MÓDULO 21

FRENTE 1

Logaritmos: Definição

1. DEFINIÇÃO

Dados os números reais estritamente positivos \mathbf{a} e \mathbf{N} , com a \neq 1, chama-se logaritmo de \mathbf{N} na base \mathbf{a} o expoente α a que se deve elevar \mathbf{a} para que a potência obtida seja igual a \mathbf{N} .

□ Simbolicamente

$$\log_{\mathbf{a}} \mathbf{N} = \alpha \Leftrightarrow \mathbf{a}^{\alpha} = \mathbf{N}$$

□ Nomenclatura

N é o logaritmando ou antilogaritmo

- a é a base.
- α é o logaritmo.

☐ Condições de existência

log_aN existe se, e somente se:

□ Consequências da definição

Sendo a > 0, a $\neq 1$, N > 0 e n real, decorre da definição que:

$$\log_a 1 = 0 \qquad \log_a a = 1$$

$$\log_a a^n = n \qquad a^{\log_a N} = N$$

□ Cologaritmo

Chama-se cologaritmo do número \mathbf{N} na base \mathbf{a} o logaritmo de $\frac{1}{\mathbf{N}}$ na base \mathbf{a} .

Em símbolos:

$$colog_a N = log_a \frac{1}{N}$$

Observação

$$colog_a N = log_a \frac{1}{N} = -log_a N$$

□ Antilogaritmo

Da nomenclatura apresentada

 $\log_a N = α$, decorre que N (logaritmando) é o antilogaritmo de α na base a.

Em símbolos:

$$antilog_a \alpha = N \Leftrightarrow a^\alpha = N$$

MÓDULO 22

Propriedades dos Logaritmos

1. PROPRIEDADES

Sendo M > 0, N > 0, a > 0 e a \neq 1, valem, para os logaritmos, as seguintes propriedades:

•
$$\log_a(M \cdot N) = \log_a M + \log_a N$$

•
$$\log_a \frac{M}{N} = \log_a M - \log_a N$$

•
$$\log_a(N^m) = m \cdot \log_a N, \forall m \in \mathbb{R}$$

•
$$\log_a \sqrt[n]{N^m} = \frac{m}{n} \cdot \log_a N, \forall m \in \mathbb{Z}, \forall n \in \mathbb{N}^*$$

Observe que:

$$\begin{cases} \log_a M = x \\ \log_a N = y \\ \log_a (M \cdot N) = z \end{cases} \Leftrightarrow \begin{cases} a^x = M \\ a^y = N \\ a^z = M \cdot N \end{cases}$$

$$\Rightarrow$$
 $a^z = M \cdot N = a^x \cdot a^y \Leftrightarrow a^z = a^{x+y} \Leftrightarrow z = x+y$

Portanto,

$$log_a(M \cdot N) = log_aM + log_aN$$

2. MUDANÇA DE BASE

Sendo N > 0, a > 0, b > 0, a \neq 1 e b \neq 1, temos:

$$\log_a N = \frac{\log_b N}{\log_b a}$$

Observe que:

$$\begin{cases} \log_a N = x \\ \log_b N = y \\ \log_b a = z \end{cases} \Leftrightarrow \begin{cases} a^x = N \\ b^y = N \Rightarrow (b^z)^x = N = b^y \Leftrightarrow b^z = a \end{cases}$$

$$\Leftrightarrow b^{zx} = b^y \Leftrightarrow z \,.\, x = y \Leftrightarrow x = \frac{y}{z} \,.$$

Portanto,
$$log_a N = \frac{log_b N}{log_b a}$$

□ Consequências

$$\log_{b} a = \frac{1}{\log_{a} b}$$

е

$$\log_{b} y a^{x} = \frac{x}{y} \cdot \log_{b} a$$

satisfeitas as condições de existência.

MÓDULO 23

Função Logarítmica

1. DEFINIÇÃO

É a função f : $\mathbb{R}_+^* \to \mathbb{R}$, tal que f(x) = $\log_a x$, com $0 < a \neq 1$.

- Domínio = \mathbb{R}_+^*
- Contradomínio = Imagem = ℝ

Exemplos

• Esboçar o gráfico da função definida em \mathbb{R}_+^* por $f(x) = log_2 x$.

Resolução

X	log ₂ x
:	:
1/8	-3
1/4	-2
1/2	– 1
1	0
2	1
4	2
8	3
:	:

A função logarítmica de base a > 1 é estritamente crescente e contínua em \mathbb{R}_+^* . Assim, para $f(x) = \log_2 x$, temos o esboço:

• Esboçar o gráfico da função definida em \mathbb{R}_+^* por $f(x) = \log_{1/2} x$.

Resolução

X	log _{1/2} x
:	:
1/8	3
1/4	2
1/2	1
1	0
2	– 1
4	-2
8	-3
:	:

A função logarítmica de base a, 0 < a < 1, é estritamente decrescente e contínua em \mathbb{R}_+^* . Assim, para $f(x) = \log_{1/2} x$, temos o esboço:

Resumo

A função logarítmica, assim definida, é:

Injetora e Sobrejetora (Bijetora)
Estritamente crescente, se a >1
Estritamente decrescente, se 0 < a < 1

Conclusões

$$\begin{aligned} \log_{a} x_{1} &= \log_{a} x_{2} \Leftrightarrow x_{1} = x_{2} > 0, \text{ se } 0 < a \neq 1 \\ \log_{a} x_{1} &< \log_{a} x_{2} \Leftrightarrow 0 < x_{1} < x_{2}, \text{ se } a > 1 \\ \log_{a} x_{1} &< \log_{a} x_{2} \Leftrightarrow x_{1} > x_{2} > 0, \text{ se } 0 < a < 1 \end{aligned}$$

Gráficos

□ Sinal do logaritmo

Para a > **1**

$$\log_a x > 0 \Leftrightarrow x > 1$$
$$\log_a x < 0 \Leftrightarrow 0 < x < 1$$

Para 0 < a < 1

$$\log_a x > 0 \iff 0 < x < 1$$
$$\log_a x < 0 \iff x > 1$$

Observação

Sendo $0 < a \neq 1$, a função f: $\mathbb{R}_+^* \to \mathbb{R}$, tal que $f(x) = \log_a x$, é a inversa da função $g : \mathbb{R} \to \mathbb{R}_+^*$, definida por $g(x) = a^x$.

De fato:

Seja f: $\mathbb{R}_+^* \to \mathbb{R}$ a função bijetora, tal que $f(x) = \log_a x$, com a > 0 e a $\neq 1$.

Utilizando a regra prática para a determinação de sua inversa, temos:

- 1) $y = log_a x$;
- 2) $x = log_a y$ (trocando x por y e y por x);
- 3) $y = a^x$ ("isolando" y).

Logo, a inversa da função f: $\mathbb{R}_+^* \to \mathbb{R}$, tal que $f(x) = \log_a x$, é f^{-1} : $\mathbb{R} \to \mathbb{R}_+^*$, definida por $f^{-1}(x) = g(x) = a^x$.

Os gráficos de f e f^{-1} são, portanto, simétricos em relação à reta de equação y = x (bissetriz dos quadrantes ímpares).

Considerando $f(x) = \log_2 x e^{-1}(x) = 2^x$, temos para alguns valores de x:

$$f(1) = \log_2 1 = 0$$
 e $f^{-1}(0) = 2^0 = 1$

$$f(2) = \log_2 2 = 1$$
 e $f^{-1}(1) = 2^1 = 2$

$$f(4) = \log_2 4 = 2$$
 e $f^{-1}(2) = 2^2 = 4$

$$f(8) = \log_2 8 = 3$$
 e $f^{-1}(3) = 2^3 = 8$

$$f\left(\frac{1}{2}\right) = \log_2 \frac{1}{2} = -1$$
 e $f^{-1}(-1) = 2^{-1} = \frac{1}{2}$

$$f\left(\frac{1}{4}\right) = \log_2 \frac{1}{4} = -2 \text{ e } f^{-1}(-2) = 2^{-2} = \frac{1}{4}$$

$$f\left(\frac{1}{8}\right) = \log_2 \frac{1}{8} = -3 \text{ e } f^{-1}(-3) = 2^{-3} = \frac{1}{8}$$

MÓDULOS 24 e 25 Equações e Inequações Exponenciais e Logarítmicas

Fxercícios Resolvidos

1. Resolver, em \mathbb{R} , a equação $25^x - 6 \cdot 5^x + 5 = 0$.

Resolução

$$25^{x} - 6 \cdot 5^{x} + 5 = 0 \Leftrightarrow (5^{2})^{x} - 6 \cdot (5^{x}) + 5 = 0 \Leftrightarrow$$

$$\Leftrightarrow$$
 $(5^{x})^{2} - 6 \cdot (5^{x}) + 5 = 0$

Substituindo-se 5^x por y, resulta:

$$y^2 - 6y + 5 = 0 \Leftrightarrow y = 1 \text{ ou } y = 5$$

$$v = 1 \Rightarrow 5^x = 5^0 \Leftrightarrow x = 0$$

$$V = 5 \Rightarrow 5^{X} = 5^{1} \Leftrightarrow X = 1$$

Logo, o conjunto-verdade da equação é $V = \{0; 1\}$.

Resposta: V = {0; 1}

2. Resolver, em \mathbb{R} , a equação $3^x + 3^{x-1} = 4^x$.

Resolução

$$3^{x} + 3^{x-1} = 4^{x} \Leftrightarrow 3^{x} + \frac{3^{x}}{3} = 4^{x} \Leftrightarrow$$

$$\Leftrightarrow 3^{x} \cdot \left(1 + \frac{1}{3}\right) = 4^{x} \Leftrightarrow 3^{x} \cdot \frac{4}{3} = 4^{x} \Leftrightarrow \frac{3^{x}}{4^{x}} = \frac{3}{4} \Leftrightarrow$$

$$\Leftrightarrow$$
 $\left(\frac{3}{4}\right)^{x} = \left(\frac{3}{4}\right)^{1} \Leftrightarrow x = 1 \Leftrightarrow V = \{1\}$

Resposta: $V = \{1\}$

3. Resolver, em ℝ, a inequação

$$\log_{1/2}(x-1) - \log_{1/2}(x+3) \ge \log_{1/2} \frac{5}{7}$$

Resolução

a) Condições de existência

$$\begin{cases} x-1>0 \\ x+3>0 \end{cases} \Leftrightarrow \begin{cases} x>1 \\ x>-3 \end{cases} \Leftrightarrow x>1$$

b)
$$\log_{1/2}(x-1) - \log_{1/2}(x+3) \ge$$

$$\geq \log_{1/2} \frac{5}{7} \Rightarrow \log_{1/2} \frac{x-1}{x+3} \geq \log_{1/2} \frac{5}{7} \Rightarrow$$

$$\Rightarrow \frac{x-1}{x+3} \le \frac{5}{7} \Rightarrow \frac{x-1}{x+3} - \frac{5}{7} \le 0 \Rightarrow$$

$$\Rightarrow \frac{7x-7-5x-15}{7(x+3)} \le 0 \Rightarrow \frac{2x-22}{7(x+3)} \le 0 \Rightarrow$$

$$\Rightarrow$$
 (2x - 22) . 7 . (x + 3) \leq 0 e

$$x \neq -3 \Rightarrow -3 < x \leq 11$$

De a e b, temos:
$$\begin{cases} x > 1 \\ -3 < x \le 11 \end{cases} \Leftrightarrow 1 < x \le 11$$

Resposta:
$$V = \{x \in \mathbb{R} \mid 1 < x \le 11\}$$

4. Resolver, em ℝ, a inequação

$$\left(\frac{3}{2}\right)^{2 \cdot \log_2(x^2 - 3x - 10)} > \left(\frac{2}{3}\right)^{\log_{\frac{1}{2}}(x^2 + 4x + 4)}$$

Resolução

a) Condições de existência

$$\begin{cases} x^2 - 3x - 10 > 0 \\ x^2 + 4x + 4 > 0 \end{cases} \Leftrightarrow \begin{cases} x < -2 \text{ ou } x > 5 \\ x \neq -2 \end{cases} \Leftrightarrow$$
$$\Leftrightarrow x < -2 \text{ ou } x > 5$$

b)
$$\left(\frac{3}{2}\right)^{2 \cdot \log_2(x^2 - 3x - 10)} > \left(\frac{2}{3}\right)^{\log_{\frac{1}{2}}(x^2 + 4x + 4)} \Leftrightarrow \left(\frac{3}{2}\right)^{2 \cdot \log_2(x^2 - 3x - 10)} > \left(\frac{3}{2}\right)^{-\log_{\frac{1}{2}}(x^2 + 4x + 4)}$$

Notando que $log_{\frac{1}{2}}N = -log_aN$, temos:

$$\left(\frac{3}{2}\right)^{\log_2[(x+2)(x-5)]^2} > \left(\frac{3}{2}\right)^{\log_2(x+2)^2} \Rightarrow$$

$$\Rightarrow (x + 2)^2 \cdot (x - 5)^2 > (x + 2)^2 \Rightarrow$$

$$\Rightarrow$$
 $(x-5)^2 > 1 e x \neq -2 \Rightarrow$

$$\Rightarrow$$
 x² - 10x + 24 > 0 e x \neq - 2 \Rightarrow

$$\Rightarrow$$
 x < 4 ou x > 6 e x \neq - 2

De **a** e **b**, resulta x < -2 ou x > 6.

Resposta: $V = \{x \in \mathbb{R} \mid x < -2 \text{ ou } x > 6\}$

TÁBUA DE LOGARITMOS

N	0	1	2	3	4	5	6	7	8	9
10	0000	0043	0086	0128	0170	0212	0253	0294	0334	0374
11	0414	0453	0492	0531	0569	0607	0645	0682	0719	0755
12	0792	0828	0864	0899	0934	0969	1004	1038	1072	1106
13	1139	1173	1206	1239	1271	1303	1335	1367	1399	1430
14	1461	1492	1523	1553	1584	1614	1644	1673	1703	1732
15	1761	1790	1818	1847	1875	1903	1931	1959	1987	2014
16	2041	2068	2095	2122	2148	2175	2201	2227	2253	2279
17	2304	2330	2355	2380	2405	2430	2455	2480	2504	2529
18	2553	2577	2601	2625	2648	2672	2695	2718	2742	2765
19	2788	2810	2833	2856	2878	2900	2923	2945	2967	2989
20	3010	3032	3054	3075	3096	3118	3139	3160	3181	3201
21	3222	3243	3263	3284	3304	3324	3345	3365	3385	3404
22	3424	3444	3464	3483	3502	3522	3541	3560	3579	3598
23	3617	3636	3655	3674	3692	3711	3729	3747	3766	3784
24	3802	3820	3838	3856	3874	3892	3909	3927	3945	3962
25	3979	3997	4014	4031	4048	4065	4082	4099	4116	4133
26	4150	4166	4183	4200	4216	4232	4249	4265	4281	4298
27	4314	4330	4346	4362	4378	4393	4409	4425	4440	4456
28	4472	4487	4502	4518	4533	4548	4564	4579	4594	4609
29	4624	4639	4654	4669	4683	4698	4713	4728	4742	4757
30	4771	4786	4800	4814	4829	4843	4857	4871	4886	4900
31	4914	4928	4942	4955	4969	4983	4997	5011	5024	5038
32	5051	5065	5079	5092	5105	5119	5132	5145	5159	5172
33 34	5185	5198	5211	5224	5237	5250	5263	5276	5289	5302
35	5315 5441	5328	5340 5465	5353 5478	5366	5378	5391 5514	5403	5416	5428
36	5563	5453	5587	5599	5490	5502	5635	5527 5647	5539	5551
37	5682	5575 5694	5705	5717	5611 5729	5623 5740	5752	5763	5658 5775	5670 5786
38	5798	5809	5821	5832	5843	5855	5866	5877	5888	5899
39	5911	5922	5933	5944	5955	5966	5977	5988	5999	6010
40	6021	6031	6042	6053	6064	6075	6085	6096	6107	6117
41	6128	6138	6149	6160	6170	6180	6191	6201	6212	6222
42	6232	6243	6253	6263	6274	6284	6294	6304	6314	6325
43	6335	6345	6355	6365	6375	6385	6395	6405	6415	6425
44	6435	6444	6454	6464	6474	6484	6493	6503	6513	6522
45	6532	6542	6551	6561	6571	6580	6590	6599	6609	6618
46	6628	6637	6646	6656	6665	6675	6684	6693	6702	6712
47	6721	6730	6739	6749	6758	6767	6776	6785	6794	6803
48	6812	6821	6830	6839	6848	6857	6866	6875	6884	6893
49	6902	6911	6920	6928	6937	6946	6955	6964	6972	6981
50	6990	6998	7007	7016	7024	7033	7042	7050	7059	7067
51	7076	7084	7093	7101	7110	7118	7126	7135	7143	7152
52	7160	7168	7177	7185	7193	7202	7210	7218	7226	7235
53	7243	7251	7259	7267	7275	7284	7292	7300	7308	7316
54	7324	7332	7340	7348	7356	7364	7372	7380	7388	7396
N	0	1	2	3	4	5	6	7	8	9

TÁBUA DE LOGARITMOS

N	0	1	2	3	4	5	6	7	8	9
55	7404	7412	7419	7427	7435	7443	7451	7459	7466	7474
56	7482	7490	7497	7505	7513	7520	7528	7536	7543	7551
57	7559	7566	7574	7582	7589	7597	7604	7612	7619	7627
58	7634	7642	7649	7657	7664	7672	7679	7686	7694	7701
59	7709	7716	7723	7731	7738	7745	7752	7760	7767	7774
60	7782	7789	7796	7803	7810	7818	7825	7832	7839	7846
61	7853	7860	7868	7875	7882	7889	7896	7903	7910	7917
62	7924	7931	7938	7945	7952	7959	7966	7973	7980	7987
63	7993	8000	8007	8014	8021	8028	8035	8041	8048	8055
64	8062	8069	8075	8082	8089	8096	8102	8109	8116	8122
65	8129	8136	8142	8149	8156	8162	8169	8176	8182	8189
66	8195	8202	8209	8215	8222	8228	8235	8241	8248	8254
67	8261	8267	8274	8280	8287	8293	8299	8306	8312	8319
68	8325	8331	8338	8344	8351	8357	8363	8370	8376	8382
69	8388	8395	8401	8407	8414	8420	8426	8432	8439	8445
70	8451	8457	8463	8470	8476	8482	8488	8494	8500	8506
71	8513	8519	8525	8531	8537	8543	8549	8555	8561	8567
72	8573	8579	8585	8591	8597	8603	8609	8615	8621	8627
73	8633	8639	8645	8651	8657	8663	8669	8675	8681	8686
74	8692	8698	8704	8710	8716	8722	8727	8733	8739	8745
75	8751	8756	8762	8768	8774	8779	8785	8791	8797	8802
76	8808	8814	8820	8825	8831	8837	8842	8848	8854	8859
77	8865	8871	8876	8882	8887	8893	8899	8904	8910	8915
78	8921	8927	8932	8938	8943	8949	8954	8960	8965	8971
79	8976	8982	8987	8993	8998	9004	9009	9015	9020	9025
80	9031	9036	9042	9047	9053	9058	9063	9069	9074	9079
81	9085	9090	9096	9101	9106	9112	9117	9122	9128	9133
82	9138	9143	9149	9154	9159	9165	9170	9175	9180	9186
83	9191	9196	9201	9206	9212	9217	9222	9227	9232	9238
84	9243	9248	9253	9258	9263	9269	9274	9279	9284	9289
85	9294	9299	9304	9309	9315	9320	9325	9330	9335	9340
86	9345	9350	9355	9360	9365	9370	9375	9380	9385	9390
87	9395	9400	9405	9410	9415	9420	9425	9430	9435	9440
88 89	9445	9450	9455	9460	9465	9469	9474	9479	9484	9489
90	9494	9499	9504 9552	9509	9513	9518	9523 0571	9528	9533	9538
90	9542 9590	9547		9557	9562	9566	9571 0610	9576 0624	9581	9586
91	9590	9595	9600	9605 9652	9609	9614	9619	9624	9628	9633
92	9685	9643	9647 9694	965 <i>2</i> 9699	9657	9661	9666 9713	9671	9675	9680
93	9083	9689	9094 9741	9699	9703	9708	9713	9717	9722	9727
95	9731	9736	9741	9743 9791	9750 9795	9754 9800	9/59	9763 9809	9768	9773
96	9823	9782 9827	9832	9836	9793	9845	9850	9809 9854	9814 9859	9818 9863
97	9868	9827	9832	9881	9886	9843	9894	9899	9839	9803
98	9912	9872	9921	9926	9930	9890	9939	9943	9903	9908
99	9956	9917	9965	9969	9930	9934	9983	9943	9948	9932
N	0	1	2	3	4	5	6	7	8	9

1. INTRODUÇÃO

Os logaritmos dos números reais positivos na base 10 denominam-se **logaritmos decimais** ou **vulga-res** ou de **Briggs**.

Notação

O logaritmo decimal do número N>0 será indicado por $log_{10}N$ ou $log\ N$.

Propriedades

Além das propriedades dos logaritmos, já estudadas, é bom lembrar que:

- $N > 1 \Leftrightarrow \log N > 0$
- $0 < N < 1 \Leftrightarrow \log N < 0$
- $\log 10^k = k$, $\forall k \in \mathbb{R}$ e, assim, podemos construir as tabelas a seguir.

0 < N < 1	log N
i i	÷
0,0001	- 4
0,001	- 3
0,01	-2
0,1	- 1

N ≥ 1	log N
1	0
10	1
100	2
1000	3
10000	4
:	:

Observações

- Os logaritmos das potências de 10, com expoentes inteiros, são iguais aos respectivos expoentes.
- Se o número real N > 0 estiver compreendido entre duas dessas potências consecutivas, o log N estará entre dois inteiros consecutivos.

Assim, para $c \in \mathbb{Z}$, temos: $10^c \le N < 10^{c+1} \Leftrightarrow \log 10^c \le \log N < \log 10^{c+1} \Leftrightarrow c \le \log N < c + 1$

2. CARACTERÍSTICA

Desta forma, podemos afirmar que:

$$\log N = c + m$$
, com $c \in \mathbb{Z}$ e $0 \le m < 1$

O logaritmo decimal de N é, pois, a soma de um inteiro (c) com um número decimal (m) não negativo e menor que 1.

O número **c** é, por definição, a **característica** do log N.

O número decimal **m** é, por definição, a **mantissa** do log N.

□ Determinação da característica

• Regra 1

A característica do logaritmo decimal de um número N > 1 é igual ao número de algarismos da sua parte inteira menos 1.

Exemplos

Sendo c ∈ Z a característica de log N, temos:

 $\log 5,213 \implies c = 0$ $\log 52,13 \implies c = 1$ $\log 3592,39 \implies c = 3$

• Regra 2

A característica do logaritmo decimal de um número 0 < N < 1 é igual ao oposto do número de zeros que precedem o primeiro algarismo diferente de zero.

Exemplos

Sendo $\mathbf{c} \in \mathbb{Z}$ a característica do log N, temos:

 $\log 0.753 \Rightarrow c = -1$ $\log 0.0947 \Rightarrow c = -2$ $\log 0.00502 \Rightarrow c = -3$

3. MANTISSA

A mantissa do log N pode ser encontrada em tabelas chamadas TÁBUAS DE LOGARITMOS.

Vale a seguinte propriedade:

"Os logaritmos decimais de dois números, cujas representações decimais diferem apenas pela posição da vírgula, têm mantissas iguais."

De fato, em log N = c + m, temos característica c = m

Sendo $\mathbf{p} \in \mathbb{Z}$, decorre:

 $log(10^p \cdot N) = log 10^p + log N = p + (c + m) = (p + c) + m, em$ que a característica é (**p + c**) e a mantissa **m**.

Exemplos

$$\log 2 = 0 + 0.3010 = 0.3010$$

$$\log 20 = 1 + 0.3010 = 1.3010$$

$$\log 2000 = 3 + 0.3010 = 3.3010$$

$$\log 0.2 = -1 + 0.3010 = \overline{1.3010} = -0.6990$$

$$\log 0.02 = -2 + 0.3010 = \overline{2.3010} = -1.6990$$

Observação

Para passar um logaritmo negativo para a forma mista (característica negativa e mantissa positiva), basta somar 1 à sua parte decimal e subtrair 1 da sua parte inteira.

Exemplo

$$\log 0.02 = -1.6690 = -1 - 0.6990$$

$$-1 + 1$$

$$-2 + 0.3010 = \overline{2}.3010$$
(forma mista)

MÓDULO 27

Módulo de um Número Real

1. DEFINIÇÃO

O módulo de um número real x é indicado por |x| e assim definido:

$$\begin{cases} |x| = x, \text{ se } x \ge 0 \\ |x| = -x, \text{ se } x \le 0 \end{cases}$$

Observações

- a) $|x| \ge 0$, $\forall x \in \mathbb{R}$
- b) Na reta real, o módulo de um número real é a distância da abscissa desse número à origem.

Aplicações

Para avaliar qual o conjunto de valores assumidos por uma expressão, que apresenta módulo em pelo menos um de seus termos, é frequente estudá-la suprimindo os sinais de módulo, usando a definição. Assim, a análise é feita em intervalos.

Como exemplo, vamos esboçar o gráfico da função f: $\mathbb{R} \to \mathbb{R}$, tal que f(x) = |x+3|-|x-2|.

Marquemos na reta numérica os valores x=-3 e x=2, que são as raízes de x+3=0 e x-2=0, respectivamente.

Desse modo, a reta foi subdividida nos intervalos]– ∞ ; – 3], [– 3; 2] e [2; + ∞ [.

a) Para $x \le -3$, temos |x + 3| = -x - 3 e |x - 2| = -x + 2. Logo, f(x) = (-x - 3) - (-x + 2) = -x - 3 + x - 2 = -5, cujo gráfico é:

b) Para $-3 \le x \le 2$, temos |x + 3| = x + 3 e |x - 2| = -x + 2. Logo, f(x) = (x + 3) - (-x + 2) = x + 3 + x - 2 = 2x + 1, cujo gráfico é:

c) Para $x \ge 2$, temos |x + 3| = x + 3 e |x - 2| = x - 2. Logo, f(x) = (x + 3) - (x - 2) = x + 3 - x + 2 = 5, cujo gráfico é:

Portanto, o gráfico de f é:

MÓDULO 28

Propriedades e Gráficos da Função Modular

1. DEFINIÇÃO

É a função f: $\mathbb{R} \to \mathbb{R}$, tal que f(x) = |x|, sendo:

$$\begin{cases} |x| = x, \text{ se } x \ge 0 \\ |x| = -x, \text{ se } x \le 0 \end{cases}$$

- Domínio = \mathbb{R}
- Conjunto imagem = \mathbb{R}_+
- Gráfico

Propriedades

Dado a > 0, temos:

1.
$$|x| = a \Leftrightarrow x = a \text{ ou } x = -a$$

2.
$$|x| < a \Leftrightarrow -a < x < a$$

3.
$$|x| > a \Leftrightarrow x < -a \text{ ou } x > a$$

Observações

Sendo $x \in \mathbb{R}$ e $n \in \mathbb{N}^*$, então:

- 1. $\sqrt[n]{x^n} = x$, se n for impar;
- 2. $\sqrt[n]{x^n} = |x|$, se n for par;
- 3. $|x \cdot y| = |x| \cdot |y|$:
- 4. $\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, y \neq 0;$
- 5. |x + y| = |x| + |y|, se x e y tiverem o mesmo sinal;
- 6. |x + y| < |x| + |y|, se x e y forem de sinais contrários;
- 7. $|x + y| \le |x| + |y| \in |x y| \ge |x| |y|$.

2. GRÁFICOS

Exemplos

1. Consideremos a função f: $\mathbb{R} \to \mathbb{R}$, definida por:

$$f(x) = \begin{cases} x + 8, \text{ se } x < -5 \\ -x - 2, \text{ se } -5 \le x < 0 \\ -\frac{1}{3}x(x - 6), \text{ se } x \ge 0 \end{cases}$$

cujo gráfico é dado a seguir.

A partir do gráfico de f, vamos obter os gráficos de:

a) f(|x|) b) |f(x)| c) |f(|x|)|

Resolução

a) 1) $|x| = |-x| \Rightarrow f(|x|)$ é uma função par (o seu gráfico é simétrico em relação ao eixo y).

2) |x| = x para $x \ge 0 \Rightarrow$ o gráfico de f(|x|) é igual ao de f(x) para $x \ge 0$.

De 1 e 2, concluímos que, para obter o gráfico de f(|x|), basta repetir o gráfico de f(x) para $x \ge 0$ e "rebatê-lo" em torno do eixo y, resultando:

b) 1)
$$| f(x) | = f(x) \text{ para } f(x) \ge 0$$

2)
$$| f(x) | = - f(x) \text{ para } f(x) \le 0$$

De 1 e 2, concluímos que, para obter o gráfico de |f(x)|, basta repetir o de f(x) para $f(x) \ge 0$ e "rebater" o de f(x), para f(x) < 0, em torno do eixo x, resultando:

c) Utilizando os resultados dos itens a e b, obtém-se:

2. Esboce o gráfico da função f: $[-2\pi, 2\pi] \rightarrow \mathbb{R}$, definida por f(x) = $|\operatorname{sen} x| + 1$.

Resolução

Para $x \in [-2\pi; 2\pi]$, temos:

a) o gráfico de g(x) = sen x:

b) o gráfico de |g(x)| = |sen x|:

c) o gráfico de f(x) = |sen x| + 1:

MÓDULO 29

Divisão em \mathbb{N} , Múltiplos e Divisores em \mathbb{Z} , Número Primo e Composto

NÚMEROS NATURAIS

□ O Conjunto N

Os números naturais são 0, 1, 2, 3, ..., n, ... e o conjunto formado por esses números é chamado **conjunto dos números naturais**. É indicado por **N**.

$$\mathbb{N} = \{0, 1, 2, 3, ..., n, ...\}$$

 $\mathbb{N}^* = \{1, 2, 3, 4, ..., n, ...\} = \mathbb{N} - \{0\}$

□ Divisão Euclidiana em N

Teorema

Se $a \in \mathbb{N}$ e $b \in \mathbb{N}^*$, então existe um único par (q, r) de números naturais, tais que

$$a = b \cdot q + r \quad e \quad r < b$$

Dispositivo prático

$$\begin{array}{c|c} a & b \neq 0 \\ \hline r & q & \Leftrightarrow \end{array} \left\{ \begin{array}{l} a = b \cdot q + r \\ r < b \end{array} \right.$$

Se **r** = **0**, diz-se que a divisão é exata.

Se
$$\mathbf{a} < \mathbf{b}$$
, então: $q = 0$ e $r = a$

NÚMEROS INTEIROS

□ O Conjunto Z

Os números inteiros são ..., -3, -2, -1, 0, 1, 2, 3, ...

O conjunto formado por esses números é chamado **conjunto dos números inteiros**. É indicado por Z.

$$\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$$

$$\mathbb{Z}^* = \{..., -3, -2, -1, 1, 2, 3, ...\} = \mathbb{Z} - \{0\}$$

$$\mathbb{Z}_+ = \{0, 1, 2, 3, ...\} = \mathbb{N}$$

$$\mathbb{Z}_+^* = \{1, 2, 3, ...\} = \mathbb{N}^*$$

$$\mathbb{Z}^* = \{-1, -2, -3, ...\}$$

■ Múltiplo e divisor em ZDefinição

Sejam **a** e **b** dois números inteiros. Diz-se que **b** é divisor (ou fator) de **a** e que **a** é múltiplo de **b** se, e somente se, existe **c** inteiro, tal que **a** = **b** . **c**

Assim, sendo a, b, c números inteiros, temos

$$a = b \cdot c \Rightarrow \begin{cases} a \text{ \'e m\'ultiplo de b e c.} \\ b \text{ e c s\~ao ambos divisores (ou fatores) de a.} \end{cases}$$

■ Número par e número ímpar

Um número inteiro **a** é **par** se, e somente se, **a** for **múltiplo de 2**.

Um número inteiro a é ímpar se, e somente se, a não for múltiplo de 2.

Fm símbolos

$$a \in \mathbb{Z} \text{ \'e PAR} \Leftrightarrow a \in M(2) \Leftrightarrow \exists k \in \mathbb{Z} \mid a = 2k$$

$$a \in \mathbb{Z} \text{ \'e \'iMPAR} \Leftrightarrow a \notin M(2) \Leftrightarrow \exists k \in \mathbb{Z} \mid a = 2k+1$$

Os números pares são, portanto, 0, \pm 2, \pm 4, \pm 6, ... Os números ímpares são, portanto, \pm 1, \pm 3, \pm 5, \pm 7, ...

NÚMERO PRIMO

Um número inteiro p, com $p \ne 0$, $p \ne 1$ e $p \ne -1$, é **primo** se ele possui exatamente 4 divisores inteiros, que são 1, -1, p = -p.

Em símbolos:

$$p \in \mathbb{Z} \text{ \'e primo} \Leftrightarrow \left\{ \begin{aligned} p \neq 0, & p \neq -1, p \neq 1 \\ D \text{ (p)} = \{-1, 1, -p, p\} \end{aligned} \right.$$

NÚMERO COMPOSTO

Um número inteiro a, com a \neq 0, a \neq 1 e a \neq - 1, é **composto** se ele tem mais de 4 divisores inteiros.

Em símbolos:

$$a \in \mathbb{Z} \text{ \'e composto} \Leftrightarrow \left\{ \begin{array}{l} a \neq 0, \ a \neq -1, \ a \neq 1 \\ n[D(a)] > 4 \end{array} \right.$$

DECOMPOSIÇÃO EM FATORES PRIMOS, TEOREMA FUNDAMENTAL DA ARITMÉTICA

"TODO número composto pode ser decomposto (ou fatorado) num produto de fatores primos. A menos da ordem dos fatores e do "sinal", tal decomposição é única."

NÚMERO DE ELEMENTOS DE D(a)

Indicando por **D(a)** o conjunto dos divisores **inteiros** e por **D**₊ **(a)** o conjunto dos divisores **naturais** do número inteiro **a**, temos:

- 1. $D(a) = D(-a), \forall a \in \mathbb{Z}$
- 2. $D(0) = \mathbb{Z} e D(1) = D(-1) = \{-1, 1\}$
- 3. Se $a \in \mathbb{Z}^*$, o número de elementos de D(a) é finito.

Além disso, se $a \in \mathbb{N}^*$ e se $a = p_1^{k_1} . p_2^{k_2} . p_3^{k_3} ... p_n^{k_n}$, em que os inteiros p_1 , p_2 , p_3 , ..., p_n são os divisores primos naturais de \mathbf{a} e os naturais k_1 , k_2 , k_3 , ..., k_n os respectivos expoentes, então

$$n [D_{+}(a)] = (k_1 + 1)(k_2 + 1)(k_3 + 1)...(k_n + 1)$$

$$n [D (a)] = 2.(k_1 + 1)(k_2 + 1)(k_3 + 1)...(k_n + 1)$$

MÓDULO 30

Máximo Divisor Comum, Mínimo Múltiplo Comum e Propriedades

MÁXIMO DIVISOR COMUM

□ Definição

Sejam \mathbf{a} e \mathbf{b} dois inteiros não simultaneamente nulos. O máximo divisor comum de a e b é o máximo elemento do conjunto $[D(a) \cap D(b)]$.

Representa-se mdc(a, b).

Assim sendo:

$$mdc(a, b) = máx[D(a) \cap D(b)]$$

MÍNIMO MÚLTIPLO COMUM

□ Definição

Sejam **a** e **b** dois inteiros não nulos. O mínimo múltiplo comum de **a** e **b** é o menor elemento do conjunto $[M_{+}^{*}(a) \cap M_{+}^{*}(b)]$.

Representa-se mmc(a, b).

Assim sendo:

mmc (a, b) = mín
$$[M_+^*(a) \cap M_+^*(b)]$$

Observações

Se a e b são dois inteiros não nulos, então,

a) Os divisores comuns de **a** e **b** são os divisores do máximo divisor comum de **a** e **b**.

Em símbolos:

$$D(a) \cap D(b) = D[mdc (a; b)]$$

b) Os múltiplos comuns, estritamente positivos, de **a** e **b** são os múltiplos, estritamente positivos, do mínimo múltiplo comum de **a** e **b**.

Em símbolos:

$$M_{+}^{*}(a) \cap M_{+}^{*}(b) = M_{+}^{*}[mmc(a; b)]$$

c)
$$mdc(a; b) . mmc(a; b) = a . b, \forall a, b \in \mathbb{N}^*$$

MÓDULO 31

Números Primos entre Si, Critérios de Divisibilidade e Números Reais

NÚMEROS PRIMOS ENTRE SI

Definição

Dois números inteiros \mathbf{a} e \mathbf{b} , não nulos, são chamados **primos entre si** se, e somente se, os únicos divisores comuns de \mathbf{a} e \mathbf{b} são 1 e – 1 e, consequentemente, se, e somente se, mdc(a, b) = 1.

Fm símbolos:

$$a \in \mathbb{Z}^* e b \in \mathbb{Z}^* s \tilde{a}o \text{ primos entre si} \Leftrightarrow D(a) \cap D(b) = \{-1, 1\} \Leftrightarrow mdc(a, b) = 1$$

Propriedades

- Dois números consecutivos quaisquer são primos entre si.
- Se p e q são primos e p ≠ q e p ≠ q, então p e q são primos entre si.

• a e b são primos entre si \Leftrightarrow mmc(a, b) = a . b, a. b $\in \mathbb{N}^*$.

□ Teoremas importantes

Se x divide a e x divide b, então x divide a ± b.

Simbolicamente

$$\left. \begin{array}{l} x \in D(a) \\ x \in D(b) \end{array} \right\} \Rightarrow x \in D(a \pm b)$$

Se x divide a e x divide a ± b, então x divide b. Simbolicamente

$$\left. \begin{array}{l} x \in D(a) \\ x \in D(a \pm b) \end{array} \right\} \Rightarrow x \in D(b)$$

Os pares de números inteiros (a, b); (a; a \pm b) e (b; a \pm b) têm o mesmo máximo divisor comum.

Simbolicamente

$$mdc(a; b) = mdc(a; a \pm b) = mdc(b; a \pm b)$$

Se p é primo e p divide a . b, então p divide a ou p divide b.

Simbolicamente

$$\left.\begin{array}{l} p \,\, \acute{e} \,\, primo \\ p \in D(a\,.\,b) \end{array}\right\} \Rightarrow p \in D(a) \,\, ou \,\, p \in D(b)$$

Se a divide x, b divide x e, além disso, a e b são primos entre si, então a . b divide x.

Simbolicamente

$$\left. \begin{array}{l} \mathbf{a} \in \mathbf{D}(\mathbf{x}) \\ \mathbf{b} \in \mathbf{D}(\mathbf{x}) \\ \mathbf{mdc} \ (\mathbf{a}, \ \mathbf{b}) = 1 \end{array} \right\} \Rightarrow \mathbf{ab} \in \mathbf{D}(\mathbf{x})$$

CRITÉRIOS DE DIVISIBILIDADE

Divisibilidade por 2

Um número inteiro **a** é divisível por 2 se, e somente se, o algarismo das unidades for 0 ou 2 ou 4 ou 6 ou 8.

Divisibilidade por 3

Um número inteiro **a** é divisível por 3 se, e somente se, a soma de seus algarismos for divisível por 3.

Divisibilidade por 5

Um número inteiro **a** é divisível por 5 se, e somente se, o algarismo das unidades for 0 ou 5.

Divisibilidade por 7

Um número inteiro **a** é divisível por 7 se, e somente se, a diferença entre o número que se obtém de **a** suprimindo-se o algarismo das unidades e o dobro deste último (algarismo das unidades) for divisível por 7.

Divisibilidade por 11

Um número inteiro \mathbf{a} é divisível por 11 se, e somente se, sendo x a soma dos algarismos de ordem ímpar e y a soma dos algarismos de ordem par, então x – y é divisível por 11.

Divisibilidade por 4

Um número inteiro **a** é divisível por 4 se, e somente se, o número formado pelos algarismos das dezenas e das unidades de **a** (na ordem) for divisível por 4.

• Divisibilidade por 6

Um número inteiro **a** é divisível por 6 se, e somente se, **a** for divisível por 2 e também por 3.

Divisibilidade por 10

Um número inteiro **a** é divisível por 10 se, e somente se, for divisível por 2 e também por 5.

Assim sendo, **a** é divisível por 10 se, e somente se, o algarismo das unidades de **a** for zero.

Divisibilidade por 15

Um número inteiro **a** é divisível por 15 se, e somente se, **a** for divisível por 3 e também por 5.

NÚMEROS DECIMAIS EXATOS

São os que apresentam um número **finito** de casas decimais **não nulas**.

Exemplos

•
$$2,357 = \frac{2357}{1000}$$

•
$$0.75 = \frac{75}{100}$$

NÚMEROS DECIMAIS NÃO EXATOS

São os que apresentam um número **infinito** de casas decimais **não nulas**.

Podem ser

• Periódicos (dízimas)

Exemplos

2.333 ...

0.424242 ...

3. 52626262 ...

0. 73444 ...

não periódicos

Exemplos

2,2525525555555...

 $\pi = 3.1415926535...$

e = 2,71822818284590453...

$$\sqrt{2} = 1,4142...$$

$$\sqrt{3} = 1,7320...$$

Exemplos

- Obter as frações geratrizes das dízimas periódicas
- a) 0,424242... b) 3,5262626...

Resolução

a)
$$0,424242... = \frac{42}{99} = \frac{14}{33}$$

b)
$$3,5262626... = \frac{35,262626...}{10} = \frac{35 + \frac{26}{99}}{10} = \frac{3491}{990}$$

NÚMEROS REAIS

□ O Conjunto ℝ

Um número é chamado **real** quando é **inteiro** ou **decimal**. O conjunto formado por todos os números reais é chamado conjunto dos números reais e é representado por \mathbb{R} .

NOTAÇÕES

$$\mathbb{R}^* = \mathbb{R} - \{0\}$$

$$\mathbb{R}_{\perp} = \{ x \in \mathbb{R} \mid x \ge 0 \}$$

$$\mathbb{R}^*$$
 = $\{x \in \mathbb{R} \mid x > 0\}$

$$\mathbb{R} = \{ x \in \mathbb{R} \mid x \le 0 \}$$

$$\mathbb{R}^* = \{x \in \mathbb{R} \mid x < 0\}$$

NÚMEROS RACIONAIS E NÚMEROS IRRACIONAIS

☐ O Conjunto Q

Diz-se que um número real \mathbf{x} é racional se, e somente se, existem números inteiros a e b, com b \neq 0, tais que $x = \frac{a}{b}$.

O conjunto formado por todos os números racionais é chamado conjunto dos números reais racionais e é representado por \mathbb{Q} .

$$\mathbb{Q} = \left\{ x \in \mathbb{R} \mid x = \frac{a}{b}, a \in \mathbb{Z}, b \in \mathbb{Z}^* \right\}$$

Notar que $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$

□ Teorema

Sejam $a \in \mathbb{Z}$ e $b \in \mathbb{Z}^*$. O quociente (número racional) da divisão de a por b, ou é **inteiro**, ou **decimal exato** ou **decimal não exato periódico**.

• Consequência do Teorema

Os únicos números reais que não são racionais são os números **decimais não exatos** e **não periódicos**.

□ O Conjunto R - Q

Diz-se que um número **real** α **é irracional** se, e somente se, α **não é racional**. O conjunto formado por todos os números irracionais é chamado **conjunto dos números irracionais e é representado por** \mathbb{R} **–** \mathbb{Q} .

$$\mathbb{R} - \mathbb{Q} = \{ x \in \mathbb{R} \mid x \notin \mathbb{Q} \}$$

Notar que

- $\mathbb{Q} \subset \mathbb{R}$
- $\mathbb{R} \mathbb{Q} \subset \mathbb{R}$
- $\mathbb{Q} \cap (\mathbb{R} \mathbb{Q}) = \emptyset$
- $\mathbb{Q} \cup (\mathbb{R} \mathbb{Q}) = \mathbb{R}$

□ Propriedades do fechamento

• Q é fechado em relação à adição (r + s), subtração (r - s), multiplicação (r . s) e divisão $\left(\frac{r}{s}, s \neq 0\right)$. Assim, a soma, a diferença, o produto e o quociente $\left(\frac{r}{s}, s \neq 0\right)$ de dois números racionais são sempre racionais.

• R - Q não é fechado em relação à adição, subtração, multiplicação e divisão. Assim, a soma, a diferença, o produto e o quociente de dois números irracionais nem sempre são irracionais.

Conclusão

Do exposto, sendo ${\bf r}$ e ${\bf s}$ números racionais e α e β números irracionais, temos

r + s ∈ Q	$\mathbf{r} + \alpha \in \mathbb{R} - \mathbb{Q}$	$\alpha + \beta \in \mathbb{R}$
r - s ∈ Q	$\mathbf{r} - \alpha \in \mathbb{R} - \mathbb{Q}$	$\alpha - \beta \in \mathbb{R}$
r. s ∈ Q	$\mathbf{r} \cdot \alpha \in \mathbb{R} - \mathbb{Q} \ (\mathbf{r} \neq 0)$	α . $\beta \in \mathbb{R}$
$\frac{\mathbf{r}}{\mathbf{s}} \in \mathbb{Q} \ (\mathbf{s} \neq 0)$	$\frac{\mathbf{r}}{\alpha} \in \mathbb{R} - \mathbb{Q} \ (\mathbf{r} \neq 0)$	$\frac{\alpha}{\beta} \in \mathbb{R}$

□ Radical duplo

Se os números naturais a e b são tais que a $\pm \sqrt{b} \in \mathbb{R}_+$ e c = $\sqrt{a^2 - b} \in \mathbb{N}$, então

$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + c}{2}} \pm \sqrt{\frac{a - c}{2}}$$

MÓDULO 32

Sistemas de Numeração

Ao escrevermos 2495, estamos representando cinco unidades mais nove dezenas mais quatro centenas e mais dois milhares.

Dessa forma, 2495 é uma abreviação para

$$5 \cdot 10^{0} + 9 \cdot 10^{1} + 4 \cdot 10^{2} + 2 \cdot 10^{3}$$
.

Em cada número, além do seu **próprio valor** (valor absoluto), cada **algarismo** possui um **peso** (valor relativo) que depende da sua **posição** no número.

No número 2495, tem-se:

algarismo	valor absoluto	valor relativo
5	5	5 . 10 ⁰ = 5
9	9	9 . 10 ¹ = 90
4	4	$4 \cdot 10^2 = 400$
2	2	2 . 10 ³ = 2000

Esse tipo de sistema é chamado **posicional**. O peso de cada algarismo dependerá do lugar, da posição que ele ocupa no número.

O sistema de numeração posicional preponderante é o decimal, cujos algarismos são 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.

OUTROS SISTEMAS

No sistema de base sete, os algarismos são 0, 1, 2, 3, 4, 5 e 6. Num sistema de base **b** maior que 1, os algarismos vão de 0 a b-1, inclusive (0, 1, ..., b-1).

Ao escrevermos $(1425)_7 = 1425_{(7)}$, estamos, abreviadamente, representando

$$5.7^{0} + 2.7^{1} + 4.7^{2} + 1.7^{3}$$

É costume indicar a base quando o sistema não é decimal.

No número 1425₍₇₎, tem-se:

algarismo	valor absoluto	valor relativo
5	5	5.70 = 5
2	2	2.71 = 14
4	4	4 . 7 ² = 196
1	1	1 . 7 ³ = 343

Assim sendo.

$$1425_{(7)} = 5 + 14 + 196 + 343 = 558$$

Se a base é maior que dez, torna-se necessário representar os naturais maiores que nove e menores que a base por novos símbolos. Uma convenção é utilizar as letras do alfabeto latino a, b, c, ... para indicar o 10, 11, 12, ... respectivamente. Outra notação existente é (10), (11), (12), ..., que substituem 10, 11, 12, ..., respectivamente.

No sistema duodecimal, base doze, os algarismos são 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a e b, estes dois últimos podendo ser substituídos, na ordem, por (10) e (11).

Representando $15a3b_{(12)} = 15(10)3(11)_{(12)}$, estamos abreviando a soma

b .
$$12^0 + 3$$
 . $12^1 + a$. $12^2 + 5$. $12^3 + 1$. 12^4 .
No número 15a3b₍₁₂₎, tem-se

algarismo	valor absoluto	valor relativo
b	b (onze)	11 . 12 ⁰ = 11
3	3	3 . 12 ¹ = 36
а	a (dez)	10 . 12 ² = 1 440
5	5	5 . 12 ³ = 8 640
1	1	1 . 12 ⁴ = 20 736

Assim sendo,

$$15a3b_{(12)} = 11 + 36 + 1440 + 8640 + 20736 = 30863$$

MUDANÇA DE BASE

Como exemplo, vamos examinar a representação do número N = $558 = 1425_{(7)} = 5 \cdot 7^0 + 2 \cdot 7^1 + 4 \cdot 7^2 + 1 \cdot 7^3$

Todas as parcelas da soma indicada, com exceção da primeira, são divisíveis por 7 e, portanto, o primeiro coeficiente (o algarismo 5) é o resto da divisão de 558 por 7.

De modo análogo, pode-se concluir que, dividindo, sucessivamente, por 7 cada quociente da divisão anterior, os restos são (na ordem inversa) os algarismos do número na base 7.

No caso, tem-se

Exemplos

1. Escrever o número 2134₍₅₎ no sistema decimal.

Resolução

$$2134_{(5)} = 4.5^{0} + 3.5^{1} + 1.5^{2} + 2.5^{3} =$$

= 4 + 15 + 25 + 250 = 294

Representar o número 44687 no sistema de base 12.
 Resolução

Resposta:
$$44687 = 21(10)3(11)_{(12)} = 21a3b_{(12)}$$

3. Representar o número 425₍₇₎ na base 3.

Resolução

a)
$$425_{(7)} = 5 \cdot 7^{0} + 2 \cdot 7^{1} + 4 \cdot 7^{2} = 5 + 14 + 196 = 215$$

b) $215 3$
2 71 3
2 23 3
1 7 3

Resposta:
$$425_{(7)} = 215 = 21122_{(3)}$$

MÓDULOS 33 e 34

Definição de Número Complexo e Operações na Forma Algébrica

Número complexo é um par ordenado (x, y) de números reais.

Representando por ${\mathbb C}$ o conjunto dos números complexos, temos

$$\mathbb{C} = \{(\mathbf{x}, \mathbf{y}) \mid \mathbf{x} \in \mathbb{R} \ \mathbf{e} \ \mathbf{y} \in \mathbb{R}\}$$

Sendo (a, b) $\in \mathbb{C}$ e (c, d) $\in \mathbb{C}$, definimos em \mathbb{C} :

Adição

$$(a, b) + (c, d) = (a + c, b + d)$$

Multiplicação

$$(a, b) \cdot (c, d) = (ac - bd, ad + bc)$$

(C, +, •) é o corpo dos números complexos.

FORMA ALGÉBRICA

Decorre da definição que

(x, 0) = x, isto é, (x, 0) e x são isomorfos.

Se i =
$$(0, 1)$$
, então $i^2 = -1$

$$(0, y) = (y, 0) \bullet (0, 1) = yi$$

$$(x, y) = (x, 0) + (0, y)$$

$$(x, y) = x + yi$$

Nomenclatura

z é a notação usual de um elemento de C.

 $x \in a$ parte real de z : x = Re(z).

yi é a parte imaginária de z.

y é o coeficiente da parte imaginária: y = Im(z).

i = (0, 1) é a unidade imaginária.

$$y = 0 \Rightarrow z = x + yi = x \Rightarrow z \text{ \'e real}.$$

$$x = 0 \Rightarrow z = x + yi = yi \Rightarrow z$$
 é imaginário puro.

 $\overline{z} = a - bi$ é chamado **conjugado de z**.

OPERAÇÕES NA FORMA ALGÉBRICA

Adição:
$$(a + bi) + (c + di) = (a + c) + (b + d) . i$$

Subtração:
$$(a + bi) - (c + di) = (a - c) + (b - d)$$
. i

$$= ac + adi + bci + bdi^2 = (ac - bd) + (ad + bc) \bullet i$$

Divisão:
$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} =$$

$$= \frac{(...) + (...)i}{c^2 + d^2} = \frac{(...)}{c^2 + d^2} + \frac{(...)}{c^2 + d^2} \bullet i$$

 $com c + di \neq 0$

POTÊNCIAS DE i

$$i^0 = 1$$
 $i^1 = i$ $i^2 = -1$ $i^3 = -i$ $i^n = i^n$

sendo $n \in \mathbb{N}$ e $r \in \{0, 1, 2, 3\}$ o resto da divisão de n por 4.

Observe que

$$i^{n} + i^{n+1} + i^{n+2} + i^{n+3} = 0$$
. $\forall n \in \mathbb{N}$.

MÓDULO 35

Forma Trigonométrica

Sendo z=x+yi, com $x,y\in\mathbb{R}$, um número complexo, temos

Módulo de z

Indica-se z ou p

Define-se

$$|\mathbf{z}| = \rho = \sqrt{\mathbf{x^2 + y^2}}$$

Argumento de z ≠ 0

Indica-se arg z ou θ

Define-se

$$\arg z = \theta \Leftrightarrow \begin{cases} 0 \le \theta < 2\pi \\ \cos \theta = \frac{x}{\rho} \\ \sin \theta = \frac{y}{\rho} \end{cases}$$

FORMA TRIGONOMÉTRICA

Se **z** = **x** + **yi** é um número complexo diferente de zero, então a forma trigonométrica de z é

$$z = \rho(\cos \theta + i \sin \theta)$$

Observe que

$$\begin{cases} z = x + yi \\ x = \rho \cos \theta \Rightarrow z = \rho \cos \theta + i\rho \sin \theta \Rightarrow \\ y = \rho \sin \theta \end{cases}$$

$$\Rightarrow$$
 z = $\rho(\cos\theta + i \sin\theta)$

REPRESENTAÇÃO GEOMÉTRICA

Consideremos num plano, chamado Plano de **Argand-Gauss** ou **Plano Complexo**, um sistema de coordenadas cartesianas ortogonais xOy e nele, um ponto P de coordenadas x e y. Lembrando que z = (x, y) = x + yi, concluímos que existe uma correspondência biunívoca entre os pontos do plano e os

números complexos. Em outras palavras, "o conjunto dos números complexos pode ser representado geometricamente pelos pontos do plano". O ponto P é a imagem geométrica de z ou o afixo de z.

MÓDULO 36

Operações na Forma Trigonométrica: Multiplicação, Divisão e Potenciação

Sejam z, z₁ e z₂ três números complexos diferentes de zero, tais que:

$$\mathbf{z} = \rho \left(\cos \theta + i \operatorname{sen} \theta \right)$$

$$\mathbf{z}_1 = \rho_1 (\cos \theta_1 + i \operatorname{sen} \theta_1)$$

$$\mathbf{z}_2 = \rho_2 (\cos \theta_2 + i \operatorname{sen} \theta_2)$$

□ Multiplicação

$$\mathbf{z_1} \cdot \mathbf{z_2} = (\rho_1 \cdot \rho_2) \cdot [\cos (\theta_1 + \theta_2) + i \cdot \sin (\theta_1 + \theta_2)] \quad (\forall \mathbf{z_1}, \mathbf{z_2} \in \mathbb{C}^*)$$

□ Divisão

$$\frac{\mathbf{z}_1}{\mathbf{z}_2} = \frac{\rho_1}{\rho_2} \left[\cos \left(\theta_1 - \theta_2 \right) + i \cdot \sin \left(\theta_1 - \theta_2 \right) \right]$$

$$(\forall \mathbf{z}_1, \mathbf{z}_2 \in \mathbb{C}^*)$$

□ Potenciação com expoente inteiro

$$\begin{aligned} \mathbf{z}^{\mathbf{n}} &= \rho^{\mathbf{n}} \cdot [\cos{(\mathbf{n}\theta)} + i \cdot \text{sen}{(\mathbf{n}\theta)}] \\ &\text{(Fórmula de Moivre)} \quad (\forall \mathbf{n} \in \mathbb{Z}) \end{aligned}$$

Observe que:

$$\begin{split} &z_1 \cdot z_2 = [\rho_1(\cos\theta_1 + i \sin\theta_1)] \;. \\ &\cdot [\rho_2(\cos\theta_2 + i \sin\theta_2)] = \\ &= (\rho_1 \cdot \rho_2) \cdot (\cos\theta_1 \cdot \cos\theta_2 + i \,. \\ &\cdot \cos\theta_1 \cdot \sin\theta_2 + i \sin\theta_1 \cdot \cos\theta_2 + \\ &+ i^2 \sin\theta_1 \cdot \sin\theta_2) = \\ &= (\rho_1 \cdot \rho_2) \left[(\cos\theta_1 \cdot \cos\theta_2 - \sin\theta_1 \cdot \sin\theta_2) + \\ &+ i \cdot (\cos\theta_1 \cdot \sin\theta_2 + \sin\theta_1 \cdot \cos\theta_2) \right] = \\ &= (\rho_1 \cdot \rho_2) \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right] \end{split}$$

MÓDULO 11

Progressões Aritméticas

1. DEFINIÇÃO DE SEQUÊNCIAS

Chama-se SEQUÊNCIA DE NÚMEROS REAIS, ou, simplesmente, sequência real, a qualquer função f de \mathbb{N}^* em \mathbb{R} .

$$f: \mathbb{N}^* \to \mathbb{R}$$

 $n \to f(n) = a_n$

Notações

$$f = (a_n) = (a_1, a_2, a_3, ..., a_n, ...)$$

Os números reais $a_1, a_2, a_3, ..., a_n, ...$ são chamados TERMOS da sequência.

2. LEIS DE FORMAÇÃO

□ Termo em função da posição

Expressa a_n em função de n.

Exemplo

Determine o domínio, o contradomínio e a imagem da sequência $f: \mathbb{N}^* \to \mathbb{R}$, tal que $f(n) = a_n = (-1)^{n+1}$.

Se
$$(a_n) = (a_1, a_2, a_3, ..., a_n, ...) = (1; -1; 1; ...(-1)^{n+1}, ...),$$
 então:

$$D(f) = \mathbb{N}^*$$
, $CD(f) = \mathbb{R}$, $Im(f) = \{-1, 1\}$.

□ Lei de recorrência

Fornece o 1º termo a_1 e expressa um termo qualquer a_{n+1} em função do seu antecedente a_n .

Exemplo

Determine o domínio, o contradomínio e a imagem da sequência $f: \mathbb{N}^* \to \mathbb{R}$, tal que $a_1 = 2$ e $a_{n+1} = a_n + 2n$.

Se $(a_n) = (a_1, a_2, a_3, ..., a_n, ...) = (2, 4, 8, 14, 22, ...),$ então:

$$D(f) = \mathbb{N}^*, CD(f) = \mathbb{R},$$

 $Im(f) = \{2, 4, 8, 14, 22,...\}.$

3. CLASSIFICAÇÃO DAS SEQUÊNCIAS

□ Sequências monotônicas

- 1. (a_n) é ESTRITAMENTE CRESCENTE se, e somente se, $a_n < a_{n+1}, \forall n \in \mathbb{N}^*$.
- 2. (a_n) é CRESCENTE se, e somente se, $a_n \le a_{n+1}$, $\forall n \in \mathbb{N}^*$.
- 3. (a_n) é ESTRITAMENTE DECRESCENTE se, e somente se, $a_n > a_{n+1}$, $\forall n \in \mathbb{N}^*$.
- 4. (a_n) é DECRESCENTE se, e somente se, $a_n \ge a_{n+1}$, $\forall n \in \mathbb{N}^*$.
- 5. (a_n) é CONSTANTE se, e somente se, $a_n = a_{n+1}$, $\forall n \in \mathbb{N}^*$.

Sequências alternantes

Uma sequência (a_n) é ALTERNANTE se, e somente se, (a_n) NÃO é MONOTÔNICA.

4. DEFINIÇÃO DE PA

Sejam $\bf a$ e $\bf r$ dois números reais. Chama-se PRO-GRESSÃO ARITMÉTICA (PA) à SEQUÊNCIA $\bf f=(a_n)$, tal que:

$$\begin{cases} \mathbf{a_1} = \mathbf{a} \\ \mathbf{a_{n+1}} = \mathbf{a_n} + \mathbf{r}, \, \forall n \in \mathbb{N}^*, \end{cases}$$

ou seja,
$$(a_n) = (a, a + r, a + 2r, a + 3r, ...)$$
.

O número real r chama-se RAZÃO da PA Seque da definição que:

$$r = a_{n+1} - a_n, \forall n \in \mathbb{N}^*$$

Assim,
$$r = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ...$$

Exemplos

 $(a_n) = (-10, -8, -6, -4, ...)$ é uma PA de razão 2. $(a_n) = (10, 8, 6, 4, ...)$ é uma PA de razão – 2.

 $(a_n) = (10, 10, 10, 10, ...)$ é uma PA de razão 0.

5. CLASSIFICAÇÃO

Se (a_n) é uma PA, então:

- (a_n) é estritamente crescente $\Leftrightarrow r > 0$
- (a_n) é estritamente decrescente ⇔ r < 0
- (a_n) é constante $\Leftrightarrow r = 0$

6. TERMO GERAL DE UMA PA

Pela definição de PA, podemos concluir que:

$$a_n = a_1 + (n - 1) \cdot r$$

Se a_n e a_m são dois termos quaisquer de uma PA então:

$$a_n = a_m + (n - m) \cdot r$$

Exemplo

Na progressão aritmética $(a_n) = (5, 8, 11, ...)$, o décimo termo pode ser obtido por:

$$a_{10} = a_1 + (10 - 1) \cdot r$$

 $a_1 = 5 e r = 3$ \Rightarrow
 $\Rightarrow a_{10} = 5 + 9 \cdot 3 = 32$

ou

$$a_{10} = a_3 + (10-3) \cdot r$$

 $a_3 = 11 e r = 3$ \Rightarrow

$$\Rightarrow a_{10} = 11 + 7 \cdot 3 = 32$$

MÓDULOS 12 e 13

Propriedade e Soma dos Termos de uma PA

1. TERMOS EQUIDISTANTES DOS EXTREMOS

□ Definição

Dois termos são chamados equidistantes dos extremos se o número de termos que precede um deles é igual ao número que sucede o outro.

$$a_1, \dots, a_p, \dots, \underbrace{a_k, \dots, a_n}$$

(p - 1) termos (n - k) termos

Se a_p e a_k são termos equidistantes, então:

$$p-1=n-k \Leftrightarrow p+k=1+n$$

□ Teorema

A soma de dois **termos equidistantes** dos extremos é igual à soma dos extremos, isto é,

$$\mathbf{a_n} + \mathbf{a_k} = \mathbf{a_1} + \mathbf{a_n}$$

2. PROPRIEDADE DA PROGRESSÃO ARITMÉTICA

"Cada termo de uma PA é a MÉDIA ARITMÉTICA entre o termo anterior e o posterior."

Seja a PA: $(a_1, a_2, a_3, ..., a_{p-1}, a_p, a_{p+1}, ...)$, então:

$$a_p = \frac{a_{p-1} + a_{p+1}}{2}$$

3. SOMA DOS PRIMEIROS n TERMOS DE UMA PA

□ Teorema

Se (a_n) é uma PA e S_n é a SOMA DOS PRIMEIROS n termos de (a_n) , então:

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

Exemplo

Obter a soma dos n primeiros números naturais ímpares:

Resolução

Na PA $(a_n) = (1, 3, 5, 7, ...)$, tem-se:

$$a_n = a_1 + (n-1) \cdot r$$

 $a_1 = 1 \cdot e \cdot r = 2$ \Rightarrow

$$\Rightarrow$$
 $a_n = 1 + (n-1) \cdot 2 \Rightarrow a_n = 2n - 1$

Assim:
$$S_n = \frac{(a_1 + a_n) \cdot n}{2} \\ a_1 = 1 e a_n = 2n - 1$$
 $\Rightarrow S_n = \frac{(1 + 2n - 1) \cdot n}{2} = n^2$

MÓDULO 14

Progressões Geométricas

1. DEFINIÇÃO

Sejam a e q dois números reais. Chama-se PRO-GRESSÃO GEOMÉTRICA (PG) à SEQUÊNCIA $f = (a_n)$, tal que:

$$\begin{cases} \mathbf{a_1} = \mathbf{a} \\ \mathbf{a_{n+1}} = \mathbf{a_n} \cdot \mathbf{q}, \ \forall n \in \mathbb{N}^* \end{cases}$$

Portanto:

$$(a_n) = (a, aq, aq^2, aq^3,...)$$

O número real q chama-se RAZÃO DA PG

Segue da definição que, se $a_1 \neq 0$ e $q \neq 0$, então:

$$q = \frac{a_{n+1}}{a_n}, \forall n \in \mathbb{N}^*$$

Assim,
$$q = \frac{a_2}{a_1} = \frac{a_3}{a_2} = \frac{a_4}{a_3} = \dots$$

2. CLASSIFICAÇÃO

Se (a_n) é uma PG, então:

• (a_n) é ESTRITAMENTE CRESCENTE

$$\Rightarrow \begin{cases} a_1 > 0 e q > 1 \\ ou \\ a_1 < 0 e 0 < q < 1 \end{cases}$$

• (a_n) é ESTRITAMENTE DECRESCENTE

$$\Rightarrow \begin{cases} a_1 > 0 e 0 < q < 1 \\ ou \\ a_1 < 0 e q > 1 \end{cases}$$

- (a_n) é CONSTANTE \Rightarrow q = 1 e $a_1 \neq 0$
- (a_n) é SINGULAR \Rightarrow $a_1 = 0$ ou q = 0
- (a_n) é ALTERNANTE $\Rightarrow a_1 \neq 0$ e q < 0

TERMO GERAL DE UMA PG

Pela definição de PG, podemos concluir que:

Se a_n e a_m são dois termos quaisquer de uma PG NÃO SINGULAR, então:

Exemplo

Na PG $(a_n) = (1, 2, 4, 8, ...)$, o décimo termo pode ser obtido por:

$$a_{10} = a_1 \cdot q^{10-1}$$

 $a_1 = 1 \text{ e } q = 2$ $\Rightarrow a_{10} = 1 \cdot 2^9 = 512$

$$a_{10} = a_4 \cdot q^{10-4}$$

 $a_4 = 8 e q = 2$ $\Rightarrow a_{10} = 8 \cdot 2^6 = 512$

Progressão Geométrica: Propriedades e Fórmula do Produto

1. TERMOS EQUIDISTANTES

"O produto de dois termos equidistantes dos extremos é igual ao produto dos extremos."

$$a_p \cdot a_k = a_1 \cdot a_n$$
, com p + k = 1 + n

2. MÉDIA GEOMÉTRICA

"Cada termo de uma P.G., a partir do segundo, é a MÉDIA GEOMÉTRICA entre o termo anterior e o posterior".

Seja a P.G.:
$$(a_1, a_2, ..., a_{p-1}, a_p, a_{p+1}...)$$

Então:
$$a_{p}^{2} = a_{p-1} \cdot a_{p+1}$$

Exemplo

Se (a_n) = (1, 2, 4, 8, 16, 32, 64, 128, 256, ...) é uma P.G., então

$$a_1 \cdot a_9 = a_2 \cdot a_8 = a_3 \cdot a_7 = a_4 \cdot a_6 = a_5^2$$
,
pois 1 · 256 = 2 · 128 = 4 · 64 = 8 · 32 = 16^2

3. PRODUTO DOS n PRIMEIROS TERMOS DE UMA P.G.

□ Teorema

Se (a_n) é uma P.G. e P_n é PRODUTO DOS n PRIMEI-ROS TERMOS, então:

$$|\mathbf{P}_{\mathsf{n}}| = \sqrt{(\mathbf{a}_{\mathsf{1}} \cdot \mathbf{a}_{\mathsf{n}})^{\mathsf{n}}}$$

Observação

A fórmula acima nos permite calcular o módulo do produto; para obter o sinal de $\,{\rm P}_{\rm n}$, basta analisar o sinal dos termos.

Exemplo

Na P.G. $(a_n) = (1, -3, 9, -27, 81 ...)$, o produto dos 8 primeiros termos é 3^{28} , pois:

•
$$q = \frac{a_2}{a_1} = \frac{-3}{1} = -3$$

•
$$a_8 = a_1 \cdot q^7 \Rightarrow a_8 = 1 \cdot (-3)^7 = (-1) \cdot 3^7$$

•
$$|P_8| = \sqrt{(a_1 \cdot a_8)^8} = \sqrt{(1 \cdot (-1) \cdot 3^7)^8} = \sqrt{3^{56}} \Leftrightarrow |P_8| = 3^{28}$$

• Dos 8 termos, 4 são estritamente positivos e 4 são estritamente negativos.

Assim, como a quantidade dos negativos é par (4), o produto será positivo.

Logo,
$$P_8 = 3^{28}$$

4. SOMA DOS n PRIMEIROS TERMOS DE UMA P.G.

□ Teorema

Se (a_n) é uma P.G. de razão q e S_n é a soma dos **n** primeiros termos de (a_n) , então:

$$s_n = n \cdot a_1$$
, se q = 1

$$S_n = \frac{a_1 \cdot (1 - q^n)}{1 - q}$$
 ou

$$S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$
, se $q \ne 1$

Exemplo

A soma dos 10 primeiros termos da P.G.

$$(a_n) = (1, 3, 9, 27, 81, ...)$$
 é 29524, pois:

•
$$q = \frac{a_2}{a_1} = \frac{3}{1} = 3$$

•
$$S_{10} = \frac{a_1 \cdot (q^{10} - 1)}{q - 1} \Leftrightarrow$$

$$\Leftrightarrow S_{10} = \frac{1 \cdot (3^{10} - 1)}{3 - 1} = \frac{3^{10} - 1}{2} \Leftrightarrow S_{10} = 29524$$

MÓDULOS 16 e 17

Soma dos Termos de uma Progressão Geométrica e Progressão Harmônica

1. SOMA DOS n PRIMEIROS TERMOS DE UMA P.G.

Se (a_n) é uma P.G. de razão $q \ne 1$ e s_n é a soma dos n primeiros termos de (a_n) , então:

$$S_n = \frac{a_1 \cdot (1 - q^n)}{1 - q} = \frac{a_1 \cdot (q^n - 1)}{q - 1}$$

Exemplo

A soma dos dez primeiros termos da P.G.

$$(a_n) = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...\right) \acute{e} \frac{1023}{512}, pois$$

$$S_{10} = \frac{a_1 \cdot (1 - q^{10})}{1 - q} = \frac{1 \cdot \left(1 - \left(\frac{1}{2}\right)^{10}\right)}{1 - \frac{1}{2}} = \frac{1023}{512}$$

2. PROGRESSÃO HARMÔNICA (P.H.)

Seja (a_n) uma sequência de termos não nulos. A sequência (a_n) é uma PROGRESSÃO HARMÔNICA (P.H.) se, e somente se, a sequência $\left(\frac{1}{a_n}\right)$ é uma PROGRESSÃO ARITMÉTICA (P.A). Isto é, a sequência $(a_1, a_2, ..., a_n ...)$ é uma P.H. se, e somente se, a sequência:

$$\left(\frac{1}{a_1}; \frac{1}{a_2}; \frac{1}{a_3}; ...; \frac{1}{a_n}\right)$$
... é uma P.A.

Exemplo

O nono termo da P.H.

$$(a_n) = \left(\frac{1}{9}, \frac{1}{7}, \frac{1}{5}, \dots\right) e^{-\frac{1}{7}}, \text{ pois:}$$

- Se $\left(\frac{1}{9}, \frac{1}{7}, \frac{1}{5}, \ldots\right)$ é P.H., então $(9, 7, 5 \ldots)$ é P.A.
- Na P.A. (9, 7, 5, ...), o nono termo é: $a_9 = a_1 + 8r \Rightarrow a_9 = 9 + 8 \cdot (-2) \Rightarrow a_9 = -7$
- O nono termo da P.H. é $\frac{1}{-7} = -\frac{1}{7}$

3. O LIMITE DA SOMA DOS INFINITOS TERMOS DE UMA P.G.

Seja (a_n) uma P.G. de razão ${\bf q}$ tal que ${f -1} < {\bf q} < {\bf 1}$.

A soma $\bf S$ dos infinitos termos da P.G. existe, é finita e pode ser obtida calculando-se $\lim_{n \to \infty} S_n$.

De fato

$$-1 < q < 1 \rightarrow \lim_{n \to +\infty} (q^n) = 0$$
, portanto,

$$S = a_1 + a_2 + a_3 + ... = \lim_{n \to +\infty} S_n =$$

$$= \lim_{n \to +\infty} \frac{a_1 \cdot (1 - q^n)}{1 - q} = \frac{a_1 \cdot (1 - 0)}{1 - q} = \frac{a_1}{1 - q}$$

Assim sendo, a soma dos infinitos termos de uma P.G. de razão \mathbf{q} , com – 1 < q < 1, é

$$S = \frac{a_1}{1 - q}$$

O limite da soma dos infinitos termos da P.G.

$$(a_n) = \left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\right) \neq 2, \text{ pois}$$

$$S = a_1 + a_2 + a_3 + ... = 1 + \frac{1}{2} + \frac{1}{4} + ... \text{ \'e o limite}$$

de S_n quando **n** tende a infinito com $a_1 = 1$ e $q = \frac{1}{2}$.

Assim,

$$S = \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{a_1(1 - q^n)}{1 - q} =$$

$$= \frac{a_1}{1 - q} = \frac{1}{1 - \frac{1}{2}} = 2$$

1. DEFINIÇÕES

□ Definição de matriz m x n

$$M = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

ou
$$M = (a_{ij})_{mxn}$$

m = número de linhas

n = número de colunas

m ≠ n ⇒ matriz retangular

m = n ⇒ matriz quadrada

 $m = 1 \implies matriz linha$

n = 1 ⇒ matriz coluna

Exemplo

 $M = [a_{ij}]_{2x3} \text{ tal que } a_{ij} = i + j \text{ \'e a matriz retangular de}$ ordem 2x3 com

$$a_{11} = 1 + 1 = 2;$$

$$a_{12} = 1 + 2 = 3;$$

$$a_{12} = 1 + 3 = 4$$

$$a_{21} = 2 + 1 = 3;$$

$$a_{22} = 2 + 2 = 4$$
;

$$a_{23} = 2 + 3 = 5$$

Logo:

$$M = \begin{bmatrix} 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$$

□ Matriz nula de ordem m x n

$$0 = (x_{ij})_{mxn} \text{ tal que } x_{ij} = 0$$

$$0_{mxn} = \begin{bmatrix} 0 & \dots & 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & \dots & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & \dots & \dots & 0 \end{bmatrix} m \times n$$

☐ Matriz unidade (ou identidade de ordem n)

$$I_n = (x_{ii})_{n \times n}$$
 tal que:

$$X_{ii} = 1 \text{ se } i = j$$

$$x_{ii} = 0 \text{ se } i \neq j$$

$$I_{n} = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & 1 & 0 \\ 0 & 0 & \dots & \dots & \dots & 1 \end{bmatrix}_{n \times n}$$

Exemplo

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

é a matriz identidade de ordem 3.

■ Matriz oposta

Sendo $A = (a_{ii})_{mxn}$ e $B = (b_{ii})_{mxn}$, define-se

$$B = (-A) \Leftrightarrow b_{ii} = -a_{ii}$$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \Leftrightarrow$$

$$\Leftrightarrow -A = \begin{bmatrix} -a_{11} & -a_{12} & \dots & -a_{1n} \\ \dots & \dots & \dots \\ -a_{m1} & -a_{m2} & \dots & -a_{mn} \end{bmatrix}$$

Matriz transposta

Sendo A = $(a_{ij})_{mxn}$, define-se a matriz transposta de A como sendo a matriz

$$A^{t} = (a'_{ji})_{nxm}$$
 tal que $a'_{ji} = a_{ij}$

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & \dots & a_{mn} \end{bmatrix}_{m \times n} \Leftrightarrow$$

$$\Leftrightarrow A^t = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} n \times m$$

Exemplo

A matriz linha $M^t = (1 \ 2 \ 3)$ é a matriz transposta da matriz coluna

$$M = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

2. IGUALDADE

Sendo $A = (a_{ij})_{mxn} e B = (b_{ij})_{mxn}$, define-se

$$A = B \Leftrightarrow a_{ij} = b_{ij}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} \Leftrightarrow$$

$$\Leftrightarrow \begin{cases} a_{11} = b_{11} \\ a_{12} = b_{12} \\ \dots \\ a_{1n} = b_{1n} \\ \dots \\ a_{mn} = b_{mn} \end{cases}$$

3. OPERAÇÕES

□ Adição

Sendo A = $(a_{ij})_{mxn}$, B = $(b_{ij})_{mxn}$ e C = $(c_{ij})_{mxn}$, define-se

$$C = A + B \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$$

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ \dots & \dots & \dots & \dots \\ b_{m1} & b_{m2} & \dots & b_{mn} \end{bmatrix} =$$

$$= \begin{bmatrix} (a_{11} + b_{11}) & (a_{12} + b_{12}) & \dots & (a_{1n} + b_{1n}) \\ \dots & \dots & \dots & \dots \\ (a_{m1} + b_{m1}) & (a_{m2} + b_{m2}) & \dots & (a_{mn} + b_{mn}) \end{bmatrix}$$

Exemplo

$$\begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix} + \begin{bmatrix} c & d \\ 3 & 4 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 + c & 2 + d \\ a + 3 & b + 4 \end{bmatrix}$$

■ Subtração

$$A - B = A + (-B)$$

Multiplicação escalar (de número real por matriz)

Sendo A = $(a_{ij})_{mxn}$, B = $(b_{ij})_{mxn}$ e α um número real qualquer, define-se:

$$\mathbf{B} = \alpha \cdot \mathbf{A} \Leftrightarrow \mathbf{b_{ii}} = \alpha \cdot \mathbf{a_{ii}}$$

$$\alpha \cdot \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ \dots & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right] =$$

$$= \begin{bmatrix} (\alpha . a_{11}) (\alpha . a_{12}) ... (\alpha . a_{1n}) \\ ... \\ (\alpha . a_{m1}) (\alpha . a_{m2}) ... (\alpha . a_{mn}) \end{bmatrix}$$

Exemplo

$$5 \cdot \begin{bmatrix} a & b & c \\ 1 & 2 & 3 \end{bmatrix} = \begin{bmatrix} 5a & 5b & 5c \\ 5 & 10 & 15 \end{bmatrix}$$

MÓDULO 11

Adição e Subtração de Arcos

Se a e b são as determinações de dois arcos, verifica-se que:

☐ Cosseno de (a + b)

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

□ Cosseno de (a – b)

$$cos(a - b) = cos[a + (-b)] =$$

= $cos a \cdot cos(-b) - sen a \cdot sen (-b)$
Como $cos (-b) = cos b e sen (-b) = -sen b, temos:$

$$cos(a - b) = cos a \cdot cos b + sen a \cdot sen b$$

□ Seno de (a + b)

$$sen(a + b) = sen a . cos b + cos a . sen b$$

□ Seno de (a - b)

$$sen(a - b) = sen[a + (-b)] =$$

= $sen a. cos(-b) + cos a. sen(-b)$
Como $cos (-b) = cos b e$
 $sen (-b) = - sen b, temos:$

$$sen(a - b) = sen a \cdot cos b - cos a \cdot sen b$$

Tangente de (a + b)

$$tg(a + b) = \frac{sen(a + b)}{cos(a + b)} =$$

$$= \frac{sen a \cdot cos b + cos a \cdot sen b}{cos a \cdot cos b - sen a \cdot sen b}$$

Dividindo o numerador e o denominador por $\cos a \cdot \cos b \neq 0$, temos

$$tg(a + b) = \frac{\frac{sen a}{cos a} + \frac{sen b}{cos b}}{1 - \frac{sen a}{cos a} \cdot \frac{sen b}{cos b}}$$

Portanto:

$$tg(a + b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Observação

a, b e (a + b) devem ser diferentes de $\frac{\pi}{2}$ + n . π $(n \in \mathbb{Z})$.

☐ Tangente de (a – b)

$$tg(a - b) = tg[a + (-b)] = \frac{tg a + tg(-b)}{1 - tg a \cdot tg(-b)}$$

Como: tg(-b) = -tg b, temos:

$$tg(a-b) = \frac{tg \ a - tg \ b}{1 + tg \ a \cdot tg \ b}$$

Observação

a, b e (a - b) devem ser diferentes de $\frac{\pi}{2}$ + n . π $(n \in \mathbb{Z}).$

MÓDULOS 12 e 13

Fórmulas do Arco Duplo

A partir das fórmulas de adição de arcos:

- cos (a + b) = cos a . cos b sen a . sen b
- sen (a + b) = sen a . cos b + cos a . sen b
- $tg(a + b) = \frac{tg a + tg b}{1 tg a \cdot tg b}$

podemos obter as fórmulas do arco duplo.

□ Fórmulas do arco duplo

São as expressões das funções trigonométricas de arcos da forma 2.a. É um caso particular de adição de arcos. É suficiente fazer **b** = **a** nas fórmulas acima.

□ Cálculo de cos (2.a)

 $\cos(2. a) = \cos(a + a) = \cos a \cdot \cos a - \sin a \cdot \sin a$ Assim,

$$\cos (2 \cdot a) = \cos^2 a - \sin^2 a$$
 ou ainda

a)
$$\cos(2.a) = \cos^2 a - (1 - \cos^2 a) = \cos^2 a - 1 + \cos^2 a$$

$$\cos (2 \cdot a) = 2 \cdot \cos^2 a - 1$$

b)
$$\cos (2.a) = (1 - \sin^2 a) - \sin^2 a$$

$$cos(2.a) = 1 - 2.sen^2a$$

☐ Cálculo de sen (2.a)

$$sen(2.a) = sen(a + a) = sen a . cos a + cos a . sen a$$

Assim,

☐ Cálculo de tg (2.a)

$$tg(2.a) = tg (a + a) = \frac{tg a + tg a}{1 - tg a \cdot tg a}$$

Assim.

$$tg (2.a) = \frac{2.tg a}{1-tg^2a}$$

com a
$$\neq \frac{\pi}{2} + n \cdot \pi$$
 e a $\neq \frac{\pi}{4} + n \cdot \frac{\pi}{2}$ (n $\in \mathbb{Z}$)

MÓDULO 14

Fórmulas do Arco Triplo e Transformação em Produto

1. FÓRMULAS DO ARCO TRIPLO

São as expressões das funções trigonométricas de arcos da forma **3** . **a**.

☐ Cálculo de cos (3.a)

 $\cos (3a) = \cos (2a + a)$ $\cos (3a) = \cos (2a) \cdot \cos a - \sin (2a) \cdot \sin a$ $\cos (3a) = (2 \cdot \cos^2 a - 1) \cdot \cos a - (2 \cdot \sin a \cdot \cos a) \cdot \sin a$ $\cos (3a) = 2 \cdot \cos^3 a - \cos a - 2 \cdot \cos a \cdot (1 - \cos^2 a)$ $\cos (3a) = 2 \cdot \cos^3 a - \cos a - 2 \cdot \cos a + 2 \cdot \cos^3 a$ Assim.

$$cos(3.a) = 4.cos^3a - 3.cos a$$

☐ Cálculo do sen (3.a)

 $\begin{array}{l} \text{sen (3a)} = \text{ sen (2a + a)} \\ \text{sen (3a)} = \text{sen (2a)} \cdot \text{cos a + cos (2a)} \cdot \text{sen a} \\ \text{sen (3a)} = 2 \cdot \text{sen a} \cdot \text{cos a} \cdot \text{cos a} + \\ + (1 - 2 \cdot \text{sen}^2 a) \cdot \text{sen a} \\ \text{sen (3a)} = 2 \cdot \text{sen a} \cdot (1 - \text{sen}^2 a) + \text{sen a} - 2 \cdot \text{sen}^3 a \\ \text{sen (3a)} = 2 \cdot \text{sen a} - 2 \cdot \text{sen}^3 a + \text{sen a} - 2 \cdot \text{sen}^3 a \\ \text{Assim,} \end{array}$

$$sen (3.a) = 3. sen a - 4. sen^3 a$$

2. FÓRMULAS DE TRANSFORMAÇÃO EM PRODUTO

O problema consiste em transformar certas expressões em que aparecem **soma** de funções trigonométricas de um ou mais arcos em expressões em que aparecem apenas **produtos** de funções trigonométricas dos mesmos arcos ou de outros arcos com eles relacionados.

Foi visto que:

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b(I)$$

$$cos(a - b) = cos a \cdot cos b + sen a \cdot sen b(II)$$

$$sen(a + b) = sen a \cdot cos b + cos a \cdot sen b (III)$$

$$sen(a - b) = sen a . cos b - cos a . sen b (IV)$$

Somando-se (ou subtraindo-se) convenientemente estas expressões, e fazendo-se

$$\begin{cases} a+b=p \\ a-b=q \end{cases} \Leftrightarrow \begin{cases} a=\frac{p+q}{2} \\ b=\frac{p-q}{2} \end{cases}, \text{ obtêm-se:}$$

I + II:

$$\cos p + \cos q = 2 \cdot \cos \left(\frac{p+q}{2}\right) \cdot \cos \left(\frac{p-q}{2}\right)$$

I - II

$$\cos p - \cos q = -2 \cdot \sin \left(\frac{p+q}{2}\right) \cdot \sin \left(\frac{p-q}{2}\right)$$

III + IV:

$$\operatorname{sen} p + \operatorname{sen} q = 2 \cdot \operatorname{sen} \left(\frac{p+q}{2} \right) \cdot \operatorname{cos} \left(\frac{p-q}{2} \right)$$

III - IV:

sen p - sen q = 2. cos
$$\left(\frac{p+q}{2}\right)$$
. sen $\left(\frac{p-q}{2}\right)$

que são chamadas **Fórmulas de Transformação em Produto** ou **Fórmulas de Prostaférese**.

3. APLICAÇÃO

 Transformar em produto a expressão: cos 5x + cos 3x

Resolução

$$\cos 5x + \cos 3x = 2.\cos\left(\frac{5x + 3x}{2}\right).\cos\left(\frac{5x - 3x}{2}\right) =$$

 $= 2 \cdot \cos(4x) \cdot \cos x$

• Simplificar a expressão: $E = \frac{\text{sen } 7x + \text{sen } 3x}{\text{cos } 7x + \text{cos } 3x}$

Resolução

$$E = \frac{\sin 7x + \sin 3x}{\cos 7x + \cos 3x} = \frac{2.\sin\left(\frac{7x + 3x}{2}\right).\cos\left(\frac{7x - 3x}{2}\right)}{2.\cos\left(\frac{7x + 3x}{2}\right).\cos\left(\frac{7x - 3x}{2}\right)} = \frac{2.\sin(5x).\cos(2x)}{2} = tg(5x)$$

Relações Trigonométricas em um Triângulo Qualquer

A trigonometria permite determinar elementos (lados ou ângulos) não dados de um triângulo.

A obtenção desses elementos, em um triângulo qualquer, fundamenta-se em relações existentes entre os elementos (lados e ângulos) do triângulo. As relações mais importantes são conhecidas como **Lei dos Senos** e **Lei dos Cossenos**.

□ Lei dos Senos

"Em todo triângulo, as medidas dos lados são proporcionais aos senos dos ângulos opostos e a razão de proporcionalidade é a medida do diâmetro da circunferência circunscrita ao triângulo."

Consideremos o triângulo ABC, inscrito na circunferência de raio **R**. Verifica-se que:

$$\frac{a}{\operatorname{sen} A} = \frac{b}{\operatorname{sen} B} = \frac{c}{\operatorname{sen} C} = 2 \cdot R$$

Demonstração:

Seja o triângulo ABC (da figura abaixo), inscrito na circunferência de raio R:

Se BD= 2 . R é diâmetro da circunferência, então
 C = 90° e, portanto,

$$sen D = \frac{BC}{BD} \Leftrightarrow$$

$$\Leftrightarrow$$
 sen D = $\frac{BC}{2 \cdot R}$ \Leftrightarrow 2R = $\frac{BC}{\text{sen D}}$

II) Como BÂC ≅ BDC (são ângulos inscritos determinando o mesmo arco BC), então sen D= sen A.

De I e II, resulta que:

$$2 \cdot R = \frac{BC}{\text{sen A}} \Leftrightarrow 2 \cdot R = \frac{a}{\text{sen A}}$$

Analogamente se demonstra que:

$$2.R = \frac{b}{\text{sen B}} e 2.R = \frac{c}{\text{sen C}}$$

□ Lei dos Cossenos

"Em todo triângulo, o quadrado da medida de um lado é igual à soma dos quadrados das medidas dos outros lados, menos o dobro do produto dessas medidas pelo cosseno do ângulo que eles formam."

Seja o triângulo ABC, da figura. Verifica-se que:

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos A$$

$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos C$$

Demonstração:

Seja o triângulo ABC (da figura anterior) e **h** a altura relativa ao lado AC:

I) No ∆ ABD, temos:

$$\cos A = \frac{AD}{AB} \Leftrightarrow AD = c \cdot \cos A$$

$$II)CD = b - AD \Leftrightarrow CD = b - c \cdot cos A$$

De \mathbb{I} e $\mathbb{I}\mathbb{I}$ e como $h^2 = c^2 - AD^2 = a^2 - CD^2$ (Teorema de Pitágoras), resulta que:

 $a^{2} - (b - c \cdot \cos A)^{2} = c^{2} - (c \cdot \cos A)^{2} \Leftrightarrow$ $\Leftrightarrow a^{2} - b^{2} + 2 \cdot b \cdot c \cdot \cos A - c^{2} \cdot \cos^{2}A =$ $= c^{2} - c^{2} \cdot \cos^{2}A \Leftrightarrow$ $\Leftrightarrow a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos A.$

Tomando-se as outras alturas do triângulo, de modo análogo, obtêm-se:

$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos B$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos C$$

MÓDULO 16

Coordenadas Cartesianas Ortogonais

INTRODUÇÃO

Considere dois eixos, \overrightarrow{Ox} (eixo das abscissas) e \overrightarrow{Oy} (eixo das ordenadas), perpendiculares no ponto \bullet . O plano determinado pelos 2 eixos fica dividido em 4 quadrantes, numerados conforme a figura.

Tomemos um ponto \mathbf{P} do plano e por ele conduzamos as paralelas aos eixos, que cortarão \overrightarrow{Ox} e \overrightarrow{Oy} , respectivamente em P_1 e P_2 .

NOMENCLATURA

- **Abscissa** de P é o número real **x** = OP₁
- Ordenada de P é o número real y = OP₂
- **Coordenadas** de P são os números reais **x** e **y**, indicados na forma de par ordenado **P** (**x**; **y**)

□ Observe que:

• Sinais dos pontos nos quadrantes

\overrightarrow{AB} paralelo a $\overrightarrow{Ox} \Leftrightarrow y_A = y_B$

$$\overrightarrow{AB}$$
 paralelo a $\overrightarrow{Oy} \Leftrightarrow x_A = x_B$

1. PONTO MÉDIO DE UM SEGMENTO

Sejam $A(x_A; y_A)$, $B(x_B; y_B)$ e o ponto $M(x_M; y_M)$,

médio de AB.

Pelo Teorema de Tales, conclui-se que:

$$x_{M} = \frac{x_{A} + x_{B}}{2}$$

$$y_{M} = \frac{y_{A} + y_{B}}{2}$$

Portanto, as coordenadas do ponto M são

$$M\left(\frac{x_A + x_B}{2}; \frac{y_A + y_B}{2}\right)$$

2. DISTÂNCIA ENTRE DOIS PONTOS

Sejam \mathbf{A} ($\mathbf{x_A}$; $\mathbf{y_A}$) e \mathbf{B} ($\mathbf{x_B}$; $\mathbf{y_B}$). Pelo Teorema de Pitágoras, temos:

$$d = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

MÓDULO 18

Alinhamento de 3 Pontos - Curvas

1. ÁREA DE UM TRIÂNGULO

- □ Dados três pontos distintos, A(**x_A**; **y_A**), B(**x_B**; **y_B**)
- e C($\mathbf{x}_{\mathbf{c}}$; $\mathbf{y}_{\mathbf{c}}$), temos duas posições a considerar:
 - os três pontos estão alinhados:
 - os três pontos constituem um **triângulo**.
- Considerando-se o determinante

$$\mathbf{D} = \begin{bmatrix} \mathbf{x}_{A} & \mathbf{y}_{A} & \mathbf{1} \\ \mathbf{x}_{B} & \mathbf{y}_{B} & \mathbf{1} \\ \mathbf{x}_{C} & \mathbf{y}_{C} & \mathbf{1} \end{bmatrix},$$

constituído pelos pontos A, B e C, verifica-se que:

- a condição necessária e suficiente para que A, B
- e C sejam colineares é D = 0;
 - a condição necessária e suficiente para que A, B
- e C formem um triângulo é D ≠ 0;
- se A, B e C formam um triângulo, sua área será igual a

$$S_{\Delta ABC} = \frac{|D|}{2}$$

Exemplos

1) Obter a área do triângulo com vértices A (-2; 3), B (4; 0) e C (1; 5).

Resolução

$$D = \begin{bmatrix} -2 & 3 & 1 \\ 4 & 0 & 1 \\ 1 & 5 & 1 \end{bmatrix} = 3 + 20 - 12 + 10 = 21$$

$$S_{\Delta ABC} = \frac{|D|}{2} = \frac{21}{2} = 10,5 \text{ u.a.}$$

2) Determinar **k**, para que os pontos A(k; 2), B(−1; 3) e (1; 0) sejam colineares.

Resolução

A, B, C alinhados
$$\Leftrightarrow$$
 D = 0 \Leftrightarrow $\begin{vmatrix} k & 2 & 1 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{vmatrix} = 0 \Leftrightarrow$

$$\Leftrightarrow$$
 3. k + 2 - 3 + 2 = 0 \Leftrightarrow k = - $\frac{1}{3}$

2. CURVAS

- ☐ Seja **s** uma curva num sistema de coordenadas cartesianas ortogonais e f (x; y) = 0 a sua equação. Note que
 - todos os pontos da curva s satisfazem à equação;
- todas as soluções da equação representam pontos da curva s.

Obs.: Dentre as principais curvas, estudaremos com detalhes a **reta** e a **circunferência**.

- No estudo das curvas, dois problemas devem ser destacados.
- 1º) **Interceptos** (intersecção da curva com os eixos coordenados).

Lembrando que, para se obter pontos de uma curva, basta atribuir valores a **x** ou **y** na equação da curva, a determinação dos interceptos é feita da seguinte maneira:

- interceptos no eixo **x**: faz-se **y = 0**, na equação da curva, calculando-se o valor de **x**.
- interceptos no eixo y: faz-se x = 0, na equação da curva, calculando-se o valor de y.

Na figura, $A(x_A; 0)$ é o **intercepto** no eixo \mathbf{x} e $B(0; y_B)$ é o **intercepto** no eixo \mathbf{y} .

2º) Intersecção de duas curvas

As intersecções de duas curvas são os pontos de encontro entre elas.

As **coordenadas** dos pontos de intersecção são as **soluções reais**, obtidas na resolução do **sistema** determinado pelas equações das duas curvas.

Na figura, $P(x_p; y_p)$ é o ponto de **intersecção** entre as curvas $\mathbf{s_1}$ e $\mathbf{s_2}$.

FRENTE 4

Geometria Plana

MÓDULO 11

Relações Métricas nos Triângulos Retângulos

□ Elementos

BCé a hipotenusa

AB e AC são os catetos

AH é a altura relativa à hipotenusa

BH e CH são, respectivamente, as projeções dos catetos AB e AC sobre a hipotenusa BC.

□ Relações

No triângulo retângulo ABC da figura, sendo BC = a, AC = b, AB = c, AH = h, BH = m e CH = n, então valem as seguintes relações:

1)
$$\mathbf{b^2} = \mathbf{a \cdot n}$$

2) $\mathbf{c^2} = \mathbf{a \cdot m}$ (Relações de Euclides)

4)
$$h^2 = m \cdot n$$

$$5) b.c = a.h$$

Demonstrações

1) Os triângulos HCA e ACB são semelhantes pelo critério (AA ~).

Assim:

$$\frac{HC}{AC} = \frac{CA}{CB} \Leftrightarrow \frac{n}{b} = \frac{b}{a} \Leftrightarrow b^2 = a \cdot n$$

2) Os triângulos HBA e ABC são semelhantes pelo critério (AA \sim).

Assim:

$$\frac{HB}{AB} = \frac{BA}{BC} \Leftrightarrow \frac{m}{c} = \frac{c}{a} \Leftrightarrow$$

$$\Leftrightarrow$$
 $c^2 = a \cdot m$

3) Somando membro a membro as relações demonstradas nos itens 1 e 2, tem-se:

$$an + am = b^2 + c^2 \Leftrightarrow a(n + m) = b^2 + c^2 \Leftrightarrow$$

$$\Leftrightarrow$$
 a.a = $b^2 + c^2 \Leftrightarrow a^2 = b^2 + c^2$

4) Os triângulos HBA e HAC são semelhantes pelo critério (AA ~).

Assim:

$$\frac{HB}{HA} = \frac{HA}{HC} \Leftrightarrow \frac{m}{h} = \frac{h}{n} \Leftrightarrow$$

$$\Leftrightarrow$$
 $h^2 = m \cdot n$

5) Os triângulos HBA e ABC são semelhantes pelo critério (AA ~).

Assim:

$$\frac{HA}{AC} = \frac{BA}{BC} \Leftrightarrow \frac{h}{b} = \frac{c}{a} \Leftrightarrow$$

1. TRIÂNGULO ACUTÂNGULO

"Em todo triângulo acutângulo, o quadrado da medida do lado oposto a um ângulo agudo é igual à soma dos quadrados das medidas dos outros dois lados, MENOS duas vezes o produto da medida de um deles pela medida da projeção do outro sobre ele."

Assim, no triângulo acutângulo ABC da figura, tem-se:

$$c^2 = a^2 + b^2 - 2an$$

Demonstração

1)
$$c^2 = h^2 + m^2 \Leftrightarrow h^2 = c^2 - m^2 \Leftrightarrow h^2 = c^2 - (a - n)^2$$

2) $b^2 = h^2 + n^2 \Leftrightarrow h^2 = b^2 - n^2$

De (1) e (2), tem-se:

$$c^2 - (a - n)^2 = b^2 - n^2 \Leftrightarrow c^2 = a^2 + b^2 - 2$$
 an

2. TRIÂNGULO OBTUSÂNGULO

"Em todo triângulo obtusângulo, o quadrado da medida do lado oposto ao ângulo obtuso é igual à soma dos quadrados das medidas dos outros dois, MAIS duas vezes o produto da medida de um deles pela medida da projeção do outro sobre ele."

Assim, no triângulo obtusângulo ABC da figura, tem-se:

$$c^2 = a^2 + b^2 + 2$$
 an

Demonstração

1)
$$c^2 = h^2 + m^2 \Rightarrow h^2 = c^2 - m^2 \Leftrightarrow h^2 = c^2 - (a + n)^2$$

2) $b^2 = h^2 + n^2 \Leftrightarrow h^2 = b^2 - n^2$

De (1) e (2), tem-se:

$$c^2 - (a + n)^2 = b^2 - n^2 \Leftrightarrow c^2 = a^2 + b^2 + 2 an$$

Exemplo

Com os dados da figura seguinte, na qual a = BC, b = AC, c = AB, m = BD, n = DC e x = AD, prove que: $b^{2}m + c^{2}n = ax^{2} + amn$

Resolução

Seja z a medida da projeção de \overline{AD} sobre \overline{BC} .

No triângulo obtusângulo ADC, tem-se:

$$b^2 = x^2 + n^2 + 2nz \Leftrightarrow$$

$$\Leftrightarrow$$
 b²m = mx² + mn² + 2mnz (I)

No triângulo acutângulo ABD, tem-se:

$$c^2 = x^2 + m^2 - 2mz \Leftrightarrow c^2n = nx^2 + m^2n - 2mnz$$
 (II)

Somando-se (I) e (II), membro a membro, tem-se:

$$b^{2}m + c^{2}n = mx^{2} + nx^{2} + mn^{2} + m^{2}n \Leftrightarrow$$

$$\Leftrightarrow$$
 b²m + c²n = (m + n)x² + (m + n)mn \Leftrightarrow

$$\Leftrightarrow$$
 b²m + c²n = ax² + amn

3. NATUREZA DE TRIÂNGULOS

Sendo **a**, **b** e **c** as medidas dos lados de um triânqulo e **a** a maior delas, têm-se:

1. DEFINIÇÃO

Entende-se como "lugar geométrico dos pontos que possuem a propriedade P" um conjunto de pontos tais que eles, e somente eles, possuem a propriedade P.

Assim, se uma figura é um lugar geométrico, então todos os seus pontos possuem uma certa propriedade e todos os pontos que possuem essa propriedade pertencem à figura.

2. PRINCIPAIS LUGARES GEOMÉTRICOS PLANOS

□ Circunferência (LG-1)

Circunferência é o lugar geométrico dos pontos de um plano, cujas distâncias a um ponto fixo desse plano são uma constante (e igual ao raio).

C é o centro da circunferência. R é o raio da circunferência.

□ Par de paralelas (LG-2)

O lugar geométrico dos pontos de um plano que distam "K" de uma reta desse plano é um par de retas paralelas a esta, situadas no plano e a uma distância "K" desta reta.

Observe que qualquer ponto de r₁ ou r₂ está a uma distância "K" de r e vice-versa.

□ Mediatriz (LG-3)

Mediatriz de um segmento é a reta perpendicular ao segmento dado no seu ponto médio.

Exemplo

Na figura, como $\overline{AM}\cong \overline{BM}$ e $M_{\overline{AB}}\perp \overline{AB}$, tem-se que $M_{\overline{AB}}$ é mediatriz do segmento \overline{AB} .

Pode-se ainda definir mediatriz como o lugar geométrico dos pontos de um plano que equidistam de dois pontos (distintos) dados desse plano.

Assim, se $M_{\overline{AB}}$ é a mediatriz do segmento \overline{AB} da figura, então qualquer ponto de $M_{\overline{AB}}$ equidista de A e B, e qualquer ponto do plano que equidiste de A e B pertence a $M_{\overline{AB}}$.

Notação

$$X \subseteq M_{\overline{AB}} \Leftrightarrow \overline{AX} \cong \overline{BX}$$

□ Bissetriz (LG-4)

Bissetriz é o lugar geométrico dos pontos de um plano que equidistam dos lados de um ângulo desse plano.

Exemplo

 \overrightarrow{Ox} é a bissetriz do ângulo r \overrightarrow{Os} da figura. $P \in \overrightarrow{Ox}$ se, e somente se, as distâncias de P a \overrightarrow{Or} e \overrightarrow{Os} forem iguais.

□ Conseguência

As bissetrizes dos ângulos formados por **duas** retas concorrentes formam um par de retas chamado "PAR DE

BISSETRIZES". Qualquer ponto situado em uma reta do "PAR" equidistará das duas retas concorrentes e qualquer ponto do plano que equidiste das duas retas concorrentes, pertencerá ao "PAR DE BISSETRIZES".

MÓDULO 14

Pontos e Segmentos Notáveis no Triângulo

1. MEDIANA

É o segmento com extremos num vértice e no ponto médio do lado oposto.

Todo triângulo tem três medianas, que se interceptam num ponto chamado "BARICENTRO".

O baricentro divide cada mediana na razão 2:1.

Exemplo

 \overline{AM}_A , \overline{BM}_B e \overline{CM}_C são as medianas do triângulo ABC.

G é o BARICENTRO.

$$\frac{\mathbf{AG}}{\mathbf{GM}_{\mathbf{A}}} = \frac{\mathbf{BG}}{\mathbf{GM}_{\mathbf{B}}} = \frac{\mathbf{CG}}{\mathbf{GM}_{\mathbf{C}}} = \frac{\mathbf{2}}{\mathbf{1}}$$

2. BISSETRIZ NO TRIÂNGULO

É o segmento com extremos num vértice e na reta

suporte do lado oposto, contido na bissetriz do ângulo do vértice.

As bissetrizes internas interceptam-se num ponto chamado "INCENTRO" que é o centro da circunferência tangente internamente aos lados do triângulo (circunferência inscrita).

Exemplo

 \overline{AS}_A , \overline{BS}_B e \overline{CS}_C são as bissetrizes internas do triângulo ABC.

I é o INCENTRO.

Observação

As bissetrizes externas interceptam-se duas a duas em três pontos denominados EX-INCENTROS e estes são centros das circunferências que tangenciam as retas suportes dos lados do triângulo.

3. MEDIATRIZ NO TRIÂNGULO

É a reta perpendicular ao lado no ponto médio.

Todo triângulo tem três mediatrizes que se interceptam num ponto chamado "CIRCUNCENTRO".

O circuncentro é o centro da circunferência que contém os vértices do triângulo (circunferência circunscrita).

Exemplo

 $M_{\overline{AB}}$, $M_{\overline{BC}}$ e $M_{\overline{AC}}$ são, respectivamente, as mediatrizes dos lados \overline{AB} , \overline{BC} e \overline{AC} .

O é o CIRCUNCENTRO.

Observação

O circuncentro de um triângulo é interno, ponto médio da hipotenusa ou externo ao triângulo, conforme este seja acutângulo, retângulo ou obtusângulo, respectivamente.

4. ALTURA

É o segmento com extremos num vértice e na reta

suporte do lado oposto, sendo perpendicular a esta.

Todo triângulo tem três alturas, cujas retas suportes interceptam-se num ponto chamado "ORTOCENTRO".

Exemplo

 \overline{AH}_A , \overline{BH}_B e \overline{CH}_C são, respectiva-mente, as alturas relativas aos lados \overline{BC} , \overline{AC} e \overline{AB} .

O é o ORTOCENTRO.

O triângulo H_AH_BH_C é denominado triângulo órtico.

Observação

O ortocentro de um triângulo é interno, vértice do ângulo reto ou externo ao triângulo, conforme este seja acutângulo, retângulo ou obtusângulo, respectivamente.

5. PARTICULARIDADES

- Os pontos notáveis do triângulo têm nomes cujas iniciais formam a sigla "BICO".
- Em todo triângulo isósceles, os pontos notáveis são alinhados.
- Em todo triângulo equilátero, os pontos notáveis são coincidentes.

Ângulos na Circunferência

ÂNGULO CENTRAL

Ânaulo aue tem o vértice no centro da circunferência.

AB é o arco correspondente ao ângulo central AÔB.

Tomando-se para unidade de arco (arco unitário) o arco definido na circunferência por um ângulo central unitário (unidade de ângulo), temos que

"A medida de um arco de circunferência é igual à medida do ângulo central correspondente."

Assim, na figura acima: $\alpha = AB$

ÂNGULO INSCRITO

Ângulo que tem o vértice na circunferência e os lados são secantes a ela.

AB é o arco na circunferência. determinado pelos lados do ângulo inscrito APB.

A medida do ângulo inscrito é a metade da medida do arco que ele determina sobre a circunferência.

Assim, na figura anterior, tem-se

3. ÂNGULO **EXCÊNTRICO INTERIOR**

Ângulo de vértice num ponto interior à circunferência, distinto do centro.

ÁR e CD são arcos determinados pelos lados dos ângulos e prolongamentos destes sobre a circunferência.

A medida do ângulo excêntrico interior da figura anterior é dada por

$$\alpha = \frac{\widehat{AB} + \widehat{CD}}{2}$$

Exemplo

Calcular a medida x do ângulo agudo determinado pelas retas r e s da figura seguinte.

Resolução

O ângulo em questão é do tipo excêntrico interior e determina na circunferência arcos de 60° e 90°.

Assim:
$$x = \frac{60^{\circ} + 90^{\circ}}{2} \Leftrightarrow x = 75^{\circ}$$

4. ÂNGULO **EXCÊNTRICO EXTERIOR**

Ângulo de vértice num ponto exterior à circunferência e lados sobre semirretas secantes ou tangentes a ela.

AB e CD são arcos determinados pelos lados do ângulo sobre a circunferência.

A medida do ângulo excêntrico exterior da figura acima é dada por

$$\alpha = \frac{\widehat{AB} - \widehat{CD}}{2}$$

Exemplo

Calcular a medida y do ângulo agudo formado pelas retas r e s da figura seguinte.

Resolução

O ângulo em questão é do tipo excêntrico exterior e determina na circunferência arcos de 40° e 100°.

Potência de um Ponto em Relação a uma Circunferência

1. **DEFINIÇÃO**

Vamos considerar uma circunferência λ , um ponto P e vamos construir várias secantes à λ , que passam pelo ponto P.

Em qualquer secante, é constante o produto dos dois segmentos que têm uma extremidade no ponto P e a outra na circunferência λ .

Assim:

$$PA . PB = PC . PD =$$

= $PM . PN =$
= $PT . PT = (PT)^2 = p^2$

A constante p^2 é denominada "potência do ponto P em relação à circunferência λ ".

Exemplo

Com os dados das figuras a seguir, prove que, em ambos os casos, vale a relação

Demonstração

De acordo com o critério (AA~), em ambos os casos tem-se que os triângulos PAD e PCB são semelhantes.

Assim:

$$\frac{PA}{PC} = \frac{PD}{PB} \Leftrightarrow PA \cdot PB = PC \cdot PD$$

Observações

 Na figura seguinte, em que T é ponto de tangência, tem-se

$$PA \cdot PB = (PT)^2$$

Demonstração

Os triângulos PTA e PBT são semelhantes pelo critério (AA~).

Assim:
$$\frac{PT}{PB} = \frac{PA}{PT} \Leftrightarrow$$

 $\Leftrightarrow PA \cdot PB = (PT)^2$

2. Na figura seguinte, em que A e B são pontos de tangência, tem-se

$$PA = PB$$

Assim pode-se afirmar que, por um ponto exterior a um círculo, podem-se traçar duas tangentes à circunferência desse círculo e esse ponto equidista dos pontos de tangência.

Exemplo

No quadrilátero circunscritível ABCD da figura seguinte, tem-se

$$AB + CD = BC + DA$$

Pois: AF = EA, FB =

= BG, CH = GC e HD = DE

Assim: AF + FB + CH + HD =

= BG + GC + DE + EA

Logo: AB + CD = BC + DA

Área das Figuras Planas

% % % % % % %

1. DEFINIÇÃO

Área de uma figura é um número associado à sua superfície, que exprime a relação existente entre esta e a superfície de um quadrado de lado unitário.

Dizemos que duas superfícies são equivalentes, quando possuem a mesma área.

2. ÁREA DO TRIÂNGULO

 Em função da base e da altura

$$S = \frac{b \cdot h}{2}$$

• Em função dos lados

Sendo **a**, **b** e **c** as medidas dos lados de um triângulo qualquer, sua área é dada por

$$S = \sqrt{p (p - a) (p - b) (p - c)}$$

(Fórmula de Hierão)

em que p =
$$\frac{a + b + c}{2}$$

(semiperímetro)

Se o triângulo é equilátero de lado ℓ , então sua área é dada por

$$S = \frac{\ell^2 \sqrt{3}}{4}$$

• Em função de dois lados e do ângulo entre eles

Sendo $\bf a$ e $\bf b$ as medidas de dois dos lados de um triângulo e α a medida do ângulo entre eles, a sua área é dada por

$$S = \frac{a \cdot b \, sen \, \alpha}{2}$$

Em função do raio da circunferência inscrita

$$S = p \cdot r$$

(p é o semiperímetro)

$$p = \frac{a+b+c}{2}$$

 Em função do raio da circunferência circunscrita

$$S = \frac{a.b.c}{4R}$$

3. ÁREA DOS QUADRILÁTEROS

A superfície de qualquer quadrilátero pode ser "dividida" em duas regiões triangulares, quando se considera qualquer uma de suas diagonais.

Assim, a área de um quadrilátero é sempre igual à soma das áreas de dois triângulos.

Exemplo

A área S do quadrilátero da figura é dada por $\mathbf{S} = \mathbf{S_1} + \mathbf{S_2}$, em que $\mathbf{S_1}$ é a área do triângulo ABC e $\mathbf{S_2}$ é a área do triângulo CDA.

O cálculo das áreas dos quadriláteros notáveis pode ser executado de maneira mais simples, pelo emprego das seguintes fórmulas:

Trapézio

$$S = \frac{(B + b) \cdot h}{2}$$

Paralelogramo

 $S = b \cdot h$

Retângulo

$$S = a.b$$

Losango

$$S = \frac{D \cdot d}{2}$$

Quadrado

4. RAZÃO ENTRE ÁREAS DE

A razão entre as áreas de duas superfícies semelhantes é igual ao quadrado da razão de semelhança.

Exemplo

Se os triângulos ABC e MNP da figura forem semelhantes e tiverem áreas S₁ e S₂, respectivamente, então

$$\frac{\mathbf{b_1}}{\mathbf{b_2}} = \frac{\mathbf{h_1}}{\mathbf{h_2}} = \mathbf{k}$$

(razão de semelhança)

$$\frac{\mathbf{S_1}}{\mathbf{S_2}} = \mathbf{k^2}$$

Demonstração

Da semelhança dos triângulos ABC e MNP, tem-se

$$\frac{b_1}{b_2} = \frac{h_1}{h_2} = k$$

Por outro lado,

$$S_1 = \frac{b_1 \cdot h_1}{2} e S_2 = \frac{b_2 \cdot h_2}{2}$$

$$\frac{S_1}{S_2} = \frac{\frac{b_1 \cdot h_1}{2}}{\frac{b_2 \cdot h_2}{2}} \Leftrightarrow$$

$$\Leftrightarrow \frac{S_1}{S_2} = \frac{b_1 \cdot h_1}{b_2 \cdot h_2} \Leftrightarrow$$

$$\Leftrightarrow \frac{S_1}{S_2} = \frac{b_1}{b_2} \cdot \frac{h_1}{h_2} \Leftrightarrow$$

$$\Leftrightarrow \frac{S_1}{S_2} = k \cdot k \Leftrightarrow \frac{S_1}{S_2} = k^2$$

Exercício

Calcular a área S de um triângulo equilátero de lado "\ell".

1ª Resolução

$$S = \frac{\ell \cdot h}{2} = \frac{\ell \cdot \frac{\ell \sqrt{3}}{2}}{2} = \frac{\ell^2 \sqrt{3}}{4}$$

2ª Resolução

$$S = \frac{\ell \cdot \ell \cdot \text{sen } 60^{\circ}}{2} =$$

$$=\frac{\ell^2 \cdot \frac{\sqrt{3}}{2}}{2} = \frac{\ell^2 \sqrt{3}}{4}$$

3ª Resolução

$$p = \frac{\ell \cdot \ell \cdot \ell}{2} = \frac{3\ell}{2}$$

$$S = \sqrt{p(p - \ell)(p - \ell)(p - \ell)}$$

Assim.

$$S = \sqrt{\frac{3\ell}{2} \cdot \frac{\ell}{2} \cdot \frac{\ell}{2} \cdot \frac{\ell}{2}} =$$

$$=\sqrt{\frac{3\ell^4}{16}}=\frac{\ell^2\sqrt{3}}{4}$$

Área das Figuras Circulares

1. ÁREA DO CÍRCULO

A área de um círculo de raio R é expressa por

$$S = \pi R^2$$

Observação

O comprimento da circunferência de raio R é dado por C = 2π R, em que $\pi \cong 3,1416$.

2. ÁREA DA COROA CIRCULAR

Sendo S a área da coroa circular de raios R e r, tem-se

$$S = \pi (R^2 - r^2)$$

3. ÁREA DO SETOR CIRCULAR

A área do setor circular de raio R, limitado por um arco de comprimento

 ℓ , é dada por

$$S = \frac{\ell \cdot R}{2}$$

Observação

A área do setor circular é sempre uma "fração" da área do círculo no qual o setor está "contido".

Exemplo

A área do setor circular da figura abaixo é dada por

$$S = \frac{72^{\circ}}{360^{\circ}} \cdot \pi \cdot 5^2 = 5\pi$$

4. ÁREA DO SEGMENTO CIRCULAR

Sendo S a área do segmento circular limitado pela corda AB e pelo arco AB da figura, tem-se

$$S = \frac{R}{2} \left(\ell - h \right)$$

Exemplo

A área do segmento circular da figura abaixo é dada por

$$S = \frac{6}{2} (2\pi - 3\sqrt{3}) = 3 (2\pi - 3\sqrt{3})$$

Observação

Outra maneira de calcularmos a área do segmento circular da figura acima é a seguinte:

Calculamos a área do setor circular de 60° com raio r=6 e dela subtraímos a área de um triângulo equilátero de lado $\ell=6$.

Assim,

$$S = \frac{60^{\circ}}{360^{\circ}} \cdot \pi \cdot 6^2 - \frac{6^2 \sqrt{3}}{4} \Leftrightarrow$$

$$\Leftrightarrow$$
 S = $6\pi - 9\sqrt{3} \Leftrightarrow$

$$\Leftrightarrow$$
 S = 3(2 π – 3 $\sqrt{3}$)