Ho; MZX Ha; MZX To (8) 6 3 4 5 To (7) 5 4 3 4 die 17/1 - 1 1 Hoi Maig = 0 Hai Mait FO S: Nay p-variables Xzjii vor 1 frat? X131: Voribb 1 con trat 1 Xzjz: vor 2 forotz X 152 (1 2 (1 (1 1 Din = X111 - X211 Dip = Xzip - Xzip Di i (Di)
Siponosi **3** − 1 --- ∩ E(D;) = (E1)

[7 = / (D) va)

 $E(D_3)$ = $\begin{pmatrix} \xi_1 \\ \vdots \\ \xi_p \end{pmatrix}$ Cov ();)= \(\frac{1}{5} \) Tespec w', independents osmines que son Sear D1--- Do $N_{p}(\{(\sum b)\})$ Entonces: T2 = (() St Dates la valore deservator d's = (dir) Podemos evolvos

Ho: & = 0 Ho: & + 0 con nivel & Usando:
Tend'Sdd men caerta
Si Ho en caerta

Diferencia de medias página 2

rechargans to S: T2> n-1pf(x) Una región de confirman 1-x de 81 Son todo las & tq. $(J-(1)^{2}S_{3}^{-1}(J-(1)) = (n-p)^{2}F_{p,n-p}(x)$ (e) I.C. Simulta reas estra dada por: $\overline{d}: \pm \left(\frac{(n-1)P}{n-P} \right) \left(\frac{Sdc}{n} \right)$ A Z Z P (X) grude & Boncerroni $J_i + \{C_{n-i}, \{C_{N-i}, C_{N-i}, C_$ Example 1: Effluent Data Commercial lab State lab of hygiene dif V1 / Sie V2 Sample j x_{2j1} (BOD) x_{2j2} (SS) (25) x_{1j1} (BOD) x_{1j2} (SS) 36 29 35 11 15 31 75 44 64 28 42 30 26 71 124 64 43 54 34 56 10 33 30 29 20 20 14 -

Example 1: Checking for a mean difference with paired observations

The T^2 -statistic for testing $H_0: \boldsymbol{\delta}' = [\delta_1, \delta_2] = [0, 0]$ is constructed from the differences of paired observations:

	J										
$d_{j1} = x_{1j1} - x_{2j1}$	-19	-22	-18	-27	-4	-10	-14	17	9	4	-19
:	12	10	42	15	-1	11	-4	60	-2	10	-7

$$\overline{\mathbf{d}} = \begin{bmatrix} \bar{d}_1 \\ \bar{d}_2 \end{bmatrix} = \begin{bmatrix} -9.36 \\ 13.27 \end{bmatrix}, \quad \mathbf{S}_d = \begin{bmatrix} 199.26 & 88.38 \\ 88.38 & 418.61 \end{bmatrix}$$

$$T^2 = 11 \left[\begin{array}{cc} -9.36, & 13.27 \end{array} \right] \left[\begin{array}{cc} .0055 & -.0012 \\ -.0012 & .0026 \end{array} \right] \left[\begin{array}{c} -9.36 \\ 13.27 \end{array} \right] = 13.6$$

For
$$\alpha = 0.05$$
: $[p(n-1)/(n-p)]F_{p,n-p}(.05) = [2(10)/9]F_{2,9}(.05) = 9.74$

Conclusion

Since $T^2 = 13.6 > 9.47$, we reject H_0 and conclude that there is a nonzero mean difference between the measurements of the two laboratories.

Example 1: Checking for a mean difference with paired observations

- ▶ It appears, that the commercial lab tends to produce lower BOD measurements and higher SS measurements than the State Lab of
- ▶ The 95% simultaneous confidence intervals for the mean differences δ_1 and δ_2 can be computed using (6-10). These intervals are

$$\delta_1: \bar{d}_1 \pm \sqrt{\frac{(n-1)p}{(n-p)}} F_{p,n-p}(\alpha) \sqrt{\frac{s_d^2}{n}} = -9.36 \pm \sqrt{9.47} \sqrt{\frac{199.26}{11}} \text{ or } \underbrace{(-22.46,3.74)}_{}$$

$$\delta_2: 13.27 \pm \sqrt{9.47} \sqrt{\frac{418.61}{11}} \text{ or } (-5.71, 32.25)$$

ightharpoonup The 95% simultaneous confidence intervals include zero, yet the hypothesis $H_0: \delta = 0$ was rejected at the 5% level. What are we to conclude?

Alterna

se pueder culcular or puttir

X = (X11) - - Xn2p (X11) - - Xn2p (X11) - - Xn2p (X11) - - Xn2p S= (S11 | S12 2p×2p (S11 | S12 P*P P×P Si yo before C = (1, 0 |-1, 0)

Px2p = (1, 0, -1) $J_j = C X_j$ S67 CSC J = CXT2=~ \\ \(\(\) \ Cos vectores çila de C se cono con vertores de contrarte. Compuración de varios tratamientos: Supongunes que le guierer comparur à tratamiento Con una variable resposator. Cata item recibe coda tratamients una

La j-ésimus doservocios es! $X_{j} = \begin{pmatrix} X_{j} \\ X_{j} \\ X_{j} \end{pmatrix}$ $\hat{J}^{z_{1}} = \begin{pmatrix} X_{j} \\ X_{j} \\ X_{j} \end{pmatrix}$ bonde Vii en la respuesta al i-ésimo tratamiento en el j-ésimo item. Para comparar les q tratamientes podens son matrices de contraste sobre (es componentes de MI-E(X;)

Gentlo (M-M2) Gento M.-M2

1 -1 0 -1 - - 0

1 0 -1 - - 0

1 0 -1 - - 0

1 0 - - 0 - 1

1 0 - - 0 - 1

1 0 - - 0 - 1 Se prede entrolier "juntour leter evolvante CMI 20 Con ente coso, las nedres muentrales son CX y la matriz de con mestades (SC) Y el astadístico de produc $T^2 = \alpha(CX)'(CX)$ Concretamente. Suponger una poblición Nop (M, Z) Sea C una matrit de contraste.

Ifa: CM +0 canvel & S: se tiere Ito: CM(20 Rechatumos (fo si: The si: (n-1)(q-1) (n-1)(q-1) (n-q+1) (n-q+1)La región de concienta para CMI Sería (CX-CM)(CSC)(CX-CM)=(n-1)(q-1)pape = (x)

Form CMI serion: C'X + Pepe CSC'

Solo inclivéa el contrade que nos
Interessos.

Example 2: Dataset

	T	Treatment							
Dog	1	2	3	4					
1	426	609	556	600					
2	253	236	392	395					
3	359	433	349	357					
4	432	431	522	600					
5	405	426	513	513					
6	324	438	507	539					
7	310	312	410	456					
8	326	326	350	504					
9	375	447	547	548					
10	286	286	403	422					
11	349	382	473	497					
12	429	410	488	547					
13	348	377	447	514					
14	412	473	472	446					
15	347	326	455	468					
16	434	458	637	524					
17	364	367	432	469					
18	420	395	508	531					
19	397	556	645	625					

Example 2:Testing for equal treatments in a repeated measures design

The data set contains the four measurements for each of the 19 dogs, where

Treatment $1 = high\ CO_2$ pressure without H

Treatment $2 = low CO_2$ pressure without H

Treatment $3 = \text{high } CO_2$ pressure with H

Treatment $4 = low CO_2$ pressure with H

We shall analyze the anesthetizing effects of ${\rm CO_2}$ pressure and halothane from this repeated-measures design.

Example 2:Testing for equal treatments in a repeated measures design

There are three treatment contrasts that might be of interest in the experiment. Let $\mu_1,\mu_2,\mu_3,$ and μ_4 correspond to the mean responses for treatments 1,2,3, and 4, respectively. Then

$$(\mu_3+\mu_4)-(\mu_1+\mu_2)=\left(\begin{array}{c} \text{Halothane contrast representing the}\\ \text{difference between the presence and}\\ \text{absence of halothane} \end{array}\right)$$

$$(\mu_1+\mu_3)-(\mu_2+\mu_4)=\left(\begin{array}{c} \mathrm{CO}_2 \text{ contrast representing the difference} \\ \text{between high and low } \mathrm{CO}_2 \text{ pressure} \end{array}\right)$$

$$(\mu_1 + \mu_4) - (\mu_2 + \mu_3) = \left(\begin{array}{c} \text{Contrast representing the influence} \\ \text{of halothane on CO_2 pressure differences} \\ (H - CO_2 \ \ \text{pressure "interaction"}) \end{array} \right)$$

With ${m \mu}' = [\mu_1, \mu_2, \mu_3, \mu_4]\,,$ the contrast matrix ${f C}$ is

From the data,

$$\overline{\mathbf{x}} = \begin{bmatrix} 368.21 \\ 404.63 \\ 479.26 \\ 502.89 \end{bmatrix} \text{ and } \mathbf{S} = \begin{bmatrix} 2819.29 \\ 3568.42 & 7963.14 \\ 2943.49 & 5303.98 & 6851.32 \\ 2295.35 & 4065.44 & 4499.63 & 4878.99 \end{bmatrix}$$