Model Documentation of the Linear Transport System

1 Nomenclature

1.1 Nomenclature for Model Equations

t time

z space

v velocity (constant)

u(z,t) input function

x(z,t) wanted function describing the material transport

2 Model Equations

System Equations:

$$\dot{x}(z,t) + vx'(z,t) = 0$$
 $z \in (0,l], t > 0$
 $x(z,0) = x_0(z)$ $z \in [0,l]$
 $x(0,t) = u(t)$ $t > 0$

Parameters: vOutputs: x(l,t)

2.1 Assumptions

1.
$$x_0(z) = 0$$

2.2 Exemplary parameter values

Parameter Name	Symbol	Value
velocity-constant	v	4

3 Derivation and Explanation

Weak formulation approach with weight function $\varphi(z)$:

$$0 \stackrel{!}{=} \int_{z=0}^{z=l} [\dot{x}(z,t) + vx'(z,t)] \varphi(z) dz$$
$$0 = \int_{z=0}^{z=l} \dot{x}(z,t) \varphi(z) dz + v \int_{z=0}^{z=l} x'(z,t) \varphi(z) dz$$

with partial integration

$$0 = \int_{z=0}^{z=l} \dot{x}(z,t)\varphi(z) dz + v[x\varphi]_{z=0}^{z=l} - v \int_{z=0}^{z=l} x(z,t)\varphi'(z) dz$$
$$0 = \int_{z=0}^{z=l} \dot{x}(z,t)\varphi(z) dz + vx(l)\varphi(l) - v\varphi(0)u(t) - v \int_{z=0}^{z=l} x(z,t)\varphi'(z) dz$$

References

 $[1] \begin{tabular}{l} Stefan Ecklebe, Marcus Riesmeier: \\ https://pyinduct.readthedocs.io/en/master/examples/transport_system.html \\ \end{tabular}$