UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE CIENCIAS CARRERA DE MATEMÁTICO

LÓGICA MATEMÁTICA II

HORAS A LA SEMANA/SEMESTRE

SEMESTRE: Séptimo u octavo

CLAVE: **0446**

TEÓRICAS	PRÁCTICAS	CRÉDITOS
5/80	0	10

CARÁCTER: **OPTATIVO**. MODALIDAD: **CURSO**.

SERIACIÓN INDICATIVA ANTECEDENTE: Lógica Matemática I.

SERIACIÓN INDICATIVA SUBSECUENTE: Introducción a las Funciones Recursivas

y Computabilidad, Lógica Matemática III.

OBJETIVO(S): Que el alumno conozca y maneje el lenguaje de la lógica de predicados con igualdad; que comprenda el concepto de sistema formal de primer orden y conozca el cálculo de predicados con igualdad. Que profundice en el concepto de consecuencia lógica, los métodos de decisión y los semialgoritmos asociados a esta lógica. Que adquiera las nociones básicas de la teoría de modelos.

NUM. HORAS	UNIDADES TEMÁTICAS
10	1. Estructuras y lenguajes de primer orden
	1.1 Análisis lógico del lenguaje natural. Lenguajes formales y traduc-
	ciones.
	1.2 Estructuras elementales.
	1.3 Lenguajes adecuados para las estructuras elementales.
	1.4 Los lenguajes formales de primer orden.
30	2. Satisfacción y verdad
	2.1 Interpretación de lenguajes de primer orden.
	2.2 Definición de satisfactibilidad de Tarski.
	2.3 Noción de verdad relativa a la estructura. Modelos y validez lógi-
	ca.
	2.4 Consecuencia lógica y equivalencia lógica.
	2.5 Sugerencia: Prenexación. Formas normales de Skolem. Forma
	clausular.

35	3. Un Cálculo de Predicados de primer orden
	A. Enfoque semántico.
	3.1 Teorema de Compacidad. Aplicaciones.
	3.2 Teorema de Herbrand. Aplicaciones.
	3.3 Existencia de un Cálculo Correcto y Completo, para la noción de
	consecuencia lógica.
	B. Enfoque sintáctico.
	3.1 Un Cálculo de Predicados: Axiomas, reglas de inferencia y defini-
	ciones de derivación y de prueba. Reglas derivadas. Teorías de primer
	orden.
	3.2 Teorema de la Deducción. Teorema de la regla de elección.
	3.3 Correctud y Completud del Cálculo respecto a la noción de con-
	secuencia lógica.
	3.4 Teorema de Compacidad. Aplicaciones.
5	4. Teorema de Löwenheim-Skolem

BIBLIOGRAFÍA BÁSICA:

- 1. Amor, J. A., Compacidad en la lógica de primer orden y su relación con el Teorema de Completud, México: Servicios Editoriales, Facultad de Ciencias UNAM, 1999.
- 2. Bridge, J., Beginning Model Theory, Oxford: Oxford University Press, 1977.
- 3. DeLong H., A Profile of Mathematical Logic, Reading, Mass.: Addison Wesley, 1971.
- 4. Enderton, H., A Mathematical Introduction to Logic, Boston: Academic Press, 1972.
- 5. Kleene, S. C., Mathematical Logic, New York: Ed. Wiley, 1967.
- 6. Malitz J., Introduction to Mathematical Logic Part III, New York: Springer Verlag, 1979.
- 7. Mendelson, E., *Introduction to Mathematical Logic*, Tercera Edición. Pacific Grove, California: Wadsworth Books, 1987.
- 8. Solís, J., Torres, Y., Lógica con aplicaciones a las ciencias computacionales, México: Ed. UAM-Iztapalapa, 1993.

BIBLIOGRAFÍA COMPLEMENTARIA:

1. DeLong, H., A profile of Mathematical Logic, Reading, Mass.: Addison-Wesley, USA, 1970.

SUGERENCIAS DIDÁCTICAS: Lograr la participación activa de los alumnos mediante exposiciones.

SUGERENCIA PARA LA EVALUACIÓN DE LA ASIGNATURA: Además de las calificaciones en exámenes y tareas se tomará en cuenta la participación del alumno.

PERFIL PROFESIOGRÁFICO: Matemático, físico, actuario o licenciado en ciencias de la computación, especialista en el área de la asignatura a juicio del comité de asignación de cursos.