WHAT IS CLAIMED IS:

1	1. A base transceiver station for use in communication
2	with a plurality of radio mobile station apparatuses based
3.	on code division multiple access, comprising a reception
4	signal interference canceller device,
5	the interference canceller device comprising:
6	a slot configuration circuit for dividing a reception
7	signal at certain time intervals, converting the divided
8	signal into signals at a faster cycle and converting into
9	a signal having a serial slot configuration as many the
10	converted signals as stages for stage processing on a signal
11	identical to the converted signals at a faster cycle;
12	a correlation circuit for performing a despreading
13	process on the signal having the slot configuration;
14	a stage addition circuit for adding the number of
15	stages for stage processing to the despread signals;
16	a re-spreading circuit for performing a re-spreading
17	process on the signals which have been subjected to the stage
18	addition:
19	a synthesis circuit for performing a process of
20	synthesizing all of the spread signals which have been
21	subjected to the re-spreading process to generate replica

- 22 signals; and
- 23 a subtraction process circuit for performing a
- 24 subtraction process between the replica signals and the
- 25 reception signals,
- 26 wherein signals obtained by subtraction process for
- 27 the replica signals and the reception signals are repeatedly
- 28 fed back to the correlation circuit thereby to eliminate
- 29 an interference component.
 - 2. A base transceiver station according to Claim 1,
 - 2 wherein the slot configuration circuit divides the
 - 3 reception signal at certain time intervals such that one
 - 4 of the divided signals partially overlaps another divided
 - 5 signal at a signal dividing point.
 - 3. A base transceiver station according to Claim 1,
 - 2 wherein among the signals having a serial slot configuration,
 - 3 with respect to the slot signal to be despread:
 - before being inputted to the correlation circuit, only
 - 5 a first slot thereof is allowed to pass through and the rest
 - 6 of the slots is disallowed to pass; and
 - 7 the signal whose second slot and subsequent slots are
 - 8 subjected to an interference cancellation process and then
 - 9 fed-back, is inputted into the correlation circuit.

- 1 4. A base transceiver station according to Claim 1,
- 2 wherein the stage addition circuit selects valid signals
- 3 out of the despread signals inputted thereto, selects
- 4 signals to be added, and selects signals to be re-spread
- 5 and further selects the despread signals for controlling
- 6 selections thereof and adding.
- 1 5. A base transceiver station according to Claim 1,
- 2 wherein:
- 3 the correlation circuit comprises a shift register,
- 4 despread code setting elements and a matched filter having
- 5 an addition circuit; and
- 6 in correlation detection for outputting a correlation-
- 7 value signal by sequentially shifting the reception signals
- 8 inputted to the shift register to the subsequent stages,
- 9 and meanwhile integrating with the despread code setting
- 10 elements, and adding the integrated signals, the matched
- 11 filter conducts correlation detection by switching despread
- 12 codes set in the despread code setting element within the
- 13 period during which the signals in the shift register are
- 14 shifted to the subsequent stages, and performs a despreading
- 15 process for a plurality of users.
- 1 6. A base transceiver station according to Claim 1,
 - 2 wherein the path detection circuit comprises:

- 3 a selector for selecting pilot signal portions at the
- 4 beginning of the correlation value signals outputted by the
- 5 correlation circuit;
- 6 an averaging circuit for performing an averaging
- 7 process on the selected pilot signals among the slot
- 8 signals;
- 9 an accumulation circuit for performing accumulation
- 10 of the averaged pilot signals and the slot signals in the
- 11 subsequent stages;
- 12 a forgetful averaging circuit for performing a
- 13 forgetful averaging process between the accumulatively
- 14 added signals and other accumulatively added signals in the
- 15 subsequent stages;
- a path detection/peak detection circuit for detecting
- 17 paths for the reception signals from the correlation value
- 18 signals which have been subjected to the forgetful averaging
- 19 process and detecting the peaks and positions of valid
- 20 paths; and
- 21 a despread signal detection circuit for detecting
- 22 despread signals from the correlation value signals based
- 23 on the information of valid paths detected by the path
- 24 detection/peak detection circuit.
 - 1 7. A method for eliminating interference components in
- 2 a reception signal, comprising the steps of:

3	receiving a signal transmitted by a radio mobile base
4	station;
5	dividing the reception signal at certain time
6	intervals, converting the divided signal into signals at
7	a faster cycle and converting the thus obtained signals into
8	a signal having a serial slot configuration and including
9	as many signals identical to the thus obtained signals as
10	the number of stages for stage processing;
11	performing a despreading process on the signal having
12	the slot configuration and a feedback signal;
13	adding the number of stages for stage processing
14	despread signals obtained by the despreading process;
15	performing a despreading process on the signals which
16	have been subjected to the stage addition;
17	performing a process of synthesizing all of the spread
18	signals obtained by the re-spreading process to generate
19	replica signals; and
20	performing a subtraction process between the replica
21	signals and reception signals and generating the feedback
22	signal to output signals which have been subjected to the
23	stage addition.