

La U **acreditada** para todos

Profesor: Lucía gutiérrez M.

Fecha. 25–08-2020

- 1) Sea la transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por $T\begin{bmatrix} x & y \\ y & z \end{bmatrix} = \begin{bmatrix} x y \\ 3x + 2z \end{bmatrix}$.
 - a. Calcule A_T (la matriz de trasformación) con respecto de las bases

$$B_{1} = \left\{ \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}; a B_{2} = \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \right\}.$$

- b. Encuentre la imagen de $T\begin{bmatrix} 2\\2\\1 \end{bmatrix}$ con respecto a la bases B_1, B_2 .
- 2) Haga uso de la serie de Maclaurin para aproximar el valor de la integral $\int_0^{0.5} x arctan(3x) dx$
- 3) Por medio de una regresión lineal, halle los valores de A y B correspondientes a la función $f(x) = \frac{A}{e^{Bx}} 1$ de acuerdo a los datos registrados en la siguiente tabla:

X	-01	0.5	1	1.2	1.6
у	4.9518	0.6836	0.1310	0.0678	0.0181

4) Para los valores de la siguiente tabla

е	40	60	80	100	120	140
р	0.63	1.36	2.18	3	3.96	6.22

Donde e son voltios y p los kilowatts en una curva perdida en un núcleo para un motor eléctrico.

- a. Halle la tabla de las diferencias finitas
- b. Construya el polinomio de Newton en diferencias finitas de grado tres, aproxime el valor de $\bf p$ para el caso de $\bf e=95$ volts y halle $\bf e$ para $\bf p=3.5$

Instrucciones:

- Cada punto tiene un valor de 1.25 sobre 5.0
- No puede utilizar apuntes, blogs, cuadernos, libros, tablet, celulares, computadores, etc.
- No se responderán dudas durante el desarrollo del parcial
