第3章 演習課題

課題1

サンプルプログラムをコンパイル・実行して動作を確認せよ. さらに, 適宜修正してその実行結果を確認せよ.

課題2

標準入力から三角形の底辺lと高さhを読み込み、三角形の面積を表示するプログラムを作成せよ、

課題3

単精度実数型 real (4) および倍精度実数型 real (8) で,それぞれ $\tan(\pi/4) = 1$ なる関係式を用いて π の値を求めて表示し,その値の精度を確認せよ.(組み込み関数 $\arctan(x)$ が数学の $\arctan^{-1}(x)$ に対応している.) なお,精度を確認する際には 4 倍精度実数型 real (16) でも同様に π の値を求め,これを正確な値 (真値) とみなし,それとの相対誤差を確認すること.ただし相対誤差は |1- 近似値/真値 | で評価せよ.(絶対値を返す関数 abs(x) を用いよ.)

課題 4

標準入力から複素数 z(=x+iy) を読み込み, e^z および $e^x(\cos y+i\sin y)$ をそれぞれ計算し,その結果が等しいことを確認せよ(組み込み関数 $\exp(\mathbf{x})$ および $\sin(\mathbf{x})$, $\cos(\mathbf{x})$ を用いればよい). ただし倍精度の複素数型 $\operatorname{complex}(8)$ を用いること. なお複素数 \mathbf{z} の実部は $\operatorname{real}(\mathbf{z})$,虚部は $\operatorname{aimag}(\mathbf{z})$ という組み込み関数でそれぞれ求めることができる. またキーボードから複素数の入力は(実部,虚部)という形式となることに注意せよ. 例えば z=1+i について $\exp(z)$ を求めるには

```
$ ./a.out
(1.0, 1.0) # キーボード入力
( 1.4686939399158851 , 2.2873552871788423 )
( 1.4686939399158851 , 2.2873552871788423 )
```

のように (実部,虚部)という形式で入力すれば良い.

課題5

テイラー展開の公式

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} \cdots$$

を適当な次数 (例えば 2 次とか 3 次) で打ち切り、 $\sin x$ の近似値を例えば x=0.01,0.1,0.2 などについて求め、組み込み関数 $\sin(x)$ で求めた値と比較せよ.