

Improving Surgical Robotics Training with Haptic Virtual Fixtures: An Experimental Study

Alberto Rota, Ke Fan, Elena De Momi

Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy

Context

Virtual Simulated surgical scenes are a versatile and powerful tool in the formation of robotic surgeons

Haptic Virtual Fixtures could compensate for the lack of tactile feedback, achieving:

- Less intra-operative injuries $[1] \rightarrow Patient$
- Reduced cognitive load $[2] \rightarrow Surgeon$

Goals

- Build a realistic surgical simulator
- Implement a virtual fixture framework [3]
- Conduct an experimental study and assess their role and effectiveness on the training of novice users

Materials and Methods

	Feedback Force		Feedback Torque
$oldsymbol{F}_{elastic} = oldsymbol{d}$			$T_{elastic} = acos(\mathbf{z} \cdot \mathbf{t}) \cdot \mathbf{z} \times \mathbf{t}$
$m{F}_{viscous} = \cdot$	$egin{cases} oldsymbol{d}, \ rotate(oldsymbol{v}, oldsymbol{ heta}, oldsymbol{r}), \end{cases}$	$if \ \mathbf{v} \cdot \mathbf{d} < 0$ $otherwise$	$ extbf{\textit{T}}_{viscous} = rac{d}{dt} \left[acos(extbf{\textit{z}} \cdot extbf{\textit{t}}) ight] \cdot extbf{\textit{z}} imes extbf{\textit{t}}$

Framework

- Manipulators of a da Vinci® surgical robot
- Unity virtual suturing task
- ROS interface

The robotic surgical tools (PSMs) in the virtual surgical scene recapitulate the motion of the real ones, allowing the practitioner to **safely** and **repeatedly** perform a surgical suturing task **Suturing**: Complex wrist articulation + Bimanual coordination

Experimental Study

Control group of 4 subjects: Performs the suturing without haptic assistance (8 repetitions)

Assisted group of 4 subjects: Performs the suturing with haptic assistance (8 repetitions)

Evaluation metrics:

Reference Trajectory

- $\overline{D_r}$: Distance RMSE from the needle's tip to the closest point in the reference trajectory, at repetition r
- $\overline{A_r}$: Angular RMSE between the z-axis of the needle reference frame and the trajectory tangent vector, considered at the closest point, at repetition r

Metrics are evaluated since the moment the needle tip enters the tissue until the needle feather exits it, with a logging frequency of $30 \mathrm{Hz}$.

Conclusions

- Employing virtual fixtures in a simulated surgical environment represents a promising approach for improving surgical outcomes and reducing intra-operative errors or injuries
- Trainees who were assisted by haptic virtual fixtures achieved a better performance both on average and over time
- Haptic assistance is beneficial in a surgical training context

References

- [1] H Xin, J S Zelek, and H Carnahan. Laparoscopic surgery, perceptual limitations and force: A review, 2006.
- [2] Ankur Kapoor and Russel H. Taylor. A Constrained Optimization Approach to Virtual Fixtures for Multi-Handed Tasks. IEEE Xplore, 2008.
- [3] Stuart A. Bowyer, Brian L. Davies, and Ferdinando Rodriguez Y Baena. *Active constraints/virtual fixtures: A survey.* IEEE Transactions on Robotics, 2014.

Speaker: Alberto Rota
Contacts: alberto2.rota@mail.polimi.it
More: https://nearlab.polimi.it/medical/