COMP3711

Design and Analysis of Algorithms

Larry128

A summary notes for revision

 $Fall\ 2024\text{-}2025$

Contents

1	Pre	requisites	2
	1.1	Input size of Problems	2
	1.2	Asymptotic Notation	2
	1.3	Introduction to Algorithms	6

1 Prerequisites

1.1 Input size of Problems

Input size how large the input is.

Assumption 1. any number can be stored in a computer word

2. each arithmetic operation takes constant time

Examples Sorting: Size of the list or array

Graph problems: Numbers of vertices and edges

Searching: Number of input keys

1.2 Asymptotic Notation

- 1. Running time/ Cost of algorithms
 - i. a function of input size: T(n)
 - ii. number of operations (e.g., comparisons between two numbers)
 - iii. using asymptotic notation, which ignores constants and non-dominant growth terms

2. Intuitions

From the figure above, Algorithm 1 is better for large n.

3. Rigorous definition of asymptotic notation

	Upper bound $T(n) = O(f(n))$	if $\exists c > 0$ and $n_0 \ge 0$ such that $\forall n \ne n_0, T(n) \le cf(n)$
	Lower bound $T(n) = \Omega(f(n))$	if $\exists c > 0$ and $n_0 \neq 0$ such that $\forall n \neq n_0, T(n) \geq cf(n)$
Ì	Tight bound $T(n) = \Theta(f(n))$	if $T(n) = O(f(n))$ and $T(n) = \Omega(f(n))$

4. Big-O Notation

$$T(n) = O(g(n)) \iff \exists n_0 > 0 \text{ s.t. } \forall n \ge n_0, 0 \le T(n) \le c \cdot g(n)$$

Below are some examples of Big-O notation proofs

(a) $T(n) = n, g(n) = n \log_2 n$ We wish to proof $T(n) = n \in O(n \log_2 n)$. Choose $c = 1, n_0 = 2$, for all $n \ge 2 = n_0$,

$$1 \le \log_2 n \iff n \le n \log_2 n \iff n \le c \cdot n \log_2 n$$

(b) $T(n) = n^2, g(n) = n$

We wish to proof $T(n) = n^2 \notin O(g(n))$ by contradiction.

Suppose there exists some c and n_0 such that for all $n \ge n_0$, $n^2 \le c \cdot n$. Then, $n \le c$, $\forall n \ge n_0$, which is not possible as c is a constant and n can be arbitrarily large.

5. Big- Ω Notation

$$T(n) = \Omega(g(n)) \iff \exists n_0 > 0 \text{ s.t. } \forall n \geq n_0, 0 \leq c \cdot g(n) \leq T(n)$$

6. Big-Θ Notation

$$T(n) = \Theta(f(n)) \iff T(n) = O(f(n)) \text{ and } T(n) = \Omega(f(n))$$

- 7. Implementation and experimentation are needed sometimes
 If algorithm A is $T_1(n) = 10n \in \Theta(n)$, algorithm B is $T_2(n) = 1000n \in \Theta(n)$, but algorithm A is superior in practice. In this case, Implementation and experimentation are needed.
- 8. Basic facts on exponents and logarithms
 - (a) $2^{2n} \neq \Theta(2^n)$, proof: set $x = 2^n$, then $x^2 \neq \Theta(x)$
 - (b) $2^{n+2} = 4 \cdot 2^n = \Theta(2^n)$
 - (c) $\log_a(n^b) = \frac{b \log n}{\log a} = \Theta(\log n)$
 - (d) $\log_b a = \frac{1}{\log_a b}$
 - (e) $a^{\log_b n} = n^{\log_b a}$
- 9. Important note on growth of functions

$$k < \log n < n^a < n \log n < n^b < c^n$$

,where $k, c \in \mathbb{R}, 0 < a < 2, b \ge 2$ are constants

- (a) $999^{999^{999}} = \Theta(1)$
- (b) $\log \log n = O(\log n)$, proof: for $n \ge 2$, $\log \log n \le \log n$

(c) $n \log n = O(\frac{n^2}{\log n})$

proof: To show $n \log n = O(\frac{n^2}{\log n})$, it suffices to show that there exists a C > 0, such that

 $n \log n < C \cdot \frac{n^2}{\log n}$ for sufficiently large n.

$$n \log n < C \cdot \frac{n^2}{\log n}$$

$$\iff (\log n)^2 < C \cdot n$$

It's obvious that for large n, $\log(n) < n^{\epsilon}$ for $\epsilon > 0$, then we can pick $\epsilon = \frac{1}{2}$

$$\log n < n^{\frac{1}{2}}$$
$$(\log n)^2 < n$$

Since C > 0, we can see $(\log n)^2 < n < C \cdot n$. We are done.

10. Extra Examples

- (a) $1000n + n\log n = O(n\log n)$
- (b) $n^2 + n \log(n^3) = n^2 + 3n \log n = O(n^2)$
- (c) $n^3 = \Omega(n)$
- (d) $n^3 = O(n^{10})$
- (e) Let f(n) and g(n) be non-negative functions. Using basic definition of Θ -notation, proof that $\max\{f(n),g(n)\}=\Theta(f(n)+g(n))$
 - i. Step 1: proof $\max\{f(n), g(n)\} = O(f(n) + g(n))$ For all n, $\max\{f(n), g(n)\}$ is either equal to f(n) or equal to g(n). So we can deduce that $\max\{f(n), g(n)\} \leq f(n) + g(n)$. Therefore, $\max\{f(n), g(n)\} = O(f(n) + g(n))$.
 - ii. Step 2: proof $\max\{f(n),g(n)\}=\Omega(f(n)+g(n))$ Note that $\max\{f(n),g(n)\}\geq f(n)$ and $\max\{f(n),g(n)\}\geq g(n)$. So

$$\max\{f(n), g(n)\} + \max\{f(n), g(n)\} \ge f(n) + g(n)$$
$$2 \cdot \max\{f(n), g(n)\} \ge f(n) + g(n)$$
$$\max\{f(n), g(n)\} \ge \frac{1}{2}(f(n) + g(n))$$

Then, we have $\max\{f(n), g(n)\} = \Omega(f(n) + g(n))$

- (f) if $A = \log \sqrt{n}$, $B = \sqrt{\log n}$, then $A = \Omega(B)$ proof: $A = \log \sqrt{n} = \frac{1}{2} \log n = \Theta(\log n)$, $B = \sqrt{\log n} = \Theta(\log n)$. We can simply deduce that $\log \sqrt{n} = \Omega(\sqrt{\log n})$
- (g) Bounds of series Arithmetic Series Proof that $\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n = \Theta(n^2)$
 - i. Approach 1: use formula $\sum_{i=1}^{n} i = \frac{n(1+n)}{2} = \Theta(n^2)$
 - ii. Approach 2

A. Step 1: proof $\sum_{i=1}^{n} i = O(n^2)$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\leq n + n + \dots + n$$

$$= \sum_{i=1}^{n} n$$

$$= n \cdot n$$

$$= n^2 = O(n^n)$$

B. Step 2: proof
$$\sum_{i=1}^{n} i = \Omega(n^2)$$

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + (n-1) + n$$

$$\geq 0 + 0 + \dots + 0 + \dots + \frac{n}{2} + (\frac{n}{2} + 1) + \dots + n$$

$$\geq \frac{n}{2} \cdot \frac{n}{2}$$

$$= \frac{n^2}{4} = \Omega(n^2)$$

Then, we can say that $\sum_{i=1}^{n} i = \Theta(n^2)$

(h) Bounds of series - Polynomial Series

Proof that $\sum_{i=1}^{n} i^c = 1^c + 2^c + 3^c + \dots + (n-1)^c + n^c = \Theta(n^{c+1})$

(The proof is more or less the same as the approach 2 of arithmetic series.)

(i) Bounds of series - Harmonic Series H_n

Proof that $H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$.

Let $k = \log_2 n$, then $n = 2^k$.

2.				
index	lower bound	parts of H_n	upper bound	
0	$\left \begin{array}{c} 1 \\ \overline{2} \end{array} \right $	1	1	
1	$2 \times \frac{1}{4} = \frac{1}{2}$	$\frac{1}{2} + \frac{1}{3}$	$2 \times \frac{1}{2} = 1$	
2	$4 \times \frac{1}{8} = \frac{1}{2}$	$\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}$	$4 \times \frac{1}{4} = 1$	
	•••	•••		
k-1	$2^{k-1} \times \frac{1}{2^k} = \frac{1}{2}$	$\frac{1}{2^{k-1}} + \frac{1}{2^{k-1} + 1} \cdots + \frac{1}{2^k - 1}$	$2^{k-1} \times \frac{1}{2^{k-1}} = 1$	
k	0	$\frac{1}{2^k} = \frac{1}{n}$	1	

Therefore,
$$H_n < \sum_{i=0}^k 1 = k+1 = \log_2 n + 1 = O(\log n)$$
 and $H_n > \sum_{i=0}^{k-1} \frac{1}{2} + 0 = \frac{k}{2} = \frac{\log_2 n}{2} = \Omega(\log n)$. So, $H_n = \sum_{i=1}^n \frac{1}{i} = \Theta(\log n)$.

1.3 Introduction to Algorithms

1. What is an algorithm?

An algorithm is an explicit, precise, unambiguous, mechanically-executable sequence of elementary instructions.

- 2. Examples of algorithms
 - (a) Adding two numbers

Input: 2 numbers $x = \overline{x_n x_{n-1} \cdots x_1}, y = \overline{y_n y_{n-1} \cdots y_1}.$

Output: A number $z = \overline{z_{n+1}z_n \cdots z_1}$, such that z = x + y.

```
/*We assume x, y are arrays of length n, z is of length n+1 */
int c = 0; // offset
for (int i = 0; i < n; ++i){
    z[i] = x[i] + y[i] + c;
    if (z[i] >= 10) {
        c = 1;
        z[i] = z[i] - 10;
    }else c = 0;
}
z[n] = c;
```

(b) Sorting Problem

Input: An array $A[1 \cdots n]$ of elements, e.g., [4, 8, 2, 7, 5, 6, 9, 3]

Output: An array $A[1 \cdots n]$ of elements in sorted order (ascending), e.g., [2, 3, 4, 5, 6, 7, 8, 9]

i. Selection sort

```
1 /* Selection sort for ascending order */
2 for (int i=0; i<n-1; ++i){
3     // in the i-th pass, find the smallest element in A[i, i+2, ..., n]
         and swap it with A[i]
4     for (int j=i+1; j<n; ++j){
5         if (A[i] > A[j]){ // swap A[i] and A[j] if A[i] > A[j]
6         int temp = A[i];
7         A[i] = A[j];
8         A[j] = temp;
9     }
10 }
```

For example:

	r
i = 0	$(5, 2, 8, 6, 7, 1) \rightarrow (2, 5, 8, 6, 7, 1) \rightarrow (1, 5, 8, 6, 7, 2)$
i = 1	$(1, 5, 8, 6, 7, 2) \to (1, 2, 8, 6, 7, 5)$
i=2	$(1, 2, 8, 6, 7, 5) \to (1, 2, 6, 8, 7, 5) \to (1, 2, 5, 8, 7, 6)$
i = 3	$(1, 2, 5, 8, 7, 6) \rightarrow (1, 2, 5, 7, 8, 6) \rightarrow (1, 2, 5, 6, 8, 7)$
i = 4	(1, 2, 5, 6, 8, 7)

Running time of selection sort

For selection sort, the total cost of algorithm (total number of comparisons) can be given by

$$(n-1) + (n-2) + \dots + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)(1+n-1)}{2} = \frac{n(n-1)}{2} = \Theta(n^2)$$

Alternatively, we could think in this way: note that the algorithm runs through all possible (i,j) pairs with $1 \le i \le j \le n$. There are $\binom{n}{2} = \frac{n(n-1)}{2}$ possible pairs. So, that's the cost of selection sort.

Note: The cost is always the same for any array of size n.

Proof of correctness of selection sort

Claim: When selection sort terminates, the array is sorted.

Proof: By induction on n.

When n = 1, the algorithm is obviously correct because there's only one element in the array.

Assume that the algorithm sorts every array of size n-1 correctly.

Now, consider what the algorithm does on $A[1 \cdots n]$.

- A. It first puts the smallest item in A[1].
- B. It then runs the selection sort on $A[2 \cdots n]$ of size n. By inductive assumption, this sorts the items in $A \cdots n$.
- C. Since A[1] is smaller than every item in $A[2\cdots n]$, all the items in $A[1\cdots n]$ are now sorted.

ii. Insertion sort

```
/* Insertion sort for ascending order */
for (int i=1; i<n; ++i){
   int j = i-1;
   while (j>=0 && A[j]>A[j+1]){
      int temp = A[j];
      A[j] = A[j+1];
      A[j+1] = temp;
      j = j -1;
   }
}
```

For example:

i = 1	$(\ 5\ 1\ 8\ 6\ 3\ 2\){\rightarrow} (\ 1\ 5\ 8\ 6\ 3\ 2\){\rightarrow} (\ 1\ 5\ 8\ 6\ 3\ 2\)$
i=2	$(\ 1\ 5\ 8\ 6\ 3\ 2\){\to}(\ 1\ 5\ 8\ 6\ 3\ 2\)$
i = 3	$(\ 1\ 5\ 8\ 6\ 3\ 2\) \rightarrow (\ 1\ 5\ 6\ 8\ 3\ 2\) \rightarrow (\ 1\ 5\ 6\ 8\ 3\ 2\)$
i = 4	$(\ 1\ 5\ 6\ 8\ 3\ 2\) \rightarrow (\ 1\ 5\ 6\ 3\ 8\ 2\) \rightarrow (\ 1\ 5\ 6\ 8\ 2\) \rightarrow (\ 1\ 3\ 5\ 6\ 8\ 2\) \rightarrow (\ 1\ 3\ 5\ 6\ 8\ 2\)$
i = 5	$(\ 1\ 3\ 5\ 6\ 8\ 2\) \rightarrow (\ 1\ 3\ 5\ 6\ 2\ 8\) \rightarrow (\ 1\ 3\ 5\ 6\ 8\) \rightarrow (\ 1\ 2\ 3\ 5\ 6\ 8\)$
	\rightarrow (1 2 3 5 6 8)

Running time of insertion sort

Total cost of insertion sort/ number of comparison is at most

$$\sum_{i=2}^{n} (i-1) = \frac{n(n-1)}{2}$$

. This worst case happens when the input array in descending order.

Note: unlike selection sort which always uses $\frac{n(n-1)}{2}$ comparisons for each array of size n, the number of comparisons (running time) of Insertion Sort depends on the input array, and ranges between n-1 and $\frac{n(n-1)}{2}$.

Proof of correctness of insertion sort

```
A[1 \cdots i-1]-sorted key A[i+1 \cdots n]-unsorted
```

After step i, items in $A[1 \cdots i]$ are in proper order. The i-th iteration puts key A[i] in proper place.

iii. Wild-Guess sort

First, we create an array with random permutation, $\vec{\pi} = [4, 7, 1, 3, 8, ...]$, of length n.

```
1 /* check if the order is correct or not */
2 bool check(const int A[], const int& n){
3    for (int i=0; i<n-1; ++i){
4        if ( A[pi[i]] > A[pi[i+1]] ) return false;
5    }
6    return true;
7 }
```

```
if (check(A, n)) return;
else insertion_sort(A, n);
```

It has a very small probability that wild-guess sort is faster than insertion sort but most likely it's slower.