Manasa and Factorials

Manasa was sulking her way through a boring class when suddenly her teacher singled her out and asked her a question. He gave her a number \mathbf{n} and Manasa has to come up with the smallest number \mathbf{m} which contains atleast \mathbf{n} number of zeros at the end of \mathbf{m} !. Help Manasa come out of the sticky situation.

Input Format

The first line contains an integer \mathcal{T} i.e. the number of Test cases. Next T lines will contain an integer n.

Output Format

Print smallest such number m.

Constraints

 $1 \le T \le 100$ $1 \le n \le 10^{16}$

Sample Input

3 1 2 3

Sample Output

5 10 15

Explanation

- 1. As 4! = 24 and 5! = 120, so minimum value of m will be 5.
- 2. As 9! = 362880 and 10! = 3628800, so minimum value of m will be 10.
- 3. As 14! = 87178291200 and 15! = 1307674368000, so minimum value of m will be 15.