Глубокое обучение. Нейронные сети для изображений

Арсланов Николай Гребенюк Алексей Мунхтогоо Норжин

Санкт-Петербург 2021г.

Глубокое обучение

Глубокое обучение — это разновидность машинного обучения на основе искусственных нейронных сетей. Процесс обучения называется глубоким, если структура искусственных нейронных сетей состоит из нескольких входных, выходных и скрытых слоев.

Наиболее популярные типы глубоких нейронных сетей:

- Многослойные нейронные сети (MNN): решение задач регрессии и классификации.
- Рекуррентные нейронные сети (RNN): прогнозирование временных рядов, обучение распознаванию рукописного ввода и распознавание естественной речи.
- Сверточные нейронные сети (CNN): распознавание видео, распознавание изображений и в системах выработки рекомендаций.
- Генеративно-состязательные сети (GAN): преобразование изображений в изображения.
- Преобразователи: перевод, создание текста, ответы на вопросы и формирование сводных данных текста.

Области применения глубокого обучения

Глубокое обучение достигло следующих прорывов в традиционно сложных областях машинного обучения:

- классификация изображений на уровне человека;
- распознавание речи на уровне человека;
- распознавание рукописного текста на уровне человека;
- улучшение качества машинного перевода с одного языка на другой;
- улучшение качества машинного чтения текста вслух;
- появление цифровых помощников, таких как Google Now и Amazon Alexa:
- управление автомобилем на уровне человека;
- повышение точности целевой рекламы, используемой компаниями Google, Baidu и Bing;
- повышение релевантности поиска в интернете;
- появление возможности отвечать на вопросы, заданные вслух.

Многослойные нейронные сети (пример)

Рис.: Пример многослойной нейронной сети

Рекуррентные нейронные сети (пример)

Рис.: Пример рекуррентной нейронной сети

Сверточные нейронные сети (пример)

СВЕРТОЧНАЯ ИСКУССТВЕННАЯ НЕЙРОННАЯ СЕТЬ

Рис.: Пример сверточной нейронной сети

Генеративно-состязательные сети (пример)

Рис.: Пример генеративно-состязательной сети

Преобразователи (пример)

Рис.: Пример автоэнкодера

Глубокое обучение

Особенности глубокого обучения:

- большая сложность глубоких нейронных сетей;
- необходимость в большом количестве данных;
- большие трудовые, ресурсные и временные затраты;
- представляет собой «Черный ящик»;
- адаптация нейронных сетей;
- широкая область применения;
- высокая производительность.

Нейронные сети для изображений

Для обработки изображений и видео наибольшей популярностью пользуются сверточные нейронные сети.

Основные преимущества:

- шаблоны, которые они изучают, являются инвариантными в отношении переноса;
- они могут изучать пространственные иерархии шаблонов;
- уменьшение количества параметров;
- уменьшение размерности.

Используемые слои:

- сверточные слои;
- объединяющие слои;
- полносвязные слои.

Сверточные слои

- Вход: $W_1 \times H_1 \times D_1$
- Гиперпараметры:
 - К количество фильтров
 - F размер фильтра
 - *S* шаг свертки
 - Р заполнение нулями
- Выход: $W_2 \times H_2 \times D_2$
 - $W_2 = (W_1 F + 2P)/S + 1$
 - $H_2 = (H_1 F + 2P)/S + 1$
 - $D_2 = K$
- ullet $F*F*D_1$ весов на фильтр, всего $F*F*D_1*K$ весов
- Далее к получившимся элементам сверточного слоя применяют функцию активации. Обычно берут ReLu(p) = max(0, p);

Объединяющий слой

Объединяющий слой нейронов – это необучаемая свёртка с щагом h > 1, агрегирующая данные прямоугольной области h \times h:

$$y[i,j] = F(x[hi,hj], \ldots, x[hi+h-1,hj+h-1]),$$

гду F – агрегирующая функция: max, average и т.п.

Объединяющий слой

- Вход: $W_1 \times H_1 \times D_1$
- Гиперпараметры:
 - F ширина квадратного фильтра
 - S шаг фильтра
- Выход: W₂ × H₂ × D₂:
 - $W_2 = (W_1 F)/S + 1$
 - $H_2 = (H_1 F)/S + 1$
 - $D_2 = D_1$

Полносвязный слой

Последний из типов слоев это слой обычного многослойного персептрона. Цель слоя – классификация, моделирует сложную нелинейную функцию, оптимизируя которую, улучшается качество распознавания. Вычисление значений нейрона можно описать формулой:

$$x_{j}^{l} = \sigma(\sum_{i} x_{i}^{l-1} * w_{i,j}^{l-1} + b_{j}^{l-1}),$$

где

- x_j^l карта признаков ј (выход слоя I),
- $\sigma()$ функция активации,
- b^I коэффициент сдвига слоя I,
- $w_{i,j}^{l}$ матрица весовых коэффициентов слоя l.

Функция активации

Выделяются следующие функции активации:

$$ullet$$
 сигмойда: $\sigma(z)=rac{1}{1-e^{-az}}$, $a\in\mathbb{R}$;

$$ullet$$
 гиперболический тангенс: $\sigma(z)=rac{e^{az}-e^{-az}}{e^{az}+e^{-az}}$;

• softmax:
$$\sigma(z)_i = \frac{e^{z_i}}{\sum\limits_{k=1}^{K} e^{z_k}}$$
.

Forwardpropagation

Операция свертки может быть записана так, как описано на рисунке ниже.

Forwardpropagation

Теперь, чтобы вычислить градиенты фильтра F относительно ошибки E, необходимо решить уравнения, которые можно записать в форме операции свертки.

Forwardpropagation

Точно так же мы можем найти градиенты входной матрицы X относительно ошибки E.

∂E/∂X ₁₁	∂E/∂X ₁₂	∂E/∂X ₁₃	= Convolution (∂E/∂O ₁₁	∂E/∂O ₁₂		F ₂₂	F ₂₁	1
∂E/∂X ₂₁	∂E/∂X ₂₂	∂E/∂X ₂₃			12			1)	
∂E/∂X ₃₁	∂E/∂X ₃₂	∂E/∂X ₃₃		∂E/∂O ₂₁	∂E/∂O ₂₂	,	F ₁₂	F ₁₁	/