Lecture 1 - Introduction CSE 456: Embedded Systems

Embedded Systems

Embedded systems (ES) = information processing systems embedded into a larger product

Embedded Systems

Embedded systems (ES) = information processing systems embedded into a larger product

Many Names – Similar Meanings

Twelve potentially economically disruptive technologies

Ŕ	Mobile Internet	Increasingly inexpensive and capable mobile computing devices and Internet connectivity
	Automation of knowledge work	Intelligent software systems that can perform knowledge work tasks involving unstructured commands and subtle judgments
	The Internet of Things	Networks of low-cost sensors and actuators for data collection, monitoring, decision making, and process optimization
P	Cloud technology	Use of computer hardware and software resources delivered over a network or the Internet, often as a service
	Advanced robotics	Increasingly capable robots with enhanced senses, dexterity, and intelligence used to automate tasks or augment humans
	Autonomous and near-autonomous vehicles	Vehicles that can navigate and operate with reduced or no human intervention

/Embedded Systems are an essential component

/		Next-generation genomics	Fast, low-cost gene sequencing, advanced big data analytics, and synthetic biology ("writing" DNA)
	(1) + -)	Energy storage	Devices or systems that store energy for later use, including batteries
		3D printing	Additive manufacturing techniques to create objects by printing layers of material based on digital models
		Advanced materials	Materials designed to have superior characteristics (e.g., strength, weight, conductivity) or functionality
	Leyate	Advanced oil and gas exploration and recovery	Exploration and recovery techniques that make extraction of unconventional oil and gas economical
	-\\	Renewable energy	Generation of electricity from renewable sources with reduced harmful climate impact

Embedded System

Use feedback to influence the dynamics of the physical world by taking smart decisions in the cyber world

Embedded System

Use feedback to influence the dynamics of the physical world by taking smart decisions in the cyber world

Predictability & Dependability

CPS = cyber-physical system

"It is essential to *predict* how a CPS is going to behave under any circumstances [...] *before* it is deployed.

"CPS must *operate dependably*, safely, securely, efficiently and in real-time."

Efficiency & Specialization

- ☐ Embedded systems must be *efficient*:
 - ☐ *Energy* efficient
 - ☐ *Code-size* and *data memory* efficient
 - ☐ *Run-time* efficient
 - Weight efficient
 - Cost efficient

Efficiency & Specialization

- Embedded systems must be efficient:
 - Energy efficient
 - Code-size and data memory efficient
 - Run-time efficient
 - Weight efficient
 - □ *Cost* efficient

Embedded Systems are often *specialized* towards a certain application or application domain:

Knowledge about the expected behavior and the system environment at design time is exploited to minimize resource usage and to maximize predictability and reliability.

Reactivity & Timing

Reactive systems must react to	stimuli from	the system	environment
•			

"A reactive system is one which is in continual interaction with its environment and executes at a pace determined by that environment"

Embedded systems often must meet real-time constraints:

For hard real-time systems, right answers arriving too late are wrong. All other
time-constraints are called soft. A guaranteed system response has to be
explained without statistical arguments.

"A real-time constraint is called hard, if not meeting that constraint could result in a catastrophe"

Comparison

Embedded Systems:

General Purpose Computing

Comparison

Embedded Systems:

General Purpose Computing

- \square Broad class of applications.
- ☐ Programmable by end user.
- ☐ Faster is better.
- ☐ Typical criteria:
 - □ cost
 - □ power consumption
 - ☐ average speed

Comparison

Embedded Systems:

- Few applications that are known at design-time.
- □ Not programmable by end user.
- Fixed run-time requirements (additional computing power often not useful).
- ☐ Typical criteria:
 - cost
 - power consumption
 - ☐ size and weight
 - ☐ dependability
 - □ worst-case speed

General Purpose Computing

- Broad class of applications.
- ☐ Programmable by end user.
- ☐ Faster is better.
- Typical criteria:
 - □ cost
 - □ power consumption
 - □ average speed

Components and Requirements by Example

Components and Requirements by Example

- Hardware System Architecture -

High-Level Block Diagram View

High-Level Block Diagram View

EEPROM:

electrically erasable programmable

High-Level Physical View

Components and Requirements by Example

- Processing Elements -

- \Box The software is built on top of a *real-time operating system* "FreeRTOS".
- □ We will use the same operating system in the Lab.

The *software architecture* supports

- □ *real-time tasks* for motor control (gathering sensor values and pilot commands, sensor fusion, automatic control, driving motors using PWM (pulse width modulation)
- non-real-time tasks maintenance and test, handling external events, pilot commands

The *software architecture* supports

- real-time tasks for motor control (gathering sensor values and pilot commands, sensor fusion, automatic control, driving motors using PWM (pulse width modulation).
- non-real-time tasks (maintenance and test, handling external events, pilot commands, ...).

component

Block diagram of the stabilization system:

What can you do to increase performance?

From Computer Engineering 1

From Computer Engineering 1:

AMD multicore RYZEN

Embedded Multicore Example

Recent developments:

- Specialize multicore processors towards real-time processing and low power
- consumptionTarget domains:

System-on-Chip

Zero Power Systems and Sensors

Zero Power Systems and Sensors

Trends ...

Embedded systems are communicating with each other, with servers or with the cloud. Communication is increasingly wireless.
 Higher degree of integration on a single chip or integrated components: Memory + processor + I/O-units + (wireless) communication. Use of networks-on-chip for communication between units. Use of homogeneous or heterogeneous multiprocessor systems on a chip (MPSoC). Use of integrated microsystems that contain energy harvesting, energy storage, sensing, processing and communication ("zero power systems"). The complexity and amount of software is increasing.
Low power and energy constraints (portable or unattended devices) are increasingly important as well as temperature constraints (overheating). There is increasing interest in energy harvesting to achieve long term autonomous operation.