# WiFi and Multiple Interfaces: Adequate for Virtual Reality?

Huanle Zhang\*, Ahmed Elmokashfi\*, and Prasant Mohapatra\*

\* University of California, Davis
USA

\* Simula Metropolitan Center for Digital Engineering

Norway





# 360-degree Panoramic Videos



| Stage    | Data Rate   | RTT   |
|----------|-------------|-------|
| Early    | 25 Mbit/s   | 40 ms |
| Entry    | 100 Mbit/s  | 30 ms |
| Advanced | 418 Mbit/s  | 20 ms |
| Ultimate | 2.35 Gbit/s | 10 ms |

Table: Network requirements for VR 360

Image source: www.vectorstock.com

Data source: Huawei Technologies, Whitepaper on the VR-Oriented Bearer Network Requirement, 2016

# WiFi Support for VR Headsets

- High-quality VR headsets: Cable transmission (HDMI or USB3)
  - Drawback:
    - Not user-friendly (limited mobility)
    - Potential safety hazard

Ubiquitousness of WiFi



**Win-Win Situation** 

# Preliminary Study of IEEE 802.11ac

- 1. Working on 5G frequency bands
- 2. Supported maximum data rate: **6.9** Gpbs
  - 160 MHz Frequency band
  - 256-QAM
  - 8 Spatial Streams (NSS=8)
  - 400 ns Guard Interval (GI)

| Ultimate<br>VR 360 | <b>2.35</b> Gbit/s | 10 ms |
|--------------------|--------------------|-------|
|--------------------|--------------------|-------|

Data Rate



Image source: www.vectorstock.com

# Measurement Setup



Measurement setup



Device

# Measuring Network Latency



Figure 1. One day trace of RTT

#### Observation (862650 packets):

- 1. 50% packets RTT < 1.8 ms
- 2. 0.04% packets RTT > 10 ms
- 3. Maximum RTT = 227 ms
- 4. 24.2% packets jitter > 1ms
- 5. Maximum jitter = 226 ms



# Locating Root Cause: Dissecting Network Stack



Figure 2. Network stack from the perspective of Linux code structure

Record **timestamp** of packets entering and leaving each network layer

**Debugfs** virtual file system to log data

# Latency from Upper Layers



Figure 3. UDP to IP delay



Figure 4. IP to UDP delay



Figure 5. UDP to mac80211 delay

Min: 24 us, Median: 41 us, Max: 145 us

Negligible

# Latency from Channel Transmission

#### Channel transmission time:

a packet enters the ath10k driver layer until the driver receives ACK from the peer driver



Figure 6. Channel transmission time

#### Observations of channel transmission time:

- 1. Dominates RTT (min: 0.3ms, median: 0.9ms, max: 127ms)
- 2. Increases with the background traffic (e.g., 13PM-17PM)
- 3. Good indicator for RTT (envelope correlation coefficient: 0.71)

# Proposal: Multiple WiFi Network Interface Cards

Each NIC runs on non-overlapping channels

Duplicate packets to both NICs

PC Engines apu2 board

QCA9888 802.11ac NIC

OpenWrt OS

MPTCP v0.93



Figure 7. Setup

# **UDP** Improvement



Figure 8. RTT for multiple interfaces. Top to bottom: interface 1, interface 2 and the combined interface

28.6% RTT Reduction

# TCP Improvement



Figure 9. Median, 5 and 95 percentiles of RTTs for the best interface and the combined interface

38.9% RTT Reduction

## **Channel Correlations**

Channels selection is NOT simple!



(a) Experiment one

(b) Expriment two

Figure 10. Channel correlations

# **Future Works**

1. More WiFi NICs

2. Multiple Interface Scheduling

## Conclusion

Purely Wi-Fi based transmission systems to support VR applications

We believe that using multiple NICs is the right direction for building extremely high throughput, low latency and robust WiFi networks.

Code release:

https://github.com/dtczhl/dtc-openwrt

# Thank you!!!