Optimization by Gradient Boosting

Thomas Gravier -Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

Optimization by Gradient Boosting Gerard Biau et Benoît Cadre

Thomas Gravier - Theotime Le Hellard

08 Janvier 2025

Contexte

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

• Contexte : on a des données $\mathscr{D}_n = \{(X_1, Y_1), ..., (X_2, Y_2)\}$ iid, on cherche une fonction $F: \mathcal{X} \mapsto \mathbb{R}$ minimisant un risque empirique : $C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$ En passant sur une distribution : $C(F) = \mathbb{E}\psi(F(X), Y)$

Contexte

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

• Contexte : on a des données $\mathscr{D}_n = \{(X_1, Y_1), ..., (X_2, Y_2)\}$ iid, on cherche une fonction $F: \mathcal{X} \mapsto \mathbb{R}$ minimisant un risque empirique : $C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$ En passant sur une distribution : $C(F) = \mathbb{E} \psi(F(X), Y)$

• **Gradient boosting**: construit progressivement un F par somme de termes provenant d'un \mathscr{F} , de sorte qu'on cherche $\inf_{F \in lin(\mathscr{F})} C(F)$ Par exemple en prenant \mathscr{F} les arbres de décisions, on additionne à F un $f = \sum_{i=1}^k \beta_i \mathbb{1}_{A_i}$.

Contexte

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

• Contexte : on a des données $\mathscr{D}_n = \{(X_1, Y_1), ..., (X_2, Y_2)\}$ iid, on cherche une fonction $F: \mathcal{X} \mapsto \mathbb{R}$ minimisant un risque empirique : $C_n(F) = \frac{1}{n} \sum_{i=1}^n \psi(F(X_i), Y_i)$ En passant sur une distribution : $C(F) = \mathbb{E} \psi(F(X), Y)$

- **Gradient boosting**: construit progressivement un F par somme de termes provenant d'un \mathscr{F} , de sorte qu'on cherche $\inf_{F \in lin(\mathscr{F})} C(F)$ Par exemple en prenant \mathscr{F} les arbres de décisions, on additionne à F un $f = \sum_{j=1}^k \beta_j \mathbb{1}_{A_j}$.
- \Rightarrow En notant ξ une sub diff de ψ , on est tenté de faire une descente de gradient stochastique en prenant $f_t = -\xi(F_t(X), Y)$, sauf qu'on est contraint à chercher dans \mathscr{F} .

Algorithmes

Optimization by Gradient Boosting

Thomas Gravie Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

Algorithme 1: par dévelopement de Taylor à l'ordre 1, $C(F) - C(F + wf) \simeq -w \langle \nabla C(F), f \rangle_{\mu_X}$; ainsi pour maximiser la descente on prend :

$$f_{t+1} \in arg \ max_{f \in \mathscr{F}} - \mathbb{E}[\xi(F_t(X), Y)f(X)]$$

 $F_{t+1} = F_t + w_{t+1}f_{t+1}$

Algorithmes

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

Algorithme 1: par dévelopement de Taylor à l'ordre 1, $C(F) - C(F + wf) \simeq -w \langle \nabla C(F), f \rangle_{\mu_X}$; ainsi pour maximiser la descente on prend :

$$f_{t+1} \in arg\ max_{f \in \mathscr{F}} - \mathbb{E}[\xi(F_t(X), Y)f(X)]$$

 $F_{t+1} = F_t + w_{t+1}f_{t+1}$

Algorithme 2 : directement en cherchant le $f \in \mathscr{F}$ le plus proche du pas de gradient :

$$f_{t+1} \in arg \ min_{f \in \mathscr{P}} \mathbb{E}[-\xi(F_t(X), Y) - f(X)]^2$$

qui devient :

$$f_{t+1} \in arg \ min_{f \in \mathscr{P}}[2\mathbb{E}(\xi(F_t(X), Y)f(X)) + ||f||_{\mu_X}^2]$$

 $F_{t+1} = F_t + \nu f_{t+1}$

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

But : Prouver que ces algorithmes convergent vers l'optimal : $\lim_{t\to\infty} C(F_t) = \inf_{F\in lin(\mathscr{F})} C(F)$

Optimization by Gradient Boosting

Thomas Gravie Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

But : Prouver que ces algorithmes convergent vers l'optimal : $\lim_{t\to\infty} C(F_t) = \inf_{F\in lin(\mathscr{F})} C(F)$

• ${\bf A}_1$: Les dérivées de ψ sont localement bornées et donc C l'est : $E(\psi(0,Y))<\infty$; et

$$^{sup}_{G \in L^{2}(\mu_{X}): ||G-F||_{\mu_{Y}} \leq \delta} (E|\partial_{x}^{-}\psi(G(X),Y)|^{2} + E|\partial_{x}^{+}\psi(G(X),Y)|^{2}) < \infty$$

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

But: Prouver que ces algorithmes convergent vers l'optimal: $\lim_{t\to\infty} C(F_t) = \inf_{F\in lin(\mathscr{F})} C(F)$

- \mathbf{A}_1 : Les dérivées de ψ sont localement bornées et donc C l'est : $E(\psi(0,Y))<\infty$; et $^{sup}_{G\in L^2(\mu_X):||G-F||\mu_Y} \leq \delta^{(E|\partial_X^-\psi(G(X),Y)|^2+E|\partial_X^+\psi(G(X),Y)|^2)<\infty}$
- A_2 : $\psi(.,y)$ est α -Strongly Convex (et donc C l'est).

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

But: Prouver que ces algorithmes convergent vers l'optimal: $\lim_{t\to\infty} C(F_t) = \inf_{F\in lin(\mathscr{F})} C(F)$

• ${\bf A_1}$: Les dérivées de ψ sont localement bornées et donc C l'est : $E(\psi(0,Y))<\infty$; et

$$^{sup}_{G\in L^2(\mu_X):||G-F||\mu_X}{\leq}\delta^{(E|\partial_X^-\psi(G(X),Y)|^2+E|\partial_X^+\psi(G(X),Y)|^2)}{<}\infty$$

- A_2 : $\psi(.,y)$ est α -Strongly Convex (et donc C l'est).
- **A**₃ : Le gradient de ψ est L-Lipschitz version faible : $\forall x_1, x_2 \quad |\mathbb{E}(\xi(x_1, Y) \xi(x_2, Y) \mid X)| \le L|x_1 x_2|$ version forte : $|\partial_x \psi(x_1, y) \partial_x \psi(x_2, y)| \le L|x_1 x_2|$

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

But: Prouver que ces algorithmes convergent vers l'optimal: $\lim_{t\to\infty} C(F_t) = \inf_{F\in lin(\mathscr{F})} C(F)$

- \mathbf{A}_1 : Les dérivées de ψ sont localement bornées et donc C l'est : $E(\psi(0,Y))<\infty$; et $\sup_{sup_{G\in L^2(\mu_X):||G-F||\mu_Y\leq \delta}(E|\partial_x^-\psi(G(X),Y)|^2+E|\partial_x^+\psi(G(X),Y)|^2)<\infty}$
- A_2 : $\psi(.,y)$ est α -Strongly Convex (et donc C l'est).
- **A**₃ : Le gradient de ψ est L-Lipschitz version faible : $\forall x_1, x_2 \quad |\mathbb{E}(\xi(x_1, Y) \xi(x_2, Y) \mid X)| \le L|x_1 x_2|$ version forte : $|\partial_x \psi(x_1, y) \partial_x \psi(x_2, y)| \le L|x_1 x_2|$
- $\mathbf{A_4}$: Dans le cas d'un $\psi(x,y) = \phi(x,y) + \gamma x^2$; avoir ϕ localement Lipschitz en x:

$$\forall p \geq 0, \exists \zeta(p) > 0, \forall x_1, x_2, y \in \mathbb{R}^2 \times \mathscr{Y} \text{ avec } \max(|x_1|, |x_2|) \leq p$$
$$\Rightarrow |\phi(x_1, y) - \phi(x_2, y)| \leq \zeta(p)|x_1 - x_2|$$

Les théorèmes de convergence

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

A1 dérivées bornées, A2 Strongly convex, A3 gradient ψ L-Lipschitz, A4 ϕ localement Lipschitz.

• Théorème 3.1 : A_1 et A_3 (faible), alors l'Algo 1 converge vers $C(F^*)$ optimal.

En rajoutant A_2 CV dans la closure et $F_t \to F^*$.

Note: dans la preuve il faut

$$w_{t+1} = min(w_t, -(2L)^{-1}\mathbb{E}[\xi(F_t(X), Y)f_{t+1}(X)])$$

Les théorèmes de convergence

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

mplementatio

Conclusion

A1 dérivées bornées, A2 Strongly convex, A3 gradient ψ L-Lipschitz, A4 ϕ localement Lipschitz.

- Théorème 3.1 : A_1 et A_3 (faible), alors l'Algo 1 converge vers $C(F^*)$ optimal. En rajoutant A_2 CV dans la closure et $F_t \to F^*$. Note : dans la preuve il faut $w_{t+1} = \min(w_t, -(2L)^{-1}\mathbb{E}[\xi(F_t(X), Y)f_{t+1}(X)])$
- Théorème 3.2 : A_1 , A_2 et A_3 (faible), et $0 < \nu < 1/2L$, alors l'Algo 2 converge idem. Pour la convergence $F_t \to F^*$ il faut A_3 (fort).

Théorème pour éviter l'overfit

Optimization by Gradient Boosting

Fhomas Gravier -Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

Théorème 4.1: conditions pour ne pas *overfit*. Dans le contexte empirique, pour n données, on aboutit à un \hat{F}_n optimal sur ces n données, mais donc risque d'overfit. But : pour n grandissant $C(\hat{F}_n) \to C(F^*)$ sur la vraie distribution. Idée : limiter la taille de \mathscr{F}_n disponible quand on a n données.

Théorème pour éviter l'overfit

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

Théorème 4.1:

Contexte : $\psi(x,y) = \phi(x,y) + \gamma_n x^2$ avec \mathscr{F} des decision trees et $\bar{\phi} = \sup_{y} \phi(0,y) < \infty$.

 ${\sf A}_1$ et ${\sf A}_2$ sont vérifiées ; requière en plus ${\sf A}_3$ et ${\sf A}_4$; et le controle sur la taille des decision trees :

$$\gamma_n o 0$$
; $N o \infty$; $\frac{log N}{n \cdot \nu_n} o 0$; une densité g pour X avec

$$0 < inf_X g \le sup_X g < \infty$$
; et $rac{1}{\sqrt{n
u_n \gamma_n}} \zeta(\sqrt{rac{2ar{\phi}}{
u_n \gamma_n \, inf_X g}}) o 0$

Pour aboutir à $\lim_{n\to\infty} A(\bar{F}_n) = A(F^*)$;

où A est l'objectif sans la régularisation :

$$A_n(F) = \frac{1}{n} \sum_{i=1}^{n} \phi(F(X_i), Y_i); A(F) = \mathbb{E}(\phi(F(X), Y))$$

Étude des hypothèses

Optimization by Gradient Boosting

Thomas Gravier -Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

- A_1 (i.e. dérivées bornées) est raisonnable : le gradient ne doit pas exploser localement (sup sur une boule $< \infty$).
- A_2 (i.e. strongly convex) très commun dans les preuves d'optimisation, donne l'unicité et la convergence des suites (ici F_n) en plus de celle des valeurs (ici $C(F_n)$). Passe au besoin par une régularisation.

Étude des hypothèses

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

 A₃ idem dans les cours d'optimisation, commun d'avoir cette hypothèse de *smoothness*: le gradient est L-Lipschitz.

Par ailleurs, l'idée d'une inégalité faible, avec juste l'espérance, et une forte en tout point, nous rappelle la démonstration de la descente de gradient stochastique : On avait : $\nabla J(\theta) = \mathbb{E}_w(g(\theta,w))$; donc le g est notre ξ ici; et forte $||g(\theta,w)||_2^2 \leq B^2$; faible $E(||g(\theta,w)||_2^2) \leq B^2$

Étude des hypothèses

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusio

 A₃ idem dans les cours d'optimisation, commun d'avoir cette hypothèse de smoothness : le gradient est L-Lipschitz.

Par ailleurs, l'idée d'une inégalité faible, avec juste l'espérance, et une forte en tout point, nous rappelle la démonstration de la descente de gradient stochastique : On avait : $\nabla J(\theta) = \mathbb{E}_w(g(\theta,w))$; donc le g est notre ξ ici; et forte $||g(\theta,w)||_2^2 \leq B^2$; faible $E(||g(\theta,w)||_2^2) \leq B^2$

 A₄ va avec toutes les hypothèses qui l'accompagne, mais est satisfait par toutes les loss convexes standards.

Remarques / critiques

Optimization by Gradient Boosting

Thomas Gravier -Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

- Les iterations des algos sont théoriques, avec $f_{t+1} \in arg\ max_{f \in \mathscr{F}} \mathbb{E}...;\ w_{t+1} = min(w_t, -(2L)^{-1} \mathbb{E}[\xi(F_t(X), Y)f_{t+1}(X)]),$ là où les algos pratiques sont heuristiques
- Le théorème 4.1 est clé : sous couvert que les algos convergent, et des hypothèses, pas d'overfit.

Remarques / critiques

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

• Pour la régularisation, ils proposent $\psi(x,y) = \phi(xy) + \gamma x^2$, mais en pratique la régularisation porte généralement sur la structure / les poids de la fonction (le w); pas les valeurs de F(x). D'ailleurs XGBoost introduit le regularized objective comme :

$$\mathcal{L}(\phi) = \sum_{i} I(\hat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{k})$$
$$\Omega(f) = \gamma T + \frac{1}{2} \lambda ||w||^{2}$$

Remarques / critiques

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion

• Pour la régularisation, ils proposent $\psi(x,y) = \phi(xy) + \gamma x^2$, mais en pratique la régularisation porte généralement sur la structure / les poids de la fonction (le w); pas les valeurs de F(x). D'ailleurs XGBoost introduit le regularized objective comme :

$$\mathcal{L}(\phi) = \sum_{i} I(\hat{y}_{i}, y_{i}) + \sum_{k} \Omega(f_{k})$$
$$\Omega(f) = \gamma T + \frac{1}{2} \lambda ||w||^{2}$$

 Sur les notations, entre A, A_jⁿ, A_n, Aⁿ(x)... qui désigne d'un coté des sets de l'arbre, de l'autre l'objectif non régularisé.

Idea of Gradient Boosting Decision Tree

Optimization by Gradient Boosting

Thomas Gravie Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

Figure – Architecture of the Gradient Boosting Decision Tree (Source : Deng et AI)

Project Architecture

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentatio

Implementation

Conclusion

The project was implemented as follows with CART weak learner:

- boosting_fromscratch/
 - deep_learning/
 - loss_functions.py: Contains loss functions used for model optimization, such as Mean Squared Error and Log-Loss.
 - supervised learning/
 - decision_tree.py : Implements decision trees for classification and regression.
 - gradient_boosting.py : Contains the implementation of Gradient Boosting.
 - utils/
 - data_manipulation.py : Functions for data preprocessing.
 - data_operation.py: Mathematical functions used in the algorithms.

Gradient Boosting Classifier Test

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentation

Implementation

Conclusion

Dataset	Implementation	Accuracy (%)	Training Time (s)	Inference Time (s)
Iris	Boosting from scratch	92.3	9.2	0.01
Iris	Scikit-learn	94.0	0.22	0.001
Wine Quality	Boosting from scratch	83.5	90.0	0.02
Wine Quality	Scikit-learn	87.5	0.31	0.001

Table – Comparison of Gradient Boosting implementations on Iris and Wine Quality datasets.

Performance Comparison: Custom vs Scikit-learn

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentatio

Implementation

Conclusion

• Decision Tree:

- Threshold Calculation: Scikit-learn uses histogram-based methods, and not all treshold
- Data Manipulation: Concatenates X and y (memory-intensive), Scikit-learn manipulates data indices directly.
- Stopping Criteria: Scikit-learn adds impurity-based early stopping to limit complexity
- Gradient Boosting:
 - Gradient Updates: Scikit-learn fully vectorizes this process.
 - Tree Training: Multi-threading
 - Memory Management : Scikit-learn optimizes memory via index-based manipulation.

Modifications to Gradient Boosting

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentatio

Implementation

Conclusion

Objective : Adapt the Gradient Boosting algorithm to satisfy the theorem's conditions and avoid overfitting.

Key Changes:

- Dynamic regularization : A regularization term $\gamma_n = \frac{1}{n}$ is added to the gradient update.
- Gradient stabilization : The gradient includes a regularization term $\gamma_n x^2$ to control convergence and avoid divergence.

Impact: Ensures convergence to F^* while maintaining model generalization.

Evaluating Overfitting in Gradient Boosting (Wine Quality Dataset)

Optimization by Gradient Boosting

Thomas Gravier Theotime Le Hellard

Paper Presentatio

Implementation

Conclusion

Dataset Size (%)	Model	Train Error	Test Error	Gap (Test - Train)
Small (10%)	Gradient Boosting (Base)	Low	High	Large
Small (10%)	Gradient Boosting (Modified)	Slightly Higher	Lower	Small
Medium (30%)	Gradient Boosting (Base)	Very Low	Moderate	Moderate
Medium (30%)	Gradient Boosting (Modified)	Low	Slightly Lower	Small
Large (100%)	Gradient Boosting (Base)	Very Low	Low	Small
Large (100%)	Gradient Boosting (Modified)	Low	Low	Very Small

Table – Comparison of overfitting with and without modifications to Gradient Boosting on the Wine Quality dataset.

Conclusion

Optimization by Gradient Boosting

Thomas Gravier -Theotime Le Hellard

Paper Presentation

Implementatio

Conclusion