ESP8684 系列芯片

技术规格书

搭载 RISC-V 32 位单核处理器的极低功耗 SoC 支持 IEEE 802.11b/g/n (2.4 GHz Wi-Fi) 和 Bluetooth 5 (LE) 在 4×4 mm 的 QFN 封装中叠封 1 MB、2 MB 或 4 MB flash

包括:

ESP8684H1

ESP8684H2

ESP8684H4

产品概述

ESP8684 系列芯片是极低功耗、高集成度的 MCU 系统级芯片 (SoC),集成 2.4 GHz Wi-Fi 和低功耗蓝牙 (Bluetooth® LE) 无线通信。芯片的功能框图如下图所示。

图 1: ESP8684 功能框图

方案亮点

- 完整的 Wi-Fi 子系统,符合 IEEE 802.11b/g/n 协议,具有 Station模式、SoftAP 模式、SoftAP + Station模式和混杂模式(即 Promiscuous mode,是一种特殊模式)
- **低功耗蓝牙子系统**,支持 Bluetooth 5,支持中心设备角色 (Central) 和外围设备角色 (Peripheral)
- 行业领先的低功耗性能和射频性能
- **RISC-V 32 位单核处理器**,四级流水线架构,主 频高达 120 MHz

- **存储功能**,内置 272 KB SRAM (其中 16 KB 专用于 cache)、576 KB ROM 存储空间
- 安全机制
 - 硬件加密加速器支持 ECC、Hash 和安全启动
 - 集成随机数发生器
 - 支持片外存储器加解密功能
- **丰富的通信接口及 GPIO 管脚**,可支持多种场景 及复杂的应用

产品特性

Wi-Fi

- 支持 IEEE 802.11 b/g/n 协议
- 在 2.4 GHz 频带支持 20 MHz 频宽
- 支持 1T1R 模式,数据速率高达 72.2 Mbps
- 无线多媒体 (WMM)
- 帧聚合 (TX/RX A-MPDU, TX/RX A-MSDU)
- 立即块确认 (Immediate Block ACK)
- 分片和重组 (Fragmentation and defragmentation)
- 传输机会 (Transmit opportunity, TXOP)
- Beacon 自动监测 (硬件 TSF)
- 3 × 虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS)
 Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模式 请注意 ESP8684 系列在 Station 模式下扫描时, SoftAP 信道会同时改变
- 天线分集

蓝牙

- 低功耗蓝牙 (Bluetooth LE): Bluetooth 5
- 高功率模式 (20 dBm)
- 速率支持 125 kbps、500 kbps、1 Mbps、2 Mbps
- 广播扩展 (Advertising Extensions)
- 多广播 (Multiple Advertisement Sets)
- 信道选择 (Channel Selection Algorithm #2)
- Wi-Fi 与蓝牙共存,共用同一个天线

CPU 和存储

- 32 位 RISC-V 单核处理器, 主频高达 120 MHz
- CoreMark® 分数:
 - 单核 120 MHz: 305.42 CoreMark; 2.55 CoreMark/MHz
- 576 KB ROM

- 272 KB SRAM (其中 16 KB 专用于 cache)
- 封装内 flash (不同型号有差异,详见章节 1 产 品型号对比)
- 引入 cache 机制的 flash 控制器
- 支持 flash 在线编程 (ICP)

高级外设接口和传感器

- 14 × GPIO □
- 数字接口:
 - 3 × SPI
 - 2 × UART
 - 1 × I2C 主机
 - LED PWM 控制器, 多达 6 个通道
 - 通用 DMA 控制器 (简称 GDMA), 1 个接收 通道和 1 个发送通道
- 模拟接口:
 - 1 × 12 位 SAR 模/数转换器, 多达 5 个通道
 - 1×温度传感器
- 定时器:
 - 1 × 54 位通用定时器
 - 2×看门狗定时器
 - 1 × 52 位系统定时器

低功耗管理

• 电源管理单元,四种功耗模式

安全机制

- 安全启动
- Flash 加密
- 1024 位 OTP, 可用的为 256 位
- 加密硬件加速器:
 - ECC
 - SHA 加速器 (FIPS PUB 180-4)

应用场景(部分)

具有超低功耗的 ESP8684 系列专为物联网 (loT) 设备而设计,应用领域包括:

- 智能家居
 - 智能照明
 - 智能按钮
 - 智能插座
 - 室内定位
- 工业自动化
 - 工业机器人
 - 工业总线应用
- 消费电子产品
 - 智能手表、智能手环
 - OTT 电视盒、机顶盒设备
 - 具有数据上传功能的玩具和接近感应玩具

- 医疗保健
 - 健康监测
 - 婴儿监控器
- 智慧农业
 - 智能温室大棚
 - 智能灌溉
 - 农业机器人
- 零售餐饮
 - POS 系统
 - 服务机器人
- 通用低功耗 IoT 传感器集线器
- 通用低功耗 IoT 数据记录器

目录

方案产品应用	特性	述	1 1 2 3
1 1.1 1.2	ESP86	品型号对比 684 系列芯片命名 684 系列芯片对比	8 8 8
2.1 2.2 2.3 2.4	管脚有 管脚描 电源管	描述	9 9 9 10 12
3 3.1	射频和 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5	E 描述 I Wi-Fi 2.4 GHz 接收器 2.4 GHz 发射器 时钟生成器 Wi-Fi 射频和基带 Wi-Fi MAC	14 14 14 14 14 14
3.2	3.1.6 低功料 3.2.1 3.2.2	联网特性 毛蓝牙 低功耗蓝牙射频和物理层 低功耗蓝牙链路层控制器	15 15 15 16
3.3	CPU 和 3.3.1 3.3.2 3.3.3 3.3.4 系统时	和存储 CPU 片上存储 存储器映射 Cache	16 16 16 17 17
3.4	系统的 3.4.1 3.4.2	CPU 时钟 RTC 时钟	18 18
3.5	数字列 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6	通用输入/输出接口 (GPIO) 串行外设接口 (SPI) 通用异步收发器 (UART) I2C 接口 LED PWM 控制器 通用 DMA 控制器	18 18 20 20 20 20 20
3.6	模拟列	小设	21

修订	丁历史	36
6	相关文档和资源	35
5	封装信息	34
	4.8.1 低功耗蓝牙射频发射器 (TX) 规格 4.8.2 低功耗蓝牙射频接收器 (RX) 规格	30
4.8	低功耗蓝牙射频	30
	4.7.2 Wi-Fi 射频接收器 (RX) 规格	27
	4.7.1 Wi-Fi 射频发射器 (TX) 规格	27
4.7	Wi-Fi 射频	27
4.6	4.5.2 其他模式下的功耗 可靠性	26
	4.5.1 Active 模式下的 RF 功耗 4.5.2 其他模式下的功耗	25 26
4.5	功耗特性	25
4.4	ADC 特性	25
4.3	直流电气特性 (3.3 V, 25 °C)	24
4.2	建议工作条件	24
4.1	绝对最大额定值	24
4	电气特性	24
3.11	外设管脚分配	23
3.10	物理安全特性	22
3.9	加密硬件加速器	22
3.8	低功耗管理	22
	3.7.2 系统定时器 3.7.3 看门狗定时器	22
	3.7.1 通用定时器 3.7.2 系统定时器	21 21
3.7	定时器	21
	3.6.2 温度传感器	21
	3.6.1 模/数转换器 (ADC)	21

表格

1	ESP8684 系列芯片对比	8
2	管脚描述	S
3	ESP8684 系列芯片上电、复位时序图参数说明	12
4	Strapping 管脚	12
5	Strapping 管脚的建立时间和保持时间的参数说明	13
6	IO MUX 管脚功能	18
7	芯片上电过程中的管脚毛刺	19
8	外设和传感器管脚分配	23
9	绝对最大额定值	24
10	建议工作条件	24
11	直流电气特性 (3.3 V, 25 °C)	24
12	ADC 特性	25
13	ADC 校准结果	25
14	Active 模式下 Wi-Fi (2.4 GHz) 功耗特性	25
15	Active 模式下低功耗蓝牙功耗特性	26
16	低功耗模式下的功耗	26
17	Modem-sleep 模式下的功耗	26
18	可靠性认证	26
19	Wi-Fi 频率	27
20	频谱模板和 EVM 符合 802.11 标准时的发射功率	27
21	发射 EVM 测试	27
22	接收灵敏度	28
23	最大接收电平	28
24	接收邻道抑制	28
25	低功耗蓝牙频率	30
26	发射器特性	30
27	发射器特性 - 低功耗蓝牙 1 Mbps	30
28	发射器特性 - 低功耗蓝牙 2 Mbps	30
29	发射器特性 - 低功耗蓝牙 125 Kbps	31
30	发射器特性 - 低功耗蓝牙 500 Kbps	31
31	接收器特性 - 低功耗蓝牙 1 Mbps	31
32	接收器特性-低功耗蓝牙 2 Mbps	32
33	接收器特性 - 低功耗蓝牙 125 Kbps	32
34	接收器特性 - 低功耗蓝牙 500 Kbps	33

插图

1	ESP8684 功能框图	1
2	ESP8684 系列芯片命名	8
3	ESP8684 管脚布局(俯视图)	g
4	ESP8684 系列数字电源管理	11
5	ESP8684 系列芯片上电、复位时序图	11
6	Strapping 管脚的建立时间和保持时间	13
7	地址映射结构	17
8	OFN24 (4×4 mm) 封装	34

1 产品型号对比

1.1 ESP8684 系列芯片命名

图 2: ESP8684 系列芯片命名

1.2 ESP8684 系列芯片对比

表 1: ESP8684 系列芯片对比

订购型号	封装内 Flash	环境温度 (°C)	封装 (mm)
ESP8684H1	1 MB	−40 ~ 105	QFN24 (4*4)
ESP8684H2	2 MB	−40 ~ 105	QFN24 (4*4)
ESP8684H4	4 MB	−40 ~ 105	QFN24 (4*4)

¹目前 ESP8684H1 芯片仍处于**样品状态**。

2 管脚定义

2.1 管脚布局

图 3: ESP8684 管脚布局 (俯视图)

2.2 管脚描述

表 2: 管脚描述

名称	序号	类型	电源域	功能
ANT	1	I/O		射频输入和输出
VDDA3P3	2	P_A		模拟电源
VDDA3P3	3	P_A		模拟电源
GPIO0	4	I/O/T	VDD3P3_RTC	GPIOO, ADC1_CH0
GPIO1	5	I/O/T	VDD3P3_RTC	GPIO1, ADC1_CH1
GPIO2	6	I/O/T	VDD3P3_RTC	GPIO2, ADC1_CH2, FSPIQ
				高电平: 芯片使能;
CHIP_EN	7		VDD3P3_RTC	低电平: 芯片关闭;
				注意不能让 CHIP_EN 管脚浮空。

名称	序号	类型	电源域	功能
GPIO3	8	I/O/T	VDD3P3_RTC	GPIO3, ADC1_CH3
MTMS	9	I/O/T	VDD3P3_RTC	MTMS, GPIO4, ADC1_CH4, FSPIHD
MTDI	10	I/O/T	VDD3P3_RTC	MTDI, GPIO5, FSPIWP
VDD3P3_RTC	11	P_D		RTC 电源输入
MTCK	12	I/O/T	VDD3P3_CPU	MTCK, GPIO6, FSPICLK
MTDO	13	I/O/T	VDD3P3_CPU	MTDO, GPIO7, FSPID
GPIO8	14	I/O/T	VDD3P3_CPU	GPIO8
GPIO9	15	I/O/T	VDD3P3_CPU	GPIO9
GPIO10	16	I/O/T	VDD3P3_CPU	GPIO10, FSPICS0
VDD3P3_CPU	17	P_D	_	数字 IO 电源输入
GPIO18	18	I/O/T	VDD3P3_CPU	GPIO18
U0RXD	19	I/O/T	VDD3P3_CPU	UORXD, GPIO19
U0TXD	20	I/O/T	VDD3P3_CPU	U0TXD, GPIO20
VDDA	21	P_A	_	模拟电源
XTAL_N	22	_	_	外部主晶振输出
XTAL_P	23		_	外部主晶振输入
VDDA	24	P_A	_	模拟电源
GND	25	G	_	接地

 $^{^1}$ P_A : 模拟电源; P_D : 数字 IO 电源; I: 输入; IO: 输出; I: 可设置为高阻。

2.3 电源管理

ESP8684 系列的数字管脚可分为两种不同的电源域:

- VDD3P3_CPU
- VDD3P3_RTC

VDD3P3_CPU 是数字 IO 以及数字系统的输入电源。

VDD3P3_RTC 同时是 RTC、RTC IO 和数字系统的输入电源。

ESP8684 系列的数字电源管理如图 4 所示:

² 加粗字体为管脚的默认功能。

³本表中管脚功能仅指部分固定设置,可通过 GPIO 矩阵输入输出的信号不受本表的限制。请参考 __《ESP8684 技术参考手册》 的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。

图 4: ESP8684 系列数字电源管理

关于 CHIP_EN 的说明:

图 5 为 ESP8684 系列芯片上电、复位时序图。各参数说明如表 3 所示。

图 5: ESP8684 系列芯片上电、复位时序图

表 3: ESP8684 系列芯片上电、复位时序图参数说明

		最小值	
参数	说明	(μ s)	
+	CHIP_EN 管脚上电晚于 VDDA、VDDA3P3、VDD3P3_RTC 和	F0	
ι ₀	VDD3P3_CPU 上电的延时时间	50	
t_1	CHIP_EN 电平低于 V_{IL_nRST} (具体数值参考表 11) 的时间	50	

2.4 Strapping 管脚

ESP8684 系列芯片共有两个 Strapping 管脚。

- GPI08
- GPI09

软件可以读取 GPIO_STRAP_REG 寄存器的 GPIO_STRAPPING 字段,获取 GPIO8 和 GPIO9 的值。寄存器具体描述请见《ESP8684 技术参考手册》 /O 交换矩阵寄存器列表章节。

在芯片的上电复位、RTC 看门狗复位、以及欠压复位过程中,Strapping 管脚对自己管脚上的电平采样并存储到锁存器中,锁存值为"0"或"1",并一直保持到芯片掉电或关闭。

GPIO9 默认连接内部弱上拉。如果该管脚没有外部连接或者连接的外部线路处于高阻抗状态,则锁存值为"1"。

为改变 Strapping 的值,您可以应用外部下拉/上拉电阻,或者应用主机 MCU 的 GPIO 控制 ESP8684 系列芯片上电复位时的 Strapping 管脚电平。

复位放开后, Strapping 管脚和普通管脚功能相同。

配置 Strapping 管脚的详细启动模式请参阅表 4。

表 4: Strapping 管脚

	系统启动模式 1							
管脚	默认	SPI Boot	Joint Download Boot ²					
GPIO8	无	无关项	1					
GPIO9	内部弱上拉	1	0					
		系统启动过程中,控制 ROM Cod	de 打印					
管脚	默认	功能						
		eFuse 的 EFUSE_UART_PRINT_CC	NTROL 字段为					
	无	0 时(初始默认值),上电正常打印,不受 GPIO8 控制。						
GPIO8		1 时,若 GPIO8 为 0,上电正常打印;若 GPIO8 为 1,上电不打印。						
		2 时,若 GPIO8 为 0,上电不打印;若 GPIO8 为 1,上电正常打印。						
		3 时,上电不打印,不受 GPIO8 控	制。					

¹ GPIO8 = 0 且 GPIO9 = 0 不可使用。

图 6 显示了 CHIP_EN 上电前和上电后 Strapping 管脚的建立时间和保持时间。各参数说明如表 5 所示。

² Joint Download Boot 模式下支持 UART Download Boot 下载方式。除了 SPI Boot 和 Joint Download Boot 模式,ESP8684 还支持 SPI Download Boot 模式,详见 <u>《ESP8684 技术参考手册》</u> > 章节 芯片 Boot 控制。

图 6: Strapping 管脚的建立时间和保持时间

表 5: Strapping 管脚的建立时间和保持时间的参数说明

参数	说明	最小值 (ms)
t_0	CHIP_EN 上电前的建立时间	0
t ₁	CHIP_EN 上电后的保持时间	3

功能描述 3

本章描述 ESP8684 系列芯片的各个功能模块。

射频和 Wi-Fi 3.1

ESP8684 系列芯片射频包含以下主要模块:

- 2.4 GHz 接收器
- 2.4 GHz 发射器
- 偏置 (Bias) 和线性稳压器
- Balun 和收发切换器
- 时钟生成器

3.1.1 2.4 GHz 接收器

2.4 GHz 接收器将 2.4 GHz 射频信号解调为正交基带信号,并用两个高精度、高速的 ADC 将后者转为数字信 号。为了适应不同的信道情况, ESP8684 系列芯片集成了 RF 滤波器、自动增益控制 (AGC)、DC 偏移补偿电路 和基带滤波器。

3.1.2 2.4 GHz 发射器

2.4 GHz 发射器将正交基带信号调制为 2.4 GHz 射频信号,使用大功率互补金属氧化物半导体 (CMOS) 功率放 大器驱动天线。数字校准进一步改善了功率放大器的线性。

为了抵消射频接收器的瑕疵, ESP8684 系列芯片还另增了校准措施, 例如:

- 载波泄露消除
- I/Q 相位匹配
- 基带非线性抑制
- 射频非线性抑制
- 天线匹配

这些内置校准措施缩短了产品的测试时间,并且不再需要测试设备。

3.1.3 时钟生成器

时钟生成器为接收器和发射器生成 2.4 GHz 正交时钟信号, 所有部件均集成于芯片上, 包括电感、变容二极管、 环路滤波器、线性稳压器和分频器。

时钟生成器带有内置校准电路和自测电路。运用自主知识产权的优化算法,对正交时钟的相位和相位噪声进行 优化处理, 使接收器和发射器都有最好的性能表现。

3.1.4 Wi-Fi 射频和基带

ESP8684 系列芯片 Wi-Fi 射频和基带支持以下特性:

• 802.11b/g/n

- 802.11n MCS0-7 支持 20 MHz 带宽
- 802.11n 0.4 μs 保护间隔
- 数据率高达 72.2 Mbps
- 接收 STBC (单空间流)
- 可调节的发射功率
- 天线分集

ESP8684 系列芯片支持基于外部射频开关的天线分集与选择。外部射频开关由一个或多个 GPIO 管脚控制,用来选择最合适的天线以减少信道衰落的影响。

3.1.5 Wi-Fi MAC

ESP8684 系列芯片完全遵循 802.11 b/g/n Wi-Fi MAC 协议栈,支持分布式控制功能 (DCF) 下的基本服务集 (BSS) STA 和 SoftAP 操作。支持通过最小化主机交互来优化有效工作时长,以实现功耗管理。

ESP8684 系列芯片 Wi-Fi MAC 自行支持的底层协议功能如下:

- 3× 虚拟 Wi-Fi 接口
- 同时支持基础结构型网络 (Infrastructure BSS) Station 模式、SoftAP 模式、Station + SoftAP 模式和混杂模式
- RTS 保护, CTS 保护, 立即块确认 (Immediate Block ACK)
- 分片和重组 (Fragmentation and defragmentation)
- TX/RX A-MPDU, TX/RX A-MSDU
- 传输机会 (TXOP)
- 无线多媒体 (WMM)
- CCMP、TKIP、WEP、BIP、WPA2 个人模式或 WPA2 企业模式 (WPA2-PSK/WPA2-Enterprise) 及 WPA3 个人模式或 WPA3 企业模式 (WPA3-PSK/WPA3-Enterprise)
- 自动 Beacon 监测 (硬件 TSF)

3.1.6 联网特性

乐鑫提供的固件支持 TCP/IP 联网及其他 Wi-Fi 联网协议、默认支持 TLS 1.2、可选择支持 TLS 1.3。

3.2 低功耗蓝牙

ESP8684 系列芯片包含了一个低功耗蓝牙 (Bluetooth Low Energy) 子系统,集成了硬件链路层控制器、射频/调制解调器模块和功能齐全的软件协议栈。低功耗蓝牙子系统支持 Bluetooth 5。

3.2.1 低功耗蓝牙射频和物理层

ESP8684 系列芯片低功耗蓝牙射频和物理层支持以下特性:

- 1 Mbps PHY
- 2 Mbps PHY, 用于提升传输速率
- Coded PHY (125 kbps and 500 kbps), 用于提升传输距离

• 硬件实现 Listen Before Talk (LBT)

3.2.2 低功耗蓝牙链路层控制器

ESP8684 系列芯片低功耗蓝牙链路控制器支持以下特性:

- 广播扩展 (Advertising Extensions),用于增强广播能力,可以广播更多的智能数据
- 多广播
- 支持同时广播和扫描
- 自适应跳频和信道选择
- 信道选择算法 #2 (Channel Selection Algorithm #2)
- 连接参数更新
- 高速不可连接广播 (High Duty Cycle Non-Connectable Advertising)
- LE Privacy 1.2
- 数据包长度扩展 (LE Data Packet Length Extension)
- 链路层扩展扫描过滤策略 (Link Layer Extended Scanner Filter policies)
- 低速可连接定向广播 (Low duty cycle directed advertising)
- 链路层加密
- LE Ping

3.3 CPU 和存储

3.3.1 CPU

ESP8684 系列芯片搭载低功耗 RISC-V 32 位单核处理器, 具有以下特性:

- 四级流水线架构, 支持 120 MHz 的时钟频率
- RV32IMC ISA
- 支持32位乘法器、32位除法器
- 支持最多 32 个向量中断, 共7 个优先级
- 支持最多 2 个硬件断点/观察点
- 用于调试的 JTAG 接口

3.3.2 片上存储

ESP8684 系列芯片片上存储包括:

- 576 KB 的 ROM: 用于程序启动和内核功能调用
- **272 KB 片上 SRAM**: 用于数据和指令存储,时钟频率可配置,最大 120 MHz。272 KB 中,有 16 KB 配置为 cache 专用。
- 1 Kbit 的 eFuse: 其中 256 位保留给您使用,例如用于存储密钥和设备 ID
- 封装内 flash: 不同型号有差异, 详见章节 1 产品型号对比

3.3.3

存储器映射

ESP8684 系列芯片的地址映射结构如图 7 所示。

图 7: 地址映射结构

说明:

图中灰色背景标注的地址空间不可用。

3.3.4 Cache

ESP8684 系列芯片采用四路组相连只读 cache 结构,具有以下特性:

- cache 的大小为 16 KB
- cache 的块大小为 32 字节
- 支持关键字优先 (critical word first) 和提前重启 (early restart)

3.4 系统时钟

3.4.1 CPU 时钟

CPU 时钟有三种可能的时钟源:

- 外置主晶振时钟
- 快速 RC 振荡器时钟(通常为 17.5 MHz, 频率可调节)
- PLL 时钟

应用程序可以在外置主晶振、PLL 时钟和快速 RC 振荡器时钟中选择一个作为时钟源。根据不同的应用程序,被选择的时钟源直接或在分频之后驱动 CPU 时钟。CPU 一旦发生复位后,CPU 的时钟源默认选择为外置主晶振时钟,且分频系数为 2。

说明:

ESP8684 必须有外部主晶振时钟才可运行。

3.4.2 RTC 时钟

RTC 慢速时钟应用于 RTC 计数器、RTC 看门狗和低功耗控制器,有三种可能的时钟源:

- 内置慢速 RC 振荡器 (通常为 136 kHz, 频率可调节)
- 内置快速 RC 振荡器分频时钟(由内置快速 RC 振荡器时钟经 256 分频生成)
- 外置慢速时钟(通过 GPIOO 输入的时钟信号,通常为 32.768 kHz)

RTC 快速时钟应用于 RTC 外设和传感器控制器,有两种可能的时钟源:

- 外置主晶振二分频时钟
- 内置快速 RC 振荡器时钟 (通常为 17.5 MHz, 频率可调节)

3.5 数字外设

3.5.1 通用输入/输出接口 (GPIO)

ESP8684 系列芯片共有 14 个 GPIO 管脚,通过配置对应的寄存器,可以为这些管脚分配不同的功能。除作为数字信号管脚外,部分 GPIO 管脚也可配置为模拟功能管脚,比如 ADC 等管脚。

所有 GPIO 都可选择内部上拉/下拉,或设置为高阻。GPIO 配置为输入管脚时,可通过读取寄存器获取其输入值。输入管脚也可经设置产生边缘触发或电平触发的 CPU 中断。数字 IO 管脚都是双向、非反相和三态的,包括带有三态控制的输入和输出缓冲器。这些管脚可以复用作其他功能,例如 UART、SPI 等。当芯片低功耗运行时,GPIO 可设定为保持状态。

IO MUX 和 GPIO 交换矩阵用于将信号从外设传输至 GPIO 管脚。两者共同组成了芯片的 IO 控制。利用 GPIO 交换矩阵,可配置外设模块的输入信号来源于任何的 IO 管脚,并且外设模块的输出信号也可连接到任意 IO 管脚。表 6 列出了所有 GPIO 管脚的 IO MUX 功能。更多关于 IO MUX 和 GPIO 交换矩阵的信息,请参考《ESP8684 技术参考手册》的 IO MUX 和 GPIO 交换矩阵 (GPIO, IO_MUX) 章节。

表 6: IO MUX 管脚功能

名称	序号	功能 0	功能 1	功能 2	复位	说明
GPIO0	4	GPI00	GPIO0	_	0	R, G

名称	序号	功能 0	功能 1	功能 2	复位	说明
GPIO1	5	GPIO1	GPIO1	_	0	R, G
GPIO2	6	GPIO2	GPIO2	FSPIQ	1	R
GPIO3	8	GPIO3	GPIO3	_	1	R, G
MTMS	9	MTMS	GPIO4	FSPIHD	1	R
MTDI	10	MTDI	GPIO5	FSPIWP	1	R, G
MTCK	12	MTCK	GPIO6	FSPICLK	1*	_
MTDO	13	MTDO	GPIO7	FSPID	1	
GPIO8	14	GPIO8	GPIO8		1	_
GPIO9	15	GPIO9	GPIO9	_	3	_
GPIO10	16	GPIO10	GPIO10	FSPICS0	1	_
GPIO18	18	GPIO18	GPIO18	_	0	_
U0RXD	19	U0RXD	GPIO19	_	3	_
U0TXD	20	U0TXD	GPIO20	_	4	_

复位

每个管脚复位后的默认配置。

- 0 输入关闭, 高阻 (IE = 0)
- 1 输入使能, 高阻 (IE = 1)
- 2 输入使能, 下拉电阻使能 (IE = 1, WPD = 1)
- 3 输入使能, 上拉电阻使能 (IE = 1, WPU = 1)
- 4 输出使能, 上拉电阻使能 (OE = 1, WPU = 1)
- 1* eFuse 的 EFUSE_DIS_PAD_JTAG 位为 0时(初始默认值),管脚复位后输入使能,上拉电阻使能(IE=1, WPU=1) 1 时,管脚复位后输入使能,高阻 (IE = 1)

建议对处于高阻态的管脚配置上拉或下拉,以避免不必要的耗电。您可参考表 11 对上下拉电阻的描述在 PCB 设计中实现上下拉,或在软件初始化时开启管脚自带的上下拉。

说明

- R 管脚具有模拟功能。
- G 管脚在芯片上电过程中有毛刺, 具体见表 7。

表 7: 芯片上电过程中的管脚毛刺

管脚	毛刺类型1	典型持续时间 (μs)
GPI00	低电平毛刺	40
GPIO1	低电平毛刺	60
GPIO3	低电平毛刺	40
MTDI	低电平毛刺	60

¹低电平毛刺:在持续期间维持低电平状态;

3.5.2 串行外设接口 (SPI)

ESP8684 系列芯片共有三个 SPI(SPI0、SPI1 和 SPI2)。SPI0 和 SPI1 可以配置成 SPI 存储器模式,SPI2 可以配置成通用 SPI 模式。

• SPI 存储器 (SPI Memory) 模式

SPI 存储器模式(SPIO 和 SPI1)用于连接 SPI 接口的封装内 flash。SPI 存储器模式下数据传输长度以字节为单位,最高支持四线 STR 读写操作。时钟频率可配置,STR 模式下支持的最高时钟频率为 60 MHz。

• SPI2 通用 SPI (GP-SPI) 模式

SPI2 既可以配置成主机模式,又可以配置成从机模式。主机模式和从机模式均支持双线全双工和单线、双线或四线半双工通信。SPI2 的主机时钟频率可配置;数据传输长度以字节为单位;时钟极性 (CPOL) 和相位 (CPHA) 可配置;可连接 GDMA 通道。

在主机或从机模式下,时钟频率最高为 40 MHz,支持 SPI 传输的四种时钟模式。

3.5.3 通用异步收发器 (UART)

ESP8684 系列芯片有两个 UART 接口,即 UART0 和 UART1,支持异步通信(RS232 和 RS485)和 IrDA,通信速率可达到 2.5 Mbps。UART 支持 CTS 和 RTS 信号的硬件流控以及软件流控(XON 和 XOFF)。

3.5.4 I2C 接口

ESP8684 系列芯片有一个 I2C 总线主机接口。I2C 接口支持:

- 标准模式 (100 Kbit/s)
- 快速模式 (400 Kbit/s)
- 速度最高可达 800 Kbit/s, 但受制于 SCL 和 SDA 上拉强度
- 7 位寻址模式和 10 位寻址模式
- 双寻址模式
- 7位广播地址

您可以配置指令寄存器来控制 I2C 接口,从而实现更多灵活的应用。

3.5.5 LED PWM 控制器

LED PWM 具有如下特件:

- 六个独立的 PWM 生成器 (即六个通道),可以用于生成六路独立的数字波形
- 可配置波形的周期和占空比
- 占空比精确度可达 14 位
- 可在低功耗模式 (Light-sleep mode) 下可输出 PWM 信号
- 支持硬件自动步进式地增加或减少占空比,可用于 LED RGB 彩色梯度发生器

3.5.6 通用 DMA 控制器

ESP8684 系列芯片包含一个两通道的通用 DMA 控制器(简称 GDMA),包括一个发送通道和一个接收通道,每个通道之间相互独立。这两个通道被具有 DMA 功能的外设所共享,通道之间支持可配置固定优先级。

通用 DMA 控制器基于链表来实现对数据收发的控制,并支持外设与存储器之间及存储器与存储器之间的高速数据传输。每个通道支持访问片内 RAM。

ESP8684 系列芯片中有两个外设具有 DMA 功能,这两个外设是 SPI2 和 SHA。

3.6 模拟外设

3.6.1 模/数转换器 (ADC)

ESP8684 系列集成了一个 12 位 SAR ADC, 共支持 5 个模拟通道输入。

有关 ADC 特性, 请参考表 12。

3.6.2 温度传感器

温度传感器生成一个随温度变化的电压。内部 ADC 将传感器电压转化为一个数字量。

温度传感器的测量范围为-40 °C 到 125 °C。温度传感器一般只适用于监测芯片内部温度的变化,该温度值会随着微控制器时钟频率或 IO 负载的变化而变化。一般来讲,芯片内部温度会高于工作环境温度。

3.7 定时器

3.7.1 通用定时器

ESP8684 系列芯片内置一个 54 位通用定时器, 具有 16 位分频器和 54 位可自动重载的向上/向下计时器。

定时器具有如下功能:

- 16 位时钟预分频器,分频系数为 2-65536
- 54 位时基计数器可配置成递增或递减
- 可读取时基计数器的实时值
- 暂停和恢复时基计数器
- 可配置的报警产生机制
- 电平触发中断

3.7.2 系统定时器

ESP8684 系列芯片内置 52 位系统定时器,该系统定时器包含两个 52 位的时钟计数器和三个报警比较器,具有以下功能:

- 时钟计数器的频率固定为 16 MHz
- 三个报警比较器根据不同的报警值可产生三个独立的中断
- 两种报警模式: 单次特定报警值报警和周期性报警

- >41181H.C
 - 支持设置 52 位的单次特定报警值和 26 位的周期性报警值
- 计数器值重新加载
- 支持当 CPU 暂停或处于 OCD 模式时, 时钟计数器也暂停

3.7.3 看门狗定时器

ESP8684 系列芯片中有两个看门狗定时器:通用定时器组中有一个(称作主系统看门狗定时器,缩写为MWDT),RTC 模块中一个(称作 RTC 看门狗定时器,缩写为 RWDT)。

在引导加载 flash 固件期间,RWDT 和 MWDT 会自动使能,以检测引导过程中发生的错误,并恢复运行。 看门狗定时器具有如下特性:

- 四个阶段,每个阶段都可配置超时时间。每阶段都可单独配置、使能和关闭。
- 如在某个阶段发生超时,MWDT 会采取中断、CPU 复位和内核复位三种超时动作中的一种,RWDT 会采取中断、CPU 复位、内核复位和系统复位四种超时动作中的一种。
- 保护 32 位超时计数器
- 防止 RWDT 和 MWDT 的配置被误改。
- flash 启动保护
 如果在预定时间内 SPI flash 的引导过程没有完成,看门狗会重启整个主系统。

3.8 低功耗管理

ESP8684 系列芯片采用了先进的电源管理技术,可以在不同的功耗模式之间切换。ESP8684 系列芯片支持的功耗模式有:

- Active 模式: CPU 和芯片射频处于工作状态。芯片可以接收、发射和侦听信号。
- Modem-sleep 模式: CPU 可运行,时钟频率可配置。无线通讯模块的基带和射频关闭,但无线通讯模块可保持连接。
- Light-sleep 模式: CPU 暂停运行。任何唤醒事件(MAC、RTC 定时器或外部中断)都会唤醒芯片。无线通讯模块可保持连接。
- Deep-sleep 模式: CPU 和大部分外设都会掉电, 只有 RTC 电源管理单元 PMU 处于工作状态, 详情请见图 1。

设备在不同的功耗模式下有不同的电流消耗、详情请见功耗特性。

3.9 加密硬件加速器

ESP8684 系列芯片配备硬件加速器,支持一些通用加密算法,如:

- SHA1/SHA224/SHA256 (FIPS PUB 180-4)
- ECC

3.10 物理安全特性

• 封装内 flash 通过 AES-XTS 算法进行加密,加密算法使用的密钥无法被软件读写,因此您的应用程序代码与数据不会被非法获取。

- 安全启动功能确保只启动已签名的固件,此功能的可信度是根植于硬件逻辑。
- 时钟毛刺过滤器能够过滤外置主晶振时钟上的毛刺,以防芯片受到时钟毛刺攻击。

3.11 外设管脚分配

表 8: 外设和传感器管脚分配

接口	信号	管脚	功能
ADC	ADC1_CH0	GPIO0	一个 12 位 SAR ADC
	ADC1_CH1	GPIO1	
	ADC1_CH2	GPIO2	
	ADC1_CH3	GPIO3	
	ADC1_CH4	MTMS	
JTAG	MTDI	MTDI	软件调试 JTAG
	MTCK	MTCK	
	MTMS	MTMS	
	MTDO	MTDO	
UART	U0RXD_in	任意 GPIO 管脚	两个 UART 通道,支持硬件流控制
	U0CTS_in		
	U0DSR_in		
	U0TXD_out		
	U0RTS_out		
	U0DTR_out		
	U1RXD_in		
	U1CTS_in		
	U1DSR_in		
	U1TXD_out		
	U1RTS_out		
	U1DTR_out		
I2C	I2CEXT0_SCL_in	任意 GPIO 管脚	一个 I2C 通道,支持主机模式
	I2CEXTO_SDA_in		
	I2CEXT0_SCL_out		
	I2CEXT0_SDA_out		
LED PWM	ledc_ls_sig_out0~5	任意 GPIO 管脚	六路独立 PWM 通道
SPI2	FSPICLK_in/_out_mux	任意 GPIO 管脚	支持以下功能:
	FSPICS0_in/_out		● SPI、Dual SPI、Quad SPI 和 QPI 的主从机
	FSPICS1~5_out		模式
	FSPID_in/_out		● 可以连接片外 flash、RAM 和其他 SPI 设备
	FSPIQ_in/_out		• SPI 传输的四种时钟模式
	FSPIWP_in/_out		● 可配置的 SPI 频率
	FSPIHD_in/_out		• 64 字节缓存或 GDMA 数据缓存

4 电气特性

4.1 绝对最大额定值

超出绝对最大额定值可能导致器件永久性损坏。这只是强调的额定值,不涉及器件的功能性操作。

表 9: 绝对最大额定值

符号	参数	最小值	最大值	单位
VDDA3P3, VDDA, VDD3P3_RTC,	电源管脚电压	-0.3	3.6	\/
VDD3P3_CPU	电你官脚电压	-0.3	3.0	V
l _{output} 1	IO 输出总电流	_	730	mA
T_{STORE}	存储温度	-40	150	°C

¹ 芯片的 IO 输出总电流的测试条件为 25 °C 环境温度, VDD3P3_RTC, VDD3P3_CPU 两个电源域的管脚输出高电平且直接接地。此时芯片在保持工作状态 24 小时后, 仍能正常工作。

4.2 建议工作条件

表 10: 建议工作条件

符号	参数	最小值	典型值	最大值	单位
VDDA3P3, VDDA,	 电源管脚电压	3.0	3.3	3.6	\/
VDD3P3_RTC, VDD3P3_CPU1	电冰片冲电压	0.0	0.0	0.0	V
I_{VDD}^2	外部电源的供电电流	0.5	_	_	A
T_A	工作环境温度	-40	_	105	°C

¹写 eFuse 时, VDD3P3_CPU 应不超过 3.3 V。

4.3 直流电气特性 (3.3 V, 25 °C)

表 11: 直流电气特性 (3.3 V, 25 °C)

符号	参数	最小值	典型值	最大值	单位
C_{IN}	管脚电容	_	2	_	рF
V_{IH}	高电平输入电压	$0.75 \times VDD^1$	_	VDD ¹ + 0.3	V
V_{IL}	低电平输入电压	-0.3	_	$0.25 \times VDD^1$	V
$ I_{IH} $	高电平输入电流	_	_	50	nA
$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $	低电平输入电流		_	50	nA
V_{OH}^2	高电平输出电压	$0.8 \times VDD^1$	_		٧
V_{OL}^2	低电平输出电压	_	_	$0.1 \times VDD^1$	V
I_{OH}	高电平拉电流 (VDD ¹ = 3.3 V, V _{OH} >= 2.64 V, PAD_DRIVER = 3)	_	40	_	mA
I_{OL}	低电平灌电流 (VDD ¹ = 3.3 V, V _{OL} = 0.495 V, PAD_DRIVER = 3)	_	28	_	mA
R_{PU}	上拉电阻	_	45	_	kΩ

² 使用单电源供电时,输出电流需要达到 500 mA 及以上。

R_{PD}	下拉电阻		45	_	kΩ
V_{IH_nRST}	芯片复位释放电压	$0.75 \times VDD^1$	_	VDD ¹ + 0.3	V
V_{IL_nRST}	芯片复位电压	-0.3	_	$0.25 \times VDD^1$	V

¹ VDD 是 I/O 的供电电源。

4.4 ADC 特性

表 12: ADC 特性

符号	参数	最小值	最大值	单位
DNL (差分非线性) ¹	ADC 外接 100 nF 电容;输入为 DC 信号;	-1	3	LSB
INL (积分非线性)	环境温度 25°C; Wi-Fi 关闭	-4	8	LSB
采样速度	_	_	100	kSPS ²

¹使用滤波器多次采样或计算平均值可以获得更好的 DNL 结果。

ESP-IDF 提供了对 ADC 的多种 <u>校准方法</u>。使用硬件校准 + 软件校准后的结果如表 13 所示。用户如需要更高的精度可选用其他方法自行校准。

表 13: ADC 校准结果

参数	描述	最小值	最大值	单位
总误差	ATTENO,有效测量范围 0~950	-5	5	mV
心 庆左 	ATTEN3,有效测量范围 0~2800	-10	10	mV

4.5 功耗特性

4.5.1 Active 模式下的 RF 功耗

下列功耗数据是基于 3.3 V 电源、 $25 ^{\circ}\text{C}$ 环境温度,在 RF 接口处完成的测试结果。所有发射数据均基于 100% 的占空比测得。

所有接收功耗数据均是在外设关闭、CPU 空闲的条件下测得。

表 14: Active 模式下 Wi-Fi (2.4 GHz) 功耗特性

工作模式	射频模式	描述	峰值 (mA)
Active (自由医工化)		802.11b, 1 Mbps, @22 dBm	370
	发射 (TX)	802.11g, 54 Mbps, @20 dBm	320
Active(射频工作)		802.11n, HT20, MCS7, @19 dBm	300
	接收 (RX)	802.11b/g/n, HT20	65

 $^{^{2}}$ V_{OH} 和 V_{OL} 为负载是高阻条件下的测试值。

² kSPS (kilo samples-per-second) 表示每秒采样千次。

表 15: Active 模式下低功耗蓝牙功耗特性

工作模式	射频模式	描述	峰值 (mA)
		低功耗蓝牙 @ 20.0 dBm	320
	发射 (TX)	低功耗蓝牙 @ 9.0 dBm	190
Active (射频工作)		低功耗蓝牙@0dBm	150
		低功耗蓝牙 @ -15.0 dBm	90
	接收 (RX)	低功耗蓝牙	62

4.5.2 其他模式下的功耗

表 16: 低功耗模式下的功耗

功耗模式	描述	典型值	单位
Light-sleep	_	140	μ A
Deep-sleep	仅有 RTC 定时器处于工作状态	5	μ A
Power off	CHIP_EN 管脚拉低,芯片处于关闭状态	1	μΑ

表 17: Modem-sleep 模式下的功耗

	主頻		典型值1	典型值 ²
功耗模式	(MHz)	描述	(mA)	(mA)
	90	WFI (Wait-for-Interrupt)	9.4	10.3
Modem-sleep ³	80	CPU 全速运转时	12.1	13.0
		WFI (Wait-for-Interrupt)	10.7	11.5
	120	CPU 全速运转时	14.7	15.6

¹ 所有外设时钟**关闭**时的典型值。

4.6 可靠性

表 18: 可靠性认证

测试项目	测试条件	测试标准
HTOL (高温工作寿命)	125 °C,1000 小时	JESD22-A108
ECD (熱中分中包含)	HBM (人体放电模式) ¹ ± 2000 V	JS-001
ESD (静电放电敏感度)	CDM (充电器件模式) ² ± 1000 V	JS-002
广东河(子 (Lotob Lup)	过电流 ± 200 mA	JESD78
闩锁测试 (Latch-up)	过电压 1.5 × VDD _{max}	JESD/O
	烘烤: 125°C, 24 小时	J-STD-020、JESD47、
预处理测试	浸泡:三级 (30°C, 60% RH, 192 小时)	
	回流焊: 260 + 0 °C, 20 秒, 三次	JESD22-A113

² 所有外设时钟**打开**时的典型值。实际情况下,外设在不同工作状态下电流会有所差异。

³ Modem sleep 模式下, Wi-Fi 设有时钟门控。该模式下, 访问 flash 时功耗会增加。若 flash 速率为 80 Mbit/s, SPI 2 线模式下 flash 的功耗为 10 mA。

表 18 - 接上页

测试项目	测试条件	测试标准
TCT (温度循环测试)	-65 °C / 150 °C,500 次循环	JESD22-A104
uHAST(无偏压高加速温 湿度应力试验)	130°C,85% RH,96 小时	JESD22-A118
HTSL (高温贮存寿命)	150 °C,1000 小时	JESD22-A103
LTSL (低温存储寿命)	-40 °C,1000 小时	JESD22-A119

 1 JEDEC 文档 JEP155 规定: 500 V HBM 能够在标准 ESD 控制流程下安全生产。 2 JEDEC 文档 JEP157 规定: 250 V CDM 能够在标准 ESD 控制流程下安全生产。

4.7 Wi-Fi 射频

表 19: Wi-Fi 频率

参数	最小值 典型值 (MHz) (MHz		最大值 (MHz)
工作信道中心频率	2412	_	2484

4.7.1 Wi-Fi 射频发射器 (TX) 规格

表 20: 频谱模板和 EVM 符合 802.11 标准时的发射功率

速率	最小值 (dBm)	典型值 (dBm)	最大值 (dBm)
802.11b, 1 Mbps	_	21.5	_
802.11b, 11 Mbps	_	21.5	_
802.11g, 6 Mbps	_	21.5	_
802.11g, 54 Mbps	_	19.5	_
802.11n, HT20, MCS0		21.0	_
802.11n, HT20, MCS7		19.0	_

表 21: 发射 EVM 测试

速率	最小值	典型值	标准限值
	(dB)	(dB)	(dB)
802.11b, 1 Mbps, @21.5 dBm	_	-25.2	-10
802.11b, 11 Mbps, @21.5 dBm		-25.2	-10
802.11g, 6 Mbps, @21.5 dBm		-20.4	- 5
802.11g, 54 Mbps, @19.5 dBm	_	-26.8	-25
802.11n, HT20, MCS0, @21 dBm	_	-21.0	- 5
802.11n, HT20, MCS7, @19 dBm	_	-29.0	-27

4.7.2 Wi-Fi 射频接收器 (RX) 规格

表 22: 接收灵敏度

速率	最小值 (dBm)	典型值 (dBm)	最大值 (dBm)
802.11b, 1 Mbps	_	-99.0	_
802.11b, 2 Mbps	_	-96.5	_
802.11b, 5.5 Mbps	_	-94.0	_
802.11b, 11 Mbps	_	-90.0	_
802.11g, 6 Mbps	_	-94.0	_
802.11g, 9 Mbps	_	-92.0	_
802.11g, 12 Mbps	_	-91.0	_
802.11g, 18 Mbps	_	-89.0	_
802.11g, 24 Mbps	_	-86.0	_
802.11g, 36 Mbps	_	-83.0	_
802.11g, 48 Mbps		-78.5	
802.11g, 54 Mbps		-77.0	_
802.11n, HT20, MCS0		-92.5	
802.11n, HT20, MCS1	_	-90.5	
802.11n, HT20, MCS2	_	-87.5	_
802.11n, HT20, MCS3		-84.5	_
802.11n, HT20, MCS4	_	-81.5	_
802.11n, HT20, MCS5	_	-77.5	
802.11n, HT20, MCS6	_	-75.5	_
802.11n, HT20, MCS7	_	-74.0	_

表 23: 最大接收电平

速率	最小值 (dBm)	典型值 (dBm)	最大值 (dBm)
802.11b, 1 Mbps		5	
802.11b, 11 Mbps	_	5	_
802.11g, 6 Mbps	_	5	_
802.11g, 54 Mbps	_	0	_
802.11n, HT20, MCS0	_	5	_
802.11n, HT20, MCS7		-1	_

表 24: 接收邻道抑制

速率	最小值 (dB)	典型值 (dB)	最大值 (dB)
802.11b, 1 Mbps	_	35	_
802.11b, 11 Mbps	_	35	_
802.11g, 6 Mbps	_	31	_
802.11g, 54 Mbps		20	_

表 24 - 接上页

速率	最小值 (dB)	典型值 (dB)	最大值 (dB)
802.11n, HT20, MCS0	_	31	_
802.11n, HT20, MCS7	_	16	_

4.8 低功耗蓝牙射频

表 25: 低功耗蓝牙频率

参数	最小值	典型值	最大值
	(MHz)	(MHz)	(MHz)
工作信道中心频率	2402	_	2480

4.8.1 低功耗蓝牙射频发射器 (TX) 规格

表 26: 发射器特性

参数	描述	最小值	典型值	最大值	单位
射频发射功率1	射频功率控制范围	-24.0	_	20.0	dBm

¹目标中心频率范围和发射功率可通过软件进行配置。详细信息,请参阅 <u>ESP 射频测试指南</u>。

表 27: 发射器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
	$ f_n _{n=0, 1, 2,k}$ 最大值		1.0	_	kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	2.3	_	kHz
	$ f_{n-}f_{n-5} $ 最大值		1.4	_	kHz
	$ f_1-f_0 $	_	1.5	_	kHz
调制特性	$\Delta f 1_{ ext{avg}}$		250.2	_	kHz
	$\Delta f 2_{\sf max}$ 最小值 (至少 99.9% 的 $\Delta f 2_{\sf max}$)	_	234.4	_	kHz
	$\Delta f 2_{\rm avg}/\Delta f 1_{\rm avg}$	_	1.0	_	_
带内杂散发射	±2 MHz 偏移	_	-32	_	dBm
	±3 MHz 偏移	_	-38	_	dBm
	> ± 3 MHz 偏移	_	-41	_	dBm

表 28: 发射器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
	$ f_n _{n=0, 1, 2,k}$ 最大值	_	3.7		kHz
载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	1.8	_	kHz
料 似	$ f_{n-}f_{n-5} $ 最大值		1.5	_	kHz
	$ f_1 - f_0 $		1.1	_	kHz
	$\Delta f 1_{ ext{avg}}$	_	500.0	_	kHz
」 間制特性	$\Delta f2_{\text{max}}$ 最小值		460.7		kHz
炯	(至少 99.9% 的 Δ $f2_{\sf max}$)		400.7	_	NI IZ
	$\Delta f 2_{\text{avg}} / \Delta f 1_{\text{avg}}$		1.0	_	
	±4 MHz 偏移	_	-40	_	dBm
带内杂散发射	±5 MHz 偏移	_	-43	_	dBm

表 28 - 接上页

参数	描述	最小值	典型值	最大值	单位
	> ± 5 MHz 偏移	_	-44	_	dBm

表 29: 发射器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
	$ f_n _{n=0, 1, 2,k}$ 最大值	_	0.6		kHz
 载波频率偏移和漂移	$ f_0 - f_n $ 最大值	_	0.7	_	kHz
	$ f_n - f_{n-3} $	_	0.4	_	kHz
	$ f_0 - f_3 $	_	0.7	_	kHz
	$\Delta f 1_{ ext{avg}}$	_	250.0		kHz
调制特性	$\Delta f1_{\text{max}}$ 最小值 (至少 99.9% 的 $\Delta f1_{\text{max}}$)	_	241.0	_	kHz
	±2 MHz 偏移	_	-32	_	dBm
带内杂散发射	±3 MHz 偏移		-38		dBm
	> ± 3 MHz 偏移		-41		dBm

表 30: 发射器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
	$ f_n _{n=0, 1, 2,k}$ 最大值	_	0.5	_	kHz
共冲晒壶炉纸纸~	$ f_0 - f_n $ 最大值	_	0.6	_	kHz
载波频率偏移和漂移	$ f_n - f_{n-3} $	_	0.2	_	kHz
	$ f_0 - f_3 $	_	0.8	_	kHz
	$\Delta \ f2_{ ext{avg}}$	_	251.3	_	kHz
调制特性	$\Delta f2_{\text{max}}$ 最小值 (至少 99.9% 的 $\Delta f2_{\text{max}}$)	_	234.5	_	kHz
	±2 MHz 偏移	_	-32		dBm
带内杂散发射	±3 MHz 偏移		-38		dBm
	> ± 3 MHz 偏移	_	-41	_	dBm

4.8.2 低功耗蓝牙射频接收器 (RX) 规格

表 31: 接收器特性 - 低功耗蓝牙 1 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-98.0	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	8	_	dB
	F = F0 + 1 MHz	_	-1	_	dB
	F = F0 - 1 MHz	_	-3	_	dB
	F = F0 + 2 MHz	_	-26	_	dB
 邻道选择性抑制比 C/I	F = F0 - 2 MHz	_	-28	_	dB
,					用术器

31

表 31 - 接上页

参数	描述	最小值	典型值	最大值	单位
	F = F0 + 3 MHz	_	-34		dB
	F = F0 - 3 MHz		-33		dB
	F >= F0 + 4 MHz		-33		dB
	F <= F0 – 4 MHz	_	-31	_	dB
镜像频率	_		-33		dB
邻道镜像频率干扰	$F = F_{image} + 1 \text{ MHz}$	_	-32		dB
*P.但说像频平 1/L	$F = F_{image} - 1 \text{ MHz}$		-34		dB
	30 MHz ~ 2000 MHz	_	-23		dBm
 帯外阻塞	2003 MHz ~ 2399 MHz	_	-30	_	dBm
市外阻塞	2484 MHz ~ 2997 MHz	_	-10	_	dBm
	3000 MHz ~ 12.75 GHz		-17	_	dBm
互调	_	_	-31		dBm

表 32: 接收器特性 - 低功耗蓝牙 2 Mbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-95.0	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道干扰 C/I	F = F0 MHz	_	9	_	dB
	F = F0 + 2 MHz	_	-11	_	dB
	F = F0 – 2 MHz	_	-7	_	dB
	F = F0 + 4 MHz	_	-35	_	dB
 邻道选择性抑制比 C/I	F = F0 – 4 MHz	_	-30	_	dB
や担び非性が耐に 0/1	F = F0 + 6 MHz	_	-35	_	dB
	F = F0 – 6 MHz	_	-29	_	dB
	F >= F0 + 8 MHz	_	-39	_	dB
	F <= F0 – 8 MHz	_	-33	_	dB
镜像频率	_	_	-35	_	dB
勿 送降侮妬变工业	$F = F_{image} + 2 MHz$	_	-35	_	dB
邻道镜像频率干扰	$F = F_{image} - 2 \text{ MHz}$	_	-11	_	dB
	30 MHz ~ 2000 MHz	_	-30	_	dBm
## A MI 中	2003 MHz ~ 2399 MHz	_	-34	_	dBm
带外阻塞 	2484 MHz ~ 2997 MHz	_	-19	_	dBm
	3000 MHz ~ 12.75 GHz	_	-28	_	dBm
互调	_	_	-33		dBm

表 33: 接收器特性 - 低功耗蓝牙 125 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_		-106.0	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	3	_	dB

表 33 - 接上页

参数	描述	最小值	典型值	最大值	单位
	F = F0 + 1 MHz	_	-7	_	dB
	F = F0 – 1 MHz	_	-5	_	dB
	F = F0 + 2 MHz	_	-35	_	dB
 邻道选择性抑制比 C/I	F = F0 – 2 MHz	_	-34	_	dB
や担処存性が前に O/I	F = F0 + 3 MHz	_	-38	_	dB
	F = F0 – 3 MHz	_	-37	_	dB
	F >= F0 + 4 MHz		-41	_	dB
	F <= F0 – 4 MHz	_	-45	_	dB
镜像频率	_	_	-41	_	dB
邻道镜像频率干扰	$F = F_{image} + 1 \text{ MHz}$	_	-43	_	dB
70.但说 欧沙兴平 1 1儿	$F = F_{image} - 1 \text{ MHz}$		-38		dB

表 34: 接收器特性 - 低功耗蓝牙 500 Kbps

参数	描述	最小值	典型值	最大值	单位
灵敏度 @30.8% PER	_	_	-102.0	_	dBm
最大接收信号 @30.8% PER	_	_	8	_	dBm
共信道抑制比 C/I	F = F0 MHz	_	4		dB
	F = F0 + 1 MHz	_	-6	_	dB
	F = F0 – 1 MHz	_	-5	_	dB
	F = F0 + 2 MHz	_	-29	_	dB
 邻道选择性抑制比 C/I	F = F0 - 2 MHz		-32	_	dB
→ 型起往往孙嗣比 O/I	F = F0 + 3 MHz	_	-31	_	dB
	F = F0 - 3 MHz		-36	_	dB
	F >= F0 + 4 MHz		-34		dB
	F <= F0 – 4 MHz		-33	_	dB
镜像频率	_		-34		dB
烈送海梅塘 萝丁排	$F = F_{image} + 1 \text{ MHz}$	_	-37	_	dB
令道镜像频率干扰 	$F = F_{image} - 1 \text{ MHz}$		-31		dB

封装信息 5

图 8: QFN24 (4×4 mm) 封装

说明:

- 图中所有尺寸的单位是毫米 (mm)。
- 从封装俯视图看,芯片管脚从 Pin 1 位置开始按顺时针方向进行编号;
- 可前往 芯片概览 查看推荐 PCB 封装图源文件 (asc),源文件可使用 PADS 或 AD (Altium Designer)等软件导入;
- 有关卷带、载盘和产品标签的信息,请参阅 《乐鑫芯片包装信息》。

6 相关文档和资源

相关文档

- 《ESP8684 技术参考手册》 提供 ESP8684 芯片的存储器和外设的详细使用说明。
- 《ESP8684 硬件设计指南》 提供基于 ESP8684 芯片的产品设计规范。
- 《ESP8684 系列芯片勘误表》 描述 ESP8684 系列芯片自版本 0 起的错误。
- 证书

https://espressif.com/zh-hans/support/documents/certificates

• ESP8684 产品/工艺变更通知 (PCN)

https://espressif.com/zh-hans/support/documents/pcns?keys=ESP8684

• 文档更新和订阅通知

https://espressif.com/zh-hans/support/download/documents

开发者社区

- <u>《ESP8684 ESP-IDF 编程指南》</u> ESP-IDF 开发框架的文档中心。
- ESP-IDF 及 GitHub 上的其它开发框架

https://github.com/espressif

- ESP32 论坛 工程师对工程师 (E2E) 的社区, 您可以在这里提出问题、解决问题、分享知识、探索观点。 https://esp32.com/
- The ESP Journal 分享乐鑫工程师的最佳实践、技术文章和工作随笔。 https://blog.espressif.com/
- SDK 和演示、App、工具、AT 等下载资源 https://espressif.com/zh-hans/support/download/sdks-demos

产品

- ESP8684 系列芯片 ESP8684 全系列芯片。
 - https://espressif.com/zh-hans/products/socs?id=ESP8684
- ESP8684 系列模组 ESP8684 全系列模组。
 - https://espressif.com/zh-hans/products/modules?id=ESP8684
- ESP8684 系列开发板 ESP8684 全系列开发板。
 - https://espressif.com/zh-hans/products/devkits?id=ESP8684

联系我们

• 商务问题、技术支持、电路原理图 & PCB 设计审阅、购买样品(线上商店)、成为供应商、意见与建议 https://espressif.com/zh-hans/contact-us/sales-questions

修订历史

日期	版本	发布说明
2023-10-31	v1.4	增加低功耗蓝牙功耗数据,详见表格 15
2023-07-25	v1.3	 ESP8684H4 已量产,更新表格 1 为保证术语准确性,将"SiP Flash" 重命名为" 封装内 Flash" 更新 物理安全特性,添加 "时钟毛刺过滤器" 更新 片上存储,添加 SRAM 时钟频率
2022-12-13	v1.2	更新表格 24
2022-12-08	v1.1	删除特性"支持外部功率放大器"
2022-10-24	v1.0	 更新 ADC 特性 章节 添加 可靠性 章节 更新 低功耗蓝牙射频 章节 添加推荐 PCB 封装图源文件链接
2022-07-12	v0.7	在 通用输入/输出接口 (GPIO) 添加表格 "芯片上电过程中的管脚毛刺"
2022-06-30	v0.6	更新 其他模式下的功耗
2022-05-05	v0.5	更新 Wi-Fi 射频 和 低功耗蓝牙射频
2022-01-28	v0.4	更新 电气特性 与 封装信息
2021-12-22	v0.2	更新应用场景
2021-11-30	v0.1	预发布

免责声明和版权公告

本文档中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

本文档可能引用了第三方的信息,所有引用的信息均为"按现状"提供,乐鑫不对信息的准确性、真实性做任何保证。

乐鑫不对本文档的内容做任何保证,包括内容的适销性、是否适用于特定用途,也不 提供任何其他乐鑫提案、规格书或样品在他处提到的任何保证。

乐鑫不对本文档是否侵犯第三方权利做任何保证,也不对使用本文档内信息导致的任何侵犯知识产权的行为负责。本文档在此未以禁止反言或其他方式授予任何知识产权许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。蓝牙标志是 Bluetooth SIG 的注册商标。

文档中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

版权归 © 2023 乐鑫信息科技(上海)股份有限公司。保留所有权利。