

PROFESIONALES CLÍNICOS

TERAPIA NUTRICIONAL TOTAL™

Requerimientos Nutricionales en el Adulto

Objetivos

- Definir los componentes del gasto energético de un individuo.
- Establecer los cambios metabólicos que determinan los requerimientos nutricionales en el individuo enfermo.
- Aplicar las diferentes fórmulas de estimación de requerimientos energéticos.
- Establecer los requerimientos de micro nutrientes y nutrientes condicionalmente esenciales según condición clínica o patologías.

Requerimientos nutricionales

- Un inadecuado consumo de energía y proteína puede llevar a efectos deletéreos.
- Se hace necesario establecer los requerimientos nutricionales de las personas

Necesidades energéticas

Condiciones clínicas

- Edad
- Género
- Peso
- Estatura
- Actividad Física
- Composición Corporal

- Salud
- Enfermedad
- Situaciones Especiales

Gasto metabólico

Gasto Metabólico Basal (GMB)

- Mínimo requerimiento para mantener la vida
- Tomado sin levantarse

Gasto Metabólico en Reposo (GMR)

 Gasto metabólico con algo de actividad fisica

Gasto Metabólico Total (GMT)

 Gasto metabólico en reposo + estrés de la enfermedad (grado de respuesta inflamatoria)

METABOLISMO BASAL = TAMAÑO DE LA MASA CELULAR CORPORAL

¿Cómo determinar requerimientos?

Peso a Utilizar

- Peso actual
- Peso ideal
- Peso ajustado

Mujeres

Sumar 45,5 kg por los primeros 150 cm de altura y 2,2 kg por cada 2,5 cm por encima de los 150 cm.

Hombres

Sumar 48 kg por los primeros 150 cm de altura y 2,7 kg por cada 2,5 cm por encima de los 150 cm.

Qué dice la literatura (Peso (kg) / Talla(m²)

- IMC < 18 Peso actual

- IMC 18-25 Peso actual

- IMC 25.1 - 29.9 Peso Saludable

- IMC ≥ 30 Peso ajustado

El peso actual es el peso real que se mide en el paciente.

Peso ajustado por obesidad = Peso ideal + ((Peso actual – Peso ideal) *0,25)

Se emplea para calcular el requerimiento calórico diario en pacientes con índice de masa muscular (IMC) ≥30 IMC = Peso (kg)/Talla (m)²

Calorimetría indirecta

Prueba de Oro para establecer requerimientos

Calorimetría indirecta

Determinación de Tasa Metabólica Basal (TMB) en adultos ambulatorios

Ecuación FAO/OMS con peso ideal		FAO/OMS con peso ideal y talla		
Grupo Edad	Hombre	Mujer	Hombre	Mujer
18-30 años	15.3(P) + 679	14.7 (P) + 496	15.4 (P) + 271 (T) + 717	13.3 (P) + 334 (T) +35
30-60 años	11.6 (P)+ 829	8.7 (P) + 829	11.3 (P) + 16 (T) + 901	8.7 (P) + 25 (T) + 865
> 60 años	13.5 (P) + 487	10.5(P) + 596	8.8 (P) + 1128 (T) - 1071	9.2 (P) + 637 (T) -302

Actividad sedentaria: 1.53 Actividad Moderada: 1.76 Actividad Fuerte: 2.25

FAO/WHO/UNU.Human energy requeriments. Roma 2004 http://www.fao.org/3/y5686e/y5686e00.htm

¿Cómo determinar los requerimientos calóricos pacientes adultos ambulatorios?

< 25 kcal/kg</p>
> 30 kcal/kg
Hipocalórica
Normocalórico
Hipercalórico

Necesidades energéticas en adultos hospitalizados

Ecuaciones predictivas

Mifflin ST Jeor

Hombre 10 x P + 6,25 A - 5 E + 5

Mujer 10 x P + 6,25 A - 5 E - 161

Harris-Benedict

TMB Mujer = 655 + (9,6 * P) + (1,8 * A) - (4,7 * E)

TMB Hombre = 66 + (13,7 * P) + (5 * A) - (6,8 * E)

TMB: Tasa metabólica basal P: Peso en Kg A: Altura E: edad en años

Fórmula simplificada

Adulto	Desnutrición	30 kcal/kg	
> 51 años	Mantenimiento	24-28kcal/kg	

Maham L.K. et al. Krause Dietoterapia.13 ed. España:Elsevier Inc; 2013. FrankenfieldD. Et al. JPEN. 2011; VIn 35 Na5: 563-570

Necesidades calóricas adulto hospitalizado según condición clínica

Paciente sin estrés o estrés leve		25- 30 Kcal /kg
Ganancia de peso		30 – 35 Kcal / kg
Cirugía Electiva		32 Kcal / kg
Politraumatizado		35 – 40 Kcal / kg
Enfermedad Renal Aguda		20-30 kcal /kg* aumentar hasta 35 con TRR
Cicatrización de heridas		30-40 Kcal /kg según el estadio
Fístulas		30 – 35 Kcal / kg
	LesiónTisular profunda	30 kcal/kg
Lesiones de Presión (LLP)	LLP EI y II	30 – 35 Kcal /kg
LLP EIII y IV		35 – 40 Kcal /kg

TRR: Terapia de reemplazo renal

Maham L.K. et al. Krause Dietoterapia.13 ed. España: Elsevier Inc; 2013.

Ecuaciones predictivas

	Ecuación	Aplicación
Mifflin St.Jeor x 1,3	Hombre: 10 x P + 6,25 A - 5 E + 5 x 1,3 Mujer: 10 x P + 6,25 A - 5 E- 161 x 1,3	Cuidado crítico sin ventilación mecánica
Penn State	0,96 x Mifflin + 167 x-T + 31 x Ve - 6212	Cuidado crítico con ventilación mecánica
Penn State modificada	0,71 x Mifflin+ 85 x-T + 64 x Ve - 3085	Cuidado crítico con ventilación mecánica y: edad > 60 años e IMC ≥ 30 kg/m²

P = peso (kg), A = altura (cm), E = Edad (años), Ve = Ventilación minuto (L/min), T = Temperatura (°C)

Mc Clave. S. Et al. JPEN . feb 2016: 40 (2); 159–211 Ndhiman D. et al. Clin Nut Res . 2018; 7 (2): 81-90 FrankenfieldD. Et al. JPEN. 2011; Vln 35 N²5: 563-570

Paciente obeso crítico:

11-14 kcal /kg Peso actual IMC 30-50 Kg/m²

22-25 kcal/kg Peso ideal IMC > 50 Kg/m²

Mc Clave. S. Et al. JPEN . feb 2016: 40 (2); 159–211 Singer P. Reimtan B, A. et al. Clin nut. 2019; 38: 48-79 Ndahiman D. et al . Clin. Nut. Res. April . 2018;7(2):81-90

Requerimientos de proteínas en adulto

Adulto Sano

 $0.8 - 1 \,\mathrm{gr/kg}$

Adulto Mayor Sano

1.0 - 1.2 gr/kg

NIH recomienda 25 -30 gr de proteina de alto valor biológico en cada comida principal

Adulto Mayor Hospitalizado

 $1.0 - 1.2 \, \text{gr/kg}$

Polimorbido 1.2 - 1.5 gr/kg

* Según expertos

FAO Expert consult 2011

Padon J. y Rasmussen B. Curr Opin Clin Nutr Metab Care. 2009 January; 12(1): 86-90

Gomez F, Clin Nut. 2018 Feb.;37(1):336-353;

https://health.gov/dietaryguidelines/2015/guidelines/appendix-7/

Volkert D. et al. Clin Nutrition . 2019 feb;38(1): 10-49

Requerimientos de proteínas en paciente crítico

Paciente critico desnutrido	2. 0 gr/kg	
Estado crítico IMC < 30		1.2- 2.0 gr/kg
Politrauma, Quemaduras mayores, sepsis, fistulas, heridas		1,5 – 2,5 gr/kg
Obesidad I y II (IMC 30-40) critico		2 – 2,5 gr/kg (peso ideal)
Obesidad mórbida >40 critico		> 2,5 gr/kg (peso ideal)
Enfermedad renal aguda	sin TRR	1.2 – 1.5 gr/kg de peso
	Con TRR	1.7 - 2.5 gr/kg

TRR: Terapia de reemplazo renal

Mc Clave. S. Et al. JPEN . feb 2016: 40 (2); 159–211 Volkert D. et al. Clin Nutrition . 2019 Feb; 38(1): 10-47

Requerimiento de carbohidratos y ácidos grasos

Fibra

Produce ácidos grasos de cadena corta Efecto Prebiótico Soluble e insoluble

Garcia PP. Et al. En Nutrientes especificos hacia una nutrición clinica. España. Aula Médica . 2013

> 25 gramos /día

Requerimiento de líquidos

Adulto: 30 ml/ kg de peso corporal real ó 1 ml/kcal ingerida

1500 x m² de superficie corporal(SC)

Ancianos: 2. 0 L en mujeres - 2.5 L en hombres

Factores que incrementan las necesidades

- Transpiración aumentada
- Frecuencia respiratoria
- Aumento T° corporal
- Diarrea
- Vómito
- Drenaje gastrointestinal
- Deshidratación

	Potasio	Sodio	Tiamina	Riboflavina	Equivalentes Niacina
IR/día	4700 mg	2300mg	1,2 mg (H) 1,1 mg (M)	1,3 mg (H) 1,2 mg (M)	16 mg (H) 14 mg (M)

M: Mujer H: Hombre

Vitaminas hidrosolubles y minerales importantes en el adulto mayor

Causas

 Alteraciones en la biodisponibilidad de micronutrientes

Consecuencias

- Anemia
- Alto riesgo de fracturas
- Susceptibilidad infecciones
- Dificultad en cicatrización de heridas
- Baja calidad de vida

Arbones G. et al. Nut Hosp. 2003; 18; 109-137 Https://health.gov/dietarygidelines/2015/guideline/appendix-7

Vitaminas liposolubles en el adulto mayor

M: Mujer H: Hombre E.R: Equivalentes de retinol

Arbones G. et al. Nut Hosp. 2003; 18; 109-137 Https://health.gov/dietarygidelines/2015/guideline/appendix-7/

Recomendaciones basales de nutrientes en la UCI

S)
<
Z
\leq
7
\vdash
$\overline{}$

Vit A	1000UI	
Vit D	200UI	
Vitamina B1	3-10 mg	
Vitamina B2	4 mg	
Niacina	200 mg	
Ac Pantoténico	100 mg	
Biotina	5 μg	
Piridoxina	20 mg	
Acido Fòlico	2mg	
Vitamina B12	5 μg	
Vitamina K	1 mg	

ELEMENTOS TRAZA

Hierro	18mg	
Zinc	50 mg	
Cobre	1.3 - 3 mg	
Yodo	60 mcg	
Manganeso	3.5 - 5 mcg	
Calcio	1000/1200 mg	
Cromo	30 mcg	
Potasio	1 – 2 meq/kg	
Sodio	2 – 4 meq/kg	
Magnesio	0.15 – 0.3 meq/kg	

TERAPIA NUTRICIONAL TOTAL

Necesidades de vitaminas en condiciones especiales

Vitaminas	Condiciones especiales
Vitamina A (mg ER)	Cicatrización 2000ug ER
Vitamina E (mgα tocoferol)	Quemados, TEC, Trasplante, SDRA: 100-200 mg de α tocoferol
Vitamina C (mg)	Quemados, trasplante 1000-2000 mg
Tiamina (mg)	Alcoholismo y desnutrición: 300 mg

Ugarte U S. y col. Fundamentos de terapia nutricional en cuidados intensivos. 2017

Minerales y oligoelementos en condiciones especiales

Nutriente	Condiciones especiales
Hierro	Gastrectomia, Bypass gástrico
Zinc	Quemado: 40 mg Fistula , diarrea:15-30 mg Insuficiencia Hepática, trasplante, Trauma de craneo, Terapia de reemplazo renal: 15 mg
Cobre	Fistula biliar:2.0 mg, Quemados3.75 mg
Selenio	Quemados,cicatrización: 375 mcg Trauma de craneo, pancreatitis: 500 mcg Hemodialisis, Quilotorax

ASPEN Board , JPEN 2002 : 26 (suppl1), 1SA-138SA,

Ugarte U S. y col. Fundamentos de terapia nutricional en cuidados intensivos. 2017

Inmunomoduladores: ¿Cómo se definen?

"Es la utilización de nutrientes específicos para incrementar la respuesta inmune y modificar la respuesta inflamatoria en períodos de enfermedad, incrementando el balance nitrogenado y síntesis de proteína en pacientes de alto estrés"

Glutamina Arginina Acidos Grasos Omega 3

Glutamina

- Es el aminoácido condicionalmente esencial, más abundante en el líquido intracelular y el plasmático, principal transportador de nitrógeno entre órganos.
- Importante en la síntesis de músculo esquelético, aminogénesis en el rinón, gluconeogénesis y biosíntesis de nucleótidos.
- Es la mayor fuente energética para los enterocitos de la mucosa intestinal y de los linfocitos.

La dosis recomendada es 0.3 a 0.5 gr/Kg/día

Arginina

- Se consume rápidamente después de la injuria, más del 50%
- ➤ El déficit causa daño a la respuesta inmune y aumenta el riesgo de infecciones nosocomiales

Arginina

Las dosis estudiadas en trauma, cirugías y cáncer va desde 17- 24.8 gr/día.

En Gottschlich M .The ASPEN. Nutrition support core corriculum..2007 Garcia P et al. Nutrientes específicos hacia una nutrición clinica. España. Aula Médica . 2013

Ácidos grasos omega 3

- La actividad de las células T
- La producción de citoquinas inflamatorias
- La producción de eicosanoides provenientes del ácido araquidónico

Las dosis recomendadas en personas sanas: 500 mg/d Dosis estudiadas con resultados positivos antiinflamatorios: 2 gr/día Relación $\omega 6:\omega 3 = 2:1$ a 4:1

Singer P. Reimtan B, A. et al. Clin nut. 2019; 38: 48-39 Calder P. B.J. Clin Pharmacology . 2013. Marzo; 75 (3): 645-662 Ugarte U S. y col. Fundamentos de terapia nutricional en cuidados intensivos. 2017

Hidroximetil butirato (HMB)

Precursor de la Leucina

Efectos anabólicos

Previene la aparición de la sarcopenia

Reduce la fatiga muscular inducida por el ejercicio

Dosis estudiadas con resultados positivos : 3 gr/día

Conclusiones

- 1. Cada paciente tiene un requerimiento de nutrientes dependiendo de sus condiciones (edad, género y estado de salud).
- 2. Los cambios metabólicos durante los procesos de enfermedad condicionan los requerimientos, lo que implica reevaluarlos periódicamente.
- 3. La calorimetría indirecta es el Gold Estándar para determinar requerimientos calóricos, en su ausencia la ecuación predictiva o la fórmula simplificada se convierten en una manera de determinar éstos requerimientos.
- 4. Existen condiciones clínicas especiales donde se hace necesario la utilización de micronutrientes o de nutrientes condicionalmente esenciales que permitan resultados clínicos positivos.