September 15, 2023

Dirty Faces

Knowledge

Theorems and Possibility Sets

Back to Dirty Faces

Dirty Faces

- A, B and C travel together in a railway carriage and each one has a dirty face
- If one is conscious of appearing in public with a dirty face, she will surely blush.
- Nobody blushes. ⇒ None of them knows that her own face is dirty, although each can clearly see the dirty faces of the others.
- A clergyman who always tells the truth enters the carriage and announces that some one has a dirty face.
- ► A blushes and why?

- ▶ A: Suppose that my face were clean. Then B would reason as follows:
- B: I see that A's face is clean. Suppose that my face were also clean. Then C would reason as follows:
- C: I see that A's and B's faces are clean. If my face were clean, nobody's face would be dirty. But the clergyman announced..., so my face is dirty, and I must blush.
- ▶ B: Since C hasn't blushed, my face is dirty. So I must blush.
- ▶ *A*: Since *B* hasn't blushed, my face is dirty. So I must blush.

Knowledge

- ightharpoonup state of world, ω
- knowledge operator, K
- possibility operator, P
- ightharpoonup axioms about K and P
- truism

- In the example of the dirty faces, there are 8 possible states of world.
- Let C denote a clean face and let D denote a dirty face. The 8 states of worlds are:

	1	2	3	4	5	6	7	8
\overline{A}	С	D	С	C C D	D	D	С	D
B	С	C	D	C	D	C	D	D
C	C	C	C	D	C	D	D	D

- state $\omega = 1$: everyone has a clean face.
- universe $\Omega \equiv \{1, 2, 3, 4, 5, 6, 7, 8\}$
- ightharpoonup event E is a subset of Ω
 - ▶ The event that A has a dirty face, $D_A = \{2, 5, 6, 8\}$.
- ▶ If the true state is an element of an event *E*, then *E* has occurred.
 - If $\omega = 8$, then D_A has occurred.

Knowledge Operator, K

	1	2	3	4	5	6	7	8
A	С	D	С	С	D	D	C D D	D
B	C	C	D	C	D	C	D	D
C	С	C	C	D	C	D	D	D

- KE is the set of states of the world in which A knows that E has occurred.
- $D_A = \{2, 5, 6, 8\}$
- ▶ The event that A knows her own face being dirty, $KD_A = ?$
 - After the clergyman's announcement, and before A reaches any deep induction, she looks at two other faces and only when two other ladies both have clean faces, could A know she herself has a dirty face. $KD_A = \{2\}$.
 - ▶ But, $\omega = 8 \notin KD_A$, so KD_A does not occur and A does not know her face is dirty yet.

Possibility Operator, P

- ▶ PE means the event that A considers the event E possible.
- \triangleright $PE = \sim K \sim E$

Axioms

(K0)
$$K\Omega = \Omega$$

(P0)
$$P\emptyset = \emptyset$$

(K1)
$$K(E \cap F) = KE \cap KF$$

(K1)
$$K(E \cap F) = KE \cap KF$$
 (P1) $P(E \cup F) = PE \cup PF$

(K2)
$$KE \subseteq E^1$$

(P2)
$$E \subseteq PE$$

(K3)
$$KE \subseteq K(KE) \equiv K^2E$$
 (P3) $P^2E \subseteq PE$

(P3)
$$P^2E \subseteq PE$$

(K4)
$$PE \subseteq KPE$$

(P4)
$$PKE \subseteq KE$$

- There appear to be 10 different axioms.
- ▶ But since K axioms $\Leftrightarrow P$ axioms, there are only 5 effective axioms.
- For instance, we can derive (P0) from (K0):

$$\begin{array}{rcl} P\emptyset & \equiv & \sim K \sim \emptyset \\ & = & \sim K\Omega \\ & = & \sim \Omega \ \ \mbox{(from (K0))} \\ & = & \emptyset \quad \Box \end{array}$$

 $^{{}^{1}}P \subseteq Q$ means if P then Q.

Truism

- ▶ Def: The event T is a truism for A, if T can't be true w/o A knowing it, i.e. $T \subseteq KT$.
- Recall (K2) $KE \subseteq E$, so for a truism T, we have T = KT.

- lackbox We shall establish 3 theorems that lead us to characterize when A knows her face is dirty.
- During the course, we need to define a new concept, possibility set.

Theorem 1: A knows E has occurred iff a truism that implies E has occurred.

Proof: First we'll establish \Rightarrow .

For this purpose, we have to show $\exists T, KE \subseteq T$ where T is a truism and $T \subseteq E$.

Define $T \equiv KE$.

Clearly, $KE \subseteq T$.

From (K3), $T \subseteq KT$, T is a truism. ((K3) $KE \subseteq K(KE)$)

From (K2), $T \subseteq E$. ((K2) $KE \subseteq E$)

We'll now establish \Leftarrow .

For that, we have to show \forall truism $T \subseteq E$, $T \subseteq KE$.

We'll first establish that if $G \subseteq H$, then $KG \subseteq KH$.

Recall from (K1), $K(G \cap H) = KG \cap KH$.

If $G \subseteq H$, we have $KG = KG \cap KH$ which implies $KG \subseteq KH$.

From this, $T \subseteq E \Rightarrow KT \subseteq KE$.

Recall that T is a truism, $T \subseteq KT \subseteq KE$. \square

Theorem 2: $P\{\omega\}$ is the smallest truism containing ω .

Lemma 1: If $E \subseteq F$, $PE \subseteq PF$.

Proof: From (P1), $P(E \cup F) = PE \cup PF$

If $E \subseteq F$, $P(E \cup F) = PF = PE \cup PF$, $PE \subseteq PF$. \square

Proof of Theorem 2: From (P2), $E \subseteq PE$, so $\{\omega\} \subseteq P\{\omega\}$, i.e. $P\{\omega\}$ contains ω .

From (K4), $PE \subseteq KPE$, i.e. $\forall E, PE$ is a truism.

Lastly, consider any truism T containing ω , we'll show $P\{\omega\} \subseteq T$.

From lemma 1, $\{\omega\} \subseteq T \Rightarrow P\{\omega\} \subseteq PT = PKT \subseteq KT = T$.

The equalities are due to T being a truism; the \subseteq is due to (P4). \square

Possibility Set

- ► The last theorem involves possibility sets.
- Def: The possibility set $P(\omega)$ is the set of states that A considers possible when the true state is ω .

Theorems and Possibility Sets

000000000

Distinction between $P\{\omega\}$ and $P(\omega)$:

$$ightharpoonup a \in P(\omega) \Leftrightarrow \{\omega\} \subseteq P\{a\}$$

$$a \in P\{\omega\} \Leftrightarrow \{a\} \subseteq P\{\omega\}$$

- ▶ But, $P\{\omega\} = P(\omega)!$
- To prove this, from above, it's sufficient to show that \forall states $c, d, \{c\} \subseteq P\{d\} \Rightarrow \{d\} \subseteq P\{c\}$

Lemma 2:
$$\{c\} \subseteq P\{d\} \Rightarrow \{d\} \subseteq P\{c\}$$
.

Proof: Suppose $\{c\} \subseteq P\{d\}$, but $\{d\} \not\subseteq P\{c\}$.

Then $\{d\} \subseteq \sim P\{c\} \equiv K \sim \{c\}.$

Applying lemma 1, $\{c\} \subseteq P\{d\} \subseteq PK \sim \{c\} \subseteq K \sim \{c\}^2 \equiv \sim P\{c\}$.

It contradicts (P2). □

Theorems and Possibility Sets

0000000000

- Def: The possibility set $P(\omega)$ is the set of states that A considers possible when the true state is ω .
- Recall that there are 8 states in the example of dirty faces.

	1	2	3	4	5	6	7	8
A	С	D	С	C C D	D	D	С	D
B	С	C	D	C	D	C	D	D
C	С	C	C	D	C	D	D	D

- For A, what are $P_A(1)$, ... $P_A(8)$ before the clergyman appears?
- $P_A(1) = \{1,2\} = P_A(2)$... which are expressed in the following figure:

- Possibility sets change when new information arrives.
- The clergyman will announce that someone has a dirty face iff it is true.
- What are A's possibility sets right after the clergyman arrives?

	1	2	3	4	5	6	7	8
A	С	D	С	С	D	D C D	С	D
B	С	C	D	C	D	C	D	D
C	C	C	C	D	C	D	D	D

▶ $P_A(1) = \{1\}$, $P_A(2) = \{2\}$ and all other possibility sets remain the same.

According to this figure, does A know $D_A (= \{2, 5, 6, 8\})$ has occurred?

- Theorem 1: A knows E has occurred iff a truism that implies E has occurred.
- Theorem 2: $P\{\omega\}$ is the smallest truism containing ω .
- Theorem 3: A knows that E has occurred in state ω iff $P(\omega) \subseteq E$.

Proof: \Rightarrow

If A knows that E has occurred in state ω , from Theorem 1, \exists truism T, $\omega \in T \subseteq E$.

From Theorem 2, $\omega \in P\{\omega\} = P(\omega) \subseteq T \subseteq E$.

 \Leftarrow

From Theorem 2, in state ω , the truism $P(\omega)$ occurs.

If $P(\omega) \subseteq E$, from Theorem 1, A knows that E has occurred in state ω . \square

▶ Back to the previous slide, because $P_A(8) = \{7,8\} \not\subseteq D_A = \{2,5,6,8\}$, according to Theorem 3, A does not know that she has a dirty face right after the clergyman's announcement.

Possibility Set

- ▶ Def: C is a partition of Ω , if C is a collection of non-empty subsets of Ω such that every state in Ω is in exactly one of these subsets.
- ex. $C = \{\{1, 2\}, \{3, 4, 5\}, \{6, 7, 8\}\}$
- ▶ Lemma 3: $\forall \omega' \in P(\omega), P(\omega') = P(\omega)$

Proof: Suppose $\omega' \in P(\omega)$.

We'll first show that $\forall \omega'' \in P(\omega'), \omega'' \in P(\omega)$.

By the definition of a possibility set, $\omega'' \in P(\omega) \Leftrightarrow \{\omega\} \subseteq P\{\omega''\}$.

We have:

$$\{\omega\} \subseteq P\{\omega'\} \subseteq PP\{\omega''\} \subseteq P\{\omega''\}$$

The 1st \subseteq follows from $\omega' \in P(\omega)$; the 2nd from $\omega'' \in P(\omega')$ which means $\{\omega'\} \subseteq P\{\omega''\}$, and lemma 1; the 3rd from (P3).

We still need to show that $\forall \omega'' \in P(\omega), \omega'' \in P(\omega')$, or to show that $\{\omega'\} \subseteq P\{\omega''\}$. This part is left as your exercise.

Possibility Set

Theorem 4: $\{P(\omega)|\omega\in\Omega\}$ is a partition of Ω .

Proof: From Theorem 2, $\omega \in P(\omega)$, hence $\bigcup_{\omega \in \Omega} P(\omega) = \Omega$.

Next, we'll show that $\forall \omega_1, \omega_2, P(\omega_1) \neq P(\omega_2), P(\omega_1) \cap P(\omega_2) = \emptyset$.

Suppose $P(\omega_1) \neq P(\omega_2)$ and $\exists \omega_3 \in P(\omega_1) \cap P(\omega_2)$.

From lemma 3, $P(\omega_1)=P(\omega_3)=P(\omega_2)$ which contradicts the presumption. \square

Def: Consider 2 partitions of Ω , C and D. C is a <u>refinement</u> of D if each set in C is a subset of a set in D.

Ex. A's information partition becomes refined after the clergyman's announcement.

Information Partitions before the Clergyman's Announcement

After the Clergyman's Announcement

No one knows that her face is dirty because $P_i(8) \not\subseteq D_i, i=A,B,C$.

Taking Turns to Blush: $A \rightarrow B \rightarrow C \rightarrow A$...

