A detailed analysis of $\rho_F(T)$ can be found in Section IV.5.6 of Kato (1966). In particular we recall that the poles of R(·,T) with finite algebraic multiplicity belong to $\rho_F(T)$. Conversely, an element of the unbounded component of $\rho_F(T)$ either belongs to $\rho(T)$ or is a pole of finite algebraic multiplicity. Thus $r_{ess}(T)$ can be characterized as follows

(3.8) $r_{ess}(T)$ is the smallest $r \in \mathbb{R}_+$ such that every $\lambda \in \sigma(T)$, $|\lambda| > r$ is a pole of finite algebraic multiplicity.

Now, if $T = (T(t))_{t \ge 0}$ is a strongly continuous semigroup then VIII.1, Lemma 4 of Dunford-Schwartz (1958) applied to the function $t \to \log \|T(t)\|_{ess}$ ensures that

(3.9) $\omega_{\text{ess}}(T) := \lim_{t \to \infty} \frac{1}{t} \log \|T(t)\|_{\text{ess}} = \inf \{\frac{1}{t} \log \|T(t)\|_{\text{ess}} : t > 0\}$ is well defined (possibly $-\infty$). By the definition of $\omega_{\text{ess}}(T)$ and by (3.6) we have

(3.10)
$$r_{ess}(T(t)) = exp(t \cdot \omega_{ess}(T))$$
 , $t \ge 0$.

Obviously, $\omega_{\rm ess} \le \omega$ and equality occurs if and only if $r_{\rm ess}({\rm T}(t)) = r({\rm T}(t))$ for $t \ge 0$.

If $\omega_{\rm ess}<\omega$ there exists an eigenvalue λ of T(t) satisfying $|\lambda|={\rm r}({\rm T}({\rm t}))$, hence by Theorem 6.3 below there exists $\lambda_1\in{\rm P}\sigma({\rm A})$ such that Re $\lambda_1=\omega$. Thus $\omega_{\rm ess}<\omega$ implies ${\rm s}({\rm A})=\omega({\rm T})$, i.e., we have

(3.11)
$$\omega(T) = \max\{\omega_{ess}(T), s(A)\}.$$

As a final observation we point out that

(3.12)
$$\omega_{ess}(T) = \omega_{ess}(S)$$

whenever T is generated by A and S is generated by A + K for some compact operator K (see Prop.2.8 and Prop.2.9 of B-IV).

4. THE SPECTRUM OF INDUCED SEMIGROUPS

In the previous section we tried to decompose a semigroup into the direct sum of two, hopefully simpler objects. Here we present other methods to reduce the complexity of a semigroup and its generator. Forming subspace or quotient semigroups as in A-I,3.2, A-I,3.3 are such methods. But also the constructions of new semigroups on canonically associated spaces such as the dual space, see A-I,3.4, or the F-product, see A-I,3.6, might be helpful. We review these construc-