Machine Learning For Design

Lecture 9 - Designing And Develop Machine Learning Models / Part 3

Alessandro Bozzon XX/03/2022

mlfd-io@tudelft.nl www.ml4design.com

Decision Trees

Decision Trees

- Machine learning models used both for classification and regression
- Trained with labelled data (supervised learning)
 - classes —> classification
 - values —> regression
- A very simple model that resembles human reasoning when making predictions:
 - Answering a lot of yes/no questions based on feature values
- Problems:
 - Which questions to answer?
 - How many questions? (Tree depth)
 - In which order?

Same Problem, Multiple Trees

- Feature space
 - Am I hungry?
 - Is there a red car outside?
 - Is it Monday?
 - Is it raining?
 - Is it cold outside?

Same Problem, Multiple Trees

- Feature space
 - Anthungry?
 - la there a red car outside?
 - = | sit Monday?
 - Is it raining?
 - Is it cold outside?

Same Problem, Multiple Trees

- Feature space
 - Am Hungry?
 - ls there a red car outside?
 - = | sit Monday?
 - Is it raining?
 - Is it cold outside?

Same decision, different trees

Tutorial 3

PM, SO₂, CO, NO, NO₂, NO₃, H₂S, and wind information

Prediction of bad smell (yes/no)

How to decide the best question to ask?

3 metrics

Accuracy

■ Which question helps me be **correct** more often?

Gini Impurity Index

- A measure of *diversity* in a dataset —> diversity of classes in a given leaf node
 - \blacksquare index = 0 means that all the items in a leaf node have the same class
- Which question helps me obtain the lowest average Gini impurity Index?

Entropy

- Another measure of diversity linked to information theory
- Which question helps me obtain the lowest average **entropy**?

Building the tree (pseudo-code)

- Add a root node, and associate it with the entire dataset
 - This node has level 0. Call it a leaf node

Hyperparameter: tree depth Stopping condition

- Repeat until the stopping conditions are met at every leaf node
 - Pick one of the leaf nodes at the highest level
 - Go through all the features, and select the one that splits the samples corresponding to that node in an optimal way, according to the selected metric.
 - Associate that feature to the node
 - This feature splits the dataset into two branches
 - Create two new leaf nodes, one for each branch
 - Associate the corresponding samples to each of the nodes
 - If the stopping conditions allow a split, turn the node into a decision node, and add two new leaf nodes underneath it
 - If the level of the node is i, the two new leaf nodes are at level i + 1
 - If the stopping conditions don't allow a split, the node becomes a leaf node
 - Associate the most common label among its samples
 - That label is the prediction at the leaf

A geometrical perspective

- Step 1 Select the first question
- X >= 5
 - Best possible prediction accuracy with one feature

- Step 2 Iterate
- -x < 5 & y < 8; x > = 5 & y > = 2
 - Perfect split of the feature space

Decision Trees: Pros and Cons

PROs

- Simple to understand and to interpret. Trees can be visualised
- Requires little data preparation. Other techniques often require data normalisation, dummy variables need to be created and blank values to be removed
- Able to handle both numerical and categorical data

Cons

- Possible to create over-complex trees that do not generalise the data well
 - overfitting
- Unstable —> small variations in the data might result in a completely different tree being generated
- Biased trees if some classes dominate

Ensemble learning: Random Forest

- Idea: combine several "weak" learners to build a strong learner
 - Build random training sets from the dataset
 - Train a different model on each of the sets
 - weak learners
 - Combination the weak models by voting (if it is a classification model) or averaging the predictions (if it is a regression model)
 - For any input, each of the weak learners predicts a value
 - The most common output (or the average) is the output of the strong learner

- Random Forest
 - Weak learners are decision trees

Strong learner (random forest)

Clustering

What is clustering?

- Grouping items that "belong together" (i.e. have similar features)
- Unsupervised learning: we only use data features, not the labels
- We can detect patterns
 - Group emails or search results
 - Customer shopping patterns
 - Regions of images
- Useful when don't know what you're looking for
 - But: can get gibberish
- If the goal is classification, we can later ask a human to label each group (cluster)

Why do we cluster?

- Summarizing data
 - Look at large amounts of data
 - Represent a large continuous vector with the cluster number
- Counting
 - Computing feature histograms
- Prediction
 - Images in the same cluster may have the same labels
- Segmentation
 - Separate the image into different regions

K-Means

- An iterative clustering algorithm
 - Initialize: Pick K random points as cluster centres
 - Alternate:
 - Assign data points to the closest cluster centre
 - Change the cluster centre to the average of its assigned points
 - Stop when no points' assignments change

Data items distribution

Add 3 Centroids (randomly)

Assign Data Points

Update Centroids

Re-Assign Data Points

Update Centroids

Re-Assign Data Points

Update Centroids

Re-Assign Data Points - Stop

Add 4 Centroids (randomly)

K-Means Pros and Cons

Pros

- Simple, fast to compute
- Guaranteed to converge in a finite number of iterations

Cons/issues

- Setting *k*?
 - One way: silhouette coefficient
- K-means algorithm is a heuristic
 - It does matter what random points you pick!
- Sensitive to outliers
- Detects spherical clusters

K-means not able to properly cluster

Machine Learning For Design

Lecture 9 - Designing And Develop Machine Learning Models / Part 3

Alessandro Bozzon XX/03/2022

mlfd-io@tudelft.nl www.ml4design.com

Credits

- Grokking Machine Learning. Luis G. Serrano. Manning, 2021
- https://scikit-learn.org/stable/modules/tree.html
- CIS 419/519 Applied Machine Learning. Eric Eaton, Dinesh Jayaraman. https://www.seas.upenn.edu/
 ~cis519/spring2020/