BIOS 660/BIOS 672 (3 Credits): Probability and Statistical Inference I

Jianwen Cai

https://sakai.unc.edu/portal/site/bios660-bios672-3-credits
Notes 5

onditional Probability and Independence	2
Conditional Probability	. 3
cont	
Independence	. 5
Independence of many events	. 6
Independence of many events (cont.)	. 7
Independence of many events (cont.)	. 8
Sequential conditioning	. 9
The Birthday Problem	
The Birthday Problem	11
Turning around probabilities	12
Decomposition Formula (Total Probability)	13
(So called) Bayes' Theorem	14
Bayes and Screening	
Papanicolaou Example	16
Relative risks and relative odds	17
Bayes and Case Control Studies	18
dditional Reading	19
Additional Reading	20

Conditional Probability

If P(B) > 0 we define the *conditional probability* of the event A given B as

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Intuitively, conditioning on B means reducing the original sample space S to B, which becomes the new, reduced sample space. All probabilities are computed with respect to B. Notice:

$$P(A|\Omega) = \frac{P(A\cap\Omega)}{P(\Omega)} = P(A)$$

Disjoint events: If $A \cap B = \emptyset$, then P(A|B) = 0 and P(B|A) = 0.

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 3 / 20

cont.

Conditional probability satisfies the axioms of probability:

- 1. $P(\Omega|B) = 1$
- **2.** $P(A|B) \ge 0$
- 3. If A_1, A_2, \ldots are mutually exclusive events, then $P(\bigcup_{i=1}^{\infty} A_i | B) = \sum_{i=1}^{\infty} P(A_i | B)$

and all the other properties:

- 1. $P(\emptyset|B) = 0$
- **2.** $P(A|B) \le 1$
- 3. $P(A^c|B) = 1 P(A|B)$

etc.

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 4 / 20

Independence

Two events A and B are said to be *independent* if

$$P(A \cap B) = P(A)P(B). \tag{1}$$

Why? Because then

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

$$P(B|A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B)$$

This could have been taken as the definition, but (1) is easier to generalize. If A and B are independent, then so are

- A^c and B
- A and B^c
- A^c and B^c
- * Can two disjoint events be independent and vice versa? (HW)

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 5 / 20

Independence of many events

The events A_1, A_2, \ldots, A_n are mutually independent if for *every* subcollection A_{i_1}, \ldots, A_{i_k} of size $k = 2, \ldots, n$

$$P\bigg(\bigcap_{j=1}^k A_{i_j}\bigg) = \prod_{j=1}^k P(A_{i_j}).$$

Notice that is a very strong condition. But it is necessary to ensure that

$$P(A_i|A_{i_1},\ldots,A_{i_k}) = P(A_i)$$

for every j and every subcollection A_{i_1}, \ldots, A_{i_k} that does not include A_j . Pairwise independence is not enough.

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 6 / 20

Independence of many events (cont.)

Example: Toss a coin three times. Sample space Ω ={HHH, HHT, HTH HTT, THH, THT, TTH, TTT}. Define the events:

- $H_1 = \{$ The outcome of the first toss is heads $\}$ ={HHH, HHT, HTH, HTT}
- H_2 = { The outcome of the second toss is heads } ={HHH, HHT, THH, THT}
- $H_3 = \{$ The outcome of the third toss is heads $\}$ ={HHH, HTH, THH, TTH}

Suppose every outcome is equally likely. Then these events are independent.

```
H_1 \cap H_2 = \{HHH, HHT\}; H_1 \cap H_3 = \{HHH, HTH\}; H_2 \cap H_3 = \{HHH, THH\}; P(H_1) = P(H_2) = P(H_3) = 4/8 = 1/2; P(H_1 \cap H_2) = 2/8 = 1/4 = P(H_1)P(H_2); H_1 \cap H_2 \cap H_3 = \{HHH\}; P(H_1 \cap H_2 \cap H_3) = 1/8 = P(H_1)P(H_2)P(H_3) \}
```

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 7 / 20

Independence of many events (cont.)

Now define the events:

- $A_{12} = \{$ The outcome of the first toss equals the second $\}$
- $A_{13} = \{$ The outcome of the first toss equals the third $\}$
- $A_{23} = \{$ The outcome of the second toss equals the third $\}$

These events are pairwise independent but not mutually independent.

```
 \begin{array}{l} \text{($A_{12}$= \{ \text{ HHH, HHT, TTH, TTT } \}; $A_{13}$= \{ \text{HHH, HTH, THT, TTT } \}; $A_{23}$= \{ \text{HHH, HTT, THH, TTT} \}; } \\ P(A_{12}) = P(A_{13}) = P(A_{23}) = 4/8 = 1/2; \\ A_{12} \cap A_{13} = \{ \text{HHH, TTT } \}; \\ P(A_{12} \cap A_{13}) = 2/8 = 1/4 = P(A_{12})P(A_{13}). \end{array}
```

On the other hand,

```
A_{12}\cap A_{13}\cap A_{23}=\{\text{HHH, TTT}\}; \\ P(A_{12}\cap A_{13}\cap A_{23})=2/8=1/4\neq P(A_{12})P(A_{13})P(A_{23}).)
```

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 8 / 20

Sequential conditioning

By the definition of conditional probability:

$$P(A \cap B) = P(A)P(B|A)$$

$$P(A \cap B) = P(B)P(A|B)$$

This is useful for computing probabilities of sequential events.

E.g. What is the probability of dealing two aces in a row?

More generally:

$$P(A_1 \cap ... \cap A_n) = P(A_1)P(A_2|A_1)P(A_3|A_1A_2)...P(A_n|A_1...A_{n-1})$$

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 9 / 20

The Birthday Problem

In a group of *n* students in a class, what is the probability that at least two have the same birthday?

Solution:

Suppose we order the n students in an arbitrary order. Let D_j be the event that the first j have different birthdays. Based on page 22 in Notes 3, we have

$$P(D_j) = \frac{\text{No. of Samples with No Repetition}}{\text{No. of Samples}} = \frac{365!/(365-j)!}{365^j}$$

Let $D_j = \{A_1, A_2, A_3, \dots, A_j\}$, where A_1 is the birth day of the first person, A_2 is the birth day of the second person, etc., and all the A_i ($i = 1, 2, \dots, j$) are different. Based on sequential conditioning,

$$P(D_j) = P(\{A_1, A_2, A_3, \dots, A_j\})$$

$$= P(A_1)P(A_2|A_1)P(A_3|A_1A_2)\dots P(A_j|A_1 \dots A_{j-1})$$

$$= \frac{365}{365} \frac{365 - 1}{365} \dots \frac{365 - j + 1}{365} = \frac{365!/(365 - j)!}{365^j}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 10 / 20

BIOS 660/BIOS 672 (3 Credits) Notes 5 – 11 / 20

Turning around probabilities

Also by the definition of conditional probability:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)} \tag{2}$$

This is useful for computing conditional probabilities when the reverse conditioning is easier to compute.

E.g.: Prob. that it will rain given that it is thundering vs. prob. that it thundered given that it is raining.

(2) is called sometimes **Bayes' rule**. It is often used in a context where we want to know the probability that a particular hypothesis is true. We have an *a priori* belief in whether or not the hypothesis is true, then update that probability by collecting data.

E.g.: Suppose a priori boys are equally likely to be born as girls. Say 90% of boys play with trucks. Baby X plays with trucks. What is the probability that Baby X is a boy?

BIOS 660/BIOS 672 (3 Credits) Notes 5 – 12 / 20

Decomposition Formula (Total Probability)

Let $\{A_1, A_2, \ldots\}$ be a partition of Ω . Let B be any subset in Ω . Then

$$P(B) = \sum_{i=1}^{\infty} P(A_i)P(B|A_i)$$

Proof:

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 13 / 20

(So called) Bayes' Theorem

Let $\{A_1,A_2,\ldots\}$ be a partition of $\Omega.$ Let B be any subset in $\Omega.$ Then

$$P(A_j|B) = \frac{P(B|A_j)P(A_j)}{\sum_{i=1}^{\infty} P(B|A_i)P(A_i)}$$

Proof:

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 14 / 20

Bayes and Screening

An important application of Bayes' theorem is screening. Notation:

Let D be the disease:

D means diseased

 \overline{D} means "no disease"

and T be the diagnostic test:

 T^+ means a positive test

 T^- means a negative test.

Then we have that the positive predictive value

$$\begin{array}{lcl} P(D|T^+) & = & \frac{P(D)\,P(T^+|D)}{P(D)\,P(T^+|D) + P(\overline{D})\,P(T^+|\overline{D})} \\ & \equiv & \frac{\text{prevalence} \times \text{sensitivity}}{\text{prev.} \times \text{sens.} + (1 - \text{prev.}) \times (1 - \text{specificity})} \end{array}$$

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 15 / 20

Papanicolaou Example

Let D be cervical cancer.

P(D) we'll take to be 1 in 21,000, which is the approximate annual incidence rate in the US (SEER 2002 estimate).

$$P(D) = .00004762$$

Let us take the sensitivity $(P(T^+|D))$ to be 0.71 and the specificity $(1 - P(T^+|\overline{D}))$ to be 0.75. Thence the positive predictive value is:

$$P(D|T^{+}) = \frac{0.00004762 \times 0.71}{0.00004762 \times 0.71 + (1 - 0.00004762) \times (1 - 0.75)}$$
$$= 0.000135$$

That means that for every 1,000,000 positive results, about 135 truly have cervical cancer. But for any particular patient, testing positive increases the probability of having the disease by a factor of 2.8!

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 16 / 20

Relative risks and relative odds

Given two conditions–smokers (S) and non-smokers (\overline{S}) , say–then we say the *relative risk* of a disease (D)–lung cancer, say–due to smoking is:

$$RR = \frac{P(D|S)}{P(D|\overline{S})}$$

The *relative odds* of the disease (*D*) due to smoking is:

$$OR = \frac{\frac{P(D|S)}{1 - P(D|S)}}{\frac{P(D|\overline{S})}{1 - P(D|\overline{S})}}$$

Of course, if $P(D|S) \approx 0$ and $P(D|\overline{S}) \approx 0$, (rare disease) then

$$OR \approx \frac{\frac{P(D|S)}{1}}{\frac{P(D|\overline{S})}{1}} = RR$$

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 17 / 20

Bayes and Case Control Studies

Consider

$$OR(D|S) \equiv \frac{P(D|S)}{1 - P(D|S)} / \frac{P(D|\overline{S})}{1 - P(D|\overline{S})}$$

Now consider the numerator, which from Bayes theorem,

$$\frac{\frac{P(D)P(S|D)}{P(S)}}{\frac{P(\overline{D})P(S|\overline{D})}{P(S)}} \ = \ \frac{P(D)P(S|D)}{P(\overline{D})P(S|\overline{D})}$$

Do the same for the denominator, and get,

$$OR(D|S) = \frac{\frac{P(D)P(S|D)}{P(\overline{D})P(S|\overline{D})}}{\frac{P(D)P(\overline{S}|D)}{P(\overline{D})P(S|\overline{D})}} = \frac{\frac{P(S|D)}{P(\overline{S}|D)}}{\frac{P(S|\overline{D})}{P(\overline{S}|\overline{D})}} = OR(S|D)$$

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 18 / 20

Additional Reading

See Chapter 1.2-1.3 in Casella and Berger.

BIOS 660/BIOS 672 (3 Credits)

Notes 5 - 20 / 20