Chapter 3 Vector Spaces

3.1 Vector Spaces

- In general, the components in vectors can be real,
 complex or any element from a field.
- For simplicity, most of our discussions assume that the components in vectors are real.
- \bigcirc A vector space is a 4-tuple algebraic structure (F,V,+,*) that satisfies certain axioms.

- \diamondsuit *F* is a field (an algebraic structure that satisfies certain axioms). Its elements are formally called scalars (or informally as numbers).
- \diamondsuit In most discussions of the course, F is simply R (set of real numbers).
- \diamondsuit Near the end of the course, F is extended to C (set of complex numbers).
- \Diamond In general, F can be any field.

- *: scalar multiplication (more precisely, scalar-vector multiplication)
- (F,V,+,*) is usually simply denoted as V, for brevity.
- The axioms for a vector space:
 - 1. If u and v are objects in V, then u + v is in V.
 - 2. u + v = v + u
 - 3. u + (v + w) = (u + v) + w

- 4. There is an object 0 in V, called a zero vector for V, such that 0 + u = u + 0 = u for all u in V.
- 5. For each u in V, there is an object —u in V, called a negative of u, such that
- u + (-u) = (-u) + u = 0.
- 6. If k is any scalar and u is any object in V, then ku (abbreviation for k*u) is in V.
- 7. k (u + v) = ku + kv

- 8. (k + 1) u= ku + 1u
- 9. k(lu) = (kl) (u)
- 10. 1u = u
- ♦ N.B. We do not prove axioms. They are simply accepted as the "rules of the game."
- Alternatively, we can define a vector space via group and field.
- Group ((G,+)) satisfies
 - \Diamond closure

- \Diamond existence of identity (denoted by 0)
- existence of inverse
- commutativity (for abelian/commutative group)
- \bigcirc Field ((F,+,*)) satisfies
 - \Diamond (*F*,+) is a commutative group.
 - \Diamond ($F \setminus \{0\},*$) is a commutative group.
 - \Diamond distributiveness: (a+b)*c = a*c+b*c

- \bigcirc Vector space ((F,V,+,*)) satisfies
 - \Leftrightarrow F is a field.
 - \Diamond (V,+) is a commutative group
 - ♦ Axioms 6 10 on pp. 49 50
- Examples of vector spaces:
 - \Diamond R^{n} or C^{n} (called "n-Euclidean space")
 - \diamondsuit $R^{m\times n}$ or $C^{m\times n}$ (set of mxn matrices with real/complex elements)
 - ⟨ real-valued functions }

- \Diamond {polynomials of degree \leq n}
- ♦ A plane through the origin
- Some properties of vectors
 - \Diamond 0v =0 (0v is an abbreviation of 0*v)
 - \Diamond k0=0
 - $\langle \rangle$ (-1) $\mathbf{v} = -\mathbf{v}$
 - $\langle \rangle$ k*v=0 \rightarrow k=0 or v=0

3.2 Subspaces

- \bigcirc <u>Def</u> Let (F,V,+,*) be a v.s. (vector space). If W is a subset of V and (F,W,+,*) is a v.s., then W is a subspace of V.
- Examples of subspaces:
 - \diamondsuit Lines through the origin of \mathbb{R}^3
 - \Diamond {polynomials of degree \leq n} in {polynomials}

- $\langle \langle \mathbf{x} | \mathbf{A} \mathbf{x} = \mathbf{0} \rangle \text{ in } R^{n \times 1} \text{ (for } \mathbf{A} : m \times n)$
- \Diamond {**Ax**} (i.e. range of **x**) in $R^{m\times 1}$ (for **A**:mxn)
- \bigcirc Notice that a line or a plane in \mathbb{R}^3 that does not pass through the origin is not a subspace.
- Linear combinations of vectors
 - \Diamond **w**= k_1 **v**₁+ k_2 **v**₂+...+ k_r **v**_r
 - \Diamond span: $((\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r)) = \{k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + ... + k_r \mathbf{v}_r\}$
 - ♦ A span is a subspace.

 $((\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r))$ is the smallest subspace that contains $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$.

3.3 Linear Independence

- \bigcirc <u>Def</u> S={ $\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_r$ } is said to be linearly independent (l.i.) iff
 - $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \dots + k_r \mathbf{v}_r = 0 \rightarrow k_1 = k_2 = \dots = k_r = 0$
 - \Diamond not l.i. \equiv l.d. (linearly dependent)
- Some theorems regarding l.i.

- \diamondsuit S is 1.d. if some $\mathbf{v}_i = 1.c.$ (other vectors).
- \diamondsuit S is 1.i. if no $\mathbf{v}_i = 1.c.$ (other vectors).
- \Diamond { $\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_r,\mathbf{0}$ } is 1.d.
- \diamondsuit Let S be a subset with r vectors in \mathbb{R}^n . If r>n, then S is 1.d.

3.4 Basis and Dimension

 \bigcirc <u>Def</u> B={ $\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n$ } is a basis of V iff it satisfies two conditions:

- \diamondsuit 1 B is 1.i.
- \diamondsuit 2 B spans V (i.e. $((\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n)) = V$).
- Thm Given B: a basis of V. Any vector in V can be written as a unique l.c. of basis vectors (i.e. vectors in B).
- Def A basis B is said to be an ordered basis (o.b.)
 when the order of basis vectors is also specified.
 - coordinate vector of a vector wrt an o.b.
 - \diamondsuit standard basis for $R^{n\times 1}$

- \diamondsuit standard basis for P_n
- A vector space V can be finite-dimensional or infinite-dimensional:
 - finite-dimensional: V has a basis consisting finite number of vectors
 - infinite-dimensional: basis consists of infinite number of vectors
 - We focuses on the finite-dim case.

- \underline{Thm} Let V be a finite-dimensional v.s. and $B=\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\}$ be a basis of it. Then, the two statements below are true:

 - \diamondsuit Consequence of $\diamondsuit 1$ and $\diamondsuit 2$: All bases of V have the same number of vectors.

- \bigcirc <u>Def</u> dimension: dim(V) = number of basis vectors (in any basis)
- Some theorems on basis and dimension:
 - \bigcirc Given dim(V)=n, then a set of n vectors is a basis if either it is l.i. or it spans V.
 - Every set that spans V contains a basis for V within it.
 - Every l.i. set of V can be part of a basis for V.

 \diamondsuit Let W be a subspace of V. Then, dim(W) \leq dim(V). Moreover, if dim(W)=dim(V), then W=V.

- 3.5 Row/Column Space and Nullspace
- \bigcirc <u>Def</u> Row space of **A**: {1.c.(rows of **A**)}
 - \Diamond *Thm* Ero's do not change row-space(**A**).
- \bigcirc A procedure for finding a basis of $S = ((\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n))$:

- \diamondsuit 1 Use \mathbf{v}_i 's as rows to form a matrix \mathbf{A} .
- \diamondsuit 2 Find **R**=rref(**A**).
- \diamondsuit 3 {nonzero rows of **R**} is a basis of **S**.
- \bigcirc <u>Def</u> Column space of **A**: {1.c.(columns of **A**)}
 - \diamondsuit Define a mapping from $R^{n\times 1}$ to $R^{m\times 1}$ by $\mathbf{y}=\mathbf{T_A}(\mathbf{x})=\mathbf{A}\mathbf{x}$. The range of $\mathbf{T_A}$ is defined to be $\{\mathbf{A}\mathbf{x}|\text{all }\mathbf{x} \text{ in } R^{n\times 1}\}$.
 - \diamondsuit **Ax** is virtually a l.c. of **A**'s col's, with elements of **x** as the coeffs of combination.

- \diamondsuit Obviously, range(T_A) = col-space(A).
- \bigcirc <u>Def</u> Null space of A: $\{x | Ax = 0\}$
 - \Diamond Thm Ero's do not change null-space(**A**).
- © <u>Thm</u> Given A:mxn. Row, column, and null spaces are subspaces of $R^{1\times n}$, $R^{m\times 1}$, and $R^{n\times 1}$, respectively.

- \bigcirc Solutions to **Ax**=**b**:
 - \Diamond particular solution (\mathbf{x}_p)
 - \Diamond homogeneous solution (\mathbf{x}_h)
 - \Diamond general solution: $\mathbf{x}_g = \mathbf{x}_p + \mathbf{x}_h$

- 3.6 Rank and Nullity of a matrix
- \bigcirc Thm Row-space(**A**) and col-space(**A**) have the same dimension.

- \Diamond rank(**A**)=number of the leading variables in the general solution of **A**x=**0**.
- \bigcirc <u>Def</u> Nullity(**A**)=dim(null-space(**A**)).
 - \Diamond nullity(**A**)=number of the free parameters in the general solution of **A**x=**0**.
- \bigcirc Thm If **A** has n columns, then rank(**A**)+nullity(**A**)=n.

- Thm If Ax=b is a linear system of m equations in n unknowns, then the statements below are equivalent:
 - \diamondsuit 1 **Ax=b** is consistent for every **b** in $R^{m\times 1}$.
 - \diamondsuit 2 ((column vectors of **A**))= $R^{m\times 1}$.
 - \diamondsuit 3 rank(**A**)=m.
 - \Diamond If rank(**A**)=r, then the general solution contains n-r parameters.

Some equivalent statements regarding invertibility of a matrix:

If A is an $n \times n$ matrix, and if $T_A : R^{n \times 1} \rightarrow R^{n \times 1}$ is multiplication by A, then the following are equivalent:

- \Diamond A is invertible.
- $\langle Ax = 0 \rangle$ has only the trivial solution.
- \diamondsuit The reduced row-echelon form of A is I_n .

- \diamondsuit **A** is expressible as a product of elementary matrices.
- \diamondsuit $A\mathbf{x} = \mathbf{b}$ is consistent for every $n \times 1$ matrix \mathbf{b} .
- \diamondsuit $A\mathbf{x} = \mathbf{b}$ has exactly one solution for every $n \times 1$ matrix \mathbf{b} .
- $\Diamond \det(A) \neq 0.$
- \diamondsuit The range of T_A is $R^{n\times 1}$.
- \diamondsuit T_A is one-to-one.

- \Diamond The column vectors of **A** are 1.i.
- \Diamond The row vectors of **A** are 1.i.
- \diamondsuit The column vectors of \mathbf{A} span $\mathbf{R}^{n\times I}$.
- \diamondsuit The row vectors of **A** span $R^{I\times n}$.
- \diamondsuit The column vectors of \mathbf{A} form a basis for $R^{n\times 1}$.
- \diamondsuit The row vectors of **A** form a basis for $R^{1\times n}$.
- \Diamond **A** has rank *n*.
- \diamondsuit **A** has nullity 0.