Lic. em Ciências da Computação e Lic. em Matemática 2023/2024 Teste de Álgebra Universal e Categorias 22 Maio 2024

Este teste é constituído por 3 grupos. O grupo I é para responder no enunciado. Os grupos II e III devem ser respondidos na folha de teste providenciada. Duração: 100 minutos.

Em todo este teste: M_3 denota o conjunto $\{0, a, b, c, 1\}$ e O_6 denota o conjunto $\{0, a, b, c, d, 1\}$; e $\mathcal{M}_3 = (M_3; \wedge, \vee)$ e $\mathcal{O}_6 = (O_6; \wedge', \vee')$ são os reticulados dados respectivamente pelos dois diagramas seguintes.

Ι

- 1. Diga se cada uma das seguintes 6 afirmação é verdadeira ou falsa. Cada resposta correcta vale 1 valor, cada resposta errada vale -0.25 valores, a ausência de resposta vale 0 valores.
 - F V Toda a congruência na álgebra \mathcal{O}_6 é núcleo de um a) homomorfismo com domínio igual a \mathcal{O}_6 . A álgebra $\mathcal{O}_6 \times \mathcal{O}_6$ é directamente indecomponível. b) Se (θ, θ') é um par de congruências-factor de \mathcal{M}_3 , então c) $\theta = \Delta_{M_3}$ ou $\theta' = \Delta_{M_3}$. Toda a álgebra directamente indecomponível é subd) directamente irredutível. Existe um homomorfismo $\alpha: \mathcal{O}_6 \to \mathcal{M}_3$ tal que $ker(\alpha) = \Delta_{\mathcal{O}_6}$. f) Seja \mathcal{N} o monóide $(\mathbb{N}_0, \times, 1)$, onde \times denota a multiplicação

de números naturais. Em \mathcal{N} , visto como uma categoria,

0 é um monomorfismo.

Diga, justificando, se cada uma das seguintes afirmações é verdadeira (2 valores cada).

- 2. Seja $\theta = \Theta(a, d) \in Con(\mathcal{O}_6)$. A álgebra \mathcal{O}_6/θ é trivial.
- 3. Seja $\mathcal{R} = (R; \wedge, \vee)$ o reticulado dado pelo diagrama

Sejam θ e θ' relações de equivalência em R dadas pelas partições $\{\{a,0\},\{b,1\}\}\}$ e $\{\{b,0\},\{a,1\}\}$, respectivamente. As relações θ e θ' formam um par de congruências-factor de \mathcal{R} .

- 4. Existe mergulho subdirecto de \mathcal{O}_6 em $\mathbf{2} \times \mathbf{3}$, onde $\mathbf{2}$ e $\mathbf{3}$ são as cadeias com $\mathbf{2}$ e $\mathbf{3}$ elementos, respectivamente.
- 5. Seja \mathcal{C} a categoria definida pelos diagramas seguinte:

$$A \xrightarrow{f} B$$

$$A \xrightarrow{f} C$$

Todos os morfismos de \mathcal{C} são epimorfismos.

Ш

Demonstre as seguintes afirmações (2 valores cada).

- 6. Sejam $\mathcal{R}=(R,\wedge,\vee)$ um reticulado e θ uma congruência em \mathcal{R} . Para cada $x\in R$, a classe de equivalência $[x]_{\theta}$ é um sub-álgebra de \mathcal{R} .
- 7. Seja \mathcal{A} uma álgebra. $\Delta_{\mathcal{A}}$ é produto sub-directo de $\mathcal{A} \times \mathcal{A}$.
- 8. Sejam $\mathcal C$ uma categoria e $f:A\to B,\ g:B\to C$ morfismos em $\mathcal C$. Se $g\circ f$ é invertível à esquerda, então f é invertível à esquerda.