

THE HUMAN BRAIN How nerve impulses are propagated

Dr. Bip Choudhury

Amazing brain

Controls important body functions

Processes information

Dreams, emotions, reasoning

Walk, sit & stand

Brain: basic anatomy

Convoluted surface

An obvious feature of the hemispheres is their highly convoluted surface.

Ridges = **gyri** Valleys = **sulci**/fissure
Allows more cortical surface area

Frontal Lobe

stereognosis.

Parietal Lobe

Primary somatosensory cortex

Temporal Lobe

Occipital Lobe

Cerebellum & Brain Stem

Somatic Nervous System

Central Nervous System (CNS)

Peripheral Nervous System (PNS)

The neurone: basic unit of the nervous system

saltatory conduction

Different Classifications

The University of Manchester

Neuroglia

Astrocyte

Oligodendrocyte

Produce the myelin sheath in the CNS

Muller

Produce the myelin sheath in the PNS

The Plasma Membrane

The University of Manchester

Diffusion

Diffuses down the concentration gradient

Resting Membrane Potential

The inside of the cell has a negative charge.

This is called the RESTING MEMBRANE POTENTIAL (i.e. the cell is not stimulated, it is at 'rest').

The cell at rest

The cell when stimulated

ALL sodium channels open

Na+ Na+ Na+ K+ K+ Na+ Na+ K+ Na+ K+ K+ Na+ Na+ Na+ Na+ K+ K+ Na+

Sodium travels down it's concentration gradient into the cell

Potassium channels close

depolarisation

Summary

- At rest, the inside of the cell is negative (-70mV) because the sodium channels are closed and only some potassium channels are open.
- This is called the RESTING MEMBRANE POTENTIAL.
- Once the cell is stimulated, all sodium channels open allowing sodium to flood into the cell. The potassium channels close.
- The interior of the cell becomes positive.
- This is called DEPOLARISATION (cell interior going from –ve to +ve).

The University of Manchester

Action Potentials

= action potential

Action Potential: summary

• It is an 'explosion' of electrical activity created by a depolarising current.

• It occurs when a neuron sends information down the axon, away from the cell body.

It is an ALL or NOTHING event.

The University of Manchester

Action Potentials

Repolarisation occurs due to the sodium/potassium pump

The University of Manchester

The synaptic cleft

Events at the synapse

Action potential reaches axon terminal. Vesicles fuse with the presynaptic membrane.

Neurotransmitters are released from vesicles – they travel in the synaptic cleft to bind with receptors on post-synaptic neuron.

Post-synaptic neuron

Lock and Key

If the key is not the correct shape, it will not unlock the lock

Summary

- When the action potential reaches the axon terminal, vesicles containing neurotransmitters (chemical messengers) fuse with the pre-synaptic membrane.
- This causes the release of the neurotransmitter into the synaptic cleft (process is called exocytosis).
- The neurotransmitter 'locks onto' a shape-specific receptor on the post-synaptic membrane.
- This may cause an excitatory effect (which would give rise to an action potential) or an inhibitory effect (which would dampen down the post-synaptic neuron and cause no action potential to be generated).
- The preceding slides describe a CHEMICAL synapse (typical of most in the nervous system).