Convex Optimization II

Lecture 16: Regularization and Convexification

Hamed Shah-Mansouri

Department of Electrical Engineering Sharif University of Technology

1400-2

MOTIVATIONS

- Regularization is a common approach to solve an ill-posed problem—one whose solution is not unique or is acutely sensitive to data perturbations. Regularization techniques construct a related problem whose solution is well behaved and deviates only slightly from a solution of the original problem.
- It also provides a platform to choose a solution with a desired property among many solutions of the problem.
- Regularization helps find sparse solutions with applications in signal processing, machine learning, and statistics.
- [1] M.P. Friedlander and P. Tseng, "Exact regularization of convex programs", *SIAM Journal on Optimization*. vol. 18, no. 4, pp.1326–1350, Nov. 2007.
- [2] D.P. Bertsekas, "Convexification procedures and decomposition methods for non–convex optimization problems", *Journal of Optimization Theory and Applications*. Vol. 9, no. 2, pp. 169–197, Oct.1979.

Hamed Shah-Mansouri (Sharif) Convex Optimization II 2/14

OUTLINE

- Regularization
- Penalization
- Sparse Design
- Convexification

REGULARIZATION

- Regularization: Construct a related problem whose solution is well behaved and has desired properties.
- Deviations: Deviations from solutions of the original problem are generally accepted as a trade-off for obtaining solutions with other desirable properties.
- Exact Regularization: However, it would be more desirable if solutions of the regularized problem are also solutions of the original problem.

REGULARIZATION OF CONVEX PROGRAMS

Consider the general convex program

P: minimize
$$f(x)$$
 subject to $x \in C$.

where $f: \mathbb{R}^n \to \mathbb{R}$ is a convex function, $\mathcal{C} \subset \mathbb{R}^n$ is a nonempty closed convex set.

A popular technique is to regularize by adding a convex function to the objective with a nonnegative regularization parameter δ .

$$\mathbf{P}_{\delta}:$$
 minimize $f(x) + \delta\phi(x)$ subject to $x \in \mathcal{C}.$

The regularization is exact if the solutions of Problem P_{δ} are also solutions of Problem P for all values of δ below some positive threshold value.

REGULARIZATION OF CONVEX PROGRAMS

A related convex program that selects solutions of ${\bf P}$ of least ϕ -value

$$\begin{array}{ll} \mathbf{P}^{\phi}: & \text{minimize} & \phi(x) \\ & \text{subject to} & f(x) \leq p^* \\ & x \in \mathcal{C}. \end{array}$$

where p^* denotes the optimal value of Problem **P**.

Any solution of Problem ${\bf P}^\phi$ is also a solution of P. The converse, however, does not generally hold.

REGULARIZATION OF CONVEX PROGRAMS

Let S, S_{δ} , and S^{ϕ} denote the solution sets of Problems **P**, **P**_{δ}, and **P**^{ϕ}, respectively.

Theorem

- For any $\delta > 0$, $S \cap S_{\delta} \subset S^{\phi}$.
- ② If there exists a Lagrange multiplier μ^* for Problem \mathbf{P}^{ϕ} , then $\mathcal{S} \cap \mathcal{S}_{\delta} = \mathcal{S}^{\phi}$ for all $\delta \in (0, 1/\mu^*]$.

The theorem says the regularization \mathbf{P}_{δ} is exact if and only if the selection problem \mathbf{P}^{ϕ} has a Lagrange multiplier μ^* . Moreover, $\mathcal{S}_{\delta} = \mathcal{S}$ for all $\delta < 1/\mu^*$.

PENALIZATION

Consider the convex program

$$\begin{array}{ll} \mathbf{Q} & \text{minimize} & \phi(x) \\ & \text{subject to} & g_i(x) \leq 0, \text{for } i = 1, \dots, m \\ & x \in \mathcal{C}. \end{array}$$

where ϕ , $\mathbf{g} = (g_1, \dots, g_m)$ are real-valued convex functions defined on \mathbb{R}^n , and $\mathcal{C} \in \mathbb{R}^n$ is a nonempty closed convex set.

The penalized form of above problem with positive penalty parameter is

$$\mathbf{Q}^P$$
 minimize $\phi(x) + \sigma P(\mathbf{g}(x))$
subject to $x \in \mathcal{C}$.

where $P: \mathbb{R}^m \to [0, \infty)$ is a non-negative convex function having the property that P(u) = 0 if and only if $u \leq 0$.

EXACT PENALIZATION

Theorem

Suppose that Problem \mathbf{Q} has a nonempty compact solution set. If there exist Lagrange multipliers μ^* for \mathbf{Q} , then the penalized problem \mathbf{Q}^P has the same solution set as \mathbf{Q} for all $\sigma > w(\mu^*)^1$.

¹Refer to [1] for more details on function w.

ERROR BOUNDS

Even when the exact regularization cannot be achieved, we can still estimate the distance from S_{σ} to S in terms of σ and the growth rate of f. Refer to [1] for more details.

EXAMPLE: SPARSE SOLUTIONS OF LP

An LP has many optimal solutions. In some applications, we may be interested in sparse or even the sparsest solutions.

- Consider a system of linear equations Ax = b
- The sparsest solution can be obtained via

which is computationally intractable. This can construct non-convex regularization.

• A sparse solution can be obtained via

minimize
$$||x||_1$$

subject to $Ax = b$.

which can be transformed into LP.

EXAMPLE: SPARSE SOLUTIONS OF LP

Consider a general LP problem

minimize
$$c^T x$$

subject to $Ax = b$

To find a sparse solution, we use the ℓ_1 -regularization

minimize
$$c^T x + \delta ||x||_1$$

subject to $Ax = b$

First solve the equivalent \mathbf{P}^{ϕ} to find μ^* , then choose $\delta \in (0, 1/\mu^*)$.

NON-CONVEX PROBLEMS

Consider the following possibly non-convex problem

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g(x) \leq 0 \\ & h(x) = 0 \\ & x \in \mathbb{R}^n. \end{array}$$

The problem cannot be solved using primal-dual approach if it is not convex.

It is either impossible to define a dual function or the maximal value of the dual function is not equal to the optimal value of the primal problem.

Question: Is there any way to convert the problem into a convex one at least in a local area?

CONVEXIFICATION

We consider the problem

$$\begin{array}{ll} \mathbf{C} & \text{minimize} & f(x) + \delta ||y - x||_2^2 \\ & \text{subject to} & g(x) \leq 0 \\ & h(x) = 0 \\ & x, y \in \mathbb{R}^n. \end{array}$$

where $\delta > 0$ is some fixed scalar and y represents a vector of additional variables.

Clearly, a vector x^* is a local minimum of the original problem **P** if and only if (x^*, x^*) is a local minimum of Problem **C**.

Problem C has a locally convex structure for δ large enough provided suitable second-order sufficiency conditions are satisfied at x^* .

Thus, Problem C may be solved by primal-dual methods. Moreover, if the original problem is separable, so is the covexified problem.