Akadelivers

```
#import necessary libraries
import sys
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
from geopy.geocoders import Nominatim

import time
from datetime import datetime
from datetime import date
import string

#load train database
df=pd.read_csv('/content/drive/MyDrive/akadelivers/train.csv')
df
```

	order_id	local_time	country_code	store_address	<pre>payment_status</pre>	n_of_products pr
0	33446280	14:11:09	AR	55379	PAID	2
1	33107339	11:47:41	GT	23487	PAID	2
2	32960645	11:53:53	CR	62229	PAID	1
3	32089564	20:15:21	ES	29446	PAID	6
4	32157739	21:32:16	AR	13917	PAID	1
54325	33443728	13:54:33	AR	63825	PAID	2
54326	33499561	17:16:09	AR	27741	PAID	1
54327	32895248	20:14:59	PA	65895	PAID	2
54328	32792276	13:24:05	ES	20134	PAID	6
54329	32695191	12:21:30	PE	46853	PAID	2

54330 rows × 8 columns

```
#delete the last emty rows
df.dropna(axis=0, subset=['order_id'],inplace=True)
#check for NaN values
df.isnull().sum()
```

order_id	0
local_time	0
country_code	0
store_address	0
payment_status	0
n_of_products	0
products_total	0
final_status	0
dtype: int64	

1. ¿Cuáles son los 3 países en los que más pedidos se realizan?

```
fig, ax = plt.subplots(figsize=(12,6))
df['country_code'].value_counts(sort=True).nlargest(10).plot.bar()
ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.set_title("Pedidos por hora en España",fontsize=20)
ax.set_ylabel("Porcentaje (%)",fontsize=15)
ax.set_xlabel("Horas",fontsize=15)
ax.tick_params(labelsize=12)
```



```
#get a new dataframe only with the total deliveries
dfmap=df['country_code'].value_counts()
dfmap=pd.DataFrame(dfmap).reset_index()
dfmap.columns = ['country_code','total']
# Find geolocation and country nami in Spanish
geolocator = Nominatim(user_agent="akadelivers1")
def longitude(n):
    rr=geolocator.geocode(n)
    lon=rr.longitude
    return lon
def latitude(m):
    ss=geolocator.geocode(m)
    lat=ss.latitude
    return lat
def name(nm):
    tt=geolocator.geocode(nm, language='es')[0]
dfmap['lon'] = dfmap['country_code'].apply(longitude)
dfmap['lat'] = dfmap['country_code'].apply(latitude)
dfmap['Country'] = dfmap['country_code'].apply(name)
```

```
country code total
                                       lon
                                                   lat Country
      0
                    AR
                         11854 -64.967282 -34.996496 Argentina
      1
                    ES
                         11554
                                 -4.837979
                                             39.326068
                                                          España
      2
                    TR
                          5696
                                 34.924965
                                             38.959759
                                                          Turquía
print('Los tres países con el mayor número de entregas son:')
print(' - ',str(dfmap['Country'][0])+ ' con un total de ' + str(dfmap['total'][0]) + ' entregas')
print(' - ',str(dfmap['Country'][1])+ ' con un total de ' + str(dfmap['total'][1]) + ' entregas')
print(' - ',str(dfmap['Country'][2])+ ' con un total de ' + str(dfmap['total'][2]) + ' entregas')
     Los tres países con el mayor número de entregas son:
      - Argentina con un total de 11854 entregas
         España con un total de 11554 entregas

    Turquía con un total de 5696 entregas

import plotly.graph_objects as go
dfmap['text'] = dfmap['Country'] + '<br>Entregas: ' + (dfmap['total']).astype(str)
limits = [(0,3000)]
color=['red']
colors = ["royalblue","lightgrey","orange","orange","orange"]
fig = go.Figure()
for i in range(len(limits)):
  lim = limits[i]
  df_sub = df[\lim[0]:\lim[1]]
  fig.add_trace(go.Scattergeo(
      locationmode = 'USA-states',
      lon = dfmap['lon'],
      lat = dfmap['lat'],
      text = dfmap['text'],
      marker = dict(
         size = dfmap['total']/scale*20,
         color = colors[2:5],
          opacity=0.6,
          line color='rgb(255,255,255)',
         line_width=0.9,
         sizemode = 'diameter',
         sizeref=1),
      name = '{0} - {1}'.format(lim[0],lim[1])))
fig.update_layout(
       title_text = 'Akadeliveries entregas por país (En naranja los tres primeros en número de entregas)',
       showlegend = False,
       width=1100,
        geo = dict(
            scope = 'world',
            landcolor = 'rgb(255, 255, 255)',
            bgcolor = 'rgba(234, 234, 234, 1.0)',
            framewidth=0,
       )
    )
fig.show()
```

Akadeliveries entregas por país (En naranja los tres primeros en número de entre

This is formatted as code

2. ¿Cuáles son las horas en las que se realizan más pedidos en España?

```
# convert local_time hour format
dfes['local_time']=dfes['local_time'].str[:2].astype(int)

    /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: SettingWithCopyWarning:
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row_indexer,col_indexer] = value instead

    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_g

fig, ax = plt.subplots(figsize=(12,6))
sns.histplot(data=dfes, x="local_time", binwidth=1, stat="percent", discrete=True, color='#ff9900', edgecolor=ax.spines['right'].set_visible(False)
ax.spines['top'].set_visible(False)
ax.set_title("Pedidos por hora en España",fontsize=20)
ax.set_title("Porcentaje (%)",fontsize=15)
ax.set_xlabel("Horas",fontsize=15)
ax.stick_params(labelsize=12)
```



```
es=pd.DataFrame(dfes['local_time'].value_counts()[0:3]).reset_index()
```

```
print('Horas con mayor número de entregas en España:')
print(' - ',str(es['index'][0])+ 'h con un total de ' + str(es['local_time'][0]) + ' entregas')
print(' - ',str(es['index'][1])+ 'h con un total de ' + str(es['local_time'][1]) + ' entregas')
print(' - ',str(es['index'][2])+ 'h con un total de ' + str(es['local_time'][2]) + ' entregas')
```

Horas con mayor número de entregas en España:

- 20h con un total de 4976 entregas
- 21h con un total de 4339 entregas
- 19h con un total de 3790 entregas

3. ¿Cuál es el precio medio por pedido en la tienda con ID 12513?

```
dfid=(df[df['store_address'] == 12513.0]).mean()
rnd=round(dfid['products_total'],2)
print('Precio medio de la tienda ID 12513 es:', rnd)

Precio medio de la tienda ID 12513 es: 17.39
```

4. Qué porcentaje de repartidores pondrías por cada turno para que sean capaces de hacer frente a los picos de demanda.

Teniendo en cuenta los picos de demanda en España, si los repartidores trabajan en turnos de 8horas.

```
Turno 1 (00:00-08:00)
Turno 2 (08:00-16:00)
Turno 3 (16:00-00:00)

df1 = dfes[(dfes['local_time'] >= 0) & (dfes['local_time'] < 8)]
df2 = dfes[(dfes['local_time'] >= 8) & (dfes['local_time'] < 16)]
df3 = dfes[(dfes['local_time'] >= 16)]
```

71/7

```
print('Porcentaje de trabajadores:')
print('Turno 1 (00:00-08:00):',round((df1['local_time'].value_counts().max()/total)*100 , 2),'%')
print('Turno 2 (08:00-16:00):',round((df2['local_time'].value_counts().max()/total)*100 , 2),'%')
print('Turno 3 (16:00-00:00):',round((df3['local_time'].value_counts().max()/total)*100 , 2),'%')
print('\nEl porcentaje se basa en el número de perdidos durante el pico de cara período,\nno en el total de pe
```

Porcentaje de trabajadores: Turno 1 (00:00-08:00): 4.74 % Turno 2 (08:00-16:00): 38.65 % Turno 3 (16:00-00:00): 56.6 %

El porcentaje se basa en el número de perdidos durante el pico de cara período, no en el total de pedidos durante el período