

3. INVERSE TRIGONOMETRIC FUNCTIONS

SYNOPSIS

I.	Function	Domain	Range
	Sin ⁻¹ (x)	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
	Cos ⁻¹ (x)	[-1,1]	[0, π]
	Tan ⁻¹ (x)	(-∞,∞)	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
	Cot ⁻¹ (x)	$(-\infty, \infty)$	(0, π)
	Sec ⁻¹ (x)	$(-\infty,-1] \cup [1,\infty)$	$[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]$
	Cosec ⁻¹ (x)	$(-\infty,-1] \cup [1,\infty)$	$\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$

II. 1)
$$\sin(\sin^{-1}x) = x$$
 for $x \in [-1,1]$

$$\sin^{-1}(\sin x) = x \qquad \text{for } x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

2)
$$\cos(\cos^{-1}x) = x$$
 for $x \in [-1,1] \cos^{-1}(\cos x) = x$ for $x \in [0,\pi]$

3)
$$\tan (\tan^{-1}x) = x$$
 for $x \in (-\infty, \infty)$ $\tan^{-1}(\tan x) = x$ for $x \in (-\frac{\pi}{2}, \frac{\pi}{2})$

4)
$$\cot(\cot^{-1}x) = x$$
 for $x \in (-\infty, \infty) \cot^{-1}(\cot x) = x$ for $x \in (0, \pi)$

5)
$$\sec(\sec^{-1}x) = x$$
 for $x \in (-\infty, -1] \cup [1, \infty) \sec^{-1}(\sec x) = x \text{ for } x \in [0, \frac{\pi}{2}) \cup (\frac{\pi}{2}, \pi]$

6) cosec (cosec⁻¹x)=x for
$$x \in (-\infty, -1] \cup [1, \infty)$$
 cosec⁻¹(cosecx)=x for $x \in [-\frac{\pi}{2}, 0) \cup (0, \frac{\pi}{2}]$

III. 1)
$$\sin^{-1}(-x) = -\sin^{-1}(x)$$
 for $x \in [-1,1]$

2)
$$\cos^{-1}(-x) = \pi - \cos^{-1}(x)$$
 for $x \in [-1,1]$

3)
$$tan^{-1}(-x) = -tan^{-1}(x)$$
 for $x \in (-\infty, \infty)$

4)
$$\cot^{-1}(-x) = \pi - \cot^{-1}(x)$$
 for $x \in (-\infty, \infty)$

5)
$$\sec^{-1}(-x) = \pi - \sec^{-1}(x)$$
 for $x \in (-\infty, -1] \cup [1, \infty)$

6)
$$\csc^{-1}(-x) = -\csc^{-1}(x)$$
 for $x \in (-\infty, -1] \cup [1, \infty)$

IV. 1)
$$\sin^{-1}(x) = \csc^{-1}(1/x)$$
; for $x \in [-1,0) \cup (0,1]$

2)
$$\cos^{-1}(x) = \sec^{-1}(1/x)$$
; for $x \in [-1,0) \cup (0,1]$

3)
$$\tan^{-1}(x) = \cot^{-1}(1/x)$$
 for $x \in (0, \infty)$ and $\tan^{-1}(x) = -\pi + \cot^{-1}(1/x)$ for $x \in (-\infty, 0)$

4)
$$\cot^{-1}x = \tan^{-1}\left(\frac{1}{x}\right)$$
 for $x \in (0, \infty) = \pi + \tan^{-1}\left(\frac{1}{x}\right)$ for $x \in (-\infty, 0)$

V. 1)
$$\sin^{-1}x + \cos^{-1}(x) = \frac{\pi}{2}$$
 for $x \in [-1,1]$ 2) $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$ for $x \in (-\infty, \infty)$
3) $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$ for $x \in (-\infty, -1] \cup [1, \infty)$

VI.1)
$$\sin^{-1}(x) = \cos^{-1}(\sqrt{1 - x^2}) = \tan^{-1}(\frac{x}{\sqrt{1 - x^2}})$$
 for $0 \le x \le 1$

2)
$$\cos^{-1}(x) = \sin^{-1}(\sqrt{1 - x^2}) = \tan^{-1}(\frac{\sqrt{1 - x^2}}{x})$$
 for $0 < x \le 1$

3)
$$\tan^{-1}(x) = \sin^{-1}(\frac{x}{\sqrt{1 + x^2}}) = \cos^{-1}(\frac{1}{\sqrt{1 + x^2}})$$
 for $x \ge 0$

VII. If $0 \le x \le 1$; $0 \le y \le 1$ then

1)
$$\sin^{-1}x + \sin^{-1}y = \sin^{-1}(x \sqrt{1-y^2} + y \sqrt{1-x^2})$$
 for $x^2 + y^2 \le 1$

2)
$$\sin^{-1}x + \sin^{-1}y = \pi - \sin^{-1}(x \sqrt{1 - y^2} + y \sqrt{1 - x^2})$$
 for $x^2 + y^2 > 1$

3)
$$\sin^{-1}x - \sin^{-1}y = \sin^{-1}(x \sqrt{1-y^2} - y \sqrt{1-x^2})$$

4)
$$\cos^{-1}x + \cos^{-1}y = \cos^{-1}(xy - \sqrt{1 - x^2})$$
; for $x^2 + y^2 \le 1$

5)
$$\cos^{-1}x + \cos^{-1}y = \pi - \cos^{-1}(\sqrt{1-x^2} \cdot \sqrt{1-y^2} - xy)$$
 for $x^2 + y^2 > 1$

6)
$$\cos^{-1}x - \cos^{-1}y = \cos^{-1}(xy + \sqrt{1-x^2} \cdot \sqrt{1-y^2})$$

VIII. For x>0, y>0

1)
$$\tan^{-1}x + \tan^{-1}y = \tan^{-1}(\frac{x+y}{1-xy})$$
 if $xy < 1 = \pi + \tan^{-1}(\frac{x+y}{1-xy})$ if $xy > 1 = \frac{\pi}{2}$ if $xy = 1$

2) If x and y are of same signs then
$$\tan^{-1}x - \tan^{-1}y = \tan^{-1}(\frac{x-y}{1+xy})$$
.

IX. 1)
$$2 \sin^{-1}(x) = \sin^{-1}(2x \sqrt{1-x^2}) = \cos^{-1}(1-2x^2)$$

2)
$$2 \cos^{-1}(x) = \cos^{-1}(2x^2 - 1) = \sin^{-1}(2x \sqrt{1 - x^2})$$

3)
$$2\tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)$$

X. 1)
$$3 \sin^{-1}x = \sin^{-1}(3x - 4x^3)$$
 2) $3 \cos^{-1}x = \cos^{-1}(4x^3 - 3x)$ 3) $3 \tan^{-1}x = \tan^{-1}(\frac{3x - x^3}{1 - 3x^2})$
XI. 1) $\tan^{-1}(x) + \tan^{-1}(y) + \tan^{-1}(z) = \tan^{-1}(\frac{x + y + z - xyz}{1 - xy - yz - zx})$

XI. 1)
$$\tan^{-1}(x) + \tan^{-1}(y) + \tan^{-1}(z) = \tan^{-1}\left(\frac{x+y+z-xyz}{1-xy-yz-zx}\right)$$

2) If
$$tan^{-1}(x) + tan^{-1}(y) + tan^{-1}(z) = \frac{\pi}{2} then xy + yz + zx = 1$$

3) If
$$tan^{-1}(x) + tan^{-1}(y) + tan^{-1}(z) = \pi$$
 then $x + y + z = xyz$.

XII. 1)
$$\tan^{-1} \frac{n}{m} + \tan^{-1} \left(\frac{m-n}{m+n} \right) = \pi/4 \text{ or } -3\pi/4$$
 2) $\tan^{-1} \frac{m}{n} - \tan^{-1} \left(\frac{m-n}{m+n} \right) = \pi/4 \text{ or } -3\pi/4$

3)
$$\tan^{-1}\frac{1}{2} + \tan^{-1}\frac{1}{3} = \pi/4$$

4)
$$\tan^{-1} 2 + \tan^{-1} 3 = 3\pi/4$$

5)
$$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3 = \pi$$

6) If
$$\tan^{-1} x + \tan^{-1} y = \pi/2$$
 then $xy = 1$

7) If
$$\cot^{-1} x + \cot^{-1} y = \pi/2$$
 then $xy = 1$

8) If
$$\sin^{-1} a / x + \sin^{-1} b / x = \pi / 2$$
 or $\cos^{-1} a / x + \cos^{-1} b / x = \pi / 2$ then $x = \sqrt{a^2 + b^2}$

9) If
$$\tan^{-1} a / x + \tan^{-1} b / y = \pi / 2$$
 then $x = \sqrt{ab}$

10) If
$$\cos^{-1} x/a + \cos^{-1} y/b = \theta$$
 then $\frac{x^2}{a^2} - \frac{2xy}{ab} \cos \theta + \frac{b^2}{y^2} = \sin^2 \theta$

11) If
$$\sin^{-1} x/a + \sin^{-1} y/b = \theta$$
, then $\frac{x^2}{a^2} + \frac{2xy}{ab}\cos\theta + \frac{b^2}{y^2} = \sin^2\theta$

$$12) \quad \tan^{-1}\frac{1}{1+x(x+1)}+\tan^{-1}\frac{1}{1+(x+1)(x+2)}+\dots+\tan^{-1}\frac{1}{1+(x+n-1)(x+n)}=\tan^{-1}(x+n)-\tan^{-1}x$$

EXERCISE - I

WORK SHEET - I

The value of $\sin^{-1}(\sin{(\frac{2\pi}{3})}) =$

1)
$$\frac{2\pi}{3}$$

4)
$$-\frac{2\pi}{3}$$

The value of $\cos^{-1}(\cos(\frac{7\pi}{6}))$

1)
$$\frac{7\pi}{6}$$

5π 3)

3.
$$\sin^{-1}(\frac{\sqrt{3}}{2}) - \tan^{-1}(-\ddot{O}3) =$$

1) -
$$p/3$$

2)
$$2p/3$$

sec²(cot⁻¹ ½) + cosec²(tan⁻¹ 1/3)

$$\cos[\sin^{-1}(-4/5) - \cos^{-1}(4/5)] =$$
1) p/2 2) - p/2

3) 0

4) p

6.
$$\sec^{-1}\left(\frac{2\sqrt{2}}{1+\sqrt{3}}\right) =$$

1)
$$\frac{\pi}{12}$$

1) p/2

$$2) \frac{\pi}{3}$$

3)
$$\frac{3\pi}{4}$$

4)
$$\frac{\pi}{6}$$

 $\sin (\cos^{-1}(\frac{3}{5})) =$

 $\cot (\sin^{-1}(63/65)) =$ 8.

$\sin^{-1}(x) > \cos^{-1}(x)$ holds for 9.

2)
$$\times \hat{1} (0, \frac{1}{\sqrt{2}})$$

3)
$$\times \hat{I} \left(\frac{1}{\sqrt{2}}, 1 \right]$$

2)
$$\times \hat{1}(0, \frac{1}{\sqrt{2}})$$
 3) $\times \hat{1}(\frac{1}{\sqrt{2}}, 1]$ 4) $(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$

10.
$$\cos^{-1}(\frac{4}{5}) + \cos^{-1}(\frac{63}{65}) =$$

1)
$$\cos^{-1}(\frac{204}{325})$$
 2) $\cos^{-1}(\frac{300}{325})$

2)
$$\cos^{-1}\left(\frac{300}{325}\right)$$

3)
$$\cos^{-1}\left(\frac{201}{300}\right)$$

3)
$$\cos^{-1}\left(\frac{201}{300}\right)$$
 4) $\sin^{-1}\left(\frac{204}{325}\right)$

11.
$$\sin^{-1}(\frac{4}{5}) - \sin^{-1}(\frac{5}{13}) =$$

1)
$$\sin^{-1}(\frac{56}{65})$$

2)
$$\sin^{-1}(\frac{63}{65})$$

3)
$$\sin^{-1}\left(\frac{77}{85}\right)$$

4)
$$\sin^{-1}\left(\frac{33}{65}\right)$$

12.
$$tan^{-1}(2) + tan^{-1}(3) =$$

1) -
$$\frac{\pi}{4}$$

2)
$$\frac{\pi}{4}$$

3)
$$\frac{3\pi}{4}$$

4)
$$\frac{5\pi}{4}$$

13.
$$2 \tan^{-1}(1/2) + \sin^{-1}(3/5) =$$

1)
$$\tan^{-1}(\frac{12}{25})$$

2)
$$\frac{\pi}{4}$$

3)
$$\frac{\pi}{2}$$

4)
$$tan^{-1}(\frac{25}{12})$$

14. The value of $tan^{-1} \left(\frac{m}{n}\right)$ - $tan^{-1} \left(\frac{m-n}{m+n}\right)$ is

4)
$$3p/4$$

15.
$$\sec \left[\tan^{-1} 5 + \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{3}{4}\right] =$$

1)
$$\frac{3}{5}$$

16. $\cos \left[2\tan^{-1}\frac{1}{5} + \cos^{-1}\frac{63}{65}\right] =$

1)
$$\frac{4}{5}$$

2)
$$\frac{3}{4}$$

3)
$$\frac{3}{5}$$

4)
$$\frac{\sqrt{3}}{2}$$

17. The value of
$$\cot(\cos ec^{-1}\frac{5}{3} + \tan^{-1}\frac{2}{3})$$
 is

1)
$$\frac{6}{17}$$

2)
$$\frac{3}{17}$$

3)
$$\frac{4}{17}$$

4)
$$\frac{5}{17}$$

18.
$$\sin(2 \tan^{-1}(\frac{8}{15})) =$$

1)
$$\frac{230}{289}$$

2)
$$\frac{240}{289}$$

3)
$$\frac{120}{249}$$

4)
$$\frac{120}{289}$$

19.
$$\cos(2\cos^{-1}(7/25)) =$$

1)
$$\frac{527}{625}$$

2)
$$-\frac{527}{625}$$

3) p -
$$\frac{527}{625}$$

4)
$$\frac{24}{25}$$

20.
$$\tan\left[\frac{1}{2}\cos^{-1}\left(\frac{\sqrt{5}}{3}\right)\right] =$$

1)
$$\frac{3+\sqrt{5}}{2}$$
 2) $\frac{3-\sqrt{5}}{2}$

2)
$$\frac{3 - \sqrt{5}}{2}$$

3)
$$\frac{4 + \sqrt{5}}{2}$$

4)
$$\frac{4 - \sqrt{5}}{2}$$

21. If
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
, then

1)
$$xy + yz + zx = 1$$

2)
$$x^2 + y^2 + z^2 + 2xyz = 1$$
 3) $x + y + z = xyz$

3)
$$x + y + z = xyz$$

$$4) Sx + Syz = 1 + xyz$$

22. If
$$\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = p$$
, then

1)
$$x^2 + y^2 + z^2 = 2xyz$$

$$2) x^2 + y^2 + z^2 + 2xyz = 0$$

3)
$$x^2 + y^2 + z^2 + 2xyz = 1$$
 4) $xy + yz + zx = xyz$

23. If
$$\sin^{-1}(a/x) + \sin^{-1}(b/x) = p/2$$
 then $x =$

3)
$$\sqrt{a^2 + b^2}$$

4)
$$a^2 + b^2$$

24. If
$$\sin^{-1}\left(\frac{3}{x}\right) + \sin^{-1}\left(\frac{4}{x}\right) = \frac{\pi}{2}$$
 then x =

25. If
$$\sin^{-1}(\frac{12}{13}) + \sec^{-1}(\frac{13}{x}) = \frac{\pi}{2}$$
 then $x = \frac{\pi}{2}$

Pinnacle

WORK SHEET - II

The domain of $\log_{0} \sin^{-1}(x)$ is 1.

$$4)(-4, 0]$$

The domain of the function $f(x) = \sin^{-1}(\log_2(\frac{x^2}{2}))$ is 2.

1)
$$1 £ x £ 2 or -2 £ x £ - 1$$
 2) $1 £ x < 3$

3. Range of sin⁻¹x - cos⁻¹ x is

1)
$$\left[\frac{-3\pi}{2}, \frac{\pi}{2}\right]$$
 2) $\left[\frac{-5\pi}{3}, \frac{\pi}{3}\right]$

2)
$$[\frac{-5\pi}{3}, \frac{\pi}{3}]$$

3)
$$\left[\frac{-3\pi}{2}, p\right]$$

Range of $\sin^{-1}x + \cos^{-1}x + \tan^{-1}x$ is

1)
$$(0, \frac{\pi}{2})$$

3)
$$\left[\frac{\pi}{4}, \frac{3\pi}{4}\right]$$

If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$ then the value of $\sum \left(\frac{x^{201} + y^{201}}{x^{603} + y^{603}}\right) \cdot \left(\frac{x^{402} + y^{402}}{x^{804} + y^{804}}\right) = \frac{3\pi}{2}$

6. If n î N, $\sum_{k=1}^{n} \sin^{-1}(x_k) = \frac{n\pi}{2}$ then the value of $\sum_{k=1}^{n} x_k = 1$

3)
$$\frac{k(k+1)}{2}$$

4)
$$\frac{n(n+1)}{2}$$

7. If n î N, $\sum_{k=1}^{n} \cos^{-1}(x_k) = n\pi$ then the value of $\sum_{k=1}^{n} \sin^{-1}(x_k) = 1$

$$2) \frac{n\pi}{2}$$

3)
$$-\frac{n\pi}{2}$$

 $\tan^{-1}(\frac{1+\sin x}{\cos x}) =$ 1) $\frac{\pi}{4} - \frac{x}{2}$ 2) $\frac{\pi}{4} - x$ 8. $\tan^{-1}(\frac{1+\sin x}{\cos x}) =$

1)
$$\frac{\pi}{4} - \frac{x}{2}$$

2)
$$\frac{\pi}{4}$$
 ->

3)
$$\frac{\pi}{4} + x$$

4)
$$\frac{\pi}{4} + \frac{x}{2}$$

9. $\arctan^{-1} \left| \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}} \right| =$

2)
$$\frac{x}{2}$$

3)
$$\frac{x^2}{2}$$

10. If $\sin^{-1}(x - \frac{x^2}{2} + \frac{x^3}{4} - \dots) + \cos^{-1}(x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \dots) = \frac{\pi}{2}$ for $0 < |x| < \ddot{0}2$ then $x = \frac{\pi}{2}$

3)
$$-1/2$$

11.
$$\sin^{-1} (\ddot{O}2 \sin q) + \sin^{-1} (\sqrt{\cos 2\theta}) =$$

1) $\frac{\pi}{6}$

3) $\frac{\pi}{3}$

4) $\frac{\pi}{2}$

12. If
$$u = \tan^{-1}(\frac{1}{\sqrt{\cos 2\theta}}) - \tan^{-1}(\sqrt{\cos 2\theta})$$
, then $\sin u = 1$

- 3) $\cos^2 q$
- 4) tan²q

13.
$$\sin [\cot^{-1} {\cos(\tan^{-1} x)}] =$$

1)
$$\sqrt{\frac{x^2-1}{x^2+2}}$$
 2) $\sqrt{\frac{x-2}{x^2+1}}$

2)
$$\sqrt{\frac{x-2}{x^2+1}}$$

3)
$$\sqrt{\frac{x^2+1}{x^2+2}}$$

4)
$$\frac{1}{\sqrt{x^2 - 1}}$$

14.
$$2 \tan^{-1} \frac{1}{5} + \tan^{-1} \frac{1}{7} + 2 \tan^{-1} \frac{1}{8} =$$

- 3) p/4
- 4) 3p/4

15.
$$\tan^{-1}\frac{5}{6} + \frac{1}{2}\tan^{-1}\frac{11}{60} =$$

- 3) p/4
- 4) 3p/4

16.
$$\tan^{-1}(\frac{5}{12}) + \sin^{-1}(\frac{24}{25}) = \cos^{-1}(x)$$
 implies $x =$

- 1) $\frac{-31}{325}$
- 2) $\frac{-33}{325}$
- 3) $\frac{-36}{325}$
- 4) $\frac{-39}{325}$

17. In a
$$\triangle$$
 ABC, if C is a right angle then $\tan^{-1}\left(\frac{a}{b+c}\right) + \tan^{-1}\left(\frac{b}{c+a}\right) =$

18.
$$\tan[\tan^{-1}(\frac{1}{a+b})+\tan^{-1}(\frac{b}{a^2+ab+1})]=$$

3) b

4) 1/b

19.
$$\sin \left[\cot^{-1}\left(\frac{2x}{1-x^2}\right) + \cos^{-1}\left(\frac{1-x^2}{1+x^2}\right)\right] =$$

1) 0

2) 1

- $3) \frac{x y}{1 + xy}$
- 4) $\frac{2x}{1-x^2}$

20. If
$$3 \sin^{-1}(\frac{2x}{1+x^2}) - 4 \cos^{-1}(\frac{1-x^2}{1+x^2}) + 2 \tan^{-1}(\frac{2x}{1-x^2}) = \frac{\pi}{3}$$
, then $x = \frac{\pi}{3}$

1)
$$\frac{1}{\sqrt{3}}$$
 2) $\frac{1}{\sqrt{2}}$

$$2) \frac{1}{\sqrt{2}}$$

21.
$$\tan^{-1}\frac{1}{3} + \tan^{-1}\frac{1}{7} + \dots + \tan^{-1}(\frac{1}{n^2 + n + 1}) =$$

1)
$$\tan^{-1}\left(\frac{2n-1}{n+2}\right)$$
 2) $\tan^{-1}\left(\frac{2n}{n+5}\right)$ 3) $\tan^{-1}\left(\frac{1}{n+2}\right)$ 4) $\tan^{-1}\left(\frac{n}{n+2}\right)$

2)
$$\tan^{-1}(\frac{2n}{n+5})$$

3)
$$\tan^{-1}\left(\frac{1}{n+2}\right)$$

4)
$$\tan^{-1}(\frac{n}{n+2})$$

22. If a_1 , a_2 , a_3 , a_n are in A.P. with common difference d, then $tan[tan^{-1}(\frac{d}{1+a_1a_2})+tan^{-1}(\frac{d}{1+a_2a_2})+....+$

$$\tan^{-1}(\frac{d}{1 + a_{n-1}a_n})$$
] =

1)
$$\frac{(n-1) d}{a_1 + a_n}$$

1)
$$\frac{(n-1)d}{a_1+a_2}$$
 2) $\frac{(n-1)d}{1+a_1a_2}$ 3) $\frac{nd}{1+a_1a_2}$ 4) $\frac{a_n-a_1}{a_n+a_1}$

3)
$$\frac{\text{nd}}{1 + a_1 a_2}$$

4)
$$\frac{a_n - a_1}{a_1 + a_1}$$

23. $\tan^{-1}(\frac{c_1x - y}{c_1y + x}) + \tan^{-1}(\frac{c_2 - c_1}{1 + c_2c_1}) + \tan^{-1}(\frac{c_3 - c_2}{1 + c_3c_2}) + \dots + \tan^{-1}(\frac{1}{c_n})$

1)
$$\tan^{-1}(\frac{2x}{y})$$
 2) $\tan^{-1}(xy)$ 3) $\tan^{-1}(x/y)$ 4) $\tan^{-1}(y/x)$

3)
$$tan^{-1}(x/y)$$

24. If a,b, c are positive then $\tan^{-1} \sqrt{\frac{a(a+b+c)}{bc}} + \tan^{-1} \sqrt{\frac{b(a+b+c)}{ca}} + \tan^{-1} \sqrt{\frac{c(a+b+c)}{ca}} =$

$$2) \ \frac{3\pi}{2}$$

3)
$$\frac{3\pi}{4}$$

1) p 2) $\frac{3\pi}{2}$ 3) $\frac{3\pi}{4}$ 4) 3

25. If $\tan^{-1}(\frac{3a^2x-x^3}{a^3-3ax^2})=k \tan^{-1}(x/1)$ then k=1 2) 3

26. If $\sec^{-1}(\frac{1}{\sqrt{1-x^2}}) + \cot^{-1}(\frac{\sqrt{1-x^2}}{x}) = \sin^{-1}(k)$ then k =

1)
$$x\sqrt{1 - x^2}$$

2)
$$2x\sqrt{1-x^2}$$

3)
$$\sqrt{1 - x^2}$$

27. If $\sin^{-1} x - \cos^{-1} x = \frac{\pi}{6}$, then x =

2)
$$\frac{\sqrt{3}}{2}$$

4)
$$-\frac{\sqrt{3}}{2}$$

28. If $\sin^{-1}(x) - \cos^{-1}(x) = \sin^{-1}(x - 1)$ then x =

3) 1,
$$-\frac{1}{2}$$

29. If
$$\sin^{-1}(x) + \sin^{-1}(2x) = \frac{\pi}{3}$$
 then x =

1)
$$\frac{3}{28}$$

2)
$$\frac{\sqrt{3}}{28}$$

3)
$$\sqrt{\frac{3}{28}}$$

4)
$$\frac{3}{\sqrt{28}}$$

30.
$$\cos^{-1}(x/1) + \cos^{-1}(y/2) = q$$
, then $\frac{x^2}{a^2} - \frac{2xy}{ab} \cos q + \frac{y^2}{b^2} =$

1)
$$\sin^2 q$$

31. If
$$Sec^{-1}\frac{x}{a} - Sec^{-1}\frac{x}{b} = Sec^{-1}b - Sec^{-1}a$$
 then $x =$

2)
$$\sqrt{ab}$$

3)
$$\frac{a+b}{2}$$

4)
$$\frac{2ab}{a+b}$$

32. If
$$tan^{-1}(a/x) + tan^{-1}(b/x) = p/2$$
 then $x =$

2)
$$\sqrt{ab}$$

3)
$$\sqrt{a^2 + b^2}$$

4)
$$a^2 + b^2$$

33. If
$$\tan^{-1}\left(\frac{x-1}{x-2}\right) + \tan^{-1}\left(\frac{x+1}{x+2}\right) = \frac{\pi}{4}$$
, then $x = \frac{\pi}{4}$

1)
$$\frac{1}{\sqrt{2}}$$

1)
$$\frac{1}{\sqrt{2}}$$
 2) $\pm \frac{1}{\sqrt{2}}$

3)
$$\pm \frac{1}{\sqrt{3}}$$

4)
$$\frac{1}{\sqrt{3}}$$

34. If
$$tan^{-1}(\frac{x+1}{x-1}) + tan^{-1}(\frac{x-1}{x}) = p + tan^{-1}(-7)$$
; then $x =$

4) no solution

35. If
$$tan^{-1}(x+1) + tan^{-1}(x-1) = tan^{-1}\frac{8}{31}$$
 then $x = 1$) 1

4) 1/4

36. If
$$\tan^{-1}\left(\frac{2x}{x^2+1}\right) + \cos^{-1}\left(\frac{x^2-1}{x^2+1}\right) = \frac{2\pi}{3}$$
 then $x = -1$

37. If
$$\cot^{-1}(\frac{1+x}{1-x}) = \frac{1}{2}\cot^{-1}(\frac{1}{x})$$
 then $x = \frac{1}{2}\cot^{-1}(\frac{1}{x})$

1)
$$\frac{1}{\sqrt{2}}$$
 2) $\frac{1}{\sqrt{3}}$

2)
$$\frac{1}{\sqrt{3}}$$

3)
$$\frac{1}{\sqrt{5}}$$

4)
$$\frac{1}{\sqrt{6}}$$

38. If cot (sin⁻¹
$$\sqrt{\frac{13}{17}}$$
) = sin (tan⁻¹ x) then x =

1)
$$\frac{4}{17}$$

2)
$$\frac{2}{3}$$

3)
$$\frac{3}{2}$$

4)
$$\frac{17}{4}$$

39.	The value of x where $x > 0$ and	tan	$\left(\sec^{-1}-\frac{1}{2}\right)$	$\left(\frac{1}{x}\right)$	$=\sin$	(tan ⁻¹	2)	is
-----	----------------------------------	-----	--------------------------------------	----------------------------	---------	--------------------	----	----

- 1) $\sqrt{5}$
- 2) $\frac{\sqrt{5}}{3}$

3) 1

4) $\frac{2}{3}$

40.
$$\tan(\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\frac{a}{b}) + \tan(\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\frac{a}{b}) =$$

- 4) 2b/a

41. If
$$Cos^{-1}\frac{x}{a} + Cos^{-1}\frac{y}{b} = \frac{5\pi}{12}$$
 and $Sin^{-1}\frac{x}{a} - Sin^{-1}\frac{y}{b} = \frac{\pi}{12}$ then $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{\pi}{12}$

1) 1

- 4) 5/4
- 42. If x_{1} , x_{2} , x_{3} are the roots of x^{3} -6 x^{2} +11x-6=0 then $\cot^{-1}(x_{1}) + \cot^{-1}(x_{2}) + \cot^{-1}(x_{3})$ is equal to
 - 1) 0

3) p

4) $\frac{3\pi}{2}$

43. If
$$Tan^{-1}x + Tan^{-1}y + Tan^{-1}z = \frac{\pi}{2}$$
 and $(x - y)^2 + (y - z)^2 + (z - x)^2 = 0$ then $x^2 + y^2 + z^2 = 0$

4) None

44. The value of
$$\cos^{-1} \left\{ \frac{1}{\sqrt{2}} \left(\cos \frac{9\pi}{10} - \sin \frac{9\pi}{10} \right) \right\}$$
 is

- $\frac{7\pi}{20}$
- 4) $\frac{17\pi}{20}$

1)
$$\frac{3\pi}{20}$$
 2) $\frac{7\pi}{10}$
45. If $p < q < r < 0$ then $\sum \cot^{-1}\left(\frac{pq+1}{p-q}\right) = 0$

1) 0

3) 2π

46. If
$$Tan^{-1}\frac{1}{1+2x}+Tan^{-1}\frac{1}{4x+1}=Tan^{-1}\frac{2}{x^2}$$
 then $x=1$) 1 2) 0

47. If
$$T \operatorname{an}^{-1} \left(\frac{2x}{1 - x^2} \right) + C \operatorname{ot}^{-1} \left(\frac{1 - x^2}{2x} \right) = \frac{\pi}{3}$$
, $x > 0$ then $x = 0$

- 2) $2 \sqrt{3}$
- 3) $3-\sqrt{2}$
- 4) $3+\sqrt{2}$

48. If
$$\frac{1}{2} \le x \le 1$$
 then $\cos^{-1}x + \cos^{-1}\left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2}\right) =$

1) $\frac{\pi}{4}$

2) $\frac{\pi}{3}$

- 49. If $Sin^{-1}x + Tan^{-1}x = \frac{\pi}{2}$, then the value of x^2 is
 - 1) $\sin 18^{\circ}$
- 2) $\cos 36^{\circ}$
- 3) $2\sin 18^{\circ}$
- 4) 2cos36⁰

- 50. $2 C os^{-1} x = S in^{-1} \left(2x \sqrt{1 x^2} \right)$ is valid for
 - 1) $-1 \le x \le 1$
- 2) $0 \le x \le 1$
- 3) $0 \le x \le \frac{1}{\sqrt{2}}$ 4) $\frac{1}{\sqrt{2}} \le x \le 1$
- 51. The ascending order of minimum values of the functions
 - $P : \sin^{-1} x \cos^{-1} x$
- $Q : tan^{-1} x + cot^{-1} x$
- R: $\sec^{-1} x \csc^{-1} x$ is

- 1) P, Q, R
- 2) P, R, Q
- 3) Q, P, R

List-II

1) 0

4) Q, R, P

52. Match the Following

List-I

- 1) $\sin^{-1} x = \cos^{-1} x$ then x
- 2) $\sin^{-1} x = \tan^{-1} x$ then x

3) $\cos^{-1} x = \tan^{-1} x$ then x

4) $\sin^{-1} x = \cos^{-1} \left(\frac{1}{x} \right)$ then x

4) no value

4) 3 2

53. Match the Following

- List-II
- 1) $\sin^{-1} x \cos^{-1} x$ is maximum at x =

- 2) $\cos^{-1} x$ is maximum at x =
- 3) $2 \sin^{-1} x + 3 \cos^{-1} x$ is minimum at x =
- 4) $(\sin^{-1}x)^2 + (\cos^{-1}x)^2$ is minimum at x =
- 2) 0
- 3) 1
- 4) 1

1 1)

2) 3 1

3)

4) 3

WORK SHEET - III)

The value of sin⁻¹ (sin 10) is 1.

4)
$$3p + 10$$

 $\cos^{-1}(\cos 12) - \sin^{-1}(\sin 12) =$ 2.

3)
$$8\pi + 24$$

4)
$$8\pi - 24$$

If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = p$, then $x \sqrt{1 - x^2} + y \sqrt{1 - y^2} + z \sqrt{1 - z^2} =$ 3.

If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$ then $x^4 + y^4 + z^4 + 4x^2y^2z^2 =$ 4.

1)
$$x^2y^2+y^2z^2+z^2x^2$$

2)
$$2x^2y^2z^2$$

4)
$$2(x^2y^2+y^2z^2+z^2x^2)$$

5. If $\alpha = Tan^{-1} \left[\frac{\sqrt{1+x^2} - \sqrt{1-x^2}}{\sqrt{1+x^2} + \sqrt{1-x^2}} \right]$ then $\sin 2\alpha = 1$

3)
$$x^2$$

6. If $\cos^{-1} \left[\frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta} \right] = 2Tan^{-1}x$ then x = 1

1)
$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2}$$
 2) $\tan \alpha \tan \beta$

2)
$$\tan \alpha \tan \beta$$

3)
$$\cot \frac{\alpha}{2} \cot \frac{\beta}{2}$$

4)
$$\cot \alpha \cot \beta$$

The number of positive integral solutions of the equation $tan^{-1}x + cot^{-1}y = tan^{-1}3$ is

8. $2 \operatorname{Tan}^{-1} \left| \sqrt{\frac{a-b}{a+b}} \tan \frac{\theta}{2} \right| =$

1)
$$\cos^{-1}\left(\frac{a\cos\theta+b}{a+b\cos\theta}\right)$$

2)
$$\cos^{-1}\left(\frac{a\cos\theta-b}{a-b\cos\theta}\right)$$

3)
$$\cos^{-1}\left(\frac{a+b\cos\theta}{a\cos\theta+b}\right)$$

1)
$$\cos^{-1}\left(\frac{a\cos\theta+b}{a+b\cos\theta}\right)$$
 2) $\cos^{-1}\left(\frac{a\cos\theta-b}{a-b\cos\theta}\right)$ 3) $\cos^{-1}\left(\frac{a+b\cos\theta}{a\cos\theta+b}\right)$ 4) $\cos^{-1}\left(\frac{a-b\cos\theta}{a\cos\theta-b}\right)$

9. If $(T \operatorname{an}^{-1} x)^2 + (C \operatorname{ot}^{-1} x)^2 = \frac{5\pi^2}{8}$ then x =

1)
$$\sqrt{3}$$

3)
$$\frac{1}{\sqrt{3}}$$

10. $\sum_{1}^{\infty} Tan^{-1} \left(\frac{1}{2r^2} \right) =$

2)
$$\frac{\pi}{4}$$

3)
$$\frac{\pi}{3}$$

4)
$$\frac{\pi}{2}$$

11.
$$\sum_{m=1}^{\infty} Tan^{-1} \left(\frac{2m}{m^4 + m^2 + 2} \right)$$

1)
$$-\frac{\pi}{4}$$

2)
$$\frac{4}{\pi}$$

3)
$$\frac{\pi}{4}$$

4)
$$-\frac{4}{\pi}$$

12.
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) + \sin^{-1}\left(\frac{\sqrt{2}-1}{\sqrt{6}}\right) + \dots + \sin^{-1}\left(\frac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right) + \dots =$$

2)
$$\frac{\pi}{2}$$

3)
$$\frac{\pi}{4}$$

4)
$$\frac{3\pi}{2}$$

13. If $x \neq n$ and $\cot^{-1}x + \cot^{-1}(n^2 - x + 1) = \cot^{-1}(n - 1)$ then x = -1

2)
$$n^2 + n - 1$$

3)
$$n^2 - n + 1$$

4)
$$n^2 + n + 1$$

14. The number of solutions of the equation $Tan^{-1}\sqrt{x^2+x} + Cosec^{-1}\sqrt{1-x^2-x} = \frac{\pi}{2}$ is

1) 1

2) 2

15. The number of real solutions of $\tan^{-1}(\sqrt{x(x+1)} + \sin^{-1}\sqrt{(x^2+x+1)}) = \frac{\pi}{2}$ is

1) 0

3) 2

4) infinite

16.
$$3 \text{T an}^{-1} \frac{1}{2} + 2 \text{T an}^{-1} \frac{1}{5} + \sin^{-1} \frac{142}{65\sqrt{5}} =$$

1)
$$\frac{\pi}{4}$$

2)
$$\frac{\pi}{2}$$

3) π

4) 0

17. If
$$A = Tan^{-1} \left(\frac{1}{7}\right)$$
, $B = Cot^{-1}(3)$ then

1)
$$\cos 2A = \sin 4B$$

$$2) \cos 2A = \sin 2B$$

3) $2\cos 2A = \sin 4B$

 $4) \cos 2A = 2\sin 2B$

18. $\cot^{-1}(\sqrt{\cos\alpha}) - \tan^{-1}(\sqrt{\cos\alpha}) = x \text{ then } \sin x = 1$

2)
$$Cot^2 \frac{\alpha}{2}$$

3) Tan α

4) $Cot \frac{\alpha}{2}$

19. Let $y = (\sin^{-1} x)^3 + (\cos^{-1} x)^3$ then

1) min
$$y = \frac{\pi^3}{8}$$

2) min
$$y = \frac{\pi^3}{32}$$

3) max
$$y = \frac{\pi^3}{8}$$

1) min
$$y = \frac{\pi^3}{8}$$
 2) min $y = \frac{\pi^3}{32}$ 3) max $y = \frac{\pi^3}{8}$ 4) max $y = \frac{7\pi^3}{32}$

20. The value of x for which $\cos^{-1}(\cos 4) > 3x^2 - 4x$ is

$$1)\left(0,\frac{2+\sqrt{6\pi-8}}{3}\right)$$

$$2)\left(\frac{2+\sqrt{6\pi-8}}{3},0\right)$$

3) (-2,2)

4)
$$\left(\frac{2-\sqrt{6\pi-8}}{3}, \frac{2+\sqrt{6\pi-8}}{3}\right)$$

13

AKASH MULTIMEDIA

WORK SHEET - IV

1.
$$\sin^{-1} x > \cos^{-1} x$$
 holds for

$$x \in \left[0, \frac{1}{\sqrt{2}}\right]$$

1) all values of x
2)
$$x \in \left[0, \frac{1}{\sqrt{2}}\right]$$
3) $x \in \left[\frac{1}{\sqrt{2}}, 1\right]$
4) $x = 1.75$

4)
$$x = 1.75$$

2. If
$$\alpha \le \sin^{-1} x + \cos^{-1} x + \tan^{-1} x \le \beta$$
, then

1)
$$\alpha = \frac{\pi}{4}, \beta = \frac{3\pi}{4}$$
 2) $\alpha = 0, \beta = \pi/2$ 3) $\alpha = 0, \beta = \pi$ 4) $\alpha = 0, \beta = \frac{3\pi}{4}$

2)
$$\alpha = 0$$
, $\beta = \pi/2$

3)
$$\alpha = 0$$
, $\beta = \pi$

4)
$$\alpha = 0$$
, $\beta = \frac{3\pi}{4}$

3. The greatest and least values of
$$(\sin^{-1} x)^3 + (\cos^{-1} x)^3$$
 are

1)
$$\frac{\pi^3}{32}$$
, $\frac{7\pi^3}{8}$

2)
$$-\frac{\pi^3}{8}$$
, $\frac{7\pi^3}{8}$ 3) $\frac{7\pi^3}{8}$, $\frac{\pi^3}{32}$ 4) $\frac{\pi}{2}$, $\frac{\pi^3}{32}$

3)
$$\frac{7\pi^3}{8}$$
, $\frac{\pi^3}{32}$

4)
$$\frac{\pi}{2}$$
, $\frac{\pi^3}{32}$

$$\tan^{-1}\sqrt{\frac{a(a+b+c)}{bc}} + \tan^{-1}\sqrt{\frac{b(a+b+c)}{ca}} + \tan^{-1}\sqrt{\frac{c(a+b+c)}{ab}}$$
 is equal to

1)
$$\frac{\pi}{4}$$

2)
$$\frac{\pi}{2}$$

5. The equation
$$\sin\left(\frac{1}{5}\cos^{-1}x\right) = 1$$

- 3) is defined if $-1 \le x \le 1$

- 2) has infinite solution
- 4) is defined if $0 \le x \le \pi$

6. Let
$$f(x) = \cos ec^{-1}[1 + \sin^2 x]$$
, where [.] denotes the greatest integer function. Then $f(x)$ equals;

1)
$$\left\{\frac{\pi}{2}\right\}$$

1)
$$\left\{\frac{\pi}{2}\right\}$$
 2) $\left\{\frac{\pi}{2}, \cos ec^{-1}2\right\}$ 3) $\left\{\cos ec^{-1}2\right\}$ 4) none of these

3)
$$\left\{\cos ec^{-1}2\right\}$$

7. The value of:
$$\tan \left\{ \sin^{-1} \left(\cos \left(\sin^{-1} x \right) \right) \right\}$$
. $\tan \left\{ \cos^{-1} \left(\sin \left(\cos^{-1} x \right) \right) \right\}$; $x \in (0, \pi/2)$ is equal to;

1) 0

2) 1

3) -1

4) none of these

If $\sin^{-1}(\sin x) = \pi - x$, then belongs to: 8.

1) R

- 2) $[0,\pi]$
- 3) $\left| \frac{\pi}{2}, \frac{3\pi}{2} \right|$ 4) $\left[\pi, 2\pi \right]$

9. If
$$f(x) = \sin^{-1} \left\{ \frac{\sqrt{3}}{2} x - \frac{1}{2} \sqrt{1 - x^2} \right\}, -\frac{1}{2} \le x \le 1$$
, then $f(x)$ is equal to:

- 1) $\sin^{-1}\left(\frac{1}{2}\right) \sin^{-1}(x)_{2} \sin^{-1}x \frac{\pi}{6}$ 3) $\sin^{-1}x + \frac{\pi}{6}$ 4) none of these

10.
$$\sin^{-1}(\sin 2) + \cos^{-1}(\cos 2) =$$

- 1) $\pi/2$
- $2) \pi$

3) 4

4) $4 - \pi$

11.	The solution of the equation	sin	$2\cos^{-1}$	cot	$(2 \tan^{-1} x)$)}	=0	are
			1	'	(/ I	1	

1)
$$\pm 1$$

2)
$$1 \pm \sqrt{2}$$

3)
$$-1 \pm \sqrt{2}$$

4) none of these

12. The value (s) of x satisfying the equation
$$\sin^{-1} |\sin x| = \sqrt{\sin^{-1} |\sin x|}$$
 is/are given by (n is any integer)

1)
$$n\pi - 1$$

2)
$$n\pi$$

3)
$$n\pi + 1$$

4)
$$2n\pi + 1$$

13. If
$$\cos^{-1} x = \tan^{-1} x$$
, then

1)
$$x^2 = (\sqrt{5} - 1)/2$$

2)
$$x^2 = (\sqrt{5} + 1)/2$$

3)
$$\sin(\cos^{-1}x) = (\sqrt{5} - 1)/2$$

4)
$$\tan(\cos^{-1}x) = (\sqrt{5} - 1)/2$$

14. If
$$\left(\sin^{-1}x + \sin^{-1}w\right)\left(\sin^{-1}y + \sin^{-1}z\right) = \pi^2$$
, then $D = \begin{vmatrix} x^{N_1} & y^{N_2} \\ z^{N_3} & w^{N_4} \end{vmatrix} \left(N_1, N_2, N_3, N_4 \in N\right)$

1) has a maximum value of 2

2) has a minimum value of 0

3) 16 different D are possible

4) has a minimum value of -2

15. If
$$f(x) = (\sin^{-1} x)^2 + (\cos^{-1} x)^2$$
, then

- 1) f(x) has the least value of $\frac{\pi^2}{8}$
- 2) f(x) has the greatest value of $\frac{5\pi^2}{8}$
- 3) f(x) has the least value of $\frac{\pi^2}{16}$
- 4) f(x) has the greatest value of $\frac{5\pi^2}{4}$

The value of k(k>0) such that the length of the longest interval in which the function 16. $f(x) = \sin^{-1} |\sin kx| + \cos^{-1} (\cos kx)$ is constant is $\pi/4$ is/are

1) 8

Passage - I

Let $f: A \to B$ be a function defined by y = f(x) such that f is both one-one (Injective) and onto (surjective) (ie, bijective,) then there exists a unique function $g:B \to A$ such that $f(x)=y \Leftrightarrow g(y)=x, \forall x \in A$ and $y \in B$, then g is said to be inverse of f. Thus. $g = f^{-1}: B \to A = \left[\left\{f\left(x\right), x\right\}: \left\{x, f\left(x\right)\right\} \in f^{-1}\right]$. If no branch of an inverse trigonometric function is mentioned, then it means the principal value branch of that function.

The value of $\cos(\tan^{-1}\tan 4)$ is 17.

1)
$$\frac{1}{\sqrt{17}}$$

2)
$$-\frac{1}{\sqrt{17}}$$

If x takes negative permissible value, then $\sin^{-1} x$ is equal to 18.

1)
$$\cos^{-1} \sqrt{(1-x^2)^2}$$

2)
$$\cot^{-1} \left(\frac{\sqrt{1-x^2}}{x} \right)$$

1)
$$\cos^{-1}\sqrt{(1-x^2)}$$
 2) $\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$ 3) $\pi-\cos^{-1}\sqrt{(1-x^2)}$ 4) $-\pi+\cot^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$

19. If
$$\frac{3\pi}{2} \le x \le \frac{5\pi}{2}$$
, then $\sin^{-1}(\sin x)$ is equal to

1) *x*

2) -x

3) $2\pi - x$

4) $x - 2\pi$

Passage - II:

For
$$x < 0$$

$$-\frac{\pi}{2} \leq \sin^{-1} x < 0$$

$$\frac{\pi}{2} < \cos^{-1} x \le \pi$$

$$-\frac{\pi}{2} < \tan^{-1} x < 0$$

$$\frac{\pi}{2} < \cot^{-1} x < \pi$$

$$\frac{\pi}{2} < \sec^{-1} x \le \pi$$

$$-\frac{\pi}{2} \leq \csc^{-1} x < 0$$

For $\chi \ge 0$

$$0 \le \sin^{-1} x \le \frac{\pi}{2}$$

$$0 \le \cos^{-1} x \le \frac{\pi}{2}$$

$$0 \le \tan^{-1} x < \frac{\pi}{2}$$

$$0 < \cot^{-1} x \le \frac{\pi}{2}$$

$$0 < \sec^{-1} x < \frac{\pi}{2}$$

$$0 \le \csc^{-1} x \le \frac{\pi}{2}$$

Ex.
$$\sin^{-1} \left[\frac{\sqrt{3}}{2} \right] = \frac{\pi}{3} not \frac{2\pi}{3}, \tan^{-1} \left(-\sqrt{3} \right) = -\frac{\pi}{3} not \frac{2\pi}{3}$$

20. The principal value of $\sin^{-1} \left(\sin \frac{4\pi}{3} \right) + \cos^{-1} \left(\cos \frac{4\pi}{3} \right)$ is

1) $\frac{8\pi}{3}$

2) $\frac{4\pi}{3}$

3) $\frac{2\pi}{3}$

4) $\frac{\pi}{3}$

21. The principal value of $\sin^{-1}(\sin 5) - \cos^{-1}(\cos 5)$ is

1) 0

2) $2\pi - 10$

3) $10-4\pi$

4) $3\pi - 10$

22. The principal value of $\tan^{-1} \left(\tan \left(-\frac{3\pi}{4} \right) \right) + \cot^{-1} \cot \left(-\frac{3\pi}{4} \right)$ is

1) $\frac{\pi}{2}$

2) π

3) $\frac{-3\pi}{2}$

4) 0

23. Column -I

1) $\sin(\tan^{-1}x)$

$$2) \cos(\tan^{-1} x)$$

3)
$$\cos(\sin^{-1}x)$$

4)
$$\cos(2\cos^{-1}x)$$

Column - II

p)
$$\sqrt{1-x^2}$$

q)
$$\frac{x}{\sqrt{1+x^2}}$$

r)
$$\frac{1}{\sqrt{1+r^2}}$$

24. Column -I

1) $\tan^{-1} 3 + \tan^{-1} 4$

2) $\tan^{-1}(1/3) + \tan^{-1}(\frac{1}{4})$

3) $\sin^{-1}(1/3) + \cos^{-1}(1/3)$

4) $tan^{-1}(3) + cot^{-1}(4)$

Column - II

p) $\pi/2$

q) $\pi - \tan^{-1}(7/11)$

r) $tan^{-1}(7/11)$

s) $tan^{-1}(13)$

Integer type Questions:

25. If $\cos^{-1} x_1 + \cos^{-1} x_2 + \cos^{-1} x_3 = 0$ then $\sum x_1 + \sum x_1 x_2 + x_1 x_2 x_3$

26. If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi / 4$ then $\sum x + \sum yz - xyz = \pi / 4$

27. The no. of solutions of $\sin^{-1}(\sin x) = [x] where [x]$ denotes greatest inter function is

28. The no.of solutions of $\cos^{-1}(\cos x) = [x]$ where [x] denotes greatest integers function is

29. If $\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) + \dots = \frac{2\pi}{k}$ then k = 1

30. If $\sum_{n=1}^{3} \tan^{-1}(n) = k \sum_{x=1}^{3} (\cot^{-1} x) then k =$

Pinnacle

WORK SHEET -V

1.	The minimum value of $(\sec^{-1} x)^{-1} + (\cos ec^{-1} x)$.					
	1) $\frac{\pi^2}{8}$	2) $\frac{\pi^2}{4}$	3) $\frac{3\pi^2}{8}$	4) $\frac{5\pi^2}{4}$		
2.	The value of $\sin^{-1}(\cos$	$\cos(\cos^{-1}(\cos x) + \sin^{-1}(\cos x))$	$(\sin x)$ where $x \in$	$\left(rac{\pi}{2},\pi ight)$ equal to		
	1) $\pi/2$	2) -\pi	3) π	4) $-\pi/2$		
3.	The value of 'a', for wh	$ich \ ax^2 + sin^{-1} (x^2 - 2x)$	$(x+2) + \cos^{-1}(x^2 - 2x)$	(x+2) = 0 has a real solution,		
	1) $\pi/2$	2) $-\pi/2$	3) 2/π	4) $-2/\pi$		
4.	Range of $f(x) = \sin^2 x$	$^{-1}x + \tan^{-1}x + \sec^{-1}x$	is			
	$1)\left(\frac{\pi}{4},\frac{3\pi}{4}\right)$	$2)\left[\frac{\pi}{4},\frac{3\pi}{4}\right]$	$3) \left\{ \frac{\pi}{4}, \frac{3\pi}{4} \right\}$	$4) \left[\frac{\pi}{4}, \frac{\pi}{2} \right]$		
5.	If $\left[\cot^{-1}x\right] + \left[\cos^{-1}x\right]$	x] = 0, where [.] denote	es the greatest integer fu	unction, then the complete set		
	of value of x is					
	1) (cos 1,1]	2) (cos 1, cot 1)	3) (cot1,1]	4) none of these		
6.	Comlete solution set function. is equal to	t of $\left[\cot^{-1} x\right] + 2\left[\tan^{-1} x\right]$	$\begin{bmatrix} -1 & x \end{bmatrix} = 0$, where [.] d	enotes the greatest integer		
	1) $(0, \cot 1)$	2) (0, tan 1)	3) (tan1,∞)	4) $(\cot 1, \tan 1)$		
7.	The number of integer	values of k for which the	equation $\sin^{-1} x + \tan x$	$^{-1}$ $x = 2k + 1$ has a solution is		
	1) 1	2) 2	3) 3	4) 4		

 $\sin^{1}(\sin 10) + \cos^{-1}(\cos 10) + \tan^{-1}(\tan 10) =$

 $sin^{1} \Big(sin2011^{o} \Big) + cos^{-1} \Big(cos2011^{o} \Big) + tan^{-1} \Big(tan2011^{o} \Big) =$

2) 62°

2) $10\pi - 30$

8.

9.

10.

1) $4\pi - 10$

1) 149°

 $\tan^{-1}\left(\tan\left(-6\right)\right) =$

3) $3\pi - 10$

3) 31°

4) $7\pi - 30$

4) 93°

11. If
$$f(x) = \cos^{-1} x + \cos^{-1} \left\{ \frac{x}{2} + \frac{1}{2} \sqrt{3 - 3x^2} \right\}$$
 then

1)
$$f\left(\frac{2}{3}\right) = \frac{\pi}{3}$$

2)
$$f\left(\frac{2}{3}\right) = 2\cos^{-1}\frac{2}{3} - \frac{\pi}{3}$$

3)
$$f\left(\frac{1}{3}\right) = \frac{\pi}{3}$$

4)
$$f\left(\frac{1}{3}\right) = 2\cos^{-1}\frac{1}{3} - \frac{\pi}{3}$$

12. The value of
$$\tan \left\{ \frac{1}{2} \sin^{-1} \frac{2x}{1+x^2} + \frac{1}{2} \cos^{-1} \frac{1-x^2}{1+x^2} \right\}$$
 is

1)
$$\frac{2x}{1-x^2}$$
 if $0 \le x \le 1$ 2) $\frac{2x}{1-x^2}$ if $x < 1$

2)
$$\frac{2x}{1-x^2}$$
 if $x < 1$

3) not finite if x > 1

4) none of these

An integral solution (x, y) of the equation $\tan^{-1} x + \tan^{-1} (1/y) = \tan^{-1} 3$ is 13.

 $\sin^{-1} 6x + \sin^{-1} 6\sqrt{3}x = -\pi/2$ if x is equal to **14.**

If $A = \tan^{-1}(1/7)$ and $B = \tan^{-1}(1/3)$, then **15**.

1)
$$\cos 2A = 24/25$$
 2) $\cos 2B = 4/5$

2)
$$\cos 2B = 4/5$$

3)
$$\cos 2A = \sin 4B$$
 4) $\tan 2B = 3/4$

4)
$$\tan 2B = 3/4$$

With respect to principal values the relation $\cos^{-1}(4x^3-3x)=3\cos^{-1}x$ is 16.

1) true for all in x in
$$[-1,1]$$

2) true for all x in
$$\left[-\frac{1}{2}, \frac{1}{2}\right]$$

3) true for all x in
$$\left[\frac{1}{2},1\right]$$
 4) not true at x = 0

age - I:

Passage - I :

Let
$$\alpha = \cos^{-1}(4/5), \beta = \tan^{-1}(2/3), 0 < \alpha, \beta < \pi/2$$

 $\alpha + \beta$ is equal to **17.**

1)
$$\tan^{-1}(17/6)$$

1)
$$\tan^{-1}(17/6)$$
 2) $\sin^{-1}(17/5\sqrt{13})$ 3) $\sin^{-1}(3/5)$ 4) $\cos^{-1}(3/\sqrt{13})$

3)
$$\sin^{-1}(3/5)$$

4)
$$\cos^{-1}(3/\sqrt{13})$$

 $\alpha - \beta$ is equal to 18.

1)
$$\cos^{-1}\left(18/5\sqrt{13}\right)$$
 2) $\sin^{-1}\left(2/\sqrt{13}\right)$ 3) $\tan^{-1}\left(1/18\right)$ 4) $\cos^{-1}\left[\frac{1}{5\sqrt{13}}\right]$

2)
$$\sin^{-1}(2/\sqrt{13})$$

3)
$$\tan^{-1}(1/18)$$

4)
$$\cos^{-1}\left(\frac{1}{5\sqrt{13}}\right)$$

 $\cos^{-1}(44/125)$ is equal to 19.

1)
$$2\alpha$$

2)
$$3\alpha$$

3)
$$\pi - 3\alpha$$

4)
$$\pi - 2\alpha$$

Passage - II:

$$f(x) = \sin \left\{ \cot^{-1} (x+1) \right\} - \cos \left(\tan^{-1} x \right)$$

$$a = \cos \tan^{-1} \sin \cot^{-1} x$$

$$b = \cos\left(2\cos^{-1}x + \sin^{-1}x\right)$$

20. The value of x for which f(x) = 0 is

- 1) 1/2
- 2) 0

- 3) 1/2
- 4) 1

21. If f(x) = 0 then a^2 is equal to

- 1) 1/2
- 2) 2/3

- 3) 5/9
- 4) 9/5

22. If $a^2 = 26/51$, then b^2 is equal to

- 1) 1/25
- 2) 24/25
- 3) 25/26
- 4) 50/51

Column - II

23. Column -I

Number of real solutions of

1)
$$\tan(\pi/4 + (1/2)\cos^{-1}x) + \tan(\pi/4 - (1/2)\cos^{-1}x) = 1$$

2)
$$\tan^{-1} \frac{1}{2x+1} + \tan^{-1} \frac{1}{4x+1} = \tan^{-1} (2/x^2)$$

3)
$$\tan^{-1}(x+(2/x))-\tan^{-1}(4/x)-\tan^{-1}(x-(2/x))=0$$

4)
$$\tan^{-1}(1-x) + \tan^{-1}(1+x) = \tan^{-1}2x$$

s) 1

24. Column -I

Let (x, y) be such that $\sin^{-1}(ax) + \cos^{-1}(y) + \cos^{-1}(bxy) = \pi/2$

1) If a = 1, b = 0, then $(x, y) x^2 + y^2 = 1$

Column - II

2) If a = 1, b = 1, then $(x, y)(y^2 - 1) = 0$

q) lies on $(x^2 - 1)$

p) lies on the circle

3) If a = 1, b = 2, then (x, y)

r) lies on y = x

4) If a = 2, b = 2, then $(x, y)(y^2 - 1) = 0$

s) lies on $(4x^2 - 1)$

EXERCISE - I / ANSWERS										
WORK SHEET -I										
1) 2	2) 3	3) 2	4) 3	5) 3	6) 1	7) 2	8) 1	9) 3	10) 1	
11) 4	12) 3	13) 3	14) 3	15) 2	16) 1	17) 1	18) 2	19) 2	20) 2	
21) 1	22) 3	23) 3	24) 2	25) 1						
	WORK SHEET - II									
1) 1	2) 1	3) 1	4) 3	5) 4	6) 1	7) 3	8) 4	9) 2	10) 2	
11) 4	12) 4	13) 3	14) 3	15) 3	16) 3	17) 2	18) 2	19) 2	20) 1	
21) 4	22) 2	23) 3	24) 1	25) 2	26) 2	27) 2	28) 1	29) 3	30) 1	
31) 1	32) 2	33) 2	34) 1	35) 4	36) 1	37) 2	38) 2	39) 2	40) 4	
41) 4	42) 2	43) 3	44) 4	45) 3	46) 2	47) 2	48) 2	49) 3	50) 4	
51) 2	52) 3	53) 4								
			Ū	VORK S	SHEET -	III				
1) 3	2) 4	3) 4	4) 4	5) 3	6) 1	7) 3	8) 1	9) 4	10) 2	
11) 3	12) 2	13) 3	14) 2	15) 3	16) 3	17) 1	18) 1	19) 2	20) 4	
			V	VORK S	HEET -	IV				
1) 3	2) 1	3) 3	4) 3	5) 1	6) 2	7) 2	8) 3	9) 2	10) 4	
11) 1,2,3	12) 1,2,3	13) 1,3	14) 1,3,4	15) 1,4	16) 2	17) 4	18) 4	19) 4	20) 4	
21) 3	22) 1	23) $A \rightarrow$	$q; B \to r$	$r; C \to p;$	$D \rightarrow s$	4) $A \rightarrow a$	$q; B \to r; C$	$C \to p; D$	$\rightarrow s$	
	25) 7	26) 1	27) 3	28) 4	29) 8	30) 2				
WORK SHEET - V										
1) 1	2) 4	3) 4	4) 3	5) 3	6) 4	7) 2	8) 1	9) 1	10) 1	
11) 1,4	12) 1,3	13) 1,2,3	14) 1	15) 1,2,	3,4	16) 3,4	17) 1,2	18) 1,3	19) 3	
20) 1	21) 3	22) 4	23) A –	$\rightarrow p; B \rightarrow$	$r; C \rightarrow q$	$; D \rightarrow s$				
$24) A \rightarrow$	$p; B \to q; C$	$C \to p; D$	$\rightarrow s$							

EXERCISE - II

WORK SHEET (HW) - I

(Single & One or More than One Correct Answers)

1. If
$$x > \frac{1}{\sqrt{2}} then 2 \sin^{-1} x + \sin^{-1} \left(2x \sqrt{1 - x^2} \right)$$
 is ____

- $1) \pi$
- $2) -\pi$
- 3) 0

4) $\frac{\pi}{2}$

2. If
$$x < -1$$
 then $2 \tan^{-1} x + \sin^{-1} \left(\frac{2x}{1+x^2} \right)$ is

3. If
$$\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) then \ x \in$$

- 1) -1 < x < 1 2) x > 1

- 4) R

4. The range of
$$\sec^{-1} x + \cos ec^{-1} x + \sin^{-1} x$$
 is _____

- 1) $\left\{\frac{\pi}{2}\right\}$ 2) $\left\{0,\pi\right\}$ 3) $\left[0,\pi\right]$
- 4) $(0,\pi)$

5. The range of
$$\cot^{-1}x + \tan^{-1}x + \cos ec^{-1}x$$
 is _____

- 1) $\left| \frac{3\pi}{4}, \frac{5\pi}{4} \right|$ 2) $\left[0, \pi \right]$
- (4) $\left(0,\frac{\pi}{2}\right] \cup \left(\frac{\pi}{2},\pi\right]$

6.
$$\sum_{x=0}^{4} \cos^{-1} (\cos x) =$$

- 1) $2 + 2\pi$

4) 2π+4

7.
$$\sum_{x=0}^{4} \sin^{-1} (\sin x) =$$

- 1) $3\pi 8$ 2) $3\pi 7$
- 3) $3\pi 9$
- 4) $3\pi 6$

8.
$$\sum_{x=-1}^{4} \tan^{-1} (\tan x) =$$

- 1) $7 3\pi$ 2) $6 3\pi$
- 3) $5-3\pi$
- 4) $9-3\pi$

9.
$$\sin\left[\frac{1}{2}\cot^{-1}\left(\frac{-3}{4}\right)\right] = \underline{\hspace{1cm}}$$

- 1) $\frac{2}{\sqrt{5}}$ 2) $-\frac{2}{\sqrt{5}}$
- 4) $-\frac{3}{\sqrt{5}}$

10.	Which of the	following	is not a	periodic function
10.	vvinch of the	IOHOWING	is not a	periodic runction

1)
$$\sin^{-1}(\sin x)$$

1)
$$\sin^{-1}(\sin x)$$
 2) $\sin(\sin^{-1} x)$ 3) $\cos^{-1}(\cos x)$ 4) $\tan^{-1}(\tan x)$

3)
$$\cos^{-1}(\cos x)$$

4)
$$\tan^{-1}(\tan x)$$

11. If
$$f(x) = \sin^{-1}\left(\frac{3x-1}{2}\right) + \sec^{-1}\left(\frac{2}{3x+1}\right)$$
 then the domain of f is

12. If
$$a = \tan^{-1}(1), b = \tan^{-1}(3), c = \tan^{-1}(5)$$
 then which of the following is true

2)
$$c < b < a$$

3)
$$b < a < c$$

13. The trignometric equation
$$\cos^{-1} x = 3\cos^{-1}(3a-2)$$
 has a solution if

1)
$$\frac{5}{6} \le a \le 1$$

2)
$$\frac{1}{2} \le a \le 5/6$$

3)
$$\frac{1}{3} \le a \le 1$$

2)
$$\frac{1}{2} \le a \le 5/6$$
 3) $\frac{1}{3} \le a \le 1$ 4) $\frac{1}{3} \le a \le 5/6$

14. If
$$\sin^{-1} x + \sin^{-1} \left(\frac{y}{2} \right) + \sin^{-1} \left(\frac{z}{3} \right) = \frac{3\pi}{2}$$
 then the value of $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = 0$

1)
$$\frac{\pi}{2}$$

3)
$$\frac{3\pi}{2}$$

15. The number of quadrant angles in the range of
$$f(x) = \sin^{-1} x + \cos^{-1} x + 4 \cot^{-1} x$$
 is

1) 7

2) 4

3) 3

16. The values of x satisfying
$$\sin^{-1} x + \sin^{-1} (1-x) = \cos^{-1} x$$
 are

2)
$$\frac{1}{2}$$

17. If
$$\frac{1}{2} < |x| < 1$$
, then which of the following are real?

1)
$$\sin^{-1} x$$

2)
$$tan^{-1} x$$

18. If
$$6\sin^{-1}(x^2 - 6x + 8.5) = \pi$$
, then

1)
$$x = 1$$

2)
$$x = 2$$

3)
$$x = 3$$

4)
$$x = 4$$

19.
$$\alpha, \beta$$
 and γ are the angles given by $\alpha = 2 \tan^{-1} \left(\sqrt{2} - 1 \right), \ \beta = 3 \sin^{-1} \left(\frac{1}{\sqrt{2}} \right) + \sin^{-1} \left(-\frac{1}{2} \right)$ and $\gamma = \cos^{-1} \left(\frac{1}{3} \right)$, then

1)
$$\alpha > \beta$$

2)
$$\beta > c$$

3)
$$\gamma > \alpha$$

20. Indicate the relation which is true

$$1) \tan \left| \tan^{-1} x \right| = |x|$$

2)
$$\cot |\cot^{-1} x| = |x|$$

3)
$$\tan^{-1} |\tan x| = |x|$$

$$4) \sin \left| \sin^{-1} x \right| = \left| x \right|$$

21.
$$\cos^{-1}\left(\sqrt{\frac{a-x}{a-b}}\right) = \sin^{-1}\left(\sqrt{\frac{x-b}{a-b}}\right)$$
 is possible, if

1)
$$a > x > b$$

2)
$$a < x < b$$

3)
$$a = x = b$$

4)
$$a > b$$
 and x, takes any value

22. If the numerical value of
$$\tan \left\{ \cos^{-1} \left(\frac{4}{5} \right) + \tan^{-1} \left(\frac{2}{3} \right) \right\}$$
 is $\frac{a}{b}$, then

1)
$$a+b=23$$

2)
$$a - b = 11$$

3)
$$3b = a + 1$$

4)
$$2a = 3b$$

1)
$$a+b=23$$
 2) $a-b=11$ 3) $3b=a+1$ 4) $2a=3b$
23. $2\cot^{-1}7+\cos^{-1}\left(\frac{3}{5}\right)$ is equal to

1)
$$\cot^{-1}\left(\frac{44}{117}\right)$$

1)
$$\cot^{-1}\left(\frac{44}{117}\right)$$
 2) $\cos ec^{-1}\left(\frac{125}{117}\right)$ 3) $\tan^{-1}\left(\frac{4}{117}\right)$ 4) $\cos^{-1}\left(\frac{44}{125}\right)$

3)
$$\tan^{-1} \left(\frac{4}{117} \right)$$

4)
$$\cos^{-1}\left(\frac{44}{125}\right)$$

If the equation $\sin^{-1}(x^2+x+1)+\cos^{-1}(\lambda x+1)=\frac{\pi}{2}$ has exactly two solutions, then λ cannot have 24. the integral value

25. Let
$$\tan^{-1}\left(\tan\frac{5\pi}{4}\right) = \alpha$$
, $\tan^{-1}\left(-\tan\frac{2\pi}{3}\right) = \beta$. Then

1)
$$\alpha > \beta$$

$$2) \ 4\alpha - 3\beta = 0$$

2)
$$4\alpha - 3\beta = 0$$
 3) $\alpha + \beta = \frac{7\pi}{12}$ 4) $\alpha + \beta = \frac{\pi}{12}$

4)
$$\alpha + \beta = \frac{\pi}{12}$$

If 0 < x < 1 then $\tan^{-1} \frac{\sqrt{1 - x^2}}{1 + x}$ is equal to

1) $\frac{1}{2} \cos^{-1} x$ 2) $\cos^{-1} \sqrt{\frac{1 - x}{2}}$ 3) $\sin^{-1} \sqrt{\frac{1 - x}{2}}$

1)
$$\frac{1}{2}\cos^{-1}x$$

2)
$$\cos^{-1} \sqrt{\frac{1-x}{2}}$$

3)
$$\sin^{-1} \sqrt{\frac{1-x}{2}}$$

One of the values of x satisfying $\tan(\sec^{-1} x) = \sin \cos^{-1} \frac{1}{\sqrt{5}}$ is 27.

1)
$$\frac{\sqrt{5}}{3}$$

2)
$$\frac{3}{\sqrt{5}}$$

3)
$$-\frac{\sqrt{5}}{3}$$

2)
$$\frac{3}{\sqrt{5}}$$
 3) $-\frac{\sqrt{5}}{3}$ 4) $-\frac{3}{\sqrt{5}}$

If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, $\cos^{-1} x - \cos^{-1} y = \frac{\pi}{3}$ then the number of values of (x, y) is 28.

- 1) two
- 2) four
- 3) zero
- 4) one

29. A solution of
$$\sin^{-1}(1) - \sin^{-1}(\sqrt{3}/x^2) - \pi/6 = 0$$
 is

1)
$$x = -\sqrt{2}$$

2)
$$x = 1$$

3)
$$x = \sqrt{2}$$

4)
$$x = 1/\sqrt{2}$$

30. If
$$\theta = \cos^{-1}(4/5) + \tan^{-1}(2/3)$$
 then

$$\sin \theta = \frac{17}{5\sqrt{13}}$$

1)
$$\sin \theta = \frac{17}{5\sqrt{13}}$$
 2) $\cos \theta = \frac{6}{5\sqrt{13}}$ 3) $\tan \theta = 17/6$

3)
$$\tan \theta = 17/6$$

4)
$$\cot \theta = 17/6$$

31. If
$$A = \sin^{-1}(\sin 10), B = \cos^{-1}(\cos 10)$$
 then

1)
$$A = 3\pi - 10$$

2)
$$A = 3\pi + 10$$

3)
$$A > B$$

4)
$$A < B$$

32.
$$\cos^{-1} \chi$$
 is equal to

$$\cos^{-1} x$$
 is equal to

1) $2\sin^{-1} \sqrt{\frac{1-x}{2}}$
2) $2\cos^{-1} \sqrt{\frac{1-x}{2}}$

2)
$$2\cos^{-1}\sqrt{\frac{1-x}{2}}$$

3)
$$2\cos^{-1}\sqrt{\frac{1+x}{2}}$$

3)
$$2\cos^{-1}\sqrt{\frac{1+x}{2}}$$
 4) $2\sin^{-1}\sqrt{\frac{1+x}{2}}$

33.
$$2 \tan^{-1}(-3)$$
 is equal to

1)
$$-\cos^{-1}(-4/5)$$

3)
$$-\pi/2 + \tan^{-1}(-4/3)$$

2)
$$-\pi + \cos^{-1}(4/5)$$

4)
$$\cot^{-1}(4/3)$$

34. The principal value of
$$\sin^{-1} \left(\cos \frac{33\pi}{10}\right)$$
 must

- 1) lie between 0 and $\frac{\pi}{2}$
- 3) be equal to $-\frac{\pi}{5}$

- 2) lie between $-\frac{\pi}{2}$ and 0
- 4) be equal to $-\frac{2\pi}{5}$

35. The equation
$$\sin^{-1} x + \sin^{-1} 2x = \frac{\pi}{3}$$

- 1) has two solutions
- 3) has a rational number as solution
- 2) has only one solution
- 4) has an irrational number as solution

WORK SHEET (HW) - II |

(Linked Comprehension type questions)

Passage - I:

$$\sum_{r=1}^{n} \tan^{-1} \left(\frac{x_r - x_{r-1}}{1 + x_{r-1} x_r} \right) = \sum_{r=1}^{n} \left(\tan^{-1} x_r - \tan^{-1} x_{r-1} \right) = \tan^{-1} x_n - \tan^{-1} x_0, \forall n \in \mathbb{N}$$

- The sum to infinite terms of the series $\tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{2}{9} \right) + ... + \tan^{-1} \left(\frac{2^{n-1}}{1 + 2^{2n-1}} \right) + ...$ is 1.

- 4) none of these
- The value of $\cos ec^{-1}\sqrt{5} + \cos ec^{-1}\sqrt{65} + \cos ec^{-1}\sqrt{(325)} + ... + ... + ... = 0$ is 2.

- 1) π 2) $\frac{3\pi}{4}$ 3) $\frac{\pi}{2}$ 4) $\frac{\pi}{4}$ The sum to infinite terms of the series $\cot^{-1}\left(2^2 + \frac{1}{2}\right) + \cot^{-1}\left(2^3 + \frac{1}{2^2}\right) + \cot^{-1}\left(2^4 + \frac{1}{2^3}\right) + \dots$ is 3.
 - 1) $\frac{\pi}{4}$

- 3) $\cot^{-1} 2$
- 4) $-\cot^{-1} 2$

Passage - II:

$$\alpha = \tan^{-1} \left(1/2 \right) + \tan^{-1} \left(1/3 \right), \beta = \cos^{-1} \left(2/3 \right) + \cos^{-1} \left(\sqrt{5}/3 \right) \text{ and }$$

$$\gamma = \sin^{-1} \left(\sin \left(2\pi/3 \right) \right) + \frac{1}{2} \cos^{-1} \left(\cos \left(2\pi/3 \right) \right)$$

- $\cos(\alpha + \beta + \gamma)$ is equal to 4.
 - 1) $\cos(5\pi/12)$

- 2) $\cos(7\pi/12)$ 3) $-\cos(5\pi/12)$ 4) $-\cos(7\pi/12)$
- $\tan \alpha \tan(\beta/2) + \sqrt{3} \tan(\gamma/4)$ is equal to 5.

- $\sin \cot^{-1} \tan \cos^{-1} (\sin \gamma)$ is equal to 6.
 - 1) $\sin \gamma$
- 2) $\sin(\gamma/2)$
- 3) $(1/2)\sin \gamma$
- 4) $\cos \gamma$

Passage -III:

The function $\sin^{-1} x$ is defined if $|x| \le 1$, and it denotes an angle in $\left| -\frac{\pi}{2}, \frac{\pi}{2} \right|$ whose sine is x. Thus from the equality $y = \sin x$ follows the equality $x = \sin^{-1} y$ if $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ and $|y| \le 1$. If x does not

belong to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. We weite $y = \sin x$ as $y = \sin x'$ where $x' \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ since for every $x \in (-\infty, \infty)$, there exists $x' \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. such that $\sin x = \sin x'$. Hence we can write $x' = \sin^{-1} y$. Similarly $y = \cos x$ is invertible if $|y| \le 1$ and $x \in [0, \pi] \tan^{-1} x$ is defined for all x and has a range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

- The value of $\sin^{-1} \left(\cos \frac{23\pi}{6} \right)$ must be 7.
 - 1) $\frac{\pi}{2} \frac{23\pi}{6}$ 2) $-\frac{\pi}{6}$

- If x < 0 then $\cos^{-1} \frac{1 x^2}{1 + x^2}$ must be equal to
 - 1) $2 \tan^{-1} x$
- 2) $\pi + 2 \tan^{-1} x$ 3) $-2 \tan^{-1} x$
- 4) $\pi 2 \tan^{-1} x$

1)
$$\frac{1}{\sqrt{1-x^2}}$$

2)
$$\frac{-3}{\sqrt{1-x^2}}$$

3)
$$2\pi - \frac{3}{\sqrt{1-x^2}}$$

4)
$$\frac{3}{\sqrt{1-x^2}}$$

Passage - IV:

While defining inverse trigonometric functions, a new system is followed where domains and ranges have been redefined as follows.

Function Domain sin-1x $\tan^{-1} x$ R $\cos^{-1} x$ [-1,1] $[\pi, 2\pi]$

 $\sin^{-1}(-x) =$ 10.

 $\cot^{-1} x$

- 1) $-\sin^{-1} x$
- 2) $\pi + \sin^{-1} x$

R

 $[\pi, 2\pi]$

- 3) $2\pi \sin^{-1} x$ 4) $3\pi \cos^{-1} \sqrt{1 x^2} \cdot x > 0$
- If $f(x) = 3\sin^{-1} x 2\cos^{-1} x$, then f(x) is 11.
 - 1) even function
 - 3) neither even nor odd

- 2) odd function
- 4) even as well as odd function

- The value of $\sin^{-1} \chi + \cos^{-1} \chi$ is equal to 12.
 - 1) $\frac{\pi}{2}$
- 2) $\frac{3\pi}{2}$

4) $\frac{7\pi}{2}$

[WORK SHEET (HW) - III]

(Matrix Matching Type Questions)

1. Column -I

- 1) $\sin^{-1} x + \sin^{-1} 2x = \pi/3$
- 2) $\tan^{-1} \frac{x-1}{x+1} + \tan^{-1} \frac{2x-1}{2x+1} = \tan^{-1} \frac{23}{36}$
- 3) $\tan^{-1} \cos x = \sin(\tan^{-1} 2)$
- 4) $\sin \tan^{-1} x = -3/\sqrt{73}$

Column - II

- p) 4/3
- q) $\frac{1}{2}\sqrt{\frac{3}{7}}$
- r) $\sqrt{5}/3$
- s) 3/8

2. Column -I

1)
$$\tan^{-1} \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$
 $(0 < x < \pi/2)$

- $2) \tan^{-1} \frac{\cos x \pm \sin x}{\cos x \pm \sin x}$
- $3) 2 \tan^{-1} \left(\frac{\sin x}{1 + \cos x} \right)$
- 4) $\sin^{-1} \frac{\cos 2x}{\sqrt{2} (\cos x \pm \sin x)}$

Column - II

- p) *x*
- q) $\frac{\pi}{4} x$
- r) x/2
- s) $\pi/4 + x$
- 3. Match the following numerical quantities with theri principal values :

Column -I

- 1) $\sin^{-1}(\sin 21)$
- B) $\cos^{-1}(\cos 20)$
- 3) $\sin^{-1} \left(\sin \frac{23\pi}{6} \right)$
- 4) $\cos^{-1} \left(\sin \frac{46\pi}{7} \right)$

Column - II

 $\frac{1}{2} \frac{1}{\pi} \frac{1}$

- s) $20 6\pi$

WORK SHEET (HW)- IV

(Integer type questions)

1.
$$0 < A < \frac{\pi}{4} \text{ and } \tan^{-1} \left(\frac{1}{2} \tan 2A \right) + \tan^{-1} \left(\cot A \right) + \tan^{-1} \left(\cot^3 A \right) = 4 \tan^{-1} x \text{ Then } x = \underline{\qquad}$$

3. When
$$0 < x < \frac{\pi}{2}$$
 then the value of $\tan \left\{ \sin^{-1} \left(\cos \left(\sin^{-1} x \right) \right) \right\}$. $\tan \left\{ \cos^{-1} \left(\sin \left(\cos^{-1} x \right) \right) \right\} = \underline{\qquad}$

4. If
$$\cos^{-1}\left(\frac{n}{2\pi}\right) > \frac{2\pi}{3}$$
 then maximum integer value of n is λ then $|\lambda| =$ _____

5. If
$$\log_2 x \ge 0$$
 then $\log_{1/\pi} \left\{ \sin^{-1} \frac{2x}{1+x^2} + 2 \tan^{-1} x \right\} = \lambda$ then $|\lambda|$

7.
$$\cos^{-1} x_1 + \cos^{-1} x_2 + \cos^{-1} x_3 + \cos^{-1} x_4 = 4\pi$$
 then $\sum x_1 x_2 =$

8.
$$2 \tan^{-1} (2x-1) = \cos^{-1} x$$
 then $x =$ _____

10.
$$\tan^{-1}\left(\frac{1}{1+0+0^2}\right) + \tan^{-1}\left(\frac{1}{1+1+1^2}\right) + \tan^{-1}\left(\frac{1}{1+2+2^2}\right) + \tan^{-1}\left(\frac{1}{1+3+3^2}\right) + \dots = \frac{\pi}{x} \text{ then } x$$

EXERCISE - II / ANSWERS)

WORK SHEET (HW) - I)

1) 1 2) 2 3) 1

4) 2

5) 4

6) 1 7) 1 8) 4

9) 1 10) 2

11) 3

12. 3

13) 1

14) 2 15) 4

16) 1,2 17) 1,2,4 18) 2,4

19) 2,3 20) 1,2,4

21) 1,2

23) 1,2,4 24) 1,3,4 25) 2,3

26) 1,2,3 27) 2,4

31) 1,4

22) 1,2,3

28) 4

29) 1,3 30) 1,2,3

32) 1,3

33) 1,2,3 34) 2,3

35) 2,4

WORK SHEET (HW) - II

1) 1

2) 4

3) 3

4) 2,3

5) 4

6) 1,2

7) 3 8) 3 9) 4

10) 3

11) 2 12) 3

WORK SHEET (HW) - III

1) $A \rightarrow q; B \rightarrow p; C \rightarrow r; D \rightarrow s$

2) $A \rightarrow r; B \rightarrow q, s; C \rightarrow p; D \rightarrow q, s$

3) $A \rightarrow p; B \rightarrow s; C \rightarrow q; D \rightarrow r$

(WORK SHEET (HW) - IV)

1) 1

2) 2

3) 1

4) 4

5) 1

6) 1

7) 6

8) 0

9) 1

10) 2

Pinnacle