Reviews

Vapor—Liquid Critical Properties of Elements and Compounds. 10. Organic Compounds Containing Halogens

Kenneth N. Marsh*

Department of Chemical and Process Engineering, University of Canterbury, Christchurch 8140, New Zealand

Alan Abramson

106 C Du Rhu Drive, Mobile, Alabama 36608

Douglas Ambrose

9 The Crest, Surbiton, Surrey KT5 8JZ, England

David W. Morton

Chemical Thermodynamics Laboratory, La Trobe University, Bendigo, Victoria 3552, Australia

Eugene Nikitin

Institute of Thermal Physics, Ural Branch of the Russian Academy of Sciences, 106 Amundsena Street, Ekaterinburg 620016, Russia

Constantine Tsonopoulos

18 Dorothy Drive, Morristown, New Jersey 07960

Colin L. Young

Department of Chemistry, University of Melbourne, Parkville, Victoria 3052, Australia

This review is part 10 of a series of contributions by the critical properties group of the previous IUPAC Commission I.2 on Thermodynamics, Subcommittee on Thermodynamic Data and the present IUPAC Project #2000-026-1-100, Critical Compilation of Vapour Liquid Critical Properties, sponsored by the Physical and Biophysical Chemistry Division. It presents all known experimental data for the critical constants of hydrocarbons containing halogens. Recommendations are given together with uncertainties. Critical temperatures have been converted to ITS-90, and the molar masses are based on the relative atomic masses recommended by the IUPAC-CIAAW in 2005.

Introduction

Part 10 presents experimental data for 168 hydrocarbons containing halogens. The presentation and evaluation of the experimental data follow the guidelines of Ambrose et al. in parts 1 and 2 of this series: [95-amb/you] (introductory survey) and [95-amb/tso] (normal alkanes). Succeeding parts have been by Tsonopoulos and Ambrose [95-tso/amb] (aromatic hydrocarbons), Gude and Teja [95-gud/tej] (aliphatic alkanols), Daubert [96-dau] (branched alkanes and cycloalkanes), Tsonopoulos and Ambrose [96-tso/amb] (unsaturated aliphatic hydrocarbons), Kudchadker et al. [2001-kud/amb] (oxygen compounds other than alkanols and cycloalkanols),

Tsonopoulos and Ambrose [2001-tso/amb] (organic sulfur, silicon, and tin compounds), and Marsh et al. [2006-mar/you] (organic nitrogen compounds). The recommended values are given in Table 1, while all known data have been collected in Table 2. Where appropriate, the data on which the recommended values are based are indicated by an asterisk. Critical temperatures and sometimes pressures enclosed in parentheses are not new measurements; they are the values at which investigators determined either the critical pressure and/or the critical density. These values are either from previous measurements or from critical evaluations. The references follow the format [year-first three letters of first author/first three letters of second author and, where required, a sequence number].

^{*} Corresponding author. E-mail: ken.marsh@canterbury.ac.nz.

Table 1. Recommended Critical Properties of Organic Compounds Containing Halogens

	M			p_{c}		$\frac{ ho_{ m c}}{}$		$V_{\rm c}$	
	g•mol ^{-1a}	K^b	(±)	MPa	(±)	g•cm ⁻³	(±)	cm³•mol⁻¹	$Z_{\rm c}$
			logenated Al	kanes					
bromochlorodifluoromethane	165.365	426.9	(0.2)	4.25	(0.05)	0.67	(0.03)	247	0.29
bromotrifluoromethane	148.910	340.10	(0.05)	3.96	(0.02)	0.75	(0.01)	199	0.27
dibromodifluoromethane	209.817	471	(2)	2 00	(0.01)	0.500	(0.002)	100	0.27
chlorotrifluoromethane dichlorodifluoromethane	104.459 120.914	301.95 385.0	(0.05) (0.1)	3.88 4.13	(0.01) (0.01)	0.580 0.564	(0.002) (0.005)	180 214	0.27
richlorofluoromethane	137.368	471.1	(0.1)	4.13	(0.01)	0.555	(0.003)	248	0.27
etrachloromethane	153.823	556.3	(0.1)	4.54	(0.02) (0.02)	0.557	(0.003)	276	0.27
rifluoroiodomethane	195.910	396	(1)	3.95	(0.10)	0.87	(0.004)	225	0.27
etrafluoromethane	88.004	227.5	(0.2)	3.68	(0.05)	0.62	(0.01)	142	0.27
promodifluoromethane	130.919	412.0	(0.2)	5.13	(0.02)	0.78	(0.01)	168	0.25
chlorodifluoromethane	86.468	369.25	(0.05)	4.99	(0.01)	0.523	(0.005)	165	0.26
lichlorofluoromethane	102.923	451.51	(0.06)	5.19	(0.01)	0.53	(0.01)	196	0.2
richloromethane	119.378	536.2	(0.2)	5.33	(0.05)	0.49	(0.02)	244	0.29
rifluoromethane	70.014	299.00	(0.08)	4.80	(0.01)	0.520	(0.006)	135	0.20
lichloromethane	84.933	508.0	(0.5)	6.35	(0.05)				
lifluoromethane	52.023	351.25	(0.03)	5.783	(0.005)	0.425	(0.004)	122	0.24
chloromethane	50.488	416.25	(0.08)	6.68	(0.02)	0.36	(0.01)	140	0.2
luoromethane	34.033	317.4	(0.3)	5.87	(0.01)	0.311	(0.008)	109	0.24
,2-dibromo-2-chloro-1,1,2-trifluoroethane	276.278	561	(2)	3.45	(0.25)	0.75	(0.01)	368	0.2
,2-dibromo-1,1,2,2-tetrafluoroethane	259.823	487.8	(0.2)	3.40	(0.04)	0.75	(0.02)	349	0.2
chloropentafluoroethane	154.466	353.0	(0.1)	3.13	(0.02)	0.61	(0.01)	253	0.2
,1-dichloro-1,2,2,2-tetrafluoroethane ,2-dichloro-1,1,2,2-tetrafluoroethane	170.921 170.921	418.7 418.80	(0.5) (0.06)	3.30 3.255	(0.02) (0.005)	0.58 0.578	(0.02) (0.004)	295 296	0.2
1,2-dichloro-1,1,2,2-tetraliuoroethane	187.376	487.2	(0.06)	3.41	(0.003)	0.578	(0.004) (0.007)	329	0.2
exafluoroethane	138.012	293.02	(0.1)	3.040	(0.01)	0.615	(0.007) (0.005)	224	0.2
-chloro-1,2,2,2-tetrafluoroethane	136.476	395.4	(0.1)	3.62	(0.003)	0.560	(0.003)	244	0.2
,1-dichloro-2,2,2-trifluoroethane	152.931	456.85	(0.04)	3.670	(0.007)	0.553	(0.004)	277	0.2
,2-dichloro-1,1,2-trifluoroethane	152.931	461.6	(0.2)	5.070	(0.007)	0.550	(0.015)	278	0.2
pentafluoroethane	120.021	339.40	(0.07)	3.63	(0.01)	0.570	(0.004)	211	0.2
-chloro-2,2,2-trifluoroethane	118.485	425.0	(0.1)	4.01	(0.02)	0.522	(0.006)	227	0.2
,1,1,2-tetrafluoroethane	102.031	374.18	(0.08)	4.055	(0.006)	0.512	(0.003)	199	0.2
,1,2,2-tetrafluoroethane	102.031	391.75	(0.05)			0.535	(0.005)	191	
-chloro-1,1-difluoroethane	100.495	410.28	(0.05)	4.050	(0.005)	0.444	(0.003)	226	0.2
,1,-dichloro-1-fluoroethane	116.950	477.5	(0.4)	4.20	(0.02)	0.460	(0.005)	254	0.2
,1,1-trichloroethane	133.404	550	(5)	4.30	(0.1)				
,1,1-trifluoroethane	84.040	345.86	(0.02)	3.768	(0.006)	0.434	(0.003)	194	0.2
,1,2-trifluoroethane	84.040	429.8	(0.5)	5.24	(0.02)	0.469	(0.005)	179	0.2
,1-dichloroethane	98.959	523.4	(0.4)	5.06	(0.02)	0.42	(0.02)	236	0.2
,2-dichloroethane	98.959	561.5	(0.5)	5.38	(0.02)	0.44	(0.03)	225	0.2
,1-difluoroethane	66.050	386.43	(0.04)	4.52	(0.01)	0.368	(0.002)	180	0.2
promoethane	108.965	504	(2)	5.8	(0.7)	0.51	(0.01)	214	0.2
chloroethane	64.514	460	(2)	5.2	(0.2)	0.202	(0.005)	150	0.2
luoroethane	48.060 220.929	375.3 452.0	(0.5)	5.04	(0.02)	0.302	(0.005)	159 388	0.2
,2-dichloro-1,1,2,3,3,3-hexafluoropropane	295.925	452.0 457	(0.3)	2.7	(0.1)	0.57	(0.02)	300	0.2
,1,2,2,3,3,3-heptafluoro-1-iodopropane octafluoropropane	188.019	345.0	(1) (0.2)	2.9 2.66	(0.2) (0.02)	0.627	(0.005)	300	0.2
-chloro-1,1,2,3,3,3-hexafluoropropane	186.483	432	(1)	3.0	(0.02)	0.58	(0.003)	322	0.2
c-chloro-1,1,2,3,3,3-hexafluoropropane	186.483	432	(1)	3.0	(0.1)	0.59	(0.02)	316	0.2
,2-dichloro-1,1,3,3,3-pentafluoropropane	202.938	479	(1)	3.0	(0.1)	0.59	(0.02)	344	0.2
,3-dichloro-1,2,2,3,3-pentafluoropropane	202.938	484.9	(0.5)	5.0	(0.1)	0.557	(0.008)	311	0.2
2,3-dichloro-1,1,1,2,3-pentafluoropropane	202.938	486	(1)	3.1	(0.1)	0.59	(0.02)	344	0.2
,1,1,2,2,3,3-heptafluoropropane	170.029	380	(1)	2.9	(0.1)	0.59	(0.02)	288	0.2
,1,1,2,3,3,3-heptafluoropropane	170.029	375.02	(0.05)	2.930	(0.005)	0.595	(0.005	286	0.2
-chloro-1,1,1,2,2-pentafluoropropane	168.493	444	(1)	3.1	(0.1)	0.55	(0.02)	306	0.2
,3-dichloro-1,1,1,3-tetrafluoropropane	184.948	516	(1)						
,1,1,2,2,3-hexafluoropropane	152.038	403	(1)	3.1	(0.1)	0.55	(0.02)	276	0.2
,1,1,2,3,3-hexafluoropropane	152.038	412.44	(0.02)	3.42	(0.04)	0.565	(0.003)	269	0.2
,1,1,3,3,3-hexafluoropropane	152.038	398.07	(0.08)	3.184	(0.008)	0.549	(0.008)	277	
,1,2,2,3,3-hexafluoropropane	152.038	428	(1)	3.4	(0.2)	0.56	(0.02)	272	0.2
-chloro-1,1,2,2-tetrafluoropropane	150.503	494	(1)	3.7	(0.1)	0.53	(0.02)	284	0.2
,3-dichloro-1,1,1-trifluoropropane	166.957	525	(1)						
,1,1,2,2-pentafluoropropane	134.048	380.4	(0.1)	3.14	(0.01)	0.49	(0.02)	274	0.2
,1,1,3,3-pentafluoropropane	134.048	427.20	(0.08)	3.639	(0.004)	0.517	(0.008)	259	_
,1,2,2,3-pentafluoropropane	134.048	444.57	(0.05)	3.93	(0.02)	0.524	(0.006)	256	0.2
,1,2,2-tetrafluoropropane	116.057	419	(1)	3.8	(0.1)	0.47	(0.02)	247	0.2
,2-dichloropropane	112.986	579	(2)	4.7	(0.15)	0.39	(0.02)	290	0.2
,3-dichloropropane	112.986	614	(3)	4.00	(0.05)				
-bromopropane	122.992	536.9	(0.5)	4.80	(0.05)	0.207	(0.005)	264	0.2
-chloropropane	78.541	503.4	(0.4)	4.57	(0.05)	0.297	(0.005)	264	0.2
d-chloropropane	78.541	482.4	(0.4)	4.26	(0.05)	0.325	(0.003)	242	0.2
,4-dibromooctafluorobutane ,1,1,2,2,3,4,4,4-nonafluoro-3-iodobutane	359.838	533	(1)	2.4	(0.1)				
L L L Z Z A A A-HONSTIIIOTO-3-10dobiitsne	345.933	489	(1)	2.4 2.32	(0.1) (0.02)	0.63	(0.01)		

	M	$T_{\rm c}$		$p_{\rm c}$		ρ_{c}		$V_{\rm c}$	
	g•mol ^{-1a}	K^b	(土)	MPa	(±)	g•cm ⁻³	(土)	cm ³ ·mol ⁻¹	$Z_{\rm c}$
		Halogenate	d Alkanes						
decafluoro-2-methylpropane	238.027	395.4	(0.5)	2.42	(0.05)				
1,1,1,2,2,3,3,4,4-nonafluorobutane	220.036	413	(1)	2.4	(0.1)	0.60	(0.02)	367	0.255
1,1,1,2,2,3,3,4-octafluorobutane	202.046	431.95	(0.05)	2.73	(0.02)	0.572	(0.006)	353	0.266
1,1,1,2,3,4,4,4-octafluorobutane	202.046	422	(1)	2.5	(0.1)	0.58	(0.02)	348	0.245
1,1,2,2,3,3,4,4-octafluorobutane	202.046	460	(1)	2.8	(0.1)	0.58	(0.02)	348	0.258
1,1,1,2,2,3,3-heptafluorobutane	184.055	417	(1)	2.6	(0.1)	0.53	(0.02)	347	0.257
1,1,1,3,3-pentafluorobutane	160.085	460	(2)						
1-chlorobutane	92.567	539.2	(0.5)						
2-chlorobutane	92.567 92.567	518.6 500	(0.6)						
2-chloro-2-methylpropane dodecafluoropentane	288.034	421.0	(12) (0.5)	2.04	(0.02)	0.620	(0.008)	465	0.271
1 <i>H</i> -undecafluoropentane	270.044	444	(2)	2.04	(0.02)	0.020	(0.008)	403	0.271
1-chloropentane	106.594	571	(1)						
2-chloro-2-methylbutane	106.594	509.1	(0.6)						
tetradecafluoro-2,3-dimethylbutane	338.042	463	(2)	1.87	(0.05)	0.64	(0.01)	528	0.257
tetradecafluorohexane	338.042	451	(1)	1.85	(0.02)	0.62	(0.01)	545	0.267
tetradecafluoro-2-methylpentane	338.042	455	(1)	1.91	(0.01)	0.65	(0.02)	520	0.263
tetradecafluoro-3-methylpentane	338.042	450	(2)	1.69	(0.04)		` /		
1 <i>H</i> -tridecafluorohexane	320.051	472.0	(0.4)	2.00	(0.07)				
1-chlorohexane	120.620	599	(4)						
3-chloro-3-methylpentane	120.620	528	(4)						
hexadecafluoroheptane	388.049	476	(1)	1.63	(0.02)	0.61	(0.01)	636	0.262
1 <i>H</i> -pentadecafluoroheptane	370.059	496	(1)						
1-chloroheptane	134.647	614	(8)						
octadecafluorooctane	438.057	498.2	(0.4)	1.50	(0.05)	0.61	(0.02)	781	0.260
1-chlorooctane	148.674	643	(2)		(0.0=)				
eicosafluorononane	488.064	524	(3)	1.56	(0.05)				
docosafluorodecane	538.072	542	(3)	1.45	(0.05)				
		Halogenate							
chlorotrifluoroethene	116.470	379	(1)	4.02	(0.04)	0.55	(0.02)	212	0.270
tetrachloroethene	165.833	611	(5)		(0.00)				
tetrafluoroethene	100.015	307.0	(0.6)	3.94	(0.03)	0.58	(0.01)	172	0.266
2-chloro-1,1-difluoroethene	98.479	400	(0.7)	4.46	(0.08)	0.50	(0.03)	197	0.264
(Z)-1,2-dichloroethene (E)-1,2-dichloroethene	96.943 96.943	536 515.5	(2) (0.6)						
1,1-difluoroethene	64.034	303.0	(0.3)	4.45	(0.02)	0.41	(0.01)	156	0.276
chloroethene	61.490	429	(1)	5.3	(0.02)	0.34	(0.01)	181	0.269
fluoroethene	46.044	328.5	(0.3)	5.20	(0.07)	0.32	(0.01)	144	0.282
3,3,3-trifluoro-1-propene	96.051	377.8	(0.8)	3.65	(0.08)	0.46	(0.01)	209	0.243
3-chloro-1-propene	76.525	514	(3)		` /		` /		
hexafluoro-1,3-butadiene	162.033	412.8	(0.5)	3.19	(0.03)	0.505	(0.005)	321	0.298
dodecafluoro-1-hexene	300.045	454.4	(0.5)						
1,1,1,2,3,4,5,5,5-non a fluoro-4-trifluoromethyl-2-pentene	300.045	439	(0.5)	1.97	(0.06)				
tetradecafluoro-1-heptene	350.053	478.2	(0.5)						
	Halogenate	ed Cycloalka	nes and Cycl	loalkenes					
octafluorocyclobutane	200.030	388.45	(0.05)	2.781	(0.005)	0.617	(0.003)	324	0.279
4-chloro-1,1,2,2,3,3-hexafluorocyclobutane	198.494	470	(1)						
decafluorocyclohexene	262.048	461.8	(0.5)	2.52	(0.02)				
dodecafluorocyclohexane	300.045	457.3	(0.2)	2.24	(0.01)	0.654	(0.008)	459	0.270
nonafluoro(trifluoromethyl)cyclopentane	300.045	451.44	(0.01)	2.172	(0.001)				
undecafluorocyclohexane	282.055	478	(1)						
chlorocyclohexane	118.605	586	(2)		(0.04)				
tetradecafluoromethylcyclohexane	350.053	485.9	(0.2)	2.019	(0.01)	0.614	(0.002)	570	0.285
decafluoro-1,3-bis(trifluoromethyl)cyclohexane	400.060	512	(1)	1.87	(0.06)				
	_		natic Compor						
chloropentafluorobenzene	202.509	570.8	(0.1)	3.23	(0.01)	0.539	(0.002)	376	0.256
1,3,5-trichlorotrifluorobenzene	235.418	684.8	(0.5)	3.27	(0.05)	0.526	(0.002)	448	0.257
hexafluorobenzene	186.055	516.7	(0.1)	3.28	(0.01)	0.552	(0.003)	337	0.257
pentafluorobenzene	168.064	530.9	(0.1)	3.53	(0.03)	0.518	(0.003)	324	0.259
1,2,3,4-tetrafluorobenzene 1,2,3,5-tetrafluorobenzene	150.074 150.074	550.8 535.2	(0.1)	3.79 3.75	(0.01)	0.480	(0.003)	313	0.259
1,2,4,5-tetrafluorobenzene	150.074	535.2 543.3	(0.1)	3.75 3.80	(0.01) (0.01)				
1,2,7,J-tettatiuotouchzehe	130.074	343.3	(0.1)	3.00	(0.01)				

Table 1 (Continued)

	M	$T_{ m c}$		p_{c}		$ ho_{ m c}$		$V_{ m c}$	
	g•mol ^{-1a}	K^b	(±)	MPa	(±)	g•cm ⁻³	(±)	cm ³ ·mol ⁻¹	$Z_{\rm c}$
		Halo	genated Aron	natic Compo	ounds				
1-chloro-2,4-difluorobenzene	148.538	609.6	(0.5)	•					
1-chloro-2,5-difluorobenzene	148.538	612.5	(0.5)						
1-chloro-3,4-difluorobenzene	148.538	609.2	(0.5)						
1-chloro-3,5-difluorobenzene	148.538	592.0	(0.5)						
1,2,3-trifluorobenzene	132.083	560.3	(0.5)						
1,2,4-trifluorobenzene	132.083	551.1	(0.5)						
1,3,5-trifluorobenzene	132.083	530.9	(0.5)						
1-bromo-2-fluorobenzene	174.998	669.6	(0.6)						
1-bromo-3-fluorobenzene	174.998	652.0	(0.5)						
1-bromo-4-fluorobenzene	174.998	654.8	(0.5)						
1-chloro-2-fluorobenzene	130.547	633.8	(0.5)						
1-chloro-3-fluorobenzene	130.547	615.9	(0.5)						
1-chloro-4-fluorobenzene	130.547	620.1	(0.5)						
1,2-dichlorobenzene	147.002	729	(5)						
1,3-dichlorobenzene	147.002	685.7	(0.5)						
1,2-difluorobenzene	114.093	566.0	(0.5)						
1,3-difluorobenzene	114.093	548.4	(0.5)						
1,4-difluorobenzene	114.093	556.7	(0.5)	4.4	(0.1)				
bromobenzene	157.008	670	(2)		` /				
chlorobenzene	112.557	633	(1)	4.53	(0.03)	0.366	(0.005)	308	0.265
fluorobenzene	96.102	560.1	(0.2)	4.55	(0.01)	0.358	(0.003)	268	0.262
(trifluoromethyl)pentafluorobenzene	236.062	534.4	(0.1)	2.70	(0.01)	0.552	(0.003)	428	0.259
methylpentafluorobenzene	182.091	566.5	(0.1)	3.13	(0.01)	0.474	(0.003)	384	0.255
2-bromo(trifluoromethyl)benzene	225,006	656.5	(0.4)		()		(/		
3-bromo(trifluoromethyl)benzene	225.006	627.1	(0.4)						
4-bromo(trifluoromethyl)benzene	225.006	629.8	(0.4)						
1-methyl-2,4-difluorobenzene	128.119	581.4	(0.4)						
1-methyl-2,5-difluorobenzene	128.119	587.7	(0.4)						
1-methyl-2,6-difluorobenzene	128.119	581.8	(0.4)						
1-methyl-3,4-difluorobenzene	128.119	598.5	(0.4)						
1-fluoro-2-methylbenzene	110.129	591.2	(0.4)						
1-fluoro-3-methylbenzene	110.129	591.8	(0.4)						
1-fluoro-4-methylbenzene	110.129	592.1	(0.4)						
octafluoronaphthalene	272.094	673	(1)						
octadecafluorodecalin	462.078	565	(1)	1.78	(0.06)				
decafluorobiphenyl	334.112	640	(2)	1.,0	(0.00)				

^a Molar masses are based on the following relative atomic masses: carbon, 12.010 7(8); hydrogen, 1.007 94(7); bromine, 79.904(1); chlorine, 35.453(2); fluorine, 18.998 403 2(5); and iodine, 126.904 47(3), where the values are considered reliable to \pm the figure given in parentheses being applicable to the last digit, from *Pure Appl. Chem.* **2006**, 78, 2051–2066. ^b Temperatures are expressed in ITS-90. ^c $Z_c = p_c V_c / RT_c$, where R = 8.314 472 J·mol⁻¹·K⁻¹.

Chlorofluorocarbons and fluorocarbons have been extensively investigated in connection with their use as refrigerants, aerosols, and blowing agents. In the late 1980s and 1990s, many high-quality thermophysical property measurements were made on many halogenated carbon compounds that were assessed to have low ozone depletion potential, low global warming potential, and low flammability and were nontoxic. Included were many precise measurements of their critical properties. The data on bromo- and iodohydrocarbons remain limited. In general, the fluoro- and chlorofluoro compounds are more stable at their critical temperature than the chloro-, bromo-, or iodo-substituted compounds.

The critical properties of some of the substances considered here were measured many years ago. In general, values over 50 years old have been included in the tables for historical interest and completeness only. However, in a number of cases, these older values are the only ones available. For these older measurements, the precision of the experimental methods used was fairly low, and probably more importantly, the purity of the samples used was also low. As pointed out in Part 1 of this series [95-amb/you], the painstaking work of Sidney Young, who worked with carefully purified samples, gave critical values for many substances which are similar to the most recent values.

The term "recommended value" should be taken to mean "the best estimate from available experimental information". Unfortunately, for many substances, the recommended value is subject to considerable uncertainty and is often based on one experimental measurement. The \pm values given in Table 2 are those provided by the authors. In many cases, it is not clear what the \pm values mean (repeatability, error, or uncertainty in the general sense). Many authors did not provide estimates of their uncertainties. For a number of compounds, we have extrapolated literature vapor pressure data to the selected critical temperature to derive a critical pressure. This was only done when the vapor pressure data were within about 5 K of the critical temperature. There are a number of compounds where the reported critical density has been calculated from the rectilinear diameter derived from measurements of liquid and vapor density. In general, we have only accepted values where the density values were measured within 10 K of the critical temperature.

The \pm values given with the recommended values in Table 1 and Table 2 are weighted to some extent by the uncertainty quoted by the authors. However, some values of uncertainty given are obviously overoptimistic, so their values have been downgraded in deriving the recommended uncertainty. In addition, values without \pm values have been included in the weighting. Hence, we have used no definitive rule for deriving the recommended values and their uncertainties. To a considerable extent, the values are the best judgment of the authors, and in deriving these values, we were guided by the reputation of the various research groups.

In compiling and evaluating the available data, we follow the same classification of experimental methods as that used in

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\text{g}\cdot\text{cm}^{-3}$	method	authors
		HALOGENATE	ED ALKANES			
	BROMOCHLORODIFLUORO			g; CBrClF ₂ ; CASRN	353-59-3	
:	152.76.00	$T_{90} - T_{68} =$	−0.036 K			г.
	153.76 °C 153.73 °C	426.90 426.84	4.254	0.6732	5,7	Eiseman Perel'shtein and Aleshin
•	recommended values	426.9 ± 0.2	4.25 ± 0.05	0.6752 0.67 ± 0.03	3,7	Perer sinem and Alesini
					D 12D1	
	BROMOTRIFLUOROMETH	$T_{90} - T_{68} =$		F ₃ ; CASKN /5-63-8;	K 13B1	
52-eis	66.90 °C	340.02		0.750*	10	Eiseman
63-dup		340.2*	3.964*	0.7448*	10	Du Pont
	67.0 °C	340.1*	3.9846*	0.7448*	10	Rombusch
1	66.90 °C	340.03*	3.9577*	0.7173	5,7	Perel'shtein and Aleshir
	(67.035 ± 0.015) °C	340.168*	2.0024	0.75514	2	Rathjen and Straub
77-rat/str-1 82-zhe	67.02 °C	340.15* 340.57	3.983*	0.7561*	4,5 2	Rathjen and Straub Zheleznyi
32-zne 37-oka/uem		(340.06)	$3.964* \pm 0.02$		5	Okano et al.
	recommended values	340.10 ± 0.05	3.96 ± 0.02	0.75 ± 0.01	5	Okuno et ur.
	DIBROMODIFLUOROM				51.6	
52-eis	198.15 °C	471.3	noiar mass 209.81 / g;	CBr ₂ F ₂ ; CASKN /5-0	01-0	Eiseman
	recommended values	471.5 471 ± 2				Liseman
	CHLOROTRIFLUORO		nolar mass 104 450 gr	CCIE. CASPN 75-72	0	
		$T_{90} - T_{68} = -0.016 \text{ K};$			7	
	83.84 °F, 561.5 psi	301.93*	3.862*		-	McNabney
	39.36 atm	301.94*	3.992	0.581*	1,5,7	Riedel
	83.89 °F	301.96*	2.0511	0.550:	_	Whitney
	83.93 °F, 561.3 psi, 36.07 lb·ft ⁻³	302.00*	3.871*	0.578*	1,5,7	Albright and Martin
	(28.715 ± 0.01) °C, (39.657 ± 0.05) atm (29.15 ± 0.05) °C, (38.60 ± 0.05) atm,	301.85* 302.29*	4.018 3.911*	0.581* 0.582*	2,5,7 3	Straub Michels et al.
	(29.13 ± 0.03) °C, (38.60 ± 0.03) atm, (121 ± 1) amagat	302.29**	3.911**	0.582**	3	Michels et al.
	28.65 °C	301.79*		0.58*	1	Tsiklis and Prokhorov
	(28.73 ± 0.02) °C (T_{68}) , (39.55 ± 0.03)	301.87*	3.879*	0.582*	2, 6	Oguchi et al.
	$kgf \cdot cm^{-2}$, $(1.717 \pm 0.005) cm^{3} \cdot g^{-1}$.					
77-kho/gub	(28.394 ± 0.002) °C	301.538		$0.578* \pm 0.001$	1,7	Khodeeva and Gubochkina
77-rat/str	(28.778 ± 0.015) °C	301.91*			2	Rathjen and Straub
	28.53 °C	301.91*	3.966	0.581*	4,5	Rathjen and Straub
79-sha/li		$301.967* \pm 0.01$		0.5810*	1,7	Shavandrin and Li
89-web		301.90*	$3.885* \pm 0.004$		2,5	Weber
2000-mag/out		302.0*	3.879*	0.582*	3,7,8	Magee et al.
	recommended values	301.95 ± 0.05	3.88 ± 0.01	0.580 ± 0.002		
	DICHLORODIFLUORO				1-8	
31-bic/gil	(111.5 ± 0.05) °C,	$T_{90} - T_{68} = -0.028 \text{ K};$ 384.7	$I_{90} - I_{68} = -0.024 \text{ K}$	0.555	1,7	Bichowsky and Gilkey
0	39.56 atm	(384.7)	4.008	0.555	5	Gilkey et al.
0 0	233.6 °F, 596.6 psi, 34.84 lb•ft ⁻³	385.2*	4.115*	0.5581*	1,6,7	McHarness et al.
	(111.80 ± 0.05) °C, (40.71 ± 0.5) atm,	384.93*	4.125*	0.565*	3	Michels et al.
	(102 ± 0.002) amagat					
	(111.78 ± 0.015) °C	385.0*			2	Rathjen and Straub
82-zhe		385.13			2	Zheleznyi
84-hig/oka	recommended values	384.98* 385.0 ± 0.1	4.13 ± 0.01	0.564 ± 0.005	2	Higashi et al.
39-ben/mch	TRICHLOROFLUORO (198.0 \pm 0.4) °C, 43.2 atm	METHANE (R-11): m 471.2*	olar mass 137.368 g; (4.38	CCl ₃ F; CASRN 75-69 0.554*	-4 1,5,7	Benning and McHarness
	198 °C, 639.5 psi	471.2**	4.409	0.55378*	1,5,7	Horvath et al.
90-yur/hol	176 C, 037.3 psi	(471.1)	$4.489* \pm 0.025$	0.55576	5	Yurttas et al.
	246.8•10 ⁻⁶ m ³ •mol ⁻¹	$471.1^* \pm 0.1$	4.466*	0.5566*	1,5,7	Wang et al.
	recommended values	471.1 ± 0.1	4.48 ± 0.02	0.555 ± 0.003	,-,-	g
	TETRACHLOROMETHANE	(carbon tetrachloride, R $T_{90} - T_{68} = -0.039 \text{ K};$.823 g; CCl ₄ ; CASRN	I 56-23-5	
1874-ave	292.5 °C	565.7			1	Avenarius
_	$(277.9 \pm 0.69)~^{\circ}\text{C}, (58.1 \pm 0.55)~\text{atm}$	551.1	5.89		1	Hannay and Hogarth
	(282.51 ± 0.38) °C, (57.57 ± 0.14) atm	555.7	5.833		1	Hannay
1	285.3 °C	558.5			1	Pawlewski
	284.69 °C & 285.2 °C	558.1	1 557*	0.654	1 1	Schmidt
•	283.15 °C, 34180 mm Hg, 1.53 cm ³ ·g ⁻¹ 259.5 °C, 39.5 atm	556.3* 532.7	4.557* 4.002	0.034	1	Young Vespignani
10-you	239.3 C, 39.3 atm	(556.3)	(4.557)	0.5576*	7	Young
	284.30 °C	557.5	·/		1	Hein
	282.9 °C, 282.6 °C	555.9			1	Harand
43-fis/rei	283.2 °C	556.4*			1	Fischer and Reichel
5	283.5 °C	556.7				Silva et al.
	283.15 °C, 44.98 atm	556.26*	4.558*	0.557*	1,5,7	Campbell and Chatterjee
	(283.2 ± 0.1) °C	556.3*			1	Campbell and Musbally
	(283.2 ± 0.2) °C	556.4*	4516*		1	Orton et al.
77-toc/you 85-ole/shi		556.6 ± 0.2 555.12	4.516*		1,5 4	Toczylkin and Young Oleinikova and
05 *OIC/ SIII		333.14			+	Shimanskaya

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\mathrm{g}\cdot\mathrm{cm}^{-3}$	method	authors
		HALOGENA	ATED ALKANES			
	TRIFLUOROIOD	OMETHANE: mola	r mass 195.910 g; CF	3I; CASRN 2314-97-8		
96-dua/zhu		(395.05)	3.862*		4,6	Duan et al.
99-dua/shi		$396.44* \pm 0.01$	$3.953* \pm 0.005$	$0.868* \pm 0.003$	2,6	Duan et al.
	recommended values	396 ± 1	3.95 ± 0.10	0.87 ± 0.01		
	TETD A EL LIODO	METHANE (D. 14).	malar mass 99 004 au	CF ₄ ; CASRN 75-73-0		
	TETRAFLUORO		moiar mass 88.004 g; $T_{90} - T_{48} = -0.034$			
13-boo/mcn	409.5 °R, 540.81 psi	227.70	3.680*	+ IX	1,5	Booth and McNabney
60-cha	(409.50 ± 0.03) °R, (543.16 ± 1.09) psi,	227.54*	3.696*	0.6257*	1,5,7	Chari
оо-спа	(39.06 ± 0.39) lb·ft ⁻³	227.54	3.070	0.0237	1,5,7	Chari
81-val/lav	(5).00 ± 0.5) 10 11	227.51*	3.670*	0.618	3,6,7	Valyakin and
or vaniav		227.31	3.070	0.010	3,0,7	Lavrenchenko
85-sve		(227.52)	$3.714^{b*} \pm 0.011$		6	Svetlichnyi
	recommended values	227.5 ± 0.2	3.68 ± 0.05	0.62 ± 0.01		·
				BrF ₂ ; CASRN 1511-62-2		
92-sal/wan	$(167 \pm 15) \cdot 10^{-6} \mathrm{m}^3 \cdot \mathrm{mol}^{-1}$	412.00 ± 0.06	5.132 ± 0.005	0.784	1,5,7	Salvi-Narkhede et al.
	recommended values	412.0 ± 0.2	5.13 ± 0.02	0.78 ± 0.01		
	CHLORODIFLUORO	METHANE (R-22):	molar mass 86.468 g	; CHClF ₂ ; CASRN 75-45	5-6	
		$T_{90}-T_{68}$	$_{\rm S} = -0.025 \text{ K}$			
35-boo/swi	(96.4 ± 0.1) °C, (48.48 ± 0.05) atm	369.5	4.912		1,5	Booth and Swinheart
39-ben/mch	(96.0 ± 0.4) °C, 48.7 atm	369.2	4.935	0.525*	1,5,7	Benning and McHarne
52-eis	204.8 °F, 716 psi	369.2	4.872		10	Eiseman
57-mic		369.15	4.977*		3	Michels
66-lag		369.26*	4.978*			Lagutina
58-zan	1.9493 dm³•kg⁻¹	$369.32* \pm 0.02$	4.990*	0.513	3	Zander
70-kle		$369.25* \pm 0.03$	$4.986* \pm 0.004$	0.513 ± 0.01		Kletskii
74-hir/nag		369.28*	$4.988* \pm 0.005$		1,6	Hirata et al.
77-rat/str	(96.12 ± 0.015) °C	369.25*			2	Rathjen and Straub
84-hig/oka		369.29*	$4.990* \pm 0.005$	0.515 ± 0.003	2,6,7	Higashi et al.
89-he/hon		$369.33* \pm 0.01$	$4.990* \pm 0.0072$	$0.521* \pm 0.010$	2,6,7	He and Hong.
90-bie/tue		$369.29* \pm 0.03$	$4.988* \pm 0.007$		2,5	Bier et al.
90-rot		$369.205* \pm 0.01$	$4.9849* \pm 0.005$	0.523*	,-	Rott
91-wan/adc	164.3•10 ^{−6} m ³ •mol ^{−1}	$369.5* \pm 0.1$	5.035	0.5263*	1,5,7	Wang et al.
92-def/mor		$369.5* \pm 0.1$		0.513*	8	Defibaugh and Morriso
92-kru/str		369.29*	4.965	0.010	2,5	Kruppa and Straub
92-nol/zol		369.00	$4.976* \pm 0.003$		2	Noles and Zollweg
92-wan/liu		$369.33* \pm 0.1$	11570 ± 01000	$0.521* \pm 0.006$	2,7	Wang et al.
93-nis/kom		369.22*	4.981*	0.521 ± 0.000	2,6	Nishiumi et al.
93-wag/mar		$369.28* \pm 0.2$	$4.9885* \pm 0.02$	$0.520* \pm 0.005$	8	Wagner et al.
94-van/nie		(369.28)	4.7003 ± 0.02	$0.52365* \pm 0.00107$	7	Van Poolen et al.
95-nis/koh		369.25*	4.981*	0.32303 ± 0.00107	2,5	Nishiumi et al.
95-zha/ma		(369.32)	4.93		AA	Zhao and Ma
96-yat/hor		$369.21* \pm 0.1$	4.73		4	Yata et al.
70-yat/1101	recommended values	369.25 ± 0.15	4.99 ± 0.01	0.523 ± 0.005	4	i ata et ai.
	DICHLOROFLUORO			g; CHCl ₂ F; CASRN 75-4	3-4	
20.1 / 1	170 5 00 51 0		$_{3} = -0.039 \text{ K}$	0.500*	1.5.5	D : 114.11
39-ben/mch	178.5 °C, 51.0 atm	451.7	5.168	0.522*	1,5,7	Benning and McHarnes
59-vos/she	1.888 cm³⋅g⁻¹	451.51*	5.197*	0.53*	2,7	Vostrikov et al.
	recommended values	451.51 ± 0.06	5.19 ± 0.01	0.53 ± 0.01		
	TRICHLOROMETHAN): molar mass 119.37 ₄₈ = 0.023 K	8 g; CHCl ₃ ; CASRN 67-	66-3	
1878-saj	260.0 °C, 54.9 atm	533.2	5.56		1	Sajotschewsky
1895-pic,	258.8 °C	532.0			1	Pictet, Pictet and
1895-pic/alt						Altschul
02-kue/rob	262.9 °C, 53.8 atm	536.1*	5.45		1	Kuenen and Robson
23-her/neu	(262.5 ± 0.2) °C	535.7*		0.496*	1,7	Herz and Neukirch
5-har	263.5 °C, 263.3 °C	536.6*			1	Harand
-3-fis/rei	263.5 °C	536.7*			1	Fischer and Reichel
54-swi/kre	263.15 °C	536.33*			1	Swietoslawski and
						Kreglewski
58-rab/gor		536.8			1	Rabinovich and
						Gorbushenkov
68-cam/cha	262.9 °C, 52.59 atm	536.1*	5.329*	0.458	1,5,7	Campbell and Chatterj
69-cam/cha		(536.1)	(5.329)	0.491*	7	Campbell and Chatterj
	(263.2 ± 0.1) °C	536.3*			1	Campbell and Musball
/0-cam/mus		500.0			1	Rätzsch and Strauch
		538.9			1	Katzscii aliu Straucii
70-cam/mus 72-rae/str 77-kry/pow	(262.8± 0.2) °C	538.9 536.0*			4	Krynicki et al.

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOGENA	TED ALKANES			
			molar mass 70.014 g; $T_{90} - T_{48} = -0.014$; CHF ₃ ; CASRN 75-46-7	,	
59-hou/mar	538.33 °R, 701.42 psi, 32.78 lb•ft ⁻³	1 ₉₀ - 1 ₆₈ = -0.000 K 299.1*	4.836*	0.525*	2,3,7	Hou and Martin
67-tsi/pro	25.92 °C	299.07*		0.516	1	Tsiklis and Prokhoro
68-wag	(26.3 ± 0.1) °C	299.5	5.04	0.527*	2,3,5	Wagner
75-sha/ras		298.97		0.5255	7	Shavandrin and Rasskazova
77-kho/gub	(25.805 ± 0.002) °C	298.949		$0.526* \pm 0.001$	1,7	Khodeeva and
, , inio, guo	(25.005 ± 0.002)	2,0.,.,		0.020 ± 0.001	-,,	Gubochkina
82-hor/oka		299.01 ± 0.01	$4.8162* \pm 0.0018$	$0.529* \pm 0.005$	5	Hori et al.
89-nae/deb	25.80 °C	298.95*	$4.8162* \pm 0.0018$	$0.5272* \pm 0.0015$	4,7	Närger et al.
90-ohg/ume 91-aiz/rey	7.52 kmol·m ⁻³	299.29 ± 0.02 299.01*	$4.828* \pm 0.015$ 4.816*	0.5265* 0.519*	3	Ohgaki et al. Aizpiri et al.
96-yat/hor		$299.06* \pm 0.1$	4.010	0.519	4	Yata et al.
98-die/cro		$299.00^* \pm 0.06$	$4.797* \pm 0.006$	$0.5185* \pm 0.008$	2a	Diefenbacher et al.
99-die/tue		$298.992* \pm 0.06$	$4.7961* \pm 0.006$	$0.5195* \pm 0.008$	2a	Diefenbacher and Tür
99-poo/del		$299.06* \pm 0.02$	$4.795* \pm 0.002$		1	Poot and De Loos
	recommended values	299.00 ± 0.08	4.80 ± 0.01	0.520 ± 0.006		
	DICHLOROMETHANE (m	ethylene chloride, R-3	30): molar mass 84.93	3 g; CH ₂ Cl ₂ ; CASRN 75-	09-2	
1882-zhu	245.1 °C	518.3			1	Zhuk
35-har	237.7 °C, 237.3 °C	510.7	6.00		1	Harand
46-dzu	(237 ± 2) °C, 62.00 kpf·cm ⁻²	510.2 $508.0 * \pm 0.2$	6.08 $6.355* \pm 0.01$		1,5 1,5	Dzung Garcia-Sanchez et al.
89-gar/rom	recommended values	508.0 ± 0.2 508.0 ± 0.5	6.35 ± 0.05		1,3	Garcia-Sanchez et al.
				. CACDN 75 10 5		
68-mal/meu	(78.4 ± 0.2) °C, 57.54 atm	351.6 moiai	mass 52.023 g; CH ₂ F 5.830	0.430	2,3,7	Malbrunot et al.
91-sin/lun	(73.14 ± 0.02) °C, 37.34 attil (173.14 ± 0.04) °F, 843.29 psi,	351.56	5.814	0.430	1,6,7	Singh et al.
	26.819 lb•ft ⁻³				7-7-	
92-hig/ima		$351.26* \pm 0.02$		$0.427* \pm 0.005$	2	Higashi et al.
92-sch/mol		351.36		0.425* 0.005	2	Schmidt and Moldove
93-fuk-1 93-fuk/oho		$351.26*\pm0.03$ (351.26)	$5.778* \pm 0.003$	$0.425* \pm 0.005$	2,7 6	Fukushima Fukushima and
93-1uk/0110		(331.20)	3.778° ± 0.003		U	Ohotoshi
93-hol/nie		(351.56)	(5.830)	$0.4285* \pm 0.001$	6,7	Holcomb et al.
93-nag/bie		$351.23* \pm 0.06$	$5.783* \pm 0.06$	$0.420* \pm 0.008$	2,5	Nagel and Bier
93-qia/nis		$351.255* \pm 0.01$	$5.780* \pm 0.002$		6	Qian et al.
93-wat/sat		$351.255* \pm 0.010$	$5.784* \pm 0.002$	$0.421* \pm 0.001$	2 6	Watanabe and Sato
93-web/goo 94-def/mor		(351.36)	5.803 ± 0.006 5.7927 ± 0.0024	0.4226*	5	Weber and Goodwin Defibaugh et al.
94-hig		$351.26* \pm 0.01$	5.7927 ± 0.0024 $5.785* \pm 0.009$	$0.427^* \pm 0.005$	2,5,7	Higashi
94-sat/sat		(351.255)	$5.7840* \pm 0.0025$		3,5	Sato et al.
94-sch/mol		351.36 ± 0.02		$0.419* \pm 0.007$	2,9	Schmidt and Moldove
94-wid/sat		(351.255)*	$5.784* \pm 0.01$	$0.424* \pm 0.001$	5,8	Widiatmo et al.
94-xia/tan 95-fu/han		(351.28)	5.781 $5.785* \pm 0.002$	$0.425* \pm 0.003$	6	Xiang and tan Fu et al.
95-1u/11a11 95-kuw/aoy		$351.295* \pm 0.010$ $351.255* \pm 0.010$	3.763° ± 0.002	$0.424^{\circ} \pm 0.003$ $0.424^{\circ} \pm 0.001$	2,5,7 2,7	Kuwabara et al.
96-yat/hor		$351.14* \pm 0.1$		0.424 ± 0.001	4	Yata et al.
97-dev		(351.26)	5.781*			
97-yat/hor		$351.16* \pm 0.10$			4	Yata et al.
97-van/hol		351.33 ± 0.28	5.7020* 0.00¢	$0.42904* \pm 0.00050$	7	Van Poolen et al.
99-die/tue	recommended values	$351.245* \pm 0.06$	$5.7820* \pm 0.006$	$0.4187* \pm 0.008$	2a,3	Diefenbacher and Tür
		351.25 ± 0.03	5.783 ± 0.005	0.425 ± 0.004	2	
	CHLOROMETHANE (n		: molar mass 50.488 g K; $T_{90} - T_{48} = 0.023$ K		3	
1885-vin/cha	141.5 °C, 73 atm	414.7	7.40	•	1	Vincent and Chappuis
1886-vin/cha	141.5 °C, 76 atm ^a	414.7	7.70		1	Vincent and Chappuis
1893-kue	143.0 °C; 65.98 atm	416.2*	6.685*		1	Kuenen
04-bri	143.12 °C, 65.93 atm	416.3*	6.680*	0.353*	1,7	Brinkmann
04-cen	(143.0 ± 0.2) °C	416.2*	6 672*	0.37*	1,7	Centnerszwer
08-bau 35-har	65.85 atm 141.8 °C, 141.3 °C	416.3* 414.7	6.672*		1 1	Baume Harand
64-hsu/mck	(143.10 ± 0.02) °C, (65.919 ± 0.02) atm,	416.27*	6.6792*	0.363*	1,5	Hsu and McKetta
01 mar /L -1	2.755 cm ³ ⋅g ⁻¹	(416.24 ± 0.02)	6 7144*		2	Mongoories et al
81-man/hal	recommended values	(416.24 ± 0.02) 416.25 ± 0.08	$6.7144*$ 6.68 ± 0.02	0.36 ± 0.01	3	Mansoorian et al.
					2	
1889-col	FLUOROMETHANE (n 44.90 °C, 47123 mm Hg	nethyl fluoride, R-41): 318.1°	molar mass 34.033 g: 6.283 ^c	; CH ₃ F; CASKN 593-53-	3 1	Collie
1889-coi 32-caw/pat	44.90 °C, 47123 mm Hg 44.55 °C, (58.0 \pm 0.2) atm, 3.33 cm ³ ·g ⁻¹	317.7*	5.87*	0.300*	1,7	Cawood and Patterson
87-bom/bis	9150 mol·m ⁻³	317.4*	5.87*	0.3114*	3	Bominaar et al.
89-bis/ten	$(9192.7 \pm 20.9) \text{ mol} \cdot \text{m}^{-3}$	(317.421)	5.8751*	0.31286*	6,7	Biswas et al.
90-bom/tra		317.421*			4	Bominaar et al.
97-hol/mag		$317.28* \pm 0.08$	$5.897* \pm 0.01$	$0.3165* \pm 0.0015$	6,7	Holcomb et al.
	recommended values	317.4 ± 0.3	5.87 ± 0.01	0.311 ± 0.008		

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOGE	NATED ALKANES			
	1,2-DIBROMO-2-CHLORO-1,1,2-7	ΓRIFLUOROETHANΙ	E (R-113B2): molar ma	ss 276.278 g; C ₂ Br ₂ ClF ₃	; CASRN 35	54-51-8
52-eis	290 °C	563.2*			10	Eiseman
/1-nil/tre		560.7*	3.61* 3.30* ^b	0.751	6,7	Nilsel'son et al.
his work	recommended values	(561) 561 ± 2	$3.45* \pm 0.25$	0.75 ± 0.01	6	
					CDN 124 72	
59-vos/she	1,2-DIBROMO-1,1,2,2-TETRA 33.93 atm, 1.313 cm ³ ·g ⁻¹	AFLUOROETHANE (487.8*	3.438*	259.823 g; C ₂ Br ₂ F ₄ ; CA 0.762*	2,7	Vostrikov et al.
74-gru/she	214.5 °C, 36.4 kg·cm ⁻² ,	(487.8)	3.385*	0.745*	3	Gruzdev et al.
8	recommended values	487.8 ± 0.2	3.40 ± 0.04	0.75 ± 0.02		
	CHLOROPENTAFL	UOROETHANE (R-11	(5): molar mass 154.46	6 g; C ₂ ClF ₅ ; CASRN 76	-15-3	
52-eis	175.9 °F, 453 psi	353.1*	3.12*	3, -2 - 3,	10	Eiseman
6-loe/sch	31.874 atm, 1.691 cm ³ ·g ⁻¹	$353.15* \pm 0.1$	3.229*	0.591*	5,7	Löffler and Schulz.
66-mea/ros 32-zhe	(31.16 ± 0.05) atm	$353.1* \pm 0.1$ 353.13*	3.157*	$0.6131* \pm 0.0035$	1,3,7 2	Mears et al. Zheleznyi
89-yad/uem		$352.924* \pm 0.010$	$3.120* \pm 0.005$	$0.604* \pm 0.003$	2,6,7	Yada et al.
, y da, delli	recommended values	353.0 ± 0.1	3.13 ± 0.02	0.61 ± 0.01	2,0,7	Tudu ot un
	1,1-DICHLORO-1,2,2,2-TETF	RAFLUOROETHANE	(R-114a): molar mass	170 921 g: C ₂ Cl ₂ E ₄ : CA	SRN 374-07	-2
55-mea/sta	(145.5 ± 0.5) °C, (479 ± 10) psi	418.7	3.30	0.582 ± 0.010	1,6,7	Mears et al.
	recommended values	418.7 ± 0.5	3.30 ± 0.02	0.58 ± 0.02		
	1,2-DICHLORO-1,1,2,2-TET	RAFLUOROETHAN	E (R-114): molar mass	170.921 g: C2Cl2F4: CA	SRN 76-14-2	2
		$T_{90} - 7$	$T_{68} = -0.035 \text{ K}$	2, 2, 2, 2, 2, 2, 4, 2, 2		
32-yan/sch	295 °F, 550 psi	419.3	3.79	0.501*	1.5	Yant et al.
14-ben/mch 50-mar	294.3 °F, 473.187 psi, 36.32 lb•ft ⁻³	418.9* 418.87*	3.27 3.263*	0.581* 0.5818*	1,5 1,6,7	Benning and McHarne Martin
32-wil/hul	(145.88 ± 0.03) °C, 473.02 psi	419.00*	3.2613*	0.5567	1,6,7	Wilson and Hules
35-hig/uem-1	(1 10100 ± 0100) C, 170102 psi	$418.74* \pm 0.02$	$3.252* \pm 0.004$	$0.576* \pm 0.003$	2,5,7	Higashi et al.
89-bie/tur		$418.87* \pm 0.06$	$3.263* \pm 0.06$		2a,5	Bier et al.
00-bie/tue		$418.86* \pm 0.05$	$3.261* \pm 0.06$	0.5020*	2a,5	Bier et al.
90-rot	recommended values	$418.74* \pm 0.01$ 418.80 ± 0.06	$3.2541* \pm 0.005$ 3.255 ± 0.005	$0.5820*$ 0.578 ± 0.004		Rott
39-ben/mch	1,1,2-TRICHLORO-1,2,2-T 214.1 °C, 33.7 atm	RIFLUOROETHANE 487.3*	(R-113): molar mass 1 3.41*	87.376 g; C ₂ Cl ₃ F ₃ ; CAS 0.576*	1,5,7	Danning and Mallama
3-gel/por	214.1 °C, 33.7 atm 214.1 °C	487.3*	3.3970*	0.570*	3,6	Benning and McHarne Geller et al.
78-mas/sta	417.8 °F, 494.7 psi, 35.58 lb•ft ⁻³	487.5*	3.416*	0.5699*	1,5,7	Mastroianni et al.
33-shi/ole		486.918*			7	Shimanskaya et al.
	recommended values	487.2 ± 0.1	3.41 ± 0.01	0.570 ± 0.007		
	HEXAFLUOR		molar mass 138.012 g;	C ₂ F ₆ ; CASRN 76-16-4		
33-swa	(19.7 ± 5) °C	$T_{90} - 1$	$T_{68} = -0.005 \text{ K}$	0.616*	7	Swarts
57-dou/goo	18.89 °C	293.04*		0.010	3	Douslin et al.
74-kim	$(526.8 \pm 0.1) {}^{\circ}\text{R}, (437 \pm 0.5) \text{psi}$	292.67	2.974		4,5	Kim
77-kij/sai		$293.006* \pm 0.015$	$3.0400* \pm 0.0011$	0.56 to 0.60	2,3	Kijima et al.
78-hej/pow		$293.054* \pm 0.03$	2.042* 0.000	0.622* 0.01	- 2.5.7	Hejmadi and Powers
79-sai/kij 95-wil/wil	$(0.225 \pm 0.001) \text{ L} \cdot \text{mol}^{-1}$	$293.031* \pm 0.010$ $293.03* \pm 0.05$	$3.042* \pm 0.008$ $3.043* \pm 0.005$	$0.622* \pm 0.01$ $0.613* \pm 0.003$	2,5,7 1a	Saikawa et al. Wilson et al.
2000-kao/mil	(0.223 ± 0.001) E moi	(293.035)	3.03047		6	Kao and Miller
	recommended values	293.02 ± 0.04	3.040 ± 0.005	0.615 ± 0.005		
	1-CHLORO-1,2,2,2-TETRA	FLUOROETHANE (R	2-124): molar mass 136	.476 g; C2HClF4; CASR	N 2837-89-0)
	, , , ,	$T_{90} - 2$	$T_{68} = -0.030 \text{ K}$	<i>U,</i> 2 .,		
88-kub/tan		$395.62* \pm 0.05$	3.66 ± 0.01	$0.560* \pm 0.002$	1,5,7	Kubota et al.
89-zhi/yee 94-van/nie		395.39* (395.62)		$0.565*$ $0.55976* \pm 0.00154$	7	Zhimai et al. Van Poolen et al.
90-sha/bas	$(524.5 \pm 2.7) \text{ psi}$	$395.36* \pm 0.15$	3.569	$0.5650* \pm 0.00134$	1,3,6	Shankland et al.
93-fuk/wat		395.35 ± 0.03	$3.615* \pm 0.005$	$0.566* \pm 0.005$	2,5,7	Fukushima and
04 hor-/1		(205 425)	2 (210* 0.0014		6	Watanabe
94-boy/web 96-sch/car		(395.425) 395.43*	$3.6218* \pm 0.0014$	0.5585*	6 4,9	Boyes and Weber Schmidt et al.
97-van/hol		$395.35* \pm 0.36$		$0.56027* \pm 0.00056$	7	Van Poolen et al.
	recommended values	395.4 ± 0.1	3.62 ± 0.03	0.560 ± 0.002		
	1,1-DICHLORO-2,2,2-TRIF	FLUOROETHANE (R	-123): molar mass 152.	931 g; C2HCl2F3; CASR	N 306-83-2	
	,	$T_{90} - 1$	$T_{68} = -0.039 \text{ K}$	C, 2 2 3,		
89-mcl/gal		$456.90* \pm 0.03$	$3.676* \pm 0.01$	$0.550* \pm 0.005$	2,5	McLinden et al.
89-yam/kub		$456.92* \pm 0.05$ $456.90* \pm 0.04$	$3.675* \pm 0.005$	0.553* ± 0.005	2 7	Yamashita et al.
00-fuk/wat 00-hor/par		$456.90* \pm 0.04$ 457.5 ± 0.2	3.37 ± 0.05	$0.553* \pm 0.005$	2,7 1,5	Fukushima et al. Horvath et al.
0-norpai		$456.82* \pm 0.02$	5.57 ± 0.05	$0.556* \pm 0.003$	2	Tanikawa et al.
90-web		(456.87)	$3.668* \pm 0.004$		6	Weber
90-web/lev		$456.83* \pm 0.03$	$3.668*^{d} \pm 0.004$	$0.550* \pm 0.004$	2,6,7	Weber and Levelt
91-nag		456.80 ± 0.06	3.662 ± 0.006	0.546 ± 0.011		Sengers Nagel
		+20.00 ± 0.00		0.540 ± 0.011		
		$456.83* \pm 0.02$	3.6655* + 0.0030		3.5	Piao et al.
91-pia/sat		$456.83* \pm 0.02$ (456.831)	$3.6655* \pm 0.0030$ $3.6618* \pm 0.0003$		3,5 6	Piao et al. Goodwin et al.
91-nag 91-pia/sat 92-goo/def 95-nis/koh	recommended values			0.553 ± 0.004		

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\mathrm{g}\cdot\mathrm{cm}^{-3}$	method	authors
<u> </u>		HALOGEN	ATED ALKANES			
	1,2-DICHLORO-1,1,2-TRIFI		123a): molar mass 152.			
90-cha/sch	recommended values	461.6 461.6 ± 0.2		0.550 0.550 ± 0.015	9	Chae et al.
	PENTAFLLIORO		olar mass 120 021 g. C	C ₂ HF ₅ ; CASRN 354-33-6		
89-ici	65.9 °C	339.1	3.55	2111 5, CASIGIV 334-33-0	1,5	ICI
90-hor/par		$339.4* \pm 0.2$	3.59 ± 0.05		1,5	Horvath et al.
91-sin/lun	151.34 °F, 528.34 psi, 35.645 lb•ft ⁻³	339.45*	3.643*	0.571*	1,3,6	Singh et al.
92-def/mor-1		(339.4)		0.5715*	7	Defibaugh and Morriso
92-wil/wil		339.19 ± 0.20	3.595 ± 0.01	$0.5713* \pm 0.003$	2,3,5	Wilson et al.
93-fuk-1 93-nag/bie		339.18 ± 0.03 339.43 ± 0.06	3.635 ± 0.006	$0.562* \pm 0.005$ 0.568 ± 0.011	2,7 2,5	Fukushima Nagel and Bier
94-hig		339.17 ± 0.010	$3.620* \pm 0.006$	$0.577* \pm 0.005$	2,5,7	Higashi
94-sag/sat		(339.165)	$3.619* \pm 0.001$		3	Sagawa et al.
94-sch/mol		$339.33* \pm 0.02$		$0.565* \pm 0.009$	2,9	Schmidt and Moldover
94-sha		339.4*	3.6310*	0.5712*	1,3,6	Shankland
94-wid/sat		339.165	3.62*	0.568*	5,8	Widiatmo et al.
95-boy/web 95-fuk/oho		(339.3) (339.18)	$3.6268* \pm 0.0016$ $3.621* \pm 003$		6 6	Boyes and Weber Fukushima et al.
95-kuw/aoy		339.165 ± 0.010	3.021 ± 003	$0.568*\pm0.001$	2,7	Kuwabara et al.
95-nag/bie	$211.4 \text{ cm}^3 \cdot \text{mol}^{-1} \pm 2 \%$	$339.43* \pm 0.06$	$3.635* \pm 0.006$	0.568*	2,5	Nagel and Bier
95-tsv/kle		(339.35)	3.629*		6	Tsvetkov et al.
95-ye/sat		(339.165)	$3.6199* \pm 0.0018$		5	Ye et al.
96-yat/hor		$339.22* \pm 0.1$	2.617* 0.001		4	Yata et al.
97-dev 97-dua/sto	$(4768 \pm 7) \text{ mol} \cdot \text{m}^{-3}$	(339.17) $339.41* \pm 0.01$	$3.617* \pm 0.001$ $3.6391* \pm 0.0002$	0.5723*	2,5,7	De Vries Duarte-Garza et al.
96-yat/hor	(4700 ± 7) mor m	$339.25* \pm 0.1$	3.0371 ± 0.0002	0.5725	4	Yata et al.
98-kob/nis		(339.4)	3.631*		6	Kobayashi and Nishiun
2001-zha/dua		(339.165)	$3.6195*\pm0.005$		6	Zhang et al.
2004-uch/yas		$339.20* \pm 0.01$	$3.617* \pm 0.001$	$0.560* \pm 0.001$	2	Uchida et al.
	recommended values	339.40 ± 0.07	3.63 ± 0.01	0.570 ± 0.004		
	1-CHLORO-2,2,2-TRIFLU	JOROETHANE (R-13	3a): molar mass 118.4	85 g; C ₂ H ₂ ClF ₃ ; CASRN	75-88-7	
90-tru/mar		424.91*		0.524*		Trukshin et al.
97-liu/lia	recommended values	$425.01* \pm 0.015$ 425.0 ± 0.1	4.0116 ± 0.0093 4.01 ± 0.02	$0.520* \pm 0.005$	2,3,6,7	Liu et al.
				0.522 ± 0.006	0.7.0	
	1,1,1,2-TETRAFLUO		$r_{68} = -0.025 \text{ K}$	g; C ₂ H ₂ F ₄ ; CASRN 811-	97-2	
77-dup	100.54 °C (212.94 °F), 572.21 psi	373.69	0.023 11	0.4956	10	Du Pont
87-all		374.23*		0.517	6,7	Allied-Signal
88-ici		379.65	3.648	0.51225*	1,5	ICI
88-wil/bas		$374.22* \pm 0.15$	4.067 ± 0.003	$0.5122* \pm 0.005$	1,6,7	Wilson and Basu
89-kab/tan 89-kub/yam		$374.27* \pm 0.01$ 374.24*	4.065	$0.508* \pm 0.003$	2,7 1,6	Kabata et al. Kubota et al.
89-mcl/gal		374.24° $374.180^{\circ} \pm 0.01$	$4.056* \pm 0.01$	$0.5153* \pm 0.001$	2,6	McLinden et al.
89-web-1		(374.27)	4.060*		5	Weber
90-fuk/wat		$374.16* \pm 0.03$		$0.507* \pm 0.005$	2,7	Fukushima et al.
90-hor/par		$374.15* \pm 0.2$	$4.055* \pm 0.05$		1,5	Horvath et al.
90-pia/sat		(374.30)	4.0640 ± 0.00150	0.514* 0.010	5	Piao et al.
90-bie/oel 91-bae/til		$374.09* \pm 0.06$ (374.18)	$4.052* \pm 0.006$ $4.05615* \pm 0.0008$	$0.514* \pm 0.010$	2,5 5	Bier et al. Baehr and Tillner-Roth
91-kes/zhe		374.22 ± 0.04	4.059 ± 0.008	0.509 ± 0.003	3	Kessel'mann et al.
91-mor/war		$374.255* \pm 0.010$	4.0680 ± 0.005	$0.5152* \pm 0.015$	2,5,7	Morrison and Ward
91-tan/jin		374.3*	4.065*	0.5050	8	Tang et al.
92-hub/ely	5.0308 mol·dm ⁻³	374.179*	4.056*	0.513*	8	Huber and Ely
92-kru/str		374.09*	4.030	0.50025* 0.002	257	Kruppa and Straub
92-lav/ruv 93-nis/kom		374.509 ± 0.30 374.04*	$4.055* \pm 0.008$ 4.035	$0.50925* \pm 0.002$	2,5,7 2,6	Lavrenchenko et al. Nishiumi et al.
93-1118/K0111 94-hig		374.04° $374.11^{*} \pm 0.01$	$4.052* \pm 0.006$	$0.508* \pm 0.005$	2,5,7	Higashi
94-van/nie		(374.18)		$0.51302* \pm 0.00198$	7	Van Poolen et al.
95-nag/bie	$198.5 \text{ cm}^3 \cdot \text{mol}^{-1} \pm 2 \%$	$374.10* \pm 0.06$	$4.051* \pm 0.006$	0.514*	2,5,10	Nagel and Bier.
95-nis/koh		374.28*	4.058*	0.500* 0.000	2,6	Nishiumi et al.
96-aoy/kis		$374.083* \pm 0.010$ $374.074* \pm 0.006$	4.0482* ± 0.0026	$0.509* \pm 0.001$ $0.509* \pm 0.002$	2,7	Aoyama et al.
98-fuj/nak 2003-yas/yam		$374.074* \pm 0.006$ $374.13* \pm 0.022$	$4.0482* \pm 0.0026$ $4.053* \pm 0.002$	$0.509* \pm 0.002$ $0.508* \pm 0.001$	2,5 2	Fujiwara et al. Yasumoto et al.
2000-yas/yaiii	recommended values	374.13 ± 0.022 374.18 ± 0.08	4.055 ± 0.002 4.055 ± 0.006	$0.508^{\circ} \pm 0.001$ 0.512 ± 0.003	2	i asumoto et ai.
				g; C ₂ H ₂ F ₄ ; CASRN 359-	35-3	
90-cha/sch	1,1,2,2-1E1RAI\LUC	391.8*	111035 102.031 }	g, C ₂ H ₂ F ₄ , CASKN 339 0.535*	4,9	Chae et al.
92-tam/sat		(391.97)	4.64		6	Tamatsu et al.
93-tat/kuw		$391.74* \pm 0.02$		$0.536* \pm 0.002$	2,7	Tatoh et al.
	recommended values	391.75 ± 0.05	4.61^{e}	0.535 ± 0.005		

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\mathrm{g}\cdot\mathrm{cm}^{-3}$	method	authors
		HALOGENA	TED ALKANES			
	1-CHLORO-1,1-DIFLUOI			g; C ₂ H ₃ ClF ₂ ; CASRN	I 75-68-3	
55-mea/sta	(137.1 ± 0.5) °C, (598 ± 10) psi	$I_{90} - I_{68}$ 410.25*	= -0.033 K 4.12	$0.435* \pm 0.010$	1,6,7	Mears et al.
58-che	(136.45 ± 0.04) °C, (42.75 ± 0.2) atm	409.6	4.192	0.4257 ± 0.010 0.4257 ± 0.0035	1,5,7	Cherneeva
82-zhe	(130.13 ± 0.01) C, (12.73 ±0.2) um	409.82	1.172	0.1237 ± 0.0033	2	Zheleznyi
90-bie/oel		$410.35* \pm 0.06$	$4.056* \pm 0.006$	0.467 ± 0.010	2,5	Bier et al.
90-cha/sch		410.3*		0.449*	4,9	Chae et al.
91-yad/kum		(410.29)	$4.041* \pm 0.002$		2,4	Yada et al.
92-fuk/wat		410.36 0.03	4.053 ± 0.005	0.446 ± 0.005	2,5,7	Fukushima and Watanabe
92-tan/tat		$410.26* \pm 0.02$		$0.446* \pm 0.003$	2,7	Tanikawa et al.
96-sak/sat		$410.34* \pm 0.03$	$4.048* \pm 0.002$	$0.444* \pm 0.001$	2	Sako et al.
2003-yas/yam	recommended values	$410.30* \pm 0.022$ 410.28 ± 0.05	$4.057* \pm 0.002$ 4.050 ± 0.005	$0.442* \pm 0.001$ 0.444 ± 0.003	2	Yasumoto et al.
	1,1-DICHLORO-1-FLUOR	OETHANE (R-141b):	molar mass 116.950 g	:; C ₂ H ₃ Cl ₂ F; CASRN	1717-00-6	
90-cha/sch	,	477.3*		0.461*	2,9	Chae et al.
91-arn/mac		478.85 ± 0.15	4.34 ± 0.50	$0.463* \pm 0.005$	2,6,7	Arnaud et al.
93-def/goo		(477.26)	$4.229* \pm 0.025$		6	Defibaugh et al.
97-dua/hwa	$(3920.9 \pm 6) \text{ mol} \cdot \text{m}^{-3}$	$477.5* \pm 0.4$	$4.194* \pm 0.002$	0.4585*	2,6,7	Duarte-Garza et al.
	recommended values	477.5 ± 0.4	4.20 ± 0.02	0.460 ± 0.005	_,-,-	
					71 55 6	
721. /	1,1,1-TRICHLOROETHA	•		4 g; C ₂ H ₃ Cl ₃ ; CASRN		A 1 1
73-amb/spr	recommended values	$550^{i,l} \pm 5$ 550 ± 5	4.30 ± 0.05 4.30 ± 0.1		1,5	Ambrose et al.
	1,1,1-TRIFLUOROETHANE		143a): molar mass 84.	$.040 \text{ g}; C_2H_3F_3; CASF$	RN 420-46-2	
33-swa-1	71.5 °C	344.7			7	Swarts
55-mea/sta	(73.1 ± 0.5) °C, (545 ± 10) psi	346.3	3.76*	$0.434* \pm 0.010$	1,6,7	Mears et al.
32-zhe		345.78			2	Zheleznyi
91-arn/mac-1		$346.0* \pm 0.1$	3.79 ± 0.15	0.455 ± 0.005	2,6,7	Arnaud et al.
93-fuk		$345.97* \pm 0.03$	3.769* 0.005	0.429 3	2,5,7	Fukushima
93-wan/ma		$346.18* \pm 0.05$	$3.780* \pm 0.006$	0.442 ± 0.004	2,5	Wang et al.
94-dev/bae		(346.18)	3.7868	0.426	6,7	de Vries and Baehr
94-hig-1		345.88*			2	Higashi
94-wid/sat		(346.25)	3.7789*	0.434*	5,8	Widiatmo et al.
95-giu/kum		(345.88)	$3.7697* \pm 0.0013$		5	Giuliani et al.
95-zha/sat		(345.97)	$3.776* \pm 0.005$		5	Zhang et al.
96-aoy/kis		$345.860* \pm 0.010$		$0.434* \pm 0.001$	2,7	Aoyama et al.
96-hig/ike		$345.88* \pm 0.01$	$3.764* \pm 0.005$	$0.431* \pm 0.003$	2,5,7	Higashi and Ikeda
96-sch/car		346.04		$0.4329* \pm 0.007$	4,9	Schmidt et al.
96-web/def-1		(364.04)	$3.7755* \pm 0.0017$		6	Weber and Defibaugh
97-yat/hor		$345.82* \pm 0.10$			4	Yata et al.
98-fuj/nak		$345.861* \pm 0.006$	$3.7639* \pm 0.0026$	$0.434* \pm 0.002$	2,5	Fujiwara et al.
2004-dua/wan		(345.857)	$3.7610* \pm 0.005$		6	Duan et al.
	recommended values	345.86 ± 0.02	3.768 ± 0.006	0.434 ± 0.003		
	1,1,2-TRIFLUORO	ETHANE (R-143): mo	olar mass 84.040 g; C ₂	H ₃ F ₃ ; CASRN 430-66	5-0	
94-hol/van		429.8	5.241	0.469	6,7	Holcomb and Van Pooler
	recommended values	429.8 ± 0.5	5.24 ± 0.02	0.469 ± 0.005		
	1,1-DICHLOROETHAN	E (ethylidene chloride): molar mass 98.959	g; C2H4Cl2; CASRN 7	75-34-3	
1883-paw	254.5 °C	527.7	,,	8, -242,	1	Pawlewski
1887-nad	250 °C, 50.0 atm	523.2*	5.07*	0.419	1	Nadezhdin
87-gar/tre		$523.4* \pm 0.2$	$5.061* \pm 0.010$	*****	1,5	Garcia-Sanchez and Trejo
	recommended values	523.4 ± 0.4	5.06 ± 0.02	0.42 ± 0.02		J
	1,2-DICHLOROETHAN		: molar mass 98.959 g K; $T_{90} - T_{48} = 0.031$		07-06-2	
1882-zhu	289.3 °C	562.5	, - 70		1	Zhuk
1883-paw	283.0 °C	556.2			1	Pawlewski
1887-nad	288.4 °C; 53.0 atm	561.6*	5.37*	0.419*	1	Nadezhdin
39-hoe	(290 ± 2) °C	563		$0.45* \pm 0.03$	1,7	Højendahl
46-hoe	290 °C	563		0.43° ± 0.03 0.44*	1,7	Højendahl
85-gar/tre	2,0 0	$561.6* \pm 0.2$	5.38*	0.11	1,7	Garcia-Sanchez and
55-5m/HC		JU1.U U.Z	5.50		1,0	Trejo
89-chr/sad		$561.7* \pm 0.4$			1	Christou et al.
91-chr/tra		$560.7* \pm 0.5$			1	Christou et al.
	recommended values	561.5 ± 0.5	5.38 ± 0.02	0.44 ± 0.03		Christon et al.
	1000mmended varues	201.2 ± 0.2	3.30 ± 0.02	0.11 ± 0.03		

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOG	ENATED ALKANES			
	1,1-DIFLUOROETH			66.050 g; C ₂ H ₄ F ₂ ; CASRN	75-37-6	
55-mea/sta	(113.5 ± 0.5) °C, (652 ± 10) psi	386.65	$-T_{68} = -0.029 \text{ K}$ 4.50	$0.365* \pm 0.010$	1,6,7	Mears et al.
32-zhe		386.54			2	Zheleznyi
37-hig/ash 90-bie/oel		$386.41* \pm 0.01$ $386.50* \pm 0.06$	$4.5198* \pm 0.0010$ $4.521* \pm 0.06$	$0.368* \pm 0.002$ $0.3745* \pm 0.008$	2,5,7	Higashi et al. Bier et al.
0-bie/oei 0-cha/sch		386.3* ± 0.06	4.521" ± 0.06	$0.3745^* \pm 0.008$ $0.369^* \pm 0.009$	2,5 4,9	Chae et al.
1-bae/til		(386.41)	4.51675*	0.507 ± 0.007	5	Baehr and Tillner-Roth
1-nag		$386.36* \pm 0.06$	$4.519* \pm 0.006$	$0.363* \pm 0.008$		Nagel
2-tam/sat-1		(386.41)	$4.5157* \pm 0.0025$		5	Tamatsu et al.
2-wan/liu		$386.46* \pm 0.01$		$0.368* \pm 0.0025$	2,7	Wang et al.
03-hol/nie 06-def/mor	5.519 mol·dm ⁻³	$386.44* \pm 0.1$	$4.520* \pm 0.0035$	$0.3688* \pm 0.001$	1,6,7 4,6,7	Holcomb et al. Defibaugh and Morriso
6-yat/hor	3.319 mordin *	(386.41) $386.39* \pm 0.1$	4.5147*	0.3645*	4,6,7	Yata et al.
7-van/hol		$386.30* \pm 0.14$		$0.36889* \pm 0.00038$	7	Van Poolen et al.
	recommended values	386.43 ± 0.04	4.52 ± 0.01	0.368 ± 0.002		
			molar mass 108.965 g;	C ₂ H ₅ Br; CASRN 74-96-4		
1883-paw	236.0 °C	509.2	< 22th	0.505	1	Pawlewski
23-her/neu 37-tar/afi	(230.8 ± 0.2) °C, (61.5 ± 0.5) atm	504.0* (504)	6.23* 5.34* ^b	0.507	1 6	Herz and Neukirch Tarasenko and
7-141/411		(304)	3.34***		O	Afinogenov
	recommended values	504 ± 2	5.8 ± 0.7	0.51 ± 0.01		C
	CHLOROE	THANE (ethyl chloride)	: molar mass 64.514 g;	C ₂ H ₅ Cl; CASRN 75-00-3		
859-dri	184 °C	457	_		1	Drion
878-saj	182.6 °C, 52.6 atm	455.8	5.33		1	Sajotschewsky
884-kan/dja	189.9 °C	463.1			1	Kannegiesser and
885-vin/cha,	182.5 °C, 54 atm	455.7	5.47		1	Djatschewski Vincent and Chappuis
886-vin/cha					_	
895-pic	181.0 °C	454.2			1	Pictet
895-pic/alt	181.8 °C 185.5 °C	455.0 458.7*			1 1	Pictet and Altschul Eversheim
2-eve 7-ber	187.2 °C, 51.72 atm	460.4*	5.241*		1	Berthoud
, 601	recommended values	460 ± 2	5.2 ± 0.2		•	Derthoud
	EI LIOE	OETHANE (R-161): mo	olar mass 48 060 at C-H	LE: CASDN 353 36 6		
35-boo/swi	102.16 °C, 49.62 atm	375.31*	5.028*	151°, CASKIN 333-30-0	1,5	Booth and Swinehart
98-bey/des	102.1 °C	375.3*	5.046*	0.302	1,5,7	Beyerlein et al.
	recommended values	375.3 ± 0.5	5.04 ± 0.02	0.302 ± 0.005		•
	1,2-DICHLORO-1,1,2,3,3,3	-HEXAFLUOROPROPA	ANE (R-216): molar m	ass 220.929 g; C ₃ Cl ₂ F ₆ ; CA	SRN 661-97-2	
55-sha	355.98 °F, 399.45 psi, 35.86 lb•ft ⁻³		2.754	0.574	3	Shank
90-gor/zad	(178.7 ± 0.1) °C	451.9*			1	Gorchakovskii et al.
	recommended values	452.0 ± 0.3	2.7 ± 1	0.57 ± 0.02		
79-sin/vin	1,1,1,2,2,3,3-HEPTAFLU 184.9 °C	JORO-1-IODOPROPAN 458.0*	IE (R-217I1): molar ma 2.60*	ass 295.925 g; C ₃ F ₇ I; CASF		Ci., it., 4 Min 4
9-sin/viii 95-sin/mik	(184 ± 1) °C	458.0**	$2.56* \pm 0.04$		1,6 1,6	Sinitsyn and Vinogrado Sinitsyn et al.
2006-nik	(164 ± 1) C	(457 ± 1)	$2.9* \pm 0.04$		6	Nikitin
	recommended values	457 ± 1	2.8 ± 0.2		-	
	OCTAFLU	OROPROPANE (R-218): molar mass 188.019	g; C ₃ F ₈ ; CASRN 76-19-7		
i3-bro	(71.9 ± 0.2) °C, 26.45 atm	345.1*	2.68*	0.628*	3,5,7	Brown
2-mou/kay	$(386.9 \pm 0.5) \text{ psi}$	$345.01* \pm 0.2$	2.668*	0.603	1,5	Mousa et al.
9-vla/shv		(345.0)	2.624^{b}	0.6071*	6a	Vladimirov and Shvets
6-sch	recommended values	345.1* 345.0 ± 0.2	2.66 ± 0.02	$0.6271*$ 0.627 ± 0.005		Schmidt
					GDN 250 50 0	
12 hov/dos	1-CHLORO-1,1,2,3,3,3-HE 158.3 °C	EXAFLUOROPROPANI 431.5	2.950 (R-226ea): molar mas	ss 186.483 g; C₃HClF ₆ ; CA 0.584	359-58-0 1,6,7	Beyerlein et al.
3-bey/des	recommended values	431.5 432 ± 1	3.0 ± 0.1	0.58 ± 0.02	1,0,7	Beyenein et al.
	2-CHLORO-1,1,1,3,3,3-HE				SDN 431 87 8	
93-bey/des	158.2 °C	431.4	3.020	0.591	1,6,7	Beyerlein et al.
,	recommended values	432 ± 1	3.0 ± 0.1	0.59 ± 0.02	-,-,-	,
	1,2-DICHLORO-1,1,3,3,3-PE	ENTAFLUOROPROPAN	JE (R-225da): molar m	ass 202.938 g; C3HCl3F5; C	CASRN 431-86-	7
93-bey/des	206.2 °C	479.4	3.010	0.589	1,6,7	Beyerlein et al.
	recommended values	479 ± 1	3.0 ± 0.1	0.59 ± 0.02		
	1.3 DICHI OPO 1.2.2.3.3 PI	ENTAFLUOROPROPAN	NE (R-225cb): molar ma	ass 202.938 g; C ₃ HCl ₂ F ₅ ; C	CASRN 507-55-	1
	1,5-DICIILORO-1,2,2,5,5-1 L			0.557	2,7	Fukushima and
2-fuk/wat-1	1,3-DICHLORO-1,2,2,3,3-11	484.85				Watanabe
2-fuk/wat-1				0.557 ± 0.008		
2-fuk/wat-1	recommended values	484.9 ± 0.5	TF (D 225)	0.557 ± 0.008	LAGDET 100 15	2
	recommended values 2,3-DICHLORO-1,1,1,2,3-PE	484.9 ± 0.5 ENTAFLUOROPROPAN		ass 202.938 g; C ₃ HCl ₂ F ₅ ; C		
	recommended values 2,3-DICHLORO-1,1,1,2,3-PE 212.9 °C	484.9 ± 0.5 ENTAFLUOROPROPAN 486.1	3.070	ass 202.938 g; C ₃ HCl ₂ F ₅ ; C 0.586	CASRN 422-48- 1,6,7	0 Beyerlein et al.
	recommended values 2,3-DICHLORO-1,1,1,2,3-PE 212.9 °C recommended values	484.9 ± 0.5 ENTAFLUOROPROPAN 486.1 486 ± 1	3.070 3.1 ± 0.1	ass 202.938 g; $C_3HCl_2F_5$; C 0.586 0.59 \pm 0.02	1,6,7	
3-bey/des	recommended values 2,3-DICHLORO-1,1,1,2,3-PE 212.9 °C recommended values 1,1,1,2,2,3,3-HEPTAL	484.9 ± 0.5 ENTAFLUOROPROPAN 486.1 486 \pm 1 FLUOROPROPANE (R-	3.070 3.1 ± 0.1	ass 202.938 g; $C_3HCl_2F_5$; C 0.586 0.59 \pm 0.02 0.029 g; C_3HF_7 ; CASRN 2:	1,6,7	Beyerlein et al.
2-fuk/wat-1 3-bey/des 31-hun 3-bey/des	recommended values 2,3-DICHLORO-1,1,1,2,3-PE 212.9 °C recommended values	484.9 ± 0.5 ENTAFLUOROPROPAN 486.1 486 ± 1	3.070 3.1 ± 0.1	ass 202.938 g; $C_3HCl_2F_5$; C 0.586 0.59 \pm 0.02	1,6,7	

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\text{g}\cdot\text{cm}^{-3}$	method	authors
		HALOGENA	ATED ALKANES			
00	1,1,1,2,3,3,3-HEPTAFLU			0	1-89-0	C C
90-gor 90-gor/rot		374.909 ± 0.01 $375.074* \pm 0.01$	$2.9277* \pm 0.0003$ $2.9310* \pm 0003$	$0.5938* \pm 0.001$ $0.592* \pm 1$		Gorenflo Gorenflo et al.
91-nag		$374.87* \pm 0.06$	$2.928* \pm 0.006$	$0.592^{\circ} \pm 1$ $0.584^{\circ} \pm 0.012$		Nagel
92-sal/wan	274 cm ³ ·mol ⁻¹	374.83	2.9116	0.621	1,5,7	Salvi-Narkhede et al.
92-wir/bra		375.1*	2.95		4	Wirbser et al.
93-bey/des	102.8 °C	376.0	2.943	0.580	1,6,7	Beyerlein et al.
96-sch		375.95	2.0077.4± f	0.580	1	Schmidt
99-shi/dua 2001-def/sch		(375.95) (375.95)	2.98774* ^{,f} 2.9346		6	Shi et al. Defibaugh and Schmidt
2001-der/sen 2001-hor/pra	278.9 cm ³ ·mol ⁻¹	374.88	2.934*	0.6096		Horstmann et al.
2002-gru/kha	2,000 0111 11101	(375.95)	2.9877* ^f	0.591	6,7	Gruzdev et al.
2002-hu/che		(375.95)	2.9846** ^f		5	Hu et al.
2003-din		(375.95)	2.9855*·f		6	Di Nicola
2004-hu/che		$375.040* \pm 0.005$	$2.930* \pm 0.0015$	$0.590* \pm 0.005$	2,6,7	Hu and Chen
2004-uch/yas 2004-wan/dua		$375.00* \pm 0.01$ (375.95)	$2.930* \pm 0.001$ $2.98916*^{f}$	$0.598* \pm 0.001$	2 6	Uchida et al. Wang and Duan
2004-waii/dua	recommended values	375.02 ± 0.05	2.930 ± 0.005	0.595 ± 0.005	0	wang and Duan
					DNY 400 00 5	
02 1/4	3-CHLORO-1,1,1,2,2-PENTAI					Describing of all
93-bey/des	170.3 °C recommended values	443.5 444 ± 1	3.080 3.1 ± 0.1	0.550 0.55 ± 0.02	1,6,7	Beyerlein et al.
02 h/4	2,3-DICHLORO-1,1,1,3-TETRAF		34da): molar mass 184	$.948 \text{ g}; \text{C}_3\text{H}_2\text{Cl}_2\text{F}_4; \text{CASI}$	RN 146916-90	
93-bey/des	242.5 °C recommended values	515.7 516 ± 1			1	Beyerlein et al.
021 /1		OROPROPANE (R-236cl				D 11 . 1
93-bey/des	130.1 °C recommended values	403.3 403 ± 1	3.120 3.1 ± 0.1	0.545 0.55 ± 0.02	1,6,7	Beyerlein et al.
02.1 /1		OROPROPANE (R-236e				D 11 (1
93-bey/des 95-zha/sat-1	141.1 °C	414.3* (412.375)	3.533 $3.4116* \pm 0.003$	0.571	1,6,7 5	Beyerlein et al. Zhang et al.
96-aoy/kis		$412.375* \pm 0.015$	3.4110° ± 0.003	$0.568* \pm 0.001$	2,7	Aoyama et al.
96-def/gil		$412.44* \pm 0.02$	$3.501* \pm 0.015$	$0.563* \pm 0.003$	4,6,7	Defibaugh et al.
96-sch/car		412.45*		0.5655*	4,9	Schmidt et al.
2004-uch/yas		$412.41* \pm 0.01$	$3.416* \pm 0.001$	$0.562* \pm 0.001$	2	Uchida et al.
	recommended values	412.44 ± 0.02	3.42 ± 0.04	0.565 ± 0.003		
	1,1,1,3,3,3-HEXAFLU	OROPROPANE (R-236fa	a): molar mass 152.038	g; C ₃ H ₂ F ₆ ; CASRN 690	-39-1	
93-bey/des	130.6 °C	403.8	3.180*	0.556*	1,6,7	Beyerlein et al.
96- sch/car		$398.07* \pm 0.02$		$0.5485* \pm 0.008$	4,9	Schmidt et al.
2004-dua/wan		(398.07)	$3.18358* \pm 0.005$	0.540 0.000	6	Duan et al.
	recommended values	398.07 ± 0.08	3.184 ± 0.008	0.549 ± 0.008		
021 //		OROPROPANE (R-236ca				D 11 . 1
93-bey/des	155.2 °C recommended values	428.4 428 ± 1	3.410 3.4 ± 0.2	0.558 0.56 ± 0.02	1,6,7	Beyerlein et al.
021 //	3-CHLORO-1,1,2,2-TETRAF					D 11 . 1
93-bey/des	221.0 °C	494.2 494.± 1	3.710 3.7 ± 0.1	0.525	1,6,7	Beyerlein et al.
	recommended values	494 ± 1	3.7 ± 0.1	0.53 ± 0.02		
021 /1	2,3-DICHLORO-1,1,1-TRIFL		3db): molar mass 166.9	957 g; C ₃ H ₃ Cl ₂ F ₃ ; CASR	N 338-75-0	B 11 . 1
93-bey/des	251.9 °C recommended values	525.1 525 ± 1			1	Beyerlein et al.
c= 1		ROPROPANE (R-245cb)				01 1
67-sha 93-bey/des	224.52 °F, 455.02 psi, 30.628 lb ft ⁻³ 108.5 °C	380.08* 381.7	3.137* 3.264	0.491* 0.499*	3 1,6,7	Shank Beyerlein et al.
95-sch	108.3 C	$380.38* \pm 0.02$	5.204	0.499*	1,0,7	Schmidt
96-web/def		(380.38)	$3.148* \pm 0.015$		6	Weber and Defibaugh
	recommended values	380.4 ± 0.1	3.14 ± 0.01	0.49 ± 0.02		Ü
	1 1 1 3 3-PENTAFI IIC	OROPROPANE (R-245fa): molar mass 134 048	o: C.H.F.: CASRN 460.	-73-1	
93-bey/des	157.5 °C	430.7	3.640*	0.529	1,6,7	Beyerlein et al.
96-sch/car		$427.20* \pm 0.02$		$0.5170* \pm 0.008$	4,9	Schmidt et al.
99-sot/kub		(427.20)	3.662		6	Sotani and Kubota
2004-wan/dua		(427.20)	3.63875*		6	Wang and Duan
	recommended values	427.20 ± 0.08	3.639 ± 0.004	0.517 ± 0.008		
	1,1,2,2,3-PENTAFLUC	OROPROPANE (R-245ca): molar mass 134.048	g; C ₃ H ₃ F ₅ ; CASRN 679-	-86-7	
96-def/gil-1		$447.57*\pm0.02$	3.925 ± 0.015	$0.5236* \pm 0.0030$	4,6,7	Defibaugh et al.
96- sch/car		447.57*	2.02 0.02	0.5236*	4,9	Schmidt et al.
	recommended values	447.57 ± 0.05	3.93 ± 0.02	0.524 ± 0.006		
		OPROPANE (R-254cb):				
93-bey/des	146.1 °C	419.3	3.750	0.467	1,6,7	Beyerlein et al.
	recommended values	419 ± 1	3.8 ± 0.1	0.47 ± 0.02		
	1,2-DICHLO	DROPROPANE: molar n				
97-ste/chi		578*	4.65	0.39	4,6,7	Steele et al.
2000-mor/lui	racommanded values	$578.5^{*l} \pm 2$	4.7 ± 0.1	0.30 ± 0.02	1	Morton et al.
	recommended values	579 ± 2	4.7 ± 0.1	0.39 ± 0.02		

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/\text{g}\cdot\text{cm}^{-3}$	method	authors
			ATED ALKANES	· +		
	1,3-DICHLORO	PROPANE: molar n	nass 112.986 g; C ₃ H ₆	Cl ₂ ; CASRN 142-28-9		
2000-mor/lui		$614.6^{l} \pm 2$	<u>.</u>		1	Morton et al.
	recommended values	614 ± 3				
	1-BROMOPROPANE			g; C ₃ H ₇ Br; CASRN 106		
93-li/ma		536.94 ¹	4.798 ^l		1	Li et al.
	recommended values	536.9 ± 0.5	4.80 ± 0.05			
1006 : /.1.				g; C ₃ H ₇ Cl; CASRN 540		W 1 Ch
1886-vin/cha 17-ber	221 °C; 49 atm 230.05 °C, 45.18 atm	494 503.2*	4.96 4.578*		1 1	Vincent and Chappu Berthoud
22-ma/fan	250.05 C, 45.10 atm	$503.53* \pm 0.12$	$4.571* \pm 0.024$	0.2965 ± 0.0018	1,6,7	Ma et al.
	recommended values	503.4 ± 0.4	4.57 ± 0.05	0.297 ± 0.005	,-,-	
	2-CHLORO	PROPANE: molar m	ass 78.541 g; C ₃ H ₇ Cl	; CASRN 75-29-6		
92-ma/fan		$482.40* \pm 0.12$	4.261 ± 0.024	0.3250 ± 0.0009	1,6,7	Ma et al.
2000-mor/lui		484 ± 1			1	Morton et al.
	recommended values	482.4 ± 0.4	4.26 ± 0.05	0.325 ± 0.003		
	1,4-DIBROMOOCTAFLUO			.838 g; C ₄ Br ₂ F ₈ ; CASR		
77-skr/mur	(250.4 0.2) 20	532.5*	2.39*		1,6	Skripov and Muratov
95-sin/mik 2006-nit	(259.4 ± 0.2) °C	532.6* (533 ± 1)	$2.38* \pm 0.02$ $2.4* \pm 0.1$		1,6 6	Sinitsyn et al. Nikitin
.000-IIIt	recommended values	533 ± 1	2.4 ± 0.1 2.4 ± 0.1		O	Nikitili
	1,1,1,2,3,3,4,4,4-NONAFL	HORO-2-IODORUT	ΔNF: molar mass 34	5 933 g. C.E.I. CASRN	375-51-9	
95-sin/mik	(216.0 ± 0.5) °C	489.2	$2.32* \pm 0.03$	7.755 g, C41 91, CASKIV	1,6	Sinitsyn et al.
2006-nik	((489 ± 1)	$2.4* \pm 0.1$		6	Nikitin
	recommended values	489 ± 1	2.4 ± 0.1			
	DECAFLUOROBUTA	NE (perfluorobutane)	: molar mass 238.02	7 g; C ₄ F ₁₀ ; CASRN 355	5-25-9	
17-fow/ham	(113.3 ± 0.2) °C, 23 atm	386.4*	2.33*	0.63*	1,6,7	Fowler et al.
58-bro/mea	(113.2 ± 0.1) °C, 22.93 atm	386.4*	2.323*	0.600 to 0.629*	1,5,7	Brown and Mears
67-zaw	112.61 °C, 22.6 atm, 0.372 L·mol ⁻¹ recommended values	385.84* 386.2 ± 0.3	$2.29*$ 2.32 ± 0.02	$0.640*$ 0.63 ± 0.01	1,7	Zawisza
32-mcl/tre	DECAFLUORO-2-M	395.4 ± 0.3	molar mass 238.027 2.42 ± 0.02	g; C ₄ F ₁₀ ; CASRN 354-9	1,5	McLure et al.
32-IIICI/II'E	recommended values	395.4 ± 0.5 395.4 ± 0.5	2.42 ± 0.02 2.42 ± 0.05		1,3	WICLUIE et al.
	1,1,1,2,2,3,3,4,4-NONAFLU			0.036 g: C.HE.: CASPN	J 375_17_7	
93-bey/des	140.2 °C	413.4	2.390	0.600	1,6,7	Beyerlein et al.
	recommended values	413 ± 1	2.4 ± 0.1	0.60 ± 0.02	,-,-	.,
	1,1,1,2,2,3,3,4-OCTAFLUOR	OBUTANE (R-338m	nccq): molar mass 20	2.046 g; C ₄ H ₂ F ₈ ; CASR	N 662-35-1	
93-bey/des	160.5 °C	433.7	2.550	0.562	1,6,7	Beyerlein et al.
97-def/car		$431.95* \pm 0.02$	$2.725* \pm 0.015$	$0.5724* \pm 0.0030$	4,6,7	Defibaugh et al.
	recommended values	431.95 ± 0.05	2.73 ± 0.02	0.572 ± 0.006		
	1,1,1,2,3,4,4,4-OCTAFLUOR			-		
93-bey/des	148.5 °C recommended values	421.7 422 ± 1	2.47 2.5 ± 0.1	0.581 0.58 ± 0.02	1,6,7	Beyerlein et al.
02 1/4	1,1,2,2,3,3,4,4-OCTAFLUO					Dancadain at al
93-bey/des	186.4 °C recommended values	459.6 460 ± 1	2.830 2.8 ± 0.1	0.578 0.58 ± 0.02	1,6,7	Beyerlein et al.
	1,1,1,2,2,3,3-HEPTAFLUC				662 00 0	
93-bey/des	1,1,1,2,2,3,3-HEPTAFLUC	417.4	2.570	0.532	1,6,7	Beyerlein et al.
os seyraes	recommended values	417 ± 1	2.6 ± 0.1	0.53 ± 0.02	1,0,7	Beyeriem et ui.
	1,1,1,3,3-PENTAFLUORO	BUTANE (R-365mf	c): molar mass 160 (085 g. C.H.F.: CASRN	406-58-6	
2004-fro/krz	1,1,1,5,5 121(1112661	460 ± 1	o). mom mass room	, oo g, c41131 3, c110111 (9	Froba et al.
	recommended values	460 ± 2				
	1-CHLORO	BUTANE: molar ma	ss 92.567 g; C ₄ H ₉ Cl;	CASRN 109-69-3		
2000-mor/lui		539.2 ± 0.3			1	Morton et al.
	recommended values	539.2 ± 0.5				
		BUTANE: molar ma	ass 92.567 g; C ₄ H ₉ Cl;	; CASRN 78-86-4		
00-est	(246.7 to 248.4) °C	520.7			1	Estreicher
2000-mor/lui	recommended values	518.6 ± 0.3 518.6 ± 0.6			1	Morton et al.
2000 mon/!:	2-CHLORO-2-ME		olar mass 92.567 g; C	C ₄ H ₉ Cl; CASRN 507-20		Morton at al
2000-mor/lui	recommended values	$500^{1} \pm 9$ 500 ± 12			1	Morton et al.
)1 200	024 C.E C. C. C.	(70.06.0	
67-erm/skr	DODECAFLUOROPENT (148.7 \pm 0.2) °C	'ANE (perfluoropenta 421.9*	ne): molar mass 288 $2.04* \pm 0.01$.054 g; C ₅ F ₁₂ ; CASRN (Ermakov and Skripo
77-aft/zaw	(148.7 ± 0.2) °C $0.4726 \text{ dm}^3 \cdot \text{mol}^{-1}$	420.55*	2.04* ± 0.01 2.045*	0.6095*	3,5 1,5	Aftienjew and Zawis
94-van/ros	and mor	$420.9* \pm 0.3$	2.0.0	$0.622* \pm 0.005$	1,5 1c	Vandana et al.

Table 2 (Continued)

ref	values reported in nonstandard units	T ₉₀ /K	p/MPa	ρ/g•cm ⁻³	method	authors
		HALOGENATI				
63-che/mcc	1H-UNDECAFLUOR 170.8 °C recommended values	OPENTANE: molar: 444 444 ± 2	mass 270.044 g; C₅HF ₁	11; CASRN 375-61-1	1	Cheng and McCoubrey
	1-CHLOROPEN		06.594 g; C ₅ H ₁₁ Cl; CA	ASRN 543-59-9		
2000-mor/lui	recommended values	571.2 ± 0.2 571 ± 1			1	Morton et al.
	2-CHLORO-2-METH	YLBUTANE: molar i	nass 106.594 g; C ₅ H ₁₁ C	Cl; CASRN 594-36-5		
2000-mor/lui	recommended values	$509.1^{1} \pm 0.3$ 509.1 ± 0.6			1	Morton et al.
	TETRADECAFLUORO-2,3-			g; C ₆ F ₁₄ ; CASRN 354		
67-cro/tay 70-tay/ree	18.5 atm 525 cm ³ ·mol ⁻¹	463* (463)	1.87* (1.87)	0.644	1,5 7	Crowder et al. Taylor and Reed
70 tag/100	recommended values	463 ± 2	1.87 ± 0.05	0.64 ± 0.01	,	Tuytot una Tieca
	TETRADECAFLUO	ROHEXANE: molar $T_{90} - T_{68} =$	mass 338.042 g; C ₆ F ₁₄ : -0.039 K	; CASRN 355-42-0		
58-dun/mur	174.5 °C	447.7	0.037 11		1	Dunlap et al.
63-che/mcc	176.4 °C,	449.6*	1.02*		1	Cheng and McCoubrey
67-cro/tay 67-erm/skr	18.1 atm (178.5 \pm 0.2) °C	451* 451.7*	1.83* 1.91		1,5 3,5	Crowder et al. Ermakov and Skripov
70-tay/ree	555 cm ³ ·mol ⁻¹	(451)	(1.83)	0.609*	7	Taylor and Reed
72-mou/kay	$(270.94 \pm 0.5) \text{ psi}$	448.73 ± 0.2	1.8681*	0.558	1,5,7	Mousa et al.
77-skr/mur 94-van/ros		449.0 $451.7* \pm 0.3$	1.905 $1.859* \pm 0.02$	$0.621* \pm 0.005$	1,6 1c,2c	Skripov and Muratov Vandana et al.
95-sin/mik	(177.0 ± 0.5) °C	451.7° ± 0.3 450.2*	1.78 ± 0.02	0.021 ± 0.003	1,6	Sinitsyn et al.
2006-nik	,	$(450* \pm 1)$	$1.8* \pm 0.1$		6	Nikitin
	recommended values	451 ± 1	1.85 ± 0.02	0.62 ± 0.01		
67 I	TETRADECAFLUORO-2-1			g; C ₆ F ₁₄ ; CASRN 355-0		
67-cro/tay 70-tay/ree	18.0 atm, 550 cm ³ ⋅mol ⁻¹	452.7 (453)	1.82 (1.82)	0.615	1,5 7	Crowder et al. Taylor and Reed
84-mom/uem	18.0 atm, 550 cm ·mor	$455.3* \pm 0.3$	$1.923* \pm 0.012$	$0.635* \pm 0.006$	3	Momoda et al.
97-ern/gue		$454.63* \pm 0.1$	$1.902* \pm 0.003$	$0.672* \pm 0.009$	1	Ernst et al.
	recommended values	455 ± 1	1.91 ± 0.01	0.65 ± 0.02		
	TETRADECAFLUORO-3-1			g; C ₆ F ₁₄ ; CASRN 865-7		
67-cro/tay	16.7 atm recommended values	$450 \\ 450 \pm 2$	1.69 1.69 ± 0.04		1,5	Crowder et al.
				a che chenne	25. 25. 2	
63-che/mcc	1 <i>H</i> -TRIDECAFLUOROHEXAN 198.6 °C	471.8	ne): moiar mass 320.05	o1 g; C ₆ HF ₁₃ ; CASRN 3	1	Cheng and McCoubrey
95-sin/mik	(198.9 ± 0.1) °C	472.1	$1.95* \pm 0.02$		1,6	Sinitsyn et al.
2006-nik		(472 ± 1)	$2.0* \pm 0.1$		6	Nikitin
	recommended values	472.0 ± 0.4	2.00 ± 0.07			
2000-mor/lui	1-CHLOROHE	XANE: molar mass 1: $599^{l} \pm 2$	$20.620 \text{ g}; C_6H_{13}C1; CA$	SRN 544-10-5	1	Morton et al.
2000-III0I/IUI	recommended values	599 ± 2			1	Morton et al.
	3-CHLORO-3-METHY	/I PENTANE: molar	mass 120 620 g: C.H.a	Cl· CASRN 918-84-3		
2000-mor/lui	3 CHEORO 3 METH	$528^l \pm 2$	mass 120.020 g, C ₀ 11 ₁₃	ci, crisia 1710 04 3	1	Morton et al.
	recommended values	528 ± 4				
	HEXADECAFLUOROHEPTA			9 g; C ₇ F ₁₆ ; CASRN 335		
47-fow/ham	202.5 °C, 19 atm (201.7 \pm 0.05) °C, (16.0 \pm 0.1) atm	475.7* 474.9*	1.9 1.62*	0.584*	1,6	Fowler et al.
51-oli/gri, 51-oli/blu	(201.7 ± 0.03) C, (16.0 ± 0.1) atm	474.9"	1.02"	0.364**	1a	Oliver and Grisard and Oliver et al.
52-mil/oli	201.5 °C, 234 psi	474.7*	1.61*		3	Milton and Oliver
63-jor/kay 67-erm/skr	(201.7 ± 0.1) °C, (237.3 ± 1.6) psi (204.6 ± 0.2) °C	474.8 477.8	1.640 1.75		3,5	Jordan and Kay Ermakov and Skripov
94-van/ros	(204.0 ± 0.2) C	$476.0* \pm 0.3$	1.75	$0.619* \pm 0.005$	1c	Vandana et al.
96-mus/ima		479.18 ± 0.1	1.642 ± 0.016		1,5	Mustafaev et al.
97-ste/chi	recommended values	$475*$ 476 ± 1	$1.65*$ 1.63 ± 0.02	0.59* 0.61 ± 0.01	4,6,7	Steele et al.
63-che/mcc	1 <i>H</i> -PENTADECAFLUOROHEPT <i>A</i> 222.6 °C	ANE (1 <i>H</i> -perfluoroner 495.8	tane): moiar mass 3/0	0.059 g; C ₇ HF ₁₅ ; CASK	N 3/5-83-7 1	Cheng and McCoubrey
os enermee	recommended values	496 ± 1			1	cheng and Mecousicy
	1-CHLOROHEP	TANE: molar mass 1	34.647 g; C ₇ H ₁₅ Cl; CA	SRN 629-06-1		
2000-mor/lui		$614^{l} \pm 6$			1	Morton et al.
	recommended values	614 ± 8				
ca (1	OCTADECAFLUOROOCTA			g; C ₈ F ₁₈ ; CASRN 307-		
67-erm/skr 94-van/ros	229.1 °C	502.3 $498.5* \pm 0.3$	1.66 $1.548* \pm 0.02$	0.611 ± 0.005	3,5 1c,2c	Ermakov and Skripov Vandana et al.
94-van/ros 95-sin/mik	(224.6 ± 1.0) °C	497.8*	$1.348^{\circ} \pm 0.02$ $1.48^{\circ} \pm 0.04$	0.011 ± 0.003	1,6	Sinitsyn et al.
96-mus/ima		$498.18* \pm 0.1$	$1.478* \pm 0.015$		1,5	Mustafaev et al.
2006-nik	management de disertes	$(498* \pm 1)$	1.4 ± 0.1	0.61 0.01	6	Nikitin
	recommended values	498.2 ± 0.4	1.50 ± 0.05	0.61 ± 0.01		
2000-mor/lui	1-CHLOROOC	FANE: molar mass 14 $643^l \pm 1$	48.674 g; C ₈ H ₁₇ Cl; CA	SKN 111-85-3	1	Morton et al.
2000-moi/iui	recommended values	643 ± 2			1	wionon et al.

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOGENATE	D ALKANES			
- · · ·	EICOSAFLUORONONAN			g; C ₉ F ₂₀ ; CASRN 375-9		T 1 101 :
67-erm/skr	250.8 °C recommended values	524 524 ± 3	1.56 1.56 ± 0.05		3,5	Ermakov and Skripov
	DOCOSAFLUORODECA			g: C.,F.,: CASRN 307-	45-9	
7-erm/skr	269.2 °C	542.4	1.45	g, C ₁₀ F ₂₂ , CASKIV 507-	3,5	Ermakov and Skripov
	recommended values	542 ± 3	1.45 ± 0.05			•
		HALOGENATE	D ALKENES			
		DROETHENE: molar m $T_{90} - T_{48} = -$	−0.025 K	IF ₃ ; CASRN 79-38-9		
5-boo/swi 1-oli/gri-1	107.0 °C, 39.0 atm 105.83 °C, 30451 mm Hg	380.2* 378.95*	3.95* 4.06*	0.55	1,5 1a	Booth and Swinehart Oliver et al.
1-011/g11-1	recommended values	379 ± 1	4.02 ± 0.04	0.55 ± 0.02	14	Onver et al.
	TETRACHLOR	OETHENE: molar mass	s 165.833 g; C ₂ Cl ₄ ;	CASRN 127-18-4		
9-gon/zhu	(338 ± 2) °C	611^{l} 611 ± 5	<i>2,</i> 2 4,		1	Gonikberg and Zhulin
	TETRAFLUOROETHENE (J					
6-ben 7-leb/kho	33.3 °C, 572 psi 34.2 °C	306.5* 307.4*	3.94	0.58*	1,5,7	Benning
/-1eb/Kno	recommended values	307.4^{**} 307.0 ± 0.6	3.94 ± 0.03	0.5843* 0.58 ± 0.01	1,7	Lebedeva and Khodeeva
				HClF ₂ ; CASRN 359-10-4		
5-mea/sta	(127.4 ± 0.5) °C, (647 ± 10) psi	400.6	4.46	0.499 ± 0.010	1,6,7	Mears et al.
	recommended values	400 ± 0.7	4.46 ± 0.08	0.50 ± 0.03		
	(Z)-1,2-DICHLOROETHENE): molar mass 96.94	13 g; C ₂ H ₂ Cl ₂ ; CASRN 1:	56-59-2	
9-chr/sad	ma a a mana mana da da ya a liya a	$535.8^{i} \pm 1$ 536 ± 2			1	Christou et al.
	recommended values			0.42 G. W. G.	156 60 5	
9-chr/sad	(E)-1,2-DICHLOROETHENE ($1,2$ - trans-dichloroethen $515.5^{l} \pm 0.4$	e): molar mass 96.	943 g; C ₂ H ₂ Cl ₂ ; CASRN	156-60-5	Christou et al.
- VIII/ 15444	recommended values	515.5 ± 0.6			•	Christon et an
	1,1-DIFLUOROETHENE	(vinylidene fluoride): 1	molar mass 64.034	g; C ₂ H ₂ F ₂ ; CASRN 75-38	3-7	
5-mea/sta	(30.1 ± 0.5) °C, (643 ± 10) psi	303.3*	4.43*	$0.417* \pm 0.010$	1,6,7	Mears et al.
1-ott/tho 7-tsi/pro	29.70 °C, 45.51 kpf•cm ⁻² 29.59 °C	302.84* 302.74*	4.463*	0.414* 0.41*	3,5,7 1,7	Otto and Thomas Tsiklis and Prokhorov
005-fam/bal	29.39 C	$302.964* \pm 0.002$		$0.4195* \pm 0.0018$	4	Fameli and Balzarini
	recommended values	303.0 ± 0.3	4.45 ± 0.02	0.41 ± 0.01		
	CHLOROE	THENE: molar mass 61	.490 g; C ₂ H ₃ Cl; CA	SRN 75-01-4		
8-zer/kog		429	5.25	0.336	2a,7	Zernov et al.
	recommended values	429 ± 1	5.3 ± 0.1	0.34 ± 0.01		
3-har	FLUOROETHER 55.4 °C, 53.0 kgf·cm ⁻²	NE (R- 1141): molar ma 328.5	ass 46.044 g; C_2H_3F 5.20	7; CASRN 75-02-5 0.318	2,7	Harmon
<i>y</i> -1141	recommended values	328.5 ± 0.3	5.20 ± 0.07	0.32 ± 0.01	2,7	Harmon
	3,3,3-TRIFLUORO	-1-PROPENE: molar m	nass 96.051 g; C ₃ H ₃	F ₃ ; CASRN 677-21-4		
1-zer/kog	0.211 m ³ ·kmol ⁻¹	376.2*	3.8*	0.455	2a,7	Zernov et al.
7-dau/jal	(105.44 ± 0.1) °C; ± 0.5 psi ^g					
		378.6*	3.609*	0.46 0.01	1a	Daubert et al.
	recommended values	377.8 ± 0.8	3.65 ± 0.08	0.46 ± 0.01		Daubert et al.
383-naw	recommended values 3-CHLORO-1-PROPEN	377.8 ± 0.8 VE (allyl chloride): mola	3.65 ± 0.08	0.46 ± 0.01 C ₃ H ₅ Cl; CASRN 107-05-1	1	
883-paw	recommended values	377.8 ± 0.8	3.65 ± 0.08			Daubert et al. Pawlewski
883-paw	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values	377.8 ± 0.8 NE (allyl chloride): mola 513.9	3.65 ± 0.08 far mass 76.525 g; C	C ₃ H ₅ Cl; CASRN 107-05-1	1	
•	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3	377.8 ± 0.8 NE (allyl chloride): mola 513.9 514 ± 3 R-BUTADIENE: molar 412.8	3.65 ± 0.08 ar mass 76.525 g; C mass 162.033 g; C ₄ 3.188	C ₃ H ₅ Cl; CASRN 107-05-1 ₃ F ₆ ; CASRN 685-63-2 0.5048	1	
•	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values	377.8 ± 0.8 NE (allyl chloride): mole 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C_4 3.188 3.19 ± 0.03	C ₃ H ₃ Cl; CASRN 107-05-1 gF ₆ ; CASRN 685-63-2 0.5048 0.505 ± 0.005	1	Pawlewski
001-bas	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX	377.8 ± 0.8 RE (allyl chloride): mola 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 412.8 \pm 0.5 ENE (perfluorohexene):	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C_4 3.188 3.19 ± 0.03	C ₃ H ₃ Cl; CASRN 107-05-1 gF ₆ ; CASRN 685-63-2 0.5048 0.505 ± 0.005	1 1 -25-9	Pawlewski Basile
001-bas	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values	377.8 ± 0.8 NE (allyl chloride): mole 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C_4 3.188 3.19 ± 0.03	C ₃ H ₃ Cl; CASRN 107-05-1 gF ₆ ; CASRN 685-63-2 0.5048 0.505 ± 0.005	1	Pawlewski
001-bas	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXI 181.2 °C recommended values	377.8 ± 0.8 NE (allyl chloride): mola 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 12.8 \pm 0.5 ENE (perfluorohexene): 454.4 \pm 454.4 \pm 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04	$^{2}_{3}$ H _{{5} Cl; CASRN 107-05-1} $^{3}_{4}$ F ₆ ; CASRN 685-63-2 0.5048 0.505 \pm 0.005 45 g; C ₆ F ₁₂ ; CASRN 755-	1 1 -25-9 1	Pawlewski Basile Cheng and McCoubrey
001-bas 3-che/mcc	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX	377.8 ± 0.8 NE (allyl chloride): mola 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 12.8 \pm 0.5 ENE (perfluorohexene): 454.4 \pm 454.4 \pm 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04	$^{2}_{3}$ H _{{5} Cl; CASRN 107-05-1} $^{3}_{4}$ F ₆ ; CASRN 685-63-2 0.5048 0.505 \pm 0.005 45 g; C ₆ F ₁₂ ; CASRN 755-	1 1 -25-9 1	Pawlewski Basile Cheng and McCoubrey
001-bas	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXI 181.2 °C recommended values	377.8 ± 0.8 RE (allyl chloride): mola 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 \pm 412.8 \pm 0.5 ENE (perfluorohexene): 454.4 \pm 454.4 \pm 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04	$^{2}_{3}$ H _{{5} Cl; CASRN 107-05-1} $^{3}_{4}$ F ₆ ; CASRN 685-63-2 0.5048 0.505 \pm 0.005 45 g; C ₆ F ₁₂ ; CASRN 755-	1 1 -25-9 1 (ASRN 2070-7	Pawlewski Basile Cheng and McCoubrey
001-bas 3-che/mcc 6-mus/ima	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXT 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT	377.8 ± 0.8 RE (allyl chloride): mola 513.9 514 \pm 3 B-BUTADIENE: molar 412.8 412.8 \pm 0.5 ENE (perfluorohexene): 454.4 \pm 454.4 \pm 0.5 FLUOROMETHYL-2-H 438.99 \pm 0.1 \pm 439.0 \pm 0.5 TENE (perfluorohept-1-c	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 molar mass 300.04 PENTENE: molar 1 1.972 ± 0.020 1.97 ± 0.06	$^{2}_{3}H_{5}Cl;$ CASRN 107-05-1 $^{3}_{6}F_{6};$ CASRN 685-63-2 0.5048 0.505 \pm 0.005 45 g; $C_{6}F_{12};$ CASRN 755- mass 300.045 g; $C_{6}F_{12};$ C	1 1 -25-9 1 ASRN 2070-7 1,5 355-63-5	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al.
001-bas 3-che/mcc 5-mus/ima	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPI 205.0 °C	377.8 ± 0.8 NE (allyl chloride): mola 513.9 514 ± 3 8-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6 478.2	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 molar mass 300.04 PENTENE: molar 1 1.972 ± 0.020 1.97 ± 0.06	$^{2}_{3}H_{5}Cl;$ CASRN 107-05-1 $^{3}_{6}F_{6};$ CASRN 685-63-2 0.5048 0.505 \pm 0.005 45 g; $C_{6}F_{12};$ CASRN 755- mass 300.045 g; $C_{6}F_{12};$ C	1 1 -25-9 1 -ASRN 2070-7	Pawlewski Basile Cheng and McCoubrey
001-bas 3-che/mcc 6-mus/ima	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXT 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 478.2 ± 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 PENTENE: molar r 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 33	$^{2}_{3}H_{3}Cl;$ CASRN 107-05-1 $^{3}_{4}F_{6};$ CASRN 685-63-2 0.5048 0.505 ± 0.005 45 g; $C_{6}F_{12};$ CASRN 755- mass 300.045 g; $C_{6}F_{12};$ C 50.053 g; $C_{7}F_{14};$ CASRN	1 1 -25-9 1 ASRN 2070-7 1,5 355-63-5	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al.
001-bas 3-che/mcc 6-mus/ima	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXI 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPI 205.0 °C recommended values HALOGEI	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 478.2 ± 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 molar mass 300.04 PENTENE: molar r 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 3:	$^{2}_{3}H_{5}Cl;$ CASRN 107-05-1 $^{3}_{4}F_{6};$ CASRN 685-63-2 0.5048 0.505 ± 0.005 $^{4}_{5}$ g; $C_{6}F_{12};$ CASRN 755- mass 300.045 g; $C_{6}F_{12};$ C 50.053 g; $C_{7}F_{14};$ CASRN	1 1 -25-9 1 ASRN 2070-7 1,5 355-63-5 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al.
001-bas 3-che/mcc 6-mus/ima	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXT 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 478.2 ± 0.5	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 fmolar mass 300.04 PENTENE: molar r 1.972 ± 0.020 1.97 ± 0.06 fene): molar mass 33 ANES AND CYCLO R-318): molar mass	C_3H_3Cl ; CASRN 107-05-1 C_3H_5Cl ; CASRN 685-63-2 0.5048 0.505 ± 0.005 C_4F_{12} ; CASRN 755-1 C_5F_{12} ; CASRN 755-1 C_7F_{14} ; CASRN 0045 g; C_6F_{12} ; CASRN 004 C_7F_{14} ; CASRN 0045 g; C_7F_{14} ; $C_7F_{$	1 1 -25-9 1 ASRN 2070-7 1,5 355-63-5 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al.
001-bas 3-che/mcc 5-mus/ima 3-che/mcc	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm ⁻² , 1.5835 L·kg ⁻¹	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-IF 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane,	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 : molar mas	$^{2}_{3}H_{5}Cl; CASRN 107-05-100000000000000000000000000000000$	1 1 -25-9 1 -25-9 1 -25-63-5 1 -25-3 2,6,7	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al.
001-bas 3-che/mcc 5-mus/ima 3-che/mcc 6-bam 9-dou/moo	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXI 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm ⁻² , 1.5835 L·kg ⁻¹ 115.22 °C, 27.412 atm, 0.3248 L·mol ⁻¹	377.8 ± 0.8 RE (allyl chloride): mola 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 FENE (perfluorohept-1-6478.2 478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane, $T_{90} - T_{68} = -0.029 \text{ K}; T_{388.52}$ 388.52 388.52	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 : molar mass 300.04 : PENTENE: molar right 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 300.04 : molar mass 300.04 : molar mass 300.04 :	$^{2}_{3}H_{5}Cl; CASRN 107-05-100000000000000000000000000000000$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al. Cheng and McCoubrey Bambach Douslin et al.
001-bas 3-che/mcc 6-mus/ima 3-che/mcc 6-bam 9-dou/moo 2-mar	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEXT 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm ⁻² , 1.5835 L·kg ⁻¹ 115.22 °C, 27.412 atm, 0.3248 L·mol ⁻¹ 699.27 °R, 403.6 psi, 38.70 lb·ft ⁻³	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane, $r_{90} - T_{68} = -0.029 \text{ K}; 7388.52 \\ 388.35* 388.46*$	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 : molar mas	$^{2}_{3}H_{5}Cl; CASRN 107-05-100000000000000000000000000000000$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al. Cheng and McCoubrey Bambach Douslin et al. Martin
001-bas 3-che/mcc 6-mus/ima 3-che/mcc 6-bam 9-dou/moo 2-mar 6-mat/loe	a-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm⁻², 1.5835 L·kg⁻¹ 115.22 °C, 27.412 atm, 0.3248 L·mol⁻¹ 699.27 °R, 403.6 psi, 38.70 lb·ft⁻³ (115.34 ± 0.06) °C (115.28 ± 0.10) °C, (403.9 ± 2.5) psi,	377.8 ± 0.8 RE (allyl chloride): mola 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 FENE (perfluorohept-1-6478.2 478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane, $T_{90} - T_{68} = -0.029 \text{ K}; T_{388.52}$ 388.52 388.52	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 : molar mass 300.04 : PENTENE: molar right 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 300.04 : molar mass 300.04 : molar mass 300.04 :	$^{2}_{3}H_{5}Cl; CASRN 107-05-100000000000000000000000000000000$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al. Cheng and McCoubrey Bambach Douslin et al.
001-bas 3-che/mcc 6-mus/ima 3-che/mcc 6-bam 9-dou/moo 2-mar 6-mat/loe 8-bar	recommended values 3-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm ⁻² , 1.5835 L·kg ⁻¹ 115.22 °C, 27.412 atm, 0.3248 L·mol ⁻¹ 699.27 °R, 403.6 psi, 38.70 lb·ft ⁻³ (115.34 ± 0.06) °C (115.28 ± 0.10) °C, (403.9 ± 2.5) psi, 319.8 cm ³ ·mol ⁻¹	377.8 ± 0.8 NE (allyl chloride): mola 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-H 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane, 1790 – 768 = -0.029 K; 769 – 768 = -0.029 K; 769 – 768 – 769 – 768 – 769 – 768 – 769	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 PENTENE: molar r 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 300.04 ANES AND CYCLO R-318): molar mass 300.04	C_3H_3Cl ; CASRN 107-05-1 C_3H_5Cl ; CASRN 685-63-2 0.5048 0.505 ± 0.005 C_4F_{12} ; CASRN 755-1 C_4F_{12} ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al. Cheng and McCoubrey Bambach Douslin et al. Martin Matthias and Löffler Barber
2001-bas 2001-bas 2001-bas 2001-bas 2006-mus/ima 2006-mus/ima 2006-mus/ima 2006-bam 2006-bam 2006-bam 2006-bam 2000-kao/mil	a-CHLORO-1-PROPEN 240.7 °C recommended values HEXAFLUORO-1,3 recommended values DODECAFLUORO-1-HEX 181.2 °C recommended values 1,1,1,2,3,4,5,5,5-NONAFLUORO-4-TRI recommended values TETRADECAFLUORO-1-HEPT 205.0 °C recommended values HALOGEI OCTAFLUOROCYCLOBUTANE 115.39 °C, 28.60 kgf·cm⁻², 1.5835 L·kg⁻¹ 115.22 °C, 27.412 atm, 0.3248 L·mol⁻¹ 699.27 °R, 403.6 psi, 38.70 lb·ft⁻³ (115.34 ± 0.06) °C (115.28 ± 0.10) °C, (403.9 ± 2.5) psi,	377.8 ± 0.8 RE (allyl chloride): molar 513.9 514 ± 3 R-BUTADIENE: molar 412.8 412.8 ± 0.5 ENE (perfluorohexene): 454.4 454.4 ± 0.5 FLUOROMETHYL-2-I 438.99 ± 0.1 439.0 ± 0.5 TENE (perfluorohept-1-6478.2 ± 0.5 NATED CYCLOALKA (perfluorocyclobutane, $T_{90} - T_{68} = -0.029$ K; $T_{388.52}$ $388.35*$ $388.46*$ $388.47*$	3.65 ± 0.08 far mass 76.525 g; C mass 162.033 g; C ₄ 3.188 3.19 ± 0.03 : molar mass 300.04 PENTENE: molar I 1.972 ± 0.020 1.97 ± 0.06 ene): molar mass 33 ANES AND CYCLO R-318): molar mas $T_{90} - T_{48} = -0.023$ 2.805 $2.7775*$ $2.782*$	C_3H_3Cl ; CASRN 107-05-1 C_3H_5Cl ; CASRN 685-63-2 0.5048 0.505 ± 0.005 C_4F_{12} ; CASRN 755-1 C_4F_{12} ;	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Pawlewski Basile Cheng and McCoubrey 70-4 Mustafaev et al. Cheng and McCoubrey Bambach Douslin et al. Martin Matthias and Löffler

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	ρ/g •cm ⁻³	method	authors
	HALOGE	NATED CYCLOALK	ANES AND CYCLOALK	ENES		
	4-CHLORO-1,1,2,2,3,3-HEXAFLUORO	CYCLOBUTANE (R-0	C326d): molar mass 198.4	194 g; C ₄ HClF ₆ ; CAS	RN 132186-30)-2
93-bey/des	196.9 °C	470.1			1	Beyerlein et al.
	recommended values	470 ± 1				
63-che/mcc	DECAFLUOROCYCLOHEXE	NE (perfluorocyclohex 461.8	ene): molar mass 262.048	g ; C_6F_{10} ; CASRN 35	55-75-9	Cheng and McCoubrey
80-toc/you	24.9 atm	401.8	2.52		1	Toczylkin and Young
,	recommended values	461.8 ± 0.5	2.52 ± 0.02			,
	DODECAFLUOROCYCLOHEX	ANE (perfluorocyclohe	exane): molar mass 300.0	45 g; C ₆ F ₁₂ ; CASRN	355-68-0	
57-row/tha	184.0 °C, 24 atm.	457.1*	2.4	0.554	1	Rowlinson and Thacker
81-dav/mcg 88-dav/ewi	$(459 \pm 5) \text{ cm}^3 \cdot \text{mol}^{-1}$	$457.25* \pm 0.05$ (457.25)	$2.237* \pm 0.003$ 2.242*	0.654	1,5,7 5	Davies and McGlashan Davies et al.
00 dav/ewi	recommended values	457.3 ± 0.2	2.24 ± 0.01	0.654 ± 0.008	3	Davies et al.
	NONAFLUORO(TRIFLUOROM	ETHYL)CYCLOPENT	ANE: molar mass 300.04	5 g; C ₆ F ₁₂ ; CASRN 1	1805-22-7	
98-ewi/och		451.437 ± 0.005	2.1717 ± 0.0005		2,6	Ewing and Ochoa
	recommended values	451.44 ± 0.01	2.172 ± 0.001			
62 aha/maa	UNDECAFLUOROCYCLOHEXAN 204.5 °C	NE (1 <i>H</i> -perfluorocyclob 477.7	nexane): molar mass 282.0	$055 \text{ g}; \text{C}_6\text{HF}_{11}; \text{CASR}$	RN 308-24-7	Chang and McCaubaay
63-che/mcc	recommended values	477.7 478 ± 1			1	Cheng and McCoubrey
	CHI OROCYCI (s 118.605 g; C ₆ H ₁₁ Cl; CA	SRN 542-18-7		
2000-mor/lui	CILLOROC PELC	$586^l \pm 1$	5 110.005 g, C ₀ 11 ₁₁ C1, C11	510 7	1	Morton et al.
	recommended values	586 ± 2				
	TETRADECAFLUOROMETHYLCYCLOR			mass 350.053 g; C ₇ F ₁ .		
47-fow/ham 57-row/tha	213.4 °C, 24 atm 213.6 °C, 23 atm	486.6 486.8	2.4 2.3		1,6 1	Fowler et al. Rowlinson and Thacker
77-ort/pat	213.3 °C	486.5	2.3		1	Orton et al.
80-gen/tej		$485.87* \pm 0.1$	$2.01871* \pm 0.0007$	0.614 ± 0.001	1,3,5	Genco et al.
	recommended values	485.9 ± 0.2	2.019 ± 0.01	0.614 ± 0.002		
06	DECAFLUORO-1,3-BIS(TRIFLUO			$0.060 \text{ g; } C_8F_{16}; \text{CASI}$		Mustafaay at al
96-mus/ima	recommended values	512 ± 0.1 512 ± 1	1.869 ± 0.019 1.87 ± 0.06		1,5	Mustafaev et al.
			MATIC COMPOUNDS			
				. CASDN 244 07 0		
66-eva/til	(31.8 ± 0.1) atm	$570.91* \pm 0.1$	ar mass 202.509 g; C ₆ ClF ₅ 3.22*	, CASKN 344-07-0	1,5	Evans and Tiley
71-amb/spr		$570.77* \pm 0.03$	$3.238* \pm 0.005$		1,5	Ambrose and Sprake
74-hal/tow 77-skr/mur		(570.81) ^h 569.9*	3.19	0.5389	7 1,6	Hales and Townsend Skripov and Muratov
//-SKI/IIIUI	recommended values	570.8 ± 0.1	3.19 3.23 ± 0.01	0.539 ± 0.002	1,0	Skripov and Muratov
	1,3,5-TRICHLOROTRIF	LUOROBENZENE: m	olar mass 235 418 g· CcCl	₂ F ₂ · CASRN 319-88-	-0	
74-amb/bro	1,5,6 11110112011011111	684.8 ± 0.3	$3.27^{i} \pm 0.03$	31 3, 0110111 (01) 00	1c,5	Ambrose et al.
74-hal/tow		$(684.85)^h$ 684.8 ± 0.5	2 27 1 0 05	0.5255 0.526 ± 0.002	7	Hales and Townsend
	recommended values		3.27 ± 0.05			
	HEXAFLUORO	$T_{90} - T_{68} = -0.040 \text{ K}$	ass 186.055 g; C_6F_6 ; CASI ; $T_{90} - T_{48} = 0.019$ K	XN 392-56-3		
63-che/mcc	242.7 °C	515.9			1	Cheng and McCoubrey
64-pat/pro 65-cou/gre	245 °C (243.57 \pm 0.03) °C, (32.61 \pm 0.05) atm	518 516.72*	3.304*		1 1,5	Patrick and Prosser Counsell et al.
66-eva/til	(31.25 ± 0.1) atm	516.72 516.05 ± 0.1	3.166		1,5	Evans and Tiley
69-dou/har	(243.52 ± 0.02) °C, (32.304 ± 0.010) atm,	516.63*	3.273*	0.5552*	3	Douslin et al.
69-erm/skr	$(335.1 \pm 1.7) \text{ cm}^3 \cdot \text{mol}^{-1}$ 245.2 °C	518.4	3.32	0.557	1,6,7	Ermakov and Skripov
72-mou/kay	$(481.29 \pm 0.5) \text{ psi}$	$516.43* \pm 0.2$	3.3184*	0.493	1,5,7	Mousa et al.
74-hal/tow	(243.4 ± 0.2) °C	(516.76) ^j 516.5*		0.5504*	7 1	Hales and Townsend
77-ort/pat 77-skr/mur	(2+3.4 ± 0.2) C	$516.8* \pm 0.3$	$3.26* \pm 0.03$		1,6	Orton et al. Skripov and Muratov
81-dav/mcg		$516.67* \pm 0.05$	$3.275* \pm 0.003$		1,5	Davies and McGlashan
2006-nit	recommended values	(517 ± 1) 516.7 ± 0.1	3.3 ± 0.1 3.28 ± 0.01	0.552 ± 0.003	6	Nikitin
	PENTAFLUORO	$T_{90} - T_{68} = -0.040 \text{ K}$	iss 168.064 g; C_6HF_5 ; CAS ; $T_{90} - T_{48} = 0.023$ K	SKN 303-72-4		
64-pat/pro	256 °C	529			1	Patrick and Prosser
66-eva/til 71-amb/spr	(34.7 ± 0.1) atm	531.97 ± 0.1 $530.93* \pm 0.03$	$3.52*$ $3.531* \pm 0.005$		1,5 1,5	Evans and Tiley Ambrose and Sprake
74-hal/tow		$(530.97)^h$	3.331 ± 0.003	0.5176	7	Hales and Townsend
77-skr/mur		530.8*	3.47*		1,6	Skripov and Muratov
	recommended values	530.9 ± 0.1	3.53 ± 0.03	0.518 ± 0.003		
	1,2,3,4-TETRAFLUC	OROBENZENE: molar $T_{90} - T_{68} =$	mass 150.074 g; C ₆ H ₂ F ₄ ; :-0.039 K	CASRN 551-62-2		
74-amb/bro		190 - 168	3.791 ± 0.002		1,5	Ambrose et al.
74-hal/tow		(550.83) ^h	2.70 0.01	0.4796	7	Hales and Townsend
	recommended values	550.8 ± 0.1	3.79 ± 0.01	0.480 ± 0.003		
	1,2,3,5-TETRAFLUO	ROBENZENE: molar $T_{90} - T_{68} =$	mass 150.074 g; $C_6H_2F_4$; 0 : -0.040 K	CASRN 2367-82-0		
74-amb/bro		535.21 ± 0.01	3.747 ± 0.004		1,5	Ambrose et al.
	recommended values	535.2 ± 0.1	3.75 ± 0.01			

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOGENAT	ED AROMATIC COMP	POUNDS		
	1,2,4,5-TET	RAFLUOROBENZEN	E: molar mass 150.074 ; $T_{60} - T_{68} = -0.039 \text{ K}$	g; C ₆ H ₂ F ₄ ; CASRN 327-	54-8	
74-amb/bro	recommended values	543.31 ± 0.01 543.3 ± 0.1	$ 3.801 \pm 0.004 3.80 \pm 0.01 $		1,5	Ambrose et al.
	1-CHLORO-2,4		IE: molar mass 148.538	g; C ₆ H ₃ ClF ₂ ; CASRN 14	135-44-5	
2000-mor/lui	recommended values	$609.6 \pm 0.2 609.6 \pm 0.5$			1	Morton et al.
2000-mor/lui		612.5 ± 0.2	VE: molar mass 148.538	g; C ₆ H ₃ ClF ₂ ; CASRN 2	367-91-1 1	Morton et al.
	recommended values	612.5 ± 0.5				
2000-mor/lui	1-CHLORO-3, recommended values	4-DIFLUOROBENZEM 609.2 ± 0.2 609.2 ± 0.5	NE: molar mass 148.538	g; C ₆ H ₃ ClF ₂ ; CASRN 6	96-02-6 1	Morton et al.
			IE: molar mass 148.538	g: C.H.CIE.: CASRN 1/	135_43_4	
2000-mor/lui	recommended values	592.0 ± 0.2 592.0 ± 0.5	CE. moiai mass 140.550	g, C ₆ 113C11 ⁻² , CASKIV 1-	1	Morton et al.
	1,2,3-TR	FLUOROBENZENE:	molar mass 132.083 g; C	C ₆ H ₃ F ₃ ; CASRN 1489-53	3-8	
2000-mor/lui	recommended values	560.3 ± 0.2 560.3 ± 0.5			1	Morton et al.
2000 # :	1,2,4-TR		molar mass 132.083g; C	C ₆ H ₃ F ₃ ; CASRN 367-23-		
2000-mor/lui	recommended values	551.1 ± 0.2 551.1 ± 0.5			1	Morton et al.
2000-mor/lui	1,3,5-TR	IFLUOROBENZENE: 530.9 ± 0.2	molar mass 132.083 g; 0	$C_6H_3F_3$; CASRN 372-38	-3 1	Morton et al.
2000-IIIOI/IuI	recommended values	530.9 ± 0.2 530.9 ± 0.5			1	Worton et al.
	1-BROMO-	2-FLUOROBENZENE:	molar mass 174.998 g;	C ₆ H ₄ BrF; CASRN 1072	-85-1	
2000-mor/lui	manamum and ad values	669.6 ± 0.3 669.6 ± 0.6			1	Morton et al.
	recommended values		1	CH D.E. CACDN 1072	06.0	
000-mor/lui	I-BROMO	652.0 ± 0.2	molar mass 174.998 g;	C ₆ H ₄ BrF; CASRN 10/3	-06-9 1	Morton et al.
	recommended values	652.0 ± 0.5				
	1-BROMO-	4-FLUOROBENZENE	: molar mass 174.998 g;	C ₆ H ₄ BrF; CASRN 460-	-00-4	
2000-mor/lui	recommended values	654.8 ± 0.2 654.8 ± 0.5			1	Morton et al.
			7. malar mass 120 547 a	. C II CIE. CACDN 240	51.6	
2000-mor/lui	1-CHLORO	633.8 ± 0.2	E: molar mass 130.547 g	; C ₆ H ₄ CIF; CA3KN 346	-31-0 1	Morton et al.
	recommended values	633.8 ± 0.5				
	1-CHLORO		E: molar mass 130.547 g	; C ₆ H ₄ ClF; CASRN 625		
2000-mor/lui	recommended values	615.9 ± 0.2 615.9 ± 0.5			1	Morton et al.
			E: molar mass 130.547 g	· C.H.CIE· CASRN 352	-33-0	
2000-mor/lui	I-CILORO	620.1 ± 0.2	2. motat mass 150.547 g	, C6114CII ⁺ , CASKN 552	1	Morton et al.
	recommended values	620.1 ± 0.5				
-4 . • 0			molar mass 147.002 g; C	6H ₄ Cl ₂ ; CASRN 95-50-1		m: 4: 15
54-tri/bro	852 °F recommended values	728.8^{k} 729 ± 5			9	Tripathi and Brow
			nolar mass 147.002 g; C ₆	H ₄ Cl ₂ : CASRN 541-73-	1	
2000-mor/lui		685.7 ± 0.2			1	Morton et al.
	recommended values	685.7 ± 0.5				
2000-mor/lui	1,2-DII	FLUOROBENZENE: t 566.0 \pm 0.2	nolar mass 114.093 g; C ₆	₅ H ₄ F ₂ ; CASRN 367-11-3	1	Morton et al.
2000-III0I/IuI	recommended values	566.0 ± 0.2 566.0 ± 0.5			1	wioiton et ai.
	1,3-DII	FLUOROBENZENE: 1	nolar mass 114.093 g; C ₆	₅ H ₄ F ₂ ; CASRN 372-18-9	1	
2000-mor/lui		548.4 ± 0.2			1	Morton et al.
	recommended values	548.4 ± 0.5				
78-joc/sch	(283 ± 2) °C	FLUOROBENZENE: r 556*	nolar mass 114.093 g; C ₆ 4.4 ± 0.1	₅ H ₄ F ₂ ; CASRN 540-36-3	1,5	Jockers and Schne
2000-mor/lui	(203 ± 2) C	$556.9* \pm 0.2$	1.7 ± 0.1		1	Morton et al.
	recommended values	556.7 ± 0.5	4.4 ± 0.1			
42 £:-/:			ur mass 157.008 g; C ₆ H ₅ E	Br; CASRN 108-86-1	1	Eliste ID 11
43-fis/rei	397.7 °C recommended values	670.8 670 ± 2			1	Fischer and Reiche
			ar mass 112.557 g; C ₆ H ₅ 0	Cl: CASRN 108-90-7		
1889-you	(360.55 to 360.80) °C,	633.8*	4.528*	0.422	1	Young
1893-alt	362.2 °C	635.4 ¹	4.502*	0.2654*	1	Altschul
10-you 76-aga/kaf	359.2 °C, 33926 mm Hg 359.38 °C	632.4 ¹ * 632.49*	4.523* 4.5504*	0.3654* 0.3669*	1,7 3,7	Young Agaev et al.
2000-mor/lui	-	$633.4^{l*} \pm 0.3$		***	1	Morton
	recommended values	633 ± 1	4.53 ± 0.03	0.366 ± 0.005		

Table 2 (Continued)

ref	values reported in nonstandard units	T_{90}/K	p/MPa	$\rho/g \cdot cm^{-3}$	method	authors
		HALOGENATED AR	ROMATIC COMPOUN	NDS		
	FLUOROE		c_{5} ss 96.102 g; C_{6} H ₅ F; CA c_{5} = -0.039 K	ASRN 462-06-6		
1889-you	286.55 °C, 33912 mm Hg	559.7*	4.521*	0.412	1	Young
10-you	286.55 °C, 33912 mm Hg	(559.7)	(4.521)	0.3541*	7	Young
58-dou/moo	286.92 °C, 44.91 atm, 0.2688 L·mol ⁻¹	560.1*	4.5505*	0.358*	3	Douslin et al.
50-amb/cox	(286.95 ± 0.02) °C	560.13*			1	Ambrose et al.
63-amb/tow	44.95 atm		4.555*		1	Ambrose and Townsend
89-abd/akh		560.01*				Abdullaev et al.
	recommended values	560.1 ± 0.2	4.55 ± 0.01	0.358 ± 0.003		
	(TRIFLUOROMETHYL)PENTAFL			r mass 236.062 g; C ₇ F ₈	; CASRN 434-	64-0
			$_{3} = -0.039 \text{ K}$			
74-amb/bro		$534.43* \pm 0.02$	$2.705* \pm 0.002$	0.7710	1,5	Ambrose et al.
74-hal/tow		(534.47) ^h	2.60*	0.5519	7	Hales and Townsend
77-skr/mur		534.4*	2.68*		1,6	Skripov and Muratov
95-sin/mik	$(261.2 \pm 0.3) ^{\circ}\text{C}$	534.4*	$2.66* \pm 0.10$		1,6	Sinitsyn et al.
2006-nit		$(534* \pm 1)$	$2.7* \pm 0.1$		6	Nikitin
	recommended values	534.4 ± 0.1	2.70 ± 0.01	0.552 ± 0.003	- 0	
7.1	METHYLPENTAFL	$T_{90} - T_{68}$	$_{3} = -0.039 \text{ K}$	C ₇ H ₃ F ₅ ; CASRN 771-56		
71-amb/spr		566.48 ± 0.03	3.126 ± 0.005	0.4525	1,5	Ambrose and Sprake
74-hal/tow		$(566.52)^h$	2.12.1.2.21	0.4735	7	Hales and Townsend
	recommended values	566.5 ± 0.1	3.13 ± 0.01	0.474 ± 0.003		
2000-mor/lui	2-BROMO(TRIFLUORON	METHYL)BENZENE: 656.5 ± 0.2	molar mass 225.006	g; C ₇ H ₄ BrF ₃ ; CASRN 3	892-83-6 1	Morton et al.
	recommended values	656.5 ± 0.4				
2000-mor/lui	3-BROMO(TRIFLUORON		molar mass 225.006 g	g; C ₇ H ₄ BrF ₃ ; CASRN ⁴		Morton et al.
2000-mor/1u1	recommended values	627.1 ± 0.2 627.1 ± 0.4			1	Morton et al.
	4-BROMO(TRIFLUORON		molar mass 225 006	o· C-H.BrF-· CASRN 4	102-43-7	
2000-mor/lui	+-BROMO(TRII ECORO)	629.8 ± 0.2	motar mass 225.000 g	g, C/114D11 3, C/15R14 -	1	Morton et al.
2000-11101/1u1	recommended values	629.8 ± 0.2 629.8 ± 0.4			1	Worton et al.
	1-METHYL-2 4-DIFI	HOROBENZENE: n	nolar mass 128 119 o ·	C ₇ H ₆ F ₂ ; CASRN 452-7	6-6	
2000-mor/lui	1 111211112 2, 1 2111	581.4 ± 0.2		0/1101 2, 0110101 102 /	1	Morton et al.
2000 montai	recommended values	581.4 ± 0.4			1	Morton et al.
			1 120 110	GIVE GLODNIJES		
2000 # :	1-METHYL-2,5-DIFI		nolar mass 128.119 g;	$C_7H_6F_2$; CASRN 452-6		
2000-mor/lui		587.8 ± 0.2			1	Morton et al.
	recommended values	587.7 ± 0.4				
	1-METHYL-2,6-DIFI	LUOROBENZENE: n	nolar mass 128.119 g;	C7H6F2; CASRN 443-8	4-5	
2000-mor/lui		581.8 ± 0.2	<u>.</u>		1	Morton et al.
	recommended values	581.8 ± 0.4				
	1 METHYL 2 4 DIEL	LIODODENZENE, m	olon moos 129 110 o. (THE CASDN 2027	24 6	
2000	1-METHYL-3,4-DIFL		ioiar mass 128.119 g; C	$C_7H_6F_2$; CASRN 2927-3	1	Moston et el
2000-mor/lui	recommended values	598.5 ± 0.2 598.5 ± 0.4			1	Morton et al.
	recommended values	396.3 ± 0.4				
	1-FLUORO-2-ME	THYLBENZENE: mo	olar mass 110.129 g; C	C ₇ H ₇ F; CASRN 95-52-3		
2000-mor/lui		591.2 ± 0.2			1	Morton et al.
	recommended values	591.2 ± 0.4				
	1-FLUORO-3-ME	THYLRENZENE: mo	lar mass 110 129 o. C.	H ₇ F; CASRN 352-70-	5	
2000-mor/lui	1-1 E00K0-5-ME	591.8 ± 0.2	nai mass 110.127 g, C,	/11/1 , CASIGN 332-70	1	Morton et al.
2000-11101/101	recommended values	591.8 ± 0.2 591.8 ± 0.4			1	Morton et al.
	1-FLUORO-4-ME		olar mass 110.129 g; C ₇	₇ H ₇ F; CASRN 352-32-9		
2000-mor/lui		592.1 ± 0.4			1	Morton et al.
	recommended values	592.1 ± 0.4				
	OCTAFLUORON	JAPHTHALENE: mo	lar mass 272.094 g: Cu	₀ F ₈ ; CASRN 313-72-4		
63-che/mcc	399.9 °C	673.1	=	.0- 8,	1	Cheng and McCoubrey
00 0110/11100	recommended values	673 ± 1			•	eneng una mecausicy
			ar mass 462.078 g; C_{10}	F ₁₈ ; CASRN 306-94-5		
66-ray/mos	293 °C	566*			10	Ray and Moss
96-mus/ima		$565.11* \pm 0.1$	1.776 ± 0.018		1,5	Mustafaev et al.
	recommended values	565 ± 1	1.78 ± 0.06			
	DECAFLUOR	OBIPHENYL: molar	mass 334.112 g; C ₁₂ F ₁₀	n: CASRN 434-90-2		
96-grz/ram	(367 ± 1) °C	640	55 12 6, 0121 10	0,	1	Grzyll et al.
					-	,
5	recommended values	640 ± 2				•

 $[^]a$ The value 76 atm may be a misprint. A separate entry for $(273+t_c)/p_c$ is consistent with 73 atm. b We extrapolated vapor pressure data to obtain p_c when data usually within 5 K of T_c to the selected T_c . c Author considered that p_c may be too high and t_c too low due to the presence of air. d Corrected value reported in 92-goo/def. e Reanalysis of 92-tam/sat vapor pressure data extrapolating to $T_c = 391.75$ K. f p_c was determined by extrapolating to $T_c = 375.95$ K, obtained from 96-sch quoted by 97-def/mol. Extrapolation of the vapor pressure data to the recommended $T_c = (375.0 \pm 0.1)$ K gives values of p_c close to the recommended value of (2.92 ± 0.01) MPa, hence these values were considered in making the recommendation. e Stated uncertainty in psi but reported pressure in MPa. h 74-hal/tow used the T_{68} value of 74-amb/bro. i Value obtained in a rapid heater. j 74-hal/tow used the T_{68} value of 65-cou/gre and 69-dou/har. k Sample consisted primarily of 1,2-dichlorobenzene with minor amounts of 1,3-dichlorobenzene. l Decomposition was observed at the critical temperature.

Table 3. Key to Methods of Critical Point Determination

-	
1	visual - in glass tube
2	visual - in cell with windows
3	nonvisual - pVT measurement or vapor pressure
	measurement
4	other nonvisual measurement
5	critical pressure measurement combined with vapor
	pressure measurement up to the critical point
6	critical pressure by extrapolation of vapor pressure
	curve
7	orthobaric density measurements
8	equation of state, thermodynamic study
9	calculation from another physical property
10	literature survey
a	with stirring
b	instrumental detection of critical point
c	special feature of apparatus
d	decomposition at critical temperature

Part 1 of this series [95-amb/you] as given in Table 3. In some cases, where the values have been referenced in other papers and we do not have access to the original reference to determine the experimental method, the method is left blank. A number of the compounds tabulated decompose significantly at the critical point, and some react with mercury. Compounds that show decomposition close to their critical temperature have been noted.

For the refrigerants and blowing agents, normally designated by R and then a number sequence determined by an established formula, there are a number of company publications which give data from unknown sources and/or unknown methods of measurement. In some cases, these are the first or only data available. The designated method for these publications is 10 (see Table 3). Eiseman [52-eis] presented a correlation for Freons. This paper contained experimental values previously reported in the literature, additional experimental values not previously reported, and predicted values. The distinction between experimental values not reported and predicted values is not clear. Only those values which are believed to be experimental and not previously reported are given.

The commonly used nomenclature, for example, Freon 12, HCFC 12, has not been given, and trade names such as Arcton, Suva, and Klea have been avoided. Only the R designation followed by the refrigerant number is listed under alternative names to the IUPAC systematic name. Following the previous reviews in this series, temperatures are expressed as International Kelvin Temperatures on ITS-90; see [90-mcg]. In general the uncertainty is indicated by the number of figures given. Those values originally given in degree Celsius have been converted to kelvin by the addition of 273.15 K and then converted to ITS-90. There is some uncertainty as to the difference between the scale used for measurement and ITS-90. For critical temperatures of substances reported in this review, the differences between ITS-90 and both IPTS-68 and IPTS-48 (identical in the range of present interest with ITS-27) are less than 0.04 K (up to 620 K). No temperatures reported prior to 1927 were of sufficient accuracy to require adjustment. In work published after 1927 in which temperatures are specified to 0.01 K, the scale used is that appropriate to the date of publication. The question of which scale was used only arises in the years immediately following adoption of the scale of 1968 or 1990. It is often not clear if the researchers used recalibrated thermometers. A number of 1990 and 1991 publications have been corrected, as the papers were submitted and accepted in 1989 or early 1990. Values reported by the authors have been converted to ITS-90, where warranted, using the correction given for each compound. The molar masses are based on the relative

atomic masses recommended by the IUPAC-CIAAW in 2005 [2006-wie].

Selection of Best Values

Only those compounds where there are unexpected discrepancies or impurity concerns are discussed.

Fluoromethanes. For trifluoromethane, there are minor discrepancies in the reported values, and Närger et al. [89-nae/ deb] note either that the substance is unstable or that minor impurities cause the apparent critical temperature to drift with

Chloromethanes. The apparent agreement for all the critical properties of chloromethane reported in all publications except those of Vincent and Chappuis [1886-vin/cha] and Harand [35har] is remarkable. The reverse is the case with dichloromethane where there are considerable discrepancies between the values of critical temperatures and pressures reported. The recommended values are based on Garcia-Sanchez et al. [89-gar/rom] who used an established method of moderate precision on a sample of reasonable purity. There are wide discrepancies between the critical properties of trichloromethane. The critical volume data of the earlier paper by Campbell and Chatterjee [68-cam/cha] should be disregarded because of the extrapolation procedure used. The recommended value of the critical volume is based on the more recent paper by Campbell and Chatterjee [69-cam/cha]. The more recent critical temperature reported by Rätzsch and Strauch [72-rae/str] does not agree with any other values and is believed to be in error (probably because of impurities in the sample).

It is surprising that there have been few recent high-precision measurements on tetrachloromethane. The critical properties reported by Young [10-you] agree within experimental error with all the more recent values including the most extensive study by Campbell and Chatterjee [69-cam/cha]. There is a small discrepancy between the critical pressures of Campbell and coworkers [69-cam/cha, 70-cam/mus] and that of Toczylkin and Young [77-toc/you]. This might be due to the slight decomposition of this substance under the conditions of the experiment.

Bromo- and Iodomethanes. There have been no systematic studies on the bromo- and iodomethanes despite being readily available commercially. It is probable that many of these compounds are unstable at their critical temperature.

Mixed Halomethanes. There are a large number of measurements reported on chlorotrifluoromethane and chlorodifluoromethane, but reported values since 1960 show much more scatter in the data than one would expect. The values of Watanabe and co-workers are based on experimental data, but their procedures for arriving at their final recommended values are not completely clear. For dichlorodifluoromethane, the value of Higashi et al. [84-hig/oka] for the critical volume is lower than other values. This is unexpected since their values are based on an extensive study which appears to have been carefully undertaken. Only van Hook and co-workers [92-sal/wan] have studied the critical properties of bromodifluoromethane. Their value of the critical density is subject to considerable uncertainty since it was obtained by a long extrapolation of the rectilinear diameter. For bromotrifluoromethane, there are some slight discrepancies between the critical temperature of this substance measured over the last three decades.

Halogenated Ethanes. There are limited critical property data for halogenated ethanes, with measurements primarily on those compounds that have been considered useful as replacement refrigerants for ozone depleting chlorofluorocarbons. These compounds have been studied in great detail. 1,2-Dichloro1,1,2,2-tetrafluoroethane has been extensively investigated by Watanabe's group. The critical pressure reported by Higashi et al. [85-hig/uem-1] is based on the calculation using their critical temperature and literature vapor pressure data. The critical temperature measurements of Wilson and Hules [82-wil/hul] are suspect because they appeared to observe two critical temperatures, one at 418.86 K and a second at 419.03 K. This they explained by the existence of a 7 % impurity in their 1,1-dichloro-1,2,2,2-tetrafluoroethane. The recommended critical properties are an average of those of Martin [60-mar], Bier et al. [90-bie/tue], and Watanabe's group [85-hig/uem-1], rounded to account for the uncertainty.

Hexafluoroethane has been extensively studied by Watanabe and co-workers [77-kij/sai, 79-sai/kij]. None of the other studies appear as reliable or as extensive as those. Pentafluoroethane has been extensively studied, and the critical temperatures fall into two groups, the Japanese groups reporting values lower by about 0.2 K than other groups. The reason for the discrepancy is not obvious. 1,1,1,2-Tetrafluoroethane has been extensively studied, and its critical properties are probably the best known of all the halogen compounds studied.

Other Halogenated n-Alkanes. For 1,1,1,2,3,3,3-heptafluoropropane, there are recent high-quality vapor pressure measurements in the vicinity of the critical temperature by Shi et al. [99-shi/dua], Hu et al. [2002-hu/che], Di Nicola [2003-din], and Wang and Duan [2004-wan/dua]. All four extrapolated their vapor pressure results to 375.95 K [96-sch] (a private communication quoted in 97-def/mol) with excellent agreement between the four extrapolated critical pressures (2.98774, 2.9846, 2.9855, and 2.98916) MPa, respectively. However, recent determinations of the critical temperature by Hu and Chen [2004-hu/che] gave (375.040 \pm 0.005) K and by Uchida et al. [2004-uch/yas] gave (375.00 \pm 0.01) K, nearly 1 K lower than the Schmidt value. These values agree with the majority of the earlier values. If the above four sets of vapor pressures are extrapolated to the recommended value of (375.0 \pm 0.1) K, then all the p_c values are close to the recommended value, (2.92) \pm 0.01) MPa. This example illustrated the danger of extrapolating high-quality vapor pressure data to a critical temperature that is not determined in the study.

There is an unexplained difference of 6 % in the critical density for tetradecafluoro-2-methylpentane from two apparently reliable sources. The value in ref 84-mom/uem is preferred. There are considerable discrepancies between the critical properties of hexadecafluoroheptane reported by [47-fow/ham; 51-oli/gri; 52-mil/oli; 67-erm/skr; and 96-mus/ima]. This is almost certainly due to the difficulty in preparing a pure sample. For octadecafluorooctane, eicosafluorononane, and docosafluorodecane, the uncertainties in the critical temperatures are probably of the order of (1 to 3) K because of the difficulty in obtaining pure samples.

Halogenated Cycloalkane Compounds. Dodecafluorocyclohexane has not been studied extensively. It is not clear if the preliminary values given by Davies and McGlashan [81-dav/mcg] are based on the same measurements as those given in the latter paper of Davies et al. [88-dav/ewi]. The recommended values are based on the values in [88-dav/ewi]. The critical pressure attributed to Rowlinson and Thacker [57-row/tha] involved a long extrapolation and therefore is less reliable.

Halogenated Aromatic Compounds. Hexafluorobenzene has been subjected to extensive study by a number of workers. There is relatively little uncertainty about its critical temperature. There is poor agreement between the reported critical pressures. Incomplete degassing would lead to a higher value, so we could

not account for the apparently low value quoted by Evans and Tiley [66-eva/til]. It is conceivable that impurities in the sample could be the source of the greater part of the discrepancies in the other cases. The critical volume value given by Mousa et al. [72-mou/kay] is an experimental value based on low pressure *PVT* studies where there was a possibility of adsorption, leading to a low critical density. The values given by Hales and Townsend [74-hal/tow] and Douslin et al. [69-dou/har] are in good agreement. The critical densities for tetradecafluorohexane and octafluorocyclobutane by Mousa et al. [72-mou/kay] were determined in the same way, and they are also low compared with other reliable measurements.

The critical temperature of 1,2-dichlorobenzene with mass fraction w=0.04 of 1,3-dichlorobenzene was obtained by estimating the temperature at which the enthalpy of evaporation was zero [54-tri/bro]. This involved an extrapolation of some 15 K, and the uncertainty in the critical temperature is about \pm 3 K.

Acknowledgment

This work is the product of IUPAC Project #2000-026-1-100, Critical Compilation of Vapor Liquid Critical Properties, sponsored by the Physical and Biophysical Chemistry Division of IUPAC.

Registry Numbers Supplied by the Authors. Bromochlorodifluoromethane, 353-59-3; bromotrifluoromethane, 75-63-8; dibromodifluoromethane, 75-61-6; chlorotrifluoromethane, 75-72-9; dichlorodifluoromethane, 75-71-8; trichlorofluoromethane, 75-69-4; tetrachloromethane, 56-23-5; trifluoroiodomethane, 2314-97-8; tetrafluoromethane, 75-73-0; bromodifluoromethane, 1511-62-2; chlorodifluoromethane, 75-45-6; dichlorofluoromethane, 75-43-4; trichloromethane, 67-66-3; trifluoromethane, 75-46-7; dichloromethane, 75-09-2; difluoromethane, 75-10-5; chloromethane, 74-87-3; fluoromethane, 593-53-3; 1,2-dibromo-2-chloro-1,1,2-trifluoroethane, 354-51-8; 1,2-dibromo-1,1,2,2-tetrafluoroethane, 124-73-2; chloropentafluoroethane, 76-15-3; 1,1-dichloro-1,2,2,2tetrafluoroethane, 374-07-2; 1,2-dichloro-1,1,2,2-tetrafluoroethane, 76-14-2; 1,1,2-trichloro-1,2,2-trifluoroethane, 76-13-1; hexafluoroethane, 76-16-4; 1-chloro-1,2,2,2-tetrafluoroethane, 2837-89-0; 1,1-dichloro-2,2,2-trifluoroethane, 306-83-2; 1,2-dichloro-1,1,2trifluoroethane, 354-23-4; pentafluoroethane, 354-33-6; 1-chloro-2,2,2-trifluoroethane,75-88-7; 1,1,1,2-tetrafluoroethane, 811-97-2; 1,1,2,2-tetrafluoroethane, 359-35-3; 1-chloro-1,1-difluoroethane, 75-68-3; 1,1-dichloro-1-fluoroethane, 1717-00-6; 1,1,1-trichloroethane, 71-55-6; 1,1,1-trifluoroethane, 420-46-2; 1,1,2-trifluoroethane, 430-66-0; 1,1-dichloroethane, 75-34-3; 1,2-dichloroethane, 107-06-2; 1,1-difluoroethane, 75-37-6; bromoethane, 74-96-4; chloroethane, 75-00-3; fluoroethane, 353-36-6; 1,2-dichloro-1,1,2,3,3,3-hexafluoropropane, 661-97-2; 1,1,2,2,3,3,3-heptafluoro-1-iodopropane, 754-34-7; octafluoropropane, 76-19-7; 1-chloro-1,1,2,3,3,3-hexafluoropropane, 359-58-0; 2-chloro-1,1,1,3,3,3-hexafluoropropane, 431-1,2-dichloro-1,1,3,3,3-pentafluoropropane, 1,3-dichloro-1,2,2,3,3-pentafluoropropane, 507-55-1; 2,3-dichloro-1,1,1,2,3-pentafluoropropane, 422-48-0; 1,1,1,2,2,3,3-heptafluoropropane, 2252-84-8; 1,1,1,2,3,3,3-heptafluoropropane, 431-89-0; 3-chloro-1,1,1,2,2-pentafluoropropane, 422-02-6; 2,3-dichloro-1,1,1,3-tetrafluoropropane, 146916-90-7; 1,1,1,2,2,3-hexafluoropropane, 677-56-5; 1,1,1,2,3,3-hexafluoropropane, 431-63-0; 1,1,1,3,3,3hexafluoropropane, 690-39-1; 1,1,2,2,3,3-hexafluoropropane, 680-00-2; 3-chloro-1,1,2,2-tetrafluoropropane, 679-85-6; 2,3-dichloro-1,1,1-trifluoropropane, 338-75-0; 1,1,1,2,2-pentafluoropropane, 1814-1,1,1,3,3-pentafluoropropane, 460-73-1; pentafluoropropane, 679-86-7; 1,1,2,2-tetrafluoropropane, 40723-63-5; 1,2-dichloropropane, 78-87-5; 1,3-dichloropropane, 142-28-9; 1-bromopropane, 106-94-5; 1-chloropropane, 540-54-5; 2-chloropropane, 75-29-6; 1,4-dibromooctafluorobutane, 335-48-8; 1,1,1,2,3,3,4,4,4-

nonafluoro-2-iodobutane, 375-51-9; decafluorobutane, 355-25-9; decafluoro-2-methylpropane, 354-92-7; 1,1,1,2,2,3,3,4,4-nonafluorobutane, 375-17-7; 1,1,1,2,2,3,3,4-octafluorobutane, 662-35-1; 1,1,1,2,3,4,4,4-octafluorobutane, 75995-72-1; 1,1,2,2,3,3,4,4-octafluorobutane, 377-36-6; 1,1,1,2,2,3,3-heptafluorobutane, 662-00-0; 1,1,1,3,3-pentafluorobutane, 406-58-6; 1-chlorobutane, 109-69-3; 2-chlorobutane, 78-86-4; 2-chloro-2-methylpropane, 507-20-0; dodecafluoropentane, 678-26-2; 1H-undecafluoropentane, 375-61-1; 1-chloropentane, 543-59-9; 2-chloro-2-methylbutane, 594-36-5; tetradecafluoro-2,3-dimethylbutane, 354-96-1; tetradecafluorohexane, 355-42-0; tetradecafluoro-2-methylpentane, 355-04-4; tetradecafluoro-3-methylpentane, 865-71-4; 1H-tridecafluorohexane, 355-37-3; 1-chlorohexane, 544-10-5; 3-chloro-3-methylpentane, 918-84-3; hexadecafluoroheptane, 335-57-9; 1*H*-pentadecafluoroheptane, 375-83-7; 1-chloroheptane, 629-06-1; octadecafluorooctane, 307-34-6; 1-chlorooctane, 111-85-3; eicosafluorononane, 375-96-2; docosafluorodecane, 307-45-9; chlorotrifluoroethene, 79-38-9; tetrachloroethene, 127-18-4; tetrafluoroethene, 116-14-3; 2-chloro-1,1-difluoroethene, 359-10-4; (Z)-1,2-dichloroethene, 156-59-2; (E)-1,2-dichloroethene, 156-60-5; 1,1-difluoroethene, 75-38-7; chloroethene, 75-01-4; fluoroethene, 75-02-5; 3,3,3-trifluoro-1-propene, 677-21-4; 3-chloro-1-propene, 107-05-1; hexafluoro-1,3-butadiene, 685-63-2; dodecafluoro-1-hexene, 755-25-9; 1,1,1,2,3,4,5,5,5-nonafluoro-4-trifluoromethyl-2-pentene, 2070-70-4; tetradecafluoro-1-heptene, 355-63-5; octafluorocyclobutane, 115-25-3; 4-chloro-1,1,2,2,3,3hexafluorocyclobutane, 132186-30-2; decafluorocyclohexene, 355-75-9; dodecafluorocyclohexane, 355-68-0; nonafluoro(trifluoromethyl)cyclopentane, 1805-22-7; undecafluorocyclohexane, 308-24-7; chlorocyclohexane, 542-18-7; tetradecafluoromethylcyclohexane, 355-02-2; decafluoro-1,3-bis(trifluoromethyl)cyclohexane, 335-27-3; chloropentafluorobenzene, 344-07-0; 1,3,5-trichlorotrifluorobenzene, 319-88-0; hexafluorobenzene, 392-56-3; pentafluorobenzene, 363-72-4; 1,2,3,4-tetrafluorobenzene, 551-62-2; 1,2,3,5-tetrafluorobenzene, 2367-82-0; 1,2,4,5-tetrafluorobenzene, 327-54-8; 1-chloro-2,4-difluorobenzene, 1435-44-5; 1-chloro-2,5-difluorobenzene, 2367-91-1; 1-chloro-3,4-difluorobenzene, 696-02-6; 1-chloro-3,5difluorobenzene, 1435-43-4; 1,2,3-trifluorobenzene, 1489-53-8; 1,2,4-trifluorobenzene, 367-23-7; 1,3,5-trifluorobenzene, 372-38-3; 1-bromo-2-fluorobenzene, 1072-85-1; 1-bromo-3-fluorobenzene, 1073-06-9; 1-bromo-4-fluorobenzene, 460-00-4; 1-chloro-2-fluorobenzene, 348-51-6; 1-chloro-3-fluorobenzene, 625-98-9; 1-chloro-4-fluorobenzene, 352-33-0; 1,2-dichlorobenzene, 95-50-1; 1,3dichlorobenzene, 541-73-1; 1,2-difluorobenzene, 367-11-3; 1,3difluorobenzene, 372-18-9; 1,4-difluorobenzene, 540-36-3; bromobenzene, 108-86-1; chlorobenzene, 108-90-7; fluorobenzene, 462-06-6; (trifluoromethyl)pentafluorobenzene, 434-64-0; methylpentafluorobenzene, 771-56-2; 2-bromo(trifluoromethyl)benzene, 392-83-6; 3-bromo-(trifluoromethyl)benzene, 401-78-5; 4-bromo(trifluoromethyl)benzene, 402-43-7; 1-methyl-2,4-difluorobenzene, 452-76-6; 1-methyl-2,5difluorobenzene, 452-67-5; 1-methyl-2,6-difluorobenzene, 443-84-5; 1-methyl-3,4-difluorobenzene, 2927-34-6; 1-fluoro-2-methylbenzene, 95-52-3; 1-fluoro-3-methylbenzene, 352-70-5; 1-fluoro-4-methylbenzene, 352-32-9; octafluoronaphthalene, 313-72-4; octadecafluorodecalin, 306-94-5; decafluorobiphenyl, 434-90-2.

Literature Cited

1859-dri Drion, Ch. Ann. Chem. Phys. (Series 3) 1859, 56, 221–228 (chloroethane). 1874-ave Avenarius, M. Ann. Phys. (Berlin) (Series 2) **1874**, *151*, 303–316 (tetrachloromethane).

1878-saj Sajotschewsky, W. Kiewer Univers. Unters. 1878, nos. 4 and 8; from Beibl. Ann. Phys. Chem. 1879, 3, 741-743 (trichloromethane, chloroethane).

1880-han/hog Hannay, J. B.; Hogarth, J. Proc. R. Soc. London **1880**, *30*, 178–188 (tetrachloromethane).

1882-han Hannay, J. B. Proc. R. Soc. London 1882, 33, 294-321 (tetrachloromethane).

1882-zhu Zhuk (also transliterated as Jouk), K. Zh. Russ. Fiz.-Khim. Obsh. 1882, 14, 157-161; Beibl. Ann. Phys. Chem. 1883, 7, 678-681 (dichloromethane, 1,2-dichloroethane).

Pawlewski, B. Ber. Dtsch. Chem. Ges. 1883, 16, 1883-paw 2633-2636 (tetrachloromethane, 1,1-dichloroethane, 1,2-dichloroethane, bromoethane, 3-chloro-1-propene).

1884-kan/dja Kannegiesser; Djatschewski. Zh. Russ. Fiz.-Khim. Obsh. 1884, 16, 304-306; reported by Zhuk, K. Beibl. Ann. Phys. Chem. 1884, 8, 808-809 (chloroethane).

1885-vin/cha Vincent, C.; Chappuis, J. Compt. Rend. 1885, 101, 427-429 (chloromethane, chloroethane).

1886-vin/cha Vincent, C.; Chappuis, J. Compt. Rend. 1886, 103, 379-381; J. Phys. Radium 1886, 5, 58-64 (chloromethane, chloroethane, 1-chloropropane).

1887-nad Nadezhdin (also transliterated as Nadejdine), A. Rep. Phys. **1887**, 23, 639; from 23-lan (1,1dichloroethane, 1,2-dichloroethane).

1889-col Collie, N. J. Chem. Soc. 1889, 55, 110–113 (fluoromethane).

1889-you Young, S. J. Chem. Soc. 1889, 55, 486-525 (chlorobenzene, fluorobenzene).

1891-sch Schmidt, G. C. Justus Liebigs Ann. Chem. 1891, 266, 266–292 (tetrachloromethane).

1891-you Young, S. J. Chem. Soc. 1891, 59, 911-936 (tetrachloromethane).

1893-alt Altschul, M. Z. Phys. Chem. 1893, 11, 577-597 (chlorobenzene).

1893-kue Kuenen, J. P. Z. Phys. Chem. 1893, 11, 38-48; $p_{\rm c}$ from 23-lan (chloromethane).

1895-pic Pictet, R. Compt. Rend. 1895, 120, 43-45, 64-67 (trichloromethane, chloroethane).

1895-pic/alt Pictet, R.: Altschul, M. Z. Phys. Chem. 1895, 16. 26-28 (trichloromethane, chloroethane).

00-est Estreicher, T. Chem. Berichte 1900, 33, 436-443 (2-chlorobutane).

02-eve Eversheim, P. Ann. Physik 1902, 8, 539-567 (chloroethane).

02-kue/rob Kuenen, J. P.; Robson, W. G. Philos. Mag. 1902, 4. 116-132 (trichloromethane).

03-ves Vespignani, G. B. Gazz. Chim. Ital. 1903, 33, 73–78 (tetrachloromethane).

04-bri Brinkmann, C. H. Thesis, University of Amsterdam, 1904; quoted in 50-tim (chloromethane).

04-cen Centnerszwer, M. Z. Phys. Chem. 1904, 49. 199-207 (chloromethane).

Baume, G. J. Chim. Phys. 1904, 6, 1-91 08-bau (chloromethane).

10-you Young, S. Sci. Proc. R. Dublin Soc. 1909-1910, 12, 374-443 (tetrachloromethane, chlorobenzene, fluorobenzene).

14-hei Hein, P. Z. Phys. Chem. 1914, 86, 385-426 (tetrachloromethane).

17-ber Berthoud, A. J. Chim. Phys. 1917, 15, 3-29 (chloroethane, 1-chloropropane).

Herz, W.; Neukirch, E. Z. Phys. Chem. 1923, 23-her/neu 104, 433-450 (trichloromethane, bromoethane).

23-lan	Landolt-Börnstein, <i>Physikalisch-Chemische Tabellen</i> , 5th ed.; Springer: Berlin, 1923; Vol. I, pp 253–266 (review).	50-tim	Timmermans, J. <i>Physico-chemical Constants of Pure Organic Compounds</i> ; Elsevier: Amsterdam, 1950.
31-bic/gil	Bichowsky, F. R.; Gilkey, W. K. <i>Ind. Eng. Chem.</i> 1931 , <i>23</i> , 366–367	51-oli/gri	Oliver, G. D.; Grisard, J. W. <i>J. Am. Chem. Soc.</i> 1951 , <i>73</i> , 5722–5725 (hexadecafluoroheptane).
31-gil/ger	(dichlorodifluoromethane). Gilkey, W. K.; Gerard, F. W.; Bixler, M. E. <i>Ind.</i>	51-oli/blu	Oliver, G. D.; Blumkin, S.; Cunningham, C. W. <i>J. Am. Chem. Soc.</i> 1951 , <i>73</i> , 5722–5725 (hexadecafluoroheptane).
32-caw/pat	Eng. Chem. 1931, 23, 364–366 (dichlorodifluoromethane). Cawood, W.; Patterson, H. S. J. Chem. Soc.	51-oli/gri-1	Oliver, G. D.; Grisard, J. W.; Cunningham, C. W. J. Am. Chem. Soc. 1951 , 73, 5719–5722
32-yan/sch	1932, 2180–2188 (fluoromethane). Yant, W. P.; Schrenk, H. H.; Patty, F. A. <i>U.S.</i>	52-alb/mar	(chlorotrifluoroethene). Albright, L. F.; Martin, J. J. <i>Ind. Eng. Chem.</i> 1952 , <i>44</i> , 188–198 (chlorotrifluoromethane).
33-swa	Bur. Mines, Rep. Invest. 1932, 3185 (1,2-dichloro-1,1,2,2-tetrafluoroethane). Swarts, F. Bull. Soc. Chim. Belg. 1933, 42, 114—	52-eis	Eiseman, B. J. <i>Refrig. Eng.</i> 1952 , <i>60</i> , 496–503 (bromochlorodifluoromethane, bromotrifluoro-
33-swa-1	118 (hexafluoroethane). Swarts, F. <i>Compt. Rend.</i> 1933 , <i>197</i> , 1261–1264		methane, dibromodifluoromethane, chloro- difluoromethane, 1,2-dibromo-2-chloro-1,1,2- trifluoroethane).
35-boo/swi	(1,1,1-trifluoroethane). Booth, H. S.; Swinehart, C. F. <i>J. Am. Chem. Soc.</i> 1935 , <i>57</i> , 1337–1342 (chlorodifluoromethane,	52-mil/oli	Milton, H. T.; Oliver, G. D. <i>J. Am. Chem. Soc.</i> 1952 , <i>74</i> , 3951–3952 (hexadecafluoroheptane).
35-har	fluoroethane, chlorotrifluoroethene). Harand, J. <i>Monatsh. Chem.</i> 1935 , <i>65</i> , 153–184	53-har 54-swi/kre	Harmon, J. U.S. patent 2,599,631, 1953; quoted in 66-kre/amb (fluoroethene). Świętoslawski, W.; Kręglewski, A. <i>Bull. Acad.</i>
37-tar/afi	(tetrachloromethane, trichloromethane, dichloromethane, chloromethane). Tarasenko, D. N.; Afinogenov, V. P. <i>Zhurn. Fiz.</i>	34-5WI/RIC	Polon. Sci. 1954 , Cll III, 2, 187–189 (tri-chloromethane).
39-ben/mch	Khim. 1937, 9, 889–900 (bromoethane). Benning, A. F.; McHarness, R. C. Ind. Eng.	54-tri/bro	Tripathi, G.; Brown, G. G. <i>Ind. Eng. Chem.</i> 1954 , <i>46</i> , 1658–1662 (1,2-dichlorobenzene).
	<i>Chem.</i> 1939 , <i>31</i> , 912–916 (trichlorofluoromethane, chlorodifluoromethane, dichloro-	55-mch/eis	McHarness, R. C.; Eiseman, B. J., Jr.; Martin, J. J. <i>Refrig. Eng.</i> 1955 , <i>63</i> , 31–44 (dichlorodifluoromethane).
39-hoe	fluoromethane, 1,1,2-trichloro-1,2,2-tri- fluoroethane). Højendahl, K. <i>Nord. Kemikermode, Forh.</i> 1939 ,	55-mea/sta	Mears, W. H.; Stahl, R. F.; Orfeo, S. R.; Shair, R. C.; Kells, L. F.; Thompson, W.; McCann,
41-mcn	5, 209–211 (1,2-dichloroethane). McNabney, R. Unpublished thesis, Western		H. <i>Ind. Eng. Chem.</i> 1955 , <i>47</i> , 1449–1454 (1,1-dichloro-1,2,2,2-tetrafluoroethane, 1-
44 .	Reserve Univ. 1941; quoted in 52-alb/mar (chlorotrifluoromethane).		chloro-1,1-difluoroethane, 1,1,1-trifluoroethane, 1,1-difluoroethane, 2-chloro-1,1-difluoroethene, 1,1-difluoroethene).
41-rie	Riedel, L. Z. Gesamte Kälte-Ind. 1941 , 48, 9–13 (chlorotrifluoromethane).	56-bam	Bambach, G. <i>Kältetechnik</i> 1956 , <i>11</i> , 334–339 (octafluorocyclobutane).
43-boo/mcn	Booth, H. S.; McNabney, R. ACS Abstract of Detroit Meeting, April 1943; quoted in 60-cha (tetrafluoromethane).	57-mic	Michels, A. Personal communication to J. J. Martin, 1957; quoted in 67-mar (chlorodi-
43-fis/rei	Fischer, R.; Reichel, T. <i>Mikrochemie</i> 1943 , <i>31</i> , 102–108 (tetrachloromethane, trichloromethane, bromobenzene).	57-row/tha	fluoromethane). Rowlinson, J. S.; Thacker, R. <i>Trans. Faraday Soc.</i> 1957 , <i>53</i> , 1–8 (dodecafluorocyclohexane,
44-ben/mch	Benning, A. F.; McHarness, R. C. Thermodynamic Properties of Freon-114;	58-bro/mea	tetradecafluoromethylcyclohexane). Brown, J. A.; Mears, W. H. <i>J. Phys. Chem.</i>
	Bulletin of Kinetic Chemicals, Inc.: Wilmington, Delaware, 1944 (1,2-dichloro-	58-che	1958 , <i>62</i> , 960–962 (decafluorobutane). Cherneeva, L. I. <i>Teploenergetika</i> 1958 , <i>5</i> , 38–43
46-ben	1,1,2,2-tetrafluoroethane). Benning, A. F. Unpublished data; quoted in 46-ren/lew (tetrafluoroethene).	58-dou/moo	(1-chloro-1,1-difluoroethane). Douslin, D. R.; Moore, R. T.; Dawson, J. P.;
46-dzu	Dzung, L. S. <i>Brown Boveri Rev.</i> 1946 , <i>33</i> , 158–163 (dichloromethane).	58-dun/mur	Waddington, G. <i>J. Am. Chem. Soc.</i> 1958 , <i>80</i> , 2031–2038 (fluorobenzene). Dunlap, R. D.; Murphy, C. J., Jr.; Bedford, R. G.
46-hoe	Høejendahl, K. Kgl. Danske Videnskab. Selskab Matfys. Medd. 1946, 24, No. 2, 11 pp; from		J. Am. Chem. Soc. 1958 , 80, 83–85 (tetradecafluorohexane).
46 /	Chem. Abstr. 1947, 41, 4985b (1,2-dichloroethane).	58-dup	E. I. Du Pont de Nemours and Co., Freon 115, Tech. Bull. T-115, 1958 (chloropentafluoro-
46-ren/lew	Renfrew, M. M.; Lewis, E. E. <i>Ind. Eng. Chem.</i> 1946 , <i>38</i> , 870–877.	58-rab/gor	ethane). Rabinovich, I. B.; Gorbushenkov, V. A. <i>Proc. Acad. Sci. U.S.S.R.</i> , <i>Phys. Chem. Sect.</i> 1958 ,
47-fow/ham	Fowler, R. D.; Hamilton, J. M., Jr.; Kasper, J. S.; Weber, C. E.; Burford, W. B., III.; Anderson, H. C. <i>Ind. Eng. Chem.</i> 1947 , <i>39</i> , 375–378 (decafluorobutane, hexadecafluoroheptane, tatradecafluoromethylayalchayana)	59-dou/moo	120, 371–375 (trichloromethane). Douslin, D. R.; Moore, R. T.; Waddington, G. J. Phys. Chem. 1959, 63, 1959–1966 (octafluorocyclobutane).
48-whi	tetradecafluoromethylcyclohexane). Whitney, J. H. Private communication with E. I. Du Pont de Nemours & Co., 1948; quoted in 52-alb/mar (chlorotrifluoromethane).	59-gon/zhu	Gonikberg, M. G.; Zhulin, V. M. <i>Bull. Acad. Sci. U.S.S.R.</i> , <i>Div. Chem. Sci.</i> 1959 , 617–625 (tetrachloroethene).

methane, 1,2-dibromo-1,1,2,2-tetrafluoroeth-

ane).

Hou, Y. C.; Martin, J. J. AIChE J. 1959, 5, 125-66-mea/ros Mears, W. H.; Rosenthal, E.; Sinka, J. V. J. 59-hou/mar 129 (trifluoromethane). Chem. Eng. Data 1966, 11, 338-343 (chloro-Ambrose, D.; Cox, J. D.; Townsend, R. Trans. pentafluoroethane). 60-amb/cox Michels, A.; Wassenaar, T.; Wolkers, G. J.; Faraday Soc. 1960, 56, 1452-1459 (fluoro-66-mic/was Prins, C.; Van de Klundert, L. J. Chem. Eng. benzene). Data 1966, 11, 449-452 (chlorotrifluorometh-60-cha Chari, N. C. S. Dissertation, Univ. of Michigan, ane, dichlorodifluoromethane). 1960 (tetrafluoromethane). Ray, S. K.; Moss, G. Chem. Ind. Advanced 66-ray/mos 60-mar Martin, J. J. J. Chem. Eng. Data 1960, 5, 334-Energy Conversion, 1966, 6, 89-102 from 336 (1,2-dichloro-1,1,2,2-tetrafluoroethane). Imperial Chemical Industry (octadecafluoro-61-hun Hunt, G. Thesis, Univ. of Maine, Orono, Maine, decalin). 1961; quoted in 62-tri/dun (1,1,2,2,3,3,3-hepta-67-cro/tay Crowder, G. A.; Taylor, Z. L.; Reed, T. M., III.; fluoropropane). Young, J. A. J. Chem. Eng. Data 1967, 12, 62-mar Martin, J. J. J. Chem. Eng. Data 1962, 7, 68-72 481-485 (tetradecafluoro-2,3-dimethylbutane, (octafluorocyclobutane). tetradecafluorohexane, tetradecafluoro-2-meth-Tripp, T. B.; Dunlap, R. D. J. Phys. Chem. 1962, 62-tri/dun ylpentane, tetradecafluoro-3-methylpentane). 66, 635-639. 67-dou/goo Douslin, D. R.; Good, W. D.; Finke, H. L.; 63-amb/tow Ambrose, D.; Townsend, R. J. Chem. Soc. 1963, Todd, S. S.; Guthrie, G. B.; Harrison, R. H. 3614-3625 (fluorobenzene). Annual Technical Summary Report for period 1 March 1966 to 1 March 1967. 63-bro Brown, J. A. J. Chem. Eng. Data 1963, 8, 106-Thermodynamic Properties of Organic 108 (octafluoropropane). Derivatives of the Lighter Elements; pg 12. 63-che/mcc Cheng, D. C.-H.; McCoubrey, J. C. J. Chem. Available NTIS as AD653986. (hexafluoro-Soc. 1963, 4993-4995 (1H-undecafluoropenethane). tane, tetradecafluorohexane, 1H-tridecafluoro-67-erm/skr Ermakov, G. V.; Skripov, V. P. Russ. J. Phys. hexane, 1H-pentadecafluoroheptane, dodeca-Chem. 1967, 41, 39-42 (dodecafluoropentane, fluoro-1-hexene, tetradecafluoro-1-heptene, tetradecafluorohexane, hexadecafluoroheptane, decafluorocyclohexene, undecafluorocyclooctadecafluorooctane, eicosafluorononane, hexane, hexafluorobenzene, octafluoronaphthadocosafluorodecane). 67-leb/kho Lebedeva, E. S.; Khodeeva, S. M. Russ. J. Phys. E. I. Du Pont de Nemours and Co., Freon 13B1 63-dup Chem. 1967, 41, 1116-1118 Tech Bull. T-13B1, 1963 (bromotrifluorometh-(tetrafluoroethene). 67-mar Martin, J. J. Ind. Eng. Chem. 1967, 59 (12), 34-63-jor/kay Jordan, L. W.; Kay, W. B. AIChE Chemical Engineering Progress Symposium Series, Nr 67-sha Shank, R. L. J. Chem. Eng. Data 1967, 12, 474-44, 1963; Vol 59, pp 46-51 (hexadecafluoro-480 (1,1,1,2,2-pentafluoropropane). heptane). 67-tsi/pro Tsiklis, D. S.; Prokhorov, V. M. Russ. J. Phys. 64-hsu/mck Hsu, C. C.; McKetta, J. J. J. Chem Eng. Data Chem. 1967, 41, 1182-1184 **1964**, 9, 45–51 (chloromethane). (chlorotrifluoromethane, trifluoromethane, 1,1-Otto, J.; Thomas, W. Int. J. Heat Mass Transfer 64-ott/tho difluoroethene). **1964**, 7, 41–47 (1,1-difluoroethene). 67-zaw Zawisza, A. C. Bull. Acad. Polon. Sci., Ser. Sci. 64-pat/pro Patrick, C. R.; Prosser, G. S. Trans. Faraday Chim. 1967, 15, 307-311 (decafluorobutane). Soc. 1964, 70, 700-704 (hexafluorobenzene, 68-bar Barber, J. R., Thesis, Ohio St. Univ., 1968 (octapentafluorobenzene). fluorocyclobutane). 64-rom Rombusch, U. K. Kältetechnik 1964, 16, 69-76 68-cam/cha Campbell, A. N.; Chatterjee, R. M. Can. J. Chem. 1968, 46, 575-581 (trichloromethane). (bromotrifluoromethane). Malbrunot, P. F.; Meunier, P. A.; Scatena, G. 68-mal/meu 65-cou/gre Counsell, J. F.; Green, J. H. S.; Hales, J. L.; M.; Mears, W. H.; Murphy, K. P.; Sinka, J. V. Martin, J. F. Trans. Faraday Soc. 1965, 61, J. Chem. Eng. Data 1968, 13, 16-21 (difluoro-212-218 (hexafluorobenzene). methane). 65-sil/joh Silva, W. J.; Johnson, J. W.; Cubicciotti, D. Rev. Wagner, W. Kältetechnik 1968, 20, 238-240 Sci. Instrum. 1965, 36, 1505-1506 (tetra-68-wag chloromethane). (trifluoromethane). 68-zan Zander, M. Thesis, TH Carolo-Wilhelmina, 65-sha Shank, R. L. ASHRAE J. 1965, 7, 94-101 (1,2-Braunschweig, 1968; quoted in 85-koh/kra dichloro-1,1,2,3,3,3-hexafluoropropane). (chlorodifluoromethane). 65-str Straub, J. Thesis, Technische Hochschule, 69-cam/cha Campbell, A. N.; Chatterjee, R. M. Can. J. München, 1965 (chlorotrifluoromethane). Chem. 1969, 47, 3893-3898 (tetrachlorometh-Evans, F. D.; Tiley, P. F. J. Chem. Soc. 1966, B, 66-eva/til ane, trichloromethane). 134-136 (chloropentafluorobenzene, 69-dou/har Douslin, D. R.; Harrison, R. H.; Moore, R. T. J. hexafluorobenzene, pentafluorobenzene). Chem. Thermodyn. 1969, 1, 305-319 Kresta, J.; Ambrož, L. Chem. Prumysl. 1966, 6, 66-kre/amb (hexafluorobenzene). 94-96. 69-erm/ski Ermakov, G. V.; Skripov, V. P. Zh. Fiz. Khim. 66-lag Lagutina, L. M. Kholod. Tekh. 1966, 43, 25 **1969**, *43*, 1308–1309 (hexafluorobenzene). (chlorodifluoromethane). 69-vos/she Vostrikov, A. A.; Sheludyakov, E. P.; Shilyakov, 66-loe/sch Löffler, H. J.; Schulz, W. Kältetechnik 1966, 18, A. A. Isv. Sib. Otd. Akad. Nauk. SSR., Ser. 9−15 (chloropentafluoroethane). Tekh. Nauk. 1969, 3, 105-109 (dichlorofluoro-

66-mat/loe

Matthias, H.; Löffler, H. J. Kältetechnik 1966,

18, 240-241 (octafluorocyclobutane).

70-cam/mus	Campbell, A. N.; Musbally, G. M. <i>Can. J. Chem.</i> 1970 , <i>48</i> , 3173–3184 (tetrachloromethane, trichloromethane).	75-ogu/tan	Oguchi, K.; Tanishita, I.; Watanabe, K.; Yamaguchi, T.; Sasayama, A. <i>Bull. JSME</i> . 1975 , <i>18</i> , 1456–1464 (chlorotrifluoromethane).
70-kle	Kletskii, A. V. <i>Thermophysical Properties of Freon-22</i> : Moscow, 1970; quoted in 1985-koh/kra (chlorodifluoromethane).	75-sha/ras	Shavandrin, A. M.; Rasskazova, T. Yu.; Chashkin, Yu. R. <i>Tr. Khim. Khim. Tekhnol.</i> 1975 (4), 100–104 (trifluoromethane).
70-tay/ree	Taylor, Z. L.; Reed, T. M., III. <i>AIChE J.</i> 1970 , <i>16</i> , 738–741 (tetradecafluoro-2,3-dimethylbutane, tetradecafluorohexane, tetradecafluoro-2-	76-aga/kaf	Agaev, T. S.; Kafarov, T. E.; Kerimov, A. M. VINITI (Deposited document), No. 1196–76, 1976 (chlorobenzene).
71-amb/spr	methylpentane). Ambrose, D.; Sprake, C. H. S. <i>J. Chem. Soc.</i>	77-aft/zaw	Aftienjew, J.; Zawisza, A. <i>J. Chem. Thermodyn.</i> 1977 , <i>9</i> , 153–165 (dodecafluoropentane).
, 5 3,000	1971 , <i>A</i> , 1263–1266 (chloropentafluorobenzene, pentafluorobenzene, methylpentafluorobenzene).	77-dup	E. I. Du Pont de Nemours and Co., <i>R-134a Refrigerant Thermodynamic Properties</i> ; 1977 (1,1,1,2-tetrafluoroethane).
71-nil/tre	Nilsel'son, L. A.; Tret'yakova, K. V.; Yatko, M. E.; Tsirut, E. K.; Autonova, N. P. Teplofizicheskie Svoistva Veshchestv i	77-kho/gub	Khodeeva, S. M.; Gubochkina, I. V. <i>Russ. J. Phys. Chem.</i> 1977 , <i>51</i> , 998–1001 (chlorotrifluoromethane, trifluoromethane).
	Materialov (Thermophysical Properties of Matter and Substances); Tabinovich, V. A., Ed.; Standart Publ.: Moscow, 1971; Vol. 4, pp	77-kij/sai	Kijima, J.; Saikawa, K.; Watanabe, K.; Oguchi, K.; Tanishita, I. <i>Proc. 7th Symp. Thermophys. Prop.</i> 1977 , <i>7</i> , 480–488 (hexafluoroethane).
	125—129 (1,2-dibromo-2-chloro-1,1,2-tri-fluoroethane).	77-kry/pow	Krynicki, K.; Powles, J. G.; Rigamonti, A. <i>Mol. Phys.</i> 1977 , <i>34</i> , 1717–1726 (trichloromethane).
71-zer/kog	Zernov, V. S.; Kogan, V. B.; Lyubetskii, S. G.; Duntov, F. I. <i>Zh. Prikl. Khim.</i> 1971 , <i>44</i> , 683–686 (3,3,3-trifluoro-1-propene).	77-ort/pat	Orton, M. L.; Patrick, C. R.; Tomes, F. <i>J. Fluorine Chem.</i> 1977 , <i>10</i> , 507–521 (tetrachloromethane, tetradecafluoromethylcyclo-
72-mou/kay	Mousa, A. H. N.; Kay, W. B.; Kreglewski, A. <i>J. Chem. Thermodyn.</i> 1972 , <i>4</i> , 301–311 (octafluoropropane, tetradecafluorohexane, octafluorocyclobutane, hexafluorobenzene).	77-rat/str	hexane, hexafluorobenzene). Rathjen, W.; Straub, J. <i>Proc. Symp. Thermophys. Prop.</i> 1977 , <i>7</i> , 839–850 (bromotrifluoromethane, chlorotrifluoromethane, dichlorodifluoro-
72-per/ale	Perel'shtein, I. I.; Aleshin, Yu. P. <i>Kholod. Tekh.</i> 1972 , <i>49</i> , 23 (bromotrifluoromethane).	77	methane, chlorodifluoromethane).
72-rae/str	Rätzsch, M. I.; Strauch, G. Z. Phys. Chem. 1972 , 249, 243–252 (trichloromethane).	77-rat/str-1	Rathjen, W.; Straub, J. <i>Heat Transfer Boiling</i> 1977 , 425–451 (bromotrifluoromethane, chlorotrifluoromethane).
73-amb/spr	Ambrose, D.; Sprake, C. H. S.; Townsend, R. <i>J. Chem. Soc. Faraday I</i> 1973 , <i>69</i> , 839–841 (1,1,1-trichloroethane).	77-skr/mur	Skripov, V. P.; Muratov, G. N. <i>Russ. J. Phys. Chem.</i> 1977 , <i>51</i> , 806–808 (1,4-dibromooctafluorobutane, tetradecafluorohexane, chloro-
73-gel/por	Geller, V. Z.; Porichanskii, E. G.; Paramonov, I. A. <i>Vopr. Tekhn. Teplofiz.</i> 1973 , (4), 63–67 (1,1,2-trichloro-1,2,2-trifluoroethane).		pentafluorobenzene, hexafluorobenzene, penta- fluorobenzene, (trifluoromethyl)pentafluoro- benzene).
73-per/ale	Perel'shtein, I. I.; Aleshin, Yu. P. <i>Kholod. Tekh.</i> 1973 , <i>50</i> , 30–33 (Chemical Abstracts	77-toc/you	Toczylkin, L. S.; Young, C. L. <i>Aust. J. Chem.</i> 1977 , <i>30</i> , 1591–1593 (tetrachloromethane).
74-amb/bro	78:151836) (bromochlorodifluoromethane). Ambrose, D.; Broderick, B. E.; Townsend, R. <i>J. Appl. Chem. Biotechnol.</i> 1974 , 24, 359–372	78-hej/pow	Hejmadi, A. V.; Powers, J. E. Paper presented to the AIChE meeting, Miami, Florida, Nov. 1978; quoted in 79-saj/kij (hexafluoroethane).
	(1,3,5-trichlorotrifluorobenzene, 1,2,3,4-tetra- fluorobenzene, 1,2,3,5-tetrafluorobenzene, 1,2,4,5-tetrafluorobenzene, (trifluoromethyl)-	78-joc/sch	Jockers, R.; Schneider, G. M. <i>Ber. Bunsen-Ges. Phys. Chem.</i> 1978 , 82, 576–582 (1,4-difluorobenzene).
74-gru/she	pentafluorobenzene). Gruzdev, V. A.; Sheludyakov, E. P.; Kiriyanenko, A. A.; Kolotov, Ya, L.; Lavrov,	78-mas/sta	Mastroianni, M. J.; Stahl, R. F.; Sheldon, P. N. <i>J. Chem. Eng. Data</i> 1978 , <i>23</i> , 113–118 (1,1,2-trichloro-1,2,2-trifluoroethane).
	V. A.; Shilyakov, A. A.; Shestova, A. I.; Shumskaya, A. I. <i>Fluid Mech.anics - Sov.iet Res.earch</i> 1974 , <i>3</i> , 172–176 (1,2-dibromo-	78-zer/kog	Zernov, V. S.; Koga, V. V.; Lyubetskii, S. G.; Kobyakov, V. M. VINITI (Deposited document), No. 1479–78, 1978 (chloroethene).
74-hal/tow	1,1,2,2-tetrafluoroethane). Hales, J. L.; Townsend, R. <i>J. Chem. Thermodyn.</i> 1974, 6, 111–116 (chloropentafluorobenzene,	79-sai/kij	Saikawa, K.; Kijima, J.; Uematsu, M.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1979 , <i>24</i> , 165–167 (hexafluoroethane).
	1,3,5-trichlorotrifluorobenzene, hexafluorobenzene, pentafluorobenzene, 1,2,3,4-tetra-fluorobenzene, (trifluoromethyl)pentafluorobenzene, methylpentafluorobenzene).	79-sin/vin	Sinitsyn, E. N.; Vinogradov, V. E.; Mikhalevich, L. A. VINITI (Deposited document), No. 1335–79, 1979 (Russ.) (1-iodo-heptafluoro-propane).
74-hir/nag	Hirata, M.; Nagahama, K.; Sato, J.; Wakamatsu, N. Prepr. 8th Autumn Meeting Soc. Chem.	79-sha/li	Shavandrin, A. M.; Li, S. A. <i>InzhFiz. Zh.</i> 1979 , <i>37</i> , 830–834 (chlorotrifluoromethane).
74-kim	Eng. Jpn. 1974, 444 (chlorodifluoromethane). Kim, K. Y. Thesis, Univ. of Michigan, 1974 (hexafluoroethane).	80-gen/tej	Genco, J. M.; Teja, A. S.; Kay, W. B. <i>J. Chem. Eng. Data</i> 1980 , <i>25</i> , 350–355 (tetradeca-fluoromethylcyclohexane).

Thermophysical Properties, 1989; quoted in 94-you/mcl (1,1-dichloro-2,2,2-trifluoroethane).

Toczylkin, L. S.; Young, C. L. Aust. J. Chem. 80-toc/you 87-hig/ash Higashi, Y.; Ashizawa, M.; Kabata, Y.; Majima, 1980, 33, 465-469 (decafluorocyclohexene). T.; Uematsu, M.; Watanabe, K. JSME Int. J. 81-dav/mcg Davies, D. R.: McGlashan, M. L. J. Chem. **1987**, 30, 1106–1112 (1,1-difluoroethane). Thermodyn. 1981, 13, 377-383 (dodeca-87-oka/uem Okano, T.; Uematsu, M.; Watanabe, K. Int. J. fluorocyclohexane, hexafluorobenzene). Thermophys. 1987, 8, 217-229 (bromotrifluoromethane). 81-man/hal Mansoorian, H.; Hall, K. R.; Holste, J. C.; Davies, D. R.; Ewing, M. B.; Hugill, J. A.; 88-dav/ewi Eubank, P. T. J. Chem. Thermodyn. 1981, 13, McGlashan, M. L. Can. J. Chem. 1988, 66, 1001-1024 (chloromethane). 760-762 (dodecafluorocyclohexane). 81-val/lav Valyakin, V. N.; Lavrenchenko, G. K. VINITI ICI Chemicals and Polymers Ltd., Arcton 123, 88-ici (Deposited document), No. 3404-81, 1981 134A preliminary data sheet; Jan. 1988; pp (tetrafluoromethane). 2-3 (1,1,1,2-tetrafluoroethane). 82-hor/oka Hori, K.; Okazaki, S.; Uematsu, M.; Watanabe, 88-kub/tan Kubota, H.; Tanaka, Y.; Makita, T.; Kashiwagi, K. Proc. 8th Symp. Thermophys. Prop. 1982, H.; Noguchi, M. Int. J. Thermophys. 1988, 9, 380-386 (trifluoromethane). 85-101 (1-chloro-1,2,2,2-tetrafluoroet-82-mcl/tre McLure, I. A.; Trejo Rodriguez, A.; Soares, V. A. M. J. Chem. Thermodyn. 1982, 14, 402 88-wil/bas Wilson, D. P.; Basu, R. S. ASHRAE Trans. 1988, (decafluoro-2-methylpropane). 94/2, 2095-2104 (1,1,1,2-tetrafluoroeth-Wilson, D. P.; Hules, K. R. Proc. 8th Symp. 82-wil/hul Thermophys. Props. 1982, 2, 361-369 (1,2-89-abd/akh Abdullaev, F. G.; Khundov, T. S.; Zhabiev, Yu. dichloro-1,1,2,2-tetrafluoroethane). A. Izv. Vyssh. Uchebn. Zaved. Neft Gaz 1989, 82-zhe Zheleznyi, V. P. Teplofiz. Svoistva Veshchestv i (4), 47-50 (fluorobenzene). Mater. 1982, 16, 70-79 (bromotrifluoro-89-bie/tur Bier, K.; Turk, M.; Chai, J. DKV-Tagungsbericht methane, dichlorodifluoromethane, chloro-1989, 16, band 2, 353-367 (1,2-dichloropentafluoroethane, 1-chloro-1,1-difluoroethane, 1,1,2,2-tetrafluoroethane). 1,1,1-trifluoroethane, 1,1-difluoroethane). Biswas, S. N.; Ten Seldam, C. A. T.; Bominaar, 89-bis/ten Shimanskaya, E. T.; Oleinikova, A. V.; 83-shi/ole S. A. R. C.; Trappeniers, N. J. Fluid Phase Bezruchko, I. V.; Shimanskii, Yu. I. Zh. Eksp. Equilib. 1989, 49, 1-7 (fluoromethane). Teor. Fiz. (Russ.) 1983, 85, 1277-1285 89-chr/sad Christou, G.; Sadus, R. J.; Young, C. L.; Svedja, (1,1,2-trichloro-1,2,2-trifluoroethane). P. Ind. Eng. Chem. Res. 1989, 28, 481-484 84-hig/oka Higashi, Y.; Okazaki, S.; Takaishi, Y.; Uematsu, (1,2-dichloroethane, (Z)-1,2-dichloroethene, M.; Watanabe, K. J. Chem. Eng. Data 1984, (E)-1,2-dichloroethene). 29, 31-36 (dichlorodifluoromethane, chloro-García-Sánchez, F.; Romero-Martinez, A.; Trejo, 89-gar/rom difluoromethane). A. J. Chem. Thermodyn. 1989, 21, 823-826 84-mom/uem Momoda, K.; Uematsu, M.; Watanabe, K. Ber. (dichloromethane). Bunsen-Ges. Phys. Chem. 1984, 88, 1007-He, Z.; Hong, J. Chin. J. Eng. Thermophys. 89-he/hon 1010 (tetradecafluoro-2-methylpentane). **1989**, 10, 233–235 (chlorodifluoromethane). 85-gar/tre Garcia-Sanchez, F.; Trejo, A. J. Chem. 89-ici ICI Chemicals and Polymers, HFA 125 Thermodyn. 1985, 17, 981-983 (1,2-dichloropreliminary data sheet; 1989 (pentafluoroethane). Higashi, Y.; Uematsu, M.; Watanabe, K. Bull. 85-hig/uem 89-kab/tan Kabata, Y.; Tanikawa, S.; Uematsu, M.; JSME 1985, 28, 2660-2666 (bromotrifluoro-Watanabe, K. Int. J. Thermophys. 1989, 10, 605-616 (1,1,1,2-tetrafluoroethane). 85-hig/uem-1 Higashi, Y.; Uematsu, M.; Watanabe, K. Bull. 89-kub/yam Kubota, H.; Yamashita, T.; Tanaka, Y.; Makita, JSME 1985, 28, 2968-2973 (1,2-dichloro-T. Int. J. Thermophys. 1989, 10, 629-637 1,1,2,2-tetrafluoroethane). (1,1,1,2-tetrafluoroethane). 85-koh/kra Kohlen, R.; Kratzke, H.; Muller, S. J. Chem. McLinden, M. O.; Gallagher, J. S.; Weber, L. A.; 89-mcl/gal Thermodyn. 1985, 17, 1141-1151. Morrison, G.; Ward, D.; Goodwin, A. R. H.; 85-ole/shi Oleinikova, A. V.; Shimanskaya, E. T. Russ. J. Moldover, M. R.; Schmidt, J. W.; Chae, H. B.; Phys. Chem. 1985, 59, 912-913 (tetrachloro-Bruno, T. J.; Ely, J. F.; Huber, M. L. ASHRAE methane). Trans. 1989, 95/2, 263-283 (1,1-dichloro-85-sve Svetlichnyi, P. I. Teplofiz. Svoistva Veshchestv I 2,2,2-trifluoroethane, 1,1,1,2-tetrafluoroethane). *Mater.* **1985**, 22, 53–55 (tetrafluoromethane). Närger, U.; de Bruyn, J. R.; Stein, M.; Balzarini, 89-nae/deb 87-all Allied-Signal Inc.; Fluorocarbons for tomorrow; D. A. Phys. Rev. B 1989, 39, 11914-11919 1987; quoted in 89-kab/tan (1,1,1,2-tetrafluoro-(trifluoromethane). ethane). 89-vla/shv Vladimirov, B. P.; Shvets, Yu. F. Teplofiz. Svoistva I Mater. 1989, 28, 24-27 (octa-87-bom/bis Bominaar, S. A. R. C.; Biswas, S. N.; Trappeniers, N. J.; Ten Seldam, C. A. T. J. fluoropropane). Chem. Thermodyn. 1987, 19, 959-976 Weber, L. A. J. Chem. Eng. Data 1989, 34, 89-web (fluoromethane). 171-175 (chlorotrifluoromethane). Weber, L. A. Int. J. Thermophys. 1989, 10, 617-87-dau/jal Daubert, T. E.; Jalowka, J. W.; Goren, V. AIChE 89-web-1 627 (1,1,1,2-tetrafluoroethane). Symp. Ser. 1987, 83, No. 256, 128-156 (3,3,3-trifluoro-1-propene). 89-yam/kub Yamashita, T.; Kubota, H.; Tanaka, Y.; Makita, Garcia-Sanchez, F.; Trejo, A. J. Chem. T.; Kashiwagi, H. 10th Japan Symposium on 87-gar/tre

Thermodyn. 1987, 19, 359-361 (1,1-dichloro-

ethane).

237-240 (1,1-dichloro-2,2,2-trifluoroethane).

89-zhi/yee	Zhimai, H.; Yeeng, Z.; Jianfen, H. The Second Asian Thermophysical Properties Conference, 1989; pp 519–523; quoted in 94-van/nie (1-	90-web/lev	Weber, L. A.; Levelt Sengers, J. M. H. <i>Fluid Phase Equilib.</i> 1990 , <i>55</i> , 241–249 (1,1-di-chloro-2,2,2-trifluoroethele.)
	chloro-1,2,2,2-tetrafluoroethane).	90-yur/hol	Yurttas, L.; Holste, J. C.; Hall, K. R.; Gammon, B. E.; Marsh, K. N. <i>Fluid Phase Equilib</i> .
90-bie/oel	Bier, K.; Oellrich, L.; Turk, M.; Zhai, J. <i>DKV-Tagungsbericht</i> 1990 , <i>17</i> , band 2, 233–260 (1,1,1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane).	91-aiz/rey	1990, 59, 217–223 (trichlorofluoromethane). Aizpiri, A. G.; Rey, A.; Davila, J.; Rubio, R. G.; Zollweg, J. A.; Streett, W. B. <i>J. Phys. Chem.</i>
90-bie/tue	Bier, K.; Türk, M.; Zhai, J. <i>J. Sci. Tech. Froid</i> 1990 , 129–136 (chlorodifluoromethane, 1,2-dichloro-1,1,2,2-tetrafluoroethane).	91-arn/mac	1991 , <i>95</i> , 3351–3357 (trifluoromethane). Arnaud, D.; Macaudiere, S.; Niveau, L.; Wosinski, S. <i>Actes Congr. Int. Froid, 18th</i> , (2), 1991; pp 621–625 (1,1-dichloro-1-
90-bom/tra	Bominaar, S. A. R. C.; Trappeniers, N. J.; Biswas, S. N. <i>J. Phys. Chem.</i> 1990 , <i>94</i> , 1097—1100 (fluoromethane).	91-arn/mac-1	fluoroethane). Arnaud, D.; Macaudiere, S.; Niveau, L.; Wosinski, S. <i>Proceedings of the 18th</i>
90-cha/sch	Chae, H. B.; Schmidt, J. W.; Moldover, M. R. <i>J. Phys. Chem.</i> 1990 , <i>94</i> , 8840–8845 (1,2-dichloro-1,1,2-trifluoroethane, 1,1,2,2-		International Congress of Refrigeration; Montreal, Canada, August 10–17, 1991; pp 664–666 (1,1,1-trifluoroethane).
	tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-dichloro-1-fluoroethane, 1,1-difluoroethane).	91-bae/til	Baehr, H.D.; Tillner-Roth, R. <i>J. Chem. Thermodyn.</i> 1991 , <i>23</i> , 1063–1068 (1,1,1,2-tetrafluoroethane, 1,1-difluoroethane).
90-bie/oel	Bier, K.; Oellrich, L.; Turk, M.; Zhai, J. <i>DKV-Tagungsbericht</i> 1990 , <i>17</i> , band 2, 233–260 (1,1,1,2-tetrafluoroethane, 1-chloro-2,2-di-	91-chr/tra	Christou, G.; Tran, C.; Young, C. L. <i>Fluid Phase Equilib.</i> 1991 , <i>62</i> , 153–162 (1,2-dichloroethane).
90-fuk/wat	fluoroethane, 1,1-difluoroethane). Fukushima, M.; Watanabe, N.; Kamimura, T. <i>Trans. JAR</i> 1990 , <i>7</i> , 85–95 (1,1-dichloro-	91-kes/zhe	Kessel'man, P. M.; Zheleznyi, V. P.; Semenyuk, Yu. V. <i>Kholod. Tekh.</i> 1991 , (7), 9–11 (1,1,2-tetrafluoroethane).
	2,2,2-trifluoroethane, 1,1,1,2-tetrafluoroethane).	91-mor/war	Morrison, G.; Ward, D. K. <i>Fluid Phase Equilib.</i> 1991 , <i>62</i> , 65–86 (1,1,1,2-tetrafluoroethane).
90-gor	Gorenflo, D. Personal communication; quoted in 94-tur/zha (1,1,1,2,3,3,3-heptafluoropropane).	91-nag	Nagel, M. Thesis, Univ. Karslruhe; quoted in 94-tur/zha (1,1-dichloro-2,2,2-trifluoroethane, 1,1-difluoroethane, 1,1,1,2,3,3,3-heptafluoro-
90-gor/rot	Gorenflo, D.; Rott, W.; Sokol, P. DKV-Statusbericht 1990, Nr 6, 79–85		propane).
90-gor/zad	(1,1,1,2,3,3,3-heptafluoropropane). Gorchakovskii, V. K.; Zadov, V. E.;	91-pia/sat	Piao, C-C.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1991 , <i>36</i> , 398–403 (1,1-dichloro-2,2,2-trifluoroethane).
	Podvezennyi, V. N. <i>Inzh-Fiz. Zh.</i> 1990 , <i>59</i> , 122–126 (1,2-dichloro-1,1,2,3,3,3-hexa-fluoropropane).	91-sin/lun	Singh, R. R.; Lund, E. A. E.; Shankland, I. R. Proceedings of the CFC and Halon
90-hor/par	Horvath, A. L.; Parker, I. B.; Rathbone, P.; Wheelhouse, R. W. Paper presented at Purdue		International Conference: Baltimore, MD, 1991; p 451 (difluoromethane, pentafluoroethane).
	Univ. 1990; ICI ref. RHS02jmb/RWW1-120P (trichlorofluoromethane, 1,1-dichloro-2,2,2-trifluoroethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane).	91-tan/jin	Tang, S.; Jin, G. X.; Sengers, J. V. <i>Int. J. Thermophys.</i> 1991 , <i>12</i> , 515–540 (1,1,1,2-tetrafluoroethane).
90-mcg	McGlashan, M. L. J. Chem. Thermodyn. 1990 , 12, 653–663.	91-wan/adc	Wang, BH.; Adcock, J. L.; Mathur, S. B.; Van Hook, W. A. <i>J. Chem. Thermodyn.</i> 1991 , <i>23</i> , 699–710 (trichlorofluoromethane, chloro-
90-ohg/ume	Ohgaki, K.; Umezono, S.; Katayama, T. <i>J. Supercrit. Fluids</i> 1990 , <i>3</i> , 78–84 (trifluoro-	0.1	difluoromethane).
90-pia/sat	methane). Piao, CC.; Sato, H.; Watanabe, K. ASHRAE	91-yad/kum	Yada, N.; Kumagai, K.; Tamatsu, T.; Sato, H.; Watanabe, K. J. Chem. Eng. Data 1991, 36,
-	<i>Trans.</i> 1990 , <i>96</i> , 132–140 (1,1,1,2-tetrafluoro-ethane).	92-def/mor	12–14 (1-chloro-1,1-difluoroethane). Defibaugh, D. R.; Morrison, G. <i>J. Chem. Eng. Data</i> 1992 , <i>37</i> , 107–110 (chlorodifluoro-
90-rot	Rott, W. Thesis, Univ. Paderborn, 1990; quoted in 94-tur/zha (chlorodifluoromethane, 1,2-di-chloro-1,1,2,2-tetrafluoroethane).	92-def/mor-1	methane). Defibaugh, D. R.; Morrison, G. <i>Fluid Phase Equilib.</i> 1992 , <i>80</i> , 157–166 (pentafluoro-
90-sha/bas	Shankland, I. R.; Basu, R. S.; Wilson, D. P. <i>ASHRAE Trans.</i> 1990 , <i>96</i> , 317–322 (1-chloro-1,2,2,2-tetrafluoroethane).	92-fuk/wat	ethane). Fukushima, M.; Watanabe, N. <i>Trans. JAR</i> 1992 , 9, 247–255 (1-chloro-1,1-difluoroethane).
90-tru/mar	Trukshin, I. G.; Markovets, B. G.; Sagaidakova, N. S. <i>Kholod. Tekh.</i> 1990 , (2), 54–56 (1-chloro-2,2,2-trifluoroethane).	92-fuk/wat-1	Fukushima, M.; Watanabe, N. <i>Proc. 13th Jpn. Symp. Thermophys. Prop.</i> 1992 , 53–56;
90-tan/kab	Tanikawa, S.; Kabata, Y.; Sato, H.; Watanabe, K. J. Chem. Eng. Data 1990, 35, 381–385 (1,1-dichloro-2,2,2-trifluoroethane).	92-goo/def	quoted in 94-mat/tan (1,3-dichloro-1,2,2,3,3-pentafluoropropane). Goodwin, A. R. H.; Defibaugh, D. R.; Morrison,
90-web	Weber, L. A. <i>J. Chem. Eng. Data</i> 1990 , <i>35</i> , 237–240 (1.1-dichloro-2.2.2-trifluoroethane).		G.; Weber, L. A. <i>Int. J. Thermophys.</i> 1992 , <i>13</i> , 999–1009 (1,1-dichloro-2,2,2-trifluoro-ethane).

ethane).

	Jou	rnal of Chemical	and Engineering Data, Vol. 52, No. 5, 2007 1535
92-hig/ima	Higashi, Y.; Imazumi, H.; Usuba, S. <i>Proc. 13th Symp. Thermophys. Prop. Akita</i> 1992 , 65 (difluoromethane).	93-fuk-1	Fukushima, M. <i>Proc. 14th Jpn. Symp. Thermophys. Prop.</i> 1993 , 267 (difluoromethane, pentafluoroethane).
92-hub/ely 92-kru/str	Huber, M. L.; Ely, J. F. <i>J. Int. Refrig.</i> 1992 , <i>15</i> , 393–400 (1,1,1,2-tetrafluoroethane). Kruppa, B.; Straub, J. <i>Fluid Phase Equilib.</i> 1992 ,	93-fuk/oho	Fukushima, M.; Ohotoshi, S. Proc. 27th Jpn. Joint Conf. Air-cond. Refrig. Tokyo 1993, 173
92-lav/ruv	80, 305–321 (chlorodifluoromethane, 1,1,1,2-tetrafluoroethane). Lavrenchenko, G. K.; Ruvinskij, G. Ya.;	93-fuk/wat	(difluoromethane). Fukushima, M.; Watanabe, N. <i>Trans. JAR</i> 1993 , <i>10</i> (1), 75–86 (1-chloro-1,2,2,2-tetrafluoro-
92-1av/1uv	Iljushenko, S. V.; Kanaev, V. V. <i>Int. J. Refrig.</i> 1992 , <i>15</i> , 386–392 (1,1,1,2-tetrafluoroethane).	93-hol/nie	ethane). Holcomb, C. D.; Niesen, V. G.; Van Poolen, L.
92-ma/fan	Ma, P.; Fang, Z.; Zhang, J.; Ruan, Y. <i>J. Chem. Eng. Chin. Univ.</i> 1992 , <i>6</i> (2), 112–117 (1-chloropropane, 2-chloropropane).		J.; Outcalt, S. L. <i>Fluid Phase Equilib.</i> 1993 , <i>91</i> , 145–157 (difluoromethane, 1,1-difluoroethane).
92-nol/zol	Noles, J. R.; Zollweg, J. A. <i>J. Chem. Eng. Data</i> 1992 , <i>37</i> , 306–310 (chlorodifluoromethane).	93-li/ma	Li, Y.; Ma, P.; Ruan, Y. <i>Shiyou Huagong</i> 1993 , 22, 322–324 (1-bromopropane).
92-sal/wan	Salvi-Narkhede, M.; Wang, BH.; Adcock, J. L.; Van Hook, W. A. <i>J. Chem. Thermodyn.</i> 1992 , 24, 1065–1075 (bromodifluoromethane,	93-nag/bie	Nagel, M.; Bier, K. <i>DKV-Tagungsbericht</i> 1993 , 20, band 2, 39–59 (difluoromethane, pentafluoroethane).
92-sch/mol	1,1,1,2,3,3,3-heptafluoropropane). Schmidt, J. W.; Moldover, M. 1992; quoted in 93-web/goo (difluoromethane).	93-nis/kom	Nishiumi, H.; Komatsu, M.; Yokoyama, T.; Kohmatsu, S. <i>Fluid Phase Equilib.</i> 1993 , <i>83</i> , 109–117 (chlorodifluoromethane, 1,1,1,2-tetrafluoroethane).
92-tam/sat 92-tam/sat-1	Tamatsu, T.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1992 , <i>37</i> , 216–219 (1,1,2,2-tetrafluoroethane). Tamatsu, T.; Sato, T.; Sato, H.; Watanabe, K.	93-qia/nis	Qian, Z. Y.; Nishimura, A.; Sato, H.; Watanabe, K. <i>JSME Int. J. Ser. B</i> 1993 , <i>36</i> , 665–670 (difluoromethane).
92-tan/sat-1	Int. J. Thermophys. 1992, 13, 985–997 (1,1-difluoroethane). Tanikawa, S.; Tatoh, J.; Maezawa, Y.; Sato, H.;	93-tat/kuw	Tatoh, J.; Kuwabara, S.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1993 , <i>38</i> , 116–118 (1,1,2,2-tetrafluoroethane).
	Watanabe, K. <i>J. Chem. Eng. Data</i> 1992 , <i>37</i> , 74–76 (1-chloro-1,1-difluoroethane).	93-wag/mar	Wagner, W.; Marx, V.; Pruss, A. <i>Int. J. Refrig.</i> 1993 , <i>16</i> , 373–389 (chlorodifluorometh-
92-wan/liu 92-wil/wil	Wang, J.; Liu, Z. G.; Tan, L. C.; Yin, J. M. Fluid Phase Equilib. 1992, 80, 203–211 (chlorodifluoromethane, 1,1-difluoroethane). Wilson, L. C.; Wilding, W. V.; Wilson, G. M.;	93-wan/ma	ane). Wang, H.; Ma, Y.; Lu, C.; Tian, Y. Gongcheng Rewuli Xuebao 1993, 14, 122–124 (1,1,1-trifluoroethane).
	Rowley, R. L.; Felix, V. M.; Chisolm-Carter, T. <i>Fluid Phase Equilib.</i> 1992 , 80, 167–177	93-wat/sat	Watanabe, K.; Sato, H. <i>Science et Technique du Froid</i> 1993 , 215–225 (difluoromethane).
92-wir/bra	(pentafluoroethane). Wirbser, H.; Brauning, G.; Gurtner, J.; Ernst, G. <i>J. Chem. Thermodyn.</i> 1992 , 24, 761–772	93-web/goo	Weber, L. A.; Goodwin, A. R. H. <i>J. Chem. Eng. Data</i> 1993 , <i>38</i> , 254–256 (difluoromethane).
93-bey/des	(1,1,1,2,3,3,3-heptafluoropropane). Beyerlein, A. L.; DesMarteau, D. D.; Hwang, S. H.; Smith, N. D.; Joyner, P. A. <i>ASHRAE</i>	94-boy/web	Boyes, S. J.; Weber, L. A. <i>Int. J. Thermophys.</i> 1994 , <i>15</i> , 443–460 (1-chloro-1,2,2,2-tetra-fluoroethane).
	<i>Trans.</i> 1993 , 99, 368–379 (1-chloro-1,1,2,3, 3,3-hexafluoropropane, 2-chloro-1,1,1,3,3,3-hexafluoropropane, 1,2-dichloro-1,1,3,3,3-	94-def/mor	Defibaugh, D. R.; Morrison, G.; Weber, L. A. <i>J. Chem. Eng. Data</i> 1994 , <i>39</i> , 333–340 (difluoromethane).
	pentafluoropropane, 2,3-dichloro-1,1,1,2,3- pentafluoropropane, 1,1,1,2,2,3,3-heptafluoro-	94-dev/bae	de Vries, B.; Baehr, H. D. <i>DKV-Tagungsber</i> . 1994 , <i>21</i> (2), 1–11 (1,1,1-trifluoroethane).
	propane, 1,1,1,2,3,3,3-heptafluoropropane, 3-chloro-1,1,1,2,2-pentafluoropropane, 2,3-dichloro-1,1,1,3-tetrafluoropropane, 1,1,1,2,2,3-	94-hig	Higashi, Y. <i>Int. J. Refrig.</i> 1994 , <i>17</i> , 524–531 (difluoromethane, pentafluoroethane, 1,1,1,2-tetrafluoroethane).
	hexafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1,2,2,3,	94-hig-1	Higashi, Y. Unpublished data, 1994; quoted in 95-gia/kum (1,1,1-trifluoroethane).
	3-hexafluoropropane, 3-chloro-1,1,2,2-tetra-fluoropropane, 2,3-dichloro-1,1,1-trifluoropropane, 1,1,1,2,2-pentafluoropropane, 1,1,1, 3,3-pentafluoropropane, 1,1,2,2-tetrafluoropro-	94-hol/van	Holcomb, C. D.; Van Poolen, L. J. <i>Fluid Phase Equilib.</i> 1994 , <i>100</i> , 223–239 (1,1,2-trifluoroethane).
	pane, 1,1,1,2,2,3,3,4,4-nonafluorobutane, 1,1,1, 2,2,3,3,4-octafluorobutane, 1,1,1,2,3,4,4,4-octafluorobutane, 1,1,2,2,3,3,4,4-octafluorobutane,	94-sag/sat	Sagawa, T.; Sato, H.; Watanabe, K. <i>High TempHigh Press.</i> 1994 , <i>26</i> , 193–201 (pentafluoroethane).
	1,1,1,2,2,3,3-heptafluorobutane, 4-chloro-1,1,2, 2,3,3-hexafluorocyclobutane).	94-sat/sat	Sato, T.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1994 , <i>39</i> , 851–854 (difluoromethane).
93-def/goo	Defibaugh, D. R.; Goodwin, A. R. H.; Morrison, G.; Weber, L. A. <i>Fluid Phase Equilib.</i> 1993 , 85, 271–284 (1,1-dichloro-1-fluoroethane).	94-sch/mol	Schmidt, J. W.; Moldover, M. R. <i>J. Chem. Eng. Data</i> 1994 , <i>39</i> , 39–44 (difluoromethane, pentafluoroethane).
02 ful	Eulzuchima M. Trans Inn Assas Patria 1002	04 sha	Chankland I D Drivete communication: quoted

94-sha

Shankland, I. R. Private communication; quoted

in 97-dua/sto (pentafluoroethane).

93-fuk

Fukushima, M. Trans. Jpn. Assoc. Refrig. 1993,

10, 87-93 (1,1,1-trifluoroethane).

Thermophys. 1995, 16, 1185-1192 (penta-

fluoroethane).

94-tur/zha	Turk, M.; Zhai, J.; Nagel, M.; Bier, K. Fortschritt-Berichte VDI, Reihe 19, Nr 79, 1994.	95-wil/wil	Wilson, L. C.; Wilding, W. V.; Wilson, H. L.; Wilson, G. M. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 765–768 (hexafluoroethane).
94-van/nie	Van Poolen, L. J.; Niesen, V. G.; Holcomb, C. D.; Outcalt, S. L. <i>Fluid Phase Equilib.</i> 1994 , <i>97</i> , 97–118 (chlorodifluoromethane, 1-chloro-	95-ye/sat	Ye, F.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 148–152 (pentafluoroethane).
	1,2,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane).	95-zha/ma	Zhao, X.; Ma, P. <i>Chin.ese J. Chem. Eng.</i> 1995 , 3, 233–239 (chlorodifluoromethane).
94-van/ros	Vandana, V.; Rosenthal, D. J.; Teja, A. S. <i>Fluid Phase Equilib.</i> 1994 , <i>99</i> , 209–218 (dodecafluoropentane, tetradecafluorohexane, hexadecafluoroheptane, octadecafluorooctane).	95-zha/sat	Zhang, HL.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 887–890 (1,1,1-trifluoroethane).
94-wid/sat	Widiatmo, J. V.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1994 , <i>39</i> , 304–308 (difluoromethane, pentafluoroethane, 1,1,1-	95-zha/sat-1	Zhang, H-L.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 1281–1284 (1,1,1,2,3,3-hexafluoropropane).
	trifluoroethane).	96-aoy/kis	Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe,
94-xia/tan	Xiang, H.; Tan, L. <i>Zhileng Xuebao</i> (Chinese) 1994, (3), 6–10 (difluoromethane).		K. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 1046–1051 (1,1,1,2-tetrafluoroethane, 1,1,1-trifluoroethane, 1,1,2,3,3-hexafluoropropane).
95-amb/tso	Ambrose, D.; Tsonopoulos, C. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 531–546 (Part 2 of this series).	96-def/gil	Defibaugh, D. R.; Gillis, K. A.; Moldover, M. R.; Schmidt, J. W.; Weber, L. A. <i>Fluid Phase</i>
95-amb/you	Ambrose, D; Young, C. L. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 345–357 (Part 1 of this series).		Equilib. 1996 , 122, 131–155 (1,1,1,2,3,3-hexafluoropropane).
95-boy/web	Boyes, S. J.; Weber, L. A. <i>J. Chem. Thermodyn.</i> 1995 , <i>27</i> , 163–174 (pentafluoroethane).	96-def/gil-1	Defibaugh, D. R.; Gillis, K. A.; Moldover, M. R.; Schmidt, J. W.; Weber, L. A. <i>Int. J. Refrig.</i> 1996 19, 285–294 (1,1,2,2,3-penta-
95-fu/han	Fu, YD.; Han, LZ.; Zhu, MS. Fluid Phase Equilib. 1995 , 111, 273–286		fluoropropane).
95-giu/kum	(difluoromethane). Giuliani, G.; Kumar, S.; Zazzini, P.; Polonara, F.	96-def/mor	Defibaugh, D. R.; Morrison, G. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 376–381 (1,1-difluoroethane).
	<i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 903–908 (1,1,1-trifluoroethane).	96-dau	Daubert, T. E. J. Chem. Eng. Data 1996, 41,
95-gud/tej	Gude, M; Teja, A. S. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 1025–1036 (Part 4 of this series).	96-dua/zhu	365–372 (Part 5 of this series). Duan, YY.; Zhu, MS.; Han, LZ. <i>Fluid</i>
95-kuw/aoy	Kuwabara, S.; Aoyama, H.; Sato, H.; Watanabe, K. <i>J. Chem. Eng. Data</i> 1995 , <i>40</i> , 112–116	yo dda Zha	<i>Phase Equilib.</i> 1996 , <i>121</i> , 227–234 (trifluoroiodomethane).
95-nag/bie	(difluoromethane, pentafluoroethane). Nagel, M.; Bier, K. <i>Int. J. Refrig.</i> 1995 , <i>18</i> ,	96-grz/ram	Grzyll, L. R.; Ramos, C.; Back, D. D. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 446–450 (decafluorobiphenyl).
	534-543 (pentafluoroethane, 1,1,1,2-tetra-fluoroethane).	96-hig/ike	Higashi, Y.; Ikeda, T. Fluid Phase Equilib. 1996,
95-nis/koh	Nishiumi, H.; Kohmatsu, S.; Yokoyama, T.; Kondo, A. <i>Fluid Phase Equilib.</i> 1995 , <i>104</i> ,	96-mus/ima	125, 139–147 (1,1,1-trifluoroethane). Mustafaev, M. R.; Imanov, A. S.; Kurbanova, S.
	131-143 (chlorodifluoromethane, 1,1-di-		K. <i>High Temp.</i> 1996 , <i>34</i> , 298–302 (hexadecafluoroheptane, octadecafluorooctane,
	chloro-2,2,2-trifluoroethane, 1,1,1,2-tetra-fluoroethane).		1,1,1,2,3,4,5,5,5-nonafluoro-4-trifluoromethyl-
95-sch	Schmidt, J. W. Private communication, 1995; quoted in 96-web/def (1,1,1,2,2-penta-		2-pentene, decafluoro-1,3-bis(trifluoromethyl)-cyclohexane, octadecafluorodecalin).
	fluoropropane).	96-sak/sat	Sako, T.; Sato, M.; Nakazawa, N.; Oowa, M.;
95-sin/mik	Sinitsyn, E. N.; Mikhalevich, L. A.; Yankovskaya, O. P.; Guletskaya, I. F.; Ivakin,		Yasumoto, M.; Ito, H.; Yamashita, S. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 802–805 (1-chloro-1,1-difluoroethane).
	V. B.; Muratov, G. N.; Ermakov, G. V. Thermophysical Properties of Fluoroorganic	96-sch	Schmidt, J. W. Unpublished data, 1966; quoted
	Compounds: Experimental Data and Methods of Calculation); Nauka: Ekaterinburg, 1995		in 97-def/mol (octafluoropropane, 1,1,1,2,3,3, 3-heptafluoropropane).
	(1,1,2,2,3,3,3-heptafluoro-1-iodopropane, 1,4-	96-sch/car	Schmidt, J. W.; Carrillo-Nava, E.; Moldover, M.
	dibromooctafluorobutane, 1,1,1,2,3,3,4,4,4-nonafluoro-2-iodobutane, tetradecafluoro-		R. Fluid Phase Equilib. 1996 , 122, 187–206 (1-chloro-1,2,2,2-tetrafluoroethane, 1,1,1-tri-
	hexane, 1 <i>H</i> -tridecafluorohexane, octadeca- fluorooctane, (trifluoromethyl)pentafluoro- benzene).		fluoroethane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1,1,3,3-penta-fluoropropane, 1,1,2,2,3-pentafluoropro-
95-tso/amb	Tsonopoulos, C.; Ambrose, D. J. Chem. Eng.		pane).
	Data 1995 , 40, 547–558 (Part 3 of this series).	96-tso/amb	Tsonopoulos, C.; Ambrose, D. <i>J. Chem. Eng. Data</i> 1996 , <i>41</i> , 645–656 (Part 6 of this
95-tsv/kle	Tsvetkov, O. B.; Kletski, A. V.; Laptev, Yu. A.;		series).
	Asambaev, A. J.; Zausaev, I. A. <i>Int. J.</i> Thermophys 1995 16, 1185—1192 (penta-	96-web/def	Weber, L. A.; Defibaugh, D. R. <i>J. Chem. Eng.</i> Data 1996, 41, 762—764 (1.1.1.2.2-penta-

Data 1996, 41, 762-764 (1,1,1,2,2-penta-

fluoropropane).

- 96-web/def-1 Weber, L. A.; Defibaugh, D. R. J. Chem. Eng. Data 1996, 41, 1477-1480 (1,1,1-trifluoroethane).
- 96-yat/hor Yata, J.; Hori, M.; Kawakatsu, H.; Minamiyama, T. Int. J. Thermophys. 1996, 17, 65-74 (chlorodifluoromethane, trifluoromethane, difluoromethane, pentafluoroethane, 1,1-difluoro-
- Defibaugh, D. R.; Carrillo-Nava, E.; Hurly, J. J.; 97-def/car Moldover, M. R.; Schmidt, J. W.; Weber, L. A. J. Chem. Eng. Data 1997, 42, 488-496 (1,1,1,2,2,3,3,4-octafluorobutane).
- 97-def/mol Defibaugh, D. R.; Moldover, M. R. J. Chem. Eng. Data 1997, 42, 160-168.
- 97-dev de Vries, B. Thesis, Univ. Hannover, 1997 (difluoromethane, pentafluoroethane).
- 97-dua/hwa Duarte-Garza, H. A.; Hwang, C. A.; Kellerman, S. A.; Miller, R. C.; Hall, K. R.; Holste, J. C.; Marsh, K. N.; Gammon, B. E. J. Chem. Eng. Data 1997, 42, 497-501 (1,1-dichloro-1fluoroethane).
- 97-dua/sto Duarte-Garza, H. A.; Stouffer, C. E.; Hall, K. R.; Holste, J. C.; Marsh, K. N.; Gammon, B. E. J. Chem. Eng. Data 1997, 42, 745-753 (pentafluoroethane).
- 97-ern/gue Ernst, G.; Gürtner, J.; Wirbser, H. J. Chem. Thermodyn. 1997, 29, 1125-1128 (tetradecafluoro-2-methylpentane).
- 97-hol/mag Holcomb, C. D.; Magee, J. W.; Scott, J. L.; Outcalt, S. L.; Haynes, W. M. NIST Technical Note 1397, available NTIS as No. PB98124845 (fluoromethane).
- 97-liu/lia Liu, Z.; Liang, D.; He, M.; Ju, B.; Yin, J. J. Eng. Thermophys. (Chinese) 1997, 18, 261-264 (1-chloro-2,2,2-trifluoroethane).
- Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; 97-ste/chi Nguyen, A. J. Chem. Eng. Data 1997, 42, 1021-1036 (1,2-dichloropropane, hexadecafluoroheptane).
- 97-til/yok Tillner-Roth, R.; Yokozeki, A. J. Phys. Chem. Ref. Data 26, 1273-1328.
- 97-van/hol Van Poolen, L. J.; Holcomb, C. D.; Niesen, V. G. Fluid Phase Equilib. 1997, 129, 105-111 (difluoromethane, 1-chloro-1,2,2,2-tetrafluoroethane, 1,1-difluoroethane).
- 97-yat/hor Yata, J.; Hori, M.; Kohno, K.; Minamiyama, T. High Temp.-High Press. 1997, 29, 19-24 (difluoromethane, 1,1,1-trifluoroethane).
- 98-bey/des Beyerlein, A. L.; DesMarteau, D. D.; Kul, I.; Zhao, G. Fluid Phase Equilib. 1998, 150-151, 287-296 (fluoroethane).
- 98-die/cro Diefenbacher, A.; Crone, M.; Turk, M. J. Chem. Thermodyn. 1998, 30, 481-496 (trifluoromethane).
- Ewing, M. B.; Ochoa, J. C. S. J. Chem. 98-ewi/och Thermodyn. 1998, 30, 189-198 (nonafluoro-(trifluoromethyl)cyclopentane).
- 98-fuj/nak Fujiwara, K.; Nakamura, S.; Noguchi, M. J. Chem. Eng. Data 1998, 43, 55-59 (1,1,1,2tetrafluoroethane, 1,1,1-trifluoroethane).
- Koboyashi, M.; Nishiumi, H. Fluid Phase 98-kob/nis Equilib. 1998, 144, 191-202 (pentafluoro-
- 99-die/tue Diefenbacher, A.; Türk, M. J. Chem. Thermodyn. 1999, 31, 905-919 (trifluoromethane, difluoromethane).

- 99-dua/shi Duan, Y.-Y.; Shi, L.; Zhu, M.-S.; Han, L.-Z. J. Chem. Eng. Data 1999, 44, 501-504 (trifluoroiodomethane).
- 99-poo/del Poot, W.; de Loos, Th. W. Phys. Chem. Chem. Phys. 1999, 1, 4293-4297 (trifluoromethane).
- 99-shi/dua Shi, L.; Duan, Y.-Y.; Zhu, M.-S.; Han, L.-Z.; Lei, X. Fluid Phase Equilib. 1999, 163, 109-117 (1,1,1,2,3,3,3-heptafluoropropane).
- 99-sot/kub Sotani, T.; Kubota, H. Fluid Phase Equilib. 1999, 161, 325-335 (1,1,1,3,3-pentafluoropropane).
- 2000-kao/mil Kao, C.-P. C.; Miller, R. N. J. Chem. Eng. Data 2000, 45, 295-297 (hexafluoroethane, octafluorocyclobutane).
- Magee, J. W.; Outcalt, S. L.; Ely, J. F. Int. J. 2000-mag/ Thermophys. 2000, 21, 1097-1121 (chloroout trifluoromethane).
- 2000-mor/lui Morton, D. W.; Lui, M. P. W.; Tran, C. A.; Young, C. L. J. Chem. Eng. Data 2000, 45, 437-439 (1,2-dichloropropane, 1,3-dichloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 2-chloro-2-methylpropane, 1-chloropentane, 2-chloro-2-methylbutane, 3-chloro-3-methylpentane, 1-chlorohexane, 1-chloroheptane, 1-chlorooctane, chlorocyclohexane, 1-chloro-2,4-difluorobenzene, 1-chloro-2,5-difluorobenzene, 1-chloro-3,4difluorobenzene, 1-chloro-3,5-difluorobenzene, 1,2,3-trifluorobenzene, 1,2,4-trifluorobenzene, 1,3,5-trifluorobenzene, 1-bromo-2-fluorobenzene, 1-bromo-3-fluorobenzene, 1-bromo-4fluorobenzene, 1-chloro-2-fluorobenzene,1chloro-3-fluorobenzene, 1-chloro-4-fluorobenzene, 1,3-dichlorobenzene, 1,2-difluorobenzene, 1,3-difluorobenzene, 1,4-difluorobenzene, chlorobenzene, 2-bromo(trifluoromethyl)benzene, 3-bromo(trifluoromethyl)benzene, 4-bromo(trifluoromethyl)benzene, 1-methyl-2,4-difluorobenzene, 1-methyl-2,5difluorobenzene, 1-methyl-2,6-difluorobenzene, 1-methyl-3,4-difluorobenzene, 1-fluoro-2methylbenzene, 1-fluoro-3-methylbenzene, 1-fluoro-4-methylbenzene).
- 2001-bas Basile, G. Private communication; quoted in 2002-bob/fed (hexafluoro-1,3-butadiene).
- 2001-def/sch Defibaugh, D.; Schmidt, J. Private communication; quoted in 2002-sca/bob (1,1,1,2,3,3,3-heptafluoropropane).
- 2001-hor/pra Horstmann, S.; Prahm, R.; Fisher, K. Private communication; quoted in 2002-sca/pia (1,1,1,2,3,3,3-heptafluoropropane).
- 2001-kud/ Kudchadker, A. P.; Ambrose, D.; Tsonopoulos, amb C. J. Chem. Eng. Data 2001, 46, 457-479 (Part 7 of this series).
- 2001-tso/amb Tsonopoulos, C.: Ambrose, D. J. Chem. Eng. Data 2001, 46, 480-485 (Part 8 of this series).
- 2001-zha/dua Zhang, C.; Duan, Y.-Y.; Shi, L.; Zhu, M.-S.; Han, L.-Z. J. Therm.al Sci. 2001, 10, 193-197 (pentafluoroethane).
- 2002-bob/fed Bobbo, S.; Fedele, L.; Scattolini, M.; Camporese, R. J. Chem. Eng. Data 2002, 47, 179-182.
- 2002-gru/kha Gruzdev, V. A.; Khairulin, R. A.; Komarov, S. G.; Stankus, S. V. Int. J. Thermophys. 2002, 23, 809-824 (1,1,1,2,3,3,3-heptafluoropropane).

2002-hu/che	Hu, P.; Chen, ZS.; Cheng, WL. J. Chem. Eng.		2004, 49, 1615-1621 (pentafluoroethane,
	Data 2002 , 47, 20–22 (1,1,1,2,3,3,3-hepta-		1,1,1,2,3,3,3-heptafluoropropane, 1,1,1,2,3,3-
	fluoropropane).		hexafluoropropane).
2002-sca/bob	Scalabrin, G.; Bobbo, S.; Chouai, A. J. Chem.	2004-wan/	Wang, ZW.; Duan, YY. J. Chem. Eng. Data
	Eng. Data 2002 , 47, 258–261.	dua	2004 , 49, 1581–1585 (1,1,1,2,3,3,3-hepta-
2002-sca/pia	Scalabrin, G.; Piazza, L.; Richon, D. Fluid Phase		fluoropropane, 1,1,1,3,3-pentafluoropropane).
	Equilib. 2002 , 199, 33-51.	2005-fam/bal	Fameli, N.; Balzarini, D. A. Phys. Rev. E 2005,
2003-din	Di Nicola, G. J. Chem. Eng. Data 2003, 48,		72, 056105, 1-6 (1,1-difluoroethene).
	1332–1336 (1,1,1,2,3,3,3-heptafluoropropane).	2006-mar/	Marsh, K. N.; Young, C. L.; Morton, D. W.;
2003-yas/	Yasumoto, M.; Yamada, Y.; Murata, J.; Urata,	you	Ambrose, D.; Tsonopoulos, C. J. Chem. Eng.
yam	S.; Otake, K. J. Chem. Eng. Data 2003, 48,		Data 2006, 51, 305-314 (Part 9 in this
	1368-1379 (1,1,1,2-tetrafluoroethane,		series).
	1-chloro-1,1-difluoroethane).	2006-nik	Nikitin, E. Personal communication to K. N.
2004-dua/	Duan, YY.; Wang, ZW.; Meng, L.; Sun, XY.		Marsh, 1996 (1,1,2,2,3,3,3-heptafluoro-1-
wan	Fluid Phase Equilib. 2004 , 225, 102-106		iodopropane, 1,4-dibromooctafluorobutane,
	(1,1,1-trifluoroethane, 1,1,1,3,3,3-hexafluoro-		1,1,1,2,3,3,4,4,4-nonafluoro-2-iodobutane,
	propane).		tetradecafluorohexane, 1H-tridecafluorohexane,
2004-fro/krz	Froba, A. P.; Krzeminski, K.; Leipertz, A. Int. J.		octadecafluorooctane, (trifluoromethyl)penta-
	Thermophys. 2004, 25, 987-1004 (1,1,1,3,3-		fluorobenzene).
	pentafluorobutane).	2006-wie	Wieser, M. E. Pure Appl. Chem. 2006, 78,
2004-hu/che	Hu, P.; Chen, ZS. Fluid Phase Equilib. 2004,		2051-2066.
	221, 7–13 (1,1,1,2,3,3,3-heptafluoropropane).		
2004-uch/yas	Uchida, Y.; Yasumoto, M.; Yamada, Y.; Ochi,	Received for re	view June 12, 2007. Accepted June 20, 2007.
-	K.; Furuya, T.; Otake, K. J. Chem. Eng. Data	JE700336G	