Counterfactual Learning/ Off-Policy Learning

Yuta Saito & Thorsten Joachims

Department of Computer Science Department of Information Science Cornell University

Batch Learning from Bandit Feedback

- Data context propensity $D_0 = \left((x_1, a_1, r_1, p_1), \dots, (x_n, a_n, r_n, p_n)\right)$
 - → Partial Information (aka "Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(x)
 - Actions a_i selected by logging policy $\pi_0(a|x_i)$
 - Feedback r_i from unknown $P(r|x_i, a_i)$
 - Propensity p_i of selected action a_i under π_0

Task of Learning

Use interaction log data from logging policy π_0 $D_0 = ((x_1, a_1, r_1, p_1), \dots, (x_n, a_n, r_n, p_n))$

for

— Evaluation:

- Estimate online performance of some new policy π_e offline.
- Policy π_e is typically different from π_0 that generated log.
- → Learning:
 - Find new policy π that improves performance over π_0 .
 - Do not rely on interactive experiments like in online learning.

Learning Settings

	Full-Information (Labeled) Feedback	Partial-Information (e.g. Bandit) Feedback
Online Learning	PerceptronWinnowEtc.	EXP3UCB1Etc.
Batch Learning	SVMRandom ForestsEtc.	

Batch Learning from Bandit Feedback (BLBF)

Goal of Learning

- Given:
 - Log data $D_0 = ((x_1, a_1, r_1, p_1), ..., (x_n, a_n, r_n, p_n))$
 - Hypothesis space H of possible policies π
- Find: Policy $\pi \in H$ that has maximum value

$$V(\pi) = \int \int \int r P(r|x,a)\pi(a|x)P(x) dx da dr$$

→ Optimize online metric offline.

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
 - Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]

Model-Based Approach: Reward Predictor

Given:

- Log data $D_0 = ((x_1, y_1, \delta_1, p_1), \dots, (x_n, y_n, \delta_n, p_n))$ from π_0
- Design reward model $\hat{r}: x \times a \to \Re$ for regression

Algorithm:

- Train reward predictor $\hat{r}: x \times a \rightarrow \Re$ using D_0
- Derive policy $\hat{\pi}(x) \equiv \underset{a}{\operatorname{argmax}} \{\hat{r}(x,a)\}$

News Recommender: Exp Setup

- Context x: User profile
- Action a: Slate
 - Pick from 7 candidates to place into 3 slots
- Reward r: "Revenue"
 - Complicated hidden function

- Logging policy π_0 : Non-uniform randomized logging system
 - Placket-Luce "explore around current production policy"

News Recommender: Results

- Reward Predictor:
 - Features: Stacked features of three articles
 - Regression method: selected best via CV from {Ridge, Lasso, Least Squares, Decision Trees}

Approach	True Revenue
Production policy	224.00
Randomized logging policy π_0	214.00

Issues with Reward Predictor

Issue 1:

Model misspecification

 biased and not consistent

Issue 2:

- First solves hard problem (reward prediction) in order to solve easier problem (find good policy)
 - Predict correct rewards → optimal policy
 - Optimal policy → predict correct rewards

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
 - Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]

Empirical Risk Minimization

Empirical Risk Minimization (ERM) with Regularization:

Given hypothesis space H of policies $\pi: x \to a$, find

$$\widehat{\pi} = \underset{\pi \in H}{\operatorname{argmax}} \left[\widehat{V}(\pi) - Reg(\pi) \right]$$

→ Same as SVMs, Neural Nets, Boosted Trees, etc

Questions for learning from log data:

- What estimator to use for $\hat{V}(\pi)$?
- What regularizer $Reg(\pi)$ to use?
- Deterministic vs. Stochastic policies π ?
- How to solve argmax?

ERM with IPS Estimator

- Given:
 - Log $D_0 = ((x_1, a_1, r_1, p_1), ..., (x_n, a_n, r_n, p_n))$ from π_0
 - Deterministic policies $\pi \in H$: $a = \pi(x)$
- Training:

$$\hat{\pi} \coloneqq \operatorname{argmax}_{\pi \in H} \left\{ \frac{1}{n} \sum_{i}^{n} \frac{I\{a_i = \pi(x_i)\}}{p_i} r_i \right\}$$

$$= \operatorname{argmax}_{\pi \in H} \left\{ \frac{1}{n} \sum_{i}^{n} \frac{r_i}{p_i} I\{a_i = \pi(x_i)\} \right\}$$

Deterministic $\pi \rightarrow Multi-class ERM$

• Treat π as a classifier with weighted loss $(x, a, r, p) \rightarrow (x, a, w); w = r/p$

 $V(\pi) = E_{x,a,r}[w \ I\{\pi(x) = a\}]$

Use weighted multi-class algorithm to pick π. (e.g., Vowpal Wabbit (VW), Open Bandit Pipeline)

Summary: ERM via IPS

- Empirical Risk Minimization (ERM) with Regularization:
 - What estimator to use for $\hat{V}(\pi)$?
 - VW: IPS or Doubly Robust
 - What regularizer $Reg(\pi)$ to use?
 - Standard regularizers to prevent overfitting
 - Deterministic vs. stochastic π ?
 - Deterministic
 - How to solve argmax?
 - Reduce to multi-class classification, use off-the-shelf algos

News Recommender: Results

 VW: Reduce to multi-class filter tree, doubly robust estimator with ridge regression, default parameters, 4 epochs via CV

Approach	Revenue
Production ranker	224.00
Randomized π_0	214.00
Reward predictor	175.71
ERM via IPS (VW)	177.93

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
 - Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]

Issues of ERM with IPS

Generalization Error Bound for BLBF

Theorem [Generalization Error Bound]

For any hypothesis space H with capacity C, and for all $\pi \in H$ with probability $1-\eta$

$$V(\pi) \leq \widehat{V}(\pi) + O\left(\sqrt{\widehat{Var}(\pi)/n}\right) + O(C)$$
 Unbiased Estimator Control
$$\widehat{V}(\pi) = \widehat{Mean}\left(\frac{\pi(a_i|x_i)}{p_i}r_i\right)$$

$$\widehat{Var}(\pi) = \widehat{Var}\left(\frac{\pi(a_i|x_i)}{n_i}r_i\right)$$

 \rightarrow Bound accounts for the fact that variance of risk estimator can vary greatly between different $\pi \in H$

Counterfactual Risk Minimization

• Theorem [Generalization Error Bound]

$$V(\pi) \le \hat{V}(\pi) + O\left(\sqrt{\widehat{Var}(\pi)/n}\right) + O(C)$$

→ Constructive principle for designing learning algorithms

$$\pi^{crm} = \operatorname*{argmin}_{\pi \in H_i} \widehat{V}(\pi) + \lambda_1 \left(\sqrt{\widehat{Var}(\widehat{V}(\pi))/n} \right) + \lambda_2 C(H_i)$$

$$\widehat{V}(\pi) = \frac{1}{n} \sum_{i}^{n} \frac{\pi(a_i|x_i)}{p_i} r_i \qquad \widehat{Var}(\widehat{V}(\pi)) = \frac{1}{n} \sum_{i}^{n} \left(\frac{\pi(a_i|x_i)}{p_i} r_i\right)^2 - \widehat{V}(\pi)^2$$

POEM Hypothesis Space

Hypothesis Space: Stochastic policies

$$\pi_w(a|x) = \frac{1}{Z(x)} \exp(w \cdot \Phi(x,a))$$

with

- w: parameter vector to be learned
- $-\Phi(x,a)$: joint feature map between context and action
- Z(x): partition function

POEM Learning Method

- Policy Optimizer for Exponential Models (POEM)
 - Data: $S = ((x_1, a_1, r_1, p_1), ..., (x_n, a_n, r_n, p_n))$
 - Hypothesis space: $\pi_w(a|x) = \exp(w \cdot \phi(x,a))/Z(x)$
 - Training objective: Let $z_i(w) = \pi_w(a_i|x_i)r_i/p_i$

$$w = \underset{w \in \Re^{N}}{\operatorname{argmin}} \left[\frac{1}{n} \sum_{i=1}^{n} z_{i}(w) + \lambda_{1} \sqrt{\left(\frac{1}{n} \sum_{i=1}^{n} z_{i}(w)^{2}\right) - \left(\frac{1}{n} \sum_{i=1}^{n} z_{i}(w)\right)^{2} + \lambda_{2} ||w||^{2}} \right]$$
Unbiased Risk
Estimator
Variance
Control
Control

Summary: CRM via IPS

- Counterfactual Risk Minimization (CRM) :
 - What estimator to use for $\hat{V}(\pi)$?
 - IPS (or Doubly Robust)
 - What regularizer $Reg(\pi)$ to use?
 - Variance regularization to control unequal IPS variance
 - Standard regularizers to prevent overfitting
 - Deterministic vs. stochastic π ?
 - Stochastic policy to have fine-grained control of variance
 - How to solve argmax?
 - Gradient descent (or SGD with repeated majorization)

Does Variance Regularization Improve Generalization?

• IPS:
$$w = \operatorname*{argmin}_{w \in \Re^N} \left[\widehat{V}(w) + \lambda_2 ||w||^2 \right]$$

POEM:

$$w = \underset{w \in \Re^{N}}{\operatorname{argmin}} \left[\widehat{V}(w) + \lambda_{1} \left(\sqrt{\widehat{Var}(w)/n} \right) + \lambda_{2} ||w||^{2} \right]$$

Hamming Loss	Scene	Yeast	TMC	LYRL
π_0	1.543	5.547	3.445	1.463
IPS	1.519	4.614	3.023	1.118
POEM	1.143	4.517	2.522	0.996
# examples	4*1211	4*1500	4*21519	4*23149
# features	294	103	30438	47236
# labels	6	14	22	4

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
 - Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]

Problem: Propensity Overfitting

- Example
 - Losses r(x, a): (blue boxes observed in training)
 - Which $\pi(a|x)$ minimizes IPS?

$$\hat{V}(\pi) = \min_{\pi \in H} \frac{1}{n} \sum_{i}^{n} \frac{\pi(a_i|x_i)}{p_i} r_i$$

- → Avoid the training observations!
- \rightarrow Overfitting the choices of the logging policy π_0 .

Control Variate

Idea: Identify propensity overfitting through control variate.

$$\hat{V}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i|x_i)}{p_i} r_i \qquad \hat{S}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \frac{\pi(a_i|x_i)}{p_i} 1$$

- Correlated $\hat{S}(\pi)$ has known expectation:

$$E[\hat{S}(\pi)] = \frac{1}{n} \sum_{i=1}^{n} \int \frac{\pi(a_i|x_i)}{\pi_0(a_i|x_i)} \pi_0(a_i|x_i) P(x) da_i dx_i = 1$$

→ SNIPS estimator naturally corrects for propensity overfitting

$$\widehat{\mathbf{V}}^{SNIPS}(\pi) = \frac{\widehat{\mathbf{V}}(\pi)}{\widehat{S}(\pi)}$$

SNIPS-POEM Learning Method

Method:

- Data: $D_0 = ((x_1, a_1, r_1, p_1), ..., (x_n, a_n, r_n, p_n))$
- Hypothesis space: $\pi_w(y|x) = \exp(w \cdot \phi(x,a))/Z(x)$
- Training objective:

SNIPS-POEM vs. IPS-POEM

Hamming Loss	Scene	Yeast	ТМС	LYRL
π_0	1.511	5.577	3.442	1.459
IPS-POEM	1.200	4.520	2.152	0.914
SNIPS-POEM	1.045	3.876	2.072	0.799
Control Variate $\widehat{E}[s_i]$				
IPS-POEM	1.782	5.352	2.802	1.230
SNIPS-POEM	0.981	0.840	0.941	0.945

BanditNet: Hypothesis Space

Hypothesis Space: Stochastic policies

$$\pi_w(a|x) = \frac{1}{Z(x)} \exp(DeepNet(x, a|w))$$

with

- w: parameter tensors to be learned
- Z(x): partition function

Note: same form as Deep Net with softmax output

BanditNet: Learning Method

Method:

- Data: $D_0 = ((x_1, a_1, r_1, p_1), ..., (x_n, a_n, r_n, p_n))$
- Hypotheses: $\pi_w(a|x) = \exp(DeepNet(x,a|w))/Z(x)$
- Training objective: Optimize via SGD after reformulation

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
 - Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]

Learning-to-Rank from Clicks

Evaluating Rankings

Evaluation with Missing Judgments

- Loss: $r(x, a|r^*)$
 - Relevance labels $r_d^* \in \{0,1\}$
 - This talk: rank of relevant documents

$$r(x,a|r^*) = \sum_{d} rank(d|a) \cdot r_d^*$$

- Assume:
 - Click implies observed and relevant:

$$(c_d = 1) \leftrightarrow (o_d = 1) \land (r_d^* = 1)$$

- Problem:
 - No click can mean not relevant OR not observed

$$(c_d = 0) \leftrightarrow (o_d = 0) \lor (r_d^* = 0)$$

• → Understand observation mechanism

Inverse Propensity Score Estimator

- Observation Propensities $Q(o_d = 1|x, \bar{a}, r^*)$
 - Random variable $o_d \in \{0,1\}$ indicates whether relevance label r_d^* for is observed
- Inverse Propensity Score (IPS) Estimator:

$$\hat{\mathbf{r}}(x,a|r^*,o) = \sum_{d:c_d=1} \frac{rank(d|a)}{Q(o_d=1|x,\bar{a},r^*)}$$
 New Ranking

• Unbiasedness: $E_o[\hat{\mathbf{r}}(\mathbf{x}, \mathbf{a} \mid r^*, o)] = r(\mathbf{x}, \mathbf{a} \mid r^*)$

Presented \overline{a}	Q
А	1.0
В	0.8
С	0.5
D	0.2
Е	0.2
F	0.2
G	0.1

ERM for Partial-Information LTR

Unbiased Empirical Risk:

$$\hat{V}_{IPS}(\pi) = \frac{1}{N} \sum_{(x,a,c) \in S} \sum_{\mathbf{d}: c_d = 1} \frac{rank(d|\pi(x))}{Q(o_d = 1|\mathbf{x}, \bar{a}, r^*)}$$

ERM Learning:

$$\widehat{\pi} = \underset{\pi}{\operatorname{argmin}} [\widehat{V}_{IPS}(\pi)]$$

Consistent ERM Learning

Consistent

Estimator of True
Performance

- Questions:
 - How do we optimize this empirical risk in a practical learning algorithm?
 - How do we define and estimate the propensity model $Q(o_d=1|x,\bar{a},r^*)$?

Propensity-Weighted SVM Rank

• Data:

- $D = (x_j, d_j, D_j, q_j)^n$
- Training QP:

$$w^* = \underset{w,\xi \ge 0}{\operatorname{argmin}} \frac{1}{2} w \cdot w + \frac{C}{n} \sum_{j} \frac{1}{q_j} \sum_{i} \xi_j^i$$

$$\forall \bar{d}^i \in D_1 : w \cdot \left[\phi(x_1, d_1) - \phi(x_1, \bar{d}^i) \right] \ge 1 - \xi_1^i$$

$$\vdots$$

$$\forall \bar{d}^i \in D_n : w \cdot \left[\phi(x_n, d_n) - \phi(x_n, \bar{d}^i) \right] \ge 1 - \xi_n^i$$

- Loss Bound: $\forall w : rank(d, sort(w \cdot \phi(x, d)) \leq \sum_{i} \xi^{i} + 1$
- Analogous method with Deep Nets [Agarwal et al., 2019b]

Optimizes convex upper bound on unbiased IPS risk estimate!

Position-Based Propensity Model

Model:

$$P(c_d = 1|r_d^*, rank(d|\bar{a})) = q_{rank(d|\bar{a})} \cdot [r_i^* = 1]$$

- Assumptions
 - Examination only depends on rank
 - Click reveals relevance if rank is examined
- Estimation
 - Estimate q_1, \dots, q_k via small intervention experiments
 - See [Joachims et al., 2017] [Agarwal et al., 2019a] [Fang et al., 2019] [Chandar & Carterette, 2018]

Presented \overline{a}	Q
А	q_1
В	q_2
С	q_3
D	q_4
Е	q_5
F	q_6
G	q_7

Ranking Accuracy vs. Training Data

Learning: Outline

- Goal: Optimizing online metrics offline
- Approach 1: Model-Based Learning
 - Derive policy from predicted rewards
- Approach 2: Model-Free Learning
 - ERM via IPS: Reduction to weighted multi-class classification
- Revisiting the Variance Issue
 - CRM via IPS: Variance regularized ERM for stochastic rules (POEM)
 - CRM via SNIPS: Avoiding propensity overfitting (NormPOEM, BanditNet)
- Learning to Rank (LTR)
 - Pairwise LTR: Unbiased LTR with biased click data (Propensity SVM-Rank)
- → Listwise LTR: Plackett-Luce ranker with fairness → [Yadav et al., 2021]