Sériový prenos údajov

1. Sériový prenos údajov

Signál – je stanovený význam určitej (elektrickej) veličiny na príslušnom prenosovom médiu (el. vodiči)

- Delenie signálu:
 - Analógové alebo Digitálne (číslicové)
 - Vstupné alebo Výstupné
 - Dátové alebo Riadiace
- Jednotka dátovej informácie = 1 bit
- Dátová informácia = 1 bajt, 1 znak
- Kódovanie dátovej informácie je väčšinou v ASCII znakoch
- Počet jednotiek dátovej informácie: **5 8 bitov**
- Rýchlosť sériového prenosu dát (počet bitov za sekundu)
 - Počet prenesených jednotiek dátovej informácie za jednotku času
 - Je medzinárodne stanovená stupnica doporučených rýchlostí
 - Rýchlosti majú veľmi prísne tolerancie
 - Kvôli kompatibilite komunikujúcich zariadení
 - Rýchlosti: 50, 75, 100, 300, 600, 1200, 2400, 4800, 9600, 19200 bit/s

Asynchrónny prenos údajov

- Prenos údajov
 - Š štart bit
 - Úvodný bit, za ktorým nasledujú dátové bity
 - 1 až 8 bitov
 - Dátové bity
 - P paritný bit
 - Bit plnený 0 alebo 1
 - Nie je povinný
 - Párna parita celkový počet jednotiek dátových bitov a paritného bitu je vždy párny
 - Nepárna parita celkový počet jednotiek dátových bitov a paritného bitu je vždy nepárny
 - T stop bit
 - 1 alebo 2 bity, ktoré ukončujú prenos dátovej informácie (bajtu, znaku)
- Medzi jednotlivými dátovými blokmi sú medzery

Synchrónny prenos údajov

- Prenos údajov je spojený s hodinovým signálom
- Nemá štart bit ani stop bit
- Medzi jednotlivými dátovými blokmi nie sú medzery

1.1 Štandardizované napäťové rozhranie RS-232C

- Navrhnuté pre pripájanie modemov ku komunikujúcim zariadeniam
- Pre prenos dát pre každý smer prenosu je určený 1 vodič
 - Ostatné vodiče sú použité ako riadiace signály pre riadenie modemov
 - Riadiace signály sa používajú na prenos doplnkových riadiacich a stavových informácií
- Používa sa na prepojenie rôznych zariadení alebo zariadenia s modemom do vzdialenosti 10 – 15 m
 - V priemyselných systémoch
 - Prístrojoch na vedeckú analýzu
 - Pokladničné systémy
 - Konfigurácia routerov a switchov

- Norma definuje 2 typy rozhraní, ktoré sú voči sebe inverzné (signály majú opačný smer toku informácie):
 - **DTE** Data Terminal Equipment (koncové zariadenie prenosu dát počítač)
 - DCE Data Control Equipment (zariadenie pre riadenie prenosu dát modem)
- Definovanie stavov na dátových a riadiacich vodičoch

Log. Informácia	Stav	Norma RS-232C	Norma RS-232B
Log. "0"	ON	+3 až +15V	+5 až +25 V
Log. "1"	OFF	-3 až -15V	-5 až -25V

- Používajú sa 2 typy konektorov
 - 25-vývodov Štandardný konektor pre pripojenie modemov, poskytuje všetky potrebné signály
 - DTE má piny (samec) DCE má dierky (samica)
 - **9 vývodov -** Konektor s obmedzeným počtom riadiacich signálov, používaný v novších zariadeniach
- Signály:
 - TxD Transmit Data
 - Dáta smerujúce z DTE do DCE
 - RxD Recieve Data
 - Dáta smerujúce z DCE do DTE
 - RTS Request to Send
 - Požiadavka vysielať
 - Logická 1 signalizuje, že DTE chce vysielať dáta
 - CTS Clear to Send
 - Povolenie vysielať dáta z DTE do DCE
 - Logická 1 signalizuje, že DTE môže vysielať
 - GND Signálová zem
 - **DSR** Data Set Ready
 - Pripravenosť DCE vysielať dáta
 - **DCD** Data Carrier Detect
 - DCE signalizuje, že má nosný signál na telefónnej linke a môže vysielať dáta
 - **DTR** Data Terminal Ready
 - Logická 1 na DTE signalizuje druhej strane, že je pripravené vysielať dáta
 - Druhá strana sa aktivuje alebo deaktivuje
 - Modem odpovedá nastavením DSR na logickú jednotku
 - **RI** Ring Indicator
 - Logická 1 signalizuje prichádzajúci hovor do DTE
 - Niekto požaduje dátové spojenie
- Čo musí byť vopred dohodnuté
 - Rýchlosť v BAUDoch P: 19200 Bd, 9600 Bd, 4800 Bd, 2400 Bd, 1200 Bd, 600 Bd, 300 Bd, ... // 1 Bd = 1/T bitu
 - Počet prenášaných bitov P: 5, 6, 7, 8
 - Či sa prenáša pomocný bit:
 - Ak áno či je to kontrolný bit (či párna parita, či nepárna parita)
 - Ak áno o aké údaje ide (či je údaj dáta, či riadiaci signál)
 - Počet STOP bitov
 - Či je jeden STOP bit, či sú dva STOP bity
 - Či je kontrola riadená

1.2 Riadenie sériového prenosu RS-232C

 riadenie prichádza do úvahy vtedy, keď treba odmedziť rýchlosť prenosu dát z dôvodu, že prijímajúce zariadenie nie je schopné prijímať dáta z vysielajúceho zariadenia takou rýchlosťou akou je vysielač schopný dáta vysielať

- technické spôsoby riadenia prenosu
 - neriadený prenos
 - prenos s ošetrením riadiacich signálov
 - riadený prenos handshaking

a) neriadený prenos

- na prenos stačia 3 vodiče: TXD, RXD a SG
- používa sa vtedy, keď:
 - 1. prijímač je schopný vždy prijímať dáta aj v tom najnepriaznivejšom prípade
 - inak môže prísť ku strate údajov
 - 2. riadenie prenosu sa vykonáva programovými prostriedkami
 - SG
 - signálová zem
 - TxD Transmit Data
 - dáta smerujúce z DTE počítača do DCE modemu
 - RxD Receive Data
 - dáta smerujúce z DCE modemu do DTE počítača

b) prenos s ošetrením riadiacich signálov

- používa sa vtedy, keď komunikácia bude prebiehať priamo medzi dvomi koncovými zariadeniami prenosu (medzi 2 počítačmi) (napr. pri požití COPY pod MS-DOS cez sériový port COM1,COM2,...)
- RTS Request to Send
 - Logická 1 signalizuje, že DTE počítač chce vysielať dáta
- CTS Clear to Send
 - Logická 1 signlaizuje, že DTE počítač môže vysielať dáta
- DTR Data Terminal Ready
 - Logická 1 signalizuje, že DTE je pripravený vysielať dáta
 - Modem odpovedá nastavením DSR na logickú jednotku
- DSR Data Set Ready
 - Pripravenosť DCE modemu vysielať dáta
- DCD Data Cerrier Detect
 - DCE modem signalizuje, že má nosný signál na telefónnej linke a môže vysielať dáta

c) Riadený prenos – handshaking

- Na riadenie prenosu dát používa jedno alebo viac prepojení medzi riadiacimi signálmi
 - Napr. pri pripojení tlačiarne alebo plottera so sériovým rozhraním
- Protokoly riadenia sériového prenosu dát

a) Sériový protokol s indikáciou obsadenia – bajtový režim

- Princíp:
 - Po každom prijatom znaku (bajtu) prijímač vyšle krátky impulz signálu STR do stavu OFF čím potvrdzuje príjem znaku
 - Ak prijímač nie je schopný prijímať znaky (bajty), počas zaneprázdnosti prijímač necháva DTR v stave OFF. V tomto stave vysielač nemá posielať dáta.
- Signály prijímača:
 - RxD prijaté dáta
 - DTR pripravený vysielať dáta

b) Sériový protokol s indikáciou obsadenia – blokový režim

- Princíp:
 - Prijímač vysiela signál DTR
 - V stave ON, keď môže prijímať dáta
 - V stave OFF, keď je zaneprázdnený
- Signály prijímača
 - RxD prijate dáta

DTR – pripravený vysielať dáta

c) XON/XOFF protokol

- XOFF = 13h (DC3 v ASCII)
- XON = 11h (DC1 v ASCII)
- Princíp:
 - prijímač vysiela po dátovom vodiči TxD znak XOFF vtedy, keď sa približuje vstupná vyrovnávacia pamäť znakov k úplnému zaplneniu
 - vysielač na základe prijatia tohoto znaku prestane vysielať ďalšie znaky, pokračuje vo vysielaní až potom ako príjme znak XON, ktorý prijímač vyšle po skončení príčiny zaneprázdnenia
 - (napr. vytlačenie znakov pri tlačiarni)
 - prijímač musí mať ešte miesto pre vstup niekoľkých znakov po vyslaní prvého znaku XOFF, ktoré sa môžu objaviť na vstupe prijímača kvôli oneskoreniu rozpoznania signálu XOFF na strane vysielača
- Signály prijímača:
 - RxD prijaté dáta
 - TxD vysielané dáta

d) ACK protokol

- ACK = 06h (v ASCII), ENQ = 05h
- Princíp:
 - prijímač si každý znak (bajt) požiada vyslaním riadiaceho znaku ACK
 - v prípade zaneprázdnenia tento riadiaci znak vyšle až po skončení príčiny zaneprázdnenia
 - niekedy namiesto znaku ACK (06h v ASCII) prijímač vysiela znak ENQ (05h v ASCII)
- Signály prijímača:
 - RxD prijaté dáta
 - TxD vysielané dáta