



# **Observer**

# Un outil adapté à la VoIP

#### **ELEXO**

20 Rue de Billancourt 92100 Boulogne-Billancourt Téléphone : 33 (0) 1 41 22 10 00

Télécopie : 33 (0) 1 41 22 10 01 Courriel : info@elexo.fr TVA : FR00722063534





### Défis de la surveillance et de l'analyse de la VoIP

- Des outils courants ont été conçus pour une utilisation en laboratoire
- Aucune méthode de détermination rapide du statut et de la santé
- Aucun mécanisme de compréhension de la qualité globale des appels
- Les dépendances de VoIP ne sont pas correctement implémentées
- Des outils séparés accroissent le temps d'apprentissage et réduisent le RsI





### Analyse VoIP de l'Observer

#### **Avantages**

- Usage pour entreprise
- Vues agrégées
- Détail actionnable
- Diagnostics en profondeur
- Détaillé

#### **Fonctions**

- Note de qualité
  - MOS, R-factor
- Expert VoIP
- Call Detail Records
  - Mise en place, dégradation, etc.
  - Station / téléphone
- Diagramme de sauts d'appels



Toutes les caractéristiques et fonctionnalités d'analyse VoIP sont en standard dans l'Observer Expert, la Suite, et toutes les sondes



### Tableau résumé de la VoIP

Agrège les mesures pour les appels actifs, clos, totaux





### Tableau du CDR de la VoIP

Vues détaillées appel par appel (Call Detail Records)





### Termes de la VoIP

- Gigue (jitter)
- R-Factor / MOS (Mean Opinion Score)
- QoS / TOS / Préséance (precedence)
- Salves (burstiness)
- Blanc (gap)
- Durée du blanc (gap duration)
- Techniques de compression (Codecs)



# Gigue (jitter)

- Qu'est-ce que c'est ?
  - La gigue est la variation dans le temps entre les paquets transmis et reçus.
  - Par exemple, si un flux de paquets quitte un matériel avec 30 ms d'espacement entre paquets et arrive avec 50 ms d'espacement entre paquets, la gigue est de 20 ms.
  - L'ajustement de la gigue des mémoires tampon peut entraîner l'accroissement de la latence et par conséquent une coupure.
  - Le dépassement de la gigue de la mémoire tampon va introduire des pertes de paquets.
- Pourquoi la mesurer ?
  - La compréhension de la gigue vous donne les éléments tangibles pour vous aider à améliorer la qualité des appels



### Mesure de la gigue par l'Observer



## Note de qualité de l'appel

- Qu'est-ce que c'est ?
  - R-factor
    - Identifie la qualité de l'appel en utilisant une seule source de visibilité (appels réels en direct)
    - Basé sur le E-Model
    - Échelle : 1-100, le maximum théorique étant 93.2 après la dégradation typique
  - MOS
    - Détermine le niveau de satisfaction de l'utilisateur pour un appel
    - Tient compte de différents facteurs (qualité du combiné, bruit ambiant, performance du réseau)
    - Échelle : 1-5, avec 4.0 et plus considéré comme satisfaisant, 4.5 et plus comme extrêmement satisfaisant
    - En utilisant un appel simulé, le trafic peut être capturé à destination et comparé avec les données originales envoyées pour identifier la dégradation.



# Note de qualité de l'appel

- Pourquoi mesurer la note de qualité de l'appel ?
  - Pour fournir des notes objectives et subjectives afin d'évaluer les conditions existantes et les comparer avec celles historiques.
- Comment l'Observer mesure-t-il la qualité de l 'appel ?
  - Il déduit un MOS simulé, car il ne génère pas d'appels simulés.



### Note de qualité de l'appel de l'Observer



# Salves (bursts) et densité de blancs

#### Qu'est-ce que c'est ?

- Un burst (salve) est une période caractérisée par de forts taux de perte de paquets.
- Burst Percentage est le % de temps d'apparition de salves.
- Burst Density est le taux de paquets de données VoIP perdu pendant une période de burst.

### Pourquoi les mesurer ?

- De forts taux affectent la qualité de l'appel, spécialement quand ils sont associés à de longues périodes (average Burst Duration).
- Les raisons possibles de pertes de paquets incluent la congestion du réseau, la défaillance du media et la défaillance du lien.



### Densité de blanc et durée

### Qu'est-ce que c'est ?

- Les bursts (salves) sont des périodes caractérisées par de forts taux de perte de paquets.
- Les *blancs (gaps)* sont les périodes entre les bursts.
- Un *gap* est une période caractérisée par de plus faibles niveaux de perte de paquets que celui des périodes de burst qui les relient.
- La *Gap Density* est le pourcentage de paquets perdus pendant les gaps.
- L' Average Gap Duration est mesuré en temps.

### Pourquoi les mesurer ?

- La connaissance du gap aide à la définition du burst.
- Dans la plupart des cas, les paquets perdus durant les gaps sont rendus insignifiants par les techniques de dissimulation de perte de paquets intégrées dans l'infrastructure VoIP.



### Salve (burst) et densité de blanc de l'Observer



en agrégé...

Et par appel...

| ID / Stream            | S., St., SP | Start Time I. | Dur M | RQPJ.M | Pa . | Burst Percentage | Burst Density | Gap Density | Average Burst Duration | Average Gap Duration | Facket Byte |
|------------------------|-------------|---------------|-------|--------|------|------------------|---------------|-------------|------------------------|----------------------|-------------|
| ← RTCP                 | 449         | 15h:14m:      | 02    | 01     |      |                  |               |             |                        |                      |             |
| 🗃 John Phillips - Rom. | . C         | 15h:14m:      | 02    |        | . 0  | 0.657            | 66.667        | 0.048       | 00.087s                | 09.477s              |             |
| 🖃 ⇄ Roman Oliyny       | 2ad         | 15h:14m:      | 02    |        | . 0  | 0.657            | 66.667        | 0.048       | 00.088s                | 09.477s              |             |
| → RTCP                 | 449         | 15h:14m:      | 02    | 0      |      |                  |               |             |                        |                      |             |
| ← RTP                  | 449         | 15h:14m:      | 02    | 01     | . 0  | 0.840            | 100.000       | 0.000       | 00.024s                | 01.416s              |             |
| → RTP                  | 449         | 15h:14m:      | 02    | 03     | . 0  | 0.000            | 0.000         | 0.000       | Os                     | 11.288s              |             |
| ← H.245                | 110         | 15h:14m:      | 02    | 0      |      |                  |               |             |                        |                      |             |
| → H.245                | 110         | 15h:14m:      | 02    | 0      |      |                  |               |             |                        |                      |             |
| ← RTP                  | 449         | 15h:14m:      | 02    | 03     | . 0  | 1.132            | 100.000       | 0.143       | 00.240s                | 15.727s              |             |
| ← RTCP                 | 449 9       | 15h:14m:      | 02    | 05     |      |                  |               |             |                        |                      |             |
| → RTCP                 | 449         | 15h:14m:      | 02    | 03     |      |                  |               |             |                        |                      |             |
| ← H.323 Hos.           | .117 8      | 15h:14m:      | 02    | 0      |      |                  |               |             |                        |                      |             |
| → H.323 Hos.           | .117 8      | 15h:14m:      | 02    | 0      |      |                  |               |             |                        |                      |             |

### QoS/préséance

- Support de multiple définitions de Qualité de service (QoS)
- Aussi connu comme préséance
- Aussi connu comme Type de Service (TOS)
- Qu'est ce que c'est?
  - La QoS est le positionnement du bit utilisé par les routeurs et commutateurs pour gérer la priorité des paquets dans les flux.

- Pourquoi la mesurer ?
  - Le positionnement incorrect de la QoS peut amener à la contention de la VoIP et d'autres données sur un réseau.
  - La contention pourra amener des délais dans la délivrance des paquets et ainsi réduire la qualité de l'appel.





## Observer's QoS/TOS/préséance

en agrégé...

par appel...

et décodage...



## Techniques de compression

- Codec est l'abréviation de Coder/Decoder
- Différentes techniques de compression (Codec)
  - G.711: 64kbps (sans compression)
  - G.729: 8kbps
  - G.723: 6.3kbps, 5.3kbps
- Des compressions plus importantes réduisent le R-Factor et le MOS mais réduisent aussi la contention potentielle



### Affichage par l'Observer des Codec utilisés



### **Analyse multipoints**

- Suit jusqu'à 10 sauts de conversations ou transactions
- Pointe les goulets d'étranglement
- Isole les délais
- Identifie les pertes de paquets
- Vérifie les SLA des tierces parties
- Mesure le délai.
  - Dans chaque sens
  - En aller-retour
  - Individuel



Utilise l'analyse multi sauts sur les liens WAN, les connexions Ethernet, le trafic sans fil et les réseaux gigabit



# Analyse multipoints automatisée

- Permet d'identifier des problèmes de transaction comme la Latence et la connexion intermittente causée par la congestion du réseau, la fragmentation, la perte de paquets, etc..
- L'Analyse Multipoints permet de déterminer d'où vient la lenteur:... est-ce en périphérie, en coeur, ou mon fournisseur de services...?





# Reconstruction de flux/Enregistrement de la voix



 Reconstruit le flux du média transportant la voix en un seul fichier au format wav pour pouvoir l'écouter



### Résoudre les Problèmes de VolP

- Offre VoIP élargie...
  - En plus des standards SIP, SCCP (Cisco Skinny), H323, and MGCP
  - Support d'Avaya CCMS et Nortel UNIStim
  - "Call Detail Records" (CDRs) ajoutés au rapports réseau pour l'analyse long terme et rapports
- Avenir de la VoIP :
  - 32% des ingénieurs réseau n'ont pas la possibilité de surveiller la performance VoIP
  - 61% n'ont pas la possibilité de surveiller les applications



