

What is claimed is:

1. A compound having the structure:

5

10

15

20

25

30

wherein A is

5

10

15

20

or

25

wherein each of Y₁, Y₂, Y₃, Y₄ and Y₅ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y₁, Y₂, Y₃, Y₄ and Y₅ present on adjacent carbon atoms can constitute a methylenedioxy group;

30

wherein each X is independently S; O; or NR₃;

35

wherein R₁ is -H; -NO₂; -CN; straight chained or

branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₁-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₂; -(CH₂)_pOR₃; -COR₃; -CO₂R₂; -CON(R₃)₂ or -CO₂(CH₂)_nV;

wherein R₂ is -H; straight chained or branched C₁-C₇ alkyl, hydroxyalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C₃-C₁₀ cycloalkyl-C₁-C₁₀-alkyl, C₃-C₁₀ cycloalkyl-C₁-C₁₀-monofluoroalkyl or C₃-C₁₀ cycloalkyl-C₁-C₁₀-polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₇; -OR₃; or wherein R₁ and R₂ together form a lactone ring;

wherein each R₃ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₁-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R₄ is

(i)

(i i)

5

10

(i i i)

(i v)

15

20

(v)

25

30

(v i)

35

(vii)

5

(viii)

10

(ix)

15

(x)

20

25

wherein the dashed line represents a single bond or a double bond;

30

wherein each R is independently -H; -F; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃; or -CON(R₃)₂;

35

wherein each V is independently aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I;

COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein each R₅ is -H; -NO₂; -N₃; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₁-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R₃)₂; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R₆ is -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R₃)₂; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;

straight chained or branched C₂-C₇ alkenyl, C₁-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

5 wherein R₇ is H; F; Cl; Br; I; -NO₂; -N₃; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₁-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂;

15 16 wherein R₈ is independently straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

20 21 wherein Z is naphthyl, quinolinyl, isoquinolinyl, quinazolinyl, phthalazinyl, quinoxalinyl, indolyl, benzo[b]furanyl, or benzo[b]thiophenyl; wherein the naphthyl, quinolinyl, isoquinolinyl, quinazolinyl, phthalazinyl, quinoxalinyl, indolyl, benzo[b]furanyl, or benzo[b]thiophenyl may be substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched
25 C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

30 31 wherein each m is independently an integer from 0 to

3 inclusive;

wherein each n is independently an integer from 0 to 5 inclusive;

5

wherein each p is independently an integer from 1 to 7 inclusive;

wherein q is an integer from 1 to 3 inclusive;

10

wherein r is an integer from 0 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

15

or a pharmaceutically acceptable salt thereof.

2. A (+) enantiomer of the compound of claim 1.

3. A (-) enantiomer of the compound of claim 1.

20

4. The compound of claim 1 having the structure:

25

30

35

5. The compound of claim 4 having the structure:

10

15

6. The compound of claim 5, having the structure:

7. The compound of claim 6, wherein A is

8. The compound of claim 7, wherein the compound is

15

25

30

5

10

15

9. The compound of claim 1, wherein the compound has the structure:

20

25

10. The compound of claim 9, wherein the compound has the structure:

30

35

11. The compound of claim 10, wherein the compound has the structure:

5

10

15

12. The compound of claim 11, wherein A is

20

25

13. The compound of claim 12 having the structure:

30

35

14. The compound of claim 1, having the structure:

10

15. The compound of claim 14, having the structure:

15

20

16. The compound of claim 15 having the structure:

25

30

17. The compound of claim 16 wherein A is

5

10

18. The compound of claim 17 having the structure:

15

20

25

19. The compound of claim 1 having the structure:

30

35

20. The compound of claim 19 having the structure:

5

10

21. The compound of claim 20 having the structure:

15

20

25

22. The compound of claim 21 wherein A is

30

or

23. The compound of claim 22 having the structure

15 24. The compound of claim 1 having the structure:

25. The compound of claim 24 having the structure:

25

26. The compound of claim 25 having the structure:

10

27. The compound of claim 26 wherein A is

15

20

28. The compound of claim 27 having the structure:

25

30

35

29. The compound of claim 1, wherein the compound is (+)-1,2,3,6-tetrahydro-1-{n-[4-(3,-acetamido)-phenyl-piperidin-1-yl]propyl}carboxamido-4-methoxymethyl-6-(3,4-difluoro-phenyl)-2-oxopyrimidine-5-carboxylic acid methyl ester.

30. The compound of claim 4 having the structure:

10

31. The compound of claim 30 having the structure:

20

32. The compound of claim 31 having the structure:

33. A compound having the structure:

5

10

34. A compound having the structure:

15

20

25

wherein each R is independently -H; -F; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7 alkenyl or alkynyl; $-N(R_3)_2$; $-NO_2$; $-CN$; $-SR_3$; $-CO_2R_3$; or $-OR_3$;

30

wherein each R_1 is independently -H; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7 alkenyl or alkynyl; C_3-C_7 cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$; or $-CON(R_3)_2$;

35

wherein each R_2 is -H; $-NO_2$; $-N_3$; $-CN$; straight chained or branched C_1-C_7 alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C_2-C_7

alkenyl or alkynyl; C_3 - C_7 cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl; $-N(R_3)_2$; $-OR_3$; $-(CH_2)_pOR_3$; $-COR_3$; $-CO_2R_3$;
or $-CON(R_3)_2$; or aryl or heteroaryl, optionally
5 substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ;
 $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$;
 $(CH_2)_qSR_3$; straight chained or branched
 C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl,
aminoalkyl, or carboxamidoalkyl; straight chained or
10 branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl;

wherein each R_3 is independently -H; straight chained
15 or branched C_1 - C_7 alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C_2 - C_7
alkenyl or alkynyl; C_3 - C_7 cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl;

20 wherein M is aryl or heteroaryl, optionally
substituted with one or more F; Cl; Br; I; COR_3 ; CO_2R_3 ;
 $-CON(R_3)_2$; CN; $-NO_2$; $-N(R_3)_2$; $-OR_3$; $-SR_3$; $(CH_2)_qOR_3$;
 $(CH_2)_qSR_3$; straight chained or branched
 C_1 - C_7 alkyl, monofluoroalkyl, polyfluoroalkyl,
aminoalkyl, or carboxamidoalkyl; straight chained or
25 branched C_2 - C_7 alkenyl, C_2 - C_7 alkynyl; C_3 - C_7 cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl;

30 wherein X is $(CH_2)_n$, O, S or NR_3 ;

wherein W is

35 (a) C_3 - C_7 cycloalkyl, monofluorocycloalkyl,

polyfluorocycloalkyl or cycloalkenyl
optionally substituted with one or more
COR₃; CO₂R₃;
5 -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
(CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or
carboxamidoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
10 cycloalkyl; or

(b) aryl or heteroaryl optionally substituted
with one or more F; Cl; Br; I; COR₃; CO₂R₃;
-CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
15 (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or
carboxamidoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
20 cycloalkyl;

wherein m is an integer from 0 to 4 inclusive;

wherein n is an integer from 0 to 6 inclusive;

25 wherein p is an integer from 1 to 4 inclusive;

wherein q is an integer from 1 to 3 inclusive;

30 or a pharmaceutically acceptable salt thereof.

35. A (+) enantiomer of the compound of claim 34.

36. A (-) enantiomer of the compound of claim 34.

37. The compound of claim 34 having the structure:

5

; or

10

15

38. The compound of claim 37, wherein W is phenyl optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; or (CH₂)_qSR₃.

20

39. The compound of claim 38 having the structure

25

30

35

40. A compound having the structure:

5

10

wherein each R is independently -H; -F; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃; or -CON(R₃)₂;

15

wherein each R₁ is independently -H; F; Cl; Br; I; -NO₂; -N₃; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R₃)₂; aryl or heteroaryl, wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl,

20

polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

25

wherein the aryl or heteroaryl is optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl,

30

polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

35

wherein each R₃ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ al-

alkenyl or alkynyl; C₃-C₇ cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl;

wherein R₅ is -H; -NO₂; -N₃; -CN; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C-
alkenyl or alkynyl; C₃-C₇ cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₂;
-CON(R₃)₂; aryl or heteroaryl, wherein the aryl or
heteroaryl is optionally substituted with one or
more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂;
-N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C-
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

wherein V is H; aryl or heteroaryl, optionally
substituted with one or more F; Cl; Br; I; COR₃;
CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
(CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or branched C₁-
C₇ alkyl, monofluoroalkyl, polyfluoroalkyl,
aminoalkyl, or carboxamidoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

wherein W is

(a) C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl
optionally substituted with one or more

COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂;
-OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight
chained or branched C₁-C₇ alkyl,
monofluoroalkyl, polyfluoroalkyl,
5 aminoalkyl, or carboxamidoalkyl; straight
chained or branched C₂-C₇ alkenyl, C₂-C₇
alkynyl; C₃-C₇ cycloalkyl; or

10 (b) aryl or heteroaryl optionally substituted
with one or more F; Cl; Br; I; COR₃; CO₂R₃;
-CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
(CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
15 branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or
carboxamidoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
cycloalkyl;

20 wherein each m is independently an integer from 0 to
3 inclusive;

wherein n is an integer from 0 to 2 inclusive;

25 wherein p is an integer from 1 to 7 inclusive;

wherein q is an integer from 1 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

30 or a pharmaceutically acceptable salt thereof.

41. A (+) enantiomer of the compound of claim 40.

42. A (-) enantiomer of the compound of claim 40.

43. The compound of claim 40 having the structure:

5

10

44. The compound of claim 43 having the structure

15

45. A compound of claim 43 wherein W is phenyl
optionally substituted with one or more F; Cl; Br;
I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃;
-SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; or straight chained or
5 branched C₁-C₇ alkyl groups.

46. A compound of claim 45 having the structure

10

15

47. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound effective to decrease the consumption of food by the subject wherein the compound has the structure: having the structure:

5

10

15

20

25

30

wherein A is

5

10

15

20

or

30

wherein each of Y₁, Y₂, Y₃, Y₄ and Y₅ is independently
-H; straight chained or branched C₁-C₇ alkyl,
monofluoroalkyl or polyfluoroalkyl; straight chained
or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇
cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br,
or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂,
or -COOR₃; or any two of Y₁, Y₂, Y₃, Y₄ and Y₅ present
on adjacent carbon atoms can constitute a
methylenedioxy group;

wherein each X is independently S; O; or NR₃;

35

wherein R₁ is -H; -NO₂; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₂; -CON(R₃)₂; or -CO₂(CH₂)_nV;

5
10
wherein R₂ is -H; straight chained or branched C₁-C₇ alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C₃-C₁₀ cycloalkyl-C₁-C₁₀-alkyl, C₃-C₁₀ cycloalkyl-C₁-C₁₀-monofluoroalkyl or C₃-C₁₀ cycloalkyl-C₁-C₁₀-polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR.; or wherein R₁ and R₂ together form a lactone ring;

15
20

wherein each R₃ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

25
30
wherein R₄ is

(i)

(ii)

5

10

(iii)

15

(iv)

20

(v)

25

30

(vi)

35

(vii)

5

10

20

(viii)

25

(ix)

30

(x)

35

wherein each R is independently -H; -F; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C-
alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃;
5 or -CN(R₃)₂;

wherein B is N or CY₄;

10 wherein each D is independently C(R₃)₂; O; S; NR₃;
CO; or CS;

15 wherein each U is independently aryl or heteroaryl,
optionally substituted with one or more F; Cl; Br;
I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃;
-SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
20 branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C₇
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

wherein V is C(R₅)₂; CR₅R₆; NR₅ or NR₆;

25 wherein W is CR₅; CR₆ or N;

wherein Z is S; O; C(R₇)₂; or NR₃;

30 wherein each R₅ is -H; -NO₂; -N₃; -CN; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C₇
alkenyl or alkynyl; C₃-C₇ cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃;
or -CON(R₃)₂; -XCOR₈; or aryl or heteroaryl, wherein
35 the aryl or heteroaryl is optionally substituted

with one or more F; Cl; Br; I; COR₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; -XCOR₈; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

5

wherein each R₆ is independently -H; straight chained or branched C₁-C₇ alkyl, hydroxyalkyl, aminoalkyl, alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂;

10

wherein R₇ is -H; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; -XCOR₈; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl, polyfluoroalkyl, or aminoalkyl; straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

20

25

wherein R₈ is -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂; aryl or heteroaryl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight

30

35

chained or branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C₇
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
5 polyfluorocycloalkyl or cycloalkenyl;

wherein b is 1 or 2;

wherein d is an integer from 0 to 2 inclusive;

10 wherein each m is independently an integer from 0 to
3 inclusive;

15 wherein each n is independently an integer from 0 to
5 inclusive;

wherein each p is independently an integer from 1 to
7 inclusive;

20 wherein q is an integer from 1 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

or a pharmaceutically acceptable salt thereof.

25 48. The method of claim 47, wherein the compound has the
structure

49. The method of claim 48, wherein the compound has the structure

5

10

15

20

50. The method of claim 49, wherein the compound has the structure

5

10

15

25

51. The method of claim 50, wherein at least one R₅ group is an aryl or heteroaryl group optionally substituted with one or more F; Cl; Br; I; -NO₂; -N(R₃)₂; -OR₃; -XCOR₈; or straight chained or branched C₁-C₇ alkyl.

30

52. The method of claim 51, wherein A is:

53. The method of claim 52, wherein the compound is selected from the group consisting of:

5

(a)

10

(b)

15

(c)

20

25

(d)

30

35

(e)

(f)

54. The method of claim 47, wherein the compound has the structure

25

55. The method of claim 54, wherein the compound has the structure

5

10

56. The method of claim 55, wherein A is

15

20

and R₇ is phenyl, optionally substituted with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; -XCOR₃; or straight chained or branched C₁-C₇ alkyl.

25

57. The method of claim 56, wherein the compound has the structure

30

58. The method of claim 47, wherein the compound has the structure

5

10

59. The method of claim 58, wherein the compound has the structure

15

20

60. The method of claim 59, wherein A is

25

, or

30

and Z is O or CH₂.

61. The method of claim 60, wherein the compound is selected from the group consisting of

10

20

62. The method of claim 47, wherein the compound has the structure

5
10

15

63. The method of claim 62, wherein the compound has the structure

20
25

64. The method of claim 63, wherein A is

30

65. The method of claim 64, wherein the compound is

5

10

15

66. The method of claim 47, wherein the compound has the structure

20

25

67. The method of claim 66, wherein the compound has the structure

30

35

68. The method of claim 67, wherein the compound has the structure

5

10

69. The method of claim 47, wherein the compound has the structure

15

20

70. The method of claim 69, wherein the compound has the structure

25

30

71. The method of claim 70, wherein the compound has the structure

5

10

72. A method of reducing the body mass of a subject which comprises administering to the subject an amount of a compound effective to reduce the body mass of the subject wherein the compound has the structure:

20

25

wherein A is

5

10

15

20

or

30

wherein each of Y₁, Y₂, Y₃, Y₄ and Y₅ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y₁, Y₂, Y₃, Y₄ and Y₅ present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR₃;

35

wherein R₁ is -H; -NO₂; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C-5 alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₂; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R₃)₂; or -CO₂(CH₂)_nV;

wherein R₂ is -H; straight chained or branched C₁-C-10 alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C₃-C₁₀ cycloalkyl-C₁-C₁₀-alkyl, C₃-C₁₀ cycloalkyl-C₁-C₁₀-monofluoroalkyl or C₃-C₁₀ cycloalkyl-C₁-C₁₀-polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, - (CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR.; or wherein R₁ and R₂ together 15 form a lactone ring;

wherein each R₃ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C-25 alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

wherein R₄ is

30

(i)

35

(ii)

5

(iii)

10

15

(iv)

20

25

(v)

35

30

(vi)

(vii)

5

10

15

(viii)

20

25

(ix)

; or

30

(x)

35

wherein each R is independently -H; -F; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C-
alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃;
5 or -CN(R₃)₂;

wherein B is N or CY₄;

10 wherein each D is independently C(R₃)₂; O; S; NR₃;
CO; or CS;

wherein each U is independently aryl or heteroaryl,
optionally substituted with one or more F; Cl; Br;
I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃;
15 -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C₇
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
20 polyfluorocycloalkyl or cycloalkenyl;

wherein V is C(R₅)₂; CR₅R₆; NR₅ or NR₆;

25 wherein W is CR₅; CR₆ or N;

wherein Z is S; O; C(R₃)₂; or NR₃;

30 wherein each R₅ is -H; -NO₂; -N₃; -CN; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C₇
alkenyl or alkynyl; C₃-C₇ cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃;
or -CON(R₃)₂; -XCOR₈; or aryl or heteroaryl, wherein
35 the aryl or heteroaryl is optionally substituted

with one or more F; Cl; Br; I; COR₃; -CON(R₃)₂;
CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃;
-XCOR₈; straight chained or branched C₁-C₇ alkyl,
monofluoroalkyl, polyfluoroalkyl, or aminoalkyl;
5 straight chained or branched C₂-C₇ alkenyl, C₂-C-
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

10 wherein each R₆ is independently -H; straight chained
or branched C₁-C₇ alkyl, hydroxyalkyl, aminoalkyl,
alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl;
straight chained or branched C₂-C₇ alkenyl or
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃;
15 -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂;

20 wherein R₇ is -H; aryl or heteroaryl, optionally
substituted with one or more F; Cl; Br; I; COR₃;
CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
(CH₂)_qOR₃; (CH₂)_qSR₃; -XCOR₈; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, or aminoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
cycloalkyl, monofluorocycloalkyl,
25 polyfluorocycloalkyl or cycloalkenyl;

30 wherein R₈ is -H; straight chained or branched C₁-C₇
alkyl, monofluoroalkyl or polyfluoroalkyl; straight
chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇
cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃;
-(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂; aryl or
heteroaryl, optionally substituted with one or more
F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂;
-N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight
35

chained or branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C-
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
5 polyfluorocycloalkyl or cycloalkenyl;

wherein b is 1 or 2;

wherein d is an integer from 0 to 2 inclusive;

10 wherein each m is independently an integer from 0 to
3 inclusive;

15 wherein each n is independently an integer from 0 to
5 inclusive;

wherein each p is independently an integer from 1 to
7 inclusive;

20 wherein q is an integer from 1 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

or a pharmaceutically acceptable salt thereof.

25

73. A method of treating a subject suffering from depression and/or anxiety which comprises administering to the subject an amount of a compound effective to treat the subject's depression and/or anxiety wherein the compound has the structure:

5

10

15

20

25

30

wherein A is

10

15

20

or

30

wherein each of Y₁, Y₂, Y₃, Y₄ and Y₅ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -F, -Cl, -Br, or -I; -NO₂; -N₃; -CN; -OR₃, -OCOR₃, -COR₃, -CON(R₃)₂, or -COOR₃; or any two of Y₁, Y₂, Y₃, Y₄ and Y₅ present on adjacent carbon atoms can constitute a methylenedioxy group;

wherein each X is independently S; O; or NR₃;

35

wherein R₁ is -H; -NO₂; -CN; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C-alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃; -CON(R₃)₂; or -CO₂(CH₂)_nV;

5
10
wherein R₂ is -H; straight chained or branched C₁-C-alkyl, hydroxyalkyl, alkoxyalkyl, aminoalkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl; C₃-C₁₀ cycloalkyl-C₁-C₁₀-alkyl, C₃-C₁₀ cycloalkyl-C₁-C₁₀-monofluoroalkyl or C₃-C₁₀ cycloalkyl-C₁-C₁₀-polyfluoroalkyl; -CN; -CH₂XR₃, -CH₂X(CH₂)_pNHR₃, -(CH₂)_nNHR₃, -CH₂X(CH₂)_pN(R₃)₂, -CH₂X(CH₂)_pN₃, or -CH₂X(CH₂)_pNHCXR₅; -OR₄; or wherein R₁ and R₂ together form a lactone ring;

15
20

25
wherein each R₃ is independently -H; straight chained or branched C₁-C₇ alkyl, monofluoroalkyl or polyfluoroalkyl; straight chained or branched C₂-C-alkenyl or alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl, polyfluorocycloalkyl or cycloalkenyl;

30
wherein R₄ is

(i)

(i i)

5

10

(i iii)

15

(i iv)

20

25

(v)

30

(vi)

35

(vii)

5

10

20

(viii)

15

20

(ix)

25

30

(x)

35

wherein each R is independently -H; -F; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C-
alkenyl or alkynyl; -N(R₃)₂; -NO₂; -CN; -CO₂R₃; -OR₃;
or -CN(R₃)₂;

5

wherein B is N or CY₄;

10

wherein each D is independently C(R₃)₂; O; S; NR₃;
CO; or CS;

15

wherein each U is independently aryl or heteroaryl,
optionally substituted with one or more F; Cl; Br;
I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃;
-SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C₇ alkenyl, C₂-C₇
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

20

wherein V is C(R₅)₂; CR₅R₆; NR₅ or NR₆;

25

wherein W is CR₅; CR₆ or N;

wherein Z is S; O; C(R₃)₂; or NR₃;

30

wherein each R₅ is -H; -NO₂; -N₃; -CN; straight
chained or branched C₁-C₇ alkyl, monofluoroalkyl or
polyfluoroalkyl; straight chained or branched C₂-C₇
alkenyl or alkynyl; C₃-C₇ cycloalkyl,
monofluorocycloalkyl, polyfluorocycloalkyl or
cycloalkenyl; -N(R₃)₂; -OR₃; -(CH₂)_pOR₃; -COR₃; -CO₂R₃;
or -CON(R₃)₂; -XCOR₈; or aryl or heteroaryl, wherein
the aryl or heteroaryl is optionally substituted

35

with one or more F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂;
CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃;
-XCOR₈; straight chained or branched C₁-C₇ alkyl,
monofluoroalkyl, polyfluoroalkyl, or aminoalkyl;
5 straight chained or branched C₂-C₇ alkenyl, C₂-C₇ alkynyl;
C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl;

wherein each R₆ is independently -H; straight chained
10 or branched C₁-C₇ alkyl, hydroxyalkyl, aminoalkyl,
alkoxyalkyl, monofluoroalkyl or polyfluoroalkyl;
straight chained or branched C₂-C₇ alkenyl or
alkynyl; C₃-C₇ cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₇;
15 -(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂;

wherein R₇ is -H; aryl or heteroaryl, optionally
20 substituted with one or more F; Cl; Br; I; COR₃;
CO₂R₃; -CON(R₃)₂; CN; -NO₂; -N(R₃)₂; -OR₃; -SR₃;
(CH₂)_qOR₃; (CH₂)_qSR₃; -XCOR₈; straight chained or
branched C₁-C₇ alkyl, monofluoroalkyl,
polyfluoroalkyl, or aminoalkyl; straight chained or
branched C₂-C₇ alkenyl, C₂-C₇ alkynyl; C₃-C₇
cycloalkyl, monofluorocycloalkyl,
25 polyfluorocycloalkyl or cycloalkenyl;

wherein R₈ is -H; straight chained or branched C₁-C₇
alkyl, monofluoroalkyl or polyfluoroalkyl; straight
chained or branched C₂-C₇ alkenyl or alkynyl; C₃-C₇
30 cycloalkyl, monofluorocycloalkyl,
polyfluorocycloalkyl or cycloalkenyl; -N(R₃)₂; -OR₃;
-(CH₂)_pOR₃; -COR₃; -CO₂R₃; or -CON(R₃)₂; aryl or
heteroaryl, optionally substituted with one or more
F; Cl; Br; I; COR₃; CO₂R₃; -CON(R₃)₂; CN; -NO₂;
35 -N(R₃)₂; -OR₃; -SR₃; (CH₂)_qOR₃; (CH₂)_qSR₃; straight

chained or branched C₁-C_n alkyl, monofluoroalkyl,
polyfluoroalkyl, aminoalkyl, or carboxamidoalkyl;
straight chained or branched C₂-C_n alkenyl, C₂-C_n
alkynyl; C₃-C_n cycloalkyl, monofluorocycloalkyl,
5 polyfluorocycloalkyl or cycloalkenyl;

wherein b is 1 or 2;

wherein d is an integer from 0 to 2 inclusive;

10 wherein each m is independently an integer from 0 to
3 inclusive;

15 wherein each n is independently an integer from 0 to
5 inclusive;

wherein each p is independently an integer from 1 to
7 inclusive;

20 wherein q is an integer from 1 to 3 inclusive;

wherein t is an integer from 2 to 6 inclusive;

or a pharmaceutically acceptable salt thereof.

25

74. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound effective to decrease the consumption of food by the subject wherein the compound is selected from the group consisting of:

5

10

a)

(b)

c)

5

10

15

20

25

30

35

- 10 75. A method of modifying feeding behavior of a subject which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to decrease the consumption of food by the subject.
- 15 76. A method of treating a feeding disorder in a subject which comprises administering to the subject an amount of a compound of claim 1, 34 or 38 effective to decrease the consumption of food by the subject.
- 20 77. The method of claim 76, wherein the feeding disorder is bulimia, obesity or bulimia nervosa.
- 25 78. A method of reducing the body mass of a subject which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to reduce the body mass of the subject.
- 30 79. A method of treating a subject suffering from depression and/or anxiety which comprises administering to the subject an amount of a compound of claim 34 or 38 effective to treat the subject's depression and/or anxiety.
- 35 80. The method of claim 47, 74, 75 or 76, wherein the subject is a vertebrate, a mammal, a human or a canine.

81. The method of claim 47, 74, 75 or 76, wherein the compound is administered in combination with food.
- 5 82. A pharmaceutical composition comprising a therapeutically effective amount of the compound of claim 1, 34 or 38 and a pharmaceutically acceptable carrier.
- 10 83. The pharmaceutical composition of claim 82 wherein the amount of the compound is from about 0.01 mg to about 500 mg.
- 15 84. The pharmaceutical composition of claim 83 wherein the amount of the compound is from about 0.1 mg to about 60 mg.
- 20 85. The pharmaceutical composition of claim 84 wherein the amount of the compound is from about 1 mg to about 20 mg.
86. The pharmaceutical composition of claim 82, wherein the carrier is a liquid and the composition is a solution.
- 25 87. The pharmaceutical composition of claim 82, wherein the carrier is a solid and the composition is a tablet.
- 30 88. The pharmaceutical composition of claim 82, wherein the carrier is a gel and the composition is a suppository.
- 35 89. A pharmaceutical composition made by combining a therapeutically effective amount of the compound of claim 1, 34 or 38 and a pharmaceutically acceptable carrier.

90. A process for making a pharmaceutical composition comprising combining a therapeutically effective amount of the compound of claim 1, 34 or 38 and a pharmaceutically acceptable carrier.