

Using Apache Spark with Amazon SageMaker

Julien Simon
Principal Technical Evangelist, Al and Machine Learning
@julsimon

May 2018

Agenda

- Apache Spark on AWS
- Amazon SageMaker
- Combining Spark and SageMaker
- Demos with the SageMaker SDK for Spark
- Getting started

Services covered: Amazon EMR, Amazon SageMaker

Apache Spark on AWS

Apache Spark

https://spark.apache.org/

- Open-source, distributed processing system.
- In-memory caching and optimized execution for fast performance (typically 100x faster than Hadoop).
- Batch processing, streaming analytics, machine learning, graph databases and ad hoc queries.
- API for Java, Scala, Python, R, and SQL.

Apache Spark – DataFrame

- Distributed collection of data organized into named columns.
- Conceptually equivalent to a table in a relational database.
- Wide array of sources: structured files, databases.
- Wide array of formats: text, CSV, JSON, Avro, ORC, Parquet.

```
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
```

```
df = spark.read.json("people.json")
df.show()
+---+
| age| name |
+---+
|null|Michael|
| 30 | Andy |
| 19 | Justin|
+---+----+
```


MLlib – Machine learning library

https://spark.apache.org/docs/latest/ml-guide.html

- ML algorithms: classification, regression, clustering, collaborative filtering.
- Featurization: feature extraction, transformation, dimensionality reduction.
- Tools for constructing, evaluating and tuning ML pipelines
- Transformer a transform function that maps a DataFrame into a new one
 - Adding a column, changing the rows of a specific column, etc.
 - Predicting the label based on the feature vector.
- Estimator an algorithm that trains on data
 - Consists of a fit() function that maps a DataFrame into a Model.

Apache Spark on Amazon EMR

https://aws.amazon.com/emr/

- Spark is natively supported in Amazon EMR.
- Amazon S3 connectivity using the EMR File System (EMRFS).
- Amazon Kinesis, Redshift and DynamoDB as data sources.
- Integration with the AWS Glue Data Catalog.
- Auto Scaling to add or remove instances from your cluster.
- Integration with the Amazon EC2 Spot market.

Customer use case: Zillow

https://aws.amazon.com/solutions/case-studies/zillow-zestimate/

- Most popular online real-estate website in the US.
- Zestimate: a home valuation tool for over 100 million homes.
- Computed from data ingested into Kinesis and pushed into Spark on EMR.
- Machine learning models give users near real-time Zestimates.

Amazon SageMaker

Business Problem –

The Machine Learning Process

Amazon SageMaker

Build, train, and deploy models at scale

End-to-End
Machine Learning
Platform

Zero setup

Flexible Model Training

Pay by the second

Amazon SageMaker

Pre-built notebook instances

Build

Fully-managed hosting at scale

Highly-optimized machine learning algorithms

Deploy

Deployment without engineering effort

Easier training with hyperparameter optimization

One-click training for ML, DL, and custom algorithms

Customer use case: Digital Globe

https://aws.amazon.com/solutions/case-studies/digitalglobe-machine-learning/

- Operating Earth imaging satellites and providing image analysis services.
- Over 100 PB of imagery.
- Extensive use of Machine Learning on SageMaker to extract information from images.
- Working with the AWS ML Lab, built a predictive model reducing cloud storage costs by 50%.

Combining Spark and SageMaker

Decouple ETL and Machine Learning

- Different workloads require different instance types.
 - Say, M4 for ETL, P3 for ML training and C5 for ML prediction?
 - If you need GPUs for training, running your EMR cluster on GPU instances wouldn't be cost-efficient.
- Scale them independently.
 - Avoid oversizing your Spark cluster because one part of the process requires more capacity.
 - Avoid time-consuming resizing operations on EMR.
 - Run ETL once, train many models in parallel.
- SageMaker terminates training instances automatically.

Run any ML algorithm in any language

Spark MLlib is great, but you may need something else.

- SageMaker algorithms, able to train on huge data sets without the need for huge clusters.
- Deep Learning libraries, like TensorFlow or Apache MXNet.
- Your own custom code in any language.

Deploy ML models in production

- Perform ML predictions without using Spark.
 - Save the overhead of the Spark framework.
 - Save loading your data in a DataFrame.

- Improve latency for small-batch predictions.
 - It can be difficult to achieve low-latency predictions with Spark ML models.
 - You can get real-time predictions with models hosted in SageMaker.
 - You can use very powerful instances for prediction endpoints.

Sample use cases

- Data preparation and feature engineering before training.
- Data transformation before batch prediction (model reuse).
- Data enrichment with predictions.
 - Predict missing values instead of using median.
 - Add new predicted features.
- Train on extremely large datasets with built-in algos.

SageMaker SDK for Spark

https://github.com/aws/sagemaker-spark

- Python and Scala SDK, for Apache Spark 2.1.1 and 2.2.
- Pre-installed on EMR 5.11 and later.
- Train, import, deploy and predict with SageMaker models directly from your Spark application.
 - Standalone,
 - Integration in Spark MLlib pipelines.
- DataFrames in, DataFrames out: automatic conversion to and from protobuf

SageMaker SDK for Spark – built-in algorithms

https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html

- High-level API for:
 - Linear Learner
 - Factorization Machines
 - K-Means
 - PCA
 - LDA
 - XGBoost

Infinitely scalable algorithms: no limit to the amount of data that they can process

 The SageMakerEstimator object lets you use any containerized code stored in Amazon ECR (just like the regular SageMaker SDK).

Demos

https://github.com/juliensimon/dlnotebooks

- 1 Classifying MNIST in Python with XGBoost (SageMaker)
- 2 Clustering MNIST in Scala with K-Means (SageMaker)
- 3 Clustering MNIST in Scala with a Pipeline: PCA (MLlib) + K-Means (SageMaker)

Getting started

https://aws.amazon.com/machine-learning

https://aws.amazon.com/sagemaker

https://aws.amazon.com/emr

An overview of Amazon SageMaker

AWS re:Invent 2016: Best Practices for Apache Spark on Amazon EMR

https://github.com/aws/sagemaker-python-sdk

https://github.com/aws/sagemaker-spark

https://medium.com/@julsimon

Thank you!

Julien Simon
Principal Technical Evangelist, Al and Machine Learning
@julsimon

