Гомотопия

Неформально гомотопия — непрерывная деформация объектов. У нас рассматриваемые объекты — пути.

Определение. Гомотопия двух (непрерывных) путей $\gamma_0, \gamma_1: [a,b] \to O \subset \mathbb{R}^m$ это непрерывное отображение $\Gamma: [a,b] \times [0,1] \to O$, такое что:

- $\Gamma(\circ,0)=\gamma_0$
- $\Gamma(\circ,1)=\gamma_1$

Гомотопия связанная (не связная), если:

- $\gamma_0(a) = \gamma_1(a)$
- $\gamma_0(b) = \gamma_1(b)$
- $\forall u \in [0,1] \ \Gamma(a,u) = \gamma_0(a), \Gamma(b,u) = \gamma_1(b)$

Рис. 1: Связанная гомотопия. Пунктиром — $\Gamma(\circ,u)$ для различных u

Гомотопия петельная, если:

- $\gamma_0(a) = \gamma_0(b)$
- $\gamma_1(a) = \gamma_1(b)$
- $\forall u \in [0,1] \ \Gamma(a,u) = \Gamma(b,u)$

Рис. 2: Петельная гомотопия. Пунктиром — $\Gamma(\circ,u)$ для различных u

Теорема 0.1.

- V локально потенциальное векторное поле в $O \subset \mathbb{R}^m$
- γ_0, γ_1 связанно гомотопные пути

Тогда
$$\int_{\gamma_0} \sum V_i dx_i = \int_{\gamma_1} \sum V_i dx_i$$

Примечание. То же самое верно для петельных гомотопий.

Доказательство. Пусть Γ — гомотопия γ_0 и γ_1 .

$$\gamma_u(t) := \Gamma(t, u), t \in [a, b], u \in [0, 1]$$

$$\Phi(u) = \int_{\gamma_u} \sum V_i dx_i$$

Мы хотим доказать, что $\Phi(u)={
m const.}$ Докажем более простой факт, что $\Phi-{
m nokanbho}$ постоянна, тогда в силу компактности отрезка Φ будет постоянна.

Определение локально постоянной функции:

$$\forall u_0 \in [0,1] \ \exists W(u_0) : \forall u \in W(u_0) \cap [0,1] \ \Phi(u) = \Phi(u_0)$$

 Γ — непр. на $[a,b] \times [0,1]$ — комп. $\Rightarrow \Gamma$ равномерно непрерывна:

$$\forall \delta > 0 \ \exists \sigma > 0 \ \forall t, t' : |t - t'| < \sigma \ \forall u, u' : |u - u'| < \sigma \quad |\Gamma(t, u) - \Gamma(t', u')| < \frac{\delta}{2}$$

Возьмём δ из леммы о похожести близких путей (??) для пути γ_{u_0} .

Если $|u-u_0|<\delta$ $|\Gamma(t,u)-\Gamma(t,u_0)|<\frac{\delta}{2}$ при $t\in[a,b]$, т.е. γ_u и γ_{u_0} похожи по лемме о похожести близких путей. Хочется сказать, что интегралы по γ_u и γ_{u_0} таким образом равны, однако это не обосновано, для этого необходимо, чтобы пути были кусочногладкими.

Построим кусочно-гладкий путь $\tilde{\gamma}_{u_0}$, $\frac{\delta}{4}$ -близкий к γ_{u_0} , т.е.

$$\forall t \in [a, b] \ |\gamma_{u_0}(t) - \tilde{\gamma}_{u_0}(t)| < \frac{\delta}{4}$$

и кусочно-гладкий путь $\tilde{\gamma}_u$, $\frac{\delta}{4}$ -близкий к γ_u . Тогда $\tilde{\gamma}_{u_0}$ и $\tilde{\gamma}_u$ - δ -близкие к $\gamma_{u_0} \Rightarrow$ они V-похожи \Rightarrow

$$\int_{\gamma_u} \sum V_i dx_i \stackrel{\text{def}}{=} \int_{\tilde{\gamma}_u} \dots = \int_{\tilde{\gamma}_{u_0}} \dots \stackrel{\text{def}}{=} \int_{\gamma_{u_0}} \dots$$

Таким образом, $\Phi(u)=\Phi(u_0)$ при $|u-u_0|<\delta$, т.е. Φ — локально постоянна. \qed

Определение. Область $O \subset \mathbb{R}^m$ — **односвязная**, если любой замкнутый путь в ней гомотопен постоянному пути.

Простыми словами — в O нет дырок, иначе путь вокруг дырки нельзя было бы стянуть.

Рис. 3: Стягивание замкнутого пути (сплошной линией) к постоянному пути (точке)

Примечание.

1. Выпуклая область — односвязная.

Это доказывается тем, что для любого пути можно применить гомотетию в качестве гомотопии: $\Gamma(t,u)=F_{1-u}(\gamma(t))$, где F_{α} — гомотетия с центром в произвольной точке A, лежащей внутри области, ограниченной путём γ , и коэффициентом α

Примечание. Гомотетия — равномерное стягивание всех точек к одной.

2. Гомеоморфный образ односвязного множества — односвязен.

 $\Phi: O \to O'$ — гомеоморфизм, γ — петля в O', $\Phi^{-1}(\gamma)$ — петля в O.

 $\Gamma:[a,b]\times[0,1]\to O$ — гомотопия $\Phi^{-1}(\gamma)$ и постоянного пути $\tilde{\gamma}\equiv A$

 $\Phi\circ\Gamma$ — гомотопия γ с постоянным путём $\tilde{\tilde{\gamma}}\equiv\Phi(A)$

Рис. 4: Применение гомотетии с центром A

Теорема 0.2.

- $O \subset \mathbb{R}^m$ односвязная область
- V локально потенциальное векторное поле в O

Тогда V — потенциальное в O

Доказательство. V — локально потенциально, $<\gamma_0$ — кусочно-гладкая петля, тогда γ_0 гомотопна постоянному пути γ_1 \Rightarrow

$$\int_{\gamma_0} = \int_{\gamma_1} = \int_a^b \langle V(\gamma_1(t)), \underbrace{\gamma_1'(t)} \rangle dt = 0$$

Тогда по теореме о характеризации потенциальных векторных полей в терминах интегралов V потенциально. \Box

Следствие. Теорема Пуанкаре верна в односвязной области.

Пусть даны две плоскости, соединенные гвоздём, между плоскостями есть зазор. На гвоздь надета веревочка в виде петли. Можно ли снять веревочку с гвоздя?

Теорема 0.3 (о веревочке).

- $O = \mathbb{R}^2 \setminus \{(0,0)\}$
- $\bullet \ \gamma: [0,2\pi] \to O, t \mapsto (\cos t, \sin t)$

Тогда эта петля нестягиваема.

Неформальная формулировка: пусть даны две плоскости, соединенные гвоздём, между плоскостями есть зазор. На гвоздь надета веревочка в виде петли. Можно ли снять веревочку с гвоздя?

Рис. 5: Веревочка (жирным), надетая на "гвоздь" (цилиндр)

Доказательство.
$$V(x,y)=\left(\dfrac{-y}{x^2+y^2},\dfrac{x}{x^2+y^2}\right)$$
— векторное поле в \mathbb{R}^2
$$\dfrac{\partial V_1}{\partial y}=\dfrac{-(x^2+y^2)+2y^2}{(x^2+y^2)^2}=\dfrac{y^2-x^2}{(x^2+y^2)^2}$$

$$\dfrac{\partial V_2}{\partial x}=\dfrac{(x^2+y^2)-2x^2}{(x^2+y^2)^2}=\dfrac{y^2-x^2}{(x^2+y^2)^2}$$

Таким образом, $\frac{\partial V_1}{\partial y} = \frac{\partial V_2}{\partial x}$ в области O. Тогда по лемме Пуанкаре V — локально потенциально.

При этом

$$\int_{\gamma} \sum V_i dx_i = \int_0^{2\pi} \frac{-\sin t}{\cos^2 t + \sin^2 t} (-\sin t) dt + \frac{\cos t}{\cos^2 t + \sin^2 t} \cos t dt$$
$$= \int_0^{2\pi} 1 dt = 2\pi$$

Таким образом, если бы существовал постоянный путь $\tilde{\gamma}$, которому γ гомотопен, то $\int_{\gamma}=\int_{\tilde{\gamma}}=0$, но это не так.

Степенные ряды

Пример. 1. $\sum_{n=0}^{+\infty} z^n, R = \frac{1}{\overline{\lim} \sqrt[n]{1}} = 1, |z| < 1 - \text{сходится, } |z| > 1 - \text{расходится, } |z| = 1$ — расходится, т.к. слагаемые $\not\to 0$

2.
$$\sum \frac{z^n}{n}, R = \frac{1}{\overline{\lim} \sqrt[n]{\frac{1}{n}}} = 1$$

(a)
$$z = 1, \sum_{n=1}^{\infty} \frac{1}{n}$$
 — расходится

(b)
$$z = -1, \sum \frac{(-1)^n}{n} - \text{сходится}$$

(c)
$$z=e^{i\varphi}, \varphi\neq 0, 2\pi$$
 $\sum \frac{e^{in\varphi}}{n}=\sum \frac{\cos n\varphi+i\sin n\varphi}{n}$ — сходится по признаку Дирихле.

3.
$$\sum rac{z^n}{n^2}, R=1, |z|=1 \Rightarrow \left|rac{z^n}{n^2}\right| \leq rac{1}{n^2}$$
 сходится.

4.
$$\sum n! z^n, R = \frac{1}{\overline{\lim} \sqrt[n]{n!}} \approx \frac{1}{\overline{\lim} \sqrt[n]{n^n e^{-n} \sqrt{2\pi n}}} = \frac{1}{\overline{\lim} \frac{n}{e}} = 0$$
, в 0 сходится, в остальных точках расходится.

5.
$$\sum \frac{z^n}{n!}$$
, $R = +\infty$ — везде сходится.

Теорема 0.4 (о равномерной сходимости и непрерывности степенного ряда).

•
$$\sum a_n(z-z_0)^n$$

•
$$0 < R < +\infty$$

Тогда:

1.
$$\forall r : 0 < r < R$$
 ряд сходится равномерно на $\overline{B(z_0,r)}$

2.
$$f(z) = \sum a_n (z - z_0)^n$$
 — непрерывна в $B(z_0, r)$

Доказательство.

1. Если 0 < r < R, то при z = r ряд абсолютно сходится, т.е. $\sum |a_n| r^n < +\infty$ Признак Вейерштрасса:

(a) При
$$|z-z_0| \le r |a_n(z-z_0)^n| \le |a_n|r^n$$

(b)
$$\sum |a_n|r^n < +\infty$$

 \Rightarrow есть сходимость на $\overline{B(z_0,r)}$

2. Следствие из пункта 1 и теоремы Стокса-Зайдля.

Если z удовлетворяет $|z-z_0| < R$, то $\exists r_0 < R : z \in B(z_0,r_0)$

На $B(z_0, r_0)$ есть равномерная сходимость $\Rightarrow f$ непр. в точке z.

M3137y2019

Определение. $f: \mathbb{C} \to \mathbb{C}$. Тогда производная f это:

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Примечание. $f(z_0 + h) = f(z_0) + f'(z_0)h + o(|h|), h \in \mathbb{C}$

Лемма 1.

- $w, w_0 \in \mathbb{C}$
- |w| < r
- $|w_0| < r$

Тогда $|w^n - w_0^n| \le nr^n |w - w_0|, n \in \mathbb{N}$.

Доказательство.

$$w^n - w_0^n = (w - w_0)(w^{n-1} + \underbrace{w^{n-2}w_0}_{\text{по модулю} \le r^{n-1}} + \dots + w_0^{n-1})$$

Лемма 2 (о дифференцируемости степенного ряда).

(A)
$$\sum_{n=0}^{\infty} a_n (z-z_0)^n, 0 < R < +\infty$$

(A')
$$\sum_{n=1}^{\infty} na_n(z-z_0)^{n-1}$$

Тогда:

- 1. Радиус сходимости (A') равен R
- 2. $\forall r \in B(z_0, R) \ \exists f'(z) \ u \ f'(z) = \sum n a_n (z z_0)^n$

Доказательство.

1. По формуле Адамара.

Ряд (A') сходится при каком-то $z \Leftrightarrow \sum na_n(z-z_0)^n$ — сходится.

$$\frac{1}{\overline{\lim}\sqrt[n]{n|a_n|}} = \frac{1}{1 \cdot \overline{\lim}\sqrt[n]{|a_n|}} = R$$

$$a = z_0 + w_0, |w_0| < r$$

$$z = z_0 + w$$

$$\frac{f(z) - f(a)}{z - a} = \sum_{n=0}^{+\infty} a_n \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum_{n=1}^{+\infty} \underbrace{a_n \frac{w^n - w_0^n}{w - w_0}}_{\text{модуль по лемме}}$$
(1)

 $\sum nr^{n-1}|a_n|$ сходится по пункту 1.

То есть ряд 1 в круге $z \in B(z_0,r)$

$$\lim \frac{f(z) - f(a)}{z - a} = \sum_{n=1}^{+\infty} a_n \lim \frac{(z - z_0)^n - (a - z_0)^n}{z - a} = \sum n a_n (a - z_0)^{n-1}$$