Work Lab: Flux reconstruction.

Preliminaires

Let $\Omega \subset \mathbb{R}^2$ be a polygon with Lipschitz boundary $\partial \Omega = \Gamma_D \cup \Gamma_N$. We consider the following model problem: for a given source term $f \in L^2(\Omega)$ and a given prescribed data g on the Dirichlet part of the boundary Γ_D , find $u: \Omega \to \mathbb{R}$ such that:

$$\begin{cases}
-\Delta u = f \text{ in } \Omega \\
u = g \text{ on } \Gamma_{D} \\
\frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_{N}.
\end{cases}$$
(1)

The weak solution of problem (1) is a function $u \in H^1(\Omega)$ such that $u|_{\Gamma_D} = g$ and

$$(\nabla u, \nabla v) = (f, v) \quad \forall v \in H_0^1(\Omega)$$
 (2)

Let \mathcal{T}_h be a triangulation of Ω . The finite element method seeks for an approximate solution u_h to the exact solution u in a finite-dimensional subspace V_h^p of $H^1(\Omega)$. For a polynomial degree $p \geq 1$, we namely consider

$$V_h^p := \left\{ v_h \in H^1(\Omega), v_h |_K \in \mathcal{P}_p(K) \quad \forall K \in \mathcal{T}_h \right\} = \mathcal{P}_p\left(\mathcal{T}_h\right) \cap H^1(\Omega)$$
 (3)

Above, $\mathcal{P}_q(K)$ stands for the space of polynomials of total degree at most $q \geq 0$ on the mesh element $K \in \mathcal{T}_h$ and $\mathcal{P}_q(\mathcal{T}_h)$ denotes piecewise q-degree polynomials with respect to the mesh \mathcal{T}_h . Note that by the inclusion in $H^1(\Omega)$, the functions in V_h^p have their traces continuous over all mesh faces. Then $u_h \in V_h^p$ needs to satisfy $u_h|_{\Gamma_D} = g$ and

$$(\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_h^p \text{ such that } v_h|_{\Gamma_D} = 0$$
(4)

We take Ω is a unit square, $\Gamma_D = \partial \Omega$, $\Gamma_N = \emptyset$, g = 0, and

$$f = -2(x^2 + y^2) + 2(x + y).$$

the exact solution is

$$u(x,y) = x(x-1)y(y-1)$$
 (5)

which is smooth, $u \in C^{\infty}(\bar{\Omega})$.

Exercise 1 (Finite element code)

- 1. Specify the user input in the Freefem++ script : int nds = 10; // number of mesh points on one domain unity edge
- 2. Specify the exact solution u together with its derivatives, the right-hand side f, and the Dirichlet boundary datum g. This is done in the section exact solution and its derivatives.
- **3.** Generate a triangular mesh \mathcal{T}_h of Ω . In Freefem++, this is achieved via the command mesh Th = square(nds,nds);
- **4.** Define the space V_h^p from (3) in Freefem++: this is done via the command: fespace Vh(Th,Pcont);
- **5.** Compute the finite element approximation u_h by (4).
- **6.** Plot the exact solution u and its finite element approximation u_h .
- 7. Plot the flux of the exact solution given by $-\nabla u$ and the flux of the finite element approximation given by $-\nabla u_h$.
 - a. Choose some two neighboring mesh elements and plot the details.
 - b. What do you observe?
 - c. Does the exact flux $-\nabla u$ seem to be continuous across the mesh faces, or at least to have the normal component $-\nabla u \cdot \mathbf{n}_F$ continuous across any mesh face F? (Here, \mathbf{n}_F is a unit normal vector of F.) ².
 - d. What about the flux approximation $-\nabla u_h$? Please inspect various polynomial degrees $1 \leq p \leq 4$. $-\nabla u_h$ for p=1 is a piecewise constant, discontinuous, vector-valued field. This in particular means that, for a given mesh face F, it is not true that "flows out" from one mesh element sharing F across F "flows in" the other mesh element sharing F; the approximate flux $-\nabla u_h$ is unphysical, non-conservative. The exception is only the case p=4: since the exact solution is here a polynomial of order 4, we actually in this case have $u_h(x,y) = u(x,y) = x(x-1)y(y-1)$.

^{1.} In the FreeFem++ graphics window, the size of the arrows is modified by pressing "a" and "A".

^{2.} Please notice that the latter, weaker, property, means that, for a given mesh face F, what "flows out" from one mesh element sharing F across F "flows in" the other mesh element sharing F

Exercise 2 (Flux reconstruction by averaging)

Let

$$\boldsymbol{V}_{h}^{p'} := \{\boldsymbol{v}_{h} \in \boldsymbol{H}(\operatorname{div},\Omega), \, \boldsymbol{v}_{h}|_{K} \in \boldsymbol{\mathcal{R}}\mathcal{T}_{p'}(K) \quad \forall K \in \mathcal{T}_{h}\} = \boldsymbol{\mathcal{R}}\mathcal{T}_{p'}(\mathcal{T}_{h}) \cap \boldsymbol{H}(\operatorname{div},\Omega)$$
(6)

be the Raviart-Thomas space of degree $p' \geq 0$. Here,

$$\mathcal{RT}_{p'}(K) = \left[\mathcal{P}_{p'}(K)\right]^d + \boldsymbol{x}\mathbb{P}_{p'}(K)$$

is the Raviart-Thomas space on a single mesh element $K \in \mathcal{T}_h$ and $\mathcal{RT}_{p'}(\mathcal{T}_h)$ is the space of all functions that belong to $\mathcal{T}_{p'}(K)$ on each mesh element, the so-called broken Raviart-Thomas space. The inclusion into $\mathbf{H}(\operatorname{div},\Omega)$ ensures that all functions from the space $\mathbf{V}_h^{p'}$ have their normal trace continuous over all mesh faces. We usually set the degree p' to p or to p-1, i.e., equal to that of the finite element approximation u_h ore one less.

1. Implement a flux reconstruction σ_h in the Raviart-Thomas space $V_h^{p'}$ by averaging. This idea is to start from $-\nabla u_h$ and to use a simple averaging of the values that $-\nabla u_h$ takes in the degrees of freedom of Raviart-Thomas space $V_h^{p'}$ i.e,

$$\sigma_h(Dof) = \text{mean value of all } (-\nabla u_h)(Dof)$$
 (7)

- **2.** Plot the reconstructed flux σ_h . What do you observe?
- 3. Plot the misfit of the optimal divergence of the reconstructed flux σ_h . More precisely, the goal is to compute the following L^2 norms on each mesh element $K \in \mathcal{T}_h$:

$$\|\Pi_{\nu'}f - \nabla \cdot \boldsymbol{\sigma}_h\|_{K} \tag{8}$$

where $\Pi_{p'}$ is the $L^2(\Omega)$ -orthogonal projection onto discontinous piecewise polynomials of degree p' of the space $\mathcal{P}_{p'}(\mathcal{T}_h)$, i.e., $\Pi_{p'}f \in \mathbb{P}_{p'}(\mathcal{T}_h)$ is such that $(\Pi_{p'}f, v_h) = (f, v_h)$ for all $v_h \in \mathbb{P}_{p'}(\mathcal{T}_h)$, or, still equivalently, $(\Pi_{p'}f, v_h)_K = (f, v_h)_K$ for all $v_h \in \mathbb{P}_{p'}(K)$ and for all mesh elements $K \in \mathcal{T}_h$. For an equilibrated flux, the quantities in (8) would be zero. What do you observe here?

Exercise 3 (Flux reconstruction by equilibration)

Let the Raviart-Thomas space of degree $p' \geq 0$ be given by (6).

1. Implement the equilibrated flux reconstruction σ_h in the Raviart-Thomas space $V_h^{p'}$. Let $-\nabla u_h$ be computed. For each fixed mesh vertex $a \in \mathcal{V}_h$, let \mathcal{T}_a be the patch of all mesh elements from \mathcal{T}_h that share the vertex a and ω_a the corresponding patch subdomain. Let ψ^a be the hat function, i.e., the unique continuous and piecewise 1 -st order polynomial that takes the value 1 in the vertex a and the value 0 in all other mesh vertices; note that the support of ψ^a is the patch subdomain ω_a . For a vertex a inside the computational domain Ω , let H_0 (div, ω_a) be the subspace of all functions from H (div, ω_a) whose normal trace vanishes on $\partial \omega_a$. For a vertex a on the boundary of Ω , we only request the normal trace to vanish on 1) the part of $\partial \omega_a$ where ψ^a is zero (typically the part of $\partial \omega_a$ not contained in $\partial \Omega$); and 2) $\Gamma_N \cap \partial \omega_a$. The local equilibration has two stages: first we need to solve the local quadratic minimization problem

$$\boldsymbol{\sigma}_{h}^{a} := \arg \min_{\substack{\boldsymbol{v}_{h} \in \mathcal{RR}_{p'}(\mathcal{T}_{\mathcal{T}}) \cap \boldsymbol{H}_{0}(\operatorname{div}, \omega_{a})\\ \nabla \cdot \boldsymbol{v}_{h} = \Pi_{p'}(f\psi^{a} - \nabla u_{h} \cdot \nabla \psi^{a})}} \|\psi^{a} \nabla u_{h} + \boldsymbol{v}_{h}\|_{\omega_{a}}^{2}$$

$$(10a)$$

for all $a \in \mathcal{V}_h$. Then we run over all mesh vertices $a \in \mathcal{V}_h$ and sum the individual contributions σ_h^a as

$$\boldsymbol{\sigma}_h := \sum_{a \in \mathcal{V}_h} \boldsymbol{\sigma}_h^a \tag{10b}$$

Evoking the Euler-Lagrange optimality conditions of (10a), (10a) can be equivalently written as: find $\boldsymbol{\sigma}_h^a \in \boldsymbol{\mathcal{R}}_{p'}(\mathcal{T}_a) \cap \boldsymbol{H}_0(\operatorname{div}, \omega_a)$ with $\nabla \cdot \boldsymbol{\sigma}_h^a = \Pi_{p'}(f\psi^a - \nabla u_h \cdot \nabla \psi^a)$ such that

$$(\boldsymbol{\sigma}_{h}^{a}, \boldsymbol{v}_{h})_{\omega_{a}} = -(\psi^{a} \nabla u_{h}, \boldsymbol{v}_{h})_{\omega_{a}} \quad \forall \boldsymbol{v}_{h} \in \mathcal{R} \boldsymbol{T}_{p'}(\mathcal{T}_{a}) \cap \boldsymbol{H}_{0}(\operatorname{div}, \omega_{a}) \text{ with } \nabla \cdot \boldsymbol{v}_{h} = 0$$
 (11)

One could now implement (11), but one would need for this purpose to construct a basis of the Raviart-Thomas space of piecewise polynomial vector-valued fields from $\mathcal{RT}_{p'}(\mathcal{T}_a) \cap \mathcal{H}_0(\text{div},\omega_a)$ with the property $\nabla \cdot \boldsymbol{v}_h = 0$. To avoid this, we further rewrite equivalently (11) as: find $\boldsymbol{\sigma}_h^a \in \mathcal{RT}_{p'}(\mathcal{T}_a) \cap \mathcal{H}_0(\text{div},\omega_a)$, together with the additional scalar-valued piecewise polynomial $\gamma_h^a \in \mathbb{P}_{p'}(\mathcal{T}_a)$, such that

$$(\boldsymbol{\sigma}_{h}^{a}, \boldsymbol{v}_{h})_{\omega_{a}} - (\gamma_{h}^{a}, \nabla \cdot \boldsymbol{v}_{h})_{\omega_{a}} = -(\psi^{a} \nabla u_{h}, \boldsymbol{v}_{h})_{\omega_{a}} \quad \forall \boldsymbol{v}_{h} \in \mathcal{R} \mathcal{T}_{p'} (\mathcal{T}_{a}) \cap \boldsymbol{H}_{0} (\operatorname{div}, \omega_{a}), \quad (12a)$$

$$(\nabla \cdot \boldsymbol{\sigma}_{h}^{a}, q_{h})_{\omega_{a}} = (f \psi^{a} - \nabla u_{h} \cdot \nabla \psi^{a}, q_{h})_{\omega_{a}} \quad \forall q_{h} \in \mathbb{P}_{p'} (\mathcal{T}_{a}). \quad (12b)$$

- 2. Plot the finite element flux $-\nabla u_h$, the hat-function-weighted finite element flux $-\psi^a\nabla u_h$, the equilibrated flux contribution σ_h^a , and the hat-function-weighted exact flux $-\psi^a\nabla u$ on each patch subdomain ω_a . Describe what you observe : differences and similarities between the plots, sizes of these vector fields close to the vertex a and close to the boundary of the patch subdomain ω_a (not shared by the boundary $\partial\Omega$), continuity across the mesh faces, and normal component continuity across the mesh faces. (Attention, FreeFem++ mainly distinguishes the sizes of vector fields by color and not by size.)
- **3.** Plot the reconstructed flux σ_h . What do you observe?
- 4. Plot the divergence misfit of the reconstructed flux σ_h . More precisely, the idea is to compute the elementwise L^2 norms (8). From definition (10), these should be zero. What do you observe here?

Exercise 4 (Error)

We will compute here the errors between the exact solution u of (2) and its finite element approximation u_h of (4).

1. Compute the error $\|\nabla (u - u_h)\|$, as well as its elementwise contributions

$$\left\|\nabla \left(u - u_h\right)\right\|_K \tag{13}$$

for each mesh element $K \in \mathcal{T}_h$.

2. Plot the elementwise error contributions (13).

Exercise 5 (A posteriori error estimators by equilibrated fluxes)

We will now compute the a posteriori error estimators on the error between the exact solution u of (2) and its finite element approximation u_h of (4). We start by the equilibrated fluxes of Exercice 3, in the setting with p' = p according to the theory developed in the lectures. Recall that in this case, we have

$$\|\nabla (u - u_h)\| \le \eta_h := \left\{ \sum_{K \in \mathcal{T}_h} \left[\|\nabla u_h + \boldsymbol{\sigma}_h\|_K + \frac{h_K}{\pi} \|f - \Pi_{p'} f\|_K \right]^2 \right\}^{\frac{1}{2}}$$
(14)

- 1. Plot the elementwise a posteriori error estimators $\left[\|\nabla u_h + \boldsymbol{\sigma}_h\|_K + \frac{h_K}{\pi}\|f \Pi_{p'}f\|_K\right]$. Compare them to the plots of the elementwise errors from Exercice 4. What do you observe?
- 2. Plot the "data oscillation" part of the estimators given by $\frac{h_K}{\pi} \|f \Pi_{p'} f\|_{K}$.
- **3.** Compare the size of the a posteriori error estimator η_h to the size of the error $\|\nabla (u u_h)\|$. This is best done in terms of the so-called effectivity index

$$I_{\text{eff},h} := \frac{\eta_h}{\|\nabla (u - u_h)\|} \tag{15}$$

What do you observe?

Exercise 6 (A posteriori error estimators by averaged fluxes)

We will now also compute the a posteriori error estimators for the averaged fluxes of Exercice 2. In this case, there is no guaranteed upper bound, though we may still hope to obtain

$$\|\nabla (u - u_h)\| \lesssim \|\nabla u_h + \boldsymbol{\sigma}_h\| \tag{16}$$

- 1. Plot the elementwise a posteriori error estimators $\|\nabla u_h + \boldsymbol{\sigma}_h\|_K$. Compare them to the plots of the elementwise errors from Exercice 4. What do you observe?
- **2.** Compare the size of the a posteriori error estimator $\|\nabla u_h + \sigma_h\|$ to the size of the error $\|\nabla (u u_h)\|$. This is best done in terms of the so-called effectivity index

$$I_{\text{eff},h} := \frac{\|\nabla u_h + \boldsymbol{\sigma}_h\|}{\|\nabla (u - u_h)\|} \tag{17}$$

What do you observe?