Gradient Bootstrapping

Anushree Shivarudrappa June 15, 2016

1. Pre-Processing

```
library(data.table)
library(ggplot2)
library(dplyr)
library(scales)
library(RColorBrewer)
library(tidyr)
library(caTools)
library(rpart)
library(rpart.plot)
library(ROCR)
library(randomForest)
library(tree)
library(caret)
library(e1071)
library(gbm)
```

2. Data Loading

```
Death_US <- fread("DeathRecords.csv", header = T)</pre>
```

3. Selecting dataset for model

```
# separates natural death
Death_US_natural <- Death_US[Death_US$MannerOfDeath == 7, ]</pre>
```

Select required variables

Converting Character variable into Integer variable

```
natural_sub$Sex <- as.integer(as.factor(natural_sub$Sex))
natural_sub$MaritalStatus <- as.integer(as.factor(natural_sub$MaritalStatus))
natural_sub$InjuryAtWork <- as.integer(as.factor(natural_sub$InjuryAtWork))
natural_sub$Autopsy <- gsub("n", "N", natural_sub$Autopsy)
natural_sub$Autopsy <- as.integer(as.factor(natural_sub$Autopsy))
natural_sub$Icd10Code <- as.integer(as.factor(natural_sub$Icd10Code))</pre>
```

As we analyzed the feature variables are "Age + InfantAgeRecode22 + PlaceOfDeathAndDecedentsStatus + MaritalStatus + ActivityCode + PlaceOfInjury + NumberOfRecordAxisConditions + NumberOfEntityAxis-Conditions"

Since the decision tree support till 32 levels removing 7 levels which has less entries table(factor(natural_sub\$CauseRecode39))

```
##
##
                                                7
                2
                        3
                                5
                                        6
                                                        8
                                                                9
                                                                       10
                                                                              11
        1
##
      366
               37
                     5619
                             9053
                                   43839
                                           33847 133412
                                                           34621
                                                                   23359
                                                                           23422
##
       12
               13
                                                               21
                                                                       22
                                                                              23
                       14
                               15
                                       16
                                               17
                                                       20
##
    25734
            17116
                    19671 133276
                                    63721
                                           75552
                                                   37415 310848 175752
                                                                           23704
##
       24
               25
                       26
                               27
                                       28
                                               29
                                                       30
                                                               31
                                                                      32
                                                                              33
## 111664
             5426
                    16551
                           45801 125752
                                             2519
                                                   31595
                                                           41369
                                                                    1000
                                                                            9930
##
       34
               35
                       36
                               37
                                       38
                                               39
                                                       40
                                                               41
                                                                       42
##
     8110
              414
                    23035 433081
                                      212
                                          13088
                                                        8
                                                               5
                                                                        9
```

CauseExtraRemove <- natural_sub[, natural_sub\$CauseRecode39 %in% c(2, 40, 41, 42, 38, 35, 1)] table(CauseExtraRemove)

```
## CauseExtraRemove
## FALSE TRUE
## 2058882 1051

# remove the 7 factors levels from Death_US_natural dataset
natural_sub <- natural_sub[!(CauseExtraRemove)]
nrow(natural_sub)</pre>
```

[1] 2058882

```
# model data
modeldata <- natural_sub

# We will do a random 70:30 split in our data set (70% will be for training models,
# 30% to evaluate them)
set.seed(111)
# randomly pick 70% of the number of observations
index <- sample.split(modeldata$CauseRecode39, SplitRatio = 0.7)
# subset data to include only the elements in the index
train <- subset(modeldata, index==T)
nrow(train)</pre>
```

[1] 1441215

```
# subset data to include all but the elements in the index
test <- subset(modeldata, index==F)
nrow(test)

## [1] 617667

# take a copy of ICD10Code of test set and remove the variable from test set
Cause39 <- test$CauseRecode39
test$CauseRecode39 <- NULL</pre>
```

Model 3:: Gradient Bootstrapping

```
gbm2 <- gbm(as.factor(CauseRecode39) ~ Age + InfantAgeRecode22 +</pre>
                     PlaceOfDeathAndDecedentsStatus + MaritalStatus + ActivityCode +
                       PlaceOfInjury + NumberOfRecordAxisConditions +
                     NumberOfEntityAxisConditions,
                 data = train,
            var.monotone=c(0,0,0,0,0,0,0,0),
                  # +1: monotone increase,
                  # 0: no monotone restrictions
                 distribution="gaussian",
                                             # bernoulli, adaboost, gaussian,
                  # poisson, coxph, and quantile available
                 n.trees=3000,
                                              # number of trees
                 shrinkage=0.005,
                                              # shrinkage or learning rate,
                 # 0.001 to 0.1 usually work
                 interaction.depth=3,
                                             # 1: additive model, 2: two-way interactions, etc.
                                             # subsampling fraction, 0.5 is probably best
                 bag.fraction = 0.5,
                 n.minobsinnode = 10,
                                             # minimum total weight needed in each node
                 cv.folds = 5,
                                              # do 5-fold cross-validation
                 keep.data=TRUE,
                                              # keep a copy of the dataset with the object
                 verbose=T )
```

##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	75.6015	nan	0.0050	0.0400
##	2	75.5615	nan	0.0050	0.0397
##	3	75.5224	nan	0.0050	0.0393
##	4	75.4835	nan	0.0050	0.0388
##	5	75.4448	nan	0.0050	0.0385
##	6	75.4066	nan	0.0050	0.0381
##	7	75.3689	nan	0.0050	0.0377
##	8	75.3313	nan	0.0050	0.0374
##	9	75.2943	nan	0.0050	0.0370
##	10	75.2577	nan	0.0050	0.0366
##	20	74.9083	nan	0.0050	0.0337
##	40	74.2900	nan	0.0050	0.0288
##	60	73.7363	nan	0.0050	0.0264
##	80	73.2566	nan	0.0050	0.0234
##	100	72.8224	nan	0.0050	0.0192

##	120	72.4316	nan	0.0050	0.0174
##	140	72.0683	nan	0.0050	0.0157
##	160	71.7419	nan	0.0050	0.0141
##	180	71.4435	nan	0.0050	0.0139
##	200	71.1583	nan	0.0050	0.0147
##	220	70.9027	nan	0.0050	0.0107
##	240	70.6670	nan	0.0050	0.0124
##	260	70.4454	nan	0.0050	0.0096
##	280	70.2388	nan	0.0050	0.0083
##	300	70.0459	nan	0.0050	0.0077
##	320	69.8689	nan	0.0050	0.0096
##	340	69.7060	nan	0.0050	0.0070
##	360	69.5513	nan	0.0050	0.0075
##	380	69.4165	nan	0.0050	0.0055
##	400	69.2881	nan	0.0050	0.0051
##	420	69.1719	nan	0.0050	0.0058
##	440	69.0600	nan	0.0050	0.0062
##	460	68.9597	nan	0.0050	0.0039
##	480	68.8681	nan	0.0050	0.0053
##	500	68.7815	nan	0.0050	0.0034
##	520	68.7014	nan	0.0050	0.0032
##	540	68.6258	nan	0.0050	0.0030
##	560	68.5593	nan	0.0050	0.0039
##	580	68.4960	nan	0.0050	0.0031
##	600	68.4365	nan	0.0050	0.0034
##	620	68.3792	nan	0.0050	0.0032
##	640	68.3287	nan	0.0050	0.0021
##	660	68.2821	nan	0.0050	0.0019
##	680	68.2350	nan	0.0050	0.0019
##	700	68.1918	nan	0.0050	0.0021
##	720	68.1525	nan	0.0050	0.0017
##	740	68.1167	nan	0.0050	0.0016
##	760	68.0812	nan	0.0050	0.0015
##	780	68.0480	nan	0.0050	0.0016
##	800	68.0167	nan	0.0050	0.0016
##	820	67.9875	nan	0.0050	0.0011
##	840	67.9613	nan	0.0050	0.0012
##	860	67.9357	nan	0.0050	0.0012
##	880	67.9116	nan	0.0050	0.0013
##	900	67.8900	nan	0.0050	0.0011
##	920	67.8688	nan	0.0050	0.0011
##	940	67.8505	nan	0.0050	0.0008
##	960	67.8318	nan	0.0050	0.0008
##	980	67.8143	nan	0.0050	0.0007
##	1000	67.7978	nan	0.0050	0.0007
##	1020	67.7821	nan	0.0050	0.0009
##	1040	67.7674	nan	0.0050	0.0006
##	1060	67.7533	nan	0.0050	0.0008
##	1080	67.7399	nan	0.0050	0.0005
##	1100	67.7267	nan	0.0050	0.0007
##	1120	67.7132	nan	0.0050	0.0007
##	1140	67.7016	nan	0.0050	0.0004
##	1160	67.6909	nan	0.0050	0.0004
##	1180	67.6793	nan	0.0050	0.0005

##	1200	67.6696	nan	0.0050	0.0006
##	1220	67.6598	nan	0.0050	0.0004
##	1240	67.6504	nan	0.0050	0.0003
##	1260	67.6417	nan	0.0050	0.0003
##	1280	67.6327	nan	0.0050	0.0004
##	1300	67.6241	nan	0.0050	0.0003
##	1320	67.6158	nan	0.0050	0.0003
##	1340	67.6081	nan	0.0050	0.0003
##	1360	67.6004	nan	0.0050	0.0005
##	1380	67.5933	nan	0.0050	0.0005
##	1400	67.5857	nan	0.0050	0.0003
##	1420	67.5786	nan	0.0050	0.0002
##	1440	67.5720	nan	0.0050	0.0003
##	1460	67.5659	nan	0.0050	0.0004
##	1480	67.5598	nan	0.0050	0.0002
##	1500	67.5533	nan	0.0050	0.0003
##	1520	67.5472	nan	0.0050	0.0003
##	1540	67.5418	nan	0.0050	0.0002
##	1560	67.5361	nan	0.0050	0.0002
##	1580	67.5305	nan	0.0050	0.0003
##	1600	67.5252	nan	0.0050	0.0002
##	1620	67.5199	nan	0.0050	0.0003
##	1640	67.5152	nan	0.0050	0.0002
##	1660	67.5106	nan	0.0050	0.0002
##	1680	67.5056	nan	0.0050	0.0003
##	1700	67.5008	nan	0.0050	0.0002
##	1720	67.4962	nan	0.0050	0.0002
##	1740	67.4921	nan	0.0050	0.0002
##	1760	67.4875	nan	0.0050	0.0003
##	1780	67.4831	nan	0.0050	0.0002
##	1800	67.4785	nan	0.0050	0.0003
##	1820	67.4748	nan	0.0050	0.0001
##	1840	67.4708	nan	0.0050	0.0002
##	1860	67.4666	nan	0.0050	0.0003
##	1880	67.4632	nan	0.0050	0.0001
##	1900	67.4588	nan	0.0050	0.0002
##	1920	67.4551	nan	0.0050	0.0002
##	1940	67.4518	nan	0.0050	0.0001
##	1960	67.4479	nan	0.0050	0.0002
##	1980	67.4444	nan	0.0050	0.0002
##	2000	67.4406	nan	0.0050	0.0002
##	2020	67.4368	nan	0.0050	0.0001
##	2040	67.4333	nan	0.0050	0.0001
##	2060	67.4301	nan	0.0050	0.0001
##	2080	67.4273	nan	0.0050	0.0001
##	2100	67.4234	nan	0.0050	0.0002
##	2120	67.4200	nan	0.0050	0.0001
##	2140	67.4164 67.4136	nan	0.0050	0.0001
##	2160	67.4136	nan	0.0050	0.0001
##	2180	67.4101	nan	0.0050	0.0001
##	2200 2220	67.4068 67.4035	nan	0.0050 0.0050	0.0001
## ##	2240	67.4003	nan	0.0050	0.0001
##	2240	67.3964	nan	0.0050	0.0002
##	2200	01.3304	nan	0.0000	0.0001

```
##
     2280
                 67.3934
                                                0.0050
                                                           0.0003
                                       nan
##
     2300
                 67.3902
                                                0.0050
                                                           0.0001
                                       nan
                 67.3872
                                                           0.0003
##
     2320
                                       nan
                                                0.0050
##
     2340
                 67.3842
                                                0.0050
                                                           0.0002
                                       nan
##
     2360
                 67.3813
                                       nan
                                                0.0050
                                                           0.0001
##
     2380
                                                           0.0002
                 67.3778
                                                0.0050
                                       nan
##
     2400
                                                           0.0001
                 67.3741
                                       nan
                                                0.0050
##
     2420
                 67.3713
                                       nan
                                                0.0050
                                                           0.0002
##
     2440
                 67.3685
                                       nan
                                                0.0050
                                                           0.0001
##
     2460
                 67.3660
                                       nan
                                                0.0050
                                                           0.0001
##
     2480
                 67.3631
                                                0.0050
                                                           0.0001
                                       nan
##
     2500
                                                           0.0001
                 67.3604
                                       nan
                                                0.0050
##
     2520
                 67.3573
                                                0.0050
                                                           0.0000
                                       nan
##
     2540
                 67.3545
                                       nan
                                                0.0050
                                                           0.0001
##
                                                0.0050
                                                           0.0001
     2560
                 67.3519
                                       nan
##
     2580
                 67.3487
                                                0.0050
                                                           0.0002
                                       nan
##
                                                           0.0002
     2600
                 67.3456
                                                0.0050
                                       nan
##
     2620
                 67.3432
                                                0.0050
                                                           0.0001
                                       nan
##
                                                           0.0001
     2640
                 67.3407
                                                0.0050
                                       nan
##
     2660
                 67.3389
                                       nan
                                                0.0050
                                                           0.0001
##
     2680
                 67.3363
                                       nan
                                                0.0050
                                                           0.0002
##
     2700
                 67.3341
                                                0.0050
                                                           0.0001
                                       nan
##
     2720
                                                           0.0001
                 67.3319
                                                0.0050
                                       nan
##
     2740
                 67.3296
                                                0.0050
                                                           0.0001
                                       nan
##
     2760
                 67.3273
                                       nan
                                                0.0050
                                                           0.0001
##
     2780
                 67.3252
                                       nan
                                                0.0050
                                                           0.0000
##
     2800
                 67.3231
                                                0.0050
                                                           0.0001
                                       nan
##
     2820
                 67.3206
                                                0.0050
                                                           0.0001
                                       nan
##
                                                0.0050
                                                           0.0000
     2840
                 67.3188
                                       nan
##
     2860
                 67.3168
                                                0.0050
                                                           0.0000
                                       nan
##
     2880
                 67.3148
                                       nan
                                                0.0050
                                                           0.0001
##
     2900
                 67.3125
                                                0.0050
                                                           0.0000
                                       nan
##
     2920
                 67.3107
                                                0.0050
                                                           0.0001
                                       nan
##
     2940
                 67.3094
                                                0.0050
                                                           0.0000
                                       nan
##
     2960
                 67.3077
                                                0.0050
                                                           0.0001
                                       nan
##
     2980
                                                0.0050
                                                           0.0000
                 67.3057
                                       nan
##
     3000
                 67.3040
                                       nan
                                                0.0050
                                                           0.0001
```

```
# check performance using an out-of-bag estimator
# 00B underestimates the optimal number of iterations
best.iter <- gbm.perf(gbm2,method="00B")</pre>
```

^{##} Warning in gbm.perf(gbm2, method = "00B"): 00B generally underestimates the
optimal number of iterations although predictive performance is reasonably
competitive. Using cv.folds>0 when calling gbm usually results in improved
predictive performance.


```
print(best.iter)
```

[1] 3000

```
data.predict = predict(gbm2, n.trees = best.iter, newdata = test)
# Confusion matrix
conf_matrix <- table(data.predict, Cause39)</pre>
```

Accuracy of model and SSE

```
#Accuracy
sum(diag(conf_matrix)) / nrow(test)
```

[1] 8.094977e-05

```
# SSE
SSE = sum((Cause39 - data.predict)^2)
print(SSE)
```

[1] 65365605