

### **OBJECTIVES**



Develop a deep-learning model to predict the direction of stock market price movements



Extract useful features from diverse sources of information



Identify correlations between features



Train a prediction model based on extracted features



Make predictions using the trained model to guide investment decisions

### **DATASETS**

- Unrestricted stock market data from UCI Machine Learning Repository
- Daily closing prices of S&P 500, NASDAQ, Dow Jones, NYSE, and RUSSELL 2000
- 82 features: technical indicators, economic data, world indices, currency exchange rates, commodities, and futures contracts
- Data split: 60% training, 20% validation, 20% testing

### **CURRENT STATE-OF-THE-ART**

Advanced neural networks like LSTM for time-series pattern recognition

Blending various models

Enhancing data features

Sentiment analysis using NLP

Transfer learning for refined predictions

Model transparency

Real-time data analysis

Ethical and regulatory compliance

#### **APPROACH**

Data preprocessing: handle missing values, normalize features, format for CNN

Exploratory Data Analysis (EDA): trends, correlations, patterns

Model design and architecture selection: 2D CNN for temporal and cross-sectional dependencies

Model implementation and training: TensorFlow/PyTorch, hyper-parameter tuning, regularization

Model evaluation and testing: accuracy, precision, recall, F1-score

Refinement and optimization: architecture adjustments, ensemble learning

Potential enhancement: 3D CNN for capturing multidimensional interactions

# DATA PREPARATION AND PREPROCESSING

Data acquisition (UCI Machine Learning Repository)

Preprocessing techniques

Data splitting (80% training, 20% testing)

Data cleaning (handling missing values, removing outliers)

> Feature engineering (normalization

Data augmentatior (jittering, scaling, time shifting)

Data transformation (windowing technique)



## MODEL ARCHITECTURE AND TRAINING

- Initial CNN model and shift to LSTM
- Architecture details
  - LSTM layers (64 units, 32 units)
  - Dropout layers
  - Dense layer (64 neurons, ReLU activation)
  - Output layer (sigmoid activation)
- Optimization and loss function (Adam, binary cross-entropy)
- Model evaluation (accuracy, validation)

Model: "sequential\_41"

| Layer (type)         | Output Shape  | Param # |
|----------------------|---------------|---------|
|                      |               |         |
| lstm_26 (LSTM)       | (None, 8, 64) | 19200   |
| dropout_55 (Dropout) | (None, 8, 64) | 0       |
| lstm_27 (LSTM)       | (None, 32)    | 12416   |
| dropout_56 (Dropout) | (None, 32)    | 0       |
| dense_80 (Dense)     | (None, 64)    | 2112    |
| dropout_57 (Dropout) | (None, 64)    | 0       |
| dense_81 (Dense)     | (None, 1)     | 65      |
|                      |               |         |

## RESULTS

Training performance (accuracy graph)

#### Test performance

- Accuracy: 67.44%
- Classification report (precision, recall, F1-score)

Comparison with previous CNN-based models



|                                       | precision    | recall       | f1-score             | support              |
|---------------------------------------|--------------|--------------|----------------------|----------------------|
| 0<br>1                                | 0.67<br>0.69 | 0.70<br>0.65 | 0.69<br>0.67         | 970<br>971           |
| accuracy<br>macro avg<br>weighted avg | 0.68<br>0.68 | 0.68<br>0.68 | 0.68<br>0.68<br>0.68 | 1941<br>1941<br>1941 |

### CONCLUSION AND FUTURE WORK









Future explorations (additional data sources, feature engineering, model architectures)

