

## THREADS

#### Introdução a threads

- Conceitos iniciais sobre concorrência, paralelismo, multiprocessamento, etc.
- Conceito de threads
- Como criar threads e trabalhar com eles
- Como usar as ferramentas comuns que o modulo threading em Python fornece

#### Recursos e ferramentas

- Jupyter Notebook
- Editor de código de sua preferência

#### Neste módulo

Aula 1 - Threads

Aula 2 - Prática

Aula 3 - Exercícios

# 1. THREADS\*



#### **Conceitos iniciais**



#### **Conceitos iniciais**





#### **Processo**

"É uma instancia de um programa sendo executado em um computador"

 Cada processo tem sua área de memória própria.

#### Processo Serial

Quad-Core CPU





#### **Paralelismo**

"Paralelismo é sobre a execução paralela de tarefas, ou seja, mais de uma por vez de forma simultânea"



#### Concorrência

"É a capacidade de se executar duas ou mais tarefas em um mesmo período de tempo"

#### Paralelismo vs. concorrência

"Concorrência é sobre **lidar** com várias coisas ao mesmo tempo e paralelismo é sobre **fazer** várias coisas ao mesmo tempo."

#### **Threads**

- Representa uma atividade que será executada em um fluxo separado
- Para iniciar uma thread chamamos a função 'start()'
- >>> import threading
- >>> t1 = Threads(target=obj.Function\_Name).start()
- Podemos finalizar um thread quando o processo python é finalizado, ou não

#### Threads vs. processo

- Um thread é uma linha de execução que está dentro de um processo
- Cada um desses threads é um pacote independente de execução
- Um processo pode conter mais de um thread



#### Threads vs. processo







#### **Multithreads**

- Multithreading é uma técnica em que vários threads são gerados por um processo para fazer diferentes tarefas, quase ao mesmo tempo, apenas uma após a outra.
- Isso dá a ilusão de que os encadeamentos estão sendo executados em paralelo, mas na verdade são executados de maneira simultânea.
- Em Python, o Global Interpreter Lock (GIL) impede que os threads sejam executados simultaneamente.

#### Monothread vs. multithread



single-threaded process



multithreaded process

#### Multiprocessamento

- Multiprocessamento é uma técnica em que o paralelismo em sua forma mais verdadeira é alcançado.
- Vários processos são executados em vários núcleos de CPU, que não compartilham os recursos entre eles.
- Cada processo pode ter muitos threads em execução em seu próprio espaço de memória.
- Ele roda em Unix e Windows.

>>> import multiprocess

### Tipos de threads

- Modo usuário
- Modo de núcleo
- Modo hibrido

#### Threads no modo usuário

Implementado totalmente no espaço do usuário

ENDEREÇAMENTO NO ESPAÇO DO USUÁRIO

- Por meio de uma biblioteca (criação, exclusão, execução etc) NÃO NECESSARIAMENTE GERENCIAMENTO
- Criação e escalonamento são realizados sem o conhecimento do kernel
- Para o kernel é como se rodasse um programa monothread, gerenciadas como processos no kernel

#### Vantagens de uso das threads

- Criar uma thread é mais rápida que criar um novo processo
- Tende a aumentar o desempenho com a exploração do paralelismo real, com melhor capacidade de resposta
- Melhor organização do programa
- Obrigação de "programar bem"

#### Desvantagens de uso das threads

- O processo de depuração é mais difícil
- A exclusão das variáveis em um tarefa que depende da outra, pode resultar em estados não definidos, prejudicando o uso posterior desta variável pela próxima tarefa
- Pode levar maior tempo de execução quando demandam uso intensivo da CPU

### Comandos comuns para threads

#### threading.Thread

| COMANDOS   | DESCRIÇÃO                              |
|------------|----------------------------------------|
| start()    | Inicia as ações da thread              |
| run()      | Ações de thread a serem executadas     |
| join()     | Bloqueia até a thread encerrar         |
| is_alive() | Retorna se a thread está viva          |
| daemon     | Indicador se a thread é do tipo daemon |

## Objetos em thread

| OBJETO           | DESCRIÇÃO                                                                                                                                                                                                      |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Thread           | Objeto que representa um único thread de execução.                                                                                                                                                             |
| Lock             | Objeto de bloqueio primitivo.                                                                                                                                                                                  |
| RLock            | O objeto de bloqueio RLock ou Reentrante fornece capacidade para um único thread (re) adquirir um bloqueio já mantido (bloqueio recursivo).                                                                    |
| Condition        | Objeto de variável de condição faz com que um thread espere até que certa "condição" seja satisfeita por outro thread (como mudança de estado ou algum valor de dados)                                         |
| Event            | É uma versão mais geral das variáveis de condição, em que várias threads podem ser feitas para aguardar a ocorrência de algum evento e todas as threads em espera só serão ativadas quando o evento acontecer. |
| Semaphore        | Fornece um "contador" de recursos finitos compartilhados entre blocos de threads quando nenhum está disponível.                                                                                                |
| BoundedSemaphore | Semelhante a um semáforo, mas garante que nunca exceda seu valor inicial.                                                                                                                                      |
| Timer            | Semelhante ao Thread, exceto que ele espera por um período de tempo especificado antes de ser executado.                                                                                                       |
| Barrier          | Cria uma "barreira" na qual um número especificado de threads deve chegar antes que todos tenham permissão para continuar.                                                                                     |

#### Resumo

- Processos
- Paralelismo
- Threads
- Multithreads
- Multiprocessos
- Objetos em threads



# 2. PRATICA





#### Vamos praticar?

 Nesta prática iremos explorar a utilização de Threads



#### Resumo

- Modulo threading e time
- Threads com funções
- Threads com classes



## EXERCICIOS





