Model	Dataset	Training Accuracy (%)	Testing Accuracy(%)
	Total images		
ViT B16	11000. Total	94.94	93.00
	classes 10. Each		
DenseNet121 [1]	images. Training Folder 8000 images. Validation	98.64	92.00
	Folder 2000		
Xception [2]	images. Testing Folder 1000 images.	96.54	86.00
InceptionV3 [3]		94.77	85.00
VGG16 [4]		96.01	85.00

- [1] Li, Xia & Shen, Xi & Zhou, Yongxia & Wang, Xiuhui & Li, Tie-Qiang. (2020). Classification of breast cancer histopathological images using interleaved DenseNet with SENet (IDSNet). PLOS ONE. 15. e0232127. 10.1371/journal.pone.0232127.
- [2] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 1251-1258).
- [3] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE conference on computer vision and pattern recognition* (pp. 2818-2826).
- [4] J. Tao, Y. Gu, J. Sun, Y. Bie and H. Wang, "Research on vgg16 convolutional neural network feature classification algorithm based on Transfer Learning," 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 2021, pp. 1-3, doi: 10.23919/CISS51089.2021.9652277.