6th September, 2020 Shift-2

EE24BTECH11063 - Y.Harsha Vardhan Reddy

SINGLE CORRECT		
1)	The angle of elevation of the summit of a mountain from a point on the ground is 45°. After climbing up one km towards the summit at an inclination of 30° from the ground, the angle of elevation of the summit is found to be 60°. Then the height (in km) of the summit from the ground is:	
	a) $\frac{1}{\sqrt{3}+1}$	b) $\frac{\sqrt{3}+1}{\sqrt{3}-1}$
	c) $\frac{\sqrt{3}-1}{\sqrt{3}+1}$	d) $\frac{1}{\sqrt{3}-1}$
2) If the constant term in the binomial expansion of $(\sqrt{r} - \frac{k}{2})^{10}$ is 405, then $ k $ equals:		

2) If the constant term in the binomial expansion of $(\sqrt{x} - \frac{k}{x^2})$ is 405, then |k| equals:

a) 1 3) Let z = x + iy be a non-zero complex number such that $z^2 = i|z|^2$, where $i = \sqrt{-1}$, then z lies on the

c) 2

- a) line, y = x
- b) real axis
- c) imaginary axis
- d) line, y = -x

4) Let L denote the line in the xy-plane with x and y intercepts as 3 and 1 respectively. Then the image of the point (-1, -4) in this line is:

a)
$$\left(\frac{11}{5}, \frac{28}{5}\right)$$

b) $\left(\frac{8}{5}, \frac{29}{5}\right)$
c) $\left(\frac{29}{5}, \frac{11}{5}\right)$
d) $\left(\frac{29}{5}, \frac{8}{5}\right)$

b) 9

5) Consider the statement: "For an integer n, if n^3-1 is even, then n is odd." The contrapositive statement of this statement is:

- a) For an integer n, if n is even, then $n^3 1$ is even
- b) For an integer n, if n is odd, then $n^3 1$ is even
- c) For an integer n, if $n^3 1$ is not even, then n is not odd
- d) For an integer n, if n is even, then $n^3 1$ is odd

INTEGER TYPE

- 1) The number of words(with or without meaning) that can be formed from all the letters of the word "LETTER" in which vowels never come together is:
- 2) If \bar{x} and \bar{y} be two non-zero vectors such that $|\bar{x} + \bar{y}| = |\bar{x}|$ and $2\bar{x} + \lambda \bar{y}$ is perpendicular to \bar{y} , then the value of λ is
- 3) Consider the data on x taking the values 0,2,4,8, ...,2n with frequencies ${}^{n}C_{0}$, ${}^{n}C_{1}$, ${}^{n}C_{2}$, ..., ${}^{n}C_{n}$, respectively. If the mean of this data is $\frac{728}{2^n}$, then n is equal to:

- 4) Suppose that function $f: R \to R$ satisfies f(x+y) = f(x)f(y) for all $x, y \in R$ and f(1) = 3. If $\sum_{i=1}^{n} f(i) = 363$, then n is equal to: 5) The sum of distinct values of λ for which the system of equations

$$(\lambda - 1) x + (3\lambda + 1) y + 2\lambda = 0$$
$$(\lambda - 1) x + (4\lambda - 2) y + (\lambda + 3) z = 0$$
$$2x + (3\lambda + 1) y + 3(\lambda - 1) z = 0$$

has non-zero solutions, is: