9) Median (m) =
$$\frac{1.5+2}{2} = 1.45$$

Sample median is Preferred measure of central tendency as it is statistically vobust; i.e., independent of outliers

b) The Parameter of interest is average Price (mean). It is denoted by M.

9) Given
$$n=6$$
 (n L 30)
 $1-2=0.95$

confidence interval is written as $y \pm b \neq (n-1) \left(\frac{s}{\sqrt{n}}\right)$

$$\overline{y} = 1 + 1.5 + 1.5 + 2 + 3 + 4 = 2.17$$

$$S = \sqrt{\frac{(y_1 - \bar{y})^2}{(n-1)}} = 1.13$$

$$CI = 2.17 \pm 60.025, 5 \left(\frac{1.13}{\sqrt{6}}\right)$$

- d) the margin of every would decrease, if the confidence coefficient was decreased and everything else remained the same.
- 2. (1) Y is a discrete random variable.
 - b) Probability distribution for no of females selected to delegation is

9	9(4)	
1	P(4=1) =	3/10 = 0.3
2	P(4=4) =	6/10 = 0.6
3	P(Y=3) =	

4. b) P(x0LXL13) = 0.6328 P(X0 L 42+5 L13) =0.6328 $P\left(\frac{X_{0}-5}{4} \angle Z \angle 2\right) = 0.6328$ $P(\frac{X_0-5}{4} \angle 2 \angle 0) + P(0 \angle 2 \angle 2) = 0.6328$ P(x0-5 4 CZCO) + 0.47+2 = 0.6328 $P\left(\frac{X_0-5}{4}\right) = 0.1556$ $\frac{\chi_{0-5}}{4} = 0.34$ Xo = 6.36

$$P(Z > \frac{\alpha - 100}{14}) = 0.1$$

$$\frac{a-100}{14}=1.28$$

$$\overline{dy} = dt$$
; $6y^2 = 6^2$

$$= (14)^2 = 4$$

$$\frac{98-100}{14156} = -0.84$$

$$\frac{98-100}{0.84} = \frac{-14}{\sqrt{n}}$$

$$\frac{14}{\sqrt{n}} = 2.38$$

b)
$$\frac{7}{8}$$
 = $\frac{7}{9}$ - $\frac{10}{5}$ = $\frac{92-90}{5}$ = $\frac{3.2}{5}$

As Zobs > Zd, we reject null Hypotheses (Ho).

We have sofficient evidence to conclude Ha.

e)
$$B = P(ZZZ_{2} - 140-401)$$

 $= P(ZZZ_{2} - 140-401)$
 $= P(ZZZ_{2} - 140-401)$
 $= P(ZZ_{2} - 140-401)$
 $= P(ZZ_{2} - 164 - 3.2)$
 $= P(ZZ_{2} - 1.56)$
 $= 0.05938$

f)
$$n=25 (n \times 30)$$
, $d=0.05$, $s=y$, $y=yy$
tho: $M=y5$
tha: $M \neq y5$

Test static tobs =
$$\frac{7}{9}$$
 - $\frac{10}{5}$ = $\frac{9}{9}$ = $\frac{-5}{9}$ = -1.25

P-value =
$$2 \times P(t_{n-1} > |tobs|)$$

= $2 \times P(t_{24} > |t_{25})$

From t-table, we know P-values lies between 2×0.25 and 2×0.1 (i.e., 0.5 and 0.2)

P-value ranges from 0.2 and 0.5, which is >x.

We fail to reject Null Hypotheses (46) as Pralue >x.

We do not have sufficient evidence to conclude Har