Capitolo 3: Applicazioni lineari #GAL

Ripasso (generalità sulle funzioni):

Dati due insiemi A, B una funzione f : A->B è una legge ce associa ad ogni elemento a ∈A un elemento f(a) ∈B

A = dominio o insieme di partenza arrivo

B = codominio o insieme di

f(A) = immagine della funzione

$$f(A) = \{ f(a) : a \in A \} \subseteq B$$

$$f$$
 è iniettiva se $a_1 \neq a_2 \implies f(a_1) \neq f(a_2)$

f è suriettiva se f(A) = B cioè $\forall b \in B \exists a \in A$ t.c. f(a) = b

f è biettiva (o biunivoca) se f è iniettiva e suriettiva

Definizione:

siano V, W due spazi vettoriali

un'applicazione lineare (o trasformazione lineare o mappa lineare) è una funzione L: V->W t.c.

1.
$$L(\underline{v_1} + \underline{v_2}) = L(\underline{v_1}) + L(\underline{v_2})$$
 $\forall \underline{v_1}, \underline{v_2} \in V$
2. $L(\underline{cv}) = c*L(\underline{v})$ $\forall \underline{v} \in V, c \in R$

$$\frac{\forall V_1}{\forall V}, \frac{V_2}{\forall V} \in V. c \in R$$

Conseguenze:

$$- L(\underline{O}_{V}) = L(O*\underline{O}_{V}) = (2) = O*L(\underline{O}_{V}) = \underline{O}_{W}$$

$$- \mathsf{L}(\mathsf{c}_1\underline{\mathsf{v}_1} + ... + \mathsf{c}_n\underline{\mathsf{v}_n}) = \mathsf{c}_1^*\mathsf{L}(\underline{\mathsf{v}_1}) + ... + \mathsf{c}_n^*\mathsf{L}(\underline{\mathsf{v}_n})$$

Esempio:

-
$$L_1: R^2 -> R^2$$
 definita da $L_1(x_1 x_2) = (x_1 + x_2 x_1 - x_2)$ effettuare identità $L(\underline{v_1} + \underline{v_2}) = L(\underline{v_1}) + L(\underline{v_2})$ e $L(\underline{cv}) = c*L(\underline{v})$

1) e 2) verificate —> L₁ è un'applicazione lineare

-
$$L_2: R^2 -> R^2$$
 definita da $L_2(x_1 x_2) = (x_1 + 1 x_1 - x_2)$ non è un'applicazione lineare (L_2 non rispetta la proprietà della somma)

-
$$L_3: R^2->R^2$$
 definita da $L_3(x_1x_2)=(x_1^2x_1-x_2)$ non è un'applicazione lineare (L_3 non rispetta la proprietà del prodotto per uno scalare)

Proposizione (applicazioni lineare tra spazi di vettori colonna):

- a) sia $A \in Mat(m,n)$ la funzione $T_a : R^n > R^m$ definita da $T_a(\underline{v}) = A\underline{v}$ è un'applicazione lineare
- b) data un'applicazione lineare $L : R^{n} -> R^{m}$ è della forma $L = T_{a}$ per un'unica A ∈Mat(m,n)

Dimostrazione:

a) verifichiamo che $T_a : R^n -> R^m$ è lineare

1.
$$T_a(\underline{v_1} + \underline{v_2}) = A(\underline{v_1} + \underline{v_2}) = A\underline{v_1} + A\underline{v_2} = T_a(\underline{v_1}) + T_a(\underline{v_2})$$

2. $T_a(\underline{c\underline{v}}) = A(\underline{c\underline{v}}) = c(A\underline{v}) = cT_a(\underline{v})$

b) Fissiamo un'applicazione lineare L : R^n -> R^m considerando la matrice A = $(L(e_1) \mid L(e_2) \mid ... \mid L(e_n) \in Mat(m,n)$

 $\text{verifichiamo che L} = \texttt{T}_a, \text{ dato } \underline{\texttt{v}} \in \texttt{R}^n => \underline{\texttt{v}}(\texttt{v}_1 \dots \texttt{v}_n) = \texttt{v}_1\underline{\texttt{e}_1} + \dots + \texttt{v}_n\underline{\texttt{e}_n}$ calcoliamo L($\underline{\texttt{v}}$)

$$L(\underline{v}) = L(v_1\underline{e_1} + ... + v_n\underline{e_n}) = v_1^*L(\underline{e_1}) + ... + v_n^*L(\underline{e_n}) = A(v_1 ... v_n)$$

moltiplicazione a dx \approx combinazione lineare delle colonne

Trasformazioni lineari del piano $T_a : R^2 -> R^2$:

- A (c 0) (matrice diagonale) $c \in R$ 0 c $T_a(x_1 x_2)$ (vettore colonna) = $c(x_1 x_2)$

T_a è una dilatazione oppure omotetia

– A(cos δ -sin δ) T_a è una rotazione antioraria di δ

sind cosd

– A (0 0) T_a è la proiezione sull'asse x_2

0 1

- A (-1 0) T_a è una riflessione rispetto all'asse x_2
- Una traslazione non è un'applicazione lineare

Altri esempi:

- L : Mat(m,n)->Mat(n,m) definita da $L(M) = M^{t}$ la trasposizione è un'applicazione lineare
- L : R[t]->R[t] definita da L(p(t)) = p'(t) la derivata prima è un'applicazione lineare
- L : R[t]->R[t] definita da L(p(t)) = $_0\int^t p(x) dx$ l'integrale è un'applicazione lineare
- L : R[t]->R definita da L(p(t)) = p(t) la valutazione di p al punto t è un'applicazione lineare

Proposizione (applicazioni lineari e sottospazi):

- L: V->W applicazione lineare
- 1. Se H \subseteq V è un sottospazio, l'immagine di H: L(H) = {L(\underline{v}) : $\underline{v} \in$ H} \subseteq W è un sottospazio
- 2. Se J \subseteq W è un sottospazio, la sua controimmagine L $^{-1}$ (J) = { $\underline{v} \in V : L(\underline{v})$

Dimostrazione:

- 1. Verifichiamo che l'immagine di H ⊆W è un sottospazio
 - $-\underline{0}_{V} \in L(H)$ perché $L(\underline{0}_{V}) = \underline{0}_{W} \in W$ perché H è un sottospazio
 - $\underline{v_1}$, $\underline{v_2}$ ∈L(H) => $\underline{v_1}$ = L($\underline{w_1}$), $\underline{v_2}$ = L($\underline{w_2}$) ∈W per qualche $\underline{w_1}$, $\underline{w_2}$ ∈H => $\underline{v_1}$ + $\underline{v_2}$ = L($\underline{w_1}$) + L($\underline{w_2}$) = L($\underline{w_1}$ + $\underline{w_2}$) ∈L(H) perché L è un'applicazione lineare e H è sottospazio
 - \underline{v} ∈L(H), c ∈R => \underline{v} = L(\underline{w}) per qualche \underline{w} ∈H => L(c \underline{w}) = cL(\underline{w}) = c \underline{v} perché H è un sottospazio e L è un'applicazione lineare
- 2. Verifichiamo che $L^{-1}(J) \subseteq V$ è un sottospazio
 - $-\underline{0}_{V} \in L^{-1}(J)$ perché $L(\underline{0}_{V}) = \underline{0}_{W} \in J$ perché J è un sottospazio
 - $-\underline{v_1}, \underline{v_2} \in L^{-1}(J) => L(\underline{v_1}), L(\underline{v_2}) \in J => L(\underline{v_1}) + L(\underline{v_2}) \in J \text{ perché J è un sottospazio}$
 - $=> L(v_1 + v_2) \in J$ perché L è un'applicazione lineare
 - $-\underline{v} \in L^{-1}(J)$, $c \in R \implies cL(\underline{v}) = L(c\underline{v}) \in J \implies c\underline{v} \in L^{-1}(J)$ perché J è un sottospazio e L è un'applicazione lineare

Definizione:

sia L: V->W

- 1. L'immagine di L è l'immagine di tutto V $Im(L) = L(V) = \{L(\underline{v}) : \underline{v} \in V\} \subseteq W$
- 2. Il kernel di L è la controimmagine di $\{\underline{0}_W\}\subseteq W: L^{-1}(\{\underline{0}_W\})=\{\underline{v}\in V: L(\underline{v})=\underline{0}_W\}\subseteq V$

Osservazione:

$$\begin{split} \text{Se H} &= \text{Span}(\underline{v_1}, \, ..., \, \underline{v_n}) \subseteq V \\ &=> \text{L}(H) = \{\text{L}(c_1\underline{v_1} + ... + c_n\underline{v_n}) : c_i \in R\} = \{c_1\text{L}(\underline{v_1}) + ... + c_n\text{L}(\underline{v_n}) : c_i \in R\} => \\ \text{L}(H) &= \text{Span}\{\text{L}(\underline{v_1}), \, ..., \, \text{L}(\underline{v_n})\} \subseteq W \\ \text{Esempio } (T_a): \end{split}$$

 $A \in Mat(m,n), T_a : R^n -> R^m$

$$- \ker(\mathsf{T}_a) = \{\underline{\mathsf{v}} \in \mathsf{R}^n : \mathsf{T}_a(\underline{\mathsf{v}}) = \underline{\mathsf{0}}\} = \{\underline{\mathsf{v}} \in \mathsf{R}^n : \mathsf{A}\underline{\mathsf{v}} = \underline{\mathsf{0}}\} = \ker(\mathsf{A}) \subseteq \mathsf{R}^m$$

$$-\operatorname{Im}(\mathsf{T}_{a})\subseteq\mathsf{R}^{m}=\mathsf{T}_{a}(\mathsf{R}^{n})=\mathsf{T}_{a}(\operatorname{Span}(\underline{e_{1}},\,...,\,\underline{e_{n}}))=\operatorname{Span}(\mathsf{T}_{a}(\underline{e_{1}}),\,...,\,\mathsf{T}_{a}(\underline{e_{n}}))=\operatorname{Span}(\mathsf{A}\underline{e_{1}},\,...,\,\mathsf{A}\underline{e_{n}})=\operatorname{col}(\mathsf{A})$$

 $(Ae_i = colonna i-esima di A) => (moltiplicare a dx per la base canonica = combinazione lineare delle colonne)$