A Bayesian model for data flow: BikeMi

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

A BAYESIAN MODEL FOR DATA FLOW: BIKEMI

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti January 8, 2020

Politecnico di Milano

What we are doing

The BikeMi stations net in Milan

Two prospective of the problem

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

We followed two distinct paths:

Global model: the total volume of bikes travels in a specific day Y_t without considering the graph structure. This results in a single time series.

Network model: dividing in the different nodes and analysing the flow of bikes in the net. The dimensionality is much higher.

Poisson model

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Day by day Poisson:

$$\begin{cases} Y_t \sim \text{Po}(Y_t | \lambda_t) \\ \lambda_t = \exp\{\alpha + \boldsymbol{\beta} \cdot \mathbf{x}_t\} \\ \alpha \sim \mathcal{N}(0, \sigma_{\alpha}^2) \\ \beta_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_{\beta}^2) \end{cases}$$
 (1)

Poisson model

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

With covariates x_t :

- Y_{t-1} volume on the previous day
- Y_{t-7} volume on the same weekday of the previous week
- W_t dummy for weekday / weekend
- R_t, R_{t-1} dummies for rain in the current and previous day
- T_t mean temperature for the day
- S_t, M_t dummies for Saturday and Monday

Predictive distribution of the poisson model

Only 3 of 35 in the 90% credible interval

Andrea De Gobbis Lorenzo Ghilotti, Giorgio Meretti

$$\begin{cases} \mathbf{X}(t) = \mathbf{f}(\mathbf{X}(1:(t-1))) + \epsilon_1(t) \\ \mathbf{Y}(t) = \mathbf{g}(\mathbf{X}(t)) + \epsilon_2(t) \end{cases}$$
 (2)

with suitable initial conditions and priors

Elementary model with precisions

$$\begin{cases} Y_{t} = \mu_{t} + \gamma_{t} + \frac{1}{\sqrt{\tau_{\epsilon}}} \tilde{\epsilon}_{t} \\ \mu_{t} = \mu_{t-1} + \delta_{t-1} + \frac{1}{\sqrt{\tau_{\eta}}} \tilde{\eta}_{t} \\ \delta_{t} = \delta_{t-1} + \frac{1}{\sqrt{\tau_{v}}} \tilde{v}_{t} \\ \gamma_{t} = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \frac{1}{\sqrt{\tau_{w}}} \tilde{w}_{t} \\ \tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{v}_{t}, \tilde{w}_{t}, \stackrel{iid}{\sim} \mathcal{N}(0, 1) \end{cases}$$

$$(3)$$

Elementary model priors

$$\begin{cases}
\mu_{0} \sim \mathcal{N}(m, \tau_{m}) \\
\delta_{0} \sim \mathcal{N}(d, \tau_{d}) \\
\gamma_{0:(2-S)} \sim \mathcal{N}_{S-1}(\mathbf{g}, \tau_{g}\mathbf{I})
\end{cases}$$

$$\begin{cases}
\tau_{*} \sim Gamma(a_{*}, b_{*}), with * = \{\epsilon, \eta, v, w\} \\
\{\tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{v}_{t}, \tilde{w}_{t}, \mu_{0}, \delta_{0}, \gamma_{0:(-S+2)}, \tau_{\epsilon}, \tau_{\eta}, \tau_{v}, \tau_{w}\} \\
independent.
\end{cases}$$
(4)

Complete model with precisions

$$\begin{cases} Y_{t} = \mu_{t} + \gamma_{t} + \rho_{t} + \boldsymbol{\beta}^{T} \mathbf{z}_{t} + \frac{1}{\sqrt{\tau_{\epsilon}}} \tilde{\epsilon}_{t} \\ \mu_{t} = \mu_{t-1} + \delta_{t-1} + \frac{1}{\sqrt{\tau_{v}}} \tilde{\eta}_{t} \\ \delta_{t} = \delta_{t-1} + \frac{1}{\sqrt{\tau_{v}}} \tilde{v}_{t} \\ \gamma_{t} = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \frac{1}{\sqrt{\tau_{w}}} \tilde{w}_{t} \\ \rho_{t} = \alpha \rho_{t-1} + \frac{1}{\sqrt{\tau_{u}}} \tilde{u}_{t} \\ \tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{v}_{t}, \tilde{w}_{t}, \tilde{u}_{t} \stackrel{iid}{\sim} \mathcal{N}(0, 1) \end{cases}$$

$$(5)$$

Complete model priors

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

```
\begin{cases} \mu_{0} \sim \mathcal{N}(m, \tau_{m}) \\ \delta_{0} \sim \mathcal{N}(d, \tau_{d}) \\ \boldsymbol{\gamma}_{0:(2-S)} \sim \mathcal{N}_{S-1}(\mathbf{g}, \tau_{g}\mathbf{I}) \\ \rho_{0} \sim \mathcal{N}(r, \tau_{r}) \\ \boldsymbol{\beta} \sim \mathcal{N}_{p}(\mathbf{0}, \tau_{b}\mathbf{I}) \\ \alpha \sim \mathcal{N}(a, \tau_{a}) \\ \tau_{*} \sim Gamma(a_{*}, b_{*}), \ with \ * = \{\epsilon, \eta, v, w, u\} \\ \{\tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{u}_{t}, \tilde{w}_{t}, \tilde{v}_{t}, \mu_{0}, \delta_{0}, \boldsymbol{\gamma}_{0:(-S+2)}, \rho_{0} \, \boldsymbol{\beta}, \alpha, \tau_{\epsilon}, \tau_{\eta}, \tau_{v}, \tau_{w}, \tau_{u}\} \\ independent. \end{cases}
```

(6)

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Robust model with precisions

$$\begin{cases} Y_{t} = \mu_{t} + \gamma_{t} + \rho_{t} + \beta^{T} \mathbf{z}_{t} + \frac{1}{\sqrt{\tau_{\epsilon}}} \tilde{\epsilon}_{t} \\ \mu_{t} = avgpred(\mu_{t}) + avgpred(\delta_{t}) + \frac{1}{\sqrt{\tau_{\eta}}} \tilde{\eta}_{t} \\ \delta_{t} = avgpred(\delta_{t}) + \frac{1}{\sqrt{\tau_{v}}} \tilde{v}_{t} \\ \gamma_{t} = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \frac{1}{\sqrt{\tau_{w}}} \tilde{w}_{t} \\ \rho_{t} = \alpha \rho_{t-1} + \frac{1}{\sqrt{\tau_{u}}} \tilde{u}_{t} \\ \tilde{\epsilon}_{t}, \tilde{\eta}_{t}, \tilde{v}_{t}, \tilde{w}_{t}, \tilde{u}_{t} \stackrel{iid}{\sim} \mathcal{N}(0, 1) \end{cases}$$

$$(7)$$

where $avgpred(\phi_t)=\frac{1}{2}\phi_{t-1}+\frac{1}{3}\phi_{t-S}+\frac{1}{6}\phi_{t-2S}$ and same priors as before

Instability of the errors, au_ϵ explodes, bad autocorrelation

Instability of the errors, au_ϵ explodes, bad autocorrelation

Blocking the maximum variance, τ_* under control, partial mixing of state variables

Smaller induced variability, attempt of prediction with real weather.

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Comparison truncated-variance robust BSTS vs Poisson.

Observations inside credibility intervals:

- Poisson 3/35
- BSTS 24/42

WAIC:

- Poisson -0.0171
- BSTS -0.0160

Robust model for time zones with precisions

$$\begin{cases} Y_{th} = \mu_t + \gamma_t + \rho_t + \chi_k + \boldsymbol{\beta}^T \mathbf{z}_t + \frac{1}{\sqrt{\tau_{\epsilon}}} \tilde{\epsilon}_{th} \\ \mu_t = avgpred(\mu_t) + avgpred(\delta_t) + \frac{1}{\sqrt{\tau_{\eta}}} \tilde{\eta}_t \\ \delta_t = avgpred(\delta_t) + \frac{1}{\sqrt{\tau_{v}}} \tilde{v}_t \\ \gamma_t = \sum_{i=1}^{S-1} \gamma_{t+i-S} + \frac{1}{\sqrt{\tau_{w}}} \tilde{w}_t \\ \rho_t = \alpha \rho_{t-1} + \frac{1}{\sqrt{\tau_{u}}} \tilde{u}_t \\ \chi_k = \sum_{i=1}^{F-1} \chi_{k+i-F} + \xi \delta_{t(k)=6,7} + \frac{1}{\sqrt{\tau_{\zeta}}} \tilde{\zeta} \\ \tilde{\epsilon}_t, \tilde{\eta}_t, \tilde{v}_t, \tilde{w}_t, \tilde{u}_t, \tilde{\zeta} \stackrel{iid}{\sim} \mathcal{N}(0, 1) \end{cases}$$

$$(8)$$

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

where $avgpred(\phi_t) = \frac{1}{2}\phi_{t-1} + \frac{1}{3}\phi_{t-S} + \frac{1}{6}\phi_{t-2S}$, h = mod(k, 4) + 1 and priors of the same class as before

Robust truncated variance model for time zones

Two prospective of the problem

ndrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

We followed two distinct paths:

Global model: the total volume of bikes travels in a specific day Y_t without considering the graph structure. This results in a single time series.

Network model: dividing in the different nodes and analysing the flow of bikes in the net. The dimensionality is much higher.

Network model

For every (i,j) edge of the graph and $t\in 1:42$ we have $Y_{ij}(t)$ the number of travels from node i to j at day t.

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

Problem:

more than 4 million variables ⇒ Computationally untreatable

Solutions:

- clusterization through DBSCAN
- · simplification of the variables

Preprocessing clusterization with DBSCAN

Algorithm to divide the nodes into initial clusters. We introduced a modified version with a weight to break up the bigger clusters, minimizing the autorings presence.

From 334 nodes to 140.

A Bayesian model FOR data flow:

Andrea De Gobbis, Lorenzo Ghilotti, Giorgio Meretti

We are interested in the smallest Δt as possible but this would increase the number of variables \Rightarrow consider them as functional data.

$$V_i(t) = \lim_{\Delta t \to 0} \frac{N_i^{IN}(\Delta t) - N_i^{OUT}(\Delta t)}{\Delta t}$$

$$\Phi_i(t) = \int_0^t V_i(u) \, \mathrm{d}u$$

We can analyse when new bikes should be brought to which station.

BAYESIAN MODEL FOR DATA FLOW: BIKEMI