Topic: Electric Field and Flux Density

Key Points:

Now, let's proceed to the next topic.

Topic: Divergence Theorem

Key Points:

- 1. **Definition**: The divergence theorem, also known as Gauss's theorem, relates the flux of a vector field through a closed surface to the divergence of the field within the volume enclosed by that surface.
- 2. **Mathematical Formulation**: Mathematically, the theorem states that for a vector field F and a closed surface S enclosing a volume *V*:

$$\phi SF \cdot dS = \int V \nabla \cdot F dV$$

where dS is the outward normal vector to the surface.

- 3. **Applications**: The divergence theorem is widely used in physics and engineering, particularly in electromagnetism, fluid dynamics, and heat transfer, to convert volume integrals into surface integrals, making calculations easier.
- 4. **Physical Interpretation**: The theorem implies that the total flux leaving a volume through its boundary is equal to the total amount of the source (or sink) of the field within that volume.
- 5. **Conditions for Application**: The divergence theorem applies to vector fields that are continuously differentiable over the volume and its boundary, ensuring that the surface integral can be computed easily.

6. **Examples**: Common applications include calculating electric flux through a closed surface surrounding a charge distribution or analyzing fluid flow across surfaces.

MCQ Questions

1. What does the divergence theorem relate?

- A) Volume integral to line integral
- B) Surface integral to line integral
- C) Surface integral to volume integral
- D) Volume integral to scalar quantity

Answer: C) Surface integral to volume integral

Explanation: The divergence theorem relates the surface integral of a vector field to the volume integral of its divergence.

2. For which type of fields can the divergence theorem be applied?

- A) Only conservative fields
- o B) Only solenoidal fields
- o C) Continuously differentiable fields
- o D) Discontinuous fields

Answer: C) Continuously differentiable fields

Explanation: The divergence theorem requires the vector field to be continuously differentiable over the volume and its boundary.

3. In the context of the divergence theorem, what does the term dS represent?

- o A) Area element
- o B) Volume element
- o C) Outward normal vector to the surface

o D) Scalar field

Answer: C) Outward normal vector to the surface

Explanation: dS denotes the outward normal vector to the surface,

representing the direction of the flux.

- 4. If ∇•F=0 throughout a volume, what can be inferred about the flux through the surface enclosing that volume?
 - A) It is positive
 - B) It is negative
 - o C) It is zero
 - o D) It is infinite

Answer: C) It is zero

Explanation: If the divergence is zero, it indicates that there are no net sources or sinks, resulting in zero net flux through the surface.

- 5. Calculate the surface integral of $F=(x^2,y^2,z^2)$ over a sphere of radius 1 centered at the origin using the divergence theorem.
 - A) 34π
 - B) 4π
 - \circ C) 32π
 - o D) 0

Answer: B) 4π

Explanation: The divergence $\nabla \cdot F=3$. The volume of the sphere is 34

 $\pi(1)3=34\pi$. Thus, the flux is $3\cdot 34\pi=4\pi$.

- 6. What is the total flux through a closed surface surrounding a point charge of Q? (Use ε0 for permittivity)
 - A) ε0Q
 - B) ε0Q2

- C) 0
- ∘ D) 4πQ

Answer: A) ε 0Q

Explanation: By applying Gauss's law, the total electric flux through

the closed surface is equal to $\varepsilon 0Q$.

Next topic coming up!

Topic: Electric Potential

Key Points:

- 1. **Definition**: Electric potential (V) at a point is defined as the work done per unit charge in bringing a positive test charge from infinity to that point in an electric field, without any acceleration.
- 2. **Formula**: Mathematically, the electric potential is given by:

where E is the electric field and *d*r is the differential displacement vector.

- 3. **Units**: The SI unit of electric potential is the volt (V), which is equivalent to one joule per coulomb (J/C).
- 4. **Potential Difference**: The difference in electric potential between two points is known as the potential difference or voltage (ΔV), which determines the energy available to move charges between those points.
- 5. **Relation to Electric Field**: The electric field is the negative gradient of electric potential:

 $E=-\nabla V$

This relationship shows how potential varies in space.

6. **Equipotential Surfaces**: Surfaces on which the electric potential is constant are called equipotential surfaces. No work is required to move a charge along these surfaces, and they are always perpendicular to electric field lines.

MCQ Questions

- 1. What is the SI unit of electric potential?
 - o A) Ampere
 - ∘ B) Joule
 - o C) Volt
 - o D) Coulomb

Answer: C) Volt

Explanation: The SI unit of electric potential is the volt, which is defined as one joule per coulomb.

- 2. What does electric potential represent?
 - A) Energy per unit charge
 - B) Charge per unit volume
 - C) Force per unit charge
 - D) Voltage drop across a conductor

Answer: A) Energy per unit charge

Explanation: Electric potential indicates the amount of work done to move a unit positive charge from a reference point to a specific point in an electric field.

3. The relationship between electric field and electric potential can be expressed as:

- ∘ A) E=V
- ∘ B) E=∇*V*
- ∘ C) E=-∇*V*
- ∘ D) *V*=∇⋅E

Answer: C) $E=-\nabla V$

Explanation: The electric field is defined as the negative gradient of the electric potential.

4. What is an equipotential surface?

- A) A surface where the electric field is zero
- B) A surface where the electric potential is constant
- o C) A surface where current flows
- D) A surface perpendicular to electric field lines

Answer: B) A surface where the electric potential is constant **Explanation**: Equipotential surfaces are those where the electric potential remains the same, meaning no work is needed to move charges along these surfaces.

- 5. If the electric potential at a point is 5V and a positive charge of 2C is moved to a point where the potential is 10V, what is the work done?
 - A) 10 J
 - B) 20 J
 - 。 C) 5 J
 - o D) 15 J

Answer: B) 10 J

Explanation: The work done is given by $W=q\Delta V=2C \cdot (10V-5V)=2C \cdot 5V=10J$.

- 6. Calculate the electric potential V at a distance of 2m from a point charge of $Q=1\mu C$ in a vacuum. (Use $k=9\times109N$ m2/C2)
 - A) 4.5V
 - ∘ B) 2.25V
 - ∘ C) 4.5×10−3V
 - ∘ D) 18*V*

Answer: A) 4.5*V*

Explanation: The potential is given by $V=k \cdot rQ=9 \times 109 \cdot 21 \times 10-6$

=4.5V.

Next topic!

Topic: Potential Gradient

Key Points:

- 1. **Definition**: The potential gradient is a vector quantity that represents the rate of change of electric potential with respect to distance. It indicates how the electric potential varies in space.
- 2. **Mathematical Expression**: Mathematically, the potential gradient is given by:

where E is the electric field vector and V is the electric potential.

3. **Physical Interpretation**: The potential gradient signifies the direction and magnitude of the electric field. A steep potential

gradient indicates a strong electric field.

4. **Units**: The units of potential gradient are volts per meter (V/m), which are equivalent to newtons per coulomb (N/C).

- 5. **Relation to Force**: The force on a charge in an electric field can be expressed in terms of the potential gradient, where $F=q \cdot E$.
- 6. **Applications**: The concept of potential gradient is crucial in understanding capacitors, electric circuits, and field theory, helping in predicting the behavior of electric charges in an electric field.

MCQ Questions

- 1. What does the potential gradient indicate?
 - A) Rate of charge flow
 - B) Rate of change of electric potential
 - o C) Electric field strength
 - o D) Work done on a charge

Answer: B) Rate of change of electric potential **Explanation**: The potential gradient measures how quickly the electric potential changes with distance in a given direction.

- 2. What is the relationship between electric field E and potential gradient ∇*V*?
 - A) E=∇V
 - ∘ B) E=-∇*V*
 - ∘ C) E=0
 - ∘ D) E=V

Answer: B) $E=-\nabla V$

Explanation: The electric field is the negative gradient of electric potential, indicating the direction of decreasing potential.

3. What are the units of potential gradient?

- A) Joules
- B) Volts per meter
- o C) Newtons
- o D) Coulombs

Answer: B) Volts per meter

Explanation: The potential gradient is measured in volts per meter (V/m), which corresponds to the change in potential over a distance.

- 4. In a region where the electric potential is constant, the potential gradient is:
 - o A) Positive
 - o B) Negative
 - o C) Zero
 - o D) Undefined

Answer: C) Zero

Explanation: If the electric potential is constant, there is no change in potential, resulting in a potential gradient of zero.

- 5. If the electric potential V varies with distance x as V=5x2+3, what is the potential gradient E at x=1m?
 - A) 10 V/m
 - ∘ B) 5 V/m
 - C) 0 V/m
 - o D) 15 V/m

Answer: A) 10 V/m

Explanation: The potential gradient E=-dxdV=-dxd(5x2+3)=-10x. At x=1m, $E=-10\times1=-10V/m$.

- 6. Calculate the potential gradient if the electric potential at a point is 20V and changes to 10V over a distance of 5m.
 - ∘ A) 2 V/m
 - ∘ B) 1 V/m
 - o C) 0.5 V/m
 - ∘ D) 4 V/m

Answer: D) 2 V/m

Explanation: The potential gradient is given by $\Delta V/\Delta d=$

(20V-10V)/5m=10V/5m=2V/m.

Now, let's move on to the next topic.

Topic: Energy Density in Electrostatic Field

Key Points:

- 1. **Definition**: Energy density in an electrostatic field refers to the amount of energy stored per unit volume in the electric field. It is a measure of how much energy is available in a given volume due to the electric field.
- 2. **Formula**: The energy density *u* in an electric field is given by:

$$u=21\varepsilon E2$$

where ε is the permittivity of the medium and E is the magnitude of the electric field.

3. Units: The SI unit of energy density is joules per cubic meter (J/m³),

which indicates the energy stored in a volume of space.

- 4. **Physical Significance**: Energy density provides insight into how electric fields can store energy, which is critical in applications like capacitors, where energy storage is essential.
- 5. **Applications**: Understanding energy density is vital for designing devices that utilize electric fields, such as capacitors, transformers, and energy storage systems.
- 6. **Comparison with Magnetic Energy Density**: Similar to electric fields, magnetic fields also store energy, expressed as:

$$u=21\mu B2$$

where B is the magnetic field and μ is the permeability.

MCQ Questions

- 1. What is the formula for energy density in an electrostatic field?
 - A) *u*=ε*E*2
 - ∘ B) *u*=21*εE*2
 - ∘ C) *u*=21µ*B*2
 - ∘ D) *u*=21*E*2

Answer: B) $u=21\varepsilon E2$

Explanation: The energy density in an electrostatic field is defined as half the product of permittivity and the square of the electric field strength.

- 2. What does energy density measure in an electric field?
 - A) Charge per unit volume
 - B) Force per unit volume

- C) Energy per unit volume
- D) Electric field strength

Answer: C) Energy per unit volume

Explanation: Energy density quantifies the amount of energy stored

within a specific volume of the electric field.

3. What is the SI unit of energy density?

- A) Joules
- B) Joules per meter
- o C) Joules per cubic meter
- o D) Newtons

Answer: C) Joules per cubic meter

Explanation: The SI unit of energy density is joules per cubic meter

(J/m³), representing energy stored in a volume.

4. The energy density in an electric field increases with which of the following?

- A) Decreasing electric field strength
- B) Increasing electric field strength
- C) Decreasing permittivity
- D) Increasing charge density

Answer: B) Increasing electric field strength

Explanation: Energy density increases with the square of the electric field strength, indicating that stronger fields store more energy.

5. Calculate the energy density in a vacuum if the electric field strength is E=100V/m. (Use $\varepsilon 0=8.85\times 10-12F/m$)

- A) 0.044J/m3
- B) 0.0885J/m3

- o C) 0.001J/m3
- D) 0.0000885J/m3

Answer: A) 0.044J/m3

Explanation: The energy density is calculated as $u=21\varepsilon 0E2=21$

 $(8.85 \times 10 - 12)(100)2 = 0.044 \text{ J/m}3.$

6. In which applications is understanding energy density in electrostatic fields crucial?

- A) Transistors
- B) Capacitors
- o C) Inductors
- o D) Resistors

Answer: B) Capacitors

Explanation: Understanding energy density is vital for the design and functioning of capacitors, where energy is stored in an electric field.

Let's continue with the next topic!