

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Rodrigo Vargas

AYUDANTES: MATEO DE LA CUADRA Y MATHÍAS LUENGO

Introducción al Cálculo - MAT1107 Ayudantía 11 1 de junio 2023

Pregunta 1

Calcule

$$\sum_{k=0}^{n} \frac{k}{(k+1)!}.$$

Hint: Calcule $\frac{1}{k!} - \frac{1}{(k+1)!}$.

Pregunta 2

Considere $(a_n)_{n\in\mathbb{N}}$, una progresión aritmética.

- a) Demuestre que para todo $t \neq 0$, la sucesión $(b_n)_{n \in \mathbb{N}}$ definida por $b_n = t^{a_n}$ es una progresión geométrica.
- b) Demuestre que para todo s>0, $(c_n)_{n\in\mathbb{N}}$ dada por $c_n=b_n^s$ es progresión geométrica.
- c) Demuestre que si $(c_n)_{n\in\mathbb{N}}$ es una sucesión creciente, entonces $(\log{(a_n)})_{n\in\mathbb{N}}$ es una sucesión creciente. (Recuerde que una sucesión $(a_n)_{n\in\mathbb{N}}$ es creciente si $a_{n+1} \geq a_n \ \forall n \in \mathbb{N}$).
- d) Halle condiciones sobre t y $(a_n)_{n\in\mathbb{N}}$ para que $(d_s)_{s\in\mathbb{N}}$ definida como $d_s=b_n^s$ sea una sucesión creciente $\forall n\in\mathbb{N}$.

Pregunta 3

Calcule las siguientes sumas:

- a) $\sum_{k=0}^{n} \binom{n}{k} k$
- b) $\sum_{k=0}^{n} {n \choose k} \frac{(-1)^k}{k+1}$.

Pregunta 4

Se
a $a_n=\frac{2^n}{3}$ para n ≥ 1 y considere la sucesión dada por

$$P_n = a_1 \cdot a_2 \cdot a_3 \cdot \ldots \cdot a_n$$

Calcule P_{50} y P_{100}

Pregunta 5

Calcule el valor de

$$S = \sum_{k=7}^{201} \frac{1}{(k+1)(k+3)}$$

Pregunta 6

Sea a_n una sucesión que satisface:

$$\sum_{k=1}^{9} a_k = 50, \qquad \sum_{k=1}^{9} a_k^2 = 100, \qquad 3\sum_{k=1}^{10} a_k = 180$$

- a.) Determine el valor de a_{10} .
- b.) Determine el conjunto

$$S = \left\{ c \in R \mid \sum_{k=1}^{10} (2a_k - c)^2 = 1050 \right\}$$