

SPECIFICATION FOR APPROVAL

(ν.	Preliminar	y Specification
---	----	-------------------	-----------------

() Final Specification

Title 14.1" WXGA TFT LCD	
--------------------------	--

Customer	Arima
MODEL	

SUPPLIER	LG.Philips LCD Co., Ltd.	
*MODEL	LP141WX3	
Suffix	TLB1	

^{*}When you obtain standard approval, please use the above model name without suffix

SIGNATURE	DATE
/	
/	
Please return 1 copy for yo	our confirmation with

your signature and comments.

APPROVED BY	SIGNATURE				
C.S. Jung / G.Manager REVIEWED BY					
W.Y. Park / Manager PREPARED BY					
J.W. Kim / Engineer					
J.H. Kim / Engineer					
Products Engineering Dept. LG. Philips LCD Co., Ltd					

Ver. 0.1 Mar. 09, 2007 1 / 27

Contents

No	ITEM		
	COVER	1	
	CONTENTS	2	
	RECORD OF REVISIONS	3	
1	GENERAL DESCRIPTION	4	
2	ABSOLUTE MAXIMUM RATINGS	5	
3	ELECTRICAL SPECIFICATIONS		
3-1	ELECTRICAL CHARACTREISTICS	6	
3-2	INTERFACE CONNECTIONS	8	
3-3	SIGNAL TIMING SPECIFICATIONS	9	
3-4	SIGNAL TIMING WAVEFORMS	9	
3-5	COLOR INPUT DATA REFERNECE	10	
3-6	POWER SEQUENCE	. 11	
4	OPTICAL SFECIFICATIONS	12	
5	MECHANICAL CHARACTERISTICS	16	
6	RELIABLITY	20	
7	INTERNATIONAL STANDARDS		
7-1	SAFETY	21	
7-2	EMC	21	
8	PACKING		
8-1	DESIGNATION OF LOT MARK	22	
8-2	PACKING FORM	22	
9	PRECAUTIONS	23	
Α	APPENDIX. Enhanced Extended Display Identification Data	25	
		27	

RECORD OF REVISIONS

Revision No	Revision Date	Page	Description	EDID ver
0.0	Mar. 09, 2007	-	First draft	V0.1

1. General Description

The LP141WX3 is a Color Active Matrix Liquid Crystal Display with an integral Cold Cathode Fluorescent Lamp (CCFL) backlight system. The matrix employs a-Si Thin Film Transistor as the active element. It is a transmissive type display operating in the normally white mode. This TFT-LCD has 14.1 inches diagonally measured active display area with WXGA resolution(800 vertical by 1280 horizontal pixel array). Each pixel is divided into Red, Green and Blue sub-pixels or dots which are arranged in vertical stripes. Gray scale or the brightness of the sub-pixel color is determined with a 6-bit gray scale signal for each dot, thus, presenting a palette of more than 262,144 colors.

The LP141WX3 has been designed to apply the interface method that enables low power, high speed, low EMI.

The LP141WX3 is intended to support applications where thin thickness, low power are critical factors and graphic displays are important. In combination with the vertical arrangement of the sub-pixels, the LP141WX3 characteristics provide an excellent flat display for office automation products such as Notebook PC.

General Features

Active Screen Size	14.1 inches diagonal		
Outline Dimension	319.5 (H, typ) × 205.5(V, typ) × 5.5(D, max) [mm]		
Pixel Pitch	0.2373 mm × 0.2373 mm		
Pixel Format	1280 horiz. By 800 vert. Pixels RGB strip arrangement		
Color Depth	6-bit, 262,144 colors		
Luminance, White	200 cd/m ² (Typ.5 point)		
Power Consumption	Total 5.33 Watt(Typ.) @ LCM circuit 1.33Watt(Typ.), B/L input 4.0Watt(Typ.)		
Weight	400 g (Max.), 390g(Typ.)		
Display Operating Mode	Transmissive mode, normally white		
Surface Treatment	Glare treatment of the front polarizer		
RoHS Comply	Yes		

Ver. 0.1 Mar. 09, 2007 4 / 27

2. Absolute Maximum Ratings

The following are maximum values which, if exceeded, may cause faulty operation or damage to the unit.

Table 1. ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Val	ues	Units	Notes
Farameter	Syllibol	Min	Max	Offics	Notes
Power Input Voltage	VCC	-0.3	4.0	Vdc	at 25 ± 5°C
Operating Temperature	Тор	0	50	°C	1
Storage Temperature	Нѕт	-20	60	°C	1
Operating Ambient Humidity	Нор	10	90	%RH	1
Storage Humidity	Нѕт	10	90	%RH	1

Note: 1. Temperature and relative humidity range are shown in the figure below.

Wet bulb temperature should be 39°C Max, and no condensation of water.

Ver. 0.1 Mar. 09, 2007 5 / 27

3. Electrical Specifications

3-1. Electrical Characteristics

The LP141WX3 requires two power inputs. One is employed to power the LCD electronics and to drive the TFT array and liquid crystal. The second input which powers the CCFL, is typically generated by an inverter. The inverter is an external unit to the LCD.

Values Parameter Symbol Unit Notes Min Тур Max MODULE: VCC $V_{\underline{DC}}$ Power Supply Input Voltage 3.0 3.3 3.6 Power Supply Input Current 400 460 Ma I_{CC} Power Consumption Watt Рс 1.33 1.6 Differential Impedance 100 110 Ohm Zm 90 2 LAMP : 880(2.0mA) Operating Voltage V_{BL} 645(6.5mA) 660(6.0mA) V_{RMS} **Operating Current** 6.0 6.5 2.0 I_{BL.} mA_{RMS} 4.00 **Power Consumption** 4.30 P_{BL} Operating Frequency f_{BL} 60 80 kHz 45 Min Discharge Stabilization Time 3 Ts Hrs Life Time 15,000 Established Starting Voltage ۷s 1180 $\mathsf{V}_{\mathsf{RMS}}$ at 25 at 0 1420 V_{RMS}

Table 2. ELECTRICAL CHARACTERISTICS

Note)

- 1. The specified current and power consumption are under the Vcc = 3.3V, 25 , fv = 60Hz condition whereas full black pattern is displayed and fv is the frame frequency.
- 2. This impedance value is needed to proper display and measured form LVDS Tx to the mating connector.
- 3. The typical operating current is for the typical surface luminance (L_{WH}) in optical characteristics.
- 4. Define the brightness of the lamp after being lighted for 5 minutes as 100%, Ts is the time required for the brightness of the center of the lamp to be not less than 95%.
- 5. The life time is determined as the time at which brightness of lamp is 50% compare to that of initial value at the typical lamp current.
- 6. The output of the inverter must have symmetrical(negative and positive) voltage waveform and symmetrical current waveform.(Asymmetrical ratio is less than 10%) Please do not use the inverter which has asymmetrical voltage and asymmetrical current and spike wave.
 Lamp frequency may produce interface with horizontal synchronous frequency and as a result this may cause beat on the display. Therefore lamp frequency shall be as away possible from the horizontal synchronous frequency and from its harmonics in order to prevent interference.
- 7. It is defined the brightness of the lamp after being lighted for 5 minutes as 100%.

 T_S is the time required for the brightness of the center of the lamp to be not less than 95%.
- 8. The lamp power consumption shown above does not include loss of external inverter. The applied lamp current is a typical one.

Ver. 0.1 Mar. 09, 2007 6 / 27

Note)

- 9. Requirements for a system inverter design, which is intended to have a better display performance, a better power efficiency and a more reliable lamp, are following.
 - It shall help increase the lamp lifetime and reduce leakage current.

 a. The asymmetry rate of the inverter waveform should be less than 10%.
 - b. The distortion rate of the waveform should be within $2 \pm 10\%$.
 - * Inverter output waveform had better be more similar to ideal sine wave.

Do not attach a conducting tape to lamp connecting wire.

If the lamp wire attach to a conducting tape, TFT-LCD Module has a low luminance and the inverter has abnormal action. Because leakage current is occurred between lamp wire and conducting tape.

Ver. 0.1 Mar. 09, 2007 7 / 27

3-2. Interface Connections

This LCD employs two interface connections, a 30 pin connector is used for the module electronics interface and the other connector is used for the integral backlight system.

The electronics interface connector is a model GT101-30S-HR11 manufactured by LSC.

Table 3. MODULE CONNECTOR PIN CONFIGURATION (CN1)

Pin	Symbol	Description	Notes
1	GND	Ground	
2	VCC	Power Supply, 3.3V Typ.	
3	VCC	Power Supply, 3.3V Typ.	
4	V EEDID	DDC 3.3V power	
5	NC	Reserved for supplier test point	
6	CIK EEDID	DDC Clock	1, Interface chips
7	DATA EEDID	DDC Data	1.1 LCD : THINE,
8	R _{IN} O-	Negative LVDS differential data input	KE5M5U2518CFP (LCD Controller)
9	R _{IN} O+	Positive LVDS differential data input	including LVDS Receiver (LVDSRX_SPI_UMOD)
10	GND	Ground	1.2 System : HP Tianshan or equivalent
11	R _{IN} 1-	Negative LVDS differential data input	* Pin to Pin compatible with LVDS
12	R _{IN} 1+	Positive LVDS differential data input	2. Connector
13	GND	Ground	2.1 LCD : GT101-30S-HR11, LGC or
14	R _{IN} 2-	Negative LVDS differential data input	its compatibles
15	R _{IN} 2+	Positive LVDS differential data input	2.2 Mating: FI-X30M or equivalent. 2.3 Connector pin arrangement
16	GND	Ground	
17	CLKIN-	Negative LVDS differential clock input	30 1
18	CLKIN+	Positive LVDS differential clock input	
19	GND	Ground	
20	NC	No Connect	[LCD Module Rear View]
21	NC	No Connect	[LOD Module Real View]
22	GND	Ground	
23	NC	No Connect	
24	NC	No Connect	
25	GND	Ground	
26	NC	No Connect	
27	NC	No Connect	
28	GND	Ground	
29	NC NC	No Connect	
30	NC	No Connect	

The backlight interface connector is a model BHSR-02VS-1, manufactured by JST or Compatible. The mating connector part number is SM02B-BHSS-1 or equivalent.

Table 5. BACKLIGHT CONNECTOR PIN CONFIGURATION (J3)

Pin	Symbol	Description	Notes	
1	HV	Power supply for lamp (High voltage side)	1	
2	LV	Power supply for lamp (Low voltage side)	1	

Notes: 1. The high voltage side terminal is colored Pink and the low voltage side terminal is White.

3-3. Signal Timing Specifications

This is the signal timing required at the input of the User connector. All of the interface signal timing should be satisfied with the following specifications and specifications of LVDS Tx/Rx for its proper operation.

Table 6. TIMING TABLE

ITEM	Symbol		Min	Тур	Max	Unit	Note
DCLK	Frequency	f _{CLK}	66	71.0	76	MHz	
Hsync	Period	Thp	1368	1440	1480		
	Width	t _{wH}	16	32	48	tCLK	
	Width-Active		1280	1280	1280		
Vsync	Period	t _{VP}	809	823	848		
	Width	t _{wv}	2	6	10	tHP	
	Width-Active	t _{wva}	800	800	800		
Data	Horizontal back porch	t _{HBP}	40	80	96	+C1 V	
Enable	Horizontal front porch	t _{HFP}	24	48	56	tCLK	
	Vertical back porch	t _{VBP}	6	14	32	+I I D	
	Vertical front porch	t _{VFP}	1	3	18	tHP	

3-4. Signal Timing Waveforms

Condition: VCC =3.3V

Ver. 0.1 Mar. 09, 2007 9 / 27

3-5. Color Input Data Reference

The brightness of each primary color (red,green and blue) is based on the 6-bit gray scale data input for the color; the higher the binary input, the brighter the color. The table below provides a reference for color versus data input.

Table 7. COLOR DATA REFERENCE

									Inp	ut Co	olor D	ata							
	Color			RE	D					GRE	EN					BL	UE		
Coloi		MSI	3				LSB	MSE	3				LSB	MSE	3				LSB
		R 5	R 4	R 3	R 2	R 1	R 0	G 5	G 4	G 3	G 2	G 1	G 0	B 5	B 4	В3	B 2	B 1	B 0
	Black	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	.1	1	. 1	1	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
Color	Cyan	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	RED (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (01)	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
RED																			
	RED (62)	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0
	RED (63)	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	GREEN (01)	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
GREEN																	 		
	GREEN (62)	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0
	GREEN (63)	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0
	BLUE (00)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	BLUE (01)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
BLUE										 	 								
	BLUE (62)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	
	BLUE (63)	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	 1	1	1
	. ,																		

Ver. 0.1 Mar. 09, 2007 10 / 27

3-6. Power Sequence

Table 8. POWER SEQUENCE TABLE

Parameter		Value	Units	
	Min. Typ. Max.			
T ₁	0.5	-	10	(ms)
T ₂	0	-	50	(ms)
T ₃	200	-	-	(ms)
T ₄	200	-	-	(ms)
T ₅	0	-	50	(ms)
T ₆	0	-	10	(ms)
T ₇	200	-	-	(ms)

Note)

- 1. Please avoid floating state of interface signal at invalid period.
- 2. When the interface signal is invalid, be sure to pull down the power supply for LCD VCC to 0V.
- 3. Lamp power must be turn on after power supply for LCD and interface signal are valid.

4. Optical Specification

Optical characteristics are determined after the unit has been 'ON' and stable for approximately 30 minutes in a dark environment at 25°C. The values specified are at an approximate distance 50cm from the LCD surface at a viewing angle of Φ and Θ equal to 0° .

FIG. 1 presents additional information concerning the measurement equipment and method.

Table 9. OPTICAL CHARACTERISTICS

Ta=25°C, VCC=3.3V, $f_{V}=60Hz$, $f_{CLK}=71.0MHz$, $I_{BL}=6.0mA$

Davamatar	Curre heal		Values		Linite	Notes
Parameter	Symbol	Min	Тур	MAx	Units	Notes
Contrast Ratio	CR	300	-	-		1
Surface Luminance, white	L _{WH}	170	200		cd/m ²	2
Luminance Variation	δ_{WHITE}	-	1.4	1.6]	3
Response Time						4
Rise Time	Tr_R	-	5.5	9	ms	
Delay Time	Tr_D	-	10.5	16	ms	
Color Coordinates						
RED	RX	0.554	0.584	0.614	1	
	RY	0.317	0.347	0.377		
GREEN	GX	0.294	0.324	0.354		
	GY	0.512	0.542	0.572		
BLUE	BX	0.128	0.158	0.188		
	BY	0.115	0.145	0.175		
WHITE	WX	0.283	0.313	0.343		
	WY	0.299	0.329	0.359		
Viewing Angle]	5
x axis, right(Φ=0°)	Θr	40	-	-	degree	
x axis, left (Φ=180°)	Θl	40	-	-	degree	
y axis, up (Φ=90°)	Θu	15	-	<u>-</u>	degree	
y axis, down (Φ=270°)	Θd	35	-		degree	
Gray Scale						6

Ver. 0.1 Mar. 09, 2007 12 / 27

Note)

1. Contrast Ratio(CR) is defined mathematically as

Surface Luminance with all white pixels

Contrast Ratio =

Surface Luminance with all black pixels

2. Surface luminance is the average of 5 point across the LCD surface 50cm from the surface with all pixels displaying white. For more information see FIG 1.

$$L_{WH} = Average(L_1, L_2, \dots L_5)$$

3. The variation in surface luminance , The panel total variation (δ_{WHITE}) is determined by measuring L_N at each test position 1 through 13 and then defined as followed numerical formula. For more information see FIG 2.

$$\delta_{\text{ WHITE}} = \frac{\text{Maximum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{13})}{\text{Minimum}(\textbf{L}_{1}, \textbf{L}_{2}, \ \dots \ \textbf{L}_{13})}$$

- 4. Response time is the time required for the display to transition from white to black (rise time, Tr_R) and from black to white(Decay Time, Tr_D). For additional information see FIG 3.
- 5. Viewing angle is the angle at which the contrast ratio is greater than 10. The angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG 4.
- 6. Gray scale specification

*
$$f_{V} = 60$$
Hz

Gray Level	Luminance [%] (Typ)
LO	0.21
L7	1.99
L15	6.16
L23	11.96
L31	19.2
L39	33.1
L47	53.2
L55	77.4
L63	100

Ver. 0.1 Mar. 09, 2007 13 / 27

FIG. 2 Luminance

<measuring point for surface luminance & measuring point for luminance variation>

FIG. 3 Response Time

The response time is defined as the following figure and shall be measured by switching the input signal for "black" and "white".

Ver. 0.1 Mar. 09, 2007 14 / 27

FIG. 4 Viewing angle

<Dimension of viewing angle range>

5. Mechanical Characteristics

The contents provide general mechanical characteristics for the model LP141WX3. In addition the figures in the next page are detailed mechanical drawing of the LCD.

	Horizontal	319.5 ± 0.5mm		
Outline Dimension	Vertical	205.5 ± 0.5mm		
	Depth	5.5mm (max)		
Bezel Area	Horizontal	307.96 ± 0.5mm		
bezei Alea	Vertical	194.60 ± 0.5mm		
Active Display Area	Horizontal	303.74 mm		
Active Display Area	Vertical	189.84 mm		
Weight	390g (Typ.) 400g (Max.)			
Surface Treatment	Glare treatment of the front pola	rizer		

<FRONT VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

Lamp Wire Length: 61mm ± 5mm

<REAR VIEW>

Note) Unit:[mm], General tolerance: \pm 0.5mm

[DETAIL DESCRIPTION OF SIDE MOUNTING SCREW]

SECTION A-A SCALE 5/1

*SCREW(8ea) TORQUE : 2kgf.cm max *Mounting SCREW Depth : 2.5mm max

Ver. 0.1 Mar. 09, 2007 19 / 27

6. Reliability

Environment test condition

No.	Test Item	Conditions
1	High temperature storage test	Ta= 60°C, 240h
2	Low temperature storage test	Ta= -20°C, 240h
3	High temperature operation test	Ta= 50°C, 50%RH, 240h
4	Low temperature operation test	Ta= 0°C, 240h
5	Vibration test (non-operating)	Sine wave, 10 ~ 500 ~ 10Hz, 1.5G, 0.37oct/min 3 axis, 1hour/axis
6	Shock test (non-operating)	Half sine wave, 180G, 2ms one shock of each six faces(I.e. run 180G 6ms for all six faces)
7	Altitude operating storage / shipment	0 ~ 10,000 feet (3,048m) 24Hr 0 ~ 40,000 feet (12,192m) 24Hr

{ Result Evaluation Criteria }

There should be no change which might affect the practical display function when the display quality test is conducted under normal operating condition.

7. International Standards

7-1. Safety

a) UL 60950, Third Edition, Underwriters Laboratories, Inc., Dated Dec. 11, 2000.

Standard for Safety of Information Technology Equipment, Including Electrical Business Equipment.

b) CAN/CSA C22.2, No. 60950, Third Edition, Canadian Standards Association, Dec. 1, 2000.

Standard for Safety of Information Technology Equipment, Including Electrical Business Equipment.

c) EN 60950 : 2000, Third Edition

IEC 60950: 1999, Third Edition

European Committee for Electrotechnical Standardization(CENELEC)

EUROPEAN STANDARD for Safety of Information Technology Equipment Including Electrical Business Equipment.

7-2. EMC

- a) ANSI C63.4 "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electrical Equipment in the Range of 9kHZ to 40GHz. "American National Standards Institute(ANSI), 1992
- b) C.I.S.P.R "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." International Special Committee on Radio Interference.
- c) EN 55022 "Limits and Methods of Measurement of Radio Interface Characteristics of Information Technology Equipment." European Committee for Electrotechnical Standardization.(CENELEC), 1998 (Including A1: 2000)

Ver. 0.1 Mar. 09, 2007 21 / 27

8. Packing

8-1. Designation of Lot Mark

a) Lot Mark

A B C D E F G H I J K L	А	ВС	D E	F G	н	J	K	М
---	---	----	-----	-----	---	---	---	---

A,B,C : SIZE(INCH) D : YEAR

E: MONTH F ~ M: SERIAL NO.

Note

1. YEAR

	Year	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
ſ	Mark	1	2	3	4	5	6	7	8	9	0

2. MONTH

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

b) Location of Lot Mark

Serial No. is printed on the label. The label is attached to the backside of the LCD module. This is subject to change without prior notice.

8-2. Packing Form

a) Package quantity in one box: 20 pcs

b) Box Size: 430 X 334 X 287

9. PRECAUTIONS

Please pay attention to the followings when you use this TFT LCD module.

9-1. MOUNTING PRECAUTIONS

- (1) You must mount a module using holes arranged in four corners or four sides.
- (2) You should consider the mounting structure so that uneven force (ex. Twisted stress) is not applied to the module. And the case on which a module is mounted should have sufficient strength so that external force is not transmitted directly to the module.
- (3) Please attach the surface transparent protective plate to the surface in order to protect the polarizer. Transparent protective plate should have sufficient strength in order to the resist external force.
- (4) You should adopt radiation structure to satisfy the temperature specification.
- (5) Acetic acid type and chlorine type materials for the cover case are not desirable because the former generates corrosive gas of attacking the polarizer at high temperature and the latter causes circuit break by electro-chemical reaction.
- (6) Do not touch, push or rub the exposed polarizers with glass, tweezers or anything harder than HB pencil lead. And please do not rub with dust clothes with chemical treatment.
 Do not touch the surface of polarizer for bare hand or greasy cloth. (Some cosmetics are detrimental to the polarizer.)
- (7) When the surface becomes dusty, please wipe gently with absorbent cotton or other soft materials like chamois soaks with petroleum benzene. Normal-hexane is recommended for cleaning the adhesives used to attach front / rear polarizers. Do not use acetone, toluene and alcohol because they cause chemical damage to the polarizer.
- (8) Wipe off saliva or water drops as soon as possible. Their long time contact with polarizer causes deformations and color fading.
- (9) Do not open the case because inside circuits do not have sufficient strength.

9-2. OPERATING PRECAUTIONS

- (1) The spike noise causes the mis-operation of circuits. It should be lower than following voltage : $V=\pm 200 \text{mV}$ (Over and under shoot voltage)
- (2) Response time depends on the temperature.(In lower temperature, it becomes longer.)
- (3) Brightness depends on the temperature. (In lower temperature, it becomes lower.) And in lower temperature, response time(required time that brightness is stable after turned on) becomes longer.
- (4) Be careful for condensation at sudden temperature change. Condensation makes damage to polarizer or electrical contacted parts. And after fading condensation, smear or spot will occur.
- (5) When fixed patterns are displayed for a long time, remnant image is likely to occur.
- (6) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimized the interference.

Ver. 0.1 Mar. 09, 2007 23 / 27

9-3. ELECTROSTATIC DISCHARGE CONTROL

Since a module is composed of electronic circuits, it is not strong to electrostatic discharge. Make certain that treatment persons are connected to ground through wrist band etc. And don't touch interface pin directly.

9-4. PRECAUTIONS FOR STRONG LIGHT EXPOSURE

Strong light exposure causes degradation of polarizer and color filter.

9-5. STORAGE

When storing modules as spares for a long time, the following precautions are necessary.

- (1) Store them in a dark place. Do not expose the module to sunlight or fluorescent light. Keep the temperature between 5°C and 35°C at normal humidity.
- (2) The polarizer surface should not come in contact with any other object.

 It is recommended that they be stored in the container in which they were shipped.

9-6. HANDLING PRECAUTIONS FOR PROTECTION FILM

- (1) When the protection film is peeled off, static electricity is generated between the film and polarizer. This should be peeled off slowly and carefully by people who are electrically grounded and with well ion-blown equipment or in such a condition, etc.
- (2) The protection film is attached to the polarizer with a small amount of glue. If some stress is applied to rub the protection film against the polarizer during the time you peel off the film, the glue is apt to remain on the polarizer.
 - Please carefully peel off the protection film without rubbing it against the polarizer.
- (3) When the module with protection film attached is stored for a long time, sometimes there remains a very small amount of glue still on the polarizer after the protection film is peeled off.
- (4) You can remove the glue easily. When the glue remains on the polarizer surface or its vestige is recognized, please wipe them off with absorbent cotton waste or other soft material like chamois soaked with normal-hexane.

Ver. 0.1 Mar. 09, 2007 24 / 27

Byte#	Byte#	Field Name and Comm	on to	۷a	lue	Va l ue	
(decimal)	(HEX)		ellb	(HE	EX)	(b inary)	
0	00	Header		0	0	0000 0000	
1	01	Header		F	F	1111 1111	
2	02	Header		F	F	1111 1111	
3	03	Header		F	F	1111 1111	Header
<u>4</u> 5	04 05	Header Header		F	F	1111 1111 1111 1111	
6	06	Header Header		F	F	1111 1111	
7	07	Header		0	0	0000 0000	
8	08	EISA manufacturer code = LPL		3	2	0011 0010	
9	09	Compressed ASC II		0	C	0000 1100	
10	OA	Dmduotoodo		0	0	0000 0000	
11	OB	(Hex, LSB first)	New Generation	Ē	8	1110 1000	
12	OC OC	LCD M odule Serial No. = 0 (If not used)		0	0	0000 0000	Vender/
13	OD OD	LCD M odule Serial No. = 0 (If not used)		0	0	0000 0000	Product ID
14	0E	LCD M odule Serial No. = 0 (If not used)		0	0	0000 0000	1 loddot ib
15	0E 0F	LCD M oddle Serial No. = 0 (If not used)		0	0	0000 0000	
16	10	W eek of manufacture		0	0	0000 0000	
			ear of manufacture = 2007				
17	11	EDD Structure version # = 1	<u> </u>	1	0001 0001 0000 0001	EDID Varaion /	
18 19	12 13	EDD Structure version # = 1 EDD Revision # = 1	0	1	0000 0001	EDID Version/ Revision	
20	14	Video input de finition = Digital I/p,non TM DS (S B C B	8	0	1000 0000	Kevision
21	15	M ax H image size(cm) = 30.374cm(30)	J K G B	1	E	0001 1110	D isp lay
22	16	M ax V mage size(cm) = 18.984cm(19)		1	3	0001 0011	Parameter
23	17	D isp lay gam m a = 2.20		7	8	0111 1000	. alamout
24	18	Feature support(DPM S) = Active off, RGB Col	or	0	A	0000 1010	
25	19	Red/G reen low B its		В	F	1011 1111	
26	1A	Blue/White Low Bits		4	0	0100 0000	
27	1B	Red X $Rx = 0.584$		9	5	1001 0101	
28	1C	Red Y Ry = 0.347		5	8	0101 1000	
29	1D	G reen X		5	2	0101 0010	Color
30	1E	G reen Y Gy = 0.542		8	<u>A</u>	1000 1010	Characteristic
31 32	1F 20	B lue X Bx = 0.158 B lue Y By = 0.145		2	8 5	0010 1000 0010 0101	
33	21	W h ite X W x = 0.313		5	0	0101 0000	
34	22	W h ite Y W y = 0.329		5	4	0101 0100	
35	23	Established Timing I		0	0	0000 0000	Established
36	24	Established Timing II		0	0	0000 0000	Tim ings
37	25	M anufacturer's Timings		0	0	0000 0000	g -
38	26	Standard Timing Identification 1 was not used		0	1	0000 0001	
39	27	Standard Timing Identification 1 was not used		0	1	0000 0001	
40	28	Standard Timing Identification 2 was not used		0	1	0000 0001	
41	29	Standard Timing Identification 2 was not used		0	1	0000 0001	
42	2A	Standard Timing Identification 3 was not used		0	1	0000 0001	
43	2B	Standard Timing Identification 3 was not used		0	1	0000 0001	
44	2C	Standard Timing Identification 4 was not used		0	1	0000 0001	Standard
45	2D	Standard Timing Identification 4 was not used		0	$\frac{1}{1}$	0000 0001	Timing ID
46	2E	Standard Timing Identification 5 was not used		0	1	0000 0001	
		Standard Timing Identification 5 was not used		0	1	0000 0001	
47	2F			0	1	0000 0001	
48	30	Standard Timing Identification 6 was not used		-	\vdash		
49	31	Standard Timing Identification 6 was not used		0	1	0000 0001	
50	32	Standard Timing Identification 7 was not used		0	1	0000 0001	
51	33	Standard Timing Identification 7 was not used	0	1	0000 0001		
52	34	Standard Timing Identification 8 was not used		0	1	0000 0001	
53	35	Standard Timing Identification 8 was not used		0	1	0000 0001	

	Byte#	Byte#	Field Name and Comments		Val	_	Va lue	
56 37 (S bred LSB first) 56 38 Horizon tal Active = 1280 p ke is 57 39 Horizon tal B lanking = 1280 p ke is 58 39 Horizon tal B lanking = 1280 p ke is 59 38 Vertical Avite = 800 lines 50 30 Vertical B lanking = 1280 p ke is 50 30 0011 0000 60 30 Vertical Avite = 800 lines 50 30 Vertical Avite = 800 lines 50 30 0011 0000 60 30 Vertical Avite = 800 lines 50 30 0011 0000 60 30 Vertical Avite = 800 lines 50 30 0011 0000 60 30 Vertical Avite = 800 lines 50 30 0011 0000 60 60 40 Vertical Symc O life = 14 18 50 50 30 0011 0000 70 60 60 42 Horizon tal Vertical I lange Size 50 50 00 0000 0000 60 60	(decimal)	(HEX)			_			
56	54	36		OM HZ		-		
57 39		37	(a) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		1	В		
58	56	38			0	0	0000 0000	
SP 38 Vertical Ravitive = 800 lines SP CP CP CP CP CP CP CP	57	39	Horizon ta I B lanking = 128 pixe ls ==> 160 pixe ls		Α	0	1010 0000	
60 3C Vertical Binking = 16 lines => 23 lines 32 lines 3 3 0 0011 0000	58	3A	Horizontal Active: Horizontal Blanking = 1280:150		5	0	0101 0000	
61 30 Vertical langle to lines ==> 23 ines 61 30 Vertical lactive: Vertical Banking = 800: 16 => 400	59	3B	Vertical Avtive = 800 lines	CDW C	2	0	0010 0000	
63 35 Horizonal Sym C Puse With = 32 pixels 2 0 00010 0000	60	3C	Vertica IB lanking = 16 lines ==> 23 lines		1	7	0001 0111	
63 35 Horizonal Sym C Puse With = 32 pixels 2 0 00010 0000	61	3D	Vertical Active: Vertical Blanking = 800:16 ==> 100:2	tanda id	3	0	0011 0000	T im ing
63	62	3E	Horizontal Sync. Offset = 21 pixels ==> 48 pixels	ers ion 3.5)	3	0		_
64	63	3F			2	0	0010 0000	
	64	40		3lines, 6 lines	3	6		
66				011.00,011.00		_		
67								
68						-		
69								
70								
71						-		
T2		-		1.0/		_		
73				1/V poinegatives	-	-		
74			Detailed Timing Descriptor#2		_	_		
75					_	_		
76					_	_		
77						_		
78						_		
Timing						_		Detailed
80 50					_	_		
81					-	_		
83	81	51			0	0	0000 0000	
84 55 0 0 0 0000 0000 85 55 0 0 0 0000 0000 86 56 0 0 0 0000 0000 87 57 0 0 0000 0000 88 58 0 0 0 0000 0000 89 59 0 0 0000 0000 0 90 5A Detailed Timing Descriptor#3 0 0 0000 0000 91 5B 0 0 0000 0000 92 5C 0 0 0000 0000 92 5C 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 97 61 P 5 0 010 1000 98 62 h 6 8 0110 1000 100 64 I 6 9 010 1000 101 65 i 6 9 010	82	52			0	0	0000 0000	
85 55 86 56 87 57 88 58 90 5A Detailed Timing Descriptor#3 0 91 5B 92 5C 93 5D 94 5E 95 F 86 60 92 5C 93 5D 94 5E 95 F 10 0 <td>83</td> <td>53</td> <td></td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td>	83	53			0	0		
86 56 87 57 88 58 89 59 90 5A 91 5B 90 5A 91 5B 91 5B 92 5C 93 5D 94 5E 95 5F 10 0 90 60 96 60 98 62 99 63 100 64 101 65 102 66 99 70 103 67 80 69 103 67 104 68 105 69 106 6A 107 6A 108 6A 109 6A 100 6A 100 6A 100 6A 100 6A 100 10 100 1					_	_		
87 57 88 58 89 59 90 5A 91 5B 92 5C 93 5D 94 5E 96 60 97 61 99 63 100 64 100 64 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 66 100 67 100 66 100 67 100 60 100 60 100 60 100						_		
88 58 0 0 0 0000 0000 0000 0000 89 59 0 0 0 0000 0000 0000 0000 0000 0000 90 5A Detailed Timing Descriptor#3 0 0 0 0000 0000 0000 0000 0000 0000 92 5C 0 0 0 0000 0000 0000 0000 93 5D F E 1111 1110 0 0 0 0000 0000 000 000 0000 0000 000 95 5F L 4 C 0 100 0110 000 0000 0000 <						_		
89 59 90 5A Detailed Timing Descriptor#3 0 0 0000 0000 91 5B 0 0 0000 0000 92 5C 0 0 0000 0000 93 5D F E 1111 1110 94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 Timing 98 62 h 6 8 0110 1000 Timing 99 63 i 6 9 0110 1001 Timing 100 64 I 6 C 0110 1001 #3 101 65 i 6 9 0110 1001 #3 102 66 p 7 0 0111 0001 10 103 67 s 7 3 0110 001 10 104 68 L 4 C 0100 1100 105 69 <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>						_		
90 5A Detailed Timing Descriptor#3 0 0 0000 0000 0000 0000 9000 0000 0 0000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 95 55 0 0 0 0000 0000 0 95 55 1 0 0 0000 0000 0 0000 0000 0 99 65 5F L 4 C 0100 1110 0 0 0000 0000 0 0000 0000 0 0 0000 0000 0 0 0000 0000 0 0 0000 0000 0 0 0 0000 0000 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td></t<>						_		
91 5B 0 0 0000 0000 0000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 90000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 9000 0000 0 0 0000 0000 0 0 0000 0000 0 0 0000 0000 0 0 0000 0000 0 0 0 0000 0000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Detailed Timing Descriptor #3			_		
92 5C 0 0 0000 0000 0			DOCUMENT IN THE DOCK POT TO					
93 5D F E 1111 1110 P 1111 1110 Detailed Detailed T iming Detailed T iming Description #3 98 62 h 6 9 0110 1001 #3 #3 #3 #3 #3 #3 #3 #4 C 0100 1100 #3 #4 C 0100 1100 #3 #4 C 0100 1100 #3 #3 #3 #3 #3 #3 #3 #3 #4 C 0100 1100 #3 #3 #3 #4 C 0100 1100 #3 #3 #4 C 0100 1100 #3 #3 #3 #3 #3 #3 #3 #3 #3 #4 C 0100 1100 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #3 #4 C 0100 1100 #4 A 0100 0100 #4 A 0100 0100 #4								
94 5E 0 0 0000 0000 95 5F L 4 C 0100 1100 96 60 G 4 7 0100 0111 Detailed 97 61 P 5 0 0101 0000 Tim ing 98 62 h 6 8 0110 1000 #3 99 63 i 6 9 0110 1001 #3 100 64 I 6 C 0110 1001 #3 101 65 i 6 9 0110 1001 #3 102 66 p 7 0 0111 0000 1000 103 67 s 7 3 0111 0011 0000 104 68 L 4 C 0100 1100 0000 105 69 C 4 3 0100 0011 0000 106 6A D 4 4 010								
95 5F L 4 C 0100 1100 Detailed 96 60 G 4 7 0100 0111 Detailed 97 61 P 5 0 0101 0000 Timing 98 62 h 6 8 0110 1000 0110 1001 #3 100 64 I 6 0 0110 1001 #3 101 65 i 6 9 0110 1001 #3 102 66 p 7 0 0111 0000 1011 0001 103 67 s 7 3 0111 0011 000 104 68 L 4 C 0100 1100 001 105 69 C 4 3 0100 0011 000 106 6A D 4 4 0100 0100					0	0		
97 61 P 5 0 0101 0000 T im ing 98 62 h 6 8 0110 1000 0110 1000 43 i 6 9 0110 1001 #3 100 64 I 6 C 0110 1001 #3 101 65 i 6 9 0110 1001 1001 1000	95	5F	L		4	С	0100 1100	
98 62 h 6 8 0110 1000 Description 99 63 i 6 9 0110 1001 #3 100 64 I 6 C 0110 1100 #3 101 65 i 6 9 0110 1001 001 102 66 p 7 0 0111 0000 001 103 67 s 7 3 0111 0011 001 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100		60				7		
99 63 i 6 9 0110 1001 #3 100 64 I 6 C 0110 1100 101 65 i 6 9 0110 1001 102 66 p 7 0 0111 0000 103 67 s 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100						-		
100 64 I 6 C 0110 1100 101 65 i 6 9 0110 1001 102 66 p 7 0 0111 0000 103 67 s 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100								
101 65 i 6 9 0110 1001 102 66 p 7 0 0111 0000 103 67 s 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100								#3
102 66 p 7 0 0111 0000 103 67 s 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100								
103 67 s 7 3 0111 0011 104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100								
104 68 L 4 C 0100 1100 105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100	***************************************							
105 69 C 4 3 0100 0011 106 6A D 4 4 0100 0100								
106 6A D A 4 4 0100 0100								
107 6B LF 0 A 0000 1010	107	6B	LF				0000 1010	

Desta II	Deste #		1/0	h.o.	\/akıa	
Byte#	Byte#	Field Name and Comments	_	lue	Va lue 💮	
(decimal)	(HEX)		(HE	ΞX)	(b inary)	
108	6C	Detailed Timing Descriptor#4	0	0	0000 0000	
109	6D		0	0	0000 0000	
110	6E		0	0	0000 0000	
111	6F		F	Ε	1111 1110	
112	70		0	0	0000 0000	
113	71	L	4	С	0100 1100	
114	72	Р	5	0	0101 0000	Detailed
115	73	1	3	1	0011 0001	T im ing
116	74	4	3	4	0011 0100	Description
117	75	1	3	1	0011 0001	#4
118	76	W	5	7	0101 0111	
119	77	X	5	8	0101 1000	
120	78	3	3	3	0011 0011	
121	79	-	2	D	0010 1101	
122	7A	Т	5	4	0101 0100	
123	7B	L	4	С	0100 1100	
124	7C	В	4	2	0100 0010	
125	7D	1	3	1	0011 0001	
126	7E	Extension flag = 00	0	0	0000 0000	Extension Flag
127		Checksum	6	Ε	0110 1110	Checksum