MATH 27000 (Basic Complex Variables) Notes

Steven Labalme

 $\mathrm{May}\ 12,\ 2024$

Weeks

1	Clas	ssifying Complex Functions	1		
	1.1	Holomorphic Functions	1		
	1.2	Harmonic Functions and Conformal Maps	6		
	1.3	Chapter I: Analysis in the Complex Plane	11		
2	Consequences of Power Series 16				
	2.1		16		
	2.2		16		
	2.3	Cauchy's Theorem	21		
	2.4		26		
	2.5	1 1	27		
	2.6	Chapter II: The Fundamental Theorems of Complex Analysis	32		
3	Fundamental Theorems 33				
	3.1	Cauchy Integral Formula	33		
	3.2	į.	38		
	3.3	Chapter II: The Fundamental Theorems of Complex Analysis	41		
4	Ext	rema	44		
	4.1	Poles and Maximum Moduli	44		
	4.2	Modulus Principles and Harmonic Functions	48		
5	Consequences of Defining Infinity 53				
	5.1		53		
	5.2	Midterm Review Sheet	53		
	5.3	Midterm	59		
	5.4	The Riemann Sphere	60		
6	Spe	cial Meromorphic Functions	65		
	6.1	Meromorphic Functions and Möbius Transformations	65		
	6.2	The Complex Logarithm	69		
7	The	Winding Number	74		
	7.1	Generalized Cauchy Theorems	74		
	7.2	The Residue Theorem	79		
8	App	olying the Complex Logarithm	87		
	8.1		87		
	8.2	Riemann Mapping Theorem	92		
\mathbf{R}	efere	nces	98		

List of Figures

1.1	The complex plane	1
1.2	Integrating complex functions over real intervals	8
1.3	Integrating complex functions over line segments in \mathbb{C}	8
1.4	Integrating complex functions over arbitrary paths in \mathbb{C}	8
1.5	Visualizing functions of $\mathbb{R}^2 \to \mathbb{R}^2$	9
1.6	Holomorphic maps preserve angles	10
2.1	Continuous and zero closed-loop integrals implies integrable	22
2.2	Star-shaped domain	23
2.3	A triangle in a star-shaped domain	23
2.4	Proving Goursat's lemma	24
2.5	Dirichlet integral	25
3.1	Practicing with the Cauchy Integral Theorem (1)	33
3.2	Practicing with the Cauchy Integral Theorem (2)	34
3.3	Homotopic paths	35
3.4	0 10	35
3.5	Bounded holomorphic functions integrate to zero on disk boundaries	36
5.1	The Riemann sphere	61
5.2	Stereographic projection	62
6.1		69
6.2		72
6.3	Winding number examples	73
7.1		74
7.2	O I	76
7.3	9	77
7.4		79
7.5	0 1	83
7.6	Basel problem solution using residues	84
8.1	1	91
8.2		92
8.3	A "converse" to the Schwarz Lemma	94

Week 1

3/19:

Classifying Complex Functions

1.1 Holomorphic Functions

• We begin by reviewing some properties of the **complex numbers**.

• Complex numbers: The field of elements z = x + iy where $x, y \in \mathbb{R}$ and $i^2 = -1$. Denoted by \mathbb{C} .

Figure 1.1: The complex plane.

- Can be visualized as a two-dimensional plane with the number z corresponding to the point (x, y).

- Real part: The number x. Denoted by $\operatorname{Re} z$.
- Imaginary part: The number y. Denoted by Im z.
- Complex conjugate (of z): The complex number defined as follows. Denoted by \bar{z} . Given by

$$\bar{z} := x - iy$$

- Now recall the definition of a real function that is **differentiable** at a point $x_0 \in \mathbb{R}$.
 - $-f'(x_0)(x-x_0)$ is the "best linear approximation" of f near x_0 , where $f'(x_0)$ is also defined below.
- Differentiable $(f: \mathbb{R} \to \mathbb{R} \text{ at } x_0)$: A function f for which the following limit exists. Constraint

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} =: f'(x_0)$$

- We now build up to defining a notion of complex differentiability.
 - Observe that the constraint above is equivalent to the constraint

$$f(x) = f(x_0) + \underbrace{[f'(x_0) + e(x)]}_{\Delta(x)}(x - x_0)$$

where $e(x) \to 0$ as $x \to x_0$.

- Note that we are defining a new function $\Delta(x)$ above, with the property that $\Delta(x_0) = f'(x_0)$.

• Holomorphic (f at z_0): A function $f: \mathbb{C} \to \mathbb{C}$ for which the following limit exists. Also known as \mathbb{C} -differentiable. Constraints

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \qquad \iff \qquad f(z) = f(z_0) + \Delta(z)(z - z_0)$$

where Δ is continuous at z_0 and $\Delta(z_0) = f'(z_0)$.

- It will turn out that this is the true definition of "holomorphic" / "ℂ-differentiable" function, not
 just a naïve first pass.
- Properties of holomorphic functions: Let $U \subset \mathbb{C}$ be open.
 - 1. The holomorphic functions on U form a ring $\mathcal{O}(U)$.
 - Equivalently, the \mathbb{C} -differentiation operator is \mathbb{C} -linear.
 - Equivalently, if f, g are holomorphic, then f + g and fg are holomorphic, too.
 - Equivalently (and most simply), we have the sum rule and the product rule (and the quotient rule if the function in the denominator is nonzero).
 - 2. We have the chain rule.
 - 3. Holomorphic implies continuous.
- Examples: Polynomials, rational functions p(z)/q(z) (away from their **poles**).
- Non-example: Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$z\mapsto \bar{z}$$

- Think-Pair-Share (TPS): Why?
- Notice that

$$f(0) = 0 f(t) = t f(it) = -it$$

- Thus,

$$\Delta(t) = 1 \qquad \qquad \Delta(it) = -1$$

for all t.

- But this means that Δ can't be continuous!
- Yet f is clearly \mathbb{R} -differentiable! What gives?!
- Note that viewing f as a mapping of $\mathbb{R}^2 \to \mathbb{R}^2$ we have

$$Df = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

- The above example suggests that our definition of complex differentiability may have been to naïve, so we'll do some further investigations now.
- Observe that $\mathbb{C} \cong \mathbb{R}^2$ as \mathbb{R} -vector spaces.
- **Differentiable** $(f : \mathbb{R}^2 \to \mathbb{R}^2 \text{ at } x_0)$: A function f for which there exists an \mathbb{R} -linear map $A : \mathbb{R}^2 \to \mathbb{R}^2$ satisfying the following constraint. Constraint

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0$$

- We also denote A by Df.

• Example: Consider the function $f: \mathbb{C} \to \mathbb{R}$ defined by

$$x + iy \mapsto x$$

- Differentiable with total derivative

$$Df = \begin{pmatrix} 1 & 0 \end{pmatrix}$$

- Observation: While $\mathbb{C} \cong \mathbb{R}^2$ as \mathbb{R} -vector spaces, as a \mathbb{C} -vector space, there is additional structure.
 - In particular, all "vectors" should commute with the "multiplication by i" map $J: \mathbb{C} \to \mathbb{C}$ defined by any one of the following three maps.

$$z \mapsto z$$
 $x + iy \mapsto xi - y$ $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$

- Exercise: In (Re, Im) coordinates, write down the matrix for "multiply by w" for any $w \in \mathbb{C}$.
 - Let w = a + bi and let v = x + iy. Then

$$wv = (a+bi)(x+iy) = ax - by + i(bx + ay)$$
$$= \begin{pmatrix} ax - by \\ bx + ay \end{pmatrix} = \underbrace{\begin{pmatrix} a & -b \\ b & a \end{pmatrix}}_{W} \begin{pmatrix} x \\ y \end{pmatrix}$$

- The matrix W above is the desired result.
- TPS: Is $f: \mathbb{C} \to \mathbb{C}$ defined as follows a complex linear map? Why not?

$$x + iy \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = (x + y) + iy$$

- Among other properties, a complex linear map should satisfy

$$if(x+iy) = f[i(x+iy)]$$

for the scalar $i \in \mathbb{C}$.

- However, we have that

$$if(x+iy) = i[(x+y)+iy] = -y + i(x+y) \neq (x-y) + ix = f(-y+ix) = f[i(x+iy)]$$

• What about the following map?

$$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$$

- A complex linear map should satisfy

$$A(v+w) = Av + Aw$$
 $\lambda Av = A(\lambda v)$

for all $v, w, \lambda \in \mathbb{C}$.

– Let $v, w \in \mathbb{C}$ be arbitrary. Then

$$A(v+w) = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{bmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} \end{bmatrix} = \begin{pmatrix} (v_1 + w_1) + 2(v_2 + w_2) \\ -2(v_1 + w_1) + (v_2 + w_2) \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix} = Av + Aw$$

- Let $v, \lambda \in \mathbb{C}$. Then

$$\begin{split} \lambda A v &= (\lambda_1 + i\lambda_2) \cdot [(v_1 + 2v_2) + i(-2v_1 + v_2)] \\ &= [\lambda_1(v_1 + 2v_2) - \lambda_2(-2v_1 + v_2)] + i[\lambda_2(v_1 + 2v_2) + \lambda_1(-2v_1 + v_2)] \\ &= [(\lambda_1 v_1 - \lambda_2 v_2) + 2(\lambda_2 v_1 + \lambda_1 v_2)] + i[-2(\lambda_1 v_1 - \lambda_2 v_2) + (\lambda_2 v_1 + \lambda_1 v_2)] \\ &= A[(\lambda_1 v_1 - \lambda_2 v_2) + i(\lambda_2 v_1 + \lambda_1 v_2)] \\ &= A(\lambda v) \end{split}$$

- Therefore, since A satisfies the two properties, it is complex linear.
- \bullet Conclusion: To reiterate from the above, A must commute with J to be complex linear.
- Implication: Every \mathbb{C} -linear map of \mathbb{C} is just multiplication by a complex number.
 - This is a special case of the following more general result, which holds for any field K.

$$\operatorname{Hom}_K(K,K) \cong K$$

- Now let's revisit differentiability.
- It turns out that a condition for \mathbb{C} -differentiability equivalent to the definition of "holomorphic" given above is that there exists a \mathbb{C} -linear map $A:\mathbb{C}\to\mathbb{C}$ such that

$$\lim_{h \to 0} \frac{\|f(x_0 + h) - f(x_0) - Ah\|}{\|h\|} = 0$$

- From the above discussion, we know that this A is just multiplication by some $w \in \mathbb{C}$.
- All of the values in the above norms are complex numbers, so another equivalent condition is

$$\lim_{z \to z_0} \frac{|f(z) - f(z_0) - w \cdot (z - z_0)|}{|z - z_0|} = 0$$

- This condition is wholly mathematically equivalent to our holomorphic definition,

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = w$$

- So when is an \mathbb{R} -differentiable function actually holomorphic?
 - Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ map $(x, y) \mapsto (q, h)$.
 - Let

$$A = Df = \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix}$$

where the subscript notation views g, for instance, as g(x,y) and denotes the partial derivative of g with respect to x.

- Let J (the "multiply by i") function be defined as above.
- Then the "commute with i" condition is equivalent to

$$J^{-1}AJ = A$$

- Expanding the product on the left above in terms of g_x, g_y, h_x, h_y , we obtain

$$\begin{pmatrix} h_y & -h_x \\ -g_y & g_x \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} g_x & g_y \\ h_x & h_y \end{pmatrix}$$

- This condition is equivalent to A satisfying the Cauchy-Riemann equations.

• Cauchy-Riemann equations: The following two equations, which identify when a complex function is holomorphic. Also known as CR equations. Given by

$$g_x = h_y$$
$$g_y = -h_x$$

• These equations are satisfied when A is of the form

$$A = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

- So at this point, we can differentiate f with respect to z. But what if we want to differentiate it with respect to x and y (of z = x + iy)?
 - We will need the following change of basis.
 - Since z = x + iy and $\bar{z} = x iy$, we have

$$2x = z + \bar{z}$$

$$2iy = z - \bar{z}$$

$$x = \frac{1}{2}(z + \bar{z})$$

$$y = -\frac{i}{2}(z - \bar{z})$$

■ This tells us that

$$\frac{\partial x}{\partial z} = \frac{1}{2} \qquad \qquad \frac{\partial y}{\partial z} = -\frac{i}{2}$$

- We can now invoke the multivariable chain rule and simplify the resultant expression.

$$\frac{\partial f}{\partial z} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial z} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial z} = \frac{1}{2} (f_x - i f_y)$$

- Note that once again, the subscript notation " f_x " means $\partial f/\partial x$.
- Note that we can also similarly work out that

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(f_x + if_y)$$

■ Observe in particular that

$$f_x = g_x + ih_x f_y = g_y + ih_y$$

■ Thus, the CR equations $(g_x = h_y \text{ and } g_y = -h_x)$ being satisfied is equivalent to

$$\frac{\partial f}{\partial \bar{z}} = \frac{1}{2}(f_x + if_y) = \frac{1}{2}[(g_x + ih_x) + i(g_y + ih_y)] = 0$$

■ Note that $\partial f/\partial \bar{z}$ is not actually a derivative since f depends on z, not \bar{z} . Rather, we use " $\partial f/\partial \bar{z}$ " to denote the following operator applied to f.

$$\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

• Wirtinger derivatives: The two differential operators defined as follows. Denoted by $\partial/\partial z$, $\partial/\partial \bar{z}$. Given by

$$\frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \qquad \qquad \frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

• Theorem: The \mathbb{R} -differentiable function $f:U\to\mathbb{C}$ is holomorphic iff $\partial f/\partial \bar{z}=0$. Moreover, if it is, then

$$f'(z_0) = \left. \frac{\partial f}{\partial z} \right|_{z_0}$$

1.2 Harmonic Functions and Conformal Maps

- 3/21: Tries to remember everyone's name and actually does a pretty good job!
 - Has us all turn to our neighbor and meet them! I met Ryan.
 - Review.
 - Naïve holomorphic definition: Typical derivative definition.
 - The map $z \mapsto \bar{z}$ is not holomorphic even though it is differential over the reals.
 - The reason this map is not holomorphic is that its matrix derivative is not complex linear. This means that it does not commute with the "multiply by i" matrix, defined by

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- Indeed, an equivalent definition to the naïve holomorphic one is: $f: \mathbb{C} \cong \mathbb{R}^2 \to \mathbb{R}^2$ is \mathbb{R} -differentiable at z_0 with Df(z) is complex linear.
- Another equivalent one is the Cauchy-Riemann equation definition.
 - Let f(z) = u(z) + iv(z) where $u, v : \mathbb{C} \to \mathbb{R}$.
 - Then f is holomorphic if $u_x = v_y$ and $v_x = -u_y$, or equivalently if $\partial f/\partial \bar{z} = 0$.
- The above comment motivates the definition of the operators

$$\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$
$$\frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

- Note: Every C-linear map is "multiply by w" for some $w \in \mathbb{C}$.
- Note that we have not yet talked about continuity or related things.
- Note: Different books use different conventions.
 - "Holomorphic at a point" and "complex differentiable in a neighborhood of a point" may mean different things.
 - Example: Consider the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$x + iy \mapsto x^2 + iy^2$$

■ Then

$$Df = \begin{pmatrix} 2x & 0 \\ 0 & 2y \end{pmatrix}$$

- Evidently, Df is not complex linear in general because we can pick x, y such that $2x \neq 2y$.
- Thus, this function is not complex differentiable in general.
- However, it is complex differentiable at zero because here, Df = 0.
- Thus, this function is complex differentiable at a point, but not complex differentiable in a neighborhood.
- We will almost always be talking about functions that are complex differentiable in a neighborhood in this class.
- Example: $f(x+iy) = x^2 \mathbb{I}_{Q(x)} + iy^2 \mathbb{I}_{Q(y)}$ is complex differentiable in a neighborhood of the origin, but this is dumb. \mathbb{I} is the **indicator function**.
- Preview (we'll see this next Thursday): Holomorphic implies C^{∞} .

- Today: Some more things about the Cauchy-Riemann equations and what we can get out of them.
- Let's begin with a consequence of the $\partial/\partial z$ and $\partial/\partial \bar{z}$ operators.
 - Compute (if $f \in C^2$):

$$\frac{\partial^2}{\partial z \partial \bar{z}} = \frac{1}{4} \underbrace{\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)}_{\hat{A}} f_{xy} = f_{yx}$$

- Do we need this C^2 condition if holomorphic already implies C^{∞} ?
- No, but we haven't "learned" this yet. Once we prove this, no more talk of regularity!
- Solutions to this, the Laplacian Δ (from physics), could be a good final project!
- Look for solutions to $\Delta f = 0$.
 - Equivalently, look for f such that $f_{xx} + f_{yy} = 0$.
- Observation: Any f holomorphic implies that $\Delta f = 0$ (since we apply $\partial/\partial \bar{z}$ to f first).
- **Harmonic** (function): A function $f: \mathbb{R}^2 \to \mathbb{C}$ such that $\Delta f = 0$.
- Since the differentiation operator is linear,

$$\Delta(u+iv) = \Delta u + i\Delta v$$

- Corollary: The real and imaginary parts of a C^2 holomorphic function are harmonic.
- \bullet So we know that f holomorphic implies u, v real-valued and harmonic. Can we go the other way?
 - We know that these functions have certain properties in terms of their partial derivatives, namely that they satisfy the Cauchy-Riemann equations.
- Harmonic conjugates: Two functions $u, v : \mathbb{R}^2 \to \mathbb{R}$ that satisfy the CR equations.
- Fact: Let u, v be two C^{∞} harmonic conjugates. Then f = u + iv is holomorphic
 - Easy to prove if you're not concerned about regularity.
- Is v + iu holomorphic?
 - No, partials don't work out. We still get $v_x = -u_y$, but we also get $u_x = -v_y$.
 - However, v iu is holomorphic!
 - This just means that rotating by i gives us a new holomorphic function since

$$i \cdot (u + iv) = -v + iu$$

- Example: $u = x^2 y^2$ is harmonic. Find a conjugate and find f = u + iv.^[1]
 - We have

$$v_y = u_x = 2x$$
$$v_x = -u_y = 2y$$

- Thus,

$$v = 2xy + C$$

for some $C \in \mathbb{C}$

- Then we would have

$$f = u + iv = (x^2 - y^2) + i(2xy + C) = x^2 + 2xyi - y^2 + iC = (x + iy)^2 + iC = z^2 + iC$$

¹Calderon actually let us work this out in class!

- Let's now talk about integrating functions.
- Let $a, b \in \mathbb{R}$. Consider $f : \mathbb{C} \to \mathbb{C}$, not holomorphic but continuous. How do we take $\int_a^b f \, dz$?

Figure 1.2: Integrating complex functions over real intervals.

- What we do is just split the integral into real and imaginary parts.

$$\int_{a}^{b} f \, \mathrm{d}z = \int_{a}^{b} u \, \mathrm{d}t + i \int_{a}^{b} v \, \mathrm{d}t$$

- This is how we integrate between reals in the complex plane.
- How do we integrate over more arbitrary points in the complex plane, e.g., $a\lambda$ and $b\lambda$?

Figure 1.3: Integrating complex functions over line segments in \mathbb{C} .

- We could take any path. Which one?
- Try over the line segment $\{t\lambda \mid t \in [a,b]\}.$
- Then we take

$$\int_{a\lambda}^{b\lambda} f(z) dz = \int_{a}^{b} f(\lambda t) \lambda dt$$

via the substitutions $z = t\lambda$ and $dz = \lambda dt$.

- This second integral, we can compute in the first way.
- Now what about integrating along an arbitrary curve $\gamma:[a,b]\to\mathbb{C}$, which we will say is piecewise C^1 ?

Figure 1.4: Integrating complex functions over arbitrary paths in \mathbb{C} .

- Note that $z_0 := \gamma(a)$ and $z_1 := \gamma(b)$.
- Define

$$\int_{\gamma} f \, dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, dt$$

- Where is the γ' coming from? Same place as before! It's just a change of variables: $z = \gamma(t)$ implies $dz = \gamma'(t) dt$.
- If we know differential forms, f dz is just a complex-valued one-form. And the chain rule is just how we integrate one-forms.
- We'll do lots of basic practice of this in the completion problems on the PSet.
- Note: Whenever we do a path integral, we should ask if the parameterization matters. The parameterization does *not* matter.
- What do we need to compute integrals without having to take the limit of a sum over partitions? We need the fundamental theorem of calculus.
 - The FTC does indeed hold here, too, though we won't prove this.
- FTC: Suppose F' = f on $U \subset \mathbb{C}$, and let γ be a **path** inside of U. Then

$$\int_{\gamma} f \, \mathrm{d}z = F(\gamma(b)) - F(\gamma(a))$$

- Again, if we like differential forms, then note that we're just saying in the above equality that

$$\int_{\gamma} \mathrm{d}F = \int_{\partial \gamma} F$$

- Path: A function from an interval of real numbers to a vector space. Also known as contour. Denoted by γ .
- Gives us a three-minute break from 10:17-10:20 in the middle of the class.
 - The fact that this guy actually teaches in accordance with accepted pedagogical standars is wild.
- How do we want to visualize holomorphic functions?
 - $-f:\mathbb{C}\to\mathbb{C}$ is hard to graph because the set of points lives in \mathbb{R}^4 .
 - So we're out of luck if we want to do graphs.
 - Thus, we'll look at **mappings**.
- Example: Are we looking at the Mercator or Robinson map of the world?

Figure 1.5: Visualizing functions of $\mathbb{R}^2 \to \mathbb{R}^2$.

- What do these mappings do to the lines of latitude and longitude?
- This is a mapping of $\mathbb{R}^2 \to \mathbb{R}^2$ that stretches and distorts! By drawing grid lines, we can see what it does to \mathbb{R}^2 .

ullet Now recall that f holomorphic implies Df looks like

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

- What's nice about these matrices is they can always be factored into rotation and scaling matrices.

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \tag{$\lambda, \theta \in \mathbb{R}$}$$

- This means that

$$f'(z_0) = w = re^{i\theta} \in \mathbb{C}$$

since multiplication by complex numbers also just rotates and scales!

- This means that if $z' = r'e^{i\theta'}$, then $w \cdot z' = r \cdot r'e^{i(\theta + \theta')}$.
- This also means that we may have rotation and scaling but no shearing. Formally, we have the following lemma.
- Argument (of $z \in \mathbb{C}$): The angle θ such that $z = re^{i\theta}$ for some $r \in \mathbb{R}$. Denoted by $\arg(z)$.
- Lemma: Suppose two curves γ, δ intersect at a point $z \in \mathbb{C}$. Let $f : \mathbb{C} \to \mathbb{C}$ be holomorphic. Then

$$\angle_z(\gamma, \delta) = \angle_{f(z)}(f(\gamma), f(\delta))$$

i.e., f preserves angles.

Figure 1.6: Holomorphic maps preserve angles.

Proof. To consider the angle between two curves analytically, let's look at the tangent vectors to the two curves, for example at z. Now while we often think of $\gamma'(0)$ as a matrix, remember that we've proven that all of these matrices are equivalent to complex numbers. In particular, since $\gamma: \mathbb{R} \to \mathbb{R}^2 \cong \mathbb{C}$, the total derivative will just be a vector. This vector may easily be represented as a complex number $re^{i\theta}$ in polar coordinates. Similarly, $\delta'(0)$ can be thought of as a complex number $r'e^{i\theta'}$. Thus, dividing these quantities gives us the angle $\theta - \theta'$ between the two vectors, which we can isolate using the argument function.

Doing the same to the curves at f(z) yields

$$\angle_{f(z)}(f(\gamma), f(\delta)) = \arg \left[\frac{(f \circ \gamma)'(0)}{(f \circ \delta)'(0)} \right]$$

$$= \arg \left[\frac{f'(\gamma(0)) \cdot \gamma'(0)}{f'(\gamma(0)) \cdot \delta'(0)} \right]$$

$$= \arg \left[\frac{f'(z) \cdot \gamma'(0)}{f'(z) \cdot \delta'(0)} \right]$$

$$= \arg \left[\frac{\gamma'(0)}{\delta'(0)} \right]$$

$$= \angle_{z}(\gamma, \delta)$$

as desired.

- Calderon gave us 5 minutes to try to compute this ourselves with the hint: Use the chain rule! $\angle_z(\gamma,\delta) = \arg(\gamma'(0) \cdot [\delta'(0)]^{-1}).$
- Conformal (map): A function $f: U \to V$, where $U, V \subset \mathbb{C}$, that satisfies the following two constraints. Constraints
 - 1. f is a diffeomorphism.
 - 2. f preserves angles.
- **Diffeomorphism**: A homeomorphism for which f, f^{-1} are differentiable.
- Biholomorphic (map): A function $f: U \to V$ that is bijective, holomorphic, and for which f^{-1} is holomorphic.
- Theorem/observation: Biholomorphic iff conformal.

Proof. Follows straight from the definitions and the lemma we just proved.

- Calderon shows us an applet.
 - We can use the applet to help with the PSet, but we still do have to submit actual proofs.
 - Allows you to visually see the lemma for instance.
 - Example: Under $z \mapsto z^2$, the sector of radius 2 and argument $\pi/4$ goes to the sector of radius $2^2 = 4$ and argument $\pi/2$.

1.3 Chapter I: Analysis in the Complex Plane

From Fischer and Lieb (2012).

3/19:

- The preface only contains comments and instructions for an instructor planning to use this textbook for a course.
- The chapter begins with two paragraphs (as do all the others).
 - The first discusses topic covered in the chapter.
 - The second gives some historical background on these topics.

Section I.0: Notations and Basic Concepts

- Goal: Review the fundamental topological and analytical concepts of real analysis.
- Defines the complex numbers, complex plane, and complex conjugate.
- Absolute value (of z): The Euclidean distance of z from zero. Also known as modulus. Denoted by |z|. Given by

$$|z| := \sqrt{x^2 + y^2}$$

- Imaginary unit. Denoted by i.
- Relating the modulus and complex conjugate.

$$|z| = \sqrt{z\bar{z}}$$

• Open disk (of radius ε and center z_0): The set defined as follows. Also known as ε -neighborhood (of z_0). Denoted by $D_{\varepsilon}(z_0)$, $U_{\varepsilon}(z_0)$. Given by

$$D_{\varepsilon}(z_0) = U_{\varepsilon}(z_0) := \{ z \in \mathbb{C} : |z - z_0| < \varepsilon \}$$

• Unit disk: The set defined as follows. Denoted by **D**. Given by

$$\mathbb{D} := D_1(0)$$

• Unit circle: The set defined as follows. Denoted by S. Given by

$$\mathbb{S} := \{ z \in \mathbb{C} : |z| = \varepsilon \}$$

• Upper half plane: The set defined as follows. Denoted by **H**. Given by

$$\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}$$

• \mathbb{C}^* : The set defined as follows. Given by

$$\mathbb{C}^* := \mathbb{C} \setminus \{0\}$$

- 3/21: Neighborhood (of z_0): A set U which contains an ε -neighborhood.
 - Open (set): A set that is a neighborhood of each of its points.
 - Closed (set): A complement of an open set.
 - Interior (of M): The largest open set contained in M. Denoted by \mathring{M} .
 - Closure (of M): The smallest closed set containing M. Denoted by \overline{M} .
 - Topological boundary (of M): The set defined as follows. Also known as boundary. Denoted by ∂M . Given by

$$\partial M:=\overline{M}\setminus \mathring{M}$$

- Relatively open (set in M): The intersection of an open set U with an arbitrary set M. Also known as open (set in M).
- Relatively closed (set in M): The intersection of a closed set U with an arbitrary set M. Also known as open (set in M).
- Fischer and Lieb (2012) define **convergent series** and their **limits** in the usual way.
 - Sum, product, and reciprocal rules stated.
 - Accumulation point (of $M \subset \mathbb{C}$): A point $z_0 \in \mathbb{C}$ for which there is a sequence $\{z_n\} \subset M \setminus \{z_0\}$ with $\lim z_n = z_0$.
 - Bounded (set): A set K for which |z| < R for some R and all $z \in K$.
 - Compact (set): A closed, bounded set.
 - Each sequence in a compact set contains convergent subsequences with limit in the set.
 - Relatively compact (set in V): A set U for which \overline{U} is a compact subset of V. Denoted by $U \subset \subset V$.
 - Definition of a **complex-valued function**.
 - Continuous (function at z_0): A function $f: U \to \mathbb{C}$ such that for each neighborhood M of $w_0 = f(z_0)$, there is a neighborhood N of z_0 with $f(U \cap N) \subset M$; equivalently, the following holds true for all convergent sequences $\{z_n\} \subset U$.

$$f\left(\lim_{n\to\infty} z_n\right) = \lim_{n\to\infty} f(z_n)$$

• Real part (of $f: U \to \mathbb{C}$): The real-valued function g such that f = g + ih.

- Imaginary part (of $f: U \to \mathbb{C}$): The complex-valued function h such that f = g + ih.
- Continuity results.
 - -f is continuous iff its real and imaginary parts are.
 - The **composition** of continuous functions is continuous.
 - Example of a continuous function: Any polynomial in z, \bar{z} , i.e., any function of the form

$$f(z) = \sum_{j,k=0}^{N} a_{jk} z^j \bar{z}^k$$

- Path: A continuous map from a closed finite interval into the complex plane. Denoted by $\gamma:[a,b]\to \mathbb{C}$.
 - We say that γ connects its initial point and end point.
- Trace (of a path): The image set $\gamma([a,b])$. Denoted by $\operatorname{tr} u$.
- Initial point (of a path): The point $\gamma(a)$.
- End point (of a path): The point $\gamma(b)$.
- Connected (set): A set U for which any two points of U can be connected by a path whose trace lies in U. Also known as pathwise connected.
- **Domain**: A connected open set.
 - "An open set U is a domain if and only if no decomposition of U into disjoint nonempty subsets exists" (Fischer & Lieb, 2012, p. 3).
- Images of compact (resp. connected) sets under continuous functions are again compact (resp. connected).
- Images of open (resp. closed) sets under continuous functions are not necessarily open (resp. closed).
- Preimages of open (resp. closed) sets under continuous functions are again open (resp. closed).
- Note that the above definitions make sense in higher-dimensional vector spaces upon replacing the absolute value with the **Euclidean norm**.

Section I.1: Holomorphic Functions

- 4/5: Definition of holomorphic.
 - Examples and nonexamples of holomorphic functions: Constant, identity, and complex conjugate functions.
 - Further comments on the complex conjugate function.
 - It's everywhere continuous but nowhere complex differentiable.
 - It's very hard to find real examples of such functions, but we found a complex example like that!
 - For the basic properties of complex differentiation (e.g., holomorphic implies continuous, sum and product rules), the proofs are symmetric to the real ones.
 - $\mathcal{O}(U)$ is a ring, but it is more technically a \mathbb{C} -algebra.
 - Chain rule: If $f: U \to V$ and $g: V \to \mathbb{C}$ are mappings of open subsets of \mathbb{C} that are holomorphic at $z_0 \in U$ and $f(z_0) = w_0 \in V$, respectively, then $g \circ f: U \to \mathbb{C}$ is holomorphic at z_0 and

$$(g \circ f)'(z_0) = g'(w_0)f'(z_0)$$

- Definition of **biholomorphic**.
- Fischer and Lieb (2012) prove some elementary properties of complex functions in places with nonzero derivatives (e.g., locally one-to-one).
 - This leads into the **complex inverse function theorem**.
 - Preview: This leads to the result that "bijective holomorphic maps are biholomorphic," i.e., if we have a bijective holomorphic map, we don't also need to prove that f^{-1} is holomorphic (Fischer & Lieb, 2012, p. 6).

Section I.2: Real and Complex Differentiability

- Definition of \mathbb{R}^2 -differentiable function.
- Definition of Wirtinger derivatives.
 - Fischer and Lieb (2012) arrive here from a slightly different angle than in class.
- Fischer and Lieb (2012) prove the $\partial f/\partial \bar{z} = 0$ condition.
- Cauchy-Riemann operator: The differential operator defined as follows. Denoted by $\partial/\partial \bar{z}$. Given by

$$\frac{\partial}{\partial \bar{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right)$$

• "In requiring that a function be complex differentiable we thus simultaneously require that a certain partial differential equation be satisfied. In other words, holomorphic functions are the differentiable solutions of the Cauchy-Riemann equation" given as follows (Fischer & Lieb, 2012, p. 9).

$$\frac{\partial f}{\partial \bar{z}}(z) = 0$$

• Laplace operator: The real differential operator defined as follows. Also known as Laplacian. Denoted by Δ . Given by

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

- As a real differential operator,

$$\Delta \bar{f} = \overline{\Delta f}$$

- More on this operator in Section VII.6.
- Definition of a harmonic function, the Cauchy-Riemann equations (in real form).
- On the CR equations: "The gradients and, consequently, the equipotential lines of g and h are thus perpendicular to one another at all points where the gradients do not vanish" (Fischer & Lieb, 2012, p. 10).
- We now investigate a special case of the chain rule for the Wirtinger derivatives.
- Lemma 2.4: Let $f: U \to \mathbb{C}$ be a real differentiable function defined on an open set $U \subset \mathbb{C}$ and let $w: [a, b] \to U$ be a differentiable map (i.e., a differentiable path in U). Then for all $t \in [a, b]$,

$$\frac{\partial}{\partial t}(f \circ w)(t) = \begin{pmatrix} f_z(w(t)) & f_{\bar{z}}(w(t)) \end{pmatrix} \begin{pmatrix} \dot{w}(t) \\ \dot{\bar{w}}(t) \end{pmatrix} = f_z(w(t))\dot{w}(t) + f_{\bar{z}}(w(t))\dot{w}(t)$$

Here we denote $\partial w/\partial t$ by \dot{w} and use matrix multiplication.

Proof. Left to the reader.

- Complex linear map: A map $l: \mathbb{C} \to \mathbb{C}$ characterized by the following. Constraints
 - 1. l(z+w) = l(z) + l(w);
 - 2. l(rz) = rl(z);

for $z, w, r \in \mathbb{C}$.

- Every complex linear map is of the form

$$w = l(z) = az$$

for a unique $a \in \mathbb{C}$.

- Real linear map: A map $l: \mathbb{C} \to \mathbb{C}$ characterized by the following. Constraints
 - 1. l(z+w) = l(z) + l(w);
 - $2. \ l(rz) = rl(z);$

for $z, w \in \mathbb{C}$ and $r \in \mathbb{R}$.

- Every real linear map is of the form

$$w = l(z) = az + b\bar{z} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} z \\ \bar{z} \end{pmatrix}$$

for a unique pair $(a \ b) \in \mathbb{C}^2$.

- Implication: l is complex linear iff b = 0.
- Tangent map (of f at z_0): The real linear map from $\mathbb{C} \to \mathbb{C}$ determined by the vector $(f_z(z_0) \quad f_{\bar{z}}(z_0))$.
- Proposition: f is holomorphic at z_0 iff its tangent map at z_0 is complex linear.
- Fischer and Lieb (2012) discuss angle preservation, per Figure 1.6.

Week 2

Consequences of Power Series

2.1 Office Hours

3/25:

- What exactly are the Wirtinger derivatives?
 - The $\partial/\partial z$ and $\partial/\partial \bar{z}$ operators.
- The initial definition of holomorphic is accurate. It's naïve, but it works out.
- Noney: Non example.
 - As in, we have some examples of holomorphic functions and then we have an example of a function that is not holomorphic.
- TPS: Think Pair Share.
- Met Panteleymon and helped him with partial fractions!
- The Δ notation does mean the same Laplacian as $\vec{\nabla}^2$ from Quantum Mechanics.
- Calderon is not related to Calderón; he was Argentinian, Calderon is half-Filipino and has no accent on his name. Both Spanish colonies but that's it.
- We can do all of the problems except Problem 1 at this point.
 - For this, though, we can just look up the definition of the complex sine function.
 - We basically just need to know what $\sin(i)$ is and what sine looks like along the imaginary axis.

2.2 Power Series

3/26:

- Recall: We already know that...
 - Polynomials are elements of $\mathcal{O}(\mathbb{C})$;
 - Rational functions P(z)/Q(z) are elements of $\mathcal{O}(\mathbb{C} \setminus V(Q))$.
- Affine algebraic set: The set of solutions in an algebraically closed field K of a system of polynomial equations with coefficients in K. Also known as variety. Denoted by $V(f_1, \ldots, f_n)$.
- Today, we want to determine how the other elementary functions behave over the complex numbers.
 - Other functions we want: exp, log, sin, cos.
 - We will do log later, but all the others today.

• Exponential function: The complex function defined as follows. Denoted by e^z , $\exp(z)$. Given by

$$e^z = \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

- Naïvely, this power series is just be a polynomial $P(z) \in \mathcal{O}(\mathbb{C})$.
- More rigorously, however, we must specify which kind of convergence we mean for the power series.
 - As one example, we could say that for all z,

$$e^z = P(z) = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{z^k}{k!}$$

- This would be **pointwise convergence**.
- But there's an issue: Pointwise convergence of functions doesn't preserve anything, e.g., continuity.
- **Pointwise** (convergent $\{f_n\}$): A sequence of functions $f_n : \mathbb{C} \to \mathbb{C}$ such that for all $z \in \mathbb{C}$, we have $f_n(z) \to f(z)$.
- TPS: Come up with an example of a sequence of continuous functions $\{f_n\}$ that converges pointwise to f, such that the f_n are all...
 - 1. Continuous but f is not;
 - $-f_n(x) = \arctan(nx).$
 - Converges to the sign function $f(x) = \operatorname{sgn}(x)$.
 - 2. Odd but f is not;
 - 3. Differentiable but f is not.
 - These last two cases were not discussed in class.
- We now recall a few definitions and lemmas from real analysis.
- Locally uniformly (convergent $\{f_n\}$): A sequence of functions $f_n: U \to \mathbb{C}$ and a function $f: U \to \mathbb{C}$ such that for all compact $K \subset U$,

$$\sup_{z \in K} |f_n(z) - f(z)| \to 0$$

- Lemma: If $f_n \to f$ locally uniformly and the f_n are continuous (or integrable), then so is f.
 - This lemma is *not* true if we sub in "differentiable!"
 - See the Stone-Weierstrass theorem for suitable constraint.
- Thus, to resolve the original question, we mean that $P_N(z) \to \exp(z)$ locally uniformly.
- Aside: Which functions have power series?
 - Remember Taylor polynomials from Calc II? Taylor's theorem tells us which ones converge.
- Taylor's theorem: If $f: \mathbb{R} \to \mathbb{R}$ is C^{k+1} and $P_{\alpha}^{k}(x)$ is the k^{th} Taylor polynomial about $\alpha \in \mathbb{R}$, then for all $\beta \in \mathbb{R}$, there exists some $x \in (\alpha, \beta)$ such that

$$f(\beta) - P_{\alpha}^{k}(\beta) = \frac{(\beta - \alpha)^{k+1}}{(k+1)!} f^{(k+1)}(x)$$

- Essentially a version of the mean value theorem (MVT) for higher-order derivatives.
- We can use the term of the right side of the equals sign above to get a bound on the error of the Taylor polynomial.

- Analytic (function): A function $f: \mathbb{R} \to \mathbb{R}$ for which the Taylor polynomials converge (locally uniformly) to f.
- Non example: The C^{∞} function $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = \begin{cases} e^{-1/x^2} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

- An excellent exercise in real analysis is to check that for all k, the Taylor polynomial about 0 is 0.
- If we take the Taylor polynomial at some point farther from zero, the polynomial will approximate f well up until zero, but then it will "hit a wall."
 - The point is that f is decaying more rapidly toward 0 than any polynomial possibly could, so the polynomial just thinks it's seeing 0.
- Absolutely (locally uniformly convergent power series): A power series $P(z) = \sum_{k=0}^{\infty} a_k z^k$ for which $A_N : \mathbb{C} \to \mathbb{R}$ locally uniformly converges, where

$$A_N(z) := \sum_{k=0}^N |a_k z^k|$$

- Absolute local uniform convergence allows you to reorder the terms in the polynomial.
 - It also explains why you cannot reorder the terms in the series $S = 1 + 1 1 + 1 1 + \cdots$, i.e., why manipulating the order allows you to get any number: This series S does not converge absolutely!
 - Formally, if $\sigma: \mathbb{N} \to \mathbb{N}$ is a permutation and $\sum^{\infty} a_k$ converges absolutely, then $\sum^{\infty} a_{\sigma(k)}$ converges.
- Exercise: Show that

$$\sum_{k=0}^{\infty} z^k \to \frac{1}{1-z}$$

converges absolutely locally uniformly on $\mathbb{D} = \{|z| < 1\}.$

Proof. To prove this, we just have to show that $\sum_{k=0}^{\infty} |z|^k$ converges on |z| < 1. But it does so converge because this latter series is just a standard real geometric series.

- This example generalizes somewhat into the following lemma.
- Lemma: Let P(z) be a power series about 0. If there exists $z_1 \neq 0$ such that $|a_k z_1^k| \leq M$ for all k, then $P(z) = \sum a_k z^k$ converges on the disk $|z| < |z_1|$.

Proof. Uses standard series convergence results from real analysis. See Fischer and Lieb (2012, pp. 15–16). \Box

- Disk of convergence: The largest disk centered at zero on which you converge.
- Radius of convergence: The radius of the disk of convergence. Denoted by r.
- Cauchy-Hadamard formula: The radius of convergence is given by

$$r = (\limsup |a_k|^{1/k})^{-1}$$

- We will be using this result on PSet 2.
- We will also be proving it there!

- What are power series representations good for? Here's an example of how they can be applied to help with PSet 1, QA.4.
 - Question: For |a| < 1 and $\gamma(t) = e^{it}$ a parameterization of a closed loop oriented counterclockwise, compute

$$\int_{\gamma} \frac{1}{z - a} \, \mathrm{d}z$$

- Answer:
 - Since |a| < 1, we know that on γ , $|a/\gamma(t)| < 1$.
 - Thus, we have that

$$\int_{\gamma} \frac{1}{z - a} dz = \int_{\gamma} \frac{1}{z} \frac{1}{1 - a/z} dz$$

$$= \int_{\gamma} \frac{1}{z} \sum_{k=0}^{\infty} \left(\frac{a}{z}\right)^{k} dz$$

$$= \int_{\gamma} \sum_{k=0}^{\infty} \frac{a^{k}}{z^{k+1}} dz$$

$$= \sum_{k=0}^{\infty} \int_{\gamma} \frac{a^{k}}{z^{k+1}} dz$$

$$= \cdots$$

$$= \int_{\gamma} \frac{1}{z} dz$$

- We have the second equality because the power series converges.
- We have the fourth equality because of the lemma about integrable f_n and the fact that the power series converges.
- The dots indicate some more steps that we will need to work out for ourselves on PSet 1.
- Lemma (from real analysis): If $f_n \to f$ locally uniformly and $f'_n \to g$ locally uniformly, then f is differentiable and f' = g.
 - This is true for both differentiable and holomorphic functions.
- Claim: This lemma implies that convergent power series are holomorphic.

Proof. If

$$f_N = \sum_{k=0}^{N} a_k z^k$$

then

$$f_N' = \sum_{k=0}^N k \cdot a_k z^{k-1}$$

We want to show that $\{f'_N\}$ converges (locally absolutely uniformly). Fischer and Lieb (2012) do this by hand. We can also use the Cauchy-Hadamard formula, which we will do presently.

Let's look at $\limsup (k \cdot a_k)^{1/k}$. But this is just equal to

$$\limsup |k \cdot a_k|^{1/k} \le \limsup (|k|^{1/k}) \cdot \limsup (|a_k|^{1/k}) = 1 \cdot \limsup (|a_k|^{1/k}) = \limsup |a_k|^{1/k}$$

Moreover, equality holds because that $k^{1/k}$ factor just decays toward 1; think about how k increases linearly and the k^{th} root decays faster.

- Proposition: Any convergent power series is holomorphic (on its disk) and its derivative is also a power series with the same radius of convergence. It follows that power series are analytic functions and are C^{∞} .
- Spoiler: Every holomorphic function is analytic.
- Corollary: Power series representations are unique.
 - 1. If $P(z) = \sum a_k z^k$ is convergent, then

$$a_k = \frac{1}{k!} P^{(k)}(0)$$

- 2. If P(z) = 0 in a neighborhood of zero, then $a_k = 0$ for all k.
- 3. If P(z) = Q(z) (where $Q(z) = \sum b_k z^k$) in a neighborhood of 0, then $a_k = b_k$ for all k.
- Let's now return to the exponential function, which got this whole discussion started.
- We now know that the definition

$$\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

makes sense.

- By manipulating this power series, we can get lots of fun properties.
 - $1. \exp(z) = [\exp(z)]'.$
 - We obtain this via term-by-term differentiability.
 - This is just our favorite formula d/dt (e^t) = e^t from calculus.
 - 2. $\overline{\exp(z)} = \exp(\bar{z})$.
 - 3. $\exp(a+b) = \exp(a) \cdot \exp(b)$.
 - 4. $|\exp(z)| = \exp[\operatorname{Re}(z)].$
- Complex cosine: The complex function defined as follows. Denoted by $\cos(z)$. Given by

$$\cos(z) := \frac{1}{2} (e^{iz} + e^{-iz})$$

• Complex sine: The complex function defined as follows. Denoted by $\sin(z)$. Given by

$$\sin(z) := \frac{1}{2i} (e^{iz} - e^{-iz})$$

• Complex hyperbolic cosine: The complex function defined as follows. Denoted by $\cosh(z)$. Given by

$$\cosh(z) := \cos(iz)$$

• Complex hyperbolic sine: The complex function defined as follows. Denoted by $\sinh(z)$. Given by

$$\sinh(z) := i\sin(iz)$$

• We also have

$$e^{iz} = \cos(z) + i\sin(z)$$

- If z is real and in $[0, 2\pi]$, then this simplifies to Euler's formula

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

- Calderon draws some mappings of the exponential function but doesn't linger on what's going on.
- These are the preliminaries; now, we'll dive into the meat of the course.

2.3 Cauchy's Theorem

3/28: • The last three classes have been real analysis with complex numbers; now we get into *complex* analysis.

• **Domain**: A connected, open set $U \subset \mathbb{C}$.

• Recall.

 $-\gamma:[a,b]\to\mathbb{C}$ is a piecewise C^1 curve.

 $-f:\mathbb{C}\to\mathbb{C}$ is continuous.

- We define

$$\int_{\mathcal{I}} f \, \mathrm{d}z := \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t$$

– FTC: If f = F' (i.e., F is a **primitive** of f) on a domain $U \subset \mathbb{C}$, then for all paths γ in U,

$$\int_{\gamma} f \, \mathrm{d}z = F(\gamma(b)) - F(\gamma(a))$$

• **Primitive** (of f): A differentiable function whose derivative is equal to the original function f. Also known as **antiderivative**, **indefinite integral**. Denoted by F.

• Corollary to the FTC: If f = F', then for any closed curve γ in U,

$$\int_{\gamma} f \, \mathrm{d}z = 0$$

– To see why this is true intuitively, look at an example such as $f(z) = 1/z \in \mathcal{O}(\mathbb{C}^*)$, which doesn't have a primitive and

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z \neq 0$$

• Example: Find a primitive of the convergent power series

$$P(z) = \sum_{k=1}^{\infty} a_k z^k$$

- Via term-by-term integration, we obtain

$$\sum_{k=0}^{\infty} \frac{a_k}{k+1} z^{k+1}$$

• If γ is any closed loop in the disk of convergence,

$$\int_{\gamma} P(z) \, \mathrm{d}z = 0$$

- It follows since they are defined in terms of convergent power series that for all closed loops γ ,

$$\int_{\gamma} e^{z} dz = \int_{\gamma} \sin(z) dz = \int_{\gamma} \cos(z) dz = 0$$

• Question: When is there a primitive?

 $-f:\mathbb{R}\to\mathbb{R}$ continuous always has a primitive by the FTC, specifically that defined by

$$F(x) := \int_{a}^{x} f(t) \, \mathrm{d}t$$

which is differentiable with F' = f.

• Proposition: If $f: U \to \mathbb{C}$ is continuous and $\int_{\gamma} f \, dz = 0$ for every closed loop in U, then f has a primitive on U.

Proof. Let's try the most naïve thing: The FTC. Consider a domain.

Figure 2.1: Continuous and zero closed-loop integrals implies integrable.

Doesn't have to be simply connected; it can have a **hole**, **slit**, and/or **puncture**. Essentially, to define F(z), choose $a \in U$ and γ connecting a and z and define

$$F(z) = \int_{\gamma} f \, \mathrm{d}z$$

Claim: This definition is well-defined regardless of the choice of a and γ . In particular, the integral is independent of choice of γ because any two γ can be paired into a closed loop, and we have by hypothesis that the integral over any closed loop is zero.

We now need to show that F is differentiable with F' = f. Take z, z' close enough that they can be connected by a straight line path δ . Consider

$$\lim_{z'\to z}\frac{F(z')-F(z)}{z'-z}$$

Now we know that

$$F(z') - F(z) = \int_{\delta} f \, \mathrm{d}z$$

Let $\gamma:[0,1]\to\mathbb{C}$ be defined by $t\mapsto tz'+(1-t)z$; a parameterization we can choose arbitrarily. Then

$$F(z') - F(z) = \int_{\delta} f \, dz = \int_{0}^{1} f[tz + (1-t)z'] \cdot (z'-z) \, dt$$

so dividing both sides by z'-z and taking the limit yields

$$\lim_{z' \to z} \frac{F(z') - F(z)}{z' - z} = \lim_{z' \to z} \int_0^1 f[tz + (1 - t)z'] dt$$

$$= \int_0^1 \lim_{z' \to z} f(tz + z' - tz') dt$$

$$= \int_0^1 f(tz + z - tz) dt$$

$$= \int_0^1 f(z) dt$$

$$= f(z) \int_0^1 dt$$

$$= f(z)$$

and we have everything we wanted.

- What allows us to interchange the limit and the integral in the final set of equations?
 - Roughly speaking, uniform convergence.
- Star-shaped (domain): A domain $U \subset \mathbb{C}$ for which there exists $a \in U$ such that for all $z \in U$, the segment $a \to z$ is in U.

Figure 2.2: Star-shaped domain.

- There are star-shaped regions that are not **convex**, such as the one in Figure 2.2!
 - Convex implies star-shaped, but not vice versa.
- Examples of domains that are *not* star-shaped.
 - 1. The annulus of two circles.
 - 2. Puncturing the unit disk.
- Star-shaped implies **simply connected**.
- Star-shaped is nice because we don't have to check every single curve; see the following lemma.
- Lemma: If U is star-shaped and for every triangle with one vertex at a, we have $\int_{\triangle} f \, dz = 0$, then f has a primitive in U.

Figure 2.3: A triangle in a star-shaped domain.

Proof. What should be our candidate for F(z)? Define

$$F(z) = \int_{\gamma} f \, \mathrm{d}z$$

where γ is the line segment from $a \to z$ that we know exists because U is star-shaped.

We now have to show that F is holomorphic with F' = f, but we just do this as before by constructing a "closed loop," except our closed loop this time will just be a triangle as drawn in Figure 2.3.

- With these definitions, we now state and prove one of the two main theorems in this class.
- Cauchy Integral Theorem: Suppose U is a star-shaped domain and $f: U \to \mathbb{C}$ is holomorphic. Then $\int_{\gamma} f \, dz = 0$ for any closed loop γ in U.
 - Whereas the FTC says if you have an *integral*, then the integral around a closed loop is zero. This theorem says that if you have a *derivative*, then the integral around a closed loop is zero.
 - This is Round 1 of the theorem. In round 2, we'll swap the "star-shaped" hypothesis for "simply connected."

- Today we're at least going to prove this, and possibly look at an application, too. If we don't get to the application today, we'll see it next Tuesday.
- \bullet Proof idea: Prove that f has a primitive.

Proof. In order to prove this theorem, we'll use the preceding lemma. Thus, all we need to show is that for every triangle with one vertex on the center of the star, $\int_{\triangle} f \, dz = 0$. Since we only have to check this for *triangles*, we can use a really lovely result called **Goursat's lemma**.

• Goursat's lemma: If f is holomorphic in a neighborhood of a triangle including the interior, then $\int_{\wedge} f \, dz = 0$.

Proof. Idea: Estimate the integral.

Figure 2.4: Proving Goursat's lemma.

Fix some $z_0 \in A$ (the exact value will be determined later). We know that f is holomorphic at z_0 , which implies that there exists a linear approximation

$$f(z) = \underbrace{f(z_0) + f'(z_0) \cdot (z - z_0)}_{\text{linear}} + E(z) \cdot (z - z_0)$$

where our error function $E(z) \to 0$ as $z \to z_0$. Now the underlined linear portion above is a (stupid) power series, but since it technically is a "convergent power series," our previous results imply that it has primitives. In particular, its integral around a closed loop (like a triangle) will be zero. This means that

$$\int_{\triangle} f \, \mathrm{d}z = \underbrace{\int_{\triangle} [f(z_0) + f'(z_0) \cdot (z - z_0)] \, \mathrm{d}z}_{0} + \int_{\triangle} E(z) \cdot (z - z_0) \, \mathrm{d}z = \int_{\triangle} E(z) \cdot (z - z_0) \, \mathrm{d}z$$

Goursat's idea: Choose a good z_0 . To do this, we'll subdivide the original black triangle (see Figure 2.4a) by choosing midpoints and breaking it into four triangles. Keep using the counterclockwise orientation in all cases. All of the red segments get cancelled out from integrating in both directions, so

$$\int_{\triangle_0} f \, \mathrm{d}z = \sum \int_{4 \text{ sub } \triangle's} f \, \mathrm{d}z$$

Choose Δ_1 in first stage such that $|\int_{\Delta_1} f \,dz|$ is the greatest among the first stage sub-triangles. Thus,

$$\left| \int_{\triangle} f \, \mathrm{d}z \right| \le 4 \cdot \left| \int_{\triangle_1} f \, \mathrm{d}z \right|$$

Now subdivide \triangle_1 and choose \triangle_2 the same way (see Figure 2.4b), so that

$$\left| \int_{\triangle} f \, \mathrm{d}z \right| \le 4 \cdot \left| \int_{\triangle_1} f \, \mathrm{d}z \right| \le 4 \cdot 4 \cdot \left| \int_{\triangle_2} f \, \mathrm{d}z \right|$$

Iterating this process, we obtain

$$\left| \int_{\triangle} f \, \mathrm{d}z \right| \le 4^n \cdot \left| \int_{\triangle_n} f \, \mathrm{d}z \right|$$

First thing to observe:

$$\operatorname{len}(\triangle_n) = 2^{-n} \cdot \operatorname{len}(\triangle_0)$$
 $\operatorname{diam}(\triangle_n) = 2^{-n} \cdot \operatorname{diam}(\triangle_0)$

Now fix $\varepsilon > 0$ and take n big enough such that on all of \triangle_n ,

$$|E(z)| < \frac{\varepsilon}{\operatorname{len}(\triangle_0) \cdot \operatorname{diam}(\triangle_0)}$$

Choose $z_0 \in \bigcap_{n=1}^{\infty} \blacktriangle_n$. Then

$$\left| \int_{\Delta} f \, \mathrm{d}z \right| \le 4^n \cdot \left| \int_{\Delta_n} f \, \mathrm{d}z \right|$$

$$= 4^n \cdot \left| \int_{\Delta_n} E(z) \cdot (z - z_0) \, \mathrm{d}z \right|$$

$$\le 4^n \cdot \operatorname{len}(\Delta_n) \cdot \max_{\Delta_n} |E(z) \cdot (z - z_0)|$$

$$= 4^n \cdot \operatorname{len}(\Delta_n) \cdot \max_{\Delta_n} |E(z)| \cdot \max_{z = z_0} |z - z_0|$$

$$\le 4^n \cdot \operatorname{len}(\Delta_n) \cdot \operatorname{diam}(\Delta_n) \cdot \max_{z = z_0} |E(z)|$$

$$= 4^n \cdot 2^{-n} \operatorname{len}(\Delta_0) \cdot 2^{-n} \operatorname{diam}(\Delta_0) \cdot \max_{z = z_0} |E(z)|$$

$$= \operatorname{len}(\Delta_0) \cdot \operatorname{diam}(\Delta_0) \cdot \max_{z = z_0} |E(z)|$$

$$< \varepsilon$$

Since we can choose ε arbitrarily small, we can thus send the original integral of f over \triangle to zero. \square

- We now end class with an example of how complex analysis can be useful, even in calculus!
- Example: Evaluate the following **Dirichlet integral** using complex analysis.

$$\int_0^\infty \frac{\sin(x)}{x} \, \mathrm{d}x$$

– We will do so via a focused analysis of the function $f: \mathbb{C} \to \mathbb{C}$ defined by

$$z\mapsto \frac{\mathrm{e}^{iz}}{z}$$

- This function is not holomorphic everywhere, but it is on the punctured plane $\mathcal{O}(\mathbb{C}^*)$.
- However, we only need the upper half $\mathcal{O}(\mathbb{H})$ presently.
- More specifically, define U to be a domain containing γ as defined as in Figure 2.5.

Figure 2.5: Dirichlet integral.

- By the Cauchy integral theorem and our decomposition of γ ,

$$0 = \int_{\gamma} f(z) dz = \sum_{i=1}^{4} \int_{\gamma_i} f dz$$

- We now integrate the segments one at a time.
 - \blacksquare γ_1 and γ_3 : Recalling our definition of $\sin(z)$ from last class, we have that

$$\int_{\gamma_1 \gamma_3} \frac{e^{ix}}{x} dx = \int_{-R}^{-r} \frac{e^{ix}}{x} dx + \int_{r}^{R} \frac{e^{ix}}{x} dx$$

$$= \int_{-r}^{-R} -\frac{e^{ix}}{x} dx + \int_{r}^{R} \frac{e^{ix}}{x} dx$$

$$= \int_{r}^{R} -\frac{e^{-ix}}{x} dx + \int_{r}^{R} \frac{e^{ix}}{x} dx$$

$$= \int_{r}^{R} \frac{e^{ix} - e^{-ix}}{x} dx$$

$$= 2i \int_{r}^{R} \frac{\sin(x)}{x} dx$$

■ γ_2 : We can explicitly compute this integral as $r \to 0$, using the parameterization $\gamma_2 : [0, \pi] \to \mathbb{C}$ defined by $\theta \mapsto re^{i(\pi-\theta)}$.

$$\lim_{r \to 0} \int_{\gamma_2} \frac{e^{iz}}{z} dz = \lim_{r \to 0} \int_0^{\pi} \frac{e^{ire^{i(\pi - \theta)}}}{re^{i(\pi - \theta)}} \cdot -ire^{i(\pi - \theta)} d\theta$$
$$= -i \lim_{r \to 0} \int_0^{\pi} e^{ire^{i(\pi - \theta)}} d\theta$$
$$= -i \int_0^{\pi} e^0 d\theta$$
$$= -i\pi$$

■ γ_4 : We need to bound the $Re^{i\theta}$ term as $R \to \infty$; see his notes!

$$\int_0^{\pi} e^{iRe^{i\theta}} id\theta \to 0$$

- Therefore, by transitivity,

$$2i \int_0^\infty \frac{\sin(x)}{x} dx - i\pi = 0$$
$$\int_0^\infty \frac{\sin(x)}{x} dx = \frac{\pi}{2}$$

2.4 Office Hours

- PSet 1, QA.4: Are a, b real or complex?
 - They can be complex.
 - Hint for this problem: Think about QA.3.
- PSet 1, QB.2: As in, only "takes on" real values, i.e., is a function of the form $f: U \to \mathbb{R}$?
 - Yes.
- We have to give him a heads up before the PSet due date that we want to use a PSet extension.

2.5 Chapter I: Analysis in the Complex Plane

From Fischer and Lieb (2012).

4/5:

Section I.3: Uniform Convergence and Power Series

- Definition of convergent, absolutely convergent, comparison test, ratio test, root test, and geometric series test.
- Unconditionally (convergent $\{f_n\}$): A series that will remain convergent (with the same sum) upon any reordering of its terms.
 - Absolutely convergent implies unconditionally convergent.
- Hint at hypergeometric series here?
- Definition of pointwise convergent, uniformly convergent, and compactly convergent.
- Covers implications of uniform convergence from class.
- Introduction of the Cauchy convergence test.
- Majorant test: If $\sum_{k=0}^{\infty} a_k$ is a convergent series with positive terms and if for almost all k and all $z \in M$ we have $|f_k(z)| \le a_k$, then $\sum_{k=0}^{\infty} f_k$ is absolutely uniformly convergent on M.
- Power series (with base point z_0 and coefficients a_k): An infinite series of the following form, where $a_k \in \mathbb{C}$ $(k = 0, ..., \infty)$ and $z_0 \in \mathbb{C}$. Denoted by $P(z z_0)$. Given by

$$P(z - z_0) := \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

- Definition of the radius of convergence and disk of convergence.
- Nowhere convergent (power series): A power series with r=0.
- Everywhere convergent (power series): A power series with $r = \infty$.
- Proposition 3.5: Assume that for some point $z_1 \neq 0$, the terms of the power series $\sum_{k=0}^{\infty} a_k z^k$ are bounded, that is $|a_k z_1^k| \leq M$ independently of k. Then the series converges absolutely locally uniformly in the disk $D_{|z_1|}(0) = \{z : |z| < |z_1|\}$.

Proof. By hypothesis,

$$|a_k||z_1|^k \le M$$

for all k. Pick z_2 such that $0 < |z_2| < |z_1|$. Then for all $|z| \le |z_2|$, we have

$$|a_k||z|^k \le |a_k||z_2|^k = |a_k||z_1|^k \left|\frac{z_2}{z_1}\right|^k \le Mq^k$$

where $q = |z_2/z_1| < 1$. By the geometric series test, $\sum_{k=0}^{\infty} Mq^k$ converges. Thus, by the majorant test, $\sum_{k=0}^{\infty} a_k z^k$ converges absolutely uniformly on $D_{|z_1|}(0)$. Progressively increasing $|z_2|$ guarantees local absolute uniform convergence over all of $D_{|z_1|}(0)$.

- Definition of the Cauchy-Hadamard formula.
- Fischer and Lieb (2012) prove that power series are holomorphic.
- Fischer and Lieb (2012) prove the identity theorem (for power series).
- Compute the closed form of the derivatives of power series by differentiating the geometric series.

$$\sum_{n=k}^{\infty} n(n-1)\cdots(n-k+1)z^{n-k} = \frac{\mathrm{d}^k}{\mathrm{d}z^k} \sum_{n=0}^{\infty} z^n = \frac{\mathrm{d}^k}{\mathrm{d}z^k} \frac{1}{1-z} = \frac{k!}{(1-z)^{k+1}}$$

• Concludes with a few questions that will be answered in the coming sections.

Section I.4: Elementary Functions

- Elementary functions: The exponential functions, trigonometric functions, and hyperbolic functions.
- Complex analysis unifies the elementary functions as special cases of the complex exponential function, making clear that they do have more to do with each other than real analysis would suggest.
- Fischer and Lieb (2012) define exp z and beautifully build its properties almost solely from this axiom.
- Summary of the properties of the exponential function (Fischer & Lieb, 2012, p. 20).
 - "The exponential function is a group homomorphism from \mathbb{C} into \mathbb{C}^* that maps the subgroups \mathbb{R} into $\mathbb{R}_{>0}$ and the subgroup $i\mathbb{R}$ into \mathbb{S} ."
 - "The group operation on \mathbb{C} , \mathbb{R} , and $i\mathbb{R}$ is addition and the group operation on \mathbb{C}^* , $\mathbb{R}_{>0}$, and \mathbb{S} is multiplication."
 - "The three homomorphisms exp: $\mathbb{C} \to \mathbb{C}^*$, exp: $\mathbb{R} \to \mathbb{R}_{>0}$, and exp: $i\mathbb{R} \to \mathbb{S}$ are surjective."
- Notable new(ish) properties:
 - Since $|e^z| = e^{\text{Re }z}$, we can see that "the exponential function... maps vertical lines Re z = c to circles" (Fischer & Lieb, 2012, p. 20).
 - In particular, $\exp(i\mathbb{R}) = \partial \mathbb{D} = \mathbb{S}$.
- Investigation of the **kernel** of exp : $\mathbb{C} \to \mathbb{C}^*$.
 - Notably, Fischer and Lieb (2012) prove that it contains only the multiples of $2\pi i$.
- Fischer and Lieb (2012) defines π via the complex exponential function and Euler's identity lol!
- Proposition 4.4:
 - i. The exponential function is periodic with period $2\pi i$.
 - ii. If a domain contains at most one member of each congruence class modulo $2\pi i$, then the exponential function maps it biholomorphically onto its image in \mathbb{C}^* .
- The key mapping properties of $\exp z$.
 - 1. The mapping $t \mapsto e^t$ maps \mathbb{R} onto $\mathbb{R}_{>0}$ bijectively.
 - 2. The mapping $t \mapsto e^{it}$ maps $[0, 2\pi)$ onto S bijectively.
- Implications.
 - A horizontal line $z = x + iy_0$ is mapped bijectively onto the open ray L_{y_0} that begins at 0 and passes through the point e^{iy_0} on the unit circle.
 - A vertical line $z = x_0 + iy$ is mapped onto the circle centered at 0 and of radius e^{x_0} .
 - An interval of length less than 2π on this line is mapped injectively into this circle.
 - Every half-open horizontal strip

$$S_{y_0} = \{ z = x + iy : y_0 \le y < y_0 + 2\pi \}$$

is mapped bijectively onto \mathbb{C}^* .

- The line $z = x + iy_0$ is mapped to the ray L_{y_0} .
- The remaining open strip (i.e., S_{y_0} minus its lower boundary) is mapped biholomorphically onto the "slit" plane $\mathbb{C}^* \setminus L_{y_0}$.
- Definition of the **complex cosine**, **complex sine**, **complex hyperbolic cosine**, and **complex hyperbolic sine** functions.

- Proposition 4.5:
 - i. The functions $\cos z$ and $\sin z$ are periodic with period 2π ; $\cosh z$ and $\sinh z$ are periodic with period $2\pi i$.

ii.

$$\frac{d}{dz}(\sin z) = \cos z$$

$$\frac{d}{dz}(\cos z) = -\sin z$$

$$\frac{d}{dz}(\cosh z) = \cosh z$$

$$\frac{d}{dz}(\cosh z) = \sinh z$$

iii.

$$\sin(z+w) = \sin z \cos w + \cos z \sin w$$
$$\cos(z+w) = \cos z \cos w - \sin z \sin w$$
$$\sinh(z+w) = \sinh z \cosh w + \cosh z \sinh w$$
$$\cosh(z+w) = \cosh z \cosh w + \sinh z \sinh w$$

iv. For each of the above functions, $f(\bar{z}) = \overline{f(z)}$.

v.

$$\cos z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} \qquad \qquad \sin z = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$$

$$\cosh z = \sum_{k=0}^{\infty} \frac{z^{2k}}{(2k)!} \qquad \qquad \sinh z = \sum_{k=0}^{\infty} \frac{z^{2k+1}}{(2k+1)!}$$

vi.
$$e^{iz} = \cos z + i \sin z$$
.

vii.

$$\sin^2 z + \cos^2 z = 1$$

$$\cosh^2 z - \sinh^2 z = 1$$

• Decomposition of e^z into its real and imaginary parts:

$$e^z = e^{x+iy} = e^x(\cos y + i\sin y)$$

- The zeroes of the complex sine are just those of the real sine; $\sin z \neq 0$ for any nonreal z.
- Introduction of the **roots of unity**.
- The remaining trigonometric and hyperbolic functions are defined in the usual way, are holomorphic everywhere except at the zeros of their denominators, and have periods π or πi (in the hyperbolic case).

$$\tan z = \frac{\sin z}{\cos z}$$

$$\cot z = \frac{\cos z}{\sin z}$$

$$\tanh z = \frac{\sinh z}{\cosh z}$$

$$\coth z = \frac{\cosh z}{\sinh z}$$

• Preview: We will show later that this extension of the real analytic functions to holomorphic functions on the complex plane is unique, not arbitrary.

Section I.5: Integration

- We can define integration on *generally* continuous functions, i.e., recall that a function need only be **piecewise continuous** in order to be integrable.
 - Allusion to **Pfaffian forms**, e.g., referring to f(z) dz as a "one-form."
 - Integration in the mold of Figure 1.2.
 - Piecewise continuous (function): A function $f:[a,b] \to \mathbb{C}$ for which there exists a partition $a=t_0<\cdots< t_n=b$ of the interval [a,b] into subintervals $[t_{k-1},t_k]$ such that the restriction of f to (t_{k-1},t_k) ...
 - 1. Is continuous for all k = 1, ..., n;
 - 2. Admits a continuous extension to the endpoints t_{k-1} and t_k .
 - Define the functional

$$I(f) = \int_{a}^{b} f(t) \, \mathrm{d}t$$

- This functional is complex linear.
- It also satisfies

$$I(\bar{f}) = \overline{I(f)}$$

- Therefore, we have that

$$I(\operatorname{Re} f) = \operatorname{Re} I(f)$$
 $I(\operatorname{Im} f) = \operatorname{Im} I(f)$

- $\left| \int_a^b f(t) \, \mathrm{d}t \right| \le \int_a^b \left| f(t) \right| \, \mathrm{d}t.$
- The central theorems of integral calculus (that is, the FTC and u-substitution) still hold:
 - FTC: Let f be continuously differentiable on [a, b]. Then

$$\int_a^b f'(t) \, \mathrm{d}t = f(b) - f(a)$$

- u-substitution: Let f be piecewise continuous on [a, b] and let $h : [c, d] \to [a, b]$ be a continuous, nondecreasing, and piecewise continuously differentiable bijection. Then

$$\int_{a}^{b} f(s) ds = \int_{c}^{d} f(h(t))h'(t) dt$$

- Path of integration: A continuous and piecewise continuously differentiable map $\gamma: [a,b] \to U$.
- Parameter interval: The functional domain of a path of integration.
- Proposition 5.3: Paths of integration are rectifiable, and their length is given by

$$\operatorname{len}(\gamma) = \int_{a}^{b} |\gamma'(t)| \, \mathrm{d}t$$

- Integration in the mold of Figure 1.4.
- **Segment** (joining a to b): The path of integration defined as follows, where $a, b \in \mathbb{C}$ and $\gamma : [0, 1] \to \mathbb{C}$ is the path defined by $\gamma(t) = a + t(b a)$. Denoted by [a, b]. Given by

$$[a,b] := \gamma$$

• Circle (with center z_0 and radius r): The path of integration defined as follows, where $z_0 \in \mathbb{C}$, r > 0, and $-\pi \le t \le \pi$. Also known as positively oriented circle. Denoted by $\kappa(r; z_0)$. Given by

$$\kappa(r; z_0)(t) := z_0 + re^{it}$$

- $\partial D_r(z_0)$: The trace of the positively oriented circle with center z_0 and radius r.
- Fischer and Lieb (2012) uses Proposition 5.3 to prove that the length of a circle is $2\pi r$, thus connecting the abstractly defined π of Section I.4 with the definition with which we're familiar.
- An important integral.

$$\int_{\kappa(r;z_0)} \frac{\mathrm{d}z}{z - z_0} = 2\pi i$$

- Discussion of a parameter transformation and reparameterization.
 - Simply, these concepts describe the same path using two different functions with on different intervals [a, b].
 - Fischer and Lieb (2012) use these concepts to prove that integrals are invariant under reparameterization.
 - "In light of this, we will identify two paths of integration if they are reparametrizations of each other. To be pedantic: a path of integration is an equivalence class of (parametrized) paths of integration with respect to the aforementioned equivalence relation" (Fischer & Lieb, 2012, p. 28).
- Sum rule along consecutive paths.
- You can **subdivide** paths with partitions and consider the **reverse** path.
 - The integral over the reverse path is the negative integral over the path.
- Constant paths have zero integrals.
- Closed (path): A path for which the initial and end points coincide.
- More common integrals.

$$\int_{\kappa(1;0)} z^n dz = i \int_{-\pi}^{\pi} e^{i(n+1)t} dt = 0$$

$$\int_{\kappa(1;0)} \bar{z} dz = \int_{\kappa(1;0)} \frac{dz}{z} = 2\pi i$$

$$(n \neq -1)$$

• The standard estimate: Let f be continuous on the trace of γ . Then

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \le \max_{z \in \operatorname{tr} \gamma} |f(z)| \cdot \operatorname{len}(\gamma)$$

Proof. Given. \Box

• Limits and integrals are interchangeable for uniformly convergent sequences of functions.

Proof. Given. \Box

• Fischer and Lieb (2012) state some multivariable carryovers from real analysis, including **Fubini's** theorem.

Section I.6: Several Complex Variables

• The concepts given elsewhere in this chapter are briefly extended to the multivariable case.

2.6 Chapter II: The Fundamental Theorems of Complex Analysis

From Fischer and Lieb (2012).

Section II.1: Primitive Functions

- Definition of **primitive**.
- Complex FTC.
 - Implication: If f has a primitive, its integral depends only on the endpoints of the path of integration, not the path in between.
- In \mathbb{R} , every function that's continuous on an interval has a primitive; in \mathbb{C} , this is not true.
 - Instead, we need f continuous on U and $\int_{\gamma} f(z) dz = 0$ for every closed path of integration $\gamma \subset U$.
 - Proof given as in class (see Figure 2.1).
- Definition of **star-shaped**.
- Zero integral over triangles implies primitive.

Proof. Given.

Section II.2: The Cauchy Integral Theorem

- Goursat's lemma and proof.
- The Cauchy Integral Theorem (for star-shaped domains).
 - "This is the 'fundamental theorem of complex analysis" (Fischer & Lieb, 2012, p. 43).

Labalme 32

Week 3

Fundamental Theorems

3.1 Cauchy Integral Formula

4/2: • Last time.

- Definition of star-shaped.
- Cauchy integral theorem: U star-shaped, $f \in \mathcal{O}(U)$ implies $\int_{\gamma} f \, dz = 0$ for all closed (piecewise C^1) loops γ .
 - 1. It suffices to prove the theorem for triangles.
 - 2. Apply Goursat's lemma to treat this triangle case.
- For Goursat's lemma, apply a clever estimate. Subdivide the big triangle into smaller ones, then

$$\left| \int_{\text{small } \triangle} f \, \mathrm{d}z \right| = \left| \int_a^b f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t \right| \leq \int_a^b \left| f(\gamma(t)) \right| \cdot \left| \gamma'(t) \right| \, \mathrm{d}t \leq \max_{z \in \partial \triangle} \left| f(z) \right| \cdot \mathrm{len}(\partial \triangle)$$

- We'll now do a couple exercises to practice applying the concepts we've learned so far.
- TPS: Suppose $f \in \mathcal{O}(\mathbb{C})$. Let $A := \int_0^1 f(x) dx = F(1) F(0)$, where to be clear we take the integral along the real axis. Let γ be the piecewise C^1 path in yellow in Figure 3.1. What is $\int_{\gamma} f dz$?

Figure 3.1: Practicing with the Cauchy Integral Theorem (1).

- Define δ such that $\int_{\delta} f dz = \int_{0}^{1} f(x) dx$.
- Then $\delta^{-1}\gamma$ is a closed loop, so

$$0 = \int_{\delta^{-1}\gamma} f \, \mathrm{d}z$$

- Additionally, we have by definition that

$$\int_{\delta^{-1}\gamma} f \, \mathrm{d}z = \int_{\gamma} f \, \mathrm{d}z - \int_{\delta} f \, \mathrm{d}z$$

- Thus, by transitivity and a bit of algebraic rearrangement,

$$\int_{\gamma} f \, \mathrm{d}z = \int_{\delta} f \, \mathrm{d}z = A$$

• TPS: Now suppose $f \in \mathcal{O}(\mathbb{C}^*)$, where we must note that \mathbb{C}^* is *not* star-shaped due to the hole at the origin. Suppose we know that $\int_{\delta} f \, dz = 0$. What is $\int_{\gamma} f \, dz$? The paths γ and δ are visualized in Figure 3.2a. *Hint*: It should be $-\int_{\delta} f \, dz$.

Figure 3.2: Practicing with the Cauchy Integral Theorem (2).

- There are multiple ways to visualize why the domain does not see the hole/puncture. Here are some examples.
- Solution 1 (Figure 3.2b): Cut the loop into two loops in star-shaped domains and add them.
 - Draw a straight-line path α from i/2 up to i.
 - \blacksquare Since U and V are both star-shaped domains, consecutive applications of the Cauchy Integral Theorem imply that

$$\int_{\delta_2 \gamma_1 \alpha} f \, \mathrm{d}z = \int_L f \, \mathrm{d}z = 0 \qquad \qquad \int_{\delta_1 \alpha^{-1} \gamma_2} f \, \mathrm{d}z = \int_R f \, \mathrm{d}z = 0$$

■ Additionally, we know that the sum of the two integrals above is equal to the integral along the entire path in Figure 3.2a because the α and α^{-1} portions cancel. Mathematically,

$$\int_{\delta} f \, dz + \int_{\gamma} f \, dz = \int_{\delta \gamma} f \, dz = \underbrace{\int_{L} f \, dz}_{0} + \underbrace{\int_{R} f \, dz}_{0} = 0$$

■ Therefore,

$$\int_{\gamma} f \, \mathrm{d}z = -\int_{\delta} f \, \mathrm{d}z = 0$$

- Solution 2 (Figure 3.2c): The pizza pie is star-shaped!
 - We can actually draw a star-shaped domain W encapsulating the entire path $\delta\gamma$.
 - Thus, by the Cauchy Integral Theorem,

$$\int_{\delta\gamma} f \, \mathrm{d}z = 0$$

■ From here, we may proceed as before through

$$\int_{\gamma} f \, dz + \int_{\delta} f \, dz = 0$$
$$\int_{\gamma} f \, dz = -\int_{\delta} f \, dz = 0$$

- We now investigate a more general principal than the Cauchy integral theorem called **homotopy**.
 - Algebraic topologists would be insulted by the definition of this term that Calderon is about to give, but it will suffice for our purposes.
- Homotopic (paths): Two paths $\gamma, \tilde{\gamma} \subset U$ a domain such that $\tilde{\gamma}$ is obtained from γ by modifying γ on a small disk $D \subset U$, keeping the endpoints fixed.

Figure 3.3: Homotopic paths.

• More generally, γ and $\tilde{\gamma}$ are **homotopic** if there exists a finite sequence $\gamma = \gamma_0, \gamma_1, \dots, \gamma_n = \tilde{\gamma}$ such that $\gamma_i \to \gamma_{i+1}$ is obtained by modifying on a small ball.

Figure 3.4: A more general homotopy.

• Claim/TPS: This argument shows that if γ and $\tilde{\gamma}$ are homotopic in U and $f \in \mathcal{O}(U)$, then

$$\int_{\gamma} f \, \mathrm{d}z = \int_{\tilde{\gamma}} f \, \mathrm{d}z$$

Hint: Just go one little bump at a time.

Proof. The start- and endpoints of the bump form a closed loop within a ball (a star-shaped domain), so the bump loop integrates to zero by the CIT. Thus, the integrals within the ball are the same. Additionally, the paths are literally the same outside of the bump, so the integrals there are the same, too.

□

• Reality check: Let $f \in \mathcal{O}(\mathbb{C}^*)$. As a particular example, consider f(z) = 1/z. Now we know that

$$\int_{\circ} \frac{1}{z} \, \mathrm{d}z = 2\pi i \neq 0$$

even though we can break the unit circle into the sum of two paths. What's going on?

- The paths are not homotopic; we can't pull them through the hole in the plane.
- If we consider the upper hemi-circle and the lower hemi-circle, the two cannot be continuously deformed into each other because we always get stuck at the puncture.

- We now prove a slightly stronger version of the Cauchy integral theorem.
- Corollary: Let U be any domain, D be a disk in U, and $z \in \mathring{D}$. Suppose $f \in \mathcal{O}(U \setminus \{z\})$ and is bounded near z. Then

$$\int_{\partial D} f \, \mathrm{d}z = 0$$

Proof. Step 1: Use homotopy.

Figure 3.5: Bounded holomorphic functions integrate to zero on disk boundaries.

Via the above claim,

$$\int_{\partial D} f \, \mathrm{d}z = \int_{\gamma_{\varepsilon}} f \, \mathrm{d}z$$

where γ_{ε} is a circle around z within the region where f is bounded^[1].

Step 2: We have that

$$\left| \int_{\gamma_{\varepsilon}} f \, \mathrm{d}z \right| \le \max_{z \in \gamma_{\varepsilon}} |f(z)| \cdot \operatorname{len}(\gamma_{\varepsilon})$$

Since f is bounded near z, the maximum is finite. Additionally, the length term is just $2\pi\varepsilon$, so we can send $\varepsilon \to 0$ and thus send the integral to zero.

- We now look into the Cauchy Integral Formula.
- Cauchy Integral Formula: Suppose U is any domain, $D \subset U$ is a disk (i.e., $D \subset\subset U$ or $\overline{D} \subset U$), $f \in \mathcal{O}(U)$, and $z \in D$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Proof. We're going to define a function and apply the corollary to it. In particular, define

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \zeta \neq z \\ f'(z) & \zeta = z \end{cases}$$

The fact that f is holomorphic at z implies that g is continuous at z and, hence, bounded near z. Additionally, since g is a rational function of holomorphic functions on $U \setminus \{z\}$, we have $g \in \mathcal{O}(U \setminus \{z\})$. Thus, the corollary says that

$$\int_{\partial D} g \, \mathrm{d}\zeta = 0$$

Additionally, by the definition of g, we have that

$$\int_{\partial D} g \, d\zeta = \int_{\partial D} \frac{f(\zeta)}{\zeta - z} \, d\zeta - \int_{\partial D} \frac{f(z)}{\zeta - z} \, d\zeta$$

¹We could also turn the plane into the sum of two star-shaped domains again.

f(z) is just a complex number, so we can pull it out of the rightmost integral above. Additionally, under a change of variables and invoking PSet 1, QA.4, we have that

$$\int_{\partial D} \frac{f(z)}{\zeta - z} \, \mathrm{d}\zeta = f(z) \int_{\partial D} \frac{1}{\zeta - z} \, \mathrm{d}\zeta = \int_{\text{unit circle}} \frac{1}{z - a} \, \mathrm{d}z = 2\pi i f(z)$$

Note: Another way to evaluate this integral is as follows. If z is the center of the disk, then we win and can get $2\pi i$ using PSet 1, QA.4 directly. If z isn't at the center of the disk, we are allowed to slide it. Here's why: Think about the integrand as a function of z, so

$$\frac{\partial}{\partial z} \left(\int_{\partial D} \frac{1}{\zeta - z} \, \mathrm{d}\zeta \right) = \int_{\partial D} \frac{\partial}{\partial z} \left(\frac{1}{\zeta - z} \right) \mathrm{d}\zeta = \int_{\partial D} \frac{1}{(\zeta - z)^2} \, \mathrm{d}\zeta = 0$$

Since we're taking the integral and the limit with respect to different things, we can exchange them. Since the second integrand has a primitive, it equals zero. But this means that the integral does not change even as z changes, which is equivalent to saying we can move z around to wherever we want in the disk and the integral will still be $2\pi i!$ In other words, if z is somewhere where we can't evaluate the integral directly, we can move z to somewhere where we can evaluate the integral directly with no consequence.

- Implication of Cauchy's Integral Formula: The values of the function are completely determined by the values on the boundary, i.e., holomorphic functions are determined by boundary values.
- Let's now prove another theorem.
- Theorem: Let U be any domain, $f \in \mathcal{O}(U)$. Then $f' \in \mathcal{O}(U)$, $f'' \in \mathcal{O}(U)$, on and on.

Proof. Let's use the Cauchy integral formula. We have that

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Now let's take the derivative, which we know exists because f is holomorphic.

$$\frac{\partial f}{\partial z} = \frac{1}{2\pi i} \int_{\partial D} \frac{\partial}{\partial z} \left(\frac{f(\zeta)}{\zeta - z} \right) d\zeta = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z)^2} d\zeta$$

Thus, the derivative has a Cauchy integral formula. We can keep taking derivatives on the inside because the integrand is infinitely differentiable. Thus, we can keep taking derivatives on the outside. And that's the proof. \Box

- Corollary: Holomorphic functions are C^{∞} .
- Corollary: In general,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

- This last result allows us to bound things really easily, giving us Cauchy's inequalities.
 - Essentially, let D have radius R and let z be the center of D. Then

$$|f^{(n)}(z)| \le \frac{n!}{2\pi i} \max_{\partial D} \left| \frac{f(\zeta)}{R^{n+1}} \right| \cdot 2\pi R = \frac{n!}{R^n} \max_{\partial D} |f(\zeta)|$$

• Liouville's Theorem: Suppose $f \in \mathcal{O}(\mathbb{C})$ (i.e., f is **entire**) and f is bounded. Then it's constant.

Proof. Take a point $z \in \mathbb{C}$. Take a huge ball with radius R. Cauchy's inequality says that if we take the derivative, then

$$|f'(z)| \le \frac{1}{R} \cdot \max_{\partial D} |f(\zeta)|$$

The maximum is bounded and R is really big, so as $R \to \infty$, the derivative gets arbitrarily small. So if we've got an arbitrary function with zero derivative, then we've got a constant function.

• Entire (function): A complex-valued function that is holomorphic on the whole complex plane.

3.2 Analytic Continuation and Removable Singularities

4/4: • Last time.

- Cauchy integral formula: Let U be any domain, $f \in \mathcal{O}(U)$, $D \subset U$, and $z \in D$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

– Implies that holomorphic functions are C^{∞} .

- Implies Cauchy's inequalities: If D is a disk centered at z_0 of radius R, then

$$|f^{(n)}(z_0)| \le \frac{n!}{R^n} \sup_{\partial D} |f(\zeta)|$$

- Implies Liouville's theorem: Any bounded entire function is constant.

• Our focus today is on results we can get out of power series.

• Observe that if

$$P(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

is a convergent power series centered at z_0 , then

$$P^{(n)}(z_0) = n!a_n$$

• Now let $f \in \mathcal{O}(U)$.

- TPS: What should the power series for f look like?

■ Rearranging the above, we want

$$a_k = \frac{f^{(k)}(z_0)}{k!}$$

■ The following power series formally has the right derivatives.

$$P(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} (z - z_0)^k$$

- Does this power series converge though, and if so, where?

 \blacksquare Recall that the Cauchy-Hadamard formula tells us that the radius of convergence r satisfies

$$r = \left(\limsup_{k \to \infty} |a_k|^{1/k}\right)^{-1}$$

■ Pick a $z_0 \in U$ and a disk $D \subset\subset U$ of radius R. Then by the Cauchy inequalities,

$$|a_k|^{1/k} = \left| \frac{f^{(k)}(z_0)}{k!} \right|^{1/k} \le \frac{|\sup_{\partial D} f(\zeta)|^{1/k}}{R} \to \frac{1}{R}$$

■ Thus, returning to the Cauchy-Hadamard formula, the radius of convergence is $\geq R$.

- So we've got a convergent power series, but why does this power series equal f(z)?

■ We know that P(z) and f(z) have all the same derivatives.

■ However, over \mathbb{R} , this is not enough! Recall the example of e^{-1/x^2} , which has the same derivatives as its power series at zero but is not equal to it.

 \blacksquare Over \mathbb{C} , however, we claim that having the same derivatives *is* enough.

- Use CIF and expand $1/(\zeta z)$.
- Note: To keep all of our z's straight, recall that z_0 is a point, ζ lies on ∂D where D is centered at z_0 , and z is somewhere in \mathring{D} .
- Doing this, we obtain

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \left(\frac{z - z_0}{\zeta - z_0}\right)} = \frac{1}{\zeta - z_0} \sum_{k=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0}\right)^k$$

■ Thus,

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \sum_{k=0}^{\infty} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} (z - z_0)^n d\zeta$$
$$= \sum_{k=0}^{\infty} \underbrace{\frac{1}{2\pi i} \int \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta}_{f^{(n)}(z_0)/n!} (z - z_0)^n$$
$$= P(z)$$

- Recall that we can bring the sum outside of the integral because of uniform convergence and our lemma about integrable functions from the 3/26 class.
- All in all, we've shown that any holomorphic function has a power series representation on any
 disk that fits within the domain, and the power series representation is the one we think it should
 be.
- We now discuss an important corollary to this result.
- The Identity Theorem: If two holomorphic functions $f, g \in \mathcal{O}(U)$ agree on an open set in U, then f = g.

Proof. This is true for power series.

For every point, there's a power series representation around that series so we can do something with a covering of open sets, though we do not need compactness for U.

- An analogous result does not hold on the reals. For example, there are plenty of functions that are zero for a while, then bump up to 1 for a while, so they're 0 and 1 on open sets without being either 0 or 1.
- Implication: "Holomorphic functions are very rigid."
- In fact, more is true: If $z_n \to z_0$ where each z_n is distinct and $f(z_n) = g(z_n)$ for all n, then f = g.
 - So we don't even need an open set; all we need is an **accumulation point**.
- Analytic continuation (of f): The function $g \in \mathcal{O}(V)$ where $f \in \mathcal{O}(U)$, $V \supset U$, and f = g on U.
 - Note that we get to say "the function g..." because of the identity theorem.
 - Formally, q_1, q_2 analytic continuations of f and $q_1 = q_2$ on U open implies $q_1 = q_2$.
- Example: Consider f(z) = z with $f \in \mathcal{O}(\mathbb{C}^*)$. Then g(z) = z with $g \in \mathcal{O}(\mathbb{C})$ is an analytic continuation of f.
- What we're essentially doing is taking the power series (which we get via "analytic") and extending them out into V.

• Example: The Riemann zeta function is defined by

$$\zeta(s) = \sum_{n=1}^{\infty} n^{-s} = \sum_{n=1}^{\infty} e^{-s \log n}$$

Where does this make sense, i.e., where does the series converge?

- We have $|n^{-s}| = n^{-\operatorname{Re}(s)}$.
- Thus, the series converges only when Re(s) > 1.
- The Riemann hypothesis predicts where $\zeta(s) = 0$. We know that it has some zeroes at the negative even integers, and the RH predicts that the rest of them fall on the line Re(s) = 1/2.
- But ζ is only defined on a part of the complex plane not including these regions! Thus, to make sense of the RH, we need to analytically continue ζ .
- Given $f \in \mathcal{O}(U)$, what is the "biggest" V on which $f \in \mathcal{O}(V)$? In layman's terms, where should f live?
- Example: $1/z \in \mathcal{O}(\mathbb{C}^*)$ and $1/z \notin \mathcal{O}(\mathbb{C})$.
 - Note that we know the latter statement because if you're holomorphic, the integral around any closed loop in the domain is zero but the integral of this function on the unit circle is $2\pi i$, so it can't be holomorphic on \mathbb{C} . Contradiction.
- Example: $\sin(1/z) \in \mathcal{O}(\mathbb{C}^*)$, but is it in $\mathcal{O}(\mathbb{C})$?
 - No; recall from PSet 1 that it's not even *continuous* at 0.
- Example: $\sin(z)/z \in \mathcal{O}(\mathbb{C}^*)$, but is it in $\mathcal{O}(\mathbb{C})$?
- Recall Goursat's lemma: $f \in \mathcal{O}(\mathrm{nbhd}(\Delta))$ implies $\int_{\Delta} f \, \mathrm{d}z = 0$.
- Recall the lemma from 3/28: If U is star-shaped and $\int_{\triangle} f \, dz = 0$ for all triangles, then f has a primitive.
 - Note that we do not need f holomorphic for this result.
 - This result has a converse!
- Morera's Theorem: If U is any domain, $f:U\to\mathbb{C}$ is continuous, and $\int_{\triangle}f\,\mathrm{d}z=0$ for all triangles, then f is holomorphic.

Proof. Fix a disk $D \subset\subset U$. Disks are star-shaped! This combined with the fact that the integral over all triangles is zero implies that f has a primitive $F \in \mathcal{O}(U)$ by the result a couple lines up. But since F is holomorphic, by our result from last class, $F' = f \in \mathcal{O}(U)$, too.

- Riemann's removable singularity theorem: Suppose U is a domain, $z \in U$, $f \in \mathcal{O}(U \setminus \{z\})$, and f is bounded near z. Then there exists a unique analytic continuation $\hat{f} \in \mathcal{O}(U)$. Also known as Riemann extension theorem.
 - In this case, we call z a **removable singularity**.
 - Note: The contrapositive of this says that if there is not an analytic continuation (i.e., the function is honestly not holomorphic at a point and can't be extended to one, e.g., 1/z), then |f| has to blow up as you approach z (in some direction).
- Singularity (of f): A point z_0 such that $f \in \mathcal{O}(U \setminus \{z_0\})$.
- **Removable** (singularity): A singularity of a function that that satisfies the hypotheses of Riemann's removable singularity theorem.

- If a singularity is not removable, then f is not bounded near z_0 . This leads to additional definitions.
- **Pole**: A non-removable singularity z_0 of a function f for which $|f(z)| \to \infty$ as $z \to z_0$.
 - So-named because of real analysis where a pole is an asymptote, and asymptotes kind of look like poles!
- Essential (singularity): A non-removable singularity that is not a pole; equivalently, a singularity z_0 for which there exist sequences $z_n \to z_0$ and $w_n \to z_0$ such that $|f(z_n)| \to \infty$ and $|f(w_n)|$ stays bounded.
- Proving Riemann's removable singularity theorem.

Proof. Set

$$F(\zeta) = \begin{cases} f(\zeta)(\zeta - z) & \zeta \neq z \\ 0 & \zeta = z \end{cases}$$

Then $F \in \mathcal{O}(U \setminus \{z\})$ so F is continuous at z.

We want to show that F is holomorphic (using Morera's theorem). To do this, we'll need to show that the integral over all triangles is zero. More specifically, all we need to do is show that F is holomorphic in a little ball D about z. Now we need to do some casework.

Case 1: If $\Delta \not\ni z$, then we can draw a star-shaped domain surrounding the triangle on which f will be holomorphic and invoke the CIT to imply that the integral is zero.

Case 2: If $\Delta \ni z$, then $\int F dz$ is arbitrarily small. Recall that we get this by using homotopy to replace the integral over the triangle with the integral over some tiny γ_{ε} . Arbitrarily small because f is bounded.

Morera then tells us that $F \in \mathcal{O}(U)$, so $F' = f \in \mathcal{O}(U)$. Note that F' = f because

$$F'(z) = \lim_{\zeta \to z} \frac{F(\zeta) - F(z)}{\zeta - z} = \lim_{\zeta \to z} \frac{f(\zeta)(\zeta - z) - 0}{\zeta - z} = \lim_{\zeta \to z} f(\zeta) = f(z)$$

- Go back and add a z_0 everywhere and then it should all be ok.
- With the removable singularity theorem, we can now confirm that $\sin(z)/z$ has a removable singularity because although 1/z diverges, sine converges faster so this function is bounded near zero.
 - We can prove boundedness with the Taylor series of $\sin(z)/z$.

3.3 Chapter II: The Fundamental Theorems of Complex Analysis

From Fischer and Lieb (2012).

Section II.3: The Cauchy Integral Formula

- 4/13: Statement and proof of the CIF.
 - Fischer and Lieb (2012) come at it in a slightly more complicated way than class.
 - Derivatives of the CIF.
 - Holomorphic implies C^{∞} .
 - Morera's theorem and proof.
 - The Riemann extension theorem and proof.

Section II.4: Power Series Expansions of Holomorphic Functions

- Proof of the typical power series formula.
- Power series examples.
 - 1. $(z-a)^{-1}$.
 - Has a standard power series.
 - $-(z-a)^{-n}$ is computed via term-by-term differentiation of this base power series and corresponding adjustments.
 - More complicated rational functions are handled via partial fraction decomposition and then
 the above method.
 - 2. Products of holomorphic functions.
 - Use **Leibniz's rule**.
 - 3. Inverse of a power series.
 - Suppose $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ in a neighborhood of z_0 , and assume that $f(z_0) = a_0 \neq 0$.
 - Then 1/f is holomorphic near z_0 .
 - Moreover, the coefficients of the expansion

$$\frac{1}{f(z)} = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

can be determined.

- To do so, compare coefficients in

$$1 = \frac{1}{f(z)} \cdot f(z) = \sum_{n=0}^{\infty} \left(\sum_{m=0}^{n} b_m a_{n-m} \right) (z - z_0)^n$$

- This yields $b_0a_0 = 1$ and hence $b_0 = a_0^{-1}$. Continuing, $b_0a_1 + b_1a_0 = 0$, so $b_1 = -b_0a_1a_0^{-1} = -a_1a_0^{-2}$. We can continue this computation as far as we like.
- 4. $\tan z$.
 - Observe that $\tan z$ is odd, and hence the even-powered terms disappear.
 - Substitute the power series for cosine, sine, and the undetermined one for tangent into the equation $\cos z \cdot \tan z = \sin z$ and compare coefficients.
 - We could also do $\sin z / \tan z$ using the method of Examples 2-3 above.
- **Leibniz's rule**: The derivative of the product fg of two functions f, g that are both holomorphic in a neighborhood of z_0 is given by

$$\frac{(fg)^{(n)}(z_0)}{n!} = \sum_{m=0}^{n} \frac{f^{(m)}(z_0)}{m!} \cdot \frac{g^{(n-m)}(z_0)}{(n-m)!}$$

- This is just the Cauchy product of the two formal power series!
- "In order to determine the derivatives $f^{(n)}(z_0)$ of a function f that is holomorphic at z_0 , one only needs to know the values f(z) on, say, a segment $(z_0 \delta, z_0 + \delta)$ parallel to the real axis" (Fischer & Lieb, 2012, p. 52).
- Build up to, statement of, and proof of the identity theorem.
- Consequence of the identity theorem: Holomorphic functions on U are completely determined by their values on any **nondiscrete** set in U.

- "Properties that can be expressed via identities between holomorphic functions on [G] thus only need to be verified on a nondiscrete set in [G]" (Fischer & Lieb, 2012, p. 53).
- Example: $\cot(\pi z)$ and $\cot(\pi z + \pi)$ coincide on the nondiscrete set $\mathbb{C} \setminus \mathbb{Z}$, and thus are equal; therefore, the periodicity of cotangent on the real numbers implies it on the complex numbers.
- This also means that the exponential function and those derived from it (e.g., sine and cosine) can only be extended from the real to the complex numbers in one way since \mathbb{R} is nondiscrete in \mathbb{C} .
- Nondiscrete (set in U): A set $M \subset U$ that contains an accumulation point of M.
- Discrete (set in U): A set $M \subset U$ that is not nondiscrete.
- Defines a **zero** (of order L), tapping into next week's content.
- Since constancy on a nondiscrete set would imply constancy everywhere (for a holomorphic function), the set $f^{-1}(w)$ of points at which a nonconstant holomorphic function takes on the same value $w \in \mathbb{C}$ is discrete.
- Characterizing holomorphicity: Let $f:U\to\mathbb{C}$ be a function defined on an open set $U\subset\mathbb{C}$. The following are equivalent:
 - i. f is holomorphic.
 - ii. f is real differentiable and satisfies the Cauchy-Riemann equations.
 - iii. f admits a power series expansion about every point in U.
 - iv. f has local primitives.
 - v. f is continuous, and for every closed triangle $\triangle \subset U$, $\int_{\partial \triangle} f(z) dz = 0$.

Week 4

Extrema

4.1 Poles and Maximum Moduli

4/9: • Announcement.

- Midterm next week in class.
- Material up through today, though probably not much on today's content.
- Last time.
 - Cauchy integral formula: If U is a domain, $D \subset\subset U$, and $z \in D$, then

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

- This implies Riemann's removable singularity theorem, which states that if $f \in \mathcal{O}(U \setminus \{z_0\})$ and f is bounded near z_0 , then there exists a $\hat{f} \in \mathcal{O}(U)$ which continues f at z_0 .
 - Example: $\sin(z)/z \in \mathcal{O}(\mathbb{C}^*)$ has a continuation to \mathbb{C} .
 - In particular, take the Taylor series at zero and evaluate:

$$\widehat{\frac{\sin(z)}{z}}(0) = 1 - \frac{0^3}{3!} + \frac{0^5}{5!} - \dots = 1$$

- Alternatively, if $f \in \mathcal{O}(U \setminus \{z_0\})$ and $|f(z)| \to \infty$ as $z \to z_0$, then z_0 is a **pole** of f.
- Today.
 - Finish up what we couldn't last time.
 - Say something about harmonic functions.
- Meromorphic (function): A function $f: U \to \mathbb{C}$ such that $f \in \mathcal{O}(U \setminus P)$ and each $p \in P$ is a pole, where $P \subset U$ is a finite set of points.
- Example: Consider $1/z \in \mathcal{O}(\mathbb{C}^*)$.
 - This has a pole at zero.
 - Thus, 1/z is holomorphic on the punctured plane \mathbb{C}^* , but meromorphic on the whole complex plane \mathbb{C} .
- Example: The same argument applies to $1/z^k$ $(k \in \mathbb{N})$.
- Example: The function from PSet 2, Q2c:

$$f(z) = \frac{1}{z(z-1)(z-i)(z-1-i)}$$

• It follows that

$$\{f: f \text{ is holomorphic}\} \subset \{f: f \text{ is meromorphic}\}\$$

- Fact: All of the examples kind of look the same.
 - More generally, suppose f has a pole at p and is holomorphic on $U \setminus \{p\}$. Pick a disk $D \ni p$ such that $f \neq 0$ on D. Then $g = 1/f \in \mathcal{O}(D \setminus \{p\})$ and as $z \to p$, $g(z) \to 0$.
 - Thus, we've got a function that's holomorphic and bounded near a point, so by Riemann's removable singularity theorem, it has a unique holomorphic extension $\hat{g} \in \mathcal{O}(D)$.
 - In particular, g(p) = 0.
 - Note: We do not need to choose D small enough such that it contains only one point in P.
 However, we will for the time being just to simplify things. The reason we can do this is because singularities as points of a finite set are isolated.
- There exists a power series for g about p such that

$$g(z) = \sum_{k=0}^{\infty} a_k (z - p)^k$$

- We know that $a_0 = 0$ because g(p) = 0.
- It can also happen such that some (or [potentially infinitely] many) of the remaining a_i are zero.
 - Example: if $f = 1/z^3$, then $g = z^3$ and $a_i = 0$ (i > 3).
- Now let L be the largest natural number such that $a_i = 0$ for all $0 \le i < L$.
 - Because $a_0 = 0, L \ge 1$.
 - Additionally, $a_L \neq 0$.
- Then we can rewrite the power series as

$$g(z) = (z - p)^L h(z)$$

where...

- 1. $h(z) = \sum_{k=L}^{\infty} a_k (z-p)^{k-L};$
- 2. $h(p) \neq 0$ (and h is nonzero near p).
- We say that g has a **zero** (of order L at p).
 - \blacksquare Similarly, we say that f has a **pole** (of order L at p).
- Thus,

$$f(z) = \frac{1}{(z-p)^L} \frac{1}{h(z)}$$

where, moreover, $1/h \in \mathcal{O}(D')$ for some smaller disk D'.

- Example: $1/(z^2+z)$ goes to z(z+1).
- Takeaway: Near any pole p, f must look like

$$\frac{1}{(z-p)^L} \cdot \phi(z)$$

where ϕ is holomorphic around p.

- This implies that there exists a **Laurent series** expansion around any pole.
- \blacksquare In particular, near p,

$$f(z) = \sum_{k=-L}^{\infty} a_k (z - p)^k$$

• **Zero** (of order L at p): A point p of a holomorphic complex function g such that g(p) = 0 and $g(z) = (z - p)^L h(z)$ where $h(p) \neq 0$.

- **Pole** (of order L at p): A point p of a holomorphic complex function f such that 1/f(p) = 0 and $f(z) = 1/(z-p)^L h(z)$ where $h(p) \neq 0$.
- Laurent series: A power series including a finite number of negative coefficients. Given by

$$\sum_{k=-L}^{\infty} a_k (z-p)^k$$

- TPS: Consider $\cot(z) = \cos(z)/\sin(z)$, which has a pole at zero. What is the order of the pole? What is the Laurent series?
 - The pole is order 1.
 - One way to see this is to observe how $\tan z$ has a nonzero tangent at 0, so $\tan z = z + \cdots$. Thus, we can only divide one z out of its power series.
 - Alternatively, we have

$$\cot(z) = \frac{1}{z} \cdot \frac{z}{\sin(z)} \cdot \cos(z)$$

from which we can observe that $\cos(z) \in \mathcal{O}(\mathbb{C})$, and $\sin(z)/z \in \mathcal{O}(\mathbb{C})$ (at zero, the extension gives 1) so $z/\sin(z)$ is holomorphic near zero. Thus, we can define $\phi(z) = z\cos(z)/\sin(z)$.

- What if we tried $\tilde{\phi}(z) = z^2 \cos(z)/\sin(z)$? What's different? Well, $\tilde{\phi}$ is still holomorphic, but $\tilde{\phi}(0) = 0$, which is a problem. Notice that $\phi(0) = 1$!
- As a last way, we could investigate the power series of $\cot(z)^-1 = \tan(z)$ directly:

$$\tan z = z + \frac{z^3}{3} + \frac{2z^5}{15}$$

- The Laurent series was not discussed in class, but here's some comments.
 - It would begin from k = -1.
 - We could construct it from the power series for cosine and sine using Calderon's formula above.
 - Figuring out the formula for the power series of an inverted power series is a good exercise!!
- What if $|f(z)| \to \infty$ as $|z| \to \infty$? Then we say that f has a **pole** (at ∞).
 - Otherwise, there exist sequences $z_n \to \infty$ and $w_n \to \infty$ such that $f(z_n) \to \infty$ and $f(w_n)$ stays bounded. This is an **essential singularity** (at ∞).
 - We can mull over this until Thursday when we introduce the solution, the **Riemann sphere**.
 - If f(z) stays bounded, then f has a removable singularity (at ∞).
- Pole (at ∞): A function f such that $|f(z)| \to \infty$ as $|z| \to \infty$.
- Essential singularity (at ∞): A function f for which there exist sequences $z_n \to \infty$ and $w_n \to \infty$ such that $f(z_n) \to \infty$ and $f(w_n)$ stays bounded.
- Removable singularity (at ∞): A function f that stays bounded as $|z| \to \infty$.
- We're now going to switch to a completely different topic.
- Suppose $f \in \mathcal{O}(U)$. When does |f(z)| get the biggest? Equivalently, where does |f(z)| take a local max? *Hint*: Look at the Cauchy integral formula!
 - There are no such points, at least on the interior of U!

• Theorem (maximum modulus principle): Let $f \in \mathcal{O}(U)$. If |f(z)| has a local maximum on U, then f is constant.

Proof. Let z_0 be a local maximum of |f(z)|. Pick $D \ni z_0$ small enough such that $|f(z)| \le |f(z_0)|$ for all $z \in D$. Let r be the radius of D. Now invoking the CIF,

$$|f(z_0)| = \left| \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z_0} d\zeta \right|$$

$$= \frac{1}{2\pi} \left| \int_{\partial D} \frac{f(\zeta)}{\zeta - z_0} d\zeta \right|$$

$$\leq \frac{1}{2\pi} \int_{\partial D} \left| \frac{f(\zeta)}{\zeta - z_0} \right| d\zeta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} \left| \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} \cdot ire^{i\theta} \right| d\theta$$

$$= \frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta$$

$$\leq \frac{1}{2\pi} \cdot 2\pi \cdot \max_{\partial D} |f(\zeta)|$$

$$= \max_{\partial D} |f(\zeta)|$$

$$\leq |f(z_0)|$$

But since the above inequality begins and ends with the same value, all \leq 's must be ='s. Thus, in particular,

$$\frac{1}{2\pi} \int_0^{2\pi} |f(z_0 + re^{i\theta})| d\theta = |f(z_0)|$$
$$\frac{1}{2\pi} \int_0^{2\pi} (|f(z_0 + re^{i\theta})| - |f(z_0)|) d\theta = 0$$

Combining this with the fact that the above integrand is always ≤ 0 because $f(z_0)$ is a local maximum, we have that

$$|f(z_0 + re^{i\theta})| - |f(z_0)| = 0$$

 $|f(\zeta)| = |f(z_0)|$

on ∂D . Note that this is true for all small ∂D 's centered at z_0 .

Now since |f| is constant on ∂D , we must have that $|f|^2 = f \cdot \bar{f}$ is constant on ∂D . Taking the Wirtinger derivative and using its product rule gets us

$$0 = \frac{\partial}{\partial z} (f \cdot \bar{f}) = f_z \cdot \bar{f} + f \cdot \bar{f}_z$$

Since f is holomorphic (hence satisfies the CR equations) and $f_{\bar{z}} = \bar{f}_z$, we have that

$$\bar{f}_z = f_{\bar{z}} = 0$$

Thus,

$$0 = f_z \cdot \bar{f} + f \cdot 0 = f_z \cdot \bar{f}$$

By the zero-product property, either $f_z = 0$ and $\bar{f} = 0$. In the first case, this means that f is constant, as desired. In the second case, this means that f is zero (and hence constant), as desired.

At this point, we have shown that f is constant on a small disk. Therefore, we need only invoke the identity theorem, which tells us that since the function is constant for a little bit somewhere, it is constant everywhere.

• Another way to prove this is by considering the derivative of the Cauchy integral formula and where it's equal to zero.

- Corollary (minimum modulus principle): If $f \in \mathcal{O}(U)$, $f \neq 0$ on U (hence $1/f \in \mathcal{O}(U)$), and |f(z)| takes a minimum in U, then f is constant.
- Application of the maximum modulus principle (the fundamental theorem of algebra): If p is a polynomial of degree d in \mathbb{C} , then p has d roots in \mathbb{C} (counted with multiplicity).

Proof. Suppose inductively that $d \geq 1$.

Step 1 (show that there exists one root): Suppose for the sake of contradiction that p has no zeros. Since p is a polynomial, we know that $|p(z)| \to \infty$ as $|z| \to \infty$. Thus, there exists R > 0 such that for all z with |z| > R, $|p(z)| \ge |p(0)|$. Then |p(z)| must take a minimum on \overline{D}_R . But to keep p from being constant by the minimum modulus principle, the minimum has to be on ∂D_R . Now take a slightly bigger disk; our global minimum is now in the interior, so p is constant, a contradiction. It follows that p must have a zero in D_R .

Step 2: Suppose p has a root at z_0 . Then power series for p at z_0 is $p(z) = (z - z_0)p_1(z)$. p_1 is a polynomial of degree d-1.

Step 3: Now iterate to find that p is a product of monomials.

- Algebraists love to prove this with only algebra, but in reality, the proof is complex analysis. [1]
- We did not get to say something about harmonic functions today, but Calderon will leave the content in his notes in case we want to look at it.
 - The statement: Harmonic functions follow a version of the CIF.
 - There's a related PSet problem.

4.2 Modulus Principles and Harmonic Functions

- 4/11: Last time.
 - Maximum modulus principle: If $f \in \mathcal{O}(U)$, $f(z) \neq 0$ for all $z \in U$, and |f| takes a max inside U, then f is constant.
 - Analogous result: The minimum modulus principle.
 - This result implies the fundamental theorem of algebra.
 - Proof idea: $|f(z)| < |f(\zeta)|$ for $\zeta \in \partial D$, so f must have a zero.
 - Another corollary: We have a better understanding of the mapping properties of holomorphic functions.
 - Recall that conformal (angle-preserving diffeomorphism) iff biholomorphic (bijective, f, f^{-1} holomorphic).
 - In real analysis, we have the **inverse function theorem**.
 - Inverse function theorem: If $f: \mathbb{R}^2 \to \mathbb{R}^2$ is C^1 and $Df(x) \neq 0$, then f is locally a diffeomorphism from $x \in U$ to $V \ni f(x)$.
 - So for $f \in \mathcal{O}(U)$...
 - If f' is never 0 on U, then f(U) is open;
 - If f' is never 0 on U and $f: U \to f(U)$ is a bijection, then f is biholomorphic.

¹How did this proof work??

- Claim: The "if f' is never 0 on U" condition is actually unnecessary!
- Theorem: Let $f \in \mathcal{O}(U)$.
 - 1. Open mapping theorem: If f is nonconstant, then f(U) is open.

Proof. To prove that f(U) is open, it will suffice to show that every $w_0 \in f(U)$ is contained in some neighborhood that's a subset of f(U). Let $w_0 = f(z_0)$. Pick a disk $D \subset U$ such that $f(z) - w_0 \neq 0$ on ∂D ; this is possible because the zeroes of a nonconstant holomorphic function (like $f - w_0$) must be isolated, or otherwise f would be constant. Thus, we may define the positive number

$$\delta := \inf_{z \in \partial D} |f(z) - w_0|$$

Now pick w such that $|w-w_0| < \delta/2$. Then by the triangle inequality, we have that for all $z \in \partial D$,

$$|f(z) - w| \ge |f(z) - w_0| - |w - w_0| \ge \delta - |w - w_0| > \delta - \frac{\delta}{2} = \frac{\delta}{2}$$

This means that |f - w| is always greater than the number $\delta/2$ on the boundary of D, but since

$$|f(z_0) - w| = |w - w_0| < \frac{\delta}{2}$$

|f-w| does not obtain its minimum on the boundary of D. Thus, since all other hypotheses of the minimum modulus principle are satisfied, there must be a zero of |f-w| on U. This means that there exists a $z \in U$ such that f(z) = w, and hence $w \in f(U)$. Therefore, since the choice of $w \in D_{\delta/2}(w_0)$ was arbitrary, we know that $D_{\delta/w}(w_0) \subset f(U)$, as desired.

2. Complex inverse function theorem: If f is bijective, it's biholomorphic.

Proof. Define the set

$$Z := \{ z \in U \mid f'(z) = 0 \}$$

of zeroes of f'. To prove that f is biholomorphic, we will quickly show that $f: U \setminus Z \to f(U) \setminus f(Z)$ is biholomorphic and then build up to the point where we can use Riemann's removable singularity theorem to analytically continue this restriction. Let's begin.

Since $f \in \mathcal{O}(U)$ by hypothesis, $f \in C^{\infty} \subset C^1$. Additionally, by the definition of z, $Df(x) \neq 0$ at all $x \in U \setminus Z$. Thus, by the real inverse function theorem, f is a diffeomorphism at all $x \in U \setminus Z$. Consequently, $f^{-1}: f(U) \setminus f(Z) \to U \setminus Z$ is differentiable, and hence holomorphic. This combined with the hypothesis that $f: U \setminus Z \to f(U) \setminus f(Z)$ is bijective and holomorphic implies that $f: U \setminus Z \to f(U) \setminus f(Z)$ is biholomorphic.

Now the first part of the plan is complete. The next step involves building up to the point that we can apply Riemann's removable singularity theorem to $f^{-1}: f(U) \setminus f(Z) \to U \setminus Z$. To do so, we need only verify that $f(U) \setminus f(Z)$ is a domain and f^{-1} is bounded near any $f(z) \in f(Z)$, since $f(z) \in f(Z) \subset f(U)$ by definition and we have just shown that $f^{-1} \in \mathcal{O}(f(U) \setminus f(Z))$.

First, we verify that $f(U) \setminus f(Z)$ is a domain. To do so, we begin by checking that f(U) is a domain. Since U is a domain (hence connected) and f is holomorphic (hence continuous), Theorem $9.11^{[2]}$ tells us that f(U) is connected. Additionally, since U is a domain (hence open) and f is bijective (hence nonconstant), the open mapping theorem implies that f(U) is open. But since f(U) is connected and open, it must be a domain, as desired. Next, we check that f(Z) is discrete in f(U). Since f is nonconstant (per the above), f' is nonzero. It follows since f' is holomorphic that Z must be discrete (otherwise, f' holomorphic would be zero on a nondiscrete set, and hence would be zero everywhere, a contradiction). Thus, every $z \in Z$ is contained in an open neighborhood $N_z \subset U$ disjoint from all other $N_{z'}$. It follows by the open mapping theorem that each $f(N_z)$ is an open neighborhood of f(z), and by the fact that f is bijective that the set

²See MATH 16210 Honors Calculus II notes.

of $f(N_z)$ is pairwise disjoint. Thus, f(Z) is discrete in f(U), as desired. Therefore, $f(U) \setminus f(Z)$ is a (punctured) domain, as desired.

Second, we verify that f^{-1} is bounded near any $f(z) \in f(Z)$. To do so, we begin by checking that $f^{-1}: f(U) \to U$ is continuous. Let $X \subset U$ be open. Since f is bijective, $(f^{-1})^{-1}(X) = f(X)$. By the open mapping theorem, f(X) is open. Thus, by the open-set definition of continuity, f^{-1} is continuous, as desired. But then since f^{-1} is continuous, it maps compact sets to compact sets. Therefore, a closed and bounded neighborhood of f(z) will maps to a closed and bounded neighborhood of z, as desired.

At this point, we may invoke Riemann's removable singularity theorem to analytically continue $f^{-1}: f(U) \setminus f(Z) \to U \setminus Z$ to f(U). Therefore, since $f: U \to f(U)$ is bijective and holomorphic by hypothesis and $f^{-1}: f(U) \to U$ is holomorphic, f is biholomorphic by definition, as desired. \square

- Preview: There is also a geometric reason why $f \in \mathcal{O}(U)$ with zeros can't be injective.
- So the maximum modulus principle gets us a lot, and in fact, these kinds of arguments can be used to say even more!
- Example: Where do Re(f) and Im(f) take their max?
- Recall that $h: U \to \mathbb{R}$ is harmonic if $\Delta h = 0$, where

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \cdot \frac{\partial^2}{\partial z \partial \bar{z}}$$

- Examples of harmonic functions: $f \in \mathcal{O}(U)$, Re(f), Im(f).
- Nonexample: |f| is not! Take f(z) = z; then $\Delta |f| = 1/|z|$.
- Where do harmonic functions take their maxima?
 - This is essentially equivalent to asking about Re(f) for the following reason.
- A characterization: If $u: U \to \mathbb{R}$ is C^2 and harmonic where U is convex, then there exists $f \in \mathcal{O}(U)$ such that u = Re(f).

Proof. Since u is harmonic,

$$0 = \Delta u = \frac{\partial}{\partial \bar{z}} \left(\frac{\partial u}{\partial z} \right)$$

This means that u_z is holomorphic! This combined with the fact that U is convex (hence star-shaped) implies by the CIT that $\int_{\gamma} u_z dz = 0$ for any closed loop $\gamma \subset U$. Thus, by the proposition associated with Figure 2.1, there exists a primitive g for u_z on U. From here, it follows by the rules of complex differentiation that

$$\frac{\partial}{\partial z}(\operatorname{Re}g) = \frac{\partial}{\partial z} \left[\frac{1}{2}(g + \bar{g}) \right] = \frac{1}{2} \frac{\partial g}{\partial z} = \frac{1}{2} u_z$$

and

$$\frac{\partial}{\partial \bar{z}}(\operatorname{Re}g) = \frac{1}{2}\overline{g_z} = \frac{1}{2}u_{\bar{z}}$$

Therefore, u = Re(2g) + C, as desired.

- Harmonic functions also satisfy a version of the Cauchy Integral Formula!
 - Let D be a disk centered at z of radius R.

- Then

$$u(z) = \operatorname{Re} f(z)$$

$$= \operatorname{Re} \left[\frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta \right]$$

$$= \frac{1}{2\pi} \operatorname{Im} \left[\int_{0}^{2\pi} i \cdot f(z + Re^{i\theta}) d\theta \right]$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} \operatorname{Re} f(z + Re^{i\theta}) d\theta$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} u(z + Re^{i\theta}) d\theta$$

- This is called the "mean value property for harmonic functions."
- On the PSet, we'll prove a version for any disk containing z of radius R, namely

$$u(z) = \int_0^{2\pi} u(\zeta) P_R(\zeta, z) d\theta$$

 \blacksquare P_R is the Poisson kernel defined by

$$P_R(\zeta, z) = \frac{1}{2\pi} \operatorname{Re} \left(\frac{\zeta + z}{\zeta - z} \right)$$

- Note that by definition, the Poisson kernel is harmonic!
- Theorem (Maximum modulus principle for harmonic functions): Suppose $h: U \to \mathbb{R}$ is harmonic. If h takes a local maximum (or minimum) at $z_0 \in U$, then h must be *locally constant*, that is, constant in a neighborhood of z_0 .

Proof. We use the same strategy as we did for the holomorphic version.

In particular, suppose z_0 is a local maximum. Pick a disk $D_R(z_0)$ about z_0 such that $h(z_0) \ge h(z)$ for all $z \in D_R(z_0)$. Using our new CIF, we have that for all r < R,

$$h(z_0) = \frac{1}{2\pi} \int_0^{2\pi} h(z_0 + re^{i\theta}) d\theta$$

By a similar integrand argument to before (noting that h is real, so we don't need absolute values), we can conclude that

$$h(z_0) = h(z_0 + re^{i\theta})$$

for all r < R. Therefore, h is constant on $D_R(z_0)$, as desired.

- Corollary: Suppose $f \in \mathcal{O}(U)$. If Re(f) or Im(f) take a maximum in U, then f must be everywhere constant.
- Corollary: If U is bounded, then h is either constant or takes its maximum and minimum on ∂U .
- Application: Dirichlet problem (on a disk).
 - Let U be a convex domain, and let g be a function on ∂U . Does there exist a function u such that u = g on ∂D and $\Delta u = 0$ (i.e., u is harmonic)?
 - This is like finding a steady state for the heat equation.
 - If U is a disk, the answer is yes, and the function is unique!
 - Existence.

■ Set

$$u(z) := \int_0^{2\pi} g(\zeta) P_R(\zeta, z) d\theta$$

■ Then

$$\Delta_z u = \Delta_z \int_0^{2\pi} g(\zeta) P_R(\zeta, z) d\theta = \int_0^{2\pi} g(\zeta) \underbrace{\Delta_z P_R(\zeta, z)}_{0} d\theta = 0$$

- \blacksquare Note that $\Delta_z P_R(\zeta,z)=0$ because P_R is harmonic, as mentioned earlier.
- The only hard part here is showing that u has a continuous extension to ∂D_R .
- Uniqueness.
 - Suppose that there exist two solutions g_1, g_2 . Then $g_1 g_2$ is harmonic and $g_1 g_2 = 0$ on ∂D . But then by the maximum (and minimum) modulus principles, $g_1 g_2 = 0$ on U. Therefore, $g_1 = g_2$ on U, as desired.

Week 5

Consequences of Defining Infinity

5.1 Office Hours

4/15:

- There will not be anything explicit about Thursday's content, but knowing it is helpful for understanding conformal maps.
- The exam is completely closed book.
- Midterm-style questions.
 - Per the mathematical hierarchy of needs (definitions and examples, theorem statements, problems/applying them, proofs of them).
 - He does not want to test our memorization skills but rather our understanding.

5.2 Midterm Review Sheet

4/16:

- Properties of complex numbers.
- Holomorphic $(f \text{ at } z_0)$: A function $f : \mathbb{C} \to \mathbb{C}$ for which the following limit exists. Also known as \mathbb{C} -differentiable. Constraints

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0) \iff f(z) = f(z_0) + \Delta(z)(z - z_0)$$

where Δ is continuous at z_0 and $\Delta(z_0) = f'(z_0)$.

- Sum rule, product rule, quotient rule.
- Chain rule.
- Holomorphic implies continuous.
- Every C-linear map is just multiplication by a complex number; the matrix must compute with $\mathcal{M}(i)$.
- Cauchy-Riemann equations: The following two equations, which identify when a complex function $(x, y) \mapsto (g, h)$ is holomorphic. Also known as **CR** equations. Given by

$$g_x = h_y$$
$$g_y = -h_x$$

• Wirtinger derivatives: The two differential operators defined as follows. Denoted by $\partial/\partial z$, $\partial/\partial \bar{z}$. Given by

$$\frac{\partial}{\partial \overline{z}} := \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \qquad \qquad \frac{\partial}{\partial z} := \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right)$$

• Theorem: The \mathbb{R} -differentiable function $f: U \to \mathbb{C}$ is holomorphic iff $\partial f/\partial \bar{z} = 0$. Moreover, if it is, then

$$f'(z_0) = \left. \frac{\partial f}{\partial z} \right|_{z_0}$$

• Laplacian: The differential operator defined as follows. Denoted by Δ . Given by

$$\Delta := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$$

- Harmonic (function): A function $f: \mathbb{R}^2 \to \mathbb{C}$ such that $\Delta f = 0$.
- Corollary: The real and imaginary parts of a C^2 holomorphic function are harmonic.

Proof.
$$\Delta(u+iv) = \Delta u + i\Delta v$$
.

- Harmonic conjugates: Two functions $u, v : \mathbb{R}^2 \to \mathbb{R}$ that satisfy the CR equations.
- Path integration:

$$\int_{\gamma} f \, \mathrm{d}z = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) \, \mathrm{d}t$$

• FTC: Suppose F'=f on $U\subset\mathbb{C}$, and let γ be a **path** inside of U. Then

$$\int_{\gamma} f \, \mathrm{d}z = F(\gamma(b)) - F(\gamma(a))$$

• Factoring into rotation and scaling matrices.

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}$$
 $(\lambda, \theta \in \mathbb{R})$

• Lemma: Holomorphic maps preserve angles.

Proof. Look at the argument at the intersection point and use the chain rule. \Box

- Conformal (map): A function $f: U \to V$, where $U, V \subset \mathbb{C}$, that satisfies the following two constraints. Constraints
 - 1. f is a diffeomorphism.
 - 2. f preserves angles.
- **Diffeomorphism**: A homeomorphism for which f, f^{-1} are differentiable.
- Biholomorphic (map): A function $f: U \to V$ that is bijective, holomorphic, and for which f^{-1} is holomorphic.
- Theorem/observation: Biholomorphic iff conformal.
- Chain rule:

$$\frac{\partial}{\partial t}(f \circ g)(z) = f_z(g(z))g_z(z) + f_{\bar{z}}(g(z))\bar{g}_{\bar{z}}(z)$$

- Complex linear map: A map $l: \mathbb{C} \to \mathbb{C}$ characterized by the following. Constraints
 - 1. l(z+w) = l(z) + l(w);
 - 2. l(rz) = rl(z);

for $z, w, r \in \mathbb{C}$.

- Every complex linear map is of the form

$$w = l(z) = az$$

for a unique $a \in \mathbb{C}$.

- Real linear map: A map $l: \mathbb{C} \to \mathbb{C}$ characterized by the following. Constraints
 - 1. l(z+w) = l(z) + l(w);
 - $2. \ l(rz) = rl(z);$

for $z, w \in \mathbb{C}$ and $r \in \mathbb{R}$.

- Every real linear map is of the form

$$w = l(z) = az + b\bar{z} = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} z \\ \bar{z} \end{pmatrix}$$

for a unique pair $(a \ b) \in \mathbb{C}^2$.

- Implication: l is complex linear iff b = 0.
- Tangent map (of f at z_0): The real linear map from $\mathbb{C} \to \mathbb{C}$ determined by the vector $(f_z(z_0) f_{\bar{z}}(z_0))$.
- Proposition: f is holomorphic at z_0 iff its tangent map at z_0 is complex linear.
- Exponential function: The complex function defined as follows. Denoted by e^z , $\exp(z)$. Given by

$$e^z = \exp(z) := \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

- **Pointwise** (convergent $\{f_n\}$): A sequence of functions $f_n : \mathbb{C} \to \mathbb{C}$ such that for all $z \in \mathbb{C}$, we have $f_n(z) \to f(z)$.
- Locally uniformly (convergent $\{f_n\}$): A sequence of functions $f_n: U \to \mathbb{C}$ and a function $f: U \to \mathbb{C}$ such that for all compact $K \subset U$,

$$\sup_{z \in K} |f_n(z) - f(z)| \to 0$$

- Lemma: If $f_n \to f$ locally uniformly and the f_n are continuous (or integrable; not differentiable), then so is f.
- Taylor's theorem: If $f: \mathbb{R} \to \mathbb{R}$ is C^{k+1} and $P_{\alpha}^{k}(x)$ is the k^{th} Taylor polynomial about $\alpha \in \mathbb{R}$, then for all $\beta \in \mathbb{R}$, there exists some $x \in (\alpha, \beta)$ such that

$$f(\beta) - P_{\alpha}^{k}(\beta) = \frac{(\beta - \alpha)^{k+1}}{(k+1)!} f^{(k+1)}(x)$$

- Analytic (function): A function $f: \mathbb{R} \to \mathbb{R}$ for which the Taylor polynomials converge (locally uniformly) to f.
- **Absolutely** (locally uniformly convergent power series): A power series $P(z) = \sum_{k=0}^{\infty} a_k z^k$ for which $A_N : \mathbb{C} \to \mathbb{R}$ locally uniformly converges, where

$$A_N(z) := \sum_{k=0}^N |a_k z^k|$$

• Geometric series test: If |z| < 1, then

$$\sum_{k=0}^{\infty} z^k \to \frac{1}{1-z}$$

• Lemma: Let P(z) be a power series about 0. If there exists $z_1 \neq 0$ such that $|a_k z_1^k| \leq M$ for all k, then $P(z) = \sum a_k z^k$ converges on the disk $|z| < |z_1|$.

Proof. Choice of z_1, z_2 , and their ratio.

- Disk of convergence: The largest disk centered at zero on which you converge.
- \bullet Radius of convergence: The radius of the disk of convergence. Denoted by r.
- Cauchy-Hadamard formula: The radius of convergence is given by

$$r = (\limsup |a_k|^{1/k})^{-1}$$

- Lemma (from real analysis): If $f_n \to f$ locally uniformly and $f'_n \to g$ locally uniformly, then f is differentiable and f' = g.
 - Implication: Convergent power series are holomorphic.
- Corollary: Power series representations are unique.
 - 1. If $P(z) = \sum a_k z^k$ is convergent, then

$$a_k = \frac{1}{k!} P^{(k)}(0)$$

- 2. If P(z) = 0 in a neighborhood of zero, then $a_k = 0$ for all k.
- 3. If P(z) = Q(z) (where $Q(z) = \sum b_k z^k$) in a neighborhood of 0, then $a_k = b_k$ for all k.
- Properties of the complex exponential.
 - 1. $\exp(z) = [\exp(z)]'$.
 - We obtain this via term-by-term differentiability.
 - This is just our favorite formula d/dt (e^t) = e^t from calculus.
 - 2. $\overline{\exp(z)} = \exp(\bar{z})$.
 - 3. $\exp(a+b) = \exp(a) \cdot \exp(b)$.
 - 4. $|\exp(z)| = \exp[\operatorname{Re}(z)]$.
 - 5. $e^{iz} = \cos(z) + i\sin(z)$.
- Complex trigonometric functions.

$$\cos(z) := \frac{1}{2} (e^{iz} + e^{-iz})$$

$$\sin(z) := \frac{1}{2i} (e^{iz} - e^{-iz})$$

$$\cosh(z) := \cos(iz)$$

$$\sinh(z) := i\sin(iz)$$

- **Domain**: A connected, open set $U \subset \mathbb{C}$.
- **Primitive** (of f): A differentiable function whose derivative is equal to the original function f. Also known as antiderivative, indefinite integral. Denoted by F.

• Corollary to the FTC: If f = F', then for any closed curve γ in U,

$$\int_{\gamma} f \, \mathrm{d}z = 0$$

- Proposition: If $f:U\to\mathbb{C}$ is continuous and $\int_{\gamma}f\,\mathrm{d}z=0$ for every closed loop in U, then f has a primitive on U.
 - *Proof.* Step 1: Choose the integral along arbitrary γ .
 - Step 2: Choice of γ doesn't matter (closed loop condition).
 - Step 3: Correct derivative; apply FTC along δ and take limit.
- Star-shaped (domain): A domain $U \subset \mathbb{C}$ for which there exists $a \in U$ such that for all $z \in U$, the segment $a \to z$ is in U.
- Lemma: If U is star-shaped and for every triangle with one vertex at a, we have $\int_{\triangle} f \, dz = 0$, then f has a primitive in U.
- Cauchy Integral Theorem: Suppose U is a star-shaped domain and $f:U\to\mathbb{C}$ is holomorphic. Then $\int_{\gamma} f \, \mathrm{d}z = 0$ for any closed loop γ in U.

Proof. Step 1: Prove f has a primitive via lemma & Goursat's lemma.

Step 2: Apply FTC.
$$\Box$$

• Goursat's lemma: If f is holomorphic in a neighborhood of a triangle including the interior, then $\int_{\wedge} f \, dz = 0$.

Proof. Subdividing triangles and inequalities.

- Evaluating integrals using the complex functions and various paths.
- Ratio test: For $\sum a_n$, think about

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

• Root test: For $\sum a_n$, think about

$$\lim_{n\to\infty} |a_n|^{1/n}$$

- Majorant test: If $\sum_{k=0}^{\infty} a_k$ is a convergent series with positive terms and if for almost all k and all $z \in M$ we have $|f_k(z)| \le a_k$, then $\sum_{k=0}^{\infty} f_k$ is absolutely uniformly convergent on M.
- Exponential mappings.
 - $-z = x + iy_0$ maps onto the open ray beginning at 0 and passing through e^{iy_0} .
 - $-z = x_0 + iy$ maps onto the circle of radius e^{x_0} .
 - Half-open horizontal strips map bijectively onto \mathbb{C}^* .
- **Homotopic** (paths): Two paths $\gamma, \tilde{\gamma} \subset U$ a domain such that $\tilde{\gamma}$ is obtained from γ by modifying γ on a small disk $D \subset U$, keeping the endpoints fixed.
- Claim/TPS: This argument shows that if γ and $\tilde{\gamma}$ are homotopic in U and $f \in \mathcal{O}(U)$, then

$$\int_{\gamma} f \, \mathrm{d}z = \int_{\tilde{\gamma}} f \, \mathrm{d}z$$

Proof. Each bump is a closed loop for the CIT.

• Corollary: Let U be any domain, D be a disk in U, and $z \in \mathring{D}$. Suppose $f \in \mathcal{O}(U \setminus \{z\})$ and is bounded near z. Then

$$\int_{\partial D} f \, \mathrm{d}z = 0$$

Proof. Homotopy and γ_{ε} .

• Cauchy Integral Formula: Suppose U is any domain, $D \subset U$ is a disk (i.e., $D \subset\subset U$ or $\overline{D} \subset U$), $f \in \mathcal{O}(U)$, and $z \in D$. Then

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Proof. Define the helper function

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \zeta \neq z \\ f'(z) & \zeta = z \end{cases}$$

It integrates to zero on ∂D and then splits into the two sides of the CIF.

- \bullet Corollary: Holomorphic functions are $C^{\infty}.$
- Corollary: In general,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\partial D} \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta$$

• Cauchy's inequalities:

$$|f^{(n)}(z)| \le \frac{n!}{R^n} \max_{\partial D} |f(\zeta)|$$

• Liouville's Theorem: Suppose $f \in \mathcal{O}(\mathbb{C})$ (i.e., f is **entire**) and f is bounded. Then it's constant.

Proof. Cauchy's inequalities on a really big disk to limit |f'|.

- Entire (function): A complex-valued function that is holomorphic on the whole complex plane.
- The Identity Theorem: If two holomorphic functions $f, g \in \mathcal{O}(U)$ agree on an open set in U, then f = g.

Proof. True for power series.

- In fact, more is true: If $z_n \to z_0$ where each z_n is distinct and $f(z_n) = g(z_n)$ for all n, then f = g.
- Analytic continuation (of f): The function $g \in \mathcal{O}(V)$ where $f \in \mathcal{O}(U)$, $V \supset U$, and f = g on U.
- Morera's Theorem: If U is any domain, $f:U\to\mathbb{C}$ is continuous, and $\int_{\triangle}f\,\mathrm{d}z=0$ for all triangles, then f is holomorphic.

Proof. The primitive exists. The primitive is holomorphic. Therefore, F' = f is holomorphic.

• Riemann's removable singularity theorem: Suppose U is a domain, $z \in U$, $f \in \mathcal{O}(U \setminus \{z\})$, and f is bounded near z. Then there exists a unique analytic continuation $\hat{f} \in \mathcal{O}(U)$. Also known as Riemann extension theorem.

Proof. Define a helper function

$$F(\zeta) = \begin{cases} f(\zeta)(\zeta - z) & \zeta \neq z \\ 0 & \zeta = z \end{cases}$$

Use Morera's theorem: F is continuous, triangles in two cases (CIT and γ_{ε}), and F' = f via the limit definition.

- Singularity (of f): A point z_0 such that $f \in \mathcal{O}(U \setminus \{z_0\})$.
- Removable (singularity): A singularity of a function that that satisfies the hypotheses of Riemann's removable singularity theorem.
- If a singularity is not removable, then f is not bounded near z_0 . This leads to additional definitions.
- Pole: A non-removable singularity z_0 of a function f for which $|f(z)| \to \infty$ as $z \to z_0$.
 - So-named because of real analysis where a pole is an asymptote, and asymptotes kind of look like poles!
- Essential (singularity): A non-removable singularity that is not a pole; equivalently, a singularity z_0 for which there exist sequences $z_n \to z_0$ and $w_n \to z_0$ such that $|f(z_n)| \to \infty$ and $|f(w_n)|$ stays bounded.
- Meromorphic (function): A function $f: U \to \mathbb{C}$ such that $f \in \mathcal{O}(U \setminus P)$ and each $p \in P$ is a pole, where $P \subset U$ is a finite set of points.
- Orders of zeros and poles.
 - Invert the function, find a power series, divide $(z-p)^L$ out, find the power series of h, invert, find the principal part of the **Laurent series**.
- Theorem (maximum modulus principle): Let $f \in \mathcal{O}(U)$. If |f(z)| has a local maximum on U, then f is constant.

Proof. Step 1: Long inequality through the CIF that becomes equality.

Step 2: Subtract and get integrand equal to zero; |f| is constant on ∂D .

Step 3: $|f|^2$ is constant on ∂D , differentiate, casework to f is constant or zero.

• Corollary (minimum modulus principle): If $f \in \mathcal{O}(U)$, $f \neq 0$ on U (hence $1/f \in \mathcal{O}(U)$), and |f(z)| takes a minimum in U, then f is constant.

5.3 Midterm

T/F: 5 points each (1 for answer, 4 for explanation)

Indicate whether each of the following are true or false, and give a complete answer as to why.

- 1. Any entire function (i.e., any $f \in \mathcal{O}(\mathbb{C})$) is the derivative of another entire function.
- 2. Let U be a domain, let z be a point in U, and let $f \in \mathcal{O}(U \setminus \{z\})$. Suppose that $\int_{\gamma} f \, dz = 0$ for every closed curve γ in $U \setminus \{z\}$. Then $f \in \mathcal{O}(U)$.
- 3. If $f, g \in \mathcal{O}(\mathbb{C})$ and there are two distinct points $z_1, z_2 \in \mathbb{C}$ such that

$$f(z_1) - g(z_1) \neq f(z_2) - g(z_2)$$

then there is a sequence of points $z_n \in \mathbb{C}$ such that $|f(z_n) - g(z_n)| \to \infty$.

- 4. For any sequence of positive real numbers $\{a_k\}$ and any point $z \in \mathbb{C}$, there is a function f, holomorphic in a neighborhood of z, such that $|f^{(k)}(z)| = a_k$.
- 5. There is a conformal map that does all of the following.
 - Takes the first quadrant $Q = \{z : \text{Re}(z), \text{Im}(z) > 0\}$ to the strip $S = \{z : \text{Im}(z) \in (-2, 2)\}$.
 - Takes the ray $\{z \in Q : \text{Re} = \text{Im}(z)\}$ to the "sine graph," i.e., $\{z : \text{Im}(z) = \sin[\text{Re}(z)]\}$.
 - Takes the segment $\{z \in Q : \text{Re}(z) + \text{Im}(z) = 1\}$ to $S \cap i\mathbb{R}$.

Problems: 5 points each

In the following, please *fully explain your reasoning* in addition to doing any relevant computations. A correct answer without explanation will receive at most one point on the problem.

- **1.** Show that $u(x+iy) = e^{2x} \sin(2y) + 2x$ is harmonic on \mathbb{C} and find a harmonic conjugate. Bonus (1pt): If v is your harmonic conjugate, express the holomorphic function f = u + iv in terms of z.
- **2.** Suppose that U is a domain, P is a countable set of points in U, and that $f \in \mathcal{O}(U \setminus P)$. Suppose further that f has a pole at each point of P. Prove that P is discrete in U (i.e., P does not have any accumulation points in U).
- 3. Suppose I tell you that f(z) = 1/(z-a), but I don't tell you what a is. Suppose that you know the real and imaginary parts of a are irrational and that you have an oracle that can compute $\int_{\gamma} f \, dz$ over any path such that the real and imaginary parts of $\gamma(t)$ are always rational (i.e., any γ that lives in $\mathbb{Q} + i\mathbb{Q}$). How would you go about estimating the value of a?
- **4.** (a) Show that if $\{a_k\}$ is a sequence of non-zero complex numbers, then

$$\lim_{k \to \infty} \frac{|a_k|}{|a_{k-1}|} = L \qquad \Longrightarrow \qquad \lim_{k \to \infty} |a_k|^{1/k} = L$$

(b) Find the radius of convergence of the order 0 Bessel function

$$J_0(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2^{2n} (n!)^2} z^{2n}$$

- **5.** Suppose that f is a function on \mathbb{C} such that...
 - (a) f is (+i) anti-periodic, that is, if f is defined at z then it is defined at z+i and f(z)=-f(z+i);
 - (b) f is holomorphic in the strip $\{z \mid \text{Im}(z) \in (-0.1, 1.1)\}$ except at the point z = i/2;
 - (c) If γ denotes a *clockwise* circle of radius 1/2 centered at i/2, then $\int_{\gamma} f dz = 17$;
 - (d) $|f(z)| \to 0$ as $\text{Re}(z) \to \pm \infty$.

Compute $\int_{-\infty}^{\infty} f(x) dx$.

5.4 The Riemann Sphere

- 4/18: Midterms are 2/3 graded.
 - Project proposal due on Monday by the end of the day.
 - Completion points; Calderon just wants to give us feedback.
 - PSets 4 and 5 will be pushed back by 1 week.
 - Get started on your final project in the intervening time!

- Today.
 - More holomorphic and meromorphic functions.
 - Definition of the logarithm.
- Example: Consider

$$f(z) = \frac{1}{z} \in \mathcal{O}(\mathbb{C}^*)$$

How does this look as a conformal map, e.g., where does it send the following two sets?

$$\mathbb{D} \setminus \{0\} \qquad \qquad \{re^{i\theta} \mid \theta \text{ fixed}\}$$

- $-\mathbb{D}\setminus\{0\}$ goes to $\mathbb{C}\setminus\overline{\mathbb{D}}$.
- $\{re^{i\theta} \mid \theta \text{ fixed}\}\$ goes to the line opposite itself at $\theta + 180^{\circ}$.
 - This is because 1/z takes $re^{i\theta}$ to $r^{-1}e^{-i\theta}$.
 - Moreover, as $r \to \infty$ in the initial set, $r^{-1} \to 0$ in the image.
- Observe that

$$\lim_{z \to 0} |f(z)| = \infty \qquad \qquad \lim_{|z| \to \infty} f(z) = 0$$

- So can't we just say that $f(0) = \infty$ and $f(\infty) = 0$?
 - Sure! Add in ∞ like with the extended real numbers.
 - We just stated that we can define $i := \sqrt{-1}$ to be a thing, so why not ∞ as well?
- We now make this definition a bit more rigorous.
- Riemann sphere: The S^2 -like manifold defined as follows. Denoted by $\hat{\mathbb{C}}$. Given by

$$\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$$

- We can thus define a **neighborhood** (of ∞).
- Neighborhood (of ∞): The set defined as follows. Given by

$$\{|z|>R\}\cup\{\infty\}$$

- Equivalently, take $\{|1/z| < R\}$.
- Let's visualize this sphere and neighborhood.

Figure 5.1: The Riemann sphere.

• Stereographic projection: A mapping of the sphere (minus the north pole) to the plane. Take the line from ∞ through a point on the sphere and onto the plane (this sets up a one-to-one correspondence between the points of the sphere and those of the plane).

Figure 5.2: Stereographic projection.

- Put {0} at the point of tangency.
- The equator will get mapped to a circle, so the stereographic projection is actually conformal away from ∞ !
 - Moreover, we will identify this circle with the unit circle.
- The real axis will become a line of longitude/great circle.
- The imaginary axis will become the complementary line of longitude.
- So the real and imaginary axes, and the unit circle become three perpendicular great circles on the Riemann sphere.
- This allows us to give an alternate definition of being meromorphic: f on $U \subset \mathbb{C}$ is meromorphic if $f: U \to \hat{\mathbb{C}}$ is such that $f^{-1}(\infty)$ is discrete and $f|_{U \setminus f^{-1}(\infty)}$ is holomorphic.
- As a complex manifold: Let $f:U\ni\infty\to\mathbb{C}$ be a function. We say that f is holomorphic at ∞ if

$$f^*(z) := \begin{cases} f(1/z) & z \neq 0 \\ f(\infty) & z = 0 \end{cases}$$

is holomorphic at zero.

- Exercise: In Figure 5.2, we projected the Riemann sphere down onto a plane tangent to the sphere at 0. What if we project the Riemann sphere up onto a plane tangent to the sphere at ∞ ? Clearly these two versions of the complex plane would be parallel, and it actually turns out that the map between them is just $z \mapsto 1/z$!
- TPS: Verify that $1/(z-3)^2$ is holomorphic at ∞ .
 - Note: This is a pole of order 2 at z = 3.
 - We have that

$$f^*(z) = \begin{cases} \frac{z^2}{(1-3z)^2} & z \neq 0\\ 0 & z = 0 \end{cases}$$

- Clearly, $\lim_{z\to 0} f^*(z) = 0$, so we're done.
- Comments.
 - Saying something is holomorphic at ∞ is just saying that it has an analytic continuation at ∞ (via Riemann's removable singularity theorem).
 - \blacksquare f^* has a zero of order 2 at ∞ .

- In order to work with the Riemann sphere, you always put a patch of it on the plane and then say, "well, we know complex analysis on the plane."
 - Thus, we have a notion of poles, zeroes, and holomorphisms at ∞ .
- The open mapping theorem still applies!
 - If U is a domain and $f: U \subset \hat{C} \to \mathbb{C}$ is holomorphic, then f(U) is open.
- More generally, we should do something about the Riemann sphere.
- Riemann surface: A (real) two-manifold (locally like \mathbb{R}^2) equipped with an atlas of charts. Denoted by X.
- Chart: A map from a domain U on the Riemann surface in question down to the complex plane \mathbb{C} that is locally biholomorphic. Denoted by ϕ_{U} .
- Holomorphic (f at $z \in X$): A function $f: U \to \mathbb{C}$ for which $f \circ \phi_U^{-1}$ is holomorphic at $\phi_U(z)$, where X is a Riemann surface and $z \in U \subset X$.
- Suppose we map the bottom and top halves of the Riemann sphere to the unit circle.
 - The interconversion map is once again 1/z.
- We're now done defining the Riemann sphere. We now start doing analysis on the Riemann sphere.
- Observation: f is holomorphic at ∞ iff f(1/z) is holomorphic at 0.
 - Thus, $f:U\supset \hat{\mathbb{C}}\to \hat{\mathbb{C}}$ is meromorphic iff f is a holomorphic map.
- Theorem: Any holomorphic function $f: X \to \mathbb{C}$ on $\hat{\mathbb{C}}$ (or any compact Riemann surface X) is constant.

Proof. Since f is holomorphic on X, f is continuous on X. Thus, since continuous functions on compact spaces must take maximums, |f| has to take a maximum on X. Suppose $z \in X$ is such that |f(z)| is max. Take a neighborhood $U \ni z$ and its chart $\phi_U : U \to \mathbb{C}$. Then $\phi_U(z)$ is in the interior of $\phi_U(U)$. It follows that $f \circ \phi_U^{-1}$ is holomorphic on $\phi_U(U) \subset \mathbb{C}$. Thus, by the maximum modulus principle, $f \circ \phi_U^{-1}$ is constant on $\phi_U(U)$. Thus, f is constant on U. Now take overlapping coverings of U to expand the constancy over all of X, i.e., invoke the identity theorem.

- Note: This method of proof (doing something on a chart and then expanding over) is common.
- Corollary (Liouville's theorem): If $f \in \mathcal{O}(\mathbb{C})$ and bounded, then f is constant.

Proof. If it's bounded on \mathbb{C} , then it's bounded in a neighborhood of ∞ . Thus, we do the inversion to f^* which has an analytic continuation to 0, so f is holomorphic on $\hat{\mathbb{C}}$ and hence, by the previous theorem, f is constant.

- Implication: Holomorphic functions on the Riemann sphere are constant (hence relatively uninteresting).
- More interesting: Let's look at meromorphic functions on $\hat{\mathbb{C}}$.
 - Examples: 1/z, z, z^2 , polynomials, rational functions.
 - This is it!
 - Nonexample: The exponential map is *not* meromorphic on $\hat{\mathbb{C}}$ because it actually has an essential singularity at ∞ : $R \to \infty$ goes to ∞ , but $R \to -\infty$ goes to 0.
- Claim: Any meromorphic function on the Riemann sphere is a rational function.

Proof. Done next Tuesday.

- There are lots of meromorphic functions that are called rational functions on other compact Riemann surfaces.
- Example: $zy^2 = x^3 + axz^2 + bz^3$ gives a set of points in \mathbb{C}^2 or \mathbb{R}^2 .
 - Actually defines a genus 1 surface?? Could work for a final project!
 - The function $[x:y:z]\mapsto x/z$ is meromorphic. This map looks like skewering the torus and rotating it like a kebob.
 - What is going on here??
- Proposition: Let $f: X \to \hat{\mathbb{C}}$ be meromorphic and nonconstant, where X is a compact Riemann surface. Then f is onto.

Proof. We want to show that $f(X) = \hat{\mathbb{C}}$. By the open mapping theorem, f(X) is open. But X is compact, which means that f(X) is compact, which means that f(X) is closed. Thus, $\hat{\mathbb{C}} \setminus f(X)$ is open. But then f(X) and $\hat{\mathbb{C}} \setminus f(X)$ partition $\hat{\mathbb{C}}$ into disjoint open subsets, so since $\hat{\mathbb{C}}$ is connected, one of these sets must be empty. f(X) is nonempty, so $\hat{\mathbb{C}} \setminus f(X)$ must be empty and therefore $f(X) = \hat{\mathbb{C}}$, as desired.

• Corollary: Fundamental Theorem of Algebra.

Proof. Given a polynomial, there exists a root. How does this work?? \Box

Week 6

Special Meromorphic Functions

6.1 Meromorphic Functions and Möbius Transformations

4/23:

• Last time.

$$\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$$

– When is a function $f: \hat{\mathbb{C}} \to \mathbb{C}$ "holomorphic at ∞ ?"

■ Liouville: $f \in \mathcal{O}(\hat{\mathbb{C}})$ is constant.

-f is a meromorphic function on $U \subset \hat{\mathbb{C}}$ if and only if f is a holomorphic map to $\hat{\mathbb{C}}$.

 $-f^{-1}(\infty)$ gives the set of poles.

- We defined the Riemann sphere

 $\bullet\,$ Note for people doing residues on their final project.

– Recall that if $f: U \to \hat{\mathbb{C}}$ is meromorphic, then it has a Laurent series around each pole p.

- Essentially,

$$f(z) = \frac{1}{(z-p)^k} h(z)$$

 \blacksquare h is holomorphic.

 $\blacksquare \ h(p) \neq 0.$

 \blacksquare k is the order of the pole.

- Since h is holomorphic, it has a power series expansion

$$h(z) = \sum_{i=0}^{\infty} a_i (z - p)^i$$

with $a_0 \neq 0$.

- Thus,

$$f(z) = \sum_{i=0}^{\infty} a_i (z-p)^{i-k}$$
$$= \sum_{i=-k}^{\infty} a_i (z-p)^i$$

- This allows us to define the **principal part**.

• Principal part (of a Laurent series): The sum of the terms with a negative exponent.

ullet TPS: Suppose you have a pole p in a disk D within the radius of convergence of the Laurent series. Compute

$$\int_{\partial D} f \, \mathrm{d}z$$

- Because we are in the radius of convergence of the Laurent series, the series converges locally absolutely uniformly, so we can switch the sum and the integral in the following and evaluate.

$$\int_{\partial D} f \, dz = \int_{\partial D} \sum_{j=-k}^{\infty} a_j (z-p)^j \, dz = \sum_{j=-k}^{\infty} \int_{\partial D} a_j (z-p)^j \, dz$$
$$= \sum_{\substack{j=-k\\j\neq -1}}^{\infty} 0 + \int_{\partial D} \frac{a_{-1}}{z-p} \, dz = a_{-1} \cdot 2\pi i$$

- This a_{-1} coefficient is clearly special, so it gets a special name.
- Residue (of f at p): The a_{-1} coefficient in the Laurent expansion of f about a pole p. Denoted by $\operatorname{res}_{p}(f)$. Given by

$$res_p(f) := a_{-1}$$

• Corollary: f has a primitive on D (containing a single pole p) iff

$$\operatorname{res}_p(f) = 0$$

Proof. This goes back to the proposition from the 3/28 class. If the residue is zero, then the closed loop integral is zero, so by homotopy, f has a primitive on the disk?? And if it has a primitive, then it's holomorphic on D and therefore the residue is zero.

• Theorem: Every meromorphic function $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ (by which we mean a meromorphic function on \mathbb{C} that is either bounded or with a pole at ∞) is rational, i.e., f = p/q.

Proof. We will prove this theorem by dividing it into three consecutive claims.

- 1. The set of poles of f (including ∞) is finite.
- 2. Write f minus the sum of the principal parts of all the poles of f, and call this g.
- 3. q is holomorphic on $\hat{\mathbb{C}}$, and therefore is constant.

Once we have Claim 3, we will know that $f = c + \sum$ principal parts, where all principal parts are rational, meaning that f is rational! Let's begin.

For claim 1, we will argue that the set of poles of f is discrete and compact because it is a result of set theory that discrete compact sets are finite. To confirm that the set of poles is discrete, observe that 1/f has zeroes where f has poles, and we know that these zeroes must be discrete because otherwise 1/f would be constant and zero (think power series). To confirm that the set of poles is also compact, observe that it lives in $\hat{\mathbb{C}}$ (which is compact) and is a closed set (since its discrete, it cannot be open).

For claim 2, it may seem unintuitive that we can subtract off a bunch of partial Laurent series about different points from a function defined more broadly than a Laurent series around a certain pole. However, observe that the principal part of a Laurent expansion around a certain pole is just is a function in its own right! Thus, we can subtract it off just like any other function. After doing this, g is not defined everywhere, but it has an analytic continuation (claim 3) to everywhere, as desired. Note that the principal part of a Laurent expansion about p only has a pole at p, so we can subtract it off without introducing any new poles. Additionally, note that we can subtract off a pole at p0 as follows. Essentially, if p1 has a pole at p2, then it is a polynomial. But p2 having a pole at p3 is equivalent to p4 having a pole at p5. So just take the principal part of the Laurent expansion of p4 a zero and then switch out all the p5 for p6 for p7 sagain and subtract that.

- To get a global picture of the poles of f, we need a global picture of the zeroes of 1/f.
- TPS.
 - 1. For $k \in \mathbb{N}$, draw $x \mapsto x^k$ on \mathbb{R} . For y near 0, how many preimages does y have?
 - If k is odd, y always has one preimage.
 - If k is even, then y > 0 has two preimages, y = 0 has one preimage, and y < 0 has no preimages.
 - 2. Draw what happens to the sector $\{z \mid z \in re^{i\theta}, \ \theta \in (0, 2\pi/k]\}$ under $z \mapsto z^k$.
 - Maps to the circle of radius r^k bijectively.
 - Additionally, the interior of the sector goes to the disk minus the slit along the positive real
 axis.
 - 3. Do 1, but now for $z \mapsto z^k$ in \mathbb{C} .
 - For $y \neq 0$, there are k distinct roots of y.
 - 4. Draw a "global" picture of $z \mapsto z^k$.
 - For $z \mapsto z^2$, for instance, we cut \mathbb{C} into an upper half plane and lower half plane and wrap them both around into circles.
 - See class pictures.
- Last time.
 - Proposition: If X is a Riemann surface and $f: X \to \hat{\mathbb{C}}$ is meromorphic, then f is onto.
- Now we'll do a bit on Möbius transformations.
 - One of Calderon's favorite topics; there will be a bit on the next problem set about these.
- What we just saw is that if $p(z) = z^n$, then $\#p^{-1}(w) = n^{[1]}$ for w near zero but nonzero.
 - If w = 0, then you still get n preimages if you count with multiplicity.
- If p(z) is a general polynomial of degree n, we also know (by the FTA) that $\#p^{-1}(0) = n$.
 - Moreover, for all $w \in \hat{\mathbb{C}}$, $\#p^{-1}(w) = n$ with multiplicity because p(z) w has n roots.
- Let f(z) = p(z)/q(z) be a rational function, such as $z/(z-3)^2$.
 - Here, $\#f^{-1}(\infty) = 2$.
 - Here as well, $f^{-1}(0) = 1$ on \mathbb{C} and = 2 on $\hat{\mathbb{C}}$.
- **Degree** (of a rational function): The natural number defined as follows, where f = p/q is a rational function representated with p, q coprime. Denoted by deg(f). Given by

$$deg(f) := max(deg(p), deg(q))$$

• Theorem: If f = p/q, then for all $w \in \hat{\mathbb{C}}$, $\#f^{-1}(w) = \deg(f)$ when counted with multiplicity.

Proof. Follows from the FTA. Proof in the notes.

- Example:
 - If $f(z) = z/(z-3)^2$, then we count 3 twice with multiplicity (giving a pole at ∞). We can also count $0, \infty$ as two distinct poles that give us zero.
 - This just reiterates the previous example.

 $^{^{1}}$ Recall that # denotes cardinality; in this case, cardinality of the preimage.

- Holomorphic symmetries.
 - What are all biholomorphisms?
 - They are kind of like change of coordinate maps.
 - Can we have entire biholomorphisms? Can we have biholomorphisms $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$.
 - $-\operatorname{Aut}(\mathbb{C})=\operatorname{Bihol}(\mathbb{C}).$ On Thursday, we'll prove that

$$Bihol(\mathbb{C}) = \{z \mapsto az + b\}$$

- For the other one,

$$Bihol(\hat{\mathbb{C}}) = \left\{ z \mapsto \frac{az+b}{cz+d} \mid a, b, c, d \in \mathbb{C}, \ ad-bc \neq 0 \right\}$$

- The condition $ad bc \neq 0$ is the same as saying that the map is nonconstant.
- This is the set of fractional linear transformations.
- It is isomorphic to

$$\operatorname{PGL}_2(\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid \det \neq 0 \right\}$$

- ➤ This is the projective linear group.
- \succ This group acts on the projective linear space $\mathbb{P}^1(\mathbb{C}) = \hat{\mathbb{C}}$ (ask Calderon later??).

Proof. Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a biholomorphism. Thus, it is bijective and hence $\deg(f) = 1$. Additionally, it is meromorphic and hence rational map. But a rational map with degree 1 is just a map of the given kind!

- A different geometric way of thinking about these Möbius transformations: Circle inversion.
 - This is the map $re^{i\theta} \mapsto r^{-1}e^{i\theta}$. In terms of z, this map is $z \mapsto 1/\bar{z}$.
 - This map is not holomorphic. In fact, it is **antiholomorphic** and **anticonformal**.
 - This is the projecting up and down map.
 - It can also be thought of as reflecting over the equator.
 - Möb[±] (the **extended Möbius group**) is the group generated by circle inversions.
 - Möb is the orientation-preserving subgroup.
- Four examples.
 - Scaling $z \mapsto rz$ where $r \in \mathbb{R}$.
 - Translation.
 - Rotation.
 - One last one.
- Theorem: $\text{M\"ob} = \text{Bihol}(\hat{\mathbb{C}}) \cong \text{PGL}_2(\mathbb{C}).$

 $Proof. \subset: Obvious, once you've digested the definitions. This is just because circle inversions are anti-conformal. Two inversions implies conformal, which is equivalent to biholomorphic.$

⊃: We have algebraically that

$$\frac{az+b}{cz+d} = \frac{bc-ad}{c^2} \left(z+\frac{d}{c}\right)^{-1} + \frac{a}{c}$$

where we have two translations, an inversion, and a scaling/rotation.

6.2 The Complex Logarithm

- 4/25: Review: What do certain complex analysis objects look like?
 - Holomorphic functions look like conformal maps and branching.
 - Meromorphic functions look like conformal maps to $\hat{\mathbb{C}}$ and branching.
 - But what do essential singularities look like?
 - Recall that an essential singularity is a singularity z for which there exist $z_n \to z$ and $w_n \to z$ such that $f(z_n)$ stays bounded and $|f(w_n)| \to \infty$.
 - Theorem (Casorati-Weierstrass): Suppose $f \in \mathcal{O}(U \setminus \{z_0\})$ where z_0 is an essential singularity. Then for all $w_0 \in \mathbb{C}$, there exist $z_n \to z_0$ such that $f(z_n) \to w_0$.

Proof. Suppose for the sake of contradiction that there exists a $w_0 \in \mathbb{C}$ for which every $z_n \to z_0$ is such that $|f(z_n) - w_0| > \varepsilon$. Pictorially, this means that no matter how close the points of the sequence $\{z_n\}$ get to z_0 , $f(z_n)$ will always stay outside of a disk (of radius ε) around w_0 . Define

$$g(z) := \frac{1}{f(z) - w_0}$$

Since $f \in \mathcal{O}(U \setminus \{z_0\})$ and g is a rational function of f, we know that $g \in \mathcal{O}(U \setminus \{z_0\})$. Additionally, let $\{z_n\}$ be an arbitrary sequence converging to z_0 . Then

$$|f(z_n) - w_0| > \varepsilon$$

$$\frac{1}{\varepsilon} > \frac{1}{|f(z_n) - w_0|}$$

$$\frac{1}{\varepsilon} > \left| \frac{1}{f(z_n) - w_0} \right|$$

$$\frac{1}{\varepsilon} > |g(z_n)|$$

Thus, we have shown that g is bounded near z_0 . This is the last condition we need to invoke Riemann's removable singularity theorem and learn that g can be analytically continued to z_0 . But if $\hat{g} \in \mathcal{O}(U)$, then

$$f = \frac{1}{g} + w_0$$

has either a removable singularity or a pole at z_0 . This contradicts the assumption that f has an essential singularity at z_0 .

- Implication: $f(U \setminus \{z_0\})$ is dense in \mathbb{C} and hence f is *very* not injective.
- Example: $z \mapsto e^z$.

Figure 6.1: The essential singularity of e^z .

- This function has an essential singularity at ∞ .
- Say we want to approach the positive real number e^a $(a \in \mathbb{R})$. Then we can take the sequence of points $z_n := a + 2\pi ni$. As $n \to \infty$, $|a + 2\pi ni| \to \infty$. Additionally,

$$e^{a+2\pi ni} = e^a \cdot (e^{2\pi i})^n = e^a \cdot 1^n = e^a$$

- For the negative real number $-e^a$, choose $z_n = a + \pi i + 2\pi ni$. Then

$$e^{a+\pi i+2\pi ni} = e^a \cdot e^{i\pi} \cdot (e^{2\pi i})^n = e^a \cdot -1 \cdot 1^n = -e^a$$

- For 0, choose $z_n = -n$.
- How about the complex number $re^{i\theta}$? Pick $a \in \mathbb{R}$ such that $r = e^a$. Then choose $z_n = a + i\theta + 2\pi ni$.
- What is shown in Figure 6.1 is an ∞ branched cover.
- Theorem (Little Picard): If f is entire and nonconstant, then $f(\mathbb{C})$ equals \mathbb{C} , except maybe one point.
- Theorem (Big Picard): For any neighborhood U of an essential singularity z_0 , $f(U \setminus \{z_0\})$ is all of \mathbb{C} except maybe one point.
- TPS: Verify that the big Picard theorem holds for exp and ∞ .
 - Let U be a neighborhood of ∞ , as defined when we discussed the Riemann sphere.
 - This is very much related to what was discussed above!
 - Indeed, let $re^{i\theta} \in \mathbb{C}$ be arbitrary. Choose n big enough so that $a + i\theta + 2\pi ni \in U$. Then $\exp(a + i\theta + 2\pi ni) = re^{i\theta}$, as desired.
 - Here, 0 is our single point exception.
- Corollary (of Casorati-Weierstrass):

$$Bihol(\mathbb{C}) = \{z \mapsto az + b\}$$

Proof. For the backwards inclusion, let f(z) = az + b be an arbitrary linear map. f is a polynomial (hence holomorphic). Its inverse

$$f^{-1}(z) = a^{-1}z - a^{-1}b$$

is a polynomial (hence holomorphic). And

$$f \circ f^{-1} = f^{-1} \circ f = id$$

so f is bijective. Therefore, f is biholomorphic by definition.

For the forwards inclusion, suppose first that $f \in \text{Bihol}(\mathbb{C})$ has a pole at infinity. Then $f \in \text{Bihol}(\hat{\mathbb{C}})$. It follows by the result from last time that there exist $a, b, c, d \in \mathbb{C}$ with $ad - bc \neq 0$ such that

$$f(z) = \frac{az+b}{cz+d}$$

Additionally, since we know that $f(\infty) = \infty$, we must have c = 0 (otherwise, $f(\infty) = a/c$). But if c = 0, then

$$f(z) = \frac{a}{d}z + \frac{b}{d} \in \{z \mapsto az + b\}$$

as desired.

Now suppose that $f \in \text{Bihol}(\mathbb{C})$ does not have a pole at infinity. Since $f \notin \text{Bihol}(\hat{\mathbb{C}})$, this also means that f does not have a removable singularity at infinity. Thus, f has an essential singularity at infinity. Consequently, if we let D be an open neighborhood of ∞ , then the Casorati-Weierstrass theorem implies that f(D) is dense in \mathbb{C} . Additionally, by the open mapping theorem, f(D) is open. These last two results combined imply that $f(D) = \mathbb{C}$. But since $\mathbb{C} \setminus D$ is also in the domain of f (i.e., f must map some points in $\mathbb{C} \setminus D$ to points that it's already covered in D), f is not injective, hence not bijective, hence not biholomorphic. This is a contradiction, and therefore biholomorphic functions can only have a *pole* at infinity, a case in which we have shown they are linear.

- We now finally define a (not the) logarithm.
- Logarithm (of z): A point $w \in \mathbb{C}$ such that $e^w = z$, where $z \in \mathbb{C}$.
 - Naturally, w is only well-defined up to $\pm 2\pi i n$ $(n \in \mathbb{Z})$.
- Log identities don't always hold.
- TPS: Which are always true and which are only true for the appropriate choice of log?
 - $-\exp(\log(z)) = z$ is always true.
 - $-\log(\exp(z))=z$ is only true if we happen to choose the correct complex number raised to the exponential.
 - $-\log(zw) = \log(z) + \log(w)$ is similarly only true for the appropriate choices of log.
- Setting aside well-definedness for now, let's define what it means to raise one complex number to the power of another.
- z^w : The complex number defined as follows. Given by

$$z^w := e^{w \log z}$$

- Such a definition requires a choice of the logarithm.
- Such a choice is called a **branch** of the logarithm.
- TPS: What do z^n and $z^{1/n}$ give, where $n \in \mathbb{N}$?
 - $-z^n$ gives exactly one value.

$$z^{n} = e^{n \log z} = e^{n(a+bi+2\pi ik)} = e^{na} \cdot e^{bni} \cdot (e^{2\pi in})^{k} = e^{na} e^{bni}$$

- In the above, $k \in \mathbb{Z}$.
- Additionally, it doesn't matter what exact b we choose because if we increase or decrease it by $2\pi i k$, we will just multiply the value by $1^k = 1$. Essentially, e^{na} gives a unique magnitude for the result, and bn gives a unique argument for the result.
- $-z^{1/n}$ gives n values, each of which differs by $e^{2\pi i/n}$ (i.e., by an n^{th} root of 1).

$$z^{1/n} = (re^{i\theta + 2\pi ik})^{1/n} = r^{1/n}e^{i\theta/n}\zeta_k$$

- In the above, the $\zeta_k = e^{k \cdot 2\pi i/n}$ are the n^{th} roots of unity.
- Example: We can now calculate i^i !

$$i^{i} = e^{i \log i} = e^{i(\pi i/2 + 2\pi ik)} = e^{-\pi/2} \cdot e^{-2\pi k}$$

- Principal branch (of log): The branch that is real for real numbers.
- Logarithm function (on U): A continuous inverse to exp, i.e., $e^{\log z} = z$.
- \bullet Think of a logarithm function as lifting U to the infinity spiral in the middle of Figure 6.1.
 - Imagine U is the orange domain in the top-down view on the right side of Figure 6.1.
 - Project U up, down, or both onto a connected open subset of the infinity spiral.
 - In the middle of Figure 6.1, we see U projected up infinitely, but with a logarithm, we would have to make a *choice* here.
 - Then invert U back onto the original complex plane on the left side of Figure 6.1.

- Observe that...
 - If $U \ni 0$, then no logarithm function exists on U;
 - If U contains a loop γ winding around U, then no logarithm function exists on U.
- \bullet Proposition: If the logarithm makes sense on U, then it is holomorphic and

$$\frac{\mathrm{d}}{\mathrm{d}z}\log(z) = \frac{1}{z}$$

Proof. See Fischer and Lieb (2012).

- Observe that since the derivative of the logarithm is never zero, the logarithm must be injective. Therefore, it's biholomorphic!
- Corollary: No log exists on \mathbb{C}^* .

Proof. Suppose for the sake of contradiction that a logarithm exists on \mathbb{C}^* . Then 1/z has a primitive on \mathbb{C}^* , so by the 3/28 lecture,

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z = 0$$

for all loops γ . But since we know that

$$\int_{\gamma} \frac{1}{z} \, \mathrm{d}z = 2\pi i \neq 0$$

we have a contradiction.

• But, there are logs on domains covering \mathbb{C}^* .

Figure 6.2: Motivating the winding number.

- If a path γ wraps around 0 more than once, we can break it into segments that individually have logarithms.
- Then, we find that

$$\int_{\gamma} \frac{\mathrm{d}z}{z} = \sum_{\gamma} \int_{\gamma_i} \frac{\mathrm{d}z}{z} = \text{total change of angle}$$

- This leads into the following definition.

• Winding number (of γ about z_0): The number of times the curve γ wraps around z_0 counterclockwise. Denoted by $\mathbf{wn}(\gamma, z_0)$. Given by

$$\operatorname{wn}(\gamma, z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

• Winding number examples.

Figure 6.3: Winding number examples.

• Reformulation: A branch of the logarithm exists on U if and only if for all $\gamma \subset U$, the winding number of γ about the origin is 0.

Week 7

The Winding Number

7.1 Generalized Cauchy Theorems

4/30:

- Questions.
 - PSet 4, QA.4: III.5.1 instead of II.5.1?
 - Yep, should be Chapter 3, not Chapter 2.
 - PSet 4, QB.4: "a holomorphic branch of the logarithm exists on U" or on f(U)?
 - Yep, should be f(U).
 - "Which one works, Steven?"
- Recall.
 - The winding number of a curve γ about a point $z_0 \in \mathbb{C}$ is

$$\operatorname{wn}(\gamma, z_0) := \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} \, \mathrm{d}z$$

- We can also compute the winding number geometrically (see Figure 6.3).
- Additional properties of the winding number.
 - The winding number is invariant under homotopies of γ .
 - Compute by counting how many times you pass a ray from z_0 going counterclockwise!
 - Example: "I'm pointing in this direction, then I rotate, and eventually I point in this direction again, then I rotate, and eventually I'm back where I started so it's winding number 2."
 - We can also think of jumping to a higher plane on the infinity spiral every time we pass the ray.
- TPS: Compute the winding number of γ about the points in Figure 7.1.

Figure 7.1: Winding number regions.

- We get

$$\operatorname{wn}(\gamma, a) = -1$$
 $\operatorname{wn}(\gamma, b) = 3$ $\operatorname{wn}(\gamma, c) = 2$

$$\operatorname{wn}(\gamma, d) = 2$$
 $\operatorname{wn}(\gamma, e) = 2$ $\operatorname{wn}(\gamma, f) = 2$ $\operatorname{wn}(\gamma, g) = 3$

- Do we notice any patterns?
 - Connected regions of the plane appear to yield the same winding number!
 - We formalize this notion via the following lemma.
- Lemma: $\operatorname{wn}(\gamma, z_0)$ is constant on components of $\mathbb{C} \setminus \operatorname{Im}(\gamma)$. It is also 0 on the unbounded component.

Proof. We address the two claims sequentially.

Claim 1: Treating z_0 as an argument, $\operatorname{wn}(\gamma, z_0)$ is a function from $\mathbb{C} \setminus \operatorname{Im}(\gamma)$ to \mathbb{Z} defined by

$$z_0 \mapsto \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0}$$

This is a continuous function into a discrete space and therefore is constant.

Claim 2: Let z_0 get very big. Then we can make

$$\left| \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - z_0} \right|$$

arbitrarily small. But an integer that can be made arbitrarily small is just zero.

- This is a complex analytic proof of a topological claim.
- Justifying that the codomain of the winding number function is the integers: We've done this heuristically using homotopy, but we could formalize it, too.
- We now move onto today's main topic: The proof of the (very) general Cauchy Integral Theorem.
- First, we need a definition.
- Simply connected (domain): A domain $U \subset \mathbb{C}$ such that $\operatorname{wn}(\gamma, z_0) = 0$ for all $\gamma \subset U$ and $z \notin U$.
 - There are many other definitions, too.
 - \blacksquare Topology: The fundamental group of U is zero.
 - Removing any arc (line segment across the domain) from U turns it into a disconnected set.
 - For all arcs δ_1, δ_2 with the same endpoints, δ_1 and δ_2 are homotopic.
 - The last definition above will be particularly useful for our purposes, as we'll see shortly.
 - But these are all formal definitions; what can we think about intuitively?
 - A good first thing to think about is a blob in the plane.
 - But the interior of a fractal domain would also count.
 - \blacksquare A square minus a slit at 1, 1/2, 1/3, ... is also simply connected (though not path connected).
- Jordan curve theorem: Suppose $\gamma: S^1 \to \mathbb{C}$ is a continuous injection. Then γ bounds a disk.
 - Consequence: A domain that is simply connected is homeomorphic to a disk.
 - This appears stupidly obvious, but it was only rigorously proved in the early 1910s.
 - The issue is that we don't really know what *continuous* means.
 - If γ is C^1 , this is easy.

- The two generalizations and their proofs.
 - The proof of generalization 1 is very simple, straightforward, and clever.
 - The proof of generalization 2 is much more general and uses almost everything we've done.
- We are now ready to state and prove a first generalization of the CIT.
- Cauchy Integral Theorem: Suppose that U is simply connected and $f \in \mathcal{O}(U)$. Then $\int_{\gamma} f \, dz = 0$ for any closed loop γ in U.

Proof. Let γ be an arbitrary closed loop in U. Because any two arcs with the same endpoints are homotopic, γ is homotopic to the constant path $\tilde{\gamma}:[0,1]\to\{\gamma(0)\}$. This constant path has the property that

$$\int_{\tilde{\gamma}} f \, \mathrm{d}z = \int_0^1 f(\tilde{\gamma}(t)) \tilde{\gamma}'(t) \, \mathrm{d}t = \int_0^1 f(\tilde{\gamma}(t)) \cdot 0 \, \mathrm{d}t = 0$$

Since integrals are the same for homotopic paths, it follows that

$$\int_{\gamma} f \, \mathrm{d}z = \int_{\tilde{\gamma}} f \, \mathrm{d}z = 0$$

as desired. \Box

• We now build up to an even more general version of the CIT.

Figure 7.2: Nulhomologous multicurve examples.

- Suppose $D \subset \mathbb{C}$ is a bounded domain, and ∂D is a union of disjoint simple closed curves (SCCs).
- Let $\partial \vec{D}$ be the union of the boundaries, oriented so that D is on the left.
 - This is similar to how we orient curves when we're applying Stokes' Theorem.
 - Here as well, the outer one goes counterclockwise and the inner one(s) goes clockwise.
- More generally, we define a the concept of a **multicurve**.
- Using this definition, we define the **integral** of f over a multicurve.
 - This definition allows us to compute the winding number of Γ about z_0 .
- Lastly, we define a special kind of multicurve called a **nulhomologous** multicurve.
 - In Figure 7.2c, $\Gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$ is nulhomologous.
- Multicurve: A formal sum of SCCs γ_i multiplied by coefficients $c_i \in \mathbb{C}$. Denoted by Γ . Given by

$$\Gamma = \sum c_i \gamma_i$$

• Integral (of f over Γ): The path integral defined as follows. Denoted by $\int_{\Gamma} f \, dz$. Given by

$$\int_{\Gamma} f \, \mathrm{d}z := \sum_{i=0}^{n} c_i \int_{\gamma_i} f \, \mathrm{d}z$$

- Nulhomologous (Γ in U): A multicurve Γ in a domain U for which $\Gamma = \partial \vec{D}$ for D as in Figure 7.2. Also known as homologous (Γ in U to 0).
- TPS: Compute wn $(\partial \vec{D}, z_0)$ for all $z_0 \notin D$ for each of the domains D in Figure 7.2.
 - $-\operatorname{wn}(\partial \vec{D}, z_0) = 0$ because we always get either nothing or a +1 and -1 and some zeroes.
- Lemma: If Γ is nulhomologous in U, then for all $z \notin U$, wn $(\Gamma, z) = 0$.
 - The converse is not true!
 - Example: If $U = \mathbb{C}^*$ and γ_1, γ_2 are intersecting closed curves (e.g., the unit circle and the unit circle translated half a unit to the right), then $\gamma_1 + \gamma_2$ is still nulhomologous even though it doesn't bound a domain.
 - The condition "for all $z \notin U$, wn $(\Gamma, z) = 0$ " is our general definition of nulhomologous in U; what we said earlier was just a precursor definition.
- Example.

Figure 7.3: Nulhomologous multicurve in a punctured domain.

- Let

$$f(z) = \frac{\sin(1/z)}{z - 1}$$

- Then $f \in \mathcal{O}(\mathbb{C} \setminus \{0,1\})$.
- An example of a nulhomologous multicurve over which we could integrate f is as follows.
- We are now ready for the statement and proof of the most general version of the CIT and CIF we'll see in this course.
- Suppose U is any domain, $\Gamma \subset U$ is nulhomologous, and $f \in \mathcal{O}(U)$. Then:
 - 1. General CIT: We have that

$$\int_{\Gamma} f \, \mathrm{d}z = 0$$

2. General CIF: For all $z \in U$ and not in $Im(\Gamma)$,

$$\mathrm{wn}(\Gamma,z)\cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta-z} \mathrm{d}\zeta$$

- Discussion of the proof.
 - We'll sketch the proof today.
 - Think back to the proof for star-shaped domains.
 - We proved the CIT by saying, "if it's true for triangles, then we win."
 - Using triangles, we built a primitive and then invoked Goursat's Lemma.
 - We proved the CIF by first defining the helper function

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \zeta \neq z \\ f'(z) & \zeta = z \end{cases}$$

■ Then we invoked the CIT to say

$$\int_{\partial D} g \, \mathrm{d}z = 0$$

■ The CIF then followed from this and the fact that

$$\int_{\partial D} g d\zeta = \int_{\partial D} \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \underbrace{\int_{\partial D} \frac{1}{\zeta - z} d\zeta}_{2-i}$$

- So can't we just replace all the ∂D 's with Γ 's in the above lines and call it a day?
 - No, because there's no analogy for the CIT. In other words, there may not be a primitive.
 - Thus, we need to fix $\int_{\partial D} g \, dz = 0$.
- In sum, the idea of this proof is to prove the CIF and then simply get the CIT.
- We'll have time to prove the CIF today, but probably will not to get to the CIT.
- We are now ready to sketch the full proof in broad strokes.

Proof. Define $h: U \to \mathbb{C}$ by

$$h(z) := \int_{\Gamma} g(\zeta, z) d\zeta$$

We want to show that h(z)=0. We can't do anything as nice as showing that it's a continuous map into a discrete space, but there is still a clever idea. First off, we can see that $h(z)\to 0$ as $z\to\infty$ in U. Essentially, as before, the denominator $\zeta-z$ gets really big so the first term gets really small and the second term has that $\operatorname{wn}(\Gamma,z)$ term which goes to 0. What we now need to show is that h extends to an entire function so that we can make the denominator arbitrarily large. This is where we use the assumption that Γ is nulhomologous.

First, we will show that h is continuous. We know that g is continuous in (ζ, z) together. We have holomorphic in ζ for a fixed z.^[1]

Next, we need to show that h is holomorphic on U. We know that h is holomorphic as long as $z \neq \zeta$. On the other hand, what if $\zeta = z$? We will invoke Morera's theorem.^[2]

Last, we show that h can be analytically continued outside of U. We know that on U,

$$h(z) = \int \frac{f(\zeta)}{\zeta - z} d\zeta - f(z) \cdot 2\pi i \operatorname{wn}(\Gamma, z)$$

Outside of U, the second term disappears because Γ is nulhomologous. Define

$$h(z) := \int \frac{f(\zeta)}{\zeta - z} d\zeta$$

outside of U. Thus, we have two functions that agree on a patch, so we get analytic continuation.

From here, we have an entire function that converges to 0 at ∞ (hence is bounded), so is constant by Liouville's theorem with value that converges to zero (hence is zero).^[3]

¹There's a bit more detail in the notes, but not much.

²There's a bit about the triangle integral condition in the notes.

³There is a bit on the CIT in the notes.

7.2 The Residue Theorem

- 5/2: Reminder: PSet 4 due tomorrow.
 - Recall.
 - Cauchy integral theorem for star-shaped/simply connected domains: Given such a domain U and $f \in \mathcal{O}(U)$, f has a primitive on U. It follows that for all $\gamma \subset U$, $\int_{\gamma} f \, \mathrm{d}z = 0$.
 - A cycle $\Gamma = \sum c_i \gamma_i$ in a domain U is **nulhomologous** if for all $z \notin U$,

$$\operatorname{wn}(\Gamma, z) := \sum c_i \operatorname{wn}(\gamma_i, z) = 0$$

- CIT/CIF in general: Let U be a domain, $\Gamma \subset U$ nulhomologous in U, and $f \in \mathcal{O}(U)$.
 - 1. We have

$$\int_{\Gamma} f \, \mathrm{d}z = \sum_{i} c_{i} \int_{\gamma_{i}} f \, \mathrm{d}z = 0$$

2. For all $z \notin \operatorname{Im}(\Gamma)$,

$$\operatorname{wn}(\Gamma, z) \cdot f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

- This is the most general version of the most important theorem(s) in this class.
- Comparing and contrasting the old and the new Cauchy theorems.
 - In the first one, we put a restriction on our domain and no restriction on our curve. In the new one, we put a restriction on our curve and no restriction on our domain.
 - In the old one, we worked to construct a primitive for f on U. In the new one, f need not have a primitive on U.
- Further multicurve examples.

Figure 7.4: Using coefficients to make a multicurve nulhomologous.

- 1. Let $U = \mathbb{C} \setminus \{p_1, \dots, p_k\}$. Enclose all points p_i in one big loop, and then enclose each individual point in a smaller loop (see Figures 7.2c and 7.3).
 - Then the (unweighted) sum of all k+1 curves is nulhomologous.
- 2. Let $U = \mathbb{C} \setminus \{0, 1, \pi\}$. γ_3 , as drawn in Figure 7.4, is not nulhomologous.
 - This is because the winding number of γ_3 about π is 2, about 1 is -2, and about 0 is -1.
 - However, we can make this curve nulhomologous by introducing a counterclockwise-oriented curve about each point and taking

$$\Gamma = \gamma_3 + \gamma_0 + 2\gamma_1 - 2\gamma_{\pi}$$

• The points in the above examples should be thought of as singularities.

- Homologous (cycles in U): Two cycles $\Gamma_1, \Gamma_2 \subset U$ for which $\Gamma_1 \Gamma_2$ is nulhomologous.
 - Helpful analogy: Think of Γ_1, Γ_2 as elements of a vector space and this is us saying they're equivalent/homologous if $\Gamma_1 \Gamma_2 = 0$ (i.e., $\Gamma_1 = \Gamma_2$).
 - Example: γ_3 and $2\gamma_{\pi} 2\gamma_1 \gamma_0$ are homologous in $\mathbb{C} \setminus \{0, 1, \pi\}$.
- Corollary: If Γ_1 and Γ_2 are homologous, then for all $f \in \mathcal{O}(U)$,

$$\int_{\Gamma_1} f \, \mathrm{d}z = \int_{\Gamma_2} f \, \mathrm{d}z$$

Proof. We have that

$$\int_{\Gamma_1} f \, dz - \int_{\Gamma_2} f \, dz = \int_{\Gamma_1 - \Gamma_2} f \, dz$$

$$= 0$$
CIT

Thus, adding $\int_{\Gamma_2} f \, dz$ to both sides of the above equation, we obtain

$$\int_{\Gamma_1} f \, \mathrm{d}z = \int_{\Gamma_2} f \, \mathrm{d}z$$

as desired. \Box

- This is the most important thing we get from the new CIT/CIF.
 - It means that to compute integrals over complicated paths, we can just replace the contour with a homologous ones that is easier to compute!
- TPS: Integrate the following function over γ_3 from Figure 7.4.

$$f(z) = \frac{1}{z(z-1)(z-\pi)}$$

- By the corollary,

$$\int_{\gamma_3} f \, dz = 2 \int_{\gamma_\pi} f \, dz - 2 \int_{\gamma_1} f \, dz - \int_{\gamma_0} f \, dz$$

- One way to evaluate each of these integrals is with a partial fraction decomposition.
- Another way is by observing the following.
 - Take the loop around a pole, say π , to be very small.
 - Then on this loop, z is close to π , z-1 is close to $\pi-1$, and only $z-\pi$ is meaningfully changing.
 - Thus, as the radius of the loop approaches zero, the 1/z and 1/(z-1) terms approach $1/\pi$ and $1/(\pi-1)$, respectively. These "constants" can then be factored out, and the remaining integral of $1/(z-\pi)$ evaluated to $2\pi i$.
 - \blacksquare This suggests that

$$\int_{\gamma_{\pi}} f \, \mathrm{d}z = \frac{1}{\pi(\pi - 1)} \cdot 2\pi i$$

- We now give a more rigorous justification for the above heuristic.
 - Observe that $\int_{\gamma_{\pi}} f \, dz$ is equal to $2\pi i$ times the **residue** of f at π , which we may recall is just the a_{-1} coefficient in the Laurent expansion at π .
 - Let's compute this Laurent expansion!

■ We have that

$$f(z) = \frac{1}{z - \pi} \cdot \frac{1}{z(z - 1)}$$

where the rightmost term must be holomorphic at π by our previous inquiry.

■ Thus, let

$$g(z) := \frac{1}{z(z-1)}$$

■ The Taylor expansion of g about π is

$$g(z) = g(\pi) + g'(\pi)(z - \pi) + \frac{g''(z)}{2}(z - \pi)^2 + \cdots$$

■ Now recall how we motivated the residue:

$$\int \sum_{k=-n}^{\infty} a_k (z-\pi)^k dz = \int a_{-1} (z-\pi)^{-1} dz = 2\pi i \cdot a_{-1}$$

■ Thus, around π ,

$$f(z) = \frac{g(\pi)}{z - \pi} + g'(\pi) + \frac{g''(\pi)}{2}(z - \pi) + \cdots$$

■ This means that $g(\pi)$ is the a_{-1} coefficient! Thus,

$$\operatorname{res}_{\pi}(f) = a_{-1} = g(\pi) = \frac{1}{\pi(\pi - 1)}$$

- Computing the other two integrals similarly, we obtain in total that

$$\int_{\gamma_{\pi}} f \, \mathrm{d}z = \frac{2i}{\pi - 1} \qquad \qquad \int_{\gamma_{1}} f \, \mathrm{d}z = \frac{2\pi i}{1 - \pi} \qquad \qquad \int_{\gamma_{0}} f \, \mathrm{d}z = 2i$$

- Thus, in total,

$$\int_{\gamma_3} f \, \mathrm{d}z = \frac{2i(\pi+3)}{\pi-1}$$

- The point is not that we get a nice final answer. The point is that we can compute complicated integrals in a much simpler way, e.g., just by fiddling with power series.
- Residue (of f at p): If p is an isolated singularity and D is a small disk whose only singularity is p, then the residue is defined as follows. Denoted by $\operatorname{res}_{p} f$. Given by

$$\operatorname{res}_p f := \frac{1}{2\pi i} \int_{\partial D} f \, \mathrm{d}z$$

• Residue theorem: Suppose U is a domain, S (think singularities) is a discrete set in U, $f \in \mathcal{O}(U \setminus S)$, and Γ is nulhomologous in U. Then

$$\frac{1}{2\pi i} \int_{\Gamma} f \, dz = \sum_{s \in S} \operatorname{wn}(\Gamma, s) \cdot \operatorname{res}_{s}(f)$$

Proof. For all $s \in S$, let γ_s be a small loop about s oriented counterclockwise. Define

$$\Gamma' := \Gamma - \sum_{s \in S} \operatorname{wn}(\Gamma, s) \gamma_s$$

 Γ' is nulhomologous. Thus, by the CIT,

$$\int_{\Gamma'} f \, \mathrm{d}z = 0$$

Now for all $s \in S$,

$$\operatorname{wn}(\Gamma', s) = \operatorname{wn}(\Gamma, s) - \operatorname{wn}(\Gamma, s) \cdot \underbrace{\operatorname{wn}(\gamma_s, s)}_{1} = 0$$

Therefore, we have that

$$\begin{split} \int_{\Gamma} f \, \mathrm{d}z &= \int_{\Gamma'} f \, \mathrm{d}z + \int_{\sum_{s \in S} \mathrm{wn}(\Gamma, s) \gamma_s} f \, \mathrm{d}z \\ &= 0 + \sum_{s \in S} \mathrm{wn}(\Gamma, s) \int_{\gamma_s} f \, \mathrm{d}z \\ &= 2\pi i \sum \mathrm{wn}(\Gamma, s) \operatorname{res}_s f \end{split}$$

as desired.

- Comments on the residue theorem.
 - Example: $U = \mathbb{C}$, $S = \{0, 1, \pi\}$, and $\Gamma = \gamma_3$.
 - The residue theorem will be very important, hint hint.
 - The proof is just exactly what we did in the example!
 - Calderon's definition of math: "You do an example, you see something interesting, and then you make a theorem that says, 'This happens always."
- We now list some properties of the residue.
 - These properties are true in general, but we'll prove them in the specific case that the functions are meromorphic because this allows us to use Laurent expansions.
- Properties: Let $a \in \mathbb{C}$ and $f, g \in \mathcal{O}(U \setminus S)$.
 - 1. $\operatorname{res}_s(af + g) = a \operatorname{res}_s f + \operatorname{res}_s g$.

Proof. Using the linearity of the integral in the definition, we have

$$\operatorname{res}_{s}(af+g) = \frac{1}{2\pi i} \int_{\partial D} (af+g) \, dz$$
$$= a \cdot \frac{1}{2\pi i} \int_{\partial D} f \, dz + \frac{1}{2\pi i} \int_{\partial D} g \, dz$$
$$= a \operatorname{res}_{s} f + \operatorname{res}_{s} g$$

as desired.

2. If f has a simple pole at s, then

$$\operatorname{res}_s f = \lim_{z \to s} f(z)(z - s)$$

Proof. Taking the Laurent expansion, let

$$f(z) = \sum_{k=-1}^{\infty} a_k (z - s)^k$$

Then

$$\lim_{z \to s} f(z)(z - s) = \lim_{z \to s} \sum_{k=-1}^{\infty} a_k (z - s)^{k+1}$$

$$= a_{-1} \cdot 0^0 + \sum_{k=0}^{\infty} a_k \cdot 0^{k+1}$$

$$= a_{-1}$$

$$= \operatorname{res}_s f$$

as desired.

3. If f has a **simple zero** at s and g is holomorphic at s, then

$$res_s(g \cdot f) = g(s) res_s f$$

Proof. Taking the Laurent expansions, let

$$f(z) = \sum_{k=-1}^{\infty} a_k (z-s)^k$$
 $g(z) = \sum_{k=0}^{\infty} \frac{g^{(k)}(s)}{k!} (z-s)^k$

Then taking the Cauchy product, we obtain

$$(f \cdot g)(z) = a_{-1}b_0(z-s)^{-1} + \cdots$$

Therefore,

$$res_s(g \cdot f) = b_0 a_{-1} = g(s) res_s f$$

as desired.

- Simple (pole): A pole of order 1.
- Simple (zero): A zero of order 1.
- Properties 2 and 3 imply that if f has a simple zero at s and g is holomorphic, then

$$\operatorname{res}_s(g/f) = \frac{g(s)}{f'(s)}$$

• Using residues to compute the real integral

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} \, \mathrm{d}x$$

which gets complicated as $n \in \mathbb{N}$ gets big.

Figure 7.5: Using residues to compute contour integrals.

- We will use contour integration over γ_R , as shown in Figure 7.5.
- First, analytically continue the integrand to

$$f(z) := \frac{1}{(z^2 + 1)^n}$$

- Observe that f is meromorphic on \mathbb{C} and, specifically, $f \in \mathcal{O}(\mathbb{C} \setminus \{\pm i\})$.
- Since integrals over homotopic paths are the same, the integral over the boundary of a small disk around i would be the same as the integral over γ_R . Thus,

$$\operatorname{res}_i f = \int_{\gamma_R} f \, \mathrm{d}z$$

- Additionally, we can split

$$\int_{\gamma_R} f \, \mathrm{d}z = \int_{-R}^R f(x) \, \mathrm{d}x + \int_{\gamma_R \setminus [-R,R]} f \, \mathrm{d}z$$

- Now as $R \to \infty$, the magnitude of the denominator of f will similarly diverge along $\gamma_R \setminus [-R, R]$. Consequently, the rightmost integral above goes to zero as $R \to \infty$, and we are left with

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} dx = \lim_{R \to \infty} \int_{-R}^{R} f(x) dx = \lim_{R \to \infty} \operatorname{res}_i f = \operatorname{res}_i f$$

- Thus, all we need to solve this problem is to compute the Laurent expansion of f about i.
- After more manipulations (see the notes), the final answer is

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^n} \, \mathrm{d}x = \frac{\pi (2n-2)!}{2^{2n-2}[(n-1)!]^2}$$

- Application of complex analysis to number theory: The Basel problem.
 - This was an open problem for over 100 years.
 - It asked for the value of the infinite sum

$$1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^2} =: \zeta(2)$$

- Euler — who was from Basel — proved (with some not-very-rigorous power series manipulations that were only rigorously justified later) that

$$\zeta(2) = \frac{\pi^2}{6}$$

- Calderon: "That's the good thing about being a pioneer: You don't have to do all the proofs."
- But what about $\zeta(3)$, $\zeta(4)$, $\zeta(5)$, etc.?
- We know how to compute $\zeta(2n)$.
- Apery's theorem (1978): $\zeta(3)$ is proven to be irrational.
 - The argument is supposedly quite complex, and Calderon has never studied it.
 - Is $\zeta(3)$ transcendental like $\zeta(2n)$? Still an open question!
- For $\zeta(5)$ and any other odd numbers, we're still out of luck.
- A computation of $\zeta(2)$ using residues.

Figure 7.6: Basel problem solution using residues.

Let's investigate the helper function

$$f(z) = \frac{\pi}{z^2 \tan(\pi z)}$$

- Observe that f is meromorphic on \mathbb{C} . In particular...
 - \blacksquare f has a pole of order 3 at z=0;
 - f has a pole of order 1 at ever nonzero $n \in \mathbb{Z}$ (because tangent is periodic).
- Thus, $f \in \mathcal{O}(\mathbb{C} \setminus \mathbb{Z})$.
- Let's compute the residue of f about the nonzero poles.
 - In these cases, the denominator has a simple zero and the numerator is holomorphic, so we can apply "Property 4" to learn that

$$\operatorname{res}_{n} f = \frac{\pi|_{n}}{\operatorname{d/dz} \left[z^{2} \tan(\pi z)\right]|_{n}} = \underbrace{\frac{\pi}{2n \underbrace{\tan(\pi n)}} + \pi n^{2} \underbrace{\sec^{2}(\pi n)}}_{1} = \frac{\pi}{\pi n^{2}} = \frac{1}{n^{2}}$$

- Define γ_N to be the curve in Figure 7.6. Then since γ_N has a winding number of 1 around all of the poles it encloses, the residue theorem tells us that

$$\frac{1}{2\pi i} \int_{\gamma_N} f \, \mathrm{d}z = \sum_{n=-N}^N \mathrm{res}_n f$$

■ It follows from the above that

$$\frac{1}{2\pi i} \int_{\gamma_N} f \, dz = \sum_{n=-N}^{-1} \operatorname{res}_n f + \operatorname{res}_0 f + \sum_{n=1}^N \operatorname{res}_n f = \operatorname{res}_0 f + 2 \sum_{n=1}^N \frac{1}{n^2}$$

- We now compute the above integral.
 - We will do this by bounding it and showing that it converges to zero.
 - To begin, let's bound the reciprocal of $tan(\pi z)$, which is

$$\cot(\pi z) = i \cdot \frac{e^{\pi iz} + e^{-\pi iz}}{e^{\pi iz} - e^{-\pi iz}}$$

▶ When Re(z) = N + 1/2 (for some $N \in \mathbb{Z}$) and $y = Im(z) \in \mathbb{R}$, we have that

$$e^{\pi i z} = e^{\pi i (N+1/2+yi)} = e^{N\pi i} \cdot e^{\pi i/2} \cdot e^{-\pi y} = \pm 1 \cdot i \cdot e^{-\pi y} = \pm i e^{-\pi y}$$

and

$$e^{-\pi iz} = e^{-\pi i(N+1/2+yi)} = e^{-N\pi i} \cdot e^{-\pi i/2} \cdot e^{\pi y} = \pm 1 \cdot -i \cdot e^{\pi y} = \mp i e^{\pi y}$$

so hence,

$$|\cot(\pi z)| = \left| \frac{e^{\pi iz} + e^{-\pi iz}}{e^{\pi iz} - e^{-\pi iz}} \right| = \left| \frac{\pm ie^{-\pi y} + \mp ie^{\pi y}}{\pm ie^{-\pi y} - \mp ie^{\pi y}} \right| = \left| \frac{\pm e^{-\pi y} - \pm e^{\pi y}}{\pm e^{-\pi y} + \pm e^{\pi y}} \right| = \left| \frac{e^{-\pi y} - e^{\pi y}}{e^{-\pi y} + e^{\pi y}} \right| \le 1$$

▶ On the other hand, notice that as $\text{Im}(z) \to \infty$, $\cot(z) \to 1$. Thus, if we want to keep $\cot(z)$ near 1 (and hence bounded in general), we need only require that Im(z) = N + 1/2 is greater than some threshold. In fact, as we can see in the applet from the 3/21 lecture, if $\text{Im}(z) \ge 1/2$, then $|\cot(z) - 1|$ is already less than 1/2 and hence $|\cot(z)| \le 2$. [4] An analogous argument holds based on the fact that as $\text{Im}(z) \to -\infty$, $\cot(z) \to -1$.

⁴Note that for the sake of bounding the $\cot(\pi z)$, we need not make the top and bottom of γ_N diverge along with the right and left sides; they could stay at $\mathrm{Im}(z)=\pm 1/2$ and we'd be totally fine on boundedness. However, we do have the top and bottom diverge so that the z^2 term in the denominator of f(z) becomes large at *all* points along γ_N as $N\to\infty$; this fact will be used shortly when we compute $\int_{\gamma_N} f\,\mathrm{d}z$.

- ightharpoonup Thus, $|\cot(z)| \leq 2$ for all $z \in \operatorname{Im}(\gamma_N)$ and $N \in \mathbb{N}$.
- Consequently, as $N \to \infty$, $f(z) \to 0$ for all $z \in \text{Im}(\gamma_N)$. Thus, the integral of f over γ_N goes to zero, too. In a statement,

$$\lim_{N \to \infty} \int_{\gamma_N} f \, \mathrm{d}z = 0$$

- Combining the above two results, we have that

$$\frac{1}{2\pi i} \lim_{N \to \infty} \int_{\gamma_N} f \, \mathrm{d}z = \lim_{N \to \infty} \left(\operatorname{res}_0 f + 2 \sum_{n=1}^N \frac{1}{n^2} \right)$$
$$\frac{1}{2\pi i} \cdot 0 = \operatorname{res}_0 f + 2 \sum_{n=1}^\infty \frac{1}{n^2}$$
$$\sum_{n=1}^\infty \frac{1}{n^2} = -\frac{1}{2} \operatorname{res}_0 f$$

- Evidently, we must now compute $res_0 f$.
 - The Laurent series for $\cot(z)$ about 0 is

$$\cot(z) = \frac{1}{z} - \frac{z}{3} - \frac{z^3}{45} - \frac{2z^5}{945} - \cdots$$

 \blacksquare Thus, near zero, [5]

$$f(z) = \frac{\pi}{z^2} \cdot \left(\frac{1}{\pi z} - \frac{\pi z}{3} - \frac{\pi^3 z^3}{45} - \frac{2\pi^5 z^5}{945} - \cdots \right)$$
$$= \frac{1}{z^3} - \frac{\pi^2}{3z} - \frac{\pi^4}{45}z - \frac{2\pi^6}{945}z^4 - \cdots$$

■ Consequently,

$$res_0 f = a_{-1} = -\frac{\pi^2}{3}$$

- Therefore,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{1}{2} \cdot -\frac{\pi^2}{3} = \frac{\pi^2}{6}$$

as desired.

• This same argument easily extends to the even natural number values of the Riemann zeta function.

⁵Notice that this Laurent series reflects the fact that f has a zero of order 3 at z = 0!

Week 8

Applying the Complex Logarithm

8.1 Counting Zeroes and Laurent Series

5/7: • Announcements.

- PSet 5 posted, due next Friday.
 - 10 problems (a few more than usual), but heavily computational so shouldn't be that bad.
 - After today's class, we'll have everything we need to do it.
- Draft of final project report due this Friday.
 - It doesn't need to be a full draft, but it should be a pretty well-fleshed-out outline. The more information we can give him, the better feedback he can give us.
- Make sure to check out the Canvas post on final presentation scheduling.
- Last time.
 - We deduced the residue theorem from the general CIT.
 - It states: Suppose U is a domain, $S \subset U$ is a discrete (though not necessarily finite) set of singularities, $f \in \mathcal{O}(U \setminus S)$, and $\Gamma = \sum c_i \gamma_i$ is nulhomologous in U (though not necessarily nulhomologous in $U \setminus S$). Then

$$\frac{1}{2\pi i} \int_{\Gamma} f \, \mathrm{d}z = \sum_{s \in S} \mathrm{wn}(\Gamma, s) \operatorname{res}_s f$$

- The residue of f about s is

$$\operatorname{res}_s f = \frac{1}{2\pi i} \int_{\partial D} f \, \mathrm{d}z$$

where D is some little disk about s (and only this $s \in S$).

- If s is a pole, then res_s f is also equal to the a_{-1} coefficient of the Laurent expansion.
- What the residue theorem gets us.
 - Lets us compute integrals over complicated paths.
 - ➤ We get to work with Laurent series instead of integrals, which is easier.
 - Lets us compute sums, as in the Basel problem.
 - > We choose a function, introduce the residue, and express the sum in terms of the integral.
- Today.
 - The argument principle: A theoretical (not practical) ramification of the residue theorem.
 - Talking a bit more about essential singularities.

- Consider the function f'/f, where f is either holomorphic or meromorphic on U.
 - Another way to think about this function is as the derivative of $\log f$.
 - We want to investigate the singularities of f'/f.
 - Suppose f has a zero of order k at s.
 - Then locally, $f(z) = (z s)^k g(z)$ where $g(s) \neq 0$.
 - If f looks like this at s, then $f'(z) = k(z-s)^{k-1}g(z) + (z-s)^kg'(z)$.
 - Thus,

$$\frac{f'}{f}(z) = \frac{k}{z-s} + \frac{g'(z)}{g(z)}$$

- Since $g(s) \neq 0$, g'/g is a well-defined number in a disk about s.
- The other term gives a well-defined pole.
- Therefore, if f has a zero of order k at s, then f'/f has a simple pole at s with $res_s(f'/f) = k$.
- Exercise: If f has a pole of order k at s, then f'/f has a simple pole with $\operatorname{res}_s(f'/f) = -k$.
 - Prove the same way (or see the notes).
- Corollary (the argument principle): Suppose U is a domain, f is meromorphic on U, and γ is an SCC oriented counterclockwise that doesn't hit any poles or zeroes of f. Then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz = \sum_{s \in S} \operatorname{res}_{s}(f'/f) = \# \text{ zeroes in } \gamma - \# \text{ poles in } \gamma$$

- Simple closed curve: A curve γ that separates the inside from the outside. Also known as SCC.
 - See Figure 7.2a for two examples.
- TPS: Use the argument principle to compute the number of zeroes of the following polynomial inside the unit disk \mathbb{D} .

$$f(z) = 2z^4 - 5z + 2$$

- Since f is a polynomial, it has no poles.
- Thus, by the argument principle, the number of zeroes in $\partial \mathbb{D}$ is

$$\frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{f'}{f} dz = \frac{1}{2\pi i} \int_{\partial \mathbb{D}} \frac{8z^3 - 5}{2z^4 - 5z + 2} dz$$

- The integral on the right is "a pain in the butt" to compute, but we definitely could.
 - We'd just have to do a partial fraction decomposition, substitute in $z = e^{i\theta}$, and bash it out.
- A better way to find the number of zeroes uses **Rouché's theorem**, which we'll introduce shortly.
- Understanding the argument principle geometrically. *picture*
 - Suppose you have an SCC γ enclosing a zero or order 1 and a pole of order 1.
 - We'll now investigate f as a mapping of $\mathbb{C} \to \mathbb{C}$ and $\mathbb{C} \to \hat{\mathbb{C}}$.
 - As a mapping into the complex plane, f maps γ to $f(\gamma)$.
 - Note that the curve $f(\gamma)$ is just another mapping of the circle into the complex plane.
 - As a mapping into the Riemann sphere, f maps the zero to 0 and the pole to ∞ .
 - Now draw little counterclockwise-oriented curves around the zero and pole.
 - Since the pole has order 1, its little loop maps to a little loop around $\infty \in \hat{\mathbb{C}}$ that goes around 1 time.

- \succ If the pole had order 2, for example, then a little loop that goes around it 1 time would map to a loop that goes around ∞ 2 times.
- Similarly, since the zero has order 1, its little loop maps to a little loop around $0 \in \hat{\mathbb{C}}$ that goes around 1 time.
- Now pull the two loops down the Riemann sphere to the equator.
 - Observe that their orientations are now inverses, with the orientation of the curve around ∞ having flipped.
 - ➤ This is like the Coriolis effect!
 - Projecting the pulled-down curves into \mathbb{C} , we can observe that the one around ∞ is oriented clockwise and encompasses $f(\gamma)$ while the one around 0 is oriented counterclockwise and situated within $f(\gamma)$.
- ??
- This all results in the order of zeros minus the order of poles is equal to the winding number of $f(\gamma)$ about zero.
- Here's a computation that justifies all of the handwavey stuff above:

$$\operatorname{wn}(f(\gamma), 0) = \frac{1}{2\pi i} \int_{f(\gamma)} \frac{1}{z} dz$$

$$= \frac{1}{2\pi i} \int_{0}^{1} \frac{1}{f(\gamma(t))} [f(\gamma(t))]' dt$$

$$= \frac{1}{2\pi i} \int_{0}^{1} \frac{f'(\gamma(t))}{f(\gamma(t))} \gamma'(t) dt$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f'}{f} dz$$

- This computation is another proof of the argument principle!
- Rouché's theorem: Let U be a domain, $\gamma \subset U$ an SCC, and $f, g \in \mathcal{O}(U)$. Suppose also that |g| < |f| on γ . Then f and f + g have the same number of zeroes.

Proof. Set $h_{\lambda}(z) := f + \lambda g$ where $\lambda \in [0, 1]$. Thus, $h_0 = f$ and $h_1 = f + g$. It follows by the argument principle that the number of zeroes of h_{λ} in γ (which is a discrete set) is

$$\frac{1}{2\pi i} \int_{\gamma} \frac{h'_{\lambda}}{h_{\lambda}} dz = \frac{1}{2\pi i} \int_{\gamma} \frac{f' + \lambda g'}{f + \lambda g} dz$$

which is a continuous map in λ . Essentially, we have shown that the "number of zeroes in γ " function is a continuous function from $[0,1] \to \mathbb{N}_0$. Hence, as a continuous function into a discrete set, it is constant.

Note that we used the |g| < |f| condition to ensure that $f + \lambda g$ in the denominator of the above integral is never zero, and hence the integral is always well-defined.

- Example: Solving the TPS from earlier.
 - $-q(z)=2z^4$ has four zeroes inside \mathbb{D} .
 - -f(z)=-5z has one zero inside \mathbb{D} .
 - On $\partial \mathbb{D}$, we have that |z|=1 and hence

$$2 = |q| < |f| = 5$$

so $2z^4 - 5z$ has the same number of zeroes as -5z (or 1) by Rouché's theorem.

- Redefine $f(z) = 2z^4 5z$ and g(z) = 2.
- On $\partial \mathbb{D}$, we similarly have that

$$|f| = |2z^4 - 5z| \ge ||2z^4| - |5z|| = |2 - 5| = 3 > 2 = |g|$$

so $2z^4 - 5z + 2$ has the same number of zeroes as $2z^4 - 5z$ (or 1) by Rouché's theorem.

- Takeaway: Whenever you're asked to compute zeroes, Rouché's theorem is probably the way to go.
- Exercise: Prove the FTA using Rouché's theorem.
 - Idea: On big enough circles, eventually the top-degree term dominates.
- Let's now talk a bit more about essential singularities.
- Suppose U is a small disk, $s \in U$, and $f \in \mathcal{O}(U \setminus S)$ (so s is an isolated singularity). Then one of three things can happen.
 - 1. s is removable.
 - In this case, we can remove it using Riemann's removable singularity theorem and get an analytic continuation $\hat{f} \in \mathcal{O}(U)$.
 - This is really nice, because then we get a power series near s:

$$f(z) = \sum_{k=0}^{\infty} a_k (z - s)^k$$

- 2. s is a pole.
 - We get a similar series called a Laurent series with:

$$f(z) = \sum_{k=-N}^{\infty} a_k (z - s)^k$$

- 3. s is essential.
 - We get a Laurent series

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - s)^k$$

- A word on convergence.
 - Before, we used to say the magic words "absolutely locally uniformly" and we'd get convergence.
 Now we can't do that, and we need the following.
 - Recall that uniform convergence $f_k \to f$ means that

$$\sup_{z \in K} |f_k(z) - f(z)| \to 0$$

– In addition, recall that local uniform convergence $f_k \to f$ means that

$$\sup_{K \subset U} \sup_{z \in K} |f_k(z) - f(z)| \to 0$$

• Theorem: Suppose $\{f_k\} \in \mathcal{O}(U \setminus S)$ is such that the $f_k \to f$ locally uniformly. Then $f \in \mathcal{O}(U \setminus S)$ and moreover $f_k^{(n)} \to f^{(n)}$ for all n.

Proof. Goursat plus Morera for the first statement. CIF for the second statement. More detail in the notes; Calderon is also happy to talk. \Box

- We now prove that such Laurent expansions exist.
 - Step 1: "Pull off" the singular part.
 - This is a theorem called the **Laurent decomposition**.
 - Step 2: Express f_{∞} as

$$\sum_{k=-\infty}^{-1} a_k (z-s)^k$$

• Theorem (Laurent decomposition): There exists a unique $f_{\infty} \in \mathcal{O}(\mathbb{C} \setminus \{s\})$ with $f = f_0 + f_{\infty}$ such that $f_0 \in \mathcal{O}(U)$ and $f_{\infty} \to 0$ as $z \to \infty$.

Proof. Uniqueness is not interesting; see the book.

Existence: Let $z \in U$ be arbitrary. Let D_2 be a counterclockwise-oriented curve in U containing 0 and z. Let D_1 be a counterclockwise-oriented curve in U containing just 0. Then $z \in D_2 \setminus D_1$. Altogether, this looks like Figure 8.1.

Figure 8.1: Laurent decomposition theorem.

Additionally, $\partial D_2 - \partial D_1$ is nulhomologous in $U \setminus 0$. Thus, by the general CIF,

$$f(z) = \frac{1}{2\pi i} \int_{\partial D_2 - \partial D_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \underbrace{\frac{1}{2\pi i} \int_{\partial D_2} \frac{f(\zeta)}{\zeta - z} d\zeta}_{f_0} - \underbrace{\frac{1}{2\pi i} \int_{\partial D_1} \frac{f(\zeta)}{\zeta - z} d\zeta}_{-f_{12}}$$

Finally, $-f_{\infty}$ — as defined above — has an extension from U to all of $\mathbb{C} \setminus \{0\}$ just like in the proof of the general CIF from the 4/30 lecture.

- Comments on the Laurent decomposition.
 - Think of f_0 as the nonnegative terms of the Laurent expansion, and f_{∞} as everything else (all the negative terms).
- Step 2 proof.

Proof. For poles, we could just multiply by $(z-s)^k$. Here, we have to do something very clever. WLOG, let s=0. By step 1, f_{∞} extends to ∞ and we may set $f_{\infty}(\infty)=0$. Thus, let's think of $f_{\infty}\in\mathcal{O}(\hat{\mathbb{C}}\setminus\{0\})$. Set $g(z)=f_{\infty}(1/z)$. Now g has a removable singularity at 0. Moreover, $g\in\mathcal{O}(\mathbb{C})$. Then

$$g(z) = \sum_{k=0}^{\infty} b_k (z-0)^k$$

converges for all z. But therefore

$$f_{\infty}(z) = g(1/z) = \sum_{k=1}^{\infty} b_k \left(\frac{1}{z}\right)^k = \sum_{k=-\infty}^{-1} a_k z^k$$

as desired. \Box

8.2 Riemann Mapping Theorem

5/9: • Announcements.

- Sign up for a presentation time.
- Draft due tomorrow.
- Feedback forms due next week.
- Next Monday's OH's are TBD.
- Substitute teacher (postdoc) next Tuesday because Calderon will be out of town.
- Last time: Using the logarithm to find some things out about zeroes.
- Today: Using the logarithm to find some things out about conformal maps.
- Recall.
 - $-f:U\to\mathbb{C}$ conformal means angle-preserving diffeomorphism.
 - $-f:U\to\mathbb{C}$ biholomorphic means bijective, holomorphic, and f^{-1} holomorphic.
 - Conformal iff biholomorphic.
 - If $f \in \mathcal{O}(U)$ is bijective and f' is nonzero on U, then f^{-1} is holomorphic and hence $f \in Bihol(U)$.
 - In fact, using the $f'(z) \neq 0$ for all $z \in U$ and the open mapping theorem to imply that f^{-1} is holomorphic was unnecessary! The complex inverse function theorem proved that all we need for biholomorphism is a bijectivity and a holomorphicity condition.
 - Important note: Above, we used the bijectivity condition to imply a "nonzeroness" to the derivative. Suppose $f'(z_0) = 0$ and $f(z_0) = 0$. Then f can't be bijective for the following reason.
 - This combined with the hypothesis that $f \in \mathcal{O}(U)$ and hence f has a Taylor series expansion means that

$$f(z) = \underbrace{f(z_0)}_{0} + \underbrace{f'(z_0)}_{0}(z - z_0) + \sum_{k=2}^{\infty} \frac{f^{(k)}(z_0)}{k!}(z - z_0)^k = \sum_{k=2}^{\infty} \frac{f^{(k)}(z_0)}{k!}(z - z_0)^k$$

- Hence, we can factor $(z-z_0)^2$ out of f, so f locally looks like z^2 and therefore is not injective. This is branching behavior like in Figure 6.1; z^2 cuts a slit in the complex plane at the positive real axis and spins it around and then back to where it started.
- We wish to investigate conformal, bounded maps on bounded, simply connected domains. Before we begin in earnest, we will show that we can simplify any function in this class to an analogous function in a more restricted class that will be easier to work with.
- Let U be a bounded, simply connected domain. Suppose $f \in \mathcal{O}(U)$ is conformal and bounded.

Figure 8.2: Constructing an analogous, simpler class of bounded conformal maps.

- Intuitively, these constraints imply that f maps a blob to a blob.
 - Conformal maps send simply connected domains to simply connected domains.
 - Bounded maps send bounded domains to bounded domains, i.e., the image blob must lie in some disk.
- By the maximum modulus principle, if |f(z)| = R, then $z \in \partial U$.
 - This is valid because a conformal map must be nonconstant.
- Now here comes the critical step: We can rescale the problem of a map from a blob of radius S to a blob of radius R to the problem of a map from a blob in \mathbb{D} to another blob in \mathbb{D} .
 - \blacksquare We do this by prescaling the initial $\mathbb D$ up by S and postscaling the image disk down by R.
- Therefore, via rescaling, we can reduce this problem to understanding maps from $U \subset \mathbb{D} \to \mathbb{D}$.
- Now fix $z_0 \in U$. Recall from PSet 4 that we can use a Möbius transformation to take $f(z_0) \mapsto 0$.
 - Fact/Exercise: A Möbius transformation $\mathbb{D} \to \mathbb{D}$ of the form $z \mapsto (az + b)/(cz + d)$ for $a, b, c, d \in \mathbb{R}$ acts transitively on points in \mathbb{D} (i.e., any point can be taken to zero).
 - It's kind of obvious if you do this with the upper half plane instead of the disk and then bring it to the disk.
- Therefore, via rescaling and Möbius transformations, we can reduce this problem to understanding maps from $U \subset \mathbb{D} \to \mathbb{D}$ that take $z_0 \in U \mapsto 0$.
- Let's begin investigating these maps.
- The first (and easiest) case we'll tackle is when $U = \mathbb{D}$. We'll tackle it with the **Schwarz Lemma**.
- Schwarz Lemma: Suppose $f: \mathbb{D} \to \mathbb{D}$ (not necessarily surjective) is conformal and f(0) = 0. Then...
 - 1. $|f(z)| \le |z|$;

Proof. Consider the function defined by the following ratio.

$$\frac{f(z)}{z}$$

This function is holomorphic for all $z \neq 0$. But what happens at zero? We know that f(0) = 0 by hypothesis. Thus, f has a power series expansion at zero. In particular, since $a_0 = f(0) = 0$,

$$f(z) = a_1 z + a_2 z^2 + \cdots$$

so

$$\frac{f(z)}{z} = a_1 + a_2 z + \cdots$$

This means that f(z)/z has a removable singularity which we can fill in via Riemann's removable singularity theorem to get

$$\frac{f(0)}{0} = f'(0)$$

Now pick an $r \in (0,1)$ and let $z \in \partial D_r(0)$ be arbitrary. Then

$$\left| \frac{f(z)}{z} \right| = \frac{|f(z)|}{|z|} = \frac{|f(z)|}{r} \le \frac{1}{r}$$

Essentially, we have bounded the value of f(z)/z on the boundary of a disk. Moreover, it follows by the maximum modulus principle that this bound must hold for all $z \in D_r(0)$. (Otherwise, we would get a local maximum inside $D_r(0)$; this would imply by the MMP that f is constant, which we can't have because the function is conformal [hence nonconstant] by hypothesis.) Thus, we have shown that

$$|f(z)| \le \frac{1}{r} \cdot |z|$$

for all $z \in D_r(0)$. To finish it off, we can send $r \to 1$, thereby including all $z \in \mathbb{D}$ in our argument and transforming the above inequality into the desired one.

2. If $|f(z)| \leq |z|$ is an equality for any $z \in \mathbb{D}$, then f is a rotation;

Proof. Let $z_0 \in \mathbb{D}$ be the point at which $|f(z_0)| = |z_0|$. It follows that

$$\left| \frac{f(z_0)}{z_0} \right| = 1$$

Additionally, we have by (1) that for all $z \in \mathbb{D}$,

$$\left| \frac{f(z)}{z} \right| \le 1$$

Thus, |f(z)/z| takes a maximum inside \mathbb{D} (in particular, it takes its max at z_0). It follows by the maximum modulus principle that f(z)/z is constant on \mathbb{D} .

Let c be this constant value. Naturally, it follows that in particular, $c = f(z_0)/z_0$ and hence

$$|c| = \left| \frac{f(z_0)}{z_0} \right| = 1$$

But via algebraic rearrangement this means that f(z) = cz where $c \in \mathbb{C}$ has |c| = 1. Therefore, f is a rotation, as desired.

3. If |f'(0)| = 1, then f is a rotation.

Proof. In the proof of part (1), we showed that the power series expansion of f(z)/z is

$$\frac{f(z)}{z} = a_1 + a_2 z + \dots = f'(0) + \frac{f''(0)}{2!} z + \dots$$

Thus, since |f'(0)| = 1, we have that

$$\left| \frac{\widehat{f(0)}}{0} \right| = \left| f'(0) + \frac{f''(0)}{2!} \cdot 0 + \dots \right| = |f'(0)| = 1$$

Thus, as in the proof of part (2), we have shown that there exists a point in \mathbb{D} at which |f(z)/z| = 1. Therefore, f is a rotation by a symmetric argument, as desired.

- Note that we did not use conformality anywhere in our proof of the Schwarz Lemma!
 - All we actually needed was a holomorphicity condition.
 - We'll need full conformality, however, to prove the following sort-of converse.
- Lemma (a "converse" to the Schwarz Lemma): Suppose $f: \mathbb{D} \to \mathbb{D}$ is conformal and not onto with f(0) = 0. Then there exists $F: \mathbb{D} \to \mathbb{D}$ (still conformal) such that F(0) = 0 and |F'(0)| > |f'(0)|.

Figure 8.3: A "converse" to the Schwarz Lemma.

Proof. We will prove this claim via *constructive* means, actually building a function F as opposed to just proving its existence in the abstract. In particular...

- 1. We will construct a function h, and prove that it has some special properties;^[1]
- 2. We will define $F = h \circ f$:
- 3. We will use the special properties of h to prove that F, as defined, has the desired properties.

Let's begin.

Let $U := f(\mathbb{D})$. Since f is conformal and \mathbb{D} is simply connected, $f(\mathbb{D})$ is simply connected.^[2] We now construct the aforementioned function h.

To construct h, we will build three other functions — T, $\sqrt{\ }$, and S — and let h be their composition.

- 1. Since f is not onto by hypothesis, there exists $w \in \mathbb{D}$ such that $w \notin U$. Let T be a Möbius transformation sending $w \mapsto 0$.
- 2. Since T is a Möbius transformation (hence biholomorphic and hence conformal) and U is simply connected, T(U) is simply connected. Thus, there exists a logarithm function on T(U). It follows that there exists a square root function $\sqrt{ : z \mapsto z^{1/2}} = e^{0.5 \log z}$ on U.
- 3. Lastly, let S be a Möbius transformation sending $\sqrt{T(0)} \mapsto 0$.

At this point, we can finally define $h: U \to \mathbb{D}$ by

$$h(z) := (S \circ \mathcal{N} \circ T)(z)$$

We will now prove two special properties of h: h(0) = 0 and |h'(0)| > 1. By the construction of T, \sqrt{S} , we immediately obtain h(0) = 0. As to the other property, begin with defining $h^{-1}: h(U) \to U$ by

$$h^{-1}(z) := (T^{-1} \circ [z \mapsto z^2] \circ S^{-1})(z)$$

Since h^{-1} is a composition of holomorphic and bijective maps, h^{-1} is conformal. This combined with the facts that $h^{-1}(0) = 0$ and h^{-1} is not a rotation (clearly) implies by the contrapositive of the Schwarz Lemma that $|(h^{-1})'(0)| < 1$. Therefore, by the inverse function theorem, |h'(0)| > 1.

At this point, we may define a function F by

$$F := h \circ f$$

We now check F's four properties. Since $f: \mathbb{D} \to U$, $h: U \to \mathbb{D}$, and $F = h \circ f$, we have that $F: \mathbb{D} \to \mathbb{D}$ via function composition, as desired. Since T, $\sqrt{\ }$, and S are conformal, we have that F is conformal, as desired. Since f(0) = 0 by hypothesis, h(0) = 0 by the above, and $F = h \circ f$, we have that

$$F(0) = h(f(0)) = h(0) = 0$$

as desired. And since |h'(0)| > 1, we conclude by observing the following.

$$|F'(0)| = |h'(f(0)) \cdot f'(0)| = |h'(0)| \cdot |f'(0)| > 1 \cdot |f'(0)| = |f'(0)|$$

- Takeaway: The Schwarz Lemma tells us that conformal maps from $\mathbb{D} \to \mathbb{D}$ have derivative ≤ 1 , and this lemma tells us that maps from $U \subseteq \mathbb{D} \to \mathbb{D}$ can be made to have a larger derivative.
- Note that the behavior in the Schwarz and this lemma is analogous to that of *entire* biholomorphims, where f conformal implies f biholomorphic implies f(z) = az + b, this plus f(0) = 0 implies f(z) = az, and $f: \mathbb{D} \to \mathbb{D}$ implies $|a| \leq 1$.

¹We can also prove a more general version of this claim in which we let $z_0 \in U$ be arbitrary and construct h with $h(z_0) = 0$ and $|h'(z_0)| > 1$ by adding in an additional Möbius transformation in the beginning sending $z_0 \mapsto 0$. This is what we did in class, but it in the actually necessary for the proof, so I have left out the argument here. My raw, unedited notes from class are still available in the .tex file, for future reference.

²Some argument about how conformal maps preserve the winding number of $\gamma \subset U$ about an exterior point being zero??

- We now prove our main result for the day.
- Riemann mapping theorem: Let U be any simply connected domain in \mathbb{C} (but not \mathbb{C} itself). Then there exists a conformal map $f: U \to \mathbb{D}$.
- Comments on the RMT.
 - So every simply connected domain is either \mathbb{C} or the unit disk.
 - Exercise: If we stipulate also that some $z_0 \in U \mapsto 0$ and $f'(z_0) \in \mathbb{R}_{>0}$, then f is unique.
 - Why we delayed proving this masterpiece theorem until the end of the class: We just developed the tool we need.
- Three-step proof outline.
 - 1. Map U into \mathbb{D} .

Proof Sketch. Suppose U misses some open set in $\hat{\mathbb{C}}$. (If it misses some open set, it misses a ball.) Now, just use a Möbius transformation, specifically the one that takes this ball to the entire northern hemisphere, thereby making U something else that lives in the southern hemisphere. Make sure that this map also sends some point $z_0 \in U$ to $0 \in \hat{\mathbb{C}}$! Then remember that the southern hemisphere is just the unit disk (see Figure 5.2.) Great pictures on the board!

If U doesn't miss an open set (e.g., $U = \mathbb{C} \setminus \mathbb{R}_{\leq 0}$), then use a log, which we would be able to do because the set is simply connected.

2. "Maximize" among all such maps.

Proof Sketch. If $f: U \to \mathbb{D}$ is conformal and not onto, then use the Converse Lemma to find F with a bigger derivative at z_0 .

Thus, "just" take an f maximizing $|f'(z_0)|$. We can't find something with a bigger derivative at this point, so the function must be onto.

We now pull a rabbit out of the hat in the form of the real analytical/metric space form of the Arzela-Ascoli theorem.

3. Take a limit of this maximizing sequence (this is where the real magic happens, using the argument principle and such).

Proof Sketch. Set $\mathcal{F} = \{f : U \to \mathbb{D} \mid \text{conformal}, f(z_0) = 0\}$. This family is uniformly bounded (e.g., by the unit disk). Let

$$\alpha := \sup_{f \in \mathcal{F}} |f'(z_0)|$$

The set of all f_k such that $|f'_k(z_0)| \to \alpha$ has a uniformly convergent subsequence. If $f_k \to f$ locally uniformly, then by the theorem from last class, f is holomorphic. Additionally, f is also conformal because it is holomorphic and bijective (see the following proposition), hence biholomorphic. \square

- Arzelà-Ascoli theorem: If $\{f_k\}: X \to Y \text{ (where } X,Y \text{ are metric spaces) is a family of (locally) uniformly bounded and (locally) equicontinuous functions, then there exists a (locally) uniformly convergent subsequence.$
- Equicontinuity: Same ε 's and δ 's work for every f_k .
- Proposition: If f_k are all conformal, then f is either conformal or constant.

Proof. Suppose that f is not bijective. Hence, f is not injective. Thus, there are two points $z_1 \neq z_2$ such that $f(z_1) = w = f(z_2)$. Pick disks D_i about z_i such that on each D_i , only $z_i \mapsto w$.

Thus, f(z) = w (i.e., f(z) - w = 0) twice on $D_1 \cup D_2$. Thus, by the argument principle,

$$2 = \int_{\partial D_1 + \partial D_2} \frac{f'(z)}{f(z) - w} dz = \lim_{k \to \infty} \int_{\partial D_1 + \partial D_2} \frac{f'_k(z)}{f_k(z) - w} dz \le 1$$

which is a contradiction since the f_k are injective, so f is bijective.

- With just a bit of work, we can get from here to Montel's theorem.
- Montel's theorem: If $\{f_k\}$ is a family of (locally) uniformly bounded holomorphic functions, then there exists a (locally) uniformly convergent subsequence.

Proof. (Locally) uniformly bounded plus holomorphic implies (locally) equicontinuous. \Box

• Montel's theorem allows us to extract limits.

References

Fischer, W., & Lieb, I. (2012). A course in complex analysis: From basic results to advanced topics (J. Cannizzo, Trans.). Vieweg+Teubner Verlag.