

Probability and Stochastic Processes

Multiple Random Variables, Joint CDF and its Properties, Jointly Discrete Random Variables, Joint PMF, Conditional PMF, Jointly Continuous Random Variables, Joint PDF

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

02/05 September 2024

Multiple Random Variables

Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Two Random Variables)

Given two \mathscr{F} -measurable random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$, we say $(X,Y):\Omega\to\mathbb{R}^2$ is a random variable with respect to \mathscr{F} if

$$(X,Y)^{-1}(B) = \{\omega \in \Omega : (X(\omega),Y(\omega)) \in B\} \in \mathscr{F} \qquad \forall B \in \mathscr{B}(\mathbb{R}^2).$$

Joint Probability Law of Two Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint Probability Law of Two Random Variables)

Given two random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} , their joint probability law $\mathbb{P}_{X,Y}:\mathscr{B}(\mathbb{R}^2)\to[0,1]$, is the probability measure defined as

$$\mathbb{P}_{X,Y}(B) = \mathbb{P}(\{\omega \in \Omega : (X(\omega), Y(\omega)) \in B\}), \qquad B \in \mathscr{B}(\mathbb{R}^2).$$

Remarks:

- $\mathbb{P}_{X,Y}$ is called the pushforward of \mathbb{P} under the random variable (X,Y)
- $\mathbb{P}_{X,Y}$ is the probability law of the random variable (X,Y)
- $\mathbb{P}_{X,Y}$ gives the full probabilistic description of (X,Y)

The Picture to Have in Mind

$$\mathbb{P}_{\pmb{X},\pmb{Y}}(B) = \mathbb{P}((\pmb{X},\pmb{Y})^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R}^2)$$

Remarks

• A special class of sets in $\mathscr{B}(\mathbb{R}^2)$ are semi-infinite rectangles of the form

$$(-\infty, x] \times (-\infty, y], \qquad x, y \in \mathbb{R}.$$

•
$$\mathscr{B}(\mathbb{R}^2) = \sigma(\{(-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R}\})$$

Joint CDF of Two Random Variables

$$\textbf{\textit{F}}_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]) = \mathbb{P}(\{X\leq x\}\cap\{Y\leq y\}),\quad x,y\in\mathbb{R}$$

Definition (Joint CDF)

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Given random variables $X: \Omega \to \mathbb{R}$ and $Y: \Omega \to \mathbb{R}$ with respect to \mathscr{F} , their joint CDF

$$F_{X,Y}:\mathbb{R}^2 o [0,1]$$
 is defined as

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x] \times (-\infty,y]) = \mathbb{P}(\{X \le x\} \cap \{Y \le y\}), \qquad x,y \in \mathbb{R}.$$

Notation

- $\bullet \ \{X \le x\} \cap \{Y \le y\} = \{X \le x, \ Y \le y\}$
- $\mathbb{P}(\{X \leq x\} \cap \{Y \leq y\}) = \mathbb{P}(X \leq x, Y \leq y)$

Joint CDF ←→ **Joint Probability Law**

• If we know $\mathbb{P}_{X,Y} = {\mathbb{P}_{X,Y}(B) : B \in \mathscr{B}(\mathbb{R}^2)}$, then we can extract the CDF $F_{X,Y} : \mathbb{R}^2 \to [0,1]$ by using the formula

$$F_{X,Y}(x,y) = \mathbb{P}_{X,Y}((-\infty,x]\times(-\infty,y]), \qquad x,y\in\mathbb{R}.$$

• Given the joint CDF $F_{X,Y}: \mathbb{R}^2 \to [0,1]$, let

$$\mathbb{P}_{X,Y}\big((-\infty,x]\times(-\infty,y]\big)=F_{X,Y}(x,y), \qquad x,y\in\mathbb{R}.$$

Then, by Caratheodory's extension theorem, there exists a unique extension of $\mathbb{P}_{X,Y}$ to all Borel subsets of \mathbb{R}^2

Properties of Joint CDF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$

Let $X:\Omega \to \mathbb{R}$ and $Y:\Omega \to \mathbb{R}$ be random variables with respect to \mathscr{F} with joint CDF $F_{X,Y}$

• $\lim_{x,y\to-\infty} F_{X,Y}(x,y) = 0$, $\lim_{x,y\to+\infty} F_{X,Y}(x,y) = 1$

• (Monotonicity) If $x_1 \leq x_2$ and $y_1 \leq y_2$, then $F_{X,Y}(x_1,y_1) \leq F_{X,Y}(x_2,y_2)$

• $F_{X,Y}$ is continuous from the right and top, i.e., for all $x,y \in \mathbb{R}$,

$$\lim_{u\downarrow 0,\ v\downarrow 0} F_{X,Y}(x+u,\ y+v) = F_{X,Y}(x,y).$$

• $\lim_{\gamma \to \infty} F_{X,Y}(x, \gamma) = F_X(x)$ for all $x \in \mathbb{R}$ $\lim_{x \to \infty} F_{X,Y}(x, \gamma) = F_Y(\gamma)$ for all $\gamma \in \mathbb{R}$

Marginal Law/CDF from Joint Law/CDF

Given joint CDF/law, we may extract the marginal CDFs/laws The converse is not possible in general

CDF	Law
$F_{X,Y} = \{F_{X,Y}(x,y) : x,y \in \mathbb{R}\}$	$\mathbb{P}_{X,Y} = \{\mathbb{P}_{X,Y}(B) : B \in \mathscr{B}(\mathbb{R}^2)\}$
$F_X(x) = \lim_{y \to +\infty} F_{X,Y}(x,y)$	$\mathbb{P}_X(A) = \mathbb{P}_{X,Y}(A imes \mathbb{R})$
$F_{Y}(y) = \lim_{x \to +\infty} F_{X,Y}(x,y)$	$\mathbb{P}_{Y}(A) = \mathbb{P}_{X,Y}(\mathbb{R} \times A)$

Table: Marginal law/CDF from joint law/CDF.

Multiple Random Variables

Fix a measurable space (Ω, \mathscr{F}) .

Definition (Multiple Random Variables)

Given random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , we say $(X_1, \ldots, X_n) : \Omega \to \mathbb{R}^n$ is a random variable with respect to \mathscr{F} if

$$(X_1,\ldots,X_n)^{-1}(B)=\{\omega\in\Omega: ig(X_1(\omega),\ldots,X_n(\omega)ig)\in B\}\in\mathscr{F}\qquad orall B\in\mathscr{B}(\mathbb{R}^n).$$

Joint Probability Law of Multiple Random Variables

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition (Joint Probability Law of Multiple Random Variables)

Given two random variables X_1, \ldots, X_n defined with respect to \mathscr{F} , their joint probability law is the probability measure $\mathbb{P}_{X_1,\ldots,X_n}:\mathscr{B}(\mathbb{R}^n)\to [0,1]$ defined as

$$\mathbb{P}_{X_1,\ldots,X_n}(B) = \mathbb{P}(\{\omega \in \Omega : (X_1(\omega),\ldots,X_n(\omega)) \in B\}), \qquad B \in \mathscr{B}(\mathbb{R}^n).$$

Remarks:

- $\mathbb{P}_{X_1,...,X_n}$ is the probability law of the random variable (X_1,\ldots,X_n)
- $\mathbb{P}_{X_1,...,X_n}$ gives the full probabilistic description of (X_1,\ldots,X_n)

Joint Probability Law of Multiple Random Variables

$$\mathbb{P}_{X_1,\ldots,X_n}(B) = \mathbb{P}((X_1,\ldots,X_n)^{-1}(B)) \quad orall B \in \mathscr{B}(\mathbb{R}^n)$$

Marginal Law/CDF from Joint Law/CDF

Given joint CDF/law, we may extract the marginal CDFs/laws The converse is not possible in general

CDF	Law
$F_{X_1,,X_n} = \{F_{X_1,,X_n}(x_1,,x_n) : x_1,,x_n \in \mathbb{R}\}$	$\mathbb{P}_{X_1,\ldots,X_n} = \{\mathbb{P}_{X_1,\ldots,X_n}(B) : B \in \mathscr{B}(\mathbb{R}^n)\}$
$F_{X_1}(x_1) = \lim_{\substack{x_2 \to +\infty \\ x_3 \to +\infty}} F_{X_1,\dots,X_n}(x_1,x_2,\dots,x_n)$	$\mathbb{P}_{X_1}(A) = \mathbb{P}_{X_1,,X_n}(A imes \mathbb{R} imes \cdots imes \mathbb{R})$
\vdots $x_n \rightarrow +\infty$	
$F_{X_2}(x_2) = \lim_{\substack{x_1 \to +\infty \ x_3 \to +\infty}} F_{X_1,\dots,X_n}(x_1,x_2,\dots,x_n)$	$\mathbb{P}_{X_2}(A) = \mathbb{P}_{X_1,,X_n}(\mathbb{R} \times A \times \mathbb{R} \times \cdots \times \mathbb{R})$
\vdots $x_n \rightarrow +\infty$	

Table: Marginal law/CDF from joint law/CDF.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Two Random Variables)

Two random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be independent if

$$\{X \in B_1\} \perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

That is,

$$\mathbb{P}(\{X \in B_1\} \cap \{Y \in B_2\}) = \mathbb{P}(\{X \in B_1\}) \cdot \mathbb{P}(\{Y \in B_2\}) \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

Equivalently,

$$\mathbb{P}_{X,Y}(B_1 \times B_2) = \mathbb{P}_X(B_1) \cdot \mathbb{P}_X(B_2) \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

$$X \perp \!\!\!\perp Y \quad \Longleftrightarrow \quad \{X \in B_1\} \perp \!\!\!\perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

B_1	B_2	$\{X \in B_1\}$	$\{Y \in B_2\}$	Implication
$(-\infty,x]$	$(-\infty, \gamma]$			

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

$$X \perp \!\!\!\perp Y \quad \Longleftrightarrow \quad \{X \in B_1\} \perp \!\!\!\perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

B_1	B_2	$\{X \in B_1\}$	$\{Y \in B_2\}$	Implication
$(-\infty,x]$	$(-\infty, \gamma]$	$\{X \le x\}$	$\{Y \leq y\}$	$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$
$(-\infty,x]$	$(\gamma, +\infty)$			

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

$$X \perp \!\!\!\perp Y \quad \Longleftrightarrow \quad \{X \in B_1\} \perp \!\!\!\perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

B_1	B_2	$\{X \in B_1\}$	$\{Y \in B_2\}$	Implication
$(-\infty,x]$	$(-\infty, \gamma]$	$\{X \leq x\}$	$\{Y \leq y\}$	$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$
$(-\infty,x]$	$(\gamma, +\infty)$	$\{X \leq x\}$	$\{Y > y\}$	$\mathbb{P}(\{X \le x, Y > \gamma\}) = \mathbb{P}(\{X \le x\}) \cdot \mathbb{P}(\{Y > \gamma\})$
$(-\infty,x]$	{ y }			

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

$$X \perp \!\!\!\perp Y \quad \Longleftrightarrow \quad \{X \in B_1\} \perp \!\!\!\perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

B_1	B_2	$\{X \in B_1\}$	$\{Y \in B_2\}$	Implication
$(-\infty,x]$	$(-\infty, \gamma]$	$\{X \leq x\}$	$\{Y \leq y\}$	$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$
$(-\infty,x]$	$(y, +\infty)$	$\{X \leq x\}$	$\{Y>y\}$	$\mathbb{P}(\{X \le x, Y > y\}) = \mathbb{P}(\{X \le x\}) \cdot \mathbb{P}(\{Y > y\})$
$(-\infty,x]$	{ y }	$\{X \leq x\}$	$\{Y=y\}$	$\mathbb{P}(\{X \le x, Y = y\}) = \mathbb{P}(\{X \le x\}) \cdot \mathbb{P}(\{Y = y\})$
$(-\infty,x]$	(a,b)			

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Two Random Variables)

$$X \perp \!\!\!\perp Y \quad \Longleftrightarrow \quad \{X \in B_1\} \perp \!\!\!\perp \{Y \in B_2\} \qquad \forall B_1, B_2 \in \mathscr{B}(\mathbb{R}).$$

B_1	B_2	$\{X \in B_1\}$	$\{Y \in B_2\}$	Implication
$(-\infty,x]$	$[-\infty, \gamma]$	$\{X \leq x\}$	$\{Y \leq y\}$	$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$
$(-\infty,x]$	$(y, +\infty)$	$\{X \leq x\}$	$\{Y > y\}$	$\mathbb{P}(\{X \le x, \ Y > \gamma\}) = \mathbb{P}(\{X \le x\}) \cdot \mathbb{P}(\{Y > \gamma\})$
$(-\infty,x]$	{ y }	$\{X \leq x\}$	$\{Y=y\}$	$\mathbb{P}(\{X \le x, Y = \gamma\}) = \mathbb{P}(\{X \le x\}) \cdot \mathbb{P}(\{Y = \gamma\})$
$(-\infty,x]$	(a,b)	$\{X \leq x\}$	$\{a < Y < b\}$	

Table: Independence of two random variables from various angles.

Independence and Joint CDFs

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined with respect to \mathscr{F} .

Proposition (Independence and Joint CDFs)

The following statements are equivalent.

1.
$$\mathbb{P}_{X,Y}(B_1 \times B_2) = \mathbb{P}_X(B_1) \cdot \mathbb{P}_Y(B_2)$$
 for all $B_1, B_2 \in \mathscr{B}(\mathbb{R})$.

2.
$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$
 for all $x,y \in \mathbb{R}$.

Independence and Joint CDFs

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined with respect to \mathscr{F} .

Proposition (Independence and Joint CDFs)

The following statements are equivalent.

1.
$$\mathbb{P}_{X,Y}(B_1 \times B_2) = \mathbb{P}_X(B_1) \cdot \mathbb{P}_Y(B_2)$$
 for all $B_1, B_2 \in \mathscr{B}(\mathbb{R})$.

2.
$$F_{X,Y}(x,y) = F_X(x) \cdot F_Y(y)$$
 for all $x,y \in \mathbb{R}$.

Interpretation of $2 \implies 1$

If the joint probability law products out on the collection

$$\mathscr{D} = \left\{ (-\infty, x] \times (-\infty, y] : x, y \in \mathbb{R} \right\},\,$$

then it has to product out on $\sigma(\mathcal{D}) = \mathcal{B}(\mathbb{R}^2)$ (by Caratheodory's extension theorem)

Independence of Multiple Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Independence of Multiple Random Variables)

1. Random variables X_1, \ldots, X_n , all defined with respect to \mathscr{F} , are independent if

$$\mathbb{P}_{X_1,\ldots,X_n}(B_1 imes\cdots imes B_n)=\prod_{i=1}^n\mathbb{P}_{X_i}(B_i) \qquad orall B_1,\ldots,B_n\in \mathscr{B}(\mathbb{R}).$$

2. For an arbitrary index set \mathcal{I} , the collection of random variables $\{X_i : i \in \mathcal{I}\}$ is independent if every finite subset of them is independent.

Independent and Identically Distributed (i.i.d.) Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined with respect to \mathscr{F} .

Definition (i.i.d. Random Variables)

 X_1, \ldots, X_n are said to be independent and identically distributed (i.i.d.) if

- 1. X_1, \ldots, X_n are independent.
- 2. $F_{X_i} = F_{X_i}$ for all $i \neq j$ (identical CDFs).

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Jointly Discrete Random Variables)

Random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be jointly discrete if $(X,Y):\Omega\to\mathbb{R}^2$ is a discrete random variable.

• X discrete \iff

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Jointly Discrete Random Variables)

Random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be jointly discrete if $(X,Y):\Omega\to\mathbb{R}^2$ is a discrete random variable.

- X discrete $\iff \mathbb{P}_X(E_1) = \mathbb{P}(\{X \in E_1\}) = 1$ for some countable set $E_1 \subset \mathbb{R}$
- Y discrete ⇐⇒

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Jointly Discrete Random Variables)

Random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be jointly discrete if $(X,Y):\Omega\to\mathbb{R}^2$ is a discrete random variable.

- X discrete $\iff \mathbb{P}_X(E_1) = \mathbb{P}(\{X \in E_1\}) = 1$ for some countable set $E_1 \subset \mathbb{R}$
- Y discrete $\iff \mathbb{P}_{\mathbb{Y}}(E_2) = \mathbb{P}(\{\mathbb{Y} \in E_2\}) = 1$ for some countable set $E_2 \subset \mathbb{R}$
- E_1 countable, E_2 countable $\implies E_1 \times E_2$ countable (exercise!)
- $\mathbb{P}_{X,Y}(E_1 \times E_2) = \mathbb{P}(\{X \in E_1\} \cap \{Y \in E_2\}) = 1$

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Jointly Discrete Random Variables)

Random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined with respect to \mathscr{F} are said to be jointly discrete if $(X,Y):\Omega\to\mathbb{R}^2$ is a discrete random variable.

- X discrete $\iff \mathbb{P}_X(E_1) = \mathbb{P}(\{X \in E_1\}) = 1$ for some countable set $E_1 \subset \mathbb{R}$
- Y discrete $\iff \mathbb{P}_{\mathbb{Y}}(E_2) = \mathbb{P}(\{\mathbb{Y} \in E_2\}) = 1$ for some countable set $E_2 \subset \mathbb{R}$
- E_1 countable, E_2 countable $\implies E_1 \times E_2$ countable (exercise!)
- $\mathbb{P}_{X,Y}(E_1 \times E_2) = \mathbb{P}(\{X \in E_1\} \cap \{Y \in E_2\}) = 1$

X discrete, Y discrete $\Longrightarrow (X, Y)$ discrete

Picture of Jointly Discrete Random Variables

Joint PMF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Joint PMF)

The joint PMF of jointly discrete random variables $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ defined on \mathscr{F} is a function $p_{X,Y}:\mathbb{R}^2\to[0,1]$ defined as

$$p_{X,Y}(x,y) = \mathbb{P}(\{X=x\} \cap \{Y=y\}), \qquad x,y \in \mathbb{R}.$$

Note:

$$\mathbb{P}(\{(X,Y) \in E_1 \times E_2\}) = \sum_{x \in E_1} \sum_{y \in E_2} p_{X,Y}(x,y) = 1,$$

$$(\{(X,Y) \in B\}) = \sum_{x \in E_1} p_{X,Y}(x,y), \quad B \subseteq \mathbb{R}$$

$$\mathbb{P}(\{(X,Y)\in B\})=\sum_{(x,y)\in B\cap (E_1\times E_2)}p_{X,Y}(x,y),\quad B\subseteq \mathbb{R}^2.$$

Properties of Joint PMF

•
$$\sum_{x \in E_1} \sum_{y \in E_2} p_{X,Y}(x,y) = 1$$
.

•
$$p_X(x) = \sum_{y \in F_2} p_{X,Y}(x,y), \quad x \in \mathbb{R}$$

•
$$p_Y(y) = \sum_{x \in E_1} p_{X,Y}(x,y), \quad y \in \mathbb{R}$$

Conditional PMF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Conditional PMF)

Let X, Y be jointly discrete random variables defined with respect to \mathscr{F} . Fix $y \in \mathbb{R}$ such that $p_Y(y) = \mathbb{P}(\{Y = y\}) > 0$. The conditional PMF of X, conditioned on the event $\{Y = y\}$, is a function $p_{X|Y=y} : \mathbb{R} \to [0,1]$ defined as

$$p_{X|Y=y}(x) = rac{\mathbb{P}(\{X=x\}\cap\{Y=y\})}{\mathbb{P}(\{Y=y\})} = rac{p_{X,Y}(x,y)}{p_Y(y)}, \qquad x\in\mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $p_Y(y) = \mathbb{P}(\{Y = y\}) > 0$.

Conditional PMF

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Definition (Conditional PMF)

Let X, Y be jointly discrete random variables defined with respect to \mathscr{F} . Fix $y \in \mathbb{R}$ such that $p_Y(y) = \mathbb{P}(\{Y = y\}) > 0$. The conditional PMF of X, conditioned on the event $\{Y = y\}$, is a function $p_{X|Y=y} : \mathbb{R} \to [0,1]$ defined as

$$p_{X|Y=y}(x) = rac{\mathbb{P}(\{X=x\}\cap\{Y=y\})}{\mathbb{P}(\{Y=y\})} = rac{p_{X,Y}(x,y)}{p_Y(y)}, \qquad x\in\mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $p_Y(y) = \mathbb{P}(\{Y = y\}) > 0$.

Remark: In textbooks, $p_{X|Y=y}(x)$ is commonly denoted as $p_{X|Y}(x|y)$

Conditional PMF

Independence of Two Discrete Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Theorem

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be discrete random variables with respect to \mathscr{F} . The following statements are equivalent.

- 1. $X \perp \!\!\!\perp Y$.
- 2. $\{X = x\} \perp \{Y = y\}$ for all $x, y \in \mathbb{R}$.
- 3. $p_{X,Y}(x,y) = p_X(x) \cdot p_Y(y)$ for all $x,y \in \mathbb{R}$.
- 4. For all $y \in \mathbb{R}$ such that $p_Y(y) > 0$,

$$p_{X|Y=y}(x)=p_X(x) \qquad \forall x\in\mathbb{R}.$$

Jointly Continuous Random Variables

Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined with respect to \mathscr{F} .

Definition (Jointly Continuous Random Variables)

X and Y are said to be jointly continuous if $(X,Y):\Omega\to\mathbb{R}^2$ is a continuous random variable, i.e., there exists a function $f_{X,Y}:\mathbb{R}^2\to[0,+\infty)$ such that the joint CDF of X and Y may be expressed as

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, dv \, du \qquad \forall x,y \in \mathbb{R}.$$

The function $f_{X,Y}$ is called the joint PDF of X and Y.

Remark:

X continuous, *Y* continuous \implies *X*, *Y* jointly continuous