Contents

1	Intr	roduction	2
2	X-r	ay Imaging	3
	2.1	Basics	3
	2.2	Rose Model	3
	2.3	Linear Systems Model	3
		2.3.1 Derivation	3
		2.3.2 Effect of Focal Spot on Magnification	3
3	X-r	ay Detectors	4
4	X-r	ay Image Quality	5
	4.1	Review of useful concepts	5
		4.1.1 Central-limit theorem	5
		4.1.2 Gaussian random variable	5
		4.1.3 Poisson statistics	5
		4.1.4 Stationarity	5
		4.1.5 Ergodicity	5
		4.1.6 Ensemble average	5
	4.2	Resolution	5
		4.2.1 Signal transfer / linear system model	5
	4.3	Noise	5
		4.3.1 Noise transfer (autocorrelation, NPS)	5
	4.4	Contrast	5
		4.4.1 Rose Model	5
	4.5	The effect of Scatter	5
		4.5.1 Resolution: Scatter psf	5
		4.5.2 Contrast: Rose Model	5
		4.5.3 Anti-scatter grids	5
5	Ima	age Interpretation	6
9	5.1	Six levels of Efficacy	6
	5.2	The Ideal Observer	6
	5.3	Mathematical Observers	6
	0.5		6
		0	
		5.3.2 Matched filter	6
	F 1	5.3.3 Wiener filter	6
	5.4	Human observers	6
	5.5	Model observers	6
6	Том	vards Quantitative Imaging	7

1 Introduction

- 2 X-ray Imaging
- 2.1 Basics
- 2.2 Rose Model
- 2.3 Linear Systems Model
- 2.3.1 Derivation
- 2.3.2 Effect of Focal Spot on Magnification

3 X-ray Detectors

4 X-ray Image Quality

- 4.1 Review of useful concepts
- 4.1.1 Central-limit theorem
- 4.1.2 Gaussian random variable
- 4.1.3 Poisson statistics
- 4.1.4 Stationarity
- 4.1.5 Ergodicity
- 4.1.6 Ensemble average
- 4.2 Resolution
- 4.2.1 Signal transfer / linear system model
- 4.3 Noise
- 4.3.1 Noise transfer (autocorrelation, NPS)
- 4.4 Contrast
- 4.4.1 Rose Model
- 4.5 The effect of Scatter
- 4.5.1 Resolution: Scatter psf
- 4.5.2 Contrast: Rose Model
- 4.5.3 Anti-scatter grids

5 Image Interpretation

- 5.1 Six levels of Efficacy
- 5.2 The Ideal Observer
- 5.3 Mathematical Observers
- 5.3.1 Pre-whitening filter
- 5.3.2 Matched filter
- 5.3.3 Wiener filter
- 5.4 Human observers
- 5.5 Model observers

6	Towards Quantitative Imaging