Factorisation et corps finis

Louis Coumau, Axel Durbet, Fivos Reyre, Sid Ali Zitouni Terki

Université de Bordeaux

15 mai 2020

Table des matières

- Introduction
- 2 Test de primalité
- 3 2 Méthodes de factorisations
- 4 Courbe elliptique
- 6 Complexité
- 6 Conclusion

Introduction

Introduction

Test de primalité

Test de primalité

Test de primalité

Théorème (Petit théorème de Fermat)

Soit p un nombre premier.

Alors,
$$\forall a \in \mathbb{N}^*$$
, $a^{p-1} \equiv 1 \ [p]$.

Théorème (Miller-Rabin)

Soit n un nombre premier impair. On pose $n-1=2^e m$ avec m un entier impair. Pour tout entier a premier à n,

```
\begin{cases} \textit{soit } a^m \equiv 1 \mod n \\ \textit{soit il existe } i \in [0, e-1] \textit{ tel que } a^{2^i} \equiv -1 \mod n \end{cases}
```


Probabilité d'erreur

Théorème

Si $n \geq 9$ est un nombre composé impair, alors

$$card(M_n) \leq \frac{n-1}{4}$$

Ainsi, $p_n \leq \frac{1}{4}$.

Comparaison

Figure – Comparaison

Introduction

B-friable

Définition (B-friable ou B-lisse)

On dit qu'un entier n est B-friable si $\forall i, p_i \leq B$ i.e. si B est supérieur ou égal au plus grand diviseur premier de n.

Exemple: $126 = 2 \times 3^2 \times 7 \Rightarrow 126$ est 7-friable.

B-ultra-friable

Définition (B-ultra-friable ou B-super-lisse)

On dit qu'un entier n est B-ultra-friable si $\forall i, p_i^{\alpha_i} \leq B$ i.e. si B est supérieur ou égal à l'entier étant la plus grande puissance de premier divisant n.

Exemple : $126 = 2 \times 3^2 \times 7 \Rightarrow 126$ est 9-ultra-friable

Algorithme

Proposition

Si p-1 est B-ultra-friable, alors $PGCD(a^{B!}-1, n) = d$ tel que d > 1.

P-1 Pollard

Algorithme

[p-1 Pollard]

Entrée : n un entier et B une borne

Sortie : d un diviseur de n

- on tire a aléatoirement sur [2, n-1]
- **3** *si* $d \neq 1$:
- *retourner d*
- o pour q allant de 2 à B
- $a \leftarrow a^q \mod n$
- \circ retourner pgcd(a 1, n)

Courbes elliptiques

Courbes elliptiques

Définition d'une Courbe elliptique

Définition (Courbe elliptique)

Soit A un anneau dans lequel 6 est inversible. Soient a et b deux éléments inversibles de A.

On définit une courbe elliptique sur A par l'équation (dite de Weierstrass) suivante :

$$E: \{(x, y, z) \in \mathbb{P}^2(A) | y^2z = x^3 + axz^2 + bz^3\}$$

Exemple

Figure – Graphe en 2D avec a = -2, b = 1 et z = 1

Addition sur la courbe

Introduction

Soit P, Q, R trois points de la courbe E tels que P + Q = R.

- Si P = Q = O alors R = O ou si Q = O alors P = R
- Si $x_P = x_Q$ et $y_Q = -y_P$ alors R = O

• Si
$$x_P \neq x_Q$$
 alors
$$\begin{cases} x_R = \lambda^2 - x_P - x_Q \mod p \\ y_R = \lambda \times (x_P - x_R) - y_P \mod p \\ \lambda = (y_Q - y_P) \times (x_Q - x_P)^{-1} \mod p \end{cases}$$

• Si P = Q et $y_P \neq 0$ alors $\begin{cases}
x_R = \lambda^2 - 2 \times x_P \mod p \\
y_R = \lambda \times (x_P - x_R) - y_P \mod p \\
\lambda = (3x_P^2 + a) \times (2 \times y_P)^{-1} \mod p
\end{cases}$

Introduction

Figure – Addition sur les courbes elliptiques

Algorithme

- ① On choisit aléatoirement a, x_P , y_P puis, on calcule $b = y_P^2 x_P^3 a \times x_P$.
- ② On vérifie que le discriminent $4a^3 + 27b^2$ est inversible dans l'anneau $\mathbb{Z}/n\mathbb{Z}$
- 3 On construit la courbe E avec a, b
- On choisit k un entier.
- **5** Si le cardinal de E divise k, $kP = 0 \mod p$, et nous aurons trouvé un facteur de n.
- Sinon, On recommence avec une nouvelle courbe elliptique E' avec un cardinal différent de celui de E

Complexité

Complexité

Théorème

Théorème

La complexité de P-1 est $O(B \times log(B) \times (log(N))^{1+\epsilon})$ avec B la borne choisie et N l'entier à factoriser.

La fonction L

Définition

On définit, pour toute constante c>0 et pour tout $\alpha\in[0,1]$ la fonction suivante :

$$L_x(\alpha,c)=e^{((c+o(1))(\ln x)^\alpha(\ln \ln x)^{1-\alpha})}$$

La fonction L

Théorème

Un entier aléatoire de taille $L_x(\alpha, c)$ est $L_x(\beta, c')$ -friable avec une probabilité $L_x(\alpha - \beta, -\frac{c}{c'}(\alpha - \beta) + o(1))$ quand x tend vers l'infini.

Optimisation de la borne

Théorème

$$B = L_n(\frac{1}{2}, \frac{1}{2}) = \exp(\frac{1}{2} \times \sqrt{\ln(n)} \times \sqrt{\ln(\ln(n))})$$
 est la meilleur borne possible. Elle donne le plus petit temps d'exécution $T = e^{\sqrt{\ln(n) \times \ln(\ln(n))}}$

La complexité de l'algorithme dépend de la taille du facteur à trouver.

Elle peut être exprimée par $O(e^{(\sqrt{2}+o(1))\sqrt{\ln(p)\times\ln(\ln(p))}})$ où p est le plus petit facteur de n.

Conclusion

Conclusion

