13.2 习题

张志聪

2025年2月13日

13.2.1

方法一: 使用连续的定义证明

• (a)

 $- \Rightarrow$

对任意 $\epsilon>0,\frac{1}{\sqrt{2}}\epsilon$,因为 f 在 x_0 处连续,存在 $\delta_f>0$ 使得只要 $d_X(x,x_0)<\delta_f$,就有

$$d_{l^2}(f(x), f(x_0)) = |f(x) - f(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

类似地,存在 $\delta_g > 0$ 使得只要 $d_X(x,x_0) < \delta_g$,就有

$$d_{l^2}(g(x), g(x_0)) = |g(x) - g(x_0)| < \frac{1}{\sqrt{2}}\epsilon$$

综上, $\delta < min(\delta_f, \delta_g)$, 使得只要 $d_X(x, x_0) < \delta$, 就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

所以 $f \oplus g$ 在 x_0 处是连续的。

- =

任意 $\epsilon > 0$,由于 $f \oplus g$ 在 x_0 处是连续的,所以存在 $\delta > 0$ 使得只要 $d_X(x,x_0) < \delta$,就有

$$d_{l^{2}}(f \oplus g(x), f \oplus g(x_{0})) = d_{l^{2}}((f(x), g(x)), (f(x_{0}), g(x_{0})))$$

$$= \sqrt{|f(x) - f(x_{0})|^{2} + |g(x) - g(x_{0})|^{2}}$$

$$< \epsilon$$

由此可得

$$|f(x) - f(x_0)| < \epsilon$$

$$|g(x) - g(x_0)| < \epsilon$$

即

$$d_{l^2}(f(x), f(x_0)) < \epsilon$$

$$d_{l^2}(g(x), g(x_0)) < \epsilon$$

于是可得 f,g 在 x_0 处是连续的。

• (b)

可以由 (a) 直接推出。

方法二: 使用书中的提示

• (a)

 $- \Rightarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 f,g 在 x_0 处连续,由命题 13.1.4(b) 可知,序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$ (书中有说在没有特殊说明的时,提到度量空间 $R^n(n \geq 1)$ 指的就是欧几里得度量)。序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$ 。

由命题 12.1.18(d) 可知, $(f(x^{(n)}),g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0),g(x_0))$,由 13.1.4(b) 可知 $f\oplus g$ 在 x_0 处是连续的。

 $- \Leftarrow$

任意 $(x^{(n)})_{n=1}^{\infty}$ 是 X 中依度量 d_X 收敛于 x_0 的序列,因为 $f \oplus g$ 在 x_0 处是连续的,由命题 13.1.4(b) 可知,序列 $(f \oplus g(x^{(n)}))_{n=1}^{\infty} = (f(x^{(n)}), g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $(f(x_0), g(x_0))$,由命题 12.1.18(d) 可知序列 $(f(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $f(x_0)$,序列 $(g(x^{(n)}))_{n=1}^{\infty}$ 依度量 d_{l^2} 收敛于 $g(x_0)$,所以由 13.1.4(b) 可知 f, g 在 x_0 处连续。

• (b) 可以由 (a) 直接推出。

13.2.2

任意 $(x_0, y_0) \in \mathbb{R}^2$,设 $(x^{(n)})_{n=1}^{\infty}$ 是 \mathbb{R}^2 中依度量 d_{l^2} 收敛于 (x_0, y_0) 的序列,对任意 $n \in \mathbb{N}$, $x^{(n)} = (a_n, b_n)$,由命题 12.1.18 可知,序列 $(a_n)_{n=1}^{\infty}$ 收敛于 x_0 ,序列 $(b_n)_{n=1}^{\infty}$ 收敛于 x_0 。由定理 6.1.19(极限定律)可知

$$\lim_{n \to \infty} (a_n + b_n) = \lim_{n \to \infty} a_n + \lim_{n \to \infty} b_n$$
$$= x_0 + y_0$$

由定理 13.1.4(连续性保持收敛性)(b) 可知,函数 f(x,y) = x+y 在点 (x_0,y_0) 处是连续的。由 (x_0,y_0) 的任意性可知 f(x,y) = x+y 是连续的。同理可证其他函数。

13.2.3

定义 $g:X\to\mathbb{R}$,任意 $x\in X$ 都有 g(x)=0,于是 $g:X\to\mathbb{R}$ 是连续函数。又由于 |f|(x)=max(f(x),-f(x))=max(f(x),g(x)-f(x)),因为 $f:X\to\mathbb{R},g:X\to\mathbb{R}$ 是一个连续函数,由推论 13.2.3 可知 $g-f:X\to\mathbb{R}$ 是连续函数,再次利用推论 13.2.3 可知 $|f|:X\to\mathbb{R}$ 也是连续函数。

13.2.4

(1)

任意 $(x_0,y_0) \in \mathbb{R}^2$,设 $(x^{(n)})_{n=1}^{\infty}$ 是 \mathbb{R}^2 中依度量 d_{l^2} 收敛于 (x_0,y_0) 的序列,对任意 $n \in \mathbb{N}$, $x^{(n)} = (a_n,b_n)$ 。

由命题 12.1.18 可知,序列 $(a_n)_{n=1}^\infty$ 收敛于 x_0 ,序列 $(b_n)_{n=1}^\infty$ 收敛于 y_0 。于是

$$\lim_{n \to \infty} (\pi_1(x^{(n)})) = \lim_{n \to \infty} a_n = x_0 = \pi_1(x_0, y_0)$$

所以 π_1 是连续的;

同理可证 π_2 是连续的。

(2)

 $g_1(x,y) = f(\pi_1(x,y)) = f \circ \pi_1(x,y)$, 由推论 13.1.7 可知 g_1 是连续的; 同理可证 g_2 是连续的。

13.2.5

(1)

任意 $0 \le i \le n$ 和 $0 \le j \le m$,

$$c^{ij}x^iy^j = c^{ij}\pi_1^i(x,y)\pi_2^j(x,y)$$

由推论 13.2.3(b) 可知是连续函数。再次利用推论 13.2.3(b) 可知,有限个连续函数相加的结果是连续函数。

(2)

证明参考推论 13.2.3 的证明。

因为 f,g 都是连续的,那么 $f\oplus g$ 是连续的。由(1)可知函数 P 是连续的。我们把这两个函数复合在一起,那么根据推论 13.1.7 可知, $P(f,g)(x):X\to\mathbb{R}$ 是连续的。

13.2.6

• ⇒

证明方法与习题 13.2.1 的证明方法(方法二)相同,不再赘述。

• =

成立;证明方法与习题 13.2.1 的证明方法(方法二)相同,不再赘述。

13.2.7

这道题,没有用书中的提示证明。使用的证明方法与习题 13.2.5 一致。任意 $(i_1,i_2,\ldots,i_k)\in I$, $c(i_1,i_2,\ldots,i_k)$ 是常数, $x_1^{i_1},x_2^{i_2},\ldots,x_k^{i_k}$ 由习题 13.2.4 和推论 13.2.3(b) 可知分别都是连续的,再次利用推论 13.2.3(b) 可知 $c(i_1,i_2,\ldots,i_k)x_1^{i_1}x_2^{i_2}\ldots x_k^{i_k}$ 是连续函数。

因为 I 是有限子集,由推论 13.2.3(b) 可知有限个连续函数相加的结果 是连续函数,即 $P(x_1, \ldots, x_k)$ 是连续函数。

13.2.8

(1) $(X \times Y, d_{X \times Y})$ 是度量空间。证明度量是否满足四个公理

• (a)

对任意的 $(x,y) \in X \times Y$,

$$d_{X \times Y}((x, y), (x, y)) = d_X(x, x) + d_Y(y, y) = 0$$

注意,因为 (X, d_X) , (Y, d_Y) 都是度量空间,所以 $d_X(x, x) = 0$, $d_Y(y, y) = 0$ 。

• (b) 正性

对任意两个不同的 $(x,y),(x',y') \in X \times Y$,

$$d_{X\times Y}((x,y),(x',y')) = d_X(x,x') + d_Y(y,y') > 0$$

注意,因为 $(X,d_X),(Y,d_Y)$ 都是度量空间,所以 $d_X(x,x')>0, d_Y(y,y')>0$ 。

• (c) 对称性

对任意两个 $(x,y),(x',y') \in X \times Y$,

$$d_{X\times Y}((x,y),(x',y')) = d_X(x,x') + d_Y(y,y')$$

= $d_X(x',x) + d_Y(y',y)$
= $d_{X\times Y}((x',y'),(x,y))$

• (d) 三角不等式

对任意三个 $(x,y),(x',y'),(x'',y'') \in X \times Y$,

$$d_{X\times Y}((x,y),(x'',y''))$$

$$= d_X(x,x'') + d_Y(y,y'')$$

$$\leq d_X(x,x') + d_X(x',x'') + d_Y(y,y') + d_Y(y',y'')$$

$$= d_{X\times Y}((x,y),(x',y')) + d_{X\times Y}((x',y'),(x'',y''))$$

综上, $(X \times Y, d_{X \times Y})$ 是度量空间。

(2) 与命题 12.1.18 类似的结论。

如果 $(x^{(k)})_{k=1}^{\infty}$ 是度量空间 $(X \times Y, d_{X \times Y})$ 中的序列,其中 $x^{(k)} = (x_1^{(k)}, x_2^{(k)}), x_1^{(k)} \in X, x_2^{(k)} \in Y$, $x = (x_1, x_2)$ 是 $X \times Y$ 中的点,那么下面两个命题是等价的。

- (a) $(x^{(k)})_{k=1}^{\infty}$ 收敛于 x。
- (b) 序列 $(x_1^{(k)})_{k=1}^{\infty}$ 在 X 中收敛于 x_1 ,序列 $(x_1^{(k)})_{k=1}^{\infty}$ 收敛于 x_2 。证明:
- $(a) \Rightarrow (b)$
- (b) \Rightarrow (a)