Energía Mecánica Angular

Alejandro A. Torassa

Licencia Creative Commons Atribución 3.0 (2014) Buenos Aires, Argentina atorassa@gmail.com

Resumen

Este trabajo presenta el principio de conservación de la energía mecánica angular para una partícula que se mueve en un campo de fuerzas uniforme.

Energía Mecánica Angular

La energía mecánica angular E_a de una partícula A de masa m_a que se mueve en un campo de fuerzas uniforme, está dada por:

$$E_a = \frac{1}{2} m_a (\mathbf{r} \times \mathbf{v}_a)^2 - m_a (\mathbf{r} \times \mathbf{a}_a) \cdot (\mathbf{r} \times \mathbf{r}_a)$$

donde \mathbf{r} es un vector posición que es constante en magnitud y dirección, y \mathbf{v}_a , \mathbf{a}_a y \mathbf{r}_a son la velocidad, la aceleración constante y la posición de la partícula A.

El principio de conservación de la energía mecánica angular establece que si una partícula A se mueve en un campo de fuerzas uniforme entonces la energía mecánica angular de la partícula A permanece constante.