Analyse des Individualverkehrs in der Stadt Zürich

Team 5: Nicolas Wyss, Reto Furrer, Felix Schilling, Josa Preisig, Raphael Hug

Ausgangslage

- Ziel: Analyse und Prognose des Individualverkehrs in Zürich
- Warum? Verkehrsplanung ist entscheidend für Mobilität, Lebensqualität und Nachhaltigkeit
- Vorgehen:
 - 1. Datenquellen sammeln & bereinigen
 - 2. Explorative Datenanalyse
 - 3. Modellierung & Prognose
 - 4. Handlungsempfehlungen für Entscheidungsträger

Hypothesen

- 1. An Werktagen ist das Verkehrsaufkommen höher als an Wochenenden und Feiertagen.
- 2. Bei schlechtem Wetter (z. B. Regen, Schnee) nimmt der Individualverkehr ab.
- 3. Während Schulferien sinkt das Verkehrsaufkommen deutlich.
- 4. Höhere Temperaturen im Sommer führen zu mehr Verkehr (z. B. Freizeitaktivitäten).

Datenquellen

Individualverkehr

- Quelle: Open Data Zürich –
 Verkehrszählstellen
- Zeitraum: 2018–2024, stündliche Fahrzeugzählungen
- Bereinigung: Fokus auf Werktage, Aggregation zu Tageswerten
- Erwartung: Starke Wochentags Abhängigkeit, Rückgang an Feiertagen & Ferien

Wetterdaten

- Quelle: Open-Meteo API
- Daten: Temperatur, Niederschlag Wind, etc.
- Feature Engineering: Temperaturmittelwert etc.
- Erwartung: Regen und extreme Temperaturen beeinflussen Verkehr

Ferien und Feiertage

- Quelle: Open Data Zürich und manuell gepflegte Kalenderdaten
- Features: Ferien- & Feiertagsdummies, Brückentage
- Erwartung: Reduziertes
 Verkehrsaufkommen an schulfreien
 Tagen

	Anzahl_Tage	Schulferientage	Nationale_Feiertage
day			
2018	153	43	9
2019	365	102	18
2020	366	103	17
2021	365	104	18
2022	365	93	20
2023	365	103	20
2024	366	106	18
2025	365	101	25
2026	365	103	24
2027	365	102	21
2028	366	97	22
2029	365	105	23
2030	229	77	16

Analysen

Cluster Vergleich

Clustering nach Durchschnittsverkehr

Legende: grün = niedrig / orange = mittel / rot = hoch

Clustering nach Varianz

Legende: grün = stabil / orange = mittel / rot = variabel

Auswirkung von Ferien und Wochentagen auf das Verkehrsaufkommen:

An Arbeitstagen gibt es deutlich mehr Verkehr in der Stadt Zürich als an Wochenenden oder an Feiertagen.

Auswirkung von der Temperatur auf das Verkehrsaufkommen:

Bei extremen Temperaturen (unter 0 oder über 30 Grad) gibt es im Schnitt ein geringeres Verkehrsaufkommen.

Auswirkung von Niederschlag auf das Verkehrsaufkommen:

Es ist kein wesentlicher Zusammenhang zwischen Niederschlag und dem Verkehrsaufkommen zu erkennen.

Auswirkung von Niederschlag und Temperatur auf das Verkehrsaufkommen:

Bei starkem Schneefall (Temperatur unter 0 und mehr als 10mm Niederschlag), ist das Verkehrsaufkommen deutlich geringer.

Vorhersage

Prognose der Fahrzeuganzahl aufgrund der Wettervorhersage und zukünftigen Ferientagen

Bei der Prognose musste festgestellt werden, dass der Verkehr nur mit einem knapp positiven r² vorhergesehen werden kann. Dies deutet darauf hin, dass kurzfristige Ereignisse wie Ausfälle im öffentlichen Verkehr, Baustellen oder andere Faktoren ebenfalls einen grösseren Einfluss haben als ursprünglich gedacht.

Hypothesen Bewertung

Hypothese	Bewertung
h1	wurde bestätigt: Werktage zeigen durchgängig ein höheres Verkehrsaufkommen
h2	wurde teilweise bestätigt: Bei starkem Schneefall ist ein Rückgang des Verkehrs zu beobachten, jedoch nicht bei leichtem Regen oder Schneefall.
h3	wurde bestätigt: Während der Schulferien sinkt der Verkehr deutlich.
h4	konnte nicht eindeutig belegt werden: Es gibt keine klare Korrelation zwischen hohen Temperaturen und erhöhtem Verkehrsaufkommen

Worauf sind wir stolz?

- Einbindung verschiedener Datenquellen: Wetter + Verkehr + Feiertage
- Aussagekräftige und vielseitige Visualisierungen der Datensätze
- Verwendung von verschiedenen Modellen für die Prognose (KNN, Random Forest etc.)
- Prognose aufgrund des Wetter-Forecasts

Nutzen für das Management

- Identifikation von Verkehrsmustern für Planung & Optimierung
- Prognosen helfen bei Ressourcenplanung (z.B. Baustellen, ÖV-Anpassung)
- Einflussfaktoren: Wetter, Wochentage, Ferien jetzt quantifizierbar
- Entscheidungsgrundlage für datengetriebene Verkehrspolitik