b) O espaço de solução para o **problema da mochila** consiste em 2^n maneiras distintas de escolher os itens de forma a maximizar a utilidade e minimizar o peso L. Outra maneira de verificar o custo exponencial é expressando o tamanho da entrada em termos do número de bits necessários para a representação binária dos inteiros que são parte da entrada. O peso p_i e a utilidade u_i podem ser expressos em termos de $x_i = \log p_i$ e $y_i = \log u_i$. Logo, $p_i = 2^x$ e $u_i = 2^y$, isto é, o peso e a utilidade são funções exponenciais do número de bits x e y utilizados para a entrada p_i e u_i . Logo, o algoritmo tem complexidade exponencial.

.22.

a) O algoritmo mais eficiente conhecido é aquele que obtém todos os (n-1)! caminhos e depois pega o maior deles.

b) O(n!). São (n-1)! caminhos com n adições em cada caminho. O problema é \mathcal{NP} -completo. Como não existe prova de que $P \neq \mathcal{NP}$ ou $P = \mathcal{NP}$, a resposta sobre se o algoritmo é ótimo (ou não) ainda não pode ser obtida.

c) O problema é $\mathcal{NP} ext{-}\mathrm{completo}$. Um algoritmo não determinista polinomial é mostrado abaixo:

for i:= 2 to |v| do caminho[i] := escolhe(prox. vertice);
if |maior_caminho| >= k
then achou
else nao achou

Solução I: Transformar o problema em questão no **problema do caixeiro-viajante** clássico multiplicando cada distância por (-1) e obtendo $G' = (V, A^-)$. Neste caso, G' tem rota <= (-k) se e somente se G tem rota >= k que inclua todos os vértices. Logo, existe rota >= k que inclua todos os vértices.

Solução II: Transformar o **ciclo de Hamilton** de G = (V, A) para o problema do caixeiro-viajante máximo. (Ciclo de Hamilton é \mathcal{NP} -completo.) Como o grafo é completo, decidir se G tem um ciclo de Hamilton com comprimento S = K (testando todos os ciclos hamiltonianos) é equivalente a resolver o problema em pauta.

Caracteres ASCI

Car	P	98	-10	B	400	100	tred .	b)=	8	5	e	é	è	e:	,	-	1	1-1	Ø	ū	0	9	0	0	10	. -	0	n ·	ū	ij.	n n	'A	р	N			
Dec	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255			
Car	-	0	余	1/4	1/2	3/4	. ?	A	Á	À	Ã	Ä	Å	Æ	5	E	E	E	E .		-	-		Đ	Z	0	0	0	0:	0	×	0	D,	0	0	D	X
Dec	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	500	210	211	212	213	214	215	216	217	218	219	220	221
Car	CCH	MM	SPA	EPA	SOS	SGCI	SCI	CSI	ST	OSC	PM	APC			0	4	n	*		con	:	0	රෝ	¥	Г	1	(E)	,		+	63	60		п	•		,
Dec	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184
Car	0	р	б	ı	00	t	n	٨	W	×	y	Z	~	_	~	ì	DEL	PAD	HOP	BPH	NBH	IND	NEL	SSA	ESA	HTS	HTJ	VTS	PLD	PLU	R1	SS2	SS3	DCS	PV1	PV2	STS
Dec	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147
Car	ſ	X	Г	M	Z	0	Ь	0	R	S	T	n	^	W	×	Y	2	_	_	_	. (1-	8	p	C	p	е	4	ы	р			۲, ۰	-	m	n
Dec	074	075	940	077	078	040	080	081	085	083	084	085	980	087	880	680	060	160	092	093	094	095	960	260	860	660	100	101	102	103	104	105	106	107	108	109	110
Car	%	28		_	_	*	+				/	0	-	2	3	4	5	9	7	00	6			- V	/ 11	^	6	0	A	H	כו	0	i i	1 1	, 7) =	-
Dec	037	038	039	040	041	045	043	044	045	046	047	048	049	020	051	052	053	054	055	056	057	058	059	090	190	062	063	064	065	990	000	000	000	020	070	07.0	073
Car	NUL	SOH	STX	ETX	EOT	ENQ	ACK	BEL	BS	TAB	LF	VT	FF	CR	SO	SI	DLE	DC1	DC2	DC3	DC4	NACK	SYN	FTB	CAN	EM	SITE	ESC	FS	250	200	TTC	00) -	. =	77	‡ es
Dec	000	001	000	003	004	002	900	200	800	600	010	011	012	013	014	015	016	017	018	019	020	021	025	093	020	025	920	027	0.58	000	050	000	100	700	000	0.25	036