Chapter 7: Sequences and Series of Functions

Author: Meng-Gen Tsai Email: plover@gmail.com

Exercise 7.1. Prove that every uniformly convergent sequence of bounded functions is uniformly bounded.

Proof (Cauchy criterion). Let $\{f_n\}$ be a uniformly convergent sequence of bounded functions.

- (1) Since f_n is bounded, there exists M_n such that $|f_n(x)| \leq M_n$.
- (2) Since $\{f_n\}$ converges uniformly, given 1 > 0 there exists an integer N such that

$$|f_n(x) - f_m(x)| \le 1$$
 whenever $n, m \ge N$

(Theorem 7.8 (Cauchy criterion for uniformly convergence)). Especially,

$$|f_n(x)| \le |f_n(x) - f_N(x)| + |f_N(x)| \le 1 + M_N$$
 whenever $n \ge N$.

(3) Thus, $\{f_n\}$ is uniformly bounded by $M = \max\{M_1, \dots, M_{N-1}, M_N + 1\}$.

Exercise 7.2. If $\{f_n\}$ and $\{g_n\}$ converge uniformly on a set E, prove that $\{f_n+g_n\}$ converge uniformly on E. If, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions, prove that $\{f_ng_n\}$ converges uniformly on E.

Proof. Let $\{f_n\} \to f$ uniformly and $\{g_n\} \to g$ uniformly.

(1) Show that $\{f_n + g_n\}$ converges uniformly. Given $\varepsilon > 0$. Since $\{f_n\} \to f$ uniformly and $\{g_n\} \to g$ uniformly, there exist two integers N_1 and N_2 such that

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2}$$
 whenever $n \ge N_1, x \in E$
 $|g_n(x) - g(x)| \le \frac{\varepsilon}{2}$ whenever $n \ge N_2, x \in E$.

Take $N = \max\{N_1, N_2\}$, we have

$$|(f_n(x) + g_n(x)) - (f(x) + g(x))|$$

$$= |(f_n(x) - f(x)) + (g_n(x) - g(x))|$$

$$\leq |f_n(x) - f(x)| + |g_n(x) - g(x)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

whenever $n \geq N$, $x \in E$. Hence $\{f_n + g_n\}$ converges to f + g uniformly on E.

- (2) Show that $\{f_ng_n\}$ converges uniformly if, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions. Given $\varepsilon > 0$.
 - (a) By Exercise 7.1, both $\{f_n\}$ and $\{g_n\}$ are uniformly bounded. So there exist M_1 and M_2 such that

$$|f_n(x)| \leq M_1$$
 and $|g_n(x)| \leq M_2$

for all n and $x \in E$. Also, $|f(x)| \le M_1 + 1$ and $|g(x)| \le M_2 + 1$.

(b) Since $\{f_n\} \to f$ uniformly and $\{g_n\} \to g$ uniformly, there exist two integers N_1 and N_2 such that

$$|f_n(x) - f(x)| \le \frac{\varepsilon}{2(M_2 + 1)}$$
 whenever $n \ge N_1, x \in E$
 $|g_n(x) - g(x)| \le \frac{\varepsilon}{2(M_1 + 1)}$ whenever $n \ge N_2, x \in E$.

(Note that each denominator of $\frac{\varepsilon}{2(M_j+1)}$ (j=1,2) is well-defined and positive!) Take $N=\max\{N_1,N_2\}$, we have

$$\begin{split} &|f_n(x)g_n(x) - f(x)g(x)| \\ = &|[f_n(x) - f(x)]g_n(x) + f(x)[g_n(x) - g(x)]| \\ \leq &|f_n(x) - f(x)||g_n(x)| + |f(x)||g_n(x) - g(x)| \\ \leq &\frac{\varepsilon}{2(M_2 + 1)} \cdot M_2 + (M_1 + 1) \cdot \frac{\varepsilon}{2(M_1 + 1)} \\ \leq &\varepsilon \end{split}$$

whenever $n \geq N$, $x \in E$. Hence $\{f_n g_n\}$ converges to fg uniformly on E.

Proof (Cauchy criterion).

(1) Show that $\{f_n + g_n\}$ converges uniformly. Given $\varepsilon > 0$. Since $\{f_n\}$ and $\{g_n\}$ converge uniformly, there exist two integers N_1 and N_2 such that

$$|f_n(x) - f_m(x)| \le \frac{\varepsilon}{2}$$
 whenever $n, m \ge N_1, x \in E$
 $|g_n(x) - g_m(x)| \le \frac{\varepsilon}{2}$ whenever $n, m \ge N_2, x \in E$.

Take $N = \max\{N_1, N_2\}$, we have

$$|(f_n(x) + g_n(x)) - (f_m(x) + g_m(x))|$$

$$= |(f_n(x) - f_n(x)) + (g_n(x) - g_m(x))|$$

$$\leq |f_n(x) - f_n(x)| + |g_n(x) - g_m(x)|$$

$$\leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2}$$

$$= \varepsilon$$

whenever $n, m \ge N, x \in E$. Hence $\{f_n + g_n\}$ converges uniformly on E.

- (2) Show that $\{f_ng_n\}$ converges uniformly if, in addition, $\{f_n\}$ and $\{g_n\}$ are sequences of bounded functions. Given $\varepsilon > 0$.
 - (a) By Exercise 7.1, both $\{f_n\}$ and $\{g_n\}$ are uniformly bounded. So there exist M_1 and M_2 such that

$$|f_n(x)| \leq M_1$$
 and $|g_n(x)| \leq M_2$

for all n and $x \in E$. Also, $|f(x)| \leq M_1 + 1$ and $|g(x)| \leq M_2 + 1$.

(b) Since $\{f_n\} \to f$ uniformly and $\{g_n\} \to g$ uniformly, there exist two integers N_1 and N_2 such that

$$\begin{split} |f_n(x)-f_m(x)| &\leq \frac{\varepsilon}{2(M_2+1)} \text{ whenever } n,m \geq N_1, x \in E \\ |g_n(x)-g_m(x)| &\leq \frac{\varepsilon}{2(M_1+1)} \text{ whenever } n,m \geq N_2, x \in E. \end{split}$$

Take $N = \max\{N_1, N_2\}$, we have

$$\begin{split} &|f_n(x)g_n(x) - f_m(x)g_m(x)| \\ = &|[f_n(x) - f_m(x)]g_n(x) + f_m(x)[g_n(x) - g_m(x)]| \\ \leq &|f_n(x) - f_m(x)||g_n(x)| + |f_m(x)||g_n(x) - g_m(x)| \\ \leq &\frac{\varepsilon}{2(M_2 + 1)} \cdot M_2 + M_1 \cdot \frac{\varepsilon}{2(M_1 + 1)} \\ \leq &\varepsilon \end{split}$$

whenever $n \geq N$, $x \in E$. Hence $\{f_n g_n\}$ converges uniformly on E.