UNIVERSITE DE KINSHASA

FACULTE POLYTECHNIQUE

DEUXIEME GRADUAT

B.P 240 KINSHASA XI

TRAVAIL PRATIQUE D'ALGORITHMIQUE ET PROGRAMMATION

Dirigé par : Ass. Ir.

Fait par:

- MBONGA MABIALA GLOIRE (2GC)
- DZAPILI JOSEPH (2GEI)
- BOLOCHI KASIMA PIERRE (2GC)

ANNEE ACADEMIQUE 2021-2022

Question I

On a A= 50nlogn et B=45n³ Pour que A soit meilleur que B, on doit écrire On a A=140n² et B=29n³

```
In [30]: import math
""" L'Algorithme A est meilleur que l'algorithme B pour n superieur à n
lorsque 50nlogn = 45n^2, ou 10logn = 9n
"""
x = [x/100 for x in range(1, 500)]
y1 = list(map(lambda x: 10*math.log(x),x))
y2 = list(map(lambda x: 9*math.log(x),x))
plt.plot(x,y1)
plt.plot(x,y2)
```

Out[30]: [<matplotlib.lines.Line2D at 0x1fb83499d00>]

Question II

Ici aussi, on a A= $140n^2$ et B= $29n^3$. Or, on veut que A soit meilleur que B donc, $A \ge B \rightarrow 140n^2 > 29n^3$

 \rightarrow no ≤ 4.82757

En utilisant, le module de python :

Matplotlib, ci dessous la représentation graphique de nos deux fonctions :

Question III

Soit A == O(f(n)). Si le temps d'exécution du pire des cas O(f(n)) est n^* , il existe alors une constante \mathbf{c} telle que $\mathbf{c}f(n) \ge n^* > n_0$

Sachant le pire de cas est toujours supérieur ou égal à tout autre cas ; Du coup le temps d'exécution du pire des cas \geq (g(n))), cf(n) \geq pire cas \geq A

Question IV

```
Si d(n)=O(f(n)) \ge a*d(n)=O(f(n)) pour a>0.
```

Si d(n) vaut O(f(n)) alors, il existe une constante c telle que $d(n) \le c$ f(n) pour tout $n > n_o$. On a alors $ad(n) \le acf(n) = c'f(n)$.

La nouvelle constante sera donc "a" qui maintient toujours la condition originale de O qui sera vrai pour tous les autres cas.

Question V

Si d(n) équivaut à O(f(n)) et e(n) vaut O(g(n)), alors d(n) = cf(n) pour nF > nfo et e(n) < dg(n) pour $n_e > n_e 0$ en conséquence, $d(n)e(n) \le (cf(n))(dg(n))$ et $n_f * n_e n_f 0 * 0$

Ce qui signifie qu'il existe un nouveau n $n_f^*n_e$ et et no' = $n_f^0*n_e$ 0, et un c'= c'd tel que $d(n)e(n) \le e'$ (f(n)g(n)) pour n'>non', ce qui signifie que d(n)e(n) est O(f(n)g(n)) Et non fo*n e0, et a c = c'd tel que nd (n) e (n) e0, et a e1, equi signifie que e3 e2, equi signifie que e4 e3.

Question VI

Comme précédemment, si d(n) vaut o(f(n)) et e(n) vaut o(g(n)), alors $d(n) \le cf(n)$ pour $n_f > n_f o$ et $e(n) \le dg(n)$ pour $n_e > n_e o$

Cela signifie que
$$d(n) + e(n) \le (cf(n)) + (dg(n))$$
 et $n > n_f 0 + n_e 0$

ce qui signifie qu'il existe un nouveau $n'=n_f+n_e$ et et $n_0=n_f0+n_e0$, tel que :

 $d(n)e(n) \le cf(n) + dg(n)$ pour n>non'; cependant, cela ne satisfait toujours pas la notation O.

On peut absorber c et d dans leurs fonctions telles que $d(n) e(n) \le f(cn) + g(dn)$

Pour absorber c, on note que n'> no/ c cn', donc n =n/ c, ce qui signifie que n'/ c

de même pour d, n'/ cd \geq no/ cd

Il existe donc de nouvelles valeurs de no tel que

 $d(n) + e(n) \le ((n) + d(n))$ pour $n \ge n$, qui satisfait O(1(n) + d(n)) les conditions.

Question VII

Le point clé ici est que ce n'est pas parce que quelque chose est O(n) que cela doit être cette fonction

Par exemple, f(n) 5 = O(n) est mathématiquement vrai, bien que ce soit une mauvaise forme de le dire

Par conséquent, si nous avons d(n) = n et e(n) = n avec f(n) = n et g(n) = n, alors nous vérifions $d(n) \le C(f(n))$ pour $n \ge 0$, et $e(n) \le C(g(n))$ pour $n \ge 0$

$$F(n)-g(n) = 0$$
 et $d(n)-e(n) = n$

Il n'y a pas de valeur pour n>0 telle que $0 \ge n$, ce qui signifie que d(n) - e(n) n'est pas O(f(n)- g(n))

Question VIII

Comme précédemment, si d(n) vaut o(f(n)) et e(n) vaut o(g(n)), alors $d(n) \le cf$ (n) pour $n_f > n_f$ o et $e(n) \le dg$ (n) pour $n_e > n_e$

Question IX

L'algorithme E est appelé par l'Algorithme D n fois Par conséquent, le temps d'exécution le plus défavorable est O(D(n)) *(0(i)), O(n*1) = O(n) d'après la description

Question X

La notation O signifie qu'il existe une constante \mathbf{c} telle que f(n) < Cg(n) Donc, si les algorithmes de Alphonse fonctionnent mieux que A (nlogn) et que l'algorithme De Bob fonctionne mieux que $B(n^2)$, nous pouvons résoudre la valeur où Anlogn = Bn^2 , dont nous savons qu'elle est vraie Quand n=100. Cela signifie, $(A/B) = (100) / (\log (100)) = 15.05$) Cela signifie que le temps d'exécution de KIMBULU sur une seule itération Est 15 fois plus lent mais comme il effectue globalement moins d'opération, et commence à mieux performé à des grandes valeurs de n.