Manual for Package: adcp Revision 1

Karl Kästner

October 20, 2019

Contents

1	@ADC	CP	1
	1.1	ADCP	1
	1.2	Ds	1
	1.3	Dt	1
	1.4	R	2
	1.5	adc_current_slope	2
	1.6	adc_voltage_slope	2
	1.7	assign_file	2
	1.8	assign_water_level	2
	1.9	average_profile	2
	1.10	backscatter2ssc	2
	1.11	binsize	3
	1.12	blnk	3
	1.13	btrange	3
	1.14	calc_backscatter	3
	1.15	clock_offset_STATIC	3
	1.16	convert_raw_binprops_STATIC	3
	1.17	convert_raw_serial_STATIC	3
	1.18	convert_raw_time_STATIC	4
	1.19	convert_raw_velocity	4
	1.20	convert_raw_velocity_STATIC	4
	1.21	copy	4
	1.22	distmidbin1	4
	1.23	file_ensemble_index	4
	1.24	file_index	4
	1.25	filetime_min	4
	1.26	fill_coordinate_gaps	5
	1.27	filter_range	5
	1.28	heading_rad	5

	1.29	$instrument_depth_m$
	1.30	instrument_to_ship_STATIC
	1.31	lngthtranspulse
	1.32	load_RSSI_values_STATIC 6
	1.33	nbins
	1.34	near_field_correction
	1.35	nens
	1.36	pitch_rad
	1.37	pressure_bar
	1.38	range2binid
	1.39	roll_rad
	1.40	rotate_velocity
	1.41	rotate_velocity_sw
	1.42	ship_to_earth_STATIC
	1.43	sort_STATIC
	1.44	squeeze_STATIC
	1.45	temperature_offset_C
	1.46	to_abs
	1.47	transducer_temperature_C
	1.48	verify_pc_time
2	@Ense	emble 8
_	2.1	Ensemble
	2.2	calc_beamcoords
3	@HAI	OCP 8
	3.1	HADCP
	3.2	beam_to_instrument_STATIC
	3.3	bootstrap_backscatter
	3.4	calc_beam_spreading_cone
	3.5	calc_bin_coordinates
	3.6	calibrate_backscatter
	3.7	filter_velocity
	3.8	firmware_fix_STATIC
	3.9	fixnan
	3.10	instrument_to_beam_STATIC
	3.11	reorder_velocity_STATIC
	3.12	to_beam_STATIC
	3.13	to_earth_STATIC
	3.14	to_instrument_STATIC
	3.15	to_ship_STATIC
4	@VAD	OCP 11
		VADCP

	4.2	assign_transect	11
	4.3	-	12
	4.4	beam_to_instrument_STATIC	12
	4.5	bottom_track_STATIC	12
	4.6	bscalibrate	12
	4.7	bsgrid	13
	4.8	bsinvert	13
	4.9	bsjackknife	13
	4.10	bsjointcalibration	13
	4.11	btvel_from_position	13
	4.12	calc_ssc	13
	4.13	cdf	13
	4.14	convert_nFiles	13
	4.15	correct_coordinates	14
	4.16	correct_for_platform_velocity_STATIC	14
	4.17	depth_average_velocity	14
	4.18	depth_integrate	14
	4.19	depth_integrate_sediment_discharge	14
	4.20	filter_velocity	14
	4.21	fit_sediment_concentration_profile	14
	4.22	fit_velocity_profile	14
	4.23	map_z	15
5		OCP/old	15
	5.1	assign_crossing	15
6	@VAD	OCP	15
	6.1		15
	6.2	plot_track	15
	6.3	plot_velocity_components	15
	6.4	process	15
	6.5	range2depth	15
	6.6	rangemask	16
	6.7	to	16
	6.8	to_beam_STATIC	16
	6.9	to_cs	16
	6.10	to_earth_STATIC	16
	6.11	to_sw	16
	6.12	velocity_near_bed	16
	6.13	xy2nts	17
_	_		
7	adcp	ADCD D	17
	7.1	ADCP_Bin	17
	7.2	SPADCP	17

8	backso	catter/@Backscatter	17
	8.1	Backscatter	17
	8.2	backscatter2ssc	18
	8.3	backscatter2ssc_implicit	18
	8.4	backscatter2ssc_implicit_sample	18
	8.5	backscatter2ssc_sample	18
	8.6	backscatter2ssc_sassi	18
	8.7	backscatter2ssc_sassi_sample	18
	8.8	fit	19
	8.9	regmat	19
9	backso	atter	19
	9.1	attenuation_coefficient	19
	9.2	backscatter_coefficient	19
	9.3	backscatter_coefficient_2	20
	9.4	backscatter_form_function	20
	9.5	backscatter_to_concentration	20
	9.6	backscatter_to_concentration2	20
	9.7	derive_attenuation_coefficient	20
	9.8	normalized_particle_radius	20
	9.9	scattering_cross_section_general	20
	9.10	sigma_geometric	21
	9.11	sigma_rayleigh	21
	9.12	ssc2backscatter	21
10	cross-s	$ m section/@ADCP_Transect$	21
	10.1	ADCP_Transect	21
	10.2	assign_to_transect	21
	10.3	compare	
	10.4	detect_crossings	
	10.5	detect_crossings_circling	
	10.6	detect_crossings_returning	22
	10.7	detect_rounds	
	10.8	export_mmt	22
	10.9	extrapolate_to_bank	23
	10.10	$\mathrm{fit} \ \ldots \ldots$	23
	10.11	integrate_discharge	23
	10.12	plot	23
	10.13	plot2d	23
	10.14	plot_rounds	23
11	cross-s	section/@CrossSection	24
	11.1	CrossSection	24
	11.9		2/

11.3	compare	24
11.4	determine_time_slots	24
11.5	discharge	24
11.6	extrapolate_S	24
11.7	extrapolate_backscatter	24
11.8	extrapolate_backscatter_2d_STATIC	25
11.9	extrapolate_bed_profile	25
11.10	extrapolate_n	25
11.11	extrapolate_velocity	25
11.12	extrapolate_velocity_1d_STATIC	25
11.13	extrapolate_velocity_2d_STATIC	25
11.14	fit_bathymetry_2d	25
11.15	fit_bed_profile	25
11.16	fit_cross_section	26
11.17	fit_vertical_profile_of_velocity	26
11.18	fit_water_level	26
11.19	generate_mesh_tn	26
11.20	generate_mesh_tnz	27
11.21	optstr	27
11.22	plot_n_quiver	27
11.23	plot_nz	27
11.24	plot_nz_quiver	27
11.25	plot_tn	27
11.26	plot_xyz	27
11.27	process_backscatter	27
11.28	$process_backscatter_tn \ldots \ldots \ldots \ldots \ldots$	28
11.29	process_backscatter_tnz	28
11.30	process_discharge	28
11.31	process_velocity_tn	28
11.32	process_velocity_tnz	28
11.33	summarise	28
11.34	var_n	28
11.35	var_t	29
11.36	var_tn	29
11.37	var_tnz	29
12 cross-	section	29
12.1	complete_profiles	29
12.2	${\it define_transect} \ \dots $	29
12.3	$discharge_division \ \dots \dots \dots \dots \dots \dots$	29
12.4	discharge_summary	30
12.5	load_vadcp_discharge	30
12.6	$split_transect2 \dots \dots \dots \dots$	30

13	haden	/@HADCP_Discharge	30
-0	13.1	HADCP_Discharge	30
	13.2	fit	30
	10.2		00
14	hadcp	/@HDischarge	30
	14.1	Hbin	30
	14.2	$calc_specific_discharge_weights \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	31
	14.3	$estimate_discharge \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	31
15	hadcp	/@HIVM	31
	15.1	HIVM	31
16	hadcp	/@IVM	31
	16.1	IVM	31
17	hadcp		31
	17.1	ESM	31
	17.2	ESM_individual	31
	17.3	SDM	32
	17.4	VPM	32
	17.5	hadcp_homogenize_profile	32
	17.6	hadcp_homogenize_profile2	32
	17.7	wavg	32
	17.8	wavg_mean	32
	17.9	wopt	33
18	adcp		33
	18.1	$smooth_track \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	33
	18.2	$streawise_velocity $	33
19	test		33
	19.1	example_backscatter_coefficient_2	33
	19.2	test_backscatter_coefficient	34
20	adcp		34
	20.1	zztransform	34

1 @ADCP

1.1 ADCP

ADCP superclass converts ADCP fixed integer raw data to floats with SI units provides functions for ADCP data manipulation

calculated from the water temperature and sound frequency

1.2 Ds

```
depth of bin, distance between water surface (z_s) and (z_i) Ds = z_s - z_bin does not correct for tilts
```

1.3 Dt

```
projected distance from transducer to cell centres
if the instrument is not tilted, this is the vertical distance (
    depth)
between the transducer and cell centres
does not account for transducer depth
```

1.4 R

unprojected (slanted) distance between the transducer and cell centres

1.5 adc_current_slope

instrument type specific slope for converting raw current to Ampere c.f WorkHorse Commands and Output Data Format, March 2014 c.f. XMT Voltage and Current Channels originally undoccumented by RDI, and taken from Shields 2010

1.6 adc_voltage_slope

```
instrument series specific conversion factors for voltage c.f. WorkHorse Commands and Output Data Format, March 2014 c.f. XMT Voltage and Current Channels originally undoccumented by RDI, and taken from Shields 2010
```

1.7 assign_file

ensemble indices of each file

1.8 assign_water_level

assign water level to adcp ensembles (combine gauge with boat data)

1.9 average_profile

average backscatter for each sample within an specific interval

1.10 backscatter2ssc

wrapper for backscatter conversion

1.11 binsize

bin size (vertical distance between two bins)

1.12 blnk

blanking range, range from transduce to centre of first bin

1.13 btrange

convert raw btrange to vertical distance (projected distance) of
 the bed
level below the transducer, when the transducer is looking
 vertically down
this is the depth less the transducer depth

1.14 calc_backscatter

backscatter from echo intensity

1.15 clock_offset_STATIC

 $\begin{tabular}{ll} $\tt dt : median \ difference \ between \ adcp \ clock \ and \ UTC \\ sd_dt : standard \ error \ of \ dt \end{tabular}$

1.16 convert_raw_binprops_STATIC

convert the raw bin properties to si-units

1.17 convert_raw_serial_STATIC

convert bytes of serial number into single number big endian system

1.18 convert_raw_time_STATIC

convert measurement time stamps into matlab internal format

1.19 convert_raw_velocity

convert scaled integer raw velocity to float SI (m/s)

1.20 convert_raw_velocity_STATIC

convert raw velocity to SI units (m/s)

1.21 copy

copy constructor

1.22 distmidbin1

convert raw distance to first bin centre to SI

1.23 file_ensemble_index

ensemble index eid_f with respect to file for ensemble eid

1.24 file_index

first and last ensemble index of of a file

1.25 filetime_min

start time of each file

1.26 fill_coordinate_gaps

fill gaps in ensemble coordinates

1.27 filter_range

filter HADCP velocity by detecting the last valid bin if the bacscatter does not decreas over 10 bins, than obtstacle or intersection

1.28 heading_rad

convert raw instrument heading angle to [rad]

1.29 instrument_depth_m

depth of instrument (for submerged deployments)

1.30 instrument_to_ship_STATIC

transform velocities from instrument reference to ship reference by correcting for pitch_rad and roll_rad

input

vel : float [arbitrary unit] instrument reference
btvel : float [arbitrary unit] instrument reference

 $\verb|pitch_rad|: float [radians]| true pitch_rad, not measured pitch_rad|$

roll_rad : float [radians]

output

vel and btvel [input unit] ship reference

1.31 lngthtranspulse

convert raw transmit pulse length to SI units (m)

1.32 load_RSSI_values_STATIC

load instrument specific backscatter conversion parameters

1.33 nbins

number of bins for each file

1.34 near_field_correction

new fiel correction of the acoustic backscatter c.f. wall 2006

Psi : (nr,1) near field correction factor

1.35 nens

number of ensembles

1.36 pitch_rad

convert raw pitch to radians

1.37 pressure_bar

convert raw pressure to bar

1.38 range2binid

convert distance to transducer to bin index

1.39 roll_rad

convert raw instrument roll angle to [rad]

1.40 rotate_velocity

rotate the velocity in the horizontal plane with respect to the
 directional
vector dir

 ${\tt dir} \; : \; {\tt direction} \; \; {\tt of} \; \; {\tt the} \; \; {\tt transect}$

1.41 rotate_velocity_sw

rotate velocity to local streamwise reference input velocity can have arbitrary reference

1.42 ship_to_earth_STATIC

converts velocity from ship to earth coordinate reference expects input arguments informat:

vel : float arbitrary unit
btvel : float same unit as vel
heading_rad: float [radians]

1.43 sort_STATIC

sort files by start time

1.44 squeeze_STATIC

cut ensembles, skip ensembles or average ensembles in time

adcp : adcp structure

dt : time between output ensembles in seconds

mode : {'average', 'skip'}

mask : selection of ensembles to keep (computed from dt if not

provided)

fprintf(1,'Progress: %g\n\% %gs\n',idx/
 nt,tlast);

1.45 temperature_offset_C

instrument specific temperature offset

1.46 to_abs

velocity magnitude

1.47 transducer_temperature_C

convert raw transducer temperature to SI units [Celsius] T : (1,nt) water temperature

1.48 verify_pc_time

verify the time stored in the data file

2 @Ensemble

2.1 Ensemble

container for ADCP ensemble data and properties

2.2 calc_beamcoords

claculate positions in world coordinates where the individual beams $% \left(1\right) =\left(1\right) +\left(1\right)$

3 @HADCP

3.1 HADCP

coverts raw data of horizontal ADCPs into physical quantities and provides functions for data processing

3.2 beam_to_instrument_STATIC

```
transform the 3 beam velocities into a set of 2 orthogonal velocities
and 1 error velocity
This uses always three beams (no two beam solutions)

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system
```

3.3 bootstrap_backscatter

bootstrap uncertainty of the backscatter parameters

3.4 calc_beam_spreading_cone

beam spreading

Note: beams spread in the form of bessel functions

this is the engineering approach as cones, which is however

not

a good approximation, it is better to approximate it as a

gaussian

3.5 calc_bin_coordinates

get the cartesian (world) coordinates of the ${\tt HADCP}$ central beam bins

3.6 calibrate_backscatter

calibrate backscatter to sediment concentration by the method of Sassi

3.7 filter_velocity

filter outliers in velocity data

3.8 firmware_fix_STATIC

3.9 fixnan

interpolate invalid bin-samples from last and next ensemble

3.10 instrument_to_beam_STATIC

transform the 3 beam velocities into a set of 2 orthogonal
velocities
and 1 error velocity
This uses always three beams (no two beam solutions)

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system

mode : beams used for all transformations
123, 12, 23, 13

3.11 reorder_velocity_STATIC

reorder the HADCP velocity data into the first three slots, the HADCP has just three beams, but the software stores data for four beams, similar to the four beam VADCPs

3.12 to_beam_STATIC

```
wrapper for conversion to beam velocity

Note that back-conversion to beam velocity is not unique in case of
3 beam

solutions (as RDI instruments doe not store which beams were used)
and

if instrument internal bin-mapping is used (whichs precise
algorithm remains
an RDI secret)
```

3.13 to_earth_STATIC

wrappter to transform velocities to world coordinate reference

3.14 to_instrument_STATIC

wrapper to convert velocity to instrument coordinate reference

3.15 to_ship_STATIC

wrapper for conversion to ship velocity

4 @VADCP

4.1 VADCP

coverts raw data of vertical ADCPs into physical quantities

4.2 assign_transect

assign transect index to ensembles $% \left(1\right) =\left(1\right) \left(1$

4.3 backscatter_report

```
human readable output of calibration properties
% fprintf(['Parameters and uncertainty with respect to 95%%
confidence\n']);
```

4.4 beam_to_instrument_STATIC

```
transform the 4 beam velocities into a set of 3 orthogonal
velocities
and 1 error velocity

input
vel : float [arbitrary unit] beam reference system
btvel : float [arbitrary unit] beam reference system
beamangle : float [radians]

output
vel and btvel [input unit] instrument reference system
```

TODO account for NaNs either by three beam solution or interpolation

4.5 bottom_track_STATIC

compute bottom track coordinates

4.6 bscalibrate

backscatter to sediment calibration

calibtation subroutine

M_ref : sediment concentration calibration values

d_k : depth of virtual reference value K

(choose close to receiver, but out of near field, e.g.

within 2m .. 4m)

 ${\tt TODO}$: better documentation of input values

TODO : rename nk into ik, bacause it is an index and not a length

TODO rename r_ref and d_k into r_1 and r_2

4.7 bsgrid

evaluate the objective function at the selected points

4.8 bsinvert

backscatter inversion

4.9 bsjackknife

compute the jackknife estimates of the parameters and their covariances $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$

4.10 bsjointcalibration

calibrate backscatter

4.11 btvel_from_position

determine boat velocity from bottom track, inverse of bottom track

4.12 calc_ssc

calculate the backscatter

4.13 cdf

compute and plot cumulative distribution (cdf) of the velocity components $% \left(\frac{1}{2}\right) =\frac{1}{2}\left(\frac{1}{2}\right) +\frac{1}{2}\left(\frac{1}{2}\right) +\frac$

4.14 convert_nFiles

convert coordinates of NMEA-nFiles

4.15 correct_coordinates

correct the bottom coordinates for pitch and roll

4.16 correct_for_platform_velocity_STATIC

correct for platform (boat) velocity, this is the negative bed velocity

4.17 depth_average_velocity

average the velocity over depth

4.18 depth_integrate

depth integrate the velocity to obtain specific discharge

${\bf 4.19} \quad {\bf depth_integrate_sediment_discharge}$

depth integrated sediment discharge

4.20 filter_velocity

filter the velocity data

4.21 fit_sediment_concentration_profile

4.22 fit_velocity_profile

fit velocity profile to the streamwise velocity

$4.23 \quad \text{map}_z$

z-mapping, i.e. correct for roll and pitch of instrument

5 @VADCP/old

5.1 assign_crossing

6 @VADCP

6.1 optstr

string of arguments, for file name generation

6.2 plot_track

plot the boat track

6.3 plot_velocity_components

plot the velocity components

6.4 process

process VADCP data

6.5 range2depth

depth below transducer for individual bins of the beams

6.6 rangemask

mask all bins in range

6.7 to

transform velocity to given reference

6.8 to_beam_STATIC

convert velocity data to beam reference

6.9 to_cs

transform velocity to cross section references cs-velocity is here defined as the velocity orthogonal to the cs % [0 1][c -s]=[-s c] % [1 0][s c] [c s]

6.10 to_earth_STATIC

transform coordinates to cartesian world reference system (earth)

6.11 to_sw

transform velocity with respect to depth averaged streamwise velocity

6.12 velocity_near_bed

velocity near the bed

6.13 xy2nts

project coordinates onto a single cross section and assign them nzcoordinates at a single cross section
TODO this should be part of transect

7 adcp

adcp : processing of Acoustic Doppler Current Profiler (ADCP) data

Processing in 3 Levels:

Level 0 : Read in of raw-data (externally provided by ADCPtools, Vermeulen et al.)

Level 1 : VADCP, HADCP, SPADCP

- convert raw data to CI units (m,s,kg)
- transform velocities to arbitrary coordinate references
- depth averaging and integration
- fit velocity profiles
- convert backscatter to suspended sediment concentration

Level 2 : CrossSection

- interpolate and integrate for cross sections

7.1 ADCP Bin

ADCP bin (single velocity values)

7.2 SPADCP

stream pro acoutic current doppler profiler

8 backscatter/@Backscatter

8.1 Backscatter

acoustic backscatter processing

8.2 backscatter2ssc

convert backscatter to suspended sediment concentration
c.f lee hanes / sassi, with linear relation for reference
 concentration

8.3 backscatter2ssc_implicit

convert backscatter to suspended sediment concentration

this is the methog called "implicit" by hanes, though it is here still implemented in an explicit way, as "explicit/imlicit" in hanes only mean euler forward or trapezoidal integration

8.4 backscatter2ssc_implicit_sample

convert backscatter to suspended sediment concentration, implicit $\tt method$

8.5 backscatter2ssc_sample

convert backscatter 2 suspended sediment concentration

8.6 backscatter2ssc_sassi

convert backscatter to suspended sediment concentration c.f. sassi

8.7 backscatter2ssc_sassi_sample

convert backscatter to suspended sediment concentration ${\tt c.f. \ sassi}$

8.8 fit

8.9 regmat

regression matrix

9 backscatter

9.1 attenuation_coefficient

```
accoustic attenuation coefficient of suspended particles hanes 2012 [d\_mm] = mm \\ [f] = Hz = 1/s
```

```
[as] = 1/m (neper)
for db : chi_db = 8.7 chi_neper
[M] = kg/m^3 = mg/l

for normalization : chis = as(M=2650)

function [as,asnu,ass,X,chi] = attenuation_coefficient(d_mm,f,M, mode)
```

9.2 backscatter_coefficient

analytic determination of the backscatter coefficient

9.3 backscatter_coefficient_2

analytic basckatter coefficient thorne 2002 thorne 2012

9.4 backscatter_form_function

acoustic backscatter form function

9.5 backscatter_to_concentration

convert acoustic backscatter to suspended sediment mass concentration backscatter S has to be corrected for attenuation

9.6 backscatter_to_concentration2

convert acoustic backscatter to sediment concentration

9.7 derive_attenuation_coefficient

9.8 normalized_particle_radius

normalized particle radius

9.9 scattering_cross_section_general

acoustic cross sectin ? of sediment particles Medwin, ch. 7.5.3
Axially Symmetric Spherical Mode Solutions

9.10 sigma_geometric

differential cross section
geometrical backscattering for spherical bodies
ka >> 1, large particles or high frequencies
k : wave number
a : radius of the particle

9.11 sigma_rayleigh

Rayleigh scattering for a sphere (ka << 1) small particles or low frequencies
Medwin 7.5.2 Rayleigh Scatter From a Sphere (ka << 1)

9.12 ssc2backscatter

convert suspended sediment concentration to backscatter
function bs = ssc2backscatter(ssc,d_mm,f,varargin)

ssc : mass concentration of sediment [ssc] = $g/1 = kg/m^3$ d_mm : grain size diameter [d_mm] = mm f : frequency [f] = Hz = 1/2

10 cross-section/@ADCP_Transect

10.1 ADCP_Transect

zero dimensional processing of ADCP data no resampling, meshing or gridding

10.2 assign_to_transect

assign ensemble to respective transects
this has a side-effect (writes to) the adcp object,
but values of induvidial cross sections remain unaffected by each
other

10.3 compare

discharge summary

10.4 detect_crossings

detect consecutive navigation of transects (channel crossings)

10.5 detect_crossings_circling

separatate individual navigation of transects,
for cases when the boat goes in circles and crosses the branches
 one after
the other before returning to the original cross section,
thus the boat does not turn at the other bank to return across the
 same section
and always navigates the cross section in the same direction

10.6 detect_crossings_returning

groups the ensembles into transects,
one transect is defined as all ensembles recorded during the time
 the boat
moved from one bank to the other (return is defined as separate
 transect)

10.7 detect_rounds

detect rounds, i.e. when boat returns to initial position

$10.8 \quad export_mmt$

export RDI mmt

10.9 extrapolate_to_bank

extrapolate values to bank

10.10 fit

10.11 integrate_discharge

integrate discharge

```
Q = sum q
q = A_n*u_s = h dn us
= h * [dx, dy]*[-v; u]
= h * dt * [-ub, -vb] * [-v; u]
```

note that uvb * dt is usually more accurate than $\ensuremath{\mathrm{d}} x$ of GPS position

if uvb determined by doppler shift of ADCP bottom echo, except when the GPS position (or velocity) is determined from the carrier frequency

note that projection can be left out, if cs is defined with
 transect individual end points,
but not recommended, if there are strong secondary currents as
 encountered at
bends or bifurcations

10.12 plot

plot the transect as a line in cartesian coordinates

10.13 plot2d

plot transects

10.14 plot_rounds

plot rounds (consecutiver transects) navigated with the boat

11 cross-section/@CrossSection

11.1 CrossSection

Level-3 ADCP data processing, projection to cross section and integration/averaging

11.2 calc_auxiliary_quant

compute auxiliary quantities

11.3 compare

interpolate for all cross-sections the values to the same time-slot for comparison $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

11.4 determine_time_slots

split data set into specific time slots

11.5 discharge

integrate the discharge over all finite elements of the cross section

11.6 extrapolate_S

extrapolate missing values along the vertical

11.7 extrapolate_backscatter

extrapolate the backscatter

11.8 extrapolate_backscatter_2d_STATIC

extrapolate backscatter to bed, surface and banks

11.9 extrapolate_bed_profile

extrapolate bed profile to channel banks

$11.10 \quad extrapolate_n$

extrapolate value beyond end of cross section

11.11 extrapolate_velocity

extrapolate the velocity to the bank, bed, and surface $% \left(1\right) =\left(1\right) \left(1\right)$

11.12 extrapolate_velocity_1d_STATIC

extrapolate depth averaged velocity

11.13 extrapolate_velocity_2d_STATIC

extrapolate velocity to banks, surface and bottom TODO, this is only applicable for Grid2

11.14 fit_bathymetry_2d

11.15 fit_bed_profile

fit the bed profile, has to precede n-z meshing of the cross-section

11.16 fit_cross_section

fit the optimal cross section as the main axis of the transect by regressing a line through the measurement points in the x-y plane

y = c0 + c1 x

11.17 fit_vertical_profile_of_velocity

```
fit vertical profile of the streamwise velocity
```

this function will work with both ensemble data, eg. U_bin taken from ensembles,

as well as gridded data, (U_bin taken from the velocity grid)

input

cs : struct : cross section averaged data

 $U_{\rm bin}$: [nrow x ncol] : vertical profiles of stream wise velocity $Z_{\rm bin}$: [nrow x ncol] : positions of bin above bottom for each

element in U_bin

ens.N : [ncolx1] : position of each column of U in along the

cross section

ens.H : [ncolx1] : depth of each column of U

dw_z0 : scalar : grid cell size for grid_n

obj.roughnessmethod : method to use for the computation

output:

 $\verb"not returned by every obj.roughnessmethod"$

11.18 fit_water_level

fit water level from depth measurement this works only if the ADCP is stationary $% \left(1\right) =\left(1\right) \left(1\right)$

11.19 generate_mesh_tn

generate 1+1D mesh over time and across section

$11.20 \quad generate_mesh_tnz$

generate a t-n-z mesh

11.21 optstr

string of options, for file name generation

11.22 plot_n_quiver

plot quiver across section

11.23 plot_nz

plot along n and z

$11.24 \quad plot_nz_quiver$

quiver plot of velocity across section

11.25 plot_tn

plot over time and across channel

11.26 plot_xyz

plot values in "val" in the 2D cross section, where the cartesian rather than the local coordinates of the cross-section are used

11.27 process_backscatter

process backscatter, i.e. fit to cross-section grid from bin-values

11.28 process_backscatter_tn

process depth integrated backscatter over time t and acrross section $\ensuremath{\mathbb{N}}$

note: backscatter is processed as flux
due to high concentration and backscatter near the bottom,
the inner rpoduct of the discharge and concentration
\bar u \bar c_s is not a good estimate of the
depth averaged sediment flux \bar{u c_s}

11.29 process_backscatter_tnz

11.30 process_discharge

process the discharge

11.31 process_velocity_tn

process the velocity data

11.32 process_velocity_tnz

process velocity data in 2+1D (time, across-section and along vertical)

11.33 summarise

summarize discharge of cross section

11.34 var_n

return value stored in field "fieldname" at position "N" in the cross section $% \left(1\right) =\left(1\right) \left(1\right) \left($

$11.35 \quad var_t$

return value stored in filed "fieldname" at time t cross sectionally integrated or averaged value

11.36 var_tn

$11.37 \quad var_tnz$

generically return value stored in field "fieldname" at time t and position $\ensuremath{\mathtt{N}}$

12 cross-section

12.1 complete_profiles

fill gaps in profiles assumes profile to be constant in time, this is not true for tidal flow in compound cross sections and near banks

12.2 define_transect

gui user selection of cross-section end points

12.3 discharge_division

discharge division ratio

12.4 discharge_summary

```
compute and store discharge summary
    q_tn = cs.q_tn(ti);
    ndx = abs(N)<=Nlim;
    Qi = cs.dw*sum(q_tn)';
    Qi_centre = cs.dw*sum(q_tn(ndx,:))';
    Q = [Q; Qi];
    Q_centre = [Q_centre; Qi_centre];</pre>
```

12.5 load_vadcp_discharge

```
load previously computed vadcp discharge (auxiliary function for
    plotting)
this function stacks data from several vadcp reference measurements
    into one structure
This assumes that all data sets where processed with the same
    settings
```

$12.6 \quad split_transect2$

13 hadcp/@HADCP_Discharge

13.1 HADCP_Discharge

superclass for HADCP discharge estimation methods

13.2 fit

fit the model parameter for HADCP discharge prediction, estimate errors with the Jacknife method

- 14 hadcp/@HDischarge
- 14.1 Hbin
- $14.2 \quad calc_specific_discharge_weights$

calculate unite discharge weights

14.3 estimate_discharge

integrate and scale specifc discharge to total discharge for each ensemble $% \left(1\right) =\left(1\right) \left(1\right)$

15 hadcp/@HIVM

15.1 HIVM

Index velocity method of Horizontal ADCP data

$16 \quad hadcp/@IVM$

16.1 IVM

index velocity method

17 hadcp

17.1 ESM

17.2 ESM_individual

17.3 SDM

Specific Discharge Method
upscale specific discharge to cross sectionally integrate discharge
,
than average
this method is provenly less accurate than averaging before
upscaling

17.4 VPM

velocity profile method
correct individual bin velocities for vertical velocity profile
 variation,
then averagem, then upscale to cross sectionally integrated
 discharge

17.5 hadcp_homogenize_profile

homogenize the hadcp profile

$17.6 \quad hadcp_homogenize_profile2$

homogenise the horizontal velocity profile

17.7 wavg

weighted average ?

17.8 wavg_mean

weighted average

17.9 wopt

optimal weights for averaging (lumped) velocities that are each associated with error variance s2

18 adcp

adcp : processing of Acoustic Doppler Current Profiler (ADCP) data

Level 0 : Read in of raw-data (externally provided by ADCPtools, Vermeulen et al.)

Level 1 : VADCP, HADCP, SPADCP

Processing in 3 Levels:

- convert raw data to CI units (m,s,kg)
- transform velocities to arbitrary coordinate references
- depth averaging and integration
- fit velocity profiles
- convert backscatter to suspended sediment concentration

Level 2 : CrossSection

- interpolate and integrate for cross sections

18.1 smooth_track

smooth a repeatedly navigated (circular) track to produce and
 idealized
average track

18.2 streawise_velocity

rotate ensembles in stream direction (transverse velocity
 integrates to zero)

19 test

19.1 example_backscatter_coefficient_2

19.2 test_backscatter_coefficient

20 adcp

```
adcp : processing of Acoustic Doppler Current Profiler (ADCP) data
Processing in 3 Levels:
Level 0 : Read in of raw-data (externally provided by ADCPtools,
   Vermeulen et al.)
Level 1: VADCP, HADCP, SPADCP
       - convert raw data to CI units (m,s,kg)
       - transform velocities to arbitrary coordinate references
       - depth averaging and integration
       - fit velocity profiles
       - convert backscatter to suspended sediment concentration
Level 2 : CrossSection
       - interpolate and integrate for cross sections
20.1 zztransform
non-linear mapping for bin coordinates when depth averages between
    ensembles
for avaraging several ensembles
       preserve discharge w int u_avg dz = int int u dz dn = Q
       perserve shear stress is the same (u_avg)^2_s = mean((u_s)^2)
       preserve sediment transport w int u_avg c_avg dz = int int u
           c dz dn
     preserve rouse number
       alternative : correct parameters for effects of averaging
 several approaches :
s-transform : z_1' = HO/H1 z_1, perserves u_bar
                              does not preserve u_* (du/dz|_0)
clipping : z_1' = z_1, z_1 < HO, does not preserve u_bar</pre>
                                   unclear if HO>H1
                                 perserves (du/dz)_0 (u_*)
zz-transform : perserve both u_bar and u_
TODO this is non-monotoneous when difference in HO and H1 is large
```