IV. Versuchsdurchführung

1 Gesamtschaltbild:

- 1,5 V Batterie (1,5 V)
 - S Schalter für Batterie
 - P_M Potentiometer zur Einstellung der maximalen Kompensationsspannung
 - R_M Widerstand (zur Strombegrenzung für P_M und Batterie)
- U_{KM} Bananenbuchsen, an denen Sie die maximale Kompensationsspannung messen können
 - P_K Präzisionspotentiometer mit Skala (100 Ω , 10 Umdrehungen)
 - A Abgriff am Potentiometer P_K , der das Potentiometer in die Widerstände R_1 und R_2 aufteilt
 - I_0 Nullpunktgalvanometer (mit Meßverstärker) Mit einem Taster (oben nicht eingezeichnet) neben dem Nullpunktgalvanometer können Sie dessen Empfindlichkeit um etwa den Faktor 10 erhöhen. Der Schalter S schaltet auch die Spannungsversorgung für den Meßverstärker ein (Signallampe neben dem Schalter leuchtet).
- B_{UH} Anschlüsse für die Hallsondenspannung (in mehrpoliger Buchse)
 - R₀ Bekannter Widerstand (Wert siehe Versuchskästchen)
 - S_R Mit diesem Schalter fügen Sie den bekannten Widerstand R_0 in den Stromkreis ein und vervollständigen so die Wheatstonesche Brücke
- 12 V Buchsen für Spannungsquelle für den Hallstrom
- P_H Potentiometer zur Einstellung des Hallstroms
- R_H Vorwiderstand zur Begrenzung des maximalen Hallstroms
- I_H Drehspulamperemeter zur Messung des Hallstroms
- B_{IH} Anschlüsse für den Hallstrom (in mehrpoliger Buchse)
- Beachten Sie: Für die Versuchsteile (2) bis (4) muß der Schalter S_R geöffnet sein (ist auf dem Versuchskästchen beschriftet)!
- Mit dem Schalter S verbinden Sie die 1,5-V-Batterie mit dem Präzisionspotentiometer, außerdem wird der Meßverstärker des Nullpunktgalvanometers