Bidirectional Textual Entailment Classification: Project Report

1. Project Overview

This project focuses on developing a Siamese neural network model for bidirectional textual entailment classification. Textual entailment is the task of determining whether a piece of text (premise) logically implies another text (hypothesis). The bidirectional aspect means we classify the entailment relationship in both directions: whether sentence A entails sentence B, and whether sentence B entails sentence A.

Entailment Examples

Bidirectional Entailment (Equivalence)

Sentence A(premise): "All students passed the final exam." Sentence B(Hypothesis): "No student failed the exam."

Sentence A entails Sentence B Sentence B entails Sentence A

Contradiction (Mutual Non-Entailment)

Sentence A(premise):: "The dog is running in the park." Sentence B(Hypothesis): "The dog is sleeping at home."

Sentence A contradicts Sentence B Sentence B contradicts Sentence A

The project implements and compares multiple deep learning architectures, most notably a hybrid model that combines token-based embeddings processed with Bidirectional LSTM, Bidirectional GRU networks and sentence-level embeddings from SBERT (Sentence-BERT). Data balancing techniques, specifically **SMOTE** (Synthetic Minority Over-sampling Technique), **class weights**, and **ADASYN** were employed to address class imbalance, with class weights ultimately performing better.

2. Data Processing and Preparation

2.1 Dataset Characteristics

The dataset consists of sentence pairs with bidirectional entailment labels. Each pair has two labels:

• entailment AB: Whether sentence A entails sentence B

entailment_BA: Whether sentence B entails sentence A

These were combined into a single combined_category (e.g., "A entails B B contradicts A") to create a multi-class classification problem.

2.2 Text Preprocessing

The following preprocessing steps were applied to the sentence text:

- Conversion to lowercase
- Removal of punctuation and digits
- Tokenization
- Stopword removal
- Sequence padding (to max len=50)

2.3 Embedding Representation

Two types of embeddings were utilized:

- 1. **Token-level embeddings**: GloVe pre-trained embeddings (300-dimensional)
 - Used for capturing syntactic patterns and word-level relationships
 - o Loaded from 'glove.6B.300d.txt'
 - Vocabulary size: 10,000 tokens

In textual entailment, GloVe embeddings help by:

- 1. Converting words to dense vectors that capture semantic relationships
- 2. Allowing the model to understand when words have similar meanings
- 3. Establishing a foundation for higher-level semantic comparison

Examples of word similarity in GloVe space (cosine similarity):

```
student \leftrightarrow pupil: 0.82
exam \leftrightarrow test: 0.76
fail \leftrightarrow flunk: 0.71
dog \leftrightarrow canine: 0.68
couch \leftrightarrow sofa: 0.91
```

How embeddings help with specific entailment examples:

Example 1:

Sentence A: 'All students passed the exam'

Sentence B: "No student failed the exam"

- GloVe vectors show 'pass' and 'fail' are semantic opposites
- Combined with negation ('No student'), the model can identify entailment

Example 2:

Sentence A: 'The dog is running in the park'

Sentence B: 'The dog is sleeping at home'

- GloVe vectors show 'running'/'sleeping' and 'park'/'home' are different
- The model can identify these contradictory actions and locations

2. **Sentence-level embeddings**: SBERT (Sentence-BERT)

- Used for capturing semantic meaning at the sentence level
- o Model: 'all-mpnet-base-v2'
- o Generated for original (non-cleaned) sentences to preserve semantics

SBERT model generates 768-dimensional vectors for each complete sentence

These sentence-level embeddings capture overall semantic meaning

Implemented in the model alongside token-level embeddings:

Example 1(Entailment):

Sentence A: "All students passed the final exam."

Sentence B: "No student failed the exam."

Similarity score: 0.6738

Example 2 (Non-entailment):

Sentence A: "The flight arrives at 3 PM."

Sentence B: "The plane departs at 3 PM."

Similarity score: 0.8907

2.4 Class Imbalance Techniques

A key challenge in the dataset was significant class imbalance. Several techniques were systematically evaluated:

2.4.1 Class Weights

Class weights were assigned inversely proportional to class frequencies:

This approach performed well for moderate imbalance but showed limitations with severe imbalance cases where some classes had very few examples.

2.4.2 SMOTE (Synthetic Minority Over-sampling Technique)

SMOTE was implemented to create synthetic samples for underrepresented classes

SMOTE creates synthetic samples by:

- 1. Finding k-nearest neighbors for minority class samples
- 2. Creating new samples along the line connecting a sample and its neighbors
- 3. Adding slightly randomized versions of these interpolated points

2.4.3 ADASYN (Adaptive Synthetic Sampling)

ADASYN was also evaluated as an alternative to SMOTE:

Unlike SMOTE, ADASYN generates more synthetic data for minority class samples that are harder to learn (those closer to majority class boundaries).

Class weights performed better overall, particularly for:

- Maintaining model efficiency (no additional samples to process)
- Preserving the linguistic coherence of the training data
- · Reducing overfitting on synthetic examples
- Better generalization to unseen data

However, **SMOTE** showed advantages for:

- Classes with extremely few examples (< 5% of majority class)
- More balanced precision-recall tradeoff
- Improved handling of complex entailment patterns

On Reconstruction of synthetic data - Key Observations:

- 1. SMOTE-generated "sentences" typically lack grammatical structure
- 2. Core semantic keywords are preserved but often in unnatural order
- 3. Synthetic samples maintain feature space relationships but lose linguistic coherence
- 4. Despite linguistic limitations, the synthetic samples effectively improved model performance on minority classes
- 5. Classes with the most extreme imbalance showed the greatest benefit from synthetic samples

Synthetic Sample:

- Original dataset size: (7872, 100)
- Resampled dataset size: (27958, 100)
- Number of synthetic samples: 20086
- Found synthetic samples for 6 classes

Class 0 (A_contradicts_B_B_contradicts_A) - Synthetic Samples:

Synthetic Sample:

Sentence A: person peeling road

Sentence B: person peeling talking

Class 1 (A_contradicts_B_B_neutral_A)

Synthetic Sample:

Sentence A: ball trees rhino

Sentence B: ball trees man

Class 2 (A_entails_B_B_contradicts_A)

Synthetic Sample 1:

Sentence A: resting kicking bench one

Sentence B: resting kicking forest egg

Class 3 (A_entails_B_B_entails_A)

Synthetic Sample 1:

Sentence A: man set machine

Sentence B: man shirtless set opening

Class 4(A_neutral_B_B_contradicts_A)

Sentence A: water playing men person little tossed large bowl

Sentence B: water playing men dog skateboarder stick black bowl

3. Model Architecture

3.1 Model Architectures

3.1.1 LSTM-only Model

The LSTM-based model focuses on token-level patterns:

- Shared GloVe embedding layer (300d, non-trainable)
- Bidirectional LSTM layers to process each sentence
- Concatenation of sentence representations
- Dense layers with dropout and batch normalization
- L2 regularization throughout
- Final softmax classification layer

Strengths: Captures syntactic patterns and word relationships. Effective for logical relationships based on specific terms.

Weaknesses: Limited semantic understanding of paraphrases or conceptual similarities.

3.1.2 GRU-only Model

The GRU-based model focuses on token-level patterns:

- Shared GloVe embedding layer (300d, non-trainable)
- Bidirectional GRU layers to process each sentence
- Concatenation of sentence representations
- Dense layers with dropout and batch normalization
- L2 regularization throughout
- Final softmax classification layer

Strengths: Captures syntactic patterns and word relationships. Effective for logical relationships based on specific terms.

Weaknesses: Limited semantic understanding of paraphrases or conceptual similarities.

3.1.3 SBERT-only Model

The SBERT model focuses on semantic meaning:

- Pre-computed sentence embeddings from SBERT
- Dense layers with ReLU activation
- Element-wise operations (difference, multiplication) to capture semantic relationships
- Dropout for regularization
- Dense layers with decreasing units for classification

Strengths: Strong semantic understanding, handles paraphrases well. More parameter-efficient.

Weaknesses: May miss fine-grained syntactic patterns or specific term relationships.

3.1.3 Hybrid Model

The hybrid architecture combines both approaches:

1. GRU Branch:

- Shared GloVe embedding layer (300d, non-trainable)
- Token inputs for sentences A and B
- Bidirectional GRU encoder for each sentence
- L2 regularization on GRU layers
- Concatenation of GRU outputs

2. SBERT Branch:

Pre-computed SBERT embeddings for sentences A and B

- Dense layers with ReLU activation
- Dropout for regularization
- Concatenation of processed embeddings
- Element-wise difference and multiplication operations

3. Combined Processing:

- Concatenation of both branches' outputs
- Optional batch normalization
- Multiple dense layers with decreasing units
- Dropout and L2 regularization
- Final softmax output layer

Strengths: Combines both syntactic and semantic understanding. More robust across different types of entailment relationships.

Weaknesses: Higher complexity, more parameters, increased computational requirements.

3.2 Hyperparameter Tuning

The following hyperparameters were optimized using Bayesian Optimization:

- GRU units (32-1024)
- Dropout rate (0.1-0.5)
- Learning rate (10^-4 to 10^-2, log scale)
- Batch normalization (True/False)
- Number of dense layers (2-6)
- Initial dense units (512-2048)
- L2 regularization strength (10^-5 to 10^-2, log scale)
- SBERT dense units (128-1024)

TensorBoard integration was implemented for visualizing the hyperparameter search process

4. Training Process

4.1 Training Configuration

The model was trained with:

- Loss function: Categorical cross-entropy
- Optimizer: Adam with tuned learning rate
- Batch size: 32
- Early stopping: 5 epochs patience on validation loss
- Learning rate reduction: Factor 0.5, patience 5 epochs
- Model checkpoint: Saving best model based on validation accuracy
- Metrics: Accuracy, precision, recall, AUC

4.2 Training and Validation Split

- 80% training, 20% testing
- Stratified split to maintain class distribution
- Same random seed (42) used for reproducibility

4.3 Experiment Tracking and Visualization

4.3.1 TensorBoard Integration

TensorBoard was integrated for comprehensive monitoring and visualization of the training process

TensorBoard was used to visualize:

- Learning curves (accuracy, loss, precision, recall)
- Model architecture graphs
- Layer activations and gradients
- Weight and bias distributions
- Hyperparameter effects on performance

4.3.2 Weights & Biases (WandB) Integration

WandB was integrated to track experiments, facilitate model versioning, and enable team collaboration:

WandB was used for:

- Experiment tracking and comparison
- Model versioning and artifact storage
- Team collaboration and result sharing
- Interactive visualizations of performance metrics
- Creating reports with embedded visualizations
- Custom performance visualization panels

4.3.3 Other Monitoring Tools

Additional monitoring was implemented through:

- CSV logging of all metrics for offline analysis
- Custom visualization scripts for class-specific performance
- Confusion matrix plotting for error analysis
- Learning curve visualization for training dynamic

5. Model Evaluation and Results

5.1 Performance Metrics

The model was evaluated on the test set with:

- Overall accuracy
- Per-class precision, recall, and F1-score
- Confusion matrix
- Classification report

Model	Imbalan ce	hyperparameters	Experiments	Accurac y	Loss	Precision	Recall	F1-Score	Training Time
Bi-LSTM	SMOTE	LSTM Units: 256 Dropout Rate: 0.3 Use Batch Normalization: True Number of Dense Layers: 2 LR: 0.001	25	53.76	1.2440	52	55	52	09h 36m 01s
Bi-LSTM	Class Weights	LSTM Units: 320 Dropout Rate: 0.2 Use Batch Normalization: False Number of Dense Layers: 1 one_cycle_LR	30	26.58	1.7	42	27	27	10h 35m 21s
Bi-LSTM	ADASY N	LSTM Units: 256 Dropout Rate: 0.3 Learning Rate: 0.0001 Use Batch Normalization: True Number of Dense Layers: 5	30/100	53.81	1.3020	51	54	52	
Bi-LSTM	NA	LSTM Units: 128 Dropout Rate: 0.30000000000000004 Learning Rate: 0.0001 Use Batch Normalization: False Number of Dense Layers: 4	10	56.50	1.29	53	57	54	

Model	Imbalan ce	hyperparameters	Experiments/Trails	Accurac y	Loss	Precision	Recall	F1-Score	Training Time
Bi-GRU	Class weights	GRU Units: 192 Dropout Rate: 0.2 Weight Decay: 0.00058 Use Batch Normalization: False Number of Dense Layers: 1 one_cycle_lr	30	47	1.6	52	47	49	06h 36m 01s
Bi-GRU	Class Weights	GRU Units: 256 Dropout Rate: 0.5 Number of Dense Layers: 1 Combine encodings with concatenation + absolute difference	1	62.80					
Bi-GRU	SMOTE	GRU Units: 192 Dropout Rate: 0.3 Learning Rate: 0.001 Use Batch Normalization: False Number of Dense Layers: 2 LR on Plateau	1	68	1.125				
Hybrid	SMOTE	gru_units: 192 dropout_rate: 0.1 learning_rate: 0.0002786176901424176 batch_normalization: False dense_layers: 2 initial_dense_units: 1920 l2_reg: 8.697419319513541e-05	30	62.5	1.4986	0.5719	0.3720		11h 36m 01s
paraphras e-MiniLM- L6-v2		dropout_rate: 0.1 learning_rate: 0.0005 batch_normalization: True interaction_method: concat_diff_mul dense_layers: 5 first_dense_units: 512 l2_reg: 0.001 activation: relu use_residual: True;optr: rmsprop	30	68.90					1h14m52s

Madal	les le state		Formation and (Forth	A		Description	Darrell	E4.0	The late of
Model	Imbalan ce	hyperparameters	Experiments/Trails	Accurac y	Loss	Precision	Recall	F1-Score	Training Time
SBERT (all-distilro berta-v1)	Class weights	dropout_rate: 0.3 learning_rate: 5e-05 batch_normalization: False interaction_method: concat_diff_mul dense_layers: 4 first_dense_units: 1024 l2_reg: 0.004 activation: selu use_residual: False optimizer: rmsprop	30	76.78	1.7844	75	77	76	
Ensemble	SMOTE	Model Comparison: GRU Model Accuracy: 0.5457 LSTM Model Accuracy: 0.5467 Ensemble Model Accuracy: 0.5676	30	58	1.2732	53	57	54	

5.2 Error Analysis

Error analysis focused on:

- Identifying classes with lower performance
- Understanding common misclassification patterns
- Examining sentence pairs that were consistently misclassified

5.3 Model Comparison

Model Type	Strengths	Weaknesses	Best For
GRU-only	Captures syntactic patterns and specific term relationships	Limited semantic understanding	Cases where specific keywords determine entailment
SBERT-only	Strong semantic understanding; handles paraphrases well	May miss fine-grained syntactic patterns	Cases with paraphrasing or conceptual similarity
Hybrid	Combines both syntactic and semantic understanding	Higher complexity and computational requirements	General-purpose entailment with varied relationship types
Ensemble(LSTM & GRU)	Leverages strengths of multiple models; more robust	Highest computational cost; more difficult to deploy	Production systems where accuracy is critical

When comparing the different model architectures:

The hybrid model showed superior performance by leveraging both token-level and semantic-level information, with particularly strong results on cases that require both types of understanding.

5.4 Ensemble and Hybrid Approaches

5.4.1 Ensemble Model Architecture

The ensemble model combines multiple base models through a meta-learner approach:

Base Models:

- Pre-trained GRU model with GloVe embeddings
- Pre-trained LSTM model with GloVe embeddings

5.4.2 Hybrid vs. Ensemble Comparison

Hybrid Model:

- Integrates different embedding types (token and sentence) into a single model
- Trained end-to-end in a single process
- More efficient than ensemble but less than individual models
- Performance: [Accuracy: 62%]

Ensemble Model:

- Combines predictions from separate, fully-trained models
- Requires training each base model plus the meta-learner
- Higher computational cost for both training and inference
- Performance: [Accuracy: 58%]

The hybrid model offers a good balance between performance and computational efficiency, while the ensemble provides maximum accuracy at the cost of increased complexity

Example Predictions

The model was tested on example sentence pairs:

TESTING RANDOM SAMPLES

1/1	0s 63ms/step								
Sentence A: A girl is standing in a group and is wearing a black shirt and pink bear									
Sentence B: A girl is standing alone and wears a black shirt and pink beads Predicted relation: A_neutral_B_B_contradicts_A with confidence 0.8298 True relation: A_neutral_B_B_contradicts_A Predicted relation: A_neutral_B_B_contradicts_A									
								Confidence: 0.83	
								Match: ✓	
								1/1 ———————————————————————————————————	— 0s 52ms/step
Sentence A: Several old people are posing for a photo and holding beers									
Sentence B: A group of people is holding drinks	and pointing at the camera								
Predicted relation: A_neutral_B_B_neutral_A w	ith confidence 0.8019								
True relation: A_neutral_B_B_neutral_A									
Predicted relation: A_neutral_B_B_neutral_A									
Confidence: 0.80									
Match: ✓									
1/1 ———————————————————————————————————	─ 0s 67ms/step								
Sentence A: Four people are sitting on a bridge	over a body of water								
Sentence B: Several people are walking in line	across a bridge								
Predicted relation: A neutral B B neutral Aw	Predicted relation: A neutral R R neutral A with confidence 0.6766								

True relation: A_neutral_B_B_neutral_A Predicted relation: A_neutral_B_B_neutral_A Confidence: 0.68 Match: ✓ - 0s 66ms/step 1/1 — Sentence A: Some young dirt bikers are getting a dirt bike up a sandy hill Sentence B: Some old dirt bikers are getting a dirt bike up a sandy hill Predicted relation: A_contradicts_B_B_neutral_A with confidence 0.8457 True relation: A_contradicts_B_B_neutral_A Predicted relation: A_contradicts_B_B_neutral_A Confidence: 0.85 Match: ✓ Sentence A: A man is sitting on the grass and drinking from a water bottle Sentence B: A man is sitting on the lawn and drinking from a water bottle Predicted relation: A_entails_B_B_entails_A with confidence 0.4049 True relation: A_entails_B_B_entails_A Predicted relation: A_entails_B_B_entails_A Confidence: 0.40 Match: ✓

TESTING CUSTOM EXAMPLES

/1 ————— 0s 50ms/step
Sentence A: The cat is on the mat
Sentence B: A feline is resting on a floor covering
Predicted relation: A_neutral_B_B_neutral_A with confidence 0.8155
/1 0s 49ms/step
/I ———— Us 49ms/step
Sentence A: The movie was excellent
Sentence B: I enjoyed the film very much
Predicted relation: A_entails_B_B_entails_A with confidence 0.2462
/1 ———— 0s 50ms/step
Sentence A: Birds can fly in the sky
Sentence B: Fish swim in the ocean
Predicted relation: A_neutral_B_B_neutral_A with confidence 0.9186
/1 ———— 0s 49ms/step
Sentence A: She went to the store
Sentence B: She visited the shop
Predicted relation: A_entails_B_B_neutral_A with confidence 0.3660

1/1 ————— 0s 49ms/step

Sentence A: Programming is fun Sentence B: Coding is boring

Predicted relation: A_neutral_B_B_neutral_A with confidence 0.3092

6. Conclusion and Future Work

6.1 Key Achievements

- Successfully implemented and compared GRU, SBERT, hybrid, and ensemble architectures for bidirectional textual entailment
- Effectively addressed class imbalance using multiple techniques (SMOTE, ADASYN, and class weights)
- Conducted detailed analysis of synthetic data quality and linguistic coherence
- Integrated comprehensive experiment tracking via TensorBoard and WandB
- Achieved strong performance across different entailment relationship categories
- Created a complete pipeline from data preprocessing to prediction
- Developed thorough ablation studies to understand model component contributions

9.2 Limitations

- SMOTE-generated samples may not be linguistically coherent
- Model size and complexity may be prohibitive for some deployment scenarios
- Dependence on external resources (GloVe, SBERT)
- Ensemble model has high computational requirements
- Current evaluation limited to in-domain test data

6.3 Future Improvements

- Experiment with more recent transformer models like BERT, RoBERTa, or T5
- Implement contrastive learning approaches
- Explore NLP-specific data augmentation techniques instead of SMOTE
- Optimize model size for deployment (quantization, distillation)
- Add explainability features to highlight influential words/phrases
- Develop model pruning strategies for the hybrid architecture
- Investigate knowledge distillation from ensemble to smaller models
- Explore zero-shot and few-shot capabilities for new entailment categories

This project demonstrates the effective combination of multiple neural network architectures and embedding strategies for the complex task of bidirectional textual entailment classification. The hybrid and ensemble approaches show particular promise, combining syntactic and semantic understanding while addressing class imbalance through various techniques. Class weights ultimately provided the best balance of performance and efficiency compared to synthetic data generation methods like SMOTE and ADASYN. The integration with experiment tracking tools like TensorBoard and WandB facilitates comprehensive analysis and model improvement, providing a solid foundation for future research in this domain

Annexure

A. Class Weights

```
from sklearn.utils.class_weight import compute_class_weight

class_weights = compute_class_weight(
   'balanced',
   classes=np.unique(y_train_classes),
   y=y_train_classes
)
```

B. SMOTE (Synthetic Minority Over-sampling Technique)

```
# Apply SMOTE to create balanced dataset smote = SMOTE(random_state=42)
X_combined_resampled, y_train_resampled_indices = smote.fit_resample(X_combined, y_train_classes)

# Split back into separate inputs
X_A_train_resampled = X_combined_resampled[:, :max_len]
X_B_train_resampled = X_combined_resampled[:, max_len:]
```

C. ADASYN (Adaptive Synthetic Sampling)

```
adasyn = ADASYN(random_state=42)
X_combined_resampled_adasyn, y_train_resampled_adasyn =
adasyn.fit_resample(X_combined, y_train_classes)
```