Midterm, Feb 27, 5 pm ESB 1013

Transience/recurrence of random walk on \mathcal{Z} (and \mathcal{Z}^d)

Random walk on ${\mathcal Z}$

How many communicating classes?

Closed)or not closed?

This does not determine transience/recusrence

for o -state MC.

Q: Is the random walk transient or recurrent?

Recall:

State 0 is transient $\Leftrightarrow \frac{\sum_{n \neq 0}^{n} \sum_{n \neq 0}^{n} < \infty}{\sum_{n \neq 0}^{n} < \infty}$

State 0 is recurrent $\Leftrightarrow \frac{\mathcal{E}_{n \geqslant 0} \mathcal{P}_{0,0}^{n} = \infty}{\mathcal{E}_{n \geqslant 0} \mathcal{P}_{0,0}^{n}}$

Q: What is $P_{0,0}^n$?

$$P(X_n = 0 \mid X_{\delta} = 0) = P(\# \text{ of steps left})$$

$$= \# \text{ of steps right}$$

$$= P\left(\# \text{ of steps loft} = \frac{n}{2}\right)$$

$$=P\left(B_{1}n\left(n_{1}+P\right)=\frac{2}{2}\right)=0$$

consider
$$P_{0,0}^{2n} = P(B_{in}(2n_{,i-p}) = n) = {\binom{2n}{n}} \cdot p^{n}(1-p)^{n}$$

Thus,
$$Z P_{qp}^{1} = Z P_{qp}^{2n} = Z (2n) p^{n} (1-p)^{n}$$

Stirling approximation:
$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

$$\lim_{n \to \infty} \frac{n!}{\sqrt{\pi n} \left(\frac{n}{e}\right)^n} = 1$$

Implication:

Lemma:
$$p_{0,0}^{2n} \sim \frac{2^{2n}p^{n}(1-p)^{n}}{\sqrt{\pi n}}$$

Proof: $p_{0,0}^{2n} = {2 \choose n} p^{n} (-p)^{n}$ We will show that

$${2 \choose n} \sim \frac{2^{2n}}{\sqrt{n}n}$$
 We have ${2 \choose n} = \frac{(2n)!}{n! \cdot n!} \sim \frac{\sqrt{2n^{2n}} \cdot (2n)^{2n}}{\sqrt{n}}$

$$= \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} \cdot \sqrt{2n} = \sqrt{2n} \cdot \sqrt{2n}$$

Summing the series

Thus
$$\sum p_{0,0}^{2n}$$
 converges $\Leftrightarrow \frac{\sum_{n \geq 0}^{2n} 2^{2n} \left(p(-p)\right)^n}{\sum_{n \geq 0}^{2n} \left(4 p(-p)\right)^n} \cdot \frac{1}{\sum_{n \geq 0}^{2n}}$

Note $p(-p) = P - P^2 = \begin{cases} \frac{1}{4} & p = \frac{1}{2} \\ \frac{1}{4} & p \neq \frac{1}{2} \end{cases}$

Thus, for $p \neq \frac{1}{2}$
 $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{$

so state O is transient, thus since there is I class & transience is class property, MC is transient.

harmonic series

Case 2 $P=\frac{1}{2}$, so 4P(P)=1.

Then $2^{2^{n}} \cdot P(P)$ $f_{rr} = 2 \int_{n \ge 1}^{\infty} \int_{rr} \int_{n}^{\infty} \int_{n \ge 1}^{\infty} \int_{rr}^{\infty} \int_{n}^{\infty} \int_{n}^{\infty$

i.e. for $p=\frac{1}{2}$, MC is recurrent.

$$d=2$$
, $p=\frac{1}{2}$: A random walk on \mathcal{Z}^2 is recurrent