Inteligencja obliczeniowa w analizie danych

Metody ewolucyjne / Algorytmy genetyczne

Prof. dr hab. inż. Norbert Skoczylas

Gdzie jesteśmy

Algorytmy heurystyczne

Algorytmy probabilistyczne

Algorytmy genetyczne

Strategie ewolucyjne

Metody roju cząstek

Logika rozmyta

Rozmyte systemy wnioskujące

Sterowanie rozmyte

Sztuczne sieci neuronowe

Algorytmy genetyczne

John Henry Holland (1929 - 2015) — amerykański naukowiec, profesor psychologii, elektrotechniki i informatyki na University of Michigan. Pionier dziedziny zwanej obecnie algorytmami genetycznymi.

- AG to algorytmiczna analogia naturalnych procesów ewolucji zachodzących w przyrodzie.
- Siłą napędową ewolucji jest maksymalne dopasowanie osobników do wymagań stawianych przez środowisko.
- Rolę środowiska w przypadku implementacji algorytmicznej spełnia tu funkcja jakości (funkcja celu, funkcja przystosowania).
- Pomimo elementu losowości AG nie błądzą przypadkowo, lecz wykorzystują efektywnie przeszłe doświadczenia.

locus - miejsce genu w chromosomie;

chromosomów, osobników)

selekcja - wybór osobników, które zostaną poddane operacjom genetycznym dokonany na podstawie funkcji jakości.

krzyżowanie - operacja

mająca na celu wymianę materiału genetycznego między osobnikami. Losowy osobnik *n* Losowy osobnik *m*

Losowy locus

mutacja - zmiana jednego lub kilku genów

w chromosomie (przeciwnu allel)

Losowy Losowy

Reasumując – osobnikiem, bądź chromosomem nazywamy konkretną (jedną z wielu) koncepcję rozwiązania jakiegoś problemy ..

Czy to jest dobra koncepcja?? – to oceni funkcja jakości ..

Jeśli jest niezła, być może pewien jej fragment jest doskonały – podczas krzyżowania liczymy na to, że złożenie fragmentów koncepcji rozwiązania problemu będzie skutkowało powstaniem jeszcze lepszego ..

Mutacja wprowadza element losowy do potencjalnie dobrego rozwiązania – jest szansa że taki zabieg wybije nas z minimum lokalnego poszukiwać i pozwoli efektywniej kontynuować ewolucję ..

Algorytmy genetyczne - najważniejsze

Zastanówmy się czy:

Czy jest to problem natury optymalizacyjnej – czy poszukujemy optymalnego rozwiązania spośród wielu dostępnych?

- Czy nie ma prostych rozwiązań problemu? Algorytm zachłanny? Jaka jest złożoność obliczeniowa zagadnienia?
- Istnieje funkcja opisująca jakość rozważanego rozwiązania (osobnika), która efektownie nada kierunek ewolucji

 Istnieje możliwość zakodowania potencjalnego rozwiązania problemu (osobnika) w sensownej postaci (chromosom)

Geny w chromosomie mogą kodować rozwiązanie w sposób

Klasyczny - geny na różnych pozycjach przechowują różne informacje. W wyniku krzyżowania geny nie zmieniają pozycji, lecz wartości. Wykorzystywany w problemach, gdzie chcemy dobrać optymalne cechy osobnika.

Permutacyjny - geny przechowują podobne informacje. W wyniku krzyżowania nie zmieniają wartości, lecz miejsce w chromosomie. Wykorzystywany w problemach kombinatorycznych, np. problemie komiwojażera.

Drzewiasty - chromosom tworzy złożoną strukturę drzewiastą. W czasie krzyżowania przesunięciom ulegają całe gałęzie genów. Często geny mogą zmieniać także wartości. Wykorzystywany w programowaniu genetycznym oraz tam, gdzie ewolucji podlegają reguły matematyczne.

Algorytmy genetyczne – schemat działania

Czy dla niektórych problemów heurystyki to jedyny wybór? – problem KOMIWOJAŻERA

Trasa komiwojażera jest cyklem przechodzącym przez każdy wierzchołek grafu dokładnie jeden raz – "cykl Hamiltona".

Nie jest znany działający w czasie co najwyżej wielomianowym algorytm rozwiązujący problem. Problem jest NP-trudny. Złożoność czasowa O(n!).

Najszybszym superkomputerem w Polsce jest Prometheus na AGH - niemal 2.4 PFLOPS (10¹⁵ floating point operations per second).

n	5	10	15	20	30	50	100
n!	120	3.6E+06	1.3E+12	2.4E+18	2.7E+32	3.0E+64	9.3E+157
n!/2.4E15	5.0E-14	1.5E-09	5.4E-04	1.0E+03	1.1E+17	1.3E+49	3.9E+142

Wiek Wszechświata określa się na 10E+18 sekund – tyle czasu upłynęło od Wielkiego Wybuchu.

chromosom – wektor zawierający n liczb naturalnych – liczby to numery miast które chcemy odwiedzić

Kodowanie chromosomu

7	9	12	4	10	1	8	6	•••	3
1	2	3	4	5	6	7	8		n

locus - miejsce genu w chromosomie – odpowiada także kolejności w jakiej odwiedzimy miasta (miast nr 7 jako 1wsze, miast nr 9 jako 2gie, ostatnie miasto nr 3 jako *n*-te)

Funkcja jakości - ∑x n → m

Odległość x (kilometr)	m n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Warszawa	1		294	172	295	105	176	318	336	278	110	437	465	215	289	516
Kraków	2	295		309	80	201	121	169	127	632	366	336	543	379	85	691
Lublin	3	173	310		351	114	191	164	403	448	281	612	639	389	356	691
Katowice	4	294	79	350		242	161	248	51	571	305	260	467	317	7	615
Radom	5	105	197	113	239		78	192	291	382	183	489	516	267	244	568
Kielce	6	175	120	189	162	81		158	214	452	254	423	513	263	167	565
Rzeszów	7	318	168	170	248	192	157		294	594	396	503	710	546	253	858
Rybnik	8	335	126	407	51	299	219	295		612	346	254	462	358	49	610
Elbląg	9	281	577	450	571	387	458	600	612		247	687	342	272	565	247
Płock	10	108	366	277	305	182	253	396	345	244		421	381	50	298	368
Wałbrzych	11	437	335	605	260	488	427	504	254	688	422		275	434	260	530
Gorzów Wielk.	12	464	542	632	466	516	515	710	461	378	381	274		350	467	257
Włocławek	13	208	372	377	310	260	259	541	351	272	51	426	351		304	319
Chorzów	14	287	85	356	8	248	168	254	50	564	298	260	467	310		615
Koszalin	15	518	798	686	723	569	568	967	718	246	370	531	259	320	723	

Warunek zakończenia ewolucji

Osiągnięcie konkretnej wartość funkcji jakości – wymaga wiedzy o spodziewanym optimum ...

Określona ilość pokoleń bez poprawy funkcji jakości

Poprawa funkcji jakości względem wartości startowej o zadaną wartość % - możemy przerwać dobrze zapowiadającą się ewolucję ...

nie

Losujemy populację początkową

Długość chromosomu – ilość miast do odwiedzenia

kolejność przystosowania osobników

oceniamy populację P(n) – funkcja jakości [km]

1	7	9	12	4	10	1	8	6	 3	33 548	4
2	2	10	3	6	5	9	7	6	 4	31 445	1
3	7	4	6	7	5	3	2	1	 8	38 449	m
•••				•••					 		
m	10	8	9	5	4	6	2	3	 1	32 459	3
	1	2	3	4	5	6	7	8	 N		

(minimalizujemy funkcję jakości)

Lista rankingowa – odcięcie – "twarda ewolucja"

32	7	9	12	4	10	1	8	•••	3	30 548	1
4	2	10	3	6	5	9	7	•••	4	31 445	2
11	7	4	6	7	5	3	2		8	32 449	3
35	2	4	6	7	5	3	9		8	35 332	25
4	3	4	6	7	5	7	2	•••	8	35 871	26
•••		•••	•••	•••			•••				•••
N	10	8	9	5	4	6	2			52 459	m

...wybieramy pewną określoną liczbę najlepszych osobników, którzy wezmą udział w rozmnażaniu...

Osobniki, które nie zostały wybrane, są usuwane z populacji...

Metoda prosta – lista rankingowa

Metoda turniejowa – losujemy określoną ilość par chromosomów, pomiędzy chromosomami realizujemy pojedynki

Przykładowy sposób wyznaczenia prawdopodobieństwa P reprodukcji osobnika k reprezentującego rozwiązanie o jakości r(k) przy bieżącym optymalnym rozwiązaniu r_{opt}

$$P(k) = a + b \cdot \left(\frac{r(k)}{r_{opt}}\right)$$

a, b: współczynniki kontrolne,

$$P(k) = a + b \cdot \left(\frac{r(k)}{r_{opt}}\right)$$
 a, b: wspoiczynniki kontrolne,
$$\sum_{i=0}^{N} P(k_i) = 1 \; ; 0 \le P(k) \le 1 \; ; r(k) \ge r(l) \Rightarrow p(k) \ge r(l)$$

Po wykonaniu operacji krzyżowania oraz mutacji należy przeprowadzić proces sukcesji.

sukcesja z całkowitym sukcesja z częściowym sukcesja elitarna zastępowaniem zastępowaniem w nowej populacji znajduje w nowej populacji się co najmniej jeden nową populacją bazową staje znajdują się osobniki najlepszy osobnik się populacja potomna. z poprzedniej z poprzedniej populacji żaden osobnik z poprzedniej i potomnej populacji populacji nie zostaje może przyspieszyć przeniesiony do nowej. metoda ta prowadzi znalezienie optymalnego zwykle do stabilniejszej rozwiązania pracy algorytmu najwolniej prowadzi do optymalnego rozwiązania, ewolucyjnego, zwiększa prawdopodobieństwo osiągania ekstremów jest najbardziej odporna na może spowodować tendencję do osiągania lokalnych tendencję osiągania ekstremów lokalnych ekstremów lokalnych odporność odporność* odporność szybkość szybkość szybkość

^{*}odporność na utykanie w minimach lokalnych

osobnik potomny n+1 osobnik potomny m+1

osobnik

osobnik

10	7	3	2	4	9	8	6	5	1
6	5	4	2	1	7	10	8	3	9

KRZYŻOWANIE – prostsza koncepcja (tzw. uporządkowane crossover)

> losowy osobnik rodzicielski *n* losowy osobnik rodzicielski *m*

osobnik potomny

 10
 7
 4
 2
 1
 9
 8
 6
 5
 3

 9
 5
 3
 8
 4
 7
 10
 2
 1
 6

 2
 3
 4
 7
 10
 2
 8
 6
 5
 9

losowy

Locus początku

losowy

llość

genów

nie możemy

dopuścić,

by te geny się zdublowały

losowy

W tej metodzie krzyżowania wybieramy fragment chromosomu pierwszego rodzica, a następnie wstawiamy go do potomka. Wszelkie brakujące geny potomka są po kolei dodawane od drugiego rodzica (w kolejności, w jakiej występowały), za wyjątkiem genów które dublują się z pochodzącymi od pierwszego rodzica.

Duży udział mutacji jest pożądany we wczesnych fazach pracy algorytmu (poszukiwanie minimów lokalnych).

Mniejszy udział mutacji jest korzystny w późnych fazach pracy algorytmu (lokalizacja rozwiązania wewnątrz obszaru przyciągania minimum).

na podstawie wskazówek z literatury, prawdopodobieństwo mutacji *Pm*≈1/*L*, gdzie *L* to długość chromosomu).

Miniprojekt 2-

Rozwiążmy algorytmem genetycznym problem komiwojażera, jako klasyczny przykład problemu NP-trudnego

Losujemy na płaszczyźnie n współrzędnych punktów (x_i , y_i), symbolizujących miasta które mamy odwiedzić (z obszaru np. 300x300)..

Każde z miast może być odwiedzone tylko raz.

Sumaryczna odległość pomiędzy miastami w metryce euklidesowskiej jest naszą funkcją celu, którą minimalizujemy.

Możemy przyjąć iż startujemy i wracamy do miasta nr 1..., bądź losowego ..

Parametryzacja powinna pozwalać na:

- wybór ilości miast (wystarczy do 50),
- wybór liczebności populacji,
- wybór prawdopodobieństwa krzyżowania i mutacji,
- dla chętnych opcja wybory metody selekcji pomiędzy rankingową a ruletką.

Wizualizacja mogłaby obejmować (mogłaby, a nie musi, gdyż liczę na kreatywność):

- lokalizację wylosowanych współrzędnych "miast" wraz z zaznaczoną najlepszą trasą w danym pokoleniu,
- wykres pokazujący, jak maleje funkcja jakości w kolejnych pokoleniach (dla najlepszego osobnika) ..
- dla chętnych można dodać "średnią" i najgorszą wartość funkcji celu w kolejnych pokoleniach..

Rozpocznij od wizualizacji

Będziesz miał ciągły wgląd, czy ewolucja przebiega poprawnie.

Możesz wizualizować więcej niż chwilowe najlepsze rozwiązanie .. jemu przeznacz najgrubszą kontrastową

linię, w tle, cienką linią mogą pojawić się np. 2gie i 3cie .. (a może lepiej np. 10te i 30ste ??)

To pokaże, jak operatory genetyczne pracują nad rozwiązaniem optymalnym ..

Jeśli chcesz mieć pewność, jak

wygląda wzorzec rozwiązania dokładnego, do którego powinien dążyć algorytm, wylosuj pary liczb na okręgu .. Algorytm jest ślepy, więc te dane są dla niego równoważne danym absolutnie losowym ..

Rozpocznijcie eksperymenty od stosunkowo małej ilości miast – powiedzmy 20 ..

(20!=2 432 902 008 176 640 000 – 20 trylionów kombinacji ..)

Jeśli uznacie, że algorytm zaczyna optymalizować rozwiązanie, w kolejnych krokach kombinujcie z parametrami – liczebnością populacji, prawdopodobieństwem krzyżowania i mutacji, sposobem selekcji i sukcesji...

Trudno podać arbitralne najlepsze wartości parametrów algorytmu dla każdego problemu...

Rozpocznij od prawdopodobieństwa krzyżowania blisko 100%

i prawdopodobieństwa mutacji blisko 5%.

Jeśli algorytm "zwolni" można spróbować dynamicznie podnieść prawdopodobieństwo mutacji.

Nie zawsze uda znaleźć się rozwiązanie optymalne .. – plan minimum to udowodnienie, że zachodzi optymalizacja ...

Życzę pomyślnej optymalizacji ...

Marzec Na kiedy ?? Pn Wt Śr Cz Pt SO N Kolejny wykład – Wykład za 2 alternatywne heurystyki tygodnie: system ekspercki dzieiejsze obligatoryjne na bazie logiki ćwiczenia: rozmytej – 2024-03-27 i 2024-03-28 ważny... drugi projekt ... Kwiecień Maj Śr **SO** Wt Śr Cz Pt SO Pn Cz Pt Pn TERMINY ODDANIA PROJEKTÓW Wszelkie problemy Kolejne z genetycznym – piszcie 6 kwietnia/ maja/ **Program staży** obligatoryjne montecarlo genetyczny letnich w Pega:

początkiem

maja..

albo przyjdźcie na nieobligatoryjne, albo do mnie (p.317)

Pod linkiem na dole slajdu znajduje się zestawienie z datami oddania kolejnych projektów i .. ogólnie bieżącą sytuacją – proszę sprawdzajcie, czy się nie pomyliłem – jeśli się pomyliłem, piszcie do mnie ...

	I mię		Genetycz	Fuzzy	Neuro	oddanych	Ocena z projektów	egzaminu	K
A	Łucja Weronika	3/21/2025				1	2		
В В	Jakub Marcel	3/24/2025				1	2		
Ch	Maja Jakub Hubert	3/21/2025				0	2 2		
Ch	Wiktor Jan					0	2		
D	Konrad Adam					0	2		
D	Kamil Stanisław	3/19/2025				1	2		
D	Adam					0	2		
D	Tomasz Piotr					0	2		
D	Gabriela					0	2		
D	Jan Bartosz	3/21/2025				1	2		
E F	Maurycy Julia					0	2		
F	Aleksandra Maria					0	2		
G	Zuzanna Ewa					0	2		
G	Patrycja	3/19/2025				1	2		
G	Mikołaj					0	2		
G	Konrad Wojciech					0	2		
G	Jakub	3/19/2025				1	2		
H	Karol					0	2		_
H	Aleksander Jakub	3/21/2025				1	2		-
1	Bartosz Filio Andrzoi					0	2		
J J	Filip Andrzej Aleksandra					0	2 2		
J	Julia Weronika					0	2		
J	Roksana Kamila	3/24/2025				1	2		
J	Weronika					0	2		
Ki	Maria					0	2		
Kn	Maria	3/17/2025				1	2		
K	Karolina					0	2		_
K	Oliwier Piotr	3/15/2025				1	2		-
K	Julia Anita	212212025				0	2		-
K K	Bartlomiej Mariusz Dawid Tomasz	3/23/2025				1	2 2		-
K	Natalia Katarzyna	3/21/2025				1	2		
K	Kacper Bartlomiej	0/21/2020				0	2		-
L	Patryk					0	2		
M	Patrycja Anna	3/21/2025				1	2		
M	Gerard	3/20/2025				1	2		
M	Jakub Franciszek	3/16/2025				1	2		_
M	Eliza Klaudia					0	2		-
<u>М</u> О	Karolina					0	2 2		-
<u>о</u> Р	Joanna Julia Miłosz	3/25/2025				1	2		1
P	Szymon Mateusz	3/23/2023				0	2		
Pie .	Bartosz					0	2		
Piw	Bartlomiej Jakub	3/24/2025				1	2		
Р	Magdalena Maria					0	2		
Р	Dominika					0	2		
R	Gabriel					0	2		
S	Dominik	014710555				0	2		
S	Marcin Jan	3/17/2025				1	2		
S S	Julia Krystyna Julita	3/23/2025				0	2 2		
S	Szymon Marcin	3/16/2025				1	2		
S	Weronika	071072023				0	2		
S	Martyna Joanna					0	2		
S	Wiktoria Danuta					0	2		
S	Aleksandra					0	2		
S	Anna Sara					0	2		
Szcz	Magdalena Anna					0	2		
Szt S-	Magdalena	3/19/2025				1	2		
Sz	Mikołaj					0	2		
T T	Katarzyna	3/17/2025				0	2		
W	Witold Julia Barbara	3/1//2025				0	2 2		
W	Katarzyna					0	2		
W	Oliwia Klaudia	3/25/2025				1	2		
	Michał	3/21/2025				1	2		
Z									
Z Z	Karolina					0	2		L-

Solutions

Customers

Learn

Services & Partners

Events

Software Engineer Summer Intern - Microservices

Job Category: Internships Location: Poland - Krakow

PEGA

About The Summer Internship Program at Pega:

Join an award-winning Internship Program at Pega Poland! Our program starts on July 1st and runs until September 26th. As an intern, you'll actively participate in your team's daily work while also enjoying additional benefits such as:

- Coffee Break Series with Pega's leadership team ask questions and learn from their experience!
- Diversity & Inclusion (D&I) and Employee Resource Group workshops.
- Volunteer activities.

...and much more!

Meet Our Team:

We are building the next generation of Voice AI that transforms words into actions, driving exceptional customer experiences. At Pega, we're bringing cutting-edge customer service solutions to market, equipped with capabilities that make life easier for both customers and customer service agents. Our team is made up of highly technical software engineers and machine learning scientists.

Program staży letnich w Pega:

Dołącz do nagradzanego programu stażowego w Pega! Nasz program rozpoczyna się 1 lipca i potrwa do 26 września.

Apply Now Already have an Enter first name Enter last name Enter phone (re-Enter email (req Enter city (requi Select country o Enter postal coc

How did you lea

https://www.pega.com/about/careers/21089/software-engineer-summer-intern-microservices