MOwNiT - Rozwiązywanie układów równań liniowych metodami iteracyjnymi

Jakub Fraczek

12 czerwca 2024

1 Wstęp

1.1 Pierwsze zadanie

Pierwsze zadanie polegało na zaimplementowaniu algorytmu opartego na metodzie Jacobiego, a nstępnie rozwiązaniu układu równań liniowych Ax = b, przyjmując jako wektor x dowolną n - elementową permutację zbioru 1, -1. Należało przeprowadzić testy dla dwóch kryteriów stopu:

1.
$$||x^{(i+1)} - x^{(i)}|| < \rho$$

2.
$$||Ax^{(i)} - b|| < \rho$$

Różnych wektorów początkowych oraz różnych rozmiarów układu. Nstępnie wyznaczyć różnicę w czasie obliczeń dla kryteriów stopu oraz liczbę iteracji, a także dookładność obliczeń.

Macierz A zadana była następującym wzorem:

$$A = \begin{cases} a_{i,i} = k \\ a_{i,j} = \frac{1}{|i-j|+m} & \text{dla } i \neq j \end{cases}$$

gdzie:

$$i, j = 1, 2, ...n$$

 $k = 8$
 $m = 2$

1.2 Drugie zadanie

Zadanie drugie polegało na zaimplementowaniu algorytmu wyznaczającego promień spektralny macierzy iteracji dla takich rozmiarów układu, dla których wcześniej zostały przeprowadzone tesy, a następnie sprawdzić, czy spełnione są założone dotyczące zbieżności metody Jacobiego dla danego układu.

2 Dane techniczne

2.1 Hardware

Do przeprowadzenia testów wykorzystany został laptop o następującej specyfikacji:

- Procesor Intel Core i5-9300H 2.4GHz
- 32 GB pamięci RAM.

2.2 Software

Wykorzystany został system Windows 11 x64 oraz język Python w wersji 3.11.8 wraz z bibliotekami:

- numpy
- enum
- functools
- time

Do stworzenia wykresów wykorzystane zostało narzędzie Google Sheets.

3 Wyznaczanie błędu obliczeń

Błąd obliczony został jako norma euklidesowa różnicy oczekiwanego i otrzymanego wektora. Zakładając, że w_1 to wynik wzorcowy, a w_2 to wynik otrzymany za pomocą algorytmu Gaussa lub Thomasam różnicę otrzymujemy w następujący sposób:

$$v = w_1 - w_1$$

A następnie liczona jest z niej norma euklidesowa, którą przyjmuję jako błąd obliczeń.

$$\|\mathbf{v}\|_2 = \sqrt{v_1^2 + v_2^2 + \ldots + v_n^2}$$

Do wyliczania normy wektora wykorzystywana jest funkcja np.linalg.norm z biblioteki numpy.

4 Sposób wyznaczania promienia spektralnego

W celu wyznaczenia promienia spektralnego, należy najpierw wycznaczyć wartości własne wielomianu charakterystycznego macierzy danego wzorem:

$$W_A(\lambda) = det(A) = \lambda_I$$

gdzie:

I - macierz jednostkowa

 λ - wartość własna macierzy

Następnie można wyznaczyć promień spektralny ze wzoru:

$$p(A) = max|\lambda_1|, ..., |\lambda_n|$$

gdzie:

p - promień spektralny

W celu ustalenia, czy metoda jest zbieżna należy skorzystać z poniższego warunku koniecznego i wystarczającego:

5 Wyniki dla zadania 1

Testy zostały przeprowadzone dla następujących wartości ρ : 1^{-3} , 1^{-7} , 1^{-15} oraz rozmiarów układu: 3, 5, 7, 10, 15, 20, 35, 50, 75, 100, 125, 150, 200, 250, 300, 350. Maksymalna liczba iteracji została ustawiona na 1000. Wszystkie testy zostały przeprowadzone na tych samych układach wygenerowanych tylko jeden raz.

5.1 Wyniki dla ρ o wartości 1^{-3}

Jak widać dla układu o rozmiarze 350 błąd obliczeń jest duży, winika to z przekroczenia ustalonej liczby iteracji i przerwania pętli. Poza tym w innych przypadkach błąd jest dość mały, bo rzędu 10^{-4} w przypadku I kryterium stopu i 10^{-5} dla II kryterium stopu. Dodatkowo czasy wykonania są dość podobne dla obu kryteriów.

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	2,77E-04	3	1,86E-04
5	1,18E-04	4	7,40E-05
7	3,07E-04	4	7,29E-05
10	3,37E-04	3	6,62E-05
15	4,77E-04	5	1,95E-04
20	6,51E-04	3	7,06E-05
35	5,58E-04	7	8,65E-05
50	6,95E-04	4	9,36E-05
75	4,94E-04	11	1,47E-04
100	3,99E-04	6	2,03E-03
125	4,50E-04	17	2,50E-03
150	4,95E-04	7	1,33E-03
200	5,52E-04	8	1,66E-03
250	6,00E-04	9	1,87E-03
300	4,39E-04	11	2,94E-03
350	5,07E-04	12	3,65E-03

Tabela 1: Wyniki dla I warunku stopu i $rho = 1^{-3}$

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	1,89E-05	4	9,39E-05
5	1,57E-05	5	7,64E-05
7	5,48E-05	5	6,93E-05
10	1,61E-05	4	5,94E-05
15	4,38E-05	7	8,52E-05
20	6,02E-05	4	5,66E-05
35	5,84E-05	10	1,09E-04
50	5,56E-05	6	8,10E-05
75	5,31E-05	16	2,45E-04
100	7,20E-05	8	3,09E-03
125	6,56E-05	24	7,54E-03
150	6,74E-05	10	4,09E-03
200	6,26E-05	12	3,01E-03
250	6,06E-05	14	3,38E-03
300	6,17E-05	16	4,89E-03
350	6,60E-05	18	5,41E-03

Tabela 2: Wyniki dla II warunku stopu i $\rho=1^{-3}$

5.2 Wyniki dla ρ o wartości 1^{-7}

W przypadku $\rho=1^{-7}$ otrzymany błąd jest, aż o 3 rzędy wielkości mniejszy dla I kryterium stopu o 4 rzędy wielkości mniejszy dla II kryterium stopu w porównaniu do $\rho=1^{-3}$. Liczba iteracji jest niemal dwukrotnie większa niż w przypadku precyzji 1^{-3} . Algorytm wykonuje się także trochę wolniej.

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	7,93E-09	7	1,77E-04
5	3,71E-08	8	8,52E-05
7	5,58E-08	9	7,79E-05
10	3,67E-08	6	6,01E-05
15	3,41E-08	13	2,55E-04
20	1,52E-08	8	1,73E-04
35	6,69E-08	19	3,77E-04
50	2,88E-08	12	1,43E-04
75	4,23E-08	32	3,79E-04
100	3,26E-08	17	3,79E-03
125	5,12E-08	50	8,14E-03
150	4,52E-08	21	4,09E-03
200	5,30E-08	25	5,27E-03
250	3,95E-08	30	5,88E-03
300	5,25E-08	34	4,90E-03
350	5,24E-08	39	5,91E-03

Tabela 3: Wyniki dla I warunku stopu i $\rho=1^{-7}$

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	7,93E-09	7	1,13E-04
5	4,94E-09	9	1,01E-04
7	9,96E-09	10	1,12E-04
10	1,76E-09	7	8,21E-05
15	3,14E-09	15	1,43E-04
20	1,96E-09	9	1,05E-04
35	7,01E-09	22	2,14E-04
50	8,15E-09	13	1,54E-04
75	7,11E-09	36	4,03E-04
100	5,89E-09	19	4,08E-03
125	5,67E-09	58	1,20E-02
150	6,16E-09	24	5,88E-03
200	6,01E-09	29	6,52E-03
250	6,31E-09	34	7,54E-03
300	7,37E-09	39	9,35E-03
350	6,82E-09	45	1,12E-02

Tabela 4: Wyniki dla II warunku stopu i $\rho=1^{-7}$

5.3 Wyniki dla ρ o wartości 1^{-15}

W tym przypadku oprócz układu o rozmiarze 350 otrzymane wyniki są znakomite i wartości błędów bardzo małe. Jak widać liczba iteracji w większości przypadków osiągnęła założoną górną granicę, zatem zmniejszanie wartości ρ , czyli zwiększanie precyzji nie poprawi już wyników. Czasy wykonania algorytmu są nieco gorsze, ale nadal bardzo dobre.

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	2,22E-16	14	2,13E-04
5	5,55E-16	17	2,91E-04
7	4,15E-16	20	2,71E-04
10	6,08E-16	12	1,06E-04
15	7,77E-16	28	7,38E-04
20	5,98E-16	17	1,65E-04
35	1,36E-15	44	3,15E-04
50	1,77E-15	27	2,13E-04
75	1,99E-15	72	5,80E-04
100	1,88E-15	38	7,61E-03
125	2,37E-15	113	1,72E-02
150	3,71E-15	50	6,26E-03
200	5,07E-15	62	8,30E-03
250	6,65E-15	80	9,27E-03
300	8,02E-15	94	1,25E-02
350	9,22E-15	999	1,15E-01

Tabela 5: Wyniki dla I warunku stopu i $\rho=1^{-15}$

Rozmiar układu	Błąd obliczeń	Liczba iteracji	Czas wykonania algorytmu
3	$0,\!00\mathrm{E}{+00}$	15	1,74E-04
5	1,57E-16	18	1,68E-04
7	1,11E-16	22	1,87E-04
10	2,72E-16	13	1,17E-04
15	5,32E-16	999	8,67E-03
20	6,57E-16	999	7,61E-03
35	1,24E-15	999	8,28E-03
50	1,72E-15	999	8,49E-03
75	1,87E-15	999	1,10E-02
100	1,78E-15	999	2,70E-01
125	2,34E-15	999	2,02E-01
150	3,67E-15	999	1,98E-01
200	5,06E-15	999	2,07E-01
250	6,65E-15	999	2,10E-01
300	8,02E-15	999	2,08E-01
350	9,22E-15	999	2,15E-01

Tabela 6: Wyniki dla II warunku stopu i $\rho=1^{-15}$

Porównanie wyników z zadania 1

Poniżej na wykresie 1, 2, 3, 4, 5, 6 zostały zamieszczone zestawienia wybranych wyników w celu lepszego zobrazowania sytuacji. Jak można zauważyć II kryterium stopu dawało zawsze lepsze wyniki, ale podowało zwiększenie czasu wykonania algorytmu.

Porównanie czasów wykonania algorytmu w zależności od przyjętego kryterium dla ρ = 1e-3 Czas wykonania algorytmu - I kryterium stopu
 Czas wykonania algorytmu - II kryterium stopu 6 00F-03 Czas 2.00E-03 0,00E+00 100 150 200 250 300 350

przyjętego kryterium i $rho = 1^{-3}$

Wykres 1: Porównanie błędów w zależności od Wykres 2: Porównanie czasów wykonania w zależności od przyjętego kryterium i $rho = 1^{-3}$

przyjętego kryterium i $\rho = 1^{-7}$

Wykres 3: Porównanie błędów w zależności od Wykres 4: Porównanie czasów wykonania w zależności od przyjętego kryterium i $\rho = 1^{-7}$

Wykres 5: Porównanie błędów w zależności od Wykres 6: Porównanie czasów wykonania w zależprzyjętego kryterium i $\rho = 1^{-15}$

ności od przyjętego kryterium i $\rho = 1^{-15}$

6 Wyniki dla zadania 2

Z tabeli 7 wynika, że promień spektralny jest mniejszy od 1 dla wszystkich rozmiarów układu poza n=350. Po przeprowadzeniu dokładnych obliczeń zaprezentowanych na wykresie 1 okazało się, że promień spektralny zaczyna przekraczać wartość 1 dla układu o rozmiarze 338.

Rozmiar układu	Promień spektralny
3	0.0765869787016647
5	0.13328604069582112
7	0.17860643375742666
10	0.2333450543295334
15	0.3032901670949366
20	0.35734824359906625
35	0.47125724812641634
50	0.5487085289648452
75	0.640224340052258
100	0.706907543729485
125	0.7594265555385633
150	0.8027680869740409
200	0.8718100216586672
250	0.9258189590652093
300	0.9701903882459433
350	1.00785097378842

Tabela 7: Obliczone wartości promienia spektralnego

Wykres 7: wykres wartości promienia spektralnego w zależności od rozmiaru układu)

7 Wnioski

- 1. Zmniejszenie parametru rho prowadzi do zwiększenia jakości otrzymanego wyniku
- 2. Zwiększenie rozmiaru układu prowadzi do zwiększenia liczby iteracji algorytmu Jacobiego.
- 3. II warunek stopu dawał lepsze wyniki, ale zwiększał czas wykonania algorytmu.
- 4. Metoda Jacobiego nie będzie zbieżna dla układu o rozmiarze większym 337.

8 Źródła

- 1. Wykład z przedmiotu MOwNiT prowadzonym przez Panią dr. Katarzynę Rycerz
- $2. \ http://www.algorytm.org/procedury-numeryczne/metoda-jacobiego.html\\$
- $3.\ \, https://pl.wikipedia.org/wiki/Promie$
- $4.\ https://www.math.uni.wroc.pl/\ tabisz/MetNum1/wyk07.pdf$
- $5.\ https://mst.mimuw.edu.pl/lecture.php?lecture=mo2\&part=Ch5\&mode=xhtml$