Neural Networks

Mikyla

2022-12-05

What is a Deep Neural Network

- Computers learn to process data in a way that mimics the human brain.
- Neural networks are made of layered neurons
- Can work with a large volume of data

Examples of the Use of Neural Networks

- Computer Vision
 - Facial Recognition
 - Object Detection
- Speech Recognition
 - Amazon Alexa
 - Voice Transcription
- ► Natural Language Processing

How Do Neural Networks Work

- 1. Input
- 2. Hidden Layers
- 3. Output Layer

Boston: Predicting Median Value of Owner Occupied Homes

- ▶ 14 Features, including the outcome variable
- ▶ 506 Rows

```
model <- keras_model_sequential()</pre>
model |>
  layer_dense(units = 5, activation = 'relu', input_shape = c(13)) |>
  laver\_dense(units = 1)
model %>% compile(loss = 'mse',
                  optimizer = 'rmsprop',
                  metrics = 'mae')
mvmodel <- model |>
fit(trainina.traininataraet.
             epochs = 100.
             batch_size = 32,
             validation_split = 0.2)
```

Visual of Neural Network on the Boston Dataset

Training a Neural Network

Test Set Results

[1] "Mean Squared Error: 298.948775332816"

Median value of owner-occupied homes in \$1000s

Hyperparameter Tuning

- Loss Functions
- Optimization Functions
- Activation Functions
- ► Other tuneable parameters
 - ► Training Epochs
 - Batch Size
- Network Architecture
 - Hidden Layers
 - Neuron Connections

Pros and Cons

Pros

- Can be trained on large amounts of data
- ► Effective at certain tasks
- Less need for feature engineering

Cons

- Less interpretable
- Requires large amount of processing power
- Overfitting
- Potential for introducing biases from the real world

Conclusion

- Many Applications
- ► More research
 - Capabilities
 - Problems
- Libraries and existing architectures help their development