Understanding social networks with F#

Evelina Gabasova @evelgab

evelinag.com @evelgab

$$\begin{split} p\left(\pi^{(d)} \middle| \alpha_{d}, \beta, \pi\right) & \stackrel{\wedge_{1}}{\sim} P_{\text{CA}1} \\ & \propto p\left(\pi^{(d)} \middle| \alpha_{d}\right) \ p\left(\pi \middle| \pi^{(1)}, \dots, \pi^{(D)}, \beta\right) \\ & = \left\{\frac{\Gamma\left(K^{(d)} \alpha_{d}\right)}{(\Gamma(\alpha_{d}))^{K^{(d)}}} \prod_{k=1}^{K^{(d)}} \left(\pi_{k}^{(d)}\right)^{\alpha_{d}-1}\right\} \times \\ & \times \left\{\frac{\Gamma\left(\sum_{i_{1}=1}^{K^{(1)}} \dots \sum_{i_{D}=1}^{K^{(D)}} \left[\beta \times \pi_{i_{1}}^{(1)} \times \dots \times \pi_{i_{D}}^{(D)}\right]\right)}{\prod_{i_{1}=1}^{K^{(1)}} \dots \prod_{i_{D}=1}^{K^{(D)}} \Gamma\left(\beta \times \pi_{i_{1}}^{(1)} \times \dots \times \pi_{i_{D}}^{(D)}\right)} \prod_{i_{1}=1}^{K^{(1)}} \dots \prod_{i_{D}=1}^{K^{(D)}} \left(\pi_{i_{1},\dots,i_{D}}\right)^{\beta \pi_{i_{1}}^{(1)},\dots,\pi_{i_{D}}^{(D)}-1}\right\} \\ & = \frac{\Gamma\left(K^{(d)} \alpha_{d}\right)}{(\Gamma(\alpha_{d}))^{K^{(d)}}} \times \frac{\Gamma(\beta)}{\prod_{i_{1}=1}^{K^{(1)}} \dots \prod_{i_{D}=1}^{K^{(D)}} \Gamma\left(\beta \times \pi_{i_{1}}^{(1)} \times \dots \times \pi_{i_{D}}^{(D)}\right)} \times \\ & \times \left\{\prod_{k=1}^{K^{(d)}} \left(\pi_{k}^{(d)}\right)^{\alpha_{d}-1}\right\} \left\{\prod_{i_{1}=1}^{K^{(1)}} \dots \prod_{i_{D}=1}^{K^{(D)}} \left(\pi_{i_{1},\dots,i_{D}}\right)^{\beta \pi_{i_{1}}^{(1)},\dots,\pi_{i_{D}}^{(D)}-1}\right\} \\ & \propto \frac{\Gamma\left(K^{(d)} \alpha_{d}\right)}{(\Gamma(\alpha_{d}))^{K^{(d)}}} \left\{\prod_{k=1}^{K^{(d)}} \left(\pi_{k}^{(d)}\right)^{\alpha_{d}-1}\right\} \left\{\prod_{i_{1}=1}^{K^{(1)}} \dots \prod_{i_{D}=1}^{K^{(D)}} \frac{1}{\Gamma\left(\beta \times \pi_{i_{1}}^{(1)} \times \dots \times \pi_{i_{D}}^{(D)}\right)} \left(\pi_{i_{1},\dots,i_{D}}\right)^{\beta \pi_{i_{1}}^{(1)},\dots,\pi_{i_{D}}^{(D)}-1}\right\} \end{aligned}$$

$$(18)$$

Insights from social networks

Twitter network

How large is your ego?

Connecting to twitter

Interaction rates

F# 86.1 % Erlang 85.9 % Clojure 82.7 % Haskell 75.7 % Scala 75.6 %

Interaction rates

Downloading data

- 1) List of nodes
- Connections between nodes

Twitter API allows only 15 requests every 15 minutes to list connections.

Adjacency matrix

Degrees

Degrees

Degree distribution

Hubs in networks

How to identify most important nodes in a network?

Centrality with PageRank

Your followers are not created equal.

Random surfer model

Centrality with PageRank

+ random jumps

intermediate

key/value pairs

PageRank changes

February

- 1. migueldeicaza (0.033130)
- 2. dsyme (0.032783)
- 3. tomaspetricek (0.027756)
- 4. LincolnAtkinson (0.021993)
- 5. VisualFSharp (0.020233)
- 6. c4fsharp (0.019720)
- 7. rickasaurus (0.019189)
- 8. ptrelford (0.018099)
- 9. 1tgr (0.016525)
- 10. sforkmann (0.014970)

September

- 1. dsyme (0.028640)
- 2. migueldeicaza (0.024808)
- 3. VisualFSharp (0.024479)
- 4. tomaspetricek (0.021066)
- 5. c4fsharp (0.019612)
- 6. rickasaurus (0.014272)
- 7. sforkmann (0.013471)
- 8. 1tgr (0.012768)
- 9. ptrelford (0.012669)
- 10. FSPowerTools (0.012113)

Visualization with D3.js

Go play with data!

Thank you

@evelgab evelina@evelinag.com https://github.com/evelinag

fsharp.org

F# eXchange 2015
17 April, London

