Clinical Trial Process - extra

Tuesday, August 19, 2025 05:38

1. Role of Sponsor & Regulatory Authority

- Sponsor: The company, organization, or institution responsible for developing a new drug or treatment.
 - Example: Pfizer developed the COVID-19 vaccine as a sponsor.
- Regulatory authority: Approves drugs before they reach the market.
 - Example:
 - FDA (Food and Drug Administration, USA)
 - EMA (European Medicines Agency, EU)
 - DCGI (Drug Controller General of India, India)

Process flow:

Sponsor develops drug \rightarrow Applies to FDA \rightarrow Provides evidence of **safety and efficacy** \rightarrow FDA reviews \rightarrow If positive, FDA **approves** \rightarrow Drug goes to market.

2. Why Clinical Trials?

Drugs must be tested on human volunteers (subjects) to confirm:

- **1. Safety** → Is the drug safe for humans?
- **2. Efficacy** → Does the drug work as intended?

Example:

• A cancer drug may shrink tumors in animals, but it needs to be tested in humans to confirm safety and effectiveness before use.

3. Key Participants

- Subjects (patients/volunteers): People receiving treatment or placebo.
- Investigators: Doctors/researchers conducting the trial at sites.

4. Protocol Development

The **protocol** is like the "blueprint" for the study. It details:

- Title of the study → e.g., "A Phase III Randomized Controlled Study of Drug X in Hypertension."
- **Purpose/objective** → To evaluate whether Drug X reduces blood pressure.
- Study population → Adults aged 18–65 with high blood pressure.
- Inclusion criteria \rightarrow e.g., BP \ge 140/90, no prior treatment.
- Exclusion criteria → e.g., pregnancy, liver disease.

Why important?

It ensures trials are done ethically, safely, and scientifically.

5. Bias Avoidance: Randomization & Blinding

- Randomization → Assign subjects randomly into groups to remove selection bias.
 - Example: 20 subjects \rightarrow 10 get Drug X, 10 get placebo.
- Blinding → Avoids psychological or investigator bias.
 - o Single-blind: Subject doesn't know treatment.
 - o Double-blind: Both subject & investigator don't know.
 - Open-label: Both know (used in some special cases).
- Placebo → A "fake" drug (like sugar pill) with no active ingredient, used for comparison.

6. Study Designs

- Parallel group: Two groups (Drug X vs Placebo), run at the same time.
- **Crossover**: Subjects switch between treatments after a washout period.
- Multicenter trial: Conducted at multiple hospitals or countries for diversity.
- Comparator study: Investigational drug compared with existing approved drug.

7. Study Stages

- 1. Pre-study
 - Screening (eligibility check).
 - Example: Only patients with HbA1c > 7 are enrolled in a diabetes trial.

2. Study period

- Screening phase → Select eligible subjects.
- Treatment phase → Subjects receive treatment(s).
 - Example: Trt1 = low dose, Trt2 = medium dose, Trt3 = high dose.
- Follow-up phase → Monitor safety after stopping treatment.
- Rule: No two elements should overlap.
- o **Epoch**: Combination of multiple elements (e.g., all Trt phases together).

3. Post-study

Close-out and preparation of final reports.

8. Visits & Assessments

- **Scheduled visits** → Predefined in protocol (Visit 1, Visit 2, etc.).
- Unscheduled visits → Extra visits (e.g., if patient reports side effects).

Example schedule:

Visit	V1	V2	V3	V4
Demographics (DM)	X			
Lab tests (LB)		Х		
ECG			X	
Vital signs (VS)	Х	Х	Х	Х

9. Clinical Data Management (CDM)

- CRF (Case Report Form): Used to collect subject data.
 - Paper CRF → Physical forms.
 - \circ eCRF (Electronic CRF) \rightarrow Collected through systems like Medidata Rave.

• Data Managers:

- o Validate data (edit checks).
- o Prepare clean datasets for analysis.

10. Biostatistics & SAS Programming

- Biostatisticians:
 - o Prepare SAP (Statistical Analysis Plan), defining how data will be analyzed.
 - o Example: "Compare mean BP reduction between Drug X and placebo using t-test."

• SAS Programmers:

- o Generate TLFs (Tables, Listings, Figures).
- o Example:
 - Table → Mean BP reduction at Week 12.
 - Listing → Individual subject adverse events.
 - Figure → Kaplan–Meier survival curve.

11. Medical Writing

- Medical writers prepare reports like:
 - Synopsis of study results.
 - o CSR (Clinical Study Report) = Complete trial results submitted to FDA.

12. Population Flags

Different subject groups are defined for analysis:

- **1.** Enrolled → Signed Informed Consent Form (ICF).
- **2. Screen failures** → Failed screening.
- **3. ITT (Intent-to-Treat)** → All subjects who pass screening.
- **4. Safety population** → Subjects who took at least one dose.
- **5.** Per-Protocol → Subjects with no major protocol deviations.
- **6. Excluded** → Subjects with protocol deviations.

Example:

- A subject signs consent → enrolled.
- Fails lab test → screen failure.
- Passes screen → ITT.
- Takes drug → safety population.

- Completes trial without deviation \rightarrow per-protocol.
- If subject missed 3 visits → excluded.