Lab work 1

PP1

week 1

A+B

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

You are given two integers a and b. Print a + b.

Input

The only line of the input contains integers a and b ($-100 \le a, b \le 100$).

Output

Print a + b.

Examples

standard input	standard output
7 8	15
-100 100	0
-7 -99	-106

Note

In the first example, a = 7 and b = 8. Thus, the answer is a + b = 7 + 8 = 15.

Code

Input file: standard input
Output file: standard output

Time limit: 1 second Memory limit: 256 megabytes

Almat is the KBTU student. Recently he managed to get to the ACM finals, but in order to be registered at the finals he needs a secret code which consists of only digits. Code is constructed from two numbers n and m. The first number - age of the contestant. The second number - sum of the first and the last digits of the 3-digit random number k given by administration of the finals. Help Almat to construct the code.

Input

The first line contains non-negative number n ($1 \le n \le 1000$) - age of the contestant. The second line contains non-negative number k ($100 \le k \le 1000$) — random number.

Output

Calculate the sum of the numbers n and m.

Examples

standard input	standard output
18	22
123	
17	21
391	
0	1
100	
505	506
100	
1000	1018
999	

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 64 megabytes

You are given integer number N, guaranteed that the number has exactly 4 bits in binary representation. reverse the number in binary representation and print out it.

Input

One integer number N

Output

Reversed number

Examples

standard input	standard output
12	3
11	13
13	11
9	9
10	5

Note

reverse example: 12 in binary representation is 1100, 0011 is reversed number, it means you should output 3.

Value of bit

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 64 megabytes

Input

Given integer number n and i.

Output

Output value of i-th bit of the number n, that is 0 or 1.

Examples

standard input	standard output
179 0	1
4242 13	0
3086 28	0
9226 19	0
8071 2	1
2910 11	1

Input file: standard input
Output file: standard output

Time limit: 2 seconds Memory limit: 64 megabytes

You are given integer number. Print out its square root value.

Input

One integer number.

Output

One double number.

Examples

standard input	standard output
10	3.1622776602
20	4.4721359550
9	3.000000000
82499	287.2263915451
9752	98.7522151650
78985	281.0427013818