Algebra booleana e Reti logiche

Reti sequenziali (seconda parte)

 Sintesi a partire dalla descrizione del comportamento della rete, si realizza lo schema logico

Procedimento di sintesi

 Si tracciano il diagramma di stato e la corrispondente tabella di flusso (in forma minima).

Si codificano gli stati attraverso variabili di stato booleane:

sostituendo agli stati simbolici della tabella di flusso le rispettive codifiche si ottengono le mappe delle funzioni di uscita e di stato della rete

Procedimento di sintesi

A partire dalle mappe delle funzioni di stato, si determinano le funzioni di eccitazione dei flip-flop usati come elementi di memoria:

> in tal modo risulta determinata la parte combinatoria che porta gli ingressi primari e le variabili di stato agli ingressi dei flip-flop

 Si determina la parte combinatoria rimanente ovvero quella corrispondente alle funzioni di uscita.

Sintesi di una rete sequenziale sincrona avente un ingresso x e un'uscita z:

l'uscita z assume il valore 1 quando in ingresso si presenta la sequenza 1 1 1 1 (*riconoscitore di sequenza*)

data la sequenza d'ingresso:

110111111010

si avrà in uscita:

0000001111000

M

Esempio di sintesi

Diagramma di stato:

S₀: nessuna sotto-sequenza riconosciuta

 S_1 : sotto-sequenza 1 S_2 : sotto-sequenza 11

S₃: sotto-sequenza 111

■ Tabella di flusso:

ingressi stati	0	1
S ₀	S ₀ / 0	S ₁ / 0
S ₁	S ₀ / 0	$S_2/0$
S_2	S ₀ / 0	S ₃ / 0
S_3	S ₀ / 0	S ₃ / 1

codifica degli stati

I quattro stati simbolici S₀, S₁, S₂ e S₃ possono essere codificati usando due variabili di stato y₁ e y₂:

stato	y ₁ y ₂
S ₀	0 0
S ₁	0 1
S_2	1 0
S_3	1 1

Per ogni variabile di stato ci occorrerà un elemento di memoria (flip-flop)

Nella tabella di flusso sostituiamo agli stati simbolici le rispettive codifiche:

y_1 y_2	0	1
0 0	00/0	01/0
0 1	00/0	10/0
1 0	00/0	1 1 / 0
1 1	00/0	1 1 / 1

mappe dell'uscita e degli stati futuri

y ₁ y ₂ x	0	1
0 0	0 0 / 0	0 1 / 0
0 1	0 0 / 0	1 0 / 0
1 0	0 0 / 0	1 1 / 0
1 1	00/0	1 1 / 1

Mappa dell'uscita z:

y ₁ y ₂	0	1
0 0	0	0
0 1	0	0
1 1	0	(1)
1 0	0	0

$$z = xy_1y_2$$

y ₁ y ₂	0	1
0 0	0 0 / 0	0 1 / 0
0 1	0 0 / 0	1 0 / 0
1 0	0 0 / 0	1 1 / 0
1 1	00/0	1 1 / 1

Mappa di y_1 ':

y ₁ y ₂ x	0	1
0 0	0	0
0 1	0	/î\
1 1	0	X(1)X
1 0	0	(1)

$$y_1' = xy_1 + xy_2$$

y ₁ y ₂	0	1
0 0	0 0 / 0	0 1 / 0
0 1	0 0 / 0	1 0 / 0
1 0	0 0 / 0	1 1 / 0
1 1	0 0 / 0	1 1 / 1

Mappa di y_2 ':

y ₁ y ₂	0	1 .
0 0	0	~) ~)
0 1	0	0
1 1	0	/1>
1 0	0	\(\frac{1}{\text{X}}\)

$$y_2' = xy_1 + x\overline{y}_2$$

Non ci resta ora che determinare le funzioni di eccitazione dei flip-flop:

un flip-flop per ogni variabile di stato

Usando due FF-D :

$$D_1 = xy_1 + xy_2$$

$$D_2 = xy_1 + x\overline{y}_2$$

Usando due FF-JK :

$$J_1 = xy_2$$

$$J_2 = x$$

$$K_1 = \overline{x}$$

$$K_2 = \overline{y}_1 + \overline{x}$$

Ricordiamo che le mappe di J_1 e K_1 si ricavano dalla mappa di y_1 ':

у ₁ у ₂	0	1
0 0	0	0
0 1	0	1
1 1	0	1
1 0	0	1

y ₁ y ₂	0	1
0 0	0	0
0 1	0	11
1 1		
1 0	-	-

y_1 y_2	0	1
0 0	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ı
0 1	 	I
1 1	1	0
1 0	\1/	0

$$y_1'$$

$$J_1 = xy_2$$

$$K_1 = \bar{x}$$

■ Analogamente, le mappe di J_2 e K_2 si ricavano dalla mappa di y_2 ':

х У ₁ У ₂	0	1
0 0	0	1
0 1	0	0
1 1	0	1
1 0	0	1

y_1 y_2	0	1
0 0	0	Ý
0 1	•	
1 1	•	
1 0	0	\ <u>1</u> /

y ₁ y ₂	0	1
0 0	1	/ / / !
0 1	 / 	1,
1 1	1	0
1 0		

$$y_2'$$

$$J_2 = x$$

$$K_2 = \overline{y}_1 + \overline{x}$$

Realizzazione circuitale con i due flip-flop JK:

$$J_1 = xy_2$$
 $K_1 = \overline{x}$ $J_2 = x$ $K_2 = \overline{y}_1 + \overline{x}$

v.

Ancora sugli elementi di memoria

Abbiamo visto che un flip-flop è un circuito sequenziale molto semplice che si comporta come un elemento di memoria in grado di contenere un bit di informazione.

Più flip-flop possono essere organizzati in strutture denominate *registri*.

Registro

■ Insieme di *n* elementi di memoria (flip-flop) identici, sincronizzati tramite un unico clock.

Permette di memorizzare sequenze di n bit (parole).

I bit delle parole possono essere registrati o letti in parallelo, in serie o in modo misto.

Registro in parallelo

- n linee binarie di ingresso/uscita(dimensione/parallelismo del registro)
- segnali di controllo per l'abilitazione degli ingressi e delle uscite

.

Registro a scorrimento

Un unico ingresso seriale che va dal bit meno significativo a quello più significativo (*left shift* register) o viceversa (*right shift register*):

Ad ogni impulso di clock il contenuto di ciascun flip-flop viene trasferito al successivo (sono quindi necessari *n* cicli di clock per memorizzare una nuova parola nel registro)

Registro a scorrimento

Una volta caricato il registro,
l'output può essere prelevato

- in modo seriale, cioè un bit per volta dal terminale di output (registro seriale-seriale)
- □ in modo parallelo, leggendo contemporaneamente gli n bit (registro seriale-parallelo)

м

Registro ad anello

Collegando l'output di un registro seriale-seriale con l'input, si ottiene un registro a scorrimento circolare:

Si può così spostare l'ordine dei bit senza distruggere l'informazione immagazzinata

Registro misto

Esistono anche registri che, in base ai valori di alcune variabili di comando, possono accettare e rendere disponibili le informazioni sia in modo seriale che in modo parallelo.

"registro universale"

Contatore

Rete sequenziale con un solo ingresso costituito da un segnale, normalmente periodico (il clock), di cui si vogliono contare gli impulsi.

Il numero di impulsi ricevuti è memorizzato come stato interno della rete:

> ad ogni impulso di clock la rete cambia stato (avanza il conteggio)

M

Contatore

Il numero N di stati interni è detto modulo del contatore:

Stato presente	Stato futuro
0	1
1	2
2	3
N - 2	N -1
N -1	0

Con una rete formata da n flip-flop si possono rappresentare $N=2^n$ stati

M

Esempio di contatore modulo 4

(Figure parzialmente tratte da *G. Bucci. Calcolatori elettronici. Architettura e organizzazione. Copyright* © 2009 - *The McGraw-Hill Companies*)