GIVEN
$$\vec{G} = (V, E)$$

- . $s \in V$ is the Start Vertex.
- · YueV: D[u] is the length

 of the best path

 we have found so

 far from s to u
- . $\forall u_1, u_2 \in V : d(u_1, u_2)$ is the length of the shortest distance from u_1 to u_2

Theorem: In Dijkstra's

Algo, whenever a vertex u
is pulled into the cloud

the label D[u] is equal to

d[s,u].

Proof: Proof by Contradiction

Say Not.

Let u be the Ist vertex

Which is pulled into the cloud s.t D[u] > d(s,u).

- · P is the shortest path from s to u.
- . Z is the Ist vertex on P that is not in the Cloud C
- on P [y could be salso]

$$D[y] = a(s, y)$$

$$D[z] \leq D[y] + \omega(y, \frac{7}{3})$$

.
$$D[z] \leq d(s,y) + \omega(y,z)$$

.
$$D[z] \leq d(s, z)$$

$$D[z] \geqslant d(s, z)$$

$$D[Z] = d(s, z)$$

$$D[u] \leq D[z]$$

$$=d(s,u)$$

. D[u] < d(s, u)

A CONTRADICTION!