SG - 7

Members:

Austin Steel

Sarah Starkey Lanham

Mahender Bandi

Sai Bhargav Reddy Kanuparthy

Executive Summary

What makes students pass or fail tests? Educators have wondered this for all of time, and considering there are so many different factors, it's hard to tell.

After reviewing initial correlations and trends, we created a classification model to predict if students will pass or fail. This model gave us an 86% accuracy, 90% Precision and AUC of 0.927. From this model, we can see the most important factors in students passing or failing the test are *Attendance* and *Hours Studied*.

To answer this question, we looked at a dataset titled "Student Performance Factors". This dataset includes a wide variety of information about students, and their performance on a test.

The goal of this analysis will be to see if any specific factors or combinations of factors effect students passing or failing the test.

Background Info on Topic

• There are wide variety of factors which can affect student performance on tests both from school and their personal lives. Educators are constantly looking for how they can help students perform better by analyzing data and looking for correlations. While some factors Teachers can control, such as Teacher Quality, or Tutoring Hours, for many factors Teachers are unable to have any effect on. Many of these factors like Parental Involvement, Extracurricular Activities, Family Income, etc, can have a large impart on student performance as well. Given all the challenges that educators face today, modeling student data can help Teachers know which students may need more or extra support and predict from student data how they will perform.

Data Set Description

- This data set provides an overview of various factors effecting students' performance on exam scores. It considers variables such as parental involvement, tutoring hours, family income, teacher quality, and other aspects that may affect students' performance on exams.
- In total there are 20 columns (variables) and 6607 row entries. Most of the variables are categorical rankings such as low, medium, high. The rest are numerical variables.
- Less than 1% of the entries had any missing values.
- Target variable: Exam Scores**

Data Preprocessing and Basic Analysis

- Check for Null Values.
- Deleted missing values, leaving us with 6378 row entries.
- Replaced categorical variables with integers (0, 1, or 1, 2, 3).
- Added Difference in Scores column.
- Added columns for Exam Score Rating and Previous Score Rating for Pass or Fail as 0, or 1.

Boxplots of Numerical Variables

Distribution of Variables

Distribution of Variables

Preprocessing More...

- Data Imbalance!!
- Used SMOTE to transform data.

Initial Data:

```
Count of 0: 4797
Count of 1: 1581
```

Data after balancing:

Count of 0: 4797 Count of 1: 4797

Initial Findings: Heatmap

Scatterplots of Highest Correlations

Key: 0=Fail 1=Pass

Pivot Tables

Distance_from_Home Exam_Score_Rating	Far	Mode	rate	Near
0	526		1515	2756
1	110		426	1045
Learning_Disabilit: Exam_Score_Rating 0 1	4	246	Yes 551 117	
Family_Income Exam_Score_Rating	High	Low	Med:	ium
0	870	2032	18	895
1	360	550	(671

School_Type Exam Score Rating	Private Public			
0	1450		3347	
1	494		1087	
Teacher_Quality Exam_Score_Rating	High	Low	Medium	
0	1359	521	2917	
1	546	126	909	
Motivation_Level Exam_Score_Rating	High	Low	Medium	
0	897	1472	2428	
1	380	392	809	

Test

- Classification Model
- Target variable: Exam_Score_Rating
- Split data: 80% Train / 20% Test
- Results:

Test Results

Training Accuracy: 0.9017589576547231
Test Accuracy: 0.8572173006774362

precision recall f1-score support 0.79 0.84 970 0.90 0.81 1 0.91 0.86 949 accuracy 0.85 1919 0.85 1919 macro avg 0.86 0.85 0.86 0.85 0.85 1919 weighted avg

AUC: 0.9271718466535583

Conclusions / Recommendations

Passing students go to class and study and then perform well on tests. Students who don't attend class or put in study hours do poorly on testing.

Model for whether students will pass or fail built is very accurate with small overfitting

Most important passing factors:
Attendance and Hours Studied

Factors against passing:

Learning Disabilities and Distance From Home.

Reference Material and Additional Reading

- Data set: https://www.kaggle.com/datasets/lainguyn123/student-performance-factors
- https://link.springer.com/article/10.1007/BF01537904
- https://www.tandfonline.com/doi/pdf/10.1080/00098655.1994.9956043
- https://journals.sagepub.com/doi/epdf/10.1177/0741932508327460