GRADO EN FÍSICA, CURSO 2021-2022 MECÁNICA ESTADÍSTICA Examen convocatoria C4

- 1. (2 puntos) Considera un sistema de N partículas no interactuantes con momento magnético μ y espín 1/2 en un campo magnético H y a una temperatura constante T.
 - Calcula el valor de la entropía para este sistema en función de μ , H, T y N. Para ello deduce primero la relación entre la entropía (S) y la energía media (\bar{E}) y la función de partición (Z), $(S = f(\bar{E}, Z))$, partiendo de la definición de entropía de Gibbs $(S = -k \sum P_r \ln P_r)$ para la colectividad correspondiente.

(b) Calcula la energía libre de Helmholtz y la capacidad calorífica.

2. (3 puntos) Un gas de moléculas de masa m se encuentra en equilibrio a una temperatura T y volumen V. El vector velocidad de cada partícula es \vec{v} , sus componentes cartesianas son v_x , v_y y v_z y el módulo de la velocidad es v. Teniendo en cuenta que la distribución de Maxwell del vector velocidad es:

$$f(\vec{v})d\vec{v}=\frac{N}{V}(\frac{m}{2\pi kT})^{3/2}\exp{(-\frac{mv^2}{2kT})}d\vec{v}$$
 Calcula:

- $\overline{v_y^2}$. Explica su relación con el principio de equipartición de la energía.
- El valor más probable de la energía cinética de una molécula.
- 3. (2 puntos) Explica brevemente las estadísticas de Maxwell-Boltzmann, Bose-Einstein y Fermi-Dirac y en particular su relación con la indistinguibilidad de partículas idénticas. Explica razonadamente qué ocurre cuando T → 0 en un gas ideal si las partículas son bosones y qué ocurre si son fermiones.
- 4. (3 puntos) Considera un gas ideal clásico a temperatura y presión ambientales (300 K y 1 atm). Si el radio típico de una partícula es del orden de 10⁻⁸ cm y consideramos un modelo de esferas rígidas para el cálculo de la sección eficaz de colisión:
 - (a) Demuestra que el recorrido libre medio de una partícula es de 0.23 μ m.
 - (b) Estima la probabilidad de que se produzca una colisión tras recorrer una distancia de $0.1 \, \mu m$.
 - (a) Si la velocidad media de las partículas es de 4×10^4 cm/s, estima el número medio de colisiones por segundo.

Datos: Constante de Boltzmann, $K = 1.38 \times 10^{-23} J/K$, $1 atm \approx 10^5 Pa$