PREDICTION OF PATHOGENIC SNV

Prof. Giorgio Valentini 6 CFU

Luca Cappelletti

Lecture Notes Year 2017/2018

IT Master Degree Universiy of Milan Italy 26 giugno 2018

Indice

I	Dataset	3
1	Data points	4
	1.1 Retrieving the dataset	
	1.2 Data points	4
2	Metrics	5
	2.1 CpGobsExp	5
	2.2 CpGperCpG	5
	2.3 CpGperGC	
	2.4 DGVCount	6
	2.5 DnaseClusteredHyp	7
	2.6 DnaseClusteredScore	
	2.7 EncH3K27Ac	8
	2.8 EncH3K4Me1	
	2.9 EncH3K4Me3	9
	2.10 GCContent	
	2.11 GerpRS	
	2.12 GerpRSpv	10
	2.13 ISCApath	
	2.14 commonVar	
	2.15 dbVARCount	12
	2.16 fantom5Perm	12
	2.17 fantom5Robust	13
	2.18 fracRareCommon	13
	2.19 mamPhastCons46way	14
	2.20 mamPhyloP46way	14
	2.21 numTFBSConserved	15
	2.22 priPhastCons46way	15
	2.23 priPhyloP46way	16
	2.24 rareVar	
	2.25 verPhastCons46way	17
	2.26 verPhyloP46way	17
II	Theory	19
2	Innust modelling	20
3	Input modelling	20 20
	3.1 Input values	
	3.1.1 Normalized metric	
	3.1.3 Entropy	
	3.2 Feet	
	3.3 Oversampling of positives	
	3.4 Undersampling of negatives	
	J.J. ADSCILCE OF INIOTHIAUOH	21
4	Output modelling	22

INDICE INDICE

5	Weight initialization 5.1 Gaussian noise initialization	23
6	Locally connected dense layers 6.1 Leaky RELU	2 4
	Dense layers 7.1 SELU 7.2 Drop out	
II	I Code	26

Parte I

Dataset

Data points

First we begin looking at the dataset, the distributions of the given metrics and the statistical analysis of these data points.

1.1 Retrieving the dataset

 $The \ dataset \ can \ be \ downloaded \ from \ \texttt{https://homes.di.unimi.it/valentini/ProgettoBioinformatica1718/data/.}$

1.2 Data points

In the dataset there are 981389 data points, each one comprised of 26 metrics. The first 356 are pathogenic and all the others are negative.

Metrics

2.1 CpGobsExp

Figura 2.1: Sampling distribution of metric CpGobsExp

Figura 2.2: Values of metric CpGobsExp

2.2 CpGperCpG

Figura 2.3: Sampling distribution of metric CpGperCpG

2.3. CPGPERGC CAPITOLO 2. METRICS

Figura 2.4: Values of metric CpGperCpG

2.3 CpGperGC

Figura 2.5: Sampling distribution of metric CpGperGC

Figura 2.6: Values of metric CpGperGC

2.4 DGVCount

Figura 2.7: Sampling distribution of metric DGVCount

2.5. DNASECLUSTEREDHYP CAPITOLO 2. METRICS

Figura 2.8: Values of metric DGVCount

2.5 DnaseClusteredHyp

Figura 2.9: Sampling distribution of metric DnaseClusteredHyp

Figura 2.10: Values of metric DnaseClusteredHyp

2.6 DnaseClusteredScore

Figura 2.11: Sampling distribution of metric DnaseClusteredScore

2.7. ENCH3K27AC CAPITOLO 2. METRICS

Figura 2.12: Values of metric DnaseClusteredScore

2.7 EncH3K27Ac

Figura 2.13: Sampling distribution of metric EncH3K27Ac

Figura 2.14: Values of metric EncH3K27Ac

2.8 EncH3K4Me1

Figura 2.15: Sampling distribution of metric EncH3K4Me1

2.9. ENCH3K4ME3 CAPITOLO 2. METRICS

Figura 2.16: Values of metric EncH3K4Me1

2.9 EncH3K4Me3

Figura 2.17: Sampling distribution of metric EncH3K4Me3

Figura 2.18: Values of metric EncH3K4Me3

2.10 GCContent

Figura 2.19: Sampling distribution of metric GCContent

2.11. GERPRS CAPITOLO 2. METRICS

Figura 2.20: Values of metric GCContent

2.11 GerpRS

Figura 2.21: Values of metric GerpRS

Figura 2.22: Sampling distribution of metric GerpRS

2.12 GerpRSpv

Figura 2.23: Sampling distribution of metric GerpRSpv

2.13. ISCAPATH CAPITOLO 2. METRICS

Figura 2.24: Values of metric GerpRSpv

2.13 ISCApath

Figura 2.25: Sampling distribution of metric ISCApath

Figura 2.26: Values of metric ISCApath

2.14 commonVar

Figura 2.27: Sampling distribution of metric commonVar

2.15. DBVARCOUNT CAPITOLO 2. METRICS

Figura 2.28: Values of metric commonVar

2.15 dbVARCount

Figura 2.29: Sampling distribution of metric dbVARCount

Figura 2.30: Values of metric dbVARCount

2.16 fantom5Perm

Figura 2.31: Sampling distribution of metric fantom5Perm

2.17. FANTOM5ROBUST CAPITOLO 2. METRICS

Figura 2.32: Values of metric fantom5Perm

2.17 fantom5Robust

Figura 2.33: Sampling distribution of metric fantom5Robust

Figura 2.34: Values of metric fantom5Robust

2.18 fracRareCommon

Figura 2.35: Sampling distribution of metric fracRareCommon

Figura 2.36: Values of metric fracRareCommon

2.19 mamPhastCons46way

Figura 2.37: Sampling distribution of metric mamPhastCons46way

Figura 2.38: Values of metric mamPhastCons46way

2.20 mamPhyloP46way

Figura 2.39: Sampling distribution of metric mamPhyloP46way

2.21. NUMTFBSCONSERVED CAPITOLO 2. METRICS

Figura 2.40: Values of metric mamPhyloP46way

2.21 numTFBSConserved

Figura 2.41: Sampling distribution of metric numTFBSConserved

Figura 2.42: Values of metric numTFBSConserved

2.22 priPhastCons46way

Figura 2.43: Sampling distribution of metric priPhastCons46way

2.23. PRIPHYLOP46WAY CAPITOLO 2. METRICS

Figura 2.44: Values of metric priPhastCons46way

2.23 priPhyloP46way

Figura 2.45: Sampling distribution of metric priPhyloP46way

Figura 2.46: Values of metric priPhyloP46way

2.24 rareVar

Figura 2.47: Sampling distribution of metric rareVar

2.25. VERPHASTCONS46WAY CAPITOLO 2. METRICS

Figura 2.48: Values of metric rareVar

2.25 verPhastCons46way

Figura 2.49: Sampling distribution of metric verPhastCons46way

Figura 2.50: Values of metric verPhastCons46way

2.26 verPhyloP46way

Figura 2.51: Sampling distribution of metric verPhyloP46way

2.26. VERPHYLOP46WAY CAPITOLO 2. METRICS

Figura 2.52: Values of metric verPhyloP46way

Parte II

Theory

3.1 Input values

The values used for each metric are the 3 following:

3.1.1 Normalized metric

Clearly one of the important metrics is the metric itself, that will be normalized to allow for input in [0,1] range, zero mean and unary variance:

$$metric' = \frac{metric - min\{metric\ values\}}{max\{metric\ values\} - min\{metric\ values\}} \\ metric'' = \frac{metric' - \mathbb{E}\left(\{\}\right|\ metric'\ values\right)}{\sqrt{Var\left(metric'\ values\right)}}$$

(a) Input normalization to [0,1] range

(b) Input normalization to zero mean and unary variance

3.1.2 Rarity

Another value we will be using in the input layer of the network is the rarity of the metric value, modelled as the surprise of extracting the given value from the estimated metric distribution extrapolated out of the sampling distribution.

If *M* is the estimated metric distribution and *m* is the value assumed by the metric in the given data point, we can model **rarity** as follows:

$$\operatorname{rarity}(m) = 1 - M(m)$$

Figura 3.2: Rarity

3.1.3 Entropy

The third and final value used will be entropy, obtained using the estimated metric probability:

$$H(x) = -\mathbb{P}(x)\log\mathbb{P}(x)$$

Figura 3.3: Entropy

3.2 Feet

The input layer is comprised of 26 (number of metrics) *feet*, meaning tiny networks that are used to limit the initial linear combination of the metric input values to themselves.

Each feet is modelled as a locally connected dense layer.

3.3 Oversampling of positives

Since the positive values are just the 0.036% of the dataset we'll oversample these to weight more these values. Since the variance of positive data points is too high to extrapolate a distribution to generate significant new fuzzy data points, simple duplication will be used.

3.4 Undersampling of negatives

Since the negative values are more than the 99.96% of the dataset we'll undersample these to weight less these values.

3.5 Absence of information

Absence of information about a given metric will be modelled as **zeros**, meaning all values relative to the given absent metric for that data point will be treated as zero.

4

Output modelling

The output layer of the neural network is modelled by two neurons, one representing the positive class and one the negative class.

Weight initialization

5.1 Gaussian noise initialization

6

Locally connected dense layers

6.1 Leaky RELU

Dense layers

- **7.1 SELU**
- 7.2 Drop out

Parte III

Code