C programski jezik

Da bi se napisao i izvršio program napisan na programskom jeziku C, potreban je:

- ✓ Tekst editor u kojem će program biti napisan,
- ✓ Kompajler i Bilder koji će napisani kod <u>kompajlirati i prevesti u mašinski kod, razumljiv</u> računaru.

Postoji dosta aplikacija koji u sebi integrišu ove alate i one nose zajedničko ime IDE (integrated development environment). One u sebi sadrže pomenute alate:

- ✓ Kod editor,
- ✓ Kompajler ili Interpreter,
- ✓ Bilder i
- ✓ Debugger (alat za testiranje programa).

Jedan od takvih alata je Code::Blocks IDE, open source alat koji je besplatan i koji se može skinuti sa adrese http://www.codeblocks.org. Da bi se program mogao kompajlirati i pokrenuti, sa pomenute adrese je potrebno skinuti instalaciju codeblocks-xxxmingw-setup koja u sebi sadrži:

- ✓ GCC kompajler i
- ✓ GDB dibager.

Nakon uspešne istalacije i pokretanja programa Code::Blocks dobija se sljedeći izgled ekrana:

Da bi napisali i pokrenuli program u programskom jeziku C, potrebno je:

- Kreirati novi projekat (File->New->Project)
- Zatim izabrati Console application
- *U polju za izbor* jezika izabrati *C*

- Dati ime projektu kao i lokaciju na koju će se kod sačuvati,
- Zatim će se izvršiti kompaljiranje putem GCC kompajlera.

- Klikom na dugme *Finish*, *u levom delu ekrana u delu Projects* pojaviće se projekat koji je kreiran, kao i datoteka (*main.c*) *u kojoj se nalazi glavna (main)* funkcija kreiranog projekta.
- Otvaranjem te datoteke, dobija se kod najprostijeg C-programa, koji na ekran ispisuje
- tekst "Hello world".
- Data je i struktura Projects na HDD u C folderu.

- C je tzv. case-sensitive programski jezik, što znači da razlikuje mala i velika slova.
 - ✓ Primer: Naredbe return o i RETURN o su dve različite naredbe.
- Nakon svake naredbe u C-u mora se nalaziti **karakter**;
- C **ne poznaje razmake u kôdu**, tako da se prelazak u novi red nakon svake komande vrši samo iz estetskih razloga, radi lakšeg čitanja koda.
- **Komentari** se mogu pisati na dva načina:
 - ✓ Primer: ukoliko se komentar nalazi u jednom redu, dovoljno je na početak tog reda staviti karaktere //,
 - ✓ Primer: ukoliko se komentar nalazi u više redova, potrebno je komentar ograničiti parovima karaktera /* i */.

```
// Komentar u jednom redu
/* Komentar
    u više redova */
```

Prva dva reda programa u postojeći kôd uključuju datoteke za prevođenje i izvršavanje programa:

```
#include <stdio.h>
#include <stdlib.h>
```

- U datoteci **stdio.h** se nalaze funkcije za <u>ulaz/izlaz</u>, a
- U datoteci **stdlib.h** se nalazi <u>većina funkcija</u> koje su u najčešćoj upotrebi.

Funkcija:

```
int main()
```

- Je glavna funkcija programa i izvršavanje programa počinje od prve linije kôda ove funkcije.
- Svaki projekat **mora** u nekom od fajlova **imati ovu funkciju**.
- Može biti nekog drugog tipa, npr. **void** ili može **imati listu argumenata**.

Par vitičastih zagrada

{}

Predstavlja granice bloka naredbi, kao begin i end u programskom jeziku PASCAL

Poslednji red programa:

```
return 0;
```

• predstavlja izlaz iz glavnog programa, odnosno kraj glavnog programa. U ovom slučaju, glavni program vraća vrednost o (nula).

Red:

```
printf("Hello world!\n");
```

• Štampa tekst "Hello world" na ekran. Funkcija **printf** je definisana u datoteci **stdio.h** i ona na standardni izlaz (**ekran**) ispisuje niz karaktera koji je njen argument. Nizovi karaktera su ograničeni dvostrukim navodnim znacima ("").

Karakter \n koji se nalazi na kraju ovog niza je specijalni karakter koji **označava novi red**.

Osim karaktera za novi red, postoje sledeći specijalni karakteri:

- \t tabulator,
- \b backspace,
- \" dvostruki navodnici,
- \\ obrnuta kosa crta (backslash).

Linux je jezgro operativnog sistema čiji je razvoj započeo Linus Torvalds 1991. godine kao student Univerziteta u Helsinkiju.

- Pored jezgra, za funkionisanje jednog operativnog sistema neophodni su sistemski alati i bibliotetke iz GNU projekta, pa se stoga ova kombinacija jednim imenom naziva GNU/Linux.
- Za razliku od komercijalnih operativnih sistema koje kontroliše određena matična kompanija, Linux je slobodan za distribuiranje i korišćenje.
- Postoje **verzije Linuxa** za različite hardverske platforme, kao što su npr. ARM, PowerPC ili Sun UltraSPARC.
- Treba obratiti pažnju da Linux pravi razliku između malih i velikih slova (on je **case sensitive**).
 - o Primer: imena "pera" i "Pera" označavaju dva različita korisnika
- Komunikaciju sa korisnikom putem komandne linije omogućuje program koji se zove shell,
 i koji ima ulogu interpretera komandi. U Linux distribucijama najčešće korišćeni shell je
 bash (Bourne Again).

• Nakon pokretanja basha, ispisuje se njegov odziv, odnosno **prompt.** Podrazumevani izgled prompta je:

user@computer:~/download\$

- Sve ranije zapamćene komande se mogu pregledati pritiskom na kursorske tastere ↑ i ↓.
- Ukoliko je potrebno videti prethodne sadržaje ekrana, koristimo Shift+PgUp, odnosno Shift+PgDn.
- Postoji više načina da se završi rad basha zadavanjem komande exit.
- **Osnovni direktorijum** u *Linux* fajl sistemu je **root**, ili korenski direktorijum i označava se sa "/" (slash). Svi drugi direktorijumi se nalaze ispod njega:
 - ✓ Direktorijum **etc** sadrži razne konfiguracione fajlove, većinom u tekstualnom obliku.
 - Direktorijum bin sadrži osnovne sistemske programe.
 - ✓ Direktorijum **usr** sadrži korisničke programe i sve što je potrebno za njihovo korišćenje (slike, dokumentacija, razni pomoćni i konfiguracioni fajlovi).

- U svakom direktorijumu se nalaze i dva specijalna poddirektorijuma:
 - o "." označava tekući direktorijum, dok
 - o ".." označava nadređeni direktorijum (parent), koji se nalazi iznad tekućeg.
- Korisnikov home direktorijum ima posebnu oznaku "~" (tilda)
- Spisak direktorijuma se nalazi u promenljivom okruženju (environment variable) **PATH.**
- Ako treba <u>pokrenuti program</u> koji se nalazi u tekućem direktorijumu (a koji se ne nalazi u PATH-u), potrebno je kucati:

./naziv_programa

- Komanda koja služi za kretanje po stablu direktorijuma je cd (change directory).
- Može se kucati apsolutna putanja:

```
cd /home/pera/drugi/
```

- Ukoliko je potrebno saznati <u>punu putanju do tekućeg direktorijuma</u>, to se može postići kucanjem komande **pwd** (print working directory).
- <u>Prikaz sadržaja tekućeg direktorijuma</u>, omogućuje komanda **ls** (list).
- Jedna od osnovnih operacija pri <u>radu sa fajlovima je njihovo kopiranje</u>. To se postiže komandom **cp** (*copy*). Osnovni oblik ove komande je:

```
cp šta_se_kopira gde_se_kopira
```

• Ukoliko treba <u>obrisati jedan ili više fajlova</u>, koristi se komanda **rm** (remove). *Na primer, ako treba* obrisati sve fajlove koji počinju sa aaa, komanda bi bila:

rm aaa*

- Novi direktorijum se može kreirati komandom mkdir (make directory),
- dok se postojeći direktorijum može <u>obrisati komandom</u> **rmdir** (*remove directory*). Treba obratiti pažnju na to da rmdir može obrisati samo prazan direktorijum.
- Najčešće korišćeni tekst editori u *Linux* okruženju su:
 - o vim/gwim i
 - o emacs.
- *Pored njih postoji i* mnoštvo drugih tekst editora, kao što su:
 - o nano,
 - o kwrite,
 - o nedit,
 - o gedit,
 - o xedit...

Kompajler

- C naredbe u sastavu C programa se prvo pišu u **gedit** <u>tekst editoru</u> i fajl se snima sa ekstenzijom "c".
- Za prevođenje C programa u izvršni program se koristi **gcc** <u>kompajler</u> (*GNU Compiler Collection*), koji se pokreće u Linux-ovom **Terminalu**:

Primer: **gcc** -m32 -g -o primer primer.c

- o navedena opcija, **-m32**, se koristi u slučajevima kada je neophodno prevođenje 32 bitnih programa na 64 bitnu platformu
- o opcija **-g** omogućava upisivanje informacioja neophodnih za **dibagiranje programa**,
- o dok se opcijom **-o** zadaje ime izlaznog fajla tj. naziv **izvršnog programa** (ukoliko se opcija -o izostavi, izvršni program će imati naziv **a.out**)

• Fajlovi se mogu analizirati u Linux-ovom **Exploreru**.

Kompajler

Kompajler

```
nastavnik@ub2C4D54655965:~$ gcc -g -o zbir1 zbir1.c
zbir1.c:5:1: warning: return type defaults to 'int'
 main () {
nastavnik@ub2C4D54655965:~$ '/home/nastavnik/zbir1'
Unesite dva cela broja: 2
Zbir unetih brojeva: 5
nastavnik@ub2C4D54655965:~$ mkdir c
nastavnik@ub2C4D54655965:~$ cd c
nastavnik@ub2C4D54655965:~/c$ dir
zbir1 zbir1.c
nastavnik@ub2C4D54655965:~/c$ ./zbir1
Unesite dva cela broja: 2
3
 7bir unetih broieva: 5
```

Dibager

- **Dibager** služi za kontrolisano **izvršavanje programa**, i unutar njega se mogu stalno pratiti i menjati sadržaji. Dibager koji će se koristiti se zove *DDD* (Data Display Debugger) i predstavlja grafičko okruženje za **gdb** (GNU Debugger, osnovni dibager koji radi iz komandne linije Terminala u Linux-u).
- DDD se poziva komandom:

ddd primer

• Glavni prozor je podeljen na nekoliko panela i prozora (koji se mogu prikazati, odnosno sakriti iz **View** *i* **Status menija**).

- o Prozor (1) sadrži izvorni kôd programa.
- o Panel (2) sadrži komande vezane za izvršavanje programa.
- o Prozor (3) sadrži trenutne vrednosti registara.
- Prozor (4) sadrži vrednosti koje je korisnik odabrao da prikazuje (kada takvih vrednosti nema, panel se ne prikazuje).
- Prozor (5) sadrži komandnu liniju *gdb* (tu se može videti tekstualni oblik svih komandi zadatih u *DDDu*),
- o Prozor (6) sadrži izgled programskog kôda u memoriji.
- o Prozor (7) Linija za "Display" taster
- o Panel (8) Tasteri za prikaz podataka i registara
- O Panel (9) Osnovne komande dibagera

Promenljive

- Promenljive su objekti koji imaju svoje ime i čija se vrednost može menjati tokom izvršenja programa. Definisanje promenljivih u C-u vrši se na sledeći način:
 - tip_promenjive ime_promenjive;
- Četiri osnovna tipa podataka su:
 - o int celobrojni tip,
 - o float realni tip jednostruke tačnosti,
 - o double realni tip dvostruke tačnosti,
 - o char znakovni tip, karakter.
- Iz osnovnog celobrojnog tipa se mogu dobiti izvedeni tipovi:
 - o short int (short),
 - o long int (long),
 - o unsigned **int** (unsigned) pozitivan celi broj.

auto	break	case	char	const	continue	default	do
double	else	enum	extern	float	for	goto	if
int	long	register	return	short	signed	sizeof	static
struct	switch	typedef	union	unsigned	void	volatile	while

Štampanje vrednosti

- Funkciji **printf** štampa proizvoljan niz karaktera na standardni izlaz.
- Funkcija ima sledeći oblik:

```
printf("niz_znakova_za_ispis", ime_promjenljivel, ...);
```

- Niz znakova za ispis predstavlja niz karaktera, pri čemu se znakom % pokazuje mesto gde treba da se upišu vrednosti promenljivih, nakon znaka % ide **odgovarajuće slovo**, koje zavisi od tipa promenljive:
 - o %d celobrojni tip, zapisan u dekadnom sistemu,
 - o %o celobrojni tip, zapisan u oktalnom sistemu,
 - o %x celobrojni tip, zapisan u heksadekadnom sistemu,
 - o %f realni tip (**float i double**)
 - o %lf konverzija realne vrednosti dvostruke preciznosti (**double**)
 - o %g drugi specifikator formata za **double** (u printf)
 - o %% karakter '%' (u printf)
 - o %c karakter.
 - o printf ("%d", x); // štampa promenljive x u dekadnom sistemu tj. (% definiše memorijski prostor)
 - o printf ("%f %f", a, b); // štampa realnih promenljivih a i b
 - o printf ("%d %o %x", x, x, x); // štampa promenljive x u dekadnom, oktalnom i heksadekad. sist.
 - o printf ("%c", c); // štampa vrednosti promenljive c tipa char
 - o printf ("Vrednost promenljive x je %d", x);

Unos vrednosti sa tastature i aritmetički operatori

Za tu svrhu se koristi funkcija scanf oblika:

```
scanf("format", lista promjenljivih,...);
```

• **Aritmetički operatori**, kao što im samo ime govori, služe za izvršavanje aritmetičkih

operacija. Postoji ukupno pet aritmetičkih operatora:

- + sabiranje,
- o oduzimane,
- o * množenje,
- o / deljenje,
- o ^stepenovanje (↑ shift 6 engl. tastatura)
- o % ostatak pri deljenju (samo za cele brojeve).

Svi ovi operatori su binarni, što znači da imaju dva argumenta i njihova svrha je jasna, osim možda poslednjeg.

Npr. izraz 8%3 daje ostatak pri dijeljenju broja 8 sa brojem 3, tj. daje vrednost 2.

Aritmetički operatori	Primer		
+	c = a + b;		
2	c = a - b;		
*	c = a * b;		
)	c = a / b;		
90	c = a % b;		
++	c++;		
2	c		

```
a = a + 3 \Leftrightarrow a + = 3

a = a - b \Leftrightarrow a - = b

a = a * c \Leftrightarrow a * = c

/=, \% = ...

a = a + 1 \Leftrightarrow a + = 1 \Leftrightarrow a + + \Leftrightarrow + + a

b = b - 1 \Leftrightarrow b - = 1 \Leftrightarrow b - - \Leftrightarrow - - b

i = j + +; \Leftrightarrow i = j; j = j + 1;

i = + + j; \Leftrightarrow j = j + 1; i = j;
```

Relacijski i logički operatori

Ovi operatori imaju isti smisao kao i u matematici. U ovu grupu operatora spadaju

- o > veće,
- o < manje,</p>
- <= manje ili jednako,</p>
- >= veće ili jednako,
- == jednako (dvostruko jednako),
- != različito (! je znak negacije).

Operatori relacija	Primer	
>	if(a > b)	
>=	if(a >= b)	
==	if(a == b)	
<	if(a < b)	
<=	if(a <= b)	
<u>!</u> =	if(a != b)	

Osim ovih, u ovu grupu spadaju i logički vezinici.

- o && logičko I,
- o || logičko ILI. (↑ shift Ž)

Logički operatori	Primer
&&	if (number > 0 && number < 10)
11	if (number < 0 number > 10)
į	if (! result)

Bitovni operatori

• Bitovni operatori su operatori koji manipulišu sa cjelobronim tipovima podataka, na nivou bitova. Za potpuno razumevanje rada ovih operatora potrebno je poznavati način zapisivanja celih brojeva u potpunom komplementu.

Postoji 6 operatora za rad s bitovima:

- o & binarno I, (oduzimanje -)
- o | binarno ILI, (sabiranje +)
- o ^ binarno ekskluzivno ILI, (8 ^ 11=3)
- << levi pomak (levi shift),</p>
- >> desni pomak (desni shift),
- 🔾 ~ unarna negacija.

Operatori uvećavanja i umanjivanja

- U C-u postoje dva uobičajena operatora **uvećavanja i umanjivanja** za jedan. To su
 - o operatori ++ i --.
 - Operator inkrementiranja ++ uvećava svoj operand za jedan,
 - o dekrementiranja -- umanjuje svoj operand za jedan.
- To znači da izrazi:
 - o a=a+1 i a++, imaju isto značenje
 - o a=a-1 i a-- imaju isto značenje.
- Oba operatora se mogu koristiti:
 - o kao prefiksni (++a) i kao
 - o sufiksni (a++).
- Razlika je što se u <u>prefiksnom korišćenju vrednost promenljive a uveća pre njenog korišćenja</u>,
 a u sufiksnom obrnuto.
- Slično kao kod operatora <u>inkrementiranja</u> i <u>dekrementiranja</u>, postoje **skraćeni** zapisi i za operatore u kojima je promenljiva na levoj strani a neki od operatora na desnoj. Za zapis i=i+2 skraćeni zapis za ovaj izraz je i+=2.

Prioritet i smer grupisanja

Prioritet	Broj operanada	Operatori	Smer grupisanja
15	2	[] () · ->	•
14	1	! ~ ++ + - * & (tip) sizeof	
13	2	* / %	→
12	2	+ -	•
11	2	<< >>	→
10	2	< <= > >=	→
9	2	== !=	•
8	2	&	→
7	2	^	+
6	2	1	*
5	2	&&	-
4	2	11	→
3	3	?:	•
2	2	= += -= *= /= %= &= ^= = <<= >>=	*
1	2	,	-

 Primer 1a. Napisati program koji definiše dve celobrojne promenljive, dodjeljuje im vrednost i štampa njihov zbir.

```
#include <stdio.h>
#include <stdlib.h>

int main()
{
    int a, b;
    a = 5;
    b = 7;
    int c = a+b;
    printf("Zbir je %d\n", c);
    return 0;
}
```

```
#include <stdio.h>
#include <stdlib.h>

int main()
{
    int a = 5, b = 7;
    printf("Zbir je %d\n", a+b);
    return 0;
}
```

• Primer 1b. Napisati program koji sa tastature učitava dva cela broja i štampa njihov zir.

```
#include <stdio.h>
#include <stdlib.h>

int main()
{
    int a, b;
    scanf("%d", &a);
    scanf("%d", &b);
    printf("Zbir je %d\n", a+b);
    return 0;
}
```

```
/* Program procita dva cela broja i :
      #include <stdio.h>
                                      ■ "C:\P (
                                     a,b? 2 3
      main ()
                                     a+b= 5
 6
        int a, b, c;
        printf ("a,b? ");
                                     Process
        scanf ("%d%d", &a, &b);
                                     Press anv
10
        c = a + b;
11
      printf ("a+b= %d\n", c);
12
     └ } SUB
```

• Primer 2. Napisati program koji štampa veličine memorijskog prostora za osnovne tipove podataka.

```
#include <stdio.h>
#include <stdlib.h>
int main()
     printf("int: %d\n", sizeof(int));
     printf("short: %d\n", sizeof(short));
     printf("long: %d\n", sizeof(long));
     printf("unsigned: %d\n", sizeof(unsigned));
     printf("float: %d\n", sizeof(float));
     printf("double: %d\n", sizeof(double));
     printf("char: %d\n", sizeof(char));
     return 0;
```

int: 4
short: 2
long: 4
unsigned: 4
float: 4
double: 8
char: 1

• Primjer 3. Napisati program koji sa tastature čita dva cela broja i ispisuje njihov zbir, razliku, proizvod i količnik.

```
#include <stdio.h>
#include <stdlib.h>
int main()
     int a, b;
     scanf("%d", &a);
     scanf("%d", &b);
     printf("a + b = %d\n", a+b);
                                            10
     printf("a - b = %d\n", a-b);
                                            11
     printf("a * b = %d\n", a*b);
                                            12
                                            13
     printf("a / b = f\n", (float)a/b);
                                            14
     printf("a % b = %d\n", a%b);
                                            15
     return 0;
                                            16
```

```
#include <stdio.h>
#include <stdlib.h>
int main()
int a, b;
scanf("%d", &a);
scanf("%d", &b);
printf("a+b=%d\n",a+b);
printf("a-b=%d\n", a-b);
printf("a*b=%d\n", a*b);
printf("a/b=%f\n", (float)a/b);
printf("a%b=%d\n", a%b);
return 0;
```

```
"C:\P O D A C

3
6
a+b=9
a-b=-3
a*b=18
a/b=0.500000
ab=3

Process returned
Press any key to
```

• Primer 4. Napisati program za izračunavanje obima kruga i površine kruga.

```
//krug.c - Izracunavanie obima kruga i povrsine kruga
      #include <stdio.h>
                                             "C:\P O D A C I\US
      #define PI 3.14
                                            Poluprecnik? 5
      int main()
                                             Obim 31.400000
 6
                                             Povrsina 78.500000
       double r;
       printf("Poluprecnik?");
                                             Process returned 19
       scanf("%lf", &r);
                                             Press any key to co
       printf("Obim %lf\n", 2*r*PI);
10
       printf("Povrsina %lf\n", r*r*PI);
```

Primer 5. Napisati program koji izračunava vrednosti izraza.

```
#include <stdio.h>
#include <stdlib.h>
int main()
                                                     int main()
     printf("24&12 = %d\n", 24&12);
     printf("17|12 = %d\n", 17|12);
     printf("8^11 = %d\n", 8^11);
     printf("17>>2 = %d\n", 17>>2);
     printf("21<<3 = %d\n", 21<<3);
                                               10
     printf("\sim 11 = %d\n", \sim 11);
                                               11
     return 0;
                                                     return 0:
                                               12
                                               13
```

```
#include <stdio.h>
                                    ■ "C:\P O D
#include <stdlib.h>
                                   24&12 = 8
                                  17 12 = 29
                                  8^11 = 3
printf("24&12 = %d\n", 24&12);
                                  17>>2 = 4
printf("17|12 = %d\n", 17|12);
                                  21 << 3 = 168
printf("8^11 = d\n", 8^11);
                                  ~11 = -12
printf("17>>2 = dn, 17>>2);
printf("21<<3 = %d\n", 21<<3);
                                  Process retu
printf("\sim 11 = %d\n", \sim 11);
                                   Press any ke
```

```
128 64 32 16 8 4 2 1 \longrightarrow BCD kôd

1 0 1 0 1 \longrightarrow (21)

1 0 1 0 1 \longrightarrow (168)
```

Primer 6. Površine trougla u ravni, korišćenjem Heronovog obrasca.

```
#include <stdio.h>
       #include <math.h>
     □ main () {
         double xA, yA, xB, yB, xC, yC, a, b, c, s, P;
10
         /* Temena trougla: */
11
         printf ("Koordinate temena trougla\n");
         printf ("- prvo teme? ");
12
         scanf ("%lf%lf", &xA, &yA);
13
        printf ("- drugo teme? ");
14
         scanf ("%lf%lf", &xB, &yB);
15
        printf ("- trece teme? ");
16
         scanf ("%lf%lf", &xC, &yC);
17
18
         /* Stranice trougla: */
19
20
         a = sqrt (pow (xB-xC, 2) + pow (yB-yC, 2));
         b = sqrt (pow (xC-xA, 2) + pow (yC-yA, 2));
21
         c = sqrt (pow (xA-xB, 2) + pow (yA-yB, 2));
22
23
         /* Povrsina trougla: */
24
        s = (a + b + c) / 2;
25
         P = sqrt (s * (s-a) * (s-b) * (s-c));
26
         printf ("Povrsina trougla: %f\n", P);
27
28
```

```
"D:\ReÜeni zadaci iz C\C1\trougao.exe"
Koordinate temena trougla
 prvo teme? 1
 drugo teme? 2
 trece teme? 4
Povrsina trougla: 2.000000
Process returned 27 (0x1B)
Press any key to continue.
```

 Primer 7. U programu omogućite unos dva cela broja i ispišite njihov zbir, aritmetičku sredinu i zbir kvadrata brojeva.

```
#include <stdio.h>
void main ()
    int broj1, broj2;
    printf("\nUpiši dva cela broja: ");
    scanf("%d %d", &broj1, &broj2);
    printf("\nZbir je %d", broj1+broj2);
    printf("\nAritmetička sredina je %.2f", (broj1+broj2)/2.0);
    printf("\nZbir kvadrata brojeva je %d", broj1*broj1+broj2*broj2);
    return;
```

- Primer 8. U programu omogućite unos dva broja, broj sati i minuta. Ispišite koliko taj broj sati i minuta iznosi u sekundama.
- Mogući izlaz je: 2 sata i 20 minuta iznosi 8400 sekundi

```
#include <stdio.h>
void main ()
   int h, min;
        long int sek;
    printf("\nUpiši broj sati i minuta: ");
        scanf("%d %d", &h, &min);
        sek = (h*60+min)*60;
        printf("\n%d sati i %d minuta iznosi %ld sekundi", h, min, sek);
    return;
```

 Primer 9. U programu omogućite unos dve stranice pravougaonika i izračunajte njegovu površinu i obim.

```
#include <stdio.h>
void main()
     float a, b, p, o;
     printf("\nUčitaj dužine stranica a i b: ");
     scanf("%f %f", &a, &b);
     p = a*b;
    o = 2*(a+b);
     printf ("\Površina je %.2f\nObim je %.2f", p, o);
     return;
```

- Primer 10. U programu omogućite unos broja sekundi i ispišite odgovarajuće vreme u satima, minutama i sekundama.
- Predloženi izlaz je: 3722 sekunde iznosi 1 sat, 2 minute i 2 sekunde

```
#include <stdio.h>
void main ()
     int ukupno, h, min, sec;
     printf("\nUCitaj ukupan broj sekundi: ");
     scanf("%d", &ukupno);
     h = ukupno / 3600;
     min = (ukupno % 3600) / 60;
     sec = (ukupno % 3600) % 60;
     printf ("\n%d sekundi iznosi: ", ukupno);
         printf ("\n%d sat, %d minute i %d sekunde", h, min, sec);
     return;
```

- Primer 11. U programu omogućite unos stranicu a istostraničnog trougla. Izračunati obim i površinu trougla.
- Rezultate ispisati kao: Učitaj stranicu a trougla: 4, Obim je: 12, Površina tougla je: 6.93

```
#include <stdio.h>
#include <math.h>
void main()
        float a;
        printf("\nUčitaj stranicu a trougla: ");
        scanf("%f", &a);
        printf("\nObim trougla je : %.2f", 3*a);
        printf("\nPovršina troula je : %.2f", a*a*sqrt(3)/4);
        return;
```

• Primer 12. U programu omogućite unos tri broja. Izračunati i ispisati aritmetičku sredinu sa 3 decimalna mesta.

```
#include <stdio.h>
void main()
        int br1, br2, br3;
        float ars;
        printf("\nUpiši tri cela broja: ");
        scanf("%d %d %d", &br1, &br2, &br3);
        ars = (br1 + br2 + br3) / 3.0;
        printf("\nAritmetička sredina je %.3f", ars);
        return;
```

• Primer 13. U programu omogućite unos koordinata točaka A(x1,y1) i B(x2,y2). Izračunati i ispisati njihovu udaljenost u koordinantnom sistemu.

```
#include <stdio.h>
#include <math.h>
void main()
        int x1, y1, x2, y2, dx, dy;
        float c:
        printf("\nUpišite koordinate tačke A(x1 i y1): ");
        scanf("%d %d", &x1, &y1);
        printf("\nUpišite koordinate tačke B(x2 i y2): ");
        scanf("%d %d", &x2, &y2);
        dx = x2 - x1;
        dy = y2 - y1;
        c = sqrt((dx*dx)+(dy*dy));
        printf("\nDve tačke su udaljene %.2f", c);
        return;
```

- Primer 14. U programu omogućite unos pozitivnog realnog broja. Izračunati kvadrat, kub i drugi koren tog broja. Rezultat ispisati u redu (sa dva 2 decimalna mesta):
- Unesi pozitivan realan broj: 5, Kvadrat broja 5 je 25.00, kub je 125.00, a koren 2.24

```
#include <stdio.h>
#include <math.h>
void main()
        float broj, kv, kub, koren;
        printf("\nUnesi pozitivan realan broj: ");
        scanf("%f", &broj);
        kv = broj*broj;
        kub = broj*broj*broj;
        korijen = sqrt(broj);
        printf("\nKvadrat broja %2f je %.2f", broj, kv);
        printf("\nKub broja %.2f je %.2f", broj, kub);
        printf("\nKoren broja %.2f je %.2f", broj, koren);
        return;
```

• Primer 15. Učitati 4 broja x, y, a, b. Izračunati vrednost sedećeg izraza:

```
#include <stdio.h>
#include <math.h>
void main()
        float x, y, a, b, broj1, broj2;
        printf("\nUčitaj brojeve x i y: ");
        scanf("%f %f", &x, &y);
        printf("\nUčitaj brojeve a i b: ");
        scanf("%f %f", &a, &b);
        broj1 = abs(x-y) / (a*b);
        broj2 = (x*y) / abs(a-b);
        printf("\nZbir brojeva je %.2f", broj1+broj2);
        return;
}
```

- Primer 16. U programu omogućite unos stranice kvadrata. Izračunati površinu, obim i dijagonalu kvadrata (na 2 decimale) npr.
- Unesi stranicu kvadrata: 5,
- Površina je: 25,
- Obim je: 20,
- Dijagonala je: 7.07

```
#include <stdio.h>
#include <math.h>
void main()
   int stranica, obim, povrsina;
    float d;
    printf("\n Unesi stranicu kvadrata: ");
    scanf("%d", &stranica);
    povrsina = stranica*stranica;
    opseg = 4*stranica;
   d = stranica*sqrt(2);
    printf("\nPovršina je: %d", povrsina);
    printf("\nObim je: %d", obim);
    printf("\nDijagonala je: %.2f", d);
    return;
```

- Primer 17. U programu omogućite unos broja dana. Izračunati koliko to iznosi godina, meseci i dana:
- Unesi broj dana: 2255, 2255 dana = 6 god, 2 mes i 5 dana

```
#include <stdio.h>
void main()
    int uk, god, mes, dana;
    printf("\nUnesi broj dana: ");
    scanf("%d", &uk);
    god = uk / 365;
    mjes = (uk % 365) / 30;
    dana = (uk % 365) % 30;
    printf("\n%d dana = %d god, %d mes i %d dana", uk, god, mes, dana);
    return;
```

• Primer 18. U programu omogućite unos temperature u °C i izračunati koliko je to °F (formula: °F = °C * 9/5 + 32):

```
#include <stdio.h>
void main()
    float c, f;
    printf("\nUčitaj temperaturu u °C:");
    scanf("%f", &c);
        f = (c * 9 / 5) + 32;
        printf("\nTemperatura u °F je: %.2f", f);
    return;
```

• Primer 19. Ako se vozač vozi automobilom 10 minuta. Izračunaj za zadani broj kilometara kojom je brzinom vozio?

```
#include <stdio.h>
void main()
  int t, s, m, km;
  float v;
  printf("\n Upiši broj kilometara:");
  scanf("%d", &km);
  t = 10 * 60;
  s = km * 1000;
  v = (float)s / t *3.6;
  printf("\n Vozač je vozio brzinom od %.2f km/h", v);
  return;
```

• Primer 20. Program treba od korisnika tražiti unos realnih koeficijenata linearne jednačine (y=ax+b), izračunati i ispisati njeno rešenje.

```
#include <stdio.h>
void main()
    float a, b, x, f;
    printf("\nUnesi koeficijente jednačine a i b: ");
    scanf("%f %f", &a, &b);
    printf("\nUnesi vrednost x: ");
    scanf("%f", &x);
    f=a*x+b;
    printf("\nFunkcija f(%.2f) = %.2f", x, f);
    return;
```

Hvala na pažnji!

