Novo Espaço – Matemática A, 12.º ano

Porto Editora

Data: - ____-

Proposta de teste de avaliação [novembro - 2020]

Nome:

Ano / Turma: _____ N.º: ____

1. Seja f a função, de domínio \mathbb{R}^+ , definida por $f(x) = \sqrt{x^2 + x}$.

Sabe-se que o gráfico da função f tem uma assíntota do tipo y = mx + b.

Mostra que $m+b=\frac{3}{2}$.

- **2.** Considera a função, de domínio \mathbb{R}_0^+ , definida por $f(x) = \sqrt{x}$.
- **2.1.** Determina f'(4), pela definição de derivada de uma função num ponto.
- **2.2.** No desenvolvimento de $(f(x)-f(1))^7$ há um termo de grau 2. Determina esse termo.
- **3.** Os Jogos Santa Casa, para comemorarem os 500 anos dos Correios em Portugal, lançaram uma edição da Lotaria Clássica.

A figura representa uma fotografia de uma fração dessa edição da Lotaria.

O número da fração é 49475.

Utilizando exatamente os cinco algarismos do número 49 475, quantos números diferentes é possível representar?

- **(A)** 60
- **(B)** 30
- **(C)** 120
- **(D)** 90

- **4.** Considera o Triângulo de Pascal.
- **4.1.** Numa certa linha do Triângulo de Pascal, o 5.º e o 11.º elementos são iguais. Qual é o valor do 8.º elemento dessa linha?
 - **(A)** 3432
- **(B)** 3003
- **(C)** 2002
- **(D)** 3230
- **4.2.** Numa outra linha do Triângulo de Pascal, a soma dos três primeiros elementos com os dois últimos é 172.

Determina a soma de todos os elementos dessa linha?

Na figura estão representados cinco peões que fazem parte de um jogo. 5.

Cor do peão	Número do peão
Azul	2
Roxo	3
Vermelho	4
Verde	5
Amarelo	7

5.1. Os cinco peões vão ser dispostos, lado a lado, tal como é sugerido na figura.

Quantas disposições diferentes, atendendo às cores dos peões, é possível obter, de modo que o peão azul fique à esquerda do peão vermelho?

Nota: Na figura está exemplificada uma situação em que o peão azul está à esquerda do peão vermelho.

5.2. Os cinco peões foram colocados numa caixa e, ao acaso, foram retirados, de uma só vez, três peões.

Determina a probabilidade de a soma dos números do peões retirados ser um número ímpar.

Apresenta o resultado em percentagem.

6. Seja Ω o espaço de resultados associado a uma certa experiência aleatória. Sejam A e B dois acontecimentos ($A \subset \Omega$ e $B \subset \Omega$).

Sabe-se que:

- $P(B|A) = \frac{1}{2}$ (probabilidade condicionada)
- $P(\overline{B}) = P(A)$
- $P(A \cap B) = \frac{1}{6}$

Qual é o valor de $P(B \cap \overline{A})$?

- (A) $\frac{1}{2}$ (B) $\frac{5}{6}$
- (C) $\frac{2}{3}$

7. Numa escola, para minimizar a aglomeração de alunos à entrada, foi estabelecido um plano, distribuindo os alunos por duas entradas, E_1 e E_2 .

Num certo dia, entraram na escola 480 alunos (do ensino básico e do ensino secundário), distribuindo-se da seguinte forma:

- pela entrada E_1 : 250 alunos, sendo 170 do ensino básico e os restantes do ensino secundário;
- pela entrada E_2 : restantes alunos.

Escolhe-se, ao acaso, um dos alunos que entraram na escola nesse dia.

Sejam A e B os acontecimentos:

A: "O aluno escolhido é do ensino básico."

B: "O aluno escolhido utilizou a entrada E_2 ."

Sabendo que $P(\overline{A} \cap B) = 0.15$, determina o valor da probabilidade condicionada P(A|B).

Apresenta o resultado na forma de número decimal arredondado às centésimas.

FIM

Cotações									Total		
Questões	1.	2.1.	2.2.	3.	4.1.	4.2.	5.1.	5.2.	6.	7.	10001
Pontos	20	20	25	15	15	25	20	25	15	20	200