Zusammenfassung Funktionalanalysis

© BY: Tim Baumann, http://timbaumann.info/uni-spicker

Notation. Sei im Folgenden $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition. Ein **Prä-Hilbertraum** ist ein \mathbb{K} -Vektorraum mit einem Skalarprodukt $\langle \cdot, \cdot \rangle$.

Definition. Sei V ein \mathbb{K} -Vektorraum. Eine **Fréchet-Metrik** ist eine Funktion $\rho: V \to \mathbb{R}_{>0}$, sodass für $x, y \in V$ gilt:

- \bullet $\rho(x) = 0 \iff x = 0$
- $\rho(x+y) \le \rho(x) + \rho(y)$

Definition. Sei (X, d) ein metrischer Raum und $A_1, A_2 \subset X$, so ist dist $(A_1, A_2) := \inf\{d(x, y) \mid x \in A_1, y \in A_2\}$

der **Abstand** zwischen A_1 und A_2 .

Definition. Ein topologischer Raum ist ein paar (X, τ) , wobei X eine Menge und $\tau \subset \mathcal{P}(X)$ ein System von offenen Mengen, sodass gilt:

- $\emptyset \in \tau$
- $\bullet \ \ \tilde{\tau} \subset \tau \implies \bigcup_{U \in \tilde{\tau}} U \in \tau$
- $U_1, U_2 \in \tau \implies U_1 \cap U_2 \in \tau$

Definition. Ein topologischer Raum (X, τ) heißt **Haussdorff-Raum**, wenn folgendes Trennungsaxiom erfüllt ist:

$$\forall x_1, x_2 \in X : \exists U_1, U_2 \in \tau : x_1 \in U_1 \land x_2 \in U_2 \land U_1 \cap U_2 = \emptyset$$

Definition. Sei (X, τ) ein topologischer Raum. Eine Menge $A \subset X$ heißt abgeschlossen, falls $X \setminus A \in \tau$, also das Komplement offen ist.

Definition. Sei (X,τ) ein topologischer Raum und $A\subset X.$ Dann heißen

$$A^{\circ} := \{ x \in X \mid \exists U \in \tau \text{ mit } x \in U \text{ und } U \subset A \}$$
$$\overline{A} := \{ x \in X \mid \forall U \in \tau \text{ mit } x \in U \text{ gilt } U \cap A \neq \emptyset \}$$

Abschluss bzw. Inneres von A.

Definition. Ist (X, τ) ein topologischer Raum und $A \subset X$, dann ist auch (A, τ_A) ein topologischer Raum mit der *Relativtopologie* $\tau_A := \{U \cap A \mid U \in \tau\}.$

Definition. Sei (X, τ) ein topologischer Raum. Eine Teilmenge $A \subset X$ heißt dicht in X, falls $\overline{A} = X$.

Definition. Ein topologischer Raum (X, τ) heißt separabel, falls X eine abzählbare dichte Teilmenge enthält. Eine Teilmenge $A \subset X$ heißt separabel, falls (A, τ_A) separabel ist.

Definition. Seien τ_1, τ_2 zwei Topologien auf einer Menge X. Dann heißt τ_2 **stärker** (oder feiner) als τ_1 bzw. τ_1 **schwächer** (oder gröber) als τ_2 , falls $\tau_1 \subset \tau_2$.

Definition. Seien d_1 und d_2 Metriken auf einer Menge X und τ_1 und τ_2 die induzierten Topologien. Dann heißt d_1 stärker als d_2 , falls τ_1 stärker ist als τ_2 .

Satz. Sind $\|\cdot\|_1$ und $\|\cdot\|_2$ zwei Normen auf dem K-Vektorraum X. Dann gilt:

- $\|\cdot\|_2$ ist stärker als $\|\cdot\|_1 \iff \exists C>0: \forall x\in X: \|x\|_1\leq C\|x\|_2$
- $\|\cdot\|_1$ und $\|\cdot\|_2$ sind äquivalent $\iff \exists c,C>0: \forall x\in X: c\|x\|_1\leq \|x\|_2\leq C\|x\|_1$

Definition. Die p-Norm auf dem \mathbb{K}^n ist definiert als

$$||x||_p := \left(\sum_{i=1}^n |x_j|^p\right)^{\frac{1}{p}} \text{ für } 1 \le p < \infty$$
$$||x||_\infty := ||x||_m ax := \max_{1 \le i \le n} |x_i|.$$

Bemerkung. Alle p-Normen sind zueinander äquivalent.

Definition. Seien $S \subset X$ eine Menge, (X, τ_X) und (Y, τ_Y) Hausdorff-Räume sowie $x_0 \in S$. Eine Funktion $f: S \to Y$ heißt **stetig** in x_0 , falls gilt:

$$\forall V \in \tau_Y : f(x_0) \in V \implies \exists U \in \tau_X \text{ mit } x_0 \in U \land f(U \cap S) \subset V$$

Ist X = S, so heißt $f: X \to Y$ stetige Abbildung, falls f stetig in allen Punkten $x_0 \in X$ ist, d. h. $V \in \tau_Y \implies f^{-1}(V) \in \tau_X$.

 $Bemerkung.\$ In metrischen Räumen ist diese Definition äquivalent zur üblichen Folgendefinition.

Definition. Sei (X,d) ein metrischer Raum. Eine Folge $(x_k)_{k\in\mathbb{N}}$ heißt Cauchy-Folge, falls $d(x_k,x_l)\xrightarrow{k,l\to\infty} 0$. Ein Punkt $x\in X$ heißt Häufungspunkt der Folge, falls es eine Teilfolge $(x_{k_i})_{i\in\mathbb{N}}$ gibt mit $x_{k_i}-x\xrightarrow{i\to\infty} 0$.

Definition. Ein metrischer Raum (X, d) heißt vollständig, falls jede Cauchy-Folge in X einen Häufungspunkt besitzt.

Definition. Ein normierter K-Vektorraum heißt **Banachraum**, falls er vollständig bzgl. der induzierten Metrik ist.

Definition. Ein Banachraum heißt **Banach-Algebra**, falls er eine Algebra ist mit $||x \cdot y||_X \le ||x||_x \cdot ||y||_X$.

Definition. Ein **Hilbertraum** ist ein Prähilbertraum, der vollständig bzgl. der vom Skalarprodukt induzierten Norm ist.

Bemerkung. Ein normierter Raum ist genau dann ein Prähilbertraum, falls die Parallelogrammidentität

$$\|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2$$

gilt. Folglich ist ein Banachraum genau dann ein Hilbertraum, falls die Parallelogrammidentität gilt.

Definition. Sei $\mathbb{K}^{\mathbb{N}} := \{(x_n)_{n \in \mathbb{N}} \mid \forall i \in \mathbb{N} : x_i \in \mathbb{K}\}$ die Menge aller Folgen in \mathbb{K} . Mit der Fréchet-Metrik

$$\rho(x) := \sum_{i=1}^{\infty} 2^{-i} \frac{|x_i|}{1 + |x_i|} < 1$$

wird der Folgenraum $\mathbb{K}^{\mathbb{N}}$ zu einem Banachraum.

Satz. Sind $(x^k) = (x_i^k)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ und $x = (x_i)_{i \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$, so gilt $\rho(x^k - x) \xrightarrow{k \to \infty} 0 \iff \forall i \in \mathbb{N} : x_i^k \xrightarrow{k \to \infty} x_i.$

Definition. Die Norm

$$||x||_{\ell^p} := \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}} \in [0, \infty], \text{ für } 1 \le p < \infty$$

$$||x||_{\ell^\infty} := \sup_{i \in \mathbb{N}} |x_i| \in [0, \infty]$$

heißt ℓ^p -Norm auf dem Raum $\ell^p(\mathbb{K}) := \{x \in \mathbb{K}^{\mathbb{N}} \mid ||x||_{\ell^p} < \infty\}.$

Satz. Der Raum $\ell^p(\mathbb{K})$ ist vollständig, also ein Banachraum. Bemerkung. Im Fall p=2 wird $\ell^2(\mathbb{K})$ ein Hilbertraum mit dem Skalarprodukt $\langle x,y\rangle_{\ell^2} \coloneqq \sum_{i=0}^{\infty} x_i \overline{y_i}$.

Definition (Vervollständigung). Sei (X, d) ein metrischer Raum. Betrachte die Menge $X^{\mathbb{N}}$ aller Folgen in X und definiere

$$\tilde{X} \coloneqq \{x \in X^{\mathbb{N}} \mid x \text{ ist Cauchy-Folge in } X\} / \sim$$

mit der Äquivalenzrelation

$$x \sim y \text{ in } \tilde{X} \iff d(x_j, y_j) \xrightarrow{j \to \infty} 0.$$

Diese Menge wird mit der Metrik

$$\tilde{d}(x,y) := \lim_{i \to \infty} d(x_i, y_i)$$

zu einem vollständigen metrischen Raum. Die injektive Abbildung $J:X\to \tilde{X}$, welche $x\in X$ auf die konstante Folge $(x)_{i\in\mathbb{N}}$, ist isometrisch, d. h. sie erhält. Wir können also X als einen dichten Unterraum von \tilde{X} auffassen. Man nennt \tilde{X} Vervollständigung von X.

Definition (Raum der beschränkten Funktionen). Sei S eine Menge und Y ein Banachraum über \mathbb{K} mit Norm $y\mapsto |y|$. Dann ist $B(S;Y)\coloneqq\{f:S\to Y\,|\,f(S)\text{ ist eine beschränkte Teilmenge von }Y\}$ die Menge der beschränkten Funktionen von B nach Y. Diese Menge ist ein $\mathbb{K}\text{-Vektorraum}$ und wird mit der Supremumsnorm $\|f\|_{B(S)}:=\sup_{x\in S}|f(x)|$ zu einem Banachraum.

Satz. Ist (X, d) ein vollständiger metrischer Raum und $Y \subset X$ abgeschlossen, so ist auch (Y, d) ein vollständiger metrischer Raum.

Definition (Raum stetiger Funktionen auf einem Kompaktum). Sei $S \subset \mathbb{R}^n$ beschränkt und abgeschlossen (d. h. kompakt) und Y ein Banachraum über \mathbb{K} mit Norm $y \mapsto |y|$, so ist

$$\mathcal{C}^0(S;Y) := \mathcal{C}(S;Y) := \{ f : S \to Y \mid f \text{ ist stetig } \}$$

die Menge der stetigen Funktionen von S nach Y. Sie ist ein abgeschlossener Unterraum von B(S;Y) mit der Norm $\|\cdot\|_{\mathcal{C}(S;Y)} = \|\cdot\|_{B(S;Y)}$, also ein Banachraum.

Bemerkung. Für $Y = \mathbb{K}$ ist $C^0(S; \mathbb{K}) = C(S)$ eine kommutative Banach-Algebra mit dem Produkt $(f \cdot g)(x) := f(x) \cdot g(x)$.

Definition. Eine Teilmenge $A \subset X$ heißt **präkompakt**, falls es für jedes $\epsilon > 0$ eine Überdeckung von A mit endlich vielen ϵ -Kugeln $A \subset B_{\epsilon}(x_1) \cup ... \cup B_{\epsilon}(x_{n_{\epsilon}})$ mit $x_1, x_{n_{\epsilon}} \in X$ gibt.

Definition. Eine Teilmenge $A \subset X$ eines metrischen Raumes (X, d) heißt **kompakt**, falls eine der folgenden äquivalenten Bedinungen erfüllt ist:

- A ist **überdeckungskompakt**: Für jede Überdeckung $A \subset \bigcup_{i \in I} A_i$ mit $A_i \odot X$, gibt es eine endl. Teilmenge $J \subset I$ mit $A \subset \bigcup_{i \in I} A_i$.
- A ist folgenkompakt: Jede Folge in A besitzt eine konvergente Teilfolge mit Grenzwert in A.
- $(A, d|_A)$ ist vollständig und A ist **präkompakt**.

Satz. Sei (X, d) ein metrischer Raum. Dann gilt:

- A präkompakt $\implies A$ beschränkt,
- \bullet A kompakt \implies A abgeschlossen und präkompakt,
- Falls X vollständig, dann A präkompakt $\iff \overline{A}$ kompakt.

Satz. Sei $A \subset \mathbb{K}^n$. Dann gilt:

- A präkompakt $\iff A$ beschränkt,
- $A \text{ kompakt} \iff A \text{ abgeschlossen und beschränkt (Heine-Borel)}.$

Satz. Sei (X,d) ein metrischer Raum und $A \subset X$ kompakt. Dann gibt es zu $x \in X$ ein $a \in A$ mit d(x,a) = dist(x,A).

Definition. Sei $S \subset \mathbb{R}^n$ und $(K_n)_{n \in \mathbb{N}}$ eine Folge kompakter Teilmengen des \mathbb{R}^n . Dann heißt (K_n) eine **Ausschöpfung** von S, falls

- $S = \bigcup_{n \in \mathbb{N}} K_n$,
- $\emptyset \neq K_i \subset K_{i+1} \subset S$ für alle $i \in \mathbb{N}$ und
- für alle $x \in S$ gibt es ein $\delta > 0$ und $i \in \mathbb{N}$, sodass $B_{\delta}(x) \subset K_i$.

Bemerkung. Zu $S \subseteq \mathbb{R}^n$ und $S \subseteq \mathbb{R}^n$ existiert eine Ausschöpfung.

Definition (Raum stetiger Funktionen auf Menge mit Ausschöpfung). Es sei $S \subset \mathbb{R}^n$ so, dass eine Ausschöpfung $(K_i)_{i \in \mathbb{N}}$ von S existiert und Y ein Banachraum. Dann bildet die Menge aller stetigen Funktionen

$$C^0(S;Y) := \{f: S \to Y \mid f \text{ ist stetig auf } S\}$$

einen K-Vektorraum und wird mit der Fréchet-Norm

$$\varrho(f) := \sum_{i \in \mathbb{N}} 2^{-i} \frac{\|f\|_{C^0(K_i)}}{1 + \|f\|_{C^0(K_i)}}$$

zu einem vollständigen metrischen Raum.

Bemerkung. • Die von dieser Metrik erzeugte Topologie ist unabhängig von der Wahl der Ausschöpfung.

• Ist $S \subset \mathbb{R}^n$ kompakt, so stimmt die Topologie mit der von $\|\cdot\|_{B(s)}$ überein.

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Für $f: S \to Y$ heißt

$$\operatorname{supp} f := \{ x \in S \mid f(x) \neq 0 \}$$

Träger (engl. support) von f.

Definition. Sei $S \subset \mathbb{R}^n$ und Y ein Banachraum. Dann ist

$$C_0^0(S;Y) := \{ f \in C^0(S;Y) \mid \text{supp} f \text{ ist kompakt in } S \}$$

die Menge der stetigen Fkt
n. mit kompaktem Träger von ${\cal S}$ nach ${\cal Y}.$

Definition (Raum differenzierbarer Funktionen). Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt und $m \in \mathbb{N}$. Dann ist die Menge der differenzierbaren Funktionen von Ω nach Y

$$\mathcal{C}^m(\overline{\Omega},Y) \coloneqq \{f:\Omega \to Y \,|\, f \text{ ist m-mal stetig differenzierbar in } \Omega$$
 und für $k \leq m$ und $s_1,...,s_k \in \{1,...,n\}$

ist
$$\partial_{s_1}...\partial_{s_k}f$$
 auf $\overline{\Omega}$ stetig fortsetzbar }

ein Vektorraum und mit folgender Norm ein Banachraum:

$$||f||_{\mathcal{C}^m(\overline{\Omega})} = \sum_{|s| \le m} ||\partial^s||_{\mathcal{C}^0(\overline{\Omega})}$$

Bemerkung. In obiger Norm wird die Summe über alle k-fache partielle Ableitungen mit k < m gebildet.

Satz. Sei X ein normierter Raum und $Y \subset X$ ein abgeschlossener echter Teilraum. Für $0 < \Theta < 1$ (falls X Hilbertraum, geht auch $\Theta = 1$) gibt es ein $x_{\Theta} \in X$ mit

$$||x_0|| = 1 \quad \text{und}\Theta \le \text{dist}(x_{\Theta}, Y) \le 1.$$

Satz. Für jeden normierten Raum X gilt:

$$\overline{B_1(0)}$$
 kompakt \iff dim $(X) < \infty$.

Definition. Sei $S \subset \mathbb{R}^n$ kompakt, Y ein Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann heißt A gleichgradig stetig, falls

$$\sup_{f \in A} |f(x) - f(y)| \xrightarrow{|x-y| \to 0} 0.$$

Definition (Arzelà-Ascoli). Sei $S \subset \mathbb{R}^n$ kompakt, Y ein endlichdimensionaler Banachraum und $A \subset \mathcal{C}^0(S, Y)$. Dann gilt

A präkompakt \iff A ist beschränkt und gleichgradig stetig.

Satz (Fundamentallemma der Variationsrechnung). Sei $\Omega \subset \mathbb{R}^n$ und Y ein Banachraum. Für $g \in \mathcal{L}^1(\Omega, Y)$ sind dann äquivalent:

- Für alle $\xi \in \mathcal{C}_0^{\infty}$ gilt $\int_{\Omega} (\xi \cdot g) dx = 0$.
- Für alle beschränkten $E\in\mathfrak{B}(\Omega)$ mit $\overline{E}\subset\Omega$ gilt $\int\limits_E g\,\mathrm{d}x=0.$
- Es gilt $g \stackrel{\text{f.\"u.}}{=} 0$ in Ω .

Satz. Sei $T:X\to Y$ eine lineare Abbildung zwischen Vektorräumen X und Y. Dann sind äquivalent:

- T ist stetig in 0. $\sup_{\|x\| \le 1} \|Tx\| < \infty$.
- $\bullet \ \exists \, C>0: \forall x\in X: \|Tx\|\leq C\cdot \|x\|.$

 $\bf Definition.$ Seien X,Y Vektorräume mit einer Topologie. Dann ist

$$\mathcal{L}(X,Y) = \{T : X \to Y \,|\, X \text{ ist linear und stetig } \}$$

die Menge aller linearen Operatoren zwischen X und Y. Falls die Stetigkeit nicht nur topologisch, sondern bezüglich einer Norm gilt, so redet man von beschränkten Operatoren.

Satz. Seien $X \neq \{0\}$, $Y \neq \{0\}$ Banachräume und $T, S \in \mathcal{L}(X, Y)$. Dann gilt: Falls T invertierbar ist und $||S - T|| < \frac{1}{||T^{-1}||}$, dann ist auch S invertierbar.

Bemerkung. Die Menge aller invertierbaren Operatoren in $\mathcal{L}(X,Y)$ ist somit eine offene Teilmenge.

Definition. Seien X und Y Banachräume über \mathbb{K} . Eine lineare Abbildung $T: X \to Y$ heißt **kompakter (linearer) Operator**, falls eine der folgenden äquivalenten Bedingungen erfüllt ist:

- $T(B_1(0))$ ist kompakt.
- $T(B_1(0))$ ist präkompakt.
- Für alle beschränkten $M \subset X$ ist $T(M) \subset Y$ präkompakt.
- Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in X besitzt $(Tx_n)_{n\in\mathbb{N}}$ eine in Y konvergente Teilfolge.

Definition. Sei X ein Vektorraum über \mathbb{K} . Dann ist $X' := \mathcal{L}(X, \mathbb{K})$ der **Dualraum** von X. Elemente von X' werden **lineare Funktionale** genannt.

 \mathbf{Satz} (Rieszscher Darstellungssatz). Ist X ein Hilbertraum, so ist

$$J: X \to X', \quad x \mapsto y \mapsto (y, x)_X$$

ein isometrischer konjugiert linearer Isomorphismus.

Satz (Lax-Milgram). Sei X ein Hilbertraum über \mathbb{K} und $a: X \times X \to \mathbb{K}$ sesquilinear. Es gebe Konstanten c_0 und C_0 mit $0 < c_0 \le C_0 < \infty$, sodass für alle $x, y \in X$ gilt:

- $|a(x,y)| < C_0 \cdot ||x|| \cdot ||y||$ (Stetigkeit)
- $Rea(x,x) \ge c_0 \cdot ||x||^2$ (Koerzivität)

Dann existiert genau eine Abbildung $A: X \to X$ mit

$$a(y,x)=(y,Ax)$$
 für alle $x,y\in X$.

Außerdem gilt: $A \in \mathcal{L}(X)$ ist ein invertierbarer Operator mit

$$||A|| \le C_0$$
 und $||A^{-1}|| \le \frac{1}{c_0}$.

Satz. (Hahn-Banach) Sei X ein \mathbb{R} -Vektorraum, $Y \subset X$ ein Unterraum, $p: X \to \mathbb{R}$ linear und $f: Y \to \mathbb{R}$ linear, sodass $f(x) \leq p(x)$ für alle $x \in Y$. Dann existiert eine lineare Abbildung $F: X \to \mathbb{R}$ mit $f = F|_Y$ und $F \leq p$.

Satz. Sei $(X, \|\cdot\|_X)$ ein normierter \mathbb{K} -Vektorraum und $(Y, \|\cdot\|_Y)$ ein Unterraum. Dann gibt es zu $y \in Y'$ ein $x' \in X'$ mit $x'|_Y = y'$ und $\|x'\|_{X'} = \|y'\|_{Y'}$.

Satz. Sei Y abgeschlossener Unterraum des normierten Raumes X und $x_0 \in X \setminus Y$. Dann gibt es ein $x' \in X'$ mit $x'|_Y = 0$, $||x'||_{X'} = 1$, $\langle x', x_0 \rangle = \operatorname{dist}(x_0, Y)$.

Bemerkung. Dann gibt es auch ein $x' \in X'$ mit $x'|_Y = 0$,

$$||x'||_{X'} = (\operatorname{dist}(x_0, Y))^{-1} \quad \text{und} \quad \langle x', x_0 \rangle = 1.$$

Satz. Seien X normierter Raum und $x_0 \in X$. Dann gilt

• Ist $x_0 \neq 0$, so gibt es $x_0' \in X'$ mit $\|x_0'\|_{X'} = 1$ und $\langle x_0', x_0 \rangle_{X' \times X} = \|x_0\|_X$.

- Ist $\langle x', x_0 \rangle_{X' \times X} = 0$ für alle $x' \in X'$, so ist $x_0 = 0$.
- Durch $Tx' = \langle x', x_0 \rangle_{X' \times X}$ für $x' \in X'$ ist ein $T \in \mathcal{L}(X', \mathbb{K}) = X''$ dem Bidualraum, definiert mit $||T|| = ||x_0||_X$.

Satz (Baire'scher Kategoriensatz). Es sei $X \neq \emptyset$ ein vollständiger metrischer Raum und $X = \bigcup_{k \in \mathbb{N}} A_k$ mit abgeschlossenen Mengen $A_k \subset X$. Dann gibt es ein $k_0 \in \mathbb{N}$ mit $\operatorname{int}(A_{k_0}) \neq \emptyset$.

Satz. Jede Basis eines unendlichdimesinoalen Banachraumes ist überabzählbar.

Satz (Prinzip der gleichmäßigen Beschränktheit). Es sei X ein nichtleerer vollständiger metrischer Raum und Y ein normierter Raum. Gegeben sei eine Menge von Funktionen $F \subset \mathcal{C}^0(X,Y)$ mit $\forall x \in X$: sup $\|f(x)\|_Y < \infty$. Dann gibt es ein $x_0 \in X$ und ein $\epsilon > 0$, sodass sup sup $\|f(x)\|_Y < \infty$. $B_{\epsilon}(x_0)$ $f \in F$

 $\begin{array}{l} \mathbf{Satz} \ (\mathrm{Banach}\text{-}\mathrm{Steinhaus}). \ \ \mathrm{Es} \ \mathrm{sei} \ X \ \mathrm{ein} \ \mathrm{Banach}\mathrm{raum} \ \mathrm{und} \ Y \ \mathrm{ein} \\ \mathrm{normierter} \ \mathrm{Raum}, \ \mathcal{T} \subset \mathcal{L}(X,Y) \ \mathrm{mit} \ \forall x \in X : \sup_{T \in \mathcal{T}} \|Tx\|_Y < \infty. \\ \mathrm{DAnn} \ \mathrm{ist} \ \mathcal{T} \ \mathrm{eine} \ \mathrm{beschränkte} \ \mathrm{Menge} \ \mathrm{in} \ \mathcal{L}(X,Y), \ \mathrm{d.\,h.} \\ \sup_{T \in \mathcal{T}} \|T\|_{\mathcal{L}(X,Y)}. \end{array}$

Definition. Seien X und Y topologische Räume, so heißt eine Abbildung $f: X \to Y$ offen, falls für alle offenen $U \subseteq X$ das Bild $f(U) \subseteq Y$ offen ist.

Bemerkung. Ist f bijektiv, so ist f genau dann offen, wenn f^{-1} stetig ist. Sind X, Y normierte Räume und ist $T: X \to Y$ linear, so gilt: T ist offen $\iff \exists \delta > 0: B_{\delta}(0) \subset T(B_1(0)).$

Satz (von der offenen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$. Dann ist T genau dann surjektiv, wenn T offen ist.

Satz (von der inversen Abbildung). Seien X, Y Banachräume und $T \in \mathcal{L}(X, Y)$ bijektiv, so ist T^{-1} stetig, also $T^{-1} \in \mathcal{L}(Y, X)$.

Satz (vom abgeschlossenen Graphen). Seien X, Y Banachräume und $T: X \to Y$ linear. Dann ist $\operatorname{Graph}(T) = \{(x, Tx) \mid x \in X\}$ genau dann abgeschlossen, wenn T stetig ist. Dabei ist $\operatorname{Graph}(T) \subset X \times Y$ mit der **Graphennorm** $\|(x,y)\|_{X \times Y} = \|x\|_X + \|y\|_Y$.

Definition. Sei X ein Banachraum.

• Eine Folge $(x_k)_{k\in\mathbb{N}}$ in X konvergiert schwach gegen $x\in X$ (notiert $x_k\xrightarrow{k\to\infty} x$), falls für alle $x'\in X'$ gilt:

$$\langle x', x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

• Eine Folge $(x'_k)_{k \in \mathbb{N}}$ in X' konvergiert schwach* gegen $x' \in X'$ (notiert $x'_k \xrightarrow{k \to \infty} x'$), falls für alle $x \in X$ gilt:

$$\langle x'_k, x \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$$

- Analog sind schwache und schwache* Cauchyfolgen definiert.
- Eine Menge M ⊂ X (bzw. M ⊂ X') heißt schwach folgenkompakt bzw. schwach* folgenkompakt, falls jede Folge in der Menge M eine schwach (bzw. schwach*) konvergente Teilfolge besitzt deren Grenzwert wieder in M liegt.

Bemerkung. Der schwache bzw. schwache* Grenzwert einer Folge ist eindeutig bestimmt. Starke Konvergenz impliziert schwache Konvergenz.

Satz. Es gilt für $x, x_k \in X, x', x'_k \in X'$:

$$x_k \xrightarrow{k \to \infty} x$$
 in $X \iff J_x x_k \xrightarrow{k \to \infty} J_x x$ in X''
 $x'_k \xrightarrow{k \to \infty} x'$ in $X' \implies x'_k \xrightarrow{k \to \infty} x'$ in X'

Lemma. • Aus $x_k' \xrightarrow[*]{k \to \infty} x'$ in X' folgt $\|x'\|_{X'} \le \liminf_{k \to \infty} \|x_k'\|_{X'}$, aus $x_k \xrightarrow[k \to \infty]{} x$ in X folgt $\|x\|_X \le \liminf_{k \to \infty} \|x_k\|_X$.

- Schwach bzw. schwach* konvergente Folgen sind beschränkt.
- Aus $x_k \xrightarrow{k \to \infty} x$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X' folgt $\langle x'_k, x_k \rangle_{X' \times X} \xrightarrow{k \to \infty} \langle x', x \rangle_{X' \times X}$. Dasselbe folgt mit $x_k \xrightarrow{k \to \infty} x'$ in X und $x'_k \xrightarrow{k \to \infty} x'$ in X'.

Achtung. In der letzten Behauptung müssen wir vorraussetzen, dass mindestens eine Folge stark konvergiert. Für beidesmal schwache/schwache* Konvergenz ist die Aussage i. A. falsch.

Satz (Banach-Alaoglu). Sei X ein separabler Banachraum. Dann ist die abgeschl. Einheitskugel $\overline{B_1(0)} \subset X'$ schwach folgenkompakt.