What is claimed is:

Low expansion transparent glass-ceramics obtained by heat treating a base glass produced at a melting temperature of 1530° C or below, said glass-ceramics having an average linear thermal expansion coefficient (α) within a range from $+6 \times 10^{-7}$ /°C to $+35 \times 10^{-7}$ /°C within a temperature range from 100° C to 300° C and having 80% transmittance wavelength (T_{80}) of 700nm or below.

- 2. Low expansion transparent glass-ceramics as defined in claim 1 wherein internal transmittance for a plate having thickness of 10mm is 75% or over at light wavelength of 1550nm.
- 3. Low expansion transparent glass-ceramics as defined in claim 1 having a heat resisting temperature of 800°C or over.
- 4. Low expansion transparent glass-ceramics as defined in claim 1 having Young's modulus of 90 GPa or over.
- 5. Low expansion transparent glass-ceramics as defined in claim 1 containing β -quartz or β -quartz solid solution as a predominant crystal phase.
- 6. Low expansion transparent glass-ceramics as defined in claim 1 containing 1.5% 3.5% Li₂O in mass % on the basis of amount of total oxides.
- 7. Low expansion transparent glass-ceramics as defined in claim 1 wherein amount of eluting lithium ion is less than $0.0050 \,\mu$ g/cm².

- 8. Low expansion transparent glass-ceramics as defined in claim 1 containing 3% 6% TiO₂ in mass % on the basis of amount of total oxides.
- 9. Low expansion transparent glass-ceramics as defined in claim 1 containing three or more ingredients among RO ingredients (where R is Mg, Ca, Sr, Ba or Zn) in an amount of 0.5% or over in mass % on the basis of amount of total oxides for respective ingredients.
- , 10. Low expansion transparent glass-ceramics as defined in claim 9 containing ZnO in a larger amount than other RO ingredients in mass % on the basis of amount of total oxides.
- 11. Low expansion transparent glass-ceramics as defined in claim 9 containing a total amount of the RO ingredients of 3.5% or over in mass % on the basis of amount of total oxides.
- 12. Low expansion transparent glass-ceramics as defined in claim 1 containing a total amount of R'O ingredients (where R' is Mg, Ca, Ba or Sr) of 3% 13% in mass % on the basis of amount of total oxides.
- 13. Low expansion transparent glass-ceramics as defined in claim 1 comprising in mass % on the basis of amount of total oxides:

SiO_2	50 - 65%
$\mathrm{Al_2O_3}$	20 - 30%
MgO	0.5 - 2%
CaO	0.5 - 2%
SrO	0 - 10%
BaO	1 - 5%
ZnO	0.5 - 15%

${ m Li_2O}$	1.5 -	3.5%
TiO_{2}	3 -	6%
${ m ZrO}_2$	1 -	5%
$\mathrm{Nb_2O_5}$	0 -	5%
$\mathrm{La_2O_3}$	0 -	5%
Y_2O_3	0 -	5%
As_2O_3 and/or Sb_2O_3	0 -	2%.

- 14) Low expansion transparent glass-ceramics wherein an average linear thermal expansion coefficient (α) is within a range from $+6 \times 10^{-7}$ /°C to $+35 \times 10^{-7}$ /°C within a temperature range from 100°C to 300°C and internal transmittance for a plate having thickness of 10mm is 75% or over at light wavelength of 1550nm.
- 15. Low expansion transparent glass-ceramics as defined in claim 14 produced by heat treating a base glass at a melting temperature of 1530°C or below.
- 16. Low expansion transparent glass-ceramics as defined in claim 14 having 80% transmittance wavelength (T_{80}) of 700nm or below.
- 17. Low expansion transparent glass-ceramics as defined in claim 14 having a heat resisting temperature of 800°C or over.
- 18. Low expansion transparent glass-ceramics as defined in claim 14 having Young's modulus of 90 GPa or over.
- 19. Low expansion transparent glass-ceramics as defined in claim 14 containing β -quartz or β -quartz solid solution as a predominant crystal phase.

- 20. Low expansion transparent glass-ceramics as defined in claim 14 containing 1.5% 3.5% Li₂O in mass % on the basis of amount of total oxides.
- 21. Low expansion transparent glass-ceramics as defined in claim 14 wherein amount of eluting lithium ion is less than $0.0050 \,\mu$ g/cm².
- 22. Low expansion transparent glass-ceramics as defined in claim 14 containing 3% 6% TiO₂ in mass % on the basis of amount of total oxides.
- 23. Low expansion transparent glass-ceramics as defined in claim 14 containing three or more ingredients among RO ingredients (where R is Mg, Ca, Sr, Ba or Zn) in an amount of 0.5% or over in mass % on the basis of amount of total oxides for respective ingredients.
- 24. Low expansion transparent glass-ceramics as defined in claim 23 containing ZnO in a larger amount than other RO ingredients in mass % on the basis of amount of total oxides.
- 25. Low expansion transparent glass-ceramics as defined in claim 23 containing a total amount of the RO ingredients of 3.5% or over in mass % on the basis of amount of total oxides.
- 26. Low expansion transparent glass-ceramics as defined in claim 14 containing a total amount of R'O ingredients (where R' is Mg, Ca, Ba or Sr) of 3% 13% in mass % on the basis of amount of total oxides.
- 27. Low expansion transparent glass-ceramics as defined in claim 14 comprising in mass % on the basis of amount of total oxides:

SiO_2	50 - 65%
$\mathrm{Al_2O_3}$	20 - 30%
MgO	0.5 - 2%
CaO	0.5 - 2%
SrO	0 - 10%
BaO	1 - 5%
ZnO	0.5 - 15%
$\mathrm{Li_2O}$	1.5 - 3.5%
TiO_{2}	3 - 6%
ZrO_2	1 - 5%
$\mathrm{Nb_2O_5}$	0 - 5%
La_2O_3	0 - 5%
Y_2O_3	0 - 5%
$\mathrm{As_2O_3}$ and/or $\mathrm{Sb_2O_3}$	0 - 2%.

28. Low expansion transparent glass-ceramics comprising in mass % on the basis of amount of total oxides:

SiO_2	50 - 65%
Al_2O_3	20 - 30%
MgO	0.5 - 2%
CaO	0.5 - 2%
SrO	0 - 10%
BaO	1 - 5%
ZnO	0.5 - 15%
${ m Li_2O}$	1.5 - 3.5%
${ m TiO}_2$	3 - 6%
${ m ZrO}_2$	1 - 5%
$\mathrm{Nb}_2\mathrm{O}_5$	0 - 5%
$\mathrm{La_2O_3}$	0 - 5%

$\mathrm{Y_{2}O_{3}}$	0 -	5%
$\mathrm{As_2O_3}$ and/or $\mathrm{Sb_2O_3}$	0 -	2%.

29. A method for manufacturing glass-ceramics comprising steps of:

melting glass materials comprising in mass % on the basis of amount of total oxides:

SiO_2	50 - 65%
Al_2O_3	20 - 30%
MgO	0.5 - 2%
CaO	0.5 - 2%
SrO	0 - 10%
BaO	1 - 5%
ZnO	0.5 - 15%
$\mathrm{Li_2O}$	1.5 - 3.5%
${ m TiO}_2$	3 - 6%
${ m ZrO}_2$	1 - 5%
$\mathrm{Nb_2O_5}$	0 - 5%
$\mathrm{La_2O_3}$	0 - 5%
Y_2O_3	0 - 5%
As_2O_3 and/or Sb_2O_3	0 - 2%

at a melting temperature of 1530° C or below;

cooling molten glass materials to provide a base glass; and

heat treating the base glass to cause $\,\beta$ -quartz crystal or $\,\beta$ -quartz solid solution crystal to precipitate.

- 30. A glass-ceramic substrate consisting of the low expansion transparent glass-ceramics as defined in claim 1.
- 31. An optical waveguide element comprising the glass-ceramic substrate as

defined in claim 30, a core and a clad provided on the glass-ceramic substrate, said clad having a smaller refractive index than said core.

- 32. An optical waveguide element comprising the glass-ceramic substrate as defined in claim 30, a SiO₂-GeO₂ core provided on the glass-ceramic substrate and a SiO₂ clad covering said core.
- 33. An optical waveguide element as defined in claim 31 wherein said clad comprises a lower clad and an upper clad and said lower clad is provided on the substrate and the core and the upper clad are provided on the lower clad.
- 34. An optical waveguide element as defined in claim 31 wherein said core is provided as an arrayed waveguide grating (AWG), a pair of slab waveguides and a plurality of input and output waveguides and functions as an optical multiplexing and demultiplexing circuit.
- 35. A method for manufacturing an optical waveguide element comprising steps of forming a core on the glass-ceramic substrate as defined in claim 30 by reactive ion etching (RIE) and then forming a clad covering the core.
- 36. A method for manufacturing an optical waveguide element as defined in claim 35 wherein said core is a SiO₂-GeO₂ core and said clad is a SiO₂ clad.
- 37. A method for manufacturing an optical waveguide element as defined in claim 35 wherein a core film is formed on the substrate by chemical vapor deposition (CVD) and thereafter said core is formed by reactive ion etching (RIE).
- 38. A method for manufacturing an optical waveguide element as defined in

claims 35 wherein a lower clad and a core film are formed on the substrate by chemical vapor deposition (CVD) and thereafter said core is formed by reactive ion etching (RIE).

- 39. A method for manufacturing an optical waveguide element as defined in claim 35 wherein SiO₂-GeO₂ glass particles are deposited on the substrate by flame hydrolysis deposition (FHD) to form a SiO₂-GeO₂ core film, said core film is made transparent by heating and thereafter said core is formed in the form of a waveguide pattern by reactive ion etching (RIE) and a SiO₂ upper clad covering the core is formed by flame hydrolysis deposition (FHD).
- 40. A method for manufacturing an optical waveguide element as defined in claim 35 wherein SiO₂ glass particles and SiO₂-GeO₂ glass particles are deposited on the substrate by flame hydrolysis deposition (FHD) to form a SiO₂ lower clad film and a SiO₂-GeO₂ core film, said lower clad film and said core film are made transparent by heating and thereafter said core is formed in the form of a waveguide pattern by reactive ion etching (RIE) and a SiO₂ upper clad covering the core is formed by flame hydrolysis deposition (FHD).
- 41. An optical waveguide comprising a core made in the form of a waveguide pattern and a clad covering the core provided on a glass-ceramic substrate made of glass-ceramics as defined in claim 14, said clad having a smaller refractive index than said core.
- 42. An optical waveguide element as defined in claim 41 wherein said glass-ceramics have 80% transmittance wavelength (T₈₀) of 700nm or below, have heat resisting temperature of 800°C or over, and have Young's modulus of 90 GPa or over.