Proposition: Assume that $\{\mu_n\}_{n=1}^{\infty}$ and $\{\beta_n\}_{n=1}^{\infty}$ be nonnegative real numbers such that $\sum_{n=1}^{\infty}\beta_n=1$. Then $\mu=\sum_{n=1}^{\infty}\beta_n\mu_n$ is a probability distribution and for every Borel function $g:\mathbb{R}\to\mathbb{R}$ we have $\mathbb{E}_{\mu}(g)=\sum_{n=1}^{\infty}\beta_n\mathbb{E}_{\mu_n}(g)$ when both sides are defined.

Example: $\mu_{Y} = \sum_{k=0}^{3} P(Y=k) \delta_{k}$, where δ_{k} is the point-mass distribution. Since $E_{\delta_{k}}(g) = g(k)$, we have then $E_{Y}(g) = \sum_{k=0}^{3} g(k) P(Y=k) = E_{P}(g(Y))$

Example: If $X \sim \exp(1)$, then $\mu = 0.6 \delta_0 + 0.4 \mu_X$ can model amount of rainfall.

Corollary: Let X, Y be RVs. Then $\mu_X = \mu_Y$ if and only if E(g(X)) = E(g(Y)) for all Borel $g: \mathbb{R} \rightarrow \mathbb{R}$

Theorem: (Fatou's Lemma) Let $\{x_n\}_{n=1}^{\infty}$ be a sequence of RVs on (Ω, \mathcal{F}, P) . Assume $x_n \ge C$ for every $n \in \mathbb{N}$ for some $C \in \mathbb{R}$. Then

 $E(\liminf_{n\to\infty} X_n) \leq \liminf_{n\to\infty} E(X_n)$

Theorem: (Dominated Convergence Theorem) Let $2 \times n_3^\infty n_{=1}^\infty$ be a sequence of RVs on (Ω, \mathcal{F}, P) . Assume that $2 \times n_3^\infty - n_3 = n \cdot n_3 = n_3 =$

 $E(\liminf_{n\to\infty} X_n) = E(0) = 0 \leq \liminf_{n\to\infty} E(X_n) = 1.$

Example: Consider ([0,1], 33([0,1]), λ) and for each new $X_n = \begin{cases} 1 & \text{Lo}, \frac{1}{2} \end{cases}$ if n is even $\begin{cases} 1 & \text{Li}, 1 \end{cases}$ if n is odd

 $\lim_{n\to\infty}\inf_{X_n=0} x_n = 0 \quad \text{a.s.} \quad \text{and} \quad E(X_n) = \frac{1}{2}.$

Moment Generating Functions

Definition: The moment generating function (MGF) of a

RV X is the function $M_X: \mathbb{R} \to \mathbb{L}_{0,\infty}$ defined by $M_X(s) = \mathbb{E}(e^{sX})$

Example: Let $X \sim \text{Uniform} [a_1b]$, Then $f_x(t) = \frac{1}{b-a} 1_{[a,b]}(t)$.

Then $M_X(s) = \int_{[a,b]} e^{sx} \frac{1}{b-a} dx = \frac{1}{(b-a)s} (e^{bs} - e^{as}), s \neq 0$

and $M_{\times}(0) = 1$.

Example: Let $X \sim \text{Poisson}(\lambda)$. Then $P(X=n) = \frac{e^{-\lambda}\lambda^n}{n!}$

for ne INo. Then

 $M_X(s) = \sum_{n=0}^{\infty} e^{sn} \cdot \frac{e^{-\lambda} \lambda^n}{n!} = e^{-\lambda} \sum_{n=1}^{\infty} \frac{(\lambda e^s)^n}{n!} = e^{-\lambda} e^{\lambda e^s}$

Example: Let $X \sim \exp(\beta)$ with $f_X(t) = \beta e^{-\beta t} \mathcal{L}_{[0,\infty)}(t)$

Then

$$M_{x}(s) = \int_{0}^{\infty} e^{sx} \beta e^{-\beta x} dx = \beta \int_{0}^{\infty} e^{-(\beta-s)x} dx = \begin{cases} \frac{\beta}{\beta-s} & \beta-s > 0 \end{cases}$$

Example: $X \sim Cauchy$ with $f_X(t) = \frac{1}{\pi(1+t)^2}$. Then

$$M_{X}(S) = \int_{-\infty}^{\infty} \frac{e^{SX}}{\pi(1+x)^{2}} dx = \begin{cases} \infty & \text{if } S \neq 0 \\ 1 & \text{if } S = 0 \end{cases}$$

Proposition: Let X,Y be a RV.

(i) M_{\times} (o) = 1

(ii) If X_1Y are independent RVs, then $M_{X+Y}(s) = M_X(s)M_Y(s)$ (iii) If $M_X(s) = M_Y(s)$ is finite for all $s \in (-a,a)$ for a > 0, then $\mu_X = \mu_Y$.

Example: If X_1 , X_2 are independent RVs with $X_1 \sim Poissun(X_1)$

 $X_2 \sim \text{Poisson}(\lambda_2)$. Then $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$

Indeed, for se IR

$$M_{X_1+X_2}(s) = M_{X_1}(s) M_{X_2}(s) = e^{-\lambda_1 + \lambda_1 e^s} e^{-\lambda_2 + \lambda_2 e^s}$$
$$= e^{-(\lambda_1 + \lambda_2) + (\lambda_1 + \lambda_2)e^s}$$

which is the MGF of Poisson $(\lambda_1 + \lambda_2)$, by (iii) $X_1 + X_2 \sim \text{Poisson}(\lambda_1 + \lambda_2)$

Theorem: Let X be a RV. Assume $M_X(s) < \infty \forall s \in (-a,a)$

for some a > 0. Then

$$M_X(s) = \sum_{n=0}^{\infty} \frac{s^n E(X^n)}{n!} \forall s \in (-\alpha, \alpha)$$

and Consequently

$$\frac{d^{n}M_{x}(s)}{ds^{n}}\Big|_{s=0} = E(X^{n})$$

Proof: Let se (-aia). Then

 $M_X(s) = E(e^{sX}) = E\left(\frac{\infty}{h=1} \frac{s^n x^n}{n!}\right). \text{ Let } S_N = \sum_{n=1}^N \frac{s^k x^k}{n!} \rightarrow e^{sX} a.s$ $|S_N| \leq \sum_{n=1}^N \frac{|s^n x^n|}{n!} \leq e^{s|x|} \leq e^{sX} + e^{-sX} = Y, \text{ and note}$ $E(e^{sX} + e^{-sX}) < \infty, \text{ So } E(e^{sX}) = \lim_{n \to \infty} E(S_N) = \sum_{n=1}^\infty \frac{s^n E(x^n)}{n!}$

by DCT.

Remark: $\frac{d^n}{ds^n} E(e^{sX}) \stackrel{?}{=} E(\frac{d^n}{ds^n} e^{sX}) = E(X^n e^{sX})$