Programación Entera

Tomás de la Rosa

Introducción

- Ejemplos Prácticos
 - Réplica de Fondos Índice
 - Estrategia Neutral con Opciones

Introducción

- Ejemplos Prácticos
 - Réplica de Fondos Índice
 - Estrategia Neutral con Opciones

- En algunos problemas de optimización redondear es una opción, pero estamos perdiendo el valor óptimo que podríamos alcanzar en la realidad
 - ▶ Una asignación de activos, nos podría indicar 18,73 acciones
- En ocasiones necesitamos modelar condiciones lógicas, ejemplo asignaciones todo o nada

Programación Entera

- Un problema de programación lineal entera es uno de programación lineal al que añadimos las restricciones adicionales para que algunas (incluso todas) sus variables sean números enteros
- Cuando todas las variables deben ser enteras hablamos de un programa lineal entero puro
- Cuando alguna de sus variables deben ser enteras nos referimos a un programa mixto o MIP (mixed integer programs)
- Para problemas de asignación utilizamos un caso especial: variables booleanas, enteros que pueden ser 0 ó 1

 Disponemos de 19 millones para invertir en 4 proyectos, en el que participamos con una inversión inicial o no participamos. Los datos son los siguientes

Proyecto	1	2	3	4
Inversión inicial	4	6	5	7
Valor presente	4.6	6.6	5.4	7.3

 ¿En qué proyectos debemos invertir para maximizar el valor presente de las inversiones?

 Una solución ingenua sería ir eligiendo los proyectos a partir del ratio de rentabilidad

Proyecto	1	2	3	4
Inversión inicial	4	6	5	7
Valor presente	4.6	6.6	5.4	7.3
VP/Inv	1.15	1.1	1.08	1.043

- Al elegir los proyectos 1, 2, y 3 obtenemos un valor presente de 16.6
- Pero este no es el valor óptimo que podríamos obtener

- Las variables de decisión representan si participamos o no de cada proyecto
- Un modelado como problema de programación lineal es:

Max
$$Z = 4.6x_1 + 6.6x_2 + 5.4x_3 + 7.3x_4$$

s.a. $4x_1 + 6x_2 + 5x_3 + 7x_4 \le 19$
 $x_i \ge 0$
 $x_i \le 1$

- La solución a este problema es $x_1 = 1, x_2 = 1, x_3 = 1, x_4 = 0.57$
- La parte entera de la solución nos da la solución ingenua
- El redondeo de la solución nos da una solución infactible

- Añadimos la restricción para que las variables de decisión sean 0 ó 1.
- Un modelado como problema de programación entera es:

Max
$$Z = 4.6x_1 + 6.6x_2 + 5.4x_3 + 7.3x_4$$

s.a. $4x_1 + 6x_2 + 5x_3 + 7x_4 \le 19$
 $x_i \ge 0$
 $x_i \le 1$
 x_i es entero

- La solución a este problema es $x_1 = 0, x_2 = 1, x_3 = 1, x_4 = 1$
- El óptimo es 19.3

- Si las variables fueran reales tendríamos una región factible
- Las soluciones en la programación entera corresponden a los puntos de enteros dentro de la región factible
- El problema es más restringido
- La solución óptima no ocurre en los vértices, salvo que coincida con un punto de enteros

Relajación de Restricciones

- Técnica para hacer más sencillo el problema original, de modo que la solución al problema relajado nos sirva en la resolución del original
- En un MIP la relajación directa es ignorar la restricción de variables enteras.
- Para un MIP \mathcal{P} , y una versión relajada \mathcal{P}_R , observamos que:
 - el óptimo de \mathcal{P}_R es igual o mejor (irreal) que el óptimo de \mathcal{P} , porque es un problema con menos restricciones
 - ▶ si \mathcal{P}_R es infactible, \mathcal{P} también lo es
 - la solución a P_R nos da una cota superior (max) o una cota inferior (min)
 - \blacktriangleright el redondeo de la solución $\mathcal{P}_{\textit{R}}$ no es necesariamente el óptimo de \mathcal{P}

Algoritmo Branch and Bound

- 1 Iniciar $B = +\infty$
- Resolver el problema relajado. Si la solución es entera, terminar; en otro caso ir al paso 3
- Ramificar sobre una variable de decisión y crear dos subconjuntos de la región factible
- Determinar una cota superior z_s del problema original
- Marcar como nodos terminales aquellos que:
 - El subconjunto es infactible
 - $ightharpoonup z_s \leq B$
 - > z_s se alcanza en un punto factible y $z_s > B$. Hacer $z_s = B$. Ir al paso 3
- $oldsymbol{0}$ Parar si todos los nodos son terminales. El óptimo es $z_{
 m s}$

Modelado de Restricciones

- Suponemos como en el ejemplo inicial que tenemos 4 variables binarias de decisión que representan los proyectos en que invertimos
- Modelar restricciones
 - Podemos elegir como mucho 2 proyectos

$$x_1 + x_2 + x_3 + x_4 \le 2$$

Los proyectos 2 y 3 son excluyentes

$$x_2 + x_3 \leq 1$$

Si se participa en el proyecto 1, hay que participar en el 4

$$x_1-x_4\leq 0$$

Modelado Condiciones Lógicas

- Variables binarias indicadoras que nos dicen si una determinada restricción debe cumplirse o no
- Asumimos que el valor 1 implica que nos interesa que se cumpla la restricción

$$\delta = 1 \implies \sum_{j \in N} a_j x_j \leq b$$

Representación como restricción lineal

$$\sum_{j\in N}a_jx_j+M\delta\leq M+b$$

 M es una constante muy alta, que debe ser superior a la expresión ∑_{i∈N} a_ix_i − b

Modelado Condiciones Lógicas

$$\delta = 1 \implies \sum_{j \in N} a_j x_j \le b \equiv \sum_{j \in N} a_j x_j + M\delta \le M + b$$

Re-escribiendo

$$\sum_{j\in N}a_jx_j-b\leq M(1-\delta)$$

• Para el caso $\delta = 0$, se cumple por definición de M

$$\sum_{j\in N}a_jx_j-b\leq M$$

• Para el case $\delta = 1$, tenemos la restricción original que exigimos

$$\sum_{j\in N}a_jx_j-b\leq 0$$

 Nos puede interesar la relación inversa. Si se cumple una restricción queremos forzar el valor de la variable indicadora

$$\sum_{j\in N} a_j x_j \le b \implies \delta = 1$$

Modelamos como

$$\sum_{j\in N} a_j x_j - (m-\epsilon)\delta \ge b + \epsilon$$

• m es la cota inferior de la expresión $\sum_{j \in N} a_j x_j - b$

• Para desigualdades mayor que:

$$\delta = 1 \implies \sum_{j \in N} a_j x_j \ge b$$

modelamos como:

$$\sum_{j\in N} a_j x_j + m\delta \ge m + b$$

Modelado de Condiciones Lógicas

• Si para una variable de decisión que cumpla $0 \le x \le M$, queremos modelar la implicación:

$$x > 0 \implies \delta = 1$$

lo podemos modelar como

$$x \leq M\delta$$

• para el caso general de la desigualdad tenemos

$$\sum_{j\in N} a_j x_j \ge b \implies \delta = 1$$

modelamos como:

$$\sum_{j\in N} a_j x_j - (M+\epsilon)\delta \le b - \epsilon$$

Esquema

Introducción

- 2 Ejemplos Prácticos
 - Réplica de Fondos Índice
 - Estrategia Neutral con Opciones

Introducción

- 2 Ejemplos Prácticos
 - Réplica de Fondos Índice
 - Estrategia Neutral con Opciones

- Construir una cartera que replique un índice, seleccionando un sub-conjunto de los activos que lo componen
- Para cada activo se selecciona un activo representante dentro de de la cartera. Podría ser el propio activo o uno semejante
- Se construye a partir de una medida de similitud, por ejemplo la correlación histórica de los rendimientos
- Enfoque equivalente a hacer clustering de los activos y seleccionar un miembro de cada grupo

Réplica de Fondos Índice

- Seleccionar *k* activos de un índice de *n* componentes
- Variables de decisión
 - ► Matriz $X_{n \times n}$ de binarias. Cada fila debe elegir el representante del activo i
 - Vector Y que representa con binarias si un activo está dentro de la cartera
- Maximizamos la correlación que corresponde a la matriz X
- Restricciones
 - ► Cada fila en X debe tener sólo un elemento seleccionado
 - ▶ Los elementos seleccionados de Y son iguales a k
 - Si un elemento en Y no es seleccionado, la columna en X debe estar vacía

Modelo

$$Max Z = \sum_{i=1}^{n} \sum_{j=1}^{n} \rho_{ij} x_{ij}$$

$$\sum_{j=1}^{m} y_{j} = k$$

$$\forall i \sum_{j=1}^{m} x_{ij} = 1$$

$$\forall i \forall j x_{ij} \leq y_{i}$$

Introducción

- Ejemplos Prácticos
 - Réplica de Fondos Índice
 - Estrategia Neutral con Opciones

- La volatilidad implícita de la opciones sobre acciones es mayor que la volatilidad en el índice en que cotizan
- El precio relativo de las opciones put/call sobre acciones debería ser mayor que en el índice
- Podemos plantear una estrategia neutral con opciones:
 - Comprar 1 put/call sobre el futuro del IBEX35
 - Vender una cesta de opciones put/call equivalentes al nominal del contrato comprado

- La volatilidad implícita de la opciones sobre acciones es mayor que la volatilidad en el índice en que cotizan
- El precio relativo de las opciones put/call sobre acciones debería ser mayor que en el índice
- Podemos plantear una estrategia neutral con opciones:
 - Comprar 1 put/call sobre el futuro del IBEX35
 - Vender una cesta de opciones put/call equivalentes al nominal del contrato comprado
- Inconvenientes en la práctica:
 - La cesta de opciones no es replicable de forma exacta porque no hay opciones de las acciones menos líquidas
 - Los multiplicadores de los contratos afectan la capacidad de ajustarnos al peso en el índice
 - Riesgos individuales por empresa

- Problema a resolver
 - Dado un nominal de n contratos de opciones sobre el futuro del IBEX35
 - Elegir el número de contratos de opciones put/call disponibles sobre las acciones, intentando replicar lo máximo posible la cesta equivalente

- Problema a resolver
 - Dado un nominal de n contratos de opciones sobre el futuro del IBEX35
 - Elegir el número de contratos de opciones put/call disponibles sobre las acciones, intentando replicar lo máximo posible la cesta equivalente
- Para resolver el problema utilizamos datos históricos recientes, donde nos interesa aproximar el valor de los nominales de ambas patas de la estrategia a lo largo de una ventana de tiempo

- Variables de decisión:
 - Número de contratos de cada opción para las acciones disponibles
 - Para cada día observado, un término de error entre nominal de contratos del índice y la cesta

- Variables de decisión:
 - ▶ Número de contratos de cada opción para las acciones disponibles
 - Para cada día observado, un término de error entre nominal de contratos del índice y la cesta
- Función objetivo:
 - minimizar la suma de los valores absolutos de los término de error
 - alternativa de mínimos cuadrados, pero convierte el problema en cuadrático

- Variables de decisión:
 - ▶ Número de contratos de cada opción para las acciones disponibles
 - Para cada día observado, un término de error entre nominal de contratos del índice y la cesta
- Función objetivo:
 - minimizar la suma de los valores absolutos de los término de error
 - alternativa de mínimos cuadrados, pero convierte el problema en cuadrático
- Restricciones
 - El número de contratos debe ser no negativos
 - Para cada día, la resta de nominales de cada pata es igual al término de error