Tropical Geometry for Rigidity Theory and Matrix Completion

Daniel Irving Bernstein

North Carolina State University

dibernst@ncsu.edu
http://www4.ncsu.edu/~dibernst/

Algebraic Matroids

Definition (Algebraic matroid)

Let S be a finite set and let $V \subseteq \mathbb{K}^S$ be an irreducible variety. Let $E \subseteq S$. Denote by $\pi_E : \mathbb{K}^S \to \mathbb{K}^E$ the corresponding projection map. Then E is:

- **1** independent if $\pi_E(V) \subseteq \mathbb{K}^E$ is full dimensional
- 2 spanning if $\dim(\pi_E(V)) = \dim(V)$

The set of independent/spanning sets is called the algebraic matroid of V

Let $S = \{1,2,3\} \times \{1,2,3\}$ so \mathbb{C}^S is the set of 3×3 matrices Let $V \subseteq \mathbb{C}^S$ be the set of 3×3 matrices of rank 1 Define $E := \{(1,1),(1,2),(2,1),(2,2),(3,3)\}.$

 \boldsymbol{E} is neither independent nor spanning since the dimension of

$$\pi_{E}(V) = \left\{ \begin{pmatrix} x_{11} & x_{12} & \cdot \\ x_{21} & x_{22} & \cdot \\ \cdot & \cdot & x_{33} \end{pmatrix} : x_{11}x_{22} - x_{21}x_{22} = 0 \right\}$$

is 4 whereas |E| = 5 and dim(V) = 5.

Algebraic matroids in Rigidity Theory

Question

Given an embedding of a graph G = (E, V) inside \mathbb{R}^d is the resulting structure rigid, even allowing the edges to move freely about the vertices?

(a) A rigid framework in \mathbb{R}^2

 (b) A flexible framework in \mathbb{R}^2

For $i = 1 \dots n$, define $\mathbf{t}_i = (t_i^1, \dots, t_i^d)$ to be a d-vector of variables. The Caley-Menger variety $CM_n^d \subseteq \mathbb{R}^{\binom{[n]}{2}}$ is parameterized by $x_{ij} = \|\mathbf{t}_i - \mathbf{t}_j\|_2^2$.

Proposition (Folklore?)

A generic embedding of graph G = ([n], E) into \mathbb{R}^d is rigid if and only if E is spanning in the algebraic matroid underlying CM_n^d .

Algebraic Matroids in low-rank matrix completion

Let $\mathcal{M}_r^{m \times n} \subseteq \mathbb{C}^{[m] \times [n]}$ be the variety consisting of all $m \times n$ matrices of rank at most r.

Proposition

 $E \subseteq [m] \times [n]$ is spanning in the algebraic matroid underlying $\mathcal{M}_r^{m \times n}$ if and only if $\pi_F^{-1}(\pi_E(M))$ is finite for generic $M \in \mathcal{M}_r^{m \times n}$.

Example

 $E=\{11,12,21\}$ is spanning in the algebraic matroid underlying $\mathcal{M}_1^{2\times 2}$ but $F=\{11,12\}$ is not.

$$\pi_E(M) = \begin{pmatrix} 1 & 2 \\ 3 & \cdot \end{pmatrix} \qquad \pi_F(N) = \begin{pmatrix} 4 & 5 \\ \cdot & \cdot \end{pmatrix}$$

From $\pi_E(M)$, we know that the unobserved entry of M is 6. There are infinitely many possibilities for the missing entries of $\pi_E(N)$.

General setup

Problem

Let S be a finite set and $V \subseteq \mathbb{C}^S$ be a variety. Describe combinatorially the subsets $E \subseteq S$ that are independent in the algebraic matroid underlying V.

When $S = \binom{[n]}{2}$, we associate $E \subseteq S$ with graph ([n], E).

When $S = [m] \times [n]$, we associate $E \subseteq S$ with bipartite graph ([m], [n], E). Characterizations already known for:

- **3** $V = CM_n^2 (S = {[n] \choose 2})$ (Laman, 1970)

Using tropical geometry, we give characterizations for:

- ② $V = \mathcal{S}_2^n$, the variety of $n \times n$ skew-symmetric rank ≤ 2 matrices $S = {n \choose 2}$

Characterization of algebraic matroid of $\mathcal{M}_r^{m \times n}$

Theorem (Folklore)

The set E is independent in the algebraic matroid underlying $\mathcal{M}_1^{m \times n}$ if and only if the bipartite graph ([m], [n], E) has no cycles.

Theorem (B-, 2016)

A subset $E \subseteq [m] \times [n]$ is independent in the algebraic matroid underlying $\mathcal{M}_2^{m \times n}$ if and only if there exists some acyclic orientation of ([m], [n], E) that has no alternating cycles.

Alternating cycle

Non-alternating cycle

Skew-symmetric determinantal variety

Denote by S_2^n the variety of $n \times n$ skew-symmetric matrices of rank ≤ 2 .

Theorem (B-, 2016)

A set $E \subseteq \binom{[n]}{2}$ is independent in the algebraic matroid underlying \mathcal{S}_2^n if and only if there exists an acyclic orientation of the the graph ([n], E) that has no alternating closed trail.

If k = m + n then $\mathcal{M}_2^{m \times n}$ is a projection of \mathcal{S}_2^k

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} 0 & e & \mathbf{a} & \mathbf{b} \\ -e & 0 & \mathbf{c} & \mathbf{d} \\ -\mathbf{a} & -\mathbf{b} & 0 & f \\ -\mathbf{c} & -\mathbf{d} & -f & 0 \end{pmatrix}$$

Therefore, result for $\mathcal{M}_2^{m imes n}$ follows immediately from result for \mathcal{S}_2^k

Tropical geometry

Associated to a complex variety $V \subseteq \mathbb{C}^n$ is a polyhedral fan trop $(V) \subseteq \mathbb{R}^n$ known as the *tropicalization of* V.

Theorem (Bieri, Groves, Bogart, Jensen, Speyer, Sturmfels, Thomas)

The tropicalization of an irreducible complex variety is the support of a pure balanced polyhedral fan that is connected through codimension 1.

Proposition (Yu 2016)

Given any irreducible variety $V \subseteq \mathbb{C}^S$, a subset $E \subseteq S$ is independent in the corresponding algebraic matroid if and only if the projection of $\operatorname{trop}(V) \subseteq \mathbb{R}^S$ onto \mathbb{R}^E is all of \mathbb{R}^E .

Theorem (Speyer-Sturmfels 2003)

The tropicalization of the set of $n \times n$ rank-2 skew symmetric matrices, $trop(S_2^n)$, is the set of tree metrics on a set of size n.

The upshot and a key lemma

Proposition

- **1** trop(S_2^n) is a polyhedral fan
- ② There is a bijection between its maximal cones and binary trees on n labeled leaves (Notation: each tree T gives cone K_T)
- **3** $E \subseteq {[n] \choose 2}$ is independent in S_2^n iff there exists some maximal cone K_T of $\operatorname{trop}(S_2^n)$ such that E is independent $\operatorname{span}_{\mathbb{R}}(K_T)$

Key Lemma

A set $E \subseteq {[n] \choose 2}$ is independent in the matroid of $\operatorname{span}(K_T)$ for some tree T iff E is independent in the matroid of $\operatorname{span}(K_C)$ for some caterpillar C.

Caterpillar matroids

Proposition

Let C be the caterpillar whose leaves are labeled $1, \ldots, n$ from left to right. Then $E \subseteq \binom{[n]}{2}$ gives an independent set of $\operatorname{span}_{\mathbb{R}} K_C$ if and only if the graph ([n], E) has no closed walks with alternating vertices.

Independent Set

Theorem (B-. 2016)

A set $E \subseteq \binom{[n]}{2}$ is independent in the algebraic matroid underlying \mathcal{S}_2^n if and only if there exists a permutation σ of [n] such that the graph $([n], \sigma E)$ has no closed trail with alternating vertices.

Open problems

- Can an independent set of $\mathcal{M}_2^{m \times n}$ or \mathcal{S}_2^n be recognized in polynomial time?
- Find a "nice" combinatorial description of the circuits of the algebraic matroids underlying $\mathcal{M}_2^{m\times n}$ and \mathcal{S}_2^n
- Develop a combinatorial algorithm to compute a generating set of the elimination ideals corresponding to coordinate projections of $\mathcal{M}_2^{m\times n}$ and \mathcal{S}_2^n
- Find a constructive classification of the bases $\mathcal{M}_2^{m \times n}$ and \mathcal{S}_2^n analogous to the Henneberg moves for Laman graphs
- What other algebraic matroids can be classified using tropical methods?
- Find a more basic proof of our main results

References

Daniel Irving Bernstein.

Completion of tree metrics and rank-2 matrices.

Linear Algebra and its Applications, to appear. ArXiv:1612.06797. 2017

Franz Király, Louis Theran, and Ryota Tomioka. The algebraic combinatorial approach for low-rank matrix completion. Journal of Machine Learning Research, 16:1391–1436, 2015.

Diane Maclagan and Bernd Sturmfels. Introduction to tropical geometry, volume 161. American Mathematical Soc., 2015.

Josephine Yu.

Algebraic matroids and set-theoretic realizability of tropical varieties. *Journal of Combinatorial Theory, Series A*, 147 (2017), 41–45.