53. Момент сил, действующих на диполь в электрическом поле. Потенциальная энергия диполя в электростатическом поле.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

1. Во внешнем <u>однородном</u> электростатическом поле напряженностью \vec{E} на диполь действует сила $\vec{F}_{\perp} q_{\perp} \uparrow^{y}$

$$\vec{F} = \vec{F}_{+} + \vec{F}_{-} = q_{+}\vec{E} + q_{-}\vec{E} = |q|\vec{E} - |q|\vec{E} = \vec{0},$$

где \vec{F}_+ и \vec{F}_- – сила, действующая на q_+ и $q_ \vec{E}$ соответственно.

Суммарный момент \overrightarrow{M} пары сил \overrightarrow{F}_+ и \overrightarrow{F}_- :

$$\vec{M} = \vec{M}_{+} + \vec{M}_{-} = \begin{bmatrix} \vec{r}_{+}, \vec{F}_{+} \end{bmatrix} + \begin{bmatrix} \vec{r}_{-}, \vec{F}_{-} \end{bmatrix} =$$

$$= \begin{bmatrix} \vec{\ell}_{+}, q_{+} \vec{E}_{-} \end{bmatrix} + \begin{bmatrix} -\vec{\ell}_{+}, q_{-} \vec{E}_{-} \end{bmatrix} = \begin{bmatrix} |q|\vec{\ell}_{+}, \vec{E}_{-} \end{bmatrix} + \begin{bmatrix} |q|\vec{\ell}_{+}, \vec{E}_{-} \end{bmatrix} + \begin{bmatrix} |q|\vec{\ell}_{+}, \vec{E}_{-} \end{bmatrix} = \begin{bmatrix} |q|\vec{\ell}_{+}, \vec{E}_{-$$

где $\vec{p} = |q| \cdot \vec{\ell}$ — дипольный момент диполя; α — угол между \vec{p} и \vec{E} .

Момент сил \overrightarrow{M} стремится повернуть дипольный момент \overrightarrow{p} диполя в направлении \overrightarrow{E} внешнего поля.

Белорусский государственный университет информатики и радиоэлектроники

Потенциальная энергия W^p диполя во внешнем однородном электростатическом поле: $\vec{F}_{p,q}$ \uparrow^y

$$W^{p} = W_{+}^{p} + W_{-}^{p} =$$

$$= q_{+} \varphi_{+} + q_{-} \varphi_{-} = |q| (\varphi_{+} - \varphi_{-}), \quad (9.47)$$

где ϕ_+ и ϕ_- потенциал внешнего поля в точках расположения q_+ и q_- соответственно.

В <u>однородном</u> электростатическом поле соотношение (9.38) имеет вид:

$$E_{x} = -\frac{\Delta \varphi}{\Delta x} = -\frac{\varphi_{+} - \varphi_{-}}{x_{+} - x_{-}} = -\frac{\varphi_{+} - \varphi_{-}}{-\ell \cos \alpha} = \frac{\varphi_{+} - \varphi_{-}}{\ell \cos \alpha}, \tag{9.48}$$

где x_+ и x_- – координаты точек расположения q_+ и q_- соответственно.

 $(9.49) \rightarrow B (9.47)$:

$$W^{p} = -|q|E\ell\cos\alpha = -pE\cos\alpha = -(\vec{p}, \vec{E}).$$

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

Потенциальная энергия W^p диполя во внешнем однородном электростатическом поле напряженностью \vec{E} :

$$W^p = -(\vec{p}, \vec{E}). \tag{9.50}$$

Из (9.50) следует, что диполь обладает:

• минимальной потенциальной энергией

$$W_{\min}^{p} = -pE$$

в положении $\vec{p}\uparrow\uparrow\vec{E}$ (положение устойчивого равновесия);

• максимальной потенциальной энергией

$$W_{\text{max}}^{p} = pE$$

в положении $\vec{p}\uparrow\downarrow\vec{E}$ (положение неустойчивого равновесия).

Во всех остальных случаях возникает момент сил (9.46), поворачивающий диполь в положение устойчивого равновесия $(\vec{p}\uparrow\uparrow\vec{E})$.

Белорусский государственный университет информатики и радиоэлектроники

Кафедра физики

2. Во внешнем неоднородном электростатическом поле на *точечный* диполь, как и в случае однородного поля, действует момент сил (9.46) и этот диполь обладает потенциальной энергией (9.50). Однако, действующая при \vec{E}_+ этом на диполь сила $\vec{F} \neq \vec{0}$:

$$\begin{split} \vec{F} &= \vec{F}_{+} + \vec{F}_{-} = q_{+} \vec{E}_{+} + q_{-} \vec{E}_{-} = \\ &= |q| \vec{E}_{+} - |q| \vec{E}_{-} = |q| (\vec{E}_{+} - \vec{E}_{-}), \end{split}$$

где \vec{E}_+ и \vec{E}_- – напряженность поля в точках нахождения зарядов q_+ и q_- соответственно.

Для точечного диполя ввиду малости ℓ разность $\vec{E}_+ - \vec{E}_-$ можно приближенно заменить дифференциалом функции $\vec{E} = \vec{E}(x, y, z)$:

$$\vec{E}_{+} - \vec{E}_{-} \approx d\vec{E}(x, y, z) = \frac{\partial \vec{E}}{\partial x} \cdot dx + \frac{\partial \vec{E}}{\partial y} \cdot dy + \frac{\partial \vec{E}}{\partial z} \cdot dz.$$

Т. к. ℓ – мало, то $dx \approx \ell_x$, $dy \approx \ell_y$, $dz \approx \ell_z$, поэтому

$$\vec{E}_{+} - \vec{E}_{-} \approx \ell_{x} \cdot \frac{\partial \vec{E}}{\partial x} + \ell_{y} \cdot \frac{\partial \vec{E}}{\partial y} + \ell_{z} \cdot \frac{\partial \vec{E}}{\partial z}.$$