1 Теоремы

1.1 Утверждение о том, что множество четных подстановок образуют подгруппу

Пререквизиты: $A_n = \{ \pi \in S_n \mid \pi$ - чётная подстановка $\}$

Доказательство:

В начале проверяем, что A_n является группой (кроме последнего пункта):

1. $e \in A_n$, т.к. e - четная перестановка;

2. $\pi = t_{i,i+1} * t_{i+1,i+2} * ... * t_{i_n,i_{n+1}}$ - состоит из четного числа транспозиций.

Обратный элемент $\pi^{-1}=(t_{i,i+1}*t_{i+1,i+2}*...*t_{i,n,i_{n+1}})^{-1}=t_{i_n,i_{n+1}}^{-1}*...*t_{i+1,i+2}*t_{i,i+1}^{-1}=t_{i_n,i_{n+1}}*...*t_{i+1,i+2}*t_{i,i+1}^{-1}=t_{i_n,i_{n+1}}*...*t_{i+1,i+2}*t_{i,i+1}$ - также состоит из четного числа транспозиций, а следовательно $\pi^{-1}\in A_n$;

Группа $H \subset G$ является подгруппой группы G, если $\forall a, b \in H$: $a * b^{-1} \in H$

Остается проверить это утверждение Число перестановок остается все так же четным

1.2 Утверждение о нормальности знакопеременной подгруппы

Пререквизиты: -

Утверждение: $A_n \triangleleft S_n$

Доказательство:

Группа H < G является **нормальной** подгруппой группы G, если $\forall \ g \in G \ \forall \ h \in H \colon g^{-1} * h * g \in H$ Поэтому, один из вариантов доказательства, необходимо доказать, что $\forall \ \pi \in S_n \ \forall \ g \in A_n : \pi^{-1} * g * \pi \in A_n$

- 1. Построим такое отображение $\phi: S_n \to S_n: \phi(\pi) = t_{1,2} * \pi$ Очевидно, что:
 - 1. $\phi(A_n) \subset S_n \backslash A_n$
 - 2. $\phi(S_n \backslash A_n) \subset A_n$
 - 3. $|A_n| = |\phi(A_n)|$
 - 4. $|S_n \setminus A_n| = |\phi(S_n \setminus A_n)|$
 - 5. $|S_n \setminus A_n| = |S_n| |A_n|$

Собирая все вместе:

$$|A_n| = |\bar{\phi}(A_n)| \le |S_n \setminus A_n| = |\phi(S_n \setminus A_n)| \le |A_n| \Rightarrow |A_n| = |S_n \setminus A_n|$$

Тогда: $|S_n \setminus A_n| = |S_n| - |A_n| = |A_n|$;

$$|A_n| = \frac{|S_n|}{2} \Rightarrow |S_n: A_n| = 2 \Rightarrow A_n \triangleleft S_n$$

1.3 Критерий сопряженности подстановок

Пререквизиты: Утверждение: Доказательство:

1.4 Утверждение о четности подстановки через четность числа транспозиний

Пререквизиты: Утверждение: Доказательство:

1.5 Утверждение о четности подстановки через четность числа транспозиций соседних элементов

Пререквизиты: Утверждение: Доказательство:

- 1.6 Утверждение о четности подстановки через четность количества циклов четной длин
- 1.7 Утверждение о неабелевости группы подстановок
- 1.8 Утверждение о неабелевости знакопеременной группы
- 1.9 Утверждение о неабелевости группы диэдра
- 1.10 Утверждение о тривиальности центра группы подстановок
- 1.11 Утверждение о тривиальности центра знакопеременной группы
- 1.12 Утверждение о центре групп диэдра
- 1.13 Утверждение о нормальных подгруппах группы диэдра
- 1.14 Сформулировать и доказать утверждение о нормальности подгруппы индекса 2 в группе

Пререквизиты:

Определение нормальной подгруппы// Индекс

Утверждение: Пусть H < G and |GH| = 2. Then $H \lhd G$ Доказательство: Доказывать задачу будем по определению №1:

 $\forall g \in G: gH = Hg$

1.15 Любая транспозиция представляется в виде произведения нечетного числа транспозиций соседних элементов

Доказательство: Рассматриваем транспозицию $t_{i,j}$. Для удобства скажем, что $\mathrm{i}<\mathrm{j}$

- $1. \ \mathrm{j} = \mathrm{i} + 1$, тогда $t_{i,j}$ транспозиция соседних элементов.
- 2. j > i + 1. Запишем данное произведение:

$$(j-1,j)*(i,j-1)*(j-1,j) = (j-1)*(j,i)$$

Для нее мобильными элементами являются только i,j,j-1. Получили разложение $t_{i,j}$ через $t_{i,j-1}$ и две транспозиции соседних элементов $t_{j-1,j}$. Можем продолжать до тех пор, пока $j \neq i+1$. В итоге, получили разложение траспозиции в произведение транспозиций соседних элементов.

$$t_{j-1,j} * \dots * t_{i+2,i+3} * t_{i+1,i+2} * t_{i,i+1} * t_{i+1,i+2} * t_{i+2,i+3} * \dots * t_{j-1,j}$$

Очевидно, что число транспозиций - нечетно.

1.16 Сформулировать и доказать утверждение о совпадении четности количества беспорядков в подстановке с четностью количества транспозиций, в виде произведения которых может быть записана подстановка

Утверждение: $\pi = \prod_{s=1}^R t_{i_s,i_s+1}$ (Подстановка представляется в виде произведения транспозиций соседих элементов). Тогда $\delta(\pi) = R \mod 2$

Доказательство:

$$\pi = t_{i_1,i_1+1} * t_{i_2,i_2+1} * \dots * t_{i_R,i_R+1} * e$$

Как нам известно, транспозиция меняет четность подстановки на противоположную. Нейтральная подстановка - четная. Далее очевидно, что четность изменится R раз, а значит сама четность равна $R \mod 2$.

Возникает вопрос. Подстановку π мы можем представить в виде произведения транспозиций неоднозначно $\pi = \prod_{s=1}^{R'} t_{s,s+1}$. Не получится ли другая четность?

$$\pi = t_{i_1,i_1+1} * t_{i_2,i_2+1} * \dots * t_{i_{R'},i_{R'}+1} = t_{i_1,i_1+1} * t_{i_2,i_2+1} * \dots * t_{i_R,i_R+1} * e$$

Умножим слева на обратные транспозиции первого разложения слева направо. А так как транспозиция обратна сама себе, то: получим:

$$t_{i_R,i_R+1}*..*t_{i_2,i_2+1}*t_{i_1,i_1+1}*t_{i_1,i_1+1}*t_{i_2,i_2+1}*...*t_{i_{R'},i_{R'}+1}*e=e$$

Четность левой подстановки - четная, она же равна $(R+R') \mod 2 = 0$. Если R - нечетно, то тогда R' также обязано быть нечетным. Аналогично, если R - четное, то R' обязано быть четным

1.17 Сформулировать и доказать утверждение о порождении переменной группы циклами вида (1, 2, k)

Утверждение: $A_n = \langle (1,2,k)|k=3,4,...,n \rangle$

1.18 Сформулировать и доказать утверждение о порождении группы транспозициями соседних элементов

Утверждение: Любая подстановка $\pi \in S_n$ может быть записать в виде произведения транспозиций соседних элементов. Аналогично, можно сказать, что $S_n = < t_{i,i+1} | 1 \le i < n >$

Доказательство:

Подзадачи:

- 1. Любая подставновка расскладывается в произведение независимых циклов единственным способов, с точностью до перестановки циклов
- 2. $\pi = (i_1, i_2, ..., i_k) = (i_1, i_2, ..., i_{k-1}) * (i_1, i_k)$ (Любой цикл длины k может быть представлен в виде k-1 транспозиции)
- 3. $\pi = (i_1, i_2) * (i_1, i_3) * (i_1, i_4) * ... * (i_1, i_k)$ (множеством образующих группы S_n могут являться транспозиции)
- 4. любую транспозицию можно представить в виде произведения транспозиций соседних элементов

Собирая пункты 1-3 вместе, получаем, что любой цикл представляется в виде транспозиций соседних элементов Доказательства подзадач:

- 1. См отдельное доказательство
- 2. Элементы от $i_1, ..., i_{k-2}$ переходят по обычному правилу, т.к. последняя транспозиция на них не влияет. Для i_{k-1} сначала происходит переход в i_1 , а затем в i_k через транспозицию. Последний элемент i_k никак не изменяется под действием первого цикла, а затем переходит в i_1 под действием транспозиции
- 3. по индукции
- 4. См доказательство отдельное

1.19 Сформулировать и доказать утверждение о количестве образующих элементов в группе \mathbb{Z}_n

Утверждение: $Z_n = \langle g \rangle$ - группа Z_n порождается одним элементом

1.20 Сформулировать и доказать утверждение о подгруппах конечной циклической группы

 ${
m f V}$ тверждение: $|G|=n,\,G$ - циклическая

- 1. $H < G \Rightarrow H$ циклическая
- 2. $d \in \mathbb{N}$ d|n, to H < G: |H| = d
- 3. Группа такого порядка единственная

1.21 Сформулировать и доказать утверждение о том, что множество четных подстановок группы \mathbf{S}_n

Утверждение: $A_n \triangleleft S_n$

Доказательство: См. выше

1.22 Сформулировать и доказать утверждение об изменении четности подстановки на противоположную при умножении ее на транспозицию соседних элементов

Утверждение: $\delta(t_{k,k+1},\pi)=\delta(\pi)+1$ mod 2- При умножении подстановки на транспозицию соседних элементов слева ее четность меняется на противоположную

Доказательство:

Рассмотрим подстановку π . При умножении транспозиции на π получим, что элементы от (1 до k) и их образы - остались на месте, аналогично для (k + 2, n), а теперь вместо $k \to i_k$ и $k+1 \to i_{k+1}$ получили $k \to i_{k+1}$ и $k+1 \to i_k$

Число беспорядков относительно остальных элементов не меняется. Т.е. если пара не образовывала беспорядок, то она и не будет образовывать беспорядок. (необходимо разобрать 4 случая). Получается, что беспорядок образуется только i_k и i_{k+1}

Таким образом, появляется (или убирается) один беспорядок.