Lower Bounds for Planar Grid Drawings

Lecture Graph Drawing Algorithms · 192.053

Martin Nöllenburg 19.06.2018

Area of Planar Grid Drawings

One common aesthetic of planar grid drawings is the drawing area. We aim to determine tight upper and lower bounds.

Area of Planar Grid Drawings

One common aesthetic of planar grid drawings is the drawing area. We aim to determine tight upper and lower bounds.

What do we know?

area:
$$O(n) \times O(n)$$

$$O(n) \prod_{n=0}^{\infty} O(n)$$

Upper Bounds

- Every planar graph G has a planar grid drawing of area $(2n-4)\times (n-2)$. Lecture 4, [de Fraysseix, Pach, Pollack '90]
- Every planar graph G has a planar grid drawing of area $(n-2)\times (n-2).$ Lecture 5, [Schnyder '90]
- Every planar graph G has a planar grid drawing of area $2n/3 \times 4n/3$. [Brandenburg '08]

Upper Bounds

- Every planar graph G has a planar grid drawing of area $(2n-4)\times (n-2)$. Lecture 4, [de Fraysseix, Pach, Pollack '90]
- Every planar graph G has a planar grid drawing of area $(n-2)\times (n-2).$ Lecture 5, [Schnyder '90]
- Every planar graph G has a planar grid drawing of area $2n/3 \times 4n/3$. [Brandenburg '08]

Today: lower bounds

Theorem 1: Let G be a planar graph of **pathwidth** pw(G). Then every planar grid drawing of G requires height $h \ge pw(G)$.

Pathwidth

Def: A vertex ordering v_1, v_2, \ldots, v_n of vertex set V of a graph G = (V, E) has **search width** $\leq k$ if for each $1 \leq i \leq n$ at most k vertices of the left set $\{v_1, \ldots, v_i\}$ have neighbors in the right set $\{v_{i+1}, \ldots, v_n\}$.

Pathwidth

Def: A vertex ordering v_1, v_2, \ldots, v_n of vertex set V of a graph G = (V, E) has **search width** $\leq k$ if for each $1 \leq i \leq n$ at most k vertices of the left set $\{v_1, \ldots, v_i\}$ have neighbors in the right set $\{v_{i+1}, \ldots, v_n\}$.

Def: A graph G = (V, E) has **pathwidth** $pw(G) \le k$ if it has a vertex ordering of search width $\le k$.

Pathwidth

Def: A vertex ordering v_1, v_2, \ldots, v_n of vertex set V of a graph G = (V, E) has **search width** $\leq k$ if for each $1 \leq i \leq n$ at most k vertices of the left set $\{v_1, \ldots, v_i\}$ have neighbors in the right set $\{v_{i+1}, \ldots, v_n\}$.

Def: A graph G = (V, E) has **pathwidth** $pw(G) \le k$ if it has a vertex ordering of search width $\le k$.

Testing if a graph has pathwidth k is NP-hard and APX-hard.

Special Case: Trees

Obs: For a tree T with root r and height h we have $pw(T) \leq h$.

Proof: Induction on h
$$h=0 \quad \text{op} \quad p(\tau)=0 \quad \text{o}$$

$$h>0$$
: each T_i has height $\leq h-1$
So $p\omega(T_i) \leq h-1$ by ind. hyp.

Special Case: Trees

Obs: For a tree T with root r and height h we have $pw(T) \le h$.

Lemma 1: Let T be a tree and v a vertex of T such that the forest T-v after removal of v decomposes into at least three subtrees T_1, T_2, T_3 with $pw(T_i) \ge k$ for

i = 1, 2, 3. Then $pw(T) \ge k + 1$. inizies are positions of TITZITZ with searchwidth h assure =) iz Separates T₁ and T₃: T_n is left of iz no matter is in the ledge from (otherwise search width > k) Graph Drawing Algorithms: Orthogonal

Special Case: Trees

Obs: For a tree T with root r and height h we have $pw(T) \leq h$.

Lemma 1: Let T be a tree and v a vertex of T such that the forest T-v after removal of v decomposes into at least three subtrees T_1, T_2, T_3 with $\mathrm{pw}(T_i) \geq k$ for i=1,2,3. Then $\mathrm{pw}(T) \geq k+1$.

What does this mean for the pathwidth of a complete ternary tree T of height k?

for complete ternory trees we have equality pw(T) = height

Visibility Representation

Def: In a **visibility representation** of a graph G=(V,E) every vertex $v\in V$ is drawn as an axis-parallel box and every edge $e\in E$ as a horizontal or vertical segment between the boxes of its end-vertices. No edge intersects other boxes or edges.

Lemma 2: If a graph G = (V, E) has a planar grid drawing of height h then it also has a visibility representation of height h.

triangulate inner laces

Lemma 2: If a graph G = (V, E) has a planar grid drawing of height h then it also has a visibility representation of height h.

every face is a triangle, so every verk x has \geq 1 previously placed neighbor

Lemma 2: If a graph G = (V, E) has a planar grid drawing of height h then it also has a visibility representation of height h.

Lemma 3: If a graph G = (V, E) has a visibility representation of height h then $pw(G) \le h$.

use left end points of the boxes (ties: top to bottom)

consider any vi in this ordering

any n left of l with neighbors

vight of l intersects l on one

ex clusive row (or has horizontal edge)

=> 560 \left h

Lemma 2: If a graph G = (V, E) has a planar grid drawing of height h then it also has a visibility representation of height h.

Lemma 3: If a graph G = (V, E) has a visibility representation of height h then $pw(G) \le h$.

This yields the desired lower bound

[Dujmovic et al. '01/'08], [Felsner, Liotta, Wismath '03]

Theorem 1: Let G be a planar graph of pathwidth pw(G). Then every planar grid drawing of G requires height $h \geq pw(G)$.

Allows by contradiction using Lemma 2+3

Theorem 2: A tree T has pathwidth $pw(T) \leq k$ if and only if there is a path P in T such that all trees in forest T-P have pathwidth at most k-1.

Proof =>" olet vn (v2 , v3, -, vn Search width & k be ordering of V with · let l, r be indices of left most and right most positions will sw=k øifl=r define P=ve V · if LCV: define Pas unique path in T from up to vr · let T'be subtree in T-P, consider ordering of T' in vertex segmence assume one seslex of T' has see = k, e.g. V; but flow one edge of P crosses

Martin Nöllenburg Graph Drawing Algorithms: Orthogonal Graph Drawing

Theorem 2: A tree T has pathwidth $pw(T) \le k$ if and only if there is a path P in T such that all trees in forest T-P have pathwidth at most k-1.

Let P this path $P = \omega_1, \omega_2, \omega_3, ..., \omega_r$ constract ordering:

Theorem 2: A tree T has pathwidth $pw(T) \le k$ if and only if there is a path P in T such that all trees in forest T-P have pathwidth at most k-1.

Such a path P is called a main path of T.

Theorem 3: Let T be a tree with root r. Then T has a planar grid drawing of height $2\operatorname{pw}(T)$ with r in the topmost row. If r is part of a main path of T then the height is $\max\{2\operatorname{pw}(T)-1,2\}$.

Theorem 3: Let T be a tree with root r. Then T has a planar grid drawing of height $2 \operatorname{pw}(T)$ with r in the topmost row. If r is part of a main path of T then the height is $\max\{2\operatorname{pw}(T)-1,2\}$.

case 2 root is not port of main path P let x be topnost afex of P and (F) puth brom r to parent (x) consider T-P1 · tree Tx with root x has drawing of height = 2k-1 o all offer trees T' in T-P' have pw(T') < &-1 draving: 7 (2k-1) [-2k-1] [-2k

Theorem 3: Let T be a tree with root r. Then T has a planar grid drawing of height $2\operatorname{pw}(T)$ with r in the topmost row. If r is part of a main path of T then the height is $\max\{2\operatorname{pw}(T)-1,2\}$.

But: There are graphs of small pathwidth that require linear height in every planar grid drawing.

Theorem 3: Let T be a tree with root r. Then T has a planar grid drawing of height $2\operatorname{pw}(T)$ with r in the topmost row. If r is part of a main path of T then the height is $\max\{2\operatorname{pw}(T)-1,2\}$.

But: There are graphs of small pathwidth that require linear height

in every planar grid drawing.

Further Results

- Every maximal outerplanar graph G can be drawn with height $4\operatorname{pw}(G)$.
- Every outerplanar graph G can be drawn with height $64\,\mathrm{pw}(G)$.
- There are series-parallel graphs with pathwidth $O(\log n)$ and height $\Omega(2^{\sqrt{\log n}})$ in every planar grid drawing. [Frati '10]
- For a given integer h and a graph G one can test in time $O(2^{32h^3}n)$, whether a drawing of height h exists. Hence this problem is fixed-parameter tractable (FPT). [Dujmovic et al. '01/'08]
- For small graphs G there is an ILP/SAT model to compute the pathwidth $\mathrm{pw}(G)$.