Zadanie nr 3 - Perceptron Wielowarstwowy i metoda wstecznej propagacji błedu

Inteligentna analiza danych

Robert Radczyc, 203976 Dawid Michałowski, 203942

07.06.2017

1 Cel zadania

Celem zadania było zbuodwanie sieci neuronów wielowarstwowego preceptronu z wykorzystaniem metody wstecznej propagacji błędu jako metody jej nauczania.

2 Wstęp teoretyczny

Wykorzystujemy metodę wstecznej propagacji błędu, która jest stosowana do sieci wielowarstowych. Polega ona na wyliczeniu błędu dla warstwy najwyzszej, a następnie na podstawie tej warstwy wyliczyamy błąd warstwy o jeden niższej tak długo, aż nie wyliczymy błędu dla każdej z warstw.

Błąd ten uwzględniany jest potem przy przeliczaniu wag na wejściach neuronów.

3 Eksperymenty i wyniki

Będziemy trenować sieć ustawiając jej parametry w różny sposób, to znaczy:

- -Wartość kroku treningowego
- -Ilość epok treningu
- -Określenie czy sieś posiada BIAS
- -Określenie czy wzorce treningowe są przemieszane

W eksperymentach przedstawiwamy następujące wzorce treningowe

```
\{1,0,0,0\} : \{1,0,0,0\} 
\{0,1,0,0\} : \{0,1,0,0\} 
\{0,0,1,0\} : \{0,0,1,0\} 
\{0,0,0,1\} : \{0,0,0,1\}
```

3.1 Eksperyment nr 1

3.2 Założenia

W tym eksperymencie użyliśmy następujących parametrów:

- -Wartość kroku treningowego = 0.1
- -Ilość epok treningu = 100~000
- -Określenie czy sieś posiada BIAS = false
- -Określenie czy wzorce treningowe są przemieszane = false

3.2.1 Rezultat

Wyjscie z warstwy Ukrytej:

1 Neuron	2 Neuron
0,0962	$0,\!0964$
0,9978	$0,\!0095$
0,0963	$0,\!0963$
0,0092	0,9978

Wyjscie z warstwy Wynikowej:

1 Neuron	2 Neuron	3 Neuron	4Neuron
0,3827	$0,\!0755$	$0,\!3827$	$0,\!0756$
0,0757	0,9670	$0,\!0760$	0,0000
0,3827	$0,\!0757$	$0,\!3827$	$0,\!0755$
0,0759	0,0000	0,0758	0,9670

3.2.2 Wnioski

 ${\bf Z}$ wyników w tabelach poniżej można zauważyć że sieć nie nauczyła się poprawnie interpretować danych.

3.3 Eksperyment nr 2

3.4 Założenia

W tym eksperymencie użyliśmy następujących parametrów:

- -Wartość kroku treningowego = 0.1
- -Ilość epok treningu = 100~000
- -Określenie czy sieś posiada BIAS = false
- -Określenie czy wzorce treningowe są przemieszane = false

3.4.1 Rezultat

Wyjscie z warstwy Ukrytej:

1 Neuron	2 Neuron
0,9995	0,0036
0,0519	0,0517
0,0035	0,9995
0,0517	0,0519

Wyjscie z warstwy Wynikowej:

1 Neuron	2 Neuron	3 Neuron	4 Neuron
0,9855	$0,\!0457$	0,0000	$0,\!0451$
0,0457	$0,\!4220$	0,0450	$0,\!4220$
0,0000	0,0450	0,9855	$0,\!0457$
0,0450	$0,\!4220$	0,0457	$0,\!4220$

3.4.2 Wnioski

Ten eksperyment pokazuje, że zwiększenie ilości epok treningowych również nie przynosi oczekiwanych efektów i sieć nadal nie nauczyła się poprawnie interpretować danych.

3.5 Eksperyment nr 3

3.6 Założenia

W tym eksperymencie użyliśmy następujących parametrów:

- -Wartość kroku treningowego = 0.1
- -Ilość epok treningu = $100 \ 000$
- -Określenie czy sieś posiada BIAS = true
- -Określenie czy wzorce treningowe są przemieszane = false

3.6.1 Rezultat

Wyjscie z warstwy Ukrytej:

1 Neuron	2 Neuron
0,0068	0,9686
0,9814	0,0089
0,0117	0,0078
0,9894	0,9919

Wyjscie z warstwy Wynikowej:

1 Neuron	2 Neuron	3 Neuron	4 Neuron
0,9853	0,0000	0,0103	$0,\!0163$
0,0000	0,9853	0,0105	$0,\!0161$
0,0130	$0,\!0126$	0,9836	0,0000
0,0101	$0,\!0103$	0,0000	0,9808

3.6.2 Wnioski

Ten eksperyment pokazuje, że to właśnie BIAS jest czynnikiem który decyduje o poprawności jego działania, ponieważ dopiero teraz wyniki są zbliżone do oczekiwanych.

3.7 Eksperyment nr 4

3.8 Założenia

W tym eksperymencie użyliśmy następujących parametrów:

- -Wartość kroku treningowego = 0.1
- -Ilość epok treningu = $100 \ 000$
- -Określenie czy sieś posiada BIAS = true
- -Określenie czy wzorce treningowe są przemieszane = true

3.8.1 Rezultat

Wyjscie z warstwy Ukrytej:

1 Neuron	2 Neuron
0,9776	0,0076
0,0089	0,0092
0,0077	0,9792
0,9907	0,9904

Wyjscie z warstwy Wynikowej:

1 Neuron 2	Neuron	3 Neuron	4 Neuron
0,9853 0	,0105	0,0000	0,0163
0,0128 0	,9835	0,0128	0,0000
0,0000 0	,0105	0,9853	0,0163
0,0103 0	,0000	0,0103	0,9807

3.8.2 Wnioski

Powyższy eksperyment pokazuje że nawet w przypadku gdy losowo przestawiamy wzorce treningowe nie wpływa to na proces nauku neuronów.

3.9 Eksperyment nr 5

3.10 Założenia

W tym eksperymencie użyliśmy następujących parametrów:

- -Wartość kroku treningowego = 0.1
- -Ilość epok treningu = $10\ 000\ 000$
- -Określenie czy sieś posiada BIAS = true
- -Określenie czy wzorce treningowe są przemieszane = false

3.10.1 Rezultat

Wyjscie z warstwy Ukrytej:

1 Neuron	2 Neuron
0,0023	0,0090
0,9970	0,9936
0,0053	0,9943
0,9581	0,0022

Wyjscie z warstwy Wynikowej:

1 Neuron	2 Neuron	3 Neuron	4 Neuron
0,9985	0,0000	0,0012	$0,\!0013$
0,0000	0,9981	0,0010	0,0009
0,0010	$0,\!0016$	0,9986	0,0000
0,0009	0,0016	0.0000	0.9986

3.10.2 Wnioski

Zgodnie z naszymi przewidywaniami nawet 100-krotne zwiększenie ilości epok dało mało zadowolające efekty gdyż zwiększyło średnio dokładność rzędu 0,01

Bibliografia

[1] Instrukcja do zadania z platformy WIKAMP