بسم الله الرحمن الرحيم

برنامهریزی نیمهمعین برای طراحی الگوریتمهای تقریبی

جلسه دهم: آیا برنامه ریزی هم مثبت الگوریتم سریع دارد؟

Cone Programming

(P) Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$ subject to $\mathbf{b} - A(\mathbf{x}) \in L$ $\mathbf{x} \in K$.

SDP

maximize $C \bullet X$ subject to $A_i \bullet X = b_i, \quad i = 1, 2, ..., m$ $X \succeq 0.$

LP

 $\begin{array}{ll}
\text{maximize} & c^{\mathsf{T}} x \\
\text{subject to} & Ax = b \\
 & x \ge 0
\end{array}$

ماتریس هممثبت و کاملا مثبت

ماتریس هممثبت

7.1.1 Definition. A matrix $M \in SYM_n$ is called copositive if

 $\mathbf{x}^T M \mathbf{x} \geq 0$ for all $\mathbf{x} \geq 0$.

 $COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$

ماتریس هممثبت

7.1.1 Definition. A matrix $M \in SYM_n$ is called copositive if

 $\mathbf{x}^T M \mathbf{x} \geq 0$ for all $\mathbf{x} \geq 0$.

 $COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$

 $PSD_n \subseteq COP_n$

مشاهده:

ماتریس هممثبت

7.1.1 Definition. A matrix $M \in SYM_n$ is called copositive if

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

 $PSD_n \subsetneq COP_n$

مشاهده:

$$M = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

7.1.3 Lemma. The set COP_n is a closed convex cone in SYM_n .

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

7.1.3 Lemma. The set COP_n is a closed convex cone in SYM_n .

س 🗨

، کنج

محدر

 $\mathbf{x}^T M \mathbf{x} \geq 0$ for all $\mathbf{x} \geq 0$.

 $COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$

 COP_n دوگان

 $\mathbf{x}^T M \mathbf{x} \geq 0$ for all $\mathbf{x} \geq 0$.

 $COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$

 COP_n دوگان

 $x \ge 0$ ماتریس های xx^{T} که

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

$$COP_n$$
 دوگان

$$x \ge 0$$
 ماتریسهای $x \ge 0$ که

$$x^{\mathsf{T}} M x = M \bullet x x^{\mathsf{T}}$$

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

$$COP_n$$
 دوگان

$$x \ge 0$$
 ماتریسهای $x \ge 0$ که $x \ge 0$

$$x^{\mathsf{T}} M x = M \bullet x x^{\mathsf{T}}$$

- ترکیب محدب این ماتریسها
 - جمع این ماتریسها

$$\mathbf{x}^T M \mathbf{x} \geq 0$$
 for all $\mathbf{x} \geq 0$.

$$COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$$

COP_n دوگان

آن را به صورت زیر نوشت

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T$$

$$\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_\ell\in\mathbb{R}^n_+$$
 ک

$$x^{\mathsf{T}} M x = M \bullet x x^{\mathsf{T}}$$

• ترکیب محدب این ماتریسها

 $x \ge 0$ ماتریس های xx^{T} که

• جمع این ماتریسها

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M[j,k] = \sum_{i} x_{i}[j]x_{i}[k]$$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M[j,k] = \sum_{i} x_{i}[j]x_{i}[k]$$
 $\sum_{i} A[j,i]B[i,k] = (AB)[j,k]$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M[j,k] = \sum_{i} x_{i}[j]x_{i}[k] \qquad \sum_{i} A[j,i]B[i,k] = (AB)[j,k]$$

$$\downarrow i$$

$$A = \begin{pmatrix} \vdots \\ x_{i}[j] \end{pmatrix} j$$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M[j,k] = \sum_{i} x_{i}[j]x_{i}[k] \qquad \sum_{i} A[j,i]B[i,k] = (AB)[j,k]$$

$$\downarrow i$$

$$A = \begin{pmatrix} \vdots \\ x_{i}[j] \end{pmatrix} j$$

$$\vdots$$

 $A = \begin{pmatrix} x_1 & x_2 & \dots & x_t \end{pmatrix}$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

 $A = \begin{pmatrix} x_1 & x_2 & \dots & x_t \end{pmatrix}$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AB$$

$$M[j,k] = \sum_{i} x_{i}[j]x_{i}[k] \qquad \sum_{i} A[j,i]B[i,k] = (AB)[j,k]$$

$$\downarrow i \qquad \downarrow k$$

$$\downarrow i \qquad \downarrow i \qquad \downarrow k$$

$$\downarrow i \qquad \downarrow i \qquad \downarrow k$$

$$\downarrow i \qquad \downarrow i$$

 $A = (x_1 \quad x_2 \quad \dots \quad x_t)$

 $B = A^{\top}$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{M \in SYM_n : M \text{ is completely positive}\}\$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{M \in SYM_n : M \text{ is completely positive}\}\$

$$POS_n \subseteq COP_n^*$$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{M \in SYM_n : M \text{ is completely positive}\}\$

برای کاملا مثبت بودن، تعداد ثابتی جمله کافی است.

7.1.5 Lemma. M is completely positive if and only if there are $\binom{n+1}{2}$ nonnegative vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\binom{n+1}{2}} \in \mathbb{R}^n$ such that

$$M = \sum_{i=1}^{\binom{r}{2}} \mathbf{x}_i \mathbf{x}_i^T.$$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{M \in SYM_n : M \text{ is completely positive}\}\$

7.1.1 Definition. A matrix $M \in SYM_n$ is called copositive if

$$\mathbf{x}^T M \mathbf{x} > 0$$
 for all $\mathbf{x} > 0$.

 $COP_n := \{ M \in SYM_n : \mathbf{x}^T M \mathbf{x} \ge 0 \text{ for all } \mathbf{x} \ge 0 \}$

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{M \in SYM_n : M \text{ is completely positive}\}\$

کنج محدب بسته است. POS_n

$$\lambda M = \sum_{i=1}^{\ell} (\sqrt{\lambda} \mathbf{x}_i) (\sqrt{\lambda} \mathbf{x}_i)^T$$
 کنج

كنج محدب بسته بودن ماتريسهاى كاملا مثبت

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

 $\lim_{k\to\infty} M^{(k)} = M \in SYM_n$

 $M \in POS_n$:

 $\mathbf{x}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_i^{(k)}$ کنج محدب بسته بودن

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

 $\lim_{k\to\infty} M^{(k)} = M \in SYM_n$

 $M \in POS_n$:حکم

 $\mathbf{X}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_i^{(k)}$ کنج محدب بسته بودن

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

 $\lim_{k\to\infty} M^{(k)} = M \in SYM_n$

$$M \in POS_n$$
 :حکم

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)T} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

 $\mathbf{X}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_i^{(k)}$ کنج محدب بسته بودن

$$A^{(k)}$$
نستون i از $A^{(k)}$: \mathbf{A} مثبت $\mathbf{a}_i^{(k)}$

$$\mathbf{a}_i^{(k)}$$
 مثبت $\mathbf{a}_i^{(k)}$

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_{i}^{(k)} \mathbf{x}_{i}^{(k)}^{T} = A^{(k)} A^{(k)}^{T} \in POS_{n}$$

$$\lim_{k\to\infty} M^{(k)} = M \in SYM_n$$

$$M \in \mathrm{POS}_n$$
:حکم

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

 $\mathbf{A}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_i^{(k)}$ کنج محدب بسته بودن

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

$$\lim_{k\to\infty} M^{(k)} = M \in SYM_n$$

$$M \in POS_n$$
:

$$M \in POS_n$$
: بردارهای ai کراندارند

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)T} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

زبر رشته با حد ai دارند

$\mathbf{a}_i^{(k)}$ ستون \mathbf{i} از $A^{(k)}$ کنج محدب بسته بودن $\mathbf{a}_i^{(k)}$

$$\mathbf{a}_i^{(k)}$$
ناز $A^{(k)}$: \mathbf{A} مثبت

ردن
$$\mathbf{a}_{i}^{(k)}$$
 کار مثبت $\mathbf{a}_{i}^{(k)}$

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

$$\lim_{k\to\infty} M^{(k)} = M \in SYM_n$$

$$M \in POS_n$$
:

$$M \in POS_n$$
 جحم: ai بر دارهای ai

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

- ماتریس A: با ستونهای ai

$\mathbf{a}_i^{(k)}$ ستون \mathbf{i} از $A^{(k)}$ کنج محدب بسته بودن $\mathbf{a}_i^{(k)}$

$$\mathbf{A}^{(k)}$$
 مثبت $\mathbf{a}_i^{(k)}$

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_i^{(k)} \mathbf{x}_i^{(k)}^T = A^{(k)} A^{(k)}^T \in POS_n$$

$$\lim_{k\to\infty} M^{(k)} = M \in SYM_n$$

$$M = (\lim A)(\lim A)^{\mathsf{T}}$$
 حکم: $M \in \mathrm{POS}_n$ حکم

بردارهای ai کراندارند

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)}^T \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

- زبر رشته با حد ai دارند
- ماتریس A: با ستونهای ai

$\mathbf{a}_{i}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_{i}^{(k)}$ از $\mathbf{A}^{(k)}$ کنج محدب بسته بودن

$$M^{(k)} = \sum_{i=1}^{\binom{n+1}{2}} \mathbf{x}_{i}^{(k)} \mathbf{x}_{i}^{(k)}^{T} = A^{(k)} A^{(k)}^{T} \in POS_{n}$$

 $\lim_{k\to\infty} M^{(k)} = M \in SYM_n$

$$\lim_{k\to\infty} m$$
 $\longrightarrow m \in \mathfrak{S} \mathfrak{l} \mathfrak{M}_n$

$$M = (\lim A)(\lim A)^{\top} : \longrightarrow M \in POS_n : \longrightarrow$$

بردارهای ai کراندارند

$$m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$$

- زیر رشته با حد ai دارند
- ماتریس A: با ستونهای ai
- حد قطر AA^{\top} = قطر M (حد تابع پیوسته = تابع پیوسته حد)

$\mathbf{A}^{(k)}$ نج محدب بسته بودن $\mathbf{a}_{i}^{(k)}$ کنج محدب بسته بودن

 $\lim_{k\to\infty} M^{(k)} = M \in SYM_n$

 $m_{ii} = \lim_{k \to \infty} M_{ii}^{(k)} = \lim_{k \to \infty} \mathbf{a}_i^{(k)T} \mathbf{a}_i^{(k)} = \lim_{k \to \infty} \|\mathbf{a}_i^{(k)}\|^2$

حد قطر AA^{\top} = قطر M (حد تابع پیوسته = تابع پیوسته حد)

 $M = (\lim A)(\lim A)^{\top}$

 $m_{ij} = \lim_{k \to \infty} \mathbf{a}_i^{(k)T} \mathbf{a}_j^{(k)} = \mathbf{a}_i^T \mathbf{a}_j$

$$A^{(k)}$$
از $A^{(k)}$ $\mathbf{a}_i^{(k)}$

$$\mathbf{a}_i^{(k)}$$
ستون $\mathbf{a}_i^{(k)}$

$$A^{(k)}$$
ستون i از $\mathbf{a}_i^{(k)}$

ب بسته بودن
$$\mathbf{a}_i^{(k)}$$
 بسته بودن $\mathbf{a}_i^{(k)}$ بسته $\mathbf{a}_i^{(k)}$ \mathbf{a}_i

 $M \in \mathrm{POS}_n$:حکم

بردارهای ai کراندارند

زیر رشته با حد ai دارند

حد بقیه درایهها

ماتریس A: با ستونهای ai

$$M = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = AA^T, \tag{7.2}$$

where $A \in \mathbb{R}^{n \times \ell}$ is the (nonnegative) matrix with columns $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_{\ell}$.

 $POS_n := \{ M \in SYM_n : M \text{ is completely positive} \}$

کنج محدب بسته است. POS_n

$$\lambda M = \sum_{i=1}^{\ell} (\sqrt{\lambda} \mathbf{x}_i) (\sqrt{\lambda} \mathbf{x}_i)^T$$
 کنج

7.1.7 Theorem. $POS_n^* = COP_n$.

$$M \in \mathrm{POS}_n^*$$
الف $M \in \mathrm{COP}_n$ (الف

$$M \in POS_n^*$$
الف $M \in COP_n$ (الف)

$$M \notin \mathrm{POS}_n^*$$
 آنگاه $M \notin \mathrm{COP}_n$ (ب

$$M \in POS_n^*$$
الف $M \in COP_n$ (الف $M \in COP_n$

$$X \in \mathrm{POS}_n$$
معادلا: $M \cdot X \geq 0$ برای هر

$$M \notin POS_n^*$$
ب $M \notin COP_n$ (ب

$$M \in POS_n^*$$
الف $M \in COP_n$ (الف $M \in COP_n$

$$X \in \mathrm{POS}_n$$
معادلا: $0 \leq X \cdot M$ برای هر

 $M \notin POS_n^*$ ب $M \notin COP_n$ (ب

$$M \in \operatorname{POS}_n^*$$
الف $M \in \operatorname{COP}_n$ (الف •

$$X \in \mathrm{POS}_n$$
معادلا: $0 \leq X \cdot M$ برای هر

$$\underbrace{M}_{\in \text{COP}_n} \bullet \underbrace{\sum_{i=1}^{c} \mathbf{x}_i \mathbf{x}_i^T}_{\in \text{POS}_n}$$

 $M \notin POS_n^*$ ب $M \notin COP_n$ (ب

$$M \in POS_n^*$$
الف $M \in COP_n$ (الف •

$$X \in \mathrm{POS}_n$$
معادلا: $0 \le X \bullet M$ برای هر

$$\underbrace{M}_{\in \text{COP}_n} \bullet \underbrace{\sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T}_{\in \text{POS}_n} = \sum_{i=1}^{\ell} M \bullet \mathbf{x}_i \mathbf{x}_i^T$$

 $M \notin POS_n^*$ ب $M \notin COP_n$ (ب

$$M \in \operatorname{POS}_n^*$$
الف $M \in \operatorname{COP}_n$ (الف •

$$X \in \mathrm{POS}_n$$
معادلا: $0 \leq X \bullet M$ برای هر

$$X \in POS_n$$
 معادلا: $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ معادلا: $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ برای هر $M \cdot X = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i^T M \underbrace{\mathbf{x}_i}_{\geq 0}$

 $M \notin POS_n^*$ آنگاه $M \notin COP_n$ (پ

$$M \in \operatorname{POS}_n^*$$
الف $M \in \operatorname{COP}_n$ (الف •

$$X \in \mathrm{POS}_n$$
 معادلا: $M \cdot X \geq 0$ برای هر

$$X \in POS_n$$
 معادلا: $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ معادلا: $M \cdot X \geq 0$ معادلا: $M \cdot X \geq 0$ معادلا: $M \cdot X = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i^T M \underbrace{\mathbf{x}_i}_{\geq 0} \geq 0$

 $M \notin POS_n^*$ آنگاه $M \notin COP_n$ (پ

$$M \in \operatorname{POS}_n^*$$
الف $M \in \operatorname{COP}_n$ (الف •

$$X \in \mathrm{POS}_n$$
 معادلا: $M \bullet X \geq 0$ برای هر

$$X \in POS_n$$
 معادلا: $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ معادلا: $M \cdot X \geq 0$ معادلا: $M \cdot X \geq 0$ معادلا: $M \cdot X = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i^T M \underbrace{\mathbf{x}_i}_{\geq 0} \geq 0$

$$M \notin POS_n^*$$
ب) $M \notin COP_n$ آنگاه

 $x^{\mathsf{T}}Mx < 0$ بردار نامنفی \mathbf{x} هست که

$$M \in \mathrm{POS}_n^*$$
الف $M \in \mathrm{COP}_n$ (الف •

$$X \in \mathrm{POS}_n$$
معادلا: $0 \leq X \bullet M$ برای هر

$$X \in POS_n$$
 معادلا: $M \cdot X \geq 0$ برای هر $M \cdot X \geq 0$ معادلا: $M \cdot X = \sum_{i=1}^{\ell} \mathbf{x}_i \mathbf{x}_i^T = \sum_{i=1}^{\ell} \mathbf{x}_i^T M \underbrace{\mathbf{x}_i}_{\geq 0} \geq 0$

$$M \notin POS_n^*$$
ب) $M \notin COP_n$ آنگاه

$$x^{\mathsf{T}}Mx < 0$$
 بردار نامنفی x هست که

$$M \bullet xx^{\mathsf{T}} < 0$$
 بردار نامنفی x هست که

1.7 Theorem.
$$100_n - 001_n$$
.

 $POS_n \subseteq PSD_n \subseteq COP_n$

Cone Programming

(P) Maximize $\langle \mathbf{c}, \mathbf{x} \rangle$

 $X \succeq 0$.

naximize

subject to $\mathbf{b} - A(\mathbf{x}) \in L$ برنامهریزی هممثبت $\mathbf{x} \in K$.

$C \bullet X$

subject to A(X) = b $X \in COP_n$

maximize

SDP

 $C \bullet X$ subject to $A_i \bullet X = b_i, \quad i = 1, 2, \dots, m$

برنامهریزی کاملا مثبت $C \bullet X$ maximize

maximize

subject to A(X) = b $X \in POS_n$ LP $c^{\mathsf{T}}x$

subject to Ax = b $x \ge 0$

