

Accession Nbr :

2001-017240 [03]

Sec. Acc. CPI :

C2001-004947

Title :

Metallocene catalyst system, useful for the production of polyolefins, comprises an organoboron or organoaluminum compound covalently bonded to a support.

Derwent Classes :

A18 E12

Patent Assignee :

(TARG) TARGOR GMBH
(BASE) BASELL POLYOLEFINE GMBH

Inventor(s) :

BECKER P; SCHOTTEK J

Nbr of Patents :

12

Nbr of Countries :

93

Patent Number :

DE19917985 A1 20001026 DW2001-03 C08F-004/646 21p *
AP: 1999DE-1017985 19990421

WO200062928 A1 20001026 DW2001-03 B01J-031/22 Ger

AP: 2000WO-EP03263 20000412

DSNW: AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU
CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP
KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW
MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG
US UZ VN YU ZA ZW

DSRW: AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS
LU MC MW NL OA PT SD SE SL SZ TZ UG ZW

AU200045478 A 20001102 DW2001-07 B01J-031/22

FD: Based on WO200062928

AP: 2000AU-0045478 20000412

BR200009871 A 20020108 DW2002-08 B01J-031/22

FD: Based on WO200062928

AP: 2000BR-0009871 20000412; 2000WO-EP03263 20000412

THIS PAGE BLANK (USPTO)

EP1175262 A1 20020130 DW2002-16 B01J-031/22 Ger
FD: Based on WO200062928
AP: 2000EP-0926878 20000412; 2000WO-EP03263 20000412
DSR: AL AT BE CH CY DE DK ES FI FR GB GR IE IT LI LT LU LV MC
MK NL PT RO SE SI

CN1347343 A 20020501 DW2002-52 B01J-031/22
AP: 2000CN-0806463 20000412

KR2002010609 A 20020204 DW2002-54 C08F-004/646
AP: 2001KR-0713418 20011020

JP2002542342 W 20021210 DW2003-01 C08F-004/649 83p
FD: Based on WO200062928
AP: 2000JP-0612058 20000412; 2000WO-EP03263 20000412

ZA200108611 A 20021224 DW2003-09 B01J-000/00 82p
AP: 2001ZA-0008611 20011019

EP1175262 B1 20040218 DW2004-13 B01J-031/22 Ger
FD: Based on WO200062928
AP: 2000EP-0926878 20000412; 2000WO-EP03263 20000412
DSR: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

DE50005332 G 20040325 DW2004-23 B01J-031/22
FD: Based on EP1175262; Based on WO200062928
AP: 2000DE-5005332 20000412; 2000EP-0926878 20000412; 2000WO-
EP03263 20000412

ES2215651 T3 20041016 DW2004-69 B01J-031/22
FD: Based on EP1175262
AP: 2000EP-0926878 20000412

Priority Details :

1999DE-1017985 19990421

IPC s :

B01J-000/00 B01J-031/22 C08F-004/646 C08F-004/649 B01J-031/14 C08F-
004/642 C08F-010/00 C08F-110/06

Abstract :

DE19917985 A

NOVELTY - A novel catalyst system comprises a metallocene, a Lewis base, a support and an organo-boron or organo-aluminum compound. The catalyst is covalently bonded to the support.

DETAILED DESCRIPTION - A catalyst system contains:

(A) a metallocene,

THIS PAGE BLANK (cont'd.)

(B) a Lewis base of formula (1),
(C) a support and
(D) an organo-boron or organo-aluminum compound formed from units of formula (2).

The catalyst is covalently bonded to the support.

M1R3R4R5 (1)

((R5)-X-M2(R8)-X-(R7))k (2)

R3, R4, R5 = H, 1-20C alkyl, optionally halogenated, 6-40C aryl, optionally halogenated, 7-40 arylalkyl or alkylaryl, or two or three of R3-R5 may combine with each other;

M1 = a Group V element, preferably nitrogen or phosphorus;

R6, R7, R8 = H, halogen, a boron-free 1-40C hydrocarbon, preferably 1-20C alkyl, optionally halogenated, 1-10C alkoxy, 6-20C aryl, optionally halogenated, 6-20C aryloxy, 7-40C arylalkyl or alkylaryl, optionally halogenated or SiR93;

R9 = a boron-free 1-40C hydrocarbon, preferably 1-20C alkyl, optionally halogenated, 1-10C alkoxy or 6-20C aryl, optionally halogenated,

X = a Group IV, V or VIa element or -NH;

M2 = a Group IIIa element; and

k = 1-100.

An INDEPENDENT CLAIM is also included for a process for the production of a polyolefin by polymerization of at least one olefin in the presence of the catalyst system.

USE - The catalyst system is useful for the production of polyolefins.

(claimed)

ADVANTAGE - The catalyst system has a high activity and the resulting polymer has good morphology.(Dwg.0/0)

Manual Codes :

CPI: A02-A06E A02-A07A A02-D A04-G01A E05-B02 E05-C02 E05-G
E05-G03B E05-M E10-B04

Update Basic :

2001-03

Update Equivalents :

2001-03; 2001-07; 2002-08; 2002-16; 2002-52; 2002-54; 2003-01; 2003-09;
2004-13; 2004-23; 2004-69

Update Equivalents (Monthly) :

2002-02; 2002-03; 2002-08; 2003-01; 2003-02; 2004-02; 2004-04; 2004-10

THIS PAGE BLANK (USPTO)

PCTWELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales BüroINTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation ⁷ : B01J 31/22, 31/14, C08F 4/642, 110/06		A1	(11) Internationale Veröffentlichungsnummer: WO 00/62928 (43) Internationales Veröffentlichungsdatum: 26. Oktober 2000 (26.10.00)
<p>(21) Internationales Aktenzeichen: PCT/EP00/03263</p> <p>(22) Internationales Anmeldedatum: 12. April 2000 (12.04.00)</p> <p>(30) Prioritätsdaten: 199 17 985.9 21. April 1999 (21.04.99) DE</p> <p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): TARGOR GMBH (DE/DE); D-55116 Mainz (DE).</p> <p>(72) Erfinder; und</p> <p>(75) Erfinder/Anmelder (<i>nur für US</i>): SCHOTTEK, Jörg [DE/DE]; Mühlgasse 3, D-60486 Frankfurt (DE). BECKER, Patricia [DE/DE]; Alpenring 39, D-64546 Mörfelden-Walldorf (DE).</p> <p>(74) Anwalt: STARK, Vera; BASF Aktiengesellschaft, D-67056 Ludwigshafen (DE).</p>		<p>(81) Bestimmungsstaaten: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TI, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i></p>	
<p>(54) Title: CATALYST SYSTEM</p> <p>(54) Bezeichnung: KATALYSATORSYSTEM</p> <p>(57) Abstract</p> <p>The invention relates to a catalyst system that consists of a metallocene, a cocatalyst, a substrate material and optionally another organometallic compound. The catalyst system is advantageously used for the polymerization of olefins. The invention provides a catalyst system that achieves a high catalyst activity and good polymer morphology while dispensing with aluminoxanes such as methyl aluminoxane (MAO) as a cocatalyst.</p> <p>(57) Zusammenfassung</p> <p>Die vorliegende Erfindung beschreibt ein Katalysatorsystem bestehend aus einem Metallocen, einem Co-Katalysator, einem Trägermaterial und gegebenenfalls einer weiteren Organometallverbindung. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden. Hierbei wird auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO) als Co-Katalysator verzichtet und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Östereich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mali	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasiliens	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun			PT	Portugal		
CN	China	KR	Republik Korea	RO	Rumänien		
CU	Kuba	KZ	Kasachstan	RU	Russische Föderation		
CZ	Tschechische Republik	LC	St. Lucia	SD	Sudan		
DE	Deutschland	LJ	Liechtenstein	SE	Schweden		
DK	Dänemark	LK	Sri Lanka	SG	Singapur		
EE	Esiland	LR	Liberia				

Katalysatorsystem

Die vorliegende Erfindung beschreibt ein Katalysatorsystem bestehend aus einem Metallocen, einem Co-Katalysator, einem Trägermaterial und gegebenenfalls einer weiteren Organometallverbindung. Das Katalysatorsystem kann vorteilhaft zur Polymerisation von Olefinen eingesetzt werden. Hierbei wird auf die Verwendung von Aluminoxanen wie Methylaluminoxan (MAO) als Cokatalysator verzichtet und dennoch eine hohe Katalysatoraktivität und gute Polymermorphologie erzielt.

Die Rolle von kationischen Komplexen bei der Ziegler-Natta-Polymerisation mit Metallocenen ist allgemein anerkannt (H.H. Brinzingher, D. Fischer, R. Mülhaupt, R. Rieger, R. Waymouth, Angew. Chem. 1995, 107, 1255-1283).

MAO als wirksamer Co-Katalysator hat den Nachteil in hohem Überschuß eingesetzt werden zu müssen. Die Darstellung kationischer Alkylkomplexe eröffnet den Weg MAO freier Katalysatoren mit vergleichbarer Aktivität, wobei der Co-Katalysator nahezu stöchiometrisch eingesetzt werden kann.

Die Synthese von "Kationen-ähnlichen" Metallocen-Polymerisationskatalysatoren, wird im J. Am. Chem. Soc. 1991, 113, 3623 beschrieben. Ein Verfahren zur Herstellung von Salzen der allgemeinen Form $LMX^+ XA^-$ nach dem oben beschriebenen Prinzip wird in EP-A-0 520 732 beansprucht.

EP-A-0 558 158 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6H_5)_4]^-$ dargestellt werden. Die Umsetzung eines solchen Salzes mit z.B. Cp_2ZrMe_2 liefert durch Protolyse unter Methanabspaltung intermediär ein Zirkonocenmethyl-Kation. Dieses reagiert über C-H-Aktivierung zum Zwitterion $Cp_2Zr^{+-}(m-C_6H_4)-BPh_3^-$ ab. Das Zr-Atom ist dabei kovalent an ein Kohlenstoffatom des Phenylrings gebunden und wird über agostische Wasserstoffbindungen stabilisiert.

US-A-5, 348, 299 beschreibt zwitterionische Katalysatorsysteme, die aus Metallocendialkyl-Verbindungen und Salzen der Form $[R_3NH]^+$ $[B(C_6F_5)_4]^-$ durch Protolyse dargestellt werden. Die C-H-Aktivierung als Folgereaktion unterbleibt dabei.

EP-A-0 426 637 nutzt ein Verfahren in dem das Lewis-saure CPh₃⁺-Kation zur Abstraktion der Methylgruppe vom Metallzentrum eingesetzt wird. Als schwach koordinierendes Anion fungiert ebenfalls B(C₆F₅)₄⁻.

5

Eine industrielle Nutzung von Metallocen-Katalysatoren fordert eine Heterogenisierung des Katalysatorsystems, um eine entsprechende Morphologie des resultierenden Polymers zu gewährleisten. Die Trägerung von kationischen Metallocen-Katalysatoren auf Basis 10 der oben genannten Borat-Anionen ist in WO 91/09882 beschrieben. Dabei wird das Katalysatorsystem, durch Aufbringen einer Dialkyl-metallocen-Verbindung und einer Brønsted sauren, quatären Ammonium-Verbindung, mit einem nichtkoordinierenden Anion wie Tetrakis-pentafluorphenylborat, auf einem anorganischen Träger, gebildet. 15 Das Trägermaterial wird zuvor mit einer Trialkylaluminium-Verbindung modifiziert.

Nachteil dieses Trägerungsverfahren ist, daß nur ein geringer Teil des eingesetzten Metallocens durch Physisorption an dem Trägermaterial fixiert ist. Bei der Dosierung des Katalysatorsystems in den Reaktor kann das Metallocen leicht von der Trägeroberfläche abgelöst werden. Dies führt zu einer teilweisen homogen verlaufenden Polymerisation, was eine unbefriedigende Morphologie des Polymers zur Folge hat. Im WO96/04319 wird ein Katalysatorsystem beschrieben, in welchem der Cokatalysator kovalent an das Trägermaterial gebunden ist. Dieses Katalysatorsystem weist jedoch eine geringe Polymerisationsaktivität auf, zudem kann die hohe Empfindlichkeit der geträgerten kationischen Metallocen-Katalysatoren zu Problemen bei der Einschleusung in das Polymerisationssystem führen. 30

Es war daher wünschenswert ein Katalysatorsystem zu entwickeln, das wahlweise vor dem Einschleusen in den Reaktor bereits aktiviert ist oder erst im Polymerisationsautoklav aktiviert wird.

35

Die Aufgabe bestand darin ein Katalysatorsystem zur Verfügung zu stellen, welches die Nachteile des Standes der Technik vermeidet und trotzdem hohe Polymerisationsaktivitäten und eine gute Polymermorphologie garantiert. Zudem war ein Verfahren zur Herstellung dieses Katalysatorsystems zu entwickeln, das es ermöglicht die Aktivierung des Katalysatorsystems wahlweise vor dem Einschleusen oder aber erst im Polymerisationsautoklav durchzuführen.

45 Die vorliegende Erfindung betrifft ein geträgertes Katalysatorsystem und ein Verfahren zur Herstellung von diesem. Weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung des erfin-

3

dungsgemäßen Katalysatorsystems in der Herstellung von Polyolefinen, sowie ein entsprechenden Polymerisationsverfahren.

Das erfindungsgemäße Katalysatorsystem enthält

5

- A) mindestens ein Metallocen,
- B) mindestens eine Lewis Base der Formel I

10

worin

15

R^3, R^4, R^5 gleich oder verschieden sind und ein Wasserstoffatom, eine C_1-C_{20} Alkyl-, C_1-C_{20} Halogenalkyl-, C_6-C_{40} Aryl-, C_6-C_{40} Halogenaryl-, C_7-C_{40} Alkylaryl- oder C_7-C_{40} Arylalkyl-Gruppe ist und zwei Reste oder alle drei Reste R^3, R^4 und R^5 über C_2-C_{20} Kohlenstoffeinheiten miteinander verbunden sein können,

20

M^1 ist ein Element der V. Hauptgruppe des Periodensystems der Elemente, insbesondere Stickstoff oder Phosphor

25

C) mindestens einen Träger

D) und mindestens eine Organobor- oder Organoaluminium-Verbindung, die aus Einheiten der Formel II

30

worin

35

R^6, R^7 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C_1-C_{40} -kohlenstoffhaltige Gruppe wie C_1-C_{20} -Alkyl, C_1-C_{20} -Halogenalkyl, C_1-C_{10} -Alkoxy, C_6-C_{20} -Aryl, C_6-C_{20} -Halogenaryl, C_6-C_{20} -Aryloxy, C_7-C_{40} -Arylalkyl, C_7-C_{40} -Halogenarylalkyl, C_7-C_{40} -Alkylaryl, C_7-C_{40} -Halogenalkylaryl oder eine SiR_3^9 -Gruppe bedeutet,

40

45

wobei R^9 eine borfreie C_1-C_{40} -kohlenstoffhaltige Gruppe wie C_1-C_{20} -Alkyl, C_1-C_{20} -Halogenalkyl, C_1-C_{10} -Alkoxy, C_6-C_{20} -Aryl, C_6-C_{20} -Halogenaryl, C_6-C_{20} -Aryloxy, C_7-C_{40} -Arylalkyl, C_7-C_{40} -Halogenarylalkyl, C_7-C_{40} -Alkylaryl, C_7-C_{40} -Halogenalkylaryl sein kann,

4

R⁸ kann gleich oder verschieden zu R⁶ und R⁷, ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl oder eine OSi(R⁹)₃-Gruppe bedeutet,

X gleich oder verschieden ein Element der Gruppe IV, V oder VIa des Periodensystems der Elemente oder eine NH-Gruppe bedeutet,

M² ein Element der Gruppe IIIa des Periodensystems der Elemente bedeutet und

k eine natürliche Zahl von 1 bis 100 bedeutet aufgebaut ist und die kovalent an den Träger gebunden ist.

Die Verbindungen der Formel (II) können als Monomer oder als lineares, cyclisches oder käfigartiges Oligomer vorliegen. Der Index k ist das Ergebnis Lewis Säure-Base Wechselwirkungen der erfindungsgemäßen chemischen Verbindung der Formel (II), wobei diese untereinander Dimere, Trimere oder höhere Oligomere bilden.

Zudem sind besonders bevorzugt Verbindungen in denen M² Aluminium oder Bor ist.

Bevorzugte Verbindungen der Formel (I) sind Triethylamin, Triisopropylamin, Triisobutylamin, Tri(n-butyl)amin, N,N-Dimethylanilin, N,N-Diethylanilin, N,N-2,4,6-Pentamethylanilin, Dicyclohexylamin, Pyridin, Pyrazin, Triphenylphosphin, Tri(methylphenyl)phosphin, Tri(dimethylphenyl)phosphin.

Bevorzugte cokatalytisch wirkende chemische Verbindung der Formel (II), sind Verbindungen in denen X ein Sauerstoff Atom oder eine NH-Gruppe ist und die Reste R⁶ und R⁷ ein borfreier C₁-C₄₀-Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder Iod halogeniert, bevorzugt perhalogeniert, sein kann, insbesondere eine halogenierte, insbesondere perhalogenierte C₁-C₃₀-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Monofluorisobutyl oder eine halogenierte C₆-C₃₀-Arylgruppe wie Pentafluorphenyl-, 2,4,6-Trifluorphenyl, Heptachlornaphtyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormethyl)phenyl-, 2,4,6-tris(trifluormethyl)phenyl, Nonafuor biphenyl- oder 4-(trifluormethyl)phenyl. Ebenfalls bevorzugt für R⁶ und R⁷ sind Reste wie Phenyl-, Naphthyl-, Anisyl-, Mehtyl-, Ethyl-, Isopro-

5

pyl-, Butyl-, Toly1-, Biphenyl oder 2,3-Dimethyl-phenyl. Besonders bevorzugt für R⁶ und R⁷ die Reste Pentafluorphenyl-, Phenyl-, Biphenyl, Bisphenylmethylen, 3,5-bis(trifluormethyl)phenyl-, 4-(trifluor-methyl)phenyl, Nonafluorbiphenyl-, Bis(penta-

5 fluorophenyl)methylen und 4-Methyl-phenyl.

R⁸ ist besonders bevorzugt ein borfreier C₁-C₄₀-Kohlenwasserstoffrest, der mit Halogen wie Fluor, Chlor, Brom oder Iod halogeniert, bevorzugt perhalogeniert, sein kann, insbesondere eine 10 halogenierte, insbesondere perhalogenierte C₁-C₃₀-Alkylgruppe wie Trifluormethyl-, Pentachlorethyl-, Heptafluorisopropyl oder Mono-fluorisobutyl oder eine halogenierte C₆-C₃₀-Arylgruppe wie Penta-fluorphenyl-, 2,4,6-Trifluorphenyl, Heptachlornaphthyl-, Heptafluornaphthyl-, Heptafluortolyl-, 3,5-bis(trifluormethyl)phenyl-, 15 2,4,6-tris(trifluormethyl)phenyl, Nonafluorbiphenyl- oder 4-(tri-fluormethyl)phenyl. Ebenfalls bevorzugt für R⁸ sind Reste wie Phenyl-, Naphthyl-, Anisyl-, Mehtyl-, Ethyl-, Isopropyl-, Butyl-, Toly1-, Biphenyl oder 2,3-Dimethyl-phenyl. Besonders bevorzugt für R³ sind die Reste Mehtyl-, Ethyl-, Isopropyl-, Butyl-Pentaflu-20 orphenyl-, Phenyl-, Biphenyl, Bisphenylmethylen, 3,5-bis(tri-fluor-methyl)phenyl-, 4-(trifluor-methyl)phenyl, Nonafluorbiphe-nyl-, Bis(penta-fluorophenyl)methylen und 4-Methyl-phenyl.

Ganz besonders bevorzugte cokatalytisch wirkende chemische Ver-25 bindungen der Formel (II) sind solche, in denen X für Sauerstoff, Schwefel oder eine NH-Gruppe, M² für Aluminium oder Bor steht.

Nicht einschränkende Beispiele zur Verdeutlichung der Formel II
(können auch unfluoriert sein):

30

35

40

45

6

20

Die Trägerkomponente des erfindungsgemäßen Katalysatorsystems kann ein beliebiger organischer oder anorganischer, inerter Feststoff sein, insbesondere ein poröser Träger wie Talk, anorganische Oxide und feinteilige Polymerpulver (z.B. Polyolefine).

Geeignete anorganische Oxide finden sich in den Gruppen 2, 3, 4, 5, 13, 14, 15 und 16 des Periodensystems der Elemente. Beispiele für als Träger bevorzugte Oxide umfassen Siliciumdioxid, Aluminiumoxid, sowie Mischoxide der beiden Elemente und entsprechende Oxid-Mischungen. Andere anorganische Oxide, die allein oder in Kombination mit den zuletzt genannten bevorzugten Oxiden Trägern eingesetzt werden können, sind z.B. MgO, ZrO₂, TiO₂ oder B₂O₃, um nur einige zu nennen.

25

Die verwendeten Trägermaterialien weisen eine spezifische Oberfläche im Bereich von 10 bis 1000 m²/g, ein Porenvolumen im Bereich von 0,1 bis 5 ml/g und eine mittlere Partikelgröße von 1 bis 500 µm auf. Bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 50 bis 500 µm, einem Porenvolumen im Bereich zwischen 0,5 und 3,5 ml/g und einer mittleren Partikelgröße im Bereich von 5 bis 350 µm. Besonders bevorzugt sind Träger mit einer spezifischen Oberfläche im Bereich von 200 bis 400 m²/g, einem Porenvolumen im Bereich zwischen 0,8 bis 3,0 ml/g und einer mittleren Partikelgröße von 10 bis 200 µm.

Wenn das verwendete Trägermaterial von Natur aus einen geringen Feuchtigkeitsgehalt oder Restlösemittelgehalt aufweist, kann eine Dehydratisierung oder Trocknung vor der Verwendung unterbleiben. 40 Ist dies nicht der Fall, wie bei dem Einsatz von Silicagel als Trägermaterial, ist eine Dehydratisierung oder Trocknung empfehlenswert. Die thermische Dehydratisierung oder Trocknung des Trägermaterials kann unter Vakuum und gleichzeitiger Inertgasüberlagerung (z.B. Stickstoff) erfolgen. Die Trocknungstemperatur liegt 45 im Bereich zwischen 100 und 1000 °C, vorzugsweise zwischen 200 und 800 °C. Der Parameter Druck ist in diesem Fall nicht entscheidend. Die Dauer des Trocknungsprozesses kann zwischen 1 und 24 Stunden

betrugen. Kürzere oder längere Trocknungs dauern sind möglich, vorausgesetzt, daß unter den gewählten Bedingungen die Gleichgewichtseinstellung mit den Hydroxylgruppen auf der Trägeroberfläche erfolgen kann, was normalerweise zwischen 4 und 8 Stunden erfordert.

Eine Dehydratisierung oder Trocknung des Trägermaterials ist auch auf chemischem Wege möglich, indem das adsorbierte Wasser und die Hydroxylgruppen auf der Oberfläche mit geeigneten Inertisierungsmitteln zur Reaktion gebracht werden. Durch die Umsetzung mit dem Inertisierungsreagenz können die Hydroxylgruppen vollständig oder auch teilweise in eine Form überführt werden, die zu keiner negativen Wechselwirkung mit den katalytisch aktiven Zentren führt. Geeignete Inertisierungsmittel sind beispielsweise Siliciumhalogenide und Silane, wie Siliciumtetrachlorid, Chlortrimethylsilan, Dimethylaminotrichlorsilan oder metallorganische Verbindungen von Aluminium-, Bor und Magnesium wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Triethylboran, Dibutylmagnesium. Die chemische Dehydratisierung oder Inertisierung des Trägermaterials erfolgt beispielsweise dadurch, daß man unter Luft- und Feuchtigkeitsausschluß eine Suspension des Trägermaterials in einem geeigneten Lösemittel mit dem Inertisierungsreagenz in reiner Form oder gelöst in einem geeigneten Lösemittel zur Reaktion bringt. Geeignete Lösemittel sind z.B. aliphatische oder aromatische Kohlenwasserstoffe wie Pentan, Hexan, Heptan, Toluol oder Xylool. Die Inertisierung erfolgt bei Temperaturen zwischen 25 °C und 120 °C, bevorzugt zwischen 50 und 70 °C. Höhere und niedrigere Temperaturen sind möglich. Die Dauer der Reaktion beträgt zwischen 30 Minuten und 20 Stunden, bevorzugt 1 bis 5 Stunden. Nach dem vollständigen Ablauf der chemischen Dehydratisierung wird das Trägermaterial durch Filtration unter Inertbedingungen isoliert, ein- oder mehrmals mit geeigneten inerten Lösemitteln wie sie bereits zuvor beschrieben worden sind gewaschen und anschließend im Inertgasstrom oder am Vakuum getrocknet.

Organische Trägermaterialien wie feinteilige Polyolefinpulver (z.B. Polyethylen, Polypropylen oder Polystyrol) können auch verwendet werden und sollten ebenfalls vor dem Einsatz von anhaftender Feuchtigkeit, Lösemittelresten oder anderen Verunreinigungen durch entsprechende Reinigungs- und Trocknungsoperationen befreit werden.

Die erfindungsgemäßen chemischen Verbindungen der Formel (I) können zusammen mit einer Organometallübergangsverbindung als Katalysatorsystem verwendet werden. Als Organometallübergangsverbindung werden z.B. Metallocenverbindungen eingesetzt. Dies können

z.B. verbrückte oder unverbrückte Biscyclopentadienylkomplexe sein, wie sie beispielsweise in EP-A-0 129 368, EP-A-0 561 479, EP-A-0 545 304 und EP-A-0 576 970 beschrieben sind, Monocyclopentadienylkomplexe, wie verbrückte Amidocyclopentadienylkomplexe die beispielsweise in EP-A-0 416 815 beschrieben sind, mehrkerige Cyclopentadienylkomplexe wie beispielsweise in EP-A-0 632 063 beschrieben, π -Ligand substituierte Tetrahydropentalene wie beispielsweise in EP-A-0 659 758 beschrieben oder π -Ligand substituierte Tetrahydroindene wie beispielsweise in EP-A-0 661 300 beschrieben. Außerdem können Organometallverbindungen eingesetzt werden in denen der komplexierende Ligand kein Cyclopentadienyl-Liganden enthält. Beispiele hierfür sind Diamin-Komplexe der III. Und IV. Nebengruppe des Periodensystems der Elemente, wie sie z.B. bei D.H. McConville, et al, Macromolecules, 1996, 29, 5241 und D.H. McConville, et al, J. Am. Chem. Soc., 1996, 118, 10008 beschrieben werden. Außerdem können Diimin-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Ni^{2+} oder Pd^{2+} Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1995, 117, 6414 und , Brookhart et al, J. Am. Chem. Soc., 1996, 118, 20 267 beschrieben werden, eingesetzt werden. Ferner lassen sich 2,6-bis(imino)pyridyl-Komplexe der VIII. Nebengruppe des Periodensystems der Elemente (z.B. Co^{2+} oder Fe^{2+} Komplexe), wie sie bei Brookhart et al, J. Am. Chem. Soc. 1998, 120, 4049 und Gibson et al, Chem. Commun. 1998, 849 beschrieben werden, einsetzen. Weiterhin können Metallocenverbindungen eingesetzt werden, deren komplexierender Ligand Heterocyclen enthält. Beispiele hierfür sind in WO 98/22486 beschrieben.

Bevorzugte Metallocenverbindungen sind unverbrückte oder verbrückte Verbindungen der Formel (III),

10

M³ ein Metall der III., IV., V. oder VI. Nebengruppe des Periodensystems der Elemente ist, insbesondere Ti, Zr oder Hf,

R¹⁰ gleich oder verschieden sind und ein Wasserstoffatom oder
 5 Si(R¹²)₃ sind, worin R¹² gleich oder verschieden ein Wasser-
 stoffatom oder eine C₁-C₄₀-kohlenstoffhaltige Gruppe, bevor-
 zugt C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy,
 C₆-C₂₀-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl,
 C₇-C₄₀-Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl,
 10 oder R¹⁰ eine C₁-C₃₀ - kohlenstoffhaltige Gruppe, bevorzugt
 C₁-C₂₅-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder
 Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl,
 C₅-C₂₄-Heteroaryl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl, fluor-
 haltiges C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhalti-
 15 ges C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder
 C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R¹⁰ können so
 miteinander verbunden sein, daß die Reste R¹⁰ und die sie ver-
 bindenden Atome des Cyclopentadienyrringes ein C₄-C₂₄-Ringsy-
 stem bilden, welches seinerseits substituiert sein kann,

20

R¹¹ gleich oder verschieden sind und ein Wasserstoffatom oder
 Si(R¹²)₃ sind, worin R¹² gleich oder verschieden ein Wasser-
 stoffatom oder eine C₁-C₄₀-kohlenstoffhaltige Gruppe, bevor-
 zugt C₁-C₂₀-Alkyl, C₁-C₁₀-Fluoralkyl, C₁-C₁₀-Alkoxy,
 25 C₆-C₁₄-Aryl, C₆-C₁₀-Fluoraryl, C₆-C₁₀-Aryloxy, C₂-C₁₀-Alkenyl,
 C₇-C₄₀-Arylalkyl, C₇-C₄₀-Alkylaryl oder C₈-C₄₀-Arylalkenyl;
 oder R¹¹ eine C₁-C₃₀ - kohlenstoffhaltige Gruppe, bevorzugt
 C₁-C₂₅-Alkyl, wie Methyl, Ethyl, tert.-Butyl, Cyclohexyl oder
 Octyl, C₂-C₂₅-Alkenyl, C₃-C₁₅-Alkylalkenyl, C₆-C₂₄-Aryl,
 30 C₅-C₂₄-Heteroaryl, C₅-C₂₄-Alkylheteroaryl, C₅-C₂₄-Alkylheteroa-
 ryl, C₇-C₃₀-Arylalkyl, C₇-C₃₀-Alkylaryl, fluorhaltiges
 C₁-C₂₅-Alkyl, fluorhaltiges C₆-C₂₄-Aryl, fluorhaltiges
 C₇-C₃₀-Arylalkyl, fluorhaltiges C₇-C₃₀-Alkylaryl oder
 C₁-C₁₂-Alkoxy ist, oder zwei oder mehrere Reste R¹¹ können so
 35 miteinander verbunden sein, daß die Reste R¹¹ und die sie ver-
 bindenden Atome des Cyclopentadienyrringes ein C₄-C₂₄-Ringsy-
 stem bilden, welches seinerseits substituiert sein kann,

1 gleich 5 für v = 0, und 1 gleich 4 für v = 1 ist,

40

m gleich 5 für v = 0, und m gleich 4 für v = 1 ist,

L¹ gleich oder verschieden sein können und ein Wasserstoffatom,
 eine C₁-C₁₀-Kohlenwasserstoffgruppe wie C₁-C₁₀-Alkyl oder
 45 C₆-C₁₀-Aryl, ein Halogenatom, oder OR¹⁶, SR¹⁶, OSi(R¹⁶)₃,
 Si(R¹⁶)₃, P(R¹⁶)₂ oder N(R¹⁶)₂ bedeuten, worin R¹⁶ ein Haloge-
 natom, eine C₁-C₁₀ Alkylgruppe, eine halogenierte C₁-C₁₀ Al-

11

kylgruppe, eine C₆-C₂₀ Arylgruppe oder eine halogenierte C₆-C₂₀ Arylgruppe sind, oder L¹ sind eine Toluolsulfonyl-, Trifluoracetyl-, Trifluoracetoxyl-, Trifluormethansulfonyl-, Nonafluorbutansulfonyl- oder 2,2,2-Trifluorethansulfonyl-

5 Gruppe,

- o eine ganze Zahl von 1 bis 4, bevorzugt 2 ist,
- z ein verbrückendes Strukturelement zwischen den beiden Cyclo-

10 pentadienytringen bezeichnet und v ist 0 oder 1.

Beispiele für Z sind Gruppen M⁴R¹³R¹⁴, worin M⁴ Kohlenstoff, Sili-
zium, Germanium oder Zinn ist und R¹³ und R¹⁴ gleich oder ver-
schieden eine C₁-C₂₀-kohlenwasserstoffhaltige Gruppe wie C₁-C₁₀-Al-
15 kyl, C₆-C₁₄-Aryl oder Trimethylsilyl bedeuten. Bevorzugt ist Z
gleich CH₂, CH₂CH₂, CH(CH₃)CH₂, CH(C₄H₉)C(CH₃)₂, C(CH₃)₂, (CH₃)₂Si,
(CH₃)₂Ge, (CH₃)₂Sn, (C₆H₅)₂Si, (C₆H₅)(CH₃)Si, (C₆H₅)₂Ge, (C₆H₅)₂Sn,
(CH₂)₄Si, CH₂Si(CH₃)₂, o-C₆H₄ oder 2,2'-(C₆H₄)₂. Z kann auch mit ei-
20 nem oder mehreren Resten R¹⁰ und/oder R¹¹ ein mono- oder polycy-
clisches Ringsystem bilden.

Bevorzugt sind chirale verbrückte Metallocenverbindungen der For-
mel (III), insbesondere solche in denen v gleich 1 ist und einer
oder beide Cyclopentadienylinge so substituiert sind, daß sie
25 einen Indenyrling darstellen. Der Indenyrling ist bevorzugt sub-
stituiert, insbesondere in 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 oder
2,4,5,6-Stellung, mit C₁-C₂₀-kohlenstoffhaltigen Gruppen, wie
C₁-C₁₀-Alkyl oder C₆-C₂₀-Aryl, wobei auch zwei oder mehrere Substi-
tuuenten des Indenyrlings zusammen ein Ringsystem bilden können.

30 Chirale verbrückte Metallocenverbindungen der Formel (III) können
als reine racemische oder reine meso Verbindungen eingesetzt wer-
den. Es können aber auch Gemische aus einer racemischen Verbin-
dung und einer meso Verbindung verwendet werden.

35 Beispiele für Metallocenverbindungen sind:

Dimethylsilandiylbis(indenyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(4-naphthyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-benzo-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-indenyl)zirkoniumdichlorid

12

Dimethylsilandiylbis(2-methyl-4-(1-naphthyl)-indenyl)zirkonium-dichlorid

Dimethylsilandiylbis(2-methyl-4-(2-naphthyl)-indenyl)zirkonium-
5 dichlorid

Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-t-butyl-indenyl)zirkoniumdichlo-
10 rid

Dimethylsilandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdich-
lorid

15 Dimethylsilandiylbis(2-methyl-4-ethyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4- -acenaphth-indenyl)zirkonium-
dichlorid

20 Dimethylsilandiylbis(2,4-dimethyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-ethyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiylbis(2-ethyl-4-phenyl-indenyl)zirkoniumdichlorid
Dimethylsilandiybis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid

30 Dimethylsilandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkonium-
dichlorid

Dimethylsilandiylbis(2-methyl-4,5 diisopropyl-indenyl)zirkonium-
dichlorid

35 Dimethylsilandiylbis(2,4,6-trimethyl-indenyl)zirkoniumdichlorid
Dimethylsilandiylbis(2,5,6-trimethyl-indenyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-5-isobutyl-indenyl)zirkoniumdichlo-
rid

45 Dimethylsilandiylbis(2-methyl-5-t-butyl-indenyl)zirkoniumdichlo-
rid

13

Methyl(phenyl)silandiylbis(2-methyl-4-phenyl-indenyl)zirkonium-dichlorid

5 Methyl(phenyl)silandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid

Methyl(phenyl)silandiylbis(2-methyl-4-isopropyl-indenyl)zirkonium-dichlorid

10 Methyl(phenyl)silandiylbis(2-methyl-4,5-benzo-indenyl)zirkonium-dichlorid

Methyl(phenyl)silandiylbis(2-methyl-4,5-(methylbenzo)-indenyl)zirkoniumdi-chlorid

15 Methyl(phenyl)silandiylbis(2-methyl-4,5-(tetramethylbenzo)-indenyl)zirkoniumdichlorid

20 Methyl(phenyl)silandiylbis(2-methyl-4- -acenaphth-indenyl)zirkoniumdichlorid

Methyl(phenyl)silandiylbis(2-methyl-indenyl)zirkoniumdichlorid

25 Methyl(phenyl)silandiylbis(2-methyl-5-isobutyl-indenyl)zirkonium-dichlorid

1,2-Ethandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid

30 1,4-Butandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid

1,2-Ethandiylbis(2-methyl-4,6 diisopropyl-indenyl)zirkoniumdichlorid

35 1,4-Butandiylbis(2-methyl-4-isopropyl-indenyl)zirkoniumdichlorid

1,4-Butandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid

1,2-Ethandiylbis(2-methyl-4,5-benzo-indenyl)zirkoniumdichlorid

40 1,2-Ethandiylbis(2,4,7-trimethyl-indenyl)zirkoniumdichlorid

1,2-Ethandiylbis(2-methyl-indenyl)zirkoniumdichlorid

45 1,4-Butandiylbis(2-methyl-indenyl)zirkoniumdichlorid

14

[4-(η^5 -Cyclopentadienyl)-4,6,6-trimethyl-(η^5 -4,5-tetrahydropenta-1-en)]-dichlorozirconium

[4-(η^5 -3'-Trimethylsilyl-cyclopentadienyl)-4,6,6-trimethyl-(η^5 -4,5-tetrahydropentalen)]-dichlorozirconium

[4-(η^5 -3'-Isopropyl-cyclopentadienyl)-4,6,6-trimethyl-(η^5 -4,5-tetrahydropentalen)]-dichlorozirconium

10 [4-(η^5 -Cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

[4-(η^5 -Cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium

15

[4-(η^5 -Cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorohafnium

20 [4-(η^5 -3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

4-(η^5 -3'-Isopropylcyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

25 4-(η^5 -3'-Methylcyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

4-(η^5 -3'-Trimethylsilyl-cyclopentadienyl)-2-trimethylsilyl-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorotitan

30

4-(η^5 -3'-tert.Butyl-cyclopentadienyl)-4,7,7-trimethyl-(η^5 -4,5,6,7-tetrahydroindenyl)]-dichlorozirkonium

(Tertbutylamido)-(tetramethyl- η^5 -cyclopentadienyl)-dimethylsilyl-35 dichlorotitan

(Tertbutylamido)-(tetramethyl- η^5 -cyclopentadienyl)-1,2-ethandiyl-dichlorotitan-dichlorotitan

40 (Methylamido)-(tetramethyl- η^5 -cyclopentadienyl)-dimethylsilyl-dichlorotitan

(Methylamido)-(tetramethyl- η^5 -cyclopentadienyl)-1,2-ethandiyl-dichlorotitan

45

15

(Tertbutylamido)-(2,4-dimethyl-2,4-pentadien-1-yl)-dimethylsilyl-dichlorotitan

Bis-(cyclopentadienyl)-zirkoniumdichlorid

5

Bis-(n-butylcyclopentadienyl)-zirkoniumdichlorid

Bis-(1,3-dimethylcyclopentadienyl)-zirkoniumdichlorid

10 Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-3- η^5 -cyclo-penta-2,4-dien-1-yliden]-3- η^5 -9H-fluoren-9-yliden)butan]di-zirkonium

15 Tetrachloro-[2-[bis(η^5 -2-methyl-1H-inden-1-yliden)methoxysi-lyl]-5-(η^5 -2,3,4,5-tetramethylcyclopenta-2,4-dien-1-yliden)-5-(η^5 -9H-fluoren-9-yliden)hexan]di-zirkonium

20 Tetrachloro-[1-[bis(η^5 -1H-inden-1-yliden)methylsilyl]-6-(η^5 -cyclo-penta-2,4-dien-1-yliden)-6-(η^5 -9H-fluoren-9-yliden)-3-oxaheptan]di-zirkonium

Dimethylsilandiylibis(2-methyl-4-(tert-butyl-phenyl-indenyl)-zirkoniumdichlorid

25 Dimethylsilandiylibis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoni-um dichlorid

Dimethylsilandiylibis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoni-um dichlorid

30

Dimethylsilandiylibis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid

35 Dimethylsilandiylibis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirkoni-um dichlorid

Dimethylsilandiylibis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zirkoni-um dichlorid

40 Dimethylsilandiylibis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoni-um dichlorid

Dimethylsilandiylibis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkonium- dichlorid

45

16

Dimethylsilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoni-
5 umdichlorid

Dimethylsilandiylbis(2-methyl-4-(4-tert-butyl-phenyl-indenyl)zir-
koniumdimethyl

10 Dimethylsilandiylbis(2-methyl-4-(4-methyl-phenyl-indenyl)zirkoni-
umdimethyl

Dimethylsilandiylbis(2-methyl-4-(4-ethyl-phenyl-indenyl)zirkoni-
umdimethyl

15 Dimethylsilandiylbis(2-methyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-methyl-4-(4-methoxy-phenyl-indenyl)zirko-
20 niumdimethyl

Dimethylsilandiylbis(2-ethyl-4-(4-tert-butyl-phenyl-indenyl)zir-
koniumdimethyl

25 Dimethylsilandiylbis(2-ethyl-4-(4-methyl-phenyl-indenyl)zirkoni-
umdimethyl

Dimethylsilandiylbis(2-ethyl-4-(4-ethyl-phenyl-indenyl)zirkonium-
diethyl

30 Dimethylsilandiylbis(2-ethyl-4-(4-trifluormethyl-phenyl-indenyl)zirkoniumdimethyl

Dimethylsilandiylbis(2-ethyl-4-(4-methoxy-phenyl-indenyl)zirkoni-
35 umdimethyl

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnuim dichlorid

Dimethylsilandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid

17

Dimethylsilandiylbis(2-methyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

10 Dimethylsilandiylbis(2-methyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid

15 Dimethylsilandiylbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid

20 Dimethylsilandiylbis(2-ethyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid

25 Dimethylsilandiylbis(2-ethyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

30 Dimethylsilandiylbis(2-ethyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-pentyl-phenyl)-indenyl)zirkoniumdichlorid

35 Dimethylsilandiylbis(2-ethyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(2-ethyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

45 Dimethylsilandiylbis(2-n-propyl-4-phenyl)-indenyl)zirkoniumdichlorid

18

Dimethylsilandiylbis(2-n-propyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-propyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-propyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid

10 Dimethylsilandiylbis(2-n-propyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-propyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid

15 Dimethylsilandiylbis(2-n-propyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-propyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

25 Dimethylsilandiylbis(2-n-butyl-4-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-butyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid

30 Dimethylsilandiylbis(2-n-butyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-butyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid

35 Dimethylsilandiylbis(2-n-butyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid

40 Dimethylsilandiylbis(2-n-butyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylbis(2-n-butyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid

19

Dimethylsilandiylibis(2-n-butyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-n-butyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

10 Dimethylsilandiylibis(2-hexyl-4-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-hexyl-4-(4'-methyl-phenyl)-indenyl)zirkoniumdichlorid

15 Dimethylsilandiylibis(2-hexyl-4-(4'-ethyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-hexyl-4-(4'-n-propyl-phenyl)-indenyl)zirkoniumdichlorid

20 Dimethylsilandiylibis(2-hexyl-4-(4'-iso-propyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-hexyl-4-(4'-n-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-hexyl-4-(4'-hexyl-phenyl)-indenyl)zirkoniumdichlorid

30 Dimethylsilandiylibis(2-hexyl-4-(4'-cyclohexyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-hexyl-4-(4'-sec-butyl-phenyl)-indenyl)zirkoniumdichlorid

35 Dimethylsilandiylibis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylsilandiylibis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkonumbis(dimethylamid)

Dimethylsilandiylibis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdibenzyl

45 Dimethylsilandiylibis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdimethyl

20

Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Dimethylgermandiylbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdichlorid

Dimethylgermandiylbis(2-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandichlorid

10 Dimethylgermandiylbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

Ethyldienbis(2-ethyl-4-phenyl)-indenyl)zirkoniumdichlorid

15 Ethyldienbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkonium-dichlorid

Ethyldienbis(2-n-propyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoniumdichlorid

20

Ethyldienbis(2-n-butyl-4-(4'-tert.-butyl-phenyl)-indenyl)titan-dichlorid

25

Ethyldienbis(2-hexyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkonium-dibenzyl

Ethyldienbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdi-benzyl

30 Ethyldienbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)titandi-benzyl

Ethyldienbis(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkoni-um dichlorid

35

Ethyldienbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafniumdi-methyl

Ethyldienbis(2-n-propyl-4-phenyl)-indenyl)titandimethyl

40

Ethyldienbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zirkonium-bis(dimethylamid)

45

Ethyldienbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)hafnium-bis(dimethylamid)

21

Ethylenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)titan-
bis(dimethylamid)

Methylethylenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zir-
koniumdichlorid

Methylethylenbis(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)haf-
niumdichlorid

10 Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)zir-
koniumdichlorid

Phenylphosphandiyl(2-methyl-4-(4'-tert.-butyl-phenyl)-indenyl)
zirkoniumdichlorid

15 Phenylphosphandiyl(2-ethyl-4-(4'-tert.-butyl-phenyl)-indenyl)
zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-methyl-
20 phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-methyl-
phenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-methyl-
phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-me-
thyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-me-
thyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-me-
35 thyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-me-
thylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-me-
thylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-me-
thyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

45

22

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-methyl-5 phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-methyl-20 phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-methyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-methylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-ethyl-35 phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-me-
thy1-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

23

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-ethyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

24

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-ethylphenyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

25

Dimethylsilandiy1(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiy1(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

15

Dimethylsilandiy1(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-propylphenyl-indenyl) zirkoniumdichlorid

20

Dimethylsilandiy1(2-methyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-5-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiy1(2-methyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

30

Dimethylsilandiy1(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiy1(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiy1(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

45

26

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-isopropylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-butyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-butyl-phenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-butyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

27

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

45

28

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-s-butyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-s-butyl-phenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-s-butyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-s-bu-tylphenyl-indenyl)zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-s-bu-tylphenyl-indenyl)zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-s-bu-tylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-me-thyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

29

Dimethylsilandiy1(2,5-dimethyl-6-thiapentalen) (2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-oxapentalen) (2-methyl-4-(4'-s-butyl-5 phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-5-oxapentalen) (2-methyl-4-(4'-s-butyl-phenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiy1(2-methyl-6-oxapentalen) (2-methyl-4-(4'-s-butyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-oxapentalen) (2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

15

Dimethylsilandiy1(2,5-dimethyl-6-oxapentalen) (2-methyl-4-(4'-s-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-azapentalen) (2-methyl-4-(4'-tert-bu-20 tylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-5-azapentalen) (2-methyl-4-(4'-tert-bu-tylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiy1(2-methyl-6-azapentalen) (2-methyl-4-(4'-tert-bu-tylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-N-phenyl-4-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

30

Dimethylsilandiy1(2-methyl-N-phenyl-5-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-N-phenyl-6-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiy1(2,5-dimethyl-6-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-N-phenyl-4-azapentalen) (2-me-thyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

45

30

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

45

31

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-pen-
20 tylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-pen-
tylphenyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-pen-
tylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-me-
thyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-me-
thyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-pen-
35 tylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-pen-
tylphenyl-indenyl)zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-pen-
tylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-me-
thyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

32

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-n-pentylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-n-hexyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-n-hexyl-phenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-n-hexyl-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

33

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-n-hexyl-5 phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-n-hexyl-phenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-n-hexyl-phenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-me-thyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-me-thyl-4-(4'-n-hexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-cyclohe-xylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-cyclohe-xylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-cyclohe-xylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-me-thyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-me-thyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-me-thyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-cy-clohexylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-cy-clohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-me-thyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

45

34

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-cyclohexylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

35

Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

45

36

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-trimethylsilylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

37

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-adamantylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

25 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

30 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

35 Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

40 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

38

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

5 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

10 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

15 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

20 Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

25 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

30 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

35 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

40 Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

45 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

39

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl)zirkonium-dichlorid

5 Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tris(trifluormethyl)methylphenyl-indenyl) zirkonium-dichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4'-tert-butyphenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-5,6-di-hydro-4-azapentalen)(2-ethyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-4-azapentalen)(2-ethyl-4-(4'-tert-butyphenyl-tetrahydroindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-5-azapentalen)(2-n-butyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

25 Ethylenediy(2-methyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-trimethylsilyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-N-toly1-5-azapentalen)(2-n-propyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

35 Dimethylgermyldiy(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Methylethylenediy(2,5-dimethyl-4-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-di-iso-propyl-6-azapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2,6-dimethyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

40

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylnaphthyl-indenyl) zirkoniumdichlorid

5 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-(6'-tert-butylanthracenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-phosphapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

10 Diphenylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

Methylphenylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl)zirkoniumdichlorid

15 Methyliden(2,5-dimethyl-4-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

20 Dimethylmethyliden(2,5-dimethyl-6-thiapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Diphenylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

25 Diphenylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4-(4'-tert-butylphenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methylindenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methylindenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methylindenyl) zirkoniumdichlorid

41

Dimethylsilandiy1(2,5-dimethyl-4-azapentalen) (2-methylindenyl)
zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-6-azapentalen) (2-methylindenyl)
5 zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-N-phenyl-4-azapentalen) (2-methyl-
indenyl) zirkoniumdichlorid

10 Dimethylsilandiy1(2,5-dimethyl-N-phenyl-6-azapentalen) (2-methyl-
indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-thiapentalen) (2-methylindenyl) zirko-
niumdichlorid

15 Dimethylsilandiy1(2-methyl-5-thiapentalen) (2-methylindenyl) zirko-
niumdichlorid

Dimethylsilandiy1(2-methyl-6-thiapentalen) (2-methylindenyl) zirko-
20 niumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-thiapentalen) (2-methylindenyl)
zirkoniumdichlorid

25 Dimethylsilandiy1(2,5-dimethyl-6-thiapentalen) (2-methylindenyl)
zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-oxapentalen) (2-methylindenyl) zirko-
niumdichlorid

30 Dimethylsilandiy1(2-methyl-5-oxapentalen) (2-methylindenyl) zirko-
niumdichlorid

Dimethylsilandiy1(2-methyl-6-oxapentalen) (2-methylindenyl) zirko-
35 niumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-oxapentalen) (2-methylindenyl)
zirkoniumdichlorid

40 Dimethylsilandiy1(2,5-dimethyl-6-oxapentalen) (2-methylindenyl)
zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-azapentalen) (indenyl) zirkoniumdich-
lorid

45

42

Dimethylsilandiyl(2-methyl-5-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-5-thiapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(indenyl) zirkoniumdichlorid

43

Dimethylsilandiyl(2-methyl-5-oxapentalen)(indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(indenyl)zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

20 Dimethylsilandiyl(2-methyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2-methyl-N-phenyl-5-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

35 Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid

45

44

Dimethylsilandiy1(2-methyl-5-thiapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-6-thiapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-thiapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

10 Dimethylsilandiy1(2,5-dimethyl-6-thiapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-4-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

15

Dimethylsilandiy1(2-methyl-5-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

20

Dimethylsilandiy1(2-methyl-6-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2,5-dimethyl-4-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

25

Dimethylsilandiy1(2,5-dimethyl-6-oxapentalen) (2-methyl-4-phenyl-indenyl) zirkoniumdichlorid

30

Dimethylsilandiy1(2-methyl-4-azapentalen) (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

35

Dimethylsilandiy1(2-methyl-5-azapentalen) (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

40

Dimethylsilandiy1(2-methyl-N-phenyl-4-azapentalen) (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

45

Dimethylsilandiy1(2-methyl-N-phenyl-5-azapentalen) (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiy1(2-methyl-N-phenyl-6-azapentalen) (2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

45

Dimethylsilandiyl(2,5-dimethyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-6-azapentalen)(2-methyl-4,5-benzo-5-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-N-phenyl-4-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

10 Dimethylsilandiyl(2,5-dimethyl-N-phenyl-6-azapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

15 Dimethylsilandiyl(2-methyl-5-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

25 Dimethylsilandiyl(2,5-dimethyl-6-thiapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

30 Dimethylsilandiyl(2-methyl-5-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2-methyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiyl(2,5-dimethyl-4-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

40 Dimethylsilandiyl(2,5-dimethyl-6-oxapentalen)(2-methyl-4,5-benzo-indenyl) zirkoniumdichlorid

Dimethylsilandiylbis(2-methyl-4-azapentalen)zirkoniumdichlorid

45 Dimethylsilandiylbis(2-methyl-5-azapentalen)zirkoniumdichlorid

46

Dimethylsilandiylibis(2-methyl-6-azapentalen) zirkoniumdichlorid

Dimethylsilandiylibis(2-methyl-N-phenyl-4-azapentalen) zirkonium-
dichlorid

5

Dimethylsilandiylibis(2-methyl-N-phenyl-5-azapentalen) zirkonium-
dichlorid

Dimethylsilandiylibis(2-methyl-N-phenyl-6-azapentalen) zirkonium-
10 dichlorid

Dimethylsilandiylibis(2,5-dimethyl-4-azapentalen) zirkoniumdichlo-
rid

15 Dimethylsilandiylibis(2,5-dimethyl-6-azapentalen) zirkoniumdichlo-
rid

Dimethylsilandiylibis(2,5-dimethyl-N-phenyl-4-azapentalen) zirko-
niumdichlorid

20

Dimethylsilandiylibis(2,5-dimethyl-N-phenyl-6-azapentalen) zirko-
niumdichlorid

Dimethylsilandiylibis(2-methyl-4-thiapentalen)zirkoniumdichlorid

25

Dimethylsilandiylibis(2-methyl-5-thiapentalen)zirkoniumdichlorid

Dimethylsilandiylibis(2-methyl-6-thiapentalen)zirkoniumdichlorid

30 Dimethylsilandiylibis(2,5-dimethyl-4-thiapentalen) zirkoniumdich-
lorid

Dimethylsilandiylibis(2,5-dimethyl-6-thiapentalen) zirkoniumdich-
lorid

35

Dimethylsilandiylibis(2-methyl-4-oxapentalen)zirkoniumdichlorid

Dimethylsilandiylibis(2-methyl-5-oxapentalen)zirkoniumdichlorid

40 Dimethylsilandiylibis(2-methyl-6-oxapentalen)zirkoniumdichlorid

Dimethylsilandiylibis(2,5-dimethyl-4-oxapentalen)zirkoniumdichlo-
rid

45 Dimethylsilandiylibis(2,5-dimethyl-6-oxapentalen)zirkoniumdichlo-
rid

47

Des weiteren sind die Metallocene, bei denen das Zirkoniumfragment "-zirkonium-dichlorid" die Bedeutungen

Zirkonium-monochloro-mono-(2,4-di-tert.-butyl-phenolat)

5

Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-phenolat)

Zirkonium-monochloro-mono-(3,5-di-tert.-butyl-phenolat)

10 Zirkonium-monochloro-mono-(2,6-di-sec.-butyl-phenolat)

Zirkonium-monochloro-mono-(2,4-di-methylphenolat)

Zirkonium-monochloro-mono-(2,3-di-methylphenolat)

15

Zirkonium-monochloro-mono-(2,5-di-methylphenolat)

Zirkonium-monochloro-mono-(2,6-di-methylphenolat)

20

Zirkonium-monochloro-mono-(3,4-di-methylphenolat)

Zirkonium-monochloro-mono-(3,5-di-methylphenolat)

Zirkonium-monochloro-monophenolat

25

Zirkonium-monochloro-mono-(2-methylphenolat)

Zirkonium-monochloro-mono-(3-methylphenolat)

30

Zirkonium-monochloro-mono-(4-methylphenolat)

Zirkonium-monochloro-mono-(2-ethylphenolat)

Zirkonium-monochloro-mono-(3-ethylphenolat)

35

Zirkonium-monochloro-mono-(4-ethylphenolat)

Zirkonium-monochloro-mono-(2-sec.-butylphenolat)

40

Zirkonium-monochloro-mono-(2-tert.-butylphenolat)

Zirkonium-monochloro-mono-(3-tert.-butylphenolat)

Zirkonium-monochloro-mono-(4-sec.-butylphenolat)

45

Zirkonium-monochloro-mono-(4-tert.-butylphenolat)

48

Zirkonium-monochloro-mono-(2-isopropyl-5-methylphenolat)

Zirkonium-monochloro-mono-(4-isopropyl-3-methylphenolat)

5 Zirkonium-monochloro-mono-(5-isopropyl-2-methylphenolat)

Zirkonium-monochloro-mono-(5-isopropyl-3-methylphenolat)

Zirkonium-monochloro-mono-(2,4-bis-(2-methyl-2-butyl)-phenolat)

10

Zirkonium-monochloro-mono-(2,6-di-tert.-butyl-4-methyl-phenolat)

Zirkonium-monochloro-mono-(4-nonylphenolat)

15 Zirkonium-monochloro-mono-(1-naphtholat)

Zirkonium-monochloro-mono-(2-naphtholat)

Zirkonium-monochloro-mono-(2-phenylphenolat)

20

Zirkonium-monochloro-mono-(tert. butoxid)

Zirkonium-monochloro-mono-(N-methylanilid)

25 Zirkonium-monochloro-mono-(2-tert.-butylanilid)

Zirkonium-monochloro-mono-(tert.-butylamid)

Zirkonium-monochloro-mono-(di-iso.-propylamid)

30

Zirkonium-monochloro-mono-methyl

Zirkonium-monochloro-mono-benzyl

35 Zirkonium-monochloro-mono-neopentyl, hat, Beispiele für die er-findungsgemäßen Metallocene.

Weiterhin bevorzugt sind die entsprechenden Zirkondimethyl-Ver-bindungen, die entsprechenden Zirkon- η^4 -Butadien-Verbindungen, so-wie die entsprechenden Verbindungen mit 1,2-(1-methyl-ethan-diyl)-, 1,2-(1,1-dimethyl-ethandiyl)- und 1,2(1,2-dimethyl-ethan-diyl)-Brücke.

Das erfindungsgemäße Katalysatorsystem kann zusätzlich noch eine
45 Organometallverbindung der Formel (IV)

$[M^5R^{20}_p]^q$ (IV)

worin

5 M^5 ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist, vorzugsweise Lithium, Magnesium und Aluminium, insbesondere Aluminium, ist

10 R^{20} gleich oder verschieden ein Wasserstoffatom, ein Halogenatom, eine C_1-C_{40} -kohlenstoffhaltige Gruppe wie eine C_1-C_{20} - Alkyl-, C_6-C_{40} -Aryl-, C_7-C_{40} -Aryl-alkyl oder C_7-C_{40} -Alkyl-aryl-Gruppe, bedeutet.

15 p eine ganze Zahl von 1 bis 3 und
q eine ganze Zahl von 1 bis 4 ist, enthalten.

Bei den Organometallverbindungen der Formel (IV) handelt es sich ebenfalls um neutrale Lewissäuren.

20 Beispiele für die bevorzugten Organometall-Verbindungen der Formel (IV) sind Trimethylaluminium, Triethylaluminium, Triisopropylaluminium, Trihexylaluminium, Trioctylaluminium, Tri-n-butylaluminium, Tri-n-propylaluminium, Triisoprenaluminium, Dimethylaluminmonochlorid, Diethylaluminiummonochlorid, Diisobutylaluminummonochlorid, Methylaluminiunsesquichlorid, Ethylaluminiunsesquichlorid, Dimethylaluminumhydrid, Diethylaluminumhydrid, Diisopropylaluminumhydrid, Dimethylaluminium(trimethylsiloxid), Dimethylaluminium(triethylsiloxid), Phenylalan, Pentafluorphenylalan, o-Tolylalan.

Das erfindungsgemäße Katalysatorsystem ist erhältlich durch Umsetzung einer Lewis Base der Formel (I) und einer Organobor- oder Organoaluminiumverbindung, die aus Einheiten der Formel (II) aufgebaut ist, mit einem Träger. Anschließend erfolgt die Umsetzung mit einer Lösung oder Suspension aus einem oder mehreren Metallocenverbindungen der Formel (III) und optional einer oder mehrerer Organometallverbindungen der Formel (IV).

40 Die Aktivierung des Katalysatorsystems kann dadurch wahlweise vor dem Einschleusen in den Reaktor vorgenommen werden oder aber erst im Reaktor durchgeführt werden. Ferner wird ein Verfahren zur Herstellung von Polyolefinen beschrieben. Die Zugabe einer weiteren chemischen Verbindung, die als Additiv vor der Polymerisation zudosiert wird, kann zusätzlich von Vorteil sein.

Zur Herstellung des erfindungsgemäßen Katalysatorsystems wird das Trägermaterial in einem organischen Lösemittel suspendiert. Geeignete Lösemittel sind aromatische oder aliphatische Lösemittel, wie beispielsweise Hexan, Heptan, Toluol oder Xylol oder halogenierte Kohlenwasserstoffe, wie Methylchlorid oder halogenierte aromatische Kohlenwasserstoffe wie o-Dichlorbenzol. Der Träger kann zuvor mit einer Verbindung der Formel (IV) vorbehandelt werden. Anschließend wird eine oder mehrere Verbindungen der Formel (I) zu dieser Suspension gegeben, wobei die Reaktionszeit zwischen 1 Minute und 48 Stunden liegen kann, bevorzugt ist eine Reaktionszeit zwischen 10 Minuten und 2 Stunden. Die Reaktionslösung kann isoliert und anschließend resuspendiert werden oder aber auch direkt mit einer cokatalytisch wirkenden Organobor- oder Aluminiumverbindung, gemäß der Formel (II), umgesetzt werden. Die Reaktionszeit liegt dabei zwischen 1 Minute und 48 Stunden, wobei eine Reaktionszeit von zwischen 10 Minuten und 2 Stunden bevorzugt ist. Zur Herstellung des erfindungsgemäßen Katalysatorsystems kann eine oder mehrere Lewis-Basen der Formel (I) mit einer oder mehreren cokatalytisch wirksamen Organobor- oder Aluminiumverbindung, gemäß der Formel (II), umgesetzt werden. Bevorzugt ist die Menge von 1 bis 4 Äquivalenten einer Lewis-Base der Formel (I) mit einem Äquivalent einer cokatalytisch wirksamen Verbindung. Besonders bevorzugt ist die Menge von einem Äquivalent einer Lewis-Base der Formel (I) mit einem Äquivalent einer cokatalytisch wirksamen Verbindung. Das Reaktionsprodukt dieser Umsetzung ist eine metalloceniumbildende Verbindung, die kovalent an das Trägermaterial fixiert ist. Es wird nachfolgend als modifiziertes Trägermaterial bezeichnet. Die Reaktionslösung wird anschließend filtriert und mit einem der oben genannten Lösemittel gewaschen. Danach wird das modifizierte Trägermaterial im Hochvakuum getrocknet. Die Zugabe der einzelnen Komponenten kann aber auch in jeder anderen Reihenfolge durchgeführt werden.

Das Aufbringen einer oder mehrerer Metallocenverbindungen vorzugsweise der Formel (III) und einer oder mehrerer Organometallverbindungen der Formel (IV) auf das modifizierte Trägermaterial geht vorzugsweise so vonstatten, daß eine oder mehrere Metallocenverbindungen der Formel (III) in einem oben beschriebenen Lösemittel gelöst bzw. suspendiert wird und anschließend eine oder mehrere Verbindungen der Formel (IV), die vorzugsweise ebenfalls gelöst bzw. suspendiert ist, umgesetzt werden. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel (III) und einer Organometallverbindung der Formel (IV) beträgt 100 : 1 bis 10⁻⁴ : 1. Vorzugsweise beträgt das Verhältnis 1 : 1 bis 10⁻² : 1. Das modifizierte Trägermaterial kann entweder direkt im Polymerisationsreaktor oder in einem Reaktionskolben in einem oben genannten Lösemittel vorgelegt werden. Anschließend erfolgt die Zu-

51

gabe der Mischung aus einer Metallocenverbindung der Formel (III) und einer Organometallverbindung der Formel (IV). Optional kann aber auch eine oder mehrere Metallocenverbindungen der Formel (III) ohne vorherige Zugabe einer Organometallverbindung der Formel (IV) zu dem modifizierten Trägermaterial gegeben werden.

Die Menge an modifizierten Träger zu einer Metallocenverbindung der Formel (III) beträgt vorzugsweise 10g : 1 µmol bis 10⁻²g : 1 µmol. Das stöchiometrische Verhältnis an Metallocenverbindung der Formel (V) zu der cokatalytisch wirkenden chemischen Verbindung der Formel (II) beträgt 100 : 1 bis 10⁻⁴ : 1, vorzugsweise 1 : 1 bis 10⁻² : 1.

Das geträgerte Katalysatorsystem kann direkt zur Polymerisation eingesetzt werden. Es kann aber auch nach Entfernen des Lösemittels resuspendiert zur Polymerisation eingesetzt werden. Der Vorteil dieser Aktivierungsmethode liegt darin, daß es die Option bietet das polymerisationsaktive Katalysatorsystem erst im Reaktor entstehen zu lassen. Dadurch wird verhindert, daß beim Einschleusen des luftempfindlichen Katalysators zum Teil Zersetzung eintritt.

Weiterhin wird ein Verfahren zur Herstellung eines Olefinpolymers in Gegenwart des erfindungsgemäßen Katalysatorsystems beschrieben. Die Polymerisation kann eine Homo- oder eine Copolymerisation sein.

Bevorzugt werden Olefine der Formel R-CH=CH-R^B polymerisiert, wobei R und R^B gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd, Carbonsäure- oder Carbonsäureestergruppe oder einen gesättigten oder ungesättigten Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, insbesondere 1 bis 10 C-Atomen bedeuten, der mit einer Alkoxy-, Hydroxy-, Alkylhydroxy-, Aldehyd-, Carbonsäure- oder Carbonsäureestergruppe substituiert sein kann, oder R^A und R^B mit den sie verbindenden Atomen einen oder mehrere Ringe bilden. Beispiele für solche Olefine sind 1-Olefine wie Ethylen, Propylen, 1-Buten, 1-Hexen, 4-Methyl-1-penten, 1-Octen, Styrol, cyclische Olefine wie Norbornen, Vinylnorbornen, Tetracyclododecen, Ethylidennorbornen, Diene wie 1,3-Butadien oder 1,4-Hexadien, Biscyclopentadien oder Methacrylsäuremethylester.

Insbesondere werden Propylen oder Ethylen homopolymerisiert, Ethylen mit einem oder mehreren C₃-C₂₀-1-Olefinen, insbesondere Propylen, und /oder einem oder mehreren C₄-C₂₀-Diene, insbesondere

52

1,3-Butadien, copolymerisiert oder Norbornen und Ethylen copolymerisiert.

Die Polymerisation wird bevorzugt bei einer Temperatur von - 60 bis 300 °C, besonders bevorzugt 30 bis 250 °C, durchgeführt. Der Druck beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar. Die Polymerisation kann kontinuierlich oder diskontinuierlich, ein- oder mehrstufig, in Lösung, in Suspension, in der Gasphase oder in einem überkritischem Medium durchgeführt werden.

10

Das geträgte Katalysatorsystem kann entweder direkt im Polymerisationssystem gebildet werden oder es kann als Pulver oder noch Lösemittel behaftet wieder resuspendiert und als Suspension in einem inerten Suspensionsmittel in das Polymerisationssystem ein-

15 dosiert werden.

Mit Hilfe des erfindungsgemäßen Katalysatorsystems kann eine Vor-polymerisation erfolgen. Zur Vorpolymerisation wird bevorzugt das (oder eines der) in der Polymerisation eingesetzte(n) Olefin(e)

20 verwendet.

Zur Herstellung von Olefinpolymeren mit breiter Molekulargewichtsverteilung werden bevorzugt Katalysatorsysteme verwendet, die zwei oder mehr verschiedene Übergangsmetallverbindungen, z.

25 B. Metallocene enthalten.

Zur Entfernung von im Olefin vorhandenen Katalysatorgiften ist eine Reinigung mit einem Aluminiumalkyl, beispielsweise Trimethylaluminium, Triethylaluminium oder Triisobutylaluminium vorteilhaft. Diese Reinigung kann sowohl im Polymerisations-system 30 selbst erfolgen oder das Olefin wird vor der Zugabe in das Polymerisations-system mit der Al-Verbindung in Kontakt gebracht und anschließend wieder getrennt.

35 Als Molmassenregler und/oder zur Steigerung der Aktivität wird, falls erforderlich, Wasserstoff zugegeben. Der Gesamtdruck im Polymerisationssystem beträgt 0,5 bis 2500 bar, bevorzugt 2 bis 1500 bar.

40 Dabei wird die erfindungsgemäße Verbindung in einer Konzentration, bezogen auf das Übergangsmetall von bevorzugt 10^{-3} bis 10^{-8} , vorzugsweise 10^{-4} bis 10^{-7} mol Übergangsmetall pro dm³ Lösemittel bzw. pro dm³ Reaktorvolumen angewendet.

45 Geeignete Lösemittel zur Darstellung sowohl der erfindungsgemäßen geträgerten chemischen Verbindung als auch des erfindungsgemäßen Katalysatorsystems sind aliphatische oder aromatische Lösemittel,

wie beispielsweise Hexan oder Toluol, etherische Lösemittel, wie beispielsweise Tetrahydrofuran oder Diethylether oder halogenierte Kohlenwasserstoffe, wie beispielsweise Methylenchlorid oder halogenierte aromatische Kohlenwasserstoffe wie beispielsweise o-Dichlorbenzol.

Vor Zugabe des erfindungsgemäßen Katalysatorsystems bzw. vor Aktivierung des erfindungsgemäßen Katalysatorsystems im Polymerisationssystem kann zusätzlich eine Alkylalumiuniumverbindung wie beispielsweise Trimethylaluminium, Triethylaluminium, Triisobutylaluminium, Trioctylaluminium oder Isoprenylaluminium zur Inertisierung des Polymerisationssystems (beispielsweise zur Abtrennung vorhandener Katalysatorgifte im Olefin) in den Reaktor gegeben werden. Diese wird in einer Konzentration von 200 bis 0,001 mmol 10 Al pro kg Reaktorinhalt dem Polymerisationssystem zugesetzt. Bevorzugt werden Triisobutylaluminium und Triethylaluminium in einer Konzentration von 10 bis 0,01 mmol Al pro kg Reaktorinhalt eingesetzt, dadurch kann bei der Synthese eines geträgerten Katalysatorsystems das molare Al/M¹-Verhältnis klein gewählt werden.

20 Weiterhin kann beim erfindungsgemäßen Verfahren ein Additiv wie ein Antistatikum verwendet werden, z.B. zur Verbesserung der Kornmorphologie des Polymers.

25 Generell können alle Antistatika, die für die Polymerisation geeignet sind, verwendet werden. Beispiele hierfür sind Salzgemische aus Calciumsalzen der Medialansäure und Chromsalze der N-Stearylanthranilsäure, die in DE-A-3,543,360 beschrieben werden. Weitere geeignete Antistatika sind z.B. C₁₂- bis C₂₂-Fettsäureseifen von Alkali- oder Erdalkalimetallen, Salze von Sulfonäureestern, Ester von Polyethylenglycolen mit Fettsäuren, Polyoxyethylenalkylether usw. Eine Übersicht über Antistatika wird in EP-A-0,107,127 angegeben.

35 Außerdem kann als Antistatikum eine Mischung aus einem Metallsalz der Medialansäure, einem Metallsalz der Anthranilsäure und einem Polyamin eingesetzt werden, wie in EP-A-0,636,636 beschrieben.

Kommerziell erhältliche Produkte wie Stadis® 450 der Fa. DuPont, 40 eine Mischung aus Toluol, Isopropanol, Dodecylbenzolsulfonsäure, einem Polyamin, einem Copolymer aus Dec-1-en und SO₂ sowie Dec-1-en oder ASA®-3 der Fa. Shell und ARU5R® 163 der Firma ICI können ebenfalls verwendet werden.

45 Vorzugsweise wird das Antistatikum als Lösung eingesetzt, im bevorzugten Fall von Stadis® 450 werden bevorzugt 1 bis 50 Gew.-% dieser Lösung, vorzugsweise 5 bis 25 Gew.-%, bezogen auf die

54

Masse des eingesetzten Trägerkatalysators (Träger mit kovalent fixierter metallocenumbildende Verbindung und eine oder mehrere Metallocenverbindungen z.B. der Formel IV) eingesetzt. Die benötigten Mengen an Antistatikum können jedoch, je nach Art des eingesetzten Antistatikums, in weiten Bereichen schwanken.

Die nachfolgenden Beispiele dienen zur näheren Erläuterung der Erfindung

10 Allgemeine Angaben: Herstellung und Handhabung der Verbindungen erfolgten unter Ausschluß von Luft und Feuchtigkeit unter Argon-schutz (Schlenk-Technik). Alle benötigten Lösemittel wurden vor Gebrauch durch mehrstündigem Sieden über geeignete Trockenmittel und anschließende Destillation unter Argon absolutiert. Zur Charakterisierung der Verbindungen wurden Proben aus den einzelnen Reaktions-mischungen entnommen und im Ölumpenvakuum getrocknet.

Beispiel 1: Synthese von Bis(pentafluorophenoxy)methylalan (1)

20 5.2 ml Trimethylaluminium (2M in Exxol, 10.8 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 4.0 g (21.6 mmol) Pentafluorophenol in 40 ml Toluol über einen Zeitraum von 30 Minuten zugetropft. Man röhrt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird eine Stunde bei Raumtemperatur nachgerührt. Es resultiert eine farblose Lösung (0.14 M bezogen auf Al) von Bis(pentafluoro-phenyloxy)methylalan.

19F-NMR (C_6D_6): $\delta = -160.5$ ppm (m, 4F, o-C₆F₅) ; -161.8 ppm (m, 2F, p-C₆F₅) ; -166.3 ppm (m, 4F, m-C₆F₅).

1H-NMR (C_6D_6): $\delta = -0.4$ ppm (s, 3H, CH₃).

Beispiel 2: Synthese von Bis(pentafluorophenoxy)ethylalan (2)

35 5.0 ml Triethylaluminium (2.1 M in Vasol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 4.0 g (21.0 mmol) Pentafluorophenol in 40 ml Toluol über einen Zeitraum von 30 Minuten zugetropft. Man röhrt 15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird eine Stunde bei Raumtemperatur nachgerührt. Es resultiert eine farblose Lösung (0.13 M bezogen auf Al) von Bis(pentafluoro-phenyloxy)ethylalan.

45 19F-NMR (C_6D_6): $\delta = -160.9$ ppm (m, 4F, o-C₆F₅) ; -162.1 ppm (m, 2F, p-C₆F₅) ; -167.3 ppm (m, 4F, m-C₆F₅)

55

1H-NMR (C_6D_6): $\delta = 0.5$ ppm (t, 3H, CH_3), 1.6 ppm (q, 2H, CH_2).

Beispiel 3: Synthese von Bis(pentafluoroanilin)methyalan (3)

5 5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in
40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung
werden 3.8 g (21.0 mmol) Pentafluoroanilin in 40 ml Toluol über
einen Zeitraum von 30 Minuten zugetropft. Man röhrt 15 Minuten
bei -40 °C und läßt anschließend die Reaktionslösung auf Raumtem-
10 peratur erwärmen. Es wird zwei Stunde bei Raumtemperatur nachge-
röhrt. Es resultiert eine gelbliche Lösung (0.13 M bezogen auf
Al) von Bis(pentafluoro-anilin)methylalan.

19F-NMR (C_6D_6): $\delta = -162.9$ ppm (m, 4F, o- C_6F_5); -164.1 ppm (m, 2F,
15 p- C_6F_5); -171.3 ppm (m, 4F, m- C_6F_5)

1H-NMR (C_6D_6): $\delta = -0.4$ ppm (t, 3H, CH_3), 5.6 ppm (s, 1H, NH).

Beispiel 4: Synthese von Bis(bis(pentafluorophenyl)methylene-
20 methylan (4)

5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in
40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung
werden 7.6 g (21.0 mmol) Bis(pentafluorophenyl)carbinol in 40 ml
25 Toluol über einen Zeitraum von 30 Minuten zugetropft. Man röhrt
15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung
auf Raumtemperatur erwärmen. Es wird zwei Stunde bei Raumtempera-
tur nachgeröhrt. Es resultiert eine gelbliche Lösung (0.13 M be-
zogen auf Al) von Bis(bis(pentafluorophenyl)methylene)methylan.

30 19F-NMR (C_6D_6): $\delta = -140.6$ ppm (m, 4F, o- $CH(C_6F_5)_2$); -151.7 ppm (m,
2F, p- $CH(C_6F_5)_2$); -159.5 ppm (m, 4F, m- $CH(C_6F_5)_2$).

1H-NMR (C_6D_6): $\delta = 6.2$ ppm (s, 1H, CH).

35 Beispiel 5: Synthese von Bis(bis(3,5 trifluoromethyl)anilin)methyalan (5)

5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in
40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung
werden 4.8 g (21.0 mmol) 3,5 Bis(trifluoromethyl)anilinin 40 ml
Toluol über einen Zeitraum von 45 Minuten zugetropft. Man röhrt
15 Minuten bei -40 °C und läßt anschließend die Reaktionslösung
auf Raumtemperatur erwärmen. Es wird vier Stunde bei Raumtempera-
45 tur nachgeröhrt. Die leicht trübe Lösung wird über eine G4-Fritte

56

abfiltriert. Es resultiert eine gelbliche klare Lösung (0.13 M bezogen auf Al) von Bis(bis(3,5 trifluoromethyl)anilin)methylan.

19F-NMR (C_6D_6): $\delta = -61.5$ ppm (s, 12F, CF_3).

5

1H-NMR (C_6D_6): $\delta = 5.5$ ppm (s, 1H, NH), 6.3 ppm (s, 2H, Ar-H), 7.2 ppm (s, 1H, Ar-H).

Beispiel 6: Synthese von Bis(nonafluorodiphenyloxy)methylan
10 (6)

5.0 ml Trimethylaluminium (2.1 M in Exxol, 10.5 mmol) werden in 40 ml Toluol vorgelegt und auf -40°C gekühlt. Zu dieser Lösung werden 7.0 g (21.0 mmol) Nonafluorodiphenyl-1-ol in 40 ml Toluol 15 über einen Zeitraum von 40 Minuten zugetropft. Man röhrt 30 Minuten bei -40 °C und lässt anschließend die Reaktionslösung auf Raumtemperatur erwärmen. Es wird einer Stunde bei Raumtemperatur nachgerührt. Die leicht trübe Lösung wird über eine G4-Fritte abfiltriert. Es resultiert eine klare Lösung (0.13 M bezogen auf 20 Al) von Bis(nonafluorodiphenyloxy)methylan.

19F-NMR (C_6D_6): $\delta = -134.0$ ppm (m, 2F, 2,2'-F); -137.2 ppm (m, 2F, 3, 3'-F); -154.6 ppm (m, 2F, 4, 4'-F); 157.0 ppm (m, 1F, 6-F); 161.7 (m, 2F, 5, 5'-F).

25

1H-NMR (C_6D_6): $\delta = -0.3$ ppm (s, 3H, CH_3).

Allgemeine Beschreibung der Trägerung, Katalysatorherstellung und Polymerisationsdurchführung

30

A) Trägerung:

14.0 g SiO_2 (XPO 2107, Fa. Grace, getrocknet bei 600°C im Argonstrom) werden in 20 ml Toluol vorgelegt, 2.6 ml N,N-Dimethylaminolin (20.80 mmol) zugetropft und zwei Stunden bei Raumtemperatur gerührt. Anschließend werden bei 0 °C 20.80 mmol des entsprechenden Cokatalysators, gelöst in 40 ml Toluol, zugegeben. Man lässt auf Raumtemperatur erwärmen und röhrt die Suspension zwei Stunden bei dieser Temperatur. Die entstandene bläuliche Suspension wird 40 abfiltriert und der Rückstand mit 50 ml Toluol und anschließend mit dreimal 100 ml n-Pentan gewaschen. Danach wird der Rückstand im Ölumpenvakuum getrocknet. Es resultiert das geträgerte Cokatalysatorsystem welches ausgewogen wird.

45 B) Herstellung des Katalysatorsystems

57

Zu einer Lösung von 50 mg (80 µmol) Dimethylsilandiylbis(2-methyl-4-phenyl-indenyl)zirkoniumdichlorid in 50 ml Toluol werden 0.30 ml Trimethylaluminium (20% ig in Exxol, 700 µmol) zugegeben und die Lösung 1.5 Stunden bei RT gerührt. Anschließend werden 5 960 µmol/g [SiO₂] des unter A Trägerung hergestellten Cokatalysators portionsweise zugegeben. Die Lösung wird 30 Minuten bei Raumtemperatur gerührt. Danach entfernt man das Lösemittel im Öl-pumpenvakuum. Es resultiert ein hellrotes freifließendes Pulver.

10 Beispiel 4

Polymerisation

Zum Einschleusen in das Polymerisationssystem wird die entsprechende Menge des unter B hergestellten geträgerten Katalysatorsystems (6 µmol Metallocen) in 30 ml Exxol resuspendiert.

Parallel dazu wird ein trockener 16-dm³-Reaktor zunächst mit Stickstoff und anschließend mit Propylen gespült und mit 10 dm³ flüssigem Propen gefüllt. Dann wurden 0.5 cm³ einer 20%igen Triisobutylaluminiumlösung in Varsol mit 30 cm³ Exxol verdünnt in den Reaktor gegeben und der Ansatz bei 30°C 15 Minuten gerührt. Anschließend wurde die Katalysatorsuspension in den Reaktor gegeben. Das Reaktionsgemisch wurde auf die Polymerisationstemperatur 25 von 60 °C aufgeheizt (4°C/min) und das Polymerisationssystem 1 h durch Kühlung bei 60 °C gehalten. Gestoppt wurde die Polymerisation durch Abgasen des restlichen Propylens. Das Polymer wird im Vakuumtrockenschrank getrocknet. Der Reaktor zeigte keine Beläge an der Innenwand oder Rührer.

30

Polymerisationsergebnisse

35 Getr. Katalysatorsystem hergestellt aus Beispiel:	1	2	3	4	5	6
Metallocenmenge [mg]	50	50	50	50	50	50
40 Metallocen (mmol)	80	80	80	80	80	80
Cokatalysator (mmol)	960	960	960	960	960	960
45 Einwaage SiO ₂ [g]	14.0	14.0	14.0	14.0	14.0	14.0
Auswaage SiO ₂ [g]	19.95	19.28	19.46	23.60	21.49	23.49

58

	Einwaage geträgerter Cokatalysator [mg]	923	1074	1000	1074	893	997
5	Auswaage Katalysa- tor-system [mg]	975	1124	1050	1124	943	1047
10	Einwaage Katalysa- tor-system für Poly- merisation [mg] [6 mmol Metallocen]	73	85	79	85	71	79
15	Dauer (min)	60	60	60	60	60	60
	PP (kg)	0.622	0.480	0.484	0.589	0.281	0.589
	Aktivität ¹⁾	166	128	129	157	75	157

20 1) Aktivität: kg (PP) / g Metallocen x h

25

30

35

40

45

Patentansprüche:

1. Katalysatorsystem enthaltend

5

A) mindestens ein Metallocen,

B) mindestens eine Lewis Base der Formel I

10 $M^1R^3R^4R^5$ (I)

worin

15 R^3 , R^4 , R^5 gleich oder verschieden sind und ein Wasserstoffatom, eine C₁-C₂₀ Alkyl-, C₁-C₂₀ Halogenalkyl-, C₆-C₄₀ Aryl-, C₆-C₄₀ Halogenaryl-, C₇-C₄₀ Alkylaryl- oder C₇-C₄₀ Arylalkyl-Gruppe ist und zwei Reste oder alle drei Reste R^3 , R^4 und R^5 über C₂-C₂₀ Kohlenstoffeinheiten miteinander verbunden sein können.

20

M^1 ist ein Element der V. Hauptgruppe des Periodensystems der Elemente, insbesondere Stickstoff oder Phosphor

25 C) mindestens einen Träger

D) und mindestens eine Organobor- oder Organoaluminium-Verbindung, die aus Einheiten der Formel II

30 $[(R^6)-X-M^2(R^8)-X-(R^7)]_k$ (II)

worin

35 R^6 , R^7 gleich oder verschieden sind und ein Wasserstoffatom, ein Halogenatom, eine borfreie C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl oder eine SiR₃⁹-Gruppe bedeutet,

40 wobei R⁹ eine borfreie C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl sein kann,

60

R⁸ kann gleich oder verschieden zu R⁶ und R⁷, ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe wie C₁-C₂₀-Alkyl, C₁-C₂₀-Halogenalkyl, C₁-C₁₀-Alkoxy, C₆-C₂₀-Aryl, C₆-C₂₀-Halogenaryl, C₆-C₂₀-Aryloxy, C₇-C₄₀-Arylalkyl, C₇-C₄₀-Halogenarylalkyl, C₇-C₄₀-Alkylaryl, C₇-C₄₀-Halogenalkylaryl oder eine OSiR⁹₃-Gruppe bedeutet,

X gleich oder verschieden ein Element der Gruppe IV, V oder VIa des Periodensystems der Elemente oder eine NH-Gruppe bedeutet,

M² ein Element der Gruppe IIIa des Periodensystems der Elemente bedeutet und

k eine natürliche Zahl von 1 bis 100 bedeutet aufgebaut ist und die kovalent an den Träger gebunden ist.

2. Katalysatorsystem gemäß Anspruch 1, dadurch gekennzeichnet, daß es zusätzlich noch eine Organometallverbindung der Formel (IV)

worin

M⁵ ein Element der I., II. und III. Hauptgruppe des Periodensystems der Elemente ist, vorzugsweise Lithium, Magnesium und Aluminium, insbesondere Aluminium, ist

R²⁰ gleich oder verschieden ein Wasserstoffatom, ein Halogenatom, eine C₁-C₄₀-kohlenstoffhaltige Gruppe wie eine C₁-C₂₀-Alkyl-, C₆-C₄₀-Aryl-, C₇-C₄₀-Aryl-alkyl oder C₇-C₄₀-Alkyl-aryl-Gruppe, bedeutet,

p eine ganze Zahl von 1 bis 3 und

q eine ganze Zahl von 1 bis 4 ist, enthält.

3. Verfahren zur Herstellung eines Polyolefins durch Polymerisation eines oder mehrerer Olefine in Gegenwart eines Katalysatorsystems nach einem der Ansprüche 1 oder 2.

4. Verwendung eines Katalysatorsystems gemäß einem der Ansprüche 1 oder 2 zur Herstellung eines Polyolefins.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 00/03263

A. CLASSIFICATION OF SUBJECT MATTER
 IPC 7 B01J31/22 B01J31/14 C08F4/642 C08F110/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
 IPC 7 B01J C08F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 781 783 A (BASF AG) 2 July 1997 (1997-07-02) abstract page 8, line 29 - line 49 page 10, line 7 - line 12 page 11 -page 13; example 14; table 1 ----	1-4
X	WO 96 23005 A (GRACE W R & CO) 1 August 1996 (1996-08-01) examples 3,6 ----	1-4
X	WO 96 04319 A (WALZER JOHN FLEXER JR ;EXXON CHEMICAL PATENTS INC (US)) 15 February 1996 (1996-02-15) cited in the application examples 3-20 ----	1,3,4 -/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "S" document member of the same patent family

Date of the actual completion of the international search

21 August 2000

Date of mailing of the international search report

30/08/2000

Name and mailing address of the ISA
 European Patent Office, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Authorized officer

Gamb, V

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 00/03263

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 619 326 A (TOSOH CORP) 12 October 1994 (1994-10-12) example 14 page 8, line 10 - line 24	1-4
P,X	DE 198 28 271 A (ELENAC GMBH) 30 December 1999 (1999-12-30) examples 1-3	1,3,4
P,X	DE 197 57 540 A (HOECHST AG) 24 June 1999 (1999-06-24) examples 1,2	1,3,4

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No	
PCT/EP 00/03263	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP 0781783 A	02-07-1997	DE 59602084 D		08-07-1999
		ES 2135157 T		16-10-1999
		JP 9291107 A		11-11-1997
		US 5908903 A		01-06-1999
WO 9623005 A	01-08-1996	US 5939347 A		17-08-1999
		AU 4701796 A		14-08-1996
		EP 0805824 A		12-11-1997
WO 9604319 A	15-02-1996	US 5643847 A		01-07-1997
		AU 687231 B		19-02-1998
		AU 3204695 A		04-03-1996
		BR 9508487 A		30-12-1997
		CA 2195879 A		15-02-1996
		CN 1157623 A		20-08-1997
		CZ 9700285 A		16-07-1997
		EP 0775164 A		28-05-1997
		JP 10503798 T		07-04-1998
		NO 970409 A		19-03-1997
		PL 318432 A		09-06-1997
		US 5972823 A		26-10-1999
EP 0619326 A	12-10-1994	JP 2988222 B		13-12-1999
		JP 7118319 A		09-05-1995
		DE 69403928 D		31-07-1997
		DE 69403928 T		18-12-1997
		JP 2988244 B		13-12-1999
		JP 7196722 A		01-08-1995
DE 19828271 A	30-12-1999	AU 4608899 A		10-01-2000
		WO 9967302 A		29-12-1999
DE 19757540 A	24-06-1999	WO 9933881 A		08-07-1999

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 00/03263

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES		
IPK 7	B01J31/22	B01J31/14
		C08F4/642
		C08F110/06
Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassefikation und der IPK		
B. RECHERCHIERTE GEBIETE		
Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassefikationsymbole)		
IPK 7 B01J C08F		
Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen		
Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)		
EPO-Internal, CHEM ABS Data		
C. ALS WESENTLICH ANGESEHENE UNTERLAGEN		
Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 781 783 A (BASF AG) 2. Juli 1997 (1997-07-02) Zusammenfassung Seite 8, Zeile 29 – Zeile 49 Seite 10, Zeile 7 – Zeile 12 Seite 11 –Seite 13; Beispiel 14; Tabelle 1	1-4
X	WO 96 23005 A (GRACE W R & CO) 1. August 1996 (1996-08-01) Beispiele 3,6	1-4
X	WO 96 04319 A (WALZER JOHN FLEXER JR ;EXXON CHEMICAL PATENTS INC (US)) 15. Februar 1996 (1996-02-15) in der Anmeldung erwähnt Beispiele 3-20	1,3,4
	-/-	
<input checked="" type="checkbox"/>	Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen	<input checked="" type="checkbox"/> Siehe Anhang Patentfamilie
<p>* Besonders Kategorien von angegebenen Veröffentlichungen :</p> <p>"A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist</p> <p>"E" Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist</p> <p>"L" Veröffentlichung, die gezeigt ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)</p> <p>"O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht</p> <p>"P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist</p>		<p>T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzipiell oder der ihr zugrundeliegenden Theorie angegeben ist</p> <p>"X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfindender Tätigkeit beruhend betrachtet werden</p> <p>"Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erfindender Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist</p> <p>"&" Veröffentlichung, die Mitglied derselben Patentfamilie ist</p>
Datum des Abschlusses der Internationalen Recherche		Absendedatum des Internationalen Rechercheberichts
21. August 2000		30/08/2000
Name und Postanschrift der Internationalen Recherchenbehörde		Bevollmächtigter Bediensteter
Europäisches Patentamt, P.B. 5818 Patentaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Gamb, V

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen PCT/EP 00/03263

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 619 326 A (TOSOH CORP) 12. Oktober 1994 (1994-10-12) Beispiel 14 Seite 8, Zeile 10 – Zeile 24 -----	1-4
P,X	DE 198 28 271 A (ELENAC GMBH) 30. Dezember 1999 (1999-12-30) Beispiele 1-3 -----	1,3,4
P,X	DE 197 57 540 A (HOECHST AG) 24. Juni 1999 (1999-06-24) Beispiele 1,2 -----	1,3,4

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

 Int. nationales Aktenzeichen
PCT/EP 00/03263

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 0781783 A	02-07-1997	DE	59602084 D	08-07-1999
		ES	2135157 T	16-10-1999
		JP	9291107 A	11-11-1997
		US	5908903 A	01-06-1999
WO 9623005 A	01-08-1996	US	5939347 A	17-08-1999
		AU	4701796 A	14-08-1996
		EP	0805824 A	12-11-1997
WO 9604319 A	15-02-1996	US	5643847 A	01-07-1997
		AU	687231 B	19-02-1998
		AU	3204695 A	04-03-1996
		BR	9508487 A	30-12-1997
		CA	2195879 A	15-02-1996
		CN	1157623 A	20-08-1997
		CZ	9700285 A	16-07-1997
		EP	0775164 A	28-05-1997
		JP	10503798 T	07-04-1998
		NO	970409 A	19-03-1997
		PL	318432 A	09-06-1997
		US	5972823 A	26-10-1999
EP 0619326 A	12-10-1994	JP	2988222 B	13-12-1999
		JP	7118319 A	09-05-1995
		DE	69403928 D	31-07-1997
		DE	69403928 T	18-12-1997
		JP	2988244 B	13-12-1999
		JP	7196722 A	01-08-1995
DE 19828271 A	30-12-1999	AU	4608899 A	10-01-2000
		WO	9967302 A	29-12-1999
DE 19757540 A	24-06-1999	WO	9933881 A	08-07-1999