<211> 17

SEQUENCE LISTING

```
<110> University of Utah Research Foundation
     Cognetix, Inc.
      Olivera, Baldomero M
      McIntosh, J. Michael
      Garrett, James E.
      Walker, Craig S.
      Watkins, Maren
      Jones, Robert M.
      Linear Gamma-Carboxyglutamate Rich Conotoxins
<120>
       2314-224-II
<130>
<150>
      US 60/273,639
<151>
      2001-03-07
<160>
      196
      PatentIn version 3.0
<170>
<210>
      1
<211> 24
<212>
      PRT
<213>
      Conus ammiralis
<220>
<221> PEPTIDE
<222>
      (1)..(24)
<223> Xaa at residue 1 is Gln or pygro-Glu; Xaa at residues 7, 8 and 9
       is Glu or gamma-carboxy-Glu; Xaa at residues 13 and 16 is Lys, no
       r-Lys, N-methyl-Lys, N, N-dimethyl-Lys or N, N, N-trimethyl-Lys
<400> 1
Xaa Gly Gln Asp Asp Ser Xaa Xaa Xaa Asp Ser Gln Xaa Val Met Xaa
                                   10
His Gly Gln Arg Arg Glu Arg Arg
            20
<210> 2
<211> 17
<212> PRT
<213> Conus betulinus
<220>
<221> PEPTIDE
<222> (1)..(17)
<223> Xaa at residues 3, 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; X
       aa at residue 17 is Pro or hydroxy-Pro
<400> 2
Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Leu Thr
1
                                    10
                                                        15
Xaa
<210> 3
```

```
the first of the first party the first party par
```

```
<212>
      PRT
      Conus betulinus
<213>
<220>
<221>
      PEPTIDE
<222>
      (1)..(17)
      Xaa at residues 3, 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; X
<223>
       aa at residue 17 is Pro or hydroxy-Pro
<400> 3
Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Ile Thr
                                                        15
                                    10
Xaa
<210>
<211>
       17
<212>
       PRT
      Conus betulinus
<213>
<220>
<221> PEPTIDE
<222> (1)..(17)
      Xaa at residues 3, 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; X
<223>
       aa at residue 17 is Pro or hydroxy-Pro
<400> 4
Asp Gly Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu Asn Xaa Leu Thr
                                    10
                                                        15
1
Xaa
<210>
<211>
       18
<212>
       PRT
       Conus betulinus
<213>
<220>
<221> PEPTIDE
<222> (1)..(18)
<223> Xaa at residues 3, 7, 10, 14, 16 and 17 is Glu or gamma-carboxy-G
       lu
<400> 5
Gly Tyr Xaa Asp Asp Arg Xaa Ile Ala Xaa Thr Val Arg Xaa Leu Xaa
                                                         15
                                     10
                5
1
Xaa Ala
<210> 6
<211> 17
<212> PRT
<213> Conus betulinus
<220>
<221> PEPTIDE
<222> (1)..(17)
       Xaa at residues 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; Xaa
<223>
       at residue 17 is Pro or hydroxy-Pro
```

```
<400> 6
Gly Gly Kaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Ile Thr
                                     10
                                                         15
Xaa
<210>
       7
<211>
       18
<212>
       PRT
<213>
       Conus bullatus
<220>
<221>
       PEPTIDE
<222>
       (1)..(18)
<223>
       Xaa at residue 2 is Pro or hydroxy-Pro; Xaa at residues 3, 7, 10,
        14, 16 and 17 is Glu or gamma-carboxy-Glu; Xaa at residue 5 is T
       yr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O-phospho
       -Tyr or nitro-Tyr
<400> 7
Asn Xaa Xaa Thr Xaa Ile Xaa Ile Val Xaa Ile Ser Arg Xaa Leu Xaa
                5
                                     10
                                                         15
1
Xaa Ile
<210>
<211>
       20
<212>
       PRT
<213>
       Conus bullatus
<220>
<221>
       PEPTIDE
<222>
       (1)..(20)
       Xaa at residue 2 is Pro or hydroxy-Pro; Xaa at residues 3, 6, 9,
<223>
       12, 16, 18 and 19 is Glu or gamma-carboxy-Glu; Xaa at residue 5 i
       s Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O-phos
       pho-Tyr or nitro-Tyr
<400> 8
Asn Xaa Xaa Thr Xaa Xaa Asn Leu Xaa Leu Val Xaa Ile Ser Arg Xaa
                                     10
Leu Xaa Xaa Ile
            20
<210> 9
<211> 19
<212>
       PRT
<213>
       Conus catus
<220>
<221>
       PEPTIDE
<222>
      (1)..(19)
      Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
       u
<400> 9
Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                                     10
                                                         15
```

```
Xaa Arg Asn
                                  <210>
                                                                            10
                                  <211>
                                                                           19
                                  <212>
                                                                           PRT
                                 <213>
                                                                           Conus catus
                                 <220>
                                 <221>
                                                                           PEPTIDE
                                 <222>
                                                                             (1)..(19)
                                  <223>
                                                                           Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
                                                                            u
                                 <400>
                                                                           10
                                 Gly Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                                                                                                                                    5
                                  1
                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                        15
<u>_</u>==
 The state of the s
                                 Xaa Arg Asp
121
                                 <210>
                                                                           11
Hand.
                                 <211>
                                                                          19
11.12
11.11
11.11
11.11
                                 <212>
                                                                           PRT
A STATE OF THE PARTY OF THE PAR
                                 <213>
                                                                           Conus catus
                                 <220>
Hand had that the
                                 <221>
                                                                           PEPTIDE
                                 <222>
                                                                            (1)..(19)
                                 <223>
                                                                           Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
                                 <400> 11
                                 Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Pro
                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                       15
                                 1
                                                                                                                                    5
                                 Xaa Arg Asn
                                 <210> 12
                                 <211> 17
                                 <212> PRT
                                 <213> Conus catus
                                 <220>
                                 <221> PEPTIDE
                                 <222> (1)..(17)
                                 <223> Xaa at residues 2, 3, 7, 10 and 14 is Glu or gamma-carboxy-Glu
                                 <400> 12
                                 Ile Xaa Xaa Gly Leu Ile Xaa Asp Leu Xaa Thr Ala Arg Xaa Arg Asp
                                 1.
                                                                                                                                                                                                                                                             10
                                                                                                                                                                                                                                                                                                                                                                                        15
                                 Ser
                                 <210> 13
                                 <211> 17
                                 <212> PRT
                                 <213>
                                                                           Conus catus
                                 <220>
                                 <221>
                                                                        PEPTIDE
```

```
<222>
           (1)..(17)
           Xaa at residues 2, 3, 7, 10 and 14 is Glu or gamma-carboxy-Glu
    <223>
    <400> 13
    Ile Xaa Xaa Gly Leu Ile Xaa Asp Leu Xaa Ala Ala Arg Xaa Arg Asp
                                         10
                                                              15
    1
    Ser
    <210>
           14
    <211>
           29
    <212>
           PRT
    <213>
           Conus catus
    <220>
    <221>
           PEPTIDE
1
    <222>
           (1)..(29)
<223>
           Xaa at residues 2, 4, 10 and 16 is Glu or gamma-carboxy-Glu; Xaa
           at residues 3. 9, 25 and 28 is Pro or hydroxy-Pro; Xaa at residue
26 is Trp (D or L) or halo-Trp (D or L)
<220>
    <221>
           PEPTIDE
<222>
           (1)..(29)
    <223>
           Xaa at residue 29 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys
5
            or N, N, N-trimethyl-Lys
The same last and
    <400> 14
    Gly Xaa Xaa Xaa Val Gly Ser Ile Xaa Xaa Ala Val Arg Gln Gln Xaa
    1
                                         10
                                                              15
Cys Ile Arg Asn Asn Asn Asn Arg Xaa Xaa Cys Xaa Xaa
                 20
                                     25
    <210>
           15
    <211>
           17
    <212>
           PRT
    <213> Conus distans
    <220>
    <221> PEPTIDE
    <222> (1)..(17)
    <223> Xaa at residues 5, 6, 8 and 12 is Glu or gamma-carboxy-Glu
    <400> 15
    Thr Ile Thr Ala Xaa Xaa Ala Xaa Arg Thr Ser Xaa Arg Met Ser Ser
                                         10
                                                              15
    Met
    <210> 16
    <211> 19
    <212> PRT
    <213> Conus distans
    <220>
    <221> PEPTIDE
    <222>
           (1)..(19)
    <223> Xaa at residue 1 is Gln or pyro-Glu; Xaa at residues 2, 7, 8, 10
            and 14 is Glu or gamma-carboxy-Glu; Xaa at residues 4 and 6 is Pr
```

o or hydroxy-Pro

```
the party of the party that the part
```

```
<400> 16
Xaa Xaa Thr Xaa Thr Xaa Xaa Xaa Val Xaa Arg His Thr Xaa Arg Leu
                5
                                     10
                                                         15
Lys Ser Met
<210>
       17
<211>
       15
<212>
       PRT
<213>
       Conus episcopatus
<220>
<221>
       PEPTIDE
<222>
       (1)..(15)
<223>
       Xaa at residues 7, 11 and 13 is Glu or gamma-carboxy-Glu; Xaa at
       residue 14 is Lys, nor-Lys, N-methyl-Lys, N, N-dimethyl-Lys or N, N
       ,N-trimethyl-Lys
<400>
       17
Gly Gly Lys Asp Ile Val Xaa Thr Ile Thr Xaa Leu Xaa Xaa Ile
1
                5
                                     10
                                                         15
<210>
       18
<211>
       19
<212>
       PRT
       Conus figulinus
<213>
<220>
<221>
       PEPTIDE
<222>
       (1)..(19)
<223>
       Xaa at residues 2, 3, 4, 7, 11 and 15 is Glu or gamma-carboxy-Glu
<400>
       18
Gly Xaa Xaa Xaa Val Ala Xaa Met Ala Ala Xaa Ile Ala Arg Xaa Asn
                5
1
                                     10
                                                         15
Gln Ala Asn
<210> 19
<211> 18
<212> PRT
<213> Conus figulinus
<220>
<221> PEPTIDE
<222> (1)..(18)
      Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
<223>
       sulpho-Tyr, O-phospho-Tyr or nitro-Tyr Xaa at residues 3, 7, 10,
       14 and 17 is Glu or gamma-carboxy-Glu
<220>
<221> PEPTIDE
<222> (1)..(18)
      Xaa at residue 16 is Lys, nor-Lys, N-methyl-Lys, N, N-dimethyl-Lys
<223>
        or N, N, N-trimethyl-Lys
<400> 19
Ser Xaa Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Xaa
```

10

1

Xaa Arg

20

<213> Conus figulinus

(1)..(19)

<220>

<222>

<223>

<221> PEPTIDE

<210>

5

```
<211>
             34
     <212>
            PRT
            Conus figulinus
     <213>
     <220>
     <221>
            PEPTIDE
     <222>
             (1)..(34)
     <223>
            Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
            sulpho-Tyr, O-phospho-Tyr or nitro-Tyr Xaa at residues 3, 7, 10,
            14 and 17 is Glu or gamma-carboxy-Glu; Xaa at residue 28 is Pro o
            r hydroxy-Pro
<220>
<221>
            PEPTIDE
<222>
            (1)..(34)
            Xaa at residues 16, 20 and 21 is Lys, nor-Lys, N-methyl-Lys, N,N-
<223>
            dimethyl-Lys or N, N, N-trimethyl-Lys
<400>
            20
Ser Xaa Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Xaa
Ŧ
     1
                      5
                                          10
                                                              15
Xaa Arg Gly Xaa Xaa Ile Ile Met Leu Gly Val Xaa Arg Asp Thr Arg
20
                                      25
                                                          30
     Gln Phe
     <210>
            21
     <211>
            17
     <212>
            PRT
     <213>
            Conus figulinus
     <220>
     <221> PEPTIDE
     <222>
            (1)..(17)
     <223> Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
            sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residues 3, 7, 10,
             14, 16 and 17 is Glu or gamma-carboxy-Glu
     <400> 21
     Xaa Xaa Asp Asp Arg Xaa Ile Ala Xaa Thr Val Arg Xaa Leu Xaa Xaa
                                                              15
                                          10
     Ile
     <210> 22
     <211> 19
     <212>
            PRT
```

Xaa at residues 5, 6, 9, 12 and 16 is Glu or gamma-carboxy-Glu

```
The state of the s
                                                                                          The state of the s
```

```
<400> 22
Gly Asn Thr Ala Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu His Xaa
                                    10
                                                        15
Leu Ser Leu
<210>
       23
<211>
       23
<212>
       PRT
<213>
       Conus figulinus
<220>
<221>
       PEPTIDE
       (1)..(23)
<222>
       Xaa at residues 8, 12, 15, 19 and 22 is Glu or gamma-carboxy-Glu
<223>
<400> 23
Gly Ser Ile Ser Met Gly Phe Xaa His Arg Arg Xaa Ile Ala Xaa Leu
                                    10
                                                        15
Val Arg Xaa Leu Ala Xaa Ile
            20
<210>
       24
<211>
      19
<212>
      PRT
       Conus lynceus
<213>
<220>
<221>
      PEPTIDE
<222>
       (1)..(19)
      Xaa at residues 2, 3, 4, 7, 11 and 15 is Glu or gamma-carboxy-Glu
<400> 24
Gly Xaa Xaa Xaa Val Ala Xaa Met Ala Ala Xaa Ile Ala Arg Xaa Asn
Ala Ala Asn
<210> 25
<211> 18
<212> PRT
<213> Conus lynceus
<220>
<221> PEPTIDE
<222> (1)..(18)
<223> Xaa at residue 2 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys
       or N,N,N-trimethyl-Lys; Xaa at residues 3, 4, 7, 10, 14, 16 and 1
       7 is Glu or gamma-carboxy-Glu
<400> 25
Gly Xaa Xaa Xaa Asp Arg Xaa Ile Val Xaa Thr Val Arg Xaa Leu Xaa
1
                                    10
                                                         15
Xaa Ile
<210> 26
<211> 19
```

```
<212>
                                 PRT
               <213>
                                 Conus lynceus
               <220>
               <221>
                                 PEPTIDE
               <222>
                                (1)..(19)
               <223>
                                Xaa at residues 2, 3, 4, 7, 11, 15 and 16 is Glu or gamma-carboxy
                                 -Glu; Xaa at residue 19 is Lys, nor-Lys, N-methyl-Lys, N,N-dimeth
                                 yl-Lys or N, N, N-trimethyl-Lys
              <400> 26
              Gly Xaa Xaa Val Ala Xaa Met Ala Ala Xaa Leu Thr Arg Xaa Xaa
                                                                                                             10
                                                                                                                                                                 15
                                                                                                         0
              Ala Val Xaa
              <210>
                                27
<211>
                                 24
dust the day was and have
              <212>
                                 PRT
               <213>
                                Conus purpurascens
               <220>
              <221>
                                PEPTIDE
              <222>
                                 (1)..(24)
Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl
               <223>
                                 u; Xaa at residues 7 and 19 is Lys, nor-Lys, N-methyl-Lys, N,N-di
Œ
The track that the tr
                                methyl-Lys or N, N, N-trimethyl-Lys
              <220>
              <221>
                                PEPTIDE
              <222>
                                 (1)..(24)
                                Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
                                 sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
               <400>
                                27
              Gly Xaa Xaa Xaa His Ser Xaa Xaa Gln Xaa Cys Leu Arg Xaa Val Arg
                                                         5
                                                                                                             10
              Val Asn Xaa Val Gln Gln Xaa Cys
                                              20
              <210>
                                28
              <211>
                                 24
              <212>
                                PRT
              <213>
                                Conus purpurascens
              <220>
              <221>
                               PEPTIDE
              <222>
                               (1)..(24)
              <223> Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl
                                 u; Xaa at residues 7 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-
                                Lys or N, N, N-trimethyl-Lys
              <220>
              <221>
                               PEPTIDE
               <222>
                               (1)..(24)
              <223> Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
                                 sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
              <400> 28
              Gly Xaa Xaa His Ser Xaa Xaa Gln Xaa Cys Leu Arg Xaa Val Arg
```

```
alle find had their next daily of the transmit had the read their teats
```

```
5
                                     10
1
                                                         15
Val Asn Asn Val Gln Gln Xaa Cys
            20
<210>
       29
<211>
       24
<212>
       PRT
<213>
       Conus purpurascens
<220>
<221>
      PEPTIDE
<222>
      (1)..(24)
<223>
      Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl
       u; Xaa at residues 7 and 19 is Lys, nor-Lys, N-methyl-Lys, N,N-di
       methyl-Lys or N, N, N-trimethyl-Lys
<220>
<221>
      PEPTIDE
<222>
       (1)..(24)
      Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
<223>
       sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
<400> 29
Gly Xaa Xaa His Ser Xaa Xaa Gln Xaa Cys Leu Arg Xaa Ile Arg
                                    10
                                                         15
Val Asn Xaa Val Gln Gln Xaa Cys
            20
<210>
       30
<211>
       24
<212>
      PRT
<213>
      Conus purpurascens
<220>
<221>
       PEPTIDE
<222>
       (1)..(24)
      Xaa at residues 2, 4, 10, 14 and 23 is Glu or gamma-carboxy-Glu;
       Xaa at residues 19 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-Ly
       s or N,N,N-trimethyl-Lys
<220>
<221>
      PEPTIDE
<222>
      (1)..(24)
      Xaa at residue 6 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
<223>
       sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
<400> 30
Gly Xaa Ala Xaa His Xaa Ala Phe Gln Xaa Cys Leu Arg Xaa Ile Asn
1
                                     10
                                                         15
Val Asn Xaa Val Gln Gln Xaa Cys
            20
<210>
       31
<211>
       15
<212>
       PRT
<213>
       Conus purpurascens
<220>
```

```
4,1,1
                             ≆
                             the state of the s
                      Hand;
```

```
<221>
       PEPTIDE
<222>
      (1)..(15)
       Xaa at residues 3, 4, 7, 10, 13 and 14 is Glu or gamma-carboxy-Gl
<223>
       u
<400> 31
Gly Leu Xaa Xaa Asp Ile Xaa Phe Ile Xaa Thr Ile Xaa Xaa Ile
1
                                     10
                                                         15
<210>
       32
<211>
       15
<212>
       PRT
<213>
       Conus stercusmuscarum
<220>
<221>
       PEPTIDE
<222>
       (1)..(15)
       Xaa at residues 3, 7, 13 and 14 is Glu or gamma-carboxy-Glu; Xaa
<223>
       at residue 11 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys or
       N, N, N-trimethyl-Lys
<400>
       32
Ile Thr Xaa Thr Asp Ile Xaa Leu Val Met Xaa Leu Xaa Xaa Ile
1
                                     10
                                                         15
<210>
       33
<211>
       20
<212>
       PRT
<213>
       Conus aurisiacus
<220>
<221>
       PEPTIDE
<222>
       (1)..(20)
       Xaa at residues 2, 4, 11 and 15 is Glu or gamma-carboxy-Glu; Xaa
<223>
       at residue 20 is Lys, nor-Lys, N-methyl-Lys, N,N-dimethyl-Lys or
       N, N, N-trimethyl-Lys
<400> 33
Gly Xaa Asp Xaa Val Ser Gln Met Ser Xaa Xaa Ile Leu Arg Xaa Leu
                5
                                     10
                                                         15
Glu Leu Gln Xaa
            20
<210> 34
<211> 31
<212> DNA
<213> Artificial
<220>
<223> oligonucleotide primer
<400> 34
caggatectg tatetgetgg tgeecetggt g
                                                                       31
<210>
       35
<211> 23
<212> DNA
<213> Artificial
```

<213> Conus catus

<220> <223>	oligo	onucl	etid	le pr	rimer	:									
<400> aagctc		aacaa	ıcgca	ıg aç	gt		•								23
<210> <211> <212> <213>	36 432 DNA Conus	s cat	us												
<400> gcgatgo		gtac	cacgt	a to	ctgta	atcto	g cto	ggtgo	ccc	tggt	gaco	ctt c	ccaco	ctaatc	60
ctaggca	acgg (gcaca	actag	ga to	catgo	gaggo	c gca	actga	actg	aaco	gccgt	tc ç	gggto	gacgcc	120
acagcg	ctga q	gacct	gago	c to	gtcct	ccto	g cag	gaaat	ccg	ctgo	ccg	cag c	cacco	gacgac	180
agtggc	aagg a	acago	gttga	ic to	cagat	gaag	g ago	gatto	ctca	aaaa	igcaa	agg a	aaaca	acggct	240
aaaagc	gacg a	aagag	gctac	ct ac	cgaga	aggat	gta	agaga	actg	tttt	agaa	act o	cgaaa	aggaat	300
ggaaaaa	agat a	aatca	agct	g ag	gtgtt	ccac	gto	gacad	ctcg	tcaç	ttct	aa a	agtco	ccaga	360
taaatc	gttc	cctat	tttg	ic ce	acatt	cttt	ctt	tctc	cttt	tcat	ttaa	att o	ccca	aatct	420
ttcatg	ttta t	t													432
<210><211><211><212><213>	102 PRT	s cat	cus												
<400>			_,	_	_	_	_	_			_			51	
Met Gli	n Leu	Tyr	Thr 5	Tyr	Leu	Tyr	Leu	Leu 10	Val	Pro	Leu	Val	Thr 15	Phe	
His Le	u Ile	Leu 20	Gly	Thr	Gly	Thr	Leu 25	Asp	His	Gly	Gly	Ala 30	Leu	Thr	
Glu Ard	g Arg 35	Ser	Gly	Asp	Ala	Thr 40	Ala	Leu	Arg	Pro	Glu 45	Pro	Val	Leu	
Leu Gla	n Lys	Ser	Ala	Ala	Arg 55	Ser	Thr	Asp	Asp	Ser 60	Gly	Lys	Asp	Arg	
Leu Th	r Gln	Met	Lys	Arg 70	Ile	Leu	Lys	Lys	Gln 75	Gly	Asn	Thr	Ala	Lys 80	
Ser As	p Glu	Glu	Leu 85	Leu	Arg	Glu	Asp	Val 90	Glu	Thr	Val	Leu	Glu 95	Leu	
Glu Ar	g Asn	Gly 100	Lys	Arg											
<210><211><211>	38 19 PRT		٠												

```
<220>
<221>
      PEPTIDE
<222>
      (1)..(19)
<223> Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
       u
<400>
       38
Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                                     10
                                                         15
Xaa Arg Asn
<210>
       39
<211>
       432
<212>
       DNA
<213>
       Conus catus
<400>
       39
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                       60
                                                                      120
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc gggtgacgcc
acagegetga gacetgagee tgteeteetg cagaaateeg etgeeegeag caeegaegae
                                                                      180
                                                                      240
agtggcaagg acaggttgac tcagatgaag aggattctca aaaagcaagg aaacacggct
aaaggcgacg aagagctact acgagaggat gtagagactg ttttagaact cgaaagggat
                                                                      300
ggaaaaagat aatcaagctg agtgttccac gtggcactcg tcagttctaa agtccccaga
                                                                      360
taaatcqttc cctattttgc cacattcttt ctttctcttt tcatttaatt ccccaaatct
                                                                      420
ttcatgttta tt
                                                                      432
<210>
       40
<211>
       102
<212>
       PRT
<213> Conus catus
<400> 40
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                     10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                25
                                                     30
Glu Arg Arg Ser Gly Asp Ala Thr Ala Leu Arg Pro Glu Pro Val Leu
        35
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Ser Gly Lys Asp Arg
    50
                        55
                                             60
Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Lys
65
Gly Asp Glu Glu Leu Leu Arg Glu Asp Val Glu Thr Val Leu Glu Leu
                85
                                     90
                                                         95
Glu Arg Asp Gly Lys Arg
```

```
<210> 41
      19
<211>
<212>
      PRT
<213> Conus catus
<220>
<221>
      PEPTIDE
<222>
      (1)..(19)
<223> Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
      ,u
<400> 41
Gly Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                                                         15
                                    10
Xaa Arg Asp
<210> 42
<211> 432
<212>
      DNA
<213>
      Conus catus
<400> 42
gcgatgcaac tgtacacgta tctgtatctg ctggcgcccc tggtgacctt ccacctaatc
                                                                       60
                                                                      120
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc gggtgacgcc
                                                                      180
acagegetga gacetgagee tgteeteetg cagaaateeg etgeeegeag cacegaegae
agtggcaagg acaggttgac tcagatgaag aggattctca aaaagcaagg aaacacggct
                                                                      240
                                                                      300
aaaagcgacg aagagctact acgagaggat gtagagactg ttttagaacc cgaaaggaat
ggaaaaagat aatcaagctg agtgttccac gtgacactcg tcagttctaa agtccccaga
                                                                      360
taaatcgttc cctattttgc cacattcttt ctttctcttt tcatttaatt ccccaaatct
                                                                      420
                                                                      432
ttcatgttta tt
<210> 43
<211> 102
<212> PRT
<213> Conus catus
<400> 43
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Ala Pro Leu Val Thr Phe
                                     10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
                                                     30
            20
                                 25
Glu Arg Arg Ser Gly Asp Ala Thr Ala Leu Arg Pro Glu Pro Val Leu
        35
                             40
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Ser Gly Lys Asp Arg
    50
                         55
                                             60
Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Lys
65
                     70
                                         75
```

90

Ser Asp Glu Glu Leu Leu Arg Glu Asp Val Glu Thr Val Leu Glu Pro

85

Glu Arg Asn Gly Lys Arg

```
100
<210> 44
<211> 19
<212> PRT
<213> Conus catus
<220>
<221>
      PEPTIDE
<222>
      (1)..(19)
<223> Xaa at residues 3, 4, 8, 11, 15 and 17 is Glu or gamma-carboxy-Gl
       u; Xaa at residue 16 is Pro or hydroxy-Pro
<400> 44
Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Xaa
                                    10
                                                        15
Xaa Arg Asn
<210> 45
<211> 427
<212> DNA
<213> Conus catus
<400> 45
gcgatgcaac tgtacacgta tctgtatctg ctggtgtccc tggtgacctt ccacctaatc
                                                                      60
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttt ggctgacgcc
                                                                     120
                                                                     180
acagegetgg aagetgagee tgteeteetg cagaaateeg etgeeegeag caeegacaae
                                                                     240
aatggcaagg acaggtcgac tcagatgagg aggattctca aaaagcaagg aaacacggct
agaatcgagg aaggtctgat agaggatctg gagaccgcta gagaacgcga cagtggaaaa
                                                                     300
                                                                     360
agataatcaa gctgagtgtt ccacgtgaca ctcatcagtt ctaaagtccc cagataaatc
gttccctatt tttgccacat tctttcttcc tcttttcgtt taattcccca aatctttcat
                                                                     420
                                                                     427
gtttatt
<210> 46
<211> 100
<212> PRT
<213> Conus catus
<400> 46
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Ser Leu Val Thr Phe
                                                        15
                                    10
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                25
                                                    30
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Glu Ala Glu Pro Val Leu
        35
                            40
                                                45
```

Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asn Asn Gly Lys Asp Arg

```
50
                                55
                                                     60
     Ser Thr Gln Met Arg Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Arg
      65
                           70
                                                 75
                                                                      80
      Ile Glu Glu Gly Leu Ile Glu Asp Leu Glu Thr Ala Arg Glu Arg Asp
                       85
                                            90
     Ser Gly Lys Arg
                   100
     <210>
             47
     <211>
             17
     <212>
             PRT
      <213>
             Conus catus
half find then and their A
     <220>
     <221>
             PEPTIDE
     <222>
             (1)..(17)
             Xaa at residues 2, 3, 7, 10 and 14 is Glu or gamma-carboxy-Glu
      <400>
      Ile Xaa Xaa Gly Leu Ile Xaa Asp Leu Xaa Thr Ala Arg Xaa Arg Asp
                                            10
                                                                  15
 =
      Ser
 the true tone that the
      <210>
             48
      <211>
             427
      <212>
             DNA
             Conus catus
      <213>
      <400>
      gcgatgcaac tgtacacgta tctgtatctg ctggtgtccc tggtgacctt ccacctaatc
                                                                                 60
      ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttt ggctgacgcc
                                                                                120
                                                                                180
      acagcgctgg aagctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacaac
                                                                                240
      aatggcaagg acaggtcgac tcagatgagg aggattctca aaaagcaagg aaacacggct
      agaatcgagg aaggtctgat agaggatctg gaggctgcta gagaacgcga cagtggaaaa
                                                                                300
      agataatcaa gctgagtgtt ccacgtgaca ctcatcagtt ctaaagtccc cagataaatc
                                                                                360
      gttccctatt tttgccacat tctttcttcc tcttttcgtt taattcccca aatctttcat
                                                                                420
                                                                                427
      gtttatt
      <210>
             49
      <211>
             100
      <212>
             PRT
             Conus catus
      <213>
      <400>
             49
      Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Ser Leu Val Thr Phe
```

10

<212>

PRT

<213> Conus catus

```
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                 25
                                                     30
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Glu Ala Glu Pro Val Leu
        35
                             40
                                                  45
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asn Asn Gly Lys Asp Arg
    50
                         55
                                             60
Ser Thr Gln Met Arg Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Arg
65
                    70
                                         75
                                                              80
Ile Glu Glu Gly Leu Ile Glu Asp Leu Glu Ala Ala Arg Glu Arg Asp
__lain
                     85
                                          90
                                                              95
Ser Gly Lys Arg
            100
<210>
       50
<211>
       17
<212>
       PRT
<213>
       Conus catus
<220>
<221>
       PEPTIDE
<222>
       (1)..(17)
       Xaa at residues 2, 3, 7, 10 and 14 is Glu or gamma-carboxy-Glu
<223>
<400>
       50
Ile Xaa Xaa Gly Leu Ile Xaa Asp Leu Xaa Ala Ala Arg Xaa Arg Asp
                                     10
Ser
<210>
       51
<211>
       433
<212>
       DNA
<213> Conus catus
<400> 51
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                        60
                                                                       120
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc ggctgacgcc
acagegetga aacetgagee tgteeteetg cagaaateeg etgeeegeag cacegaegae
                                                                       180
aatggcaaag acaggttgac tcacatgaag aggattctca aaaaacgagc aaacaaagcc
                                                                       240
agaggcgaac cagaagttgg aagcataccg gaggcagtaa gacaacaaga atgtataaga
                                                                       300
aataataata atcgaccttg gtgtcccaag tgacactcgt cagttctaaa gtctccagat
                                                                       360
agatcgttcc ctatttttgc cacactcttt ctttctcttt tcatttaagt tccccaaatc
                                                                       420
tttcatgttt att
                                                                       433
<210>
       52
<211>
      107
```

Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe

<400> 52

```
15
                                     10
1
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
                                 25
                                                     30
            20
Glu Arg Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
                             40
                                                 45
        35
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg
                         55
                                             60
    50
Leu Thr His Met Lys Arg Ile Leu Lys Lys Arg Ala Asn Lys Arg Glu
                                         75
                                                             80
65
                    70
Pro Glu Val Gly Ser Ile Pro Glu Ala Val Arg Gln Gln Glu Cys Ile
                                     90
                85
Arq Asn Asn Asn Arg Pro Trp Cys Pro Lys
            100
                                 105
<210>
       53
<211>
       29
<212>
       PRT
<213>
       Conus catus
<220>
<221>
       PEPTIDE
<222>
       (1)..(29)
       Xaa at residues 2, 4, 10 and 16 is Glu or gamma-carboxy-Glu; Xaa
<223>
       at residues 3, 9, 25 and 28 is Pro or hydroxy-Pro; Xaa at residue
        26 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O
       -phospho-Tyr or nitro-Tyr
<400>
Gly Xaa Xaa Xaa Val Gly Ser Ile Xaa Xaa Ala Val Arg Gln Gln Xaa
                                                         15
Cys Ile Arg Asn Asn Asn Asn Arg Xaa Xaa Cys Xaa Lys
            20
                                 25
<210>
       54
<211>
       430
<212>
       DNA
<213>
       Conus bullatus
<400>
      54
gcgatgcaac tgtacacgta tctgtatctg ctggtgccct tggtgacctt ccacctaatc
                                                                        60
                                                                       120
ctgggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc ggctgacgcc
                                                                       180
acagcactga aacctgagcc tgtcctcctg cagaaaaccg ctgcccgcag caccgacgac
                                                                       240
aatggcaaga agaggctgac tcagaggaag aggattctca aaaagcgagg aaacacggct
                                                                       300
agaaaccccg aaacttatat agagattgtg gagatttcta gggaactcga agagattgga
                                                                       360
aaaagataat caagctgggt gttccacgtg acactcgtca gttctgaagt cccgaggtag
```

atcgttccct atttttgcca cactctttct ttctcttttc atttaattcc ccaaatcttt

```
catgtttatt
                                                                       430
<210>
       55
<211>
       101
<212>
       PRT
<213>
       Conus bullatus
<400>
       55
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
1
                                     10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                 25
                                                     30
Glu Arg Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
        35
                             40
                                                 45
Leu Gln Lys Thr Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Lys Arg
    50
                        55
                                             60
Leu Thr Gln Arg Lys Arg Ile Leu Lys Lys Arg Gly Asn Thr Ala Arg
65
                    70
                                         75
                                                             80
Asn Pro Glu Thr Tyr Ile Glu Ile Val Glu Ile Ser Arg Glu Leu Glu
                85
                                     90
                                                         95
Glu Ile Gly Lys Arg
            100
<210>
       56
<211>
       18
<212>
       PRT
<213>
      Conus bullatus
<220>
<221> PEPTIDE
<222> (1)..(18)
<223> Xaa at residue 1 is Pro or hydroxy-Pro; Xaa at residues 3, 5, 7,
       10, 14, 16 and 17 is Glu or gamma-carboxy-Glu; Xaa at residue 5 i
       s Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O-phos
       pho-Tyr or nitro-Tyr
<400> 56
Asn Xaa Xaa Thr Xaa Ile Xaa Ile Val Xaa Ile Ser Arg Xaa Leu Xaa
                                     10
Xaa Ile
<210> 57
<211> 435
<212> DNA
<213> Conus bullatus
<400> 57
gcgatgcaac tgtacacgta tctgtatttg ctggtgccct tggtgacctt ccacctaatc
                                                                        60
ctgggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc ggctgacgcc
                                                                       120
```

Leu Xaa Xaa Ile

20

```
acagegetga aacetgagee tgteeteetg cagaaaaceg etgeeegeag cacegaegae
                                                                       180
aatggcaaga agaggctgac tcagaggaag aggattctca aaaagcgagg aaacacggct
                                                                       240
agaaaccccg aaacttatta taatttagag cttgtggaga tttctaggga actcgaagaa
                                                                       300
attggaaaaa gataatcaag ctgggtgttc cacgtgacac tcgtcagttc ttaagtcccg
                                                                       360
aggtagatcg ttccctattt ttgccacact ctttctttct cttttcattt aattccccaa
                                                                       420
actttcatgt ttatt
                                                                       435
<210>
       58
<211>
       103
<212>
       PRT
       Conus bullatus
<213>
<400>
       58
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                     10
                                                         15
1
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                 25
                                                     30
Glu Arg Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu 🕔
        35
                             40
                                                 45
Leu Gln Lys Thr Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Lys Arg
    50
                         55
Leu Thr Gln Arg Lys Arg Ile Leu Lys Lys Arg Gly Asn Thr Ala Arg
65
                    70
                                         75
                                                             80
Asn Pro Glu Thr Tyr Tyr Asn Leu Glu Leu Val Glu Ile Ser Arg Glu
                85
                                     90
                                                         95
Leu Glu Glu Ile Gly Lys Arg
            100
<210>
       59
<211>
       20
<212>
       PRT
<213>
       Conus bullatus
<220>
<221>
       PEPTIDE
<222>
       (1)..(20)
<223> Xaa at residue 1 is Pro or hydroxy-Pro; Xaa at residues 3, 9, 12,
        16, 18 and 19 is Glu or gamma-carboxy-Glu; Xaa at residues 5 and
        6 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O-
       phospho-Tyr or nitro-Tyr
<400> 59
Asn Xaa Xaa Thr Xaa Xaa Asn Leu Xaa Leu Val Xaa Ile Ser Arg Xaa
```

10

<210>

60

```
<211>
       425
<212>
       DNA
<213>
       Conus betulinus
<400>
       60
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc
                                                                       60
ctaggcacgg gcacgctagg tcatggaggc gcactgactg aacgccgttt ggctgatgcc
                                                                      120
acagegetga aacetgagee tgteeteetg cagaaateeg eegeeegeag cacegaegae
                                                                      180
aatggcaagg acaggttgac tcagatgatc aggattctca aaaagcgagg aaacatggcc
                                                                      240
agaggcggcg aagaagttag agagtctgca gagactcttc atgaactcac gccgtaggaa
                                                                      300
aaagaaaaag attaatcaag ctgggtgtcc cacgtgacac tcgtcagttc taaagtcccc
                                                                      360
agtttcctat ctttgccacg tttcttttc ttttcattca attccccaaa tctttcatgt
                                                                      420
ttatt
                                                                      425
<210>
       61
<211>
       95
<212>
       PRT
<213>
       Conus betulinus
<400>
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                                         15
                                     10
1
                5
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr
            20
                                25
                                                     30
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
        35
                             40
                                                 45
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg
    50
                        55
Leu Thr Gln Met Ile Arg Ile Leu Lys Lys Arg Gly Asn Met Arg Gly
                    70
65
Glu Glu Val Arg Glu Ser Ala Glu Thr Leu His Glu Leu Thr Pro
                85
                                     90
                                                         95
<210> 62
<211> 17
<212> PRT
<213> Conus betulinus
<220>
<221>
       PEPTIDE
<222>
      (1)..(17)
<223> Xaa at residues 3, 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; X
       aa at residue 17 is Pro or hydroxy-Pro
<400> 62
Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Leu Thr
```

10

Xaa

<212>	63 425 DNA Conus	betuli	nus												
<400> gcgatgc		gtatacg	ta to	ctgta	atcto	g cto	ggtg	ccgc	tggt	tgac	ctt (ctac	ctaatc		60
ctaggca	cgg gc	cacgcta	gg to	catgo	gaggo	c gca	actga	actg	aacq	gccgt	ttt «	ggct	gacgcc		120
acagcgc	tga aa	acctgag	cc to	gtcct	cct	g ca	gaaat	tccg	ccg	cccg	cag (cact	gacgac		180
aatggca	agg ac	aggttg	ac to	cagat	gato	age	gatto	ctca	aaaa	agcga	agg a	aaaca	atggcc		240
agaggcg	gcg aa	igaagtta	ag ag	gagto	ctgca	a gaq	gacto	cttc	atga	aaato	cac (gccgt	aggaa		300
aaagaaa	aag at	taatcaa	ag ct	tgggt	gtto	cad	cgtga	acac	tcg	ccagt	tc 1	taaaq	gtcccc		360
agtttcc	tat ct	ttgcca	gg t	ttctt	tctc	ttt	ttcat	tca	atto	cccc	aaa 1	tctt,t	catgt		420
ttatt															425
<211> <212>	64 95 PRT Conus	betulin	nus												
<400> Met Gln 1	64 Leu T	yr Thr 5	Tyr	Leu	Tyr	Leu	Leu 10	Val	Pro	Leu	Val	Thr 15	Phe		
Tyr Leu		eu Gly	Thr	Gly	Thr	Leu 25	Gly	His	Gly	Gly	Ala 30	Leu	Thr		
Glu Arg	Arg L 35	eu Ala	Asp	Ala	Thr 40	Ala	Leu	Lys	Pro	Glu 45	Pro	Val	Leu		
Leu Gln 50	Lys S	Ser Ala	Ala	Arg 55	Ser	Thr	Asp	Asp	Asn 60	Gly	Lys	Asp	Arg		
Leu Thr 65	Gln M	let Ile	Arg 70	Ile	Leu	Lys	Lys	Arg 75	Gly	Asn	Met	Arg	Gly 80		
Glu Glu	Val A	arg Glu 85	Ser	Ala	Glu	Thr	Leu 90	His	Glu	Ile	Thr	Pro 95			
<210> <211> <212> <213>	17 PRT	betulir	nus												
<220> <221> <222> <223>	(1)(Xaa at	17)	ues 3 e 17	3, 4, is E	7, Pro c	10 a	and 1 ydrox	l4 is cy-Pr	s Glu	ı or	gamı	ma-ca	arboxy	-Glu	ı; X

<pre><400> 65 Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Ile Thr 1 5 10 15</pre>	
Xaa	
<210> 66 <211> 425 <212> DNA <213> Conus betulinus	
<400> 66 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc	60
ctaggcacgg gcacgctagg tcatggaggc gcactgactg aacgccgttt ggctgacgcc	120
acagegetga aacetaagee tateeteetg cagaaateeg eegeeegeag caetgaegae	180
aatggcaagg acaggttgac tcagatgatc aggattctca aaaagcgagg aaacatgggc	240
agagacggcg aagaagtcag agaggctgca gagactctta atgaactcac gccgtaggaa	300
aaagaaaaag attaatcaag ctgggtgttc cacgtgacac tcgtcagttc taaagtaccc	360
agtttcctat ctttgccacg tttctttttc tttccattca attccccaaa tctttcatgt	420
ttatt	425
<210> 67 <211> 97 <212> PRT <213> Conus betulinus	
<pre><400> 67 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 1</pre>	
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr 20 25 30	
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Lys Pro Ile Leu 35 40 45	
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg 50 55 60	
Leu Thr Gln Met Ile Arg Ile Leu Lys Lys Arg Gly Asn Met Gly Arg 65 70 75 80	
Asp Gly Glu Glu Val Arg Glu Ala Ala Glu Thr Leu Asn Glu Leu Thr 85 90 95	
Pro	
<210> 68 <211> 17 <212> PRT <213> Conus betulinus	
<220>	

<pre><221> PEPTIDE <222> (1)(17) <223> Xaa at residues 3, 4, 7, 10 and 14 is Glu or gamma-carboxy-Glu; X</pre>									
<pre><400> 68 Asp Gly Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu Asn Xaa Leu Thr 1</pre>									
Xaa									
<210> 69 <211> 437 <212> DNA <213> Conus betulinus									
<400> 69 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc 60									
ctaggcacgg gcacgctagg tcatggaggc gcactgactg aaagccgttc ggctgacgcc 120									
acagcactga aaccagggcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgac 180									
aatggcaagg acaggttgac tcagatgaag aggactctca aaaagcgagg aaacacggcc 240									
agaggctacg aagatgatag agagattgca gagactgtta gagaactcga ggaagcagga 300									
aaatgaaaaa gattaatcaa gctgggtgtt ccacgtgaca cttgtcagtt ctaaagtccc 360									
cagatagatc gttccctatt tttgccacat tcttttttc tctttcatt taattcccca 420									
aatctttcat gtttatt 437									
<210> 70 <211> 98 <212> PRT <213> Conus betulinus									
<pre><400> 70 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 1</pre>									
His Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr 20 25 30									
Glu Ser Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Gly Pro Val Leu 35 40 45									
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg 50 55 60									
Leu Thr Gln Met Lys Arg Thr Leu Lys Lys Arg Gly Asn Thr Arg Tyr 65 70 75 80									
Glu Asp Asp Arg Glu Ile Ala Glu Thr Val Arg Glu Leu Glu Glu Ala 85 90 95									
Gly Lys									
<210> 71									

<211> <212> <213>		ılinus						
<222>	-	sidue 2 is r, O-phosph d 17 is Glu	o-Tyr or	nitro-T	yr; Xaa a	-	_	
<400> Gly Xa 1	a Xaa Asp A	Asp Arg Xaa 5	Ile Ala	a Xaa Thr 10	Val Arg	Xaa Leu 15	Xaa	
Xaa Al	a							
<210><211><211><212><213>	425	ulinus						
	72 caac tgtaca acgg gcacgo							60 120
acagcg	ctga aaccto	gagee tgtee	tcctg ca	agaaatccg	ccgcccgc	ag cacto	gacgac	180
aatggc	aagg acaggt	ttgac tcaga	tgatc a	ggattctca	aaaagcga	gg aaaca	atggcc	240
agaggo	ggcg gagaaq	gttag agagt	ctgca g	agactcttc	atgaaatc	ac gccgt	aggaa	300
aaagaa	aaag attaat	tcaag ctggg	tgttc c	acgtgacac	tcgtcagt	tc taaaq	gtcccc	360
agtttc	ctat ctttg	ccagg tttct	ttctc t	tttcattca	attcccca	aa tcttt	catgt	420
ttatt								425
<210><211><211><212><213>	PRT	ulinus						
<400> Met Gl 1	n Leu Tyr	Thr Tyr Leu 5			Pro Leu		Phe	
Tyr Le	eu Ile Leu (20	Gly Thr Gly	Thr Le	u Gly His	Gly Gly	Ala Leu 30	Thr	
Glu Ar	g Arg Leu A	Ala Asp Ala	a Thr Al	a Leu Lys	Pro Glu 45	Pro Val	Leu	
Leu Gl	.n Lys Ser i	Ala Ala Aro	g Ser Th	r Asp Asp	Asn Gly 60	Lys Asp	Arg	
Leu Th 65	nr Gln Met 1	Ile Arg Ile 70	e Leu Ly	s Lys Arg 75	Gly Asn	Met Arg	Gly 80	
Gly G	u Val Arg	Glu Ser Ala	a Glu Th	r Leu His	Glu Ile	Thr Pro		

with the state that the state the state that the state that the state that the state that the st

		85				90					95		
<210>	74												
<211> <212>	17 PRT												
<213>	Conus	betuli	nus										
		17) residu	ues 4, ⁻ 7 is Pro					lu oi	c gar	nma-	carbo	оху-G]	lu; Xaa
	74 y Gly X	Caa Val 5	Arg Xaa	. Ser	Ala	Xaa 10	Thr	Leu	His	Xaa	Ile 15	Thr	
Xaa													
<210> <211> <212> <213>	75 434 DNA Conus	ammiral	lis									ι	
<400> gcgatgo	75 caac tg	tacacgt	ta tctgt	gtctg	cto	ggtgd	ccc	tggt	gaco	ctt	ctaco	ctaatt	: 60
ctaggca	acgg gc	acacta	gc tcate	gaggo	gca	actga	accg	aacq	gccgt	tt	ggcto	cacgco	120
agagtaa	atag aa	cctgato	cc tgcco	ccctg	gag	gaact	ccg	ctct	ccg	cag	catco	cgacga	a 180
caacga	caag ga	caggat	ga ctcaç	aggaa	gaç	ggatt	ctc	aaaa	agto	gat	gaaad	cacggo	240
cagagg	cgcg aa	agaagat	ta gaaat	aatgo	gga	aggct	gtt	agag	gaaag	gac	tcgaa	agaaat	300
aggaaaa	aagg ta	atcaago	ct gggtg	rtttca	cgt	gaca	actc	atca	agtto	cta	aagto	cccaç	3 60
atagato	cgtt cc	ctattt	tt gccat	attct	tto	cctto	ctct	tttc	catgt	aa	ttccc	ccaaat	420
ctttcat	tgtt ta	tt											434
<210> <211> <212> <213>	76 85 PRT Conus	ammiral	lis										
<400> Met Glr 1	76 n Leu T	yr Thr 5	Tyr Leu	. Cys	Leu	Leu 10	Val	Pro	Leu	Val	Thr 15	Phe	
Tyr Le		eu Gly O	Thr Gly		Leu 25	Ala	His	Gly	Gly	Ala 30	Leu	Thr	
Glu Ar	g Arg L 35	eu Ala	His Ala	Arg 40	Val	Ile	Glu	Pro	Asp 45	Pro	Ala	Pro	
Leu Glu 50	ı Asn S	er Ala	Leu Arg	Ser	Ile	Arg	Arg	Gln 60	Arg	Gln	Gly	Gln	

Asp Asp Ser Glu Glu Glu Asp Ser Gln Lys Val Met Lys His Gly Gln

The Health of the Brain and the Brain of the Brain of the great the Brain of the Br

Arg Arg Glu Arg Arg

<210> 77 <211> 24 <212> PRT <213> Conus ammiralis	
<pre><220> <221> PEPTIDE <222> (1)(24) <223> Xaa at residue 1 is Gln or pyro-Glu; Xaa at residues 7, 8, 9 22 is Glu or gamma-carboxy-Gl</pre>	and
<pre><400> 77 Xaa Gly Gln Asp Asp Ser Xaa Xaa Xaa Asp Ser Gln Lys Val Met Lys 1</pre>	
His Gly Gln Arg Arg Arg Arg 20	
<210> 78 <211> 421 <212> DNA <213> Conus episcopatus	
<400> 78 gcgatgcaac tgtacacgta tctgtgtctg ctggtgcccc tggtgacctt ctacctaatt	60
ctaggcacgg gcacactagc tcatggaggc gcactgactg aacatcgttc ggccgacgcc	120
acagcactga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgac	180
aacggcaagg acaggttgac tcggtggaag gggattctca aaaagcgagg aaacacggcc	240
agaggcggga aagatattgt ggagactatt acagaactcg aaaaaatagg aaaaaggtaa	300
tcaagctggg tgttccacgt gacactcatc agttctaaag tccccagata gatcgttccc	360
tatttttgcc atattctttc tttctctttt catgtaattc cccaaatctt tcatgtttat	420
t	421
<210> 79 <211> 96 <212> PRT <213> Conus episcopatus	
<pre><400> 79 Met Gln Leu Tyr Thr Tyr Leu Cys Leu Leu Val Pro Leu Val Thr Phe 1 5 10 15</pre>	
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Ala His Gly Gly Ala Leu Thr 20 25 30	
Glu His Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu 35 40 45	

```
Leu Gin Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg
    50
                         55
Leu Thr Arg Trp Lys Gly Ile Leu Lys Lys Arg Gly Asn Thr Arg Gly
65
                    70
                                         75
                                                             80
Lys Asp Ile Val Glu Thr Ile Thr Glu Leu Glu Lys Ile Gly Lys Arg
                                     90
<210>
       80
<211>
       15
<212>
       PRT
       Conus episcopatus
<213>
<220>
<221>
       PEPTIDE
<222>
       (1)..(15)
<223>
       Xaa at residues 7, 11 and 13 is Glu or gamma-carboxy-Glu
<400>
       80
Gly Gly Lys Asp Ile Val Xaa Thr Ile Thr Xaa Leu Xaa Lys Ile
1
                5
                                     10
                                                         15
<210>
       81
<211>
       433
       DNA
<212>
<213>
       Conus lynceus
<400>
       81
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                        60
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc gactgatgcc
                                                                       120
atagcactga aacctgagcc tgtcctcctg cagaaatcct ctgcccgcag caccgacgat
                                                                       180
aatggcaacg acaggttgac tcagatgaag aggatcctca aaaagcgagg aaacaaagcc
                                                                       240
agaggcgaag aagaagttgc aaaaatggcg gcagagattg ccagagaaaa cgctgcaaat
                                                                       300
gggaaatgat aatcaagttg ggtgttccac gtgacactcg tcagttctaa agtccccaga
                                                                       360
tagatcgttc cctatttttg ccacattctt tctttctctt ttcatttaat tccccaaatc
                                                                      420
tttcatgttt att
                                                                      433
<210>
       82
<211>
       99
<212> PRT
<213> Conus lynceus
<400> 82
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
1
                                     10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                 25
Glu Arg Arg Ser Thr Asp Ala Ile Ala Leu Lys Pro Glu Pro Val Leu
        35
                            40
                                                 45
```

Leu Gln Lys Ser Ser Ala Arg Ser Thr Asp Asp Asn Gly Asn Asp Arg

55

70

Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Lys Arg Glu

50

65

in the second

At 18

60

80

```
Glu Glu Val Ala Lys Met Ala Ala Glu Ile Ala Arg Glu Asn Ala Ala
                                     90
                85
Asn Gly Lys
       83
<210>
<211>
       19
<212>
       PRT
<213>
       Conus figulinus
<220>
<221>
       PEPTIDE
<222>
      (1)..(19)
       Xaa at residues 2, 3, 4, 11 and 15 is Glu or gamma-carboxy-Glu
<223>
<400>
       83
Gly Xaa Xaa Xaa Val Ala Lys Met Ala Ala Xaa Ile Ala Arg Xaa Asn
                                     10
                                                         15
Ala Ala Asn
<210>
       84
<211>
       430
<212>
       DNA
<213>
       Conus lynceus
<400>
       84
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgatctt ctacctaatc
                                                                       60
ctaggcacgg gcacgctagg tcatggaggc acactgactg aacgccgttc ggctgatgcc
                                                                      120
acagcactga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccggcgac
                                                                      180
                                                                      240
gatgccaagg agaggttgac tcagacgaag aggattcgca aaaagcgagc aaacacgacc
                                                                      300
agaggcaaag aagaggatag agagattgtg gagactgtta gagaactcga agaaatagga
aaaagatgat caagctgggt gttccacgtg acactcgtca gttccaaagt ccccagatag
                                                                      360
atcqttccct atttttgcca cattctttct ttctttttc atttaattcc ccaaatcttt
                                                                      420
                                                                      430
catgtttatt
<210>
       85
<211> 101
<212>
      PRT
<213> Conus lynceus
<400> 85
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Ile Phe
1
                                     10
                                                         15
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Thr Leu Thr
            20
```

25

```
and the trail that have not have all the same and the trail and the same and the same
```

<400> 88

```
Glu Arg Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
        35
                             40
                                                 45
Leu Gln Lys Ser Ala Ala Arg Ser Thr Gly Asp Asp Ala Lys Glu Arg
    50
                         55
                                             60
Leu Thr Gln Thr Lys Arg Ile Arg Lys Lys Arg Ala Asn Thr Thr Arg
65
                    70
                                         75
Gly Lys Glu Glu Asp Arg Glu Ile Val Glu Thr Val Arg Glu Leu Glu
                                     90
                85
                                                          95
Glu Ile Gly Lys Arg
            100
<210>
       86
<211>
       18
<212>
       PRT
<213>
       Conus lynceus
<220>
<221>
       PEPTIDE
<222>
       (1)..(18)
       Xaa at residues 3, 4, 7, 10, 14, 16 and 17 is Glu or gamma-carbox
<223>
       y-Gl
<400> 86
Gly Lys Xaa Xaa Asp Arg Xaa Ile Val Xaa Thr Val Arg Xaa Leu Xaa
                                                         15
                                     10
Xaa Ile
<210>
       87
<211>
       433
<212>
       DNA
<213>
       Conus lynceus
<400>
       87
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                        60
                                                                       120
ctaggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc gactgacgcc
atagcactga aacctgagcc tgtcctcctg cagaaatcct ctgcccgcag caccgacgac
                                                                       180
                                                                       240
aatggcaacg acaggttgat tcagatgaag aggattctca aaaagcgagg aaacaaagcc
                                                                       300
agaggcgaag aggaagttgc aaaaatggcg gcagagctta ccagagaaga agctgtaaag
gggaaatgat aatcaagttg ggtgttccac gtgacactcg tcagttctaa agtccccaga
                                                                       360
tagatcgttc cctatttttg ccacattctt tctttctatt ttcatttaat tccccaaatc
                                                                       420
tttcatgttt att
                                                                       433
<210>
       88
<211>
       99
<212>
       PRT
<213> Conus lynceus
```

Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe

His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr 20 25 30										
Glu Arg Arg Ser Thr Asp Ala Ile Ala Leu Lys Pro Glu Pro Val Leu 35 40 45										
Leu Gln Lys Ser Ser Ala Arg Ser Thr Asp Asp Asn Gly Asn Asp Arg 50 55 60										
Leu Ile Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Lys Arg Glu 65 70 75 80										
Glu Glu Val Ala Lys Met Ala Ala Glu Leu Thr Arg Glu Glu Ala Val 85 90 95										
Lys Gly Lys										
<pre>210> 89</pre>										
<400> 90 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc 6	0									
ctaggcacgg gcacgctagg tcatggaggc gcactgactg aacgccgttt ggctgacgcc 12	0									
acagegetga aacetgagee tgteeteetg cagaaateeg etgeeegeag caeegaegae 18	0									
aatgacaagg acaggctgac ccagatgaag aggattttca aaaagcgagg aaacaaagcc 24	0									
agaggcgagg aagaagttgc agagatggcg gcagagattg caagagaaaa tcaagcaaac 30	Ο									
gggaaaagat aatcaaactg ggtgttccac gtgacactcg tcagttctaa agtccccaga 36	0									
taggtcgttc tctatgtttg ccacattctt tctttttctt ttcatttaat tccccaaatc 42	0									
tttcatgttt att 43	3									
<210> 91 <211> 100										

<212>

<213>

PRT

Conus figulinus

```
<400> 91
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                     10
                                                          15
                5
1
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr
                                                     30
            20
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
                                                 45
                             40
        35
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Asp Lys Asp Arg
                         55
    50
Leu Thr Gln Met Lys Arg Ile Phe Lys Lys Arg Gly Asn Lys Arg Glu
                                         75
                                                              80
                    70
65
Glu Glu Val Ala Glu Met Ala Ala Glu Ile Ala Arg Glu Asn Gln Ala
                                                          95
                                     90
                85
Asn Gly Lys Arg
            100
       92
<210>
<211>
       19
<212>
       PRT
<213>
       Conus figulinus
<220>
<221>
       PEPTIDE
<222>
       (1)..(19)
       Xaa at residues 2, 3, 4, 7, 11 and 15 is Glu or gamma-carboxy-Glu
<223>
<400>
       92
Gly Xaa Xaa Xaa Val Ala Xaa Met Ala Ala Xaa Ile Ala Arg Xaa Asn
                 5
                                                          15
                                     10
1
Gln Ala Asn
<210>
       93
<211>
       431
<212>
       DNA
<213> Conus figulinus
<400> 93
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc
                                                                        60
ctagggacgg gcacactagc tcatggaggc gcaccgactg aacgccgttt ggctgacacc
                                                                       120
acagcactga aacccgagca tgtcctcctg cagatgtccg ctgcccgcag caccaacgat
                                                                       180
                                                                       240
aatggcaagg acaggttgac tcagatgaag aggattctca aaaagcaagg aaacacagcc
                                                                       300
agaagctacg aacaagctag agaagttcag gaggctgtta atgaactcaa ggaaagaggt
                                                                       360
aaaaagataa tcatgctggg tgttccacgt gacactcgtc agttctaaag cccccagata
gattgttccg tatttttacc acgttctttc tttctctttt catttaattc cccaaatctt
                                                                        420
```

```
431
tcatgtttat t
<210>
       94
<211>
       114
<212>
       PRT
      Conus figulinus
<213>
<400>
       94
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                    10
                                                         15
1
                5
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Ala His Gly Gly Ala Pro Thr
                                                     30
            20
                                25
Glu Arg Arg Leu Ala Asp Thr Thr Ala Leu Lys Pro Glu His Val Leu
                            40
                                                 45
        35
Leu Gln Met Ser Ala Ala Arg Ser Thr Asn Asp Asn Gly Lys Asp Arg
    50
                        55
Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Arg
                    70
                                         75
                                                             80
65
Ser Tyr Glu Gln Ala Arg Glu Val Gln Glu Ala Val Asn Glu Leu Lys
                                                         95
                                     90
                85
Glu Arg Gly Lys Lys Ile Ile Met Leu Gly Val Pro Arg Asp Thr Arg
                                105
            100
                                                     110
Gln Phe
<210>
       95
<211>
       18
<212>
       PRT
<213>
       Conus figulinus
<220>
<221> PEPTIDE
<222> (1)..(18)
<223> Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
       sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residues 3, 7, 10,
        14 and 17 is Glu or gamma-carboxy-Glu
<400> 95
Ser Xaa Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Lys
                                     10
Xaa Arg
<210> 96
<211> 431
<212> DNA
<213> Conus figulinus
<400> 96
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc
                                                                        60
ctagggacgg gcacactagc tcatggaggc gcaccgactg aacgccgttt ggctgacacc
                                                                       120
```

5

20

```
acagcactga aacccgagca tgtcctcctg cagatgtccg ctgcccgcag caccaacgat
                                                                      180
aatggcaagg acaggttgac tcagatgaag aggattctca aaaagcaagg aaacacagcc
                                                                      240
agaagctacg aacaagctag agaagttcag gaggctgtta atgaactcaa ggaaagaggt
                                                                      300
aaaaagataa tcatgctggg tgttccacgt gacactcgtc agttctaaag cccccagata
                                                                      360
gattgttccg tatttttacc acgttctttc tttctctttt catttaattc cccaaatctt
                                                                      420
tcatgtttat t
                                                                      431
<210>
       97
<211>
       114
       PRT
<212>
<213>
       Conus figulinus
<400>
       97
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
1
                                                         15
                                     10
Tyr Leu Ile Leu Gly Thr Gly Thr Leu Ala His Gly Gly Ala Pro Thr
            20
                                 25
                                                     30
Glu Arg Arg Leu Ala Asp Thr Thr Ala Leu Lys Pro Glu His Val Leu
        35
                             40
                                                 45
Leu Gln Met Ser Ala Ala Arg Ser Thr Asn Asp Asn Gly Lys Asp Arg
    50
                        55
                                             60
Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Gln Gly Asn Thr Ala Arg
65
                    70
                                         75
                                                             80
Ser Tyr Glu Gln Ala Arg Glu Val Gln Glu Ala Val Asn Glu Leu Lys
                85
                                     90
                                                         95
Glu Arg Gly Lys Lys Ile Ile Met Leu Gly Val Pro Arg Asp Thr Arg
                                                     110
            100
                                 105
Gln Phe
<210> 98
<211> 34
<212> PRT
<213>
       Conus figulinus
<220>
<221>
       PEPTIDE
<222>
      (1)..(34)
       Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-
<223>
       sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residues 3, 7, 10,
        14 and 17 is Glu or gamma-carboxy-Glu; Xaa at residue 28 is Pro
       or hydroxy-Pro
<400> 98
Ser Xaa Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Lys
```

10

Xaa Arg Gly Lys Lys Ile Ile Met Leu Gly Val Xaa Arg Asp Thr Arg

25

15

Gln Phe

<210> 99 429 <211> <212> DNA <213> Conus figulinus <400> 99 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacgtt ccacctaatc 60 120 ctaggcacgg gcacactagc tcatggaggc gcactggctg aacgccgttt ggctgacgcc acagegetga aacetgagee tgteeteetg cagaaateeg etgeeegeag caeegaegae 180 240 aatggcaagg acaggttgac tgagatgaag aggattctca aaaagcgagg aaacacggcc 300 agagactacg aagatgatag agagattgca gagactgtta gagaactcga agaaataggt aaaagataat caagctgggt gttcaattga cactcatcag ttctaaagtc cccagataga 360 420 tcgttcccta attttgccac gttctttctt tctcttttca tttaattccc caaatctttc 429 atgtttatt <210> 100 <211> 99 <212> PRT<213> Conus figulinus <400> 100 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 10 5 15 1 His Leu Ile Leu Gly Thr Gly Thr Leu Ala His Gly Gly Ala Glu Arg 20 30 25 Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu Leu Gln 45 35 Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg Leu Thr 50 55 Glu Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Thr Ala Arg Asp Tyr 70 75 80 65 Glu Asp Asp Arg Glu Ile Ala Glu Thr Val Arg Glu Leu Glu Glu Ile 90 95 85 Gly Lys Arg <210> 101 <211> 18 <212> \mathtt{PRT} <213> Conus figulinus <220> <221> PEPTIDE <222> (1)..(18)<223> Xaa at residue 2 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-

Conus figulinus

PEPTIDE

<213>

<220>

<221>

sulpho-Tyr, O-phospho-Tyr or nitro-Tyr; Xaa at residues 3, 7, 10, 14, 16 and 17 is Glu or gamma-carboxy-Glu <400> 101 Asp Xaa Xaa Asp Asp Arg Xaa Ile Ala Xaa Thr Val Arg Xaa Leu Xaa 15 10 1 5 Xaa Ile <210> 102 419 <211> <212> DNA <213> Conus figulinus <400> 102 60 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ctacctaatc 120 ctaggcacgg gcacgctagg tcatggaggc gcactgactg aacgccgttt ggctgacgcc 180 acagegetga aacetgagee tgteeteetg cagaaateeg etgeeegeag cacegaegae 240 aatggcaagg acaggttgac tcagatgaag gggactgtca aaaagcgagg aaacacggcc gaagaagtta gagaggctgc agagactctt catgaactct cgctgtagga aaaagaaaaa 300 360 gattaatcaa gctgggtgtt ccacgtgaca ctcgtcagtt ctaaagtccc cagttcccta 419 tctttgccac gttttttctt tctcttttca tccaattccc caaatctttc atgtttatt <210> 103 <211> 94 <212> PRT<213> Conus figulinus <400> 103 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 10 Tyr Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr 30 25 20 Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu 45 35 40 Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Gly Lys Asp Arg 55 60 50 Leu Thr Gln Met Lys Gly Thr Val Lys Lys Arg Gly Asn Thr Ala Glu 65 80 70 Glu Val Arg Glu Ala Ala Glu Thr Leu His Glu Leu Ser Leu 85 90 <210> 104 <211> 19 <212> PRT

```
(1)..(19)
<222>
<223>
      Xaa at residues 5, 6, 9, 12 and 16 is Glu or gamma-carboxy-Glu
<400>
      104
Gly Asn Thr Ala Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu His Xaa
                5
                                    10
                                                         15
Leu Ser Leu
<210>
       105
       427
<211>
<212>
       DNA
<213>
       Conus figulinus
<400>
       105
gcgatgcaac tgtacacgta tctgtatctg ctggtgcctc tggtgacctt ccacctaatc
                                                                       60
                                                                      120
ctaggcacgg gcacactagg tcatggaggc gcactgactg aacgccgttt ggctgacgcc
acagcgctga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgtc
                                                                      180
                                                                      240
aatggcaagg acaggttgac tgagatgaag aggattctca aaaagcgagg aagcatatcc
atgggcttcg aacatagaag agagattgca gagttggtta gagaactcgc tgaaataggt
                                                                      300
                                                                      360
aaacgataat caagctgggt gttccactaa cactcgtcag ttctaaagtc cccagataga
tcgttcccta tctttgccac atttttttc tcttttcatt taattcccca aatctttcat
                                                                      420
                                                                      427
gtttatt
<210>
       106
<211>
       101
<212>
       PRT
       Conus figulinus
<213>
<400>
       106
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr
Glu Arg Arg Leu Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
        35
                            40
                                                 45
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Val Asn Gly Lys Asp Arg
    50
Leu Thr Glu Met Lys Arg Ile Leu Lys Lys Arg Gly Ser Ile Ser Met
65
                    70
                                                             80
                                        75
Gly Phe Glu His Arg Glu Ile Ala Glu Leu Val Arg Glu Leu Ala
Glu Ile Gly Lys Arg
            100
<210>
       107
<211> 23
```

<212> <213>	PRT Conus	s fi	gulir	nus											
<pre><220> <221> PEPTIDE <222> (1)(23) <223> Xaa at residues 8, 12, 15, 19 and 22 is Glu or gamma-carboxy-Gla</pre>											xy-Glu				
<400> Gly Se:		Ser	Met 5	Gly	Phe	Xaa	His	Arg 10	Arg	Xaa	Ile	Ala	Xaa 15	Leu	
Val Ar	g Xaa	Leu 20	Ala	Xaa	Ile										
<210> <211> <212> <213>	427 DNA	s dis	stans	5											
<400> gcgatgo	108 caac	tgtad	cacgt	ca to	ctgta	atcto	g cto	ggtgo	cccc	tggt	ggco	ctt d	ccaco	ctaatc	60
caaggc	acgg (gcaca	actaç	gg co	catgo	gaggo	c gca	actga	actg	aagg	gccgt	tc q	ggct	gacgcc	120
acagcg	ccga a	aacct	gaad	ca tạ	gtact	cct	g cag	gaaat	ccg	atgo	ccgo	cag d	cgccg	gacgac	180
aacggc	aagg a	acaa	gttga	ac to	cagat	gaaq	gago	gacto	ctga	aaaa	agcaa	agg a	acaca	attgcc	240
agaacc	ataa (ctgct	cgaaq	ga go	gcaga	agago	g act	agto	gaaa	gaat	gtca	atc a	aatgo	ggaaaa	300
agataa [.]	tcaa 🤉	gctg	ggtgt	t co	cacgt	gaca	a cto	cgtca	agtt	ctaa	agto	ccc (cagat	caaatc	360
gttccc	tgtt 1	tttg	ccctq	gt to	ctttc	ctttc	c tct	tttt	catt	caat	tcc	cca a	aatct	ttcat	420
gtttat	t														427
<210> <211> <212> <213>	109 98 PRT Conu	s di:	stans	5											
<400>	109	_		_		_		_							
Met Gl	n Leu	Tyr	Thr 5	Tyr	Leu	Tyr	Leu	Leu 10	Val	Pro	Leu	Val	Ala 15	Phe	
His Le	u Ile	Gln 20	Gly	Thr	Gly	Thr	Leu 25	Gly	His	Gly	Gly	Ala 30	Leu	Thr	
Glu Gl	y Arg 35	Ser	Ala	Asp	Ala	Thr 40	Ala	Pro	Lys	Pro	Glu 45	Pro	Val	Leu	
Leu Gla	n Lys	Ser	Asp	Ala	Arg 55	Ser	Ala	Asp	Asp	Asn 60	Gly	Lys	Asp	Lys	
Leu Th	r Gln	Met	Lys	Arg 70	Thr	Leu	Lys	Lys	Gln 75	Gly	His	Ile	Ala	Arg 80	
Thr Il	e Thr	Ala	Glu 85	Glu	Ala	Glu	Arg	Thr 90	Ser	Met	Ser	Ser	Met 95	Gly	

```
Lys Arg
<210>
       110
<211>
       17
<212>
       PRT
<213>
       Conus distans
<220>
<221>
      PEPTIDE
<222>
      (1)..(17)
      Xaa at residues 5, 6, 8 and 12 is Glu or gamma-carboxy-Glu
<223>
<400> 110
Thr Ile Thr Ala Xaa Xaa Ala Xaa Arg Thr Ser Xaa Arg Met Ser Ser
1
                5
                                     10
                                                         15
Met
<210>
       111
<211>
      415
<212>
       DNA
       Conus distans
<213>
<400>
      111
gcgatgcaac tgtacacgta tctgtatctg ctggtatccc tggtggcctt ccacctaatc
                                                                       60
caaggaacgg gcacgctagg ccatggaggc gcactgactg aaggccgttc ggctgacgcc
                                                                      120
acagegeega aacetgaace tgtgetegtg cagaaategg atgeeegeag egeegaegae
                                                                      180
aaccgcaagg acaagttgac tcagatgaag aggattctga aaaagcaaga aaccccaact
                                                                      240
                                                                      300
cctgaagagg tagagcgcca taccgaaaga ctcaaaagca tgggaaaaag ataatcaagc
tgggtgttcc acgtgacact cgtcagttct aaagtcccca gatggatcgt tccctgtttt
                                                                      360
tgccccgttc tttcgttctc ttttcattca attccccaaa tctttcatgt ttatt
                                                                      415
<210> 112
<211>
       96
<212> PRT
<213> Conus distans
<400> 112
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Ser Leu Val Ala Phe
                                                         15
1
                                     10
His Leu Ile Gln Gly Thr Gly Thr Leu Gly His Gly Gly Ala Leu Thr
            20
                                 25
                                                     30
Glu Gly Arg Ser Ala Asp Ala Thr Ala Pro Lys Pro Glu Pro Val Leu
        35
                                                 45
Val Gln Lys Ser Asp Ala Arg Ser Ala Asp Asp Asn Arg Lys Asp Lys
    50
                        55
                                             60
Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Gln Glu Thr Pro Thr Pro
65
                    70
                                         75
                                                             80
Glu Glu Val Glu Arg His Thr Glu Arg Leu Lys Ser Met Gly Lys Arg
```

90

95

85

E :
<u>i</u>
200 - 100 -
E
*** *** *** *** *** *** *** *** *** *
And Andrew Age of the Control of the
or from the control of the control o

<210> 113 <211> 19 <212> PRT <213> Conus distans <220> <221> PEPTIDE <222> (1)..(19) <223> Xaa at residue 1 is Gln or pyro-Glu; Xaa at residues 2, 4, 6, 7, 8, 10 and 14 is Glu or gamma-carboxy-Glu <400> 113 Xaa Xaa Thr Xaa Xaa Xaa Xaa Val Xaa Arg His Thr Xaa Arg Leu 1 10 15 Lys Ser Met <210> 114 <211> 439 <212> DNA <213> Conus purpurascens <400> 114 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc 60 ctaggcacgg gaatgctagc tcatggagac acactgactg aacgccgttc ggttgacgcc 120 180 acagcactga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgac 240 aatgacaagg acaggttgac tcagatgaag aggattctca aaaagcgagg aaacaaagcc agaggcgaag aagaacattc caagtatcaa gagtgtctta gagaagtaag agtaaataag 300 gtacaacaag aatgttaatc aagctgggtg ttccacgtga cactegtcag ttctaaagtc 360 cccagataga tcgttcccga tttttgccac attctttctt tctcttttca tttaattccc 420 caaatctttc atgtttatt 439 <210> 115 <211> 102 <212> PRT <213> Conus purpurascens <400> 115 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 1 10 15 His Leu Ile Leu Gly Thr Gly Met Leu Ala His Gly Asp Thr Leu Thr 20 25 Glu Arg Arg Ser Val Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu 35 40 45 Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asn Asp Lys Asp Arg 50 55

Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Lys Arg Glu

```
70
65
                                         75
                                                             80
Glu Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Val Arg Val Asn
                85
                                     90
                                                         95
Lys Val Gln Glu Cys
            100
<210>
       116
<211>
       24
<212>
       PRT
<213>
       Conus purpurascens
<220>
<221>
       PEPTIDE
<222>
       (1)..(24)
<223>
       Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl
       u; Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr,
        O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
<400> 116
Gly Xaa Xaa Xaa His Ser Lys Xaa Gln Xaa Cys Leu Arg Xaa Val Arg
                                                         15
                                     10
Val Asn Lys Val Gln Gln Xaa Cys
            20
<210>
       117
<211>
       436
<212>
       DNA
       Conus purpurascens
<213>
<400>
       117
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                       60
                                                                      120
ctaggcacgg gcacactagc tcatggaggc gcactgactg aacgcggttc cactgacgcc
acagcactga aacctgagcc tgtcctgcag gaatctgatg cccgcagcac cgacgacaat
                                                                      180
gacaaggaca ggttgactca gatgaagagg attctcaaaa agcgaggaaa caaagccaga
                                                                      240
ggcgaagaag aacattccaa gtatcaggag tgtcttagag aagtaagagt aaataacgta
                                                                      300
caacaagaat gttaatcaag ctgggtgttc cacgtgacac tcgtcagttc taaagtcccc
                                                                      360
agatagateg tteectattt ttgecacatt etttettet ettteattt aatteeceaa
                                                                      420
atctttcatg tttatt
                                                                      436
<210> 118
<211> 101
<212> PRT
<213> Conus purpurascens
<400> 118
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                     10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Ala His Gly Gly Ala Leu Thr
            20
                                 25
                                                     30
```

<213> Conus purpurascens

```
Glu Arg Gly Ser Thr Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
                             40
                                                 45
        35
Gln Glu Ser Asp Ala Arg Ser Thr Asp Asp Asn Asp Lys Asp Arg Leu
                        55
                                             60
    50
Thr Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Lys Arg Glu Glu
                                                             80
                    70
                                         75
65
Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Val Arg Val Asn Asn
                                     90
                                                         95
                85
Val Gln Glu Cys
            100
<210>
       119
<211>
       24
<212>
       PRT
       Conus purpurascens
<213>
<220>
<221>
       PEPTIDE
<222>
       (1)..(24)
       Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl
<223>
       u; Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr,
        O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr
<400> 119
Gly Xaa Xaa Xaa His Ser Lys Xaa Gln Xaa Cys Leu Arg Xaa Val Arg
                                     10
                                                         15
Val Asn Asn Val Gln Gln Xaa Cys
            20
<210>
       120
<211>
       439
<212>
       DNA
<213> Conus purpurascens
<400> 120
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                        60
ctaagcacgg gcacactagc tcatggaggc acactgactg aacgccgttc gactgacacc
                                                                       120
acagcactga aacctgagcc tgtcctcctg cagaaatctg atgcccgcag caccgacgac
                                                                       180
aatgacaagg acaggttgac tcagatgaag aggattctca aaaagcgagg aaacaaagcc
                                                                       240
agaggcgaag aagaacattc caagtatcag gagtgtctta gagaaataag agtaaataag
                                                                       300
gtacaacaag aatgttaatc aagctgggtg ttccacgtga cacccgtcag ttctaaagtc
                                                                       360
cccagataga tcgttcccta tttttgccac attctttctt tctcttttca tttaattccc
                                                                       420
caaatctttc atgtttatt
                                                                       439
<210> 121
<211>
      102
<212> PRT
```

<400> 121

Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 10 15 1 His Leu Ile Leu Ser Thr Gly Thr Leu Ala His Gly Gly Thr Leu Thr 20 25 Glu Arg Arg Ser Thr Asp Thr Thr Ala Leu Lys Pro Glu Pro Val Leu 35 40 45 Leu Gln Lys Ser Asp Ala Arg Ser Thr Asp Asp Asn Asp Lys Asp Arg 50 55 60, Leu Thr Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Lys Arg Glu 65 70 75 80 Glu Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Ile Arg Val Asn 90 85 95 Lys Val Gln Gln Glu Cys 100 <210> 122 <211> 24 <212> PRT <213> Conus purpurascens <220> <221> PEPTIDE <222> (1)..(24)Xaa at residues 2, 3, 4, 10, 14 and 23 is Glu or gamma-carboxy-Gl <223> u; Xaa at residue 8 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, O-sulpho-Tyr, O-phospho-Tyr or nitro-Tyr <400> 122 Gly Xaa Xaa Xaa His Ser Lys Xaa Gln Xaa Cys Leu Arg Xaa Ile Arg 5 1 10 15 Val Asn Lys Val Gln Gln Xaa Cys 20 <210> 123 <211> 439 <212> DNA <213> Conus purpurascens <400> 123 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc 60 ctaagcacgg gcacactagc tcatggagac acactgactg aacgccgttc ggttgacgcc 120 acagcactga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgac 180 gatgacaagg acaggttgac tcagaggaag aggattctca aaaagcaagg aaacaaagcc 240 agaggcgaag cagaacatta cgcgtttcag gagtgtctta gagaaataaa tgtaaataag 300 gtacaacaag aatgttaatc aagctgggtg ttctacgtga cactcgtcag ttctaaagtc 360 cccagataga tcgttcccta tttttgccac attctttctt tctcttttca tttaattccc 420

439

180

caaatctttc atgtttatt

<210> 124 102 <211> <212> PRT <213> Conus purpurascens <400> 124 Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe 5 10 15 1 His Leu Ile Leu Ser Thr Gly Thr Leu Ala His Gly Asp Thr Leu Thr 30 20 25 Glu Arg Arg Ser Val Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu 35 40 45 Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Asp Asp Lys Asp Arg 50 60 55 Leu Thr Gln Arg Lys Arg Ile Leu Lys Lys Gln Gly Asn Lys Arg Glu 70 75 80 65 Ala Glu His Tyr Ala Phe Gln Glu Cys Leu Arg Glu Ile Asn Val Asn 85 90 95 Lys Val Gln Glu Cys 100 <210> 125 <211> 24 <212> PRT<213> Conus purpurascens <220> <221> PEPTIDE <222> (1)..(24) <223> Xaa at residues 2, 4, 10, 14 and 23 is Glu or gamma-carboxy-Glu; Xaa at residue 6 is Tyr, mono-halo-Tyr, di-halo-Tyr, 125I-Tyr, Osulpho-Tyr, O-phospho-Tyr or nitro-Tyr <400> 125 Gly Xaa Ala Xaa His Xaa Ala Phe Gln Xaa Cys Leu Arg Xaa Ile Asn 5 10 15 1 Val Asn Lys Val Gln Gln Xaa Cys 20 <210> 126 <211> 421 <212> DNA Conus purpurascens <213> <400> 126 gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc 60 ctaggcacgg gaatgctagc tcatggagac acactgactg aacgccgttc ggttgacgcc 120

acagcactga aacctgagcc tgtcctcctg cagaaatccg ctgcccgcag caccgacgcc

```
aatggcaagg acaggttgac tcagaggaag aggattctca aaaagcgagg aaacatggcc
                                                                      240
aggggcttag aagaagatat agagtttatt gagacgatcg aagaaattgg aaaaagataa
                                                                      300
ccaagctggg tgttccacgt gacactcgtc ggttctaaag tccccagata gatcgttcac
                                                                      360
tatttttgcc acattctttc tttctctttt catttaattc cccaaatctt tcatgtttat
                                                                      420
                                                                      421
t
<210>
       127
<211>
       96
<212>
      PRT
<213> Conus purpurascens
<400>
       127
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
                                    10
                                                         15
His Leu Ile Leu Gly Thr Gly Met Leu Ala His Gly Asp Thr Leu Thr
                                25
                                                     30
            20
Glu Arg Arg Ser Val Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
                                                 45
        35
                            40
Leu Gln Lys Ser Ala Ala Arg Ser Thr Asp Ala Asn Gly Lys Asp Arg
    50
                        55
                                             60
Leu Thr Gln Arg Lys Arg Ile Leu Lys Lys Arg Gly Asn Met Arg Leu
65
                    70
                                         75
                                                             80
Glu Glu Asp Ile Glu Phe Ile Glu Thr Ile Glu Glu Ile Gly Lys Arg
                                     90
                85
                                                         95
<210>
       128
<211>
       15
<212>
       PRT
<213> Conus purpurascens
<220>
<221> PEPTIDE
<222> (1)..(15)
<223> Xaa at residues 3, 4, 7, 10, 13 and 14 is Glu or gamma-carboxy-Gl
       u
<400> 128
Gly Leu Xaa Xaa Asp Ile Xaa Phe Ile Xaa Thr Ile Xaa Xaa Ile
                                     10
                                                         15
<210> 129
<211> 418
<212> DNA
<213> Conus stercusmuscarum
<400> 129
gcgatgcaac tgtacacgta tctgtatctg ctggtgcccc tggtgacctt ccacctaatc
                                                                       60
```

ctgggcacgg gcacactaga tcatggaggc gcactgactg aacgccgttc ggctgacgcc

120

```
acaqcgctga aacctgagcc tgtcctgcag aaatccgctg ccggcagcac cgacgacaac
                                                                      180
ggcaaggaca ggttgactca gatgaagagg attctcaaaa agcgaggaaa cacggctaga
                                                                      240
atcaccgaaa ctgatataga gcttgttatg aaattagaag aaattggaaa aagataatca
                                                                      300
agetgggtgt tecaegtgae actegteagt tetgaagtee egaggtagat egtteectat
                                                                      360
ttttgccaca ttctttcttt ctcttttcat gtaattcccc aaatctttca tgtttatt
                                                                      418
<210>
       130
<211>
       97
<212>
       PRT
<213>
      Conus stercusmuscarum
<400>
      130
Met Gln Leu Tyr Thr Tyr Leu Tyr Leu Leu Val Pro Leu Val Thr Phe
1
                                    10
                                                         15
His Leu Ile Leu Gly Thr Gly Thr Leu Asp His Gly Gly Ala Leu Thr
            20
                                25
                                                     30
Glu Arg Arg Ser Ala Asp Ala Thr Ala Leu Lys Pro Glu Pro Val Leu
        35
                            40
                                                 45
Gln Lys Ser Ala Ala Gly Ser Thr Asp Asp Asn Gly Lys Asp Arg Leu
    50
                        55
                                             60
Thr Gln Met Lys Arg Ile Leu Lys Lys Arg Gly Asn Thr Ala Arg Ile
                    70
65
                                        75
                                                             80
Thr Glu Thr Asp Ile Glu Leu Val Met Lys Leu Glu Glu Ile Gly Lys
                85
                                    90
                                                         95
Arg
<210>
       131
<211>
       15
<212> PRT
<213> Conus stercusmuscarum
<220>
<221> PEPTIDE
<222> (1)..(15)
<223> Xaa at residues 3, 7, 13 and 14 is Glu or gamma-carboxy-Glu
<400> 131
Ile Thr Xaa Thr Asp Ile Xaa Leu Val Met Lys Leu Xaa Xaa Ile
                                    10
                                                         15
<210> 132
<211> 17
<212> PRT
<213> Conus geographus
<220>
<221> PEPTIDE
<222> (1)..(17)
<223>
       Xaa is Glu or gamma-carboxy-Glu
<400> 132
```

```
Gly Glu Xaa Xaa Leu Gln Xaa Asn Gln Xaa Leu Ile Arg Xaa Lys Ser
Asn
<210>
      133
<211>
       24
<212>
      PRT
<213> Conus ammiralis
<220>
<221>
      PEPTIDE
      (1)..(24)
<222>
<223>
      Xaa is Glu or gamma-carboxy-Glu
<400> 133
Glx Gly Gln Asp Asp Ser Glu Xaa Xaa Asp Ser Gln Lys Val Met Lys
                                                        15
                                    10
His Gly Gln Arg Arg Glu Arg Arg
            20
<210> 134
<211>
      17
<212>
      PRT
<213> Conus betulinus
<220>
<221>
      PEPTIDE
<222>
      (1)..(17)
      Xaa is Glu or gamma-carboxy-Glu
<400> 134
Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Leu Thr
                                                        15
                5
1
                                    10
Pro
<210> 135
<211> 17
<212> PRT
<213> Conus betulinus
<220>
<221> PEPTIDE
<222> (1)..(17)
<223> Xaa is Glu or gamma-carboxy-Glu
<400> 135
Gly Gly Xaa Xaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Ile Thr
                                    10
                                                        15
Pro
<210> 136
<211> 17
<212> PRT
<213> Conus betulinus
```

```
<220>
                                      <221>
                                                                                 PEPTIDE
                                                                             (1)..(17)
                                      <222>
                                      <223>
                                                                                Xaa is Glu or gamma-carboxy-Glu
                                      <400>
                                                                                 136
                                     Asp Gly Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu Asn Xaa Leu Thr
                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                     15
                                       Pro
                                     <210>
                                                                                 137
                                      <211>
                                                                               18
                                      <212>
                                                                                PRT
                                      <213>
                                                                               Conus betulinus
                                     <220>
                                     <221>
                                                                                PEPTIDE
The first pen nest first that the first the first the first that t
                                                                             (1)..(18)
                                     <222>
                                     <223>
                                                                               Xaa is Glu or gamma-carboxy-Glu
                                     <400> 137
                                     Gly Tyr Xaa Asp Asp Arg Xaa Ile Ala Xaa Thr Val Arg Xaa Leu Glu
                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                    15
                                     Glu Ala
  The state of the s
                                     <210>
                                                                               138
                                     <211>
                                                                               17
                                     <212>
                                                                                PRT
                                                                                Conus betulinus
                                     <213>
                                     <220>
                                     <221>
                                                                                PEPTIDE
                                     <222>
                                                                                 (1)..(17)
                                                                               Xaa is Glu or gamma-carboxy-Glu
                                     <223>
                                     <400> 138
                                    Gly Gly Kaa Val Arg Xaa Ser Ala Xaa Thr Leu His Xaa Ile Thr
                                     1
                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                    15
                                     Pro
                                     <210>
                                                                           139
                                     <211>
                                                                            18
                                     <212>
                                                                               PRT
                                     <213>
                                                                               Conus bullatus
                                     <220>
                                     <221>
                                                                               PEPTIDE
                                                                              (1)..(18)
                                     <222>
                                     <223>
                                                                               Xaa is Glu or gamma-carboxy-Glu
                                    <400> 139
                                    Asn Pro Xaa Thr Tyr Ile Xaa Ile Val Xaa Ile Ser Arg Xaa Leu Glu
                                     1
                                                                                                                                          5
                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                    15
                                    Glu Ile
```

```
the party of the p
```

```
<210>
       140
<211>
       20
<212>
       PRT
<213>
       Conus bullatus
<220>
<221>
       PEPTIDE
      (1)..(20)
<222>
<223>
       Xaa is Glu or gamma-carboxy-Glu
<400>
       140
Asn Pro Xaa Thr Tyr Tyr Asn Leu Xaa Leu Val Xaa Ile Ser Arg Glu
                                    10
Leu Glu Glu Ile
            20
<210>
       141
<211>
       19
<212>
      PRT
      Conus catus
<213>
<220>
<221>
      PEPTIDE
<222>
      (1)..(19)
       Xaa is Glu or gamma-carboxy-Glu
<223>
<400> 141
Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                                    10
                                                         15
Glu Arg Asn
<210>
       142
       19
<211>
<212>
       PRT
<213>
       Conus catus
<220>
<221> PEPTIDE
<222> (1)..(19)
<223> Xaa is Glu or gamma-carboxy-Glu
<400> 142
Gly Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Leu
                5
                                    10
                                                         15
Glu Arg Asp
<210> 143
<211> 19
<212> PRT
<213> Conus catus
<220>
<221> PEPTIDE
<222> (1)..(19)
<223>
      Xaa is Glu or gamma-carboxy-Glu
<400> 143
```

```
Hall the stant ment and from At.
```

```
Ser Asp Xaa Xaa Leu Leu Arg Xaa Asp Val Xaa Thr Val Leu Xaa Pro
                                          10
                                                              15
     Glu Arg Asn
     <210>
            144
     <211>
            17
     <212>
            PRT
     <213>
            Conus catus
     <220>
     <221>
            PEPTIDE
            (1)..(17)
     <222>
     <223>
            Xaa is Glu or gamma-carboxy-Glu
     <400> 144
     Ile Glu Xaa Gly Leu Ile Xaa Asp Leu Xaa Thr Ala Arg Xaa Arg Asp
                                          10
     Ser
     <210>
            145
     <211>
            15
     <212>
            PRT
     <213>
            Conus catus
     <220>
     <221>
            PEPTIDE
     <222>
            (1)..(15)
     <223>
            Xaa is Glu or gamma-carboxy-Glu
     <400> 145
     Ile Glu Xaa Gly Leu Ile Xaa Asp Leu Xaa Arg Xaa Arg Asp Ser
1
                                                              15
                                          10
     <210>
            146
     <211>
            29
     <212> PRT
     <213> Conus catus
     <220>
     <221>
            PEPTIDE
     <222>
           (1)..(29)
     <223>
            Xaa is Glu or gamma-carboxy-Glu
     <400> 146
     Gly Glu Pro Xaa Val Gly Ser Ile Pro Xaa Ala Val Arg Gln Glu
                                          10
     Cys Ile Arg Asn Asn Asn Asn Arg Pro Trp Cys Pro Lys
                 20
                                      25
     <210> 147
     <211> 17
     <212> PRT
     <213>
            Conus distans
     <220>
     <221>
            PEPTIDE
     <222>
            (1)..(17)
```

```
i.
                                             The state of the s
               ä
                                                             127
                                                             the state of the s
```

```
Xaa is Glu or gamma-carboxy-Glu
<400>
       147
Thr Ile Thr Ala Xaa Xaa Ala Xaa Arg Thr Ser Xaa Arg Met Ser Ser
1
                                     10
                                                          15
Met
<210>
       148
<211>
       19
<212>
       PRT
<213>
       Conus distans
<220>
<221>
       PEPTIDE
<222>
       (1)..(19)
<223>
       Xaa is Glu or gamma-carboxy-Glu
<400>
       148
Glx Glu Thr Pro Thr Pro Xaa Xaa Val Xaa Arg His Thr Xaa Arg Leu
                5
1
                                     10
                                                          15
Lys Ser Met
<210>
       149
<211>
       15
<212>
       PRT
<213>
       Conus episcopatus
<220>
<221>
       PEPTIDE
<222>
       (1)..(15)
       Xaa is Glu or gamma-carboxy-Glu
<400>
       149
Gly Gly Lys Asp Ile Val Xaa Thr Ile Thr Xaa Leu Xaa Lys Ile
                5
1
                                     10
                                                          15
<210> 150
<211> 19
<212> PRT
<213> Conus figulinus
<220>
<221>
      PEPTIDE
<222>
      (1)..(19)
       Xaa is Glu or gamma-carboxy-Glu
<223>
<400> 150
Gly Glu Xaa Xaa Val Ala Xaa Met Ala Ala Xaa Ile Ala Arg Xaa Asn
1
                5
                                     10
                                                          15
Gln Ala Asn
<210> 151
<211> 18
<212> PRT
<213>
       Conus figulinus
<220>
```

```
(1)..(18)
     <222>
     <223> Xaa is Glu or gamma-carboxy-Glu
     <400> 151
     Ser Tyr Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Lys
                                           10
     Glu Arg
     <210>
             152
     <211>
             34
      <212>
             PRT
      <213> Conus figulinus
      <220>
      <221>
             PEPTIDE
(1)..(34)
      <222>
had the head that were
             Xaa is Glu or gamma-carboxy-Glu
      <223>
      <400> 152
      Ser Tyr Xaa Gln Ala Arg Xaa Val Gln Xaa Ala Val Asn Xaa Leu Lys
                                                                15
                      5
                                           10
      1
Glu Arg Gly Lys Lys Ile Ile Met Leu Gly Val Pro Arg Asp Thr Arg
                                                            30
                  20
                                       25
=
      Gln Phe
      <210>
             153
      <211>
             18
      <212>
             PRT
             Conus figulinus
      <213>
      <220>
      <221>
             PEPTIDE
      <222>
             (1)..(18)
      <223> Xaa is Glu or gamma-carboxy-Glu
      <400> 153
      Asp Tyr Xaa Asp Asp Arg Xaa Ile Ala Xaa Thr Val Arg Xaa Leu Glu
                                           10
      Glu Ile
      <210> 154
      <211> 19
      <212> PRT
      <213> Conus figulinus
      <220>
      <221> PEPTIDE
      <222> (1)..(19)
      <223> Xaa is Glu or gamma-carboxy-Glu
      <400> 154
      Gly Asn Thr Ala Xaa Xaa Val Arg Xaa Ala Ala Xaa Thr Leu His Glu
                                            10
                                                                15
```

Leu Ser Leu

0

<221>

PEPTIDE

```
<210>
              155
      <211>
              23
      <212>
              PRT
      <213>
             Conus figulinus
      <220>
      <221>
              PEPTIDE
              (1)..(23)
      <222>
              Xaa is Glu or gamma-carboxy-Glu
      <223>
      <400>
             155
      Gly Ser Ile Ser Met Gly Phe Xaa His Arg Arg Xaa Ile Ala Xaa Leu
                                              10
                                                                    15
      Val Arg Glu Leu Ala Glu Ile
                   20
The there were the first that the first the
      <210>
             156
      <211>
             19
      <212>
             PRT
      <213>
             Conus lynceus
      <220>
      <221>
             PEPTIDE
      <222>
              (1)..(19)
æ
             Xaa is Glu or gamma-carboxy-Glu
The first that the lines
             156
      <400>
      Gly Glu Xaa Xaa Val Ala Lys Met Ala Ala Xaa Ile Ala Arg Xaa Asn
                        5
                                              10
                                                                    15
      Ala Ala Asn
      <210>
              157
      <211>
              18
      <212>
              PRT
      <213> Conus lynceus
      <220>
      <221> PEPTIDE
      <222> (1)..(18)
      <223> Xaa is Glu or gamma-carboxy-Glu
      <400> 157
      Gly Lys Xaa Xaa Asp Arg Xaa Ile Val Xaa Thr Val Arg Xaa Leu Glu
                                              10
                                                                    15
      Glu Ile
      <210> 158
      <211> 19
      <212> PRT
      <213> Conus lynceus
      <220>
      <221> PEPTIDE
      <222> (1)..(19)
      <223> Xaa is Glu or gamma-carboxy-Glu
```

```
<400> 158
Gly Glu Xaa Xaa Val Ala Lys Met Ala Ala Xaa Leu Thr Arg Xaa Glu
                                    10
                                                        15
Ala Val Lys
<210> 159
<211>
       24
<212> PRT
<213>
       Conus purpurascens
<220>
<221>
       PEPTIDE
<222>
      (1)..(24)
       Xaa is Glu or gamma-carboxy-Glu
<223>
<400> 159
Gly Glu Xaa Xaa His Ser Lys Tyr Gln Xaa Cys Leu Arg Xaa Val Arg
                                    10
                                                        15
Val Asn Lys Val Gln Gln Glu Cys
            20
<210>
      160
<211> 24
<212> PRT
       Conus purpurascens
<213>
<220>
<221>
       PEPTIDE
<222>
      (1)..(24)
       Xaa is Glu or gamma-carboxy-Glu
<400>
       160
Gly Glu Xaa Xaa His Ser Lys Tyr Gln Xaa Cys Leu Arg Xaa Val Arg
                                                        15
                                    10
Val Asn Asn Val Gln Glu Cys
            20
<210> 161
<211> 24
<212> PRT
<213> Conus purpurascens
<220>
<221> PEPTIDE
<222> (1)..(24)
<223> Xaa is Glu or gamma-carboxy-Glu
<400> 161
Gly Glu Xaa Xaa His Ser Lys Tyr Gln Xaa Cys Leu Arg Xaa Ile Arg
                                    10
Val Asn Lys Val Gln Gln Glu Cys
            20
<210> 162
<211> 24
<212> PRT
<213> Conus purpurascens
```

```
<220>
                  <221>
                                          PEPTIDE
                  <222>
                                         (1)..(24)
                  <223>
                                         Xaa is Glu or gamma-carboxy-Glu
                  <400> 162
                  Gly Glu Ala Xaa His Tyr Ala Phe Gln Xaa Cys Leu Arg Xaa Ile Asn
                                                                                                                                             10
                  Val Asn Lys Val Gln Gln Glu Cys
                                                           20
                                         163
                  <210>
                  <211>
                                         15
                  <212>
                                         PRT
                  <213>
                                         Conus purpurascens
<220>
                  <221>
                                         PEPTIDE
the state of the s
                  <222>
                                         (1)..(15)
                  <223>
                                         Xaa is Glu or gamma-carboxy-Glu
thing their
                  <400>
                                         163
                 Gly Leu Xaa Xaa Asp Ile Xaa Phe Ile Xaa Thr Ile Xaa Glu Ile
                                                                                                                                             10
                                                                                                                                                                                                                15
E
The man that they have the
                 <210>
                                         164
                  <211>
                                         15
                 <212>
                                        PRT
                                         Conus stercusmuscarum
                 <213>
                 <220>
                 <221>
                                         PEPTIDE
                 <222>
                                         (1)..(15)
                 <223>
                                        Xaa is Glu or gamma-carboxy-Glu
                 <400> 164
                 Ile Thr Xaa Thr Asp Ile Xaa Leu Val Met Lys Leu Xaa Glu Ile
                 1
                                                                                                                                             10
                                                                                                                                                                                                                15
                 <210>
                                        165
                 <211>
                                        24
                 <212> PRT
                 <213>
                                        Conus ammiralis
                 <400>
                                     165
                 Glx Gly Gln Asp Asp Ser Glu Glu Glu Asp Ser Gln Lys Val Met Lys
                 1
                                                                                                                                                                                                                15
                 His Gly Gln Arg Arg Glu Arg Arg
                                        166
                 <210>
                 <211>
                                        17
                 <212> PRT
                 <213>
                                        Conus betulinus
                 <400> 166
                 Gly Glu Glu Val Arg Glu Ser Ala Glu Thr Leu His Glu Leu Thr
```

```
15
                                                                                                                                                5
                                                                                                                                                                                                                                                                                       10
                                 1
                                   Pro
                                  <210>
                                                                                   167
                                  <211>
                                                                                  17
                                  <212>
                                                                                  PRT
                                  <213>
                                                                                  Conus betulinus
                                  <400> 167
                                  Gly Gly Glu Glu Val Arg Glu Ser Ala Glu Thr Leu His Glu Ile Thr
                                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                                                15
                                  1
                                                                                                                                                 5
                                  Pro
                                  <210>
                                                                                  168
                                   <211>
                                                                                  17
Ēzi,
                                                                                  PRT
                                  <212>
field that the post of the state of the stat
                                  <213>
                                                                                  Conus betulinus
                                  <400>
                                                                            168
                                  Asp Gly Glu Val Arg Glu Ala Ala Glu Thr Leu Asn Glu Leu Thr
                                                                                                                                                                                                                                                                                        10
                                                                                                                                                                                                                                                                                                                                                                                                                                15
                                                                                                                                                 5
                                  Pro
至
the first that the fi
                                   <210>
                                                                                  169
                                   <211>
                                                                                  18
                                   <212>
                                                                                   PRT
                                                                                  Conus betulinus
                                   <213>
                                   <400> 169
                                   Gly Tyr Glu Asp Asp Arg Glu Ile Ala Glu Thr Val Arg Glu Leu Glu
                                                                                                                                                                                                                                                                                                                                                                                                                                15
                                    1
                                                                                                                                                                                                                                                                                         10
                                   Glu Ala
                                    <210> 170
                                   <211>
                                                                                  17
                                   <212> PRT
                                    <213> Conus betulinus
                                   <400> 170
                                   Gly Gly Glu Val Arg Glu Ser Ala Glu Thr Leu His Glu Ile Thr
                                                                                                                                                                                                                                                                                         10
                                                                                                                                                                                                                                                                                                                                                                                                                                 15
                                    Pro
                                    <210> 171
                                    <211> 18
                                    <212> PRT
                                    <213> Conus bullatus
                                    <400> 171
                                    Asn Pro Glu Thr Tyr Ile Glu Ile Val Glu Ile Ser Arg Glu Leu Glu
                                                                                                                                                                                                                                                                                         10
                                     1
                                                                                                                                                                                                                                                                                                                                                                                                                                 15
                                    Glu Ile
                                    <210> 172
```

```
20
                   <211>
                   <212>
                                              PRT
                                              Conus bullatus
                    <213>
                   <400> 172
                   Asn Pro Glu Thr Tyr Tyr Asn Leu Glu Leu Val Glu Ile Ser Arg Glu
                    1
                                                                                                                                                              10
                                                                                                                                                                                                                                            15
                   Leu Glu Glu Ile
                                                                  20
                   <210>
                                              173
                   <211>
                                              19
                   <212>
                                              PRT
                   <213>
                                              Conus catus
                   <400> 173
Active the first the first flesh first fresh the first flesh first the fresh flesh fresh f
                   Ser Asp Glu Glu Leu Leu Arg Glu Asp Val Glu Thr Val Leu Glu Leu
                                                                                                                                                              10
                                                                                                                                                                                                                                            15
                  Glu Arg Asn
                   <210>
                                            174
                   <211>
                                             19
                   <212>
                                             PRT
                   <213>
                                              Conus catus
the Marie and the test
                  <400> 174
                  Gly Asp Glu Glu Leu Leu Arg Glu Asp Val Glu Thr Val Leu Glu Leu
                                                                                                                                                              10
                                                                                                                                                                                                                                            15
                  Glu Arg Asp
Hand
Hand
                  <210>
                                             175
                  <211>
                                             19
                 .<212>
                                              PRT
                                             Conus catus
                  <213>
                  <400> 175
                  Ser Asp Glu Glu Leu Leu Arg Glu Asp Val Glu Thr Val Leu Glu Pro
                                                                                                                                                             10
                                                                                                                                                                                                                                           15
                  Glu Arg Asn
                  <210> 176
                  <211> 17
                  <212> PRT
                  <213> Conus catus
                  <400> 176
                  Ile Glu Glu Gly Leu Ile Glu Asp Leu Glu Thr Ala Arg Glu Arg Asp
                                                                                                                                                             10
                                                                                                                                                                                                                                           15
                  Ser
                  <210> 177
                  <211> 17
                  <212> PRT
                  <213> Conus catus
```

```
<400> 177
    Ile Glu Glu Gly Leu Ile Glu Asp Leu Glu Ala Ala Arg Glu Arg Asp
                                         10
                                                             15
    Ser
    <210>
           178
    <211>
          29
    <212> PRT
    <213>
           Conus catus
    <400> 178
    Gly Glu Pro Glu Val Gly Ser Ile Pro Glu Ala Val Arg Gln Glu
                                         10
                                                             15
    Cys Ile Arg Asn Asn Asn Asn Arg Pro Trp Cys Pro Lys
                 20
                                     25
<210> 179
    <211> 15
<212>
          PRT
<213> Conus distans
<400> 179
    Thr Ile Thr Ala Glu Glu Ala Glu Arg Thr Ser Met Ser Ser Met
7,13
                                                             15
    1
                     5
                                         10
#
Hand Carl Bree Bree history
    <210>
           180
    <211>
           19
    <212> PRT
    <213> Conus distans
    <400> 180
    Glx Glu Thr Pro Thr Pro Glu Glu Val Glu Arg His Thr Glu Arg Leu
                                                             15
                                         10
    Lys Ser Met
    <210> 181
    <211> 15
    <212> PRT
    <213> Conus episcopatus
    <400> 181
    Gly Gly Lys Asp Ile Val Glu Thr Ile Thr Glu Leu Glu Lys Ile
                                                              15
                                         10
    <210> 182
    <211> 19
    <212> PRT
     <213> Conus figulinus
    <400> 182
    Gly Glu Glu Val Ala Glu Met Ala Ala Glu Ile Ala Arg Glu Asn
     1
                                         10
                                                              15
    Gln Ala Asn
    <210>. 183
     <211> 18
```

<212>

PRT

```
<213>
           Conus figulinus
    <400> 183
    Ser Tyr Glu Gln Ala Arg Glu Val Gln Glu Ala Val Asn Glu Leu Lys
                                                              15
    1
    Glu Arg
    <210>
            184
    <211> 34
    <212> PRT
    <213>
           Conus figulinus
    <400> 184
    Ser Tyr Glu Gln Ala Arg Glu Val Gln Glu Ala Val Asn Glu Leu Lys
                                                              15
                                          10
1
dens dere dere half der
    Glu Arg Gly Lys Lys Ile Ile Met Leu Gly Val Pro Arg Asp Thr Arg
                 20
                                     25
    Gln Phe
<210>
           185
    <211>
           18
    <212> PRT
Œ
           Conus figulinus
    <213>
143
    <400> 185
    Asp Tyr Glu Asp Asp Arg Glu Ile Ala Glu Thr Val Arg Glu Leu Glu
                                                              15
Glu Ile
    <210>
           186
           19
    <211>
    <212>
            PRT
    <213> Conus figulinus
    <400> 186
    Gly Asn Thr Ala Glu Glu Val Arg Glu Ala Ala Glu Thr Leu His Glu
                                         10
                                                              15
    Leu Ser Leu
    <210> 187
    <211> 23
    <212> PRT
    <213> Conus figulinus
    <400> 187
    Gly Ser Ile Ser Met Gly Phe Glu His Arg Arg Glu Ile Ala Glu Leu
                                                              15
                                          10
    Val Arg Glu Leu Ala Glu Ile
                 20
    <210> 188
    <211> 19
    <212> PRT
```

```
<213>
                                                                        Conus lynceus
                              <400> 188
                              Gly Glu Glu Val Ala Lys Met Ala Ala Glu Ile Ala Arg Glu Asn
                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                           15
                              1
                            Ala Ala Asn
                              <210>
                                                                        189
                                                                        18
                              <211>
                              <212>
                                                                        PRT
                              <213>
                                                                        Conus lynceus
                              <400> 189
                              Gly Lys Glu Glu Asp Arg Glu Ile Val Glu Thr Val Arg Glu Leu Glu
                              1
                                                                                                                                                                                                                                                                                                                                                                                           15
and death death class seems cost death
                              Glu Ile
                              <210>
                                                                        190
                              <211> 19
                              <212> PRT
                              <213>
                                                                        Conus lynceus
 +11.12
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
18.11
                              <400> 190
                              Gly Glu Glu Val Ala Lys Met Ala Ala Glu Leu Thr Arg Glu Glu
 =
 the distribution of the state o
                                                                                                                                                                                                                                                                                                                                                                                         15
                              1
                                                                                                                                  5
                                                                                                                                                                                                                                                              10
                            Ala Val Lys
                              <210>
                                                                        191
                              <211>
                                                                        24
                              <212>
                                                                        PRT
                              <213>
                                                                        Conus purpurascens
                              <400> 191
                              Gly Glu Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Val Arg
                              1
                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                          15
                            Val Asn Lys Val Gln Gln Glu Cys
                                                                                                        20
                              <210> 192
                             <211> 24
                              <212> PRT
                             <213> Conus purpurascens
                              <400> 192
                              Gly Glu Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Val Arg
                              1
                                                                                                                                                                                                                                                              10
                                                                                                                                                                                                                                                                                                                                                                                          15
                            Val Asn Asn Val Gln Glu Cys
                                                                                                        20
                             <210> 193
                              <211> 24
                              <212> PRT
                             <213> Conus purpurascens
```

<400> 193

```
Gly Glu Glu His Ser Lys Tyr Gln Glu Cys Leu Arg Glu Ile Arg
                                              10
     Val Asn Lys Val Gln Gln Glu Cys
                   20
     <210> 194
     <211> 24
     <212> PRT
     <213>
             Conus purpurascens
     <400> 194
     Gly Glu Ala Glu His Tyr Ala Phe Gln Glu Cys Leu Arg Glu Ile Asn
   . 1
                                             10
                                                                    15
     Val Asn Lys Val Gln Gln Glu Cys
                  20
<u> </u>
hour first man war very first of
     <210> 195
     <211>
            15
     <212> PRT
     <213>
            Conus purpurascens
     <400> 195
     Gly Leu Glu Glu Asp Ile Glu Phe Ile Glu Thr Ile Glu Glu Ile
     1
                       5
æ
                                             10
                                                                    15
And the front that the first than
     <210> 196.
     <211> 15
     <212> PRT
     <213>
            Conus stercusmuscarum
     <400> 196
     Ile Thr Glu Thr Asp Ile Glu Leu Val Met Lys Leu Glu Glu Ile
                                             10
                                                                   15
```