1 Passarino-Veltman decomposition

1.1 Definitions

[1]:

$$A(m) = \frac{1}{i\pi^2} \int d^n q \frac{1}{q^2 + m^2}$$
 (1)

$$B_0(p, m_1, m_2) = \frac{1}{i\pi^2} \int d^n q \frac{1}{(q^2 + m_1^2)((q+p)^2 + m_2^2)}$$
 (2)

and apart from their pole term (called Δ - see [1, eq. D.1]), they keep n=4.

[2, 3]:

$$A(m) = \mu^{-\epsilon} \int \frac{d^n q}{(2\pi)^n} \frac{1}{q^2 - m^2}$$
 (3)

$$B(q_1, m_1, m_2) = \mu^{-\epsilon} \int \frac{d^n q}{(2\pi)^n} \frac{1}{(q^2 - m_1^2)((q + q_1)^2 - m_2^2)}$$
(4)

and $n=4+\epsilon$. ([2] writes "The notations for the one-, two-, three-, and four-point functions have been taken over from Ref. [1]." - obviously they do not.)

 $\mathtt{HEPMath}[4]$ and $\mathtt{FeynCalc}[5, 6]$ refer to $\mathtt{LoopTools}[7, 8]$. [8, eq. (1.1)] and [9, eq. (2.6)]:

$$T_{\mu_{1}...\mu_{P}}^{N} = \frac{\mu^{4-D}}{i\pi^{D/2} r_{\Gamma}} \int d^{D}q \, \frac{q_{\mu_{1}} \cdots q_{\mu_{P}}}{\left[q^{2} - m_{1}^{2}\right] \left[\left(q + k_{1}\right)^{2} - m_{2}^{2}\right] \cdots \left[\left(q + k_{N-1}\right)^{2} - m_{N}^{2}\right]}$$
(5)
$$r_{\Gamma} = \frac{\Gamma^{2} (1 - \varepsilon) \Gamma(1 + \varepsilon)}{\Gamma(1 - 2\varepsilon)} , \quad D = 4 - 2\varepsilon$$

later in the code they use a different signature (to avoid any vector structure):

$$A(m^{2}), B_{0}(p^{2}, m_{1}^{2}, m_{2}^{2}), C_{0}(p_{1}^{2}, p_{2}^{2}, (p_{1} + p_{2})^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2})$$

$$D_{0}(p_{1}^{2}, p_{2}^{2}, p_{3}^{2}, p_{4}^{2}, (p_{1} + p_{2})^{2}, (p_{2} + p_{3})^{2}, m_{1}^{2}, m_{2}^{2}, m_{3}^{2}, m_{4}^{2})$$

$$(6)$$

[10]:

$$T_{\mu_1...\mu_P}^N(p_1,\ldots,p_{N-1},m_0,\ldots,m_{N-1}) = \frac{(2\pi\mu)^{4-D}}{i\pi^2} \int d^D q \frac{q_{\mu_1}\cdots q_{\mu_P}}{L_0L_1\cdots L_{N-1}}$$
(7)

$$L_0 = q^2 - m_0^2 + i\varepsilon (8)$$

$$L_i = (q + p_i)^2 - m_i^2 + i\varepsilon \, i = 1, \dots, N - 1$$
 (9)

I will stick to the integrals of [3] as it is the most natural form, I think, and to the non-vector signature, if possible.

1.2 Decomposition Labeling

[1, 3]:

$$B_{\mu}(p, m_1, m_2) = p_{\mu} B_1(p, m_1, m_2) \tag{10}$$

$$B_{\mu\nu} = p_{\mu}p_{\nu}B_{21} + g_{\mu\nu}B_{22} \tag{11}$$

$$C_{\mu}(p_1, p_2, m_1, m_2, m_3) = p_{1,\mu}C_{11} + p_{2,\mu}C_{12}$$
(12)

$$C_{\mu\nu} = p_{1,\mu} p_{1,\nu} C_{21} + p_{2,\mu} p_{2,\nu} C_{22} + (p_{1,\mu} p_{2,\nu} + p_{1,\nu} p_{2,\mu}) C_{23} + g_{\mu\nu} C_{24}$$
(13)

The arguments of the functions are always inherited.

HEPMath, FeynCalc, LoopTools, [9]:

$$B_{\mu}(p, m_1, m_2) = p_{\mu} B_1(p, m_1, m_2) \tag{14}$$

$$B_{\mu\nu} = g_{\mu\nu}B_{00} + p_{\mu}p_{\nu}B_{11} \tag{15}$$

$$C_{\mu}(p_1, p_2, m_1, m_2, m_3) = p_{1,\mu}C_1 + p_{2,\mu}C_2 = \sum_{i=1}^{2} p_{j,\mu}C_j$$
(16)

$$C_{\mu\nu} = p_{1,\mu} p_{1,\nu} C_{11} + p_{2,\mu} p_{2,\nu} C_{22} + (p_{1,\mu} p_{2,\nu} + p_{1,\nu} p_{2,\mu}) C_{12} + g_{\mu\nu} C_{00}$$
(17)

$$= g_{\mu\nu}C_{00} + \sum_{j,k=1}^{2} p_{j,\mu}p_{k,\nu}C_{jk}$$
(18)

The arguments of the functions are always inherited.

I will stick to HEPMath as it is the more generic and extensible form, I think.

1.3 B Decomposition

define

$$f_1 = m_1^2 - m_0^2 - p^2 (19)$$

then one finds easily

$$B_1(p^2, m_0^2, m_1^2) = \frac{1}{2p^2} \left(f_1 B_0(p^2, m_0^2, m_1^2) + A_0(m_0^2) - A_0(m_1^2) \right)$$
(20)

$$B_{00}(p^2, m_0^2, m_1^2) = \frac{1}{2(n-1)} \left(2m_0^2 B_0(p^2, m_0^2, m_1^2) + A_0(m_1^2) - f_1 B_1(p^2, m_0^2, m_1^2) \right)$$
(21)

$$B_{11}(p^2, m_0^2, m_1^2) = \frac{1}{2p^2} \left(f_1 B_0(p^2, m_0^2, m_1^2) + A_0(m_1^2) - 2B_{00}(p^2, m_0^2, m_1^2) \right)$$
(22)

in accordance with [3, 9].

Concering B_1 [1] and LoopTools use the following identity

$$A_0(m_0^2) - A_0(m_1^2) = (m_0^2 - m_1^2)B_0(0, m_0^2, m_1^2)$$
(23)

that might help away with

In case m_1 and/or m_2 are very large the expression on the right-hand side of eq. (20) suffers very strong cancellations: the total is very much smaller than the individual terms. For this reason we have not used these algebraic relations, except to rewrite self-energy diagrams as much as possible in a form most suitable for numerical evaluation. ([1, below eq. D.6])

To compare the other results to [1] and LoopTools one has to use the *strict* $n \to 4$ limit and the following identities[10]:

$$(n-4)B_{00}(p^2, m_0^2, m_1^2) = \frac{1}{6}(p^2 - 3m_0^2 - 3m_1^2)$$
 (24)

$$(n-4)B_{11}(p^2, m_0^2, m_1^2) = -\frac{2}{3}$$
(25)

2 Scalar Integrals

We focus on:

$$\gamma^*(q) + g(k_1) \to Q(p_1) + \overline{Q}(p_2) \tag{26}$$

$$k_1^2 = 0$$
 $p_1^2 = p_2^2 = m^2$ $(p_1 + p_2)^2 = s$ $(p_2 - q)^2 = t$ $(p_1 - q)^2 = u$ (27)

define some shortcuts

$$0 \le \rho = \frac{4m^2}{s} \le 1$$
 $0 \le \beta = \sqrt{1 - \rho} \le 1$ $0 \le \chi = \frac{1 - \beta}{1 + \beta} \le 1$ (28)

$$\rho_q = \frac{4m^2}{q^2} \le 0 \qquad 1 \le \beta_q = \sqrt{1 - \rho_q} \qquad 0 \le \chi_q = -\frac{1 - \beta_q}{1 + \beta_q} \le 1 \qquad (29)$$

2.1 One-Point Function A_0

[10]:

$$A_0(m^2) = -\frac{i}{16\pi^2} m^2 \left(\frac{m^2}{4\pi\mu^2}\right)^{(n-4)/2} \Gamma(1 - n/2)$$
(30)

$$= \frac{im^2}{16\pi^2} \left(\Delta - \log(m^2/\mu^2) + 1 \right) + O(n-4) \tag{31}$$

$$=iC_{\epsilon}m^{2}\left(-\frac{2}{\epsilon}+1\right)+O(n-4)\tag{32}$$

$$\Delta = \frac{2}{4-n} - \gamma_E + \log(4\pi) \tag{33}$$

$$C_{\epsilon} = \frac{1}{16\pi^2} \exp\left(\left(\gamma_E - \log(4\pi) + \log\left(m^2/\mu^2\right)\right) \frac{\epsilon}{2}\right)$$
 (34)

this is up to order O(n-4) in accordance with [3][11], but NOT beyond - see also [3, eq. (A.12)]. So we can treat C_{ϵ} and Δ as equal.

2.2 Two-Point Function B_0

In [10, eq. (4.23)] is a generic function given and we end up with

$$B_0(s, m^2, m^2) = iC_{\epsilon} \left(-\frac{2}{\epsilon} + 2 + \beta \log(\chi) \right)$$
(35)

$$B_0(q^2, m^2, m^2) = iC_{\epsilon} \left(-\frac{2}{\epsilon} + 2 + \beta_q \log(\chi_q) \right)$$
 (36)

$$B_0(0, m^2, m^2) = iC_\epsilon \left(-\frac{2}{\epsilon}\right) \tag{37}$$

$$B_0(m^2, 0, m^2) = iC_{\epsilon} \left(-\frac{2}{\epsilon} + 2 \right) \tag{38}$$

$$B_0(t, 0, m^2) = iC_{\epsilon} \left(-\frac{2}{\epsilon} + 2 - \frac{t - m^2}{t} \ln \left(-\frac{t - m^2}{m^2} \right) \right)$$
 (39)

focusing on imaginary part only; this in accordance with [3][11].

2.3 Three-Point Function C_0

Again, in [10, eq. (4.26)] is a generic function given.

First, we compute $C_0(s,q^2,0,m^2,m^2,m^2)$ and by taking the limit $k_1^2 \to 0$ (or equivalenty

 $s_4 \to 0$) we end up with:

$$C_0(s, q^2, 0, m^2, m^2, m^2) = \frac{i}{16\pi^2} \cdot \frac{1}{s - q^2} \left(\text{Li}_2\left(\frac{2}{1 + \beta_q}\right) + \text{Li}_2\left(\frac{2}{1 - \beta_q}\right) - \text{Li}_2\left(\frac{2}{1 + \beta}\right) - \text{Li}_2\left(\frac{2}{1 - \beta}\right) \right)$$
(40)

with [12] we find:

$$\operatorname{Li}_2\left(\frac{2}{1+b}\right) + \operatorname{Li}_2\left(\frac{2}{1-b}\right) = 3\zeta(2) + \frac{1}{2}\ln^2\left(\frac{1-b}{1+b}\right) - \ln\left(\frac{1-b}{1+b}\right)\ln\left(-\frac{1-b}{1+b}\right) \quad (41)$$

and if we focus on real part only, we find:

$$\operatorname{Li}_{2}\left(\frac{2}{1+\beta}\right) + \operatorname{Li}_{2}\left(\frac{2}{1-\beta}\right) = 3\zeta(2) - \frac{1}{2}\ln^{2}(\chi)$$
 (42)

$$\operatorname{Li}_{2}\left(\frac{2}{1+\beta_{q}}\right) + \operatorname{Li}_{2}\left(\frac{2}{1-\beta_{q}}\right) = -\frac{1}{2}\ln^{2}(\chi_{q}) \tag{43}$$

Additionally, we find

$$\lim_{q^2 \to 0} \left[\operatorname{Li}_2 \left(\frac{2}{1 + \beta_q} \right) + \operatorname{Li}_2 \left(\frac{2}{1 - \beta_q} \right) \right] = 0 \tag{44}$$

So we get:

$$C_0(s, q^2, 0, m^2, m^2, m^2) = iC_{\epsilon} \frac{1}{s - q^2} \left(\frac{1}{2} \ln^2(\chi) - \frac{1}{2} \ln^2(\chi_q) - 3\zeta(2) \right)$$
(45)

$$C_0(s, 0, 0, m^2, m^2, m^2) = iC_{\epsilon} \frac{1}{s} \left(\frac{1}{2} \ln^2(\chi) - 3\zeta(2) \right)$$
(46)

in accordance with [3][11][13]. These results can also be obtained by the methods described in [3, chap. 3].

Next, we compute $C_0(m^2, 0, t, 0, m^2, m^2)$ again by taking the limit $k_1^2 \to 0$ we end up with:

$$C_0(m^2, 0, t, 0, m^2, m^2) = \frac{i}{16\pi^2} \cdot \frac{1}{t - m^2} \left(2\operatorname{Li}_2(2) + \operatorname{Li}_2(m^2/t) - \frac{\pi^2}{6} - \operatorname{Li}_2((t + m^2)/m^2) - \operatorname{Li}_2((m^2 + t)/t) \right)$$
(47)

Using [12] and focussing on real part, we find

$$Li_2(2) = \frac{\pi^2}{4} - i\pi \ln(2)$$
 (48)

$$2\operatorname{Li}_{2}(2) + \operatorname{Li}_{2}(1/z) - \frac{\pi^{2}}{6} - \operatorname{Li}_{2}(1+z) - \operatorname{Li}_{2}(1+1/z) = \frac{\pi^{2}}{6} - \operatorname{Li}_{2}(z)$$
(49)

So we get:

$$C_0(m^2, 0, t, 0, m^2, m^2) = iC_{\epsilon} \frac{1}{t - m^2} \left(\zeta(2) - \text{Li}_2(t/m^2) \right)$$
(50)

in accordance with [3][11].

To compute $C_0(m^2, s, m^2, 0, m^2, m^2)$ we use [3] and find

$$C_0(m^2, s, m^2, 0, m^2, m^2) = \frac{iC_{\epsilon}}{s\beta} \left(-\frac{2}{\epsilon} \ln(\chi) - \frac{\pi^2}{2} + \frac{1}{2} \ln^2(\chi) - \ln(\chi) \ln(1 - \chi) - \text{Li}_2(1/(1 - \chi)) + \text{Li}_2(\chi/(\chi - 1)) \right)$$
(51)

Using [12] and focusing on real part, we find

$$-\operatorname{Li}_{2}(1/(1-\chi)) + \operatorname{Li}_{2}(\chi/(\chi-1)) = -2\operatorname{Li}_{2}(\chi) - \ln(\chi)\ln(1-\chi) - \frac{\pi^{2}}{6}$$
 (52)

So we get:

$$C_0(m^2, s, m^2, 0, m^2, m^2) = iC_{\epsilon} \frac{1}{s\beta} \left(-\frac{2}{\epsilon} \ln(\chi) - 2\ln(\chi) \ln(1 - \chi) - 2\operatorname{Li}_2(\chi) + \frac{1}{2}\ln^2(\chi) - 4\zeta(2) \right)$$
(53)

in accordance with [3][11].

To compute $C_0(t, m^2, q^2, 0, m^2, m^2)$ we use [10] and find immediatelty:

$$C_{0}(t, m^{2}, q^{2}, 0, m^{2}, m^{2}) = \frac{iC_{\epsilon}}{\alpha} \left[-\zeta(2) + 2\operatorname{Li}_{2}\left(\frac{t_{1} + \alpha}{t_{1}}\right) + \operatorname{Li}_{2}\left(\frac{q^{2} - t - m^{2} + \alpha}{q^{2} - t - m^{2} - \alpha}\right) \right]$$

$$\operatorname{Li}_{2}\left(\frac{t_{1} - q^{2}\beta_{q}^{2} + \alpha}{t_{1} - q^{2}\beta_{q}^{2} - \beta_{q}\alpha}\right) - \operatorname{Li}_{2}\left(\frac{t_{1} - q^{2}\beta_{q}^{2} - \alpha}{t_{1} - q^{2}\beta_{q}^{2} + \beta_{q}\alpha}\right)$$

$$\operatorname{Li}_{2}\left(\frac{t_{1} - q^{2}\beta_{q}^{2} + \alpha}{t_{1} + q^{2}\beta_{q}^{2} - \beta_{q}\alpha}\right) - \operatorname{Li}_{2}\left(\frac{t_{1} - q^{2}\beta_{q}^{2} - \alpha}{t_{1} + q^{2}\beta_{q}^{2} + \beta_{q}\alpha}\right)$$

$$- \operatorname{Li}_{2}\left(\frac{t_{1}(q^{2} - t - m^{2} - \alpha) - 2m^{2}\alpha}{t_{1}(q^{2} - t - m^{2} + \alpha)}\right)$$

$$- \operatorname{Li}_{2}\left(\frac{t_{1}(q^{2} - t - m^{2} - \alpha) - 2m^{2}\alpha}{t_{1}(q^{2} - t - m^{2} - \alpha)}\right)$$

$$(54)$$

with $\alpha = \kappa(t,q^2,m^2)$ and the Källén function (as defined in [10, eq. (4.27)])

$$\kappa(x, y, z) = \sqrt{x^2 + y^2 + z^2 - 2(xy + xz + yx)}$$
 (55)

This is in accordance with [13, eq. (A.8)] (Note the typo there!).

Additionally, we find

$$\lim_{q^2 \to 0} C_0(t, m^2, q^2, 0, m^2, m^2) = C_0(t, m^2, 0, 0, m^2, m^2) = C_0(m^2, 0, t, 0, m^2, m^2)$$
 (56)

2.4 Four-Point Function D_0

To compute $D_0(m^2,0,q^2,m^2,t,s,0,m^2,m^2,m^2)$ we follow Ingos way [3] of computing his $D_0(p_1,-k_1,-k_2,0,m,m,m)=D_0(m^2,0,0,m^2,t,s,0,m^2,m^2,m^2)$ and find

$$\tilde{t} = -\frac{t_1}{m^2} \tag{57}$$

$$K = \frac{x}{\rho \rho_q} \left[4x(-1+y)yz\rho + yz\rho\rho_q \tilde{t} + x(-4(-1+y)y(-1+z) + \rho - \tilde{t}yz\rho)\rho_q \right]$$
 (58)

$$I_{xy} = \frac{2x^{\epsilon/2}\rho\rho_q^{2-\epsilon/2} \left[\tilde{t}y\rho_q + x(\rho_q + y(4(y-1) - \tilde{t}\rho_q)) \right]^{-1+\epsilon/2}}{(-2+\epsilon) \left[4x(-1+y)\rho + \tilde{t}\rho\rho_q - x(4(y-1) + \tilde{t}\rho)\rho_q \right]}$$
(59)

$$II_{xy} = -\frac{2x^{-1+\epsilon}\rho^{2-\epsilon/2}\rho_q \left[4(-1+y)y+\rho\right]^{-1+\epsilon/2}}{(-2+\epsilon)\left[4x(-1+y)\rho+\tilde{t}\rho\rho_q - x(4(y-1)+\tilde{t}\rho)\rho_q\right]}$$
(60)

"The integration of I_{xy} does not diverge and one easily gets upon setting $\epsilon \to 0$ "

$$I = \frac{m^4}{st_1\beta} \left[\ln^2(\chi) + 4\operatorname{Li}_2(-\chi) + \frac{\pi^2}{3} + 2\ln(\chi_q) \ln\left(\frac{\beta_q + \beta}{\beta_q - \beta}\right) - 2\ln(\chi) \ln(1 - q^2/s) \right]$$

$$+ 2\operatorname{Li}_2\left(\frac{\beta_q - 1}{\beta_q - \beta}\right) - 2\operatorname{Li}_2\left(\frac{\beta_q + 1}{\beta_q - \beta}\right) + 2\operatorname{Li}_2\left(\frac{\beta_q + 1}{\beta_q + \beta}\right) - 2\operatorname{Li}_2\left(\frac{\beta_q - 1}{\beta_q + \beta}\right) \right]$$

$$= \frac{m^4}{st_1\beta} \left[\ln^2(\chi) + 4\operatorname{Li}_2(-\chi) + \frac{\pi^2}{3} + \ln\left(\frac{\beta_q^2 - \beta^2}{(\beta_q - 1)^2}\right) \ln\left(\frac{\beta_q - \beta}{\beta_q + \beta}\right) - 2\ln(\chi) \ln(1 - q^2/s) \right]$$

$$+ 2\operatorname{Li}_2\left(\frac{\beta_q - 1}{\beta_q - \beta}\right) + 2\operatorname{Li}_2\left(\frac{\beta_q - \beta}{\beta_q + 1}\right) - 2\operatorname{Li}_2\left(\frac{\beta_q + \beta}{\beta_q + 1}\right) - 2\operatorname{Li}_2\left(\frac{\beta_q - 1}{\beta_q + \beta}\right) \right]$$

$$(62)$$

with

$$\lim_{q^{2} \to 0} \left[\ln \left(\frac{\beta_{q}^{2} - \beta^{2}}{(\beta_{q} - 1)^{2}} \right) \ln \left(\frac{\beta_{q} - \beta}{\beta_{q} + \beta} \right) - 2 \ln(\chi) \ln(1 - q^{2}/s) \right]
+ 2 \operatorname{Li}_{2} \left(\frac{\beta_{q} - 1}{\beta_{q} - \beta} \right) + 2 \operatorname{Li}_{2} \left(\frac{\beta_{q} - \beta}{\beta_{q} + 1} \right) - 2 \operatorname{Li}_{2} \left(\frac{\beta_{q} + \beta}{\beta_{q} + 1} \right) - 2 \operatorname{Li}_{2} \left(\frac{\beta_{q} - 1}{\beta_{q} + \beta} \right) \right] = 0$$
(63)

"Integrating II_{xy} over x gives"

$$II_{y} = -\frac{2}{\tilde{t}(-2+\epsilon)\epsilon} \left(\frac{\rho - 4y(1-y)}{\rho}\right)^{-1+\epsilon/2} {}_{2}F_{1}\left(1,\epsilon;1+\epsilon;1 - \frac{4(1-y)(\rho_{q} - \rho)}{\tilde{t}\rho\rho_{q}}\right)$$
(64)

"The integration over y does not give an additional pole, so we can expand to O(1) using ([3, eq. B.5]) and then integrate to obtain"

$$II = -\frac{m^4}{\beta s t_1} \left(\frac{2\ln(\chi)}{\epsilon} + \ln(\chi) \left(1 + 2\ln(\beta \tilde{t}) + \ln(\chi) - 2\ln\left(1 - q^2/s\right) \right) + \text{Li}_2(\chi^2) + \frac{5\pi^2}{6} \right)$$

$$(65)$$

with

$$\lim_{q^2 \to 0} \ln(1 - q^2/s) = 0 \tag{66}$$

"The final result is then"

$$D_{0}(m^{2}, 0, q^{2}, m^{2}, t, s, 0, m^{2}, m^{2}, m^{2})$$

$$= \frac{iC_{\epsilon}}{\beta s t_{1}} \left[-\frac{2 \ln(\chi)}{\epsilon} - 2 \ln(\chi) \ln(\beta \tilde{t}) + 2 \operatorname{Li}_{2}(-\chi) - 2 \operatorname{Li}_{2}(\chi) - 3\zeta(2) \right]$$

$$+ \ln\left(\frac{\beta_{q}^{2} - \beta^{2}}{(\beta_{q} - 1)^{2}}\right) \ln\left(\frac{\beta_{q} - \beta}{\beta_{q} + \beta}\right) - 2 \ln(\chi) \ln(1 - q^{2}/s)$$

$$+ 2 \operatorname{Li}_{2}\left(\frac{\beta_{q} - 1}{\beta_{q} - \beta}\right) + 2 \operatorname{Li}_{2}\left(\frac{\beta_{q} - \beta}{\beta_{q} + 1}\right) - 2 \operatorname{Li}_{2}\left(\frac{\beta_{q} + \beta}{\beta_{q} + 1}\right) - 2 \operatorname{Li}_{2}\left(\frac{\beta_{q} - 1}{\beta_{q} + \beta}\right) \right]$$
(67)

This is NOT in accordance with [13, eq. (A.3)] - but I suspect a bunch of typos there.

We get the match to [3] and [11] by using

$$\lim_{q^2 \to 0} \left[\ln \left(\frac{\beta_q^2 - \beta^2}{(\beta_q - 1)^2} \right) \ln \left(\frac{\beta_q - \beta}{\beta_q + \beta} \right) - 2 \ln(\chi) \ln(1 - q^2/s) \right]$$

$$2 \operatorname{Li}_2 \left(\frac{\beta_q - 1}{\beta_q - \beta} \right) + 2 \operatorname{Li}_2 \left(\frac{\beta_q - \beta}{\beta_q + 1} \right) - 2 \operatorname{Li}_2 \left(\frac{\beta_q + \beta}{\beta_q + 1} \right) - 2 \operatorname{Li}_2 \left(\frac{\beta_q - 1}{\beta_q + \beta} \right) \right] = 0 (68)$$

To compute $D_0(0, m^2, q^2, m^2, t, u, 0, 0, m^2, m^2)$ I neither succeeded with [3] nor [14], but one can use [15, Box 11]. The transformation from the notation in [15] is given by

[15]:
$$\frac{\mu^{4-n}}{i\pi^{n/2}r_{\Gamma}}\mathcal{I} \leftrightarrow [3]: \frac{\mu^{4-n}}{(2\pi)^{n}}\mathcal{I}$$
 (69)

with \mathcal{I} denonting the raw integral. We then need to solve (B=Bojak[3],E=Ellis[15]):

$$\Rightarrow iC_{\epsilon} \left(\frac{a^{B}}{(n-4)^{2}} + \frac{b^{B}}{n-4} + c^{B} + O(n-4) \right)$$

$$\stackrel{!}{=} \frac{\mu^{4-n}}{(2\pi)^{n}} \frac{i\pi^{n/2} r_{\Gamma}}{\mu^{4-n}} \left(\frac{a^{E}}{(n-4)^{2}} + \frac{b^{E}}{n-4} + c^{E} + O(n-4) \right)$$
(70)

$$\Rightarrow a^B = a^E \tag{71}$$

$$b^{B} = b^{E} - \frac{1}{2}a^{E}\ln(m^{2}/\mu^{2})$$
 (72)

$$c^{B} = c^{E} - a^{E} \frac{\pi^{2}}{48} + \frac{a^{E}}{8} \ln^{2}(m^{2}/\mu^{2}) - \frac{b^{E}}{2} \ln(m^{2}/\mu^{2})$$
 (73)

So we get

$$D_0(0, m^2, q^2, m^2, t, u, 0, 0, m^2, m^2) = \frac{iC_{\epsilon}}{t_1 u_1} \left(\frac{4}{\epsilon^2} + \frac{2}{\epsilon} \left(\ln(-t_1/m^2) + \ln(-u_1/m^2) \right) + 2\ln(-t_1/m^2) \ln(-u_1/m^2) - \frac{7}{2}\zeta(2) - \ln^2(\chi_q) \right)$$
(74)

This is in accordance with [13, eq. (A.4)] using [12] (as above):

$$2\operatorname{Li}_{2}\left(\frac{q^{2}(1+\beta_{q})}{2m^{2}}\right) + 2\operatorname{Li}_{2}\left(\frac{q^{2}(1-\beta_{q})}{2m^{2}}\right) = 2\operatorname{Li}_{2}\left(\frac{2}{1-\beta_{q}}\right) + 2\operatorname{Li}_{2}\left(\frac{2}{1-\beta_{q}}\right)$$
(75)
$$= -\ln^{2}(\chi_{q})$$
 (76)

(The question, why they use a complicated dilogarithm remains open ...)

We get the match to [3] and [11] by using

$$\lim_{q^2 \to 0} \ln^2(\chi_q) = 0 \tag{77}$$

to find

$$D_0(0, m^2, 0, m^2, t, u, 0, 0, m^2, m^2) = \frac{iC_{\epsilon}}{t_1 u_1} \left(\frac{4}{\epsilon^2} + \frac{2}{\epsilon} \left(\ln(-t_1/m^2) + \ln(-u_1/m^2) \right) + 2\ln(-t_1/m^2) \ln(-u_1/m^2) - \frac{7}{2}\zeta(2) \right)$$
(78)

A References

- [1] G. Passarino and M. J. G. Veltman, "One Loop Corrections for e+ e- Annihilation Into mu+ mu- in the Weinberg Model," Nucl. Phys. **B160** (1979) 151.
- [2] Beenakker, W. and Kuijf, H. and van Neerven, W. L. and Smith, J., "Qcd corrections to heavy-quark production in $p\overline{p}$ collisions," Phys. Rev. D 40 (Jul, 1989) 54–82. http://link.aps.org/doi/10.1103/PhysRevD.40.54.
- [3] I. Bojak,

 NLO QCD corrections to the polarized photoproduction and hadroproduction of heavy quarks.

 PhD thesis, Dortmund U., 2000. arXiv:hep-ph/0005120 [hep-ph].
- [4] M. Wiebusch, "HEPMath 1.4: A Mathematica Package for Semi-Automatic Computations in High Energy Physics," <u>Computer Physics Communications</u> **195** (Oct., 2015) 172–190. http://arxiv.org/abs/1412.6102. arXiv: 1412.6102.
- [5] R. Mertig, M. Bohm, and A. Denner, "FEYN CALC: Computer algebraic calculation of Feynman amplitudes," Comput. Phys. Commun. **64** (1991) 345–359.
- [6] V. Shtabovenko, R. Mertig, and F. Orellana, "New Developments in FeynCalc 9.0," arXiv:1601.01167 [hep-ph].
- [7] T. Hahn and M. Perez-Victoria, "Automatized one loop calculations in four-dimensions and D-dimensions," <u>Comput. Phys. Commun.</u> **118** (1999) 153–165, arXiv:hep-ph/9807565 [hep-ph].
- [8] T. Hahn, "LoopTools 2.12 User's Guide." http://www.feynarts.de/looptools/, 2014.
- [9] R. K. Ellis, Z. Kunszt, K. Melnikov, and G. Zanderighi, "One-loop calculations in quantum field theory: from Feynman diagrams to unitarity cuts," Phys. Rept. **518** (2012) 141–250, arXiv:1105.4319 [hep-ph].
- [10] A. Denner and S. Dittmaier, "Reduction schemes for one-loop tensor integrals," Nucl. Phys. **B734** (2006) 62–115, arXiv:hep-ph/0509141 [hep-ph].
- [11] W. Beenakker, H. Kuijf, W. L. van Neerven, and J. Smith, "QCD Corrections to Heavy Quark Production in p anti-p Collisions," Phys. Rev. **D40** (1989) 54–82.
- [12] D. Zagier, Frontiers in Number Theory, Physics, and Geometry II: On Conformal Field Theories, Discrete Groups and Renormalization, ch. The Dilogarithm Function, pp. 3–65. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-30308-4_1.
- [13] E. Laenen, S. Riemersma, J. Smith, and W. van Neerven, "Complete $O(\alpha_S)$ corrections to heavy-flavour structure functions in electroproduction," <u>Nuclear Physics B</u> **392** no. 1, (1993) 162 228. http://www.sciencedirect.com/science/article/pii/055032139390201Y.
- [14] A. Denner, U. Nierste, and R. Scharf, "A Compact expression for the scalar one loop four point function," Nucl. Phys. **B367** (1991) 637–656.

[15] R. K. Ellis and G. Zanderighi, "Scalar one-loop integrals for QCD," $\underline{\text{JHEP}}$ 02 (2008) 002, arXiv:0712.1851 [hep-ph].

List of Corrections