

UFOP Metaheuristicas de Otimização Combinatória

Aluno: André Ribeiro de Brito 11.2.4985

Problema de Alocação de caixas em contêiner usando Algoritmo Genético

Definição

- O carregamento de *containers* é um problema clássico em pesquisas de otimização, cujo objetivo, em geral, é aumentar o volume utilizado em relação ao volume total disponível. Em outras palavras, deseja-se encontrar uma configuração de arrumação de cargas de tal maneira que o volume ocioso do *container* seja o mais próximo de zero.
- Quando existem mais cargas a serem carregadas do que volume disponível nos containers, acrescenta-se ao problema a necessidade de reduzir o número de containers para dispor todas as cargas.
- A melhor utilização do volume disponibilizado pelo *container* e a menor quantidade de *containers* utilizados reduz despesas com o transporte de mercadorias, o que deve refletir no preço dos produtos e nos resultados financeiros das companhias.

Problemas semelhantes

• O problema combinando *knapsack* e *bin packing* é denominado *Multiple Container Packing Problem* (MCPP) ou Problema de Empacotamento em Múltiplos *Containers* (RAIDL, 1999), onde se tem o objetivo múltiplo de maximizar o espaço utilizado e, ao mesmo tempo, minimizar o número de *containers*. O *knapsack* pode ser encarado como um problema MCPP com apenas um *container*, onde o objetivo passa a ser unicamente de maximizar o espaço utilizado.

Modelagem

- As instâncias foram geradas da seguinte maneira:
 - Conjunto de caixas N.
 - Altura x da caixa N.
 - Comprimento y da caixa N.
 - Tamanho x Container.
 - Tamanho y Container
 - tempoExecucao = 60.0 * 2.0

Modelagem

- A restrição é conseguir colocar um numero maximo de caixas em um conteiner, com isso, a aptidaoParcial tem que ser proximo de 1.
- Onde:

```
aptidaoParcial =

volumeAcumulado da caixa(altura * comprimento)

volumeTotal do conteiner(altura * comprimento)
```

Esse resultado tem que ser proximo de 1.

Função Objetiva

Função Objetiva é Maximizar a quantidade de caixas em um conteiner

$$\max \sum_{i=1}^n x_i y_i$$

N= quantidade de caixas.

Algoritmo Genético

 Algoritmos Genéticos são algoritmos de otimização global, baseados nos mecanismos de seleção natural e da genética. Eles empregam uma estratégia de busca paralela e estruturada, mas aleatória, que é voltada em direção ao reforço da busca de pontos de "alta aptidão", ou seja, pontos nos quais a função a ser minimizada (ou maximizada) tem valores relativamente baixos (ou altos).

- O que um algoritmo genético faz é criar uma população de possíveis respostas para o problema, sendo constituído pelas seguintes etapas:
- avaliação: avalia-se a aptidão das soluções (indivíduos da população) ´e feita uma análise para que se estabeleça quão bem elas respondem ao problema proposto;
- seleção: indivíduos são selecionados para a reprodução. A probabilidade de uma dada solução i ser selecionada 'e proporcional `a sua aptidão;
- cruzamento: características das soluções escolhidas são recombinadas, gerando novos indivíduos;
- mutação: características dos indivíduos resultantes do processo de reprodução s~ao alteradas, acrescentando assim variedade `a população;
- atualização: os indivíduos criados nesta geração são inseridos na população; finalização: verifica se as condições de encerramento da evolução foram atingidas, retornando para a etapa de avaliação em caso negativo e encerrando a execução em caso positivo.

Algoritmo Genético

```
Procedimento AG{
        t = 0;
        inicia_população (P, t)avaliação (P, t);
        repita até (t = d){
                 t = t +1;seleção_dos_pais (P,t);
                 recombinação (P, t);
                 mutação (P, t);
                 avaliação (P, t);
                 sobrevivem (P, t)}
• onde:
t - tempo atual;
d - tempo determinado para finalizar o algoritmo;
P - população
```

Aplicação do AG em relação a outros problema proposto

- Sistemas de classificação
- Teoria dos Jogos
- Escalonamento e grade horária

Conclusão

 Algoritmos Genéticos estão entre as mais utilizadas dentre das técnicas metaheuristicas, pela sua flexibilidade, facilidade de programação, possibilidade de busca de solução em um espaço grande de soluções e pelos estudos e aplicações já realizadas que demonstram sua eficácia (HE, CHA, 2002).

Referências

- http://www.inf.ufrgs.br/~alvares/INF01048IA/ApostilaAlgoritmosGeneticos.pdf
- http://www.inf.ufpr.br/aurora/tutoriais/Ceapostila.pdf