

OpenDSS Training Workshop

PVSystem, InvControl, Storage, StorageController – Parts I and III

Celso Rocha, Paulo Radatz EPRI Knoxville, TN

August 26, 2020

Instructor

Celso Rocha, Member, IEEE

Celso Rocha serves as Engineer Scientist II at the Electric Power Research Institute (EPRI) in Knoxville, Tennessee USA. He received his degree in electrical engineering with emphasis in energy and automation from University of Sao Paulo, Sao Paulo, Brazil (2017); Currently, he is pursuing his Masters in electrical engineering at University of Sao Paulo, Sao Paulo, Brazil under the supervision of Dr. Nelson Kagan. He has 5 years of experience with OpenDSS, having taught several OpenDSS trainings in Brazil at conferences, universities and industry.

- Paulo Radatz

Paulo Radatz serves as Engineer Scientist II at the Electric Power Research Institute (EPRI) in Knoxville, Tennessee USA. He received both his Masters and Bachelors degree in electrical engineering with emphasis in energy and automation from University of Sao Paulo, Sao Paulo, Brazil. He was awarded a prize for being the best bachelor's student of Polytechnic School of University of Sao Paulo (2015). He has 5 years of experience with OpenDSS, having taught several OpenDSS trainings in Brazil at conferences, universities and industry.

1. Inverter Modeling in OpenDSS

© 2019 Electric Power Research Institute, Inc. All rights reserved.

www.epri.com

"New inverter.*"?

- No standalone inverter component
- Features span over PVSystem, Storage and InvControl
 - At PVSystem and Storage:
 - Nameplate, settings and losses: kVA, kvarMax, ...
 - Basic functions: Constant PF, constant kvar, ...
 - At InvControl:
 - More complex functionalities (Volt-Var, DRC, Volt-Watt, ...)

Inverter Capability Curve

Inverter Capability Curve

Customization: set the respective parameter to "0" to disable it

Inverter Capability Curve

- Violation of capability curve: application of priorities
 - wattPriority [True/False*]
 - pfPriority [True/False*]

2. PVSystem + InvControl

PVSystem Element in OpenDSS

 The PVSystem model combines the photovoltaic (PV) array and the PV inverter into one convenient model to use for distribution system impacts studies

PVSystem Properties

PV Array

Pmpp

P-TCurve

PV Inverter

Inverter Connection and Efficiency Curve

kV, Phases, bus1, conn, EffCurve

Inverter Capability Curve

%cutin, %cutout, kvarMax, kvarMaxAbs, WattPriority, PFPriority, %PminNoVars, %PminkvarMax

Inverter Functions

%Pmpp, PF, kvar, VarFollowInverter

Operating Conditions

SnapShot

Irradiance, Temperature

QSTS

Irradiance,

irradiance curve (daily, yearly, or duty),

temperature curve (Tdaily, Tyearly, or Tduty)

Example Script

Clear

New Circuit. The venin Equivalent bus1=A pu=1.0 basekv=13.8

New XYCurve.Eff npts=4 xarray=[.1 .2 .4 1.0] yarray=[.86 .9 .93 .97]

New XYCurve.FatorPvsT npts=4 xarray=[0 25 75 100] yarray=[1.2 1.0 0.8 0.6]

New Loadshape.Irrad npts=24 interval=1

~ mult=[0 0 0 0 0 0 .1 .2 .3 .5 .8 .9 1.0 1.0 .99 .9 .7 .4 .1 0 0 0 0 0]

New Tshape.Temp npts=24 interval=1

~ temp=[25 25 25 25 25 25 25 25 25 35 40 45 50 60 60 55 40 35 30 25 25 25 25 25 25]

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1200 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp pf=0.9

Set voltagebases=[13.8]

Calcvoltagebases

Set mode=daily

Solve

Base Case

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1200 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp pf=0.9 %cutin=20 %cutout=20

Base Case

New Monitor.PV_v element=PVSystem.PV terminal=1 mode=3

kVA exceeded under P priority

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1000 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp wattpriority=yes pf=0.8

kVA exceeded under Q priority

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1000 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp wattpriority=no pf=0.8

Active Power Limited – Limit DER Power

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1000 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=60 daily=Irrad Tdaily=Temp pf=1

Reactive Power Limited

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1000 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp of=0.6 kvarmax=300

Night Operation

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1000 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp kvar=300 varfollowinverter=no

InvControl Element in OpenDSS

 Works in conjunction with PVSystem/Storage object(s) to control the DERs output according to advanced ('smart') inverter functions

InvControl Properties

Common Properties

Mode and element controlled

DERList, mode, Combimode

Convergence

VoltageChangeTolerance, VarChangeTolerance, ActivePChangeTolerance deltaQ_factor, deltaP_factor (Set equal to -1 allows automatic algorithm)

Monitored Voltage

monBus, monBusesVbase, monVoltageCalc, voltage_curvex_ref

LIMIT Active Power

Volt-watt

VoltwattYAxis

Voltwatt_curve

VoltwattCH_curve (Storage Only)

REQUEST Reactive Power

RefReactivePower

Volt-var

Vvc_curve1

DRC (Dynamic Reactive Current)

DbvMin, DbvMax, ArGraLowV, ArGraHiV, DynReacavgwindowlen

Watt-pf

Wattpf_curve

Watt-var

Wattvar_curve

- Volt-Var
 - Follows a voltage versus reactive power curve and REQUESTS the reactive power generation (capacitive) or reactive power absorption (inductive) according to the monitored voltage of each DER element

- Volt-Watt
 - Follows a voltage versus active power curve and defines the active power output LIMIT according to the monitored voltage of each DER element

Watt-PF

 Follows an active power versus power factor curve to REQUEST the reactive power according to the active power output of each DER element

Watt-Var

 Follows an active power versus reactive power curve and REQUESTS the reactive power according to the active power output of each DER element

- Dynamic Reactive Current (DRC)
 - Has several settings that REQUEST the reactive power generation or absorption in response to fast changes in monitored voltage (e.g., during a sag or swell)
- Volt-Var + Volt-Watt
- Volt-Var + DRC
- Volt-Watt + DRC
- Volt-Watt + PF or var constant
 - Volt-Watt set in InvControl and PF or var constant set in PVSystem/Storage

Volt-Var Example

New PVSystem.PV phases=3 bus1=A Pmpp=1000 kV=13.8 kVA=1010 effcurve=Eff

~ P-TCurve=FatorPvsT %Pmpp=100 daily=Irrad Tdaily=Temp wattpriority=yes

New XYcurve.generic npts=5 yarray=[1 1 0 -1 -1] xarray=[0.5 0.92 1.0 1.08 1.5]

New InvControl.VoltVar mode=VOLTVAR vvc_curve1=generic RefReactivePower=VARMAX

Monitor mode 3 – State Variables

New Monitor.PV_v element=PVSystem.PV terminal=1 mode=3

Function Flags

hour	Irradiance	PanelkW	P_TFactor	Efficiency	Vreg	Vavg (DRC)	volt-var	volt-watt	DRC	VV_DRC
1	0	0	1	1	0.99			9999		_
2	0	0	1	1	0.99	9999	Ç	9999	9999	9999
3	0	0	1	1	0.99	9999	0	9999	9999	9999
4	0	0	1	1	0.99	9999	0	9999	9999	9999
5	0	0	1	1	0.99	9999	0	9999	9999	9999
6	0	0	1	1	0.99	9999	0	9999	9999	9999
7	0.1	100	1	1	0.99	9999	0	9999	9999	9999
8	0.2	200	1	1	0.99	9999	0	9999	9999	9999
9	0.3	300	1	1	1.00	9999	-1	9999	9999	9999
10	0.5	500	1	1	1.01	9999	-1	9999	9999	9999

Regulated Voltage used in the Smart Inverter Functions

REQUEST Reactive Power

Volt-var, DRC, Watt-pf, Watt-var, and VV DRC Flags

Negative value for var absorption

Positive value for var generation

- 1 indicates the function operates without restriction
- **0.6** indicates inverter kVA rating exceed under P priority
- **0.2** indicates reactive power limited by kvarMax/kvarMaxAbs
- **0** indicates no reactive power requested

LIMIT Active Power

Volt-watt Flag

- 1 indicates active power limited
- 0 otherwise

9999 indicates not applied

Volt-Var Example

New PVSystem.PV phases=3 Pmpp=1000 kV=13.8 kVA=1010 wattpriority=yes ...

New XYcurve.generic npts=5 yarray=[1 1 0 -1 -1] xarray=[0.5 0.92 1.0 1.08 1.5]

New InvControl.VoltVar mode=VOLTVAR vvc_curve1=generic RefReactivePower=VARMAX

Volt-Watt Example

New XYcurve.generic npts=3 yarray=[1 1 0] xarray=[1 1.02 1.1]

New InvControl.VoltWatt mode=VOLTWATT voltwatt_curve=generic VoltwattYAxis=PMPPPU

Storage Element in OpenDSS

- General purpose energy storage
- In snapshot mode, same effect as a load/generator
- The strength is in time-varying (QSTS) simulation modes
 - Storage is a variable resource, but it is also limited
 - Account for energy stored, and losses

Modeling

Modeling

Operation – Power Flow within Storage

Operation – Power Flow within Storage

Operation – Power Flow within Storage

• In Idling state:

Dispatch Modes

- Someone needs to tell the element when charge/discharge and at what rate
- "Self-dispatch":
 - Active power → dispmode
 - Reactive Power $\rightarrow pf$, kvar
- Any combination of Active Power and Reactive Power control is valid!

Measure	Means	Modes
		Default
		Follow
	Self- Dispatch	LoadLevel
		Price
		External
		TimeChargeTrigger (Charge Only)
Active Power	Storage Controller	PeakShave/I-PeakShave (Discharge Only)
		Follow (Discharge Only)
		Support (Discharge Only)
		Schedule (Discharge Only)
		PeakShaveLow/I-PeakShaveLow (Charge Only)
		Loadshape
		Time
	Self-	Constant PF
	Dispatch	Constant kvar
Reactive Power		Volt-Var
	InvControl	Dynamic Reactive Current (DRC)
		Volt-Var + DRC

Dispatch Modes – Self-Dispatch (Follow)

New LoadShape.dispatch_shape interval=1 npts=24 mult = [0, -1.0, -1.0, -1.0, -0.5, -0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0.5, 0.75, 10, 1.0, 1.0, 1.0, 0.75, 0.5, 0, 0]

New Storage.Storage1 phases=3 bus1=A kv=0.48

- ~ kWrated=50 %reserve=20
- ~ kWhrated= 500 %stored=50
- ~ dispmode follow daily=dispatch_shape

$$P[t] = mult[t] * kWRated$$

oadshape Multiplier

Dispatch Modes – Self-Dispatch (External)

Storage Controller Element in OpenDSS

- Control Element
- Designed to control a fleet of ES
- Monitors a terminal of a current-carrying element (typically a PDE)

Storage Controller - Dispatch Modes

Requested State	Modes
Discharging	Peakshave
	I-Peakshave
	Follow
	Support
	Schedule
Charging	PeakShaveLow
	I-PeakShaveLow
Discharging and Charging	Time
	Loadshape

Storage Controller - Dispatch Modes

Examples – Base Circuit (IEEE 8500 Buses)

Fleet Energy Capacity= 7.35 MWh

Fleet Power Capacity= 1.55 MW

www.epri.com

Storage Controller - Dispatch Modes – PeakShaving (Discharging) and Time (Charging)

New StorageController.SC element=Line.In5815900-1 modedis=peakShave kwtarget=10200

modecharge=Time time thargeTrigger=2 %rateCharge=50

Storage Controller - Dispatch Modes – PeakShaving (Discharging) and Time (Charging)

New StorageController.SC element=Line.In5815900-1 modedis=peakShave kwtarget=10200

~ modecharge=Time timeChargeTrigger=2 %rateCharge=50

No Power - Case

set casename=NoPower

Edit Storage.A kWrated=50

Edit Storage.B kWrated=100

Edit Storage.C kWrated=175

Edit Storage.D kWrated=150

Edit Storage.E kWrated=75

Edit Storage.F kWrated=100

Edit Storage.G kWrated=125

Original Fleet Power Capacity= 1.55 MW

Fleet Power Capacity= 0.775 MW

Storage Controller - Dispatch Modes – PeakShaving (Discharging) and Time (Charging)

New StorageController.SC element=Line.In5815900-1 modedis=peakShave kwtarget=10200

~ modecharge=Time timeChargeTrigger=2 %rateCharge=50

No Energy - Case

set casename=NoEnergy

Edit Storage.A kWhrated=250

Edit Storage.B kWhrated=500

Edit Storage.C kWhrated=825

Edit Storage.D kWhrated=625

Edit Storage.E kWhrated=250

Edit Storage.F kWhrated=600

Edit Storage.G kWhrated=625

Original Fleet Energy Capacity= 7.35 MWh

Fleet Energy Capacity= 3.675 MWh

New Storage.B phases=3 bus1=B kv=13.8 kVA=1000 kWrated=1000 kWhrated= 10000 kvarMax=800

New Storage.C phases=3 bus1=C kv=13.8 kVA=1000 kWrated=1000 kWhrated= 10000 kvarMax=800

New Storage.D phases=3 bus1=D kv=13.8 kVA=1000 kWrated=1000 kWhrated= 10000 kvarMax=800

! StorageController

new Storagecontroller.SC element=line.AB

~ modedis=peakshave kwtarget=4000

! InvControl

New XYcurve.generic npts=5 yarray=[1 1 0 -1 -1]

~ xarray=[0.5 0.92 1.0 1.08 1.5]

New InvControl.InvControl mode=VOLTVAR

- ~ vvc_curve1=generic
- ~ RefReactivePower=VARMAX

!Cases

set casename=NoControls

Edit StorageController.SC enabled=False

Edit InvControl.InvControl enabled=False

set casename=Ppriority

Batchedit Storage..* wattpriority = True

set casename=Qpriority

Batchedit Storage..* wattpriority = False

set maxcontroliter=200

Set mode=Daily

Set stepsize=1h

Set number=10

Solve

Edit Vsource.source pu=0.94

set number=4

Solve

Edit Vsource.source pu=1

set number=10

Solve

New Monitor.Mon_StorageD_State element=Storage.D mode=3

Monitor in Mode 3 for Storage D and Q-priority case

Where do I go from here?

- Detailed technical notes available at your local OpenDSS installation Doc folder (C:\Program Files\OpenDSS\Doc)
 - Inverter Modeling
 - DSS Scripts at "Examples/InverterTechNote/"
 - PVSystem and InvControl Element Models
 - DSS Scripts at "Examples/InverterModels/"
 - Storage Element

www.epri.com

- DSS Scripts at "Examples/StorageTechNote/"
- StorageController Element
 - DSS Scripts at "Examples/StorageControllerTechNote/"
- Official Forum at SourceForge

Together...Shaping the Future of Electricity