1、整数规划 (Integer Programming): 变量取整数的线性规划

纯整数规划:所有变量都取整数的线性规划

混合整数规划:部分变量取整数的线性规划

0-1 规划: 所有变量都去 0、1 两个值的规划

0-1 混合规划: 部分变量取 0、1 两个值的规划。

## 2、投资决策问题

设有n个投资项目,其中第j个项目需要资金 $a_j$ 万元,将来可获利润 $c_j$ 万元。若现在资金总额为b万元,则应该选择哪些投资项目,才能获利最大?

设 $x_j = \begin{cases} 1 \\ 0 \end{cases}$  1表示第 j 个项目投资,0表示不会对第 j 个项目投资设 z 为可获得的总利润(万元),则数学模型为

$$\max z = \sum_{j=1}^{n} c_j x_j$$

## 3、设备购置问题

某厂拟用 M 元资金,购买 m 种设备 $A_1,A_2,...,A_M$ ,其中设备 $A_i$ 单价为  $p_i$  (i=1,2,…,m)。现有 n 个地点 $B_1,B_2,...,B_M$  可装置这些设备,其中  $B_j$ 处最多 $b_j$ 台(j=1,2,…,n)。预计将一台设备 $A_i$ 装备于 $B_i$ 处可获纯利  $C_{ij}$ 元,则应该如何购置这些设备,才能使预计总利润为最大?

解:设 $x_{ij}$ 为将设备 $A_i$ 装备于 $B_j$ 处的台数, $y_i$ 为购买设备 $A_i$ 的台数,z为预计的总利润。

数学模型为

$$\max z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

$$\sum_{j=1}^{n} x_{ij} - y_i \le 0, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} x_{ij} \le b_j, j = 1, 2, ..., n$$

$$\sum_{i=1}^{m} p_i y_i \le M$$

$$x_{ij} \ge 0, y_i \ge 0,$$
且均为整数

## 4、工厂选址问题

某种商品有 n 个 销地,各 销地的需求量分别为  $b_j$  吨/天, j =1,2, • • • , n。现拟在 m 个地点中选址建厂,来生产这种产品以满足供应,且规定一址最多只能建一个工厂。若选 i 址建厂,将来生产能力为  $a_i$  吨/天,固定费用为  $d_i$  元/天, i=1,2, • • • , m. 已知 i 址至销地 j 的运价为  $c_{ij}$  元/吨。应如何选择厂址和安排调运,使总的费用最少?解:设  $x_{ij}$  是从厂址 i 到 销地 j 的运量(吨/天)

$$Z$$
 是总费用, $y_i = \begin{cases} 1, & \text{在}i & \text{址建厂} \\ 0, & \text{不建厂} \end{cases}$ 

该问题的数学模型是

$$\min z = \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} + \sum_{i=1}^{m} d_i y_i$$

$$s.t. \begin{cases} \sum_{j=1}^{n} x_{ij} \leq a_{i}y_{i}, i = 1, 2, ..., n \\ \sum_{j=1}^{m} x_{ij} = b_{j}, j = 1, 2, ..., m \\ x_{ij} \geq 0 \\ y_{i} = 0 \not \exists \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{cases}$$

- 5、在整数规划问题中,无论是根据图解法还是单纯形法,最后求出的结果很多都不是整数,在实际问题中,绝对不存在"半个工厂",因此,要将最优解化为整数。整数规划的方法一般有分支定界法和割平面法。
- 6、分支定界法主要分四步进行。
- 第一步: 放宽条件, 具体做法是, 首先删去整数条件, 把原整数规划成相应的线性规划, 其次求解相应的线性规划。
- (1)如果相应的线性规划没有可行解,则原整数规划也没有可行解,则停止。
- (2) 如果相应线性规划有最优解,且符合原整数规划问题的整数条件,则这个最优解也是原整数规划的最优解,那么整个计算过程结束。
- (3)如果线性规划有最优解,但不符合原整数规划问题的整数条件,则这个最优解不是原整数规划的最优解。转入第二步。

第二步:分支,具体做法是从相应线性规划的最优解中,任意选择一个不满足原整数规划整数条件的决策变量 $x_j = b_j$ ,以使相应线性规划增加一个约束条件; $x_j$ 小于 $b_j$ 的最大整数(或 $x_j$ 大于 $b_j$ 的最小整数),因而得到两个新的线性规划称为分支,也称为后继问题。列出两分支各自的数学模型,计算每支的最优解和最优值。经过分支之后,就有

如下结论:分支后并没有减少整数解,故原整数规划的可行域真包含于两支可行域的并集,原整数规划的最优解不大于两支最优值的最大值。

第三步: 定界, 具体做法是, 以每个后继问题为一分支标明求解的结果, 与其他问题的解的结果中, 找出最优目标函数值最大者作为新的上界 之, 从已符合整数条件的各分支中, 找出目标函数值为最大者作为新的下界 z, 若无可行解, 则 z=0。

第四步: 比较与剪支, 各分支的最优函数若有小于 $\underline{z}$ 者, 则剪掉这支, 即以后不再考虑了, 若有大于 $\underline{z}$ , 但不符合整数条件, 则继续分支, 一直到最后得到 $z^* = \underline{z}$ 为止, 得最优整数解 $x_i^*$ , j = 1, ..., n。

用分支定界法可解纯整数线性规划问题和混合整数线性规划问题,他比穷举法优越。因为他仅在一部分可行解的整数解中寻求最优解,计算量比穷举法小,若变量数目很大,其计算工作量也是相当可观的。

例题:

$$\max z = 3x_1 + 2x_2$$

$$s.t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_1, x_2 \ge 0, 且均取整数值 \end{cases}$$

第一步, 放宽---剔除整数约束, 得整数规划的松弛问题 $L_0$ 如下:

$$\max z = 3x_1 + 2x_2$$

$$s. t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_1, x_2 \ge 0 \end{cases}$$

图解法可得 $L_0$ 的最优解为(3.25, 2.5),  $z^*=14.75$ , 转第二步。 得到两个线性规划模型 $L_1$ 和 $L_2$ 

$$\max z = 3x_1 + 2x_2$$

$$s. t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_2 \le 2 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 3x_1 + 2x_2$$

$$L_2$$

$$s. t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_2 \ge 3 \\ x_1, x_2 \ge 0 \end{cases}$$

 $L_1$ 的最优解为(3.5, 2), $z_1 = 14.5$ 

 $L_2$ 的最优解为(2.5, 3), $z_2=13.5$ ,其中, $z_1>z_2$ ,对 $L_1$ 继续分支得到两个线性规划模型 $L_{11}$ 和 $L_{12}$ 

$$\max z = 3x_1 + 2x_2$$

$$s. t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_2 \le 2 \\ x_1 \le 3 \\ x_1, x_2 \ge 0 \end{cases}$$

$$\max z = 3x_1 + 2x_2$$

$$s. t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_2 \ge 3 \\ x_1 \ge 4 \\ x_1, x_2 \ge 0 \end{cases}$$

 $L_{11}$ 的最优解为(3,2), $z_{11}=13$ 

 $L_{12}$ 的最优解为(4,1),  $Z_{12} = 14$ , 其中 $Z_{11} < Z_{12}$ , 因为 $L_2$ 的最优解为

(2.5, 3),  $z_2 = 13.5$ ,  $z_2 < z_{12}$ , 因此不必再对 $L_2$ 进行分支, 所以,  $L_{12}$ 的解为最优解.



## 7、割平面法

基本思想: 先不考虑变量的取整数约束, 求解相应的线性规划, 然后不断增加线性约束条件(即割平面), 将可行域割掉不含整数可行解的一部分, 最终得到一个具有整数坐标顶点的可行域, 而该顶点恰好是原整数规划问题的最优解。

割平面法的计算步骤分为3步。

第一步,用单纯形法求解(整数规划 IP)对应的松弛问题(线性规划 LP):【在引入系数之前应该适当调整系数和常数,是引入的系数也都 为整数】

- (1) 若 LP 没有可行解,则 IP 也没有可行解
- (2) 若 LP 有最优解, 并符合 IP 的整数条件, 则 LP 的最优解即为 IP 的最优解. 停止计算
- (3) 若LP有最优解,但不符合 IP的整数条件,转入下一步。 第二步,从LP的最优解中,任选出一个不为整数的分量 $x_r$ ,将最优单纯性表中该行的系数 $a_{rj}$ '和 $b_r$ '分解为整数部分和非负真分数</mark>部分之和,并以该行为源行,按下式做割平面方程:

$$f_r - \sum_{j=m+1}^n f_{rj} x_j \le 0$$

 $f_r h_r$ 的非负真分数部分, $f_{ri} h_{ri}$ 的非负真分数部分。

第三步,将所得的割平面方程,作为一个新的约束条件,置于最优单纯性表中(同时增加一个单位列向量),用对偶单纯形法求出新的最优值,返回第一步。

例题:

$$\max z = 3x_1 + 2x_2$$

$$s.t. \begin{cases} 2x_1 + 3x_2 \le 14 \\ x_1 + 0.5x_2 \le 4.5 \\ x_1, x_2 \ge 0, 且均取整数值 \end{cases}$$

解: 首先要把文中的所有约束条件的系数均化为整数, 由 $x_1 + 0.5x_2 \le$  4.5化成 $2x_1 + x_2 \le 9$ 

最终单纯性表为:

|   |                                                         |      | $\mathbf{x}_1$ | X <sub>2</sub> | X <sub>3</sub> | X <sub>4</sub> |
|---|---------------------------------------------------------|------|----------------|----------------|----------------|----------------|
| 2 | X <sub>2</sub>                                          | 5/2  | 0              | 1              | 1/2            | -1/2           |
| 3 | $\mathbf{x}_1$                                          | 13/4 | 1              | 0              | -1/4           | 3/4            |
|   | $\mathfrak{c}_{\mathbf{j}}$ - $\mathbf{z}_{\mathbf{j}}$ |      | 0              | 0              | -1/4           | -5/4           |

则有, 
$$x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 = \frac{5}{2}$$
, 根据规则调整成

$$x_2 + \left(0 + \frac{1}{2}x_3\right) + \left(-1 + \frac{1}{2}\right)x_4 = \left(2 + \frac{1}{2}\right)$$

$$x_2 - x_4 - 2 = \frac{1}{2} - \frac{1}{2}x_3 - \frac{1}{2}x_4$$

则有
$$\frac{1}{2} - \frac{1}{2}x_3 - \frac{1}{2}x_4 \le 0$$
, ----- $\frac{1}{2} - \frac{1}{2}x_3 - \frac{1}{2}x_4 + x_5 = 0$ 

将新的得到的公式加入约束条件中得,

$$\max z = 3x_1 + 2x_2$$

$$s.t.\begin{cases} 2x_1 + 3x_2 + x_3 = 14\\ 2x_1 + x_2 + x_4 = 9\\ -\frac{1}{2}x_3 - \frac{1}{2}x_4 + x_5 = -\frac{1}{2}\\ x_i \ge 0, \, \underline{L} \, \underline{\beta} \, \underline{R} \, \underline{\underline{x}} \, \underline{\underline{x}} \, \underline{\underline{t}} \end{cases}$$

|   |                                |                | 2          | 3              | 0          | 0          | 0          |
|---|--------------------------------|----------------|------------|----------------|------------|------------|------------|
|   |                                |                | <b>X</b> 1 | $\mathbf{X}_2$ | <b>X</b> 3 | <b>X</b> 4 | <b>X</b> 5 |
| 2 | <b>X</b> 2                     | $2\frac{1}{2}$ | 0          | 1              | 1/2        | -1/2       | 0          |
| 3 | <b>X</b> 1                     | $3\frac{1}{4}$ | 1          | 0              | -1/4       | 3/4        | 0          |
| 0 | <b>X</b> 5                     | -1/2           | 0          | 0              | [-1/2]     | -1/2       | 1          |
|   | c <sub>j</sub> -z <sub>j</sub> |                | 0          | 0              | -1/4       | -5/4       | 0          |

用对偶单纯形法迭代,得到最终表为:

| 2 | <b>X</b> <sub>2</sub>          | 2              | 0 | 1 | 0 | -1 | 1/2  |
|---|--------------------------------|----------------|---|---|---|----|------|
| 3 | $\mathbf{x}_1$                 | $3\frac{1}{2}$ | 1 | 0 | 0 | 1  | -1/2 |
| 0 | <b>X</b> <sub>3</sub>          | 1              | 0 | 0 | 1 | 1  | -2   |
|   | c <sub>i</sub> -z <sub>i</sub> |                | 0 | 0 | 0 | -1 | -1/2 |

重复第一步至第三步一直到找出问题的整数最优解为止

$$\max z = 3x_1 + 2x_2$$

$$2x_1 + 3x_2 + x_3 = 14$$

$$2x_1 + x_2 + x_4 = 9$$

$$-\frac{1}{2}x_3 - \frac{1}{2}x_4 + x_5 = -\frac{1}{2}$$

$$-\frac{1}{2}x_5 + x_6 = -\frac{1}{2}$$

$$x_i \ge 0, \, \underline{L} \, \beta \, \underline{\mathcal{R}} \, \underline{\mathcal{R}} \, \underline{\mathcal{M}} \, \underline{\mathcal{M}}$$

|   |                                |                | 2                     | 3              | 0                     | 0                     | 0                     | 0                |
|---|--------------------------------|----------------|-----------------------|----------------|-----------------------|-----------------------|-----------------------|------------------|
|   |                                |                | <b>x</b> <sub>1</sub> | $\mathbf{X_2}$ | <b>X</b> <sub>3</sub> | <b>X</b> <sub>4</sub> | <b>X</b> <sub>5</sub> | $\mathbf{x}_{6}$ |
| 2 | <b>X</b> <sub>2</sub>          | 2              | 0                     | 1              | 0                     | -1                    | 1/2                   | 0                |
| 3 | $\mathbf{x_1}$                 | $3\frac{1}{2}$ | 1                     | 0              | 0                     | 1                     | -1/4                  | 0                |
| 0 | <b>X</b> <sub>3</sub>          | 1              | 0                     | 0              | 1                     | 1                     | -1                    | 0                |
| 0 | $\mathbf{x}_{6}$               | -1/2           | 0                     | 0              | 0                     | 0                     | [-1/2]                | 1                |
|   | c <sub>i</sub> -z <sub>i</sub> |                | 0                     | 0              | 0                     | -1                    | -1/2                  | 0                |

通过对偶单纯形法求解, 得到

| 2 | X <sub>2</sub><br>X <sub>1</sub><br>X <sub>3</sub><br>X <sub>5</sub> | 1 | 0 | 1 | 0 | -1 | 0 | 2  |
|---|----------------------------------------------------------------------|---|---|---|---|----|---|----|
| 3 | <b>x</b> <sub>1</sub>                                                | 4 | 1 | 0 | 0 | 1  | 0 | -1 |
| 0 | <b>X</b> <sub>3</sub>                                                | 3 | 0 | 0 | 1 | 1  | 0 | -4 |
| 0 | <b>X</b> <sub>5</sub>                                                | 1 | 0 | 0 | 0 | 0  | 1 | -2 |
|   | c <sub>j</sub> -z <sub>j</sub>                                       |   | 0 | 0 | 0 | -1 | 0 | -1 |

因此, 最优整数解为  $(x_1, x_2) = (4, 1)$ , 函数的最优值为 14

8、Gomery 的切割法自 1958 年被剔除后,即引起人们的广泛注意,但至今完全用他解题的仍是少数,原因就是经常遇到收敛很慢的情形,但若和其它方法(如分支定界法)配合使用,也是有效的。