

### What is Logistics Regression?

- Used to predict the probability of an outcome
- Can be binary Yes/No or Multiple
- · Supervised learning method
- Must provide a dataset that already contains the outcomes to train the model.

## Understanding the Logistic Regression

$$y = b_0 + b_1 x$$

No of Claims = 
$$18 + b_1 * (age)$$



Simple Linear Regression

## Understanding the Logistic Regression

$$y = b_0 + b_1 x$$

No of Claims = 
$$18 + b_1 * (age)$$



Simple Linear Regression

· Outcome is categorical

• Will this customer buy my product?



· Outcome is categorical

• Will this customer buy my product?





· Outcome is categorical

 What is the probability of this customer buying this product?



- Probability needs to satisfy two basic conditions
  - Always positive i.e. > 0
  - Always less than or equal to 1

$$y = b_0 + b_1 x$$
Always Positive
 $e^y$ 
Make it less than 1
 $e^y + 1$ 

$$P = \frac{e^y}{e^y + 1}$$

Q = 1-P=1-
$$\frac{e^{y}}{e^{y}+1}$$
 =  $\frac{e^{y}+1-e^{y}}{e^{y}+1}$  =  $\frac{1}{e^{y}+1}$ 

$$P = \frac{e^y}{e^y + 1}$$

$$1-P = \frac{1}{e^y + 1}$$

Odds = 
$$\frac{\frac{e^{y}}{e^{y}}}{1-P} = \frac{\frac{e^{y}}{e^{y}}}{\frac{1}{e^{y}}} = e^{y}$$

$$P = \frac{e^y}{e^y + 1}$$

$$1-P = \frac{1}{e^y + 1}$$

$$\frac{P}{1-P} = e^{y}$$

$$P = \frac{e^y}{e^y + 1}$$

$$1-P = \frac{1}{e^y + 1}$$

$$\log\left(\frac{P}{1-P}\right) = y$$

$$P = \frac{e^y}{e^y + 1}$$

$$1-P = \frac{1}{e^y + 1}$$

$$\log\left(\frac{P}{1-P}\right) = y = (b_0 + b_1 x)$$

### Plotting Logistic Regression

$$\log\left(\frac{\mathsf{P}}{\mathsf{1-P}}\right) = (b_0 + b_1 x)$$



### Plotting Logistic Regression

$$\log\left(\frac{\mathsf{P}}{\mathsf{1-P}}\right) = (b_0 + b_1 x)$$



#### Plotting Logistic Regression

$$\log\left(\frac{\mathsf{P}}{\mathsf{1-P}}\right) = (b_0 + b_1 x)$$



# **Logistic Regression Equation**



Demo: Create ML for predicting if the customer will buy the product or not?



Demo 2: Create ML for predicting Bank Churn .



Assignment: Create ML for automating

Loan Approval process.



# Loan Approval Prediction

| Loan_ID  | Gender | Married | Dependents | Self_Employed | Income     | LoanAmt  | Term | CreditHistory | Property_Area | Status |
|----------|--------|---------|------------|---------------|------------|----------|------|---------------|---------------|--------|
| LP001002 | Male   | No      | 0          | No            | \$5,849.00 |          | 60   | 1             | Urban         | Υ      |
| LP001003 | Male   | Yes     | 1          | No            | \$4,583.00 | \$128.00 | 120  | 1             | Rural         | N      |
| LP001005 | Male   | Yes     | 0          | Yes           | \$3,000.00 | \$66.00  | 60   | 1             | Urban         | Υ      |
| LP001006 | Male   | Yes     | 2          | No            | \$2,583.00 | \$120.00 | 60   | 1             | Urban         | Υ      |

- Automate loan eligibility process
- Identify customers whose loan will be approved

# Loan Approval Prediction

| Loan_ID  | Gender | Married | Dependents | Self_Employed | Income     | LoanAmt  | Term | CreditHistory | Property_Area | Status |
|----------|--------|---------|------------|---------------|------------|----------|------|---------------|---------------|--------|
| LP001002 | Male   | No      | 0          | No            | \$5,849.00 |          | 60   | 1             | Urban         | Υ      |
| LP001003 | Male   | Yes     | 1          | No            | \$4,583.00 | \$128.00 | 120  | 1             | Rural         | N      |
| LP001005 | Male   | Yes     | 0          | Yes           | \$3,000.00 | \$66.00  | 60   | 1             | Urban         | Υ      |
| LP001006 | Male   | Yes     | 2          | No            | \$2,583.00 | \$120.00 | 60   | 1             | Urban         | Υ      |

- · Automate loan eligibility process
- Identify customers whose loan will be approved

| gender | married | ch | income | loanamt | status |
|--------|---------|----|--------|---------|--------|
| Male   | No      | 1  | 5849   |         | Υ      |
| Male   | Yes     | 0  | 4583   | 128     | N      |
| Male   | Yes     | 1  | 3000   | 66      | Υ      |
| Female | Yes     | 1  | 2583   | 120     | Υ      |
| Male   | No      | 1  | 6000   | 141     | Υ      |
| Male   | Yes     | 1  | 5417   | 267     | Υ      |

### Solution Steps...

- Import Libraries and read data
- Identify and Deal with Missing Values
- Create Dummy Variables
- · Normalise the Data
- · Select relevant columns
- Split dataset in Training and Test datasets
- · Train and Evaluate the model

| gender | married | ch | income | loanamt | status |
|--------|---------|----|--------|---------|--------|
| Male   | No      | 1  | 5849   |         | Υ      |
| Male   | Yes     | 0  | 4583   | 128     | N      |
| Male   | Yes     | 1  | 3000   | 66      | Υ      |
| Female | Yes     | 1  | 2583   | 120     | Υ      |
| Male   | No      | 1  | 6000   | 141     | Υ      |
| Male   | Yes     | 1  | 5417   | 267     | Υ      |

#### **Prediction Outcome**







# Question 1:

Logistic Regression is a linear classifier

- True
- False

# Question 2:

#### **Logistic Regression returns probabilities**

- True
- False

# Question 3:

In Python, what is the class used to create a logistic regression classifier?

| GLM                 |
|---------------------|
|                     |
| OLogisticRegression |
|                     |
| ○ Logit             |
|                     |
| O LogReg            |



### **Model Evaluation**



|   | 0    | 1   |
|---|------|-----|
|   | 3814 | 559 |
| 1 | 800  | 764 |

Accuracy = 0.86

Accuracy = 0.77



# Loan Approval Prediction

| Loan_ID  | Gender | Married | Dependents | Self_Employed | Income     | LoanAmt  | Term | CreditHistory | Property_Area | Status |
|----------|--------|---------|------------|---------------|------------|----------|------|---------------|---------------|--------|
| LP001002 | Male   | No      | 0          | No            | \$5,849.00 |          | 60   | 1             | Urban         | Υ      |
| LP001003 | Male   | Yes     | 1          | No            | \$4,583.00 | \$128.00 | 120  | 1             | Rural         | N      |
| LP001005 | Male   | Yes     | 0          | Yes           | \$3,000.00 | \$66.00  | 60   | 1             | Urban         | Υ      |
| LP001006 | Male   | Yes     | 2          | No            | \$2,583.00 | \$120.00 | 60   | 1             | Urban         | Υ      |

- · Automate loan eligibility process
- · Identify customers whose loan will be approved

| gender | married | ch | income | loanamt | status |
|--------|---------|----|--------|---------|--------|
| Male   | No      | 1  | 5849   |         | Υ      |
| Male   | Yes     | 0  | 4583   | 128     | N      |
| Male   | Yes     | 1  | 3000   | 66      | Υ      |
| Female | Yes     | 1  | 2583   | 120     | Υ      |
| Male   | No      | 1  | 6000   | 141     | Υ      |
| Male   | Yes     | 1  | 5417   | 267     | Υ      |

#### Accuracy



Accuracy - Proportions of total number of correct results

$$Accuracy = \frac{TN + TP}{Total \; Observations} = \frac{9500 + 80}{10000} = 0.958$$

$$Accuracy = \frac{TN + TP}{Total\ Observations} = \frac{9900 + 1}{10000} = 0.99$$

#### Precision and Recall

Fraud Detection – 0.958





**Precision** – Proportion of correct positive results out of all predicted positive results.

Recall/Sensitivity - Proportion of actual positive cases

$$Precision = \frac{TP}{TP + FP} = \frac{80}{80 + 400} = 0.167$$

$$Recall = \frac{TP}{TP + FN} = \frac{80}{80 + 20} = 0.8$$

$$Precision = \frac{1}{1+0} = 1$$

$$Recall = \frac{1}{1+99} = 0.01$$

#### Precision and Recall



$$Precision = \frac{1}{1+0} = 1$$

$$Recall = \frac{1}{1+99} = 0.01$$



$$Precision = \frac{100}{100 + 9900} = 0.01$$

$$Recall = \frac{100}{100 + 0} = 1$$

#### **Best Case Scenario**



$$Precision = \frac{100}{100 + 0} = 1$$

$$Recall = \frac{100}{100 + 0} = 1$$

$$Accuracy = \frac{9900 + 100}{10000} = 1$$

### F1Score



$$Precision = \frac{90}{90 + 22} = 0.8035$$

$$Recall = \frac{90}{90 + 10} = 0.9$$

$$F1Score = \frac{2 * 0.8035 * 0.9}{0.8035 + 0.9} = \mathbf{0.849}$$



$$Precision = \frac{70}{70+0} = 1$$

$$Recall = \frac{70}{70 + 30} = 0.7$$

$$F1Score = \frac{2*1*0.7}{1+0.7} = \mathbf{0.823}$$

# Recap

$$Accuracy = \frac{TN + TP}{Total \ Observations}$$

$$F1Score = \frac{2 * Precision * Recall}{Precision + Recall}$$

$$Precision = \frac{TP}{TP + FP}$$

$$Recall \ or \ Sensitivity = \frac{TP}{TP + FN}$$

True Positive Rate

## Which metric to use?

High Accuracy is nice to have

 High Precision when its OK to have false negatives





## Which metric to use?

· High Accuracy is nice to have

 High Precision when its OK to have false negatives

 High recall or sensitivity when cost of false negative is very high





# Loan Approval Prediction



# Loan Approval Prediction



I am OK with less accuracy but the bad loan approvals can not be more than 5%.



Precision = 0.84375



Recall or Sensitivity = 0.9818



# Loan Approval Prediction



Accuracy = 0.8616

Precision = 0.84375

 $Recall \ or \ Sensitivity = 0.9818$ 

Let's share some workload





## Customise the metrics



## Customise the metrics



## Customise the metrics



Demo: Evaluation Metrics for Loan Prediction projects



Demo: Adjusting Thresholds





0 TN = 44Actual 0

FN = 43

FP = 5

TP = 67

Predicted

0

TN = 29

1

Actual

0

FP = 20

FN = 2

TP = 108

2 loss of opportunity and 5 bad loans

- 1. Anything above 78.5% probability Approve
- 2. Anything below 60% probability Reject
- 3. Anything between 60-78.5% On Hold

72 Confirmed approvals

31 Confirmed rejections

56 on Hold with manual checks

Predicted

#### Predicted

0 FP = 5 TN = 44Actual 0

FN = 43

**Threshold** 

**Adjusted Probability** 

TN = 29

FP = 20

1

0

Actua

FN = 2

0

TP = 108

2 loss 5 22d l

unity and

Anything above 78.5% probability – Approve

TP = 67

2. Anything below 60% probability – Reject

Anything between 60-78.5% – On Hold

pprovals

ections

with manual checks



### What is a K-Nearest Neighbor Algorithm?

KNN falls in the supervised learning family of an algorithm.

Informally this means that we are given a labelled dataset consisting of (x,y)

kNN is a simple algorithm that stores all available cases and classifies new cases based on a similarity measure (eg distance function).

STEP 1: Choose the number K of neighbors



STEP 2: Take the K nearest neighbors of the new data point, according to the Euclidean distance



STEP 3: Among these K neighbors, count the number of data points in each category



STEP 4: Assign the new data point to the category where you counted the most neighbors



Your Model is Ready





### **Euclidean Distance**





STEP 3: Among these K neighbors, count the number of data points in each category





