Problem 1

Eclipses of the Jupiter's Satellite

A long time ago before scientists could measure the speed of light accurately, O Römer, a Danish astronomer studied the time eclipses of the Jupiter's satellite. He was able to determine the speed of light from observed periods of a satellite around the planet Jupiter. Figure 1 shows the orbit of the earth E around the sun S and one of the satellites M around the planet Jupiter. (He observed the time spent between two successive emergences of the satellite M from behind Jupiter).

A long series of observations of the eclipses permitted an accurate evaluation of the period of M. The observed period T depends on the relative position of the earth with respect to the frame of reference SJ as one of the coordinate axes. The average time of revolution is $T_0 = 42h\ 28\ m\ 16s$ and maximum observed period is $(T_0 + 15)s$.

Figure 1 : The orbits of the earth E around the sun and a satellite M around Jupiter J. The average distance of the earth E to the Sun is $R_E = 149.6 \ x \ 10^6$. The maximum distance is $R_{E,max} = 1.015 \ R_E$. The period of revolution of the earth is 365 days and of Jupiter is 11.9 years. The distance of the satellite M to the planet Jupiter $R_M = 422 \ x \ 10^3 \ km$.

- a. Use Newton's law of gravitation to estimate the distance of Jupiter to the Sun. Determine the relative angular velocity ω of the earth with respect to the frame of reference Sun-Jupiter (SJ). Calculate the speed of the earth with respect to SJ.
- b. Take a new frame which Jupiter is at rest with respect to the Sun. Determine the relative angular velocity ω of the earth with respect to the frame of reference Sun-Jupiter (SJ). Calculate the speed of the earth with respect to SJ.
- c. Suppose an observed saw M begin to emerge from the shadow when his position was at θ_k and the next emergence when he was at θ_{k+1} , k=1,2,3,... From these observations he got the apparent periods of revolution T (t_k) as a function of time t_k from Figure 1 and then use an approximate expression to explain how the distance influences the observed periods of revolution of M. Estimate the relative error of your approximate distance.

- d. Derive the relation between $d(t_k)$ and $T(t_k)$. Plot period $T(t_k)$ as a function of time of observation t_k . Find the positions of the earth when he observed maximum period, minimum period and true period of the satellite M.
- e. Estimate the speed of light from the above result. Pont out sources of errors of your estimation and calculate the order of magnitude of the error.
- f. We know that the mass of the earth = $5.98 \times 10^{24} \text{ kg}$ and 1 month = 27d 7h 3m. Find the mass of the planet Jupiter.