Санкт-Петербургский государственный университет

Математическое обеспечение и администрирование информационных систем

Фирсов Михаил Александрович

Реализация статистик к Desbordante

Учебная практика

Оглавление

B	веден	иие	3
1.	Пос	тановка задачи	4
2.	Обз	ор особенностей простого профилирования в дру	y-
	гих	системах	5
	2.1.	Data Profiler	5
	2.2.	Data Cleaner	9
	2.3.	Great Expectations	12
3.	Pea.	лизация	14
	3.1.	Общие изменения в алгоритмической части	14
	3.2.	Тестирование	18
		3.2.1. Тесты на производительность	18
		3.2.2. Тесты на корректность	19
	3.3.	Поддержка статистик на back-end уровне	19
4.	Ито	говая таблица статистик	22
За	КЛЮ	чение	26
Сг	іисоі	к литературы	27

Введение

Профилирование данных — процесс, заключающийся в нахождении закономерностей, исследовании характера распределения, оценке качества данных [1, 8], это поиск метаданных в данных.

Что такое метаданные?

- В первом приближении это данные о данных: размер файла, время создания, авторство.
- В более общем смысле, это различные закономерности, сокрытые в данных.

В этой работе будет рассматриваться только профилирование табличных данных. Профилирование делиться на две группы: простое и наукоёмкое. Для табличных данных к первой группе можно отнести подсчет простых статистик: число строк, столбцов в таблице, минимальное и максимальное значения в каждой колонке и ряд других. Ко второй можно отнести поиск функциональных зависимостей, который не будет здесь рассмотрен.

Desbordante — высокопроизводительный профилировщик данных, нацеленный на извлечение наукоемких паттернов. Система предоставляет как консольный, так и веб интерфейс. Изначально Desbordante создавался как профилировщик наукоёмких данных. Из-за этого он сильно проигрывал аналогам, которые предоставляли гораздо больше информации о данных, за счёт простого профилирования.

1. Постановка задачи

На момент начала учебной практики в проекте были написаны простые статистики в виде алгоритмов на C++, к которым были претензии по производительности и коду, которые не были исправлены.

Целью работы являлась доработка простых статистик в алгоритмической части Desbordante и их имплементация в серверной части web приложения. Для достижения данной цели были поставлены следующие задачи:

- 1. Доработать простые статистики.
- 2. Добавить распараллеливание их вычислений, как это сделано для некоторых других алгоритмов Desbordante.
- 3. Написать для простых статистик тесты для проверки производительности.
- 4. Сделать обзор возможностей аналогов и дополнить список статистик более сложными, которые планируется реализовывать в дальнейшем.
- 5. Реализовать запросы подсчета статистик на back-end части web приложения.

2. Обзор особенностей простого профилирования в других системах

Был проанализирован ряд востребованных на рынке профайлеров данных. В этом разделе будет приведен список поддерживаемых ими простых статистик.

2.1. Data Profiler

Data Profiler [4] — python библиотека для удобного анализа данных разных форматов. Поддерживает следующие колоночные статистики [5]:

- 1. Для колонок целочисленных типов:
 - data_type тип данных колонки
 - column name имя колонки
 - categorical принимает значение 'true', если колонка категориальная
 - order принимает значения 'ascending', 'descending', 'random'
 - samples небольшой срез значений в колонке
 - min минимум
 - тах максимум
 - sum сумма

- mean среднее
- median медиана
- quantiles перцентили от 0 до 100
- variance дисперсия
- stddev стандартное отклонение (корень из дисперсии)
- skewness коэффициент асимметрии (третий центральный момент)
- kurtosis коэффициент эксцесса (четвёртый центральный момент)
- median_absolute_deviation среднее абсолютное отклонение
- num_zeros число нулей
- num_negatives число отрицательных значений
- null_count число значений NULL
- unique_count число уникальных значений
- sample size общее число значений
- bias_correction применяет коррекцию смещения к дисперсии, коэффициенту асимметрии и коэффициенту эксцесса
- histogram информация, относящаяся к гистограммам
 (a) bin counts число значений в каждом интервале

- (b) bin_edges порог каждого интервала
- histogram_and_quantiles функция построения интервалов гистограммы от метода их построения. Если метод явно не указан, то среди встроенных выбирается оптимальный. Поддерживаются следующие: 'fd', 'doane', 'scott', 'rice', 'sturges', 'sqrt'
- categorical_count число вхождений для каждого уникального значения, если колонка категориальная
- unique_ratio отношение числа уникальный значений к общему числу значений
- categories список всех уникальных значений, если колонка категориальная
- 2. Колонки типа float поддерживают помимо выше перечисленных операций, следующие:
 - precision число значащих цифр
 - sample_ratio процент строк, отличающихся от заданного значения на некоторую погрешность
- 3. Строковый колонки поддерживают все статистики целочисленного типа кроме num_zeros и num_negatives. Есть дополнительные параметры is_case_sensitive отвечает за чувствительность к регистру; stop_words список игнорируемых слов. Для колонок строкового типа также доступны следующие статистики:

- vocab символы во всех строках
- words все слова
- top k chars k самых часто встречающихся символа
- \bullet top_k_words k самых часто встречающихся слова

4. Статистики всей таблицы:

- row count число строк
- row_has_null_ratio число колонок, в которых есть значение NULL
- row_is_null_ratio число колонок, в которых есть только значение NULL
- unique_row_ratio число колонок с уникальными значениями во всех строках
- duplicate_row_count число колонок, которые встречаются дважды
- file_type тип файла (например '.csv')
- encoding кодировка (например 'UTF-8')
- correlation_matrix матрица корреляции всех колонок между собой
- chi2_matrix матрица Хи-квадрат статистик между всеми колонками таблицы
- profile schema имена всех колонок и их индексы

2.2. Data Cleaner

Data Cleaner [2] — мощный движок для профилирования данных и смены формата их хранения. В git репозитории [3] удалось найти следующие виды колоночных статистик:

- 1. Для колонок целочисленных типов:
 - ROW COUNT число строк
 - NULL COUNT число значений типа NULL
 - HIGHEST_VALUE максимум
 - LOWEST VALUE минимум
 - SUM сумма
 - МЕАЛ среднее
 - GEOMETRIC MEAN среднее геометрическое
 - STANDARD_DEVIATION стандартное отклонение (корень из дисперсии)
 - VARIANCE дисперсия (второй центральный момент)
 - SUM OF SQUARES сумма квадратов
 - ullet SECOND MOMENT второй момент
 - MEDIAN [9] медиана (процентиль 50)
 - PERCENTILE25 процентиль 25
 - PERCENTILE75 процентиль 75

- KURTOSIS коэффициент эксцесса (четвёртый центральный момент)
- SKEWNESS коэффициент асимметрии (третий центральный момент)

2. Статистики колонок строкового типа:

- MIN WORDS количество минимальных слов
- MAX WORDS количество максимальных слов
- WORD COUNT число слов
- NON_LETTER_CHARS число не буквенных символов
- DIACRITIC_CHARS число диакритических знаков
- DIGIT CHARS число цифр
- LOWERCASE_CHARS число символов в нижнем регистре
- UPPERCASE_CHARS_EXCL_FIRST_LETTERS—число символов в верхнем регистре, кроме первых букв в слове
- UPPERCASE_CHARS число символов в верхнем регистре
- AVG WHITE SPACES среднее число пробелов
- MIN_WHITE_SPACES минимальное число пробелов

- MAX_WHITE_SPACES максимальное число пробелов
- AVG CHARS среднее число символов
- MIN CHARS минимальное число символов
- MAX CHARS максимально число символов
- TOTAL_CHAR_COUNT общее число символов во всех строках
- ENTIRELY_LOWERCASE_COUNT число слов в нижнем регистре
- ENTIRELY_UPPERCASE_COUNT число слов в верхнем регистре

3. Статистики колонок типа DATETIME:

- HIGHEST_TIME максимальное время
- LOWEST_TIME минимальное время
- HIGHEST DATE максимум
- LOWEST_DATE минимум
- NULL_COUNT число значений NULL
- ROW COUNT число строк
- МЕАЛ среднее
- MEDIAN медиана
- PERCENTILE25 процентиль 25

- PERCENTILE75 процентиль 75
- KURTOSIS коэффициент эксцесса (четвёртый центральный момент)
- SKEWNESS коэффициент асимметрии (третий центральный момент)

4. Статистики колонок типа BOOL:

- FALSE COUNT число значений 'false'
- TRUE COUNT число значений 'true'
- NULL COUNT число значений NULL
- \bullet ROW_COUNT число строк

2.3. Great Expectations

Great Expectations [6] — это инструмент для проверки, документирования и профилирования данных, который позволяет автоматизировать эти процессы. Принцип его работы немного отличается от обычного поиска набора статистик. Основным понятием здесь является ожидание верности какого-либо утверждения о данных. Примеры ожиданий [7]:

- 1. expect_column_values_to_not_be_null ожидание того, что в колонке нет значений NULL
- 2. expect_column_values_to_be_unique ожидание того, что в колонке все значения уникальны

- 3. expect_table_row_count_to_be_between ожидание того, что в колонке все значения из заданного диапазона
- 4. expect_column_median_to_be_between ожидание того, что среднее колонки из заданного диапазона

3. Реализация

Desbordante состоит из двух частей: алгоритмической 1 и web 2 . Web в свою очередь также состоит из двух частей: back-end и front-end.

В начале учебной практики была реализация только алгоритмической части статистик. В ходе настоящей работы она была доработана, а также была реализована поддержка статистик на back-end в web-приложении. Разработкой front-end-а занимался другой член команды Desbordante.

3.1. Общие изменения в алгоритмической части

Алгоритмическая часть состояла из одного класса CSVStats, который включал в себя методы для подсчета простых статистик датасета, расположение которого являлось одним из параметров конструктора этого класса. Список всех изменений в методах этого класса:

- 1. Теперь класс CSVStats принимает один параметр в конструкторе экземпляр специального класса-конфига.
- 2. Paнee статистики возвращались в виде типа std::optional<std::pair<std::byte const*, mo::Type const*>>>. Выли выделены отдельные классы одной статистики, а так-

¹https://github.com/Mstrutov/Desbordante

²https://github.com/vs9h/Desbordante

же статистик колонки. Это позволило работать с результатом подсчета статистик в объектно-ориентированном стиле, сократило объём кода.

- 3. Добавлен метод подсчета всех статистик сразу, с возможностью распараллеливания по отдельным колонкам таблицы.
- 4. Много изменений в стиле кода: ссылки и указатели переделаны в east-const style, имена переменных в snake_case, удалены лишние include. Часть методов переименована. Написаны краткие комментарии ко всем методам подсчета статистик.
- 5. Найдена и исправлена ошибка в методе distinct: сравнение велось по первому байту данных, а не в соответствии с типом колонки. Для смешанных типов сделан отдельный метод для подсчета этой статистики.
- 6. Где возможно, удалены дублирования кода.
- 7. В класс Туре добавлен метод CloneТуре для клонирования типа, а не данных этого типа. В дальнейшем необходимо сделать полноценную систему приведения типов. На данном этапе сделано только приведение int и double к double. Найдены и исправлены ошибки в клонировании данных смешанного типа и типа string. Нужно добавить тип bool. На данный момент, время чтения всего датасета с одновременным определением типа колонок занимает в некоторых слу-

чаях (датасеты EpicMeds.csv и EpicVitals.csv) больше времени, чем подсчет в несколько потоков всех статистик. Эта часть кода написана другим членом команды Desbordate.

Сейчас Desbordante поддерживает следующие простые статистики:

- NumberOfValues число непустых и не NULL значений в колонке.
- GetNumberOfColumns число колонок в таблице.
- Distinct число уникальных значений в колонке.
- IsCategorical проверяет, является ли колонка категориальной. Вычисляется по формуле: $Distinct \leq min(NumberOfValues 1, 10 + NumberOfValues/1000)$.
- ShowSample возвращает тип std::vector<std::vector<std:: string>>> двумерный массив срез таблицы от некоторой начальной до некоторой конечной колонок и строк. Эта статистика ещё не реализована в web-версии.
- GetAvg среднее значение в колонке, если она числовая.
- GetCorrectedSTD скорректированное стандартное отклонение колонки, если она числовая.
- GetSkewness коэффициент асимметрии (третий центральный момент) колонки, если она числовая.

- GetKurtosis коэффициент эксцесса (четвёртый центральный момент) колонки, если она числовая.
- GetCentralMomentOfDist центральный момент колонки, если она числовая.
- GetStandardizedCentralMomentOfDist нормированный момент колонки, если она числовая.
- GetMin минимум в колонке.
- GetMax максимум в колонке.
- GetSum сумма в колонке, если она числовая.
- GetQuantile возвращает нужный процентиль (25, 50, 75 для веб-части).
- DeleteNullAndEmpties удаляет пустые и NULL значения из колонки, возвращяет полученную сокращенную колонку в виде вектора.

Рис. 1: Изменение времени подсчета статистик при разном числе потоков

3.2. Тестирование

На начало учебной практики к статистикам уже были написаны тесты, в них велось обращение к одному специально написанному датасету небольшого размера. Каждый тест проверял одну статистику на нескольких (не всех) колонках этой таблицы.

3.2.1. Тесты на производительность

Для тестирования производительности были выбраны датасеты EpicMeds.csv (1282 тысячи строк, 10 столбцов) и EpicVitals.csv (1246 тысяч строк, 7 столбцов), так как все их колонки числовые, а значит поддерживают одни и те же статистики. В итоговое время входит время подсчета всех статистик для датасета, время

чтения данных с файла и время их преобразования в специальный тип, который хранит уже типизированные колонки. Последние две части написаны другим разработчиком. Результат можно увидеть на Рис. 1.

3.2.2. Тесты на корректность

В уже написанных тестах были произведены те же изменения в стиле, что и в алгоритмической части. Также был произведён ряд небольших изменений в соответствии с новыми структурами данных для хранения статистик. Добавлены два теста на подсчет всех статистик вместе для пустого датасета и основного тестового датасета статистик, в который была добавлена колонка со смешанным типом.

3.3. Поддержка статистик на back-end уровне

На Рис.2 схематично изображена архитектура web части Desbordante. После завершения доработки алгоритмической части статистик требовалось добавить их поддержку в web. Эта задача была разделена между двумя людьми. Мной была добавлена возможность получать с front-end-a информацию об уже посчитанных статистиках и, в случае её отсутствия запускать подсчет всех статистик для данного датасета в заданном числе потоков с поддержкой запросов на получение прогресса этого процесса.

1. Был сделан rebase git-репозитория веб Desbordante в соот-

Рис. 2: Устройство веб-версии Desbordante

ветствии с последними изменениями в алгоритмической части.

- 2. В схему базы данных добавлена новая таблица: ColumnStats для хранения статистик колонок датасета. Она содержит следующие поля:
 - type тип колонки
 - fileID идентификатор датасета
 - \bullet columnIndex индекс колонки
 - И следующие статистики: distinct, isCategorical, count (NumberOfValues), avg, STD, skewness, kurtosis, min, max, sum, quantile25, quantile50, quantile75. Для некоторых типов ряд из этих статистик устанавливается в NULL, если их нельзя посчитать для данного типа колонки.

- 3. Дописан cpp-consumer (algorithm executor на Рис. 2). Он запускает вычисление всех статистик датасета в нужном числе потоков и после завершения сохраняет результат в БД в таблицу ColumnStats, описанную выше.
- 4. Дописана GraphQL схема БД для запуска подсчета статик данного датасета и получения подсчитанных статистик для front-end-a.

4. Итоговая таблица статистик

Результатом приведённого анализа аналогов и уже реализованных статистик можно считать Таб. 1. Её можно использовать для дальнейшей разработки этого направления, например, в качестве списка статистик на реализацию.

Таблица 1: Поддерживаемые статистики

Тип	Статистика	Data	Data	Desbordante
данных		Profiler	Cleaner	Despordante
	vocab	+	_	_
	words	+	_	_
	top K Chars	+	_	_
	topKWords	+	_	_
	$\min Words$	_	+	_
	$\max KW ords$	_	+	_
	$\operatorname{wordCount}$	_	+	_
	${\rm nonLetterChars}$	_	+	_
	diacriticChars	_	+	_
	$\operatorname{digitChars}$	_	+	_
Constant	lower case Chars	_	+	_
Строковые	uppercaseChars	_	+	_
	uppercase Chars-	_	- +	
	${\bf ExclFirstLetters}$			_
	${\it avgWhiteSpaces}$	_	+	_
	minWhite Spaces	_	+	_

	\max WhiteSpaces	_	+	_
	avgChars	_	+	_
	minChars	_	+	_
	\max Chars	_	+	_
	${\it total Char Count}$	_	+	_
	entirely Lower case Count	_	+	_
	entirely Upper case Count	_	+	_
	dataType	+	_	+
	$\operatorname{columnName}$	+	_	_
	categorical	+	_	+
	samples	+	_	+
	\min	+	+	+
	max	+	+	+
Общие	${\rm quantiles/median}$	+	+	+
	$\operatorname{nullCount}$	+	+	_
	${\rm unique Count}$	+	_	+
	$\operatorname{sampleSize}$	+	+	+
	categorical Count	+	_	_
	uniqueRatio	+	_	_
	categories	+	_	_
Float	precision	+		_
1 10at	sampleRatio	+		_
DateTime	${\it highestTime}$		+	_
Daterine	lowestTime	_	+	_
	sum	+	+	+

	mean	+	+	+
	${\rm geometric Mean}$	_	+	_
	variance	+	+	+
	stdDev	+	+	+
	$\operatorname{centralMoment}$	_	_	+
	standardized Central Moment	_	_	+
	skewness	+	+	+
	kurtosis	+	+	+
	${\it median Absolute Deviation}$	+	_	_
	numZeros	+	_	_
	$\operatorname{numNegatives}$	+	_	_
	biasCorrection	+	_	_
	histogram	+	_	_
	histogramAndQuantiles	+	_	_
	sumOfSquares	_	+	_
Bool	trueCount	_	+	_
D 001	falseCount	_	+	_
	columnCount	+	_	+
	row Has Null Ratio	+	_	_
	row Is Null Ratio	+	_	_
	uniqueRowRatio	+	_	_
Dag	${\it duplicate Row Count}$	+	_	_
Вся	fileType	+	_	_
талица	encoding	+	_	_
	correctionMatrix	+	_	_

chi2Matrix	+	_	_
profileSchema	+	_	_

Заключение

В процессе работы были достигнуты следующие результаты:

- Проанализированы документации аналогов, выписаны всевозможные статистики, которые будут реализованы в будущем.
- Устранены все ошибки, неэффективности в реализации простых статистик. Добавлен параллелизм по колонкам таблицы.
- Дописаны тесты, проверяющие корректность работы алгоритмов.
- Написаны нагрузочные тесты для разного числа потоков.
- Реализована поддержка статистик для back-end в web части Desbordante.

Список литературы

- [1] Abedjan Ziawasch, Golab Lukasz, and Naumann Felix. Data Profiling: A Tutorial // Proceedings of the 2017 ACM International Conference on Management of Data. New York, NY, USA: Association for Computing Machinery. 2017. SIGMOD '17. P. 1747–1751. Access mode: https://doi.org/10.1145/3035918.3054772.
- [2] Data Cleaner. 2022. Online; accessed 29 November 2022. Access mode: https://datacleaner.github.io/.
- [3] Data Cleaner GitHub repository. 2022. Online; accessed 29 November 2022. Access mode: https://github.com/datacleaner/DataCleaner.git.
- [4] Data Profiler. 2022. Online; accessed 29 November 2022. Access mode: https://capitalone.github.io/DataProfiler/docs/0.7.7/html/index.html.
- [5] Data Profiler Readme File. 2022. Online; accessed 29 November 2022. Access mode: https://github.com/great-expectations/great_expectations/blob/develop/contrib/capitalone_dataprofiler_expectations/README. md.
- [6] Great Expectations. -2022. Online; accessed 29 November

- 2022. Access mode: https://greatexpectations.io/expectations/.
- [7] Great Expectations Examples. 2022. Online; accessed 29 November 2022. Access mode: https://docs.greatexpectations.io/docs/terms/expectation/.
- [8] Ilyas Ihab F. and Chu Xu. Data Cleaning. New York, NY, USA: Association for Computing Machinery, 2019. ISBN: 9781450371520.
- [9] Шоргин С. Я. КВАНТИЛЬ // Большая российская энциклопедия. Электронная версия (2016). 2016. Online; accessed 29 November 2022. Access mode: https://bigenc.ru/mathematics/text/2055717.