Divvy Bike Usage Forecasting

Presented by: Snigda G

Chapters

Project Overview

Divvy

A bike-sharing program that operates in Chicago, Illinois, United States.

Objective

Predicting the number of trips for Divvy bikes on a monthly basis

Outcome

- **1. Resource Optimization**: Strategically allocate bikes and docking stations to high-demand areas, reducing instances of unavailability or overcrowding.
- **2. Expansion and Infrastructure Planning**: Installing additional docking stations or expanding Divvy's bike fleet during months with high demand.

Data Description

Project Overview

Our original dataset consists of approximately 4GB of data with Divvy bike trips between 2013 and 2023, with 9 features.

Due to the large size, which may cause the kernel to crash, we have finalized our data for modeling to include 3 main features, which are:

- 1. Year_month: from 06/2013 and 04/2023
- 2. Monthly Trip Count: number of trips in each month (in thousands)
- 3. Average Monthly Duration: average length of time for each trip in minutes (formula = total duration/total trip*60)

Train period = July 2013 - Dec 2021 & Test period = Jan 2022 - Apr 2023

EDA

Trip Duration

The users tend to use divvy bikes only for short durations.

EDA

Most Popular Stations

EDA

Most Popular Stations

Yearly Divvy Rides in Chicago

- Trend:
 Slightly
 Increasing
- patterns
 occurring on
 an annual
 basis

Regression

r = 0.342

Regression

Observed V/s Fitted Trend

Setting up for Regression with ARIMA error

Residuals

Regression with ARIMA error

ARIMA(1,0,0)(0,1,1)[12] residuals

Regression & Regression with ARIMA Error

ARIMA Model

ARIMA(2,0,3) with non-zero mean residuals

ARIMA (2,0,3) Model

SARIMA Model

ARIMA (1,0,0)(0,1,1)[12] with drift

SARIMA (1,0,0)(0,1,1)[12] Model

VAR (10) Model

Multiplicative v/s Additive

Accuracy Comparison

Decomposition of Multiplicative Time Series

Neural Network Autoregression(1,1,2) [12] Model

Model Selection

Comparing Forecast Residual in a plot

All the models, except for ARIMA and Neural Network seem to be give very similar results and closer to the actual values.

Model Selection

Observed Vs Predicted trip count values for test period Jan 2022 - April 2023

SARIMA model seems to be the best model as it has the least RMSE value

Future Work

Model

- Can apply expanding and sliding window to validate prediction (currently using only one time period to test prediction)
- Extend testing period to more than one year to see if the models can factor in seasonality for longer forecast period

Business Indication

- Fine Grained Temporal Analysis: Explore granular time intervals such as weekly, daily, or even hourly, helping Divvy optimize resources on a smaller time scale.
- Incorporating External Factors: Expand the predictive model by incorporating external factors that may influence trip counts
- User Behavior Analysis: Analyze user behavior and preferences from trip count data to inform marketing, infrastructure, and service improvements

Thank You

