Mastering the Game of Go Deep Neural Networks and Tree Search (AlphaGo)

Rushil Gupta, Dhruman Gupta

April 24, 2025

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- 5 Value Network
- 6 MCTS in AlphaGo
- Results

Introduction

- AlphaGo: A computer program developed by Google DeepMind to play the board game Go.
- Uses deep neural networks combined with Monte Carlo Tree Search (MCTS).

Introduction

- First program to defeat a human professional Go player (Fan Hui) on a full-sized 19x19 board without handicap.
- Achieved a 5-0 victory in a formal match.
- Considered a grand challenge for Artificial Intelligence, previously thought to be decades away.

The Game: Go

- Go is a game of perfect information, like chess.
- Challenge: Extremely difficult for Al due to:
 - Enormous Search Space:
 - Branching factor $b \approx 250$.
 - Game depth $d \approx 150$.
 - Number of sequences $\approx b^d \approx 250^{150}$.
 - Exhaustive search is infeasible.
 - **Difficult Position Evaluation:** Hard to judge who is winning from a given board state.

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- 5 Value Network
- 6 MCTS in AlphaGo
- Results

Methods Before AlphaGo: MCTS

- Monte Carlo Tree Search (MCTS): State-of-the-art before AlphaGo.
- **Core Idea:** Build a search tree, estimate state values using random simulations (rollouts).
- Rollout Intuition:
 - From a state s, play out many games randomly (or using a simple policy) to the end.
 - Average the win/loss outcomes from these rollouts to estimate the value of s.

Methods Before AlphaGo: MCTS

- MCTS balances exploration and exploitation, and used variants of UCB to select actions.
- **Limitations:** Often relied on shallow policies or simple value functions. Strong amateur level play was achieved.

AlphaGo's Methods: Overview

Key Idea: Use deep neural networks to guide MCTS.

- **Policy Network** p(a|s): Predicts probability of choosing action a in state s. Reduces search *breadth*.
- Value Network v(s): Estimates the probability of the current player winning from state s. Reduces search depth.

AlphaGo's Methods: Overview

Training Pipeline:

- **1** Data Collection: Collect games from human experts.
- **2** SL Policy Network (p_{σ}) : Train on human expert games.
- **3 RL Policy Network** (p_{ρ}) : Improve SL network via self-play, optimizing for winning.
- **Value Network** (v_{θ}): Train to predict game outcome from self-play games using the RL policy network.

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- 5 Value Network
- 6 MCTS in AlphaGo
- Results

MDP Formulation

Go framed as a Markov Decision Process (MDP) / alternating Markov game:

- **States** $s \in S$: Board position + current player.
- Actions $a \in A(s)$: Legal moves.
- **Transition** s' = f(s, a): Deterministic next state.

MDP Formulation

• Reward Function r(s):

- r(s) = 0 for non-terminal states (t < T).
- At terminal state s_T , reward is based on game outcome

$$r(s) = egin{cases} 0 & ext{if } t < T \ 1 & ext{if win at } s_T \ -1 & ext{if loss at } s_T \end{cases}$$

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- 5 Value Network
- 6 MCTS in AlphaGo
- Results

Supervised Learning (SL) Policy Network (p_{σ})

- Goal: Imitate human expert moves.
- Network: 13-layer Convolutional Neural Network (CNN).
 - Input: Board state s.
 - Output: Probability distribution $p_{\sigma}(a|s)$ over legal moves a.

Supervised Learning (SL) Policy Network (p_{σ})

- Training Data: 30 million positions from KGS Go Server.
- **Objective:** Maximize log likelihood of move *a* in state *s*:

$$\Delta\sigma \propto rac{\partial \log p_{\sigma}(a|s)}{\partial \sigma}$$

• **Result:** 57.0% accuracy on test set, (3ms/move).

Supervised Learning (SL) Policy Network (p_{σ})

- Another smaller, linear model was also trained for faster rollouts.
- Fast Rollout Policy (p_{π}): 24.2% accuracy, 2μ s/move.

Reinforcement Learning (RL) Policy Network (p_p)

- ullet Goal: Improve p_{σ} to maximize winning probability, not just accuracy.
- Method: Policy Gradient Reinforcement Learning.
- **Initialization:** Start with SL network weights $(\rho = \sigma)$.

Reinforcement Learning (RL) Policy Network (p_{ρ})

Training:

- Play games between current network p_{ρ} and random previous versions of p_{ρ^-} (random previous checkpoint).
- Update weights using REINFORCE algorithm to maximize expected outcome z_t:

$$\Delta
ho \propto rac{\partial \log p_
ho(a_t|s_t)}{\partial
ho} z_t$$

Note: they use baseline = $v(s_t)$ for variance reduction

What we have so far

- A policy network p_{π} that isn't very good, but is very *fast*. Trained using supervised learning on human games.
- A policy network p_{ρ} that can play at at the level of a strong amateur. Trained using reinforcement learning on self-play games.

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- Value Network
- 6 MCTS in AlphaGo
- Results

Value Network (v_{θ})

• Goal: Estimate state value $v^{p_{\rho}}(s)=$ expected outcome from state s if both players use policy p_{ρ} .

$$v^p(s) = \mathbb{E}[z_t|s_t = s, a_{t...T} \sim p]$$

• **Network** $v_{\theta}(s)$: CNN similar to policy net, outputs single scalar value.

Value Network (v_{θ})

- **Challenge:** Training on full games leads to overfitting due to correlated positions, and does not generalize well.
- **Solution:** Generate a new dataset of 30 million *unique* positions, each from a separate self-play game using p_{ρ} .
- **Objective:** Minimize Mean Squared Error (MSE) between prediction $v_{\theta}(s)$ and actual outcome z:

$$\Delta heta \propto rac{\partial v_{ heta}(s)}{\partial heta}(z-v_{ heta}(s))$$

Value Network (v_{θ})

Results:

- Much more accurate than rollouts with p_{π} .
- ullet Approached accuracy of rollouts with $p_{
 ho}$ but vastly faster.

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- 5 Value Network
- 6 MCTS in AlphaGo
- Results

MCTS in AlphaGo: Notation

Key Notation:

- N(s, a) Visit count for state-action pair
- Q(s, a) Action value (expected outcome)
- P(s, a) Prior probability from policy network
- $v_{\theta}(s)$ Value network prediction
- $p_{\pi}(a|s)$ Fast rollout policy
- L Maximum depth of tree search

MCTS in AlphaGo

Combines policy networks, value networks, and Monte Carlo rollouts within MCTS.

• Tree Edges: Store action value Q(s, a), visit count N(s, a), prior probability P(s, a).

MCTS in AlphaGo: Algorithm Steps

Algorithm Steps (1-2):

Select: From root to leaf, choose actions by maximizing:

$$a_t = \operatorname*{argmax}_{a} \left(Q(s_t, a) + c_{\mathsf{puct}} \cdot P(s_t, a) \cdot \frac{\sqrt{\sum_b N(s_t, b)}}{1 + N(s_t, a)} \right)$$

Expand: Create new leaf node s_L . Initialize prior probabilities using the SL policy network:

$$P(s_L, a) = p_{\sigma}(a|s_L)$$

MCTS in AlphaGo: Algorithm Steps

Algorithm Step (3):

- **Series** Estimate node value using a combination of:
 - ullet Value network: $v_{ heta}(s_L)$ Deep strategic evaluation
 - Rollout: z_L Fast simulation to end of game using p_π

$$V(s_L) = (1 - \lambda)v_{\theta}(s_L) + \lambda z_L$$
 where $\lambda = 0.5$

MCTS in AlphaGo: Algorithm Steps

Algorithm Step (4):

- Backup: Update statistics for all visited nodes:
 - Increment visit counts: $N(s,a) \leftarrow N(s,a) + 1$
 - Update action values:

$$Q(s,a) \leftarrow \frac{N(s,a) \cdot Q(s,a) + V(s_L)}{N(s,a) + 1}$$

- Introduction
- 2 Background and Overview
- MDP Formulation
- Policy Network
- Value Network
- 6 MCTS in AlphaGo
- Results

Results

- Against Programs: Single machine AlphaGo won 99.8% (494/495) games vs strongest Go programs. Distributed version won 100%.
- Against Human Professional:
 - Defeated Fan Hui (3x European Champion, 2p) 5-0 in a formal match.
 - First time a computer beat a pro player without handicap.
- Search Efficiency: Evaluated thousands of times fewer positions than Deep Blue (chess), but selected/evaluated them more intelligently using the neural networks.