In type-1 semiconductors, semiconductivity, critical temp is low low critical magnetic field perfectly obey the Meissner effect and exhibits single scritical magnetic field. In type-2 semi conductors, critical temperature is high, High critical magnetic field, partly obey the Meissner effect and Exhibits two critical magnetic field Important applications of superconductivity are dominated by the use of LTS materials and include: · Magnets for Mognetic Resonance Imaging.
· Low and high field for NMR
· Accelerators for high energy physics
· Industrial magnets for magnetic separation.

PAGE TIPE
n GI III at
on simplifying egn 3, we get
$\mu = \sigma R H$
a set of physical properties
Superconductivity is a set of physical proporties Observed in certain materials where electrical Observed in certain materials where electrical
and istance vanishes and magnetic jeur oriente
from the material
Critical temperature of a substance is the temperature
at and above which vapor of the substance
at and above which vapor of the substance how much pressure cannot be liquified, no matter how much pressure is applied. Every substance has a critical temp.
The critical pressure of a substance is the
pressure required to liquify a gas at its
Omisw 201.4

2) Superconductivity is a set of observed in certain materials

The meissner effect is the expulsion of a magnetic field from a superconductor during its transition to the superconducting state when it is could below the critical temperature.

A superconductor with little or no magnetic field within it is said to be in the Meissner state. The Meissner state breaks down when the applied magnetic field is too storing.

Name → 8ec →	Harsh Jain 6 DATE 180521
	201500266 PAGE □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
	PHYSICS ASSIGNMENT ON
	SOLIO STATE PHYSICS
13	Hall Effect is defined as the difference in voltage generated across a current-carrying conductor, is traverse to an electrical current
	in the conductor and an applied magnetic field perpendicular to the current.
	derivation
	we all know that,
	$R_{H} = \sigma_{n}^{2} R_{n} + \sigma_{e}^{2} R_{e} \qquad 0$ $(\sigma_{n} + \sigma_{e})^{2}$ where,
	on → conductivity of pholes
	To I conductivity of alactains
	Rn - hall coefficient for hales
	Rn -> hall coefficient for hules Re -> hall coefficient for electrons Rn -> Hall Coefficient
	RH - Hall Coefficient
	now, mobility, $\mathcal{U} = \begin{vmatrix} q_{1}T \\ m \end{vmatrix} - 2$
	then, $\sigma = \mathcal{U}e \Psi e \Lambda e + \mathcal{U}_h \Psi_h \Lambda_h$
	so, $R_H = \frac{1}{ V } \frac{n_h u_h^2 - n_e u e^2}{(n_h u_h + n_e u e)^2}$
	(man in the me)

Teacher's Signature....