Johns Hopkins Engineering for Professionals 605.767 Applied Computer Graphics

Brian Russin

Module 6A Introduction to Parametric Curves

Parametric Curves and Surfaces

- Parametric curves
 - Introduction
 - Continuity conditions
 - Bezier cubic curves
 - B-splines
 - NURBS and other splines
- Parametric surfaces
 - Bezier patches
- Rendering parametric curves and surfaces
 - Forward differences
 - Recursive subdivision
- OpenGL Evaluators and NURBS support
- Uses of parametric curves and surfaces

Parametric Curves and Surfaces

Introduction

- Polylines are linear approximations to curves
 - Piecewise linear
 - Require many vertices to accurately represent a continuous curve or surface
- Polygons can only approximate a curved surface
- Can be difficult to edit shape of polygons and polylines
- Can describe curves and curved surfaces using a mathematical representation
 - Produce piecewise smooth curves and surfaces
 - Use functions with higher degree than linear functions
- Advantages
 - Storage efficiency
 - Easily transformed
 - Scalable a form of LOD modeling
 - Easier interaction / shape editing
 - Can join curves / surfaces to form complex surfaces and curves
 - Apply appropriate boundary conditions to join the pieces

Parametric Representation

- Parametric representation of curves and surfaces is a common tool in computer graphics
 - Also called **spline** curves or surfaces
 - Splines are used in drafting a flexible strip used to produce smooth curves through a set of points
 - Surfaces are constructed from orthogonal curves
- Commonly found in CAD systems
 - Original techniques were developed to model car and aircraft bodies
 - Bezier patch developed in 1960s for use in design of Renault car bodies
- Can be used to define the path of an object through defined points
 - Interpolate a parametric curve through these points
- Will describe parametric curves and then generalize to surfaces
 - Curves are easier to describe and notate
 - Properties extend to surfaces

Parametric Representation of 3D Curves

- Example: a point moving in space as a function of time
 - Parametric description of the path of the point
 - p(t) function computes a point for each value of t
 - Example use: smooth motion of camera
- Cubic curves can be written as a single vector equation:
 - $p(t) = at^3 + bt^2 + ct + d$
 - x,y,z components are:

•
$$x(t) = a_x t^3 + b_x t^2 + c_x t + d_x$$

•
$$y(t) = a_y t^3 + b_y t^2 + c_y t + d_y$$

•
$$z(t) = a_z t^3 + b_z t^2 + c_z t + d_z$$

- $(0 \le t \le 1)$
- x, y, z are cubic polynomials of the parameter t

Linear Interpolation

- Linear interpolation defines a straight line path between 2 points
 - $p(t)=p_0+t(p_1-p_0)=(1-t)p_0+tp_1$
- Linear interpolation may not be acceptable when tracing a path through several points
 - Sudden changes at the joints
- A solution is to repeatedly perform linear interpolation
 - Produces geometric interpretation of Bezier curve
 - Use 3 points a,b,c called control points
 - Create 2 new points d and e
 - By interpolating a,b and bc
 - Compute final point f
 - Interpolating between d and e
 - p(t) is quadratic
 - Produces a parabola

$$p(t)=(1-t)d+te$$

=(1-t)[(1-t)a+tb]+t[(1-t)b+tc]
=(1-t)²a+2(1-t)b+t²c

Overview of Parametric Curves

- A parametric curve is defined by a set of points known as control points together with a set of basis or blending functions
- Control points indicate the general shape of the curve
 - Basis functions can interpolate the control points or approximate the set of control points
 - Interpolate the curve passes through the control points
 - Approximate the curve approaches the control points
 - Set of control points specified interactively
 - Move/adjust individual control points to control the curve
- The polygon formed by joining the control points is called the characteristic or control polygon

4 control points
Bezier basis functions

Basis Functions

- Basis functions or blending functions blend or scale the control points into a curve segment
 - Several different basis functions have evolved in CAD and computer graphics applications
 - Bezier and B-spline basis functions are 2 of the most popular
- Basis functions are defined over the range of a parameter (t) for each control point
 - Derive the x,y,z components of the curve p(t) by summing the component of each control point p scaled by the value of the basis function at the parameter t: B(t)

$$p(t) = \sum_{i} B_i(t)p_i$$

$$x(t) = \sum_{i} B_i(t)p_{ix}$$

$$y(t) = \sum_{i} B_i(t)p_{iy}$$

$$z(t) = \sum_{i} B_i(t)p_{iz}$$

Convex Hull

- Convex hull is the convex polygon boundary that encloses a set of points
 - Imagine the region formed by stretching a rubber band around the control points
 - Each point is either on the perimeter of the convex hull or inside it
 - Not the same as the control polygon
- Convex hulls can be useful.
 - Most parametric curves are bounded by their convex hull
 - Can be used as bounding volume when ray tracing surface patches

