Data Mining and Web algorithm

Lab Assignment 6:

[11 – 16 Apr, 2022]

Patil Amit Gurusidhappa 19104004 B11

Q1: Consider the dataset having four features: Branch, CGPA, Gamer and Movie Fanatic and the

class Committed.

- a) Compute the Information Gain of the features that better discriminates the class committed.
- b) Then split the tree based on the first feature. Choose the further features based on the information gains.
- c) Print the information gains for each feature and every split.
- d) Finally print the tree.
- e) Test the model with the below samples and calculate the accuracy.
- f) Implement the algorithm in python and weka tool.
- g) Perform the computation on your notebook and compare the results obtained in part f.

```
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
```

```
df=pd.read_csv('E:/Work/JIIT/sem_6/JIIT-SEM-6/DataMining&WebAlgorithms/Lab
6/assgn6_q1_dataset.csv');
print(df)
```

	S no.	branch	cgpa	gamer	movie_fanatic	commited
0	1	CSE	high	yes	no	no
1	2	CSE	low	yes	no	no
2	3	CSE	high	yes	yes	no
3	4	CSE	high	no	no	yes
4	5	CSE	low	no	yes	yes
5	6	ECE	low	yes	no	no
6	7	ECE	high	yes	yes	yes
7	8	ECE	low	yes	yes	no
8	9	ECE	high	yes	yes	yes
9	10	ECE	high	no	yes	yes
10	11	MECH	high	yes	yes	no
11	12	MECH	high	no	no	no
12	13	MECH	high	no	no	yes
13	14	MECH	low	no	no	yes
14	15	MECH	low	no	no	yes
15	16	CSE	high	yes	no	no
16	17	ECE	low	ves	no	no

inputs=df.drop('committed',axis='columns')
inputs

	S no.	branch	сдра	gamer	movie_fanatic
0	1	CSE	high	yes	no
1	2	CSE	low	yes	no
2	3	CSE	high	yes	yes
3	4	CSE	high	no	no
4	5	CSE	low	no	yes
5	6	ECE	low	yes	no
6	7	ECE	high	yes	yes
7	8	ECE	low	yes	yes
8	9	ECE	high	yes	yes
9	10	ECE	high	no	yes
10	11	MECH	high	yes	yes
11	12	MECH	high	no	no
43	43	MECH	11.1		

from sklearn.preprocessing import LabelEncoder

```
le_branch=LabelEncoder()
le_cgpa =LabelEncoder()
le_gamer =LabelEncoder()
le_movie_fanatic =LabelEncoder()
le_commited=LabelEncoder()
```

```
# creating new columns
inputs['branch_n']=le_branch.fit_transform(inputs['branch'])
inputs['cgpa_n']=le_cgpa.fit_transform(inputs['cgpa'])
inputs['gamer_n']=le_gamer.fit_transform(inputs['gamer'])
```

```
inputs['movie_fanatic_n']=le_movie_fanatic.fit_transform(inputs['movie_fan
atic'])
df['commited_n']=le_commited.fit_transform(df['commited'])
```

<pre>inputs Python</pre>									
		S no.	branch	cgpa	gamer	movie_fanatic	branch_n	cgpa_n	game
	0	1	CSE	high	yes	no	0	0	
	1	2	CSE	low	yes	no	0	1	
	2	3	CSE	high	yes	yes	0	0	
	3	4	CSE	high	no	no	0	0	
	4	5	CSE	low	no	yes	0	1	
	5	6	ECE	low	yes	no	1	1	
	6	7	ECE	high	yes	yes	1	0	
	7	8	ECE	low	yes	yes	1	1	
	8	9	ECE	high	yes	yes	1	0	
	9	10	ECE	high	no	yes	1	0	
	10	11	MECH	high	yes	yes	2	0	
	11	12	МГСП	high	no	no	2	0	

```
# dropping non relavent data columns
inputs_n=inputs.drop(['S
no.','branch','cgpa','gamer','movie_fanatic'],axis='columns');

from sklearn import tree

model=tree.DecisionTreeClassifier()

model.fit(inputs_n,target)
```

model.score(inputs_n,target)

0.944444444444444

- Q2: Download 1 classification dataset (https://tinyurl.com/uciclass)
- a) Load the data, pre-process the data.
- b) Built a decision tree using ID3 Algorithm in python.

```
import numpy as np
import pandas as pd
from sklearn.preprocessing import LabelEncoder
```

```
col_names = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
'type']
data = pd.read_csv("iris.csv", skiprows=1, header=None, names=col_names)
data.head(10)
```

	sepal_length	sepal_width	petal_length	petal_width	type
0	5.1	3.5	1.4	0.2	Setosa
1	4.9	3.0	1.4	0.2	Setosa
2	4.7	3.2	1.3	0.2	Setosa
3	4.6	3.1	1.5	0.2	Setosa
4	5.0	3.6	1.4	0.2	Setosa
5	5.4	3.9	1.7	0.4	Setosa
6	4.6	3.4	1.4	0.3	Setosa
7	5.0	3.4	1.5	0.2	Setosa
8	4.4	2.9	1.4	0.2	Setosa
9	4.9	3.1	1.5	0.1	Setosa

```
lebal_type=LabelEncoder()
data['type_n']=lebal_type.fit_transform(data['type'])
datal=data.drop('type',axis='columns')
datal.head(n=600)
```

	sepal_length	sepal_width	petal_length	petal_width	type_n
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
145	6.7	3.0	5.2	2.3	2
146	6.3	2.5	5.0	1.9	2
147	6.5	3.0	5.2	2.0	2
148	6.2	3.4	5.4	2.3	2

Node Class

```
class Node():
    def __init__(self, feature_index=None, threshold=None, left=None,
right=None, info_gain=None, value=None):
    ''' constructor '''

# for decision node
    self.feature_index = feature_index
    self.threshold = threshold
    self.left = left
    self.right = right
    self.info_gain = info_gain

# for leaf node
    self.value = value
```

```
class DecisionTreeClassifier()
```

```
def __init__(self, min_samples split=2, max depth=2):
        self.root = None
        self.min samples split = min samples split
        self.max depth = max depth
    def build tree(self, dataset, curr depth=0):
       X, Y = dataset[:,:-1], dataset[:,-1]
        num samples, num features = np.shape(X)
        if num samples>=self.min samples split and
curr depth<=self.max depth:</pre>
            best split = self.get best split(dataset, num samples,
num features)
            if best split["info gain"]>0:
                left subtree = self.build tree(best split["dataset left"],
curr depth+1)
                right subtree =
self.build tree(best split["dataset right"], curr depth+1)
                return Node(best split["feature index"],
best split["threshold"],
                            left_subtree, right_subtree,
best split["info gain"])
        leaf value = self.calculate leaf value(Y)
```

```
return Node(value=leaf value)
   def get best split(self, dataset, num samples, num features):
       best split = {}
       for feature index in range(num features):
            feature values = dataset[:, feature index]
           possible thresholds = np.unique(feature values)
            for threshold in possible thresholds:
               dataset left, dataset right = self.split(dataset,
feature index, threshold)
                if len(dataset left)>0 and len(dataset right)>0:
                    y, left y, right y = dataset[:, -1], dataset left[:,
-1], dataset right[:, -1]
                    curr info gain = self.information gain(y, left y,
right y, "gini")
                        best split["feature index"] = feature index
                        best split["threshold"] = threshold
                        best split["dataset left"] = dataset left
                        best split["dataset right"] = dataset right
                        best split["info gain"] = curr info gain
       return best split
   def split(self, dataset, feature index, threshold):
```

```
dataset left = np.array([row for row in dataset if
row[feature index]<=threshold])
        dataset right = np.array([row for row in dataset if
row[feature index]>threshold])
        return dataset left, dataset right
   def information gain(self, parent, l child, r child, mode="entropy"):
       weight l = len(l child) / len(parent)
       weight r = len(r child) / len(parent)
       if mode=="gini":
            gain = self.gini index(parent) -
(weight l*self.gini index(l child) + weight r*self.gini index(r child))
            gain = self.entropy(parent) - (weight l*self.entropy(l child)
- weight r*self.entropy(r child))
   def entropy(self, y):
       class labels = np.unique(y)
       entropy = 0
            p cls = len(y[y == cls]) / len(y)
            entropy += -p cls * np.log2(p cls)
       return entropy
   def gini index(self, y):
       class labels = np.unique(y)
       gini = 0
       for cls in class labels:
            p cls = len(y[y == cls]) / len(y)
   def calculate leaf value(self, Y):
```

```
Y = list(Y)
       return max(Y, key=Y.count)
   def print tree(self, tree=None, indent=" "):
       if not tree:
           tree = self.root
       if tree.value is not None:
           print(tree.value)
            print("X "+str(tree.feature index), "<=", tree.threshold, "?",</pre>
tree.info gain)
            print("%sleft:" % (indent), end="")
            self.print_tree(tree.left, indent + indent)
            print("%sright:" % (indent), end="")
            self.print tree(tree.right, indent + indent)
   def fit(self, X, Y):
       dataset = np.concatenate((X, Y), axis=1)
       self.root = self.build tree(dataset)
   def predict(self, X):
       preditions = [self.make prediction(x, self.root) for x in X]
       return preditions
   def make_prediction(self, x, tree):
       if tree.value!=None: return tree.value
```

```
if feature_val<=tree.threshold:
    return self.make_prediction(x, tree.left)
else:
    return self.make_prediction(x, tree.right)</pre>
```

Train-Test split

```
X = data1.iloc[:, :-1].values
Y = data1.iloc[:, -1].values.reshape(-1,1)
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.2, random_state=41)
```

Fit the model

```
classifier = DecisionTreeClassifier(min_samples_split=3, max_depth=3)
classifier.fit(X_train,Y_train)
classifier.print_tree()
```

Decision Tree

```
... X_2 <= 1.9 ? 0.33741385372714494
left:0.0
    right:X_3 <= 1.5 ? 0.427106638180289
left:X_2 <= 4.9 ? 0.05124653739612173
left:1.0
    right:2.0
    right:X_2 <= 5.0 ? 0.019631171921475288
left:X_1 <= 2.8 ? 0.2083333333333334
left:2.0
    right:1.0
    right:2.0
</pre>
```