

Projektmanagement: Requirements Engineering

Projekt 1: Java Traffic Simulator (jts)

Dokument	Anforderungsdokument						
Klassifikation	Keine						
Status	Eingereicht						
Projektname	Java Traffic Simulator						
Projektverantwortlicher	Peter Schwab (PS)						
Projektteam	Mathias Winkler (MW), Mischa Lehmann (ML)						
Zuhanden	Rolf Gasenzer (RG)						

Management Summary

Der Java Traffic Simulator (JTS) ist eine Agent-basierte Mikrosimulation auf realen Verkehrsnetzen für den ein-fachen User. Das Projekt wird im Rahmen des Modules: Projekt 1 der Berner Fachhochschulen Abteilung Technik und Informatik realisiert.

Dokumentversion

Version	Datum	Beschreibung	Autor
0.1	07.10.2014	Initialisierung	ML
0.2	08.10.2014	Review	MW
1.0	15.10.2014	Finalisieren / Abgabe	ML
2.0	11.12.2014	Erweiterung	MW
2.1	11.12.2014	Review	ML
2.2	16.12.2014	Finalisieren	ML
2.3	17.12.2014	Eingereicht	ML, MW

Inhalt

1		Pro	ojektvision	. 3
2		Pro	ojektziele (SMART)	. 4
3		Sys	stem- und Systemkontext	. 5
4		An	forderungen	.6
	4.	.1	Anforderungsübersicht	. 6
	4	.2	Funktionale Anforderungen	. 8
		An	forderung 1.3: Mehrspurigkeit modellieren	. 8
		An	forderung 2.5: Simulation bewegt die Fahrzeuge und passt ihre Eigenschaften an	. 8
		An	forderung 3.1: Simulation steuerbar	. 8
		An	forderung 4.4: Daten von OpenStreetMap importierbar	. 8
		An	forderung 5.1: Agent-basierte Kl	. 8
		An	forderung 5.3.2: Entscheidung treffen bei Verzweigungen	. 8
	4.	.3	Nicht-funktionale Anforderungen	.9
		An	forderung 1.6: Strassennetz ist ein gerichteter Graph	. 9
		An	forderung 2.4: Performante Simulation	. 9

Teil 1

1 Projektvision

Das System soll es ermöglichen, den Verkehrsfluss auf einem vorgegebenen Strassennetz in Echtzeit oder auch zeitlich skaliert annähernd realistisch zu simulieren. Dabei soll der Benutzer erkennen, wo im Strassennetz Engpässe sind und Stau entstehen kann. Der Benutzer soll auch sehen, wo und unter welchen Bedingungen Unfälle entstehen.

2 Projektziele (SMART)

Hauptziel Unterziel Beschreibung

1		Ziels ist, dass nach Beendigung des Projekts von einem Anwender Stauherde erkannt werden können.
	1.1	Unterziels ist, dass dem Anwender die jeweiligen Simulationszustände in einem GUI visualisiert werden.
	1.2	Die Auslastung auf dem Strassennetz soll besser verteilt sein, so dass ein durchschnittlicher Verkehrsfluss von bis zu 65% erreicht werden kann.
	1.3	Unterziel ist, dass das System den Stau auf einem geplanten Strassennetz um bis zu 10% reduzieren kann.
2		Ziels ist, dass nach Beendigung des Projekts von einem Anwender Statistische Daten über den Verkehrsfluss pro Zeit über ein bestimmtes Verkehrsszenario erhoben werden können.
	2.1	Unterziel ist, dass der Anwender über das GUI Messpunkte setzen und konfigurieren kann.
	2.2	Unterziel ist, dass der Anwender über das GUI Daten zu den Messpunkten auslesen kann.
3		Ziels ist, dass nach Beendigung des Projekts von einem Anwender reale Strassennetze mit Hilfe eines Konverters ¹ von OpenStreetMap importiert werden können.
	3.1	Unterziel ist, dass dem Anwender der Konverter zur Verfügung gestellt wird.
	3.2	Unterziel ist, dass der Anwender über das GUI Strassennetze importieren kann.
4		Ziels ist, dass nach Beendigung des Projekts von einem Programmierer flexibel neue Verhaltensmuster für Fahrertypen eingeführt werden können.
	4.1	Unterziel ist, dass Programmierer eine Schnittstellt zum Abfragen von situationsspezifischen Simulationsdaten für den Agent zur Verfügung steht.
	4.2	Unterziel ist, dass Programmierer eine fest definierte Schnittstellt zum einfügen neuer Verhaltensmuster zur Verfügung steht.
	4.3	Unterziel ist, dass Programmierer im GUI neue Verhaltensmuster erfassen können.

¹ http://sumo.dlr.de/wiki/NETCONVERT

3 System- und Systemkontext

Das System verfügt aber über eine Schnittstelle zu OpenStreetMap². Mit dieser können reale Strassennetze importiert werden. Das Format für die Strassendaten soll nicht selber entwickelt werden. Vielmehr soll das System kompatibel sein zu einem bestehenden Dateiformat³ für den Verkehrssimulator SUMO. Der Benutzer kann die Simulation so parametrisieren, dass er die Staubildung oder die Unfallwahrscheinlichkeit minimieren kann.

Das System soll nur Fahrzeuge simulieren, welche sich auf den Fahrbahnen des Strassennetzes bewegen. Nicht zum System gehört, eine realistische Darstellung der Simulation. Eine einfache und grobe Visualisierung genügt, um die Schwachstellen im Strassennetz zu erkennen. Ein Editor, um ein Strassennetz für die Simulation zu erstellen, ist ebenfalls ausserhalb der Systemgrenze.

Abbildung 1: Systemkontext notiert in UML

-

² http://sumo.dlr.de/wiki/Networks/Import/OpenStreetMap

³ http://sumo.dlr.de/wiki/NETCONVERT

Teil 2

4 Anforderungen

4.1 Anforderungsübersicht

Für eine übersichtlichere Darstellung aller Anforderungen mit Risikobeurteilung und Status siehe Dokument: Anforderungskatalog.xlsx, Mappe: Anforderungen.

Legende:

P = Priorität (1 - 3), S = Stabilität (1 - 3), Komplexität (1 - 3), Risiko (1 - 3)

Nummer	Kurzbezeichnung	Tr.co	Status	D	S	ν	D	Quelle	Datum	Ziele
Nummer	Kurzbezeichhung	тур	Status	<u> </u>	3	V	N	Quelle	Datum	Ziele
1	Datenmodell									
1.1	Strassen modellieren	FA	geplant	3	3	3	3	Annahme	25.09.2014	1, 2, 3
1.2	Verzweigungen modellieren	FA	geplant			1	1.7	1. Analyse	25.09.2014	
1.3	Mehrspurigkeit modellieren	FA	geplant			1	1.7	1. Analyse	25.09.2014	
1.4	Fahrzeuge modellieren	FA	geplant			3	3	Annahme	25.09.2014	1, 2, 3
1.4.1	Fahrzeuge haben Eigenschaften: Position, Geschwindigkeit, Beschleunigung	FA	geplant			3	3	Annahme	25.09.2014	1, 2, 3
1.4.1	Fahrzeuge können auf den Strassen fahren	FA	geplant	3	3	3	3	Annahme	25.09.2014	1, 2, 3
1.5	Kurven modellieren	FA	geplant	2	2	2	2	1. Analyse	25.09.2014	1, 2, 3
1.6	Strassennetz ist ein gerichteter Graph	AA	geplant	2	1	3	2	Annahme	25.09.2014	1, 2, 3
2	Simulator-Engine									
2.1	Zeit-diskrete Simulation	FA	geplant	2	2	3	2.3	Annahme	25.09.2014	1, 2, 3
2.2	Raum-kontinuierliche Simulation	FA	geplant			2	2	Annahme	25.09.2014	
2.3	Deterministische Simulation	FA	geplant			1		1. Analyse	25.09.2014	
2.4	Performante Simulation	TA	geplant					2. Analyse	25.09.2014	
2.5	Simulation bewegt Fahrzeuge und passt deren Eigenschaften an	FA	geplant	3	3	3	3	1. Analyse	25.09.2014	1, 2, 3
2.6	Simulation mittels Seed initiierbar	FA	geplant	1	2	3	2	1. Analyse	25.09.2014	1, 2, 3
2.7	Delta-t der Simulation konfigurierbar	FA	geplant	1	2	3	2	Annahme	25.09.2014	1, 2, 3
3	GUI									
3.1	Simulation steuerbar (Start, Pause, Stop, Reset)	FA	geplant	2	3	3	2.7	Annahme	25.09.2014	1, 2, 3
3.2	Geschwindigkeit der Simulation einstellbar	FA	geplant	1	2	3	2	1. Analyse	25.09.2014	1, 2, 3
3.3	2-dimensionaler, farbiger Output	FA	geplant	3	3	2	2.7	1. Analyse	25.09.2014	1, 2, 3

		3.3.1	Strassen werden gerendert	FA	geplant	3	3	2	2.7	1. Analyse	25.09.2014	1, 2, 3
			Fahrzeuge werden gerendert	FA	geplant					1. Analyse	25.09.2014	
	3.4		Scrollen und Zoomen möglich	FA	.					2. Analyse	25.09.2014	
	3.5		Weltdaten können geladen	FA	geplant					1. Analyse	25.09.2014	
	3.3		werden		Poblant	_	J	•	,	11741430	23.03.201	1, 2 , 3
4			Importer/Parser									
	4.1		Weltdaten müssen nicht manuell	FA	geplant	3	2	2	2.3	Annahme	25.09.2014	1, 2, 3
			erstellt werden									
	4.2		Basis für den Import sind XML-	TA	geplant	2	2	3	2.3	 Analyse 	25.09.2014	1, 2, 3
			Dateien									
	4.3		Output sind Daten gemäss	TA	geplant	3	3	3	3	1. Analyse	25.09.2014	1, 2, 3
			definiertem Datenmodell									
	4.4		Daten von OpenStreetMap	FA	geplant	2	2	1	1.7	1. Analyse	25.09.2014	1, 2, 3
			importierbar				_	_				
		4.4.1	Daten werden aufbereitet	FA	geplant	1	2	2	1.7	Annahme	25.09.2014	1, 2, 3
_			10									
5	- 1		KI	Τ.		_	_	_	_		25.00.204.4	4 2 2
	5.1		Agent-basierte KI	TA	geplant				3	Annahme	25.09.2014	-
	5.2		KI kann die Welt wahrnehmen	FA	geplant	3	3	2	2./	Annahme	25.09.2014	1, 2, 3
		F 2 4	(Sensorik)	_^		2	2	2	2 7	A	25 00 2014	1 2 2
		5.2.1	Eigenschaften von vorderem Fahrzeug erkennbar	FA	geplant	3	3	2	2.7	Annahme	25.09.2014	1, 2, 3
		522	Verzweigungen erkennbar	FA	genlant	2	2	2	2 7	Annahme	25.09.2014	1 2 2
	5.3	3.2.2	KI kann auf die Welt reagieren	FA	geplant					Annahme	25.09.2014	
	J.5		(Motorik)	ΓA	gepiailt	Э	3	2	۷./	Ailliaillile	23.03.2014	1, 4, 3
		5 3 1	Beschleunigung/Geschwindigkeit	FΔ	genlant	2	3	2	2 7	Annahme	25.09.2014	1 2 3
		3.3.1	verändern	17	Pehiant	J	,	_	۷.,	, aniamine	23.03.2014	1, 2, 3
		522	Entscheidung treffen bei	FA	genlant	3	2	2	23	Annahme	25.09.2014	1 2 3
		J.J.Z										

4.2 Funktionale Anforderungen

ANFORDERUNG 1.3: MEHRSPURIGKEIT MODELLIEREN

Das System muss Strassen mit mehreren Spuren abbilden können. Bei einer Kreuzung, muss das System die Spuren der anliegenden Strassen, gemäss Definition in XML, miteinander verbinden.

ANFORDERUNG 2.5: SIMULATION BEWEGT DIE FAHRZEUGE UND PASSTIHRE EIGENSCHAFTEN AN

Während eines Simulationsschrittes muss das System jedes einzelne Fahrzeug anhand der aktuellen Geschwindigkeit bewegen. Das System passt die Eigenschaften: Position, Geschwindigkeit und Unfallzustand jedes Fahrzeugs an.

ANFORDERUNG 3.1: SIMULATION STEUERBAR

Das System muss dem Benutzer die Möglichkeit bieten, die Simulation zu starten, zu stoppen, zu pausieren und neu zu starten.

ANFORDERUNG 4.4: DATEN VON OPENSTREETMAP IMPORTIERBAR

Das System soll die Strassendaten von der freien Quelle "OpenStreetMap" in einem für das System kompatibles Datenformat lesen können. Das Datenformat wird von SUMO übernommen⁴. Das System soll für die Simulation nicht relevante Elemente wie Häuser, Fussgängerstreifen und Zugschienen herausfiltern.

ANFORDERUNG 5.1: AGENT-BASIERTE KI

Das System muss jedem Fahrzeug eine eigene "künstliche Intelligenz" (KI) zuordnen. Das Fahrzeug wird zum Agent. Das System wird jedes Fahrzeug gemäss dessen individuellen Entscheidungen simulieren. Entscheidungen werden über ein Interface⁵ abgegriffen. Das System ermöglicht eine gewisse Varianz von Agents auf dem Strassennetz.

ANFORDERUNG 5.3.2: ENTSCHEIDUNG TREFFEN BEI VERZWEIGUNGEN

Das System muss Fahrzeuge an einer Verzweigung gemäss der vom Agent getroffenen Entscheidung weiterleiten.

-

⁴ http://sumo.dlr.de/wiki/Networks/Building_Networks_from_own_XML-descriptions

⁵ https://github.com/winki/jts

4.3 Nicht-funktionale Anforderungen

ANFORDERUNG 1.6: STRASSENNETZ IST EIN GERICHTETER GRAPH

Das System soll das Strassennetz als einen gerichteten Graphen modellieren. Das System ermöglicht es so einfach mathematische Algorithmen und Auswertungen auf dem Strassennetz vorzunehmen.

ANFORDERUNG 2.4: PERFORMANTE SIMULATION

Das System muss eine für den Betrachter flüssige Simulation von mindestens 1000 Fahrzeugen, ein Strassennetz bestehend aus 20 km mehrspurigen Strassen und Kreuzungen berechnen können.