MATH 307

Lecture 18: QR Decomposition

2025-10-17

0.1 Orthogonal Matrices

- Definition: A matrix A is **orthogal** if $A^TA = AA^T = I$.
 - $A^TA = I$ implies that the columns of A are orthonormal, and AA^T implies that the rows of A are orthonormal.
 - Note $Q^{-1} \Rightarrow Q^{\perp}$ Similar computation for rows. To show that $Q \cdot Q^{\perp}$
 - Theorem: If A is an orthogonal matrix, then $||Ax|| = ||x||, \forall x \in \mathbb{R}^n$
 - For the proof we can just compute $||Ax||^2 = (Ax)^T \cdot Ax = x^T A^T Ax = x^T x = ||x||^2$
 - A good example of this type of matrix are the reflection and rotation matrices. What we can get from this is that projections do not change the length / magnitude.
 - We know that the matrix norm of any orthogonal matrix is 1. $\|Q\|=1$. Aside, if $Q_1 \wedge Q_2$ are orthogonal than so is $Q_1 \cdot Q_2$.
 - For projections (NOT Orthogonal), unless the trivial P = I. So this is true 99.9% time of the time, orthogonal matrices are invertible while it is not true that projections are.
 - Reflections: Let $U \subseteq \mathbb{R}^n$ be a subspace. The Reflection of $x \in \mathbb{R}^n$ through U is $\mathbb{R}x = 2Px x$ where P is the projection onto U.

$$Rx = 2PX - X \Rightarrow R = 2P - I$$

Check

$$\begin{split} R \cdot R^T &= (2P-I)(2P-I)^T = (2P-1)\big(2P^T-I^T\big) \\ R \cdot R^T &= (2P-I)(2P-I)^T = (2P-1)\big(2P^T-I^T\big) \end{split}$$

• To show that a matrix is orthogonal you must show $R \cdot R^T = I$ and $R^T \cdot R = I$. Which also implies $Q^{-1} = Q^{\perp}$.

1

• Formula $P = Q \cdot Q^{\perp}$ but is P = I?

0.2 QR by Gram-Schmidt

• Definition: Let A be an $n \cdot m$ matrix with $\operatorname{rank}(A) = m$ and let $a_1, ..., a_n$ be the columns of A. There exists an orthogonal matrix Q and upper triangle matrix R such that A = QR.

In particular
$$Q = [Q_1, Q_2]$$
 and $R = \begin{pmatrix} R_1 \\ 0 \end{pmatrix}$

Where Q_1 is n x m, Q_2 is n x (n-m), R_1 is mxm such that $Q_1 = [w_1, w_1]$ is an orthogonal basis of R(A) constructed by Gram-Schmidt applied to the columns of A and $Q_2 = [w(m+1), w_1]$ is an orthonormal of $R(A)^(\text{tack.t})$. R is mxn

So if we do the Gram-Schmidt we just get QR automatically, just as if we applied Gaussian elimination on a matrix we just get LU.

- Example: Take
$$A=QR$$
 and $A=Q_1\cdot R$ since $QR=[Q_1,Q_2]\cdot {R_1\choose 0}$
$$A=Q_1\cdot R_1$$

We run Gram-Schmidt across the basis columns of R(A) and normalize.

We expand these columns in terms of the orthonormal basis, by projecting the columns onto the orthonormal basis.

$$\begin{aligned} a_1 &= \langle w_1, a_1 \rangle \cdot w_1 \\ a_2 &= \langle w_1, a_2 \rangle \cdot w_1 + \langle w_2, a_2 \rangle \cdot w_2 \\ \vdots \\ \vdots \\ a_n &= \langle w_1, a_n \rangle \cdot w_1 + \langle w_2, a_n \rangle \cdot w_2 + \dots + \langle w_n, a_n \rangle \cdot w_n \end{aligned}$$

where $a_k \in \text{span}\{w_1, ..., w_n\}$, and we can write as matrix multiplication

$$A = \left\{ w_1, ..., w_m \right\} \cdot \begin{bmatrix} \langle w_1, a_1 \rangle & \langle w_1, a_2 \rangle & ... & \langle w_1, a_m \rangle \\ 0 & \langle w_2, a_2 \rangle & ... & \langle w_2, a_m \rangle \end{bmatrix}$$

$$Q_1 = \left[w_1 ... w_n \right] R_1 =$$

0.3 Lecture