

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 2001-332547

(43)Date of publication of application : 30.11.2001

(51)Int.Cl.

H01L 21/316
 C23C 14/08
 C23C 14/28
 C23C 16/42
 H01L 21/203
 H01L 21/318
 H01L 29/78

(21)Application number : 2000-246882

(71)Applicant : TOSHIBA CORP

(22)Date of filing : 16.08.2000

(72)Inventor : YAMAGUCHI TAKESHI

SATAKE HIDEKI

CHOKAI AKIRA

FUKUSHIMA SHIN

(30)Priority

Priority number : 2000075173 Priority date : 17.03.2000 Priority country : JP

(54) SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a semiconductor device that has an excellent interface characteristics between a silicon substrate and a metal silicate layer.

SOLUTION: This semiconductor device where an active element is formed on a silicon substrate 51 has a metal silicate layer 53 that is formed on the silicon substrate 51, and an electrode layer 54 that is formed on the metal silicon substrate 53. In the metal silicon substrate 53, the concentration of the configuration metal is gradually reduced from the interface between the electrode and metal silicate layers 54 and 53 toward the interface between the silicon substrate 51 and the silicate layer 53.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or
application converted registration]
[Date of final disposal for application]
[Patent number]
[Date of registration]
[Number of appeal against examiner's decision
of rejection]
[Date of requesting appeal against examiner's
decision of rejection]
[Date of extinction of right]

Copyright (C) 1998,2003 Japan Patent Office

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2001-332547

(P2001-332547A)

(43)公開日 平成13年11月30日 (2001.11.30)

(51)Int.Cl.
H 01 L 21/316

識別記号

F 1
H 01 L 21/316

テ-73-1*(参考)

C 23 C 14/08
14/28
16/42

C 23 C 14/08
14/28
16/42

B 4 K 0 2 9
P 4 K 0 3 0
K 5 F 0 4 0
5 F 0 5 8
5 F 1 0 3

審査請求 未請求 請求項の数15 O L (全 13 頁) 最終頁に続く

(21)出願番号 特願2000-246882(P2000-246882)
(22)出願日 平成12年8月16日 (2000.8.16)
(31)優先権主張番号 特願2000-75173(P2000-75173)
(32)優先日 平成12年3月17日 (2000.3.17)
(33)優先権主張国 日本 (J P)

(71)出願人 000003078
株式会社東芝
東京都港区芝浦一丁目1番1号
(72)発明者 山口 康
神奈川県横浜市磯子区新杉田町8番地 株
式会社東芝横浜事業所内
(72)発明者 佐竹 秀喜
神奈川県川崎市幸区小向東芝町1番地 株
式会社東芝研究開発センター内
(74)代理人 100058479
弁理士 鈴江 武彦 (外6名)

最終頁に続く

(54)【発明の名称】 半導体装置及び半導体装置の製造方法

(57)【要約】

【課題】 シリコン基板と金属シリケイト層との間の界面特性に優れた半導体装置を得る。

【解決手段】 シリコン基板51に能動素子が形成されてなる半導体装置であって、該半導体装置は、シリコン基板51上に形成された金属シリケイト層53と、金属シリケイト層53上に形成された電極層54とを備え、金属シリケイト層53は、その構成金属の濃度が電極層54と金属シリケイト層53との界面からシリコン基板51と金属シリケイト層53との界面に向かってしだいに減少するように構成されている。

【特許請求の範囲】

【請求項1】シリコン基板に能動素子が形成されてなる半導体装置において、

前記半導体装置は、前記シリコン基板上に形成された金属シリケイト層と、前記金属シリケイト層上に形成された電極層とを備え、

前記金属シリケイト層は、その構成金属の濃度が前記電極層と前記金属シリケイト層との界面から前記シリコン基板と前記金属シリケイト層との界面に向かってしだいに減少するように構成されていることを特徴とする半導体装置。

【請求項2】シリコン基板に能動素子が形成されてなる半導体装置において、

前記半導体装置は、前記シリコン基板上に形成された金属シリケイト層と、

前記金属シリケイト層上に形成された電極層とを備え、前記金属シリケイト層に含有される構成金属の濃度は、該金属シリケイトの化学量論組成における該金属の濃度以下であり、かつ、前記電極層と前記金属シリケイト層との界面側での前記構成金属の濃度よりも前記シリコン基板と前記金属シリケイト層との界面側での前記構成金属の濃度の方が低くなるように構成されていることを特徴とする半導体装置。

【請求項3】前記金属シリケイト層の構成金属はZr又はHfであり、前記金属シリケイト層は該構成金属の濃度が7原子パーセント以下となるように構成されていることを特徴とする請求項1又は2に記載の半導体装置。

【請求項4】前記半導体装置は電界効果型トランジスタを備え、前記金属シリケイト層は前記電界効果型トランジスタのゲート絶縁膜であることを特徴とする請求項1又は2に記載の半導体装置。

【請求項5】前記金属シリケイト層は、膜厚が0.5nm以上4nm以下であることを特徴とする請求項1又は2に記載の半導体装置。

【請求項6】シリコン基板上に金属酸化膜を形成することによって、前記シリコン基板と前記金属酸化膜との界面に金属シリケイト層を形成する工程と、前記金属シリケイト層上の金属酸化膜を選択的に除去して前記金属シリケイト層を残す工程とを有することを特徴とする半導体装置の製造方法。

【請求項7】前記金属酸化膜を選択的に除去する工程の後、前記金属シリケイト層を800°C以下の温度で熱処理する工程をさらに有することを特徴とする請求項6に記載の半導体装置の製造方法。

【請求項8】シリコン基板上にシリコン酸化膜を形成する工程と、

前記シリコン酸化膜上に、前記シリコン酸化膜に対する固溶限界以上の金属原子を有する金属膜又は金属シリサイド膜を形成する工程と、

前記金属膜又は金属シリサイド膜中の金属原子を前記シリコン酸化膜中に拡散させて金属シリケイト層を形成する工程とを有することを特徴とする半導体装置の製造方法。

リコン酸化膜中に拡散させて金属シリケイト層を形成する工程とを有することを特徴とする半導体装置の製造方法。

【請求項9】前記金属シリケイト層中に窒素を導入する処理を含むことを特徴とする請求項6乃至8のいずれかに記載の半導体装置の製造方法。

【請求項10】窒素雰囲気中又は励起窒素の照射下において、金属酸化物ターレットを用いた蒸着法、スパッタ法又はレーザーブレーキング法にてシリコン基板上に成膜を行うことにより、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする半導体装置の製造方法。

【請求項11】窒素雰囲気中又は励起窒素の照射下において、少なくとも金属及び酸素を含むガスを用いたCVD法にてシリコン基板上に成膜を行うことにより、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする半導体装置の製造方法。

【請求項12】シリコン基板上に形成された金属、シリコン及び窒素を含む膜を酸素雰囲気中にて800°C以下の温度で熱処理して、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする半導体装置の製造方法。

【請求項13】シリコン基板上に形成された金属、シリコン及び窒素を含む膜に励起酸素を照射して、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする半導体装置の製造方法。

【請求項14】シリコン基板上に金属空化膜を形成する工程と、

前記金属空化膜を酸素雰囲気中にて800°C以下の温度で熱処理して窒素を含有する金属シリケイト層を形成する工程とを有することを特徴とする半導体装置の製造方法。

【請求項15】シリコン基板上に金属空化膜を形成する工程と、

前記金属空化膜に励起酸素を照射して窒素を含有する金属シリケイト層を形成する工程とを有することを特徴とする半導体装置の製造方法。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、半導体装置及びその製造方法、特に金属シリケイト層を有する半導体装置及びその製造方法に関する。

【0002】

【従来の技術】LSIの高速化・高集積化は、スケーリング則によるところの電界効果トランジスタの微細化によって進められてきた。ゲート絶縁膜、ゲート等のMOSデバイスの各部分について、高さ方向と横方向の寸法を同時に縮小することで、素子の特性を正常に保ち、また性能を上げることを可能にしてきた。

【0003】このスケーリング則によると、2000年

以降の次世代のMISトランジスタのゲート絶縁膜厚に對しては、酸化膜換算で2 nm程度以下が要求される。しかしながら、シリコン酸化膜 (SiO_2 膜) では、厚さ2 nm以下になると、直接トンネル電流が極めて大きくなり、リーク電流の抑制ができず、消費電力が増加するという問題が生じる。

【0004】そこで、 SiO_2 よりも誘電率が高い材料を用いて、シリコン酸化膜換算実効膜厚を2 nm以下に抑えつつ、物理膜厚を稼いでリーク電流を抑えることが試みられている。

【0005】また、電界効果トランジスタでは、リーク電流の抑制もさることながら、 Si 基板とゲート絶縁膜の界面特性が特に重要である。したがって、ゲート絶縁膜には、高誘電率であり、かつ Si 基板との界面特性を良好に保持できる絶縁膜材料が必要であり、近年になつて金属シリケート(珪酸塩)膜が有望であることが報告され始めた(“Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon” G.C. Wilk and R.M. Wallace APPLIED PHYSICS LETTERS VOLUME 74, NUMBER 19, p2854-2856, MAY 1999)。

【0006】このような金属シリケート膜は、スパッタ法や蒸着法によって Si 基板上に金属を成膜し、酸素雰囲気中で熱処理して形成したり、シリサイドターゲットを用いたスパッタ法により成膜したりされている。

【0007】しかしながら、これらの手法では、金属シリケート膜の膜質が酸素の導入量や熱処理温度あるいはターゲットの組成比に大きく依存するため、金属シリケート膜の特性の制御が困難であった。例えば、熱処理や酸素処理が不十分であれば金属シリケート膜が金属的になり、過剰であれば SiO_2 的な金属シリケート膜になる。高い誘電率を得るためにには、金属的、 SiO_2 の両者の中間のプロセス条件を満たさなければならず、容易に製造することは難しかった。

【0008】また、これらの手法では、 Si 基板と金属シリケート層との界面に金属元素が多く分布し、それらがトランジスタとなり、 Si 基板と金属シリケート層との界面の特性が悪化するという問題もあった。

【0009】
【発明が解決しようとする課題】上述したように、スケーリング則を満たすため、 SiO_2 よりも誘電率が高い金属シリケートをゲート絶縁膜に用いることが要望されているが、従来の方法では、金属シリケート層を制御性よく形成することが困難であり、シリコン基板と金属シリケート層との界面に金属元素が多く分布しやすく、 Si 基板と金属シリケート層との間の界面特性が悪化するという問題があった。

【0010】本発明は、上記従来の問題を解決するためになされたものであり、シリコン基板と金属シリケート層との間の良好な界面特性を得ることが可能な半導体装置及びその製造方法を提供することを目的とする。

【0011】

【課題を解決するための手段】本発明に係る半導体装置は、シリコン基板に能動素子が形成されてなる半導体装置において、前記半導体装置は、前記シリコン基板上に形成された金属シリケート層と、前記金属シリケート層上に形成された電極層とを備え、前記金属シリケート層は、その構成金属の濃度が前記電極層と前記金属シリケート層との界面から前記シリコン基板と前記金属シリケート層との界面に向かってしだいに減少するよう構成されていることを特徴とする(半導体装置A)。

【0012】また、本発明に係る半導体装置は、シリコン基板に能動素子が形成されてなる半導体装置において、前記半導体装置は、前記シリコン基板上に形成された金属シリケート層と、前記金属シリケート層上に形成された電極層とを備え、前記金属シリケート層に含有される構成金属の濃度は、該金属シリケートの化学量論組成における該金属の濃度以下であり、かつ、前記電極層と前記金属シリケート層との界面側での前記構成金属の濃度よりも前記シリコン基板と前記金属シリケート層との界面側での前記構成金属の濃度の方が低くなるよう構成されていることを特徴とする(半導体装置B)。

【0013】半導体装置AまたはBにおいて、前記金属シリケート層の構成金属は Zr (ジルコニウム)、 Hf (ハフニウム)又は La (ランタン)であることが好ましい。金属シリケートを容易に形成するためである。誘電率向上のためには La が好ましく、プロセス適合性の観点からは Zr 又は Hf が好ましい。

【0014】半導体装置AまたはBにおいて、前記金属シリケート層の構成金属が Zr 、 Hf 又は La である場合、その金属シリケートの化学量論組成は、 ZrSiO_4 、 HfSiO_4 、 La_2SiO_5 であることから、前記金属シリケート層はその構成金属の濃度が、 ZrSiO_4 及び HfSiO_4 では約17原子パーセント以下、 La_2SiO_5 では25原子パーセント以下となるよう構成されていることが好ましい。より好ましくは、前記金属シリケート層は、該構成金属の濃度が1原子パーセント以下となるよう構成されていることが好ましい。さらに、前記シリコン基板と前記金属シリケート層との界面での該構成金属の濃度が1原子パーセント以下となるよう構成されていることが好ましい。

【0015】半導体装置AまたはBにおいて、前記金属シリケート層は、金属、シリコン及び酸素に加えて、さらに誘電率向上のために窒素を含んでいてもよい。

【0016】半導体装置AまたはBにおいて、前記半導体装置は電界効果型トランジスタを備え、前記金属シリケート層は前記電界効果型トランジスタのゲート絶縁膜であることが好ましい。

【0017】半導体装置AまたはBにおいて、前記金属シリケート層は、膜厚が0.5 nm以上4 nm以下であることが好ましい。

【0018】本発明に係る半導体装置の製造方法は、シリコン基板上に金属酸化膜を形成することによって、前記シリコン基板と前記金属酸化膜との界面に金属シリケイト層を形成する工程と、前記金属シリケイト層上の金属酸化膜を選択的に除去して前記金属シリケイト層を残す工程とを有することを特徴とする（製造方法A）。

【0019】製造方法Aにおいて、前記金属酸化膜を選択的に除去する工程は、ウエットエッチング法又はスパッタ法を用いて行われることが好ましい。

【0020】製造方法Aにおいて、前記金属酸化膜は非晶質相を含む膜であることが好ましい。これにより、金属酸化膜と金属シリケイト層とのエッチング速度差をとりやすくなる。

【0021】製造方法Aにおいて、欠陥を回復しかつS1O2成長抑制のため、前記金属酸化膜を選択的に除去する工程の後、前記金属シリケイト層を800°C以下の温度で熱処理する工程をさらに有することが好ましい。また、5分以下の短時間であれば、900°C以下であつてもよい。また、さらに望ましくは、300°C～500°Cとする。

【0022】製造方法Aにおいて、前記金属酸化膜を選択的に除去する工程の後、前記金属シリケイト層に励起酸素を照射する工程をさらに有することが、温度を上げることなく欠陥が回復できるため好ましい。

【0023】製造方法Aにおいて、前記シリコン基板上に前記金属酸化膜を形成する際に、励起窒素を照射する工程と、温度を上げることなく欠陥が回復できるため好ましい。

【0024】また、本発明に係る半導体装置の製造方法は、シリコン基板上にシリコン酸化膜を形成する工程と、前記シリコン酸化膜上に、前記シリコン酸化膜に対する固溶限界以上の金属原子を有する金属膜又は金属シリサイド膜を形成する工程と、前記金属膜又は金属シリサイド膜中の金属原子を前記シリコン酸化膜中に拡散させて金属シリケイト層を形成する（より好ましくは、拡散せずに残った金属膜又は金属シリサイド膜を利用することで電極を同時に形成する）工程とを有することを特徴とする（製造方法B）。

【0025】製造方法A又はBにおいて、前記金属シリケイト層中に窒素を導入する処理を含むようにしてもよい。その際に、励起窒素を用いることが好ましい。

【0026】なお、製造方法A及びBは、先の半導体装置A及びBを得るための製造方法に適したものである。

【0027】また、本発明に係る半導体装置の製造方法は、窒素雰囲気中又は励起窒素の照射下において、金属酸化物ターゲットを用いた蒸着法、スパッタ法又はレーザープレーリング法でシリコン基板上に成膜を行うことにより、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする（製造方法C）。

【0028】また、本発明に係る半導体装置の製造方法

は、窒素雰囲気中又は励起窒素の照射下において、少なくとも金属及び酸素を含むガスを用いたCVD法にてシリコン基板上に成膜を行うことにより、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする（製造方法D）。

【0029】製造方法C或いはDにおいて、前記窒素を含有する金属シリケイト層に対して、酸素雰囲気中にて800°C以下の温度で熱処理する、或いは励起酸素を照射する工程をさらに有することが好ましい。

【0030】また、本発明に係る半導体装置の製造方法は、シリコン基板上に形成された金属、シリコン及び窒素を含む膜（MS1Nx膜、Mは金属元素）を酸素雰囲気中にて800°C以下の温度で熱処理して、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする（製造方法E）。

【0031】また、本発明に係る半導体装置の製造方法は、シリコン基板上に形成された金属、シリコン及び窒素を含む膜（MS1Nx膜、Mは金属元素）に励起酸素を照射して、窒素を含有する金属シリケイト層を形成する工程を有することを特徴とする（製造方法F）。

【0032】製造方法E或いはFにおいて、金属とシリコン及び窒素を含むターゲットを用いて、蒸着法、スパッタ法又はレーザープレーリング法にて、前記金属、シリコン及び窒素を含む膜を形成することが好ましい。

【0033】また、本発明に係る半導体装置の製造方法は、シリコン基板上に金属窒化膜を形成する工程と、前記金属窒化膜を酸素雰囲気中にて800°C以下の温度で熱処理して窒素を含有する金属シリケイト層を形成する工程とを有することを特徴とする（製造方法G）。

【0034】また、本発明に係る半導体装置の製造方法は、シリコン基板上に金属窒化膜を形成する工程と、前記金属窒化膜に励起酸素を照射して窒素を含有する金属シリケイト層を形成する工程とを有することを特徴とする（製造方法H）。

【0035】製造方法A～Hにおいて、前記金属シリケイト層の構成金属は、Zr、Hf又はLaであることが好ましい。

【0036】製造方法A～Hにおいて、前記金属シリケイト層は、電界効果トランジスタのゲート絶縁膜であることが好ましい。

【0037】

【発明の実施の形態】以下、本発明の実施形態を図面を参照して説明する。

【0038】（実施形態1）金属酸化物をSi基板上に成膜すると、金属シリケイト（珪酸塩）層がSi基板と金属酸化物の間に形成される。本発明において、金属シリケイト層とは、実質的に金属シリケイトからなるものである。金属シリケイトは一般式で、 $M_x SiO_{y-x}$ で

表される。ただし、金属元素がLaの場合は、 $La_x SiO_{y-x}$

$105-\delta$ ($0 < x < 2, 4 \leq \delta \leq 5$) で表される。本発明者は、この金属シリケイト層が安定な構造・組成で形成され、S1基板界面での電気的特性も非常に良いことを見出した。

【0039】図1は、レーザープレーリング法によりS1基板1上にZrO₂膜2を形成したときの断面図である。

【0040】図1に示すように、S1基板1上にZrO₂膜2を成膜すると、界面にZrシリケイト層3が形成される。このZrシリケイト層3の誘電率は1.4であり、Zrシリサイドを酸化してZrシリケイト膜を形成した場合(～1.2)よりも高いことがわかった。前記金属シリケイト層は、膜厚が0.5 nm以上4 nm以下であることが望ましい。さらに望ましくは、1 nm以上3 nm以下である。また、Zrシリケイト層3とS1基板1の界面特性を評価したところ、非常に良好な電気特性を示し、電界効果トランジスタのゲート絶縁膜として用いることが、非常に有効であることがわかった。

【0041】また、本発明者は、このZrシリケイト層3をゲート絶縁膜として利用するために、HF溶液を用いて上層のZrO₂膜2をエッチングすることを試みた。

【0042】図2は、この試料をHF溶液を用いてエッチングした時の、ZrO₂膜2と界面に形成されたZrシリケイト層3のエッチング率を調べた図である。【0043】黒丸はZrO₂膜2を450°Cで成膜したときであり、白丸は350°Cで成膜した場合を示している。また、エッチング時間150秒以前はZrO₂膜2をエッチングしている場合であり、150秒以降はZrシリケイト層3をエッチングしている場合である。ZrO₂膜2の成膜温度が450°Cの場合、ZrO₂膜2のエッチングレートは120 pm/sec、成膜温度が350°Cの場合、200 pm/secであった。Zrシリケイト層3のエッチングレートは、いずれの場合も2 pm/secであった。

【0044】このようにZrO₂膜2とZrシリケイト層3ではエッチングレートが50倍以上異なることがわかった。ZrO₂膜2の膜厚、成膜温度を変えた場合も、界面に形成されたZrシリケイト層3のエッチングレートが急激に遅くなることがわかった。

【0045】これは、ZrO₂膜2と界面に形成されたZrシリケイト層3とではエッチングレートに大きな差があり、Zrシリケイト層をエッチングによって選択的に残すことが十分可能であることを示している。これは、金属酸化物と、金属シリケイトというS1元素を含んだ材料の特性の差が原因であると考えられ、金属としてZrに限らず、HfやLa等、界面にシリケイト層が形成される金属酸化物であれば、適当なエッチング手法を用いることによって、同様に実現可能である。

【0046】このような実験結果に基づいて、本発明で

は、S1基板上に金属酸化膜を形成することにより、S1基板と金属酸化膜の界面に金属シリケイト層を形成し、その後金属シリケイト層上の金属酸化膜をエッチングレートの差を利用して選択的に剥離して金属シリケイト層を残し、この金属シリケイト層を高誘電体ゲート絶縁膜として用いる電界効果トランジスタの製造方法を提供する。

【0047】また、金属シリケイト層は過剰に熱処理をするとS1O₂化するため、金属シリケイトの欠陥回復に、低温でも欠陥回復力に優れる励起酸素を選択的に残された金属シリケイト層に照射する。また、この欠陥回復には、800°C以下の熱処理かあるいは5分以下の熱処理も有効である。

【0048】さらに、高誘電率化を実現するために、この金属シリケイト層に窒素原子を含有させることで、M_xS1O_{4-δ}N_z (M:金属元素、 $0 < x \leq 1, 0, 3 \leq \delta \leq 4, 0 \leq z \leq 1$) を形成することも有用である。ただし、金属元素がLaの場合は、La_xS1O_{5-δ}N_z ($0 < x \leq 2, 4 \leq \delta \leq 5, 0 \leq z \leq 1$) である。これらの場合、留意する点は、S1O₂化を抑制するために、酸素雰囲気中の過剰な焼純を行わないことである。S1O₂化を抑制しつつ、シリケイト膜に窒素を導入させるには、金属シリケイト膜を窒素雰囲気中で酸化するか、金属、シリコン及び窒素を含む膜(M₁N_x膜: Mは金属元素)に励起酸素を照射するか、あるいはM₁N_x膜を低温で酸化する手法が有用である。

【0049】図3は、本発明により作成した電界効果トランジスタの断面図である。ここではnチャネルMISトランジスタを作成した。

【0050】図3に示すように、p型シリコン基板51中に電子分離領域52が形成されている。このp型シリコン基板51上には、金属シリケイトからなるゲート絶縁膜53が形成されている。このゲート絶縁膜53の詳しい形成方法については後述する。

【0051】ゲート絶縁膜53上には、ボリシリコンからなるゲート電極54が形成されている。ゲート電極54を挟むシリコン基板51中に、n型不純物が導入された拡散層(ソース・ドレイン領域)55が形成されている。ゲート電極54及びゲート絶縁膜53の側面には、ゲート側壁(例えばCVDシリコン空化膜など)56が形成されている。これらによって電界効果トランジスタが構成されている。

【0052】この電界効果トランジスタ上には、層間絶縁膜(例えばCVDシリコン空化膜など)57が形成され、この層間絶縁膜57に設けられたコンタクト孔を介して、ゲート電極54およびソース・ドレイン領域55にAl配線58が接続されている。

【0053】(実施形態1-1) 次に、図4を参照して、図3に示したMISトランジスタの製造方法を説明する。

【0054】まず、図4(a)に示すように、面方位(100)、比抵抗4~6Ωcmのp型シリコン基板51上に、反応性イオンエッチングにより、素子分離のための溝を形成する。統いて、例えばL-P-TEOS膜を埋め込むことにより素子分離領域52を形成する。

【0055】次に、図4(b)に示すように、レーザーアブレーション成膜法を用いて、例えば酸素分圧10Paの雰囲気中、基板温度350°Cで、膜厚3.0nmのZr原子、酸素原子を含むZrO₂膜(金属酸化物膜)59をSi基板51上に成膜する。レーザーアブレーション成膜法を用いることで、成膜時に光励起の作用によつて、各元素が十分なエネルギーを有し、かつ組成すれが少ない金属酸化物を形成できる。後の工程で説明するが、金属酸化物膜を選択的に剝離する工程では、金属酸化物のエッチングレートがより速いほうが界面層との選択比を大きく取れるため、結晶性膜を成膜するよりも、非晶質膜になる条件で成膜する方が選択的剝離の観点から好ましい。

【0056】このとき、ZrO₂膜59を成膜すると同時に、Si基板51とZrO₂膜59との界面にはZrシリケイト層53が形成される。このZrシリケイト層53は、この時点ではZr、O、Si各元素が十分なエネルギーを有し、組成がずれ難い。このことは、所望の組成を有し、欠陥が少なく、高密度のZrシリケイト層53が形成されることに有利に働く。光励起エネルギーを用いることで、過剰な基板加熱は必要なくなり、Zrシリケイト層53のSiO₂化を抑制でき、Zrシリケイト層53の高誘電率化に有利である。また、シリコン基板51上にZrO₂膜59を成膜するとき、励起酸素を照射することによって、欠陥の少ない金属酸化物が形成されるので、より良好な金属シリケイト層53を形成することができる。

【0057】この工程で、シリコン基板51とZrO₂膜59の間に、Si、Zr及び酸素を安定に含有するZrシリケイト層53が0.5~4nm形成される。

【0058】次に、図4(c)に示すように、濃度2%の希HF溶液を用いて100秒程度ウエットエッチングする。するとZrO₂膜59はエッチングされ、Zrシリケイト層53のみが選択的に残る。このときエッティング速度がZrシリケイト層53で急激に減少するので、エッティング時間が1~3割程度長くなてもZrシリケイト層59の膜厚は大きな変化がなく、容易にかつ膜厚の制御性よく良好なZrシリケイト層53のみを選択的に残すことができる。このエッティングの際にスパッタ法を用いても良好なZrシリケイト層を残すことができる。

【0059】次に、図4(d)に示すように、エッティングによって残されたZrシリケイト層53に励起酸素源60によって励起酸素を照射する。このように、エッティング後、励起酸素を照射することで、Zrシリケイト層

53をSiO₂化させずに、より膜中の欠陥を減少させることができる。

【0060】この欠陥を減少させるには、例えば酸素雰囲気中で800°C以下の熱処理或いは、5分以下の短時間の熱処理を行つてもよい。

【0061】次に、図3に示すように、化学気相成長法によってポリシリコン膜を全面に堆積し、このポリシリコン膜をバーニングしてゲート電極54を形成する。統いて、例えば450°C、圧力1Pa~10⁻⁵Paにおいて、窒素ガスで希釈したSiH₄ガスとNH₃ガスの混合ガスを用いて、例えば5nm~20.0nmのCVDシリコン酸化膜からなるゲート側壁56を形成する。

【0062】以後の工程は、通常のMISトランジスタの製造工程と同様である。すなわち、例えば加速電圧20keV、ドーボ量1×10¹⁵cm⁻²で酸素のイオン注入を行い、ソース・ドレイン領域55を形成する。統いて、化学気相成長法によって全面に層間絶縁膜57となるCVDシリコン酸化膜を堆積し、この層間絶縁膜57にコントクト孔を開口する。統いて、スパッタ法によって全面にA1膜を堆積し、このA1膜を反応性イオンエッチングによってバーニングして、A1配線58を形成する。

【0063】(実施形態1-2)次に、図5を参照して、図3に示すMISトランジスタの別の製造方法を説明する。

【0064】まず、図5(a)に示すように、面方位(100)、比抵抗4~6Ωcmのp型シリコン基板51上に、反応性イオンエッチングにより、素子分離のための溝を形成する。統いて、例えばL-P-TEOS膜を埋め込むことにより素子分離領域52を形成する。

【0065】次に、図5(b)に示すように、Si基板51を酸素雰囲気中で加熱、BOX(燃焼酸化)、もしくはCVDによって、Si基板上にSiO₂膜62を形成する。

【0066】次に、図5(c)に示すように、例えばZr金属ターゲットを用いて、例えば蒸着法、SiO₂膜62上に、SiO₂膜中における固溶限界以上の量の金属元素を有する金属膜63を堆積する。金属膜63の代わりに金属シリサイド膜を堆積してもよく、この場合には少なくとも金属原子とシリコン原子を含有するターゲットを用いればよい。

【0067】次に、図5(d)に示すように、例えば、真空中で500~800°Cの加熱によって金属膜63中の金属元素をSiO₂膜62中に拡散させる工程を行い、シリコン基板51上に少なくとも金属シリケイト層53を形成する。ここでは金属元素としてZrを用いた。金属膜63中には、SiO₂膜中における固溶限界以上の量の金属元素が含まれているため、固溶限界による拡散の抑制作用により、金属原子を制御性よく、必要十分にSiO₂膜62中に含有することができ、誘電

率の高い金属シリケイト層53を形成できる。金属膜の代わりに金属シリサイド膜を用いた場合にも同様の効果が得られる。

【0068】次に、図3に示すように、化学気相成長法によってポリシリコン膜を全面に堆積し、このポリシリコン膜をバーニングしてゲート電極54を形成する。統いて、例えば450°C、圧力1Pa～10⁵Paにおいて、窒素ガスで希釈したSiH₄ガスとNH₃ガスの混合ガスを用いて、例えば5nm～200nmのCVDシリコン窒化膜からなるゲート側壁56を形成する。

【0069】以後の工程は、通常のMISトランジスタの製造工程と同様である。すなわち、例えば加速電圧20keV、ドーズ量1×10¹⁵cm⁻²で素子のイオン注入を行い、ソース・ドレイン領域55を形成する。統いて、化学気相成長法によって全面に層間絶縁膜57となるCVDシリコン酸化膜を堆積し、この層間絶縁膜57にコンタクト孔を開口する。統いて、スパッタ法によって全面にA1膜を堆積し、このA1膜を反応性イオンエッティングによってバーニングして、A1配線58を形成する。

【0070】なお、上述した例(図4、図5で説明した例)において、金属シリケイト層53が形成された後に、窒素雰囲気中もしくは励起窒素の照射によって金属シリケイト層53を窒化させることは、金属シリケイト層53がSiO₂化するのを防ぎつつ、膜中の欠陥を補完し、高誘電率化を実現できる。窒化によって得られた窒素原子を含有する金属シリケイト膜53は、特性上よりゲート絶縁膜として好ましい。

【0071】(実施形態1～3)次に、図6を参照して、図3に示すMISトランジスタの別の製造方法について説明する。

【0072】まず、図6(a)に示すように、面方位(100)、比抵抗4～6Ωcmのp型シリコン基板51上に、反応性イオンエッティングにより、素子分離のための溝を形成する。統いて、例えばLPT-TEOS膜を埋め込むことにより素子分離領域52を形成する。

【0073】次に、図6(b)に示すように、シリコン基板51を圧力10Pa～10⁵Paの窒素ガス雰囲気中に設置し、例えばレーザーアブレーション法を用いて、例えばZr原子と窒化シリコンを少なくとも含んだSiNからなるターゲットにレーザー光を照射して、シリコン基板51上に少なくともZr原子、窒素原子を含有する絶縁膜64を堆積する。レーザーアブレーション法以外では蒸着法やスパッタ法を用いてもよい。

【0074】次に、図6(c)に示すように、例えば酸素原子を含む300°C～800°Cの雰囲気中に晒して、少なくともZr原子、窒素原子及びSi原子を含有する絶縁膜64中に酸素原子を導入したゲート絶縁膜53(窒素を含有する金属シリケイト層)を形成する。この場合、5分以下の短い時間の熱処理や、励起酸素源60から

らの励起酸素照射を用いることも有用である。

【0075】次に、図3に示すように、化学気相成長法によってポリシリコン膜を全面に堆積し、このポリシリコン膜をバーニングしてゲート電極54を形成する。統いて、例えば450°C、圧力1Pa～10⁵Paにおいて、窒素ガスで希釈したSiH₄ガスとNH₃ガスの混合ガスを用いて、例えば5nm～200nmのCVDシリコン窒化膜からなるゲート側壁56を形成する。

【0076】以後の工程は、通常のMISトランジスタの製造工程と同様である。すなわち、例えば加速電圧20keV、ドーズ量1×10¹⁵cm⁻²で素子のイオン注入を行い、ソース・ドレイン領域55を形成する。統いて、化学気相成長法によって全面に層間絶縁膜57となるCVDシリコン酸化膜を堆積し、この層間絶縁膜57にコンタクト孔を開口する。統いて、スパッタ法によって全面にA1膜を堆積し、このA1膜を反応性イオンエッティングによってバーニングして、A1配線58を形成する。

【0077】(実施形態1～4)次に、図7を参照して、図3に示すMISトランジスタの別の製造方法を説明する。

【0078】まず、図7(a)に示すように、面方位(100)、比抵抗4～6Ωcmのp型シリコン基板51上に、反応性イオンエッティングにより、素子分離のための溝を形成する。統いて、例えばLPT-TEOS膜を埋め込むことにより素子分離領域52を形成する。

【0079】次に、図7(b)に示すように、例えばCVD法によって、窒素希釈雰囲気中のZrCl₄ガスとNH₃ガスの混合ガス、もしくはZr(SO₄)₂ガスとNH₃ガスの混合ガス等の、Zrを含む酸性ガスと窒素を含むアンモニアガスを、例えば1～10⁵Paの圧力、1～1000sccmの流量で、それぞれ交互に供給、排気し、基板温度が室温～800°Cの温度範囲において、例えば窒化ジルコニウム膜、もしくはZr、窒素及びSiを含む膜(ZrSiN_x膜)65を堆積する。

【0080】次に、図7(c)に示すように、この基板を、例えば200°C～800°Cの温度で酸素原子を含む雰囲気中に晒して、少なくともZr、窒素及びSiを含有する膜65中に酸素原子を導入することによって、窒素原子を含有する金属シリケイト層53を形成する。この熱処理は、5分以下の短い時間の熱処理或いは励起酸素を照射する処理でもよい。

【0081】次に、図3に示すように、化学気相成長法によってポリシリコン膜を全面に堆積し、このポリシリコン膜をバーニングしてゲート電極54を形成する。統いて、例えば450°C、圧力1Pa～10⁵Paにおいて、窒素ガスで希釈したSiH₄ガスとNH₃ガスの混合ガスを用いて、例えば5nm～200nmのCVDシリコン窒化膜からなるゲート側壁56を形成する。

【0082】以後の工程は、通常のMISトランジスタの製造工程と同様である。すなわち、例えば加速電圧20keV、ドーズ量 $1 \times 10^{15} \text{ cm}^{-2}$ で砒素のイオン注入を行い、ソース・ドレイン領域5を形成する。統いて、化学気相成長法によって全面に層間絶縁膜57となるCVDシリコン酸化膜を堆積し、この層間絶縁膜57にコンタクト孔を開口する。統いて、スパッタ法によって全面にA1膜を堆積し、このA1膜を反応性イオンエンチャーミングによってバーニングして、A1配線58を形成する。

【0083】以上、本発明のいくつかの製造方法を示してきたが、以下のような方法で窒素を含有する金属シリケイト層を形成することも可能である。

【0084】例えば、窒素雰囲気中或いは励起窒素を照射しながら、金属原子と酸素原子を含むターゲット（金属酸化物ターゲット）を使い、蒸着法、スパッタ法又はレーザーアブレーション法によって、或いは、窒素雰囲気中或いは励起窒素を照射しながら、金属原子と酸素原子を含むガスを用いたCVD法によって、シリコン基板上に絶縁膜を堆積させることで、窒素を含有する金属シリケイト層を形成することも可能である。このような絶縁膜を堆積させた後に、800°C以下の酸素ガス雰囲気に晒してゲート絶縁膜を形成しても良い。また、酸素ガス雰囲気に晒すかわりに、活性な酸素原子（励起酸素）を照射するようにしても良い。

【0085】なお、上述した本実施形態の方法は、ダミングゲート（damascene gate）若しくは置換ゲート（replacement gate）トランジスタプロセスのゲート絶縁膜に適用することも有効である。

【0086】例えば、通常ダミングゲートトランジスタプロセスでは、ダミングゲートを用いてトランジスタ構造を形成した後、TEOSの堆積、CMPによる研磨を行い、その後ダミングゲートを剥離してゲート絶縁膜を形成するが、形成されるゲート絶縁膜の段差復性が良好でないため、膜厚の不均一性などの問題が生じ、デバイス特性のばらつきや劣化が生じやすい。

【0087】上述した本実施形態の方法を用いて、ダミングゲートを剥離した後に露出したS1基板表面を含む全面に金属酸化膜を堆積し、S1基板との界面に形成される金属シリケイト層をゲート絶縁膜として用いることにより、金属シリケイト層の膜厚を金属酸化膜の膜厚に依存せずに一定にすることができるため、均一な膜厚のゲート絶縁膜を得ることができる。

【0088】（実施形態2）次に、レーザーアブレーション法によってS1基板上に金属酸化膜を形成するとともに、S1基板と金属酸化膜との界面に金属シリケイト層を形成した場合について、作成された試料の分析結果を説明する。具体的には、TEMによって断面観察を行うとともに、EDX分析を行った。

【0089】図8は、S1基板上にZrO₂膜（金属酸

化膜）を形成した試料の断面TEM写真である。ZrO₂膜とS1基板の界面に、Zrシリケイト層（界面シリケイト層：interfacial Zr silicate）が形成されていることがわかる。

【0090】図9は、界面シリケイト層の上面からS1基板に向かって、界面シリケイト層の組成を分析した結果を示したものである。

【0091】図9に示すように、界面シリケイト層の上面からS1基板に向かって（丸数字1から丸数字6に向かって）、Zrの濃度（原子パーセント）が7%からしだいに減少し、界面シリケイト層とS1基板との界面では検出限界以下すなわち、1%以下になっている。したがって、このようにして得られたシリケイト界面層を用いることで、バルク領域に対して界面でのZr濃度が低い、傾斜構成構造を有するシリケイトゲート絶縁膜を得ることができる。

【0092】ここで、このようにして得られた界面シリケイト層の濃度について考えると、Zrシリケイト層（界面シリケイト層）の化学量論組成における濃度よりもZr濃度が高い、すなわちZr濃度が約17%よりも高いと、Zr-Si結合を有するZrシリサイドが形成されるため、リーキ特性が劣化する。したがって、バルク領域のZr濃度は17%以下であることが好ましい。

【0093】また、金属酸化膜として通常のZrO_x（x~2）を用いる場合、図9の測定結果からもわかるように、Zrシリケイト層のバルク領域のZr濃度は7%程度が最大となる。この場合、誘電率はSiO₂よりも充分大きくなる（ε=7~8程度）、またリーキ特性の劣化も生じない。したがって、Zrシリケイト層のバルク領域におけるZr濃度の最大値が7%或いは7%以下であることが好ましい。

【0094】図10（a）は、レーザーアブレーション成膜法でZrO₂膜を作製し、界面シリケイト層を絶縁膜として用いた、Au/界面シリケイト層（Zrシリケイト層）/S1構造のMISキャパシタについて、そのC-V特性を測定した結果を示したものである。図10（b）は、図10（a）の界面シリケイト層と同程度のZr濃度を有するターゲットを用いて成膜した、Au/堆積法によるZrシリケイト層/S1構造のMISキャパシタについて、そのC-V特性を測定した結果を示したものである。

【0095】蓄積容量と膜厚から見積もられた誘電率は、両者共にε=7~8と同程度であり、SiO₂よりも充分に高い値を示している。一方、C-Vカーブに関しては、図10（b）の堆積法によるZrシリケイト層を用いたキャパシタの方は歪んでいるのに対し、図10（a）の方ではその様な歪は見られておらず、良好な界面特性が得られることがわかる。

【0096】以上のように、Zr酸化膜とS1との界面反応によって得られた、Zrシリケイト層の上層側界面

から下層側界面に向かって Zr 濃度がしだいに減少する傾斜組成構造を有する Zr シリケイト層を用いる(別の観点から見ると、 Zr シリケイト層の下層側界面での Zr 濃度が上層側界面での Zr 濃度よりも低い Zr シリケイト層を用いる)ことにより、 Zr シリケイト層と Si 基板との界面では Zr 濃度が低いために良好な界面特性を得ることができるとともに、 Zr シリケイト層のバルク領域では Zr 濃度が高いために高誘電率化を達成することができ、優れた特性を有するMIS型電界効果トランジスタを得ることができる。

【0097】なお、 Zr の代わりに Hf あるいは La を用いてもよい。特に Hf は Zr と同様の性質を有しているため、 Hf 濃度に関する数値については、上述した Zr 濃度に関する数値が同様に当てはまる。

【0098】以下、上述したような構造を有するMISトランジスタについて説明する。基本的な構造については実施形態1で示した図3の構造と同様であり、基本的な製造方法については実施形態1で示した図4の方法と同様である。ここでは、製造方法について図4を参照して説明する。

【0099】まず、図4(a)に示すように、面方位(100)、抵抗4~6Ωcmのp型シリコングループ51上に、反応性イオンエッティングにより、素子分離のための溝を形成する。統いて、例えばLPT-TEOS膜を埋め込むことにより素子分離領域52を形成する。

【0100】次に、図4(b)に示すように、レーザープレーショントランジット膜を用いて、例えば酸素分圧約10Paの露開気中、基板温度300~600°Cにおいて、膜厚10nmの ZrO_2 膜(金属酸化膜)59を Si 基板51上に成膜する。レーザープレーショントランジット膜を用いることで、成膜時に光起動の作用によって各元素が十分なエネルギーを有しているため、組成ずれが少ない膜を形成することができる。

【0101】 ZrO_2 膜59の成膜と同時に、 Si 基板51と ZrO_2 膜59の界面には厚さ2~3nm程度の Zr シリケイト層53が形成される。このようにして形成される Zr シリケイト層53は、形成時に Zr 、O及び Si の各元素が十分なエネルギーを有しているため、組成がずれ難く、所望の組成を有し、欠陥が少ない高密度のものが得られる。また、このようにして形成される Zr シリケイト層53は、 Si 基板51側に Si 、 ZrO_2 膜59側に Zr が多く存在するため、 Zr 濃度が Si 基板51側に向かってしだいに低くなる傾斜組成構造となる。また、光起反応であり、過剰な運動エネルギーを持たないため、 Si 基板51表面へのダメージを低減することができる。

【0102】また、 ZrO_2 膜59を成膜する際に励起酸素を照射することにより、 Si 基板界面での酸化反応を促進することができるため、 SiO_2 組成に近く、欠陥が少ない、傾斜組成を有する、より良好な金属シリケ

イト層53を形成することができる。

【0103】次に、図4(c)に示すように、濃度2%の希Hf溶液を用いて100秒程度ウエットエッティングを行うと、 ZrO_2 膜59はエッティングされ、 Zr シリケイト層53のみが選択的に残る。このとき、エッティング速度が Zr シリケイト層53で急激に減少するので、エッティング時間が1~3割程度長くとも Zr シリケイト層53の膜厚に大きな変化はなく、容易かつ膜厚制御性よく、良好な Zr シリケイト層53のみを選択的に残すことができる。

【0104】次に、図4(d)に示すように、エッティングによって残された Zr シリケイト層53に対して、励起酸素源6から励起酸素を照射する。励起酸素照射の代わりに、RTA処理を行っても良い。

【0105】次に、図3に示すように、化学気相成長法によってポリシリコン膜を全面に堆積し、このポリシリコン膜をバーナーニングしてゲート電極54を形成する。統いて、例えば450°C、圧力1Pa~10⁵Paにおいて、窒素ガスで希釈したSiH₄ガスとNH₃ガスの混合ガスを用いて、例えば5nm~200nmのCVDシリコン空化膜からなるゲート側壁56を形成する。

【0106】以後の工程は、通常のMISトランジスタの製造工程と同様である。すなわち、例えば加速電圧20keV、ドーズ量 $1 \times 10^{15} \text{ cm}^{-2}$ で砒素のイオン注入を行い、ソース・ドレイン領域55を形成する。統いて、化学気相成長法によって全面に層間絕縁膜57となるCVDシリコン酸化膜を堆積し、この層間絶縁膜57にコントクト孔を開口する。統いて、スパッタ法によって全面にA1膜を堆積し、このA1膜を反応性イオンエッティングによってバーナーニングして、A1配線58を形成する。

【0107】なお、本実施形態において、傾斜組成を得るために、金属シリケイト層を形成した後に金属膜をさらに堆積し、熱処理によって金属膜中の金属原子を金属シリケイト層中に拡散させても良い。また、金属シリケイト層形成後に、金属イオンを金属シリケイト層中に低エネルギーでイオン注入しても良い。

【0108】また、本実施形態は、第1の実施形態と同様、ダミシングゲート若しくは置換ゲートトランジスタブセスのゲート絶縁膜に適用することも可能である。

【0109】以上、本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない範囲内において種々変形して実施することが可能である。さらに、上記実施形態には種々の段階の発明が含まれており、開示された構成要件を適宜組み合わせることによって種々の発明が抽出され得る。例えば、開示された構成要件からいくつかの構成要件が削除されても、所定の効果が得られるものであれば発明として抽出され得る。

【発明の効果】本発明によれば、誘電率が高くシリコン基板との界面特性に優れた金属シリケイト層を得ることができ、この金属シリケイト層をゲート絶縁膜として用いることでMISトランジスタの性能を向上させることができとなる。

【図面の簡単な説明】

【図1】本発明の実施形態に係り、シリコン基板上に金属酸化膜を形成することで、これらの界面に金属シリケイト層が形成されることを示した断面図。

【図2】本発明の実施形態に係る金属酸化膜と金属シリケイト層のエッチングレートを示した図。

【図3】本発明の実施形態に係るMISトランジスタの構造を示した断面図。

【図4】本発明の実施形態に係るMISトランジスタの製造工程の一例を示した工程断面図。

【図5】本発明の実施形態に係るMISトランジスタの製造工程の他の例を示した工程断面図。

【図6】本発明の実施形態に係るMISトランジスタの製造工程の他の例を示した工程断面図。

【図7】本発明の実施形態に係るMISトランジスタの製造工程の他の例を示した工程断面図。

【図8】本発明の実施形態に係り、シリコン基板上に金属酸化膜を形成した試料の断面構造をTEMによって観察したときの顕微鏡写真。

【図1】

【図2】

【図3】

【図4】

【図5】

【図7】

【図6】

【図9】

【図8】

【図10】

フロントページの続き

	識別記号	F I	テ-マ-ド (参考)
(51) Int.Cl. 7	H 0 1 L 21/203	H 0 1 L 21/203	S
	21/318	21/318	Z
	29/78	29/78	B
			3 0 1 G
(72) 発明者	鳥海 明 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内	F タ-ム (参考) 4K029 AA06 BA52 BB02 BC05 BD01 CA01 CA05 DB05 DB20 FA01 GA01	
(72) 発明者	福島 伸 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内	4K030 AA03 AA13 BA38 BB12 CA04 DA02 DA09 LA02 5F040 DA19 DC01 EC07 ED03 EK05 FA07 FC22 5F058 BA20 BC03 BC11 BC20 BD01 BD05 BD09 BD18 BF02 BF17 BF22 BF24 BF29 BF40 BH03 BH04 BH16 BJ01 BJ10 5F103 AA01 AA08 DD30 LL08 PP03 RR05	

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.