Step 2 of the algorithm yields the vectors

$$\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad A \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \quad A \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ 0 \\ 1 \end{pmatrix},$$

so we get

$$P = \begin{pmatrix} 1 & 1 & 0 & 2 \\ 0 & 2 & 1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

We find that

$$P^{-1} = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

and thus, the rational canonical form of A is

$$P^{-1}AP = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{pmatrix}.$$