Demarcus Cotto ASTE 320-500 2a march 2020

W

ASSIGNMENT 3

4013

(a) done in code

6 4:26 , d=5

Standard houssian Distribution

$$P_{G}(z) = \frac{1}{\sigma^{2}} \cdot e^{1-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}}$$
; $x = 15$, $\Delta x = 2$

<u>X:</u>	Palxi) * 400 (to normalize to area of histogram)	
15	2.838	
17	6.316	
19	11.978	
2\	19.358	
23	26.658	
25	2013	
27	31 283	
29	16.658	ta en en en
2)	19.358	

33

35 6-3/6

37 2.838

 \mathbb{C} Calculating χ^2 :

by def.
$$\chi^2 = \sum_{i=1}^{N} \left(\frac{\chi_i - \mu_i}{\sigma_i} \right)^2$$
 where $\mu_i = 26$

* Xi = mid point data points w/ each trequency accounted for.

X	frequency	X2 x trequency
15	4	19.36
17	3	15.42
19	1 11	71.56
21	20	20.0
23	1 26	9,36
75	1 31	1 624 PEX = 201.16 = x2
27	29	1000 F 000 100 100 100 100 100 100 100 1
ra	1 22	3.02
31	76	1 24.0
33	13	25.48
35	1 5	No. 2
37	2	A day
39	3	20.28

comparing the hand calculated values w/ the python values
gives almost the exact values when reglecting precision error due
to truncation error.

In analyzing the % error of x° = 1200.16-2001 \$100 = 2.08%. Not bad!