DATASET

Dataset shows per capita state and local public expenditures and associated state demographic and economic characteristics for 48 states (USA) during the year of 1960.

Variables:

- EX per capita state and local public expenditures
- ECAB economic ability index (income, retail sales, value of output per capita are equally measured)
- MET percentage of population living in metropolitan areas
- GROW percent change in population (1950-1960)
- YOUNG percent of population between 5-19 years of age
- OLD percent of population over 65 years of age
- STATE state name

Example 15 rows:

	ex	ecab	met	grow	young	old	state
0	256	85.5	19.7	6.9	29.6	11.0	'ME'
1	275	94.3	17.7	14.7	26.4	11.2	'NH'
2	327	87.0	0.0	3.7	28.5	11.2	'VT'
3	297	107.5	85.2	10.2	25.1	11.1	'MA'
4	256	94.9	86.2	1.0	25.3	10.4	'RI'
5	312	121.6	77.6	25.4	25.2	9.6	'CT'
6	374	111.5	85.5	12.9	24.0	10.1	'NY'
7	257	117.9	78.9	25.5	24.8	9.2	'NJ'
8	257	103.1	77.9	7.8	25.7	10.0	'PA'
9	336	116.1	68.8	39.9	26.4	8.0	'DE'
10	269	93.4	78.2	31.1	27.5	7.3	'MD'
11	213	77.2	50.9	21.9	28.8	7.3	'VA'
12	308	108.4	73.1	22.2	28.0	8.2	'MI'
13	273	111.8	69.5	21.8	26.9	9.2	'OH'
14	256	110.8	48.1	18.3	27.5	9.6	'IN'

The dataset was fairly clean. Just small adjustments were made, such as modifying the type of a few instances from string to double (negative values were strings in the initial dataset). We decided to drop the State column as it will not be used in the analysis.

ANALYSIS

The purpose of the analysis is to build a regression model where public expenditures is the dependant variable. We want to understand how public expenditures change based on different characteristics.

Summary statistics for our variables.

	ex	ecab	met	grow	young	old
count	48.000000	48.000000	48.000000	48.000000	48.000000	48.00000
mean	286.645833	96.754167	46.168750	18.729167	28.114583	9.21250
std	58.794807	22.252831	26.938797	18.874749	2.148526	1.63936
min	183.000000	57.400000	0.000000	-7.400000	24.000000	5.40000
25%	253.500000	85.400000	24.100000	6.975000	26.400000	7.95000
50%	285.500000	95.300000	46.150000	14.050000	28.000000	9.45000
75%	324.000000	105.100000	69.975000	22.675000	29.625000	10.42500
max	454.000000	205.000000	86.500000	77.800000	32.900000	11.90000

We start by plotting box plots for each of the variables in our dataset.

We notice that some variables have outliers (ex, ecab, grow). Also, some variables have asymmetric whiskers. These variables could potentially benefit from transformations if we want to achieve more normally distributed values for such variable.

Next we're going to look at a Scatterplot Matrix for our variables.

Scatterplot Matrix

The biggest correlation seems to be between ex and ecab variables.

We confirm this fact by looking at a correlation table which shows correlations between our variables.

		ex	ecab	met	grow	young	old
	ex	1.000000	0.655863	0.045235	0.405287	-0.293197	-0.023396
ec	cab	0.655863	1.000000	0.408926	0.460072	-0.589468	-0.044496
n	net	0.045235	0.408926	1.000000	0.404023	-0.626280	-0.041053
gr	ow	0.405287	0.460072	0.404023	1.000000	-0.204488	-0.412582
you	ung	-0.293197	-0.589468	-0.626280	-0.204488	1.000000	-0.524929
	old	-0.023396	-0.044496	-0.041053	-0.412582	-0.524929	1.000000

FITTING INITIAL LINEAR REGRESSION MODEL

OLS Regression Results

			-5				
Dep. Variabl	.e:		ex	R-squa	 ared:		0.535
Model:			OLS	Adj. I	R-squared:		0.479
Method:		Least Squa	ares	F-stat	tistic:		9.647
Date:	ī	ue, 04 Dec	2018	Prob	(F-statistic	e):	3.47e-06
Time:		17:1	5:44	Log-Li	ikelihood:		-244.80
No. Observat	ions:		48	AIC:			501.6
Df Residuals	:		42	BIC:			512.8
Df Model:			5				
Covariance I	'ype:	nonrol	oust				
	coef	std err		t	P> t	[0.025	0.975]
const	67.2588	303.756	(0.221	0.826	-545.745	680.263
ecab	1.8007	0.430	4	4.189	0.000	0.933	2.668
met	-0.7074	0.375	-1	1.886	0.066	-1.464	0.049
grow	0.8690	0.436	1	1.994	0.053	-0.010	1.748
young	0.7436	7.353	(0.101	0.920	-14.094	15.582
old	4.4110	7.145	(0.617	0.540	-10.009	18.831
Omnibus:		1	.850	Durbir	n-Watson:		2.086
Prob(Omnibus): 0.396		.396	Jarque	e-Bera (JB):	:	1.741	
Skew:		0	.441	Prob (JB):		0.419
Kurtosis:		2	.697	Cond.	No.		5.75e+03

Model is relatively well fit. Adjusted R squared is decently sized. The worrying fact is that only one variable seems to be statistically significant.

Let's look at the box plot, Normal Q-Q plot of residuals to confirm that residuals are nearly normally distributed.

Looks like the residuals are nearly normally distributed. So the assumptions of the regression model are satisfied. Just to make sure, we ran a Shapiro-Wilk normality test. P-value was equal to 0.365, which is higher than 0.05, so we do not have a reason to reject the null hypothesis about the normality of residuals.

Next we will see if transformation of certain variables may remove outliers and improve the distribution of said variables.

Transforming ex variable into log(ex) seems to have made the box plot look very close to a box plot for a normal distribution. We don't see any improvements for the rest of the variables.

We'll train the regression model after transforming the ex variable.

		OLS R	egres	sion R	esults		
Dep. Variable Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance	cions:	Least Squ Tue, 11 Dec 15:3 nonro	2018 2:10 48 42 5	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic) Likelihood:	:	0.515 0.458 8.936 7.67e-06 25.883 -39.77 -28.54
	coef	std err		t	P> t	[0.025	0.975]
const ecab met grow young old	4.7671 0.0059 -0.0022 0.0034 0.0038 0.0244	0.002 0.001 0.002 0.026	-: :	4.414 3.891 1.626 2.213 0.145 0.961	0.000 0.000 0.112 0.032 0.886 0.342	2.588 0.003 -0.005 0.000 -0.049 -0.027	6.947 0.009 0.001 0.007 0.057
Omnibus: Prob(Omnibus Skew: Kurtosis:	3):	0	.139 .566 .064 .323				2.021 0.949 0.622 5.75e+03

Adjusted R squared is lower than the one from the initial model, we decide to go back to the initial model and remove variables that are statistically insignificant based on t-vaue (young old).

OLS Regression Results

=======			========	========		
Date: Tue, 04 De			ex R-sq OLS Adj. res F-st 018 Prob :58 Log- 48 AIC:	uared: R-squared: atistic: (F-statisti	c):	0.525 0.493 16.24 3.01e-07 -245.27 498.5 506.0
Df Model:		,	3			
Covariance	e Type:	nonrob	ust =======			
	coet	f std err	t	P> t	[0.025	0.975]
const	130.815	4 28.136	4.649	0.000	74.111	187.520
ecab	1.816	0.321	5.650	0.000	1.168	2.464
met	-0.7090	0.258	-2.751	0.009	-1.228	-0.190
grow	0.6862	2 0.378	1.815	0.076	-0.076	1.448
Omnibus:		1.	 069 Durb	in-Watson:		2.036
Prob(Omnibus): 0.586		586 Jarq	Jarque-Bera (JB):		1.080	
Skew:		0.	326 Prob	(JB):		0.583
Kurtosis:		2.	661 Cond	. No.		524.

Adjusted R squared has improved slightly to 0.493.

Next we look at the plot of predicted values based on response values.

We notice that one of the points in an outlier that may be pulling the line upwards, which is most likely skewing the model. Let's try to train the model again after removing this point.

		OLS Reg	gression	Results		
Dep. Variation Model: Method: Date: Time: No. Obsert Df Residuation Covariance	vations: als:	Least Squar Tue, 04 Dec 20 17:11:	DLS Address F- 018 Pr 39 Lo 47 AI 43 BI	squared: lj. R-squared statistic: cob (F-statis g-Likelihood CC:	tic):	0.580 0.550 19.76 3.34e-08 -234.98 478.0
=======	coef	std err	======	t P> t	[0.025	0.975]
const ecab met grow	51.3560 2.7286 -0.9521 1.0359	0.242	6.95 -3.94	0.000 0 0.000	1.938 -1.439	3.520
Omnibus: Prob(Omnil Skew: Kurtosis:	bus):	0.0	591 Ja 226 Pr	rbin-Watson: rque-Bera (J ob(JB):	B):	1.817 0.840 0.657 680.

Adjusted R squared has increased to 0.55 and is the highest yet.

Plot of the Response values versus predicted values has improved as well. We decide to keep this as our final model.

CONCLUSIONS

Final Model

EX = 51.36 + 2.72 * ECAB - 0.95 MET + 1.03 * GROW

- ECAB has the biggest influence on public expenditures. The higher the economic ability of a state, the better economical shape of a state (higher income/sales) the more money a state will have to spend.
- Increase in percentage of people in metropolitan areas decreases the public expenditures. Better
 infrastructure within the city, where there's higher density of population may require lower
 overall cost per capita.
- Higher percent change in population (last 10 years) causes higher public expenditures. Sudden
 population increase may cause temporary increases in public expenditures (until various public
 services are adjusted to a higher amount of people).