Data Analysis For Home Flippers In King County

Authors: Eric Denbin & Allison Gao

August 27th, 2021

Sale Price Predictions For Houses In King County, WA Using Multiple Regression

Overview

Stakeholder: Home Flippers in King County looking to purchase a house and flip it for profit.

Point of Interest: Sale price of a house

Question of Interest: What are the most important variables to consider when looking for houses to flip in King County?

Business Understanding

The purpose of the analysis is to provide actionable recommendations for home flippers seeking to

purchase houses and flip them for profit. Our analysis shows that square footage of the house is an important factor such that increasing the house size will increase house price. Additionally, we found that house size's relationship to price needs to be analyzed in the context of the building quality as measured by the grading system used by the county. Home flippers can use this project's findings to inform its business decision with respect to purchasing houses in King County.

Data Understanding

This analysis used historical data on houses sold in 2014 and 2015 in King County, Washington.

```
In [1]: import pandas as pd
   import numpy as np
   from matplotlib import pyplot as plt
   from sklearn.linear_model import LinearRegression
   import sklearn.metrics as metrics
   import statsmodels.api as sm
   from sklearn.preprocessing import OneHotEncoder
   import statsmodels.api as sm
   from sklearn.metrics import r2_score
   from sklearn.metrics import mean_squared_error
   from sklearn.preprocessing import PolynomialFeatures
   from sklearn.model_selection import train_test_split
   from datetime import datetime

%matplotlib inline
```

Exploring The Data

```
In [2]: # Loading the dataset
    df = pd.read_csv("data/kc_house_data.csv")
In [3]: df.head(5)
```

Out[3]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront
0	7129300520	10/13/2014	221900.0	3	1.00	1180	5650	1.0	NaN
1	6414100192	12/9/2014	538000.0	3	2.25	2570	7242	2.0	0.0
2	5631500400	2/25/2015	180000.0	2	1.00	770	10000	1.0	0.0
3	2487200875	12/9/2014	604000.0	4	3.00	1960	5000	1.0	0.0
4	1954400510	2/18/2015	510000.0	3	2.00	1680	8080	1.0	0.0

5 rows × 21 columns

In [4]: df.describe()

Out[4]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	
count	2.159700e+04	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	21597
mean	4.580474e+09	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	1.
std	2.876736e+09	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	0.
min	1.000102e+06	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.
25%	2.123049e+09	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1.
50%	3.904930e+09	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.
75%	7.308900e+09	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2
max	9.900000e+09	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.

In [5]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21597 entries, 0 to 21596
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype
0	id	21597 non-null	int64
1	date	21597 non-null	object
2	price	21597 non-null	float64
3	bedrooms	21597 non-null	int64
4	bathrooms	21597 non-null	float64
5	sqft_living	21597 non-null	int64
6	sqft_lot	21597 non-null	int64
7	floors	21597 non-null	float64
8	waterfront	19221 non-null	float64
9	view	21534 non-null	float64
10	condition	21597 non-null	int64
11	grade	21597 non-null	int64
12	sqft_above	21597 non-null	int64
13	sqft_basement	21597 non-null	object
14	<pre>yr_built</pre>	21597 non-null	int64
15	<pre>yr_renovated</pre>	17755 non-null	float64
16	zipcode	21597 non-null	int64
17	lat	21597 non-null	float64
18	long	21597 non-null	float64
19	sqft_living15	21597 non-null	int64
20	sqft_lot15	21597 non-null	int64
dtyp	es: float64(8),	int64(11), obje	ct(2)
memo	ry usage: 3.5+ 1	MB	

Checking the distribution of the target variable.

In [6]: df['price'].hist();

In [7]: df.corr()

Out[7]:

	id	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfro
id	1.000000	-0.016772	0.001150	0.005162	-0.012241	-0.131911	0.018608	-0.0041
price	-0.016772	1.000000	0.308787	0.525906	0.701917	0.089876	0.256804	0.2762
bedrooms	0.001150	0.308787	1.000000	0.514508	0.578212	0.032471	0.177944	-0.0023
bathrooms	0.005162	0.525906	0.514508	1.000000	0.755758	0.088373	0.502582	0.0672
sqft_living	-0.012241	0.701917	0.578212	0.755758	1.000000	0.173453	0.353953	0.1102
sqft_lot	-0.131911	0.089876	0.032471	0.088373	0.173453	1.000000	-0.004814	0.0231
floors	0.018608	0.256804	0.177944	0.502582	0.353953	-0.004814	1.000000	0.0218
waterfront	-0.004176	0.276295	-0.002386	0.067282	0.110230	0.023143	0.021883	1.0000
view	0.011592	0.395734	0.078523	0.186451	0.282532	0.075298	0.028436	0.4066
condition	-0.023803	0.036056	0.026496	-0.126479	-0.059445	-0.008830	-0.264075	0.0176
grade	0.008188	0.667951	0.356563	0.665838	0.762779	0.114731	0.458794	0.0873
sqft_above	-0.010799	0.605368	0.479386	0.686668	0.876448	0.184139	0.523989	0.0754
yr_built	0.021617	0.053953	0.155670	0.507173	0.318152	0.052946	0.489193	-0.0260
yr_renovated	-0.012010	0.129599	0.018495	0.051050	0.055660	0.004513	0.003535	0.0872
zipcode	-0.008211	-0.053402	-0.154092	-0.204786	-0.199802	-0.129586	-0.059541	0.0310
lat	-0.001798	0.306692	-0.009951	0.024280	0.052155	-0.085514	0.049239	-0.0127
long	0.020672	0.022036	0.132054	0.224903	0.241214	0.230227	0.125943	-0.0398
sqft_living15	-0.002701	0.585241	0.393406	0.569884	0.756402	0.144763	0.280102	0.0888
sqft_lot15	-0.138557	0.082845	0.030690	0.088303	0.184342	0.718204	-0.010722	0.0320

Creating a new column that converts year built into house age.

```
In [8]: df["house_age"] = 2021 - df["yr_built"]

df = df.drop(columns=["id","yr_built"])
```

```
In [9]: df.describe()
```

Out[9]:

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	wa
count	2.159700e+04	21597.000000	21597.000000	21597.000000	2.159700e+04	21597.000000	19221.
mean	5.402966e+05	3.373200	2.115826	2080.321850	1.509941e+04	1.494096	0.
std	3.673681e+05	0.926299	0.768984	918.106125	4.141264e+04	0.539683	0.
min	7.800000e+04	1.000000	0.500000	370.000000	5.200000e+02	1.000000	0.
25%	3.220000e+05	3.000000	1.750000	1430.000000	5.040000e+03	1.000000	0.
50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000	0.
75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068500e+04	2.000000	0.
max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000	1.

Detecting an outlier in bedrooms and dropping the observation.

```
In [10]: df = df[df.bedrooms != 33]
```

Eliminating question marks from sqft basement.

```
In [11]: df = df[df.sqft_basement != "?"]
In [12]: df.shape
Out[12]: (21142, 20)
```

Converting sqft_basement into binary—basement is 1 and no basement is 0.

Engineering 'season' feature.

```
In [14]: # Creating 'month' feature first
    df['month'] = df['date'].map(lambda x: datetime.strptime(x, "%m/%d/%Y").mon

#Creating a list that indicates season
    seasons = [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]

# Creating a dictionary that pairs each month with a season
    month_to_season = dict(zip(range(1,13), seasons))

# Creating function that takes in month as an integer, and returns season a
    def season(month):

        return month_to_season[month]

# Creating 'season' feature using the season function
    df['season'] = df['month'].map(lambda x: int(season(x)))
```

Engineering dummy variables from the 'season' feature.

```
In [15]: # Creating dummies out of 'season' feature
# Create the OneHotEncoder object

ohe = OneHotEncoder(drop='first')

# Transform the data into dummies

trans = ohe.fit_transform(df[['season']])

# Store the dummies matrix and name vector

data = trans.todense()
names = ohe.get_feature_names()

# Put the dummy variables in a dataframe

dummies = pd.DataFrame(data, columns=names)

# Join the dummies dataframe to the original

df = df.join(dummies)
```

```
In [16]: df.dropna(inplace=True)
```

```
In [17]: # Making sure all of the dummy variables are integers

df['x0_2'] = df['x0_2'].map(lambda x:int(x))

df['x0_3'] = df['x0_3'].map(lambda x:int(x))

df['x0_4'] = df['x0_4'].map(lambda x:int(x))
```

Creating function to convert latitude into a binary—north of the county is 1 and south is 0.

```
In [18]: def label_lat (row):
    if row['lat'] >= 47.5000 :
        return 1
    else:
        return 0
```

Creating function to convert longitude into a binary—west side of the county is 1 and east side is 0.

```
In [19]: def label_long (row):
    if row['long'] <= (-122.0000):
        return 1
    else:
        return 0</pre>
```

Engineering new feature for the latitude as a dummy.

```
In [20]: df['county_lat'] = df.apply (lambda row: label_lat(row), axis=1)
```

Engineering new feature for the longitude as a dummy

```
In [21]: df['county_long'] = df.apply (lambda row: label_long(row), axis=1)
```

Out[22]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	CI
1	12/9/2014	538000.0	3	2.25	2570	7242	2.0	0.0	0.0	
3	12/9/2014	604000.0	4	3.00	1960	5000	1.0	0.0	0.0	
4	2/18/2015	510000.0	3	2.00	1680	8080	1.0	0.0	0.0	
5	5/12/2014	1230000.0	4	4.50	5420	101930	1.0	0.0	0.0	
8	4/15/2015	229500.0	3	1.00	1780	7470	1.0	0.0	0.0	
21134	6/18/2014	1400000.0	4	2.75	3870	10046	2.0	0.0	0.0	
21135	7/2/2014	265050.0	2	1.50	800	2119	2.0	0.0	0.0	
21136	3/6/2015	450000.0	3	2.25	1620	1057	3.0	0.0	0.0	
21137	5/5/2015	915000.0	4	2.50	2910	4356	3.0	0.0	0.0	
21140	7/24/2014	294000.0	2	2.50	1380	889	2.0	0.0	0.0	

15127 rows × 28 columns

Checking features for normal distributions

In [23]: pd.plotting.scatter_matrix(df, figsize=(20,20))
 plt.show();

Logging the target variable and non-normal features to normalize their distributions

Replacing infinite values with nans and then dropping them

Out[25]:

	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	cond
1	12/9/2014	13.196	1.099	2.25	7.852	8.888	2.0	0.0	0.0	
3	12/9/2014	13.311	1.386	3.00	7.581	8.517	1.0	0.0	0.0	
4	2/18/2015	13.142	1.099	2.00	7.427	8.997	1.0	0.0	0.0	
5	5/12/2014	14.023	1.386	4.50	8.598	11.532	1.0	0.0	0.0	
8	4/15/2015	12.344	1.099	1.00	7.484	8.919	1.0	0.0	0.0	
21134	6/18/2014	14.152	1.386	2.75	8.261	9.215	2.0	0.0	0.0	
21135	7/2/2014	12.488	0.693	1.50	6.685	7.659	2.0	0.0	0.0	
21136	3/6/2015	13.017	1.099	2.25	7.390	6.963	3.0	0.0	0.0	
21137	5/5/2015	13.727	1.386	2.50	7.976	8.379	3.0	0.0	0.0	
21140	7/24/2014	12.591	0.693	2.50	7.230	6.790	2.0	0.0	0.0	

15127 rows × 28 columns

Creating three interaction terms—we considered how the features are related based on our own knowledge and intuition.

```
In [26]: df['sqft_house_neighbors'] = df['sqft_living'] * df['sqft_living15']

df['sqft_age'] = df['sqft_living'] * df['house_age']

df['sqft_grade'] = df['sqft_living'] * df['grade']
```

```
In [27]: df.shape
Out[27]: (15127, 31)
```

Creating a function that takes in a target variable and a list of feature columns, and prints out the R squared value and Root Mean Squared Error of the training and testing data, as well as printing an Ordinary Least Squares regression table.

```
In [28]: def multiple regression(target, list xcol):
             # Preparing data
             y = target
             X = df[list_xcol]
             # Performing split
             X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2
             # Creating Model
             reg = LinearRegression()
             # Fitting the model to the dataset
             result = reg.fit(X_train, y_train)
             # Testing model's predictive power using training and testing data
             y_hat_train = result.predict(X_train)
             y_hat_test = result.predict(X_test)
             # Getting R squared scores for training and testing data
             y_train_r2 = r2_score(y_train, y_hat_train)
             y_test_r2 = r2_score(y_test, y_hat_test)
             print(f'R-Squared score for the training data: {y_train_r2}')
             print('')
             print(f'R-Squared score for the testing data: {y test r2}')
             print('')
             print('')
             # Getting Mean Squared Error for training and testing data
             y_train_rmse = mean_squared_error(np.exp(y_train), np.exp(y_hat_train),
             y_test_rmse = mean_squared_error(np.exp(y_test), np.exp(y_hat_test), sq
             print(f'Root Mean Squared Error for the training data: {y train rmse}')
             print('')
             print(f'Root Mean Squared Error for the testing data: {y test rmse}')
             # Adding training data as constant for OLS model
             X train = sm.add constant(X train)
```

```
# Creating the model object
model = sm.OLS(y_train, X_train)

# Fitting the model to the dataset
result = model.fit()

# Printing the summary output
return result.summary()
```

Baseline Model—Including As Many Features As We Considered Relevant

```
In [29]: # Set X and y
         xcol = ['bedrooms',
                  'bathrooms',
                  'sqft_living',
                  'sqft_lot',
                  'sqft_above',
                  'floors',
                  'waterfront',
                  'condition',
                  'grade',
                  'lat',
                  'long',
                  'sqft_living15',
                  'sqft_lot15',
                  'house age']
         target = df['price']
```

In [30]: multiple_regression(target, xcol)

R-Squared score for the training data: 0.7500769638380465

R-Squared score for the testing data: 0.7560481466358132

Root Mean Squared Error for the training data: 194454.1986899824

Root Mean Squared Error for the testing data: 199367.05832564252

Out[30]: OLS Regression Results

0.750 Dep. Variable: price R-squared: OLS 0.750 Model: Adj. R-squared: Method: Least Squares 2429. F-statistic: **Date:** Fri, 27 Aug 2021 0.00 Prob (F-statistic): 15:10:55 -970.41 Time: Log-Likelihood: No. Observations: 11345 1971. AIC: **Df Residuals:** 11330 BIC: 2081.

Df Model: 14

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-261.5928	4.389	-59.598	0.000	-270.196	-252.989
bedrooms	-0.1287	0.012	-10.737	0.000	-0.152	-0.105
bathrooms	0.0589	0.006	10.285	0.000	0.048	0.070
sqft_living	0.3770	0.016	23.269	0.000	0.345	0.409
sqft_lot	0.0306	0.007	4.213	0.000	0.016	0.045
sqft_above	0.0048	0.015	0.318	0.750	-0.025	0.034
floors	0.0438	0.007	5.968	0.000	0.029	0.058
waterfront	0.6077	0.029	21.306	0.000	0.552	0.664
condition	0.0713	0.004	17.229	0.000	0.063	0.079
grade	0.1617	0.004	43.368	0.000	0.154	0.169
lat	65.2322	0.900	72.513	0.000	63.469	66.996
long	-0.1332	0.022	-6.041	0.000	-0.176	-0.090
sqft_living15	0.2488	0.013	19.443	0.000	0.224	0.274
sqft_lot15	-0.0614	0.008	-7.799	0.000	-0.077	-0.046
house_age	0.1172	0.005	21.640	0.000	0.107	0.128

Omnibus: 214.053 Durbin-Watson: 2.012

Prob(Omnibus): 0.000 Jarque-Bera (JB): 323.579

 Skew:
 0.204
 Prob(JB):
 5.44e-71

 Kurtosis:
 3.720
 Cond. No.
 2.23e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.23e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Second Model—Introducing Three Interaction Terms To Baseline Model

```
In [31]: # Set X and y
         xcol2 = ['bedrooms',
                   'bathrooms',
                   'sqft_living',
                   'sqft_lot',
                   'sqft_above',
                   'floors',
                   'waterfront',
                   'condition',
                   'grade',
                   'lat',
                   'long',
                   'sqft living15',
                   'sqft_lot15',
                   'house age',
                   'basement',
                   'sqft_house_neighbors',
                   'sqft grade',
                   'sqft age']
         target = df['price']
```

In [32]: multiple_regression(target, xcol2)

R-Squared score for the training data: 0.7557301640029324

R-Squared score for the testing data: 0.7626451947929344

Root Mean Squared Error for the training data: 189414.01402000923

Root Mean Squared Error for the testing data: 191001.42601227175

Out[32]: OLS Regression Results

Dep. Variable: price 0.756 R-squared: Model: OLS Adj. R-squared: 0.755 Method: Least Squares 1947. F-statistic: **Date:** Fri, 27 Aug 2021 0.00 Prob (F-statistic): Time: 15:10:55 Log-Likelihood: -840.63 No. Observations: 11345 AIC: 1719. **Df Residuals:** 11326 BIC: 1859.

Df Model: 18

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-258.6610	4.458	-58.016	0.000	-267.400	-249.922
bedrooms	-0.1000	0.012	-8.312	0.000	-0.124	-0.076
bathrooms	0.0468	0.006	8.082	0.000	0.035	0.058
sqft_living	0.5787	0.155	3.742	0.000	0.276	0.882
sqft_lot	0.0276	0.007	3.831	0.000	0.013	0.042
sqft_above	0.1455	0.025	5.727	0.000	0.096	0.195
floors	0.0578	0.007	7.821	0.000	0.043	0.072
waterfront	0.5937	0.028	20.977	0.000	0.538	0.649
condition	0.0768	0.004	18.701	0.000	0.069	0.085
grade	-0.1664	0.048	-3.437	0.001	-0.261	-0.071
lat	64.8348	0.892	72.668	0.000	63.086	66.584
long	-0.1014	0.022	-4.623	0.000	-0.144	-0.058
sqft_living15	0.6345	0.170	3.727	0.000	0.301	0.968
sqft_lot15	-0.0624	0.008	-8.002	0.000	-0.078	-0.047
house_age	0.6458	0.079	8.143	0.000	0.490	0.801
basement	0.0965	0.011	8.993	0.000	0.075	0.118
sqft_house_neighbors	-0.0519	0.022	-2.312	0.021	-0.096	-0.008

```
        sqft_grade
        0.0419
        0.006
        6.691
        0.000
        0.030
        0.054

        sqft_age
        -0.0705
        0.010
        -6.833
        0.000
        -0.091
        -0.050
```

 Omnibus:
 192.731
 Durbin-Watson:
 2.009

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 308.245

 Skew:
 0.165
 Prob(JB):
 1.16e-67

 Kurtosis:
 3.737
 Cond. No.
 2.78e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.78e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Third Model—Four Interaction Terms, Columns For Latitude And Longitude As Binary, Dummy Variables For Season

```
In [33]: # Set X and y
         xcol3 = ['bedrooms',
                   'bathrooms',
                   'sqft living',
                    'sqft lot',
                    'sqft above',
                    'floors',
                    'waterfront',
                    'condition',
                    'grade',
                    'lat',
                    'long',
                    'sqft living15',
                    'sqft lot15',
                    'house age',
                    'basement',
                    'sqft grade',
                    'sqft house neighbors',
                    'sqft age',
                    'x0 2',
                    'x0_3',
                    'x0_4',
                    'county_lat',
                    'county long']
         target = df['price']
```

In [34]: multiple_regression(target, xcol3)

R-Squared score for the training data: 0.782447698106668

R-Squared score for the testing data: 0.7876577656685563

Root Mean Squared Error for the training data: 180475.61184288148

Root Mean Squared Error for the testing data: 185615.04233890134

Out[34]: OLS Regression Results

Dep. Variable:	price	R-squared:	0.782
Model:	OLS	Adj. R-squared:	0.782
Method:	Least Squares	F-statistic:	1770.
Date:	Fri, 27 Aug 2021	Prob (F-statistic):	0.00
Time:	15:10:55	Log-Likelihood:	-183.56
No. Observations:	11345	AIC:	415.1
Df Residuals:	11321	BIC:	591.2
Df Model:	23		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-97.8745	6.341	-15.434	0.000	-110.304	-85.444
bedrooms	-0.0904	0.011	-7.946	0.000	-0.113	-0.068
bathrooms	0.0451	0.005	8.252	0.000	0.034	0.056
sqft_living	0.7483	0.146	5.123	0.000	0.462	1.035
sqft_lot	0.0390	0.007	5.731	0.000	0.026	0.052
sqft_above	0.1804	0.024	7.519	0.000	0.133	0.227
floors	0.0404	0.007	5.746	0.000	0.027	0.054
waterfront	0.5947	0.027	22.259	0.000	0.542	0.647
condition	0.0756	0.004	19.467	0.000	0.068	0.083
grade	-0.1676	0.046	-3.667	0.000	-0.257	-0.078
lat	20.5190	1.463	14.023	0.000	17.651	23.387
long	-0.1728	0.025	-6.996	0.000	-0.221	-0.124
sqft_living15	0.8560	0.161	5.322	0.000	0.541	1.171
sqft_lot15	-0.0428	0.007	-5.797	0.000	-0.057	-0.028
house_age	0.4693	0.075	6.244	0.000	0.322	0.617
basement	0.0844	0.010	8.324	0.000	0.065	0.104

sqft_grade	0.0401	0.006	6.778	0.000	0.028	0.052
sqft_house_neighbors	-0.0847	0.021	-3.988	0.000	-0.126	-0.043
sqft_age	-0.0507	0.010	-5.191	0.000	-0.070	-0.032
x0_2	0.0109	0.007	1.614	0.107	-0.002	0.024
x0_3	0.0044	0.007	0.636	0.525	-0.009	0.018
x0_4	-0.0022	0.007	-0.301	0.764	-0.016	0.012
county_lat	0.3597	0.010	36.964	0.000	0.341	0.379
county_long	0.0078	0.012	0.662	0.508	-0.015	0.031

 Omnibus:
 224.683
 Durbin-Watson:
 1.997

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 421.261

 Skew:
 0.131
 Prob(JB):
 3.34e-92

 Kurtosis:
 3.907
 Cond. No.
 4.23e+05

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.23e+05. This might indicate that there are strong multicollinearity or other numerical problems.

Interpretation: For a home flipper who wants to make improvements that will increase the sale price of a house, square feet, square feet given grade, and number of bathrooms, are three features that are operable and and cause the largest increase in the sale price of a house in terms of percentage.

Unlogging the target variable 'price' so that calculations and visualizations will be in terms of dollars.

```
In [35]: unlogged_price_df = df['price'].map(lambda x:np.exp(x))
mean = unlogged_price_df.mean()
```

Creating function that takes in a series, an interaction coefficient, and the coefficient of the feature whose effect will be isolated from the interaction term.

```
In [36]: def interaction_term_isolator(iso_coef, int_coef, series):
    mean = df[series].mean()
    impact = iso_coef + (int_coef*(mean))
    return impact
```

Isolating sqft_living from the sqft_grade interaction term.

Calculating the true impact of adding a bathroom on percent growth in price.

```
In [38]: bathroom_coef = 0.0451
    bathroom_impact_price = (np.exp(bathroom_coef)-1)*100
    bathroom_impact_price
```

Out[38]: 4.613246792502146

Preparing variables for calculations and visualizations.

```
In [39]: bathroom_impact_price = 4.613246792502146

sqft_coef = 0.7483

sqft_given_grade_coef = 1.0551563231308256

# Creating a list of all the coefficients for visualization
coefs = [bathroom_impact_price, sqft_coef, sqft_given_grade_coef]

names = ['Bathrooms', 'Square Feet', 'Square Feet Given Grade']

coefs_names = zip(coefs, names)
```

For a house of average price, \$540,168, if you increase the square footage of the entire living space by 1%, it will increase sale price by ~\$4,000.

```
In [40]: increase_sale_price_sqft = sqft_living_coef/100 * mean
   increase_sale_price_sqft
```

Out[40]: 4042.0843544322074

For a house with an average grade and an average price, if you increase the square footage of the entire living space by 1%, it will increase the sale price by ~\$5,700.

```
In [41]: increase_sale_price_sqft_grade = sqft_given_grade_coef/100 * mean
increase_sale_price_sqft_grade
```

Out[41]: 5699.626974752539

For a house of an price, one additional bathroom will increase sale price by ~\$25,000.

```
In [42]: increase_sale_price_bathroom = bathroom_impact_price/100 * mean
   increase_sale_price_bathroom
```

Out[42]: 24919.327386218745

Creating line graphs that demonstrate the difference in effect of the selected features on sale price.

```
In [43]: # Creating figure and axes
           fig, ax = plt.subplots(figsize = (7,6))
           x = [0,1,2,3,4]
           # Calculating y values for bathroom
           y1 = [(mean + (0*(mean*(coefs[0]/100)))), (mean + (1*(mean*(coefs[0]/100)))), (mean + (1*(mean*(coefs[0]/100)))), (mean + (1*(mean*(coefs[0]/100)))), (mean + (1*(mean*(coefs[0]/100)))), (mean + (1*(mean*(coefs[0]/100))))), (mean + (1*(mean*(coefs[0]/100))))))))
           # Calculating y values for square feet
           # Calculating y values for square feet given grade
           # Creating line for effect of bathrooms on price
           line1, = plt.plot(x,y1)
           # Creating line for effect of square feet on price
           line2, = plt.plot(x,y2)
           # Creating line for effect of square feet at a given grade on price
           line3, = plt.plot(x,y3)
           ax.set title(f'Change In Price vs. Change In Feature')
           ax.set_xlabel(f'Change In Feature')
           ax.set ylabel(f'Change In Price')
           ax.set xticks([1,2,3])
           ax.set xlim(0,4)
           ax.legend([line1,line2,line3,], ['Bathroom', 'Square Feet (%)', 'Square Fee
```

Out[43]: ''

Creating separate line graphs for each selected feature to demonstrate their relationship with price.

```
In [44]: # Creating for loop to generate graph for each separate feature
         for co, name in coefs_names:
             # Creating figure and axes
             fig, ax = plt.subplots(figsize = (7,6))
             x = [0,1,2,3,4]
             # Calculating y values for each feature
             y = [(mean + (0*(mean*(co/100)))), (mean + (1*(mean*(co/100)))), (mean + (2*(mean*(co/100))))]
             # Creating a horizontal line for every y value
             xmax = [.25, .5, .75]
             y_x = zip(y[1:4], xmax)
             for i,t in y xmax:
                 ax.axhline(i, xmax=t, color='g',linestyle='-',mew=.2)
             # Creating a vertical line for every x value
             ticks_y = zip([1,2,3], [.27, .5, .73])
             for a,b in ticks y:
                 ax.axvline(a, ymax=b, color='g', linestyle='-',mew=.2)
             ax.set_title(f'Change In Price vs. Change In {name} (%)')
             if name == 'Square Feet' or name == "Square Feet Given Grade":
                 ax.set_title(f'Change In Price vs. Change In {name} (%)')
                 ax.set xlabel(f'Change In {name} (%)')
             else:
                 ax.set title(f'Change In Price vs. Change In {name}')
                 ax.set xlabel(f'Change In {name}')
             ax.set ylabel(f'Change In Price ($)')
             ax.set xticks([1,2,3])
             ax.set_xlim(0,4)
             # Plotting each feature on axes
             plt.plot(x,y)
         ;
```


Conclusions

This analysis leads to three main recommendations for home flippers in King County, WA:

- Increase the square feet of a house for large projects. A 1% increase in square feet leads to a ~0.74% increase in sale price.
- Consider the grade (construction quality) of a house when purchasing for the purpose of flipping. Given a house with an average grade, a 1% increase in square feet leads to a ~1.1% increase in sale price.
- Increase the number of bathrooms in a house for small projects. Every additional bathroom added to house leads to a ~4.6% increase in sale price.

Next Steps

Given time for further analysis of the data, we may be able to create better models by:

- Calculating ratios of relevant interaction terms to put data into better perspective. For example, bedroom to bathroom ratio or house size to lot size ratio.
- Find real estate data that includes other relevant information impacting sale price. For example, kitchens and the presence of a pool.
- Renovation cost in King County by house size for budget analysis. For example, calculate the average cost of building a bathroom in a house in King County