Algorithmen und Datenstrukturen

Vincent Dahmen 6689845 Roberto Seidel Rafael Heid 6704828

25. Oktober 2015

2.1

2.2

```
Funktion \in Äquivalenzklasse \{4, 1000\} \subset O(1) \{ln(n), log(n)\} \subset O(log(n) n^{0.5} \in O(\sqrt{n}) \sqrt{n}^3 \in O(n^{\frac{3}{2}}) n^2 \in O(n^2) n^3 \in O(n^2)
```

Die obige Tabelle zeigt das Wachstumsverhalten in aufsteigender Reihenfolge. Funktionen die in der gleichen Äquivalenzklasse liegen sind entsprechend geklammert. Es folgt eine Begründung der Zusammenfassungen.

Funktion	Begründung
$\{4, 1000\}$	Beide überschreiten nie einen konstanten Wert
$\{ln(n), log(n)\}$	Das Wachstum ist bis auf einen konstanten Faktor gleich
$n^{0.5}$	
\sqrt{n}^3 n^2	Nach den Potenzgesetzen gilt $\sqrt{n}^a = n^{\frac{a}{2}}$
n^2	
2^n	

2.3

2.4

2.4.2

Ermitteln der Groessenordnung mittels des Mastertheorems:

$$S(n) := \begin{cases} c, \text{ fuer } n = 1; \\ 16 \cdot S(\frac{n}{4}) + n^2 \end{cases}$$