```
In [40]:
          import pandas as pd
           from sklearn.datasets import load iris
           iris=load_iris()
In [41]: | dir(iris)
Out[41]: ['DESCR',
            'data',
            'data module',
            'feature_names',
            'filename',
            'frame',
            'target',
            'target_names']
In [42]: | iris.feature_names
Out[42]: ['sepal length (cm)',
            'sepal width (cm)',
            'petal length (cm)',
            'petal width (cm)']
In [43]:
          df=pd.DataFrame(iris.data, columns=iris.feature_names)
           df.head()
Out[43]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
           0
                                                                          0.2
                           5.1
                                           3.5
                                                           1.4
            1
                           4.9
                                           3.0
                                                           1.4
                                                                          0.2
                                                                          0.2
            2
                           4.7
                                           3.2
                                                           1.3
            3
                                           3.1
                                                           1.5
                                                                          0.2
                           4.6
                           5.0
                                           3.6
                                                           1.4
                                                                          0.2
          df['target']=iris.target
In [44]:
           df.head()
Out[44]:
              sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) target
                           5.1
            0
                                           3.5
                                                           1.4
                                                                          0.2
                                                                                   0
            1
                           4.9
                                           3.0
                                                                          0.2
                                                                                   0
                                                           1.4
            2
                           4.7
                                           3.2
                                                           1.3
                                                                           0.2
                                                                                   0
            3
                           4.6
                                           3.1
                                                           1.5
                                                                          0.2
                                                                                   0
                           5.0
                                                                                   0
            4
                                           3.6
                                                           1.4
                                                                           0.2
In [45]: | iris.target_names
Out[45]: array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
```

In [46]: df[df.target==2].head()

O I	$\Gamma \land C \Gamma$	
THIT	1716	•
out	1 T U	

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2

Out[47]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_names
0	5.1	3.5	1.4	0.2	0	setosa
1	4.9	3.0	1.4	0.2	0	setosa
2	4.7	3.2	1.3	0.2	0	setosa
3	4.6	3.1	1.5	0.2	0	setosa
4	5.0	3.6	1.4	0.2	0	setosa

In [48]: from matplotlib import pyplot as plt

In [49]: |%matplotlib inline

In [51]: df2.head()

Out[51]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_names
100	6.3	3.3	6.0	2.5	2	virginica
101	5.8	2.7	5.1	1.9	2	virginica
102	7.1	3.0	5.9	2.1	2	virginica
103	6.3	2.9	5.6	1.8	2	virginica
104	6.5	3.0	5.8	2.2	2	virginica

```
In [52]: plt.xlabel('sepal length (cm)')
    plt.ylabel('sepal width (cm)')

plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color='green'
    plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color='blue',
```

Out[52]: <matplotlib.collections.PathCollection at 0x1d4406a5000>


```
In [53]: from sklearn.model_selection import train_test_split
```

```
In [54]: x=df.drop(['target','flower_names'],axis='columns')
x.head()
```

Out[54]:

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
3	4.6	3.1	1.5	0.2
4	5.0	3.6	1.4	0.2

```
In [55]:
         y=df.target
Out[55]: 0
                 0
                 0
         2
                 0
                 0
          3
         4
                 0
         145
                 2
         146
                 2
                 2
         147
         148
                 2
         149
                 2
         Name: target, Length: 150, dtype: int32
In [56]: | x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)
In [57]: len(x_train)
Out[57]: 120
In [58]:
         len(x_test)
Out[58]: 30
In [59]:
         from sklearn.svm import SVC
         model=SVC(kernel='linear')
In [60]: |model.fit(x_train,y_train)
Out[60]:
                    dvc
          SVC(kernel='linear')
In [61]: model.score(x_test,y_test)
Out[61]: 0.966666666666667
 In [ ]:
```