Cardiac Arrest Prediction

Data Mining (MGSC-5126-10)

Arjun Thakur - 0271741

Introduction

Objective: To identify the variables that influence cardiovascular disease and

use those variables to predict whether a patient will have any kind of cardiovascular disease.

Software used: Jupyter Notebook for Python

Method: Binary Classification (0/1)

Dataset Link: https://www.kaggle.com/code/sulianova/eda-cardiovascular-

data/notebook?scriptVersionId=9722310

Input Variables:

ID CHOLESTEROL_LEVEL

AGE GLUCOSE_LEVEL

GENDER SMOKER

HEIGHT ALCOHOL_CONSUMER WEIGHT PHYSICAL_ACTIVITY

SYSTOLIC_BP DIASTOLIC_BP

Target Variable : CARDIOVASCULAR DISEASE

Where class 0: Absence of Cardiovascular Disease

class 1: Presence of Cardiovascular Disease

Methodology

> Given below is the flowchart representing the 8 steps involved in the Data Mining Project.

Data Preparation

- > Importing all the necessary libraries
- Loading the csv file dataset into the program (70000, 13)
- ➤ Data Pre-Processing & Cleaning along with Data Integration
- Removing Irrelevant & Unwanted Redundant Features (1)
- Renaming the attribute names (13)
- Dropping duplicate cases in dataset (3191)
- Handling the missing values
- Removing columns with negative values for SYSTOLIC_BP and DIASTOLIC_BP (8)
- Finding Summary Statistics, Skewness, Kurtosis, Scatterplot to understand the data

Column: AGE	
Kurtosis: -0.85	
Kurtosis Classification: Fatter-than-normal distrib	oution (platykurtic)
Column: WEIGHT	
Kurtosis: 2.02	
Kurtosis Classification: Fatter-than-normal distrib	oution (platykurtic)
Column: SYSTOLIC BP	
Kurtosis: 5.09	
Kurtosis Classification: Skinnier-than-normal distr	ribution (leptokurtic)
Column: DIASTOLIC BP	
Kurtosis: 5.64	
Kurtosis Classification: Skinnier-than-normal distr	ribution (leptokurtic)
Column: CHOLESTEROL LEVEL	
Kurtosis: 0.78	
Kurtosis Classification: Fatter-than-normal distrib	oution (platykurtic)
Column: GLUCOSE LEVEL	
Kurtosis: 3.85	
Kurtosis Classification: Skinnier-than-normal distr	ribution (leptokurtic)
Column: PHYSICAL ACTIVITY	
Kurtosis: 0.20	
Kurtosis Classification: Fatter-than-normal distrib	oution (platykurtic)
Column: CARDIAC_ARREST	
Kurtosis: -2.00	
Kurtosis Classification: Fatter-than-normal distrib	oution (platykurtic)

Skewness: -0.27 Mean: 53.20 Median: 54.00 Mode: 55 Skewness Direction: Negatively Skewed Skewness: 0.93 Median: 72.00 Skewness Direction: Positively Skewed Column: SYSTOLIC_BP Mean: 126.85 Median: 120.00 Mode: 120 Skewness Direction: Positively Skewed Column: DIASTOLIC_BP Skewness: 0.37 Mean: 81.53 Median: 80.00 Skewness Direction: Positively Skewed Column: CHOLESTEROL LEVEL Skewness: -0.03 Mean: 0.98 Median: 1.00 Skewness Direction: Negatively Skewed

data_r	raw.describe()									
	AGE	GENDER	HEIGHT	WEIGHT	SYSTOLIC_BP	DIASTOLIC_BP	CHOLESTEROL_LEVEL	GLUCOSE_LEVEL	SMOKER	ALCOHOL_CONSUME
count	66801.000000	66801.000000	66801.000000	66801.000000	66801.000000	66801.000000	66801.000000	66801.000000	66801.000000	66801.00000
mean	52.825991	1.356252	164.343707	74.523705	129.255550	97.446415	1.382599	1.236134	0.092124	0.05628
std	6.798112	0.478895	8.333752	14.579585	157.618539	192.892442	0.690087	0.582109	0.289204	0.23047
min	29.000000	1.000000	55.000000	10.000000	1.000000	0.000000	1.000000	1.000000	0.000000	0.00000
25%	48.000000	1.000000	159.000000	65.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.00000
50%	53.000000	1.000000	165.000000	72.000000	120.000000	80.000000	1.000000	1.000000	0.000000	0.00000
75%	58.000000	2.000000	170.000000	83.000000	140.000000	90.000000	2.000000	1.000000	0.000000	0.00000
max	64.000000	2.000000	250.000000	200.000000	16020.000000	11000.000000	3.000000	3.000000	1.000000	1.00000

Balancing the Target Variable

Before Balancing

Undersampling

After Balancing

Detecting Outliers

Identify and handle outliers in the data.

- ➤ Initially, there were 66801 rows and 12 columns.
- ➤ After fixing the outliers there are 63828 rows and 12 columns

Fixing the Outliers

- ➤ AGE Attribute: Consider data only for ages between 40 and 65
- ➤ HEIGHT Attribute: Consider data only 4.5 ft to 6.5ft 'HEIGHT' that is between 140 cm and 200 cm
- ➤ WEIGHT Attribute: only between 40 and 180
- > SYSTOLIC BP & DIASTOLIC BP Attribute
 - Found upper and lower acceptable limits and removed all the values that don't satisfy the condition
 - Removed any other extreme outlier values

	SYSTOLIC_BP	DIASTOLIC_BP
lower_bound	90.0	65.0
upper_bound	170.0	105.0

We can select the index of outlier data by using boundaries we calculated.

Exploratory Data Analysis

Exploratory Data Analysis

- > We used EDA to to understand the structure and patterns in the data, identify outliers, and gain insights that can inform further analysis or modeling.
- ➤ Checking for the importance of AGE, SMOKER, GLUCOSE_LEVEL variable with the target variable
- ➤ CARDIOVASCULAR_DISEASE with graphical data analysis.

- ➤ Based on the correlation matrix, decision tree classifier and Chi-Square Statistic below methods, we were able to Drop 3 attributes namely GENDER, HEIGHT and ALCOHOL_CONSUMER.
- Thus, we are left with 8 input variables and 1 target variable for our binary classification of '0' and '1'

	feature	importance
0	AGE	0.149973
1	GENDER	0.026827
2	HEIGHT	0.207259
3	WEIGHT	0.224206
4	SYSTOLIC_BP	0.232271
5	DIASTOLIC_BP	0.052895
6	CHOLESTEROL_LEVEL	0.037146
7	GLUCOSE_LEVEL	0.026205
8	SMOKER	0.012182
9	ALCOHOL_CONSUMER	0.010074
10	PHYSICAL_ACTIVITY	0.020962

Decision Tree Classifier

	Attribute	Score
4	SYSTOLIC_BP	25505.735627
5	DIASTOLIC_BP	8310.500762
3	WEIGHT	5182.963003
0	AGE	2509.920083
6	CHOLESTEROL_LEVEL	981.527952
7	GLUCOSE_LEVEL	110.627607
8	SMOKER	32.708920
10	PHYSICAL_ACTIVITY	11.160946
9	ALCOHOL_CONSUMER	8.879119
2	HEIGHT	3.462008
1	GENDER	0.005211

Chi-Square Statistic

Normalization

> Standard Scaler Normalization -

- ➤ To scale numerical features to a standard range.
- > Used to ensure that all features have similar scales
- ➤ Helps algorithms converge faster and perform better, especially those sensitive to the scale of input features.
- With a mean of 0 and a standard deviation of 1.
- Range of -3 to 3
- ➤ Assuming normal distribution.
- ➤ To improve model performance by ensuring consistent feature scales.
- We used it for studying SYSTOLIC_BP and DIASTOLIC_BP variables to check for outliers.

	AGE	GENDER	HEIGHT	WEIGHT	SYSTOLIC_BP	DIASTOLIC_BP	CHOLESTEROL_LEVEL	GLUCOSE_LEVEL	SMOKER	ALCOHOL_CONSUMER	PHYSICAL_ACTIVITY	CARI
0	50	2	168	62	-0.122187	-0.091800	1	1	0	0	1	
1	55	1	156	85	0.065351	-0.039823	3	1	0	0	1	
2	51	1	165	64	0.002839	-0.143778	3	1	0	0	0	
3	48	2	169	82	0.127864	0.012155	1	1	0	0	1	
4	47	1	156	56	-0.184700	-0.195755	1	1	0	0	0	

• And for Standardizing the 8 input variables in 'X' while keeping the target variable 'Y' the same.

	AGE	WEIGHT	SYSTOLIC_BP	DIASTOLIC_BP	CHOLESTEROL_LEVEL	GLUCOSE_LEVEL	SMOKER	PHYSICAL_ACTIVITY
0	50	62	110	80	1	1	0	1
1	55	85	140	90	3	1	0	1
2	51	64	130	70	3	1	0	0
3	48	82	150	100	1	1	0	1
4	47	56	100	60	1	1	0	0

	AGE	WEIGHT	SYSTOLIC_BP	DIASTOLIC_BP	CHOLESTEROL_LEVEL	GLUCOSE_LEVEL	SMOKER	PHYSICAL_ACTIVITY
0	-0.493129	-0.869643	-0.934286	-0.152709	-0.556726	-0.407565	-0.3172	0.503117
1	0.277973	0.728595	0.729117	0.842587	2,328169	-0.407565	-0.3172	0.503117
2	-0.338909	-0.730666	0.174649	-1.148005	2.328169	-0.407565	-0.3172	-1.987610
3	-0.801570	0.520129	1.283584	1.837883	-0.556726	-0.407565	-0.3172	0.503117
4	-0.955791	-1.286575	-1.488753	-2.143301	-0.556726	-0.407565	-0.3172	-1.987610

Model Train-Test Split

- First we performed Data Partitioning using train_test_split from sklearn.model_selection to partition the dataset.
- ➤ Subsequently 60% of our data was allocated for Training Set, where input data is stored in X_train and target data in y_train that is major portion for model learning.
- The remaining 40 % data was divided, dedicating 20% to the Validation Set with X_val, y_val reserved for fine-tuning and optimization.
- Finally, the remaining 20% constituted the Testing Set with X_test, y_test, used for final evaluation of the model on unseen data.
- The Random State was set as 42 ensuring consistency with random state for reproducibility.

```
from sklearn.model_selection import train_test_split
```



```
# Splitting the dataset into training and testing sets
X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.4, random_state=42)
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)
# 60% of the data is used for training (X_train, y_train).
# 20% of the data is used for validation (X_val, y_val).
# 20% of the data is used for testing (X_test, y_test).
```


Model Evaluation & Assessment

1.Logistic Regression Model

Evaluation metrics for Logistic Regression:

Accuracy: 0.7251 Precision: 0.7530 Recall: 0.6945 F1-Score: 0.7225 Cohen's Kappa: 0.4511 Log Loss: 0.5702

2. Decision Tree Classifier Model

Accuracy: 0.6414 Precision: 0.6717 Recall: 0.5949 F1-Score: 0.6310 Cohen's Kappa: 0.2847

Log Loss: 9.8178

3. Support Vector Machine Model

Number of support vectors: 22845

Evaluation metrics for SVM:

Accuracy: 0.7316 Precision: 0.7660 Recall: 0.6901 F1-Score: 0.7261 Cohen's Kappa: 0.4644

Log Loss: 0.5577

4. K- Nearest Neighbours Model

Accuracy for k = 2 is: 0.6312078959736801 Accuracy for k = 3 is: 0.6695911013629955 Accuracy for k = 4 is: 0.6745260849130503 Accuracy for k = 5 is: 0.690349365502115Accuracy for k = 6 is: 0.691211029296569 Accuracy for k = 7 is: 0.6938743537521541Accuracy for k = 8 is: 0.6978693404355318 Accuracy for k = 9 is: 0.7017859940466865 Accuracy for k = 10 is: 0.7060943130189566 Accuracy for k = 11 is: 0.7083659721134263Accuracy for k = 12 is: 0.7093059689801035 Accuracy for k = 13 is: 0.7124392918690271 Accuracy for k = 14 is: 0.7145542848190506 Accuracy for k = 15 is: 0.7146326178912737 Accuracy for k = 16 is: 0.7153376155412815 Accuracy for k = 17 is: 0.7160426131912894 Accuracy for k = 18 is: 0.7169826100579665 Accuracy for k = 19 is: 0.7182359392135359 Accuracy for k = 20 is: 0.7175309415635281 Accuracy for k = 21 is: 0.7176876077079744 Accuracy for k = 22 is: 0.7193326022246592 Accuracy for k = 23 is: 0.7193326022246592 Accuracy for k = 24 is: 0.7203509321635595 Accuracy for k = 25 is: 0.7210559298135673 Accuracy for k = 26 is: 0.7237975873413756 Accuracy for k = 27 is: 0.7202725990913363Accuracy for k = 28 is: 0.7234842550524831Accuracy for k = 29 is: 0.7219175936080213 Best k: 26

Best accuracy: 0.7237975873413756

Evaluation metrics for KNN:

Accuracy: 0.7238 Precision: 0.7267 Recall: 0.7238 F1-Score: 0.7236 Cohen's Kappa: 0.4487 Log Loss: 0.5908

Model Comparison & Visualization

		Model	Accuracy	Precision	Recall	F1-Score	١
1		SVM	0.7316	0.7660	0.6901	0.7261	
2	Logistic	Regression	0.7251	0.7530	0.6945	0.7225	
3		KNN	0.7238	0.7562	0.6849	0.7188	
4	Decision Tree	Classifier	0.6414	0.6717	0.5949	0.6310	
	Cohen's Kappa	Log Loss					
1	0.4644	0.5577					
2	0.4511	0.5702					
3	0.4487	0.5908					
4	0.2847	9.8178					

Prediction on unseen data using SVM Model

Thank You & Q&A

