Die Menge \mathbb{Z}^2 ist ein Ring bezüglich komponentenweiser Addition und Multiplikation. Wir untersuchen hier seine Ideale.

(a) Sei $I \triangleleft \mathbb{Z}^2$ ein Ideal und

$$I_1 = \{x \in \mathbb{Z} \mid (x,0) \in I\}$$

 $I_2 = \{y \in \mathbb{Z} \mid (0,y) \in I\}$

Man zeige, daß I_1 und I_2 Ideale von \mathbb{Z} sind.

- (b) Man zeige $I = I_1 \times I_2$.
- (c) Man schließe daraus, daß \mathbb{Z}^2 ein Quasi-Hauptidealring ist (dh. ein Ring, der nicht unbedingt Integer ist, aber so daß jedes Ideal ein Hauptideal ist).