第三节 连续型随机变量及其概率密度

一、连续型随机变量的概念

1. 概念

定义 1 设随机变量 X 的分布函数为 F(x),若存在非负可积

函数 f(x), 使对任意实数 x, 均有

$$F(x) = \int_{-\infty}^{x} f(t)dt.$$

就称 X 为连续型随机变量,其中 f(x) 称为 X 的密度函数或概

率密度.

2. 连续型随机变量的性质

设连续性型随机变量 X 的概率密度为 f(x),则性质 1 F(x) 是连续函数.

如,
$$X$$
 的分布函数 $F(x) = \begin{cases} 0, & x < 0, \\ \frac{1}{2}(1+x), & 0 \le x < 1, & \text{由于} \\ 1, & x \ge 1, \end{cases}$

F(x)在点x=0处不连续,故X不是连续型随机变量,X是非离散非连续型随机变量.

性质 2
$$\int_{-\infty}^{+\infty} f(x) dx = 1$$
.

性质 3 在 F(x) 的可导点 x 处, f(x) = F'(x).

性质 4
$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt$$
.

性质 5 $P\{X=a\}=0$.

故一般地,对于事件 A ,即使 P(A) = 0 ,但事件 A 有可能 发生,即未必有 $A = \emptyset$.

性质 6
$$P\{a < X \le b\} = P\{a \le X \le b\}$$

= $\int_a^b f(x) dx = F(b) - F(a)$.

从几何直观上看,概率 $P\{a < X \le b\}$ 均表示曲边梯形 $0 \le y \le f(x)$, $a < x \le b$ 的面积.

因此 $\int_{-\infty}^{+\infty} f(x)dx = 1$ 也表明以曲线 y = f(x) 为上沿, x 轴为下沿所围成的无穷区域的面积等于1.

例 1 设随机变量
$$X$$
 的密度函数为 $f(x) = \begin{cases} k\cos x, & |x| < \frac{\pi}{2}, \\ 0, & |x| \ge \frac{\pi}{2}. \end{cases}$

(1) 求常数 k; (2) 求 X 的分布函数 F(x); (3) 计算 $P\{-\frac{\pi}{4} < X < \pi\}$.

解 (1) 由
$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} k \cos x dx = 1$$
,计算得 $k = \frac{1}{2}$.进而

得
$$X$$
 的密度函数为 $f(x) = \begin{cases} \frac{1}{2}\cos x, & |x| < \frac{\pi}{2}, \\ 0, & |x| \ge \frac{\pi}{2}. \end{cases}$

(2)
$$F(x) = P\{X \le x\} = \int_{-\infty}^{x} f(t) dt$$

$$= \begin{cases} 0, & x < -\frac{\pi}{2}, \\ \int_{-\frac{\pi}{2}}^{x} \frac{1}{2} \cos t \, dt, & -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \\ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \cos t \, dt, & x > \frac{\pi}{2} \end{cases} = \begin{cases} 0, & x < -\frac{\pi}{2}, \\ \frac{\sin x + 1}{2}, & -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \\ 1, & x > \frac{\pi}{2}. \end{cases}$$

(3)
$$P\{-\frac{\pi}{4} < X < \pi\} = F(\pi) - F(-\frac{\pi}{4}) = 1 - \frac{\sin(-\frac{\pi}{4}) + 1}{2} = \frac{2 + \sqrt{2}}{4}$$

或
$$P\{-\frac{\pi}{4} < X < \pi\} = \int_{-\frac{\pi}{4}}^{\pi} f(x) dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{1}{2} \cos x dx = \frac{1}{2} \sin x \Big|_{-\frac{\pi}{4}}^{\frac{\pi}{2}} = \frac{2 + \sqrt{2}}{4}$$
.

例 2 设随机变量 X 的密度函数 f(x) 为偶函数, F(x) 为 X 的分布函数,证明: (1) F(x) + F(-x) = 1;

(2)
$$\int_{-\infty}^{0} f(x)dx = \int_{0}^{+\infty} f(x)dx = \frac{1}{2}; (3) P\{|X| \le x\} = 2F(x) - 1.$$

$$\mathbf{F}(-x) = \int_{-\infty}^{-x} f(t)dt = -\int_{+\infty}^{x} f(-u)du = \int_{x}^{+\infty} f(u)du$$

$$= \int_{-\infty}^{+\infty} f(u)du - \int_{-\infty}^{x} f(u)du = 1 - F(x), \text{ if } F(x) + F(-x) = 1.$$

(2)
$$\Rightarrow$$
 (1) \Rightarrow \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1) \Rightarrow (1) \Rightarrow (2) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7) \Rightarrow (8) \Rightarrow (9) \Rightarrow (1) \Rightarrow (10) \Rightarrow (11) \Rightarrow (12) \Rightarrow (13) \Rightarrow (14) \Rightarrow (15) \Rightarrow (15) \Rightarrow (15) \Rightarrow (16) \Rightarrow (17) \Rightarrow (17) \Rightarrow (18) \Rightarrow (18

(3)
$$P\{|X| \le x\} = P\{-x \le X \le x\} = F(x) - F(-x)$$

= $F(x) - [1 - F(x)] = 2F(x) - 1$.

二、几种常见的连续型随机变量

1. 均匀分布

定义2 如果随机变量 X 的密度函数为

如果随机变量
$$X$$
 的密度函数为 $y
olimins y = f(x)$

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & \text{其它}, \end{cases}$$

就称 X 服从 [a,b] 上的均匀分布,记为 $X \sim U[a,b]$.

X的分布函数为

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x - a}{b - a}, & a \le x < b, \\ 1, & b \le x. \end{cases}$$

注 1 X 落入某区间 I 内(上)的概率为

$$P{X \in I} = P{X \in I \cap [a,b]} = \frac{I \cap [a,b]}{b-a}$$
.

例 3 如果随机变量 $X \sim U[1,6]$,求方程 $x^2 + Xx + 1 = 0$ 有实根的概率.

$$extbf{ff} P\{x^2 + Xx + 1 = 0 \text{ 有实根}\} = P\{X^2 - 4 \ge 0\}$$

$$= P\{|X| \ge 2\} = P\{2 \le X \le 6\} = \frac{6 - 2}{6 - 1} = \frac{4}{5} .$$

2. 指数分布

定义3 如果随机变量 X 的密度函数为

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0, \end{cases}$$

y = f(x) 0 x

其中 $\lambda > 0$, 就称 X 服从参数为 λ 的

指数分布,记为 $X \sim E(\lambda)$.

X的分布函数为

$$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0, \\ 0, & x < 0. \end{cases}$$

性质 7 设随机变量 $X \sim E(\lambda)$,则当 s > 0, t > 0时,

$$P\{X > s + t \mid X > s\} = P\{X > t\}$$
.

证 当 a > 0 时,有 $P\{X > a\} = \int_a^{+\infty} \lambda e^{-\lambda x} dx = e^{-\lambda a}$,所以

$$P\{X > s + t \mid X > s\} = \frac{P\{X > s + t, X > s\}}{p\{X > s\}}$$

$$= \frac{P\{X > s + t\}}{P\{X > s\}} = \frac{e^{-\lambda(s+t)}}{e^{-\lambda s}} = e^{-\lambda t} = P\{X > t\}.$$

性质 7 称为指数分布的无记忆性. 因此, 在实际问题中, 许多"寿命"的分布可用指数分布描述.

例 4 某仪器装有三只独立工作的同型号电子元件,其寿命

(单位:小时)都服从参数为 $\frac{1}{600}$ 的指数分布.试求在仪器

使用的最初 200 小时内,至少有一只电子元件损坏的概率 α .

解 设 X_i 表示第 i 只元件的寿命, A_i 表示在仪器使用的最初 200 小时内,第 i 只元件损坏, i = 1,2,3 . 由题意知, A_1 , A_2 , A_3 相

互独立,且
$$X_i \sim E(\frac{1}{600})$$
, $i = 1, 2, 3$,故

$$P(\overline{A_i}) = P\{X_i \ge 200\} = \int_{200}^{+\infty} \frac{1}{600} e^{-\frac{x}{600}} dx = e^{-\frac{1}{3}}, \quad i = 1, 2, 3.$$

故所求概率为:
$$\alpha = P(A_1 \cup A_2 \cup A_3) = 1 - P(\overline{A_1} \overline{A_2} \overline{A_3})$$

= $1 - P(\overline{A_1})P(\overline{A_2})P(\overline{A_3}) = 1 - e^{-1}$.

3. 正态分布

定义 4 如果随机变量 X 的概率密度为

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty,$$

就称 X 服从参数为 μ , σ 的正态分布,记

为
$$X \sim N(\mu, \sigma^2)$$
,其中 $-\infty < \mu < +\infty$, $\sigma > 0$.

其分布函数为

$$F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt,$$

$$-\infty < x < +\infty.$$

注 2 f(x) 的图形关于直线 $x = \mu$ 对称.

注 3 f(x) 的图形是中间大,两头小,呈对称的"钟形"曲线. 另外, σ 越大,f(x) 的图形越平坦, σ 越小,f(x) 的图形越陡峭. 并且 f(x) 在点 $x = \mu \pm \sigma$ 处有拐点.

在实际问题中,有许多随机变量都服从正态分布.如某地区的水稻亩产量,某人群中人的身高、体重,某课程的考试成绩等数量指标通常都服从正态分布.

当 $\mu=0,\sigma=1$,即 $X\sim N(0,1)$ 时,称随机变量X 服从标准正态分布. 其密度函数记为 $\varphi(x)$,分布函数记为 $\Phi(x)$,即

$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, \quad \Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^2}{2}} dt, \quad -\infty < x < +\infty.$$

$$\Phi(0) = 0.5$$
, $\Phi(x) = 1 - \Phi(-x)$.

注 5 如果 $X \sim N(0,1)$,则对于任意的实数 a,b (a < b),

$$P\{a < X \le b\} = \Phi(b) - \Phi(a),$$

其中 $\Phi(a)$, $\Phi(b)$ 可查标准正态分布表计算.

注 6 如果 $X \sim N(\mu, \sigma^2)$,则得 $\frac{X - \mu}{\sigma} \sim N(0, 1)$,从而

$$P\{a < X \le b\} = \Phi(\frac{b-\mu}{\sigma}) - \Phi(\frac{a-\mu}{\sigma})$$
,查表可得.

进而
$$P\{X \le b\} = \Phi(\frac{b-\mu}{\sigma}), \quad P\{X > a\} = 1 - \Phi(\frac{a-\mu}{\sigma}).$$

例 5 设随机变量 $X \sim N(1,4)$,分别计算

$$P\{X \le 3\}$$
, $P\{-1 < X < 5\}$.

解 由题意知, $\mu=1, \sigma=2$.

$$P\{X \le 3\} = \Phi(\frac{3-1}{2}) = \Phi(1) = 0.8413$$
,

$$P\{-1 < X < 5\} = \Phi(\frac{5-1}{2}) - \Phi(\frac{-1-1}{2})$$

$$= \Phi(2) - \Phi(-1) = \Phi(2) - [1-\Phi(1)]$$

$$= \Phi(1) + \Phi(2) - 1 = 0.8413 + 0.9772 - 1$$

$$= 0.8185.$$

例 6 设电源电压 $X \sim N(220, 25^2)$,在电源电压不超过 200 伏,在 200 – 240 伏之间和超过 240 伏三种情况下, 某种电子元件损坏的概率分别为 0.1; 0.001; 0.2. (1)求该电子元件损坏的概率 α ; (2)该电子元件损坏时,求电源电压在 200-240 伏的概率 β .

解 设 $A_1 = \{X \le 200\}, A_2 = \{200 < X \le 240\}, A_3 = \{X > 240\},$ B 表示该电子元件损坏.由于 $X \sim N(220, 25^2)$,因此, $P(A_1) = P\{X \le 200\} = P\{\frac{X - 220}{25} \le -0.8\}$ $= \Phi(-0.8) = 1 - \Phi(0.8) = 1 - 0.788 = 0.212$,

$$\begin{split} P(A_2) &= P\{200 < X \le 240\} = P\{-0.8 < \frac{X - 220}{25} \le 0.8\} \\ &= 2\Phi(0.8) - 1 = 0.576 \;, \\ P(A_3) &= P\{X > 240\} = P\{\frac{X - 220}{25} > 0.8\} \\ &= 1 - P\{\frac{X - 220}{25} \le 0.8\} = 1 - \Phi(0.8) = 0.212 \;, \end{split}$$

或
$$P(A_3) = 1 - P(A_1) - P(A_2) = 0.212$$
.

(1)由全概率公式知
$$\alpha = P(B) = \sum_{i=1}^{3} P(A_i)P(B|A_i) = 0.0642$$
;

(2)由贝叶斯公式知
$$\beta = P(A_2|B) = \frac{P(A_2)P(B|A_2)}{P(B)} = 0.009$$
.