For every given f(n) and g(n) prove that f(n) = O(g(n)) or $\Omega(g(n))$:-

Q1:
$$f(n) = n^3$$
, $g(n) = n^2$

A1: $: n^3 \ge n^2$ is true for $n \ge 1$

$$f(n) \ge g(n)$$
 is true

$$\therefore f(n) = \Omega(g(n)) \#$$

Q2:
$$f(n) = log(n)$$
, $g(n) = log^{2}(n)$

A2: $: log(n) \le log^2(n)$ is true for $log(n) \ge 1$

$$f(n) \le g(n)$$
 is true

$$\therefore f(n) = O(g(n)) \#$$