TRANSFORMADA DE LAPLACE

ESQUE MATICAMENTE:

$$\int_{0}^{+\infty} e^{-S.X} \left[e^{x} \right] dx = \frac{1}{S-1}$$

$$\int_{0}^{+\infty} \int_{0}^{+\infty} |f(s)| dx$$

$$VARIAUEL® X$$

$$f(x) = c^{x}$$
 $\rightarrow b \rightarrow f(s) = \frac{1}{s-1}$

ESSA TRANSFORMAÇÃO DE VARIAVEIS E CHAMADA: TRANSFORMADA DE LAPLACE.

Notagão :

$$\mathcal{B}\left\{f(x)\right\} = \int_{0}^{+\infty} e^{-s \cdot x} \left[f(x)\right] dx = F(s)$$

$$2\left\{\frac{x}{e^{x}}\right\} = \int_{0}^{+\infty} e^{-5.x} \left[\frac{x}{e^{x}}\right] dx = \frac{1}{5-1}$$

$$\Rightarrow \exists x. \ ACIMA$$

 $\int_{0}^{+\infty} e^{-s.x} \left[f(x) \right] dx = F(s)$

FUNÇÕES POLINOMIAIS,

11 TRIGONOMÉTRICAS;

11 EXPONENCIAIS,

GERA: COLEGÃO DE

INTEGRAS >

FORMA UMA TABELA.

=> TABELAS

QUANHO MAIS FUNGOES P(X) FOREM MULTIPLICADAS POR ES X ENTEGRADAS, MAIORES AS CHANCES DE ENCONTRAR UMA SOLUÇÃO PARA A EQ. DIFERENCIAL.

Quadro 6.1 Transformadas de Laplace elementares

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathscr{L}\{f(t)\}\$	Notas
$f(t) = \mathcal{L}^{-1}{F(s)}$	$F(s) = \mathcal{L}\{f(t)\}\$ $\frac{1}{s}, s > 0$	Seção 6.1; Ex. 4
e^{at}	$\frac{1}{s-a}$, $s>a$	Seção 6.1; Ex. 5
sen at	$\frac{a}{s^2+a^2}, \qquad s>0$	Seção 6.1; Ex. 6
t^n , $n = inteiro positivo$	$\frac{n!}{s^{n+1}}, \qquad s > 0$ $\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s > 0$	Seção 6.1; Prob. 10
$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}, \qquad s>0$	
cos at	$\frac{s}{s^2+a^2}, \qquad s>0$	Seção 6.1; Prob. 3
senh at	$\begin{cases} \frac{a}{s^2 - a^2}, & s > a \\ \frac{s}{s^2 - a^2}, & s > a \end{cases}$	Seção 6.1; Prob. 4
cosh at		
e ^{at} sen bt	$\frac{b}{(s-a)^2 + b^2}, \qquad s > a$ $\frac{s-a}{(s-a)^2 + b^2}, \qquad s > a$	Seção 6.1; Prob. 5
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, \qquad s>a$	
$e^{n}e^{at}$, $n = inteiro positivo$	$\frac{n!}{(s-a)^{n+1}}, \qquad s > a$	Seção 6.1; Prob. 6
$u_c(t)$	$\frac{e^{-cs}}{s}$, $s>0$	Seção 6.3
$u_c(t)f(t-c)$	$e^{-cs}F(s)$	Seção 6.3
$e^{ct}f(t)$	F(s-c)	Seção 6.3
f(ct)	$\frac{1}{c} F\left(\frac{s}{c}\right) , \qquad c > 0$	Seção 6.3; Prob. 4
$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	Seção 6.5
$\delta(t-c)$	e^{-cs}	Seção 6.4
$\Gamma^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \cdots - f^{(n-1)}(0)$	Seção 6.2
$(-t)^n f(t)$	$F^{(n)}(s)$	Seção 6.2; Prob. 14

ANALISAR A CONVERGENCIA DA INTEGRAL: I fet). dt, onde fet) = c.t. CONSIDERAR: a) C>O; b) < <0; c) c=0. $\int_{0}^{+\infty} f(t) dt = \int_{0}^{+\infty} e^{c.t} dt = \lim_{A \to +\infty} \int_{0}^{A} e^{c.t} dt ; ASSIM:$ $\int_{0}^{\infty} c.t dt = \lim_{A \to \infty} \int_{0}^{\infty} \frac{du}{c};$ du = c Catalian La Cita du = dt t=0 M = 0Set dt = 1 lim e - lim e ; t = AM=C.A $\int_{C}^{\infty} e^{-t} dt = \frac{1}{c} \left\{ \lim_{A \to \infty} \frac{c \cdot A}{A \to \infty} - 1 \right\}$

a)
$$c>0$$

$$\int_{c}^{\infty} ct dt = \frac{1}{c} \left(\frac{c(\infty)}{c}\right) - \frac{1}{c} \rightarrow +\infty \Rightarrow \text{DIVERGE}$$

$$\int_{0}^{\infty} e^{-t} dt = \frac{1}{c} \left\{ e^{-(00)} - 1 \right\} = \frac{1}{c} \left\{ e^{-(00)} - 1 \right\} = -\frac{1}{c}$$

CONVERGE

$$\int_{0}^{\infty} e^{-t} dt = \frac{1}{C} \left(\lim_{A \to \infty} e^{-1} \right) = \frac{1-1}{C} = 0$$

FORMA FNDETERMINADA DEFINICAO - TRANS RORMADAS INTEGRALS

UMA TRANSFORMADA INTEGRAL E

$$F(s) = \int_{-\infty}^{\beta} k(s,t) \cdot f(t) \cdot dt$$
 6

K(S, t) => E UMA FUNGÃO DADA; CHAMADA DE: NÚCLEO PA TRANSFORMADA

TRANSFORMADA DE LAPLACE

$$\left|\mathcal{E}\left\{f(t)\right\}\right|=\int_{0}^{+\infty}e^{-s\cdot t}\left[f(t)\cdot dt\right]=F(s)\left(\mathfrak{D}\right)$$

6

NOTE QUE DE UMA INTEGRAL IMPROPIA. ENTÃO:

$$\int_{a}^{+\infty} f(t) dt = \lim_{A \to +\infty} \int_{a}^{A} f(t) dt$$

TRANSFORMADA DE LAPLACE [T.L.]
PARA ALGUMAS FUNGÕES ELEMENTARES:

a)
$$f(t)=1$$
; $t > 0$

$$(4) = (2)$$

d)
$$f(t) = sen(a.t)$$
; $t > 0$.