Topología II: Conceptos Básicos

Daniel Monjas Miguélez 6 de diciembre de 2021

Índice

1. Grupo Fundamental

3

1. Grupo Fundamental

Definición: Sea X un espacio topológico. Un lazo en X con base un punto del espacio, $x \in X$ es un arco $\alpha : [0,1] \to X$ continuo con $\alpha(0) = \alpha(1) = x$. Se denota $\Omega_x(X)$ al conjunto de todos los lazos en X con base x.

Sean α , $\beta \in \Omega_x(X)$, se define el producto de lazo como

$$\alpha * \beta : [0,1] \to X$$

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{si } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{si } \frac{1}{2} \le t \le 1 \end{cases}$$

Definción: Sean α , $\beta \in \Omega_x(X)$, se dicen que son homotópicos, y se denota por $\alpha \simeq \beta$, si existe una aplicación:

$$H: [0,1] \times [0,1] \rightarrow X$$
 continua $y:$

- $H(t,0) = \alpha(t) \quad \forall t \in [0,1]$, es decir, $H(*,0) = \alpha$.
- $H(t,1) = \beta(t) \quad \forall t \in [0,1], \text{ es decir}, H(*,1) = \beta.$
- $H(0,s) = H(1,s) = x \quad \forall s \in [0,1]$, es decir, $H(0,*) = H(1,*) = \varepsilon_x$

Se dice que H es un homotopía de α a β , y se escribe:

$$H:\alpha\simeq\beta$$

Propiedades de las homotopías:

- 1. Si $\alpha \in \Omega_x(X)$, entonces $\alpha \simeq \alpha$ con $H: [0,1] \times [0,1] \to X$ tal que $H(t,s) = \alpha(t)$.
- 2. Si $h: [0,1] \to [0,1]$ es un homomorfismo con h(0) = 0 y h(1) = 1 entonces $\alpha \simeq \alpha \circ h$ donde $\alpha \circ h$ es un reparametrización de α preservando orientación.
- 3. Sea $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \simeq \beta$ entonces $\beta \simeq \alpha$.
- 4. Sean $\alpha, \beta \in \Omega_x(X)$. Si $\alpha \simeq \beta$ y $\beta \simeq \gamma$ entonces $\alpha \simeq \gamma$.

Proposición: Sean X un espacio topológicos y puntos $p,q,r \in X$. Sean $\alpha, \alpha' \in \Omega_{p,q}(X)$ y $\beta, \beta' \in \Omega_{q,r}(X)$ arcos tales que $\alpha \simeq \alpha'$ y $\beta \simeq \beta'$. Entonces $\alpha * \beta \simeq \alpha' * \beta'$.

Proposición: Sean X un espacio topológico y puntos $p, q, r, s \in X$. Sean $\alpha \in \Omega_{p,q}(X), \beta \in \Omega_{q,r}(X)$ y $\gamma \in \Omega_{r,s}(X)$. Las siguientes propiedades son ciertas:

- $\bullet \alpha * (\beta * \gamma) = (\alpha * \beta) * \gamma)$
- $\bullet (\alpha * \varepsilon_p = \varepsilon_p * \alpha = \alpha$
- $\bullet \alpha * \overline{\alpha} = \varepsilon_p$

Teorema: Sea X un espacio topológico y $p \in X$ un punto arbitrario. La ley de composición interna

$$*: \Pi_1(X,p) \times \Pi_1(X,p) \to \Pi_1(X,p) \qquad [\alpha] * [\beta] = [\alpha * \beta]$$

está bien definida y dota al conjunto $\Pi_1(X,p)$ de estructura de grupo algebraico.

El grupo $(\Pi_1(X, p), *)$ es conocido como **Grupo Fundamental o de Poin-**caré del espacio en el punto p. Recalcar que $\Pi_1(X, p) = \Omega_p(X)/\simeq$.

Proposición: Sea (X, τ) un espacio arcoconexo, $x, y \in X$. Entonces los grupos $\Pi_1(X, x)$ y $\Pi_1(X, y)$ son isomorfos.

Observación: Sea γ un arco que une los puntos $x_1, x_2 \in X$ entonces

$$\phi: \Pi_1(X, x_1) \to \Pi_1(X, x_2), \qquad \phi([\alpha]) = [\gamma^{-1}][\alpha][\gamma]$$

es un isomorfismo de grupos.

Corolario: El grupo fundamental $\Pi_1(X, p)$ está unívocamente determinado salvo isomorfismos por la arcocomponente C_p del punto p. En particular, si X es arcoconexo entonces la clase de isomorfía de $\Pi_1(X, p)$ no depende del punto $p \in X$. En este caso la notación es $\Pi_1(X)$.

Proposición: Sean X e Y espacios topológicos y $\varphi: X \to Y$ una aplicación continua. Consideremos $\alpha, \beta \in \Omega_{p,q}(X)$ y los correspondientes $\varphi \circ \alpha, \varphi \circ \beta \in \Omega_{\varphi(p),\varphi(q)}(Y)$. Se tiene que

$$\alpha \simeq \beta \Rightarrow \varphi \circ \alpha \simeq \varphi \circ \beta$$

En particular:

- La aplicación $\varphi_*: \Pi_1(X,p) \to \Pi_1(Y,\varphi(p)), \quad \varphi_*([\alpha]) = [\varphi \circ \alpha]$ está bien definida y es un homomorfismo de grupos.
- \blacksquare Si $\psi:Y\to Z$ es otra aplicación continua y consideramos los homomorfismos de grupos

$$\psi_*: \Pi_1(X, \varphi(p)) \to \Pi_1(Y, \psi(\varphi(p)))$$
$$(\psi \circ \varphi)_*: \Pi_1(X, p) \to \Pi_1(Z, \psi(\varphi(p)))$$

entonces se tiene que $(\psi \circ \varphi)_* = \psi_* \circ \varphi_*$

Corolario (Invarianza topológica del Grupo Fundamental): Si $\varphi: X \to Y$ es un homeomorfismo de espacios topológicos entonces $\phi_*: \Pi_1(X,p) \to \Pi_1(Y,f(p))$ es un isomorfismo de grupos.

Proposición: El grupo fundamental de un subconjunto estrellado de \mathbb{R}^n es trivial. En particular, todo subconjunto convexo de \mathbb{R}^n tiene grupo fundamental trivial.

Además, se tiene que

$$\Pi_1(X \times Y, (p,q)) \cong \Pi_1(X,p) \times \Pi_1(Y,q)$$

Observación importante: El grupo fundamental de S^n es \mathbb{Z} . El grupo fundamental de un conjunto X estrellado es $\Pi_1(X,x) = \{ [\epsilon_x] \}$.

El grupo fundamental del toro $T = S^1 \times S^1$ es $\mathbb{Z} \times \mathbb{Z} = \mathbb{Z}^2$.

El grupo fundamental del cilindro $S^n \times \mathbb{R}$ es $\mathbb{Z} \times \{1\} \cong \mathbb{Z}$. El grupo fundamental de X estrellado es $\Pi_1(S^1, 1) = (\{[\alpha_n] : n \in \mathbb{N}, *\})$.

Definición: Un grupo topológico es un par (G, .) donde:

- \blacksquare G es un espacio topológico.
- \blacksquare . : $G\times G\to G$ es una ley de composición interna en G que le dota de estructura algebraica.
- La aplicación $G \times G \to G \quad (a,b) \to a.b^{-1}$ es continua, o equivalentemente: . : $G \times G \quad (a,b) \mapsto a.b \text{ y } (\)^{-1} : G \to G \quad a \to a^{-1}$ son continuas.

Propiedad del levantamiento de arco: Sea $\alpha:[0,1]\to S^1$ un arco con $\alpha(0)=1$. Entonces existe un único arco $\tilde{\alpha}:[0,1]\to\mathbb{R}$ tal que $\rho\circ\tilde{\alpha}=\alpha$ y $\tilde{\alpha}(0)=0$, donde $\rho:\mathbb{R}\to S^1$, $\rho(t)=e^{2\pi it}=(cos(2\pi t),sen(2\pi t))$.

Propiedad del levantamiento de homotopías: Sea $\alpha, \beta: [0,1] \to S^1$ un arco con $\alpha(0) = \beta(0) = 1$ y $\alpha(1) = \beta(1)$. Supongamos que existe una homotopía H de α en β . Entonces:

- Los arcos $\tilde{\alpha}$ y $\tilde{\beta}$ tienen los mismos extremos.
- La aplicación \tilde{H} es una homotopía (con extremos fijos) de $\tilde{\alpha}$ en $\tilde{\beta}$, donde $\tilde{H}:[0,1]^2\to\mathbb{R}$ es continua y tal que $\rho\circ\tilde{H}=H$ y $\tilde{H}(0,0)=0$.

Definición: Si $\alpha \equiv (\alpha_1, \alpha_2) : [0, 1] \to S^1 \subset \mathbb{R}^2$ es un arco de clase C^1 con $\alpha(0) = (1, 0)$, entonces su levantamiento vía ρ a \mathbb{R} dado por:

$$\tilde{\alpha}(t) = \frac{1}{2\pi} \int_0^t (\alpha_1(s)\alpha_2'(s) - \alpha_1'(s)\alpha_2(s))ds$$

De forma explícita, y para cada $n \in \mathbb{Z}$, el lazo $\alpha_n : [0,1] \to S^1 \subset \mathbb{C}$, $\alpha_n(t) = e^{2n\pi it}$ se levanta con condición inicial $\tilde{\alpha}_n(0) = 0$ al arco $\tilde{\alpha}_n : [0,1] \to \mathbb{R}$, $\tilde{\alpha}_n(t) = nt$.

Definición: Dado un lazo $\alpha:[0,1]\to S^1$ con base el punto $1\in S^1$, definimos el grado de α como:

$$deg(\alpha) = \tilde{\alpha}(1) \in \mathbb{Z}$$

donde $\tilde{\alpha}:[0,1]\to\mathbb{R}$ represental el levantamiento de α con condición inicial $\tilde{\alpha}(0)=0.$

Proposición: Dados $\alpha, \beta: [0,1] \to S^1$ dos lazos con base $1 \in S^1$, se tiene que

$$\alpha \simeq \beta \Leftrightarrow deg(\alpha) = deg(\beta)$$

Teorema: La aplicación

$$deg: (\Pi_1(S^1, 1), *) \to (\mathbb{Z}, +),$$

 $deg([\alpha]) = deg(\alpha)$

Proposición: Si \overline{D} denota el disco unidad cerrado $\overline{D}=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1\}$, no existe ninguna aplicación continua $f:\overline{D}\to S^1$ tal que $f_{|_{S^1}}=Id_{S^1}$.

Teorema (Punto fijo de Brower): Sea $f: \overline{D} \to \overline{D}$ una aplicación continua. Entonces existe $p_0 \in \overline{D}$ tal que $f(p_0) = p_0$.

Teorema Fundamental del Álgebra: Sea $P:\mathbb{C}\to C$ una función polinómica de la forma

$$P(z) = a_0 + \ldots + a_{n-1}z^{n-1} + z^n \qquad n \ge 1$$

Entonces existe $z_0 \in \mathbb{C}$ tal que $P(z_0) = 0$.

Definición: Sea X un espacio topológico y $A \subset X$ un subespacio topológico. Una retracción o retracto de X en A es una aplicación continua $r: X \to A$ satisfaciendo $r_{|A} = Id_A$, o equivalentemente, $r \circ i = Id_A$ donde $i: A \to X$ es la aplicación inclusión, i(x) = x. En este caso se dice que A es un retractor de X.

Proposición: Sea $r: X \to A$ es una retracción, $i: A \to X$ la aplicación inclusión y $a \in A$, entonces:

- $r_*: \Pi_1(X,a) \to \Pi_1(A,a)$ es un epimorfismo.
- $i_*: \Pi_1(A,a) \to \Pi_1(X,a)$ es un monomorfismo.

Definición (Retracto de deformación): Dado un espacio topológico X y un subespacio $A \subset X$, se dice que A es un retracto de deformación de X si existen una retracción $r: X \to A$ y una aplicación continua $H: X \times [0,1] \to X$ satisfaciendo:

$$H(x,0) = x \quad \forall x \in X \qquad H(x,1) = r(x) \quad \forall x \in X$$

Si adicionalmente $H(a, s) = a \quad \forall (a, s) \in A \times [0, 1]$, entonces se dice que A es un retracto fuerte de deformación de X. A las aplicaciones H y r se les llamará deformación y retracción asociadas al retracto (fuerte) de deformación A de X,

respectivamente.

Proposición: Si A es un retracto de deformación de X, $\{C_{\alpha} : \alpha \in \Lambda\}$ son las arcocomponentes de A y \hat{C}_{α} es la arcocomponente de X conteniendo a C_{α} para cada $\alpha \in \Lambda$, entonces:

- 1. $r(\hat{C}_{\alpha}) = C_{\alpha} \quad \forall \alpha \in \Lambda \text{ y por tanto, } \hat{C}_{\alpha} \neq \hat{C}_{\beta}, \ \alpha \neq \beta.$
- 2. $\{C_{\alpha} : \alpha \in \Lambda\}$ son las arcocomponentes de X.
- 3. Si $H: X \times [0,1] \to X$ y $r: X \to A$ son una deformación y retracción asociadas al retracto de deformación A de X, entonces $H_{|\hat{C}_{\alpha} \times [0,1]}: \hat{C}_{\alpha} \times [0,1] \to \hat{C}_{\alpha}$ y $r_{|\hat{C}_{\alpha}}: \hat{C}_{\alpha} \to C_{\alpha}$ son una deformación y retracción asociadas al retracto de deformación C_{α} de \hat{C}_{α} .

Proposición: Sea $F: X \to A$ un homeomorfismo. Si A es un retracto (fuerte) de deformación de Y entonces $F^{-1}(A)$ es un retracto (fuerte) de deformación de X.

Teorema: Sea X un espacio topológico y sea $A \subset X$ un retracto fuerte de deformación con $r: X \to A$ una retracción asociada. Entonces dado $a \in A$ se tiene que:

$$r_*: \Pi_1(X, a) \to \Pi_1(A, a)$$
 $i_*: \Pi_1(A, a) \to \Pi_1(X, a)$

son isomorfismos, uno inverso del otro.

Definición: Un espacio topológico X se dice contráctil si admite como retracto de deformación a un punto $\{p_0\} \subset X$. En caso de que $\{p_0\}$ sea retracto fuerte de deformación de X diremos que el espacio es fuertemente contráctil.

Definición: Un espacio topológico X se dice simplemente conexo si es arcoconexo y $\Pi_1(X,p)=\{[\epsilon_p]\}$ para algún $p\in X$ (luego para todo $p\in X$).

Corolario: Todo espacio fuertemente contráctil es simplemente conexo.

Consecuencias:

- 1. Todo subconjunto estrellado de \mathbb{R}^n es simplemente conexo. Esto se aplica a subconjuntos $A\subset\mathbb{R}^n$ convexos.
- 2. Si $p \in S^n$ entonces $\Pi_1(\mathbb{R}^{n+1} \{0\}, p)$ es isomorfo a $\Pi_1(S^n, p)$.
- 3. Si $p \in S^1$ entonces $\Pi_1(S^1 \times \mathbb{R}, (p, 0))$ es isomorfo a $\Pi_1(S^1, p) \cong \mathbb{Z}$.
- 4. Si $p \in S^1 \times \mathbb{R}$ entonces $\Pi_1(\mathbb{R}^3 \{x = y = 0\}, p)$ es isomorfo a $\Pi_1(S^1 \times \mathbb{R}, p) \cong \mathbb{Z}$.
- 5. El grupo fundamental de la cinta de Möbius es isomorfo a \mathbb{Z} .

Teorema: Sea X un espacio topológico conexo y localmente arcoconexo. Supongamos que la topología admite una base β satisfaciendo:

- 1. β es numerable (luego X es II-Axioma de Numerabilidad).
- 2. B es simplemente conexo $\forall B \in \beta$.

Entonces $\Pi_1(X, x)$ es numerable $\forall x \in X$.

Definición (Homotopía de aplicaciones): Dados dos espacios topológicos X e Y, dos aplicaciones continuas $\varphi_1, \varphi_2 : X \to Y$, se dicen homotópicas, y se escribe $\varphi_1 \simeq \varphi_2$, si existe una aplicación $H: X \times [0,1] \to Y$ verificando:

$$H(x,0) = \varphi_1(x) \forall x \in X$$
 $H(x,1) = \varphi_2(x) \forall x \in X$

Si $A \subset X$, las aplicaciones continuas $\varphi_1, \varphi_2 : X \to Y$ se dirán homotópicas relativas a $A, \varphi_1 \simeq_A \varphi_2$ si existe $H : X \times [0,1] \to Y$ verificando:

$$H(x,0) = \varphi_1(x) \quad \forall x \in X \qquad H(x,1) = \varphi_2(x) \quad \forall x \in X$$

 $H(a,s) = \varphi_1(a) = \varphi_2(a) \quad \forall (a,s) \in A \times [0,1]$

Si $A \subset X$ es un retracto de deformación vía H con la retracción asociada r, entonces $Id_X \simeq r$. Si A es un retracto fuerte de deformación de X se tiene que $Id_X \simeq_A r$.

Teorema: Sean X e Y espacios topológicos y dos aplicaciones continuas $\varphi_1, \varphi_2 : X \to Y$. Supongamos que $\varphi_1 \simeq \varphi_2$ vía $H : X \times [0,1] \to Y$, fijemos $x_0 \in X$ y sea $\gamma : [0,1] \to Y$ el arco uniendo $\varphi_1(x_0)$ y $\varphi_2(x_0)$ definido por $\gamma(s) = H(x_0, s)$.

Dados los homomorfismos de grupos

$$(\varphi_1)_*: \Pi_1(X, x_0) \to \Pi_1(Y, \varphi_1(x_0)) \qquad (\varphi_2)_*: \Pi_1(X, x_0) \to \Pi_1(Y, \varphi_2(x_0))$$

Y el isomorfismo $U_{\gamma}: \Pi_1(Y, \varphi_1(x_0)) \to \Pi_1(Y, \varphi_2(x_0))$, se tiene que $U_{\gamma} \circ (\varphi_1)_* = (\varphi_2)_*$. En particular, los homomorfismos $(\varphi_1)_*$ y $(\varphi_2)_*$ son iguales salvo isomorfismo.

Corolario: Sean $\varphi_1, \varphi_2 : X \to Y$ aplicaciones continuas y $x_0 \in X$. Supongamos que $\varphi_1 \simeq_{\{x_0\}} \varphi_2$ y sea $y_0 = \varphi_1(x_0) = \varphi_2(x_0)$. Entonces $(\varphi_1)_* = (\varphi_2)_* : \Pi_1(X, x_0) \to \Pi_1(Y, y_0)$.

Definición: Sean X e Y espacios topológicos. Una aplicación continua f: $X \to Y$ se dirá una equivalencia homotópica si existe $g: X \to Y$ tal que $g \circ f = Id_X$ y $f \circ g = Id_Y$. En ese caso se dirá que f y g son inversas homotópicas.

Dos espacios X e Y se dicen del mismo tipo de homotopía si existe una equivalencia homotópica entre ellos.

Nota: Todo homeomorfismo es una equivalencia homotópica pero el recíproco no es cierto. La equivalencia homotópica es suficiente para garantizar isomorfismo entre grupos fundamentales.

Teorema: Sean X e Y espacios topológicos y $f: X \to Y$ una equivalencia homotópica con inversa homotópica $g: X \to Y$. Fijemos $x_0 \in X$. Entonces $f_*: \Pi_1(X, x_0) \to \Pi_1(Y, f(x_0))$ es un isomorfismo de grupos.

Corolario: Sea $A\subset X$ es un retracto de deformación de X con la retracción asociada $r:X\to A$ e $i:A\to X$ la aplicación inclusión. Entonces para cada $a\in A$ las aplicaciones

$$r_*: \Pi_1(X, a) \to \Pi_1(A, a)$$
 $i_*: \Pi_1(A, a) \to \Pi_1(X, a)$

son isomorfismos de grupos. En particular, todo espacio topológico contráctil es simplemente conexo.

Proposición: Sea X un espacio topológico, y sean $U,V\subset X$ subconjuntos satisfaciendo:

- 1. U y V son abiertos simplemente conexos (con la topología inducida).
- 2. $U \cap V$ es arcoconexo y no vacío.
- 3. $U \cup V = X$

Entonces X es simplemente conexo.

Corolario: La esfera S^n es simplemente conexa para todo $n \geq 2$.

Teorema de Invarianza de la Dimensión: Si $\Omega_2 \subset \mathbb{R}^2$ y $\Omega_n \subset \mathbb{R}^n$ con $n \neq 2$ son abiertos conexos, entonces Ω_2 no es homeomorfo a Ω_n .

Lema: No existe ninguna aplicación $F: S^2 \to S^1$ continua e impar.

Teorema (Borsuk-Ulam): Si $f: S^2 \to \mathbb{R}^2$ es continua, entonces existes $x_0 \in S^2$ tal que $f(x_0) = f(-x_0)$.

Corolario: Si identificamos S^2 con la superficie de la tierra y $f, g: S^2 \to \mathbb{R}$ son dos magnitudes físicas que se distribuyen de forma continua sobre dicha superficie (por ejemplo, la presión y la temperatura), existen puntos antípodas $p_0, -p_0 \in S^2$ tales que $(f, g)(p_0) = (f, g)(-p_0)$.

Corolario: Si S^2 es la unión de tres subconjuntos cerrados A_1, A_2 y A_3 , entonces alguno de ellos contiene dos puntos antípodas.

Corolario (Teorema de las tortitas): Dados dos compactos $A_1, A_2 \subset \mathbb{R}^2$, existe una recta combinatoria de \mathbb{R}^2 que los subdivide a ambos en trozos de igual área.

Corolario (Teorema del bocadillo de jamón): Dados tres compactos $A_1, A_2, A_3 \in \mathbb{R}^3$, es posible encontrar un plano combinatorio de \mathbb{R}^3 que los subdivida a los tres en trozos de igual volumen.

Teorema de Seifert-Van Kampen: Sea X un espacio topológico y sean $U,V\subset X$ subconjuntos satisfaciendo:

- 1. $U, V y U \cap V$ son abiertos arcoconexos.
- 2. $U \cap V \neq \emptyset$ y $U \cup V = X$

 $i_*:\Pi_1(U\cap V,x_0)\to\Pi_1(U,x_0)$ y $j_*:\Pi_1(U\cap V,x_0)\to\Pi_1(V,x_0)$ los correspondientes homomorfismos inducidos. Entonces

$$\Pi_1(X, x_0) \cong \Pi_1(U, x_0) *_{\Pi_1(U \cap V, x_0)} \Pi_1(V, x_0)$$

donde el producto amalgamado es el relativo a los homomorfismos i_* y j_* .

Corolario: Bajo las mismas hipótesis del Teorema de Seifert-Van Kampen, si $U \cap V$ es simplemente conexo entonces $\Pi_1(X, x_0) \cong \Pi_1(U, x_0) * \Pi_1(V, x_0)$.

Corolario: Bajos las mismas hipótesis del Teorema de Seifert-Van Kampen, si V es simplemente conexo entonces

$$\Pi_1(X, x_0) \cong \Pi_1(U, x_0) / N(i_*(Pi_1(U \cap V, x_0)))$$

Corolario: Si X es un n-ciclo entonces $\Pi_1(X, x_0)$ es isomorfo al grupo libre $F(a_1, \ldots, a_n)$.

Definición: Sea el semiplano $\Pi_1 = \{(x_1, x_2, x_3) \subset \mathbb{R}^3 : x_1 = 0, x_2 \geq 0\}$ y sus girados respecto del eje x_3 :

$$\Pi_j = \{ \left(e^{2\pi(j-1)i/k} z, x_3 \right) : (z, x_3) \in \Pi_1 \subset \mathbb{C} \times \mathbb{R} \equiv \mathbb{R}^3 \} \quad j = 1, \dots, k \}$$

Por definición, el espacio libre de k hojas es:

$$L_k = \bigcup_{j=1}^k \Pi_j \qquad k \in \mathbb{N}$$

Proposición: Los espacios L_k y L_s no son homeomorfos, $k, s \in \mathbb{N}, k \neq s$.

Corolario: Si $O \subset \mathbb{R}^3$ es un abierto conteniendo al origen, entonces $O \cap L_k$ no puede ser homeomorfo a un abierto de \mathbb{R}^2 para todo $k \neq 2$.