Machine Learning System Design

Quiz, 5 questions

5/5 points (100%)

Congratulations! You passed!

Next Item

1/1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's recall (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

Correct Response

There are 85 true positives and 15 false negatives, so recall is 85 / (85 + 15) = 0.85.

1/1 point

2. Machine-Learning tays temabesign ining a learning algorithm. Training on a lot of data is likely to 100%)

Quiz, Some giood performance when two of the following conditions hold true.

Which	are the two?
	We train a model that does not use regularization.
Un-se	elected is correct
	We train a learning algorithm with a
	small number of parameters (that is thus unlikely to
	overfit).
Un-se	elected is correct
	We train a learning algorithm with a
	large number of parameters (that is able to
	learn/represent fairly complex functions).
	should use a "low bias" algorithm with many parameters, as it will be able to make use of the dataset provided. If the model has too few parameters, it will underfit the large training set.
	The features $oldsymbol{x}$ contain sufficient
	information to predict \boldsymbol{y} accurately. (For example, one
	way to verify this is if a human expert on the domain
	can confidently predict y when given only x).
solve	mportant that the features contain sufficient information, as otherwise no amount of data can a learning problem in which the features do not contain enough information to make an rate prediction.

1/1 point

3.

Suppose you have trained a logistic regression classifier which is outputing $h_{\theta}(x)$. Machine Learning System Design

Quiz, SQuizestively, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if $h_{ heta}(x) < ext{threshold}$, where currently the threshold is set to 0.5.

Suppose you decrease the threshold to 0.3. Which of the following are true? Check all that apply.		
The classifier is likely to have unchanged precision and recall, but		
higher accuracy.		
Un-selected is correct		
The classifier is likely to now have higher precision.		
Un-selected is correct		
The classifier is likely to have unchanged precision and recall, but		
lower accuracy.		
Un-selected is correct		
The classifier is likely to now have higher recall.		
Correct Lowering the threshold means more y = 1 predictions. This will increase the number of true positives and decrease the number of false negatives, so recall will increase.		
V 1/1 point		
4. Suppose you are working on a spam classifier, where spam		
emails are positive examples ($y=1$) and non-spam emails are		
negative examples ($y=0$). You have a training set of emails		
in which 99% of the emails are non-spam and the other 1% is		
spam. Which of the following statements are true? Check all		
that apply.		
If you always predict non-spam (output		

y=0), your classifier will have a recall of Machine Learning System Design

5/5 points (100%)

Quiz, 5 question %.

Correct Since every prediction is $y = 0$, there will be no true positives, so recall is 0%.	
lacksquare If you always predict spam (output $y=1$),	
your classifier will have a recall of 0% and precision	
of 99%.	
Un-selected is correct	
lacksquare If you always predict spam (output $y=1$),	
your classifier will have a recall of 100% and precision	
of 1%.	
Correct Since every prediction is $y = 1$, there are no false negatives, so recall is 100%. Furthermore, the precision will be the fraction of examples with are positive, which is 1%.	
If you always predict non-spam (output	
y=0), your classifier will have an accuracy of	
99%.	
Correct Since 99% of the examples are y = 0, always predicting 0 gives an accuracy of 99%. Note, however, that this is not a good spam system, as you will never catch any spam.	
1 / 1 point 5.	
Which of the following statements are true? Check all that apply.	
On skewed datasets (e.g. when there are	

more positive examples than negative examples), accuracy

is not a good measure of performance and you should

instead use F_1 score based on the Machine Learning System Design

Quiz, 5 question recision and recall.

5/5 points (100%)

Correct

You can always achieve high accuracy on skewed datasets by predicting the most the same outp	ut
(the most common one) for every input. Thus the $F_{ m 1}$ score is a better way to measure	
performance.	

perf	ormance.	
	It is a good idea to spend a lot of time	
	collecting a large amount of data before building	
	your first version of a learning algorithm.	
Un-s	elected is correct	
	Using a very large training set	
	makes it unlikely for model to overfit the training	
	data.	
	ect fficiently large training set will not be overfit, as the model cannot overfit some of the nples without doing poorly on the others.	
	After training a logistic regression	
	classifier, you must use 0.5 as your threshold	
	for predicting whether an example is positive or	
	negative.	
Un-s	elected is correct	
	If your model is underfitting the	
	training set, then obtaining more data is likely to	
	help.	
Un-selected is correct		

Machine Learning System Design Quiz, 5 questions

75terr Design 5/5 points (100%)

