Лабораторная работа 2.1.1 Измерение удельной теплоемкости воздуха при постоянном давлении Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Измерить повышение температуры воздуха в зависимости от мощности подводимого тепла и расхода при стационарном течении через трубу
- 2) Исключив тепловые потери, по результатам измерений определить теплоёмкость воздуха при постоянном давлении.

2 Оборудование:

Теплоизолированная стеклянная трубка

Электронагреватель

Источник питания постоянного тока

Амперметр, вольтметр

Термопара, подключенная к микровольтметру

Компрессор

Газовый счётчик

Секундомер

3 Теоретическое введение

Теплоёмкость тела в некотором процессе определяется как $C = \frac{\delta Q}{dT}$

Пусть за некоторое время dt через калориметр прошла малая порция газа массой dm=qdt, где q — массовый расход газа в трубе. Если мощность нагрева равна N, мощность тепловых потерь на обмен с окружающей средой $N_{\text{пот}}$, то порция получила тепло $\delta Q=(N-N_{\text{пот}})dt$. С другой стороны, по определению теплоёмкости $\delta Q=cdm\Delta T$, Таким образом

$$c_P = \frac{N - N}{q\Delta T} (1).$$

4 Экспериментальная установка:

Мощность нагрева равна N = UI

Массовый расход может быть найден как $q = \rho_0 \frac{\Delta V}{\Delta t}$

Мощность потерь тепла N прямо пропорциональна разности температур: $N=\alpha \Delta T$. При этом условии соотношение (1) принимает вид

$$N = (c_P q + \alpha) \Delta T (2)$$

Следовательно, при фиксированном расходе воздуха подводимая мощность и разность температур связаны прямой пропорциональностью($\Delta T(N)$ — линейная функция).