

ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Κατασκευές Οπλισμένου Σκυροδέματος Ι

Ενότητα 3: Κανόνες κατασκευαστικής διαμόρφωσης

Γεώργιος Παναγόπουλος Τμήμα Πολιτικών Μηχανικών ΤΕ & Μηχανικών Τοπογραφίας και Γεωπληροφορικής ΤΕ (Κατεύθυνση ΠΜ)

Άδειες Χρήσης

- Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
- Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς.

Χρηματοδότηση

- Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.
- Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Κεντρικής Μακεδονίας» έχει χρηματοδοτήσει μόνο τη αναδιαμόρφωση του εκπαιδευτικού υλικού.
- Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

Κανόνες κατασκευαστικής διαμόρφωσης

Επικαλύψεις – Αγκυρώσεις – Ενώσεις

Περιεχόμενα ενότητας

- 1. Επικαλύψεις οπλισμών
- 2. Αγκυρώσεις οπλισμών
- 3. Ενώσεις

Σκοποί ενότητας

- Εισαγωγή σε κανόνες κατασκευαστικής διαμόρφωσης των δομικών στοιχείων
- Εξοικείωση με έννοιες όπως η ανθεκτικότητα σε διάρκεια, η συνάφεια κτλ.
- Μεθοδολογία υπολογισμού πάχους επικάλυψης, μήκους αγκύρωσης και ενώσεων οπλισμών

Ανθεκτικότητα Σε Διάρκεια

- Μια κατασκευή θεωρείται ανθεκτική εφόσον ικανοποιεί σε όλη τη διάρκεια του επιδιωκόμενου χρόνου ζωής της τις απαιτήσεις ευστάθειας, αντοχής και λειτουργικότητας, χωρίς σημαντικούς περιορισμούς χρηστικότητας ή υπερβολικές απαιτήσεις συντήρησης.
- Η προστασία έναντι διάβρωσης του σκυροδέματος και οξείδωσης των οπλισμών εξασφαλίζει την ανθεκτικότητα της κατασκευής.
- Μέτρα προστασίας:
 - Επαρκές πάχος επικάλυψης των οπλισμών
 - Χαμηλή διαπερατότητα (χαμηλό πορώδες) του σκυροδέματος
 - Προστατευτικές στρώσεις επί της επιφάνειας του σκυροδέματος
- Κριτήρια σχεδιασμού:
 - Διαβρωτικότητα του περιβάλλοντος έκθεσης της κατασκευής
 - **Χρόνος ζωής σχεδιασμού** (κατηγορίες κατασκευής S1 έως S6)

Κατηγορίες διαβρωτικότητας περιβάλλοντος (1/4)

Κύριες κατηγορίες έκθεσης (ΕΝ 206-1)

Κατηγορία	Διαβρωτικοί παράγοντες
X0	Απουσία κινδύνου διάβρωσης ή προσβολής
XC	Κίνδυνος διάβρωσης από ενανθράκωση
XD	Κίνδυνος διάβρωσης από χλωριούχα (εκτός θαλασσινού νερού)
XS	Κίνδυνος διάβρωσης από χλωριούχα θαλασσινού νερού
XF	Κίνδυνος από κύκλους παγετού - απόψυξης
XA	Κίνδυνος χημικής προσβολής

Κατηγορίες διαβρωτικότητας περιβάλλοντος (2/4)

Διάκριση σε επί μέρους κατηγορίες έκθεσης (ΕС2 Πίνακας 4.1)

Κατηγορία	Περιγραφή περιβάλλοντος	Πληροφοριακά παραδείγματα κατηγοριών έκθεσης
1. Απουσία ι	κινδύνου διάβρωσης ή προσβολής	
X0	Για άοπλο σκυρόδεμα ή σκυρόδεμα χωρίς ενσωματωμένο μέταλλο: όλες οι συνθήκες έκθεσης εκτός περιπτώσεων όπου υπάρχουν ψύξη/απόψυξη, επιφανειακή τριβή ή χημική προσβολή.	Σκυρόδεμα εντός κτιρίων με πολύ χαμηλή υγρασία αέρος
	Για οπλισμένο σκυρόδεμα: πολύ ξηρό	
2. Διάβρωσ	η από ενανθράκωση	
XC1	Ξηρό ή μόνιμα υγρό	Σκυρόδεμα εντός κτιρίων με χαμηλή υγρασία αέρος Σκυρόδεμα μόνιμα βυθισμένο στο νερό
XC2	Υγρό, σπανίως ξηρό	Επιφάνειες σκυροδέματος υπό μακροχρόνια επαφή με το νερό. Πληθώρα θεμελιώσεων.
XC3	Μέτρια υγρασία	Σκυρόδεμα εντός κτιρίων με μέτρια ή υψηλή υγρασία αέρος Εξωτερικό σκυρόδεμα προστατευμένο από τη βροχή
XC4	Περιοδικά υγρό και ξηρό	Επιφάνειες σκυροδέματος σε επαφή με το νερό, εκτός της κατηγορίας έκθεσης XC2

Κατηγορίες διαβρωτικότητας περιβάλλοντος (3/4)

Διάκριση σε επί μέρους κατηγορίες έκθεσης (ΕС2 Πίνακας 4.1)

Κατηγορία	Περιγραφή περιβάλλοντος	Πληροφοριακά παραδείγματα κατηγοριών έκθεσης		
3. Διάβρωση	η από χλωριούχα (εκτός θαλασσινού νερού)			
XD1	Μέτρια υγρασία	Επιφάνειες σκυροδέματος εκτεθειμένες σε αερομεταφερόμενα χλωριούχα.		
XD2	Υγρό, σπανίως ξηρό	Πισίνες. Στοιχεία σκυροδέματος εκτεθειμένα σε βιομηχανικά απόβλητα που περιέχουν χλωριούχα.		
XD3	Περιοδικά υγρό και ξηρό	Τμήματα γεφυρών εκτεθειμένα σε ψεκασμό χλωριούχων. Πεζοδρόμια. Πλάκες χώρων στάθμευσης αυτοκινήτων.		
4. Διάβρωση	η από χλωριούχα θαλασσινού νερού			
XS1	Εκτεθειμένο σε άλατα θαλάσσης αερομεταφερόμενα αλλά χωρίς άμεση επαφή με το θαλασσινό νερό.	Κατασκευές κοντά ή επί της ακτής		
XS2	Μόνιμα βυθισμένο σε θαλασσινό νερό	Τμήματα λιμενικών έργων		
XS3	Ζώνες παλίρροιας, παφλασμού και πιτσιλίσματος.	Τμήματα λιμενικών έργων		

Κατηγορίες διαβρωτικότητας περιβάλλοντος (4/4)

Διάκριση σε επί μέρους κατηγορίες έκθεσης (ΕС2 Πίνακας 4.1)

Κατηγορία	Περιγραφή περιβάλλοντος	Πληροφοριακά παραδείγματα κατηγοριών έκθεσης
5. Προσβολή	ή παγετού / απόψυξης	
XF1	Μέτριας κλίμακας υδρεμποτισμός χωρίς, παράγοντα απόψυξης	Κατακόρυφες επιφάνειες σκυροδέματος εκτεθειμένες στη βροχή και τον παγετό.
XF2	Μέτριας κλίμακας υδρεμποτισμός με παράγοντα απόψυξης	Κατακόρυφες επιφάνειες σκυροδέματος κατασκευών οδοποιίας εκτεθειμένες σε παγετό και παράγοντες απόψυξης που μεταφέρονται με τον αέρα.
XF3	Εκτεταμένος υδρεμποτισμός χωρίς παράγοντα απόψυξης	Οριζόντιες επιφάνειες σκυροδέματος εκτεθειμένες στη βροχή και τον παγετό.
XF4	Εκτεταμένος υδρεμποτισμός με παράγοντα απόψυξης ή θαλασσινό νερό	Καταστρώματα οδών ή γεφυρών εκτεθειμένα σε παράγοντες απόψυξης. Επιφάνειες σκυροδέματος εκτεθειμένες σε άμεσο ψεκασμό με παράγοντες απόψυξης και παγετό. Ζώνες παφλασμού σε λιμενικά έργα εκτεθειμένα σε παγετό.
6. Χημική πρ	οοσβολή	
XA1	Ελαφρώς επιθετικό χημικό περιβάλλον	Φυσικά εδάφη και υπόγεια ύδατα
XA2	Μετρίως επιθετικό χημικό περιβάλλον	Φυσικά εδάφη και υπόγεια ύδατα
XA3	Ιδιαιτέρως επιθετικό χημικό περιβάλλον	Φυσικά εδάφη και υπόγεια ύδατα

Επικαλύψεις οπλισμών (1/8)

- Εξασφάλιση επαρκούς συνάφειας
- Επιβράδυνση διάβρωσης οπλισμών
- Αύξηση ανθεκτικότητας σε πυρκαγιά

Αύξηση ανθεκτικότητας σε διάρκεια

<u>d: Στατικό ὑψος</u>

$$d=h-d_1$$

$$d_1 = c_{nom} + \emptyset_w + 0.5\emptyset_L$$

Øw

η διάμετρος του εγκάρσιου οπλισμού (συνδετήρες)

η διάμετρος του διαμήκους οπλισμού

Επικαλύψεις οπλισμών (2/8)

• Το ονομαστικό πάχος επικάλυψης c_{nom} πρέπει να δηλώνεται στα σχέδια

$$c_{nom} = c_{min} + \Delta c_{dev}$$
 $c_{min} = max (c_{min,b}, c_{min,dur}, 10mm) \acute{o}\pi o \upsilon$:

- Δ_{cdev} : Προσαύξηση έναντι κατασκευαστικών αποκλίσεων. Συνήθως 10mm (υπό όρους: 10mm ≥ $\Delta cdev \geq 5mm$)
- c_{min,b}: Ελάχιστη επικάλυψη εξασφάλισης συνάφειας
 c_{min,b}: Ø ή ισοδύναμη διάμετρος Øn για δέσμες ράβδων
 προσαύξηση κατά 5mm για μέγιστο αδρανές >32mm
- c_{min,dur}: Ελάχιστη επικάλυψη αναλόγως περιβαλλοντικών συνθηκών (mm)

Επικαλύψεις οπλισμών (3/8)

• c_{min,dur}: Ελάχιστη επικάλυψη αναλόγως περιβαλλοντικών συνθηκών (mm)

Karraya a í a	Κατηγορία έκθεσης σύμφωνα με τον Πίνακα 4.1									
Κατηγορία Κατασκευής	Х0	XC1	XC2 / XC3	XC4	XD1 / XS1	XD2 / XS2	XD3 / XS3			
S1	10	10	10	15	20	25	30			
S2	10	10	15	20	25	30	35			
S3	10	10	20	25	30	35	40			
S4 *	10	15	25	30	35	40	45			
S5	15	20	30	35	40	45	50			
S6	20	25	35	40	45	50	55			

Επικαλύψεις οπλισμών (4/8)

• Κριτήρια και αντίστοιχες αυξομειώσεις κατηγορίας κατασκευής

Κριτήριο		Περιβάλλον έκθεσης									
	X0	XC1	XC2/ XC3	XC4	XD1	XD2/ XS1	XD3/ XS2/ XS3				
Χρόνος ζωής σχεδιασμού 100 χρόνια	αύξηση κατά 2										
Κατηγορία σκυροδέματος	≥ C30/37 μείωση κατά 1	≥ C30/37 μείωση κατά 1	≥ C35/45 μείωση κατά 1	≥ C40/50 μείωση κατά 1	≥ C40/50 μείωση κατά 1	≥ C40/50 μείωση κατά 1	≥ C45/55 μείωση κατά 1				
Πλάκες ή κελύφη	μείωση κατά 1										
Διασφάλιση ποιότητας παραγωγής σκυροδέματος	μείωση κατά 1										

Επικαλύψεις οπλισμών (5/8)

• Οι επικαλύψεις στον ΕΚΩΣ2000

	Ελάχιστες επικαλύψεις c _{min} (σε mm)								
Τιμές c _{min} Διόρθωση για:									
Κατηγορία συνθηκών περιβάλλοντος				Πλάκες ή κελύφη	Προτανυόμενους τένοντες	Προεντεταμένους τένοντες			
1	2	3	4	Г	+5	.10			
20	25	30	30-45*	-5	+10				

Κατηγορία		Χαρακτηριστικά
1	Ελάχιστα διαβρωτικό	Εσωτερικοί χώροι κτιρίων κατοικιών ή γραφείωνΧώροι με μικρά διαστήματα υψηλής σχετική υγρασίας
2	Μετρίως διαβρωτικό	Εσωτερικοί χώροι με υψηλή σχετική υγρασίαΕξωτερικοί χώροι χωρίς διαβρωτική ατμόσφαιραΦυσικό νερό χωρίς διαβρωτικές ουσίες
3	Παραθαλάσσιο	– Παραθαλλάσιες περιοχές (απόσταση από την ακτή ≤1km).
4	Πολύ διαβρωτικό	Βιομηχανικές ζώνεςχώροι με υψηλή συγκέντρωση διαβρωτικών ουσιών

Δομικά στοιχεία με όψεις που εμπίπτουν σε διαφορετικές κατηγορίες σχεδιάζονται με τη δυσμενέστερη

Επικαλύψεις οπλισμών (6/8)

Κωνσταντινίδης Απ. (2008) "Αντισεισμικά κτίρια από οπλισμένο σκυρόδεμα, Τόμος Α - Η Τέχνη της Κατασκευής και η Μελέτη Εφαρμογής", π-SYSTEMS INTERNATIONAL Α.Ε., Αθήνα

Επικαλύψεις οπλισμών (7/8)

Κωνσταντινίδης Απ. (2008) "Αντισεισμικά κτίρια από οπλισμένο σκυρόδεμα, Τόμος Α - Η Τέχνη της Κατασκευής και η Μελέτη Εφαρμογής", π-SYSTEMS INTERNATIONAL Α.Ε., Αθήνα

Επικαλύψεις οπλισμών (8/8)

Κωνσταντινίδης Απ. (2008) "Αντισεισμικά κτίρια από οπλισμένο σκυρόδεμα, Τόμος Α - Η Τέχνη της Κατασκευής και η Μελέτη Εφαρμογής", π-SYSTEMS INTERNATIONAL Α.Ε., Αθήνα

Αποστάσεις οπλισμών

- Απαιτούνται κατάλληλες αποστάσεις μεταξύ των ράβδων ώστε το σκυρόδεμα να διαστρωθεί και να συμπυκνωθεί ικανοποιητικά. Έτσι εξασφαλίζεται επαρκής συνάφεια μεταξύ σκυροδέματος και οπλισμών
- Οι ράβδοι των επάλληλων στρώσεων θα πρέπει να διατάσσονται κατακόρυφα, η μια πάνω από την άλλη
- Ράβδοι που ματίζονται επιτρέπεται να εφάπτονται μεταξύ τους στο μήκος υπερκάλυψης
- Η καθαρή απόσταση (οριζοντίως και καθέτως) μεταξύ μεμονωμένων παράλληλων ράβδων ή οριζόντιων στρώσεων ράβδων θα πρέπει να είναι τουλάχιστον ίση με:

Συνάφεια χάλυβα – σκυροδέματος (1/4)

Ταυτόχρονη δράση 3 μηχανισμών

φυσικοχημική συνάφεια (πρόσφυση) συνάφεια λόγω τριβής

μηχανική συνάφεια

εξαρτάται από την τραχύτητα και την καθαρότητα επεξεργασίας του χάλυβα απαιτείται η ύπαρξη πιέσεων (δυνάμεων) κάθετων προς τη διεπιφάνεια των δύο υλικών

ράβδοι με νευρώσεις

καταστρέφεται για πολύ μικρές σχετικές ολισθήσεις Εγκάρσιες πιέσεις προέρχονται

- από εγκάρσιες φορτίσεις
- από την περίσφιξη κυρίως των συνδετήρων
- από τη συστολή ξήρανσης. Ο συντελεστής τριβής κυμαίνεται μεταξύ μ=0.30-0.60, ανάλογα με το βαθμό τραχύτητας του χάλυβα

εντυπωσιακή αύξηση της συνολικής δύναμης συνάφειας

Συνάφεια χάλυβα – σκυροδέματος (2/4)

- η ποιότητα της συνάφειας εξαρτάται από
 - τη μορφή της επιφάνειας της ράβδου
 - τη διάσταση του δομικού στοιχείου και από τη θέση
 - την κλίση του οπλισμού κατά τη σκυροδέτηση
- Οι τάσεις συνάφειας θεωρούνται σταθερές κατά μήκος των ράβδων
- Ορίζεται η τιμή σχεδιασμού της τάσης συνάφειας f_{bd} (b: bond)
- Η οριακή αντοχή συνάφειας εξαρτάται κυρίως από την εφελκυστική αντοχή του σκυροδέματος και τη θέση της ράβδου στο δομικό στοιχείο
- Διακρίνονται δύο περιοχές συνάφειας
 - Περιοχή συνάφειας Ι: όπου οι συνθήκες θεωρούνται ευνοϊκές
 - Περιοχή συνάφειας ΙΙ: όπου οι συνθήκες θεωρούνται δυσμενείς

Συνάφεια χάλυβα – σκυροδέματος (3/4)

Συνθήκες συνάφειας ευνοϊκές (Ε) : Λευκές περιοχές Συνθήκες συνάφειας δυσμενείς (Δ) : Διαγραμμισμένες περιοχές

Συνάφεια χάλυβα – σκυροδέματος (4/4)

Επιρροή της θέσης της ράβδου στην τάση συνάφειας

- Κάτω από τις οριζόντιες ράβδους σχηματίζεται υδαρής θύλακας τσιμεντοπολτού που με την σκλήρυνση γίνεται πορώδης στρώση
- Ο θύλακας αυξάνεται όσο ψηλότερα βρίσκεται η ράβδος και όσο παχύτερο είναι το στοιχείο (εξίδρωση)

1-4

- (1) Δυσμενείς συνθήκες συνάφειας
- (4) Ευνοϊκές συνθήκες συνάφειας

Αγκυρώσεις οπλισμών (1/7)

N_s: η εξωτερική δύναμη εξόλκευσης

$$N_s = \tau_b(\pi d)I_b$$

Στην οριακή κατάσταση αστοχίας και για να προηγηθεί η διαρροή της ράβδου (πλάστιμη συμπεριφορά) αντί της εξόλκευσής της (ψαθυρή αστοχία) θα πρέπει

$$N_{sd} = A_s f_{yd} \le f_{bd} (\pi d) I_b$$

$$|_{\mathsf{b}} \geq \frac{\mathsf{d}}{4} \cdot \frac{\mathsf{f}_{\mathsf{yd}}}{\mathsf{f}_{\mathsf{bd}}}$$

- I_b είναι το απαιτούμενο μήκος ώστε να διαρρεύσει η ράβδος χωρίς να ολισθήσει
- Όλες οι ράβδοι στα δομικά στοιχεία απαιτείται να προεκτείνονται για μήκος I_b
 το οποίο ονομάζεται μήκος αγκύρωσης

Αγκυρώσεις οπλισμών (2/7)

- Συνήθεις μορφές αγκύρωσης, πέρα από την ευθύγραμμη
- Σε ράβδους οπλισμού που υπόκεινται σε θλίψη, καμπυλώσεις και άγκιστρα στα άκρα τους δε συνεισφέρουν στην αγκύρωσή τους

a) Βασικό μήκος αγκύρωσης υπό εφελκυσμό, Ι_b για οποιοδήποτε σχήμα μετρούμενο κατά μήκος του άξονα της ράβδου.

Ισοδύναμο αγκύρωσης τυπική καμπύλωση

c) Ισοδύναμο μήκος αγκύρωσης για τυπικό άγκιστρο

τυπικό βρόχο

d) Ισοδύναμο μήκος αγκύρωσης για e) Ισοδύναμο μήκος αγκύρωσης με συγκολλημένη εγκάρσια ράβδο

Μήκη αγκύρωσης

I_{b,rqd}: απαιτούμενο

σχεδιασμού

 $I_{b,eq}$: ισοδύναμο

σχεδιασμού

Αγκυρώσεις οπλισμών (3/7)

Τάση συνάφειας οπλισμού - σκυροδέματος

• Τιμή σχεδιασμού f_{bd} της οριακής τάσης συνάφειας για νευροχάλυβες

$$f_{bd} = 2.25 \cdot n_1 \cdot n_2 \cdot f_{ctd}$$

όπου:

$$f_{ctd} = f_{ctk,0.05} \ / \ \gamma_c$$
 όπου $f_{ctk,0.05} \le 3.1$ ΜΡα (τιμή για σκυρόδεμα C60/75) $n_1 = egin{array}{c} 1.0 & \text{για ευνοϊκές συνθήκες συνάφειας} \\ 0.7 & \text{για δυσμενείς συνθήκες ή χρήση ολισθαίνοντα ξυλοτύπου} \\ n_2 = egin{array}{c} 1.0 & \text{για } \varnothing \le 32 \\ (132-\varnothing) \ / \ 100 & \text{για } \varnothing > 32 \\ \end{pmatrix}$

Αγκυρώσεις οπλισμών (4/7)

Βασικό απαιτούμενο μήκος αγκύρωσης $I_{b,rqd}$

$$I_{b,rqd} = (\varnothing/4)(\sigma_{sd}/f_{bd})$$

όπου:
$$\sigma_{sd} = (A_{s,rqd} / A_{s,pvd}) \cdot f_{yd}$$

Σκυρόδ	δεμα	C16	C20	C25	C30	C35	C40	C45	C50	C55	≥C60
(1)	Е	56Ø	48Ø	40Ø	36Ø	33Ø	29Ø	27Ø	25Ø	24Ø	23Ø
l _{b,rqd} ('')	Δ	80Ø	69Ø	58Ø	52Ø	47Ø	41Ø	38Ø	36Ø	35Ø	33Ø

(1) Θεωρήθηκε σ_{sd}=f_{yd}=(500/1.15)MPa

Αγκυρώσεις οπλισμών (5/7)

Μήκος αγκύρωσης σχεδιασμού I_{bd}

 Το μήκος αγκύρωσης σχεδιασμού I_{bd} προκύπτει από κατάλληλη μείωση του βασικού απαιτούμενου μήκους αγκύρωσης I_{b,rqd} λόγω ευεργετικών παραγόντων, όπως το σχήμα της ράβδου, το πάχος επικάλυψης, η ύπαρξη εγκάρσιου οπλισμού ή εγκάρσιας πίεσης

$$I_{bd} = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_4 \cdot \alpha_5 \cdot I_{b,rqd} \ge I_{b,min}$$

όπου:

 a_1 συντελεστής επίδρασης του σχήματος των ράβδων συντελεστής επίδρασης της ελάχιστης επικάλυψης σκυροδέματος a_3 συντελεστής επίδρασης της περίσφιγξης λόγω του εγκάρσιου οπλισμού συντελεστής επίδρασης λόγω εγκάρσιων συγκολλημένων ράβδων συντελεστής επιρροής πίεσης κάθετα στο επίπεδο διάρρηξης Δεν επιτρέπεται $(a_2 \cdot a_3 \cdot a_5) < 0.7$

$$I_{b,min} > max \left\{ 0.3I_{b,rqd}, \ 10\varnothing, \ 100mm \right\} \qquad \text{αγκύρωση εφελκυόμενης ράβδου}$$

$$I_{b,min} > max \left\{ 0.6I_{b,rqd}, \ 10\varnothing, \ 100mm \right\} \qquad \text{αγκύρωση θλιβόμενης ράβδου}$$

Αγκυρώσεις οπλισμών (6/7)

Μήκος αγκύρωσης σχεδιασμού I_{bd}

Τιμές των συντελεστών $\alpha_{1,} \alpha_{2,} \alpha_{3,} \alpha_{4,} \alpha_{5,} \alpha_{6}$

Παράγοντας	Τύπος αγκύρωσης	Ράβδοι οπλιο	τμών	
επιρροής	Total attropoorts	Υπό εφελκυσμό	Υπό θλίψη	
	Ευθύγραμμη	$\alpha_1 = 1.0$	$\alpha_1 = 1.0$	
Μορφή ράβδων	Μη ευθύγραμμη (βλέπε Σχήμα 8.1 (b), (c) και (d)	α ₁ = 0,7 εάν c _d > 3⊘ αλλιώς α ₁ = 1,0 (βλέπε Σχήμα 8,3 για τιμές του c _d)	α1 = 1,0	
500 100100	Ευθύγραμμη	$\alpha_2 = 1 - 0.15 \cdot (c_d - \emptyset)/\emptyset$ ≥ 0.7 ≤ 1.0	α ₂ = 1,0	
Επικάλυψη σκυροδέματος	Μη ευθύγραμμη (βλέπε Σχήμα 8.1 (b), (c) και (d)	$α_2 = 1 - 0.15 \cdot (c_d - 3∅)/∅$ $≥ 0.7$ $≤ 1.0$ (βλέπε Σχήμα 8.3 για τιμές του c_d)	α ₂ = 1,0	
Περίσφιξη με εγκάρσιο οπλισμό μη συγκολλημένο στον κύριο οπλισμό	Τερίσφιξη με εγκάρσιο σπλισμό μη υγκολλημένο στον κύριο $\alpha_3 = 1 - k$		α ₃ = 1,0	
Περίσφιξη με συγκολλημένο εγκάρσιο οπλισμό	Όλοι οι τύποι, η θέση και το μέγεθος όπως καθορίζεται στο Σχήμα 8.1 (e)	α4 = 0.7	$\alpha_4 = 0.7$	
Περίσφιξη με εγκάρσια πίεση	Όλοι οι τύποι	α ₅ = 1 − 0,04p ≥ 0,7 ≤ 1.0	-	

όπου:

 $\lambda = (\Sigma A_{st} - \Sigma A_{st,min})/A_s$

ΣΑ_{st} εμβαδόν διατομής του εγκάρσιου οπλισμού κατά μήκος του μήκους

αγκύρωσης σχεδιασμού Ibd

ΣΑ_{st,min} εμβαδόν διατομής του ελάχιστου εγκάρσιου οπλισμού

(0,25A_s για δοκούς και μηδενικό για πλάκες)

A_s εμβαδόν διατομής της αγκυρούμενης ράβδου με τη μέγιστη διάμετρο

c_d, Κ τιμές που φαίνονται στα Σχήματα 8.3, 8.4

p εγκάρσια πίεση [MPa] στη κατάσταση αστοχίας κατά μήκος του Ibd

Αγκυρώσεις οπλισμών (7/7)

Αγκύρωση συνδετήρων και οπλισμού διάτμησης

Σημείωση: Στις περιπτώσεις c) και d) η επικάλυψη δεν πρέπει να είναι μικρότερη από 3⊘ ή 50 mm.

• Σύμφωνα με τον ΕC8 για συνδετήρες σε δοκούς, υποστυλώματα και τοιχώματα με αυξημένες απαιτήσεις πλαστιμότητας

Ενώσεις οπλισμών (1/4)

- Οι ενώσεις απαιτούνται για να εξασφαλίσουν τη μεταβίβαση της δύναμης από τη μια ράβδο στην άλλη όταν για κατασκευαστικούς λόγους δεν είναι δυνατή η διάταξη της ράβδου σε ενιαίο μήκος (π.χ. μεγάλα ανοίγματα δοκών, αδυναμία επεξεργασίας και τοποθέτησης κ.λ.π.)
- Οι ενώσεις μπορούν να γίνουν
 - Με υπερκάλυψη, σε διάφορες παραλλαγές, π.χ.
 - ευθύγραμμα άκρα
 - ημικυκλικά ή ορθογωνικά άγκιστρα,
 - αναβολείς,
 - ευθύγραμμα άκρα με συγκολλητούς εγκάρσιους οπλισμούς
 - Με συγκόλληση
 - Με μηχανικά μέσα

Ενώσεις οπλισμών (2/4)

Ενώσεις με υπερκάλυψη

Κοχλιωτές ενώσεις

Ενώσεις με συγκόλληση

Ενώσεις οπλισμών (3/4)

 Το απαιτούμενο μήκος υπερκάλυψης I₀ προκύπτει από κατάλληλη προσαύξηση του μήκους αγκύρωσης σχεδιασμού I_{bd} ανάλογα με το ποσοστό των ράβδων που ενώνονται σε μία θέση.

$$I_0 = \alpha_6 \cdot I_{bd} = \alpha_1 \cdot \alpha_2 \cdot \alpha_3 \cdot \alpha_5 \cdot \alpha_6 \cdot I_{b,rqd} \ge I_{0,min}$$

όπου:

- $I_{0,min} > \max \left\{ 0.3 \cdot \alpha_6 \cdot I_{b,rqd}, 15\%, 200 \text{mm} \right\}$
- Οι τιμές των α_1 , α_2 , α_3 και α_5 λαμβάνονται από τον πίνακα των αγκυρώσεων
- Κατά τον υπολογισμό του α_3 το $\Sigma A_{st,min}$ λαμβάνεται ίσο με $A_s \cdot (\sigma_{sd}/f_{bd})$ όπου A_s είναι το εμβαδόν της διατομής μιας υπό ένωση ράβδου
- $-\alpha_6 = (\rho_1/25)^{0.5}$ και $1.0 \le \alpha_6 \le 1.5$. Όπου ρ_1 είναι το ποσοστό του οπλισμού που ενώνεται με υπερκάλυψη στην ίδια θέση η οποία ορίζεται ως το τμήμα του δομικού στοιχείου με μήκος $0.65 \cdot l_0$ εκατέρωθεν του μέσου της θεωρούμενης ένωσης

Ενώσεις οπλισμών (4/4)

Τιμές του συντελεστή $lpha_6$							
Ποσοστό των υπερκαλυπτόμενων ράβδων ως προς το συνολικό οπλισμό της διατομής	<25%	33%	50%	>50%			
$lpha_{6}$	1.00	1.15	1.40	1.50			

Παράδειγμα : Οι ενώσεις των ράβδων ΙΙ και ΙΙΙ είναι εκτός της θεωρούμενης περιοχής :

$$ρ_1 = 50\%$$
 και $α_6 = 1,4$

