Lab Supplement Notes

Network Protocol Review

Open Systems Interconnection (OSI) Model

OSI 7-Layer Model

OSI Layers

Bits that actually appear on the network

Media Access Control (MAC)

- The lower sublayer of the OSI data link layer.
- The MAC differs for various physical media
- MAC address is the hardware address of a device connected to a shared network medium

Internet Protocol (IP)

- The network layer for the TCP/IP protocol suite widely used on Ethernet networks,
- IP is a connectionless, best-effort packet switching protocol. It provides packet routing, fragmentation and re-assembly through the data link layer.

IP Header

0 1		3	4		
0 1 2 3 4 5 6 7 8 9					
+-+-+-+-+-+-+-+-					-+-+
Version HL Typ		•	•	_	
+-+-+-+-+-+-+-+-					-+-+
Identifica	tion	Flags	Fragment	t Offset	
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-	+-+-+-	+-+-+-+	-+-+
Time to Live	Protocol		Header Ched	cksum	
+-+-+-+-+-+-+-+-	+-+-+-+-	+-+-+-+-	+-+-+-	+-+-+-+	-+-+
Source Address					
+-					
Destination Address					
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-	+-+-+	+-+-+-+	-+-+
I	Options			Padding	- 1
+-+-+-+-+-+-+-+-	+-+-+-+-+-	+-+-+-+-	+-+-+	+-+-+-+	-+-+

Internet address (IP address, TCP/IP address)

- The 32-bit host address defined by the Internet Protocol
- It is represented in dotted decimal notation. e.g. 192.168.11.10

Transmission Control Protocol (TCP)

- The most common transport layer protocol used on Ethernet and the Internet.
- TCP is the connection-oriented protocol built on top of Internet Protocol (IP) and is nearly always seen in the combination TCP/IP (TCP over IP).
- It adds reliable communication and flowcontrol and provides full-duplex, processto-process connections.

TCP Header

0	1		2		3		
		abcde:					
+-+-+-	+-+-+-+-+-	-+-+-+-+-+-	-+-+-	+-+-+-+	+-+-	+-+-+	+-+-+-+
	Source Po	ort		Desti	_nation :	Port	1
+-+-+-	+-+-+-+-+-	-+-+-+-+-+	-+-+-	+-+-+	+-+-	+-+-+-	+-+-+
	Sequence Number						
+-+-+-	+-+-+-+-+-	-+-+-+-+-+	-+-+-+-	+-+-+	+-+-	+-+-+-	+-+-+-+
		Acknowledg					
+-+-+- Data	+-+-+-+-+- 	-+-+-+-+-+- :\U <mark>A</mark> E R <mark>S</mark>		+-+-+-		+-+-+	+-+-+-+
Offset	Reserved	R C O S Y	•		Window		j
İ	İ	G <mark>K</mark> L T N	N İ				į
+-+-+-	+-+-+-+-	-+-+-+-+-	-+-+-	+-+-+		+-+-+-	+-+-+-+
1	Checksur	n		Uro	gent Poi	nter	
+-+-+-	+-+-+-+-+-	-+-+-+-+-+	-+-+-+-	+-+-+-	, +-+-+-+-	+-+-+-	+-+-+-+
		Options				Paddir	J .
+-+-+-	+-+-+-+-+-	-+-+-+-+-+-		+-+-+	+-+-	+-+-+-	+-+-+-+
			ata				
+-+-+-	+-+-+-+-+-	-+-+-+-+-+-	-+-+-	+-+-+-+	+-+-	+-+-+	+-+-+

OSI Reference Model and TCP/IP Model Layers

7	Application	
6	Presentation	Application
5	Session	
4	Transport	(Host-to-Host) Transport
3	Network	Internet
2	Data Link	Network Interface
1	Physical	(Hardware)
OSI Model		TCP/IP Model

11

Universal Datagram Protocol (UDP)

- An implementation of transport layer on top of IP
- Unreliable data transmission
 - No guaranteed on delivery
 - Packets could be received out of order
- Add port identification numbers and payload checksum to IP
 - Ports allow multiplexing of data streams
- Highly efficient because of low overhead
 - Suitable for delivering data that is small amount and needs to be sent frequently
 - Typically used for latency-sensitive or low-overhead applications (video, time, DNS, etc.)

UDP Header

0	7 8	15	16	23 24	31
+		+			+
	Source]	Destinatio	on
	Port			Port	
+		+		+	+
	Length			Checksum	
+		+			+

Internet Control Message Protocol (ICMP)

- An extension to the Internet Protocol (IP) that allows for the generation of error messages, test packets, and informational messages related to IP
- The ping command sends ICMP ECHO_REQUEST packets to a network host and print the response of the host

Broadcast

- To simultaneously send the same message to multiple recipients.
- In networking, a distinction is made between broadcasting and multicasting. Broadcasting sends a message to everyone on the network whereas multicasting sends a message to a select list of recipients.

Address Resolution Protocol (ARP)

A network layer protocol used to find a host's MAC address from its Internet address. The sender broadcasts an ARP packet containing the Internet address of another host and waits for it (or some other host) to send back its MAC address.

OSI Model

Screen shot from https://youtu.be/0y6FtKsg6J4

netmask

- A 32-bit bit mask which shows how an Internet address is to be divided into network, subnet and host parts
- EG. 255.255.255.0

Classful IP Address

 The IP address can be split into a network number (or network address) and a host number unique to each host on the. The way the address is split depends on its "class", A, B or C as determined by the high address bits

Classful IP Address (2)

Classless Inter-Domain Routing (CIDR)

- An IP addressing scheme that replaces the older system based on classes A, B, and C
- With CIDR, a single IP address can be used to designate many unique IP addresses.

A comparison of classful and classless network address expressions

The Classful Way

The Classless Way

192.160.0.0 255.255.255.0

192.160.0.0 /21 (255.255.248.0)

192.160.2.0 255.255.255.0

192.160.3.0 255.255.255.0

192.160.4.0 255.255.255.0

192.160.1.0 255.255.255.0

192.160.5.0 255.255.255.0

192.160.6.0 255.255.255.0

192.160.7.0 255.255.255.0

IP Netmask examples

IP Netmask examples			
Network	192.168.20.0/24	192.168.20.0/22	
Netmask bit	24	22	
Netmask inDecimal	255.255.255.0	255.255.252.0	
Netmask in Binary	11111111 11111111 11111111 000000000	11111111 11111111 111111100 0000000	
IP Range	192.168.20.1 - 192.168.20.254	192.168.20.1 - 192.168.23.254	
Broadcast IP	192.168.20.255	192.168.23.255	
Network	192.168.20.0/25	192.168.20.0/26	
Netmask bit	25	26	
Netmask inDecimal	255.255.255.128	255.255.255.192	
Netmask in Binary	11111111 11111111 11111111 10000000	11111111 11111111 11111111 11000000	
IP Range	192.168.20.1 - 192.168.20.126	192.168.20.1 - 192.168.20.62	
Broadcast IP	192.168.20.127	192.168.20.63	
Network	192.168.20.0/27	192.168.20.0/28	
Netmask bit	27	28	
Netmask inDecimal	255.255.255.224	255.255.255.192	
Netmask in Binary	11111111 11111111 11111111 11100000	11111111 11111111 11111111 11110000	
IP Range	192.168.20.1 - 192.168.20.30	192.168.20.1 - 192.168.20.14	
Broadcast IP	192.168.20.31	192.168.20.15	
Network	192.168.20.0/29	192.168.20.0/30	
Netmask bit	29	30	
Netmask inDecimal	255.255.255.248	255.255.255.252	
Netmask in Binary	11111111 11111111 11111111 11111000	11111111 11111111 11111111 11111100	
IP Range	192.168.20.1 - 192.168.20.6	192.168.20.1 - 192.168.20.2	
Broadcast IP	192.168.20.7	192.168.20.3	

/31 Netmask

- Netmask: 255.255.255.254
- Binary Representation**: 11111111.1111111.11111111110
- Number of IP Addresses**: 2
- Usable IP Addresses**: 2 (since it's typically used for point-to-point links, both addresses are usable)

A `/31` netmask is often used for point-to-point links where only two IP addresses are needed. This helps conserve IP address space by not requiring a broadcast address.

/32 Netmask

- Netmask: 255.255.255.255
- Number of IP Addresses: 1
- Usable IP Addresses: 1

A `/32` netmask is used to specify a single IP address. This is often used for identifying a specific host in routing tables or for assigning a unique IP address to a device.

Ref: IP Subnet Calculator

Subnet Mask

```
192.168.1.0 /25
255.255.255.128 111111111 . 11111111 . 11111111 . 10000000
       Subnet mask
                                     126
255.255.255.192 11111111 11111111 1111111 111000000
       Subnet mask
                                     18
       255.0.0.0 11111111 .00000000 .00000000 .00000000
       Subnet mask
```

Screen shot from https://youtu.be/s_Ntt6eTn94