ΤΥΠΟΛΟΓΙΟ ΗΜΟ ΣΦ

$$\vec{\mathbf{E}} = k_{e} \lim_{\Delta q_{i} \to 0} \sum_{i} \frac{\Delta q_{i}}{r_{i}^{2}} \hat{\mathbf{r}}_{i} = k_{e} \int \frac{dq}{r^{2}} \hat{\mathbf{r}} \quad \Delta U = U_{B} - U_{A} = -q_{o} \int_{A}^{B} \vec{\mathbf{E}} \cdot d\vec{\mathbf{s}} \quad V = k_{e} \int \frac{dq}{r} \quad \Phi_{E} = \int_{\epsilon \pi i \phi \acute{a} \nu \epsilon i \alpha} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} \quad \mathbf{E} = -\nabla V$$

$$= \frac{Q}{\Delta V} = \frac{Q}{Ed} = \frac{Q}{Qd / \epsilon_{o} A} = \frac{\epsilon_{o} A}{d}, \qquad C = 4\pi \epsilon_{o} R \qquad U = \frac{Q^{2}}{2C} = \frac{1}{2} Q \Delta V = \frac{1}{2} C (\Delta V)^{2} \qquad u_{E} = \frac{1}{2} \epsilon_{0} E^{2}$$

$$\vec{J} = \sigma \vec{E} \quad I = \vec{J} \cdot \vec{A} \quad R = \rho \frac{\ell}{A} \qquad P = I \Delta V = I^2 R = \frac{\left(\Delta V\right)^2}{R} \quad q(t) = CE(1 - e^{-t/RC}) = Q(1 - e^{-t/RC}), \quad q(t) = Qe^{-t/RC}$$

$$B = \frac{\mu_0 I}{4\pi\alpha} \left(\sin\theta_1 + \sin\theta_2 \right)$$

$$0 <= \theta_1, \theta_2 <= \pi/2$$

$$u_B = \frac{1}{2\mu_0} B^2$$

$$\begin{aligned} U_{B} &= \frac{1}{2\mu_{0}} B & \longrightarrow I \\ HE\Delta_{\varepsilon\pi\alpha\gamma} &= -\frac{d\Phi_{B}}{dt} & HE\Delta_{\varepsilon\pi\alpha\gamma} &= \vec{\ell} \cdot (\vec{\upsilon} \times \vec{B}) \\ L &= \frac{N\Phi_{B}}{I} &= -\frac{\varepsilon_{L}}{dI/dt} & \varepsilon_{1} &= -M_{21} \frac{dI_{2}}{dt} & i &= \frac{\varepsilon}{R} \left(1 - e^{-Rt/L}\right) & i &= I_{0} e^{-t/\tau} &= \frac{\varepsilon}{R} e^{-t/\tau} \end{aligned}$$

$$-\mathbf{E}$$
 $\mathbf{E} = \mathbf{E} \cdot (\mathbf{U} \times \mathbf{E})$
 $\mathbf{E} = \mathbf{E} \cdot (\mathbf{E} \times \mathbf{E})$

$$i = I_0 e^{-t/\tau} = \frac{\varepsilon}{R} e^{-t/\tau}$$

Ηλεκτρικό πεδίο επαγώμενο

$$P_{\mu\epsilon\sigma\eta} = \frac{1}{2} I_{\text{max}} \Delta V_{\text{max}} \cos \varphi = I_{\text{rms}} \Delta V_{\text{rms}} \cos \varphi$$

$$Z \equiv \sqrt{R^2 + \left(X_L - X_C\right)^2}$$

$$Z \equiv \sqrt{R^2 + (X_L - X_C)^2}$$
 $\varphi = \tan^{-1}\left(\frac{X_L - X_C}{R}\right)$ $\omega_o = \sqrt[4]{LC}$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q}{\varepsilon_o} \qquad \oint \vec{\mathbf{B}} \cdot d\vec{\mathbf{A}} = 0$$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt} \qquad \oint \vec{\mathbf{B}} \cdot d\vec{\ell} = \mu_o I + \mu_o \varepsilon_o \frac{d\Phi_E}{dt}$$

$$\frac{E_{\text{max}}}{B_{\text{max}}} = \frac{\omega}{k} = \frac{E}{B} = c, \quad k = \beta = \frac{2\pi}{\lambda}$$

$$u_{\mu \acute{\epsilon} \sigma \eta} = \varepsilon_o (E^2)_{\mu \acute{\epsilon} \sigma \eta} = \frac{1}{2} \varepsilon_o E^2_{max} = B^2_{max} / 2\mu_o, I = S_{\mu \acute{\epsilon} \sigma \eta} = c u_{\mu \acute{\epsilon} \sigma \eta}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2$$

Κάτοπτα: 1/s+1/s' = 2/R και m = -y'/y = -s'/s

 Δ ίοπτρα: n_a/s) +(n_b/s')= (n_b-n_a)/R και $m=y'/y=-n_as'/n_bs$

Φακοί:
$$\frac{1}{S} + \frac{1}{S'} = \frac{1}{f} = \frac{n_2 - n_1}{n_1} (\frac{1}{R_1} - \frac{1}{R_2})$$
 $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$

υμενια enisx συμβολη

$$y_{\varphi_{\text{WT.}}} = L \frac{m\lambda}{d}$$
 Kal $y_{\text{OKOT.}} = L \frac{(m + \frac{1}{2})\lambda}{d}$

$$\theta_{\min} = 1.22 \frac{\lambda}{D}$$

 $\sin \theta_{\text{σκοτ.}} = m\lambda / \alpha m = \pm 1, \pm 2, \pm 3, ...$ Περίθλαση

 $h = 6,626 \times 10^{-34} [J s]$

Μαγνητική διαπερατότητα κενού	$\mu_0 = 4\pi \times 10^{-7} \text{ H/m}$ (ορισμός) $\approx 1,256637 \times 10^{-6} \text{ H/m}$
Επιτρεπτότητα κενού	$\varepsilon_0 = 1/\mu_0 c^2 \approx 8.854 185 \times 10^{-12} \text{F/m}$
Ταχύτητα φωτός στο κενό	$c = (\varepsilon_0 \mu_0)^{-\frac{1}{4}} \approx 2,997925 \times 10^8 \text{ m/sec}$
Σύνθετη αντίσταση κενού	$Z_0 = (\mu_0/\epsilon_0)^{1/2} = \mu_0 c \approx 3,767304 \times 10^2 \ \Omega \approx 120\pi \ \Omega$
Στοιχειώδες ηλεκτρικό φορτίο	$e \approx 1,602\ 192 \times 10^{-19}\ C$
Μάζα ηρεμίας ηλεκτρονίου	$m_e \approx 9,109558 \times 10^{-31} \text{ kg}$

$$t' = \frac{t - \frac{ux}{c^2}}{\sqrt{1 - \frac{u^2}{c^2}}} = \gamma (t - \frac{ux}{c^2}) \quad v' = \frac{v - u}{1 - \frac{uv}{c^2}}$$

$$l = \frac{l_0}{\gamma}$$

$$E = \gamma \cdot m_0 \cdot c^2$$

$$p = \gamma \cdot m_0 \cdot v \qquad E^2 = (mc^2)^2 + (pc)^2$$

$\Delta x \cdot \Delta p_x \simeq \hbar$ (προσεγγιστικά)

0.99

0.995

0.999

Προσεγγιστικές τιμές του γ

$$\lambda = \frac{h}{p} = \frac{h}{mu}$$

v/c	γ
0	1
0.001 0	1.000 000 5
0.010	1.000 05
0.10	1.005
0.20	1.021
0.30	1.048
0.40	1.091
0.50	1.155
0.60	1.250
0.70	1.400
0.80	1.667
0.90	2.294
0.92	2.552
0.94	2.931
0.96	3.571
0.98	5.025

7.089

10.01