Fundamental Methods of Data Science

Class 5

Tomer Libal

Supervised segmentation

- ▶ In the exercise, you have used specific attributes to predict if a passenger survived or not
 - ▶ How did you choose these attributes?

Supervised segmentation

- In the exercise, you have used specific attributes to predict if a passenger survived or not
 - ▶ How did you choose these attributes?
- Some attributes (which ones?) offer more information than others
- ► How can we segment the population into groups that differ from each with respect to some quantity of interest?

Supervised segmentation

- In the exercise, you have used specific attributes to predict if a passenger survived or not
 - How did you choose these attributes?
- Some attributes (which ones?) offer more information than others
- ► How can we segment the population into groups that differ from each with respect to some quantity of interest?
- Informative attributes
 - Find knowable attributes that correlate with the target of interest

Supervised Segmentation

- ► How can we judge whether a variable contains important information about the target variable?
 - ► How much?

▶ **Objective:** Based on customer attributes, partition the customers into subgroups that are less impure — with respect to the class (i.e., such that in each group as many instances as possible belong to the same class)

▶ **Objective:** Based on customer attributes, partition the customers into subgroups that are less impure — with respect to the class (i.e., such that in each group as many instances as possible belong to the same class)

- The most common splitting criterion is called information gain (IG)
 - It is based on a purity measure called entropy
 - entropy = $-p_1(log_2p_1) p_2(log_2p_2) ...$
 - Measures the general disorder of a set

- The most common splitting criterion is called information gain (IG)
 - It is based on a purity measure called entropy
 - entropy = $-p_1(log_2p_1) p_2(log_2p_2) ...$
 - ▶ Measures the general disorder of a set

► Information gain measures the change in entropy due to any amount of new information being added

► **Information gain** measures the change in entropy due to any amount of new information being added

▶ What is the entropy of the left child? And the right?

 Information gain measures the change in entropy due to any amount of new information being added

- ▶ What is the entropy of the left child? And the right?
- ▶ What is the IG?


```
IG = entropy(parent) - [p(Balance < 50K) × entropy(Balance < 50K)
+p(Balance ≥ 50K) × entropy(Balance ≥ 50K)]

≈ 0.99 - [0.43 × 0.39 + 0.57 × 0.79]

≈ 0.37
```

Attribute Selection

- Reasons for selecting only a subset of attributes:
 - Better insights and business understanding
 - Better explanations and more tractable models
 - Reduced cost
 - Faster predictions
 - Better predictions!
 - Over-fitting (to be continued . . .)

- This dataset includes descriptions of hypothetical samples corresponding to 23 species of gilled mushrooms in the Agaricus and Lepiota Family
- Each species is identified as definitely edible, definitely poisonous, or of unknown edibility and not recommended
 - ▶ This latter class was combined with the poisonous one
- ► The Guide clearly states that there is no simple rule for determining the edibility of a mushroom; no rule like "leaflets three, let it be" for Poisonous Oak and Ivy

Attribute name	Possible values
CAP-SHAPE	bell, conical, convex, flat, knobbed, sunken
CAP-SURFACE	fibrous, grooves, scaly, smooth
CAP-COLOR	brown, buff, cinnamon, gray, green, pink, purple, red, white, yellow
BRUISES?	yes, no
ODOR	almond, anise, creosote, fishy, foul, musty, none, pungent, spicy
GILL-ATTACHMENT	attached, descending, free, notched
GILL-SPACING GILL-SIZE	close, crowded, distant broad, narrow
GILL-COLOR	black, brown, buff, chocolate, gray, green, orange, pink, purple, red, white, yellow
STALK-SHAPE	enlarging, tapering
STALK-ROOT	bulbous, club, cup, equal, rhizomorphs, rooted, missing
STALK-SURFACE-ABOVE-RING	fibrous, scaly, silky, smooth
STALK-SURFACE-BELOW-RING	fibrous, scaly, silky, smooth

