

GREEDY ALGORITHMS

Präsentation am 26. Mai 2023 erarbeitet von Gruppe 2, WDS/WWI22A: Mihabat Aeido, Samuel Butler, Tjark Gerken, Eric Harter, Jacob Ruhnau, Tom Warscheit im Rahmen der Vorlesung "Algorithmen und Datenstrukturen" bei Max Bergau

GREEDY ALGORITHMS

Kunde möchte 40€ abheben

Zur Verfügung stehen 25€ 20€ 10€ und 5€ Noten

Gewünscht ist die geringstmögliche Anzahl an Scheinen

AGENDA

I. Grundlagen

- Grundprinzipien
- Vor- / Nachteile

II. Beispiele, Probleme & Analyse

- Longest Path
- Traveling Sales Man
- Change Making

III. Fazit

GRUNDPRINZIPIEN greedy ['gri:di] engl.; gierig, raffsüchtig

Divide and Conquer / Betrachtung des **lokalen Optimums**

Randomisierung

Backtracking

VOR- UND NACHTEILE

Einfache Implementierung

Time & Space Complexity

Näherungslösungen

Kennt kein globales Optimum

Blickt nicht zurück

Schwierigkeiten bei komplexen Problemen

→ Nicht optimale Lösung

CHANGE MAKING

Kunde möchte 40€ abheben

Zur Verfügung stehen 25€ 20€ und 5€ Noten

Gewünscht ist die geringstmögliche Anzahl an Scheinen

HERANGEHENSWEISE

Menschen

Greedy Change Making Algorithm

Bei kleineren Mengen können wir schnell intuitiv Erkennung

Wie würdet Ihr bei größeren Mengen vorgehen?

Es wird immer die höchste noch mögliche Denomination herausgegeben.

FAZIT

Einfache Implementierung Time & Space Complexity

Näherungslösungen

Kennt kein globales Optimum

Blickt nicht zurück

Schwierigkeiten bei komplexen Problemen

Anwendungsfälle bedürfen gründlicher Analyse. Abhängig von den Anforderungen kann der Einsatz hoch effektiv sein.

VERWEISE & WEITERFÜHRENDE LINKS

Repository mit den Ressourcen dieser Präsentation

https://github.com/jacobrhn/22 2-AlgoDat-presentation-greedy algos

https://www.geeksforgeeks.org/greedy-algorithms/

CodeCrucks über das Making Change Problem

https://codecrucks.com/making-change-problem-using-dynamic-programming/

com/document/d 9666/html https://www.degruyter.

GREEDY ALGORITHMS

Präsentation am 26. Mai 2023 erarbeitet von Gruppe 2, WDS/WWI22A: Mihabat Aeido, Samuel Butler, Tjark Gerken, Eric Harter, Jacob Ruhnau, Tom Warscheit im Rahmen der Vorlesung "Algorithmen und Datenstrukturen" bei Max Bergau