Analysis of mammary glands

Kasper D. Hansen

Fall 2022

Data

Analysis is based on the paper "RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR" by Law et al (2018, F1000Res).

Data is RNA-seq data from the mammary glands of female mice in triplicate.

Cells have been sorted into 3 cell populations: basal, luminal progenitors (LP) and mature luminal (ML)

In this instance, reads were aligned to the mouse reference genome (mm10) using the R based pipeline available in the Rsubread package (specifically the align function followed by featureCounts for gene-level summarisation based on the in-built mm10 RefSeq-based annotation).

Notes

Our focus here is on the steps performed in a typical RNA-seq analysis with voom. This is not a publication level analysis.

We only focus on 2 cell populations.

We don't control for batch effects and we don't model the fact that the cell populations are paired.

Loading the data

We load the edgeR package and the data in the form of a RangedSummarizedExperiment which might be familiar. edgeR uses its own data structure, a DGEList.

```
library(edgeR)
load("mamgland.rda")
mamgland
dge <- SE2DGEList(mamgland[, mamgland$group %in% c("Basal", "LP")])</pre>
```

Inspecting the data

colData(mamgland)
head(rowData(mamgland))

There are many (27k) genes

MDS plot

plotMDS(dge, label = dge\$samples\$group)

Expression filtering

```
keep.exprs <- filterByExpr(dge, group=dge$samples$group)
sum(keep.exprs)

## [1] 16253
dge <- dge[keep.exprs,, keep.lib.sizes=FALSE]</pre>
```

Size factor normalization

```
dge <- calcNormFactors(dge, method = "TMM")</pre>
```

Design

```
design <- model.matrix(~ group, data = dge$samples)</pre>
colnames(design) <- gsub("group", "", colnames(design))</pre>
design
##
              (Intercept) LP
## 10 6 5 11
## purep53
                        1 0
## JMS8-2
## JMS8-4
## JMS8-5
## JMS9-P8c
## attr(,"assign")
## [1] O 1
## attr(,"contrasts")
## attr(,"contrasts")$group
## [1] "contr.treatment"
```

Mean-variance relationship

v <- voom(dge, design, plot=TRUE)</pre>

voom: Mean-variance trend

Fitting the model and variance shrinkage

```
vfit <- lmFit(v, design)
vfit <- eBayes(vfit)</pre>
```

Checking that the variance is stabilized plotSA(vfit)

Inspecting the top genes

```
topTable(vfit, n = 5)
## Removing intercept from test coefficients
##
        rownames ENTREZID
                           SYMBOL TXCHROM
                                            logFC AveExpr
           18093 12994 Csn3 chr5 7.109058 9.004706 40.90067
## 12994
                            Spp1 chr5 7.959573 9.125674 34.24679
## 20750
           18275 20750
## 110935 19839 110935 Atp6v1b1 chr6 6.539368 6.613061 33.99703
## 269328 13648 269328 Muc15 chr2 4.985358 6.461080 33.24706
## 16664 4122 16664 Krt.14 chr.11 -7.804574 8.137070 -33.70876
##
             P.Value
                       adj.P.Val
                                      В
## 12994 5.168915e-12 8.401038e-08 17.71763
## 20750 2.768651e-11 1.100207e-07 16.33496
## 110935 2.966737e-11 1.100207e-07 16.23428
## 269328 3.662002e-11 1.100207e-07 16.15654
  16664 3.215058e-11 1.100207e-07 16.06298
```

Mean-difference plot

```
dt <- decideTests(vfit)
plotMD(vfit, status = dt[,2])</pre>
```

LP

Do thee p-values look good?

```
hist(topTable(vfit, n = Inf)$P.Value)
```

Removing intercept from test coefficients

Histogram of topTable(vfit, n = Inf)\$P.Valı

