MATH 8510, Abstract Algebra I

Fall 2016

Exercises 6-2

Due date Thu 29 Sep 4:00PM

See the text for hints.

Exercise 1 (4.2.10). Prove that every non-abelian group of order 6 has a nonnormal subgroup of order 2. Use this to classify all groups of order 6; specifically, provide a list G_1, G_2 of groups of order 6 such that (1) $G_1 \not\cong G_2$, and (2) for all groups G if |G| = 6, then $G \cong G_1$ or $G \cong G_2$. Justify your answers.

Proof. Let G be a group which is not abelian and |G| = 6.

Since 2|6 and 3|6 and 2,3 are primes,

by Cauthy Theorem, there exists $H, M \leq G$ and |H| = 2 and |H| = 3.

Assume all the subgroups of G of order 2 are normal subgroups of G.

Consider $H = \{e_G, h\} \leq G$, where $h \in G$ and $h \neq e_G$ and $h^2 = 1$.

Then |H| = 2 and $H \subseteq G$ by assumption.

As a result, $N_G(H) = G$.

So for any $g \in G$, gH = Hg.

Since $H = \{e_G, h\}$, we have gh = hg for any $g \in G$.

So $h \in Z(G)$.

Since $|G| = 2 \times 3$ and 2, 3 are primes, we have G is abelian or $Z(G) = \{e_G\}$ by the conclusion from Exercise 1 in homework 5.

Given G is not abelian, we have $Z(G) = \{e_G\}$, which is a contradiction since we already find $h \in Z(G)$ and $h \neq e_G$.

Thus, there exists a non-normal subgroup of G of order 2.

Next we show G is isomorphic to S_3 .

Let $H \leq G$ of order 2 be the non-normal subgroup of G.

Then G acts transitively on G//H.

Let $\pi_H: G \to S_{G//H}$ be the associated permutation representation.

Then

$$\operatorname{Ker}(\pi_H) = \bigcap_{x \in G} x H x^{-1} \subset H.$$

So $|\operatorname{Ker}(\pi_H)| = 1$ or 2.

If $|\operatorname{Ker}(\pi_H)| = 2$, then $\operatorname{Ker}(\pi_H) = H$, which is a contradiction since $\operatorname{Ker}(\pi_H) \leq G$ and H is not a normal subgroup of G by assumption.

So $|\operatorname{Ker}(\pi_H)| = 1$.

Thus, π_H is 1-1.

Since $|G//H| = \frac{|G|}{|H|} = \frac{6}{2} = 3$,

$$S_{G//H} \cong S_3$$
.

Then $|S_{G//H}| = |S_3| = 6$.

Since |G| = 6, we have π_H is onto since it is 1-1.

Thus, π_H is bijective.

As a result, π_H is an isomorphism.

So

$$G \cong S_{G//H}.$$

Therefore, for each non-abelian group G of order 6, we have

$$G \cong S_3$$

Next we claim that every abelian group of order 6 is cyclic.

Let G be a ableian group of order 6.

By Cauthy Theorem, there exists $x, y \in G$ and |x| = 2, |y| = 3.

Then $x \neq y$. Besides, $x^{-1} = x$ and $y^{-1} = y^2 \in G$.

Then $x \neq y^2$, otherwise, x = y.

So we find $\{e_G, x, y, y^2\} \subset G$.

Similarly, we can verify that two distinct elelments $xy, xy^2 \in G$ but $xy, xy^2 \notin$ $\{e_G, x, y, y^2\}.$

Since |G| = 6, we have

$$G = \{e_G, x, y, y^2, xy, xy^2\}.$$

We claim $G = \langle xy \rangle$. Since G is abelian,

$$(xy)^{1} = xy = e_{G}.$$

$$(xy)^{2} = x^{2}y^{2} = y^{2},$$

$$(xy)^{3} = x^{3}y^{3} = x,$$

$$(xy)^{4} = x^{4}y^{4} = y,$$

$$(xy)^{5} = x^{5}y^{5} = xy^{2},$$

$$(xy)^{6} = x^{6}y^{6} = e_{G}.$$

Thus, G is cyclic.

So every abelian group of order 6 is cyclic.

We know if a group G is cyclic of order 6, then

$$G \cong \mathbb{Z}/6\mathbb{Z}$$
.

So for each abelian group G of order 6, we have

$$G \cong \mathbb{Z}/6\mathbb{Z}$$
.

Since S_3 is not cyclic,

$$S_3 \ncong \mathbb{Z}/6\mathbb{Z}$$
.

As result, we have for any non-abelian group G of order 6,

$$G \cong S_3$$
,

and for any abelian group G of order 6,

$$G \cong \mathbb{Z}/6\mathbb{Z}$$
,

where
$$S_3 \not\cong \mathbb{Z}/6\mathbb{Z}$$
.

Exercise 2 (4.3.6). Assume that G is a non-abelian group of order 15. Prove that $Z(G) = \{e\}$. Use the fact that $\langle g \rangle \leq C_G(g)$ to show that there is at most one possible class equation for G; in other words, in the notation of Theorem 4.2.4 of the notes, find r and |Z(G)| and $[G:C_G(g_1)],\ldots,[G:C_G(g_r)]$. Justify your answers.

Proof. Since $|G| = 15 = 3 \times 5$ and 3, 5 are primes,

G is abelian or $Z(G) = \{e_G\}$ by the conclusion from Exercise 1 in homework 5.

Given G is not abelian, we have $Z(G) = \{e_G\}.$

Let $[r] = \{1, 2, ..., r\}.$

By class equation, we have

$$\sum_{i=1}^{r} [G : C_G(g_i)] = |G| - |Z(G)| = 15 - 1 = 14,$$

where $g_i \in G$ and $g_i \notin Z(G)$ for $i \in [r]$.

Then $C_G(g_i) \neq G$ for $i \in [r]$ and $g_i \neq e_G$ since $Z(G) = \{e_G\}$.

So $[G: C_G(g_i)] \neq 1$.

Then $[G: C_G(g_i)] \in \{3, 5, 15\}$ since $[G: C_G(g_i)] \mid G$.

We know the fact that for $i \in [r]$,

$$\langle g_i \rangle \leq C_G(g_i).$$

Since $g_i \neq e_G$ for $i \in [r]$,

$$C_G(g_i) \neq \{e_G\}.$$

So for $i \in [r]$,

$$[G: C_G(g_i)] < 15.$$

Then for $i \in [r]$,

$$[G:C_G(g_i)] \in \{3,5\}.$$

So we need to find r and $[G: C_G(g_i)]$, where $\sum_{i=1}^r [G: C_G(g_i)] = 14$ and $[G: C_G(g_i)] \in \{3, 5\}$ for $i \in [r]$.

Let m and n be the number of order 3 and order 5 conjugacy classes in G, respectively.

Then 3m + 5n = 14, where $m, n \in \mathbb{N} \cup \{0\}$.

So

$$3m = 14 - 5n \ge 0.$$

So the possible n can only be 0 or 1 or 2.

To make 3|(14-5n), just n=1 is satisfied and then m=3.

So we have 3 + 3 + 3 + 5 = 14 and then r = 4.

Since by class equation, we can just find one r = 4 and corresponding $[G : C_G(g_i)]$ for i = 1, 2, 3, 4, there is at most one possible class equation for G.