Problem 29: Unit Step Function

The unit function, also called Heaviside's unit function, $\mathbf{u}(t)$ is defined as

$$y = u(t) = 1 t \ge 0$$
$$= 0 t < 0$$

Figure 96

Example 77:

2u(t)

Figure 97

Example 78:

u(t-2)

Here,

$$t - 2 = 0$$

$$\therefore t = 2$$

Figure 98

Example 79:

u(t-1)

Here,

$$t - 1 = 0$$

$$\therefore t = 1$$

Figure 99

Example 80:

u(t+1)

Here,

$$t + 1 = 0$$

$$\therefore t = -1$$

Figure 100

Example 81: **u**(**t**+**2**)

Here,

$$t + 2 = 0$$

$$\therefore t = -2$$

Figure 101

Example 82:-u(t)

Figure 102

Example 83: -2u(t)

Figure 103

Example 84: -2u(t-1)

Figure 104

Example 85: u(t)

Figure 105

Example 86: -u(t-2)

Figure 106

Example 87: u(t)-u(t-2)

Figure 107

Example 88: u(t-pi/2)

Figure 108

Problem 30: Ramp Function

The ramp function $\mathbf{r}(\mathbf{t})$ is defined as

$$r(t) = t t \ge 0$$
$$= 0 t < 0$$

Figure 109

Example 89: Given that, x(t) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3) Answer:

$$01. -u(t+3) = >$$

So,

$$-u(t+3) = -1$$
; $t \ge -3$; $here, t+3 = 0$
= 0; $t < -3$ $\therefore t = -3$

02.2u(t+1)

$$2u(t+1) = 2; t \ge -1$$
 $here, t+1 = 0$
= 0; $t < -1$ $t = -1$

03.
$$-2u(t-1)$$

$$\therefore -2u(t-1) = -2; t \ge 1$$
 here, $t-1=0$
= 0; $t < 1$ $t = 1$

04.
$$u(t-3) =>$$

$$here, t - 3 = 0$$
$$t = 3$$

$$x(t) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)$$

Example 90:

$$x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$$

Solve:

$$r(t+2) = t+2; t \ge -2$$
 Here, $t+2=0$
= 0; $t < -2$ $\therefore t = -2$

t	-2	-1	0	1	2	3
r(t+2) = t+2	0	1	2	3	4	5

Again,

$$-r(t+1) = -(t+1); t \ge -1$$
 Here, $t+1=0$
= 0: $t < -1$ $\therefore t = -1$

t	-1	О	1	2	3	4
-r(t+1) = -(t+1)	0	-1	-2	-3	-4	- 5

Here,
$$t - 1 = 0$$

$$\therefore t = 1$$

t	1	2	3	4	5
-r(t-1) = -(t-1)	0	-1	-2	-3	-4

$$r(t-2) = (t-2)$$
 ; $t \ge 2$
= 0 ; $t < 2$

$$Here, t - 2 = 0$$

∴ $t = 2$

t	2	3	4	5	6	7
r(t-2) = t-2	0	1	2	3	4	5

$$\therefore x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$$

Problem 31: Impulse Function

The Impulse function $\delta(t)$ is defined as

$$\delta(t) = 1$$

$$t = 0$$

$$= 0$$

Otherwise

Figure 110

Delta (Impulse) Function

Example 91: Find
$$L[u(t-a)] = \frac{e^{-as}}{s}$$

Proof: We have

$$L(f(t)) = \int_{0}^{\infty} f(t)e^{-st}dt$$

Here, f(t) = u(t-a)

$$L(f(t)) = \int_{0}^{\infty} f(t)e^{-st}dt$$

$$L(u(t-a)) = \int_{a}^{\infty} u(t-a) e^{-st} dt$$

$$L(u(t-a)) = \int_{0}^{a} 0.e^{-st} dt + \int_{a}^{\infty} 1.e^{-st} dt$$

[The unit function $\mathbf{u}(\mathbf{t} - \mathbf{a})$ is defined as

$$u(t) = 1 t \ge a$$
$$= 0 t < a$$

Figure 111

$$L(\mathbf{u}(t-a)) = \int_{0}^{a} 0 \cdot e^{-st} dt + \int_{a}^{\infty} 1 \cdot e^{-st} dt$$

$$= 0 + \int_{a}^{\infty} 1 \cdot e^{-st} dt$$

$$= \int_{a}^{\infty} e^{-st} dt$$

$$= \left[\frac{e^{-st}}{-s} \right]_{a}^{\infty}$$

$$= -\frac{1}{s} \left[e^{-s \times \infty} - e^{-s \times a} \right]$$

$$= -\frac{1}{s} \left[e^{-\infty} - e^{-as} \right]$$

$$= -\frac{1}{s} \left[\frac{1}{e^{\infty}} - e^{-as} \right]$$

$$= -\frac{1}{s} \left[\frac{1}{\infty} - e^{-as} \right]$$

$$= -\frac{1}{s} \left[0 - e^{-as} \right]$$

$$= +\frac{1}{s} \left[e^{-as} \right]$$

$$= \frac{e^{-as}}{s}$$

$$\therefore L(u(t-a)) = \frac{e^{-as}}{s} \text{ (Proved)}$$

$$\therefore L(u(t-2)) = \frac{e^{-2s}}{s}$$

Example 92: Express the following function in terms of unit step functions and find its Laplace transform:

$$f(t) = \begin{cases} 8; & t < 2 \\ 6; & t > 2 \end{cases}$$

Solution:

We have

$$L(u(t-a)) = \frac{e^{-as}}{s}$$

$$\therefore L(u(t-2)) = \frac{e^{-2s}}{s} - - - - - (i)$$

Given,

$$f(t) = \begin{cases} 8; & t < 2 \\ 6; & t > 2 \end{cases}$$

$$f(t) = \begin{cases} 8+0; & t < 2 \\ 8-2; & t > 2 \end{cases}$$

$$f(t) = 8 + \begin{cases} 0; & t < 2 \\ -2; & t > 2 \end{cases}$$

$$f(t) = 8 + (-2) \begin{cases} 0; & t < 2 \\ 1; & t > 2 \end{cases}$$

$$f(t) = 8 + (-2) \begin{cases} 1; & t > 2 \\ 0; & t < 2 \end{cases}$$

$$f(t) = 8 + (-2)u(t - 2)$$

$$f(t) = 8 - 2u(t - 2)$$

$$L\{f(t)\} = L\{8 - 2u(t - 2)\}$$

$$L\{f(t)\} = L\{8\} - 2Lu(t - 2)\}$$

$$L\{f(t)\} = 8L\{1\} - 2Lu(t - 2)\}$$

$$L\{f(t)\} = 8 \times \frac{1}{s} - 2 \times \frac{e^{-2s}}{s}$$

$$[\because L(1) = \frac{1}{S}(\text{ from example 55})] \& L[u(t - 2) = \frac{e^{-2s}}{s}(\text{from example 91})]$$

Problem 32:

Product of u(t) vs. Shifting the Function Along the *t*-axis

1. f(t).u(t)

The f(t) part begins at t = 0

2. f(t).u(t-a)

The f(t) part begins at t = a

3.
$$f(t-a).u(t)$$

The f(t) part has been shifted to the right by a units and begins at t = 0

4.
$$f(t-a).u(t-a)$$

The f(t) part has been shifted to the right by a units and begins at t = a

Example 93: $g(t) = \sin t \cdot u(t)$

Figure 112: the sint part starts at t = 0

Example 94: $g(t) = \sin t \cdot u(t - 0.7)$

Figure 113: the sint part starts at t = 0.7

Example 95: $g(t) = \sin(t - 0.7).u(t)$

Figure 114: the sint part has been shifted 0.7 units to the right, and it starts at t = 0

Example 96: $g(t) = \sin(t - 0.7).u(t - 0.7)$

Figure 115: the sint part has been shifted 0.7 units to the right, and it starts at t = 0.7

Example 97: If $f(t) = \sin t$ then the graph of $g(t) = \sin t \cdot u(t - 2\pi)$ is

Figure 116: The sint portion starts at $t = 2\pi$ because we have multiplied sint by $u(t - 2\pi)$

Example 98: If $f(t) = 10e^{-2t}$, then the graph of $g(t) = 10e^{-2t} \cdot u(t-5)$ is

Figure 117: The portion $10e^{-2t}$ starts at t = 5

Home Task:

Draw the graph of f(t) = 4u(t) - 8u(t-1) + 4u(t-2)

1. Consider the discrete-time signals depicted in the following figures. Evaluate the convolution sums indicated below:

- 1. m[n] = x[n]*z[n]
- 2. m[n] = x[n]*y[n]
- 3. m[n] = x[n]*f[n]
- 4. m[n] = x[n]*g[n]
- 5. m[n] = y[n]*z[n]
- 6. m[n] = y[n]*g[n]7. m[n] = y[n]*w[n]
- 8. m[n] = y[n]*f[n]
- 9. m[n] = z[n]*g[n]
- 10. m[n] = w[n]*g[n]
- 11. m[n] = f[n]*g[n]

2. Consider the Continuous-time signals depicted in the following figures. Evaluate the convolution Integrals indicated below:

0.3

- i) m(t)=x(t)*y(t)
- ii) m(t)=x(t)*z(t)
- iii) m(t)=y(t)*z(t)
- iv) m(t)=y(t)*w(t)

3. Sketch the waveforms of the following signals:

- a) x(t) = u(t)-u(t-2)
- b) x(t) = u(t+1)-2u(t)+u(t-1)

c)
$$x(t) = -u(t+3) + 2u(t+1) - 2u(t-1) + u(t-3)$$

$$d) x(t) = 4u(t-1) - 8u(t-4) + 4u(t-6)$$

e)
$$x(t) = r(t-1) + u(t) - u(t-1) - 2r(t-2) + r(t-3)$$

$$f(x)(t) = r(t+1) - r(t) + r(t-2)$$

g)
$$x(t) = r(t+2) - r(t+1) - r(t-1) + r(t-2)$$

Prblem 33: Inverese Laplaces transform

Example 99:

If
$$L[f(t)] = F(S)$$
, Then $L^{-1}[F(S)] = f(t)$

Where L^{-1} is called the inverse Laplace transform operator.

$$(1)L^{-1}\left(\frac{1}{S}\right) = 1\left[::(1)L[f(t)] = L(1) = \frac{1}{S}\right]$$

$$(2)L^{-1}\left(\frac{a}{s}\right) = a\left[:: L\left(f(t)\right) = L(a) = \frac{a}{s} \right]$$

$$(3)L^{-1}\left(\frac{1}{s^2}\right) = t\left[:: L(f(t)) = L(t) = \frac{1}{s^2}\right]$$

$$(4)L^{-1}\left(\frac{1}{s-a}\right) = e^{at}\left[:: L(f(t)) = L(e^{at}) = \frac{1}{s-a} \right]$$

$$(5)L^{-1}\left(\frac{1}{s-2}\right) = e^{2t} \left[:: L(f(t)) = L(e^{2t}) = \frac{1}{s-2} \right]$$

$$(6)L^{-1}\left(\frac{a}{s^2+a^2}\right) = \sin at \left[: L(f(t)) = L(\sin at) = \frac{a}{s^2+a^2} \right]$$

$$(7)L^{-1}\left(\frac{2}{S^2+2^2}\right) = \sin 2t \left[: L(f(t)) = L(\sin 2t) = \frac{2}{S^2+2^2} \right]$$

$$(8)L^{-1}\left(\frac{\dot{s}}{s^2 + a^2}\right) = \cos at[: L(f(t))] = L(\cos at) = \frac{\dot{s}}{s^2 + a^2}]$$

$$(9)L^{-1}\left(\frac{s}{s^2+2^2}\right) = \cos 2t \left[: L(f(t)) = L(\cos 2t) = \frac{s}{s^2+2^2}\right]$$

$$(10)L^{-1}\left(\frac{a}{s^2 - a^2}\right) = \sin hat \left[: L(f(t)) = L(\sin hat) = \frac{a}{s^2 - a^2}\right]$$

$$(11)L^{-1}\left(\frac{2}{S^2-2^2}\right) = \sin h2t \left[: L(f(t)) = L(\sin h2t) = \frac{2}{S^2-2^2} \right]$$

$$(12)L^{-1}\left(\frac{s}{s^2 - a^2}\right) = \cos hat \left[: L(f(t)) = L(\cos hat) = \frac{s}{s^2 - a^2}\right]$$

$$(13)L^{-1}\left(\frac{s-u}{s^2-2^2}\right) = \cos h2t[::L(f(t)) = L(\cos h2t) = \frac{s-u}{s^2-2^2}]$$

Example 100 Find the inverse Laplace transforms of the following:

(i)
$$\frac{1}{s-2}$$
 , (ii) $\frac{s}{s^2-16}$, (iii) $\frac{5}{s^2+25}$, (iv) $\frac{1}{\left(s+3\right)^2-4}$, (v) $\frac{1}{2s-7}$

Answers:

(i) Given
$$f(s) = \frac{1}{s-2}$$

We have,
$$\therefore L(f(t)) = L(e^{at}) = \frac{1}{s-a}$$

[Example 58]

$$\therefore e^{at} = L^{-1}(\frac{1}{s-a})$$

$$\therefore e^{2t} = L^{-1}(\frac{1}{s-2})$$

$$\therefore L^{-1}(\frac{1}{s-2}) = e^{2t} \text{ Answer}$$

(ii)
$$L^{-1}\left(\frac{s}{s^2-16}\right) = ?$$

We have,
$$\therefore L(f(t)) = L(\cosh at) = \frac{s}{s^2 - a^2}$$

[Example 63]

$$\therefore \cosh at = L^{-1} \left(\frac{s}{s^2 - a^2} \right)$$

$$\therefore \cosh 4t = L^{-1} \left(\frac{s}{s^2 - 4^2} \right)$$

$$\therefore L^{-1} \left(\frac{s}{s^2 - 4^2} \right) = \cosh 4t \text{ Answer}$$

(iii) We have,
$$L(f(t)) = L(\sin at) = \frac{a}{s^2 + a^2}$$
 [Example 60]

$$\therefore \sin at = L^{-1} \left(\frac{a}{s^2 + a^2} \right)$$

$$\therefore \sin 5t = L^{-1} \left(\frac{5}{s^2 + 5^2} \right)$$

$$\therefore L^{-1}\left(\frac{5}{s^2+5^2}\right) = \sin 5t$$

$$\therefore L^{-1}\left(\frac{5}{s^2+5^2}\right) = \sin 5t \qquad Answer$$

Example 101:

Find inverse Laplace transform of:
$$\frac{s+4}{s(s-1)(s-2)}$$

Solution:

Let,

$$\frac{s+4}{s(s-1)(s-2)} = \frac{A}{s} + \frac{B}{(s-1)} + \frac{C}{(s-2)}$$
 (i)

Multiplying by s(s-1)(s-2) in both sides

$$\Rightarrow \frac{s+4}{s(s-1)(s-2)} \times s(s-1)(s-2) = A \frac{s(s-1)(s-2)}{s} + B \frac{s(s-1)(s-2)}{(s-1)} + C \frac{s(s-1)(s-2)}{(s-2)}$$

$$\Rightarrow s + 4 = A(s-1)(s-2) + Bs(s-2) + Cs(s-1)$$
(ii)

Put s = 0 in equation (ii),

$$\Rightarrow$$
 0 + 4 = $A(0-1)(0-2) + B \times 0(0-2) + C \times 0(0-1)$

$$\Rightarrow$$
 4 = 2A

$$A = 2$$

Put
$$s-1=0$$
, i.e. $s=1$ in equation (ii),
 $\Rightarrow 1+4=A(1-1)(1-2)+B\times 1(1-2)+C\times 1(1-1)$
 $\Rightarrow 5=0-B+0$
 $\therefore B=-5$
Put $s-2=0$, i.e. $s=2$ in equation (ii),

Put
$$s - 2 = 0$$
, i.e. $s = 2$ in equation (ii),
 $\Rightarrow 2 + 4 = A(2 - 1)(2 - 2) + B \times 2(2 - 2) + C \times 2(2 - 1)$
 $\Rightarrow 6 = 0 + 0 + C(4 - 2)$
 $\Rightarrow 6 = 0 + 0 + 2C$
 $\therefore C = 3$

Putting the value of A, B, C in equation (i), we get,

$$\frac{s+4}{s(s-1)(s-2)} = \frac{A}{s} + \frac{B}{(s-1)} + \frac{C}{(s-2)}$$

$$\frac{s+4}{s(s-1)(s-2)} = \frac{2}{s} + \frac{-5}{(s-1)} + \frac{3}{(s-2)}$$

$$\therefore L^{-1} \left(\frac{s+4}{s(s-1)(s-2)} \right) = L^{-1} \left(\frac{2}{s} \right) + L^{-1} \left(\frac{-5}{s-1} \right) + L^{-1} \left(\frac{3}{s-2} \right)$$

$$L^{-1} \left(\frac{s+4}{s(s-1)(s-2)} \right) = 2L^{-1} \left(\frac{1}{s} \right) - 5L^{-1} \left(\frac{1}{s-1} \right) + 3L^{-1} \left(\frac{1}{s-2} \right) - - - - - - - (iii)$$

Since

01. We have
$$\therefore L(f(t)) = L(1) = \frac{1}{s}$$
 [Example 55]
$$\therefore 1 = L^{-1}(\frac{1}{s})$$

$$\therefore L^{-1}(\frac{1}{s}) = 1$$

$$\therefore L^{-1}(\frac{-}{s}) = 1$$
02. We have,
$$\therefore L(f(t)) = L(e^{at}) = \frac{1}{s-a}$$
 [Example 58]
$$\therefore e^{at} = L^{-1}(\frac{1}{s-a})$$

$$\therefore e^{t} = L^{-1}(\frac{1}{s-1})$$

$$\therefore L^{-1}(\frac{1}{s-1}) = e^{t}$$

$$03. \therefore L(f(t)) = L(e^{at}) = \frac{1}{s-a}$$

$$\therefore e^{at} = L^{-1}(\frac{1}{s-a})$$

$$\therefore e^{2t} = L^{-1}(\frac{1}{s-2})$$

$$\therefore L^{-1}(\frac{1}{s-2}) = e^{2t} \text{ Answer}$$
[Example 58]

Putting these values in (iii), we get

$$L^{-1}\left(\frac{s+4}{s(s-1)(s-2)}\right) = 2L^{-1}\left(\frac{1}{s}\right) - 5L^{-1}\left(\frac{1}{s-1}\right) + 3L^{-1}\left(\frac{1}{s-2}\right)$$
$$= 2.1 - 5e^{t} + 3e^{2t} \text{ Answer}$$

Convolution Sum

The following steps are to be taken

- i. Folding
- ii. Shifting
- iii. Multiplication
- iv. Summation

1st times:

- i. Folding
- ii. Multiplication
- iii. Summation

2nd times and more

- i. Shifting
- ii. Multiplication
- iii. Summation

Example 102:

Evaluate the convolution sums of y[n] = x[n]*h[n]

Where,

x[n]=1, n=0 and h[n]=2, n=0 ; n represents the time index 1, n=1

MATLAB

$$x=[1\ 3]$$

y = conv(x,h)

$$y = [2 7 3]$$

Solution:

1st time:

(i). Folding:

$$x[n] = x[-n]$$

i.e.
$$x[0] = x[0]$$

$$x[1] = x[-1]$$

(ii). Multiplication:

$$x[-n] * h[n]$$

(iii). Summation: y[0] = 0 + 2 + 0 = 2

2nd time:

(i). Shifting:

(ii) Multiplication:

$$x[-(n-1)] * h[n]$$

(iii). Summation:

$$y[1] = 0 + 6 + 1 + 0 = 7$$

3rd time:

(i). Shifting:

(ii). Multiplication:

$$x[-(n-2)] * h[n]$$

(iii). Summation:

$$y[2] = 0 + 0 + 3 + 0 = 3$$

4th time:

(i). Shifting:

(ii). Multiplication: x[-(n-3)] * h[n]

iii) Summation: y[3] = 0+0+0+0=0

Finally we get,

$$y[0] = 2$$

 $y[1] = 7$
 $y[2] = 3$

: Convolution Sum: y[n] = [2 7 3]