### **Time Complexity**

#### TABLE OF CONTENTS

- 1. Log basics + Iteration problems
- 2. Comparing iterations using Graph
- 3. Time Complexity and Asymptotic Analysis (Big-0)
- 4. T.L.E (Time Limit Exceeded)
- 5. Importance of constraints



## Log Basics = inverse of exponential function.

log a - To what power b must be raised such that it becomes equal to a.

1. 
$$\log_2 64 = 6$$

2. 
$$\log_3 27 = 3$$

3. 
$$\log_2 32 = 5$$

$$6^{\frac{1}{4}}$$
  $\log_2 10 = 3$ 

$$2^3 \rightarrow 8$$
$$2^4 \rightarrow 16$$

5. 
$$\log_2 40 = 5$$

6. 
$$\log_2 2^6 = 6$$

$$\left\{ \log_{\alpha} \alpha^{N} = N \right\}$$

7. 
$$\log_3 3^5 = 5$$

N = 27

am = 4



#### < Question >: Given a positive integer N. How many times do we need to divide it by 2

until it reaches 1?

ans=6

$$N \rightarrow \frac{N}{2} \rightarrow \frac{N}{4} \rightarrow \frac{N}{8} \rightarrow \frac{N}{16} \rightarrow \cdots \rightarrow 1$$

$$N \rightarrow \frac{N}{2} \rightarrow \frac{N}{2^{2}} \rightarrow \frac{N}{2^{3}} \rightarrow \frac{N}{2^{3}} \rightarrow \cdots \rightarrow \frac{N}{2^{k}}$$

$$\frac{N}{2^{k}} = 1 \rightarrow N = 2^{k} \rightarrow \log_{2} 2^{k}$$

$$\frac{N}{2^{k}} = 1 \rightarrow N = 2^{k} \rightarrow \log_{2} 2^{k}$$

$$\frac{N}{2^{k}} = 1 \rightarrow N = 2^{k} \rightarrow \log_{2} 2^{k}$$

#### N>0

$$N \rightarrow \frac{N}{2} \rightarrow \frac{N!}{2^2} \rightarrow \frac{N!}{2^3} \rightarrow \frac{N}{2^4} \rightarrow ---- 1$$

$$R \text{ Sheps.}$$

agter K steps, loop will stop.

$$\frac{N}{2^k} = 1 \Rightarrow N = 2^k$$

i jerationo = log N

#### Quiz- 2

for(
$$i=1$$
;  $i < N$ ;  $i=i*2$ ){

}

$$i=1 \longrightarrow 2' \longrightarrow 2^2 \longrightarrow 2^3 \longrightarrow 2^4 \longrightarrow 2^5 \longrightarrow 2 \longrightarrow 2^k$$

$$2^{k} = N \Rightarrow \left[ K = \log N \right]$$

$$\hat{J} = 0 \longrightarrow \hat{J} = 0 \longrightarrow \hat{J} = 0 \longrightarrow \hat{J} = 0 \longrightarrow \hat{J} = 0$$

- infinite iterations.

| J  | j     | 'iterations |
|----|-------|-------------|
| 1  | (1,2) | N           |
| 2  | (1,N) | L<br>V      |
| 3  | (1/4) | 67          |
| ١  |       | <u>'</u>    |
| 1  |       | ,<br>+      |
| 10 | [ hw] | 7           |
| '  |       | 10.2        |

| j  | j           | 1 hrs            |
|----|-------------|------------------|
| 1  | (1, N)      | N<br>+           |
| 2  | [2, N]      | N-1              |
| 2  | [3,N)       | N-2              |
| Ч  |             | • N·3<br>→       |
| 5  |             | → M-4            |
| 6  |             | · N-5            |
| 7  | <del></del> | 01-6             |
| 8  |             | - N-7            |
| 9  |             | → N-8            |
| 10 |             | <u>N</u> −9      |
|    |             | 10.N - (1+2+3+9) |
|    |             | 10N - (9x10)     |
|    |             | = 10N - 45       |

| J | 5      | : terations |
|---|--------|-------------|
| 1 | [1/1]  | N +         |
| 2 | [1/4]  | <b>№</b> 1  |
| 3 | (1/N)  | <b>N</b>    |
| 1 | 1      | 1           |
|   | \      |             |
| N | (1/10) | 0)          |
| 1 |        | $NXN = N^2$ |



| ને | ģ      | iterations     |
|----|--------|----------------|
| 7  | (1,1)  | 1              |
| 2  | [1,2]  | 2              |
| 3  | (1,37) | 3              |
| 4  | (1,7)  | Ч              |
|    |        | lo iterations. |



| j      | j      | iterations for inner loop |
|--------|--------|---------------------------|
| 1      | (1,2') | 2'+                       |
| 2      | (1,22) | 22                        |
| 3      | [1,23] | 2 <sup>3</sup>            |
| Ч      | [1,24] | 24                        |
| t<br>1 |        | *                         |
| 1<br>N | [1,2m] | 2 <sup>N</sup>            |

total iteration = 
$$2^1 + 2^2 + 2^3 + - - 2^N$$

$$= 2 \left[ 2^N - 1 \right] = 2 \left[ 2^N - 1 \right]$$

$$= 2 \left[ 2^N - 1 \right]$$

$$= 2 \left[ 2^N - 1 \right]$$

$$= 2 \left[ 2^N - 1 \right]$$
Symn  $a(x^N - 1)$ 

$$= (x - 1)$$

Algo.1

y \_ 100\*logN

Algo.2

√ N/10



N < 3500 = Algo-2 will perform better than Algo 1.

N > 3500 = Algo-1 will perform better than Algo-2.

India vs Pak => 30 m Most no. of view on youtube vide. - 14 &

. In real world, data is really huge & keeps on increasing.



### **Asymptotic analysis of Algorithms**

#### **Big-0 notation**

- Calculate Iterations based on Input Size
- Ignore Lower Order Terms
- Ignore Constant Coefficients

iterations. 
$$\rightarrow 4N^2 + 3N + 1$$

$$4N^2$$

$$0(N^2)$$

Comparison order

log\_N < JN < N < N loj\_N < NJN < N² < N³ < 2° < N! < N"

$$4N^2 + 3N + 6 N + 6 \log N + 80 \rightarrow 0(N^2)$$

#### Why do we ignore lower order terms?

Iterations  $\rightarrow$  N<sup>2</sup> + 10.N

| N    | N <sup>2</sup> + 10.N<br>(Total iterations) | Percentage of 10.N in total iterations |
|------|---------------------------------------------|----------------------------------------|
| 10   | 102 + 10 x 10 = 200                         | 10x × 100 = 50%                        |
| 100  | 1002+ 102100 = 17000                        | 1000 ×100 = 91/.                       |
| 1000 | 10002 + 10×1000                             | 10 × 1000 × 100 = 19                   |

as input size Tu, % of lower order terms in total it we Les-

### Why to neglect co-efficient / constants?

rate of 'growth of  $N^2 >>> rate of growth of <math>N$ .

# Issues with Big-0

103. N Algori Algore.

Algo-1 is always better than Algo-2?

For larger inputs, Algo-1 is better than Algo-2?

2. Carif compan when Bigo notation one same.

```
for(int i=1; i\leqN; i++){

if(i%2!=0){

c=c+1;

N iteration. \rightarrow O(N)
```

```
for(int i=1; i\leqN; i=i+2){
C=c+1;
```

Acc. to Big.o, both are same but, actually second one will be better.



### **Online Editors and T.L.E**

### Amazon

Online Servers = processing speed = 
$$1 \text{ GHz}$$
 $1 \times 10^9 \text{ instructions}/\text{Sec.}$ 
 $1 \times 10^9 \text{ instructions}/\text{Sec.}$ 

```
int count factors (int N) {

count = 0;

count = 0;

count = 1; i = N; i + n) {

count = 0;

count = 1; i = N; i + n) {

count = 0;

count = 1; i = N; i + n) {

count = 0;

count = 0;
```

### Hppsox-1

1 iteration - 10 instructions.

1 ikration - 100 instructions

## Lonclusion!

No. of iterations must be less than  $10^7-10^8$ , in a order to submit the Code.

### How should we approach a problem?

Read the problem statement

L

Read the constraints corefully.

$$1 \leq N \leq 10^5$$

$$\Rightarrow 0(N^3)$$
  $(10^7)^3 \Rightarrow 10^{15}$  iferations

$$\Rightarrow 0 (N^2)$$
  $(10^7)^2 \rightarrow 10^{10}$  iterations

$$\Rightarrow 0 (N)$$

$$10^{5} \rightarrow 10^{5} \text{ iterations}.$$

 $\int_{0}^{\infty} \int_{0}^{\infty} (i = 1; i \leq N; i + 1) d$   $\int_{0}^{\infty} \int_{0}^{\infty} (i * i = N) d$   $\int_{0}^{\infty} \int_{0}^{\infty} (i * i = N) d$   $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} dx$   $\int_{0}^{\infty} \int_{0}^{\infty} dx$ 

250× <u>Problem</u>.

The every problem to the discussed.