This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- · TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

DEUTSCHES PATENTAMT

AUSLEGESCHRIFT 1099658

S 62831 VIII c/21g

ANMELDETAG: 29. APRIL 1959 BEKANNTMACHUNG DER ANMELDUNG UND AUSGABE DER

UND AUSCABE DER AUSLEGESCERIFT: 16. FEBRUAR 1961

1

Die Erfindung betrifft eine Anordnung zur selbsttätigen Einschaltung der Hochfrequenzspannung eines
Hochfrequenzchlurgigegrätes. Bekannte derartige Vorrichtungen arbeiten in der Weise, daß bei Berührung
des Operationsobjektes mit der (aktiven) Operationsselektrode über das Objekt ein Hilfsstromkreis geschlossen und damit das Steuerpotential einer Verstürkerröhre beeinflußt wird, die wiederum ein Relais
zur Einschaltung des Hochfrequenzgenerators steuert.
Bei den bekannten Einrichtungen ist der Hilfsstromtokreis relativ niederohmig ausgelegt. Auf diese Weise
kann jedoch ein für den Patienten unangenehmer Reizstrom entstehen.

Es ist bekannt, daß beim Schneidvorgang durch Funkenbildung an der Berührungsstelle zwischen der 15 aktiven Elektrode und dem Patienten ein Gleichrichtereffekt auftritt. Bei geschlossenem Gleichstromkreis könnte die dadurch auftretende Gleichspannung zu faradischen Reizungen Anlaß geben. Um einen solchen Gleichstromweg über den Ausgangskreis des Gerätes 20 zu vermeiden, ist der Hochfrequenzstromkreis bei allen Chirurgiegeräten durch einen Kondensator gleichstrommäßig unterbrochen. Neu ist in diesem Zusammenhang die Erkenntnis, daß die genannte Gleichspannung bei handelsüblichen Geräten 150 Volt und 25 mehr betragen kann. Ist der Hilfsstromkreis der Schaltautomatik niederohmig ausgelegt, so kann diese Spannung einen relativ starken Reizstrom zur Folge haben, der dem Patienten unerwünschte Reizungen (Muskelzuckungen) verursacht.

Zur Vermeidung dieses Nachteils wird erfindungsgemäß vorgeschlagen, den Hilfsfereis so auszulegen,
daß der zwischen aktive und neutrale Elektrode geschaltete Gliechstromwiderstand mindestens 100 kg
beträgt, vorzugsweise aber im Bereich mehrerer 38
Mg liegt. Die Erfindung nimmt daher bewußt den
höheren schaltungstechnischen Aufwand in Kauf, der
ein hocholmiger Steuerkreis erfordert, um die für den
Patienten unangenehmen Folgeerscheinungen der selber
tätigen Einschalterin/chtung zu vermeden. Dabei ist
der Steuer und die bei die der der der
haben die bei einer bekannten Anordnung, durch die
bei positiven Gitterpotential niederbninge GitterKathoden-Strecke einer Schaltröhre wesentlich mitbestimmt sein kann.

An Hand der Figuren sollen Ausführungsbeispiele der Erfindung nachfolgend erläutert werden.

Gemäß Fig. 1 ist der Ausgang eines lediglich durch ein Schaltungssymbol angedeuteten Hochfrequenzgenerators 1 einseitig geerdet und kann mit seinem 50 zweiten Poli über einen Schalter 2 mit der aktiven Elektrode 3 des Hochfrequenzchirurgieapparates verbunden werden. Die dem Behandlungsobjekt 4 anliegende neutrale Elektrode 5 ist ebenfalls gererdet. Ein Selbsttätige Einschaltvorrichtung für Hochfrequenzchirurgiegeräte

Anmelder: Siemens-Reiniger-Werke Aktiengesellschaft, Erlangen, Luitpoldstr. 45-47

Karl Hudek, Erlangen, ist als Erfinder genannt worden

2

Kondensator 6 dient zur gleichstrommäßigen Unterbrechung des Behandlungsstromkreises.

Zwischen aktiver Elektrode 3 und neutraler Elektrode 5 ist über eine Hochfrequenz-Sperrdrossel 7, eine Hilfsspannungsquelle 8 und zwei hochohmige Widerständes 9,10 ein Gleichspannungsweg geschaffen, as der sich zu einem Gleichstromkreis über das Behandlungsobjekt schließt, wenn dieses mit der aktiven Elektrode 3 berührt wird. Der dann einsetzende Steuergleichstom erzeugt an dem Widerstand 10 einen Gleichspannungsabfall, der bei hinreichender Größe 30 nach Versärkung durch den Verstärker 11 ein Relais 12 einschaftet, dessen Arbeitskontakt 2 den Hochfrequenzstromkreis schließt.

Mit Einsetzen des Behandlungsstromes tritt durch einen Gleichrichtereffekt, der sich zwischen der aktiven Elektrode und dem behandelten Gewebe ausbildet, eine Gleichspannung am Patienten auf, die über den Hilfsstromkreis einen zusätzlichen Gleichstrom treibt. Die Erfindung beruht nun auf der Erkenntnis, daß die am Patienten auftretende Gleichspannung wesentlich höher ist als die Gleichspannung der Hilfsspannungsquelle 8, die im Beispielsfall 12 V beträgt. Bei Versuchen mit einem handelsüblichen Chirurgiegerät wurde am Patienten eine Gleichspannung von etwa 150 V gemessen. Für die Dimensionierung des Hilfskreises im Hinblick auf eine Berechnung des Gleichstromes im Hilfskreis muß daher in erster Linie diese Spannung, deren Existenz in dieser Größe bisher unbekannt war, zugrunde gelegt werden. Im Beispielsfall sind für die Widerstände 9 und 10 daher Werte von 10 und 1 M Ω vorgesehen.

Bei der angegebenen Dimensionierung ergibt sich eine Ansprechempfindlichkeit der Schaltautomatik, die durch einen bestimmten höchsten Patienten-Ersatzwiderstand ausgedrückt werden kann, d. h., die Auto-

109 510/359

matik schaltet stets dann ein, wenn der Berührungswiderstand unter dem der Empfindlichkeit entsprechenden maximalen Ersatzwiderstand liegt. Für bestimmte Anwendungsfälle oder aus Sicherheitsgründen kann es wünschenswert sein, die Ansprechempfindlichkeit herabzusetzen. Technisch kann diese Aufgabe entweder durch einen durch den Schalter 13 zum Widerstand 10 parallel geschalteten Widerstand 14 oder durch Herabsetzung der Spannung der Hilfsstromquelle 8 er-

Der Kondensator 15 bewirkt mit dem Widerstand 9. daß niederfrequente Wechselspannungen und Gleichstromstörimpulse, die an die aktive Elektrode gelangen könnten, keine für eine Einschaltung des Apparates hinreichende Spannung am Gitter der Eingangsröhre 15 des Verstärkers 11 verursachen. Damit sich andererseits durch den Kondensator 15 nach dem Abheben der Elektrode 3 vom Objekt 4 keine durch die Zeitkonstante im Gitterkreis verursachte störende Einschaltverzögerung ergibt, werden die Verhältnisse 20 zweckmäßig so gewählt, daß der Gitterstrom der Eingangsröhre des Verstärkers 11 bereits nach einer geringen Erhöhung der Gitterspannung einsetzt und dadurch eine höhere Aufladung des Kondensators 15

Die selbsttätige Einschalteinrichtung kann als ge trennte Baueinheit ausgeführt werden, um damit nachträglich Chirurgiegeräte ausrüsten zu können. Sie kann jedoch auch organisch in die Schaltung des Chirurgiegerätes eingefügt werden. In der Fig. 2 ist so die Kombination einer getrennten Baueinheit mit einem Chirurgiegerät dargestellt. Von dem durch das gestrichelte Rechteck 20 angedeuteten Chirurgiegerät sind nur einige Bauteile angedeutet, wie die Generatorröhre 21, der Schwingkreis 22, 23, die Auskopplungs- 25 spule 24 und der Trennkondensator 25. Die Buchsen 26, 27 dienen zum Anschluß der aktiven Elektrode 3 und der neutralen Elektrode 5. An die Buchsen 30, 31 wird bei bekannten Geräten üblicherweise ein nicht dargestellter Fußschalter angeschlossen. Bei Betätigung 40 des Fußschalters würden beide Buchsen 30, 31 kurzgeschlossen, und das Relais 32 erhielte Strom und schlösse seinen Arbeitskontakt 33 in der Anodenspannungsleitung der Generatorröhre 21. An Stelle des Fußschalters ist nun die selbsttätige Einschalteinrich- 45 tung an die Buchsen 30, 31 angeschlossen, und zwar deren Schaltkontakt 34, der durch ein schematisch angedeutetes Transistorenrelais 35 betätigt wird. Die Elemente 7, 9, 10 und 15 stimmen mit den gleich-

bezifferten Elementen in Fig. 1 überein. Die Sperrdrossel 7 ist innerhalb des Apparategehäuses 20 untergebracht. Die Verstärkerröhre 36 erhält ihre Anoden-

spannung aus einem schematisch angedeuteten Stromversorgungsgerät 37, dessen Betriebsspannung die Heizspannungsquelle des Chirurgiegerätes liefert. Für ein möglichst verzögerungsfreies Einschalten erfolgt bereits bei einer Gitterspannung von 1,5 V der Gitterstromeinsatz. An dem Potentiometerwiderstand 38 kann die für den Hilfskreis wirksame Hilfsspannung und damit die Ansprechempfindlichkeit der Einschaltvorrichtung verändert werden. Mit Hilfe der Widerstände 39, 40 wird dem Gitter der Röhre 36 ein gegen-

über der Kathode negatives Ruhepotential vermittelt. Zur Überprüfung der Schaltautomatik ist eine Prüftaste 42 vorgesehen, die im gedrückten Zustand eine Funktionskontrolle erlaubt. Dabei wird an Stelle des normalerweise über den Patienten geschlossenen Stromweges ein Prüfstromkreis über den vorgeschalteten

Patientenersatzwiderstand 43 gebildet.

PATENTANSPRUCHE:

1. Selbsttätige Einschaltvorrichtung für Hochfrequenzchirurgiegeräte mit einem zwischen aktiver und neutraler Elektrode bestehendem, eine Gleichspannungsquelle enthaltenden Gleichstromweg, dadurch gekennzeichnet, daß der Widerstand des Gleichstromweges mindestens 100 kΩ, vorzugsweise aber mehrere $M\Omega$ beträgt.

2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß ein Teil des Widerstandes im Gitterkreis einer Verstärkerröhre angeordnet ist und für diesen Gitterkreis durch einen Kondensator in Verbindung mit einem anderen Teil des Widerstandes des Gleichstromweges durch Spannungsteilerwirkung unerwünschte Wechselspannungen möglichst klein gehalten werden.

Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für eine Funktionsprüfung unabhängig von der Handhabung der aktiven Elektrode wirkende Mittel zur Auslösung der Einschaltvorrichtung vorgesehen sind.

In Betracht gezogene Druckschriften: Patentschrift Nr. 7550 des Amtes für Erfindungsund Patentwesen in der sowjetischen Besatzungszone Deutschlands;

USA.-Patentschrift Nr. 2827056.

Hierzu 1 Blatt Zeichnungen

109 510/359