9 Be(36 Si, 35 Al γ) 2014St18

 36 Si->p+ 35 Al from J^{π} =0+ 36 Si ground state.

One-proton knockout reaction from $J^{\pi}=0^{+36}$ Si ground state.

2014St18: A 36 Si secondary beam was produced via the projectile fragmentation of a 140-MeV/nucleon 48 Ca primary beam impinging on a 9 Be target at NSCL, MSU and was selected by the A1900 separator. The states of 35 Al and 35 Si were populated by the one-proton/neutron knockout reactions, respectively, from the 36 Si beam at a midtarget energy of 97.7(5) MeV/nucleon on a 287-mg/cm 2 9 Be secondary target. Knockout residues were identified from their energy loss measured by an ionization chamber at the focal plane of the S800 spectrometer and from their ToF measured between two scintillators at the object position and at the focal plane of the S800 spectrometer. The position and angle of the residues were measured using two cathode-readout drift chambers. Prompt γ rays from the deexcitation of the residues were detected by the GRETINA Ge array. Measured Doppler-corrected E γ , I γ , (35 Al) γ -coin, $\gamma\gamma$ -coin, the parallel momentum distributions of populated states in 35 Al residues. Deduced levels, J, π , L-transfers, inclusive and exclusive knockout cross section for producing 35 Al from 36 Si. Calculations using eikonal model and shell model calculations with SDPF-U and SDPF-MU interactions.

³⁵Al Levels

Total knockout σ =22 mb I for producing ³⁵Al from ³⁶Si.

E(level) [†]	$J^{\pi \ddagger}$	L [‡]	Comments
0	(5/2)+	2	J^{π} : interpreted as the $1d_{5/2}$ proton removal from ^{36}Si .
			Partial knockout σ =13 mb 2.
801 <i>3</i>			Partial knockout σ =1.0 mb 7.
1005 <i>3</i>			Partial knockout σ =0.8 mb 9.
1865 <i>4</i>			Partial knockout σ =1.0 mb 2.
1973 <i>4</i>	$3/2^+,5/2^+$	2	Partial knockout σ =3.2 mb 5.
2733 7			Partial knockout σ =0.5 mb 1.
3244 5	$3/2^+, 5/2^+$	2	Partial knockout σ =2.6 mb 3.
4275? 9	$3/2^+, 5/2^+$	2	Partial knockout σ =0.5 mb 1.

[†] From a least-squares fit to γ -ray energies.

 $^{^{\}ddagger}$ 2014St18 deduced L by comparing the measured and eikonal-calculated parallel momentum distributions of residuals. J^{π} options are deduced accordingly.

v(35	A 1)
γ(ΔIII

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}
802 4	10 <i>I</i>	801		0	$(5/2)^+$	1932 6	2.5 3	2733		801	
859 <i>4</i>	3.6 <i>3</i>	1865		1005		1972 6	7.5 5	1973	$3/2^+, 5/2^+$	0	$(5/2)^+$
968 <i>4</i>	4.4 3	1973	$3/2^+,5/2^+$	1005		2237 6	7.8 6	3244	$3/2^+, 5/2^+$	1005	
1003 4	19 <i>I</i>	1005		0	$(5/2)^+$	2440 7	1.4 2	3244	$3/2^+, 5/2^+$	801	
1064 <i>4</i>	0.8 2	1865		801		x3060 8	1.6 4				
1174 5	2.8 <i>3</i>	1973	$3/2^+,5/2^+$	801		3250 8	3.3 4	3244	$3/2^+, 5/2^+$	0	$(5/2)^+$
^x 1473 5	1.1 2					4275 9	3 1	4275?	$3/2^+,5/2^+$	0	$(5/2)^+$

 $^{^{}x}$ γ ray not placed in level scheme.

