(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2002 (27.12.2002)

PCT

(10) International Publication Number WO 2002/102829 A3

(51) International Patent Classification⁷: (C12N 5/06, 5/16, C07K 16/00

G01N 33/569,

(21) International Application Number:

PCT/US2002/019220

(22) International Filing Date:

17 June 2002 (17.06.2002)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/298,098

15 June 2001 (15.06.2001) US

- (71) Applicants: INHIBITEX, INC. [US/US]; 8995 West-side Parkway, Alpharetta, GΛ (US). THE PROVOST FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEENS ELIZABETH NEAR DUBLIN [IE/IE]; Trinity Cöllege, Dublin 2 (IE). UNIVERSITA' DEGLI STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100 Pavia (IT).
- (72) Inventors: FOSTER, Timothy, J.; 70 Coolamber Park, Templeogue, Dublin 16 (IE). ROCHE, Flona; C/o The Provost Fellows and Scholars of the Colleg, e of the Holy and Undivided Trinity of Queen Eliza, beth near Dublin, Trinity College, Dublin 2 (IH). PATTI, Joseph, M.; 6680 Stratford Place, Cumming, GA 30040 (US). HUTCHINS, Jeff, T.; 1120 Quail Run Lane, Cumming, GA 30041 (US). SPEZIALE, Pietro; c/o Universita' Degli Strudi Di Pavia, Strada Nuova, 65, I-27100 Pavia (IT). PALLEN, Mark; C/o The Provost Fellows and Scholars of the Colleg, e of

the Holy and Undivided Trinity of Queen Eliza, behth Near Dublin, Trinity College, Dublin 2 (IE).

- (74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC, Suite 900, 1199 North Fairfax Street, Alexandria, VA 22314 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 25 March 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as S. hemolyticus, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between S. aureus and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

IPC(7) US CL. According to B. FIEL Minimum do: U.S.: 4	IPC(7) : G01 N 33/569; C12 N 5/06, 5/16; C07 K 16/00 US CL : 435/7.33, 326, 332, 530/388.2, 388.4 According to International Patent Classification (IPC) or to both national classification and IPC								
Documentation	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched .								
	ta base consulted during the international search (nar ontimuation Sheet	ne of data l	pase and, where practicable, s	earch terms used)					
C. DOCI	UMENTS CONSIDERED TO BE RELEVANT								
Category *	Citation of document, with indication, where ag	propriate,	of the relevant passages	Relevant to claim No.					
Y	Database SPTREMBL, Swiss Institute for Bioinform The European Bioinformatics Institute ,EBI (Cambridge Q9L470, 100% identical to SEQ.ID.NO: 21, SEQ.ID.	idge, UK)	Accession number	1-16, 19 and 21					
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QY4, 99.8% identical to SEQ.ID.NO: 18.								
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QZ2, 97.4% identical to SEQ.ID.NO: 16.								
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99XE9, 92 % identical to SEQ.ID.NO: 12.								
Further	documents are listed in the continuation of Box C.		See patent family annex.						
* S	pecial categories of cited documents:	m.L.s.	later document published after the inte	mational filing date or priority					
	defining the general state of the art which is not considered to be lar relevance		date and not in conflict with the applic principle or theory underlying the inve	ation					
•	plication or patent published on or after the international filing date	*X*	document of particular relevance; the considered novel or cannot be consider when the document is taken alone						
establish (specified)	nt which may throw doubts on priority claim(s) or which is cited to the publication date of another citation or other special reason (as "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such document, such combination								
"O" document	referring to an oral disclosure, use, exhibition or other means		being obvious to a person skilled in the	e art					
	P" document published prior to the international filing date but later than the "&" document member of the same patent family priority date claimed								
	Date of the actual completion of the international search Date of mailing of the international search Date of mailing of the international search								
	28 September 2003 (28.09.2003)								
	ailing address of the ISA/US il Stop PCT, Atto: ISA/US	Aumorize		no Frank					
	mmissioner for Patents	Padmava	athi v Baskar	ce yours!					
). Box 1450 Mandria Viccinia 22313-1450	Telephon	e No. (703)308-0196	Xn.					
Name and mailing address of the ISA/US Mail Stop PCT, Atto: ISA/US Commissioner for Patents P.O. Box 1450 Alexandria, Virginia 22313-1450 Facsimile No. (703)305-3230 Authorized officer Padmavathi v Baskar Telephone No. (703)308-0196									

Form PCT/ISA/210 (second sheet) (July 1998)

PCT/US02/19220

INTERNATIONAL SEARCH REPORT

tegory *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99UX5, 97.8 % identical to SEQ.ID.NO: 10.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99UX4, 98.8 % identical to SEQ.ID.NO: 8.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q931P4- 96.7 % identical to SEQ.ID.NO: 6 and Accession number Q99TD3, 96.6 % identical to SEQ.ID.NO: 6	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99QY4, 98.6 % identical to SEQ.ID.NO: 4.	1-16, 19 and 21
Y	Database SPTREMBL, Swiss Institute for Bioinformatics, SIB (Geneva, Switzerland), The European Bioinformatics Institute, EBI (Cambridge, UK) Accession number Q99TB0, 91.6 % identical to SEQ.ID.NO: 2.	I-16, 19 and 21
Y	OHLSEN. K. et al Effects of subinhibitory concentrations of antibiotics on alpha-toxin (hla) gene expression of methicillin-sensitive and methicillin-resistant Staphylococcus aureus isolates. Antimicrob Agents Chemother, November 1998, Vol 42, No. 11, pages 2817-2823.	1-16, 19 and 21

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/19220

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claim Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows: Please See Continuation Sheet .
1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: Please See Continuation Sheet
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

	PCT/US02/19220	
INTERNATIONAL SEARCH REPORT	·	

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION IS LACKING

This application contains the following inventions or groups of inventions 1-58 which are not so linked as to form a single general inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Groups 1-21 Claim(s) 1-14, 16, 19, 21 and 15, drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5,7,9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate.

Groups 22-33 Claims 20 and 22 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21

Groups 34-45 Claim 17drawn to a method for treating or preventing S.aureus infection using antibodies that bind to SEO.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21.

Groups 46-57 Claim 18 drawn to a method inducing an immune response using protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19 and 21.

The inventions listed as Groups 1-58 do not relate to a single general inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group 1, claim(s) 1-14, 16, 19, 21 and 15, claim(s) 1-14, 16, 19, 21 drawn to an isolated antibodies that bind to SEQ.ID.NOS: 2, diagnostic kit comprising antibody to SEQ.ID.NOS: 2, pharmaceutical compostion comprising said antibody and a method of diagnosing S.aureus infection using said antibody which is the first product and first product of use.

Pursuant to PCT Rule 13.2 the ISA/US considers that where multiple products, processes and methods are claimed, the main invention shall consists of the first invention of the category first mentioned in the claims and the first recited invention of each of the other categories related thereto. Accordingly the main invention (Group 1) comprises the first product and a method of use.

Further pursuant to PCT Rule 13.2 the ISA/US considers that any feature which the subsequently recited products and methods share with the main invention does not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention. Therefore, the groups of inventions below do not constitute a special technical feature within the meaning of PCT Rule 13.2 and that each of such products and methods accordingly defines a separate invention.

Groups 2-21 drawn to different isolated antibodies that bind to SEQ.ID.NOS: 4, 6,8,10, 12, 14, 16, 17, 18, 19, 21, nucleic acid sequence encoding amino acid sequences SEQ.ID.NOS: 1, 3, 5,7,9, 11, 13, 15, 20 and the nucleic sequences coding for the A domain of the Aap protein or degenerate that are different to each other and lack the same or corresponding special technical features because each antibody bind to a protein having a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different antibodies that bind to different polypeptides. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features.

Groups 22-33 drawn to fragment of the DsqA protein and a vaccine comprising a protein SEQ.ID.NOS: 2, 4, 6,8,10, 12, 14, 16, 17, 18, 19, and 21. These proteins are different to each other and lack the same or corresponding special technical features because each protein contains a specific amino acid sequence. They are structurally different to each other since each sequence has been identified with a specific sequence identification number that contains specific amino acids. In the instant case the different inventions represent structurally different proteins. Therefore, where structural identity is required, such as for expression, the different sequences have different effects. Thus, each sequence is unique and lacks the same or corresponding special technical features

INTERNATIONAL SEARCH REPORT

PCT/US02/19220

Groups 34-45 and 46-57 are different methods utilizing different products of antibodies or proteins that are unique and lack the same or corresponding special technical features that result in a different outcome such as preventing an infection with antibody or inducing an immune response with specific protein. These methods are different to each other in utilizing different reagents such as different polypeptides and antibodies as discussed above and thus lack the same or special technical features as explained above.

Continuation of Box II Item 3:

1-16, 19 and 21 with respect to SEQ.ID.NOS: 2, 4, 6, 8, 10, 12,16, 18, 19 and 21

Continuation of B. FIELDS SEARCHED Item 3:

SEQ.ID.NOS: 2, 4, 6, 8, 10, 12, 14, 16, 19, 17, 18 and 21 searched on MEDLINE, STN, A -GENSEQ, N-GENSEQ, EST, DERWENT, SWISS-PROT, PIR, USPTOWEST, SWISSSPTREMBL, GENEMBEL, PUBLISHED APPLICATIONS AND ISSUED PATENTS

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 December 2002 (27.12.2002)

PCT

(10) International Publication Number WO 02/102829 A2

(51) International Patent Classification7:

C07K

(21) International Application Number: PCT/US02/19220

(22) International Filing Date: 17 June 2002 (17.06.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/298,098

15 June 2001 (15.06.2001) US

- (71) Applicants: INHIBITEX, INC. [US/US]; 8995 West-side Parkway, Alpharetta, GΛ (US). THE PROVOST FELLOWS AND SCHOLARS OF THE COLLEGE OF THE HOLY AND UNDIVIDED TRINITY OF QUEENS ELIZABETH NEAR DUBLIN [IE/IE]; Trinity College, Dublin 2 (IE). UNIVERSITA' DEGLI STUDI DI PAVIA [IT/IT]; Strada Nuova, 65, I-27100 Pavia (IT).
- (72) Inventors: FOSTER, Timothy, J.; 70 Coolamber Park, Templeogue, Dublin 16 (IE). ROCHE, Fiona; C/o The Provost Fellows and Scholars of the Colleg, e of the Holy and Undivided Trinity of Queen Eliza, beth near Dublin, Trinity College, Dublin 2 (IE). PATTI, Joseph, M.; 6680 Stratford Place, Cumming, GA 30040 (US). HUTCHINS, Jeff, T.; c/o Inhibitex, Inc., 8995 Westside Parkway, alpharetta, GA 30004 (US). HALL, Andrea; c/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA 30004 (US). DOMANSKI, Paul; 2655 N. Thompson Road, Atlanta, GA 30319 (US). PATEL, Pratisksha; 895 Yosemite Drive,

Suwanee, GA 30319 (US). SYRIBEYS, Peter; C/o Inhibitex, Inc., 8995 Westside Parkway, Alpharetta, GA (US). SPEZIALE, Pietro; c/o Universita' Degli Strudi Di Pavia, Strada Nuova, 65, 1-27100 Pavia (II').

- (74) Agent: SCHULMAN, Aaron, B.; Larson & Taylor, PLC, Suite 900, 1199 North Fairfax Street, Alexandria, VA 22314 (US).
- (81) Designated States (national): AH, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, IT, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, MI, MR, NE, SN, TI), TG).

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

A2

(54) Title: CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

(57) Abstract: Polyclonal and monoclonal antibodies which are cross-reactive to both coagulase-positive staphylococcus bacteria, such as S. hemolyticus, are provided which can recognize surface proteins from both coagulase-positive and coagulase negative staph bacteria. The antibodies may be generated from surface proteins that have been isolated on the basis of characteristics that may be common between S. aureus and coagulase-negative staphylococci, and these recombinant surface proteins are used to generate the antibodies of the invention. There is also provided vaccines and methods which utilize these proteins and antibodies for the treatment or protection against a wide variety of staphylococcal infections.

CROSS-REACTIVE MONOCLONAL AND POLYCLONAL ANTIBODIES WHICH RECOGNIZE SURFACE PROTEINS FROM COAGULASE-NEGATIVE STAPHYLOCOCCI AND STAPHYLOCOCCUS AUREUS

Cross Reference to Related Applications

The present application claims the benefit of U.S. provisional application Ser. No. 60/298,098 filed June 15, 2001.

Field of the Invention

5

10

15

20

25

30

The present invention relates in general to surface proteins from Staphylococcus aureus and their active regions such as their A domains which have homologue proteins on coagulase-negative Staphylococci such as S. epidermidis and S. hemolyticus as well as antibodies which recognize said proteins, and in particular to isolated monoclonal and polyclonal antibodies which recognize specific proteins from Staphylococcus aureus and coagulase-negative Staphylococci and which are cross-reactive against S. aureus and coagulase-negative Staphylococci and can thus be utilized in vaccines and methods useful for preventing or treating a wide variety of infections caused by staphylococcal bacteria.

Background of the Invention

The successful colonization of the host is a process required for most microorganisms to cause infections in animals and humans. Microbial adhesion is the first crucial step in a series of events that can eventually lead to disease. Pathogenic microorganisms colonize the host by attaching to host tissues or serum conditioned implanted biomaterials, such as catheters, artificial joints, and vascular grafts, through specific adhesins present on the surface of the bacteria. MSCRAMM®s (Microbial Surface Components Recognizing Adhesive Matrix Molecules) are a family of cell surface adhesins that recognize and specifically bind to distinct components in the host's extracellular matrix. Once the bacteria have successfully adhered and colonized host tissues, their physiology is dramatically altered and damaging components such as toxins and proteolytic enzymes are secreted. Moreover, adherent bacteria often produce a biofilm and quickly become more resistant to the killing effect of most antibiotics.

S. aureus causes a spectrum of infections that range from cutaneous lesions such as wound infections, impetigo, and furuncles to life-threatening conditions that include pneumonia, septic arthritis, sepsis, endocarditis, and biomaterial related infections. S. aureus is known to express a repertoire of different MSCRAMMs that can act individually or in concert to facilitate microbial adhesion to specific host tissue components. In addition, another type of staphylococcus bacteria is identified as the coagulase-negative bacteria, including such species as S. epidermidis and S. hemolyticus which are also have been known to express MSCRAMMs, and which also are responsible for a wide range of bacterial infections and related diseases. In this regard, MSCRAMMs generally provide an excellent target for immunological attack by antibodies, both polyclonal and monoclonal antibodies.

However, because antibodies by nature are very specific and in the case of different types of Staphylococci, such as *S. aureus* on one hand (coagulase-positive) and *S. epidermidis* and *S. hemolyticus* on the other (coagulase-negative), it has still remained a significant problem to develop antibodies that exhibit cross-reactivity across the different types of bacteria. Such cross-reactive antibodies are particularly desirable because of their potential in immunizing human and animal patients and providing protection against infections caused by both types of Staphylococcal bacteria, namely coagulase-positive bacteria such as *S. aureus* and the coagulase-negative bacteria, such as *S. epidermidis* and *S. hemolyticus*. Such antibodies would thus be extremely useful in preventing or treating a wide variety of the infections caused by staphylococcal bacteria.

25 Summary of the Invention

10

15

20

Accordingly, it is an object of the present invention to provide monoclonal antibodies that recognize MSCRAMM®'s from both coagulase-positive bacteria such as *S. aureus* as well as MSCRAMM®'s from coagulase-negative bacteria, such as *S. epidermidis* and *S. hemolyticus*.

It is also an object of the present invention to identify and isolate MSCRAMM®'s from staphylococcal bacteria, as well as their active regions such as the A domain, which can be used to generate monoclonal and polyclonal antibodies that will be cross-reactive against both coagulase-positive and coagulase-negative staphylococci.

It is still further an object of the present invention to provide isolated antibodies that can recognize the A domain of surface proteins such as the DgsK protein from coagulase-negative staphylococci and at the same time recognize surface proteins such as the SasA protein from *Staphylococcus aureus*.

It is yet another object of the present invention to utilize the isolated proteins, A domains and antibodies of the invention to produce vaccines useful in the treatment or prevention of staphylococcal infections, and to provide methods wherein the vaccines and antibodies of the invention are used to prevent or treat a staphylococcal infection.

These and other objects are provided by virtue of the present invention which comprises the identification and isolation of surface proteins from one type of staphylococcal bacteria, such as coagulase-negative or coagulase-positive staph, which can give rise to cross-reactive antibodies which can recognize surface proteins of both types of staph and which can thus be utilized in vaccines and methods of treating or preventing a wide range of staphylococcal infections. The present invention also relates to the generation of both polyclonal and monoclonal antibodies from these surface proteins and their use in preventing or treating staphylococcal infections.

These embodiments and other alternatives and modifications within the spirit and scope of the disclosed invention will become readily apparent to those skilled in the art from reading the present specification and/or the references cited herein, all of which are incorporated by reference.

Brief Description of the Drawing Figures

5

10

15

20

25

WO 02/102829 PCT/US02/19220

Figure 1 is a depiction of the primary structure of the in silico-predicted proteins in accordance with the present invention.

Figure 2 shows a Coomassie gel of the purified N-terminal recombinant Histagged proteins expressing the orfs of the present invention.

Figures 3A-3C show Western blotting of *S. aureus* cell wall extracts showing probing with anti-KesK antibodies (Fig. 3A), anti-KnkA antibodies (Fig. 3B) and anti-DsqA antibodies (Fig. 3C), respectively.

Figures 4A-4B show Dot-blotting and Western immunoblotting of Lactococcus lactis expressing S. aureus MSCRAMM®s, namely KnkA (Fig. 4A) and KesK (Fig. 4B).

Figures 5A-5D representing the probing of recombinant LPXTG proteins in accordance with the present invention with convalescent sera examining *in vivo* expression, including RrKn and RrKN2 (Fig. 5A), Kesk1 and Kesk2A (Fig. 5B), KnkA (Fig. 5C) and DsqA2 (Fig. 5D).

Figure 6 shows a Western blot analysis demonstrating that rabbit polyclonal antibodies against *S. aureus* SasA cross-react with a protein released from the cell surface of *S. epidermidis* HB as well as the recombinant A-region from DsgK cloned from *S. epidermidis*.

20 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

10

15

25

30

In accordance with the present invention, there are provided specific surface proteins from coagulase-positive staphylococcal bacteria, such as *S. aureus* as well as from coagulase-negative staph such as *S. epidermidis* and *S. hemolyticus*, including active fragments thereof such as the A domains of these proteins or other epitotic regions which can generate antibodies that recognize the whole protein. In accordance with the invention, the identification and isolation of candidate peptide sequences and proteins was carried out based on some of the common features of the MSCRAMM®s ((Microbial Surface Components Recognizing Adhesive Matrix Molecules) which are in most cases are covalently anchored to the cell wall peptidoglycan. These surface proteins had the following common features which

were utilized in identifying and isolated the sequences of the present invention, namely: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

In accordance with the invention, by exploiting the whole genome of *S. aureus* in light of the properties as set forth above, at least eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). Table 1 illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Table 1.

5

10

15

20

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNGLLGGVMTLLVGLGLMKR KKKKDENDQDDSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK
KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLLF KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISVIVGAMGVLMIWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50. Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

WO 02/102829 PCT/US02/19220 6

In accordance with the invention, amino acid and nucleic acid sequences coding for the above proteins were obtained, and these were as follows: Ekes MRSA – SEQ ID NO:1 (DNA sequence); EkeS_MRSA – SEQ ID NO:2 (Protein sequence); DsqA (8325) – SEQ ID NO:3 (DNA sequence); DsqA (8325) – SEQ ID NO:4 (Protein sequence); KesK1 (8325) – SEQ ID NO:5 (DNA sequence); KesK1 (8325) – SEQ ID NO:6 (Protein sequence); KrkN2 (8325) – SEQ ID NO:7 (DNA sequence); KrkN2 (8325) – SEQ ID NO:8 (Protein sequence); KrkN (8325) – SEQ ID NO:9 (DNA sequence); KrkN (8325) – SEQ ID NO:10 (Protein sequence); RkaS (COL) – SEQ ID NO:11 (DNA sequence); RkaS (COL) – SEQ ID NO:12 (Protein sequence); RrkN (8325) – SEQ ID NO:13 (DNA sequence); RrkN (8325) – SEQ ID NO:14 (Protein sequence); KnkA (8325) – SEQ ID NO:15 (DNA sequence); KnkA (8325) – SEQ ID NO:16 (Protein sequence).

5

10

15

20

25

30

In accordance with the present invention, isolated antibodies may be generated from the above proteins or their active regions such as the A domain so as to be able to recognize said proteins and/or said domains. These antibodies may be either monoclonal or polyclonal. If polyclonal antibodies are desired, these may be generated in any of a number of conventional ways well known in the art. In a typical process, the desired surface protein or active region thereof may be injected into a suitable host animal, e.g., a mouse or rabbit, and after a suitable time period, antibodies may be isolated and recovered from the host animal. With regard to monoclonal antibodies, in accordance with the present invention, these may be produced in any number of suitable ways including, e.g., the well known method of Kohler and Milstein, Nature 256:495-497 (1975), or other suitable ways known in the field, such as those methods disclosed in U.S. Pat. Nos. 6,331,415; 5,981,216; 5,807,715; and 4,816,567; Eur. Pat. App. 519,596; and PCT publication WO 00/71585, all of these patent publications incorporated herein by reference. These methods include their preparation as chimeric, humanized, or human monoclonal antibodies in ways that would be well known in this field. Still further, monoclonal antibodies may be prepared from a single chain, such as the light or heavy chains, and in addition may be prepared from active fragments of an

WO 02/102829 PCT/US02/19220

antibody which retain the binding characteristics (e.g., specificity and/or affinity) of the whole antibody. By active fragments is meant an antibody fragment which has the same binding specificity as a complete antibody which binds to the particular surface protein or its homologue from the different type of staph bacteria (i.e., coagulase negative or coagulase-positive), and the term "antibody" as used herein is meant to include said fragments. Additionally, antisera prepared using monoclonal or polyclonal antibodies in accordance with the invention are also contemplated and may be prepared in a number of suitable ways as would be recognized by one skilled in the art.

10

15

20

25

30

As indicated above, antibodies to the isolated surface proteins and/or their active regions in accordance with the invention may be prepared in a number of suitable ways that would be well known in the art, such as the well-established Kohler and Milstein method described above which can be utilized to generate monoclonal antibodies. For example, in preliminary steps utilized in such a process, mice may be injected intraperitoneally once a week for a prolonged period with a purified recombinant MSCRAMM® in accordance with the invention or an active portion thereof, followed by a test of blood obtained from the immunized mice to determine reactivity to the purified protein. Following identification of mice reactive to the proteins, lymphocytes isolated from mouse spleens are fused to mouse myeloma cells to produce hybridomas positive for the antibodies against the surface proteins of the invention which are then isolated and cultured, following by purification and isotyping.

In order to generate monoclonal antibodies in accordance with the invention, it is preferred that these be generated using recombinantly prepared MSCRAMM®'s in accordance with the invention, and these recombinants may be generated and isolated using a number of standard methods well known in the art. For example, one such method employs the use of *E. coli* expression vector pQE-30 as an expression vector for cloning and expressing recombinant proteins and peptides. In one preferred method, using PCR, the A domain of the surface protein identified as DgsK or SasA was amplified from the sequences described above and subcloned

WO 02/102829 PCT/US02/19220

into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size 0.45 µm) and the cell paste frozen at -80° C. Cells were lysed in 1X PBS (10 mL buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi. Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with 5 column volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored. Fractions containing SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

Next, each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10% Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flow-through from the second pass was collected and dialyzed in 1x PBS. The

purified product was analyzed for concentration, purity and endotoxin level before administration into the mice.

In the preferred process, monoclonal antibodies in accordance with the present invention may be prepared from the recombinant proteins identified above in the following manner. In this process, *E. coli* expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described below in Table 2.

5

10

30

35

Table 2. Immunization Schemes

	RIMMS				
	Injection	Day	Amount (µg)	Route	Adjuvant
	#1	0	5	Subcutaneous	FCA/RIBI
15	#2	2	1	Subcutaneous	FCA/RIBI
	#3	4	1	Subcutaneous	FCA/RIBI
	#4	7	1	Subcutaneous	FCA/RIBI
	#5	9	1	Subcutaneous	FCA/RIBI
20	Conventional				
	Injection	Day	Amount (µg)	Route	Adjuvant
	Primary	0	5	Subcutaneous	FCA
	Boost #1	14	1	Intraperitoneal	RIBI
	Boost #2	28	. 1	Intraperitoneal	RIBI
25	Boost #3	42	1	Intraperitoneal	RIBI

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (S. *epidermidis* and *S. aureus*). Three days after the final boost, the spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. Lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.), incorporated herein by reference.

Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis. Throughout the Biacore analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis measured the relative association and disassociation kinetics of the Mab/SasA or DgsK interaction.

Next, the antibodies prepared as set forth above were tested for binding to whole bacteria. In these tests, bacterial samples S. aureus Newman, S. aureus 67-0, S. aureus 397 (Sal6), S. aureus Wood, S. aureus 8325-4, methicillin resistant S. aureus MRSA 16, S. epidermidis ATCC 35984, S. epidermidis HB, S. epidermidis CN-899 and S. haemolyticus ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F(ab')2-Anti-Mouse-F(ab')2-FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against S. aureus SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit polyclonal antibodies against S. aureus SasA cross-react with a protein released from the cell surface of S. epidermidis HB as well as the recombinant A-region from DsgK cloned from S. epidermidis (see Figure 6 and Table 3 below).

Table 3. Polyclonal Sera Reactivity

10

15

20

25

New		397	Wo	8325	MRS	ATC	,,,*	CN-	ATC
man	67-0	(SAL	od .		Α	C.	HB	899	C
 man		6)	46		16	3598			4325

WO 02/102829 PCT/US02/19220

				ar in			4	;;·	1,50	3
Normal Mouse Sera	ı	-	-	-	-	-	-	-	-	-
Mouse anti- SasA	+	+	+/-	-	+	+	+	+	+	+

Although production of antibodies using recombinant forms of the surface proteins of the present invention is preferred, antibodies may be generated from natural isolated and purified versions of these proteins or their active regions such as the A domain, and monoclonal or polyclonal antibodies can be generated using these proteins or active regions in the same manner as described above to obtain such antibodies. Still other conventional ways are available to generate the antibodies of the present invention using recombinant or natural purified proteins or their active regions, as would be recognized by one skilled in the art.

5

10

15

20

As would be recognized by one skilled in the art, the antibodies of the present invention may also be formed into suitable pharmaceutical compositions for administration to a human or animal patient in order to treat or prevent an infection caused by staphylococcal bacteria. Pharmaceutical compositions containing the antibodies of the present invention, or effective fragments thereof, may be formulated in combination with any suitable pharmaceutical vehicle, excipient or carrier that would commonly be used in this art, including such as saline, dextrose, water, glycerol, ethanol, other therapeutic compounds, and combinations thereof. As one skilled in this art would recognize, the particular vehicle, excipient or carrier used will vary depending on the patient and the patient's condition, and a variety of modes of administration would be suitable for the compositions of the invention, as would be recognized by one of ordinary skill in this art. Suitable methods of administering any pharmaceutical composition disclosed in this application include,

but are not limited to, topical, oral, anal, vaginal, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal and intradermal administration.

5

10

15

20

25

For topical administration, the composition is formulated in the form of an ointment, cream, gel, lotion, drops (such as eye drops and ear drops), or solution (such as mouthwash). Wound or surgical dressings, sutures and aerosols may be impregnated with the composition. The composition may contain conventional additives, such as preservatives, solvents to promote penetration, and emollients. Topical formulations may also contain conventional carriers such as cream or ointment bases, ethanol, or olevi alcohol. Additional, forms of antibody compositions, and other information concerning compositions, vaccines, methods and applications with regard to other MSCRAMM®s will generally also be applicable to the present invention involving the aforementioned MSCRAMM®s and their active regions and antibodies thereto, and these other MSCRAMM®s are disclosed, for example, in U.S. patents 5,175,096; 5,320,951; 5,416,021; 5,440,014; 5,571,514; 5,652,217; 5,707,702; 5,789,549; 5,840,846; 5,980,908; 6,086,895; 6,008,341; 6,177,084; 5,851,794 and 6,288,214; all of these patents incorporated herein by reference.

The antibody compositions of the present invention may also be administered with a suitable adjuvant in an amount effective to enhance the immunogenic response. For example, suitable adjuvants may include alum (aluminum phosphate or aluminum hydroxide), which is used widely in humans, and other adjuvants such as saponin and its purified component Quil A, Freund's complete adjuvant, RIBBI adjuvant, and other adjuvants used in research and veterinary applications. Still other chemically defined preparations such as muramyl dipeptide, monophosphoryl lipid A, phospholipid conjugates such as those described by Goodman-Snitkoff et al. J. Immunol. 147:410-415 (1991) and incorporated by reference herein, encapsulation of the conjugate within a proteoliposome as described by Miller et al., J. Exp. Med. 176:1739-1744 (1992) and incorporated by reference herein, and encapsulation of the protein in lipid

vesicles such as NovasomeTM lipid vesicles (Micro Vescular Systems, Inc., Nashua, NH) may also be useful.

In any event, the antibody compositions of the present invention which recognize the proteins or their active regions as set forth above will be useful in methods of preventing or treating staphylococcal infection, and in inhibiting binding of staphylococcal bacteria to host tissue and/or cells. In accordance with the present invention, methods are provided for preventing or treating a staphylococcal infection which comprise administering an effective amount of an antibody to the surface proteins as set forth herein or their active subregions so as to treat or prevent a staphylococcal infection. In addition, these monoclonal antibodies will be useful in impairing the binding of staphylococcal bacteria to host cells

5

10

15

20

25

30

Accordingly, in accordance with the invention, administration of the antibodies of the present invention in any of the conventional ways described above (e.g., topical, parenteral, intramuscular, etc.), and will thus provide an extremely useful method of treating or preventing staphylococcal infections in human or animal patients when an effective amount of the antibody compositions are administered to a human or animal patient. By effective amount is meant that level of use, such as of an antibody titer, that will be sufficient to either prevent adherence of the bacteria, to inhibit binding of staph bacteria to host cells and thus be useful in the treatment or prevention of a staph infection. As would be recognized by one of ordinary skill in this art, the level of antibody titer needed to be effective in treating or preventing staphylococcal infection will vary depending on the nature and condition of the patient, and/or the severity of the pre-existing staphylococcal infection.

In addition to use in methods or treating or preventing a staphylococcal infection, the antibodies of the invention may also be used for the specific detection of staphylococcal proteins, or as research tools. The term "antibodies" as used herein includes monoclonal, polyclonal, chimeric, single chain, bispecific, simianized, and humanized or primatized antibodies as well as Fab fragments, such as those fragments which maintain the binding specificity of the antibodies to the

WO 02/102829 PCT/US02/19220

surface proteins specified above, including the products of an Fab immunoglobulin expression library. Accordingly, the invention contemplates the use of single chains such as the variable heavy and light chains of the antibodies. Generation of any of these types of antibodies or antibody fragments is well known to those skilled in the art. In the present case, antibodies to the surface proteins or their active regions as referred to above can be generated, isolated and/or purified, and then used to treat or protect against staphylococcal infection.

5

10

15

20

25

30

Any of the above described antibodies may be labeled directly with a detectable label for identification and quantification of staph bacteria. Labels for use in immunoassays are generally known to those skilled in the art and include enzymes, radioisotopes, and fluorescent, luminescent and chromogenic substances, including colored particles such as colloidal gold or latex beads. Suitable immunoassays include enzyme-linked immunosorbent assays (ELISA).

Alternatively, the antibody may be labeled indirectly by reaction with labeled substances that have an affinity for immunoglobulin. The antibody may be conjugated with a second substance and detected with a labeled third substance having an affinity for the second substance conjugated to the antibody. For example, the antibody may be conjugated to biotin and the antibody-biotin conjugate detected using labeled avidin or streptavidin. Similarly, the antibody may be conjugated to a hapten and the antibody-hapten conjugate detected using labeled anti-hapten antibody. These and other methods of labeling antibodies and assay conjugates are well known to those skilled in the art.

In accordance with the present invention, there are also provided vaccines for either active or passive immunization designed to treat or protect against staphylococcal infections, and these vaccines may be prepared from the surface proteins or their active regions as set forth above using a number of the conventional vaccine preparation methods well known in this field. In the typical vaccine, an immunogenic amount of a suitable surface protein or active fragment thereof is combined with a suitable pharmaceutically acceptable vehicle, carrier or excipient, and an amount of this vaccine effective to immunize a human or animal

WO 02/102829 PCT/US02/19220

patient may be administered as appropriate. By immunogenic amount it would be understood by one of ordinary skill in this art that this refers to any amount of the protein or active fragment or subregion thereof which is able to raise an immunogenic response in the human or animal patient.

5

10

15

20

25

30

In addition to active vaccines wherein antibodies are generated in the patient by virtue of the introduction or administration of an immunogenic amount of a protein or active fragment in accordance with the present invention, the isolated antibodies of the present invention, or active fragments thereof, may also be utilized in the development of vaccines for passive immunization against staph infections. In such a case, the antibody compositions as described above, namely an effective amount of the antibody and a pharmaceutically acceptable vehicle, carrier or excipient, may be administered as appropriate to a human or animal patient.

Accordingly, in accordance with the invention, the proteins or active fragments thereof may be utilized as active vaccines, and the antibodies of the invention may be used as a passive vaccine which will be useful in providing suitable antibodies to treat or prevent a staphylococcal infection. As would be recognized by one skilled in this art, a vaccine may be packaged for administration in a number of suitable ways, such as by parenteral (i.e., intramuscular, intradermal or subcutaneous) administration or nasopharyngeal (i.e., intranasal) administration. One such mode is where the vaccine is injected intramuscularly, e.g., into the deltoid muscle, however, the particular mode of administration will depend on the nature of the bacterial infection to be dealt with and the condition of the patient. The vaccine is preferably combined with a pharmaceutically acceptable vehicle, carrier or excipient to facilitate administration, and the carrier is usually water or a buffered saline, with or without a preservative. The vaccine may be lyophilized for resuspension at the time of administration or in solution.

In addition, in certain cases, the antibodies of the present invention may be modified as necessary so that, when necessary, they become less immunogenic in the patient to whom it is administered. For example, if the patient is a human, the antibody may be "humanized" by transplanting the complimentarity determining

regions of the hybridoma-derived antibody into a human monoclonal antibody as described, e.g., by Jones *et al.*, *Nature* 321:522-525 (1986) or Tempest *et al. Biotechnology* 9:266-273 (1991) or "veneered" by changing the surface exposed murine framework residues in the immunoglobulin variable regions to mimic a homologous human framework counterpart as described, e.g., by Padlan, Molecular lmm. 28:489-498 (1991), these references incorporated herein by reference. Even further, when so desired, the monoclonal antibodies of the present invention may be administered in conjunction with a suitable antibiotic to further enhance the ability of the present compositions to fight bacterial infections when necessary.

10

15

20

25

30

In addition to treating human or animal patients, the present compositions may also be used to halt or prevent infection of a medical device or other biomaterials such as an implant. Medical devices or polymeric biomaterials to be coated with the antibodies, proteins and active fragments described herein include, but are not limited to, staples, sutures, replacement heart valves, cardiac assist devices, hard and soft contact lenses, intraocular lens implants (anterior chamber or posterior chamber), other implants such as comeal inlays, kerato-prostheses, vascular stents, epikeratophalia devices, glaucoma shunts, retinal staples, scleral buckles, dental prostheses, thyroplastic devices, laryngoplastic devices, vascular grafts, soft and hard tissue prostheses including, but not limited to, pumps, electrical devices including stimulators and recorders, auditory prostheses, pacemakers, artificial larynx, dental implants, mammary implants, penile implants, cranio/facial tendons, artificial joints, tendons, ligaments, menisci, and disks, artificial bones, artificial organs including artificial pancreas, artificial hearts, artificial limbs, and heart valves; stents, wires, guide wires, intravenous and central venous catheters, laser and balloon angioplasty devices, vascular and heart devices (tubes, catheters, balloons), ventricular assists, blood dialysis components, blood oxygenators, urethral/ureteral/urinary devices (Foley catheters, stents, tubes and balloons), airway catheters (endotracheal and tracheostomy tubes and cuffs), enteral feeding tubes (including nasogastric, intragastric and jejunal tubes), wound drainage tubes, tubes used to drain the body cavities such as the pleural, peritoneal, cranial, and

pericardial cavities, blood bags, test tubes, blood collection tubes, vacutainers, syringes, needles, pipettes, pipette tips, and blood tubing.

It will be understood by those skilled in the art that the term "coated" or "coating", as used herein, means to apply the antibody or active fragment, or pharmaceutical composition derived therefrom, to a surface of the device, preferably an outer surface that would be exposed to streptococcal bacterial infection. The surface of the device need not be entirely covered by the protein, antibody or active fragment.

5

10

15

20

25

30

The preferred dose for administration of an antibody composition in accordance with the present invention is that amount will be effective in preventing of treating a staphylococcal infection, and one would readily recognize that this amount will vary greatly depending on the nature of the infection and the condition of a patient. As indicated above, an "effective amount" of antibody or pharmaceutical agent to be used in accordance with the invention is intended to mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. As will be pointed out below, the exact amount of the antibody or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant being used and its mode of administration, and the like. Accordingly, the "effective amount" of any particular antibody composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation. The dose should be adjusted to suit the individual to whom the composition is administered and will vary with age, weight and metabolism of the individual. The compositions may also contain stabilizers or pharmaceutically acceptable preservatives, such as thimerosal (ethyl(2-mercaptobenzoate-S)mercury sodium salt) (Sigma Chemical Company, St. Louis, MO).

When used with suitable labels or other appropriate detectable biomolecule or chemicals, the monoclonal antibodies described herein are useful for purposes

such as *in vivo* and *in vitro* diagnosis of staphylococcal infections or detection of staphylococcal bacteria. Laboratory research may also be facilitated through use of such antibodies. Various types of labels and methods of conjugating the labels to the antibodies of the invention are well known to those skilled in the art, such as the ones set forth below.

5

10

15

20

25

30

For example, the antibody can be conjugated (directly or via chelation) to a radiolabel such as, but not restricted to, ³²P, ³H, ¹⁴C, ³⁵S, ¹²⁵I, or ¹³¹I. Detection of a label can be by methods such as scintillation counting, gamma ray spectrometry or autoradiography. Bioluminescent labels, such as derivatives of firefly luciferin, are also useful. The bioluminescent substance is covalently bound to the protein by conventional methods, and the labeled protein is detected when an enzyme, such as luciferase, catalyzes a reaction with ATP causing the bioluminescent molecule to emit photons of light. Fluorogens may also be used to label proteins. Examples of fluorogens include fluorescein and derivatives, phycoerythrin, allo-phycocyanin, phycocyanin, rhodamine, and Texas Red. The fluorogens are generally detected by a fluorescence detector.

The location of a ligand in cells can be determined by labeling an antibody as described above and detecting the label in accordance with methods well known to one skilled in the art, such as immunofluorescence microscopy using procedures such as those described by Warren et al. (*Mol. Cell. Biol.*, 7: 1326-1337, 1987).

As indicated above, the monoclonal antibodies of the present invention, or active portions or fragments thereof, are particularly useful for interfering with the initial physical interaction between a staphylococcal pathogen responsible for infection and a mammalian host, and this interference with the physical interaction may be useful both in treating patients and in preventing or reducing bacteria infection on in-dwelling medical devices to make them safer for use.

In another embodiment of the present invention, a kit which may be useful in isolating and identifying staphylococcal bacteria and infection is provided which comprises the antibodies of the present invention in a suitable form, such as lyophilized in a single vessel which then becomes active by addition of an aqueous

WO 02/102829 PCT/US02/19220

sample suspected of containing the staphylococcal bacteria. Such a kit will typically include a suitable container for housing the antibodies in a suitable form along with a suitable immunodetection reagent which will allow identification of complexes binding to the surface proteins or the antibodies of the invention. In general, these kits may contain an antibody in accordance with the invention and means to identify binding of that antibody when a sample from a patient is introduced to the antibody. For example, a suitable immunodetection reagent may comprise an appropriate detectable signal or label, such as a biotin or enzyme that produces a detectable color, etc., which may be linked to the antibody or utilized in other suitable ways so as to provide a detectable result when the antibody binds to the antigen.

In short, the antibodies of the present invention which recognize and bind to the surface proteins of the invention, or active fragments thereof, will thus be useful in treating a wide variety of staphylococcal infections in human and animal patients and in medical or other in-dwelling devices. In accordance with the invention, because of the nature of these proteins and the fact that they contain epitopes in common with proteins of the other type of staphylococcal bacteria, i.e., a protein from a coagulase-negative staph will raise antibodies that recognize a homologous protein from *S. aureus* and vice versa, the antibodies of the invention will exhibit cross-reactivity and should be effective against a broad range of staphylococcal infections. Accordingly, the present invention provides methods and compositions for improved methods of treating or protecting against a wide range of staphylococcal infections.

EXAMPLES

5

10

15

20

25

30

The following examples are provided which exemplify aspects of the preferred embodiments of the present invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes for its practice. However, those of skill in the art should, in light of the present disclosure,

appreciate that many changes can be made in the specific embodiments which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.

5 Example 1. Isolation and Sequencing of MSCRAMM's from S. Aureus

10

15

20

Staphylococcus aureus is known to express a class of surface-associated proteins which play important roles in pathogenicity by allowing bacteria to avoid host defenses and by acting as adhesins. These proteins are known as MSCRAMMs (Microbial Surface Components Recognizing Adhesive Matrix Molecules) and in most cases are covalently anchored to the cell wall peptidoglycan. They have several common features: (i) an N-terminal signal peptide (approximately 40 residues in length) required for Sec-dependent secretion, (ii) a wall spanning domain either rich in proline and glycine residues or composed of serine and aspartate dipeptide repeats, (iii) an LPXTG motif required for covalent anchoring of the protein to the pentaglycine crossbridge in peptidoglycan, (iv) a hydrophobic membrane-spanning domain followed by (v) several positively charged residues.

By exploiting the whole genome sequences of *S. aureus*, eight novel open reading frames encoding proteins with secretion and anchorage motifs indicative of MSCRAMMs were identified (i.e. bearing an N-terminal signal peptide and a C-terminal LPXTG motif followed by a hydrophobic domain and a positively charged tail). The following Table illustrates the list of proteins identified including their distribution among *S. aureus* genomes, their protein size and C-terminal cell wall sorting sequence.

Name	Distribution	Size	C-terminus
EkeS	ENCSJM	2189 aa	LPNTGSEEMDLPLKELALITGAALLARRRS KKEKES
DsqA	ENCSJM	~1363- 2283 aa	LPDTGDSIKQNGLLGGVMTLLVGLGLMKR KKKKDENDQDDSQA
KesK	ENCSJM	~909 aa	LPKTGETTSSQSWWGLYALLGMLALFIPK FRKESK

KrkN2	ENCSJM (Cowan)	~278 aa	LPKTGLTSVDNFISTVAFATLALLGSLSLLLF KRKESK
KrkN	ENCSJM	~661 aa	LPQTGEESNKDMTLPLMALIALSSIVAFVLP RKRKN
RkaS	ENCSJM	~801 aa	LPKTGTNQSSSPEAMFVLLAGIGLIATVRR RKAS
RrkN	NCSJM	1629 aa	LPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N
KnkA	NCSJM	629 aa	LPKAGETIKEHWLPISVIVGAMGVLMIWLS RRNKLKNKA

Abbreviations: eMRSA-16; N, 8325; C, COL; S, MSSA; J, N315, M, Mu50. Six out of eight are conserved in all of the six staphylococcal genomes currently sequenced and the remaining two are present in 5/6 of these genomes.

The following is a list of the DNA and protein sequences:

Ekes MRSA (SEQ ID NO:1)

5

10 acaacacagcagagaatagacaaccaggaggaaaacgaaatgaatttqttaaagaaaaataaatatagtattag aaaatataaagtagggatattctctactttaatcgggacagtittattactttcaaacccaaatggtgcacaagctttaac tacggatcataatgtgcaaggtggttcaaatcaagcattacctggcaactcacaaaatacaaatgccgatactaatc gagacatagtaaatgattcgcaaaatactcctaatgcacatgcaacagacaatacatcaacaacaatcaagcattgac taatcatcaaaacgttgatgtggcaaatcaagtcgggcctgctccaatacagcctagcgcgtcgcctgcgcaaaata ataataattotaatgotaattoaacagcaacagagccagcggaatacaaataataatttagcatcaaataacaat 15 acattaaacgtgcctaataatacagataacaatgattcagcgcgtcatctgactttaaaaagaaattcaagaagatgtt cgtcattcgtctgataagccagagttagttgcgattgctgaagaagcatctaatagaccgaaaaaagagaagcagac gtgctgcgccaacagatcctaatgcaacaccagcagatccaacggctacaccagcagatccaacggcaggaaat ggtagtgcaccagttgcaattacagcgccatacacgccaacaactgatcccaatgccaataatataggacaaaatg 20 cacctaacqaagtgctttcatttgatgataacaacattagaccaagtacgaaccgttctgtgcctacagtaactgttgtt gataatttaccaggctacacactgattaatggtggtaaagtaggggtgtttagtcatgcaatggtaagaacgagcatgt ttgattcaggagatgccaagaactatcaagcgcaaggcaatgtaattgcattgggtcgtattagaggaaatgataca aatgatcatggcgattttaatggtatcgagaaaacattaacagtaaatccgaattctgaattaatctttgaatttaatact atgactactaaaaactatcaaggtatgacaaatttaatcattaaaaaatgctgataacgatactgttattggtgaaaaag 25 tagttgcttatggtccgatttggcgcttattaaaagtacctgaaaatgttagtcatctaaaaaattcaatttgtacctaaaaat gacqcaataacagatgcacgtggtatttatcaattacgagatggatataaatactatgactttgtagactcaatcggtct tcattctgggtcacatgtctatgttgaaagacgtacaatggagccaacagcaacaaataataaagaatttacagttac gttgaatatgtaaataattcattgactaaagattttcctagcggtaattcaggtgttgatattaatgatatgaatgtgacgta 30 tgacgcagcaaatcgaattattacaattaaaagtactggtggaggtacagggaattcgccggcacgactaatgcctg ataaaatattggatttgaagtataagctacgtgtgaacaatgtgccaacaccaagaacagtaacatttaacgatacat taacgtataaaacatattcacaagattttattaattcacctgctgaaagtcatactgtaagtacaaatccatatacaattg atatcatcatgaataaagacgcattgcaagccgaagtcgatagacgaattcaacaagcggattatacatttgcatcat tagatattittaatgatettaaaagaegegeacaaacaatttagatgaaaacegtaacaatgtaeetttaaacaaaag 35 agtttctcaagcagatatcgattcattagcaaatcagatgcaacatacgttaattcgcagtgttgacgctgaaaatgcc

gttaatagaaaagttgatgacatggaagatttagttaaccaaaatgatgaactgacagatgaagaaaaacaagca gcgattcaagtcatcgaggaacataaaaatgaaattattgggaatattggtgaccaaacgactgatggcgttact agaattaaagatcaaggtatacagactttaagtggagacactgcaacaccagttgttaaaccaaatgctaaacaag 5 atgcattaaatcaattaacaacggatgaaacagatgctattgataatgttacgaatgctactaccaatgctgatgttga aacaqctaaaaataatqqtattaatacaattqqtqcaqttqcqccacaagtqacacacaaacaaqctqcaaqaqa 10 caagagatgccgtatcacatgatgcacaacagcatatcgcagagatcaatgcaaatcctgatgcgactcaagaag aaagacaagcagcaatagagaaagtaaatgctgctgtagctgttgcgaatactaatatattaaatgctaataccaat gctgatgttgagcaagtaaagacaaatgcaattcaaggtatacaagccattgaaccagctacaaaggttaaaaca gatgctaaaaacgctattgatcaaagtgcggaaacgcaacataatgcgatatttaataataatgatgcgaccttaga agagcaacaagcagcacaacaattgcttgatcaagctgtagccacagcgaagcaaaatattaatgcagcagata 15 cgaatcaagaagttgcacaagcaaaagatcagggcacacaaaatatagttgtgattcaaccggcaacacaagtta aaacggatgcacgcaatgctgtaaatgaaaaagcgcgagaggcgataacaaatatcaatgctacacctggcqcq actogagaagagaaacaagaagogataaatogtgtcaatacacttaaaaatagagcattaaatgatattggtgtga 20 caaccactgaagaaaagcaagtagcattaaatcaagtagaccaagatttagcaacggcaattaataatataaatc aagctgatactaatgcagaagtagatcaagcacaacaattaggtacaaaagcaattaatgcgattcagccaaatat tgtaaaaaaaacctgcagcattagcacaaaccaatcagcattatagtgctaaattagttgaaatcaatgctacaccag acaagcaaatacaaatgcggaagtagaccaagctgcgacagtggcagagaataatatcgatgctgttcaagttga 25 cgttgtaaaaaaacaagcagcgagataaaatcactgctgaagtagcgaagcgtattgaagcggttaaacaaa aattaatcaaaaccaaacaaatgatcaggtagacgcaactacaaatcaagcgattaatgctatagataatgttgaa gctgaagtagtaattaaaccaaaggcaattgcagatattgaaaaaagctgttaaagaaaagcaacagcaaattgat aatagtottgattoaacagataatgagaaagaagttgotttacaagcattagctaaagaaaaagaaaaagcacttg canctattnaccaanctcaaacqaatagtcaggtgaatcaaqcggcaacaaatggtgtatcagcgattaaaattatt 30 ttaatcaagataaagaagcgacagcagaagaaagacaagcggcgttagataaaatcaatgatttagttgctaaag ctatgacaaatatcacgaatgatagaacaaatcagcaagttaatgactcaacaaatcaagcgcttgacgacattgc attagtgacgctgaccatattgttagagcagctgctagagatgcagttaagcaacaatatgaagctaaaaagcac 35 gaaattgagcaagcggaacatgcgactgatgaagaaaaacaagttgctttaaatcaattagcgaataatgaaaaa cgtgcattacaaaacattaatcaagcaatagcgaataatgatgtgaaacgtgttgaatcaaatggtattgctacgttaa gaatctataaaagatacaccacatgctacgacagatgaattagatgaagcaaaccaacaaataaacgacacactt aaacaaggtcaacaagatatagacaatacgacacaagatgcagctgtcaatgatgttagaaaccaaacgattaa 40 ggcaatcgaacaaattaaaccgaaagttagacgcaaacgtgcagcgttggataacattgatgaaagtaataataat caactcgatgcaatacgaaatacgctagatacaacgcaagatgaacgaaatgttgctattgctqcgttaaataaaat tottaatgcaattaaaaatgatattgcacaaaacaaaacgaatgcagaagtggatcaaactgaggctgatggtaac aacaacatcaaagtgattttacctaaagttcaagttaaaccagcagcgcgtcaatctgtcagcgcaaaagctgaag ctcaaaatgcacttattgatcaaagtgatttatctaccgaagaagaagattagctgctaaacatttagtagaacaag 45 cacttaatcaagctattgatcagatcaatcacgcagataagactgcgcaagttaatcaaaatagtatcgatgctcaaa atattatttcaaaaattaaaccagcgacaacagttaaagcaacagcattacaacaaattcaaaatatcgctacaaat WO 02/102829 PCT/US02/19220 23

aaaattaattaattaaagcaaataacgaagcgacagatgaagaacaaaatgctgcaatagtacaagttgaaaaa acgaaattcgtgaaatcgaacctgttattaataaaaaagcaactgcgcgagaacaattaacaacattattcaacgat catttatgacactgctattggacaaattgatcaagatcgtagcaatgcacaagttgataaaacagcaacattaaatct acaaacaatacatgatttagacgtacatcctattaaaaagccagatgctgaaaaaacgattaatgatgatcttgcac gtgttacacattlagtgcaaaattatcgaaaagtaagtgatcgtaataaggctgatgcattaaaagctataactgcatt aaaattacaaatggatgaagaattaaaaacagcacgcactaatgctgatgttgatgcagttttaaaacgatttaatgtt gcattaggcgatatagaagcagtaattactgaaaaagaaaatagcttactgcgcattgataacattgctcaacaaac atatgcgaaattcaaagcgatcgcaacaccagaacaattagctaaagtaaaagcattaattgatcaatatgttgcag 10 atggcaatagaatggttgatgaagatgcgacattaaatgacatcaaaaaagatacgcaactcattattgatgaaattt tagcaattaaattacctgctgaagtgataaaagcgtcaccaaaagtggggcaacctgctccaaaagtttgtacgcct attaaaaaagaagataaacaagaagtgcgaaaagttgtaaaagaacttccaaatactggttctgaagaaatggatt taccattaaaagaattagcactaattacaggcgcagcattattagctagaagacgttctaaaaaagaaaagaatc 15 ataa

EkeS MRSA (SEQ ID NO:2)

45

MNLLKKNKYSIRKYKVGIFSTLIGTVLLLSNPNGAQALTTDHNVQGGSNQALPGNS 20 QNTNADTNRDIVNDSQNTPNAHATDNTSTNQALTNHQNVDVANQVGPAPIQPSA SPAQNNNNSNANSTATEPAANTNNNLASNNNTLNVPNNTDNNDSARHLTLKEIQE DVRHSSDKPELVAIAEEASNRPKKRSRRAAPTDPNATPADPTATPADPTAGNGSA PVAITAPYTPTTDPNANNIGQNAPNEVLSFDDNNIRPSTNRSVPTVTVVDNLPGYTL INGGKVGVFSHAMVRTSMFDSGDAKNYQAQGNVIALGRIRGNDTNDHGDFNGIEK 25 TLTVNPNSELIFEFNTMTTKNYQGMTNLIIKNADNDTVIGEKVVAYGPIWRLLKVPE NVSHLKIQFVPKNDAITDARGIYQLRDGYKYYDFVDSIGLHSGSHVYVERRTMEPT ATNNKEFTVTTSLKNNGNFGASFNTDDFVYKIQLPEGVEYVNNSLTKDFPSGNSG VDINDMNVTYDAANRIITIKSTGGGTGNSPARLMPDKILDLKYKLRVNNVPTPRTVT FNDTLTYKTYSQDFINSPAESHTVSTNPYTIDIIMNKDALQAEVDRRIQQADYTFASL 30 DIFNDLKRRAQTILDENRNNVPLNKRVSQADIDSLANQMQHTLIRSVDAENAVNRK vddmedlynqndeltdeekqaaiqvieehkneiignigdqttddgytrikdogiqtl SGDTATPVVKPNAKQAIRDKAAKQREIINHTPDATQDEIQDALNQLTTDETDAIDNV TNATTNADVETAKNNGINTIGAVAPQVTHKQAARDAINQATATKRQQINSNREATQ **EEKNAALNELTQATNHALEQINQATTNDDVDTAKGDGLNAINPIAPVTVVKQAARD** 35 AVSHDAQQHIAEINANPDATQEERQAAIEKVYAAVAVANTNILNANTNADVEQVKT NAIQGIQAIEPATKVKTDAKNAIDQSAETQHNAIFNNNDATLEEQQAAQQLLDQAVA TAKQNINAADTNQEVAQAKDQGTQNIVVIQPATQVKTDARNAVNEKAREAITNINA TPGATREEKQEAINRVNTLKNRALNDIGVTSTTAMVNSIRDDAVNQIGAVQPHVTK KQTATGVLTDLATAKKQEINQNTNATTEEKQVALNQVDQDLATAINNINQADTNAE 40 VDQAQQLGTKAINAIQPNIVKKPAALAQTNQHYSAKLVEINATPDATDDEKNAAINT LNQDRQQAIESIKQANTNAEVDQAATVAENNIDAVQVDVVKKQAARDKITAEVAKR IEAVKQTPNATDEEKQAAVNQINQLKDQAFNQINQNQTNDQVDATTNQAINAIDNV **EAEVVIKPKAIADIEKAVKEKQQQIDNSLDSTDNEKEVALQALAKEKEKALAAIDQA** QTNSQVNQAATNGVSAIKIIQPETKIKPAAREKINQKANELRAQINQDKEATAEERO

AALDKINDLVAKAMTNITNDRTNQQVNDSTNQALDDIALVTPDHIVRAAARDAVKQ QYEAKKHEIEQAEHATDEEKQVALNQLANNEKRALQNINQAIANNDVKRVESNGIA TLKGVEPHIVVKPEAQEAIKASADNQVESIKDTPHATTDELDEANQQINDTLKQGQ QDIDNTTQDAAVNDVRNQTIKAIEQIKPKVRRKRAALDNIDESNNNQLDAIRNTLDT TQDERNVAIAALNKIVNAIKNDIAQNKTNAEVDQTEADGNNNIKVILPKVQVKPAAR QSVSAKAEAQNALIDQSDLSTEEERLAAKHLVEQALNQAIDQINHADKTAQVNQNS IDAQNIISKIKPATTVKATALQQIQNIATNKINLIKANNEATDEEQNAAIVQVEKELIKA KQQIAGAVTNADVAYLLHDGKNEIREIEPVINKKATAREQLTTLFNDKKQAIEANVQ ATVEERNSILAQLQNIYDTAIGQIDQDRSNAQVDKTATLNLQTIHDLDVHPIKKPDAE KTINDDLARVTHLVQNYRKVSDRNKADALKAITALKLQMDEELKTARTNADVDAVL KRFNVALGDIEAVITEKENSLLRIDNIAQQTYAKFKAIATPEQLAKVKALIDQYVADG NRMVDEDATLNDIKKDTQLIIDEILAIKLPAEVIKASPKVGQPAPKVCTPIKKEDKQEV RKVVKELPNTGSEEMDLPLKELALITGAALLARRRSKKEKES

DsqA (8325) (SEQ ID NO:3)

15 tctaatgaatgtaaagataatacaaggagttattacatgagtaaaagacagaaagcatttcatgacagcttagcaaa cgaaaaaaacaagagtaagactttataaatctggaaaaaattgggtaaaatccggaattaaagaaatagaaatgttc aaaattatggggctaccatttattagtcatagtttagtgagtcaagataatcaaagcattagtaaaaaaatgacgggat acggactgaaaactacggcggttattggtggtgcattcacggtaaatatgttgcatgaccagcaagcttttgcggcttct gatgcaccattaacttctgaattaaacacacaaagtgaaacagtaggtaatcaaaaactcaacgacaatcgaagcat 20 caacatcaacagccgattccacaagtgtaacgaaaaatagtagttcggtacaaacatcaaatagtgacacagtctc aagtgaaaagtctgaaaaggtcacttcgacaactaatagtacaagcaatcaacaagaaaattgacatctacatc agaatcaacatcctcaaagaatactacatcaagttctgatactaaatctgtagcttcaacttcaagtacagaacaacc aattaatacatcaacaaatcaaagtactgcatcaaataacacttcacaaagcacaacgccatcttcggtcaacttaa acaaaactagcacaacgtcaactagcaccgcaccagtaaaacttcgaactttcagtcgcttagctatgtcaacatttg 25 cgtcagcagcgacgacaaccgcagtaactgctaatacaattacagttaataaagataacttaaaacaatatatgac aacgtcaggtaatgctacctatgatcaaagtaccggtattgtgacgttaacacaggatgcatacagccaaaaaggtg ctattacattaggaacacgtattgactctaataagagttttcatttttctggaaaagtaaatttaggtaacaaatatgaag ggcatggaaatggtggagatggtatcggttttgccttttcaccaggtgtattaggtgaaacagggttaaacggtgccgc agtaggtattggtggcttaagtaacgcatttggcttcaaattggatacgtatcacaatacatctaaaccaaattcagctg 30 caaaggcgaatgctgacccatctaatgtagctggtggaggtgcgtttggtgcatttgtaacaacagatagttatggtgtt gcgacaacgtatacatcaagttcaacagctgataatgctgcgaagttaaatgttcaacctacaaataacacgttcca agattttgatattaactataatggtgatacaaaggttatgactgtcaaatatgcaggtcaaacatggacacgtaatattt cagattggattgcgaaaagtggtacgaccaacttttcattatcaatgacagcctcaacaggtggcgcgacaaatttac aacaagtacaatttggaacattcgaatatacagagtctgctgttacacaagtgagatacgttgatgtaacaacaggta 35 aagatattattccaccaaaaacatattcaggaaatgttgatcaagtcgtgacaatcgataatcagcaatctgcattga ctgctaaaggatataactacacgtccgtcgatagttcatatgcgtcaacttataatgatacaaataaaactgtaaaaat gacgaatgctggacaatcagtgacatattattttactgatgtaaaagcaccaactgtaactgtaggcaatcaaaccat agaagtgggtaaaacaatgaatcctattgtattgactacaacggataatggtactgggactgtgacaaatacagttac aggattaccaagcggattaagttacgatagtgcaacgaattcaatcattgggacaccaacaaaaattggtcaatca acagtgacagttgtgtctactgaccaagcaaataacaaatcgacgacaacttttacaataaatgttgtggatacgaca gcaccaacagtgacaccaataggagatcaatcatcagaagtgtattcaccaatatccccgattaaaattgctacgca agataacagtggaaatgcggtgacgaatacagtgactggattgccatccggactaacatttgatagtacaaataata ctattagtggtacaccaacaacattggtacaagtactatatcaatcgtttctacagatgcgagcggtaacaaaacga cgacaacttttaaatatgaagtaacaagaaatagcatgagtgattccgtatcaacatcaggaagtacacaacaatct caaagtgtgtcaacaagtaaagctgactcacaaagtgcatcaacgagtacatcaggatcgattgtggtatctacatc 45 agctagtacctcgaaatcgacaagtgtaagcctatctgattctgtgagtgcatctaagtcattaagcacatctgaaagt

aatagtgtatcaagctcaacaagcacaagtttagtgaattcacaaagtgtatcatcaagcatgtcggattcagctagt aaatcaacatcattaagcgattctatttcaaactctagcagtactgaaaaatccgaaagtctatcaacaagtacatctg attcattgcgtacatcaacatcactcagtgactcattaagtatgagtacatcaggaagcttgtctaagtcacaaagctta tcaacgagtatatcagggtcgtctagtacatcagcatcattaagtgacagtacatcgaatgcaattagtacatcaacat 5 cattgagcgagtcagctagcacctcggactctatcagtatttcaaatagcatagccaactctcaaagtgcgtcaacaa gcaaatcagattcacaaagtacatcaatatcattaagtacaaqtgattcaaaatcgatgagtacatcagaatcattga gcgattcgacgagcacaagtggttctgtttctggatcactaagcatagcagcatcacaaagtgtctcaacaagtacat cagactcgatgagtacttcagagatagtaagtgactctatcagtacaagtgggtcattatctgcatcagacagtaaatc aatotccgtaagtagttcaatgagcacgtctcagtcaggtagtacatcagaatcattaagtgattcacaaagtacatct gattctgatagtaagtcattatcacaaagtactagtcaatcaggttcaacaagtacatcaacgtcgacaagtgcttcag 10 tacgtacttcggaatcacaaagtacgtctggttcaatgagtgcaagtcaatccgattcaatgagcatatcaacgtcgttt agtgattcaacgagtgatagcaaatcagcatcaactgcatcaagtgaatcaatatcacaaagtgcttctacgagcac atctggttcggtaagtacttcgacatcgttaagtacaagtaattcagaacgtacatcaacatctatgagtgattccacaa gcttaagtacatcagagtctgattcaataagtgaatcaacgtcaacgagcgactctataagtgaagcaatatctgcttc 15 agagagcacgtttatatcattaagtgaatcaaatagtactagcgattcagaatcacaaagtgcatctgcctttttaagtg aatcattaagtgaaagtacgtctgaatcaacatcagagtcagtgagtagttcgacaagtgagagtacgtcattatcag acagtacatcagaatctggtagcacatcaacatcattaagtaattcaacaagtggtagtacgtccatttcaacatcga caagtatcagtgaatcaacgtcaacgtttaagagcgagagtgtttcaacatcactgagtatgtcaacgagtacaagtt tgtctgactctacaagtttgtcaacatcattaagtgattccacaagtgatagtaagtctgattcattaagtacatcaatgtc 20 gacaagtgattcaatcagtacaagtaaatctgattccattagtacatccacatcattaagtggttctacaagtgaaagt aggaagtacaagtacgtcaacgagtacaagtttgtctgactcaacgagtacatcattgtcactaagtgcctcaatgaa gattcacaaagcacatcatcatatacaagtcagtcaacaagccaaagtgaatccacatcgacatcaacgtcactaa 25 gcgattcaacaagtatatctaaaagtacgagtcaatcaggttcggtaagcacatcagcgtcattaagtggttcagag agtgaatctgattcacaaagtatctcaacaagtgcaagtgagtcaacatcagaaagtgcgtcaacatcactcagtga ctcaacaagtacaagtaactcaggatcagcaagtacgtcaacatcgctcagtaactcagcaagcgcaagtgaatc cgatttgtcgtcaacatctttaagtgattcaacatctgcgtcaatgcaaagcagtgaatccgattcacaaagcacatca gcatcattaagtgattcgctaagtacatcaacttcaaaccgcatgtcgaccattgcaagtttatctacatcggtaagtac 30 atcagagtctggctcaacatcagaaagtacaagtgaatccgattcaacatcaacatcattaagcgattcacaaagc acatcaagaagtacaagtgcatcaggatcagcaagtacatcaacatcaacaagtgactctcgtagtacatcagctt caactagtacticgatgcgtacaagtactagtgattcacaaagtatgtcgctttcgacaagtacatcaacaagtatgag tgattcaacgtcattatctgatagtgttagtgattcaacatcagactcaacaagtgcgagtacatctggttcgatgagtgt gtctatatcgttaagtgattcgacaagtacatcaacatcggctagtgaagtaatgagcgcaagcatatctgattcacaa 35 agtatgtcagaatctgtaaatgattcagaaagtgtaagtgaatctaattctgaaagtgactctaaatcgatgagtggctc aacaagtgtcagtgattctggctcattgagcgtctcaacgtcattaagaaaatcagaaagtgtaagcgagtcaagttc attgagttgctcacaatcgatgagcgattcagtaagcacaagcgattcgtcatcattaagtgtatcgacgtcactaaga agticagaaagcgtgagtgaatctgattcattaagtgattcaaaatcaacaagtggttcgacttcaacaagtacatctg gttcattgagtacctcaacatcattaagtggttcagaaagcgtaagcgagtctacctcgctaagtgattcaatatcaatg 40 agtgattctactagtacaagtgactccgactcattaagtggatcaatatctttaagtggttccacaagtcttagcacttcg gattcattaagtgattcaaaatcattgagtagctcgcaaagtatgagtggatcagaatcaacgtcaacaagtgagc gattcgcagtcaagctcaacaagtaatagtcaatttgactctatgagcatcagtgcatcagaaagcgactcaatgtct acaagtgattcgtctagcatcagtggatcaaattcaacgagtacatcactttcaacatctgactcaatgagcggaagc gtatcagtttcaacatcgacaagtttaagtgactcaatatcaggttcaacaagtgtaagtgactcgagctcaacaagc 45 acatctacatcattaagtgattcaatgtcacaaagccagtcaacaagtacaagtgcatctggttccttaagtacatcga tatcaacatcaatgtcaatgagtgctagtacatcgtcatcacaaagcacatcggtgtcgacatcattatcaacatcag

DsqA (8325) (SEQ ID NO:4)

5

10

SNECKDNTRSYYMSKRQKAFHDSLANEKTRVRLYKSGKNWVKSGIKEIEMFKIMG 15 LPFISHSLVSQDNQSISKKMTGYGLKTTAVIGGAFTVNMLHDQQAFAASDAPLTSE LNTQSETVGNQNSTTIEASTSTADSTSVTKNSSSVQTSNSDTVSSEKSEKVTSTTN STSNQQEKLTSTSESTSSKNTTSSSDTKSVASTSSTEQPINTSTNQSTASNNTSQS TTPSSVNLNKTSTTSTSTAPVKLRTFSRLAMSTFASAATTTAVTANTITVNKDNLKQ YMTTSGNATYDQSTGIVTLTQDAYSQKGAITLGTRIDSNKSFHFSGKVNLGNKYEG 20 HGNGGDGIGFAFSPGVLGETGLNGAAVGIGGLSNAFGFKLDTYHNTSKPNSAAKA NADPSNVAGGGAFGAFVTTDSYGVATTYTSSSTADNAAKLNVQPTNNTFQDFDIN YNGDTKVMTVKYAGQTWTRNISDWIAKSGTTNFSLSMTASTGGATNLQQVQFGT FEYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQQSALTAKGYNYTSVD SSYASTYNDTNKTVKMTNAGQSVTYYFTDVKAPTVTVGNQTIEVGKTMNPIVLTTT 25 DNGTGTVTNTVTGLPSGLSYDSATNSIIGTPTKIGQSTVTVVSTDQANNKSTTTFTI NVVDTTAPTVTPIGDQSSEVYSPISPIKIATQDNSGNAVTNTVTGLPSGLTFDSTNN TISGTPTNIGTSTISIVSTDASGNKTTTTFKYEVTRNSMSDSVSTSGSTQQSQSVST SKADSQSASTSTSGSIVVSTSASTSKSTSVSLSDSVSASKSLSTSESNSVSSSTST SLVNSQSVSSSMSDSASKSTSLSDSISNSSSTEKSESLSTSTSDSLRTSTSLSDSL SMSTSGSLSKSQSLSTSISGSSSTSASLSDSTSNAISTSTSLSESASTSDSISISNSI ANSQSASTSKSDSQSTSISLSTSDSKSMSTSESLSDSTSTSGSVSGSLSIAASQSV STSTSDSMSTSEIVSDSISTSGSLSASDSKSMSVSSSMSTSQSGSTSESLSDSQST SDSDSKSLSQSTSQSGSTSTSTSTSASVRTSESQSTSGSMSASQSDSMSISTSFS DSTSDSKSASTASSESISQSASTSTSGSVSTSTSLSTSNSERTSTSMSDSTSLSTS 35 **ESDSISESTSTSDSISEAISASESTFISLSESNSTSDSESQSASAFLSESLSESTSES** TSESVSSSTSESTSLSDSTSESGSTSTSLSNSTSGSTSISTSTSISESTSTFKSESV STSLSMSTSTSLSDSTSLSDSTSDSKSDSLSTSMSTSDSISTSKSDSISTSTS LSGSTSESESDSTSSSESKSDSTSMSISMSQSTSGSTSTSTSLSDSTSTSLSLS ASMNQSGVDSNSASQSASNSTSTSTSESDSQSTSSYTSQSTSQSESTSTSTSLS DSTSISKSTSQSGSVSTSASLSGSESESDSQSISTSASESTSESASTSLSDSTSTS 40 NSGSASTSTSLSNSASASESDLSSTSLSDSTSASMQSSESDSQSTSASLSDSLST STSNRMSTIASLSTSVSTSESGSTSESTSESDSTSTSLSDSQSTSRSTSASGSAST STSTSDSRSTSASTSTSMRTSTSDSQSMSLSTSTSTSMSDSTSLSDSVSDSTSDS TSASTSGSMSVSISLSDSTSTSTSASEVMSASISDSQSMSESVNDSESVSESNSE 45 SDSKSMSGSTSVSDSGSLSVSTSLRKSESVSESSSLSCSQSMSDSVSTSDSSSLS VSTSLRSSESVSESDSLSDSKSTSGSTSTSTSGSLSTSTSLSGSESVSESTSLSDS

WO 02/102829 PCT/US02/19220 27

ISMSDSTSTSDSDSLSGSISLSGSTSLSTSDSLSDSKSLSSSQSMSGSESTSTSVS DSQSSSTSNSQFDSMSISASESDSMSTSDSSSISGSNSTSTSLSTSDSMSGSVSV STSTSLSDSISGSTSVSDSSSTSTSTSLSDSMSQSQSTSTSASGSLSTSISTSMSM SASTSSSQSTSVSTSLSTSDSISDSTSISISGSQSTVESESTSDSTSISDSESLSTSD SDSTSTSDSTSGSTSTSISESLSTSGSGSTSVSDSTSMSESNSSSVSMSQDKS DSTSISDSESVSTSTSTSLSTSDSTSTSESLSTSMSGSQSISDSTSTSMSGSTSTS ESNSMHPSDSMSMHHTHSTSTSRLSSEATTSTSESQSTLSATSEVTKHNGTPAQ ... SEKRLPDTGDSIKQNGLLGGVMTLLVGLGLMKRKKKKDENDQDDSQA

10 KesK1 (8325) (SEQ ID NO:5)

5

ttattatcaattaaatataatcttataggagttgttaacaacatgaacaacatcacccaaaattaaggtctttctattctat tagaaaatcaactctaggcgttgcatcggtcattgtcagtacactatttttaattacttctcaacatcaagcacaagcag cagaaaatacaaatacttcagataaaatctcggaaaatcaaaataataatgcaactacaactcagccacctaagg 15 atacaaatcaaacacaacctgctacgcaaccagcaaacactgcgaaaaactatcctgcagcggatgaatcactta aagatgcaattaaagatcctgcattagaaaataaagaacatgatataggtccaagagaacaagtcaatttccagtta ttagataaaaacaatgaaacgcagtactatcactttttcagcatcaaagatccagcagatgtatattacactaaaaa aaagcagaagttgaattagacatcaatactgcttcaacatggaagaagtttgaagtctatgaaaacaatcaaaaatt gccagtgagacttgtatcatatagtcctgtaccagaagaccatgcctatattcgattcccagtttcagatggcacacaa 20 gaattgaaaattgtttcttcgactcaaattgatgatgagaagaaacaaattatgattatactaaattaqtatttqctaaa aagtaatcaaacaaacacgaatacatctaatcaaaaatatatcaacgatcaacaatgctaataatcaaccgcaggc atgaaacaaattotaatggtaatactaacgataaaacgaatgagtcaagtaatcagtcggatgttaatcaacagtatc 25 caccagcagatgaatcactacaagatgcaattaaaaacccggctatcatcgataaagaacatacagctgataattg gcgaccaattgattttcaaatgaaaaatgataaaggtgaaagacagttctatcattatgctagtactgttgaaccagca actgicatttttacaaaaacaggaccaataattgaattaggtttaaagacagcttcaacatggaagaaatttgaagttt atgaaggtgacaaaaagttaccagtcgaattagtatcatatgattctgataaagattatgcctatattcgtttcccagtat ctaatggtacgagagaagttaaaattgtgtcatctattgaatatggtgagaacatccatgaagactatgattatacgcta 30 atggtctttgcacagcctattactaataacccagacgactatgtggatgaagaaacatacaatttacaaaaattattag ctccgtatcacaaagctaaaacgttagaaagacaagtttatgaattagaaaaattacaagagaaattgccagaa aaatataaggcggaatataaaaagaaattagatcaaactagagtagagttagctgatcaagttaaatcagcagtga cggaatttgaaaatgttacacctacaaatgatcaattaacagatttacaagaagcgcattttgttgttgtttttgaaagtgaa gaaaatagtgagtcagttatggacggctttgttgaacatccattctatacagcaactttaaatggtcaaaaatatgtagt 35 gatgaaaacaaaggatgacagttactggaaagatttaattgtagaaggtaaacgtgtcactactgtttctaaagatcct aaaaataattotagaacgotgattttoccatatatacotgacaaagcagtttacaatgogattgttaaagtogttgtggc aaacattggttatgaaggtcaatatcatgtcagaattataaatcaggatatcaatacaaaagatgatgatacatcaca aaataacacgagtgaaccgctaaatgtacaaacaggacaagaaggtaaggttgctgatacagatgtagctgaaa atagcagcactgcaacaaatcctaaagatgcgtctgataaagcagatgtgatagaaccagagtctgacgtggttaa 40 agatgctgataataatattgataaagatgtgcaacatgatgttgatcatttatccgatatgtcggataataatcacttcga taaatatgatttaaaagaaatggatactcaaattgccaaagatactgatagaaatgtggataaagatgccgataat agcqttggtatgtcatctaatgtcgatactgataaagactctaataaaaataaagacaaagtcatacagctgaatcat attgccgataaaaataatcatactggaaaagcagcaaagcttgacgtagtgaaacaaaattataataatacagaca aagttactgacaaaaaaacaactgaacatctgccgagtgatattcataaaactgtagataaaacagtgaaaacaa 45 aagaaaaagccggcacaccatcgaaagaaaacaaacttagtcaatctaaaatgctaccaaaaactggagaa

KesK1 (8325) (SEQ ID NO:6)

5

10

15

20

LLSIKYNLIGVVNNMNKHHPKLRSFYSIRKSTLGVASVIVSTLFLITSQHQAQAAENT NTSDKISENQNNNATTTQPPKDTNQTQPATQPANTAKNYPAADESLKDAIKDPALE NKEHDIGPREQVNFQLLDKNNETQYYHFFSIKDPADVYYTKKKAEVELDINTASTW KKFEVYENNQKLPVRLVSYSPVPEDHAYIRFPVSDGTQELKIVSSTQIDDGEETNY DYTKLVFAKPIYNDPSLVKSDTNDAVVTNDQSSSVASNQTNTNTSNQNISTINNAN NQPQATTNMSQPAQPKSSTNADQASSQPAHETNSNGNTNDKTNESSNQSDVNQ QYPPADESLQDAIKNPAIIDKEHTADNWRPIDFQMKNDKGERQFYHYASTVEPATV IFTKTGPIIELGLKTASTWKKFEVYEGDKKLPVELVSYDSDKDYAYIRFPVSNGTRE VKIVSSIEYGENIHEDYDYTLMVFAQPITNNPDDYVDEETYNLQKLLAPYHKAKTLE RQVYELEKLQEKLPEKYKAEYKKKLDQTRVELADQVKSAVTEFENVTPTNDQLTD LQEAHFVVFESEENSESVMDGFVEHPFYTATLNGQKYVVMKTKDDSYWKDLIVEG KRVTTVSKDPKNNSRTLIFPYIPDKAVYNAIVKVVVANIGYEGQYHVRIINQDINTKD DDTSQNNTSEPLNVQTGQEGKVADTDVAENSSTATNPKDASDKADVIEPESDVVK DADNNIDKDVQHDVDHLSDMSDNNHFDKYDLKEMDTQIAKDTDRNVDKDADNSV GMSSNVDTDKDSNKNKDKVIQLNHIADKNNHTGKAAKLDVVKQNYNNTDKVTDKK TTEHLPSDIHKTVDKTVKTKEKAGTPSKENKLSQSKMLPKTGETTSSQSWWGLYA LLGMLALFIPKFRKESK

KrkN2 (8325) (SEQ ID NO:7)

25

tcagctatgaaaaagattacaatgggtacagcatctatcattttaggttcccttgtatac ataggcgcagacagccaacaagtcaatgcggcaacagaagctacgaacgcaactaataat 30 ggctcttcagagaagtcacacatggatgactatatgcaacaccctggtaaagtaattaaa caaaataataaatattatttccaaaccgtgttaaacaatgcatcattctggaaagaatac aaattttacaatgcaaacaatcaagaattagcaacaactgttgttaacgataataaaaaa gcggatactagaacaatcaatgttgcagttgaacctggatataagagcttaactactaaa gtacatattgtcgtgccacaaattaattacaatcatagatatactacgcatttggaattt 35 gaaaaagcaattcctacattagctgacgcagcaaaaccaaacaatgttaaaccggttcaa ccaaaaccagctcaacctaaaacacctactgagcaaactaaaccagttcaacctaaagtt gaaaaagttaaacctactgtaactacaacaagcaaagttgaagacaatcactctactaaa gttgtaagtactgacacaacaaagatcaaactaaaacacaaactgctcatacagttaaa acagcacaaactgctcaagaacaaaataaagttcaaacacctgttaaagatgttgcaaca 40 gcgaaatctgaaagcaacaatcaagctgtaagtgataataaatcacaacaaactaacaaa gttacaaaacataacgaaacgcctaaacaagcatctaaagctaaagaattaccaaaaact • ggtttaacttcagttgataactttattagcacagttgccttcgcaacacttgccctttta ggttcattatctttattacttttcaaaagaaagaatctaaataa

45 KrkN2 (8325) (SEQ ID NO:8)

EENNMTKHYLNSKYQSEQRSSAMKKITMGTASIILGSLVYIGADSQQVNAATEATN ATNNQSTQVSQATSQPINFQVQKDGSSEKSHMDDYMQHPGKVIKQNNKYYFQTV LNNASFWKEYKFYNANNQELATTVVNDNKKADTRTINVAVEPGYKSLTTKVHIVVP QINYNHRYTTHLEFEKAIPTLADAAKPNNVKPVQPKPAQPKTPTEQTKPVQPKVEK VKPTVTTTSKVEDNHSTKVVSTDTTKDQTKTQTAHTVKTAQTAQEQNKVQTPVKD VATAKSESNNQAVSDNKSQQTNKVTKHNETPKQASKAKELPKTGLTSVDNFISTV AFATLALLGSLSLLLFKRKESK

KrkN (8325) (SEQ ID NO:9)

10

tatacaattaggagttgtttctacaacatgaacaaacagcaaaaagaatttaaatcattttattcaattagaaagtcatc actaggcgttgcatctgtagcaattagtacacttttattattaatgtcaaatggcgaagcacaagcagcagctgaaga aacaqqtqqtacaaatacagaagcacaaccaaaaactgaagcagttgcaagtccaacaacaacatctgaaaaa gctccagaaactaaaccagtagctaatgctgtctcagtatctaataaagaagttgaggcccctacttctgaaacaaa 15 agaagctaaagaagttaaagaagttaaagcccctaaggaaacaaaagaagttaaaccagcagcaaaagccac taacaatacatatcctattttgaatcaggaacttagagaagcgattaaaaaccctgcaataaaagacaaagatcata tgttaaacctgctagagttattttcactgattcaaaaccagaaattgaattaggattacaatcaggtcaatttttggagaaa atttgaagtttatgaaggtgacaaaaagttgccaattaaattagtatcatacgatactgttaaagattatgcttacattcg 20 cttctctgtatcaaacggaacaaaagctgttaaaattgttagttcaacacacttcaataacaaagaagaaaaatacg attacacattaatggaattcgcacaaccaatttataacagtgcagataaattcaaaactgaagaagattataaagctg atcacctattactgaattccaaaatgtacaaccaacaaatgaaaaaatgactgatttacaagatacaaaatatgttgtt 25 tatgaaagtgttgagaataacgaatctatgatggatacttttgttaaacaccctattaaaacaggtatgcttaacggcaa aaaatatatggtcatggaaactactaatgacgattactggaaagatttcatggttgaaggtcaacgtgttagaactata agcaaagatgctaaaaataatactagaacaattattttcccatatgttgaaggtaaaactctatatgatgctatcgttaa auttcacqtaaaaacqattqattatqatqqacaataccatqtcaqaatcqttqataaaqaaqcatttacaaaaqcca 30 aaaccaacaccatcacctgttgaaaaagaatcacaaaaacaagacagccaaaaagatgacaataaacaattac caagtgttgaaaaagaaaatgacgcatctagtgagtcaggtaaagacaaaacgcctgctacaaaaccaactaaa gatgaagtagaatcaagtagtacaactccaactaaggtagtatctacgactcaaaatgttgcaaaaccaacaactg cttcatcaaaaacaacaaaagatgttgttcaaacttcagcaggttctagcgaagcaaaagatagtgctccattacaa aaagcaaacattaaaaacacaaatgatggacacactcaaagccaaaacaataaaaatacacaagaaaataaa 35 gcaaaatcattaccacaaactggtgaagaatcaaataaagatatgacattaccattaatggcattattagctttaagta gcatcgttgcattcgtattacctagaaaacgtaaaaactaa

KrkN (8325) (SEQ ID NO:10)

40 YTIRSCFYNMNKQQKEFKSFYSIRKSSLGVASVAISTLLLLMSNGEAQAAAEETGG
TNTEAQPKTEAVASPTTTSEKAPETKPVANAVSVSNKEVEAPTSETKEAKEVKEV
KAPKETKEVKPAAKATNNTYPILNQELREAIKNPAIKDKDHSAPNSRPIDFEMKKKD
GTQQFYHYASSVKPARVIFTDSKPEIELGLQSGQFWRKFEVYEGDKKLPIKLVSYD
TVKDYAYIRFSVSNGTKAVKIVSSTHFNNKEEKYDYTLMEFAQPIYNSADKFKTEED
YKAEKLLAPYKKAKTLERQVYELNKIQDKLPEKLKAEYKKKLEDTKKALDEQVKSAI
TEFQNVQPTNEKMTDLQDTKYVVYESVENNESMMDTFVKHPIKTGMLNGKKYMV

5

METTNDDYWKDFMVEGQRVRTISKDAKNNTRTIIFPYVEGKTLYDAIVKVHVKTIDY DGQYHVRIVDKEAFTKANTDKSNKKEQQDNSAKKEATPATPSKPTPSPVEKESQK QDSQKDDNKQLPSVEKENDASSESGKDKTPATKPTKGEVESSSTTPTKVVSTTQ NVAKPTTASSKTTKDVVQTSAGSSEAKDSAPLQKANIKNTNDGHTQSQNNKNTQE NKAKSLPQTGEESNKDMTLPLMALLALSSIVAFVLPRKRKN

RkaS (COL) (SEQ ID NO:11)

tttataaataatttacataaaatcaatcattttaatataaggattatgataatatattggtgtatgacagttaatggaggga acgaaatgaaagctttattacttaaaacaagtgtatggctcgttttgctttttagtgtaatgggattatggcaagtctcgaa 10 cgcggctgagcagcatacaccaatgaaagcacatgcagtaacaacgatagacaaagcaacaacagataagca cagggaacagctgatgatacaaacagcaaagtaacatccaacgcaccatctaacaaaccatctacagtagtttca acaaaagtaaacgaaacacgcgacgtagatacacaacaagcctcaacacaaaaaccaactcacacagcaac 15 taaaatattacatacaaatgatatccatggccgactagccgaagaaaaagggcgtgtcatcggtatggctaaattaa aaacagtaaaagaacaagaaaagcctgatttaatgttagacgcaggagacgccttccaaggtttaccactttcaaa ccaqtctaaaggtgaagaaatggctaaagcaatgaatgcagtaggttatgatgctatggcagtcggtaaccatgaat ttgactttggatacgatcagttgaaaaagttagagggtatgttagacttcccgatgctaagtactaacgtttataaagatg 20 gaaaacgcgcgtttaagccttcaacgattgtaacaaaaaatggtattcgttatggaattattggtgtaacgacaccag aaacaaagacgaaaacaagacctgaaggcattaaaggcgttgaatttagagatccattacaaagtgtgacagcg qaaatqatqcqtatttataaaqacqtagatacatttgttgttatatcacatttaggaattgatccttcaacacaagaaaca togcgtggtgattacttagtgaaacaattaagtcaaaatccacaattgaagaaacgtattacagttattgatggtcattc acatacagtacttcaaaatggtcaaatttataacaatgatgcattggcacaaacaggtacagcacttgcgaatatcgg 25 taagattacatttaattatcgcaatggagaggtatcgaatattaaaccgtcattgattaatgttaaagacgttgaaaatgt aacaccgaacaaagcattagctgaacaaattaatcaagctgatcaaacatttagagcacaaactgcagaggtaat tattccaaacaataccattgatttcaaaggagaaagagatgacgttagaacgcgtgaaacaaatttaggaaacgcg ttcgtgcctctatcgcaaaaggtaaggtgacacgctatgatttaatctcagtattaccatttggaaatacgattgcgcaa attgatgtaaaaggttcagacgtcttggacggctttcgaacatagtttaggcgcaccaacaacacaaaaggacggta .30 gcaaacgaattaatgctattcaaattttaaataaagagacaggtaagtttgaaaatattgatttaaaacgtgtatatcac ttagatcaagtactagcaagttatttaaaaacagctaacttagctaagtatgatacgacagaaccacaacgtatgttat 35 taggtaaaccagcagtaagtgaacaaccagctaaaggacaacaaggtagcaaaggtagtaattagtaagtctggtaaagat acacaaccaattggtgacgacaaagtgatggatccagcgaaaaaaccagctccaggtaaagttgtattgttgctag gtgggaaacaattggctagaatgtcagtgcctaaaggtagcgcgcatgagaaacagttaccaaaaactggaacta atcaaagttcaagcccagaagcgatgtttgtattattagcaggtataggtttaatcgcgactgtacgacgtagaaaag 40 ctagctaa

RkaS (COL) (SEQ ID NO:12)

45 FINNLHKINHFNIRIMIIYWCMTVNGGNEMKALLLKTSVWLVLLFSVMGLWQVSNAA EQHTPMKAHAVTTIDKATTDKQQVPPTKEAAHHSGKEAATNVSASAQGTADDTN SKVTSNAPSNKPSTVVSTKVNETRDVDTQQASTQKPTHTATFKLSNAKTASLSPR MFAANAPQTTTHKILHTNDIHGRLAEEKGRVIGMAKLKTVKEQEKPDLMLDAGDAF QGLPLSNQSKGEEMAKAMNAVGYDAMAVGNHEFDFGYDQLKKLEGMLDFPMLS TNVYKDGKRAFKPSTIVTKNGIRYGIIGVTTPETKTKTRPEGIKGVEFRDPLQSVTA EMMRIYKDVDTFVVISHLGIDPSTQETWRGDYLVKQLSQNPQLKKRITVIDGHSHT VLQNGQIYNNDALAQTGTALANIGKITFNYRNGEVSNIKPSLINVKDVENVTPNKAL AEQINQADQTFRAQTAEVIIPNNTIDFKGERDDVRTRETNLGNAIADAMEAYGVKN FSKKTDFAVTNGGGIRASIAKGKVTRYDLISVLPFGNTIAQIDVKGSDVWTAFEHSL GAPTTQKDGKTVLTANGGLLHISDSIRVYYDINKPSGKRINAIQILNKETGKFENIDL KRVYHVTMNDFTASGGDGYSMFGGPREEGISLDQVLASYLKTANLAKYDTTEPQR MLLGKPAVSEQPAKGQQGSKGSKSGKDTQPIGDDKVMDPAKKPAPGKVVLLLAH RGTVSSGTEGSGRTIEGATVSSKSGKQLARMSVPKGSAHEKQLPKTGTNQSSSP EAMFVLLAGIGLIATVRRRKAS

15

10

RrkN (8325) (SEQ ID NO:13)

atcaaataaattgaataaatattcaataagaaaatttacagttggaacagcatctattttaattggctcactaatgtatttg 20 ggaactcaacaagaggcagaagcagctgaaaacaatattgagaatccaactacattaaaagataatgtccaatc aaaagaagtgaagattgaagaagtaacaaacaaagacactgcaccacagggtgtagaagctaaatctgaagta acttcaaacaaagacacaatcgaacatgaaccatcagtaaaagctgaagatatatcaaaaaaggaggatacac aaaagctcottctgttgatgaaggctcttttgatattacaagagattctaaaaaatgtagttgaatctaccccaattacaatt 25 taaccaggtttaatgttggtaatgaaagtaatggtttgataggagctttacaattaaaaaataaaatagattttagtaag aaaggaaatgcagaagaatatttaactaatggtggaatccttggggataaaggtctggtaaattcaggcggatttaa gagcttttgtgaaaaatgacagttctggtaattcacaaatggttggagaaaatattgataaatcaaaaactaattttttaa 30 actatgcggacaattcaactaatacatcagatggaaagtttcatgggcaacgtttaaatgatgtcatcttaacttatgttg cttcaactggtaaaatgagagcagaatatgctggtaaaacttgggagacttcaataacagatttaggtttatctaaaaa tcaggcatataatttcttaattacatctagtcaaagatggggccttaatcaagggataaatgcaaatggctggatgaga actgacttgaaaggttcagagtttacttttacaccagaagcgccaaaaacaataacagaattagaaaaaaagttg 35 aagagattccattcaagaaagaacgtaaatttaatccggatttagcaccagggacagaaaaagtaacaagagaa ggacaaaaaggtgagaagacaataacgacaccaacactaaaaaatccattaactggagtaattattagtaaaggt gaaccaaaagaagagattacaaaagatccgattaatgaattaacagaatacggacctgaaacaatagcgccag gtcatcgagacgaatttgatccgaagttaccaacaggagagaaagaggaagttccaggtaaaccaggaattaag aatccagaaacaggagacgtagttagaccgccggtcgatagcgtaacaaaatatggacctgtaaaaggagactc 40 gattgtagaaaaagaagagattccattcgagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaa gtaacaagagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaa attattagtaaaggtgaatcgaaagaagaaatcacaaaagatccgattaatgaattaacagaatacggaccagaa acqataacaccaggtcatcgagacgaatttgatccgaagttaccaacaggagagaaagaggaagttccaggtaa accaggaattaagaatccagaaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgt 45 gggacagaaaaagtaacaagagaaggacaaaaaggtgagaaqacaataacgacaccaacactaaaaaatc

cattaactggagtaattattagtaaaggtgaaccaaaagaagaaatcacaaaagatccgattaatgaattaacaga gaagttccaggtaaaccaggaattaagaatccagaaacaggagacgtagttagaccaccggtcqatagcgtaac 5 ccqqatttagcaccagggacagaaaaagtaacaagaggacaaaaaaggtgagaagacaataacgacgcc aacactaaaaaaatccattaactggagaaattattagtaaaggtgaatcgaaagaagaaatcacaaaagatccgat taatgaattaacagaatacggaccagaaacgataacaccaggtcatcgagacgaatttgatccgaagttaccaac aggagagaaagaggaagttccaggtaaaccaggaattaagaatccagaaacaggagatgtagttagaccaccg gtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtagaaaaagaagagattccattcgagaaa 10 gaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaagagaaggacaaaaaggtgagaaga caataacgacgccaacactaaaaaatccattaactggagaaattattagtaaaggtgaatcgaaagaagaaatca caaaagatccgattaatgaattaacagaatacggaccagaaacgataacaccaggtcatcgagacgaatttgatc cgaagttaccaacaggagagaaagaggaagttccaggtaaaccaggaattaagaatccagaaacaggagaca tagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtagaaaaagaagaaa 15 ttccattcaagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaagagaaggacaaa aaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaaattattagtaaaggtgaatcga aagaagaaatcacaaaagatccgattaatgaattaacagaatacggaccagaaacgataacaccaggtcatcg agacgaatttgatccgaagttaccaacaggagagaaagaggaagttccaggtaaaccaggaattaagaatccag aaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaggagactcgattgtag 20 aaaaagaagaaattccattcgagaaagaacgtaaatttaatcctgatttagcaccagggacagaaaaagtaacaa gagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaatccattaactggagaaattattagt aaaggtgaatcgaaagaagaaatcacaaaagatccgattaatgaattaacagaatacggaccagaaacgataa caccaggtcatcgagacgaatttgatccgaagttaccaacaggagagaaagaggaagttccaggtaaaccagga attaagaatccagaaacaggagatgtagttagaccaccggtcgatagcgtaacaaaatatggacctgtaaaaagga 25 aaaaagtaacaagagaaggacaaaaaggtgagaagacaataacgacgccaacactaaaaaaatccattaactg gagaaattattagtaaaggtgaatcgaaagaagaaatcacaaaagatccagttaatgaattaacagaattcggtgg cgagaaaataccgcaaggtcataaagatatctttgatccaaacttaccaacagatcaaacggaaaaagtaccagg taaaccaggaatcaagaatccagacacaggaaaagtgatcgaagagccagtggatgatgtgattaaacacgga 30 ccaaaaacgggtacaccagaaacaaaaacagtagagataccgtttgaaacaaaacgtgagtttaatccaaaatt acaacctggtgaagagcgagtgaaacaagaaggacaaccaggaagtaagacaatcacaacaccaatcacagt gattgtagagttcggtggagagaaaccaaaagatccaaaaggacctgaaaacccagagaagccgagcagacc aactcatccaagtggcccagtaaatcctaacaatccaggattatcgaaagacagagcaaaaccaaatggcccagt 35 tcattcaatggataaaaatgataaagttaaaaatctaaaattgctaaagaatcagtagctaatcaagagaaaaaa cgagcagaattaccaaaaacaggtttagaaagcacgcaaaaaggtttgatctttagtagtataattggaattgctgga ttaatgttattggctcgtagaagaagaattaa

RrkN (8325) (SEQ ID NO:14)

40

45

SGKYGKRSMQMRDKKGPVNKRVDFLSNKLNKYSIRKFTVGTASILIGSLMYLGTQ QEAEAAENNIENPTTLKDNVQSKEVKIEEVTNKDTAPQGVEAKSEVTSNKDTIEHE PSVKAEDISKKEDTPKEVADVAEVQPKSSVTHNAETPKVRKARSVDEGSFDITRDS KNVVESTPITIQGKEHFEGYGSVDIQKKPTDLGVSEVTRFNVGNESNGLIGALQLK NKIDFSKDFNFKVRVANNHQSNTTGADGWGFLFSKGNAEEYLTNGGILGDKGLVN SGGFKIDTGYIYTSSMDKTEKQAGQGYRGYGAFVKNDSSGNSQMVGENIDKSKT

NFLNYADNSTNTSDGKFHGQRLNDVILTYVASTGKMRAEYAGKTWETSITDLGLS KNQAYNFLITSSQRWGLNQGINANGWMRTDLKGSEFTFTPEAPKTITELEKKVEEI PFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGVIISKGEPKEEITKDPI NELTEYGPETIAPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKY 5 **GPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEII** SKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETG DVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGOKGEK TITTPTLKNPLTGVIISKGEPKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKE **EVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFKKERKFNPDLAPG** 10 **TEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETITPGH** RDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIP FEKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPIN ELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGDVVRPPVDSVTKYG PVKGDSIVEKEEIPFKKERKFNPDLAPGTEKVTREGQKGEKTITTPTLKNPLTGEIIS KGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEEVPGKPGIKNPETGD 15 VVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGTEKVTREGQKGEKTI TTPTLKNPLTGEIISKGESKEEITKDPINELTEYGPETITPGHRDEFDPKLPTGEKEE **VPGKPGIKNPETGDVVRPPVDSVTKYGPVKGDSIVEKEEIPFEKERKFNPDLAPGT** EKVTREGQKGEKTITTPTLKNPLTGEIISKGESKEEITKDPVNELTEFGGEKIPQGH KDIFDPNLPTDQTEKVPGKPGIKNPDTGKVIEEPVDDVIKHGPKTGTPETKTVEIPF 20 **ETKREFNPKLQPGEERVKQEGQPGSKTITTPITVNPLTGEKVGEGQPTEEITKQPV** DKIVEFGGEKPKDPKGPENPEKPSRPTHPSGPVNPNNPGLSKDRAKPNGPVHSM DKNDKVKKSKIAKESVANQEKKRAELPKTGLESTQKGLIFSSIIGIAGLMLLARRRK N 25

KnkA (8325) (SEQ ID NO:15)

ggaaggagtatgttgatggctaaatatcgagggaaaccgtttcaattatatgtaaagttatcgtattcgacaatgatggc gacaagtatcattttaacgaatatcttgccgtacgatgcccaagctgcatctgaaaaggatactgaaattacaaaaga 30 gatattatctaagcaagatttattagacaaagttgacaaggcaattcgtcaaattgagcaattaaaacagttatcggctt catctaaagaacattataaagcacaactaaatgaagcgaaaacagcatcgcaaatagatgaaatcataaaacga gctaatgagttggatagcaaagacaataaaagttctcacactgaaatgaacggtcaaagtgatatagacagtaaatt agatcaattgcttaaagatttaaatgaggtttcttcaaatgttgataggggtcaacaaagtggcgaggacgatcttaat gcaatgaaaaatgatatgtcacaaacggctacaacaaaacatggagaaaaagatgataaaaatgatgaagca 35 atggtaaataaggcgttagaagacctagaccatttgaatcagcaaatacacaaatcgaaagatgcatcgaaagat acatcggaagatccagcagtgtctacaacagataataatcatgaagtagctaaaacgccaaataatgatggttctg gacatgttgtgttaaataaattcctttcaaatgaagagaatcaaagccatagtaatcgactcactgataaattacaagg aagcgataaaattaatcatgctatgattgaaaaattagctaaaagtaatgcctcaacgcaacattacacatatcataa actgaatacgttacaatctttagatcaacgtattgcaaatacgcaacttcctaaaaaatcaaaaatcagacttaatgagc 40 gaagtaaataagacgaaagagcgtataaaaagtcaacgaaatattattttggaagaacttgcacgtactgatgata aaaagtatgctacacaaagcattttagaaagtatatttaataaagacgaggcagttaaaattctaaaagatatacgt gttgatggtaaaacagatcaacaaattgcagatcaaattactcgtcatattgatcaattatctctgacaacgagtgatg atttattaacgtcattgattgatcaatcacaagataagtcgctattgatttctcaaattttacaaacgaaattaggaaaag ctgaagcagataaattggctaaagattggacgaataaaggattatcaaatcgccaaatcgttgaccaattgaagaa 45 acattttgcatcaactggcgacacgtcttcagatgatatattaaaagcaattttgaataatgccaaagataaaaaaca agcaattgaaacgattttagcaacacgtatagaaagacaaaaggcaaaattactggcagatttaattactaaaata

gaaacagatcaaaataaaattttaatttagttaaatcggcattgaatggtaaagcggatgatttattgaatttacaaaa gagactcaatcaaacgaaaaaagatatagattatattttatcaccaatagtaaatcgtccaagtttactagatcgattgaataaaatgggaaaacgacagatttaaataagttagcaaatttaatgaatcaaggatcagatttattagacagtatt ccagatatacccacaccaaagccagaaaagacgttaacacttggtaaaggtaatggattgttaagtggattattaaa tgctgatggtaatgtatctttgcctaaagcgggggaaacgataaaagaacattggttgccgatatctgtaattgttggtg caatgggtgtactaatgatttggttatcacgacgcaataagttgaaaaataaagcataa

KnkA (8325) (SEQ ID NO:16)

10 GRSMLMAKYRGKPFQLYVKLSCSTMMATSIILTNILPYDAQAASEKDTEITKEILSK QDLLDKVDKAIRQIEQLKQLSASSKEHYKAQLNEAKTASQIDEIIKRANELDSKDNK SSHTEMNGQSDIDSKLDQLLKDLNEVSSNVDRGQQSGEDDLNAMKNDMSQTATT KHGEKDDKNDEAMVNKALEDLDHLNQQIHKSKDASKDTSEDPAVSTTDNNHEVA KTPNNDGSGHVVLNKFLSNEENQSHSNRLTDKLQGSDKINHAMIEKLAKSNASTQ HYTYHKLNTLQSLDQRIANTQLPKNQKSDLMSEVNKTKERIKSQRNIILEELARTDD KKYATQSILESIFNKDEAVKILKDIRVDGKTDQQIADQITRHIDQLSLTTSDDLLTSLID QSQDKSLLISQILQTKLGKAEADKLAKDWTNKGLSNRQIVDQLKKHFASTGDTSSD DILKAILNNAKDKKQAIETILATRIERQKAKLLADLITKIETDQNKIFNLVKSALNGKAD DLLNLQKRLNQTKKDIDYILSPIVNRPSLLDRLNKNGKTTDLNKLANLMNQGSDLLD SIPDIPTPKPEKTLTLGKGNGLLSGLLNADGNVSLPKAGETIKEHWLPISVIVGAMG VLMIWLSRRNKLKNKA

Primary structure analysis:

25

30

A bioinformatic approach was used for primary structure and function prediction (Figure 1). Proteins RrkN and DsqA possessed a similar structural organization to previously described MSCRAMMs. RrkN is similar in structure to the Pls/Aap proteins of *S. aureus* and *S. epidermidis*, respectively. It contains a 200-residue domain at its N-terminus showing 40% identity to Pls and Aap. The C-terminus of the protein is predominantly composed of a 128 residue repeat domain, which varies in the numbers of repeats from strain to strain. These repeats are also present in Pls and Aap. A putative *sar* homolog and *fnbpA* and *fnbpB* lie directly upstream from RrkN on the genome.

35

DsqA is similar in structural organization to the Sdr family of proteins. It contains a typical A domain followed by a TYYFTDVK motif which is similar to a conserved TYTFTVYVD motif found in all of the Sdr proteins. The function of this motif has yet to be determined. Two 88 residue repeat domains reside in the centre of the protein

WO 02/102829 PCT/US02/19220 35

followed by a C-terminal SX-repeat motif similar to the SD-repeat motif found in the Sdr proteins. The size of this repeat varies from strain to strain. DsqA neighbors secY and secA on the genome. A DsqA homolog (>90% identical) is also found in S. epidermidis.

5

10

15

20

KnkA contains no repeat domains in its sequence. Secondary structure prediction analysis indicate that this protein is predominantly composed of alpha-helices.

RkaS contains no repeat domains in its sequence. BLAST analysis indicates that it is similar to a 5' nucleotidase UDP-sugar hydrolase. The gene encoding RkaS lies directly upstream from *orfX*, the insertion site of the *mec* element.

KesK contains two 140 residue repeat domains at the N-terminus of the protein which are 38% identical. Hydropathy plot analysis (Kyte and Doolittle, 1982) indicates that there is a large hydrophilic domain in the center of the protein (residue 500-560).

EkeS contains two 300 residue repeat domains in the center of the protein which are 38% identical. Blast analysis indicates that the N-terminus of the protein (residues 1-1268, bearing both repeats) is 49% identical to FmtB, an LPXTG protein with 17 tandem repeats. FmtB is proposed to be involved indirectly in methicillin resistance as inactivation of *fmtB* abolishes methicillin resistance. This appears to be due to affecting cell wall composition as methicillin sensitivity can be relieved by increasing the production of the cell wall precursor glucosamine-1-phosphate (Komatsuzawa *et al.*, 2000).

KrkN and KrkN2 neighbor each other on the genome.

Expression analysis:

25

Due to lack of sequence homology with protein databases, a putative function for each of these proteins could not be predicted and hence a molecular approach was taken. Unique regions of four of the *orfs* were expressed in *E. coli* as recombinant his-tagged fusion proteins using the Qiagen pQE-30 expression system. Figure 2. represents a Coomassie stained SDS-PAGE gel of the purified N-terminal his-tag fusion proteins. The recombinant proteins RrkN1, DsqA2, KesK1 and KnkA were used to generate antibodies in rabbits. Western blotting analysis of *S. aureus* cell wall extracts revealed that KesK, KnkA and DsqA are expressed and cell wall-associated (Figure 3). Strain eMRSA-16 represents a *knkA*-negative strain since it lacks the *knkA* gene. An immunoreactive band of 65kDa reacts with the cell wall fraction from both exponential and stationary phase cells of strain 8325-4 (Figure 3, B). The absence of this band in strain eMRSA-16 suggests that it represents the gene product of *knkA*.

Western immunoblotting of the cell wall fraction of strain 8325-4 using anti-KesK antibodies identified a 150kDa immunoreactive band in both exponential and stationary phase cultures. A similar sized immunoreactive protein released from the cell wall fraction of *Lactococcus lactis* expressing full length KesK on an expression plasmid (pKS80) suggests that the 150kDa band represents the *kesK* gene product (data not shown). A *kesK* knockout mutant in *S. aureus* would be required to confirm the size of the cell wall-released KesK protein.

Western immunoblotting of the cell wall fraction of *S. aureus* strain MSSA and eMRSA-16 using anti-DsqA antibodies identified a 130kDa immunoreactive band. Expression levels are higher in stationary phase cells.

Heterologous expression in Lactococcus lactis:

10

25

30

Heterologous expression of *S. aureus* surface proteins in *Lactococcus lactis* (*L. lactis*) has previously been used as a tool to study protein function (Sinha *et al.*, 2000). In this study this surrogate system will be used to express each of the in

silico-predicted MSCRAMMs on the surface of L. lactis to fish for a function. KesK and KnkA have been cloned into L. lactis and shown by dot blotting to be surface expressed (Figure 4). No cross reaction was observed with the negative control (pKS80 plasmid without an insert) indicating that this is a specific reaction. Cell wall and protoplast fractions of Lactococcus lactis bearing pKS-KnkA and pKS-KesK were generated by digestion of cells with lysozyme and mutanolysin and used in Western blotting studies using anti-KnkA and anti-KesK antibodies, respectively. Unlike what was observed in S. aureus, KnkA was not detected in the cell wall fraction of L. lactis but found to be associated with the protoplast fraction. The anchoring motif of KnkA differs from the consensus LPXTG sequence in that it contains an Alanine residue instead of a Threonine (i.e. LPKAG) (Table 1). It has been recently been published that S. aureus contains two sortase genes, srtA and srtB (Pallen, 2001). It is possible that this variant form of the LPXTG motif is processed by the second sortase gene, which is absent in L. lactis. This would also explain the slight increase in size of the KnkA protein observed in the protoplast fraction, as the cell wall sorting signal has not been cleaved.

KesK was detected in the cell wall fraction of *L. lactis* but migrated at a smaller molecular weight than the KesK protein released from the cell wall of *S. aureus*. The majority of MSCRAMMs expressed on the surface of *L. lactis* are prone to proteolysis during the cell wall extraction procedure (Louise O'Brien, personal communication). Therefore, it is possible that the KesK protein released from the surface of *L. lactis* represents a truncated form of KesK. Shorter digestion times with lysozyme and mutanolysin has been shown to limit the extent of proteolysis.

25

30

5

10

15

20

Expression of in silico-predicted MSCRAMMs in vivo:

Convalescent-phase sera from 33 patients recovering from *S. aureus* infections were tested in their ability to recognize the purified N-terminal his-tag fusion proteins in an ELISA assay. Pooled sera from children and healthy blood donors were used

as negative controls. A positive reaction was taken as a value equal to or greater than twice the value of the negative control. Figures 5A-5D illustrate that all of the proteins were recognized by 27-42% of the patients suggesting that these proteins are expressed *in vivo* and are immunogenic during infection of the host.

5

References:

- 10 Komatsuzawa, H., Ohta, K., Sugai, M., Fujiwara, T., Glanzmann, P., Berger-Bachi, B., Suginaka, H. (2000) Tn551-mediated insertional inactivation of the *fmtB* gene encoding a cell wall-associated protein abolishes methicillin resistance in *Staphylococcus aureus*. J. Antimicrob. Chemother. **45**: 421-31.
- Sinha, B., Francois, P., Que, Y.A., Hussain, M., Heilmann, C., Moreillon, P., Lew, D., Krause, K.H., Peters, G., Herrmann, M. (2000) Heterologously expressed Staphylococcus aureus fibronectin-binding proteins are sufficient for invasion of host cells.

Infect. Immun. 68: 6871-6878.

20 Pallen, M.J., Lam, A.C., Antonio, M., Dunbar, K. (2000) An embarrassment of sortases - a richness of substrates? Trends. Microbiol. 9: 97-101

Example 2. Isolation and Sequencing of Cross-Reactive Proteins from S. Aureus and from Coagulase-Negative Staphylococci

25

30

It has been recently shown that *S. epidermidis* contains surface proteins structurally related to *S. aureus* MSCRAMM[®] proteins (US 09/386,962). One protein from *S. aureus* is of particular interest since it has a close homologue in *S. epidermidis*. The protein is called DsqA or SasA (*S. aureus*) and DgsK (*S. epidermidis*). They are characterized by a typical "A" domain of approximately 500 amino acid residues,

followed by two B repeats of 88 residues that are ~40% identical, and a unique SXSX dipeptide repeat that can vary in length depending on the strain. Contained within the A domain of the S. aureus DsqA/SasA is a 180 residue region that has ~40% identity to a similar sized domain within region A of S. aureus proteins RrkN. Pls and S. epidermidis protein Aap The A regions of the DsgA/SasA and DgsK proteins are 46 % identical at the amino acid level, the BB repeats are 50% identical. Active and passive immunization strategies that include; vaccines. polyclonal and monoclonal antibodies recognizing both S. aureus and coagulasenegative staphylococcal proteins are the subject of this invention.

10

Specific Examples of Antibodies that Cross-React with Coagulase-Negative Staphylococci and S. aureus.

Coagulase-negative staphylococcal DgsK A-Domain:

15 Amino Acid Sequence (SEQ ID NO:17) ASETPITSEISSNSETVANQNSTTIKNSQKETVNSTSLESNHSNSTNKQMSSEVTN TAQSSEKAGISQQSSETSNQSSKLNTYASTDHVESTTINNDNTAQQDQNKSSNVT SKSTQSNTSSSEKNISSNLTQSIETKATDSLATSEARTSTNQISNLTSTSTSNQSSP TSFANLRTFSRFTVLNTMAAPTTTSTTTTSSLTSNSVVVNKDNFNEHMNLSGSATY 20 DPKTGIATLTPDAYSQKGAISLNTRLDSNRSFRFIGKVNLGNRYEGYSPDGVAGGD GIGFAFSPGPLGQIGKEGAAVGIGGLNNAFGFKLDTYHNTSTPRSDAKAKADPRN VGGGGAFGAFVSTDRNGMATTEESTAAKLNVQPTDNSFQDFVIDYNGDTKVMTV TYAGQTFTRNLTDWIKNSGGTTFSLSMTASTGGAKNLQQVQFGTFEYTESAVAKV RYVDANTGKDIIPPKTIAGEVDGTVNIDKQLNNFKNLGYSYVGTDALKAPNYTETSG 25 **TPTLKLTNSSQTVIYKFKDVQ**

S. aureus SasA A-domain:

Amino Acid Sequence (SEQ ID NO:18)

ASDAPLTSELNTQSETVGNQNSTTIEASTSTADSTSVTKNSSSVQTSNSDTVSSEK 30 SEKVTSTTNSTSNQQEKLTSTSESTSSKNTTSSSDTKSVASTSSTEQPINTSTNQS TASNNTSQSTTPSSVNLNKTSTTSTSTAPVKLRTFSRLAMSTFASAATTTAVTANTI TVNKDNLKQYMTTSGNATYDQSTGIVTLTQDAYSQKGAITLGTRIDSNKSFHFSGK VNLGNKYEGHGNGGDGIGFAFSPGVLGETGLNGAAVGIGGLSNAFGFKLDTYHNT 35 SKPNSAAKANADPSNVAGGGAFGAFVTTDSYGVATTYTSSSTADNAAKLNVQPT NNTFQDFDINYNGDTKVMTVKYAGQTWTRNISDWIAKSGTTNFSLSMTASTGGAT NLQQVQFGTFEYTESAVTQVRYVDVTTGKDIIPPKTYSGNVDQVVTIDNQQSALTA KGYNYTSVDSSYASTYNDTNKTVKMTNAGQSVTYYFTDVV

5

PCT/US02/19220 WO 02/102829 40

The entire sequence of the Aap protein and the DNA coding therefor (with an indication of the presence of the A domain) is shown below:

S. epidermidis Aap Protein (A-domain underlined) (SEQ ID NO:19)

MGKRRQGPINKKVDFLPNKLNKYSIRKFTVGTASILLGSTLIFGSSSHEAKAAEEKQ **VDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEAPQSEPTKA EEGGNAEAAQSEPTKAEEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEEGSNV** KAAQSEPTKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEAAQSE PTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAEAPNVPTIKANSD 10 NDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNLNYSS PFMSLLSMPADSSSNNTKNTIDIPPTTVKGRDNYDFYGRVDIESNPTDLNATNLTR YNYGQPPGTTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTTGADGWGFMFSK KDGDDFLKNGGILREKGTPSAAGFRIDTGYYNNDPLDKIQKQAGQGYRGYGTFVK NDSQGNTSKVGSGTPSTDFLNYADNTTNDLDGKFHGQKLNNVNLKYNASNQTFT 15 ATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNGNSGTYASGVMRADLDGATL TYTPKAVDGDPIISTKEIPFNKKREFDPNLAPGTEKVVQKGEPGIETTTTPTYVNPN TGEKVGEGEPTEKITKQPVDEIVHYGGEEIKPGHKDEFDPNAPKGSQTTQPGKPG VKNPDTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKKREFNPDLKPGEERVKQ KGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEITEYGGEEIKPGHKDEFD 20 PNAPKGSQEDVPGKPGVKNPGTGEVVTPPVDDVTKYGPVDGDPITSTEEIPFDKK REFNPDLKPGEERVKQKGEPGTKTITTPTTKNPLTGEKVGEGEPTEKITKQPVDEI VHYGGEQIPQGHKDEFDPNAPVDSKTEVPGKPGVKNPDTGEVVTPPVDDVTKYG PVDGDSITSTEEIPFDKKREFDPNLAPGTEKVVQKGEPGTKTITTPTTKNPLTGEKV GEGKSTEKVTKQPVDEIVEYGPTKAEPGKPAEPGKPAEPGKPAEPGTPAEPGKPA 25 EPGTPAEPGKPAEPGKPAEPGKPAEPGTPAEPGTPAEPGKPAEPGTPA EPGKPAEPGTPAEPGKPAESGKPVEPGTPAQSGAPEQPNRSMHSTDNKNQLPD TGENRQANEGTLVGSLLAIVGSLFIFGRRKKGNEK

S. epidermidis aap DNA (SEQ ID NO:20) 30 atgggcaaac gtagacaagg tcctattaat aaaaaagtgg

attttttacc taacaaatta aacaagtatt ctataagaaa attcactgtt ggtacggcct caatattact tggttcgaca cttatttttg gaagtagtag ccatgaagcg aaagctgcag aagaaaaaca agttgatcca attacacaag ctaatcaaaa tgatagtagt gaaagatcac ttgaaaacac aaatcaacct actgtaaaca atgaagcacc acagatgtct tctacattgc 5 aagcagaaga aggaagcaat gcagaagcac ctcaatctga gccaacgaag gcagaagaag gaggcaatgc agaagcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcacctca atctgagcca acgaaggcag aagaaggagg caatgcagaa gcagctcaat ctgagccaac gaagacagaa gaaggaagca acgtaaaagc agctcaatct gagccaacga aggcagaaga aggaagcaat gcagaagcac ctcaatctga gccaacgaag acagaagaag 10 gaagcaacgc aaaagcagct caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcagetea atetgageea acgaagacag aagaaggaag caatgcagaa geaceteaat ctgagccaac gaaggcagaa gaaggaggca atgcagaagc acctcaatct gagccaacga agacagaaga aggaggcaat gcagaagcac cgaatgttcc aactatcaaa gctaattcag ataatgatac acaaacacaa ttttcagaag cccctacaag aaatgaccta gctagaaaag 15 aagatateee tgetgtttet aaaaaegagg aattacaate ateacaacea aacaetgaca gtaaaataga acctacaact tcagaacctg tgaatttaaa ttatagttct ccgtttatgt ccttattaag catgcctgct gatagttcat ccaataacac taaaaataca atagatatac cgccaactac ggttaaaggt agagataatt acgattttta cggtagagta gatatcgaaa gtaatcctac agatttaaat gcgacaaatt taacgagata taattatgga cagccacctg 20 gtacaacaac agctggtgca gttcaattta aaaatcaagt tagttttgat aaagatttcg actttaacat tagagtagca aacaatcgtc aaagtaatac aactggtgca gatggttggg gctttatgtt cagcaagaaa gatggggatg atttcctaaa aaacggtggt atcttacgtg aaaaaggtac acctagtgca gctggtttca gaattgatac aggatattat aataacgatc cattagataa aatacagaaa caagctggtc aaggctatag agggtatggg acatttgtta 25 aaaatgactc ccaaggtaat acttctaaag taggatcagg tactccatca acagattttc ttaactacgc agataatact actaatgatt tagatggtaa attccatggt caaaaattaa ataatgttaa titgaaatat aatgcticaa atcaaactit tacagctact tatgctggta aaacttggac ggctacgtta tctgaattag gattgagtcc aactgatagt tacaattttt tagttacatc aagtcaatat ggaaatggta atagtggtac atacgcaagt ggcgttatga 30 gagetgattt agatggtgea acattgaeat acacteetaa ageagtegat ggagateeaa

ttatatcaac taaggaaata ccatttaata agaaacgtga atttgatcca aacttagccc caggtacaga aaaagtagtc caaaaaggtg aaccaggaat tgaaacaaca acaacaccaa cttatgtcaa tcctaataca ggagaaaaag ttggcgaagg tgaaccaaca gaaaaaataa caaaacaacc agtggatgaa atcgttcatt atggtggcga agaaatcaag ccaggccata 5 aggatgaatt tgatccaaat gcaccgaaag gtagtcaaac aacgcaacca ggtaagccgg gggttaaaaa teetgataca ggegaagtag ttacteeace tgtggatgat gtgacaaaat atggtccagt tgatggagat ccgatcacgt caacggaaga aattccattc gacaagaaac gtgaattcaa tcctgattta aaaccaggtg aagagcgtgt taaacaaaaa ggtgaaccag gaacaaaaac aattacaaca ccaacaacta agaacccatt aacaggggaa aaagttggcg aaggtgaacc aacagaaaaa ataacaaaac aaccagtaga tgaaatcaca gaatatggtg 10 gcgaagaaat caagccaggc cataaggatg aatttgatcc aaatgcaccg aaaggtagcc aagaggacgt tccaggtaaa ccaggagtta aaaaccctgg aacaggcgaa gtagtcacac caccagtgga tgatgtgaca aaatatggtc cagttgatgg agatccgatc acgtcaacgg aagaaattcc attcgacaag aaacgtgaat tcaatcctga tttaaaacca ggtgaagagc 15 gcgttaaaca gaaaggtgaa ccaggaacaa aaacaattac aacgccaaca actaagaacc cattaacagg agaaaaagtt ggcgaaggtg aaccaacaga aaaaataaca aaacaaccag tggatgagat tgttcattat ggtggtgaac aaataccaca aggtcataaa gatgaatttg atccaaatgc acctgtagat agtaaaactg aagttccagg taaaccagga gttaaaaatc ctgatacagg tgaagttgtt accccaccag tggatgatgt gacaaaatat ggtccagttg 20 atggagattc gattacgtca acggaagaaa ttccgtttga taaaaaacgc gaatttgatc caaacttagc gccaggtaca gagaaagtcg ttcaaaaaagg tgaaccagga acaaaaacaa ttacaacgcc aacaactaag aacccattaa caggagaaaa agttggcgaa ggtaaatcaa cagaaaaagt cactaaacaa cctgttgacg aaattgttga gtatggtcca acaaaagcag aaccaggtaa accagcggaa ccaggtaaac cagcggaacc aggtaaacca gcggaaccag 25 gtacgccagc agaaccaggt aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cageggaace aggtaaacea geggaaceag gtaaaceage ggaaceaggt aaaceagegg aaccaggtac gccagcagaa ccaggtacgc cagcagaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagoggaato aggtaaacca gtggaaccag gtacgccago acaatcaggt gcaccagaac 30 aaccaaatag atcaatgcat tcaacagata ataaaaatca attacctgat acaggtgaaa

atogtcaagc taatgaggga actttagtcg gatctctatt agcaattgtc ggatcattgt tcatatttgg tcgtcgtaaa aaaggtaatg aaaaataatt tcatataaaa actttctgcc attaa

5 A-Domain from S. epidermidis Aap (amino acids 55-600) (SEQ ID NO:21)

55 EKQVDPITQANQNDSSERSLENTNQPTVNNEAPQMSSTLQAEEGSNAEAPQSE
PTKAEEGGNAEAAQSEPTKAEEGGNAEAPQSEPTKAEEGGNAEAAQSEPTKTEE
GSNVKAAQSEPTKAEEGSNAEAPQSEPTKTEEGSNAKAAQSEPTKAEEGGNAEA
AQSEPTKTEEGSNAEAPQSEPTKAEEGGNAEAPQSEPTKTEEGGNAEAPNVPTIK
10 ANSDNDTQTQFSEAPTRNDLARKEDIPAVSKNEELQSSQPNTDSKIEPTTSEPVNL
NYSSPFMSLLSMPADSSSNNTKNTIDIPPTTVKGRDNYDFYGRVDIESNPTDLNAT
NLTRYNYGQPPGTTTAGAVQFKNQVSFDKDFDFNIRVANNRQSNTTGADGWGF
MFSKKDGDDFLKNGGILREKGTPSAAGFRIDTGYYNNDPLDKIQKQAGQGYRGYG
TFVKNDSQGNTSKVGSGTPSTDFLNYADNTTNDLDGKFHGQKLNNVNLKYNASN
15 QTFTATYAGKTWTATLSELGLSPTDSYNFLVTSSQYGNGNSGTYASGVMRADLD
GA⁶⁰⁰

Protein Production and Purification

Using PCR, the A domain of DgsK or SasA was amplified from the sequences described above and subcloned into the *E. coli* expression vector PQE-30 (Qiagen), which allows for the expression of a recombinant fusion protein containing six histidine residues. This vector was subsequently transformed into the *E. coli* strain ATCC 55151, grown in a 15-liter fermentor to an optical density (OD₆₀₀) of 0.7 and induced with 0.2 mM isopropyl-1-beta-D galactoside (IPTG) for 4 hours. The cells were harvested using an AG Technologies hollow-fiber assembly (pore size of 0.45 m) and the cell paste frozen at -80° C. Cells were lysed in 1X PBS (10 mL of buffer/1 g of cell paste) using 2 passes through the French Press @ 1100psi.

Lysed cells were spun down at 17,000rpm for 30 minutes to remove cell debris. Supernatant was passed over a 5-mL HiTrap Chelating (Pharmacia) column charged with 0.1M NiCl₂. After loading, the column was washed with 5 column

volumes of 10mM Tris, pH 8.0, 100mM NaCl (Buffer A). Protein was eluted using a 0-100% gradient of 10mM Tris, pH 8.0, 100mM NaCl, 200 mM imidazole (Buffer B) over 30 column volumes. SdrGN1N2N3 or SdrGN2N3 eluted at ~13% Buffer B (~26mM imidazole). Absorbance at 280nm was monitored. Fractions containing SdrGN1N2N3 or SdrGN2N3 were dialyzed in 1x PBS.

Each protein was then put through an endotoxin removal protocol. Buffers used during this protocol were made endotoxin free by passing over a 5-mL Mono-Q sepharose (Pharmacia) column. Protein was divided evenly between 4x 15mL tubes. The volume of each tube was brought to 9mL with Buffer A. 1mL of 10% Triton X-114 was added to each tube and incubated with rotation for 1 hour at 4°C. Tubes were placed in a 37°C water bath to separate phases. Tubes were spun down at 2,000rpm for 10 minutes and the upper aqueous phase from each tube was collected and the detergent extraction repeated. Aqueous phases from the 2nd extraction were combined and passed over a 5-mL IDA chelating (Sigma) column, charged with 0.1M NiCl₂ to remove remaining detergent. The column was washed with 9 column volumes of Buffer A before the protein was eluted with 3 column volumes of Buffer B. The eluant was passed over a 5-mL Detoxigel (Sigma) column and the flow-through collected and reapplied to the column. The flowthrough from the second pass was collected and dialyzed in 1x PBS. The purified product was analyzed for concentration, purity and endotoxin level before administration into the mice.

Monoclonal Antibody Production

5

10

15

20

30

E. coli expressed and purified recombinant SasA and DsgK proteins were used to generate a panel of murine monoclonal antibodies while the mouse sera was used as a source of polyclonal antibodies. Briefly, a group of Balb/C or SJL mice received a series of subcutaneous immunizations of 1-10 mg of protein in solution or mixed with adjuvant as described in the Table below.

Immunization Schemes

	RIMMS				
	<u>Injection</u>	Day	Amount (µg)	Route	Adjuvant
	#1	0	5	Subcutaneous	FCA/RIBI
	#2	2	1	Subcutaneous	FCA/RIBI
5	#3	4	1	Subcutaneous	FCA/RIBI
	#4	7	1	Subcutaneous	FCA/RIBI
	#5	9	1	Subcutaneous	FCA/RIBI
	Conventional				
10	Injection	Day	Amount (µg)	Route	Adjuvant
	Primary	0	5	Subcutaneous	FCA
	Boost #1	14	1	Intraperitoneal	RIBI
	Boost #2	28	1	Intraperitoneal	RIBI
	Boost #3	42	1	Intraperitoneal	RIBI
15				-	•

At the time of sacrifice (RIMMS) or seven days after a boost (conventional) serum was collected and titered in ELISA assays against MSCRAMM® proteins or on whole cells (S. *epidermidis* and *S. aureus*). Three days after the final boost, the spleens or lymph nodes were removed, teased into a single cell suspension and the lymphocytes harvested. The lymphocytes were then fused to a P3X63Ag8.653 myeloma cell line (ATCC #CRL-1580). Cell fusion, subsequent plating and feeding were performed according to the Production of Monoclonal Antibodies protocol from Current Protocols in Immunology (Chapter 2, Unit 2.).

25

20

Any clones that were generated from the fusion were then screened for specific anti-SasA antibody production using a standard ELISA assay. Positive clones were expanded and tested further for activity in a whole bacterial cell binding assay by flow cytometry and SasA binding by Biacore analysis.

30

35

Biacore Analysis

Throughout the analysis, the flow rate remained constant at 10 ml/min. Prior to the SasA or DgsK injection, test antibody was adsorbed to the chip via RAM-Fc binding. At time 0, SasA or DgsK at a concentration of 30 mg/ml was injected over the chip for 3 min followed by 2 minutes of dissociation. This phase of the analysis

measured the relative association and disassociation kinetics of the Mab / SasA or DgsK interaction.

Binding to Whole Bacteria

5

10

15

20

Bacterial samples S. aureus Newman, S. aureus 67-0, S. aureus 397 (Sal6), S. aureus Wood, S. aureus 8325-4, methicillin resistant S. aureus MRSA 16, S. epidermidis ATCC 35984, S. epidermidis HB, S. epidermidis CN-899 and S. haemolyticus ATCC 43253 were collected, washed and incubated with Mab or PBS alone (control) at a concentration of 2 µg/ml after blocking with rabbit IgG (50 mg/ml). Following incubation with antibody, bacterial cells were incubated with Goat-F_{(ab')2}-Anti-Mouse-F_{(ab')2}-FITC which served as the detection antibody. After antibody labeling, bacterial cells were aspirated through the FACScaliber flow cytometer to analyze fluorescence emission (excitation: 488, emission: 570). For each bacterial strain, 10,000 events were collected and measured. These data indicate that antibodies against S. aureus SasA were able to recognize a homologous protein on the surface of coagulase-negative staphylococci. The data support Western blot analysis demonstrating that rabbit polyclonal antibodies against S. aureus SasA cross-react with a protein released from the cell surface of S. epidermidis HB as well as the recombinant A-region from DsgK cloned from S. epidermidis (see Table below and Figure 6).

Polyclonal Sera Reactivity

	New man	67-0	397 -	.Wo od 46	8325 -4	MRS A 16	ATC C. 3598	⊬НВ≪	CN- 899	ATC C 4325 3
Normal Mouse Sera	,	-	<u>-</u>	1	-	••		-	1	-
Mouse anti- SasA	+	+	+/-	-	+	+	+	+	+	+

What is claimed is:

5

30

- 1. An isolated antibody which binds to a staphylococcal surface protein selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
 - 2. The antibody according to Claim 1 wherein the antibody is raised against the A domain of the surface protein.
- 3. The antibody according to Claim 1, wherein the antibody treats or prevents *S. aureus* infection in a human or animal.
- The antibody according to Claim 1, wherein the antibody is suitable for parenteral, oral, intranasal, subcutaneous, aerosolized or intravenous administration
 in a human or animal.
 - 5. The antibody according to Claim 1, wherein said antibody is a monoclonal antibody.
- 20 6. The antibody according to Claim 1, wherein said antibody is a polyclonal antibody.
- 7. The antibody according to Claim 5 wherein the monoclonal antibody is of a type selected from the group consisting of murine, chimeric, humanized and human monoclonal antibodies.
 - 8. The antibody according to Claim 5 wherein the antibody is a single chain monoclonal antibody.

- 9. The antibody according to Claim 1 which comprises an antibody fragment having the same binding specificity of an antibody which binds to a staphylococcal surface protein having the sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
- 10. The antibody according to Claim 1 that is raised against a protein having an amino acid sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.

10

15

5

- 11. The antibody according to Claim 1 wherein the surface protein has an amino acid sequence encoded by a nucleic acid sequence selected from the group consisting of nucleic acid sequences SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or degenerates thereof.
 - 12. Isolated antisera containing an antibody according to Claim 1.
- 13. A diagnostic kit comprising an antibody according to Claim 1 and 20 means for detecting binding by that antibody.
 - 14. A diagnostic kit according to Claim 13 wherein said means for detecting binding comprises a detectable label that is linked to said antibody.
- 15. A method of diagnosing an infection of *S. aureus* comprising adding an antibody according to Claim 1 to a sample suspected of being infected with *S. aureus*, and determining if antibodies have bound to the sample.

- 16. A pharmaceutical composition for treating or preventing an infection of S. aureus comprising an effective amount of the antibody of Claim 1 and a pharmaceutically acceptable vehicle, carrier or excipient.
- 5 17. A method of treating or preventing an infection of *S. aureus* comprising administering to a human or animal patient an effective amount of an antibody according to Claim 1.
- 18. A method of inducing an immunological response comprising administering to a human or animal an immunogenic amount of an isolated protein selected from the group consisting of the amino acid sequences SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21.
- 19. An isolated antibody according to Claim 1 that has the ability to bind to an amino acid sequence coded by the nucleic acid sequence of SEQ ID NOS. 1, 3, 5, 7, 9, 11, 13, 15, 20 and the nucleic acid sequences coding for the A domain of the Aap protein or degenerates thereof.
 - 20. An isolated active fragment from the A domain of the DsqA protein.
 - 21. An isolated antibody according to Claim 1 further comprising a physiologically acceptable antibiotic.

20

22. A vaccine for treating or preventing an infection of *S. aureus* comprising an amount of a protein sequence selected from the group consisting of SEQ ID NOS. 2, 4, 6, 8, 10, 12, 14, 16, 17, 18, 19 and 21 in an amount effective to elicit an immune response, and a pharmaceutically acceptable vehicle, carrier or excipient.

Figure 1. Primary structure of in silico-predicted LPXTG proteins.

		Residues	Predicted MW	Apparent MW
•	RrkN 1	60 - 215	. 19	29
	RrkN 2	60 - 437	45	48
•	DsqA 1	54 - 279	27	38
•	DsqA 2	54 - 533	58	62
	KesK 1	55 - 335	34	47
	KnkA.	39 - 210	20	27
•	KesK 2	329 - 591	31	40

Figure 2. Coomassie gel of the purified N-terminal His-tagged fusion proteins.

Figure 3. Western blotting of S.aureus cell wall extracts. Bacterial cells were standardised to an OD₆₀₀ of 50 units and cell walls were isolated by lysostaphin digestion of stabilised protoplasts. A. Lane 1, 8325-4 (early exponential phase); lane 2, 8325-4 (stationary phase). B. Lanes 1 and 2, eMRSA-16; lanes 3 and 4, 8325-4; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells.

C. Lanes 1 and 2, MSSA; lanes 3 and 4, eMRSA-16; lanes 1 and 3 represent early exponential phase cells and lanes 2 and 4 represent stationary phase cells.

Figure 4. Dot blotting and Western immunoblotting of Lactococcus lactis expressing S.aureus MSCRAMMs. Full length knkA and kesK were cloned into the L.lactis expression plasmid pKS80 and electroporated into compotent L.lactis MG1363 cells. Positive KnkA and KesK expressing clones were detected using dot blotting with anti-KnkA (A) and anti-KesK (B) antibodies, respectively. L.lactis bearing pKS80 was used as a negative control.

A.(i) lane 1, L.lactis pKS-KnkA; lane 2, L.lactis pKS80. B. (ii) lane 1, L.lactis pKS-KesK; lane 2, L.lactis pKS80. Western immunoblotting was used to examine the expression of KesK and KnkA in S.aureus and L.lactis. A (ii). Lane 1, cell wall extract from exponential phase S.aureus strain 8325-4, lane 2, protoplast fraction from L.lactis bearing pKS-KnkA. B. (ii) Lane 1, cell wall extract from exponential phase S.aureus strain 8325-4; lane 2, cell wall extract from L.lactis bearing pKS-KesK; lane 3, cell wall extract from L.lactis bearing pKS80.

Figure 5A. Probing recombinant LPXTG proteins with convalescent sera to study in vivo expression.

Figure 5C

8/10

Western immunoblotting analysis of proteins released from the cell wall of S. aureus Newman (N) and S. epidermidis HB (H).

Probed with rabbit anti-S. aureus
SasA region A antibodies and goat anti-rabbit conjugated to horseradish peroxidase

Cross reaction of *S. aureus* SasA A-region antibodies with DgsK expressed in *E. coli*. Lane 1, FPLC purified SasA A-region control. Lanes 2, 4 and 6, DgsK A-region expressed from pQE-30 in *E. coli* strain TOPP-3 (induced); lanes 3, 5 and 7, TOPP-3 bearing pQE-30 with *dgsK* insert (uninduced).

FIGURE 6

SEQUENCE LISTING

	•	PUROTION TESTING											
	<110>	FOST	ER,	Timothy	7								
5	<120>	CROS	S-RE	EACTIVE	MONOCLONAL	AND POLYCLO	NAL ANTIBO	DIES					
J	<130>	P072	63US	01/BAS									
10	<150> <151>	US 6 2001		98,098 -15									
10	<160>	29											
	<170>	Pate	ntIn	versio	on 3.1								
15	<210> <211> <212> <213>	1 6609 DNA Stap		ococcus	epidermidis	3							
20	<400>	1				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			60				
		_		-		gaaaacgaaa		_	60				
						atattctcta			120				
25	ttactt	tcaa	acco	caaatgg	tgcacaagct	ttaactacgg	atcataatgt	gcaaggtggt	180				
	tcaaat	caag	catt	acctgg	caactcacaa	aatacaaatg	ccgatactaa	tcgagacata	240				
30	gtaaat	gatt	cgca	aaatac	tcctaatgca	catgcaacag	acaatacatc	aacaaatcaa	300				
	gcattg	acta	atca	atcaaaa	cgttgatgtg	gcaaatcaag	tegggeetge	tccaatacag	360				
	cctago	gcgt	cgc	ctgcgca	aaataataat	aattctaatg	ctaattcaac	agcaacagag	420				
35	ccagcg	gcga	atac	caaataa	taatttagca	tcaaataaca	atacattaaa	cgtgcctaat	480				
	aataca	gata	acaa	atgattc	agcgcgtcat	ctgactttaa	aagaaattca	agaagatgtt	540				
40	cgtcat	tcgt	ctga	ataagcc	agagttagtt	gcgattgctg	aagaagcatc	taatagaccg	600				
70	aaaaag	agaa	gcag	gacgtgc	tgcgccaaca	gatcctaatg	caacaccagc	agatccaacg	660				
	gctaca	ccag	caga	atccaac	ggcaggaaat	ggtagtgcac	cagttgcaat	tacagcgcca	720				
45	tacacg	ccaa	caa	ctgatcc	caatgccaat	aatataggac	aaaatgcacc	taacgaagtg	780				
	ctttca	tttg	atga	ataacaa	cattagacca	agtacgaacc	gttctgtgcc	tacagtaact	840				
50	gttgtt	gata	atti	taccagg	ctacacactg	attaatggtg	gtaaagtagg	ggtgtttagt	900				
30	catgca	atgg	taaq	gaacgag	catgtttgat	tcaggagatg	ccaagaacta	tcaagcgcaa	960				
	ggcaat	gtaa	ttg	cattggg	tcgtattaga	ggaaatgata	caaatgatca	tggcgatttt	1020				
55	aatggt	atcg	agaa	aaacatt	aacagtaaat	ccgaattctg	aattaatctt	tgaatttaat	1080				
	actatg	acta	cta	aaaacta	tcaaggtatg	acaaatttaa	tcattaaaaa	tgctgataac	1140				
	gatact	gtta	ttg	gtgaaaa	agtagttgct	tatggtccga	tttggcgctt	attaaaagta	1200				

	cctgaaaatg	ttagtcatct	aaaaattcaa	tttgtaccta	aaaatgacgc	aataacagat	1260
5	gcacgtggta	tttatcaatt	acgagatgga	tataaatact	atgactttģt	agactcaatc	1320
J	ggtcttcatt	ctgggtcaca	tgtctatgtt	gaaagacgta	caatggagcc	aacagcaaca	1380
	aataataaag	aatttacagt	tacaacgtca	ttaaagaata	atggtaactt	tggcgcttca	1440
10	ttcaatacag	atgattttgt	atataaaatt	caattacctg	aaggtgttga	atatgtaaat	1500
	aattcattga	ctaaagattt	tcctagcggt	aattcaggtg	ttgatattaa	tgatatgaat	1560
15	gtgacgtatg	acgcagcaaa	tcgaattatt	acaattaaaa	gtactggtgg	aggtacaggg	1620
15	aattcgccgg	cacgactaat	gcctgataaa	atattggatt	tgaagtataa	gctacgtgtg	1680
	aacaatgtgc	caacaccaag	aacagtaaca	tttaacgata	cattaacgta	taaaacatat	1740
20	tcacaagatt	ttattaattc	acctgctgaa	agtcatactg	taagtacaaa	tccatataca	1800
•	attgatatca	tcatgaataa	agacgcattg	caagccgaag	tcgatagacg	aattcaacaa	1860
25	gcggattata	catttgcatc	attagatatt	tttaatgatc	ttaaaagacg	cgcacaaaca	1920
	attttagatg	aaaaccgtaa	caatgtacct	ttaaacaaaa	gagtttctca	agcagatatc	1980
	gattcattag	caaatcagat	gcaacatacg	ttaattcgca	gtgttgacgc	tgaaaatgcc	2040
30	gttaatagaa	aagttgatga	catggaagat	ttagttaacc	aaaatgatga	actgacagat	2100
	gaagaaaaac	aagcagcgat	tcaagtcatc	gaggaacata	aaaatgaaat	tattgggaat	2160
35	attggtgacc	aaacgactga	tgatggcgtt	actagaatta	aagatcaagg	tatacagact	2220
	ttaagtggag	acactgcaac	accagttgtt	aaaccaaatg	ctaaacaagc	tatacgtgat	2280
	aaagcagcga	aacaaagaga	aattatcaat	cacacgccag	atgctactca	agatgaaatt	2340
40	caagatgcat	taaatcaatt	aacaacggat	gaaacagatg	ctattgataa	tgttacgaat	2400
	gctactacca	atgctgatgt	tgaaacagct	aaaaataatg	gtattaatac	aattggtgca	2460
45	gttgcgccac	aagtgacaca	caaacaagct	gcaagagatg	caattaatca	agcgacagca	2520
	acgaaacgac	aacaaataaa	tagcaataga	gaagcaacac	aagaagagaa	aaatgcagca	2580
	ttgaatgaat	taacgcaagc	cacgaaccac	gcattagaac	aaatcaatca	agcgacaacc	2640
50	aatgatgatg	tagatactgc	caaaggtgat	ggtctgaatg	ccattaatcc	tattgcgcct	2700
	gtaactgttg	tcaagcaagc	agcaagagat	gccgtatcac	atgatgcaca	acagcatatc	2760
55	gcagagatca	atgcaaatcc	tgatgcgact	caagaagaaa	gacaagcagc	aatagagaaa	2820
	gtaaatgctg	ctgtagctgt	tgcgaatact	aatatattaa	atgctaatac	caatgctgat	2880
	gttgagcaag	taaagacaaa	tgcaattcaa	ggtatacaag	ccattgaacc	agctacaaag	2940
60	gttaaaacag	atgctaaaaa	cgctattgat	caaagtgcgg	aaacgcaaca	taatgcgata	3000

	tttaataata	atgatgcgac	cttagaagag	caacaagcag	cacaacaatt	gcttgatcaa	3060
5	gctgtagcca	cagcgaagca	aaatattaat	gcagcagata	cgaatcaaga	agttgcacaa	3120
J	gcaaaagatc	agggcacaca	aaatatagtt	gtgattcaac	cggcaacaca	agttaaaacg	3180
	gatgcacgca	atgctgtaaa	tgaaaaagcg	cgagaggcga	taacaaatat	caatgctaca	3240
10	cctggcgcga	ctcgagaaga	gaaacaagaa	gcgataaatc	gtgtcaatac	acttaaaaat	3300
	agagcattaa	atgatattgg	tgtgacgtct	actactgcga	tggtcaatag	tattagagac	3360
15	gatgcagtca	atcaaatcgg	tgcagttcaa	ccgcatgtaa	cgaagaaaca	aactgctaca	3420
15	ggtgtattaa	cggacttagc	aactgcaaaa	aaacaagaaa	ttaatcaaaa	tacaaatgca	3480
	accactgaag	aaaagcaagt	agcattaaat	caagtagacc	aagatttagc	aacggcaatt	3540
20	aataatataa	atcaagctga	tactaatgca	gaagtagatc	aagcacaaca	attaggtaca	3600
	aaagcaatta	atgcgattca	gccaaatatt	gtaaaaaaac	ctgcagcatt	agcacaaacc	3660
25	aatcagcatt	atagtgctaa	attagttgaa	atcaatgcta	caccagatgc	aacagatgat	3720
23	gagaaaaatg	ctgcgatcaa	tactttaaat	caagacagac	aacaagctat	tgaaagtatt	3780
	aaacaagcaa	atacaaatgc	ggaagtagac	caagctgcga	cagtggcaga	gaataatatc	3840
30	gatgctgttc.	aagttgacgt	tgtaaaaaaa	caagcagcgc	gagataaaat	cactgctgaa	3900
	gtagcgaagc	gtattgaagc	ggttaaacaa	acacctaatg	caactgacga	agaaaagcag	3960
35	gctgcagtta	atcaaatcaa	tcaacttaaa	gatcaagcgt	ttaatcaaat	taatcaaaac	4020
33	caaacaaatg	atcaggtaga	cgcaactaca	aatcaagcga	ttaatgctat	agataatgtt	4080
	gaagctgaag	tagtaattaa	accaaaggca	attgcagata	ttgaaaaagc	tgttaaagaa	4140
40	aagcaacagc	aaattgataa	tagtcttgat	tcaacagata	atgagaaaga	agttgcttta	4200
	caagcattag	ctaaagaaaa	agaaaaagca	cttgcagcta	ttgaccaagc	tcaaacgaat	4260
45	agtcaggtga	atcaagcggc	aacaaatggt	gtatcagcga	ttaaaattat	tcaacctgaa	4320
.0	acaaaaatta	aaccagcagc	acgtgaaaaa	atcaatcaaa	aagcgaatga	attacgtgcg	4380
	caaattaatc	aagataaaga	agegacagca	gaagaaagac	aagcggcgtt	agataaaatc	4440
50	aatgatttag	ttgctaaagc	tatgacaaat	atcacgaatg	atagaacaaa	tcagcaagtt	4500
	aatgactcaa	caaatcaagc	gcttgacgac	attgcattag	tgacgcctga	ccatattgtt	4560
55	agagcagctg	ctagagatgc	agttaagcaa	caatatgaag	ctaaaaagca	cgaaattgag	4620
-	caagcggaac	atgcgactga	tgaagaaaaa	caagttgctt	taaatcaatt	agcgaataat	4680
	gaaaaacgtg	cattacaaaa	cattaatcaa	gcaatagcga	ataatgatgt	gaaacgtgtt	4740
60	gaatcaaátg	gtattgctac	gttaaaaggc	gtagaaccgc	acattgtggt	taaacctgaa	4800

	gctcaagaag	ccataaaagc	gagcgcagat	aaccaagtag	aatctataaa	agatacacca	4860
5	catgctacga	cagatgaatt	agatgaagca	aaccaacaaa	taaacgacac	acttaaacaa	4920
2	ggtcaacaag	atatagacaa	tacgacacaa	gatgcagctg	tcaatgatgt	tagaaaccaa	4980
	acgattaagg	caatcgaaca	aattaaaccg	aaagttagac	gcaaacgtgc	agcgttggat	5040
10	aacattgatg	aaagtaataa	taatcaactc	gatgcaatac	gaaatacgct	agatacaacg	5100
	caagatgaac	gaaatgttgc	tattgctgcg	ttaaataaaa	ttgttaatgc	aattaaaaat	5160
15	gatattgcac	aaaacaaaac	gaatgcagaa	gtggatcaaa	ctgaggctga	tggtaacaac	5220
13	aacatcaaag	tgattttacc	taaagttcaa	gttaaaccag	cagcgcgtca	atctgtcagc	5280
	gcaaaagctg	aagctcaaaa	tgcacttatt	gatcaaagtg	atttatctac	cgaagaagaa	5340
20	agattagctg	ctaaacattt	agtagaacaa	gcacttaatc	aagctattga	tcagatcaat	5400
•	cacgcagata	agactgcgca	agttaatcaa	aatagtatcg	atgctcaaaa	tattatttca	5460
25	aaaattaaac	cagcgacaac	agttaaagca	acagcattac	aacaaattca	aaatatcgct	5520
23	acaaataaaa	ttaatttaat	taaagcaaat	aacgaagcga	cagatgaaga	acaaaatgct	5580
	gcaatagtac	aagttgaaaa	agagttaatt	aaagctaaac	aacaaattgc	tggtgcagtg	5640
30	actaatgctg	atgtggcata	tttattgcat	gatgggaaaa	acgaaattcg	tgaaatcgaa	5700
	cctgttatta	ataaaaaagc	aactgcgcga	gaacaattaa	caacattatt	caacgataag	5760
35	aaacaagcaa	ttgaagcgaa	tgttcaagca	acagtagaag	aaagaaatag	tattttagca	5820
33	cagttacaaa	acatttatga	cactgctatt	ggacaaattg	atcaagatcg	tagcaatgca	5880
	caagttgata	aaacagcaac	attaaatcta	caaacaatac	atgatttaga	cgtacatcct	5940
40	attaaaaagc	cagatgctga	aaaaacgatt	aatgatgatc	ttgcacgtgt	tacacattta	6000
	gtgcaaaatt	atcgaaaagt	aagtgatcgt	aataaggctg	atgcattaaa	agctataact	6060
45	gcattaaaat	tacaaatgga	tgaagaatta	aaaacagcac	gcactaatgc	tgatgttgat	6120
	gcagttttaa	aacgatttaa	tgttgcatta	ggcgatatag	aagcagtaat	tactgaaaaa	6180
	gaaaatagct	tactgcgcat	tgataacatt	gctcaacaaa	catatgcgaa	attcaaagcg	6240
50	atcgcaacac	cagaacaatt	agctaaagta	aaagcattaa	ttgatcaata	tgttgcagat	6300
	ggcaatagaa	tggttgatga	agatgcgaca	ttaaatgaca	tcaaaaaaga	tacgcaactc	6360
55	attattgatg	aaattttagc	aattaaatta	cctgctgaag	tgataaaagc	gtcaccaaaa	6420
	gtggggcaac	ctgctccaaa	agtttgtacg	cctattaaaa	aagaagataa	acaagaagtg	6480
	cgaaaagttg	taaaagaact	tccaaatact	ggttctgaag	aaatggattt	accattaaaa	6540
60	gaattagcac	taattacagg	cgcagcatta	ttagctagaa	gacgttctaa	aaaagaaaaa	6600

gaatcataa 6609

ľ

5	<210 <211 <212 <213	L> 2 2> 1	2 2189 PRT Stapl	nyloo	cocci	ıs ep	pide	rmidi	is							
10	<400)> ;	2													
••	Met 1	Asn	Leu	Leu	Lys 5	Lys	Asn	Lys	Tyr	Ser 10	Ile	Arg	Lys	Tyr	Lys 15	Val
15	Gly	Ile	Phe	Ser 20	Thr	Leu	Ile	Gly	Thr 25	Val	Leu	Leu	Leu	Ser 30	Asn	Pro
20	Asn	Gly	Ala 35	Gln	Ala	Leu	Thr	Thr 40	Asp	His	Asn	Val	Gln 45	Gly	Gly	Ser
	Asn	Gln 50	Ala	Leu	Pro	Gly	Asn 55	Ser	Gln	Asn	Thr	Asn 60	Ala	Asp	Thr	Asn
25	Arg 65	Asp	Ile	Val	Asn	Asp 70	Ser	Gln	Asn	Thr	Pro 75	Asn	Ala	His	Ala	Thr 80
	Asp	Asn	Thr	Ser	Thr 85	Asn	Gln	Ala	Leu	Thr 90	Asn	His	Gln	Asn	Val 95	Asp
30	Val	Ala	Asn	Gln 100	Val.	Gly	Pro	Ala	Pro 105	Ile	Gln	Pro	Ser	Ala 110	Ser	Pro
35	Ala	Gln	Asn 115	Asn	Asn	Asn	Ser	Asn 120	Ala	Asn ·	Ser	Thr	Ala 125	Thr	Glu	Pro
	Ala	Ala 130	Asn	Thr	Asn	Asn	Asn 135	Leu	Ala	Ser	Asn	Asn 140	Asn	Thr	Leu	Asn
40	Val 145	Pro	Asn	Asn	Thr	Asp 150	Asn	Asn	Asp	Ser	Ala 155	Arg	His	Leu	Thr	Leu 160
	Lys	Glu	Ile	Gln	Glu 165	Asp	Val	Arg	His	Ser 170	Ser	Asp	Lys	Pro	Glu 175	Leu
45	Val	Ala	Ile	Ala 180	Glu	Glu	Ala	Ser	Asn 185	Arg	Pro	Lys	Lys	Arg 190	Ser	Arg
50	Arg	Ala	Ala 195	Pro	Thr	Asp	Pro	Asn 200	Ala	Thr	Pro	Ala	Asp 205	Pro	Thr	Ala
50	Thr	Pro 210	Ala	Asp	Pro	Thr	Ala 215	Gly	Asn	Gly	Ser	Ala 220	Pro	Val	Ala	Ile
55	Thr 225	Ala	Pro	Tyr	Thr	Pro 230	Thr	Thr	Asp	Pro	Asn 235	Ala	Asn	Asn	Ile	Gly 240
	Gln	Asn	Ala	Pro	Asn 245	Glu	Val	Leu	Ser	Phe 250	Asp	Asp	Asn	Asn	Ile 255	Arg
60	Pro	Ser	Thr	Asn	Arg	Ser	Val	Pro	Thr	Val	Thr	Val	Val	Asp	Asn	Leu

				260					265					270		
5	Pro	Gly	Tyr 275	Thr	Leu	Ile	Asn	Gly 280	Gly	Lys	Val	Gly	Val 285	Phe	Ser	His
J	Ala	Met 290	Val	Arg	Thr	Ser	Met 295	Phe	Asp	Ser	Gly	Asp 300	Ala	Lys	Asn	Tyr
10	Gln 305	Ala	Gln	Gly	Asn	Val 310	Ile	Ala	Leu	Gly	Arg 315	Ile	Arg	Gly	Asn	Asp 320
	Thr	Asn	Asp	His	Gly 325	Asp	Phe	Asn	Gly	Ile 330	Glu	ГÀЗ	Thr	Leu	Thr 335	Val
15	Asn	Pro	Asn	Ser 340	Glu	Leu	Ile	Phe	Glu 345	Phe	Asn	Thr	Met	Thr 350	Thr	Lys
20	Asn	Tyr	Gln 355	Gly	Met	Thr	Asn	Leu 360	Ile	Ile	Lys	Asn	Ala 365	Asp	Asn	Asp
20	Thr	Val 370	Ile	Gly	Glu	Lуs	Val 375	Val	Ala	Tyr	Gly	Pro 380	Ile	Trp	Arg	Leu
25	Leu 385	ГÀЗ	Val	Pro	Glu	Asn 390	Val	Ser	His	Leu	Lys 395	Ile	Gln	Phe	Val	Pro 400
	Lys	Asn	Asp	Ala	Ile 405	Thr	Asp	Ala	Arg	Gly 410	Ile	Tyr	Gln	Leu	Arg 415	Asp
30	Gly	Tyr	Lys	Tyr 420	Tyr	Asp	Phe	Val	Asp 425	Ser	Ile	Glγ	Leu	His 430	Ser	Gly
35	Ser	His	Val 435	Tyr	Val	Glu	Arg	Arg 440	Thr	Met	Glu	Pro	Thr 445	Ala	Thr	Asn
	Asn	Lys 450	Glu	Phe	Thr	Val	Thr 455	Thr	Ser	Leu	Lys	Asn 460	Asn	Gly	Asn	Phe
40	Gly 465	Ala	Ser	Phe	Asn	Thr 470	Asp	Asp	Phe	Val	Tyr 475	Lys	Ile	Gln	Leu	Pro 480
	Glu	Gly	Val	Glu	Tyr 485	Val	Asn	Asn	Ser	Leu 490	Thr	Lys	Asp	Phe	Pro 495	Ser
45	Gly	Asn	Ser	Gly 500	Val	Asp	Ile	Asn	Asp 505	Met	Asn	Val	Thr	Tyr 510	Asp	Ala
50	Ala	Asn	Arg 515	Ile	Ile	Thr	Ile	Lys 520	Ser	Thr	Gly	Gly	Gly 525	Thr	Gly	Asn
-,	Ser	Pro 530	Ala	Arg	Leu	Met	Pro 535	Asp	Lys	Ile	Leu	Asp 540	Leu	Lys	Tyr	Lys
55	Leu 545	Arg	Val	Asn	Asn	Val 550	Pro	Thr	Pro	Arg	Thr 555	Val	Thr	Phe	Asn	Asp 560
	Thr	Leu	Thr	Tyr	Lys 565	Thr	Tyr	Ser	Gln	Asp 570	Phe	Ile	Asn	Ser	Pro 575	Ala
60	Glu	Ser	His	Thr	Val	Ser	Thr	Asn	Pro	Tyr	Thr	Ile	Asp	Ile	Ile	Met

				580					585					590		
5	Asn	Lys	Asp 595	Ala	Leu	Gln	Ala	Glu 600	Val	Asp	Arg	Arg	Ile 605	Gln	Gln	Ala
	Asp	Tyr 610	Thr	Phe	Ala	Ser	Leu 615	Asp	Ile	Phe	Asn	Asp 620	Leu	Lys	Arg	Arg
10	Ala 625	Gln	Thr	Ile	Leu	Asp 630	Glu	Asn	Arg	Asn	Asn 635	Val	Pro	Leu	Asn	Lys 640
	Arg	Val	Ser	Gln	Ala 645	Asp	Ile	Asp	Ser	Leu 650	Ala	Asn	Gln	Met	Gln 655	His
15	Thr	Leu	Ile	Arg 660	Ser	Val	Asp	Ala	Glu 665	Asn	Ala	Val	Asn	Arg 670	ГÀЗ	Val
20	Asp	Asp	Met 675	Glu	Asp	Leu	Val	Asn 680	Gln	Asn	Asp	Glu	Leu 685	Thr	Asp	Glu
	Glu	Lys 690	Gln	Ala	Ala	Ile	Gln 695	Val	Ile	Glu	Glu	His 700	Lys	Asn	Glu	Ile
25	Ile 705	Gly	Asn	Ile	Gly	Asp 710	Gln	Thr ·	Thr	Asp	Asp 715	Gly	Val	Thr	Arg	Ile 720
	Lys	Asp	Gln	Gly	Ile 725	Gln	Thr	Leu	Ser	Gly 730	Asp	Thr	Ala	Thr	Pro 735	Val
30	Va1	Lys	Pro	Asn 740	Ala	Lys	Gln	Ala	Ile 745	Arg	Asp	Lys	Ala	Ala 750	Lys	Gln
35	Arg	Glu	Ile 755	Ile	Asn	His	Thr	Pro 760	Asp	Ala	Thr	Gln	Asp 765	Glu	Ile	Gln
	Asp	Ala 770	Leu	Asn	Gln	Leu	Thr 775	Thr	Asp	Glu	Thr	Asp 780	Ala	Ile	Asp	Asn
40	Val 785	Thr	Asn	Ala	Thr	Thr 790	Asn	Ala	Asp	Val	Glu 795	Thr	Ala	ГЛЗ	Asn	Asn 800
	GLy	Ile	Asn	Thr	Ile 805	Gly	Ala	Val	Ala	Pro 810	Gln	Val	Thr	His	Lys 815	Gln
45				Asp 820					825				-	830		
50	Ile	Asn	Ser 835	Asn	Arg	Glu	Ala	Thr 840	Gln	Glu	Glu	Lys	Asn 845	Ala	Ala	Leu
	Asn	Glu 850	Leu	Thr	Gln	Ala	Thr 855	Asn	His	Ala	Leu	Glu 860	Gln	Ile	Asn	Gln
55	865			Asn		870					875					880
				Pro	885					890					895	
60	Asp	Ala	Val	Ser	His	Asp	Ala	Gln	Gln	His	Ile	Ala	Glu	Ile	Asn	Ala

				900					90	5					910)		
	Asn	Pro .	Asp 915	Ala	Thr	Gln	Glu	Glu 920		g G	ln A	la A	la	Ile 925		Lys	val	
5	Tyr	Ala 930	Ala	Val	Ala		Ala 935	Asn	Th	r As	∍n I		eu 40	Asn	Ala	Asr	Thr	
10	Asn 945	Ala .	Asp	Val	Glu	Gln 950	Val	Lys	Th	r As		la I 55	le	Gln	Gly	Ile	Gln 960	
	Ala	Ile	Glu	Pro	Ala 965	Thr	Гуз	Val	Lу		nr A 70	sp A	la	Lys	Asn	Ala 975		
15	Asp	Gln	Ser	Ala 980	Glu	Thr	Gln	His	As 98		la I	le F	he	Asn	Asn 990		Asp	
20	Ala		Leu 995	Glu	Glu	Gln	Gln	Ala 100		la (Sln	Gln	Leu		u A 05	sp G	ln A	la
20	Val	Ala 1010		Ala	Lys	Gln	Asr 101		le	Asn	Ala	Ala		p 20	Thr	Asn	Gln	
25	Glu	Val 1025	Ala	Gln	Ala	, Lys	Asp 103	o G 30	ln.	Gly	Thr	Glr		n 35	Ile	Val	Val	
	Ile	Gln 1040		Ala	Thr	Gln	Val		ys	Thr	Asp	Ala		g 50	Asn	Ala	Val	•
30	Asn	Glu 1055		Ala	Arg	Glu	Ala 106		le	Thr	Asn	Ile		n 65	Ala	Thr	Pro	
35	Gly	Ala 1070		Arg	Glu	Glu	Lys 107		ln	Glu	Ala	Ile		n 80	Arg	Val	Asn	
33	Thr	Leu 1085		Asn	Arg	Ala	Le:		sn	Asp	Ile	Gly		1 95	Thr	Ser	Thr	
40	Thr	Ala 1100		Val	Asn	Ser	110		rg	Asp	Asp	Ala		1 10	Asn	Gln	Ile	
	Gly	Ala 1115		. Gln	Pro	His	Va]		hr	Lys	Lys	Glr		r .25	Ala	Thr	Gly	
45	Val	Leu 1130		Asp	Leu	Ala	Thr 113		la	Lys	Lys	Glr		.u .40	Ile	Asn	Gln	
50	Asn	Thr 1145		Ala	Thr	Thr	Gl:	1 G 50	lu	Lys	Gln	Val		.a .55	Leu	Asn	Gln	
50	Val	Asp 1160		Asp	Lev	. Ala	Th:		la	Ile	Asn	Asr		.e .70	Asn	Gln	Ala	
55	Asp	Thr 1175		a Ala	Glu	ı Val	Asp 118		ln	Ala	Gln	Glr		ะน .85	Gly	Thr	Lys	
	Ala	Ile 1190		a Ala	Ile	Gln	Pro 119		.sn	Ile	Val	. Ьуз	12	200	Pro	Ala	Ala	
60	Leu	Ala	Glr	Thr	Ası	Gln	His	s T	yr	Ser	Ala	Lys		u eu	Val	Glu	Ile	

		1205					1210					1215			
5	Asn	Ala 1220	Thr	Pro	Asp	Ala	Thr 1225	Asp	Asp	Glu	Lys	Asn 1230	Ala	Ala	Ile
J	Asn	Thr 1235	Leu	Asn	Gln	Asp	Arg 1240		Gln	Ala	Ile	Glu 1245	Ser	Ile	Lys
10	Gln	Ala 1250	Asn	Thr	Asn	Ala	Glu 1255	Val	Asp	Gln	Ala	Ala 1260	Thr	Val	Ala
	Glu	Asn 1265	Asn	Ile	Asp	Ala	Val 1270		Val	Asp	Val	Val 1275	Lys	ГЛЗ	Gln
15	Ala	Ala 1280	Arg	Asp	Lys	Ile	Thr 1285		Glu	Val	Ala	Lys 1290	Arg	Ile	Glu
20	Ala	Val 1295	Lys	Gln	Thr	Pro	Asn 1300		Thr	Asp	Glu	Glu 1305	Lys	Gln	Ala
20	Ala	Val 1310	Asn	Gln	Ile	Asn	Gln 1315		Lys	Asp	Gln	Ala 1320	Phe	Asn	Gln
25	Ile	Asn 1325	Gln	Asn	Gln	Thr	Asn 1330	Asp	Gln	Val	Asp	Ala 1335	Thr	Thr	Asn
	Gln	Ala 1340	Ile	Asn	Ala	Ile	Asp 1345	Asn	Val	Glu	Ala	Glu 1350	Val	Val	Ile
30	Lys	Pro 1355		Ala	Ile	Ala	Asp 1360	Ile	Glu	Lys	Ala	Val 1365	Lys	Glu	Lys
35	Gln	Gln 1370	Gln	Ile	Asp	Asn	Ser 1375	Leu	Asp	Ser	Thr	Asp 1380	Asn	Glu	Lys
	Glu	Val 1385	Ala	Leu	Gln	Ala	Leu 1390	Ala	ГÀЗ	Glu	Lys	Glu 1395	Lys	Ala	Leu
40	Ala	Ala 1400	Ile	Asp	Gln	Ala	Gln 1405	Thr	Asn	Ser	Gln	Val 1410	Asn	Gln	Ala
	Ala	Thr 1415	Asn	Gly	Val	Ser	Ala 1420	Ile	Lys	Ile	Ile	Gln 1425	Pro	Glu	Thr
45	Lys	Ile 1430	Lys	Pro	Ala	Ala	Arg 1435		Lys	Ile	Asn	Gln 1440	Lys	Ala	Asn
50	Glu	Leu 1445	Arg	Ala	Gln	Ile	Asn 1450	Gln	Asp	Lys	Glu	Ala 1455	Thr	Ala	Glu
	Glu	Arg 1460	Gln	Ala	Ala	Leu	Asp 1465	Lys	Ile	Asn	Asp	Leu 1470	Val	Ala	Lys
55	Ala	Met 1475	Thr	Asn	Ile	Thr	Asn 1480	Asp	Arg	Thr	Asn	Gln 1485	Gln	Val	Asn
	Asp	Ser 1490	Thr	Asn	Gln	Ala	Leu 1495	Asp	Asp	Ile	Ala	Leu 1500	Val	Thr	Pro
60	Asp	His	Ile	Val	Arg	Ala	Ala	Ala	Arg	Asp	Ala	Val	Lys	Gln	Gln

		1505					1510					1515			
5	Tyr	Glu 1520	Ala	Lys	Lys	His	Glu 1525	Ile	Glu	Gln	Ala	Glu 1530	His	Ala	Thr
J	Asp	Glu 1535	Glu	Lys	Gln	Val	Ala 1540	Leu	Asn	Gln	Leu	Ala 1545	Asn	Asn	Glu
10	Lys	Arg 1550	Ala	Leu	Gln	Asn	Ile 1555	Asn	Gln	Ala	Ile	Ala 1560	Asn	Asn	Asp
	Val	Lys 1565	Arg	Val	Glu	Ser	Asn 1570	Gly	Ile	Ala	Thr	Leu 1575	Lys	Gly	Val
15	Glu	Pro 1580	His	Ile	Val	Val	Lys 1585	Pro	Glu	Ala	Gln	Glu 1590	Ala	Ile	Lys
20	Ala	Ser 1595	Ala	Asp	Asn	Gln	Val 1600	Glu	Ser	Ile	Lys	Asp 1605	Thr	Pro	His
20	Ala	Thr 1610	Thr	Asp	Glu	Leu	Asp 1615	Glu	Ala	Asn	Gln	Gln 1620		Asn	Asp
25	Thr	Leu 1625	Lys	Gln	Gly	Gln	Gln 1630	Asp	Ile	Asp	Asn	Thr 1635	Thr	Gln	Asp
	Ala	Ala 1640	Val	Asn	Asp	Val	Arg 1645	Asn	Gln	Thr	Ile	Lys 1650	Ala	Ile	Glu
30	Gln	Ile 1655		Pro	Lys	Val	Arg 1660	Arg	Lys	Arg	Ala	Ala 1665	Leu	Asp	Asn
35	Ile	Asp 1670	Glu	Ser	Asn	Asn	Asn 1675	Gln	Leu	Asp	Ala	Ile 1680	Arg	Asn	Thr
	Leu	Asp 1685	Thr	Thr	Gln	Asp	Glu 1690	Arg	Asn	Val	Ala	Ile 1695	Ala	Ala	Leu
40	Asn	Lys 1700	Ile	Val	Asn	Ala	Ile 1705	Lys	Asn	Asp	Ile	Ala 1710	Gln	Asn	Lys
	Thr	Asn 1715	Ala	Glu	Val	Asp	Gln 1720	Thr	Glu	Ala	Asp	Gly 1725	Asn	Asn	Asn
45	Ile	Lys 1730		Ile	Leu	Pro	Lys 1735	Val	Gln	Val	Lys	Pro 1740	Ala	Ala	Arg
50	Gln	Ser 1745	Val	Ser	Ala	Lys	Ala 1750	Glu	Ala	Gln	Asn	Ala 1755	Leu	Ile	Asp
	Gln	Ser 1760	Asp	Leu	Ser	Thr	Glu 1765	Glu	Glu	Arg	Leu	Ala 1770	Ala	ГÀЗ	His
55	Leu	Val 1775	Glu	Gln	Ala	Leu	Asn 1780	Gln	Ala	Ile	Asp	Gln 1785	Ile	Asn	His
	Ala	Asp 1790	Lys	Thr	Ala	Gln	Val 1795	Asn	Gln	Asn	Ser	Ile 1800	Asp	Ala	Gln
60	Asn	Ile	Ile	Ser	Lys	Ile	Lys	Pro	Ala	Thr	Thr	Val	Lys	Ala	Thr

		1805					1810					1815			
5	Ala	Leu 1820	Gln	Gln	Ile	Gln	Asn 1825		Ala	Thr	Asn	Lys 1830	Ile	neA	Leu
J	Ile	Lys 1835	Ala	Asn	Asn	Glu	Ala 1840	Thr	Asp	Glu	Glu	Gln 1845	Asn	Ala	Ala
10	Ile	Val 1850	Gln	Val	Glu	Lys	Glu 1855	Leu	Ile	Lys	Ala	Lys 1860	Gln	Gln	Ile
	Ala	Gly 1865	Ala	Val	Thr	Asn	Ala 1870	qeA	Val	Ala	Tyr	Leu 1875	Leu	His	Asp
15	Gly	Lys 1880		Glu	Ile	Arg	Glu 1885	Ile	Glu	Pro	Val	Ile 1890	Asn	Lys	Lys
20	Ala	Thr 1895	Ala	Arg	Glu	Gln	Leu 1900	Thr	Thr	Leu	Phe	Asn 1905	Asp	Lys	Lys
20	Gln	Ala 1910	Ile	Glu	Ala	Asn	Val 1915		Ala	Thr	Val	Glu 1920	Glu	Arg	Asn
25	Ser	Ile 1925	Leu	Ala	Gln	Leu	Gln 1930	Asn	Ile	Tyr	Asp	Thr 1935	Ala	Ile	Gly
	Gln	Ile 1940	Asp	Gln	Asp	Arg	Ser 1945	Asn	Ala	Gln	Val	Asp 1950	Lys	Thr	Ala
30	Thr	Leu 1955	Asn	Leu	Gln	Thr	Ile 1960	His	Asp	Leu	Asp	Val 1965	His	Pro	Ile
35	Lys	Lys 1970	Pro	Asp	Ala	Glu	Lys 1975		Ile	Asn	Asp	Asp 1980	Leu	Ala	Arg
	Val	Thr 1985	His	Leu	Val	Gln	Asn 1990	Tyr	Arg	Lys	Val	Ser 1995	Asp	Arg	Asn
40	Lys	Ala 2000	Asp	Ala	Leu	Lys	Ala 2005	Ile	Thr	Ala	Leu	Lys 2010	Leu	Gln	Met
	Asp	Glu 2015	Glu	Leu	гуs	Thr	Ala 2020	Arg	Thr	Asn	Ala	Asp 2025	Val	Asp	Ala
45	Val	Leu 2030	Lys	Arg	Phe	Asn	Val 2035		Leu	Gly	Asp	Ile 2040	Glu	Ala	Val
50	Ile	Thr 2045	Glu	Lys	Glu	Asn	Ser 2050		Leu	Arg	Ile	Asp 2055	Asn	Ile	Ala
	Gln	Gln 2060	Thr	Tyr	Ala	ГÀЗ	Phe 2065	Lys	Ala	Ile	Ala	Thr 2070	Pro	Glu	Gln
55 -	Leu	Ala 2075		Val	Lys	Ala	Leu 2080	Ile	Asp	Gln	Tyr	Val 2085	Ala	Asp	Gly
	Asn	Arg 2090	Met	Val	Asp	Glu	Asp 2095	Ala	Thr	Leu	Asn	Asp 2100	Ile	Lys	Lys
60	Asp	Thr	Gln	Leu	Ile	Ile	Asp	Glu	Ile	Leu	Ala	Ile	Lys	Leu	Pro

	:	2105					2110					2115					
5		Glu ' 2120	Val	Ile	Lys	Ala	Ser 2125	Pro	Lys	Val	Gly	Gln 2130	Pro	Ala	Pro		
J	Lys :	Val (2135	Cys	Thr	Pro	Ile	Lys 2140	ГÀЗ	Glu	Asp	ГАЗ	Gln 2145	Glu	Val	Arg		
10		Val 1 2150	Val	Lys	Glu	Leu	Pro 2155	Asn	Thr	Gly	Ser	Glu 2160	Glu	Met	Asp		
	Leu 1	Pro 1 2165	Leu	Lys	Glu	Leu	Ala 2170	Leu	Ile	Thr	Gly	Ala 2175	Ala	Leu	Leu		
15		Arg 1 2180	Arg	Arg	Ser	Lys	Lys 2185	Glu	Lys	Glu	Ser						
20	<210: <211: <212: <213:	> 685 > DNZ	A	loco	occus	epi	dermi	ldis		-							
25	<4000 tcta	> 3 atgaa	t gt	aaaç	gataa	tac	caagga	agt t	atta	cato	ıa g	taaaa	gaca	gaaa	agcat	ttt	60
	catga	acagc	t ta	ıgcaa	acga	aaa	aacaa	aga (gtaag	actt	t a	taaat	ctgg	aaaa	aatt	tgg	120
	gtaa	aatcc	g ga	atta	aaaga	aat	agaaa	atg 1	tcaa	aatt	a t	ggggc	tacc	att	atta	agt	180
30	cata	gttta	g to	gagto	caaga	taa	tcaaa	agc a	attag	gtaaa	ıa a	aatga	cggg	ata	egga	ctg	240
	aaaa	ctacg	g co	gtta	attgg	tgg	gtgcat	tc a	acggt	aaat	a t	gttgc	atga	cca	gcaa	gct	300
35	tttg	cggct	t ct	gato	gcacc	att	aactt	tet q	gaatt	aaac	ac	acaaa	gtga	aaca	agta	ggt	360
22	aatc	aaaac	t ca	acga	acaat	cga	agcat	ca a	acato	aaca	g c	cgatt	ccac	aag	gta	acg	420
	aaaa	atagt	a gt	tcgg	gtaca	aac	catcaa	aat a	agtga	caca	g t	ctcaa	gtga	aaa	gtct	gaa	480
40	aagg	tcact	է զ	jacaa	actaa	tag	gtacaa	agc a	aatca	acaa	ıg a	gaaat	tgac	atc	caca	tca	540
	gaat	caaca	t co	etcaa	aagaa	tac	ctacat	tca a	agtto	tgat	ac	taaat	ctgt	agc	tca	act	600
45	tcaa	gtaca	g aa	caac	ccaat	taa	atacat	tca a	acaaa	tcaa	a g	tactg	catc	aaa	taac	act	660
40	tcac	aaagc	a ca	acgo	cato	: tto	eggte	aac i	ttaaa	caaa	a c	tagca	caac	gtc	aacta	agc	720
	accg	cacca	g ta	aaaa	cttcc	aad	ettte	agt (cgctt	agct	a t	gtcaa	catt	tgc	gtca	gca	780
50	gcga	cgaca	a co	gcag	gtaac	: tg	ctaata	aca a	attad	cagtt	a a	taaag	ataa	ctt	aaaa	caa	840
	tata	tgaca	a co	gtcag	ggtaa	tgo	ctacci	tat (gatca	aagt	ac	cggta	ttgt	gac	gtta	aca .	900
55	cagg	atgca	t ac	cago	caaaa	age	gtgcta	att a	acati	agga	a c	acgta	ttga	ctc	taat	aag	960
JJ	agtt	ttcat	t ti	tct	ggaaa	ı agt	taaat	tta (ggtaa	acaaa	at a	tgaag	ggca	tgg	aaat	ggt	1020
	ggag	atggt	a to	eggti	tttgo	ct1	tttca	cca (ggtgt	atta	ig g	tgaaa	cagg	gtt	aaac	ggt	1080
60	acca	anat a	~ ~†	++	aat aa	r ott	taadt:	226	acati	-+~~	·+ +	oaaat.	+ σσ=	+20	~+ = +	C2C	1140

	aatacatcta	aaccaaattc	agctgcaaag	gcgaatgctg	acccatctaa	tgtägctggt	1200
5	ggaggtgcgt	ttggtgcatt	tgtaacaaca	gatagťtatg	gtgttgcgac	aacgtataca	1260
•	tcaagttcaa	cagctgataa	tgctgcgaag	ttaaatgttc	aacctacaaa	taacacgttc	1320
	caagattttg	atattaacta	taatggtgat	acaaaggtta	tgactgtcaa	atatgcaggt	1380
10	caaacatgga	cacgtaatat	ttcagattgg	attgcgaaaa	gtggtacgac	caacttttca	1440
	ttatcaatga	cagcctcaac	aggtggcgcg	acaaatttac	aacaagtaca	atttggaaca	1500
15	ttcgaatata	cagagtctgc	tgttacacaa	gtgagatacg	ttgatgtaac	aacaggtaaa	1560
	gatattattc	caccaaaaac	atattcagga	aatgttgatc	aagtcgtgac	aatcgataat	1620
	cagcaatctg	cattgactgc	taaaggatat	aactacacgt	ccgtcgatag	ttcatatgcg	1680
20	tcaacttata	atgatacaaa	taaaactgta	aaaatgacga	atgctggaca	atcagtgaca	1740
	tattattta	ctgatgtaaa	agcaccaact	gtaactgtag	gcaatcaaac	catagaagtg	1800
25	ggtaaaacaa	tgaatcctat	tgtattgact	acaacggata	atggtactgg	gactgtgaca	1860.
	aatacagtta	caggattacc	aagcggatta	agttacgata	gtgcaacgaa	ttcaatcatt	1920
	gggacaccaa	caaaaattgg	tcaatcaaca	gtgacagttg	tgtctactga	ccaagcaaat	1980
30	aacaaatcga	cgacaacttt	tacaataaat	gttgtggata	cgacageacc	aacagtgaca	2040
•	ccaataggag	atcaatcatc	agaagtgtat	tcaccaatat	ccccgattaa	aattgctacg	2100
35	caagataaca	gtggaaatgc	ggtgacgaat	acagtgactg	gattgccatc	cggactaaca	2160
	tttgatagta	caaataatac	tattagtggt	acaccaacaa	acattggtac	aagtactata	2220
	tcaatcgttt	ctacagatgc	gagcggtaac	aaaacgacga	caacttttaa	atatgaagta	2280
40	acaagaaata	gcatgagtga	ttccgtatca	acatcaggaa	gtacacaaca	atctcaaagt	2340
**	gtgtcaacaa	gtaaagctga	ctcacaaagt	gcatcaacga	gtacatcagg	atcgattgtg	2400
45	gtatctacat	cagctagtac	ctcgaaatcg	acaagtgtaa	gcctatctga	ttctgtgagt	2460
	gcatctaagt	cattaagcac	atctgaaagt	aatagtgtat	caagctcaac	aagcacaagt	2520
	ttagtgaatt	cacaaagtgt	atcatcaagc	atgtcggatt	cagctagtaa	atcaacatca	2580
50	ttaagcgatt	ctatttcaaa	ctctagcagt	actgaaaaat	ccgaaagtct	atcaacaagt	2640
	acatctgatt	cattgcgtac	atcaacatca	ctcagtgact	cattaagtat	gagtacatca	2700
55	ggaagcttgt	ctaagtcaca	aagcttatca	acgagtatat	cagggtcgtc	tagtacatca	27,60
	gcatcattaa	gtgacagtac	atcgaatgca	attagtacat	caacatcatt	gagcgagtca	2820
	gctagcacct	cggactctat	cagtatttca	aatagcatag	ccaactctca	aagtgcgtca	2880
60	acaagcaaat	cagattcaca	aagtacatca	atatcattaa	gtacaagtga	ttcaaaatcg	2940

	atgagtacat	cagaatcatt	gagcgattcg	acgagcacaa	gtggttctgt	ttctggatca	3000
5	ctaagcatag	cagcatcaca	aagtgtctca	acaagtacat	cagactcgat	gagtacttca	3060
	gagatagtaa	gtgactctat	cagtacaagt	gggtcattat	ctgcatcaga	cagtaaatca	3120
	atgtccgtaa	gtagttcaat	gagcacgtct	cagtcaggta	gtacatcaga	atcattaagt	3180
10	gattcacaaa	gtacatctga	ttctgatagt	aagtcattat	cacaaagtac	tagtcaatca	3240
	ggttcaacaa	gtacatcaac	gtcgacaagt	gcttcagtac	gtacttcgga	atcacaaagt	3300
15	acgtctggtt	caatgagtgc	aagtcaatcc	gattcaatga	gcatatcaac	gtcgtttagt	3360
13	gattcaacga	gtgatagcaa	atcagcatca	actgcatcaa	gtgaatcaat	atcacaaagt	3420
	gcttctacga	gcacatctgg	ttcggtaagt	acttcgacat	cgttaagtac	aagtaattca	3480
20	gaacgtacat	caacatctat	gagtgattcc	acaagcttaa	gtacatcaga	gtctgattca	3540
	ataagtgaat	caacgtcaac	gagcgactct	ataagtgaag	caatatctgc	ttcagagagc	3600
25	acgtttatat	cattaagtga	atcaaatagt	actagcgatt	cagaatcaca	aagtgcatct	3660
23	gcctttttaa	gtgaatcatt	aagtgaaagt	acgtctgaat	caacatcaga	gtcagtgagt	3720
	agttcgacaa	gtgagagtac	gtcattatca	gacagtacat	cagaatctgg	tagcacatca	3780
30	acatcattaa	gtaattcaac	aagtggtagt	acgtccattt	caacatcgac	aagtatcagt	3840
	gaatcaacgt	caacgtttaa	gagcgagagt	gtttcaacat	cactgagtat	gtcaacgagt	3900
35	acaagtttgt	ctgactctac	aagtttgtca	acatcattaa	gtgattccac	aagtgatagt	3960
J J	aagtctgatt	cattaagtac	atcaatgtcg	acaagtgatt	caatcagtac	aagtaaatct	4020
	gattccatta	gtacatccac	atcattaagt	ggttctacaa	gtgaaagtga	atccgactca	4080
40	acatcatcaa	gtgaaagtaa	atccgattca	acatcaatga	gcataagtat	gtctcaatca	4140
	acatcaggaa	gtacaagtac	gtcaacgagt	acaagtttgt	ctgactcaac	gagtacatca	4200
45	ttgtcactaa	gtgcctcaat	gaatcaaagc	ggagtagact	caaactcagc	aagccaaagt	4260
••	gcctcaaact	caacaagtac	aagcacgagc	gaatccgatt	cacaaagcac	atcatcatat	4320
	acaagtcagt	caacaagcca	aagtgaatcc	acatcgacat	caacgtcact	aagcgattca	4380
50	acaagtatat	ctaaaagtac	gagtcaatca	ggttcggtaa	gcacatcagc	gtcattaagt	4440
	ggttcagaga	gtgaatctga	ttcacaaagt	atctcaacaa	gtgcaagtga	gtcaacatca	4500
55	gaaagtgcgt	caacatcact	cagtgactca	acaagtacaa	gtaactcagg	atcagcaagt	4560
	acgtcaacat	cgctcagtaa	ctcagcaagc	gcaagtgaat	ccgatttgtc	gtcaacatct	4620
	ttaagtgatt	caacatctgc	gtcaatgcaa	agcagtgaat	ccgattcaca	aagcacatca	4680
60	gcatcattaa	gtgattcgct	aagtacatca	acttcaaacc	gcatgtcgac	cattgcaagt	4740

	ttatctacat	cggtaagtac	atcagagtct	ggctcaacat	cagaaagtac	aagtgaatcc	4800
5	gattcaacat	caacatcatt	aagcgattca	caaagcacat	caagaagtac	aagtgcatca	4860
,	ggatcagcaa	gtacatcaac	atcaacaagt	gactctcgta	gtacatcagc	ttcaactagt	4920
	acttcgatgc	gtacaagtac	tagtgattca	caaagtatgt	cgctttcgac	aagtacatca	4980
.10	acaagtatga	gtgattcaac	gtcattatct	gatagtgtta	gtgattcaac	atcagactca	5040
	acaagtgcga	gtacatctgg	ttcgatgagt	gtgtctatat	cgttaagtga	ttcgacaagt	5100
15	acatcaacat	cggctagtga	agtaatgagc	gcaagcatat	ctgattcaca	aagtatgtca	5160
13	gaatctgtaa	atgattcaga	aagtgtaagt	gaatctaatt	ctgaaagtga	ctctaaatcg	5220
	atgagtggct	caacaagtgt	cagtgattct	ggctcattga	gcgtctcaac	gtcattaaga	5280
20	aaatcagaaa	gtgtaagcga	gtcaagttca	ttgagttgct	cacaatcgat	gagcgattca	5340
	gtaagcacaa	gcgattcgtc	atcattaagt	gtatcgacgt	cactaagaag	ttcagaaagc	5400
25	gtgagtgaat	ctgattcatt	aagtgattca	aaatcaacaa	gtggttcgac	ttcaacaagt	5460
20	acatctggtt	cattgagtac	ctcaacatca	ttaagtggtt	cagaaagcgt	aagcgagtct	5520
	acctcgctaa	gtgattcaat	atcaatgagt	gattctacta	gtacaagtga	ctccgactca	5580
30	ttaagtggat	caatatcttt	aagtggttcc	acaagtctta	gcacttcgga	ttcattaagt	5640
	gattcaaaat	cattgagtag	ctcgcaaagt	atgagtggat	cagaatcaac	gtcaacaagt .	5700
35	gtgagcgatt	cgcagtcaag	ctcaacaagt	aatagtcaat	ttgactctat	gagcatcagt	5760
	gcatcagaaa	gcgactcaat	gtctacaagt	gattcgtcta	gcatcagtgg	atcaaattca	5820
	acgagtacat	cactttcaac	atctgactca	atgagcggaa	gcgtatcagt	ttcaacatcg	5880
40	acaagtttaa	gtgactcaat	atcaggttca	acaagtgtaa	gtgactcgag	ctcaacaagc	5940
	acatctacat	cattaagtga	ttcaatgtca	caaagccagt	caacaagtac	aagtgcatct	6000
45	ggttccttaa	gtacatcgat	atcaacatca	atgtcaatga	gtgctagtac	atcgtcatca	6060
	caaagcacat	cggtgtcgac	atcattatca	acatcagaca	gtatcagtga	ttctacttca	6120
	ataagtatca	gtggttcaca	aagtacagta	gaatcagaat	ctacaagtga	ttcaacttct	6180
50	atcagtgact	cagaatcatt	gagtacatca	gattcagact	cgacatcgac	aagtacatcg	6240
	gacticaacaa	gtggttcaac	ttcaacaagc	atatctgaat	cattaagtac	gtctggttca	6300
55	ggttcaacga	gcgtatctga	ctcaacatca	atgagtgaat	ctaattcatc	gagtgtttca	6360
	atgtcacaag	acaaatccga	ctcaacatca	attagtgact	cagaatcagt	gtcaacaagc	6420
	acatcaacgt	cattgagcac	atccgattcg	acaagcacat	ccgaatcact	gagtacatct	6480
60	atgtctggtt	cacaaagcat	ttctgactca	acatcaacaa	gtatgtccgg	ctcaacaagt	6540

	acatctgaat	ctaactcaat	gcatccgtc	a gactcaatga	gtatgcatca t	actcacage 6600
5	acgagcacat	ctcgcttatc	aagtgaagc	a acaacgagca	cgagtgaatc t	cagtctaca 6660
3	ttaagtgcaa	catctgaagt	gactaaacat	t aatggcacac	cagcacaaag t	gaaaaaaga 6720
	ttgccagata	caggtgactc	aataaaaca	a aatggattac	taggtggcgt t	atgacatta 6780
10	ttagttggtt	taggtttaat	gaagagaaa	g aaaaagaaag	atgaaaatga t	caagatgat 6840
	tctcaagcat	aa				6852
15	<210> 4 <211> 2283 <212> PRT <213> Stap	hylococcus	epidermid:	is		
20	<400> 4					
	Ser Asn Glu 1	Cys Lys As 5	p Asn Thr	Arg Ser Tyr 10	Tyr Met Ser	Lys Arg 15
25	Gln Lys Ala	Phe His As 20	p Ser Leu	Ala Asn Glu 25	Lys Thr Arg 30	Val Arg
30	Leu Tyr Lys 35	Ser Gly Ly	s Asn Trp 40	Val Lys Ser	Gly Ile Lys 45	Glu Ile
	50	_	55		Ser His Ser 60	
35	Ser Gln Asp 65	Asn Gln Se 70	r Ile Ser	Lys Lys Met 75	Thr Gly Tyr	Gly Leu 80
	Lys Thr Thr	Ala Val Il 85	e Gly Gly	Ala Phe Thr 90	Val Asn Met	Leu His 95
40	Asp Gln Gln	Ala Phe Al 100	a Ala Ser	Asp Ala Pro 105	Leu Thr Ser 110	Glu Leu
45	Asn Thr Gln 115		r Val Gly 120	Asn Gln Asn	Ser Thr Thr 125	Ile Glu
	Ala Ser Thr 130	Ser Thr Al	a Asp Ser 135	Thr Ser Val	Thr Lys Asn 140	Ser Ser
50	145	15	0	155	Ser Glu Lys	160
	Lys Val Thr	Ser Thr Th 165	r Asn Ser	Thr Ser Asn 170	Gln Gln Glu	Lys Leu 175
55		180		185	Thr Thr Ser 190	
60	Asp Thr Lys		a Ser Thr 200	Ser Ser Thr	Glu Gln Pro 205	Ile Asn

	Thr	Ser 210	Thr	Asn	Gln	Ser	Thr 215	Ala	Ser	Asn	Asn	Thr 220	Ser	Gln	Ser	Thr
5	Thr 225	Pro	Ser	Ser	Val	Asn 230	Leu	Asn	Lys	Thr	Ser 235	Thr	Thr	Ser	Thr	Ser 240
•	Thr	Ala	Pro	Val	Lys 245	Leu	Arg	Thr	Phe	Ser 250	Arg	Leu	Ala	Met	Ser 255	Thr
:10	Phe	Ala	Ser	Ala 260	Ala	Thr	Thr	Thr	Ala 265	Val	Thr	Ala	Asn	Thr 270	Ile	Thr
15	Val	Asn	Lys 275	Asp	Asn	Leu	Lys	Gln 280	Tyr	Met	Thr	Thr	Ser 285	Gly	Asn	Ala
	Thr	Tyr 290	Asp	Gln	Ser	Thr	Gly 295	Ile	Val	Thr	Leu	Thr 300	Gln	Asp	Ala	Tyr
20	Ser 305	Gln	Lys	Gly	Ala	Ile 310	Thr	Leu	Gly	Thr	Arg 315	Ile	Asp	Ser	Asn	Lys 320
	Ser	Phe	His	Phe	Ser 325	Gly	Lys	Val	Asn	Leu 330	Gly	Asn	ГÀЗ	Tyr	Glu 335	Gly
25	His	Gly	Asn	Gly 340	Gly	Asp	Gly	Ile	Gly 345	Phe	Ala	Phe	Ser	Pro 350	Gly	Val
30	Leu	Gly	Glu 355	Thr	Gly	Leu	Asn	Gly 360	Ala	Ala	Val	Gly	Ile 365	Gly	Gly	Leu
	Ser	Asn 370	Ala	Phe	Gly	Phe	Lys 375	Leu	Asp	Thr	Tyr	His 380	Asn	Thr	Ser	Lys
35	Pro 385	Asn	Ser	Ala	Ala	Lys 390	Ala	Asn	Ala	Asp	Pro 395	Ser	Asn	Val	Ala	Gly 400
	Gly	Gly	Ala	Phe	Gly 405	Ala	Phe	Val	Thr	Thr 410	Asp	Ser	Tyr	Gly	Val 415	Ala
40	Thr	Thr	Tyr	Thr 420	Ser	Ser	Ser	Thr	Ala 425	Asp	Asn	Ala	Ala	Lys 430	Leu	Asn
45	Val	Gln	Pro 435	Thr	Asn	Asn	Thr	Phe 440	Gln	Asp	Phe	Asp	Ile 445	Asn	Tyr	Asn
	Gly	Asp 450		Lys	Val		Thr 455		Lys	Tyr		Gly 460		Thr	Trp	Thr
50	Arg 465	Asn	Ile	Ser	Asp	Trp 470	Ile	Ala	Lys	Ser	Gly 475	Thr	Thr	Asn	Phe	Ser 480
	Leu	Ser	Met	Thr	Ala 485	Ser	Thr	Gly	Gly	Ala 490	Thr	Asn	Leu	Gln	Gln 495	Val
55	Gln	Phe	Gly	Thr 500	Phe	Glu	Tyr	Thr	Glu 505	Ser	Ala	Val	Thr	Gln 510	Val	Arg
60	Tyr	Val	Asp 515	Val	Thr	Thr	Gly	Lys 520	Asp	Ile	Ile	Pro	Pro 525	Lys	Thr	Tyr

	Ser	Gly 530	Asn	Val	Asp	Gln	Val 535	Val	Thr	Ile	Asp	Asn 540	Gln	Gln	Ser	Ala
5	Leu 545	Thr	Ala	Lys	Gly	Tyr 550	Asn	Tyr	Thr	Ser	Val 555	Asp	Ser	Ser	Tyr	Ala 560
	Ser	Thr	Tyr	Asn	Asp 565	Thr	Asn	Lys	Thr	Val 570	Lys	Met	Thr	Asn	Ala 575	Gly
10	Gln	Ser	Val	Thr 580	Tyr	Tyr	Phe	Thr	Asp 585	Val	Lys	Ala	Pro	Thr 590	Val	Thr
15	Val	Gly	Asn 595	Gln	Thr	Ile	Glu	Val 600	Gly	Lys	Thr	Met	Asn 605	Pro	Ile	Val
	Leu	Thr 610	Thr	Thr	Asp	Asn	Gly 615	Thr	Gly	Thr	Val	Thr 620	Asn	Thr	Val	Thr
20	Gly 625	Leu	Pro	Ser	Gly	Leu 630	Ser	Tyr	Asp	Ser	Ala 635	Thr	Asn	Ser	Ile	Ile 640
	Gly	Thr	Pro	Thr	Lys 645	Ile	Gly	Gln	Ser	Thr 650	Val	Thr	Val	Val	Ser 655	Thr
25	Asp	Gln	Ala	Asn 660	Asn	Lys	Ser	Thr	Thr 665	Thr	Phe	Thr	Ile	Asn 670	Val	Val
30	Asp	Thr	Thr 675	Ala	Pro	Thr	Val	Thr 680	Pro	Ile	Gly	Asp	Gln 685	Ser	Ser	Glu
	Val	Tyr 690	Ser	Pro	Ile	Ser	Pro 695	Ile	Lys	Ile	Ala	Thr 700	Gln	Asp	Asn	Ser
35	Gly 705	Asn	Ala	Val	Thr	Asn 710	Thr	Val	Thr	Gly	Leu 715	Pro	Ser	Gly	Leu	Thr 720
	Phe	Asp	Ser	Thr	Asn 725	Asn	Thr	Ile	Ser	Gly 730	Thr	Pro	Thr	Asn	Ile 735	Gly
40	Thr	Ser	Thr	Ile 740	Ser	Ile	Val	Ser	Thr 745	Asp	Ala	Ser	Gly	Asn 750	Lys	Thr
45	Thr	Thr	Thr 755	Phe	Lys	Tyr	Glu	Val 760	Thr	Arg	Asn	Ser	Met 765	Ser	Asp	Ser
	Val	Ser 770	Thr	Ser	Gly	Ser	Thr 775		Gln	Ser	Gln	Ser 780	Val	Ser	Thr	Ser
50	Lys 785	Ala	Asp	Ser	Gln	Ser 790	Ala	Ser	Thr	Ser	Thr 795	Ser	Gly	Ser	Ile	Val 800
	Val	Ser	Thr	Ser	Ala 805	Ser	Thr	Ser	Lys	Ser 810	Thr	Ser	Val	Ser	Leu 815	Ser
55	Asp	Ser	Val	Ser 820	Ala	Ser	Lys	Ser	Leu 825	Ser	Thr	Ser	Glu	Ser 830	Asn	Ser
60	Val	Ser	Ser 835	Ser	Thr	Ser	Thr	Ser 840	Leu	Val	Asn	Ser	Gln 845	Ser	Val	Ser

	Ser	Ser 850	Met	Ser	Asp	Ser	Ala 855	Ser	Lys	Ser	Thr	Ser 860	Leu	Ser	Asp	Ser
5	Ile 865	Ser	Asn	Ser	Ser	Ser 870	Thr	Glu	Lys	Ser	Glu 875	Ser	Leu	Ser	Thr	Ser 880
	Thir	Ser	Asp	Ser	Leu 885	Arg	Thr	Ser	Thr	Ser 890	Leu	Ser	Asp	Ser	Leu 895	
10	Met	Ser	Thr	Ser 900	Gly	Ser	Leu	Ser	Lys 905	Ser	Gln	Ser	Leu	Ser 910	Thr	Ser
15	Ile	Ser	Gly 915	Ser	Ser	Ser	Thr	Ser 920	Ala	Ser	Leu	Ser	Asp 925	Ser	Thr	Ser
1.7	Asn	Ala 930	Ile	Ser	Thr	Ser	Thr 935	Ser	Leu	Ser	Glu	Ser 940	Ala	Ser	Thr	Ser
20	Asp 945	Ser	Ile	Ser	Ile	Ser 950	Asn	Ser	Ile	Ala	Asn 955	Ser	Gln	Ser	Ala	Ser 960
	Thr	Ser	Lys	Ser	Asp 965	Ser	Gln	Ser	Thr	Ser 970	Ile	Ser	Leu	Ser	Thr 975	
25	Asp	Ser	Lys	Ser 980	Met	Ser	Thr	Ser	Glu 985	Ser	Leu	Ser	Asp	Ser 990	Thr	Ser
30	Thr	Ser	Gly 995	Ser	Val	Ser	Gly	Ser 1000		u Se:	r Ile	e Al		a S 05	er G	ln Ser
30	Val	Ser 1010		Ser	Thr	Ser	Asp 101		er Me	et S	er T		er 020	Glu	Ile	Val
35	Ser	Asp 1025		Ile	Ser	Thr	Ser 103		ly S	er L	eu S		la 035	Ser	Asp	Ser
	Lys	Ser 1040		Ser	. Val	. Ser	Ser 104		er M	et S	er T		er 050	Gln	Ser	Gly
40	Ser	Thr 1055		Glu	Ser	Leu	Ser 106		sp S	er G	ln S		hr 065	Ser	Asp	Ser
45	Asp	Ser 1070		Ser	Let	Ser	Glr 107		er T	hr S	er G.		er 080	Gly	Ser	Thr
-1 3	Ser	Thr 1085		Thr	Ser	Thr	Ser 109		La S	er V	al A		hr 095	Ser	Glu	Ser
50	Gln	Ser 1100		Ser	: Gl	/ Ser	: Met		er A	la S	er G		er 110	Asp	Ser	Met
	Ser	Ile 1115		Thr	: Sei	Phe	Ser 112		sp S	er T	hr S		sp 125	Ser	Lys	Ser
55	Ala	Ser 1130		: Ala	Sei	Ser	Glu 113		er I	le S	er G		er 140	Ala	Ser	Thr
60	Ser	Thr 1145		Gly	seı	· Val	. Sei 11!		hr S	er T	hr S		eu 155	Ser	Thr	Ser

	Asn	Ser 1160	Glu	Arg	Thr	Ser	Thr 1165	Ser	Met	Ser	Asp	Ser 1170	Thr	Ser	Leu
5	Ser	Thr 1175	Ser	Glu	Ser	Asp	Ser 1180	Ile	Ser	Glu	Ser	Thr 1185	Ser	Thr	Ser
	Asp	Ser 1190	Ile	Ser	Glu	Ala	Ile 1195	Ser	Ala	Ser	Glu	Ser 1200	Thr	Phe	Ile
10	Ser	Leu 1205	Ser	Glu	Ser	Asn	Ser 1210	Thr	Ser	Asp	Ser	Glu 1215	Ser	Gln	Ser
15	Ala	Ser 1220	Ala	Phe	Leu	Ser	Glu 1225	Ser	Leu	Ser	Glu	Ser 1230	Thr	Ser	Glu
13	Ser	Thr 1235	Ser	Glu	Ser	Val	Ser 1240	Ser	Ser	Thr	Ser	Glu 1245	Ser	Thr	Ser
20	Leu	Ser 1250		Ser	Thr	Ser	Glu 1255	Ser	Gly	Ser	Thr	Ser 1260	Thr	Ser	Leu
	Ser	Asn 1265	Ser	Thr	Ser	Gly	Ser 1270	Thr	Ser	Ile	Ser	Thr 1275	Ser	Thr	Ser
25	Ile	Ser 1280	Glu	Ser	Thr	Ser	Thr 1285	Phe	Lys	Ser	Glu	Ser 1290	Val	Ser	Thr
30	Ser	Leu 1295	Ser	Met	Ser	Thr	Ser 1300	Thr	Ser	Leu	Ser	Asp 1305	Ser	Thr	Ser
	Leu	Ser 1310	Thr	Ser	Leu	Ser	Asp 1315	Ser	Thr	Ser	Asp	Ser 1320	Lys	Ser	Asp
35	Ser	Leu 1325	Ser	Thr	Ser	Met	Ser 1330	Thr	Ser	Asp	Ser	Ile 1335	Ser	Thr	Ser
	ГЛЗ	Ser 1340	Asp	Ser	Ile	Ser	Thr 1345	Ser	Thr	Ser	Leu	Ser 1350	Gly	Ser	Thr
40	Ser	Glu 1355	Ser	Glu	Ser	Asp	Ser 1360		Ser	Ser	Ser	Glu 1365	Ser	Lys	Ser
45	Asp	Ser 1370	Thr	Ser	Met	Ser	Ile 1375	Ser	Met	Ser	Gln	Ser 1380	Thr	Ser	Gly
	Ser	Thr 1385	Ser	Thr	Ser	Thr	Ser 1390	Thr	Ser	Leu	Ser	Asp 1395	Ser	Thr	Ser
50	Thr	Ser 1400		Ser	Leu	Ser	Ala 1405		Met	Asn	Gln	Ser 1410	Gly	Val	Asp
	Ser	Asn 1415	Ser	Ala	Ser	Gln	Ser 1420	Ala	Ser	Asn	Ser	Thr 1425	Ser	Thr	Ser
55	Thr	Ser 1430	Glu	Ser	Asp	Ser	Gln 1435		Thr	Ser	Ser	Tyr 1440	Thr	Ser	Gln
60	Ser	Thr 1445	Ser	Gln	Ser	Glu	Ser 1450		Ser	Thr	Ser	Thr 1455	Ser	Leu	Ser

	Asp	Ser 1460	Thr	Ser	Ile	Ser	Lys 1465	Ser	Thr	Ser	Gln	Ser 1470	Gly	Ser	Val
5	Ser	Thr 1475	Ser	Ala	Ser	Leu	Ser 1480	Gly	Ser	Glu	Ser	Glu 1485	Ser	Asp	Ser
	Gln	Ser 1490	Ile	Ser	Thr	Ser	Ala 1495	Ser	Glu	Ser	Thr	Ser 1500	Glu	Ser	Ala
10	Ser	Thr 1505	Ser	Leu	Ser	Asp	Ser 1510		Ser	Thr	Ser	Asn 1515	Ser	Gly	Ser
15	Ala	Ser 1520	Thr	Ser	Thr	Ser	Leu 1525	Ser	Asn	Ser	Ala	Ser 1530	Ala	Ser	Glu
	Ser	Asp 1535	Leu	Ser	Ser	Thr	Ser 1540	Leu	Ser	Asp	Ser	Thr 1545	Ser	Ala	Ser
20	Met	Gln 1550	Ser	Ser	Glu	Ser	Asp 1555	Ser	Gln	Ser	Thr	Ser 1560	Ala	Ser	Leu
	Ser	Asp 1565	Ser	Leu	Ser	Thr	Ser 1570		Ser	Asn	Arg	Met 1575	Ser	Thr	Ile
25	Ala	Ser 1580	Leu	Ser	Thr	Ser	Val 1585		Thr	Ser	Glu	Ser 1590	Gly	Ser	Thr
30	Ser	Glu 1595	Ser	Thr	Ser'	Glu	Ser 1600	Asp	Ser	Thr	Ser	Thr 1605	Ser	Leu	Ser
	Asp	Ser 1610	Gln	Ser	Thr	Ser	Arg 1615	Ser	Thr	Ser	Ala	Ser 1620	Gly	Ser	Ala
35	Ser	Thr 1625	Ser	Thr	Ser	Thr	Ser 1630	Asp	Ser	Arg	Ser	Thr 1635	Ser	Ala	Ser
	Thr	Ser 1640	Thr	Ser	Met	Arg	Thr 1645	Ser	Thr	Ser	Asp	Ser 1650	Gln	Ser	Met
40	Ser	Leu 1655	Ser	Thr	Ser	Thr	Ser 1660	Thr	Ser	Met	Ser	Asp 1665	Ser	Thr	Ser
45	Leu	Ser 1670	Asp	Ser	Val	Ser	Asp 1675	Ser	Thr	Ser	Asp	Ser 1680	Thr	Ser	Ala
	Ser	Thr 1685	Ser	Gly	Ser	Met	Ser 1690	۷al	Ser	Ile	Ser	Leu 1695	Ser	Asp	Ser
50	Thr	Ser 1700	Thr	Ser	Thr	Ser	Ala 1705	Ser	Glu	Val	Met	Ser 1710	Ala	Ser	Ile
	Ser	Asp 1715		Gln	Ser	Met	Ser 1720		Ser	Val	Asn	Asp 1725	Ser	Glu	Ser
55	Val	Ser 1730	Glu	Ser	Asn	Ser	Glu 1735	Ser	Asp	Ser	Lys	Ser 1740	Met	Ser	Gly
60	Ser	Thr 1745	Ser	Val	Ser	Asp	Ser 1750	Gly	Ser	Leu	Ser	Val 1755	Ser	Thr	Ser

	Leu	Arg 1760	Lys	Ser	Glu	Ser	Val 1765	Ser	Glu	Ser	Ser	Ser 1770	Leu	Ser	Суѕ
5	Ser	Gln 1775	Ser	Met	Ser	Asp	Ser 1780	Val	Ser	Thr	Ser	Asp 1785	Ser	Ser	Ser
	Leu	Ser 1790	Val	Ser	Thr	Ser	Leu 1795	Arg	Ser	Ser	Glu	Ser 1800	Val	Ser	Glu
10	Ser	Asp 1805	Ser	Leu	Ser	Asp	Ser 1810	Lys	Ser	Thr	Ser	Gly 1815	Ser	Thr	Ser
15	Thr	Ser 1820	Thr	Ser	Gly	Ser	Leu 1825	Ser	Thr	Ser	Thr	Ser 1830	Leu	Ser	Gly
	Ser	Glu 1835	Ser	Val	Ser	Glu	Ser 1840	Thr	Ser	Leu	Ser	Asp 1845	Ser	Ile	Ser
20	Met	Ser 1850	Asp	Ser	Thr	Ser	Thr 1855	Ser	Asp	Ser	Asp	Ser 1860	Leu	Ser	Gly
	Ser	Ile 1865	Ser	Leu	Ser	Gly	Ser 1870	Thr	Ser	Leu	Ser	Thr 1875	Ser	Asp	Ser
25	Leu	Ser 1880	Asp	Ser	Lys	Ser	Leu 1885	Ser	Ser	Ser	Gln	Ser 1890	Met	Ser	Gly
30	Ser	Glu 1895	Ser	Thr	Ser	Thr	Ser 1900	Val	Ser	Asp	Ser	Gln 1905	Ser	Ser	Ser
	Thr	Ser 1910	Asn	Ser	Gln	Phe	Asp 1915	Ser	Met	Ser	Ile	Ser 1920	Ala	Ser	Glu
35	Ser	Asp 1925	Ser	Met	Ser	Thr	Ser 1930	Asp	Ser	Ser	Ser	Ile 1935	Ser	Gly	Ser
	Asn	Ser 1940	Thr	Ser	Thr	Ser	Leu 1945	Ser	Thr	Ser	Asp	Ser 1950	Met	Ser	Glу
40	Ser	Val 1955	Ser	Val	Ser	Thr	Ser 1960	Thr	Ser	Leu	Ser	Asp 1965	Ser	Ile	Ser
45	Gly	Ser 1970	Thr	Ser	Val	Ser	Asp 1975	Ser	Ser	Ser	Thr	Ser 1980	Thr	Ser	Thr
	Ser	Leu 1985	Ser	Asp	Ser	Met	Ser 1990	Gln	Ser	Gln	Ser	Thr 1995	Ser	Thr	Ser
50	Ala	Ser 2000	Gly	Ser	Leu	Ser	Thr 2005	Ser	Ile	Ser	Thr	Ser 2010	Met	Ser	Met
	Ser	Ala 2015	Ser	Thr	Ser	Ser	Ser 2020	Gln	Ser	Thr	Ser	Val 2025	Ser	Thr	Ser
55	Leu	Ser 2030	Thr	Ser	Asp	Ser	Ile 2035	Ser	Asp	Ser	Thr	Ser 2040	Ile	Ser	Ile
60	Ser	Gly 2045	Ser	Gln	Ser	Thr	Val 2050	Glu	Ser	Glu	Ser	Thr 2055	Ser	Asp	Ser

	Thr	Ser 2060	Ile	Ser	Asp	Ser	Glu 2065	Ser	Leu	Ser	Thr	Ser 2070	qeA	Ser	Asp	
5	Ser	Thr 2075	Ser	Thr	Ser	Thr	Ser 2080	Asp	Ser	Thr	Ser	Gly 2085	Ser	Thr	Ser	
	Thr	Ser 2090	Ile	Ser	Glu	Ser	Leu 2095	Ser	Thr	Ser	Gly	Ser 2100	Gly	Ser	Thr	
10	Ser	Val 2105	Ser	Asp	Ser	Thr	Ser 2110	Met	Ser	Glu	Ser	Asn 2115	Ser	Ser	Ser	
15	Val	Ser 2120	Met	Ser	Gln	Asp	Lys 2125		Asp	Ser	Thr	Ser 2130		Ser	Asp	
	Ser	Glu 2135	Ser	Val	Ser	Thr	Ser 2140	Thr	Ser	Thr	Ser	Leu 2145	Ser	Thr	Ser	
20	Asp	Ser 2150	Thr	Ser	Thr	Ser	Glu 2155	Ser	Leu	Ser	Thr	Ser 2160	Met	Ser	Gly	
	Ser	Gln 2165	Ser	Ile	Ser	Ąsp	Ser 2170	Thr	Ser	Thr	Ser	Met 2175	Ser	Gly	Ser	
25	Thr	Ser 2180	Thr	Ser	Glu	Ser	Asn 2185	Ser	Met	His	Pro	Ser 2190	Asp	Ser	Met	
30	Ser	Met 2195	His	His	Thr	His	Ser 2200		Ser	Thr	Ser	Arg 2205	Leu	Ser	Ser	
	Glu	Ala 2210	Thr	Thr	Ser	Thr	Ser 2215	Glu	Ser	Gln	Ser	Thr 2220	Leu	Ser	Ala	
35	Thr	Ser 2225	Glu	Val	Thr	Lys	His 2230		Gly	Thr	Pro	Ala 2235	Gln	Ser	Glu	
	Lys	Arg 2240	Leu	Pro	Asp	Thr	Gly 2245	Asp	Ser	Ile	Lys	Gln 2250	Asn	Gly	Leu	
40	Leu	Gly 2255	Gly	Val	Met	Thr	Leu 2260		Val	Gly	Leu	Gly 2265		Met	Lys	
45	Arg	Lys 2270		Lys	Lys	Asp	Glu 2275	Asn	Asp	Gln	Asp	Asp 2280		Gln	Ala	
			AV	yloc	occus	s ер:	iderm	idis								
50	<40 tta		aa t	taaai	tataa	a tci	ttata	gga (gttgi	ttaa	ca a	catga	acaa	aca	tcaccca	60
	aaa	ttaag	gt c	tttc	tatt	c tat	ttaga	aaa 1	tcaa	ctct	ag g	cgttg	catc	ggt	cattgtc	120
55	agt	acact	at t	ttta	atta	c tt	ctcaa	cat (caag	caca	ag c	agcag	aaaa	tac	aaatact	180
-															taaggat	240
60		_			•				_				_		tgcagcg	300

	gatgaatcac	ttaaagatgc	aattaaagat	cctgcattag	aaaataaaga	acatgatata	360
5	ggtccaagag	aacaagtcaa	tttccagtta	ttagataaaa	acaatgaaac	gcagtactat	420
	cactttttca	gcatcaaaga	tccagcagat	gtgtattaca	ctaaaaagaa	agcagaagtt	480
	gaattagaca	tcaatactgc	ttcaacatgg	aagaagtttg	aagtctatga	aaacaatcaa	540
10	aaattgccag	tgagacttgt	atcatatagt	cctgtaccag	aagaccatgc	ctatattcga	600
	ttcccagttt	cagatggcac	acaagaattg	aaaattgttt	cttcgactca	aattgätgat	660
15	ggagaagaaa	caaattatga	ttatactaaa	ttagtatttg	ctaaacctat	ttataacgat	720
	ccttcacttg	taaaatcaga	tacaaatgat	gcagtagtaa	cgaatgatca	atcaagttca	780
	gtcgcaagta	atcaaacaaa	cacgaataca	tctaatcaaa	atatatcaac	gatcaacaat	840
20	gctaataatc	aaccgcaggc	aacgaccaat	atgagtcaac	ctgcacaacc	aaaatcgtca	900
	acgaatgcag	atcaagcgtc	aagccaacca	gctcatgaaa	caaattctaa	tggtaatact	960
25	aacgataaaa	cgaatgagtc	aagtaatcag	tcggatgtta	atcaacagta	tccaccagca	1020
23	gatgaatcac	tacaagatgc	aattaaaaac	ccggctatca	tcgataaaga	acatacagct	1080
	gataattggc	gaccaattga	ttttcaaatg	aaaaatgata	aaggtgaaag	acagttctat	1140
30	cattatgcta	gtactgttga	accagcaact	gtcatttta	caaaaacagg	accaataatt	1200
	gaattaggtt	taaagacagc	ttcaacatgg	aagaaatttg	aagtttatga	aggtgacaaa	1260
35	aagttaccag	tcgaattagt	atcatatgat	tctgataaag	attatgccta	tattcgtttc	1320
33	ccagtatcta	atggtacgag	agaagttaaa	attgtgtcat	ctattgaata	tggtgagaac	1380
	atccatgaag	actatgatta	tacgctaatg	gtctttgcac	agcctattac	taataaccca	1440
40	gacgactatg	tggatgaaga	aacatacaat	ttacaaaaat	tattagctcc	gtatcacaaa	1500
	gctaaaacgt	tagaaagaca	agtttatgaa	ttagaaaaat	tacaagagaa	attgccagaa	1560
45	aaatataagg	cggaatataa	aaagaaatta	gatcaaácta	gagtagagtt	agctgatcaa	1620
15	gttaaatcag	cagtgacgga	atttgaaaat	gttacaccta	caaatgatca	attaacagat	1680
	ttacaagaag	cgcattttgt	tgtttttgaa	agtgaagaaa	atagtgagtc	agttatggac	1740
50	ggctttgttg	aacatccatt	ctatacagca	actttaaatg	gtcaaaaata	tgtagtgatg	1800
	aaaacaaagg	atgacagtta	ctggaaagat	ttaattgtag	aaggtaaacg	tgtcactact	1860
55	gtttctaaag	atcctaaaaa	taattctaga	acgctgattt	tcccatatat'	acctgacaaa	1920
<i>JJ</i>	gcagtttaca	atgcgattgt	taaagtcgtt	gtggcaaaca	ttggttatga	aggtcaatat	1980
	catgtcagaa	ttataaatca	ggatatcaat	acaaaagatg	atgatacatc	acaaaataac	2040
60	acgagtgaac	cgctaaatgt	acaaacagga	caagaaggta	aggttgctga	tacagatgta	2100

	gctga	aaaa	ta g	cago	acto	jc aa	caaa	atcct	aaa	gatç	gcgt	ctga	taaa	igc a	gato	tgata	2160
5	gaacc	aga	gt c	tgac	gtgg	jt ta	aaga	tgct	gat	aata	ata	ttga	taaa	iga t	gtgc	aacat	2220
•	gatgt	tga:	tc a	ttta	tccc	ga ta	tgto	ggat	aat	aato	act	tcga	taaa	ta t	gatt	taaaa	2280
	gaaat	.gga	ta c	tcaa	atto	ic ca	aaga	tact	gat	agaa	atg	tgga	taaa	iga t	gccg	ataat	2340
10	agcgt	tgg	ta t	gtca	tcta	ıa tç	rtcga	tact	gat	aaag	ract	ctaa	taaa	aa t	aaag	racaaa	2400
•	gtcat	aca	gc t	gaat	cata	ıt tç	ccga	ataaa	aat	aato	ata	ctg	raaaa	igc a	igcaa	agctt	2460
15	gacgt	agt	ga a	acaa	aatt	a ta	ataa	taca	gac	aaag	rtta	ctga	caaa	aa a	acaa	ctgaa	2520
13	catct	gcc	ga g	rtgat	atto	a ta	aaac	tgta	gat	aaaa	cag	tgaa	aaca	aa a	ıgaaa	aagcc	2580
	ggcac	acc	at c	gaaa	gaaa	ia ca	aact	tagt	caa	tcta	aaa	tgct	acca	aa a	acto	gagaa	2640
20	acaac	ttc	aa g	rccaa	tcat	g gt	gggg	gctta	tat	gcgt	tat	tagg	tato	gtt a	gctt	tattc	2700
	attco	taa	at t	caga	aaag	ja at	ctaa	ataa	1								2730
25	<210> <211> <212> <213>	> 9 > P	09 RT	yloc	occı	ıs ep	oider	midi	.s								
30 ·	<400>	→ 6															
	Leu I 1	Leu	Ser	Ile	Lys 5	Tyr	Asn	Leu	Ile	Gly 10	Val	Val	Asn	Asn	Met 15	Asn	
35	Lys H	lis	His	Pro 20	Lys	Leu	Arg	Ser	Phe 25	Tyr	Ser	Ile	Aŗg	Lys 30	Ser	Thr	
40	Leu G	_	Val 35	Ala	Ser	Val	Ile	Val 40	Ser	Thr	Leu	Phe	Leu 45	Ile	Thr	Ser	
	Gln F	lis 50	Gln ·	Ala	Gln	Ala	Ala 55	Glu	Asņ	Thr	Asn	Thr 60	Ser	Asp	Lys	Ile	
45	Ser 6	Slu	Asn	Gln	Asn	Asn 70	Asn	Ala	Thr	Thr	Thr 75	Gln	Pro	Pro	Lys	Asp 80	
	Thr F	Asn	Gln		Gln 85	Pro	Ala	Thr		Pro 90	Ala	Asn	Thr	Ala	Lys 95	Asn	
50	Tyr F	Pro	Ala	Ala 100	Asp	Glu	Ser	Leu	Lys 105	Asp	Ala	Ile	Lys	Asp 110	Pro	Ala	
55	Leu C	Glu	Asn 115	Lys	Glu	His	Asp	Ile 120	Gly	Pro	Arg	Glu	Gln 125	Val	Asn	Phe	
	Gln I	Leu 130	Leu	qeA	Lys	Asn	Asn 135	Glu	Thr	Gln	Tyr	Tyr 140	His	Phe	Phe	Ser	
60	Ile I 145	Lys	qaA	Pro	Ala	Asp 150	Val	Tyr	Tyr	Thr	Lys 155	Lys	Lys	Ala	Glu	Val 160	

	Glu	Leu	Asp	Ile	Asn 165	Thr	Ala	Ser	Thr	Trp 170	Lys	Lys	Phe	Glu	Val 175	Tyr
5	Glu	Asn	Asn	Gln 180	Lys	Leu	Pro	Val	Arg 185	Leu	Val	Ser	Tyr	Ser 190	Pro	Val
10	Pro	Glu	Asp 195	His	Ala	Tyr	Ile	Arg 200	Phe	Pro	Val	Ser	Asp 205	Gly	Thr	Gln
10	Glu	Leu 210	Lys	Ile	Val	Ser	Ser 215	Thr	Gln	Ile	Asp	Asp 220	Gly	Glu	Glu	Thr
15	Asn 225	Tyr	Asp	Tyr	Thr	Lys 230	Leu	Val	Phe	Ala	Lys 235	Pro	Ile	Tyr	Asn	Asp 240
	Pro	Ser	Leu	Val	Lys 245	Ser	qzA	Thr	Asn	Asp 250	Ala	Val	Val	Thr	Asn 255	Asp
20	Gln	Ser	Ser	Ser 260	Val	Ala	Ser	Asn	Gln 265	Thr	Asn	Thr	Asn	Thr 270	Ser	Asn
25	Gln	Asn	Ile 275	Ser	Thr	Ile	Asn	Asn 280	Ala	Asn	Asn	Gln	Pro 285	Gln	Ala	Thr
23	Thr	Asn 290	Met	Ser	Gln	Pro	Ala 295	Gln	Pro	Lys	Ser	Ser 300	Thr	Asn	Ala	Asp
30	Gln 305	Ala	Ser	Ser	Gln	Pro 310	Ala	His	Glu	Thr	Asn 315	Ser	Asn	Gly	Asn	Thr 320
	Asn	Asp	Lys	Thr	Asn 325	Glu	Ser	Ser	Asn	Gln 330	Ser	Asp	Val	Asn	Gln 335	Gln
35	Tyr	Pro	Pro	Ala 340	Asp	Glu	Ser	Leu	Gln 345	Asp	Ala	Ile	Lys	Asn 350	Pro	Ala
40	Ile	Ile	Asp 355	Lys	Glu	His	Thr	Ala 360	Asp	Asn	Trp	Arg	Pro 365	Ile	Asp	Phe
10	Gln	Met 370	Lys	Asn	Asp	Lys	Gly 375	Glu	Arg	Gln	Phe	Tyr 380	His	Tyr	Ala	Ser
45	Thr 385	Val	Glu	Pro	Ala	Thr 390	Val	Ile	Phe	Thr	Lys 395	Thr	Gly	Pro	Ile	Ile 400
	Glu	Leu	Gly	Leu	Lys 405	Thr	Ala	Ser	Thr	Trp 410	Lys	Lys	Phe	Glu	Val 415	туг
50	Glu	Gly	Asp	Lys 420	Lys	Leu	Pro	Val	Glu 425	Leu	Val	Ser	Tyr	Asp 430	Ser	Asp
55	Lys	Asp	Tyr 435	Ala	Tyr	Ile	Arg	Phe 440	Pro	Val	Ser	Asn	Gly 445	Thr	Arg	Glu
<i>JJ</i>	Val	Lys 450	Ile	Val	Ser	Ser	Ile 455	Glu	Tyr	Gly	Glu	Asn 460	Ile	His	Glu	Asp
60	Tyr 465	Asp	Tyr	Thr	Leu	Met 470	Val	Phe	Ala	Gln	Pro 475	Ile	Thr	Asn	Asn	Pro 480

	Asp	Asp	Tyr	Val	Asp 485	Glu	Glu	Thr	Tyr	Asn 490	Leu	Gln	Lys	Leu	Leu 495	Ala
5	Pro	Tyr	His	Lys 500	Ala	Lys	Thr	Leu	Glu 505	Arg	Gln	Val	Tyr	Glu 510	Leu	Glu
10	Lys	Leu	Gln 515	Glu	Lys	Leu	Pro	Glu 520	Lys	Tyr	Lys	Ala	Glu 525	Tyr	Lys	Lys
	Lys	Leu 530	Asp	Gln	Thr	Arg	Val 535	Glu	Leu	Ala	Asp	Gln 540	Val	Lys	Ser	Ala
15	Val 545	Thr	Glu	Phe	Glu	Asn 550	Val	Thr	Pro	Thr	Asn 555	Asp	Gln	Leu	Thr	Asp 560
	Leu	Gln	Glu	Ala	His 565	Phe	Val	Val	Phe	Glu 570	Ser	Glu	Glu	Asn	Ser 575	Glu
20	Ser	Val	Met	Asp 580	Gly	Phe	Val	Glu	His 585	Pro	Phe	Tyr	Thr	Ala 590	Thr	Leu
25	Asn	Gly	Gln 595	Lys	Tyr	Val	Val	Met 600	Lys	Thr	Lys	Asp	Asp 605	Ser	Tyr	Trp
	Lys	Asp 610	Leu	Ile	Val	Glu	Gly 615	ГÀЗ	Arg	Val	Thr	Thr 620	Val	Ser	Lys	Asp
30	Pro 625	Lys	Asn	Asn	Ser	Arg 630	Thr	Leu	Ile	Phe	Pro 635	Tyr	Ile	Pro	Asp	Lys 640
	Ala	Val	Tyr	Asn	Ala 645	Ile	Val	Lys	Val	Val 650	Val	Ala	Asn	Ile	Gly 655	Tyr .
35	Glu	Gly	Gln	Tyr 660	His	Val	Arg	Ile	Ile 665	Asn	Gln	Asp	Ile	Asn 670	Thr	Lys
40	Asp	Asp	Asp 675	Thr	Ser	Gln	Asn	Asn 680	Thr	Ser	Glu	Pro	Leu 685	Asn	Val	Gln
	Thr	Gly 690	Gln	Glu	Gly	Lys	Val 695	Ala	Asp	Thr	Asp	Val 700	Ala	Glu	Asn	Ser
45	Ser 705	Thr	Ala	Thr	Asn	Pro 710	Lys	Asp	Ala	Ser	Asp 715	Lys	Ala	Asp	Val	Ile 720
	Glu	Pro	Glu	Ser	Asp 725	Val	Val	Lys	Asp	Ala 730	Asp	Asn	Asn	Ile	Asp 735	Lys
50	Asp	Val	Gln	His 740	Asp	Val	Asp	His	Leu 745	Ser	qaA	Met	Ser	Asp 750	Asn	Asn
55	His	Phe	Asp 755	Lys	Tyr	Asp	Leu	Lys 760	Glu	Met	Asp	Thr	Gln 765	Ile	Ala	Lys
	Asp	Thr 770	Asp	Arg	Asn	Val	Asp 775	ГÀЗ	Asp	Ala	Asp	Asn 780	Ser	Val	Gly	Met
60	Ser 785	Ser	Asn	Val	Asp	Thr 790	Asp	Lys	Asp	Ser	Asn 795	Lys	Asn	Lys	Asp	Lys 800

	Val	Ile	Gln	Leu	Asn 805	His	Ile	Ala	Asp	Lys 810	Asn	Asn	His	Thr	Gly 815	Lys	
5	Ala	Ala	Lys	Leu 820	Asp	Val	Val	Lys	Gln 825	Asn	Tyr	Asn	Asn	Thr 830	Asp	Lys	
10	Val	Thr	Asp 835	Lys	Lys	Thr	Thr	Glu 840	His	Leu	Pro	Ser	Asp 845	Ile	His	Lys	
10	Thr	Val 850	Asp	Lys	Thr	Val	Lys 855	Thr	Lys	Glu	Lys	Ala 860	Gly	Thr	Pro	Ser	
15	Lys 865	Glu	Asn	Lys	Leu	Ser 870	Gln	Ser	Lys	Met	Leu 875	Pro	Lys	Thr	Gly	Glu 880	
	Thr	Thr	Ser	Ser	Gln 885	Ser	Trp	Trp	Gly	Leu 890	Tyr	Ala	Leu	Leu	Gly 895	Met	
20	Leu	Ala	Leu	Phe 900	Ile	Pro	ГÀЗ	Phe	Arg 905	Lys	Glu	Ser	Lys				
25	<210 <213 <213 <213	L> 1 2> [L065 DNA	nyloo	cocci	ıs e _l	oideı	midi	is								i
20	<400 gagg			acato	gacaa	aa a	catta	attta	a aac	cagta	agt	atca	aatca	aga a	acaa	cgttca	60
30	tcag	gctat	cga a	aaaa	gatta	ac a	atggg	gtaca	a gca	atcta	atca	tttt	aggt	ttc (cctt	gtatac	120
	atag	gggg	cag a	acago	ccaa	ca a	gtcaa	atgc	g gca	acaç	gaag	ctad	cgaa	ege a	aacta	aataat	180
35	caaa	agcac	cac a	aagti	ttct	ca a	gcaad	catca	a caa	accaa	atta	att	cca	agt (gcaaa	aaagat	240
	ggct	ctto	cag a	agaaq	gtcad	ca c	atgga	atgad	tat	tatgo	caac	acco	ctggi	taa a	agta	attaaa	300
40	caaa	aataa	ata a	aatat	ttati	t c	caaac	ccgt	g tta	aaaca	atg	cato	catto	ctg (gaaa	gaatac	360
10	aaat	ttta	aca a	atgca	aaac	aa t	caaga	aatta	a gca	aacaa	actg	ttgi	ttaa	cga 1	taata	aaaaaa	420
	gcg	gatad	cta (gaac	aatc	aa t	gttg	cagtt	t gaa	acct	ggat	ataa	agag	ctt :	aact	actaaa	480
45	gtad	catat	ttg 1	tcgt	gcca	ca a	atta	attad	c aat	tcata	agat	ata	ctac	gca	tttg	gaattt	540
	gaaa	aaago	caa i	ttcci	tacai	tt a	gctga	acgca	a gca	aaaa	ccaa	acaa	atgti	taa a	accg	gttcaa	600
50	ccaa	aaaco	cag (ctcaa	acct	aa a	acac	ctact	t ga	gcaaa	acta	aac	cagt	tca a	acct	aaagtt	660
	gaaa	aaagt	tta :	aacci	tact	gt a	acta	caaca	a ag	caaa	gttg	aaga	acaa	tca (ctct	actaaa	720
	gtt	gtaaq	gta	ctga	caca	ac a	aaaga	atca	a ac	taaa	acac	aaa	ctgc	tca ·	taca	gttaaa	780
55	aca	gcaca	aaa	ctgc	tcaa	ga a	caaa	ataaa	a gt	tcaa	acac	ctg	ttaa	aga	tgtt	gcaaca	840
	gcga	aaato	ctg :	aaag	caac	aa t	caag	ctgta	a ag	tgat	aata	aat	caca	aca	aact	aacaaa	900
60	gtt	acaa	aac	ataa	cgaa	ac g	ccta	aacaa	a gc	atct	aaag	cta	aaga	att .	acca	aaaact	960

	ggtt	taa	ctt d	cagtt	gata	aa ct	ttat	tago	c aca	agtto	gcct	tcg	caaca	act 1	tgcc	cttta	1020
	ggtt	cat	tat d	cttta	attad	ct ti	tcaa	aaaga	a aaa	agaat	cta	aata	aa				1065
5	<210 <211 <212 <213	L> (2>)	3 354 PRT Stapl	nyloo	cocci	ıs ep	oideı	cmidi	Ls								
10	<400)> {	3														
	Glu 1	Glu	Asn	Asn	Met 5	Thr	Lys	His	Tyr	Leu 10	Asn	Ser	Lys	Tyr	Gln 15	Ser	
15	Glu	Gln	Arg	Ser 20	Ser	Ala	Met	Lys	Lys 25	Ile	Thr	Met	Gly	Thr 30	Ala	Ser	
20	Ile	Ile	Leu 35	GLY	Ser	Leu	Val	Tyr 40	Ile	Gly	Ala	Asp	Ser 45	Gln	Gln	Val	
	Asn	Ala 50	Ala	Thr	Glu	Ala	Thr 55	Asn	Ala	Thr	Asn	Asn 60	Gln	Ser	Thr	Gln	
25	Val 65	Ser	Gln	Ala	Thr	Ser 70	Gln	Pro	Ile	Asn	Phe 75	Gln	Val	Gln	Lys	Asp 08	
	Gly	Ser	Ser	Glu	Lys 85	Ser	His	Met	Asp	Asp 90	Tyr	Met	Gln	His	Pro 95	Gly	
30	Lys	Val	Ile	Lys 100	Gln	Asn	Asn	Lys	Tyr 105	Tyr	Phe	Gln	Thr	Val 110	Leu	Asn	
35	Asn	Ala	Ser 115	Phe	Trp	Lys	Glu	Tyr 120	Lys	Phe	Tyr	Asn	Ala 125	Asn	Asn	Gln	
	Glu	Leu 130	Ala	Thr	Thr	Val	Val 135	Asn	Asp	Asn	Lуз	Lys 140	Ala	Asp	Thr	Arg	
40	Thr 145	Ile	Asn	Val	Ala	Val 150	Glu	Pro	Gly	Tyr	Lys 155	Ser	Leu	Thr	Thr	Lys . 160	
	Val	His	Ile	Val	Val 165	Pro	Gln	Ile	Asn	Tyr 170	Asn	His	Arg	Tyr	Thr 175	Thr	
45	His	Leu	Glu	Phe 180	Glu	Lys	Ala	Ile	Pro 185	Thr	Leu	Ala	Asp	Ala 190	Ala	Lys	
50	Pro	Asn	Asn 195	Val	Lys	Pro	Val	Gln 200	Pro	Lys	Pro	Ala	Gln 205	Pro	Lys	Thr	
50	Pro	Thr 210	Glu	Gln	Thr	Lys	Pro 215	Val	Gln	Pro	Lys	Val 220	Glu	Lys	Val	Lys	
55	Pro 225	Thr	Val	Thr	Thr	Thr 230	Ser	Lys	Val	Glu	Asp 235	Asn	His	Ser	Thr	Lys 240	
	Val	Val	Ser	Thr	Asp 245	Thr	Thr	Lys	Asp	Gln 250	Thr	Lys	Thr	Gln	Thr 255	Ala	
60	His	Thr	Val	Lys	Thr	Ala	Gln	Thr	Ala	Gln	Glu	Gln	Asn	Lys	Val	Gln	ı

		260		265	270)	
5	Thr Pro Val 275	'Lys Asp Va	l Ala Thr 280	Ala Lys Ser	Glu Ser Asr 285	Asn Gln	
J	Ala Val Ser 290	Asp Asn Ly	s Ser Gln 295	Gln Thr Asn	Lys Val Thr 300	Lys His	
10	Asn Glu Thr 305	Pro Lys Gl	_	Lys Ala Lys 315	Glu Leu Pro	Lys Thr 320	
	Gly Leu Thr	Ser Val As 325	p Asn Phe	Ile Ser Thr 330	Val Ala Phe	Ala Thr 335	
15	Leu Ala Leu	Leu Gly Se 340	r Leu Ser	Leu Leu Leu 345	Phe Lys Arg	_	
	Ser Lys						
20	<210> 9 <211> 1965 <212> DNA <213> Staph	hylococcus	epidermidi	.s			
25	<400> 9						
	tatacaatta (ggagttgttt	ctacaacato	, aacaaacagc	aaaaagaatt	taaatcattt	60
	tattcaatta q	gaaagtcatc	actaggcgtt	gcatctgtag	caattagtac	acttttatta	120
30	ttaatgtcaa a	atggcgaagc	acaagcagca	gctgaagaaa	caggtggtac	aaatacagaa	180
	gcacaaccaa a	aaactgaagc	agttgcaagt	ccaacaacaa	catctgaaaa	agctccagaa	240
35	actaaaccag 1	tagctaatgc	tgtctcagta	tctaataaag	aagttgaggc	ccctacttct	300
33	gaaacaaaag a	aagctaaaga	agttaaagaa	gttaaagccc	ctaaggaaac	aaaagaagtt	360
	aaaccagcag	caaaagccac	taacaataca	tatcctattt	tgaatcagga	acttagagaa	420
40	gcgattaaaa a	accctgcaat	aaaagacaaa	gatcatagcg	caccaaactc	tcgtccaatt	480
	gattttgaaa i	tgaaaaagaa	agatggaact	: caacagtttt	atcattatgc	aagttctgtt	540
15	aaacctgcta	gagttatttt	cactgattca	a aaaccagaaa	ttgaattagg	attacaatca	600
45	ggtcaatttt	ggagaaaatt	tgaagtttat	gaaggtgaca	aaaagttgcc	aattaaatta	660
	gtatcatacg a	atactgttaa	agattatgct	tacattcgct	tctctgtatc	aaacggaaca	720
50	aaagctgtta	aaattgttag	ttcaacacac	ttcaataaca	aagaagaaaa	atacgattac	780
	acattaatgg :	aattcgcaca	accaatttat	aacagtgcag	ataaattcaa	aactgaagaa	840
55	gattataaag	ctgaaaaatt	attagcgcca	a tataaaaaag	cgaaaacact	agaaagacaa	900
JJ	gtttatgaat	taaataaaat	tcaagataaa	a cttcctgaaa	aattaaaggc	tgagtacaag	960
	aagaaattag	aggatacaaa	gaaagcttta	a gatgagcaag	tgaaatcagc	tattactgaa	1020
60	ttccaaaatg	tacaaccaac	aaatgaaaa	a atgactgatt	tacaagatac	aaaatatgtt	1080

	gtttai	tgaaa	gtgti	gaga	a ta	aacga	atct	ato	gatgo	gata	cttt	tgti	taa a	acac	cctatt	1140
5	aaaaca	aggta	tgctl	caacg	g ca	aaaa	atat	ato	ggtca	atgg	aaad	ctact	taa t	gac	gattac	1200
•	tggaaa	agatt	tcate	ggttga	a aç	ggtca	aacgt	gtt	agaa	acta	taag	gcaaa	aga t	gct	aaaaat	1260
	aataci	tagaa	caatt	attt	t co	ccata	atgtt	gaa	aggta	aaaa	ctct	atai	ga t	gcta	atcgtt	1320
10	aaagti	tcacg	taaaa	aacgai	t to	gatta	atgat	gga	acaat	acc	atgt	caga	aat o	gtt	gataaa	1380
	gaagca	attta	caaaa	agcca	a ta	accga	ataaa	ı tct	aaca	aaa	aaga	acaa	aca a	agata	aactca	1440
15	gctaa	gaagg	aagct	cactco	c aç	gctad	egact	ago:	caaac	caa	caco	catca	acc t	gtįt	gaaaaa	1500
13	gaatca	acaaa	aacaa	agaca	gco	caaaa	aagat	: gad	caata	aaac	aatt	acca	aag t	gtt	gaaaaa	1560
	gaaaat	tgacg	catc	agtga	a gt	cag	gtaaa	a gad	caaaa	acgc	ctgo	ctaca	aaa a	accaa	actaaa	1620
20	ggtgaa	agtag	aatca	agtag	g ta	acaa	etcea	a act	aagg	gtag	tato	ctace	gac t	caaa	aatgtt	1680
	gcaaaa	accaa	caact	gctt	c at	caaa	aaca	a aca	aaaq	gatg	ttgt	tcaa	aac t	tcaç	gcaggt	1740
25	tctago	cgaag	caaaa	agata	g to	gata	catta	a caa	aaag	Jcaa	acat	taaa	aaa c	cacaa	aatgat	1800
23	ggaca	cactc	aaago	ccaaa	a ca	ataa	aaaat	aca	acaaç	gaaa	ataa	aagca	aaa a	atcat	ttacca	1860
	caaaci	ggtg	aagaa	atcaaa	a ta	aaga	atato	g aca	attac	cat	taat	ggca	att a	attag	gcttta	1920
30	agtago	catcg	ttgca	attcgi	t at	taco	ctaga	a aaa	acgta	aaaa	acta	aa				1965
35	<210> <211> <212> <213>	10 654 PRT Stap	phylod	coccus	s ep	pideı	cmidi	is								
	<400>	10														
40	Tyr Th	nr Ile	e Arg	Ser (Cys	Phe	Tyr	Asn	Met 10	Asn	ГЛЗ	Gln	Gln	Lys 15	Glu	
45	Phe Ly	ys Sei	Phe 20	Tyr 8	Ser	Ile	Arg	Lys 25	Ser	Ser	Leu	Gly	Val 30	Ala	Ser	
73	Val A	la Ile 35	e Ser	Thr 1	Leu	Leu	Leu 40	Leu	Met	Ser	Asn	Gly 45	Glu	Ala	Gln	
50	Ala Al		a Glu	Glu '	Ihr	Gly 55	Gly	Thr	Asn	Thr	Glu 60	Ala	Gln	Pro	Lys	
	Thr G	lu Ala	a Val		Ser 70	Pro	Thr	Thr	Thr	Ser 75	Glu	ГЛа	Ala	Pro	Glu 80	
55	Thr Ly	ys Pro	Val	Ala 1	Asn	Ala	Val	Ser	Val 90	Ser	Asn	Lys	Glu	Val 95	Glu	
60	Ala P	ro Thi	Ser 100	Glu '	Thr	Lys	Glu	Ala 105	Lys	Glu	Val	Lys	Glu 110	Val	Lys	
60		LU III		.		ديد			y3	oru	· ar	د بر		*41	ъ	

	Ala	Pro	Lys 115	Glu	Thr	Lys	Glu	Val 120	Lys	Pro	Ala	Ala	Lys 125	Ala	Thr	Asn
5	Asn	Thr 130	Tyr	Pro	Ile	Leu	Asn 135	Gln	Glu	Leu	Arg	Glu 140	Ala	Ile	Lys	Asn
	Pro 145	Ala	Ile	Lys	Asp	Lys 150	Asp	Ris	Ser	Ala	Pro 155	Asn	Ser	Arg	Pro	Ile 160
10	Asp	Phe	Glu	Met	Lys 165	Lys ,	Lys	Asp	Gly	Thr 170	Gln	Gln	Phe	Tyr	His 175	Tyr
15	Ala	Ser	Ser	Val 180	Lys	Pro	Ala	Arg	Val 185	Ile	Phe	Thr	Asp	Ser 190	Lys	Pro
	Glu	Ile	Glu 195	Leu	Gly	Leu	Gln	Ser 200	Gly	Gln	Phe	Trp	Arg 205	Ьуs	Phe	Glu
20	Val	Tyr 210	Glu	Gly	Asp	Lys	Lys 215	Leu	Pro	Ile	Lys	Leu 220	Val	Ser	Tyr	Asp
	Thr 225	Val	Lys	Asp	Tyr	Ala 230	Tyr	Ile	Arg	Phe	Ser 235	Val	Ser	Asn	Gly	Thr 240
25	Lys	Ala	Val	Lys	Ile 245	Val	Ser	Ser	Thr	His 250	Phe	Asn	Asn	Lys	Glu 255	Glu
30	ГЛЗ	Tyr	Asp	Tyr 260	Thr	Leu	Met	Glu	Phe 265	Ala	Gln	Pro	Ile	Tyr 270	Asn	Ser
	Ala	Asp	Lys 275	Phe	Lys	Thr	Glu	Glu 280	Asp	Tyr	Lys	Ala	Glu 285	Lys	Leu	Leu
35	Ala	Pro 290	Tyr	Lys	Lys	Ala	Lys 295	Thr	Leu	Glu	Arg	Gln 300	Val	Tyr	Glu	Leu
	Asn 305	Lys	Ile	Gln	Asp	Lys 310	Leu	Pro	Glu	Lys	Leu 315	Lys	Ala	Glu	Tyr	Lys 320
40	Lys	Lys	Leu	Glu	Asp 325	Thr	Lys	Lys	Ala	Leu 330	Asp	Glu	Gln	Val	Lys 335	Ser
45	Ala	Ile	Thr	Glu 340	Phe	Gln	Asn	Val	Gln 345	Pro	Thr	Asn	Glu	Lys 350	Met	Thr
	Asp	Leu	Gln 355	Asp	Thr	Lys	Tyr	Val 360	Val	Tyr	Glu	Ser	Val 365	Glu	Asn	Asn
50	Glu	Ser 370	Met	Met	Asp	Thr	Phe 375	Val	Lys	His	Pro	Ile 380	Lys	Thr	Gly	Met
	Leu 385	Asn	Gly	Lys	Lys	Tyr 390	Met	Val	Met	Glu	Thr 395	Thr	Asn	Asp	Asp	Tyr 400
55	Trp	Lys	Asp	Phe	Met 405	Val	Glu	Gly	Gln	Arg 410	Val	Arg	Thr	Ile	Ser 415	Ьуs
60	Asp	Ala	Lys	Asn 420	Asn	Thr	Arg	Thr	Ile 425	Ile	Phe	Pro	Tyr	Val 430	Glu	Gly

	Lys	Thr	Leu 435	Tyr	Asp	Ala	Ile	Val 440	Lys	Val	His	Val	Lys 445	Thr	Ile	Asp	
5	Tyr	Asp 450	Gly	Gln	Tyr	His	Val 455	Arg	Ile	Val	Asp	Lys 460	Glu	Ala	Phe	Thr	
	Lys 465	Ala	Asn	Thr	Asp	Lys 470	Ser	Asn	Lys	Lys	Glu 475	Gln	Gln	Asp	Asn	Ser 480	
10	Ala	Lys	Lys	Glu	Ala 485	Thr	Pro	Ala	Thr	Pro 490	Ser	Lys	Pro	Thr	Pro 495	Ser	
15	Pro	Val	Glu	Lys 500	Glu	Ser	Gln	Lys	Gln 505	Asp	Ser	Gln	Lys	Asp 510	Asp	Asn	
	Lys	Gln	Leu 515	Pro	Ser	Val	Glu	Lys 520	Glu	Asn	Asp	Ala	Ser 525	Ser	Glu	Ser	
20	Gly	Lys 530	Asp	Lys	Thr	Pro	Ala 535	Thr	Lys	Pro	Thr	Lys 540	Gly	Glu	Val	Glu	
	Ser 545	Ser	Ser	Thr	Thr	Pro 550	Thr	Lys	Val	Val	Ser 555	Thr	Thr	Gln	Asn	Val 560	
25	Ala	Lys	Pro	Thr	Thr 565	Ala	Ser	Ser	Lys	Thr 570	Thr	Lys	Asp	Val	Val 575	Gln	
30	Thr	Ser	Ala	Gly 580	Ser	Ser	Glu	Ala	Lys 585	Asp	Ser	Ala	Pro	Leu 590	Gln	Lys	
	Ala	Asn	Ile 595	Lys	Asn	Thr	Asn	Asp 600	Gly	His	Thr	Gln	Ser 605	Gln	Asn	Asn	
35	Lys	Asn 610	Thr	Gln	Glu	Asn	Lys 615	Ala	Lys	Ser	Leu	Pro 620	Gln	Thr	Gly	Glu	
	Glu 625	Ser	Asn	Lys	Asp	Met 630	Thr	Leu	Pro	Leu	Met 635	Ala	Leu	Leu	Ala	Leu 640	
40	Ser	Ser	Ile	Val	Ala 645	Phe	Val	Leu	Ьċо	Arg 650	Lys	Arg	Lys	Asn			
45	<210 <211 <212 <213	L> 2 2> I	L1 2406 DNA Staph	nylo	cocci	ıs eg	pide	cmid	is								
50	<400 ttta		ll ata a	attta	acata	aa aa	atca	atcai	t tt	taata	ataa	ggat	ttat	gat a	aatat	tattgg	60
50	tgta	atgad	cag t	ttaa	tgga	gg ga	aacga	aaat	g aa	agcti	tat	tact	ttaaa	aac a	aagt	gtatgg	120
	ctc	gttti	tge 1	tttt	tagt	gt aa	atgg	gatta	a tg	gcaaq	gtct	cgaa	acgc	ggc i	tgago	cagcat	180
55	aca	ccaat	tga a	aagc	acat	gc a	gtaa	caac	g ata	agac	aaag	caa	caac	aga	taag	caacaa	240
	gtad	ccgc	caa d	caaa	ggaa	gc g	gctc	atcai	t te	tggca	aaag	aag	cggc	aac	caac	gtatca	300
60	gca	tcag	ege a	aggg	aca	gc t	gatg	atac	a aa	cagca	aaag	taa	catc	caa	cgca	ccatct	360

	aacaaaccat	ctacagtagt	ttcaacaaaa	gtaaacgaaa	cacgcgacgt	agatacacaa	420
	caagcctcaa	cacaaaaacc	aactcacaca	gcaacgttca	aattatcaaa	tgctaaaaca	480
5	gcatcacttt	caccacgaat	gtttgctgct	aatgcaccac	aaacaacaac	acataaaata	540
	ttacatacaa	atgatatcca	tggccgacta	gccgaagaaa	aagggcgtgt	catcggtatg	600
10	gctaaattaa	aaacagtaaa	agaacaagaa	aagcctgatt	taatgttaga	cgcaggagac	660
10	gccttccaag	gtttaccact	ttcaaaccag	tctaaaggtg	aagaaatggc	taaagcaatg	720
	aatgcagtag	gttatgatgc	tatggcagtc	ggtaaccatg	aatttgactt	tggatacgat	780
15	cagttgaaaa	agttagaggg	tatgttagac	ttcccgatgc	taagtactaa	cgtttataaa	840
	gatggaaaac	gcgcgtttaa	gccttcaacg	attgtaacaa	aaaatggtat	tcgttatgga	900
20	attattggtg	taacgacacc	agaaacaaag	acgaaaacaa	gacctgaagg	cattaaaggc	960
20	gttgaattta	gagatccatt	acaaagtgtg	acagcggaaa	tgatgcgtat	ttataaagac	1020
	gtagatacat	ttgttgttat	atcacattta	ggaattgatc	cttcaacaca	agaaacatgg	1080
25	cgtggtgatt	acttagtgaa	acaattaagt	caaaatccac	aattgaagaa	acgtattaca	1140
	gttattgatg	gtcattcaca	tacagtactt	caaaatggtc	aaatttataa	caatgatgca	1200
30	ttggcacaaa	caggtacagc	acttgcgaat	atcggtaaga	ttacatttaa	ttatcgcaat	1260
50	ggagaggtat	cgaatattaa	accgtcattg	attaatgtta	aagacgttga	aaatgtaaca	1320
	ccgaacaaag	cattagctga	acaaattaat	caagctgatc	aaacatttag	agcacaaact	1380
35	gcagaggtaa	ttattccaaa	caataccatt	gatttcaaag	gagaaagaga	tgacgttaga	1440
	acgcgtgaaa	caaatttagg	aaacgcgatt	gcagatgcta	tggaagcgta	tggcgttaag	1500
40	aatttctcta	aaaagactga	ctttgccgtg	acaaatggtg	gaggtattcg	tgcctctatc	1560
	gcaaaaggta	aggtgacacg	ctatgattta	atctcagtat	taccatttgg	aaatacgatt	1620
	gcgcaaattg	atgtaaaagg	ttcagacgtc	tggacggctt	tcgaacatag	tttaggcgca	1680
45	ccaacaacac	aaaaggacgg	taagacagtg	ttaacagcga	atggcggttt	actacatatc	1740
	tctgattcaa	tccgtgttta	ctatgatata	aataaaccgt	ctggcaaacg	aattaatgct	1800
50	attcaaattt	taaataaaga	gacaggtaag	tttgaaaata	ttgatttaaa	acgtgtatat	1860
	cacgtaacga	tgaatgactt	cacagcatca	ggtggcgacg	gatatagtat	gttcggtggt	1920
	cctagagaag	aaggtatttc	attagatcaa	gtactagcaa	gttatttaaa	aacagctaac	1980
55	ttagctaagt	atgatacgac	agaaccacaa	cgtatgttat	taggtaaacc	agcagtaagt	2040
	gaacaaccag	ctaaaggaca	acaaggtagc	aaaggtagta	agtctggtaa	agatacacaa	2100
60	ccaattggtg	acgacaaagt	gatggatcca	gcgaaaaaac	cagctccagg	taaagttgta	2160

	ttgt	tgct	ag d	cgcat	agag	gg aa	ctgt	tagt	ago	ggta	acag	aagg	gttci	gg	tcgca	acaata	2220
	gaag	gago	cta d	tgta	atcaa	ag ca	agaç	gtggg	g aaa	acaat	tgg	ctag	gaat	gtc :	agtgo	cctaaa	2280
5	ggta	agcgo	egc a	atgag	jaaac	a gt	taco	caaaa	act	ggaa	acta	atca	aaagt	tc a	aagco	ccagaa	2340
	gcga	atgti	tg t	atta	ttaç	gc aç	gtat	aggt	tta	atco	gcga	ctgt	acga	acg	tagaa	aagct	2400
10	agct	aa															2406
15	<210 <211 <212 <213	L> E	l2 301 PRT Stapi	nyloc	coccu	ıs ep	oider	rmidi	Ls					•			
	<400)> 1	L2														
20	Phe 1	Ile	Asn	Asn	Leu 5	His	Lys	Ile	Asn	His 10	Phe	Asn	Ile	Arg	Ile 15	Met	
	Ile	Ile	Tyr	Trp 20	Cys	Met	Thr	Val	Asn 25	Gly	Gly	Asn	Glu	Met 30	Ьуs	Ala	
25	Leu	Leu	Leu 35	Lys	Thr	Ser	Val	Trp 40	Leu	Val	Leu	Leu	Phe 45	Ser	Val	Met	
	Gly	Leu 50	Trp	Gln	Val	Ser	Asn 55	Ala	Ala	Glu	Gln	His 60	Thr	Pro	Met	Lys	
30	Ala 65	His	Ala	Val	Thr	Thr 70	Ile	qzA	Lys	Ala	Thr 75	Thr	Asp	Lys	Gln	Gln 80	
35	Val	Pro	Pro	Thr	Lys 85	Glu	Ala	Ala	His	His 90	Ser	Gly	Lys	Glu	Ala 95	Ala	
-	Thr	Asn	Val	Ser 100	Ala	Ser	Ala	Gln	Gly 105	Thr	Ala	Asp	Asp	Thr 110	Asn	Ser	
40	Lys	Val	Thr 115	Ser	Asn	Ala	Pro	Ser 120	Asn	Lys	Pro	Ser	Thr 125	Val	Val	Ser	
	Thr	Lys 130	Val	Asn	Glu	Thr	Arg 135	Asp	Val	Asp	Thr	Gln 140	Gln	Ala	Ser	Thr	
45	Gln 145	Lys	Pro	Thr	His	Thr 150	Ala	Thr	Phe	Lys	Leu 155	Ser	Asn	Ala	Lys	Thr 160	
50	Ala	Ser	Leu	Ser	Pro 165	Arg	Met	Phe	Ala	Ala 170	Asn	Ala	Pro	Gln	Thr 175	Thr	
50	Thr	His	Lys	Ile 180	Leu	His	Thr	Asn	Asp 185	Ile	His	Gly	Arg	Leu 190	Ala	Glu	
55	Glu	Lys	Gly 195	Arg	Val	Ile	Gly	Met 200	Ala	Гλε	Leu	Lys	Thr 205	Val	Lys	Glu	
	Gln	Glu 210	Lys	Pro	Asp	Leu	Met 215	Leu	Asp	Ala	Gly	Asp 220	Ala	Phe	Gln	Gly	
60	Leu	Pro	Leu	Ser	Asn	Gln	Ser	Lys	Gly	Glu	Glu	Met	Ala	Lys	Ala	Met	

	225					230					235					240
5	Asn	Ala	Val	Gly	Tyr 245	Asp	Ala	Met	Ala	Val 250	Gly	Asn	His	Glu	Phe 255	Asp
J	Phe	Gly	Tyr	Asp 260	Gln	Leu	Lys	Lys	Leu 265	Glu	Gly	Met	Leu	Asp 270	Phe	Pro
10	Met	Leu	Ser 275	Thr	Asn	Val	Tyr	Lys 280	Asp	Gly	Lys	Arg	Ala 285	Phe	Lys	Pro
	Ser	Thr 290	Ile	Val	Thr	Lys	Asn 295	Gly	Ile	Arg	Tyr	Gly 300	Ile	Ile	Gly	Val
15	Thr 305	Thr	Pro	Glu	Thr	Lys 310	Thr	Lys	Thr	Arg	Pro 315	Glu	Gly	Ile	Lys	Gly 320
20	Val	Glu	Phe	Arg	Asp 325	Pro	Leu	Gln	Ser	Val 330	Thr	Ala	Glu	Met	Met 335	Arg
20	Ile	Tyr	Lys	Asp 340	Val	Asp	Thr	Phe	Val 345	Val	Ile	Ser	His	Leu 350	Gly	Ile
25	Asp	Pro	Ser 355	Thr	Gln	Glu	Thr	Trp 360	Arg	Gly	Asp	Tyr	Leu 365	Val	Lys	Gln
	Leu	Ser 370	Gln	Asn	Pro	Gln	Leu 375	Lys	Lys	Arg	Ile	Thr 380	Val	Ile	Asp	GLY
30	His 385	Ser	His	Thr	Val	Leu 390	Gln	Asn	Gly	Gln	Ile 395	Tyr	Asn	Asn	Asp	Ala 400
35	Leu	Ala	Gln	Thr	Gly 405	Thr	Ala	Leu	Ala	Asn 410	Ile	Gly	Lys	Ile	Thr 415	Phe
	Asn	Tyr	Arg	Asn 420	Gly	Glu	Val	Ser	Asn 425	Ile	Lys	Pro	Ser	Leu 430	Ile	Asn
40	Val	Lys	Asp 435	Val	Glu	Asn	Val	Thr 440	Pro	Asn	Lys.	Ala	Leu 445	Ala	Glu	Gln
	Ile	Asn 450	Gln	Ala	Asp	Gln	Thr 455	Phe	Arg	Ala	Gln	Thr 460	Ala	Glu	Val	Ile
45	Ile 465	Pro	Asn	Asn	Thr	Ile 470	Asp	Phe	Lys	Gly	Glu 475	Arg	Asp	Asp	Val	Arg 480
50	Thr	Arg	Glu	Thr	Asn 485	Leu	Gly	Asn	Ala	Ile 490	Ala	Asp	Ala	Met	Glu 495	Ala
	Tyr	Gly	Val	Lys 500	Asn	Phe	Ser	Lys	љ уs 505	Thr	Asp	Phe	Ala	Val 510	Thr	Asn
55	Gly	Gly	Gly 515	Ile	Arg	Ala	Ser	Ile 520	Ala	Lys	Gly	Lys	Val 525	Thr	Arg	Tyr
	Asp	Leu 530	Ile	Ser	Val	Leu	Pro 535	Phe	Gly	Asn	Thr	Ile 540	Ala	Gln	Ile	Asp
60	Val	Lys	Gly	Ser	Asp	Val	Trp	Thr	Ala	Phe	Glu	His	Ser	Leu	Gly	Ala

	545					550				•	555					560		
5	Pro	Thr	Thr	Gln	Lys 565	Asp	Gly	Lys	Thr	Val 570	Leu	Thr	Ala	Asn	Gly 575	Gly		
J	Leu	Leu	His	Ile 580	Ser	Asp	Ser	Ile	Arg 585	Val	Tyr	Tyr	qeA	IIe 590	Asn	Lys		
10	Pro	Ser	Gly 595	ГÀЗ	Arg	Ile	Asn	Ala 600	Ile	Gln	Ile	Leu	Asn 605	Lys	Glu	Thr		
	GLy	Lys 610	Phe	Glu	Asn	Ile	Asp 615	Leu	Гуз	Arg	Val	Tyr 620	His	Val	Thr	Met		
15	Asn 625	Asp	Phe	Thr	Ala	Ser 630	Gly	Gly	Asp	Gly	Tyr 635	Ser	Met	Phe	Gly	Gly 640		
20	Pro	Arg	Glu	Glu	Gly 645	Ile	Ser	Leu	Asp	Gln 650	Val	Leu	Ala	Ser	Tyr 655	Leu		
	Lys	Thr	Ala	Asn 660	Leu	Ala	Lys	Tyr	Asp 665	Thr	Thr	Glu	Pro	Gln 670	Arg	Met		
25	Leu	Leu	Gly 675	Lys	Pro	Ala	Val	Ser 680	Glu	Gln	Pro	Ala	Lys 685	Gly	Gln	Gln		
	Gly	Ser 690	Lys	Gly	Ser	Lys	Ser 695	Gly	Lys	Asp	Thr	Gln 700	Pro	Ile	Gly	Asp		
30	Asp 705	Lys	Val	Met	Asp	Pro 710	Ala	Lys	Lys	Pro	Ala 715	Pro	Gly	Lys	Val	Val 720		
35	Leu	Leu	Leu	Ala	His 725	Arg	Gly	Thr	Val	Ser 730	Ser	Gly	Thr	Glu	Gly 735	Ser		
	Gly	Arg	Thr	Ile 740	Glu	Gly	Ala	Thr	Val 745	Ser	Ser	Lys	Ser	Gly 750	Lуs	Gln		
40	Leu	Ala	Arg 755	Met	Ser	Val	Pro	Lys 760	Gly	Ser	Ala	His	Glu 765	Lys	Gln	Leu		
	Pro	Lys 770	Thr	Gly	Thr	Asn	Gln 775	Ser	Ser	Ser	Pro	Glu 780	Ala	Met	Phe	Val		
45	Leu 785	Leu	Ala	Gly	Ile	Gly 790	Leu	Ile	Ala	Thr	Val 795	Arg	Arg	Arg	Lys	Ala 800		
	Ser																	
50	<210 <210 <210 <210	1> 4 2> I	L3 1914 ONA Stapl	nylo:	cocci	ıs ep	pide	cmidi	Ĺs									
55	<400	-	13															
	agt	ggaa	aat a	atgga	aaaa	ag ga	igtat	.gca	a ato	gaga	gața	agaa	aagga	acc (ggtaa	aataaa		60
	aga	gtaga	att 1	ttcta	atcaa	aa ta	aati	tgaat	t aaa	atati	caa	taaq	gaaa	att ·	taca	gttgga	1	20
60	acad	rcato	ta 1	-+++:	atte	ra ct	caci	raato	tat	-++-	c s n r	ctc	acas	ara i	aacaa	taanca	1	ឧក

gctgaaaaca atattgagaa tccaactaca ttaaaagata atgtccaatc aaaagaaqtq 240 aagattgaag aagtaacaaa caaagacact gcaccacagg gtgtagaagc taaatctqaa 300 5 gtaacttcaa acaaagacac aatcgaacat gaaccatcag taaaagctga agatatatca 360 aaaaaggagg atacaccaaa agaagtagct gatgttgctg aagttcagcc gaaatcgtca 420 10 gtcactcata acgcagagac acctaaggtt agaaaagctc gttctgttga tqaaggctct 480 tttgatatta caagagattc taaaaatgta gttgaatcta ccccaattac aattcaaggt 540 aaagaacatt ttgaaggtta cggaagtgtt gatatacaaa aaaaaccaac agatttaqqq 600 15 gtatcagagg taaccaggtt taatgttggt aatgaaagta atggtttgat aggagcttta 660 caattaaaaa ataaaataga ttttagtaag gatttcaatt ttaaagttag agtggcaaat 720 20 aaccatcaat caaataccac aggtgctgat ggttgggggt tcttatttag taaaggaaat 780 gcagaagaat atttaactaa tggtggaatc cttggggata aaggtctggt aaattcaggc 840 ggatttaaaa ttgatactgg atacatttat acaagttcca tggacaaaac tgaaaagcaa 900 25 gctggacaag gttatagagg atacggagct tttgtgaaaa atgacagttc tggtaattca 960 caaatggttg gagaaaatat tgataaatca aaaactaatt ttttaaacta tgcggacaat 1020 30 tcaactaata catcagatgg aaagtttcat gggcaacgtt taaatgatgt catcttaact 1080 tatgttgctt caactggtaa aatgagagca gaatatgctg gtaaaacttg ggagacttca 1140 ataacagatt taggtttatc taaaaatcag gcatataatt tcttaattac atctagtcaa 1200 35 agatggggcc ttaatcaagg gataaatgca aatggctgga tgagaactga cttgaaaggt 1260 tcagagttta cttttacacc agaagcgcca aaaacaataa cagaattaga aaaaaaagtt 1320 40 gaagagattc cattcaagaa agaacgtaaa tttaatccgg atttagcacc agggacagaa 1380 aaagtaacaa gagaaggaca aaaaggtgag aagacaataa cgacaccaac actaaaaaat 1440 ccattaactg gagtaattat tagtaaaggt gaaccaaaag aagagattac aaaagatccg 1500 45 attaatgaat taacagaata cggacctgaa acaatagcgc caggtcatcg agacgaattt 1560 gatccgaagt taccaacagg agagaaagag gaagttccag gtaaaccagg aattaagaat 1620 50 ccagaaacaq gagacgtagt tagaccgccg qtcgatagcg taacaaaata tqgacctqta 1680 aaaggagact cgattgtaga aaaagaagag attccattcg agaaagaacg taaatttaat 1740 cctgatttag caccagggac agaaaaagta acaagagaag gacaaaaagg tgagaagaca 1800 55 ataacgacgc caacactaaa aaatccatta actggagaaa ttattagtaa aggtgaatcg 1860 aaagaagaaa tcacaaaaga tccgattaat gaattaacag aatacggacc agaaacgata 1920 60 acaccaggic atcgagacga atttgatccg aagttaccaa caggagagaa agaggaagtt 1980

	ccaggtaaac	caggaattaa	gaatccagaa	acaggagatg	tagttagacc	accggtcgat	2040
5	agcgtaacaa	aatatggacc	tgtaaaagga	gactcgattg	tagaaaaaga	agagattcca	2100
3	ttcgagaaag	aacgtaaatt	taatcctgat	ttagcaccag	ggacagaaaa	agtaacaaga	2160
	gaaggacaaa	aaggtgagaa	gacaataacg	acaccaacac	taaaaaatcc	attaactgga	2220
10	gtaattatta	gtaaaggtga	accaaaagaa	gaaatcacaa	aagatccgat	taatgaatta	2280
	acagaatacg	gaccagaaac	gataacacca	ggtcatcgag	acgaatttga	tccgaagtta	2340
15	ccaacaggag	agaaagaaga	agttccaggt	aaaccaggaa	ttaagaatcc	agaaacagga	2400
13	gacgtagtta	gaccaccggt	cgatagcgta	acaaaatatg	gacctgtaaa	aggagactcg	2460
	attgtagaaa	aagaagagat	tccattcaag	aaagaacgta	aatttaatcc	ggatttagca	2520
20	ccagggacag	aaaaagtaac	aagagaagga	caaaaaggtg	agaagacaat	aacgacgcca	2580
	acactaaaaa	atccattaac	tggagaaatt	attagtaaag	gtgaatcgaa	agaagaaatc	2640
25	acaaaagatc	cgattaatga	attaacagaa	tacggaccag	aaacgataac	accaggtcat	2700
23	cgagacgaat	ttgatccgaa	gttaccaaca	ggagagaaag	aggaagttcc	aggtaaacca	2760
	ggaattaaga	atccagaaac	aggagatgta	gttagaccac	cggtcgatag	cgtaacaaaa	2820
30	tatggacctg	taaaaggaga	ctcgattgta	gaaaaagaag	agattccatt	cgagaaagaa	2880
	cgtaaattta	atcctgattt	agcaccaggg	acagaaaaag	taacaagaga	aggacaaaaa	2940
35	ggtgagaaga	caataacgac	gccaacacta	aaaaatccat	taactggaga	aattattagt	3000
<i>J J</i>	aaaggtgaat	cgaaagaaga	aatcacaaaa	gatccgatta	atgaattaac	agaatacgga	3060
	ccagaaacga	taacaccagg	tcatcgagac	gaatttgatc	cgaagttacc	aacaggagag	3120
40	aaagaggaag	ttccaggtaa	accaggaatt	aagaatccag	aaacaggaga	cgtagttaga	3180
	ccaccggtcg	atagcgtaac	aaaatatgga	cctgtaaaag	gagactcgat	tgtagaaaaa	3240
45	gaagaaattc	cattcaagaa	agaacgtaaa	tttaatcctg	atttagcacc	agggacagaa	3300
.5	aaagtaacaa	gagaaggaca	aaaaggtgag	aagacaataa	cgacgccaac	actaaaaaat	3360
	ccattaactg	gagaaattat	tagtaaaggt	gaatcgaaag	aagaaatcac	aaaagatccg	3420
50	attaatgaat	taacagaata	cggaccagaa	acgataacac	caggtcatcg	agacgaattt	3480
	gatccgaagt	taccaacagg	agagaaagag	gaagttccag	gtaaaccagg	aattaagaat	3540
55	ccagaaacag	gagatgtagt	tagaccaccg	gtcgatagcg	taacaaaata	tggacctgta	3600
	aaaggagact	cgattgtaga	aaaagaagaa	attccattcg	agaaagaacg	taaatttaat	3660
	cctgatttag	caccagggac	agaaaaagta	acaagagaag	gacaaaaagg	tgagaagaca	3720
60	ataacgacgc	caacactaaa	aaatccatta	actggagaaa	ttattagtaa	aggtgaatcg	3780

	aaagaagaaa	tcacaaaaga	tccgattaat	gaattaacag	aatacggacc	agaaacgata	3840
5	acaccaggtc	atcgagacga	atttgatccg	aagttaccaa	caggagagaa	agaggaagtt	3900
3	ccaggtaaac	caggaattaa	gaatccagaa	acaggagatg	tagttagacc	accggtcgat	3960
	agcgtaacaa	aatatggacc	tgtaaaagga	gactcgattg	tagaaaaaga	agaaattcca	4020
10	ttcgagaaag	aacgtaaatt	taatcctgat	ttagcaccag	ggacagaaaa	agtaacaaga	4080
	gaaggacaaa	aaggtgagaa	gacaataacg	acgccaacac	taaaaaatcc	attaactgga	4140
15	gaaattatta	gtaaaggtga	atcgaaagaa	gaaatcacaa	aagatccagt	taatgaatta	4200
13	acagaattcg	gtggcgagaa	aataccgcaa	ggtcataaag	atatctttga	tccaaactta	4260
	ccaacagatc	aaacggaaaa	agtaccaggt	aaaccaggaa	tcaagaatcc	agacacagga	4320
20	aaagtgatcg	aagagccagt	ggatgatgtg	attaaacacg	gaccaaaaac	gggtacacca	4380
	gaaacaaaaa	cagtagagat	accgtttgaa	acaaaacgtg	agtttaatcc	aaaattacaa	4440
25	cctggtgaag	agcgagtgaa	acaagaagga	caaccaggaa	gtaagacaat	cacaacacca	4500
23	atcacagtga	acccattaac	aggtgaaaaa	gttggcgagg	gtcaaccaac	agaagagatc	4560
	acaaaacaac	cagtagataa	gattgtagag	ttcggtggag	agaaaccaaa	agatccaaaa	4620
30	ggacctgaaa	acccagagaa	gccgagcaga	ccaactcatc	caagtggccc	agtaaatcct	4680
	aacaatccag	gattatcgaa	agacagagca	aaaccaaatg	gcccagttca	ttcaatggat	4740
35	aaaaatgata	aagttaaaaa	atctaaaatt	gctaaagaat	cagtagctaa	tcaagagaaa	4800
33	aaacgagcag	aattaccaaa	aacaggttta	gaaagcacgc	aaaaaggttt	gatctttagt	4860
	agtataattg	gaattgctgg	attaatgtta	ttggctcgta	gaagaaagaa	ttaa	4914
40	<210> 14 <211> 1637 <212> PRT <213> Stap	hylococcus	epidermidi	s			
45	<400> 14						
	Ser Gly Lys 1	Tyr Gly Ly 5	s Arg Ser	Met Gln Met 10	Arg Asp Lys	Lys Gly 15	
50	Pro Val Asn	Lys Arg Va 20		Leu Ser Asn 25	Lys Leu Asr 30	Lys Tyr	
55	Ser Ile Arg 35	Lys Phe Th	or Val Gly 40	Thr Ala Ser	Ile Leu Ile 45	e Gly Ser	
	Leu Met Tyr 50	Leu Gly Th	or Gln Gln 55	Glu Ala Glu	Ala Ala Glu 60	ı Asn Asn	
60	Ile Glu Asn 65	Pro Thr Th		Asp Asn Val 75	Gln Ser Lys	Glu Val 80	

	Lys	Ile	Glu	Glu	Val 85	Tḥr	Asn	Lys	Asp	Thr 90	Ala	Pro	Gln	Gly	Val 95	Glu
5	Ala	Lys	Ser	Glu 100	Val	Thr	Ser	Asn	Lys 105	Asp	Thr	Ile	Glu	His 110	Glu	Pro
10 ·	Ser	Val	Lys 115	Ala	Glu	Asp	Ile	Ser 120	Lys	Lys	Glu	Asp	Thr 125	Pro	Lys	Glu
	Val	Ala 130	Asp	Val	Ala	Glu	Val 135	Gln	Pro	Lys	Ser	Ser 140	Val	Thr	His	Asn
15	Ala 145	Glu	Thr	Pro	Lys	Val 150	Arg	Lys	Ala	Arg	Ser 155	Val	Asp	Glu	Gly	Ser 160
	Phe	Asp	Ile	Thr	Arg 165	Asp	Ser	Lys	Asn	Val 170	Val	Glu	Ser	Thr	Pro 175	Ile
20	Thr	Ile	Gln	Gly 180	Lys	Glu	His	Phe	Glu 185	Gly	Tyr	Gly	Ser	Val 190	Asp	Ile
25	Gln	Lys	Lys 195	Pro	Thr	Asp	Leu	Gly 200	Val	Ser	Glu	Val	Thr 205	Arg	Phe	Asn
20	Val	Gly 210	Asn	Glu	Ser	Asn	Gly 215	Leu	Ile	Gly	Ala	Leu 220	Gln	Leu	ГÀЗ	Asn
30	Lys 225	Ile	Asp	Phe	Ser	Lys 230	Asp	Phe	Asn	Phe	Lys 235	Val	Arg	Val	Ala	Asn 240
	Asn	His	Gln	Ser	Asn 245	Thr	Thr	Gly	Ala	Asp 250	Gly	Trp	Gly	Phe	Leu 255	Phe
35	Ser	Lys	Gly	Asn 260	Ala	Glu	Glu	Tyr	Leu 265	Thr	Asn	GŢĀ	Gly	Ile 270	Leu	Gly
.: 40	Asp	Lys	Gly 275	Leu	Val	Asn	Ser	Gly 280	Gly	Phe	Lys	Ile	Asp 285	Thr	Gly	Tyr
	Ile	Tyr 290	Thr	Ser	Ser	Met	Asp 295	Lys	Thr	Glu	Lys	Gln 300	Ala	Gly	Gln	Gly
45	Tyr 305	Arg	Gly	Tyr	Gly	Ala 310	Phe	Val	Lys	Asn	Asp 315	Ser	Ser	Gly	Asn	Ser 320
	Gln	Met	Val	Gly	Glu 325	Asn	Ile	Asp	Lys	Ser 330	Lys	Thr	Asn	Phe	Leu 335	Asn
50	Tyr	Ala	Asp	Asn 340	Ser	Thr	Asn	Thr	Ser 345	Asp	Gly	Lys	Phe	His 350	Gly	Gln
55	Arg	Leu	Asn 355	Asp	Val	Ile	Leu	Thr 360	Tyr	Val	Ala	Ser	Thr 365	Gly	Lys	Met
<i>33</i>	Arg	Ala 370	Glu	Tyr	Ala	Gly	Lys 375	Thr	Trp	Glu	Thr	Ser 380	Ile	Thr	Asp	Leu
60	Gly 385	Leu	Ser	Lys	Asn	Gln 390	Ala	Tyr	Asn	Phe	Leu 395	Ile	Thr	Ser	Ser	Gln 400

Arg Trp Gly Leu Asn Gln Gly Ile Asn Ala Asn Gly Trp Met Arg Thr Asp Leu Lys Gly Ser Glu Phe Thr Phe Thr Pro Glu Ala Pro Lys Thr Ile Thr Glu Leu Glu Lys Lys Val Glu Glu Ile Pro Phe Lys Lys Glu 10 Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Thr Pro Thr Leu Lys Asn 15 Pro Leu Thr Gly Val Ile Ile Ser Lys Gly Glu Pro Lys Glu Glu Ile 20 Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile 505 Ala Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu 25 Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val 30 Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Glu Lys Glu 35 Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg Glu Gly Gln Lys Gly Glu Lys Thr Ile Thr Thr Pro Thr Leu Lys Asn 40 Pro Leu Thr Gly Glu Ile Ile Ser Lys Gly Glu Ser Lys Glu Glu Ile Thr Lys Asp Pro Ile Asn Glu Leu Thr Glu Tyr Gly Pro Glu Thr Ile 45 Thr Pro Gly His Arg Asp Glu Phe Asp Pro Lys Leu Pro Thr Gly Glu 50 Lys Glu Glu Val Pro Gly Lys Pro Gly Ile Lys Asn Pro Glu Thr Gly Asp Val Val Arg Pro Pro Val Asp Ser Val Thr Lys Tyr Gly Pro Val 55 Lys Gly Asp Ser Ile Val Glu Lys Glu Glu Ile Pro Phe Glu Lys Glu Arg Lys Phe Asn Pro Asp Leu Ala Pro Gly Thr Glu Lys Val Thr Arg 705 710 715 720 60

	Glu	Gly	Gln	Lys	Gly 725	Glu	Lys	Thr	Ile	Thr 730	Thr	Pro	Thr	Leu	Lys 735	Asn
5	Pro	Leu	Thr	Gly 740	Val	Ile	Ile	Ser	Lys 745	Gly	Glu	Pro	Lys	Glu 750	Glu	Ile
10	Thr	ГÀЗ	Asp 755	Pro	Ile	Asn	Glu	Leu 760	Thr	Glu	Tyr	Gly	Pro 765	Glu	Thr	Ile
	Thr	Pro 770	Gly	His	Arg	Asp	Glu 775	Phe	Asp	Pro	Lys	Leu 780	Pro	Thr	Gly	Glu
15	Lys 785	Glu	Glu	Val	Pro	Gly 790	Lys	Pro	Gly	Ile	Lys 795	Asn	Pro	Glu	Thr	Gly 800
	Asp	Val	Val	Arg	Pro 805	Pro	Val	Asp	Ser	Val 810	Thr	Lys	Tyr	Gly	Pro 815	Val
20	Lys	Gly	Asp	Ser 820	Ile	Val	Glu	Lys	Glu 825	Glu	Ile	Pro	Phe	830 FA2	Lys	Glu
25	Arg	Lys	Phe 835	Asn	Pro	qsA	Leu	Ala 840	Pro	Gly	Thr	Glu	Lys 845	Val	Thr	Arg
	Glu	Gly 850	Gln	Lys	Gly	Glu	Lys 855	Thr	Ile	Thr	Thr	Pro 860	Thr	Leu	Lys	Asn
30	Pro 865	Leu	Thr	Gly	Glu	Ile 870	Ile	Ser	Lys	Gly	Glu 875	Ser	Lys	Glu	Glu	Ile 880
	Thr	Lys	Asp	Pro	Ile 885	Asn	Glu	Leu	Thr	Glu 890	Tyr	Gly	Pro	Glu	Thr 895	Ile
35	Thr	Pro	Gly	His 900	Arg	Asp	Glu	Phe	Asp 905	Pro	Lys	Leu	Pro	Thr 910	Gly	Glu
40	Lys	Glu	Glu 915	Val	Pro	Gly	Lys	Pro 920	Gly	Ile	Lys	Asn	Pro 925	Glu	Thr	Gly
	Asp	Val 930	Val	Arg	Pro	Pro	Vai 935	Asp	Ser	Val	Thr	Lys 940	Tyr	Gly	Pro	Val
45	Lys 945	Gly	Asp	Ser	Ile	Val 950	Glu	Lys	Glu	Glu	Ile 955	Pro	Phe	Glu	Lys	Glu 960
	Arg	Lys	Phe	Asn	Pro 965	Asp	Leu	Ala	Pro	Gly 970	Thr	Glu	Lys	Val	Thr 975	Arg
50	Glu	Gly	Gln	Lys 980	Gly	Glu	Lys	Thr	Ile 985	Thr	Thr	Pro	Thr	Leu 990	Lys	Asn
55	Pro	Leu	Thr 995	Gly	Glu	Ile	Ile	Ser 1000		s Gly	y Gju	ı Sei	Ly:		Lu G	lu Ile
	Thr	Lys 1010	Asp)	Pro	Ile	e Asr	1 Glu 101		eu Th	ır Gl	lu Ty		Ly 1 020	Pro (Glu '	Th <i>r</i>
60	Ile	Thr 1025		Gly	/ His	Arq	Asp 103		Lu Pi	ne As	sp Pi		/s 1)35	Leu 1	?ro '	Thr

	Gly	Glu 1040	Lys	Glu	Glu	Val	Pro 1045		Lys	Pro	Gly	Ile 1050	Lys	Asn	Pro
. 5	Glu	Thr 1055	Gly	Asp	Val	Val	Arg 1060	Pro	Pro	Val	Asp	Ser 1065	Val	Thr	Lys
10	Tyr	Gly 1070	Pro	Val	Lys	Gly	Asp 1075	Ser	Ile	Val	Glu	Lys 1080	Glu	Glu	Ile
	Pro	Phe 1085	Lys	Lys	Glu	Arg	Lys 1090	Phe	Asn	Pro	Asp	Leu 1095	Ala	Pro	Gly
15	Thr	Glu 1100	Lys	Val	Thr	Arg	Glu 1105	Gly	Gln	Lys	Gly	Glu 1110	ГÀЗ	Thr	Ile
	Thr	Thr 1115	Pro	Thr	Leu	Lys	Asn 1120	Pro	Leu	Thr	Gly	Glu 1125	Ile	Ile	Ser
20	Lys	Gly 1130	Glu	Ser	Lys	Glu	Glu 1135	Ile	Thr	ГÀЗ	Asp	Pro 1140	Ile	Asn	Glu
25	Leu	Thr 1145	Glu	Tyr	Gly	Pro	Glu 1150	Thr	Ile	Thr	Pro	Gly 1155	His	Arg	Asp
	Glu	Phe 1160	Asp	Pro	Lys	Leu	Pro 1165	Thr	Gly	Glu	Lys	Glu 1170	Glu	Val	Pro
30	Gly	Lys 1175	Pro	Glу	Ile	Lys	Asn 1180	Pro	Glu	Thr	Gly	Asp 1185		Val	Arg
	Pro	Pro 1190	Val	Asp	Ser	Val	Thr 1195	Lys	Tyr	Gly	Pro	Val 1200	Lys	Gly	Asp
35	Ser	Ile 1205	Val	Glu	Lys	Glu	Glu 1210	Ile	Pro	Phe	Glu	Lys 1215	Glu	Arg	Lys
40	Phe	Asn 1220	Pro	Asp	Leu	Ala	Pro 1225	Gly	Thr	Glu	Lys	Val 1230	Thr	Arg	Glu
	Gly	Gln 1235	Lys	Gly	Glu	Lys	Thr 1240	Ile	Thr	Thr	Pro	Thr 1245	Leu	Lys	Asn
45	Pro	Leu 1250	Thr	Gly	Glu	Ile	Ile 1255	Ser	Lys	Gly	Glu	Ser 1260	Lys	Glu	Glu
	Ile	Thr 1265	Lys	Asp	Pro	Ile	Asn 1270	Glu	Leu	Thr	Glu	Tyr 1275	Gly	Pro	Glu
50	Thr	Ile 1280	Thr	Pro	Gly	His	Arg 1285	Asp	Glu	Phe	Asp	Pro 1290	ГÀЗ	Leu	Pro
55	Thr	Gly 1295	Glu	Lys	Glu	Glu	Val 1300	Pro	Gly	Lys	Pro	Gly 1305	Ile	Lys	Asn
	Pro	Glu 1310	Thr	Gly	Asp		Val 1315	Arg	Pro	Pro	Val	Asp 1320	Ser	Val	Thr
60	Lys	Tyr 1325	Gly	Pro	Val	Lys	Gly 1330	Asp	Ser	Ile	Val	Glu 1335	Lys	Glu	Glu

	Ile	Pro 1340	Phe	Glu	Lys	Glu	Arg 1345	Lys	Phe	Asn	Pro	Asp 1350	Leu	Ala	Pro
5	Gly	Thr 1355	Glu	Lys	Val	Thr	Arg 1360	Glu	Gly	Gln	ГÀЗ	Gly 1365	Glu	Lys	Thr
10	Ile	Thr 1370	Thr	Pro	Thr	Leu	Lys 1375	Asn	Pro	Leu	Thr	Gly 1380	Glu	Ile	Ile
	Ser	Lys 1385	Gly	Glu	Ser	Lys	Glu 1390	Glu	Ile	Thr	Lys	Asp 1395	Pro	Val	Asn
15	Glu	Leu 1400	Thr	Glu	Phe	Gly	Gly 1405	Glu	Lys	Ile	Pro	Gln 1410	Gly	His	ГÀ2
	Asp	Ile 1415	Phe	Asp	Pro	Asn	Leu 1420	Pro	Thr	Asp	Gln	Thr 1425	Glu	Lys	Val
20	Pro	Gly 1430	Lys	Pro	Gly	Ile	Lys 1435	Asn	Pro	Asp	Thr	Gly 1440	Lys	Val	Ile
25	Glu	Glu 1445	Pro	Val	Asp	Asp	Val 1450	Ile	Lys	His	Gly	Pro 1455	Lys	Thr	Gly
	Thr	Pro 1460	Glu	Thr	Lys	Thr	Val 1465	Glu	Ile	Pro	Phe	Glu 1470	Thr	Lys	Arg
30	Glu	Phe 1475	Asn	Pro	ГЛЗ	Leu	Gln 1480	Pro	Gly	Glu	Glu	Arg 1485	Val	Lys	Gln
	Glu	Gly 1490	Gln	Pro	Gly	Ser	Lys 1495	Thr	Ile	Thr	Thr	Pro 1500	Ile	Thr	Val
35	Asn	Pro 1505		Thr	Gly	Glu	Lys 1510	Val	Gly	Glu	Gly	Gln 1515	Pro	Thr	Glu
40	Glu	Ile 1520	Thr	Lys	Gln	Pro	Val 1525	Asp	Lys	Ile	Val	Glu 1530	Phe	Gly	Gly
	Glu	Lys 1535	Pro	Lys	Asp	Pro	Lys 1540	Gly	Pro	Glu	Asn	Pro 1545	Glu	Lys	Pro
45	Ser	Arg 1550	Pro	Thr	His	Pro	Ser 1555	Gly	Pro	Val	Asn	Pro 1560	Asn	Asn	Pro
	Gly	Leu 1565	Ser	Lys	Asp	Arg	Ala 1570	Lys	Pro	Asn	Gly	Pro 1575	Val	His	Ser
50	Met	Asp 1580		Asn	Asp	Lys	Val 1585	Lys	Lys	Ser	Lys	Ile 1590	Ala	ГÀЗ	Glu
55	Ser	Val 1595	Ala	Asn	Gln	Glu	Lys 1600	Lys	Arg	Ala	Glu	Leu 1605	Pro	Lys	Thr
	Gly	Leu 1610	Glu	Ser	Thr	Gln	Lys 1615	Gly	Leu	Ile	Phe	Ser 1620	Ser	Ile	Ile
60	Gly	Ile 1625	Ala	Gly	Leu	Met	Leu 1630	Leu	Ala	Arg	Arg	Arg 1635	Lys	Asn	

<210> 15 <211> 1923 <212> DNA 5 Staphylococcus epidermidis <400> 15 ggaaggagta tgttgatggc taaatatcga gggaaaccgt ttcaattata tgtaaagtta 60 10 tegtgttega caatgatgge gacaagtate attttaaega atatettgee gtacgatgee 120 caagctgcat ctgaaaagga tactgaaatt acaaaagaga tattatctaa gcaagattta 180 ttagacaaag ttgacaaggc aattcgtcaa attgagcaat taaaacagtt atcggcttca 240 15 tetaaagaac attataaage acaactaaat gaagegaaaa cageategea aatagatgaa 300 atcataaaac gagctaatga gttggatagc aaagacaata aaagttctca cactgaaatg 360 20 aacggtcaaa gtgatataga cagtaaatta gatcaattgc ttaaagattt aaatgaggtt 420 tetteaaatg ttgatagggg teaacaaagt ggcgaggacg atettaatge aatgaaaaat 480 gatatgtcac aaacggctac aacaaaacat ggagaaaaag atgataaaaa tgatgaagca 540 25 atggtaaata aggcgttaga agacctagac catttgaatc agcaaataca caaatcgaaa 600 gatgcatcga aagatacatc ggaagatcca gcagtgtcta caacagataa taatcatgaa 660 30 gtagctaaaa cgccaaataa tgatggttct ggacatgttg tgttaaataa attcctttca 720 aatgaagaga atcaaagcca tagtaatcga ctcactgata aattacaagg aagcgataaa 780 attaatcatg ctatgattga aaaattagct aaaagtaatg cctcaacgca acattacaca 840 35 tatcataaac tgaatacgtt acaatcttta gatcaacgta ttgcaaatac gcaacttcct 900 aaaaatcaaa aatcagactt aatgagcgaa gtaaataaga cgaaagagcg tataaaaaqt 960 40 caacgaaata ttattttgga agaacttgca cgtactgatg ataaaaagta tgctacacaa 1020 agcattttag aaagtatatt taataaagac gaggcagtta aaattctaaa agatatacgt 1080 gttgatggta aaacagatca acaaattgca gatcaaatta ctcqtcatat tqatcaatta 1140 45 tctctgacaa cgagtgatga tttattaacg tcattgattg atcaatcaca agataagtcg 1200 ctattgattt ctcaaatttt acaaacgaaa ttaggaaaag ctgaagcaga taaattggct 1260 50 aaagattgga cgaataaagg attatcaaat cgccaaatcg ttgaccaatt gaagaaacat 1320 tttgcatcaa ctggcgacac gtcttcagat gatatattaa aagcaatttt gaataatgcc 1380 aaagataaaa aacaagcaat tgaaacgatt ttagcaacac gtatagaaag acaaaaggca 1440 55 1500 gttaaatcgg cattgaatgg taaagcggat gatttattga atttacaaaa gagactcaat 1560 60 caaacgaaaa aagatataga ttatatttta tcaccaatag taaatcgtcc aagtttacta 1620

	gate	cgati	tga a	ataa	aaat	gg ga	aaaa	cgaca	a gat	ttta	aata	agt	tagca	aaa t	ttta	atgaat	1680
5	caa	ggato	cag a	attta	atta	ga ca	agtai	tcca	a gai	tatad	cca	cac	caaa	gcc a	agaaa	aagacg	1740
3	ttaa	acact	ttg (gtaaa	aggta	aa to	ggati	gtta	a agt	tggat	tat	taaa	atgci	iga i	tggta	aatgta	1800
	tcti	ttgc	cta a	aagc	gggg	ga aa	acgat	aaaa	a gaa	acati	ggt	tgc	egata	atc 1	tgtaa	attgtt	1860
10	ggt	gcaat	tgg (gtgta	actaa	at ga	attt	ggtta	a tca	acga	egca	ataa	agtt	gaa a	aaata	aaagca	1920
	taa																1923
15	<210 <211 <212 <213	L> (2> I	l6 640 PRT Stapl	nyloo	cocci	ıs ep	pider	midi	ĹS								
20 .	<400)> :	16														
20 .	Gly 1	Arg	Ser	Met	Leu 5	Met	Ala	Lys	Tyr	Arg 10	Gly	Lys	Pro	Phe	Gln 15	Leu	
25	Tyr	Val	Lys	Leu 20	Ser	Суз	Ser	Thr	Met 25	Met	Ala	Thr	Ser	Ile 30	Ile	Leu	•
	Thr	Asn	Ile 35	Leu	Pro	Tyr	Asp	Ala 40	Gln	Ala	Ala	Ser	Glu 45	Lys	Asp	Thr	
30	Glu	Ile 50	Thr	Lys	Glu	Ile	Leu 55	Ser	Lys	Gln	qaA	Leu 60	Leu	Asp	Lys	Val	
35	Asp 65	Lys	Ala	Ile	Arg	Gln 70	Ile	Glu	Gln	Leu	Lys 75	Gln	Leu	Ser	Ala	Ser 80	
	Ser 	Lys	Glu	His	Tyr 85	Ъуs	Ala	Gln	Leu	Asn 90	Glu	Ala	Lys	Thr	Ala 95	Ser	
40	Gln	Ile	Asp	Glu 100	Ile	Ile	Lys	Arg	Ala 105	Asn	Glu	Leu	Asp	Ser 110	Lys	Asp	
	Asn	Lys	Ser 115	Ser	His	Thr	Glu	Met 120	Asn	Gly	Gln	Ser	Asp 125	Ile	Asp	Ser ·	
45	Lys	Leu 130	Asp	Gln	Leu	Leu	Lys 135	Asp	Leu	Asn	Glu	Val 140	Ser	Ser	Asn	Val	
50	Asp 145	Arg	Gly	Gln	Gln	Ser 150	Gly	Glu	Asp	Asp	Leu 155	Asn	Ala	Met	Lys	Asn 160	
	Asp	Met	Ser	Gln	Thr 165	Ala	Thr	Thr	Lys	His 170	Gly	Glu	Lys	Asp	Asp 175	Lys	
55	Asn	Asp	Glu	Ala 180	Met	Val	Asn	Lys	Ala 185	Leu	Glu	Asp	Leu	Asp 190	His	Leu	
	Asn	Gln	Gln 195	Ile	His	Lys	Ser	Lys 200	Asp	Ala	Ser	Lys	Asp 205	Thr	Ser	Glu	
60	Asp	Pro	Ala	Val	Ser	Thr	Thr	Asp	Asn	Asn	His	Glu	Val	Ala	Lys	Thr	

		210					215					220				
5	Pro 225	Asn	Asn	Asp	Gly	Ser 230	Gly	His	Val	Val	Leu 235	Asn	Lys	Phe	Leu	Se: 240
,	Asn	Glu	Glu	Asn	Gln 245	Ser	His	Ser	Asn	Arg 250	Leu	Thr	Asp	Lys	Leu 255	Glr
10	Gly	Ser	Asp	Lys 260	Ile	Asn	His	Ala	Met 265	Ile	Glu	Lys	Leu	Ala 270	Lys	Sei
	Asn	Ala	Ser 275	Thr	Gln	His	Tyr	Thr 280	Tyr	His	Lys	Leu	Asn 285	Thr	Leu	Glr
15	Ser	Leu 290	Asp	Gln	Arg	Ile	Ala 295	Asn	Thr	Gln	Leu	Pro 300	Lys	Asn	Gln	Lys
20	Ser 305	Asp	Leu	Met	Ser	Glu 310	Va1	Asn	Lys	Thr	Lys 315	Glu	Arg	Ile	Lys	Sez 320
	Gln	Arg	Asn	Ile	Ile 325	Leu	Glu	Glu	Leu	Ala 330	Arg	Thr	Asp	Asp	Lys 335	Lys
25	Tyr	Ala	Thr	Gln 340	Ser	Ile	Leu	Glu	Ser 345	Ile	Phe	Asn	Lys	Asp 350	Glu	Ala
	Val	Lys	Ile 355	Leu	Lys	Asp	Ile	Arg 360	Val	qzA	Gly	Lys	Thr 365	Asp	Gln	Glr
30	Ile	Ala 370	Asp	Gln	Ile	Thr	Arg 375	His	Ile	Asp	Gln	Leu 380	Ser	Leu	Thr	Thr
35	Ser 385	Asp	Asp	Leu	Leu	Thr 390	Ser	Leu	Ile	Asp	Gln 395	Ser	Gln	Asp	Lys	Ser 400
	Leu	Leu	Ile	Ser	Gln 405	Ile	Leu	Gln	Thr	Lys 410	Leu	Gly	Lys	Ala	Glu 415	Ala
40	Asp	Lys	Leu	Ala 420	Lys	Asp	Trp	Thr	Asn 425	Lys	Gly	Leu	Ser	Asn 430	Arg	Glr
	Ile	Val	Asp 435	Gln	Leu	ГÀЗ	Lys	His 440	Phe	Ala	Ser	Thr	Gly 445	Asp	Thr	Ser
45	Ser	Asp 450	Asp	Ile	Leu	ГÀЗ	Ala 455	Ile	Leu	Asn	Asn	Ala 460	ГÀЗ	Asp	Lys	Lys
50	Gln 465	Ala	Ile	Glu	Thr	Ile 470	Leu	Ala	Thr	Arg	Ile 475	Glu	Arg	Gln	Lys	Ala 480
	Lys	Leu	Leu	Ala	Asp 485	Leu	Ile	Thr	Lys	Iİe 490	Glu	Thr	Asp	Gln	Asn 495	Lys
55	Ile	Phe	Asn	Leu 500	Val	Lys	Ser	Ala	Leu 505	Asn	Gly	Lys	Ala	Asp 510	Asp	Let
	Leu	Asn	Leu 515	Gln	ьуѕ	Arg	Leu	Asn 520	Gln	Thr	Lys	Lys	Asp 525	Ile	Asp	Tyı
60	Ile	Leu	Ser	Pro	Ile	Val	Asn	Arg	Pro	Ser	Leu	Leu	Asp	Arg	Leu	Ası

		530					535					540				
5	Lys 545	Asn	Gly	ГÀЗ	Thr	Thr 550	Asp	Leu	Asn	Lys	Leu 555	Ala	Asn	Leu	Met	Asn 560
•	Gln	Gly	Ser	Asp	Leu 565	Leu	Asp	Ser	Ile	Pro 570	Asp	Ile	Pro	Thr	Pro 575	Lys
10	Pro	Glu	Lys	Thr 580	Leu	Thr	Leu	Gly	Lys 585	Gly	Asn	Gly	Leu	Leu 590	Ser	Gly
	Leu	Leu	Asn 595	Ala	Asp ·	Gly	Asn	Val 600	Ser	Leu	Pro	ГÀЗ	Ala 605	Gly	Glu	Thr
15	Ile	Lys 610	Glu	His	Trp	Leu	Pro 615	Ile	Ser	Val	Ile	Val 620	Gly	Ala	Met	Gly
20	Val. 625	Leu	Met	Ile	Trp	Leu 630	Ser	Arg	Arg	Asn	Lys 635	Leu	Lys	Asn	Lys	Ala 640
	<210 <210 <210 <210	L> ! 2> !	17 522 PRT Stapk	nyloo	COCC1	ra pr	nider	cmi di	e							
25	<400		17			.o op		- 1412 03								
20	Ala 1	Ser	Glu	Thr	Pro 5	Ile	Thr	Ser	Glu	Ile 10	Ser	Ser	Asn	Ser	Glu 15	Thr
30	Val	Ala	Asn	Gln 20	Asn	Ser	Thr	Thr	Ile 25	Lys	Asn	Ser	Gln	Lys 30	Glu	Thr
35	Val	Asn	Ser 35	Thr	Ser	Leu	Glu	Ser 40	Asn	His	Ser	Asn	Ser 45	Thr	Asn	ГЛЗ
	Gln	Met 50	Ser	Ser	Glu	Val	Thr 55	Asn	Thr	Ala	Gln	Ser 60	Ser	Glu	Lys	Ala
40	Gly 65	Ile	Ser	Gln	Gln	Ser 70	Ser	Glu	Thr	Ser	Asn 75	Gln	Ser	Ser	Lys ·	Leu 80
45	Asn	Thr	Tyr	Ala	Ser 85	Thr	Asp	His	Val	Glu 90	Ser	Thr	Thr	Ile	Asn 95	Asn
	Asp	Asn	Thr	Ala 100	Gln	Gln	Asp	Gln	Asn 105	Lys	Ser	Ser	Asn	Val 110	Thr	Ser
50	Lys	Ser	Thr 115	Gln	Ser	Asn	Thr	Ser 120	Ser	Ser	Glu	Lys	Asn 125	Ile	Ser	Ser
	Asn	Leu 130	Thr	Gln	Ser	Ile	Glu 135	Thr	Lys	Ala	Thr	Asp 140	Ser	Leu	Ala	Thr
55	Ser 145	Glu	Ala	Arg	Thr	Ser 150	Thr	Asn	Gln	Ile	Ser 155	Asn	Leu	Thr	Ser	Thr 160
60	Ser	Thr	Ser	Asn	Gln 165	Ser	Ser	Pro	Thr	Ser 170	Phe	Ala	Asn	Leu	Arg 175	Thr

Phe Ser Arg Phe Thr Val Leu Asn Thr Met Ala Ala Pro Thr Thr Thr Ser Thr Thr Thr Ser Ser Leu Thr Ser Asn Ser Val Val Val Asn 5 Lys Asp Asn Phe Asn Glu His Met Asn Leu Ser Gly Ser Ala Thr Tyr 10 Asp Pro Lys Thr Gly Ile Ala Thr Leu Thr Pro Asp Ala Tyr Ser Gln Lys Gly Ala Ile Ser Leu Asn Thr Arg Leu Asp Ser Asn Arg Ser Phe 15 Arg Phe Ile Gly Lys Val Asn Leu Gly Asn Arg Tyr Glu Gly Tyr Ser Pro Asp Gly Val Ala Gly Gly Asp Gly Ile Gly Phe Ala Phe Ser Pro 20 Gly Pro Leu Gly Gln Ile Gly Lys Glu Gly Ala Ala Val Gly Ile Gly 25 Gly Leu Asn Asn Ala Phe Gly Phe Lys Leu Asp Thr Tyr His Asn Thr Ser Thr Pro Arg Ser Asp Ala Lys Ala Lys Ala Asp Pro Arg Asn Val 30 Gly Gly Gly Ala Phe Gly Ala Phe Val Ser Thr Asp Arg Asn Gly Met Ala Thr Thr Glu Glu Ser Thr Ala Ala Lys Leu Asn Val Gln Pro 35 Thr Asp Asn Ser Phe Gln Asp Phe Val Ile Asp Tyr Asn Gly Asp Thr 40 Lys Val Met Thr Val Thr Tyr Ala Gly Gln Thr Phe Thr Arg Asn Leu Thr Asp Trp Ile Lys Asn Ser Gly Gly Thr Thr Phe Ser Leu Ser Met 45 Thr Ala Ser Thr Gly Gly Ala Lys Asn Leu Gln Gln Val Gln Phe Gly Thr Phe Glu Tyr Thr Glu Ser Ala Val Ala Lys Val Arg Tyr Val Asp 50 Ala Asn Thr Gly Lys Asp Ile Ile Pro Pro Lys Thr Ile Ala Gly Glu 455 55 Val Asp Gly Thr Val Asn Ile Asp Lys Gln Leu Asn Asn Phe Lys Asn Leu Gly Tyr Ser Tyr Val Gly Thr Asp Ala Leu Lys Ala Pro Asn Tyr 60

Thr Glu Thr Ser Gly Thr Pro Thr Leu Lys Leu Thr Asn Ser Ser Gln 500 Thr Val Ile Tyr Lys Phe Lys Asp Val Gln 515

<210> 18

5

25

40

55

<211> 485 <212> PRT

10 <213> Staphylococcus epidermidis

<400> 18

Ala Ser Asp Ala Pro Leu Thr Ser Glu Leu Asn Thr Gln Ser Glu Thr 15 1 10 15

Val Gly Asn Gln Asn Ser Thr Thr Ile Glu Ala Ser Thr Ser Thr Ala 20 25 30

20 Asp Ser Thr Ser Val Thr Lys Asn Ser Ser Ser Val Gln Thr Ser Asn 35 40 45

Ser Asp Thr Val Ser Ser Glu Lys Ser Glu Lys Val Thr Ser Thr Thr 50 55 60

Asn Ser Thr Ser Asn Gln Gln Glu Lys Leu Thr Ser Thr Ser Glu Ser 65 70 75 80

Thr Ser Ser Lys Asn Thr Thr Ser Ser Ser Asp Thr Lys Ser Val Ala 85 90 95

Ser Thr Ser Ser Thr Glu Gln Pro Ile Asn Thr Ser Thr Asn Gln Ser 100 105 110

35 Thr Ala Ser Asn Asn Thr Ser Gln Ser Thr Thr Pro Ser Ser Val Asn 115 120 125

Leu Asn Lys Thr Ser Thr Thr Ser Thr Ser Thr Ala Pro Val Lys Leu 130 135 140

Arg Thr Phe Ser Arg Leu Ala Met Ser Thr Phe Ala Ser Ala Ala Thr 145 150 155 160

Thr Thr Ala Val Thr Ala Asn Thr Ile Thr Val Asn Lys Asp Asn Leu 165 170 175

Lys Gln Tyr Met Thr Thr Ser Gly Asn Ala Thr Tyr Asp Gln Ser Thr 180 185 190

50 Gly Ile Val Thr Leu Thr Gln Asp Ala Tyr Ser Gln Lys Gly Ala Ile 195 200 205

Thr Leu Gly Thr Arg Ile Asp Ser Asn Lys Ser Phe His Phe Ser Gly 210 215 220

Lys Val Asn Leu Gly Asn Lys Tyr Glu Gly His Gly Asn Gly Gly Asp 225 230 235 240

Gly Ile Gly Phe Ala Phe Ser Pro Gly Val Leu Gly Glu Thr Gly Leu 245 250 255

	Asn	Gly	Ala	Ala 260	Val	Gly	Ile	Gly	Gly 265	Leu	Ser	Asn	Ala	Phe 270	Gly	Phe
5	ГÃЗ	Leu	Asp 275	Thr	Tyr	His	Asn	Thr 280	Ser	Lys	Pro	Asn	Ser 285	Ala	Ala	Lys
10	Ala	Asn 290	Ala	Asp	Pro	Ser	Asn 295	Val	Ala	Gly		Gly 300	Ala	Phe	Gly	Ala
	Phe 305	Val	Thr	Thr	Asp	Ser 310	Tyr	Gly	Val	Ala	Thr 315	Thr	Tyr	Thr	Ser	Ser 320
15	Ser	Thr	Ala	Asp	Asn 325	Ala	Ala	Lys	Leu	Asn 330	Val	Gln	Pro	Thr	Asn 335	Asn
	Thr	Phe	Gln	Asp 340	Phe	Asp	Ile	Asn	Tyr 345	Asn	Gly	Asp	Thr	Lys 350	Val	Met
20	Thr	Val	Lys 355	Tyr	Ala	GŢĀ	Gln	Thr 360	Trp	Thr	Arg	Asn	Ile 365	Ser	Asp	Trp
25	Ile	Ala 370	Lys	Ser	Gly	Thr	Thr 375	Asn	Phe	Ser	Leu	Ser 380	Met	Thr	Ala	Ser
	Thr 385	Gly	Gly	Ala	Thr	Asn 390	Leu	Gln	Gln	Val	G1n 395	Phe	Gly	Thr	Phe	Glu 400
30	Tyr	Thr	Glu	Ser	Ala 405	Val	Thr	Gln	Val	Arg 410	Tyr	Val	Asp	Val	Thr 415	Thr
	Gly	Lys	Asp	Ile 420	Ile	Pro	Pro	Lys	Thr 425	Tyr	Ser	Gly	Asn	Val 430	Asp	Gln
35	Val	Val	Thr 435	Ile	Asp	Asn	Gln	Gln 440	Ser	Ala	Leu	Thr.	Ala 445	Lys	Gly	Tyr
40	Asn	Tyr 450	Thr	Ser	Val	Asp	Ser 455	Ser	Tyr	Ala	Ser	Thr 460	Tyr	Asn	Asp	Thr
	Asn 465	Lys	Thr	Val	Lys	Met 470	Thr	Asn	Ala	Gly	Gln 475	Ser	Val	Thr	Tyr	Tyr 480
45	Phe	Thr	Asp	Val	Val 485			•								
50	<210 <211 <212 <213	l>	l9 l245 PRT Stapi	nyloo	cocci	ıs ep	oider	midi	Ls							
	<400)>]	L9													
55	Met 1	Gly	Lys	Arg	Arg 5	Gln	Gly	Pro	Ile	Asn 10	Lys	Lys	Val	Asp	Phe 15	Leu
	Pro	Asn	Lys	Leu 20	Asn	Lys	Tyr	Ser	Ile 25	Arg	Lys	Phe	Thr	Val 30	Gly	Thr
60	Ala	Ser	Ile	Leu	Leu	Gly	Ser	Thr	Leu	Ile	Phe	Gly	Ser	Ser	Ser	His

			35					40					45			
5	Glu	Ala 50	Lys	Ala	Ala	Glu	Glu 55	Lys	Gln	Val	Asp	Pro 60	Ile	Thr	Gln	Ala
J	Asn 65	Gln	Asn	Asp	Ser	Ser 70	Glu	Arg	Ser	Leu	Glu 75	Asn	Thr	Asn	Gln	Pro 80
10	Thr	Val	Asn	Asn	Glu 85	Ala	Pro	Gln	Met	Ser 90	Ser	Thr	Leu	Gln	Ala 95	GLu
	Glu	Gly	Ser	Asn 100	Ala	Glu	Ala	Pro	Gln 105	Ser	Glu	Pro	Thr	Lys 110	Ala	Glu
15	Glu	Gly	Gly 115	Asn	Ala	Glu	Ala	Ala 120	Gln	Ser	Glu	Pro	Thr 125	Lys	Ala	Glu
20	Glu	Gly 130	Gly	Asn	Ala	Glu	Ala 135	Pro	Gln	Ser	Glu	Pro 140	Thr	Lys	Ala	Glu
	Glu 145	Gly	Gly	Asn	Ala	Glu 150	Ala	Ala	Gln	Ser	Glu 155	Pro	Thr	Lys	Thr	Glu 160
25 ·	Glu	Gly	Ser	Asn	Val 165	Lys	Ala	Ala	Gln	Ser 170	Glu	Pro	Thr	Lys	Ala 175	Glü
				Asn 180					185					190		
30			195	Asn				200					205			
35		210		Asn			215					220				
	225			Asn		230					235			_		240
40				Asn	245					250				_	255	
4.5				Asn 260					265					270		
45			275	Asp				280					285		_	
50		290		Arg			295					300				
	305			Ser		310					315					320
55				Val	325					330					335	
60				Ala 340					345					350		
60	тfе	Pro	Pro	Thr	Thr	Val	Lys	Gly	Arg	Asp	Asn	Tyr	Asp	Phe	Tyr	G17

			355	-				360					365			
5	Arg	Val 370	Asp	Ile	Glu	Ser	Asn 375	Pro	Thr	Asp	Leu	Asn 380	Ala	Thr	Asn	Let
	Thr 385	Arg	Tyr	Asn	Tyr	Gly 390	Gln	Pro	Pro	Gly	Thr 395	Thr	Thr	Ala	Gly	Ala 400
10	Val	Gln	Phe	Lys	Asn 405	Gln	Val	Ser	Phe	Asp 410	Lys	Asp	Phe	Asp	Phe 415	Asr
	Ile	Arg	Val	Ala 420	Asn	Asn	Arg	Gln	Ser 425	Asn	Thr	Thr	Gly	Ala 430	Asp	Gl
15	Trp	Gly	Phe 435	Met	Phe	Ser	Lys	Lys 440	Asp	Gly	Asp	Asp	Phe 445	Leu	ГÀЗ	Asr
20	Gly	Gly 450	Ile	Leu	Arg	Glu	Lys 455	Gly	Thr	Pro	Ser	Ala 460	Ala	Gly	Phe	Arç
	Ile 465	Asp	Thr	Gly	Tyr	Tyr 470	neA	Asn	Asp	Pro	Leu 475	Asp	Lys	Ile	Gln	Lys 480
25	Gln	Ala	Gly	Gln	Gly 485	Tyr	Arg	Gly	Tyr	Gly 490	Thr	Phe	Val	Lys	Asn 495	Asp
	Ser	Gln	Gly	Asn 500	Thr	Ser	Lys	Val	Gly 505	Ser	Gly	Thr	Pro	Ser 510	Thr	Asp
30	Phe	Leu	Asn 515	Tyr	Ala	Asp	Asn	Thr 520	Thr	Asn	Asp	Leu	Asp 525	Gly	Lys	Phe
35	His	Gly 530	Gln	Lys	Leu	Asn	Asn 535	Val	Asn	Leu	Lys	Tyr 540	Asn	Ala	Ser	Asr
	Gln 545	Thr	Phe	Thr	Ala	Thr 550	Tyr	Ala	Gly	Lys	Thr 555	Trp	Thr	Ala	Thr	Let 560
40	Ser	Glu	Leu	Gly	Leu 565	Ser	Pro	Thr	Asp	Ser 570	Tyr	Asn	Phe	Leu	Val 575	Thr
	Ser	Ser	Gln	Tyr 580	Gly	Asn	Gly	Asn	Ser 585	Gly	Thr	Tyr	Ala	Ser 590	Gly	Val
45	Met	Arg	Ala 595	Asp	Leu	Asp	Gly	Ala 600	Thr	Leu	Thr	Tyr	Thr 605	Pro	Lys	Ala
50	Val	Asp 610	Gly	Asp	Pro	Ile	Ile 615	Ser	Thr	Lys	Glu	Ile 620	Pro	Phe	Asn	Lys
	Lys 625	Arg	Glu	Phe	Asp	Pro 630	Asn	Leu	Ala	Pro	Gly 635	Thr	Glu	Lys	Val	Val 640
55	Gln	Lys	Gly	Glu	Pro 645	Gly	Ile	Glu	Thr	Thr 650	Thr	Thr	Pro	Thr	Tyr 655	Va]
	Asn	Pro	Asn	Thr 660	Gly	Glu	Lys	Val	Gly 665	Glu	Gly	Glu	Pro	Thr 670	Glu	Lys
60	Ile	Thr	Lys	Gln	Pro	Val	qaA	Glu	Ile	Val	His	Tyr	Gly	Gly	Glu	Gli

			675					680					685			
5	Ile	Lys 690	Pro	Gly	His	Lys	Asp 695	Glu	Phe	qeA	Pro	Asn 700	Ala	Pro	Lys	Gly
J	Ser 705	Gln	Thr	Thr	Gln	Pro 710	Gly	Lys	Pro	Gly	Val 715	Lys	Asn	Pro	Asp	Thr 720
10	GŢĀ	Glu	Val	Val	Thr 725	Pro	Pro	Val	Asp	Asp 730	Val	Thr	Lys	Tyr	Gly 735	Pro
	Val	Asp	Gly	Asp 740	Pro	Ile	Thr	Ser	Thr 745	Glu	Glu	Ile	Pro	Phe 750	Asp	Lys
15	Lys	Arg	Glu 755	Phe	Asn	Pro	Asp	Leu 760	Lys	Pro	Gly	Glu	Glu 765	Arg	Val	Lys
20	Gln	Lys 770	GLy	Glu	Pro	Gly	Thr 775	Lys	Thr	Ile	Thr	Thr 780	Pro	Thr	Thr	Lys
20	Asn 785	Pro	Leu	Thr	Gly	Glu 790	ГЛЗ	Val	Gly	Glu	Gly 795	Glu	Pro	Thr	Glu	800 Lys
25	Ile	Thr	Lys	Gln	Pro 805	Val	Asp	Glu	Ile	Thr 810	Glu	Tyr	Gly	Gly	Glu 815	Glu
	Ile	Lys	Pro	Gly 820	His	Lys	Asp	Glu	Phe 825	Asp	Pro	Asn	Ala	Pro 830	Lys	Gly
30	Ser	Gln	Glu 835	Asp	Val	Pro	Gly	Lys 840	Pro	Gly	Val	Lys	Asn 845	Pro	Gly	Thr
35	Gly	Glu 850	Val	Val	Thr	Pro	Pro 855	Val	Asp	Asp	Val	Thr 860	Lys	Tyr	Gly	Pro
	Val 865	Asp	Gly	Asp	Pro	11e 870		Ser	Thr	Glu	Glu 875	Ile	Pro	Phe	Asp	880 Lys
40	Lys	Arg	Glu	Phe	Asn 885	Pro	Asp	Leu	Lys	Pro 890	Gly	Glu	Glu	Arg	Val 895	Lys
	Gln	Lys	Gly	Glu 900	Pro	Gly	Thr	Lys	Thr 905	Ile	Thr	Thr	Pro	Thr 910	Thr	ГÀЗ
45	Asn	Pro	Leu 915	Thr	Gly	Glu	Lys	Val 920	Gly	Glu	Gly	Glu	Pro 925	Thr	Glu	Lys
50	Ile	Thr 930	Lys	Gln	Pro	Val	Asp 935	Glu	Ile	Val	His	Tyr 940	Gly	Gly	Glu	Gln
	Ile 945	Pro	Gln	Gly	His	Lys 950	Asp	Glu	Phe	Asp	Pro 955	Asn	Ala	Pro	Val	Asp 960
55	Ser	Lys	Thr	Glu	Val 965	Pro	Gly	Lys	Pro	Gly 970	Val	Lys	Asn	Pro	Asp 975	Thr
	Gly	Glu	Va1	Val 980	Thr	Pro	Pro	Val	Asp 985	Asp	Val	Thr	Lys	Tyr 990	Gly	Pro
60	Val	Asp	Gly	Asp	Ser	Ile	Thr	Ser	Thi	c Glu	ı Glu	ıIle	e Pro	o Pl	ne As	sp Lys

		9	995				10	000				10	005			
5	Lys	Arg 1010		Phe	Asp	Pro	Asn 1015	Leu	Ala	Pro	Gly	Thr 1020	Glu	Lys	Val	
J	Val	Gln 1025		Gly	Glu	Pro	Gly 1030	Thr	Гуз	Thr	Ile	Thr 1035	Thr	Pro	Thr	
10	Thr	Lys 1040	Asn	Pro	Leu	Thr	Gly 1045	Glu	Lys	Val	Gly	Glu 1050	GLy	Lys	Ser	
	Thr	Glu 1055	Lys	Val	Thr	Lys	Gln 1060	Pro	Val	Asp	Glu	Ile 1065	Val	Glu	Tyr	
15	Gly	Pro 1070	Thr	Lys	Ala	Glu	Pro 1075	Gly	Lys	Pro	Ala	Glu 1080	Pro	Gly	Lys	
20	Pro	Ala 1085	Glu	Pro	Gly	Ьys	Pro 1090	Ala	Glu	Pro	Gly	Thr 1095	Pro	Ala	Glu	
	Pro	Gly 1100	Lys	Pro	Ala	Glu	Pro 1105	Gly	Thr	Pro	Ala	Glu 1110	Pro	Gly	Lys	
25	Pro	Ala 1115	Glu	Pro	Gly	Lys	Pro 1120	Ala	Glu	Pro	Gly	Lys 1125	Pro	Ala	Glu	
	Pro	Gly 1130	Lys	Pro	Ala	Glu	Pro 1135	Gly	Thr	Pro	Ala	Glu 1140	Pro	Gly	Thr	
30	Pro	Ala 1145	Glu	Pro	Gly	Lys	Pro 1150	Ala	Glu	Pro	Gly	Thr 1155	Pro	Ala	Glu	
35	Pro	Gly 1160		Pro	Ala	Glu	Pro 1165	Gly	Thr	Pro	Ala	Glu 1170	Pro	Gly	Lys	
	Pro	Ala 1175	Glu	Ser	Gly	Lys	Pro 1180	Val	Glu	Pro	Gly	Thr 1185	Pro	Ala	Gln	
40	Ser	Gly 1190	Ala	Pro	Glu	Gln	Pro 1195	Asn	Arg	Ser	Met	His 1200	Ser	Thr	Asp	
	Asn	Lys 1205	Asn	Gln	Leu	Pro	Asp 1210	Thr	Gly	Glu	Asn	Arg 1215	Gln	Ala	Asn	
45	Glu	Gly 1220	Thr	Leu	Val	Gly	Ser 1225	Leu	Leu	Ala	Ile	Val 1230	Gly	Ser	Leu	
50	Phe	Ile 1235	Phe	Gly	Arg	Arg	Lys 1240	Ľуs	Gly	Asn	Glu	Lys 1245				
	<210 <210 <210 <210	1> 37 2> Di	765 NA	vl oce	occus	s en	iderm	idie								
55	<400)> 20)													
															caaatta	60
60	aac	aagtat	LT C	Lata	agaaa	a ati	cact	gtt	ggta	cggc	ct ca	aatati	tact	tggt	tcgaca	120

cttatttttg gaagtagtag ccatgaagcg aaaqctqcag aagaaaaaca aqttqatcca 180 attacacaag ctaatcaaaa tgatagtagt gaaagatcac ttgaaaacac aaatcaacct 240 5 actgtaaaca atgaagcacc acagatgtet tetacattgc aagcagaaga aggaaqcaat 300 gcagaagcac ctcaatctga gccaacgaag gcagaagaag gaggcaatgc agaagcagct 360 caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcacctca atctgagcca 420 10 acgaaggcag aagaaggagg caatgcagaa gcagctcaat ctgagccaac gaagacagaa 480 gaaggaagca acgtaaaagc agctcaatct gagccaacga aggcagaaga aggaagcaat 540 15 gcagaagcac ctcaatctga gccaacgaag acagaagaag gaagcaacgc aaaagcagct 600 caatctgagc caacgaaggc agaagaagga ggcaatgcag aagcagctca atctgagcca 660 acgaagacag aagaaggaag caatgcagaa gcacctcaat ctgagccaac gaaggcagaa 720 20 gaaggaggca atgcagaagc acctcaatct gagccaacga agacagaaga aggaggcaat 780 geagaageae egaatgttee aactateaaa getaatteag ataatgatae acaaacacaa 840 25 ttttcagaag cccctacaag aaatgaccta gctagaaaag aagatatccc tgctgtttct 900 aaaaacgagg aattacaatc atcacaacca aacactgaca gtaaaataga acctacaact 960 tragaarctg tgaatttaaa ttatagttot cogtttatgt cottattaag catgootgot 1020 30 gatagttcat ccaataacac taaaaataca atagatatac cgccaactac ggttaaaggt 1080 agagataatt acgattttta cggtagagta gatatcgaaa gtaatcctac agatttaaat 1140 35 gcgacaaatt taacgagata taattatgga cagccacctg gtacaacaac agctggtgca 1200 gttcaattta aaaatcaagt tagttttgat aaagatttcg actttaacat tagagtagca 1260 aacaatcgtc aaagtaatac aactggtgca gatggttggg gctttatgtt cagcaaqaaa 1320 40 gatggggatg atttcctaaa aaacggtggt atcttacgtq aaaaaggtac acctagtqca 1380 gctggtttca gaattgatac aggatattat aataacgatc cattagataa aatacagaaa 1440 45 caagctggtc aaggctatag agggtatggg acatttgtta aaaatgactc ccaaggtaat 1500 acttctaaag taggatcagg tactccatca acagattttc ttaactacgc agataatact 1560 actaatgatt tagatggtaa attccatggt caaaaattaa ataatgttaa tttgaaatat 1620 50 aatgetteaa ateaaaettt tacagetaet tatgetggta aaaettggae ggetaegtta 1680 totgaattag gattgagtoc aactgatagt tacaattttt tagttacatc aagtcaatat 1740 55 ggaaatggta atagtggtac atacgcaagt ggcgttatga gagctgattt agatggtgca 1800 acattgacat acactcctaa agcagtcgat ggagatccaa ttatatcaac taaggaaata 1860 ccatttaata agaaacgtga atttgatcca aacttagccc caggtacaga aaaagtagtc 1920 60

caaaaaggtg aaccaggaat tgaaacaaca acaacaccaa cttatgtcaa tcctaataca 1980 ggagaaaaag ttggcgaagg tgaaccaaca gaaaaaataa caaaacaacc agtggatgaa 2040 5 atcyttcatt atgytgycga agaaatcaag ccagyccata agyatgaatt tgatccaaat 2100 gcaccgaaag gtagtcaaac aacgcaacca ggtaagccgg gggttaaaaa tcctgataca 2160 ggcgaagtag ttactccacc tgtggatgat gtgacaaaat atggtccagt tgatggagat 2220 10 ccgatcacgt caacggaaga aattccattc gacaagaaac gtgaattcaa tcctgattta 2280 aaaccaggtg aagagcgtgt taaacaaaaa ggtgaaccag gaacaaaaac aattacaaca 2340 15 ccaacaacta agaacccatt aacaggggaa aaagttggcg aaggtgaacc aacagaaaaa 2400 ataacaaaac aaccagtaga tgaaatcaca gaatatggtg gcgaagaaat caagccaggc 2460 cataaggatg aatttgatcc aaatgcaccg aaaggtagcc aagaggacgt tccaggtaaa 2520 20 ccaggagtta aaaaccctgg aacaggcgaa gtagtcacac caccagtgga tgatgtgaca 2580 aaatatggtc cagttgatgg agatecgatc acgtcaacgg aagaaattcc attcgacaag 2640 25 aaacgtgaat tcaatcctga tttaaaacca ggtgaagagc gcgttaaaca gaaaqqtqaa 2700 ccaggaacaa aaacaattac aacgccaaca actaagaacc cattaacagg agaaaaagtt 2760 ggcgaaggtg aaccaacaga aaaaataaca aaacaaccag tggatgagat tgttcattat 2820 30 ggtggtgaac aaataccaca aggtcataaa gatgaatttg atccaaatgc acctgtagat 2880 agtaaaactg aagttccagg taaaccagga qttaaaaatc ctqatacagg tgaagttgtt 2940 35 accccaccag tggatgatgt gacaaaatat ggtccagttg atggagattc gattacgtca 3000 acggaagaaa ttccgtttga taaaaaacgc gaatttgatc caaacttagc gccaggtaca 3060 gagaaagtcg ttcaaaaagg tgaaccagga acaaaaacaa ttacaacgcc aacaactaag 3120 40 aacccattaa caggagaaaa agttggcgaa ggtaaatcaa cagaaaaaqt cactaaacaa 3180 cctgttgacg aaattgttga gtatggtcca acaaaagcag aaccaggtaa accagcggaa 3240 45 ccaggtaaac cagcggaacc aggtaaacca gcggaaccag gtacgccagc aqaaccaggt 3300 aaaccagcgg aaccaggtac gccagcagaa ccaggtaaac cagcggaacc aggtaaacca 3360 gcggaaccag gtaaaccagc ggaaccaggt aaaccagcgg aaccaggtac gccagcagaa 3420 50 ccaggtacgc cagcagaacc aggtaaacca gcggaaccag gtacgccagc agaaccaggt 3480 aaaccagcgg aaccaggtac gccagcagaa ccaqqtaaac caqcqqaatc aqqtaaacca 3540 55 gtggaaccag gtacgccagc acaatcaggt gcaccagaac aaccaaatag atcaatgcat 3600 tcaacagata ataaaaatca attacctgat acaggtgaaa atcgtcaagc taatgaggga 3660 actttagtcg gatctctatt agcaattgtc ggatcattgt tcatatttgg tcgtcgtaaa 3720 60

aaaggtaatg	aaaaataatt	tcatataaaa	actttctgcc	attaa
------------	------------	------------	------------	-------

3765

5	<210 <211 <212 <213	.> !>	21 546 PRT Stapi	nyLoo	cocci	ıs e <u>r</u>	oideı	rmid	Ls							
10	<400> 21															
	Glu 1	Lys	Gln	Val	Asp 5	Pro	Ile	Thr	Gln	Ala 10	Asn	Gln	Asn	Asp	Ser 15	Ser
15	Glu	Arg	Ser	Leu 20	Glu	Asn	Thr	Asn	Gln 25	Pro	Thr	Val	Asn	Asn 30	Glu	Ala _.
	Pro	Gln	Met 35	Ser	Ser	Thr	Leu	Gln 40	Ala	Glu	Glu	Gly	Ser 45	Asn	Ala	Glu
20		Pro 50	Gln	Ser	Glu	Pro	Thr 55	Lys	Ala	Glu	Glu	Gly 60	Gly	Asn	Ala	Glu
25	Ala 65	Ala	Gln	Ser	Glu	Pro 70	Thr	ГÀЗ	Ala	Glu	Glu 75	Gly	Gly	Asn	Ala	Glu 80
	Ala	Pro	Gln	Ser	Glu 85	Pro	Thr	ГÀЗ	Ala	Glu 90	Glu	Gly	Gly	Asn	Ala 95	Glu
30	Ala	Ala	Gln	Ser 100	Glu	Pro	Thr	Lys	Thr 105	Glu	Glu	Gly	Ser	Asn 110	Val	Lys
	Ala	Ala	Gln 115	Ser	Glu	Pro	Thr	Lys 120	Ala	Glu	Glu	Gly	Ser 125	Asn	Ala	Glu
35		Pro 130	Gln	Ser	Glu	Pro	Thr 135	Lys	Thr	Glu	Glu	Gly 140	Ser	Asn	Ala	ГÀЗ
40	Ala 145	Ala	Gln	Ser	Glu	Pro 150	Thr	Lys	Ala	Glu	Glu 155	Gly	Gly	Asn	Ala	Glu 160
	Ala	Ala	Gln	Ser	Glu 165	Pro	Thr	Lys	Thr	Glu 170	Glu	Gly	Ser	Asn	Ala 175	Glu
45	Ala	Pro	Gln	Ser 180	Glu	Pro	Thr	ГÀЗ	Ala 185	Glu	Glu	Gly	Gly	Asn 190	Ala	Glu
	Ala	Pro	Gln 195	Ser	Glu	Pro	Thr	Lys 200	Thr	Glu	Glu	Gly	Gly 205	Asn	Ala	Glu
50		Pro 210	Asn	Val	Pro	Thr	11e 215	Lys	Ala	Asn	Ser	Asp 220	Asn	Asp	Thr	Gln
55	Thr 225	Gln	Phe	Ser	Glu	Ala 230	Pro	Thr	Arg	Asn	Asp 235	Leu	Ala	Arg	Ьys	Glu 240
	Asp	Ile	Pro	Ala	Val 245	Ser	Lys	Asn	Glu	Glu 250	Leu	Gln	Ser	Ser	Gln 255	Pro
60	Asn	Thr	Asp	Ser 260	ГЛЗ	Ile	Glu	Pro	Thr 265	Thr	Ser	Glu	Pro	Val 270	Asn	Leu

	Asn	Tyr	Ser 275	Ser	Pro	Phe	Met	Ser 280	Leu	Leu	Ser	Met	Pro 285	Ala	Asp	Ser
5	Ser	Ser 290	Asn	Asn	Thr	Lys	Asn 295	Thr	Ile	Asp	Ile	Pro 300	Pro	Thr	Thr	Val
10	Lys 305	Gly	Arg	Asp	Asn	Tyr 310	Asp	Phe	Tyr	Gly	Arg 315	Val	Asp	Ile	Glu	Ser 320
	Asn	Pro	Thr	Asp	Leu 325	Asn	Ala	Thr	Asn	Leu 330	Thr	Arg	Tyr	Asn	Tyr 335	Gly
15	Gln	Pro	Pro	Gly 340	Thr	Thr	Thr	Ala	Gly 345	Ala	Val	Gln	Phe	Lys 350	Asn	Gln
	Val	Ser	Phe 355	Asp	Lys	Asp	Phe	Asp 360	Phe	Asn	Ile	Arg	Val 365	Ala	Asn	Asn
20	Arg	Gln 370	Ser	Asn	Thr	Thr	Gly 375	Ala	Asp	Gly	Trp	Gly 380	Phe	Met	Phe	Ser
25	Lys 385	Lys	Asp	Gly	Asp	Asp 390	Phe	Leu	Lys	Asn	Gly 395	Gly	Ile	Leu	Arg	Glu 400
	Lys	GLy	Thr	Pro	Ser 405	Ala	Ala	Gly	Phe	Arg 410	Ile	Asp	Thr	Gly	Tyr 4,15	Tyr
30	Asn	Asn	Asp	Pro 420	Leu	Asp	Lys	Ile	Gln 425	Lys	Gln	Ala	Gly	Gln 430	Gly	Tyr
	Arg	Gly	Tyr 435	Gly	Thr	Phe	Val	Lys 440	Asn	Asp	Ser	Gln	Gly 445	Asn	Thr	Ser
35	Lуs	Val 450	Gly	Ser	GLY	Thr	Pro 455	Ser	Thr	Asp	Phe	Leu 460	Asn	Tyr	Ala	Asp
40	Asn 465	Thr	Thr	Asn	Asp	Leu 470	Asp	Gly	Lys	Phe	His 475	Gly	Gln	Lys	Leu	Asn 480
	Asn	Val	Asn	Leu	Lys 485	Tyr	Asn	Ala	Ser	Asn 490	Gln	Thr	Phe	Thr	Ala 495	Thr
45	Tyr	Ala	Gly	Lys 500	Thr	Trp	Thr	Ala	Thr 505	Leu	Ser	Glu	Leu	Gly 510	Leu	Ser
	Pro	Thr	Asp 515	Ser	Tyr	Asn	Phe	Leu 520	Val	Thr	Ser	Ser	Gln 525	Tyr	Gly	Asn
50	Gly	Asn 530	Ser	Gly	Thr	Tyr	Ala 535	Ser	Glу	Val	Met	Arg 540	Ala	Asp	Leu	Asp
55 60	Gly Ala 545															
	<210 <211 <212 <213	L> 3 2> I	22 36 PRT Staphylococcus aureus													

<400> 22

Leu Pro Asn Thr Gly Ser Glu Glu Met Asp Leu Pro Leu Lys Glu Leu

1 5 10 15

Ala Leu Ile Thr Gly Ala Ala Leu Leu Ala Arg Arg Arg Ser Lys Lys 20 25 30

Glu Lys Glu Ser 10 35

.0 35

5

<210> 23

<211> 43 <212> PRT

15 <213> Staphylococcus aureus

<400> 23

Leu Pro Asp Thr Gly Asp Ser Ile Lys Gln Asn Gly Leu Leu Gly Gly $20 \quad 1 \quad 5 \quad 10 \quad 15$

Val Met Thr Leu Leu Val Gly Leu Gly Leu Met Lys Arg Lys Lys 20 25 30

25 Lys Asp Glu Asn Asp Gln Asp Asp Ser Gln Ala 35 40

<210> 24

<211> 35

30 <212> PRT

<213> Staphylococcus aureus

<400> 24

Leu Pro Lys Thr Gly Glu Thr Thr Ser Ser Gln Ser Trp Trp Gly Leu
1 5 10 15

Tyr Ala Leu Leu Gly Met Leu Ala Leu Phe Ile Pro Lys Phe Arg Lys 20 25 30

40 Glu Ser Lys

<210> 25

45

<211> 38

<212> PRT

<213> Staphylococcus aureus

<400> 25 50

Leu Pro Lys Thr Gly Leu Thr Ser Val Asp Asn Phe Ile Ser Thr Val 1 5 10 15

Ala Phe Ala Thr Leu Ala Leu Leu Gly Ser Leu Ser Leu Leu Leu Phe 20 25 30

Lys Arg Lys Glu Ser Lys 35

60 <210> 26

```
<211> 36
<212> PRT
<213> Staphylococcus aureus
     <400> 26
     Leu Pro Gln Thr Gly Glu Glu Ser Asn Lys Asp Met Thr Leu Pro Leu
10
     Met Ala Leu Ile Ala Leu Ser Ser Ile Val Ala Phe Val Leu Pro Arg
     Lys Arg Lys Asn
            35
15
     <210> 27
     <211> 34
     <212> PRT
     <213> Staphylococcus aureus
20
     <400> 27
     Leu Pro Lys Thr Gly Thr Asn Gln Ser Ser Ser Pro Glu Ala Met Phe
25
     Val Leu Leu Ala Gly Ile Gly Leu Ile Ala Thr Val Arg Arg Lys
    Ala Ser
30
     <210> 28
     <211> 33
     <212> PRT
     <213> Staphylococcus aureus
35
     <400> 28
     Leu Pro Lys Thr Gly Leu Glu Ser Thr Gln Lys Gly Leu Ile Phe Ser
40
     Ser Ile Ile Gly Ile Ala Gly Leu Met Leu Leu Ala Arg Arg Lys
                 20
     Asn
45
     <210> 29
     <211> 39
     <212> PRT
     <213> Staphylococcus aureus
50
     <400> 29
     Leu Pro Lys Ala Gly Glu Thr Ile Lys Glu His Trp Leu Pro Ile Ser
55
     Val Ile Val Gly Ala Met Gly Val Leu Met Ile Trp Leu Ser Arg Arg
     Asn Lys Leu Lys Asn Lys Ala
60
            35
```