Cálculo Numérico - IME/UERJ

Lista de Exercícios 4 - Interpolação polinomial e Método dos Mínimos Quadrados

1. Em cada função abaixo determine uma aproximação para f(z) e uma cota superior do erro cometido usando interpolação de Lagrange.

(a)
$$f(x) = \log x, z = 2.35, f(1) = 0, f(2) = 0.3010, f(3) = 0.4771$$

(b)
$$f(x) = e^{-x}, z = 2.5, f(2) = 0.13, f(3) = 0.04, f(4) = 0.01$$

2. Seja uma tabela dada por:

x	0,20	0,34	0,40	0,52	0,60	0,72
f(x)	0,16	0,22	0,27	0,29	0,32	0,37

Agora, são solicitados os seguintes itens:

(a) Complete as células que estão com pontos de interrogação da seguinte tabela de diferenças divididas de Newton obtida a partir dos pontos do enunciado:

x	Ordem 0	Ordem 1	Ordem 2	Ordem 3
0,20	0, 16			
		0,4286		
0,34	0, 22		2,0238	
		?		-17,8985
0,40	0, 27		?	
		?		?
0,52	0, 29		?	
		0,3750		-2,6042
0,60	0, 32		0,2083	
		0,4167		
0,72	0,37			

- (b) Agora, calcule uma aproximação de f(0, 47) usando um polinômio interpolador de ordem 2 na forma de Newton.
- (c) Determine uma estimativa do erro para a aproximação encontrada no item (b).
- (d) Usando apenas os 4 últimos pontos da tabela do enunciado, estime o valor de f(0,8) com o ajuste pela reta dos mínimos quadrados.

3. Seja a tabela

x	0,81	0,83	0,86	0,87
f(x)	16,94410	17,56492	18,50515	18,82091

Calcule um valor aproximado de f(0, 84), usando:

- (a) Forma de Newton para polinômio interpolador de grau $n \le 1, 2, 3$.
- (b) Calcule uma estimativa de erro em cada caso, se possível.
- 4. Dada a tabela da população de uma vila no início de cada ano, estime a população na metade de 2018 usando o polinômio de Newton e justifique o grau do polinômio.

Ano	2015	2016	2017	2018	2019
População	6000	6200	6600	7200	8000

5. (Interpolação inversa) Considere a tabela a seguir. Usando um polinômio interpolador de grau 3, determine x tal que f(x) = 2, 3. Dê uma estimativa do erro cometido.

x	0	0,2	0,4	0,6	0,8	1,0
f(x)	1,0	1,2408	1,5735	2,0333	2,6965	3,7183

6. (Interpolação inversa) Considere a tabela:

x	0	1,2	2,3	3,1	3,9
f(x)	0	1,5	5,3	9,5	10,0

Dê uma aproximação para a raiz da equação f(x) = 2 usando interpolação quadrática. Dê uma estimativa do erro cometido.

7. Estime o valor de f(9,5) pela reta dos mínimos quadrados usando os dados da seguinte tabela:

x	5,3	6,4	7,1	8,5	9,1
f(x)	8,1	15,2	24,5	48,6	54,0

- 8. Estime o valor de f(9,0) ajustando os dados abaixo pelo método dos mínimos quadrados (MMQ) através de:
 - (a) uma reta
 - (b) uma parábola

x	1,0	2,0	3,0	4,0	5,0	6,0	7,0	8,0
y	0,5	0,6	0,9	0,8	1,2	1,5	1,7	2,0