电子显微成像分析

Electron Microscopy

邹滔滔 2023(f)

电子显微成像

- 不同显微镜的对比:
- ❖ 光学:
- → 折射、衍射、反射
- → 白光、荧光、激光
- * 电子:
- → 折射、衍射、反射
- → 电子束
- ❖ 探针扫描:
- → 探针与样品表面的相互作用

电子显微镜的分类

- ❖透射电子显微镜
 - 透射成像
 - 图像是二维的
 - 靠欠焦形成一定的图像反差。

❖扫描电子显微镜

- 反射成像
- 图像是三维的,有很好的立体感
- 分辨率低于透射电镜,目前指标分辨率可以达到3个 纳米。

不同显微镜的对比:

Technique	Image Formed By	Lowest Resolvable Unit	Approx Lower Limit
Optical Microscopy	Light Rays	Microns (μm)	1 μm (monochromatic light)
Confocal Microscopy	Coherent Light Source (Laser)	Microns (μm)	.1 μm (X-Y Direction)
Transmission Electron Microscopy (TEM)	Electrons	Angstroms (Á)	2 Å (high resolution TFM)
Scanning Electron Microscopy (SEM)	Electrons	Nanometers (nm) to Angstroms (Å)	10 nm (100 Å)
Atomic Force & Scanning Tunneling Microscopies (AFM/STM)	Molecular Mechanical Probes	Angstroms (Å)	40 Å (theoretical)

透射电子显微成像 (TEM)

❖ 电子显微镜的分辨率:

$$d = \frac{0.61\lambda}{\text{NA}} = \frac{0.61\lambda}{n\sin\theta}$$

→ 电子的波长由波粒二象性决定:

$$\lambda = \frac{h}{p}$$

→ 在加速电压V的作用下:

$$p = mv = \sqrt{2m_0eV}$$

→ 不考虑相对论的影响:

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_0 eV}}$$

→ 考虑到相对论:

$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m_0 eV \left(1 + \frac{eV}{2m_0 c^2}\right)}} \approx \frac{12.27}{\sqrt{V \left(1 + 0.978 \times 10^{-6} V\right)}}$$

透射电子显微成像 (TEM)

- ❖ 电子显微镜的分辨率:
- → 电子在不同加速电压下的物理参数:

Table 1.2. Electron Properties as a Function of Accelerating Voltage

Accelerating voltage (kV)	Nonrelativistic wavelength (nm)	Relativistic wavelength (nm)	Mass $(\times m_0)$	Velocity (×10 ⁸ m/s)
100	0.00386	0.00370	1.196	1.644
120	0.00352	0.00335	1.235	1.759
200	0.00273	0.00251	1.391	2.086
300	0.00223	0.00197	1.587	2.330
400	0.00193	0.00164	1.783	2.484
1000	0.00122	0.00087	2.957	2.823

透射电子显微成像 (TEM)

❖ 光学显微镜与电子显微镜的对比:

光学显微镜	电子显微镜		
$\lambda = 500$ nm	$\lambda = \frac{h}{\sqrt{2m_0 eV}} = 0.068 \text{A}(30 \text{kV})$		
n=1.5(glass)	n=1.0(vacuum)		
$\alpha \approx 70^{\circ}$	<i>α</i> ≤1°		
$d \approx 210 \text{nm} = 2100 \text{A}$	<i>d</i> ≈ 4.1A		

$$d = \frac{0.61\lambda}{\text{NA}} = \frac{0.61\lambda}{n\sin\theta}$$

❖ 电子源:

钨丝阴极

六硼化镧阴极

场发射阴极

❖ 电磁透镜:

因为所有的电子源都是发散性的, 电子束必须被 "聚焦" 到样品上。

❖ 电磁透镜:

电磁透镜: 由洛伦兹力 产生聚焦

光学透镜: 由折射产生 聚焦

❖ 透射电子显微镜(TEM)的两种成像方式:

传统成像方式: 直接成像

高分辨率成像方 式: 衍射成像

- ❖ 透射电子显微镜(TEM)的两种成像方式:
- →样品后的电磁透镜决定成像方式

衍射成像

直接成像

衍射图案

反傅里叶变换

成像

透射电子显微镜(TEM)应用

新冠病毒电子显微镜图像。

美国国家过敏与传染病研究所 (NIAID)

透射电子显微镜(TEM)应用

Ting et al, Nature Methods volume 12, pages51–54 (2015)

❖ 3D-EM: Why?

普通TEM的成像是一个投影

❖ 3D-EM: What?

TRPV1 ion channel Liao et al Nature 2013

- ❖ 3D-EM: How?
- → 冷冻电镜(Cryo-EM)的数据处理:
 - Pick particles
 - Align
 - Classify, average and reconstruction

- ❖ 3D-EM: How?
- → 冷冻电镜(Cryo-EM)的数据处理:

http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc

- ❖ 3D-EM: How?
- → 冷冻电镜(Cryo-EM)的数据处理:

GroEL reference free class averages

Align, Classify, Average

- ❖ 3D-EM: How?
- → 冷冻电镜(Cryo-EM)的数据处理:

Final vs. x- ray

Average, Reconstruct

http://ncmi.bcm.tmc.edu/~stevel/EMAN/doc/

The Nobel Prize in Chemistry 2017

Jacques Dubochet, Joachim Frank, Richard Henderson

Share this: f @ y = 589

The Nobel Prize in **Chemistry 2017**

© Nobel Media, III, N. Elmehed Jacques Dubochet Prize share: 1/3

Elmehed Joachim Frank Prize share: 1/3

© Nobel Media, III, N. Elmehed Richard Henderson Prize share: 1/3

The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson "for developing" cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution".

MRC Laboratory of Molecular Biology