Introduction to K Nearest Neighbors

K Nearest Neighbors is a **classification** algorithm that operates on a very simple principle.

It is best shown through example!

Imagine we had some imaginary data on Dogs and Horses, with heights and weights.

Training Algorithm:

1. Store all the Data

Prediction Algorithm:

- 1. Calculate the distance from x to all points in your data
- 2. Sort the points in your data by increasing distance from x
- 3. Predict the majority label of the "k" closest points

Choosing a K will affect what class a new point is assigned to:

Choosing a K will affect what class a new point is assigned to:

Choosing a K will affect what class a new point is assigned to:

Pros

- Very simple
- Training is trivial
- Works with any number of classes
- Easy to add more data
- Few parameters
 - 0 **K**
 - Distance Metric

Cons

- High Prediction Cost (worse for large data sets)
- Not good with high dimensional data
- Categorical Features don't work well

MACHINE LEARNING

K-NEAREST NEIGHBORS ALGORITHM

K-nearest neighbors classifier

- K-nearest neighbors classifiers can classify examples by assigning them the class of the most similar labeled examples
- Very simple BUT extremely powerful algorithm !!!
- **knn** is well suited for classification tasks where the relationship between the features are very complex and hard to understand
- ▶ We have a training dataset → examples that are classified into several categories
- ▶ We have a new example: (with the same number of features as the training data) → kNN algorithm identifies k elements in the training dataset that are the "nearest" in similarity
- The unlabeled test example is assigned to the class of the majority of the k nearest neighbors

ingredients	sweetness	crunchiness	type
apple	10	•	fruit
bacon	1	4	protein
banana	10	1	fruit
carrot	7	10	vegetable
cheese	1	1	protein

ingredients	sweetness	crunchiness	type
apple	10	9	fruit
bacon	1	4	protein
banana	10	1	fruit
carrot	7	10	vegetable
cheese	1	1	protein
tomato	6	4	???

crunchiness

crunchiness

crunchiness

sweetness

Euclidean-distance

dist(x,y) =
$$\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2}$$

ingredients	sweetness	crunchiness	type
apple	10	9	fruit
bacon	1	4	protein
banana	10	1	fruit
carrot	7	10	vegetable
cheese	1	1	protein
tomato	6	4	???

dist(tomato,carrot) =
$$\sqrt{(6-7)^2+(4-10)^2}$$
 = 6.083

dist(tomato,carrot) =
$$\sqrt{(6-7)^2+(4-10)^2}=6.083$$

dist(tomato,apple) = $\sqrt{(6-10)^2+(4-9)^2}=6.403$
dist(tomato,bacon) = $\sqrt{(6-1)^2+(4-4)^2}=5$
dist(tomato,banana) = $\sqrt{(6-10)^2+(4-1)^2}=5$

dist(tomato,carrot) =
$$\sqrt{(6-7)^2+(4-10)^2}$$
 = 6.083
dist(tomato,apple) = $\sqrt{(6-10)^2+(4-9)^2}$ = 6.403
dist(tomato,bacon) = $\sqrt{(6-1)^2+(4-4)^2}$ = 5
dist(tomato,banana) = $\sqrt{(6-10)^2+(4-1)^2}$ = 5

k=2 we consider the 2 smallest distances: bacon and banana 50%-50% that tomato is a fruit or a protein

k=3 we consider the 3 smallest distances: bacon, banana and cheese So tomato appears to be a protein !!!

Choosing k values

- ▶ Deciding how many neighbors to use for kNN → determines how well the model will generalize and work on other dataset
- ▶ k is small → noisy data or outliers have a huge impact on our classifier ... this is called "underfitting"
- ▶ k is large → the classifier has the tendency to predict the majority class regardless of which neighbors are nearest ... this is called "overfitting"

Lazy learning

- ► Lazy learners does not learn anything!!!
- We just store the training data: training is very fast (because there is no training at all) BUT making the prediction is rather slow
- ► WE DO NOT BUILD A MODEL !!!
- This is a non-parametric learning: no parameters are to be learned about the data

Applications

- Optical character recognition + facial recognition (images and videos)
- Recommender systems: whether a person will enjoy a movie or not
- Identifying patterns in genetic data