#### SH2702 Nuclear Reactor Technology

Project work Task 6

#### Project work

| Topic numbers | Topics                                           |
|---------------|--------------------------------------------------|
| 1             | Design, operation and safety features of NuSCALE |
| 2             | Design, operation and safety features of ABWR    |
| 3             | Design, operation and safety features of ESBWR   |
| 4             | Design, operation and safety features of EPR     |
| 5             | Design, operation and safety features of AP1000  |

- Task 1 General design specification of the nuclear power plant with selected reactor type
- Task 2 Operational principles of the power plant
- Task 3 Safety features of the power plant
- Task 4 Calculation of selected core parameters
- Task 5 Calculation of CHF margins in a hot channel
- Task 6 Calculation of the maximum cladding and fuel pellet Temperature

#### Task 4

- 1. Data collection
  - Tables are recommended
- 2. core-averaged thermal-hydraulic calculations
  - Axial enthalpy/temperature distribution
  - Axial void fraction distribution
    - BWRs, from subcooled to saturated
  - Axial pressure distribution
    - Inlet orifices pressure loss, BWRs (50%), PWRs (25%)
  - Flow characteristic of the core (-dp)=f(G)
    - 0%, 50%, 100%, 150% power
    - 1% to 150% flow



#### Task 4



- Inlet orifices pressure loss
  - BWRs (50% at nominal operating conditions)
  - PWRs (25% at nominal operating conditions)

$$\Delta p = p_{out} - p_{in} = \Delta p_{FuelChannel} + \Delta p_{Orifice}$$

$$\left| \Delta p_{Orifice} \right| = \xi_{Orifice} \frac{\rho U^2}{2} = \xi_{Orifice} \frac{G^2}{2\rho}$$



#### Task 4 Nodalization and numerical solution

- for j = 2 to nk
  - $-i(j) = i(j-1) + q_cell(j-1) / W$  (energy balance)
- end for
- while p not converged
  - p(1) = pin + dpInletOrifice
  - for j = 2 to nk
    - xe(j), xa(j), alpha(j) (void fraction model)
    - dpf\_cell(j-1), dpg\_cell(j-1), dpa\_cell(j-1), dpl\_cell(j-1)
    - dp\_cell(j-1) (pressure drop calculation)
    - $p(j) = p(j-1) + dp_cell(j-1)$
  - end for
- end while p
- T(j)
  - f(p(j), i(j)) for subcooled water
  - Tsat(j) for saturated water
- Inlet orifices pressure loss coefficient (designed for nominal condition)
- Flow characteristic of the core (-dp)=f(G)

#### Task 5

- 1. Hot channel
  - Find data on power distribution, otherwise use the simplified shape

$$q''(r,z) = q_0'' J_0 \left( \frac{2.405r}{\tilde{R}} \right) \cos \left( \frac{\pi z}{\tilde{H}} \right)$$

- Find peaking factor in radial direction
- 2. CHF
  - Find CHF, DNB for PWRs, Dryout for BWRs
  - Calculate thermal margin parameters
    - MDNBR, MCPR
- 3. Hot channel result
  - Axial enthalpy/temperature distribution
  - Axial void fraction distribution
    - BWRs, from subcooled to saturated
  - Axial pressure distribution
  - Axial distribution of DNBR and location of MDNBR, for PWRs



#### Task 5 Nodalization and numerical solution

- for j = 2 to nk
  - q\_cell = q\_cell \* fR
  - $-i(j) = i(j-1) + q_cell(j-1) / W$  (energy balance)
- end for
- while p not converged
  - p(1) = pin + dpInletOrifice
  - for j = 2 to nk
    - xe(j), xa(j), alpha(j) (void fraction model)
    - dpf\_cell(j-1), dpg\_cell(j-1), dpa\_cell(j-1), dpl\_cell(j-1)
    - dp\_cell(j-1) (pressure drop calculation)
    - $p(j) = p(j-1) + dp_cell(j-1)$
  - end for
- end while p
- T(j)
  - f(p(j), i(j)) for subcooled water
  - Tsat(j) for saturated water
- q2cr(j), xcr(j), DNBR, CPR

#### Task 6

- 1. Find design and regulatory limit of fuel/clad temperatures
- 2. Identify hot spots (usually in hot channel)
  - Fuel temperature
    - Fuel material properties (temperature dependent)
    - Peak temperature and location
  - Clad temperature
    - Clad material properties (temperature dependent)
    - Peak temperature and location





#### Task 6 Nodalization and numerical solution

- for j = 2 to nk
  - q\_cell = q\_cell \* fR
  - $-i(j) = i(j-1) + q_cell(j-1) / W$  (energy balance)
- end for
- while p not converged
  - p(1) = pin + dpInletOrifice
  - for j = 2 to nk
    - xe(j), xa(j), alpha(j) (void fraction model)
    - dpf\_cell(j-1), dpg\_cell(j-1), dpa\_cell(j-1), dpl\_cell(j-1)
    - dp\_cell(j-1) (pressure drop calculation)
    - $p(j) = p(j-1) + dp_cell(j-1)$
  - end for
- end while p
- T(j)
- Re(j), Pr(j), Nu(j), HTC(j), Tw(j)
- Tco(j), Tci(j), Tfo(j), Tfc(j)
- TciMax, TfcMax

# Clad-Coolant Heat Transfer in Channels with Single Phase Flows (1)

- In Light Water Reactors, coolant is sub-cooled at the inlet to the reactor core
- The subcooling is defined as the difference between the saturation temperature and the actual coolant bulk temperature:  $\Delta T_{sub} = T_f T_{lb}$
- For example, if the inlet temperature and pressure of the water coolant are 549 K and 7 MPa, respectively, then the inlet subcooling is equal to 559 K – 549 K = 10 K, since the saturation temperature of water at 7 MPa pressure is equal to 559 K

# Clad-Coolant Heat Transfer in Channels with Single Phase Flows (2)

• In the single-phase region, when  $z_{in} < z < z_{ONB}$ , the clad surface temperature  $T_{Co}$  of the heated wall and the liquid bulk temperature  $T_{lb}$  are related to each other as follows,

$$T_{Co} - T_{lb} \equiv \Delta T_{lb} = q''/h$$



• where h is the heat transfer coefficient and  $\Delta T_{lb}$  is the temperature difference between the surface of the heated wall and the bulk liquid

\*) z<sub>in</sub> – inlet coordinate; ONB – Onset of Nucleate Boiling

# Clad-Coolant Heat Transfer in Channels with Single Phase Flows (3)

- The heat transfer coefficient h is evaluated from correlations, which, in turn, are based on experimental data and are using the principles of the dimensionless analysis
- The following general relationships are employed

Nu = 
$$f$$
 (Re, Pr, ...), where: Nu =  $\frac{hD_h}{\lambda}$  Nusselt number Re =  $\frac{GD_h}{\mu}$  Reynolds number, Pr =  $\frac{c_p\mu}{\lambda}$ , Pr<sub>w</sub> =  $\frac{c_p\mu}{\lambda}$  Prandtl number

# Clad-Coolant Heat Transfer in Channels with Single Phase Flows (4)

 For flows in pipes, rectangular channel and annuli, and with 10<sup>4</sup> < Re, 0.7 < Pr < 160 and L/D<sub>h</sub> > 60, the following correlation can be used (Colburn):

$$Nu = 0.023 \cdot Re^{0.8} Pr^{0.33}$$

 Another correlation frequently used for heat transfer calculations in pipes was given by Dittus&Boelter:

$$Nu = 0.023 \cdot Re^{0.8} Pr^n$$
 n=0.4 for heating n=0.3 for cooling

valid for  $L/D_h > 60$ , Re  $> 10^4$  and 0.7 < Pr < 100

#### **Heat Transfer in Rod Bundles (1)**

Heat transfer in the entire bundle is calculated from a single correlation including effects of:

flow conditions

fluid properties

geometry

Typically the correlation is of the form:

 $Nu = F(Re, Pr, D_h/d_r, p/d_r,...)$ 

## **Heat Transfer in Rod Bundles (2)**

The influence of flow/fluid conditions and geometry factors can be separated:

Nu = 
$$F_1(Re, Pr,...) \times F_2(D_h/d_r, p/d_r,...)$$

p – lattice pitch

d<sub>r</sub> – rod diameter

Example: the Weisman (1959) correlation:

$$Nu = A \cdot Re^{0.8} Pr^{1/3}$$

$$A = \begin{cases} 0.026 \, p/d_r - 0.006 & \text{triangular } 1.1 < p/d_r < 1.5 \\ 0.042 \, p/d_r - 0.024 & \text{square } 1.1 < p/d_r < 1.3 \end{cases}$$

## **Heat Transfer in Rod Bundles (3)**

 Subotin et al. (1975) recommended for heat transfer to liquids in bundles

$$Nu = A \cdot \text{Re}^{0.8} \text{ Pr}^{0.4}$$
  $A = 0.0165 + 0.02 \left[ 1 - \frac{0.91}{(p/d_r)^2} \right] \left( \frac{p}{d_r} \right)^{0.15}$ 

Triangular lattice with  $1.1 < p/d_r < 1.8$ ; 1.0 < Pr < 20;  $5.10^3 < Re < 5.10^5$ 

For gas flow in tight rod bundles Ajn and Putjkov (1964) give

$$\frac{Nu_{bundle}}{Nu_{DB}} = 1.184 + 0.351 \cdot \log_{10}(p/d_r - 1) \qquad \text{1.03
$$\text{Nu}_{DB} - \text{Dittus-Boelter correlation} \qquad \qquad \text{p-lattice pitch}$$$$

d<sub>r</sub> – rod diameter

#### **Heat Transfer in Rod Bundles (4)**

- In the cited correlations it is assumed that the flow/fluid conditions and the geometry effect are separable
- This, however, seems not to be valid based on an extensive study done by Markoczy (1972)
- He suggested the following form of the correlation

$$Nu_{bundle} = Nu_{pipe} \times F_{geom}(p/d_r, Re, Pr)$$

In other words, the geometry effect is flow/propertydependent

## **Heat Transfer in Rod Bundles (5)**

Markoczy (1972) performed study of experimental data (over 63 bundles of different geometry)

He proposed the following correlation:

$$\frac{\text{Nu}_{bundle}}{\text{Nu}_{DB}} = 1 + 0.91 \,\text{Re}^{-0.1} \,\text{Pr}^{0.4} \left(1 - 2e^{-B}\right) \quad B = \begin{cases} \frac{2\sqrt{3}}{\pi} \left(\frac{p}{d_r}\right)^2 - 1 & \text{triangular} \\ \frac{4}{\pi} \left(\frac{p}{d_r}\right)^2 - 1 & \text{square} \end{cases}$$

Validity region: 3 10<sup>3</sup><Re<10<sup>6</sup>; 0.66<Pr<5; 1.02<p/d<sub>r</sub><2.5

#### **Heat Transfer in Rod Bundles (6)**

In summary, the bundle-wide approach is based on:
 base correlation, which typically takes into account dependence of
 the heat transfer coefficient on flow/property conditions
 geometry factor, which takes into account the dependence on
 pitch/rod-diameter

$$Nu_{bundle} = F_{geo}(p/d_r,...) \times Nu_{base}(Re, Pr, ...)$$

## **Heat Transfer in Rod Bundles (7)**

- Occasionally another approach can be encountered in the literature:
- Osmachkin (1974) recommended to use a correlation valid for pipes (e.g. Dittus-Boelter), replacing the hydraulic diameter with the "effective" one:

$$D_{eff} = \frac{2}{(1-\varepsilon)^2} \left( \frac{\varepsilon - 3}{2} - \frac{\ln \varepsilon}{1-\varepsilon} \right) D_h$$

 $\epsilon$  – fraction of the bundle crosssection occupied by rods:  $\epsilon$  = A<sub>r</sub>/A<sub>tot</sub>; A<sub>r</sub> – rod cross-section area, A<sub>tot</sub> – total (rod+coolant) cross section area

#### Heat conduction in reactor fuel elements (1)

 In the cylindrical coordinate system, for a fuel rod as shown in figure, the conduction equation can be written as

$$\nabla \cdot \lambda \nabla T = -q'''(\mathbf{r})$$

$$\frac{1}{r} \frac{\partial}{\partial r} \left( r \lambda \frac{\partial T(r,z)}{\partial r} \right) + \frac{\partial}{\partial z} \left[ \lambda \frac{\partial T(r,z)}{\partial z} \right] = -q'''(r,z)$$



Fuel element

## Heat conduction in reactor fuel elements (2)

- The conduction equation can be further simplified:
  - Heat conduction in the z-direction can be neglected, since temperature gradient dT/dz is much lower than dT/dr
  - In fuel region q''' = q'''(z)
  - In gas gap and clad regions q"=0



Fuel element

## Heat conduction in reactor fuel elements (3)

 The conduction equation can be thus written for each region separately as:

- Fuel 
$$\frac{1}{r}\frac{d}{dr}\left(r\lambda_F\frac{dT_F(r)}{dr}\right) = -q'''(z)$$

- Gap 
$$\frac{1}{r}\frac{d}{dr}\left(r\lambda_G\frac{dT_G(r)}{dr}\right) = 0$$

- Clad 
$$\frac{1}{r}\frac{d}{dr}\left(r\lambda_C\frac{dT_C(r)}{dr}\right) = 0$$



Fuel element

## Heat conduction in reactor fuel elements (4)

- To solve the ordinary differential equations we need boundary conditions:
  - Finite temperature at r = 0
  - 4<sup>th</sup> kind b.c. at  $r = r_{Fo}$   $T_F \Big|_{r=r_{Fo}} = T_G \Big|_{r=r_{Fo}} \lambda_F \frac{dT_F}{dr} \Big|_{r=r_{Fo}} = \lambda_G \frac{dT_G}{dr} \Big|_{r=r_{Fo}}$
  - 4<sup>th</sup> kind b.c. at  $r = r_{Go}$   $T_G \Big|_{r=r_{Go}} = T_C \Big|_{r=r_{Go}} \lambda_G \frac{dT_G}{dr} \Big|_{r=r_{Go}} = \lambda_C \frac{dT_C}{dr} \Big|_{r=r_{Go}}$
  - 3<sup>rd</sup> kind b.c. at r =  $r_{Co}$

$$-\lambda_C \left. \frac{dT_C}{dr} \right|_{r=r_{Co}} = h \left( T_{Co} - T_{lb} \right)$$



Fuel element

#### Heat conduction in reactor fuel elements (5)

Solution in the fuel region

$$\frac{1}{r}\frac{d}{dr}\left(r\lambda_{F}\frac{dT_{F}(r)}{dr}\right) = -q'''(z)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

- To limit  $T_{Fc} = T_F(0)$ , the constant C must be equal to zero: C = 0, thus

$$\lambda_F \frac{dT_F(r)}{dr} = -\frac{q'''(z) \cdot r}{2}$$



Fuel element

#### Heat conduction in reactor fuel elements (6)

 If the conductivity of the fuel material is assumed constant, the integration is straightforward as

$$T_F(r_F) - T_F(0) \equiv -\Delta T_F = -\int_0^{r_{Fo}} \frac{q'''(z) \cdot r}{2 \cdot \lambda_F} dr$$

or, after integration the temperature rise in fuel region is as follows

$$\Delta T_F(z) \equiv T_F(0) - T_F(r_F) = T_{Fc} - T_{Fo} = \frac{q'''(z) \cdot r_{Fo}^2}{4 \cdot \lambda_F}$$



Fuel element

## Heat conduction in reactor fuel elements (7)

Solution in the gas gap

$$\frac{1}{r}\frac{d}{dr}\left(r\lambda_G\frac{dT_G(r)}{dr}\right) = 0$$

$$\lambda_G \frac{dT_G(r)}{dr} = \frac{C'}{r} \Rightarrow T_G(r) = \frac{C'}{\lambda_G} \ln(r) + C''$$

- Where C' and C" are constants
- Temperature drop in gap is

$$\Delta T_G \equiv T_G(r_{Fo}) - T_G(r_{Go}) = -\frac{C'}{\lambda_G} \ln \left(\frac{r_{Go}}{r_{Fo}}\right)$$



Fuel element

#### Heat conduction in reactor fuel elements (8)

 The constant C' can be found from the energy balance at the fuel-gap interface:

$$q''|_{r_{Fo}} = -\lambda_{G} \frac{dT_{G}(r)}{dr}|_{r_{Fo}} = -\frac{C'}{r_{Fo}}$$

$$q''|_{r_{Fo}} \cdot 2\pi r_{Fo} \cdot dz = q''' \cdot \pi r_{Fo}^{2} \cdot dz$$

$$\Rightarrow C' = -\frac{q''' r_{Fo}^{2}}{2}$$

$$\Delta T_G = \frac{q''' r_{Fo}^2}{2\lambda_G} \ln \left(\frac{r_{Go}}{r_{Fo}}\right)$$



Fuel element

#### Heat conduction in reactor fuel elements (9)

 Since the conduction equation is the same in the clad region, the temperature rise in the clad is found as

$$\begin{aligned} q''|_{r_{Go}} &= -\lambda_{C} \frac{dT_{C}(r)}{dr} \Big|_{r_{Go}} = -\frac{C'}{r_{Go}} \\ q''|_{r_{Go}} \cdot 2\pi r_{Go} \cdot dz = q''' \cdot \pi r_{Fo}^{2} \cdot dz \end{aligned} \Rightarrow C' = -\frac{q''' r_{Fo}^{2}}{2}$$

$$\Delta T_C = \frac{q''' r_{Fo}^2}{2\lambda_C} \ln \left( \frac{r_{Co}}{r_{Go}} \right)$$



Fuel element

#### Heat conduction in reactor fuel elements (10)

 Finally, the temperature rise in the thermal boundary layer in coolant can be found from the Newton equation for the convective heat transfer:

$$q''|_{r_{Co}} = h \cdot (T_{Co} - T_{lb}) = h \cdot \Delta T_{lb}$$

since 
$$q''|_{r_{Co}} \cdot 2\pi r_{Co} \cdot dz = q''' \cdot \pi r_{Fo}^2 \cdot dz \Rightarrow q''|_{r_{Co}} = \frac{q''' r_{Fo}^2}{2r_{Co}}$$

thus

$$\Delta T_{lb} = \frac{q''' r_{Fo}^2}{2r_{Co}h}$$



Fuel element

#### Heat conduction in reactor fuel elements (11)

 The total temperature rise in the fuel element is thus

$$\Delta T = \Delta T_F + \Delta T_G + \Delta T_C + \Delta T_{lb} = T_{Fc} - T_{lb}$$

$$\Delta T = \frac{q'''r_{Fo}^2}{4\lambda_F} + \frac{q'''r_{Fo}^2}{2\lambda_G} \ln\left(\frac{r_{Go}}{r_{Fo}}\right) + \frac{q'''r_{Fo}^2}{2\lambda_C} \ln\left(\frac{r_{Co}}{r_{Go}}\right) + \frac{q'''r_{Fo}^2}{2r_{Co}h} =$$

$$\frac{q'''r_{Fo}^2}{4} \left[ \frac{1}{\lambda_F} + \frac{2}{\lambda_G} \ln \left( \frac{r_{Go}}{r_{Fo}} \right) + \frac{2}{\lambda_C} \ln \left( \frac{r_{Co}}{r_{Go}} \right) + \frac{2}{r_{Co}h} \right]$$

Since  $q'''\pi r_{F_0}^2 = q'$  (linear power density)

$$\Delta T = \frac{q'}{4\pi} \left[ \frac{1}{\lambda_F} + \frac{2}{\lambda_G} \ln \left( \frac{r_{Go}}{r_{Fo}} \right) + \frac{2}{\lambda_C} \ln \left( \frac{r_{Co}}{r_{Go}} \right) + \frac{2}{r_{Co}h} \right]$$



Fuel element

#### **Fuel Thermal Analysis**

 For solid UO<sub>2</sub> with 95% density the recommended equation for the thermal conductivity is

$$\lambda_F(T) = \frac{100}{7.5408 + 17.692t + 3.6142t^2} + \frac{6400}{t^{5/2}} \exp\left(-\frac{16.35}{t}\right)$$

• where  $\lambda_F$  is in W/m·K, t = T/1000 and T is temperature in K. For porosity different from 5%, the thermal conductivity is found as:

$$\lambda_0 = \frac{\lambda_p}{1 - (2.6 - 0.5t)p}$$
 Here  $\lambda_0$  is the thermal conductivity of fully dense UO<sub>2</sub> (that is p = 0) and  $\lambda_p$  is the thermal conductivity of UO<sub>2</sub> with porosity p.

$$\lambda_p = \lambda_0 \left[ 1 - \left( 2.6 - 0.5t \right) p \right] = \lambda_F(T) \frac{1 - \left( 2.6 - 0.5t \right) p}{1 - \left( 2.6 - 0.5t \right) 0.05}$$

#### **Fuel Thermal Analysis**

 For mixed oxide fuel (80% U, 20% Pu) at 95% theoretical density and O/M (oxigen/metal)=2.0, the fuel thermal conductivity can be given as (Washington, 1973)

$$\lambda_F(T) = (0.042 + 2.71 \times 10^{-4} T)^{-1} + 6.9 \times 10^{-11} T^3$$

where  $\lambda_F$  is in W/m·K and T in K. For porosity different from 5%, the thermal conductivity is found as:

$$\lambda_{Fp}(T) = \begin{cases} \lambda_F(T) \frac{1 - 2.5p}{0.875} & p \le 0.1\\ \lambda_F(T) \frac{1 - p}{0.875(1 + 2p)} & p > 0.1 \end{cases}$$

## Cladding Thermal Analysis

 For Zircaloy-2 and Zircaloy-4 (αphase), the thermal conductivity can be found as

$$\lambda_C = 12.6 + 0.0118T$$

- here: T [°C] temperature, λ<sub>C</sub> [W/mK] thermal conductivity
- valid for 20 < T < 800 °C</li>
- uncertainty ±1.01 W/mK



Fuel element