Homework 2 – Xavier Gitiaux

March 2019

1 Exercise 1

1.1 Question 1

The customer cannot compute x since it can only hash m_i and not m_j for $i \neq j$. Therefore, to verify whether m_i was signed, she needs a string $s_{1i} = h(m_1)||...||h(m_{i-1})$ and $s_{2i} = h(m_{i+1})||...||h(m_{10})$. Then she would be able to compute $h(m_i)$, insert it between s_{1i} and s_{2i} hash $H(s_{1i}||h(m_i)||s_{2i})$ as x' and check whether $Sign_{pk}(x') = s$.

1.2 Question 2

To trick the customer, the company would have to forge a $x^{'} = H(h^{'})$ $(h \equiv H(m_{1}^{'})||...||H(m_{10}^{'})|$ such that $x = x^{'}$ but either with $H(m_{i}) = H(m_{i}^{'})$ and $h = h^{'}$ or with $H(m_{i}) \neq H(m_{i}^{'})$ and $h \neq h^{'}$. In the former case, m_{i} and $m_{i}^{'}$ will be a collision of H; in the latter case, h and $h^{'}$ will be a collision of H. Both cases violate the collision-resistance assumption of H.

1.3 Question 3

The company signs 10 messages at a time so in a second, it proceeds 100 messages since each signature takes 0.1s. Without its new scheme, the company will only proceed 10 messages per second.

1.4 Question 4

To each customer i, the company sends x and the 9 hashes of m_j for $j \neq i$. Therefore, it sends 320 bytes of additional information.

1.5 Question 5

We could use a Merkle binary hash tree with messages $m_1, ..., m_K$ as leaves (where K will be computed below). To each customer i, the company sends m_i , the hash of m_i 's sibling and of sibling of m_i 's parent and so on to the root. For a tree with K leaves, the number of hashes that have to be included to what is sent to the customer is equal to the depth of the tree log(K), so the total number of bytes is 32 * log(K). If the company needs 0.1s to sign and if they want to proceed 10^7 messages per second, it means that in a second they can sign at most 10 hashes with 10^6 messages each. Therefore $K = 10^6$ and the number of bytes transferred to each customer is $32 * log(10^6) \sim 638 < 1000$.

2 Exercise 2

2.1 Question 1

Step 3

- confirms to B that he is talking to A since only A was able to decrypt c_2 ;
- and it prevents a man-in-the-middle attack with an adversary intercepting c_2 , replacing it with $c_2' = Enc_a(N')$ and forcing A to use a wrong key $N_a \oplus N'$. B would know if this type of attack happens since c_3 would not decrypt to N_b .

2.2 Question 2

- Upon receiving $c_1 = Enc_{pk_P}(A, N_a)$, P decrypts with his private key sk_P and gets (A, N_a) , which he encrypts using B's public key: $c_1' = Enc_{pk_b}(A, N_a)$.
- P sends $c_{1}^{'}$ to B who decrypts it and thinks he is talking to A.
- B encrypts N_b, N_a with A's public key pk_A and send it to A: $c_2 = Enc_{pk_A}(N_b, N_a)$.
- P intercepts c_2 and sends it to A, who thinks it is coming from P. Therefore, A will encrypt N_b with P's public key and sends $c_3 = Enc_{pk_P}(N_b)$ to P.
- P decrypts c_3 with his private key sk_P and re-encrypt it with B's public key: $c_3^{'} = Enc_{pk_B}(N_b)$.
- B receives c_3 and decrypts. Since he gets the nonce he sends, he thinks that he is talking to A and encrypts his message with the key $N_a \oplus N_b$.
- P has both nonces N_a and N_b . Therefore, he can communicate with B as if he were A.

2.3 Question 3

In Step 2, B should encrypt (B, N_a, N_b) with A's public key. P cannot alter this message since he does not have A's private key. But if he sends it to A as a response to the initial message c_1 A sends to P, A will know that N_b was not produced by P but by B and should abort the protocol (A is expecting $Enc_{pk_A}(P, N_a, N_b)$.