Principles of AI Planning

Exercise Sheet 9

10.01.2020

Exercise 9.1 - Additive patterns and canonical heuristic

(a) Specify the compatibility graph of $\mathcal C$ and determine its maximal cliques

	Maximal Cliques	
$\overline{\{P_1, P_2\}}$	$\{P_1, P_6, P_9\}$	$\{P_1, P_7\}$
$\{P_7, P_8\}$	$\{P_6, P_8\}$	$\{P_2, P_3\}$
$\{P_4\}$	$\{P_5\}$	$\{P_{10}\}$

(b) Determine the canonical heuristic $h^{\mathcal{C}}$ and simplify it as much as possible

$\underline{}$	h^{P_i}	Cliques heuri	stics	
1	1	Clique	$h^{\mathcal{C}}$	$h^{\mathcal{C}} = 13$
2	5	$\{P_1, P_2\}$	6	
3	4	$\{P_1, P_6, P_9\}$	2	
4	13	$\{P_1, P_7\}$	2	
5	0	$\{P_7, P_8\}$	2	
6	1	$\{P_6, P_8\}$	2	
7	1	$\{P_2, P_3\}$	9	
8	1	$\{P_4\}$	13	
9	0	$\{P_5\}$	0	
10	1	$\{P_{10}\}$	1	

- (c) Which patterns in C can be omitted and why?
- (d) What would the canonical heuristic look like if we omitted those patterns before even constructing the compatibility graph

Exercise 9.2 - Orthogonality and pairwise orthogonality