OneWay ANOVA

(Additional analyses have been added for the sake of completeness!)

Descriptives

Factor	N	Mean	SD	
1	4	2.000	2.449	_
2	4	6.000	2.449)
3	4	7.000	2.449	

These values of the group statistics are calculated separately for each group. They are not identical to the values obtained from analyzing the variable as a whole.

A grand mean can be determined by taking the weighted average of all of the group means:

$$M_{TOTAL} = \frac{\sum n(M_{GROUP})}{N} = \frac{4(2) + 4(6) + 4(7)}{4 + 4 + 4} = 5.000$$

ANOVA

	Sum of Squares	df	Mean Square	F	р	η²
Factor	56.000	2	28.000	4.667	0.041	0.509
Residuals	54.000	9	6.000	<u> </u>		

"Factor" statistics are a function of the differences among the groups:

$$SS_{BETWEEN} = \sum_{n} n(M_{GROUP} - M_{TOTAL})^{2}$$

$$SS_{BETWEEN} = 4(2-5)^{2} + 4(6-5)^{2} + 4(7-5)^{2}$$

$$SS_{RETWEEN} = 56.000$$

The degrees of freedom ("df") are a function of the number of groups:

$$df_{BETWEEN} = \#groups - 1 = 2$$

The "Mean Square" is the ratio of the "Sum of Squares" to the "df":

$$MS_{BETWEEN} = \frac{SS_{BETWEEN}}{df_{BETWEEN}} = \frac{56.000}{2} = 28.000$$

"Residual" statistics are a function of the within group variabilities. Because SS for each group equals 2.00 ($SS = SD^2 x df$):

$$SS_{WITHIN} = SS_1 + SS_2 + SS_3$$

 $SS_{WITHIN} = 18 + 18 + 18 = 54$

The degrees of freedom ("df") are a function of the number of people in each group:

$$df_{WITHIN} = df_1 + df_2 + df_3 = 9$$

The "Mean Square" is the ratio of the "Sum of Squares" to the "df":

$$MS_{WITHIN} = \frac{SS_{WITHIN}}{df_{WITHIN}} = \frac{54.000}{9} = 6.000$$

The "F" statistic is a ratio of the between and within group variance estimates:

$$F = \frac{MS_{BETWEEN}}{MS_{WITHIN}} = \frac{28.000}{6.000} = 4.667$$

An *F* with 2 and 9 *df* that equals 4.667 has a two-tailed probability (*p*) of .041, a statistically significant finding.

The " η^2 " statistic is a ratio of the between group and the total group variability ("Sum of Squares") estimates:

$$\eta^{2} = \frac{SS_{BETWEEN}}{SS_{TOTAL}}$$

$$= \frac{SS_{BETWEEN}}{SS_{BETWEEN} + SS_{WITHIN}}$$

$$\eta^{2} = \frac{56.000}{56.000 + 54.000} = 0.509$$

Thus, 50.9% of the total variability among all of the scores in the study is accounted for by group membership.