

Introdução

Sumário

- Contexto do problema
- rede neural convolucional
- Máquina de vetor de suporte não linear (Non-linear SVM)

Trabalhos Relacionados

Leveraging Deep Neural Networks to Fight Child Pornography in the Age of Social Media

Meu Trabalho

- o Foi feito um Dataset com imagens pornográficas e não pornográficas
- o Foi Avaliado os Modelo de deep learning e uma SVM não linear
- Foi avaliado um bot para o telegram

Experimentos

- Como foi criado o Dataset
- Parâmetros de treinamento da deep learning e Non-linear SVM
- Como funciona o bot do telegram

Resultados e Conclusões

- Precisão da CNN e NuSVC
- Matriz de confusão da CNN e Non-linear SVM
- Conclusão

Introdução - Contexto do problema

Acesso indevido por crianças a conteúdos pornográficos

- Facilidade de acesso a pornográfia
- Maior número de crianças na internet

Introdução - CNN

introdução - Non-linear SVM

- Uma SVM encontra a melhor reta entre 2 classes
- Mapear o conjunto para um novo espaço de dimensão maior e linearizável
- Encontra uma Transformação não linear
 - multiplicadores de Lagrange
 - utiliza-se kernels

Trabalhos Relacionados

Leveraging Deep Neural Networks to Fight Child Pornography in the Age of Social Media

Autores:

- Sandra Avila (Universidade de Campinas)
- Aderson Rocha (Universidade de Campinas)
- Mauricio Perez (Universidade De Singapura)

Eles utilizaram:

- Deep Learning
- transfer learning

Meu Trabalho

- Foi feito Um Dataset minerando dados do Google imagens e do Porn Hub
- Foi implementado e avaliado uma rede neural convolucional utilizando a biblioteca Keras
- Foi avaliado uma SVM não linear da biblioteca scikit-learn
- Foi feito um Bot no Telegram como de exemplo de aplicação chamado:
 Teddy Bear Filter

Meu Trabalho - Criar um Dataset

- Luta Livre
- Roupa de Praia
- Natação
- Jogos
- Gatos
- Roupas de Academia
- Imagens pornô do PornHub
- Images 200x200
- imagens normalizadas
- Total 5284 imagens

Experimentos - Parâmetros CNN

- Otimizador Adadelta (learning rate varia com o tempo e gradiente)
- Função perda : entropia cruzada (evita a lentidão do aprendizado)

Experimentos - Parâmetros Non-linear SVM

- Principais parâmetros:
 - kernel : Radial basis function (RBF)
 - gamma : 1/(número de características)

Todos os parâmetros podem ser encontrados no site do scikit-learn.

o número de características é a área da imagem ou seja 200*200

Experimentos - Teddy Bear Filter

SEND MESSAGE

Resultados e Conclusões - Matriz de confusão SVM

	Conteúdo não pornográfico	Conteúdo pornográfico
Conteúdo não pornográfico	0	2648
Conteúdo pornográfico	0	2636

Resultados e Conclusões - Matriz de confusão CNN

	Conteúdo não pornográfico	Conteúdo pornográfico
Conteúdo não pornográfico	2576	72
Conteúdo pornográfico	94	2542

Resultados e Conclusões - Precisão CNN e SVM

Non-Linear SVM	49.9%
CNN	96.9%

OBS: O próprio dataset contém erros

Conclusão

- Non-linear SVM n\u00e3o teve Resultados satisfat\u00f3rios
- CNN obteve resultados satisfatórios
- Apesar dos bons resultados da CNN, ela é limitada ao dataset

Vídeo : <u>Teddy em Ação</u>