Algorithme de

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Analyse 2: Algorithme pour l'optimisation sans contrainte

Joseph Salmon

Septembre 2014

Plan du cours

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme de ninimisation

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Algorithme de minimisation

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Joseph Salmon

Algorithme du premier ordre

La descente de gradient : intuition

- ightharpoonup Enjeu: minimiser f (dans \mathbb{R}^d) en trouvant un nouveau point pour lequel f diminue le plus.
- Approximation du premier ordre :

$$f(x) \approx f(x^0) + \langle \nabla f(x^0), x - x^0 \rangle$$

► Solution : il faut "s'aligner" avec la direction opposée au gradient $x - x_0 = -\alpha \nabla f(x^0)$ $\alpha > 0$ contrôle la "vitesse" avec laquelle on progresse dans la direction. Ce paramètre est appelé le pas de la méthode.

Algorithme de

Algorithme du premier ordre

Algorithme du second ordre

La descente de gradient : algorithme

 $\begin{array}{ll} \textbf{Data} \colon \text{initialisation} \ x^0, \ \text{nb max.} \ d'itérations} \ T, \ \text{critère d'arrêt} \ \varepsilon, \ \text{pas} \ \alpha \\ \textbf{Result} \colon \ \text{un point} \ x_T \ \text{"proche" du minimum de la fonction} \ f \\ \textbf{for} \ 1 \leq t \leq T \ \textbf{do} \\ & | \ x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t) \\ & | \ \text{STOP si critère d'arrêt inférieur à } \varepsilon \\ \textbf{end} \\ \end{array}$

- $\blacktriangleright \|\nabla f(x^t)\| \le \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Algorithme de

Algorithme du premier ordre

Algorithme du second ordre

La descente de gradient : algorithme

 $\begin{array}{ll} \textbf{Data} \colon \text{initialisation} \ x^0, \ \text{nb max.} \ d'itérations} \ T, \ \text{critère d'arrêt} \ \varepsilon, \ \text{pas} \ \alpha \\ \textbf{Result} \colon \ \text{un point} \ x_T \ \text{"proche" du minimum de la fonction} \ f \\ \textbf{for} \ 1 \leq t \leq T \ \textbf{do} \\ & | \ x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t) \\ & | \ \text{STOP si critère d'arrêt inférieur à } \varepsilon \\ \textbf{end} \\ \end{array}$

- $\blacktriangleright \|\nabla f(x^t)\| \le \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Algorithme de minimisation

Algorithme du premier ordre

Algorithme du second ordre

La descente de gradient : algorithme

 $\begin{array}{ll} \textbf{Data} \colon \text{initialisation} \ x^0, \ \text{nb max.} \ d'itérations} \ T, \ \text{critère d'arrêt} \ \varepsilon, \ \text{pas} \ \alpha \\ \textbf{Result} \colon \ \text{un point} \ x_T \ \text{"proche" du minimum de la fonction} \ f \\ \textbf{for} \ 1 \leq t \leq T \ \textbf{do} \\ & | \ x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t) \\ & | \ \text{STOP si critère d'arrêt inférieur à } \varepsilon \\ \textbf{end} \\ \end{array}$

- $\blacktriangleright \|\nabla f(x^t)\| \le \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Algorithme de

Algorithme du premier ordre

La descente de gradient : algorithme

Data: initialisation x^0 , nb max. d'itérations T, critère d'arrêt ε , pas α **Result**: un point x_T "proche" du minimum de la fonction ffor 1 < t < T do $x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t)$ STOP si critère d'arrêt inférieur à arepsilonend

- $\blacktriangleright \|\nabla f(x^t)\| \leq \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Algorithme de

Algorithme du premier ordre

Algorithme du second ordre

La descente de gradient : algorithme

 $\begin{array}{ll} \textbf{Data} \colon \text{initialisation } x^0, \text{ nb max. d'itérations } T, \text{ critère d'arrêt } \varepsilon, \text{ pas } \alpha \\ \textbf{Result} \colon \text{ un point } x_T \text{ "proche" du minimum de la fonction } f \\ \textbf{for } 1 \le t \le T \textbf{ do} \\ & \qquad \qquad x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t) \\ & \qquad \qquad \text{STOP si critère d'arrêt inférieur à } \varepsilon \\ \textbf{end} \end{array}$

- $\blacktriangleright \|\nabla f(x^t)\| \le \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Algorithme de

Algorithme du premier ordre

Algorithme du second ordre

La descente de gradient : algorithme

 $\begin{array}{ll} \textbf{Data} \colon \text{initialisation} \ x^0, \ \text{nb max.} \ d'itérations} \ T, \ \text{critère d'arrêt} \ \varepsilon, \ \text{pas} \ \alpha \\ \textbf{Result} \colon \ \text{un point} \ x_T \ \text{"proche" du minimum de la fonction} \ f \\ \textbf{for} \ 1 \leq t \leq T \ \textbf{do} \\ & | \ x^{t+1} \leftarrow x^t - \alpha \nabla f(x^t) \\ & | \ \text{STOP si critère d'arrêt inférieur à } \varepsilon \\ \textbf{end} \\ \end{array}$

- $\blacktriangleright \|\nabla f(x^t)\| \le \varepsilon$
- $f(x^{t+1}) f(x^t) \le \varepsilon$
- $\blacktriangleright \ \|x^{t+1} x^t\| \leq \varepsilon \ \text{ou} \ \tfrac{\|x^{t+1} x^t\|}{\|x^t\|} \leq \varepsilon$

Analyse 2: Algorithme pour

l'optimisation sans contrainte

Choix du pas

Attention au choix du pas (cas 1D)

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

lpha : paramètre crucial pour obtenir la convergence vers un minimum

Divergence: pas beaucoup trop grand

Attention au choix du pas (cas 1D)

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

x^1 x^3 x^5 x^4 x^2 x^0 x

Convergence lente: pas trop grand

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Attention au choix du pas (cas 1D)

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

Convergence rapide : bon pas

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Attention au choix du pas (cas 1D)

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

lpha : paramètre crucial pour obtenir la convergence vers un minimum

Convergence lente: pas trop petit

Analyse 2: Algorithme pour l'optimisation sans contrainte

Choix du pas

Attention au choix du pas (cas 2D)

$$x^{t+1} = x^t - \alpha \nabla f(x^t)$$

 α : paramètre crucial pour obtenir la convergence vers un minimum

Analyse 2: Algorithme pour l'optimisation sans contrainte

Choix du pas

Trop grand pas

Trop petit pas

Algorithme de minimisation

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Recherche linéaire I

Parfois, il faut choisir le pas à chaque itération : α^t évolue avec les itérations. On note $d^t = -\nabla f(x^t)$ une direction de descente

Règle de la minimisation

Minimisation sur l'amplitude : il faut résoudre le problème 1D :

$$f(x^t + \alpha^t d^t) = \min_{\alpha \ge 0} f(x^t + \alpha d^t)$$

Rem: Pour cela il faut que le problème 1D soit simple à résoudre

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant $s>0,\ \sigma\in]0,1[$, et $\beta\in]0,1[$, il s'agit de choisir $\alpha^t=\beta^{m_t}s:$ où m_t est le premier entier non nul tel que $f(x^t+\beta^msd^t)-f(x^t)\leq\sigma\beta^ms\langle\nabla f(x^t),d_t\rangle=-\sigma\beta^ms\|\nabla f(x^t)\|^2$

Algorithme de minimisation

Algorithme du premier ordro

Choix du pas

Algorithme du second ordre

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s>0, $\sigma\in]0,1[$, et $\beta\in]0,1[$, il s'agit de choisir $\alpha^t=\beta^{m_t}s:$ où m_t est le premier entier non nul tel que $f(x^t+\beta^msd^t)-f(x^t)\leq\sigma\beta^ms\langle\nabla f(x^t),d_t\rangle=-\sigma\beta^ms\|\nabla f(x^t)\|^2$

Algorithme de minimisation

Algorithme du premier ordr Chaix du pas

Choix du pas

Algorithme du second ordre

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s>0, $\sigma\in]0,1[$, et $\beta\in]0,1[$, il s'agit de choisir $\alpha^t=\beta^{m_t}s:$ où m_t est le premier entier non nul tel que $f(x^t+\beta^msd^t)-f(x^t)\leq \sigma\beta^ms\langle \nabla f(x^t),d_t\rangle=-\sigma\beta^ms\|\nabla f(x^t)\|^2$

Algorithme de

Choix du pas

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s > 0, $\sigma \in]0,1[$, et $\beta \in]0,1[$, il s'agit de choisir $\alpha^t = \beta^{m_t} s$: où m_t est le premier entier non nul tel que $f(x^t + \beta^m s d^t) - f(x^t) \le \sigma \beta^m s \langle \nabla f(x^t), d_t \rangle = -\sigma \beta^m s \|\nabla f(x^t)\|^2$

Algorithme de

Choix du pas

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s > 0, $\sigma \in]0,1[$, et $\beta \in]0,1[$, il s'agit de choisir $\alpha^t = \beta^{m_t} s$: où m_t est le premier entier non nul tel que $f(x^t + \beta^m s d^t) - f(x^t) \le \sigma \beta^m s \langle \nabla f(x^t), d_t \rangle = -\sigma \beta^m s \|\nabla f(x^t)\|^2$

Algorithme de

Choix du pas

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s > 0, $\sigma \in]0,1[$, et $\beta \in]0,1[$, il s'agit de choisir $\alpha^t = \beta^{m_t} s$: où m_t est le premier entier non nul tel que $f(x^t + \beta^m s d^t) - f(x^t) \le \sigma \beta^m s \langle \nabla f(x^t), d_t \rangle = -\sigma \beta^m s \|\nabla f(x^t)\|^2$

Algorithme de minimisation

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Recherche linéaire II

Règle d'Armijo (ou du backtracking géométrique)

En fixant s>0, $\sigma\in]0,1[$, et $\beta\in]0,1[$, il s'agit de choisir $\alpha^t=\beta^{m_t}s$: où m_t est le premier entier non nul tel que $f(x^t+\beta^m s d^t)-f(x^t)\leq\sigma\beta^m s\langle\nabla f(x^t),d_t\rangle=-\sigma\beta^m s\|\nabla f(x^t)\|^2$

Recherche linéaire III

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme d

Algorithme du premier ordre

Choix du pas

Algorithme du second ordre

Règle d'Armijo (ou du backtracking)

En pratique on fait souvent les choix, cf. Bertsekas (1999) :

- \triangleright s=1
- $\beta = 1/2 \text{ ou } \beta = 1/10$
- $\sigma \in [10^{-5}, 10^{-1}]$

Détour par la méthode de Newton

Objectif : la méthode de Newton (ou Newton-Raphson) sert à trouver les zéros d'une fonction, i.e., résoudre f(x)=0 L'idée : approximation locale par une fonction affine

$$f(x) \approx f(x^0) + f'(x^0)(x - x^0)$$

La règle de mise à jour est donc :

$$x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$$

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme de

Algorithme du premier ordr Choix du pas

Algorithme du second ordre

Algorithme de

Algorithme du second ordre

Détour par la méthode de Newton II

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction f

$$\quad \text{for } 1 \leq t \leq T-1 \,\, \text{do}$$

$$x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$$

STOP si critère d'arrêt inférieur à ε

end

Algorithme de

Algorithme du second ordre

Détour par la méthode de Newton II

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction ffor 1 < t < T - 1 do $x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$

Algorithme de

Algorithme du second ordre

Détour par la méthode de Newton II

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction ffor 1 < t < T - 1 do $x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$

Algorithme de

Algorithme du second ordre

Détour par la méthode de Newton II

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction ffor 1 < t < T - 1 do

$$x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$$

Algorithme de

Algorithme du second ordre

Détour par la méthode de Newton II

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε **Result**: un point x_T "proche" du minimum de la fonction ffor 1 < t < T - 1 do $x^{t+1} \leftarrow x^t - \frac{f(x^t)}{f'(x^t)}$

STOP si critère d'arrêt inférieur à ε

end

Méthode de Newton pour la minimisation

Localement, en un point x^0 une fonction deux fois différentiable ressemble à :

$$f(x) \approx f(x^*) + \langle \nabla f(x^*), x - x^* \rangle + \frac{1}{2} (x - x^*)^{\top} \nabla^2 f(x^*) (x - x^*)$$

- ► Enjeu : minimiser en x l'approximation (quadratique) précédente
 - ► Solution : CNO

$$\nabla f(x^*) + \nabla^2 f(x^*)(x - x^*) = 0$$

► Nouvelle règle de mise à jour :

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Rem: C'est donc la méthode de Newton appliquée à la recherche de zéros d'une approximation du gradient de f

Analyse 2: Algorithme pour l'optimisation sans contrainte

MINIMISATION Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Algorithme de

12/14

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Méthode de Newton : algorithme

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε

Result: un point x_T "proche" du minimum de la fonction f

for
$$1 \le t \le T - 1$$
 do

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Algorithme de

Algorithme du second ordre

Méthode de Newton : algorithme

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε

Result: un point x_T "proche" du minimum de la fonction f

for
$$1 \le t \le T - 1$$
 do

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Méthode de Newton : algorithme

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε

Result: un point x_T "proche" du minimum de la fonction f

for
$$1 \le t \le T - 1$$
 do

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Méthode de Newton : algorithme

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt ε

Result: un point x_T "proche" du minimum de la fonction f

for
$$1 \le t \le T - 1$$
 do

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Algorithme de minimisation

Algorithme du premier ordre Choix du pas

Algorithme du second ordre

Méthode de Newton : algorithme

Data: point initial x^0 , nombre max. d'itérations T, critère d'arrêt arepsilon

Result: un point x_T "proche" du minimum de la fonction f

for
$$1 \le t \le T - 1$$
 do

$$x^{t+1} \leftarrow x^t - (\nabla^2 f(x^t))^{-1} \nabla f(x^t)$$

Références I

Analyse 2: Algorithme pour l'optimisation sans contrainte

Algorithme d

Algorithme du premier ord

Choix du pas

Algorithme du second ordre

Mines-Télécom

D. P. Bertsekas.

Nonlinear programming.

Athena Scientific, 1999.

