GLM Practical Sessions, Week 6

alexaoh

21.10.21

Linear Regression for Cholesterol

```
data <- read.csv2("COL.csv", header = T)</pre>
summary(data)
#>
                                                          С
                          Н
#> Min. : 9.00
                   Min.
                          :103.0
                                    Min.
                                           :37.30
                                                    Min.
                                                           : 67.5
#> 1st Qu.:12.00
                   1st Qu.:130.5
                                    1st Qu.:53.23
                                                    1st Qu.:166.5
#> Median :15.00
                   Median :151.5
                                    Median :66.60
                                                    Median :217.8
#> Mean
          :14.71
                   Mean
                          :147.4
                                    Mean
                                          :64.57
                                                    Mean
                                                           :218.2
#> 3rd Qu.:18.00
                                    3rd Qu.:74.95
                   3rd Qu.:167.2
                                                    3rd Qu.:262.4
          :20.00
#> Max.
                   Max.
                           :187.0
                                    Max.
                                           :89.70
                                                    Max.
                                                           :438.5
```

Simple Linear Regression with W - Exercise 1

```
p <- 2
n <- dim(data)[1]
# Fit linear model.
lm.fit <- lm(C~W, data = data)</pre>
summary(lm.fit)
#>
#> Call:
#> lm(formula = C ~ W, data = data)
#> Residuals:
#>
       Min
                1Q Median
                                ЗQ
                                       Max
#> -169.24 -39.81
                    -4.49
                             47.19 200.37
#>
#> Coefficients:
#>
               Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 346.2251
                           33.1983
                                     10.43 < 2e-16 ***
                                     -3.93 0.000158 ***
#> W
               -1.9835
                            0.5046
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 63.55 on 98 degrees of freedom
#> Multiple R-squared: 0.1362, Adjusted R-squared: 0.1274
#> F-statistic: 15.45 on 1 and 98 DF, p-value: 0.0001581
```

Scatterplot of Points and Regression Line.

```
# Can be done manually and with a function.
scatterplot(C~W, smooth = F, data = data)
```


Regression Line for Cholesterol vs. Weight

Could do the plot from above with the scatterplot function above (comes from 'car' package).

Plot Regression Line with Conf. and Pred. Intervals

Plot confidence and prediction intervals with regression line (From package 'HH'). ci.plot(lm.fit)

95% confidence and prediction intervals for Im.fit

Plot Predicted Values vs. Residuals

```
# Plot the predicted values vs. residuals.
plot(predict(lm.fit), resid(lm.fit), main = "Predicted Values vs. Residuals")
abline(h=0, lty = 2)
```

Predicted Values vs. Residuals

Plot Standardized/Studentized Residuals

Here: 5 of the points should be outside the lines -2 and 2, since we here have 95% confidence intervals (2 approximates 1.96) and we have 100 points in the data. We can see that this is the case.

```
plot(rstandard(lm.fit), main = "Rstandard")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstandard


```
plot(rstudent(lm.fit), main = "Rstudent")
abline(h=c(-2, 0, 2), lty = 2)
```

Rstudent

Diagnostic: Leverage

A line at 0.06 for some reason ? Check code after session!
plot(hatvalues(lm.fit), main= "Leverage (hat-)values")

Leverage (hat-)values

Diagnostic: Influential observations (dffits, cooks.distance)

Calculate the Cook's distances.

```
plot(cooks.distance(lm.fit), main = "Cook's Distances")
abline(h=c(0,4/n),lty = 2)
```

Cook's Distances

Compute dffits (difference of fits). This is the difference between the fits when a point is in or out of the dataset.

```
plot(dffits(lm.fit), main = "dffits")
abline(h=c(-2*sqrt(p/n), 0, 2*sqrt(p/n)), lty = 2)
```

dffits

Perform a simple regression for each group of age

```
data$AF <- factor(data$A)
sp(C~W|AF,smooth=F,col=1:20, data=data)</pre>
```


Multiple Linear Regression - Exercise 3

```
data <- data[, -5] # Remove AF again.
scatterplotMatrix(data, smooth = F, diagonal = F)</pre>
```



```
lm.fitm <- lm(C~W+A+H, data = data)</pre>
summary(lm.fitm)
#>
#> Call:
#> lm(formula = C ~ W + A + H, data = data)
#>
#> Residuals:
      Min
               1Q Median
                                      Max
                               ЗQ
                   1.888 21.156 65.410
#> -74.608 -22.137
#>
#> Coefficients:
              Estimate Std. Error t value Pr(>|t|)
#> (Intercept) 490.9978
                          35.0517 14.008 < 2e-16 ***
                           0.7365 14.090 < 2e-16 ***
               10.3773
                                   -3.379 0.00105 **
#> A
              -13.0195
                           3.8530
#> H
               -5.0989
                           0.7227 -7.055 2.68e-10 ***
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#>
#> Residual standard error: 30.11 on 96 degrees of freedom
#> Multiple R-squared: 0.8101, Adjusted R-squared: 0.8041
\#> F-statistic: 136.5 on 3 and 96 DF, p-value: < 2.2e-16
```

 $\hat{\sigma}^2 \approx \text{Residual standard error}^2 = (30.11)^2.$

Omnibus test (F-test)

Test the null-model (all coefficients are zero, except for the intercept) vs. our model (at least one of the coefficients are zero).

Anova

```
anova(lm.fitm) # Performs the Type-I test. Order of the variables is important.
#> Analysis of Variance Table
#>
#> Response: C
#>
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
             1 62396
                        62396 68.826 6.686e-13 ***
#> W
#> A
             1 263670
                       263670 290.841 < 2.2e-16 ***
                        45123 49.773 2.676e-10 ***
#> H
                45123
             1
                          907
#> Residuals 96 87031
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
Anova(lm.fitm) # Performs the Type-II test. Order of the variables is NOT important.
#> Anova Table (Type II tests)
#>
#> Response: C
#>
            Sum Sq Df F value
                                 Pr(>F)
            179985 1 198.533 < 2.2e-16 ***
#> W
             10351 1 11.418 0.001052 **
#> A
             45123 1 49.773 2.676e-10 ***
#> Residuals 87031 96
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
# Can also ask it to compute Type-III test. The order is not important there either.
```

Confidence Intervals

Prediction

```
#> $se.fit
#> 1
                    2
#> 3.135539 7.327533 12.407261
#>
#> $df
#> [1] 96
#>
#> $residual.scale
#> [1] 30.1094
# How can it calculate confidence intervals for new predictions (for the mean)?
# Vi plukker ut verdien til konfidensintervallet i tre ulike punkter, derfor har vi tre forskjellige ko
predict(lm.fitm, CO, interval = "prediction", level=0.95, se.fit = T)
#> $fit
#>
         fit
                  lwr
                           upr
#> 1 205.3908 145.3009 265.4807
#> 2 309.1639 247.6528 370.6749
#> 3 244.4492 179.8071 309.0914
#> $se.fit
#>
       1
                  2
#> 3.135539 7.327533 12.407261
#>
#> $df
#> [1] 96
#> $residual.scale
#> [1] 30.1094
R Diagnostic
par(mfrow=c(2,2))
```

plot(lm.fitm)

Then we did some more diagnostics, similar to the ones dones in the simple linear regression above.

Have a look at the file in Atenea (colesterol-regmultiple.pdf) for all of this + explanations regarding all of the work done in these exercises.

Diagnostic: OUTLIERS (rstudent)

```
plot(rstandard(lm.fitm), main = "Rstandard")
abline(h=c(-2,0,2), lty = 2)
```

Rstandard


```
plot(rstudent(lm.fitm), main = "Rstudent")
abline(h=c(-2,0,2), lty = 2)
```

Rstudent

Diagnostic: LEVERAGE

```
plot(hatvalues(lm.fitm))
abline(h=c(2, 2*mean(hatvalues(lm.fitm))), lty = 2)
abline(h=c(0,3*p/n))
```


Diagnostic: Influential Values (dffits)

```
plot(cooks.distance(lm.fitm))
abline(h=c(0,4/n),lty= 2)
```



```
plot(dffits(lm.fitm), main="dffits")
abline(h=c(-2*sqrt(p/n), 0, 2*sqrt(p/n)), lty = 2)
```

dffits

Diagnostic: Colinearity

```
vif(lm.fitm)
                     Α
#> 9.489406 20.904776 31.695499
# Larger VIF signals that the variable is more correlated to the other variables. Linear dependence.
# Smaller than 1 for VIF is good. Between 1 and 5 is ok. But larger than 5 is not great.
# This model could/should be simplified, since the variables are correlated.
newmod \leftarrow lm(C\sim I(W-(-10+0.5*H))+A+H, data)
summary(newmod)
#>
\# lm(formula = C ~ I(W - (-10 + 0.5 * H)) + A + H, data = data)
#>
#> Residuals:
#>
                1Q
       Min
                    Median
                                 3Q
                                        Max
   -74.608 -22.137
                     1.888
                            21.156
                                     65.410
#>
#>
#> Coefficients:
#>
                           Estimate Std. Error t value Pr(>|t|)
#> (Intercept)
                           387.22473
                                       33.69605
                                                 11.492
                                                         < 2e-16 ***
#> I(W - (-10 + 0.5 * H)) 10.37731
                                        0.73649
                                                 14.090 < 2e-16 ***
#> A
                           -13.01948
                                        3.85300 -3.379 0.00105 **
```

```
#> H
                            0.08972
                                      0.58736 0.153 0.87891
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 30.11 on 96 degrees of freedom
#> Multiple R-squared: 0.8101, Adjusted R-squared: 0.8041
#> F-statistic: 136.5 on 3 and 96 DF, p-value: < 2.2e-16
vif(newmod)
\# > I(W - (-10 + 0.5 * H))
                                                                     Η
                                              Α
                 1.009937
                                       20.904776
                                                              20.933520
Suppress H, since p-value is large.
renewmod \leftarrow lm(C\sim I(W-(-10+0.5*H))+A, data)
summary(renewmod)
#>
#> Call:
\# lm(formula = C ~ I(W - (-10 + 0.5 * H)) + A, data = data)
#> Residuals:
#>
       Min
                1Q Median
                               3Q
                                       Max
#> -74.286 -22.638
                   1.755 20.935 66.244
#>
#> Coefficients:
#>
                         Estimate Std. Error t value Pr(>|t|)
#> (Intercept)
                         391.9885
                                     12.6975 30.87 <2e-16 ***
\# I(W - (-10 + 0.5 * H)) 10.3882
                                       0.7294
                                                14.24
                                                       <2e-16 ***
                         -12.4452
                                       0.8387 -14.84
                                                      <2e-16 ***
#> ---
#> Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
#> Residual standard error: 29.96 on 97 degrees of freedom
#> Multiple R-squared: 0.81, Adjusted R-squared: 0.8061
#> F-statistic: 206.8 on 2 and 97 DF, p-value: < 2.2e-16
vif(renewmod)
\#> I(W - (-10 + 0.5 * H))
```

1.000527

1.000527

#>