SECTION D'UN VOLUME PAR UN PLAN

Module n° 5

I. Le tétraèdre

Un tétraèdre est un volume dont les quatre faces sont des triangles.

Un tétraèdre est dit régulier lorsque chacune de ses faces est un triangle équilatéral.

- 1. Représenter un tétraèdre en perspective cavalière.
- 2. Construire un patron du tétraèdre régulier ABCD d'arête 4 cm.

II. Section du tétraèdre

L'objectif est de construire la section d'un tétraèdre par un plan.

Observation sur le logiciel Géospace

Méthode

Chacune des faces du tétraèdre définit un plan.

Pour déterminer la section d'un tétraèdre par un plan \mathcal{P} ,

- on détermine la droite d'intersection de chacune des faces du tétraèdre avec ce plan
- on laisse visible la trace du plan $\mathcal P$ sur chacune des faces du tétraèdre.

Situation

ABCD est un tétraèdre régulier.

Le point I est un point de l'arête [AC], le point J est sur la face ACD et le point K sur la face ABD.

Les points I, J et K définissent un plan noté \mathcal{P} .

Le but ici est de construire la section du tétraèdre par ce plan \mathscr{P} .

Seconde Module

1. Question de cours

Rappeler les résultats concernant la position relative de deux plans. En particulier, énoncer une propriété concernant deux plans non parallèles.

- 2. Reproduire la figure ci-dessus.
- 3. Déterminer et tracer successivement les intersections suivantes :
 - a. $\mathcal{P} \cap (ADC)$
 - b. $\mathcal{P} \cap (ABD)$
 - c. $\mathcal{P} \cap (ABC)$
 - d. $\mathcal{P} \cap (BCD)$
- 4. Représenter la trace du plan ${\mathcal P}$ sur le tétraèdre ABCD.

III. Section d'un pavé

Situation

ABCDEFGH est un pavé droit.

On considère un point M du segment [AD], un point K du segment [HG] et un point N de la face (ABC).

Les points M, N et K définissent un plan noté P.

- 1. Reproduire la figure ci dessus.
- 2. Construire la section du pavé par le plan $\mathcal{P}.$

Seconde Module