Estructura de Computadores

Tema 3:

ARITMÉTICA DEL COMPUTADOR

Dr. Iván Luis Pérez Barrón

Grupo de Computación Científica (GRUCACI)

Contenidos:

3.3. Aritmética en coma fija

- 3.3.1. Opuesto
- 3.3.2. Suma y resta
- 3.3.3. Multiplicación
- 3.3.4. División

Contenidos:

3.3. Aritmética en coma fija

- 3.3.1. Opuesto
- 3.3.2. Suma y resta
- 3.3.3. Multiplicación
 - 3.3.3.1. MUL Enteros sin signo
 - 3.3.3.2. MUL Complemento a dos
- 3.3.4. División

Recordemos el algoritmo manual para la multiplicación:

- Se <u>recorren los bits de Q</u> (Q_i) desde el LSB hasta el MSB (←):
 - Si $Q_i = 0 \rightarrow M \times 0 = 0 \rightarrow Producto parcial: 0$
 - Si $Q_i = 1 \rightarrow M \times 1 = M \rightarrow Producto parcial: M$
- Cada producto parcial se desplaza una posición hacia la izquierda.
- Se <u>suman</u> los productos parciales.
- Resultado: su <u>longitud</u> puede ser hasta el doble de la longitud de los factores.

- Conversión en algoritmo máquina → Cambios:
 - Los productos parciales <u>se van sumando</u> a medida que se generan.
 - En vez de desplazar cada nuevo producto parcial (\leftarrow), se <u>desplaza</u> la suma acumulada de los productos parciales previos (\rightarrow).
 - Si $\underline{Q_i} = 1$: sumar M y desplazar (\rightarrow) . Si $\underline{Q_i} = 0$: sólo desplazar (\rightarrow) .

		1	0	1	1	 	M		
×		1	1	0	1	 	Q (v	. ini	cial)
		0	0	0	0	 - 	A (v.	ini	cial)
+		1	0	1	1				
		1	0	1	1	 			
\rightarrow		0	1	0	1	1			
\rightarrow		0	0	1	0	1	1		
+		1	0	1	1				
		1	1	0	1	1	1		
\rightarrow		0	1	1	0	1	1	1	
+		1	0	1	1	 			
	1	0	0	0	1	1	1	1	
\rightarrow		1	0	0	0	1	1	1	1
	С	A (v. final)				C) (v.	fina	l)

Diagrama de flujo:

	 	1	0	1	1	 	M		
×	 	1	1	0	1		Q (v	. ini	cial)
		0	0	0	0		A (v.	. inid	cial)
+		1	0	1	1				
		1	0	1	1				
\rightarrow		0	1	0	1	1			
\rightarrow		0	0	1	0	1	1		
+		1	0	1	1				
		1	1	0	1	1	1		
\rightarrow		0	1	1	0	1	1	1	
+		1	0	1	1				
	1	0	0	0	1	1	1	1	
\rightarrow		1	0	0	0	1	1	1	1
	С	A (v. final)				С) (v. ·	fina	l)

Diagrama de flujo:

- **C**: acarreos de las sumas.
- A: registro auxiliar:
 - Va guardando la <u>suma acumulada</u>.
 - Al final contendrá la parte alta del resultado.
- n: longitud de los factores.
- Q:
 - <u>Inicialmente</u>: multiplicador.
 - En cada paso: desplazamiento (→).
 Se expulsa Q₀ y el siguiente bit de Q ocupa su posición.
 - Todos los <u>bits de Q</u> van pasando por Q₀
 - $Q_0=1$: (+) $y (\rightarrow)$
 - $Q_0=0$: sólo (\rightarrow)
 - <u>Tras n desplazamientos</u>: Q ha perdido todos los bits originales y contiene la parte baja del resultado.
- Desplaz. <u>LÓGICO</u> (→): el hueco generado se rellena con un cero.

• Ejemplo:

С	Α	Q	M: 1011
 	 	(Q_0)	
0	0000	1 1 0 1	Valores iniciales
0	1011	1101	$C, A \leftarrow A + M$
0	0101	1 1 1 0	$C \rightarrow A \rightarrow Q$
0	0010	1 1 1 1	$C \rightarrow A \rightarrow Q$
0	1101	1111	$C, A \leftarrow A + M$
0	0110	1 1 1 1	$C \rightarrow A \rightarrow Q$
1	0001	1111	$C, A \leftarrow A + M$
0	1000	1111	$C \rightarrow A \rightarrow Q$

Producto

Contenidos:

- 3.3. Aritmética en coma fija
 - 3.3.1. Opuesto
 - 3.3.2. Suma y resta
 - 3.3.3. Multiplicación
 - 3.3.3.1. MUL Enteros sin signo
 - 3.3.3.2. MUL Complemento a dos
 - 3.3.4. División

 A diferencia de la suma, el algoritmo de multiplicación de enteros sin signo no resulta válido en C-2:

- Para entender la causa, hay que tener en cuenta dos cosas:
 - El valor del multiplicador Q = 1101 como entero sin signo viene determinado por una <u>suma de potencias de 2</u>:

$$1101 \rightarrow 1.2^{3} + 1.2^{2} + 0.2^{1} + 1.2^{0}$$

• El producto del multiplicando M = 1011 por 2^n se obtiene desplazándolo n posiciones hacia la izquierda (\leftarrow):

$$1011 \cdot 2^3 \rightarrow 1011000$$

 Haciendo explícitos ambos detalles, podemos reescribir la anterior multiplicación de enteros sin signo como:

				1	0	1	1	
			×	1	1	0	1	$1 \cdot 2^3 + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$
0	0	0	0	1	0	1	1	$1011 \cdot 1 \cdot 2^0$
0	0	0	0	0	0	0	0	$1011\cdot 0\cdot 2^1$
0	0	1	0	1	1	0	0	$1011\cdot 1\cdot 2^2$
0	1	0	1	1	0	0	0	$1011\cdot 1\cdot 2^3$
1	0	0	0	1	1	1	1	•

- Razones por las que este procedimiento no es válido en C-2:
 - La <u>extensión de la longitud</u> de los productos parciales se ha hecho incluyendo ceros, pero en C-2 hay que replicar el bit de signo.
 - En C-2, el <u>peso del bit de signo</u> es el opuesto del que corresponde a su misma posición en enteros sin signo, por lo que habría que hacer el opuesto del último producto parcial. En este caso:

$$1101 \rightarrow 1 \cdot (-2^3) + 1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0$$

 Tomando ambas precauciones, podríamos adaptar el algoritmo de multiplicación de enteros sin signo a C-2:

Otra alternativa posible:

- Convertir multiplicando M y multiplicador Q en positivos.
- Aplicar el algoritmo de multiplicación para enteros sin signo.
- Hacer el opuesto del resultado si M y Q tenían distinto signo.
- Sin embargo, hay una opción aun mejor, que además acelera el proceso: el **algoritmo de Booth** para la multiplicación en C-2.

Algoritmo de Booth:

Algoritmo de Booth:

- Resta: suma del opuesto.
- A: registro auxiliar:
 - Va guardando la <u>suma acumulada</u>.
 - Al final: parte alta del resultado.
- Q₋₁: bit auxiliar a la derecha de Q₀.
- Q:
 - <u>Inicialmente</u>: multiplicador.
 - En cada paso: desplazamiento (→).
 Se expulsa Q₀, que pasa a Q₋₁, y el siguiente bit de Q ocupa su posición.
 - Todos los <u>bits de Q</u> van pasando por Q₀
 y Q₋₁:

•
$$Q_0 Q_{-1} = 01$$
: (+) $y (\rightarrow)$

•
$$Q_0 Q_{-1} = 10$$
: $(-) y (\rightarrow)$

•
$$Q_0 Q_{-1} = 00, 11$$
: sólo (\rightarrow)

- <u>Tras n desplazamientos</u>: Q ha perdido todos los bits originales y contiene la parte baja del resultado.
- Desplaz. <u>ARITMÉTICO</u> (→): para conservar el signo, el hueco se rellena con BS.

• Algoritmo de Booth: ejemplo.

$$\begin{array}{rrrr}
 & 1001 & (-7) \\
 \times & 0011 & \times & (+3) \\
 & 1110 \ 1011 & (-21)
\end{array}$$

Producto

- Algoritmo de Booth: justificación.
 - Se basa en una propiedad ya conocida:
 La suma de una serie de potencias de 2 consecutivas es igual a la potencia siguiente a la mayor menos la potencia menor:

$$2^{n} + 2^{n-1} + ... + 2^{n-k} = 2^{n+1} - 2^{n-k}$$

- Aplicado a la **multiplicación**, por ejemplo, M × (00011110):
 - Algoritmo de enteros sin signo: $M \times (2^4 + 2^3 + 2^2 + 2^1) = M \times 30$
 - Algoritmo de Booth: $M \times (2^5 2^1) = M \times 30$
- ¿Cómo detectar el inicio y el final del **bloque de unos**?
 - Inicio: $00011110 \rightarrow +2^{5} (01 \rightarrow suma)$
 - Final: $000\underline{11110} \rightarrow -2^1 (10 \rightarrow resta)$

Algoritmo de Booth: justificación.

Aceleración del proceso:

- Algoritmo de enteros sin signo:
 - Una suma por cada 1 en el multiplicador.
- Algoritmo de Booth:
 - Una suma y una resta por cada bloque de unos en el multiplicador.
 - Los bloques de unos o de ceros se saltan.

Contenidos:

3.3. Aritmética en coma fija

- 3.3.1. Opuesto
- 3.3.2. Suma y resta
- 3.3.3. Multiplicación
- 3.3.4. División

Contenidos:

3.3. Aritmética en coma fija

- 3.3.1. Opuesto
- 3.3.2. Suma y resta
- 3.3.3. Multiplicación
- 3.3.4. División
 - 3.3.4.1. DIV Enteros sin signo
 - 3.3.4.2. DIV Complemento a dos

- Durante el proceso de la división se hacen restas.
- ¿Cómo se restan los enteros sin signo?
 - $M S = R \rightarrow$ Buscar el número R que, sumado a S, dé lugar a M:

- ¿Qué sumar a 1 para que dé 1? 0
- ¿Qué sumar a 1 para que dé 0? 1, y nos llevamos 1 (1+1 = 10)
- ¿Qué sumar a 0 y 1 que nos llevábamos para que dé 1? 0
- ¿Qué sumar a 0 para que dé 0? 0
- Los acarreos que se generan en la resta se denominan <u>adeudos</u> o acarreos negativos.

- (...) ¿Cómo se restan los enteros sin signo?
 - $M S = R \rightarrow \underline{\partial ue}$ sucede cuando M < S?

- ¿Qué sumar a 1 para que dé 1? 0
- ¿Qué sumar a 0 para que dé 0? 0
- ¿Qué sumar a 0 para que dé 1? 1
- ¿Qué sumar a 1 para que dé 0? 1, y nos llevamos 1 (1+1 = 10)
- Si se genera <u>adeudo al final de la resta</u>, el resultado es negativo.
- Aunque el resultado es correcto si se interpreta en C-2 (1100 = -4), no lo es como entero sin signo (1100 = 12).
- Interpretación del adeudo obtenido como entero sin signo:

• Recordemos el **algoritmo manual** para la división:

Divisor (M)
$$\rightarrow$$
 1 0 1 1 1 0 0 1 0 0 1 1 \leftarrow Cociente \leftarrow Dividendo (Q) $-$ 1 0 1 1 1 0 \leftarrow Dividendo (Q) Resto parcial \rightarrow $-$ 1 0 1 1 1 \leftarrow $-$ 1 0 1 1 \leftarrow Resto \rightarrow Resto \rightarrow $-$ 1 0 0 0 0 0 1 1 1 0 0 \leftarrow Dividendo (Q) \leftarrow Di

Recordemos el algoritmo manual para la división:

Divisor (M)
$$\rightarrow$$
 1 0 1 1 1 0 0 1 0 0 1 1 \leftarrow Cociente \leftarrow Dividendo (Q) Resto parcial \rightarrow 0 0 1 1 1 0 \leftarrow Dividendo (Q) $-\frac{1011}{0011}$ Resto \rightarrow 0 0 1 1 1 1 \leftarrow $-\frac{1011}{100}$ Resto \rightarrow Resto \rightarrow 1 0 0 \leftarrow Dividendo (Q) \leftarrow D

- Se van **tomando bits de Q** empezando por la izquierda (\rightarrow) .
 - Si el <u>número < M</u>: cociente = 0.
 - No se resta nada ($M \cdot 0 = 0$).
 - Si el número > M: cociente = 1.
 - Se resta $M \cdot 1 = M$.
- La operación finaliza cuando se agotan los bits de Q.
- Resto: resultado de la última resta.

Recordemos el algoritmo manual para la división:

- Simplificaciones respecto de la división en sistema decimal:
 - El proceso de <u>tanteo</u> resulta innecesario, pues el cociente sólo admite ceros o unos.
 - No hace falta efectuar <u>multiplicaciones</u> para determinar los números a restar, que sólo pueden ser $M \cdot 1 = M$ ó $M \cdot 0 = 0$ (resta innecesaria).

• Conversión en algoritmo máquina:

Algoritmo máquina:

- Q:
 - <u>Inicialmente</u>: dividendo.
 - En cada paso: desplazamiento (←).
 - Los bits del dividendo van pasando a A, comenzando por los más significativos.
 - Los huecos generados por la derecha se aprovechan para ir guardando los bits del cociente.
 - <u>Tras n desplazamientos</u>: Q ha perdido todos los bits originales y contiene el cociente.
- **A**: registro auxiliar:
 - Va recibiendo bits de Q.
 - En cada paso: A se compara con el divisor M, haciendo la resta A–M y comprobando si se produce adeudo:
 - Si A > M: cociente $(Q_0) = 1$.
 - La resta ya ha sido hecha.
 - Si A < M: cociente $(Q_0) = 0$.
 - Se deshace la resta.
 - Al final: resto (resultado última resta).

Algoritmo máquina:

Diferencias MUL – DIV:

- Desplazamientos:
 - MUL: (→)
 - Se desplaza la suma acumulada de los productos parciales anteriores.
 - DIV: (←)
 - Se van tomando bits del dividendo comenzando por los más significativos.
- Orden desp. operación (suma/resta):
 - MUL:
 - 1. Operación.
 - Desplazamiento, para dejar desplazada la suma acumulada.
 - DIV:
 - 1. Desplazamiento, para tomar el siguiente bit del dividendo.
 - 2. Operación, para comprobar si el número es mayor que el divisor.

• Ejemplo:

С	Α	Q (Q_0)	M: 0101
	0000	1 1 0 1	Valores iniciales
1 ↑ ↑	0 0 0 1 - <u>0 1 0 1</u> ← 1 1 0 0	1010	A ← Q A ← A − M
	0001	1 0 1 0	Restablecer A
1 ↑ ↑	0 0 1 1 - <u>0 1 0 1</u> ← 1 1 1 0	0 1 0 0	A ← Q A ← A − M
	0011	0 1 0 0	Restablecer A
	0 1 1 0 - <u>0 1 0 1</u>	1000	$A \leftarrow Q$ $A \leftarrow A - M$
	0001	1 0 0 1	$Q_0 \leftarrow 1$
1 ↑	$ \begin{array}{c} 0 \ 0 \ 1 \ 1 \\ - \ 0 \ 1 \ 0 \ 1 \\ \leftarrow \ 1 \ 1 \ 1 \ 0 \end{array} $	0010	A ← Q A ← A − M
	0 0 1 1	0 0 1 0	Restablecer A
	\downarrow	\downarrow	

Cociente

Resto

Contenidos:

3.3. Aritmética en coma fija

- 3.3.1. Opuesto
- 3.3.2. Suma y resta
- 3.3.3. Multiplicación
- 3.3.4. División
 - 3.3.4.1. DIV Enteros sin signo
 - 3.3.4.2. DIV Complemento a dos

- Adaptaciones al algoritmo de división de enteros sin signo para C-2:
 - A debe ser inicialmente la extensión del dividendo Q, por lo que no se rellena con ceros, sino con el bit de signo de Q.
 - La **operación** para comparar, en cada paso, el dividendo parcial con el divisor M ya no es siempre una resta:
 - Si A y M tienen igual signo: $A \leftarrow A-M$ (C-2: sumar opuesto).
 - Si A y M tienen distinto signo: A ← A+M.

De este modo, el resultado de la operación siempre va a ser más cercano a 0 que A, que es lo que debe suceder con los restos.

Recordar en ambos casos que en C-2 se ignoran los acarreos.

- Se introduce un caso especial en el que el bit Q_0 a incluir en el cociente puede ser 1 (véase el ejemplo 2 más adelante):
 - Si <u>A no cambia de signo</u> en la operación (A \leftarrow A-M o A \leftarrow A+M) o si se cumple [A = 0 y Q = 0]: hacer $Q_0 \leftarrow 1$.
 - En caso contrario: hacer $Q_0 \leftarrow 0$ y restablecer el valor de A previo a la operación.

- (...) Adaptaciones al algoritmo de división de enteros sin signo para C-2:
 - Resultado:
 - Q: <u>valor absoluto del cociente</u>.
 - Si dividendo y divisor tenían distinto signo → hacer el opuesto de Q.
 - A: <u>resto con signo</u>.
 - El signo del resto es aquel que verifica:

 Por lo tanto, el signo del resto es siempre igual al signo del dividendo.

• Ejemplo 1:

• Ejemplo 2:

