Fundamentals of optimization

Linear Programming

Pham Quang Dung

dungpq@soict.hust.edu.vn
Department of Computer Science

Content

- Linear Programs
- Geometric approach
- Simplex method

Linear programs

Standard form

$$f(x) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \rightarrow \max$$

$$a_{1,1} x_1 + a_{1,2} x_2 + \dots + a_{1,n} x_n \leq b_1$$

$$a_{2,1} x_1 + a_{2,2} x_2 + \dots + a_{2,n} x_n \leq b_2$$

$$\dots$$

$$a_{m,1} x_1 + a_{m,2} x_2 + \dots + a_{m,n} x_n \leq b_m$$

$$x_1, x_2, \dots x_n \in R, x_1, x_2, \dots X_n \geq 0$$

Convert general linear program forms into standard form

- $f(x) \rightarrow min \Leftrightarrow -f(x) \rightarrow max$
- $g(x) \ge b \Leftrightarrow -g(x) \le -b$
- $A = B \Leftrightarrow (A \leq B)$ and $(A \geq B)$
- A variable $x_j \in R$ can be represented by $x_j = x_j^+ x_j^$ where $x_j^+, x_j^- \ge 0$

Convert general linear program forms into standard form

Example

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \min$$

 $2x_1 + x_2 \le 7$
 $x_1 + 2x_2 = 8$
 $x_1 - x_2 \ge 2$
 $x_1, x_2 \in \mathbb{R}, x_2 \ge 0$

Convert general linear program forms into standard form

• Represent: $x_1 = x_1^+ - x_1^-$

$$f(x_{1}^{+}, x_{1}^{-}, x_{2}) = -3 x_{1}^{+} + 3x_{1}^{-} - 2x_{2} \rightarrow \max$$

$$2 x_{1}^{+} - 2x_{1}^{-} + x_{2} \le 7$$

$$x_{1}^{+} - x_{1}^{-} + 2x_{2} \le 8$$

$$-x_{1}^{+} + x_{1}^{-} - 2x_{2} \le -8$$

$$-x_{1}^{+} + x_{1}^{-} + x_{2} \le 2$$

$$x_{1}^{+}, x_{1}^{-}, x_{2} \in \mathbb{R}, x_{1}^{+}, x_{1}^{-}, x_{2} \ge 0$$

- Constraints (inequalities) form a feasible region
- Optimal points will be one of the corners of the feasible region

$$f(x_{1}, x_{2}) = 3x_{1} + 2x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} \leq 7$$

$$x_{1} + 2x_{2} \leq 8$$

$$x_{1} - x_{2} \leq 2$$

$$x_{1}, x_{2} \geq 0$$

$$2x_1 + x_2 \le 7$$

 $x_1 + 2x_2 \le 8$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

$$2x_1 + x_2 \le 7$$

 $x_1 + 2x_2 \le 8$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \ge 0$

- Special cases
 - Problem does not have optimal solutions
 - Problem does not have feasible solutions

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \max$$

 $-2x_1 - x_2 \le -7$
 $x_1 - x_2 \le 2$
 $x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 0$

$$f(x_1, x_2) = 3x_1 + 2x_2 \rightarrow \max$$

 $2x_1 + x_2 \le 7$
 $-4x_1 - 2x_2 \le -16$
 $x_1, x_2 \in \mathbb{R}, x_1, x_2 \ge 0$

Example

- A company must decide to make a plan to produce 2 products P1, P2.
 - The revenue received when selling 1 unit of P1 and P2 are respectively 5\$ and 7\$
 - The manufacturing cost when producing P1 and P2 are respectively 5\$ and 3\$
 - The storage cost in warehouses for 1 unit of P1 and P2 are respectively 2\$ and 3\$
- Compute the production plan so that
 - Total manufacturing cost is less than or equal to 200\$
 - Total storage cost is less than or equal to 150\$
 - Total revenue is maximal

$$f(x_{1}, x_{2},..., x_{n}) = c_{1}x_{1} + c_{2}x_{2} + ... + c_{n}x_{n} \rightarrow \max$$

$$a_{1,1}x_{1} + a_{1,2}x_{2} + ... + a_{1,n}x_{n} \leq b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + ... + a_{2,n}x_{n} \leq b_{2}$$

$$...$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + ... + a_{m,n}x_{n} \leq b_{m}$$

$$x_{1}, x_{2}, ..., x_{n} \geq 0$$

Add slack variables $s_1, s_2, ..., s_m \ge 0$

$$f(x_{1}, x_{2},..., x_{n}, s_{1}, s_{2}, ..., s_{m}) = c_{1}x_{1} + c_{2}x_{2} + ... + c_{n}x_{n} \rightarrow \max$$

$$a_{1,1}x_{1} + a_{1,2}x_{2} + ... + a_{1,n}x_{n} + s_{1} = b_{1}$$

$$a_{2,1}x_{1} + a_{2,2}x_{2} + ... + a_{2,n}x_{n} + 0 + s_{2} + ... = b_{2}$$

$$...$$

$$a_{m,1}x_{1} + a_{m,2}x_{2} + ... + a_{m,n}x_{n} + 0 + ... + s_{m} = b_{m}$$

$$x_{1}, x_{2}, ..., x_{n}, s_{1}, s_{2}, ..., s_{m} \ge 0$$

Consider the linear program under augmented form

$$f(x) = cx \to \max \qquad x = \begin{cases} x_1 \\ x_2 \\ \dots \\ x_n \end{cases} \qquad c = (c_1, c_2, \dots, c_n)$$

$$A = \begin{cases} a_{1,1} \ a_{1,2} \ \dots \ a_{1,n} \\ a_{2,1} \ a_{2,2} \ \dots \ a_{2,n} \\ \dots \\ a_{m,1} \ a_{m,2} \ \dots \ a_{m,n} \end{cases} \qquad b = \begin{cases} b_1 \\ b_2 \\ \dots \\ b_m \end{cases}$$

Denote J = (1, 2, ..., n), I = (1, 2, ..., m) - set of indices

Basic feasible solutions

- Denote
 - A(j) the jth column of matrix A
 - If $J = (j_1, j_2, ..., j_k)$ vector of indices (we also use J as a set of indices), then $x_J = (x_{j_1}, ..., x_{j_k}), A(J) = (A(j_1), ..., A(j_k))$ submatrix of A composed by selecting columns $A(j_1), ..., A(j_k)$
- Suppose rank(A) = m
- $J_B = (j_1, j_2, ..., j_m)$ such that columns $A(j_1), ..., A(j_m)$ are linear independent, J_N vector of remaining indices of J (out of J_B)
- $B = A(J_B)$ basic matrix
- $N = A(J_N)$
- $x = (x_B, x_N), x_B = x(J_B) = (x_{j_1}, \dots, x_{j_m})$ such that $Bx = b, x_B = B^{-1}b, x_N = 0$

Basic feasible solutions

Example

$$f(x) = cx \rightarrow \max \qquad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \qquad c = (3, 2, 0, 0, 0)$$

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{pmatrix} \qquad b = \begin{pmatrix} 7 \\ 8 \\ 2 \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix}$$

$$c = (3, 2, 0, 0, 0)$$

$$A = \begin{bmatrix} 2 & 1 & 1 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = \begin{bmatrix} 7 \\ 8 \\ 2 \end{bmatrix}$$

J = (1,2,3,4,5) – set of variable indices, I = (1,2,3) - set of constraint indices

$$J_B = (3,4,5), J_N = (1,2),$$
 $x_B = \begin{bmatrix} x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 7 \\ 8 \\ 2 \end{bmatrix} \quad x_N = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad N = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$$

• Consider another feasible solution $x' = x + \Delta x$

$$\rightarrow \Delta f = c\Delta x = c_B \Delta x_B + c_N \Delta x_N = -(c_B B^{-1} N - c_N) \Delta x = -\Delta_N \Delta x_N =$$

$$-\sum_{j \in J_N} \Delta_j \Delta x_j$$
, where $u = c_B B^{-1}$, $\Delta_N = uN - c_N$

- $\Delta x_j = x_j \ge 0$, $\forall j \in J_N$
- If $\Delta_j \geq 0$, $\forall j \in J_N$ then $\Delta f \leq 0$: x is a maximizer

- If there exists index $p \in J_N$ such that $\Delta_p < 0$, build another feasible solution $x' = x + \Delta x$ as follows
 - $\Delta x_p = \theta \ge 0$
 - $\Delta x_j = 0$, $\forall j \in J_N \setminus \{p\}$
 - $\Delta x_B = -B^{-1}N\Delta x_N = -\theta B^{-1}A(p), x'_B = x_B \theta B^{-1}A(p),$
 - $\Delta f = -\theta \Delta_p$
- \rightarrow with $\theta > 0$ and small, we have $\Delta f > 0$: x is not an optimal solution because x' is better than x.
 - If $B^{-1}A(p) \le 0$, then $x'_B = x_B \theta B^{-1}A(p) \ge 0$, $\forall \theta > 0$. It means that $f \to +\infty$ when $\theta \to +\infty$ (cannot find maximizer)

• Denote $B^{-1}A(p) = (x_{j_1,p}, x_{j_2,p}, \ldots, x_{j_m,p})^T$ and $\theta_i = \begin{bmatrix} \frac{x_i}{x_{i,p}} & \text{if } x_{i,p} > 0 & \forall i \in J_B \\ +\infty, & \text{otherwise} \end{bmatrix}$

⇒ select $\theta = \theta_q = \min\{\theta_i | i \in J_B\}$ (we have $\theta < +\infty$, otherwise the objective function is unbounded)

```
J_{B} = (j_{1}, j_{2}, ..., j_{m}) s.t. B = A(J_{B}) is a basic
J_N – vector of remaining indices of J (out of J_B)
While stop condition not reach{
   u = c_B B^{-1}, \Delta_N = uN - c_N, x_N = 0, x_B = B^{-1}b
   if \Delta_N \ge 0 then {
      print('found optimal solution!'),
                                                  break
  } else {
      p = \operatorname{argMin}\{\Delta_i \mid j \in J_N\}
      Y = B^{-1}A(p)
      if Y \le 0 then {
          print('objective is unbounded'),
                                                       Return null
      } else {
          q = \operatorname{argMin} \{x_i | i \in J_B \text{ s.t. } Y_i > 0\}
          remove q from J_B and add p to J_B
          remove p from J_N and add q to J_N
          B = A(J_R), N = A(J_N)
Return (x_B, x_N) where x_B = B^{-1}b, x_N = 0
```

Example

$$f(x_{1}, x_{2}) = 3x_{1} + 2x_{2} \rightarrow \max$$

$$2x_{1} + x_{2} \leq 7$$

$$x_{1} + 2x_{2} \leq 8$$

$$x_{1} - x_{2} \leq 2$$

$$x_{1}, x_{2} \geq 0$$

Add 3 slack variables x_3 , x_4 , x_5

$$f(x_{1}, x_{2}) = 3x_{1} + 2x_{2} \rightarrow max$$

$$2x_{1} + x_{2} + x_{3} = 7$$

$$x_{1} + 2x_{2} + x_{4} = 8$$

$$x_{1} - x_{2} + x_{5} = 2$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0$$

Init: $J_B = (3,4,5), J_N = (1,2)$

$$x_{B} = \begin{pmatrix} x_{3} \\ x_{4} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 2 \end{pmatrix} \qquad x_{N} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad N = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & -1 \end{pmatrix}$$

$$f(x) = 0$$

Step 1:
$$\Delta_N = (-3 -2) \rightarrow \text{select } p = 1$$

$$Y = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$
 → select $q = 5$, $J_B = (1,3,4)$, $J_N = (2,5)$

$$x_{B} = \begin{pmatrix} x_{1} \\ x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 6 \end{pmatrix} \qquad x_{N} = \begin{pmatrix} x_{2} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$f(x) = 6$$

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & -1 \end{bmatrix}$$

Step 2:
$$\Delta_N = (-5 \ 3) \rightarrow \text{select } p = 2$$

Y=
$$\begin{bmatrix} -1 \\ 3 \\ 3 \end{bmatrix}$$
 \Rightarrow select $q = 3$, $J_B = (1,2,4)$, $J_N = (3,5)$

$$x_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \qquad x_{N} = \begin{pmatrix} x_{3} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$f(x) = 11$$

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 1 & -1 & 0 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 1/3 & 0 & 1/3 \\ 1/3 & 0 & -2/3 \\ -1 & 1 & 1 \end{bmatrix}$$

Step 3:
$$\Delta_N = (5/3 - 1/3) \rightarrow \text{select } p = 5$$

Y=
$$\begin{pmatrix} 1/3 \\ -2/3 \\ 1 \end{pmatrix}$$
 select $q = 4$, $J_B = (1,2,5)$, $J_N = (3,4)$

$$x_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 3 \\ 3 \end{pmatrix} \qquad x_{N} = \begin{pmatrix} x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$f(x) = 12$$

$$B = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} \quad N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} 2/3 & -1/3 & 0 \\ -1/3 & 2/3 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

Step 3: $\Delta_N = (4/3 1/3) > 0 \Rightarrow$ STOP, found optimal solution

$$x_{B} = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{5} \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix} \qquad x_{N} = \begin{pmatrix} x_{3} \\ x_{4} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$f(x) = 12$$

c_B	В	X _B	C ₁	 $C_{\mathcal{P}}$		C _n	0
			<i>A</i> ₁	 A_p		A_n	θ
C_{j_1}	A_{j_1}	<i>X</i> _{<i>j</i>₁}	<i>X</i> _{<i>j</i>_{1,1}}	<i>X</i> _{j1} , p		<i>X</i> _{j1} , _n	θ_{j_1}
C_q	A_{i_0}	Xq	X _q ,1	Xq, p		$X_{q,n}$	$ heta_{\! extsf{q}}$
	•••						
C _{jm}	A_{j_m}	X _j _m	<i>X_{j_m, 1}</i>	X _{jm} , p		X _{jm} , n	$ heta_{\!j_{m m}}$
	Δ		Δ_1	 $\Delta_{ ho}$	•••	Δ_n	

Update schema

- Update $x_{i,j}$: $x'_{i,j} = x_{i,j} (x_{q,j} * x_{i,p}) / x_{q,p}, \ \forall \ i \in J_B \setminus \{q\}, \ \forall \ j \in J \setminus \{p\}$
- $\Delta'_{i} = \Delta_{i} (x_{q,i} * \Delta_{p}) / x_{q,p}, \forall j \in J \setminus \{p\}$
- $J_R = J_R \setminus \{q\} \cup \{p\}$
- On row *q*:
 - $x'_{q,j} = x_{q,j} / x_{q,p}, \forall j \in J$
- On column p: $x'_{q,p} = 1$, $x'_{i,p} = 0$, $\forall i \in J_B \setminus \{q\}$
- $\bullet \ \chi'_{q} = \chi_{q} / \chi_{q,p}$
- $\Delta_p = 0$

Example

$$f(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}) = 3x_{1} + 2x_{2} \rightarrow max$$

$$2x_{1} + x_{2} + x_{3} = 7$$

$$x_{1} + 2x_{2} + x_{4} = 8$$

$$x_{1} - x_{2} + x_{5} = 2$$

$$x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \ge 0$$

c_B	В	X _B	3	2	0	0	0	0
			A_1	A_2	A ₃	A_4	A_5	θ
0	A_3	7	2	1	1	0	0	
0	A ₄	8	1	2	0	1	0	
0	A ₅	2	1	-1	0	0	1	
	Δ		-3	-2	0	0	0	

C _B	В	X _B	3	2	0	0	0	
			<i>A</i> ₁	A_2	<i>A</i> ₃	A_4	A_5	θ
0	A_3	7	2	1	1	0	0	
0	A ₄	8	1	2	0	1	0	
0	A ₅	2	1	-1	0	0	1	
	Δ		-3	-2	0	0	0	

C_B	В	X _B	3	2	0	0	0	
			A ₁	A_2	<i>A</i> ₃	A_4	A ₅	θ
0	A_3	7	2	1	1	0	0	7/2
0	A ₄	8	1	2	0	1	0	8
0	A ₅	2	1	-1	0	0	1	2
	Δ		-3	-2	0	0	0	

c_B	В	X _B	3	2	0	0	0	0
			A_1	A_2	A_3	A_4	A_5	heta
0	A_3	7	2	1	1	0	0	7/2
0	A ₄	8	1	2	0	1	0	8
0	A ₅	2	1	-1	0	0	1	2
	Δ		-3	-2	0	0	0	

Select p = 1

Select q = 5

c_B	В	X _B	3	2	0	0	0	0
			A_1	A_2	A_3	A_4	A_5	θ
0	A_3	3	2	3	1	0	-2	
0	A ₄	6	1	3	0	1	-1	
0	A ₅	2	1	-1	0	0	1	
	Δ		-3	-5	0	0	3	

Update Δ , x_B , $x_{i,j}$ except row A5, and except columns 1

c_B	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A_3	A_4	A_5	θ
0	A ₃	3	0	3	1	0	-2	
0	A ₄	6	0	3	0	1	-1	
3	A ₁	2	1	-1	0	0	1	
	Δ		0	-5	0	0	3	

Replace A5 by A1 in the B, Update row corresponding to A1, and column 1

c_B	В	X _B	3	2	0	0	0	0
			A_1	A_2	A ₃	A_4	A_5	θ
0	A_3	3	0	3	1	0	-2	
0	A ₄	6	0	3	0	1	-1	
3	A ₁	2	1	-1	0	0	1	
	Δ		0	-5 †	0	0	3	

Select p = 2

c_B	В	X _B	3	2	0	0	0	0
			A_1	A_2	A_3	A_4	A_5	θ
0	A_3	3	0	3	1	0	-2	1
0	A ₄	6	0	3	0	1	-1	2
3	A ₁	2	1	-1	0	0	1	+∞
	Δ		0	-5 1	0	0	3	

Select p = 2

Select q = 1

c_B	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A_3	A_4	A_5	θ
0	A_3	3	0	3	1	0	-2	
0	A ₄	3	0	3	-1	1	1	
3	A ₁	3	1	-1	1/3	0	1/3	
	Δ		0	-5	5/3	0	-1/3	

Update Δ , x_B , $x_{i,j}$ except row A3, and except columns 2

c_B	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A ₃	A_4	A_5	θ
2	A ₂	1	0	1	1/3	0	-2/3	
0	A ₄	3	0	0	-1	1	1	
3	A ₁	3	1	0	1/3	0	1/3	
	Δ		0	0	5/3	0	-1/3	

Replace A_3 by A_2 in B, update x_B , $x_{i,j}$ on row A_3 , and columns 2

c_B	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A_3	A_4	A_5	θ
2	A ₂	1	0	1	1/3	0	-2/3	+∞
0	A ₄	3	0	0	-1	1	1	3
3	A ₁	3	1	0	1/3	0	1/3	+∞
	Δ		0	0	5/3	0	-1/3 †	

Select p = 5

C_B	В	X _B	3	2	0	0	0	
			A ₁	A_2	<i>A</i> ₃	A_4	A_5	θ
2	A ₂	1	0	1	1/3	0	-2/3	+∞
0	A ₄	3	0	0	-1	1	1	3
3	A ₁	3	1	0	1/3	0	1/3	+∞
	Δ		0	0	5/3	0	-1/3	

Select p = 5

Select q = 4

c_B	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A_3	A_4	A_5	θ
2	A ₂	3	0	1	-1	2/3	-2/3	
0	A ₄	3	0	0	-1	1	1	
3	A ₁	2	1	0	2/3	-1/3	1/3	
Δ			0	0	4/3	1/3	-1/3	

c_{B}	В	X _B	3	2	0	0	0	0
			A ₁	A_2	A_3	A_4	A_5	θ
2	A ₂	3	0	1	-1/3	2/3	0	
0	A ₅	3	0	0	-1	1	1	
3	A ₁	2	1	0	2/3	-1/3	0	
Δ			0	0	4/3	1/3	0	

STOP, found optimal solution!!!!