Destructive Testing Analysis

- 1. f(n) = 2 sqrt(n)
 - a) Worst case: O(sqrt(n))
 - b) The worst case running time is O(sqrt(n)) because no matter what, the program will divide the number of rungs needed to test your program to sqrt(n).
 - c) f(n) = sqrt(n): iterating through the divisions of the ladder
 - + sqrt(n): iterating through a specific division until the device breaks
 - $= 2 \operatorname{sqrt}(n)$

2.

Ladder Sizes	(Ladder size) - 3	(Ladder size) / 2 - 2	Highest Safe Rung = 2
10	5	3	4
10,000	198	149	4
1,000,000	1998	1499	4
100,000,000	19998	14999	4

- 3. a) Yes, the results aligned with our interpretation. Although there was no way to reduce tehe running time down to $O(\log(n))$, the lower number of drops does indicate the algorithm is netter than O(n) running time.
 - b) N/A