

Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0).

Eres libre de compartir y redistribuir el contenido de esta obra en cualquier medio o formato, siempre y cuando des el crédito adecuado a los autores originales y no persigas fines comerciales.

Variable Compleja I Examen XII

Los Del DGIIM, losdeldgiim.github.io

Arturo Olivares Martos

Granada, 2024-2025

Asignatura Variable Compleja I.

Curso Académico 2024-25.

Grado en Matemáticas y Doble Grado en Matemáticas y Física.

Grupo Único.

Profesor Javier Merí de la Maza.

Descripción Convocatoria Ordinaria.

Fecha 17 de Enero de 2025.

Duración 3.5 horas.

Ejercicio 1 (2.5 puntos). Sea Ω un dominio y sean $f, g \in \mathcal{H}(\Omega)$ de modo que $\overline{f}g \in \mathcal{H}(\Omega)$. Probar que $g \equiv 0$ en Ω o f es constante en Ω .

Ejercicio 2 (2.5 puntos). Sea $f \in \mathcal{H}(D(0,1))$ no constante, continua en $\overline{D}(0,1)$ y verificando que |f(z)| = 1 para cada $z \in \mathcal{C}$ con |z| = 1.

- 1. Probar que f tiene un número finito (no nulo) de ceros en D(0,1).
- 2. Probar que $f(\overline{D}(0,1)) = \overline{D}(0,1)$.

Ejercicio 3 (2.5 puntos). Para cada $n \in \mathbb{N}$ tomamos $a_n = 1/n$ y consideramos la función:

$$f_n: \ \mathbb{C} \setminus \{a_n\} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{1}{z - a_n}$$

1. Si $A = \overline{\{a_n : n \in \mathbb{N}\}}$, probar que la serie de funciones

$$\sum_{n\geq 1} \frac{f_n(z)}{n^n}$$

converge absolutamente en todo punto del dominio $\Omega = \mathbb{C} \backslash A$ y uniformemente en cada subconjunto compacto contenido en Ω .

2. Deducir que la función dada por

$$f(z) = \sum_{n=1}^{\infty} \frac{f_n(z)}{n^n}$$

es holomorfa en Ω y estudiar sus singularidades aisladas.

3. (Extra) Probar que para cada $\delta \in \mathbb{R}^+$ el conjunto $f(D(0, \delta) \setminus A)$ es denso en \mathbb{C} .

Ejercicio 4 (2.5 puntos). Sea f holomorfa en $\mathbb{C} \setminus \{-1, 1\}$. Supongamos que -1 y 1 son polos de f y que

$$\operatorname{Res}(f,1) = -\operatorname{Res}(f,-1).$$

Probar que f admite primitiva en $\mathbb{C} \setminus [-1, 1]$.

Ejercicio 1 (2.5 puntos). Sea Ω un dominio y sean $f, g \in \mathcal{H}(\Omega)$ de modo que $\overline{f}g \in \mathcal{H}(\Omega)$. Probar que $g \equiv 0$ en Ω o f es constante en Ω .

Supongamos que $g \not\equiv 0$ en Ω . Entonces, $\exists z_0 \in \Omega$ tal que $g(z_0) \not= 0$. Por continuidad de $g, \exists \delta \in \mathbb{R}^+$ tal que $g(z) \not= 0$ para todo $z \in D(z_0, \delta)$, por lo que consideramos:

$$1/g: D(z_0, \delta) \longrightarrow \mathbb{C}$$
 $z \longmapsto \frac{1}{g(z)}$

Como g es holomorfa en $D(z_0, \delta)$, $1/g \in \mathcal{H}(D(z_0, \delta))$. Por tanto, restringuiéndonos a $D(z_0, \delta)$, tenemos que:

$$\overline{f}g \cdot \frac{1}{g} = \overline{f} \in \mathcal{H}(D(z_0, \delta)).$$

Por tanto, $\overline{f} \in \mathcal{H}(D(z_0, \delta))$ y, por tanto:

Re
$$f = \frac{f + \overline{f}}{2} \in \mathcal{H}(D(z_0, \delta)).$$

Como Re $f \in \mathcal{H}(D(z_0, \delta))$ y tiene parte imaginaria constante (en particular, nula), tenemos que Re f es constante en $D(z_0, \delta)$. De ahí, concluimos que f es constante en $D(z_0, \delta)$. Puesto que Ω es un dominio y $D(z_0, \delta) \subseteq \Omega$, como $D(z_0, \delta)$ no es numerable, por el Principio de Identidad, tenemos que f es constante en Ω .

Ejercicio 2 (2.5 puntos). Sea $f \in \mathcal{H}(D(0,1))$ no constante, continua en $\overline{D}(0,1)$ y verificando que |f(z)| = 1 para cada $z \in \mathbb{C}$ con |z| = 1.

1. Probar que f tiene un número finito (no nulo) de ceros en D(0,1).

En primer lugar, queremos ver que $Z(f) \neq \emptyset$. Por el principio del módulo máximo, como f es continua en $\overline{D}(0,1)$ y holomorfa en D(0,1), tenemos que:

$$\max\{|f(z)|:z\in\overline{D}(0,1)\}=\max\{|f(z)|:|z|=1\}=1.$$

Por otro lado, por por ser D(0,1) compacto y f y el módulo de f continuo, $\exists z_0 \in \overline{D}(0,1)$ tal que:

$$|f(z_0)| = \min\{|f(z)| : z \in \overline{D}(0,1)\}$$

Buscamos ahora aplicar el Principio del Módulo Mínimo en D(0,1), para lo que hemos de demostrar que $|z_0| < 1$. Supongamos que $|z_0| = 1$. Entonces, por hipótesis, tenemos que $|f(z_0)| = 1$, por lo que:

$$1 = |f(z_0)| = \min\{|f(z)| : z \in \overline{D}(0,1)\} = \max\{|f(z)| : z \in \overline{D}(0,1)\} = 1.$$

Por tanto, |f(z)| = 1 para todo $z \in \overline{D}(0,1)$, por lo que |f| es constante en $\overline{D}(0,1)$. Por las consecuencias de Cauchy-Riemann, tenemos que f es constante en D(0,1), lo que contradice la hipótesis de que f no es constante. Por tanto, $|z_0| < 1$ y, por tanto, $z_0 \in D(0,1)$. Por el Principio del Módulo Mínimo,

como f no es constante, tenemos que $f(z_0) = 0$, por lo que $Z(f) \neq \emptyset$.

Veamos ahora que Z(f) es finito. Supongamos por el contrario que Z(f) es infinito, y consideramos una sucesión $\{z_n\}_{n\in\mathbb{N}}$ con $z_n\in D(0,1)$ y $f(z_n)=0$ para todo $n\in\mathbb{N}$. Por ser una sucesión acotada, admite una parcial convergente, digamos $\{z_{n_k}\}_{k\in\mathbb{N}}$, que converge a un punto $w\in\overline{D}(0,1)$. Por continuidad de f en $\overline{D}(0,1)$, tenemos que:

$$f(w) = \lim_{k \to \infty} f(z_{n_k}) = \lim_{k \to \infty} 0 = 0.$$

Por tanto, $w \in Z(f)$ y, por tanto, $w \in D(0,1)$. No obstante, hemos probado que Z(f) tiene un punto de acumulación $w \in D(0,1)$, algo que contradice el principio de los ceros aislados. Por tanto, Z(f) es finito y no nulo.

2. Probar que $f(\overline{D}(0,1)) = \overline{D}(0,1)$.

Demostraremos mediante doble inclusión.

⊆) Consideramos la siguiente igualdad, ya mencionada anteriormente:

$$\max\{|f(z)| : z \in \overline{D}(0,1)\} = \max\{|f(z)| : |z| = 1\} = 1.$$

Por tanto, $|f(z)| \leq 1$ para todo $z \in \overline{D}(0,1)$, por lo que $f(\overline{D}(0,1)) \subseteq \overline{D}(0,1)$.

⊇) Sea $w_0 \in D(0,1)$, y por reducción al absurdo supongamos que $w_0 \notin f(\overline{D}(0,1))$. Consideramos el siguiente conjunto:

$$A = \left\{ \lambda \leqslant 1 \mid \lambda \ w_0 \in f\left(\overline{D}(0,1)\right) \right\}.$$

Por el apartado anterior, como $0 \in f(\overline{D}(0,1))$, tenemos que $A \neq \emptyset$, y por el Axioma del Supremo podemos considerar $\lambda_0 \in \mathbb{R}$ tal que:

$$\lambda_0 = \sup A = \sup \{ \lambda \leqslant 1 \mid \lambda \ w_0 \in f\left(\overline{D}(0,1)\right) \}.$$

Como $w_0 \notin f(\overline{D}(0,1))$, tenemos que $1 \notin A$, luego $\lambda_0 \leqslant 1$. Por la continuidad de f en el compacto, tenemos que $\lambda_0 \in A$ con $\lambda_0 < 1$. Por tanto, $|\lambda_0 w_0| < 1$, y $\lambda_0 w_0 \in D(0,1)$. Por tanto, y uniéndolo a que $\lambda_0 w_0 \in f(\overline{D}(0,1))$, tenemos que $\exists z_0 \in D(0,1)$ tal que:

$$f(z_0) = \lambda_0 w_0.$$

Como f no es constante, por el Teorema de la Aplicación Abierta tenemos que f(D(0,1)) es abierto en \mathbb{C} . Por tanto, como $f(z_0) \in f(D(0,1))$, existe $\delta \in \mathbb{R}^+$ tal que:

$$D(f(z_0), \delta) \subseteq f(D(0, 1))$$
.

No obstante, entonces veamos que $w_0(\lambda_0 + \delta) \in D(f(z_0), \delta)$, ya que:

$$|f(z_0) - w_0(\lambda_0 + \delta)| = |\lambda_0 w_0 - w_0(\lambda_0 + \delta)| = |w_0 \delta| < \delta.$$

donde la última igualdad se cumple porque $|w_0| < 1$. Por tanto, $\lambda_0 + \delta \in A$, lo que contradice el hecho de que $\lambda_0 = \sup A$. Por tanto, hemos llegado a una contradicción, por lo que:

$$D(0,1) \subseteq f(\overline{D}(0,1))$$
.

Tomando cerrados, teniendo en cuenta que el conjunto $f(\overline{D}(0,1))$ es cerrado por ser compacto, tenemos que:

$$\overline{D}(0,1) \subseteq f(\overline{D}(0,1))$$
.

Ejercicio 3 (2.5 puntos). Para cada $n \in \mathbb{N}$ tomamos $a_n = 1/n$ y consideramos la función:

$$f_n: \mathbb{C} \setminus \{a_n\} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{1}{z - a_n}$$

1. Si $A = \overline{\{a_n : n \in \mathbb{N}\}}$, probar que la serie de funciones

$$\sum_{n\geqslant 1} \frac{f_n(z)}{n^n}$$

converge absolutamente en todo punto del dominio $\Omega = \mathbb{C} \backslash A$ y uniformemente en cada subconjunto compacto contenido en Ω .

Sea $K \subseteq \Omega = \mathbb{C} \setminus A$ compacto. como K, A son conjuntos compactos disjuntos, definimos d(K, A) > 0. Por tanto:

$$\left| \frac{f_n(z)}{n^n} \right| = \frac{1}{n^n} \cdot \frac{1}{|z - a_n|} \leqslant \frac{1}{n^n \cdot d(K, A)} \qquad \forall z \in K, n \in \mathbb{N}.$$

Veamos que podemos aplicar el Test de Weierstrass a la serie de término general n^{-n} . Por el Criterio de la raíz, tenemos que:

$$\left\{\frac{n^n}{(n+1)^{n+1}}\right\} = \left\{\frac{1}{n+1}\left(\frac{n}{n+1}\right)^n\right\} \to 0$$

Por tanto, la serie $\sum_{n=1}^{\infty} \frac{1}{n^n}$ converge. Por tanto, por el Test de Weierstrass, tenemos que la serie de funciones $\sum_{n=1}^{\infty} \frac{f_n(z)}{n^n}$ converge uniformemente en K.

Generalizando, tenemos que la serie de funciones $\sum_{n=1}^{\infty} \frac{f_n(z)}{n^n}$ converge uniformemente en cada compacto $K \subseteq \Omega$, y por tanto, converge absolutamente en todo punto de Ω .

2. Deducir que la función dada por

$$f(z) = \sum_{n=1}^{\infty} \frac{f_n(z)}{n^n}$$

es holomorfa en Ω y estudiar sus singularidades aisladas.

Por el Teorema de Convergencia de Weierstrass, gracias al apartado anterior deducimos que $f \in \mathcal{H}(\Omega)$. Sus posibles singularidades aisladas son los puntos de A. Comencemos por estudiar el punto $0 \in A$.

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \sum_{n=1}^{\infty} \frac{f_n(z)}{n^n} = \sum_{n=1}^{\infty} \frac{f_n(0)}{n^n} = \sum_{n=1}^{\infty} \frac{1}{-n^n \cdot a_n} = \sum_{n=1}^{\infty} \frac{-n}{n^n} = -\sum_{n=1}^{\infty} \frac{1}{n^{n-1}}.$$

Por tanto, tenemos que 0 es un punto regular de f, ya que:

$$\lim_{z \to 0} z f(z) = 0$$

Fijado ahora $k \in \mathbb{N}$, consideramos el punto $a_k \in A$. Consideramos la serie $\sum_{\substack{n \geq 1 \\ n \neq k}} \frac{f_n(z)}{n^n}$, que converge uniformemente en cada compacto de $\Omega \cup \{a_k\}$. Por

tanto, podemos aplicar el Teorema de lA Convergencia de Weierstrass para deducir que dicha serie es holomorfa en $\Omega \cup \{a_k\}$. Por tanto, tenemos que:

$$\lim_{z \to a_k} f(z) = \lim_{z \to a_k} (z - a_k) \frac{f_k(z)}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{1}{k^k} + (z - a_k) \sum_{\substack{n \geqslant 1 \\ n \neq k}} \frac{f_n(z)}{n^n} = \lim_{z \to a_k} \frac{f$$

Por tanto, a_k es un polo de orden 1 de f.

3. (Extra) Probar que para cada $\delta \in \mathbb{R}^+$ el conjunto $f(D(0, \delta) \setminus A)$ es denso en \mathbb{C} .

Suponemos por reducción al absurdo que existe $\delta > 0$ de modo que $f\left(D(0,\delta) \setminus A\right)$ no es denso en \mathbb{C} . Entonces existen $w \in \mathbb{C}$ y r > 0 tales que $D(w,r) \cap f\left(D(0,\delta) \setminus A\right) = \emptyset$, es decir, para cada $z \in D(0,\delta) \setminus A$ se cumple que |f(z) - w| > r. Definimos la función:

$$g: D(0,\delta) \setminus \{0\} \longrightarrow \mathbb{C}$$

$$z \longmapsto \begin{cases} \frac{1}{f(z)-w} & \text{si } z \in D(0,\delta) \setminus A \\ \lim_{z \to a_n} g(z) = 0 & \text{si } z = a_n \in A \end{cases}$$

Notemos que el límite anterior vale cero porque f diverge en cada a_n por tener un polo. Como g es holomorfa en $D(0,\delta)\setminus A$ y es continua en cada a_n , el Teorema de Extensión de Riemann nos dice que g es holomorfa en $D(0,\delta)\setminus\{0\}$. Además, se tiene que $|g(z)| \leq 1/r$ para cada $z \in D(0,\delta)\setminus\{0\}$, es decir, g está acotada en un entorno reducido de 0. Aplicando de nuevo el Teorema de Extensión de Riemann, obtenemos que g es derivable en cero y, como $g(a_n) = 0$ para cada $n \in \mathbb{N}$, deducimos que g(0) = 0. Entonces el conjunto de los ceros de g tiene un punto de acumulación en D(0,1) y el Principio de Identidad nos dice que $g \equiv 0$ en D(0,1) pero esto es imposible por la definición de $\frac{1}{f(z)-w}$.

Ejercicio 4 (2.5 puntos). Sea f holomorfa en $\mathbb{C} \setminus \{-1, 1\}$. Supongamos que -1 y 1 son polos de f y que

$$Res(f, 1) = -Res(f, -1).$$

Probar que f admite primitiva en $\mathbb{C} \setminus [-1, 1]$.

Por la caracterización de las funciones primitivas, queremos ver que, para todo camino cerrado γ contenido en $\mathbb{C} \setminus [-1,1]$, se cumple que:

$$\int_{\gamma} f(z) \, dz = 0.$$

Sea pues γ un camino cerrado contenido en $\mathbb{C} \setminus [-1,1] \subset \mathbb{C} \setminus \{-1,1\}$. Como $f \in \mathcal{H}(\mathbb{C} \setminus \{-1,1\}), \{-1,1\}' = \emptyset$ y \mathbb{C} es homológicamente conexo, por el Teorema de los Residuos, tenemos que:

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{z_k \in \{-1,1\}} \operatorname{Ind}_{\gamma}(z_k) \operatorname{Res}(f, z_k)$$

Como $\gamma * \subset \mathbb{C} \setminus [-1,1]$ y [-1,1] es un conjunto conexo, existe V componente conexa de $\mathbb{C} \setminus [-1,1]$ tal que $\{-1,1\} \subset [-1,1] \subset V$. Por tanto, como el índice en una componente conexa es constante, tenemos que:

$$\operatorname{Ind}_{\gamma}(-1) = \operatorname{Ind}_{\gamma}(1)$$

Por tanto:

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{Ind}_{\gamma}(1) \sum_{z_k \in \{-1,1\}} \operatorname{Res}(f, z_k) = 2\pi i \operatorname{Ind}_{\gamma}(1) \left(\operatorname{Res}(f, 1) + \operatorname{Res}(f, -1) \right)$$
$$= 2\pi i \operatorname{Ind}_{\gamma}(1) \left(\operatorname{Res}(f, 1) - \operatorname{Res}(f, 1) \right) = 0.$$

Como γ era un camino cerrado arbitrario contenido en $\mathbb{C}\setminus[-1,1]$, hemos probado que f admite primitiva en $\mathbb{C}\setminus[-1,1]$.