Comment résoudre à la main une équation différentielle du premier ordre ?

Pour résoudre l'équation (1) ay' + by = c(x):

1. On écrit l'ensemble des solutions de l'équation sans second membre associée :

(2)
$$ay' + by = 0$$
.

Ce sont les fonctions définies par $y_0(x) = ke^{-\frac{b}{a}x}$ (k réel quelconque).

- **2.** On recherche une fonction f solution de l'équation (1) ay' + by = c(x). Dans les cas usuels :
- soit l'énoncé propose une fonction solution ; il suffit de vérifier ;
- soit l'énoncé fournit des indications ; on suit ces indications.
- 3. On écrit l'ensemble des solutions de l'équation (1), ce sont les fonctions définies par : b

 $y(x) = ke^{-\frac{b}{a}x} + f(x)$; k réel quelconque.

Exemple

Résoudre l'équation (1) 3y' + 2y = 4x.

On vérifiera que la fonction $f: x \mapsto 2x - 3$ est une solution de l'équation (1).

1. L'ensemble des solutions de l'équation sans second membre associée (2) 3y' + 2y = 0, est l'ensemble des fonctions définies sur \mathbb{R} par :

$$y_0(x) = ke^{-\frac{2}{3}x}$$
 avec k réel quelconque.

2. On vérifie que la fonction f proposée est bien une solution de l'équation (1).

Si
$$f(x) = 2x - 3$$
 alors $f'(x) = 2$,
ainsi $3 f'(x) + 2 f(x) = 3 \times 2 + 2(2x - 3)$,

soit 3 f'(x) + 2 f(x) = 4x.

La fonction f est bien une solution de l'équation (1).

3. L'ensemble des solutions de l'équation (1) est l'ensemble des fonctions définies sur \mathbb{R} par :

 $y(x) = ke^{-\frac{2}{3}x} + 2x - 3$; k réel quelconque.

Comment déterminer à la main la fonction solution d'une équation différentielle du premier ordre vérifiant une condition initiale donnée ?

Pour déterminer, à la main, la fonction g solution de l'équation (1) ay' + by = c(x), qui vérifie une condition initiale donnée :

1. On détermine l'ensemble des solutions de l'équation (1) (voir fiche méthode 14).

L'expression de ces solutions est de la forme $y(x) = ke^{-\frac{b}{a}x} + f(x)$. Cette expression fait apparaître une constante réelle k.

- 2. On traduit la condition initiale donnée par une équation d'inconnue k; on résout cette équation.
- 3. On écrit l'expression de la fonction g solution.

Exemple. Déterminer la fonction g solution de l'équation (1) 3y' + 2y = 4x, qui vérifie la condition g(0) = 0.

1. On écrit l'expression des solutions de l'équation (1) (voir fiche méthode 14) :

$$y(x) = ke^{-\frac{2}{3}x} + 2x - 3.$$

2. g(x) est de la forme $g(x) = ke^{-\frac{2}{3}x} + 2x - 3$.

$$g(0) = 0$$
 s'écrit $ke^{-\frac{2}{3} \times 0} + 2 \times 0 - 3 = 0$, soit, puisque $e^0 = 1$, $k - 3 = 0$, donc $k = 3$.

3. La fonction g solution de l'équation 3y' + 2y = 4x telle que g(0) = 0 est donc la fonction définie sur \mathbb{R} par $g(x) = 3e^{-\frac{2}{3}x} + 2x - 3$.