HW 7-Linear model

ID: 111024517 Name: 鄭家豪

due on 01/05

$\mathbf{Q}\mathbf{1}$

Read Data

```
data <- read.table("http://www.stat.nthu.edu.tw/~swcheng/Teaching/stat5410/data/aatemp.txt",</pre>
                       header = T)
head(data)
##
      year temp
## 1 1854 49.15
## 2 1855 46.52
## 3 1871 48.80
## 4 1881 47.95
## 5 1882 47.31
## 6 1883 44.64
i
建構 simple linear model:
                         \text{temp}_i = \beta_0 + \beta_1 \text{year}_i + \epsilon_i \ \ , \text{where} \ \epsilon_i \sim N(0, \sigma^2)
fit_1 <- lm(temp~.,data=data)</pre>
summary(fit_1)
##
## Call:
## lm(formula = temp ~ ., data = data)
##
## Residuals:
```

```
Min
               1Q Median
##
                               3Q
                                      Max
## -3.9843 -0.9113 -0.0820 0.9946 3.5343
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 24.005510
                         7.310781
                                     3.284 0.00136 **
## year
               0.012237
                         0.003768 3.247 0.00153 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.466 on 113 degrees of freedom
## Multiple R-squared: 0.08536,
                                 Adjusted R-squared: 0.07727
## F-statistic: 10.55 on 1 and 113 DF, p-value: 0.001533
我們得到 fit model:
                         temp_i = 24.005510 + 0.012237 year_i
接著加入 year 的二次項至 model:
fit_2 <- lm(temp ~ poly(year,2,raw=T),</pre>
           data = data)
summary(fit_2)
##
## Call:
## lm(formula = temp ~ poly(year, 2, raw = T), data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -4.0412 -0.9538 -0.0624 0.9959 3.5820
##
## Coefficients:
                            Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                          -2.127e+02 3.837e+02 -0.554
                                                           0.580
## poly(year, 2, raw = T)1 2.567e-01 3.962e-01 0.648
                                                           0.518
## poly(year, 2, raw = T)2 -6.307e-05 1.022e-04 -0.617
                                                           0.539
##
## Residual standard error: 1.47 on 112 degrees of freedom
## Multiple R-squared: 0.08846,
                                  Adjusted R-squared: 0.07218
## F-statistic: 5.434 on 2 and 112 DF, p-value: 0.005591
```

這會使得 year 一次項和二次項的係數皆不顯著,因此不考慮加入二次項。 接著觀察一次項模型的 eta_1 95% 信賴區間

confint(fit_1,level = 0.95)

2.5 % 97.5 %

(Intercept) 9.521535277 38.48948531

year 0.004771599 0.01970293

其 95% 信賴區間: (0.004771599,0.01970293)

由於不包含 0 ,因此在顯著水準 0.05 下,有 linear trend 。

ii

使用 package: "nlme", 進行 fit the model with correlated error following an AR(1) structure:

Approximate 95% confidence intervals

##

Coefficients:

lower est. upper

```
## (Intercept) 7.409192415 25.18407264 42.95895286
              0.002474401 0.01164028 0.02080617
## year
##
##
   Correlation structure:
##
            lower
                       est.
                               upper
## Phi1 0.02920118 0.2303887 0.4136364
   Residual standard error:
##
##
     lower
               est.
                       upper
## 1.284091 1.475718 1.695942
我們得到 the estimated correlation 
ho=0.2303887 ,且在顯著水準 0.05 下,拒絕 
ho=0 的假設。
接著,在此模型下,year 的 95\% 信賴區間不包含 0 ,因此不改變 trend 的看法。
iii
建立 year 十次多項式的模型:
fit_10 <- lm(temp~poly(year,10),data = data)</pre>
summary(fit_10)
##
## Call:
## lm(formula = temp ~ poly(year, 10), data = data)
## Residuals:
      Min
               1Q Median
                               3Q
                                     Max
## -3.4987 -0.8641 -0.1745 1.1450 3.4255
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    47.7426
                               0.1319 361.927 < 2e-16 ***
## poly(year, 10)1
                    4.7616
                               1.4146 3.366 0.00107 **
## poly(year, 10)2
                               1.4146 -0.641 0.52277
                    -0.9071
## poly(year, 10)3
                    -3.3132
                               1.4146 -2.342 0.02108 *
## poly(year, 10)4
                    2.4383
                               1.4146 1.724 0.08774 .
## poly(year, 10)5
                   3.3824
                               1.4146 2.391 0.01860 *
## poly(year, 10)6
                   1.2124
                               1.4146 0.857 0.39337
## poly(year, 10)7
                    -0.9373
                               1.4146 -0.663 0.50908
## poly(year, 10)8
                    -1.1011
                               1.4146 -0.778 0.43812
## poly(year, 10)9
                     1.3994
                                1.4146 0.989 0.32483
```

```
## poly(year, 10)10 0.3474 1.4146 0.246 0.80652
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.415 on 104 degrees of freedom
## Multiple R-squared: 0.2165, Adjusted R-squared: 0.1411
## F-statistic: 2.873 on 10 and 104 DF, p-value: 0.003335
可以觀察到,第六項之後的變數皆不顯著,由於 orthogonality ,因此直接將第六項至第十項直接移
除,保留前五項的變數再建構模型。
fit_5 <- lm(temp~poly(year,5),data=data)</pre>
summary(fit_5)
##
## Call:
## lm(formula = temp ~ poly(year, 5), data = data)
##
## Residuals:
      Min
##
              1Q Median
                             3Q
                                    Max
## -3.7142 -0.9198 -0.1420 0.9903 3.2364
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
                 47.7426
                            0.1306 365.604 < 2e-16 ***
## (Intercept)
## poly(year, 5)1 4.7616
                           1.4004 3.400 0.000942 ***
## poly(year, 5)2 -0.9071
                           1.4004 -0.648 0.518500
## poly(year, 5)3 -3.3132
                           1.4004 -2.366 0.019749 *
## poly(year, 5)4
                 2.4383
                            1.4004 1.741 0.084470 .
## poly(year, 5)5
                  3.3824
                            1.4004 2.415 0.017384 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.4 on 109 degrees of freedom
## Multiple R-squared: 0.1952, Adjusted R-squared: 0.1583
## F-statistic: 5.289 on 5 and 109 DF, p-value: 0.0002176
```


接著預測 2020 年的 temperature:

```
predict(fit_5,data.frame(year=2020),
                         se=TRUE,
                         interval = "prediction")
## $fit
##
          fit
                   lwr
                            upr
## 1 60.07774 49.84092 70.31456
##
## $se.fit
## [1] 4.971514
##
## $df
## [1] 109
##
## $residual.scale
## [1] 1.400373
我們得到預測值: 60.07774 ,和 95\% 預測區間: (49.84092,70.31456) 。
```

iv

Define the base function:

$$d(\text{year}) = \begin{cases} 1 & \text{if year} > 1930 \\ 0 & \text{if otherwise} \end{cases}$$

Broken line regression(No continuity)

The Model:

```
\mathrm{temp}_i = \beta_0 + \beta_1 d(\mathrm{year}_i) + \beta_2 \mathrm{year}_i + \beta_3 (\mathrm{year}_i - 1930) d(\mathrm{year}_i) + \epsilon_i \ \ , \\ \mathrm{where} \ \epsilon_i \sim N(0, \sigma^2)
d <- function(x){ifelse(x>1930,1,0)}
model_broken1 <- lm(temp~ d(year) + year + I((year - 1930) * d(year)),</pre>
                     data=data)
summary(model_broken1)
##
## Call:
## lm(formula = temp \sim d(year) + year + I((year - 1930) * d(year)),
       data = data)
##
##
## Residuals:
##
       Min
                 1Q Median
                                    3Q
                                           Max
## -3.6618 -0.9456 -0.0876 0.9908 3.9925
##
## Coefficients:
                                  Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                                 54.452092 21.267390 2.560 0.011800 *
## d(year)
                                  1.853081 0.490983 3.774 0.000259 ***
                                 -0.003915 0.011168 -0.351 0.726576
## year
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.387 on 111 degrees of freedom
## Multiple R-squared: 0.1963, Adjusted R-squared: 0.1745
## F-statistic: 9.035 on 3 and 111 DF, p-value: 2.102e-05
得到模型:
    \mathsf{temp}_i = 54.452092 + 1.853081d(\mathsf{year}_i) - 0.003915\mathsf{year}_i - 0.008603(\mathsf{year}_i - 1930)d(\mathsf{year}_i)
由以上模型,繪製出其 fitting line:
```


觀察這張圖來判斷 Claim 是否合理,由圖和模型斜率係數的顯著性來看,1930 年之後的斜率變化似乎沒有很顯著,因此這個 Claim 似乎不正確。

Broken line regression(continuity)

為了在 year = 1930 時連續,模型修改為:

$$\mathrm{temp}_i = \beta_0 + \beta_1 \mathrm{year}_i + \beta_2 (\mathrm{year}_i - 1930) d(\mathrm{year}_i) + \epsilon_i \ \ , \\ \mathrm{where} \ \epsilon_i \sim N(0, \sigma^2)$$

```
##
## Call:
## lm(formula = temp ~ year + I((year - 1930) * d(year)), data = data)
##
## Residuals:
##
       Min
                1Q Median
                                        Max
## -4.0855 -0.9492 -0.0380 1.0289
##
## Coefficients:
##
                               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                               7.619376 18.264975
                                                      0.417
                                                              0.6774
```


由這張圖和模型 summary 來看,由於 (year - 1930) * d(year) 項的係數不顯著,因此不太能接受這個 Claim 是正確的。

 \mathbf{v}

根據 LNp.8-8 的規則,選取 6+4 個 knots:

```
knots <- c(1854,1854,1854,1854,1921,1962,2000,2000,2000,2000)
```

接著使用 package: "splines", 進行 cubic spline fit:

```
library(splines)
base <- splineDesign(knots,data$year)
model_cubic <- lm(temp~base,data=data)
summary(model_cubic)</pre>
```

```
##
## Call:
## lm(formula = temp ~ base, data = data)
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -3.6499 -0.9081 -0.2034 0.9433 3.3305
##
## Coefficients: (1 not defined because of singularities)
##
              Estimate Std. Error t value Pr(>|t|)
                          0.6813 72.240 < 2e-16 ***
## (Intercept) 49.2196
## base1
               -1.2715
                          1.2120 -1.049 0.29646
## base2
               -2.2249
                          1.1449 -1.943 0.05457 .
               -3.4016
                          1.2520 -2.717 0.00767 **
## base3
## base4
               1.1949
                          0.8534 1.400 0.16433
## base5
               -3.1265
                           1.2629 -2.476 0.01484 *
## base6
                    NA
                               NA
                                       NA
                                                NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 1.392 on 109 degrees of freedom
## Multiple R-squared: 0.2044, Adjusted R-squared: 0.1679
## F-statistic: 5.601 on 5 and 109 DF, p-value: 0.0001242
```

 $R^2=0.2044$, 比較 i 的模型 $R^2=0.08536$, B-spline 會比 simple linear model 還好些。

B-spline basis functions

• Plot the fit in comparison to the previous fits:

將前面所得到的 fitting line(除了 10-poly. 和 unconutious broken regression),都繪至在同一張圖上,可發現 5-polynomial model 和 Cubic B-spline model 的表現會其他模型還要好,其中這意味著溫度會隨著時間變化而有所變化。

Read data

在進行讀取前,需要對資料做調整方便讀取:

State UTTAR PRAD. MADHYA PRAD. ORISSA RAJASTHAN GUJARAT ANDHRA PRAD. ASSAM PUNJAB TAMILNADU KARNATAKA MAHARASHTRA	PQL1 Score 17 28 24 29 36 33 55 35 62 43 52 60	167 135 133 129 118 112 109 118 103 103 75	Rural Male IMR 159 148 131 135 120 138 107 133 115 125 92 95	Rural Female IMR 187 134 142 142 135 101 128 106 108 115 70 72	Urban Male IMR 110 88 78 55 92 79 57 87 58 67 51	Urban Female IMR 111 83 81 77 84 46 60 85 73 59 59	⇒	State UTTAR PRAD. MADHYA PRAD. ORISSA RAJASTHAN GUJARAT ANDHRA PRAD. HARYANA ASSAM PUNJAB TAMILNADU KARNATAKA MAHARASHTRA	PQL I Score 17 28 24 29 36 33 55 35 62 43 52 60	Combined IMR 167 135 133 129 118 112 109 118 103 75 75	Rural Male IMR 159 148 131 135 120 138 107 133 115 125 92	Rural Female IMR 187 134 142 142 135 101 128 106 108 115 70 72	Urban Male IMR 110 88 78 55 92 79 57 87 58 67 51	Urban Female IMR 111 83 81 77 84 46 60 85 73 59 59
KERALA	92	39	42	42	22	30		KERALA	92	39	42	42	22	30

```
##
            state PQLI Comb.IMR Rur.M.IMR Rur.F.IMR Urb.M.IMR Urb.F.IMR
## 1 UTTAR_PRAD.
                    17
                             167
                                       159
                                                  187
                                                            110
                                                                       111
## 2 MADHYA_PRAD.
                    28
                             135
                                       148
                                                  134
                                                             88
           ORISSA
                                                  142
## 3
                    24
                             133
                                       131
                                                             78
                                                                        81
## 4
        RAJASTHAN
                    29
                             129
                                       135
                                                  142
                                                             55
                                                                        77
          GUJARAT
## 5
                    36
                             118
                                       120
                                                  135
                                                             92
                                                                        84
## 6 ANDHRA_PRAD.
                                       138
                                                  101
                                                             79
                    33
                             112
                                                                        46
```

我們的目的是想研究 IMR 與性別和區域的關係,由於原始資料是將性別區域 IMR 合併在一起,分成 "Rur.M.IMR"、"Rur.F.IMR"、"Urb.M.IMR"、"Urb.F.IMR",為了便於分析,定義兩個 dummy variable 來拆成三個 column ,再加入對應的 PQLI,整合成新的資料 (名稱為"data_combin"):

$$d_1(\text{gender}) = \begin{cases} 1 & \text{if gender is Male} \\ 0 & \text{if gender is Female} \end{cases}, \ d_2(\text{Area}) = \begin{cases} 1 & \text{if area is urban} \\ 0 & \text{if area is rural} \end{cases}$$

[1] 52 4

```
names(data_combin)
```

```
## [1] "MIR" "Gender" "Area" "PQLI" 利用這資料來做分析:
```

ANCOVA

```
fit1 <- lm(MIR ~ Gender + Area ,data = data_combin)</pre>
fit2 <- lm(MIR ~ Gender + Area + PQLI, data = data_combin)</pre>
anova(fit1,fit2)
## Analysis of Variance Table
##
## Model 1: MIR ~ Gender + Area
## Model 2: MIR ~ Gender + Area + PQLI
    Res.Df RSS Df Sum of Sq
##
                                  F
                                        Pr(>F)
## 1
         49 39485
## 2
        48 12241 1
                       27244 106.83 8.497e-14 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Obviously, as p-value is small than 0.05 , the quantiative predictor PQLI is covariate.

Fit model

summary(fit)

```
配適一個 MIR ~ Gender * Area * PQLI 的模型:
fit <- lm(MIR ~ Gender * Area * PQLI, data = data_combin)
```

```
##
##
## Call:
## lm(formula = MIR ~ Gender * Area * PQLI, data = data_combin)
##
## Residuals:
## Min    1Q Median    3Q Max
## -32.110 -5.603    0.007    7.546    31.882
##
## Coefficients:
```

```
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                      10.3419 17.546 < 2e-16 ***
                           181.4581
                                      14.6257 -0.166
## GenderMale
                            -2.4329
                                                       0.8687
                                      14.6257 -5.330 3.22e-06 ***
                           -77.9537
## Areaurban
## PQLI
                                       0.2168 -7.147 6.96e-09 ***
                            -1.5494
## GenderMale:Areaurban
                            10.5945
                                      20.6838
                                               0.512
                                                       0.6111
## GenderMale:PQLI
                             0.1584
                                       0.3066
                                               0.517
                                                       0.6081
## Areaurban:PQLI
                             0.7799
                                       0.3066
                                                2.544
                                                       0.0146 *
## GenderMale:Areaurban:PQLI -0.3741
                                       0.4336 -0.863
                                                       0.3929
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 15.24 on 44 degrees of freedom
## Multiple R-squared: 0.8498, Adjusted R-squared: 0.8259
## F-statistic: 35.56 on 7 and 44 DF, p-value: 4.329e-16
此時應該要考慮 PQLI 和 Gender 或 Area 之間是否有交互作用效應,使用 anova() 指令觀察:
anova(fit)
## Analysis of Variance Table
##
## Response: MIR
                  Df Sum Sq Mean Sq F value
##
                                                Pr(>F)
                                33.9 0.1460 0.704204
## Gender
                        33.9
                   1 28529.3 28529.3 122.8063 2.560e-14 ***
## Area
                   1 27243.6 27243.6 117.2720 5.409e-14 ***
## PQLI
## Gender:Area
                       105.3
                             105.3 0.4533 0.504291
## Gender:PQLI
                         4.1
                                4.1
                                      0.0175 0.895326
                   1
## Area:PQLI
                   1 1737.2 1737.2 7.4779 0.008967 **
## Gender:Area:PQLI 1
                       172.9
                                      0.7444 0.392935
                              172.9
## Residuals
                  44 10221.7
                               232.3
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
由上面結果,只有 Area 和 PQLI 的交互作用項顯著,另外 Gender 項不顯著,於是移除 Gender 項和
加入 Area:PQLI 交互作用項然後重配模型:
fit_new <- lm(MIR ~ Area + PQLI + Area:PQLI,data=data_combin)</pre>
summary(fit_new)
```

##

```
## Call:
## lm(formula = MIR ~ Area + PQLI + Area:PQLI, data = data_combin)
##
## Residuals:
##
       Min
               1Q Median
                                3Q
                                       Max
## -33.790 -5.237
                    0.175 7.759 31.752
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                 180.2417
                              7.1090 25.354 < 2e-16 ***
## Areaurban
                  -72.6564
                              10.0536 -7.227 3.30e-09 ***
## PQLI
                   -1.4702
                              0.1490 -9.866 3.93e-13 ***
## Areaurban:PQLI 0.5928
                              0.2107 2.813 0.00709 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 14.82 on 48 degrees of freedom
## Multiple R-squared: 0.8451, Adjusted R-squared: 0.8355
## F-statistic: 87.32 on 3 and 48 DF, p-value: < 2.2e-16
我們得到模型:
     MIR = 180.2417 - 72.6564 \times d_2(area) - 1.4702 \times PQLI + 0.5928 \times (d_2(area) \times PQLI)
```

我們可以看到,每個項的係數皆是顯著,there exist rural-urban difference in mortality after adjusting for the covariate, PQLI.

Q3

4

135

300

Read data and fit simple linear model

```
## 5
       97
                 0
## 6
     150
                 75
fit <- lm(yield~.,data=data)</pre>
summary(fit)
##
## Call:
## lm(formula = yield ~ ., data = data)
## Residuals:
##
      Min
               1Q Median
                                3Q
                                       Max
## -60.439 -10.939 1.534 14.082 29.697
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 107.43864
                           4.66622 23.02 < 2e-16 ***
## nitrogen
                0.17730
                            0.03377
                                       5.25 4.71e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 20.53 on 42 degrees of freedom
## Multiple R-squared: 0.3962, Adjusted R-squared: 0.3818
## F-statistic: 27.56 on 1 and 42 DF, p-value: 4.713e-06
We have model:
                        yield_i = 107.43864 + 0.17730(nitrogen_i)
Testing for Lack of fit
用 anova() 指令進行 Testing for Lack of fit:
fit_sature <- lm(yield ~ factor(nitrogen),data=data)</pre>
anova(fit,fit_sature)
## Analysis of Variance Table
##
## Model 1: yield ~ nitrogen
## Model 2: yield ~ factor(nitrogen)
               RSS Df Sum of Sq F
    Res.Df
                                           Pr(>F)
```

```
## 1 42 17699.2
## 2 37 8186.8 5 9512.4 8.5982 1.774e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
由於 p-value <0.05 , 有足夠證據表示這個模型配得不好。
```

Box-Cox method

這裡檢查是否適合使用 Box-Cox method for response,Using package:"MASS"。

```
library(MASS)
boxcox(fit,plotit = T)
```


由於 lambda 值似乎超過 1 之後, log-likelihood 還在增加, 我們試著把 lambda 的範圍往後拉一點:

```
boxcox(fit,plotit = T,lambda = c(0,4,1/100))
```


可以發現當 $\lambda \in (2,3)$ 時,其 log-likelihood 會達至最大。

g1 <- lm(I(yield^3) ~ nitrogen, data=data)</pre>

summary(g1)

我們試著對 response 做 $(y^3-1)/3$ 的 transformation (比較有解釋性且 3 比較靠近最大 log-likelihood 的 λ),然後 fit model:

```
##
## Call:
## lm(formula = I(yield^3) ~ nitrogen, data = data)
##
## Residuals:
       Min
##
                  1Q
                       Median
                                    3Q
                                             Max
## -1365038 -570012
                         3471
                                525741 1817216
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1468861
                            186746
                                     7.866 8.63e-10 ***
                                     5.385 3.03e-06 ***
## nitrogen
                   7278
                              1352
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

Residual standard error: 821600 on 42 degrees of freedom
Multiple R-squared: 0.4084, Adjusted R-squared: 0.3943

F-statistic: 28.99 on 1 and 42 DF, p-value: 3.029e-06

821600^(1/3)

[1] 93.65985

其 $\hat{\sigma}=821600$,由於單位是 response 單位的 3 次方,算回去原本的單位後,得到 $93.65985>20.53(\hat{\sigma})$ from the model without transformation)。然後 $R^2=0.4084$ 相較於沒轉換後的 $R^2=0.3962$,差不了多少,因此對 response 做 Box-Cox transformation 對於模型沒有改善。

我們來檢驗是否要對 predictor 做 transformation:

先觀察 nitrogen-residual 之間的關係:

由以上的圖,可以觀察出 nitrogen 和 residual 似乎有"凹口向下"的曲線關係 (second derivative is small than 0),因此試著對 nitrogen 做 Box-Cox transformation $(x^{\lambda}, \lambda \in (0,1))$ 。 定義:

$$xlog(x) = \begin{cases} xlog(x) & \text{if } x > 0 \\ 0 & \text{if otherwise} \end{cases}$$

這樣定義的目的是為了使 nitrogen = 0 時有意義 $(0^{\lambda} = 0)$ 接著建構 model:

$$\mathrm{yield}_i = \beta_0 + \beta_1(\mathrm{nitrogen} + (\lambda - 1)\mathrm{nitrogen} \times \log(\mathrm{nitrogen})) + \epsilon_i \ \ , \\ \mathrm{where} \ \epsilon_i \sim N(0, \sigma^2)$$

```
f = function(x){
 c=c()
 for (i in 1:length(x)){
   if(x[i] == 0){c[i]=0}
   else\{c[i]=x[i]*log(x[i])\}
 return(c)
}
g2 <- lm(yield ~ nitrogen + f(data$nitrogen),data=data)
summary(g2)
##
## Call:
## lm(formula = yield ~ nitrogen + f(data$nitrogen), data = data)
##
## Residuals:
             1Q Median
##
      Min
                             3Q
                                   Max
## -43.159 -7.262 -0.471 9.597 24.841
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  90.15890 4.28892 21.021 < 2e-16 ***
## nitrogen
                  ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 14.68 on 41 degrees of freedom
## Multiple R-squared: 0.6986, Adjusted R-squared: 0.6839
## F-statistic: 47.51 on 2 and 41 DF, p-value: 2.104e-11
由於 x_ilog(x_i) 項的係數顯著不為 0 ,因此對 nitrogen 做轉換 (\lambda = \frac{-0.30757}{1.90973} + 1 = 0.8389458):
轉換完後重新 fit:
fit_trans <- lm(yield ~ I(nitrogen^0.8389458),data = data)</pre>
summary(fit_trans)
##
## Call:
## lm(formula = yield ~ I(nitrogen^0.8389458), data = data)
##
```

```
## Residuals:
      Min 1Q Median
                             3Q
## -57.241 -8.142 0.505 12.586 29.224
##
## Coefficients:
##
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                     104.24072   4.66074   22.366   < 2e-16 ***
## I(nitrogen^0.8389458) 0.47076 0.07917 5.947 4.74e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 19.47 on 42 degrees of freedom
## Multiple R-squared: 0.4571, Adjusted R-squared: 0.4442
## F-statistic: 35.36 on 1 and 42 DF, p-value: 4.74e-07
轉換完後,R^2=0.4571~\mathrm{and}~\hat{\sigma}=19.47 ,與沒轉換的模型做比較,其 R^2=0.3962~\mathrm{and}~\hat{\sigma}=20.53 ,
模型有得到改善。不過缺點是犧牲兩者變數之間的解釋性。
anova(fit_trans,fit_sature)
## Analysis of Variance Table
##
## Model 1: yield ~ I(nitrogen^0.8389458)
## Model 2: yield ~ factor(nitrogen)
              RSS Df Sum of Sq F
   Res.Df
##
                                       Pr(>F)
## 1
       42 15914.4
        37 8186.8 5 7727.6 6.985 0.0001105 ***
## 2
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
雖然還是有 lack of fit ,但 p-value 相比沒轉換前,有增加很多,這意味著對 predictor 轉換後確實有
得到些許改善。
我們最後用 shapiro.test() 來檢定對 predictor 轉換前和轉換後的模型哪個比較符合 normality:
##
## Shapiro-Wilk normality test
##
## data: rstandard(fit)
## W = 0.95056, p-value = 0.05772
```

9

##

```
## Shapiro-Wilk normality test
##
## data: rstandard(fit_trans)
## W = 0.95239, p-value = 0.06754
```

若顯著水準 =0.05 ,那這兩個模型都符合 normality,但因為轉換後的模型,p-value 較轉換前的模型 還要大,所以轉換後比轉換前更加符合 normality。