Yuchen Zhang

CONTACT ADDRESS https://zhangyuc.github.io/ Gates Computer Science 254, Email: zhangyuc@cs.stanford.edu Stanford University, Phone: (+1)-510-423-1353 Stanford, CA 94305. Education University of California, Berkeley 2011 - 2016 Doctor of Philosophy in Computer Science Advised by Michael I. Jordan and Martin J. Wainwright University of California, Berkeley 2011 - 2013 Master of Arts in Statistics 2007 - 2011 Tsinghua University Bachelor of Engineering in Computer Science Supervised by Andrew C. Yao **Employment** Senior Research Scientist at Semantic Machines, Inc 2018 - Now Post-doc Researcher at Stanford University 2016 - 2018 Hosted by Percy Liang and Moses Charikar Intern at Baidu Winter, 2015 Project: burst detection in web search Intern at Microsoft Research Redmond Summer, 2014 Project: convex optimization Intern at Google Mountain View Summer, 2013 Project: personalized recommender systems 2010 - 2011 Intern at Microsoft Research Asia Project: click modeling for web search and online advertising

Selected Awards & Honors

2017	Best Paper Award, Conference on Learning Theory (COLT).
2016	Outstanding Reviewer Award, International Conference on Machine Learning (ICML).
2015	Baidu Fellowship (awards 8 PhD students every year worldwide).
2013	Microsoft Research PhD Fellowship Finalist.
2011	Outstanding Undergraduate Dissertation Award, Tsinghua University.
2006	Silver Medal in Asian Physics Olympiad.
2006	Gold Medal in Chinese Physics Olympiad (5 th among 400,000 participants).

Research Projects

My research interest lies in the field of *artificial intelligence*. My past projects spanned machine learning, natural language processing and statistical methods. They consist of new algorithms, fundamental theory and practical software. Below is a list of projects that I have been working on (with publication references):

Natural language processing

- Semantic parsing for question answering systems [C1].
 - Efficient algorithm for parsing natural language into executable logical forms.
 - Impact: 11x-16x faster and 13% more accurate than the state-of-the-art parser.

Machine learning and optimization

- Deep learning and non-convex optimization [C2,C3,C4,C5,C6].
 - Algorithms for non-convex optimization (with applications to deep learning).
 - Impact: stronger theoretical guarantee and improved empirical performance on DNN/CNN/LSTM.
- Convex optimization [J1,C9].
 - Efficient algorithm for convex optimization.
 - Impact: orders-of-magnitude faster convergence than SGD in theory/practice.
- Crowdsourcing [J5,C10].
 - Algorithm for estimating the true labels from noisy crowdsourced data.
 - Impact: first algorithm to guarantee the best possible statistical accuracy.
- Personalized recommender systems [C12].
 - Non-parametric model for modeling very sparse user-item relations.
 - Impact: improved state-of-the-art models by $9\%\mbox{-}12\%$ on the quality of recommending less frequent items for online shopping.
- Web search and online advertising [C16,C17,C18,C19,C20,C21]
 - Learning from massive search & ads click logs to improve ranking quality.
 - Impact: currently in production as a part of Microsoft Bing.

Distributed computing

- Distributed algorithms for machine learning [J6,J7,C7,C8,C14,C15].
 - Communication-efficient algorithms for distributed machine learning on large clusters.
 - Impact: guarantee the best possible accuracy and the least possible computation/communication.
- Foundamental theory of distributed computing [C11,C13,M2].
 - Understanding the foundamental trade-offs between communication, computation and statistical accuracy on any distributed system.
 - Impact: seminal papers on the study of communication complexity of distributed statistical estimation.
- Programming interface for parallelizing stochastic algorithms [M1].
 - A user-friendly framework for parallelizing online algorithms on Spark.
 - Impact: component of Berkeley Data Analytics Stack (BDAS), 80+ Github stars.

Other projects

- Theoretical statistics [J2,J3,J4].
- Theoretical computer science [J8,C22].

Manuscripts

- [M1] Y. Zhang and MI. Jordan. Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms. arXiv:1506.07552, 2015.
- [M2] J. Duchi, MI. Jordan, M. Wainwright and Y. Zhang (alpha-beta order). Optimality Guarantees for Distributed Statistical Estimation. arXiv:1405.0782, 2014.

Journal Publications

- [J1] Y. Zhang and L. Xiao. Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization. *Journal of Machine Learning Research*.
- [J2] X. Chen, A. Guntuboyina and Y. Zhang. A note on the approximate admissibility of regularized estimators in the Gaussian sequence model. *Electronic Journal of Statistics*.
- [J3] Y. Zhang, M. Wainwright and MI. Jordan. Optimal prediction for sparse linear models? Lower bounds for coordinate-separable M-estimators. *Electronic Journal of Statistics*.
- [J4] X. Chen, A. Guntuboyina and Y. Zhang (alpha-beta order). On Bayes Risk Lower Bounds. *Journal of Machine Learning Research*.
- [J5] Y. Zhang, X. Chen, D. Zhou and MI. Jordan. Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing. *Journal of Machine Learning Research*.
- [J6] Y. Zhang, J. Duchi and M. Wainwright. Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates. *Journal of Machine Learning Research*.
- [J7] Y. Zhang, J. Duchi and M. Wainwright. Communication-Efficient Algorithms for Statistical Optimization. *Journal of Machine Learning Research*.
- [J8] Y. Zhang and X. Sun. The Antimagicness of the Cartesian Product of Graphs. *Theoretical Computer Science*.

Conference Publications

- [C1] Y. Zhang, P. Pasupat, P. Liang. Macro Grammars and Holistic Triggering for Efficient Semantic Parsing. Empirical Methods on Natural Language Processing (EMNLP), 2017.
- [C2] Y. Zhang, P. Liang, M. Wainwright. Convexified Convolutional Neural Networks. International Conference on Machine Learning (ICML), 2017.
- [C3] Y. Zhang, P. Liang, M. Charikar. A Hitting Time Analysis of Stochastic Gradient Langevin Dynamics. Conference on Learning Theory (COLT), 2017 (Best paper award).
- [C4] Y. Zhang, JD. Lee, M. Wainwright and MI. Jordan. On the Learnability of Fully-connected Neural Networks. Artificial Intelligence and Statistics (AISTATS), 2017.
- [C5] C. Jin, Y. Zhang, S. Balakrishnan, M. Wainwright, MI. Jordan. Local Maxima in the Likelihood of Gaussian Mixture Models: Structural Results and Algorithmic Consequences. *Neural Information Processing Systems (NIPS)*, 2016.
- [C6] Y. Zhang, JD. Lee, MI. Jordan. ℓ_1 -regularized Neural Networks are Improperly Learnable in Polynomial Time. International Conference on Machine Learning (ICML), 2016.
- [C7] Y. Zhang, M. Wainwright and MI. Jordan. Distributed Estimation of Generalized Matrix Rank: Efficient Algorithms and Lower Bounds. *International Conference on Machine Learning (ICML)*, 2015.
- [C8] Y. Zhang and L. Xiao. DiSCO: Communication-Efficient Distributed Optimization of Self-Concordant Loss. International Conference on Machine Learning (ICML), 2015.
- [C9] Y. Zhang and L. Xiao. Stochastic Primal-Dual Coordinate Method for Regularized Empirical Risk Minimization. International Conference on Machine Learning (ICML), 2015.
- [C10] Y. Zhang, X. Chen, D. Zhou and MI. Jordan. Spectral Methods meet EM: A Provably Optimal Algorithm for Crowdsourcing. Neural Information Processing Systems (NIPS), 2014. (Spotlight presentation, 4.8% acceptance rate)
- [C11] Y. Zhang, M. Wainwright and MI. Jordan. Lower Bounds on the Performance of Polynomial-time Algorithms for Sparse Linear Regression. *Conference on Learning Theory (COLT)*, 2014.
- [C12] Y. Zhang, A. Ahmed, V. Josifovski and A. Smola. Taxonomy Discovery for Personalized Recommendation. ACM International Conference on Web Search and Data Mining (WSDM), 2014.

- [C13] Y. Zhang, J. Duchi, M. Wainwright and MI. Jordan. Information-theoretic Lower Bounds for Distributed Statistical Estimation with Communication Constraints. Neural Information Processing Systems (NIPS), 2013. (Oral presentation, 1.4% acceptance rate)
- [C14] Y. Zhang, J. Duchi and M. Wainwright. Divide and Conquer Kernel Ridge Regression. Conference on Learning Theory (COLT), 2013.
- [C15] Y. Zhang, J. Duchi and M. Wainwright. Communication-Efficient Algorithms for Statistical Optimization. Neural Information Processing Systems (NIPS), 2012.
- [C16] W. Chen, D. Wang, Y. Zhang and Q. Yang. Understanding Click Noise: A Noise-aware Click Model for Web Search. ACM International Conference on Web Search and Data Mining (WSDM), 2012.
- [C17] Y. Zhang, W, Chen and D, Wang, Q. Yang. User-click Modeling for Understanding and Predicting Search-behavior. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2011.
- [C18] B. Hu, Y. Zhang, G. Wang, Q. Yang, W. Chen. Characterize Search Intent Diversity into Click Models. International World Wide Web Conference (WWW), 2011.
- [C19] Y. Zhang, D. Wang, G. Wang, W. Chen, Z. Zhang, B. Hu and L. Zhang. Learning Click Model via Probit Bayesian Inference. ACM International Conference on Information and Knowledge Management (CIKM), 2010.
- [C20] D. Wang, W. Chen, G. Wang, Y Zhang and B. Hu. Explore Click Models for Search Ranking. ACM International Conference on Information and Knowledge Management (CIKM), short paper, 2010.
- [C21] F. Zhong, D. Wang, G. Wang, W. Chen, Y. Zhang, Z. Chen and H. Wang. Incorporating Post-Click Behaviors Into a Click Model. Annual International ACM SIGIR Conference (SIGIR), 2010.
- [C22] Y. Zhang and L. Zhang. Extracting Independent Rules: a New Perspective of Boosting. *International Symposium on Artificial Intelligence and Mathematics (ISAIM)*, 2010.

Teaching

Graduate Student Instructor, Introduction to machine learning, UC Berkeley

Graduate Student Instructor, Randomized algorithms for matrices and data, UC Berkeley

Fall, 2013

Service

Journal Reviewer: Journal of Machine Learning Research, Annals of Statistics, Mathematical Programming, ACM Transactions on the Web.

Conference Reviewer: ICML (2013 -), NIPS (2013 -), AISTAT (2015 -), IJCAI (2015 -).

Programming

Capable of Python, C/C++, C#, Java, Scala, MATLAB.

References

Michael I. Jordan

Pehong Chen Distinguished Professor EECS and Statistics, UC Berkeley jordan@cs.berkeley.edu

Lin Xiao

Principle Researcher
Machine Learning Department
Microsoft Research Redmond
lin.xiao@microsoft.com

Martin J. Wainwright

Professor EECS and Statistics, UC Berkeley wainwrig@eecs.berkeley.edu

Percy Liang

Assistant Professor Computer Science Department Stanford University pliang@cs.stanford.edu