

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 1/31

Textile Flächen aus dem 3D-Drucker

- Kann man textile Strukturen mit einem 3D-Drucker herstellen?
- Sollte man?
- Welche elastischen Eigenschaften haben diese Flächen?
- Warum?
- Sind sie vergleichbar mit Flächen aus textilen Fasern?

Rebekka Seyffarth

- Ausbildung zur Maßschneiderin
- Kostümassistentin am Theater und beim Fernsehen
- Studium Bekleidungstechnik

auf Twitter: Kurfuerstin

Ich hab ein Kleid entworfen!

Design

Ich hab ein Kleid entworfen!

Design

Produktion

Was?

Design

Produktion

Was?

Produktion

Design

Bekleidungstechnik: Schnittstelle zwischen Design und Produktion

Ich klär das.

Design

Bekleidungstechnik

Produktion

Beispiele 3D-gedruckter Bekleidung

Quelle: https://n-e-r-v-o-u-s.com/

Tragekomfort von Bekleidung

- Psychologischer Tragekomfort
- Hautsensorischer Tragekomfort
- Physiologischer Tragekomfort
- Ergonomischer Tragekomfort

Tragekomfort von Bekleidung

- Psychologischer Tragekomfort
- Hautsensorischer Tragekomfort
- Physiologischer Tragekomfort
- Ergonomischer Tragekomfort

Ergonomischer Tragekomfort

- Passform und Bewegungsfreiheit
- erzeugt durch Schnitt eines Kleidungsstücks und Elastizität der eingesetzten Materialien

- Erforschung elastischer Eigenschaften
- Einflussgrößen identifizieren -> gezielt einsetzen
- → Tragekomfort 3D-gedruckter Kleidung erhöhen

Elastizität in textilen Flächen

- Elastische Materialien: Elastan
- Strukturelastizität: Maschen

Bild 6/27. Quergedehnte Maschenware

Bild 6/28. Längsgedehnte Maschenware

Quelle: Goldacker (1991): Grundlagen textiler Herstellungsverfahren, S. 11.

Elastizität in 3D-gedruckten Flächen

- Elastische Materialien: thermoplastisches Polyurethan (TPU)
- Strukturelastizität: Bögen, Spiralen, Federn, Maschen
 - Gestaltungsmöglichkeiten abhängig vom Druckverfahren

Quelle: https://3dprintingindustry.com/news/formlabs-new-3d-printing-resin-materials-35412/

Quelle: https://www.3ders.org/articles/20140128-3d-printed-flexible-textiles-a-stitch-toward-personalized-clothing.html

FLM: Fused Layer Modeling (Schmelzschichtverfahren)

- thermoplastisches Filament wird erwärmt und durch Düse geführt
- Stränge bilden Schicht für Schicht die gewünschte Geometrie

de/2014/10/30/3d-druck/

SLS: Selective Laser Sintering (Pulverdruckverfahren)

- Pulverschicht wird über gesamte Fläche aufgetragen
- Laser lässt punktgenau Pulver miteinander verschmelzen
- neue Pulverschichten, bis Bauraum gefüllt ist
- Pulver um Objekt entfernen

Rebekka Seyffarth

Strukturen Tessella und Hilo (SLS)

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 18/31

Struktur Salmiak (FLM)

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 19/31

Zugprüfung

Zugprüfung

- Dehnung, Elastizität und Zugfestigkeit messen
- Kraft-Dehnungs-Diagramm zeigt Längenänderung in % und aufgewendete Kraft in N

Quelle: DIN EN ISO 13934-1

1: Zugkraft 2: Höchstzi

2: Höchstzugkraft

3: Bruchkraft

4: Vorspannkraft

5: Höchstzugkraftdehnung

6: Bruchdehnung

7: Dehnung

Elastizität in 3D-gedruckten Flächen

Struktur	mittlere Höchstzugkraft F _H in N	mittlere Höchstzugkraft- Dehnung A _H in %	errechnete feinheitsbezogene Höchstzugkraft f _H in cN/tex	
HL	150 N	199 %	0,24 cN/tex	
HS	120 N	177 %	0,16 cN/tex	
TL	150 N	203 %	0,22 cN/tex	
TS	91 N	171 %	0,14 cN/tex	
SGH	60 N	316 %	0,38 cN/tex	
SGN	44 N	316 %	0,44 cN/tex	
SKH	80 N	443 %	0,49 cN/tex	
SKN	32 N	96 %	0,26 cN/tex	

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 22/31

Empfehlungen des Dialog Textil-Bekleidung

	körperfern geschnitten		körpernah geschnitten	
Produktgruppe	Höchstzugkraft in N	Höchstzugkraft-	Höchstzugkraft	Höchstzugkraft-
	Hochstzugklaft III N	Dehnung in %	in N	Dehnung in %
Hosen	250 N	12,5 – 55 %	300 N	12,5 – 35 %
Röcke	250 N	12,5 – 55 %	300 N	12,5 – 35 %
Jacken	200 N	12,5 – 40 %	200 N	12,5 – 40 %
Mäntel	200 N	12,5 – 55 %	200 N	12,5 – 55 %
Anoraks/Skikleidung/Sportswear	250 N	12,5 – 55 %	250 N	12,5 – 55 %
Pyjamas/Nachtwäsche	180 N	12,5 – 40 %	220 N	12,5 – 55 %
Hemden/Blusen/Kleider	180 N	12,5 – 40 %	220 N	12,5 – 55 %
Unterwäsche	180 N	12,5 – 40 %	220 N	12,5 – 55 %
Badekleidung	220 N	12,5 – 40 %	220 N	12,5 – 40 %
Futterstoffe	180 N	7,5 – 32,5 %	220 N	7,5 – 32,5 %

Quelle: Eigene Darstellung, nach (Dialog Textil-Bekleidung/German Fashion Modeverband Deutschland e.V. 2006: 46)

Vergleich der Mindestanforderungen

- √ Höchstzugkraft-Dehnungen
- X Höchstzugkräfte

 Flächen aus textilen Fasern bieten höhere Zugfestigkeit bei höherer Flexibilität, Blickdichte, Wärmerückhaltevermögen, Hautfreundlichkeit, ...

Einfluss der Strukturmerkmale

- ✓ Größe der Elemente
- X Höhe der Struktur und Gestaltung der Elementmitte
- ✓ Slicing-Programm

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 25/31

Workflow 3D-Druck

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 26/31

Einfluss des Slicers

dritte Schicht der Struktur

Mikroskopaufnahme: Bruchstelle der Struktur SGH

SGH nach Zugversuchen

Einfluss des Slicers

zweite Schicht der Struktur SKN

Mikroskopaufnahme: Bruchstelle der Struktur SKN

SKN nach Zugversuchen

Fazit

- textile Strukturen sollten aus elastischem Material und mit elastischer Struktur 3D-gedruckt werden
- Dehnbarkeit vergleichbar mit Flächen aus textilen Fasern
- Zugfestigkeit weit unter Kennwerten textiler Flächen
- noch zu klären: hautsensorischer und physiologischer Tragekomfort

Vielen Dank für die Aufmerksamkeit!

Gibt es Fragen?

09.04.2019 Rebekka Seyffarth Textile Flächen aus dem 3D-Drucker 30/31

Diskussionsfragen

- Würdet ihr 3D-gedruckte Kleidung tragen?
- Welche Anwendungsfälle könntet ihr euch für die Strukturen vorstellen?
- Wie müsste eine 3D-gedruckte textile Struktur noch gestaltet sein, dass ihr sie als Bekleidungstextil akzeptieren würdet?
- 3D-gedruckte Kleidung die Zukunft oder einfach Quatsch?

Nervous System: Kinematics

Quelle: https://n-e-r-v-o-u-s.com/projects/albums/kinematics-fold/content/folded-dress354-text/

Quelle: https://n-e-r-v-o-us.com/projects/albums/dres s-fabrication/content/dressbreakout1/

Quelle: https://n-e-r-v-o-u-s.com/projects/albums/dress-fabrication/content/dress-breakout3/