Roof Slab Insulation System for Tropical Climatic Conditions

Roof Slab Insulation System

Kasun Nandapala, a Civil Engineering graduate as well as a PhD holder from the University of Moratuwa, Sri Lanka, acts as Civil and Structural Engineer, Lecturer in Civil Engineering and a Researcher, in the fields of Building Information Modelling, Sustainable Development, Building Materials, Structural Engineering and Architectural Modelling.

Due to rapid urbanisation, land prices have escalated significantly and multi-storey buildings with flat roof slabs have gained significant interest. Flat roof slabs have many advantages such as land recovery, cyclonic resistance, the possibility of future vertical extension and utilising as an extra working space. Since the insulated roof slabs can reduce the energy consumption, an effective insulation system was decided to develop. Ultimately, a structurally sound, thermally effective and durable system was developed with locally available materials with the capability of withstanding 4MT point load. Actual scale model testing showed that the new system performs well in thermal aspects as under actual conditions. Further, a peak cooling reduction of 20% was achieved through numerical modelling. The new material invention process proved that a confined air gap with bamboo strips have a similar thermal performance as polystyrene. Also, vegetation layers on these systems can enhance the thermal conditions. Further, Life cycle cost analysis indicated an additional 5% of

the initial cost is paid back within seven years.

978-613-9-98025-

Roof Slab Insulation System for Tropical Climatic Conditions

Nandapala, Chandra, Halwatura

Kasun Nandapala Madujith Sagara Chandra Rangika Umesh Halwatura

Roof Slab Insulation System for Tropical Climatic Conditions

Kasun Nandapala Madujith Sagara Chandra Rangika Umesh Halwatura

Roof Slab Insulation System for Tropical Climatic Conditions

LAP LAMBERT Academic Publishing

Imprint

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Cover image: www.ingimage.com

Publisher:

LAP LAMBERT Academic Publishing

is a trademark of

International Book Market Service Ltd., member of OmniScriptum Publishing

Group

17 Meldrum Street, Beau Bassin 71504, Mauritius

Printed at: see last page ISBN: 978-613-9-98025-3

Copyright © Kasun Nandapala, Madujith Sagara Chandra, Rangika Umesh Halwatura Copyright © 2018 International Book Market Service Ltd., member of OmniScriptum Publishing Group

Dr. Kasun Nandapala Madujith Sagara Chandra Prof. R.U. Halwatura

Roof Slab Insulation System for Tropical Climatic Conditions

Roof Slab Insulation System for Tropical Climatic Conditions

Kasun Nandapala

PhD, BSc Eng (Hons) in Civil Engineering (University of Moratuwa, Katubedda, Sri Lanka)

Madujith Sagara Chandra

MSc in Civil Engineering (reading)
(University of Moratuwa, Katubedda, Sri Lanka)

MEng in Civil Engineering (University of The West of England, Bristol)

NDT in Civil Engineering
(Institute of Technology University of Moratuwa, Katubedda, Sri Lanka)

R.U. Halwatura

PhD, BSc Eng (Hons) in Civil and Building Services Engineering (University of Moratuwa, Katubedda, Sri Lanka)

DEDICATION

This book is dedicated to each and every teacher, lecturers or any academics who do a great job in teaching and research fields delivering a remarkable service to the students.

ACKNOWLEDGEMENT

The Authors wish to extend their sincere gratitude to Senate Research Committee of the University of Moratuwa for funding the experimental programme throughout the research work.

Further, the Authors wish to acknowledge thankfully the excellent support given by Prof. A.A.D.A.J. Perera, Prof. Mrs C. Jayasinghe and Dr. L.L. Ekanayake of Department of Civil Engineering.

Sincere gratitude is also due for all those who participated in the questionnaire survey.

The support given by Prof. S.M.A. Nanayakkara and Prof. Saman Bandara (Heads, Department of Civil Engineering during the period of the research), and Prof. Saman Thilakasiri (Research Coordinator, Department of Civil Engineering) is acknowledged gratefully. All the other lectures and research students are thanked for the positive attitude they adopted in promoting research at Civil Engineering Department.

The technical officers of the Department of Civil Engineering, Ms M.M. Kanthi Menike, Mrs Cooray and all the supportive staff who helped in many ways to make this project owns a sincere gratitude as well.

Finally, the authors wish to thank all those who contributed to the completion of this project successfully.

TABLE OF CONTENTS

1	Int	rodu	uction	12
	1.1	Ge	neral Overview	12
	1.2	Ob	jectives	13
	1.3	Me	ethodology	13
	1.4	Th	e Main Findings	14
	1.5	Th	e Sequence of the Book	15
2	Li	terat	ure Review	16
	2.1	Ge	neral Overview	16
	2.2	Glo	obal Warming and Its Effects	17
	2.3	Th	ermal Comfort in Tropical Countries	19
	2.3	3.1	Climate in Tropical Countries	19
	2.3	3.2	Comfort Models Developed in the World	20
	2.4	En	ergy Consumption and Thermal Comfort	23
	2.4	1.1	Energy Consumption in Tropical Countries	23
	2.4	1.2	Energy Consumption in Buildings	27
	2.5	Ins	ulation as a Passive Technique	27
	2.5	5.1	Passive Techniques in General	27
	2.5	5.2	Insulation as a Passive Strategy	30
	2.6	Ro	of Insulation	31
	2.6	5.1	Different Roof Slab Insulation Systems	31
	2.6	5.2	Roof Insulation with a Vegetation Layer on Top	33
	2.7	Eco	onomic Feasibility of the Systems	35
	2.7	7.1	General Overview	35
	2.7	7.2	Life Cycle Costing of Slab Insulation Systems	37
	2.8	Su	mmary of the Literature Survey	43
3	Pu	blic	Preparation of Roof Slabs	45
	3 1	Ge	neral Overview	45

3.2 The Selected Sample	46
3.3 Results Obtained by the Questionnaire Survey	47
3.4 Summary of the Questionnaire Survey	54
4 Structural Arrangement and the Performance	55
4.1 General Overview	55
4.2 Methodology	57
4.2.1 General Overview	57
4.2.2 Finding the Moment Capacity	58
4.2.3 The optimisation Process	59
4.3 Results Obtained by Numerical Modelling	62
4.3.1 Step 1: Removing Strips in One Direction	62
4.3.2 Step 2: Discontinuing the Strips	64
4.3.3 Step 3: Flat Slab Arrangement	65
4.4 Selecting a Suitable Width	66
4.5 Selecting the Optimum Arrangement	67
4.6 Selecting a Suitable Concrete Mix	68
4.7 Physical Model Testing	70
4.8 Summary of Structural Arrangement and Performance	72
5 Thermal Performance of the System	73
5.1 General Overview	73
5.2 Theoretical Analysis of Thermal Performance	75
5.3 Results of Physical Model Testing	77
5.3.1 General Overview	77
5.3.2 Small Scale Physical Model Testing	78
5.3.3 Actual Scale Physical Model Testing	83
5.4 Computer Simulation	88
5.4.1 Model Calibration	88
5.4.2 Calculation of Cooling Loads	89
5.5 Summary of the Thermal Performance	91
6 Developing a Natural Insulation Material	92

6.1	General Overview	92
6.2	Air Gap as an Insulation material	93
6.2	2.1 Effectiveness of the Thickness of Air Gap	93
6.2	2.2 A Comparison with Polystyrene as an Insulator	95
6.3	Bamboo Cut in Transverse Direction as an Insulation Material	96
6.3	3.1 The Designed Experimental Setup	96
6.3	3.2 Effectiveness of Bamboo as an Insulation Material	98
6.4	Effectiveness of a Vegetation Layer As a Thermal Insulation	100
6.4	1.1 The System with Air Gap and Vegetation	100
6.4	1.2 The System with Bamboo and Vegetation	103
6.5	Summary of the Effort on Developing a Natural Insulation Material	104
7 Li	fe Cycle Cost Analysis	106
7.1	General Overview	106
7.2	A Comparison with Traditional Roofing Materials	107
7.3	Method of Comparing Different Insulation Options	108
7.3	3.1 The Approach	108
7.3	3.2 Factors Considered in the Analysis	109
7.4	Results of the Life Cycle Cost Analysis	111
7.4	4.1 Option 1: When the Operational Period is from 0800h -1700h	111
7.4	4.2 Option 2: When the Building is always Operational	115
7.5	Summary of the Life Cycle Costing Analysis	118
8 Cc	onclusions, Recommendations and Future Works	119
8.1	Main Conclusions	119
8.2	Recommendations	120
8.3	Future Works	121
9 Ap	ppendixes	122
9.1	Appendix A	122
9.1	1.1 Questionnaire Forms Used	122
9.2	Appendix B	129
9.2	2.1 Mix Design Calculations Performed	129

9.3 App	pendix C	134
9.3.1	Theoretical Calculations of Thermal Conductivities Calculating	134
Therma	al Conductivity of the Insulation Layer	134
9.4 App	pendix D	137
9.4.1	Details of the Simulation Model Used to Calculated Cooling Load	ds 137
10 Refere	rences	139

LIST OF FIGURES

Figure 1-1. Isometric View of the Developed System
Figure 2-1. Global Mean Temperature Rise in Last 150 Years
Figure 2-2. The Climate Zones in the World
Figure 2-3. Comfort Models Developed in the World
Figure 2-4. A Typical Psychrometric Chart
Figure 2-5. Comfort Zone for a Building Without HVAC for a Neutrality
Temperature
Figure 2-6. Comfort Zone for a Building with Different Air Velocities for a
Neutrality Temperature
Figure 2-7. A Summary of Passive Techniques Used in Buildings
Figure 2-8. Thermal Resistances of 5 cm Thickness of Common Building Insulation
38
Figure 3-1. The Distribution of the Existing Roofing Materials in Sri Lanka (2015)
Figure 3-2. The Distribution of the Field of Work of the Selected Sample47
Figure 3-3. The Distribution of the Existing Roofing Materials of the Selected
Sample 48
Figure 3-4. The Satisfaction Levels of the Calicut Tile Users on their Roofing
Material
•
Material
Figure 3-6. The Satisfaction Levels of the Concrete Slab Users on their Roofing Material
Figure 3-7. The Preferred Roofing Material of the Selected Sample
Figure 3-9. Users of Asbestos Sheets: Reasons for not Choosing a Concrete Slab as
a Roof
Roof
Figure 3-12. Actions for Thermal Discomfort of those who have calicut Tiles as the
Roofing Material
Roofing Materials
Figure 3-14. Actions for Thermal Discomfort of those who Concrete Roof Slabs 53

Figure 5-6. Experimental Setup of the System with Continuous Supporting Strips to
Compare Thermal Performance
Figure 5-7. Experimental Setup of the Small-Scale Physical Model of the Newly79
Figure 5-8. Slab Top and Slab Soffit Temperatures of the Control Experiment over
a
Figure 5-9. Slab Top and Slab Soffit Temperatures of the System with continuous-
strip supports over a Period of 24 Hours
Figure 5-10. Slab Top and Slab Soffit Temperatures of the System without
supporting strips over a Period of 24 Hours
Figure 5-11. Slab Top and Slab Soffit Temperatures of the Newly Developed
System over a Period of 24 Hours81
Figure 5-12. Slab Soffit Temperatures of Different Arrangements Considered83
Figure 5-13. The Actual Scale Physical Model Used to Compare Thermal84
Figure 5-14. Slab Top and Slab Soffit Temperatures of the Uninsulated Slab of
Actual Model Testing over a Period of 24 Hours84
Figure 5-15. Slab Top and Slab Soffit Temperatures of the Insulated Slab of Actual
Model Testing over a Period of 24 Hours85
Figure 5-16. Top and Bottom Surface Temperatures of the calicut Tiled Roof of
Actual86
Figure 5-17. Top Surface Temperatures of the Insulated Slab, Uninsulated Slab and
calicut Tiled Roof over a Period of 24 Hours
Figure 5-18. Bottom Surface Temperatures of the Insulated Slab, Uninsulated Slab
and calicut Tiled Roof over a Period of 24 Hours87
Figure 5-19. Results After Calibration for Slab Top Temperatures of the Small Scale
Figure 5-20. Results After Calibration for Slab Soffit Temperatures for the Small-
Scale Model
Figure 5-21. The Computer Model Used for Computer Simulations89
Figure 5-22. Predicted Cooling Energy Required for Insulated and Uninsulated
Slabs over a Period of 24 Hours
Figure 6-1. The Physical Model Used to Test Air Gap as an Insulator92
Figure 6-2. Observed Slab Top and Slab Soffit Temperatures of the System with
25mm Air Gap
Figure 6-3. Observed Slab Top and Slab Soffit Temperatures of the Systems with
25mm and 75mm Air Gaps94
Figure 6-4. Observed Slab Top and Slab Soffit Temperatures of the Systems with
95

Figure 6-5. Planned arrangement in the Construction of Bamboo Insulation Layer
Figure 6-6. Panel Units Used in the Construction of Bamboo Insulation Layer98 Figure 6-7. Construction of the System with 25mm Bamboo Insulation98 Figure 6-8. Observed Slab Top and Slab Soffit Temperatures of the System with a 25mm bamboo strip Layer as an Insulator
Figure 6-9. Observed Slab Top and Slab Soffit Temperatures of the System with a 25mm Polystyrene Layer and a 25mm Bamboo Layer
Figure 6-10. Construction of the System with 25mm Bamboo Insulation101 Figure 6-11. Observed Slab Top and Slab Soffit Temperatures of the System with a
25mm Polystyrene layer and a 25mm-Air Gap with a 50mm Vegetation Layer on Top
Figure 6-12. Observed Slab Top and Slab Soffit Temperatures of the System with a
Bamboo Strip Layer as an Insulator and a 50mm-Vegetation Layer on Top 102 Figure 6-13. Observed Slab Top and Slab Soffit Temperatures of the System with a
25mm Polystyrene Layer and a 25mm Bamboo Layer with a 50mm-Vegetation Layer on Top
Figure 7-1. The Model Used to Compare life cycle Costs
when the Building is Operational from 0800h-1700h111 Figure 7-3. Sensible Cooling Loads for each of the Options Considered for the
Insulation
Figure 7-5. Case 1- Life Cycle Costing Analysis for Different Insulation Systems
Considered for a Lifespan of 10 years when the Office is Operational from 0800h-1700h
Figure 7-6. Case 2- Life Cycle Costing Analysis for Different Insulation Systems Considered for a Lifespan of 20 years when the Office is Operational from114
Figure 7-7. Case 3- Life Cycle Costing Analysis for Different Insulation Systems
Considered for a Lifespan of 50 years when the Office is Operational from 0800h-1700h
Figure 7-8. Cumulative Heat Gains other than Roof Solar Gains in the Building when the Building is always Operational
Figure 7-9. Total Cooling Loads for each of the Options Considered for Insulation when the Building is always Operational
Figure 7-10. Case 1- Life Cycle Costing Analysis for Different Insulation Systems Considered for a Lifespan of 10 years when the Office is always Operational117

Figure 7-11. Case 2- Life Cycle Costing Analysis for Different Insulation Systems Considered for a Lifespan of 20 years when the Office is always Operational ...117 Figure 7-12. Case 3- Life Cycle Costing Analysis for Different Insulation Systems Considered for a Lifespan of 50 years when the Office is always Operational ...118

LIST OF TABLES

Table 2-1. Insulation Techniques Tested throughout the World32
Table 2-2. A Summary of Literature on Heat Gain Reduction of Rooftop Vegetation
34
Table 2-3. Economic Benefits and Barriers to be Considered in Life Cycle Cost
Analysis 36
Table 2-4. Properties of Different Insulation Materials
Table 2-5. Properties of Natural Insulation Materials
Table 4-1. The Optimum Arrangements for Each Strip-Spacing Considered65
Table 4-2. Calculations for Finding Minimum Width of Strips
Table 4-3. Calculations for Finding Minimum Width of Strips
Table 4-4. Weights of Each Material as per the Mix Design Calculations Performed
for
Table 4-5. Mix Design Options Tested by Varying Water-Cement Ratio69
Table 4-6. Volume Proportions of the Different Mixes Tested in Table 4.470
Table 5-1. Theoretical Analysis on the Thermal Performance of the Systems
Mentioned in Section 5.1
Table 5-2. Peak Temperatures and Their Times of Occurrences for Each System 82
Table 5-3. Time Lags and Decrement Factors of Four Types of Insulation Systems
82
Table 6-1. Time Lags and Decrement Factors of Four Types of Insulation Systems
95
Table 6-2. Summary of the Results Obtained of the Systems Tested to Replace
Insulation Material
Table 9-1. The Mix Design Calculation Performed to Obtain a Strength of with
Chip-Concrete with Water-Cement Ratio of 0.78
Table 9-2. The Mix Design Calculation Performed to Obtain a Strength of with
Chip-Concrete with Water-Cement Ratio of 0.75
Table 9-3. The Mix Design Calculation Performed to Obtain a Strength of with
Chip-Concrete with Water-Cement Ratio of 0.70
Table 9-4. The Mix Design Calculation Performed to Obtain a Strength of with
Chip-Concrete with Water-Cement Ratio of 0.65
Table 9-5. The Mix Design Calculation Performed to Obtain a Strength of with
Chip-Concrete with Water-Cement Ratio of 0.60
Table 9-6. Thermal Conductivities of the Materials used
Table 9-7. Surface Resistances of Roof Slab

Chapter 01

1 Introduction

1.1 General Overview

Greenhouse gas emission has increased rapidly for a couple of centuries now, causing the major issue that the current world is facing, Global Warming. Now, the world has begun to feel the degree of this threat, and the concern of researchers has been increased on the ways and means to mitigate it.

Meanwhile, climate change has become an inevitable consequence of global warming, increasing the intensity and severity of natural disasters, particularly cyclones (Halwatura & Jayasinghe, 2007, 2008; Isobe, 2013). Hence, the degree of damages caused by them is increased significantly. One of the best ways of

minimising this impact is to make the structures robust, as it increases the durability.

In the process, the use of roof slabs has been identified as a good strategy (Halwatura, Mallawarachchi, & Jayasinghe, 2007). Its suitability is further emphasised as it possesses many additional advantages like low maintenance cost, ability to create greener environments and the possibility of using as a working space. (Halwatura & Jayasinghe, 2009).

However, this has made its way to the issue of the higher energy requirement for thermal comfort (Halwatura & Jayasinghe, 2008). Roof slabs act as heated bodies, and emit long-wave radiation to the underneath spaces, leading to discomfort. The roof contributes to about 70% of total heat gain (Vijaykumar, Srinivasan, & Dhandapani, 2007), and in the case of a concrete slab, it is even more.

Consequently, in Malaysia, which is a tropical country and of which most of the residences are multi-storied buildings and high rises with roof slabs, 75% of the population relies on air conditioning (Al-Obaidi, Ismail, & Abdul Rahman, 2014). This is not a good statistic at all and is an issue to be addressed soon.

In this context, passive techniques have begun to play a major role in modern designs. They are the techniques that are used in the design phase itself so that the structures use a minimum amount of energy in their operational phase, particularly for thermal comfort. Insulation of the building envelope is such a popular technique. Since 'roof' is the major contributor to internal heat gain, insulating that is very common in practice, and proven to be effective (Vijaykumar et al., 2007).