Analyse d'une boucle fermée

Année 2019 - 2020

Plan

- Mise en contexte
- 2 Equations de base de l'automatique
- 3 Principaux objectifs
- 4 Erreur statique vis-à -vis d'entrées polynomiales Type d'un système

Motivation

- Reprendre les principaux objectifs d'une boucle fermée (stabilité, suivi de trajectoire, régulation, sensibilité) et expliciter les compromis qui en résultent → énoncé d'un problème de régulation
- Etudier la notion de précision d'une boucle fermée → type d'un système vis-à-vis d'un signal de référence ou de perturbation polynomial et rôle du ou des pôles à l'origine dans un régulateur

Des composants physiques aux fonctions de transfert (1)

Boucle ouverte

- G(p) comprend le modèle de l'actionneur et du système réglé.
- Souvent l'actionneur a une réponse rapide par rapport à celle du système réglé → son modèle se ramène à un facteur constant dans G(p).
- Par abus de langage, l'appellation système réglé inclut souvent l'actionneur.

Des composants physiques aux fonctions de transfert (2)

Exemples d'actionneurs

Vanne utilisée pour une régulation de niveau

Vitesse d'ouverture ou de fermeture de la vanne souvent beaucoup plus rapide que l'évolution du niveau dans le réservoir

Des composants physiques aux fonctions de transfert (3)

Exemples d'actionneurs (suite)

Moteurs à courant continu pour l'actionnement d'un robot

- Constantes de temps électrique gouvernent les transitoires de couple sur chaque articulation
- Constantes de temps mécaniques (plus grandes) caractérisent les mouvements du robot

Des composants physiques aux fonctions de transfert (4)

Boucle fermée

G(p) inclut le modèle de l'actionneur (cf boucle ouverte)

Des composants physiques aux fonctions de transfert (5)

- Souvent le capteur a une réponse rapide par rapport à celle du système réglé.
- Le modèle du capteur se réduit alors à un gain A_{capt} qu'on considère souvent égal à 1.
- Si $A_{capt} \neq 1$ on peut l'inclure dans G(p) à condition de normaliser le signal de référence et la perturbation par ce gain $(r \to r/A_{capt})$ et $w \to w/A_{capt}$).

Figure: Boucle à rétroaction unitaire

Des composants physiques aux fonctions de transfert (5)

Exemples de capteurs

- Mesure de niveau dans un réservoir par mesure de différence de pression
- Mesure de la vitesse de rotation par une dynamo tachymétrique (tension fournie proportionnelle à la vitesse de rotation)
- Mesure de position angulaire par un potentiomètre (résistance varie linéairement avec la position)

Boucle ouverte (open loop)

- Perturbation W à l'entrée du système réglé
- Expression de la sortie

$$Y_{bo}(p) = G(p)D_{bo}(p)R(p) + G(p)W(p)$$

Erreur

$$E_{bo}(p) = R(p) - Y_{bo}(p)$$

$$= R(p) - [G(p)D_{bo}(p)R(p) + G(p)W(p)]$$

$$= (I - G(p)D_{bo}(p))R(p) - G(p)W(p)$$

Boucle fermée (closed-loop)

- Trois entrées
 - Référence R(p) qui doit être suivie par la sortie du système réglé $Y_{bf}(p)$
 - Perturbation (à l'entrée du système réglé), W(p) que la régulation doit contrecarrer (ou atténuer)
 - Bruit de mesure V(p) que le régulateur est supposé ignorer

Boucle fermée (closed-loop)

 Equations de la boucle fermée (superposition des réponses individuelles à chaque entrée)

$$Y_{bf} = rac{GD_{bf}}{1 + GD_{bf}}R + rac{G}{1 + GD_{bf}}W - rac{GD_{bf}}{1 + GD_{bf}}V$$
 $U = rac{D_{bf}}{1 + GD_{bf}}R - rac{GD_{bf}}{1 + GD_{bf}}W - rac{D_{bf}}{1 + GD_{bf}}V$

• Erreur de réglage : $E_{bf} = R - Y_{bf}$

$$E_{bf} = \frac{1}{1 + GD_{bf}}R - \frac{G}{1 + GD_{bf}}W + \frac{GD_{bf}}{1 + GD_{bf}}V$$

• Fonction de transfert (entre Y et R): $T_{bf} = \frac{GD_{bf}}{1+GD_{bf}}$

Stabilité (1)

- En boucle ouverte
 - G(p) et $D_{bo}(p)$ fraction rationnelles, c-à-d $G(p) = \frac{b(p)}{a(p)}$ et $D_{bo} = \frac{c(p)}{d(p)}$ avec a(p), b(p), c(p) et d(p) polynômes et $\partial a(p) \geq \partial b(p)$, $\partial d(p) \geq \partial c(p)$ où $\partial a(p)$ est le degré de a(p)
 - CNS de stabilité asymptotique: racines de a(p) et d(p) ont toutes une partie réelle négative
 - Les simplifications entre "pôles" et "zéros" dans le demi-plan droit fermé sont interdites

Stabilité (2)

- En boucle fermée
 - Equation caractéristique de la boucle fermée $1 + G(p)D_{bf}(p) = 0$ soit $1 + \frac{b(p)c(p)}{a(p)d(p)} = 0$ ou encore:

$$a(p)d(p) + b(p)c(p) = 0$$

- Possibilité de stabiliser un système instable (a(p) avec racines à partie rélle positive ou nulle) par un choix approprié de c(p) et d(p)
- Interdiction de simplifier une racine de a(p) à partie réelle positive ou nulle par une racine de c(p) ("simplification pôle/zéro instable"). Idem entre b(p) et d(p).
- Les pôles de la boucle fermée sont les racines de $1 + G(p)D_{bf}(p)$ (en l'absence de simplification entre le numérateur et le dénominateur)

Suivi de trajectoire (Tracking)

• En principe suivi parfait possible **en boucle ouverte** en choisissant: $\frac{c(p)}{d(p)} = \frac{a(p)}{b(p)}$

$$\rightarrow \frac{b(p)c(p)}{a(p)d(p)} = 1$$

uniquement si les racines de a(p) et b(p) sont à partie réelle négative.

- Limitations
 - $\frac{c(p)}{d(p)}$ doit être propre $(\partial d(p) \ge \partial c(p))$ (\to en général inverse approchée)
 - Les actionneurs sont limités $\rightarrow u_{min} \le u(t) \le u_{max}$ (saturation)
 - Erreurs de modélisation \rightarrow éviter de simplifier un pôle qui est légèrement à gauche de l'axe imaginaire (cf exemple ci-dessous $G(p) = \frac{p+1}{p+0.09}$ et $D_{bo}(p) = \frac{p+0.1}{p+1}$)

Suivi de trajectoire (Tracking)

• En boucle fermée, erreur de réglage donnée par

$$E_{bf}(p) = \frac{1}{1 + G(p)D_{bf}(p)}R(p)$$

• Erreur statique e_s (consigne constante et effets transitoires évanouis)

$$e_s = \lim_{t \to \infty} e(t) = \frac{1}{1 + G(0)D_{bf}(0)}$$

• Erreur vis-à-vis d'une sinusoïde de pulsation ω_0 :

$$r(t) = A_r \sin \omega_0 t$$

$$\rightarrow$$

$$\begin{split} e(t) &= A_e \sin(\omega_0 \ t + \varphi(\omega_0)) \\ \text{où } A_e &= |\frac{1}{1 + G(j\omega_0)D_{bf}(j\omega_0)}|A_r \text{ et } \varphi(\omega_0) = arg\left(\frac{1}{1 + G(j\omega_0)D_{bf}(j\omega_0)}\right) \end{split}$$

Suivi de trajectoire (Tracking)

• Module de $D_{bf}(j\omega)$ aussi grand que possible dans la plage des fréquences où se produisent les variations de consigne

Régulation de maintien (Regulation)

- Rejeter les perturbations (référence constante)
- En boucle ouverte, le régulateur n'a pas d'effet sur la perturbation → structure de réglage inutilisable pour la régulation de maintien
- En boucle fermée:
 - Contribution de la perturbation à l'erreur de réglage: $\frac{G}{1+GD_{bf}}W \rightarrow D_{bf}$ aussi "grand" que possible pour diminuer l'effet des perturbations
 - Contribution du bruit de mesure à l'erreur de réglage: $\frac{GD_{bf}}{1+GD_{bf}}V$ D_{bf} "grand" \rightarrow transmittance tend vers 1 et pas d'atténuation du bruit de mesure
 - Perturbation W importante aux basses fréquences (ex: erreur constante, dérive, ...) / bruit de mesure important aux hautes fréquences (un bon capteur a une erreur systématique très faible)
 → Fonction de transfert du régulateur de module important aux basses fréquences (réjection de w) et de module faible aux hautes fréquences (atténuation de v)

Sensibilité (aux erreurs de modélisation)(1)

- Contexte
 - Fonction de transfert utilisée pour la conception du régulateur G
 - Fonction de transfert réelle $G + \Delta G$
 - Erreur relative : $\Delta G/G$
- En boucle ouverte

$$T_{bo} + \Delta T_{bo} = D_{bo}(G + \Delta G) = D_{bo}G + D_{bo}\Delta G = T_{bo} + D_{bo}\Delta G$$

Définition de la sensibilité de T_{bo} par rapport à G:

$$\mathcal{S}_{G}^{T_{bo}} = rac{rac{\Delta T_{bo}}{T_{bo}}}{rac{\Delta G}{G}} = rac{G}{T_{bo}}rac{\Delta T_{bo}}{\Delta G}$$

En substituant les valeurs pour la boucle ouverte:

$$\frac{\Delta T_{bo}}{T_{bo}} = \frac{D_{bo}\Delta G}{D_{bo}G} = \frac{\Delta G}{G}$$

 \rightarrow la fonction de sensibilité vaut 1 en boucle ouverte

Sensibilité (aux erreurs de modélisation)(2)

• En boucle fermée Notons $G_{\Delta} = G + \Delta G$ et $T_{bf} = \frac{GD_{bf}}{1 + GD_{bc}}$

$$\Delta T_{bf} = \frac{G_{\Delta}D_{bf}}{1 + G_{\Delta}D_{bf}} - \frac{GD_{bf}}{1 + GD_{bf}}$$

Soit $\Delta T_{bf} = \frac{\Delta G D_{bf}}{(1+G_{\Delta}D_{bf})(1+GD_{bf})}$ ou $\Delta T_{bf} = \frac{\Delta G D_{bf}G}{(1+G_{\Delta}D_{bf})(1+GD_{bf})G} = \frac{T_{bf}\Delta G}{(1+G_{\Delta}D_{bf})G}$ On en déduit la sensibilité de T_{bf} par rapport à G:

$$\mathcal{S}_G^{T_{bf}} = rac{rac{\Delta T_{bf}}{T_{bf}}}{rac{\Delta G}{G}} = rac{1}{1 + G_{\Delta}D_{bf}} \simeq rac{1}{1 + GD_{bf}}$$

Sensibilité aux erreurs de modélisation réduite d'un facteur $S=\frac{1}{1+GD_{bf}}$ par rapport à la boucle ouverte

Exemple pour le gain statique:

Supposons que
$$1 + D_{bf}(0)G(0) = 100$$
 et $\Delta G(0)/G(0) = 10\% \rightarrow \Delta T_{bf}(0)/T_{bf}(0) = 0.1\%$

Régulateur à deux degrés de liberté + modèle de capteur

- Fonction de transfert du filtre d'entrée F(p)
- Fonction de transfert du capteur H(p)
- Expression de la sortie

$$Y = \frac{GD_{bf}F}{1 + GD_{bf}H}R + \frac{G}{1 + GD_{bf}H}W - \frac{HGD_{bf}}{1 + GD_{bf}H}V$$

Régulateur à deux degrés de liberté + modèle de capteur

• Fonction de sensibilité par rapport à G

$$\mathcal{S}_{G}^{T_{bf}} = rac{rac{\Delta T_{bf}}{T_{bf}}}{rac{\Delta G}{G}} = rac{1}{1 + GD_{bf}H}$$

• Fonction de sensibilité par rapport à *H*

$$\mathcal{S}_{H}^{T_{bf}} = rac{rac{\Delta T_{bf}}{T_{bf}}}{rac{\Delta H}{H}} = -rac{GD_{bf}H}{1 + GD_{bf}H}$$

 Pour les fréquences où le gain de la boucle ouverte est grand, S_H^{T_{bf}} est proche de l'unité → importance d'un capteur dont la fonction de transfert ne varie pas au cours du temps (en outre faible bruit de mesure souhaité)

Exemple de signaux de référence (1)

Suivi de température dans un cristallisoir

Figure 46 : Simulation d'un cycle typique de cristallisation avec le régulateur PI optimisé pour deux niveaux de remplissage

Exemple de signaux de référence (2)

Trajectoire classique en robotique:

Référence et perturbations polynomiales - Type d'un système

- Formes classiques de références ou de perturbations $r(t) = \frac{t^k}{k!} \nu(t)$ soit $\mathcal{L}(R(t)) = R(p) = \frac{1}{p^{k+1}}$
- Formes classiques de perturbations $w(t) = \frac{t^k}{k!} \nu(t)$ soit $\mathcal{L}(w(t)) = W(p) = \frac{1}{p^{k+1}}$
- Système (en boucle fermée) de type k vis-à-vis du suivi de trajectoire s'il répond avec une erreur constante à une référence polynomiale de degré k.
- Système (en boucle fermée) de type k vis-à-vis de la réjection de perturbation s'il répond avec une erreur constante à une perturbation polynomiale de degré k.
- Hypothèse: système en boucle fermée stable

Précision vis-à-vis de la référence (1)

• Considérer $W=V=0 \rightarrow$

$$E = \frac{1}{1 + GD_{bf}}R = SR$$

• Par application du théorème de la valeur finale

$$\lim_{t \to \infty} e(t) = e_s = \lim_{p \to 0} pE(p)$$

$$= \lim_{p \to 0} p \frac{1}{1 + G(p)D_{bf}(p)} R(p)$$

$$= \lim_{p \to 0} p \frac{1}{1 + G(p)D_{bf}(p)} \frac{1}{p^{k+1}}$$
(1)

Précision vis-à-vis de la référence (2)

• Cas d'une chaîne directe sans pôle à l'origine et d'une référence en échelon $(r(t) = \nu(t))$

$$e_s = \lim_{p \to 0} p \frac{1}{1 + GD_{bf}} \frac{1}{p}$$

= $\frac{1}{1 + G(0)D_{bf}(0)}$

- Système de type zéro (vis-à-vis de la référence)
- $K_p = G(0)D_{bf}(0) = \lim_{p\to 0} G(p)D_{bf}(p)$, constante d'erreur de position

Précision vis-à-vis de la référence (3)

- Cas d'une chaîne directe avec un pôle à l'origine et d'une référence en échelon $(r(t) = \nu(t))$
- Factorisation du pôle à l'origine

$$G(p)D_{bf}(p) \equiv \frac{GD_{bf0}(p)}{p}$$
 avec $GD_{bf0}(0) \neq 0$ et finie

• Erreur statique vis-à-vis d'une référence constante

$$e_s = \lim_{p \to 0} p \frac{1}{1 + GD_{bf0}(p)/p} \frac{1}{p} = 0$$

• Le pôle à l'origine dans la chaîne directe assure l'erreur nulle vis-à-vis de la référence en échelon $(r(t) = \nu(t))$

Précision vis-à-vis de la référence (4)

• Erreur vis-à-vis d'une consigne en rampe

$$e_{s} = \lim_{p \to 0} p \frac{1}{1 + GD_{bf0}(p)/p} \frac{1}{p^{2}}$$

$$= \lim_{p \to 0} \frac{p}{p + GD_{bf0}(p)} \frac{1}{p}$$

$$= \frac{1}{GD_{bf0}(0)}$$

- Constante de vitesse: $K_v = GD_{bf0}(0) = \lim_{p \to 0} pG(p)D_{bf}(p)$
- Système de type 1 (erreur constante par rapport à une entrée en rampe)

Précision vis-à-vis de la référence (5)

- Justification intuitive
 - Le pôle à l'origine correspond à un intégrateur: entrée constante (non nulle) → sortie en forme de rampe
 - Seule possibilité pour que *y*(*t*) reste bornée: entrée de l'intégrateur nulle

Précision vis-à-vis de la référence (6)

- Cas d'une chaîne directe avec *n* pôles à l'origine
 - Fonction de transfert de la chaîne directe

$$G(p)D_{bf}(p) \equiv \frac{GD_{bf0}(p)}{p^n}$$
 avec $GD_{bf0}(0) \neq 0$

et fini

• Erreur vis-à-vis de la consigne $\frac{t^k}{k!}$

$$e_{s} = \lim_{p \to 0} p \frac{1}{1 + \frac{GD_{bf0}(p)}{p^{n}}} \frac{1}{p^{k+1}}$$
$$= \lim_{p \to 0} \frac{p^{n}}{p^{n} + GD_{bf0}(p)} \frac{1}{p^{k}}$$

- $n > k \rightarrow$ erreur statique nulle
- n < k → erreur tend vers l'infini (hors des conditions d'application du théorème de la valeur finale)

•
$$n = k \to e_s = 1/GD_{bf0}(0) = 1/K_n$$
 avec
 $K_n = \lim_{p \to 0} p^n G(p) D_{bf}(p)$

Précision vis-à-vis de la référence (7)

Principe du modèle interne

- Une condition nécessaire et suffisante pour suivre avec une erreur statique nulle une référence dont la transformée de Laplace est de la forme $R(p) = \frac{1}{p^{k+1}}$ est que la fonction de transfert de la chaîne directe contienne le facteur $\frac{1}{p^{k+1}}$.
- En particulier, si la fonction de transfert du système réglé ne contient pas de pôle à l'origine, il suffit de mettre le modèle de la référence (¹/_{p^{k+1}}) en facteur dans la fonction de transfert du régulateur pour assurer le suivi de cette référence avec une erreur statique nulle.

Précision vis-à-vis de la référence (8)

- Remarque:
 - Le type d'un système est une propriété robuste; elle n'est pas affectée par des changements de valeurs de paramètres pour autant que la boucle fermée reste stable.
- Expression de l'erreur en termes de la fonction de transfert de la boucle fermée $\mathcal{T} = \frac{GD_{bf}}{1+GD_{hf}} = 1 \mathcal{S}$

$$e_s = \lim_{p \to 0} p \frac{1 - \mathcal{T}}{p^{k+1}} = \lim_{p \to 0} \frac{1 - \mathcal{T}}{p^k}$$

- \rightarrow Le gain statique d'un système (en boucle fermée) de type 1 ou plus vaut 1
- Exercice
 Démontrer que pour pouvoir suivre avec une erreur asymptotiquement nulle une consigne en rampe, il faut que la chaîne directe contienne au moins deux pôles à l'origine

Précision vis-à-vis d'une perturbation (1)

• Considérer R=V=0 (cf slide 7) \rightarrow

$$E = -Y_{bf} = \frac{-G}{1 + GD_{bf}}W$$

- Cas d'un pôle à l'origine dans le système réglé
 - $G(p) = G_0(p)/p \text{ avec } G_0(0) \neq 0 \text{ ; } D_{bf}(0) \neq 0$
 - Erreur pour une entrée en échelon

$$e_s = \lim_{p \to 0} p \frac{G_0(p)/p}{1 + D_{bf}(p)G_0(p)/p} \frac{1}{p}$$
$$= \lim_{p \to 0} \frac{G_0(p)}{p + D_{bf}(p)G_0(p)} = \frac{1}{D_{bf}(0)}$$

- → Erreur non nulle sauf si le régulateur contient un pôle à l'origine
- Le pôle à l'origine doit être placé en amont de l'endroit où entre la perturbation pour assurer une erreur statique nulle

Précision vis-à-vis d'une perturbation (2)

- Cas d'un pôle d'ordre *n* à l'origine dans le régulateur
 - $D_{bf}(p) = \frac{D_{bf0}(p)}{p^n}$ avec $D_{bf0}(0) \neq 0$
 - Fonction de transfert entre la perturbation W(p) et l'erreur E(p)

$$T_w(p) = \frac{-G}{1 + GD_{bf}} = -\frac{p^n G}{p^n + GD_{bf0}} = p^n \bar{T}_w(p) \text{ avec } \bar{T}_w(0) \neq 0 \text{ et fini}$$

• Erreur statique vis-à-vis d'une perturbation polynomiale $t^k/k!$

$$e_s = \lim_{p \to 0} \left[pT_w(p) \frac{1}{p^{k+1}} \right]$$
$$= \lim_{p \to 0} \left[\bar{T}_w(p) \frac{p^n}{p^k} \right]$$

- $n > k \rightarrow$ erreur nulle
- $n < k \rightarrow$ erreur non bornée (hors des conditions d'application du théorème de la valeur finale)
- n = k → erreur constante donnée par T_w(0); système de type k vis-à-vis des perturbations

Précision vis-à-vis d'une perturbation (3)

Principe du modèle interne

• Une condition nécessaire et suffisante pour assurer une erreur statique nulle vis-à-vis d'une perturbation (à l'entrée du système réglé) dont la transformée de Laplace est de la forme $W(p) = \frac{1}{p^{k+1}}$ est que la fonction de transfert du régulateur contienne le facteur $\frac{1}{p^{k+1}}$.

Discussion

- Peut-on introduire beaucoup de pôles à l'origine dans un régulateur sans inconvénient ?
- Pôle à l'origine équivaut à un intégrateur \rightarrow déphasage de -90° En effet si l'on rentre $u(t) = \sin \omega_0 t \nu(t)$ dans un intégrateur on obtient (pour un état initial nul):

$$y(t) = \int_0^t \sin \omega_0 \tau d\tau = \frac{1}{\omega_0} (1 - \cos(\omega_0 t))$$
$$= \frac{1}{\omega_0} (1 - \sin(\pi/2 - \omega_0 t)) = \frac{1}{\omega_0} (1 + \sin(\omega_0 t - \pi/2))$$

On verra plus tard que ceci tend à déstabiliser la boucle fermée
 → se limiter au nombre de pôles à l'origine strictement
 nécessaire

Récapitulatif (1)

- Par rapport à la régulation en boucle ouverte, une boucle fermée permet de
 - stabiliser un système instable
 - atténuer l'effet des perturbations (sans devoir les mesurer)
 - améliorer le suivi de la trajectoire de référence (cf étude de la précision)
 - réduire l'effet des variations de paramètres sur le comportement du système
- Plusieurs compromis
 - Temps de montée ↔ limitations des actionneurs
- Un système de type k (vis-à-vis de la référence) assure une réponse avec une erreur statique nulle pour toute référence polynomiale de degré inférieur à k et une erreur constante (non nulle) pour une référence polynomiale de degré k.

Récapitulatif (2)

• Un système stable en boucle fermée (par rétraction unitaire) est de type *k* vis-à-vis de la référence si la fonction de transfert de la chaîne directe peut s'écrire:

$$G(p)D_{bf}(p) = \frac{A(p+z_1)(p+z_2)\cdots}{p^k(p+p_1)(p+p_2)\cdots}$$

• Pour assurer une erreur statique nulle vis-à-vis d'une perturbation polynomiale de degré égal à k-1, le régulateur doit contenir k pôles à l'origine.