CORRIGÉ DU DS N°7 – CCP PSI 2001 Math 2

PREMIÈRE PARTIE Procédé d'extrapolation de Richardson

a) Soit t au voisinage de 0, $t \neq 0$. Alors $\frac{\varphi(t)}{t^s} = \frac{\varphi(t)}{(\Omega t)^s} \cdot \rho^s$. **I.1**

> Par hypothèse, la fonction $\frac{\varphi(t)}{(\alpha t)^s}$ est bornée lorsque $t \to 0$, il en est donc de même de $\frac{\varphi(t)}{(\alpha t)^s} \cdot \rho^s$ car ρ^s est une constante.

Conclusion: $\varphi(t) = O(t^s)$ lorsque $t \to 0$.

- **b)** Soit t au voisinage de 0, $t \neq 0$. Alors $\frac{\varphi(t)}{t^{k-1}} = \frac{\varphi(t)}{t^k} \cdot t$. C'est le produit d'une fonction bornée au voisinage de 0 par une fonction tendant vers 0, et par conséquent : $\lim_{t\to 0} \frac{\varphi(t)}{t^{k-1}} = 0.$
- a) Par hypothèse, pour $t \to 0$, on a $A(t) = a_0 + a_1 t + \dots + a_k t^k + t^{k+1} \varphi(t)$ avec φ une fonction bornée au voisinage **I.2** Par suite, il vient $\lim_{t\to 0} t^{k+1} \varphi(t) = 0$, et donc $\lim_{t\to 0} A(t) = a_0$.
 - **b)** Soit t au voisinage de 0. Alors :

$$A_{1}(t) = \frac{rA_{0}(t) - A_{0}(rt)}{r - 1} = \frac{r(a_{0} + a_{1}t + a_{2}t^{2} + \dots + O(t^{k+1})) - (a_{0} + a_{1}rt + a_{2}r^{2}t^{2} + \dots + O((rt)^{k+1}))}{r - 1}$$

$$= a_{0} + \frac{r - r^{2}}{r - 1}a_{2}t^{2} + O(t^{k+1})$$

car d'après **I-1.a**, $O((rt)^{k+1}) = O(t^{k+1})$

On en déduit : $A_1(t) = a_0 - ra_2t^2 + \cdots + O(t^{k+1})$. En posant $a_{1,2} = -ra_2$, on a donc le résultat souhaité.

- c) Soit, pour $n \in [1, k]$, P(n) la propriété : « pour $t \to 0$, $A_n(t) = a_0 + a_{n,n+1}t^{n+1} + a_{n,n+2}t^{n+2} + \cdots + O(t^{k+1})$ »
 - P(1) est vraie d'après la question précédente.
 - Supposons P(n) vraie pour $n \in [1, k]$ fixé.

Alors pour $t \to 0$,

$$A_{n+1}(t) = \frac{r^{n+1}A_n(t) - A_n(rt)}{r^{n+1} - 1}$$

$$= \frac{r^{n+1}(a_0 + a_{n,n+1}t^{n+1} + a_{n,n+2}t^{n+2} + \dots + O(t^{k+1})) - (a_0 + a_{n,n+1}r^{n+1}t^{n+1} + a_{n,n+2}r^{n+2}t^{n+2} + \dots + O((rt)^{k+1}))}{r^{n+1} - 1}$$

On observe que le terme en t^{n+1} s'élimine, et qu'il restera une expression de la forme $a_0 + a_{n+1,n+2}t^{n+2} + \cdots + O(t^{k+1})$, donc P(n+1) est vraie.

Conclusion:

le D.L de A_n à l'ordre k au voisinage de 0 est de la forme $A_n(t) = a_0 + a_{n,n+1}t^{n+1} + \cdots + O(t^k)$.

d) On a: $\lim_{m\to\infty} r^{-m} t_0 = 0$ car r > 1.

Vu que $\lim_{t\to 0} A(t) = a_0$, par composition de limites on a donc $\left|\lim_{m\to\infty} A(r^{-m}t_0) = a_0\right|$

a) Soit $p \in \mathbb{N}$. Alors $A_{p,0} = A(r^{-p}t_0)$. **I.3**

Or, pour t au voisinage de 0, le développement limité de A_0 à l'ordre 0 est $A(t) = a_0 + O(t)$.

Par suite, vu que $\lim_{n\to\infty} r^{-p} t_0 = 0$, on a $A(r^{-p} t_0) = a_0 + O(r^{-p} t_0)$.

D'après **I-1.a**, t_0 étant une constante, on a bien $A_{p,0} = a_0 + O(r^{-p})$.

b) Soit
$$q \in \mathbb{N}$$
. Alors d'après **I-2.c**, pour $t \to 0$, $A_q(t) = a_0 + O(t^{q+1})$.
Par suite, pour $p \to +\infty$ et $q \in \{0, \dots, p\}$, $A_{p,q} = A_q(r^{-p}t_0) = a_0 + O(r^{-p(q+1)}t_0^{q+1})$, d'où $A_{p,q} = a_0 + O(r^{-p(q+1)})$.
On obtient donc $\alpha(p,q) = p(q+1)$.

c) Soit $p \in \mathbb{N}^*$.

Alors
$$A_{p,1} = A_1(r^{-p}t_0) = \frac{rA(r^{-p}t_0) - A(r \cdot r^{-p}t_0)}{r-1} = \frac{rA(r^{-p}t_0) - A(r^{-(p-1)}t_0)}{r-1}$$

On a donc bien $A_{p,1} = \frac{rA_{p,0} - A_{p-1,0}}{r-1}$.

d) Soit $p \in \mathbb{N}^*$, soit $q \in \{1, \dots, p\}$

Solt
$$p \in \mathbb{N}^{+}$$
, solt $q \in \{1, ..., p\}$.
Alors $A_{p,q} = A_{q}(r^{-p}t_{0}) = \frac{r^{q}A_{q-1}(r^{-p}t_{0}) - A_{q-1}(r \cdot r^{-p}t_{0})}{r^{q} - 1} = \frac{r^{q}A_{p,q-1} - A_{p-1,q-1}}{r^{q} - 1}$.
De plus, $\frac{r^{q}A_{p,q-1} - A_{p-1,q-1}}{r^{q} - 1} = \frac{(r^{q} - 1 + 1)A_{p,q-1} - A_{p-1,q-1}}{r^{q} - 1} = A_{p,q-1} + \frac{1}{r^{q} - 1}(A_{p,q-1} - A_{p-1,q-1})$.
On obtient donc bien $A_{p,q} = \frac{r^{q}A_{p,q-1} - A_{p-1,q-1}}{r^{q} - 1} = A_{p,q-1} + \frac{1}{r^{q} - 1}(A_{p,q-1} - A_{p-1,q-1})$.

I.4 Pour $0 \le q \le p \le m$, on a vu que $\alpha(p,q) = p(q+1)$, donc $\alpha(p,q)$ est maximum pour q = p = m et minimum pour p=q=0.

La plus grande valeur de $\alpha(p,q)$ est m(m+1), la plus petite valeur est 0.

D'après I-1.b, plus la puissance de t est grande dans $O(t^k)$, plus ce terme est petit quand $t \to 0$. On peut donc attendre à priori la meilleure approximation de a_0 par $A_{p,q}$ lorsque $A_{p,q} = a_0 + O(r^{-\alpha(p,q)})$ sera tel que $\alpha(p,q)$ soit le plus grand possible, donc il s'agit de la valeur $A_{m,m}$, avec $A_{m,m} = a_0 + O(r^{-\sigma(m)})$, et $\sigma(m) = m(m+1)$.

a) D'après la formule de Taylor-Young, et par unicité des coefficients d'un développement limité, on a : **I.5**

$$y \in \{0,\ldots,2k\}, c_p = \frac{g^{(p)}(\alpha)}{p!}.$$

b) • Soit
$$h \in \mathbb{R}^*$$
. Alors $G(-h) = \frac{g(\alpha - h) - g(\alpha + h)}{-2h} = \frac{g(\alpha + h) - g(\alpha - h)}{2h} = G(h)$.

G est donc paire.

• D'après Taylor-Young, on a pour $h \to 0$: $g(\alpha + h) = g(\alpha) + hg'(\alpha) + o(h)$.

On en déduit, pour
$$h \to 0$$
: $G(h) = \frac{\left[g(\alpha) + hg'(\alpha) + o(h)\right] - \left[g(\alpha) - hg'(\alpha) + o(h)\right]}{2h} = g'(\alpha) + o(1)$
Par suite, $\lim_{h \to 0} G(h) = g'(\alpha)$, donc G est prolongeable par continuité en 0 par la valeur $g'(\alpha)$.

c) Soit *h* au voisinage de 0. Alors :

$$\widetilde{G}(h) = \frac{g(\alpha + h) - g(\alpha - h)}{2h}$$

$$= \frac{1}{2h} \left\{ \left[c_0 + c_1 h + c_2 h^2 + \dots + c_{2k-1} h^{2k-1} + c_{2k} h^{2k} + O(h^{2k+1}) \right] - \left[c_0 - c_1 h + c_2 h^2 + \dots - c_{2k-1} h^{2k-1} + c_{2k} h^{2k} + O(h^{2k+1}) \right] \right\}$$

On obtient donc: $\widetilde{G}(h) = c_1 + c_3 h^2 + c_5 h^4 + \dots + c_{2k-1} h^{2k-2} + O(h^{2k})$.

a) Posons r = 4 et $t_0 = h^2$. Alors on a r > 1, et pour $p \in \{0, ..., m\}$, $A(r^{-p}t_0) = A(4^{-p}h^2) = \widetilde{G}(\sqrt{4^{-p}h^2}) = G\left(\frac{h}{2^p}\right)$. **I.6** Le choix r = 4 et $t_0 = h^2$ répond donc à la question.

b) Pour t au voisinage de 0^+ , on a $A(t) = \widetilde{G}(\sqrt{t}) = c_1 + c_3 t + c_5 t^2 + \dots + c_{2k-1} t^{k-1} + O(t^k)$ d'après **I-5.3**. D'après **I-3.a**, on a $\lim_{n\to\infty} A_{p,0} = c_1$.

D'après **I-5.b**, on a finalement
$$\lim_{p\to\infty} A_{p,0} = \ell = g'(\alpha)$$
.

I.7 a) Pour t > 0, on a ici $A(t) = \frac{\ln(3 + \sqrt{t}) - \ln(3 - \sqrt{t})}{2\sqrt{t}}$

On trouve alors : $A_{0,0} \sim 0.3415898164800$, $A_{1,0} \sim 0.3353299832433$, $A_{2,0} \sim 0.3338284815613$, $A_{3,0} \sim 0.3334568724934$. On obtient ensuite le tableau :

$A_{0,0} \sim$	0.3415898164800			
		$A_{1,1} \sim 0.3332433721645$		
		$A_{2,1} \sim 0.3333279810006$		
$A_{3,0} \sim$	0.3334568724934	$A_{3,1} \sim 0.33333330028040$	$A_{3,2} \sim 0.33333333375909$	$A_{3,3} \sim 0.333333333333830$

Remarque : le programme Maple utilisé pour obtenir ce résultat est le suivant :

```
# Initialisations
G:=t->(ln(3+t)-ln(3-t))/2/t; h:=0.8;
for p from 0 to 3 do A[p,0]:=G(h/2^p); od;
# Calcul des termes
for p from 1 to 3 do
    for q from 1 to p do
        A[p,q]:=(r^q*A[p,q-1]-A[p-1,q-1])/(r^q-1);
    od;
od;
# Affichage
for p from 0 to 3 do
    for q from 0 to p do
        printf('0.15%f ',A[p,q]);
    od;
    printf('\n');
od;
```

b) On a $\ell = g'(\alpha)$, donc dans l'exemple étudié on trouve $\ell = \frac{1}{3}$.

On voit clairement dans le tableau que la meilleure approximation est obtenue pour $A_{3,3}$, ce qui correspond bien à la valeur trouvée au **I-4**.

DEUXIÈME PARTIE Formule d'Euler-Mac Laurin

II.1 **a)** • B₁ est tel que B'₁ = B₀, d'où B₁ = X +
$$c$$
 ($c \in \mathbb{R}$), et $\int_0^1 B_1(t) dt = \int_0^1 (t+c) dt = \left[\frac{t^2}{2} + ct\right]_0^1 = \frac{1}{2} + c$, d'où $c = -\frac{1}{2}$.

On a donc $B_1 = X - \frac{1}{2}$.

• De même,
$$B_2' = 2B_1 = 2X - 1$$
, d'où $B_2 = X^2 - X + c$ $(c \in \mathbb{R})$, et $\int_0^1 B_2(t) dt = \left[\frac{t^3}{3} - \frac{t^2}{2} + ct\right]_0^1 = -\frac{1}{6} + c$, d'où $c = \frac{1}{6}$.

On a donc
$$B_2 = X^2 - X + \frac{1}{6}$$
.

• Enfin,
$$B_3' = 3B_2 = 3X^2 - 3X + \frac{1}{2}$$
, d'où $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X + c$ ($c \in \mathbb{R}$), et $\int_0^1 B_3(t) dt = \left[\frac{t^4}{4} - \frac{1}{2}t^3 + \frac{1}{4}t^2 + ct\right]_0^1 = c$, d'où $c = 0$. On a donc $B_3 = X^3 - \frac{3}{2}X^2 + \frac{1}{2}X$.

b) On trouve à partir des expressions précédentes :
$$b_0 = 1$$
, $b_1 = -\frac{1}{2}$, $b_2 = \frac{1}{6}$ et $b_3 = 0$.

De même,
$$B_0(1) = 1$$
, $B_1(1) = \frac{1}{2}$, $B_2(1) = \frac{1}{6}$ et $B_3(1) = 0$.

On observe donc que $b_p = B_p(1)$ pour $p \in \{0, 2, 3\}$.

c) Soit
$$p \in \mathbb{N}$$
, $p \ge 2$. Alors $\int_0^1 B_{p-1}(t) dt = 0$, donc $\int_0^1 \frac{B_p'(t)}{p} dt = 0$, d'où $\left[\frac{B_p(t)}{p}\right]_0^1 = \frac{B_p(1) - B_p(0)}{p} = 0$, et donc $b_p = B_p(1)$.

- **II.2** a) Soit $t \in \mathbb{R}$, alors $\widetilde{B}_0(t) = (-1)^0 B_0(1) = 1$ donc (\widetilde{B}_p) vérifie (i).
 - Soit $p \in \mathbb{N}^*$, soit $t \in \mathbb{R}$. Alors $\widetilde{B}'_p(t) = (-1)^p \cdot (-B'_p(1-t)) = (-1)^{p-1} p B_{p-1}(1-t) = p \widetilde{B}_{p-1}(t)$.

De plus, $\int_0^1 \widetilde{\mathbf{B}}_p(t) dt = (-1)^p \int_0^1 \mathbf{B}_p(1-t) dt = (-1)^p \int_1^0 \mathbf{B}_p(u)(-du)$ en effectuant le changement de variable u = 1 - t. On en déduit $\int_0^1 \widetilde{\mathbf{B}}_p(t) dt = 0$, et donc $(\widetilde{\mathbf{B}}_p)$ vérifie (ii).

Les relations (i) et (ii) définissant clairement de manière unique la suite (B_p) , on a donc : $\forall p \in \mathbb{N}$, $\widetilde{B}_p = B_p$.

- **b)** Soit $p \in \mathbb{N}^*$. Alors $b_{2p+1} = B_{2p+1}(0) = -\widetilde{B}_{2p+1}(1)$. D'après **I-1.3**, on a de plus $b_{2p+1} = B_{2p+1}(1)$ d'où d'après **I-2.1** : $b_{2p+1} = \widetilde{B}_{2p+1}(1)$. On obtient donc clairement : $\forall p \in \mathbb{N}^*$, $b_{2p+1} = 0$.
- II.3 a) On a $\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \int_0^1 B_1'(t) f(t) dt$ par définition de B_0 et B_1 .

 En intégrant par parties, on obtient donc : $\int_0^1 f(t) dt = \left[B_1(t) f(t)\right]_0^1 \int_0^1 B_1(t) f'(t) dt$.

 Vu que $B_1 = X \frac{1}{2}$, on obtient : $\int_0^1 f(t) dt = \int_0^1 B_0(t) f(t) dt = \frac{1}{2} \left(f(0) + f(1)\right) \int_0^1 B_1(t) f'(t) dt$.
 - **b)** La démonstration précédente prouve que la formule est vraie pour n = 1.
 - Supposons la formule établie pour $n \in \mathbb{N}^*$ fixé. Alors :

$$\begin{split} \frac{1}{2} \big(f(0) + f(1) \big) &= \int_0^1 f(t) \, \mathrm{d}t + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} \big(f^{(p-1)}(1) - f^{(p-1)}(0) \big) + (-1)^{n+1} \int_0^1 \frac{\mathrm{B}_n(t)}{n!} f^{(n)}(t) \, \mathrm{d}t \\ &= \int_0^1 f(t) \, \mathrm{d}t + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} \big(f^{(p-1)}(1) - f^{(p-1)}(0) \big) + (-1)^{n+1} \int_0^1 \frac{\mathrm{B}'_{n+1}(t)}{(n+1) \cdot n!} f^{(n)}(t) \, \mathrm{d}t \end{split}$$

On intègre par partie l'intégrale située à droite de la formule :

$$\int_{0}^{1} \frac{B'_{n+1}(t)}{(n+1) \cdot n!} f^{(n)}(t) dt = \left[\frac{B_{n+1}(t)}{(n+1)!} f^{(n)}(t) \right]_{0}^{1} - \int_{0}^{1} \frac{B_{n+1}(t)}{(n+1)!} f^{(n+1)}(t) dt$$
$$= \frac{b_{n+1}}{(n+1)!} \left(f^{(n)}(1) - f^{(n)}(0) \right) - \int_{0}^{1} \frac{B_{n+1}(t)}{(n+1)!} f^{(n+1)}(t) dt$$

car $b_{n+1} = B_{n+1}(1) = B_{n+1}(0)$ d'après **I-1.a**.

En reportant cette expression dans la formule précédente, on obtient la formule demandée au rang n+1, d'où :

$$\forall n \ge 2, \ \frac{1}{2} (f(0) + f(1)) = \int_0^1 f(t) dt + \sum_{p=2}^n (-1)^p \frac{b_p}{p!} (f^{(p-1)}(1) - f^{(p-1)}(0)) + (-1)^{n+1} \int_0^1 \frac{B_n(t)}{n!} f^{(n)}(t) dt.$$

c) Soit $n \ge 2$, de la forme n = 2k, $k \in \mathbb{N}^*$.

D'après II-2.2, tous les termes de la somme correspondant à un indice p impair sont nuls, il reste donc en réindexant la somme :

$$\frac{1}{2}(f(0)+f(1)) = \int_0^1 f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(1) - f^{(2p-1)}(0)) - \int_0^1 \frac{B_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

- **II.4** a) Soit $t \in \mathbb{R}$, notons $n = \mathrm{E}(t)$. Alors $n \le t < n+1$, d'où $n+1 \le t < n+2$ et donc $\mathrm{E}(t+1) = n+1$. Par suite, $\mathrm{D}_p(t+1) = \mathrm{B}_p(t+1-n-1) = \mathrm{B}_p(t-n) = \mathrm{D}_p(t)$ et donc $\boxed{\mathrm{D}_p \text{ est périodique de période 1.}}$
 - Soit $(a,b) \in \mathbb{R}^2$ tel que a < b. Considérons la subdivision $(x_i)_{0 \le i \le n}$ de [a,b] telle que $[a,b] \cap \mathbb{N} = \{x_1,\ldots,x_{n-1}\}$.

XX 2

Alors pour $i \in \{0, ..., n-1\}$, $\forall t \in]x_i, x_{i+1}[$, $f|_{]x_i, x_i+1}[(t) = B_p(t-x_i)$ par définition. L'application $f|_{]x_i, x_i+1}[$ est donc clairement prolongeable à $[x_i, x_{i+1}]$ en une fonction de classe \mathscr{C}^{∞} sur $[x_i, x_{i+1}]$, qui n'est autre que $t \longmapsto B_p(t-x_i)$, et par suite D_p est de classe \mathscr{C}^{∞} par morceaux sur R.

- **b**) Soit $q \in \{1,...,N\}$. Alors f_q est de classe \mathscr{C}^{∞} sur [0,1] comme composée de telles applications.
 - Soit $m \in \mathbb{N}$. On a clairement $\forall t \in [0,1]$, $f_1(t) = f(t)$, d'où $f_1^{(m)}(0) = f^{(m)}(0)$.
 - Soit $m \in \mathbb{N}$, soit $q \in \{2, ..., \mathbb{N}\}$. Alors clairement $\forall t \in [0, 1]$, $f_q^{(m)}(t) = f^{(m)}(t + q - 1)$, d'où $f_q^{(m)}(0) = f^{(m)}(q - 1) = f^{(m)}(1 + q - 1 + 1)$ et donc $f_q^{(m)}(0) = f_{q-1}^{(m)}(1)$.
 - De même, pour $m \in \mathbb{N}$, $f_{\mathcal{N}}^{(m)}(1) = f^{(m)}(1 + \mathcal{N} 1)$ et donc $f_{\mathcal{N}}^{(m)}(1) = f^{(m)}(\mathcal{N})$.
- c) Soit $q \in \{1,...,N\}$. Alors la formule (1) appliquée à f_q fournit

$$\frac{1}{2} (f_q(0) + f_q(1)) = \int_0^1 f_q(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f_q^{(2p-1)}(1) - f_q^{(2p-1)}(0)) - \int_0^1 \frac{B_{2k}(t)}{(2k)!} f_q^{(2k)}(t) dt.$$

Compte tenu de la définition de f_q et de **II-4.2**, on obtient donc :

$$\frac{1}{2} \big(f(q-1) + f(q) \big) = \int_{q-1}^q f(u) \, \mathrm{d}u + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} \big(f^{(2p-1)}(q) - f^{(2p-1)}(q-1) \big) - \int_{q-1}^q \frac{\mathrm{B}_{2k}(u-q+1)}{(2k)!} f^{(2k)}(u) \, \mathrm{d}u \, .$$

(on a effectué le changement de variable u = t + q - 1 dans chacune des deux intégrales)

Pour tout $t \in [q-1,q[$, on a de plus E(t) = q-1, d'où $\forall t \in [q-1,q[$, $B_{2k}(t-q+1) = D_{2k}(t)$.

Écrivons alors chacune de ces formules pour $1 \le q \le N$:

$$\frac{1}{2}(f(0)+f(1)) = \int_{0}^{1} f(t) dt + \sum_{p=1}^{k} \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(1) - f^{(2p-1)}(0)) - \int_{0}^{1} \frac{D_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

$$\frac{1}{2}(f(1)+f(2)) = \int_{1}^{2} f(t) dt + \sum_{p=1}^{k} \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(2) - f^{(2p-1)}(1)) - \int_{1}^{2} \frac{D_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$\frac{1}{2}(f(N-1)+f(N)) = \int_{N-1}^{N} f(t) dt + \sum_{p=1}^{k} \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(N) - f^{(2p-1)}(N-1)) - \int_{N-1}^{N} \frac{D_{2k}(t)}{(2k)!} f^{(2k)}(t) dt$$

En additionnant toutes ces relations, et en utilisant la relation de Chasles, on obtient bien:

$$\frac{1}{2}f(0) + \sum_{q=1}^{N-1} f(q) + \frac{1}{2}f(N) = \int_0^N f(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(N) - f^{(2p-1)}(0)) - \int_0^N \frac{D_{2k}(t)}{(2k)!} f^{(2k)}(t) dt.$$

TROISIÈME PARTIE Méthode de Romberg

III.1 g est clairement de classe \mathscr{C}^{∞} sur [0,N] comme composée de telles fonctions. De plus, par récurrence immédiate, on a : $\forall m \in \mathbb{N}, \forall t \in [0,N], \ g^{(m)}(t) = h^m f^{(m)}(a+th)$.

Appliquons alors la formule (2) à g:

$$\frac{1}{2}g(0) + \sum_{q=1}^{N-1}g(q) + \frac{1}{2}g(N) = \int_0^N g(t) dt + \sum_{p=1}^k \frac{b_{2p}}{(2p)!} (g^{(2p-1)}(N) - g^{(2p-1)}(0)) - \int_0^N \frac{D_{2k}(t)}{(2k)!} g^{(2k)}(t) dt.$$

On exploite alors la formule donnant les dérivées successives de g, et on multiplie le tout par h:

$$h\left[\frac{1}{2}f(a) + \sum_{q=1}^{N-1} f(a+qh) + \frac{1}{2}f(b)\right] = h\int_{0}^{N} f(a+th)dt + h\sum_{p=1}^{k} h^{2p-1} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(b) - f^{(2p-1)}(a)\right) - h\int_{0}^{N} \frac{D_{2k}(t)}{(2k)!} h^{2k} f^{(2k)}(a+ht)dt$$

On reconnaît dans le membre de gauche le terme $T_f(h)$, et on effectue dans chaque intégrale du membre de droite le changement de variable u=a+th, $du=h\,dt$, on obtient bien ainsi :

$$T_f(h) = \int_a^b f(u) du + \sum_{p=1}^k h^{2p} \frac{b_{2p}}{(2p)!} \left(f^{(2p-1)}(b) - f^{(2p-1)}(a) \right) - h^{2k} \int_a^b \frac{D_{2k} \left(\frac{u-a}{h} \right)}{(2k)!} f^{(2k)}(u) du$$

III.2 L'application B_{2k} est continue sur [0,1] qui est compact, donc est bornée sur [0,1].

Par suite, $\exists M \in \mathbb{R}^+$ tel que $\forall t \in [0,1], |B_{2k}(t)| \leq M$.

Or, pour tout $t \in \mathbb{R}$, $t - \mathbb{E}(t) \in [0, 1]$, donc $\forall t \in \mathbb{R}$, $|D_{2k}(t)| \leq M$.

On en déduit
$$\left| \int_{a}^{b} \frac{D_{2k} \left(\frac{u-a}{h} \right)}{(2k)!} f^{(2k)}(u) du \right| \leq \int_{a}^{b} \frac{\left| D_{2k} \left(\frac{u-a}{h} \right) \right|}{(2k)!} \cdot \left| f^{(2k)}(u) \right| du \leq \underbrace{\frac{M}{(2k)!} \int_{a}^{b} \left| f^{(2k)}(u) \right| du}_{\text{constante indépendante de h}}$$

On a donc
$$h^{2k} \int_a^b \frac{D_{2k} \left(\frac{u-a}{h} \right)}{(2k)!} f^{(2k)}(u) du = O(h^{2k}).$$

En posant, pour $p \in \{1, ..., k\}$, $d_p = \frac{b_{2p}}{(2p)!} (f^{(2p-1)}(b) - f^{(2p-1)}(a))$, on obtient donc bien:

$$T_f(h) = \int_a^b f(t) dt + \sum_{p=1}^{k-1} d_p h^{2p} + O(h^{2k}).$$

- III.3 a) D'après III-2 et I-2.a, on a clairement $\lim_{t\to 0} A(t) = \int_a^b f(t) dt.$
 - **b)** On est dans un cas similaire à celui étudié au **I-6.1**, la fonction T_f jouant le rôle de \widetilde{G} . On obtient donc de la même façon r=4 et $t_0=h^2$.
- III.4 a) Pour $p \in \mathbb{N}$, on a d'après ce qui précède : $A_{p,0} = A(r^{-p}t_0) = T_f\left(\frac{h}{2^p}\right)$ et donc $A_{p,0} = T_f(h_p)$. On obtient donc, pour $p \in \mathbb{N}^*$, $A_{p-1,0} = T_f(h_{p-1}) = T_f(2h_p)$.

b) Soit
$$p \in \mathbb{N}^*$$
. Alors $A_{p,0} = T_f(h_p) = h_p \left[\frac{1}{2} f(a) + \sum_{q=1}^{2^p-1} f(a+qh_p) + \frac{1}{2} f(b) \right]$.

On décompose la somme en deux : d'un côté les indices q pairs $(q = 2r \text{ avec } 1 \le r \le 2^{p-1} - 1)$, de l'autre les indices q impairs $(q = 2r + 1 \text{ avec } 0 \le r \le 2^{p-1} - 1)$:

$$\mathbf{A}_{p,0} = h_p \left[\frac{1}{2} f(a) + \sum_{r=1}^{2^{p-1}-1} f(a+2rh_p) + \sum_{r=0}^{2^{p-1}-1} f(a+(2r+1)h_p) + \frac{1}{2} f(b) \right].$$

On remarque que, dans la première somme, chaque terme $f(a+2rh_p)$ est égal à $f(a+rh_{p-1})$, et de plus la deuxième somme est égale à $\frac{A'_{p,0}}{h^p}$.

On a donc finalement :
$$A_{p,0} = \frac{1}{2} A_{p-1,0} + A'_{p,0}.$$

L'intérêt de cette formule est de permettre le calcul de $A_{p,0}$ en réutilisant la valeur de $A_{p-1,0}$, donc en économisant une partie des calculs. Plus précisément, l'application directe de la formule initiale donnant $A_{p,0}$ oblige à calculer 2^p-1 termes de la forme $f(a+qh_p)$, alors que $A_{p,0}'$ ne fournit que 2^{p-1} tels termes. Le nombre de termes à calculer est donc divisé par deux.

III.5 a) • 1ère solution:

Soit $t \in \mathbb{R}^*$. La formule de Taylor, reste intégral fournit pour la fonction $x \longmapsto \sin x$ sur l'intervalle [0, t]: $\sin t = t \int_{-\infty}^{\infty} \cos(tx) dx$

Par suite, on a $\forall t \in \mathbb{R}^*$, $f(t) = \int_0^1 \cos(tx) \, \mathrm{d}x$, et on remarque que cette formule reste valable pour t = 0. L'application $g : \left\{ \begin{array}{ccc} [0,1] \times \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,t) & \longmapsto & \cos(xt) \end{array} \right.$ étant clairement de classe \mathscr{C}^{∞} sur $[0,1] \times \mathbb{R}$, d'après le théorème relatif à la dérivation des intégrales dépendant d'un paramètre, on en déduit que $f \in \mathscr{C}^{\infty}([0,1],\mathbb{R})$.

• 2ème solution :

On sait que : $\forall x \in \mathbb{R}$, $\sin x = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$ (série entière de rayon de convergence infini).

On en déduit : $\forall x \in \mathbb{R}$, $f(x) = \sum_{k=0}^{+\infty} (-1)^k \frac{x^{2k}}{(2k+1)!}$ (l'égalité est encore vraie pour x=0). Comme f est somme d'une série entière de rayon de convergence infini, on en déduit que $f \in \mathscr{C}^{\infty}([0,1],\mathbb{R})$.

b) On calcule les sept valeurs dans l'ordre suivant : $A_{0,0}$, $A'_{1,0}$, $A_{1,0}$, $A'_{2,0}$, $A'_{2,0}$, $A'_{3,0}$ et $A_{3,0}$. En effet, la formule du **III-4.2** $(A_{p,0} = \frac{1}{2}A_{p-1,0} + A'_{p,0})$ permet d'accélérer les calculs.

On obtient ainsi:

$$A_{0,0} \sim 1.570$$
; $A_{1,0} \sim 1,785$; $A_{2,1} \sim 1,835$; $A_{3,0} \sim 1,847$ et $A_{1,0}' = 1$; $A_{2,0}' \sim 0,942$; $A_{3,0}' \sim 0.930$

c) On obtient les valeurs suivantes :

$A_{0,0} \sim 1,570796327$			
$A_{1,0} \sim 1,785398163$			
$A_{2,0} \sim 1,835508123$			
$A_{3,0} \sim 1,847842307$	$A_{3,1} \sim 1,851953701$	$A_{3,2} \sim 1,851936518$	$A_{3,3} \sim 1,85193715$

De même qu'au **I-7.2**, la meilleure approximation est à *priori* $A_{3,3}$.

(Rem: Maple trouve l'approximation: 1,851937052. Nous avons donc 6 décimales justes, ce qui n'est pas mal.)

III.6 Si la fonction f est périodique de période b-a, alors il en est de même de chacune de ses dérivées successives, et donc la formule (4) s'écrit : $T_f(h) = \int_0^b f(t) dt + O(h^{2k})$. Le procédé d'extrapolation de Richardson ayant pour but de « supprimer » les termes de la forme $\stackrel{J_a}{a_p}h^p$ apparaissant dans le développement limité, il est donc inutile de l'appliquer ici. Plus précisément, on obtiendra, pour $1 \le q \le p$: $A_{p,q} = A_{p,0}$. En bref, la méthode est dans ce cas un moyen assez sophistiqué de consommer de la mémoire et du temps de calcul informatique!

