Problem 1. Let P denote the set of square matrices M such that $y^T M y > 0$ for $y \neq 0$.

- (1) Show that if $M \in P$ then $\frac{1}{2}(M + M^T) \in P$.
- (2) Provide an example $M \in P$ such that the eigenvalues of M are different from those of $\frac{1}{2}(M+M^T)$.
- (3) Find a matrix $M \in P$ having complex eigenvalues.
- (4) Find a matrix $M \in P$ such that $M^2 \notin P$.

Problem 2. A Markov matrix is a square matrix such that all entries are non-negative and the sum of each column vector entries is equal to 1. In particular, if all entries are positive, we call it a positive Markov matrix.

- (1) A Markov matrix has an eigenvalue 1.
- (2) Show that the product of two Markov matrices is a Markov matrix.
- (3) Is a positive Markov matrix invertible?
- (4) Is a positive Markov matrix is positive definite?
- (5) Show that a 2×2 Markov matrix is diagonalizable.
- (6) Is a positive Markov matrix diagonalizable?

Problem 3. Suppose that $f: \mathbb{R}^n \to \mathbb{R}$ has the positive definite Hessian $D^2f(x)$ for all $x \in \mathbb{R}^n$.

- (1) Show that given $x, v \in \mathbb{R}$ with $v \neq 0$, the function g(t) = f(x + tv) satisfies g'' > 0.
- (2) Show that f has at most one critical point.