Jeevan Shah July 17, 2024

Theorem 1 (Divisibility by a Prime). Any integer n > 1 is divisible by a prime number.

Theorem 2. For call integers n, if n > 2 then there is a prime number p such that n !

Proof. Assume that n is an integer greater than 2 and that p is a prime number such that $p \mid (n! - 1)$ [by the prime divisibility theorem] and that $p \leq n$. Then, by definition of factorial, $p \mid n!$. So,

$$n! \equiv 0 \pmod{p} \tag{1}$$

However, by assumption since $p \mid (n! - 1)$ we can say,

$$n! - 1 \equiv 0 \pmod{p} \tag{2}$$

Manipulating the left hand side of (1) to match (2) gives,

$$n! \equiv 0 \pmod{p}$$

 $n! - 1 \equiv 0 - 1 \pmod{p}$
 $n! - 1 \equiv -1 \pmod{p}$
 $\implies 0 \equiv -1 \pmod{p}$ (3)

But, in order for equation 3 to be true p must be equal to 1 [for the sake of modular arithmatic assume our domain to be \mathbb{Z}^+]. Thus we have reached a contradiction since $p \leq n$ and n > 2 so $p \neq 1$. So, p > n and $p \mid (n! - 1) \implies p \leq (n! - 1)$. Because (n! - 1) < n!, we know that

$$p + (n! - 1) \longrightarrow p \le (n! - 1)$$
. Because $(n! - 1) < n!$, we know that $p \le (n! - 1) < n!$ so, $n [which was to be proved.]$