Name: REFERENCE

1. Find a value for n that will give vector \vec{a} a magnitude of 7:

$$\vec{a} = \begin{pmatrix} -3\\2\\n \end{pmatrix}$$

1a"1= 7

$$|\vec{q}| = \int_{(-3)^2 \cdot 2^2 \cdot N^2}^{2 \cdot 2^2 \cdot N^2} \qquad \vec{q} = 9 + 4 \cdot N^2$$

$$N^2 = 36 \quad N = 6 \quad \text{or} \quad -6$$

2. Find values for b_x , b_y , and b_z that will make \vec{b} perpendicular to \vec{a} regardless of the value of m in \vec{a} :

$$\vec{a} = \begin{pmatrix} -2 \\ 1 \\ m \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} b_x \\ b_y \\ b_z \end{pmatrix}$$

$$\vec{a} \perp \vec{b} \qquad \vec{a} \cdot \vec{b} = 0$$

$$-2 b_x + b_y + mb_z = 0$$

Since we can't account for the M value in the 2 dimension in a without landwing the value of M ahead of Lime, we must set by to Zero.

3. Let
$$\vec{a} = \binom{1}{3}$$
:

(a) Find the unit vector for
$$\vec{a}$$
:
$$|\vec{q}| : \sqrt{|\vec{q}|} = \sqrt{|\vec{q}|} = \sqrt{|\vec{q}|}$$

$$|\vec{q}| : \sqrt{|\vec{q}|} = \sqrt{|\vec{q}|} = \sqrt{|\vec{q}|}$$

(b) Consider some vector $\vec{b} = k\vec{a}$ for some positive value of k (that is, \vec{b} is parallel to \vec{a}). What is the unit vector of \vec{b} :

(c) Consider some vector \vec{b} which is perpendicular to \vec{a} . Find a possible value for the unit vector of \vec{b} :

Perpendicular vector has negative reciperocal slope.
$$\left(\frac{-3}{\sqrt{10}}\right)$$
 or $\left(\frac{3}{\sqrt{10}}\right)$

17 January 2020

Name:

4. Consider the path formed by the 4 vectors in the diagram below:

(a) Write an equation for \vec{c} in terms of \vec{a} , \vec{b} , and \vec{d} :

(b) Given the following values for $\vec{a}, \vec{b},$ and $\vec{d},$ calculate the value of \vec{c} :

$$\vec{a} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \qquad \vec{b} = \begin{pmatrix} 4 \\ 1 \end{pmatrix} \qquad \vec{d} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$$

(c) For the above values vector values, calculate the angle θ between the \vec{a} and \vec{d} :

$$|\vec{q}'| = \sqrt{2^2 + 2^2}$$

$$|\vec{q}'| = \sqrt{8}$$

$$|\vec{b}'| = \sqrt{7^2 + 1^2}$$

$$= \sqrt{60}$$

$$\vec{a} \cdot \vec{d} = |\vec{a}| |\vec{d}| \cos \Theta$$
 $\vec{a} \cdot \vec{d} = 2.7 + 2.1$
 $16 = \sqrt{8} \sqrt{50} \cos \Theta$ $= 16$
 $\cos \Theta = \frac{16}{18 \sqrt{50}} = \frac{16}{\sqrt{400}} = \frac{4}{5} = \cos \Theta$
 $\Theta = \cos^{-1}(\frac{4}{5}) = 36.87^{\circ}$

5. In the diagram below, \vec{a} and \vec{b} are both unit vectors with a 45° angle between them. Find the value of the dot product $\vec{a} \cdot \vec{b}$:

$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$$

= (1)(2) \(\text{cos 45}\)\(= \cos 45\)\(= \frac{1}{\sqrt{2}} = .7071

- 6. Mark each of the following statements as either True or False:
 - (a) For a given vector \vec{a} , there are infinitely many vectors \vec{b} such that \vec{b} is parallel to \vec{a} . True or False? \vec{a} \vec{b} \vec{c} \vec{c}
 - (b) For a given vector \vec{a} , there are infinitely many unit vectors \vec{b} such that \vec{b} is parallel to \vec{a} . True or False? \vec{b} can only be the with vector of
 - (c) If \vec{a} and \vec{b} are perpendicular, then the unit vectors for \vec{a} and \vec{b} are also perpendicular. True or False?
 - (d) If \vec{a} and \vec{b} are parallel and $\vec{a} \cdot \vec{b} = |\vec{a}|^2$ (the magnitude of \vec{a} squared), then \vec{a} must \vec{b} must have the same magnitude. True or False? $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| = |\vec{a}| |\vec$
 - (e) If the angle between \vec{a} and \vec{b} is 30°, then the angle between $2\vec{a}$ and $2\vec{b}$ must be 60°. True or False?

7. Challenge Problem (extra credit):

Consider the following three vectors:

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$$
 $\vec{b} = \begin{pmatrix} 5 \\ -1 \\ 1 \end{pmatrix}$ $\vec{c} = \begin{pmatrix} 1 \\ c_y \\ c_z \end{pmatrix}$

Find the values for c_y and c_z that make \vec{c} perpendicular to both \vec{a} and \vec{b} at the same time: (hint: start by setting up the dot-product equations)

$$\vec{a} \cdot \vec{c} = 1.1 + 2.16 - 3.11 = 33 - 33 = 0$$

$$\vec{b} \cdot \vec{c} = 5.1 + -1.16 + 1.11 = 5 - 16 + 11 = 0$$