2.4.1

Определение теплоты испарения жидкости

Егор Берсенев

1 Цель:

- 1. Измерение давления насыщенного пара жидкости при разной температуре.
- 2. Вычисление по полученным данным теплоты испарения с помощью уравнения Капейрона-Клаузиуса.

2 Оборудование:

Термостат, герметичный сосуд, заполненный исследуемой жидкостью, отсчетный микроскоп.

3 Теоретическая часть

Испарением называется переход вещества из жидкого состояния в газообразное. Оно происходит на свободной поверхности жидкости. При испарении с поверхности жидкости вылетают молекулы, образуя над ней пар. Для выхода из жидкости молекулы должны обладать достаточной кинетической энергией, т.к. нужна энергия для преодоления сил молекулярного сцепления и совершения работы против внешнего давления. Переход части молекул в пар приводит к охлаждению жидкости. Теплоту парообразования жидкостей можно измерить непосредственно калориметром, однако в работе применем метод, основанный на формуле Клапейрона-Клаузиуса.

$$\frac{\mathrm{d}P}{\mathrm{d}T} = \frac{L}{T\left(V_2 - V_1\right)}\tag{1}$$

P — давление насыщенного пара жидкости при температуре T, T — абсолютная температура жидкости и пара, L — теплота испарени жидкости, V_2 — объем пара, V_1 — объем жидкости. При малом давлении можно пренебречь объемом жидкости Также пренебрежем коэффициентами Ван-дер-Ваальса и будем пользоваться уравнением состояния идеального газа.

$$V = \frac{RT}{P} \tag{2}$$

Разрешим относительно L.

$$L = \frac{RT^2}{P} \frac{\mathrm{d}P}{\mathrm{d}T} = -R \frac{\mathrm{d}(\ln P)}{\mathrm{d}(1/T)} \tag{3}$$

Егор Берсенев 1

На рисунке изображена экспериментальная установка. Наполненный водой резервуар 1 ирает роль термостата. Нагревание термостата производится спиралью 2, подогревамое электрическим током. Для охлаждения воды в термостате через змеевик 3 пропускается холодная вода. Вода в термостате перемешивается воздухом, поступающим через трубку 4. Температура воды измерятется термометром 5. В термостат погружен запаянный прибор 6 с исследуемой жидкостью. Давление насыщенного пара определяется по ртутному манометру.

4 Практическая часть

Включим нагревание. Проведем измерения в диапазоне температур от 8°Сдо 30°С.

	4 /55		
T, °C	$1/\mathrm{T}$	Н, см	Р, Па
281.15	3.56	1.74	2319
283.45	3.53	1.91	2546
286.35	3.49	2.22	2959
289.55	3.45	3	3998
292.15	3.42	3.65	4865
295.35	3.39	4.2	5598
298.25	3.35	5.03	6704
301.15	3.32	5.94	7917
303.15	3.30	6.72	8956
297.15	3.36	4.67	6224
298.95	3.37	4.07	5424
293.15	3.41	3.60	4798
290.95	3.44	3.20	4265
289.15	3.46	2.59	3452
286.35	3.49	2.38	6172

Егор Берсенев 2

По формуле получим значение теплоты испарения. $L=-R\frac{\mathrm{d}(\ln P)}{\mathrm{d}(1/T)}=\left(44.58\pm1.32\right)\frac{\mathrm{к}\mathrm{Дж}}{\mathrm{моль}}$ Табличное значение — $42\frac{\mathrm{k}\mathrm{Дж}}{\mathrm{моль}}$. Результат сходится с табличным почти в пределах погрешности.

5 Вывод

С помощью уравнения Клапейрона-Клаузиуса можно измерять теплоту парообразования жидкости. Однако, экспериментальная установка не лишена недостатков: так, например к искажению результатов опыта привела недостаточная пермешиваемость жидкости и сильная переохлажеденность.

Егор Берсенев 3