

Eye Disease Classification

[MINI PROJECT - I]

V Semester B. Tech. Department of Information Technology

Group Members

Dhiraj Damani(IIT2020014)

Nikhil Dubey(IIT2020016)

Devesh Parte(IIT2020089)

Jambhule Sahas Devidas(IIT2020105)

Instructor

Dr. Anjali Gautam

Table Content

- > Problem statement
- > Objectives
- > Literature review
- Methodology and Dataset
- > VGGNet
- > DenseNet
- Result (DenseNet)
- Confusion Matrix (DenseNet)
- Result (VGGNet)

Problem Statement

- Classification of Diabetic Retinopathy Disease in [0-4] Stage.
- ◆ Dataset : APTOS (2019) BLINDNESS DATASET
- * Brief: Here, we will classify and grade the stage of severity that occurs in the retinal region of the eye caused due to complications of diabetes.

Objectives

- To perceive the severity stage of Diabetic Retinopathy [Disease causing in Eye] in an individual in order to provide the good treatment at their early stage.
- For assisting a humanitarian cause.

-	S.No.	Title	Author	Methodology	Dataset	Advantages	Disadvantages	Accuracy
		Classification and Localisation of		The proposed method is implemented on color image			The largest correlation coefficient value does not	Overall diagnostics
1		Diabetic-Related		prepossessing		'	,	with 90.1%
-		Eye Disease		Using color-based			correspond to the	accuracy, 93.4%
-	4	(0000)		mathematical	non-hydriatic			sensitivity, and
ŀ	1	(2002)	And others.	morphology.	retinal camera	particular problem.	center	82.7% specificity,
		Detection and classification of retinal lesions for grading of diabetic retinopathy		This paper describe all NPDR lesions.The paper uses SVM .It have three stage model compromising,	6360 lesions from 1410 retinal	The proposed system detects all types of NPDR lesions and correctly grades	Computation and	82.6% and 88.3%
- 1			M.Usman Akram	retinal analysis,	•	the retinal images	complexity is the	for HMA and EXs,
1	2	(2014)		and classification.		with high accuracy.	issue	resp.
		Diabetic Retinopathy classification Using a Modified Xception Architecture	Sara Hosseinzadeh Kassani	Based on the deep layer aggregation which combines multilevel features from various convolutional layers of Xception	APTOS 2019 consist of 3662 retinal	on the APTOS dataset in comparison to the original Xception	Requires high volumes of training data & reaching the network architecture is	
	3	(2019)	And others.	Architecture.	images	architecture.	time-consuming.	83.09%

					By using CNN as a feature extractor,it reduces the computational time and complexity.		
	A lightweight CNN		Uses CNN for Feature Extraction.		Existing models used pre-trained networks and transfer learning		99.89% for binary classification
	for Diabetic Retinopathy classification from		Extracted features are then provided to the classifier for	IDRiD,	methods for classification which inturn may	the very tiny	&
	fundus images		binary and	Messidor	increase the		99.59%
		Gayathri S.	multi-class		computational	1 7 1 3 1	for multi-class
4	(2020)	And others.	classifications.	KAGGLE	complexity.	DR.	classification
	Fundus Disease Image		This paper proposes a Transformer Eye (TransEye)				
	classification		fine-grained fundus			The optimal	
	based on		disease image			prediction accuracy	
	Improved		classification	OIA-ODIR,	OIA-ODIR,	using this method	this model is 84 %.
	Transformer		method based on	consists of 5000	consists of 5000	is	
		Honggang Yang	the self-attention	retinal fundus	retinal fundus	much higher as	Better for large
5	(2021)	And others.	mechanism.	images.	images.	compared to CNN.	datasets.

Methodology And Dataset

- APTOS (2019) Blindness Dataset
- * Methodology: Convolution Neural Network Architectures
 - → VGGNet
 - → DenseNet

VGGNet

☐ The VGG-16 consists of 13 convolutional layers and 3 fully connected layers.

Convolutional layer - It extracts out the features from the input image.

Pooling layers are used to reduce the dimensions of the feature maps.

Fully-Connected Layer - Neurons in the preceding and succeeding layers are fully connected with each other.

VGG16 Architecture

DenseNet

- DenseNet type CNN
- Dense Blocks connection
 - Feature maps
 - Feed-Forward
- Pooling layers
- Convolutional Layers
- > Transition layer
- Global Average Pooling
- Classification layer

IMPLEMENTATION VISUAL

cher.py:5: UserWarning: `model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports gener

```
batch: 105.0000 - size: 15.9716 - loss: 0.8320 - acc: 0.7030 - f1: 0.2032/usr/local/lib/python3.7/dist-packages/keras/engine/training v1.py:2045:
'step - batch: 105.0000 - size: 15.9716 - loss: 0.8320 - acc: 0.7030 - f1: 0.2032 - val loss: 2.4656 - val acc: 0.7162 - val f1: 0.2837
'step - batch: 105.0000 - size: 15.9716 - loss: 0.6643 - acc: 0.7389 - f1: 0.2106 - val_loss: 2.7859 - val_acc: 0.4574 - val_f1: 0.2623
step - batch: 105.0000 - size: 15.9431 - loss: 0.6115 - acc: 0.7726 - f1: 0.2285 - val loss: 6.0292 - val acc: 0.2664 - val f1: 0.1441
'step - batch: 105.0000 - size: 15.9716 - loss: 0.5767 - acc: 0.7777 - f1: 0.2266 - val loss: 0.8821 - val acc: 0.7303 - val f1: 0.2668
'step - batch: 105.0000 - size: 15.9716 - loss: 0.5324 - acc: 0.7979 - f1: 0.2521 - val loss: 1.4592 - val acc: 0.7129 - val f1: 0.2709
step - batch: 105.0000 - size: 15.9716 - loss: 0.5311 - acc: 0.7976 - f1: 0.2462 - val_loss: 0.6567 - val_acc: 0.7806 - val_f1: 0.2752
step - batch: 105.0000 - size: 15.9716 - loss: 0.5366 - acc: 0.7944 - f1: 0.2492 - val loss: 1.3353 - val acc: 0.6179 - val f1: 0.2314
'step - batch: 105.0000 - size: 15.9431 - loss: 0.4921 - acc: 0.8077 - f1: 0.2597 - val loss: 1.0975 - val acc: 0.7172 - val f1: 0.2970
```

4

<matplotlib.legend.Legend at 0x7fc0ed21e950>

Confusion Matrix

<matplotlib.axes._subplots.AxesSubplot at 0x7f012f53b810>

- 350

- 300

- 250

- 200

- 150

- 100

- 50

THANK YOU