Homework 04 Fundamental group of the circle

Algebraic Topology - Winter 2021

Due: February 11, 2021, 11:59 pm

- 1. Let (X, x_0) , (Y, y_0) be path-connected spaces in **Top**_{*}. Let $\ell : (X, x_0) \to (Y, y_0)$ be a covering map. For a path γ in Y starting at y_0 , denote by $\widetilde{\gamma}$ a lift of γ starting at x_0 .
 - (a) Lebesgue's number lemma.
 - (b) Prove that the "unwinding" map

$$\pi_1(Y, y_0) \to \ell^{-1}(y_0)$$
$$[\gamma] \to \widetilde{\gamma}(1)$$

is surjective.

- 2. Let X, Y be non-empty spaces in **Top**. A map $\ell: X \to Y$ is said to be a *local homeomorphism* if every $x \in X$ has an open neighborhood $U \subseteq X$ such that $\ell|_U: U \to \ell(U)$ is a homeomorphism, where $\ell(U)$ is open in Y and is given the subspace topology.
 - (a) Show that every covering map is a local homeomorphism.
 - (b) Show that the converse of the above statement is not true.
- 3. The real projective space \mathbb{RP}^n is defined as

$$\mathbb{RP}^n := S^n/(x_0, x_1, \dots, x_n) \sim (-x_0, -x_1, \dots, -x_n)$$

for all $(x_0, x_1, ..., x_n) \in S^n$, where n is a positive integer.

- (a) Show that $\mathbb{RP}^1 \cong S^1$.
- (b) Show that the natural quotient map $\ell: S^n \to \mathbb{RP}^n$ is a covering map.
- (c) What is the map $\pi_1(\ell): \pi_1(S^1) \to \pi_1(\mathbb{RP}^1)$, where we identify both $\pi_1(S^1)$ and $\pi_1(\mathbb{RP}^1)$ with \mathbb{Z} ?
- (d) Compute $\pi_1(\mathbb{RP}^n)$.
- (e) Show that $\mathbb{RP}^n \ncong S^n$ for n > 1.
- (f) In a previous homework, you constructed a CW structure on S^2 with two 0-cells, two 1-cells, and two 2-cells. Using that, construct a CW structure on \mathbb{RP}^2 with one 0-cell, one 1-cell, and one 2-cell. Be careful with the gluing maps! (Optional: Generalize this to higher dimensions.)

4. (Optional) For this question, assume that all paths and all homotopies are smooth and all loops are based at (1,0).

We know that $\mathbb{R}^2 \setminus \{0\}$ deformation retracts onto $S^1 = \{(x,y) : x^2 + y^2 = 1\}$ and hence $\pi_1(\mathbb{R}^2 \setminus \{0\}) \cong \mathbb{Z}$. We can *almost* prove this fact directly using just calculus. The "unwinding" map $\pi_1(\mathbb{R}^2 \setminus \{0\}) \to \mathbb{Z}$ is supposed to send a loop γ to the *number of counterclockwise rotations* made by γ around the origin. We'll construct this map using line integrals.

We start by defining θ to be the angle that the vector (x, y) makes with the positive x-axis in the counterclockwise direction. For vectors a with positive x-coordinate, this can be defined as

$$\theta(x, y) := \arctan(y/x)$$
.

It is not possible to extend θ continuously to all of $\mathbb{R}^2 \setminus \{0\}$ but its derivatives can be extended!

(a) Define the following formal expression

$$d\theta := \frac{\partial \theta}{\partial x} dx + \frac{\partial \theta}{\partial y} dy.$$

Show that

$$d\theta = \frac{xdy - ydx}{r^2},$$

where $r = \sqrt{x^2 + y^2}$. Note that $d\theta$ is well-defined over all of $\mathbb{R}^2 \setminus \{0\}$.

The line integral $\oint_{\gamma} d\theta$ measures the change in the angle θ along the path γ . Hence, the *winding number* of γ , which is defined as

$$w(\gamma) := \frac{1}{2\pi} \oint_{\gamma} d\theta,$$

measures the number of counterclockwise rotations made by γ around the origin.

(b) Show that

$$w(\gamma_n) = n$$

where *n* is an integer and γ_n is the loop defined as $\gamma_n(t) = (\cos(2\pi nt), \sin(2\pi nt))$.

(c) Using Stoke's theorem, show that if there is a path homotopy connecting γ to γ' then

$$w(\gamma) = w(\gamma'),$$

where γ and γ' are paths in $\mathbb{R}^2 \setminus \{0\}$.

(d) Using the fact that line integrals are invariant under reparametrization, argue that

$$w(\gamma \cdot \gamma') = w(\gamma) + w(\gamma'),$$

where γ and γ' are loops in $\mathbb{R}^2 \setminus \{0\}$.

(e) Assume that $\pi_1(\mathbb{R}^2 \setminus \{0\})$ is isomorphic to the group of smooth loops modulo smooth homotopies. Then the above arguments *almost* prove that the map $w : \pi_1(\mathbb{R}^2 \setminus \{0\}) \to \mathbb{Z}$ is a group isomorphism. What is missing? It is this last missing part that requires the theory of covering spaces in an essential way.

Suggested exercises for practice from Hatcher

Pg. 38 5, 6, 7

Pg. 39 16, 17