Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

— Übungsblatt 8 —

Walter Stieben (4stieben@inf)

Tim Reipschläger (4reipsch@inf)

Louis Kobras (4kobras@inf)

Hauke Stieler (4stieler@inf)

Abgabe am: 20. Juni 2016

Aufgabe 8.1

Zunächst sei bemerkt, dass $c(T) \leq c(H^*)$ gilt, alle Kanten in T haben weniger oder gleich viele Kosten wie die aus H^* .

Beweis: T ist ein minimaler Spannungsbaum, man kann also keine Kanten weg lassen und trotzdem einen zusammenhängenden Graphen haben, somit ist $c(T) \not> c(H^*)$.

Sind Kanten aus M besser und werden hinzugenommen, gilt $c(T^+) < c(H^*)$. Wenn T nur aus zwei Knoten u und v besteht gilt sogar $c(T^+) = c(H^*)$, da durch das Matching M keine Kanten dazukommen und keine alternativen Pfade entstehen.

Es gilt also $c(T^+) \le c(H^*)$.

Durch die Hinzunahme von M gilt für T^+ die Aussage $c(T^+) \le c(H^*) + \frac{1}{2} \cdot c(H^*) = \frac{3}{2} \cdot c(H^*)$, da es sein kann, dass alle Kanten aus T^+ in H^* enthalten sind. Bei der Bildung der Euler-Tour L wird nicht auf das Gewicht geachtet, somit gilt die Aussage auch für H.

Insgesamt gilt also $c(H) \leq \frac{3}{2} \cdot c(H^*)$.

Aufgabe 8.2