Sisteme cu Circuite Integrate Digitale PROIECT LABORATOR

NUME: CIREȘ ESTERA

GRUPA: 2121

Cuprinsul projectului:

1. Rezolvarea temei de proiect pe hârtie	3
2.Inversorul CMOS	4
a) Schema electrică la nivel de tranzistor a inversorului CMOS	4
b) Circuitul de test cu verificarea functionarii	5
c) Măsurarea timpilor de tranziție și a timpului de propagare	7
3. Circuitul combinațional	9
a) Schemă electrică	9
b) Circuitul de test cu verificarea funcționării	11
4. Circuitul secvential	15
a)Schema electrica	15
b) Circuitul de test cu verificarea funcționării	15
5. Implementarea finală	17
a) Schema finală a automatului	17
b) Verificarea functionalitătii circuitului	17

1. Rezolvarea temei de proiect pe hârtie.

2.Inversorul CMOS

a) Schema electrică la nivel de tranzistor a inversorului CMOS

Inversorul CMOS este circuitul integrat digital, reprezentat cu simbolul:

Parametrii tranzistoarelor (L, W, AD, AS, PD, PS, m)

Monolithic MOFSET	-M1	Monolithic MOFSET	-M2
Model Name:	n90	Model Name:	p90
Length(L):	0.1u	Length(L):	0.1u
Width(W):	0.1u	Width(W):	0.2u
Drain Area(AD):	20f	Drain Area(AD):	40f
Source Area(AS):	20f	Source Area(AS):	40f
Drain	0.6u	Drain	0.8u
Perimeter(PD):	0.00	Perimeter(PD):	0.04
Source	0.6u	Source	0.8u
Perimeter(PS):	0.04	Perimeter(PS):	0.04
No. Parallel	1	No. Parallel	1
Devices(M):	1	Devices(M):	_

b) Circuitul de test cu verificarea functionarii

Profilul de simulare:

Semnalul de intrare

Semnalul de iesire

Semnal de intrare+iesire

c) Măsurarea timpilor de tranziție și a timpului de propagare

Timpul de tranziție este intervalul de timp necesar ca semnalul de ieșire să schimbe starea, și se măsoară între nivelele de 10% si 90% din valoarea maximă. Se disting timpii de tranziție la creștere tLH și descreștere tHL a semnalului de ieșire.

tHL= 96ps (front crescator)

tLH= 65ps (front descrescator)

Timpul de propagare este intervalul de timp necesar ca o variație a semnalului de intrare să producă o variație a semnalului de ieșire, și se măsoară între nivelele de 50% din valoarea maximă ale semnalelor de intrare si ieșire. Se disting timpii de propagare HIGH-LOW tpHL și LOW-HIGH tpLH.

tpLH=548.8ps-501.4ps=47.3ps

tpHL=35ps

Timpul mediu de propagare, sau timpul de întârziere, este este media timpilor de propagare: tp=41.5ps.

3. Circuitul combinațional

a) Schemă electrică

MUX 4:1 (Circuitul combinational)

Nume: Cireș Estera

Grupa: 2121

Poarta OR

NAND2

Monolithic MOFSET –	
M1,M2,M3,N	Л4
Model Name:	p90
Length(L):	0.1u
Width(W):	0.2u
Drain Area(AD):	40f
Source Area(AS):	40f
Drain	0.80
Perimeter(PD):	0.ou
Source	0.80
Perimeter(PS):	0.04
No. Parallel	1
Devices(M):	1

b) Circuitul de test cu verificarea funcționării

Circuitul de test cu verificarea functionalitatii pentru MUX 4:1

Multiplexorul selectează una dintre mai multe intrări și o conectează la ieșirea sa, în funcție de starea codului binar.

Poarta OR- Verificare

Parametrii Tranzistorilor

Monolithic MOFSET – M1,M3	
Model Name:	n90
Length(L):	0.1u
Width(W):	0.1u
Drain Area(AD):	20f
Source Area(AS):	20f
Drain Perimeter(PD):	0.6u
Source Perimeter(PS):	0.6u
	1
No. Parallel Devices(M):	1

Monolithic MOFSET	– M5
Model Name:	p90
Length(L):	0.1u
Width(W):	0.2u
Drain Area(AD):	40f
Source Area(AS):	40f
Drain	0.8u
Perimeter(PD):	0.8u
Source	0.8u
Perimeter(PS):	0.ou
No. Parallel	1
Devices(M):	1

Monolithic MOFSET – M2,M4		
Model Name:	p90	
Length(L):	0.1u	
Width(W):	0.4u	
Drain Area(AD):	80f	
Source Area(AS):	80f	
Drain Perimeter(PD):	1.2u	
Source Perimeter(PS):	1.2u	
No. Parallel Devices(M):	1	

Monolithic MOFSE	ET - M6
Model Name:	n90
Length(L):	0.1u
Width(W):	0.1u
Drain Area(AD):	20f
Source Area(AS):	20f
Drain Perimeter(PD):	0.6u
Source Perimeter(PS):	0.6u
No. Parallel Devices(M):	1

V(a)-semnalul de la sursa V1

V(b)-semnalul de la sursa V3

V(out2or)- semnalul de ieșirea circuitului combinational OR

V(out2nor)- semnalul de ieșirea circuitului combinational NOR

4. Circuitul secvential

a)Schema electrica

b) Circuitul de test cu verificarea funcționării

Nume: Cireș Estera

Grupa: 2121

Observatii:

Bistabil D format din 2 latch-uri D.

Latch-ul D e activ pe palier

Circuitul secvential este activ pe palierul tactului.

5. Implementarea finală

a) Schema finală a automatului

b) Verificarea funcționalității circuitului

Metoda 1 de verificare:

Concluzie: Automatul trece prin toate starile.

Metoda 2 de verificare: (optionala)

Pentru a verifica toate starile automatuli este necesar sa luam 4 cazuri (a=0,b=0; a=1,b=1; a=1,b=0; a=0,b=1) in care vom analiza formele de unda (in timp) din care sa rezulte functionarea corecta a circuitului pe fiecare dintre bucle.

I) Primul caz: a=0 si b=0

Bucla: 000-011-101-110

II) Al doilea caz: a=1 și b=1

Bucla: 000-011-100-110

III) Al treilea caz: a=1 și b=0

Bucla: 000-011-100-101-110

IV) Al patrulea caz: a=0 si b=1

Bucla: 000-011-101-110-011

Concluzie: Automatul functioneaza corespunzator pentru oricare dintre cele 4 cazuri prezentate mai sus.