		1
		Practical - 06
	*	
-	_	<u>Aim</u> : Implement K means clustering / heirarchical
		clustering on sales data csv. dataset
		determine the number of clusters using
		elbow method
	*	Thoras
		Theory.
	IJ	K-means clustering Overview -
	J	
	0	K means is an unsupervised dearning algorithm used
	\dashv	to group data into k clusters based on feature
	$-\parallel$	similarity.
	\parallel	
`	+	It minimizes the within cluster variance (sum of
	+	squared distances between points and their
	+	cluster centroid)
0	\parallel	Steps -
	#	
	\parallel	o Select number of clusters k.
	\parallel	o Initialize k clubter centroids randomly. o Assign each data point to the nearest
		Centroid.
		o Recalculate centroids as the mean of all points in each cluster.
		o Repeat until centroids no longer change
		lia 11: 11

2]	Heirarchical Clustering overview
0	Builds a heirarchy of clusters without pre-specifying
. 0	Two main types - • Agglomerative - Start with each point as its own cluster and merge clusters iteratively. • Divisive - Start with one cluster and split iteratively.
0	Results are visualized using a dendrogram, the cut point on the dendrogram determines the number of clusters.
3)	Algorithm Steps - for K means with elbow method. Step 1: Load the dataset using pandas.
	step 2: Select the numerical features you want to duster (eg. sales amount, quantity, ordered, MSRP).
	Step 3: Handle missing values if any.

		Step 4: Normalize/ standardize the features to
		ensure equal importance
		Step 5: Use the elbow method.
		Run k means for a gange of k values (eg 1 to 10)
		Run k means for a range of k values (eg 1 to 10) Compute the within cluster sum of squares
		(WCSS) for each k.
		· Plot k vs wcss
		· The "elbow point" on the plot indicates
		the artised to
		the optimal k.
		Start: Pun Komana with the observe to the obtain
		Step 6: Run K means with the chosen k to obtain
		Clasti rapes.
		Step 7. For beiggsphing clustering commute a lipleage
		Step 7: For heirarchical clustering, compute a linkage matrix (eg. Wards method), plot a dendrogram
		and cut it at a certain height to define
		clusters.
<u></u>		Clasters.
	*	CONCLUSION:
		By applying K-means or Heirarchical clustering to the sales dataset.
		to the sales dataset.
200		" We can group sales data points into distinct
		O We can group sales data points into distinct clusters based on sales - related features