Digital Image Processing

Wavelet and Multiresolution Processing

Emad Fatemizadeh

Distance/online Course: Session 07

Date: 07 March 2021, 17th Esfand 1399

Introduction

"If you painted a picture with a sky, clouds, trees, and flowers, you would use a different size brush depending on the size of the features. Wavelets are like those brushes."

Ingrid Daubechies

Image Pyramids

> A redundant approach for image representation:

Image Pyramids

> Mathematical Formulation:

$$\rightarrow \mathcal{P}_{Gaussian}^{(n+1)}(I) = \left(G_{\sigma} * \mathcal{P}_{Gaussian}^{(n)}(I)\right)_{\downarrow 2}$$

$$\rightarrow \mathcal{P}_{Gaussian}^{(1)}(I) = I$$

$$> \mathcal{P}_{Laplacian}^{(n+1)}(I) = \mathcal{P}_{Laplacian}^{(n)}(I) - \left(\left(G_{\sigma} * \mathcal{P}_{Gaussian}^{(n)}(I) \right)_{\downarrow 2} \right)_{\uparrow 2} * G_{\sigma}$$

Gaussian and Laplacian Pyramids

- > Example (1):
- > Gaussian pyramids (top)
- > Laplacian pyramids (bottom)

Gaussian and Laplacian Pyramids

- > Example (2):
- > Gaussian pyramid

Gaussian and Laplacian Pyramids

- > Example (2):
- > Laplacian pyramid

Sub-band Coding

- > Consider 1-D Decomposition-Reconstruction Scheme:
- Goal: $f(x) = \hat{f}(x)$, Perfect Reconstruction (PR)

Multistage Sub-band Coding

> Successive Decomposition (and Reconstruction):

2D Wavelet

> Two direction → Four sub-band (Decomposition scheme)

2D Wavelet

> Example:

2D Wavelet

> Two direction -> Four sub-band (Reconstruction scheme)

Wavelet Packet

> Full Partitioning (3 stage decomposition):

Wavelet Packet

> Full Partitioning (3 stage decomposition):

Wavelet Packet - Example

> Full Partitioning (3 stage decomposition):

Wavelet-based Edge Detection

> Idea: sub-band manipulation:

Wavelet-based Edge Detection

> Idea: sub-band manipulation:

> Noisy image/signal model:

$$X(t) = S(t) + N(t)$$

- -X(t): Corrupted Signal
- -S(t): Uncorrupted Signal
- -N(t): Additive Noise
- > Wavelet Denoising Scheme

$$Y = W(X)$$

$$Z = D(Y, \lambda)$$

$$\hat{S} = W^{-1}(Z)$$

- $\rightarrow W, W^{-1}$: Forward and Inverse wavelet transform
- \rightarrow *D* (., λ): Thresholding operator (λ being the threshold)

- > Motivation for Thresholding:
 - -Small coefficients: Dominated by noise.
 - -Large coefficients: Dominated by signal.
 - -Replacing small coefficients with zero!
- > Some Assumption:
 - -Wavelet de-correlating property generate a sparse signal.
 - -Noise spreads out equally along all coefficients.
 - -The noise level is NOT too high.

- > Hard and Soft Thresholding:
 - -Hard:

$$D(u,\lambda) = \begin{cases} u & |u| > \lambda \\ 0 & |u| \le \lambda \end{cases}$$

-Soft:

$$D(u,\lambda) = \begin{cases} u - \lambda & u > \lambda \\ 0 & -\lambda \le |u| \le \lambda \\ u + \lambda & u < -\lambda \end{cases}$$

- > The most important question:
 - -Very Low threshold: Noisy-Like result
 - -Very High Threshold: Too smooth result.
- > Several methods proposed:
 - -VisuShrink
 - -SureShrink
 - -Bayesshrink
 - -NormalShrink

> VisuShrink (Universal Thresholding):

$$\lambda = \sigma_N \sqrt{2Ln(N)}$$

- > N: Sample (Signal/Image) size (# of pixels in image)
- $\rightarrow \sigma_N^2$: Noise variance
- > Which sub-band:
 - -All
 - Details (HL,LH, HH)
- > Noise Estimation:

$$\hat{\sigma}_N = \frac{median(|Y_{ij}|)}{0.6745}, Y_{ij} \in HH_{Finest\ Level}$$

Challenges:

- > Wavelet base,
- > Threshold Selection,
- > Threshold function,
- > Decomposition Scheme.

Matlab Command

- > dwt2: Single-level discrete 2-D wavelet transform
- > idwt2: Single-level inverse discrete 2-D wavelet transform
- > wavedec2: Multilevel 2-D wavelet decomposition
- > waverec2: Multilevel 2-D wavelet reconstruction
- > *upcoef2*: Direct reconstruction from 2-D wavelet coefficients
- > detcoef2: 2-D detail coefficients
- > appcoef2: 2-D approximation coefficients
- > upwlev2: Single-level reconstruction of 2-D wavelet decomposition
- > wthresh: Soft or hard thresholding
- > Wthcoef2: Wavelet coefficient thresholding 2-D

The End

>AnY QuEsTiOn?

