## Projeté orthogonal

**Définition 1.** Le projeté orthogonal d'un point M sur une droite (d) est le point d'intersection H de la droite (d) et de la perpendiculaire à (d) passant par M.



Reproduisez la figure à main levée, puis indiquez les projetés orthogonaux si ce sont des points nommés. Dans le cas contraire, tracez à main levée le projeté orthogonal et lui donner un nom.

- **a.**  $B \operatorname{sur} (CD)$  **b.**  $A \operatorname{sur} (BC)$  **c.**  $C \operatorname{sur} (AB)$
- **d.**  $B \operatorname{sur}(AC)$  **e.**  $A \operatorname{sur}(BE)$  **f.**  $B \operatorname{sur}(CE)$
- **g.** E sur (CA) **h.** D sur (BC) **i.** D sur (EB)
- **j.** E sur (CD) **k.** E sur (BC)

En



Les points qui semblent alignés le sont. Mêmes consignes que dans l'exercice précédent.

- **a.** C sur (BD) **b.** B sur (AC) **c.** B sur (DF)
- **d.** E sur (DC) **e.** D sur (BC) **f.** D sur (AB)
- **g.** A sur (EB) **h.** F sur (AB)

**Propriété 1.** Dans un triangle, le projeté orthogonal d'un sommet sur le côté opposé est le pied de la hauteur issue de ce sommet.



Placez dans un repère orthonormé  $A(-3\,;\,2),\;B(6\,;\,-1)$  et  $C(-1\,;\,-2)$  et déterminez dans le triangle ABC, par lecture graphique, les coordonnées :

- **a.** du pied de la hauteur issue de C ;
- **b.** du pied de la hauteur issue de B ;
- c. du point de concours des trois hauteurs.

Tracez un triangle ABC rectangle en A tel que  $AB=3\,\mathrm{cm}$  et  $AC=4\,\mathrm{cm}$ . Notons H le projeté orthogonal de A sur (BC).

- **a.** Calculez l'aire du triangle ABC.
- **b.** Calculez BC.
- ${f c.}$  Déterminez une autre manière de calculer l'aire du triangle ABC pour en déduire la longueur de AH.
- **d.** Calculez BH .
- e. Calculez l'aire du triangle AHC.

Indications :  $2.4 \times 1.8 = 4.32$   $2.4^2 = 5.76$   $7.68 \div 2 = 3.84$   $\sqrt{3.24} = 1.8$   $\sqrt{10.24} = 3.2$   $12 \div 5 = 2.4$   $4.32 \div 2 = 2.16$   $3.2 \times 2.4 = 7.68$ 

**Définition 2.** La distance entre un point et une droite est la longueur du plus court segment joignant le point à la droite.

**Propriété 2.** La distance entre un point et une droite est la longueur du segment joignant le point à son projeté orthogonal sur la droite.



Soient [Ox) et [Oy) deux demi-droites d'origine un point O du plan et soit A un point distinct de O et équidistant de ces deux demi-droites. Soient M et N les projetés orthogonaux de A sur [Ox) et [Oy) respectivement.

- **a.** Démontrez que  $OM^2=ON^2$  .
- **b.** Démontrez que (OA) est la bissectrice de l'angle  $\widehat{MON}$  .

ABC est un triangle tel que  $AB=8\,\mathrm{cm}$ ,  $AC=11\,\mathrm{cm}$  et  $\widehat{BAC}=30\,^\circ$ . Le point H est le projeté orthogonal de B sur (AC).

- **a.** Calculez BH.
- **b.** Calculez l'aire du triangle ABC.
- **c.** Calculez la distance du point C à (AB).
- **d.** Calculez la distance du point C à (BH).

Indications  $:sin(30^\circ) = cos(60^\circ) = \frac{1}{2}$  et  $sin(60^\circ) = cos(30^\circ) = \frac{\sqrt{3}}{2}$  E7 ABC est un triangle tel que AB = 8, BC = 4 et  $AC = 4\sqrt{3}$ . Soit D le point de [AC) tel que AD = 12. Soit E le point de [AB) tel que  $\widehat{AED} = 60^\circ$ .

- **a.** Démontrez que C est le projeté orthogonal de B sur (AD).
- **b.** Sachant que  $\cos(60°)=\frac{1}{2}$ , démontrez que les droites (BC) et (DE) sont parallèles.
- **c.** Montrez que  $DE=4\sqrt{3}$ .