# Templates

# Guo Haoyang

## March 2025

# Contents

| An                | overview of representation theory                                                      |
|-------------------|----------------------------------------------------------------------------------------|
| Bas               | sic definition of linear representations                                               |
| 2.1               | Categorical stuff                                                                      |
|                   | 2.1.1 Equivalent class of representation                                               |
| 2.2               | New representations from old ones                                                      |
|                   | 2.2.1 Overview of new representations                                                  |
|                   | 2.2.2 Direct sum of representations                                                    |
|                   | 2.2.3 Tensor product of representations                                                |
| 2.3               | Characters of representation                                                           |
| 2.4               | Special representations for specific groups                                            |
| 2.5               | Decomposition of representations (as direct sum)                                       |
|                   | 2.5.1 An important subrepresentation: Projection                                       |
| 2.6               | Maschke's theorem                                                                      |
| $\frac{2.7}{2.7}$ | A special decomposition                                                                |
|                   | 2.7.1 Dual representation                                                              |
|                   | 2.7.2 Structure of Hom representations                                                 |
| 2.8               | Class functions                                                                        |
| 2.0               | Class rancolons                                                                        |
| Ind               | luced representation                                                                   |
| 3.1               | Induced representations (first encounter)                                              |
| 3.2               |                                                                                        |
|                   | 3.2.1 Characters of induced representations                                            |
|                   | 3.2.2 Restriction to subgroups                                                         |
| CIL               |                                                                                        |
|                   | aracter table of finite groups  The goal is group                                      |
| 4.1               | The cyclic group                                                                       |
|                   | $4.1.1  C_n  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $          |
| 4.0               | $4.1.2  C_{\infty}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $   |
| 4.2               | The Dihedral group                                                                     |
|                   | $A.2.1$ $D_4$                                                                          |
|                   | $4.2.2$ $D_n$ , $n$ even, $\geq 2$                                                     |
|                   | 4.2.3 $D_n$ , $n$ odd                                                                  |
|                   | $4.2.4$ $D_{nh}$                                                                       |
|                   | $4.2.5$ $D_{\infty}$                                                                   |
|                   | $4.2.6  D_{\infty h}  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $ |
| 4.3               | Alternating group                                                                      |
|                   | $4.3.1$ $A_4$                                                                          |
| 4.4               | Symmetric group                                                                        |
|                   | $4.4.1  S_4  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  \dots  $          |
| p <b>-g</b>       | roup representation                                                                    |
| 5.1               | p-group notions revisited                                                              |
| 5.2               | Theory of Burnside and Blichfeldt                                                      |
| 5.3               | · · · · · · · · · · · · · · · · · · ·                                                  |

## 1 An overview of representation theory



Another perspective of representation functor: It is just group actions on different sets, so representations could be viewed as a continuation of group actions:

## 2 Basic definition of linear representations

## 2.1 Categorical stuff

#### Definition 2.1: Category of linear representations of finite group over a field

Let G be a finite group and  $\mathbb{F}$  be a field. The cateogry of linear representation of G over  $\mathbb{F}$ , is denoted as  $\mathbf{LRep}_{\mathbb{F}}(G^{<\infty})$  with:

- Objects: Pairs  $(\rho, V)$ . For each  $(\rho, V)$ , V is a vector space over  $\mathbb{F}$  and  $\rho$  is a linear representation of G on V.
- Morphisms: Equivariant maps.
- Compositions: The composition of equivariant maps.
- Identities: Identity equivariant maps.

#### 2.1.1 Equivalent class of representation

Classify representation of G up to isomorphism: Isomorphism class is a collection of linear representations of G such that any two representations in that collection are isomorphic (in the sense of representation).

**Lemma 2.1** () Any element of an isomorphism class can be represented by  $(\tau, \mathbb{C}^n)$ 

#### 2.2 New representations from old ones

#### 2.2.1 Overview of new representations

$$\text{direct sum } (\rho_1\oplus\rho_2,V_1\oplus V_2)$$
 
$$\text{tensor product } (\rho_1\otimes\rho_2,V_1\otimes V_2)$$
 
$$\text{Given } (\rho_1,V_1),(\rho_2,V_2) \qquad \qquad \text{induced}$$
 
$$\text{Hom } (\sigma,\operatorname{Hom}(V_1,V_2))$$

#### 2.2.2 Direct sum of representations

#### 2.2.3 Tensor product of representations

### Definition 2.2: Tensor product of representations

Let  $(\rho_i, V_i)$  be representations of a group G. The **tensor product representation**, denoted  $(\rho_1 \otimes \rho_2, V_1 \otimes V_2)$ , has an underlying vector space  $V_1 \otimes V_2$ , given by the homomorphism  $\rho_1 \otimes \rho_2 : G \to GL(V_1 \otimes V_2)$  given by

$$\rho_1 \otimes \rho_2(g) := \rho_1(g) \otimes \rho_2(g)$$

where  $\rho_1(g) \otimes \rho_2(g)$  is the tensor product of linear maps. More explicitly,

$$\rho_1 \otimes \rho_2(g)(v_1 \otimes v_2) = \rho_1(g)(v_1) \otimes \rho_2(g)(v_2)$$

or

$$\rho_1 \otimes \rho_2(g) \left( \sum_{i=1}^n v_i \otimes w_i \right) = \sum_{i=1}^n \rho_1(g)(v_i) \otimes \rho_2(g)(w_i)$$

### 2.3 Characters of representation

#### Definition 2.3: Character of representation

Given a linear representation  $\rho: G \to \mathrm{GL}(V)$ , its character  $\chi_{\rho}$  is defined as

$$\chi_{\rho}: G \to \mathbb{C} \quad \chi_{\rho}(g) = \operatorname{Tr}(\rho(g)) \text{ or } g \mapsto \operatorname{Tr}(\rho(g))$$

### Proposition 2.1: Properties of characters

Let  $(\rho, V)$  be a linear representation of G and  $\chi_{\rho}$  is the character of  $\rho$ . Then:

- (1)  $\chi_{\rho}$  only depends on the isomorphism class of  $\rho$ .
- (2)  $\chi_{\rho}$  is constant on each conjugacy class.
- (3)  $\chi_{\rho}(1_G) = \dim V$

**Proof:** (3)  $\chi_{\rho}(1_G) = \operatorname{Tr}(\rho(1)) = \operatorname{Tr}(\operatorname{Id}_V) = \dim V$ 

#### Theorem 2.1: Identification of character group

 $\exists$  a natural isomorphism

$$G^* \cong (G^{ab})^*$$

where  $G^{ab} = G/G'$  and G' is the commutator subgroup of G.

**Proof:** Using the Universal property of abelianization,  $\forall$  morphism  $f: G \to \mathbb{C}^{\times}$ ,  $\exists$ ! morphism  $g: G^{ab} \to \mathbb{C}^{\times}$  such that  $g \circ \pi = f$ . This proves the surjectivity of  $(G^{ab})^* \to G^*$  injectivity

So abelian group is isomorphic to its character group.

## 2.4 Special representations for specific groups

## 2.5 Decomposition of representations (as direct sum)

## Definition 2.4: Subrepresentation

Let  $(\rho, V)$  be a representation of G and  $U \leq V$  such that

$$\forall g \in G, \ \forall u \in U, \ \rho(g)(u) \in U$$

Then  $(\rho|_U, U)$  is a subrepresentation of  $(\rho, V)$ , where

$$\rho|_U: G \to \mathrm{GL}(U), \quad \text{by } g \mapsto \rho(g)|_U$$

Namely,  $\rho|_U(g) := \rho(g)|_U$ 

#### 2.5.1 An important subrepresentation: Projection

$$(\rho, V) \xleftarrow{\pi \ [2]} (\rho|_{V^G}, V^G) \xrightarrow{-[3]} \dim V^G$$

$$\geq [1]$$

#### 2.6 Maschke's theorem

### 2.7 A special decomposition

#### 2.7.1 Dual representation

#### 2.7.2 Structure of Hom representations

$$(\rho,V) \qquad (\tau,W) \\ \downarrow^{[1]} \\ (\sigma,\operatorname{Hom}(V,W)) \stackrel{\sim \dagger \ [3]}{=} (\rho^{\vee} \otimes \tau,V^{\vee} \otimes W) \\ \downarrow^{[2]} \\ (\rho^{\vee},V^{\vee})$$

What is the relationship between  $\text{Hom}_G(V, W)$  and Hom(V, W)? Illustrated by the following theorem, it is simply

$$\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G$$

## Theorem 2.2: Identification of Hom

Let  $(\rho, V)$  and  $(\tau, W)$  be two linear representations.  $\operatorname{Hom}_G(V, W) = \operatorname{Hom}(V, W)^G$ 

#### **Proof:**

$$\begin{split} \operatorname{Hom}(V,W)^G &= \{T: V \to W | \forall g \in G, \ \sigma(g)(T) = T \} \\ &= \left\{T: V \to W | \forall g \in G, \ \tau(g) \circ T \circ \rho(g)^{-1} = T \right\} \\ &= \left\{T: V \to W | \forall g \in G, \ \tau(g) \circ T = T \circ \rho(g) \right\} \\ &= \operatorname{Hom}_G(V,W) \end{split}$$

## Proposition 2.2: Character of $(\sigma, \text{Hom}(V, W))$

Let  $(\rho, V)$  and  $(\tau, W)$  be two linear representations. The character of  $(\sigma, \operatorname{Hom}(V, W))$  is given by

$$\chi_{\sigma} = \chi_{\tau} \cdot \overline{\chi}_{\rho}$$

#### Lemma 2.1: Schur's lemma

Let  $(\rho, V)$  and  $(\tau, W)$  be two irreducible linear representations of G. Then

$$\operatorname{Hom}_G(V, W) \cong \begin{cases} \mathbb{C} & (\rho, V) \cong (\tau, W) \\ 0 & \text{otherwise} \end{cases}$$

## 2.8 Class functions

#### struture of Class(G)



#### Definition 2.5: Class function

A function  $f: G \to \mathbb{C}$  is a class function if

$$\forall g, h \in G, f(hgh^{-1}) = f(g)$$

i.e. f is constant on each conjugacy class.

The space of class function, denoted Class(G), is  $Class(G) := \{f : G \to \mathbb{C} | f \text{ is a class function} \}$ .

## 3 Induced representation

### 3.1 Induced representations (first encounter)

## 3.2 Induced representations (second encounter)

As in the first encounter, let G be a finite group with a subgroup H. Let  $(\rho, W)$  be a linear representation of H. The representation of G induced by W is denoted  $(\operatorname{ind}_H^G \rho, \operatorname{ind}_H^G W)$ .

#### 3.2.1 Characters of induced representations

#### 3.2.2 Restriction to subgroups

Let G be a finite group with subgroups  $H, K \leq G$  and  $(\rho, W)$  be a linear representation of H. Instead of inducing a representation from H to G and restricting it back to H,  $\operatorname{ind}_H^G W$  is restricted to another subgroup K. Here we need double cosets:  $[\operatorname{Dun}23]$ ,  $[\operatorname{Ser}77b]$ 

#### Definition 3.1: Mackey's decomposition

Let G, H, K, S, W have the same meaning as in the prescribed context. The representation  $(\operatorname{res}_K^G \operatorname{ind}_H^G \rho, \operatorname{res}_K^G \operatorname{ind}_H^G W)$  can be decomposed into direct sum of  $(\operatorname{ind}_{H_s}^G \rho, \operatorname{ind}_{H_s}^G W)$ ,

$$\mathrm{res}_K^G\mathrm{ind}_H^GW\cong\bigoplus_{s\in S\cong KG/H}\mathrm{ind}_{H_s}^KW_s$$

5

## 4 Character table of finite groups

- 4.1 The cyclic group
- **4.1.1**  $C_n$
- **4.1.2**  $C_{\infty}$
- 4.2 The Dihedral group
- **4.2.1**  $D_4$
- **4.2.2**  $D_n, n \text{ even}, \geq 2$
- **4.2.3**  $D_n$ , n odd

Consider the group presentation  $D_n = \langle x, y | y^2 = x^n = xyxy = 1 \rangle$ 

- **4.2.4**  $D_{nh}$
- **4.2.5**  $D_{\infty}$
- **4.2.6**  $D_{\infty h}$
- 4.3 Alternating group
- **4.3.1**  $A_4$
- 4.4 Symmetric group
- **4.4.1**  $S_4$

## 5 p-group representation

## 5.1 p-group notions revisited

- Solvable groups
- Supersolvable groups
- Nilpotent groups

The next lemma comes from [Ser77a]

#### Lemma 5.1: Property of fixed set of a *p*-group

Let G be a p-group and G acting on a finite set X.  $X^G$  is the set of elements of X fixed by G. Then,

$$|X| \equiv |X^G| \mod p$$

#### Theorem 5.1: Existence of fixed elements in p-group representation

Let V be a vector space over a field of characteristic p > 0 and G be a p-group. Let  $\rho: G \to \mathrm{GL}(V)$  be a linear representation of G in V.  $V^G$  is the fixed set of V by G, where the action  $G \curvearrowright V$  is induced by  $\rho$ . Then,  $V^G \neq \{0\}$ , i.e.  $\exists$  non-zero element of V fixed by all  $\rho(s), s \in G$ 

**Proof:** Pick an arbitrary  $v \in V \setminus \{0\}$ . Define the set X to be

$$X := \langle \rho(s)(v) | s \in G \rangle = \operatorname{span} \{ \rho(s)(v) | s \in G \} \subseteq V$$

- X is an n-dimensional vector space for some n by definition of X. Hence,  $X \cong \mathbb{F}_{n^k}^n$  and  $|X| = p^m$  for some m.
- Applying lemma 5.1, we have  $|X^G| \equiv |X| = p^m \equiv 0 \mod p$ , but since  $0 \in X^G$ , the minimal possibility is  $|V^G| \ge |X^G| \ge p$ . Therefore,  $X^G \ne \{0\}$ .

#### Theorem 5.2: Irreducible representations of p-group

For any p-group G and any linear representation  $(\rho, V)$  of G, where V is a vector space over a field of characteristic p > 0. The only irreducible representation of  $(\rho, V)$  is the trivial representation.

## 5.2 Theory of Burnside and Blichfeldt

#### Theorem 5.3: Burnside's theorem

Let p,q be distinct primes and a,b be non-negative integers. Any group G of order  $|G| = p^a q^b$  is solvable.

The next theorem asserts that for a supersolvable groups, in particular, for p-groups, every irreducible representation is induced from a 1-dimensional representation. (c.f. [Gor23])

#### Theorem 5.4: Blichfeldt's theorem

Let G be a supersolvable group and  $(\rho, V)$  be an irreducible representation of G, then  $\exists$  a subgroup  $J \leq G$  and an 1-dimensional representation  $\psi$  of J that

$$(\rho, V) \cong (\operatorname{ind}_{J}^{G} \psi, \operatorname{ind}_{J}^{G} \mathbb{C})$$

Proof:

## 5.3 Brauer's theorem

## References

- [Ser77a] Jean-Pierre Serre. "Examples of induced representations". In: *Linear Representations of Finite Groups*. New York, NY: Springer New York, 1977, pp. 61–67. ISBN: 978-1-4684-9458-7. DOI: 10.1007/978-1-4684-9458-7\_8. URL: https://doi.org/10.1007/978-1-4684-9458-7\_8.
- [Ser77b] Jean-Pierre Serre. "Induced representations; Mackey's criterion". In: Linear Representations of Finite Groups. New York, NY: Springer New York, 1977, pp. 54–60. ISBN: 978-1-4684-9458-7. DOI: 10.1007/978-1-4684-9458-7. URL: https://doi.org/10.1007/978-1-4684-9458-7\_7.
- [Dun23] Alexander Duncan. *Induced Representations*. URL: https://duncan.math.sc.edu/s23/math742/notes/induction.pdf. Feb. 2023.
- [Gor23] Eyal Goren. Higher algebra. Sept. 2023.