Models with Heterogeneous Agents: Theory

Wouter J. Den Haan London School of Economics

© by Wouter J. Den Haan

Overview Monday and Tuesday Material

- Theory of models with heterogeneous agents
 - key to understand state variables
- Penalty function instead of borrowing constraints
 - \Longrightarrow Dynare becomes a possibility
- Famous Krusell-Smith algorithm
- Simulating economies with heterogeneous agents
 - Importance of imposing equilibrium
- Famous Reiter approach
 - General idea
 - Bopart, Krusell, Mitman
 - Legrand & Ragot
- Homotopy

SIMPLE MODEL WITH HETEROGENEOUS AGENTS

First model with heterogeneous agents

- Agents are ex ante the same, but face different idiosyncratic shocks ⇒ agents are different *ex post*
- Incomplete markets ⇒ heterogeneity cannot be insured away

Individual agent

Overview

- Subject to employment shocks:
 - $\varepsilon_{i,t} \in \{0,1\}$
- Incomplete markets
 - only way to save is through holding capital
 - borrowing constraint $k_{i,t+1} \geq 0$

Aggregate shock

- $z_t \in \{z^b, z^g\}$
- z_t affects

Overview

- aggregate productivity
- 2 probability of being employed
- transition probabilities are such that
 - unemployment rate only depends on current z_t
 - thus
 - $u_t = u^b$ if $z_t = z^b \&$
 - $u_t = u^g$ if $z_t = z^g$
 - with $u^b > u^g$

Individual agent

Overview

$$\max_{\{c_{i,t},k_{i,t+1}\}_{t=0}^{\infty}} \mathsf{E} \sum_{t=0}^{\infty} \beta^t \ln(c_{i,t})$$

No aggregate Uncertainty

s.t.

$$c_{i,t} + k_{i,t+1} = r_t k_{i,t} + (1 - \tau_t) w_t \bar{l} \varepsilon_{i,t} + \mu w_t (1 - \varepsilon_{i,t}) + (1 - \delta) k_{i,t}$$

$$k_{i,t+1} \ge 0$$

• this is a relatively simple problem if processes for r_t and w_t are given

Individual agent - foc

$$\frac{1}{c_{i,t}} \geq \beta \mathsf{E}_{t} \left[\frac{1}{c_{i,t+1}} \left(r_{t+1} + 1 - \delta \right) \right]
0 = k_{i,t+1} \left(\frac{1}{c_{i,t}} - \beta \mathsf{E}_{t} \left[\frac{1}{c_{i,t+1}} \left(r_{t+1} + 1 - \delta \right) \right] \right)
c_{i,t} + k_{i,t+1} = r_{t} k_{i,t} + (1 - \tau_{t}) w_{t} \bar{l} \varepsilon_{i,t} + \mu w_{t} (1 - \varepsilon_{i,t}) + (1 - \delta) k_{i,t}
k_{i,t+1} \geq 0$$

Firm problem

$$r_t = \alpha z_t K_t^{\alpha - 1} L_t^{1 - \alpha}$$

$$w_t = (1 - \alpha) z_t K_t^{\alpha} L_t^{-\alpha}$$

These are identical to those of the rep. agent version

Government

Overview

Only thing the government does is raise taxes to finance unemployment benefits.

$$\tau_t w_t \bar{l}(1 - u(z_t)) = \mu w_t u(z_t)$$

$$\tau_t = \frac{\mu u(z_t)}{\bar{l}(1 - u(z_t))}$$

STATE VARIABLES AND EQUILIBRIUM

What aggregate info do agents care about?

- current **and** future values of r_t and w_t
- the period-t values of r_t and w_t only depend on z_t and the aggregate capital stock, K_t
 - !!! In many models, however, current-period prices also depend on other characteristics of the distribution such as the variance

What aggregate info do agents care about?

- the future values, i.e., $r_{t+\tau}$ and $w_{t+\tau}$ with $\tau > 0$ depend on
 - future values of mean capital stock, i.e. $K_{t+\tau}$, & $z_{t+\tau}$
- $\bullet \implies$ agents are interested in all information that forecasts K_t
- typically this includes the complete cross-sectional distribution of employment status and capital levels (even when agents only forecast future mean capital stock)

Equilibrium - first part

- Individual policy functions that solve agent's max problem
- A wage and a rental rate given by equations above
 - These are equilibrium conditions if aggregate K_t implied by the household problems is used and aggregate employment, L_t , implied by z_t

Equilibrium - second part

• A transition law for the cross-sectional distribution of capital, that is consistent with the investment policy function.

$$f_{t+1} = Y(z_{t+1}, z_t, f_t)$$

- $f_t = \text{cross-sectional distribution of beginning-of-period capital}$ and the employment status after the employment status has been realized.
- z_{t+1} does not affect the cross-sectional distribution of capital
- z_{t+1} does affect the *joint* cross-sectional distribution of capital and employment status

Transition law & timing

- $f_t \& z_t \Longrightarrow f_t^{\text{end-of-period} = p_t}$
- $p_t = f_t^{\text{end-of-period}} \& z_t \& z_{t+1} \Longrightarrow f_{t+1}^{\text{beginning-of-period}} \equiv f_{t+1}$

Complete Markets

Transition law & timing

- Let g_t be the cross-sectional distribution of capital (so without any info on employment status)
- Why can I write

$$g_{t+1} = Y_g(z_t, f_t)$$
?

Transition law & continuum of agents

$$g_{t+1} = Y_g(z_t, f_t)$$

$$f_{t+1} = Y(z_{t+1}, z_t, f_t)$$

Why are these exact equations without additional noise?

• continuum of agents \Longrightarrow rely on law of large numbers to average out idiosyncratic risk

Recursive equilibrium?

Questions

Overview

- Does an equilibrium exist?
 - 1 If yes, is it unique?
- 2 Does a recursive equilibrium exist?
 - 1 If yes, is it unique?
 - 2 If yes, what are the state variables?

Recursive equilibrium?

Jianjun Miao (JET, 2006): a recursive equilibrium exist for following state variables:

- usual set of state variables, namely
 - individual shock, $\varepsilon_{i,t}$
 - individual capital holdings, $k_{i,t}$
 - aggregate productivity, z_t
 - joint distribution of income and capital holdings, f_t
- and cross-sectional distribution of expected payoffs

No aggregate Uncertainty

Overview

Heterogeneity \Longrightarrow more reasons to expect multiplicity

- my actions depend on what I think others will do
- heterogeneity tends to go together with frictions and multiplicity more likely with frictions
 - e.g. market externalities

• WR equilibrium is a recursive equilibrium with only $\varepsilon_{i,t}$, $k_{i,t}$, z_t , and f_t as state variables. (Also referred to as Krusell-Smith (KS) recursive equilibrium)

No aggregate Uncertainty

- Not proven that WR equilbrium exists in model discussed here (at least not without making unverifiable assumptions such as equilibrium is unique for all possible initial conditions)
- Kubler & Schmedders (2002) give examples of equilibria that are not recursive in wealth (i.e., wealth distribution by itself is not sufficient)

Wealth distribution not sufficient - Example

- Static economy two agents, i = 1, 2, two goods, j = A, B
- Utility: $\ln q_A + \ln q_B$
- Endowments in state I: $\omega_{1,A} = \omega_{2,A} = 1$; $\omega_{1,B} = \omega_{2,B} = 1$
- Endowments in state II: $\omega_{1A} = \omega_{2A} = 1; \omega_{1B} = \omega_{2B} = 10/9$
- Normalization: $p_A = 1$

Wealth distribution not sufficient - Example

State I:

Overview

- equilibrium: $p_B = 1$; $q_{1,A} = q_{2,A} = 1$; $q_{1,B} = q_{2,B} = 1$ wealth of each agent: = 2
- State II:
 - equilibrium: $p_B = 0.9$; $q_{1,A} = q_{2,A} = 1$; $q_{1,B} = q_{2,B} = 10/9$ wealth of each agent: = 2
- Thus: same wealth levels, but different outcome

How to proceed?

- Wealth distribution may not be sufficient!
- For numerical approximation less problematic:
 - Approximations always ignore bits (for example, higher-order polynomial terms)
- After obtaining solution, you should check whether the approximation is accurate or not

• For now we assume that a wealth recursive equilibrium exists (or an approximation based on it is accurate)

No aggregate Uncertainty

This is still a tough numerical problem

If a wealth recursive equilibrium exists

- Suppose that recursive RE for usual state space exists
 - $s_{i,t} = \{\varepsilon_{i,t}, k_{i,t}, S_t\} = \{\varepsilon_{i,t}, k_{i,t}, z_t, f_t\}$
- Equilibrium:
 - \bullet $c(s_{i,t})$
 - $k(s_{i,t})$
 - \bullet $r(S_t)$
 - $w(S_t)$
 - $Y(z_{t\perp 1}, z_t, f_t)$

Alternative representation state space

- Suppose that recursive RE for usual state space exist
 - $s_{i,t} = \{\varepsilon_{i,t}, k_{i,t}, S_t\} = \{\varepsilon_{i,t}, k_{i,t}, z_t, f_t\}$
- What determines current shape f_t ?
 - z_t, z_{t-1}, f_{t-1} or
 - $z_t, z_{t-1}, z_{t-2}, f_{t-2}$ or
 - $z_t, z_{t-1}, z_{t-2}, z_{t-3}, f_{t-3}$ or
 - $z_t, z_{t-1}, z_{t-2}, z_{t-3}, z_{t-4}, f_{t-4}$ or

No aggregate uncertainty

$$S_t = \lim_{n \to \infty} \{z_t, z_{t-1}, \cdots, z_{t-n}, f_{t-n}\}$$

- Why is this useful from a numerical point of view,
 - when z_t is stochastic?
 - when z_t is not stochastic (\equiv no aggregate uncertainty)?

NO AGGREGATE UNCERTAINTY

No aggregate uncertainty

Aggregate state variables

$$\lim_{n\longrightarrow\infty}\left\{z_{t},z_{t-1},\cdots,z_{t-n},f_{t-n}\right\}$$

If

Overview

- $\mathbf{0} \ z_t = z \ \forall t \ \text{and}$
- effect of initial distribution dies out
- then S_t constant
 - distribution still matters!
 - but it is no longer a *time-varying* argument

Algorithm to solve for aggregate capital, K

- Guess a value for r
- z implies value for L (these remain constant across iterations)
- firm FOC for K: z, L and r imply value for K^{demand}
- firm FOC for L: z, L and K^{demand} imply value for w
- Solve the individual problem with these values for r & w
- Simulate economy & calculate the supply of capital, K^{supply}
- If $K^{\text{supply}} < K^{\text{demand}}$ then r too low so raise r, say

$$r^{\text{new}} = r + \lambda (K^{\text{demand}} - K^{\text{supply}})$$

Iterate until convergence

Algorithm to solve for aggregate capital, K

Using

Overview

$$r^{\text{new}} = r + \lambda (K^{\text{demand}} - K^{\text{supply}})$$

to solve

$$K^{\mathsf{demand}}(r) = K^{\mathsf{supply}}(r)$$

not very efficient

- Value of λ may have to be very low
- More efficient to use equation solver to solve for r

Statement:

The representative agent model is silly, because there is no trade in this model, while there is lots of trade in financial assets in reality

No aggregate Uncertainty

Problem with statement:

RA is justified by complete markets which relies on lots of trade

Complete markets & exact aggregation

- economy with ex ante identical agents
- *I* different states
- complete markets ⇒ I contingent claims

Complete markets & exact aggregation

$$\max_{c_{i,t},b_{i,t+1}^{1},\cdots,b_{i,t+1}^{J}} \frac{(c_{i,t})^{1-\gamma}}{1-\gamma} + \beta \mathsf{E}_{t} \left[v(b_{i,t+1}^{1},\cdots,b_{i,t+1}^{J}) \right]$$
s.t.
$$c_{i,t} + \sum_{j=1}^{J} q^{j} b_{i,t+1}^{j} = y_{i,t} + \sum_{j=1}^{J} I_{t}(j) b_{i,t}^{j}$$

$$b_{i,t+1}^{j} > \overline{b} \text{ with } \overline{b} < 0$$

$$I_{t}(j) = 1 \text{ if current state } = j \text{ o.w. } 0$$

Euler equations individual

$$q^{j}\left(c_{i,t}\right)^{-\gamma} = \beta\left(c_{i,t+1}^{j}\right)^{-\gamma}\operatorname{prob}(j)$$
 $\forall j$

This can be written as follows:

$$c_{i,t} = \left(\frac{\beta \operatorname{prob}(j)}{q^j}\right)^{-1/\gamma} c_{i,t+1}^j \qquad \forall$$

Aggregation

Aggregation across individual i of

$$c_{i,t} = \left(\frac{\beta \operatorname{prob}(j)}{q^j}\right)^{-1/\gamma} c_{i,+1}^j \quad \forall j$$

gives

Overview

$$C_t = \left(rac{eta \mathsf{prob}(j)}{a^j}
ight)^{-1/\gamma} C_{t+1}^j \quad orall j,$$

which can be rewritten as

$$q^{j}\left(C_{t}\right)^{-\gamma} = \beta\left(C_{t+1}^{j}\right)^{-\gamma}\operatorname{prob}(j) \quad \forall j$$

Back to representative agent model

Idential FOCs come out of this RA model:

$$\max_{C_{t},B_{t+1}^{1},\cdots,B_{t}+1^{J}} \frac{(C_{t})^{1-\gamma}}{1-\gamma} + \beta \mathsf{E}_{t} \left[v(B_{t+1}^{1},\cdots,B_{t+1}^{J}) \right]$$

$$s.t.C_{t} + \sum_{j=1}^{J} q^{j} B_{t+1}^{j} = Y_{t} + \sum_{j=1}^{J} I_{t}(j) B_{t}^{j}$$

$$B_{t+1}^{j} > \overline{b} \text{ with } \overline{b} < 0$$