Examenul de bacalaureat național 2019 Proba E. c) Matematică *M mate-info*

Varianta 7

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p** | **1.** Arătați că suma elementelor mulțimii $A = \{n \in \mathbb{N} | n-1 \le 4\}$ este egală cu 15.
- **5p 2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 2x + m$, unde m este număr real. Determinați numărul real m, stiind că vârful parabolei asociate funcției f are ordonata egală cu 2.
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x+3} = \sqrt{9-x}$.
- **5p 4.** Determinați numărul submulțimilor cu cel puțin 8 elemente ale unei mulțimi cu exact 10 elemente.
- **5p 5.** În reperul cartezian xOy se consideră punctele A(5,1), B(-1,3) și C(8,10). Determinați lungimea segmentului CD, unde punctul D este mijlocul segmentului AB.
- **5p** | **6.** Arătați că $1 + \cos \pi + \cos 2\pi + \cos 3\pi + ... + \cos 2019\pi = 0$.

SUBIECTUL al II-lea (30 de puncte)

- 1. Se consideră matricele $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ și $A(a) = \begin{pmatrix} a+1 & 0 & 0 \\ 1 & a & 1 \\ 0 & 0 & a+1 \end{pmatrix}$, unde a este număr real.
- **5p** a) Arătați că $\det(A(1)) = 4$
- **5p b**) Demonstrați că $A(a)A(b) = abI_3 + (a+b+1)A(0)$, pentru orice numere reale a și b.
- **5p** c) Determinați numărul natural n pentru care A(0)A(1)A(2)...A(2019) = n!A(0).
 - **2.** Se consideră polinomul $f = X^3 mX^2 + 2X + 3 m$, unde m este număr real.
- **5p** a) Determinați numărul real m, știind că f(1) = 0.
- **5p b**) Pentru m = 3, determinați rădăcinile polinomului f.
- **5p** c) Determinați numărul real m pentru care $x_1^3 + x_2^3 + x_3^3 = (x_1 + x_2 + x_3)^3 12$, unde x_1 , x_2 și x_3 sunt rădăcinile polinomului f.

SUBIECTUL al III-lea (30 de puncte

- **1.** Se consideră funcția $f:(0,+\infty)\to\mathbb{R}$, $f(x)=1-\frac{2}{x+1}-\ln\frac{x}{x+1}$.
- **5p** a) Arătați că $f'(x) = \frac{x-1}{x(x+1)^2}, x \in (0,+\infty).$
- **5p b**) Determinați ecuația asimptotei orizontale spre $+\infty$ la graficul funcției f.
- **5p** c) Se consideră funcțiile $g:(0,+\infty) \to \mathbb{R}$, $g(x) = \frac{x-1}{x+1}$ și $h:(0,+\infty) \to \mathbb{R}$, $h(x) = \ln \frac{x}{x+1}$. Demonstrați că graficele funcțiilor g și h **nu** au niciun punct comun.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 4}$.
- **5p a)** Arătați că $\int_{0}^{1} f^{2}(x) dx = \frac{13}{3}$.
- **5p b**) Arătați că suprafața plană delimitată de graficul funcției $g: \mathbb{R} \to \mathbb{R}$, g(x) = x f(x), axa Ox și dreptele de ecuații x = -1 și x = 1, are aria egală cu $\frac{10\sqrt{5} 16}{3}$.
- **5p** c) Calculați $\lim_{x\to 0} \frac{1}{x^4} \int_0^x t^3 f(t) dt$.