Analiza matematyczna 1 Lista zadań nr 9 (całki)

1. Przyjmując w definicji całki oznaczonej podział równomierny przedziału całkowania oblicz:

a)
$$\int_{-2}^{1} (2x - 1) dx$$
; b) $\int_{2}^{3} x^{2} dx$.

2. Korzystając z twierdzenia Newtona-Leibniza oblicz całki:

a)
$$\int_{1}^{4} \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right) dx$$
; b) $\int_{-1}^{2} x \left(1 + x^{3}\right) dx$; c) $\int_{0}^{2} \frac{x - 1}{x + 1} dx$; d) $\int_{0}^{\pi/3} (\tan x)^{2} dx$.

3. Korzystając z definicji całki oznaczonej oraz faktu, że funkcje ciągłe są całkowalne uzasadnij równości:

a)
$$\lim_{n\to\infty} \frac{1^3 + 2^3 + \ldots + n^3}{n^4} = \frac{1}{4}$$
; b) $\lim_{n\to\infty} \frac{1}{n} \left(\cos\frac{\pi}{2n} + \cos\frac{2\pi}{2n} + \ldots + \cos\frac{n\pi}{2n}\right) = \frac{2}{\pi}$;

c)
$$\lim_{n \to \infty} \frac{1}{n\sqrt{n}} \left(\sqrt{n+1} + \sqrt{n+2} + \dots + \sqrt{2n} \right) = \frac{2}{3} \left(2\sqrt{2} - 1 \right).$$

4. Oblicz podane całki nieoznaczone:

a)
$$\int \left(x^3 + \frac{4}{x} - 3\sqrt{x}\right) dx$$
; b) $\int e^{-x} \cdot 3^{2x} dx$; c) $\int \frac{x^3 + \sqrt[3]{x^2} - 1}{\sqrt{x}} dx$.

5. Metodą całkowania przez części oblicz całki nieoznaczone:

a)
$$\int xe^{-3x} dx$$
; b) $\int (x+1)^2 e^x dx$; c) $\int \frac{x}{\cos^2 x} dx$;

d)
$$\int x^2 \sin x \, dx$$
; e) $\int \ln(x+1) \, dx$; f) $\int \frac{\arccos x}{\sqrt{x+1}} \, dx$;

g)
$$\int e^{2x} \sin x \, dx$$
; h) $\int \sin x \sin 3x \, dx$; i) $\int \cos x \sin 3x \, dx$;

j)
$$\int x \ln x \, dx$$
; k) $\int x^2 \ln x \, dx$; l) $\int \sin^3 x \, dx$; m) $\int \cos^4 x \, dx$.

6. Stosując odpowiednie podstawienia oblicz całki nieoznaczone:

a)
$$\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$$
; b) $\int \frac{\sqrt{1+4x}}{x} dx$; c) $\int \frac{\cos x}{\sqrt{1+\sin x}} dx$;

d)
$$\int x \sin(x^2 + 4) dx$$
; e) $\int x^2 \sqrt[5]{5x^3 + 1} dx$; f) $\int \frac{1}{\sqrt{x} + 2} dx$.

g)
$$\int \frac{\ln x}{x} dx$$
; h) $\int \frac{e^x}{e^{2x} + 1} dx$; i) $\int \frac{5\sin x}{3 - 2\cos x} dx$.

7. Oblicz całki z ułamków prostych pierwszego rodzaju:

a)
$$\int \frac{dx}{(x-3)^7}$$
; b) $\int \frac{5dx}{(2-7x)^3}$; c) $\int \frac{8dx}{9x+20}$.

8. Oblicz całki z ułamków prostych drugiego rodzaju:

a)
$$\int \frac{dx}{x^2 + 4x + 29}$$
; b) $\int \frac{(6x+3)dx}{x^2 + x + 4}$; c) $\int \frac{(4x+2)dx}{x^2 - 10x + 29}$.

9. Oblicz całki z funkcji wymiernych:

a)
$$\int \frac{dx}{(x-1)x^2}$$
; b) $\int \frac{dx}{(x^2+1)(x^2+4)}$; c) $\int \frac{(5-4x)dx}{x^2-4x+20}$; d) $\int \frac{xdx}{x^4-1}$.

10. Oblicz całki z funkcji trygonometrycznych:

a)
$$\int \sin^3 x \, dx$$
; b) $\int \sin^4 x \cos^3 x \, dx$; c) $\int \sin^2 2x \sin^2 x \, dx$;

d)
$$\int \frac{dx}{\sin x + \tan x}$$
; e) $\int \frac{1 + \tan x}{\cos x} dx$; f) $\int \frac{dx}{1 + 2\cos^2 x}$;

g)
$$\int \frac{dx}{\sin x + \cos x}$$
; h) $\int \frac{dx}{3\sin x + 4\cos x + 5}$; i) $\int \frac{dx}{\cos x}$.

11. Metodą całkowania przez części oblicz całki oznaczone:

a)
$$\int_{0}^{\pi/4} x \sin 2x \, dx;$$
 b)
$$\int_{\sqrt{e}}^{e} \frac{\ln x}{x^2} \, dx;$$
 c)
$$\int_{0}^{1} \arcsin x \, dx.$$

12. Oblicz całki oznaczone dokonując odpowiednich podstawień:

a)
$$\int_{0}^{\pi} \sin x e^{\cos x} dx$$
; b) $\int_{1}^{3} \frac{x}{\sqrt{x+1}} dx$; c) $\int_{0}^{1} x \sqrt{x+1} dx$;

d)
$$\int_{0}^{1/4} \frac{1}{\sqrt{x(1-x)}} dx$$
; e) $\int_{0}^{3} \sqrt{9-x^2} dx$; f) $\int_{0}^{\frac{\ln 3}{2}} \frac{e^x}{1+e^{2x}} dx$.

13. Oblicz pola obszarów ograniczonych krzywymi:

a)
$$y = 2x - x^2$$
, $x + y = 0$; b) $y = x^2$, $y = x^2/2$, $y = 3x$; c) $y = 1/x^2$, $y = x$, $y = 4$;

d)
$$y = 1, y = \frac{4}{x^2 + 1}$$
; e) $y^2 = -x, y = x - 6, y = -1, y = 4$;

f)
$$y = 2^x, y = 2, x = 0;$$
 g) $y = \sin x, y = 1/2, (0 \le x \le \pi);$

h)
$$yx^4 = 1, y = 1, y = 16$$
; i) $y = 2\sqrt{x}, y = \sqrt{5-x}, y = 0$.

14. Oblicz objętości brył powstałych z obrotu figur T wokół wskazanych osi:

a)
$$T: 0 \le x \le 2, 0 \le y \le 2x - x^2, Ox;$$
 b) $T: 0 \le x \le \sqrt{5}, 0 \le y \le \frac{2}{\sqrt{x^2 + 4}}, Oy;$

c)
$$T:0\leq x\leq \pi/4, 0\leq y\leq \tan x,\ Ox;$$
 d) $T:0\leq x\leq 1, x^2\leq y\leq \sqrt{x},\ Oy;$

15. Oblicz długości krzywych:

a)
$$y = \ln \frac{e^x + 1}{e^x - 1}$$
, $2 \le x \le 3$; b) $y = x^2$, $0 \le x \le 1$; c) $y = 2\sqrt{x^3}$, $0 \le x \le 11$;

e)
$$y = e^x$$
, $\frac{\ln 2}{2} \le x \le \frac{\ln 3}{2}$; f) $y = \frac{x^5}{10} + \frac{1}{6x^3}$, $1 \le x \le 2$;

g)
$$y = 1 - \ln \cos x$$
, $0 < x < \pi/4$.

16. Oblicz pola powierzchni powstałych z obrotu wykresów funkcji f wokół wskazanych osi:

a)
$$f(x) = \cos x, 0 \le x \le \pi/2, Ox;$$
 b) $f(x) = \sqrt{4+x}, -4 \le x \le 2, Ox;$

c)
$$f(x) = \ln x, 1 \le x \le \sqrt{3}$$
, Oy ; d) $f(x) = |x - 1| + 1, 0 \le x \le 2$, Oy .