

CS 412 Intro. to Data Mining

Chapter 6. Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

Warm Patterns noonoglu Data

Basic Concepts

- Efficient Pattern Mining Methods
- Pattern Evaluation
- Summary

Pattern Discovery: Basic Concepts

What Is Pattern Discovery? Why Is It Important?

Basic Concepts: Frequent Patterns and Association Rules

Compressed Representation: Closed Patterns and Max-Patterns

- What Is Pattern Discovery?

 แสดงสิ่งที่หอนอนูใน Data
 What are patterns? การศึกษาปี แ market ซึ่งของที่ดูกัน ซื้อด้วยกันเด็มอ
 - Patterns: A set of items, subsequences, or substructures that occur frequently together (or strongly correlated) in a data set
 - Patterns represent intrinsic and important properties of datasets
- Pattern discovery: Uncovering patterns from massive data sets
- Motivation examples:
 - What products were often purchased together? สีนกับเป็น กหมักจะพื้นเสมอ
 - What are the subsequent purchases after buying an iPad? ซึ่งข่างแส้ว มาชื่อต่อกัก
 - What code segments likely contain copy-and-paste bugs? ก๊อป code มูที่รั
 - What word sequences likely form phrases in this corpus?เกล้าค่าทำ

Pattern Discovery: Why Is It Important?

- □ Finding inherent regularities in a data set
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Mining sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, time-series, and stream data
 - Classification: Discriminative pattern-based analysis
 - Cluster analysis: Pattern-based subspace clustering
- Broad applications
 - Market basket analysis, cross-marketing, catalog design, sale campaign analysis, Web log analysis, biological sequence analysis

Basic Concepts: k-Itemsets and Their Supports

- Itemset: A set of one or more items
- - Ex. {Beer, Nuts, Diaper} is a 3-itemset
- (absolute) support (count) of X, sup{X}: Frequency or the number of occurrences of an itemset X
 - \Box Ex. sup{Beer} = 3
 - \square Ex. sup{Diaper} = 4
 - \Box Ex. sup{Beer, Diaper} = 3
 - Ex. sup{Beer, Eggs} = 1

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

nontuvo transactions

- (relative) support, s{X}: The fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- \Box Ex. s{Beer} = 3/5 = 60%
- \blacksquare Ex. s{Diaper} = 4/5 = 80%
- \Box Ex. s{Beer, Eggs} = 1/5 = 20%

Basic Concepts: Frequent Itemsets (Patterns)

คามเกิดขึ้นขอย

- An itemset (or a pattern) X is *frequent* if the support of X is no less than a *minsup* threshold σ
- Let $\sigma = 50\%$ (σ : minsup threshold)

 For the given 5-transaction dataset major
 - All the frequent 1-itemsets:
 - Beer: 3/5 (60%); Nuts: 3/5 (60%)
 - □ Diaper: 4/5 (80%); Eggs: 3/5 (60%)
 - All the frequent 2-itemsets:
 - □ {Beer, Diaper}: 3/5 (60%)
 - All the frequent 3-itemsets?

None	14.	,
2/5 (40%)	→ au	human

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

- Why do these itemsets (shown on the left) form the complete set of frequent k-itemsets (patterns) for any k?
- Observation: We may need an efficient method to mine a complete set of frequent patterns

From Frequent Itemsets to Association Rules

- Comparing with itemsets, rules can be more telling
 - Ex. Diaper → Beer
 - Buying diapers may likely lead to buying beers
- How strong is this rule? (support, confidence)
 - \square Measuring association rules: $X \rightarrow Y$ (s, c)
 - Both *X* and *Y* are itemsets

- Support, s: The probability that a transaction contains $X \cup Y$
 - \Box Ex. s{Diaper, Beer} = 3/5 = 0.6 (i.e., 60%)
- Confidence, c: The conditional probability that a transaction containing X also contains Y

 - \Box Ex. $c = \sup{\text{Diaper, Beer}/\sup{\text{Diaper}}} = \frac{3}{4} = 0.75$

Tid	Items bought	
10	Beer, Nuts, Diaper	
20	Beer, Coffee, Diaper	
30	Beer, Diaper, Eggs	
40	0 Nuts, Eggs, Milk	
50	Nuts, Coffee, Diaper, Eggs, Milk	

Note: $X \cup Y$: the union of two itemsets

The set contains both X and Y

Mining Frequent Itemsets and Association Rules

- Association rule mining
 - Given two thresholds: minsup, minconf
 - \Box Find all of the rules, $X \rightarrow Y$ (s, c)
 - \square such that, $s \ge minsup$ and $c \ge minconf$
- Let *minsup* = 50%
 - Freq. 1-itemsets: Beer: 3, Nuts: 3,Diaper: 4, Eggs: 3
 - ☐ Freq. 2-itemsets: {Beer, Diaper}: 3
 - เกิดขึ้นชา มากแด้ ใหน่
- □ Let *minconf = 50%*
 - \Box Beer \rightarrow Diaper (60%, 100%)
 - \Box Diaper \rightarrow Beer (60%, 75%)

(Q: Are these all rules?)

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

Observations:

- Mining association rules and mining frequent patterns are very close problems
- Scalable methods are needed for mining large datasets

Challenge: There Are Too Many Frequent Patterns!

- A long pattern contains a combinatorial number of sub-patterns
- How many frequent itemsets does the following TDB₁ contain?
 - \Box TDB_{1:} T₁: {a₁, ..., a₅₀}; T₂: {a₁, ..., a₁₀₀}
 - Assuming (absolute) minsup = 1
 - Let's have a try

```
1-itemsets: {a<sub>1</sub>}: 2, {a<sub>2</sub>}: 2, ..., {a<sub>50</sub>}: 2, {a<sub>51</sub>}: 1, ..., {a<sub>100</sub>}: 1, 2-itemsets: {a<sub>1</sub>, a<sub>2</sub>}: 2, ..., {a<sub>1</sub>, a<sub>50</sub>}: 2, {a<sub>1</sub>, a<sub>51</sub>}: 1 ..., ..., {a<sub>99</sub>, a<sub>100</sub>}: 1, ..., ..., ...
```

99-itemsets: {a₁, a₂, ..., a₉₉}: 1, ..., {a₂, a₃, ..., a₁₀₀}: 1

100-itemset: {a₁, a₂, ..., a₁₀₀}: 1

The total number of frequent itemsets:

$$\binom{100}{1} + \binom{100}{2} + \binom{100}{3} + \dots + \binom{100}{100} = 2^{100} - 1$$

A too huge set for any one to compute or store!

Expressing Patterns in Compressed Form: Closed Patterns

- How to handle such a challenge?
- □ Solution 1: **Closed patterns**: A pattern (itemset) X is **closed** if X is *frequent*, and there exists *no super-pattern* Y ⊃ X, *with the same* support as X
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - □ Suppose *minsup* = 1. How many closed patterns does TDB₁ contain?
 - Two: P_1 : " $\{a_1, ..., a_{50}\}$: 2"; P_2 : " $\{a_1, ..., a_{100}\}$: 1"
- Closed pattern is a lossless compression of frequent patterns
 - Reduces the # of patterns but does not lose the support information!
 - You will still be able to say: " $\{a_2, ..., a_{40}\}$: 2", " $\{a_5, a_{51}\}$: 1"

Expressing Patterns in Compressed Form: Max-Patterns

- □ Solution 2: **Max-patterns**: A pattern X is a max-pattern if X is frequent and there exists no frequent super-pattern Y ⊃ X
- Difference from close-patterns?
 - Do not care the real support of the sub-patterns of a max-pattern
 - Let Transaction DB TDB₁: T_1 : {a₁, ..., a₅₀}; T_2 : {a₁, ..., a₁₀₀}
 - Suppose minsup = 1. How many max-patterns does TDB₁ contain?
 - One: P: "{a₁, ..., a₁₀₀}: 1"
- Max-pattern is a lossy compression!
 - We only know $\{a_1, ..., a_{40}\}$ is frequent
 - But we do not know the real support of $\{a_1, ..., a_{40}\}$, ..., any more!
- ☐ Thus in many applications, mining close-patterns is more desirable than mining max-patterns

Chapter 6: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Efficient Pattern Mining Methods

- Pattern Evaluation
- Summary

Efficient Pattern Mining Methods

- ☐ The Downward Closure Property of Frequent Patterns
- ☐ The Apriori Algorithm
- Extensions or Improvements of Apriori
- Mining Frequent Patterns by Exploring Vertical Data Format
- ☐ FPGrowth: A Frequent Pattern-Growth Approach
- Mining Closed Patterns

The Downward Closure Property of Frequent Patterns

- Observation: From TDB_{1:} T_1 : { a_1 , ..., a_{50} }; T_2 : { a_1 , ..., a_{100} }
 - We get a frequent itemset: $\{a_1, ..., a_{50}\}$
 - □ Also, its subsets are all frequent: $\{a_1\}$, $\{a_2\}$, ..., $\{a_{50}\}$, $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ..., $\{a_1, a_2\}$, ...
 - There must be some hidden relationships among frequent patterns!
- The downward closure (also called "Apriori") property of frequent patterns
 - □ If **{beer, diaper, nuts}** is frequent, so is **{beer, diaper}**
 - Every transaction containing {beer, diaper, nuts} also contains {beer, diaper}
 - Apriori: Any subset of a frequent itemset must be frequent
- Efficient mining methodology
 - □ If any subset of an itemset S is infrequent, then there is no chance for S to be frequent—why do we even have to consider S!? ← A sharp knife for pruning!

Apriori Pruning and Scalable Mining Methods

- Apriori pruning principle: If there is any itemset which is infrequent, its superset should not even be generated! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Scalable mining Methods: Three major approaches
 - Level-wise, join-based approach: Apriori (Agrawal & Srikant@VLDB'94)
 - Vertical data format approach: Eclat (Zaki, Parthasarathy, Ogihara, Li @KDD'97)
 - Frequent pattern projection and growth: FPgrowth (Han, Pei, Yin @SIGMOD'00)

Apriori; A Candidate Generation & Test Approach

- How My Dudrboro
- Outline of Apriori (level-wise, candidate generation and test)
 - ☐ Initially, scan DB once to get frequent 1-itemset
 - Repeat
 - □ Generate length-(k+1) candidate itemsets from length-k frequent itemsets
 - ☐ Test the candidates against DB to find frequent (k+1)-itemsets
 - Set k := k +1
 - Until no frequent or candidate set can be generated
 - Return all the frequent itemsets derived

The Apriori Algorithm (Pseudo-Code)

```
C_k: Candidate itemset of size k
F_k: Frequent itemset of size k
K := 1;
F_{\nu} := \{ \text{frequent items} \}; // \text{frequent 1-itemset} \}
While (F_k != \emptyset) do \{ // when F_k is non-empty
  C_{k+1} := candidates generated from F_k; // candidate generation
  Derive F_{k+1} by counting candidates in C_{k+1} with respect to TDB at minsup;
  k := k + 1
                        // return F_k generated at each level
return \bigcup_k F_k
```

The Apriori Algorithm—An Example

Database TDB

Items

A, C, **D**

B, C, E

A, B, C, E

B, E

minsup = 2

C₁ นา 1 ใช้เท็มเซ็ท 1st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

 F_2

Tid

10

20

30

40

	W
Itemset	sup
{A, C}	2
{B, C}	2
{B, E}	3
{C, E}	2

Itemset	sup
{A, B}	1
{A, C}	2
{A, E}	1
{B, C}	2
{B, E}	3
{C, E}	2

2nd scan

(3)

Itemset	
{A, B}	
{A, C}	
{A, E}	
{B, C}	
{B, E}	
{C, E}	

 C_3

Itemset
{B, C, E}

 3^{rd} scan F_3

Itemset	sup
{B, C, E}	2