

Presentation Timeline:

Introduction

ABC Project

Motivation and Focus

Current Advancements

Automation

Mixed Reality

Compute Power

My Project

Technical Capabilities

Examples of Work

Conclusion

Results

Applications

Future Uses

Virtual Building Simulation

3D Site mapping

Goal

- Integrating energy efficiency solutions into construction practices for new buildings and retrofits
- Improving construction productivity and optimizing timeline

Advanced Building Construction Initiative

The Problem

- 20 million housing units could benefit from deep energy retrofit
- Building type varies, custom fitting required

Simple Panel System

Advanced Wall and Mechanical Retrofit System

Simple Panel System

The Solution

- Prefabricated construction
 - Elements rapidly designed and fabricated
- Rapid augmented reality addition
 - Scan-to-panelization workflow
 - Tailored to site conditions
- Prototyped in SLC multifamily apartments

Projections

- Utility bills lowered by ~20%
- Project cost reduction of 50%
- Construction time reduction of 50%

Source: NRFI

Simple Panel **System**

Advanced Technology Integration

- Automated ductwork sizing and soffit design
- Building virtualization
 - Realtime adjustments
 - Whole building pre-retrofit modeling

Simple Panel System

Advanced Technology Integration

- Mixed Reality
- 3D Scanning
 - Integration for building retrofits
 - Automation
 - Automated panel sizing
 - Attachment spacing

LIDAR – Pinpoint accuracy and established workflow

Ground-based LIDAR System

- + Industry standard for accuracy (0.3mm at 20 meters)
- + Reliable in all lighting conditions
- + Fast data integration with workflow
- More laborious setup and operation

 Point cloud generated by Trimble FieldLink tablet imported to Trimble RealWorks software

Drone - Quicker and more flexible than LIDAR

Photogrammetry

Drone

- + Little preparation required
- + Gather data at any height
- + Decreased occlusion
- Less precise measurements

Model generated in 3DF Zephyr photogrammetry software

Side-by-side point cloud comparison:

Drone Photogrammetry VS Ground-based LIDAR

Side-by-side in CloudCompare

- Drone scan shows points from all sides
 - Data from above
- LIDAR is more consistent across straight lines
 - Denser and more uniform point cloud

Drone generated

LIDAR generated

Approach for comparison:

Trimble X7 (RealWorks)

Drone (3DF Zephyr)

Drone Photogrammetry VS Ground-based LIDAR

- Comparisons made between set points to determine accuracy (ScienceDirect)
 - Science direct: Laser scanner and drone photogrammetry
 Rafael Rodrigues Cunha et. al.

https://doi.org/10.1016/j.forsciint.2021.111100

Example Calculations:

000000000

Gauss: mean = 0.014778 / std.dev. = 0.008148 [183 classes]

CloudCompare Results

3D Drone Photogrammetry:

mean distance = 4.45 mm std deviation = 3.38 mm

mean distance = 5.35 mm

std deviation = 2.98 mm

Future Work

Aerial thermal imaging

- Monitoring overall building performance
- Detecting heat leaks or defects in facades
- Measuring effectiveness of retrofits

Source: NREL - SLC Site Visit

Future Work

Aerial mapping potential

- Construction, surveyors, agricultural, environmental
- Monitor land usage, scan property for damages
- Record build site before and during construction
 - Generate augmented reality models
 - Useful during build process and for future operations

Source: Google Earth, NREL

