Homework 6

Due 4/26(Fri) 11:59

Problem 1

1-1.

Find the eigenvalues of A, B, and C

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{bmatrix}$$

1-2.

From the unit vector $u=\left(\frac{1}{6},\frac{1}{6},\frac{3}{6},\frac{5}{6}\right)$, construct the rank-1 projection matrix $P=uu^T$. And then find three linearly independent eigenvectors of P all with eigenvalue $\lambda=0$.

Problem 2

2-1.

Let $A=\begin{bmatrix}0.8&0.3\\0.2&0.7\end{bmatrix}$. Compute the matrix A^∞ is the limt of A^k as $k\to\infty$, and explain why $A^2=\frac{1}{2}(A+A^\infty)$.

2-2.

Find all eigenvalues of

$$A = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 2 \\ 4 & 2 & 4 \\ 2 & 1 & 2 \end{bmatrix}$$

Problem 3

3-1.

If
$$A = \begin{bmatrix} 4 & 3 \\ 1 & 2 \end{bmatrix}$$
, find A^{100} .

3-2.

Let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Find the eigenvalues of AB and BA .

Problem 4.

4-1.

Diagonalize
$$B$$
 and compute $S\Lambda^kS^{-1}$ to prove the formula of B^k :
$$B=\begin{bmatrix}3&1\\0&2\end{bmatrix},\quad B^k=\begin{bmatrix}3^k&3^k-2^k\\0&2^k\end{bmatrix}$$

4-2.

Let
$$A=\begin{bmatrix}0.6&0.4\\0.4&0.6\end{bmatrix}$$
 , $B=\begin{bmatrix}0.6&0.9\\0.1&0.6\end{bmatrix}$. Comput A^∞ and B^∞ .