Formal Verification of AHB-to-APB Bridge

Yelin Mao, Yuxiang Xia, Hongkuan Yu

UNI: ym3000, yx2821, hy2819

Fall 2024

Introduction

Project Overview:

- Formal verification of the AHB-to-APB bridge
- Communication between the high-performance AHB and low-power APB buses

Verification Tools:

- Using SystemVerilog Assertions (SVA)
- Cadence Jasper Gold
- Siemens Modelsim

Structure

Three components:

- AHB Interface
 - Manages AHB bus communication
- APB FSM
 - Controls APB data transfer via an independent finite state machine
- TOP
 - Integrates AHB and APB components 0 for seamless communication

I/O Ports

Stimulation - AHB Interface

- Starting Reset Test
- Reset Test Passed
- Starting Burst Test
- Burst Test Completed
 - : AHB Slave Interface tb.v(128) ** Note: \$stop
 - Time: 125 ps Iteration: 0 Instance: /AHB slave interface th

- **Invalid Address**
- Reset
- **Burst Write**
- **Expected outputs**

Stimulation - TOP

- Single read & write
- Expected outputs except Pslex

SVA - FSM

UMMARY	
Properties Considered	: 37
assertions	: 19
- proven	: 19 (100%)
 bounded_proven (user) 	: 0 (0%)
	: 0 (0%)
	: 0 (0%)
	: 0 (0%)
- ar cex	: 0 (0%)
- undetermined	: 0 (0%)
- unknown	: 0 (0%)
- error	: 0 (0%)
covers	: 18
- unreachable	: 0 (0%)
 bounded unreachable (user) 	: 0 (0%)
- covered	: 18 (100%)
- ar covered	: 0 (0%)
	: 0 (0%)
- unknown	: 0 (0%)
- error	: 0 (0%)

- States: IDLE, WAIT, READ, WRITE, WRITEP, WENABLE, WENABLEP, RENALE
- Transitions based on inputs (valid, Hwrite, Hwritereg)

Property Verification

Five Scenarios:

- Single Write
- Single Read
- Burst write
- Burst read
- Back to back

Property Verification

Input signal timing constraints

Hwrite Hwdata Hreadyin Prdata

Haddr

Output check:

Pwrite Pwdata Paddr Hrdata Penable Pselx

- **Assumptions:**
 - -valid input address
 - -transfer type
 - -burst read constraint
 - -burst write constraint
 - -back to back constraint

```
Properties Considered
                                       : 53
      assertions
                                       : 18 (90%)

    proven

    bounded proven (user)

                                       : 0 (0%)
        - bounded proven (auto)
        - marked proven
                                         0 (0%)
                                         2 (10%)
        - cex
                                           (0%)
       - ar cex

    undetermined

                                           (0%)

    unknown

                                           (0%)
                                       : 0 (0%)

    error

       covers
       - unreachable
                                       : 0 (0%)
        - bounded unreachable (user): 0 (0%)

    covered

                                       : 33 (100%)
        - ar covered
                                       : 0 (0%)

    undetermined

                                       : 0 (0%)

    unknown

                                       : 0 (0%)
                                       : 0 (0%)

    error
```

SVA - TOP

All passed except:

- Back2back_Pwrite:
 - Sequence: write → read → invalid → invalid → invalid
 - First and second cycles: back-to-back transfers
 - Error: Pwrite incorrectly high at the fifth cycle
 - Expected: Pwrite should match Hwrite from the second cycle (low)
 - Caused by insufficient RTL design
- Brust_write_psel0:
 - o Error: Pselx should be 3'b001
 - 3'b100 should occur at the fifth cycle
 - Pselx does not transfer correctly in the original RTL FSM code

SVA - TOP Counterexample Analysis

Removing valid address range assumption:

State machine remains in the IDLE state due to invalid address

Burst_read_addr

Removing transfer type assumption:

Htrans in Busy mode causes the state to remain in the IDLE state

Stimulation vs SVA

Stimulation:

- Verified single write/read and identified the Pselx error
- Unable to fully check burst read/write scenarios and back-to-back transfers

SVA:

- More effective in verifying burst read/write and complex state transitions
- Captured issues like incorrect Pwrite behavior during back-to-back transfers, which were missed in stimulation

Conclusion & Future Work

Conclusion:

- Formal verification of the AHB-to-APB bridge confirmed correct data transfer.
- Identified and addressed issues in state transitions and address handling in the RTL code.

Future Work:

- Fix identified errors in the RTL code.
- Expand verification to cover more scenarios and edge cases.
- Optimize tool integration and extend verification to other AMBA components.