고려대학교 빅데이터연구회 KU-BIG

EDA(데이터시각화)

목차

- 1 EDA
- 2 DieTanic 커널소개
- 3 시각화 ggplot 소개
- 4 Tietanic data 시각화- ggplot 활용

"

'탐색적 데이터 분석(EDA)'은 우리가 존재한다고 믿는 것들은 물론이고 존재하지 않는다고 믿는 것들을 발견하려는 태도, 유연성, 그리고 자발성이다. - Schutt Rachel(Doing Data Science의 저자)

EDA

- 1. Maximize Insight into a data set
- 2. Uncover Underlying Structure
- 3. Extract Important Variables
- 4.Detect Outliers and Anomalies
- 5.Test Underlying Assumptions
- 6.Develop Parsimonious Models
- 7. Determine Optimal Factor Settings

https://www.itl.nist.gov/div898/handbook/eda/section1/eda11.htm

EDA

- 1. 데이터 분석 목적
- 2. 데이터 구조 및 변수 확인
- 3. 변수별 type/분포 확인
- 4. 변수의 수준별 분포 비교
- 5. Insight 도출

DieTanic

https://www.kaggle.com/ash316/eda-to-prediction-dietanic

Contents of the Notebook:

Part1: Exploratory Data Analysis(EDA):

1)Analysis of the features.

2) Finding any relations or trends considering multiple features.

Part2: Feature Engineering and Data Cleaning:

- 1)Adding any few features.
- 2) Removing redundant features.
- 3)Converting features into suitable form for modeling.

데이터시각화 - ggplot

All Grammatical Elements

Element	Description		
Data	The dataset being plotted.	\mathbb{I}_{N}	
Aesthetics	The scales onto which we map our data.		3가비 單수 Layer
Geometries	The visual elements used for our data.	JV	
Facets	Plotting small multiples.	1.	
Statistics	Representations of our data to aid understanding.	1/	Achel Hat Lavor
Statistics Coordinates	Representations of our data to aid understanding. The space on which the data will be plotted.		4기H의 부기나 Layer

```
ggplot(data, aes()) +
 geom_***()
ggplot(data, aes()) +
 geom_***() +
 facet_***() +
 stat_***() +
 coord_***() +
 theme_***()
```


데이터시각화 - ggplot; Data, Aesthetics, Geometries

```
install.packages("ggplot2)
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, col=factor(cyl)) +
geom_point() +
geom_smooth(method="lm", se = F) +
facet_grid(.-gear) +
```


데이터시각화 - ggplot; Geometries

```
install.packages("ggplot2)
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, col=factor(cyl)) +
geom_point() +
geom_smooth(method="lm", se = F) +
facet_grid(.-gear)
```


데이터시각화 - ggplot; Facets

```
install.packages("ggplot2)
library(ggplot2)
ggplot(mtcars, aes(x=wt, y=mpg, col=factor(cyl)) +
geom_point() +
geom_smooth(method="lm", se = F) +
facet_grid(.~gear)
```


데이터시각화 - ggplot; Themes

install.packages("ggthemes")
library(ggthemes)

p + theme_dark()

데이터시각화 - graph types

Univariate

Discrete/Categorical - bar graph, pie graph Continuous - histogram, KDE, box graph

Multivariate

Discrete/Categorical – **mosaic graph** Continuous – **scatterplot**

37 Geometries

abline	density2d	line	rect	vline
area	dotplot	linerange	ribb	on
bar	errorbar	map	rug	3
bin2d	errorbarh	path	segm	ent
blank	freqpoly	point	smoo	oth
boxplot	hex	pointrange	ste	р
contour	histogram	polygon	tex	t
crossbar	hline	quantile	tile	e
density	jitter	raster	viol	in

데이터시각화 - graph types

Overview of distribution visualizations

- 1. 데이터 분석 물건: Survival Prediction
- 2. 时间到子在吸收分配

```
str(data)
data.frame':
             891 obs. of 12 variables:
$ PassengerId: int 1 2 3 4 5 6 7 8 9 10 ...
$ Survived : int 0 1 1 1 0 0 0 0 1 1 ...
         : int 3 1 3 1 3 3 1 3 3 2 ...
$ Pclass
         : Factor w/ 891 levels "Abbing, Mr. Anthony",..: 109 191 358 277 16 559 520 62
$ Name
417 581 ...
$ Sex
           : Factor w/ 2 levels "female", "male": 2 1 1 1 2 2 2 2 1 1 ...
$ Age
          : num 22 38 26 35 35 NA 54 2 27 14 ...
$ SibSp
          : int 1101000301...
$ Parch
           : int 0000000120...
          : Factor w/ 681 levels "110152","110413",..: 524 597 670 50 473 276 86 396 345
$ Ticket
$ Fare
          : num 7.25 71.28 7.92 53.1 8.05 ...
           : Factor w/ 148 levels "","A10","A14",..: 1 83 1 57 1 1 131 1 1 1 ...
$ Cabin
          : Factor w/ 4 levels ""."C"."O"."S": 4 2 4 4 4 3 4 4 4 2 ...
> head(data,n=2)
 PassengerId Survived Pclass
                                                                        Name
                                                                                Sex
                                                      Braund, Mr. Owen Harris
                          1 Cumings, Mrs. John Bradley (Florence Briggs Thayer) female
 Age SibSp Parch
                             Fare Cabin Embarked
                   Ticket
              0 A/5 21171 7.2500
               0 PC 17599 71.2833
                                                                  14 / 21
```

Variable	Definition	Key
Sibsp	# of Siblings or Spouses aboard the Titanic	
Parch	# of parents or children aboard the Titanic	
Embarked	Port of Embarkation	C = Cherbourg, Q = Queenstown, S = Southampton
		1.7

2. 데이터 구조 및 변수 확인; 변수별 결화(이상치) 확인

설제3는 결취 근제! Raw Data도 참상 확인해야하

```
index = which(data$Cabin == "")
data[index,]$Cabin = NA

index2 = which(data$Embarked == "")
data[index2,]$Embarked = NA
```


- 3. 선수별 type/분도 확인; Survived (Categorical)
- 수시治(Int) 紀수 -> 紀年初23 11771
- Pie Chart, Bar Chart3 분도 확인

```
# Bar chart
ggplot(data, aes(x=Survived, fill=Survived)) +
   geom_bar()
# Pie chart
ggplot(data, aes(x=1,fill=Survived)) +
   geom_bar() +
   coord_polar(theta="y")
```


- 3. 선수별 type/분도 확인; Sex (Categorical)
- Sex vs Survived

- 3. 선수별 type/분도 확인; Pclass (Ordinal)
- Pcalss vs Survived

```
# PCLass vs Survived
ggplot(data, aes(x=Pclass, fill=Survived)) +
  geom_bar(position = "dodge") +
  ggtitle("PClass:Survived vs Dead") +
  theme(plot.title=element_text(face="bold", size=10, vjust=2),
      panel.grid.major.x = element_blank(),
      panel.grid.minor.x = element_blank())
```


3. 선수별 type/분도 확인; Age (Continuous)

-7킬속체 -> 호칭별 Group의 덩균이건덩으로 대체

```
# A tibble: 5 x 2
Group mean.age
<chr> <dbl>
1 Master 4.57
2 Miss 21.8
3 Mr 32.4
4 Mrs 35.9
5 Other 42.7
```

```
data[is.na(data$Age)&data$Group=="Master",]$Age = 5
data[is.na(data$Age)&data$Group=="Miss",]$Age = 22
data[is.na(data$Age)&data$Group=="Mr",]$Age = 32
data[is.na(data$Age)&data$Group=="Mrs",]$Age = 36
data[is.na(data$Age)&data$Group=="Other",]$Age = 43
```


4. 她个의 午至雙望至1112

-X, y 名, fill, facetntal 47tal 灯午量む plotの 玉妃

5. Insight 珪

