- SelectionSort(char *startAddr, char size, char order)
 - Projetar um processador para ordenar um array em memória segundo o algoritmo selection sort
 - O endereço inicial do array, o seu tamanho e o tipo de ordenação devem ser especificados na entrada data
 - A entrada data_av indica que a entrada data é valida
 - Para cada valor válido, deve ficar ativa por um ciclo de *clock*
 - ☐ Após ler o último parâmetro, o processador começa o ordenamento
 - □ O fim do ordenamento deve ser indicado ativando a saída *Done* por 1 ciclo de *clock*

- SelectionSort(char *startAddr, char size, char order)
 - Projetar um processador para ordenar um array em memória segundo o algoritmo selection sort
 - ☐ Tipos de ordenação (*signed*)
 - 0: decrescente
 - 1: crescente
 - ☐ Tomar como base o código C disponível no *moodle*
 - Adicionar ao código a ordenação decrescente
 - Trazer o código modificado impresso no dia da apresentação

- □ SelectionSort(char *startAddr, char size, char order)
 - A memória utilizada deve ter um único barramento de dados bidirecional
 - O processador deve gerar os sinais de controle da memória (sel e ld)
 - ☐ A memória deve estar habilitada apenas quando há acesso

- SelectionSort(char *startAddr, char size, char order)
 - Restrição de projeto: NÃO DESPERDIÇAR HARDWARE! Replicar hardware com foco no desempenho

- Trabalho a ser feito em trios
- □ Entrega dia 24/4 (todos trios)
 - Arquivo do logisim via moodle
 - ☐ Um integrante fica responsável pela submissão (.zip)
 - Bloco operativo (impresso)
 - □ Diagrama claro e legível (sem teias de aranha!)
 - Utilizem túneis para o clock e reset no datapath a fim de deixar o diagrama claro
 - □ Não utilizar túneis para os barramentos de dados
 - Grafo da FSM (impresso)
 - ☐ Sugestão de softwares
 - http://www.fizzim.com
 - https://www.yworks.com/products/yed
 - Atenção às notações Mealy/Moore e condições de transição
 - Apresentar somente os sinais relevantes em cada estado
 - □ Indicar em cada estado (fora do estado) a ação realizada pelo datapath (FSM + FSMD) e nas transições as condições de transição
 - Código C modificado (impresso)

□ Exemplo de diagrama FSM + FSMD

FSM + FSMD

- ☐ Apresentações dias 24/4 e 28/4
 - Cada grupo terá em torno de 15 minutos para apresentar junto ao professor
- □ Para a parte 2 do trabalho, os mesmos grupos deverão ser mantidos
 - Só estarão habilitados a realizar a parte 2 do trabalho os grupos que apresentarem a parte 1, mesmo que fora do prazo

- Cronograma
 - 7/4 Definição do Trabalho parte 1
 - □ Divisão dos grupos nos dois dias de apresentação
 - 10/4 Última aula sobre BO/BC
 - 14/4 Dúvidas (Prova/trabalho)
 - ☐ Quem não tiver dúvidas está dispensado (sem chamada)
 - 17/4 Prova 1
 - 24/4 Apresentação da parte 1 do trabalho
 - 28/4 Apresentação da parte 1 do trabalho