

Prof. Dr. Anne Frühbis-Krüger ${\rm M.Sc.\ Marco\ Melles}$

Präsenzaufgaben 2

Keine Abgabe vorgesehen

Präsenzaufgabe 2.4.

- (a). Zeigen Sie, dass jeder Ringhomomorphismus von einem Körper K in einen Ring R injektiv ist.
- (b). Sei R ein Ring. Zeigen Sie, dass es einen eindeutigen Ringhomomorphismus $\chi: \mathbb{Z} \longrightarrow R$ gibt.

Präsenzaufgabe 2.5. In einem Ring R heißt ein Element $a \in R$ nilpotent, falls $a^n = 0$ für ein $n \in \mathbb{N}$.

- (a). Sei R ein kommutativer Ring und seien a, $b \in R$ nilpotent. Zeigen Sie, dass a+b, sowie ab ebenfalls nilpotent sind und entscheiden Sie, ob $S=\{a\in R\mid a \text{ ist nilpotent }\}\subseteq R$ ein Unterring von R ist.
- (b). Bestimmen Sie alle nilpotenten Elemente von $R_1 = \mathbb{Z}_{17\mathbb{Z}}$ und $R_2 = \mathbb{Z}_{18\mathbb{Z}}$.
- (c). Sei $m \in \mathbb{N}$. Charakterisieren Sie alle nilpotenten Elemente von $R = \mathbb{Z}/m\mathbb{Z}$. Hinweis: Betrachten Sie die Primfaktorzerlegung von m.

Präsenzaufgabe 2.6. Es sei die Menge der Quaternionen definiert als

$$\mathbb{H} := \{ a + bi + cj + dk \mid a, b, c, d \in \mathbb{R} \text{ und } i^2 = j^2 = k^2 = ijk = -1 \}.$$

Zeigen Sie:

- (a). Es ist i j = k.
- (b). Die folgende Konjugationsabbildung $\bar{\cdot}$ ist ein Automorphismus auf der abelschen Gruppe ($\mathbb{H}, +$) und es gilt f.a. $x \in \mathbb{H}$, dass $\bar{x} = x$:

$$\begin{array}{c} \bar{\cdot}: \mathbb{H} \longrightarrow \mathbb{H} \\ \\ a+b\,i+c\,j+d\,k \longmapsto a-(b\,i+c\,j+d\,k). \end{array}$$

(c). Es ist \mathbb{H} ein nicht kommutativer Schiefkörper. Hinweis: Gegeben $x \in \mathbb{H} \setminus \{0\}$. Berechnen Sie zunächst $x\bar{x}$ um einen geeigneten Kandidaten für ein zu x inverses Element zu erhalten.