Corrigé du devoir maison 7.

Exercice

Partie 1:

1°) Soit $x \in \mathbb{R}$. Appliquons (*) avec 2x et 0:

$$\begin{split} f\left(\frac{2x+0}{2}\right) &= \frac{f(2x)+f(0)}{2} \\ \text{d'où } f(x) - f(0) &= \frac{f(2x)+f(0)}{2} - f(0) \\ g(x) &= \frac{f(2x)-f(0)}{2} \\ g(x) &= \frac{g(2x)}{2} \\ \text{d'où } \boxed{2g(x) = g(2x)} \end{split}$$

 2°) Soient x et y des réels. Appliquons (*) avec 2x et 2y:

$$f\left(\frac{2x+2y}{2}\right) = \frac{f(2x) + f(2y)}{2}$$

$$f(x+y) = \frac{f(2x)}{2} + \frac{f(2y)}{2}$$
 d'où $f(x+y) - f(0) = \frac{f(2x)}{2} + \frac{f(2y)}{2} - f(0)$
$$g(x+y) = \frac{f(2x) - f(0)}{2} + \frac{f(2y) - f(0)}{2}$$

$$g(x+y) = \frac{g(2x)}{2} + \frac{g(2y)}{2}$$

$$g(x+y) = g(x) + g(y)$$
 d'après la question 1

 3°) Soit $x \in \mathbb{R}$.

En appliquant le résultat précédent avec y = -x, on trouve g(0) = g(x) + g(-x). Or g(0) = f(0) - f(0) = 0, d'où g(-x) = -g(x). Ceci pour tout $x \in \mathbb{R}$, donc g est impaire.

4°) Par le résultat de la question 2 :

Pour tout $x \in \mathbb{R}$, $g(x - x_0) = g(x) + g(-x_0) = g(x) - g(x_0)$ puisque g est impaire. On en tire que pour tout $x \in \mathbb{R}$, $g(x) = g(x_0) + g(x - x_0)$.

$$\begin{cases} x - x_0 \underset{x \to x_0}{\longrightarrow} 0 \\ g(t) \underset{t \to 0}{\longrightarrow} g(0) \end{cases} \quad \text{car } g \text{ est continue en } 0 \text{ (puisque } f \text{ l'est)}$$

Par composition de limites, $g(x - x_0) \underset{x \to x_0}{\longrightarrow} g(0) = 0$.

D'où, par somme, $g(x) \xrightarrow[x \to x_0]{} g(x_0)$, ce qui signifie que g est continue en g

Finalement, g est continue sur \mathbb{R} .

 5°) a) Pour tout $x \in \mathbb{R}$,

$$h(x+1) = g(x+1) - a(x+1)$$

$$= g(x) + g(1) - ax - a$$

$$= g(x) - ax \quad \text{car } g(1) = a$$

$$h(x+1) = h(x)$$

Donc h est 1-périodique

b) D'après la question 4, g est continue sur \mathbb{R} , donc par somme, h est continue sur \mathbb{R} . En particulier, elle est continue sur le segment [0,1], donc h est bornée sur [0,1] et elle atteint ses bornes : il existe des réels x_1 et x_2 de ce segment tels que :

$$\forall x \in [0,1], \ h(x_2) \le h(x) \le h(x_1)$$

Soit $x \in \mathbb{R}$. Posons $n = \lfloor x \rfloor$. On a $n \leq x < n+1$ donc $0 \leq x-n < 1$ d'où $x-n \in [0,1]$. On a donc $h(x_2) \leq h(x-n) \leq h(x_1)$, i.e. $h(x_2) \leq h(x) \leq h(x_1)$ puisque h est 1-périodique. Ceci pour tout $x \in \mathbb{R}$, donc h possède un maximum et un minimum sur \mathbb{R} .

c) Comme M est le maximum de h sur \mathbb{R} , pour tout $t \in \mathbb{R}$, $h(t) \leq M$. D'autre part, pour tout $x \in \mathbb{R}$,

$$h(x_1+x)=g(x_1+x)-a(x_1+x)$$

$$=g(x_1)+g(x)-ax_1-ax$$

$$=h(x_1)+h(x)$$

$$=M+h(x)$$
 d'où
$$h(x)=h(x_1+x)-M$$

$$\boxed{h(x)\leq 0} \quad \text{puisque } h(x_1+x)\leq M$$

d) Notons x_2 un réel tel que $h(x_2) = m$, où m est le minimum de h sur \mathbb{R} . Par un calcul similaire, pour tout $x \in \mathbb{R}$,

$$h(x_2+x)=m+h(x)$$

d'où $h(x)=h(x_2+x)-m$
 $h(x)\geq 0$ puisque $h(x_2+x)\geq m$

Ainsi, pour tout $x \in \mathbb{R}$, $h(x) \ge 0$ et $h(x) \le 0$, donc h(x) = 0.

h est la fonction identiquement nulle sur \mathbb{R} .

Or, pour tout $x \in \mathbb{R}$, g(x) = h(x) + ax.

Ainsi,
$$g$$
 est la fonction $\mathbb{R} \to \mathbb{R}$
 $x \mapsto ax$

6°) Finalement, pour tout $x \in \mathbb{R}$, f(x) = g(x) + f(0) = ax + f(0). Ainsi, f est une fonction affine.

Partie 2:

- On a montré que si $f \in \mathcal{E}$ alors f est une fonction affine.
- Réciproquement, soit a et b des réels, posons $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto ax + b$ f est bien continue en 0.

Soit x, y des réels.

$$f\left(\frac{x+y}{2}\right) = a\left(\frac{x+y}{2}\right) + b$$

$$= \frac{ax + ay + 2b}{2}$$

$$= \frac{ax + b + ay + b}{2}$$

$$= \frac{f(x) + f(y)}{2}$$

Ainsi, f est solution du problème.

• Finalement, l'ensemble $\mathcal E$ est l'ensemble des fonctions affines .