Programación Paralela

Estrategias de paralelización: Tiling

José María Cecilia Canales

Una estrategía común de programación

- La global memory es mucho mas lenta que la shared memory.
- Estrategia *Tiling* para aprovechar la *shared memory*:
 - Particionamos los datos en subconjuntos que quepan en shared memory (48 KB). Esto es lo que llamamos Tile
 - Manejar cada subconjunto de datos con un bloque de hilos:
 - Cargamos un subconjunto de datos de global memory a shared memory, usando varios hilos para aprovechar el paralelismo de datos.
 - Realizamos las operaciones sobre cada subconjunto en shared memory.
 - Copiamos los resultado desde shared memory a global memory.

Usando bloques en la shared memory: Tiling

Resumen de la técnica

- Identificar un bloque (tile) de memoria global que se accede por múltiples hilos.
- Cargar el tile de memoria global en la shared memory.
- Todos los hilos acceden a los datos en shared memory.
- Traer el siguiente tile de memoria global a shared memory.

Multiplicación de matrices

usando shared memory

Recordatorio de la M*M usando múltiple bloques

```
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {

    // Calcula los indices de las filas de Pd y M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calcula el indice de columnas de Pd y N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;
    float Pvalue = 0;
    // Cada hilo calcula un elemento de la submatriz asignada al bloque
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

Pd[Row*Width+Col] = Pvalue;
}
```

Accesos a device memoria (8 bytes) por cada 1 madd (2 FLOP) → 4 Bytes/FLOP

Análisis de Rendimento en G80.

- Todos los hilos acceden a global memory para obtener sus matrices de entrada
 - 2 accesos a memoria (8 bytes) por 2 FLOP
 - 4B/FLOP de ancho de banda bandwidth/FLOPS
 - 4B*346.5 GFLOPS (pico) = 1386 GB/s se necesita para obtener el pico máximo de FLOPS
 - 86.4 GB/s limita el código a 21.6 GFLOPS
- Esta versión del código consigue 15 GFLOPS
- Necesitamos rebajar los accesos a memoria drásticamente para conseguir el pico de 346.5 GFLOPS

Elementos repetidos

Cada elemento de entrada se

lee por N hilos

Hay hilos que se acceden a los

mismos datos

ANCHO_TILE-1

- Dividimos la ejecución del kernel en fases:
 - En primer lugar identificamos elementos que pueden cooperar

- Dividimos la ejecución del kernel en fases:
 - Cargamos a Shared
 - Sincronizamos los hilos del bloque 2)
 - 3) Computamos en Shared
 - Almancenamos el resultado 4)

ANCHO_TILE-1

B

Sincronizar los hilos de un bloque

Llamada a la función CUDA __syncthreads()

Todos los hilos de un bloque deben llegar __syncthreads()
antes de continuar.

- Se utiliza para coordinar algoritmos que utlizan tiling.
 - Tenemos que asegurar que todos los hilos han cargado su elemento.

Dividimos la ejecución del kernel en fases:

Cargamos a Shared

Computamos en Shared

Almancenamos el resultado

ANCHO_TILE-1

Dividimos la ejecución del kernel en fases:

Cargamos a Shared

Computamos en Shared

Almancenamos el resultado

0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15	8	9	10	11	12	13	14	15	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	16	17	18	19	20	21	22	23	16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31	24	25	26	27	28	29	30	31	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	32	33	34	35	36	37	38	39	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	40	41	42	43	44	45	46	47	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	48	49	50	51	52	53	54	55	48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63	56	57	58	59	60	61	62	63	56	57	58	59	60	61	62	63

8x8

8x8

8x8

$$\begin{array}{cccc} & & B_x & & \\ 0 & 1 & 2 & & 3 \end{array}$$

0	1	2	3	4	5	6	7
8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23
24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55
56	57	58	59	60	61	62	63

Col += tx

Las primeras consideraciones

- Cada thread block debe tener muchos hilos
 - Si el ANCHO_TILE es de 16 tenemos 16*16 = 256 threads
 - Si el ANCHO_TILE es de 32 tenemos 32*32 = 1024 threads
- Para un ancho de 16, cada bloque efectúa 2*256 = 512 lecturas de device memory.
 - Tendríamos 256 (hilos) * 2 madd * 16 tile = 8192 madd operaciones
- Para un ancho de 32, cada bloque efectúa 2*1024 = 2048 float lecturas de memoria global para realizar 1024* 2 * 32 = 65536 madd operaciones

Shared Memory y Threading

- Cada SM en G80 tiene 16KB o 48 KB de shared memory (Configurable)
 - Detalle de implementación
 - Para un ANCHO_TILE = 16, cada bloque usa 2*256*4B = 2KB de shared memory.
 - Cada SM podría tener hasta 8 bloques activos ejecutando.
 - Esto permite hasta 8*512 = 4,096 lecutas (2 por thread, 256 threads por bloque)
 - El siguiente ANCHO_TILE = 32 necesitaría 2*32*32*4B= 8KB de uso de shared memory por bloque, permitiendo 2 bloques activos al mismo tiempo.
- Usando tiles de 16x16, reducimos los accesos a memoria en un factor de 16.
 - El bandwidth de 86.4B/s ahora permite (86.4/4)*16 = 347.6 GFLOPS!

Efectos del Tiling (G80)

