量子力学 II (2025) 期末 - 答卷

郑晓旸 202111030007

June 19, 2025

问题 1 (30 分)

- (a) 利用 J_z 时间反演为奇,证明 $\Theta|j,m\rangle=c|j,-m\rangle$,其中 c 为常数。
- (b) 再利用 $J_{\pm}|jm\rangle = e^{i\delta}c_{\pm}(j,m)|jm\pm 1\rangle$,进一步证明:

$$\Theta|j,m\rangle = e^{i\delta}(-1)^m|j,-m\rangle.$$

(a) 证明:

时间反演算符 Θ 是一个反幺正算符,其重要性质之一是对角动量算符的作用:

$$\Theta \mathbf{J} \Theta^{-1} = -\mathbf{J}$$

这意味着 $\Theta J_k \Theta^{-1} = -J_k$ 对于 k = x, y, z 都成立。

首先考虑总角动量算符 $\mathbf{J}^2 = J_x^2 + J_y^2 + J_z^2$ 在时间反演下的变换:

$$\begin{split} \Theta \mathbf{J}^2 \Theta^{-1} &= \Theta (J_x^2 + J_y^2 + J_z^2) \Theta^{-1} \\ &= (\Theta J_x \Theta^{-1})^2 + (\Theta J_y \Theta^{-1})^2 + (\Theta J_z \Theta^{-1})^2 \\ &= (-J_x)^2 + (-J_y)^2 + (-J_z)^2 \\ &= J_x^2 + J_y^2 + J_z^2 = \mathbf{J}^2 \end{split}$$

因此, \mathbf{J}^2 在时间反演下是不变的,即 $[\mathbf{J}^2, \Theta] = 0$ 。 已知角动量本征态 $|j, m\rangle$ 是 \mathbf{J}^2 的本征态:

$$\mathbf{J}^2 |j,m\rangle = j(j+1)\hbar^2 |j,m\rangle$$

将 \mathbf{J}^2 作用到态 $\Theta|j,m\rangle$ 上:

$$\mathbf{J}^{2}(\Theta | j, m \rangle) = (\mathbf{J}^{2}\Theta) | j, m \rangle = \Theta(\mathbf{J}^{2} | j, m \rangle)$$
$$= \Theta(j(j+1)\hbar^{2} | j, m \rangle)$$

由于 $j(j+1)\hbar^2$ 是一个实数,且 Θ 是反幺正算符 ($\Theta c = c^*\Theta$),对实数作用时可直接提出:

$$\mathbf{J}^{2}(\Theta | j, m \rangle) = j(j+1)\hbar^{2}(\Theta | j, m \rangle)$$

这表明 $\Theta|j,m\rangle$ 仍然是 \mathbf{J}^2 的本征态,其本征值与 $|j,m\rangle$ 相同,为 $j(j+1)\hbar^2$ 。 接下来考虑 J_z 算符。题目给定 J_z 时间反演为奇 $(\Theta J_z \Theta^{-1} = -J_z)$ 。这意味着 $J_z \Theta = -\Theta J_z$ 。已知 $|j,m\rangle$ 是 J_z 的本征态:

$$J_z |j,m\rangle = m\hbar |j,m\rangle$$

将 J_z 作用到态 $\Theta|j,m\rangle$ 上:

$$J_{z}(\Theta | j, m \rangle) = (-\Theta J_{z}) | j, m \rangle = -\Theta(J_{z} | j, m \rangle)$$
$$= -\Theta(m\hbar | j, m \rangle)$$

由于 mħ 是一个实数:

$$J_z(\Theta | j, m \rangle) = -m\hbar(\Theta | j, m \rangle)$$

这表明 $\Theta(j,m)$ 是 J_z 的本征态, 其本征值为 $-m\hbar$ 。

综上所述,态 $\Theta|j,m\rangle$ 是 ${\bf J}^2$ 和 J_z 的共同本征态,其本征值分别为 $j(j+1)\hbar^2$ 和 $-m\hbar$ 。在角动量量子数 j 给定的子空间内,由 ${\bf J}^2$ 和 J_z 的本征值唯一确定了态 $|j,-m\rangle$ (不考虑相位)。因此, $\Theta|j,m\rangle$ 必须与 $|j,-m\rangle$ 成正比:

$$\Theta |j,m\rangle = c_{j,m} |j,-m\rangle$$

其中 $c_{i,m}$ 是一个复常数, 其可能依赖于 j 和 m。

(b) 证明:

首先,确定升降算符 $J_{\pm} = J_x \pm iJ_y$ 在时间反演下的变换:

$$\Theta J_{+}\Theta^{-1} = \Theta(J_{x} + iJ_{y})\Theta^{-1}$$

$$= \Theta J_{x}\Theta^{-1} + \Theta i\Theta^{-1}\Theta J_{y}\Theta^{-1}$$

$$= (-J_{x}) + (-i)(-J_{y})$$

$$= -J_{x} + iJ_{y} = -(J_{x} - iJ_{y}) = -J_{-}$$

所以, $\Theta J_+ = -J_-\Theta$ 。类似地,可得 $\Theta J_- = -J_+\Theta$ 。

考虑将时间反演算符 Θ 作用到 $J_{+}|j,m\rangle$ 的等式两边:

$$\Theta(J_{+}|j,m\rangle) = \Theta(e^{i\delta}c_{+}(j,m)|j,m+1\rangle)$$

左边利用 $\Theta J_+ = -J_-\Theta$ 和 (a) 的结果 $\Theta |j,k\rangle = c_k |j,-k\rangle$ (这里用 c_k 表示依赖于 m 的常数 $c_{j,k}$):

LHS =
$$(\Theta J_{+})|j,m\rangle = (-J_{-}\Theta)|j,m\rangle = -J_{-}(\Theta|j,m\rangle) = -J_{-}(c_{m}|j,-m\rangle)$$

由于 c_m 是一个系数,可以提出:

$$LHS = -c_m J_- |j, -m\rangle$$

根据题目给定的 J_{-} 作用形式 (将 m 替换为 -m):

$$J_{-}|j,-m\rangle = e^{i\delta}c_{-}(j,-m)|j,-m-1\rangle$$

所以,

$$LHS = -c_m e^{i\delta} c_-(j, -m) |j, -m - 1\rangle$$

右边利用 Θ 的反幺正性 ($\Theta c = c^*\Theta$) 和 (a) 的结果:

RHS =
$$\Theta(e^{i\delta}c_{+}(j,m)|j,m+1\rangle) = (e^{i\delta})^{*}c_{+}(j,m)\Theta|j,m+1\rangle$$

= $e^{-i\delta}c_{+}(j,m)c_{m+1}|j,-(m+1)\rangle = e^{-i\delta}c_{+}(j,m)c_{m+1}|j,-m-1\rangle$

令 LHS = RHS, 并比较 $|j, -m - 1\rangle$ 前的系数 (假设 $|j, -m - 1\rangle \neq 0$):

$$-c_m e^{i\delta} c_-(j, -m) = e^{-i\delta} c_+(j, m) c_{m+1}$$

$$c_{m+1} = -c_m \frac{e^{i\delta}}{e^{-i\delta}} \frac{c_-(j, -m)}{c_+(j, m)} = -c_m e^{2i\delta} \frac{c_-(j, -m)}{c_+(j, m)}$$

这是系数 c_m 的递推关系。

要证明的形式是 $\Theta|j,m\rangle = e^{i\delta}(-1)^m|j,-m\rangle$,这意味着 $c_m = e^{i\delta}(-1)^m$ 。如果 $c_m = e^{i\delta}(-1)^m$,那么 $c_{m+1} = e^{i\delta}(-1)^{m+1} = -e^{i\delta}(-1)^m = -c_m$ 。将此代入递推关系中:

$$-c_m = -c_m e^{2i\delta} \frac{c_-(j, -m)}{c_+(j, m)}$$

若 $c_m \neq 0$, 则要求:

$$1 = e^{2i\delta} \frac{c_{-}(j, -m)}{c_{+}(j, m)}$$

即 $c_+(j,m)=e^{2i\delta}c_-(j,-m)$ 。这个条件是关于题目中给定的 J_\pm 算符系数 $c_\pm(j,m)$ 和相位 $e^{i\delta}$ 之间的一个一致性要求。如果这个一致性条件成立,那么递推关系 $c_{m+1}=-c_m e^{2i\delta}\frac{c_-(j,-m)}{c_+(j,m)}$ 就简化为 $c_{m+1}=-c_m$ 。此递推关系的通解为 $c_m=C_0(-1)^m$,其中 C_0 是一个不依赖于 m 的常数 (但可能依赖于 j)。为了与目标形式 $\Theta|j,m\rangle=e^{i\delta}(-1)^m|j,-m\rangle$ 相符,选择 $C_0=e^{i\delta}$ 。因此,在题目给定的 J_\pm 作用形式与 Θ 作用结果形式内在一致(即 $c_+(j,m)=e^{2i\delta}c_-(j,-m)$)的前提下,证明了:

$$\Theta|j,m\rangle = e^{i\delta}(-1)^m|j,-m\rangle.$$

问题 2 (30 分)

一个无自旋粒子束缚在固定点,其束缚势能 $V(\mathbf{x})$ 不是中心势,故能级都是非简并的。利用时间反演对称性证明 $\langle \mathbf{L} \rangle = 0$ 。

证明:

1. 哈密顿量与时间反演对称性

系统的哈密顿量为

$$H = \frac{\mathbf{p}^2}{2m} + V(\mathbf{x})$$

其中 \mathbf{p} 是动量算符, $V(\mathbf{x})$ 是束缚势能。时间反演算符为 Θ 。对于无自旋粒子,时间反演算符对坐标算符 \mathbf{x} 和动量算符 \mathbf{p} 的作用如下:

$$\Theta \mathbf{x} \Theta^{-1} = \mathbf{x}$$

$$\Theta \mathbf{p} \Theta^{-1} = -\mathbf{p}$$

因此,哈密顿量在时间反演下的变换为:

$$\begin{split} \Theta H \Theta^{-1} &= \Theta \left(\frac{\mathbf{p}^2}{2m} + V(\mathbf{x}) \right) \Theta^{-1} \\ &= \frac{1}{2m} (\Theta \mathbf{p} \Theta^{-1}) \cdot (\Theta \mathbf{p} \Theta^{-1}) + V(\Theta \mathbf{x} \Theta^{-1}) \\ &= \frac{1}{2m} (-\mathbf{p}) \cdot (-\mathbf{p}) + V(\mathbf{x}) \\ &= \frac{\mathbf{p}^2}{2m} + V(\mathbf{x}) = H \end{split}$$

这表明哈密顿量 H 在时间反演下是不变的,即系统具有时间反演对称性: $[\Theta, H] = 0$ 。

2. 非简并能级与时间反演态

设 $|n\rangle$ 是哈密顿量 H 的一个能量本征态,对应的能量本征值为 E_n ,即:

$$H|n\rangle = E_n|n\rangle$$

由于哈密顿量具有时间反演对称性, $\Theta|n\rangle$ 也是 H 的一个本征态,且具有相同的能量本征值 E_n :

$$H(\Theta|n\rangle) = (\Theta H \Theta^{-1})(\Theta|n\rangle) = \Theta(H|n\rangle) = \Theta(E_n|n\rangle) = E_n(\Theta|n\rangle)$$

(因为能量 E_n 是实数)。题目中已说明能级都是非简并的。这意味着对于每一个能量本征值 E_n ,只存在一个(除去整体相位因子外)线性无关的本征态。因此, $\Theta(n)$ 必须与 $|n\rangle$ 成正比:

$$\Theta|n\rangle = c_n|n\rangle$$

其中 c_n 是一个复数。对于无自旋粒子,时间反演算符的平方 $\Theta^2=1$ 。将 Θ 再次作用于上式:

$$\Theta^2|n\rangle = \Theta(c_n|n\rangle)$$

由于 Θ 是反幺正算符, $\Theta(c_n|n\rangle) = c_n^*(\Theta|n\rangle) = c_n^*(c_n|n\rangle) = |c_n|^2|n\rangle$ 。因此有:

$$1 \cdot |n\rangle = |c_n|^2 |n\rangle$$

这意味着 $|c_n|^2 = 1$ 。对于非简并能级,可以选择本征态的相位,使得 $c_n = 1$ 。所以:

$$\Theta|n\rangle = |n\rangle$$

3. 轨道角动量算符在时间反演下的变换

轨道角动量算符 $\mathbf{L} = \mathbf{x} \times \mathbf{p}$ 。其在时间反演下的变换为:

$$\Theta \mathbf{L} \Theta^{-1} = (\Theta \mathbf{x} \Theta^{-1}) \times (\Theta \mathbf{p} \Theta^{-1})$$

$$= \mathbf{x} \times (-\mathbf{p}) = -(\mathbf{x} \times \mathbf{p}) = -\mathbf{L}$$

4. 证明 $\langle \mathbf{L} \rangle = 0$

考虑在能量本征态 $|n\rangle$ 下轨道角动量的期望值 $\langle \mathbf{L} \rangle_n = \langle n | \mathbf{L} | n \rangle$ 。利用 $\Theta | n \rangle = |n \rangle$,可以写出:

$$\langle \mathbf{L} \rangle_n = \langle n | \mathbf{L} | n \rangle = \langle \Theta n | \mathbf{L} | \Theta n \rangle$$

由于时间反演算符 Θ 是反幺正的,对于任意算符 A 和任意态 $|\psi\rangle$, $|\phi\rangle$,有如下关系:

$$\langle \Theta \psi | A | \Theta \phi \rangle = \langle \psi | \Theta^{-1} A \Theta | \phi \rangle^*$$

将此应用于 $\langle \Theta n | \mathbf{L} | \Theta n \rangle$, 得到:

$$\langle \Theta n | \mathbf{L} | \Theta n \rangle = \langle n | \Theta^{-1} \mathbf{L} \Theta | n \rangle^*$$

将 $\Theta^{-1}\mathbf{L}\Theta = -\mathbf{L}$ 代入上式 (因为 $\Theta\mathbf{L}\Theta^{-1} = -\mathbf{L}$ \Longrightarrow $\mathbf{L} = \Theta^{-1}(-\mathbf{L})\Theta$ \Longrightarrow $\Theta^{-1}\mathbf{L}\Theta = -\mathbf{L}$):

$$\langle \Theta n | \mathbf{L} | \Theta n \rangle = \langle n | (-\mathbf{L}) | n \rangle^* = -\langle n | \mathbf{L} | n \rangle^*$$

因此,得到:

$$\langle n|\mathbf{L}|n\rangle = -\langle n|\mathbf{L}|n\rangle^*$$

即:

$$\langle \mathbf{L} \rangle_n = -\langle \mathbf{L} \rangle_n^*$$

由于轨道角动量算符 \mathbf{L} 是厄米算符,其在任意态下的期望值是一个实矢量。这意味着 $\langle \mathbf{L} \rangle_n^* = \langle \mathbf{L} \rangle_n$ 。将此代入上面的等式:

$$\langle \mathbf{L} \rangle_n = - \langle \mathbf{L} \rangle_n$$

$$2\langle \mathbf{L} \rangle_n = 0$$

$$\langle \mathbf{L} \rangle_n = 0$$

这证明了对于一个无自旋粒子,如果其束缚在固定点的势能 $V(\mathbf{x})$ 不是中心势,且能级都是非简并的,那么其轨道角动量的期望值为零。由于这是对任意非简并本征态 $|n\rangle$ 成立的,所以一般结论 $\langle \mathbf{L} \rangle = 0$ 成立。

问题 3 (40 分)

三个 S=1/2 粒子构成的系统,哈密顿量为

$$H = J(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_2 \cdot \mathbf{S}_3 + \mathbf{S}_3 \cdot \mathbf{S}_1).$$

(1) 请问系统是否具有时间反演不变性? (2) 能级是否简并?

1. 系统的时间反演不变性

系统具有时间反演不变性。

证明: 时间反演算符 Θ 是一个反幺正算符。对于自旋算符 \mathbf{S}_i ,其变换性质为 $\Theta \mathbf{S}_i \Theta^{-1} = -\mathbf{S}_i$ 。考虑哈密顿量中的任意一项 $\mathbf{S}_i \cdot \mathbf{S}_j = S_{ix}S_{jx} + S_{iy}S_{jy} + S_{iz}S_{jz}$ 。在时间反演操作下:

$$\Theta(\mathbf{S}_i \cdot \mathbf{S}_j)\Theta^{-1} = \sum_{k=x,y,z} \Theta(S_{ik}S_{jk})\Theta^{-1}$$

由于 Θ 是反幺正的,且 $\Theta S_{ik} \Theta^{-1} = -S_{ik}$ 和 $\Theta S_{jk} \Theta^{-1} = -S_{jk}$,我们有:

$$\Theta(S_{ik}S_{jk})\Theta^{-1} = (\Theta S_{ik}\Theta^{-1})(\Theta S_{jk}\Theta^{-1}) = (-S_{ik})(-S_{jk}) = S_{ik}S_{jk}$$

因此, $\Theta(\mathbf{S}_i \cdot \mathbf{S}_j)\Theta^{-1} = \mathbf{S}_i \cdot \mathbf{S}_j$ 。假设耦合常数 J 是实数 (通常物理哈密顿量中的参数是实数),则 $\Theta J \Theta^{-1} = J^* = J$ 。哈密顿量在时间反演下的变换为:

$$\Theta H \Theta^{-1} = \Theta [J(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_2 \cdot \mathbf{S}_3 + \mathbf{S}_3 \cdot \mathbf{S}_1)] \Theta^{-1}$$

$$= J(\Theta(\mathbf{S}_1 \cdot \mathbf{S}_2) \Theta^{-1} + \Theta(\mathbf{S}_2 \cdot \mathbf{S}_3) \Theta^{-1} + \Theta(\mathbf{S}_3 \cdot \mathbf{S}_1) \Theta^{-1})$$

$$= J(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_2 \cdot \mathbf{S}_3 + \mathbf{S}_3 \cdot \mathbf{S}_1) = H$$

由于 $\Theta H \Theta^{-1} = H$,即 $[H, \Theta] = 0$,系统具有时间反演不变性。

2. 能级简并

证明:

引入总自旋算符 $\mathbf{S}_{tot} = \mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3$ 。其平方为 $\mathbf{S}_{tot}^2 = (\mathbf{S}_1 + \mathbf{S}_2 + \mathbf{S}_3)^2 = \mathbf{S}_1^2 + \mathbf{S}_2^2 + \mathbf{S}_3^2 + 2(\mathbf{S}_1 \cdot \mathbf{S}_2 + \mathbf{S}_1 \cdot \mathbf{S}_3 + \mathbf{S}_2 \cdot \mathbf{S}_3)$ 。对于 S = 1/2 的粒子, $\mathbf{S}_1^2 = s_i(s_i + 1)\hbar^2 = \frac{1}{2}(\frac{1}{2} + 1)\hbar^2 = \frac{3}{4}\hbar^2$ 。所以, $\mathbf{S}_1^2 + \mathbf{S}_2^2 + \mathbf{S}_3^2 = 3 \cdot \frac{3}{4}\hbar^2 = \frac{9}{4}\hbar^2$ 。则哈密顿量中的点乘项可以表示为:

$$\mathbf{S}_{1} \cdot \mathbf{S}_{2} + \mathbf{S}_{2} \cdot \mathbf{S}_{3} + \mathbf{S}_{3} \cdot \mathbf{S}_{1} = \frac{1}{2} (\mathbf{S}_{tot}^{2} - (\mathbf{S}_{1}^{2} + \mathbf{S}_{2}^{2} + \mathbf{S}_{3}^{2})) = \frac{1}{2} \left(\mathbf{S}_{tot}^{2} - \frac{9}{4} \hbar^{2} \right)$$

哈密顿量 H 可以改写为:

$$H = J\left(\frac{1}{2}\mathbf{S}_{tot}^2 - \frac{9}{8}\hbar^2\right) = \frac{J}{2}\mathbf{S}_{tot}^2 - \frac{9J}{8}\hbar^2$$

系统的能量本征值 E 取决于总自旋量子数 S (其中 \mathbf{S}_{tot}^2 的本征值为 $S(S+1)\hbar^2$):

$$E_S = \frac{J}{2}S(S+1)\hbar^2 - \frac{9J}{8}\hbar^2$$

对于三个 S=1/2 的粒子耦合,总自旋 S 的可能取值: 首先耦合 \mathbf{S}_1 和 \mathbf{S}_2 得到 $\mathbf{S}_{12}=\mathbf{S}_1+\mathbf{S}_2$ 。 S_{12} 可以取 1/2+1/2=1 或 1/2-1/2=0。然后耦合 \mathbf{S}_{12} 和 \mathbf{S}_{3} :

- 如果 $S_{12}=1$,与 $S_3=1/2$ 耦合,得到 $S_{tot}=1+1/2=3/2$ 或 1-1/2=1/2。
- 如果 $S_{12}=0$,与 $S_3=1/2$ 耦合,得到 $S_{tot}=0+1/2=1/2$ 。

所以,总自旋 S_{tot} 的可能取值为 3/2 (出现一次) 和 1/2 (出现两次)。 对应的能量本征值为:

• 对于 S = 3/2:

$$E_{3/2} = \frac{J}{2} \frac{3}{2} \left(\frac{3}{2} + 1 \right) \hbar^2 - \frac{9J}{8} \hbar^2 = \frac{J}{2} \frac{3}{2} \frac{5}{2} \hbar^2 - \frac{9J}{8} \hbar^2 = \frac{15J}{8} \hbar^2 - \frac{9J}{8} \hbar^2 = \frac{6J}{8} \hbar^2 = \frac{3J}{4} \hbar^2$$

此能级的简并度为 2S + 1 = 2(3/2) + 1 = 4。

• 对于 S=1/2:

$$E_{1/2} = \frac{J}{2} \frac{1}{2} \left(\frac{1}{2} + 1 \right) \hbar^2 - \frac{9J}{8} \hbar^2 = \frac{J}{2} \frac{1}{2} \frac{3}{2} \hbar^2 - \frac{9J}{8} \hbar^2 = \frac{3J}{8} \hbar^2 - \frac{9J}{8} \hbar^2 = -\frac{6J}{8} \hbar^2 = -\frac{3J}{4} \hbar^2$$

由于总自旋 S=1/2 的态出现了两次 (即有两个独立的态系列可以耦合得到总自旋 S=1/2),每个 S=1/2 的态对应的简并度是 2S+1=2(1/2)+1=2。因此,对应能量 $E_{1/2}$ 的总简并度为 $2\times 2=4$ 。

系统有两个不同的能量本征值, $E_{3/2}=\frac{3J}{4}\hbar^2$ 和 $E_{1/2}=-\frac{3J}{4}\hbar^2$ 。每个能量本征值都对应一个 4 重简并的能级。因此,能级是简并的。

此外,由于系统由奇数个 (3 个) 半整数自旋粒子组成,且哈密顿量具有时间反演不变性,根据 Kramers' 定理,所有能级至少是两重简并的。我们的计算结果 (4 重简并)与 Kramers' 定理是一致的。