Московский физико-технический университет Факультет радиотехники и кибернетики

Вопрос по выбору к ГКЭ по физике

Холодная эмиссия электронов из металлов

Милославов Глеб, группа Б01-107а

г. Долгопрудный 2024 год

1 Введение

Перед непосредственным описанием эффекта холодной эмиссии электронов из металов необходимо рассмотреть задачу о прохождении налетающей частицы через потенциальный барьер и туннельный эффект.

1.1 Прохождение частицы или потока частиц через прямоугольный потенциальный барьер

Уравнения Шрёдингера в общем виде имеет вид:

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi + U(r)\Psi \tag{1}$$

Для стационарных состояний учитивая, что $\Psi(\mathbf{r},t)=\psi(\mathbf{r})e^{-i\omega t}$, оно переходит в уравнение:

$$E\psi = -\frac{\hbar^2}{2m}\nabla^2\psi + U(r)\psi, \quad \text{где}$$
 (2)

Пусть на границу прямоугольного потенциального барьера ширины l и высоты U_0 слева с постоянной скоростю налетает частица или поток частиц с энергией $E < U_0$. Отождествляем ему распростронение плоской монохроматической волны:

$$\psi = e^{i(kx - \omega t)}$$

Учивая отражение волн от границ в соответствующих областях, получаем выражения для волновых функций в этих областях:

Рис. 1: Прямоугольный потенциальный барьер

$$\begin{cases} \psi_1 = Ae^{ik_1x} + Be^{-ik_1x} \\ \psi_2 = Ce^{\varkappa x} + De^{-\varkappa x} \\ \psi_3 = Fe^{ik_1x} \end{cases}$$
 (3)

где
$$k_1^2 = \frac{2mE}{\hbar^2}$$
, и $\varkappa^2 = -k_2^2 = -\frac{2m(E-U_0)}{\hbar^2}$.

Согласно условиям "склейки"на границах:

$$\begin{cases} \psi_1(x=0) = \psi_2(x=0) \\ \psi'_1(x=0) = \psi'_2(x=0) \\ \psi_2(x=l) = \psi_3(x=l) \\ \psi'_2(x=l) = \psi'_3(x=l) \end{cases}$$
(4)

Решая эту систему уравнений для коэффициентов A, B, C, D находим пропускаемость барьера:

$$T = \left| \frac{F}{A} \right|^2 = \frac{1}{1 + \frac{(k_1^2 + \varkappa^2)^2}{4k_1 k_2} sh^2(\varkappa l)} \simeq \left(l >> \frac{1}{\varkappa} \right) \simeq \frac{(4k_1 \varkappa)^2}{(k_1^2 + \varkappa^2)^2} e^{-2\varkappa l}$$
 (5)

Видно, что несмотря на то, что энергия налетающей частицы меньше высоты барьера, она может появится с другой стороны барьера, как бы проходя по туннелю через классически запрещённую область. Этот эффект называется туннельным.

1.2 Прохождение частицы через потенциальный барьер произвольной формы

Был рассмотрен потенциальный барьер прямоугольной формы. Рассмотрим теперь барьер, в котором U является произвольной функцией от X. Пример представлен на рис. 2.

Горизонтальная прямая $U = \mathcal{E}$ пересекает кривую барьера в двух точках с абциссами x_1 и x_2 . Аппроксимируем кривую над этой прямой ступенчатой линией. Тогда вся площадь, где $\mathcal{E} < U$, разобъется на заштрихованные прямоугольники, каждый из которых можно рассматривать как прямоугольный потенциальный барьер. Пусть ширина одного из таких прямоугольников равна dx, а высота U(x). По известной формуле получаем, что:

Рис. 2: Произвольный потенциальный барьер

$$D' = D'_0 \exp\left\{-\frac{2dx}{\hbar}\sqrt{2m(U - \mathcal{E})}\right\}$$
 (6)

Коэффициент пропускания всего барьера получится перемножением выражений подобного типа, то есть показатели степеней сложатся:

$$D = D_0 \exp\left\{-\int_{x_1}^{x_2} \frac{2}{\hbar} \sqrt{2m(U - \mathcal{E})} \, dx\right\} \tag{7}$$

2 Холодная эмиссия электронов из металлов

Перейдем теперь к рассмотрению эмиссии электронов из металлов. Когда температура металла делается достаточно высокой (выше $1000~^{\circ}$ C), появляются быстрые электроны, способные преодолевать задерживающий потенциал и выходить из металла. Это — термоэлектронная эмиссия. Однако эмиссия электронов может происходить и из холодного металла. Для этого нормально к поверхности металла надо приложить сильное электрическое поле (порядка 10^6 B/cm), направленное к металлу. Такая эмиссия называется холодной. Объяснение этого явления, в общих чертах согласующееся с опытом, основано на теории прохождения электронов через потенциальный барьер.

В отсутствие внешнего электрического поля потенциальная энергия электрона представляется на рис. 3 ступенчатой линией АОВС, причем начало координат О помещено на стенке металла. Внутри металла потенциальная энергия принята равной нулю, вне металла она постоянна и равна С. Если наложить внешнее электрическое поле E, направленное к металлу, то в металл оно не проникнет, и потенциальная энергия электрона в металле по-прежнему будет равна нулю. Снаружи же металла к потенциальной энергии С добавится потенциальная энергия электрона во внешнем электрическом поле, равная —еЕх (заряд электрона обозначен через —е). Она изображена наклонной прямой ВМ.

Рис. 3: Барьер металл-вакуум

В результате полная потенциальная функция электрона во внешнем поле представляется выражениями

$$U(x) = \begin{cases} 0 & \text{при } x < 0 \\ C - eEx & \text{при } x > 0 \end{cases}$$
 (8)

Между металлом и вакуумом возникает потенциальный барьер OBM. Выделим в металле группу электронов с энергией, близкой к \mathcal{E}_x . Проницаемость барьера для электронов с такой энергией найдется по формуле (7), в которой следует положить $\mathbf{x}_1=0$. Здесь x_2 найдется из уравнения \mathbf{C} — $\mathbf{E}\mathbf{x}_2=\mathcal{E}_x$ которое дает $\mathbf{x}_2=(\mathbf{C}-\mathcal{E}_x)/\mathbf{e}\mathbf{E}$. Задача сводится к вычислению интеграла

$$S = \int_0^{x_2} \sqrt{2m[U(x) - \mathcal{E}_x]} \, dx = \int_0^{x_2} \sqrt{2m[C - eEx - \mathcal{E}_x]} \, dx = \frac{2}{3} \sqrt{2m} \frac{(C - \mathcal{E}_x)^{3/2}}{eE}$$
(9)

Таким образом, каоэффициент прозрачности барьера для электронов с энергией \mathcal{E}_x выражается формулой

$$D(\mathcal{E}_x) = D_0 \exp\left\{-\frac{4}{3} \frac{\sqrt{2m}}{\hbar} \frac{(C - \mathcal{E}_x)^{3/2}}{eE}\right\}.$$
 (10)

Можно ввести средний или эффективный коэффициент прозрачности путём соответствующего усреднения по \mathcal{E}_x . В результате усреднения получаем

$$\overline{D} = \overline{D_0} e^{-E_0/E} \tag{11}$$

где $\overline{D_0}$ и E_0 - постоянные, завиящие от рода металла. Ток холодной эмиссии тогда выражается формулой

$$I(E) = I_0 \overline{D} = Ae^{-E_0/E} \tag{12}$$

Рис. 4: Вид зависимости $Ae^{-E_0/E}$

3 Эффект Шоттки

Стоит заметить, что в приближении классической физики, "холодная эмиссия" также возможна за счет эффекта Шоттки. За счет влияния силы электрического изображения $e^2/4x$, с которой электрон притягивается к поверхности металла - уменьшается потенциальный барьер, однако, несложно показать что напряженность поля, необходимая для эмиссии электрона из металла - намного выше экспериментальной.

Высота потенциального барьера на расстоянии x от границы металла представляется выражением $U=C-eEx-e^2/4x$. Функция U достигает своего максимума при $x=(1/2)\sqrt{e/E}$, и принимает значение $U_{\rm makc}=C-\sqrt{Ee^3}$. Отсюда явно видно, что сила электрического изображения уменьшает высоту барьера на величину $\sqrt{Ee^3}$.

Тогда для вольфрама с работой выхода A=4,5 В, напряженность поля для безпрепятственного выхода в вакуум должна быть равна $E=\frac{A^2}{e^3}=1,31\cdot 10^8$ В/см, когда на практике явление автоэмиссии наблюдается уже при $E\approx 6\cdot 10^6$ В/см

4 Применения автоэлектронной эмиссии

4.1 Полевая электронная микроскопия

Принцип полевой эмиссионной микроскопии состоит в том, что если на пути электронного потока, эмитированного с тонкого острия (десятые доли микрона), на макроскопическом расстоянии (порядка нескольких мантиметров) поставить флуоресцирующий экран анод, то на нем электронные лучи отобразят проекцию вершины острия с очень большим увеличением (см. рис. 5). Так как электроны, эмитируемые с поверхности острия, разлетаются почти радиально, то увеличение такого микроскопа проектора равно отношению расстояния от острия до экрана к радиусу вершины острия. Если быть более точным, то на траекторию электронов влияют основание острия и электроды, на которых оно закреплено, поэтому траектории не совсем радиаль-

Рис. 5: Общая схема принципа полевой эмиссионной микроскопии

ны, электроны движутся по некоторым параболам и проекция на экране оказывается немного поджатой. С учетом этого обстоятельства увеличение М выражается простой формулой:

$$M = \frac{1}{\gamma} \frac{R}{r}$$

Где γ - коэффициент сжатия (порядка 1.5-2), R — расстояние анод-катод, r — радиус острия эмиттера. Поскольку острие имеет размеры порядка десятых или сотых долей микрометра, а расстояние R может быть сделано порядка нескольких сантиметров (3-10 см), увеличение такого устройства оказывается очень большим и может достигать 10^5 - 10^6 .