Problem zapożyczania kanałów z wykorzystaniem narzędzi optymalizacji

Wprowadzenie

- Rozwiązanie problemu przydziału częstotliwości prowadzi do stanu, w którym każdej stacji bazowej przydzielono żądaną liczbę częstotliwości oraz zminimalizowane zostało prawdopodobieństwo wystąpienia interferencji
- Mobilny charakter abonentów problem predykcji położenia abonenta w przyszłości
- Potencjalny brak dostępu do usług zbyt wąskie przydzielone pasmo

Strefa pokrycia radiowego wokół stacji bazowych

- Zasięg stacji bazowych
- Zazębianie się komórek

Obszar dobrej słyszalności

- Problem implementacji w praktyce
- Komórki o tych samych numerach wykorzystują te same częstotliwości
- Klaster zbiór 7 komórek, centralnej i 6 sąsiednich

Różna liczba sąsiedztwa dla komórek

Charakterystyka problemu

- Kanał wspólny ta sama częstotliwość używana przez minimum 2 komórki
- "gorąca" komórka komórka, która ze względu na dużą liczbę aktywnych abonentów nie posiada wolnych częstotliwości
- Rozwiązanie problemu braku wolnych częstotliwości polega m.in. na pożyczaniu wolnych kanałów od innych komórek

- Kanał jest wypożyczany od sąsiedniej komórki
- Blokowanie kanału uniemożliwia wykorzystanie go przez komórkę wypożyczającą
- Zablokowane kanały nie mogą być pożyczane przez inne komórki

Wypożyczenie kanału z blokowaniem

- Po wypożyczeniu kanał nie jest blokowany – możliwość dalszego wypożyczania przez inne komórki
- Komórka wypożyczająca używa kanał z mniejszą mocą – zapobiega występowaniu problemu interferencji

Identyfikacja komórki pożyczającej

- Problem inteligentnego wyboru sąsiada
- Dwie metody wyboru:
 - Behawioralne: wybór sąsiada, który ma najwięcej wolnych kanałów lub takiego, który ma najmniejszą liczbę abonentów
 - Algorytmy ewolucyjne: sąsiad zostanie wytypowany przez algorytm genetyczny

Efektywność sieci komórkowej

 Zapożyczanie powinno prowadzić do zwiększenia efektywności sieci komórkowej tzn. aby ilość zablokowanych abonentów była minimalna

$$F_c = \sum_{i \in R} Q(i)$$

F_c – liczba zablokowanych abonentów w obrębie całej sieci

R – liczba komórek sieci

Q(i) – liczba zablokowanych abonentów w komórce i

- Ograniczona pojemność sieci
- Możliwość zwiększenia pojemności sieci:
 - Przydział dodatkowych częstotliwości
 - Budowa nowych, mniejszych komórek

Efektywność sieci komórkowej c.d

Zmniejszenie wielkości komórek

Wady

Więcej komórek

- droższa infrastruktura
- większe obciążenie w sieci

Zalety

Mniejsza moc nadajnika

- Mniejsze akumulatory
- Lżejsze aparaty
- Mniejsze prawdopodobieństwo blokad

- Bez zapożyczania kanałów
- Proste zapożyczenia
- Algorytm genetyczny:
 - tradycyjny (cała sieć)
 - rozproszony (osobny AG dla każdej komórki)

1

Kodowanie rozwiązania

Ilość genów chromosomu:

- N ilość komórek, D ilość sąsiadów
- Dla 100 komórek L=600

komórka 1		komórka 2		komórka 3			komórka N
L.	liczba zapożyczonych kanałów od komórki (1)		liczba zapożyczonych kanałów od komórki (2)			:	liczba pożyczonych kanałów od comórki (D)

Kodowanie rozwiązania (AG tradycyjny)

Przykład rzeczywistego chromosomu

Kodowanie rozwiązania (AG rozproszony)

 Przykład rzeczywistego chromosomu dla komórki o numerze 1

Populacja startowa

- Dwa sposoby generowania osobników populacji:
 - Wyzerowanie całego chromosomu (brak zapożyczeń)
 - Losowo

Przestrzeń rozwiązań

Wielkość przestrzeni rozwiązań:

$$S = C^{6N}$$

- C liczba kanałów każdej komórki
- N liczba komórek
- Dla 100 komórek i 10 kanałów dla każdej z nich, S = 10⁶⁰⁰

Funkcja dopasowania

Zastosowane funkcje:

$$U = \sum_{i \in S} (\alpha * Z(i) + B(i)) \qquad U = \sum_{i \in S} B(i)$$

U – wartość przystosowania osobnika

S – liczba komórek sieci

B(i) – liczba zablokowanych abonentów dla komórki i $\alpha_0*Z(i)$ – współczynnik i ilość zapożyczonych kanałów

Mutacja

- Jeśli gen jest mutowany to:
 - Jeśli gen ma wartość max to zmniejsz ją o 1
 - Jeśli gen ma wartość min to zwiększ ją o 1
 - W pozostałych przypadkach losowo zmień wartość o 1 w dół lub w górę

Pozostałe parametry

- Selekcja proporcjonalna z elitą (do populacji tymczasowej przechodzi pewna liczba najlepszych osobników)
- Krzyżowanie jednopunktowe

Schemat działania obu algorytmówtradycyjnego i rozproszonego

- 1 utwórz populację osobników
- 2 oblicz wartość funkcji dopasowania dla każdego osobnika
- 3 dokonaj selekcji
- 4 wykonaj krzyżowanie i mutację
- 5 jeśli nie wykonano ustalonej liczby iteracji to powrót do 2
- 6 wypisz najlepszego osobnika

- 1 dla każdej komórki utwórz populację
- 2 losuj chromosom dla każdej komórki
 - a. Oceń lokalny schemat zapożyczania
- 3 dopóki nie zbadano wszystkich chromosomów komórki powrót do 2
- 4 dla każdej komórki utwórz nową populację
 - a. Dokonaj procesu selekcji
 - b. Wykonaj krzyżowanie i mutację
- 5 na podstawie najlepszych osobników każdej populacji oblicz globalną wartość funkcji celu
- 6 Jeśli nie wykonano ustalonej liczby generacji to powrót do 2
- 7 wypisz najlepszy schemat zapożyczania dla każdej komórki

Badania eksperymentalne – dane wejściowe

- Utworzone przez autorski generator
- Model heksagonalny sieci

Parametr	Wartość		
Rozmiar sieci	10x10		
Liczba kanałów w każdej komórce	10		

Obciążenie sieci

Model przemieszczania się abonentów	Liczba abonentów
Model wybuchu	128
	256
Model autostrady	128
	256

Badania eksperymentalne – parametry symulacji

- Współczynnik zapożyczania kanałów 85%
- Czas symulacji 150 i 200 model wybuchu,
 370 model autostrady

Parametr	Wartość
Liczność populacji	50
	100
Liczba generacji	50
	100
Prawdopodobieństwo krzyżowania	0,8

Mykres symulacji 1B - rozproszony rozszerzony AG

Badania eksperymentalne – model wybuchu (256 abonentów)

Badania eksperymentalne – model wybuchu (256 abonentów) - podsumowanie

Ilość abonentów	SYMULACJE							
	a	b	С	d	е	f		
128	29, 87	26,6 5	27,2 2	32,3 9	33,3	2 2		
256	70, 55	67,2 8	83,4 6	71,6	77,7 1	5 1, 6 8		

a – model bez zapożyczeń

c – model z tradycyjnym AG

e – model z rozproszonym AG

b – model z prostymi zapożyczeniami

d – model z tradycyjnym rozszerz. AG

f – model z rozproszonym rozszerz. AG

Badania eksperymentalne – model autostrady (256 abonentów) - podsumowanie

Ilość abonentów	SYMULACJE							
	a	b	С	d	е	f		
128	43,8	37,3 6	44, 19	38,6 9	44, 71	33, 51		
256	142, 26	130, 42	140 ,25	144, 92	143 ,14	127 ,74		

a – model bez zapożyczeń

c – model z tradycyjnym AG

e – model z rozproszonym AG

b – model z prostymi zapożyczeniami

d – model z tradycyjnym rozszerz. AG

f – model z rozproszonym rozszerz. AG