Основы автоматизированного проектирования: Тема № 2 Построение и исследование математических моделей систем управления

Практика

Часть 1.

Оглавление

Объект исследования

Этап № 1. Описание функциональной схемы объекта

Этап № 2. Описание функциональных элементов и создание их субмоделей средствами пакета MATLAB

- 2.1. Уравнения, описывающие процессы в двигателе постоянного тока с независимым возбуждением
 - 2.2. Описание параметров
 - 2.3. Способы описания моделей и их реализация в пакете MATLAB
 - 2.4. Создание отладочной модели № 1 (на базе структурной схемы) Контрольные цифры
- 2.5. Создание отладочной модели № 2 (при представлении в виде системы дифференциальных уравнений в форме Коши)
- 2.6. Создание отладочной модели № 3 (при использовании блока типа «переменные состояния»)
 - 3. Индивидуальные задания и отчет

Объект исследования: двигатель постоянного тока независимого возбуждения

Этап № 1. Описание функциональной схемы объекта

Выделяется единственный функциональный элемент:

- двигатель постоянного тока независимого возбуждения;

На рис. 1.1 приняты обозначения

 q_{∂} , q_{∂} ', q_{∂} "- угол поворота, скорость и ускорение вращения вала двигателя; u - напряжение, приложенное к якорю двигателя;

 $M_{\rm g}$ - возмущающий момент, на валу двигателя;

 $i_{\rm s}$ - ток в цепи якоря двигателя

Рис.1.1

Этап № 2. Описание функциональных элементов и создание их субмоделей средствами пакета MATLAB

2.1. Уравнения, описывающие процессы в двигателе постоянного тока с независимым возбуждением:

Ток в цепи якоря

$$i_{g} = (u_{g} - k_{\Omega} q_{I}')/(R_{g} + pL_{g})$$
 (1.1)

Момент, развиваемый на валу двигателя

$$M_{\mathcal{I}} = k_{\mathcal{M}} i_{\mathfrak{g}} \tag{1.2}$$

Ускорение поворота вала двигателя

$$J_{\mathcal{A}}q_{\mathcal{A}}'' = M_{\mathcal{A}} - M_{\mathcal{B}} = k_{\mathcal{M}}i_{\mathcal{A}} - M_{\mathcal{B}}$$
 (1.3)

Здесь приняты обозначения

 $u_{\text{л}}[\text{B}]$ - напряжение приложенное к якорю двигателя;

 $i_{\rm s}[{\rm A}]$ - ток в цепи якоря двигателя;

 $q_{\scriptscriptstyle \rm I}$ [рад], $q'_{\scriptscriptstyle \rm I}$ [рад/с]— угол и скорость поворота вала двигателя;

 $M_{\text{д}}$ [Нм]— момент, развиваемый на валу двигателя;

 $M_{\rm B}[{\rm Hm}]$ — возмущающий момент на валу двигателя;

 $k_{\Omega}=U_{\text{max}}/\Omega_{\text{max}}[\text{Вс/рад}]$ - коэффициент противо-ЭДС;

 $k_{\rm M} = 1/k_{\rm J} = M_{\rm J \ max}/i_{\rm S \ max}$ [Нм/А]— моментный коэффициент;

 $R_{\rm s}$ [Ом], $L_{\rm s}$ [Гн] - сопротивление и индуктивность цепи якоря двигателя;

 J_{π} [кгм²]- момент инерции ротора двигателя.

При абсолютно жесткой механической передаче без люфта вместо момента инерции ротора двигателя следует рассматривать приведенный момент инерции $J_{\rm J}+J_{\rm H}/i^2$, где $J_{\rm H}$ - момент инерции нагрузки, в этом случае передаточной функцией редуктора является интегрирующее звено с коэффициентом усиления равным обратной величине коэффициента передачи редуктора.

2.2. Описание параметров

В табл.1.1 приведены основные параметры, которые далее используются при построении модели двигателя.

Таблица № 1.1

Имя в	Переменная в	определение	тип
проекте	описании		
u	$u_{\scriptscriptstyle m I}$	Напряжение, приложенное к	вход
	- A	якорю двигателя	
Md	$M_{\scriptscriptstyle m I\!\!I}$	Момент двигателя	выход
Mv	$M_{\scriptscriptstyle \mathrm{B}}$	Возмущающий момент, на валу	вход
	B	двигателя	
q	${f q}_{\scriptscriptstyle m I\!\!\! J}$	Угол поворота вала двигателя	выход
q'= pq	q' д	Скорость (частота) вращения вала	выход
1 1 1	1 🖰	двигателя	
i	i_{π}	Ток в цепи якоря двигателя	выход

R	R _я	Сопротивление цепи якоря двигателя	параметр
L	L _я	Индуктивность цепи якоря двигателя	параметр
Jd	$J_{+}J_{_{\rm H}}/i^2,$ где $J_{_{\rm H}}-$ момент инерции	Момент инерции ротора двигателя (При абсолютно жесткой механической передаче без люфта вместо момента инерции ротора двигателя следует рассматривать приведенный момент инерции J+Jн/i^2, где Jн- момент инерции нагрузки).	параметр
km	k _M	Моментный коэффициент;	параметр
kv	k_{Ω}	коэффициент противо-ЭДС	параметр

2.3. Способы описания моделей и их реализация в пакете MATLAB

Представление математической модели объекта возможно следующими способами:

- в виде структурной схемы, для получения которой используются известные преобразования по Лапласу;
 - в виде системы дифференциальных уравнений;
- в матричной форме для системы линейных дифференциальных уравнений;
- в виде систем дифференциальных и алгебраических уравнений, логических элементов, табличных данных и.т.п.
- в общем виде, с использованием описания функционирования модели на языке программирования.

Для простого объекта в виде модели ДПТ, описываемой уравнениями (1.1-1.3) целесообразно использование первых трех форм описания с использованием типовых блоков пакета.

2.4. Создание отладочной модели № 1 (на базе структурной схемы) Порядок действий

1. Создать отладочную схему (проект) следующего вида

Рис.1.2

2. Двигатель постоянного тока описывается блоком «SubSystem»

3. Вставив блок этого типа в новую схему, следует дать название блоку (см. рис. 1.2), сохранить его в файле **dvig1_LR1.mdl** и двойным щелчком открыть блок для заполнения его схемы

Рис.2а

Рис.2б

3. Нанести Порты входов и выходов модели в соответствии с рис. 1.3:

Рис.1.3

На рис. 1.3 показаны блоки Порты входа и Порты выхода

4. Создать М-файл **slpriv1m.m** с параметрами в соответствии с рис. 1.4:

		∫ slpriv1m.m 🛚 🗵	
1		%DVIG	
2	-	km=0.36;	%Km
3	-	kv=0.45;	%Kc
4	-	R=0.5;	
5	-	L=0.01;	
6	-	J=0.04;	%ЈД
7	-	k2=1/J;	%1/Јд
8	-	k1=1/R;	
9	-	T=L/R;	

Рис. 1.4

5. Самостоятельно построить схему в соответствии с уравнениями для двигателя постоянного тока, используя идентификаторы параметров из таблицы № 1.1. Построение схемы основано на преобразованных по Лапласу уравнениях (1.1-1.3) и использовании типовых блоков пакета.

Далее предлагается один из способов представления модели.

1. Рассмотреть уравнение (1.1), преобразованное по Лапласу (далее для обозначения переменной Лапласа используем символ **s**). Оно имеет вид (1.4):

$$i_{g} = (u_{g} + (-k_{\Omega}q'_{\mathcal{A}})) \cdot \frac{1}{(R_{g} + sL_{g})} =$$

$$= (u_{g} + (-k_{\Omega}q'_{\mathcal{A}})) \cdot \frac{1/R_{g}}{((L_{g}/R_{g})s + 1)}$$
(1.4)

Очевидно, ему будет соответствовать схема с двумя последовательно соединенными блоками:

Сумматор с двумя входами;

Апериодическое звено I-го порядка $\frac{K}{Ts+1}$ с коэффициентом усиления и постоянной времени $K=1/R_{_{\! H}}; \quad T=L_{_{\! H}}/R_{_{\! H}}$ соответственно.

Фрагмент схемы приведен на рис. 1.5

Рис. 1.5

Параметры блоков следующие:

коэффициенты сумматора: 1 –1;

коэффициент усиления и постоянная времени Звена 1 порядка: k1, Т (расчет и описание параметров см. выше, рис.1.4).

В соответствии с общим подходом к составлению схемы входы и выходы блоков можно пока не соединять, однако целесообразно подписать сигналы входов-выходов. Для указанного фрагмента схемы *входами* будут напряжение *и*, которое является *Портом входа* **Inport** (рис. 3) и сигнал угловой скорости вращения двигателя **qd**, усиленный с помощью усилителя **kv** пока не определенный, *выходом* **OutPort** будет ток якоря **ia**.

Рис.1.6

Сигнал выхода используется не только для последующих блоков, но и как *Порт выхода* **OutPort ia** (см. рис.1.3).

2. Рассмотреть уравнение момента, развиваемого на валу двигателя (1.2), преобразованное по Лапласу:

$$\frac{M_{\mathcal{A}}(s)}{i_{s}(s)} = k_{M} \quad (1.5)$$

Этому уравнению соответствует блок *Усилитель с* коэффициентом усиления **km** (идентификатор km). Так как входом является сигнал — ток якоря **ia,** очевидно, блок включается последовательно после *Звена 1 порядка* (см. п.1.). Выходом будет \mathbf{Md} .

3. Для расчета правых частей уравнения (1.3) вычислить разность момента двигателя и возмущающего момента $\mathbf{Md}\text{-}\mathbf{Mv}$, для чего использовать *сумматор* с коэффициентами (+1 -1). Входами для блока будут сигнал с блока для расчета \mathbf{Md} (см. п.2) и сигнал с *Порта входа* \mathbf{Mv}

Фрагмент схемы теперь выглядит так:

4. В соответствии с уравнением (1.3), преобразованным к виду:

$$q''_{\mathcal{I}} = (M_{\mathcal{I}} + (-M_{\mathcal{B}})) \cdot \frac{1}{J_{\mathcal{I}}}$$
 (1.6)

для получения углового ускорения **qd**" необходимо сигнал с выхода блока *Сумматора* (см.п.3) пропустить через *Усилитель* с коэффициентом усиления **1/J** (идентификатор **k2** - см. рис. 1.4).

5. Для расчета угловой скорости **qd'** использовать блок *Интегратор* в соответствии с формулой преобразования по Лапласу:

$$q'_{\mathcal{I}}(s) = \frac{1}{s} q''_{\mathcal{I}}(s)$$
 (1.7)

Входом будет сигнал с блока п.4, выходом — скорость $\mathbf{qd'}$, которая используется и как *Порт выхода* (см. рис. 1.3), так и вход для блока *Сумматора* (усилителя) из п.1.

6. Для расчета угла поворота использовать аналогично блок *Интегратор* в соответствии с формулой преобразования по Лапласу:

$$q_{\mathcal{I}}(s) = \frac{1}{s} q'_{\mathcal{I}}(s)$$
 (1.8)

Выходной сигнал используется как *Порт выхода* **OutPort qd** (см. рис. 1.3).

7. Соединить между собой блоки в соответствии с указанными входами и выходами для каждого блока (не забыть подать сигналы на три порта выхода).

8. Провести моделирование отладочной схемы двигателя постоянного токаи сравнить с тестами рис.1.5 (приведено для Me=1 на отрезке времени от 0 до 1 сек.)

Перед моделированием

- запустить на выполнение M-файл с параметрами задачи и убедиться, что они появились в рабочей области **workspace**
 - настроить блоки входных воздействий

Контрольные цифры на 1 секунде (подключить блоки **display**)

$$q \partial = -0.819234$$
 $q' \partial = -0.864189$ in $= 2.77777$

Для вывода результатов в workspace подключить блоки To workspace

Окончательная схема

2.5. Создание отладочной модели № 2 (при представлении в виде системы дифференциальных уравнений в форме Коши и использовании блока типа «новый» в библиотеке «Динамические»)

Порядок действий

1. Привести исходную систему к нормальной форме Коши, т.е. так, чтобы она имела вид:

$$\frac{dq_{\partial}}{dt} = f_1(q_{\partial}, \omega_{\partial}, i_{\mathcal{A}}, \dots)$$

$$\frac{d\omega_{\partial}}{dt} = f_2(q_{\partial}, \omega_{\partial}, i_{\mathcal{A}}, \dots)$$

$$\frac{di_{\mathcal{A}}}{dt} = f_3(q_{\partial}, \omega_{\partial}, i_{\mathcal{A}}, \dots)$$
(1.9)

РЕКОМЕНДАЦИЯ:

Вводится новая переменная для обозначения угловой скорости поворота вала двигателя $w_{\text{д}} = q'_{\text{д}}$

Отсюда получается первое уравнение в форме Коши:

$$q_{II}' = w_{II} \tag{1.10}$$

Второе уравнение получается из (1.6) после очевидной подстановки (1.10):

$$w'_{\mathcal{I}} = q''_{\mathcal{I}} = (k_{M}i_{g} + (-M_{B})) \cdot \frac{1}{J_{\mathcal{I}}}$$
 (1.11)

Третье уравнение берется из (1.4) после подстановки в него (1.10) и

разрешения относительно выражения $si_{g} = \frac{di_{g}}{dt}$

- 2. Запустить SIMULINK и открыть проект с отладочной моделью № 1 (п.2.4 и рис.1.4) для субмодели двигателя постоянного тока
 - 3. Скопировать блоки схемы (результат представлен на рис.1.6)

Рис.1.6.

4. Отредактировать 2-ую субмодель, расширив подпись под блоком («ODU») и заменив в ней структурную схему.

Используются блоки Fcn

Mux

Входы Mv,u,q,wd,i;

q'=...;

wd'=...;

i'=...;

Выходы q',wd',i'; -

Причем wd',i' подаются на интеграторы

Формулы проверить самостоятельно в соответствии с вышеописанными уравнениями: в правой части записываются выражения для производных.

РЕКОМЕНДАЦИЯ. При составлении системы дифференциальных уравнений рекомендуется рассчитывать внутри блока производные, подавать их на выход, а уже вне блока интегрировать систему с помощью блока *«Интегратор»* из библиотеки *«Динамические»*.

Начальные условия интегратора соответствуют задаваемым для 3 неизвестных (в нашем случае берем все начальные условия нулевыми).

 Провести моделирование. Результаты должны совпасть с отладочной моделью № 1

2.6. Создание отладочной модели № 3 (при использовании блока типа «переменные состояния»)

Порядок действий

1. Преобразовать систему в нормальной форме Коши из п.2.4, к представлению системы в пространстве состояний. Тогда она имеет вид

$$\frac{dx}{dt} = Ax + Bu$$

$$y = Cx + Du$$
(1.12)

В нашем случае вектор независимых координат

$$x = [q_{\partial} \dot{q}_{\partial} = \omega_{\partial} i_{\mathcal{A}}] \tag{1.13}$$

Вектор управляющих (u_g)и возмущающих (w_g) воздействий

$$u = [u_g \quad w_g]$$

$$w_g = M_g$$
(1.14)

Преобразуем исходную систему, выделив в ней указанные компоненты.

$$\frac{dq_{\partial}}{dt} = 0 * q_{\partial} + 1 * \omega_{\partial} + 0 * i_{g} + 0 * u_{g} + 0 * w_{g};$$

$$\frac{d\omega_{\partial}}{dt} = 0 * q_{\partial} + 0 * \omega_{\partial} + (k_{M}/J_{\partial}) * i_{g} + 0 * i_{g} + 0 * u_{g} + (-1/J_{\partial}) * w_{g};$$

$$\frac{di_{g}}{dt} = 0 * q_{\partial} + (-k_{\Omega}/L_{g}) * \omega_{\partial} + (-R_{g}i_{g})/L_{g} + (1/L_{g}) * u_{g} + 0 * w_{g}$$
(1.15)

Выделив теперь коэффициенты при неизвестных и управляющих воздействиях, получим матрицы A,B

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & (k_{M}/J_{\partial}) \\ 0 & (-k_{\Omega}/L_{R}) & (-R_{R}/L_{R}) \end{bmatrix}$$

$$B = \begin{bmatrix} 0 & 0 \\ 0 & (-1/J_{\partial}) \\ (1/L_{R}) & 0 \end{bmatrix}$$
(1.16)

Предположив, что все координаты измеряемы (наблюдаемы), запишем также

$$y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 00 \\ 00 \\ 00 \end{bmatrix} u$$

$$m.e.$$

$$C = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad D = \begin{bmatrix} 00 \\ 00 \\ 00 \end{bmatrix}$$

$$(1.17)$$

- 2. Скопировать схему из отладочной модели № 2 (п.2.4) см. рис.1.6.
- 3. Сохранить ее под другим именем
- 4. Отредактировать вторую субмодель двигателя

Рис.1.7.

5. В редакторе m – файл параметров дополнить, сформировав матрицы A,B,C,D

```
a32=-kv/L; a23=km/J; a33=-R/L;
b31=1/L; b22=-1/J;
A=[0 1 0
    0 0 a23
    0 a32 a33]
B=[0 0
    0 b22
    b31 0]
C=eye(3)
D=zeros(3,2)
```

Рис.1.8

8. Провести моделирование и убедиться в том, что все три варианта дают одинаковый результат (см. 1.5).

ОБРАТИТЬ ВНИМАНИЕ НА ПЕРЕСТАНОВКУ МЕСТАМИ qd qdp (qd') в третьей схеме!

3. Индивидуальные задания и отчет

Создать модели объекта № 1 (двигателя постоянного тока) в пакете MATLAB с помощью следующих представлений математической модели:

- в виде структурной схемы, для получения которой используются известные преобразования по Лапласу (см. раздел 2.4);
- в виде системы дифференциальных уравнений в нормальной форме Коши (см. раздел 2.5);
- в матричной форме для системы линейных дифференциальных уравнений (представление в пространстве состояний см. раздел 2.6);

Индивидуальными являются параметры двигателя, заданные в таблице 2 (см. также табл. 1.1):

Вариант	R	L	Jd	km	kv
		CM7-62			

		1			
D 4	0.7	0.01	0.04	0.01	0.45
Базовый	0.5	0.01	0.04	0.36	0.45
1	0.2	0.1	0.02	0.008	0.072
2	0.4	0.2	0.04	0.016	0.144
3	0.6	0.3	0.06	0.024	0.216
4	0.8	0.4	0.08	0.032	0.288
5	1.2	0.6	0.12	0.048	0.432
6	1.4	0.7	0.14	0.056	0.504
7	1.6	0.8	0.16	0.064	0.576
8	1.8	0.9	0.18	0.072	0.648
9	2	1	0.2	0.08	0.72
10	2.2	1.1	0.22	0.088	0.792
11	2.4	1.2	0.24	0.096	0.864
12	2.6	1.3	0.26	0.104	0.936
13	2.8	1.4	0.28	0.112	1.008
14	3	1.5	0.3	0.12	1.08
15	3.2	1.6	0.32	0.128	1.152
16	3.4	1.7	0.34	0.136	1.224
17	3.6	1.6	0.32	0.128	1.152
18	3.8	1.7	0.34	0.136	1.224
19	0.2	0.1	0.36	0.112	0.072
20	0.4	0.2	0.38	0.12	0.144
21	0.6	0.3	0.40	0.128	0.216
22	0.8	0.4	0.42	0.136	0.288
23	1.2	0.6	0.44	0.128	0.432
24	1.4	0.7	0.46	0.136	0.504
25	1.6	0.8	0.36	0.112	0.576
26	1.8	0.9	0.38	0.12	0.648
27	2	1	0.40	0.128	0.72
28	2.2	1.1	0.42	0.136	0.792
29	2.4	1.2	0.44	0.128	0.864
30	2.6	1.3	0.46	0.136	0.936
	· -				
		1			

В отчете должны содержаться:

- 1. Заголовок и Номер варианта
- 2. Содержимое блоков глобальных параметров для заданного варианта
- 3. Краткое описание представления модели (для КАЖДОГО из 3 представлений) и Рисунок схемы модели и субмоделей (если есть), содержимое блоков (скопировать в документ WORD со схемы SIMULINK через буфер

обмена). Для копирования в буфер содержимого активного окна следует нажать одновременно клавиши ALT+Prt Scr. Описание дается для КАЖДОГО из 3 представлений.

4. Графики и контрольные цифры на 1 сек. для **КАЖДОГО из 3** представлений.