k'} \triangleq \frac{1}{T} \int_0^T N(t) e^{-\mathrm{j}(2\pi f_{k'}t + \theta_{k'})} dt.$$

(g) (5 points) Justify that the real and the imaginary parts of $N_{k'}$ defined in (f) are approximately independent and identically distributed.

2