Séptima Práctica Dirigida Grupo N°3

Análisis y Modelamiento Numérico I CM4F1 B

Profesor Ángel Enrique Ramírez Gutiérrez.

Aldo Luna Bueno Alejandro Escobar Mejia Carlos Aznarán Laos

Brian Huaman Garcia Khalid Izquierdo Ayllon Carlos Malvaceda Canales

Facultad de Ciencias

Universidad Nacional de Ingeniería

4 de julio del 2023

Khalid Zaid Izquierdo Ayllón

Alejandro Escobar Mejia Pregunta N°17 Brian Alberto Huamán Garcia

Pregunta N°5

Pregunta N°9

Pregunta N°23 Carlos Alonso Aznarán Laos

Pregunta N°28 Aldo Luna Bueno

Pregunta N°29 Carlos Daniel Malvaceda Canales

Lista de N° de pregunta / estudiante

5. El pentóxido de dinitrógeno gaseoso puro $N_2 O_{5(g)}$ reacciona en un reactor intermitente según la reacción estequiométrica k_{El}

 $N_2O_5 + E \xrightarrow{k_{\rm SI}} \cdot$ Calculamos la concentración de pentóxido de dinitrógeno existente en ciertos instantes, obteniendo los siguientes datos:

200

0

Tiempo (s)

	Concentración (mm)	5.5	5.04	4.36	3.45	2.37	1.32	0.71	
Si lo tenemos en el re	eactor un tiempo máxim	o de 3	5 minute	os (2100) segund	los), det	ermine I	a concen	tración de pentóxido

400

650

1100

1900

2300

Si lo tenemos en el reactor un tiempo máximo de 35 minutos (2100 segundos), determine la concentración de pentóxido de dinitrógeno que queda sin reaccionar, usando el polinomio de Taylor, Lagrange y Newton por diferencias divididas implementado.

Solución

9. Dada la tabla de valores:

y 5, respectivamente.

x_i	-1	0	1
y_i	13	7	9

- a) Determine el spline cúbico natural que interpola estos datos, imponiendo las condiciones requeridas y resolviendo el sistema.
- b) Dibujar el spline completo que interpola los datos, suponiendo que las derivadas primeras del spline en los nodos inicial y final son -5

Solución

a) .

- 18. Sea $f(x) = \exp(x)$ para $0 \le x \le 2$.
 - a) Aproxime f(0.25) mediante la interpolación lineal con $x_0 = 0$ y $x_1 = 0.5$. b) Aproxime f(0.75) mediante interpolación lineal con $x_0 = 0.5$ y $x_1 = 1$.
 - c) Aproxime f(0.25) y f(0.75) mediante el segundo polinomio de Lagrange con $x_0 = 0$, $x_1 = 1$ y $x_2 = 2$.
- Solución

Forma de Lagrange del polinomio de interpolación

$$p(x) = y_0 \ell_0(x) + y_1 \ell_1(x) + \dots + y_n \ell_n(x) = \sum_{k=0}^n y_k \ell_k(x).$$

Here $\ell_0, \ell_1, \dots, \ell_n$ are polynomials that depend on the nodes x_0, x_1, \dots, x_n but not on the ordinates y_0, y_1, \dots, y_n . Since all the ordinates could be 0 except for a 1 occupying the i-th position, we see that

$$\delta_{ij} = p_n(x_j) = \sum_{k=0}^{n} y_k \ell_k(x_j) = \sum_{k=0}^{n} \delta_{ki} \ell_k(x_j) = \ell_i(x_j).$$

(Recall that the Kronecker delta is defined by $\delta_{ki}=1$ if k=i and $\delta_{ki}=0$ if $k\neq i$.) We can easily arrive at a set of polynomials having this property. Let us consider ℓ_0 . It is to be a polynomial of degree n that takes the value 0 at x_1, x_2, \ldots, x_n and the value 1 at x_0 . Clearly, ℓ_0 must be of the form

$$\ell_0(x) = c(x - x_1)(x - x_2) \cdots (x - x_n) = c \prod_{i=1}^n (x - x_i).$$

The value of c is obtained by putting $x=x_0$, so that $1=c\prod_{i=1}^n(x_0-x_i)$ y $c=\prod_{i=1}^n(x_0-x_i)^{-1}$. Hence, we have

$$\ell_i(x) = \prod_{\substack{j=0\\i \neq i}}^n \frac{x - x_j}{x_i - x_j}.$$

23. Using the functions ℓ_i defined in Section 6.1 (p. 312) and based on nodes x_0, x_1, \ldots, x_n , show that for any f

 $\sum_{i=0}^{n} f(x_i) \ell_i(x) = \sum_{i=0}^{n} f[x_0, x_1, \dots, x_i] \prod_{i=0}^{i-1} (x - x_i).$

(Continuation) Prove this formula:

$$f[x_0, x_1, \dots, x_n] = \sum_{i=1}^{n} f(x_i) \prod_{i=1}^{n} (x_i - x_j)^{i}$$

 $f[x_0, x_1, \dots, x_n] = \sum_{i=0}^n f(x_i) \prod_{j=0}^n (x_i - x_j)^{-1}.$

$$f[x_0, x_1, \dots, x_n] = \sum_{i=0}^{n} f(x_i) \prod_{i=0}^{n} (x_i - x_j)^{-1}$$

28. Encuentre la aproximación del polinomio lineal de cuadrados a $f(x) = x^2 + 3x + 2$ en el intervalo $[0,1]$.
Solución

29.	Utilice los ceros de T_3 para construir un polinomio interpolador de grado 2 para $f\left(x\right)=\exp\left(x\right)$ en el intervalo $[-1,1]$.
Sol	ución

Referencias

▶ Libros

- Günther Hämmerlin y Karl-Heinz Hoffman. *Numerical Mathematics*. Springer New York, 1991. DOI: 10.1007/978-1-4612-4442-4.
- David R. Kincaid y E. Ward Cheney. Numerical Mathematics and Computing. 7^a ed. Cengage Learning, 2012.
- David R. Kincaid et al. Análisis Numérico: las matemáticas del cálculo científico. 1ª ed. Addison Wesley Iberoamericana, 1994.
- Rainer Kress. Numerical Analysis. Springer New York, 1998. DOI: 10.1007/978-1-4612-0599-9_1.
- Alfio Quarteroni, Riccardo Sacco y Fausto Saleri. *Numerical Mathematics*. Springer Berlin Heidelberg, 2007. DOI: 10.1007/b98885.
- Artículos científicos
 - David Goldberg. "What Every Computer Scientist Should Know about Floating-Point Arithmetic". En: ACM Comput. Surv. 23.1 (mar. de 1991), págs. 5-48. ISSN: 0360-0300. DOI: 10.1145/103162.103163.
- Sitios web
 - $\label{eq:python Software Foundation. Python 3.11.4 documentation. URL: $$ $$ https://docs.python.org/3/library/functions.html#int (visitado 20-06-2023). $$$