УДК 550.4

Использование показателей подвижности тяжелых металлов при эколого-геохимической оценке почв урбанизированных территорий

Жνκ E. A.

Институт геохимии, минералогии и рудообразования НАН Украины Представлена научным руководителем д. г. н. Кураевой И.В.

Представлены результаты определения содержания подвижных форм тяжелых металлов в почвах территорий, подверженных активной техногенной нагрузке.

На данном этапе исследований загрязнения почв тяжелыми металлами (ТМ) большое внимание уделяется подвижным формам (ПФ) [1, 2, 3]. Хотя, как отмечают Н.Г. Зырин и Н.А. Чебаторева, в научной литературе нег конкретного определения термина "подвижные формы". Большинство авторов под этим термином объединяют все формы элементов, переходящих в любую вытяжку – водную, солевую, разбавленные сильные минеральные и слабые органические кислоты, щелочи, растворы комплексонов. На наш взгляд для экологической геохимии под термином "подвижные формы" следует понимать все формы элементов, переходящие в вытяжки, близкие по свойствам к природным растворам. Изучение именно ПФ дает более точное представление об опасности загрязнения, так как, поступая, в организм человека по трофической цепочке в различных формах ТМ могут накапливаться в организме человека (в основном в почках и печени) и выводятся очень медленно, при этом вызывая различные патологии [4, 5]. Делаются попытки наметить рациональную схему последовательного разделения форм нахождения ТМ в почвах с различным эдафотопом. В зависимости от формы нахождения элемента в почве изменяются и его свойства. Следовательно, должны меняться и критерии оценки содержания химического элемента. Поэтому в настоящее время подвергаются пересмотру [6, 7] существующие нормативы (ПДК) экологического состояния почв, которые основываются в основном на определении валового содержания. Однако, валовое содержание химических элементов не отражает их миграцию в системе почва — раствор — растения.

На валовое содержание и содержание ПФ влияют природные и антропогенные факторы. Исследованию распределения ПФ ТМ в различ-

ных типах почв посвящены работы многих исследователей [8, 9, 2, 10]. Однако остается ряд вопросов, которые требуют дальнейшего изучения, а именно, определения форм нахождения ТМ в почвах природных и техногенных ландшафтов и различий их распределения в зависимости от характера и степени техногенной нагрузки.

Поэтому целью наших исследований было изучение закономерности распределения валового содержания и содержания ПФ ТМ в почвах урбанизированных территорий. Объектами исследований были почвы, находящиеся под влиянием предприятий химической промышленности и машиностроения (расположенные на территории Дарницкого и Святошинского районов г. Киева).

На исследуемой территории чаще встречаются техногенные почвы, но полученные данные сравнивались с фоновыми концентрациями ТМ, характерными для природных почв данной территории, представленных дерново-слабоподзолистыми и дерново-подзолистыми. Физико-химические свойства почв представлены в таблице 1.

Для определения валового содержания тяжелых металлов в почвах была использована методика Н.И. Журавлевой, П.Е. Тулупова [12]; для определения содержания ПФТМ – методика Г.А. Шимко, В.А. Кузнецова [13]. Измерения проводились в лаборатории отдела поисковой и єкологической геохимии ИГМР НАНУ атомно-абсорбционным методом на спектрофотометре С-115 (чувствительность метода 0,5 мг/кг). Полученные результаты определения содержания ТМ представлены в таблице 2.

Диаграммы процентного соотношения ПФ на техногенных и условно чистых (фоновых) территориях представлены на рисунках 1 и 2.

Физико-химические свойства почв

Таблица 1

вьои ии Т	рН	Поглощенные катионы мг×экв/100 г					Содерж.
	солевой	Ca ²⁺	M g ²⁺	K ⁺	Na ⁺	гумуса, %	фракции <0,001(%)
Дерново-слабоподзолистая	4,6	1.78	0,38	0,09	0,33	0,57	5,3
Дерново-среднеподзолистая глееватая супесчаная	5,5	2,4	0,92	0,18	0,14	0,87	8,32

Примечание. Физико-химические свойства почв определялись по общепринятой методике [11]. Глубина отбора проб 5-20 см.

Таблица 2 Содержание тяжелых металлов в почвах (мг/кг)

Элемент	На территории маниностроительных предприятий		На территории предприятий химической промышленности			
	Валовое содержание	Содоржание подвижных форм	Валовое содержание	Солержанне подвижных форм		
2 n	60	(суммарное) 21	1160	(суммарное) - 276		
2	25	2,7	28	2,52		
Си	38 16	15,9	120 17	10,2		
Со	3,2 1,8	1,6 0,19	24 10	2,1 0,28		
Ni	34	1,9	5,5	1,9		
	12	0,4	2	<1		

Примечание. В числителе указано содержание ТМ на техногенных территориях, в знаменателе — на фоновых территориях.

В результате исследований установлено, что на территориях подверженных техногенным нагрузкам прослеживается тенденция, увеличения не только валового содержания исследуемых металлов, но и подвижность ТМ в почвах резко возрастает (в 2-5раз). Это свидетельствует о постоянном поступлении поллютантов в почвы в разнообразных формах (спектр форм поступления зависит от характера источника поступления ТМ, но всегда шире спектра форм нахождения в природных ландшафтах), а также может быть косвенным сви-

Рисунок I. Соотношение подвижных форм на фоновых и техногенных территориях (машиностроение)

Рисунок 2. Соотношение подвижных форм на фоновых и техногенных территориях (химическая промышленность).

детельством активизации процесса самоочищения ландшафта.

Для более детального исследования процессов миграции (накопление; самоочищение) ТМ в почвах урболандшафтов, необходимо изучение распределения форм нахождения металлов в зависимости от минерального (химического) и фракционного состава почв. Это позволит разработать детальную методику оценки миграционной способности металлов в зависимости от типа почв и оценки экологического риска урболандшафтов.

- 1. Жовинский Э. Я., Кураева И. В. Подвижность разных форм цинка, меди, кобальта, никеля в почвах Украины // Минерал. журн. 1996. №5.— С. 57-22.
- 2. Самчук А.И., Бондаренко Г.Н. и др. Физико-химические условия образования мобильных форм токсичных металлов в почвах. // Минерал. журн. 1998. № 2.— С. 48-59.
- 3. Жовинский Э. Я., Кураева И. В. и др. Эколого-геохимическое картирование почвенных отложений по подвижным формам химических элементов. // Минерал. журн. -1998. -№ 5. С. 62-71.
 - 4. Ильин В.Б. Тяжелые металлы в системе почва растения.— Новосибирск: Наука, 1991.— 149 с.
- 5. Авцин А.П., Жаворонков А.А. Принципы классификации заболеваний биогеохимической природы // Архив патологий 1983 №9. С. 45-54.
- 6. Ильин В.Б. Оценка существующих экологических нормативов содержания тяжелых металлов в почве. // Агро-химия 2000 № 9.— С. 74-80.

- 7. Матвеев Ю. М. и др. Проблемы нормирования содержания химических соединений в почвах. // Агрохимия 2001 №12.— С. 54-60.
- 8. Ильин В.Б., Байдина и др. Содержание ТМ в почвах и растениях Новосибирска. //Агрохимия 2000. № 3.— С. 66-73.
- 9. Кураева И.В. Загрязнение почв урбанизированных территорий Украины ТМ //Минерал. журн. 1997. № 2.— С. 43-51.
- 10. Пилепелец М.В. Форми знаходження важких металів у грунтах м. Львова та його околиць. Автореф. канд дис. Львів, 2001. 18 с.
 - 11. Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд-во Московского ун-та, 1970. 487 с.
- 12. Тулупов П.Е., Журавлева Н.И. Использование кислотных вытяжек для округления валового содержания тяжелых металлов в почвах // Загрязнение почв и сопредельных сред токсикантами промышленного и сельскохозяйственного происхождения М.: Гидрометиздат, 1987. С. 89-98.
- 13. Кузнецов В.А., Шимко Г.А. Метод постадийных вытяжек при геохимических исследованиях. Минск: Наука и техника, 1990.— 65 с.

Представлено результати визначення вмісту рухомих форм важких металів у грунтах територій, що підлягають активному техногенному навантаженню.

Results of defining content of heavy metals' mobile forms in soils of territories with active man-caused load have been presented.