RAMA: Real-Time Automobile Mutual Authentication Protocol Using PUF

Authors: Gaurang Bansal, Naren, Vinay Chamola

Department of Electrical and Electronics Engineering, BITS Pilani, Pilani Campus, India

Problem

- Ensuring privacy and security in V2G communications
- EV charging stations/ EVs cannot be under 24x7 human supervision
- Device tampering attacks on EVs/ Charging Stations
- Ensure lightweight operation, security and privacy of EV owner.

Network Model

Possible Attacks

- Adversary may tap any communication
- Change, manipulate and withhold data
- Packet Injection
- Store/log messages
- Impersonate EVs or Aggregators
- Try to initiate sessions

Attack Motives

- Gain access to the grid without being noticed.
- Greedy EV owners who want to
 - Recharge their EV's battery for free/ lower prices
 - Cheat service providers to pay more for their EV's power.
- Rouge/unauthorized aggregators who want to
 - Charge EV owners with high prices
 - Take EV's power but not pay the EV owner
 - Gather EV owner info and sell to third parties.
- Criminals who want to
 - Track location/behaviour of EV owners
 - Authenticate with the grid server with someone else's credentials to escape payment

Security Goals

- 1. Confidentiality
- 2. Message Integrity
- 3. Identity Privacy
- 4. Authentication

Solution

Physical Unclonable Function (PUF) Based Mutual Authentication

Physical unclonable Function (PUF)

 A physical unclonable function (sometimes also called physically unclonable function), or PUF, is a physically-defined "digital fingerprint" that serves as a unique identifier for a semiconductor device such as a microprocessor - Wiki

- Similar to and as unique as the biometrics of a human.
- Uniqueness comes from physical microstructure variations during fabrication.
- Every single EV can have its own unique "fingerprint".
- Cannot be cloned or reproduced.

PUF Behavior

Mathematical Function with input C and output K

C: Challenge, K: Response

$$K = PUF(C)$$

PUF Properties

- 1. If an input C is given to the same PUF many times, it produces the same response K.
- 2. If the same input C is given to different PUFs, the responses obtained from each PUF differ greatly from each other.

Assumptions

- 1. PUF is a small hardware component that is present with each participating device and is unique.
- 2. The communication between a device and its PUF issecure and tamper-proof.

RAMA

Real-time Automotive Mutual Authentication Protocol Using PUF

New EV deployment

- Server has one (C,K) pair for each vehicle and aggregator.
- Register new EV for V2G services
- (C,K) Acquired through a secure channel established by timed one-time password algorithm (TOTP) by an authorized operator.
- No further operator/TOTP exchange required.

2 Stage Protocol

Aggregator and grid.

Vehicle and aggregator.

TABLE I: Notations

Notation	Description					
V, ID_V	Vehicle and its ID					
M, ID_M	Aggregator(mediator) and its ID					
G	Grid Server					
	Concatenation operator					
\oplus	XOR operation					
\overline{F}	A public non-linear function					
$\{Msg\}_k$	Message Msg is encrypted					
	using key k					
Msg_{P2Q}	Message Msg is sent from					
	V2G entity P to Q					
MAC(X)	Message authentication code					
	(MAC) of X					
N_A, N_B, N_C	Nonces generated					
N_I, N_O, N_V	at different stages					
(C,K), (C',K') $(C'',K''), (C^{\#},K^{\#})$	Challenge-response pairs of PUF					

Notations

Key takeaways from protocol

- 1. Nonces to guarantee freshness
- 2. Lightweight block based encryption mechanism
- 3. Message Authentication Code (MAC) to verify data integrity, EV/aggregator identity and nonce freshness
- New (C,K) pair communicated for future authentication (each pair used only once)
- 5. PUF dependent session keys in both stages
- 6. Pseudo-ID generated for EV and updated in grid server

Comparison with state-of-the-art schemes

TABLE II: Comparison of Security Features

Features	[22]	[9]	[10]	[12]	[14]	[30]	[24]	RAMA
Mutual Authentication	1	1	1	1	1	X	1	1
Identity Protection	1	1	/	1	X	1	/	1
Message Integrity	/	1	X	X	/	1	1	1
Man-In-The-Middle Attack	/	1	X	1	1	1	/	1
Impersonation Attack	1	X	X	X	1	1	1	1
Replay Attack	1	1	X	X	1	1	1	1
Session Key Security	1	1	X	1	X	1	1	1
Physical Security	X	X	X	X	X	X	X	✓

Performance Comparison

[9]: <u>64.2 ms</u>

[**22**]: <u>25.4 ms</u>

[10]: <u>33.1 ms</u>

Ours: <u>6.3 ms</u>

Conclusion

- V2G security provisioning using PUFs
- No secret information stored in EVs/ aggregators.
- One (C,K) stored for every EV and aggregator in grid server.
- Two stage protocol which generates two different session keys.
- Identity protection, message integrity, physical security, and session key security
- Protection against various attacks such as MITM attacks, replay attacks and impersonation attacks.
- simple computations, which makes it very efficient and fast.
- Well suited for V2G applications

Thank you