Réseaux de neurones IFT 780

Réseaux à convolution

Par

Pierre-Marc Jodoin

Beaucoup TROP de paramètres (160M dans la couche 1) 256x256x256 Image médicale 3D (IRM de cerveau)

Convolution
et
couche convolutionnelle
1D

En gros convolution = produit scalaire + translation

La convolution des réseaux de neurones = $\frac{(f*W)(v)}{v} = \sum_{u=-\infty}^{\infty} f(u)W(v+u)$ (filtre) W(+u) (filtre) W(u) (signal d'entrée) f(u) .1 .2 .3 .1 .2 .3 (f*W)(1) (f*W)(2) (f*W)(3) 10 20 30 40 -50 10 20-30 40 -50 10 20 - 30 40 - 50 .1 .2 .3 × × × .1 .2 .3 .1 .2 .3 1+4-9 -3+8-15 -4 -4 8 -4 8 -10

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=3

21 21 26 -7

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

[21 21 26 -7 23]

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

21 21 26 -7 23 8

Stride et calcul de la taille de la carte d'activation $\begin{array}{c}
D=9 \\
\hline
40 | 50 | 70 | 80 | 90 | 10 | 20 | 30 | 40 \\
\hline
Prod. scal.
\\
\hline
21 | 21 | 26 | -7 | 23 | 8 | 11
\end{array}$ Taille de la carte d'activation = 7

Stride et calcul de la taille de la carte d'activation

D=9

40 | 50 | 70 | 80 | 90 | 10 | 20 | 30 | 40 |

prod. scal.

F=5 | 2 | -3 | 4 | -5 | .6 |

35

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

35 -18 33

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

35 -18 33 1 32

Taille de la carte d'activation = 5

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. seal.

F=7

2 -3 .4 -5 .6 -7 .8

Stride = 1

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=7

2 -3 .4 -5 .6 -7 .8

44 -8 44

Taille de la carte d'activation = 3

Stride et calcul de la taille de la carte d'activation

D=9

40 | 50 | 70 | 80 | 90 | 10 | 20 | 30 | 40 |

prod. scal.

F=5 | 2 | -3 | 4 | -5 | .6 |

35

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. seal.

12 -3 .4 -5 .6

Stride = 2

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

35 33 32

Taille de la carte d'activation = 3

Stride et calcul de la taille de la carte d'activation

D=9

40 50 70 80 90 10 20 30 40

prod. scal.

F=5

2 -3 .4 -5 .6

Stride et calcul de la taille de la carte d'activation

D=9

40 | 50 | 70 | 80 | 90 | 10 | 20 | 30 | 40

prod. scal.

12 | -3 | 4 | -5 | 6

Stride = 3

Convolution et couche convolutionnelle 2D

Tout comme un Perceptron multi-couches, un réseau à convolution contient plusieurs couches consécutives

Tout comme un perceptron multicouches, un réseau à convolution se termine par une couche de sortie avec 1 neurone par variable prédite

Réseaux à convolution vs Réseaux **pleinement** convolutifs

Configurations équivalentes

couche 1 : 3 filtres de taille 7x7 couche 2 : 5 filtres de taille 9x9 couche 3 : 4 filtres de taille 11x11 couche 4 pleinement connectée 256x4 Softmax couche 1:3 filtres de taille 7x7 couche 2:5 filtres de taille 9x9 couche 3:4 filtres de taille 11x11 couche 4:4 filtres de taille 8x8 Softmax

En fait, presque équivalent ...

Question: qu'arrive-t-il si on remplace l'image 32x32x3 par une image 64x64x3?

Pooling

Global pooling Max ou Mean pooling « valid » avec un filtre de la taille des canaux Résultat : un vecteur de la taille du nombre de canaux Global pooling Global pooling (max ou mean) 8

Multiplication matricielle parcimonieuse

https://towards datascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215

Il est plus rapide de multiplier des matrices que de les convoluer.

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

Entré	ee			
X0	X1	X2	Х3	
X4	X5	X6	X7	*
X8	Х9	X10	X11	
X12	X13	X14	X15	

Filtre				
	W0	Wl	W2	
*	W3	W4	W5	
	W6	W7	W8	

Yl	Y2
Y3	Y4

Il est **plus rapide** de multiplier des matrices que de les convoluer.

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

Entrée

w	
Hall	tre

X0	X1	X2	Х3
X4	X5	X6	X7
X8	X9	X10	X11
X12	X13	X14	X15

	W0	Wl	W2
*	W3	W4	W5
	W6	W7	W8

Y0	Yl
Y2	Y3

On peut remplacer une convolution par une multiplication matrice-matrice ou matrice-vecteu
De façons :

- 1- en <u>linéarisant</u> l'entrée et en « <u>matriçant</u> » le filtre
- 2- en <u>linéarisant</u> le filtre et en « <u>matriçant</u> » l'entrée

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

W0	-W1	W2	X3
-W3	-W4	W5	X7
W6	-W7	W8	X11
X12	X13	X14	X15

Y0=W0.X0+W1.X1+W2.X2+W3.X4+W4.X5+W5.X6+W6.X8+W7.X9+W8.X10

Rappel

Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3

X0	W0	₩l	W2
X4	W3	W4	W5
X8	W6	-W7	W8
X12	X13	X14	X15

Y1=W0.X1+W1.X2+W2.X3+W3.X5+W4.X6+W5.X7+W6.X9+W7.X10+W8.X11

	1
Rappel	
Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3	
X0 X1 X2 X3 Y0 Y1	-
W0 W1 W2 X7 Y2 Y3	
W3 W4 W5 X11	
W6 W7 W8 X15	
Y2=W0.X4+W1.X5+W2.X6+W3.X8+W4.X9+W5.X10+W6.X12+W7.X13+W8.X14	
Pomed	
Rappel	
Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3	
X0 X1 X2 X3	
X4 W0 W1 W2 Y2 Y3 X8 W3 W4 W5	
X12 W6 W7 W8	-
Y3=W0.X5+W1.X6+W2.X7+W3.X9+W4.X10+W5.X11+W6.X13+W7.X14+W8.X15	-
Linéarisation de l'entrée et « matriçage » du filtre	
Ex.: convolution « valid », un canal d'entrée et une carte d'activation, filtre 3x3 x2	
X3 X4	
X5	
0 W0 W1 W2 0 W3 W4 W5 0 W6 W7 W8 0 0 0 0 X7 Y1	
0 0 0 0 0 0 wo w1 w2 0 w3 w4 w5 0 w6 w7 w8 x9	-
X10 X11	
X12 X13	
X14 X15	
XI5)	

On peut faire la même chose mais en linéarisant le filtre et en « matriçant » l'entrée	
Exercice à la maison, voir comment cette 2 ^e approche s'applique au cas à • Plusieurs canaux en entrée • Plusieurs cartes d'activation • Plusieurs entrées (mini-batch)	
Sinon, voir im2col du travail pratique 2.	
Comment calculer la	
rétropropagation dans un CNN?	
λ c · TD2	
À faire au TP2	