The Quantum Fourier Transform

Clayton W. Seitz

April 21, 2023

Introduction

Classical discrete Fourier transform maps a vector $\vec{x} \in \mathbb{C}^N$ to another vector $\vec{y} \in \mathbb{C}^N$. with elements

$$y_k = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x_n \omega_N^{-nk}$$

where $\omega_N = e^{2\pi i/N}$. \vec{x} is expanded in a basis for \mathbb{C}^N

The quantum fourier transform (QFT) does exactly the same thing but the vector is now interpreted as a quantum state $|\psi\rangle = \sum_{n} \psi_{n} |n\rangle$ in a Hilbert space \mathcal{H} .

$$\text{QFT}: |c_n\rangle \to \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} c_n \omega_N^{-nk}$$

Clayton W. Seitz

Product representation of the QFT

The QFT as a unitary transformation

Suppose we have the *N* qubit state

$$|\psi\rangle = \sum_{\mathbf{x} \in \{0,1\}^N} \alpha_{\mathbf{x}} \, |\mathbf{x}\rangle$$

where $|x\rangle$ are basis states. By definition,

$$\text{QFT} |x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i j k/N} |k\rangle$$