ECE 2031 Group 1 Proposal

L06: Joshua, Naeim, Abdelrahman, Ali

Introduction

Introduction - Design Thinking Approach

- <u>Understand the Challenge</u>: SCOMP's limited internal memory restricts its potential, especially for data-heavy projects.
- <u>User Needs</u>: SCOMP users require an easy-to-use peripheral to store and retrieve data.

Introduction - Design Thinking Approach

- <u>Problem Statement</u>: How might we design an external memory peripheral that expands SCOMP's memory capacity while maintaining ease of use?
- Key Requirements:
 - Integrate with SCOMP without processor modifications.
 - Provide a straightforward interface for developers.
 - Use reserved I/O addresses 0x70-0x7F for accessibility.

Introduction - Design Thinking Approach

- <u>Brainstorm Features</u>: Considered ideas like address auto-increment, configurable data lengths, and write-protection for added functionality.
- Narrowing Down: Decided on a set of features that best balance user needs and project feasibility, focusing first on core functionality.

Technical Approach

Technical Approach

- Utilize Altera's altsyncram megafunction to implement the core memory functionality.
- Create an External Memory Peripheral with seamless I/O interaction through SCOMP's existing I/O instructions.
- Integrate an Address Register that specifies the memory address for subsequent data access operations (read/write).

ADDRESS	REGISTER NAME	B15	B14	B13	B12	B11	B10	В9	B8	B7	B6	B5	B4	ВЗ	B2	B1	В0
0x70	Adress Register	address_register[15:0]															

Features

- Write Protection
 - Implement write protection for a predefined range of lower memory addresses to prevent accidental overwrites.
- Stack Memory
 - Designate a memory section to handle stack operations, supporting last-in, first-out (LIFO) data structure functionality.
- Queue Memory
 - Designate a memory section to handle queue operations, supporting first-in, first-out (FIFO) data structure functionality.
- Access Control with Password
 - Integrate an access control mechanism for a range of memory, requiring a password for memory read or write access.

Experiments

- Leftmost flowchart tests multiple addresses storing different values
 - Expected value of Hex0 is 9, Hex1 is 5
- Rightmost flowchart tests password write protection at high address values
 - Expected value of Hex0 is 0, Hex1 is 5
- Our peripheral met the expected values of both tests

Demo Idea

- Concept of a demonstration code that lets the user input values into addresses with password protection
 - Having the demo loop and display values on the 7-segment of the DE10 board is an additional goal
 - Incorporating showing stack and queue type of memory is also a goal

Management Plan

Chart

Project start date:

0/30/2024

Scrolling increment:

5

Milestone description	Category	Assigned to	Progress	Start	Days
roject development					
Complete Project Implementation	Goal	Ali, Tayseer, Josh, Naeim	80%	10/30/2024	21
Turn in Full Project	Milestone			11/19/2024	1
Project Planning	On Track	Ali, Tayseer, Josh, Naeim	100%	10/30/2024	4
Basic Peripheral Functionality	On Track	Tayseer, Josh	100%	11/3/2024	6
Basic Peripheral Testing	Low Risk	Ali, Naeim	95%	11/5/2024	6
Additional Functionality Planning	On Track	Ali, Tayseer, Josh, Naeim	100%	11/10/2024	2
Additional Functionality Implementation	Low Risk	Naeim, Tayseer	65%	11/11/2024	5
Additional Functionality Testing	Med Risk	Ali, Josh	35%	11/13/2024	5
Finalizing Project	Med Risk	Ali, Tayseer, Josh, Naeim	15%	11/17/2024	3
Occumentation					
Technical Checkpoint	Low Risk	Ali, Tayseer, Naeim	100%	11/3/2024	5
Proposal Presentation	On Track	Ali, Josh, Naeim	100%	11/8/2024	6
Final Demo	On Track	Ali, Josh, Tayseer	70%	11/7/2024	12
Demo Presentation	On Track	Tayseer, Naeim, Josh	15%	11/14/2024	5

- Comprehensive Gantt Chart of what our timeline for the project is
 - Displays our progress for each part thus far, how many days we would estimate the work to be done, as well as how risky our current implementation of the task is to be prone to issues or generally not presenter-ready
- Low-Risk areas
 - Technical Checkpoint
 - Peripheral testing
 - Functionality implementation
- Med-Risk areas
 - Additional Functionality Testing
 - Finalizing project

Division of Labor

- Divided work amongst our team members during project planning and at the end of each small milestone
 - Small milestones consist of after finalizing our peripheral functionality/testing, and this presentation for example
- Check-ups are normally on Monday, Tuesday, and Wednesday
 - We all meet up in person on these three days to make sure that we are on track and because working in person is a lot more productive for us
 - If any issues arise, we can always have each other to help
- All other days we work individually
 - We would work on things like testing our peripheral individually so that when we do meet up, we have multiple ideas on approaching a topic

Conclusion

- Our project expands SCOMP's memory with a secure and user-friendly external peripheral.
- Core features include password-protected access, read/write protection, and support for different types of memory structures.
- If the different memory structures cannot be implemented, we will pivot to using auto address increment to maintain usability.
- This peripheral has potential applications in embedded systems and secure data management.

Q&A

