How can you determine the mass of a meter stick using only a known mass and your fingers?

Chapter 12 – Rotation of a Rigid Body

- Centre of mass and moment of inertia
- Torque and cross product
- Rolling motion and rotational energy
- Angular momentum

Torque is the rotational equivalent of force:

$$\tau = rF\sin\phi = rF_t = dF$$

The vector description of torque is

$$\vec{\tau} = \vec{r} \times \vec{F}$$

© 2022 Pearson Education, Inc.

Pivot
$$Sih\phi = sin(180-6)$$

MODEL 12.3

Static equilibrium

For extended objects at rest.

- Model the object as a rigid body with no acceleration.
- Mathematically:
 - No net force: $\vec{F}_{\text{net}} = \sum \vec{F}_i = \vec{0}$, and
 - No net torque: $\tau_{\rm net} = \sum \tau_i = 0$
- The torque is zero about *every* point, so use any point that is convenient for the pivot point.
- Limitations: Model fails if either the forces or the torques aren't balanced.

The object is at rest.

MODEL 12.2

Constant torque

For objects on which the net torque is constant.

- Model the object as a rigid body with constant angular acceleration.
- Take into account constraints due to ropes and pulleys.
- Mathematically:
 - Newton's second law is $\tau_{net} = I\alpha$.
 - Use the kinematics of constant angular acceleration.
- Limitations: Model fails if the torque isn't constant.

The object has constant angular acceleration.

$$d_{2} = \begin{cases} f_{3} \\ f_{4} \\ f_{5} \\ f_{6} \end{cases}$$
Center of mass
$$\begin{cases} f_{1} \\ f_{3} \\ f_{4} \\ f_{5} \end{cases}$$
Center of mass
$$\begin{cases} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{cases}$$

$$\begin{cases} f_{1} \\ f_{3} \\ f_{4} \\ f_{5} \end{cases}$$
Center of mass
$$\begin{cases} f_{1} \\ f_{2} \\ f_{3} \\ f_{4} \end{cases}$$

$$\begin{cases} f_{1} \\ f_{3} \\ f_{4} \\ f_{5} \end{cases}$$
Static friction prevents slipping.

Team Up Questions

STOP TO THINK 12.4 Rank in order, from largest to smallest, the five torques τ_A to τ_E . The rods all have the same length and are pivoted at the dot.

Team Up Questions

STOP TO THINK 12.5 Rank in order, from largest to smallest, the angular accelerations α_A to α_D .

Team Up Questions

STOP TO THINK 12.6 What does the scale read?

- a. 500 N
- b. 1000 N
- c. 2000 N
- d. 4000 N

© 2022 Pearson Education, Inc.

Fidi = Fidz

How can you determine the mass of a meter stick using only

$$M = d_2 mg$$

$$n = (m + M)g$$

$$M_1 = 15 cm$$
 $M_2 = 25 cm$
 $M = 2009$
 $M = 120$

