Package 'terra'

September 11, 2022

Type Package

```
Title Spatial Data Analysis
Version 1.6-17
Date 2022-09-10
Depends R (>= 3.5.0)
Suggests parallel, tinytest, ncdf4, sf (>= 0.9-8), deldir, XML,
      leaflet
LinkingTo Rcpp
Imports methods, Rcpp
SystemRequirements C++11, GDAL (>= 2.2.3), GEOS (>= 3.4.0), PROJ (>=
      4.9.3), sqlite3
Encoding UTF-8
Maintainer Robert J. Hijmans < r. hijmans@gmail.com>
Description Methods for spatial data analysis with raster and vector data. Raster methods al-
      low for low-level data manipulation as well as high-level global, local, zonal, and focal computa-
      tion. The predict and interpolate methods facilitate the use of regression type (interpolation, ma-
      chine learning) models for spatial prediction, including with satellite remote sensing data. Pro-
      cessing of very large files is supported. See the manual and tutori-
      als on <a href="https://rspatial.org/terra/">https://rspatial.org/terra/</a> to get started. 'terra' is a replace-
      ment for the 'raster' package ('terra' can do more, and it is faster and easier to use).
License GPL (>= 3)
URL https://rspatial.org/terra/
BugReports https://github.com/rspatial/terra/issues/
LazyLoad yes
NeedsCompilation yes
Author Robert J. Hijmans [cre, aut] (<a href="https://orcid.org/0000-0001-5872-2872">https://orcid.org/0000-0001-5872-2872</a>),
      Roger Bivand [ctb] (<a href="https://orcid.org/0000-0003-2392-6140">https://orcid.org/0000-0003-2392-6140</a>),
      Karl Forner [ctb],
      Jeroen Ooms [ctb] (<a href="https://orcid.org/0000-0002-4035-0289">https://orcid.org/0000-0002-4035-0289</a>),
      Edzer Pebesma [ctb] (<a href="https://orcid.org/0000-0001-8049-7069">https://orcid.org/0000-0001-8049-7069</a>),
      Michael D. Sumner [ctb]
```

Repository CRAN

Date/Publication 2022-09-10 22:10:02 UTC

R topics documented:

erra-package	6
ctiveCat	19
dd	20
djacent	20
ggregate	22
lign	23
	25
nimate	26
pp	27
pproximate	29
Arith-methods	30
	31
s.data.frame	32
s.list	33
s.raster	34
s.spatvector	35
	36
utocorrelation	37
arplot	39
oundaries	40
	41
	42
	43
artogram	44
atalyze	45
ells	46
	47
	49
lamp	49
lassify	50
lick	52
	54
	55
ombineGeoms	56
	57
1	58
<u> </u>	59
	60
	61
	62
	63
	64
rds	64

crop	 	 																 65
crosstab	 	 																 67
crs	 	 																 68
deepcopy	 	 																 69
densify	 	 																 70
density	 	 																 71
deprecated	 	 																 72
depth	 	 																 72
describe																		73
diff																		74
dimensions .																		75
direction																		77
disagg																		78
distance																		79
dots																		81
draw																		82
erase																		83
																		84
expanse																		
ext																		86
extend																		87
extract																		88
extremes																		91
factors																		92
fillHoles																		94
fillTime	 	 																 95
flip	 	 																 96
focal	 	 																 97
focal3D	 	 																 99
focalCor	 	 																 100
focalCpp	 	 																 101
focalMat	 	 																 103
focalReg	 	 																 104
focalValues .	 	 																 105
freq	 	 																 106
gaps																		107
gdal																		107
geom																		108
geomtype																		
global																		
gridDistance.																		
head and tail .																		
hist																		
ifel																		
image																		
0																		
impose																		
initialize																		
inplace	 	 	•	 ٠	•	 ٠	٠.	•	٠	 •	 ٠	 ٠	 ٠	•	 ٠	٠	•	
inset																		120

ntersect	. 122
s.bool	. 123
s.lonlat	. 124
арр	. 125
ayerCor	. 127
inearUnits	
ines	. 130
nakeTiles	
nakeVRT	
nask	
natch	
Math-methods	
nem	
nerge	
nergeTime	
nodal	
nosaic	
na.omit	
NAflag	
names	
nearest	
normalize.longitude	
north	
not.na	
options	
origin	
pairs	
patches	
perim	
persp	
olet	
plot	
olotRGB	
predict	
project	
_l uantile	
query	
app	
ast	
asterize	
asterizeGeom	
ead and write	
ectify	. 180
elate	. 180
ep	. 183
eplace	. 184
resample	. 184
escale	186

RGB	187
rotate	
sapp	
sbar	
scale	
scatterplot	
scoff	
sds	
segregate	
sel	
selectHighest	
selectRange	
serialize	
setValues	
shade	
sharedPaths	
shift	
simplifyGeom	
sort	
sources	
SpatExtent-class	
Spatial interpolation	
SpatRaster-class	
spatSample	
SpatVector-class	
spin	
split	
sprc	
stretch	
subset	
subst	. 219
summarize	
summary	
SVC	
symdif	
tapp	. 225
terrain	. 226
text	. 228
tighten	. 229
time	. 230
tmpFiles	. 231
topology	. 232
transpose	. 233
trim	. 234
union	. 234
unique	. 236
units	. 237
valid	. 238

muex				200
Index				263
	zoom	 	 	261
				259
	xyRowColCell .	 	 	257
	xmin	 	 	256
	writeVector	 	 	255
				253
	•			
				251
	•			249
				248
	•			246
				245
				244
	•			244
	vector-attributes .	 	 	243
				240
	values	 	 	239

Description

terra provides methods to manipulate geographic (spatial) data in "raster" and "vector" form. Raster data divide space into rectangular cells (pixels) and they are commonly used to represent spatially continuous phenomena, such as elevation or the weather. Satellite images also have this data structure. In contrast, "vector" spatial data (points, lines, polygons) are typically used to represent discrete spatial entities, such as a road, country, or bus stop.

The package implements two main classes (data types): SpatRaster and SpatVector. SpatRaster supports handling large raster files that cannot be loaded into memory; local, focal, zonal, and global raster operations; polygon, line and point to raster conversion; integration with modeling methods to make spatial predictions; and more. SpatVector supports all types of geometric operations such as intersections.

Additional classes include SpatExtent, which is used to define a spatial extent (bounding box); SpatRasterDataset, which represents a collection of sub-datasets for the same area. Each sub-dataset is a SpatRaster with possibly many layers, and may, for example, represent different weather variables; and SpatRasterCollection and SpatVectorCollection that are equivalent to lists of SpatRaster or SpatVector objects.

These classes hold a C++ pointer to the data "reference class" and that creates some limitations. They cannot be recovered from a saved R session either or directly passed to nodes on a computer cluster. Generally, you should use writeRaster to save SpatRaster objects to disk (and pass a filename or cell values to cluster nodes). Also see wrap.

The terra package is conceived as a replacement of the raster package. terra has a very similar, but simpler, interface, and it is faster than raster. At the bottom of this page there is a table that shows differences in the methods between the two packages.

Below is a list of some of the most important methods grouped by theme.

SpatRaster

I. Creating, combining and sub-setting

rast Create a SpatRaster from scratch, file, or another object

c Combine SpatRasters (multiple layers)
add<- Add a SpatRaster to another one
subset or [[, or \$ Select layers of a SpatRaster

selectRange Select cell values from different layers using an index layer

II. Changing the spatial extent or resolution

Also see the methods in section VIII

merge Combine SpatRasters with different extents (but same origin and resolution)
mosaic Combine SpatRasters with different extents using a function for overlapping cells

crop Select a geographic subset of a SpatRaster extend Add rows and/or columns to a SpatRaster

trim Trim a SpatRaster by removing exterior rows and/or columns that only have NAs

aggregate Combine cells of a SpatRaster to create larger cells

disagg Subdivide cells

resample Resample (warp) values to a SpatRaster with a different origin and/or resolution Project Project (warp) values to a SpatRaster with a different coordinate reference system

shift Adjust the location of SpatRaster flip Flip values horizontally or vertically

rotate Rotate values around the date-line (for lon/lat data)

t Transpose a SpatRaster

III. Local (cell based) methods

Apply-like methods:

app Apply a function to all cells, across layers, typically to summarize (as in base::apply)
tapp Apply a function to groups of layers (as in base::tapply and stats::aggregate)

lapp	Apply a function to using the layers of a SpatRaster as variables
sapp	Apply a function to each layer
rapp	Apply a function to a spatially variable range of layers

Arithmetic, logical, and standard math methods:

Arith-methods	Standard arithmetic methods (+, -, *, ^, %%, %/%, /)
Compare-methods	Comparison methods for SpatRaster (==, !=, >, <, <=, >=)
Logic-methods	Boolean methods (!, &,)
Math-methods	abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod,
	cumsum, log, log10, log2, log1p, acos, acosh, asin, asinh, atan, atanh,
	exp, expm1, cos, cosh, sin, sinh, tan, tanh, round, signif
Summary-methods	mean, max, min, median, sum, range, prod,
	any, all, stdev, which.min, which.max
as.bool	create a Boolean (logical) SpatRaster
as.int	create an integer (whole numbers) SpatRaster

Other methods:

approximate	Compute missing values for cells by interpolation across layers
cellSize	Compute the area of cells
classify	(Re-)classify values
subst	Substitute (replace) cell values
cover	First layer covers second layer except where the first layer is NA
init	Initialize cells with new values
mask	Replace values in a SpatRaster based on values in another SpatRaster
which.lyr	which is the first layer that is TRUE?
segregate	Make a 0/1 layer for each unique value

IV. Zonal and global methods

expanse

crosstab	Cross-tabulate two SpatRasters
freq	Frequency table of SpatRaster cell values
global	Summarize SpatRaster cell values with a function
quantile	Quantiles
layerCor	Correlation between layers
stretch	Stretch values
scale	Scale values
summary	Summary of the values of a SpatRaster (quartiles and mean)
unique	Get the unique values in a SpatRaster
zonal	Summarize a SpatRaster by zones in another SpatRaster
	- · · · · · · · · · · · · · · · · · · ·

Compute the summed area of cells

V. Situation (spatial context) based methods

adjacent	Identify cells that are adjacent to a set of cells of a SpatRaster
boundaries	Detection of boundaries (edges)
distance	Shortest distance to a cell that is not NA or to or from a vector object
gridDistance	Shortest distance through adjacent grid cells
costDistance	Shortest distance considering cell-varying friction
direction	Direction (azimuth) to or from cells that are not NA
focal	Focal (neighborhood; moving window) functions
focalCpp	Faster focal by using custom C++ functions
focalReg	Regression beween layers for focal areas
focalCor	Correlation between layers for focal areas
patches	Find patches (clumps)
terrain	Compute slope, aspect and other terrain characteristics from elevation data
shade	Compute hill shade from slope and aspect layers
autocor	Compute global or local spatial autocorrelation

VI. Model predictions

predict	Predict a non-spatial model to a SpatRaster
interpolate	Predict a spatial model to a SpatRaster

VII. Accessing cell values

Apart from the function listed below, you can also use indexing with [with cell numbers, and row and/or column numbers

values	cell values (fails with very large rasters)
values<-	Set new values to the cells of a SpatRaster
setValues	Set new values to the cells of a SpatRaster
as.matrix	Get cell values as a matrix
as.array	Get cell values as an array
extract	Extract cell values from a SpatRaster (e.g., by cell, coordinates, polygon)

spatSample	Regular or random sample
minmax	Get the minimum and maximum value of the cells of a SpatRaster (if known)
setMinMax	Compute the minimum and maximum value of a SpatRaster if these are not known
extract	spatial queries of a SpatRaster with a SpatVector

VIII. Getting and setting dimensions

Get or set basic parameters of SpatRasters. If there are values associated with a SpatRaster object (either in memory or via a link to a file) these are lost when you change the number of columns or rows or the resolution. This is not the case when the extent is changed (as the number of columns and rows will not be affected). Similarly, with **crs** you can set the coordinate reference system, but this does not transform the data (see project for that).

ncol	The number of columns
nrow	The number of rows
ncell	The number of cells (can not be set directly, only via ncol or nrow)
res	The resolution (x and y)
nlyr	Get or set the number of layers
names	Get or set the layer names
xres	The x resolution (can be set with res)
yres	The y resolution (can be set with res)
xmin	The minimum x coordinate (or longitude)
xmax	The maximum x coordinate (or longitude)
ymin	The minimum y coordinate (or latitude)
ymax	The maximum y coordinate (or latitude)
ext	Get or set the extent (minimum and maximum x and y coordinates ("bounding box")
origin	The origin of a SpatRaster
crs	The coordinate reference system (map projection)
is.lonlat	Test if an object has (or may have) a longitude/latitude coordinate reference system
sources	Get the filename(s) to which a SpatRaster is linked
inMemory	Are the data sources in memory (or on disk)?
compareGeom	Compare the geometry of SpatRasters
NAflag	Set the NA value (for reading from a file with insufficient metadata)

IX. Computing row, column, cell numbers and coordinates

Cell numbers start at 1 in the upper-left corner. They increase within rows, from left to right, and then row by row from top to bottom. Likewise, row numbers start at 1 at the top of the raster, and column numbers start at 1 at the left side of the raster.

```
xFromCol x-coordinates from column numbers
yFromRow y-coordinates from row numbers
xFromCell x-coordinates from row numbers
yFromCell y-coordinates from cell numbers
xyFromCell x and y coordinates from cell numbers
```

 colFromX
 Column numbers from x-coordinates (or longitude)

 rowFromY
 Row numbers from y-coordinates (or latitude)

 rowColFromCell
 Row and column numbers from cell numbers

 cellFromXY
 Cell numbers from x and y coordinates

 cellFromRowCol
 Cell numbers from row and column numbers

cellFromRowColCombine Cell numbers from all combinations of row and column numbers

cells Cell numbers from an SpatVector or SpatExtent

X. Time related methods

time Get or set time
fillTime can add empty layers in between existing layers to assure that the time step between layers is constar
mergeTime combine multiple rasters, perhaps partly overlapping in time, into a single time series

XI. Methods for categorical rasters

is.factor Are there categorical layers? Get active categories, or set categories levels Get or set the active category activeCat cats Get categories (active and inactive) Set categories in place set.cats Combine SpatRasters with different categories concats Create a layer for each category catalyze use the active category to create a non-categorical SpatRaster as.numeric Make the layers of a SpatRaster categorical as.factor

XII. Writing SpatRaster files

Basic:

writeRaster Write all values of SpatRaster to disk. You can set the filetype, datatype, compression. writeCDF Write SpatRaster data to a netCDF file

Advanced:

readStart Open file connections for efficient multi-chunk reading

readStop	Close file connections
writeStart	Open a file for writing
writeValues	Write some values
writeStop	Close the file after writing

XIII. Miscellaneous SpatRaster methods

terraOptions	Show, set, or get session options, mostly to control memory use and to set write options
sources	Show the data sources of a SpatRaster
tmpFiles	Show or remove temporary files
mem_info	memory needs and availability
inMemory	Are the cell values in memory?

SpatRasterDataSet

XIV. SpatRasterDataset

A SpatRasterDataset contains SpatRaster objects that are sub-datasets for the same area. They all have the same extent and resolution.

sds	Create a SpatRasterDataset from a file with subdatasets (ncdf or hdf) or from SpatRaster objects
[or \$	Extract a SpatRaster
names	Get the names of the sub-datasets

SpatVector

XV. Create SpatVector objects

vect vector_layers	Create a SpatVector from a file (for example a "shapefile") or from another object list or delete layers in a vector database such as GPGK
rbind	append SpatVectors of the same geometry type
unique	remove duplicates
na.omit	remove empty geometries and/or fields that are NA
project	Project a SpatVector to a different coordinate reference system
writeVector	Write SpatVector data to disk

centroids	Get the centroids of a SpatVector
voronoi	Voronoi diagram
delaunay	Delaunay triangles
convHull	Compute the convex hull of a SpatVector
fillHoles	Remove or extract holes from polygons

XVI. Properties of SpatVector objects

geom	returns the geometries as matrix or WKT
crds	returns the coordinates as a matrix
linearUnits	returns the linear units of the crs (in meter)
ncol	The number of columns (of the attributes)
nrow	The number of rows (of the geometries and attributes)
names	Get or set the layer names
ext	Get the extent (minimum and maximum x and y coordinates ("bounding box")
crs	The coordinate reference system (map projection)
is.lonlat	Test if an object has (or may have) a longitude/latitude coordinate reference system

XVII. Geometric queries

adjacent	find adjacent polygons
expanse	computes the area covered by polygons
nearby	find nearby geometries
nearest	find the nearest geometries
relate	geometric relationships such as "intersects", "overlaps", and "touches"
perim	computes the length of the perimeter of polygons, and the length of lines

XVIII. Geometric operations

erase or "-"	erase (parts of) geometries
intersect or "*"	intersect geometries
union or "+"	Merge geometries
cover	update polygons
symdif	symmetrical difference of two polygons

aggregate	dissolve smaller polygons into larger ones
buffer	buffer geometries
disagg	split multi-geometries into separate geometries
crop	clip geometries using a rectangle (SpatExtent) or SpatVector

XIX. SpatVector attributes

We use the term "attributes" for the tabular data (data.frame) associated with vector geometries.

extract	spatial queries between SpatVector and SpatVector (e.g. point in polygons)
sel	select - interactively select geometries
click	identify attributes by clicking on a map
merge	Join a table with a SpatVector
as.data.frame	get attributes as a data.frame
as.list	get attributes as a list
values	Get the attributes of a SpatVector
values<-	Set new attributes to the geometries of a SpatRaster

XX. Change geometries (for display, experimentation)

shift	change the position geometries by shifting their coordinates in horizontal and/or vertical direction
spin	rotate geometries around an origin
rescale	shrink (or expand) geometries, for example to make an inset map
flip	flip geometries vertically or horizontally
t	transpose geometries (switch x and y)

XXI. Geometry properties and topology

width	the minimum diameter of the geometries
clearance	the minimum clearance of the geometries
sharedPaths	shared paths (arcs) between line or polygon geometries
simplifyGeom	simplify geometries
gaps	find gaps between polygon geometries
fillHoles	get or remove the polygon holes
makeNodes	create nodes on lines
mergeLines	connect lines to form polygons
removeDupNodes	remove duplicate nodes in geometries and optionally rounds the coordinates

is.valid
makeValid
snap
erase (single argument)
union (single argument)
combineGeoms

check if geometries are valid attempt to repair invalid geometries

make boundaries of geometries identical if they are very close to each other

remove parts of geometries that overlap

create new polygons such that there are no overlapping polygons

combine geometries that overlap, share a border, or are within a minimum distance of each other

Spat* Collections

XXII. Collections

A SpatRasterCollection is a vector of SpatRaster objects. Unlike for a SpatRasterDataset, there the extent and resolution of the SpatRasters do not need to match each other. A SpatVectorCollection is a vector of SpatVector objects.

svc length create a SpatRasterCollection from a set of SpatRaster objects how many SpatRasters does the SpatRasterCollection have?

extract a SpatRastert

SpatExtent

XXIII. SpatExtent

create a SpatExtent object. For example to crop a Spatial dataset
intersect
union
Combine two SpatExtent objects, same as +

Math-methods
align
Align a SpatExtent with a SpatRaster

Create a SpatExtent by drawing it as ton of a man (alat)

draw Create a SpatExtent by drawing it on top of a map (plot)

General methods

XXIV. Conversion between spatial data objects from different packages

You can coerce SpatRasters to Raster* objects, after loading the raster package, with as(object, "Raster"), or raster(object) or brick(object) or stack(object)

rast SpatRaster from matrix and other objects vect SpatVector from sf or Spatial* vector data

sf::st_as_sf sf object from SpatVector

rasterize Rasterizing points, lines or polygons

rasterizeGeom Rasterize attributes of geometries such as "count", "area", or "length"

as.points
Create points from a SpatRaster or SpatVector
as.lines
Create points from a SpatRaster or SpatVector

as.polygons Create polygons from a SpatRaster as.contour Contour lines from a SpatRaster

XXV. Plotting

Maps:

plot Plot a SpatRaster or SpatVector. The main method to create a map

points Add points to a map
lines Add lines to a map
polys Add polygons to a map

text Add text (such as the values of a SpatRaster or SpatVector) to a map

image Alternative to plot to make a map with a SpatRaster

plotRGB Combine three layers (red, green, blue channels) into a single "real color" plot

sbarAdd a scalebar to a mapnorthAdd a north arrow to a mapinsetAdd a small inset (overview) map

dots Make a dot-density map
cartogram Make a cartogram

persp Perspective plot of a SpatRaster

contour Contour plot or filled-contour plot of a SpatRaster

colorize Combine three layers (red, green, blue channels) into a single layer with a color-table

Interacting with a map:

Zoom in to a part of a map by drawing a bounding box on it click Query values of SpatRaster or SpatVector by clicking on a map

sel Select a spatial subset of a SpatRaster or SpatVector by drawing on a map

draw Create a SpatExtent or SpatVector by drawing on a map

Other plots:

plot	x-y scatter plot of the values of (a sample of) the layers of two SpatRaster objects
hist	Histogram of SpatRaster values
barplot	Bar plot of a SpatRaster
density	Density plot of SpatRaster values
pairs	Pairs plot for layers in a SpatRaster
boxplot	Box plot of the values of a SpatRaster

Comparison with the raster package

XXVI. New method names

terra has a single class SpatRaster for which raster has three (RasterLayer, RasterStack, RasterBrick). Likewise there is a single class for vector data SpatVector that replaces six Spatial* classes. Most method names are the same, but note the following important differences in methods names with the raster package

raster package	terra package
raster, brick, stack	rast
rasterFromXYZ	<pre>rast(, type="xyz")</pre>
stack, addLayer	С
addLayer	add<-
area	cellSize or expanse
approxNA	approximate
calc	арр
cellFromLine, cellFromPolygon,	cells
cellsFromExtent	cells
cellStats	global
corLocal	focalCor
coordinates	crds
clump	patches
compareRaster	compareGeom
disaggregate	disagg
drawExtent, drawPoly, drawLine	draw
dropLayer	subset
extent	ext
distanceFromPoints	distance
isLonLat, isGlobalLonLat	is.lonlat
couldBeLonLat	is.lonlat
layerize	segregate
layerStats	layerCor
NAvalue	NAflag
nlayers	nlyr
overlay	lapp
projectRaster	project
rasterToPoints	as.points

rasterToPolygons as.polygons
reclassify, subs, cut classify
sampleRandom, sampleRegular spatSample
shapefile vect
stackApply tapp
stackSelect selectRange

XXVII. Changed behavior

Also note that even if function names are the same in terra and raster, their output can be different. In most cases this was done to get more consistency in the returned values (and thus fewer errors in the downstream code that uses them). It other cases it simply seemed better. Here are some examples:

as.polygons
quantile
extract
By default, terra returns dissolved polygons
computes by cell, across layers instead of the other way around
By default, terra returns a matrix, with the first column the sequential ID of the vectors.
raster returns a list (for lines or polygons) or a matrix (for points, but without the ID
column. You can use list=TRUE to get the results as a list

values

Values
Summary-methods
With raster, mean(x, y) and mean(stack(x, y) return the same result, a single
layer with the mean of all cell values. This is also what terra returns with

With raster, mean(x, y) and mean(stack(x, y) return the same result, a single layer with the mean of all cell values. This is also what terra returns with mean(c(x, y)), but with mean(x, y) the parallel mean is returned – that is, the computation is done layer-wise, and the number of layers in the output is the same as that of x and y (or the larger of the two if they are not the same). This affects all summary functions (sum, mean, median, which.min, which.max, min, max, prod, any, all, stdev), except range, which is not implemented for this case (you can use min and max instead)

Authors

Except where indicated otherwise, the methods and functions in this package were written by Robert Hijmans. The configuration scripts were written by Roger Bivand. Some of the C++ code for GDAL/GEOS was adapted from code by Edzer Pebesma for sf. The progress bar code is by Karl Forner (RcppProgress). Jeroen Ooms provided the compiled GDAL and GEOS libraries for installation on windows. Michael Sumner contributed various bits and pieces.

Acknowledgments

This package is an attempt to climb on the shoulders of giants (GDAL, PROJ, GEOS, NCDF, GeographicLib, Rcpp, R). Many people have contributed by asking questions or raising issues. Feedback and suggestions by Márcia Barbosa, Kendon Bell, Andrew Gene Brown, Jean-Luc Dupouey, Krzysztof Dyba, Alex Ilich, Gerald Nelson, Jakub Nowosad and Monika Tomaszewska have been especially helpful.

activeCat 19

activeCat Active category

Description

Get or set the active category of a multi-categorical SpatRaster layer

Usage

```
## S4 method for signature 'SpatRaster'
activeCat(x, layer=1)
## S4 replacement method for signature 'SpatRaster'
activeCat(x, layer=1)<-value</pre>
```

Arguments

x SpatRaster
 layer positive integer, the layer number or name
 value a data.frame (ID, category) or vector with category names

Value

integer

See Also

```
catalyze, cats
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d
activeCat(r)
activeCat(r) <- 3
activeCat(r)</pre>
```

20 adjacent

add

Add (in place) a SpatRaster to another SpatRaster object

Description

Add (in place) a SpatRaster to another SpatRaster object. Comparable with c, but withouth copying the object.

Usage

```
\#\# S4 replacement method for signature 'SpatRaster, SpatRaster' add(x)<-value
```

Arguments

```
x SpatRastervalue SpatRaster
```

Value

SpatRaster

See Also

С

Examples

```
r <- rast(nrows=5, ncols=9, vals=1:45)
x <- c(r, r*2)
add(x) <- r*3
x</pre>
```

adjacent

Adjacent cells

Description

Identify cells that are adjacent to a set of raster cells. Or identify adjacent polygons

Usage

```
## S4 method for signature 'SpatRaster'
adjacent(x, cells, directions="rook", pairs=FALSE, include=FALSE)
## S4 method for signature 'SpatVector'
adjacent(x, type="rook", pairs=TRUE, symmetrical=FALSE)
```

adjacent 21

Arguments

Х	SpatRaster
cells	vector of cell numbers for which adjacent cells should be found. Cell numbers start with 1 in the upper-left corner and increase from left to right and from top to bottom
directions	character or matrix to indicated the directions in which cells are considered connected. The following character values are allowed: "rook" or "4" for the horizontal and vertical neighbors; "bishop" to get the diagonal neighbors; "queen" or "8" to get the vertical, horizontal and diagonal neighbors; or "16" for knight and one-cell queen move neighbors. If directions is a matrix it should have odd dimensions and have logical (or 0, 1) values
pairs	logical. If TRUE, a two-column matrix of pairs of adjacent cells is returned. If x is a SpatRaster and pairs is FALSE, an n*m matrix is returned where the number of rows n is length(cells) and the number of columns m is the number of neighbors requested with directions
include	logical. Should the focal cells be included in the result? They are always included if ${\tt pairs=TRUE}$
type	character. One of "rook", "queen", "touches", or "intersects". "queen" and "touches" are synonyms. "rook" exclude polygons that touch at a single node only. "intersects" includes polygons that touch or overlap
symmetrical	logical. If TRUE, an adjacent pair is only included once. For example, if polygon 1 is adjacent to polygon 3, the implied adjacency between 3 and 1 is not reported

Value

matrix

See Also

relate, nearby

```
r <- rast(nrows=10, ncols=10)
adjacent(r, cells=c(1, 5, 55), directions="queen")
r <- rast(nrows=10, ncols=10, crs="+proj=utm +zone=1 +datum=WGS84")
adjacent(r, cells=11, directions="rook")

#same as
rk <- matrix(c(0,1,0,1,0,1,0,1,0), 3, 3)
adjacent(r, cells=11, directions=rk)

## note that with global lat/lon data the E and W connect
r <- rast(nrows=10, ncols=10, crs="+proj=longlat +datum=WGS84")
adjacent(r, cells=11, directions="rook")

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)</pre>
```

22 aggregate

```
a <- adjacent(v, symmetrical=TRUE)
head(a)</pre>
```

aggregate

Aggregate raster or vector data

Description

Aggregate a SpatRaster to create a new SpatRaster with a lower resolution (larger cells). Aggregation groups rectangular areas to create larger cells. The value for the resulting cells is computed with a user-specified function.

Or aggregate ("dissolve") a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
aggregate(x, fact=2, fun="mean", ..., cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatVector'
aggregate(x, by=NULL, dissolve=TRUE, fun="mean", count=TRUE, ...)
```

Arguments

Х	SpatRaster
fact	positive integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor) or three integers (when also aggregating over layers)
fun	function used to aggregate values. Either an actual function, or for the following, their name: "mean", "max", "min", "median", "sum" and "modal"
	additional arguments passed to fun, such as na.rm=TRUE
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created. Ignored for C++ level implemented functions "mean", "max", "min", "median", "sum" and "modal"
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster
by	character. The variable used to aggregate the geometries
dissolve	logical. Should borders between aggregated geometries be dissolved?
count	logical. If TRUE and by is not NULL, a variable "agg_n" is included that shows the number of input geometries for each output geometry

align 23

Details

Aggregation starts at the upper-left end of a SpatRaster. If a division of the number of columns or rows with factor does not return an integer, the extent of the resulting SpatRaster will be somewhat larger then that of the original SpatRaster. For example, if an input SpatRaster has 100 columns, and fact=12, the output SpatRaster will have 9 columns and the maximum x coordinate of the output SpatRaster is also adjusted.

The function fun should take multiple numbers, and return a single number. For example mean, modal, min or max.

It should also accept a na.rm argument (or ignore it as one of the 'dots' arguments).

Value

SpatRaster

See Also

disagg to disaggregate

```
r <- rast()
# aggregated SpatRaster, no values
ra <- aggregate(r, fact=10)</pre>
values(r) <- runif(ncell(r))</pre>
# aggregated raster, max of the values
ra <- aggregate(r, fact=10, fun=max)</pre>
# multiple layers
s <- c(r, r*2)
x <- aggregate(s, 20)
## SpatVector
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
va <- aggregate(v, "ID_1")</pre>
plot(va, "NAME_1", lwd=5, plg=list(x="topright"), mar=rep(2,4))
lines(v, lwd=3, col="light gray")
lines(va)
text(v, "ID_1", halo=TRUE)
```

24 align

Description

Align an SpatExtent with a SpatRaster This can be useful to create a new SpatRaster with the same origin and resolution as an existing SpatRaster. Do not use this to force data to match that really does not match (use e.g. resample or (dis)aggregate for this).

It is also possible to align a SpatExtent to a clean divisor.

Usage

```
## S4 method for signature 'SpatExtent,SpatRaster'
align(x, y, snap="near")
## S4 method for signature 'SpatExtent,numeric'
align(x, y)
```

Arguments

X	SpatExtent
у	SpatRaster or numeric
snap	Character. One of "near", "in", or "out", to determine in which direction the extent should be aligned. To the nearest border, inwards or outwards

Value

SpatExtent

See Also

```
ext, draw
```

```
r <- rast()
e <- ext(-10.1, 9.9, -20.1, 19.9)
ea <- align(e, r)
e
ext(r)
ea
align(e, 0.5)</pre>
```

all.equal 25

all.equal

Compare two SpatRasters for equality

Description

Compare two SpatRasters for (near) equality.

First the attributes of the objects are compared. If these are the same, a (perhaps small) sample of the raster cells is compared as well.

The sample size used can be increased with the maxcell argument. You can set it to Inf, but for large rasters your computer may not have sufficient memory. See the examples for a safe way to compare all values.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
all.equal(target, current, maxcell=10000, ...)
```

Arguments

target	SpatRaster
current	SpatRaster
maxcell	postive integer. The size of the regular sample used to compare cell values
	additional arguments passed to all.equal.numeric to compare cell values

Value

Either TRUE or a chracter vector describing the differences between target and current.

See Also

compareGeom

```
x <- sqrt(1:100)
mat <- matrix(x, 10, 10)
r1 <- rast(nrows=10, ncols=10, xmin=0, vals = x)
r2 <- rast(nrows=10, ncols=10, xmin=0, vals = mat)
all.equal(r1, r2)
all.equal(r1, r1*1)
all.equal(rast(r1), rast(r2))
# compare geometries
compareGeom(r1, r2)
# Compare all cell values for near equality</pre>
```

26 animate

```
# as floating point number imprecision can be a problem
m <- minmax(r1 - r2)
all(abs(m) < 1e-7)

# comparison of cell values to create new SpatRaster
e <- r1 == r2</pre>
```

animate

Animate a SpatRaster

Description

Animate (sequentially plot) the layers of a SpatRaster to create a movie.

This does not work with R-Studio.

Usage

```
## S4 method for signature 'SpatRaster'
animate(x, pause=0.25, main, range, maxcell=50000, n=1, ...)
```

Arguments

Χ	SpatRaster
pause	numeric. How long should be the pause be between layers?
main	title for each layer. If not supplied the z-value is used if available. Otherwise the names are used.
range	numeric vector of length 2. Range of values to plot
maxcell	integer > 0 . Maximum number of cells to use for the plot. If maxcell $<$ ncell(x), spatSample(type="regular") is used before plotting
n	integer > 0. Number of loops
	Additional arguments passed to plot

Value

None

See Also

plot

```
s <- rast(system.file("ex/logo.tif", package="terra"))
animate(s, n=1)</pre>
```

27 app

арр

Apply a function to the cells of a SpatRaster

Description

Apply a function to the values of each cell of a SpatRaster. Similar to apply – think of each layer in a SpatRaster as a column (or row) in a matrix.

This is generally used to summarize the values of multiple layers into one layer; but this is not required.

app calls function fun with the raster data as first argument. Depending on the function supplied, the raster data is represented as either a matrix in which each layer is a column, or a vector representing a cell. The function should return a vector or matrix that is divisible by ncell(x). Thus, both "sum" and "rowSums" can be used, but "colSums" cannot be used.

You can also apply a function fun across datasets by layer of a SpatRasterDataset. In that case, summarization is across SpatRasters, not across layers.

Usage

```
## S4 method for signature 'SpatRaster'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterDataset'
app(x, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster or SpatRasterDataset
fun	a function that operates on a vector or matrix. This can be a function that is defined in base-R or in a package, or a function you write yourself (see examples). Functions that return complex output (e.g. a list) may need to be wrapped in your own function to simplify the output to a vector or matrix. The following functions have been re-implemented in C++ for speed: "sum", "mean", "median", "modal", "which", "which.min", "which.max", "min", "max", "prod", "any", "all", "sd", "std", "first". To use the base-R function for say, "min", you could use something like fun=function(i) min(i) or the equivalent fun = \(i) min(i)
•••	additional arguments for fun. These are typically numerical constants. They should *never* be another SpatRaster
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object. Ignored for functions that are implemented by terra in C++ (see under fun)
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

28 app

Details

To speed things up, parallelization is supported, but this is often not helpful, and it may actually be slower. There is only a speed gain if you have many cores (> 8) and/or a very complex (slow) function fun. If you write fun yourself, consider supplying a cppFunction made with the Rcpp package instead (or go have a cup of tea while the computer works for you).

Value

SpatRaster

See Also

lapp, tapp, Math-methods

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)</pre>
x \leftarrow c(r, sqrt(r), r+50)
s \leftarrow app(x, fun=sum)
# for a few generic functions like
# "sum", "mean", and "max" you can also do
sum(x)
## SpatRasterDataset
sd \leftarrow sds(x, x*2, x/3)
a <- app(sd, max)
# same as
max(x, x*2, x/3)
## also works for a single layer
f \leftarrow function(i) (i+1) * 2 * i + sqrt(i)
s \leftarrow app(r, f)
# same as above, but that is not memory-safe
# and has no filename argument
s \leftarrow f(r)
## Not run:
#### multiple cores
test0 <- app(x, sqrt)
test1 <- app(x, sqrt, cores=2)
testfun <- function(i) { 2 * sqrt(i) }</pre>
test2 <- app(x, fun=testfun, cores =2)
## this fails because testfun is not exported to the nodes
# test3 <- app(x, fun=function(i) testfun(i), cores=2)</pre>
## to export it, add it as argument to fun
test3 <- app(x, fun=function(i, ff) ff(i), cores =3, ff=testfun)
```

approximate 29

## End(Not run)	
approximate	Estimate values for cell values that are NA by interpolating between layers

Description

approximate uses the stats function approx to estimate values for cells that are NA by interpolation across layers. Layers are considered equidistant, unless argument z is used, or time(x) returns values that are not NA, in which case these values are used to determine distance between layers.

For estimation based on neighboring cells see focal

Usage

Arguments

X	SpatRaster
method	specifies the interpolation method to be used. Choices are "linear" or "constant" (step function; see the example in approx
yleft	the value to be returned before a non-NA value is encountered. The default is defined by the value of rule given below
yright	the value to be returned after the last non-NA value is encountered. The default is defined by the value of rule given below
rule	an integer (of length 1 or 2) describing how interpolation is to take place at for the first and last cells (before or after any non-NA values are encountered). If rule is 1 then NAs are returned for such points and if it is 2, the value at the closest data extreme is used. Use, e.g., rule = 2:1, if the left and right side extrapolation should differ
f	for method = "constant" a number between 0 and 1 inclusive, indicating a compromise between left- and right-continuous step functions. If y0 and y1 are the values to the left and right of the point then the value is $y0*(1-f)+y1*f$ so that $f = 0$ is right-continuous and $f = 1$ is left-continuous
ties	Handling of tied 'z' values. Either a function with a single vector argument returning a single number result or the string "ordered"
Z	numeric vector to indicate the distance between layers (e.g., depth). The default is $time(x)$ if these are not NA or else 1:nlys(x)
NArule	single integer used to determine what to do when only a single layer with a non-NA value is encountered (and linear interpolation is not possible). The default value of 1 indicates that all layers will get this value for that cell; all other values do not change the cell values
filename	character. Output filename
•••	additional arguments for writing files as in writeRaster

30 Arith-methods

Value

SpatRaster

See Also

```
focal, fillTime
```

Examples

```
r <- rast(ncols=5, nrows=5)
r1 <- setValues(r, runif(ncell(r)))
r2 <- setValues(r, runif(ncell(r)))
r3 <- setValues(r, runif(ncell(r)))
r4 <- setValues(r, runif(ncell(r)))
r5 <- setValues(r, NA)
r6 <- setValues(r, runif(ncell(r)))
r1[6:10] <- NA
r2[5:15] <- NA
r3[8:25] <- NA
s <- c(r1,r2,r3,r4,r5,r6)
s[1:5] <- NA
x1 <- approximate(s)
x2 <- approximate(s, rule=2)
x3 <- approximate(s, rule=2, z=c(1,2,3,5,14,15))</pre>
```

Arith-methods

Arithmetic

Description

Standard arithmetic operators for computations with SpatRasters. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same geometry (extent and resolution). These operators have been implemented:

```
+, -, *, /, ^, %%, %/%
```

The following methods have been implemented for SpatExtent:

```
for (SpatExtent, SpatExtent): +, -, and for (SpatExtent, numeric): +, -, *, /, %%
```

Value

SpatRaster or SpatExtent

See Also

ifel to conveniently combine operations and Math-methods or app to use mathematical functions not implemented by the package.

as.character 31

Examples

```
r1 <- rast(ncols=10, nrows=10)</pre>
v <- runif(ncell(r1))</pre>
v[10:20] <- NA
values(r1) <- v</pre>
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)</pre>
r3 < - r1 + r2
r2 <- r1 / 10
r3 <- r1 * (r2 - 1 / r2)
b <- c(r1, r2, r3)
b2 <- b * 10
### SpatExtent methods
x \leftarrow ext(0.1, 2.2, 0, 3)
y \leftarrow ext(-2, 1, -2, 2)
# union
x + y
# intersection
x * y
e <- x
e * 2
e / 2
e + 1
e - 1
```

as.character

Create a text representation of (the skeleton of) an object

Description

Create a text representation of (the skeleton of) an object

Usage

```
## S4 method for signature 'SpatExtent'
as.character(x)
## S4 method for signature 'SpatRaster'
as.character(x)
```

Arguments

x SpatRaster

32 as.data.frame

Value

character

Examples

```
r <- rast()
ext(r)
ext(c(0, 20, 0, 20))</pre>
```

as.data.frame

SpatRaster or SpatVector to data.frame

Description

Coerce a SpatRaster or SpatVector to a data.frame

Usage

```
## S4 method for signature 'SpatVector'
as.data.frame(x, row.names=NULL, optional=FALSE, geom=NULL, ...)
## S4 method for signature 'SpatRaster'
as.data.frame(x, row.names=NULL, optional=FALSE, xy=FALSE, cells=FALSE, na.rm=NA, ...)
```

Arguments

X	SpatRaster or SpatVector
geom	character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry included in Well-Known-Text or hexadecimal notation. If x has point geometry, it can also bey "XY" to add the coordinates of each point
xy	logical. If TRUE, the coordinates of each raster cell are included
cells	logical. If TRUE, the cell numbers of each raster cell are included
na.rm	logical. If TRUE, cells that have a NA value in at least one layer are removed. If the argument is set to NA only cells that have NA values in all layers are removed
	Additional arguments passed to the data.frame
row.names	This argument is ignored
optional	This argument is ignored

Value

data.frame

See Also

as.list, as.matrix. See geom to only extract the geometry of a SpatVector

as.list 33

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.data.frame(v)</pre>
```

as.list

SpatRaster* or SpatVector to list

Description

Coerce a SpatRaster, SpatRasterCollection, SpatRasterDataset, or SpatVector to a list. With a SpatRaster, each layer becomes a list element. With a SpatRasterCollection or SpatRasterDataset, each SpatRaster becomes a list element. With a SpatVector, each variable (attribute) becomes a list element.

Usage

```
## S4 method for signature 'SpatRaster'
as.list(x, ...)
## S4 method for signature 'SpatRasterCollection'
as.list(x, ...)
## S4 method for signature 'SpatVector'
as.list(x, geom=NULL, ...)
```

Arguments

x SpatRaster, SpatRasterDataset, SpatRasterCollection, or SpatVector
 geom character or NULL. If not NULL, either "WKT" or "HEX", to get the geometry included in Well-Known-Text or hexadecimal notation. If x has point geometry, it can also bey "XY" to add the coordinates of each point
 . . . Additional arguments. These are ignored

Value

list

See Also

see coerce for as.data.frame with a SpatRaster; and geom to only extract the geometry of a SpatVector

34 as.raster

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
as.list(v)

s <- rast(system.file("ex/logo.tif", package="terra")) + 1
as.list(s)</pre>
```

as.raster

Coerce to a "raster" object

Description

Implementation of the generic as.raster function to create a "raster" (small r) object. Such objects can be used for plotting with the rasterImage function. NOT TO BE CONFUSED with the Raster* (big R) objects defined by the 'raster' package!

Usage

```
## S4 method for signature 'SpatRaster'
as.raster(x, maxcell=500000, col)
```

Arguments

X	SpatRaster
maxcell	positive integer. Maximum number of cells to use for the plot
col	vector of colors. Default is col=rev(terrain.colors(255)))

Value

'raster' object

```
r <- rast(ncols=3, nrows=3)
values(r) <- 1:ncell(r)
as.raster(r)</pre>
```

as.spatvector 35

as.spatvector

Conversion to a SpatVector, or to another SpatVector type

Description

Conversion of a SpatRaster or SpatExtent to a SpatVector of points, lines, or polygons; And conversion of a SpatVector to a another SpatVector type.

Usage

```
## S4 method for signature 'SpatRaster'
as.polygons(x, trunc=TRUE, dissolve=TRUE, values=TRUE,
na.rm=TRUE, na.all=FALSE, extent=FALSE)
## S4 method for signature 'SpatRaster'
as.lines(x)
## S4 method for signature 'SpatRaster'
as.points(x, values=TRUE, na.rm=TRUE, na.all=FALSE)
## S4 method for signature 'SpatVector'
as.polygons(x, extent=FALSE)
## S4 method for signature 'SpatVector'
as.lines(x)
## S4 method for signature 'SpatVector'
as.points(x, multi=FALSE, skiplast=TRUE)
## S4 method for signature 'SpatExtent'
as.polygons(x, crs="")
## S4 method for signature 'SpatExtent'
as.lines(x, crs="")
## S4 method for signature 'SpatExtent'
as.points(x, crs="")
```

Arguments

X	SpatRaster or SpatVector
trunc	logical; truncate values to integers. Cells with the same value are merged. Therefore, if trunc=FALSE the object returned can have many cells and can be very large
dissolve	logical; combine cells with the same values? If TRUE only the first layer in x is processed

36 atan2

logical; include cell values as attributes? values multi logical. If TRUE a multi-point geometry is returned skiplast logical. If TRUE the last point of a polygon (which is the same as the first point) is not included extent logical. if TRUE, a polygon for the extent of the SpatRaster or SpatVector is returned. If x is a SpatRaster, the polygon has vertices for each row and column, not just the four corners of the raster. This can be useful for more precise projection. If that is not required, it is more efficient to get the extent represented by only the four corners with as.polygons(ext(x), crs=crs(x)) logical. If TRUE cells that are NA are ignored na.rm logical. If TRUE cells are only ignored if na.rm=TRUE and their value is NA for na.all all layers instead of for any layer character. The coordinate reference system (see crs crs

Value

SpatVector

Examples

```
r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)

as.points(r)
as.lines(ext(r), crs=crs(r))

if (gdal() >= "3.0.0") {
  p <- as.polygons(r)
  p
  as.lines(p)
  as.points(p)
}</pre>
```

atan2

Two argument arc-tangent

Description

For SpatRasters x and y, atan2(y, x) returns the angle in radians for the tangent y/x, handling the case when x is zero. See Trig

See Math-methods for other trigonometric and mathematical functions that can be used with SpatRasters.

autocorrelation 37

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
atan2(y, x)
## S4 method for signature 'SpatRaster, SpatRaster'
atan_2(y, x, filename, ...)
```

Arguments

y SpatRaster
x SpatRaster
filename character. Output filename
... additional arguments for writing files as in writeRaster

See Also

Math-methods

Examples

```
r1 <- rast(nrows=10, ncols=10)
r2 <- rast(nrows=10, ncols=10)
values(r1) <- (runif(ncell(r1))-0.5) * 10
values(r2) <- (runif(ncell(r1))-0.5) * 10
atan2(r1, r2)</pre>
```

autocorrelation

Spatial autocorrelation

Description

Compute spatial autocorrelation for a numeric vector or a SpatRaster. You can compute standard (global) Moran's I or Geary's C, or local indicators of spatial autocorrelation (Anselin, 1995).

Usage

```
## S4 method for signature 'numeric'
autocor(x, w, method="moran")

## S4 method for signature 'SpatRaster'
autocor(x, w=matrix(c(1,1,1,1,0,1,1,1,1),3), method="moran", global=TRUE)
```

38 autocorrelation

Arguments

X	numeric or SpatRaster
W	Spatial weights defined by or a rectangular matrix. For a SpatRaster this matrix must the sides must have an odd length $(3, 5,)$
global	logical. If TRUE global autocorrelation is computed instead of local autocorrelation $$
method	character. If x is numeric or SpatRaster: "moran" for Moran's I and "geary" for Geary's C. If x is numeric also: "Gi", "Gi*" (the Getis-Ord statistics), locmor (local Moran's I) and "mean" (local mean)

Details

The default setting uses a 3x3 neighborhood to compute "Queen's case" indices. You can use a filter (weights matrix) to do other things, such as "Rook's case", or different lags.

Value

numeric or SpatRaster

References

Moran, P.A.P., 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23

Geary, R.C., 1954. The contiguity ratio and statistical mapping. The Incorporated Statistician 5: 115-145

Anselin, L., 1995. Local indicators of spatial association-LISA. Geographical Analysis 27:93-115

https://en.wikipedia.org/wiki/Indicators_of_spatial_association

See Also

The spdep package for additional and more general approaches for computing spatial autocorrelation

```
### raster
r <- rast(nrows=10, ncols=10, xmin=0)
values(r) <- 1:ncell(r)

autocor(r)

# rook's case neighbors
f <- matrix(c(0,1,0,1,0,1,0,1,0), nrow=3)
autocor(r, f)

# local
rc <- autocor(r, w=f, global=FALSE)

### numeric (for vector data)</pre>
```

barplot 39

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- relate(v, relation="touches")

# global
autocor(v$AREA, w)

# local
v$Gi <- autocor(v$AREA, w, "Gi")
plot(v, "Gi")</pre>
```

barplot

Bar plot of a SpatRaster

Description

Create a barplot of the values of a the first layer of a SpatRaster. For large datasets a regular sample with a size of approximately maxcells is used.

Usage

```
## S4 method for signature 'SpatRaster'
barplot(height, maxcell=1000000, digits=0, breaks=NULL, col, ...)
```

Arguments

height	SpatRaster
maxcell	integer. To regularly subsample very large datasets
digits	integer used to determine how to round the values before tabulating. Set to NULL or to a large number if you do not want any rounding
breaks	breaks used to group the data as in cut
col	a color generating function such as rainbow (the default), or a vector of colors
	additional arguments for plotting as in barplot

Value

A numeric vector (or matrix, when beside = TRUE) of the coordinates of the bar midpoints, useful for adding to the graph. See barplot

See Also

```
hist, boxplot
```

40 boundaries

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
barplot(r, digits=-1, las=2, ylab="Frequency")

op <- par(no.readonly = TRUE)
par(mai = c(1, 2, .5, .5))
barplot(r, breaks=10, col=c("red", "blue"), horiz=TRUE, digits=NULL, las=1)
par(op)</pre>
```

boundaries

Detect boundaries (edges)

Description

Detect boundaries (edges). Boundaries are cells that have more than one class in the 4 or 8 cells surrounding it, or, if classes=FALSE, cells with values and cells with NA.

Usage

Arguments

Х	SpatRaster
inner	logical. If TRUE, "inner" boundaries are returned, else "outer" boundaries are returned $% \left(1\right) =\left(1\right) \left(1\right) $
classes	character. Logical. If TRUE all different values are (after rounding) distinguished, as well as NA. If FALSE (the default) only edges between NA and non-NA cells are considered
directions	integer. Which cells are considered adjacent? Should be 8 (Queen's case) or 4 (Rook's case)
falseval	numeric. The value to use for cells that are not a boundary and not NA
filename	character. Output filename
	options for writing files as in writeRaster

Value

SpatRaster. Cell values are either 1 (a border) or 0 (not a border), or NA

See Also

```
focal, patches
```

boxplot 41

Examples

```
r <- rast(nrows=18, ncols=36, xmin=0)
r[150:250] <- 1
r[251:450] <- 2
bi <- boundaries(r)
bo <- boundaries(r, inner=FALSE)
bc <- boundaries(r, classes=TRUE)
#plot(bc)</pre>
```

boxplot

Box plot of SpatRaster data

Description

Box plot of layers in a SpatRaster

Usage

```
## $4 method for signature 'SpatRaster'
boxplot(x, y=NULL, maxcell=100000, ...)
```

Arguments

```
    x SpatRaster
    y NULL or a SpatRaster. If x is a SpatRaster it used to group the values of x by "zone"
    maxcell Integer. Number of cells to sample from datasets
    ... additional arguments passed to graphics::boxplot
```

Value

boxplot returns a list (invisibly) that can be used with bxp

See Also

```
pairs, hist
```

```
r1 <- r2 <- r3 <- rast(ncols=10, nrows=10)
set.seed(409)
values(r1) <- rnorm(ncell(r1), 100, 40)
values(r2) <- rnorm(ncell(r1), 80, 10)
values(r3) <- rnorm(ncell(r1), 120, 30)
s <- c(r1, r2, r3)
names(s) <- c("Apple", "Pear", "Cherry")
boxplot(s, notch=TRUE, col=c("red", "blue", "orange"), main="Box plot", ylab="random", las=1)</pre>
```

42 buffer

```
op <- par(no.readonly = TRUE)
par(mar=c(4,6,2,2))
boxplot(s, horizontal=TRUE, col="lightskyblue", axes=FALSE)
axis(1)
axis(2, at=0:3, labels=c("", names(s)), las=1, cex.axis=.9, lty=0)
par(op)

## boxplot with 2 layers
v <- vect(system.file("ex/lux.shp", package="terra"))
r <- rast(system.file("ex/elev.tif", package="terra"))
y <- rasterize(v, r, "NAME_2")
b <- boxplot(r, y)
bxp(b)</pre>
```

buffer

Create a buffer around vector geometries or raster patches

Description

Calculate a buffer around all cells that are not NA in a SpatRaster, or around the geometries of a SpatVector)

Note that the distance unit of the buffer width parameter is meters if the CRS is (+proj=longlat), and in map units (typically also meters) if not.

Usage

```
## S4 method for signature 'SpatRaster'
buffer(x, width, filename="", ...)
## S4 method for signature 'SpatVector'
buffer(x, width, quadsegs=10)
```

Arguments

X	SpatRaster or SpatVector
width	numeric. Unit is meter if x has a longitude/latitude CRS, or mapunits in other cases. Should be >0 for SpatRaster
filename	character. Output filename
	additional arguments for writing files as in writeRaster
quadsegs	positive integer. Number of line segments to use to draw a quart circle

Value

SpatRaster

c 43

See Also

distance

Examples

```
r <- rast(ncols=36, nrows=18)
v <- rep(NA, ncell(r))
v[500] <- 1
values(r) <- v
b <- buffer(r, width=5000000)
plot(b)

v <- vect(rbind(c(10,10), c(0,60)), crs="+proj=merc")
b <- buffer(v, 20)
plot(b)
points(v)

crs(v) <- "+proj=longlat"
b <- buffer(v, 1500000)
plot(b)
points(v)</pre>
```

Combine SpatRaster or SpatVector objects

С

Description

With c you can:

- Combine SpatRaster objects. They must have the same extent and resolution. However, if x is empty (has no cell values), its geometry is ignored with a warning. Two empty SpatRasters with the same geometry can also be combined (to get a summed number of layers). Also see add<-
- Add a SpatRaster to a SpatRasterDataset
- Add SpatVector objects to a new or existing SpatVectorCollection

To append SpatVectors, use rbind.

Usage

```
## S4 method for signature 'SpatRaster'
c(x, ..., warn=TRUE)

## S4 method for signature 'SpatRasterDataset'
c(x, ...)

## S4 method for signature 'SpatVector'
c(x, ...)

## S4 method for signature 'SpatVectorCollection'
c(x, ...)
```

44 cartogram

Arguments

x SpatRaster, SpatVector, SpatRasterDataset or SpatVectorCollection
 warn logical. If TRUE, a warning is emitted if x is an empty SpatRaster
 as for x (you can only combine raster with raster data and vector with vector

data)

Value

Same class as x

See Also

add<-

Examples

```
r <- rast(nrows=5, ncols=9)
values(r) <- 1:ncell(r)
x <- c(r, r*2, r*3)</pre>
```

cartogram

Cartogram

Description

Make a cartogram, that is, a map where the area of polygons is made proportional to another variable. This can be a good way to map raw count data (e.g. votes).

Usage

```
## S4 method for signature 'SpatVector'
cartogram(x, var, type)
```

Arguments

x SpatVector

var character. A variable name in x

type character. Cartogram type, only "nc" (non-contiguous) is currently supported

Value

SpatVector

See Also

plot, rescale

catalyze 45

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$value <- 1:12
p <- cartogram(v, "value", "nc")
plot(v, col="light gray", border="gray")
lines(p, col="red", lwd=2)</pre>
```

catalyze

Factors to numeric

Description

Change a categorical layer into one or more numerical layers. With as.numeric you can transfer the active category values to cell values in a non-categorical SpatRaster. catalyze createss new layers for each category.

Usage

```
## S4 method for signature 'SpatRaster'
as.numeric(x, index=NULL, filename="", ...)
## S4 method for signature 'SpatRaster'
catalyze(x, filename="", ...)
```

Arguments

X	SpatRaster
index	positive integer, indicating the column in data.frame value to be used as the category, skipping the first column with the ID. If NULL the active category is used
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
activeCat, cats
```

46 cells

Examples

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE) + 10
d <- data.frame(id=11:13, cover=c("forest", "water", "urban"), letters=letters[1:3], value=10:12)
levels(r) <- d
catalyze(r)
activeCat(r) <- 3
as.numeric(r)</pre>
```

cells

Get cell numbers

Description

Get the cell numbers covered by a SpatVector or SpatExtent. Or that match values in a vector; or all non NA values.

Usage

```
## S4 method for signature 'SpatRaster,missing'
cells(x, y)

## S4 method for signature 'SpatRaster,numeric'
cells(x, y)

## S4 method for signature 'SpatRaster,SpatVector'
cells(x, y, method="simple", weights=FALSE, exact=FALSE, touches=is.lines(y))

## S4 method for signature 'SpatRaster,SpatExtent'
cells(x, y)
```

Arguments

X	SpatRaster
У	SpatVector, SpatExtent, 2-column matrix representing points, numeric representing values to match, or missing
method	character. Method for getting cell numbers for points. The default is "simple", the alternative is "bilinear". If it is "bilinear", the four nearest cells and their weights are returned
weights	logical. If TRUE and y has polygons, the approximate fraction of each cell that is covered is returned as well
exact	logical. If TRUE and y has polygons, the exact fraction of each cell that is covered is returned as well
touches	logical. If TRUE, values for all cells touched by lines or polygons are extracted, not just those on the line render path, or whose center point is within the polygon. Not relevant for points

cellSize 47

Value

numeric vector or matrix

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)</pre>
r[c(1:25, 31:100)] < - NA
r \leftarrow ifel(r > 28, r + 10, r)
# all cell numbers of cells that are not NA
cells(r)
# cell numbers that match values
x < -cells(r, c(28,38))
x$lyr.1
# cells for points
m \leftarrow cbind(x=c(0,10,-30), y=c(40,-10,20))
cellFromXY(r, m)
v <- vect(m)</pre>
cells(r, v)
cells(r, v, method="bilinear")
# cells for polygons
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
r <- rast(v)
cv \leftarrow cells(r, v)
```

cellSize

Area covered by each raster cell

Description

Compute the area covered by individual raster cells. Computing the surface area of raster cells is particularly relevant for longitude/latitude rasters.

Note that for both angular (longitude/latitude) and for planar (projected) coordinate reference systems raster cells sizes are generally not constant, unless you are using an equal-area coordinate reference system.

For planar CRSs, the area is therefore not computed based on the linear units of the coordinate reference system, but on the *actual* area, correcting for distortion. If you do not want that, you can instead use init(x, prod(res(x)))

Usage

```
## S4 method for signature 'SpatRaster'
cellSize(x, mask=TRUE, unit="m", transform=TRUE, rcx=100, filename="", ...)
```

48 cellSize

Arguments

x	SpatRaster
mask	logical. If TRUE, cells that are NA in x are also NA in the output
unit	character. One of "m", "km", or "ha"
transform	logical. If TRUE, planar CRS data are transformed to lon/lat for accuracy
rcx	positive integer. The maximum number of rows and columns to be used to compute area of planar data if transform=TRUE. If x has more rows and/or columns, the raster is aggregated to match this limit, and values for the original cells are estimated by bilinear interpolation (see resample). This can save a lot of time
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

numeric. The area of each cell, expressed in square meters, square kilometers, or hectares.

See Also

expanse

```
# SpatRaster
r <- rast(nrows=18, ncols=36)
v <- 1:ncell(r)
v[200:400] <- NA
values(r) <- v

# size of each raster cell
a <- cellSize(r)

# illustration of distortion
r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")

bad <- init(m, prod(res(m)) / 1000000, names="naive")
good <- cellSize(m, unit="km", names="corrected")
plot(c(good, bad), nc=1, mar=c(2,2,1,6))</pre>
```

centroids 49

centroids Centroids

Description

Get the centroids of polygons or lines, or centroid-like points that are guaranteed to be inside the polygons or on the lines.

Usage

```
## S4 method for signature 'SpatVector'
centroids(x, inside=FALSE)
```

Arguments

x SpatVector

inside logical. If TRUE the points returned are guaranteed to be inside the polygons or

on the lines, but they are not the true centroids. True centroids may be outside a polygon, for example when a polygon is "bean shaped", and they are unlikely

to be on their line

Value

SpatVector of points

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- centroids(v)
y <- centroids(v, TRUE)</pre>
```

clamp

Clamp values

Description

Clamp values to a minimum and maximum value. That is, all values below a lower threshold value and above the upper threshold value become either NA, or, if values=TRUE, become the threshold value

Usage

```
## S4 method for signature 'SpatRaster'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, filename="", ...)
## S4 method for signature 'numeric'
clamp(x, lower=-Inf, upper=Inf, values=TRUE, ...)
```

50 classify

Arguments

X	SpatRaster
lower	numeric. lowest value
upper	numeric. highest value
values	logical. If FALSE values outside the clamping range become NA, if TRUE, they get the extreme values $$
filename	character. Output filename
	additional argumments for writing files as in writeRaster

Value

SpatRaster

See Also

```
classify
```

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
rc <- clamp(r, 25, 75)
rc</pre>
```

classify

Classify (or reclassify) cell values

Description

Classify values of a SpatRaster. The function (re-)classifies groups of values to other values.

The classification is done based on the argument rcl. You can classify ranges by specifying a three-column matrix "from-to-becomes" or change specific values by using a two-column matrix "is-becomes". You can also supply a vector with "cuts" or the "number of cuts".

With "from-to-becomes" or "is-becomes" classification is done in the row order of the matrix. Thus, if there are overlapping ranges or values, the first time a number is within a range determines the reclassification value.

With "cuts" the values are sorted, so that the order in which they are provided does not matter.

Usage

```
## S4 method for signature 'SpatRaster'
classify(x, rcl, include.lowest=FALSE, right=TRUE,
    others=NULL, brackets=TRUE, filename="", ...)
```

51 classify

Arguments

SpatRaster Х

rcl matrix for classification. This matrix must have 1, 2 or 3 columns. If there are

three columns, the first two columns are "from" "to" of the input values, and the third column "becomes" has the new value for that range.

The two column matrix ("is", "becomes") can be useful for classifying integer values. In that case, the arguments right and include.lowest are ignored.

A single column matrix (or a vector) is interpreted as a set of cuts if there is more than one value. In that case the values are classified based on their location inbetween the cut-values.

If a single number is provided, that is used to make that number of cuts, at equal intervals between the lowest and highest values of the SpatRaster.

include.lowest logical, indicating if a value equal to the lowest value in rcl (or highest value in

the second column, for right=FALSE) should be included.

right logical. If TRUE, the intervals are closed on the right (and open on the left). If

> FALSE they are open at the right and closed at the left. "open" means that the extreme value is *not* included in the interval. Thus, right-closed and left open is $(0,1] = \{x \mid 0 < x \le 1\}$. You can also close both sides with right=NA, that is only meaningful if you "from-to-becomes" classification with integers. For example to classify $1-5 \rightarrow 1$, $6-10 \rightarrow 2$, $11-15 \rightarrow 3$. That may be easier to read and write than the equivalent $1-5 \rightarrow 1$, $5-10 \rightarrow 2$, $10-15 \rightarrow 3$ with right=TRUE

and include.lowest=TRUE

others numeric. If not NULL all values that are not matched are set to this value. Other-

wise they retain their original value.

brackets logical. If TRUE, intervals are have parenthesis or brackets around them to indi-

cate whether they are open or closed. Only applies if rcl is a vector (or single

column matrix)

filename character. Output filename

Additional arguments for writing files as in writeRaster

Value

SpatRaster

Note

classify works with the "raw" values of categorical rasters, ignoring the levels (labels, categories). To change the labels of categorical rasters, use subst instead.

For model-based classification see predict

See Also

subst for simpler from-to replacement

52 click

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- (0:99)/99
## from-to-becomes
# classify the values into three groups
# all values \geq= 0 and \leq= 0.25 become 1, etc.
m < -c(0, 0.25, 1,
       0.25, 0.5, 2,
       0.5, 1, 3)
rclmat <- matrix(m, ncol=3, byrow=TRUE)</pre>
rc1 <- classify(r, rclmat, include.lowest=TRUE)</pre>
## cuts
# equivalent to the above, but now a categorical SpatRaster is returned
rc2 <- classify(r, c(0, 0.25, 0.5, 1), include.lowest=TRUE, brackets=TRUE)
freq(rc2)
## is-becomes
x \leftarrow round(r*3)
unique(x)
# replace 0 with NA
y <- classify(x, cbind(0, NA))
unique(y)
# multiple replacements
m \leftarrow rbind(c(2, 200), c(3, 300))
rcx1 <- classify(x, m)</pre>
unique(rcx1)
rcx2 <- classify(x, m, others=NA)</pre>
unique(rcx2)
```

click

Query by clicking on a map

Description

Click on a map (plot) to get the coordinates or the values of a SpatRaster or SpatVector at that location. For a SpatRaster you can also get the coordinates and cell number of the location.

Usage

```
## S4 method for signature 'SpatRaster'
click(x, n=10, id=FALSE, xy=FALSE, cell=FALSE, type="p", show=TRUE, ...)
## S4 method for signature 'SpatVector'
```

click 53

```
click(x, n=10, id=FALSE, xy=FALSE, type="p", show=TRUE, ...)
## S4 method for signature 'missing'
click(x, n=10, id=FALSE, type="p", show=TRUE, ...)
```

Arguments

X	SpatRaster or SpatVector, or missing
n	number of clicks on the plot (map)
id	logical. If TRUE, a numeric ID is shown on the map that corresponds to the row number of the output
ху	logical. If TRUE, xy coordinates are included in the output
cell	logical. If TRUE, cell numbers are included in the output
type	one of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or "o" they are joined by lines. See ?locator
show	logical. Print the values after each click?
• • •	additional graphics parameters used if type != "n" for plotting the locations. See ?locator

Value

The value(s) of x at the point(s) clicked on (or touched by the box drawn). A data.frame with the value(s) of all layers of SpatRaster x for the cell(s) clicked on; or with the attributes of the geometries of SpatVector x that intersect with the box drawn).

Note

The plot only provides the coordinates for a spatial query, the values are read from the SpatRaster or SpatVector that is passed as an argument. Thus you can extract values from an object that has not been plotted, as long as it spatially overlaps with with the extent of the plot.

Unless the process is terminated prematurely values at at most n positions are determined. The identification process can be terminated, depending on how you interact with R, by hitting Esc, or by clicking the right mouse button and selecting "Stop" from the menu, or from the "Stop" menu on the graphics window.

See Also

draw

```
## Not run:
r <-rast(system.file("ex/elev.tif", package="terra"))
plot(r)
click(r, n=1)
## now click on the plot (map)
## End(Not run)</pre>
```

54 coerce

coerce

Coercion of a SpatRaster to a vector, matrix or array

Description

Coercion to other object types

Usage

```
## $4 method for signature 'SpatRaster'
as.vector(x, mode='any')

## $4 method for signature 'SpatRaster'
as.matrix(x, wide=FALSE, ...)

## $4 method for signature 'SpatRaster'
as.array(x)
```

Arguments

x SpatRaster or SpatVector

wide logical. If FALSE each layer in the SpatRaster becomes a column in the matrix

and each cell in the SpatRaster becomes a row. If TRUE each row in the SpatRaster becomes a row in the matrix and each column in the SpatRaster becomes

a column in the matrix

mode this argument is ignored

... additional arguments (none implemented)

Value

```
vector, matrix, or array
```

See Also

```
as.data.frame and as.polygons
```

```
r <- rast(ncols=2, nrows=2)
values(r) <- 1:ncell(r)
as.vector(r)
as.matrix(r)
as.matrix(r, wide=TRUE)
as.data.frame(r, xy=TRUE)
as.array(r)</pre>
```

colors 55

colors Color table

Description

Get or set color table(s) associated with a SpatRaster. Color tables are used for associating colors with values, for use in mapping (plot).

Usage

```
## $4 method for signature 'SpatRaster'
coltab(x)

## $4 replacement method for signature 'SpatRaster'
coltab(x, layer=1)<-value

## $4 method for signature 'SpatRaster'
has.colors(x)</pre>
```

Arguments

x SpatRaster

layer positive integer, the layer number or name

value a two-column data.frame (first column the cell value, second the color); a vector of colors (the first one is the color for value 0 and so on); or a three (red,green,blue) or four (alpha) column data.frame also from 0 to n; or NULL to remove the color table

Value

data.frame

```
r <- rast(ncols=3, nrows=2, vals=0:5)
coltb <- data.frame(t(col2rgb(rainbow(6, end=.9), alpha=TRUE)))
coltb

plot(r)
has.colors(r)
coltab(r) <- coltb
plot(r)
has.colors(r)
tb <- coltab(r)
class(tb)
dim(tb[[1]])</pre>
```

56 combineGeoms

S		
---	--	--

Description

Combine the geometries of one SpatVector with those of another. Geometries can be combined based on overlap, shared boundaries and distance (in that order of operation).

The typical use-case of this method is when you are editing geometries and you have a number of small polygons in one SpatVector that should be part of the geometries of the another SpatVector; perhaps because they were small holes inbetween the borders of two SpatVectors.

To append SpatVectors use 'rbind' and see methods like intersect and union for "normal" polygons combinations.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
combineGeoms(x, y, overlap=TRUE, boundary=TRUE, distance=TRUE,
append=TRUE, minover=0.1, maxdist=Inf, dissolve=TRUE, erase=TRUE)
```

Arguments

X	SpatVector of polygons
у	SpatVector of polygons geometries that are to be combined with x
overlap	logical. If TRUE, a geometry is combined with the geometry it has most overlap with, if the overlap is above minover
boundary	logical. If TRUE, a geometry is combined with the geometry it has most shared border with
distance	logical. If TRUE, a geometry is combined with the geometry it is nearest to
append	logical. Should remaining geometries be appended to the output? Not relevant if distance=TRUE
minover	numericThe fraction of the geometry in codey that overlaps with a geometry in x. Below this threshold, geometries are not considered overlapping
maxdist	numeric. Geometries further away from each other than this distance (in meters) will not be combined
dissolve	logical. Should internal boundaries be dissolved?
erase	logical. If TRUE no new overlapping areas are created

Value

SpatVector

See Also

```
union, erase, intersect
sharedPaths, erase, intersect
```

Compare-methods 57

Examples

```
x1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
x2 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")
y1 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
y2 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
y3 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
y4 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")
x \leftarrow rbind(x1, x2)
values(x) <- data.frame(xid=1:2)</pre>
crs(x) <- "+proj=utm +zone=1"</pre>
y < - rbind(y1, y2, y3, y4)
values(y) <- data.frame(yid=letters[1:4])</pre>
crs(y) <- "+proj=utm +zone=1"</pre>
plot(rbind(x, y), border=c(rep("red",2), rep("blue", 4)), lwd=2)
text(x, "xid")
text(y, "yid")
v <- combineGeoms(x, y)</pre>
plot(v, col=c("red", "blue"))
v \leftarrow combineGeoms(x, y, boundary=FALSE, maxdist=1, minover=.05)
plot(v, col=rainbow(4))
```

Compare-methods

Compare and logical methods

Description

Standard comparison and logical operators for computations with SpatRasters. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same geometry (extent and resolution). These operators have been implemented:

```
Logical: !, &, |, isTRUE, isFALSE
Compare: ==, !=, >, <, <=, >=, is.na, is.nan, is.finite, is.infinite
```

The terra package does not distinguish between NA (not available) and NaN (not a number). In most cases this state is represented by NaN.

The following method has been implemented for

```
(SpatExtent, SpatExtent): ==
```

Value

SpatRaster or SpatExtent

58 compareGeom

seealso

all.equal, Arith-methods. See ifel to conveniently combine operations and Math-methods or app to apply any R function to a SpatRaster.

Examples

```
r1 <- rast(ncols=10, nrows=10)
values(r1) <- runif(ncell(r1))
r1[10:20] <- NA
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
x <- is.na(r1)
!x
r1 == r2</pre>
```

compareGeom

Compare geometries of SpatRasters

Description

Evaluate whether two SpatRasters have the same extent, number of rows and columns, projection, resolution, and origin (or a subset of these comparisons). Or whether two SpatVectors have the same geometries, or wheter a SpatVector has duplicated geometries.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
compareGeom(x, y, ..., lyrs=FALSE, crs=TRUE, warncrs=FALSE, ext=TRUE,
rowcol=TRUE, res=FALSE, stopOnError=TRUE, messages=FALSE)
## S4 method for signature 'SpatVector, SpatVector'
compareGeom(x, y, tolerance=0)
## S4 method for signature 'SpatVector, missing'
compareGeom(x, y, tolerance=0)
```

Arguments

Х	SpatRaster
У	SpatRaster
	Additional SpatRasters
lyrs	logical. If TRUE, the number of layers is compared
crs	logical. If TRUE, coordinate reference systems are compared
warncrs	logical. If TRUE, a warning is given if the crs is different (instead of an error)
ext	logical. If TRUE, bounding boxes are compared

concats 59

rowcol logical. If TRUE, number of rows and columns of the objects are compared res logical. If TRUE, resolutions are compared (redundant when checking extent and rowcol) stopOnError logical. If TRUE, code execution stops if raster do not match

messages logical. If TRUE, warning/error messages are printed even if stopOnError=FALSE tolerance numeric

Value

logical (SpatRaster) or matrix of logical (SpatVector)

Examples

```
r1 <- rast()
r2 <- rast()
r3 <- rast()
compareGeom(r1, r2, r3)
nrow(r3) <- 10

## Not run:
compareGeom(r1, r3)
## End(Not run)</pre>
```

concats

Concatenate categorical rasters

Description

Combine two categorical rasters by concatenating their levels.

Usage

```
## S4 method for signature 'SpatRaster'
concats(x, y, filename="", ...)
```

Arguments

x SpatRaster (with a single, categorical, layer)
y SpatRaster (with a single, categorical, layer)

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

60 contour

See Also

cats

Examples

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE)
levels(r) <- data.frame(id=1:3, cover=c("forest", "water", "urban"))
rr <- rast(r)
values(rr) <- sample(1:3, ncell(rr), replace=TRUE)
levels(rr) <- data.frame(id=c(1:3), color=c("red", "green", "blue"))
x <- concats(r, rr)
x
levels(x)[[1]]</pre>
```

contour

Contour plot

Description

Contour lines of a SpatRaster. Use add=TRUE to add the lines to the current plot. See contour for details.

if filled=TRUE, a new filled contour plot is made. See filled.contour for details. as.contour returns the contour lines as a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
contour(x, maxcells=100000, filled=FALSE, ...)
## S4 method for signature 'SpatRaster'
as.contour(x, maxcells=100000, ...)
```

Arguments

```
x SpatRaster. Only the first layer is used
maxcells maximum number of pixels used to create the contours

filled logical. If TRUE, a filled.contour plot is made
... any argument that can be passed to contour or filled.contour (graphics package)
```

See Also

plot

convHull 61

Examples

```
r <- rast(system.file("ex/elev.tif", package="terra"))
plot(r)
contour(r, add=TRUE)

v <- as.contour(r)
plot(r)
lines(v)

contour(r, filled=TRUE, nlevels=5)

## if you want a SpatVector with contour lines
template <- disagg(rast(r), 10)
rr <- resample(r, template)
rr <- floor(rr/100) * 100

v <- as.polygons(rr)
plot(v, 1, col=terrain.colors(7))</pre>
```

convHull

Convex hull and minimal rotated rectangle

Description

Get the convex hull or the minimal rotated rectangle of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
convHull(x, by="")
## S4 method for signature 'SpatVector'
minRect(x, by="")
```

Arguments

x SpatVector

by character (variable name), to make convex hulls by group

Value

SpatVector

62 costDistance

Examples

```
p <- vect(system.file("ex/lux.shp", package="terra"))
h <- convHull(p)

hh <- convHull(p, "NAME_1")

rr <- minRect(p, "NAME_1")

plot(rr, lwd=5, border="gray")
plot(hh, "NAME_1", col=rainbow(10, alpha=.5), lwd=3, add=TRUE, plg=list(x="topright"))
lines(aggregate(p, "NAME_1"), col="blue", lty=2, lwd=2)</pre>
```

costDistance

Cost distance

Description

Use a friction (cost) surface to compute the cost-distance from any cell to one or more target cells.

Distances are computed by summing local distances between cells, which are connected with their neighbors in 8 directions, and assuming that the path has to go through the centers of one of the neighboring raster cells.

Distances are multiplied with the friction, thus to get the cost-distance, the friction surface must express the cost per unit distance (speed) of travel.

If the coordinate reference system (CRS) of the SpatRaster is longitude/latitude (+proj=longlat) the distance is in meters divided by variable m. The default of m is 1000, expressing distance in km. Otherwise the distance is in the units of the CRS (typically meters).

Usage

```
## S4 method for signature 'SpatRaster'
costDistance(x, target=0, scale=1000, maxiter=50, filename="", ...)
```

Arguments

X	SpatRaster
target	numeric. value of the target cells (where to compute cost-distance to)
scale	numeric. Scale factor for longitude/latitude data (1 = m, 1000 = km)
maxiter	numeric. The maximum number of iterations. Increase this number if you get the warning that costDistance did not converge
filename	character. output filename (optional)
	additional arguments as for writeRaster

Value

SpatRaster

cover 63

See Also

```
gridDistance, distance
```

Examples

```
r <- rast(ncols=5, nrows=5, crs="+proj=utm +zone=1 +datum=WGS84",
xmin=0, xmax=5, ymin=0, ymax=5, vals=1)
r[13] <- 0
d <- costDistance(r)</pre>
plot(d)
text(d, digits=1)
r <- rast(ncols=10, nrows=10, xmin=0, xmax=10, ymin=0, ymax=10,
vals=10, crs="+proj=utm +zone=1 +datum=WGS84")
r[5, 1] < -10
r[2:3, 1] \leftarrow r[1, 2:4] \leftarrow r[2, 5] \leftarrow 0
r[3, 6] \leftarrow r[2, 7] \leftarrow r[1, 8:9] \leftarrow 0
r[6, 6:10] <- NA
r[6:9, 6] \leftarrow NA
d <- costDistance(r, -10)</pre>
plot(d)
text(d, digits=1, cex=.8)
```

cover

Replace values with values from another object

Description

Replace NA or other values in SpatRaster x with the values of SpatRaster y

For polygons: areas of x that overlap with y are replaced by y or, if identity=TRUE intersected with y.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
cover(x, y, values=NA, filename="", ...)
## S4 method for signature 'SpatVector, SpatVector'
cover(x, y, identity=FALSE, expand=TRUE)
```

Arguments

x SpatRaster or SpatVector

y Same as x

values numeric. The cell values in x to be replaced by the values in y

filename character. Output filename

64 crds

additional arguments for writing files as in writeRaster logical. If TRUE overlapping areas are intersected rather than replaced expand logical. Should parts of y that are outside of x be included?

Value

SpatRaster

Examples

```
r1 <- r2 <- rast(ncols=36, nrows=18)
values(r1) <- 1:ncell(r1)
values(r2) <- runif(ncell(r2))
r2 <- classify(r2, cbind(-Inf, 0.5, NA))
r3 <- cover(r2, r1)

p <- vect(system.file("ex/lux.shp", package="terra"))
e <- as.polygons(ext(6, 6.4, 49.75, 50))
values(e) <- data.frame(y=10)

cv <- cover(p, e)
plot(cv, col=rainbow(12))
ci <- cover(p, e, identity=TRUE)
lines(e, lwd=3)

plot(ci, col=rainbow(12))
lines(e, lwd=3)</pre>
```

crds

Get the coordinates of SpatVector geometries or SpatRaster cells

Description

Get the coordinates of a SpatVector or SpatRaster cells. A matrix or data.frame of the x (longitude) and y (latitude) coordinates is returned.

Usage

```
## S4 method for signature 'SpatVector'
crds(x, df=FALSE)

## S4 method for signature 'SpatRaster'
crds(x, df=FALSE, na.rm=TRUE)
```

crop 65

Arguments

X	SpatRaster or SpatVector
df	logical. If TRUE a data. frame is returned instead of a matrix
na.rm	logical. If TRUE cells that are NA are excluded

Value

matrix or data.frame

See Also

geom returns the complete structure of SpatVector geometries. For SpatRaster see xyFromCell

Examples

crop

Cut out a geographic subset

Description

Cut out a part of a SpatRaster with a SpatExtent, or another object from which an extent can be obtained.

You can only crop rectangular areas, but see mask for setting cell values within SpatRaster to NA. Also note that the SpatRaster returned may not have the exactly the same extent as the SpatExtent supplied because you can only select entire cells (rows and columns), and you cannot add now areas. See methods like resample and disagg to force SpatRasters to align and extend to add rows and/or columns.

You can crop a SpatVector with another SpatVector. If these are not polygons, the minimum convex hull is used). Unlike with intersect the geometries and attributes of y are not transferred to the output. You can also crop a SpatVector with a rectangle (SpatRaster, SpatExtent).

66 crop

Usage

```
## S4 method for signature 'SpatRaster'
crop(x, y, snap="near", mask=FALSE, touches=TRUE, filename="", ...)
## S4 method for signature 'SpatRasterDataset'
crop(x, y, snap="near", filename="", ...)
## S4 method for signature 'SpatVector'
crop(x, y)
```

Arguments

X	SpatRaster or SpatVector
У	$SpatRaster, \ SpatVector, \ SpatExtent \ or \ other \ object \ that \ has \ a \ SpatExtent \ (extreturns \ a \ SpatExtent)$
snap	character. One of "near", "in", or "out". Used to align y to the geometry of x
mask	logical. Should y be used to mask? Only used if y is a SpatVector
touches	logical. If TRUE and mask=TRUE, all cells touched by lines or polygons will be masked, not just those on the line render path, or whose center point is within the polygon
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

intersect

```
r <- rast(xmin=0, xmax=10, ymin=0, ymax=10, nrows=25, ncols=25)
values(r) <- 1:ncell(r)
e <- ext(-5, 5, -5, 5)
rc <- crop(r, e)

# crop and mask
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
cm <- crop(r, v[9:12,], mask=TRUE)
plot(cm)
lines(v)

# crop vector</pre>
```

crosstab 67

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(6.15, 6.3, 49.7, 49.8)
x <- crop(v, e)
plot(x, "NAME_1")</pre>
```

crosstab

Cross-tabulate

Description

Cross-tabulate the layers of a SpatRaster to create a contingency table.

Usage

```
## S4 method for signature 'SpatRaster,missing'
crosstab(x, digits=0, long=FALSE, useNA=FALSE)
```

Arguments

X	SpatRaster
digits	integer. The number of digits for rounding the values before cross-tabulation
long	logical. If TRUE the results are returned in 'long' format data.frame instead of a table
useNA	logical, indicting if the table should includes counts of NA values

Value

A table or data.frame

See Also

```
freq, zonal
```

```
r <- s <- rast(nc=5, nr=5)
set.seed(1)
values(r) <- runif(ncell(r)) * 2
values(s) <- runif(ncell(r)) * 3
x <- c(r, s)

crosstab(x)

rs <- r/s
r[1:5] <- NA
s[20:25] <- NA
x <- c(r, s, rs)
crosstab(x, useNA=TRUE, long=TRUE)</pre>
```

68 crs

crs

Get or set a coordinate reference system

Description

Get or set the coordinate reference system (CRS), also referred to as a "projection", of a SpatRaster or SpatVector.

Setting a new CRS does not change the data itself, it just changes the label. So you should only set the CRS of a dataset (if it does not come with one) to what it *is*, not to what you would *like it to be*. See project to *transform* an object from one CRS to another.

Usage

```
## S4 method for signature 'SpatRaster'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)
## S4 method for signature 'SpatVector'
crs(x, proj=FALSE, describe=FALSE, parse=FALSE)
## S4 replacement method for signature 'SpatRaster'
crs(x)<-value
## S4 replacement method for signature 'SpatVector'
crs(x)<-value</pre>
```

Arguments

x	SpatRaster or SpatVector
proj	logical. If TRUE the crs is returned in PROJ-string notation
describe	logical. If TRUE the name, EPSG code, and the name and extent of the area of use are returned if known
value	character string describing a coordinate reference system. This can be in a WKT format, as a <authority:number> code such as "EPSG:4326", or a PROJ-string format such as "+proj=utm +zone=12" (see Note)</authority:number>
parse	logical. If TRUE, wkt parts are parsed into a vector (each line becomes an element)

Value

character or modified SpatRaster/Vector

Note

Projections are handled by the PROJ/GDAL libaries. Recent changes in the PROJ library to improve transformations between datums have degraded the library's usability. The PROJ developers suggest to no longer use the proj-string notation to define a CRS, but use the WKT2 or <authority>:<code>

deepcopy 69

notation instead. These alternative systems work for formally described CRSs that are in databases, but they do not cover the infinite number of CRSs that exist. It is not practical to define one's own custom CRS with WKT2. Moreover, unlike the proj-notation, these newer systems are hard to read and that leads to code that cannot be easily understood and, therefore, is more error-prone.

It is still possible to use the PROJ-string notation with one major caveat: the datum should be WGS84 (or the equivalent NAD83) – if you want to transform your data to a coordinate reference system with a different datum. Thus as long as you use WGS84, or an ellipsoid instead of a datum, you can safely use PROJ-strings to represent your CRS; including to define your own custom CRS.

Examples

```
r <- rast()
crs(r)
crs(r, describe=TRUE, proj=TRUE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
crs(r)

# You can also use epsg codes
crs(r) <- "epsg:25831"
crs(r, describe=TRUE)$area</pre>
```

deepcopy

Deep copy

Description

Make a deep copy of a SpatRaster or SpatVector. This is occasionally useful when wanting to use a replacement function in a shallow copy. That is a copy that was created like this: x <- y. If you use a replacement function to change an object, its shallow copies also change.

Usage

```
## $4 method for signature 'SpatRaster'
deepcopy(x)
## $4 method for signature 'SpatVector'
deepcopy(x)
```

Arguments

Χ

SpatRaster or SpatVector

Value

Same as x

70 densify

Examples

```
r \leftarrow rast(ncols=10, nrows=10, nl=3)
tm <- as.Date("2001-05-03") + 1:3</pre>
time(r) <- tm</pre>
time(r)
x <- r
time(x) \leftarrow tm + 365
time(x)
time(r)
y <- deepcopy(r)</pre>
time(y) \leftarrow tm - 365
time(y)
time(r)
# or make a new object like this
z \leftarrow rast(r)
time(z) \leftarrow tm
time(z)
time(r)
```

densify

Add additional nodes to lines or polygons

Description

Add additional nodes to lines or polygons. This can be useful to do prior to using project such that the path does not change too much.

Usage

```
## S4 method for signature 'SpatVector'
densify(x, interval, equalize=TRUE)
```

Arguments

X	SpatVector
interval	numeric larger than 1, specifying the desired minimum interval between nodes
equalize	logical. If TRUE, new nodes are spread at equal intervals between old nodes

Value

SpatVector

density 71

Examples

```
v \leftarrow vect(rbind(c(-120, -20), c(-80, 5), c(-40, -60), c(-120, -20)),
 type="polygons", crs="+proj=longlat")
vd <- densify(v, 200000)</pre>
p <- project(v, "+proj=robin")</pre>
pd <- project(vd, "+proj=robin")</pre>
# good
plot(pd, col="gray", border="red", lwd=10)
points(pd, col="gray")
# bad
lines(p, col="blue", lwd=3)
points(p, col="blue", cex=2)
plot(p, col="blue", alpha=.1, add=TRUE)
legend("topright", c("good", "bad"), col=c("red", "blue"), lty=1, lwd=3)
## the other way around does not work
## unless the original data was truly planar (e.g. derived from a map)
x <- densify(p, 250000)
y <- project(x, "+proj=longlat")</pre>
# bad
plot(y)
# good
lines(vd, col="red")
```

density

Density plot

Description

Create density plots of the cell values of a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
density(x, maxcells=100000, plot=TRUE, main, ...)
```

Arguments

Х	SpatRaster
maxcells	the maximum number of (randomly sampled) cells to be used for creating the plot
plot	if TRUE produce a plot, else return a density object
main	character. Caption of plot(s)
	additional arguments passed to plot

72 depth

Value

density plot (and a density object, returned invisibly if plot=TRUE)

Examples

```
logo <- rast(system.file("ex/logo.tif", package="terra"))
density(logo)</pre>
```

deprecated

deprecated methods

Description

These methods are deprecated and will be removed in future versions

Usage

```
## S4 method for signature 'SpatRaster'
area(x, ...)
```

Arguments

x object

... additional arguments

depth

depth of SpatRaster layers

Description

Get or set the depth of the layers of a SpatRaster. Experimental.

Usage

```
## S4 method for signature 'SpatRaster'
depth(x)
## S4 replacement method for signature 'SpatRaster'
depth(x)<-value</pre>
```

Arguments

x SpatRaster value numeric vector

describe 73

Value

numeric

See Also

time

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
depth(s) <- 1:3
depth(s)</pre>
```

describe

describe

Description

Describe the properties of spatial data in a file as generated with the "GDALinfo" tool.

Usage

```
## S4 method for signature 'character'
describe(x, sds=FALSE, meta=FALSE, parse=FALSE, options="", print=FALSE, open_opt="")
```

Arguments

Х	character. The name of a file with spatial data. Or a fully specified subdataset within a file such as "NETCDF:\"AVHRR.nc\":NDVI"
sds	logical. If TRUE the description or metadata of the subdatasets is returned (if available)
meta	logical. Get the file level metadata instead
parse	logical. If TRUE, metadata for subdatasets is parsed into components (if meta=TRUE)
options	character. A vector of valid options (if meta=FALSE) including "json", "mm", "stats", "hist", "nogcp", "nomd", "norat", "noft", "noff", "checksum", "proj4", "listmdd", "mdd <value>" where <value> specifies a domain or 'all', "wkt_format <value>" where value is one of 'WKT1', 'WKT2', 'WKT2_2015', or 'WKT2_2018', "sd <subdataset>" where <subdataset> is the name or identifier of a sub-dataset. See https://gdal.org/programs/gdalinfo.html. Ignored if sds=TRUE</subdataset></subdataset></value></value></value>
print	logical. If TRUE, print the results
open_opt	character. Driver specific open options

Value

```
character (invisibly, if print=FALSE)
```

74 diff

Examples

```
f <- system.file("ex/elev.tif", package="terra")
describe(f)
describe(f, meta=TRUE)
#g <- describe(f, options=c("json", "nomd", "proj4"))
#head(g)</pre>
```

diff

Lagged differences

Description

Compute the difference between consecutive layers in a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
diff(x, lag=1, filename="", ...)
```

Arguments

```
x SpatRaster

lag postive integer indicating which lag to use

filename character. Output filename

... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

```
s <- rast(system.file("ex/logo.tif", package="terra"))
d <- diff(s)</pre>
```

dimensions 75

dimensions

Dimensions of a SpatRaster or SpatVector and related objects

Description

Get the number of rows (nrow), columns (ncol), cells (ncell), layers (nlyr), sources (nsrc), the size size(nlyr(x)*ncell(x)), or spatial resolution of a SpatRaster.

length returns the number of sub-datasets in a SpatRasterDataset or SpatVectorCollection.

For a SpatVector length(x) is the same as nrow(x).

You can also set the number of rows or columns or layers. When setting dimensions, all cell values are dropped.

Usage

```
## S4 method for signature 'SpatRaster'
ncol(x)
## S4 method for signature 'SpatRaster'
nrow(x)
## S4 method for signature 'SpatRaster'
## S4 method for signature 'SpatRaster'
ncell(x)
## S4 method for signature 'SpatRaster'
nsrc(x)
## S4 replacement method for signature 'SpatRaster, numeric'
ncol(x) < -value
## S4 replacement method for signature 'SpatRaster, numeric'
nrow(x)<-value</pre>
## S4 replacement method for signature 'SpatRaster, numeric'
nlyr(x) < -value
## S4 method for signature 'SpatRaster'
res(x)
## S4 replacement method for signature 'SpatRaster,numeric'
res(x)<-value
## S4 method for signature 'SpatRaster'
xres(x)
```

76 dimensions

```
## S4 method for signature 'SpatRaster'
yres(x)

## S4 method for signature 'SpatVector'
ncol(x)

## S4 method for signature 'SpatVector'
nrow(x)

## S4 method for signature 'SpatVector'
length(x)
```

Arguments

x SpatRaster or SpatVector or related objecs

value For ncol and nrow: positive integer. For res: one or two positive numbers

Value

integer

See Also

ext

```
r <- rast()
ncol(r)
nrow(r)
nlyr(r)
dim(r)
nsrc(r)
ncell(r)
rr <- c(r,r)
nlyr(rr)
nsrc(rr)
ncell(rr)
nrow(r) <- 18</pre>
ncol(r) <- 36</pre>
# equivalent to
dim(r) <- c(18, 36)
dim(r)
dim(r) \leftarrow c(10, 10, 5)
dim(r)
```

direction 77

```
xres(r)
yres(r)
res(r)

res(r) <- 1/120
# different xres and yres
res(r) <- c(1/120, 1/60)</pre>
```

direction

Direction

Description

The direction (azimuth) to or from the nearest cell that is not NA. The direction is expressed in radians, unless you use argument degrees=TRUE.

Usage

```
## S4 method for signature 'SpatRaster'
direction(x, from=FALSE, degrees=FALSE, filename="", ...)
```

Arguments

X	SpatRaster
filename	Character. Output filename (optional)
degrees	Logical. If FALSE (the default) the unit of direction is radians.
from	$Logical.\ Default\ is\ {\tt FALSE}.\ If\ {\tt TRUE},\ the\ direction\ from\ (instead\ of\ to)\ the\ nearest\ cell\ that\ is\ not\ {\tt NA}\ is\ returned$
	Additional arguments as for writeRaster

Value

SpatRaster

See Also

distance

```
r <- rast(ncol=36,nrow=18, crs="+proj=merc")
values(r) <- NA
r[306] <- 1
b <- direction(r, degrees=TRUE)
plot(b)

crs(r) <- "+proj=longlat"
b <- direction(r)
plot(b)</pre>
```

78 disagg

disagg

Disaggregate raster cells or vector geometries

Description

SpatRaster: Create a SpatRaster with a higher resolution (smaller cells). The values in the new SpatRaster are the same as in the larger original cells.

SpatVector: Separate multi-objects (points, lines, polygons) into single objects.

Usage

```
## S4 method for signature 'SpatRaster'
disagg(x, fact, method="near", filename="", ...)
## S4 method for signature 'SpatVector'
disagg(x)
```

Arguments

Χ	SpatRaster or SpatVector
fact	positive integer. Aggregation factor expressed as number of cells in each direction (horizontally and vertically). Or two integers (horizontal and vertical aggregation factor) or three integers (when also aggregating over layers)
method	character. Either "near" for nearest or "bilinear" for bilinear interpolation
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
aggregate, resample
```

```
r <- rast(ncols=10, nrows=10)
rd <- disagg(r, fact=c(10, 2))
ncol(rd)
nrow(rd)
values(r) <- 1:ncell(r)
rd <- disagg(r, fact=c(4, 2))</pre>
```

distance 79

distance

Geographic distance

Description

If x is a SpatRaster:

If y is missing this method computes the distance, for all cells that are NA in SpatRaster x to the nearest cell that is not NA (or other values, see arguments "target" and "exclude".

If y is a numeric value, the cells with that value are ignored. That is, distance to or from these cells is not computed (only if grid=FALSE).

If y is a SpatVector, the distance to that SpatVector is computed for all cells. For lines and polygons this is done after rasterization; and only the overlapping areas of the vector and raster are considered (for now).

The distance is always expressed in meter if the coordinate reference system is longitude/latitude, and in map units otherwise. Map units are typically meter, but inspect crs(x) if in doubt.

Results are more precise, sometimes much more precise, when using longitude/latitude rather than a planar coordinate reference system, as these distort distance.

If x is a SpatVector:

If y is missing, a distance matrix between all object in x is computed. An distance matrix object of class "dist" is returned.

If y is a SpatVector the geographic distance between all objects is computed (and a matrix is returned). If both sets have the same number of points, and pairwise=TRUE, the distance between each pair of objects is computed, and a vector is returned.

The distance is always expressed in meter, except when the coordinate reference system is longitude/latitude AND one of the SpatVector(s) consists of lines or polygons. In that case the distance is in degrees, and thus not very useful (this will be fixed soon). Otherwise, results are more precise, sometimes much more precise, when using longitude/latitude rather than a planar coordinate reference system, as these distort distance.

Usage

```
## S4 method for signature 'SpatRaster,missing'
distance(x, y, target=NA, exclude=NULL, unit="m", filename="", ...)

## S4 method for signature 'SpatRaster,SpatVector'
distance(x, y, unit="m", filename="", ...)

## S4 method for signature 'SpatVector,ANY'
distance(x, y, sequential=FALSE, pairs=FALSE, symmetrical=TRUE, unit="m")

## S4 method for signature 'SpatVector,SpatVector'
distance(x, y, pairwise=FALSE, unit="m")

## S4 method for signature 'matrix,matrix'
```

80 distance

```
distance(x, y, lonlat, pairwise=FALSE, unit="m")
## S4 method for signature 'matrix,missing'
distance(x, y, lonlat, sequential=FALSE, unit="m")
```

Arguments

x SpatRaster, SpatVector, or two-column matrix with coordinates (x,y) or (lon,lat) y missing, numeric, SpatVector, or two-column matrix

target numeric. The value of the cells for which distances to cells that are not NA should

be computed

exclude numeric. The value of the cells that should not be considered for computing

distances

unit character. Can be either "m" or "km"

filename character. Output filename

... additional arguments for writing files as in writeRaster

sequential logical. If TRUE, the distance between sequential geometries is returned

pairwise logical. If TRUE and if x and y have the same size (number of rows), the pairwise

distances are returned instead of the distances between all elements

lonlat logical. If TRUE the coordinates are interpreted as angular (longitude/latitude).

If FALSE they are interpreted as planar

pairs logical. If TRUE a "from", "to", "distance" matrix is returned

symmetrical logical. If TRUE and pairs=TRUE, the distance between a pair is only included

once. The distance between geometry 1 and 3 is included, but the (same) dis-

tance between 3 and 1 is not

Value

SpatRaster or numeric or matrix or distance matrix (object of class "dist")

Note

The distance unit is in meters.

A distance matrix can be coerced into a matrix with as.matrix

References

Karney, C.F.F., 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190-012-0578-z.

```
#lonlat
r <- rast(ncols=36, nrows=18, crs="+proj=longlat +datum=WGS84")
r[500] <- 1
d <- distance(r)</pre>
```

dots 81

```
plot(d / 100000)
#planar
rr <- rast(ncols=36, nrows=18, crs="+proj=utm +zone=1 +datum=WGS84")</pre>
rr[500] <- 1
d <- distance(rr)</pre>
rr[3:10, 3:10] <- 99
e <- distance(rr, exclude=99)
p1 \leftarrow vect(rbind(c(0,0), c(90,30), c(-90,-30)), crs="+proj=longlat +datum=WGS84")
dp <- distance(r, p1)</pre>
d <- distance(p1)</pre>
d
as.matrix(d)
p2 \leftarrow vect(rbind(c(30,-30), c(25,40), c(-9,-3)), crs="+proj=longlat +datum=WGS84")
dd <- distance(p1, p2)</pre>
pd <- distance(p1, p2, pairwise=TRUE)</pre>
pd
pd == diag(dd)
# polygons, lines
crs <- "+proj=utm +zone=1"</pre>
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))", crs=crs)
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))", crs=crs)
p3 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))", crs=crs)
p <- rbind(p1, p2, p3)</pre>
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)", crs=crs)
L2 <- vect("LINESTRING(8 14, 12 10)", crs=crs)
L3 <- vect("LINESTRING(1 8, 12 14)", crs=crs)
lns <- rbind(L1, L2, L3)</pre>
pts <- vect(cbind(c(7,10,10), c(3,5,6)), crs=crs)
distance(p1,p3)
distance(p)
distance(p,pts)
distance(p,lns)
distance(pts,lns)
```

dots

Make a dot-density map

Description

Create the dots for a dot-density map and add these to the current map. Dot-density maps are made to display count data. For example of population counts, where each dot represents n persons. The

82 draw

dots are returned as a SpatVector. It there is an active graphics device, the dots are added to it with points.

Usage

```
## S4 method for signature 'SpatVector'
dots(x, field, size, ...)
```

Arguments

x SpatVector

field character of numeric indicating field name. Or numeric vector of the same length as x

size positive number indicating the number of cases associated with each dot

graphical arguments passed to points

Value

```
SpatVector (invisibly)
```

See Also

```
plot, cartogram, points
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$population <- 1000*(1:12)^2
plot(v, lwd=3, col="light gray", border="white")
d <- dots(v, "population", 1000, col="red", cex=.75)
lines(v)
d</pre>
```

draw

Draw a polygon, line, extent, or points

Description

Draw on a plot (map) to get a SpatVector or SpatExtent object for later use. After calling the function, start clicking on the map. When you are done, press ESC. You can also preset the maximum number of clicks.

Usage

```
## S4 method for signature 'character'
draw(x="extent", col="red", lwd=2, id=FALSE, n=1000, ...)
```

erase 83

Arguments

Х	character. The type of object to draw. One of "extent", "polygon", "line", or "points"
col	the color to be used
lwd	the width of the lines to be drawn
id	logical. If TRUE, a numeric ID is shown on the map
n	the maximum number of clicks (does not apply when $x=="extent"$ in which case n is always 2
	additional graphics arguments for drawing

Value

SpatVector or SpatExtent

See Also

click

erase

Erase parts of a SpatVector object

Description

Erase parts of a SpatVector with another SpatVector or with a SpatExtent. You can also erase (parts of) polygons with the other polygons of the same SpatVector.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
erase(x, y)
## S4 method for signature 'SpatVector, missing'
erase(x)
## S4 method for signature 'SpatVector, SpatExtent'
erase(x, y)
```

Arguments

x SpatVector

y SpatVector or SpatExtent

Value

SpatVector or SpatExtent

84 expanse

See Also

crop and intersect for the inverse.

The equivalent for SpatRaster is mask

Examples

```
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
# polygons with polygons or extent
e \leftarrow ext(5.6, 6, 49.55, 49.7)
x <- erase(v, e)</pre>
p <- vect("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))")
y <- erase(v, p)
# lines with polygons
lns <- as.lines(rast(v, ncol=10, nrow=10))[12:22]</pre>
eln <- erase(lns, v)</pre>
plot(v)
lines(lns, col='blue', lwd=4, lty=3)
lines(eln, col='red', lwd=2)
## self-erase
h \leftarrow convHull(v[-12], "NAME_1")
he <- erase(h)
plot(h, lwd=2, border="red", lty=2)
lines(he, col="gray", lwd=3)
```

expanse

Get the expanse (area) of individual polygons or for all (summed) raster cells

Description

Compute the area covered by polygons or for all raster cells that are not NA.

This method computes areas for longitude/latitude rasters, as the size of the cells is constant in degrees, but not in square meters. But it can also be important if the coordinate reference system is planar, but not equal-area.

For vector data, the best way to compute area is to use the longitude/latitude CRS. This is contrary to (erroneous) popular belief that suggest that you should use a planar coordinate reference system. This is done automatically, if transform=TRUE.

expanse 85

Usage

```
## S4 method for signature 'SpatRaster'
expanse(x, unit="m", transform=TRUE, byValue=FALSE)
## S4 method for signature 'SpatVector'
expanse(x, unit="m", transform=TRUE)
```

Arguments

x SpatRaster or SpatVector

unit character. One of "m", "km", or "ha"

transform logical. If TRUE, planar CRS are transformed to lon/lat for accuracy byValue logical. If TRUE, the area for each unique cell value is returned

Value

numeric. If x has no values, the total size of all cells. Otherwise, the total area size of all cells that are not NA, expressed in square meters, square kilometers, or hectares.

If by Value=TRUE a matrix is returned with three columns (layer, value, area)

See Also

cellSize for a the size of individual cells of a raster, that can be summed with global or with zonal to get the area for different categories.

```
### SpatRaster
r <- rast(nrows=18, ncols=36)
v \leftarrow 1:ncell(r)
v[200:400] <- NA
values(r) <- v
# summed area in km2
expanse(r, unit="km")
# all cells
expanse(rast(r), unit="km")
r <- rast(ncols=90, nrows=45, ymin=-80, ymax=80)
m <- project(r, "+proj=merc")</pre>
expanse(m, unit="km")
expanse(m, unit="km", transform=FALSE)
m2 \leftarrow c(m, m)
values(m2) \leftarrow cbind(c(1,2,NA,NA), c(11:14))
expanse(m2, unit="km", byValue=TRUE)
```

86 ext

```
### SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
a <- expanse(v)
a
sum(a)</pre>
```

ext

Create, get or set a SpatExtent

Description

Get a SpatExtent of a SpatRaster, or coordinates from such an object. Or create a SpatExtent from a vector (length=4; order= xmin, xmax, ymin, ymax)

See set.ext to set the extent in place.

Usage

```
## S4 method for signature 'SpatRaster'
ext(x, cells=NULL)

## S4 method for signature 'SpatVector'
ext(x)

## S4 method for signature 'numeric'
ext(x, ...)

## S4 replacement method for signature 'SpatRaster,SpatExtent'
ext(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
ext(x)<-value

## S4 method for signature 'SpatExtent'
x$name

## S4 replacement method for signature 'SpatExtent'
x$name</pre>
```

Arguments

x SpatRaster

cells postive integer (cell) numbers to subset the extent to area covered by these cells

extend 87

value	SpatExtent, or numeric vector of lenght four (xmin, xmax, ymin, ymax), or a single number with the \$ method
name	charcter, one of xmin, xmax, ymin, or ymax
	if x is a single numeric value, additional numeric values for xmax, ymin, and ymax

Value

A SpatExtent object.

Examples

```
r <- rast()
e <- ext(r)
as.vector(e)
as.character(e)

ext(r) <- c(0, 2.5, 0, 1.5)
r
er <- ext(r)

round(er)
# go "in"
floor(er)
# go "out"
ceiling(er)

ext(r) <- e</pre>
```

extend

Extend

Description

Enlarge the spatial extent of a SpatRaster. See crop if you (also) want to remove rows or columns. You can also enlarge a SpatExtent with this method, or with algebraic notation (see examples)

Usage

```
## S4 method for signature 'SpatRaster'
extend(x, y, snap="near", filename="", overwrite=FALSE, ...)
## S4 method for signature 'SpatExtent'
extend(x, y)
```

88 extract

Arguments

X	SpatRaster or SpatExtent
У	If x is a SpatRaster, y should be a SpatExtent, or an object from which it can be extracted (such as SpatRaster and SpatVector objects). Alternatively, you can provide two positive integers indicating the number of rows and columns that need to be added at each side (or a single positive integer when the number of rows and columns is equal)
	If x is a SpatExtent, y should be a numeric vector of 1, 2, or 4 elements
snap	character. One of "near", "in", or "out". Used to align y to the geometry of x
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

```
crop, merge, ext
```

Examples

```
r <- rast(xmin=-150, xmax=-120, ymin=30, ymax=60, ncols=36, nrows=18)
values(r) <- 1:ncell(r)
e <- ext(-180, -100, 40, 70)
re <- extend(r, e)

# extend with a number of rows and columns (at each side)
re2 <- extend(r, c(2,10))

# SpatExtent
e <- ext(r)
e
extend(e, 10)
extend(e, c(10, -10, 0, 20))</pre>
```

extract

Extract values from a SpatRaster

Description

Extract values from a SpatRaster for a set of locations. The locations can be a SpatVector (points, lines, polygons), a matrix with (x, y) or (longitude, latitude – in that order!) coordinates, or a vector with cell numbers.

When argument y is a SpatVector the first column has the ID (record number) of the SpatVector used (unless you set ID=FALSE).

extract 89

Usage

```
## S4 method for signature 'SpatRaster,SpatVector'
extract(x, y, fun=NULL, method="simple", cells=FALSE, xy=FALSE,
    ID=TRUE, weights=FALSE, exact=FALSE, touches=is.lines(y),
layer=NULL, bind=FALSE, raw=FALSE, ...)

## S4 method for signature 'SpatRaster,SpatExtent'
extract(x, y, cells=FALSE, xy=FALSE)

## S4 method for signature 'SpatRaster,matrix'
extract(x, y, ...)

## S4 method for signature 'SpatRaster,numeric'
extract(x, y, ...)

## S4 method for signature 'SpatVector,SpatVector'
extract(x, y, ...)
```

x	SpatRaster or SpatVector of polygons
у	SpatVector (for points, lines, polygons), or for points, 2-column matrix or data.frame (x, y) or (lon, lat), or a vector with cell numbers
fun	function to summarize the data by geometry. If weights=TRUE or exact=TRUE only mean, sum, min and max are accepted).
method	character. method for extracting values with points ("simple" or "bilinear"). With "simple" values for the cell a point falls in are returned. With "bilinear" the returned values are interpolated from the values of the four nearest raster cells
cells	logical. If TRUE the cell numbers are also returned, unless fun is not NULL. Also see cells
ху	logical. If TRUE the coordinates of the cells are also returned, unless fun is not NULL. Also see xyFromCell
ID	logical. Should an ID column be added? If so, the first column returned has the IDs (record numbers) of input SpatVector y
weights	logical. If TRUE and y has polygons, the approximate fraction of each cell that is covered is returned as well, for example to compute a weighted mean
exact	logical. If TRUE and y has polygons, the exact fraction of each cell that is covered is returned as well, for example to compute a weighted mean
touches	logical. If TRUE, values for all cells touched by lines or polygons are extracted, not just those on the line render path, or whose center point is within the polygon. Not relevant for points; and always considered TRUE when weights=TRUE or exact=TRUE
layer	character or numeric to select the layer to extract from for each geometry. If layer is a character it can be a name in y or a vector of layer names. If it is numeric, it must be integer values between 1 and nlyr(x)

90 extract

logical. If TRUE, a SpatVector is returned consisting of the input SpatVector y and the cbind-ed extracted values
 raw
 logical. If TRUE, a matrix is returned with the "raw" numeric cell values. If FALSE, a data.frame is returned and teh cell values are transformed to factor, logical, or integer values, where appropriate
 ... additional arguments to fun if y is a SpatVector. For example na.rm=TRUE. Or arguments passed to the SpatRaster, SpatVector method if y is a matrix (such as the method and cells arguments)

Value

data.frame, matrix or SpatVector

See Also

values

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)
values(r) <- 1:25
xy \leftarrow rbind(c(0.5,0.5), c(2.5,2.5))
p <- vect(xy, crs="+proj=longlat +datum=WGS84")</pre>
extract(r, xy)
extract(r, p)
r[1,]
r[5]
r[,5]
r[c(0:2, 99:101)]
f <- system.file("ex/meuse.tif", package="terra")</pre>
r <- rast(f)
xy <- cbind(179000, 330000)
xy <- rbind(xy-100, xy, xy+1000)
extract(r, xy)
p <- vect(xy)
g \leftarrow geom(p)
extract(r, p)
x < -r + 10
extract(x, p)
i <- cellFromXY(r, xy)</pre>
x[i]
```

extremes 91

```
r[i]
y < -c(x,x*2,x*3)
y[i]
## extract with a polygon
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
v \leftarrow v[1:2,]
z <- rast(v, resolution=.1, names="test")</pre>
values(z) <- 1:ncell(z)</pre>
rf <- system.file("ex/elev.tif", package="terra")</pre>
x <- rast(rf)
extract(x, v, mean, na.rm=TRUE)
e <- extract(z, v)
tapply(e[,2], e[,1], mean, na.rm=TRUE)
x < -c(z, z*2, z/3)
names(x) \leftarrow letters[1:3]
e <- extract(x, v)
de <- data.frame(e)</pre>
aggregate(de[,2:4], de[,1,drop=FALSE], mean)
```

extremes

Get or compute the minimum and maximum cell values

Description

The minimum and maximum value of a SpatRaster are returned or computed (from a file on disk if necessary) and stored in the object.

Usage

```
## S4 method for signature 'SpatRaster'
minmax(x)
## S4 method for signature 'SpatRaster'
hasMinMax(x)
## S4 method for signature 'SpatRaster'
setMinMax(x, force=FALSE)
```

Arguments

x SpatRaster

force logical. If TRUE min and max values are recomputed even if already available

92 factors

Value

minmax: numeric matrix of minimum and maximum cell values by layer

hasMinMax: logical indicating whether the min and max values are available.

setMinMax: nothing. Used for the side-effect of computing the minimum and maximum values of a SpatRaster

Examples

```
r <- rast(system.file("ex/elev.tif", package="terra"))
minmax(r)</pre>
```

factors

Categorical rasters

Description

A SpatRaster layer can represent a categorical variable (factor). Like factors, SpatRaster categories are stored as integers that have an associated label.

The categories can be inspected with levels and cats. They are represented by a data.frame that must have two or more columns, the first one identifying the (integer) cell values and the other column(s) providing the category labels.

If there are multiple columns with categories, you can set the "active" category to choose the one you want to use.

cats returns the entire data.frame, whereas levels only return two columns: the index and the active category.

To set categories for the first layer of a SpatRaster, you can provide levels<- with a data.frame or a list with a data.frame. To set categories for multiple layers you can provide levels<- with a list with one element (that either has a data.frame or is NULL) for each layer. Use categories to set the categories for a specific layer or specific layers.

droplevels removes categories that are not used (declared but not present as values in the raster).

Usage

```
## S4 method for signature 'SpatRaster'
levels(x)

## S4 replacement method for signature 'SpatRaster'
levels(x)<-value

## S4 method for signature 'SpatRaster'
cats(x, layer, active=FALSE)

## S4 method for signature 'SpatRaster'
categories(x, layer=1, value, index)</pre>
```

factors 93

```
## S4 method for signature 'SpatRaster'
droplevels(x)
```

Arguments

x	SpatRaster
layer	positive integer, the layer number or name
active	logical. If TRUE, only return the active category
value	a data.frame (ID, category) that define the categories. Or NULL to remove them
index	positive integer, indicating the column in data.frame value to be used as the (active) category, (not counting the first column with the cell values)

Value

list of data.frames (levels, cats) or logical (is.factor)

See Also

```
activeCat, catalyze, set.cats, as.factor, is.factor
```

```
set.seed(0)
r <- rast(nrows=10, ncols=10)
values(r) <- sample(3, ncell(r), replace=TRUE)</pre>
is.factor(r)
cls <- data.frame(id=1:3, cover=c("forest", "water", "urban"))</pre>
levels(r) <- cls</pre>
is.factor(r)
plot(r, col=c("green", "blue", "light gray"))
text(r, digits=3, cex=.75, halo=TRUE)
# raster starts at 3
x < -r + 2
is.factor(x)
# Multiple categories
d <- data.frame(id=3:5, cover=cls[,2], letters=letters[1:3], value=10:12)</pre>
levels(x) \leftarrow d
# get current index
activeCat(x)
# set index
activeCat(x) <- 3
activeCat(x)
```

94 fillHoles

```
activeCat(x) <- "letters"
plot(x, col=c("green", "blue", "light gray"))
text(x, digits=3, cex=.75, halo=TRUE)

r <- as.numeric(x)
r

p <- as.polygons(x)
plot(p, "letters", col=c("green", "blue", "light gray"))</pre>
```

fillHoles

Remove holes from polygons

Description

Remove the holes in SpatVector polygons. If inverse=TRUE the holes are returned (as polygons).

Usage

```
## S4 method for signature 'SpatVector'
fillHoles(x, inverse=FALSE)
```

Arguments

x SpatVectorinverse logical. If TRUE the holes are returned as polygons

Value

SpatVector

fillTime 95

fillTime

Fill time gaps in a SpatRaster

Description

Add empty layers in between existing layers such that the time step between each layer is the same. See approximate to estimate values for these layer (and other missing values)

Usage

```
## S4 method for signature 'SpatRaster'
fillTime(x, filename="", ...)
```

Arguments

```
    x SpatRaster
    filename character. Output filename
    ... list with named options for writing files as in writeRaster
```

Value

SpatRaster

See Also

approximate

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s <- c(r, r)
time(s) <- as.Date("2001-01-01") + c(0:2, 5:7)
time(s)
ss <- fillTime(s)
time(ss)
a <- approximate(ss)</pre>
```

96 flip

flip

Flip or reverse a raster

Description

Flip the values of a SpatRaster by inverting the order of the rows (vertical=TRUE) or the columns (vertical=FALSE).

rev is the same as a horizontal *and* a vertical flip.

Usage

```
## S4 method for signature 'SpatRaster'
flip(x, direction="vertical", filename="", ...)
## S4 method for signature 'SpatVector'
flip(x, direction="vertical")
## S4 method for signature 'SpatRaster'
rev(x)
```

Arguments

```
x SpatRaster or SpatVector

direction character. Should (partially) match "vertical" to flip by rows, or "horizontal" to flip by columns

filename character. Output filename
... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

See Also

```
trans, rotate
```

```
r <- rast(nrow=18, ncol=36)
m <- matrix(1:ncell(r), nrow=18)
values(r) <- as.vector(t(m))
rx <- flip(r, direction="h")

values(r) <- as.vector(m)
ry <- flip(r, direction="v")

v <- rev(r)</pre>
```

focal 97

focal	Focal values		
-------	--------------	--	--

Description

Calculate focal ("moving window") values for each cell.

Usage

```
## S4 method for signature 'SpatRaster'
focal(x, w=3, fun="sum", ..., na.policy="all", fillvalue=NA,
expand=FALSE, silent=TRUE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

Х	SpatRaster
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See Details.
fun	function that takes multiple numbers, and returns a numeric vector (one or multiple numbers). For example mean, modal, min or max
	additional arguments passed to fun such as na.rm
na.policy	character. Can be used to determine the cells of x for which focal values should be computed. Must be one of "all" (compute for all cells), "only" (only for cells that are NA) or "omit" (skip cells that are NA). Note that the value of this argument does not affect which cells around each focal cell are included in the computations (use na.rm=TRUE to ignore cells that are NA for that)
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
expand	logical. If TRUE The value of the cells in the virtual rows and columns outside of the raster are set to be the same as the value on the border. Only available for "build-in" funs such as mean, sum, min and max
silent	logical. If TRUE error messages are printed that may occur when trying fun to determine the length of the returned value. This can be useful in debugging a fun that does not work
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	additional arguments for writing files as in writeRaster

Details

focal The window used must have odd dimensions. If you need even sides, you can use a matrix and add a column or row with weights of zero.

Window values are typically 0 or 1, or a value between 0 and 1 if you are using a rectangular area and/or the "sum" function. They can also be NA; these are ignored in the computation. That can be useful to compute, for example, the minimum or maximum value for a non-rectangular area.

98 focal

The "mean" function is a special case, as zero weights are ignored automatically.

The "sum" function returns NA if all focal cells are NA and na.rm=TRUE. R would normally return a zero in thise cases. See the difference between focal(x, fun=sum, na.rm=TRUE and focal(x, fun=\(i\)) sum(i, na.rm=TRUE))

Example weight matrices

```
Laplacian filter: filter=matrix(c(0,1,0,1,-4,1,0,1,0), nrow=3) Sobel filters (for edge detection): fx=matrix(c(-1,-2,-1,0,0,0,1,2,1), nrow=3) fy=matrix(c(1,0,-1,2,0,-2,1,0,-nrow=3))
```

Value

SpatRaster

See Also

focalMat, focalValues, focal3D, focalCor, focalReg, focalCpp

```
r < - rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)</pre>
f \leftarrow focal(r, w=3, fun=function(x, ...) quantile(x, c(.25, .5, .75), ...), na.rm=TRUE)
f <- focal(r, w=3, fun="mean")</pre>
# the following two statements are equivalent:
a <- focal(r, w=matrix(1/9, nc=3, nr=3))
b <- focal(r, w=3, fun=mean, na.rm=FALSE)</pre>
# but this is different
d <- focal(r, w=3, fun=mean, na.rm=TRUE)</pre>
## illustrating the effect of different
## combinations of na.rm and na.policy
v <- vect(system.file("ex/lux.shp", package="terra"))</pre>
r <- rast(system.file("ex/elev.tif", package="terra"))</pre>
r[45:50, 45:50] <- NA
# also try "mean" or "min"
f <- "sum"
# na.rm=FALSE
plot(focal(r, 5, f) , fun=lines(v))
# na.rm=TRUE
plot(focal(r, 5, f, na.rm=TRUE), fun=lines(v))
# only change cells that are NA
plot(focal(r, 5, f, na.policy="only", na.rm=TRUE), fun=lines(v))
# do not change cells that are NA
```

focal3D 99

```
plot(focal(r, 5, f, na.policy="omit", na.rm=TRUE), fun=lines(v))
# does not do anything
# focal(r, 5, f, na.policy="only", na.rm=FALSE)
```

focal3D

Three-dimensional focal values

Description

Calculate focal ("moving window") values for the three-dimensional neighborhood (window) of focal cells. See focal for two-dimensional focal computation.

Usage

```
## S4 method for signature 'SpatRaster'
focal3D(x, w=3, fun=mean, ..., na.policy="all", fillvalue=NA, pad=FALSE,
padvalue=fillvalue, expand=FALSE, silent=TRUE,
filename="", overwrite=FALSE, wopt=list())
```

X	SpatRaster
W	window. A rectangular prism (cuboid) defined by three numbers or by a three-dimensional array. The values are used as weights, and are usually zero, one, NA, or fractions. The window used must have odd dimensions. If you desire to use even sides, you can use an array, and pad the values with rows and/or columns that contain only NAs.
fun	function that takes multiple numbers, and returns one or multiple numbers for each focal area. For example mean, modal, min or max
	additional arguments passed to fun such as na.rm
na.policy	character. Can be used to determine the cells of x for which focal values should be computed. Must be one of "all" (compute for all cells), "only" (only for cells that are NA) or "omit" (skip cells that are NA). Note that the value of this argument does not affect which cells around each focal cell are included in the computations (use na.rm=TRUE to ignore cells that are for that)
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
pad	logical. Add virtual layers before the first and after the last layer
padvalue	numeric. The value of the cells in the virtual layers
expand	logical. Add virtual layers before the first or after the last layer that are the same as the first or last layers. If TRUE, arguments pad and padvalue are ignored
silent	logical. If TRUE error messages are printed that may occur when trying fun to determine the length of the returned value. This can be useful in debugging a function passed to fun that does not work

100 focalCor

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
x <- focal3D(r, c(5,5,3), na.rm=TRUE)

a <- array(c(0,1,0,1,1,1,0,1,0, rep(1,9), 0,1,0,1,1,1,0,1,0), c(3,3,3))
a[a==0] <- NA
z <- focal3D(r, a, na.rm=TRUE)</pre>
```

focalCor

Focal function across two layers

Description

Calculate values such as a correlation coefficient for focal regions in two neighboring layers. A function is applied to the first and second layer, then to the second and third layer, etc.

Usage

```
## S4 method for signature 'SpatRaster'
focalCor(x, w=3, fun, ..., fillvalue=NA,
filename="", overwrite=FALSE, wopt=list())
```

col); or with an odd-sized weights matrix. See the Details section in fun A function with at least two arguments (one for each layer) additional arguments for fun numeric. The value of the cells in the virtual rows and columns outs raster filename character. Output filename overwrite logical. If TRUE, filename is overwritten		
col); or with an odd-sized weights matrix. See the Details section in fun A function with at least two arguments (one for each layer) additional arguments for fun numeric. The value of the cells in the virtual rows and columns outs raster filename character. Output filename overwrite logical. If TRUE, filename is overwritten	X	SpatRaster with at least two layers
additional arguments for fun fillvalue numeric. The value of the cells in the virtual rows and columns outs raster filename character. Output filename overwrite logical. If TRUE, filename is overwritten	W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
fillvalue numeric. The value of the cells in the virtual rows and columns outs raster filename character. Output filename overwrite logical. If TRUE, filename is overwritten	fun	A function with at least two arguments (one for each layer)
raster filename character. Output filename overwrite logical. If TRUE, filename is overwritten		additional arguments for fun
overwrite logical. If TRUE, filename is overwritten	fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
	filename	character. Output filename
wont additional arguments for writing files as in writeRaster	overwrite	logical. If TRUE, filename is overwritten
wope additional arguments for writing mes as in will tendeter	wopt	additional arguments for writing files as in writeRaster

focalCpp 101

Value

SpatRaster

See Also

```
layerCor, focalReg, focal
```

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
set.seed(0)
r[[1]] <- flip(r[[1]], "horizontal")
r[[2]] <- flip(r[[2]], "vertical") + init(rast(r,1), runif)
r[[3]] <- init(rast(r,1), runif)

# suppress warning "the standard deviation is zero"
suppressWarnings(x <- focalCor(r, w=5, cor))

# this warning does not occur when using a larger window
x <- focalCor(r, w=9, function(x, y) cor(x, y))
plot(x)</pre>
```

focalCpp

Compute focal values with an iterating C++ function

Description

Calculate focal values with a C++ function that iterates over cells to speed up computations by avoiding an R loop (with apply).

See focal for an easier to use method.

Usage

```
## S4 method for signature 'SpatRaster'
focalCpp(x, w=3, fun, ..., fillvalue=NA,
silent=TRUE, filename="", overwrite=FALSE, wopt=list())
```

X	SpatRaster
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
fun	cppFunction that iterates over cells. For C++ functions that operate on a single focal window, or for R functions use focal instead. The function must have at least three arguments. The first argument can have any name, but it must be a Rcpp::NumericVector, Rcpp::IntegerVector or a std::vector <double>. This is the container that receives the focal values. The other two arguments</double>

102 focalCpp

ni and wi must be of type size_t. ni represents the number of cells and nw

represents the size of (number of elements in) the window

... additional arguments to fun

fillvalue numeric. The value of the cells in the virtual rows and columns outside of the

raster

silent logical. If TRUE error messages are printed that may occur when trying fun to

determine the length of the returned value. This can be useful in debugging a

fun that does not work

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

focal, focalValues

```
## Not run:
library(Rcpp)
cppFunction(
'NumericVector sum_and_multiply(NumericVector x, double m, size_t ni, size_t nw) {
NumericVector out(ni);
// loop over cells
size_t start = 0;
for (size_t i=0; i<ni; i++) {
size_t end = start + nw;
// compute something for a window
double v = 0;
// loop over the values of a window
for (size_t j=start; j<end; j++) {</pre>
v += x[j];
}
out[i] = v * m;
start = end;
return out;
}'
)
nr <- nc <- 10
r \leftarrow rast(ncols=nc, nrows=nr, ext=c(0, nc, 0, nr))
values(r) <- 1:ncell(r)</pre>
raw <- focalCpp(r, w=3, fun=sum_and_multiply, fillvalue=0, m=10)</pre>
```

focalMat 103

```
# same as
f1 <- focal(r, w=3, fun=sum, fillvalue=0) *10
all(values(f1) == values(raw))
# and as
ffun <- function(x, m) { sum(x) * m }</pre>
f2 <- focal(r, w=3, fun=ffun, fillvalue=0, m=10)</pre>
# You can also use an R function with focalCpp but this
# is not recommended
R_sm_iter <- function(x, m, ni, nw) {</pre>
out <- NULL
for (i in 1:ni) {
start <- (i-1) * nw + 1
out[i] \leftarrow sum(x[start:(start+nw-1)]) * m
}
out
}
fr <- focalCpp(r, w=3, fun=R_sm_iter, fillvalue=0, m=10)</pre>
## End(Not run)
```

focalMat

Focal weights matrix

Description

Make a focal ("moving window") weight matrix for use in the focal function. The sum of the values adds up to one.

Usage

```
focalMat(x, d, type=c('circle', 'Gauss', 'rectangle'), fillNA=FALSE)
```

x	SpatRaster
d	numeric. If type=circle, the radius of the circle (in units of the crs). If type=rectangle the dimension of the rectangle (one or two numbers). If type=Gauss the size of sigma, and optionally another number to determine the size of the matrix returned (default is 3*sigma)
type	character indicating the type of filter to be returned
fillNA	logical. If TRUE, zeros are set to NA such that they are ignored in the computations. Only applies to type="circle"

104 focalReg

Value

matrix that can be used with focal

Examples

```
r <- rast(ncols=180, nrows=180, xmin=0)
focalMat(r, 2, "circle")

focalMat(r, c(2,3), "rect")

# Gaussian filter for square cells
gf <- focalMat(r, 1, "Gauss")</pre>
```

focalReg

Focal regression

Description

Calculate the coefficients for a focal ("moving window") OLS regression model.

Usage

```
## S4 method for signature 'SpatRaster'
focalReg(x, w=3, na.rm=TRUE,
fillvalue=NA, filename="", ...)
```

Arguments

X	SpatRaster with at least two layers. The first is the "Y" (dependent) variable and the remainder are the "X" (independent) variables
W	window. The window can be defined as one (for a square) or two numbers (row, col); or with an odd-sized weights matrix. See the Details section in focal
na.rm	logical. Should missing values be removed?
fillvalue	numeric. The value of the cells in the virtual rows and columns outside of the raster
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
focal, focalValues
```

focalValues 105

Examples

```
r <- rast(ncols=10, nrows=10, ext(0, 10, 0, 10))
values(r) <- 1:ncell(r)
x <- c(r, init(r, runif) * r)
f <- focalReg(x, 3)</pre>
```

focalValues

Get focal values

Description

Get a matrix in which each row had the focal values of a cell. These are the values of a cell and a rectangular window around it.

Usage

```
## S4 method for signature 'SpatRaster'
focalValues(x, w=3, row=1, nrows=nrow(x), fill=NA)
```

Arguments

X	SpatRaster or SpatVector
W	window. The window can be defined as one (for a square) or two odd numbers (row, col); or with an odd sized matrix
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
fill	numeric used as values for imaginary cells outside the raster

Value

matrix

```
r <- rast(ncol=4, nrow=4, crs="+proj=utm +zone=1 +datum=WGS84")
values(r) <- 1:ncell(r)
focalValues(r)</pre>
```

106 freq

freq	Frequency table	

Description

Frequency table of the values of a SpatRaster. NAs are not counted unless value=NA.

Usage

```
## S4 method for signature 'SpatRaster'
freq(x, digits=0, value=NULL, bylayer=TRUE, usenames=FALSE)
```

Arguments

X	SpatRaster
digits	integer. Used for rounding the values before tabulation. Ignored if NA
value	numeric. An optional single value to only count the number of cells with that value. This value can be NA
bylayer	logical. If TRUE tabulation is done by layer
usenames	logical. If TRUE layers are identified by their names instead of their numbers. Only relevant if bylayer is TRUE

Value

A data. frame with 3 columns (layer, value, count) unless by layer=FALSE in which case adata. frame with two columns is returned (value, count).

```
r <- rast(nrows=10, ncols=10)
set.seed(2)
values(r) <- sample(5, ncell(r), replace=TRUE)
freq(r)

x <- c(r, r/3)
freq(x, bylayer=FALSE)
freq(x)
freq(x, digits=1)
freq(x, digits=-1)
freq(x, value=5)</pre>
```

gaps 107

gaps

Find gaps between polygons

Description

Get the gaps between polygons of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
gaps(x)
```

Arguments

Х

SpatVector

Value

SpatVector

See Also

sharedPaths, topology, and fillHoles to get or remove polygon holes

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
h <- convHull(v[-12], "NAME_1")
g <- gaps(h)</pre>
```

gdal

GDAL version, supported file formats, and cache size

Description

Set the GDAL warning level or get a data. frame with the available GDAL drivers (file formats), or, if warn=NA and drivers=FALSE, you get the version numbers of one or all of the GDAL, PROJ and GEOS libraries.

GDAL is the software library that terra builds on to read and write spatial data and for some raster data processing. PROJ is used for transformation of coordinates ("projection") and GEOS is used for geometric operations with vector data.

108 geom

Usage

```
gdal(warn=NA, drivers=FALSE, lib="gdal")
gdalCache(size=NA)
setGDALconfig(option, value="")
getGDALconfig(option)
```

Arguments

warn	If NA and drivers=FALSE, the version of the library specified by 1ib is returned. Otherwise, the value should be an integer between 1 and 4 representing the level of GDAL warnings and errors that are passed to R. 1 = warnings and errors; 2 = errors only (recoverable errors as a warning); 3 = irrecoverable errors only; 4 = ignore all errors and warnings. The default setting is 3
	ignore an errors and warmings. The default setting is 3
drivers	logical. If TRUE a data frame with the raster and vector data formats that are available.
lib	character. "gdal", "proj", or "geos", or any other value to get the versions numbers of all three
size	numeric. The new cache size in MB
option	character. GDAL configuration option name, or a "name=value" string (in which case the value argument is ignored
value	character. value for GDAL configuration option. Use "" to reset it to its default value

Value

character

See Also

describe for file-level metadata "GDALinfo"

Examples

```
gdal()
gdal(2)
head(gdal(drivers=TRUE))
```

geom

Get the geometry (coordinates) of a SpatVector

Description

Get the geometry of a SpatVector. If wkt=FALSE, this is a five-column matrix or data.frame: the vector object ID, the IDs for the parts of each object (e.g. five polygons that together are one spatial object), the x (longitude) and y (latitude) coordinates, and a flag indicating whether the part is a "hole" (only relevant for polygons).

If wkt=TRUE, the "well-known text" representation is returned as a character vector.

geom 109

Usage

```
## S4 method for signature 'SpatVector'
geom(x, wkt=FALSE, hex=FALSE, df=FALSE, list=FALSE, xnm="x", ynm="y")
```

Arguments

Χ	SpatVector
wkt	logical. If TRUE the WKT geometry is returned (unless hex is also TRUE)
hex	logical. If TRUE the hexadecimal geometry is returned
df	logical. If TRUE a data. frame is returned instead of a matrix (only if wkt=FALSE, hex=FALSE, and list=FALSE)
list	logical. If TRUE a nested list is returned with data.frames of coordinates
xnm	character. If list=TRUE the "x" column name for the coordinates data.frame
ynm	character. If list=TRUE the "y" column name for the coordinates data.frame

Value

matrix, vector, data.frame, or list

See Also

```
crds, xyFromCell
```

```
x1 \leftarrow rbind(c(-175, -20), c(-140, 55), c(10, 0), c(-140, -60))
x2 \leftarrow rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
x3 \leftarrow rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x4 \leftarrow rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z \leftarrow rbind(cbind(object=1, part=1, x1), cbind(object=2, part=1, x2),
            cbind(object=3, part=1, x3), cbind(object=3, part=2, x4))
colnames(z)[3:4] \leftarrow c('x', 'y')
z <- cbind(z, hole=0)</pre>
z[(z[, "object"]==3 & z[,"part"]==2), "hole"] <- 1</pre>
p <- vect(z, "polygons")</pre>
geom(p)
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
g <- geom(v)
head(g)
w <- geom(v, wkt=TRUE)
substr(w, 1, 60)
```

110 geomtype

geomtype

Geometry type of a SpatVector

Description

Get the geometry type (points, lines, or polygons) of a SpatVector or the data types of the fields (attributes, variables) of a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
geomtype(x)

## S4 method for signature 'SpatVector'
datatype(x)

## S4 method for signature 'SpatVector'
is.points(x)

## S4 method for signature 'SpatVector'
is.lines(x)

## S4 method for signature 'SpatVector'
is.polygons(x)
```

Arguments

Х

SpatVector

Value

character

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

geomtype(v)
is.polygons(v)
is.lines(v)
is.points(v)

names(v)
datatype(v)</pre>
```

global 111

Description

Compute global statistics, that is summarized values of an entire SpatRaster.

If x is very large global will fail, except when fun is one of "mean", "min", "max", "sum", "prod", "range" (min and max), "rms" (root mean square), "sd" (sample standard deviation), "sdpop" (population standard deviation), "isNA" (number of cells that are NA), "notNA" (number of cells that are not NA).

You can compute a weighted mean or sum by providing a SpatRaster with weights.

Usage

```
## S4 method for signature 'SpatRaster'
global(x, fun="mean", weights=NULL, ...)
```

Arguments

Х	SpatRaster
fun	function to be applied to summarize the values by zone. Either as one of these character values: "max", "min", "mean", "sum", "range", "rms" (root mean square), "sd", "std" (population sd, using n rather than n-1), "isNA", "notNA"; or a proper R function (but these may fail for very large SpatRasters)
	additional arguments passed on to fun
weights	NULL or SpatRaster

Value

A data. frame with a row for each layer

See Also

zonal for "zonal" statistics, and app or Summary-methods for "local" statistics, and extract for summarizing values for polygons. Also see focal for "focal" or "moving window" operations.

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
global(r, "sum")
global(r, "mean", na.rm=TRUE)</pre>
```

112 gridDistance

Description

The function calculates the distance to cells of a SpatRaster when the path has to go through the centers of the eight neighboring raster cells.

The distance is in meters if the coordinate reference system (CRS) of the SpatRaster is longitude/latitude (+proj=longlat) and in the units of the CRS (typically meters) in other cases.

Distances are computed by summing local distances between cells, which are connected with their neighbors in 8 directions.

The shortest distance to the cells with the target value is computed for all cells that are not NA. Cells that are NA cannot be traversed and are ignored, unless the target itself is NA, in which case the distance to the nearest cell that is not NA is computed for all cells that are NA.

Usage

```
## S4 method for signature 'SpatRaster'
gridDistance(x, target=0, scale=1000, maxiter=50, filename="", ...)
```

Arguments

X	SpatRaster
target	numeric. value of the target cells (where to compute distance to)
scale	numeric. Scale factor for longitude/latitude data (1 = m, 1000 = km)
maxiter	numeric. The maximum number of iterations. Increase this number if you get the warning that costDistance did not converge
filename	character. output filename (optional)
	additional arguments as for writeRaster

Value

SpatRaster

See Also

See distance for "as the crow flies" distance, and costDistance for distance across a landscape with variable friction

head and tail

Examples

```
# global lon/lat raster
r <- rast(ncol=10,nrow=10, vals=1)
r[48] <- 0
r[66:68] <- NA
d <- gridDistance(r)
plot(d)

# planar
crs(r) <- "+proj=utm +zone=15 +ellps=GRS80 +datum=NAD83 +units=m +no_defs"
d <- gridDistance(r)
plot(d)

# distance to cells that are not NA
rr <- classify(r, cbind(1, NA))
dd <- gridDistance(rr, NA)</pre>
```

head and tail

Show the head or tail of a Spat* object

Description

Show the head (first values) or tail (last values) of a SpatRaster or of the attributes of a SpatVector.

Usage

```
head(x, ...)
tail(x, ...)
```

Arguments

x SpatRaster or SpatVector

... additional arguments passed on to other methods

Value

```
matrix\ (SpatRaster)\ or\ data.frame\ (SpatVector)
```

See Also

```
show, geom
```

114 hist

Examples

```
r <- rast(nrows=25, ncols=25)
values(r) <- 1:ncell(r)
head(r)
tail(r)</pre>
```

hist

Histogram

Description

Create a histogram of the values of a SpatRaster. For large datasets a sample of maxcell is used.

Usage

```
## S4 method for signature 'SpatRaster'
hist(x, layer, maxcell=1000000, plot=TRUE, main, ...)
```

Arguments

X	SpatRaster
layer	integer (or character) to indicate layer number (or name). Can be used to subset the layers to plot in a multilayer SpatRaster
maxcell	integer. To regularly sample very large objects
plot	logical. Plot the histogram or only return the histogram values
main	character. Main title(s) for the plot. Default is the value of names
	additional arguments. See hist

Value

This function is principally used for plotting a histogram, but it also returns an object of class "histogram" (invisibly if plot=TRUE).

See Also

```
pairs, boxplot
```

```
r1 <- r2 <- rast(nrows=50, ncols=50)
values(r1) <- runif(ncell(r1))
values(r2) <- runif(ncell(r1))
rs <- r1 + r2
rp <- r1 * r2

opar <- par(no.readonly =TRUE)</pre>
```

ifel 115

```
par(mfrow=c(2,2))
plot(rs, main='sum')
plot(rp, main='product')
hist(rs)
a <- hist(rp)
a
x <- c(rs, rp, sqrt(rs))
hist(x)
par(opar)</pre>
```

ifel

ifelse for SpatRasters

Description

Implementation of ifelse for SpatRasters. This method allows for a concise expression of what can otherwise be achieved with a combination of classify, mask, and cover.

ifel is an R equivalent to the Con method in ArcGIS (arcpy).

Usage

```
## S4 method for signature 'SpatRaster'
ifel(test, yes, no, filename="", ...)
```

Arguments

test	SpatRaster
yes	SpatRaster or numeric
no	SpatRaster or numeric
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

```
r <- rast(nrows=5, ncols=5, xmin=0, xmax=1, ymin=0, ymax=1)
values(r) <- c(-10:0, NA, NA, NA, 0:10)

x <- ifel(r > 1, 1, r)
# same as
a <- classify(r, cbind(1, Inf, 1))
# or
b <- app(r, fun=function(i) {i[i > 1] <- 1; i})
# or
d <- clamp(r, -Inf, 1)</pre>
```

116 image

```
# or (not recommended for large datasets)
e <- r
e[e>1] <- 1

## other examples
f <- ifel(is.na(r), 100, r)

z <- ifel(r > -2 & r < 2, 100, 0)

# nested expressions
y <- ifel(r > 1, 1, ifel(r < -1, -1, r))
k <- ifel(r > 0, r+10, ifel(r < 0, r-10, 3))</pre>
```

image

SpatRaster image method

Description

Plot (make a map of) the values of a SpatRaster via image. See plot if you need more fancy options such as a legend.

Usage

```
## S4 method for signature 'SpatRaster'
image(x, y=1, maxcell=500000, ...)
```

Arguments

X	SpatRaster
У	positive integer indicating the layer to be plotted, or a character indicating the name of the layer
maxcell	positive integer. Maximum number of cells to use for the plot
	additional arguments as for graphics::image

See Also

plot

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
image(r)
image(r, col=rainbow(24))</pre>
```

impose 117

|--|

Description

Warp the members of a SpatRasterCollection to match the geometry of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRasterCollection'
impose(x, y, filename="", ...)
```

Arguments

x SpatRasterCollection

y SpatRaster

filename character. Output filename

... list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

resample

initialize

Initialize a SpatRaster with values

Description

Create a SpatRaster with values reflecting a cell property: 'x', 'y', 'col', 'row', 'cell' or 'chess'. Alternatively, a function can be used. In that case, cell values are initialized without reference to pre-existing values. E.g., initialize with a random number (fun=runif). While there are more direct ways of achieving this for small objects (see examples) for which a vector with all values can be created in memory, the init function will also work for SpatRaster objects with many cells.

```
## S4 method for signature 'SpatRaster'
init(x, fun, filename="", ...)
```

118 inplace

Arguments

X	SpatRaster
fun	function to be applied. This must be a either single number, multiple numbers, a function, or one of a set of known character values. A function must take the number of cells as a single argument to return a vector of values with a length equal to the number of cells, such as fun=runif. Allowed character values are 'x', 'y', 'row', 'col', 'cell', and 'chess' to get the x or y coordinate, row, col or cell number or a chessboard pattern (alternating 0 and 1 values)
filename	character. Output filename

additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

```
r <- rast(ncols=10, nrows=5, xmin=0, xmax=10, ymin=0, ymax=5)
x <- init(r, fun="cell")
y <- init(r, fun=runif)

# initialize with a single value
z <- init(r, fun=8)</pre>
```

inplace

Change values in-place

Description

These "in-place" replacement methods assign new value to an object without making a copy. That is efficient, but if there is a copy of the object that you made by standard assignment (e.g. with y < -x), that copy is also changed.

```
set.names is the in-place replacement version of names<-.
set.ext is the in-place replacement version of ext<-
set.values is the in-place replacement version of [<-.
set.cats is the in-place replacement version of categories
set.crs is the in-place replacement version of crs<-
```

```
## S4 method for signature 'SpatRaster'
set.names(x, value, index=1:nlyr(x), validate=FALSE)
## S4 method for signature 'SpatRasterDataset'
set.names(x, value, index=1:length(x), validate=FALSE)
## S4 method for signature 'SpatVector'
```

inplace 119

```
set.names(x, value, index=1:ncol(x), validate=FALSE)
## S4 method for signature 'SpatRaster'
set.ext(x, value)
## S4 method for signature 'SpatVector'
set.ext(x, value)
## S4 method for signature 'SpatRaster'
set.crs(x, value)
## S4 method for signature 'SpatVector'
set.crs(x, value)
## S4 method for signature 'SpatRaster'
set.values(x, cells, values)
## S4 method for signature 'SpatRaster'
set.values(x, cells, values)
```

Arguments

x	SpatRaster
value	character (set.names). For set.cats: a data.frame with columns (value, category) or vector with category names
index	positive integer indicating layer(s) to assign a name to, or the index to select the active category
validate	logical. Make names valid and/or unique?
cells	cell numbers or missing
values	replacement values or missing to load all values into memory
layer	positive integer indicating to which layer to you want to assign these categories

Value

logical (invisibly)

```
s <- rast(ncols=5, nrows=5, nlyrs=3)
x <- s
names(s)
names(s) <- c("a", "b", "c")
names(s)
names(x)

x <- s
set.names(s, c("e", "f", "g"))
names(s)
names(x)</pre>
```

120 inset

```
set.ext(x, c(0,180,0,90))

f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

#values from file to memory
set.values(r)

# change values
set.values(r, 1:1000, 900)</pre>
```

inset

Make an inset map

Description

Make an inset map or scale the extent of a SpatVector

Usage

```
## S4 method for signature 'SpatVector'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, ...)

## S4 method for signature 'SpatRaster'
inset(x, e, loc="", scale=0.2, background="white",
perimeter=TRUE, box=NULL, pper, pbox, ...)

## S4 method for signature 'SpatVector'
inext(x, e, y=NULL, gap=0)
```

Arguments

X	SpatVector, SpatRaster
е	SpatExtent to set the size and location of the inset. Or missing
loc	character. One of "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center"
scale	numeric. The relative size of the inset, used when x is missing
background	color for the background of the inset. Use NA for no background color
perimeter	logical. If TRUE a perimeter (border) is drawn around the inset
box	SpatExtent or missing, to draw a box on the inset, e.g. to show where the map is located in a larger area
pper	list with graphical parameters (arguments) such as col and 1 wd for the perimeter line
pbox	list with graphical parameters (arguments) such as col and lwd for the box (line)

inset 121

additional arguments passed to plot for the drawing of x
 SpatVector. If not NULL, y is scaled based with the parameters for x. This is useful, for example, when x represent boundaries, and y points within these boundaries
 gap numeric to add space between the SpatVector and the SpatExtent

Value

scaled and shifted SpatVector or SpatRaster (returned invisibly)

See Also

```
sbar, rescale, shift
```

```
f <- system.file("ex/lux.shp", package="terra")</pre>
v \leftarrow vect(f)
x \leftarrow v[v$NAME_2 == "Diekirch", ]
plot(x, density=10, col="blue")
inset(v)
# more elaborate
plot(x, density=10, col="blue")
inset(v, col = "brown", border="lightgrey", perimeter=TRUE,
pper=list(col="orange", lwd=3, lty=2),
box=ext(x), pbox=list(col="blue", lwd=2))
cols <- rep("light grey", 12)</pre>
cols[2] <- "red"
e \leftarrow ext(c(6.2, 6.3, 49.9, 50))
b <- ext(x) + 0.02
inset(v, e=e, col=cols, box=b)
# with a SpatRaster
ff <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(ff)
r \leftarrow crop(r, ext(x) + .01)
plot(r, type="int", mar=c(2,2,2,2), plg=list(x="topright"))
lines(v, lwd=1.5)
lines(x, lwd=2.5)
inset(v, col=cols, loc="topleft", scale=0.15)
# a more complex one
plot(r, plg=list(title="meter\n", shrink=.2, cex=.8))
lines(v, lwd=4, col="white")
lines(v, lwd=1.5)
lines(x, lwd=2.5)
text(x, "NAME_2", cex=1.5, halo=TRUE)
sbar(6, c(6.04, 49.785), type="bar", below="km", label=c(0,3,6), cex=.8)
```

122 intersect

```
s <- inset(v, col=cols, box=b, scale=.2, loc="topright", background="light yellow",
pbox=list(lwd=2, lty=5, col="blue"))
# note the returned inset SpatVector
s
lines(s, col="orange")</pre>
```

intersect

Intersection

Description

Intersect the geometries of two SpatVectors.

Intersecting points with points uses the extent of y to get the intersection. Intersecting of points and lines is not supported because of numerical inaccuracies with that. You can use buffer, to create polygons from lines and use these with intersect.

See crop for intersection of a SpatRaster.

Usage

```
## S4 method for signature 'SpatVector, SpatVector'
intersect(x, y)

## S4 method for signature 'SpatVector, SpatExtent'
intersect(x, y)

## S4 method for signature 'SpatExtent, SpatVector'
intersect(x, y)

## S4 method for signature 'SpatExtent, SpatExtent'
intersect(x, y)
```

Arguments

```
x SpatVector or SpatExtenty SpatVector or SpatExtent
```

Value

Same as x

See Also

```
union, crop, relate
```

is.bool

Examples

```
e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
intersect(e1, e2)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
e <- ext(5.6, 6, 49.55, 49.7)
x <- intersect(v, e)

p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.6, 5.8 49.8))",
"POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, area=expanse(p))

y <- intersect(v, p)
```

is.bool

Raster value types

Description

The values in a SpatRaster layer are by default numeric, but they can also be logical (Boolean), integer, or categorical (factor).

For a SpatRaster, as.logical and isTRUE is equivalent to as.bool. isFALSE is equivalent to !as.bool, and as.integer is the same as as.int.

See levels and cats to create categorical layers by setting labels.

```
## S4 method for signature 'SpatRaster'
is.bool(x)

## S4 method for signature 'SpatRaster'
as.bool(x, filename, ...)

## S4 method for signature 'SpatRaster'
is.int(x)

## S4 method for signature 'SpatRaster'
as.int(x, filename, ...)

## S4 method for signature 'SpatRaster'
is.factor(x)

## S4 method for signature 'SpatRaster'
as.factor(x)
```

is.lonlat

Arguments

X	SpatRaster
filename	character. Output filename
	list with named options for writing files as in writeRaster

Value

The as.* methods return a new SpatRaster, whereas the is.* methods return a logical value for each layer in x.

See Also

levels and cats to create categorical layers (and set labels).

Examples

```
r <- rast(nrows=10, ncols=10, vals=1:100)
is.bool(r)
z <- as.bool(r)
is.bool(z)

x <- r > 25
is.bool(x)

rr <- r/2
is.int(rr)
is.int(round(rr))</pre>
```

is.lonlat

Check for longitude/latitude crs

Description

Test whether a SpatRaster or SpatVector has a longitude/latitude coordinate reference system (CRS), or perhaps has one. That is wen the CRS is unknown ("") but the x coordinates are within -181 and 181 and the y coordinates are within -90.1 and 90.1. For a SpatRaster you can also test if it is longitude/latitude and "global" (covers all longitudes).

```
## S4 method for signature 'SpatRaster'
is.lonlat(x, perhaps=FALSE, warn=TRUE, global=FALSE)
## S4 method for signature 'SpatVector'
is.lonlat(x, perhaps=FALSE, warn=TRUE)
```

lapp 125

Arguments

X	SpatRaster or SpatVector
perhaps	logical. If TRUE and the crs is unknown, the method returns TRUE if the coordinates are plausible for longitude/latitude
warn	logical. If TRUE, a warning is given if the CRS is unknown or when the CRS is longitude/latitude but the coordinates do not match that
global	logical. If TRUE, the method tests if the raster covers all longitudes (from -180 to 180 degrees) such that the extreme columns are in fact adjacent

Value

logical or NA

Examples

```
r <- rast()
is.lonlat(r)
is.lonlat(r, global=TRUE)

crs(r) <- ""
is.lonlat(r)
is.lonlat(r, perhaps=TRUE, warn=FALSE)

crs(r) <- "+proj=lcc +lat_1=48 +lat_2=33 +lon_0=-100 +ellps=WGS84"
is.lonlat(r)</pre>
```

lapp Apply a function to layers of a SpatRaster, or sub-datasets of a SpatRasterDataset

Description

Apply a function to a SpatRaster, using layers as arguments.

The number of arguments in function fun must match the number of layers in the SpatRaster (or the number of sub-datasets in the SpatRasterDataset). For example, if you want to multiply two layers, you could use this function: fun=function(x,y){return(x*y)} percentage: fun=function(x,y){return(100 * x / y)}. If you combine three layers you could use fun=function(x,y,z){return((x + y) * z)}

Before you use the function, test it to make sure that it is vectorized. That is, it should work for vectors longer than one, not only for single numbers. Or if the input SpatRaster(s) have multiple layers, it should work for a matrix (multiple cells) of input data (or matrices in the case of a SpatRasterDataSet). The function must return the same number of elements as its input vectors, or multiples of that. Also make sure that the function is NA-proof: it should returns the same number of values when some or all input values are NA. And the function must return a vector or a matrix, not a data.frame. To test it, run it with do.call(fun, data) (see examples).

Use app for summarize functions such as sum, that take any number of arguments; and tapp to do so for groups of layers.

126 lapp

Usage

```
## S4 method for signature 'SpatRaster'
lapp(x, fun, ..., usenames=FALSE, cores=1, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterDataset'
lapp(x, fun, ..., usenames=FALSE, recycle=FALSE,
    filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster or SpatRasterDataset
fun	a function that takes a vector and can be applied to each cell of x
	additional arguments to be passed to fun
usenames	logical. Use the layer names (or dataset names if x is a SpatRasterDataset) to match the function arguments? If FALSE, argument matching is by position
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object
recycle	logical. Recycle layers to match the subdataset with the largest number of layers
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

Note

Use sapp or lapply to apply a function that takes a SpatRaster as argument to each layer of a SpatRaster (that is rarely necessary).

See Also

```
app, tapp, math
```

```
s <- rast(system.file("ex/logo.tif", package="terra")) + 1
ss <- s[[2:1]]

fvi <- function(x, y){ (x - y ) / (x + y) }

# test the function
data <- list(c(1:5,NA), 6:1)
do.call(fvi, data)

x <- lapp(ss, fun=fvi )</pre>
```

layerCor 127

```
# which is the same as supplying the layers to "fun"
# in some cases this will be much faster
y <- fvi(s[[2]], s[[1]])
f2 \leftarrow function(x, y, z) \{ (z - y + 1) / (x + y + 1) \}
p1 <- lapp(s, fun=f2)
p2 \leftarrow lapp(s[[1:2]], f2, z=200)
# the usenames argument
fvi2 <- function(red, green){ (red - green ) / (red + green) }</pre>
names(s)
x1 <- lapp(s[[1:2]], fvi2, usenames=TRUE)</pre>
x2 <- lapp(s[[2:1]], fvi2, usenames=TRUE)</pre>
# x1 and x2 are the same, despite the change in the order of the layers
# x4 is also the same, but x3 is not
x3 <- lapp(s[[2:1]], fvi2, usenames=FALSE)</pre>
x4 <- lapp(s, fvi2, usenames=TRUE)
# while this would fail because
# there are too many layers in s
# x5 <- lapp(s, fvi2, usenames=FALSE)</pre>
pairs(c(x1, x2, x3, x4))
## SpatRasterDataset
x < - sds(s, s[[1]] + 50)
fun <- function(x, y) \{ x/y \}
# test "fun"
data <- list(matrix(1:9, ncol=3), matrix(9:1, ncol=3))</pre>
do.call(fun, data)
lapp(x, fun, recycle=TRUE)
# the same, more concisely
z <- s / (s[[1]]+50)
```

layerCor

Correlation and (weighted) covariance

Description

Compute correlation, (weighted) covariance, or similar summary statistics that compare the values of all pairs of the layers of a SpatRaster.

```
## S4 method for signature 'SpatRaster'
layerCor(x, fun, w, asSample=TRUE, na.rm=FALSE, maxcell=Inf, ...)
```

128 layerCor

Arguments

X	SpatRaster
fun	character. The statistic to compute: either "cov" (covariance), "weighted.cov" (weighted covariance), or "pearson" (correlation coefficient) or your own function that takes two vectors as argument to compute a single number
W	SpatRaster with the weights to compute the weighted covariance. It should have a single layer and the same geometry as x
asSample	logical. If TRUE, the statistic for a sample (denominator is $n-1$) is computed, rather than for the population (denominator is n). Only for the standard functions
na.rm	logical. Should missing values be removed?
maxcell	postive integer. The number of cells to be regularly sampled. Only used when fun is a function
	additional arguments for fun (if it is a proper function)

Value

If fun is one of the three standard statistics, you get a list with two items: the correlation or (weighted) covariance matrix, and the (weighted) means.

If fun is a function, you get a matrix.

References

For the weighted covariance:

- Canty, M.J. and A.A. Nielsen, 2008. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sensing of Environment 112:1025-1036.
- Nielsen, A.A., 2007. The regularized iteratively reweighted MAD method for change detection in multi- and hyperspectral data. IEEE Transactions on Image Processing 16(2):463-478.

See Also

```
global, cov.wt, weighted.mean
```

```
b <- rast(system.file("ex/logo.tif", package="terra"))
layerCor(b, "pearson")

layerCor(b, "cov")

# weigh by column number
w <- init(b, fun="col")
layerCor(b, "weighted.cov", w=w)</pre>
```

linearUnits 129

linearUnits

Linear units of the coordinate reference system

Description

Get the linear units of the coordinate reference system (crs) of a SpatRaster or SpatVector expressed in m. The value returned is used internally to transform area and perimenter measures to meters. The value returned for longitude/latitude crs is zero.

Usage

```
## S4 method for signature 'SpatRaster'
linearUnits(x)
## S4 method for signature 'SpatVector'
linearUnits(x)
```

Arguments

Χ

SpatRaster or SpatVector

Value

```
numeric (meter)
```

See Also

crs

```
x <- rast()
crs(x) <- ""
linearUnits(x)

crs(x) <- "+proj=longlat +datum=WGS84"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=cm"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=km"
linearUnits(x)

crs(x) <- "+proj=utm +zone=1 +units=us-ft"
linearUnits(x)</pre>
```

lines

lines

Add SpatVector data to a map

Description

Add SpatVector data to a plot (map) with points, lines, or polys. These are simpler alternatives for plot(x, add=TRUE)

Usage

```
## S4 method for signature 'SpatVector'
points(x, col, cex=0.7, pch=16, alpha=1, ...)

## S4 method for signature 'SpatVector'
lines(x, y=NULL, col, lwd=1, lty=1, arrows=FALSE, alpha=1, ...)

## S4 method for signature 'SpatVector'
polys(x, col, border="black", lwd=1, lty=1, alpha=1, ...)

## S4 method for signature 'SpatExtent'
points(x, col="black", alpha=1, ...)

## S4 method for signature 'SpatExtent'
lines(x, col="black", alpha=1, ...)

## S4 method for signature 'SpatExtent'
polys(x, col, alpha=1, ...)
```

Arguments

x	SpatVector or SpatExtent
У	missing or SpatVector. If both x and y have point geometry and the same number of rows, lines are drawn between pairs of points
col	character. Colors
border	character. color(s) of the polygon borders. Use NULL or NA to not draw a border
cex	numeric. point size magnifier. See par
pch	positive integer, point type. See points. On some (linux) devices, the default symbol "16" is a not a very smooth circle. You can use "20" instead (it takes a bit longer to draw) or "1" for an open circle
alpha	number between 0 and 1 to set transparency
lwd	numeric, line-width. See par
lty	positive integer, line type. See par
arrows	logical. If TRUE and y is a SpatVector, arrows are drawn intead of lines. See ?arrows for additional arguments
	additional graphical arguments such as lwd, cex and pch

makeTiles 131

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)

r <- rast(v)
values(r) <- 1:ncell(r)
plot(r)
lines(v)
points(v)</pre>
```

makeTiles

Make tiles

Description

Divide a SpatRaster into "tiles". The cell of another SpatRaster (normally with a much lower resolution) are used to define the tiles.

Usage

```
## S4 method for signature 'SpatRaster'
makeTiles(x, y, filename="tile_.tif", extend=FALSE, na.rm=FALSE, ...)
```

Arguments

X	SpatRaster
у	SpatRaster or SpatVector
filename	character. Output filename template. Filenames will be altered by adding the tile number for each tile
extend	logical. If TRUE, the extent of y is expanded to assure that it covers all of x
na.rm	logical. If TRUE, tiles with only missing values are ignored
• • •	additional arguments for writing files as in writeRaster

Value

```
character (filenames)
```

See Also

vrt to create a virtual raster from tiles

makeVRT

Examples

```
r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)
filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff
vrt(ff)</pre>
```

makeVRT

Make a VRT header file

Description

Create a VRT header file for a "flat binary" raster file that needs a header file to be able to read it, but does not have it.

Usage

```
makeVRT(filename, nrow, ncol, nlyr=1, extent, xmin, ymin, xres, yres=xres, xycenter=TRUE,
    crs="+proj=longlat", lyrnms="", datatype, NAflag=NA, bandorder="BIL", byteorder="LSB",
    toptobottom=TRUE, offset=0, scale=1)
```

Arguments

filename	character. raster filename (without ".vrt" exension)
nrow	positive integer, the number of rows
ncol	positive integer, the number of columns
nlyr	positive integer, the number of layers
extent	SpatExtent or missing
xmin	numeric. minimum x coordinate (only used if extent is missing)
ymin	numeric. minimum y coordinate (only used if extent is missing)
xres	postive number. x resolution
yres	postive number. y resolution)
xycenter	logical. If TRUE, xmin and xmax represent the coordinates of the center of the ext reme cell, in stead of the coordinates of the outside corner. Only used of extent is missing
crs	character. Coordinate reference system description
lyrnms	character. Layer names
datatype	character. One of "INT2S", "INT4S", "INT1U", "INT2U", "INT4U", "FLT4S", "FLT8S". If missing, this is guessed from the file size (INT1U for 1 byte per value, INT2S for 2 bytes and FLT4S for 4 bytes per value). This may be wrong because, for example, 2 bytes per value may in fact be INT2U (with the U for unsigned) values

mask 133

NAflag numeric. The value used as the "NA flag"

bandorder character. One of "BIL", "BIP", or "BSQ". That is Band Interleaved by Line, or

by Pixel, or Band SeQuential

byteorder character. One of "LSB", "MSB". "MSB" is common for files generated on

Linux systems, whereas "LSB" is common for files generated on windows

toptobottom logical. If FALSE, the values are read bottom to top

offset numeric. offset to be applied scale numeric. scale to be applied

Value

```
character (.VRT filename)
```

See Also

vrt to create a vrt for a collection of raster tiles

mask

Mask values in a SpatRaster or SpatVector

Description

If x is a SpatRaster: Create a new SpatRaster that has the same values as SpatRaster x, except for the cells that are NA (or other maskvalue) in another SpatRaster (the 'mask'), or the cells that are not covered by a SpatVector. These cells become NA (or another updatevalue).

If x is a SpatVector: Select geometries of x that intersect, or not intersect, with the geometries of y.

134 match

Arguments

X	SpatRaster or SpatVector
mask	SpatRaster or SpatVector
inverse	logical. If TRUE, areas on mask that are _not_ the maskvalue are masked
maskvalues	numeric. The value(s) in mask that indicate which cells of x should be maked (change their value to updatevalue (default = NA))
updatevalue	numeric. The value that masked cells should become (if they are not NA)
touches	logical. If TRUE, all cells touched by lines or polygons will be masked, not just those on the line render path, or whose center point is within the polygon
filename	character. Output filename

additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

crop

Examples

```
r <- rast(ncols=10, nrows=10)
m <- rast(ncols=10, nrows=10)
values(r) <- 1:100
set.seed(1965)
x <- round(3 * runif(ncell(r)))
x[x==0] <- NA
values(m) <- x
mr <- mask(r, m)</pre>
```

match

Value matching for SpatRasters

Description

match returns a SpatRaster with the position of the matched values. The cell values are the index of the table argument.

%in% returns a 0/1 (FALSE/TRUE) SpatRaster indicating if the cells values were matched or not.

```
match(x, table, nomatch = NA_integer_, incomparables = NULL)
x %in% table
```

Math-methods 135

Arguments

table vector of the values to be matched against

nomatch the value to be returned in the case when no match is found. Note that it is

coerced to integer

incomparables a vector of values that cannot be matched. Any value in x matching a value

in this vector is assigned the nomatch value. For historical reasons, FALSE is

equivalent to NULL

Value

SpatRaster

See Also

```
app, match
```

Examples

```
r <- rast(nrows=10, ncols=10)
values(r) <- 1:100
m <- match(r, c(5:10, 50:55))
n <- r %in% c(5:10, 50:55)</pre>
```

Math-methods

General mathematical methods

Description

Standard mathematical methods for computations with SpatRaster objects. Computations are local (applied on a cell by cell basis). If multiple SpatRaster objects are used, these must have the same extent and resolution. These have been implemented:

```
abs, sign, sqrt, ceiling, floor, trunc, cummax, cummin, cumprod, cumsum, log, log10, log2, log1p, acos, acosh, asin, asinh, atan, atanh, exp, expm1, cos, cosh, sin, sinh, tan, tanh, round, signif
```

Instead of directly calling these methods, you can also provide their name to the math method. This is useful if you want to provide an output filename.

The following methods have been implemented for SpatExtent: round, floor, ceiling round has also been implemented for SpatVector, to round the coordinates of the geometries.

Math-methods

Usage

```
## S4 method for signature 'SpatRaster'
sqrt(x)

## S4 method for signature 'SpatRaster'
log(x, base=exp(1))

## S4 method for signature 'SpatRaster'
round(x, digits=0)

## S4 method for signature 'SpatRaster'
math(x, fun, digits=0, filename="", overwrite=FALSE, ...)

## S4 method for signature 'SpatVector'
round(x, digits=4)
```

Arguments

X	SpatRaster
base	a positive or complex number: the base with respect to which logarithms are computed
digits	Number of digits for rounding
fun	character. Math function name
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

Value

SpatRaster or SpatExtent

See Also

See app to use mathematical functions not implemented by the package, and Arith-methods for arithmetical operations

```
r1 <- rast(ncols=10, nrows=10)
v <- runif(ncell(r1))
v[10:20] <- NA
values(r1) <- v
r2 <- rast(r1)
values(r2) <- 1:ncell(r2) / ncell(r2)
r <- c(r1, r2)
s <- sqrt(r)
# same as</pre>
```

mem 137

```
math(r, "sqrt")
round(s, 1)
```

mem

Memory available and needed

Description

mem_info prints the amount of RAM that is required and available to process a SpatRaster. free_RAM returns the amount of RAM that is available

Usage

```
mem_info(x, n=1)
free_RAM()
```

Arguments

x SpatRastaer

n positive integer. The number of copies of x that are needed

Value

free_RAM returns the amount of available RAM in kilobytes

Examples

```
mem_info(rast())
free_RAM()
```

merge

Merge multiple SpatRaster objects or SpatExtent objects, or merge a SpatVector with a data.frame

Description

Merge multiple SpatRasters to create a new SpatRaster object with a larger spatial extent. The SpatRasters must have the same origin and spatial resolution. In areas where the SpatRasters overlap, the values of the SpatRaster that is first in the sequence of arguments (or in the SpatRasterCollection) will be retained. See classify to merge a SpatRaster and a data.frame. You can also merge SpatExtent objects.

There is a also a method for merging SpatVector with a data.frame; that is, to join the data.frame to the attribute table of the SpatVector.

138 merge

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
merge(x, y, ..., filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterCollection, missing'
merge(x, filename="", ...)
## S4 method for signature 'SpatExtent, SpatExtent'
merge(x, y, ...)
## S4 method for signature 'SpatVector, data.frame'
merge(x, y, ...)
```

Arguments

X	SpatRaster or SpatExtent
у	object of same class as x
	if x is a SpatRaster: additional objects of the same class as x. If x is a SpatRaster-Collection: options for writing files as in writeRaster. If x is a SpatVector, the same arguments as in merge
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster or SpatExtent

Note

You can use merge with do.call to merge a list of SpatRasters (see example). But note that if the list is named, these names are used by merge. So if all elements are named, there should be one element with a SpatRaster called x and another one called y. For example with names(x)[1:2] <- ("x"m"y"). You can also removed the names of the first two elements (assuming these are SpatRasters) with names(x)[1:2] <- "".

See Also

Combining tiles with vrt may be more efficient. See mosaic for averaging overlapping regions.

```
x \leftarrow rast(xmin=-110, xmax=-80, ymin=40, ymax=70, ncols=30, nrows=30) y \leftarrow rast(xmin=-85, xmax=-55, ymax=60, ymin=30, ncols=30, nrows=30) z \leftarrow rast(xmin=-60, xmax=-30, ymax=50, ymin=20, ncols=30, nrows=30) values(x) \leftarrow 1:ncell(x) values(y) \leftarrow 1:ncell(y) values(z) \leftarrow 1:ncell(z)
```

mergeTime 139

```
m1 <- merge(x, y, z)
m2 <- merge(z, y, x)
m3 <- merge(y, x, z)

# if you have many SpatRasters make a SpatRasterCollection from a list
rlist <- list(x, y, z)
rsrc <- sprc(rlist)

m <- merge(rsrc)

## SpatVector with data.frame
f <- system.file("ex/lux.shp", package="terra")
p <- vect(f)
dfr <- data.frame(District=p$NAME_1, Canton=p$NAME_2, Value=round(runif(length(p), 100, 1000)))
dfr <- dfr[1:5, ]
pm <- merge(p, dfr, all.x=TRUE, by.x=c('NAME_1', 'NAME_2'), by.y=c('District', 'Canton'))
pm
values(pm)</pre>
```

mergeTime

merge SpatRasters by timelines to create a single timeseries

Description

Combine SpatRasters with partly overlapping time-stamps to create a single time series. If there is no overlap between the SpatRasters there is no point in using this function (use c instead).

Also note that time gaps are not filled. You can use fillTime to do that.

Usage

```
## S4 method for signature 'SpatRasterDataset'
mergeTime(x, fun=mean, filename="", ...)
```

Arguments

X	SpatRasterDataset
fun	A function that reduces a vector to a single number, such as mean or min
filename	character. Output filename
	list with named options for writing files as in writeRaster

Value

SpatRaster

140 modal

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s1 <- c(r, r)
time(s1) <- as.Date("2001-01-01") + 0:5
s1 <- s1/10
time(s1) <- as.Date("2001-01-07") + 0:5
s2 <- s1*10
time(s2) <- as.Date("2001-01-05") + 0:5
x <- sds(s1, s1, s2)
m <- mergeTime(x, mean)</pre>
```

modal

modal value

Description

Compute the mode for each cell across the layers of a SpatRaster. The mode, or modal value, is the most frequent value in a set of values.

Usage

```
## S4 method for signature 'SpatRaster'
modal(x, ..., ties="first", na.rm=FALSE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

X	SpatRaster
	additional argument of the same type as x or numeric
ties	character. Indicates how to treat ties. Either "random", "lowest", "highest", "first", or "NA"
na.rm	logical. If TRUE, NA values are ignored. If FALSE, NA is returned if \boldsymbol{x} has any NA values
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

```
r <- rast(system.file("ex/logo.tif", package="terra"))
r <- c(r/2, r, r*2)
m <- modal(r)</pre>
```

mosaic 141

mosaic

mosaic SpatRasters

Description

Combine adjacent and (partly) overlapping SpatRasters to form a single new SpatRaster. Values in overlapping cells are averaged (by default) or can be computed with another function.

The SpatRasters must have the same origin and spatial resolution.

This method is similar to the simpler, but faster merge method.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
mosaic(x, y, ..., fun="mean", filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterCollection, missing'
mosaic(x, fun="mean", filename="", ...)
```

Arguments

x	SpatRaster
у	object of same class as x
	additional SpatRasters
fun	character. One of "sum", "mean", "median", "min", "max"
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
wopt	list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

merge

```
x <- rast(xmin=-110, xmax=-80, ymin=40, ymax=70, ncols=30, nrows=30)
y <- rast(xmin=-85, xmax=-55, ymax=60, ymin=30, ncols=30, nrows=30)
z <- rast(xmin=-60, xmax=-30, ymax=50, ymin=20, ncols=30, nrows=30)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)
values(z) <- 1:ncell(z)</pre>
m1 <- mosaic(x, y, z)
```

na.omit

```
m2 <- mosaic(z, y, x)
# if you have many SpatRasters make a SpatRasterCollection from a list
rlist <- list(x, y, z)
rsrc <- sprc(rlist)
m <- mosaic(rsrc)</pre>
```

na.omit

na.omit for SpatVector

Description

Remove empty geometries and/or records that are NA from a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
na.omit(object, field=NA, geom=FALSE)
```

Arguments

object	SpatVector
field	character or NA. If NA, missing values in the attributes are ignored. Other values are either one or more field (variable) names, or "" to consider all fields
geom	logical. If TRUE empty geometries are removed

Value

SpatVector

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$test <- c(1,2,NA)
nrow(v)
x <- na.omit(v, "test")
nrow(x)</pre>
```

NAflag 143

NAflag

Set the NA flag

Description

The main purpose of this method is to allow correct reading of a SpatRaster that is based on a file that has an incorrect NA flag. The file is not changed, but flagged value is set to NA when values are read from the file ("lazy evaluation"). In contrast, if the values are in memory the change is made immediately.

To change values, it is generally better to use classify

Usage

```
## S4 method for signature 'SpatRaster'
NAflag(x)
## S4 replacement method for signature 'SpatRaster'
NAflag(x)<-value</pre>
```

Arguments

x SpatRaster

value

numeric. The value to be interpreted as NA; set this before reading the values from the file. This can be a single value, or multiple values, one for each data

source (file / subdataset)

Value

none or numeric

See Also

```
classify
```

```
s <- rast(system.file("ex/logo.tif", package="terra"))[[1]]
NAflag(s) <- 255
plot(s)
NAflag(s)</pre>
```

144 names

names

Names of Spat* objects

Description

Get or set the names of the layers of a SpatRaster or the attributes of a SpatVector. With longnames you can get or set the "long names" of a SpatRaster or SpatRasterDataset.

For a SpatRaster, you can also get/set a variable name or long name (one per data source).

See set.names for in-place setting of names.

```
## S4 method for signature 'SpatRaster'
names(x)
## S4 replacement method for signature 'SpatRaster'
names(x) < -value
## S4 method for signature 'SpatRaster'
varnames(x)
## S4 replacement method for signature 'SpatRaster'
varnames(x)<-value</pre>
## S4 method for signature 'SpatRaster'
longnames(x)
## S4 replacement method for signature 'SpatRaster'
longnames(x) < -value
## S4 method for signature 'SpatRasterDataset'
names(x)
## S4 replacement method for signature 'SpatRasterDataset'
names(x) < -value
## S4 method for signature 'SpatRasterDataset'
varnames(x)
## S4 replacement method for signature 'SpatRasterDataset'
varnames(x)<-value</pre>
## S4 method for signature 'SpatRasterDataset'
longnames(x)
```

names 145

```
## S4 replacement method for signature 'SpatRasterDataset'
longnames(x)<-value

## S4 method for signature 'SpatVector'
names(x)

## S4 replacement method for signature 'SpatVector'
names(x)<-value</pre>
```

Arguments

```
x SpatRaster, SpatRasterDataset, or SpatVector
value character (vector)
```

Value

character

Note

terra enforces neither unique nor valid names. See make.unique to create unique names and {make.names} to make syntactically valid names.

```
s <- rast(ncols=5, nrows=5, nlyrs=3)</pre>
nlyr(s)
names(s)
names(s) <- c("a", "b", "c")
names(s)
# space is not valid
names(s)[2] \leftarrow "hello world"
names(s)
# two invalid names
names(s) <- c("a", " a ", "3")
names(s)
# SpatVector names
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
names(v)
names(v) \leftarrow paste0(substr(names(v), 1, 2), "_", 1:ncol(v))
names(v)
```

146 nearest

nearest nearby geometries

Description

Identify geometries that are near to each other. Either get the index of all geometries within a certain distance, or the k nearest neighbors, or (with nearest) get the nearest points between two geometries.

Usage

```
## S4 method for signature 'SpatVector'
nearby(x, y=NULL, distance=0, k=1, centroids=TRUE, symmetrical=TRUE)
## S4 method for signature 'SpatVector'
nearest(x, y, pairs=FALSE, centroids=TRUE, lines=FALSE)
```

Arguments

Х	SpatVector
у	SpatVector or NULL
distance	numeric. maximum distance
k	positive integer. number of neighbors. Ignored if distance > 0
centroids	logical. Should the centroids of polygons be used?
symmetrical	logical. If TRUE, a near pair is only included once. That is, if geometry 1 is near to geometry 3, the implied nearness between 3 and 1 is not reported. Ignored if k neighbors are returned
pairs	logical. If TRUE pairwise nearest points are returned (only relevant when using at least one SpatVector of lines or polygons

logical. If TRUE lines between the nearest points instead of (the nearest) points

Value

matrix

lines

See Also

```
relate, adjacent
```

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
nearby(v, distance=12000)</pre>
```

normalize.longitude 147

normalize.longitude

normalize vector data that crosses the dateline

Description

Normalize the longitude of geometries, that is move geometries to a bounding box of -180 to 180 degrees

Usage

```
## S4 method for signature 'SpatVector'
normalize.longitude(x)
```

Arguments

Х

SpatVector

Value

SpatVector

See Also

rotate for SpatRaster

Examples

```
p <- vect("POLYGON ((120 10, 230 75, 230 -75, 120 10))")
normalize.longitude(p)</pre>
```

north

North arrow

Description

```
Add a (North) arrow to a map
```

```
north(xy=NULL, type=1, label="N", angle=0, d, head=0.1, xpd=TRUE, ...)
```

148 north

Arguments

ху	numeric. x and y coordinate to place the arrow. It can also be one of following character values: "bottomleft", "bottom", "bottomright", topleft", "top", "topright", "left", "right", or NULL
type	integer between 1 and 12, or a character (unicode) representation of a right pointing arrow such as "\u27A9"
label	character, to be printed near the arrow
angle	numeric. The angle of the arrow in degrees
d	numeric. Distance covered by the arrow in plot coordinates. Only applies to type=1
head	numeric. The size of the arrow "head", for type=1
xpd	logical. If TRUE, the scale bar or arrow can be outside the plot area
	graphical arguments to be passed to other methods

Value

none

See Also

```
sbar, plot, inset
```

```
f <- system.file("ex/meuse.tif", package="terra")</pre>
r <- rast(f)
plot(r)
north()
north(c(178550, 332500), d=250)
f <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(f)
plot(r, type="interval")
sbar(15, c(6.3, 50), type="bar", below="km", label=c(0,7.5,15), cex=.8)
north(type=3, cex=.8)
north(xy=c(6.7, 49.9), type=2, angle=45, label="NE")
north(xy=c(6.6, 49.7), type=5, cex=1.25)
north(xy=c(5.5, 49.6), type=9)
north(d=.05, xy=c(5.5, 50), angle=180, label="S", lwd=2, col="blue")
## all arrows
r <- rast(res=10)
values(r) <- 1
plot(r, col="white", axes=FALSE, legend=FALSE, mar=c(0,0,0,0), reset=TRUE)
for (i in 1:12) {
x = -200+i*30
north(xy=cbind(x,30), type=i)
```

not.na 149

```
text(x, -20, i, xpd=TRUE)
}
## End(Not run)
```

not.na

is not NA

Description

Shortcut method to avoid the two-step !is.na(x)

Usage

```
## S4 method for signature 'SpatRaster'
not.na(x, filename="", ...)
```

Arguments

```
x SpatRasterfilename character. Output filename... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

seealso

Compare-methods

```
r <- rast(ncols=10, nrows=10, vals=1)
r[10:20] <- NA
x <- not.na(r)</pre>
```

150 options

options

Options

Description

Class and methods for showing and setting general options for terra.

Usage

```
terraOptions(...)
```

Arguments

... option names and values (see Details). Or missing, to show the current options

Details

The following options are available.

memfrac - value between 0 and 0.9 (larger values give a warning). The fraction of RAM that may be used by the program.

memmin - if memory required is below this threshold (in GB), the memory is assumed to be available. Otherwise, terra checks if it is available.

memmax - the maximum amount of RAM (in GB) that terra is allowed to use when processing a raster dataset. Should be less than what is detected (see mem_info), and higher values are ignored. Set it to a negative number or NA to not set this option. terraOptions only shows the value of memmax if it is set.

tempdir - directory where temporary files are written. The default what is returned by tempdir().

datatype - default data type. See writeRaster

todisk - logical. If TRUE write all raster data to disk (temp file if no file name is specified). For debugging.

progress - non-negative integer. A progress bar is shown if the number of chunks in which the data is processed is larger than this number. No progress bar is shown if the value is zero

verbose - logical. If TRUE debugging info is printed for some functions

```
terraOptions()
terraOptions(memfrac=0.5, tempdir = "c:/temp")
terraOptions(progress=10)
terraOptions()
```

origin 151

origin

Description

Get or set the coordinates of the point of origin of a SpatRaster. This is the point closest to (0, 0) that you could get if you moved towards that point in steps of the x and y resolution.

Usage

```
## S4 method for signature 'SpatRaster'
origin(x)
## S4 replacement method for signature 'SpatRaster'
origin(x)<-value</pre>
```

Origin

Arguments

x SpatRaster
value numeric vector of length 1 or 2

Value

A vector of two numbers (x and y coordinates)

Examples

```
r <- rast(xmin=-0.5, xmax = 9.5, ncols=10)
origin(r)
origin(r) <- c(0,0)</pre>
```

pairs

Pairs plot (matrix of scatterplots)

Description

Pair plots of layers in a SpatRaster. This is a wrapper around graphics function pairs.

```
## S4 method for signature 'SpatRaster'
pairs(x, hist=TRUE, cor=TRUE, use="pairwise.complete.obs", maxcells=100000, ...)
```

patches patches

Arguments

X	SpatRaster
hist	logical. If TRUE a histogram of the values is shown on the diagonal
cor	logical. If TRUE the correlation coefficient is shown in the upper panels
use	argument passed to the cor function
maxcells	integer. Number of pixels to sample from each layer of a large SpatRaster
	additional arguments (graphical parameters)

See Also

```
boxplot, hist
```

Examples

```
r <-rast(system.file("ex/elev.tif", package="terra"))
s <- c(r, 1/r, sqrt(r))
names(s) <- c("elevation", "inverse", "sqrt")
pairs(s)

# to make indvidual histograms:
hist(r)
# or scatter plots:
plot(s[[1]], s[[2]])</pre>
```

patches

Detect patches (clumps) of cells

Description

Detect patches (clumps). Patches are groups of cells that are surrounded by cells that are NA. Set zeroAsNA to TRUE to also identify patches separated by cells with values of zero.

Usage

```
## S4 method for signature 'SpatRaster'
patches(x, directions=4, zeroAsNA=FALSE, allowGaps=TRUE, filename="", ...)
```

Arguments

X	SpatRaster
directions	integer indicating which cells are considered adjacent. Should be 8 (Queen's case) or 4 (Rook's case)
zeroAsNA	logical. If TRUE treat cells that are zero as if they were NA
allowGaps	logical. If TRUE there may be gaps in the patch IDs (e.g. you may have patch IDs 1, 2, 3 and 5, but not 4). If it is FALSE, these numbers will be recoded from 1 to the number of patches (4 in this example)
filename	character. Output filename
	options for writing files as in writeRaster

patches 153

Value

SpatRaster. Cell values are patch numbers

See Also

```
focal, boundaries
```

```
r <- rast(nrows=18, ncols=36, xmin=0)
r[1:2, 5:8] <- 1
r[5:8, 2:6] <- 1
r[7:12, 22:36] <- 1
r[15:16, 18:29] <- 1
p <- patches(r)</pre>
# zero as background instead of NA
r <- rast(nrows=10, ncols=10, xmin=0, vals=0)</pre>
r[3, 3] <- 10
r[4, 4] \leftarrow 10
r[5, 5:8] < -12
r[6, 6:9] < -12
# treat zeros as NA
p4 <- patches(r, zeroAsNA=TRUE)</pre>
p8 <- patches(r, 8, zeroAsNA=TRUE)
### patches for different values
# remove zeros manually
rr <- classify(r, cbind(0, NA))</pre>
# make layers for each value
s <- segregate(rr, keep=TRUE, other=NA)
p <- patches(s)</pre>
### patch ID values are not guaranteed to be consecutive
r <- rast(nrows=5, ncols=10, xmin=0)</pre>
set.seed(0)
values(r)<- round(runif(ncell(r))*0.7)</pre>
rp <- patches(r, directions=8, zeroAsNA=TRUE)</pre>
plot(rp, type="classes"); text(rp)
## unless you set allowGaps=FALSE
rp <- patches(r, directions=8, zeroAsNA=TRUE, allowGaps=FALSE)</pre>
plot(rp, type="classes"); text(rp)
### use zonal to remove small patches
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
x <- classify(r, cbind(-Inf, 400, NA))
```

persp

```
y <- patches(x)
# remove patches smaller than 100 ha
rz <- zonal(cellSize(y, unit="ha"), y, sum, as.raster=TRUE)
s <- ifel(rz < 100, NA, y)</pre>
```

perim

Perimeter or length

Description

This method returns the length of lines or the perimeter of polygons.

When the crs is not longitude/latitude, you may get more accurate results by first un-projecting the SpatVector (you can use project to transform the crs to longitude/latitude)

Usage

```
## S4 method for signature 'SpatVector'
perim(x)
```

Arguments

Χ

SpatVector

Value

```
numeric (m)
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
perim(v)</pre>
```

persp

Perspective plot

Description

Perspective plot of a SpatRaster. This is an implementation of a generic function in the graphics package.

```
## S4 method for signature 'SpatRaster'
persp(x, maxcells=100000, ...)
```

plet 155

Arguments

See Also

```
persp, contour, plot
```

Examples

```
r <- rast(system.file("ex/elev.tif", package="terra"))
persp(r)</pre>
```

plet

Plot with leaflet

Description

Plot the values of a SpatRaster or SpatVector to make an interactive leaflet map that is displayed in a browser.

These methods require that packageVersion("leaflet") > "2.1.1" or the development version of leaflet that you can install with remotes::install_github("rstudio/leaflet").

```
## S4 method for signature 'SpatRaster'
plet(x, y=1, col, alpha=0.8, main=names(x), tiles=NULL,
    wrap=TRUE, maxcell=500000, legend="bottomright",
    shared=FALSE, panel=FALSE, collapse=TRUE, map=NULL)

## S4 method for signature 'SpatVector'
plet(x, y="", col, alpha=1, fill=0, main=y, cex=1, lwd=2, popup=TRUE,
    label=FALSE, split=FALSE, tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"),
    wrap=TRUE, legend="bottomright", collapse=FALSE, map=NULL)

## S4 method for signature 'SpatVectorCollection'
plet(x, col, alpha=1, fill=0, cex=1, lwd=2, popup=TRUE,
    label=FALSE, tiles=c("Streets", "Esri.WorldImagery", "OpenTopoMap"), wrap=TRUE,
    legend="bottomright", collapse=FALSE, map=NULL)

## S4 method for signature 'leaflet'
```

plet plet

```
lines(x, y, col, lwd=2, alpha=1)
## S4 method for signature 'leaflet'
points(x, y, col, cex=1, alpha=1, popup=FALSE)
```

Arguments

X	SpatRaster, SpatVector, or leaflet object
У	missing, or positive integer, or character (variable or layer name) indicating the layer(s) to be plotted. If x is a SpatRater, you can select multiple layers
col	character. Vector of colors or color generating function
alpha	Number between 0 and 1 to set the transparency for lines (0 is transparent, 1 is opaque)
fill	Number between 0 and 1 to set the transparency for polygon areas (0 is transparent, 1 is opaque)
tiles	character or NULL. Names of background tile providers
wrap	logical. if TRUE, tiles wrap around
maxcell	positive integer. Maximum number of cells to use for the plot
legend	character to indicate the legend position ("bottomleft", "bottomright", "topleft" or "topright") or NULL to suppress the legend
main	character. Title for the legend. The length should be 1 if x is a SpatVector and length $nlyr(x)$ if x is a SpatVector
shared	logical. Should the legend be the same for all rasters (if multiple layers of SpatRaster x are mapped)
map	leaflet object
collapse	logical. Should the layers "control" panel be collapsed?
split	logical. IF TRUE a check-box is created to toggle each value in codey (If \boldsymbol{x} is a SpatVector)
cex	numeric. point size magnifier. See par
lwd	numeric, line-width. See par
popup	logical. Should pop-ups be created?
label	logical. Should mouse-over labels be added?
panel	logical. Should SpatRaster layers be shown as a panel"

See Also

plot

```
## Not run:
if (require(leaflet)) {
if (packageVersion("leaflet") > "2.1.1") {
```

```
v <- vect(system.file("ex/lux.shp", package="terra"))</pre>
p <- spatSample(as.polygons(v, ext=T), 10)</pre>
values(p) = data.frame(id=11:20, name=letters[1:10])
m <- plet(v, "NAME_1", alpha=.5, tiles="")</pre>
m <- points(m, p, col="gray", cex=2, popup=T)</pre>
lines(m, v)
plet(v, "NAME_1", split=TRUE, alpha=.2) |>
  points(p, col="gray", cex=2, popup=T) |> lines(v)
s \leftarrow svc(v, p)
names(s) <- c("the polys", "set of points")</pre>
plet(s, col=c("red", "blue"), lwd=1)
r <- rast(system.file("ex/elev.tif", package="terra"))</pre>
plet(r, main="Hi\nthere") |> lines(v, lwd=1)
plet(r, tiles="Streets") |> lines(v, lwd=2, col="blue")
x \leftarrow c(r, 50*classify(r, 5))
names(x) \leftarrow c("first", "second")
# each their own legend
plet(x, 1:2, tiles="Streets", collapse=FALSE) |> lines(v, lwd=2, col="blue")
# shared legend
plet(x, 1:2, tiles="Streets", shared=TRUE, collapse=FALSE) |> lines(v, lwd=2, col="blue")
## End(Not run)
```

plot

Make a map

Description

Plot the values of a SpatRaster or SpatVector to make a map. See lines to add a SpatVector to an existing map.

```
## S4 method for signature 'SpatRaster,numeric'
plot(x, y=1, col, type, mar=NULL, legend=TRUE, axes=TRUE, plg=list(), pax=list(),
    maxcell=500000, smooth=FALSE, range=NULL, levels=NULL, all_levels=FALSE,
breaks=NULL, breakby="eqint", fun=NULL, colNA=NULL, alpha=NULL, sort=FALSE,
decreasing=FALSE, grid=FALSE, ext=NULL, reset=FALSE, ...)
```

Arguments

levels

x	SpatRaster or SpatVector
У	missing or positive integer or name indicating the layer(s) to be plotted
col	character. Colors. The default is rev(grDevices::terrain.colors(50)). If x is a SpatRaster, it can also be a data.frame with two columns (value, color) to get a "classes" type legend or with three columns (from, to, color) to get an "interval" type legend
type	character. Type of map/legend. One of "continuous", "classes", or "interval". If not specified, the type is chosen based on the data
mar	numeric vector of length 4 to set the margins of the plot (to make space for the legend). The default is (3.1, 3.1, 2.1, 7.1) for a single plot with a legend and (3.1, 3.1, 2.1, 2.1) otherwise. Use mar=NA to not set the margins
legend	logical or character. If not FALSE a legend is drawn. The character value can be used to indicate where the legend is to be draw. For example "topright" or "bottomleft". Use plg for more refined placement (SpatVector data only)
axes	logical. Draw axes?
buffer	logical. If TRUE the plotting area is slightly larger than the extent of x
background	background color. Default is no color (white)
plg	list with parameters for drawing the legend. See the arguments for legend
pax	list with parameters for drawing axes. See the arguments for axis
maxcell	positive integer. Maximum number of cells to use for the plot
smooth	logical. If TRUE the cell values are smoothed (for continuous legend)
range	numeric. minimum and maximum values to be used for the continuous legend

character. labels for the legend when type="classes"

all_levels logical. If TRUE, the legend shows all levels of a categorical raster, even if they are not present in the data breaks numeric. Either a single number to indicate the number of breaks desired, or the actual breaks. When providing this argument, the default legend becomes "interval" breakby character or function. Either "eqint" for equal interval breaks, "cases" for equal quantile breaks. If a function is supplied it should take a single argument (a vector of values) and create groups fun function to be called after plotting each SpatRaster layer to add something to each map (such as text, legend, lines). For example, with SpatVector v, you could do fun=function() lines(v). The function may have one argument, representing the the layer that is plotted (1 to the number of layers) colNA character. color for the NA values Either a single numeric between 0 and 1 to set the transparency for all colors (0 alpha is transparent, 1 is opaque) or a SpatRaster with values between 0 and 1 to set the transparency by cell. To set the transparency for a given color, set it to the colors directly sort logical. If TRUE legends with categorical values are sorted. If x is a SpatVector you can also supply a vector of the unique values, in the order in which you want them to appear in the legend decreasing logical. If TRUE, legends are sorted in decreasing order logical. If TRUE grid lines are drawn. Their properties such as type and color can grid be set with the pax argument positive integer. Optional. The number of columns to divide the plotting device nc in (when plotting multiple layers) positive integer. Optional. The number of rows to divide the plotting device in nr (when plotting multiple layers) character. Main plot titles (one for each layer to be plotted) main maxnl positive integer. Maximum number of layers to plot (for a multi-layer object) add logical. If TRUE add the object to the current plot SpatExtent. Can be use instead of xlim and ylim to set the extent of the plot ext reset logical. If TRUE add the margins (see argument mar) are reset to what they were before calling plot; doing so may affect the display of additional objects that are added to the map (e.g. with lines values Either a vector with values to be used for plotting or a two-column data.frame, where the first column matches a variable in x and the second column has the values to be plotted arguments passed to plot("SpatRaster", "numeric") and additional graphical arguments

See Also

```
## raster
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
plot(r)
plot(r, type="interval")
e \leftarrow c(6.3, 6.35, 49.9, 50.1)
plot(r, plg=list(ext=e, title="Title\n", title.cex=1.25), pax=list(sides=1:2))
d <- classify(r, c(100,200,300,400,500,600))</pre>
plot(d, type="classes")
plot(d, type="interval", breaks=1:5)
plot(d, type="interval", breaks=c(1,4,5), plg=list(legend=c("1-4", "4-5")))
plot(d, type="classes", plg=list(legend=c("Mr", "Xx", "As", "Zx", "Bb"), x="bottomright"))
x \leftarrow trunc(r/200)
levels(x) <- data.frame(id=0:2, element=c("earth", "wind", "fire"))</pre>
plot(x, plg=list(x="topright"),mar=c(2,2,2,2))
# two plots with the same legend
dev.new(width=6, height=4, noRStudioGD = TRUE)
par(mfrow=c(1,2))
plot(r, range=c(50,600))
plot(r/2, range=c(50,600))
# as you only need one legend:
par(mfrow=c(1,2))
plot(r, range=c(50,600), mar=c(4, 3, 4, 3), plg=list(shrink=0.9, cex=.8),
pax=list(sides=1:2, cex.axis=.6))
#text(182500, 335000, "Two maps, one plot", xpd=NA)
plot(r/2, range=c(50,600), mar=c(4, 2, 4, 4), legend=FALSE,
pax=list(sides=c(1,4), cex.axis=.6))
# multi-layer with RGB
s <- rast(system.file("ex/logo.tif", package="terra"))</pre>
plot(s)
# remove RGB
plot(s*1)
# or use layers
plot(s, 1)
plot(s, 1:3)
# fix legend by linking values and colors
x = rast(nrows = 2, ncols = 2, vals=1)
y = rast(nrows = 2, ncols = 2, vals=c(1,2,2,1))
```

plotRGB 161

```
cols = data.frame(id=1:2, col=c("red", "blue"))
plot(c(x,y), col=cols)
r = rast(nrows=10, ncols=10, vals=1:100)
dr = data.frame(from=c(5,33,66,150), to=c(33,66,95,200), col=rainbow(4))
plot(r, col=dr)
### SpatVector
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)
plot(v)
plot(v, 2, pax=list(sides=1:2), plg=list(x=6.2, y=50.2, cex=1.2))
plot(v, 4, pax=list(sides=1:2), plg=list(x=6.2, y=50.2, ncol=2), main="")
plot(v, 1, plg=list(x=5.9, y=49.37, horiz=TRUE, cex=1.1), main="", mar=c(5,2,0.5,0.5))
plot(v, density=1:12, angle=seq(18, 360, 20), col=rainbow(12))
plot(v, "NAME_2", col=rainbow(12), border=c("gray", "blue"), lwd=3, type="classes")
plot(v, "AREA", type="interval", breaks=3, mar=c(3.1, 3.1, 2.1, 3.1),
 plg=list(x="topright"), main="")
plot(v, "AREA", type="interval", breaks=c(0,200,250,350), mar=c(2,2,2,2),
 plg=list(legend=c("<200", "200-250", ">250"), cex=1,\\
 bty="o", x=6.4, y=50.125, box.lwd=2, bg="light yellow", title="My Legend"))
```

plotRGB

Red-Green-Blue plot of a multi-layered SpatRaster

Description

Make a Red-Green-Blue plot based on three layers in a SpatRaster. The layers (sometimes referred to as "bands" because they may represent different bandwidths in the electromagnetic spectrum) are combined such that they represent the red, green and blue channel. This function can be used to make "true" (or "false") color images from Landsat and other multi-spectral satellite images.

Note that the margins of the plot are set to zero (no axes or titles are visible) but can be set with the mar argument.

An alternative way to plot RGB images is to first use colorize to create a single layer SpatRaster with a color-table and then use plot.

```
## S4 method for signature 'SpatRaster'
plotRGB(x, r=1, g=2, b=3, a=NULL, scale, maxcell=500000, mar=0,
```

162 plotRGB

```
stretch=NULL, ext=NULL, smooth=FALSE, colNA="white", alpha, bgalpha,
addfun=NULL, zlim=NULL, zlimcol=NULL, axes=FALSE, xlab="", ylab="",
asp=NULL, add=FALSE, xlim, ylim,...)
```

Arguments

X	SpatRaster
r	integer. Index of the Red channel, between 1 and nlyr(x)
g	integer. Index of the Green channel, between 1 and nlyr(x)
b	integer. Index of the Blue channel, between 1 and nlyr(x)
a	integer. Index of the alpha (transparancy) channel, between 1 and $nlyr(x)$. If not NULL, argument alpha is ignored
scale	integer. Maximum (possible) value in the three channels. Defaults to 255 or to the maximum value of x if that is known and larger than 255
maxcell	integer > 0. Maximum number of pixels to use
mar	numeric vector recycled to length 4 to set the margins of the plot. Use mar=NULL or mar=NA to not set the margins
stretch	character. Option to stretch the values to increase contrast: "lin" (linear) or "hist" (histogram)
ext	An SpatExtent object to zoom in to a region of interest (see draw)
smooth	logical. If TRUE, smooth the image when drawing to get the appearance of a higher spatial resolution
colNA	color for the background (NA values)
alpha	transparency. Integer between 0 (transparent) and 255 (opaque)
bgalpha	Background transparency. Integer between 0 (transparent) and 255 (opaque)
addfun	Function to add additional items such as points or polygons to the plot (map). See plot
zlim	numeric vector of length 2. Range of values to plot (optional)
zlimcol	If NULL the values outside the range of zlim get the color of the extremes of the range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA)
zlimcol	range. If zlimcol has any other value, the values outside the zlim range get the
	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be
axes	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be honored)
axes	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be honored) character. Label of x-axis
axes xlab ylab	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be honored) character. Label of x-axis character. Label of y-axis numeric. Aspect (ratio of x and y. If NULL, and appropriate value is computed to match data for the longitude/latitude coordinate reference system, and 1 for
axes xlab ylab asp	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be honored) character. Label of x-axis character. Label of y-axis numeric. Aspect (ratio of x and y. If NULL, and appropriate value is computed to match data for the longitude/latitude coordinate reference system, and 1 for planar coordinate reference systems
axes xlab ylab asp	range. If zlimcol has any other value, the values outside the zlim range get the color of NA values (see colNA) logical. If TRUE axes are drawn (and arguments such as main="title" will be honored) character. Label of x-axis character. Label of y-axis numeric. Aspect (ratio of x and y. If NULL, and appropriate value is computed to match data for the longitude/latitude coordinate reference system, and 1 for planar coordinate reference systems logical. If TRUE add values to current plot

predict 163

See Also

```
plot, colorize, RGB
```

Examples

```
b <- rast(system.file("ex/logo.tif", package="terra"))
plotRGB(b)
plotRGB(b, mar=c(2,2,2,2))
plotRGB(b, 3, 2, 1)
b[1000:2000] <- NA
plotRGB(b, 3, 2, 1, stretch='hist')</pre>
```

predict

Spatial model predictions

Description

Make a SpatRaster object with predictions from a fitted model object (for example, obtained with glm or randomForest). The first argument is a SpatRaster object with the predictor variables. The names in the Raster object should exactly match those expected by the model. Any regression like model for which a predict method has been implemented (or can be implemented) can be used.

The method should work if the model's predict function returns a vector, matrix or data.frame (or a list that can be coerced to a data.frame). In other cases it may be necessary to provide a custom "predict" function that wraps the model's predict function to return the values in the required form. See the examples.

This approach of using model predictions is commonly used in remote sensing (for the classification of satellite images) and in ecology, for species distribution modeling.

Usage

```
## S4 method for signature 'SpatRaster'
predict(object, model, fun=predict, ..., factors=NULL, const=NULL, na.rm=FALSE,
    index=NULL, cores=1, cpkgs=NULL, filename="", overwrite=FALSE, wopt=list())
```

Arguments

object	SpatRaster
model	fitted model of any class that has a "predict" method (or for which you can supply a similar method as fun argument. E.g. glm, gam, or randomForest
fun	function. The predict function that takes model as first argument. The default value is predict, but can be replaced with e.g. predict.se (depending on the type of model), or your own custom function
	additional arguments for fun
const	data.frame. Can be used to add a constant value as a predictor variable so that you do not need to make a SpatRaster layer for it

164 predict

list with levels for factor variables. The list elements should be named with names that correspond to names in object such that they can be matched. This argument may be omitted for standard models such as "glm" as the predict function will extract the levels from the model object, but it is necessary in some other cases (e.g. cforest models from the party package)

logical. If TRUE, cells with NA values in the predictors are removed from the computation. This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a model that returns predicted values even if some (or all!) variables are NA

index integer. To select subset of output variables

cores positive integer. If cores > 1, a 'parallel' package cluster with that many cores

is created and used

cpkgs character. The package(s) that need to be loaded on the nodes to be able to run

the model.predict function (see examples)

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

factors

na.rm

```
logo <- rast(system.file("ex/logo.tif", package="terra"))</pre>
names(logo) <- c("red", "green", "blue")</pre>
p <- matrix(c(48, 48, 48, 53, 50, 46, 54, 70, 84, 85, 74, 84, 95, 85,
   66, 42, 26, 4, 19, 17, 7, 14, 26, 29, 39, 45, 51, 56, 46, 38, 31,
   22, 34, 60, 70, 73, 63, 46, 43, 28), ncol=2)
a <- matrix(c(22, 33, 64, 85, 92, 94, 59, 27, 30, 64, 60, 33, 31, 9,
   99, 67, 15, 5, 4, 30, 8, 37, 42, 27, 19, 69, 60, 73, 3, 5, 21,
   37, 52, 70, 74, 9, 13, 4, 17, 47), ncol=2)
xy <- rbind(cbind(1, p), cbind(0, a))</pre>
# extract predictor values for points
e <- extract(logo, xy[,2:3])
# combine with response (excluding the ID column)
v <- data.frame(cbind(pa=xy[,1], e))</pre>
#build a model, here with glm
model <- glm(formula=pa~., data=v)</pre>
#predict to a raster
r1 <- predict(logo, model)</pre>
```

predict 165

```
plot(r1)
points(p, bg='blue', pch=21)
points(a, bg='red', pch=21)
# logistic regression
model <- glm(formula=pa~., data=v, family="binomial")</pre>
r1log <- predict(logo, model, type="response")</pre>
# to get the probability and standard error
r1se <- predict(logo, model, se.fit=TRUE)</pre>
# or provide a custom predict function
predfun <- function(model, data) {</pre>
  v <- predict(model, data, se.fit=TRUE)</pre>
  cbind(p=as.vector(v$fit), se=as.vector(v$se.fit))
r2 <- predict(logo, model, fun=predfun)</pre>
# principal components of a SpatRaster
# here using sampling to simulate an object too large
# to feed all its values to prcomp
sr <- values(spatSample(logo, 100, as.raster=TRUE))</pre>
pca <- prcomp(sr)</pre>
x <- predict(logo, pca)</pre>
plot(x)
## parallelization
## Not run:
## simple case with GLM
model <- glm(formula=pa~., data=v)</pre>
p <- predict(logo, model, cores=2)</pre>
## The above does not work with a model from a contributed
## package, as the package needs to be loaded in each core.
## Below are three approaches to deal with that
library(randomForest)
rfm <- randomForest(formula=pa~., data=v)</pre>
## approach 0 (not parallel)
rp0 <- predict(logo, rfm)</pre>
## approach 1, use the "cpkgs" argument
rp1 <- predict(logo, rfm, cores=2, cpkgs="randomForest")</pre>
## approach 2, write a custom predict function that loads the package
rfun <- function(mod, dat, ...) {</pre>
library(randomForest)
predict(mod, dat, ...)
```

166 project

```
rp2 <- predict(logo, rfm, fun=rfun, cores=2)</pre>
## approach 3, write a parallelized custom predict function
rfun <- function(mod, dat, ...) {</pre>
ncls <- length(cls)</pre>
nr <- nrow(dat)</pre>
s <- split(dat, rep(1:ncls, each=ceiling(nr/ncls), length.out=nr))</pre>
unlist( parallel::clusterApply(cls, s, function(x, ...) predict(mod, x, ...)) )
library(parallel)
cls <- parallel::makeCluster(2)</pre>
parallel::clusterExport(cls, c("rfm", "rfun", "randomForest"))
rp3 <- predict(logo, rfm, fun=rfun)</pre>
parallel::stopCluster(cls)
plot(c(rp0, rp1, rp2, rp3))
### with two output variables (probabilities for each class)
v$pa <- as.factor(v$pa)</pre>
rfm2 <- randomForest(formula=pa~., data=v)</pre>
rfp <- predict(logo, rfm2, cores=2, type="prob", cpkgs="randomForest")</pre>
## End(Not run)
```

project

Change the coordinate reference system

Description

Change the coordinate reference system ("project") of a SpatVector, SpatRaster or a matrix with coordinates.

```
## S4 method for signature 'SpatVector'
project(x, y)

## S4 method for signature 'SpatRaster'
project(x, y, method, mask=FALSE, align=FALSE,
gdal=TRUE, res=NULL, origin=NULL, threads=TRUE, filename="", ...)

## S4 method for signature 'matrix'
project(x, from, to)
```

167 project

Arguments

method

Χ	SpatRaster or SpatVector
у	if (x is a SpatRaster, the preferred approach is for y to be a SpatRaster as well,
	serving as a template for the geometry (extent and resolution) of the output Spa-

tRaster. Alternatively, you can provide a coordinate reference system (CRS)

description.

SpatRaster or SpatVector

You can use the following formats to define coordinate reference systems: WKT, PROJ.4 (e.g., +proj=longlat +datum=WGS84), or an EPSG code (e.g., "epsg: 4326"). But note that the PROJ.4 notation has been deprecated, and you can only use it with the WGS84/NAD83 and NAD27 datums. Other datums are silently ig-

nored.

If x is a SpatVector, you can provide a crs definition as discussed above, or any

other object from which such a crs can be extracted with crs

character. Method used for estimating the new cell values of a SpatRaster. One

of:

near: nearest neighbor. This method is fast, and it can be the preferred method if the cell values represent classes. It is not a good choice for continuous values.

This is used by default if the first layer of x is categorical.

bilinear: bilinear interpolation. This is the default if the first layer of x is

numeric (not categorical). cubic: cubic interpolation.

cubicspline: cubic spline interpolation.

logical. If TRUE, mask out areas outside the input extent (see example with mask

Robinson projection)

logical. If TRUE, and y is a SpatRaster, the template is used for the spatial resoalign

lution and origin, but the extent is set such that all of the extent of x is included

gdal logical. If TRUE the GDAL-warp algorithm is used. Otherwise a slower internal

> algorithm is used that may be more accurate if there is much variation in the cell sizes of the output raster. Only the near and bilinear algorithms are available

for the internal algorithm

numeric. Can be used to set the resolution of the output raster if y is a CRS res

numeric. Can be used to set the origon of the output raster if y is a CRS origin

threads logical. If TRUE multiple threads are used (faster for large files)

filename character. Output filename

additional arguments for writing files as in writeRaster . . .

character. Coordinate reference system for x from to

character. Output coordinate reference system

Value

SpatVector or SpatRaster

168 project

Note

The PROJ.4 notation of coordinate reference systems has been partly deprecated in the GDAL/PROJ library that is used by this function. You can still use this notation, but *only* with the WGS84 datum. Other datums are silently ignored.

Transforming (projecting) raster data is fundamentally different from transforming vector data. Vector data can be transformed and back-transformed without loss in precision and without changes in the values. This is not the case with raster data. In each transformation the values for the new cells are estimated in some fashion. Therefore, if you need to match raster and vector data for analysis, you should generally transform the vector data.

When using this method with a SpatRaster, the preferable approach is to provide a template SpatRaster as argument y. The template is then another raster dataset that you want your data to align with. If you do not have a template to begin with, you can do project(x, crs) and then manipulate the output to get the template you want. For example, where possible use whole numbers for the extent and resolution so that you do not have to worry about small differences in the future. You can use commands like $\dim(z) = c(180, 360)$ or res(z) < -100000.

The output resolution should generally be similar to the input resolution, but there is no "correct" resolution in raster transformation. It is not obvious what this resolution is if you are using lon/lat data that spans a large North-South extent.

See Also

```
crs, resample
```

quantile 169

quantile

Quantiles of spatial data

Description

Compute quantiles for each cell across the layers of a SpatRaster.

You can use use global(x, fun=quantile) to instead compute quantiles across cells for each layer.

You can also use this method to compute quantiles of the numeric variables of a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
quantile(x, probs=seq(0, 1, 0.25), na.rm=FALSE, filename="", ...)
## S4 method for signature 'SpatVector'
quantile(x, probs=seq(0, 1, 0.25), ...)
```

Arguments

Χ	SpatRaster or SpatVector
probs	numeric vector of probabilities with values in [0,1]
na.rm	logical. If TRUE, NA's are removed from x before the quantiles are computed
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster with layers representing quantiles

See Also

app

```
r <- rast(system.file("ex/logo.tif", package="terra"))
rr <- c(r/2, r, r*2)
qr <- quantile(rr)
qr

## Not run:
# same but slower
qa <- app(rr, quantile)
## End(Not run)</pre>
```

query query

```
#quantile by layer instead of by cell
qg <- global(r, quantile)</pre>
```

query

Query a SpatVectorProxy object

Description

Query a SpatVectorProxy to extract a subset

Usage

Arguments

X	SpatVectorProxy
start	positive integer. The record to start reading at
n	positive integer. The number of records requested
vars	character. Variable names. Must be a subset of names(x)
where	character. expression like "NAME_1='California' AND ID > 3 ", to subset records. Note that start and n are applied after executing the where statement
extent	Spat* object. The extent of the object is used as a spatial filter to select the geometries to read. Ignored if filter is not NULL
filter	SpatVector. Used as a spatial filter to select geometries to read (the convex hull is used for lines or points)

Value

SpatVector

See Also

vect

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f, proxy=TRUE)
v

x <- query(v, vars=c("ID_2", "NAME_2"), start=5, n=2)
x

query(v, vars=c("ID_2", "NAME_1", "NAME_2"), where="NAME_1='Grevenmacher' AND ID_2 > 6")
```

rapp 171

```
## with an extent
e <- ext(5.9, 6.3, 49.9, 50)
x <- query(v, extent=e)

## with polygons
p <- as.polygons(e)
x <- query(v, filter=p)
x</pre>
```

rapp

Range-Apply

Description

Apply a function to a range of the layers of a SpatRaster that varies by cell. The range is specified for each cell one or two SpatRasters (arguments first and last). For either first or last you can use a numeric constant instead.

See selectRange to create a new SpatRaster by extracting one or more values starting at a cell-varying layer.

See app or Summary-methods if you want to apply a function to all cells (not a range), perhaps after making a subset of a SpatRaster.

Usage

Arguments

Χ	SpatRaster
first	SpatRaster or positive integer between 1 and $nlyr(x)$, indicating the first layer in the range of layers to be considered
last	SpatRaster or positive integer between 1 and $nlyr(x)$, indicating the last layer in the range to be considered
fun	function to be applied
	additional arguments passed to fun
allyrs	logical. If TRUE, values for all layers are passed to fun but the values outside of the range are set to fill
fill	numeric. The fill value for the the values outside of the range, for when allyrs=TRUE
clamp	logical. If FALSE and the specified range is outside 1:nlyr(x) all cells are considered NA. Otherwise, the invalid part of the range is ignored

172 rast

circular logical. If TRUE the values are considered circular, such as the days of the year.

In that case, if first > last the layers used are c(first:nlyr(x), 1:last). Otherwise,

the range would be considered invalid and NA would be returned

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

```
selectRange, app, Summary-methods, lapp, tapp
```

Examples

```
r <- rast(ncols=9, nrows=9)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r, r)
s <- s * 1:6
s[1:2] <- NA
start <- end <- rast(r)
start[] <- 1:3
end[] <- 4:6
a <- rapp(s, start, end, fun="mean")
b <- rapp(s, start, 2, fun="mean")
# cumsum from start to nlyr(x). return all layers
r <- rapp(s, start, nlyr(s), cumsum, allyrs=TRUE, fill=0)
# return only the final value
rr <- rapp(s, start, nlyr(s), function(i) max(cumsum(i)))</pre>
```

rast

Create a SpatRaster

Description

Methods to create a SpatRaster. These objects can be created from scratch, from a filename, or from another object.

A SpatRaster represents a spatially referenced surface divided into three dimensional cells (rows, columns, and layers).

When a SpatRaster is created from a file, it does not load the cell (pixel) values into memory (RAM). It only reads the parameters that describe the geometry of the SpatRaster, such as the number of rows and columns and the coordinate reference system. The actual values will be read when needed.

rast 173

Usage

```
## S4 method for signature 'character'
rast(x, subds=0, lyrs=NULL, drivers=NULL, opts=NULL)
## S4 method for signature 'missing'
rast(x, nrows=180, ncols=360, nlyrs=1, xmin=-180, xmax=180,
          ymin=-90, ymax=90, crs, extent, resolution, vals, names, time, units)
## S4 method for signature 'SpatRaster'
rast(x, nlyrs=nlyr(x), names, vals, keeptime=TRUE, keepunits=FALSE, props=FALSE)
## S4 method for signature 'matrix'
rast(x, type="", crs="", digits=6, extent=NULL)
## S4 method for signature 'data.frame'
rast(x, type="xyz", crs="", digits=6, extent=NULL)
## S4 method for signature 'array'
rast(x, crs="", extent=NULL)
## S4 method for signature 'list'
rast(x, warn=TRUE)
## S4 method for signature 'SpatRasterDataset'
rast(x)
## S4 method for signature 'SpatVector'
rast(x, ...)
## S4 method for signature 'SpatExtent'
rast(x, ...)
```

Arguments

X	filename (character), missing, SpatRaster, SpatRasterDataset, SpatExtent, SpatVector, matrix, array, list of SpatRaster objects. For other types it will be attempted to create a SpatRaster via ('as(x, "SpatRaster")'
subds	positive integer or character to select a sub-dataset. If zero or "", all sub-datasets are returned (if possible)
lyrs	positive integer or character to select a subset of layers (a.k.a. "bands")
drivers	character. GDAL drivers to consider
opts	character. GDAL dataset open options
nrows	positive integer. Number of rows
ncols	positive integer. Number of columns
nlyrs	positive integer. Number of layers
xmin	minimum x coordinate (left border)

174 rast

xmax maximum x coordinate (right border)ymin minimum y coordinate (bottom border)ymax maximum y coordinate (top border)

crs character. Description of the Coordinate Reference System (map projection) in

PROJ. 4, WKT or authority: code notation. If this argument is missing, and the x coordinates are within -360 .. 360 and the y coordinates are within -90 .. 90,

longitude/latitude is assigned

keeptime logical. If FALSE the time stamps are discarded keepunits logical. If FALSE the layer units are discarded

props logical. If TRUE the properties (categories and color-table) are kept

extent object of class SpatExtent. If present, the arguments xmin, xmax, ymin and

ymax are ignored

resolution numeric vector of length 1 or 2 to set the resolution (see res). If this argument

is used, arguments ncol and nrow are ignored

vals numeric. An optional vector with cell values (if fewer values are provided, these

are recycled to reach the number of cells)

names character. An optional vector with layer names (must match the number of lay-

ers)

time time or date stamps for each layer units character. units for each layer

type character. If the value is not "xyz", the raster has the same number of rows

and colums as the matrix. If the value is "xyz", the matrix must have at least two columns, the first with x (or longitude) and the second with y (or latitude) coordinates that represent the centers of raster cells. The additional columns are

the values associated with the raster cells.

digits integer to set the precision for detecting whether points are on a regular grid (a

low number of digits is a low precision). Only used when type="xyz"

warn logical. If TRUE, a warnings about empty rasters may be emitted additional arguments passed on to the rast, missing-method

Details

Files are read with the GDAL library. GDAL guesses the file format from the name, and/or tries reading it with different "drivers" (see gdal) until it succeeds. In very few cases this may cause a file to be opened with the wrong driver, and some information may be lost. For example, when a netCDF file is opened with the HDF5 driver. You can avoid that by using argument rast("filename.ncdf", drivers="NETCDF")

These classes hold a C++ pointer to the data "reference class" and that creates some limitations. They cannot be recovered from a saved R session either or directly passed to nodes on a computer cluster. Generally, you should use writeRaster to save SpatRaster objects to disk (and pass a filename or cell values of cluster nodes). Also see wrap.

Value

SpatRaster

rasterize 175

See Also

sds to create a SpatRasterDataset (4 dimensions) and vect for vector (points, lines, polygons) data

Examples

```
# Create a SpatRaster from scratch
x <- rast(nrows=108, ncols=21, xmin=0, xmax=10)

# Create a SpatRaster from a file
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)

s <- rast(system.file("ex/logo.tif", package="terra"))

# Create a skeleton with no associated cell values
rast(s)

# from a matrix
m <- matrix(1:25, nrow=5, ncol=5)
rm <- rast(m)

# from a "xyz" data.frame
d <- as.data.frame(rm, xy=TRUE)
head(d)
rast(d, type="xyz")</pre>
```

rasterize

Rasterize vector data

Description

Transfer values associated with the geometries of vector data to a raster

Usage

```
## S4 method for signature 'SpatVector,SpatRaster'
rasterize(x, y, field="", fun, ..., background=NA, touches=FALSE,
update=FALSE, sum=FALSE, cover=FALSE, filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'matrix,SpatRaster'
rasterize(x, y, values=1, fun, ..., background=NA,
update=FALSE, filename="", overwrite=FALSE, wopt=list())
```

Arguments

```
x SpatVector or a two-column matrix (point coordinates)
```

y SpatRaster

176 rasterize

field character or numeric. If field is a character, it should a variable name in x. If

field is numeric it typically is a single number or a vector of length nrow(x).

The values are recycled to nrow(x)

values numeric. For when x is a matrix. Normally of length 1 or nrow(x). The values

will be recycled to nrow(x)

fun function, summarizing function that returns a single number; for when there are

multiple points in one cell. For example mean, length (to get a count), min or

max. Only used if x consists of points

... additional arguments passed to fun if x has point geometries

background numeric. Value to put in the cells that are not covered by any of the features of

x. Default is NA

touches logical. If TRUE, all cells touched by lines or polygons are affected, not just

those on the line render path, or whose center point is within the polygon. If

touches=TRUE, add cannot be TRUE

update logical. If TRUE, the values of the input SpatRaster are updated

sum logical. If TRUE, the values of overlapping geometries are summed instead of

replaced; and background is set to zero. Only used if x does not consists of

points

cover logical. If TRUE and the geometry of x is polygons, the fraction of a cell that

is covered by the polygons is returned. This is estimated by determining presence/absence of the polygon in at least 100 sub-cells (more of there are very few

cells)

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

mask

```
r <- rast(xmin=0, ncols=18, nrows=18)

# generate points
set.seed(1)
p <- spatSample(r, 1000, xy=TRUE, replace=TRUE)

# rasterize points as a matrix
x <- rasterize(p, r, fun=sum)
y <- rasterize(p, r, value=1:nrow(p), fun=max)

# rasterize points as a SpatVector</pre>
```

rasterizeGeom 177

```
pv <- vect(p)
xv <- rasterize(pv, r, fun=sum)

# Polygons
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v, ncols=75, nrows=100)
z <- rasterize(v, r, "NAME_2")
plot(z)
lines(v)</pre>
```

rasterizeGeom

Rasterize geometric properties of vector data

Description

Rasterization of geometric properties of vector data. You can get the count of the number of geometries in each cell; the area covered by polygons; the length of the lines; or the number of lines that cross each cell. See rasterize for standard rasterization (of attribute values associated with geometries).

The area of polygons is intended for summing the area of polygons that are relatively small relative to the raster cells, and for when there may be multiple polygons per cell. See rasterize(sum=TRUE) for counting large polygons and rasterize(cover=TRUE) to get the fraction that is covered by larger polygons.

Usage

```
## S4 method for signature 'SpatVector,SpatRaster'
rasterizeGeom(x, y, fun="count", unit="m", filename="", ...)
```

Arguments

X	SpatVector
у	SpatRaster
fun	character. "count", "area", "length", or "crosses"
unit	character. "m" or "km"
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

rasterize

178 read and write

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
r <- rast(v, res=.1)

# length of lines
lns <- as.lines(v)
x <- rasterizeGeom(lns, r, fun="length", "km")

# count of points
set.seed(44)
pts <- spatSample(v, 100)
y <- rasterizeGeom(pts, r)

# area of polygons
pols <- buffer(pts, 1000)
z <- rasterizeGeom(pols, r, fun="area")</pre>
```

read and write

Read from, or write to, file

Description

Methods to read from or write chunks of values to or from a file. These are low level methods for programmers. Use writeRaster if you want to save an entire SpatRaster to file in one step. It is much easier to use.

To write chunks, begin by opening a file with writeStart, then write values to it in chunks using the list that is returned by writeStart. When writing is done, close the file with writeStop.

blocks also returns chunk size information. For example for only reading raster data.

```
## S4 method for signature 'SpatRaster'
readStart(x)

## S4 method for signature 'SpatRaster'
readStop(x)

## S4 method for signature 'SpatRaster'
readValues(x, row=1, nrows=nrow(x), col=1, ncols=ncol(x), mat=FALSE, dataframe=FALSE, ...)

## S4 method for signature 'SpatRaster, character'
writeStart(x, filename="", overwrite=FALSE, n=4, sources="", ...)

## S4 method for signature 'SpatRaster'
writeStop(x)
```

read and write 179

```
## S4 method for signature 'SpatRaster,vector'
writeValues(x, v, start, nrows)

## S4 method for signature 'SpatRaster'
blocks(x, n=4)

fileBlocksize(x)
```

Arguments

x	SpatRaster
filename	character. Output filename
V	vector with cell values to be written
start	integer. Row number (counting starts at 1) from where to start writing v
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
col	positive integer. Column number to start from, should be between 1 and $ncol(x)$
ncols	positive integer. How many columns? Default is the number of columns left after the start column
mat	logical. If TRUE, values are returned as a numeric matrix instead of as a vector, except when dataframe=TRUE. If any of the layers of x is a factor, the level index is returned, not the label. Use dataframe=TRUE to get the labels
dataframe	logical. If TRUE, values are returned as a data. frame instead of as a vector (also if matrix is TRUE) $$
overwrite	logical. If TRUE, filename is overwritten
n	positive integer indicating how many copies the data may be in memory at any point in time. This is used to determine how many blocks (large) datasets need to be read
sources	character. Filenames that may not be overwritten because they are used as input to the function. Can be obtained with sources(x)
	For writeStart: additional arguments for writing files as in writeRaster For readValues: additional arguments for data.frame (and thus only relevant when dataframe=TRUE)

Value

readValues returns a vector, matrix, or data.frame

writeStart returns a list that can be used for processing the file in chunks.

The other methods invisibly return a logical value indicating whether they were successful or not. Their purpose is the side-effect of opening or closing files.

180 relate

rectify	Rectify a SpatRaster	

Description

Rectify a rotated SpatRaster into a non-rotated object

Usage

Arguments

X	SpatRaster to be rectified
method	character. Method used to for resampling. See resample
aoi	SpatExtent or SpatRaster to crop x to a smaller area of interest; Using a SpatRaster allowing to set the exact output extent and output resolution
snap	logical. If TRUE, the origin and resolution of the output are the same as would the case when aoi = NULL. Only relevant if aoi is a SpatExtent
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

relate	Spatial relationships between geometries

Description

relate returns a logical matrix indicating the presence or absence of a specific spatial relationships between the geometries in x and y.

is.related returns a logical vector indicating the presence or absence of a specific spatial relationships between x and any of the geometries in y

relate 181

Usage

```
## S4 method for signature 'SpatVector,SpatVector'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)
## S4 method for signature 'SpatVector,missing'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)
## S4 method for signature 'SpatVector,SpatVector'
is.related(x, y, relation)
```

Arguments

X	SpatVector or SpatExtent
У	missing or as for x
relation	character. One of "intersects", "touches", "crosses", "overlaps", "within", "contains", "covers", "coveredby", "disjoint". Or a "DE-9IM" string such as "FF*FF****". See wikipedia or geotools doc
pairs	logical. If TRUE a two-column matrix is returned with the indices of the cases where the requested relation is TRUE. This is especially helpful when dealing with many geometries as the returned value is generally much smaller
na.rm	logical. If TRUE and sparse=TRUE, geometries in x for which there is no related geometry in y are omitted

Value

```
matrix (relate) or vector (is.related)
```

See Also

```
adjacent, nearby, intersect, crop
```

```
# polygons
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
p3 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
p4 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
p5 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")
p6 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")

p <- rbind(p1, p2, p3, p4, p5, p6)
plot(p, col=rainbow(6, alpha=.5))
lines(p, lwd=2)
text(p)

## relate SpatVectors
relate(p1, p2, "intersects")</pre>
```

182 relate

```
relate(p1, p3, "touches")
relate(p1, p5, "disjoint")
relate(rbind(p1, p2), p4, "disjoint")
## relate geometries within SpatVectors
# which are completely separated?
relate(p, relation="disjoint")
# which touch (not overlap or within)?
relate(p, relation="touches")
# which overlap (not merely touch, and not within)?
relate(p, relation="overlaps")
# which are within (not merely overlap)?
relate(p, relation="within")
# do they touch or overlap or are within?
relate(p, relation="intersects")
all(relate(p, relation="intersects") ==
  (relate(p, relation="overlaps") |
   relate(p, relation="touches") |
   relate(p, relation="within")))
#for polygons, "coveredby" is "within"
relate(p, relation="coveredby")
# polygons, lines, and points
pp <- rbind(p1, p2)</pre>
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)")
L2 <- vect("LINESTRING(8 14, 12 10)")
L3 <- vect("LINESTRING(1 8, 12 14)")
lns <- rbind(L1, L2, L3)</pre>
pts <- vect(cbind(c(7,10,10), c(3,5,6)))
plot(pp, col=rainbow(2, alpha=.5))
text(pp, paste0("POL", 1:2), halo=TRUE)
lines(pp, lwd=2)
lines(lns, col=rainbow(3), lwd=4)
text(lns, paste0("L", 1:3), halo=TRUE)
points(pts, cex=1.5)
text(pts, paste0("PT", 1:3), halo=TRUE, pos=4)
relate(lns, relation="crosses")
relate(lns, pp, relation="crosses")
relate(lns, pp, relation="touches")
relate(lns, pp, relation="intersects")
relate(lns, pp, relation="within")
# polygons can contain lines or points, not the other way around
relate(lns, pp, relation="contains")
relate(pp, lns, relation="contains")
```

rep 183

```
# points and lines can be covered by polygons
relate(lns, pp, relation="coveredby")

relate(pts, pp, "within")
relate(pts, pp, "touches")
relate(pts, lns, "touches")
```

rep

Replicate layers

Description

Replicate layers in a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster' rep(x, ...)
```

Arguments

```
x SpatRaster
... arguments as in rep
```

Value

SpatRaster

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- rep(s, 2)
nlyr(x)
names(x)
x</pre>
```

184 resample

replace

Replace values of a SpatRaster

Description

Replace values of a SpatRaster. These are convenience functions for smaller objects only. For larger rasters see link{classify}

Value

SpatRaster

See Also

```
link{classify}, values, replace
```

Examples

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=5, ymin=0, ymax=5)
r[] <- 1:25
r[1,] <- 5
r[,2] <- 10
r[r>10] <- NA</pre>
```

resample

Transfer values of a SpatRaster to another one with a different geometry

Description

resample transfers values between SpatRaster objects that do not align (have a different origin and/or resolution). See project to change the coordinate reference system (crs).

If the origin and extent of the input and output are the same, you should consider using these other functions instead: aggregate, disagg, extend or crop.

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
resample(x, y, method, threads=TRUE, filename="", ...)
```

resample 185

Arguments

x SpatRaster to be resampled

y SpatRaster with the geometry that x should be resampled to

method character. Method used for estimating the new cell values. One of:

near: nearest neighbor. This method is fast, and it can be the preferred method if the cell values represent classes. It is not a good choice for continuous values.

This is used by default if the first layer of x is categorical.

bilinear: bilinear interpolation. This is the default if the first layer of \boldsymbol{x} is

numeric (not categorical). cubic: cubic interpolation.

cubicspline: cubic spline interpolation.

lanczos: Lanczos windowed sinc resampling.

sum: the weighted sum of all non-NA contributing grid cells.

min, q1, med, q3, max, average, mode, rms: the minimum, first quartile, median, third quartile, maximum, mean, mode, or root-mean-square value of all

non-NA contributing grid cells.

threads logical. If TRUE multiple threads are used (faster for large files)

filename character. Output filename

... additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

```
aggregate, disagg, crop, project,
```

```
r <- rast(nrows=3, ncols=3, xmin=0, xmax=10, ymin=0, ymax=10)
values(r) <- 1:ncell(r)
s <- rast(nrows=25, ncols=30, xmin=1, xmax=11, ymin=-1, ymax=11)
x <- resample(r, s, method="bilinear")

opar <- par(no.readonly =TRUE)
par(mfrow=c(1,2))
plot(r)
plot(x)
par(opar)</pre>
```

186 rescale

|--|

Description

Rescale a SpatVector or SpatRaster. This may be useful to make small inset maps or for georeferencing.

Usage

```
## S4 method for signature 'SpatRaster'
rescale(x, fx=0.5, fy=fx, x0, y0)
## S4 method for signature 'SpatVector'
rescale(x, fx=0.5, fy=fx, x0, y0)
```

Arguments

X	SpatVector or SpatRaster
fx	numeric > 0 . The horizontal scaling factor
fy	numeric > 0 . The vertical scaling factor
x0	numeric. x-coordinate of the center of rescaling. If missing, the center of the extent of x is used
y0	numeric. y-coordinate of the center of rescaling. If missing, the center of the extent of x is used

Value

Same as x

See Also

```
t, shift, flip, rotate, inset
```

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- rescale(v, 0.2)
plot(v)
lines(w, col="red")</pre>
```

RGB 187

RGB	Layers representing colors	

Description

With RGB you can get or set the layers to be used as Red, Green and Blue when plotting a SpatRaster. Currently, a benefit of this is that plot will send the object to plotRGB

With colorize you can convert a three-layer RGB SpatRaster into other color spaces. You can also convert it into a single-layer SpatRaster with a color-table.

Usage

```
## S4 method for signature 'SpatRaster'
RGB(x)

## S4 replacement method for signature 'SpatRaster'
RGB(x)<-value

## S4 method for signature 'SpatRaster'
colorize(x, to="hsv", alpha=FALSE, stretch=NULL,
grays=FALSE, NAzero=FALSE, filename="", overwrite=FALSE, ...)

## S4 method for signature 'SpatRaster'
has.RGB(x)</pre>
```

Arguments

X	SpatRaster
value	vector of three (or four) positive integers indicating the layers that are red, green and blue (and optionally a fourth transparancy layer). Or NULL to remove the RGB settings
to	character. The color space to transform the values to. If x has RGB set, you can transform these to "hsv", "hsi" and "hsl", or use "col" to create a single layer with a color table. You can also use "rgb" to backtransform to RGB
alpha	logical. Should an alpha (transparancy) channel be included? Only used if x has a color-table and to="rgb"
stretch	character. Option to stretch the values to increase contrast: "lin" (linear) or "hist" (histogram). Only used for transforming RGB to col
grays	logical. If TRUE, a gray-scale color-table is created. Only used for transforming RGB to col
NAzero	logical. If TRUE, NAs are treated as zeros such that a color can be returned if at least one of the three channels has a value. Only used for transforming RGB to ("col")
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

188 rotate

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
plot(r)
has.RGB(r)
RGB(r) <- NULL
has.RGB(r)
plot(r)
RGB(r) <- c(3,1,2)
plot(r)

RGB(r) <- 1:3
x <- colorize(r, "col")
y <- colorize(r, "hsv")
z <- colorize(y, "rgb")</pre>
```

rotate

Rotate a SpatRaster along longitude

Description

Rotate a SpatRaster that has longitude coordinates from 0 to 360, to standard coordinates between -180 and 180 degrees (or vice-versa). Longitude between 0 and 360 is frequently used in global climate models.

Usage

```
## S4 method for signature 'SpatRaster'
rotate(x, left=TRUE, filename="", ...)
```

Arguments

X	SpatRaster or SpatVector
left	logical. If TRUE, rotate to the left, else to the right
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

```
shift and spin
```

sapp 189

Examples

```
x <- rast(nrows=9, ncols=18, nl=3, xmin=0, xmax=360)
v <- rep(as.vector(t(matrix(1:ncell(x), nrow=9, ncol=18))), 3)
values(x) <- v
z <- rotate(x)</pre>
```

sapp

Apply a terra function that takes only a single layer and returns a SpatRaster to all layers of a SpatRaster

Description

Apply to all layers of a SpatRaster a function that only takes a single layer SpatRaster and returns a SpatRaster (these are rare). In most cases you can also use lapply or sapply for this.

Or apply the same method to each sub-dataset (SpatRaster) in a SpatRasterDataset

Usage

```
## S4 method for signature 'SpatRaster'
sapp(x, fun, ..., filename="", overwrite=FALSE, wopt=list())
## S4 method for signature 'SpatRasterDataset'
sapp(x, fun, ..., filename="", overwrite=FALSE, wopt=list())
```

Arguments

SpatRaster or SpatRasterDataset
if x is a SpatRaster: a function that takes a SpatRaster argument and can be applied to each layer of x (e.g. terrain. if x is a SpatRasterDataset: a function that is applied to all layers of the SpatRasters in x (e.g. mean
additional arguments to be passed to fun
character. Output filename
logical. If TRUE, filename is overwritten
list with named options for writing files as in writeRaster

Value

SpatRaster

```
lapp, app, tapp, lapply
```

190 sbar

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra")) + 1
x <- sapp(s, terrain)

sd <- sds(s*2, s/2)
y <- sapp(sd, mean)</pre>
```

sbar

scale bar

Description

Add a scale bar to a map

Usage

```
sbar(d, xy=NULL, type="line", divs=2, below="",
    lonlat=NULL, label, adj=c(0.5, -1), lwd=2, xpd=TRUE, ...)
```

Arguments

d	numeric. Distance covered by the scale bar. For the scale bar, it should be in the units of the coordinates of the plot (map), and in km for angular (longitude/latitude) data; see argument lonlat. It can also be missing
ху	numeric. x and y coordinate to place the scale bar. It can also be one of following character values: "bottomleft", "bottom", "bottomright", topleft", "top", "topright", "left", "right", or NULL
type	for sbar: "line" or "bar"
divs	number of divisions for a bar: 2 or 4
below	character. Text to go below the scale bar (e.g., "kilometers")
lonlat	logical or NULL. If logical, TRUE indicates if the plot is using longitude/latitude coordinates. If NULL this is guessed from the plot's coordinates
label	vector of three numbers to label the scale bar (beginning, midpoint, end)
adj	adjustment for text placement
lwd	line width for the "line" type of the scale bar
xpd	logical. If TRUE, the scale bar can be outside the plotting area
	graphical arguments to be passed to other methods

Value

none

```
north, plot, inset
```

scale 191

Examples

```
f <- system.file("ex/meuse.tif", package="terra")</pre>
r <- rast(f)
plot(r)
sbar()
sbar(1000, xy=c(178500, 333500), type="bar", divs=4, cex=.8)
sbar(1000, xy="bottomright", divs=4, cex=.8)
north(d=250, c(178550, 332500))
f <- system.file("ex/elev.tif", package="terra")</pre>
r <- rast(f)
plot(r, type="interval")
sbar(20, c(6.2, 50.1), type="bar", cex=.8, divs=4)
sbar(15, c(6.3, 50), type="bar", below="km", label=c(0,7.5,15), cex=.8)
sbar(15, c(6.65, 49.8), cex=.8, label=c(0, "km", 15))
north(type=2)
sbar(15, c(6.65, 49.7), cex=.8, label="15 kilometer", lwd=5)
sbar(15, c(6.65, 49.6), divs=4, cex=.8, below="km")
```

scale

Scale values

Description

Center and/or scale raster data. For details see scale

Usage

```
## S4 method for signature 'SpatRaster'
scale(x, center=TRUE, scale=TRUE)
```

Arguments

x SpatRaster

center logical or numeric. If TRUE, centering is done by subtracting the layer means

(omitting NAs), and if FALSE, no centering is done. If center is a numeric vector (recycled to nlyr(x)), then each layer of x has the corresponding value from

center subtracted from it.

scale logical or numeric. If TRUE, scaling is done by dividing the (centered) layers

of x by their standard deviations if center is TRUE, and the root mean square otherwise. If scale is FALSE, no scaling is done. If scale is a numeric vector (recycled to nlyr(x)), each layer of x is divided by the corresponding value.

Scaling is done after centering.

Value

SpatRaster

192 scatterplot

See Also

scale

Examples

```
r <- rast(system.file("ex/logo.tif", package="terra"))
s <- scale(r)

## the equivalent, computed in steps
m <- global(r, "mean")
rr <- r - m[,1]
rms <- global(rr, "rms")
ss <- rr / rms[,1]</pre>
```

scatterplot

Scatterplot of two SpatRaster layers

Description

Scatterplot of the values of two SpatRaster layers

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
plot(x, y, maxcell=100000, warn=TRUE, nc, nr,
    maxnl=16, gridded=FALSE, ncol=25, nrow=25, ...)
```

Arguments

X	SpatRaster
у	SpatRaster
maxcell	positive integer. Maximum number of cells to use for the plot
nc	positive integer. Optional. The number of columns to divide the plotting device in (when plotting multiple layers)
nr	positive integer. Optional. The number of rows to divide the plotting device in (when plotting multiple layers)
maxnl	positive integer. Maximum number of layers to plot (for multi-layer objects)
gridded	logical. If TRUE the scatterplot is gridded (counts by cells)
warn	boolean. Show a warning if a sample of the pixels is used (for scatterplot only)
ncol	positive integer. Number of columns for gridding
nrow	positive integer. Number of rows for gridding
	additional graphical arguments

scoff 193

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
plot(s[[1]], s[[2]])
plot(s, sqrt(s[[3:1]]))</pre>
```

scoff

Scale (gain) and offset

Description

These functions can be used to get or set the scale (gain) and offset parameters used to transform values when reading raster data from a file. The parameters are applied to the raw values using the formula below:

```
value <- value * scale + offset
```

The default value for scale is 1 and for offset is 0. 'scale' is sometimes referred to as 'gain'.

Note that setting the scale and/or offset are intended to be used with values that are stored in a file. When values are memory, assigning scale or offset values will lead to the immediate computation of new values; in such cases it would be clearer to use Arith-methods.

Usage

```
## $4 method for signature 'SpatRaster'
scoff(x)
## $4 replacement method for signature 'SpatRaster'
scoff(x)<-value</pre>
```

Arguments

x SpatRaster

value two-column matrix with scale (first column) and offset (second column) for each layer. Or NULL to remove all scale and offset values

Value

matrix or changed SpatRaster

```
r <- rast(system.file("ex/elev.tif", package="terra"))
minmax(r)
scoff(r)
r[4603]
scoff(r) <- cbind(10, 5)</pre>
```

194 sds

```
minmax(r)
scoff(r)
r[4603]
```

sds

Create a SpatRasterDataset

Description

Methods to create a SpatRasterDataset. This is an object to hold "sub-datasets", each a SpatRaster that in most cases will have multiple layers.

See describe for getting information about the sub-datasets present in a file.

Usage

```
## S4 method for signature 'missing'
sds(x)

## S4 method for signature 'character'
sds(x, ids=0)

## S4 method for signature 'SpatRaster'
sds(x, ...)

## S4 method for signature 'list'
sds(x)

## S4 method for signature 'array'
sds(x, crs="", extent=NULL)
```

Arguments

Х	character (filename), or SpatRaster, or list of SpatRaster objects, or missing. If multiple filenames are provided, it is attempted to make SpatRasters from these, and combine them into a SpatRasterDataset
ids	optional. vector of integer subdataset ids. Ignored if the first value is not a positive integer
crs	character. Description of the Coordinate Reference System (map projection) in PROJ.4, WKT or authority: code notation. If this argument is missing, and the x coordinates are within -360 360 and the y coordinates are within -90 90, longitude/latitude is assigned
extent	SpatExtent
	additional SpatRaster objects

Value

SpatRasterDataset

segregate 195

See Also

describe

Examples

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- sds(s, s/2)
names(x) <- c("first", "second")
x
length(x)

# extract the second SpatRaster
x[2]
a <- array(1:9, c(3,3,3,3))
sds(a)</pre>
```

segregate

segregate

Description

Create a SpatRaster with a layer for each class (value, or subset of the values) in the input SpatRaster. For example, if the input has vegetation types, this function will create a layer (presence/absence; dummy variable) for each of these classes.

This is called "one-hot encoding" or "dummy encoding" (for a dummy encoding scheme you can remove (any) one of the output layers as it is redundant).

Usage

```
## S4 method for signature 'SpatRaster'
segregate(x, classes=NULL, keep=FALSE, other=0, round=FALSE, digits=0, filename="", ...)
```

Arguments

X	SpatRaster
classes	numeric. The values (classes) for which layers should be made. If NULL all classes are used
keep	logical. If TRUE, cells that are of the class represented by a layer get that value, rather than a value of $\boldsymbol{1}$
other	numeric. Value to assign to cells that are not of the class represented by a layer
round	logical. Should the values be rounded first?
digits	integer. Number of digits to round the values to
filename	character. Output filename
	additional arguments for writing files as in writeRaster

196 sel

Value

SpatRaster

Examples

```
r <- rast(nrows=5, ncols=5)
values(r) <- rep(c(1:4, NA), each=5)
b <- segregate(r)
bb <- segregate(r, keep=TRUE, other=NA)</pre>
```

sel

Spatial selection

Description

Geometrically subset SpatRaster or SpatVector (to be done) by drawing on a plot (map).

Usage

```
## S4 method for signature 'SpatRaster'
sel(x, ...)
## S4 method for signature 'SpatVector'
sel(x, use="rec", draw=TRUE, col="cyan", ...)
```

Arguments

X	Spatkaster or Spat vector
use	character indicating what to draw. One of "rec" (rectangle) or "pol" (polygon)
draw	logial. If TRUE the selection is drawn on the map
col	color to be used for drawing if draw=TRUE
	additional graphics arguments for drawing

Value

SpatRaster or SpatVector

See Also

crop and intersect to make an intersection and click and text to see cell values or geometry
attributes

selectHighest 197

Examples

```
## Not run:
# select a subset of a SpatRaster
r <- rast(nrows=10, ncols=10)
values(r) <- 1:ncell(r)
plot(r)
s <- sel(r) # now click on the map twice

# plot the selection on a new canvas:
x11()
plot(s)

# vector
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v)
x <- sel(v) # now click on the map twice
x

## End(Not run)</pre>
```

selectHighest

select cells with high or low values

Description

Identify n cells that have the highest of lowest values in the first layer of a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
selectHighest(x, n, low=FALSE)
```

Arguments

x SpatRaster. Only the first layer is processed

n The number of cells to select

logical. If TRUE, the lowest values are selected instead of the highest values

Value

SpatRaster

198 selectRange

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- selectHighest(r, 1000)
y <- selectHighest(r, 1000, TRUE)

m <- merge(y-1, x)
levels(m) <- data.frame(id=0:1, elevation=c("low", "high"))
plot(m)</pre>
```

selectRange

Select the values of a range of layers, as specified by cell values in another SpatRaster

Description

Use a single layer SpatRaster to select cell values from different layers in a multi-layer SpatRaster. The values of the SpatRaster to select layers (y) should be whole numbers between 1 and nlyr(x) (values outside this range are ignored).

See rapp for applying af function to a range of variable size.

See extract for extraction of values by cell, point, or otherwise.

Usage

```
## S4 method for signature 'SpatRaster'
selectRange(x, y, z=1, repint=0, filename="", ...)
```

Arguments

X	SpatRaster
У	SpatRaster. Cell values must be positive integers. They indicate the first layer to select for each cell
Z	positive integer. The number of layers to select
repint	integer > 1 and < nlyr(x) allowing for repeated selection at a fixed interval. For example, if x has 36 layers, and the value of a cell in $y=2$ and repint = 12, the values for layers 2, 14 and 26 are returned
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

```
rapp, tapp, extract
```

serialize 199

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1
s <- c(r, r+2, r+5)
s <- c(s, s)
set.seed(1)
values(r) <- sample(3, ncell(r), replace=TRUE)
x <- selectRange(s, r)
x <- selectRange(s, r, 3)</pre>
```

serialize

serialize and saveRDS for SpatRaster and SpatVector

Description

serialize and saveRDS for SpatRaster and SpatVector. Note that these objects will first be "packed" with wrap, and after unserialize/readRDS they need to be unpacked with rast or vect.

Use of these functions is not recommended. Especially for SpatRaster it is generally much more efficient to use writeRaster and write, e.g., a GTiff file.

SpatRaster objects must have all values in memory (that is, the cell values are not in files) to be serialized. These functions use set.values to load values into memory if needed and if deemed possible given the amount of RAM available.

Usage

```
## S4 method for signature 'SpatRaster'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)
## S4 method for signature 'SpatVector'
saveRDS(object, file="", ascii = FALSE, version = NULL, compress=TRUE, refhook = NULL)
## S4 method for signature 'SpatRaster'
serialize(object, connection, ascii = FALSE, xdr = TRUE, version = NULL, refhook = NULL)
## S4 method for signature 'SpatVector'
serialize(object, connection, ascii = FALSE, xdr = TRUE, version = NULL, refhook = NULL)
```

Arguments

object SpatVector or SpatRaster
file file name to save object to
connection see serialize

ascii see serialize or saveRDS version see serialize or saveRDS 200 setValues

```
compress see serialize or saveRDS refhook see serialize or saveRDS xdr see serialize or saveRDS
```

Value

Packed* object

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
p <- serialize(v, NULL)
head(p)
x <- unserialize(p)
x
vect(x)</pre>
```

setValues

Set the values of raster cells or of geometry attributes

Description

Set cell values of a SpatRaster or the attributes of a SpatVector. For large SpatRaster objects use init instead to set values.

Usage

```
## S4 replacement method for signature 'SpatRaster,ANY'
values(x)<-value

## S4 method for signature 'SpatRaster,ANY'
setValues(x, values, keeptime=TRUE, keepunits=TRUE, keepnames=FALSE, props=FALSE)

## S4 replacement method for signature 'SpatVector,ANY'
values(x)<-value</pre>
```

Arguments

X	SpatRaster or SpatVector
value	For SpatRaster: numeric, matrix or data.frame. The length of the numeric values must match the total number of cells $(ncell(x) * nlyr(x))$, or be a single value. The number of columns of the matrix or data.frame must match the number of layers of x, and the number of rows must match the number of cells of x. For SpatVector: data.frame, matrix, vector, or NULL
values	Same as for value

keeptime logical. If TRUE the time stamps are kept

shade 201

keepunits logical. If FALSE the units are discarded

keepnames logical. If FALSE the layer names are replaced by the column names in y (if

present)

props logical. If TRUE the properties (categories and color-table) are kept

Value

The same object type as x

See Also

```
values, init
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- setValues(r, 1:ncell(r))
x
values(x) <- runif(ncell(x))
x
head(x)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
values(v) <- data.frame(ID=1:12, name=letters[1:12])
head(v)</pre>
```

shade

Hill shading

Description

Compute hill shade from slope and aspect layers (both in radians). Slope and aspect can be computed with function terrain.

A hill shade layer is often used as a backdrop on top of which another, semi-transparent, layer is drawn.

Usage

```
shade(slope, aspect, angle=45, direction=0, normalize=FALSE,
  filename="", overwrite=FALSE, ...)
```

202 sharedPaths

Arguments

slope	SpatRasterwith slope values (in radians)
aspect	SpatRaster with aspect values (in radians)
angle	The the elevation angle of the light source (sun), in degrees
direction	The direction (azimuth) angle of the light source (sun), in degrees
normalize	Logical. If TRUE, values below zero are set to zero and the results are multiplied with 255
filename	character. Output filename
overwrite	logical. If TRUE, filename is overwritten
	additional arguments for writing files as in writeRaster

References

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69(1):14-47

See Also

terrain

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
alt <- disagg(r, 10, method="bilinear")
slope <- terrain(alt, "slope", unit="radians")
aspect <- terrain(alt, "aspect", unit="radians")
hill <- shade(slope, aspect, 40, 270)
plot(hill, col=grey(0:100/100), legend=FALSE, mar=c(2,2,1,4))
plot(alt, col=rainbow(25, alpha=0.35), add=TRUE)</pre>
```

sharedPaths

Shared paths

Description

Get shared paths of line or polygon geometries. This can for geometries in a single SpatVector, or between two SpatVectors

Usage

```
## S4 method for signature 'SpatVector'
sharedPaths(x, y=NULL)
```

Arguments

```
x SpatVector of lines or polygons
```

y missing or SpatVector of lines or polygons

shift 203

Value

SpatVector

See Also

```
gaps, topology
```

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
plot(v, col="light gray")
text(v, halo=TRUE)

x <- sharedPaths(v)
lines(x, col="red", lwd=2)
text(x, col="blue", halo=TRUE, cex=0.8)
head(x)
z <- sharedPaths(v[3,], v[12,])</pre>
```

shift

Shift

Description

Shift a SpatRaster, SpatVector or SpatExtent to another location.

Usage

```
## S4 method for signature 'SpatRaster'
shift(x, dx=0, dy=0, filename="", ...)
## S4 method for signature 'SpatVector'
shift(x, dx=0, dy=0)
## S4 method for signature 'SpatExtent'
shift(x, dx=0, dy=0)
```

Arguments

X	SpatRaster, SpatVector or SpatExtent
dx	numeric. The shift in horizontal direction
dy	numeric. The shift in vertical direction
filename	character. Output filename
	additional arguments for writing files as in writeRaster

204 simplifyGeom

Value

Same as x

See Also

```
flip, rotate
```

Examples

```
r <- rast(xmin=0, xmax=1, ymin=0, ymax=1)
r <- shift(r, dx=1, dy=-1)
e <- ext(r)
shift(e, 5, 5)</pre>
```

simplifyGeom

simplifyGeom geometries

Description

Reduce the number of nodes used to represent geometries.

Usage

```
## S4 method for signature 'SpatVector'
simplifyGeom(x, tolerance=0.1, preserveTopology=TRUE, makeValid=TRUE)
```

Arguments

x SpatVector of lines or polygons

tolerance numeric. The minimum distance between nodes in units of the crs (i.e. degrees

for long/lat)

preserveTopology

logical. If TRUE the topology of output geometries is preserved

makeValid logical. If TRUE, link{makeValid} is run after simplification to assure that the

output polygons are valid

Value

SpatVector

```
sharedPaths, gaps, link{is.valid()}
```

sort 205

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- simplifyGeom(v, .02, makeValid=FALSE)
e <- erase(w)
g <- gaps(e)
plot(e, lwd=5, border="light gray")
polys(g, col="red", border="red")</pre>
```

sort

Sort a SpatRaster

Description

Sort the cell values of a SpatRaster across layers

Usage

```
## S4 method for signature 'SpatRaster'
sort(x, decreasing=FALSE, filename="", ...)
```

Arguments

```
x SpatRaster

decreasing logical

filename character. Output filename
... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r <- c(r, r/2, r*2)
sort(r)</pre>
```

206 sources

sour	200	

Data sources of a SpatRaster

Description

Get the data sources of a SpatRaster or SpatVector or related object. Sources are either files (or similar resources) or "", meaning that they are in memory. You can use hasValues to check if in-memory layers actually have cell values.

Usage

```
## S4 method for signature 'SpatRaster'
sources(x, nlyr=FALSE, bands=FALSE)
## S4 method for signature 'SpatVector'
sources(x)
## S4 method for signature 'SpatRaster'
hasValues(x)
## S4 method for signature 'SpatRaster'
inMemory(x, bylayer=FALSE)
```

Arguments

X	SpatRaster, SpatRasterCollection, SpatVector or SpatVectorProxy
nlyr	logical. If TRUE for each source, the number of layers is returned
bands	logical. If TRUE for each source, the "bands" used, that is, the layer number in

the source file, are returned

bylayer logical. If TRUE a value is retured for each layer instead of for each source

Value

A vector of filenames, or "" when there is no filename, if nlyr and bands are both FALSE. Otherwise a data. frame

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
s <- rast(r)
values(s) <- 1:ncell(s)
rs <- c(r,r,s,r)
sources(rs)
hasValues(r)
x <- rast()
hasValues(x)</pre>
```

SpatExtent-class 207

SpatExtent-class

Class "SpatExtent"

Description

Objects of class SpatExtent are used to define the spatial extent (extremes) of objects of the SpatRaster class.

Objects from the Class

You can use the ext function to create SpatExtent objects, or to extract them from SpatRaster objects.

Slots

```
ptr: pointer to the C++ class
```

Methods

show display values of a SpatExtent object

Examples

```
e <- ext(-180, 180, -90, 90)
e
```

Spatial interpolation *Interpolate*

Description

Make a SpatRaster with interpolated values using a fitted model object of classes such as "gstat" (gstat package) or "Krige" (fields package), or any other model that has location (e.g., "x" and "y", or "longitude" and "latitude") as predictors (independent variables). If x and y are the only predictors, it is most efficient if you provide an empty (no associated data in memory or on file) SpatRaster for which you want predictions. If there are more spatial predictor variables provide these as a SpatRaster in the first argument of the function. If you do not have x and y locations as implicit predictors in your model you should use predict instead.

Usage

208 Spatial interpolation

Arguments

object SpatRaster model model object

fun function. Default value is "predict", but can be replaced with e.g. "predict.se"

(depending on the class of model), or a custom function (see examples)

... additional arguments passed to fun

xyNames character, variable names that the model uses for the spatial coordinates. E.g.,

c("longitude", "latitude")

factors list with levels for factor variables. The list elements should be named with

names that correspond to names in object such that they can be matched. This argument may be omitted for some models from which the levels can be ex-

tracted from the model object

const data.frame. Can be used to add a constant for which there is no SpatRaster for

model predictions. This is particularly useful if the constant is a character-like

factor value

index positive integer or NULL. Allows for selecting of the variable returned if the

model returns multiple variables

na.rm logical. If TRUE, cells with NA values in the predictors are removed from the

computation. This option prevents errors with models that cannot handle NA values. In most other cases this will not affect the output. An exception is when predicting with a model that returns predicted values even if some (or all!)

variables are NA

filename character. Output filename

overwrite logical. If TRUE, filename is overwritten

wopt list with named options for writing files as in writeRaster

Value

SpatRaster

See Also

predict

```
r <- rast(system.file("ex/elev.tif", package="terra"))
ra <- aggregate(r, 10)
xy <- data.frame(xyFromCell(ra, 1:ncell(ra)))
v <- values(ra)
i <- !is.na(v)
xy <- xy[i,]
v <- v[i]
## Not run:</pre>
```

Spatial interpolation 209

```
library(fields)
tps <- Tps(xy, v)
p <- rast(r)</pre>
# use model to predict values at all locations
p <- interpolate(p, tps)</pre>
p \leftarrow mask(p, r)
plot(p)
### change "fun" from predict to fields::predictSE to get the TPS standard error
## need to use "rast(p)" to remove the values
se <- interpolate(rast(p), tps, fun=predictSE)</pre>
se <- mask(se, r)
plot(se)
### another predictor variable, "e"
e <- (init(r, "x") * init(r, "y")) / 100000000
names(e) <- "e"</pre>
z <- as.matrix(extract(e, xy)[,-1])</pre>
## add as another independent variable
xyz <- cbind(xy, z)</pre>
tps2 <- Tps(xyz, v)
p2 <- interpolate(e, tps2, xyOnly=FALSE)</pre>
## as a linear coveriate
tps3 <- Tps(xy, v, Z=z)
## Z is a separate argument in Krig.predict, so we need a new function
## Internally (in interpolate) a matrix is formed of x, y, and elev (Z)
pfun <- function(model, x, ...) {</pre>
   predict(model, x[,1:2], Z=x[,3], ...)
p3 <- interpolate(e, tps3, fun=pfun)
#### gstat examples
library(gstat)
library(sp)
data(meuse)
### inverse distance weighted (IDW)
r <- rast(system.file("ex/meuse.tif", package="terra"))</pre>
mg <- gstat(id = "zinc", formula = zinc~1, locations = ~x+y, data=meuse,</pre>
             nmax=7, set=list(idp = .5))
z <- interpolate(r, mg, debug.level=0, index=1)</pre>
z \leftarrow mask(z, r)
## with a model built with an `sf` object you need to provide custom function
library(sf)
```

210 SpatRaster-class

```
sfmeuse \leftarrow st_as_sf(meuse, coords = c("x", "y"), crs=crs(r))
mgsf <- gstat(id = "zinc", formula = zinc~1, data=sfmeuse, nmax=7, set=list(idp = .5))</pre>
interpolate_gstat <- function(model, x, crs, ...) {</pre>
v <- st_as_sf(x, coords=c("x", "y"), crs=crs)</pre>
p <- predict(model, v, ...)</pre>
as.data.frame(p)[,1:2]
zsf <- interpolate(r, mgsf, debug.level=0, fun=interpolate_gstat, crs=crs(r), index=1)
zsf <- mask(zsf, r)</pre>
### kriging
### ordinary kriging
v <- variogram(log(zinc)~1, ~x+y, data=meuse)</pre>
mv <- fit.variogram(v, vgm(1, "Sph", 300, 1))</pre>
gOK <- gstat(NULL, "log.zinc", log(zinc)~1, meuse, locations=~x+y, model=mv)</pre>
OK <- interpolate(r, gOK, debug.level=0)</pre>
## universal kriging
vu <- variogram(log(zinc)~elev, ~x+y, data=meuse)</pre>
mu <- fit.variogram(vu, vgm(1, "Sph", 300, 1))</pre>
gUK <- gstat(NULL, "log.zinc", log(zinc)~elev, meuse, locations=~x+y, model=mu)</pre>
names(r) <- "elev"</pre>
UK <- interpolate(r, gUK, debug.level=0)</pre>
## co-kriging
gCoK <- gstat(NULL, 'log.zinc', log(zinc)~1, meuse, locations=~x+y)
gCoK <- gstat(gCoK, 'elev', elev~1, meuse, locations=~x+y)</pre>
gCoK <- gstat(gCoK, 'cadmium', cadmium~1, meuse, locations=~x+y)</pre>
gCoK <- gstat(gCoK, 'copper', copper~1, meuse, locations=~x+y)</pre>
coV <- variogram(gCoK)</pre>
plot(coV, type='b', main='Co-variogram')
coV.fit <- fit.lmc(coV, gCoK, vgm(model='Sph', range=1000))</pre>
coV.fit
plot(coV, coV.fit, main='Fitted Co-variogram')
coK <- interpolate(r, coV.fit, debug.level=0)</pre>
plot(coK)
## End(Not run)
```

SpatRaster-class

SpatRaster class

Description

A SpatRaster represents a rectangular part of the world that is sub-divided into rectangular cells of equal area (in terms of the units of the coordinate reference system). For each cell can have multiple values ("layers").

spatSample 211

An object of the SpatRaster class can point to one or more files on disk that hold the cell values, and/or it can hold these values in memory. These objects can be created with the rast method.

The underlying C++ class "Rcpp_SpatRaster" is not intended for end-users. It is for internal use within this package only.

Examples

rast()

spatSample

Take a regular sample

Description

Take a spatial sample from a SpatRaster, SpatVector or SpatExtent. Sampling a SpatVector or SpatExtent always returns a SpatVector of points.

With a SpatRaster, you can get cell values, cell numbers (cells=TRUE), coordinates (xy=TRUE) or (when type="regular" and as.raster=TRUE) get a new SpatRaster with the same extent, but fewer cells.

In order to assure regularity when requesting a regular sample, the number of cells or points returned may not be exactly the same as the size requested.

Usage

```
## S4 method for signature 'SpatRaster'
spatSample(x, size, method="random", replace=FALSE, na.rm=FALSE,
    as.raster=FALSE, as.df=TRUE, as.points=FALSE, values=TRUE, cells=FALSE,
    xy=FALSE, ext=NULL, warn=TRUE, weights=NULL, exp=5)

## S4 method for signature 'SpatVector'
spatSample(x, size, method="random", strata=NULL, chess="")

## S4 method for signature 'SpatExtent'
spatSample(x, size, method="random", lonlat, as.points=FALSE)
```

Arguments

X	SpatRaster, SpatVector or SpatExtent
size	numeric. The sample size. If x is a SpatVector, you can also provide a vector of the same length as x in which case sampling is done separately for each geometry. If x is a SpatRaster, and you are using method="regular" you can specify the size as two numbers (number of rows and columns)
method	character. Should be "regular" or "random", If x is a SpatRaster, it can also be "stratified" (each value in x is a stratum) or "weights" (each value in x is a probability weight)
replace	logical. If TRUE, sampling is with replacement (if method="random"

212 spatSample

na.rm	logical. If TRUE, codeNAs are removed. Only used with random sampling of cell values. That is with method="random", as.raster=FALSE, cells=FALSE
as.raster	logical. If TRUE, a SpatRaster is returned
as.df	logical. If TRUE, a data frame is returned instead of a matrix
as.points	logical. If TRUE, a SpatVector of points is returned
values	logical. If TRUE cell values are returned
cells	logical. If TRUE, cell numbers are returned. If method="stratified" this is always set to TRUE if $xy=FALSE$
xy	logical. If TRUE, cell coordinates are returned
ext	SpatExtent or NULL to restrict sampling to a a subset of the area of x
warn	logical. Give a warning if the sample size returned is smaller than requested
weights	SpatRaster. Used to provide weights when method="stratified"
strata	if not NULL, stratified random sampling is done, taking size samples from each stratum. If x has polygon geometry, strata must be a field name (or index) in x. If x has point geometry, strata can be a SpatVector of polygons or a SpatRaster
chess	character. One of "", "white", or "black". For stratified sampling if strata is a SpatRaster. If not "", samples are only taken from alternate cells, organized like the "white" or "black" fields on a chessboard
lonlat	logical. If TRUE, sampling of a SpatExtent is weighted by cos(latitude). For SpatRaster and SpatVector this done based on the crs, but it is ignored if as.raster=TRUE
ехр	numeric >= 1. 'Expansion factor' that is multiplied with size to get an initial sample. used for stratified samples and random samples with na.rm=TRUE to try to get at least size samples

Value

numeric matrix, data.frame, SpatRaster or SpatVector

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
s <- spatSample(r, 10, as.raster=TRUE)
spatSample(r, 5)
spatSample(r, 5, na.rm=TRUE)
spatSample(r, 5, "regular")

## if you require cell numbers and/or coordinates
size <- 6
spatSample(r, 6, "random", cells=TRUE, xy=TRUE, values=FALSE)

# regular, with values
spatSample(r, 6, "regular", cells=TRUE, xy=TRUE)

# stratified</pre>
```

Spat Vector-class 213

```
rr <- rast(ncol=10, nrow=10, names="stratum")</pre>
set.seed(1)
values(rr) <- round(runif(ncell(rr), 1, 3))</pre>
spatSample(rr, 2, "stratified", xy=TRUE)
s <- spatSample(rr, 5, "stratified", as.points=TRUE)</pre>
plot(rr, plg=list(title="raster"))
plot(s, 1, add=TRUE, plg=list(x=185, y=1, title="points"))
## SpatExtent
e \leftarrow ext(r)
spatSample(e, 10, "random", lonlat=TRUE)
## SpatVector
f <- system.file("ex/lux.shp", package="terra")</pre>
v <- vect(f)</pre>
#sample the geometries
i <- sample(v, 3)</pre>
# sample points in geometries
p <- spatSample(v, 3)</pre>
```

SpatVector-class

Class "SpatVector"

Description

Objects of class SpatVector.

Objects from the Class

You can use the vect method to create SpatVector objects.

Slots

```
ptr: pointer to the C++ class
```

Methods

show display values of a SpatVector

214 spin

spin spin a SpatVector

Description

Spin (rotate) the geometry of a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
spin(x, angle, x0, y0)
```

Arguments

X	SpatVector
angle	numeric. Angle of rotation in degrees
x0	numeric. x -coordinate of the center of rotation. If missing, the center of the extent of x is used
у0	numeric. y-coordinate of the center of rotation. If missing, the center of the extent of x is used

Value

SpatVector

See Also

```
rescale, t, shift
```

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
w <- spin(v, 180)
plot(v)
lines(w, col="red")

# lower-right corner as center
e <- as.vector(ext(v))
x <- spin(v, 45, e[1], e[3])</pre>
```

split 215

split

Split

Description

Split a SpatVector or SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
split(x, f)
## S4 method for signature 'SpatVector'
split(x, f)
```

Arguments

x SpatRaster or SpatVector

f If x is a SpatVector: a field (variable) name or a vector of the same length as x. If x is a SpatRaster: a vector of the length nlyr(x)

Value

Same as x

Examples

```
v <- vect(system.file("ex/lux.shp", package="terra"))
x <- split(v, "NAME_1")

s <- rast(system.file("ex/logo.tif", package="terra"))
y <- split(s, c(1,2,1))
sds(y)</pre>
```

sprc

Create a SpatRasterCollection

Description

Methods to create a SpatRasterCollection. This is an object to hold a collection (list) of SpatRaster objects. There are no restrictions on the similarity of the SpatRaster geometry.

They can be used to combine several SpatRasters to be used with merge or mosaic

216 stretch

Usage

```
## $4 method for signature 'SpatRaster'
sprc(x, ...)
## $4 method for signature 'list'
sprc(x)
## $4 method for signature 'missing'
sprc(x)
```

Arguments

x SpatRaster, list with SpatRaster objects, or missing

... additional SpatRaster objects

Value

SpatRasterCollection

See Also

sds

Examples

```
x <- rast(xmin=-110, xmax=-50, ymin=40, ymax=70, ncols=60, nrows=30)
y <- rast(xmin=-80, xmax=-20, ymax=60, ymin=30)
res(y) <- res(x)
values(x) <- 1:ncell(x)
values(y) <- 1:ncell(y)
z <- sprc(x, y)</pre>
```

stretch

Stretch

Description

Linear or histogram equalization stretch of values in a SpatRaster.

For linear stretch, provide the desired output range (minv and maxv) and the lower and upper bounds in the original data, either as quantiles (minq and maxq, or as cell values (smin and smax). If smin and smax are both not NA, minq and maxq are ignored.

For histogram equalization, these arguments are ignored, but you can provide the desired scale of the output.

subset 217

Usage

```
## S4 method for signature 'SpatRaster'
stretch(x, minv=0, maxv=255, minq=0, maxq=1, smin=NA, smax=NA,
histeq=FALSE, scale=1, filename="", ...)
```

Arguments

X	SpatRaster
minv	numeric >= 0 and smaller than maxv. lower bound of stretched value
maxv	numeric <= 255 and larger than maxv. upper bound of stretched value
minq	numeric $>= 0$ and smaller than maxq. lower quantile bound of original value. Ignored if smin is supplied
maxq	numeric <= 1 and larger than minq. upper quantile bound of original value. Ignored if smax is supplied
smin	numeric < smax. user supplied lower value for the layers, to be used instead of a quantile computed by the function itself
smax	numeric > smin. user supplied upper value for the layers, to be used instead of a quantile computed by the function itself
histeq	logical. If TRUE histogram equalization is used instead of linear stretch
scale	numeric. The scale (maximum value) of the output if $histeq=TRUE$
filename	character. Output filename
	additional arguments for writing files as in writeRaster

Value

SpatRaster

Examples

```
r <- rast(nc=10, nr=10)
values(r) <- rep(1:25, 4)
rs <- stretch(r)
s <- c(r, r*2)
sr <- stretch(s)</pre>
```

subset

Subset a SpatRaster or a SpatVector

Description

Select a subset of layers from a SpatRaster or select a subset of records (row) and/or variables (columns) from a SpatVector.

218 subset

Usage

```
## S4 method for signature 'SpatRaster'
subset(x, subset, negate=FALSE, NSE=FALSE, filename="", overwrite=FALSE, ...)
## S4 method for signature 'SpatVector'
subset(x, subset, select, drop=FALSE, NSE=FALSE)
```

Arguments

X	SpatRaster or SpatVector
subset	if x is a SpatRaster: integer or character to select layers
	if x is a SpatVector: logical expression indicating the rows to keep (missing values are taken as FALSE)
select	expression, indicating columns to select
negate	logical. If TRUE all layers that are not in the subset are selected
NSE	logical. If TRUE, non-standard evaluation (the use of unquoted variable names) is allowed. Set this to FALSE when calling subset from a function
drop	logical. If TRUE, the geometries will be dropped, and a data.frame is returned
filename	character. Output filename
overwrite	logical If TRUE filename is overwritten

overwrite logical. If TRUE, filename is overwritten

... additional arguments for writing files as in writeRaster

Value

```
if x is a SpatRaster: SpatRaster
if x is a SpatVector: SpatVector or, if drop=TRUE, a data.frame.
```

```
### SpatRaster
s <- rast(system.file("ex/logo.tif", package="terra"))
subset(s, 2:3)
subset(s, c(3,2,3,1))
#equivalent to
s[[ c(3,2,3,1) ]]
s[[c("red", "green")]]
s$red

# expression based (partial) matching of names with single brackets
s["re"]
s["^re"]

# not with double brackets
# s[["re"]]</pre>
```

subst 219

```
### SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
v[2:3,]
v[1:2, 2:3]
subset(v, v$NAME_1 == "Diekirch", c("NAME_1", "NAME_2"))
subset(v, NAME_1 == "Diekirch", c(NAME_1, NAME_2), NSE=TRUE)</pre>
```

subst

replace cell values

Description

Substitute(replace) cell values of a SpatRaster with a new value. See classify for more complex/flexible replacement.

Usage

```
## S4 method for signature 'SpatRaster'
subst(x, from, to, raw=FALSE, filename="", ...)
```

Arguments

х	SpatRaster
from	numeric value(s). Normally a vector of the same length as 'to'. If x has multiple layers, it can also be a matrix of numeric value(s) where $nrow(x) == length(to)$. In that case the output has a single layer, with values based on the combination of the values of the input layers
to	numeric value(s). Normally a vector of the same length as 'from'. If x has a single layer, it can also be a matrix of numeric value(s) where $nrow(x) = length(from)$. In that case the output has multiple layers, one for each column in to
raw	logical. If TRUE, the values in from and to are the raw cell values, not the categorical labels. Only relevant if $is.factor(x)$
filename	character. Output filename
	Additional arguments for writing files as in writeRaster

Value

SpatRaster

See Also

classify

220 summarize

Examples

```
r <- rast(ncols=5, nrows=5, xmin=0, xmax=1, ymin=0, ymax=1, crs="")
r <- init(r, 1:6)
x <- subst(r, 3, 7)
x <- subst(r, 2:3, NA)
x <- subst(x, NA, 10)

# multiple output layers
z <- subst(r, 2:3, cbind(20,30))

# multiple input layers
rr <- c(r, r+1, r+2)
m <- rbind(c(1:3), c(3:5))
zz <- subst(rr, m, c(100, 200))</pre>
```

summarize

Summarize

Description

Compute summary statistics for cells, either across layers or between layers (parallel summary).

The following summary methods are available for SpatRaster: any, all, max, min, mean, median, prod, range, stdev, sum, which.min, which.max. See modal to compute the mode and app to compute summary statistics that are not included here.

Because generic functions are used, the method applied is chosen based on the first argument: "x". This means that if r is a SpatRaster, mean(r, 5) will work, but mean(r, r) will not work.

The mean method has an argument "trim" that is ignored.

If pop=TRUE stdev computes the population standard deviation, computed as:

```
f <- function(x) sqrt(sum((x-mean(x))^2) / length(x))</pre>
```

This is different than the sample standard deviation returned by sd (which uses n-1 as denominator).

Usage

```
## S4 method for signature 'SpatRaster'
min(x, ..., na.rm=FALSE)

## S4 method for signature 'SpatRaster'
max(x, ..., na.rm=FALSE)

## S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)

## S4 method for signature 'SpatRaster'
prod(x, ..., na.rm=FALSE)

## S4 method for signature 'SpatRaster'
```

summarize 221

```
sum(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
any(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
all(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
range(x, ..., na.rm=FALSE)
## S4 method for signature 'SpatRaster'
which.min(x)
## S4 method for signature 'SpatRaster'
which.max(x)
## S4 method for signature 'SpatRaster'
stdev(x, ..., pop=TRUE, na.rm=FALSE)
## S4 method for signature 'SpatRaster'
mean(x, ..., trim=NA, na.rm=FALSE)
## S4 method for signature 'SpatRaster'
median(x, na.rm=FALSE, ...)
```

Arguments

X	SpatRaster
• • •	$additional\ Spat Raster\ objects\ or\ numeric\ values;\ and\ arguments\ filename,\ overwrite\ and\ wopt\ as\ for\ write Raster$
na.rm	logical. If TRUE, NA values are ignored. If FALSE, NA is returned if \boldsymbol{x} has any NA values
trim ignored	
рор	logical. If TRUE, the population standard deviation is computed. Otherwise the sample standard deviation is computed

Value

SpatRaster

See Also

```
app, Math-methods, modal, which.lyr
```

```
set.seed(0)
```

222 summary

```
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(ncell(r) * nlyr(r))

x <- mean(r)
# note how this returns one layer
x <- sum(c(r, r[[2]]), 5)

# and this returns three layers
y <- sum(r, r[[2]], 5)

max(r)
max(r, 0.5)

y <- stdev(r)
# not the same as
yy <- app(r, sd)

z <- stdev(r, r*2)

x <- mean(r, filename=paste0(tempfile(), ".tif"))</pre>
```

summary

summary

Description

Compute summary statistics (min, max, mean, and quartiles) for SpatRaster using base summary method. A sample is used for very large files.

For single or other statistics see Summary-methods, global, and quantile

Usage

```
## $4 method for signature 'SpatRaster'
summary(object, size=100000, warn=TRUE, ...)
## $4 method for signature 'SpatVector'
summary(object, ...)
```

Arguments

object	SpatRaster or SpatVector
size	positive integer. Size of a regular sample used for large datasets (see spatSample)
warn	logical. If TRUE a warning is given if a sample is used
	additional arguments passed on to the base summary method

Value

matrix with (an estimate of) the median, minimum and maximum values, the first and third quartiles, and the number of cells with NA values

svc 223

See Also

```
Summary-methods, global, quantile
```

Examples

```
set.seed(0)
r <- rast(nrows=10, ncols=10, nlyrs=3)
values(r) <- runif(nlyr(r)*ncell(r))
summary(r)</pre>
```

svc

Create a SpatVectorCollection

Description

Methods to create a SpatVectorCollection. This is an object to hold "sub-datasets", each a SpatVector, perhaps of different geometry type.

Usage

```
## S4 method for signature 'missing'
svc(x)

## S4 method for signature 'SpatVector'
svc(x, ...)

## S4 method for signature 'list'
svc(x)
```

Arguments

- x SpatVector, or list of a SpatVector, or missing
- ... Additional SpatVectors

Value

SpatVectorCollection

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
x <- svc()
x <- svc(v, v[1:3,], as.lines(v[3:5,]), as.points(v))
length(x)
x
# extract</pre>
```

224 symdif

```
x[3]
# replace
x[2] <- as.lines(v[1,])</pre>
```

symdif

Symetrical difference

Description

Symetrical difference of polygons

Usage

```
## S4 method for signature 'SpatVector, SpatVector' symdif(x, y)
```

Arguments

x SpatVectory SpatVector

Value

SpatVector

See Also

erase

```
p <- vect(system.file("ex/lux.shp", package="terra"))
b <- as.polygons(ext(6, 6.4, 49.75, 50))
#sd <- symdif(p, b)
#plot(sd, col=rainbow(12))</pre>
```

225

tapp	Apply a function to subsets	of layers of a SpatRaster
	11 0	0 0 1

Description

Apply a function to subsets of layers of a SpatRaster (similar to tapply and aggregate). The layers are combined based on the index.

The function used should return a single value, and the number of layers in the output SpatRaster equals the number of unique values in index.

For example, if you have a SpatRaster with 6 layers, you can use index=c(1,1,1,2,2,2) and fun=sum. This will return a SpatRaster with two layers. The first layer is the sum of the first three layers in the input SpatRaster, and the second layer is the sum of the last three layers in the input SpatRaster. Indices are recycled such that index=c(1,2) would also return a SpatRaster with two layers (one based on the odd layers (1,3,5), the other based on the even layers (2,4,6)).

The index can also be one of the following values to group by time period (if x has the appropriate time values): "years", "months", "yearmonths", "days", "week" (ISO 8601 week number), or "doy" (day of the year).

See app or Summary-methods if you want to use a more efficient function that returns multiple layers based on **all** layers in the SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
tapp(x, index, fun, ..., cores=1, filename="", overwrite=FALSE, wopt=list())
```

Arguments

x	SpatRaster	
index	factor or numeric (integer). Vector of length nlyr(x) (shorter vectors are recycled) grouping the input layers. It can also be one of the following values: "years", "months", "yearmonths", "days", "week" (ISO 8601 week number), or "doy" (day of the year)	
fun	function to be applied. The following functions have been re-implemented in C++ for speed: "sum", "mean", "median", "modal", "which", "which.min", "which.max", "min", "max", "prod", "any", "all", "sd", "std", "first". To use the base-R function for say, "min", you could use something like fun = \(i) min(i)	
	additional arguments passed to fun	
cores	positive integer. If cores > 1, a 'parallel' package cluster with that many cores is created and used. You can also supply a cluster object. Ignored for functions that are implemented by terra in C++ (see under fun)	
filename	character. Output filename	
overwrite	logical. If TRUE, filename is overwritten	
wopt	list with named options for writing files as in writeRaster	

226 terrain

Value

SpatRaster

See Also

```
app, Summary-methods
```

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
s <- c(r, r, r, r, r, r)
s <- s * 1:6
b1 <- tapp(s, index=c(1,1,1,2,2,2), fun=sum)
b1
b2 <- tapp(s, c(1,2,3,1,2,3), fun=sum)
b2</pre>
```

terrain

terrain characteristics

Description

Compute terrain characteristics from elevation data. The elevation values should be in the same units as the map units (typically meter) for projected (planar) raster data. They should be in meter when the coordinate reference system is longitude/latitude.

For accuracy, always compute these values on the original data (do not first change the projection). Distances (needed for slope and aspect) for longitude/latitude data are computed on the WGS84 ellipsoid with Karney's algorithm.

Usage

```
## S4 method for signature 'SpatRaster'
terrain(x, v="slope", neighbors=8, unit="degrees", filename="", ...)
```

Arguments

X	SpatRaster, single layer with elevation values. Values should have the same unit as the map units, or in meters when the crs is longitude/latitude	
V	character. One or more of these options: slope, aspect, TPI, TRI, roughness, flowdir (see Details)	
unit	character. "degrees" or "radians" for the output of "slope" and "aspect"	
neighbors	integer. Indicating how many neighboring cells to use to compute slope or aspect with. Either 8 (queen case) or 4 (rook case)	
filename	character. Output filename	
	list. Options for writing files as in writeRaster	

terrain 227

Details

When neighbors=4, slope and aspect are computed according to Fleming and Hoffer (1979) and Ritter (1987). When neighbors=8, slope and aspect are computed according to Horn (1981). The Horn algorithm may be best for rough surfaces, and the Fleming and Hoffer algorithm may be better for smoother surfaces (Jones, 1997; Burrough and McDonnell, 1998).

If slope = 0, aspect is set to 0.5*pi radians (or 90 degrees if unit="degrees"). When computing slope or aspect, the coordinate reference system of x must be known for the algorithm to differentiate between planar and longitude/latitude data.

terrain is not vectorized over "neighbors" or "unit" - only the first value is used.

flowdir returns the "flow direction" (of water), that is the direction of the greatest drop in elevation (or the smallest rise if all neighbors are higher). They are encoded as powers of 2 (0 to 7). The cell to the right of the focal cell is 1, the one below that is 2, and so on:

If two cells have the same drop in elevation, a random cell is picked. That is not ideal as it may prevent the creation of connected flow networks. ArcGIS implements the approach of Greenlee (1987) and I might adopt that in the future.

The terrain indices are according to Wilson et al. (2007), as in gdaldem. TRI (Terrain Ruggedness Index) is the mean of the absolute differences between the value of a cell and the value of its 8 surrounding cells. TPI (Topographic Position Index) is the difference between the value of a cell and the mean value of its 8 surrounding cells. Roughness is the difference between the maximum and the minimum value of a cell and its 8 surrounding cells.

Such measures can also be computed with the focal function:

```
f <- matrix(1, nrow=3, ncol=3)

TRI <- focal(x, w=f, fun=function(x, ...) sum(abs(x[-5]-x[5]))/8)

TPI <- focal(x, w=f, fun=function(x, ...) x[5] - mean(x[-5]))

rough <- focal(x, w=f, fun=function(x, ...) max(x) - min(x), na.rm=TRUE)
```

References

Burrough, P., and R.A. McDonnell, 1998. Principles of Geographical Information Systems. Oxford University Press.

Fleming, M.D. and Hoffer, R.M., 1979. Machine processing of Landsat MSS data and DMA topographic data for forest cover type mapping. LARS Technical Report 062879. Laboratory for Applications of Remote Sensing, Purdue University, West Lafayette, Indiana.

Horn, B.K.P., 1981. Hill shading and the reflectance map. Proceedings of the IEEE 69:14-47

Jones, K.H., 1998. A comparison of algorithms used to compute hill terrain as a property of the DEM. Computers & Geosciences 24: 315-323

Karney, C.F.F., 2013. Algorithms for geodesics, J. Geodesy 87: 43-55. doi:10.1007/s00190-012-0578-z.

228 text

Ritter, P., 1987. A vector-based terrain and aspect generation algorithm. Photogrammetric Engineering and Remote Sensing 53: 1109-1111

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
x <- terrain(r, "slope")</pre>
```

text

Add labels to a map

Description

Plots labels, that is a textual (rather than color) representation of values, on top an existing plot (map).

Usage

```
## S4 method for signature 'SpatRaster'
text(x, labels, digits=0, halo=FALSE, ...)
## S4 method for signature 'SpatVector'
text(x, labels, halo=FALSE, ...)
```

Arguments

X	SpatRaster or SpatVector
labels	character. Optional. Vector of labels with length(x) or a variable name from $names(x)$
digits	integer. how many digits should be used?
halo	logical. If TRUE a "halo" is printed around the text. If TRUE, additional arguments hc="white" and hw=0.1 can be modified to set the colour and width of the halo
	additional arguments to pass to graphics function text

See Also

```
text, plot
```

```
r <- rast(nrows=4, ncols=4)
values(r) <- 1:ncell(r)
plot(r)
text(r)</pre>
```

tighten 229

```
plot(r)
text(r, halo=TRUE, hc="blue", col="white", hw=0.2)

plot(r, col=rainbow(16))
text(r, col=c("black", "white"), vfont=c("sans serif", "bold"), cex=2)
```

tighten

tighten SpatRaster or SpatRasterDataset objects

Description

Combines data sources within a SpatRaster object (that are in memory, or from the same file) to allow for faster processing.

Or combine sub-datsets into a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
tighten(x)
## S4 method for signature 'SpatRasterDataset'
tighten(x)
```

Arguments

Х

SpatRaster or SpatRasterDataset

Value

SpatRaster

```
r <- rast(nrow=5, ncol=9, vals=1:45)
x <- c(r, r*2, r*3)
x
tighten(x)</pre>
```

230 time

time

time of SpatRaster layers

Description

Get or set the time of the layers of a SpatRaster. Time can be stored as POSIX1t (date and time, with a resolution of seconds, and a time zone), Date, "months", "years", or "yearmonths".

Usage

```
## S4 method for signature 'SpatRaster'
time(x, format="")
## S4 replacement method for signature 'SpatRaster'
time(x, tstep="")<-value
## S4 method for signature 'SpatRaster'
timeInfo(x)</pre>
```

Arguments

X	SpatRaster	
format	One of "", "seconds" (POSIXIt), "days" (Date), "yearmonths" (decimal ye "years", "months". If "", the returned format is (based on) the format that used to set the time	
value	Date, POSIXt, yearmon (defined in package zoo), or numeric	
tstep	One of "years", "months", "yearmonths". Used when value is numeric. Ignored when value is of type Date, POSIXt, or yearmon	

Value

time: POSIXIt, Date, or numeric timeInfo: data.frame

See Also

depth

```
s <- rast(system.file("ex/logo.tif", package="terra"))
# Date"
d <- as.Date("2001-05-04") + 0:2
time(s) <- d
time(s)
# POSIX (date/time with a resolution of seconds)</pre>
```

tmpFiles 231

```
time(s) <- as.POSIXlt(d)
time(s)

# with time zone
time(s) <- as.POSIXlt(Sys.time(), "America/New_York") + 0:2
time(s)
time(s)
timeInfo(s)

# years
time(s, tstep="years") <- 2000 + 0:2
s

time(s, tstep="months") <- 1:3
s</pre>
```

tmpFiles

Temporary files

Description

List and optionally remove temporary files created by the terra package. These files are created when an output SpatRaster may be too large to store in memory (RAM). This can happen when no filename is provided to a function and when using functions where you cannot provide a filename.

Temporary files are automatically removed at the end of each R session that ends normally. You can use tmpFiles to see the files in the current sessions, including those that are orphaned (not connect to a SpatRaster object any more) and from other (perhaps old) sessions, and remove all the temporary files.

Usage

```
tmpFiles(current=TRUE, orphan=FALSE, old=FALSE, remove=FALSE)
```

Arguments

current	logical. If TRUE, temporary files from the current R session are included	
orphan	logical. If TRUE, temporary files from the current R session that are no longer associated with a SpatRaster object (if current is TRUE these are also included)	
old	logical. If TRUE, temporary files from other "R" sessions. Unless you are ru multiple instances of R at the same time, these are from old (possibly cra R sessions and should be removed	
remove	logical. If TRUE, temporary files are removed	

Value

character

232 topology

See Also

```
terraOptions
```

Examples

```
tmpFiles()
```

topology

Vector topology methods

Description

makeNodes create nodes on lines

mergeLines connect lines to form polygons

 ${\tt removeDupNodes\ removes\ duplicate\ nodes\ in\ geometries\ and\ optionally\ rounds\ the\ coordinates\ emptyGeoms\ returns\ the\ indices\ of\ empty\ (null)\ geometries}$

snap makes boundaries of geometries identical if they are very close to each other.

Usage

```
## S4 method for signature 'SpatVector'
mergeLines(x)
## S4 method for signature 'SpatVector'
snap(x, y=NULL, tolerance)
## S4 method for signature 'SpatVector'
removeDupNodes(x, digits = -1)
## S4 method for signature 'SpatVector'
makeNodes(x)
```

Arguments

x SpatVector of lines or polygons

y SpatVector of lines or polygons to snap to. If NULL snapping is to the other

geometries in x

tolerance numeric. Snapping tolerance (distance between geometries) digits numeric. Number of digits used in rounding. Ignored if < 0

Value

SpatVector

See Also

```
sharedPaths, gaps, simplifyGeom
```

transpose 233

Examples

```
p1 <- as.polygons(ext(0,1,0,1))
p2 <- as.polygons(ext(1.1,2,0,1))

p <- rbind(p1, p2)

y <- snap(p, tol=.15)
plot(p, lwd=3, col="light gray")
lines(y, col="red", lwd=2)</pre>
```

transpose

Transpose

Description

Transpose a SpatRaster

Usage

```
## S4 method for signature 'SpatRaster'
t(x)
## S4 method for signature 'SpatVector'
t(x)
## S4 method for signature 'SpatRaster'
trans(x, filename="", ...)
```

Arguments

```
x SpatRasterfilename character. Output filename... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

See Also

```
flip, rotate
```

```
r <- rast(nrows=18, ncols=36)
values(r) <- 1:ncell(r)
tr1 <- t(r)
tr2 <- trans(r)
ttr <- trans(tr2)</pre>
```

234 union

trim

Trim a SpatRaster

Description

Trim (shrink) a SpatRaster by removing outer rows and columns that are NA or another value.

Usage

```
## S4 method for signature 'SpatRaster'
trim(x, padding=0, value=NA, filename="", ...)
```

Arguments

```
x SpatRaster
padding integer. Number of outer rows/columns to keep
value numeric. The value of outer rows or columns that are to be removed
filename character. Output filename
... additional arguments for writing files as in writeRaster
```

Value

SpatRaster

Examples

```
r <- rast(ncols=10, nrows=10, xmin=0,xmax=10,ymin=0,ymax=10) v <- rep(NA, ncell(r)) v[c(12,34,69)] <- 1:3 values(r) <- v s <- trim(r)
```

union

Union SpatVector or SpatExtent objects

Description

Overlapping polygons (between, not within, objects) are intersected. Union for lines and points simply combines the two data sets; without any geometric intersections. This is equivalent to c. Attributes are joined. See c if you want to combine polygons without intersection.

If x and y have a different geometry type, a SpatVectorCollection is returned.

If a single SpatVector is supplied, overlapping polygons are intersected. Original attributes are lost. New attributes allow for determining how many, and which, polygons overlapped.

SpatExtent: Objects are combined into their union; this is equivalent to +.

union 235

Usage

```
## $4 method for signature 'SpatVector, SpatVector'
union(x, y)
## $4 method for signature 'SpatVector, missing'
union(x, y)
## $4 method for signature 'SpatExtent, SpatExtent'
union(x, y)
```

Arguments

x SpatVector or SpatExtent y Same as x or missing

Value

SpatVector or SpatExtent

See Also

intersect

merge and mosaic to union SpatRaster objects.

crop and extend for the union of SpatRaster and SpatExtent.

merge for merging a data.frame with attributes of a SpatVector.

aggregate to dissolve SpatVector objects.

```
e1 <- ext(-10, 10, -20, 20)
e2 <- ext(0, 20, -40, 5)
union(e1, e2)

#SpatVector
v <- vect(system.file("ex/lux.shp", package="terra"))
v <- v[,3:4]
p <- vect(c("POLYGON ((5.8 49.8, 6 49.9, 6.15 49.8, 6 49.65, 5.8 49.8))",
    "POLYGON ((6.3 49.9, 6.2 49.7, 6.3 49.6, 6.5 49.8, 6.3 49.9))"), crs=crs(v))
values(p) <- data.frame(pid=1:2, value=expanse(p))
u <- union(v, p)
plot(u, "pid")

b <- buffer(v, 1000)

u <- union(b)
u$sum <- rowSums(as.data.frame(u))
plot(u, "sum")</pre>
```

236 unique

unique Unique values

Description

This method returns the unique values in a SpatRaster, or removes duplicates records (geometry and attributes) in a SpatVector.

Usage

```
## S4 method for signature 'SpatRaster'
unique(x, incomparables=FALSE, na.rm=TRUE, as.raster=FALSE)
## S4 method for signature 'SpatVector'
unique(x, incomparables=FALSE, ...)
```

Arguments

x SpatRaster or SpatVector

incomparables logical. If FALSE and x is a SpatRaster: the unique values are determined for all layers together, and the result is a matrix. If TRUE, each layer is evaluated separately, and a list is returned. If x is a SpatVector this argument is as for a data.frame

na.rm logical. If TRUE, NaN is included if there are any missing values

as.raster logical. If TRUE, a single-layer categorical SpatRaster with the unique values is returned

... additional arguments passed on to unique

Value

```
If x is a SpatRaster: data.frame or list (if incomparables=FALSE)

If x is a SpatVector: SpatVector
```

```
r <- rast(ncols=5, nrows=5)
values(r) <- rep(1:5, each=5)
unique(r)
s <- c(r, round(r/3))
unique(s)
unique(s,TRUE)

unique(s, as.raster=TRUE)

v <- vect(cbind(x=c(1:5,1:5), y=c(5:1,5:1)),
crs="+proj=utm +zone=1 +datum=WGS84")</pre>
```

units 237

```
nrow(v)
u <- unique(v)
nrow(u)

values(v) <- c(1:5, 1:3, 5:4)
unique(v)</pre>
```

units

units of SpatRaster or SpatRasterDataSet

Description

Get or set the units of the layers of a SpatRaster or the datasets in a SpatRasterDataSet.

Usage

```
## S4 method for signature 'SpatRaster'
units(x)

## S4 replacement method for signature 'SpatRaster'
units(x)<-value

## S4 method for signature 'SpatRasterDataset'
units(x)

## S4 replacement method for signature 'SpatRasterDataset'
units(x)<-value</pre>
```

Arguments

```
x SpatRaster value character
```

Value

character

See Also

```
time, names
```

```
s <- rast(system.file("ex/logo.tif", package="terra"))
units(s) <- c("m/s", "kg", "ha")
units(s)
s</pre>
```

238 valid

```
units(s) <- "kg"
units(s)</pre>
```

valid

Check or fix polygon validity

Description

Check the validity of polygons or attempt to fix it

Usage

```
## S4 method for signature 'SpatVector'
is.valid(x, messages=FALSE, as.points=FALSE)
## S4 method for signature 'SpatVector'
makeValid(x)
```

Arguments

x SpatVector

messages logical. If TRUE the error messages are returned

as.points logical. If TRUE, it is attempted to return locations where polygons are invalid as

a SpatVector or points

Value

logical

```
w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
is.valid(w)

w <- vect("POLYGON ((0 -5, 10 0, 10 -10, 4 -2, 0 -5))")
is.valid(w)
is.valid(w, TRUE)

plot(w)
points(cbind(4.54, -2.72), cex=2, col="red")</pre>
```

values 239

values	Cell values and geometry attributes	

Description

Get the cell values of a SpatRaster or the attributes of a SpatVector.

By default all values returned are numeric. This is because a vector or matrix can only store one data type, and a SpatRaster may consist of multiple data types. However, with values(x, dataframe=TRUE) and as.data.frame(x) the values returned match the type of each layer, and can be numeric, logical, integer, or factor.

Usage

Arguments

X	SpatRaster or SpatVector
mat	logical. If TRUE, values are returned as a matrix instead of as a vector, except when dataframe is \ensuremath{TRUE}
dataframe	logical. If TRUE, values are returned as a data. frame instead of as a vector (also if matrix is TRUE) $$
row	positive integer. Row number to start from, should be between 1 and $nrow(x)$
nrows	positive integer. How many rows?
col	positive integer. Column number to start from, should be between 1 and $ncol(x)$
ncols	positive integer. How many columns? Default is the number of columns left after the start column
na.rm	logical. Remove NAs?
	additional arguments passed to data.frame

Details

If x is a SpatRaster, and mat=FALSE, the values are returned as a vector. In cell-order by layer. If mat=TRUE, a matrix is returned in which the values of each layer are represented by a column (with ncell(x) rows). The values per layer are in cell-order, that is, from top-left, to top-right and then down by row. Use as.matrix(x, wide=TRUE) for an alternative matrix representation where the number of rows and columns matches that of x.

240 vect

Value

matrix or data.frame

See Also

```
values<-, focalValues
```

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
r
x <- values(r)
x[3650:3655, ]
r[3650:3655]

ff <- system.file("ex/lux.shp", package="terra")
v <- vect(ff)
y <- values(v)
head(y)</pre>
```

vect

Create SpatVector objects

Description

Methods to create a SpatVector from a filename or other R object.

A filename can be for a shapefile or any spatial file format.

You can use a data.frame to make a SpatVector of points; or a "geom" matrix to make a SpatVector of any supported geometry (see examples and geom).

You can supply a list of SpatVectors to append them into a single SpatVector.

SpatVectors can also be created from "Well Known Text", and from spatial vector data objects defined in the sf or sp packages.

Usage

```
## S4 method for signature 'character'
vect(x, layer="", query="", extent=NULL, filter=NULL,
crs="", proxy=FALSE, what="")

## S4 method for signature 'matrix'
vect(x, type="points", atts=NULL, crs="")

## S4 method for signature 'data.frame'
vect(x, geom=c("lon", "lat"), crs="", keepgeom=FALSE)
```

vect 241

```
## S4 method for signature 'list'
vect(x)

## S4 method for signature 'sf'
vect(x)
```

Arguments

x	character. A filename; or a "Well Known Text" string; or a data.frame (only to make a SpatVector of points); or a "geom" matrix to make a SpatVector of any supported geometry (see examples and geom); or a spatial vector data object defined in the sf or sp packages
layer	character. layer name to select a layer from a file (database) with multiple layers
query	character. An query to subset the dataset in the OGR-SQL dialect
extent	Spat* object. The extent of the object is used as a spatial filter to select the geometries to read. Ignored if filter is not NULL
filter	SpatVector. Used as a spatial filter to select geometries to read (the convex hull is used for lines or points). It is guaranteed that all features that overlap with the extent of filter will be returned. It can happen that additional geometries are returned
type	character. Geometry type. Must be "points", "lines", or "polygons"
atts	data.frame with the attributes. The number of rows must match the number of geometrical elements
crs	character. The coordinate reference system in one of the following formats: WKT/WKT2, <authority>:<code>, or PROJ-string notation (see crs)</code></authority>
proxy	logical. If TRUE a SpatVectorProxy is returned
what	character indicating what to read. Either "" for geometries and attributes, geoms to only read the geometries, attributes to only read the attributes (that are returned as a data.frame)
geom	character. The field name(s) with the geometry data. Either two names for x and y coordinates of points, or a single name for a single column with WKT geometries)
keepgeom	logical. If TRUE the geom variable(s) is (are) also included in the attributes

Value

SpatVector

See Also

geom

242 vect

```
### SpatVector from file
f <- system.file("ex/lux.shp", package="terra")</pre>
v \leftarrow vect(f)
## subsetting (large) files
## with attribute query
v \leftarrow vect(f, query="SELECT NAME_1, NAME_2, ID_2 FROM lux WHERE ID_2 < 4")
## with an extent
e \leftarrow ext(5.9, 6.3, 49.9, 50)
v <- vect(f, extent=e)</pre>
## with polygons
p <- as.polygons(e)</pre>
v <- vect(f, filter=p)</pre>
### SpatVector from a geom matrix
x1 \leftarrow rbind(c(-180, -20), c(-140, 55), c(10, 0), c(-140, -60))
x2 \leftarrow rbind(c(-10,0), c(140,60), c(160,0), c(140,-55))
x3 \leftarrow rbind(c(-125,0), c(0,60), c(40,5), c(15,-45))
hole <- rbind(c(80,0), c(105,13), c(120,2), c(105,-13))
z \leftarrow \text{rbind(cbind(object=1, part=1, x1, hole=0), cbind(object=2, part=1, x3, hole=0)}
cbind(object=3, part=1, x2, hole=0), cbind(object=3, part=1, hole, hole=1))
colnames(z)[3:4] \leftarrow c('x', 'y')
p <- vect(z, "polygons")</pre>
z[z[, "hole"]==1, "object"] <- 4
lns <- vect(z[,1:4], "lines")</pre>
plot(p)
lines(lns, col="red", lwd=2)
### from wkt
v <- vect("POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
wkt <- c("MULTIPOLYGON ( ((40 40, 20 45, 45 30, 40 40)),
((20 35, 10 30, 10 10, 30 5, 45 20, 20 35),(30 20, 20 15, 20 25, 30 20)))",
"POLYGON ((0 -5, 10 0, 10 -10, 0 -5))")
w <- vect(wkt)</pre>
# combine two SpatVectors
vw <- rbind(w, v)</pre>
# add a data.frame
d <- data.frame(id=1:2, name=c("a", "b"))</pre>
values(w) <- d</pre>
```

vector-attributes 243

```
# add data.frame on creation, here from a geom matrix
g <- geom(w)
d <- data.frame(id=1:2, name=c("a", "b"))
m <- vect(g, "polygons", atts=d, crs="+proj=longlat +datum=WGS84")

### SpatVector from a data.frame
d$wkt <- wkt
x <- vect(d, geom="wkt")

d$wkt <- NULL
d$lon <- c(0,10)
d$lat <- c(0,10)
x <- vect(d, geom=c("lon", "lat"))

# SpatVector to sf
#sf::st_as_sf(x)</pre>
```

vector-attributes

Get or replace attribute values of a SpatVector

Description

Replace values of a SpatVector.

Usage

```
## S4 method for signature 'SpatVector'
x$name
## S4 replacement method for signature 'SpatVector'
x$name<-value</pre>
```

Arguments

x SpatVector
name character (field name) or numeric (column number value vector of new values

Value

vector

See Also

values

244 voronoi

Examples

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
v$NAME_1
v$NAME_1[3] <- "my name"
v$ID_1 <- LETTERS[1:12]
v$new <- sample(12)
values(v)

v[2,2] <- "hello"
v[1,] <- v[10,]
v[,3] <- v[,1]
v[2, "NAME_2"] <- "terra"
head(v, 3)</pre>
```

vector_layers

List or remove layers from a vector file

Description

List or remove layers from a vector file that supports layers such as GPGK

Usage

```
vector_layers(filename, delete="", return_error=FALSE)
```

Arguments

filename character. filename

delete character. layers to be deleted (ignored if the value is ""

return_error logical. If TRUE, an error occurs if some layers cannot be deleted. Otherwise a

waring is given

voronoi

Voronoi diagram and Delaunay triangles

Description

Get a Voronoi diagram or Delaunay triangles for points, or the nodes of lines or polygons

Usage

```
## S4 method for signature 'SpatVector'
voronoi(x, bnd=NULL, tolerance=0, as.lines=FALSE, deldir=FALSE)
## S4 method for signature 'SpatVector'
delaunay(x, tolerance=0, as.lines=FALSE)
```

vrt 245

Arguments

x SpatVector

bnd SpatVector to set the outer boundary of the voronoi diagram

tolerance numeric >= 0, snapping tolerance (0 is no snapping)

as.lines logical. If TRUE, lines are returned without the outer boundary

deldir logical. If TRUE, the deldir is used instead of the GEOS C++ library method.

It has been reported that deldir does not choke on very large data sets

Value

SpatVector

Examples

vrt

Virtual Raster Dataset

Description

Create a Virtual Raster Dataset (VRT) from a collection of file-based raster datasets (tiles).

Usage

```
## S4 method for signature 'character'
vrt(x, filename="", options=NULL, overwrite=FALSE)
```

Arguments

```
x character. Filenames of raster "tiles". See tiles

filename character. Output VRT filename

options character. All arguments as separate vector elements. Options as for gdalbuild-
vrt

overwrite logical. Should filename be overwritten if it exists?
```

246 weighted.mean

Value

SpatRaster

Note

A VRT can reference very many datasets. These are not all opened at the same time. The default is to open not more than 100 files. To increase performance, this maximum limit can be increased by setting the GDAL_MAX_DATASET_POOL_SIZE configuration option to a bigger value with setGDALconfig. Note that a typical user process on Linux is limited to 1024 simultaneously opened files.

See Also

makeTiles to create tiles; makeVRT to create a .vrt file for a binary raster file that does not have a header file.

Examples

```
r <- rast(ncols=100, nrows=100)
values(r) <- 1:ncell(r)
x <- rast(ncols=2, nrows=2)
filename <- paste0(tempfile(), "_.tif")
ff <- makeTiles(r, x, filename)
ff

#vrtfile <- paste0(tempfile(), ".vrt")
#v <- vrt(ff, vrtfile)

## output in lower resolution
#vrtfile <- paste0(tempfile(), ".vrt")
#v <- vrt(ff, vrtfile, options = c("-tr", 5, 5))
#head(readLines(vrtfile))
#v</pre>
```

weighted.mean

Weighted mean of layers

Description

Compute the weighted mean for each cell of the layers of a SpatRaster. The weights can be spatially variable or not.

Usage

```
## S4 method for signature 'SpatRaster,numeric'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)
## S4 method for signature 'SpatRaster,SpatRaster'
weighted.mean(x, w, na.rm=FALSE, filename="", ...)
```

where 247

Arguments

X	SpatRaster
W	A vector of weights (one number for each layer), or for spatially variable weights, a SpatRaster with weights (should have the same extent, resolution and number of layers as x)
na.rm	Logical. Should missing values be removed?
filename	character. Output filename
	options for writing files as in writeRaster

Value

SpatRaster

See Also

Summary-methods, weighted.mean

Examples

```
b <- rast(system.file("ex/logo.tif", package="terra"))
# give least weight to first layer, most to last layer
wm1 <- weighted.mean(b, w=1:3)

# spatially varying weights
# weigh by column number
w1 <- init(b, "col")

# weigh by row number
w2 <- init(b, "row")
w <- c(w1, w2, w2)

wm2 <- weighted.mean(b, w=w)</pre>
```

where

Where are the cells with the min or max values?

Description

This method returns the cell numbers for the cells with the min or max values of each layer in a SpatRaster.

Usage

```
## S4 method for signature 'SpatRaster'
where.min(x, values=TRUE, list=FALSE)
## S4 method for signature 'SpatRaster'
where.max(x, values=TRUE, list=FALSE)
```

248 which.lyr

Arguments

SpatRaster

values logical. If TRUE the min or max values are also returned list logical. If TRUE a list is returned instead of a matrix

Value

matrix or list

See Also

which and Summary-methods for which.min and which.max

Examples

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
where.min(r)</pre>
```

which.lyr

Which cells are TRUE?

Description

This method returns a single layer SpatRaster with cell values indicating the the first layer in the input that is TRUE. All numbers that are not zero (or FALSE), are considered to be TRUE.

Usage

```
## S4 method for signature 'SpatRaster'
which.lyr(x)
```

Arguments

Χ

SpatRaster

Value

SpatRaster

See Also

```
isTRUE, which, See Summary-methods for which.min and which.max
```

```
s <- rast(system.file("ex/logo.tif", package="terra"))
x <- which.lyr(s > 100)
```

width 249

width

SpatVector geometric properties

Description

width returns the minimum diameter of the geometry, defined as the smallest band that contains the geometry, where a band is a strip of the plane defined by two parallel lines. This can be thought of as the smallest hole that the geometry can be moved through, with a single rotation.

clearance returns the minimum clearance of a geometry. The minimum clearance is the smallest amount by which a vertex could be moved to produce an invalid polygon, a non-simple linestring, or a multipoint with repeated points. If a geometry has a minimum clearance of 'mc', it can be said that:

No two distinct vertices in the geometry are separated by less than 'mc' No vertex is closer than 'mc' to a line segment of which it is not an endpoint. If the minimum clearance cannot be defined for a geometry (such as with a single point, or a multipoint whose points are identical, NA is returned.

Usage

```
## $4 method for signature 'SpatVector'
width(x, as.lines=FALSE)
## $4 method for signature 'SpatVector'
clearance(x, as.lines=FALSE)
```

Arguments

x SpatVector of lines or polygonsas.lines logical. If TRUE lines are returned that define the width or clearance

Value

numeric or SpatVector

See Also

minRect

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
width(v)
clearance(v)</pre>
```

250 window

window

Set a window

Description

Experimental: Assign a window (area of interest) to a SpatRaster with a SpatExtent, or set it to NULL to remove the window. This is similar to crop without actually creating a new dataset.

Currently, the window will be forced to intersect with the extent of the SpatRaster. It is envisioned that in future versions, the window may also go outside these boundaries.

Usage

```
## S4 replacement method for signature 'SpatRaster'
window(x)<-value
## S4 method for signature 'SpatRaster'
window(x)</pre>
```

Arguments

```
x SpatRastervalue SpatExtent
```

Value

none for window<- and logical for window

See Also

```
crop, extend
```

```
f <- system.file("ex/elev.tif", package="terra")
r <- rast(f)
global(r, "mean", na.rm=TRUE)
e <- ext(c(5.9, 6,49.95, 50))
window(r) <- e
global(r, "mean", na.rm=TRUE)
r

x <- rast(f)
xe <- crop(x, e)
global(xe, "mean", na.rm=TRUE)
b <- c(xe, r)</pre>
```

wrap 251

```
window(b)
b
window(r) <- NULL
r</pre>
```

wrap

wrap (pack) a SpatRaster or SpatVector object

Description

Wrap a SpatRaster or SpatVector object to create a Packed* object. Packed objects can be saved as an R object to disk (.rds or .RData), or passed over a connection that serializes (e.g. to nodes on a computer cluster); but with large datasets passing a filename could be more sensible in that context.

Usage

```
## S4 method for signature 'SpatRaster'
wrap(x)

## S4 method for signature 'SpatVector'
wrap(x)
```

Arguments

Χ

SpatVector or SpatRaster

Value

Packed* object

```
f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
p <- wrap(v)
p
vv <- vect(p)
vv</pre>
```

252 writeCDF

writeCDF Write raster data to a NetCDF file	
---	--

Description

Write a SpatRaster or SpatRasterDataset to a NetCDF file.

When using a SpatRasterDataset, the varname, longname, and unit should be set in the object (see examples).

Always use the ".nc" or ".cdf" file extension to assure that the file can be properly read again by GDAL

Usage

Arguments

X	SpatRaster or SpatRasterDataset
filename	character. Output filename
varname	character. Name of the dataset
longname	character. Long name of the dataset
unit	character. Unit of the data
overwrite	logical. If TRUE, filename is overwritten
zname	character. The name of the "time" dimension
prec	character. One of "double", "float", "integer", "short", "byte" or "char"
compression	Can be set to an integer between 1 (least compression) and 9 (most compression)
missval	numeric, the number used to indicate missing values
	additional arguments passed on to ncvar_def

Value

SpatRaster or SpatDataSet

See Also

```
see writeRaster for writing other file formats
```

writeRaster 253

Examples

```
f <- system.file("ex/elev.tif", package="terra")</pre>
r \leftarrow rast(f)
fname <- paste0(tempfile(), ".nc")</pre>
#rr <- writeCDF(r, fname, overwrite=TRUE, varname="alt",</pre>
       longname="elevation in m above sea level", unit="m")
a <- rast(ncols=5, nrows=5, nl=50)
values(a) <- 1:prod(dim(a))</pre>
time(a) \leftarrow as.Date("2020-12-31") + 1:nlyr(a)
#aa <- writeCDF(a, fname, overwrite=TRUE, varname="power",</pre>
       longname="my nice data", unit="U/Pa")
b <- sqrt(a)
s <- sds(a, b)
names(s) <- c("temp", "prec")</pre>
longnames(s) <- c("temperature (C)", "precipitation (mm)")</pre>
units(s) <- c("C", "mm")
#ss <- writeCDF(s, fname, overwrite=TRUE)</pre>
# for CRAN
#file.remove(fname)
```

writeRaster

Write raster data to a file

Description

Write a SpatRaster object to a file.

Usage

```
## S4 method for signature 'SpatRaster,character'
writeRaster(x, filename, overwrite=FALSE, ...)
```

Arguments

X	SpatRaster
filename	character. Output filename. Can be a single filename, or as many filenames as $nlyr(x)$ to write a file for each layer
overwrite	logical. If TRUE, filename is overwritten
• • •	additional arguments for for writing files. See Details

Details

In writeRaster, and in other methods that generate SpatRaster objects, options for writing raster files to disk can be provided as additional arguments or, in a few cases, as the wopt argument (a named list) if the additional arguments are already used for a different purpose. The following options are available:

254 writeRaster

name	description
datatype	values for datatype are "INT1U", "INT2U", "INT2S", "INT4U", "INT4S", "FLT4S", "FLT8S". The first three le
filetype	file format expresses as GDAL driver names. If this argument is not supplied, the driver is derived from the filena
gdal	GDAL driver specific datasource creation options. See the GDAL documentation. For example, with the GeoTiff
tempdir	the path where temporary files are to be written to.
progress	positive integer. If the number of chunks is larger, a progress bar is shown.
memfrac	numeric between 0 and 0.9 (higher values give a warning). The fraction of available RAM that terra is allowed to
memmax	memmax - the maximum amount of RAM (in GB) that terra can use when processing a raster dataset. Should be
names	output layer names.
NAflag	numeric. value to represent missing (NA or NaN) values. See note
verbose	logical. If TRUE debugging information is printed.
steps	positive integers. In how many steps (chunks) do you want to process the data (for debugging)
todisk	logical. If TRUE processing operates as if the dataset is very large and needs to be written to a temporary file (for o

Value

SpatRaster. This function is used for the side-effect of writing values to a file.

Note

GeoTiff files are, by default, written with LZW compression. If you do not want compression, use gdal="COMPRESS=NONE".

When writing integer values the lowest available value (given the datatype) is used to represent NA for signed types, and the highest value is used for unsigned values. This can be a problem with byte data (between 0 and 255) as the value 255 is reserved for NA. To keep the value 255, you need to set another value as NAflag, or do not set a NAflag (with NAflag=NA)

See Also

see writeCDF for writing NetCDF files.

Examples

```
r <- rast(nrows=5, ncols=5, vals=1:25)

# create a temporary filename for the example
f <- file.path(tempdir(), "test.tif")

writeRaster(r, f, overwrite=TRUE)

writeRaster(r, f, overwrite=TRUE, gdal=c("COMPRESS=NONE", "TFW=YES"), datatype='INT1U')

## Or with a wopt argument:

writeRaster(r, f, overwrite=TRUE, wopt= list(gdal=c("COMPRESS=NONE"), datatype='INT1U'))

## remove the file
unlink(f)</pre>
```

writeVector 255

|--|

Description

Write a SpatVector to a file. You can choose one of many file formats.

Usage

```
## S4 method for signature 'SpatVector, character'
writeVector(x, filename, filetype=NULL, layer=NULL, insert=FALSE,
    overwrite=FALSE, options="ENCODING=UTF-8")
```

Arguments

X	SpatVector
filename	character. Output filename
filetype	character. A file format associated with a GDAL "driver" such as "ESRI Shape-file". See gdal(drivers=TRUE) or the GDAL docs. If NULL it is attempted to guess the filetype from the filename extension
layer	character. Output layer name. If NULL the filename is used
insert	logical. If TRUE, a new layer is inserted into the file, if the format allows it (e.g. GPKG allows that). See vector_layers to remove a layer
overwrite	logical. If TRUE, filename is overwritten
options	character. Format specific GDAL options such as "ENCODING=UTF-8". Use NULL or "" to not use any options

Examples

```
v <- vect(cbind(1:5,1:5))
crs(v) <- "+proj=longlat +datum=WGS84"
v$id <- 1:length(v)
v$name <- letters[1:length(v)]
tmpf1 <- tempfile()
writeVector(v, tmpf1)
x <- vect(tmpf1)

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)
tmpf2 <- tempfile()
writeVector(v, tmpf2)
y <- vect(tmpf2)</pre>
```

256 xmin

xmin

Get or set single values of an extent

Description

Get or set single values of an extent. Values can be set for a SpatExtent or SpatRaster, but not for a SpatVector)

Usage

```
## S4 method for signature 'SpatExtent'
xmin(x)
## S4 method for signature 'SpatExtent'
xmax(x)
## S4 method for signature 'SpatExtent'
ymin(x)
## S4 method for signature 'SpatExtent'
ymax(x)
## S4 method for signature 'SpatRaster'
xmin(x)
## S4 method for signature 'SpatRaster'
xmax(x)
## S4 method for signature 'SpatRaster'
ymin(x)
## S4 method for signature 'SpatRaster'
ymax(x)
## S4 method for signature 'SpatVector'
xmin(x)
## S4 method for signature 'SpatVector'
xmax(x)
## S4 method for signature 'SpatVector'
ymin(x)
## S4 method for signature 'SpatVector'
ymax(x)
## S4 replacement method for signature 'SpatRaster,numeric'
```

xyRowColCell 257

```
xmin(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
xmax(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
ymin(x)<-value

## S4 replacement method for signature 'SpatRaster,numeric'
ymax(x)<-value</pre>
```

Arguments

```
x SpatRaster, SpatExtent, or SpatVector value numeric
```

Value

SpatExtent or numeric coordinate

Examples

```
r <- rast()
ext(r)
ext(c(0, 20, 0, 20))

xmin(r)
xmin(r) <- 0
xmin(r)</pre>
```

xyRowColCell

Coordinates from a row, column or cell number and vice versa

Description

Get coordinates of the center of raster cells for a row, column, or cell number of a SpatRaster object. Or get row, column, or cell numbers from coordinates or from each other.

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the SpatRaster object. row numbers start at 1 at the top, column numbers start at 1 at the left.

Usage

```
## S4 method for signature 'SpatRaster,numeric'
xFromCol(object, col)
## S4 method for signature 'SpatRaster,numeric'
yFromRow(object, row)
```

258 xyRowColCell

```
## S4 method for signature 'SpatRaster, numeric'
xyFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
xFromCell(object, cell)
## S4 method for signature 'SpatRaster,numeric'
yFromCell(object, cell)
## S4 method for signature 'SpatRaster,numeric'
colFromX(object, x)
## S4 method for signature 'SpatRaster, numeric'
rowFromY(object, y)
## S4 method for signature 'SpatRaster,numeric,numeric'
cellFromRowCol(object, row, col)
## S4 method for signature 'SpatRaster, numeric, numeric'
cellFromRowColCombine(object, row, col)
## S4 method for signature 'SpatRaster,numeric'
rowFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
colFromCell(object, cell)
## S4 method for signature 'SpatRaster, numeric'
rowColFromCell(object, cell)
## S4 method for signature 'SpatRaster,matrix'
cellFromXY(object, xy)
```

Arguments

cell integer. cell number(s) col integer. column number(s) or missing (equivalent to all columns) row integer. row number(s) or missing (equivalent to all rows) x x coordinate(s) y y coordinate(s) xy matrix of x and y coordinates	object	SpatRaster
row integer. row number(s) or missing (equivalent to all rows) x x coordinate(s) y y coordinate(s)	cell	integer. cell number(s)
x x coordinate(s) y y coordinate(s)	col	integer. column number(s) or missing (equivalent to all columns)
y y coordinate(s)	row	integer. row number(s) or missing (equivalent to all rows)
·	Х	x coordinate(s)
xy matrix of x and y coordinates	у	y coordinate(s)
	ху	matrix of x and y coordinates

Details

Cell numbers start at 1 in the upper left corner, and increase from left to right, and then from top to bottom. The last cell number equals the number of cells of the SpatRaster (see ncell).

zonal 259

Value

```
xFromCol, yFromCol, xFromCell, yFromCell: vector of x or y coordinates xyFromCell: matrix(x,y) with coordinate pairs colFromX, rowFromY, cellFromXY, cellFromRowCol, rowFromCell, colFromCell: vector of row, column, or cell numbers rowColFromCell: matrix of row and column numbers
```

See Also

crds

Examples

```
r <- rast()
xFromCol(r, c(1, 120, 180))
yFromRow(r, 90)
xyFromCell(r, 10000)
xyFromCell(r, c(0, 1, 32581, ncell(r), ncell(r)+1))
cellFromRowCol(r, 5, 5)
cellFromRowCol(r, 1:2, 1:2)
cellFromRowCol(r, 1, 1:3)
# all combinations
cellFromRowColCombine(r, 1:2, 1:2)
colFromX(r, 10)
rowFromY(r, 10)
xy <- cbind(lon=c(10,5), lat=c(15, 88))
cellFromXY(r, xy)
# if no row/col specified all are returned
range(xFromCol(r))
length(yFromRow(r))
```

zonal

Zonal statistics

Description

Compute zonal statistics, that is summarize values of a SpatRaster for each "zone" defined by another SpatRaster.

If fun is a true R function, zonal may fail for very large SpatRaster objects, except for the functions ("mean", "min", "max", "sum", "isNA", and "notNA").

You can also summarize values of a SpatVector for each polygon (zone) defined by another SpatVector.

See extract to summarize values of a SpatRaster with a SpatVector.

260 zonal

Usage

```
## S4 method for signature 'SpatRaster, SpatRaster'
zonal(x, z, fun=mean, ..., as.raster=FALSE, filename="", wopt=list())
## S4 method for signature 'SpatVector, SpatVector'
zonal(x, z, fun=mean, ..., weighted=FALSE, as.polygons=FALSE)
```

Arguments

X	SpatRaster or SpatVector
Z	Object of the same class as x. That is, either a SpatRaster with cell-values representing zones or a SpatVector with each polygon geometry representing a zone
fun	function to be applied to summarize the values by zone. Either as character: "mean", "min", "max", "sum", "isNA", and "notNA" and, for relatively small SpatRasters, a proper function
	additional arguments passed to fun
as.raster	logical. If TRUE, a SpatRaster is returned with the zonal statistic for each zone
filename	character. Output filename (ignored if as.raster=FALSE
wopt	list with additional arguments for writing files as in writeRaster
weighted	logical. If TRUE, a weighted.mean is computed and fun is ignored. Weights are based on the length of the lines or the area of the polygons in x that intersect with z. This argument is ignored of x is a SpatVector or points
as.polygons	logical. Should the results be merged with the attributes of z?

Value

A data. frame with a value for each zone) or a SpatRaster or SpatVector of polygons

See Also

See global for "global" statistics (i.e., all of x is considered a single zone), app for local statistics, and extract for summarizing values for polygons

Examples

```
r <- rast(ncols=10, nrows=10)
values(r) <- 1:ncell(r)
z <- rast(r)
values(z) <- rep(c(1:2, NA, 3:4), each=20)
names(z) <- "zone"
zonal(r, z, "sum", na.rm=TRUE)

# multiple layers
r <- rast(system.file("ex/logo.tif", package = "terra"))
# zonal layer
z <- rast(r, 1)</pre>
```

zoom 261

```
names(z) <- "zone"
values(z) <- rep(c(1:2, NA, c(3:4)), each=ncell(r)/5, length.out=ncell(r))
zonal(r, z, "mean", na.rm = TRUE)
# raster of zonal values
zr <- zonal(r, z, "mean", na.rm = TRUE, as.raster=TRUE)

### SpatVector

f <- system.file("ex/lux.shp", package="terra")
v <- vect(f)[,c(2,4)]

p <- spatSample(v, 100)
values(p) <- data.frame(b2=1:100, ssep1=100:1)
zonal(p, v, mean)</pre>
```

zoom

Zoom in on a map

Description

Zoom in on a map (plot) by providing a new extent, by default this is done by clicking twice on the map.

Usage

```
## $4 method for signature 'SpatRaster'
zoom(x, e=draw(), maxcell=100000, layer=1, new=FALSE, ...)
## $4 method for signature 'SpatVector'
zoom(x, e=draw(), new=FALSE, ...)
```

Arguments

X	SpatRaster
е	SpatExtent
maxcell	positive integer. Maximum number of cells used for the map
layer	positive integer to select the layer to be used
new	logical. If TRUE, the zoomed in map will appear on a new device (window)
	additional arguments passed to plot

Value

SpatExtent (invisibly)

262 zoom

See Also

draw, plot

Index

!,SpatRaster-method(Compare-methods),	disagg, 78
* classes	dots, 81 erase, 83
options, 150	expanse, 84
SpatExtent-class, 207	extract, 88
SpatRaster-class, 210	extremes, 91
SpatVector-class, 213	factors, 92
* math	fillHoles, 94
Arith-methods, 30	fillTime, 95
atan2, 36	focalValues, 105
Compare-methods, 57	gaps, 107
Math-methods, 135	geomtype, 110
modal, 140	head and tail, 113
* methods	hist, 114
activeCat, 19	image, 116
aggregate, 22	impose, 117
animate, 26	inset, 120
app, 27	intersect, 122
Arith-methods, 30	is.bool, 123
as.data.frame, 32	lapp, 125
as.list, 33	lines, 130
as.raster, 34	makeTiles, 131
barplot, 39	makeVRT, 132
boundaries, 40	mask, 133
cartogram, 44	match, 134
catalyze, 45	Math-methods, 135
cells, 46	merge, 137
cellSize, 47	mergeTime, 139
colors, 55	mosaic, 141
combineGeoms, 56	normalize.longitude, 147
Compare-methods, 57	not.na, 149
concats, 59	patches, 152
contour, 60	perim, 154
convHull, 61	persp, 154
cover, 63	plet, 155
crosstab, 67	plot, 157
deepcopy, 69	plotRGB, 161
densify, 70	predict, 163
diff, 74	quantile, 169

query, 170	app, 27
rapp, 171	approximate, 29
rast, 172	Arith-methods, 30
read and write, 178	as.character, 31
relate, 180	as.data.frame, 32
replace, 184	as.list,33
RGB, 187	as.raster, 34
sapp, 189	as.spatvector, 35
scatterplot, 192	atan2, 36
scoff, 193	autocorrelation, 37
sds, 194	barplot, 39
selectRange, 198	boundaries, 40
serialize, 199	boxplot, 41
setValues, 200	buffer, 42
sharedPaths, 202	c, 43
simplifyGeom, 204	cartogram, 44
sources, 206	catalyze, 45
Spatial interpolation, 207	cells, 46
split, <u>215</u>	cellSize, 47
sprc, 215	centroids, 49
summarize, 220	clamp, 49
summary, 222	classify, 50
svc, 223	click, 52
symdif, 224	coerce, 54
tapp, 225	colors, 55
text, 228	combineGeoms, 56
topology, 232	Compare-methods, 57
union, 234	compareGeom, 58
values, 239	concats, 59
vect, 240	contour, 60
vector_layers, 244	convHull, 61
vrt, 245	costDistance, 62
width, 249	cover, 63
window, 250	crds, 64
wrap, 251	crop, 65
writeCDF, 252	crosstab, 67
writeRaster, 253	crs, 68
writeVector, 255	deepcopy, 69
* package	densify, 70
terra-package, 6	density, 71
* spatial	depth, 72
activeCat, 19	describe, 73
add, 20	diff,74
adjacent, 20	dimensions, 75
aggregate, 22	direction, 77
align, 23	disagg, 78
all.equal, 25	distance, 79
animate, 26	dots, 81

draw, 82	na.omit, 142
erase, 83	NAflag, 143
expanse, 84	names, 144
ext, 86	nearest, 146
extend, 87	normalize.longitude, 147
extract, 88	north, 147
extremes, 91	not.na, 149
factors, 92	options, 150
fillHoles, 94	origin, 151
fillTime, 95	pairs, 151
flip, 96	patches, 152
focal, 97	perim, 154
focal3D, 99	persp, 154
focalCor, 100	plet, 155
focalCpp, 101	plot, 157
focalMat, 103	plotRGB, 161
focalReg, 104	predict, 163
focalValues, 105	project, 166
freq, 106	quantile, 169
gaps, 107	query, 170
gdal, 107	rapp, 171
geom, 108	rast, 172
geomtype, 110	rasterize, 175
global, 111	rasterizeGeom, 177
gridDistance, 112	read and write, 178
head and tail, 113	rectify, 180
hist, 114	relate, 180
ifel, 115	rep, 183
image, 116	replace, 184
impose, 117	resample, 184
initialize, 117	rescale, 186
inplace, 118	
inset, 120	RGB, 187 rotate, 188
intersect, 122	sapp, 189
is.bool, 123	sbar, 190
is.lonlat, 124	
	scale, 191
lapp, 125	scatterplot, 192
linearUnits, 129	scoff, 193
lines, 130	sds, 194
makeTiles, 131	segregate, 195
makeVRT, 132	sel, 196
mask, 133	selectHighest, 197
match, 134	selectRange, 198
Math-methods, 135	serialize, 199
mem, 137	setValues, 200
merge, 137	shade, 201
mergeTime, 139	sharedPaths, 202
mosaic, 141	shift, 203

simplifyGeom, 204	zonal, 259
sort, 205	zoom, 261
sources, 206	* univar
SpatExtent-class, 207	freq, 106
Spatial interpolation, 207	modal, 140
SpatRaster-class, 210	[, 15
spatSample, 211	[,SpatExtent,missing,missing-method
SpatVector-class, 213	(ext), 86
spin, 214	[,SpatExtent,numeric,missing-method
split, 215	(ext), 86
sprc, 215	[,SpatRaster,SpatExtent,missing-method
stretch, 216	(extract), 88
subset, 217	[,SpatRaster,SpatRaster,missing-method
subst, 219	(extract), 88
summarize, 220	[,SpatRaster,SpatVector,missing-method
summary, 222	(extract), 88
svc, 223	[,SpatRaster,character,missing-method
symdif, 224	(subset), 217
tapp, 225	[,SpatRaster,data.frame,missing-method
terra-package, 6	(extract), 88
terrain, 226	[,SpatRaster,logical,missing-method
text, 228	(replace), 184
tighten, 229	[,SpatRaster,matrix,missing-method
time, 230	(extract), 88
tmpFiles, 231	[,SpatRaster,missing,missing-method
topology, 232	(extract), 88
transpose, 233	[,SpatRaster,missing,numeric-method
trim, 234	(extract), 88
union, 234	[,SpatRaster,numeric,missing-method
unique, 236	(extract), 88
units, 237	[,SpatRaster,numeric,numeric-method
valid, 238	(extract), 88
values, 239	[,SpatRasterCollection,numeric,missing-method
vect, 240	(subset), 217
vector-attributes, 243	[,SpatRasterDataset,character,missing-method
vector_layers, 244	(subset), 217
voronoi, 244	[,SpatRasterDataset,logical,missing-method
vrt, 245	(subset), 217
where, 247	[,SpatRasterDataset,numeric,missing-method
which.lyr, 248	(subset), 217
width, 249	[,SpatRasterDataset,numeric,numeric-method
window, 250	(subset), 217
wrap, 251	[,SpatVector,SpatExtent,missing-method
writeCDF, 252	(extract), 88
writeRaster, 253	[,SpatVector,SpatVector,missing-method
writeVector, 255	(extract), 88
xmin, 256	[,SpatVector,data.frame,missing-method
xyRowColCell, 257	(subset), 217
J	(

[,SpatVector,logical,character-method	[<-,SpatVector,ANY,missing-method
(subset), 217	(vector-attributes), 243
[,SpatVector,logical,logical-method	[<-,SpatVector,missing,ANY-method
(subset), 217	(vector-attributes), 243
[,SpatVector,logical,missing-method (subset), 217	<pre>[<-,SpatVectorCollection,numeric,missing-method</pre>
[,SpatVector,logical,numeric-method	[[,SpatRaster,ANY,missing-method
(subset), 217	(subset), 217
[,SpatVector,matrix,missing-method	[[,SpatRaster,character,missing-method
(subset), 217	(subset), 217
[,SpatVector,missing,character-method	[[,SpatRaster,logical,missing-method
(subset), 217	(subset), 217
[,SpatVector,missing,logical-method	[[,SpatRaster,numeric,missing-method
(subset), 217	(subset), 217
	[[,SpatRasterDataset,ANY,ANY-method
[,SpatVector,missing,missing-method	(subset), 217
(subset), 217	[[,SpatVector,character,missing-method
[,SpatVector,missing,numeric-method (subset),217	(vector-attributes), 243
	[[,SpatVector,logical,missing-method
[,SpatVector,numeric,character-method	(vector-attributes), 243
(subset), 217	[[,SpatVector,numeric,missing-method
[,SpatVector,numeric,logical-method	(vector-attributes), 243
(subset), 217	[[,SpatVectorCollection,numeric,missing-method
[,SpatVector,numeric,missing-method	(svc), 223
<pre>(subset), 217 [,SpatVector,numeric,numeric-method</pre>	<pre>[[<-,SpatRaster,character,missing-method</pre>
	(replace), 184
<pre>(subset), 217 [,SpatVectorCollection,numeric,missing-metho</pre>	d[[<-,SpatRaster,numeric,missing-method
(svc), 223	(replace), 184
[<-,SpatExtent,numeric,missing-method	<pre>[[<-,SpatVector,character,missing-method</pre>
(ext), 86	(vector-attributes), 243
[<-,SpatRaster,ANY-method	<pre>[[<-,SpatVector,numeric,missing-method</pre>
(replace), 184	(vector-attributes), 243
[<-,SpatRaster,SpatVector,missing-method	\$ (vector-attributes), 243
(replace), 184	\$,SpatExtent-method(ext),86
[<-,SpatRaster,logical,missing-method	\$, SpatRaster-method (subset), 217
(replace), 184	\$, SpatRasterDataset-method (subset), 217
[<-,SpatRaster,missing,missing-method	<pre>\$,SpatVector-method</pre>
(replace), 184	(vector-attributes), 243
[<-,SpatRaster,missing,numeric-method	\$<- (vector-attributes), 243
(replace), 184	\$<-, SpatExtent-method (ext), 86
[<-,SpatRaster,numeric,missing-method	\$<-, SpatRaster-method (replace), 184
(replace), 184	\$<-,SpatVector-method
[<-,SpatRaster,numeric,numeric-method	(vector-attributes), 243 %in% (match), 134
(replace), 184	%in%, SpatRaster-method (match), 134
[<-,SpatRasterDataset,numeric,missing-method	nation, spatitaster liethou (liateri), 134
(sds), 194	activeCat, 11, 19, 45, 93
[<-,SpatVector,ANY,ANY-method	activeCat,SpatRaster-method
(vector-attributes), 243	(activeCat), 19

activeCat<- (activeCat), 19 add. 20 add<- (add), 20 adjacent, SpatRaster, SpatRaster-method		Audith assessing Contrates to the d
(activeCat), 19 add<- (add), 20 add<- , 7.17 add<- (add), 20 add<- , SpatRaster, SpatRaster-method		
add, 20 add<-, 7.17 add<-, 7.17 add<-, 7.17 add<-, 7.17 add<-, 7.17 add<-, 5patRaster, SpatRaster-method (add), 20 add<-, SpatRaster, SpatRaster-method (add), 20 add<-, SpatRaster, SpatRaster-method (adjacent), 20 adjacent, SpatRaster-method (adjacent), 20 aggregate, SpatRaster-method (adjacent), 22 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatRaster-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, pumeric-method (align), 23 align, SpatExtent, pumeric-method (align), 23 align (spatExtent, spatRaster-method (align), 23 align (spatExtent, spatRaster-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 align, SpatExtent, spatRaster-method (align), 23 as. array, 9 as. array (coerce), 54 as. array, 9 as. array (coerce), 54 as. array, SpatRaster-method (fis. bool), 123 as. bool, SpatRaster-method (is. bool), 123 as. character, SpatRaster-method (as. character), 31 as. character, SpatRaster-method (as. character), 31 as. contour, 16 as. contour, 16 as. contour, 16 as. contour, SpatRaster-method (as. data. frame, SpatRaster-method (as. data. frame), 32 as. factor, 11, 93 as. factor (is. bool), 123 as. factor (is. bool), 123 as. factor (is. bool), 123 as. int, 8 as. int, 8 as. int, 18 as. int, 5patRaster-method (is. bool), 123 as. int, 5patRaster-method (is. bool)		
add<-,7,17 add<-(add), 20 add<-(add), 20 adjacent, SpatRaster, SpatRaster-method (add), 20 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatRector-method (adjacent), 20 adjacent, SpatRector-method (adjacent), 20 adjacent, SpatRector-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRector-method (aggregate), 22 align, JS, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, spatRaster-method (align), 23 all (summarize), 220 all, equal, 25, 58 all, equal, SpatRaster-method (all, equal), 25 animate, 26 any (summarize), 220 any, SpatRaster-method (all, equal), 25 animate, 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, Iogical-method (Arith-methods, 30 Arith-methods, 30		
add<-(add), 20 add<-, SpatRaster, SpatRaster-method (add), 20 adjacent, 9, 13, 20, 146, 181 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatRaster-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatRaster-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 all (summarize), 220 all. equal, SpatRaster, SpatRaster-method (all. equal, 25, 58 all. equal, SpatRaster, SpatRaster-method (all. equal), 25 animate, 26 any, SpatRaster-method (animate), 26 any, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approx, 29 app, SpatRaster-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, logical-method (Arith-methods), 30 Arith, SpatRaster, numeric-method (Arith-methods), 30 Arith, SpatRaster, logical-method (Arith-methods), 30 Arith, S		
add<-,SpatRaster,SpatRaster-method (add), 20 adjacent, 9, 13, 20, 146, 181 adjacent, SpatRaster-method (adjacent), 20 adgregate, SpatVector-method (adjacent), 20 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (align), 23 align, SpatExtent, spatRaster-method (align), 23 all (summarize), 220 all, SpatRaster-method (summarize), 220 animate, SpatRaster-method (all. equal.), 25 animate, 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 apply, 27 approx, 29 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, numeric-method (Arith-methods), 30 Arith-methods, 30 Arith-methods, 30 Arith-methods, 30 Arith-methods, 30 Arith-methods, 30 Arith-methods, 30 Arit	add<-, 7, 17	
(Arith-methods), 30 adjacent, 9, 13, 20, 146, 181 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatVector-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 alli (summarize), 220 all, equal, 25, 58 all. equal, 25, 58 all. equal, 25, 58 all. equal, 25, 58 animate, 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method ((Arith-methods), 30 Arith, SpatRaster, spatRaster, method (Arith-methods), 30 Arith, SpatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster-method (align), 23 ali (summarize), 220 ali, SpatRaster nethod (summarize), 220 animate, SpatRaster-method (animate), 26 any (summarize), 220 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method ((Arith-methods), 30 Arith, SpatRaster, spatRaster, puthod ((Arith-methods), 30 Arith, SpatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster-method ((Arith-methods), 30 Arith, SpatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster-method ((Arith-methods), 30 Arith, SpatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster-method ((Arith-methods), 30 Arith, SpatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster, spatRaster-method ((align), 23 as.array, 9 as.array, 9 as.array, SpatRaster-method (is.bool), 123 as.character, 31 as.character, 32 as.character, 31 as.character, 32 as.character, 32 as.character, 33 as.co	add<- (add), 20	(Arith-methods), 30
adjacent, 9, 13, 20, 146, 181 adjacent, SpatRaster-method (adjacent), 20 adjacent, SpatVector-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, spatRaster-method (align), 23 all, SpatRaster-method (summarize), 220 all, SpatRaster-method (summarize), 220 all, equal, 25, 58 all.equal, 25, 58 all.equal, 25, 58 all.equal, 25, 220 app, 7, 77, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 appp, SpatRaster-method (app), 27 appproximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, pumeric-method (Arith-methods, 8, 30, 58 as.array, SpatRaster, pumeric-method (as.char	add<-,SpatRaster,SpatRaster-method	Arith,SpatExtent,SpatExtent-method
adjacent, SpatRaster-method (adjacent), 20	(add), 20	(Arith-methods), 30
adjacent, SpatVector-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 ali (summarize), 220 all, SpatRaster-method (align), 25 all. equal, 25, 58 all. equal, 25, 58 all. equal, 25 animate, 26 any (summarize), 220 any, SpatRaster-method (animate), 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 appprox, 29 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, \$patRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, methods), 30 Arith, methods), 30 Arith, SpatRaster, patRaster-method (Arith-methods), 30 Arith, methods), 30 Arith, SpatRaster, patRaster-method (Arith-methods), 30 Arith, methods), 30 Arith, SpatRaster, patRaster-method (Arith-methods), 30 Arith, SpatRaster, patRaster, method (Arith-methods), 30 Arith, SpatRaster, numeric-method (Arith-methods), 30 Arith, SpatRaster, patRaster, method (Arith-methods), 30 Arith, SpatRaster, patRaster, p	adjacent, 9, 13, 20, 146, 181	Arith,SpatRaster,logical-method
adjacent, SpatVector-method (adjacent), 20 aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 ali (summarize), 220 all, SpatRaster-method (all, equal), 25 animate, 26 animate, 26 animate, 26 animate, SpatRaster-method (all, equal), 25 animate, 26 any (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (app), 27 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (fis. bool), 123 as. int, 8 as. int, SpatRaster-method (is. bool), 123	adjacent, SpatRaster-method (adjacent),	(Arith-methods), 30
Arith, SpatRaster, numeric-method (aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, J5, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 as. array, 9 as. array, 9 as. array, 9 as. array, SpatRaster-method (coerce), 54 as. bool, 8 as. bool, SpatRaster-method (is. bool), 123 as. character, 31 as. character, 31 as. character, 31 as. character, SpatExtent-method (as. character), 31 as. character, SpatRaster-method (as. character), 31 as. contour, 16 as.	20	Arith, SpatRaster, missing-method
20	adjacent, SpatVector-method (adjacent),	(Arith-methods), 30
aggregate, 7, 14, 22, 78, 184, 185, 225, 235 aggregate, SpatRaster-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 align, SpatRaster-method (summarize), 220 all, SpatRaster-method (summarize), 220 all, SpatRaster, SpatRaster-method (all. equal), 25, 58 all. equal, 125, 58 all. equal, SpatRaster, SpatRaster-method (all. equal), 25 animate, 26 animate, SpatRaster-method (animate), 26 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, SpatRaster, method (Arith-methods), 30 Arith, SpatRaster, SpatRaster, method (Arith-methods), 30 Arith, SpatRaster, SpatRaster, method (Arith-methods), 30 Arith, SpatRaster, SpatRester, SpatRester-method (arith-methods), 30 Arith, SpatRaster, SpatRester, method (Arith-methods), 30 Arith, SpatRaster, SpatRester, method (Arith-methods), 30 Arith, SpatRaster, SpatRester, spatRester-method (Arith-methods), 30 Arith, SpatRaster, SpatRester-method (Arith-methods), 30 Arith, SpatRaster, SpatRaster, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, S		Arith, SpatRaster, numeric-method
aggregate, SpatRaster-method (aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 align, SpatRaster-method (align), 23 align, SpatRaster-method (align), 23 all (summarize), 220 all. equal, 25, 58 all. equal, 25, 58 all. equal, 25 animate, SpatRaster-method (animate), 26 any (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 apppoximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 Arith, SpatRaster-method (Arith-methods), 30 Arith, SpatRaster, SpatRaster, SpatVector-method (Arith-methods), 30 Arith, SpatRaster, SpatRaster-method (Arith-methods), 30 Arith, SpatVector, SpatVector-method (Arith-methods), 30 Arith, SpatRaster, SpatRaster-method (Arith-methods), 30 Arith, SpatVector, SpatVector-method (Arith-methods), 30 Arith, SpatVector, SpatVector-method (Arith-methods), 30 Arith, SpatVector, SpatRaster-method (Arith-methods), 30 Arith, SpatVector, SpatVector-method (cas. dracere), 54 as. array, 9 as. array, 9 as. bool, 8 as. bool, (is. bool), 123 as. character, SpatRaster-method (is. bool), 123 as. character, SpatExtent-method (as. character), 31 as. character, SpatExtent-method (as. character), 31 as. character, SpatRaster-method (as	aggregate, 7, 14, 22, 78, 184, 185, 225, 235	
(aggregate), 22 aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 as. array, SpatRaster-method (coerce), 54 as. array, SpatRaster-method (coerce), 54 as. bool, 8 as. bool, 9 as. bool, 9 as. character, 31 as. character, 31 as. character, 3patRaster-method (as. character), 31 as. character, SpatRaster-method (as. character), 31 as. contour, 16 as. contour, 16 as. contour, 16 as. contour, 16 as. contour, SpatRaster-method (contour), 60 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 Arith, Iogical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method (is. bool), 123 as. int, 8 array, SpatRaster-method (is. bool), 123 as. character, 3patExtent-method (as. character), 31 as. character, SpatRaster-method (as. character),		
aggregate, SpatVector-method (aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 align, SpatExtent, SpatRaster-method (align), 23 all (summarize), 220 all, equal, 25, 58 all.equal, SpatRaster-method (summarize), 220 animate, SpatRaster-method (alimate), 26 animate, 26 animate, 26 animate, SpatRaster-method (alimate), 26 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 approx, 29 approximate, SpatRaster-method (approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method (align), 23 arith, methods, 8, 30, 58 arrows, 130 as. array, 9 as. array, 9 as. array (coerce), 54 as. bool (is.bool), 123 as. bool (is.bool), 123 as. character, 31 as. character, SpatRaster-method (as. character), 31 as. contour, 16 as. contour, 20 as. data. frame, 14, 32, 54, 239 as. data. frame, SpatRaster-method (as. data. frame, SpatRaster-method (as. data. frame), 32 as. factor, 11, 93 as. factor, 123 as. factor, 13, 94 as. bool (is. bool), 123 as. bool (is. bool), 123 as. character, spatRaster-method (as. character), 31 as. character,		
(aggregate), 22 align, 15, 23 align, SpatExtent, numeric-method		
align, 15, 23 align, SpatExtent, numeric-method		
align, SpatExtent, numeric-method		
(align), 23 as.array, 9 as.array, 9 as.array, 5patRaster-method (align), 23 as.array, 5patRaster-method (coerce), 54 as.array, 5patRaster-method (is.bool), 123 as.bool, 8 as.array, 5patRaster-method (is.bool), 123 as.bool, 8 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.bool, 8 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.bool, 5patRaster-method (is.bool), 123 as.array, 5patRaster-method (coerce), 54 as.bool, 8 as.bool, 5patRaster-method (is.bool), 123 as.abool, 5patRaster-method (coerce), 54 as.bool, 5patRaster-method (coerce), 54 as.bool, 5patRaster-method (coerce), 54 as.bool, 5patRaster-method (coerce), 5patRaster-method (as.aba.frame, 5patRaster-method (coerce),	=	
align, SpatExtent, SpatRaster-method (align), 23 as. array (coerce), 54 as. array, SpatRaster-method (coerce), 54 as. array, SpatRaster-method (coerce), 54 as. bool, 8 as. bool, 8 as. bool, 8 as. bool, 8 as. bool, 5patRaster-method (is. bool), 123 as. bool, SpatRaster-method (is. bool), 123 as. character, 31 as. character, 31 as. character, 31 as. character, 31 as. character, 5patRaster-method (animate, 26 animate, SpatRaster-method (animate), 26 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approx, 29 as. data. frame, SpatRaster-method apply, 27 approx, 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method as. int, SpatRaster-method (is. bool), 123 as. int, SpatRaster-method (
align), 23 all (summarize), 220 all, SpatRaster-method (summarize), 220 all, SpatRaster-method (summarize), 220 all, equal, 25, 58 all, equal, SpatRaster, SpatRaster-method (all, equal), 25 animate, 26 animate, 26 animate, SpatRaster-method (animate), 26 animate, SpatRaster-method (animate), 26 any (summarize), 220 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method (is, bool), 123 as. character, SpatExtent-method (as. character), 31 as. character, SpatExtent-method (as. character), 31 as. contour, 16 as. contour (contour), 60 as. contour, SpatRaster-method (contour), 60 as. data. frame, SpatRaster-method (as. data. frame, SpatRaster-method (as. data. frame, SpatRaster-method (as. character), 31 as. character, SpatRaster-method (as. character, SpatRaster-method (as. character, SpatRaster-method (as. character, SpatRaster-method (as.	, /-	
all (summarize), 220 all, SpatRaster-method (summarize), 220 all.equal, 25, 58 all.equal, SpatRaster, SpatRaster-method (all.equal), 25 animate, 26 animate, SpatRaster-method (animate), 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app, SpatRaster-method (app), 27 approximate, 8, 17, 29, 95 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method (is.bool), 123 as.bool, (is.bool), 123 as.bool, (is.bool), 123 as.bool (is.bool), 123 as.bool (is.bool), 123 as.bool, SpatRaster-method (is.bool), 123 as.character, SpatExtent-method (as.character), 31 as.character, SpatRaster-method (as.character), 31 as.contour, 16 as.contour (contour), 60 as.contour, SpatRaster-method (contour), 60 as.data.frame, SpatRaster-method (as.data.frame, SpatRaster-method (as.data.frame, SpatRaster-method (is.bool), 123 as.factor, 11, 93 as.factor, 11, 93 as.factor, SpatRaster-method (is.bool), 123 as.int (is.bool), 123 as.int (is.bool), 123 as.int, SpatRaster-method (is.bool), 123 as.bool (is.bool), 123 as.character, SpatRaster-method (as.character, 31 as.character, 31		
all.SpatRaster-method (summarize), 220 all.equal, 25, 58 all.equal, SpatRaster, SpatRaster-method (all.equal), 25 animate, 26 animate, SpatRaster-method (animate), 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method as.character, SpatRaster-method as		
all.equal, 25, 58 all.equal, SpatRaster, SpatRaster-method (all.equal), 25 animate, 26 animate, SpatRaster-method (animate), 26 any (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 Arith, logical, SpatRaster-method (all.equal), 25 as. character, SpatRaster-method (as. data. fram		
$ \begin{array}{lll} \text{all.equal}, \text{SpatRaster}, \text{SpatRaster-method} \\ & (all.equal), 25 \\ & \text{as.character}, \text{SpatExtent-method} \\ & \text{animate}, \text{SpatRaster-method} (\text{animate}), 26 \\ & \text{any (summarize)}, 220 \\ & \text{apy, SpatRaster-method (summarize)}, 220 \\ & \text{app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136,} \\ & 169, 171, 172, 189, 220, 221, 225, \\ & 226, 260 \\ & \text{app, SpatRaster-method (app), 27} \\ & \text{app, SpatRaster-method (app), 27} \\ & \text{approx, 29} \\ & \text{approximate}, \text{SpatRaster-method} \\ & \text{(as.character, SpatRaster-method} \\ & (as.character, Spa$		
$(all.equal), 25 \\ animate, 26 \\ (as.character), 31 \\ animate, SpatRaster-method (animate), 26 \\ any (summarize), 220 \\ app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, \\ 169, 171, 172, 189, 220, 221, 225, \\ 226, 260 \\ app, SpatRaster-method (app), 27 \\ app, SpatRasterDataset-method (app), 27 \\ approx, 29 \\ approximate, SpatRaster-method (app), 20 \\ approximate, SpatRaster-method (app), 21 \\ approximate, SpatRaster-method (appl), 22 \\ approximate, SpatRaster-method (appl), 23 \\ approximate, SpatRaster-method (appl), 29 \\ approximate, SpatRaster-method (appl), 20 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 22 \\ approximate, SpatRaster-method (appl), 23 \\ approximate, SpatRaster-method (appl), 20 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 22 \\ approximate, SpatRaster-method (appl), 23 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 21 \\ approximate, SpatRaster-method (appl), 22 \\ approximate, SpatRaster-method (appl), 23 \\ approximate, SpatRaster-method (appl), 22 \\ approximate, SpatRaster-met$		
animate, 26 animate, SpatRaster-method (animate), 26 any (summarize), 220 any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136,		
animate, SpatRaster-method (animate), 26 as. character, SpatRaster-method any (summarize), 220 (as. character), 31 as. contour, 16 as. contour, 16 as. contour (contour), 60 as. contour, SpatRaster-method (contour), 226 , 260 as. contour, SpatRaster-method (app), 27 as. data. frame, 14 , 32 , 54 , 239 app, SpatRasterDataset-method (app), 27 as. data. frame, SpatRaster-method apply, 27 as. data. frame, SpatRaster-method approximate, 8 , 17 , 29 , 95 as. data. frame, SpatVector-method approximate, SpatRaster-method as. factor, 11 , 93 as. factor (is.bool), 123 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 as. factor, SpatRaster-method (is.bool), 123 as. int, 8 (Arith-methods), 30 as. int (is.bool), 123 as. int, SpatRaster-method (is.bool), 123		
any (summarize), 220		
any, SpatRaster-method (summarize), 220 app, 7, 17, 27, 30, 58, 111, 125, 126, 135, 136, 169, 171, 172, 189, 220, 221, 225, 226, 260 app, SpatRaster-method (app), 27 app, SpatRasterDataset-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith, logical, SpatRaster-method (Arith-methods), 30 Arith, missing, SpatRaster-method (as. contour, SpatRaster-method (contour), 60 as. contour, SpatRaster-method (contour), 60 as. contour, SpatRaster-method (as. data. frame, 14, 32, 54, 239 as. data. frame, SpatRaster-method (as. data. frame), 32 as. factor, 11, 93 as. factor, 11, 93 as. factor, 11, 93 as. factor, SpatRaster-method (is. bool), 123 as. int, 8 as. int, 8 as. int, 8 as. contour, 16 as. contour, 20 as. data. frame, 14, 32, 54, 239 as. data. frame, 14, 32, 54, 239 as. data. frame, 14, 32, 54, 239 as. data. frame, SpatRaster-method		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
$169, 171, 172, 189, 220, 221, 225, \\ 226, 260 \\ \text{app, SpatRaster-method (app), 27} \\ \text{app, SpatRasterDataset-method (app), 27} \\ \text{app, SpatRasterDataset-method (app), 27} \\ \text{approx, 29} \\ \text{approximate, 8, 17, 29, 95} \\ \text{approximate, SpatRaster-method} \\ \text{approximate, SpatRaster-method} \\ \text{approximate), 29} \\ \text{area (deprecated), 72} \\ \text{area, SpatRaster-method (deprecated), 72} \\ \text{Arith, logical, SpatRaster-method} \\ \text{(Arith-methods), 30} \\ \text{Arith, missing, SpatRaster-method} \\ \text{(as. data. frame, SpatRaster-method} \\ \text{(as. data. frame), 32} \\ \text{as. factor, 11, 93} \\ \text{as. factor, SpatRaster-method (is. bool), 123} \\ \text{as. int, 8} \\ \text{as. int, 8} \\ \text{as. int, SpatRaster-method (is. bool), 123} \\ as. int, SpatRaster-method (i$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
app, SpatRaster-method (app), 27 app, SpatRasterDataset-method (app), 27 approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith,logical, SpatRaster-method (Arith-methods), 30 Arith,missing, SpatRaster-method (app), 27 as.data.frame, SpatRaster-method (as.data.frame), 32 as.data.frame, SpatRaster-method (as.data.frame), 32 as.data.frame), 32 as.factor, 11, 93 as.factor(is.bool), 123 as.factor, SpatRaster-method (is.bool), 123 as.int, 8 as.int, 8 as.int, 8 as.int, 8 as.int, 8 as.int, 8 as.int, SpatRaster-method (is.bool), 123	169, 171, 172, 189, 220, 221, 225,	as.contour,SpatRaster-method(contour),
app, SpatRasterDataset-method (app), 27		60
apply, 27	app, SpatRaster-method (app), 27	as.data.frame, <i>14</i> , 32, <i>54</i> , <i>239</i>
approx, 29 approximate, 8, 17, 29, 95 approximate, SpatRaster-method (approximate), 29 area (deprecated), 72 area, SpatRaster-method (deprecated), 72 Arith,logical, SpatRaster-method (Arith-methods), 30 Arith,missing, SpatRaster-method as. data.frame, SpatVector-method as. factor, 11, 93 as. factor (is.bool), 123 as. factor, SpatRaster-method (is.bool), 123 as. int, 8 as. int, 8 as. int, 8 as. int, SpatRaster-method (is.bool), 123	app, SpatRasterDataset-method(app), 27	as.data.frame,SpatRaster-method
approximate, $8, 17, 29, 95$ (as.data.frame), 32 approximate, SpatRaster-method as.factor, $11, 93$ (approximate), 29 as.factor (is.bool), 123 area (deprecated), 72 as.factor, SpatRaster-method (is.bool), area, SpatRaster-method (deprecated), 72 123 as.int, 8 (Arith-methods), 30 as.int (is.bool), 123 as.int (is.bool), 123 as.int, SpatRaster-method (is.bool), 123	apply, 27	(as.data.frame), 32
approximate, SpatRaster-method as. factor, 11, 93	approx, 29	as.data.frame,SpatVector-method
$\begin{array}{lll} \text{approximate, SpatRaster-method} & \text{as. factor, } 11,93 \\ & \text{(approximate), } 29 & \text{as. factor (is. bool), } 123 \\ \text{area (deprecated), } 72 & \text{as. factor, SpatRaster-method (is. bool),} \\ \text{area, SpatRaster-method (deprecated), } 72 & 123 \\ \text{Arith, logical, SpatRaster-method} & \text{as. int, } 8 \\ & \text{(Arith-methods), } 30 & \text{as. int (is. bool), } 123 \\ \text{Arith, missing, SpatRaster-method} & \text{as. int, SpatRaster-method (is. bool), } 123 \\ \end{array}$	approximate, 8, 17, 29, 95	(as.data.frame), 32
$\begin{array}{ll} \text{(approximate), 29} & \text{as.factor(is.bool), 123} \\ \text{area (deprecated), 72} & \text{as.factor, SpatRaster-method (is.bool),} \\ \text{area, SpatRaster-method (deprecated), 72} & 123 \\ \text{Arith,logical, SpatRaster-method} & \text{as.int, 8} \\ & \text{(Arith-methods), 30} & \text{as.int (is.bool), 123} \\ \text{Arith,missing, SpatRaster-method} & \text{as.int, SpatRaster-method (is.bool), 123} \\ \end{array}$		as.factor, 11, 93
area (deprecated), 72 as.factor, SpatRaster-method (is.bool), area, SpatRaster-method (deprecated), 72 123 Arith, logical, SpatRaster-method as.int, 8 $ (Arith-methods), 30 \\ Arith, missing, SpatRaster-method as.int, SpatRaster-method (is.bool), 123 as.int, SpatRaster-method (is.bool), 123$	(approximate), 29	as.factor(is.bool), 123
area, SpatRaster-method (deprecated), 72 123 Arith,logical, SpatRaster-method as.int, 8		
Arith,logical,SpatRaster-method as.int, 8 (Arith-methods), 30 as.int (is.bool), 123 as.int,SpatRaster-method (is.bool), 123		
(Arith-methods), 30 as.int(is.bool), 123 Arith,missing,SpatRaster-method as.int,SpatRaster-method(is.bool), 123		
Arith, missing, SpatRaster-method as.int, SpatRaster-method (is.bool), 123		
		· · · · · · · · · · · · · · · · · · ·
	(Arith-methods), 30	as.integer, SpatRaster-method (is.bool),

123	atan2,SpatRaster,SpatRaster-method
as.lines, <i>16</i>	(atan2), 36
as.lines(as.spatvector), 35	atan_2 (atan2), 36
as.lines,SpatExtent-method	atan_2,SpatRaster,SpatRaster-method
(as.spatvector), 35	(atan2), 36
as.lines,SpatRaster-method	autocor, 9
(as.spatvector), 35	autocor (autocorrelation), 37
as.lines,SpatVector-method	autocor, numeric-method
(as.spatvector), 35	(autocorrelation), 37
as.list, 14, 32, 33	autocor, SpatRaster-method
as.list,SpatRaster-method(as.list),33	(autocorrelation), 37
as.list,SpatRasterCollection-method	autocorrelation, 37
(as.list), 33	axis, <i>158</i>
as.list,SpatRasterDataset-method	
(as.list), 33	barplot, 17, 39, 39
	barplot, SpatRaster-method (barplot), 39
as.list, SpatVector-method (as.list), 33	blocks (read and write), 178
as.logical,SpatRaster-method(is.bool),	blocks,SpatRaster-method(read and
123	write), 178
as.matrix, 9, 32, 239	boundaries, <i>9</i> , 40, <i>153</i>
as.matrix(coerce), 54	boundaries, SpatRaster-method
as.matrix,SpatRaster-method(coerce),54	(boundaries), 40
as.numeric, 11	boxplot, 17, 39, 41, 41, 114, 152
as.numeric(catalyze),45	boxplot, SpatRaster-method (boxplot), 41
as.numeric,SpatRaster-method	buffer, 14, 42, 122
(catalyze), 45	buffer, SpatRaster-method (buffer), 42
as.points, <i>16</i> , <i>17</i>	buffer, SpatVector-method (buffer), 42
as.points(as.spatvector),35	bxp, 41
as.points,SpatExtent-method	υλρ, <i>11</i>
(as.spatvector), 35	c, 7, 17, 20, 43, 139, 234
as.points,SpatRaster-method	c, SpatRaster-method (c), 43
(as.spatvector), 35	c, SpatRasterDataset-method (c), 43
as.points,SpatVector-method	c, SpatVector-method (c), 43
(as.spatvector), 35	c, SpatVectorCollection-method (c), 43
as.polygons, <i>16</i> , <i>18</i> , <i>54</i>	cartogram, 16, 44, 82
as.polygons (as.spatvector), 35	cartogram, SpatVector-method
as.polygons,SpatExtent-method	(cartogram), 44
(as.spatvector), 35	catalyze, 11, 19, 45, 93
as.polygons,SpatRaster-method	catalyze, SpatRaster-method (catalyze),
(as.spatvector), 35	45
as.polygons,SpatVector-method	categories, 118
(as.spatvector), 35	categories (factors), 92
as.raster, <i>34</i> , 34	categories, SpatRaster-method (factors),
as.raster,SpatRaster-method	92
(as.raster), 34	cats, 11, 19, 45, 60, 123, 124
as.spatvector, 35	cats (factors), 92
as.vector (coerce), 54	cats (factors), 92 cats, SpatRaster-method (factors), 92
as.vector(coerce), 54 as.vector, SpatRaster-method (coerce), 54	cellFromRowCol, 11
atan2.36	cellFromRowCol (xvRowColCell), 257
utune, JU	$CCTTI I OHINOWCOT IVAINOMCOTCCTTI' A \cap I$

cellFromRowCol,SpatRaster,numeric,numeric-	method (xyRowColCell), 257
(xyRowColCell), 257	colorize, <i>16</i> , <i>161</i> , <i>163</i>
cellFromRowColCombine, 11	colorize (RGB), 187
<pre>cellFromRowColCombine (xyRowColCell),</pre>	colorize, SpatRaster-method (RGB), 187
257	colors, 55
cell From Row Col Combine, Spat Raster, numeric, n	ume caltale (bod ors), 55
(xyRowColCell), 257	<pre>coltab,SpatRaster-method(colors),55</pre>
cellFromXY, 11	coltab<-(colors), 55
cellFromXY (xyRowColCell), 257	<pre>coltab<-,SpatRaster-method(colors), 55</pre>
cellFromXY,SpatRaster,data.frame-method	combineGeoms, 15, 56
(xyRowColCell), 257	<pre>combineGeoms,SpatVector,SpatVector-method</pre>
cellFromXY,SpatRaster,matrix-method	(combineGeoms), 56
(xyRowColCell), 257	Compare, numeric, SpatRaster-method
cells, 11, 17, 46, 89	(Compare-methods), 57
cells,SpatRaster,missing-method	Compare, SpatExtent, SpatExtent-method
(cells), 46	(Compare-methods), 57
cells,SpatRaster,numeric-method	Compare, SpatRaster, character-method
(cells), 46	(Compare-methods), 57
cells,SpatRaster,SpatExtent-method	Compare, SpatRaster, numeric-method
(cells), 46	(Compare-methods), 57
cells,SpatRaster,SpatVector-method	Compare, SpatRaster, SpatRaster-method
(cells), 46	(Compare-methods), 57
cellSize, 8, 17, 47, 85	Compare-methods, $8,57$
cellSize, SpatRaster-method (cellSize),	compareGeom, <i>10</i> , <i>17</i> , <i>25</i> , <i>58</i>
47	compareGeom,SpatRaster,SpatRaster-method
centroids, <i>13</i> , 49	(compareGeom), 58
centroids, SpatVector-method	${\tt compare Geom, Spat Vector, missing-method}$
(centroids), 49	(compareGeom), 58
clamp, 49	compareGeom, SpatVector, SpatVector-method
clamp, numeric-method (clamp), 49	(compareGeom), 58
clamp, SpatRaster-method (clamp), 49	concats, <i>11</i> , 59
classify, 8, 18, 50, 50, 115, 137, 143, 219	concats, SpatRaster-method (concats), 59
classify, SpatRaster-method (classify),	contour, <i>16</i> , <i>60</i> , 60
50	$\verb contour , \verb SpatRaster-method (\verb contour), 60$
clearance, 14	convHull, <i>13</i> , 61
clearance (width), 249	convHull, SpatVector-method (convHull),
clearance, SpatVector-method (width), 249	61
click, 14, 16, 52, 83, 196	cor, 152
click, missing-method (click), 52	costDistance, 9, 62, 112
click, SpatRaster-method (click), 52	costDistance,SpatRaster-method
click, SpatVector-method (click), 52	(costDistance), 62
coerce, 33, 54	cov.wt, 128
colFromCell (xyRowColCell), 257	cover, 8, 13, 63, 115
colFromCell, SpatRaster, numeric-method	cover, SpatRaster, SpatRaster-method
(xyRowColCell), 257	(cover), 63
colFromX, 11	cover, SpatVector, SpatVector-method
colFromX (xyRowColCell), 257	(cover), 63
colFromX,SpatRaster,numeric-method	cppFunction, <i>101</i>

and 12 17 (4 100 250	d
crds, 13, 17, 64, 109, 259	describe, character-method (describe), 73
crds, SpatRaster-method (crds), 64	diff, 74
crds, SpatVector-method (crds), 64	diff, SpatRaster-method (diff), 74
crop, 7, 14, 15, 65, 84, 87, 88, 122, 134, 181,	dim (dimensions), 75
184, 185, 196, 235, 250	dim, SpatRaster-method (dimensions), 75
crop, SpatRaster-method (crop), 65	<pre>dim,SpatRasterDataset-method</pre>
crop, SpatRasterDataset-method (crop), 65	(dimensions), 75
crop, SpatVector-method (crop), 65	<pre>dim, SpatVector-method (dimensions), 75</pre>
crosstab, 8, 67	<pre>dim,SpatVectorProxy-method</pre>
crosstab, SpatRaster, missing-method	(dimensions), 75
(crosstab), 67	<pre>dim<-,SpatRaster-method(dimensions),75</pre>
crs, 10, 13, 36, 68, 129, 167, 168, 212, 241	dimensions, 75
crs,sf-method(crs),68	direction, 9, 77
crs, SpatRaster-method (crs), 68	direction, SpatRaster-method
crs, SpatRasterDataset-method (crs), 68	(direction), 77
crs, SpatVector-method (crs), 68	disagg, 7, 14, 17, 23, 65, 78, 184, 185
crs, SpatVectorProxy-method (crs), 68	disagg, SpatRaster-method (disagg), 78
crs<- (crs), 68	
crs<-, SpatRaster, ANY-method (crs), 68	disagg, SpatVector-method (disagg), 78
crs<-,SpatRaster-method(crs),68	distance, 9, 17, 43, 63, 77, 79, 112
crs<-, SpatVector, ANY-method (crs), 68	distance, matrix, matrix-method
crs<-, SpatVector-method (crs), 68	(distance), 79
cut, <i>39</i>	distance, matrix, missing-method
	(distance), 79
data.frame, 32, 179, 239	distance, SpatRaster, missing-method
datatype (geomtype), 110	(distance), 79
datatype, SpatVector-method (geomtype),	distance, SpatRaster, SpatVector-method
110	(distance), 79
Date, 230	distance, SpatVector, ANY-method
deepcopy, 69	(distance), 79
deepcopy, SpatRaster-method (deepcopy),	distance, SpatVector, SpatVector-method
69	(distance), 79
deepcopy, SpatVector-method (deepcopy),	dots, <i>16</i> , 81
69	dots, SpatVector-method (dots), 81
delaunay, 13	draw, 15–17, 24, 53, 82, 162, 262
delaunay (voronoi), 244	draw, character-method (draw), 82
delaunay, SpatVector-method (voronoi),	draw, missing-method (draw), 82
244	droplevels (factors), 92
deldir, 245	<pre>droplevels, SpatRaster-method (factors),</pre>
densify, 70	92
densify, 70 densify, SpatVector-method (densify), 70	
density, 17, 71	emptyGeoms (topology), 232
density, 77, 71 density, SpatRaster-method (density), 71	emptyGeoms,SpatVector-method
deprecated, 72	(topology), 232
	erase, 13, 15, 56, 83, 224
depth, 72, 230	
depth, SpatRaster-method (depth), 72	erase, SpatVector, missing-method
depth<- (depth), 72	(erase), 83
depth<-, SpatRaster-method (depth), 72	erase, SpatVector, SpatExtent-method
describe, 73, 108, 194, 195	(erase), 83

erase,SpatVector,SpatVector-method	factors, 92
(erase), 83	fileBlocksize(read and write), 178
expanse, 8, 13, 17, 48, 84	filled.contour, 60
expanse, SpatRaster-method (expanse), 84	fillHoles, <i>13</i> , <i>14</i> , 94, <i>107</i>
expanse, SpatVector-method (expanse), 84	fillHoles,SpatVector-method
ext, 10, 13, 15, 17, 24, 66, 76, 86, 88, 207	(fillHoles), 94
ext,Extent-method(ext),86	fillTime, 11, 30, 95, 139
ext, missing-method (ext), 86	<pre>fillTime,SpatRaster-method(fillTime),</pre>
ext, numeric-method (ext), 86	95
ext, Raster-method (ext), 86	flip, 7, 14, 96, 186, 204, 233
ext,sf-method(ext),86	flip, SpatRaster-method (flip), 96
ext,SpatExtent-method(ext),86	flip, SpatVector-method (flip), 96
ext,Spatial-method(ext),86	focal, 9, 29, 30, 40, 97, 99–104, 111, 153, 227
ext, SpatRaster-method(ext), 86	focal, SpatRaster-method (focal), 97
ext,SpatRasterCollection-method(ext),	focal3D, 98, 99
86	focal3D, SpatRaster-method (focal3D), 99
ext, SpatRasterDataset-method (ext), 86	focalCor, 9, 17, 98, 100
ext, SpatVector-method (ext), 86	<pre>focalCor,SpatRaster-method(focalCor),</pre>
ext, SpatVectorProxy-method(ext), 86	100
ext<- (ext), 86	focalCpp, 9, 98, 101
ext<-,SpatRaster,numeric-method(ext),	<pre>focalCpp,SpatRaster-method(focalCpp),</pre>
86	101
ext<-,SpatRaster,SpatExtent-method	focalMat, 98, 103
(ext), 86	focalReg, 9, 98, 101, 104
extend, 7, 65, 87, 184, 235, 250	<pre>focalReg,SpatRaster-method(focalReg),</pre>
extend, SpatExtent-method (extend), 87	104
extend, SpatRaster-method (extend), 87	focalValues, 98, 102, 104, 105, 240
extract, <i>9</i> , <i>10</i> , <i>14</i> , <i>18</i> , 88, <i>111</i> , <i>198</i> , <i>259</i> , <i>260</i>	<pre>focalValues,SpatRaster-method</pre>
extract,SpatRaster,data.frame-method	(focalValues), 105
(extract), 88	free_RAM (mem), 137
extract,SpatRaster,matrix-method	freq, 8, 67, 106
(extract), 88	freq, SpatRaster-method (freq), 106
extract,SpatRaster,numeric-method	
(extract), 88	gaps, 14, 107, 203, 204, 232
extract, SpatRaster, sf-method (extract),	gaps, SpatVector, SpatExtent-method
88	(gaps), 107
extract,SpatRaster,SpatExtent-method	gaps, SpatVector-method (gaps), 107
(extract), 88	gdal, 107, <i>174</i>
extract,SpatRaster,SpatVector-method	gdalCache (gdal), 107
(extract), 88	geom, 13, 32, 33, 65, 108, 113, 240, 241
extract, SpatVector, data.frame-method	geom, SpatVector-method (geom), 108
(extract), 88	geomtype, 110
extract,SpatVector,matrix-method	geomtype, Spatial-method (geomtype), 110
(extract), 88	geomtype, SpatVector-method (geomtype),
extract, SpatVector, SpatVector-method	110
(extract), 88	geomtype, SpatVectorProxy-method
extremes, 91	(geomtype), 110
Contrar 02	getGDALconfig (gdal), 107
factor, 92	global, 8, 17, 85, 111, 128, 169, 222, 223, 260

global, SpatRaster-method (global), III	interpolate, SpatRaster-method (Spatial
gridDistance, 9, 63, 112	interpolation), 207
<pre>gridDistance,SpatRaster-method (gridDistance), 112</pre>	intersect, <i>13</i> , <i>15</i> , <i>56</i> , <i>65</i> , <i>66</i> , <i>84</i> , 122, <i>181</i> , <i>196</i> , <i>235</i>
has.colors(colors), 55	<pre>intersect,SpatExtent,SpatExtent-method (intersect), 122</pre>
has.colors,SpatRaster-method(colors), 55	<pre>intersect, SpatExtent, SpatVector-method</pre>
has.RGB (RGB), 187	intersect, SpatVector, SpatExtent-method
has.RGB, SpatRaster-method (RGB), 187	(intersect), 122
hasMinMax (extremes), 91	intersect, SpatVector, SpatVector-method
hasMinMax, SpatRaster-method (extremes), 91	(intersect), 122
hasValues (sources), 206	is bool, 123
hasValues, SpatRaster-method (sources),	is.bool, SpatRaster-method (is.bool), 123
206	is. factor, 11, 93
head (head and tail), 113	is factor (is.bool), 123
head and tail, 113	is.factor,SpatRaster-method(is.bool),
head, SpatRaster-method (head and tail),	123
113	is.finite,SpatRaster-method
head, SpatVector-method (head and tail),	(Compare-methods), 57
113	is.infinite,SpatRaster-method
hist, 17, 39, 41, 114, 114, 152	(Compare-methods), 57
hist, SpatRaster-method (hist), 114	is.int (is.bool), 123
	is.int, SpatRaster-method (is.bool), 123
ifel, 30, 58, 115	is.lines (geomtype), 110
ifel, SpatRaster-method (ifel), 115	is.lines, SpatVector-method (geomtype),
ifelse, <i>115</i>	110
image, 16, 116, 116, 159	is.lonlat, 10, 13, 17, 124
image, SpatRaster-method (image), 116	is.lonlat,SpatRaster-method
impose, 117	(is.lonlat), 124
<pre>impose,SpatRasterCollection-method</pre>	is.lonlat,SpatVector-method
(impose), 117	(is.lonlat), 124
inext (inset), 120	is.na, SpatRaster-method
<pre>inext,SpatVector-method(inset), 120</pre>	(Compare-methods), 57
init, 8, 200, 201	is.nan, SpatRaster-method
init (initialize), 117	(Compare-methods), 57
init, SpatRaster-method (initialize), 117	is.points (geomtype), 110
initialize, 117	is.points, SpatVector-method (geomtype),
inMemory, 10, 12	110
inMemory (sources), 206	is.polygons (geomtype), 110
inMemory, SpatRaster-method (sources),	is.polygons,SpatVector-method
206	(geomtype), 110
inplace, 118	is.related (relate), 180
inset, 16, 120, 148, 186, 190	is.related,SpatExtent,SpatRaster-method
inset, SpatRaster-method (inset), 120	(relate), 180
inset, SpatVector-method (inset), 120	is.related, SpatExtent, SpatVector-method
interpolate, 9	(relate), 180
interpolate (Spatial interpolation), 207	is.related,SpatRaster,SpatExtent-method

(relate), 180	lines, SpatExtent-method (lines), 130
is.related,SpatRaster,SpatRaster-method	lines, SpatRaster-method (lines), 130
(relate), 180	lines, SpatVector-method (lines), 130
<pre>is.related,SpatRaster,SpatVector-method</pre>	log (Math-methods), 135
(relate), 180	<pre>log,SpatRaster-method(Math-methods),</pre>
<pre>is.related,SpatVector,SpatExtent-method</pre>	135
(relate), 180	Logic,logical,SpatRaster-method
<pre>is.related,SpatVector,SpatRaster-method</pre>	(Compare-methods), 57
(relate), 180	Logic, numeric, SpatRaster-method
<pre>is.related,SpatVector,SpatVector-method</pre>	(Compare-methods), 57
(relate), 180	Logic,SpatRaster,logical-method
is.valid, 15	(Compare-methods), 57
is.valid(valid), 238	Logic,SpatRaster,numeric-method
is.valid,SpatVector-method(valid),238	(Compare-methods), 57
isFALSE, SpatRaster-method (is.bool), 123	${\sf Logic}$, ${\sf SpatRaster}$, ${\sf SpatRaster}$ - ${\sf method}$
isTRUE, 248	(Compare-methods), 57
isTRUE, SpatRaster-method (is.bool), 123	Logic-methods, 8
1 0 17 00 105 170 100	Logic-methods (Compare-methods), 57
lapp, 8, 17, 28, 125, 172, 189	longnames (names), 144
lapp, SpatRaster-method (lapp), 125	longnames, SpatRaster-method (names), 144
<pre>lapp, SpatRasterDataset-method(lapp),</pre>	longnames,SpatRasterDataset-method
125	(names), 144
lapply, 189	longnames<- (names), 144
layerCor, 8, 17, 101, 127	<pre>longnames<-,SpatRaster-method(names),</pre>
layerCor, SpatRaster-method (layerCor),	144
127	<pre>longnames<-,SpatRasterDataset-method</pre>
legend, 158	(names), 144
length, 15	mala unique 145
length (dimensions), 75	make.unique, 145
length, SpatRasterCollection-method	makeNodes, 14
(dimensions), 75	makeNodes (topology), 232
length, SpatRasterDataset-method	makeNodes, SpatVector-method (topology),
(dimensions), 75	232
length, SpatVector-method (dimensions),	makeTiles, 131, 246
	makeTiles, SpatRaster-method
length, SpatVectorCollection-method	(makeTiles), 131
(dimensions), 75 levels, 11, 123, 124	makeValid, <i>15</i> makeValid (valid), 238
	makeValid, SpatVector-method (valid), 238
levels (factors), 92 levels, SpatRaster-method (factors), 92	makeVRT, 132, 246
levels<- (factors), 92	mask, 8, 65, 84, 115, 133, 176
levels<-, SpatRaster-method (factors), 92	mask, SpatRaster, sf-method (mask), 133
linearUnits, 13, 129	mask, SpatRaster, SpatRaster-method
linearUnits, SpatRaster-method	(mask), 133
(linearUnits), 129	mask,SpatRaster,SpatVector-method
linearUnits, SpatVector-method	(mask), 133
(linearUnits), 129	mask, SpatVector, sf-method (mask), 133
lines, 16, 130, 157, 159	mask, SpatVector, SpatVector-method
lines, leaflet-method (plet), 155	(mask), 133
11.100, 1001 100 mc choa (p100), 100	(masky, 155

match, 134, 135	mergeTime,SpatRasterDataset-method
match, SpatRaster-method (match), 134	(mergeTime), 139
math, <i>126</i>	min(summarize), 220
math (Math-methods), 135	min, SpatRaster-method (summarize), 220
Math, SpatExtent-method (Math-methods),	minmax, 10
135	minmax (extremes), 91
Math, SpatRaster-method (Math-methods), 135	minmax, SpatRaster-method (extremes), 91 minRect, 249
math, SpatRaster-method (Math-methods),	minRect (convHull), 61
135	minRect, SpatVector-method (convHull), 61
Math-methods, 8, 15, 135	modal, 140, 220, 221
Math2, SpatExtent-method (Math-methods),	modal, SpatRaster-method (modal), 140
135	mosaic, 7, 138, 141, 215, 235
Math2, SpatRaster-method (Math-methods),	mosaic, SpatRaster, SpatRaster-method (mosaic), 141
Math2, SpatVector-method (Math-methods),	mosaic,SpatRasterCollection,missing-method
135	(mosaic), 141
Math2-methods (Math-methods), 135	
max (summarize), 220	na.omit, <i>12</i> , 142
max, SpatRaster-method (summarize), 220	na.omit, SpatVector-method (na.omit), 142
mean (summarize), 220	NAflag, 10, 17, 143
mean, SpatExtent-method (summarize), 220	NAflag, SpatRaster-method (NAflag), 143
mean, SpatRaster-method (summarize), 220	NAflag<- (NAflag), 143
mean, SpatVector-method (summarize), 220	NAflag<-, SpatRaster-method (NAflag), 143
median (summarize), 220	name (names), 144
median, SpatRaster-method (summarize),	name<- (names), 144
220	names, 10, 12, 13, 114, 144, 163, 237
<pre>median, SpatVector-method (summarize),</pre>	names, SpatRaster-method (names), 144
220	names,SpatRasterDataset-method(names),
mem, 137	names, SpatVector-method (names), 144
mem_info, 12, 150, 254	names, SpatVectorCollection-method
mem_info (mem), 137	(names), 144
merge, 7, 14, 88, 137, 138, 141, 215, 235	names, SpatVectorProxy-method (names),
merge, SpatExtent, SpatExtent-method	144
(merge), 137	names<- (names), 144
merge, SpatRaster, SpatRaster-method	names<-, SpatRaster-method (names), 144
(merge), 137	names<-,SpatRasterDataset-method
merge,SpatRasterCollection,missing-method	(names), 144
(merge), 137	names<-, SpatVector-method (names), 144
merge, SpatVector, data.frame-method	names<-,SpatVectorCollection-method
(merge), 137	(names), 144
merge,SpatVector,SpatVector-method	ncell, 10, 258
(merge), 137	ncell (dimensions), 75
mergeLines, 14	ncell, ANY-method (dimensions), 75
mergeLines (topology), 232	ncell, SpatRaster-method (dimensions), 75
mergeLines,SpatVector-method	ncell,SpatRasterDataset-method
(topology), 232	(dimensions), 75
mergeTime, 11, 139	ncol. 10, 13

ncol (dimensions), 75	PackedSpatVector-class
<pre>ncol,SpatRaster-method(dimensions),75</pre>	(SpatVector-class), 213
ncol,SpatRasterDataset-method	pairs, <i>17</i> , <i>41</i> , <i>114</i> , <i>151</i> , 151
(dimensions), 75	pairs, SpatRaster-method (pairs), 151
<pre>ncol,SpatVector-method(dimensions),75</pre>	par, <i>130</i> , <i>156</i>
ncol<- (dimensions), 75	patches, 9, 17, 40, 152
<pre>ncol<-,SpatRaster,numeric-method</pre>	patches, SpatRaster-method (patches), 152
(dimensions), 75	perim, <i>13</i> , 154
ncvar_def, 252	perim, SpatVector-method (perim), 154
nearby, 13, 21, 181	perimeter (perim), 154
nearby (nearest), 146	perimeter, SpatVector-method (perim), 154
nearby, SpatVector-method (nearest), 146	persp, 16, 154, 155
nearest, <i>13</i> , 146	persp, SpatRaster-method (persp), 154
nearest, SpatVector-method (nearest), 146	plet, 155
nlyr, 10, 17	plet, missing-method (plet), 155
nlyr (dimensions), 75	plet, SpatRaster-method (plet), 155
nlyr, SpatRaster-method (dimensions), 75	plet, SpatVector-method (plet), 155
nlyr,SpatRasterDataset-method	plet, SpatVectorCollection-method
(dimensions), 75	(plet), 155
nlyr<- (dimensions), 75	plot, 16, 17, 26, 44, 60, 71, 82, 116, 148, 156,
nlyr<-,SpatRaster,numeric-method	157, 159, 161–163, 187, 190, 228,
(dimensions), 75	261, 262
normalize.longitude, 147	plot, SpatExtent, missing-method (plot),
normalize.longitude,SpatVector-method	157
(normalize.longitude), 147	plot,SpatRaster,character-method
north, 16, 147, 190	(plot), 157
not.na, 149	plot, SpatRaster, missing-method (plot),
not.na, SpatRaster-method (not.na), 149	157
nrow, 10, 13	plot,SpatRaster,numeric-method(plot),
nrow (dimensions), 75	157
nrow, SpatRaster-method (dimensions), 75	plot,SpatRaster,SpatRaster-method
nrow, SpatRasterDataset-method	(scatterplot), 192
(dimensions), 75	plot,SpatVector,character-method
nrow, SpatVector-method (dimensions), 75	
nrow<- (dimensions), 75	<pre>(plot), 157 plot,SpatVector,data.frame-method</pre>
nrow<-,SpatRaster,numeric-method	(plot), 157
(dimensions), 75	
nsrc (dimensions), 75	<pre>plot,SpatVector,missing-method(plot),</pre>
nsrc, SpatRaster-method (dimensions), 75	
	<pre>plot,SpatVector,numeric-method(plot),</pre>
options, 150	plot,SpatVectorProxy,missing-method
origin, <i>10</i> , 151	(plot), 157
origin, SpatRaster-method (origin), 151	plotRGB, <i>16</i> , 161, <i>187</i>
origin<- (origin), 151	plotRGB, SpatRaster-method (plotRGB), 161
origin<-,SpatRaster-method(origin),151	points, 16, 82, 130, 159
	points (lines), 130
PackedSpatRaster-class	points, leaflet-method (plet), 155
(SpatRaster-class), 210	<pre>points,SpatExtent-method(lines), 130</pre>

points, SpatVector-method (lines), 130	rasterize,sf,SpatRaster-method
polys, 16, 159	(rasterize), 175
polys (lines), 130	rasterize,SpatVector,SpatRaster-method
polys, SpatExtent-method (lines), 130	(rasterize), 175
polys, SpatVector-method (lines), 130	rasterizeGeom, 16, 177
POSIX1t, 230	rasterizeGeom, SpatVector, SpatRaster-method
predict, 9, 51, 163, 207, 208	(rasterizeGeom), 177
<pre>predict, SpatRaster-method (predict), 163</pre>	RasterSource (SpatRaster-class), 210
prod (summarize), 220	RasterSource-class (SpatRaster-class),
<pre>prod,SpatRaster-method(summarize), 220</pre>	210
project, 7, 10, 12, 17, 68, 154, 166, 184, 185	Rcpp_RasterSource-class
project, matrix-method (project), 166	(SpatRaster-class), 210
project, SpatRaster-method (project), 166	<pre>Rcpp_SpatCategories-class</pre>
project, SpatVector-method (project), 166	(SpatRaster-class), 210
0 10 160 222 222	Rcpp_SpatExtent-class
quantile, 8, 18, 169, 222, 223	(SpatExtent-class), 207
quantile, SpatRaster-method (quantile),	Rcpp_SpatRaster-class
169	(SpatRaster-class), 210
quantile, SpatVector-method (quantile),	<pre>Rcpp_SpatVector-class</pre>
169	(SpatVector-class), 213
query, 170	read and write, 178
query, SpatVectorProxy-method (query), 170	readStart, 11
170	readStart(read and write), 178
rainbow, 39	readStart,SpatRaster-method(read and
range (summarize), 220	write), 178
range, SpatRaster-method (summarize), 220	${\tt readStart,SpatRasterDataset-method}$
rapp, 8, 171, <i>198</i>	(read and write), 178
rapp, SpatRaster-method (rapp), 171	readStop, 12
rast, 7, 16, 17, 172, 211	readStop(read and write), 178
rast, ANY-method (rast), 172	readStop,SpatRaster-method(read and
rast, array-method (rast), 172	write), 178
rast, character-method (rast), 172	readStop,SpatRasterDataset-method
rast, data.frame-method(rast), 172	(read and write), 178
rast, list-method (rast), 172	readValues(read and write), 178
rast, matrix-method (rast), 172	readValues,SpatRaster-method(read and
rast, missing-method (rast), 172	write), 178
rast, PackedSpatRaster-method(rast), 172	rectify, 180
rast, SpatExtent-method (rast), 172	rectify, SpatRaster-method (rectify), 180
rast, SpatRaster-method (rast), 172	relate, 13, 21, 122, 146, 180
$\verb rast,SpatRasterDataset-method (\verb rast) ,$	relate, SpatExtent, SpatExtent-method
172	(relate), 180
rast, SpatVector-method (rast), 172	relate, SpatExtent, SpatRaster-method
rast, stars-method (rast), 172	(relate), 180
rast, stars_proxy-method (rast), 172	relate, SpatExtent, SpatVector-method
rasterImage, 34, 162	(relate), 180
rasterize, 16, 175, 177	relate, SpatRaster, SpatExtent-method
rasterize, matrix, SpatRaster-method	(relate), 180
(rasterize), 175	relate,SpatRaster,SpatRaster-method

(1-4-) 100	
(relate), 180	rowColFromCell (xyRowColCell), 257
relate, SpatRaster, SpatVector-method	rowColFromCell,SpatRaster,numeric-method
(relate), 180	(xyRowColCell), 257
relate, SpatVector, missing-method	rowFromCell (xyRowColCell), 257
(relate), 180	rowFromCell,SpatRaster,numeric-method
relate,SpatVector,SpatExtent-method	(xyRowColCell), 257
(relate), 180	rowFromY, 11
relate,SpatVector,SpatRaster-method	<pre>rowFromY (xyRowColCell), 257</pre>
(relate), 180	<pre>rowFromY,SpatRaster,numeric-method</pre>
relate,SpatVector,SpatVector-method	(xyRowColCell), 257
(relate), 180	runif, <i>117</i>
removeDupNodes, 14	
removeDupNodes (topology), 232	sapp, 8, 126, 189
removeDupNodes,SpatVector-method	sapp, SpatRaster-method (sapp), 189
(topology), 232	sapp, SpatRasterDataset-method (sapp),
rep, 183, 183	189
rep, SpatRaster-method (rep), 183	saveRDS, 199, 200
replace, 184, 184	saveRDS (serialize), 199
res, 10, 174	
res (dimensions), 75	saveRDS, SpatRaster-method (serialize),
res, SpatRaster-method (dimensions), 75	199
	saveRDS, SpatVector-method (serialize),
res, SpatRasterDataset-method	199
(dimensions), 75	sbar, 16, 121, 148, 159, 190
res<- (dimensions), 75	scale, 8, 191, 191, 192
res<-,SpatRaster,numeric-method	scale, SpatRaster-method (scale), 191
(dimensions), 75	scatterplot, 192
res<-, SpatRaster-method (dimensions), 75	scoff, 193
resample, 7, 24, 65, 78, 117, 168, 180, 184	scoff, SpatRaster-method (scoff), 193
resample, SpatRaster, SpatRaster-method	scoff<- (scoff), 193
(resample), 184	<pre>scoff<-,SpatRaster-method(scoff), 193</pre>
rescale, 14, 44, 121, 186, 214	sds, 12, 175, 194, 216
rescale, SpatRaster-method (rescale), 186	sds, array-method (sds), 194
rescale, SpatVector-method (rescale), 186	sds, character-method (sds), 194
rev(flip),96	sds, list-method (sds), 194
rev, SpatRaster-method (flip), 96	sds, missing-method (sds), 194
RGB, 163, 187	sds, SpatRaster-method (sds), 194
RGB, SpatRaster-method (RGB), 187	sds, stars-method (sds), 194
RGB<- (RGB), 187	sds, stars_proxy-method (sds), 194
RGB<-, SpatRaster-method (RGB), 187	segregate, 8, 17, 195
rotate, 7, 96, 147, 186, 188, 204, 233	segregate, SpatRaster-method
rotate, SpatRaster-method (rotate), 188	(segregate), 195
round, 39	sel, <i>14</i> , <i>16</i> , 196
round (Math-methods), 135	sel, SpatRaster-method (sel), 196
round, SpatRaster-method (Math-methods),	sel, SpatVector-method (sel), 196
135	selectHighest, 197
round, SpatVector-method (Math-methods),	selectHighest, SpatRaster-method
135	(selectHighest), 197
rowColFromCell. 11	selectRange. 7. 18. 171. 172. 198
I OWCOTI I OHICCTT. 11	3C+CCCNGHEC. /. 10. 1 / 1. 1 / 2. 1 70

selectRange,SpatRaster-method	(setValues), 200
(selectRange), 198	shade, $9,201$
serialize, <i>199</i> , 199, <i>200</i>	sharedPaths, 14, 56, 107, 202, 204, 232
serialize,SpatRaster-method	sharedPaths,SpatVector-method
(serialize), 199	(sharedPaths), 202
serialize,SpatVector-method	shift, 7, 14, 121, 186, 188, 203, 214
(serialize), 199	<pre>shift,SpatExtent-method(shift), 203</pre>
set.cats, 11, 93	shift, SpatRaster-method (shift), 203
set.cats(inplace), 118	shift, SpatVector-method (shift), 203
<pre>set.cats,SpatRaster-method(inplace),</pre>	show, 113
118	<pre>show,SpatExtent-method</pre>
set.crs(inplace), 118	(SpatExtent-class), 207
set.crs,SpatRaster-method(inplace),118	show, SpatRaster-method
set.crs, SpatVector-method(inplace), 118	(SpatRaster-class), 210
set.ext, 86	show, SpatVector-method
set.ext(inplace), 118	(SpatVector-class), 213
set.ext, SpatRaster-method (inplace), 118	simplifyGeom, <i>14</i> , 204, <i>232</i>
set.ext, SpatVector-method (inplace), 118	simplifyGeom,SpatVector-method
set.names, <i>144</i>	(simplifyGeom), 204
set.names(inplace), 118	size (dimensions), 75
<pre>set.names,SpatRaster-method(inplace),</pre>	size, SpatRaster-method (dimensions), 75
118	snap, <i>15</i>
set.names,SpatRasterDataset-method	snap (topology), 232
(inplace), 118	<pre>snap,SpatVector-method(topology), 232</pre>
<pre>set.names,SpatVector-method(inplace),</pre>	sort, 205
118	${\tt sort}$, ${\tt SpatRaster-method}$ (${\tt sort}$), ${\tt 205}$
set.names,SpatVectorCollection-method	sources, 10, 12, 206
(inplace), 118	sources, SpatRaster-method (sources), 206
set.values, <i>199</i>	sources,SpatRasterCollection-method
set.values(inplace), 118	(sources), 206
<pre>set.values,SpatRaster-method(inplace),</pre>	sources, SpatRasterDataset-method
118	(sources), 206
setCats(inplace), 118	sources, SpatVector-method (sources), 206
setCats, SpatRaster-method (inplace), 118	$sources, {\tt SpatVectorProxy-method}$
setGDALconfig, 246	(sources), 206
setGDALconfig (gdal), 107	SpatCategories (SpatRaster-class), 210
setMinMax, 10	SpatCategories-class
setMinMax (extremes), 91	(SpatRaster-class), 210
<pre>setMinMax,SpatRaster-method(extremes),</pre>	SpatExtent, <i>87</i> , <i>162</i> , <i>194</i>
91	SpatExtent (SpatExtent-class), 207
setValues, 9, 200	SpatExtent-class, 207
setValues,SpatRaster,ANY-method	Spatial interpolation, 207
(setValues), 200	SpatRaster (SpatRaster-class), 210
setValues,SpatRaster-method	SpatRaster-class, 210
(setValues), 200	spatSample, 10, 18, 211, 222
setValues,SpatVector,ANY-method	<pre>spatSample,SpatExtent-method</pre>
(setValues), 200	(spatSample), 211
setValues.SpatVector-method	spatSample.SpatRaster-method

(spatSample), 211	t, SpatVector-method (transpose), 233
<pre>spatSample,SpatVector-method</pre>	tail(head and tail), 113
(spatSample), 211	tail, SpatRaster-method (head and tail),
SpatVector (SpatVector-class), 213	113
SpatVector-class, 213	tail, SpatVector-method (head and tail),
spin, 14, 188, 214	113
spin, SpatVector-method (spin), 214	tapp, 7, 18, 28, 125, 126, 172, 189, 198, 225
split, 215	tapp, SpatRaster-method (tapp), 225
split, SpatRaster-method (split), 215	tapply, 225
split, SpatVector-method (split), 215	terra (terra-package), 6
sprc, 215	terra-package, 6
sprc, list-method (sprc), 215	terrain, 9, 189, 201, 202, 226
sprc, missing-method (sprc), 215	terrain, SpatRaster-method (terrain), 226
sprc, SpatRaster-method (sprc), 215	terraOptions, 12, 232
sqrt (Math-methods), 135	terraOptions (options), 150
sqrt, SpatRaster-method (Math-methods),	text, 16, 196, 228, 228
135	text, SpatRaster-method (text), 228
stdev (summarize), 220	text, Spatkaster method (text), 228
stdev, SpatRaster-method (summarize), 220	tighten, 229
stretch, 8, 216	tighten, SpatRaster-method (tighten), 229
stretch, SpatRaster-method (stretch), 216	tighten, SpatRaster Dataset-method
subset, 7, 17, 171, 217	
subset, SpatRaster-method (subset), 217	(tighten), 229 tiles, 245
subset, SpatVector-method (subset), 217	
subst, <i>8</i> , <i>51</i> , 219	tiles (makeTiles), 131
subst, SpatRaster-method (subst), 219	tiles, SpatRaster-method (makeTiles), 131
sum (summarize), 220	time, 11, 73, 225, 230, 237
sum, SpatRaster-method (summarize), 220	time, SpatRaster-method (time), 230
summarize, 220	time<- (time), 230
summary, 8, 222, 222	time<-, SpatRaster-method (time), 230
Summary, SpatExtent-method (summary), 222	timeInfo(time), 230
Summary, SpatRaster-method (summary), 222	timeInfo,SpatRaster-method(time), 230
summary, SpatRaster-method (summary), 222	tmpFiles, <i>12</i> , 231
Summary, SpatVector-method (summary), 222	topology, <i>107</i> , <i>203</i> , 232
summary, SpatVector-method (summary), 222	trans, 96
Summary-methods, 8, 18	trans (transpose), 233
Summary-methods (summarize), 220	trans, SpatRaster-method (transpose), 233
svc, 15, 223	transpose, 233
svc, list-method (svc), 223	Trig, <i>36</i>
svc, missing-method (svc), 223	trim, 7 , 234
svc, sf-method (svc), 223	trim, SpatRaster-method (trim), 234
svc, SpatVector-method (svc), 223	
symdif, 13, 224	union, 13, 15, 56, 122, 234
symdif, SpatVector, SpatVector-method	union,SpatExtent,SpatExtent-method
(symdif), 224	(union), 234
(Symu11), 224	union,SpatVector,missing-method
t, 7, 14, 186, 214	(union), 234
t (transpose), 233	union,SpatVector,SpatExtent-method
t.SpatRaster-method (transpose), 233	(union), 234

union, SpatVector, SpatVector-method	vect, PackedSpatVector-method (vect), 240
(union), 234	vect, sf-method (vect), 240
unique, 8, 12, 236, 236	vect, sfc-method (vect), 240
unique, SpatRaster, ANY-method (unique),	vect, Spatial-method (vect), 240
236	vect, XY-method (vect), 240
unique, SpatRaster-method (unique), 236	vector-attributes, 243
unique, SpatVector, ANY-method (unique),	vector_layers, 12, 244, 255
236	voronoi, 13, 244
unique, SpatVector-method (unique), 236 units, 237	voronoi, SpatVector-method (voronoi), 244 vrt, <i>131</i> , <i>133</i> , <i>138</i> , 245
units, SpatRaster-method (units), 237	vrt, character-method (vrt), 245
units, SpatRasterDataset-method (units),	
237	weighted.mean, <i>128</i> , 246, 247
units<- (units), 237	weighted.mean,SpatRaster,numeric-method
units<-, SpatRaster-method (units), 237	(weighted.mean), 246
<pre>units<-,SpatRasterDataset-method (units), 237</pre>	<pre>weighted.mean,SpatRaster,SpatRaster-method (weighted.mean), 246</pre>
(units), 237	where, 247
valid, 238	which, 248
values, 9, 14, 18, 90, 184, 201, 239, 243	which.lyr, 8, 221, 248
values, SpatRaster-method (values), 239	which.lyr,SpatRaster-method
values, SpatVector-method (values), 239	(which.lyr), 248
values<-, 9, 14	which.max(summarize), 220
values<- (setValues), 200	which.max,SpatRaster-method
values<-,SpatRaster,ANY-method	(summarize), 220
(setValues), 200	which.min(summarize), 220
values<-,SpatVector,ANY-method	which.min, SpatRaster-method
(setValues), 200	(summarize), 220
values<-,SpatVector,data.frame-method	width, 14, 249
(setValues), 200	width, SpatVector-method (width), 249
values<-,SpatVector,matrix-method	window, 250
(setValues), 200	window, SpatRaster-method (window), 250
values<-,SpatVector,NULL-method	window<- (window), 250
(setValues), 200	window<-,SpatRaster-method (window), 250
varnames (names), 144	wrap, 6, 174, 199, 251
varnames, SpatRaster-method (names), 144	wrap, Spatial-method (wrap), 251
varnames, SpatRasterDataset-method	wrap, SpatRaster-method (wrap), 251
(names), 144	wrap, SpatVector-method (wrap), 251
varnames<- (names), 144	writeCDF, 11, 252, 254
varnames<-, SpatRaster-method (names),	writeCDF, SpatRaster-method (writeCDF),
144	252
varnames<-,SpatRasterDataset-method	writeCDF,SpatRasterDataset-method
(names), 144	(writeCDF), 252
vect, 12, 16, 18, 170, 175, 213, 240	writeRaster, 6, 11, 22, 27, 29, 37, 40, 42, 45,
vect, character-method (vect), 240	48, 50, 51, 59, 62, 64, 66, 74, 77, 78,
vect, data. frame-method (vect), 240	80, 88, 95–97, 100, 102, 104, 112,
vect, list-method (vect), 240	115, 117, 118, 124, 126, 131, 134,
vect, matrix-method (vect), 240	136, 138–141, 149, 150, 152, 164,
vect, missing-method (vect), 240	167, 169, 172, 174, 176, 177, 179,

100 105 107 100 105 100 100	
180, 185, 187–189, 195, 198, 199,	xmin<-,SpatRaster,numeric-method
202, 203, 205, 208, 217–219, 221,	(xmin), 256
225, 226, 233, 234, 247, 252, 253,	xres, 10
260	xres (dimensions), 75
writeRaster,SpatRaster,character-method	xres, SpatRaster-method (dimensions), 75
(writeRaster), 253	xyFromCell, 10, 65, 89, 109
writeStart, 12	xyFromCell(xyRowColCell), 257
writeStart (read and write), 178	xyFromCell,SpatRaster,numeric-method
writeStart,SpatRaster,character-method	(xyRowColCell), 257
(read and write), 178	xyRowColCell, 257
writeStop, 12	
writeStop(read and write), 178	yFromCell, 10
writeStop,SpatRaster-method(read and	yFromCell(xyRowColCell), 257
write), 178	yFromCell,SpatRaster,numeric-method
writeValues, 12	(xyRowColCell), 257
writeValues (read and write), 178	yFromRow, 10
writeValues,SpatRaster,vector-method	yFromRow (xyRowColCell), 257
(read and write), 178	yFromRow, SpatRaster, missing-method
writeVector, 12, 255	(xyRowColCell), 257
writeVector, SpatVector, character-method	yFromRow, SpatRaster, numeric-method
(writeVector), 255	
	(xyRowColCell), 257
xFromCell, 10	ymax, 10
xFromCell(xyRowColCell), 257	ymax (xmin), 256
xFromCell,SpatRaster,numeric-method	ymax, SpatExtent-method (xmin), 256
(xyRowColCell), 257	ymax, SpatRaster-method (xmin), 256
xFromCol, 10	ymax, SpatVector-method(xmin), 256
xFromCol (xyRowColCell), 257	ymax<- (xmin), 256
xFromCol,SpatRaster,missing-method	<pre>ymax<-,SpatExtent,numeric-method</pre>
(xyRowColCell), 257	(xmin), 256
xFromCol,SpatRaster,numeric-method	ymax<-,SpatRaster,numeric-method
(xyRowColCell), 257	(xmin), 256
xmax, 10	ymin, <i>10</i>
xmax (xmin), 256	ymin (xmin), 256
xmax, SpatExtent-method (xmin), 256	<pre>ymin,SpatExtent-method(xmin), 256</pre>
xmax, SpatRaster-method (xmin), 256	<pre>ymin, SpatRaster-method (xmin), 256</pre>
xmax, SpatVector-method (xmin), 256	ymin, SpatVector-method (xmin), 256
xmax<- (xmin), 256	ymin<- (xmin), 256
xmax<-,SpatExtent,numeric-method	ymin<-,SpatExtent,numeric-method
(xmin), 256	(xmin), 256
	ymin<-,SpatRaster,numeric-method
xmax<-,SpatRaster,numeric-method	(xmin), 256
(xmin), 256	yres, <i>10</i>
xmin, 10, 256	yres (dimensions), 75
xmin, SpatExtent-method (xmin), 256	yres, SpatRaster-method (dimensions), 75
xmin, SpatRaster-method (xmin), 256	yres, spachaster method (utilienstons), 73
xmin, SpatVector-method (xmin), 256	1 0 67 05 111 050
xmin<- (xmin), 256	zonal, 8, 67, 85, 111, 259
xmin<-,SpatExtent,numeric-method	zonal, SpatRaster, SpatRaster-method
(xmin), 256	(zonal), 259

```
\begin{tabular}{l}{c} zonal, SpatVector, SpatVector-method\\ (zonal), 259\\ zoom, 16, 261\\ zoom, SpatRaster-method (zoom), 261\\ zoom, SpatVector-method (zoom), 261\\ \end{tabular}
```