Um Novo Algoritmo de Balanceamento Espectral Entre Grupos de Núcleos para Redes Ópticas Elásticas com Multiplexação por Divisão Espacial

Paulo E. R. Araujo, Jurandir C. Lacerda Jr, André C. B. Soares

Universidade Federal do Piauí - UFPI

Introdução

- Redes Ópticas Elásticas Com Multiplexação por Divisão Espacial
- Crosstalk XT
- Roteamento, Formato de Modulação e Alocação de Núcleo e Espectro RMCSA
 - o Alocação de Núcleo e Espectro CSA
- Tabela de Pontuação e Regionalização Prioritária do Espectro

Redes Ópticas Elásticas Com Multiplexação por Divisão Espacial

- Multi-Core Fiber MCF
- Solução CSA
 - o Escolha de Núcleo e Espectro
- Restrições
 - Contiguidade Espectral
 - Continuidade Espectral
- Políticas de Alocação de Espectro

Efeitos de Degradação de Sinal da Camada Física

- Efeitos de Camada Física
- Quality of Transmission QoT
 - Optical Signal to Noise Ratio OSNR
- Crosstalk XT

Algoritmo de Distanciamento Espectral Inter-Núcleos - ADEIN

- Objetivo: Evitar a ocorrência de Crosstalk
- Núcleo
 - Cadenciar o uso dos núcleos de borda e central
- Espectro
 - Regionalizar o espectro e especificar políticas de alocação para determinados grupos de núcleo

Núcleo - Tabela de Pontuação

- Distanciar fisicamente o núcleo anteriormente utilizado do núcleo atualmente selecionado.
- Cadenciar o uso do núcleo central em relação aos núcleos de borda.

COUNT: 1

Núcleos [6]

PONTUAÇÃO		
0	14 p	
1	9 p	
2	7 p	
3	8 p	
4	7 p	
5	9 p	
6	11 p	

Escolhido A

Adjacente Adjacente ao oposto Oposto

COUNT: 2

Núcleos [6, 4]

PONTUAÇÃO		
0	14 p	
1	9 p	
2	7 p	
3	8 p	
4	7 p	
5	9 p	
6	11 p	

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 2

Núcleos [6, 4]

PONTUAÇÃO			
0	13 p		
1	7 p		
2	4 p		
3	7 p		
4	8 p		
5	8 p		
6	8 p		

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 3

Núcleos [6, 4, 2]

PONTUAÇÃO		
0	13 p	
1	7 p	
2	4 p	
3	7 p	
4	8 p	
5	8 p	
6	8 p	

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 3

Núcleos [6, 4, 2]

PONTUAÇÃO			
0	12 p		
1	6 p		
2	5 p		
3	6 p		
4	5 p		
5	6 p		
6	5 p		

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 4

Núcleos [6, 4, 2, 6]

PONTUAÇÃO		
0	12 p	
1	6 p	
2	5 p	
3	6 p	
4	5 p	
5	6 p	
6	5 p	

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 4

Núcleos [6, 4, 2, 6]

PONTUAÇÃO			
0	11 p		
1	5 p		
2	2 p		
3	5 p		
4	2 p		
5	5 p		
6	6 p		

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 5

Núcleos [6, 4, 2, 6, 4]

PONTUAÇÃO			
0	11 p		
1	5 p		
2	2 p		
3	5 p		
4	2 p		
5	5 p		
6	6 p		

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 5

Núcleos [6, 4, 2, 6, 4]

PONTUAÇÃO		
0	10 p	
1	4 p	
2	-1 p	
3	4 p	
4	3 p	
5	4 p	
6	3 p	

Escolhido

Adjacente Adjacente ao oposto Oposto

COUNT: 5

Núcleos [6, 4, 2, 6, 4]

PONTUAÇÃO			
0	10 p		
1	4 p		
2	10 p		
3	4 p		
4	3 p		
5	4 p		
6	3 p		

Escolhido

Adjacente Adjacente ao oposto Oposto

Espectro - Regionalização e Distanciamento das Alocações

Avaliação de Desempenho

RMCSA

- Roteamento: Dijkstra
- Modulação: Adaptativa
- Alocação de Núcleo e Espectro: ADEIN

SLICE Network Simulator - SNetS

- 10 replicações com 100.000 requisições cada.
- Distribuição uniforme das requisições.
- A geração das requisições segue uma distribuição de Poisson
- o Largura de bandas utilizadas: 100, 150, 200, 250, 300, 350 e 400 Gbps
- Nível de confiança de 95%
- Topologias: EON e NSFNet

Topologias Utilizadas

Avaliação de Desempenho

- Algoritmos de Referência
 - Algoritmo de Balanceamento Inter-Núcleo (ABNE)
 - Lacerda Jr., J., Fontinele, A., Santos, I., Leao, E., Campelo, D., Monteiro, J. A., and Soáres, A. (2020). Algoritmo de balanceamento inter-nucleos para redes Ópticas elásticas com multiplexação por divisão espacial. In Anais do XXXVIII Simposio Brasileiro de Redes de Computadores e Sistemas Distribuídos, pages 519–532, Porto Alegre, RS, Brasil. SBC.
 - Core Priorization with First Fit (CP-FF)
 - Core Priorization with Random Fit (CP-RF)
 - Fujii, S., Hirota, Y., Tode, H., and Murakami, K. (2014). On-demand spectrum and core allocation for reducing crosstalk in multicore fibers in elastic optical networks. IEEE/OSA Journal of Optical Communications and Networking, 6(12):1059–1071.

Gráficos de Probabilidade de Bloqueio de Banda

Gráficos de Probabilidade de Bloqueio de Banda por XT

Gráficos de Probabilidade de Bloqueio de Circuito

Conclusão

- Algoritmo de Distanciamento Espectral Inter-Núcleos (ADEIN)
 - Apresentou uma redução na incidência de crosstalk.
 - Diminuição dos bloqueios de requisições.
- Trabalhos Futuros
 - Expandir o cenário de avaliação e métricas.
 - Analisar e quantificar porcentagens adequadas para o uso do núcleo central.
 - © Evoluir o algoritmo de seleção de núcleo e integrar com a seleção de espectro.

Um Novo Algoritmo de Balanceamento Espectral Entre Grupos de Núcleos para Redes Ópticas Elásticas com Multiplexação por Divisão Espacial

Paulo E. R. Araujo, Jurandir C. Lacerda Jr, André C. B. Soares

Obrigado!

Páginas Extras

Parâmetros da Camada Física

Descrição	Valor	
Densidade espectral de potência do sinal	-23 dBm/GHz	
Atenuação da fibra (α)	0,2 dB/km	
Parâmetro de dispersão da fibra (D)	16 ps/nm/km	
Coeficiente não-linear da fibra (γ)	1,3 (Wkm) ⁻¹	
Tamanho de um span (L_s)	80 km	
Figura de ruído do amplificador (NF)	5 dB	
Raio de curvatura (R)	0,01 m	
Constante de propagação (β)	$10^7 \mathrm{m}^{-1}$	
Distância entre núcleos (Λ)	$4.5 \times 10^{-5} \text{ m}$	
Coeficiente de acoplamento (k)	5,84 ×10 ⁻³ m ⁻	

Parâmetros de Modulação

100 3	BPSK	QPSK	8QAM	16QAM	32QAM
Distância	10.000 km	5.000 km	2.500 km	1.250 km	650 km
Limiar de OSNR	5,5 dB	8,5 dB	12,5 dB	15,1 dB	18,1 dB
Limiar de XT	-14 dB	-18,5 dB	-21 dB	-25 dB	-27 dB

Lobato, F. R., Jacob, A., Rodrigues, J., Cartaxo, A. V. T., and Costa, J. (2019). Inter-core crosstalk aware greedy algorithm for spectrum and core assignment in space division multiplexed elastic optical networks. Optical Switching and Networking, 33:61 – 73.