КОНСПЕКТ ЛЕКЦИЙ ПО ЛИНЕЙНОЙ АЛГЕБРЕ

СПбГУ, МКН, СП, 1 курс ЛЕКТОР: ЖУКОВ ИГОРЬ БОРИСОВИЧ

СОСТАВИТЕЛИ:

Андрей K-dizzled Козырев, Максим \max maxmartynov08 Мартынов, Семён SmnTin Паненков, Марк \max markprudnikov Прудников, Мария \max MashaK5 Козловцева

Оглавление

1	Алгебраически замкнутые поля, формулировка основной теоремы алгебры	4
2	Комплексные корни вещественных многочленов	4
3	Неприводимые многочлены над полями вещественных и комплексных чисел	5
4	Поле частных области целостности	5
5	Поле дробно-рациональных функций. Правильные дроби	7
6	Примарные дроби. Лемма о дроби, знаменатель которой разложен на два взаимно	
	простых множителя	8
7	Простейшие дроби. Разложение правильной дроби в сумму простейших	8
8	Простейшие дроби. Разложение правильной дроби в сумму простейших	9
9	Действия над матрицами и их свойства	10
10	Элементарные преобразования и элементарные матрицы	13
11	Приведение матрицы к ступенчатому виду элем. преобразованиями строк	14
12	Приведение матрицы к простейшему виду элем. преобразованиями строк и столбцов	15
13	PDQ-разложение. Разложение обратимой матрицы в произведение элементарных	15
14	Разложение перестановки в произведение транспозиций и элементарных транспо-	
	зиций	17
15	Чётность и знак перестановки	17
16	Определение определителя. Определитель транспонированной матрицы	19
17	Линейность определителя по строкам и столбцам	20
18	Кососимметричность определителя по строкам и столбцам	21
19	Поведение определителя при элементарных преобразованиях матрицы	21
20	Критерий обратимости матрицы в терминах определителя	23
21	Определитель произведения матриц	23
22	Определитель блочно-треугольной матрицы	24
23	Определитель матрицы с почти нулевой строкой	25
24	Разложение определителя по строке (столбцу)	26
25	Взаимная матрица. Явный вид обратной матрицы	27
26	Линейное пространство. Определение, примеры, простейшие свойства	28
27	Система образующих линейного пространства, свойства. Подпространство	30
28	Линейно зависимые семейства, свойства	32
29	Теорема о линейной зависимости линейных комбинаций	33
30	Равносильные определения базиса	34
31	Размерность. Свойства пространств заданной размерности	36
32	Размерность подпространства. Классификация конечномерных пространств	37
33	Свойства матриц перехода между базисами	38
34	Изменение координат вектора при замене базиса	39
35	Ранг набора векторов. Столбцовый и строчный ранг матрицы	40
36	Равенство столбцового и строчного ранга	41

37	Ранг произведения матриц. Связь ранга с PDQ-разложением
38	Условия эквивалентные обратимости матрицы
39	Минорный ранг
40	Системы линейных уравнений. Классификация. Метод Гаусса
41	Теорема Крамера
42	Теорема Кронекера-Капелли. Критерий определённости совместной системы 47
43	Линейные отображения. Примеры. Ядро и образ
44	Связь между размерностями ядра и образа

Первый семестр. Первая четверть

1 Алгебраически замкнутые поля, формулировка основной теоремы алгебры

Определение. Поле K называется алгебраически замкнутым, если любой многочлен $f \in K[X]$ положительной степени имеет корень в K.

Теорема (основная теорема алгебры). Поле \mathbb{C} алгебраически замкнуто.

Предложение. Если K алгебраически замкнуто, то $f \in K[X]$ неприводим \iff degf = 1

Доказательство. Пусть $degf \geqslant 2$. Тогда f(a) = 0 для некоторого $a \in K$, откуда (x - a)|f (по т. Безу), то есть f — приводим. Противоречие.

Таким образом, каноническое разложение в алгебраически замкнутом поле K имеет вид:

$$f = c \prod_{i=1}^{l} (x - a_i)^{n_i},$$

где $c \in K^*$, a_i — различные корни многочлена, n_i — натуральные степени. При этом n_i совпадает с кратностью корня a_i , а c — старший коэфициент.

2 Комплексные корни вещественных многочленов

Предложение. Пусть $f \in \mathbb{R}[X]$ и $a \in \mathbb{C}$ - корень f. Тогда комплексно сопряженное число \overline{a} - корень f той же кратности.

Доказательство. Пусть l – кратность корня a. Таким образом, имеем $f = (X - a)^l g$ для некоторого $g \in \mathbb{C}[X]$ (причем $g(a) \neq 0$). Поскольку комплексное сопряжение – автоморфизм поля комплексных чисел, нетрудно видеть, что для любых $g_1, g_2 \in C[X]$ выполнено $\overline{g_1g_2} = \overline{g_1} * \overline{g_2}$. В частности,

$$(X - \overline{a})^l \overline{g} = \overline{(X - a)^l g} = \overline{f} = f$$

Таким образом, кратность корня \bar{a} равна как минимум l. Покажем, что она равна в точности l:

$$\overline{g}(\overline{a}) = \overline{g(a)} \neq 0$$

Значит, \overline{a} – корень f кратности l.

Таким образом, все мнимые корни многочлена $f \in \mathbb{R}[X]$ разбиваются на пары комплексно сопряженных друг с другом. Тогда каноническое разложение f в кольце $\mathbb{C}[X]$ можно преобразовать к виду:

$$f = c \prod_{i=1}^{k} ((X - a_i)^{m_i} (X - \overline{a_i})^{m_i}) \prod_{i=1}^{l} (X - b_i)^{n_i}$$

где $(a_i, \overline{a_i})$ – пары мнимых корней, а b_i – вещественные корни.

Упростим:

$$(X - a_i)(X - \overline{a_i}) = X^2 - (a_i + \overline{a_i})X + a_i\overline{a_i} = X^2 - 2Re\,a_i + |a_i|^2 \in \mathbb{R}[x]$$

Тогда получаем следующее каноническое разложение f в кольце $\mathbb{R}[X]$:

$$f = c \prod_{i=1}^{k} (X^2 - 2Re \, a_i + |a_i|^2)^{m_i} \prod_{i=1}^{l} (X - b_i)^{n_i}$$

3 Неприводимые многочлены над полями вещественных и комплексных чисел

Предложение. Унитарные неприводимые многочлены в $\mathbb{R}[X]$:

1.
$$x - a, a \in \mathbb{R}$$

2.
$$x^2 + px + q$$
, $z \partial e p$, $q \in \mathbb{R} u p^2 - 4q < 0$

Доказательство.

1 — всегда неприводимы

2 — неприводимы $\Longleftrightarrow p^2 - 4q < 0$ — нет корней.

Многочлен f, у которого $deg f \geqslant 3$ приводим, так как обладает разложением, в котором не меньше двух неприводимых сомножителей (необязательно различных).

В $\mathbb{C}[X]$ неприводимыми будут только многочлены вида x-a, где $a\in\mathbb{C}$, так как согласно основной теореме алгебры поле C алгебраически замкнуто.

4 Поле частных области целостности

Определение. Поле частных области целостности R – наименьшее поле, содержащее R.

Элементы поля частных представляются как дроби $\frac{a}{b}$, где $a, b \in R$ и $b \neq 0$. Это поле строится следующим образом.

На множестве $R \times (R \setminus \{0\})$ введем отношение \sim . Положим $(a,b) \sim (a',b')$, если ab' = a'b. Легко видеть, что это отношение эквивалентности. Рефлексивность и симметричность очевидны. Проверим транзитивность. Если $(a,b) \sim (a',b')$ и $(a',b') \sim (a'',b'')$, то ab' = a'b и a'b'' = a''b'. Домножив первое равенство на b'', а второе на b, получаем:

$$ab'b'' = a'bb'' = a''bb'$$

Поскольку R – область целостности, и $b' \neq 0$, мы можем сократить на b' и получить, что ab'' = a''b, что означает $(a,b) \sim (a'',b'')$.

Обозначим через Q(R) соответствующее фактормножество $(R \times (R \setminus \{0\}))/\sim$. При этом класс пары (a,b) мы будем записвать в виде дроби $\frac{a}{b}$, где горизонтальная черта еще пока не означает деление. Условие $(a,b)\sim (a',b')$ будет означать, что $\frac{a}{b}=\frac{a'}{b'}$.

Введем сложение и умножение дробей:

$$\frac{a_1}{b_1} + \frac{a_2}{b_2} = \frac{a_1b_2 + a_2b_1}{b_1b_2} \qquad \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = \frac{a_1a_2}{b_1b_2}$$

Предложение. $(Q(R), +, \cdot)$ – *none*

Доказательство. Для начала проверим, что результат сложения (умножения) не меняется при замене любой из пар (a_1, b_1) и (a_2, b_2) на эквивалентную. У нас есть такой переход:

$$\frac{a}{b} = \frac{ab'}{bb'} = \frac{a'b}{bb'} = \frac{a'}{b'}$$

То есть чтобы перейти от первой дроби ко второй, надо домножить числитель и знаменатель на b', а потом сократить на b. Таким образом, результат сложения или умножения не поменяется.

Коммутативность и ассоциативность сложения очевидны в случае одинаковых знаменателей, а общий случай сводится к тому, чтобы заменить дроби на эквивалентные с одинаковым знаменателем. Ясно, что $\frac{0}{1}$ служит нейтральным по сложению, а дробь $\frac{-a}{-b}$ противоположна $\frac{a}{b}$.

Для умножения очевидны коммутативность и ассоциативность, а для проверки дистрибутивности также удобно записать складываемые дроби в виде с одинаковым знаменателем:

$$\left(\frac{a_1}{b} + \frac{a_2}{b}\right)\frac{a'}{b'} = \frac{a_1 + a_2}{b}\frac{a'}{b'} = \frac{a_1a' + a_2a'}{bb'} = \frac{a_1}{b}\frac{a'}{b'} + \frac{a_2}{b}\frac{a'}{b'}$$

Дробь $\frac{1}{1}$ является единичным элементом, и если $b \neq 0$, то обратный к $\frac{a}{b}$ - это $\frac{b}{a}$.

<u>Замечание</u> $R \to Q(R)$ – инъективный гомоморфизм колец, переводящий $r \in R$ в дробь $\frac{r}{1}$. Таким образом, R является подкольцом Q(R).

Примеры:

- 1. $Q(\mathbb{Z}) = \mathbb{Q}$
- 2. Для кольца многочленов K[X] это Q(K[X]) = K(X) поле дробно-рациональных функций от одной переменной над K.

5 Поле дробно-рациональных функций. Правильные дроби

Про то, что такое поле дробно-рациональных функций, написано чуть выше.

Предложение. (несократимое представление). Пусть R – факториальное кольцо. Тогда любой элемент $s \in Q(R)$ представим в виде $s = \frac{p}{q}$, где p и q взаимно просты. Такое представление единственно c точностью до умножения p и q на элементы из R^* .

Доказательство. Пусть $s=\frac{a}{b},\ d=(a,b),\ a=da',\ b=db'.$ Тогда $s=\frac{a'}{b'}$ и (a',b')=1. Если $\frac{p}{q}=\frac{p'}{q'},$ то из pq'=p'q следует p|p'q, откуда p|p', и аналогично p'|p. Таким образом, $p'=\varepsilon p,$ где $\varepsilon\in R^*,$ и отсюда $q'=\varepsilon q.$

Лемма. Пусть $s \in K(X)$, $s = \frac{p}{q}$, где $p, q \in K[X]$. Тогда p - q является инвариантом дроби s (то есть не зависит от выбора представления s виде p и q).

Доказательство. Если $\frac{p}{q} = \frac{p_1}{q_1}$, то $pq_1 = p_1q$, откуда $deg \, p + deg \, q_1 = deg \, p_1 + deg \, q$, следовательно, $deg \, p - deg \, q = deg \, p_1 - deg \, q_1$.

Таким образом, можно говорить о степени рациональной дроби: $deg \, s = deg \, \frac{p}{g} = deg \, p - deg \, q$.

Определение. Правильная дробь – дробь, у которой степень числителя меньше степени знаменателя $(deg \, s < 0)$.

В частности, 0 считается правильной дробью, а любой другой многочлен – нет. Из определения легко вытекает, что сумма и произведение правильных дробей – правильная дробь.

Лемма. Любая рациональная дробь однозначно представляется в виде суммы многочлена и правильной дроби.

Доказательство. Пусть $s=\frac{p}{q}$. Разделим p с остатком на q: p=ql+r. Тогда

$$\frac{p}{q} = l + \frac{r}{q}$$

является искомым представлением. Проверим единственность:

$$l + \frac{r}{q} = l_1 + \frac{r_1}{q_1} \Rightarrow l - l_1 = \frac{r_1}{q_1} - \frac{r}{q}$$

Заметим, что разность правильных дробей $\frac{r_1}{q_1}$ и $\frac{r}{q}$ тоже должна быть правильной дробью. Многочлен $l-l_1$ может быть правильной дробью, только когда он равен 0. Следовательно, $l=l_1$, а $\frac{r}{q}=\frac{r_1}{q_1}$.

6 Примарные дроби. Лемма о дроби, знаменатель которой разложен на два взаимно простых множителя

Лемма. Если f и g – взамно простые многочлены, то любую рациональную дробь со знаменателем fg можно представить в виде суммы дробей со знаменателями f и g.

Доказательство. Имеем 1 = cf + dg для некототрых $c, d \in K[X]$. Но тогда

$$\frac{a}{fg} = \frac{a(cf + dg)}{fg} = \frac{ac}{g} + \frac{ad}{f}$$

Определение. Примарная дробь – дробь, которую можно представить в виде $\frac{a}{p^n}$, где p – неприводимый многочлен, а n – натуральное число.

Если нужно указание на конкретный многочлен p, то такую дробь называют также p-примарной.

7 Простейшие дроби. Разложение правильной дроби в сумму простейших

Предложение. Любую правильную дробь можно единственным образом представить в виде суммы нескольких ненулевых правильных p-примарных дробей, где p – различные унитарные неприводимые многочлены.

Доказательство. Запишем знаменатель дроби s в каноническом виде $p_1^{m_1} \dots p_t^{m_t}$ и применим предыдущую лемму t-1 раз. Тогда мы получим

$$s = \frac{a_1}{p_1^{m_1}} + \dots + \frac{a_t}{p_t^{m_t}}$$

Записав каждое слагаемое в виде суммы многочлена и правильной дроби, мы получим представление

$$s = f + \frac{b_1}{p_1^{m_1}} + \dots + \frac{b_t}{p_t^{m_t}},$$

где f — некоторый многочлен, а остальные слагаемые — правильные дроби. Но тогда f сам является правильной дробью (как разность правильных дробей), и тем самым f=0.

Докажем единственность такого представления. Предположим, что у s есть два разных представления в виде суммы правильных примарных дробей. Вычтем из одного представления другое и оставим только ненулевые слагаемые (в несократимом виде):

$$\frac{c_1}{p_1^{n_1}} + \dots + \frac{c_l}{p_l^{n_l}} = 0$$

$$\frac{c_1}{p_1^{n_1}} + \dots + \frac{c_{l-1}}{p_l^{n_{l-1}}} = \frac{-c_l}{p_l^{n_l}}$$

Выполнив сложение в левой части и сократив числитель и знаменатель полученной дроби на их НОД, мы получим несократимую дробь, знаменатель которой делит $p_1^{n_1}\dots p_{l-1}^{n_{l-1}}$ и не может быть ассоциирован с $p_l^{n_l}$ (как минимум потому что не делит p_l).

8 Простейшие дроби. Разложение правильной дроби в сумму простейших

Определение. Простейшая дробь – любая рациональная дробь вида $\frac{a}{p^n}$, где p – унитарный неприводимый многочлен, n – натуральное число, a – ненулевой многочлен степени меньшей $deg \, p$.

Предложение. Любая ненулевая правильная примарная дробь единственным образом представляется в виде суммы простейших дробей.

Доказательство. Рассмотрим правильную примарную дробь $\frac{a}{p^n}$. Поделим a на p с отатком: $a=q_1p+r_1$, где $\deg r_1<\deg p$. Тогда $\frac{a}{p^n}=\frac{r_1}{p^n}+\frac{q_1}{p^{n-1}}$. Теперь поделим q_1 на p: $q_1=q_2p+r_2$, где $\deg r_2<\deg p$. Тогда $\frac{a}{p^n}=\frac{r_1}{p^n}+\frac{r_2}{p^{n-1}}+\frac{q_2}{p^{n-2}}$. Продолжая процесс, мы придем к правильной дроби $\frac{q_{n-1}}{p}=\frac{r_n}{p}$, которая является простейшей. Итак,

$$\frac{a}{p^n} = \frac{r_1}{p^n} + \frac{r_2}{p^{n-1}} + \dots + \frac{r_n}{p}$$

Докажем единственность. Предположим, что у нас есть 2 разложения (для удобства поменяем индексы):

$$\frac{r_n}{p^n}+\cdots+\frac{r_1}{p}=\frac{s_n}{p^n}+\cdots+\frac{s_1}{p}$$
 (тут некоторые слагаемые могут быть нулевыми)

Если m – максимальное значение индекса, при котором $r_m \neq s_m$, то

$$\frac{r_m - s_m}{p^m} + \dots + \frac{r_1 - s_1}{p} = 0$$

$$s_m - r_m = p(r_{m-1} - s_{m-1}) + \dots + p^{m-1}(r_1 - s_1) = p * ((r_{m-1} - s_{m-1}) + \dots + p^{m-2}(r_1 - s_1))$$

Мы пришли к противоречию, так как многочлен $s_m - r_m$ имеет степень меньше deg p, а многочлен справа делит p.

Теорема. Любая ненулевая правильная дробь единственным образом представляется в виде суммы простейших дробей с разными знаменателями.

Доказательство. Разложим правильную ненулевую дробь *s* в сумму правильных примарных дробей, разложим каждую примарную в сумму простейших и просуммируем то, что получилось.

Очевидно, что все знаменатели будут различны, так как для каждой p-примарной дроби, знаменатели простейших дробей будут равны p в какой-то степени.

Пример разложения на простейшие.

Разложим дробь $\frac{1}{x^5+x^3}$ над $\mathbb{R}[X]$. Разложим знаменатель на неприводимые: $x^5+x^3=x^3(x^2+1)$. Выпишем дроби со всеми возможными знаменателями, которые у нас могут получиться:

$$\frac{1}{x^5 + x^3} = \frac{A}{x} + \frac{B}{x^2} + \frac{C}{x^3} + \frac{Dx + E}{x^2 + 1}$$

Домножим каждую дробь, чтобы избавиться от знаменателей:

$$1 = Ax^{2}(x^{2} + 1) + Bx(x^{2} + 1) + C(x^{2} + 1) + (Dx + E)x^{3}$$

Далее воспользуемся методом неопределенных коэффициентов, чтобы найти конкретные A, B, C, D и E. Как говорится, вычисления оставляем читателю.

9 Действия над матрицами и их свойства

Определение. Матрица над кольцом R – прямоугольная таблица, составленная из элементов кольца R.

Задать матрицу A – задать набор элементов $a_{ij} \in R$ для всех i, j таких, что $1 \le i \le m, 1 \le j \le n$. Эти элементы называются коэффициентами матрицы A. Можно писать так: $A = (a_{ij})$.

Множество всех матриц $m \times n$ над кольцом R обозначается через M(m, n, R).

Определение. Квадратная матрица — матрица, у которой число строк совпадает с числом столбцов. Обозначается как M(n,R), где n — порядок матрицы.

Операции над матрицами:

1. Сложение

$$A \in M(m, n, R), B \in M(m, n, R)$$
$$(A + B)_{ij} = A_{ij} + B_{ij}$$

2. Умножение

$$A \in M(m, n, R), B \in M(n, p, R)$$
$$(AB)_{ik} = \sum_{j=1}^{n} A_{ij} B_{jk}$$

3. Умножение на скаляр

$$A \in M(m, n, R), \lambda \in R$$

 $(\lambda A)_{ij} = \lambda A_{ij}$

4. Транспонирование

$$A \in M(m, n, R), A^T \in M(n, m, R)$$

$$A_{ij}^T = A_{ji}$$

Теорема (свойства операций над матрицами). Следующие тождества выполняются для любых матриц A, B, C над коммутативным кольцом R и для любых $\lambda, \mu \in R$, если определены результаты всех входящих в них операций:

1.
$$A + (B + C) = (A + B) + C$$

- 2. пусть 0 матрица, все коэффициенты которой нулевые; тогда A+0=0+A=A
- 3. для любой матрицы A найдется матрица -A такая, что A + (-A) = (-A) + A = 0

4.
$$A + B = B + A$$

5.
$$A(BC) = (AB)C$$

6.
$$A(B+C) = AB + AC$$

7.
$$(B+C)A = BA + CA$$

8.
$$\lambda(A+B) = \lambda A + \lambda B$$

9.
$$(\lambda + \mu)A = \lambda A + \mu A$$

10.
$$(\lambda A)B = \lambda(AB) = A(\lambda B)$$

11.
$$(\lambda \mu)A = \lambda(\nu A)$$

12.
$$(A+B)^T = A^T + B^T$$

13.
$$(AB)^T = B^T A^T$$

Доказательство.

Просто скрины конспекта от Жукова.

1.
$$(A + (B + C))_{ij} = A_{ij} + (B + C)_{ij} = A_{ij} + (B_{ij} + C_{ij}) = (A_{ij} + B_{ij}) + C_{ij} = (A + B)_{ij} + C_{ij} = ((A + B) + C)_{ij}$$
; здесь мы воспользовались ассоциативностью сложения в кольце R.

$$2. \ (A+0)_{ij} = A_{ij} + 0_{ij} = A_{ij} + 0 = A_{ij} = 0 + A_{ij} = 0_{ij} + A_{ij} = (0+A)_{ij}.$$

3. Составим матрицу
$$-A$$
 из элементов $-A_{ij}$, то есть, положим $(-A)_{ij}=-A_{ij}$. Тогда $(A+(-A))_{ij}=A_{ij}+(-A)_{ij}=A_{ij}-A_{ij}=0$, откуда $A+(-A)=0$; аналогично, $(-A)+A=0$.

4.
$$(A+B)_{ij}=A_{ij}+B_{ij}=B_{ij}+A_{ij}=(B+A)_{ij}$$
, поскольку сложение в R коммутативно.

5. Пусть $A \in M(\mathfrak{m},\mathfrak{n},R), \ B \in M(\mathfrak{n},\mathfrak{p},R), \ C \in M(\mathfrak{p},\mathfrak{q},R).$ Тогда

$$((AB)C)_{il} = \sum_{k=1}^{p} (AB)_{ik} C_{kl} = \sum_{k=1}^{p} \sum_{j=1}^{n} A_{ij} B_{jk} C_{kl};$$

с другой стороны,

$$(A(BC))_{il} = \sum_{j=1}^n A_{ij}(BC)_{jl} = \sum_{j=1}^n A_{ij} \sum_{k=1}^p B_{jk} C_{kl} = \sum_{j=1}^n \sum_{k=1}^p A_{ij} B_{jk} C_{kl}.$$

Получившиеся суммы отличаются только изменением порядка суммирования.

6. Пусть $A \in M(m, n, R), B \in M(n, p, R)$. Тогда

$$(A(B+C))_{ik} = \sum_{j=1}^{n} A_{ij}(B+C)_{jk} = \sum_{j=1}^{n} (A_{ij}B_{jk} + A_{ij}C_{jk})$$

И

$$(AB+AC)_{ik}=(AB)_{ik}+(AC)_{ik}=\sum_{i=1}^nA_{ij}B_{jk}+\sum_{i=1}^nA_{ij}C_{jk}=\sum_{i=1}^n(A_{ij}B_{jk}+A_{ij}C_{jk}).$$

7. Доказательство совершенно аналогично доказательству предыдущего пункта.

8.
$$(\lambda(A+B))_{ij} = \lambda(A+B)_{ij} = \lambda(A_{ij}+B_{ij}) = \lambda A_{ij} + \lambda B_{ij} = (\lambda A)_{ij} + (\lambda B)_{ij} = (\lambda A+\lambda B)_{ij}$$
.

9.
$$((\lambda + \mu)A)_{ij} = (\lambda + \mu)A_{ij} = \lambda A_{ij} + \mu A_{ij} = (\lambda A)_{ij} + (\mu A)_{ij} = (\lambda A + \mu A)_{ij}$$
.

10. Заметим, что $((\lambda A)B)_{ik} = \sum_{i} ((\lambda A)_{ij}B_{jk}) = \sum_{i} (\lambda A_{ij}B_{jk});$ кроме того,

$$(A(\lambda B))_{ik} = \sum_{i} (A_{ij}(\lambda B)_{jk}) = \sum_{i} (A_{ij}\lambda B_{jk}) = \sum_{i} (\lambda A_{ij}B_{jk})$$

И

$$(\lambda(AB))_{\mathfrak{i}k}=\lambda(AB)_{\mathfrak{i}k}=\lambda\sum_{\mathfrak{j}}(A_{\mathfrak{i}\mathfrak{j}}B_{\mathfrak{j}k})=\sum_{\mathfrak{j}}(\lambda A_{\mathfrak{i}\mathfrak{j}}B_{\mathfrak{j}k}).$$

11.
$$((\lambda\mu)A)_{ij}=(\lambda\mu)A_{ij}=\lambda\mu A_{ij}=\lambda(\mu A_{ij})=\lambda(\mu A)_{ij}=(\lambda(\mu A))_{ij}.$$

12.
$$((A+B)^T)_{ij} = (A+B)_{ji} = A_{ji} + B_{ji} = (A^T)_{ij} + (B^T)_{ij} = (A^T+B^T)_{ij}$$
.

13.
$$((AB)^T)_{ik} = (AB)_{ki} = \sum_i (A_{ki}B_{ii}) = \sum_i ((A^T)_{ik}(B^T)_{ij}) = \sum_i ((B^T)_{ij}(A^T)_{jk}) = B^TA^T.$$

Определение. Единичная матрица — квадратная матрица, у которой на главной диагонали стоят 1, а на всех остальных позициях 0. Обозначается как E_n .

Предложение. Пусть $A \in M(m, n, R)$. Тогда $E_m \cdot A = A \cdot E_n = A$.

Доказательство. $(E_m \cdot A)_{ik} = \sum_{j=1}^m (E_m)_{ij} A_{jk}$. Заметим, что от суммы останется только одно слагаемое, соответствующее случаю i=j, и равное A_{ik} . Это выполнено для всех i,k, поэтому $E_m \cdot A = A$. Второе равенство доказывается аналогично.

Следствие: M(n,R) – ассоциативное кольцо с 1

Определение. Квадратная матрица $A \in M(n,R)$ называется обратимой, если найдется матрица $A^{-1} \in M(n,R)$ такая, что $A \cdot A^{-1} = A^{-1} \cdot A = E_n$.

<u>Замечание</u> $M(n,R)^* = GL(n,R)$ (обратимые матрицы образуют группу по умножению)

Предложение. Если матрица $A \in M(n,R)$ обратима, то и матрица A^T обратима, причем $(A^T)^{-1} = (A^{-1})^T$.

Доказательство. Пользуясь свойством 13 теоремы, доказанной выше, получаем, что $A^T \cdot (A^{-1})^T = (A^{-1} \cdot A)^T = (E_n)^T = E_n$. Равенство $(A^{-1})^T \cdot A^T = E_n$ проверяется аналогично.

10 Элементарные преобразования и элементарные матрицы

Элементарные преобразования строк:

- 1. Прибавление к строке i строки j, домноженной на скаляр $\lambda \in R$.
- 2. Перестановка местами i-той и j-той строки.
- 3. Домножение строки i на обратимый скаляр $\varepsilon \in \mathbb{R}^*$.

Замечание Аналогичные преобразования определены для столбцов.

Матрицы элементарных преобразований:

1. Пусть $A \in M(m, n, R)$, $\lambda \in R$, $T_{ij}(\lambda) = E_n + \lambda e_{ij} \ (i \neq j)$. Тогда элементарному преобразованию первого типа соответствует умножение матрицы A слева на $T_{ij}(\lambda)$.

Доказательство. Поскольку матрица $T_{ij}(\lambda)$ отличается от единичной только в i-той строке, произведение $T_{ij}(\lambda)A$ отличается от матрицы A также только в i-той строке. В i-той строке матрицы $T_{ij}(\lambda)$ только два элемента отличны от 0: элемент в позиции i равен 1, а элемент в позиции j равен λ . При умножении на k-тый столбец матрицы A получаем следующее:

$$\begin{pmatrix}
a_{1k} \\
\vdots \\
a_{ik} \\
\vdots \\
a_{jk} \\
\vdots \\
a_{nk}
\end{pmatrix} = a_{ik} + \lambda a_{jk}$$

Это происходит в каждом столбце матрицы A, поэтому i-тая строка матрицы $T_{ij}(\lambda)A$ равна $(a_{i1} + \lambda a_{j1}) + \cdots + (a_{in} + \lambda a_{jn})$.

2. Пусть $A \in M(m, n, R)$, $S_{ij} = E_n - e_{ii} - e_{jj} + e_{ij} + e_{ji}$. Тогда элементарному преобразованию второго типа соответствует умножение матрицы A слева на S_{ij} .

Доказательство. Поскольку матрица S_{ij} отличается от единичной только в i-той и j-той строке, произведение $S_{ij}A$ отличается от матрицы A также только в i-той и j-той строке. i-тая строка равна произведению (0...1...0) (где 1 стоит на j-м месте) на матрицу A, то есть j-той строке матрицы A. Аналогично для j-той строки.

3. Пусть $A \in M(m, n, R)$, $D_i(\varepsilon) = E_n + (\varepsilon - 1)e_{ii}$. Тогда элементарному преобразованию третьего типа соответствует умножение матрицы A слева на $D_i(\varepsilon)$.

Доказательство. Поскольку матрица $D_i(\varepsilon)$ отличается от единичной только в i-той строке, произведение $D_i(\varepsilon)A$ отличается от матрицы A также только в i-той строке. i-тая строка равна произведению $(0 \dots \varepsilon \dots 0)$ на A, что равно произведению ε и i-той строки A.

<u>Замечание</u> Применяя транспонирование (с учетом свойства $(AB)^T = B^TA^T$), получаем, что элементарным преобразованиям столбцов соответствуют домножения справа на эти же матрицы.

11 Приведение матрицы к ступенчатому виду элем. преобразованиями строк

Определение. Матрица $A \in M(m,n,R)$ называется ступенчатой, если существует некоторая последовательность индексов $1 \le j_1 < j_2 < \dots < j_r \le n$ такая, что

- $a_{ij} \neq 0$ для всех $i = 1, \dots, r$
- $a_{ij} = 0$ при $j < j_i$ для всех $i = 1, \dots, r$
- $a_{ij} = 0$ для любого j и i > r

Ненулевые элементы $a_{1j_1}, a_{2j_2}, \dots, a_{rj_r}$ называются ведущими.

Приведение матрицы к ступенчатому виду

Зафиксируем первый столбец, содержащий ненулевой элемент. У него будет номер j_1 . Поставим этот ненулевой элемент на первое место в столбце посредством элементарного преобразования второго типа. Обнулим все остальные элементы столбца с помощью элементарных преобразований первого типа. А именно, чтобы обнулить ненулевой элемент a_{ij_1} , проведем элементарное преобразование $T_{i1}(-a_{ij_1}/a_{1j_1})$. Заметим, что здесь мы пользовались тем фактом, что ненулевой элемент a_{1j_1} обратим, то есть, что матрица задана над полем.

Мысленно забудем про первую строчку нашей матрицы и про все столбцы до j_1 и повторим операцию. Найдем ближайший столбец $j_2 > j_1$, содержащий ненулевой элемент. Поставим его на второе место в столбце и обнулим все элементы под ним.

Далее мы продлолжим ту же процедуру, забывая про первые две строчки и столбцы до j_2 . На каком-то столбце j_r процесс оборвется, и матрица примет ступенчатый вид.

12 Приведение матрицы к простейшему виду элем. преобразованиями строк и столбцов

Для начала приведем матрицу к ступенчатому виду.

Заметим, что ведущие элементы можно обнулить с помощью элементарных преобразований третьего типа. А именно: $\forall i \in 1...r$ проведем преобразование $D_i(1/a_{ij})$.

Теперь воспользуемся элементарными преобразованиями столбцов.

С помощью преобразований первого типа обнулим в строках 1..r все элементы кроме ведущих. Рассмотрим это на примере первой строки. Для всех $j > j_1$ мы проведем преобразование $T_{jj_1}(-a_{1j})$. Таким образом, элемент a_{1j} станет равен $a_{1j} + 1 * (-a_{1j}) = 0$. Проделав это для всех строк 1..r, получим следующую матрицу:

После этого перестановкой столбцов можно добиться того, что единицы будут стоять в позициях $(1,1),(2,2),\ldots,(r,r)$. Полученная матрица называется окаймленной единичной матрицей:

$$\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

13 PDQ-разложение. Разложение обратимой матрицы в произведение элементарных

Теорема. Пусть K - поле, $A \in M(m, n, K)$.

Тогда существуют элементы $P_1, \ldots, P_s, Q_1, \ldots, Q_t \ (s, t \geqslant 0)$, такие, что $P_s \ldots P_1 \cdot A \cdot Q_1 \ldots Q_t$ - окаймленная единичная матрица

Доказательство. Мы знаем, что матрицу можно превратить в ступенчатую с помощую элементарных преобразований строк. Интерпретируем этот факт следующим образом:

 $A\in M(m,n,K)\Longrightarrow \exists P_1,\ldots,P_s\in M(m,K)$ - элементарные матрицы, такие, что $P_s\ldots P_2\cdot P_1\cdot A$ - ступенчатая матрица

Теперь заметим, что, используя элементарные преобразования строк, мы можем не только сделать из матрицы ступенчатую, но и сделать так, чтобы ведущие элементы всех строк были единицами

[&]quot;Двигаемся дальше"

Теперь, используя элементарные преобразования столбцов, давайте занулим все элементы первой строки кроме ведущего. Так поступим для всех ненулевых строк. На данном этапе будет получаться матрица, у которой в ненулевых строках есть единичка на какой-то позиции, при этом у строк ниже, чем эта, единичка стоит правее.

Наконец теперь попереставляем столбцы местами и выставим столбцы таким образом, чтобы получилась матрица вида $\begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} \in M(m,n,K), \ 0 \leqslant r \leqslant min(m,n)$ - это и есть окаймленная единичная матрица.

Следствие: K - поле, $A \in M(m,n,K)$, тогда A можно представить в виде A = PDQ, где $P \in GL(m,K), Q \in (n,K), D = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, при этом P,Q - произведения элементарных матриц.

Теорема. Обратимая матрица всегда является произведением элементарных матриц

Доказательство.
$$P_t \dots P_1 \cdot A \cdot Q_1 \dots Q_s = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix} = D \Longrightarrow A = P_1^{-1} \dots P_t^{-1} D Q_s^{-1} Q_{s-1}^{-1} \dots Q_1^{-1} Q_s^{-1} Q_s^{-$$

Легко видеть, что матрицы, обратные к элементарным, сами являются элементарными

$$S_{ij}^{-1} = S_{ij} \quad D_{ij}^{-1}(\varepsilon) = D_{ij}(\varepsilon^{-1}) \quad T_{ij}^{-1}(\lambda) = T_{ij}(-\lambda)$$

Значит равенство
$$A = P_1^{-1} \dots P_t^{-1} DQ_s^{-1} Q_{s-1}^{-1} \dots Q_1^{-1}$$
 мы можем записать как $A = PDQ$

 $\pmb{Cnedcmeue:}\ A\in M(m,n,K)\ A=P_t\dots P_1\cdot D\cdot Q_1\dots Q_s,\ P_i,Q_j$ - элементарные матрицы, $D=\begin{pmatrix}E_r&0\\0&0\end{pmatrix}$

Тогда: $A \in GL(n,K) \Longleftrightarrow r = n$

Доказательство.

"
$$\Leftarrow$$
": $D = E_n$
 $A = P_t \dots P_1 Q_1 \dots Q_s \in GL(n, k)$

"
$$\Longrightarrow$$
": A - обратима. Тогда $D=P_1^{-1}\dots P_t^{-1}AQ_s^{-1}Q_{s-1}^{-1}\dots Q_1^{-1}\in GL(n,k)$

Если r < n, то последняя строка D нулевая. Противоречие.

Cледcmвuе: $A \in M(n, K)$

Тогда: $A \in GL(n, K) \iff A$ - произведение элементарных матриц.

Доказательство.

"=": Элементарные обратимы

" \Longrightarrow ": Пишем PDQ разложение, $D=E_n$

 $A=PQ,\quad P,Q$ - произведение элементарных матрицы

14 Разложение перестановки в произведение транспозиций и элементарных транспозиций

Предложение. Любая перестановка раскладывается в произведние транспозиций

Доказательство. Возьмем какую-то перестановку $\pi \in S_n$ Начнем с тождественной перестановки id и покажем, что последовательным домножением на транспозиции справа можно получить перестановку π . Сначала добьемся того, чтобы на первом месте в нижней строке табличной записи нашей перестановки стояло то, что нужно — то есть, $\pi(1)$. Для этого нужно переставить местами первый столбик с тем, в котором стоит $\pi(1)$. После этого поставим на второе место в нижней строке $\pi(2)$: так как π является перестановкой, то $\pi(1) \neq \pi(2)$, поэтому где-то справа от первого столбца есть столбец с $\pi(2)$. Поменяем его со вторым. И так далее: на k-шаге мы добиваемся того, что первые k чисел в нижней строке нашей перестановки выглядели так: $\pi(1), \pi(2), \ldots, \pi(k)$. В конце концов мы получим перестановку π путем домножения id на транспозиции, что и требовалось.

Предложение. Любая транспозиция является произведением нечетного числа элементарных транспозиций

Доказательство. Неформально задача выглядит так: нам разрешено менять местами любые два соседних элемента в строке, а хочется поменять местами два элемента, стоящих далеко друг от друга. Как этого добиться? Очень просто: сначала "продвинуть" последовательно левый из этих элементов направо до второго, поменять их там местами, а потом второй элемент «отогнать» обратно на место левого. При этом наши элементы поменяются местами, а все остальные элементы останутся на своих местах: любой элемент между нашими мы затронем ровно два раза: на пути "туда" и на пути "обратно"; сначала он сдвинется на шаг влево, а потом — на шаг вправо. Ну, а любой элемент, стоящий не между нашими, и подавно останется на своем месте. Аккуратный подсчет показывает, что мы совершили нечетное число операций.

Формально же это рассуждение выражается в виде формулы:

$$\tau_{ij} = \tau_{i,i+1} \circ \tau_{i+1,i+2} \circ \cdots \circ \tau_{j-2,j-1} \circ \tau_{j-1,j} \circ \tau_{j-2,j-1} \circ \cdots \circ \tau_{i+1,i+2} \circ \tau_{i,i+1}$$

(здесь мы считаем, что i < j). Это равенство несложно проверить напрямую, и оно представляет транспозицию τ_{ij} в виде произведения 2(j-i)-1 элементарных транспозиций.

15 Чётность и знак перестановки

Определение. Пусть $\pi \in S_n$. Говорят, что пара индексов (i,j) образует инверсию для перестановки π , если i < j и $\pi(i) > \pi(j)$. Количество пар индексов от 1 до n, образующих инверсию для π называется числом инверсий перестановки π и обозначается через $inv(\pi)$

Определение. Если $inv(\pi)$ четно, π называется четной перестановкой, в противном случае - нечетной.

Определение. Знак перестановки определяется следующим образом: $sgn(\pi) = (-1)^{inv(\pi)}$

Предложение. Пусть $\pi \in S_n, \ \tau_{ij} \in S_n$ - транспозиция

$$Tor \partial a \ sgn(\pi \cdot \tau_{ij}) = -sgn(\pi)$$

Доказательство. Давайте посмотрим транспозицию τ_{ij} в случае, если она является элементарной

Тогда
$$\pi' = \pi \circ \tau_{ij} = \begin{pmatrix} \dots & i & i+1 & \dots \\ \dots & \pi(i+1) & \pi(i) & \dots \end{pmatrix}$$

- ullet Если $k,l \notin \{i,i+1\} \Longrightarrow (k,l)$ инверсия для $\pi \Longleftrightarrow (k,l)$ инверсия для π'
- Если $k \in \{i, i+1\}, l \notin \{i, i+1\}$

Рассмотрим пары индексов (i, l) и (i + 1, l), давайте посчитаем общее количестве инверсий для этих пар индексов. Заметим, что l либо > i и > i + 1, либо либо < i и < i + 1.

Количество инверсий для множества $\{i,l\}$, плюс количество инверсий для множества $\{i+1,l\}$ одинаково для π и π' .

То есть количество инверсий опять не поменялось

• Если $k,l \in \{i,i+1\} \Longrightarrow (k,l)$ - инверсия для $\pi \Longleftrightarrow (k,l)$ - не инверсия для π' Таким образом $inv(\pi') = inv(\pi) \pm 1 \Longrightarrow sgn(\pi') = -sgn(\pi)$

Теперь рассмотрим общий случай. $au_{ij} = \prod_{l=1}^{2t+1} \sigma_l$, где σ_l - элементарные транспозиции

Выходит, что
$$sgn \ \pi \cdot \tau_{ij} = sgn \ \pi \ (-1)^{2t+1} = -sgn \ \pi$$

 ${\it Cnedcmeue:}\ \ \Pi$ усть $\pi=\sigma_1\dots sigma_s,\ \sigma_i$ - транспозиции

Тогда
$$sgn\ \pi = (-1)^s$$

Доказательство. Используем индукцию по s.

База:
$$s=1$$
 $sgn(\sigma_1)=sgn(e\cdot\sigma_1)=-sgn$ $e=-1$

Переход:
$$sgn(\sigma_1 \dots \sigma_s) = -sgn(\sigma_1 \dots \sigma_{s-1}) = -(-1)^{s-1} = (-1)^s$$

Теорема. Пусть $\pi, \rho \in S_n$

$$T$$
огда $sgn(\pi\rho) = sgn \ \pi \cdot sgn \ \rho$

Доказательство.

$$\pi = \sigma_1 \dots \sigma_s$$
, где σ_i - транспозиции

$$ho = \sigma_1' \dots \sigma_t'$$
, где σ_i - транспозиции

$$sgn \pi = (-1)^s$$

$$sgn \ \rho = (-1)^t$$

$$sgn(\pi\rho) = sgn(\sigma_1 \dots \sigma_s \sigma'_1 \dots \sigma'_t) = (-1)^{s+t} = (-1)^s \cdot (-1)^t = sgn \ \pi \cdot sgn \ \rho$$

Предложение. $A_n = \{ \sigma \in S_n \mid sgn \ \sigma = 1 \}$ - множество четных перестановок S_n

 A_n - noдгруппа S_n

Доказательство. $e \in A_n$

$$\pi, \rho \in A_n \Longrightarrow sgn \ \pi = sgn \ \rho = 1 \Longrightarrow sgn \ \pi \rho = 1 \Longrightarrow \pi \rho \in A_n$$

Действительно, пусть $\pi \in A_n$

$$sgn(\pi\pi^{-1}) = sgn \ e = 1 = sgn \ \pi \cdot sgn \ \pi^{-1} \Longrightarrow sgn \ \pi^{-1} = 1 \text{ r.e. } \pi^{-1} \in A_n$$

Предложение. Пусть $n \geqslant 2$

$$Tor \partial a |A_n| = \frac{n!}{2}$$

Доказательство. Рассмотрим отображение $\lambda: A_n \longrightarrow S_n \setminus A_n$

 $\sigma \longmapsto \sigma au_{i2}$ - нечетная

Если
$$\lambda(\sigma) = \lambda(\sigma')$$
, то $\sigma \tau_{12} = \sigma' \tau_{12} \Longrightarrow \sigma = \sigma'$. Доказали инъективность λ

Пусть $\pi \in S_n \setminus A_n$

$$\pi \tau_{12} \in A_n$$
. Тогда $\lambda(\pi \tau_{12}) = \pi \tau_{12} \tau_{12} = \pi \Longrightarrow Im(\lambda) = S_n \setminus A_n$ Доказали сюръективность

Таким образом
$$|A_n| = |S_n \setminus A_n| \Longrightarrow |A_n| = \frac{n!}{2}$$

16 Определение определителя. Определитель транспонированной матрицы

Определение. $A \in M(n,R), \quad R$ - коммутативное кольцо

$$|A| \in R, \quad A = (a_{ij})$$

$$|A| = \det A = \sum_{\sigma \in S_n} sgn \ \sigma \cdot \prod_{i=1}^n a_{i,\sigma(i)}$$

С первого взгляда какой-то бред, но на самом деле мы просто берем какую-нибудь перестановку σ_i из S_n , смотрим куда переходит в ней единица, берем элемент матрицы $a_{1,\sigma(1)}$, потом также с двойкой и далее пошло поехало. Все это дело перемножаем. Такие телодвижения проделываем для каждой перестановки из S_n . И под конец пишем одну огромную сумму из таких произведений, ставя перед ними знак соответствующей перестановки.

Примеры:

• Определитель матрицы 2×2 :

$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

• Определитель матрицы 3×3 :

$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{31}a_{22} - a_{11}a_{23}a_{32}$$

Предложение. $|A^T| = |A|$ $A = (a_{ij})$

$$|A^T| = \sum_{\sigma \in S_n} sgn \ \sigma \cdot \prod_{i=1}^n a_{\sigma(i),i} = \sum_{\sigma \in S_n} sgn \ \sigma \cdot \prod_{i=1}^n a_{i,\sigma^{-1}(i)} = \sum_{\sigma \in S_n} sgn \ \sigma^{-1} \cdot \prod_{i=1}^n a_{i,\sigma(i)} = |A|$$

17 Линейность определителя по строкам и столбцам

Предложение.

Линейность определителя по строке

1. Пусть матрица
$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a'_{k1} + a''_{k1} & \dots & a'_{kn} + a''_{kn} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \Longrightarrow |A| + |A'| + |A''|$$

$$A' = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a'_{k1} & \dots & a'_{kn} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \qquad A'' = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a''_{k1} & \dots & a''_{kn} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Доказательство.
$$|A| = \sum_{\sigma} sgn \ \sigma \cdot a_{1,\sigma(1)} \cdot \cdot \cdot \times (a'_{k,\sigma(k)} + a''_{k,\sigma(k)}) \times \dots a_{n,\sigma(n)} = |A'| + |A''|$$

2.
$$A = (a_{ij}), \qquad \lambda \in R, 1 \leqslant k \leqslant n$$

$$B = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{k1} & \dots & \lambda a_{kn} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \Longrightarrow |B| = \lambda |A|$$

Доказательство.
$$|B| = \sum_{\sigma} sgn \ \sigma \cdot a_{1,\sigma(1)} \dots \lambda a_{k,\sigma(k)} \dots a_{n,\sigma(n)} = \lambda |A|$$
, так как λ можно сразу вынести

Линейность определителя по столбиу

Доказательство. Это утверждение сводится к утверждению про строки путем транспонирования

Транспонируем матрицу, определитель не меняется, затем применяем одно из двух свойств из предложения о линейности определителя по строке и потом снова транспонируем.

Cnedcmeue: Определитель с нулевой строкой или нулевым столбцом равен нулю. Это просто вытекает из второго свойства в предложении о линейности определителя по строке.

18 Кососимметричность определителя по строкам и столбцам

Предложение.

Пусть A - матрица, в которой совпадают i-ая u j-ая строки(i-ый u j-ый столбцы $), i \neq j$. Тогда |A|=0

Доказательство. Рассмотрим отображение из множества четных перестановок, в множество нечетных

$$A_n \longrightarrow S_n \setminus A_n$$

 $\sigma \longmapsto \sigma au_{ii}$ - биекция

$$|A| = \sum_{\sigma \in A_n} \prod_{k=1}^n a_{k,\sigma(k)} - \sum_{\sigma \in S_n \setminus A_n} \prod_{k=1}^n a_{k,\sigma(k)} = \sum_{\sigma \in A_n} \prod_{k=1}^n a_{k,\sigma(k)} - \sum_{\sigma \in A_n} \prod_{k=1}^n a_k (\sigma \tau_{ij})(k) =$$

$$\sum_{\sigma \in A_n} \left(\prod_{k=1}^n a_{k,\sigma(k)} - \prod_{k=1}^n a_{k,\sigma\tau_{ij}(k)} \right) = \circledast$$

Заметим, что:

$$a_{i,\sigma\tau_{ij}(i)} = a_{i,\sigma(j)} = a_{j,\sigma(j)}$$

$$a_{j,\sigma\tau_{ij}(j)} = a_{j,\sigma(i)} = a_{i,\sigma(i)}$$

$$* = \sum_{\sigma \in A_n} (0 - 0) = 0$$

Следствие: Кососимметричность определителя по столбцу. Проверяется путем транспонирования.

19 Поведение определителя при элементарных преобразованиях матрицы

Предложение.

- 1. При $\Im\Pi$ строк (столбцов) I типа определитель не изменяется.
- 2. При ЭП строк (столбцов) II типа определитель меняет знак.

3. При ЭП строк (столбцов) III типа определитель умножается на ε .

Доказательство.

3. Знаем (линейность)

1.
$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_n \end{pmatrix}, \quad A_i - i$$
-ая строка.

$$A' = \tau_{ij}(\lambda) \cdot A = \begin{pmatrix} A_1 \\ \vdots \\ A_i + \lambda \cdot A_j \\ \vdots \\ A_n \end{pmatrix}$$

$$|A'| = \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ \lambda \cdot A_j \\ \vdots \\ A_n \end{vmatrix} = |A| + \lambda \cdot \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} = |A| + \lambda \cdot |0| = |A|$$

$$2. \ A' = \begin{pmatrix} A_1 \\ \vdots \\ A_j \text{ (i-as)} \\ \vdots \\ A_i \text{ (j-as)} \\ \vdots \\ A_n \end{pmatrix}$$

Пусть
$$B = \begin{pmatrix} A_1 \\ \vdots \\ A_i + A_j \text{ (i-ая)} \\ \vdots \\ A_i + A_j \text{ (j-ая)} \\ \vdots \\ A_n \end{pmatrix}$$

$$0 = |B| = \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ A_i \\ \vdots \\ A_i + A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ A_i \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_i \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_j \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_1 \\ \vdots \\ A_n \end{vmatrix} + \begin{vmatrix} A_$$

Замечание Утверждение про столбцы получается через транспонирование.

20 Критерий обратимости матрицы в терминах определителя

Предложение. K - поле, матрица $A \in M(n,K)$ обратима $\iff |A| \neq 0$

Доказательство.

" \Longrightarrow ": $A \in GL(n, K)$

 $A=P_1\dots P_m, P_i$ - элементарные матрицы

Значит A получается из единичной матрицы m элементарными преобразованиями

 $|E_n| \neq 0 \Longrightarrow |A| \neq 0$, так как при элементарном прекобразовании из не нуля получить ноль нельзя.

"<е": Пусть
$$A \notin GL(n,K)$$
. Тогда $A = PDQ$, причем $D = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$, где $r < n$

Тогда |D|=0, так как в D есть нулевая строка $\Longrightarrow |A|=0$, так как из нуля элементарными преобразованиями не ноль не получить.

Пришли к противоречию. Значит $A \in GL(n, K)$.

21 Определитель произведения матриц

Предложение. Пусть $A, B \in M(n, K).K$ - поле. Тогда $|AB| = |A| \cdot |B|$

Доказательство.

1. Пусть $A \notin GL(n, K)$

 \exists элементарные матрицы $P_1,\ldots,P_m:P_1\ldots P_mA$ - ступенчатая матрица с менее, чем n ненулевыми строками (Иначе $P_1\ldots P_mAQ_1\ldots Q_l=E_{m p}^{m p}\Longrightarrow A\in GL(n,K)$)

 $\Longrightarrow P_1 \dots P_m AB$ содержит нулевую строку

$$P_1 \dots P_m AB \notin GL(n,K) \Longrightarrow AB \notin GL(n,K)$$

$$\begin{cases} |AB| = 0 \\ |A| \cdot |B| = 0, \text{ так как } |A| = 0 \end{cases} \implies |AB| = |A| \cdot |B|$$

2. Пусть $A \in GL(n,K) \Longrightarrow A = P_1 \dots P_m$, где P_i - элементарные матрицы.

Воспользуемся индукцией по m

База: m = 0 $A = E_n$

$$|AB| = |E_nB| = |B| = |E_n| \cdot |B| = |A| \cdot |B|$$

Переход $m-1 \longmapsto m$: $|AB| = |P_1 \cdot P_2 \dots P_m B| = \lambda_1 \cdot |P_2 \dots P_n B| \stackrel{\text{ИП}}{=} \circledast$,

где
$$\lambda_1 = \begin{cases} 1, \text{ если } P_1 = T_{ij}(\lambda) \\ -1, \text{ если } P_1 = S_{ij} \end{cases} = |P_1|$$
 $\varepsilon, \text{ если } P_1 = D_i(\varepsilon)$

$$\stackrel{\text{MII}}{=} \lambda_1 \cdot |P_2 \dots P_n| \cdot |B| = |P_1 P_2 \dots P_n| \cdot |B| = |A| \cdot |B|$$

22 Определитель блочно-треугольной матрицы

Предложение. (Определитель блочно-верхнетреугольной матрицы)

$$A = \begin{pmatrix} B & * \\ 0 & C \end{pmatrix}, \text{ ede } B \in M(m,R), \ C \in M(n-m,R)$$

$$\Longrightarrow |A| = |B| \cdot |C|$$

Доказательство. $\rho \in S_m, \sigma \in S_{n-m}$

Введем
$$[\rho, \sigma] \in S_n$$
 $[\rho, \sigma](j) = \begin{cases} \rho(j), j \leqslant m \\ \sigma(j-m) + m, j \geqslant m+1 \end{cases}$

$$inv([\rho,\sigma]) = inv \ \rho + inv \ \sigma$$

$$sgn([\rho,\sigma]) = sgn \ \rho \cdot sgn \ \sigma$$

$$|A| = \sum_{\pi \in S_n} sgn \ \pi \cdot \prod_{i=1}^n a_{i,\pi(i)} = \circledast$$

Если $\exists i \geqslant m+1 : \pi(i) \leqslant m \Longrightarrow a_{i,\pi(i)} = 0$

Сумму берем по тем π , что переводит числа от m+1 до n в числа m+1 до n

$$\textstyle \sum_{\rho \in S^{\bullet}_{\mathbf{n}}} \sum_{\sigma \in S_{n-m}} sgn[\rho,\sigma] \prod_{i=1}^n a_{i,[\rho,\sigma](i)} = \sum_{\rho \in S^{\bullet}_{\mathbf{n}}} \sum_{\sigma \in S_{n-m}} sgn \ \sigma \cdot sgn \ \rho \cdot \prod_{i=1}^m a_{i,\rho(i)} \prod_{i=1}^{n-m} a_{m+i,m+\sigma(i)} = \sum_{\rho \in S^{\bullet}_{\mathbf{n}}} \sum_{\sigma \in S_{n-m}} sgn \ \sigma \cdot sgn \ \rho \cdot \prod_{i=1}^m a_{i,\rho(i)} \prod_{i=1}^{n-m} a_{m+i,m+\sigma(i)} = \sum_{\sigma \in S_{n-m}} sgn \ \sigma \cdot sgn \ \rho \cdot \prod_{i=1}^m a_{i,\rho(i)} \prod_{i=1}^n a_{m+i,m+\sigma(i)} = \sum_{\sigma \in S_{n-m}} sgn \ \sigma \cdot sgn \ \rho \cdot \prod_{i=1}^m a_{i,\rho(i)} \prod_{i=1}^n a_{i$$

$$\left(\sum_{\rho \in S_n} sgn \ \rho \prod_{i=1}^m\right) \left(\sum_{\rho \in S_{n-m}} sgn \ \sigma \prod_{i=1}^{n-m} a_{m+i,m+\sigma(i)}\right) = |B|$$

Cnedcmeue:
$$A = \begin{pmatrix} B & 0 \\ * & C \end{pmatrix} \Longrightarrow |A| = |B| \cdot |C|$$

Доказательство.
$$|A| = \begin{vmatrix} A^T \end{vmatrix} = \begin{vmatrix} B^T & * \\ 0 & C^T \end{vmatrix} = |B^T| \cdot |C^T| = |B| \cdot |C|$$

Cnedcmeue:
$$A = \begin{pmatrix} a_{11} & * \\ & \ddots & \\ 0 & & a_{nn} \end{pmatrix} \Longrightarrow |A| = a_{11} \dots a_{nn}$$

Доказательство. Воспользуемся индукцией по n

База: n = 1 - тривиально

Переход:
$$|A| \stackrel{\text{предл.}}{=} \begin{vmatrix} a_{11} & * \\ & \ddots & \\ 0 & a_{n-1,n-1} \end{vmatrix} \cdot a_{nn} \stackrel{\text{ИП}}{=} a_{11} \dots a_{n-1,n-1} \cdot a_{nn}$$

23 Определитель матрицы с почти нулевой строкой

Предложение.

$$A = \begin{pmatrix} \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & m & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \end{pmatrix},$$

m — элемент на пересечении i-ой строки и j-ого столбца.

Тогда $|A| = (-1)^{i+j} \cdot m \cdot |M_{ij}|$, где $|M_{ij}|$ — матрица, полученная путём вычёркивания из A i-ой строки u j-ого столбца.

 $|M_{ij}|$ — минор, дополненный к элементу т.

Доказательство. 1)
$$i = j = 1$$
, т.е. $A = \begin{pmatrix} m & 0 & \dots & 0 \\ \vdots & & M_{11} \end{pmatrix}$

$$|A| = m \cdot |M_{11}| = (-1)^{1+1} \cdot m \cdot |M_{11}|$$

2) Общий случай.

$$|A| = (-1)^{i-1} \cdot (-1)^{j-1} \cdot |A'| = (-1)^{i+j} \cdot m \cdot |M_{ij}|$$

$$A' = \begin{pmatrix} m & 0 & \dots & 0 \\ \vdots & & M_{ij} \end{pmatrix}$$

24 Разложение определителя по строке (столбцу)

Определение. $A_{ij} = (-1)^{i+j} \cdot |M_{ij}|$ называется алгебраическим дополнением к элементу в позиции (i,j).

Предложение. Пусть $A = (a_{ij}) \in M(n, R)$

$$Tor \partial a |A| = a_{k1}A_{k1} + \dots + a_{kn}A_{kn}, \quad 1 \leqslant k \leqslant n$$

Доказательство.
$$|A|=\begin{vmatrix} \vdots & \dots & \vdots \\ a_{k1} & \dots & a_{kn} \\ \vdots & \dots & \vdots \end{vmatrix}=$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \dots & \vdots \\ a_{k1} & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \dots & \vdots \\ 0 & a_{k2} & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} + \cdots + \begin{vmatrix} a_{11} & \dots & a_{1(n-1)} & a_{1n} \\ \vdots & \dots & \vdots & \vdots \\ 0 & \dots & 0 & a_{nn} \\ \vdots & \dots & \vdots & \vdots \\ a_{n1} & \dots & a_{n(n-1)} & a_{nn} \end{vmatrix} = a_{k1} \cdot A_{k1} + \cdots + a_{nk} \dots A_{nk}$$

 $\underline{\it Замечание}$ Аналогично выглядит разложение определителя по $\it k$ -му столбцу.

$$|A| = a_{1k} \cdot A_{1k} + \dots + a_{nk} \cdot A_{nk}$$

Лемма. О фальшифом разложении определителя.

Пусть
$$1 \leqslant i, j \leqslant n; i \neq j; A \in M(n, R)$$

Тогда
$$a_{i1} \cdot A_{j1} + \dots + a_{in} \cdot A_{jn} = 0$$

Доказательство.

$$A = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_j \\ \vdots \\ A_n \end{pmatrix}, A' = \begin{pmatrix} A_1 \\ \vdots \\ A_i \\ \vdots \\ A_i \ (j\text{-as}) \\ \vdots \\ A_n \end{pmatrix}$$

$$0 = |A'| = a_{i1} \cdot A_{j1} + \dots + a_{in} \cdot A_{jn}$$

25 Взаимная матрица. Явный вид обратной матрицы

Определение. Пусть $A \in M(n,R)$

Взаимная (присоединённая, союзная) матрица
$$\widetilde{A} = \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \dots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix}$$

 A_{ji} — алгебраическое дополнение. Стоит на позиции (i, j).

Предложение.
$$A \cdot \widetilde{A} = \widetilde{A} \cdot A = |A| \cdot E_n = \begin{pmatrix} |A| & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & |A| \end{pmatrix}$$

Доказательство.
$$(A \cdot \widetilde{A})_{ij} = a_{i1}A_{j1} + a_{i2}A_{j2} + \dots + a_{in}A_{jn} = \begin{cases} |A|, \ (i=j) \\ 0, \ (i \neq j) \end{cases}$$

Пояснение: Мы здесь пользуемся разложением по строке, которое равно определителю, и леммой о фальшивом разложении, при котором сумма равна θ .

Замечание Для $\widetilde{A} \cdot A = |A| \cdot E_n$ — аналогично, используя разложение по столбцу

*Следствие:*Пусть $A \in M(n,K), K$ — поле, $|A| \neq 0$ (для кольца $|A| \in R^*$)

Тогда
$$A^{-1}=|A|^{-1}\cdot\widetilde{A}$$

Доказательство. $A\cdot |A|^{-1}\cdot \widetilde{A}=E_n$

$$|A|^{-1} \cdot \widetilde{A} \cdot A = E_n$$

 $\pmb{Cnedcmeue:}|A|\in R^*\Longrightarrow A\in GL(n,R)$ (Доказывается аналогично)

<u>Замечание</u> Верно и обратное. $A \in GL(n,R) \Longrightarrow |A| \in R^*$

Доказательство. $A^{-1} \cdot A = A \cdot A^{-1} = E_n$

$$|A^{-1}\cdot A| \stackrel{*}{=} |A^{-1}|\cdot |A| = |A\cdot A^{-1}| \stackrel{*}{=} |A|\cdot |A^{-1}| = 1$$

* — проверили только для поля.

$$\Longrightarrow |A| \in R^*$$

26 Линейное пространство. Определение, примеры, простейшие свойства

Определение. Пусть K – некоторое поле, V – некоторое мн-во. На V задана структура **линейного пространства** над K, если заданы:

- 1. "+" : $V \times V \to V$ (сложение)
- 2. ": $": K \times V \to V$ (умножение на скаляр)

Элементы V обычно называются векторами и обозначаются латинскими буквами, а элементы K называются скалярами и обозначаются греческими. Например, $v_1 + v_2$ и $\alpha \cdot v$.

Заданные операции должны удовлетворять следующим аксиомам:

- 1. (V, +) абелева группа
- 2. Закон дистрибутивности:

$$\alpha \cdot (v_1 + v_2) = \alpha v_1 + \alpha v_2$$

3. Ещё один закон дистрибутивности:

$$(\alpha_1 + \alpha_2) \cdot v = \alpha_1 v + \alpha_2 v$$

4. Ассоциативность умножения:

$$\alpha_1(\alpha_2 \cdot v) = (\alpha_1 \alpha_2) \cdot v$$

5. Умножение на единичный скаляр:

$$1 \cdot v = v$$

Примеры:

1. Матрицы фиксированного размера M(m, n, K).

Особый случай — матрицы-столбцы или матрицы-строки. Т.к. они устроены совершенно одинаково, условимся использовать матрицы-столбцы и будем обозначать их так: $K^m := M(m,1,K)$.

Также будем называть это арифметическим m-мерным пространством над K.

2. Нуль-простанство $V = \{\overline{0}\} =: 0$.

Операции:

$$\overline{0} + \overline{0} := \overline{0}$$

$$\alpha\cdot\overline{0}:=\overline{0}$$

3. Многочлены K[X].

Можно брать многочлены степени, ограниченной сверху. Например:

$$V := \{ f \in K[X] \mid \deg f \leqslant 5 \}$$

4. $K := \mathbb{R}, V := \mathbb{R}_{>0}$

Операции:

 $v_1 + v_2 := v_1 v_2$ – сложение векторов – умножение соотв. чисел;

 $\alpha \cdot v := v^{\alpha}$ – умножение на скаляр – возведение соотв. вектору числа в степень числа, соотв. скаляру.

Доказательство.

- (a) То, что (V, +) абелева группа, известно;
- (b) Дистрибутивность: $(v_1v_2)^{\alpha} = v_1^{\alpha} + v_2^{\alpha}$
- (c) Дистрибутивность 2: $v^{\alpha_1+\alpha_2} = v^{\alpha_1}v^{\alpha_2}$
- (d) Ассоциативность: $(v^{\alpha_2})^{\alpha_1} = v^{\alpha_1 \alpha_2}$
- (e) $v^1 = v$
- 5. $K := \mathbb{F}_2 = \mathbb{Z}/(2) = \{0, 1\}, M$ любое мн-во, $V := 2^M$.

Операции:

$$v_1 + v_2 := v_1 \triangle v_2 = (v_1 \setminus v_2) \cup (v_2 \setminus v_1)$$

$$1 \cdot v := v$$

$$0 \cdot v := \varnothing$$

- Доказательство.
- (a) То, что (V, +) абелева группа, уже проверяли;
- (b) $v_1 + v_2 = 1 \cdot (v_1 + v_2) = 1 \cdot v_1 + 1 \cdot v_2 = v_1 + v_2;$ $\emptyset = 0 \cdot (v_1 + v_2) = 0 \cdot v_1 + 0 \cdot v_2 = \emptyset \triangle \emptyset = \emptyset;$
- (c) $\varnothing = 0 \cdot v = (1+1) \cdot v = 1 \cdot v + 1 \cdot v = v \triangle v = \varnothing;$ $v = 1 \cdot v = (1+0) \cdot v = 1 \cdot v + 0 \cdot v = v \triangle \varnothing = v;$ $\varnothing = (0+0) \cdot v = 0 \cdot v + 0 \cdot v = \varnothing \triangle \varnothing = \varnothing;$
- (d) $0 \cdot v = 0 \cdot (1 \cdot v) = (0 \cdot 1) \cdot v = 0 \cdot v;$ $1 \cdot v = 1 \cdot (1 \cdot v) = (1 \cdot 1) \cdot v = 1 \cdot v;$ $\varnothing = 1 \cdot \varnothing = 1 \cdot (0 \cdot v) = (1 \cdot 0) \cdot v = 0 \cdot v = \varnothing;$ $\varnothing = 0 \cdot (0 \cdot v) = (0 \cdot 0) \cdot v = 0 \cdot v = \varnothing;$
- (e) $1 \cdot v = v$ по определению.

Некоторые свойства линейных пространств:

$$1. \ 0 \cdot v = \overline{0}$$

Доказательство.

$$0 \cdot v = (0+0) \cdot v = 0 \cdot v + 0 \cdot v$$

$$0 \cdot v = 0 \cdot v - 0 \cdot v = \overline{0}$$

$$2. \ \alpha \cdot \overline{0} = \overline{0}$$

Доказательство.

$$\alpha \cdot \overline{0} = \alpha \cdot (\overline{0} + \overline{0}) = \alpha \cdot \overline{0} + \alpha \cdot \overline{0}$$

$$\overline{0} = \alpha \cdot \overline{0}$$

3. $\alpha v = \overline{0} \Rightarrow \alpha = 0$ или $v = \overline{0}$

Доказательство. Если $\alpha = 0$, см. первое св-во. Пусть $\alpha \neq 0$.

$$\overline{0} = \alpha v \Rightarrow \overline{0} = \alpha^{-1} \cdot \overline{0} = \alpha^{-1}(\alpha v) = (\alpha^{-1}\alpha)v = 1 \cdot v = v$$

4. $(-\alpha)v = -\alpha v$

Доказательство.

$$(-\alpha)v + \alpha v = ((-\alpha) + \alpha)v = 0 \cdot v = \overline{0}$$

27 Система образующих линейного пространства, свойства. Подпространство

Определение. $V - \Pi\Pi/K, v_1, ..., v_n \in V, \alpha_1, ..., \alpha_n \in K$.

 $\alpha_1 v_1 + \dots + \alpha_n v_n$ – **линейная комбинация** векторов v_1, \dots, v_n с коэффициентами $\alpha_1, \dots, \alpha_n$.

Определение. $V - \Pi\Pi/K, v_1, \dots, v_n \in V. \ 0 \cdot v_1 + 0 \cdot v_2 + \dots + 0 \cdot v_n$ — **тривиальная** линейная комбинация.

Определение. Множество всех линейных комбинаций называется линейной оболочкой.

 $\text{Lin}(v_1,...,v_n) := \{\alpha_1 v_1 + \cdots + \alpha_n v_n \mid \alpha_1,\ldots,\alpha_n \in K\}$ – линейная оболочка векторов v_1,\ldots,v_n .

Определение. $V - \Pi\Pi/K, v_1, ..., v_n \in V$.

Если $\text{Lin}(v_1,\ldots,v_n)=V,$ то v_1,\ldots,v_n – система образующих (для) V или порождающая система.

Предложение. Пусть $W = \text{Lin}(v_1, \dots, v_n), \ v_n \in \text{Lin}(v_1, \dots, v_{n-1}).$ Тогда $W = \text{Lin}(v_1, \dots, v_{n-1}).$

Доказательство.

$$W \supset \operatorname{Lin}(v_1, \ldots, v_{n-1})$$
:

Линейную комбинацию n-1 векторов можно рассматривать как линейную комбинацию n векторов, где n-ый вектор имеет нулевой коэффициент:

$$\alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1} = \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1} +$$

$$W \subset \operatorname{Lin}(v_1, \dots, v_{n-1})$$
:

 $v_n \in \text{Lin}(v_1, \dots, v_{n-1}) \Rightarrow v_n = \beta_1 v_1 + \dots + \beta_{n-1} v_{n-1}$. Поэтому любую линейную комбинацию n векторов можно представить в виде линейной комбинации n-1 векторов:

$$\alpha_1 v_1 + \dots + \alpha_n v_n = \alpha_1 v_1 + \dots + \alpha_{n-1} v_{n-1} + \alpha_n \cdot (\beta_1 v_1 + \dots + \beta_{n-1} v_{n-1}) = (\alpha_1 + \alpha_n \beta_1) \cdot v_1 + (\alpha_2 + \alpha_n \beta_2) \cdot v_2 + \dots + (\alpha_{n-1} + \alpha_n \beta_{n-1}) \cdot v_{n-1}$$

Определение. V – **конечномерное** линейное пространство, если $\exists n \in \mathbb{N} : \exists v_1, \dots, v_n \in V : V = \operatorname{Lin}(v_1, \dots, v_n)$.

Примеры:

- 1. M(m,n,K) конечномерное $\Pi\Pi/K$, т.к. $M(m,n,K) = \text{Lin}(e_{ij} \mid i=1..m,j=1..n)$, где e_{ij} матричная единица.
- 2. K[X] бесконечномерное.

Доказательство. Пусть v_1, \ldots, v_n – система образующих. Пусть $d := \max\{\deg v_i \mid i = 1..n\}$. Тогда $\max\{\deg v \mid v \in \operatorname{Lin}(v_1, \ldots, v_n)\} = d$, но K[X] содержит многочлены степени d+1.

Определение. $W \subset V$ называется **линейным подпространством** V, если выполняются след. свойства:

- 1. $\overline{0} \in W$ содержит 0;
- 2. $W + W \subset W$ замкнуто относительно сложения;
- 3. $KW \subset W$ замкнуто относительно умножения.

<u>Замечание</u> W – подгруппа относительно сложения.

Доказательство. Наличие нуля и замкнутость относительно сложения выполняются. Ещё нужно для подгруппы, чтобы были противоположные элементы. Но т.к. K – поле, то наличие $-w = (-1) \cdot w$ (это равенство было доказано ранее) гарантируется третьим свойством.

Примеры:

- 1. $0 = \overline{0}, V$ тривиальные подпространства V.
- 2. $V = K^3 = M(1, 3, K);$

$$W = \left\{ \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} \mid \alpha + \beta + \gamma = 0 \right\}$$
 — линейное подпространство V .

Более того,
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \\ -\alpha - \beta \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
. А значит $W = \operatorname{Lin}(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix})$.

3. $\operatorname{Lin}(v_1,\ldots,v_n)$ – линейная оболочка каких-то векторов из линейного пространства тоже является линейным подпространством.

Можно говорить не "линейная оболочка", а "порождаемое векторами подпространство".

4.
$$V = K[X];$$
 $W_d = \{f \mid \deg f \leqslant d\}$ — лин. подпр-во $V.$

Более того,
$$W_d = \text{Lin}(1, x, x^2, \dots, x^d)$$
.

28 Линейно зависимые семейства, свойства

Предложение.

Пусть V – ЛП/K. $v_1,\ldots,v_n\in V$. Эквивалентны следующие два свойства:

- 1. $\exists \alpha_1, \dots, \alpha_n \in K$, т.ч. $\exists i : \alpha_i \neq 0$ и $\alpha_1 v_1 + \dots + \alpha_n v_n = 0$. Другими словами, сущ. нетривиальная линейная комбинация данных векторов, равная 0.
- 2. $\exists j \in \{1..n\} : v_j \in \text{Lin}(v_i \mid i \neq j)$. Другими словами, v_j является линейной комбинацией остальных векторов.

Доказательство.

" $1 \Rightarrow 2$ ":

$$\exists j: \alpha_j \neq 0;$$

$$\alpha_1 v_1 + \dots + \alpha_n v_n = 0,$$

$$\alpha_1 v_1 + \dots + \alpha_{j-1} v_{j-1} + \alpha_{j+1} v_{j+1} + \dots + \alpha_n v_n = -\alpha_j v_j;$$

Т.к. $\alpha_j \neq 0$, мы можем поделить на α_j ;

$$v_{j} = \left(-\frac{\alpha_{1}}{\alpha_{j}}\right)v_{1} + \dots + \left(-\frac{\alpha_{j-1}}{\alpha_{j}}\right)v_{j-1} + \left(-\frac{\alpha_{j+1}}{\alpha_{j}}\right)v_{j+1} + \dots + \left(-\frac{\alpha_{n}}{\alpha_{j}}\right)v_{n} \in \operatorname{Lin}(v_{1}, \dots, v_{n})$$

" $2 \Rightarrow 1$ ":

$$v_j \in \operatorname{Lin}(v_i \mid i \neq j) \Rightarrow v_j = \sum_{i \neq j} \beta_i v_i;$$

$$\sum_{i \neq i} \beta_i v_i - v_j = \sum_{i=1}^n \beta_i v_i = 0$$
, где $\beta_j = -1$.

Получаем нетривиальную линейную комбинацию, т.к. при векторе v_j коэффициент $1 \neq 0$.

Определение.

 v_1, \dots, v_n – **линейно зависимая система** (ЛЗС), если выполняются условия из предложения. v_1, \dots, v_n – **линейно независимая система** (ЛНС) в противном случае.

Предложение.

1.
$$v_1, \ldots, v_n - \text{JI3C} \Rightarrow \forall \sigma \in S_n \ v_{\sigma(1)}, \ldots, v_{\sigma(n)} - \text{JI3C}.$$

2. С ЛЗС:

$$v_1, \ldots, v_n - \text{JI3C}, v \in V \Rightarrow v_1, \ldots, v_n, v - \text{JI3C}.$$

С ЛНС:

$$v_1, \ldots, v_n - \Pi HC \Rightarrow \forall i = 1 \ldots n \ v_1, \ldots, v_{i-1}, v_{i+1}, \ldots, v_n - \Pi HC.$$

3.
$$\exists i : v_i = 0 \Rightarrow v_1, \dots, v_n - \text{JI3C}.$$

4. v_1, \ldots, v_n – ЛНС, $v \in V$ Тогда: v_1, \ldots, v_n, v – ЛЗС $\iff v \in \text{Lin}(v_1, \ldots, v_n)$.

Доказательство.

- 1. Тривиально.
- 2. С ЛЗС:

 $\exists \alpha_1, \dots, \alpha_n \in K \mid \exists \alpha_i \neq 0$ и $\alpha_1 v_1 + \dots + \alpha_n v_n = 0$ – нетрив. ЛК $\Longrightarrow \alpha_1 v_1 + \dots + \alpha_n v_n + 0 \cdot v = 0$ – тоже нетрив. ЛК.

С ЛНС:

Аналогично.

- 3. $1 \cdot v_i + \sum_{j \neq i} 0 \cdot v_j = 0$ нетривиальная ЛК.
- 4. "<=":

По определению ЛЗС.

"**⇒**"

 $v_1, \dots, v_n, v - \Pi \exists C \Rightarrow \exists \alpha_1, \dots, \alpha_{n+1} \in K \mid \exists \alpha_i \neq 0 \text{ и } \alpha_1 v_1 + \dots + \alpha_n v_n + \alpha_{n+1} v = 0.$ Предположим, что $\alpha_{n+1} = 0 \Rightarrow \alpha_1 v_1 + \dots + \alpha_n v_n = 0$ – нетрив. $\Pi K \Rightarrow v_1, \dots, v_n$ – $\Pi \exists C$. Противоречие. Таким образом, $\alpha_{n+1} \neq 0$, значит $v = \sum_{i=1}^n \frac{-\alpha_i}{\alpha_{n+1}} v_i \Rightarrow v \in \text{Lin}(v_1, \dots, v_n)$.

29 Теорема о линейной зависимости линейных комбинаций

Теорема.

Пусть $v_1, \ldots, v_m \in V, w_1, \ldots, w_n \in \text{Lin}(v_1, \ldots, v_m), n > m$. Тогда w_1, \ldots, w_n – ЛЗС.

Доказательство. Индукция по m.

База. m = 1:

 $w_1, \ldots, w_n \in \operatorname{Lin}(v_1) \Rightarrow w_1 := \alpha v_1.$

Если $\alpha = 0$, то $w_1 = 0 \Rightarrow w_1, \dots, w_n$ – ЛЗС по доказанному ранее свойству.

Если $\alpha \neq 0$, то $v_1 = \alpha^{-1}w_1 \Rightarrow v_1 \in \text{Lin}(w_1) \Rightarrow w_1, \dots, w_n \in \text{Lin}(w_1) \Rightarrow w_1, w_2 - \text{ЛЗС} \Rightarrow w_1, \dots, w_n - \text{ЛЗС}$ по доказанному ранее свойству.

Переход. $m-1 \longrightarrow m$:

$$w_1 = \alpha_{11}v_1 + \dots + \alpha_{1m}v_m,$$

 $w_2 = \alpha_{21}v_1 + \dots + \alpha_{2m}v_m,$
 \vdots
 $w_n = \alpha_{n1}v_1 + \dots + \alpha_{nm}v_m.$

Рассмотрим случаи:

•
$$\alpha_{1m} = \alpha_{2m} = \dots = \alpha_{nm} = 0$$

 $\Rightarrow w_1, \dots, w_n \in \text{Lin}(v_1, \dots, v_{m-1}).$
 $n > m > m - 1 \xrightarrow{\text{MII}} w_1, \dots, w_n - \text{J}3C.$

•
$$\exists j: \alpha_{jm} \neq 0$$
. НУО, $j=n$.
Тогда $w_i - \frac{\alpha_{im}}{\alpha_{nm}} w_n \in \mathrm{Lin}(v_1, \dots, v_{m-1})$, т.к. мы занулили коэф. при v_m , $n > m \Rightarrow n-1 > m-1 \stackrel{\Pi\Pi}{\Longrightarrow} w_1 - \frac{\alpha_{1m}}{\alpha_{nm}} w_n, \dots, w_{n-1} - \frac{\alpha_{(n-1)m}}{\alpha_{nm}} w_n - \Pi$ 3С $\Rightarrow \exists \beta_1, \dots, \beta_{n-1} \mid \exists \beta_i \neq 0$ и $\sum_{i=1}^{n-1} \beta_i (w_i - \frac{\alpha_{im}}{\alpha_{nm}} w_n) = 0$ $\Rightarrow \sum_{i=1}^{n-1} \beta_i (w_i - \frac{\alpha_{im}}{\alpha_{nm}} w_n) := \beta_1 w_1 + \dots + \beta_{n-1} w_{n-1} + \gamma w_n = 0$, независимо от γ какой-то коэф. $\beta_i \neq 0$ по ИП, поэтому это будет нетривиальная ЛК $w_1, \dots, w_n \Rightarrow w_1, \dots, w_n - \Pi$ 3С.

30 Равносильные определения базиса

Определение. Пусть $V - \Pi\Pi/K$, $e_1, \ldots, e_n \in V$. Набор (e_1, \ldots, e_n) называется базисом линейного пространства V, если $\forall v \in V \ \exists ! \alpha_1, \ldots, \alpha_n \in K : \alpha_1 e_1 + \cdots + \alpha_n e_n = v$, другими словами, любой вектор из пространства единственным образом расскладывается в линейную комбинацию базисных векторов.

Определение. Пусть $V, V' - \Pi\Pi/K$. Отображение $\phi: V \to V'$ называется изоморфизмом линейных пространств, если выполняются два свойства:

- 1. ϕ биекция;
- 2. $\forall v_1, v_2 \in V \ \forall \alpha_1, \alpha_2 \in K \ \phi(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \phi(v_1) + \alpha_2 \phi(v_2)$.

Пример:

$$\phi: M(m,n,k) \to M(n,m,k),$$

 $\phi: A \mapsto A^T,$
 ϕ – изоморфизм ЛП.

Предложение.

Пусть $V - \Pi\Pi/K, e_1, \dots, e_n \in V$. Тогда следующие свойства эквивалентны:

1.
$$e_1, \ldots, e_n$$
 – базис V ;

2.
$$\phi: K^n \to V$$

$$\phi: \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} \mapsto \sum_{i=1}^n \alpha_i e_i$$

$$\phi - \text{изоморфизм ЛП}$$
:

- 3. e_1, \ldots, e_n линейно независимая порождающая система, т.е. e_1, \ldots, e_n ЛНС, и $V = \text{Lin}(e_1, \ldots, e_n)$;
- 4. e_1, \ldots, e_n минимальная порождающая система для V, т.е. нельзя удалить из этого набора ни один вектор так, чтобы система осталась порождающей;
- 5. e_1, \ldots, e_n максимальная линейно независимая система, т.е. нельзя добавить ни один вектор из V так, чтобы система осталась линейно независимой.

Доказательство.

- $2\Rightarrow 1: \ \phi$ биекция $\Rightarrow \forall v\in V \ \exists! \alpha_1,\ldots,\alpha_n\in K: \alpha_1e_1+\cdots+\alpha_ne_n=v,$ что по определению означает, что e_1,\ldots,e_n базис V.
- $1 \Rightarrow 2$: $\phi(\alpha a + \beta b) = \alpha \phi(a) + \beta \phi(b)$ очевидно выполняется для любых $\alpha_1, \dots, \alpha_n \in K$.

Докажем теперь, что ϕ – биекция. По опр. базиса $\forall v \in V \exists ! \alpha_1, \dots, \alpha_n \in K : \alpha_1 e_1 + \dots + \alpha_n e_n = v$. Заметим, что по сути $\alpha_1, \dots, \alpha_n$ – это $\begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$, а $\alpha_1 e_1 + \dots + \alpha_n e_n$ – это $\phi \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$.

Т.е. из опр. базиса видно, что каждому вектору из V сопоставлен ровно один столбец из K^n , значит ϕ – биекция.

- $1\Rightarrow 3$: Раз любой вектор раскладывается в линейную комбинацию базисных векторов, очевидно, что e_1,\dots,e_n порождающая система. Проверим линейную независимость. Рассмотрим $\alpha_1e_1+\dots+\alpha_ne_n=\overline{0}=0\cdot e_1+\dots+0\cdot e_n$. Т.к. $\overline{0}$ это тоже вектор, то в силу единственности разложения $\alpha_1=\dots=\alpha_n=0$. Таким образом, не существует нетривиальной ЛК e_1,\dots,e_n , равной $\overline{0}$, значит e_1,\dots,e_n ЛНС.
- $3 \Rightarrow 1$: Т.к. это порождающая система, необходимо доказать только единственность. Пусть $\alpha_1 e_1 + \cdots + \alpha_n e_n = \beta_1 e_1 + \cdots + \beta_n e_n$. Перенесём всё в левую часть и воспользуемся законом дистрибутивности. $(\alpha_1 \beta_1)e_1 + \cdots + (\alpha_n \beta_n)e_n = \overline{0}$. e_1, \ldots, e_n ЛНС $\Rightarrow \alpha_1 \beta_1 = \cdots = \alpha_n \beta_n = 0 \Rightarrow \alpha_1 = \beta_1, \ldots, \alpha_n = \beta_n$.
- $3\Rightarrow 4$: Предположим, что $e_1,\ldots,e_{i-1},e_{i+1},\ldots,e_n$ порождающая система. НУО, i=n. Т.е. $V=\operatorname{Lin}(e_1,\ldots,e_{n-1})$. Но тогда $e_n\in\operatorname{Lin}(e_1,\ldots,e_{n-1})\Rightarrow e_1,\ldots,e_n$ ЛЗС. Противоречие.
- $4 \Rightarrow 3$: Предположим, что e_1, \ldots, e_n ЛЗС. НУО, $e_n \in \text{Lin}(e_1, \ldots, e_{n-1})$. Тогда $V = \text{Lin}(e_1, \ldots, e_n) = \text{Lin}(e_1, \ldots, e_{n-1}) \Rightarrow e_1, \ldots, e_{n-1}$ порождающая система. Противоречие.
- $3 \Rightarrow 5$: Это порождающая система $\Rightarrow V = \text{Lin}(e_1, \dots, e_n) \Rightarrow \forall v \in V \ v \in \text{Lin}(e_1, \dots, e_n) \Rightarrow e_1, \dots, e_n, v \text{ЛЗС}.$
- $5\Rightarrow 3$: Возьмём $v\in V.\ e_1,\ldots,e_n$ ЛНС, но e_1,\ldots,e_n,v ЛЗС $\Rightarrow v\in \mathrm{Lin}(e_1,\ldots,e_n)\Rightarrow e_1,\ldots,e_n$ порождающая система.

31 Размерность. Свойства пространств заданной размерности

Предложение.

Пусть $(e_1, \ldots, e_n), (e'_1, \ldots, e'_m)$ – базисы $V - \Pi\Pi/K$. Тогда n = m.

Доказательство. Предположим, что это не так. Пусть n > m. e'_1, \ldots, e'_m – базис $\Rightarrow e_1, \ldots, e_n \in \text{Lin}(e'_1, \ldots, e'_m)$. Но $n > m \Rightarrow$ по теореме о линейной зависимости линейных комбинаций e_1, \ldots, e_n – ЛЗС, но это противоречит 3-ему свойству теоремы о равносильных определениях базиса. Значит, n = m.

Предложение.

Из любой системы образующих $V - \Pi\Pi/K$ – можно выделить базис.

Доказательство. Пусть $V = \text{Lin}(v_1, \dots, v_n)$. Выберем в v_1, \dots, v_n наименьшую по мощности подсистему, являющуюся системой образующих. Другими словами, рассмотрим все подмножества v_1, \dots, v_n , оставим из них только те, что являются системой образующих, и выберем из них подмножество с наименьшим количеством элементов. Это можно сделать, т.к. у конечного множества существует конечное число подмножеств. Получаем минимальную порождающую систему. Значит, по свойству 4 из теоремы о равносильных определениях базиса это базис.

Следствие: У любого конечномерного пространства есть базис.

Определение. Пусть V – конечномерное пространство. Его **размерностью** называется число векторов в любом его базисе. Обозначается она $\dim V$.

Примеры:

- 1. V:=M(m,n,K). Любая матрица $A=(a_{ij})\in V$ преставима в виде линейной комбинации матричных единиц $A=\sum_{i,j}a_{ij}\cdot e_{ij}$. Откуда видно, что e_{11},\ldots,e_{mn} базис V, и dim V=mn.
- 2. $\dim K^n = n$.
- 3. Считается, что dim $\{\overline{0}\}$ = 0.

Лемма.

Пусть $V - \Pi\Pi$, dim $V = n; v_1, \dots, v_N \in V, N > n$. Тогда $v_1, \dots, v_N - \Pi$ 3C.

Доказательство.

Непосредственно из теоремы о линейной зависимости линейных комбинаций.

Предложение.

Пусть V – конечномерное ЛП; v_1, \ldots, v_n – ЛНС. Тогда её можно дополнить до базиса.

Доказательство. Если $V = \operatorname{Lin}(v_1, \dots, v_n)$, то v_1, \dots, v_n – базис по свойству 3 т. о равносильных опр. базиса, иначе $\exists v_{n+1} \in V, v_{n+1} \notin \operatorname{Lin}(v_1, \dots, v_n) \Rightarrow v_1, \dots, v_{n+1}$ – тоже ЛНС. Если $V = \operatorname{Lin}(v_1, \dots, v_{n+1})$, то v_1, \dots, v_{n+1} – базис, иначе повторяем действия.

Пусть $m = \dim V$. Тогда $v_1, \dots, v_{m+1} - \text{ЛЗС} \Rightarrow$ алгоритм завершится.

Следствие:

Пусть $\dim V = n; e_1, \ldots, e_n \in V$. Тогда следующие утверждения эквивалентны:

- 1. e_1, \ldots, e_n базис.
- 2. $e_1, \ldots, e_n \Pi HC$.
- 3. e_1, \ldots, e_n порождающая система.

Доказательство.

 $1 \Rightarrow 2,3$: Очевидно.

 $2\Rightarrow 1$: ЛНС можно дополнить до базиса, но базис состоит из n векторов $\Rightarrow e_1,\dots,e_n$ – базис.

 $3 \Rightarrow 1$: из порождающей системы можно выделить базис, но базис состоит из n векторов $\Rightarrow e_1, \dots, e_n$ – базис.

32 Размерность подпространства. Классификация конечномерных пространств

Предложение.

Пусть $\dim V = n$; $W \subset V$ — подпространство. Тогда:

- 1. W конечномерное; dim W < n.
- 2. $\dim W = n \Rightarrow W = V$.

Доказательство.

1. Предположим, что W — бесконечномерное или $\dim W > n$. Если $W = \{\overline{0}\}$, то тут всё очевидно. Пусть $W \neq \{\overline{0}\}$.

Тогда $\exists w_1 \in W, w_1 \neq \overline{0}.$

Если $n \geqslant 1$, то $\exists w_1 \in W, w_1 \notin \text{Lin}(w_1)$.

Если $n \geqslant 2$, то $\exists w_2 \in W, w_2 \notin \text{Lin}(w_1, w_2)$.

. . .

 $\exists w_n \in W, w_n \notin \operatorname{Lin}(w_1, \dots, w_{n-1}).$

Таким образом w_1, \ldots, w_n – ЛНС и не базис W, т.е. $\text{Lin}(w_1, \ldots, w_n) \subsetneq W$, но $w_1, \ldots, w_n \in V$ и $\dim V = n \Rightarrow w_1, \ldots, w_n$ – базис $V \Rightarrow \text{Lin}(w_1, \ldots, w_n) \subsetneq W \subset V = \text{Lin}(w_1, \ldots, w_n)$. Противоречие.

2. Пусть w_1, \ldots, w_n — базис W. Тогда w_1, \ldots, w_n — ЛНС $\Rightarrow w_1, \ldots, w_n$ — базис $V \Rightarrow V = \text{Lin}(w_1, \ldots, w_n) = W$.

Теорема.

Пусть V, V' – конечномерные ЛП/K. Тогда $V \cong V' \Leftrightarrow \dim V = \dim V'$.

Доказательство.

- "⇒": Пусть e_1, \ldots, e_n базис $V, \phi: V \xrightarrow{\sim} V'$. Возьмём $v' \in V'$. ϕ биекция $\Rightarrow \exists \phi^{-1}$. Пусть $v:=\phi^{-1}(v')$. Пусть $v=\alpha_1e_1+\cdots+\alpha_ne_n$. Тогда $v'=\phi(\alpha_1e_1+\cdots+\alpha_ne_n)=\alpha_1\phi(e_1)+\cdots+\alpha_n\phi(e_n)$. Т.к. ϕ биекция, то $\phi(e_1),\ldots,\phi(e_n)$ различны. Пусть $v'=\beta_1\phi(e_1)+\cdots+\beta_n\phi(e_n)$. Т.к. v' изоморфизм, $v'=\phi(\beta_1e_1+\cdots+\beta_ne_n)$. Т.к. ϕ биекция, $v=\beta_1e_1+\cdots+\beta_ne_n$. Но e_1,\ldots,e_n базис $V\Rightarrow \forall i\ \alpha_i=\beta_i$. Значит, такое разложение v' единственно и найдётся для всякого $v'\Rightarrow\phi(e_1),\ldots,\phi(e_n)$ базис $V'\Rightarrow\dim V'=n=\dim V$.
- " \Leftarrow ": dim $V=\dim V'=n\Rightarrow V\cong K^n$ и $V'\cong K^n$. Пусть $\phi:V\overset{\sim}{\to}K^n$, $\phi':V'\overset{\sim}{\to}K^n$. Тогда Т.к. ϕ и ϕ' изоморфизмы (а значит и биекции). То отн. $(\phi')^{-1}\circ\phi:V\overset{\sim}{\to}V'$ будет изоморфизмом V и V'.

Следствие: Отношение изоморфности конечномерных $\Pi\Pi$ – отношение эквивалентности.

Доказательство.

- 1. Рефлексивность: всегда можно построить автоморфизм, переводящий векторы "1 к 1".
- 2. Симметричность: очевидно, т.к. изоморфизм биекция.
- 3. Транзитивность: пусть V_1, V_2, V_3 конечномерные ЛП/K, $V_1 \cong V_2, V_2 \cong V_3 \Rightarrow \dim V_1 = \dim V_2 = \dim V_3 \Rightarrow \dim V_1 = \dim V_3 \Rightarrow V_1 \cong V_3$.

33 Свойства матриц перехода между базисами

Определение. Пусть e_1, e_2, \ldots, e_n (E) — базис V.

 $v \in V$, тогда по определению базиса $v = \alpha_1 e_1 + \dots + \alpha_n e_n$. Тогда $\alpha_1, \alpha_2, \dots, \alpha_n$ — координаты v в базисе E.

$$[v]_E = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in K^n$$

Определение. $E'=(e'_1,\,e'_2,\,\ldots,\,e'_n),\,[v]_{E'}$ — другой базис, другие координаты вектора v в нём. $e'_j=c_{1j}e_1+\cdots+c_{nj}e_n,\,\,j=1,\ldots,n$

$$C = \begin{pmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ c_{12} & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \dots & \vdots \\ c_{1n} & c_{2n} & \dots & c_{nn} \end{pmatrix}$$

 $[e'_i]_E - j$ -ый столбец матрицы C.

Заметим, что $E' = E \cdot C$.

Пояснение: Вообще мы говорили только об умножении матриц над одним кольцом, но чисто формально можно забить сейчас, так как умеем умножать скаляр на вектор.

Тогда C — матрица перехода от базиса E к E'. Второе обозначение — $M_{E \to E'}$.

Предложение. Пусть $C_1 = M_{E \to E'}, C_2 = M_{E' \to E''} \Longrightarrow M_{E \to E''} = C_1 \cdot C_2$

Доказательство. $E' = E \cdot C_1, E'' = E' \cdot C_2$

$$E'' = (E \cdot C_1) \cdot C_2 = E \cdot (C_1 \cdot C_2), \ E'' = E \cdot M_{E \to E''}$$

$$E$$
 — базис $\Longrightarrow M_{E \to E''} = C_1 \cdot C_2$.

Следствие: $M_{E'\to E} = M_{E\to E'}^{-1}$; в частности, $M_{E\to E'} \in GL(n,k)$.

Доказательство. $M_{E \to E'} \cdot M_{E' \to E} = M_{E \to E} = E_n$

$$M_{E'\to E} \cdot M_{E\to E'} = M_{E'\to E'} = E_n$$

34 Изменение координат вектора при замене базиса

Определение. Пусть e_1, e_2, \ldots, e_n (E) — базис V.

 $v \in V$, тогда по определению базиса $v = \alpha_1 e_1 + \dots + \alpha_n e_n$. Тогда $\alpha_1, \alpha_2, \dots, \alpha_n$ — координаты v в базисе E.

$$[v]_E = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \in K^n$$

Определение. $E'=(e'_1,\,e'_2,\,\ldots,\,e'_n),\,[v]_{E'}$ — другой базис, другие координаты вектора v в нём. $e'_j=c_{1j}e_1+\cdots+c_{nj}e_n,\,\,j=1,\ldots,n$

$$C = \begin{pmatrix} c_{11} & c_{21} & \dots & c_{n1} \\ c_{12} & c_{22} & \dots & c_{n2} \\ \vdots & \vdots & \dots & \vdots \\ c_{1n} & c_{2n} & \dots & c_{nn} \end{pmatrix}$$

 $[e'_i]_E - j$ -ый столбец матрицы C.

Заметим, что $E' = E \cdot C$.

Пояснение: Вообще мы говорили только об умножении матриц над одним кольцом, но чисто формально можно забить сейчас, так как умеем умножать скаляр на вектор.

Тогда C — матрица перехода от базиса E к E'. Второе обозначение — $M_{E \to E'}$.

Предложение. Пусть $X = [v]_E, X' = [v]_{E'}$

$$Tor \partial a \ X = M_{E \to E'} \cdot X$$
.

Доказательство. $v = E \cdot X = E' \cdot X'$ и $E' = E \cdot M_{E \to E'}$.

$$E \cdot X = (E \cdot M_{E \to E'}) \cdot X' = E \cdot (M_{E \to E'} \cdot X')$$

E — базис $\Longrightarrow X = M_{E \to E'} \cdot X'$.

35 Ранг набора векторов. Столбцовый и строчный ранг матрицы

Определение. Ранг набора векторов $v_1, v_2, ..., v_m \in V$:

 $rk(v_1,\,\ldots,\,v_m):=dim\,Lin(v_1,\,\ldots,\,v_m)$ (есть обозначение $rank,\,rg)$

Предложение. $rk(v_1, \ldots, v_m)$ равен максимальному числу линейно независимых (ЛН) векторов среди v_1, \ldots, v_m .

Доказательство. Пусть $r=rk(v_1,\,\ldots,\,v_m)$. Нужно доказать: среди $v_1,\,\ldots,\,v_m$

- 1. можно выбрать r ЛН векторов:
 - $W = Lin(v_1, \ldots, v_m)$. Среди v_1, \ldots, v_m можно выбрать базис (т.к. это порождающая система) это r ЛН векторов.
- 2. нельзя выбрать больше r ЛН векторов:

В W нет ЛНС из более, чем r, векторов.

Определение. $A \in M(m, n, K)$

Столбцовый ранг A — ранг совокупности её столбцов.

Строчный ранг A — ранг совокупности её строк.

<u>Замечание</u> Столбцовый ранг A = строчному рангу A^T . Строчный ранг A = столбцовому рангу A^T .

36 Равенство столбцового и строчного ранга

Предложение. Столбцовый и строчный ранги A не изменяются при элем. преоб. строк и столбцов. (докажем про оба ранга только для строк; для столбцов транспонируем матрицу)

Доказательство. Пусть $A[1,], \ldots, A[m,]$ — строки A.

$$A' = T_{ij}(\lambda) \cdot A$$

$$A'[i,] = A[i,] + \lambda A[j,]$$

$$A'[k,] = A[k,], k \neq i$$

 $Lin(A'[1,],\,\ldots,\,A'[m,]) = Lin(A[1,],\,\ldots,\,A[m,])$ — верно и для элем. преобр. 2 и 3 типов

$$\implies rk(A'[1,], \ldots, A'[m,]) = rk(A[1,], \ldots, A[m,]).$$

Для доказательства про столбцлвый ранг докажем лемму:

Лемма. Пусть $A' = UA, U \in GL(m, K); A[, i_1], \ldots, A[, i_l] - \mathcal{J}3C \Longrightarrow A'[, i_1], \ldots, A'[, i_l] - \mathcal{J}3C$

Доказательство. $i_1 < \cdots < i_l$

$$\alpha_1 A[i_1] + \dots + \alpha_l A[i_l] = 0, \exists s : \alpha_s \neq 0$$

$$A \cdot \begin{pmatrix} 0 \\ i_1 : \alpha_1 \\ \vdots \\ 0 \\ \vdots \\ i_l : \alpha_l \\ 0 \end{pmatrix} = \sum_{k=1}^l \alpha_k A[, i_k] = 0$$

$$\Longrightarrow UA \cdot \left(\vdots \right) = 0$$

$$\Longrightarrow \sum_{k=1}^{l} \alpha_k A'[i_k] = 0$$

Пусть r — столбцовый ранг A.

В A есть r ЛН столбцов $A[,i_1],\ldots,A[,i_r]\Longrightarrow A'[,i_1],\ldots,A'[,i_r]$ — ЛНС (если ЛЗС, то т.к. A=UA', по лемме $A[,i_1],\ldots,A[,i_r]$ — ЛЗС)

Любые r+1 столбцов $A-\Pi 3C \Longrightarrow$ любые r+1 столбцов $A'-\Pi 3C$.

Т.е. столбцовый ранг A' равен r для любой A' = UA.

Следствие: Строчный ранг матрицы равен столбцовому рангу.

Доказательство. У $D = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$

Первые r строк/столбцов ЛН, любые r+1 строка/столбец ЛЗ (есть 0) \Longrightarrow для D оба ранга равны r.

 $A \sim D$ с помощью элем. преобр., которые по предложению не меняют оба ранга.

rkA = столбцовому рангу = строчному рангу

37 Ранг произведения матриц. Связь ранга с PDQ-разложением

Предложение.

- 1. $rkA^T = rkA$ (очевидно из доказанного выше)
- 2. rkAB = min(rkA, rkB)

Доказательство. Докажем, что утверждение $\iff \begin{cases} rkAB \leq rkA \\ rkAB \leq rkB \end{cases}$

$$(AB)[,j] = \sum_{i} B[i,j] \cdot rkA[,i] \in Lin(A[,1], A[,2], ...)$$

$$Lin((AB)[,1], (AB)[,2], \ldots) \subset Lin(A[,1], A[,2], \ldots) \Longrightarrow rkAB \leq rkA$$

$$rkAB = rk(AB)^T = rk(B^TA^T) \le rkB^T = rkB$$

 ${\it C}$ ледствие:Пусть $A\in M(m,n,K),\,U\in GL(m,K),\,V\in GL(n,K).$ Тогда rkUA=rkAV=rkA.

Доказательство. $rkUA \le rkA$

$$rkA = rk(U^{-1}UA) \leq rkUA \Longrightarrow rkUA = rkA$$

Аналогично, rkAV = rkA.

 $\pmb{Cnedcmeue:} A \in M(m,n,K)$. Равносильны утверждения:

1.
$$rkA = r$$

2.
$$A = PDQ, P \in GL(m, K), Q \in GL(n, K), D = \begin{pmatrix} E_r & 0 \\ 0 & 0 \end{pmatrix}$$

Доказательство.

$$2 \Rightarrow 1 : rkD = r \Longrightarrow rkPDQ = r$$

$$1 \Rightarrow 2: A = PDQ, P \in GL(m, K), Q \in GL(n, K), D = \begin{pmatrix} E_l & 0 \\ 0 & 0 \end{pmatrix}$$
$$rkPDQ = l \Longrightarrow r = l$$

38 Условия эквивалентные обратимости матрицы

Предложение. $A \in M(n, K)$. Тогда след. утверждения эквивалентны:

- 1. $A \in GL(n, K)$
- 2. $|A| \neq 0$ (вырожденная)
- 3. А обратима слева
- 4. А обратима справа
- 5. rkA = n
- $6. \ \mathit{Столбиы}\ A \mathit{ЛHC}$
- 7. $Cmpo\kappa u A JHC$

Доказательство.

 $1\Leftrightarrow 2$: очевидно

 $5 \Leftrightarrow 6$: тривиально

 $5 \Leftrightarrow 7$: тривиально

 $1 \Rightarrow 3$: тривиально

 $1 \Rightarrow 4$: тривиально

 $3 \Rightarrow 5: BA = E_n$ $rkBA \le rkA, rkBA = rkE_n = n \Longrightarrow rkA = n$

 $4 \Rightarrow 5$: аналогично

 $5\Rightarrow 1: A=PDQ$, тогда по утверждению выше $rkD=n\Longrightarrow D=E_n$ $A=PQ\in GL(n,K)$

39 Минорный ранг

Определение. Подматрица B матрицы A — матрица, полученная из A путем вычеркивания некоторых строк и некоторых столбцов.

Определение. Минор матрицы A порядка r — определитель какой-либо квадратной подматрицы A порядка r.

Предложение. Пусть rkA = r. Тогда в A есть ненулевой минор порядка r и нет ненулевого минора порядка больше r.

Доказательство. В A есть r ЛН столбцов. A' — подматрица из этих столбцов.

 $rkA' = r \Longrightarrow в A'$ есть r ЛН строк. A'' — подматрица из этих строк.

$$A'' \in M(r, K)$$

 $rkA'' = r \Longrightarrow |A''| \neq 0 \Longrightarrow$ существует ненулевой минор порядка r.

Пусть $s>r,\,B$ — подматрица A $s\times s,$ т.ч. $|B|\neq 0$

Пусть C — подматрица A $m \times s$, т.ч. B — подматрица C.

Столбцы B ЛН \Longrightarrow столбцы C ЛН (очевидно) \Longrightarrow в A есть s ЛН столбцов \Longrightarrow $rkA \ge s > r$ противоречие.

40 Системы линейных уравнений. Классификация. Метод Гаусса

Определение. Система m линейных уравнений с n неизвестными имеет вид:

$$(*) \begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + \dots + a_{2n}x_n = b_2 \\ \vdots + \dots + \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$
 где $a_{ij}, b_i \in K \quad (i = 1, \dots, m; \ j = 1, \dots, n)$ $A = (a_{ij}) -$ матрица СЛУ $(*)$

$$b = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix}$$
 — столбец правых частей СЛУ $(*)$

 $(A|b)\in M(m,n+1,K)$ — расширеная матрица СЛУ (*)

Определение. $X = \begin{pmatrix} \xi_1 \\ \vdots \\ \xi_n \end{pmatrix}$ — является решением (*), если при подстановке $x_1 := \xi_1, \dots, x_n := \xi_n,$ мы получаем m верных равенств.

To есть если AX = b

Предложение. $(A|b) \to (A'|b')$ с помощью $Э\Pi$ строк \Longrightarrow системы с расширенными матрицами (A|b) и (A'|b') эквиваленты.

Доказательство.

$$(A'|b') = U \cdot (A|b), \quad U \in GL(m, K)$$

 $AX = b \iff UAX = Ub \iff A'X = b'$

Классификация СЛУ

Определение. Если b=0, то СЛУ (*) однородная, иначе неоднородная.

Определение. СЛУ (*) называется совместной, если $\{X|AX=b\} \neq \varnothing$, иначе — система несовместная.

Определение. Совместная система называется определённой, если её решение единственно, иначе — система неопределённая.

<u>Замечание</u> Однородная система — совместная. $(A \cdot 0 = 0)$

Метод Гаусса

Этапы:

I:
$$(A|b) \stackrel{\ni \Pi \text{ строк}}{\longrightarrow} \underbrace{(A'|b')}_{\text{ступенчатая}}$$

$$\begin{pmatrix} 0 & \dots & 0 & a_{1j} & \dots & & | & \dots \\ 0 & \dots & 0 & a_{2j} & \dots & & | & \dots \\ \vdots & \dots & \vdots & \vdots & \dots & | & \dots \\ 0 & \dots & 0 & \dots & | & \dots \text{r-as} \\ 0 & \dots & 0 & 0 & \dots & | & 0 \\ \vdots & \dots & \vdots & \vdots & \dots & | & \dots \\ 0 & \dots & 0 & 0 & \dots & | & 0 \end{pmatrix}$$

 a_{rj_r} — ведущий элемент последней ненулевой строки

- (a) $j_r = n+1$ $0 \cdot x_1 + \cdots + 0 \cdot x_n = a_{rj_r} \neq 0 \Longrightarrow (*)$ несовместная.
- (b) $j_r \leqslant n$ x_{j1}, \ldots, x_{jr} главные неизвестные. Остальные свободные неизвестные. $x_s := \xi_s \in K, \quad s \not\in \{j_1, \ldots, j_r\}$ $x_{j_r} = a_{rj_r}^{-1}(b_r a_{rj_r+1}x_{r+1} \cdots a_{rn}x_n)$ $x_{j_{r-1}} = a_{(r-1)j_{r-1}}^{-1}(b_{r-1} a_{(r-1)j_{r-1}+1}x_{j_{r-1}+1} \cdots a_{r-1}x_?$ \cdots

Решение уравнения зависит от n-r параметров.

Получили
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = F(\xi_1, \dots, \xi_{n-r})$$

В частности: если (*) совместная, то она определённая $\iff rk(A|b) = n$

блять что вообще происходит..., кто просил его писать на графическом планшете?

41 Теорема Крамера

Теорема. Крамера.

Пусть $A \in M(n,K), b \in K^n$

 $x_1 = \dots$

Два утверждения эквиваленты:

- 1. CЛУ c расширенной матрицей (A|b) совместная определённая
- 2. $|A| \neq 0$

Доказательство.

$$2 \Longrightarrow AX = b \Longleftrightarrow A^{-1}AX = A^{-1}b \Longleftrightarrow X = A^{-1}b$$

 $1 \Longrightarrow 2$

От противного: $|A| = 0 \Longrightarrow rkA < n$

Но у совместной определённой системы rkA=n (противоречие)

Формулы Крамера.

$$A^{-1} = \tfrac{1}{|A|} \cdot \widetilde{A}$$

$$\widetilde{A} = (A_{ji}), \quad \widetilde{A}[i,j] = A_{ji}$$

$$x_{i} = b_{1}A^{-1}[i, 1] + \dots + b_{n}A^{-1}[i, n] =$$

$$= \frac{1}{|A|} \underbrace{(b_{1}A_{1i} + \dots + b_{n}A_{ni})}_{C}$$

$$C = \begin{vmatrix} & & & \text{i столб} \\ a_{11} & \dots & b_{1} & \dots & a_{1n} \\ \vdots & \dots & \vdots & \dots & \vdots \\ a_{n1} & \dots & b_{n} & \dots & a_{n}n \end{vmatrix} = \frac{\Delta_{i}}{|A|}$$

 $\Delta_i = |A\{A_i \leadsto b\}|$ (определитель матрицы A, у которой мы заменили i-ый столбец на столбец b) $x_i = \frac{\Delta_i}{|A|}$ — формулы Крамера.

Предложение. Множество решений однородной системы с n неизвестными — линейное подпространство в K^n .

Доказательство. Пусть x_1, x_2 — решения, $\alpha_1, \alpha_2 \in K$

Тогда
$$(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 \underbrace{Ax_1}_{=0} + \alpha_2 \underbrace{Ax_2}_{=0} = 0$$

42 Теорема Кронекера-Капелли. Критерий определённости совместной системы

Теорема. Кронекера-Капелли.

 $Cucmema\ c\ pacширеной\ матрицей\ (A|b)\ coвмеcma \iff rk(A|b)=rk(A)$

Доказательство.
$$rkA = dim \ \underline{Lin(A_1, \dots, A_n)}, \quad A_i = A[\ , i]$$

$$rk(A|b) = dim \ \underline{Lin(A_1, \dots, A_n, b)}$$

$$dim \ w = dim \ v \Longleftrightarrow w = v \Longleftrightarrow b \in w \Longleftrightarrow \exists \alpha_1, \dots, \alpha_n \in K : \alpha_1 A_1 + \dots + \alpha_n A_n = b$$

$$\Longleftrightarrow \exists \alpha_1, \dots, \alpha_n \in K : A \cdot \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = b \Longleftrightarrow \text{СДУ с расширенной матрицей } (A|b) \text{ совместная}$$

<u>Замечание</u> Дополнение к т. К-К: совместная система является определённой $\iff rkA = n$ В частности если в совместной системе m < n, то система неопределённая.

43 Линейные отображения. Примеры. Ядро и образ

Определение. V, W — линейные пространства над полем K.

Отображение $\mathcal{A}:V\to W$ называется линейным, если

$$\forall v_1, v_2 \in V, \ \forall \alpha_1, \alpha_2 \in K :$$

$$\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \mathcal{A}(v_1) + \alpha_2 \mathcal{A}(v_2)$$

Замечание Вместо этого условия можно требовать

$$\begin{cases} \mathcal{A}(v_1+v_2) = \mathcal{A}(v_1) + \mathcal{A}(v_2) & \text{(гомоморфизм групп)} \\ \mathcal{A}(\alpha v) = \alpha \mathcal{A}(v) \end{cases}$$

 $Hom(V,W):=\{\mathcal{A}\mid \mathcal{A}:V\to W\}$ — множество линейных отображений из V в W.

Примеры:

- 1. V = W = K[x] $A: f \mapsto f'$
- 2. $id_V: V \mapsto V$ (изоморфизм на себя)
- 3. $\lambda \in K[\lambda]: V \to V$ $v \mapsto \lambda v$ гомотетия $id_v = [1]$
- $4. \ 0: V \to W$ $v \mapsto 0$
- 5. $A \in M(m, n, K)$ $A: K^n \to K^m$ $C \mapsto AC$, где C — столбец

Предложение. $\mathcal{A} \in Hom(U,V), \mathcal{B} \in Hom(V,W)$

Тогда $\mathcal{B} \circ \mathcal{A} \in Hom(U, W)$

Доказательство. Очевидно

Определение. Пусть $\mathcal{A} \in Hom(V, W)$

$$Im \mathcal{A} = \{ \mathcal{A}(v) \mid v \in V \}$$
 — образ $Ker \mathcal{A} = \{ v \mid \mathcal{A}(v) = 0 \}$ — ядро

Предложение.

- 1. $Im \mathcal{A} noд npocmpaнcm so W$
- 2. $Ker \mathcal{A} nodnpocmpahcmbo V$

Доказательство.

1.
$$w_{1}, w_{2} \in Im \mathcal{A}$$

 $\alpha_{1}w_{1} + \alpha_{2}w_{2} \stackrel{?}{\in} Im \mathcal{A}$
 $w_{1} = \mathcal{A}(v_{1}), \ w_{2} = \mathcal{A}(v_{2})$
 $\alpha_{1}w_{1} + \alpha_{2}w_{2} = \mathcal{A}(\alpha_{1}v_{1} + \alpha_{2}v_{2}) \in Im \mathcal{A}$

2.
$$v_1, v_2 \in Ker \mathcal{A}$$

$$\mathcal{A}(\alpha_1 v_1 + \alpha_2 v_2) = \alpha_1 \mathcal{A}(v_1) + \alpha_2 \mathcal{A}(v_2) =$$

$$= \alpha_1 \cdot 0 + \alpha_2 \cdot 0 = 0$$

$$\Longrightarrow \alpha_1 v_1 + \alpha_2 v_2 \in Ker \mathcal{A}$$

44 Связь между размерностями ядра и образа

Предложение. Пусть $dim\ V = n < \inf$

 $\mathcal{A} \in Hom(V, W)$

Тогда $Im \mathcal{A}$ конечномерен $u \ dim Ker \mathcal{A} + dim Im \mathcal{A} = n$

Доказательство. $Ker \mathcal{A} \subset V$

 $\Longrightarrow Ker \mathcal{A}$ конечномерен.

$$\underbrace{e_1,\ldots,e_m}_{ ext{ЛHC B V}}$$
 — любой базис $Ker~\mathcal{A}$

Пусть e_{m+1}, \ldots, e_n — дополнение до базиса V.

Докажем, что $\mathcal{A}(e_{m+1}),\ldots,\mathcal{A}(e_n)$ — базис $Im\ \mathcal{A}.$

Доказательство.

$$w \in Im \mathcal{A} \Longrightarrow w = \mathcal{A}(v), v \in V$$

$$v = \alpha_1 e_1 + \dots + \alpha_n e_n$$

$$\mathcal{A}(v) = \underbrace{\alpha_1 \mathcal{A}(e_1)}_{=0} + \dots + \underbrace{\alpha_n \mathcal{A}(e_n)}_{=0} + \alpha_{m+1} \mathcal{A}(e_{m+1}) + \dots + \alpha_n \mathcal{A}(e_n) =$$

$$= \alpha_{m+1} \mathcal{A}(e_{m+1}) + \dots + \alpha_n \mathcal{A}(e_n) \in Lin(\mathcal{A}(e_{m+1}) + \dots + \mathcal{A}(e_n))$$

Проверим их линейную независимость:

$$eta_1 \mathcal{A}(e_{m+1}) + \cdots + eta_{n-m} \mathcal{A}(e_n) = 0$$
 $\mathcal{A}(\underbrace{\beta_1 e_{m+1} + \cdots + \beta_{n-m} e_n}) = 0$
 $\Rightarrow \in Ker \mathcal{A}$
 $\beta_1 e_{m+1} + \cdots + \beta_{n-m} e_n = \alpha_1 e_1 + \cdots + \alpha_m e_m$
 $e_1, \dots, e_n - \text{ЛНС} \Longrightarrow \text{все } \alpha_i \text{ и } \beta_i = 0$
 $\text{T.o. } \mathcal{A}(e_{m+1}), \dots, \mathcal{A}(e_n) - \text{базис } Im \mathcal{A}$

 $dim\ Im\ \mathcal{A} = n - m = dim\ V - dim\ Ker\ \mathcal{A}$