Calcium

From Wikipedia, the free encyclopedia

Calcium is a chemical element with symbol **Ca** and atomic number 20. Calcium is a soft gray Group 2 alkaline earth metal, fifth-most-abundant element by mass in the Earth's crust. The ion Ca²⁺ is also the fifth-most-abundant dissolved ion in seawater by both molarity and mass, after sodium, chloride, magnesium, and sulfate.^[4] Free calcium metal is too reactive to occur in nature. Calcium is produced in supernova nucleosynthesis.

Calcium is essential for living organisms, particularly in cell physiology where movement of the calcium ion into and out of the cytoplasm functions as a signal for many cellular processes. As a major material used in mineralization of bone, teeth and shells, calcium is the most abundant metal by mass in many animals.

Notable characteristics

Calcium is reactive and relatively soft for a metal. Although harder than lead, it can be cut with a knife with difficulty. It is a silvery metallic element that can be extracted by electrolysis from a fused salt like calcium chloride. ^[52] When exposed to the air, it rapidly forms a gray-white coating of calcium oxide and calcium nitride. In bulk form (typically as chips or "turnings"), the metal is somewhat difficult to ignite, more difficult even than magnesium chips; but, when lit, the metal burns in air with a brilliant high-intensity orange-red light. Calcium metal reacts with water, producing hydrogen gas at a moderate rate without generating much heat, making it useful for generating hydrogen. ^[53] In powdered form, however, the reaction with water is extremely rapid, as the increased surface area of the powder accelerates the reaction. Part of the reason for the slowness of the calcium-water reaction is a partial passivation (chemically protective coating) of insoluble white calcium hydroxide; in acidic solutions, where this compound is more soluble, calcium reacts vigorously.

Calcium, 20Ca

Spectral lines of calcium

General properties

Name, symbol calcium, Ca

Appearance dull gray, silver; with a pale

yellow tint[1]

Calcium in the periodic table

Atomic number (Z) 20

Group, block group 2 (alkaline earth metals),

s-block

Period period 4

Standard atomic weight (\pm) (A_r)

40.078(4)^[2]

Electron configuration

[Ar] 4s²

per shell 2, 8, 8, 2

Physical properties

Phase solid

Flame test. Brick-red color originates from calcium.

With a density of 1.54 g/cm³,^[54] calcium is the lightest of the alkaline earth metals; magnesium (specific gravity 1.74) and beryllium (1.84) are denser though lighter in atomic mass. From strontium onward, the alkali earth metals become denser with increasing atomic mass. Calcium has two allotropes.^[55]

Calcium metal has a higher electrical resistivity than copper or aluminium, yet weight-for-weight, due to its much lower density, it is a better conductor than either. Its use as such in terrestrial applications is usually limited by its high reactivity with air; however, it has potential for use as wiring in off-world applications.^[56]

Calcium is the fifth-most-abundant element by mass in the human body, where it is an important cellular ionic messenger with many functions. Calcium also serves as a structural element in bone. It is the relatively high atomic number of calcium that causes bone to be radio-opaque. Of the human body's solid components after drying and burning of organics (as for example, after cremation), about a third of the total "mineral" mass remaining is the approximately one kilogram of calcium that composes the average skeleton (the remainder being mostly phosphorus and oxygen).

H and K lines

Visible spectra of many stars, including the Sun, exhibit strong emission lines of singly ionized calcium. Prominent among these are the H-line at 3968.5 Å and the K line at 3933.7 Å of singly ionized calcium, or Ca II. In the Sun or other stars with low temperatures, the prominence of the H and K lines in the

 Melting point
 1115 K (842 °C, 1548 °F)

 Boiling point
 1757 K (1484 °C, 2703 °F)

Density near r.t. 1.55 g/cm³

when liquid, at m.p. 1.378 g/cm³

Heat of fusion 8.54 kJ/mol
Heat of 154.7 kJ/mol

vaporization

Molar heat 25.929 J/(mol·K)

capacity

Vapor pressure

P (Pa)	1	10	100	1 k	10 k	100 k
at T (K)	864	956	1071	1227	1443	1755

Atomic properties

Oxidation states +2, $+1^{[3]}$ (a strongly basic

oxide)

Electronegativity Pauling scale: 1.00

Ionization 1st: 589.8 kJ/mol energies 2nd: 1145.4 kJ/mol

3rd: 4912.4 kJ/mol

(more)

Atomic radius empirical: 197 pm

Covalent radius 176±10 pm

Van der Waals

radius

Miscellanea

231 pm

Crystal structure face-centered cubic (fcc)

Speed of sound 3810 m/s (at 20 °C)

thin rod

Thermal 22.3 μ m/(m·K) (at 25 °C)

visible spectra can be an indication of strong magnetic activity in the chromosphere. Periodic variations of these active regions can indicate the rotation periods of these stars.^[57]

Isotopes

Calcium has five stable isotopes (40 Ca, 42 Ca, 43 Ca, 44 Ca and 46 Ca), plus one more (48 Ca) that has such a long half-life, it can also be considered stable for all practical purposes. The 20% range in relative mass among naturally occurring calcium isotopes is greater than for any element other than hydrogen and helium. Calcium also has a cosmogenic isotope, radioactive 41 Ca, which has a half-life of 103,000 years. Unlike cosmogenic isotopes produced in the atmosphere, 41 Ca is produced by neutron activation of 40 Ca, primarily in the top metre of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41 Ca has received much attention in stellar studies because it decays to 41 K, a critical indicator of solar-system anomalies.

Ninety-seven percent of naturally occurring calcium is in the form of 40 Ca, one of the daughter products of 40 K decay, along with 40 Ar. While K-Ar dating has been used extensively in the geological sciences, the prevalence of 40 Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K-Ca age dating.

⁴⁰Ca has a nucleus of 20 protons and 20 neutrons and is the heaviest stable isotope of any element that has equal numbers of protons and neutrons. In supernova explosions, calcium is formed from the reaction of carbon with various numbers of alpha particles (helium nuclei), until the most common calcium isotope (containing 10 helium nuclei) has been synthesized.

Isotope fractionation

As with the isotopes of other elements, a variety of processes fractionate, or alter the relative abundance of, calcium isotopes.^[61] The best studied of these processes is the mass-dependent fractionation of calcium isotopes that

expansion

Thermal 201 W/(m·K)

conductivity

Electrical 33.6 n Ω ·m (at 20 °C)

resistivity

Magnetic ordering diamagnetic

Young's modulus 20 GPa

Shear modulus 7.4 GPa

Bulk modulus 17 GPa

Poisson ratio 0.31

Mohs hardness 1.75

Brinell hardness 170-416 MPa

CAS Number 7440-70-2

History

Discovery and first isolation

Humphry Davy (1808)

Most stable isotopes of calcium

iso	NA	half-life	DM	DE (MeV)	DP		
⁴⁰ Ca	96.941%	is stable with 20 neutrons					
⁴¹ Ca	trace	1.03×10 ⁵ y	ε	-	⁴¹ K		
⁴² Ca	0.647%	is stable with 22 neutrons					
⁴³ Ca	0.135%	is stable with 23 neutrons					
⁴⁴ Ca	2.086%	is stable with 24 neutrons					
⁴⁵ Ca	syn	162.7 d	β-	0.258	⁴⁵ Sc		
⁴⁶ Ca	0.004%	is stable with 26 neutrons					
⁴⁷ Ca	syn	4.536 d	β-	0.694, 1.99	⁴⁷ Sc		
		4.550 a	γ	1.297	-		
⁴⁸ Ca	0.187%	4.3×10 ¹⁹ y	β-β-	4.274	⁴⁸ Ti		

accompanies the precipitation of calcium minerals, such as calcite, aragonite and apatite, from solution. Isotopically light calcium is preferentially incorporated into minerals, leaving the solution from which the mineral precipitated enriched in isotopically heavy calcium. At room temperature the magnitude of this fractionation is roughly 0.25‰ (0.025%) per atomic mass unit (AMU). Mass-dependent differences in calcium isotope composition conventionally are expressed by the ratio of two isotopes (usually 44 Ca/ 40 Ca) in a sample compared to the same ratio in a standard reference material. 44 Ca/ 40 Ca varies by about 1% among common earth materials. $^{[62]}$

Calcium isotope fractionation during mineral formation has led to several applications of calcium isotopes. In particular, the 1997 observation by Skulan and DePaolo^[63] that calcium minerals are isotopically lighter than the solutions from which the minerals precipitate is the basis of analogous applications in medicine and in paleooceanography. In animals with skeletons mineralized with calcium, the calcium isotopic composition of soft tissues reflects the relative rate of formation and dissolution of skeletal mineral. In humans, changes in the calcium isotopic composition of urine have been shown to be related to changes in bone mineral balance. When the rate of bone formation exceeds the rate of bone resorption, the ration ⁴⁴Ca/⁴⁰Ca in soft tissue rises. Soft tissue ⁴⁴Ca/⁴⁰Ca falls when bone resorption exceeds bone formation. Because of this relationship, calcium isotopic measurements of urine or blood may be useful in the early detection of metabolic bone diseases like osteoporosis.^[64]

A similar system exists in the ocean, where ⁴⁴Ca/⁴⁰Ca in seawater tends to rise when the rate of removal of Ca²⁺ from seawater by mineral precipitation exceeds the input of new calcium into the ocean, and fall when calcium input exceeds mineral precipitation. It follows that rising ⁴⁴Ca/⁴⁰Ca corresponds to falling seawater Ca²⁺ concentration, and falling ⁴⁴Ca/⁴⁰Ca corresponds to rising seawater Ca²⁺ concentration. In 1997 Skulan and DePaolo presented the first evidence of change in seawater ⁴⁴Ca/⁴⁰Ca over geologic time, along with a theoretical explanation of these changes. More recent papers have confirmed this observation, demonstrating that seawater Ca²⁺ concentration is not constant, and that the ocean probably never is in "steady state" with respect to its calcium input and output. ^{[65][66]} This has important climatological implications, as the marine calcium cycle is closely tied to the carbon cycle (see below).

External links

Wikipedia: Calcium (https://en.wikipedia.org/wiki/Calcium)