Transformada de Fourier y filtros

Martín Josemaría Vuelta Rojas

Problema 1

Graficar en MATLAB las señales a y b, y hallar la transformada de Fourier en forma analítica (usar propiedades):

a)
$$f_1(t) = G(\frac{t}{2}) - G(t)$$

b)
$$f_2(t) = 5G(t-1) - G(t+1)$$

c)
$$f_3(t)$$

d) $f_4(t)$

Nota: *G* es la función compuerta unitaria.

Solución

Definimos la función compuerta unitaria, G, empleando la función Θ de Heaviside de la siguiente manera

$$G(t) = \Theta\left(t + \frac{1}{2}\right) - \Theta\left(t - \frac{1}{2}\right).$$

Empleando la función G podemos definir la función triángulo, Λ , como

$$\Lambda(t) = (1 - |t|) G\left(\frac{t}{2}\right)$$

Con estas dos funciones definimos las funciones f_3 y f_4 como

$$f_3(t) = \Lambda(t) + \Lambda(t-1) + \Lambda(t-2),$$

$$f_4(t) = -\Lambda(t) + \Lambda(t-1).$$

Empleando la transformada de Fourier definida por

$$\mathcal{F}(f,t|\omega) = \widehat{f}(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-i\omega t) dt$$

y que

$$\widehat{G}\left(\omega\right) = \operatorname{sinc}\left(\frac{\omega}{2}\right),\,$$

$$\widehat{\Lambda}\left(\omega\right) = \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right),\,$$

tenemos

a) $\widehat{f}_1(\omega)$

$$\widehat{f}_{1}(\omega) = \mathcal{F}\left(G, \frac{t}{2} \middle| \omega\right) - \mathcal{F}\left(G, t \middle| \omega\right)$$

$$= 2\mathcal{F}\left(G, t \middle| 2\omega\right) - \mathcal{F}\left(G, t \middle| \omega\right)$$

$$= 2\operatorname{sinc}\left(\omega\right) - \operatorname{sinc}\left(\frac{\omega}{2}\right)$$

b) $\widehat{f}_2(\omega)$

$$\widehat{f}_{2}(\omega) = 5\mathcal{F}(G, t - 1|\omega) - \mathcal{F}(G, t + 1|\omega)$$

$$= 5\exp(-i\omega)\mathcal{F}(G, t|\omega) - \exp(i\omega)\mathcal{F}(G, t|\omega)$$

$$= 2\operatorname{sinc}\left(\frac{\omega}{2}\right)(2\cos(\omega) - 3i\sin(\omega))$$

c) $\widehat{f}_3(\omega)$

$$\begin{split} \widehat{f}_{3}\left(\omega\right) &= \mathcal{F}\left(\Lambda, t | \omega\right) + \mathcal{F}\left(\Lambda, t - 1 | \omega\right) + \mathcal{F}\left(\Lambda, t - 2 | \omega\right) \\ &= \mathcal{F}\left(\Lambda, t | \omega\right) + \exp\left(-i\omega\right) \mathcal{F}\left(\Lambda, t | \omega\right) + \exp\left(-2i\omega\right) \mathcal{F}\left(\Lambda, t | \omega\right) \\ &= \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) + \exp\left(-i\omega\right) \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) + \exp\left(-2i\omega\right) \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) \\ &= \left(1 + 2\cos\left(\omega\right)\right) \exp\left(-i\omega\right) \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) \end{split}$$

d) $\widehat{f}_1(\omega)$

$$\widehat{f}_{3}(\omega) = -\mathcal{F}(\Lambda, t|\omega) + \mathcal{F}(\Lambda, t - 2|\omega)$$

$$= -\mathcal{F}(\Lambda, t|\omega) + \exp(-i\omega)\mathcal{F}(\Lambda, t|\omega)$$

$$= -\operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) + \exp(-2i\omega)\operatorname{sinc}^{2}\left(\frac{\omega}{2}\right)$$

$$= (\exp(-2i\omega) - 1)\operatorname{sinc}^{2}\left(\frac{\omega}{2}\right)$$

En MATLAB implementamos las funciones

Script 1 Función compuerta unitaria, G(t).

```
function f = gate(t)
    f = heaviside(t+1/2)-heaviside(t-1/2);
end
```

Script 2 Función triángulo, $\Lambda(t)$.

```
function f = triangle(t)
    f = gate(t/2).*(1-abs(t));
end
```

Script 3 Función $f_1(t)$.

```
function f = p1_f1(t)
    f = gate(0.5*t) + gate(t);
end
```

Script 4 Función $f_2(t)$.

```
function f = p1_f2(t)
    f = 5*gate(t - 1) - gate(t + 1);
end
```

Script 5 Función $f_3(t)$.

```
function f = p1_f3(t)
    f = triangle(t)+triangle(t-1)+triangle(t-2);
end
```

Script 6 Función $f_4(t)$.

```
function f = p1_f4(t)
    f = -triangle(t)+triangle(t-2);
end
```

Figura 1 Gráfico de la función f_1 y su espectro de potencia normalizado.

Figura 2 Gráfico de la función f_2 y su espectro de potencia normalizado.

Figura 3 Gráfico de la función f_3 y su espectro de potencia normalizado.

Figura 4 Gráfico de la función f_1 y su espectro de potencia normalizado.

Script 7 Script para obtener las figs. 1, 2, 3 y 4.

```
Fs = 1000;
T = 1/Fs;
L = 100000;
t = (-L/2:L/2)*T;
y = p1_f1(t);
plot(t,y)
Y = fft(y);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1 = P1/max(P1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
t = (-L/2:L/2)*T;
y = p1_f2(t);
plot(t,y)
Y = fft(y);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1 = P1/max(P1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
t = (-L/2:L/2)*T;
y = p1_f3(t);
plot(t,y)
Y = fft(y);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1 = P1/max(P1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
t = (-L/2:L/2)*T;
y = p1_f4(t);
plot(t,y)
Y = fft(y);
P2 = abs(Y/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1 = P1/max(P1);
f = Fs*(0:(L/2))/L;
plot(f,P1)
```

Hallar la transformada de Fourier de x(t) y graficar en Matlab:

Si x(t) pasa a través del bloque de la figura, calcule la transformada de Fourier de y(t).

$$x(n) \longrightarrow k \, dx / dt \longrightarrow y(n)$$

Solución

La función x(t) se puede modelar empleando la función triángulo como

$$x(t) = -\Lambda(t+1) - \Lambda(t) + \Lambda(t-2).$$

Así, la transformada de fourier vendrá dada por:

$$\begin{split} \widehat{f}\left(\omega\right) &= -\mathcal{F}\left(\Lambda, t+1|\omega\right) - \mathcal{F}\left(\Lambda, t|\omega\right) + \mathcal{F}\left(\Lambda, t-2|\omega\right) \\ &= -\mathcal{F}\left(\Lambda, t+1|\omega\right) - \mathcal{F}\left(\Lambda, t|\omega\right) + \mathcal{F}\left(\Lambda, t-2|\omega\right) \\ &= -\exp\left(i\omega\right) \mathcal{F}\left(\Lambda, t|\omega\right) - \mathcal{F}\left(\Lambda, t|\omega\right) + \exp\left(-2i\omega\right) \mathcal{F}\left(\Lambda, t|\omega\right) \\ &= \left(-\exp\left(i\omega\right) - 1 + \exp\left(-2i\omega\right)\right) \operatorname{sinc}^{2}\left(\frac{\omega}{2}\right) \end{split}$$

En Matlab implementamos la función $x\left(t\right)$ en términos de la función triángulo tal como muestra el *script 8* y calculamos su espectro de potencia según el *script 9* para obtner la *figura 5*

Script 8 Función x(t).

```
function f = p2_x(t)
  f = -triangle(t+1)-triangle(t)+triangle(t-2);
end
```

Script 9 Función x(t).

```
Fs = 1000;
T = 1/Fs;
L = 100000;

t = (-L/2:L/2)*T;
x = p2_x(t);

plot(t,x)

X = fft(x);
P2 = abs(X/L);
P1 = P2(1:L/2+1);
P1(2:end-1) = 2*P1(2:end-1);
P1 = P1/max(P1);
f = Fs*(0:(L/2))/L;

plot(f,P1)
```

Figura 5 Función x(t) y espectro su espectro de potencia normalizado.

La respuesta del sistema, representado por el bloque, al paso de la señal $x\left(t\right)$ será

$$y\left(t\right) = kx\left(\tau\right) * \frac{dx\left(\tau\right)}{d\tau}$$

La transformada de Fourier de la salida y(t) estará dada por

$$\widehat{y}(\omega) = \mathcal{F}\left(kx * \frac{dx}{dt}, t \middle| \omega\right)$$

$$= k\mathcal{F}(x, t \middle| \omega) \mathcal{F}\left(\frac{dx}{dt}, t \middle| \omega\right)$$

$$= i\omega k\mathcal{F}(x, t \middle| \omega) \mathcal{F}(x, t \middle| \omega)$$

$$= i\omega k \left(-\exp(i\omega) - 1 + \exp(-2i\omega)\right)^2 \operatorname{sinc}^4\left(\frac{\omega}{2}\right)$$

Halle y grafíque la transformada de Fourier de las siguientes señales:

a)
$$x(t)$$

b) La función periódica mostrada en la figura:

$$x(n) = \begin{cases} 1 & \text{; Si } n \text{ impar} \\ 2 & \text{; Si } n \text{ par} \end{cases}$$

con $n \in \mathbb{Z}$.

c)
$$f(t)$$

$$f(t) = t^{2} \exp\left(-\frac{t}{\tau}\right)$$

Solución

a) Modelamos la función x(t) empleando la función Θ de Heavisde.

$$x(t) = \frac{1}{a} \left(\Theta\left(t + \frac{a}{2}\right) - \Theta\left(t - \frac{a}{2}\right) \right).$$

De modo que la transformada de Fourier estará dada por

$$\begin{split} \widehat{x}\left(\omega\right) &= \frac{1}{a} \left(\mathcal{F}\left(\Theta, t + \frac{a}{2} \middle| \omega\right) - \mathcal{F}\left(\Theta, t - \frac{a}{2} \middle| \omega\right) \right) \\ &= \frac{1}{a} \left(\exp\left(i\omega\frac{a}{2}\right) \mathcal{F}\left(\Theta, t \middle| \omega\right) - \exp\left(-i\omega\frac{a}{2}\right) \mathcal{F}\left(\Theta, t \middle| \omega\right) \right) \\ &= \frac{1}{a} \left(-\frac{i}{\omega} \exp\left(i\omega\frac{a}{2}\right) + \frac{i}{\omega} \exp\left(-i\omega\frac{a}{2}\right) \right) \\ &= \operatorname{sinc}\left(\frac{a\omega}{2}\right) \end{split}$$

b) La transformada de f(t) viene dada por

$$\widehat{f}(\omega) = \mathcal{F}\left(f, -\frac{t}{\tau} \middle| \omega\right)$$

$$= \int_{-\infty}^{\infty} t^2 \exp\left(-\frac{t}{\tau}\right) \exp\left(-i\omega t\right) dt$$

$$= \int_{-\infty}^{\infty} t^2 \exp\left(-i\left(\omega - \frac{i}{\tau}\right)t\right) dt$$

$$= -2\pi\delta''\left(\omega - \frac{i}{\tau}\right)$$

Donde δ es la función Delta de Dirac.

Dada la señal en el dominio del tiempo:

$$y(t) = \sin(t) + 0.25\sin(10t)$$

- a) Hacer un programa para graficar la señal para 4 periodos, con una frecuencia de muestreo de $100\ Hz$.
- b) Hacer un programa para graficar el espectro de frecuencias de la señal.
- c) ¿Cuál es la amplitud y la frecuencia correspondiente a cada pico?

Solución

a) El período de la función dada es de 2π .

Script 10 Función y(n)

```
function f = p4_y(t)
    f = sin(t) + 0.25*sin(10*t);
end
```

Script 11 Función y(n)

```
Fs = 100;
T = 1/Fs;
t = 0:T:8*pi;
y = p4_y(t);
plot(t, y)
```

Figura 6 Gráfica de la función y(t)

b) Calculamos la transformada de Fourier y graficamos el espectro de potencias

Script 12 Función y(n)

```
L = length(t);
Y = fft(y);
P = abs(Y/L);
P = P(1:L/2+1);
P(2:end-1) = 2*P(2:end-1);
f = Fs*(0:(L/2))/L;
plot(f, P)
```

Figura 7 Gráfica del espectro de potencias de $y\left(t\right)$

c) En el espectro de potencias se encuentran dos picos con frecuencias de $1,5911~\rm Hz$ y $0,1591~\rm Hz$ con amplitudes de $0,2499~\rm y$ $0,9999~\rm respectivamente$, que coinciden con los valores calculados de las amplitudes de $0,25~\rm y$ $1,00~\rm para$ las frecuencias $0,1592~\rm Hz$ y $1,5915~\rm Hz$ respectivamente.

Descargue el archivo datos . txt^1 de la web, que representa una señal de audio. La frecuencia de muestreo es de $F_s = 8000 \ Hz$. Hacer un programa en Matlab para que realice lo siguiente:

- a) Hallar el número de datos N.
- b) Hallar la duración de la señal.
- c) Hallar el valor medio de la señal.
- d) Graficar la señal x(t).
- e) Graficar el espectro de frecuencias.

Solución

Script 13 Script para graficar la funcion y(n), su espectro de frecuencias y los parámetros solicitados.

```
Fs = 8000;
T = 1/Fs;
y = load('datos.txt');
L = length(y);
t = (1:L)*T;
plot(t, y)
Y = fft(y);
P = abs(Y/L);
P = P(1:floor(L/2)+1);
P(2:end-1) = 2*P(2:end-1);
f = Fs*(0:floor(L/2))/L;
plot(f, P)
fprintf('Señal y(t) contenida en el archivo ''datos.txt'':\n')
fprintf('* Cantidad de datos: %d\n', L)
fprintf('* Duracion : %.5f s\n', max(t))
                       : %.5f\n', mean(y))
fprintf('* Valor medio
```

Script 14 Resultado de la ejecución del script 13

```
>> problema05
Señal y(t) contenida en el archivo 'datos.txt':
* Cantidad de datos: 76709
* Duracion : 9.58863 s
* Valor medio : 0.00007
```

http://fenlab.9k.com/pds/datos.rar

Figura 8 Gráfica de y(t)

Figura 9 Gráfica del espectro de potencias de $y\left(t\right)$

En MATLAB realizar lo siguiente

a) Calcule y grafique la transformada de Fourier de la función triángulo:

$$x\left(t\right) = \Lambda\left(\frac{t}{2}\right)$$

b) La integral que define la transformada de Fourier puede calcularse numéricamente, para cada valor de frecuencia, utilizando la suma de Riemman. Para subdominios de longitud T se tiene:

$$X(f) = \sum_{N=-\infty}^{\infty} \Lambda\left(\frac{NT}{2}\right) \exp(-2\pi j f NT)T$$

Calcular para T=0.8 y para el rango de frecuencia de 0 a 2 con intervalos de 0.125 ejecutando las siguientes sentencias en Matlab:

```
T = 0.8;
n = [-2:2];
f = [0:0.125:2];
X = zeros(size(f));
for i = 1: length(f)
    X(i) = sum(T*triangle(n*T/2).*exp(-j*2*pi*f(i)*n*T));
end
```

c) Repetir para T 10 veces menor.

Nota: La función Λ es la función triángulo $\Lambda(t)$ que Ud. debe implementar en MATLAB.

Solución

Implementamos la función triangulo $\Lambda(t)$ como se indica en el script 15².

Script 15 Implementación de la función $\Lambda(t)$

```
function f = triangle(t)
    f = gate(t/2).*(1-abs(t));
end
```

La tranformada de Fourier de $x(t) = \Lambda(t/2)$ vendrá dada por.

$$\widehat{x}(\omega) = \mathcal{F}(x, t|\omega)$$

$$= \mathcal{F}\left(\Lambda, \frac{t}{2}|\omega\right)$$

$$= 2\mathcal{F}(\Lambda, t|2\omega)$$

$$= 2\operatorname{sinc}^{2}(\omega)$$

$$= 2\operatorname{sinc}^{2}(2\pi f)$$

$$\widehat{x}(f) = 2\operatorname{sinc}^{2}(2\pi f)$$

²Véase el problema 1 para mas detalles de las implementación

Ejecutamos el script dado en el enunciado para t = 0.8 y t = 0.08 y graficámos $|\hat{x}|$ vs. f

Figura 10 Gráfico de la función $\hat{x}(f)$ para T = 0.8 y T = 0.08

