CPE301 - SPRING 2019

MIDTERM II

Student Name: John Duriman

Student #: 5002373995

Student Email: duriman@unlv.nevada.edu

Primary Github address: https://github.com/johnduriman/pirahnaplant.git

Directory: pirahnaplant/Midterms/Midterm II

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Parts used:

ESP8266 ESP01 WiFi module 5V Serial to USB Converter Atmega 328P Breadboard Jumper wires APDS 9960

To program the ESP01, I wired it with the converter using this schematic

Once programmed, I hooked up the APDS 9960 to the ATMEGA328P and used PD5 for SCL and PD4 for SDA.

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

```
MidtermII
                           🕶 🖨 🥔 float blue
€ blue
      ⊡#ifndef F_CPU
        #define F_CPU 16000000UL
        #endif
       #include <avr/io.h>
#include <util/delay.h>
#include <math.h>
       #include <math.h>
#include <stdlib.h>
#include <stdlib.h>
#include 'stdio.h>
#include "i2c_master.h"
#include "uart.h"
#include "APDS9960_def.h"
                                                                               /* Include standard library file */
/* Include standard library file */
/* Include I2C Master header file */
                                                                               /* Include USART header file */
       void usart_init(void);
       void usart_tx_string(char * data);
void usart_send(unsigned char ch);
void usart_print(char* str);
       #define APDS9960_WRITE 0x72
                                                                               //Address of device were sending to
       #define APDS9960_READ 0x73
                                                                               //Address of device were reading from
       float clear, red, blue, green;
     pvoid init_uart(uint16_t baudrate){
             uint16_t UBRR_val = (F_CPU/16)/(baudrate-1);
             UBRROH = UBRR_val >> 8;
            UBRR0L = UBRR_val;
            //Modus Asynchron 8N1 (8 Databits, No Parity, 1 Stopbit)
      □void uart_putc(unsigned char c){
             while(!(UCSR0A & (1<<UDRE0)));
                                                                               // wait until sending is possible
            UDR0 = c;
                                                                               // output character saved in c
    Midtermll
                          🕶 🚊 🥔 float blue
{$ blue
     □void uart_puts(char *s){
            while(*s)
                 uart_putc(*s);
     □void init_APDS9960 (void) {
                                                         /* Power up time > 100ms */
            i2c_start(APDS9960_I2C_ADDR);
i2c_write(APDS9960_ENABLE);
                                                         //0x39
                                                          //0x80
            i2c_write(APDS9960_PON);
i2c_stop();
                                                         //Power On
            i2c_start(APDS9960_I2C_ADDR);
i2c_write(APDS9960_ENABLE);
i2c_write(APDS9960_AEN);
                                                         //0x39
                                                         //0x80
                                                          //Enable ALS
            i2c stop():
            i2c_start(APDS9960_I2C_ADDR);
            i2c_write(APDS9960_ATIME);
i2c_write(0x86);
i2c_stop();
                                                         //Frame Synchronization & Digital Low Pass Filter (DLPF) setting
                                                         //Field value = 182, 72 cycles, 200 ms, Max Count = 66535
            i2c_start(APDS9960_I2C_ADDR);
i2c_write(APDS9960_CONTROL);
                                                         //ALS Gain Control
            i2c_write(AGAIN_1X);
i2c_stop();
     □void getreading(void){
             i2c_start(APDS9960_WRITE);
            i2c_write(APDS9960_CDATAL);
i2c_stop();
                                                    // set pointer
```

```
Midtermll
 main.c ⇒ ×
                                 ▼ 🛊 🥏 float blue
{$ blue
       □void getreading(void){
                i2c_start(APDS9960_WRITE);
                i2c_write(APDS9960_CDATAL);
                                                               // set pointer
               i2c stop();
                i2c_start(APDS9960_READ);
               /*Store the values */
clear = (((int)12c_read_ack()) | (int)12c_read_ack()<<8);
red = (((int)12c_read_ack()<<8) | (int)12c_read_ack());
blue = (((int)12c_read_ack()<<8) | (int)12c_read_ack());</pre>
               green = (((int)i2c_read_ack()<<8) | (int)i2c_read_ack());</pre>
               i2c stop();
       pint main(void)
               char buffer[20], float_[10];
                init_uart(9600);
               i2c_init();
init_APDS9960();
                while (1)
               {
                     getreading();
                     dtostrf( clear, 3, 2, float_ );
sprintf(buffer," clear = %s g\t",float_);
                     USART_SendString(buffer);
                     dtostrf( red, 3, 2, float_ );
sprintf(buffer," red = %s g\t",float_);
USART_SendString(buffer);
                     dtostrf( green, 3, 2, float_);
sprintf(buffer," green = %s g\t",float_);
USART_SendString(buffer);
```

3. SCREENSHOTS OF EACH TASK OUTPUT

4. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Here is what the ESP looked like when it was getting programmed.

Here is the initial setup of the APDS 9960

5. VIDEO LINKS OF EACH DEMO

6. GITHUB LINK OF THIS DA

https://github.com/johnduriman/pirahnaplant.git

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

John Duriman