常用的概率分布及其数学期望和方差

分 布	分布列 p_k 或密度函数 $p(x)$	期 望	方 差
0-1分布	$p_k = p^k (1-p)^{1-k}, k = 0, 1$	p	p(1-p)
二项分布 $b(n,p)$	$p_k = C_n^k p^k (1-p)^{n-k}, k = 0, 1, \dots, n$	np	np(1-p)
泊松分布 $P(\lambda)$	$p_k = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots, \lambda > 0$	λ	λ
超几何分布 $h(n,N,M)$	$p_k = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n},$ $k = 0, 1, \dots, r,$ $r = \min\{M, n\}$	$n\frac{M}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$
几何分布 $Ge(p)$	$p_k = (1-p)^{k-1}p, k = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
负二项分布 $Nb(r,p)$	$p_k = C_{k-1}^{r-1} p^r (1-p)^{k-r}, \ k = r, r+1, \cdots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$
连续分布			
正态分布 $N(\mu,\sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < \infty$	μ	σ^2
均匀分布 $U(a,b)$	$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b, \\ 0, & 其他. \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
指数分布 $Exp(\lambda)$	$p(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
伽马分布 $Ga(lpha,\lambda)$	$p(x) = \begin{cases} \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$	$\frac{lpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$
卡方分布 χ ² (n)	$p(x) = \frac{x^{n/2-1}e^{-x/2}}{\Gamma(n/2)2^{n/2}}, x \ge 0$	n	2n
贝塔分布 $Be(a,b)$	$p(x) = \begin{cases} \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}, & 0 < x < 1, \\ 0, & \text{ 其他.} \end{cases}$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
对数正态分布 $LN(\mu, \sigma^2)$	$p(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left\{-\frac{(\ln x - \mu)^2}{2\sigma^2}\right\}, x > 0$	$e^{\mu+\sigma^2/2}$	$e^{2\mu+\sigma^2}\left(e^{\sigma^2}-1\right)$