Estruturas Discretas

Funções Propriedades, Função inversa/inversível e Composição

Profa. Helena Caseli helenacaseli@dc.ufscar.br

Função

Domínio, Contradomínio e Imagem

- Os <u>primeiros</u> elementos dos pares ordenados de f vêm do domínio
- Os <u>segundos</u> elementos dos pares ordenados de f vêm do contradomínio
- O conjunto de todos os segundos elementos dos pares ordenados de f é a imagem

Funções

- Propriedades
 - Sobrejetora
 - Injetora
 - Bijetora
- Função inversa
- Função inversível
- Composição de funções
- Contagem de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Uma função f: S → T é dita sobrejetora se sua imagem é igual ao seu contradomínio
 - Não há elementos de T sem associação com algum elemento de S

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Uma função f: S → T é dita sobrejetora se sua imagem é igual ao seu contradomínio
 - Não há elementos de T sem associação com algum elemento de S
 - Exemplos
 - a) $A = \{0, 1, 2, 3, 4\} \in B = \{5, 7, 8, 9\}$ $f: A \to B$ $f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$
 - → É sobrejetiva = ?
 - b) $A = \{ a, b, c, d \} \in B = \{ r, s, t, u \}$ $f : A \to B \quad f = \{ (a,s), (b,u), (c,r), (d,s) \}$
 - → É sobrejetiva = ?

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Uma função f: S → T é dita sobrejetora se sua imagem é igual ao seu contradomínio
 - Não há elementos de T sem associação com algum elemento de S
 - Exemplos
 - a) $A = \{0, 1, 2, 3, 4\} \in B = \{5, 7, 8, 9\}$ $f: A \to B$ $f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$
 - → É sobrejetiva = SIM
 - b) $A = \{ a, b, c, d \} \in B = \{ r, s, t, u \}$ $f : A \to B \quad f = \{ (a,s), (b,u), (c,r), (d,s) \}$
 - → É sobrejetiva = NÃO, pois t ∈ B não é imagem de nenhum elemento de A

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Provando que uma função é sobrejetora
 - Tanto a imagem quanto o contradomínio de uma função são conjuntos de elementos
 - Assim, provar que a imagem (R) é igual ao contradomínio (T) é provar a igualdade de dois conjuntos
 - R = T sse $R \subseteq T$ e $T \subseteq R$

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Provando que uma função é sobrejetora
 - Tanto a imagem quanto o contradomínio de uma função são conjuntos de elementos
 - Assim, provar que a imagem (R) é igual ao contradomínio (T) é provar a igualdade de dois conjuntos
 - R = T sse $R \subseteq T$ e $T \subseteq R$
 - **•** (⇒)

Para provar que $R \subseteq T$ basta usar a definição de função que diz que a imagem R é subconjunto do contradomínio T, ou seja $R \subseteq T$

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Provando que uma função é sobrejetora
 - Tanto a imagem quanto o contradomínio de uma função são conjuntos de elementos
 - Assim, provar que a imagem (R) é igual ao contradomínio (T) é provar a igualdade de dois conjuntos
 - R = T sse $R \subseteq T$ e $T \subseteq R$
 - **•** (⇐)

Para provar que $T \subseteq R$, vamos escolher um elemento arbitrário t de T e mostrar que ele também pertence a R, ou seja, é a imagem de algum elemento s do domínio S, t = f(s)

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Vamos provar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora

Prova:

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora.

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Vamos provar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora

Prova:

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora.

Para demonstrar essa propriedade, vamos considerar um número real arbitrário $r \operatorname{com} x = \sqrt[3]{r}$.

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Vamos provar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora

Prova:

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora.

Para demonstrar essa propriedade, vamos considerar um número real arbitrário r com $x = \sqrt[3]{r}$. Como x é a raiz cúbica de um número real, sabemos que x é um número real e, portanto, pertence ao domínio de f sendo possível calcular $f(x) = (\sqrt[3]{r})^3 = r$, ou seja, r é imagem de x sob f.

Propriedades de funções

- Função sobrejetora (ou sobrejetiva, sobrejeção ou sobre)
 - Vamos provar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora

Prova:

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é sobrejetora.

Para demonstrar essa propriedade, vamos considerar um número real arbitrário r com $x = \sqrt[3]{r}$. Como x é a raiz cúbica de um número real, sabemos que x é um número real e, portanto, pertence ao domínio de f sendo possível calcular $f(x) = (\sqrt[3]{r})^3 = r$, ou seja, r é imagem de x sob f. Logo, qualquer elemento do contradomínio (\mathbb{R}) é a imagem, sob f, de um elemento do domínio (\mathbb{R}) e, assim, provamos que a função f é sobrejetora.

- Função injetora (ou injetiva, injeção ou um para um)
 - Uma função f: S → T é dita injetora se <u>nenhum</u> elemento de T é a imagem sob f de <u>dois</u> elementos distintos de S
 - Elementos diferentes de S têm imagens diferentes em T

Propriedades de funções

- Função injetora (ou injetiva, injeção ou um para um)
 - Uma função f: S → T é dita injetora se <u>nenhum</u> elemento de T é a imagem sob f de <u>dois</u> elementos distintos de S
 - Elementos diferentes de S têm imagens diferentes em T
 - Exemplos

→ É injetiva = ?

```
a) A = {1, 2, 3, 4} e B = {1, 2, 3, 4, 5}
f: A → B f = {(1,2), (2,5), (3,1), (4,4)}
★ injetiva = ?
b) A = { a, b, c, d} e B = {r, s, t, u}
f: A → B f = {(a,s), (b,u), (c,r), (d,s)}
```

- Função injetora (ou injetiva, injeção ou um para um)
 - Uma função f: S → T é dita injetora se <u>nenhum</u> elemento de T é a imagem sob f de <u>dois</u> elementos distintos de S
 - Elementos diferentes de S têm imagens diferentes em T
 - Exemplos

a)
$$A = \{1, 2, 3, 4\} \in B = \{1, 2, 3, 4, 5\}$$

 $f: A \to B$ $f = \{(1,2), (2,5), (3,1), (4,4)\}$

- → É injetiva = SIM
- b) $A = \{ a, b, c, d \} \in B = \{ r, s, t, u \}$ $f : A \to B \quad f = \{ (a,s), (b,u), (c,r), (d,s) \}$
- → É injetiva = NÃO, pois o elemento *a* e o elemento *d* do conjunto A levam ao mesmo elemento *s* do conjunto B

- Propriedades de funções
 - Função injetora (ou injetiva, injeção ou um para um)
 - Provando que uma função é injetora
 - Supomos que existem elementos s_1 e s_2 de S com $f(s_1) = f(s_2)$ e mostramos que $s_1 = s_2$

Propriedades de funções

- Função injetora (ou injetiva, injeção ou um para um)
 - Provando que uma função é injetora
 - Supomos que existem elementos s₁ e s₂ de S
 com f(s₁) = f(s₂) e mostramos que s₁ = s₂

Prova

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é injetora.

Portanto, f é injetora.

Propriedades de funções

- Função injetora (ou injetiva, injeção ou um para um)
 - Provando que uma função é injetora
 - Supomos que existem elementos s₁ e s₂ de S
 com f(s₁) = f(s₂) e mostramos que s₁ = s₂

Prova

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é injetora.

Para demonstrar essa propriedade, vamos considerar x e y números reais arbitrários, ou seja, $x \in \mathbb{R}$ e $y \in \mathbb{R}$ com f(x) = f(y).

Portanto, f é injetora.

Propriedades de funções

- Função injetora (ou injetiva, injeção ou um para um)
 - Provando que uma função é injetora
 - Supomos que existem elementos s₁ e s₂ de S
 com f(s₁) = f(s₂) e mostramos que s₁ = s₂

Prova

Seja x um número real. Vamos mostrar que $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^3$ é injetora.

Para demonstrar essa propriedade, vamos considerar x e y números reais arbitrários, ou seja, $x \in \mathbb{R}$ e $y \in \mathbb{R}$ com f(x) = f(y). Como consequência temos que $x^3 = y^3$, ou seja, $x^*x^*x = y^*y^*y$, o que só pode ser verdade se x = y.

Portanto, f é injetora.

- Função bijetora (ou bijetiva ou apenas bijeção)
 - Uma função f: S → T é dita bijetora se é, <u>ao mesmo</u> tempo, injetora e sobrejetora
 - Todos os elementos do contradomínio estão associados a <u>exatamente um</u> elemento do domínio

Propriedades de funções

- Função bijetora (ou bijetiva ou apenas bijeção)
 - Uma função f: S → T é dita bijetora se é, <u>ao mesmo</u> tempo, injetora e sobrejetora
 - Todos os elementos do contradomínio estão associados a <u>exatamente um</u> elemento do domínio
 - Exemplos

a)
$$A = \{1, 2, 3, 4, 5\}$$
 e $B = \{a, b, c, d, e\}$
 $f: A \to B$ $f = \{(1,a), (2,e), (3,b), (4,c), (5,d)\}$

• É bijetiva = ?

b)
$$A = \{a, b, c, d\} \in B = \{r, s, t, u\}$$

 $f : A \to B \quad f = \{(a,s), (b,u), (c,r), (d,s)\}$

• É bijetiva = ?

Propriedades de funções

- Função bijetora (ou bijetiva ou apenas bijeção)
 - Uma função f: S → T é dita bijetora se é, <u>ao mesmo</u> tempo, injetora e sobrejetora
 - Todos os elementos do contradomínio estão associados a <u>exatamente um</u> elemento do domínio
 - Exemplos

a)
$$A = \{1, 2, 3, 4, 5\} \in B = \{a, b, c, d, e\}$$

 $f: A \to B$ $f = \{(1,a), (2,e), (3,b), (4,c), (5,d)\}$

É bijetiva = SIM

b)
$$A = \{a, b, c, d\} \in B = \{r, s, t, u\}$$

 $f : A \to B \quad f = \{(a,s), (b,u), (c,r), (d,s)\}$

• É bijetiva = NÃO, pois não é nem sobrejetiva nem injetiva

Propriedades de funções

• Resumo – diga se são funções, (in|sobre|bi)jetoras

Propriedades de funções

• Resumo – diga se são funções, (in|sobre|bi)jetoras

Não é função

Não é função

Propriedades de funções

Resumo – diga se são funções, (in|sobre|bi)jetoras

Não é função

Função não injetora Função não sobrejetora

Função não injetora Função **sobrejetora**

Propriedades de funções

Resumo – diga se são funções, (in|sobre|bi)jetoras

Não é função

Função não injetora Função não sobrejetora

Função injetora Função não sobrejetora

Não é função

Função não injetora Função **sobrejetora**

Função <mark>injetora</mark> Função **sobrejetora** Função **bijetora**

Exercícios

- Para cada uma das relações a seguir, diga:
 - Se é ou não função
 - Se for função, diga se é injetora, sobrejetora e bijetora

a)
$$A = \{0, 1, 2\}, B = \{1, 2, 3, 5\}, f: A \rightarrow B, f(x) = 2x+1$$

b)
$$A = \{0, 1, 2\}, B = \{1, 2, 3, 5\}, g: A \rightarrow B, g(x) = x$$

c)
$$A = \{-1, 1, 2\}, B = \{1, 4\}, h: A \rightarrow B, h(x) = x^2$$

d)
$$A = \{-2, -1, 0, 1\}, B = \{-2, 0, 2, 4\}, i: A \rightarrow B, i(x) = |2x|$$

e)
$$A = \{-2, -1, 0, 1\}, B = \{-2, 0, 2, 4\}, j: A \rightarrow B, j(x) = -2x$$

Exercícios

- Para cada uma das relações a seguir, diga:
 - Se é ou não função
 - Se for função, diga se é injetora, sobrejetora e bijetora

a)
$$A = \{0, 1, 2\}, B = \{1, 2, 3, 5\}, f: A \rightarrow B, f(x) = 2x+1$$

b)
$$A = \{0, 1, 2\}, B = \{1, 2, 3, 5\}, g: A \rightarrow B, g(x) = x$$

c)
$$A = \{-1, 1, 2\}, B = \{1, 4\}, h: A \rightarrow B, h(x) = x^2$$

d)
$$A = \{-2, -1, 0, 1\}, B = \{-2, 0, 2, 4\}, i: A \rightarrow B, i(x) = |2x|$$

e)
$$A = \{-2, -1, 0, 1\}, B = \{-2, 0, 2, 4\}, j: A \rightarrow B, j(x) = -2x$$

- a) Função injetora, não sobrejetora, não bijetora
- b) Não é função, pois g(0) não está definida
- c) Função não injetora, sobrejetora, não bijetora
- d) Função não injetora, não sobrejetora, não bijetora
- e) Função bijetora

- A inversa de uma função f é uma relação inversa f⁻¹ obtida invertendo-se a ordem de todos os pares ordenados em f
 - Se $f: S \to T$ então $f^{-1}: T \to S$ é uma função?

- A inversa de uma função f é uma relação inversa f¹ obtida invertendo-se a ordem de todos os pares ordenados em f
 - Se $f: S \to T$ então $f^{-1}: T \to S$ é uma função?
 - Nem sempre a inversa de uma função é também uma função

- A inversa de uma função f é uma relação inversa f⁻¹ obtida invertendo-se a ordem de todos os pares ordenados em f
 - Se $f: S \to T$ então $f^{-1}: T \to S$ é uma função?
 - Nem sempre a inversa de uma função é também uma função
 - Exemplo

```
a) A = \{0, 1, 2, 3, 4\} \in B = \{5, 6, 7, 8, 9\}

f: A \to B f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}

Calculando a f^1: f^1 = ?
```

Função inversa

- A inversa de uma função f é uma relação inversa f¹ obtida invertendo-se a ordem de todos os pares ordenados em f
 - Se $f: S \to T$ então $f^{-1}: T \to S$ é uma função?
 - Nem sempre a inversa de uma função é também uma função
 - Exemplo

```
a) A = \{0, 1, 2, 3, 4\} \in B = \{5, 6, 7, 8, 9\}

f: A \to B f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}

Calculando a f^1: f^1 = \{(5,0), (7,1), (8,2), (9,3), (7,4)\}
```

É função = ?

- A inversa de uma função f é uma relação inversa f¹ obtida invertendo-se a ordem de todos os pares ordenados em f
 - Se $f: S \to T$ então $f^{-1}: T \to S$ é uma função?
 - Nem sempre a inversa de uma função é também uma função
 - Exemplo
 - a) $A = \{0, 1, 2, 3, 4\} \in B = \{5, 6, 7, 8, 9\}$ $f: A \to B$ $f = \{(0,5), (1,7), (2,8), (3,9), (4,7)\}$ Calculando a $f^1: f^1 = \{(5,0), (7,1), (8,2), (9,3), (7,4)\}$
 - É função = NÃO, pois tanto (7,1) como (7,4) estão em f¹ e dom f¹ = {5, 7, 8, 9} ≠ B

Função inversível

- Uma função f: S → T é inversível se sua inversa é uma função de T para S
- Uma função f: S → T é inversível se e somente se f é injetora e sobrejetora, ou seja, bijetora

Função inversível

- Uma função f: S → T é inversível se sua inversa é uma função de T para S
- Uma função f: S → T é inversível se e somente se f é injetora e sobrejetora, ou seja, bijetora
- Exemplo
 - A = {1, 2, 3, 4, 5} e B = {a, b, c, d, e} $f: A \to B$ $f = \{(1,a), (2,e), (3,b), (4,c), (5,d)\}$
 - f é inversível = ?

Função inversível

- Uma função f: S → T é inversível se sua inversa é uma função de T para S
- Uma função f: S → T é inversível se e somente se f é injetora e sobrejetora, ou seja, bijetora
- Exemplo
 - A = {1, 2, 3, 4, 5} e B = {a, b, c, d, e} $f: A \to B$ $f = \{(1,a), (2,e), (3,b), (4,c), (5,d)\}$
 - f é inversível = SIM

$$f^{-1}$$
: B \rightarrow A $f^{-1} = \{(a,1), (e,2), (b,3), (c,4), (d,5)\}$

- Sejam $f: S \rightarrow T e g: T \rightarrow U$
 - A função composta $g \circ f$ é a função de S em U definida por $(g \circ f) = g(f(x))$

- → Para todo s ∈ S, f(s) é um elemento de T que, por sua vez, é domínio de g
- → Logo, pode-se calcular g(f(s)) que é um elemento de U

- Sejam $f: S \rightarrow T e g: T \rightarrow U$
 - A função composta $g \circ f$ é a função de S em U definida por $(g \circ f) = g(f(x))$
 - Exemplo

```
a) A = \{1, 2, 3\} B = \{2, 4, 6, 8\} C = \{a, b, c\}

f: A \to B \text{ com } f = \{(1,2), (2,4), (3,6)\}

g: B \to C \text{ com } g = \{(2,a), (4,c), (6,a), (8,b)\}

Seja a composição de f e g como (g \circ f)(a) = g(f(a))

(g \circ f)(1) = g(f(1)) = ?

(g \circ f)(2) = g(f(2)) = ?

(g \circ f)(3) = g(f(3)) = ?
```

- Sejam $f: S \rightarrow T e g: T \rightarrow U$
 - A função composta $g \circ f$ é a função de S em U definida por $(g \circ f) = g(f(x))$
 - Exemplo

```
a) A = \{1, 2, 3\} B = \{2, 4, 6, 8\} C = \{a, b, c\}

f: A \to B \text{ com } f = \{(1,2), (2,4), (3,6)\}

g: B \to C \text{ com } g = \{(2,a), (4,c), (6,a), (8,b)\}

Seja a composição de f e g como (g \circ f)(a) = g(f(a))

(g \circ f)(1) = g(f(1)) = g(2) = a

(g \circ f)(2) = g(f(2)) = g(4) = c

(g \circ f)(3) = g(f(3)) = g(6) = a

Logo, (g \circ f): A \to C \text{ com } (g \circ f) = \{(1,a), (2,c), (3,a)\}
```

- IMPORTANTE
 - Nem sempre é possível fazer a composição de duas funções arbitrárias
 - Os domínios e imagens têm que ser compatíveis
 - A ordem é importante na composição das funções
 - A composição de funções preserva as propriedades das funções serem injetoras ou sobrejetoras
 - → A composição de duas bijeções é também uma bijeção

- Dados f(x) = 2x + 3 e g(x) = 5x, calcule as composições a seguir
 - a) g o f
 - b) fog
 - c) f o f
 - d) g o g

- Dados f(x) = 2x + 3 e g(x) = 5x, calcule as composições a seguir
 - a) g o f = g(f(x)) = g(2x+3) = 5(2x+3) = 10x+15
 - b) $f \circ g = f(g(x)) = f(5x) = 2(5x) + 3 = 10x + 3$
 - $g \circ f \neq f \circ g$
 - c) f o f = f(f(x)) = f(2x+3) = 2(2x+3)+3 = 4x+6+3 = 4x+9
 - d) g o g = g(g(x)) = g(5x) = 5(5x) = 25x

- Sejam A e B conjuntos finitos
 - Sem perda de generalidade, podemos assumir que esses conjuntos são:
 - $A = \{1, 2, ..., a\}$ e $B = \{1, 2, ..., b\}$
 - Toda função $f: A \rightarrow B$ pode ser escrita como:
 - $f = \{(1,?), (2,?), (3,?), ..., (a,?)\}$
 - O símbolo de interrogação representa os elementos de B

- Sejam A e B conjuntos finitos
 - Sem perda de generalidade, podemos assumir que esses conjuntos são:
 - $A = \{1, 2, ..., a\}$ e $B = \{1, 2, ..., b\}$
 - Toda função $f: A \rightarrow B$ pode ser escrita como:
 - $f = \{(1,?), (2,?), (3,?), ..., (a,?)\}$
 - O símbolo de interrogação representa os elementos de B
 - Para definir uma função específica temos que dizer quais valores de B substituirão os pontos de interrogação
 - De quantas formas diferentes podemos substituir os pontos de interrogação?

- Sejam A e B conjuntos finitos
 - Sem perda de generalidade, podemos assumir que esses conjuntos são:

```
• A = \{1, 2, ..., a\} e B = \{1, 2, ..., b\}
```

```
f = {(1,?), (2,?), (3,?), ..., (a,?)}
(1,1)
(1,2)
(1,3)
(1,4)
...
(1,b)

possibilidades

mo:
mo:
elementos
que dizer
de
substituir os
```

- Sejam A e B conjuntos finitos
 - Sem perda de generalidade, podemos assumir que esses conjuntos são:

```
• A = \{1, 2, ..., a\} e B = \{1, 2, ..., b\}
```

```
f = \{(1,?), (2,?), (3,?), ..., (a,?)\} mo:

(1,1), (2,1)

(1,2), (2,2)

(1,3), (2,3)

(1,4), (2,4)

\dots

(1,b), (2,b)

\downarrow \downarrow substituir os b + b possibilidades
```

- Sejam A e B conjuntos finitos
 - Sem perda de generalidade, podemos assumir que esses conjuntos são:

```
• A = \{1, 2, ..., a\} e B = \{1, 2, ..., b\}
```

```
f = \{(1,?), (2,?), (3,?), ..., (a,?)\} mo:

(1,1), (2,1)

(1,2), (2,1)

(1,3), (2,1)

(1,4), (2,1)

\dots sque dizer

\dots de

(1,b), (2,1)

\downarrow \downarrow substituir os

\downarrow \downarrow b possibilidades
```

- Sejam A e B conjuntos finitos
 - $A = \{1, 2, ..., a\}$ e $B = \{1, 2, ..., b\}$
 - Toda função $f: A \rightarrow B$ pode ser escrita como:
 - $f = \{(1,?), (2,?), (3,?), ..., (a,?)\}$
 - Para definir o par (1,?), podemos escolher qualquer elemento de B
 - Portanto, temos b escolhas para definir o par (1,?)
 - O mesmo acontece para os demais pares de f
 - → No total, temos b^a maneiras diferentes de substituir todos os pontos de interrogação

Contagem de funções

- Sejam A e B conjuntos finitos
 - $A = \{1, 2, ..., a\}$ e $B = \{1, 2, ..., b\}$
 - Toda função $f: A \rightarrow B$ pode ser escrita como:
 - $f = \{(1,?), (2,?), (3,?), ..., (a,?)\}$
 - Para definir o par (1,?), podemos escolher qualquer elemento de B
 - Portanto, temos b escolhas para definir o par (1,?)
 - O mesmo acontece para os demais pares de f
 - → No total, temos b^a maneiras diferentes de substituir todos os pontos de interrogação

Proposição

 Sejam A e B conjuntos finitos com |A| = a e |B| = b. O número de funções de A para B é ba

- Proposição
 - Sejam A e B conjuntos finitos e seja $f : A \rightarrow B$
 - Se |A| > |B|, então f ...

- Proposição
 - Sejam A e B conjuntos finitos e seja $f : A \rightarrow B$
 - Se |A| > |B|, então f não é um a um

- Proposição
 - Sejam A e B conjuntos finitos e seja $f : A \rightarrow B$
 - Se |A| > |B|, então f não é um a um
 - Se |A| < |B|, então f ...

- Proposição
 - Sejam A e B conjuntos finitos e seja f : $A \rightarrow B$
 - Se |A| > |B|, então f não é um a um
 - Se |A| < |B|, então f não é sobre
 - Se f é uma bijeção, então |A| = ?

- Proposição
 - Sejam A e B conjuntos finitos e seja f : $A \rightarrow B$
 - Se |A| > |B|, então f não é um a um
 - Se |A| < |B|, então f não é sobre
 - Se f é uma bijeção, então |A| = |B|

- Proposição
 - Sejam A e B conjuntos finitos e seja f : $A \rightarrow B$
 - Se |A| > |B|, então f não é um a um
 - Se |A| < |B|, então f não é sobre
 - Se f é uma bijeção, então |A| = |B|
 - Como decorrência dessa proposição, podemos afirmar que:
 - Se $f: A \rightarrow B$ é um a um, então $|A| \le |B|$ e
 - Se $f: A \rightarrow B$ é sobre, então $|A| \ge |B|$