Stwórz klase Wektor:

Strole Ridsy Tremedi.	
Wektor	
Pola (private):	Metody (public):
• x	
• y	

- a) Stwórz następujące wektory:
 - [3, 5]
 - [-2,7]

Wypisz te wektory przy użyciu przeciążonego operatora "<". (2 pkt):

- b) Przeciąż operator "+", tak aby umożliwiał dodawanie dwóch wektorów. Użyj tego operatora, aby dodać do siebie utworzone wcześniej wektory. Wyświetl wynik dodawania. Przykład: std::cout << "w1 + w2 = " << w1 + w2 << std::endl; (2 pkt)
- c) Przeciąż operator "*", tak aby umożliwiał otrzymanie iloczynu skalarnego dwóch wektorów. Użyj tego operatora, aby obliczyć iloczyn skalarny utworzonych wcześniej wektorów. Wyświetl wynik. Przykład: std::cout << "w1 * w2 = " << w1 * w2 << std::endl; (2 pkt)
- d) Stwórz tablicę 20-elementową wektorów o pseudolosowych współrzędnych z zakresu [-15; 15]. Posortuj je względem długości wektora rosnąco. Wyświetl posortowaną tablicę wraz z długościami wektorów. (2 pkt)
- e) Stwórz metodę lub funkcję, która z utworzonej tablicy zwróci wektor o długości najbliższej wcześniej utworzonemu wektorowi [3, 5]. Wyświetl ten wektor wraz z jego długością. (2 pkt)

Wektory:

Współrzędne wektorów:

źródło: matmana6.pl

Dodawanie wektorów:

Wykonaj dodawanie wektorów $ec{v} = [2,3]$ i $ec{w} = [4,-1]$ Rozwiązanie:

$$\vec{v}+\vec{w}=[2,3]+[4,-1]=[2+4,3+(-1)]=[6,2]$$

źródło: matemaks.pl

Iloczyn skalarny wektorów:

Iloczyn skalarny wektorów $\vec{a}=[a_1,a_2]$ i $\vec{b}=[b_1,b_2]$ - to liczba, którą obliczamy dodając iloczyny odpowiednich współrzędnych:

$$ec{a} \circ ec{b} = a_1 \cdot b_1 + a_2 \cdot b_2$$

źródło: matemaks.pl

Długość wektora:

Długość wektora o danych współrzędnych $\overrightarrow{AB} = [x,y]$ obliczamy ze wzoru:

$$|\overrightarrow{AB}| = \sqrt{x^2 + y^2}$$