Laboratorio di Architetture degli Elaboratori I Corso di Laurea in Informatica, A.A. 2022-2023 Università degli Studi di Milano

Firmware

Esercizio Moltiplicatore

 Costruire una macchina a stati finiti in grado di eseguire la moltiplicazione di due sequenze a 4 bit utilizzando l'algoritmo «add & shift»

Esercizio Moltiplicatore

Componenti:

- ALU a 8 bit (semplifichiamo usando un solo sommatore)
- Registro a 8 bit in grado di caricare una sequenza o shiftarla di 1
- Logica A*b_k
- Logica di controllo

ALU

Registro 8 bit con shift

- Input A a 8 bit
- Il bit in input per lo shift sempre a 0
- 3 input di controllo (Clock, Load e Shift)
 - Indipendentemente da Clock e Shift, Load carica i valori di A nel registro
 - Lo shift avviene solo se Shift e Clock sono entrambi a 1

Logica A*b_k

- Input A e B a 8 bit, input k a 2 bit
- L'output è il k-esimo bit di B moltiplicato per A e cioè b k esteso AND A

Logica di controllo

- 3 input: Load, Start e Clock
 - Load permette di caricare A e B a 4 bit dentro i registri a 8
- 2 output:
 - k (a 2 bit) che definisce l'iterazione. k incrementa quando Clock passa da alto a basso e Start è alto
 - Store: comando di salvataggio del registro P a 8 bit attivo con Start NAND Clock

Logica di controllo

Input A, B e Load

 Predisporre due sequenze a 4 bit (A e B) estese a 8 bit

 Le sequenze vengono memorizzate nel registro quando Load diventa alto

Input A, B e Load

Input Load, Start e Clock

 Questi 3 input finiscono nella logica di controllo e nei registri per A e B

Output P

- L'output P (sequenza a 8 bit) è P+A*b_k
- P è salvato in un registro
- Il salvataggio di P nel registro avviene col comando di Store

Circuito finale

Esercizio

Iterazione (k)	Passo	Moltiplicatore (B)	Moltiplicando (A)	Prodotto (P)
0	Valori iniziali	1011	0000 1010 —	0000 0000
1	b0=1->P=P+A	1010	0000 1010	0000 1010
	Moltiplicando << 1	1011	00010100	0000 1010
2	b1=1->P=P+A	1001	0001.0100	0001 1110
	Moltiplicando << 1	1011	0010 1000	0001 1110
3	b2=0->Nulla	101	00 <mark>10 10</mark> 00	0001 1110
	Moltiplicando << 1	1011	0101 0000	0001 1110
4	b3=1->P=P+A	0011	d101 d000	0110 1110
	Moltiplicando << 1	1011	1010 0000	0110 1110