Tema I - Introducció

Tecnologies dels Sistemes d'Informació en la Xarxa

- Entendre per què tot sistema que utilitze una xarxa d'intercomunicació és un sistema distribuït.
- ldentificar què és un sistema distribuït, per què són rellevants i quines són les seues aplicacions principals.
- Conèixer alguns exemples de sistemes distribuïts.
- Estudiar l'evolució dels sistemes distribuïts escalables i identificar la computació en el núvol ("cloud computing") com l'etapa actual d'aquesta evolució.

- 1. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

I. Concepte de sistema distribuït

- Conjunt d'agents autònoms
 - Cada agent és un procés sequencial que avança al seu propiritme.
- ▶ Els agents interactuen. Opcions:
 - Intercanvi de missatges
 - Memòria compartida
- Els agents tenen el seu propi estat independent
- Hi ha algun objectiu comú en aquesta cooperació
 - Mitjançant el qual es podrà avaluar el comportament global del "sistema".
- En la pràctica, un sistema distribuït és un sistema en xarxa.

- I. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

2. Rellevància

- Sistemes distribuïts
 - Àrea en evolució des dels seus orígens
 - Rama dels sistemes concurrents
 - Àmpliament estudiada per la seua utilitat en el disseny de sistemes de temps compartit.
 - CSD va proporcionar la base per a familiaritzar-nos amb múltiples aspectes dels sistemes concurrents.
 - Reforçada amb l'evolució de les xarxes d'ordinadors.
 - Com aconseguir que tots aquests ordinadors facen alguna cosa globalment útil?

2. Rellevància

Aspectes rellevants (presentats en els 80)

Millora del rendiment

Seleccionar una activitat (problema) complexa, dividir-la en tasques (subproblemes), assignar cada tasca a un ordinador diferent.

2. Major disponibilitat. Idea bàsica:

 Si un ordinador s'avaria, encara hi haurà altres ordinadors capaços d'executar les tasques del que ha fallat.

3. Compartició de recursos

- Un ordinador pot tenir recursos (p. ex., impressores, discos...) que altres ordinadors no tinguen (i que no necessiten tenir).
- ▶ Ha de ser possible l'accés a recursos des de qualsevol ordinador.

2. Rellevància

- Totes aquestes raons són encara vàlides perquè l'entorn de computació actual ESTÀ distribuït i interconnectat
 - Infinitat d'"ordinadors" connectats
 - Infinitat de serveis remots
 - Accedits com a recursos compartits
 - Tots coneixem i utilitzem la web

Desafiaments

- Aprofitar la connectivitat per a obtenir resultats útils
- Crear subsistemes capaços de proporcionar serveis robusts
 - □ Com se les apanya Google per a implantar el seu servei de cerca?
 - □ Com gestiona Dropbox l'ús compartit de fitxers per part de milions d'usuaris?
 - □ Com distribuir entre milions de voluntaris la simulació de nous fàrmacs contra el càncer?

- I. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

3. Àrees d'aplicació

- Les més destacables són:
 - I. World Wide Web
 - 2. Xarxes de sensors
 - 3. Internet of Things
 - 4. Computació cooperativa
 - 5. Clusters altament disponibles
- Les tractem a continuació...

3.1. Aplicació a WWW

- Basada en el model client/servidor.
- El servidor espera peticions de documents.
 - Les peticions impliquen la lectura o modificació d'un document.
- Els clients són els navegadors web, que envien i reben documents
 - ▶ Els navegadors analitzen el document cercant metadades.
 - Els enllaços són un cas particular de metadades que apunta a altres documents.
 - Els documents poden estar en un altre servidor.
- Paradigma simple i potent
 - Dissenyat inicialment per a compartir documents.
 - Estès per a permetre que les peticions sobre documents es convertiren en peticions de servei
 - Els "documents" retornats inclouen el resultat de la petició efectuada.

3.2. Aplicació a xarxes de sensors

- Han sorgit gràcies al cost descendent dels equips.
- Mini-ordinadors de propòsit específic
 - "Motes"
- Encastats en dispositius d'ús quotidià
 - P. ex., en alguns electrodomèstics
- Contenen sensors
 - Humitat, temperatura, consum elèctric...
- Ampli rang d'aplicacions potencials
 - Vigilància
 - Detecció de desastres (químics, biològics...)
 - Monitoratge del consum elèctric
 - ...

3.3. Aplicació a la "Internet of Things"

- Motivació: facilitar la connectivitat i interoperabilitat de tots els dispositius
 - Generalització de les xarxes de sensors
 - ▶ Tots els dispositius poden interactuar entre si
 - Els dispositius poden alterar el seu entorn físic
 - S'obrin nous escenaris
 - Ciutats intel ligents
 - Automatització de múltiples processos (construcció, fabricació...)
 - Cura mèdica informatitzada
 - **...**

3.3. Aplicació a la "Internet of Things"

3.4. Aplicació a la computació cooperativa

- La major part dels recursos computacionals s'infrautilitzen
 - Els ordinadors personals passen moltes hores diàries sense fer res
- Molts problemes científics i d'enginyeria poden dividir-se en peces menors (tasques)
 - Cada tasca pot resoldre's en un interval breu.
 - Els resultats de cada tasca poden compondre's per a construir la solució del problema complet.
- Els servidors poden obtenir una instància d'aquests problemes
 - El servidor crea un conjunt de tasques
- Els ordinadors amb accés a Internet poden subscriure's per a rebre tasques que resoldre
 - Instal len un client especial: el "runtime" per a executar tasques
 - ▶ El client es registra en el servidor
- El servidor distribueix tasques entre els clients registrats i arreplega els seus resultats

3.5. Aplicació als clusters altament disponibles

- Fins ara hem presentat àrees d'aplicació dedicades a la cooperació i la compartició de recursos.
- Fet:
 - Els dispositius fallen. Els ordinadors són dispositius. Ells fallen en algun moment amb probabilitat 100%.
- Fet:
 - No tots els dispositius d'un sistema fallen alhora.
 - Per què podria passar això?
- Alguns entorns necessiten un alt nivell de disponibilitat
 - Bancari
 - Empresarial
 - Assistència mèdica.
 - **...**
- Convé tenir més d'un dispositiu per a suportar les situacions de fallada.

3.5. Aplicació als clusters altament disponibles

Cluster altament disponible:

- Conjunt d'ordinadors amb programes servidors dels quals els clients depenen en tot moment.
- Típicament mantenen un conjunt de dades crític.
- Dissenyats amb protocols específics per a suportar fallades en els ordinadors.
- Dos aspectes principals:
 - Mantenir la integritat de la informació gestionada
 - Mantenir la disponibilitat dels servidors

3.5. Aplicació als clusters altament disponibles

- Principal tendència actual per a construir i facilitar serveis
- Fets acceptats:
 - S'infrautilitza la potència de còmput amb les arquitectures tradicionals
 - Ja s'ha discutit prèviament
 - Resulta car establir centres de còmput per a empreses, amb totes les aplicacions que aquestes requereixen:
 - Adquirir programes i equips
 - Sous dels enginyers que administren aquestes aplicacions i equips.
 - Cost de l'energia elèctrica
 - □ Encara més car si considerem la infrautilització

... això condueix a la computació en el núvol ("cloud computing" -> CC)...

- I. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

4. Computació en el núvol (CC: cloud computing)

- Parlarem de:
- Programes i serveis
- 2. Rols en el cicle de vida d'un servei
- 3. Evolució dels serveis de programari
 - a) Mainframes
 - b) Ordenadors personals
 - c) Centres de còmput empresarials
 - d) SaaS
 - e) laaS
 - f) SaaS sobre laaS
 - g) PaaS
- 4. Resum

4.1. Programes i serveis

- Objectiu general del CC:
 - Convertir la creació i explotació dels serveis de "programari" en un procés més senzill i més eficient.
- Un fet acceptat i obvi:
 - Els programes sempre s'han desenvolupat per a oferir algun tipus de servei.
 - Amb l'ajuda dels ordinadors, per descomptat.
- L'evolució de la indústria informàtica ha ocultat parcialment aquest fet:
 - La indústria dels ordinadors personals ha imposat una manera particular d'interacció dels usuaris amb els seus ordinadors.

4. 2. Rols en el cicle de vida d'un servei

Considerem aquests quatre rols:

- Desenvolupador
 - Implanta els components de les aplicacions
- Proveïdor de serveis
 - Decideix les característiques del servei, els components que el constitueixen i com ha de ser configurat i administrat
- Administrador del sistema
 - S'encarrega que cada peça de *programari* i *maquinari* estiga en el seu lloc apropiat i adequadament configurat.
- Usuari
 - Accedeix al servei

4.3. Evolució dels serveis: a) Mainframes

- L'administració del sistema està realitzada per especialistes
- Molt pocs focus de contenció
 - Sistemes amb una reduïda base d'usuaris
- Ús eficient dels equips
 - Compartits per múltiples usuaris
 - Cost baix per a cada usuari
 - Cost d'adquisició suportat pel propietari de l'equip: institució
- ▶ Els usuaris segueixen rols mixts
 - Molts van ser desenvolupadors
 - Molts van ser també els seus propis proveïdors de serveis
 - Amb els programes que ells van desenvolupar
 - Amb els programes desenvolupats per uns altres
- Els usuaris estaven implicats en massa detalls de la gestió dels serveis que ells mateixos havien d'utilitzar

b) Ordinadors personals

- Els ordinadors personals van ser el resultat de la tendència a una major potència de còmput en cada equip
 - Els usuaris ja no necessitaven accedir a un "mainframe" en un centre de càlcul.
- S'elimina la contenció
 - Un dels principals arguments de venda d'aquest paradigma
- Ús deficient dels recursos: l'ordinador s'infrautilitza
- Inversió directa a realitzar: cost de la compra
- Es racionalitza el rol de desenvolupador
 - Empreses especialitzades construeixen i comercialitzen els programes
- Però encara s'exigeix que l'usuari exercisca diversos rols:
 - Proveïdor de serveis
 - ▶ Ha de seleccionar quins programes necessitarà per a realitzar les seues tasques
 - Administrador del seu ordinador personal
- Entorn massa complex per a la majoria dels usuaris

c) Centres de còmput empresarials

- Implantats mitjançant clusters altament disponibles
- Característiques similars a l'entorn d'ordinadors personals
 - L'usuari és ara l'empresa
 - Personal especialitzat que segueix compartint els rols
 d'administrador de sistema i proveïdor de serveis: Cost molt alt
 - ▶ En ocasions s'afig el rol de desenvolupador de programes interns
- Variant basada a mantenir aquests programes en centres de dades externs
 - Evita el cost d'adquisició dels equips
 - Redueix i externalitza el cost d'administració i manteniment dels equips
 - Evita el cost fix de consum elèctric
 - La gestió dels costos informàtics resulta més senzilla

d) Software as a Service (SaaS)

- S'accedeix als serveis a través de la xarxa
 - Mitjançant un navegador web
- Separació clara del rol d'usuari
 - El servei està definit per una tercera part: el proveïdor de serveis
- No queda tan clara la separació dels altres rols
 - Els programes solen ser desenvolupats inicialment pel proveïdor
 - Totes les tasques d'administració solen recaure en el proveïdor
 - Incloent l'administració d'equips en els centres de dades
 - Incloent l'administració dels programes instal·lats en aquests equips
- Inicialment, sorgeixen algunes ineficiències:
 - Falta de flexibilitat en la distribució dels equips
 - Comporta que el proveïdor es limite a cert ús dels recursos
 - Limita la compartició de recursos
 - Contenció limitada: es reserven recursos per a la demanda esperada

4.3. Evolució dels serveis: d) SaaS

- ▶ Factors que van conduir cap als sistemes SaaS:
 - Millora de les tecnologies de xarxa
 - Major ample de banda
 - Menor retard
 - Capacitat dels centres de dades existents
 - Va possibilitar l'oferta de serveis a usuaris externs
 - Millores en la tecnologia dels navegadors web
 - Tipificades en el terme "Web 2.0"
 - Navegadors capaços d'executar localment interaccions complexes
 - □ Permeten interfícies d'usuari més atractives
 - □ Escalabilitat millorada: Menor càrrega en el servidor

- e) Infrastructure as a Service (laaS)
- Facilita la capacitat per a assignar o redistribuir els recursos de còmput i de xarxa sota petició.
 - Peticions via API a un servei (el servei laaS)
 - Possibilitat de carregar imatges de sistema operatiu sobre aquests ordinadors
 - Possibilitat de sol·licitar capacitats concretes per als ordinadors i els recursos de xarxa
- Possible gràcies a la tecnologia de virtualització del maquinari
 - L'assignació de recursos de còmput (virtuals) és fàcil i ràpida
 - Fàcil configuració de la capacitat dels recursos de còmput
 - Resulta fàcil la instal lació d'una imatge de sistema sobre una màquina virtual

4.3. Evolució dels serveis: f) SaaS sobre laaS

- laaS introdueix un model de "pagament per ús"
 - Una característica central de la computació en el núvol
- Facilita la creació de SaaS que s'adapten a la càrrega generada pels seus usuaris
 - Com més gran siga aquesta càrrega, se sol·licitarà un major nombre de recursos a la infraestructura
 - Elasticitat: una altra característica central dels sistemes Cloud
 - Trasllada el model de "pagament per ús" als sistemes SaaS
 - Els usuaris d'un sistema SaaS també paguen segons la seua utilització del servei
- Obliga a un ús eficient dels recursos per part del proveïdor SaaS
 - La majoria dels costos són variables
 - No hi ha costos directes per reservar certa capacitat (compra o compromís de pagament)
 - ▶ El que s'estalvie beneficiarà a l'usuari SaaS: mercat competitiu de serveis

4.3. Evolució dels serveis: f) SaaS sobre laaS

- Els proveïdors laaS prenen els riscos de la inversió directa (compra dels recursos físics)
 - Esperen una gran població de proveïdors SaaS
 - Al seu torn, facilitant serveis a un alt nombre d'usuaris SaaS
 - Gran demanda de recursos virtualitzats
- ▶ El proveïdor SaaS encara exerceix diversos rols
 - Proveïdor de serveis de programari (el seu rol natural)
 - Ha de gestionar l'assignació de recursos del maquinari
 - Ha de gestionar les imatges de sistema a instal lar, les seues actualitzacions i la base de programes a utilitzar sobre aqueixos sistemes
 - Ha d'implantar la seua pròpia estratègia de gestió de serveis
 - Mecanismes de monitoratge
 - Mecanismes d'actualització

g) Platform as a Service (PaaS)

- Hauria d'eliminar qualsevol tasca estranya per als proveïdors SaaS
 - Encara en els seus inicis, desafortunadament.
- Serà equivalent a un sistema operatiu
 - Especifica un model de serveis sobre el qual basar l'especificació dels SaaS i el desenvolupament dels seus components de *programari*
 - Inclou els aspectes següents
 - Models de configuració i de gestió del cicle de vida (incloent les relacions de dependència entre components)
 - □ Mecanismes de composició, configuració, desplegament i actualització
 - Model de rendiment
 - □ Monitoratge automàtic de paràmetres rellevants
 - □ Expressió de punts d'elasticitat
 - □ Reconfiguració automatitzada en funció de la càrrega

4.4. Resum

Estructura ideal, en nivells:

4.4. Resum

- La computació en el núvol (CC) se centra en l'eficiència i la facilitat d'ús:
 - Compartició eficient dels recursos
 - Consumir solament el que es necessite
 - Pagar solament pel que s'ha utilitzat
 - Adaptació senzilla a una quantitat d'usuaris variable
 - Facilitar formes senzilles per a desenvolupar i proveir un servei
- Tres nivells de serveis en el núvol han sigut identificats:
 - Software as a Service (SaaS)
 - El seu objectiu és facilitar aplicacions com a servei a un gran nombre d'usuaris
 - Platform as a Service (PaaS)
 - Aconsellable per a automatitzar la gestió de recursos per als SaaS i la fàcil creació i desplegament d'aquests serveis
 - Infrastructure as a Service (laaS)
 - Proporciona elasticitat per als sistemes SaaS
- Des de la perspectiva dels usuaris, el CC és similar a un retorn a l'era dels "mainframes".

- I. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

5. Paradigmes de programació

- La forma més comuna d'organitzar un sistema distribuït es basa a convertir cada procés en un "servidor"
 - Rep peticions, les processa i retorna respostes
- Els servidors, al seu torn, sol·liciten servei a altres servidors
 - Poden necessitar aquests serveis per a completar una petició rebuda
- Per a ser escalable, un servidor no ha de suspendre's mentre gestione una petició
 - Ha de ser capaç d'acceptar altres peticions

5.1. Servidors concurrents (estat compartit)

- Programes concurrents (amb múltiples fils)
 - Cada petició és servida pel seu propi fil
 - Tots els fils comparteixen un estat global
 - S'utilitzen mecanismes de control de concurrència per a garantir atomicitat

Avantatges

 Els fils poden suspendre's esperant peticions, sense suspendre tot el procés servidor

Inconvenients

- La programació multi-fil té les seues pròpies sobrecàrregues
 - Necessita mecanismes de control de concurrência. Implica suspensió.
- La programació concurrent amb memòria compartida resulta...
 - difícil d'implantar sense errors
 - difícil de raonar sobre com es comporta (i justificar la seua correcció)

Entorns predominants:

- Java
- .NET

5.2. Servidors asincrònics

- La programació asincrònica (o programació dirigida per esdeveniments)...
 - correspon fidelment al model de programació guarda/acció.
 - genera programes amb múltiples activitats, però...
 - I'estat compartit mai podrà ser accedit concurrentment per aquestes activitats
- Els "esdeveniments" són les "guardes"
- Les accions s'estableixen com "callbacks" dels esdeveniments
 - Per a facilitar la programació es relacionen dinàmicament les accions/guardes.
 - En implantar les accions, certs mecanismes del llenguatge de programació permeten establir quin estat es veurà afectat per elles.
 - Es redueix la complexitat per a "preparar" l'estat que relacionarà accions internes.
- Les accions preparades per a execució s'"encuen"
 - S'executaran seguint l'ordre FIFO de la cua

5.2. Servidors asincrònics

Avantatges

- La complexitat en la gestió d'estat compartit desapareix
 - Però ha de considerar-se l'ordre d'activació (és a dir, d'"encuat") per a evitar sorpreses
- Menor sobrecàrrega ja que no es necessita un suport multi-fil
 - Major escalabilitat
- Model més pròxim a la forma real de treball en un sistema distribuït: dirigit per esdeveniments
 - Resulta més fàcil raonar sobre què està ocorrent a cada moment

Inconvenients

- Es necessita una gestió adequada de l'estat en implantar les accions
- Es necessita que tot l'entorn siga asincrònic, no solament la comunicació entre processos
 - Els serveis del sistema operatiu han de ser asincrònics, per a evitar suspensions
- Entorns predominants amb suport natiu en el llenguatge:
 - NodeJS
 - Async .NET

- I. Concepte de sistema distribuït
- 2. Rellevància
- 3. Àrees d'aplicació
- 4. Computació en el núvol
- 5. Paradigmes de programació
- 6. Conclusions

6. Conclusions

- Els sistemes en xarxa són sistemes distribuïts
 - La majoria de la computació es desenvolupa avui dia sobre la xarxa
 - Per tant, és distribuïda
 - Un disseny i desenvolupament adequats requereixen un profund coneixement de la programació concurrent i de les arquitectures utilitzades
- Ampli conjunt d'àrees d'aplicació ja en explotació
- La computació en el núvol com a última etapa important en l'evolució de la computació
 - Caracteritzada per l'eficiència en l'ús dels recursos
 - Amb un model d'accés de "pagament per ús"
 - Elasticitat i escalabilitat com a objectius principals
- Dos paradigmes de programació per a implantar serveis distribuïts:
 - Servidors concurrents (multi-fil)
 - ▶ Han de gestionar condicions de carrera. Pot hi haver bloquejos.
 - Servidors asincrònics
 - Orientats a esdeveniments. Fàcilment escalables.