

Relația de satisfacere

Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o interpretare a lui \mathcal{L} în \mathcal{A} .

Definiția 2.12

Fie φ o formulă. Spunem că:

- e satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 1$. Notație: $\mathcal{A} \vDash \varphi[e]$.
- e nu satisface φ în \mathcal{A} dacă $\varphi^{\mathcal{A}}(e) = 0$. Notație: $\mathcal{A} \not\vDash \varphi[e]$.

Corolarul 2.13

Pentru orice formule φ, ψ și orice variabilă x,

- (i) $\mathcal{A} \vDash \neg \varphi[e] \iff \mathcal{A} \not\vDash \varphi[e].$
- (ii) $\mathcal{A} \vDash (\varphi \to \psi)[e] \iff \mathcal{A} \vDash \varphi[e] \text{ implică } \mathcal{A} \vDash \psi[e] \iff \mathcal{A} \not\vDash \varphi[e] \text{ sau } \mathcal{A} \vDash \psi[e].$
- (iii) $A \models (\forall x \varphi)[e] \iff$ pentru orice $a \in A$, $A \models \varphi[e_{x \leftarrow a}]$.

Dem.: Exercițiu ușor.

Relația de satisfacere

Fie φ, ψ formule și x o variabilă.

Propoziția 2.14

- (i) $(\varphi \lor \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \lor \psi^{\mathcal{A}}(e);$
- (ii) $(\varphi \wedge \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \wedge \psi^{\mathcal{A}}(e)$;
- (iii) $(\varphi \leftrightarrow \psi)^{\mathcal{A}}(e) = \varphi^{\mathcal{A}}(e) \leftrightarrow \psi^{\mathcal{A}}(e);$
- $(iv) \ (\exists x \varphi)^{\mathcal{A}}(e) = \begin{cases} 1 & \mathsf{dac\check{a}\ exist\check{a}\ } a \in A \ \mathsf{a.\hat{i.}} \ \varphi^{\mathcal{A}}(e_{\mathsf{x} \leftarrow \mathsf{a}}) = 1 \\ 0 & \mathsf{altfel.} \end{cases}$

Dem.: Exercițiu ușor.

Corolarul 2.15

- (i) $A \vDash (\varphi \land \psi)[e] \iff A \vDash \varphi[e]$ și $A \vDash \psi[e]$.
- (ii) $A \vDash (\varphi \lor \psi)[e] \iff A \vDash \varphi[e] \text{ sau } A \vDash \psi[e].$
- (iii) $A \vDash (\varphi \leftrightarrow \psi)[e] \iff A \vDash \varphi[e] \operatorname{ddacă} A \vDash \psi[e].$
- (iv) $A \models (\exists x \varphi)[e] \iff \text{există } a \in A \text{ a.î. } A \models \varphi[e_{x \leftarrow a}].$

Semantică

Fie φ formulă a lui \mathcal{L} .

Definiția 2.16

Spunem că φ este adevărată într-o $\mathcal L$ -structură $\mathcal A$ dacă pentru orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e].$$

Spunem și că \mathcal{A} satisface φ sau că \mathcal{A} este un model al lui φ .

Notație: $A \models \varphi$

Definiția 2.17

Spunem că φ este formulă universal adevărată sau (logic) validă dacă pentru orice \mathcal{L} -structură \mathcal{A} ,

$$\mathcal{A} \models \varphi$$
.

Notație: $\models \varphi$

Semantică

Fie φ, ψ formule ale lui \mathcal{L} .

Definiția 2.18

 φ și ψ sunt logic echivalente dacă pentru orice $\mathcal L$ -structură $\mathcal A$ și orice evaluare $e:V\to A$,

$$\mathcal{A} \vDash \varphi[e] \iff \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \bowtie \psi$

Definiția 2.19

 ψ este consecință semantică a lui φ dacă pentru orice $\mathcal L$ -structură $\mathcal A$ și orice evaluare $e:V\to \mathcal A$,

$$\mathcal{A} \vDash \varphi[e] \quad \Rightarrow \quad \mathcal{A} \vDash \psi[e].$$

Notație: $\varphi \models \psi$

Observatie

- (i) $\varphi \vDash \psi$ ddacă $\vDash \varphi \rightarrow \psi$.
- (ii) $\varphi \vDash \psi$ ddacă $(\psi \vDash \varphi \ \text{și} \ \varphi \vDash \psi)$ ddacă $\vDash \psi \leftrightarrow \varphi$.

2

4

Echivalențe și consecințe logice

Propoziția 2.20

Pentru orice formule φ , ψ și orice variabile x, y,

$$\neg \exists x \varphi \quad \exists \quad \forall x \neg \varphi \tag{1}$$

$$\neg \forall x \varphi \quad \exists x \neg \varphi \tag{2}$$

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \forall x \varphi \wedge \forall x \psi \tag{3}$$

$$\forall x \varphi \vee \forall x \psi \models \forall x (\varphi \vee \psi) \tag{4}$$

$$\exists x (\varphi \wedge \psi) \models \exists x \varphi \wedge \exists x \psi \tag{5}$$

$$\exists x (\varphi \lor \psi) \quad \exists \ x \varphi \lor \exists x \psi \tag{6}$$

$$\forall x(\varphi \to \psi) \models \forall x\varphi \to \forall x\psi \tag{7}$$

$$\forall x(\varphi \to \psi) \models \exists x \varphi \to \exists x \psi \tag{8}$$

$$\forall x \varphi \models \exists x \varphi \tag{9}$$

Echi

Echivalențe și consecințe logice

$$\varphi \models \exists x \varphi \tag{10}$$

$$\forall x \varphi \models \varphi \tag{11}$$

$$\forall x \forall y \varphi \quad \exists \quad \forall y \forall x \varphi \tag{12}$$

$$\exists x \exists y \varphi \quad \exists \ y \exists x \varphi$$
 (13)

$$\exists y \forall x \varphi \models \forall x \exists y \varphi. \tag{14}$$

Dem.: Exercițiu.

Propoziția 2.21

Pentru orice termeni s, t, u,

(i)
$$\models t = t$$
;

(ii)
$$\models s = t \rightarrow t = s$$
;

(iii)
$$\models s = t \land t = u \rightarrow s = u$$
.

Dem.: Exercițiu ușor.

Egalitatea

Propoziția 2.22

Pentru orice $m \geq 1$, $f \in \mathcal{F}_m$, $R \in \mathcal{R}_m$ și orice termeni $t_i, u_i, i = 1, \dots, m$,

$$\models (t_1 = u_1) \land \dots \land (t_m = u_m) \rightarrow ft_1 \dots t_m = fu_1 \dots u_m \tag{15}$$

$$\vDash (t_1 = u_1) \land \ldots \land (t_m = u_m) \rightarrow (Rt_1 \ldots t_m \leftrightarrow Ru_1 \ldots u_m). \quad (16)$$

Dem.: Arătăm (15). Fie \mathcal{A} o \mathcal{L} -structură și $e: V \to A$ o evaluare a.î. $\mathcal{A} \vDash ((t_1 = u_1) \land \ldots \land (t_m = u_m))[e]$. Atunci $\mathcal{A} \vDash (t_i = u_i)[e]$ pentru orice $i \in \{1, \ldots, m\}$, deci $t_i^{\mathcal{A}}(e) = u_i^{\mathcal{A}}(e)$ pentru orice $i \in \{1, \ldots, m\}$. Rezultă că

$$(ft_1 \dots t_m)^{\mathcal{A}}(e) = f^{\mathcal{A}}(t_1^{\mathcal{A}}(e), \dots, t_m^{\mathcal{A}}(e)) = f^{\mathcal{A}}(u_1^{\mathcal{A}}(e), \dots, u_m^{\mathcal{A}}(e))$$
$$= (fu_1 \dots u_m)^{\mathcal{A}}(e)$$

Aşadar, $A \models (ft_1 \dots t_m = fu_1 \dots u_m)[e]$.

Variabile legate și libere

Definiția 2.23

Fie $\varphi = \varphi_0 \varphi_1 \dots \varphi_{n-1}$ o formulă a lui $\mathcal L$ și x o variabilă.

- ▶ spunem că variabila x apare legată pe poziția k în φ dacă $x = \varphi_k$ și există $0 \le i \le k \le j \le n-1$ a.î. (i,j)-subexpresia lui φ este o subformulă a lui φ de forma $\forall x \psi$;
- ▶ spunem că x apare liberă pe poziția k în φ dacă $x = \varphi_k$, dar x nu apare legată pe poziția k în ϕ ;
- ▶ x este variabilă legată (bounded variable) a lui φ dacă există un k a.î. x apare legată pe poziția k în φ ;
- ightharpoonup x este variabilă liberă (free variable) a lui φ dacă există un k a.î. x apare liberă pe poziția k în φ .

Exemplu

Fie $\varphi = \forall x(x = y) \rightarrow x = z$. Variabile libere: x, y, z. Variabile legate: x.

Notație: $FV(\varphi) := \text{mulțimea variabilelor libere ale lui } \varphi$.

Definiție alternativă

Mulțimea $FV(\varphi)$ a variabilelor libere ale unei formule φ poate fi definită și prin inducție pe formule:

$$FV(\varphi)$$
 = $Var(\varphi)$, dacă φ este formulă atomică;

$$FV(\neg \varphi) = FV(\varphi);$$

$$FV(\varphi \to \psi) = FV(\varphi) \cup FV(\psi);$$

$$FV(\forall x\varphi) = FV(\varphi) \setminus \{x\}.$$

Notație:
$$\varphi(x_1,\ldots,x_n)$$
 dacă $FV(\varphi)\subseteq\{x_1,\ldots,x_n\}$.

4

Interpretarea termenilor/formulelor

Propoziția 2.24

Pentru orice \mathcal{L} -structură \mathcal{A} și orice interpretări $e_1,e_2:V\to A$, pentru orice termen t,

dacă
$$e_1(v)=e_2(v)$$
 pentru orice variabilă $v\in Var(t)$, atunci $t^{\mathcal{A}}(e_1)=t^{\mathcal{A}}(e_2).$

Dem.: Exercițiu suplimentar.

Propoziția 2.25

Pentru orice \mathcal{L} -structură \mathcal{A} , orice interpretări $e_1, e_2: V \to \mathcal{A}$, pentru orice formulă φ ,

dacă
$$e_1(v) = e_2(v)$$
 pentru orice variabilă $v \in FV(\varphi)$, atunci $\mathcal{A} \models \varphi[e_1] \iff \mathcal{A} \models \varphi[e_2].$

Dem.: Exercițiu suplimentar.

4

Echivalențe și consecințe logice

Propoziția 2.26

Pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

$$\varphi \ \ \exists x \varphi$$
 (17)

$$\varphi \ \ \exists \ \ \forall x \varphi$$
 (18)

$$\forall x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \forall x \psi \tag{19}$$

$$\forall x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \forall x \psi \tag{20}$$

$$\exists x (\varphi \wedge \psi) \quad \exists \quad \varphi \wedge \exists x \psi \tag{21}$$

$$\exists x (\varphi \lor \psi) \quad \exists \quad \varphi \lor \exists x \psi \tag{22}$$

$$\forall x (\varphi \to \psi) \quad \exists \quad \varphi \to \forall x \psi$$
 (23)

$$\exists x (\varphi \to \psi) \quad \exists x \psi$$
 (24)

$$\forall x(\psi \to \varphi) \quad \exists x\psi \to \varphi \tag{25}$$

$$\exists x(\psi \to \varphi) \quad \exists \quad \forall x\psi \to \varphi$$
 (26)

Dem.: Exercițiu.

Interpretarea formulelor

Notație

Fie $t(x_1, \ldots, x_n)$ un termen. Scriem

$$t^{\mathcal{A}}[a_1,\ldots,a_n]$$

în loc de $t^{\mathcal{A}}(e)$, unde $e: V \to A$ este o (orice) interpretare a.î. $e(x_1) = a_1, \dots, e(x_n) = a_n$.

Notație

Fie $\varphi(x_1,\ldots,x_n)$ o formulă. Scriem

$$\mathcal{A} \vDash \varphi[\mathsf{a}_1,\ldots,\mathsf{a}_n]$$

în loc de $A \vDash \varphi[e]$, unde $e : V \to A$ este o (orice) interpretare a.î. $e(x_1) = a_1, \ldots, e(x_n) = a_n$.

Definiția 2.27

O formulă φ se numește enunț (sentence) dacă $FV(\varphi) = \emptyset$, adică φ nu are variabile libere.

Notație: $Sent_{\mathcal{L}}$:= mulțimea enunțurilor lui \mathcal{L} .

Propoziția 2.28

Dacă φ este un enunț, atunci

$$\mathcal{A} \vDash \varphi[e_1] \Longleftrightarrow \mathcal{A} \vDash \varphi[e_2]$$

pentru orice interpretări $e_1, e_2: V \to A$.

Dem.: Este o consecință imediată a Propoziției 2.25 și a faptului că $FV(\varphi) = \emptyset$.

Exemplu

- $ightharpoonup \models \exists x(x=x);$
- ▶ $\mathcal{A} \not\models \neg \exists x (x = x)$ pentru orice \mathcal{L} -structură \mathcal{A} .

13

Tautologii

Definiția 2.31

 φ este tautologie dacă $F(\varphi) = 1$ pentru orice \mathcal{L} -evaluare F.

Propoziția 2.32

Orice tautologie este validă.

Dem.: Fie \mathcal{A} o \mathcal{L} -structură și $e:V\to A$ o evaluare. Deoarece φ este tautologie și $V_{e,\mathcal{A}}$ este \mathcal{L} -evaluare, rezultă că $\varphi^{\mathcal{A}}(e)=V_{e,\mathcal{A}}(\varphi)=1$, adică $\mathcal{A}\vDash\varphi[e]$.

Exemplu

x = x este validă, dar nu e tautologie.

Tautologii

Noțiunea de tautologie se poate aplica și unui limbaj de ordinul întâi. Intuitiv: o tautologie este o formulă "adevărată" numai pe baza interpretărilor conectivelor \neg , \rightarrow .

Definiția 2.29

O \mathcal{L} -evaluare (de adevăr) este o funcție $F: Form_{\mathcal{L}} \to \{0,1\}$ cu următoarele proprietăți: pentru orice formule φ, ψ ,

- $ightharpoonup F(\neg \varphi) = \neg F(\varphi);$
- $F(\varphi \to \psi) = F(\varphi) \to F(\psi).$

Propoziția 2.30

Pentru orice \mathcal{L} -structură \mathcal{A} și orice evaluare $e: V \to A$, funcția

$$V_{e,\mathcal{A}}: Form_{\mathcal{L}} \to \{0,1\}, \quad V_{e,\mathcal{A}}(\varphi) = \varphi^{\mathcal{A}}(e)$$

este o \mathcal{L} -evaluare.

Dem.: Exercițiu ușor.

14