Отчет о выполненой лабораторной работе 2.1.6

Котляров Михаил, Б01-402

1 Введение

Цель работы: : 1) определить изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях температуры, вычислить коэффициент Джоуля-Томсона; 2) вычислить по результатам опытов коэффициенты a и b модели Вандер-Ваальса, а также температуру инверсии $T_{\text{инв}}$.

Оборудование: трубка с пористой перегородкой; труба Дьюара; термостат жидкостной; термопара; вольтметр универсальный цифрововй; баллон с углекислым газом; манометр.

2 Теоретические сведения

Эффектом Дэсоуля—Томсона называется изменение температуры газа, медленно просачивающегося из области высокого в область низкого давления в условиях тепловой изоляции. В разреженных газах, которые приближаются по своим свойствам к идеальному, при таком течении температура газа не меняется. Таким образом, в эффекте Джоуля—Томсона проявляется отличие исследуемого газа от идеального.

Получим теоретическое выражения для расчёта величины эффекта Джоуля-Томсона. Так как через боковые стенки не происходит ни обмена теплом, ни передачи механической энергии, то:

$$A_1 - A_2 = P_1 V_1 - P_2 V_2 = (U_2 + \mu v_2^2 / 2) - (U_1 + \mu v_1^2 / 2),$$

 $H_1 - H_2 = \frac{\mu}{2} (v_2^2 / 2 - v_1^2 / 2).$

Рис. 1. Принципиальная схема эффекта Джоуля-Томсона

Правая часть оказывается принебрежимо малой. Тогда приходим к выводу, что эффект Джоуля-Томсона — это процесс, в котором сохраняется энтальпия:

$$H_1 \approx H_2$$
.

Энтальпия — функция состояния, зависящая, в общем случае, как от температуры T, так и от давления P. Поэтому в результате просачивания газа под действием перепада давления, равного по модулю $|\Delta P| = P_1 - P_2$, возникнет изменение его температуры $\Delta T = T_2 - T_1$. Коэффициентом Джоуля—Томсона называют отношение

$$\mu_{\text{Д-T}} = \frac{\Delta T}{\Delta P}.$$

Рассмотрим простейшую модель реального газа: газ Ван-дер-Ваальса. Термическое и калорическое уравнения состояния для него, как известно, имеют следующий вид:

$$(P + \frac{a}{V^2})(V - b) = RT,$$

$$U = C_V T - \frac{a}{V}.$$

Энтальпия газа Ван-дер-Ваальса:

$$H = U + PV = C_V T + RT \frac{V}{V - b} - \frac{2a}{V}.$$

Для упрощения можно воспользоваться следующим обстоятельством: газ в опыте является достаточно разреженным (его давление не превышает 5 атм) и довольно близок к идеальному. Поэтому его отличия от идеального следует учитывать только в эффекте Джоуля–Томсона, но не при вычислении объёма V по известным T и P. То есть, будем считать $V \approx \frac{RT}{P}, \frac{V}{V-b} \approx 1 + \frac{b}{V}, C_V + R \approx C_P$. В результате получим:

$$H \approx C_P T + P(b - \frac{2a}{V}),$$

$$\mu_{\text{JJ-T}} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_P}.$$
(1)

3 Экспериментальная установка

Схема установки для исследования эффекта Джоуля—Томсона в углекислом газе представлена на рис. 2. Основным элементом установки является трубка 1 с пористой перегородкой 2, через которую пропускается двуокись углерода CO_2 . Углекислый газ под повышенным давлением поступает в трубку через змеевик 5 из балластного баллона 6. Медный змеевик омывается водой и нагревает медленно протекающий через него газ до температуры воды в термостате. Температура воды измеряется встроенным в термостат термометром. Давление газа в трубке измеряется манометром M и регулируется вентилем B. Манометр M измеряет разность между давлением внутри трубки и наружным (атмосферным) давлением. Разность температур газа до и после перегородки измеряется термопарой медь—константан.

Рис. 2. Экспериментальная установка

4 Приборы и данные

- Цифровые мультиметры Вольтметр универсальный B7-78/1, погрешность измерения погрешность измерения постоянного напряжения 0.0035% + 0.0005% диапазона.
- Термостат жидкостный ТЖ-ТС-01, предел допускаемой погрешности установления заданной температуры не более $0,02^{\circ}C$, погрешность поддержания температуры не более $0,01^{\circ}C$.
- Манометр WIKA EN 837-1, класс точности 1,0.

5 Выполнение

1. Начальные показания приборов

$$t_0 = 13,9^{\circ}C; \varepsilon_0 = -0,002 \text{MB},$$

где t_0 - начальная температура термостата с водой, ε_0 - показания вольтметра **ВАЖНО!** Для уточнения, далее все значения напряжений на термопаре ε , указаны по модулю, но на мультиметре все они были отрицательными.

2. В каждой серии экспериментов для каждой температуры воды в термостате будем устанавливать давление и, когда показания вольтметра перестанут меняться, будем фиксировать напряжение на термопаре. Погрешность напряжения складывается из систематической погрешности и погрешности колебания величины. Поскольку $\sigma_{\varepsilon}^{\text{сист}} \ll \sigma_{\varepsilon}^{\text{кone6}}$, то

$$\sigma_\varepsilon = \sqrt{\sigma_\varepsilon^{\text{cuct}\,2} + \sigma_\varepsilon^{\text{ko,ne6}\,2}} \approx \sigma_\varepsilon^{\text{ko,ne6}} = 0,001 \text{mB}.$$

Разница температур термопары определяется по формуле $\Delta T = \frac{\Delta \varepsilon}{\frac{d\varepsilon}{dt}}$. Значения чувствительности медно-константановой термопары взяты из описания к работе. Далее приведены экспериментальные значения.

$T, ^{\circ}C$	Р, бар	ε , MB	ΔT ,° C	$\sigma_{\Delta T}$,° C	$arepsilon_{\Delta T},\%$
15.22 ± 0.02	4.10 ± 0.06	0.140 ± 0.001	3.518	0.025	0.71
15.33 ± 0.02	3.50 ± 0.06	0.111 ± 0.001	2.789	0.025	0.90
15.45 ± 0.02	3.00 ± 0.06	0.083 ± 0.001	2.085	0.025	1.20
15.60 ± 0.02	2.50 ± 0.06	0.065 ± 0.001	1.633	0.025	1.54

Таблица 1. Диапазон температуры 15,22 \div 15,60 °C

$T, ^{\circ}C$	<i>P</i> , бар	ε , mB	ΔT ,° C	$\sigma_{\Delta T}$,° C	$\varepsilon_{\Delta T},\%$
33.07 ± 0.02	4.05 ± 0.06	0.116 ± 0.001	2.795	0.024	0.86
33.04 ± 0.02	3.50 ± 0.06	0.090 ± 0.001	2.169	0.024	1.11
33.02 ± 0.02	3.00 ± 0.06	0.070 ± 0.001	1.687	0.024	1.43
33.00 ± 0.02	2.40 ± 0.06	0.051 ± 0.001	1.229	0.024	1.96
33.00 ± 0.02	1.90 ± 0.06	0.035 ± 0.001	0.843	0.024	2.86

Таблица 2. Диапазон температуры 33,00 \div 33,07 °C

$T, \circ C$	Р, бар	ε , mB	ΔT ,° C	$\sigma_{\Delta T}$,° C	$arepsilon_{\Delta T},\%$
45.04 ± 0.02	4.10 ± 0.06	0.107 ± 0.001	2.524	0.024	0.93
45.02 ± 0.02	3.50 ± 0.06	0.082 ± 0.001	1.934	0.024	1.22
45.00 ± 0.02	3.00 ± 0.06	0.066 ± 0.001	1.557	0.024	1.52
45.00 ± 0.02	2.60 ± 0.06	0.050 ± 0.001	1.179	0.024	2.00
45.00 ± 0.02	1.80 ± 0.06	0.028 ± 0.001	0.660	0.024	3.57

Таблица 3. Диапазон температуры $45,00 \div 45,04$ °C

$T, \circ C$	Р, бар	ε , MB	ΔT ,° C	$\sigma_{\Delta T}$,° C	$arepsilon_{\Delta T},\%$
56.91 ± 0.02	4.10 ± 0.06	0.102 ± 0.001	2.361	0.023	0.98
56.92 ± 0.02	3.40 ± 0.06	0.076 ± 0.001	1.759	0.023	1.32
56.93 ± 0.02	3.00 ± 0.06	0.061 ± 0.001	1.412	0.023	1.64
56.94 ± 0.02	2.50 ± 0.06	0.046 ± 0.001	1.065	0.023	2.17
56.96 ± 0.02	2.00 ± 0.06	0.030 ± 0.001	0.694	0.023	3.33

Таблица 4. Диапазон температуры $56.91 \div 56.96$ °C

3. По этим данным построим по МНК графики зависимости разности температур от перепада давления $\Delta T(\Delta P)$ для разных температур.

График №1 Зависимость разности температур от перепада давления $\Delta T(\Delta P)$

По наклону прямых получим значения коэффициентов Джоуля-Томсона для разных температур воды в термостате.

$N_{\bar{0}}$	$\mu_{ extsf{\Pi}- extsf{T}}, rac{ extsf{K}}{ extsf{fap}}$	$\sigma_{\mu_{ m Д-T}}, rac{ m K}{ m 6ap}$	$\varepsilon,\%$
1	1.201	0.046	3.87
2	0.896	0.037	4.12
3	0.810	0.030	3.75
4	0,792	0,018	2,235

Таблица 5. Коэффициенты Джоуля-Томсона для серий измерений 1-4

4. По данным таблицы 5 постром по МНК график зависимости коэффициента Джоуля-Томсона от обратной температуры $\mu_{\text{Д-T}}(\frac{1}{T})$. Температуру будем брать среднюю из значений для каждого диапазона. Также построим такую зависимость для табличных значений * коэффициентов Джоуля-Томсона.

^{*}в данной работе в местах, где не указано, табличные значения были взяты из книги Лабораторный практикум по общей физике Том I Термодинамика и молекулярная физика

График зависимости коэффициента Джоуля-Томсона μ от обратной температуры 1/Т

График 2. Зависимости коэффициента Джоуля-Томсона от обратной температуры $\mu_{\text{Д-T}}(\frac{1}{T})$

По наклонам прямых k и пересечению с осью ординат $\mu_0=-\frac{b}{C_p}$ определим коэффициенты a и b в уравнении состояния газа Ван-дер-Ваальса. Примем $R=8,31\frac{\Pi *}{\text{моль} \cdot K}$ и значение $C_p=37,1\frac{\Pi *}{\text{моль} \cdot K}$ возьмем из таблицы.

$$\begin{split} k^{_{^{3\text{KCII}}}} &= 963 \pm 161 \frac{K^2}{6\text{ap}} \Rightarrow a^{_{^{3\text{KCII}}}} = \frac{k^{_{^{3\text{KCII}}}}RC_p}{2} = 1,484 \frac{H \cdot \text{m}^4}{\text{mojib}^2}, \\ \sigma_{a^{_{^{3\text{KCII}}}}} &= a^{_{^{3\text{KCII}}}} \frac{\sigma_{k^{_{^{3\text{KCII}}}}}}{k^{_{^{3\text{KCII}}}}} = 0,249 \frac{H \cdot \text{m}^4}{\text{mojib}^2}, \\ a^{_{^{3\text{KCII}}}} &= 1,484 \pm 0,249 \frac{H \cdot \text{m}^4}{\text{mojib}^2} (\varepsilon = 16,75\%), \\ \mu_0^{_{^{3\text{KCII}}}} &= -2,183 \pm 0,026 \frac{K}{6\text{ap}} \Rightarrow b^{_{^{3\text{KCII}}}} = \mu_0^{_{^{3\text{KCII}}}}C_p = 8,10 \cdot 10^{-4} \frac{\text{m}^3}{\text{mojib}}, \\ \sigma_{b^{_{^{3\text{KCII}}}}} &= b^{_{^{3\text{KCII}}}} \frac{\sigma_{\mu_0^{_{^{3\text{KCII}}}}}}{\mu_0^{_{^{3\text{KCII}}}}} = 0,18 \cdot 10^{-4} \frac{\text{m}^3}{\text{mojib}}, \\ b^{_{^{3\text{KCII}}}} &= (8,10 \pm 0,18) \cdot 10^{-4} \frac{\text{m}^3}{\text{mojib}} (\varepsilon = 2,18\%), \\ k^{_{^{7\text{A}6\text{JI}}}} &= 685 \pm 54 \frac{K^2}{6\text{ap}} \Rightarrow a^{_{^{7\text{A}6\text{JI}}}} = \frac{k^{_{^{7\text{A}6\text{JI}}}}RC_p}{2} = 1,043 \frac{H \cdot \text{m}^4}{\text{mojib}^2}, \\ \sigma_{a^{_{^{7\text{A}6\text{JI}}}}} &= a^{_{^{7\text{A}6\text{JI}}}} \frac{\sigma_{k^{_{7\text{A}6\text{JI}}}}}{k^{_{7\text{A}6\text{JI}}}} = 0,082 \frac{H \cdot \text{m}^4}{\text{mojib}^2}, \\ a^{_{^{7\text{A}6\text{JI}}}} &= 1,043 \pm 0,082 \frac{H \cdot \text{m}^4}{\text{mojib}^2} (\varepsilon = 7,84\%), \\ \mu_0^{_{7\text{A}6\text{JI}}} &= -1,226 \pm 0,013 \frac{K}{6\text{ap}} \Rightarrow b^{_{^{7\text{A}6\text{JI}}}} = \mu_0^{_{7\text{A}6\text{JI}}}C_p = 4,490 \cdot 10^{-4} \frac{\text{m}^3}{\text{mojib}}, \\ \sigma_{b^{_{7\text{A}6\text{JI}}}} &= b^{_{7\text{A}6\text{JI}}} \frac{\sigma_{\mu_0^{_{7\text{A}6\text{JI}}}}}{\mu_0^{_{7\text{A}6\text{JI}}}} = 0,055 \cdot 10^{-4} \frac{\text{m}^3}{\text{mojib}}, \end{split}$$

$$b^{\text{таб.}\pi} = (4,490 \pm 0,055) \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJL}_b} (\varepsilon = 1,23\%).$$

По полученным коэффициентам определим температуру инверсии $T_{\text{инв}}$

$$\begin{split} T_{\text{инв}}^{\text{эксп}} &= \frac{2a^{\text{эксп}}}{Rb^{\text{эксп}}} = 441, 1K, \\ \sigma_{T_{\text{инв}}^{\text{эксп}}} &= T_{\text{инв}}^{\text{эксп}} \sqrt{\left(\frac{\sigma_{a^{\text{эксп}}}}{a^{\text{эксп}}}\right)^2 + \left(\frac{\sigma_{b^{\text{эксп}}}}{b^{\text{эксп}}}\right)^2} = 441, 1 \cdot \sqrt{0, 168^2 + 0, 022^2} = 74, 5K, \\ T_{\text{инв}}^{\text{эксп}} &= 441, 1K \pm 74, 5(\varepsilon = 16, 89\%), \end{split}$$

$$\begin{split} T_{\text{инв}}^{\text{таб}\pi} &= \frac{2a^{\text{таб}\pi}}{Rb^{\text{таб}\pi}} = 558, 8K, \\ \sigma_{T_{\text{инв}}^{\text{таб}\pi}} &= T_{\text{инв}}^{\text{таб}\pi} \sqrt{\left(\frac{\sigma_{a^{\text{таб}\pi}}}{a^{\text{таб}\pi}}\right)^2 + \left(\frac{\sigma_{b^{\text{таб}\pi}}}{b^{\text{таб}\pi}}\right)^2} = 558, 8 \cdot \sqrt{0,078^2 + 0,012^2} = 44, 4K, \\ T_{\text{инв}}^{\text{таб}\pi} &= 558, 8K \pm 44, 4(\varepsilon = 7,94\%). \end{split}$$

6 Результаты и обсуждения

1. Сравним полученные коэффициенты Джоуля-Томсона с табличными. Для этого по построенной зависимости табличных значений коэффициентов от обратных температур вычислим для наших диапазонов (температуры брались средние для каждого диапазона).

Значения коэффициентов в первой и четвертой сериях оказались наиболее приближенными к табличным.

T, K	$\mu_{\text{Д-T}}^{\text{эксп}}, \frac{K}{\text{бар}}$	$\mu_{\text{Д-T}}^{ ext{табл}}, \frac{K}{ ext{бар}}$	$\sigma_{\mu_{\mathrm{Д-T}}^{\mathfrak{s}_{\mathrm{KCH}}}}, \frac{K}{\mathrm{fap}}$	$\sigma_{\mu_{ extit{D-T}}^{ ext{ again}}}, rac{K}{ ext{ ext{ foap}}}$	$\varepsilon_{\mu_{\mathrm{A-T}}^{\mathtt{sken}}},\%$	$\varepsilon_{\mu_{ extit{ iny Ta}}^{ ext{ iny Ta}}, \%}$
288.40	1.201	1.150	0.046	0.051	3.87	4.45
306.03	0.896	1.013	0.037	0.116	4.12	11.50
318.01	0.810	0.929	0.030	0.118	3.75	12.76
329.93	0.792	0.851	0.018	0.059	2.23	6.94

Таблица 6. Экспериментальные и табличные значения коэффициента Джоуля-Томсона

Скорее всего это связано с тем, что в сериях 2 и 3 были измерены разницы температур при малых значениях перепадов давлений ($\Delta P \approx 1,8$ бар). Это сказывается на точности, поскольку при малой скорости потока газа нарушается условие отсутствия теплообмена газа с окружающей средой.

2. По построенному графику зависимости $\mu_{\text{Д-T}}(\frac{1}{T})$ мы определили коэффициенты a и b уравнения Ван-дер-Ваальса, а также температуру инверсии. Сравним экспериментальные (обозначение: $9\kappa cn$) значениями с табличными, полученными по табличным данным коэффициентов Джоуля-Томсона (Taбn1), а также табличными для критических температур (Taбn2).

Величина	Эксп	Табл1	Табл2	$\sigma_{ m Эксп}$	$\sigma_{ m Taбл1}$	$\sigma_{ m Taб\pi 2}$	$\varepsilon_{\mathfrak{S}_{\mathrm{Ken}}},\%$	$\varepsilon_{\mathrm{Табл1}},\%$	$\varepsilon_{\mathrm{Ta6}_{\mathrm{J}2}}$, %
$a, \frac{H \cdot M^4}{MOJIb^2}$	1.484	1.043	0.3652	0.249	0.082	1.1189	16.75	7.84	306.39
$b, 10^{-4} \frac{M^3}{MOJIB}$	8.10	4.490	0.428	0.18	0.055	7.672	2.18	1.23	1792.52
$T_{\text{инв}}, K$	441.1	558.8	2073*	74.5	44.4	1632	16.89	7.94	78.72

Таблица 7. Экспериментальные и табличные значения коэффициентов a, b и температуры инверсии $T_{\text{инв}}$

По результатам таблицы можно сделать вывод, что модель Ван-дер-Ваальса действительно не описывает с хорошей точностью газ для всего диапазона температур и давлений. Более того, конечная формула (1) получена с большим количеством приближений, что так же влияет на погрешность.

^{*}Табличное значение температуры инверсии для углекислого газа CO_2 взято из этого источника https://physics.spbstu.ru/userfiles/files/molec4-03.pdf

7 Выводы

- 1. Проведя 4 серии измерения разницы температур термопары от перепада давления для различных диапазонов температур воды в термостате, мы получили для них коэффициенты Джоуля-Томсона, построив графики (см. Таблица 5). Сравнили с табличными значениями, убедились в том, что они совпадают с учетом погрешности.
- 2. По полученным коэффициентам для диапазонов температур 1-4 построили графики зависимости $\mu_{\text{Д-T}}(\frac{1}{T})$. Убедились в том, что значения лежат на прямой в пределах погрешности. По параметрам прямой определили коэффициенты a, b в модели газа Ван-дер-Ваальса, а также температуру инверсии (см. Таблица 7). Из-за того, что модель является упрощенной и не подходит для всего диапазона температур и давлений, а также из-за большого количества упрощений при выводе формул для рассчетов значения сильно отличаются. Поэтому для определения этих величин данный метод исследования плохо применим.