RAYALASEEMA UNIVERSITY COLLEGE OF ENGINEERING, KURNOOL - 518007

B. Tech I Semester (RU23) 1 Sessional Examinations - October-2024

LINEAR ALGEBRA AND CALCULUS (23AS119905)

24RUINOSA9

(Common to I Semester AI, CE, CSE, ECE, and ME)

Date: 14/10/2024 AN Max, Marks:30 Time: 90 min **All the Questions Carry EQUAL marks** *Answer ONE FULL question from each unit*

_	.No	Question	Unit	BT Level	CO covered	Marks Allotted
1	a)	Find the value of λ for which the system of equations $3x - y + 4z = 3$, $x + 2y - 3z = -2$, $6x + 5y + \lambda z = -3$	1	LA	COI	(8M)
	b)	form. $A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12 \end{bmatrix}$	I	LI	COI	(2M)
2	a)	Solve the system of equations using Gauss – Seidel iteration method. $27x + 6y - z = 85$ $6x + 15y + 2z = 72$ $x + y + 54z = 110$	Î	L4	COI	(8M)
	b)	Find the inverse of the matrix $A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$ by Gauss – Jordan Method.	I	LI	COI	(2M)
3		Diagonalize the matrix $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$ and hence calculate A^4 .	II	L4	CO2	(8M)
	b)	$x^2 + y^2 + z^2 + 4xy - 2yz + 6xz.$		27		(3.11)
4	a)	Find the Eigen values and Eigen vector of the matrix $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & 6 & 3 \end{bmatrix}$	11	L4	CO2	(8M)
	b)	Determine the nature of the quadratic form $x^2 + y^2 + z^2 - 2xy$.	11	1.4	CO2	(2M)
5	a)	Verify Cayley – Hamilton theorem for $A\begin{bmatrix} 2 & 1 & 2 \\ 5 & 3 & 3 \\ -1 & 0 & -2 \end{bmatrix}$. U	L.S	CO2	(8M)
	b)	Find the Eigen values of adj A if $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.	1	I L	CO2	(2M)
	,	(OR)		v L	6 CO2	(8M)
6	(a)	Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy - 2yz + 2zx$ to canonical form and hence state its nature, index and signature.				
	b)			V	I CO2	(2M)

P. Chaittin

RAYALASEEMA UNIVERSITY COLLEGE OF ENGINEERING, KURNOOL - 518007

B. Tech I Semester (RU23) 11 Sessional Examinations - December-2024 LINEAR ALGEBRA AND CALCULUS (23ASH9905)

(Common to I Semester Al, CE, CSE, ECE, and ME)

24RUIA05A9

Time: 90 min

Date: 11/12/2024 AN

Max. Marks:30 **All the Ouestions Carry EQUAL

		1 ime: 90 min Date: 11/12/2024 AN N	lax. Ma	rks:30		
		Answer ONE FULL question from each unit **All the Questions	Carry	<u>EQUAI</u>	_ marks**	
Q.	No	Question	Unit	BT Level	CO covered	Marks
ı	a)	State and Prove Lagrange's mean value theorem.	III	L4	CO3	Allotted (8M)
	b)	State Rolle's mean value theorem.	III	L1	CO3	(2M)
		(OR)	A Marie A		6.5	(2101)
2	a)	If $a < b$, then prove that				
		$\left \frac{b-a}{(1+b^2)} < tan^{-1}b - tan^{-1}a < \frac{b-a}{(1+a^2)} \text{ using} \right $				
		Lagrange's mean value theorem. Hence deduce the				
	1	following.	in	L4	CO3	(8M)
		$1) \frac{\pi}{4} + \frac{3}{25} < tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$				
		$\frac{4}{5\pi+4}$ $\frac{25}{3}$ $\frac{4}{4}$ $\frac{1}{6}$				
		$2)\frac{5\pi+4}{20} < tan^{-1}2 < \frac{\pi+2}{4}$				
	b)	State Cauchy's mean value theorem.		Lle	CO3	(2M)
3	a)	If $x = \sqrt{vw}$, $y = \sqrt{wu}$, $z = \sqrt{uv}$ and		777 T		(ZIVI)
150 150		$u = r \sin\theta \cos\theta, v = r \sin\theta \sin\theta, w = r \cos\theta,$				
		then find $J\left(\frac{x,y,z}{r,\theta,\emptyset}\right)$.	IV	L4	CO4	(8M)
	b)	If $f(x, y) = log(\sqrt{x^2 + y^2})$ then find $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$.	IV	L4	CO4	(2M)
		(OR)	101			
	a)	If $x^x y^y z^z = e$, show that at $x = y = z$,				
		$\frac{\partial^2 z}{\partial x \partial y} = -(x \log ex)^{-1}.$	IV	L4	CO4	(8M)
	b)	If $u = \frac{y}{x}$, $v = xy$, then find $J\left(\frac{u,v}{x,y}\right)$.	lV	L4	CO4	(2M
	a)	Evaluate $\int_0^2 \int_0^{\sqrt{2x-x^2}} (x^2 + y^2) dx dy$ by changing	V	L5	COS	(8M
		into polar coordinates.				(OIVI
	b)	Evaluate $\int_0^1 \int_0^1 \int_0^1 dx dy dz$.	ν	l.5	COS	(2M
		(OR)		100		2-12
	a)	Using triple integral, find the volume of the sphere whose radius is 'a' units.	V	1.6	COS	(8M
	b)	Evaluate $\int_0^{\pi} \int_0^{a \sin \theta} r dr d\theta$.	V	1.1	CO5	(2M