

Anomaly Detection for the Singulation of Plastic Wastes in Polymer Recycling

Group 5: Charlotte Goos, Aleksandr Eismont, Dmitrii Seletkov

Supervisors: Constantin Seibold, Simon Reiß

Final Presentation, 25.07.2022

Agenda

Problem Setting

Copy & Paste Data Augmentation

Classification

Instance Segmentation

Summary

Problem Setting

Task

- Setting: plastic lids for recycling
- Task: object counting only one lid allowed
- Given: small unlabeled dataset
 - 2751 images, 0-5 lids in trays

Recycling Production Line

Dataset: Images

Label: 0

Label: 1

Label: 2

Label: 3

Label: 4

Label: 5

Dataset: Labeling

- Image-level labels for dataset
- Problems:
 - Small amount of data
 - Class Imbalance
 - Hard cases:
 - Different Colors 25.7%
 - Overlapping 22.5%
 - Transparent 16.1%
 - Inside 6.9%
 - Dark Color 5.3%
 - One Color 3.9%
 - Open Lid 0.6%
 - Edge 0.5%

Frequency of Labels 0-5 in Original Dataset

Dataset: Analysis

- Focus on: overlapping, edge, dark, transparent
- Target and tags stratified train/test split

Overlapping and Dark Label: 4

Overlapping and Transparent Label: 4

Edge Label: 3

Copy & Paste Data Augmentation

Copy & Paste Data Augmentation - Approach

- Inspired by [Dwibedi17, Ghiasi20]
- Synthetic images of label 0: add gaussian noise
- Synthetic images of label 1-5:
 - Background: empty tray
 - Objects: from images of label 1
 - Positions of object based on heatmap
- Copy & Paste
 - Binary masks of lid
 - Lid with black background
 - Bitwise_or of background and mask
 - Add lid with black background

Binary Mask of Object

Object on black background

Copy & Paste Data Augmentation - Tags

Rotate Color Dark

Copy & Paste Data Augmentation - Tags

Transparent Edge

Copy & Paste Data Augmentation - Annotation

Binary mask of each lid in synthetic image

Copy & Paste Data Augmentation - Annotation

Synthesized Images and Their COCO Annotations

Classification

Classification: Idea

Approach: Salient Object Subitizing (SOS) [Zhang15, Zhang16]

Classification: Settings

Implementation Set-Up:

- ResNet18
- Cross Entropy Loss with Weights
- Stratified Batch Sampling
- Stochastic Gradient Descent with Learning Rate 0.001
- Augmentation Random Horizontal Flip

Metric:

• Decision Accuracy
$$= \frac{Accepted\ Trays\ +\ Rejected\ Trays}{All\ Trays}$$

Classification: Results

Name	Accuracy	Decision Accuracy
SOS	0.66 (±0.02)	0.71 (±0.02)
GoogleNet	0.90 (±0.01)	0.95 (±0.00)
ResNet18	0.92 (±0.01)	0.97 (±0.00)
ResNet18_weights	0.93 (±0.01)	0.97 (±0.00)
ResNet18_synthetic	0.95 (±0.01)	0.98 (±0.00)

Evaluation of Classification Approaches

Classification: Misclassified Images

Predicted Label: 1
Correct Label: 2

Predicted Label: 1 Correct Label: 2

Predicted Label: 2 Correct Label: 3

Instance Segmentation

Instance Segmentation

- Train: fully synthesized data
- Test:
 - Separate fully synthesized test dataset for COCO evaluation
 - The same real-world test dataset used for classification
- Model:
 - Mask R-CNN (ResNet50 + FPN)
 - SGD, 5000 iterations, annealing LR 0.001 with steps (3000, 4000)

Name	AP	AP50	AP75
Seg_all	80.25	96.85	88.33

COCO Evaluation of Segmentation Model on Separate Synthesized Test Dataset

Segmentation: Ablation of Augmentation

Name	Rotate	Color	Edge	Dark	Transparent	Accuracy	Decision Accuracy
Seg_no	X	Х	Х	X	X	0.83	0.89
Seg_edge	+	+	+	X	X	0.83	0.89
Seg_edge_dark	+	+	+	+	X	0.85	0.90
Seg_all	+	+	+	+	+	0.86	0.91

Ablation Study of Different Augmentations for Segmentation Model on Real-world Test Dataset

Segmentation: Ablation of Augmentation

Confusion Matrix of Seg_no Model (without Any Transformation)

Confusion Matrix of Seg_all Model (with All Transformations)

Segmentation vs. Classification

Name	Label 0	Label 1	Label 2	Label 3	Label 4	Label 5	Accuracy	Decision Accuracy
Seg_all	1.00	0.94	0.74	0.44	0.20	0.00	0.86	0.91
Classification_best	1.00	0.99	0.87	0.70	0.70	0.50	0.95	0.98

Comparison of the Best Segmentation (Seg_all) and Best Classification Approach (Classification_best)

Summary

Summary

- Unlabeled small dataset
- Copy & Paste Data Augmentation
- Classification: best performance
 - Model Tuning
 - Synthesized Data Improves Performance
- Instance Segmentation: poorer performance
 - But: interpretability
 - Synthesized data improves performance
- Future works:
 - Mixed approach: combine classification and segmentation
 - Improve for more complex object contours

Thank you for your attention

References

- [Dwibedi17] Debidatta Dwibedi, Ishan Misra, and Martial Hebert. "Cut, Paste and Learn: Surprisingly Easy Synthesis for Instance Detection". In: CoRR abs/1708.01642 (2017). arXiv: 1708.01642. url: http://arxiv.org/abs/1708.01642.
- [Ghiasi20] Golnaz Ghiasi et al. "Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation". In: CoRR abs/2012.07177 (2020). arXiv: 2012.07177. Url: https://arxiv.org/abs/2012.07177.
- [Zhang15] Jianming Zhang, Shugao Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke, Zhe Lin, Xiaohui Shen, Brian Price and Radomír Měch. "Salient Object Subitizing." In: Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
- [Zhang16] Jianming Zhang, Shugao Ma, Mehrnoosh Sameki, Stan Sclaroff, Margrit Betke, Zhe Lin, Xiaohui Shen, Brian Price and Radomír Měch. "Salient Object Subitizing." Journal version under review, 2016. Url: https://arxiv.org/abs/1607.07525.
- The code of our project: https://github.com/yayapa/AnomaliesRecycling

Appendix

Classification: Confusion Matrix

Tags

different colors

transparent

one color

dark color

Tags

open lid

inside

edge

overlapping

Dataset: Labeling and Analysis

- Image-level labels for dataset
- Problems:
 - Small amount of data
 - Class Imbalance
 - Hard cases analysis with tags

Frequency of Labels 0-5 in Original Dataset

Amount of Data Corresponding to Hard Cases Marked with Tags

Segmentation: Ablation of Augmentation

Name	Rotate	Color	Edge	Dark	Trans parent	Label 0	Label 1	Label 2	Label 3	Label 4	Label 5	Accuracy	Decision Accuracy
Seg_no	x	х	Х	х	х	1.00	0.94	0.64	0.28	0.20	0.00	0.83	0.89
Seg_edge	+	+	+	х	х	1.00	0.94	0.66	0.26	0.10	0.00	0.83	0.89
Seg_edge _dark	+	+	+	+	х	1.00	0.95	0.69	0.35	0.30	0.00	0.85	0.90
Seg_all	+	+	+	+	+	1.00	0.94	0.74	0.44	0.20	0.00	0.86	0.91

Segmentation: Ablation Of Test Threshold

Threshold: 0.5 Accuracy: 0.84

Decision Accuracy: 0.9

Threshold: 0.7 Accuracy: 0.84

Decision Accuracy: 0.89

Threshold: 0.9 Accuracy: 0.83

Decision Accuracy: 0.89

Threshold: 0.95

Accuracy: 0.82

Decision Accuracy: 0.88

Class Activation Map: GradCAM

data/test/1/trial (704).jpg

input image

grad-cam backprop for label 1 (predicted 1)

data/test/2/Anlerndaten (618).jpg

data/test/0/trial (1307).jpg

data/test/2/Anlerndaten (596).jpg

CVHCI Practical Course Group 5: Charlotte Goos, Aleksandr Eismont, Dmitrii Seletkov