gSOAP 2.6.0 User Guide

Robert van Engelen Genivia, Inc., engelen@genivia.com & engelen@acm.org

June 6, 2004

Contents

1	Introduction	6
2	Notational Conventions	7
3	Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5	8
4	Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2	8
5	Differences Between gSOAP Versions 1.X and 2.X	8
6	Interoperability	11
7	Getting Started	12
8	Quick User Guide	12
	8.1 $$ How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Clients	13
	8.1.1 Example	14
	8.1.2 Namespace Considerations	18
	8.1.3 Example	19
	8.1.4 How to Generate C++ Client Proxy Classes	20
	8.1.5 XSD Type Encoding Considerations	21
	8.1.6 Example	22
	8.1.7 How to Change the Response Element Name	23
	8.1.8 Example	23
	8.1.9 How to Specify Multiple Output Parameters	24
	8.1.10 Example	24
	8.1.11 How to Specify Output Parameters With struct/class Compound Data Types	26
	8.1.12 Example	26

		8.1.13	How to Specify Anonymous Parameter Names	28		
		8.1.14	How to Specify a Method with No Input Parameters	29		
		8.1.15	How to Specify a Method with No Output Parameters	30		
	8.2	How to	o Use the gSOAP Stub and Skeleton Compiler to Build SOAP Web Services	30		
		8.2.1	Example	30		
		8.2.2	MSVC++ Builds	33		
		8.2.3	How to Create a Stand-Alone gSOAP Service	33		
		8.2.4	How to Create a Multi-Threaded Stand-Alone Service	34		
		8.2.5	How to Pass Application Data to Service Methods	37		
		8.2.6	Some Web Service Implementation Issues	38		
		8.2.7	How to Generate C++ Server Object Classes	38		
		8.2.8	How to Generate WSDL Service Descriptions	39		
		8.2.9	Example	40		
		8.2.10	How to Parse and Import WSDL Service Descriptions to Develop Clients			
			and Servers	42		
		8.2.11	How to Use Client Functionalities Within a Service	44		
	8.3	How to	o Use gSOAP for Asynchronous One-Way Message Passing	46		
	8.4		Use the SOAP Serializers and Deserializers to Save and Load Application	47		
		8.4.1	Serializing a Data Type	47		
		8.4.2	Deserializing a Data Type	51		
		8.4.3	Example	53		
		8.4.4	Serializing and Deserializing Class Instances to Streams	56		
		8.4.5	How to Specify Default Values for Omitted Data	58		
9	Using the gSOAP Stub and Skeleton Compiler					
	9.1	Compi	ler Options	60		
	9.2	SOAP	1.1 Versus SOAP 1.2	61		
	9.3	The so	papdefs.h Header File	62		
	9.4	How to	b Build Modules and Libraries with the gSOAP #module Directive $$	62		
	9.5	How to	o use the gSOAP #import Directive	63		
	9.6	How to	o Use #include and #define Directives	63		
	9.7	.7 Compiling a gSOAP Client		64		
	9.8	Compi	ling a gSOAP Web Service	65		
	9.9	Using	gSOAP for Creating Web Services and Clients in Pure C \dots	66		
	9.10	Limita	tions of gSOAP	66		
	9.11	Compi	le Time Flags	67		
	9.12	Run T	ime Flags	68		
	9.13	Memor	ry Management	70		
		9.13.1	Memory Management Policies	71		

		9.13.2 Intra-Class Memory Management	73
	9.14	Debugging	75
	9.15	Libraries	75
10	The	gSOAP Remote Method Specification Format	76
	10.1	Remote Method Parameter Passing	77
	10.2	Error Codes	79
	10.3	C/C++ Identifier Name to XML Name Translations	81
	10.4	Namespace Mapping Table	82
11	gSO	AP Serialization and Deserialization Rules	84
	11.1	Primitive Type Encoding	84
	11.2	How to Encode and Decode Primitive Types as XSD Types	84
		11.2.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type	91
		11.2.2 How to use Wrapper Classes to Specify Polymorphic Primitive Types	91
		11.2.3 XML Schema Type Decoding Rules	93
		11.2.4 Multi-Reference Strings	96
		11.2.5 "Smart String" Mixed-Content Decoding	96
		11.2.6 STL Strings	97
		11.2.7 Changing the Encoding Precision of float and double Types	97
		11.2.8 INF, -INF, and NaN Values of float and double Types	98
	11.3	Enumeration Type Encoding and Decoding	98
		11.3.1 Symbolic Encoding of Enumeration Constants	98
		11.3.2 Encoding of Enumeration Constants	98
		11.3.3 Initialized Enumeration Constants	100
		11.3.4 How to "Reuse" Symbolic Enumeration Constants	100
		11.3.5 Boolean Enumeration Type Encoding and Decoding for C Compilers	100
		11.3.6 Bitmask Enumeration Encoding and Decoding	101
	11.4	Struct Encoding and Decoding	101
	11.5	Class Instance Encoding and Decoding	102
		11.5.1 Example	103
		11.5.2 Initialized static const Fields	104
		11.5.3 Class Methods	105
		11.5.4 Getter and Setter Methods	105
		11.5.5 Streaming XML with Getter and Setter Methods	106
		11.5.6 Polymorphism, Derived Classes, and Dynamic Binding	106
		11.5.7 XML Attributes	110
		11.5.8 QName Attributes and Elements	111
	11.6	Pointer Encoding and Decoding	112
		11.6.1 Multi-Reference Data	112

	11.6.2 NULL Pointers and Nil Elements	
11.7	Void Pointers	113
11.8	Fixed-Size Arrays	115
11.9	Dynamic Arrays	115
	11.9.1 SOAP Array Bounds Limits	116
	11.9.2 One-Dimensional Dynamic Arrays	116
	11.9.3 Example	117
	11.9.4 One-Dimensional Dynamic Arrays With Non-Zero Offset	118
	11.9.5 Nested One-Dimensional Dynamic Arrays	119
	11.9.6 Multi-Dimensional Dynamic Arrays	120
	11.9.7 Encoding XML Generics Containing Dynamic Arrays	121
	11.9.8 STL Containers	123
	11.9.9 Polymorphic Dynamic Arrays and Lists	125
	$11.9.10\mathrm{How}$ to Change the Tag Names of the Elements of a SOAP Array or List	125
11.1	0Base64Binary XML Schema Type Encoding	126
11.1	1hexBinary XML Schema Type Encoding	128
11.1	2Literal XML Encoding Style	128
	$11.12.1\mathrm{Serializing}$ and Deserializing Mixed Content XML With Strings	130
12 SO.	AP Fault Processing	132
	AP Fault Processing AP Header Processing	132 134
13 SO.	-	
13 SO. 14 DII	AP Header Processing	134 136
13 SO. 14 DII 14.1	AP Header Processing ME Attachment Processing	134 136 136
13 SO. 14 DII 14.1 14.2	AP Header Processing ME Attachment Processing Non-Streaming DIME	134 136 136 138
13 SO. 14 DII 14.1 14.2 14.3	AP Header Processing ME Attachment Processing Non-Streaming DIME	134 136 136 138
13 SO. 14 DII 14.1 14.2 14.3	AP Header Processing ME Attachment Processing Non-Streaming DIME	134 136 136 138 142
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With	134 136 136 138 142 142
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME under Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Customized Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives	134 136 138 142 142 143
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs	134 136 136 138 142 142 143 147
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern	134 136 138 142 142 143 147 148
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5	ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types	134 136 138 142 142 143 147 148 149
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5	ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types Volatile Data Types	134 136 138 142 142 143 147 148 149 150
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5 15.6 15.7	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types Volatile Data Types How to Declare User-Defined Serializers and Deserializers	134 136 138 142 142 143 147 148 149 150 151
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5 15.6 15.7	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types Volatile Data Types How to Declare User-Defined Serializers and Deserializers How to Serialize Data Without Generating XSD Type Attributes	134 136 138 142 142 143 147 148 149 150 151
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8	ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types Volatile Data Types How to Declare User-Defined Serializers and Deserializers How to Serialize Data Without Generating XSD Type Attributes Function Callbacks for Customized I/O and HTTP Handling	134 136 138 142 142 143 147 148 149 150 151 152
13 SO. 14 DII 14.1 14.2 14.3 15 Ad 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.1	AP Header Processing ME Attachment Processing Non-Streaming DIME Streaming DIME Streaming Chunked DIME Vanced Features Internationalization Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives How to Specify minOccurs and maxOccurs How to Specify a SimpleType and Pattern Transient Data Types Volatile Data Types How to Declare User-Defined Serializers and Deserializers How to Serialize Data Without Generating XSD Type Attributes	134 136 138 142 142 143 147 148 149 150 151 152 153 158

15.12HTTP GET Support
15.13HTTP Keep-Alive
15.14HTTP Chunked Transfer Encoding
15.15HTTP Buffered Sends
15.16HTTP Authentication
15.17HTTP Proxy Authentication
15.18Speed Improvement Tips
15.19 Timeout Management for Non-Blocking Operations
15.20 Socket Options and Flags
15.21 Secure SOAP Web Services with HTTPS/SSL
15.22 Secure SOAP Clients with HTTPS/SSL
15.23SSL Authentication Callback
15.24SSL Certificates
15.25SSL Hardware Acceleration
15.26SSL on Windows
15.27Zlib Compression
15.28 Client-Side Cookie Support
15.29Server-Side Cookie Support
15.30Connecting Clients Through Proxy Servers
15.31FastCGI Support
15.32 How to Create gSOAP Applications With a Small Memory Footprint 179
15.33 Build a Client or Server in a C++ Code Name space $\ \ldots \ \ldots \ \ldots \ \ldots \ 180$
15.34 How to Create Client/Server Libraries
15.34.1 C++ Example
15.34.2 C Example
15.35How to Create DLLs
$15.35.1\mathrm{Create\ the\ Base\ stdsoap2.dll}\qquad \ldots\qquad \qquad 186$
15.35.2 Creating Client and Server DLLs
15.35.3 gSOAP Plug-ins

Copyright (C) 2000-2003 Robert A. van Engelen, Genivia, Inc., All Rights Reserved.

1 Introduction

The gSOAP compiler tools provide a SOAP/XML-to-C/C++ language binding to ease the development of SOAP/XML Web services and client application in C and/or C++. Most toolkits for C++ Web services adopt a SOAP-centric view and offer APIs for C++ that require the use of class libraries for SOAP-specific data structures. This often forces a user to adapt the application logic to these libraries. In contrast, gSOAP provides a C/C++ transparent SOAP API through the use of compiler technology that hides irrelevant SOAP-specific details from the user. The gSOAP stub and skeleton compiler automatically maps native and user-defined C and C++ data types to semantically equivalent XML data types and vice-versa. As a result, full SOAP interoperability is achieved with a simple API relieving the user from the burden of SOAP details, thus enabling him or her to concentrate on the application-essential logic. The compiler enables the integration of (legacy) C/C++ and Fortran codes (through a Fortran to C interface), embedded systems, and real-time software in SOAP applications that share computational resources and information with other SOAP applications, possibly across different platforms, language environments, and disparate organizations located behind firewalls.

gSOAP minimizes application adaptation for building Web Services. The gSOAP compiler generates SOAP marshalling routines that (de)serialize application-specific C/C++ data structures. gSOAP includes a WSDL generator to generate Web service descriptions for your Web services. The gSOAP WSDL parser and importer "closes the circle" in that it enables client development without the need for users to analyze Web service details to implement a client or a server.

Some of the highlights of gSOAP are:

- Unique interoperability features: the gSOAP compiler generates SOAP marshalling routines that (de)serialize native and user-defined C and C++ data structures. gSOAP supports WSDL 1.1, SOAP 1.1/1.2 RPC encoding, literal, and document style. gSOAP is also one of the few SOAP toolkits that support the full range of SOAP 1.1 RPC encoding features including sparse multi-dimensional arrays and polymorphic types. For example, a remote method with a base class parameter may accept derived class instances from a client. Derived class instances keep their identity through dynamic binding.
- gSOAP is the only toolkit that supports streaming DIME attachment transfers, which allows you to exchange binary data of practically unlimited size in the fastest possible way, while ensuring the usefulness of XML interoperability.
- gSOAP includes a WSDL generator for convenient Web Service publishing.
- gSOAP includes a WSDL parser (importer) for automated client and server development.
- Generates source code for stand-alone Web Services and client applications.
- Ideal for small devices such as Palm OS, Symbian, Pocket PC, because the memory footprint is small.
- Ideal for building web services that are compute-intensive and are therefore best written in C and C++.
- Platform independent: Windows, Unix, Linux, Mac OS X, Pocket PC, Palm OS, Symbian, etc.

- Supports serializing of application's native C and C++ data structures, which allows you to save and load of XML serialized data structures to and from files.
- gSOAP supports Zlib deflate and gzip compression (for HTTP, TCP/IP, and file storage).
- gSOAP supports SSL (for HTTPS).
- gSOAP supports HTTP/1.1 keep-alive, chunking, and basic authentication,
- Supports SOAP one-way messaging.
- The schema-specific XML pull parser is fast and efficient and does not require intermediate data storage for demarshalling to save space and time.
- Selective input and output buffering is used to increase efficiency, but full message buffering to determine HTTP message length is not used. Instead, a three-phase serialization method is used to determine message length. As a result, large data sets such as base64-encoded images can be transmitted with or without DIME attachments by small-memory devices such as PDAs.
- Supports C++ single class inheritance, dynamic binding, overloading, arbitrary pointer structures such as lists, trees, graphs, cyclic graphs, fixed-size arrays, (multi-dimensional) dynamic arrays, enumerations, built-in XML schema types including base64Binary encoding, and hexBinary encoding.
- No need to rewrite existing C/C++ applications for Web service deployment. However, parts of an application that use unions, pointers to sequences of elements in memory, and **void*** need to be modified, but **only** if the data structures that adopt them are required to be serialized or deserialized as part of a remote method invocation.
- Three-phase marshalling: 1) analysis of pointers, single-reference, multi-reference, and cyclic data structures, 2) HTTP message-length determination, and 3) serialization as per SOAP 1.1 encoding style or user-defined encoding styles.
- Two-phase demarshalling: 1) SOAP parsing and decoding, which involves the reconstruction of multi-reference and cyclic data structures from the payload, and 2) resolution of "forward" pointers (i.e. resolution of the forward href attributes in SOAP).
- Full and customizable SOAP Fault processing (client receive and service send).
- Customizable SOAP Header processing (send and receive), which for example enables easy transaction processing for the service to keep state information.

2 Notational Conventions

The typographical conventions used by this document are:

Sans serif or italics font denotes C and C++ source code, file names, and shell/batch commands.

Bold font denotes C and C++ keywords.

Courier font denotes HTTP header content, HTML, XML, XML schema content and WSDL content.

[Optional] denotes an optional construct.

The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC-2119.

3 Differences Between gSOAP Versions 2.4 (and Earlier) and 2.5

To comply with WS-I Basic Profile 1.0a, gSOAP 2.5 and higher adopts SOAP RPC literal by default. There is no need for concern, because the WSDL parser wsdl2h automatically takes care of the differences when you provide a WSDL document, because SOAP RPC encoding, literal, and document style are supported. A new soapcpp2 compiler option was added -e for backward compatibility with gSOAP 2.4 and earlier to adopt SOAP RPC encoding by default in case you want to develop a service that uses SOAP encoding. You can also use the gSOAP compiler directives to specify SOAP encoding for individual operarations, when desired.

4 Differences Between gSOAP Versions 2.1 (and Earlier) and 2.2

You should read this section only if you are upgrading from gSOAP 2.1 to 2.2 and later.

Run-time options and flags have been changed to enable separate recv/send settings for transport, content encodings, and mappings. The flags are divided into four classes: transport (IO), content encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C). The old-style flags soap_disable_X and soap_enable_X, where X is a particular feature, are deprecated. See Section 9.12 for more details.

5 Differences Between gSOAP Versions 1.X and 2.X

You should read this section only if you are upgrading from gSOAP 1.X to 2.X.

gSOAP versions 2.0 and later have been rewritten based on versions 1.X. gSOAP 2.0 and later is thread-safe, while 1.X is not. All files in the gSOAP 2.X distribution are renamed to avoid confusion with gSOAP version 1.X files:

gSOAP 1.X	gSOAP 2.X
soapcpp	soapcpp2
soapcpp.exe	soapcpp2.exe
stdsoap.h	stdsoap2.h
stdsoap.c	stdsoap2.c
stdsoap.cpp	stdsoap2.cpp

Changing the version 1.X application codes to accommodate gSOAP 2.X does not require a significant amount of recoding. The change to gSOAP 2.X affects all functions defined in stdsoap2.c[pp] (the

gSOAP runtime environment API) and the functions in the sources generated by the gSOAP compiler (the gSOAP RPC+marshalling API). Therefore, clients and services developed with gSOAP 1.X need to be modified to accommodate a change in the calling convention used in 2.X: In 2.X, all gSOAP functions (including the remote method proxy routines) take an additional parameter which is an instance of the gSOAP runtime environment that includes file descriptors, tables, buffers, and flags. This additional parameter is always the first parameter of any gSOAP function.

The gSOAP runtime environment is stored in a **struct** soap type. A **struct** was chosen to support application development in C without the need for a separate gSOAP implementation. An object-oriented approach with a class for the gSOAP runtime environment would have prohibited the implementation of pure C applications. Before a client can invoke remote methods or before a service can accept requests, a runtime environment need to be allocated and initialized. Three new functions are added to gSOAP 2.X:

Function	Description
soap_init(struct soap *soap)	Initializes a runtime environment (required only once)
<pre>struct soap *soap_new()</pre>	Allocates, initializes, and returns a pointer to a runtime
	environment
<pre>struct soap *soap_copy(struct soap *soap)</pre>	Allocates a new runtime environment and copies contents
	of the argument environment such that the new environ-
	ment does not share any data with the original environ-
	ment

An environment can be reused as many times as necessary and does not need to be reinitialized in doing so. A new environment is only required for each new thread to guarantee exclusive access to a new runtime environment by each thread. For example, the following code stack-allocates the runtime environment which is used for multiple remote method calls:

```
int main()
{
    struct soap soap;
    ...
    soap_init(&soap); // initialize runtime environment
    ...
    soap_call_ns__method1(&soap, ...); // make a remote call
    ...
    soap_call_ns__method2(&soap, ...); // make another remote call
    ...
    soap_end(&soap); // clean up
    ...
}
```

The runtime environment can also be heap allocated:

```
int main()
{
    struct soap *soap;
    ...
    soap = soap_new(); // allocate and initialize runtime environment
    if (!soap) // couldn't allocate: stop
```

```
soap_call_ns_ _method1(soap, ...); // make a remote call ...
soap_call_ns_ _method2(soap, ...); // make another remote call ...
soap_end(soap); // clean up ...
free(soap); // deallocate runtime environment
```

A service need to allocate and initialize an environment before calling soap_serve:

```
int main()
{
    struct soap soap;
    soap_init(&soap);
    soap_serve(&soap);
}

Or alternatively:
    int main()
    {
        soap_serve(soap_new());
    }
```

A service can use multi-threading to handle requests while running some other code that invokes remote methods:

```
int main()
{
    struct soap soap1, soap2;
    pthread_t tid;
    ...
    soap_init(&soap1);
    if (soap_bind(&soap1, host, port, backlog) < 0) exit(1);
    if (soap_accept(&soap1) < 0) exit(1);
    pthread_create(&tid, NULL, (void*(*)(void*))soap_serve, (void*)&soap1);
    ...
    soap_init(&soap2);
    soap_call_ns__method(&soap2, ...); // make a remote call
    ...
    soap_end(&soap2);
    ...
    pthread_join(tid, NULL); // wait for thread to terminate
    soap_end(&soap1); // release its data
}</pre>
```

In the example above, two runtime environments are required. In comparison, gSOAP 1.X statically allocates the runtime environment, which prohibits multi-threading (only one thread can invoke remote methods and/or accept requests due to the single runtime environment).

Section 8.2.4 presents a multi-threaded stand-alone Web Service that handles multiple SOAP requests by spawning a thread for each request.

${\bf Interoperability}$

gSOAP interoperability has been verified with the following SOAP implementations and toolkits:
Apache 2.2
Apache Axis
ASP.NET
Cape Connect
Delphi
easySOAP++
eSOAP
Frontier
GLUE
Iona XMLBus
kSOAP
MS SOAP
Phalanx
SIM
SOAP::Lite
SOAP4R
Spray
SQLData
Wasp Adv.
Wasp C++
White Mesa
xSOAP
ZSI
4S4C

7 Getting Started

To start building Web services applications with gSOAP, you need:

- a C or C++ compiler.
- the gSOAP 'stdsoap2' (stdsoap2.exe for windows) stub and skeleton compiler available in binary form in the platform-specific distribution packages.
- the gSOAP 'wsdl2h' (wsdl2h.exe for windows) WSDL parser, which converst WSDL into a gSOAP specification header file for the 'stdsoap2' stub and skeleton compiler. The WSDL parser is available in binary form in the platform-specific distribution packages.
- the 'stdsoap2.c' or 'stdsoap2.cpp' and 'stdsoap2.h' files containing the runtime library to be linked with your Web Services applications. You can build a DLL or shared object to simplify linkage.
- optionally, you may want to install OpenSSL and the Zlib libraries to enable SSL (HTTPS)
 and compression. These libraries are available for most platforms and are often already
 installed.

gSOAP is self-contained, so there is no need to download any third-party software (unless you want to use OpenSSL and the library is not already installed).

Although gSOAP is available in binary format for several platforms, the code generated by the gSOAP stub and skeleton compiler and the gSOAP runtime codes are equivalent. This means that the generated codes can be transferred to other platforms and compiled.

The platform-independent release of gSOAP requires you to build the 'soapcpp2' compiler and 'wsdl2h' parser. The minimal requirements for your platform to build these executables is:

- a C++ compiler (to build the 'wsdl2h' WSDL parser).
- Bison or Yacc
- Flex or Lex

Bison and Flex are preferred.

The gSOAP packages contain numerous examples in the 'samples' directory. Run 'make' to build the example applications. The examples are also meant to demonstrate different features of gSOAP. The simplest examples are the one-liners (samples/oneliners). Indeed, you can write a one-line Web service (requires CGI). A streaming DIME attachment server and client application demonstrate efficient file exchanges (samples/dime). An SSL-secure Web server application demonstrates the generation of dynamic content for Web browsing and Web services functionality at the same time. And much more.

8 Quick User Guide

This user guide offers a quick way to get started with gSOAP. This section requires a basic understanding of the SOAP 1.1 protocol and some familiarity with C and/or C++. In principle, SOAP

clients and SOAP Web services can be developed in C and C++ with the gSOAP compiler without a detailed understanding of the SOAP protocol when gSOAP client-server applications are built as an ensamble and only communicate within this group (i.e. meaning that you don't have to worry about interoperability with other SOAP implementations). This section is intended to illustrate the implementation of gSOAP Web services and clients that connect to and interoperate with other SOAP implementations such as Apache Axis, SOAP::Lite, and .NET. This requires some details of the SOAP and WSDL protocols to be understood.

8.1 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Clients

In general, the implementation of a SOAP client application requires a **stub** routine for each remote method that the client application needs to invoke. The primary stub's responsibility is to marshall the parameter data, send the request with the parameters to the designated SOAP service over the wire, to wait for the response, and to demarshall the parameter data of the response when it arrives. The client application invokes the stub routine for a remote method as if it would invoke a local method. To write a stub routine in C or C++ by hand is a tedious task, especially if the input and/or output parameters of a remote method contain elaborate data structures such as records, arrays, and graphs. Fortunately, the gSOAP 'wsdl2h' WSDL parser and 'soapcpp2' stub and skeleton compiler automate the development of Web service client and server applications.

The gSOAP stub and skeleton compiler is a **preprocessor** that generates the necessary C++ sources to build SOAP C++ clients. The input to the gSOAP stub and skeleton compiler consists of a standard C/C++ **header file**. The header file can be generated from a WSDL (Web Service Description Language) documentation of a service with the gSOAP WSDL parser.

Consider the following command (entered at the command prompt):

\$ wsdl2h -o quote.h http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

This generates the file quote.h in C++ format from the WSDL at the specified URL.

To generate a header file to develop a pure C client application, issue the command: Consider the following command (entered at the command prompt):

\$ wsdl2h -c -o quote.h http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

For more details on the WSDL parser and its options, see 8.2.10.

The quote.h header file is then processed by the gSOAP compiler to generate the stubs to develop client applications (and skeletons to develop a service).

The SOAP service methods are specified in the header file as **function prototypes**. Stub routines in C/C++ source form are automatically generated by the gSOAP compiler for these function prototypes of remote methods. The resulting stub routines allow C and C++ client applications to seamlessly interact with existing SOAP Web services.

The gSOAP stub and skeleton compiler also generates **skeleton** routines for each of the remote methods specified in the header file. The skeleton routines can be readily used to implement one or more of the remote methods in a new SOAP Web service. These skeleton routines are not used for building SOAP clients in C++, although they can be used to build mixed SOAP client/server applications (peer applications).

The input and output parameters of a SOAP service method may be simple data types or compound data types, either generated by the WSDL parser or specified by hand. The gSOAP stub and skeleton compiler automatically generates **serializers** and **deserializers** for the data types to enable the generated stub routines to encode and decode the contents of the parameters of the remote methods in XML.

8.1.1 Example

The getQuote remote method of XMethods Delayed Stock Quote service (defined in the quote.h file obtained with the 'wsdl2h' WSDL parser) provides a delayed stock quote for a given ticker name. The WSDL description of the XMethods Delayed Stock Quote service provides the following details:

Endpoint URL: http://services.xmethods.net:80/soap

SOAP action: "" (2 quotes)

Remote method namespace: urn:xmethods-delayed-quotes

Remote method name: getQuote

Input parameter: symbol of type xsd:string
Output parameter: Result of type xsd:float

The following getQuote.h header file for C is created from the WSDL description with the WSDL parser (the actual contents may vary depending on the 'wsdl2h' release version and the options used to determine the output):

```
//gsoap ns1 service name: net_DOTxmethods_DOTservices_DOTstockquote_DOTStockQuoteBinding
//gsoap ns1 service type: net_DOTxmethods_DOTservices_DOTstockquote_DOTStockQuotePortType
//gsoap ns1 service port: http://66.28.98.121:9090/soap
//gsoap ns1 service namespace: urn:xmethods-delayed-quotes
//gsoap ns1 service documentation: Definitions generated by the gSOAP WSDL parser 1.0
// Service net.xmethods.services.stockquote.StockQuoteService: net.xmethods.services.stockquote.StockQuote
web service
//gsoap ns1 service method-style: getQuote rpc
//gsoap ns1 service method-encoding: getQuote http://schemas.xmlsoap.org/soap/encoding/
//gsoap ns1 service method-action: getQuote urn:xmethods-delayed-quotes#getQuote
int ns1_getQuote(char *symbol, float &Result);
```

The header file essentially specifies the service details in C/C++ with directives for the gSOAP compiler. The remote method is declared as a nsl_getQuote function prototype which specifies all of the necessary details for the gSOAP compiler to generate the stub routine for a client application to interact with the Delayed Stock Quote service.

The Delayed Stock Quote service description requires that the **input parameter** of the getQuote remote method is a symbol parameter of type string. The description also indicates that the Result **output parameter** is a floating point number that represents the current unit price of the stock in dollars. The gSOAP compiler uses the convention the **last parameter** of the function prototype must be the output parameter of the remote method, which is required to be passed by reference using the reference operator (&) or by using a pointer type. All other parameters except the last are input parameters of the remote method, which are required to be passed by value or passed using a pointer to a value (by reference is not allowed). The function prototype associated with a remote method is required to return an **int**, whose value indicates to the caller whether the connection to a SOAP Web service was successful or resulted in an exception, see Section 10.2 for the error codes.

The use of the namespace prefix ns1... in the remote method name in the function prototype declaration is discussed in detail in 8.1.2. Basically, a namespace prefix is distinguished by a **pair** of underscores in the function name, as in ns1._getQuote where ns1 is the namespace prefix and getQuote is the remote method name. (A single underscore in an identifier name will be translated into a dash in XML, because dashes are more frequently used in XML compared to underscores, see Section 10.3.)

The gSOAP compiler is invoked from the command line with:

```
soapcpp2 getQuote.h
```

The compiler generates the stub routine for the getQuote remote method specified in the getQuote.h header file. This stub routine can be called by a client program at any time to request a stock quote from the Delayed Stock Quote service. The interface to the generated stub routine is the following function prototype generated by the gSOAP compiler:

```
int soap_call_ns1__getQuote(struct soap *soap, char *URL, char *action, char *symbol, float
&Result);
```

The stub routine is saved in soapClient.cpp. The file soapC.cpp contains the **serializer** and **deserializer** routines for the data types used by the stub. You can use option -c for the soapcpp2 compiler to generate pure C code.

Note that the parameters of the soap_call_ns1__getQuote function are identical to the ns1__getQuote function prototype with three additional input parameters: soap must be a valid pointer to a gSOAP runtime environment, URL is the SOAP Web service endpoint URL passed as a string, and action is a string that denotes the SOAP action required by the Web service. Note that the XMethods Delayed Stock Quote service endpoint URL is http://66.28.98.121:9090/soap and the SOAP action required is "" (two quotes). You can change the endpoint and action dynamically. The endpoint and action are the second and third parameters of the soap_call_ns1__getQuote. When NULL, the values specified in the header file will be used.

The following example mixed C/C++ client program invokes the stub to retrieve the latest IBM stock quote from the XMethods Delayed Stock Quote service:

```
#include "soapH.h" // obtain the generated stub
#include "net_DOT_xmethods_DOT_services_DOT_stockQuote_DOT_StockQuoteBinding.nsmap"
// obtain the namespace mapping table
int main()
{
    struct soap soap; // gSOAP runtime environment
    float quote;
    soap_init(&soap); // initialize runtime environment (only once)
    if (soap_call_ns1__getQuote(&soap, NULL, NULL, "IBM", &quote) == SOAP_OK)
        std::cout << "Current IBM Stock Quote = " << quote << std::endl;
    else // an error occurred
        soap_print_fault(&soap, stderr); // display the SOAP fault message on the stderr stream
    soap_destroy(&soap); // delete deserialized class instances (for C++ only)
    soap_end(&soap); // remove deserialized data and clean up
    soap_done(&soap); // detach the gSOAP environment
    return 0;
}</pre>
```

When successful, the stub returns SOAP_OK and quote contains the latest stock quote. Otherwise, an error occurred and the SOAP fault is displayed with the soap_print_fault function.

The gSOAP compiler also generates a proxy class for C++ client applications. This generated proxy class can be included into a client application together with the generated namespace table as shown in this example:

```
#include "soapnet_DOT_xmethods_DOT_services_DOT_stockquote_DOT_StockQuoteBindingProxy.h"
// get proxy
#include "net_DOT_xmethods_DOT_services_DOT_stockquote_DOT_StockQuoteBinding.nsmap"
// obtain the namespace mapping table
int main()
{
    net q; // "net" is the proxy class with a name that is the short name of the service
    float r;
    if (q.ns1__getQuote("IBM", r) == SOAP_OK)
        std::cout << r << std::else
        soap_print_fault(q.soap, stderr);
    return 0;
}</pre>
```

The proxy class constructor allocates and initializes a gSOAP environment for the instance. All the HTTP and SOAP/XML processing is hidden and performed on the background. Note that you can change the name of the service in the header file generated by the WSDL parser. The name is extracted from the WSDL content and may not always be in a short format. Feel free to change the entry

```
//gsoap ns1 service name: net_DOT_xmethods_DOT_services_DOT_stockquote_DOT_StockQuoteBinding
```

to use a more suitable name. The name will control the file name of the proxy class file and the XML namespace mapping table.

The following functions can be used to explicitly setup a gSOAP runtime environment (struct soap):

Function	Description
soap_init(struct soap *soap)	Initializes a runtime environment (required only once)
<pre>soap_init2(struct soap *soap, int imode, int omode)</pre>	Initializes a runtime environment and set in/out mode flags
<pre>struct soap *soap_new()</pre>	Allocates, initializes, and returns a pointer to a runtime environment
<pre>struct soap *soap_copy(struct soap *soap)</pre>	Allocates a new runtime environment and copies contents of the argument environment such that the new environ- ment does not share data with the argument environment
soap_done(struct soap *soap)	Reset, close communications, and remove callbacks

An environment can be reused as many times as necessary for client-side remote calls and does not need to be reinitialized in doing so. A new environment is required for each new thread to guarantee exclusive access to runtime environments by threads. Also the use of any client calls within an active service method requires a new environment.

When the example client application is invoked, the SOAP request is performed by the stub routine soap_call_ns1__getQuote, which generates the following SOAP RPC request message:

```
POST /soap HTTP/1.1
Host: services.xmethods.net
Content-Type: text/xml
Content-Length: 529
SOAPAction: ""
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"
  xmlns:ns1="urn:xmethods-delayed-quotes"
  SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<ns1:getQuote>
<symbol>IBM</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

The XMethods Delayed Stock Quote service responds with the SOAP response message:

```
HTTP/1.1 200 OK
Date: Sat, 25 Aug 2001 19:28:59 GMT
Content-Type: text/xml
Server: Electric/1.0
Connection: Keep-Alive
Content-Length: 491
<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"</pre>
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"
  xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
  soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<soap:Body>
<n:getQuoteResponse xmlns:n="urn:xmethods-delayed-quotes">
<Result xsi:type="xsd:float">41.81/Result>
</n:getQuoteResponse>
</soap:Body>
</soap:Envelope>
```

The server's SOAP RPC response is parsed by the stub. The stub routine further demarshalls the data of Result element of the SOAP response and stores it in the quote parameter of soap_call_ns1__getQuote.

A client program can invoke a remote method at any time and multiple times if necessary. Consider for example:

```
struct soap soap;  
    float quotes[3]; char *myportfolio[] = {"IBM", "MSDN"};  
    soap_init(&soap); // need to initialize only once  
    for (int i = 0; i < 3; i++)
```

This client composes an array of stock quotes by calling the ns1_getQuote stub routine for each symbol in a portfolio array.

This example demonstrated how easy it is to build a SOAP client with gSOAP once the details of a Web service are available in the form of a WSDL document.

8.1.2 Namespace Considerations

The declaration of the nsl__getQuote function prototype (discussed in the previous section) uses the namespace prefix nsl__ of the remote method namespace, which is distinguished by a pair of underscores in the function name to separate the namespace prefix from the remote method name. The purpose of a namespace prefix is to associate a remote method name with a service in order to prevent naming conflicts, e.g. to distinguish identical remote method names used by different services.

Note that the XML response of the XMethods Delayed Stock Quote service example uses the namespace prefix n which is bound to the namespace name urn:xmethods-delayed-quotes through the xmlns:n="urn:xmethods-delayed-quotes binding. The use of namespace prefixes and namespace names is also required to enable SOAP applications to validate the content of SOAP messages. The namespace name in the service response is verified by the stub routine by using the information supplied in a namespace mapping table that is required to be part of gSOAP client and service application codes. The table is accessed at run time to resolve namespace bindings, both by the generated stub's data structure serializer for encoding the client request and by the generated stub's data structure deserializer to decode and validate the service response. The namespace mapping table should not be part of the header file input to the gSOAP stub and skeleton compiler. Service details including namespace bindings may be provided with gSOAP directives in a header file, see Section 15.2.

The namespace mapping table for the Delayed Stock Quote client is:

```
struct Namespace namespaces[] =
{    // {"ns-prefix", "ns-name"}
    {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"}, // MUST be first
    {"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"}, // MUST be second
    {"xsi", "http://www.w3.org/2001/XMLSchema-instance"}, // MUST be third
    {"xsd", "http://www.w3.org/2001/XMLSchema"}, // 2001 XML schema
    {"ns1", "urn:xmethods-delayed-quotes"}, // given by the service description
    {NULL, NULL} // end of table
};
```

The first four namespace entries in the table consist of the standard namespaces used by the SOAP 1.1 protocol. In fact, the namespace mapping table is explicitly declared to enable a programmer

to specify the SOAP encoding style and to allow the inclusion of namespace-prefix with namespace-name bindings to comply to the namespace requirements of a specific SOAP service. For example, the namespace prefix ns1, which is bound to urn:xmethods-delayed-quotes by the namespace mapping table shown above, is used by the generated stub routine to encode the getQuote request. This is performed automatically by the gSOAP compiler by using the ns1 prefix of the ns1_getQuote method name specified in the getQuote.h header file. In general, if a function name of a remote method, struct name, class name, enum name, or field name of a struct or class has a pair of underscores, the name has a namespace prefix that must be defined in the namespace mapping table.

The namespace mapping table will be output as part of the SOAP Envelope by the stub routine. For example:

```
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
    xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
    xmlns:xsd="http://www.w3.org/1999/XMLSchema"
    xmlns:ns1="urn:xmethods-delayed-quotes"
    SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
```

The namespace bindings will be used by a SOAP service to validate the SOAP request.

8.1.3 Example

The incorporation of namespace prefixes into C++ identifier names is necessary to distinguish remote methods that share the same name but are provided by separate Web services and/or organizations. Consider for example:

```
// Contents of file "getQuote.h":
int ns1__getQuote(char *symbol, float &Result);
int ns2__getQuote(char *ticker, char *&quote);
```

Recall that the namespace prefix is always separated from the name of a remote method by a pair of underscores (__).

This example enables a client program to connect to a (hypothetical) Stock Quote service with remote methods that can only be distinguished by their namespaces. Consequently, two different namespace prefixes had to be used as part of the remote method names.

The namespace prefix convention can also be applied to **class** declarations that contain SOAP compound values that share the same name but have different namespaces that refer to different XML schemas. For example:

```
class e__Address // an electronic address
{
    char *email;
    char *url;
};
class s__Address // a street address
```

```
{
  char *street;
  int number;
  char *city;
};
```

The namespace prefix is separated from the name of a data type by a pair of underscores (...).

An instance of e__Address is encoded by the generated serializer for this type as an Address element with namespace prefix e:

```
<e:Address xsi:type="e:Address">
<email xsi:type="string">me@home</email>
<url xsi:type="string">www.me.com</url>
</e:Address>
```

While an instance of s__Address is encoded by the generated serializer for this type as an Address element with namespace prefix s:

```
<s:Address xsi:type="s:Address">
<street xsi:type="string">Technology Drive</street>
<number xsi:type="int">5</number>
<city xsi:type="string">Softcity</city>
</s:Address>
```

The namespace mapping table of the client program must have entries for e and s that refer to the XML schemas of the data types:

```
struct Namespace namespaces[] =
{ ...
    {"e", "http://www.me.com/schemas/electronic-address"},
    {"s", "http://www.me.com/schemas/street-address"},
...
```

This table is required to be part of the client application to allow access by the serializers and describilizers of the data types at run time.

8.1.4 How to Generate C++ Client Proxy Classes

Proxy classes for C++ client applications are automatically generated by the gSOAP compiler. To illustrate the generation of a proxy class, the getQuote.h header file example of the previous section is augmented with the appropriate directives to enable the gSOAP compiler to generate the proxy class. Similar directives are included in the header file by the WSDL importer.

```
// Content of file "getQuote.h":
//gsoap ns1 service name: Quote
//gsoap ns1 service location: http://services.xmethods.net/soap
//gsoap ns1 service namespace: urn:xmethods-delayed-quotes
//gsoap ns1 service style: rpc
//gsoap ns1 service encoding: encoded
//gsoap ns1 service method-action: getQuote ""
int ns1__getQuote(char *symbol, float &Result);
```

The first three directives provide the service name which is used to name the proxy class, the service location (endpoint), and the schema. The forth and fifth directives specify that SOAP RPC encoding is used, which is required by this service. The last directive defines the optional SOAPAction, which is a string associated with SOAP 1.1 operations. This directive must be provided for each remote method when the SOAPAction is required. Compilation of this header file with the gSOAP compiler soapcpp2 creates a new file soapQuoteProxy.h with the following contents:

```
#include "soapH.h"
class Quote
{ public:
    struct soap *soap;
    const char *endpoint;
    Quote() { soap = soap_new(); endpoint = "http://services.xmethods.net/soap"; };
    ~Quote() { if (soap) { soap_destroy(soap); soap_end(soap); soap_done(soap); free((void*)soap); };
    int getQuote(char *symbol, float &Result) { return soap ? soap_call_ns1__getQuote(soap, endpoint, "", symbol, Result) : SOAP_EOM; };
};
```

The gSOAP environment and endpoint are declared public to enable access for run-time customization.

This generated proxy class can be included into a client application together with the generated namespace table as shown in this example:

```
#include "soapQuoteProxy.h" // get proxy
#include "Quote.nsmap" // get namespace bindings
int main()
{
    Quote q;
    float r;
    if (q.ns1__getQuote("IBM", r) == SOAP_OK)
        std::cout << r << std::endl;
    else
        soap_print_fault(q.soap, stderr);
    return 0;
}</pre>
```

The Quote constructor allocates and initializes a gSOAP environment for the instance. All the HTTP and SOAP/XML processing is hidden and performed on the background.

You can use soapcpp2 compiler option -n together with -p to create a local namespaces table to avoid link conflicts when you need multiple namespace tables or need to combine multiple clients, see also Sections 9.1 and 15.34, and you can use a C++ code **namespace** to create a namespace qualified proxy class, see Section 15.33.

8.1.5 XSD Type Encoding Considerations

Many SOAP services require the explicit use of XML schema types in the SOAP payload. The default encoding, which is also adopted by the gSOAP compiler, assumes SOAP RPC encoding which only requires the use of types to handle polymorphic cases. Nevertheless, the use of XSD

typed messages is advised to improve interoperability. XSD types are introduced with **typedef** definitions in the header file input to the gSOAP compiler. The type name defined by a **typedef** definition corresponds to an XML schema type (XSD type). For example, the following **typedef** declarations define various built-in XSD types implemented as primitive C/C++ types:

```
// Contents of header file:
...

typedef char *xsd__string; // encode xsd__string value as the xsd:string schema type
typedef char *xsd__anyURI; // encode xsd__anyURI value as the xsd:anyURI schema type
typedef float xsd__float; // encode xsd__float value as the xsd:float schema type
typedef long xsd__int; // encode xsd__int value as the xsd:int schema type
typedef bool xsd__boolean; // encode xsd__boolean value as the xsd:boolean schema type
typedef unsigned long long xsd__positiveInteger; // encode xsd__positiveInteger value as the
xsd:positiveInteger schema type
...
```

This simple mechanism informs the gSOAP compiler to generate serializers and deserializers that explicitly encode and decode the primitive C++ types as built-in primitive XSD types when the typedefed type is used in the parameter signature of a remote method (or when used nested within structs, classes, and arrays). At the same time, the use of **typedef** does not force any recoding of a C++ client or Web service application as the internal C++ types used by the application are not required to be changed (but still have to be primitive C++ types, see Section 11.2.2 for alternative class implementations of primitive XSD types which allows for the marshalling of polymorphic primitive types).

8.1.6 Example

Reconsider the getQuote example, now rewritten with explicit XSD types to illustrate the effect:

```
// Contents of file "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
int ns1__getQuote(xsd__string symbol, xsd__float &Result);
```

This header file is compiled by the gSOAP stub and skeleton compiler and the compiler generates source code for the function soap_call_ns1_getQuote, which is identical to the "old" proxy:

```
int soap_call_ns1__getQuote(struct soap *soap, char *URL, char *action, char *symbol, float
&Result);
```

The client application does not need to be rewritten and can still call the proxy using the "old" parameter signature. In contrast to the previous implementation of the stub however, the encoding and decoding of the data types by the stub has been changed to explicitly use the XSD types in the message payload.

For example, when the client application calls the proxy, the proxy produces a SOAP request with an xsd:string:

```
<SOAP-ENV:Body>
```

The validation of this service response by the stub routine takes place by matching the namespace names (URIs) that are bound to the xsd namespace prefix. The stub also expects the getQuoteResponse element to be associated with URI urn:xmethods-delayed-quotes through the binding of the namespace prefix ns1 in the namespace mapping table. The service response uses namespace prefix n for the getQuoteResponse element. This namespace prefix is bound to the same URI urn:xmethods-delayed-quotes and therefore the service response is assumed to be valid. The response is rejected and a SOAP fault is generated when the URIs do not match.

8.1.7 How to Change the Response Element Name

There is no standardized convention for the response element name in a SOAP response message, although it is recommended that the response element name is the method name ending with "Response". For example, the response element of getQuote is getQuoteResponse.

The response element name can be specified explicitly using a **struct** or **class** declaration in the header file. The **struct** or **class** name represents the SOAP response element name used by the service. Consequently, the output parameter of the remote method must be declared as a field of the **struct** or **class**. The use of a **struct** or a **class** for the service response is fully SOAP 1.1 compliant. In fact, the absence of a **struct** or **class** indicates to the gSOAP compiler to automatically generate a struct for the response which is internally used by a stub.

8.1.8 Example

Reconsider the getQuote remote method specification which can be rewritten with an explicit declaration of a SOAP response element as follows:

```
// Contents of "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
struct ns1__getQuoteResponse {xsd__float Result;};
int ns1__getQuote(xsd__string symbol, struct ns1__getQuoteResponse &r);
```

The SOAP request is the same as before:

```
...
<SOAP-ENV:Body>
<ns1:getQuote><symbol xsi:type="xsd:string">IBM</symbol>
</ns1:getQuote>
</SOAP-ENV:Body>
...
```

The difference is that the service response is required to match the specified getQuoteResponse name and its namespace URI:

```
...
<soap:Body>
<n:getQuoteResponse xmlns:n='urn:xmethods-delayed-quotes'>
<Result xsi:type='xsd:float'>41.81</Result>
</n:getQuoteResponse>
</soap:Body>
...
```

This use of a **struct** or **class** enables the adaptation of the default SOAP response element name and/or namespace URI when required.

Note that the **struct** (or **class**) declaration may appear within the function prototype declaration. For example:

```
// Contents of "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
int ns1__getQuote(xsd__string symbol, struct ns1__getQuoteResponse {xsd__float Result;} &r);
```

This example combines the declaration of the response element of the remote method with the function prototype of the remote method.

8.1.9 How to Specify Multiple Output Parameters

The gSOAP stub and skeleton compiler uses the convention that the **last parameter** of the function prototype declaration of a remove method in a header file is also the **only single output parameter** of the method. All other parameters are considered input parameters of the remote method. To specify a remote method with **multiple output parameters**, a **struct** or **class** must be declared for the remote method response, see also 8.1.7. The fields of the **struct** or **class** are the output parameters of the remote method. Both the order of the input parameters in the function prototype and the order of the output parameters (the fields in the **struct** or **class**) is not significant. However, the SOAP 1.1 specification states that input and output parameters may be treated as having anonymous parameter names which requires a particular ordering, see Section 8.1.13.

8.1.10 Example

As an example, consider a hypothetical remote method getNames with a single input parameter SSN and two output parameters first and last. This can be specified as:

```
// Contents of file "getNames.h": int ns3__getNames(char *SSN, struct ns3__getNamesResponse {char *first; char *last;} &r);
```

The gSOAP stub and skeleton compiler takes this header file as input and generates source code for the function soap_call_ns3__getNames. When invoked by a client application, the proxy produces the SOAP request:

```
...
<SOAP-ENV:Envelope ... xmlns:ns3="urn:names" ...>
...
<ns3:getNames>
<SSN>999 99 9999</SSN>
</ns3:getNames>
...
```

The response by a SOAP service could be:

```
...
<m:getNamesResponse xmlns:m="urn:names">
<first>John</first>
<last>Doe</last>
</m:getNamesResponse>
...
```

where first and last are the output parameters of the getNames remote method of the service.

As another example, consider a remote method copy with an input parameter and an output parameter with identical parameter names (this is not prohibited by the SOAP 1.1 protocol). This can be specified as well using a response **struct**:

```
// Content of file "copy.h":
int X_rox__copy_name(char *name, struct X_rox__copy_nameResponse {char *name;} &r);
```

The use of a **struct** or **class** for the remote method response enables the declaration of remote methods that have parameters that are passed both as input and output parameters.

The gSOAP compiler takes the copy.h header file as input and generates the soap_call_X_rox__copy_name proxy. When invoked by a client application, the proxy produces the SOAP request:

```
...
<SOAP-ENV:Envelope ... xmlns:X-rox="urn:copy" ...>
...
<X-rox:copy-name>
<name>SOAP</name>
</X-rox:copy-name>
...
```

The response by a SOAP copy service could be something like:

```
...
<m:copy-nameResponse xmlns:m="urn:copy">
<name>SOAP</name>
</m:copy-nameResponse>
...
```

The name will be parsed and decoded by the proxy and returned in the name field of the **struct** X_rox__copy_nameResponse &r parameter.

8.1.11 How to Specify Output Parameters With struct/class Compound Data Types

If the single output parameter of a remote method is a complex data type such as a **struct** or **class** it is necessary to specify the response element of the remote method as a **struct** or **class at all times**. Otherwise, the output parameter will be considered the response element (!), because of the response element specification convention used by gSOAP, as discussed in 8.1.7.

8.1.12 Example

This is is best illustrated with an example. The Flighttracker service by ObjectSpace provides real time flight information for flights in the air. It requires an airline code and flight number as parameters. The remote method name is getFlightInfo and the method has two string parameters: the airline code and flight number, both of which must be encoded as xsd:string types. The method returns a getFlightResponse response element with a return output parameter that is of complex type FlightInfo. The type FlightInfo is represented by a class in the header file, whose field names correspond to the FlightInfo accessors:

```
// Contents of file "flight.h":
typedef char *xsd__string;
class ns2__FlightInfo
{
    public:
        xsd__string airline;
        xsd__string flightNumber;
        xsd__string altitude;
        xsd__string currentLocation;
        xsd__string equipment;
        xsd__string speed;
};
struct ns1__getFlightInfoResponse {ns2__FlightInfo _return;};
int ns1__getFlightInfo(xsd__string param1, xsd__string param2, struct ns1__getFlightInfoResponse
&r);
```

The response element ns1__getFlightInfoResponse is explicitly declared and it has one field: return_ of type ns2__FlightInfo. Note that return_ has a trailing underscore to avoid a name clash with the return keyword, see Section 10.3 for details on the translation of C++ identifiers to XML element names.

The gSOAP compiler generates the soap_call_ns1__getFlightInfo proxy. Here is an example fragment of a client application that uses this proxy to request flight information:

```
struct soap soap;
...
soap_init(&soap);
...
soap_call_ns1__getFlightInfo(&soap, "testvger.objectspace.com/soap/servlet/rpcrouter",
    "urn:galdemo:flighttracker", "UAL", "184", r);
...
struct Namespace namespaces[] =
{
    {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"},
    {"SOAP-ENC","http://schemas.xmlsoap.org/soap/encoding/"},
```

```
{"xsi", "http://www.w3.org/1999/XMLSchema-instance"}, 
{"xsd", "http://www.w3.org/1999/XMLSchema"}, 
{"ns1", "urn:galdemo:flighttracker"}, 
{"ns2", "http://galdemo.flighttracker.com"}, 
{NULL, NULL}
```

When invoked by a client application, the proxy produces the SOAP request:

```
POST /soap/servlet/rpcrouter HTTP/1.1
Host: testvger.objectspace.com
Content-Type: text/xml
Content-Length: 634
SOAPAction: "urn:galdemo:flighttracker"
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV: Envelope xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/1999/XMLSchema"
  xmlns:ns1="urn:galdemo:flighttracker"
  xmlns:ns2="http://galdemo.flighttracker.com"
  SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>
<ns1:getFlightInfo xsi:type="ns1:getFlightInfo">
<param1 xsi:type="xsd:string">UAL</param1>
<param2 xsi:type="xsd:string">184</param2>
</ns1:getFlightInfo>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

The Flighttracker service responds with:

```
HTTP/1.1 200 ok
Date: Thu, 30 Aug 2001 00:34:17 GMT
Server: IBM_HTTP_Server/1.3.12.3 Apache/1.3.12 (Win32)
Set-Cookie: sesessionid=2GFVTOGC30D0LGRGU2L4HFA;Path=/
Cache-Control: no-cache="set-cookie,set-cookie2"
Expires: Thu, 01 Dec 1994 16:00:00 GMT
Content-Length: 861
Content-Type: text/xml; charset=utf-8
Content-Language: en
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV: Envelope xmlns: SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/1999/XMLSchema">
<SOAP-ENV:Body>
<ns1:getFlightInfoResponse xmlns:ns1="urn:galdemo:flighttracker"</pre>
  SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<return xmlns:ns2="http://galdemo.flighttracker.com" xsi:type="ns2:FlightInfo">
<equipment xsi:type="xsd:string">A320</equipment>
<airline xsi:type="xsd:string">UAL</airline>
```

```
<currentLocation xsi:type="xsd:string">188 mi W of Lincoln, NE</currentLocation>
<altitude xsi:type="xsd:string">37000</altitude>
<speed xsi:type="xsd:string">497</speed>
<flightNumber xsi:type="xsd:string">184</flightNumber>
</return>
</ns1:getFlightInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

The proxy returns the service response in variable r of type **struct** ns1_getFlightInfoResponse and this information can be displayed by the client application with the following code fragment:

```
cout << r.return_.equipment << " flight " << r.return_.airline << r.return_.flightNumber << " traveling " << r.return_.speed << " mph " << " at " << r.return_.altitude << " ft, is located " << r.return_.currentLocation << endl;
```

This code displays the service response as:

```
A320 flight UAL184 traveling 497 mph at 37000 ft, is located 188 mi W of Lincoln, \ensuremath{\text{NE}}
```

Note: the flight tracker service is no longer available since 9/11/2001. It is kept in the documentation as an example to illustrate the use of structs/classes and response types.

8.1.13 How to Specify Anonymous Parameter Names

The SOAP 1.1 protocol allows parameter names to be anonymous. That is, the name(s) of the output parameters of a remote method are not strictly required to match a client's view of the parameters names. Also, the input parameter names of a remote method are not strictly required to match a service's view of the parameter names. Although this convention is likely to be deprecated in SOAP 1.2, the gSOAP compiler can generate stub and skeleton routines that support anonymous parameters. Parameter names are implicitly anonymous by omitting the parameter names in the function prototype of the remote method. For example:

```
// Contents of "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
int ns1__getQuote(xsd__string, xsd__float&);
```

To make parameter names explicitly anonymous on the receiving side (client or service), the parameter names should start with an underscore (_) in the function prototype in the header file.

For example:

```
// Contents of "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
int ns1__getQuote(xsd__string symbol, xsd__float &_return);
```

Or, alternatively with a response **struct**:

```
// Contents of "getQuote.h":
typedef char *xsd__string;
typedef float xsd__float;
struct ns1__getQuoteResponse {xsd__float _return;};
int ns1__getQuote(xsd__string symbol, struct ns1__getQuoteResponse &r);
```

In this example, return is an anonymous output parameter. As a consequence, the service response to a request made by a client created with gSOAP using this header file specification may include any name for the output parameter in the SOAP payload. The input parameters may also be anonymous. This affects the implementation of Web services in gSOAP and the matching of parameter names by the service.

Caution: when anonymous parameter names are used, the order of the parameters in the function prototype of a remote method is significant.

8.1.14 How to Specify a Method with No Input Parameters

To specify a remote method that has no input parameters, just provide a function prototype with one parameter which is the output parameter. However, some C/C++ compilers (notably Visual $C++^{TM}$) will not compile and complain about an empty **struct**. This **struct** is generated by gSOAP to contain the SOAP request message. To fix this, provide one input parameter of type **void*** (gSOAP can not serialize void* data). For example:

```
struct ns3__SOAPService
  public:
  int ID:
  char *name:
  char *owner;
  char *description;
  char *homepageURL;
  char *endpoint:
  char *SOAPAction;
  char *methodNamespaceURI;
  char *serviceStatus;
  char *methodName;
  char *dateCreated;
  char *downloadURL:
  char *wsdIURL;
  char *instructions:
  char *contactEmail;
  char *serverImplementation;
struct ArrayOfSOAPService {struct ns3__SOAPService *__ptr; int __size;};
int ns__getAllSOAPServices(void *_, struct ArrayOfSOAPService &_return);
```

The ns_getAllSOAPServices method has one **void*** input parameter which is ignored by the serializer to produce the request message.

Most C/C++ compilers allow empty **structs** and therefore the **void*** parameter is not required.

8.1.15 How to Specify a Method with No Output Parameters

To specify a remote method that has no output parameters, just provide a function prototype with a response struct that is empty. For example:

```
enum ns_event { off, on, stand_by };
int ns_signal(enum ns_event in, struct ns_signalResponse { } *out);
```

Since the response struct is empty, no output parameters are specified. Most C/C++ compilers allow empty **structs**. For those that don't, use a **void*** parameter in the struct. This parameter is not (de)serialized.

Some SOAP resources refer to SOAP RPC with empty responses as **one way** SOAP messaging. However, we refer to one-way massaging by asynchronous explicit send and receive operations as described in Section 8.3. We found this view of one-way SOAP messaging more useful by providing a message passing alternative to SOAP RPC.

8.2 How to Use the gSOAP Stub and Skeleton Compiler to Build SOAP Web Services

The gSOAP stub and skeleton compiler generates **skeleton** routines in C++ source form for each of the remote methods specified as function prototypes in the header file processed by the gSOAP compiler. The skeleton routines can be readily used to implement the remote methods in a new SOAP Web service. The compound data types used by the input and output parameters of SOAP remote methods must be declared in the header file, such as structs, classes, arrays, and pointer-based data structures (graphs) that are used as the data types of the parameters of a remote method. The gSOAP compiler automatically generates serializers and descrializers for the data types to enable the generated skeleton routines to encode and decode the contents of the parameters of the remote methods. The gSOAP compiler also generates a remote method request dispatcher routine that will serve requests by calling the appropriate skeleton when the SOAP service application is installed as a CGI application on a Web server.

8.2.1 Example

The following example specifies three remote methods to be implemented by a new SOAP Web service:

```
// Contents of file "calc.h":
typedef double xsd__double;
int ns__add(xsd__double a, xsd__double b, xsd__double &result);
int ns__sub(xsd__double a, xsd__double b, xsd__double &result);
int ns__sqrt(xsd__double a, xsd__double &result);
```

The add and sub methods are intended to add and subtract two double floating point numbers stored in input parameters a and b and should return the result of the operation in the result output parameter. The qsrt method is intended to take the square root of input parameter a and to return the result in the output parameter result. The xsd_double type is recognized by the gSOAP compiler

as the xsd:double XML schema data type. The use of **typedef** is a convenient way to associate primitive C types with primitive XML schema data types.

To generate the skeleton routines, the gSOAP compiler is invoked from the command line with:

```
soapcpp2 calc.h
```

The compiler generates the skeleton routines for the add, sub, and sqrt remote methods specified in the calc.h header file. The skeleton routines are respectively, soap_serve_ns__add, soap_serve_ns__sub, and soap_serve_ns__sqrt and saved in the file soapServer.cpp. The generated file soapC.cpp contains serializers and deserializers for the skeleton. The compiler also generates a service dispatcher: the soap_serve function handles client requests on the standard input stream and dispatches the remote method requests to the appropriate skeletons to serve the requests. The skeleton in turn calls the remote method implementation function. The function prototype of the remote method implementation function is specified in the header file that is input to the gSOAP compiler.

Here is an example Calculator service application that uses the generated soap_serve routine to handle client requests:

```
// Contents of file "calc.cpp":
#include "soapH.h"
#include <math.h> // for sqrt()
main()
  soap_serve(soap_new()); // use the remote method request dispatcher
// Implementation of the "add" remote method:
int ns__add(struct soap *soap, double a, double b, double &result)
  result = a + b;
  return SOAP_OK;
// Implementation of the "sub" remote method:
int ns__sub(struct soap *soap, double a, double b, double &result)
  result = a - b;
  return SOAP_OK;
// Implementation of the "sqrt" remote method:
int ns_sqrt(struct soap *soap, double a, double &result)
  if (a >= 0)
    result = sqrt(a);
    return SOAP_OK;
  else
    return soap_receiver_fault(soap, "Square root of negative number", "I can only take the square
root of a non-negative number");
// As always, a namespace mapping table is needed:
struct Namespace namespaces[] =
{ // {"ns-prefix", "ns-name"}
```

```
{"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"}, {"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"}, {"xsi", "http://www.w3.org/1999/XMLSchema-instance"}, {"xsd", "http://www.w3.org/1999/XMLSchema"}, {"ns", "urn:simple-calc"}, // bind "ns" namespace prefix {NULL, NULL}
```

Note that the remote methods have an extra input parameter which is a pointer to the gSOAP runtime environment. The implementation of the remote methods MUST return a SOAP error code. The code SOAP_OK denotes success, while SOAP_FAULT denotes an exception with details that can be defined by the user. The exception description can be assigned to the soap->fault->faultstring string and details can be assigned to the soap->fault->detail string. This is SOAP 1.1 specific. SOAP 1.2 requires the soap->fault->SOAP_ENV__Reason and the soap->fault->SOAP_ENV__Detail strings to be assigned. Better is to use the soap-receiver_fault function that allocates a fault struct and sets the SOAP Fault string and details regardless of the SOAP 1.1 or SOAP 1.2 version used. The soap_receiver_fault function returns SOAP_FAULT, i.e. an application-specific fault. The fault exception will be passed on to the client of this service.

This service application can be readily installed as a CGI application. The service description would be:

Endpoint URL: the URL of the CGI application

SOAP action: "" (2 quotes)
Remote method namespace: urn:simple-calc

Remote method name: add

Input parameters: a of type xsd:double and b of type xsd:double

Output parameter: result of type xsd:double

Remote method name: sub

Input parameters: a of type xsd:double and b of type xsd:double

Output parameter: result of type xsd:double

Remote method name: sqrt

Input parameter: a of type xsd:double

Output parameter: result of type xsd:double or a SOAP Fault

The soapcpp2 compile generates a WSDL file for this service, see Section 8.2.8.

Unless the CGI application inspects and checks the environment variable SOAPAction which contains the SOAP action request by a client, the SOAP action is ignored by the CGI application. SOAP actions are specific to the SOAP protocol and provide a means for routing requests and for security reasons (e.g. firewall software can inspect SOAP action headers to grant or deny the SOAP request. Note that this requires the SOAP service to check the SOAP action header as well to match it with the remote method.)

The header file input to the gSOAP compiler does not need to be modified to generate client stubs for accessing this service. Client applications can be developed by using the same header file as for which the service application was developed. For example, the <code>soap_call_ns__add</code> proxy is available from the <code>soapClient.cpp</code> file after invoking the gSOAP compiler on the <code>calc.h</code> header file. As a result, client and service applications can be developed without the need to know the details of the SOAP encoding used.

8.2.2 MSVC++ Builds

- Win32 builds need winsock.dll (MS Visual C++ "wsock32.lib") To do this in Visual C++ 6.0, go to "Project", "settings", select the "Link" tab (the project file needs to be selected in the file view) and add "wsock32.lib" to the "Object/library modules" entry.
- Use files with extension .cpp only (don't mix .c with .cpp).
- Turn pre-compiled headers off.
- When creating a new project, you can specify a custom build step to automatically invoke the gSOAP compiler on a gSOAP header file. In this way you can incrementally build a new service by adding new operations and data types to the header file. To specify a custom build step, select the "Project" menu item "Settings" and select the header file in the File view pane. Select the "Custom Build" tab and enter 'soapcpp2.exe "\$(inputPath)" in the "Command" pane. Enter 'soapStub.h soapH.h soapC.cpp soapClient.cpp soapServer.cpp'. Click "OK". Run the soapcpp2 compiler once to generate these files (you can simply do this by selecting your header file and select "Compile"). Add the files to your project. Each time you make a change to the header file, the project sources are updated automatically.
- You may want to use the WinInet interface available in the extras directory of the gSOAP package to simplify Internet access and deal with encryption, proxies, and authentication. API instructions are included in the source.
- For the PocketPC, run the wsdl2h WSDL parser with option -s to prevent the generation of STL code. In addition, time_t serialization is not supported, which means that you should add the following line to typemap.dat indicating a mapping of xsd__dateTime to char*: xsd__dateTime = | char* | char*.

8.2.3 How to Create a Stand-Alone gSOAP Service

The deployment of a Web service as a CGI application is an easy means to provide your service on the Internet. gSOAP services can also run as stand-alone services on any port by utilizing the built-in HTTP and TCP/IP stacks. The stand-alone services can be run on port 80 thereby providing Web server capabilities restricted to SOAP RPC.

To create a stand-alone service, only the main routine of the service needs to be modified as follows. Instead of just calling the soap_serve routine, the main routine is changed into:

```
int main()
{
    struct soap soap;
    int m, s; // master and slave sockets
    soap_init(&soap);
    m = soap_bind(&soap, "machine.cs.fsu.edu", 18083, 100);
    if (m < 0)
        soap_print_fault(&soap, stderr);
    else
    {
        fprintf(stderr, "Socket connection successful: master socket = %d\n", m);
        for (int i = 1; ; i++)</pre>
```

```
{
    s = soap_accept(&soap);
    if (s < 0)
    {
        soap_print_fault(&soap, stderr);
        break;
    }
    fprintf(stderr, "%d: accepted connection from IP=%d.%d.%d.%d socket=%d", i,
            (soap.ip>>24)&0xFF, (soap.ip>>16)&0xFF, (soap.ip>>8)&0xFF, soap.ip&0xFF, s);
    soap_serve(&soap); // process RPC request
        fprintf(stderr, "request served\n");
        soap_destroy(&soap); // clean up class instances
        soap_end(&soap); // clean up everything and close socket
    }
}
soap_done(&soap); // close master socket
}
```

The gSOAP functions that can be used are:

Function	Description
soap_init(struct soap *soap)	Initializes gSOAP runtime environment (required
	once)
soap_bind(struct soap *soap, char *host, int port,	Returns master socket (backlog $=$ max. queue size
int backlog)	for requests). When host==NULL: host is the ma-
	chine on which the service runs
<pre>soap_accept(struct soap *soap)</pre>	Returns slave socket
<pre>soap_end(struct soap *soap)</pre>	Clean up deserialized data (except class instances)
	and temporary data
<pre>soap_free(struct soap *soap)</pre>	Clean up temporary data only
<pre>soap_destroy(struct soap *soap)</pre>	Clean up deserialized class instances (note: this
	function will be renamed with option -n
<pre>soap_done(struct soap *soap)</pre>	Reset: close master/slave sockets and remove call-
	backs
	(see Section 15.9

The host name in soap_bind may be NULL to indicate that the current host should be used.

The soap.accept_timeout attribute of the gSOAP run-time environment specifies the timeout value for a non-blocking soap_accept(&soap) call. See Section 15.19 for more details on timeout management.

See Section 9.13 for more details on memory management.

A client application connects to this stand-alone service with the endpoint machine.cs.fsu.edu:18083. A client may use the http:// prefix. When absent, no HTTP header is send and no HTTP-based information will be communicated to the service.

8.2.4 How to Create a Multi-Threaded Stand-Alone Service

Multi-threading a Web Service is essential when the response times for handling requests by the service are (potentially) long or when keep-alive is enabled, see Section 15.13. In case of long response times, the latencies introduced by the unrelated requests may become prohibitive for a

successful deployment of a stand-alone service. When HTTP keep-alive is enabled, a client may not close the socket on time, thereby preventing other clients from connecting.

gSOAP 2.0 and higher is thread safe and supports the implementation of multi-threaded stand-alone services in which a thread is used to handle a request.

The following example illustrates the use of threads to improve the quality of service by handling new requests in separate threads:

```
#include "soapH.h"
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
int main(int argc, char **argv)
      struct soap soap;
      soap_init(&soap);
      if (argc < 3) // no args: assume this is a CGI application
             soap_serve(&soap); // serve request, one thread, CGI style
             soap_destroy(&soap); // dealloc C++ data
             soap_end(&soap); // dealloc data and clean up
      else
             void *process_request(void*);
             struct soap *tsoap;
             pthread_t tid;
             int port = atoi(argv[1]); // first command-line arg is port
             m = soap_bind(&soap, NULL, port, BACKLOG);
             if (m < 0)
                    exit(1);
             fprintf(stderr, "Socket connection successful %d\n", m);
             for (;;)
                    s = soap\_accept(\&soap);
                    if (s < 0)
                          break;
                    fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",
i, s, (\text{soap.ip} > 24)\&0xFF, (\text{soap.ip} > 16)\&0xFF, (\text{soap.ip} > 8)\&0xFF, (\text{soap.ip}
                    tsoap = soap_copy(&soap); // make a safe copy
                    if (!tsoap)
                           break;
                    pthread_create(&tid, NULL, (void*(*)(void*))process_request, (void*)tsoap);
      soap_done(&soap); // detach soap struct
      return 0;
void *process_request(void *soap)
      pthread_detach(pthread_self());
      soap_serve((struct soap*)soap);
      soap_destroy((struct soap*)soap); // dealloc C++ data
```

```
soap_end((struct soap*)soap); // dealloc data and clean up
soap_done((struct soap*)soap); // detach soap struct
free(soap);
return NULL;
}
```

Note: the code does not wait for threads to join the main thread upon program termination.

The following example uses a pool of threads:

```
#include "soapH.h"
#include <pthread.h>
#define BACKLOG (100) // Max. request backlog
#define MAX_THR (8) // Max. threads to serve requests
int main(int argc, char **argv)
      struct soap soap;
      soap_init(&soap);
      if (argc < 3) // no args: assume this is a CGI application
             soap_serve(&soap); // serve request, one thread, CGI style
             soap_destroy(&soap); // dealloc C++ data
             soap_end(&soap); // dealloc data and clean up
      else
             struct soap *soap_thr[MAX_THR]; // each thread needs a runtime environment
             pthread_t tid[MAX_THR];
             int port = atoi(argv[1]); // first command-line arg is port
             int m. s. i:
             m = soap_bind(&soap, NULL, port, BACKLOG);
             if (m < 0)
                    exit(1);
             fprintf(stderr, "Socket connection successful %d\n", m);
             for (i = 0; i < MAX\_THR; i++)
                    soap\_thr[i] = NULL;
             for (;;)
                    for (i = 0; i < MAX\_THR; i++)
                          s = soap\_accept(\&soap);
                          if (s < 0)
                                break;
                          fprintf(stderr, "Thread %d accepts socket %d connection from IP %d.%d.%d.%d\n",
i, s, (\text{soap.ip} > 24)\&0xFF, (\text{soap.ip} > 16)\&0xFF, (\text{soap.ip} > 8)\&0xFF, (\text{soap.ip}
                          if (!soap_thr[i]) // first time around
                                 soap_thr[i] = soap_copy(&soap);
                                if (!soap_thr[i])
                                 exit(1); // could not allocate
                           else // recycle soap environment
                                 pthread_join(tid[i], NULL);
```

```
fprintf(stderr, "Thread %d completed\n", i);
    soap_destroy(soap_thr[i]); // deallocate C++ data of old thread
    soap_end(soap_thr[i]); // deallocate data of old thread
    }
    soap_thr[i]->socket = s; // new socket fd
    pthread_create(&tid[i], NULL, (void*(*)(void*))soap_serve, (void*)soap_thr[i]);
    }
}
return 0;
}
```

The following functions can be used to setup a gSOAP runtime environment (struct soap):

Function	
	Description
soap_init(struct soap *soap)	Initializes a runtime environment (required only once)
<pre>struct soap *soap_new()</pre>	Allocates, initializes, and returns a pointer to a runtime
	environment
<pre>struct soap *soap_copy(struct soap *soap)</pre>	Allocates a new runtime environment and copies contents
	of the argument environment such that the new environ-
	ment does not share data with the argument environment
<pre>soap_done(struct soap *soap)</pre>	Reset, close communications, and remove callbacks

A new environment is required for each new thread to guarantee exclusive access to runtime environments by threads.

For clean termination of the server, the master socket can be closed and callbacks removed with soap_done(struct soap *soap).

8.2.5 How to Pass Application Data to Service Methods

The **void** *soap.user field can be used to pass application data to service methods. This field should be set before the soap_serve() call. The service method can access this field to use the application-dependent data. The following example shows how a non-static database handle is initialized and passed to the service methods:

```
{ ...
    struct soap soap;
    database_handle_type database_handle;
    soap_init(&soap);    soap.user = (void*)database_handle;
    ...
    soap_serve(&soap); // call the remove method dispatcher to handle request
    ...
}
int ns__myMethod(struct soap *soap, ...)
{ ...
    fetch((database_handle_type*)soap->user);
// get data    ...
    return SOAP_OK;
}
```

Another way to pass application data around in a more organized way is accomplished with plugins, see Section 15.35.3.

8.2.6 Some Web Service Implementation Issues

The same client header file specification issues apply to the specification and implementation of a SOAP Web service. Refer to

- 8.1.2 for namespace considerations.
- 8.1.5 for an explanation on how to change the encoding of the primitive types.
- 8.1.7 for a discussion on how the response element format can be controlled.
- 8.1.9 for details on how to pass multiple output parameters from a remote method.
- 8.1.11 for passing complex data types as output parameters.
- 8.1.13 for anonymizing the input and output parameter names.

8.2.7 How to Generate C++ Server Object Classes

Server object classes for C++ server applications are automatically generated by the gSOAP compiler. We illustrate the generation of an object class with a calculator example.

```
// Content of file "calc.h":
//gsoap ns service name: Calculator
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://www.cs.fsu.edu/~engelen/calc.cgi
//gsoap ns schema namespace: urn:calc
//gsoap ns service method-action: add ""
int ns__add(double a, double b, double &result); int ns__sub(double a, double b, double &result);
int ns__mul(double a, double b, double &result); int ns__div(double a, double b, double &result);
```

The first three directives provide the service name which is used to name the service class, the service location (endpoint), and the schema. The fourth directive defines the optional SOAPAction for the method, which is a string associated with SOAP 1.1 operations. Compilation of this header file with the gSOAP compiler soapcpp2 creates a new file soapCalculatorObject.h with the following contents:

```
#include "soapH.h"
class Calculator : public soap
{ public:
    Quote() { soap_init(this); };
    ~Quote() { soap_destroy(this); soap_end(this); soap_done(this); }};
    int serve() { return soap_serve(this); };
};
```

This generated server object class can be included into a server application together with the generated namespace table as shown in this example:

```
#include "soapCalculatorObject.h" // get server object
#include "Calculator.nsmap" // get namespace bindings
int main()
{
    Calculator c;
    return c.serve(); // calls soap_serve to serve as CGI application (using stdin/out)
}
int ns__add(double a, double b, double &result)
{
    result = a + b;
    return SOAP_OK;
}
... sub(), mul(), and div() implementations ...
```

You can use soapcpp2 compiler option -n together with -p to create a local namespaces table to avoid link conflict when you need to combine multiple tables and/or multiple servers, see also Sections 9.1 and 15.34, and you can use a C++ code **namespace** to create a namespace qualified server object class, see Section 15.33.

8.2.8 How to Generate WSDL Service Descriptions

The gSOAP stub and skeleton compiler soapcpp2 generates WSDL (Web Service Description Language) service descriptions and XML schema files when processing a header file. The compiler produces one WSDL file for a set of remote methods. The names of the function prototypes of the remote methods must use the same namespace prefix and the namespace prefix is used to name the WSDL file. If multiple namespace prefixes are used to define remote methods, multiple WSDL files will be created and each file describes the set of remote methods belonging to a namespace prefix.

In addition to the generation of the ns.wsdl file, a file with a namespace mapping table is generated by the gSOAP compiler. An example mapping table is shown below:

This file can be incorporated in the client/service application, see Section 10.4 for details on namespace mapping tables.

To deploy a Web service, copy the compiled CGI service application to the designated CGI directory of your Web server. Make sure the proper file permissions are set (chmod 755 calc.cgi for Unix/Linux). You can then publish the WSDL file on the Web by placing it in the appropriate Web server directory.

The gSOAP compiler also generates XML schema files for all C/C++ complex types (e.g. **structs** and **classes**) when declared with a namespace prefix. These files are named ns.xsd, where ns is the

namespace prefix used in the declaration of the complex type. The XML schema files do not have to be published as the WSDL file already contains the appropriate XML schema definitions.

8.2.9 Example

For example, suppose the following methods are defined in the header file:

```
typedef double xsd__double;
int ns__add(xsd__double a, xsd__double b, xsd__double &result);
int ns__sub(xsd__double a, xsd__double b, xsd__double &result);
int ns__sqrt(xsd__double a, xsd__double &result);
```

Then, one WSDL file will be created with the file name ns.wsdl that describes all three remote methods:

```
<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Service"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://location/Service.wsdl"
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:SOAP="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:WSDL="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:tns="http://location/Service.wsdl"
 xmlns:ns="http://tempuri.org">
<types>
  <schema
   xmlns="http://www.w3.org/2000/10/XMLSchema"
   targetNamespace="http://tempuri.org"
    xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/">
    <complexType name="addResponse">
      <all>
        <element name="result" type="double" minOccurs="0" maxOccurs="1"/>
      <anyAttribute namespace="##other"/>
    </complexType>
    <complexType name="subResponse">
      <all>
        <element name="result" type="double" minOccurs="0" maxOccurs="1"/>
      <anyAttribute namespace="##other"/>
    </complexType>
    <complexType name="sqrtResponse">
      <all>
        <element name="result" type="double" minOccurs="0" maxOccurs="1"/>
      <anyAttribute namespace="##other"/>
    </complexType>
  </schema>
```

```
</types>
<message name="addRequest">
  <part name="a" type="xsd:double"/>
  <part name="b" type="xsd:double"/>
</message>
<message name="addResponse">
  <part name="result" type="xsd:double"/>
</message>
<message name="subRequest">
  <part name="a" type="xsd:double"/>
  <part name="b" type="xsd:double"/>
</message>
<message name="subResponse">
  <part name="result" type="xsd:double"/>
<message name="sqrtRequest">
  <part name="a" type="xsd:double"/>
</message>
<message name="sqrtResponse">
  <part name="result" type="xsd:double"/>
</message>
<portType name="ServicePortType">
  <operation name="add">
    <input message="tns:addRequest"/>
    <output message="tns:addResponse"/>
  </operation>
  <operation name="sub">
    <input message="tns:subRequest"/>
    <output message="tns:subResponse"/>
  </operation>
  <operation name="sqrt">
    <input message="tns:sqrtRequest"/>
    <output message="tns:sqrtResponse"/>
  </operation>
</portType>
<binding name="ServiceBinding" type="tns:ServicePortType">
  <SOAP:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
  <operation name="add">
    <SOAP:operation soapAction="http://tempuri.org#add"/>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
    </input>
    <output>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
    </output>
  </operation>
  <operation name="sub">
    <SOAP:operation soapAction="http://tempuri.org#sub"/>
    <input>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
```

```
</input>
    <output>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
    </output>
  </operation>
  <operation name="sqrt">
    <SOAP:operation soapAction="http://tempuri.org#sqrt"/>
    <input>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
    </input>
    <output>
      <SOAP:body use="encoded" namespace="http://tempuri.org"
        encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
    </output>
  </operation>
</binding>
<service name="Service">
  <port name="ServicePort" binding="tns:ServiceBinding">
    <SOAP:address location="http://location/Service.cgi"/>
  </port>
</service>
</definitions>
```

8.2.10 How to Parse and Import WSDL Service Descriptions to Develop Clients and Servers

Note: see README.txt in the wsdl directory for installation instructions for the WSDL parser and importer.

The creation of SOAP Web Services applications from a WSDL service description is a two-step process.

First, execute wsdl2h <u>file</u>.wsdl which generates the a C++ header file <u>file</u>.h (use wsdl2h -c <u>file</u>.wsdl to generate pure C code). You can provide a URL instead of a file name, when applicable. The generated header file is a Web service specification that contains the parameter types and service function definitions. The functions are represented as function prototypes. The file contains various annotations related to the Web service. The header file must be processed by the gSOAP compiler. You cannot use it with a C/C++ compiler directly.

Second, the header file <u>file</u>.h is processed by the gSOAP compiler by executing soapcpp2 -i <u>file</u>.h. This creates the C/C++ source files to build a client application, see 8.1. In addition, this generates a client proxy object declared in soap<u>Service</u>Proxy.h, where <u>Service</u> is the name of the service defined in the WSDL. To use this object, include the soap<u>Service</u>Proxy.h and <u>Service</u>.nsmap files in your C++ client application. The <u>Service</u> class provides the remote Web service methods as class members.

Consider the following example commands (entered at the command prompt):

```
\ wsdl2h -o Amazon.h http://soap.amazon.com/schemas/AmazonWebServices.wsdl ... \ soapcpp2 -i Amazon.h
```

The first command generates Amazon.h from the WSDL at the specified URL. The header file is then processed by the gSOAP compiler to generate the stubs and skeletons. See Amazon.h for the types and service functions. A C++ client application may use the generated soapAmazonSearchBindingProxy.h class and AmazonSearchBinding.nsmap XML namespace table to access the Amazon Web service. Both need to be #include-d in your source. Then compile and link the soapC.cpp, soapClient.cpp, and stdsoap2.cpp sources to complete the build.

When parsing a WSDL, the output file name is the WSDL input file name with extension .h instead of .wsdl. When an input file is absent or a WSDL file from a Web location is accessed, the header output will be produced on the standard output. Schema files (.xsd) can also be parsed and processed.

The wsdl2h command line options are:

Option	Description
-C	generate pure C header file code
-e	use SOAP RPC encoding by default instead of literal.
	This option is for backward compatibility with gSOAP 2.4.1 and earlier.
	The option does not produce code that conforms to WS-I Basic Profile 1.0a.
-f	generate flat C++ class hierarchy for schema extensions
-m	create modules for separate compilation
-n name	use name as the base namespace prefix name instead of ns
-o file	output to file
-p	create polymorphic types with C++ inheritance hierarchy with base xsdanyType
	This is automatically performed when WSDL contains polymorphic definitions
-S	do not generate STL code (no std::string and no std::vector)
-t file	use type map file instead of the default file typemap.dat
-V	verbose output
-?	help

A typemap file contains custom XML schema and C/C++ type bindings. An internal table is used by default. An example typemap file is:

```
# This file contains custom definitions of the XML schema types and
# C/C++ types for your project, and XML namespace prefix definitions.
# XML namespace prefix definitions can be provided to override the
# default choice of ns1, ns2, ... prefixes. For example:
i = "http://www.soapinterop.org/"
s = "http://www.soapinterop.org/xsd"
# Type definitions consists of a single line containing:
# type = declaration | use | pointer-use
# where
# type is the XML schema type (or an application type in a namespace
# that has a prefix definition given as above).
# declaration is an optional C/C++ type declaration
# use is how the type is referred to in code
# pointer-use is how the type should be referred to as a pointer (opt)
# Example XML schema and C/C++ type bindings:
xsd__int = | int
```

```
xsd__byte = | char | int*
xsd__boolean = enum xsd__boolean false_, true_ ; | enum xsd__boolean
xsd__base64Binary = class xsd__base64Binary unsigned char *__ptr; int __size; ; |
xsd__base64Binary | xsd__base64Binary
```

The i and s prefixes are declared such that the header file output by the WSDL parser will use these to produce C/C++ code. The XML schema types are associated with an optional C/C++ type declaration, a use reference, and a pointer-use reference. The pointer-use reference of the xsd_byte type for example, is int^* because $char^*$ is reserved for strings.

8.2.11 How to Use Client Functionalities Within a Service

A gSOAP service may make client calls to other services from within its remove methods. This is best illustrated with an example. The following example is a more sophisticated example that combines the functionality of two Web services into one new SOAP Web service. The service provides a currency-converted stock quote. To serve a request, the service in turn requests the stock quote and the currency-exchange rate from two XMethods services.

In addition to being a client of two XMethods services, this service application can also be used as a client of itself to test the implementation. As a client invoked from the command-line, it will return a currency-converted stock quote by connecting to a copy of itself installed as a CGI application on the Web to retrieve the quote after which it will print the quote on the terminal.

The header file input to the gSOAP compiler is given below:

```
// Contents of file "quotex.h":
int ns1__getQuote(char *symbol, float &result); // XMethods delayed stock quote service remote method
int ns2__getRate(char *country1, char *country2, float &result); // XMethods currency-exchange service remote method
int ns3__getQuote(char *symbol, char *country, float &result); // the new currency-converted stock quote service
```

The quotex.cpp client/service application source is:

```
// Contents of file "quotex.cpp":
#include "soapH.h" // include generated proxy and SOAP support
int main(int argc, char **argv)
{
    struct soap soap;
    float q;
    soap_init(&soap);
    if (argc <= 2)
        soap_serve(&soap);
    else if (soap_call_ns3__getQuote(&soap, "http://www.cs.fsu.edu/~engelen/quotex.cgi",
    "", argv[1], argv[2], q))
        soap_print_fault(&soap, stderr);
    else
        printf("\nCompany %s: %f (%s)\n", argv[1], q, argv[2]);
    return 0;
}</pre>
```

```
int ns3__getQuote(struct soap *soap, char *symbol, char *country, float &result)
      {
        int socket = soap->socket; // save socket (stand-alone service only, does not support keep-alive)
        if (soap_call_ns1__getQuote(soap, "http://services.xmethods.net/soap", "", symbol, &q)
          soap_call_ns2__getRate(soap, "http://services.xmethods.net/soap", NULL, "us", coun-
      try, &r) == 0
          result = q*r;
          soap->socket = socket;
          return SOAP_OK:
        soap->socket = socket;
        return SOAP_FAULT; // pass soap fault messages on to the client of this app
      /* Since this app is a combined client-server, it is put together with
      one header file that describes all remote methods. However, as a consequence we
      have to implement the methods that are not ours. Since these implementations are
      never called (this code is client-side), we can make them dummies as below.
      int ns1__getQuote(struct soap *soap, char *symbol, float &result)
      { return SOAP_NO_METHOD; } // dummy: will never be called
      int ns2__getRate(struct soap *soap, char *country1, char *country2, float &result)
      { return SOAP_NO_METHOD; } // dummy: will never be called
      struct Namespace namespaces[] =
        {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"},
        {"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"},
        "xsi", "http://www.w3.org/2001/XMLSchema-instance", "http://www.w3.org/*/XMLSchema-
      instance" \,
        {"xsd", "http://www.w3.org/2001/XMLSchema", "http://www.w3.org/*/XMLSchema"},
        {"ns1", "urn:xmethods-delayed-quotes"},
{"ns2", "urn:xmethods-CurrencyExchange"},
        {"ns3", "urn:quotex"},
        {NULL, NULL}
      };
To compile:
```

```
soapcpp2 quotex.h
g++ -o quotex.cgi quotex.cpp soapC.cpp soapClient.cpp soapServer.cpp stdsoap2.cpp -lsocket -lxnet
```

Note: under Linux and Mac OS X you can often omit the -1 libraries.

The quotex.cgi executable is installed as a CGI application on the Web by copying it in the designated directory specific to your Web server. After this, the executable can also serve to test the service. For example

```
quotex.cgi IBM uk
```

returns the quote of IBM in uk pounds by communicating the request and response quote from the CGI application. See http://xmethods.com/detail.html?id=5 for details on the currency abbreviations.

When combining clients and service functionalities, it is required to use one header file input to the compiler. As a consequence, however, stubs and skeletons are available for **all** remote methods, while the client part will only use the stubs and the service part will use the skeletons. Thus, dummy implementations of the unused remote methods need to be given which are never called.

Three WSDL files are created by gSOAP: ns1.wsdl, ns2.wsdl, and ns3.wsdl. Only the ns3.wsdl file is required to be published as it contains the description of the combined service, while the others are generated as a side-effect (and in case you want to develop these separate services).

8.3 How to Use gSOAP for Asynchronous One-Way Message Passing

SOAP RPC client-server interaction is synchronous: the client blocks until the server responds to the request. gSOAP also supports asynchronous one-way message passing. SOAP messaging routines are declared as function prototypes, just like remote methods for SOAP RPC. However, the output parameter is a **void** type to indicate the absence of a return value.

For example, the following header file specifies a event message for SOAP messaging:

```
int ns__event(int eventNo, void dummy);
```

The gSOAP stub and skeleton compiler generates the following functions in soapClient.cpp:

```
int soap_send_ns__event(struct soap *soap, const char URL, const char action, int event);
int soap_recv_ns__event(struct soap *soap, struct ns__event *dummy);
```

The soap_send_ns__event function transmits the message to the destination URL by opening a socket and sending the SOAP encoded message. The socket will remain open after the send and has to be closed with soap_closesock(). The open socket connection can also be used to obtain a service response, e.g. with a soap_recv function call.

The soap_recv_ns__event function waits for a SOAP message on the currently open socket (soap.socket) and fills the **struct** ns__event with the ns__event parameters (e.g. **int** eventNo). The **struct** ns__event is automatically created by gSOAP and is a mirror image of the ns__event parameters:

```
struct ns__event
{ int eventNo;
}
```

The gSOAP generated soapServer.cpp code includes a skeleton routine to accept the message. (The skeleton routine does not respond with a SOAP response message.)

```
int soap_serve_ns__event(struct soap *soap);
```

The skeleton routine calls the user-implemented ns_event(struct soap *soap, int eventNo) routine (note the absence of the void parameter!).

As usual, the skeleton will be automatically called by the remote method request dispatcher that handles both the remote method requests (RPCs) and messages:

```
main()
{ soap_serve(soap_new());
}
int ns__event(struct soap *soap, int eventNo)
{
    ... // handle event
    return SOAP_OK;
}
```

8.4 How to Use the SOAP Serializers and Deserializers to Save and Load Application Data

The gSOAP stub and skeleton compiler generates serializers and deserializers for all user-defined data structures that are specified in the header file input to the compiler. The serializers and deserializers can be found in the generated soapC.cpp file. These serializers and deserializers can be used separately by an application without the need to build a full client or service application. This is useful for applications that need to save or export their data in XML or need to import or load data stored in XML format.

The following attributes can be set to control the destination and source for serialization and deserialization:

Variable	Description
int soap.socket	socket file descriptor for input and output or -1
ostream *soap.os	(C++ only) output stream used for send operations
istream *soap.is	(C++ only) input stream used for receive operations
int soap.sendfd	when soap_socket<0, this fd is used for send operations
int soap.recvfd	when soap_socket<0, this fd is used for receive operations

The following initializing and finalizing functions can be used:

Function	Description
<pre>void soap_begin_send(struct soap*)</pre>	start a send/write phase
<pre>int soap_end_send(struct soap*)</pre>	flush the buffer
<pre>int soap_begin_recv(struct soap*)</pre>	start a rec/read phase (if an HTTP header is present, parse it first)
<pre>int soap_end_recv(struct soap*)</pre>	perform a id/href consistency check on deserialized data

These operations do not open or close the connections. The application should open and close connections or files and set the soap.socket, soap.os or soap.sendfd, soap.is or soap.recvfd streams or descriptors. When soap.socket<0 and none of the streams and descriptors are set, then the standard input and output will be used.

See also Section 9.12 to control the I/O buffering and content encoding such as compression and DIME encoding.

8.4.1 Serializing a Data Type

To serialize a data type to a stream, two functions should be called to prepare the data and send the data, respectively. The first function (soap_serialize) analyzes pointers and determines if multi-references are required to encode the data and if cycles are present the object graph. The second function (soap_put) produces the XML output on a stream, for example.

The soap_serialize and soap_put function names are specific to a data type. For example, soap_serialize_float(&soap, &d) is called to serialize an **float** value and soap_put_float(&soap, &d, "number", NULL) is called to output the floating point value in SOAP tagged with the name <number>. To initialize data, the soap_default function of a data type can be used. For example, soap_default_float(&soap, &d) initializes the float to 0.0. The soap_default functions are useful to initialize complex data types such as arrays, **structs**, and **class** instances. Note that the soap_default functions do not need the gSOAP runtime environment as a first parameter.

The following table lists the type naming conventions used by gSOAP:

Type	Type Name
char*	string
wchar_t*	wstring
char	byte
bool	bool
double	double
int	int
float	float
long	long
LONG64	LONG64 (Win32)
long long	LONG64 (Unix/Linux)
short	short
time_t	time
unsigned char	unsignedByte
unsigned int	unsignedInt
unsigned long	unsignedLong
ULONG64	unsignedLONG64 $(Win32)$
unsigned long long	unsignedLONG64 (Unix/Linux)
unsigned short	unsignedShort
$\underline{\mathrm{T}}[\mathrm{N}]$	$Array \underline{NOf}\underline{Type}$ where \underline{Type} is the type name of \underline{T}
$\underline{\mathrm{T}}^*$	PointerTo $\overline{\text{Type}}$ where $\overline{\text{Type}}$ is the type name of $\underline{\text{T}}$
struct Name	Name
class Name	Name
enum Name	Name

Consider for example the following C code with a declaration of p as a pointer to a **struct** ns_Person:

```
struct ns__Person { char *name; } *p;
```

To serialize p, its address is passed to the function soap_serialize_PointerTons__Person generated for this type by the gSOAP compiler:

```
soap_serialize_PointerTons_ _Person(&soap, &p);
```

The address of p is passed, so the serializer can determine whether p was already serialized and to discover cycles in graph data structures. To generate the output, the address of p is passed to the function soap_put_PointerTons_Person together with the name of an XML element and an optional type string (to omit a type, use NULL):

```
soap_begin_send(&soap);
soap_put_PointerTons_ _Person(&soap, &p, "ns:element-name", "ns:type-name");
soap_end_send(&soap);
```

This produces:

```
<ns:element-name xmlns:SOAP-ENV="..." xmlns:SOAP-ENC="..." xmlns:ns="..."
    ... xsi:type="ns:type-name">
<name xsi:type="xsd:string">...</name>
</ns:element-name>
```

The serializer is initialized with the soap_begin_send(soap) function and closed with soap_end_send(soap). All temporary data structures and data structures describilized on the heap are destroyed with the soap_end() function. The soap_free() function can be used to remove the temporary data only and keep the describilized data on the heap. Temporary data structures are only created if the encoded data uses pointers. Each pointer in the encoded data has an internal hash table entry to determine all multi-reference parts and cyclic parts of the complete data structure.

You can assign an output stream to soap.os or a file descriptor to soap.sendfd. For example

```
soap.sendfd = open(file, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR); \\ soap\_begin\_send(\&soap); \\ soap\_put\_PointerTons\__Person(\&soap, \&p, "ns:element-name", "ns:type-name"); \\ soap\_end\_send(\&soap); \\ \end{cases}
```

If you want to serialize more than one data structure to a stream and parts of those data structures are shared through pointers, then the soap_serialize functions MUST to be called first on all of the data structures before you call any of the soap_put functions. This is necessary to ensure that multi-reference data shared by the data structures is encoded as multi-reference.

For example, to encode the contents of two variables var1 and var2 the serializers are called before the output routines:

```
T1 \text{ var1};
T2 \text{ var2}:
struct soap soap;
soap_init(&soap); // initialize
[soap_omode(&soap, flags);] // set output-mode flags
soap_begin(&soap); // start new (de)serialization phase
soap_set_omode(&soap, SOAP_XML_GRAPH);
soap_serialize_Type1(&soap, &var1);
soap_serialize_Type2(&soap, &var2);
[soap.socket = a_socket_file_descriptor;] // when using sockets
[soap.os = an\_output\_stream;] // C++
soap.sendfd = an_output_file_descriptor; // C
soap_begin_send(&soap);
soap_put_Type1(&soap, &var1, "[namespace-prefix:]element-name1", "[namespace-prefix:]type-name1");
soap_put_Type2(&soap, &var2, "[namespace-prefix:]element-name2", "[namespace-prefix:]type-name2");
soap_end_send(&soap); // flush
soap_end(&soap); // remove temporary data structures after phase
soap_done(&soap); // finalize last use of this environment
```

where $\underline{\text{Type1}}$ is the type name of $\underline{\text{T1}}$ and $\underline{\text{Type2}}$ is the type name of $\underline{\text{T2}}$ (see table above). The strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 describe the schema types of the elements. Use NULL to omit this type information.

To preserve the exact structure of the data and create XML with one root, use the SOAP_XML_GRAPH output-mode flag to serialize the data in XML (see Section 9.12) to serialize multi-referenced data embedded in the structure which assures the preservation of structure but is not SOAP 1.1 compliant. To save the data as an XML tree (with one root) use the SOAP_XML_TREE flag.

For serializing class instances, method invocations MUST be used instead of function calls, for example obj.soap_serialize(&soap) and obj.soap_put(&soap, "elt", "type"). This ensures that the proper serializers are used for serializing instances of derived classes.

You can serialize a class instance to a stream as follows:

```
struct soap soap;
myClass obj;
soap_init(&soap); // initialize
soap_begin(&soap); // start new (de)serialization phase
soap_set_omode(&soap, SOAP_XML_GRAPH);
obj.serialize(&soap);
soap.os = cout; // send to cout
soap_begin_send(&soap);
obj.put(&soap, "[namespace-prefix:]element-name1", "[namespace-prefix:]type-name1");
...
soap_end_send(&soap); // flush
soap_end(&soap); // remove temporary data structures after phase
soap_done(&soap); // finalize last use of this environment
```

When you declare a soap struct pointer as a data member in a class, you can overload the << operator to serialize the class to streams:

```
ostream &operator<<(ostream &o, const myClass &e)
{
   if (!e.soap)
     ... error: need a soap struct to serialize (could use global struct) ...
   else
   {
      ostream *os = e.soap->os;
      e.soap->os = &o;
      soap_set_omode(e.soap, SOAP_XML_GRAPH);
      soap_begin_send(e.soap);
      e.put(e.soap, "myClass", NULL);
      soap_end_send(e.soap);
      e.soap->os = os;
      soap-clr_omode(e.soap, SOAP_XML_GRAPH);
   }
   return o;
}
```

Of course, when you construct an instance you must set its soap struct to a valid environment. Describing class instances with a soap struct data member will have their soap structs set automatically, see Section 9.13.2.

In principle, encoding MAY take place without calling the soap_serialize functions. However, as the following example demonstrates the resulting encoding is not SOAP 1.1 compliant. However, the messages can still be used with gSOAP to save and restore data in XML.

Consider the following **struct**:

```
// Contents of file "tricky.h":
struct Tricky
{
  int *p;
  int n;
  int *q;
};
```

The following fragment initializes the pointer fields p and q to the value of field n:

```
struct soap soap;
struct Tricky X;
X.n = 1;
X.p = &X.n;
X.q = &X.n;
soap_init(&soap);
soap_begin(&soap);
soap_serialize_Tricky(&soap, &X);
soap_put_Tricky(&soap, &X, "Tricky", NULL);
soap_end(&soap); // Clean up temporary data used by the serializer
```

The resulting output is:

```
<Tricky xsi:type="Tricky">
 <n xsi:type="int">1</n> <q href="#2"/> <r xsi:type="int">2</r> </Tricky>
<id id="2" xsi:type="int">1</id>
```

which uses an independent element at the end to represent the multi-referenced integer.

For example, the resulting output is:

```
<Tricky xsi:type="Tricky">
 <n id="2" xsi:type="int">1</n> <q href="#2"/> </Tricky>
```

In this case, the XML is self-contained and multi-referenced data is accurately serialized. The gSOAP generated describing for this data type will be able to accurately reconstruct the data from the XML (on the heap).

8.4.2 Description a Data Type

To describlize a data type, its soap_get function is used. The outline of a program that describlizes two variables var1 and var2 is for example:

```
\underline{T1} var1; \underline{T2} var2;
```

```
struct soap soap:
soap_init(&soap); // initialize at least once
soap_imode(&soap, flags); // set input-mode flags
soap_begin(&soap); // begin new decoding phase
|soap.is = an\_input\_stream;| // C++
[soap.recvfd = an_input_file_desriptpr;] // C
soap_begin_recv(&soap); // if HTTP header is present, parse it
if (!soap_get_Type1(&soap, &var1, "[namespace-prefix:]element-name1", "[namespace-prefix:]type-
  ... error ...
if (!soap_get_Type2(&soap, &var2, "[namespace-prefix:]element-name2", "[namespace-prefix:]type-
name1"))
  ... error ...
soap_end_recv(&soap); // check consistency of id/hrefs
soap_destroy(&soap); // remove deserialized class instances
soap_end(&soap); // remove temporary data, including the decoded data on the heap
soap_done(&soap); // finalize last use of the environment
```

The strings [namespace-prefix:]type-name1 and [namespace-prefix:]type-name2 are the schema types of the elements and should match the xsi:type attribute of the receiving message. To omit the match, use NULL as the type. For class instances, method invocation can be used instead of a function call if the object is already instantiated, i.e. obj.soap_get(&soap, "...", "...").

The soap_begin call resets the describilizers. The soap_destroy and soap_end calls remove the temporary data structures and the decoded data that was placed on the heap.

To remove temporary data while retaining the describilized data on the heap, the function soap_free should be called instead of soap_destroy and soap_end.

One call to the soap_get_Type function of a type Type scans the entire input to process its XML content and to capture SOAP 1.1 independent elements (which contain multi-referenced objects). As a result, soap_error will set to SOAP_EOF. Also storing multiple objects into one file will fail to decode them properly with multiple soap_get calls. A well-formed XML document should only have one root anyway, so don't save multiple objects into one file. If you must save multiple objects, create a linked list or an array of objects and save the linked list or array. You could use the soap_in_Type function instead of the soap_get_Type function. The soap_in_Type function parses one XML element at a time.

You can deserialize class instances from a stream as follows:

```
soap_end(&soap); // remove temporary data, including the decoded data on the heap soap_done(&soap); // finalize last use of the environment
```

When you declare a soap struct pointer as a data member in a class, you can overload the >> operator to parse and deserialize a class instance from a stream:

```
istream & operator>>(istream & i, myClass & e)
{
    if (!e.soap)
        ... error: need soap struct to deserialize (could use global struct)...
    istream *is = e.soap->is;
    e.soap->is = & i;
    if (soap_begin_recv(e.soap) | | e.in(e.soap, NULL, NULL) | | soap_end_recv(e.soap))
        ... error ...
    e.soap->is = is;
    return i;
}
```

8.4.3 Example

As an example, consider the following data type declarations:

```
// Contents of file "person.h":
typedef char *xsd__string;
typedef char *xsd__Name;
typedef unsigned int xsd__unsignedInt;
enum ns__Gender {male, female};
class ns__Address
  public:
  xsd__string street;
  xsd__unsignedInt number;
  xsd__string city;
class ns__Person
  public:
  xsd__Name name;
  enum ns__Gender gender;
  ns__Address address;
  ns__Person *mother;
  ns__Person *father;
};
```

The following program uses these data types to write to standard output a data structure that contains the data of a person named "John" living at Downing st. 10 in Londen. He has a mother "Mary" and a father "Stuart". After initialization, the class instance for "John" is serialized and encoded in XML to the standard output stream using gzip compression (requires the Zlib library, compile sources with -DWITH_GZIP):

```
// Contents of file "person.cpp":
#include "soapH.h"
```

```
int main()
  struct soap soap;
  ns__Person mother, father, john;
  mother.name = "Mary";
  mother.gender = female;
  mother.address.street = "Downing st.";
  mother.address.number = 10;
  mother.address.city = "London";
  mother.mother = NULL;
  mother.father = NULL;
  father.name = "Stuart";
  father.gender = male;
  father.address.street = "Main st.":
  father.address.number = 5;
  father.address.city = "London";
  father.mother = NULL;
  father.father = NULL;
  john.name = "John";
  john.gender = male;
  john.address = mother.address;
  john.mother = \&mother;
  john.father = &father;
  soap_init(&soap);
  soap_omode(&soap, SOAP_ENC_ZLIB|SOAP_XML_GRAPH); // see 9.12
  soap_begin(&soap);
  soap_begin_send(&soap);
  john.soap_serialize(&soap);
  john.soap_put(&soap, "johnnie", NULL);
  soap_end_send(&soap);
  soap_end(&soap);
  soap_done(&soap);
struct Namespace namespaces[] =
  {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"},
  {"SOAP-ENC","http://schemas.xmlsoap.org/soap/encoding/"},
  {"xsi", "http://www.w3.org/1999/XMLSchema-instance"},
  {"xsd", "http://www.w3.org/1999/XMLSchema"},
  {"ns", "urn:person"}, // Namespace URI of the "Person" data type
  {NULL, NULL}
};
```

The header file is processed and the application compiled on Linux/Unix with:

```
soapcpp2 person.h g++ -DWITH_GZIP -o person person.cpp soapC.cpp stdsoap2.cpp -lsocket -lxnet -lnsl -lz
```

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libxnet.a, libxnet.a, libxnet.a are required. Compiling on Linux typically does not require the inclusion of those libraries.) See 15.27 for details on compression with gSOAP.

Running the person application results in the compressed XML output:

```
<johnnie xsi:type="ns:Person" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"</pre>
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/1999/XMLSchema"
 xmlns:ns="urn:person"
 SOAP-ENV: encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<name xsi:type="xsd:Name">John</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street id="3" xsi:type="xsd:string">Dowling st.</street>
<number xsi:type="unsignedInt">10</number>
<city id="4" xsi:type="xsd:string">London</city>
</address>
<mother xsi:type="ns:Person">
<name xsi:type="xsd:Name">Mary</name>
<gender xsi:type="ns:Gender">female</gender>
<address xsi:type="ns:Address">
<street href="#3"/>
<number xsi:type="unsignedInt">5</number>
<city href="#4"/>
</address>
</mother>
<father xsi:type="ns:Person">
<name xsi:type="xsd:Name">Stuart</name>
<gender xsi:type="ns:Gender">male</gender>
<address xsi:type="ns:Address">
<street xsi:type="xsd:string">Main st.</street>
<number xsi:type="unsignedInt">13</number>
<citv href="#4"/>
</address>
</father>
</johnnie>
```

The following program fragment decodes this content from standard input and reconstructs the original data structure on the heap:

```
#include "soapH.h"
int main()
{
    struct soap soap;
    ns_Person *mother, *father, *john = NULL;
    soap_init(&soap);
    soap_begin(&soap, SOAP_ENC_ZLIB); // optional: gzip is detected automatically
    soap_begin_recv(&soap);
    if (soap_get_ns_Person(&soap, john, "johnnie", NULL))
        ... error ...
    mother = john->mother;
    father = john->father;
    ...
    soap_end_recv(&soap);
    soap_free(&soap); // Clean up temporary data but keep deserialized data
}
```

It is REQUIRED to either pass NULL to the soap_get routine, or a valid pointer to a data structure that can hold the decoded content. The following example explicitly passes NULL:

```
john = soap_get_ns__Person(&soap, NULL, "johnnie", NULL);
```

Note: the second NULL parameter indicates that the schema type attribute of the receiving message can be ignored. The deserializer stores the SOAP contents on the heap, and returns the address. The allocated storage is released with the soap_end call, which removes all temporary and deserialized data from the heap, or with the soap_free call, which removes all temporary data only.

Alternatively, the XML content can be decoded within an existing allocated data structure. The following program fragment decodes the SOAP content in a **struct** ns_Person allocated on the stack:

```
#include "soapH.h"
main()
{
    struct soap soap;
    ns_ -Person *mother, *father, john;
    soap_init(&soap);
    soap_imode(&soap, SOAP_ENC_ZLIB); // optional
    soap_begin(&soap);
    soap_begin_recv(&soap);
    soap_default_ns_ -Person(&soap, &john);
    if (soap_get_ns_ -Person(&soap, &john, "johnnie", NULL))
        ... error ...
    ...
}
struct Namespace namespaces[] =
```

Note the use of soap_default_ns__Person. This routine is generated by the gSOAP stub and skeleton compiler and assigns default values to the fields of john.

8.4.4 Serializing and Deserializing Class Instances to Streams

C++ applications can define appropriate stream operations on objects for (de)serialization of objects on streams. This is best illustrated with an example. Consider the class

```
class ns__person
{ public:
```

The **struct** soap member is used to bind the instances to a gSOAP environment for (de)serialization. We use the gSOAP compiler from the command prompt to generate the class (de)serializers (assuming that person.h contains the class declaration):

```
soapcpp2 person.h
```

gSOAP generates the (de)serializers and an instantiation function for the class soap_new_ns__person(struct soap *soap, int array) to instantiate one or more objects and associate them with a gSOAP environment. The array parameter should be -1 to instantiate one object or should be the number of objects to instantiate as an array of objects.

```
#include "soapH.h"
#include "ns.nsmap"
...
struct soap *soap = soap_new();
ns__person *p = soap_new_ns__person(soap, -1);
...
cout << p; // serialize p in XML
...
in >> p; // parse XML and deserialize p
...
soap_destroy(soap); // deletes p too
soap_end(soap);
soap_done(soap);
```

The stream operations are implemented as follows

```
ostream &operator<<(ostream &o, const ns_person &p)
  if (!p->soap)
    return o; // need a gSOAP environment to serialize
  p.soap->os = &o;
  soap_omode(p.soap, SOAP_XML_GRAPH); // XML tree or graph
  p->soap_serialize(p.soap);
  soap_begin_send(p.soap);
  if (p->soap_put(p.soap, "person", NULL)
    || soap_end_send(p.soap))
    ; // handle I/O error
  return o:
istream &operator>>(istream &i, ns__person &p)
  if (!p->soap)
    return o; // need a gSOAP environment to parse XML and deserialize
  p.soap->is = &i;
  if (soap_begin_recv(p.soap)
```

```
|| p->soap_in(p.soap, NULL, NULL)
|| soap_end_recv(p.soap))
; // handle I/O error
return i;
}
```

8.4.5 How to Specify Default Values for Omitted Data

The gSOAP compiler generates soap_default functions for all data types. The default values of the primitive types can be easily changed by defining any of the following macros in the stdsoap2.h file:

```
#define SOAP_DEFAULT_bool
#define SOAP_DEFAULT_byte
#define SOAP_DEFAULT_double
#define SOAP_DEFAULT_float
#define SOAP_DEFAULT_int
#define SOAP_DEFAULT_long
#define SOAP_DEFAULT_LONG64
#define SOAP_DEFAULT_short
#define SOAP_DEFAULT_string
#define SOAP_DEFAULT_time
#define SOAP_DEFAULT_unsignedByte
#define SOAP_DEFAULT_unsignedInt
#define SOAP_DEFAULT_unsignedLong
#define SOAP_DEFAULT_unsignedLONG64
#define SOAP_DEFAULT_unsignedShort
#define SOAP_DEFAULT_wstring
```

Instead of adding these to stdsoap2.h, you can also compile with option -DWITH_SOAPDEFS_H and include your definitions in file userdefs.h. The absence of a data value in a receiving SOAP message will result in the assignment of a default value to a primitive type upon describilization.

Default values can also be assigned to individual **struct** and **class** fields of primitive type. For example,

```
struct MyRecord
{
   char *name = "Unknown";
   int value = 9999;
   enum Status { active, passive } status = passive;
}
```

Default values are assigned to the fields on receiving a SOAP/XML message in which the data values are absent.

Because method requests and responses are essentially structs, default values can also be assigned to method parameters. The default parameter values do not control the parameterization of C/C++ function calls, i.e. all actual parameters must be present when calling a function. The default parameter values are used in case an inbound request or response message lacks the XML elements with parameter values. For example, a Web service can use default values to fill-in absent parameters in a SOAP/XML request:

```
int ns__login(char *uid = "anonymous", char *pwd = "guest", bool granted);
```

When the request message lacks uid and pwd parameters, e.g.:

```
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
  xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
  xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
  xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xmlns:xsd="http://www.w3.org/2001/XMLSchema"
  xmlns:ns="http://tempuri.org">
  <SOAP-ENV:Body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
  <ns:login>
  </soAP-ENV:Body>
</soAP-ENV:Envelope>
```

then the service uses the default values. In addition, the default values will show up in the SOAP/XML request and response message examples generated by the gSOAP compiler.

9 Using the gSOAP Stub and Skeleton Compiler

The gSOAP stub and skeleton compiler is invoked from the command line and optionally takes the name of a header file as an argument or, when the file name is absent, parses the standard input:

```
soapcpp2 [aheaderfile.h]
```

where aheaderfile.h is a standard C++ header file. The compiler acts as a preprocessor and produces C++ source files that can be used to build SOAP client and Web service applications in C++. The files generated by the compiler are:

File Name	Description
soapH.h	Main header file to be included by all client and service sources
soapC.cpp	Serializers and deserializers for the specified data structures
soapClient.cpp	Client stub routines and proxies for all remote methods
soapServer.cpp	Service skeleton routines
soapClientLib.cpp	Client stubs combined with local static (de)serializers
soapServerLib.cpp	Service skeletons combined with local static (de)serializers
soapStub.h	A modified header file produced from the compiler input header file
.xsd	An ns.xsd file is generated with an XML schema for each namespace prefix ns used
	by a data structure in the header file input to the compiler, see Section 8.2.8
.wsdl	A ns.wsdl file is generated with an WSDL description for each namespace prefix ns
	used by a remote method in the header file input to the compiler, see Section 8.2.8
.xml	Several SOAP/XML request and response files are generated. These are exam-
	ple message files are valid provided that sufficient schema namespace directives
	are added to the header file or the generated .nsmap namespace table for the
	client/service is not modified by hand
.nsmap	A ns.nsmap file is generated for each namespace prefix ns used by a remote method
	in the header file input to the compiler, see Section 8.2.8. The file contains a
	namespace mapping table that can be used in the client/service sources

Both client and service applications are developed from a header file that specifies the remote methods. If client and service applications are developed with the same header file, the applications are guaranteed to be compatible because the stub and skeleton routines use the same serializers and deserializers to encode and decode the parameters. Note that when client and service applications are developed together, an application developer does not need to know the details of the internal SOAP encoding used by the client and service.

The soapClientLib.cpp and soapServerLib.cpp can be used to build (dynamic) client and server libraries. The serialization routines are local (static) to avoid link symbol conflicts. You must create a separate library for SOAP Header and Fault handling, as described in Section 15.34.

The following files are part of the gSOAP package and are required to build client and service applications:

File Name	Description
stdsoap2.h	Header file of stdsoap2.cpp runtime library
stdsoap2.c	Runtime C library with XML parser and run-time support routines
stdsoap2.cpp	Runtime C++ library identical to stdsoap2.c

9.1 Compiler Options

The compiler supports the following options:

Option	Description
-1	Use SOAP 1.1 namespaces and encodings (default)
-2	Use SOAP 1.2 namespaces and encodings
-h	Print a brief usage message
-C	Save files using extension .c instead of .cpp and produce pure C
-W	Do not generate WSDL and schema files
-m	Generate code that requires array/binary classes to explicitly free malloced array
	(to be deprecated since soap_unlink should be used to keep specific data)
${\sf -I} < {\sf path} >$	Use <path> (and current dir) for #import</path>
-d $<$ path $>$	Save sources in directory specified by <path></path>
-p <name></name>	Save sources with file name prefix <name> instead of "soap"</name>
-n	When used with -p, enables multi-client and multi-server builds:
	Sets compiler option WITH_NONAMESPACES, see Section 9.11
	Saves the namespace mapping table with name <name>_namespaces instead of namespaces</name>
	Renames soap_serve() into <name>_serve() and soap_destroy() into <name>_destroy()</name></name>

For example

soapcpp2 -cd '../projects' -pmy file.h

Saves the sources:

- ../projects/myH.h
- ../projects/myC.c
- ../projects/myClient.c
- ../projects/myServer.c
- $../\mathsf{projects/myStub.h}$

MS Windows users can use the usual "/" for options, for example:

```
soapcpp2 /cd '..\projects' /pmy file.h
```

Compiler options c, i, n, I, w can be set in the gSOAP header file using the //gsoapopt directive. For example,

```
// Generate pure C and do not produce WSDL output: 
//gsoapopt cw 
int ns_myMethod(char*,char**); // takes a string and returns a string
```

9.2 SOAP 1.1 Versus SOAP 1.2

gSOAP supports SOAP 1.1 by default. SOAP 1.2 support is automatically turned on when the appropriate SOAP 1.2 namespace is used in the namespace mapping table:

```
\label{eq:struct_Namespace} \textbf{struct} \ Namespace namespaces[] = $ \{ \ \{"SOAP-ENV", "http://www.w3.org/2002/06/soap-envelope"\}, $ \{"SOAP-ENC", "http://www.w3.org/2002/06/soap-encoding"}, $ \{"xsi", "http://www.w3.org/2001/XMLSchema-instance", "http://www.w3.org/*/XMLSchema-instance"}, $ \{"xsd", "http://www.w3.org/2001/XMLSchema", "http://www.w3.org/*/XMLSchema"}, .... } $
```

gSOAP Web services and clients can automatically switch from SOAP 1.1 to SOAP 1.2 by providing the SOAP 1.2 namespace as a pattern in the third column of a namespace table:

This way, gSOAP Web services can respond to either SOAP 1.1 or SOAP 1.2 requests. gSOAP will automatically return SOAP 1.2 responses for SOAP 1.2 requests.

The gSOAP soapcpp2 compiler generates a .nsmap file with SOAP-ENV and SOAP-ENC namespace patterns similar to the above. Since clients issue a send first, they will always use SOAP 1.1 for requests when the namespace table is similar as shown above. Clients can accept SOAP 1.2 responses by inspecting the response message. To restrict gSOAP services and clients to SOAP 1.2 and to generate SOAP 1.2 service WSDLs, use soapcpp2 compiler option -2 to generate SOAP 1.2 conformant .nsmap and .wsdl files.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the __offset field of a dynamic array is meaningless.

Caution: SOAP 1.2 requires the use of SOAP_ENV__Code, SOAP_ENV__Reason, and SOAP_ENV__Detail fields in a SOAP_ENV__Fault fault struct, while SOAP 1.1 uses faultcode, faultstring, and detail fields. Use soap_receiver_fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2 fault at the server-side. Use soap_sender_fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side.

9.3 The soapdefs.h Header File

The soapdefs.h header file is included in stdsoap2.h when compiling with option -DWITH_SOAPDEFS_H:

```
g++ -DWITH_SOAPDEFS_H -c stdsoap2.cpp
```

The soapdefs.h file allows users to include definitions and add includes without requiring changes to stdsoap2.h. For example,

```
// Contents of soapdefs.h
#include <ostream>
#define SOAP_BUFLEN 20480 // use large send/recv buffer
```

The following header file can now refer to ostream:

```
extern class ostream; // ostream can't be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns__myClass
{ ...
    virtual void print(ostream &s) const; // need ostream here
    ...
};
```

See also Section 15.5.

9.4 How to Build Modules and Libraries with the gSOAP #module Directive

The #module directive is used to build modules. A library can be build from a module and linked with multiple Web services applications. The directive should appear at the top of the header file and has the following format:

```
#module "name"
```

where *name* is a unique name for the module. The name is case insensitive and MUST not exceed 4 characters in length. The rest of the content of the header file should include type declarations and optionally the declarations of remote methods and SOAP Headers/Faults. When the gSOAP compiler processes the header file module, it will generate the source codes for a library. The Web services application that uses the library should use a header file that imports the module with the #import directive.

For example:

```
/* Contents of module.h */
#module "test"
long;
char*;
struct ns__S
{ ... }
```

The module.h header file declares a long, char*, and a struct ns_X. The module name is "test", so the gSOAP compiler produces a testC.cpp file with the (de)serializers for these types. The testC.cpp library can be separately compiled and linked with an application that is built from a header file that imports "module.h" using #import "module.h". You should also compile testClient.cpp when you want to build a library that includes the remote methods that you defined in the module header file.

A module MUST be imported into another header file to use it and you cannot use a module alone to build a SOAP or XML application. That is, the top most header file in the import tree SHOULD NOT be a module.

When multiple modules are linked, the types that they declare MUST be declared in one module only to avoid name clashes and link errors. You cannot create two modules that share the same type declaration and link the modules. When necessary, you should consider creating a module hierarchy such that types are declared only once and by only one module when these modules must be linked.

9.5 How to use the gSOAP #import Directive

The #import directive is used to include gSOAP header files into other gSOAP header files for processing with the gSOAP compiler soapcpp2. The C #include directive cannot be used to include gSOAP header files. The #include directive is reserved to control the post-gSOAP compilation process, see 9.6.

The #import directive is used for two purposes: you can use it to include the contents of a header file into another header file and you can use it to import a module, see 9.4.

An example of the #import directive:

```
#import "mydefs.gsoap"
int ns__mymethod(xsd__string in, xsd__int *out);
```

where "mydefs.gsoap" is a gSOAP header file that defines xsd_string and xsd_int:

```
typedef char *xsd__string;
typedef int xsd__int;
```

9.6 How to Use #include and #define Directives

The #include and #define directives are normally ignored by the gSOAP compiler. The use of the directives is enabled with the -i option of the gSOAP compiler, see Section 9.1. However, the gSOAP compiler will not actually parse the contents of the header files provided by the #include directives in a header file. Instead, the #include and #define directives will be added to the generated soapH.h

header file **before** any other header file is included. Therefore, #include and #define directives can be used to control the C/C++ compilation process of the sources of an application.

The following example header file refers to ostream by including <ostream>:

```
#include <ostream>
#define WITH_COOKIES // use HTTP cookie support (you must compile stdsoap2.cpp with -
DWITH_COOKIES)
#define WITH_OPENSSL // enable HTTPS (SSL) support (you must compile stdsoap2.cpp with
-DWITH_OPENSSL)
#define SOAP_DEFAULT_float FLT_NAN // use NaN instead of 0.0
extern class ostream; // ostream can't be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns__myClass
{ ...
    virtual void print(ostream &s) const; // need ostream here
    ...
};
```

This example also uses #define directives for various settings.

Caution: Note that the use of #define in the header file does not automatically result in compiling stdsoap2.cpp with these directives. You MUST use the -DWITH_COOKIES and -DWITH_OPENSSL options when compiling stdsoap2.cpp before linking the object file with your codes. As an alternative, you can use #define WITH_SOAPDEFS_H and put the #define directives in the soapdefs.h file.

9.7 Compiling a gSOAP Client

After invoking the gSOAP stub and skeleton compiler on a header file description of a service, the client application can be compiled on a Linux machine as follows:

```
g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp
```

Or on a Unix machine:

```
g++ -o myclient myclient.cpp stdsoap2.cpp soapClient.cpp -lsocket -lxnet -lnsl
```

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libxnet.a, libraries are required.)

The myclient.cpp file must include soapH.h and must define a global namespace mapping table. A typical client program layout with namespace mapping table is shown below:

```
// Contents of file "myclient.cpp"
#include "soapH.h";
...
// A remote method invocation:
    soap_call_some_remote_method(...);
...
struct Namespace namespaces[] =
{    // {"ns-prefix", "ns-name"}
    {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"},
```

```
 \label{eq:complex} $$ \{"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"\}, $$ \{"xsi", "http://www.w3.org/1999/XMLSchema-instance"\}, $$ \{"xsd", "http://www.w3.org/1999/XMLSchema"\}, $$ \{"ns1", "urn:my-remote-method"\}, $$ \{NULL, NULL\} $$ \}; $$ ... $$
```

A mapping table is generated by the gSOAP compiler that can be used in the source, see Section 8.2.8.

9.8 Compiling a gSOAP Web Service

After invoking the gSOAP stub and skeleton compiler on a header file description of the service, the server application can be compiled on a Linux machine as follows:

```
g++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp
```

Or on a Unix machine:

```
g++ -o myserver myserver.cpp stdsoap2.cpp soapC.cpp soapServer.cpp -lsocket -lxnet -lnsl
```

(Depending on your system configuration, the libraries libsocket.a, libxnet.a, libxnet.a, libraries are required.)

The myserver.cpp file must include soapH.h and must define a global namespace mapping table. A typical service program layout with namespace mapping table is shown below:

```
// Contents of file "myserver.cpp"
#include "soapH.h";
int main()
{
    soap_serve(soap_new());
}
...
// Implementations of the remote methods as C++ functions
...
struct Namespace namespaces[] =
{    // {"ns-prefix", "ns-name"}
    {"SOAP-ENV", "http://schemas.xmlsoap.org/soap/envelope/"},
    {"SOAP-ENC", "http://schemas.xmlsoap.org/soap/encoding/"},
    {"xsi", "http://www.w3.org/1999/XMLSchema-instance"},
    {"xsd", "http://www.w3.org/1999/XMLSchema"},
    {"ns1", "urn:my-remote-method"},
    {NULL, NULL}
};
```

When the gSOAP service is compiled and installed as a CGI application, the soap_serve function acts as a service dispatcher. It listens to standard input and invokes the method via a skeleton routine to serve a SOAP client request. After the request is served, the response is encoded in SOAP and

send to standard output. The method must be implemented in the server application and the type signature of the method must be identical to the remote method specified in the header file. That is, the function prototype in the header file must be a valid prototype of the method implemented as a C/C++ function.

9.9 Using gSOAP for Creating Web Services and Clients in Pure C

The gSOAP compiler can be used to create pure C Web services and clients. The gSOAP stub and skeleton compiler soapcpp2 generates .cpp files by default. The compiler generates .c files with the -c option. However, these files only use C syntax and data types **if** the header file input to soapcpp2 uses C syntax and data types. For example:

```
soapcpp2 -c quote.h
gcc -o quote quote.c stdsoap2.c soapC.c soapClient.c
```

Warnings will be issued by the compiler when C++ class declarations occur in the header file.

9.10 Limitations of gSOAP

gSOAP is fully SOAP 1.1 (and mostly SOAP 1.2) compliant and supports all SOAP RPC and most SOAP LIT features.

From the perspective of the C/C++ language, a few C++ language features are not supported by gSOAP and these features cannot be used in the specification of SOAP remote methods.

There are certain limitations for the following C++ language constructs:

- STL and STL templates The gSOAP compiler does not yet fully support STL. It supports STL strings std::string and std::wstring (see Section 11.2.6) and the STL containers std::deque, std::list, std::vector, and std::set, (see Section 11.9.8).
- **Templates** The gSOAP compiler is a preprocessor that cannot determine the template instantations used by the main program, nor can it generate templated code. You can however implement containers similar to the STL containers.
- Multiple inheritance Single class inheritance is supported. Multiple inheritance cannot be supported due to limitations of the SOAP protocol.

Abstract methods A class must be instantiatable to allow decoding of instances of the class.

- Directives Directives and pragmas such as #include and #define are interpreted by the gSOAP compiler. However, the interpretation is different compared to the usual handling of directives, see Section 9.6. If necessary, a traditional C++ preprocessor can be used for the interpretation of directives. For example, Unix and Linux users can use "cpp -B" to expand the header file, e.g. cpp -B myfile.h | soapcpp2. Use the gSOAP #import directive to import gSOAP header files, see 9.5.
- C and C++ programming statements All class methods of a class should be declared within the class declaration in the header file, but the methods should not be implemented in code. All class method implementations must be defined within another C++ source file and linked to the application.

In addition, the following data types cannot be used in the header file (they can, however be used as a class method return type and as class method parameter types of a class declared in the header file):

union types Because the run-time value of a union data type cannot be determined by the compiler, the data type cannot be encoded. An alternative is to use a struct with a pointer type for each field. Because NULL pointers are not encoded, the resulting encoding will appear as a union type if only one pointer field is valid (i.e. non-NULL) at the time that the data type is encoded.

void and void* types The void data type cannot be encoded. The void* data type is typically used to point to some object or to some array of some type of objects at run-time. The compiler cannot determine the type of data pointed to and the size of the array pointed to. However, a struct or class with a void* field can be augmented to support the (de)serialization of the void* as described in Section 11.7.

Pointers to sequences of elements in memory Any pointer, except for C strings which are pointers to a sequence of characters, are treated by the compiler as if the pointer points to only one element in memory at run-time. Consequently, the encoding and decoding routines will ignore any subsequent elements that follow the first in memory. For the same reason, arrays of undetermined length, e.g. float a[] cannot be used. gSOAP supports dynamic arrays using a special type convention, see Section 11.9.

Uninitialized pointers Obviously, all pointers that are part of a data structure must be valid or NULL to enable serialization of the data structure at run time.

There are a number of programming solutions that can be adopted to circumvent these limitations. Instead of using **void***, a program can in some cases be modified to use a pointer to a known type. If the pointer is intended to point to different types of objects, a generic base class can be declared and the pointer is declared to point to the base class. All the other types are declared to be derived classes of this base class. For pointers that point to a sequence of elements in memory dynamic arrays should be used instead, see 11.9.

9.11 Compile Time Flags

The following macros (#defines) can be used to enable certain optional features:

Macro	Description
WITH_SOAPDEFS_H	includes the soapdefs.h file for custom settings, see Section 9.3
WITH_COOKIES	enables HTTP cookies, see Sections 15.28 15.29
WITH_OPENSSL	enables OpenSSL, see Sections 15.22 15.21
WITH_IPV6	enables IPv6 support
WITH_FASTCGI	enables FastCGI, see Sections 15.31
WITH_GZIP	enables gzip and deflate compression, see Section 15.27
WITH_ZLIB	enables deflate compression only, see Section 15.27
WITH_FAST	(experimental) may yield faster executables
WITH_LEAN	creates a small-footprint executable, see Section 15.32
WITH_LEANER	creates an even smaller footprint executable, see Section 15.32
WITH_NONAMESPACES	omit initialization of soap struct with global namespaces table
	and you MUST explicitly initialize soap.namespaces to point to a table
	see also Section 10.4
WITH_NOGLOBAL	omit SOAP Header and Fault serialization code
WITH_CDATA	retain the parsed CDATA sections in literal XML strings (no conversion)
WITH_CASEINSENSITIVETAGS	enable case insensitive XML parsing

Caution: it is important that the macros MUST be consistently defined to compile the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due to a mismatches in the declaration and access of the gSOAP environment.

9.12 Run Time Flags

gSOAP provides flags to control the input and output mode settings at runtime. These flags are divided into four categories: transport (IO), content encoding (ENC), XML marshalling (XML), and C/C++ data mapping (C).

Although gSOAP is fully SOAP 1.1 compliant, some SOAP implementations may have trouble accepting multi-reference data and/or require explicit nil data so these flags can be used to put gSOAP in "safe mode". In addition, the embedding (or inlining) of multi-reference data is adopted in the SOAP 1.2 specification, which gSOAP automatically supports when handling with SOAP 1.2 messages. The flags are:

Flag	Description
SOAP_IO_FLUSH	Disable buffering and flush output (default for all file-based output)
SOAP_IO_BUFFER	Enable buffering (default for all socket-oriented connections)
SOAP_IO_STORE	Store entire message to calculate HTTP content length
SOAP_IO_CHUNK	Use HTTP chunking
SOAP_IO_LENGTH	Require apriori calculation of content length (this is automatic)
SOAP_IO_KEEPALIVE	Attempt to keep socket connections alive (open)
SOAP_ENC_XML	Use plain XML encoding without HTTP headers
SOAP_ENC_DIME	Use DIME encoding (automatic when DIME attachments are used)
SOAP_ENC_SSL	Encrypt encoding with SSL (automatic with "https:" endpoints)
SOAP_ENC_ZLIB	Compress encoding with Zlib (deflate or gzip format)
SOAP_XML_CANONICAL	Produce canonical XML output
SOAP_XML_STRICT	XML strict validation (fault on unknown XML elements rather than omitting them)
SOAP_XML_TREE	Serialize data as XML trees (no multi-ref, duplicate data when necessary)
SOAP_XML_GRAPH	Serialize data as an XML graph with inline multi-ref (SOAP 1.2 default)
SOAP_XML_NIL	Serialize NULL data as XML nil elements (omit by default)
SOAP_C_NOIOB	Do not fault with SOAP_IOB
SOAP_C_UTFSTRING	(De)serialize 8-bit strings "as is" (strings MUST have UTF-8 encoded content)
SOAP_C_MBSTRING	Activate multibyte character support (depends on locale)

The flags can be selectively turned on/off at any time, for example when multiple Web services are accessed by a client that require special treatment.

All flags are orthogonal, except SOAP_IO_FLUSH, SOAP_IO_BUFFER, SOAP_IO_STORE, and SOAP_IO_CHUNK which are enumerations and only one of these I/O flags can be used. Also the XML serialization flags SOAP_XML_TREE and SOAP_XML_GRAPH should not be mixed.

The flags control the inbound and outbound message transport, encoding, and (de)serialization. The following functions are used to set and reset the flags for input and output modes:

Function	Description
soap_init2(struct soap *soap, int imode, int omode)	Initialize the runtime and set flags
<pre>soap_imode(struct soap *soap, int imode)</pre>	Set all input mode flags
<pre>soap_omode(struct soap *soap, int omode)</pre>	Set all output mode flags
<pre>soap_set_imode(struct soap *soap, int imode)</pre>	Enable input mode flags
<pre>soap_set_omode(struct soap *soap, int omode)</pre>	Enable output mode flags
<pre>soap_clr_imode(struct soap *soap, int omode)</pre>	Disable input mode flags
soap_clr_omode(struct soap *soap, int omode)	Disable output mode flags

The default setting is SOAP_IO_DEFAULT for both input and output modes.

For example

sends a compressed client request with keep-alive enabled and all data serialized as canonical XML trees.

In many cases, setting the input mode will have no effect, especially with HTTP transport because gSOAP will determine the optimal input buffering and the encoding used for an inbound

message. The flags that do have an effect on handling inbound messages are SOAP_IO_KEEPALIVE, SOAP_ENC_SSL (but automatic when "https:" endpoints are used or soap_ssl_accept), SOAP_XML_NIL will fault on receiving nil elements for non-nillable data, SOAP_C_NOIOB, SOAP_C_UTFSTRING, and SOAP_C_MBSTRING.

Caution: The SOAP_XML_TREE serialization flag can be used to improve interoperability with SOAP implementations that are not fully SOAP 1.1 compliant. However, a tree serialization will duplicate data when necessary and will crash the serializer for cyclic data structures.

9.13 Memory Management

Understanding gSOAP's run-time memory management is important to optimize client and service applications by eliminating memory leaks and/or dangling references.

There are two forms of dynamic (heap) allocations made by gSOAP's runtime for serialization and deserialization of data. Temporary data is created by the runtime such as hash tables to keep pointer reference information for serialization and hash tables to keep XML id/href information for multi-reference object deserialization. Deserialized data is created upon receiving SOAP messages. This data is stored on the heap and requires several calls to the malloc library function to allocate space for the data and **new** to create class instances. All such allocations are tracked by gSOAP's runtime by linked lists for later deallocation. The linked list for malloc allocations uses some extra space in each malloced block to form a chain of pointers through the malloced blocks. A separate malloced linked list is used to keep track of class instance allocations.

gSOAP does not enforce a deallocation policy and the user can adopt a deallocation policy that works best for a particular application. As a consequence, describing data is never deallocated by the gSOAP runtime unless the user explicitly forces deallocation by calling functions to deallocate data collectively or individually.

The deallocation functions are:

Function Call	Description
soap_end(struct soap *soap)	Remove temporary data and deserialized data except
	class instances
<pre>soap_free(struct soap *soap)</pre>	Remove temporary data only
<pre>soap_destroy(struct soap *soap)</pre>	Remove all dynamically allocated class instances.
	Need to be called before soap_end()
<pre>soap_dealloc(struct soap *soap, void *p)</pre>	Remove malloced data at p . When $p==NULL$: remove all
	dynamically allocated (deserialized) data except class instances
<pre>soap_delete(struct soap *soap, void *p)</pre>	Remove class instance at p . When $p==NULL$: remove all
	dynamically allocated (deserialized) class instances
	(this is identical to calling soap_destroy(struct soap *soap))
<pre>soap_unlink(struct soap *soap, void *p)</pre>	Unlink data/object at p from gSOAP's deallocation chain
	so gSOAP won't deallocate it
<pre>soap_done(struct soap *soap)</pre>	Reset: close master/slave sockets and remove callbacks
	(see Section 15.9

Temporary data (i.e. the hash tables) are automatically removed with calls to the soap_free function which is made within soap_end and soap_done or when the next call to a stub or skeleton routine is made to send a message or receive a message. Deallocation of non-class based data is straightforward: soap_end removes all dynamically allocated deserialized data (data allocated with soap_malloc. That is, when the client/service application does not use any class instances that are (de)marshalled,

but uses structs, arrays, etc., then calling the soap_end function is safe to remove all deserialized data. The function can be called after processing the deserialized data of a remote method call or after a number of remote method calls have been made. The function is also typically called after soap_serve, when the service finished sending the response to a client and the deserialized client request data can be removed.

Individual data objects can be unlinked from the deallocation chain if necessary, to prevent deal-location by the collective soap_end or soap_destroy functions.

9.13.1 Memory Management Policies

There are three situations to consider for memory deallocation policies for class instances:

- the program code deletes the class instances and the class destructors in turn SHOULD delete
 and free any dynamically allocated data (deep deallocation) without calling the soap_end and
 soap_destroy functions,
- 2. or the class destructors SHOULD NOT deallocate any data and the soap_end and soap_destroy functions can be called to remove the data.
- 3. or the class destructors SHOULD mark their own deallocation and mark the deallocation of any other data deallocated by it's destructors by calling the soap_unlink function. This allows soap_destroy and soap_end to remove the remaining instances and data without causing duplicate deallocations.

With the -m option of soapcpp2 enabled (to be deprecated), there is one exception which requires explicit deallocation of malloced data in the destructors of classes for array binary types:

• A dynamic array class with non-class elements SHOULD delete the contents of the array it points to as part of its destructor's operations (this includes classes for hexBinary and base64Binary schema types.

It is advised to use pointers to class instances that are used within other structs and classes to avoid the creation of temporary class instances. The problem with temporary class instances is that the destructor of the temporary may affect data used by other instances through the sharing of data parts accessed with pointers. Temporaries and even whole copies of class instances can be created when deserializing SOAP multi-referenced objects. A dynamic array of class instances is similar: temporaries may be created to fill the array upon deserialization. To avoid problems, use dynamic arrays of pointers to class instances. This also enables the exchange of polymorphic arrays when the elements are instances of classes in an inheritance hierarchy. In addition, allocate data and class instances with soap_malloc and soap_new_X functions (more details below).

To summarize, it is advised to pass class data types by pointer to a remote method. For example:

```
class X { ... };
ns__remoteMethod(X *in, ...);
```

Response elements that are class data types can be passed by reference, as in:

```
class X \{ ... \};
class ns\_remoteMethodResponse \{ ... \};
ns\_remoteMethod(X *in, ns\_remoteMethodResponse &out);
```

But dynamic arrays declared as class data types should use a pointer to a valid object that will be overwritten when the function is called, as in:

```
\label{typedef} \begin{tabular}{ll} typedef int $xsd\_int;$\\ class $X \{ ... \};$\\ class $ArrayOfint \{ xsd\_int *\_ptr; int \_\_size; \};$\\ ns\_remoteMethod(X *in, ArrayOfint *out);$\\ \end{tabular}
```

Or a reference to a valid or NULL pointer, as in:

```
typedef int xsd__int;
class X { ... };
class ArrayOfint { xsd__int *__ptr; int __size; };
ns__remoteMethod(X *in, ArrayOfint *&out);
```

The gSOAP memory allocation functions can be used in client and/or service code to allocate temporary data that will be automatically deallocated. These functions are:

Function Call	Description
<pre>void *soap_malloc(struct soap *soap, size_t n)</pre>	return pointer to n bytes
<pre>Class *soap_new_Class(struct soap *soap, int n)</pre>	instantiate n <u>Class</u> objects

The soap_new_X functions are generated by the gSOAP compiler for every class X in the header file. Parameter n MUST be -1 to instantiate a single object, or larger or equal to 0 to instantiate an array of n objects.

Space allocated with soap_malloc will be released with the soap_end and soap_dealloc functions. Objects instantiated with soap_new_X(struct soap*) are removed altogether with soap_destroy(struct soap*). Individual objects instantiated with soap_new_X are removed with soap_delete_X(struct soap*, X*). For example, the following service uses temporary data in the remote method implementation:

```
int main()
{ ...
    struct soap soap;
    soap_init(&soap);
    soap_serve(&soap);
    soap_end(&soap);
    ...
}
```

An example remote method that allocates a temporary string is:

```
int ns__itoa(struct soap *soap, int i, char **a)
{
    *a = (char*)soap_malloc(soap, 11);
    sprintf(*a, "%d", i);
    return SOAP_OK;
}
```

This temporary allocation can also be used to allocate strings for the SOAP Fault data structure. For example:

```
int ns__mymethod(...)
{ ...
    if (exception)
    {
        char *msg = (char*)soap_malloc(soap, 1024); // allocate temporary space for detailed message
        sprintf(msg, "...", ...); // produce the detailed message
        return soap_receiver_fault(soap, "An exception occurred", msg); // return the server-side fault
    }
    ...
}
```

Use soap_receiver_fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2 fault at the server-side. Use soap_sender_fault(struct soap *soap, const char *faultstring, const char *detail) to set a SOAP 1.1/1.2 unrecoverable Bad Request fault at the server-side.

gSOAP provides a function to duplicate a string into gSOAP's memory space:

```
char *soap_strdup(struct soap *soap, const char *s)
```

The function allocates space for s with soap_malloc, copies the string, and returns a pointer to the duplicated string. When s is NULL, the function does not allocate and copy the string and returns NULL.

9.13.2 Intra-Class Memory Management

When a class declaration has a **struct** soap * field, this field will be set to point to the current gSOAP run-time environment by gSOAP's describilizers and by the soap_new_Class functions. This simplifies memory management for class instances. The **struct** soap* pointer is implicitly set by the gSOAP describilizer for the class or explicitly by calling the soap_new_X function for class X. For example:

```
class Sample
{ public:
    struct soap *soap; // reference to gSOAP's run-time
    ...
    Sample();
    ~Sample();
};
```

The constructor and destructor for class Sample are:

```
Sample::Sample()
{ this->soap = NULL;
}
Sample::~Sample()
{ soap_unlink(this->soap, this);
}
```

The soap_unlink() call removes the object from gSOAP's deallocation chain. In that way, soap_destroy can be safely called to remove all class instances. The following code illustrates the explicit creation of a Sample object and cleanup:

```
struct soap *soap = soap_new(); // new gSOAP runtime
Sample *obj = soap_new_Sample(soap, -1); // new Sample object with obj->soap set to runtime
delete obj; // also calls soap_unlink to remove obj from the deallocation chain
soap_destroy(soap); // deallocate all (other) class instances
soap_end(soap); // clean up
```

Here is another example:

```
class ns__myClass
  struct soap *soap; // set by soap_new_ns_ _myClass()
  char *name:
  void setName(const char *s);
};
```

Calls to soap_new_ns__myClass(soap, n) will set the soap field in the class instance to the current gSOAP environment. Because the descrializers invoke the soap_new functions, the soap field of the ns_myClass instances are set as well. This mechanism is convenient when Web Service methods need to return objects that are instantiated in the methods. For example

```
int ns__myMethod(struct soap *soap, ...)
  ns__myClass *p = soap_new_ns__myClass(soap, -1);
  p->setName("SOAP");
  return SOAP_OK;
void ns__myClass::ns__setName(const char *s)
  if (soap)
    name = (char^*)soap\_malloc(soap, strlen(s)+1);
    name = (char^*)malloc(strlen(s)+1);
  strcpy(name, s);
ns_ _myClass::ns_ _myClass()
  soap = NULL;
  name = NULL;
ns__myClass::~ns__myClass()
  if (!soap && name) free(name);
  soap_unlink(soap, this);
```

Calling soap_destroy right after soap_serve in the Web Service will destroy all dynamically allocated class instances.

9.14 Debugging

To activate message logging for debugging, un-comment the #define DEBUG directive in stdsoap2.h. Compile the client and/or server applications as described above (or simply use g++-DDEBUG ... to compile with debugging activated). When the client and server applications run, they will log their activity in three separate files:

File	Description
SENT.log	The SOAP content transmitted by the application
RECV.log	The SOAP content received by the application
TEST.log	A log containing various activities performed by the application

Caution: The client and server applications may run slow due to the logging activity.

Caution: When installing a CGI application on the Web with debugging activated, the log files may sometimes not be created due to file access permission restrictions imposed on CGI applications. To get around this, create empty log files with universal write permissions. Be careful about the security implication of this.

You can test a service CGI application without deploying it on the Web. To do this, create a client application for the service and activate message logging by this client. Remove any old SENT.log file and run the client (which connects to the Web service or to another dummy, but valid address) and copy the SENT.log file to another file, e.g. SENT.tst. Then redirect the SENT.tst file to the service CGI application. For example,

```
myservice.cgi < SENT.tst
```

This should display the service response on the terminal.

The file names of the log files and the logging activity can be controlled at the application level. This allows the creation of separate log files by separate services, clients, and threads. For example, the following service logs all SOAP messages (but no debug messages) in separate directories:

```
struct soap soap;
soap_init(&soap);
...
soap_set_recv_logfile(&soap, "logs/recv/service12.log"); // append all messages received in /logs/recv/service12.log
soap_set_sent_logfile(&soap, "logs/sent/service12.log"); // append all messages sent in /logs/sent/service12.log
soap_set_test_logfile(&soap, NULL); // no file name: do not save debug messages
...
soap_serve(&soap);
...
```

Likewise, messages can be logged for individual client-side remote method calls.

9.15 Libraries

• The socket library is essential and requires the inclusion of the appropriate libraries with the compile command for Sun Solaris systems:

```
g++ -o myclient myclient.cpp stdsoap2.cpp soapClient.cpp -lsocket -lxnet -lnsl
```

These library loading options are not required with Linux.

• The gSOAP runtime uses the math library for the NaN, INF, and -INF floating point representations. The library is not strictly necessary and the <math.h> header file import can be commented out from the stdsoap2.h header file. The application can be linked without the -Im math library e.g. under Sun Solaris:

```
g++ -o myclient myclient.cpp stdsoap2.cpp soapC.cpp soapClient.cpp -lsocket -lxnet -lnsl
```

10 The gSOAP Remote Method Specification Format

A SOAP remote method is specified as a C/C++ function prototype in a header file. The function is REQUIRED to return **int**, which is used to represent a SOAP error code, see Section 10.2. Multiple remote methods MAY be declared together in one header file.

The general form of a SOAP remote method specification is:

```
[int] [namespace_prefix_ _]method_name([inparam1, inparam2, ...,] outparam);
```

where

namespace_prefix_ is the optional namespace prefix of the method (see identifier translation rules 10.3)

method_name it the remote method name (see identifier translation rules 10.3)

inparam is the declaration of an input parameter of the remote method

outparam is the declaration of the output parameter of the remote method

This simple form can only pass a single, non-**struct** and non-**class** type output parameter. See 10.1 for passing multiple output parameters. The name of the declared function namespace_prefix_method_name must be unique and cannot match the name of a **struct**, **class**, or **enum** declared in the same header file.

The method request is encoded in SOAP as an XML element and the namespace prefix, method name, and input parameters are encoded using the format:

```
<[namespace-prefix:]method_name xsi:type="[namespace-prefix:]method_name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method_name>
```

where the inparam-name accessors are the element-name representations of the inparam parameter name declarations, see Section 10.3. (The optional parts are shown enclosed in [].)

The XML response by the Web service is of the form:

```
<[namespace-prefix:]method-nameResponse xsi:type="[namespace-prefix:]method-nameResponse>
<outparam-name xsi:type="...">...</outparam-name>
</[namespace-prefix:]method-nameResponse>
```

where the outparam-name accessor is the element-name representation of the outparam parameter name declaration, see Section 10.3. By convention, the response element name is the method name ending in Response. See 10.1 on how to change the declaration if the service response element name is different.

The gSOAP stub and skeleton compiler generates a stub routine for the remote method. This stub is of the form:

```
int soap_call_[namespace_prefix__]method_name(struct soap *soap, char *URL, char *action, [inparam1, inparam2, ...,] outparam);
```

This proxy can be called by a client application to perform the remote method call.

The gSOAP stub and skeleton compiler generates a skeleton routine for the remote method. The skeleton function is:

```
int soap_serve_[namespace_prefix__]method_name(struct soap *soap);
```

The skeleton routine, when called by a service application, will attempt to serve a request on the standard input. If no request is present or if the request does not match the method name, SOAP_NO_METHOD is returned. The skeleton routines are automatically called by the generated soap_serve routine that handles all requests.

10.1 Remote Method Parameter Passing

The input parameters of a remote method MUST be passed by value. Input parameters cannot be passed by reference with the & reference operator, but an input parameter value MAY be passed by a pointer to the data. Of course, passing a pointer to the data is preferred when the size of the data of the parameter is large. Also, to pass instances of (derived) classes, pointers to the instance need to be used to avoid passing the instance by value which requires a temporary and prohibits passing derived class instances. When two input parameter values are identical, passing them using a pointer has the advantage that the value will be encoded only once as multi-reference (hence, the parameters are aliases). When input parameters are passed using a pointer, the data pointed to will not be modified by the remote method and returned to the caller.

The output parameter MUST be passed by reference using & or by using a pointer. Arrays are passed by reference by default and do not require the use of the reference operator &.

The input and output parameter types have certain limitations, see Section 9.10

If the output parameter is a **struct** or **class** type, it is considered a SOAP remote method response element instead of a simple output parameter value. That is, the name of the **struct** or **class** is the name of the response element and the **struct** or **class** fields are the output parameters of the remote method, see also 8.1.7. Hence, if the output parameter has to be a **struct** or **class**, a response **struct** or **class** MUST be declared as well. In addition, if a remote method returns multiple output parameters, a response **struct** or **class** MUST be declared. By convention, the response element is the remote method name ending with "Response".

The general form of a response element declaration is:

```
struct [namespace_prefix_ _]response_element_name
{
```

```
outparam1;
outparam2;
...
};
```

where

namespace_prefix_ is the optional namespace prefix of the response element (see identifier translation rules 10.3)

response_element_name it the name of the response element (see identifier translation rules 10.3) outparam is the declaration of an output parameter of the remote method

The general form of a remote method specification with a response element declaration for (multiple) output parameters is:

```
[int] [namespace_prefix__]method_name([inparam1, inparam2, ...,] struct [namespace_prefix__]response_element_name {outparam1[, outparam2, ...]} &anyparam);
```

The choice of name for anyparam has no effect on the SOAP encoding and decoding and is only used as a place holder for the response.

The method request is encoded in SOAP as an independent element and the namespace prefix, method name, and input parameters are encoded using the format:

```
<[namespace-prefix:]method-name xsi:type="[namespace-prefix:]method-name>
<inparam-name1 xsi:type="...">...</inparam-name1>
<inparam-name2 xsi:type="...">...</inparam-name2>
...
</[namespace-prefix:]method-name>
```

where the inparam-name accessors are the element-name representations of the inparam parameter name declarations, see Section 10.3. (The optional parts resulting from the specification are shown enclosed in [].)

The method response is expected to be of the form:

```
<[namespace-prefix:]response-element-name xsi:type="[namespace-prefix:]response-element-name>
<outparam-name1 xsi:type="...">...</outparam-name1>
<outparam-name2 xsi:type="...">...</outparam-name2>
...
</[namespace-prefix:]response-element-name>
```

where the outparam-name accessors are the element-name representations of the outparam parameter name declarations, see Section 10.3. (The optional parts resulting from the specification are shown enclosed in [].)

The input and/or output parameters can be made anonymous, which allows the descrialization of requests/responses with different parameter names as is endorsed by the SOAP 1.1 specification, see Section 8.1.13.

10.2 Error Codes

The error codes returned by the stub and skeleton routines are listed below.

#	Code	Description
0	SOAP_OK	No error
1	SOAP_CLI_FAULT*	The service returned a client fault (SOAP 1.2 Sender fault)
2	SOAP_SVR_FAULT*	The service returned a server fault (SOAP 1.2 Receiver fault)
3	SOAP_TAG_MISMATCH	An XML element didn't correspond to anything expected
4	SOAP_TYPE	An XML schema type mismatch
5	SOAP_SYNTAX_ERROR	An XML syntax error occurred on the input
6	SOAP_NO_TAG	Begin of an element expected, but not found
7	SOAP_IOB	Array index out of bounds
8	SOAP_MUSTUNDERSTAND*	An element needs to be ignored that need to be understood
9	SOAP_NAMESPACE	Namespace name mismatch (validation error)
10	SOAP_OBJ_MISMATCH	Mismatch in the size and/or shape of an object
11	SOAP_FATAL_ERROR	Internal error
12	SOAP_FAULT	An exception raised by the service
13	SOAP_NO_METHOD	Skeleton error: the skeleton cannot serve the method
14	SOAP_GET_METHOD	Unsupported HTTP GET
15	SOAP_EOM	Out of memory
16	SOAP_NULL	An element was null, while it is not supposed to be null
17	SOAP_MULTI_ID	Multiple occurrences of the same element ID on the input
18	SOAP_MISSING_ID	Element ID missing for an HREF on the input
19	SOAP_HREF	Reference to object is incompatible with the object refered to
20	SOAP_TCP_ERROR	A TCP connection error occurred
21	SOAP_HTTP_ERROR	An HTTP error occured
22	SOAP_SSL_ERROR	An SSL error occured
23	SOAP_ZLIB_ERROR	A Zlib error occured
24	SOAP_DIME_ERROR	DIME parsing error
25	SOAP_EOD	End of DIME error
26	SOAP_VERSIONMISMATCH*	SOAP version mismatch or no SOAP message
27	SOAP_DIME_MISMATCH	DIME version mismatch
28	SOAP_PLUGIN_ERROR	Failed to register plugin
29	SOAP_DATAENCODINGUNKNOWN	SOAP 1.2 DataEncodingUnknown fault
-1	SOAP_EOF	Unexpected end of file, no input, or timeout while receiving data

The error codes that are returned by a stub routine (proxy) upon receiving a SOAP Fault from the server are marked (*). The remaining error codes are generated by the proxy itself as a result of problems with a SOAP payload. The error code is SOAP_OK when the remote method call was successful (the SOAP_OK predefined constant is guaranteed to be 0). The error code is also stored in soap_error, where soap is a variable that contains the current runtime environment. The function soap_print_fault(struct soap *soap, FILE *fd) can be called to display an error message on fd where current value of the soap_error variable is used by the function to display the error. The function soap_print_fault_location(struct soap *soap, FILE *fd) prints the location of the error if the error is a result from parsing XML.

A remote method implemented in a SOAP service MUST return an error code as the function's return value. SOAP_OK denotes success and SOAP_FAULT denotes an exception. The exception details can be assigned with the soap_receiver_fault(struct soap *soap, const char *faultstring, const char *detail) which sets the strings soap.fault->faultstring and soap.fault->detail for SOAP 1.1, and soap.fault->SOAP_ENV__Reason and soap.fault->SOAP_ENV__Detail for SOAP 1.2, where soap is a vari-

able that contains the current runtime environment, see Section 12. A receiver error indicates that the service can't handle the request, but can possibly recover from the error. To return an unrecoverable error, use soap_receiver_fault(struct soap *soap, const char *faultstring, const char *detail).

To return a HTTP error code a service method can simply return the HTTP error code number. For example, **return** 404; returns a "404 Not Found" HTTP error back to the client. The soap.error is set to the HTTP error code at the client side. The HTTP 1.1 error codes are:

#	Error
201	Created
202	Accepted
203	Non-Authoritative Information
204	No Content
205	Reset Content
206	Partial Content
300	Multiple Choices
301	Moved Permanently
302	Found
303	See Other
304	Not Modified
305	Use Proxy
307	Temporary Redirect
400	Bad Request
401	Unauthorized
402	Payment Required
403	Forbidden
404	Not Found
405	Method Not Allowed
406	Not Acceptable
407	Proxy Authentication Required
408	Request Time-out
409	Conflict
410	Gone
411	Length Required
412	Precondition Failed
413	Request Entity Too Large
414	Request-URI Too Large
415	Unsupported Media Type
416	Requested range not satisfiable
$\frac{417}{500}$	Expectation Failed Internal Server Error
500	Not Implemented
$501 \\ 502$	Bad Gateway
502	Service Unavailable
503	Gateway Time-out
504	HTTP Version not supported
000	111 11 version not supported

The error codes are given for informational purposes only. The HTTP protocol requires the proper actions after an error is issued. gSOAP's HTTP 1.0/1.1 handling is automatic.

10.3 C/C++ Identifier Name to XML Name Translations

One of the "secrets" behind the power and flexibility of gSOAP's encoding and decoding of remote method names, class names, type identifiers, and struct or class fields is the ability to specify namespace prefixes with these names that are used to denote their encoding style. More specifically, a C/C++ identifier name of the form

```
[namespace_prefix_]element_name
will be encoded in XML as
<[namespace-prefix:]element-name ...>
```

The underscore pair (__) separates the namespace prefix from the element name. Each namespace prefix has a namespace URI specified by a namespace mapping table 10.4, see also Section 8.1.2. The namespace URI is a unique identification that can be associated with the remote methods and data types. The namespace URI disambiguates potentially identical remote method names and data type names used by disparate organizations.

XML element names are NCNames (restricted strings) that MAY contain **hyphens**, **dots**, and **underscores**. The special characters in the XML element names of remote methods, structs, classes, typedefs, and fields can be controlled using the following conventions: A **single underscore** in a namespace prefix or identifier name is replaced by a hyphen (-) in the XML element name. For example, the identifier name SOAP_ENC__ur_type is represented in XML as SOAP_ENC:ur_type. The sequence _DOT is replaced by a dot (.), and the sequence _USCORE is replaced by an underscore (_) in the corresponding XML element name. For example:

```
class n_s__biz_DOTcom
{
    char *n_s__biz_USCOREname;
};

is encoded in XML as:
    <n-s:biz.com xsi:type="n-s:biz.com">
         <n-s:biz_name xsi:type="string">Bizybiz</n-s:biz_name>
    </n-s:biz.com>
```

Trailing underscores of an identifier name are not translated into the XML representation. This is useful when an identifier name clashes with a C++ keyword. For example, return is often used as an accessor name in a SOAP response element. The return element can be specified as returning the C++ source code. Note that XML should be treated as case sensitive, so the use of e.g. Return may not always work to avoid a name clash with the return keyword. The use of trailing underscores also allows for defining structs and classes with essentially the same XML schema type name, but that have to be distinguished as seperate C/C++ types.

For decoding, the underscores in identifier names act as wildcards. An XML element is parsed and matches the name of an identifier if the name is identical to the element name (case insensitive) and the underscores in the identifier name are allowed to match any character in the element name. For example, the identifier name I_want__soap_fun_the_bea___DOTcom matches the element name I_want:SOAP4fun@the_beach.com.

10.4 Namespace Mapping Table

A namespace mapping table MUST be defined by clients and service applications. The mapping table is used by the serializers and describilizers of the stub and skeleton routines to produce a valid SOAP payload and to validate an incoming SOAP payload. A typical mapping table is shown below:

Each namespace prefix used by a identifier name in the header file specification (see Section 10.3) MUST have a binding to a namespace URI in the mapping table. The end of the namespace mapping table MUST be indicated by the NULL pair. The namespace URI matching is case insensitive. A namespace prefix is distinguished by the occurrence of a pair of underscores (__) in an identifier.

An optional namespace pattern MAY be provided with each namespace mapping table entry. The patterns provide an alternative namespace matching for the validation of decoded SOAP messages. In this pattern, dashes (-) are single-character wildcards and asterisks (*) are multi-character wildcards. For example, to decode different versions of XML Schema type with different authoring dates, four dashes can be used in place of the specific dates in the namespace mapping table pattern:

Or alternatively, asterisks can be used as wildcards for multiple characters:

```
\label{eq:struct} \textbf{struct} \ \ \text{Namespace namespaces} [] = \left\{ \begin{array}{l} // \left\{ \text{"ns-prefix", "ns-name", "ns-name validation pattern"} \right\} \\ ... \\ \left\{ \text{"xsi", "http://www.w3.org/1999/XMLSchema-instance", "http://www.w3.org/*/XMLSchema-instance"} \right\}, \\ \left\{ \text{"xsd", "http://www.w3.org/1999/XMLSchema", "http://www.w3.org/*/XMLSchema"} \right\}, \\ ... \\ \end{array} \right.
```

A namespace mapping table is automatically generated together with a WSDL file for each namespace prefix that is used for a remote method in the header file. This namespace mapping table has entries for all namespace prefixes. The namespace URIs need to be filled in. These appear as

http://tempuri.org in the table. See Section 15.2 on how to specify the namespace URIs in the header file.

For decoding elements with namespace prefixes, the namespace URI associated with the namespace prefix (through the xmlns attribute of an XML element) is searched from the beginning to the end in a namespace mapping table, and for every row the following tests are performed as part of the validation process:

- 1. the string in the second column matches the namespace URI (case insensitive)
- 2. the string in the optional third column matches the namespace URI (case insensitive), where is a one-character wildcard and * is a multi-character wildcard

When a match is found, the namespace prefix in the first column of the table is considered semantically identical to the namespace prefix used by the XML element to be decoded, though the prefix names may differ. A service will respond with the namespace that it received from a client in case it matches a pattern in the third column.

For example, let's say we have the following structs:

```
struct a__elt { ... };
struct b__elt { ... };
struct k__elt { ... };
```

and a namespace mapping table in the program:

```
struct Namespace namespaces[] =
{     // {"ns-prefix", "ns-name", "ns-name validation pattern"}
...
     {"a", "some uri"},
     {"b", "other uri"},
     {"c", "his uri", "* uri"},
...
```

Then, the following XML elements will match the structs:

The response of a service to a client request that uses the namespaces listed above, will include my URI for the name space of element k.

It is possible to use a number of different namespace tables and select the one that is appropriate. For example, an application might contact many different Web services all using different namespace URIs. If all the URIs are stored in one table, each remote method invocation will dump the whole namespace table in the SOAP payload. There is no technical problem with that, but it can be ugly when the table is large. To use different namespace tables, declare a pointer to a table and set the pointer to a particular table before remote method invocation. For example:

```
struct Namespace namespacesTable1[] = { ... };
struct Namespace namespacesTable2[] = { ... };
struct Namespace namespacesTable3[] = { ... };
struct Namespace *namespaces;
...
struct soap soap;
...
soap_init(&soap);
soap_set_namespaces(&soap, namespaceTable1);
soap_call_remote_method(&soap, URL, Action, ...);
...
```

11 gSOAP Serialization and Deserialization Rules

This section describes the serialization and describination of C and C++ data types for SOAP 1.1 and 1.2 compliant encoding and decoding.

11.1 Primitive Type Encoding

The default encoding rules for the primitive C and C++ data types are given in the table below:

Type	XSD Type	
bool	boolean	
char* (C string)	string	
char	byte	
double	double	
float	float	
int	int	
long	long	
LONG64	long	
long long	long	
short	short	
time_t	dateTime	
unsigned char	${\tt unsignedByte}$	
unsigned int	${\tt unsignedInt}$	
unsigned long	${\tt unsignedLong}$	
ULONG64	${\tt unsignedLong}$	
unsigned long long	${\tt unsignedLong}$	
unsigned short	${\tt unsignedShort}$	
wchar_t*	string	

Objects of type void and $void^*$ cannot be encoded. Enumerations and bit masks are supported as well, see 11.3.

11.2 How to Encode and Decode Primitive Types as XSD Types

By default, encoding of the primitive types will take place as per SOAP encoding style. The encoding can be changed to any XML schema type (XSD type) with an optional namespace prefix by using a **typedef** in the header file input to the gSOAP stub and skeleton compiler. The declaration

enables the implementation of built-in XML schema types (also known as XSD types) such as positiveInteger, xsd:anyURI, and xsd:date for which no built-in data structures in C and C++ exist but which can be represented using standard data structures such as strings, integers, and floats.

The **typedef** declaration is frequently used for convenience in C. A **typedef** declares a type name for a (complex) type expression. The type name can then be used in other declarations in place of the more complex type expression, which often improves the readability of the program code.

The gSOAP compiler interprets **typedef** declarations the same way as a regular C compiler interprets them, i.e. as types in declarations. In addition however, the gSOAP compiler will also use the type name in the encoding of the data in SOAP. The **typedef** name will appear as the XML element name of an independent element and as the value of the xsi:type attribute in the SOAP payload.

Many built-in primitive and derived XSD types such as xsd:anyURI, positiveInteger, and decimal can be stored by standard primitive data structures in C++ as well such as strings, integers, floats, and doubles. To serialize strings, integers, floats, and doubles as built-in primitive and derived XSD types. To this end, a typedef declaration can be used to declare an XSD type.

For example, the declaration

typedef unsigned int xsd__positiveInteger;

creates a named type positiveInteger which is represented by **unsigned int** in C++. For example, the encoding of a positiveInteger value 3 is

```
<positiveInteger xsi:type="xsd:positiveInteger">3</positiveInteger>
```

The built-in primitive and derived numerical XML Schema types are listed below together with their recommended **typedef** declarations. Note that the SOAP encoding schemas for primitive types are derived from the built-in XML schema types, so SOAP_ENC__ can be used as a namespace prefix instead of xsd__.

xsd:anyURI Represents a Uniform Resource Identifier Reference (URI). Each URI scheme imposes specialized syntax rules for URIs in that scheme, including restrictions on the syntax of allowed fragment identifiers. It is recommended to use strings to store xsd:anyURI XML schema types. The recommended type declaration is:

typedef char *xsd__anyURI;

xsd:base64Binary Represents Base64-encoded arbitrary binary data. For using the xsd:base64Binary XML schema type, the use of the base64Binary representation of a dynamic array is **strongly** recommended, see Section 11.10. However, the type can also be declared as a string and the encoding will be string-based:

typedef char *xsd_base64Binary;

With this approach, it is solely the responsibility of the application to make sure the string content is according to the Base64 Content-Transfer-Encoding defined in Section 6.8 of RFC 2045.

xsd:boolean For declaring an xsd:boolean XML schema type, the use of a bool is **strongly** recommended. If a pure C compiler is used that does not support the bool type, see Section 11.3.5. The corresponding type declaration is:

typedef bool xsd__boolean;

Type xsd_boolean declares a Boolean (0 or 1), which is encoded as

```
<xsd:boolean xsi:type="xsd:boolean">...</xsd:boolean>
```

xsd:byte Represents a byte (-128...127). The corresponding type declaration is:

```
typedef char xsd__byte;
```

Type xsd_byte declares a byte which is encoded as

```
<xsd:byte xsi:type="xsd:byte">...</xsd:byte>
```

xsd:dateTime Represents a date and time. The lexical representation is according to the ISO 8601 extended format CCYY-MM-DDThh:mm:ss where "CC" represents the century, "YY" the year, "MM" the month and "DD" the day, preceded by an optional leading "-" sign to indicate a negative number. If the sign is omitted, "+" is assumed. The letter "T" is the date/time separator and "hh", "mm", "ss" represent hour, minute and second respectively. It is recommended to use the time_t type to store xsd:dateTime XML schema types and the type declaration is:

typedef time_t xsd__dateTime;

However, note that calendar times before the year 1902 or after the year 2037 cannot be represented. Upon receiving a date outside this range, the time_t value will be set to -1.

Strings (char*) can be used to store xsd:dateTime XML schema types. The type declaration is:

typedef char *xsd__dateTime;

In this case, it is up to the application to read and set the dateTime representation.

xsd:date Represents a date. The lexical representation for date is the reduced (right truncated) lexical representation for dateTime: CCYY-MM-DD. It is recommended to use strings (char*) to store xsd:date XML schema types. The type declaration is:

```
typedef char *xsd__date;
```

xsd:decimal Represents arbitrary precision decimal numbers. It is recommended to use the **double** type to store xsd:decimal XML schema types and the type declaration is:

```
typedef double xsd__decimal;
```

Type xsd_decimal declares a double floating point number which is encoded as

```
<xsd:double xsi:type="xsd:decimal">...</xsd:double>
```

xsd:double Corresponds to the IEEE double-precision 64-bit floating point type. The type declaration is:

```
typedef double xsd__double;
```

Type xsd_double declares a double floating point number which is encoded as

```
<xsd:double xsi:type="xsd:double">...</xsd:double>
```

xsd:duration Represents a duration of time. The lexical representation for duration is the ISO 8601 extended format PnYn MnDTnH nMnS, where nY represents the number of years, nM the number of months, nD the number of days, T is the date/time separator, nH the number of hours, nM the number of minutes and nS the number of seconds. The number of seconds can include decimal digits to arbitrary precision. It is recommended to use strings (char*) to store xsd:duration XML schema types. The type declaration is:

typedef char *xsd__duration;

xsd:float Corresponds to the IEEE single-precision 32-bit floating point type. The type declaration is:

typedef float xsd__float;

Type xsd_float declares a floating point number which is encoded as

```
<xsd:float xsi:type="xsd:float">...</xsd:float>
```

xsd:hexBinary Represents arbitrary hex-encoded binary data. It has a lexical representation where each binary octet is encoded as a character tuple, consisting of two hexadecimal digits ([0-9a-fA-F]) representing the octet code. For example, "0FB7" is a hex encoding for the 16-bit integer 4023 (whose binary representation is 111110110111. For using the xsd:hexBinary XML schema type, the use of the hexBinary representation of a dynamic array is strongly recommended, see Section 11.11. However, the type can also be declared as a string and the encoding will be string-based:

typedef char *xsd_hexBinary;

With this approach, it is solely the responsibility of the application to make sure the string content consists of a sequence of octets.

xsd:int Corresponds to a 32-bit integer in the range -2147483648 to 2147483647. If the C++ compiler supports 32-bit int types, the type declaration can use the int type:

```
typedef int xsd__int;
```

Otherwise, the C++ compiler supports 16-bit **int** types and the type declaration should use the **long** type:

```
typedef long xsd__int;
```

Type xsd__int declares a 32-bit integer which is encoded as

```
<xsd:int xsi:type="xsd:int">...</xsd:int>
```

xsd:integer Corresponds to an unbounded integer. Since C++ does not support unbounded integers as a standard feature, the recommended type declaration is:

```
typedef long long xsd__integer;
```

Type xsd__integer declares a 64-bit integer which is encoded as an unbounded xsd:integer:

```
<xsd:integer xsi:type="xsd:integer">...</xsd:integer>
```

Another possibility is to use strings to represent unbounded integers and do the translation in code.

xsd:long Corresponds to a 64-bit integer in the range -9223372036854775808 to 9223372036854775807. The type declaration is:

typedef long long xsd__long;

Or in Visual C++:

typedef LONG64 xsd__long;

Type xsd_long declares a 64-bit integer which is encoded as

```
<xsd:long xsi:type="xsd:long">...</xsd:long>
```

xsd:negativeInteger Corresponds to a negative unbounded integer (< 0). Since C++ does not support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd_negativeInteger;

Type xsd_negativeInteger declares a 64-bit integer which is encoded as a xsd:negativeInteger:

```
<xsd:negativeInteger xsi:type="xsd:negativeInteger">...</xsd:negativeInteger>
```

Another possibility is to use strings to represent unbounded integers and do the translation in code.

xsd:nonNegativeInteger Corresponds to a non-negative unbounded integer (> 0). Since C++ does not support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd_nonNegativeInteger;

Type xsd_nonNegativeInteger declares a 64-bit unsigned integer which is encoded as a non-negative unbounded xsd:nonNegativeInteger:

```
<xsd:nonNegativeInteger xsi:type="xsd:nonNegativeInteger">...</xsd:nonNegativeInteger>
```

Another possibility is to use strings to represent unbounded integers and do the translation in code.

xsd:nonPositiveInteger Corresponds to a non-positive unbounded integer (≤ 0). Since C++ does not support unbounded integers as a standard feature, the recommended type declaration is:

typedef long long xsd__nonPositiveInteger;

Type xsd_nonPositiveInteger declares a 64-bit integer which is encoded as a xsd:nonPositiveInteger:

```
<xsd:nonPositiveInteger xsi:type="xsd:nonPositiveInteger">...</xsd:nonPositiveInteger>
```

Another possibility is to use strings to represent unbounded integers and do the translation in code.

xsd:normalizedString Represents normalized character strings. Normalized character strings do not contain the carriage return (#xD), line feed (#xA) nor tab (#x9) characters. It is recommended to use strings to store xsd:normalizeString XML schema types. The type declaration is:

typedef char *xsd__normalizedString;

Type xsd_normalizedString declares a string type which is encoded as

```
<xsd:normalizedString xsi:type="xsd:normalizedString">...</xsd:normalizedString>
```

It is solely the responsibility of the application to make sure the strings do not contain carriage return (#xD), line feed (#xA) and tab (#x9) characters.

xsd:positiveInteger Corresponds to a positive unbounded integer (≥ 0). Since C++ does not support unbounded integers as a standard feature, the recommended type declaration is:

typedef unsigned long long xsd_positiveInteger;

Type xsd_positiveInteger declares a 64-bit unsigned integer which is encoded as a xsd:positiveInteger:

```
<xsd:positiveInteger xsi:type="xsd:positiveInteger">...</xsd:positiveInteger>
```

Another possibility is to use strings to represent unbounded integers and do the translation in code.

xsd:short Corresponds to a 16-bit integer in the range -323768 to 323767. The type declaration is:

typedef short xsd__short;

Type xsd_short declares a short 16-bit integer which is encoded as

```
<xsd:short xsi:type="xsd:short">...</xsd:short>
```

xsd:string Represents character strings. The type declaration is:

```
typedef char *xsd__string;
```

Type xsd_string declares a string type which is encoded as

```
<xsd:string xsi:type="xsd:string">...</xsd:string>
```

The type declaration for wide character strings is:

```
typedef wchar_t *xsd__string;
```

Both type of strings can be used at the same time, but requires one typedef name to be changed by appending an underscore which is invisible in XML. For example:

```
typedef wchar_t *xsd__string_;
```

xsd:time Represents a time. The lexical representation for time is the left truncated lexical representation for dateTime: hh:mm:ss.sss with optional following time zone indicator. It is recommended to use strings (char*) to store xsd:time XML schema types. The type declaration is:

typedef char *xsd__time;

xsd:token Represents tokenized strings. Tokens are strings that do not contain the line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces. It is recommended to use strings to store xsd:token XML schema types. The type declaration is:

typedef char *xsd__token;

Type xsd_token declares a string type which is encoded as

```
<xsd:token xsi:type="xsd:token">...</xsd:token>
```

It is solely the responsibility of the application to make sure the strings do not contain the line feed (#xA) nor tab (#x9) characters, that have no leading or trailing spaces (#x20) and that have no internal sequences of two or more spaces.

xsd:unsignedByte Corresponds to an 8-bit unsigned integer in the range 0 to 255. The type declaration is:

typedef unsigned char xsd_unsignedByte;

Type xsd_unsignedByte declares a unsigned 8-bit integer which is encoded as

```
<xsd:unsignedByte xsi:type="xsd:unsignedByte">...</xsd:unsignedByte>
```

xsd:unsignedInt Corresponds to a 32-bit unsigned integer in the range 0 to 4294967295. If the C++ compiler supports 32-bit int types, the type declaration can use the int type:

typedef unsigned int xsd__unsignedInt;

Otherwise, the C++ compiler supports 16-bit **int** types and the type declaration should use the **long** type:

typedef unsigned long xsd_unsignedInt;

Type xsd__unsignedInt declares an unsigned 32-bit integer which is encoded as

```
<xsd:unsignedInt xsi:type="xsd:unsignedInt">...</xsd:unsignedInt>
```

xsd:unsignedLong Corresponds to a 64-bit unsigned integer in the range 0 to 18446744073709551615. The type declaration is:

typedef unsigned long long xsd_unsignedLong;

Or in Visual C++:

```
typedef ULONG64 xsd__unsignedLong;
```

Type xsd_unsignedLong declares an unsigned 64-bit integer which is encoded as

```
<xsd:unsignedLong xsi:type="xsd:unsignedLong">...</xsd:unsignedLong>
```

xsd:unsignedShort Corresponds to a 16-bit unsigned integer in the range 0 to 65535. The type declaration is:

typedef unsigned short xsd__unsignedShort;

Type xsd_unsginedShort declares an unsigned short 16-bit integer which is encoded as

```
<xsd:unsignedShort xsi:type="xsd:unsignedShort">...</xsd:unsignedShort>
```

Other XML schema types such as gYearMonth, gYear, gMonthDay, gDay, xsd:gMonth, QName, NOTATION, etc., can be encoded similarly using a **typedef** declaration.

11.2.1 How to Use Multiple C/C++ Types for a Single Primitive XSD Type

Trailing underscores (see Section 10.3) can be used in the type name in a **typedef** to enable the declaration of multiple storage formats for a single XML schema type. For example, one part of a C/C++ application's data structure may use plain strings while another part may use wide character strings. To enable this simultaneous use, declare:

```
typedef char *xsd__string;
typedef wchar_t *xsd__string_;
```

Now, the xsd_string and xsd_string_types will both be encoded and decoded as XML string types and the use of trailing underscores allows multiple declarations for a single XML schema type.

11.2.2 How to use Wrapper Classes to Specify Polymorphic Primitive Types

SOAP 1.1 supports polymorphic types, because XML schema types form a hierarchy. The root of the hierarchy is called xsd:anyType (xsd:ur-type in the older 1999 schema). So, for example, an array of xsd:anyType in SOAP may actually contain any mix of element types that are the derived types of the root type. The use of polymorphic types is indicated by the WSDL and schema descriptions of a Web service and can therefore be predicted/expected for each particular case.

On the one hand, the **typedef** construct provides a convenient way to associate C/C++ types with XML schema types and makes it easy to incorporate these types in a (legacy) C/C++ application. However, on the other hand the **typedef** declarations cannot be used to support polymorphic XML schema types. Most SOAP clients and services do not use polymorphic types. In case they do, the primitive polymorphic types can be declared as a hierarchy of C++ **class**es that can be used simultaneously with the **typedef** declarations.

The general form of a primitive type declaration that is derived from a super type is:

```
class xsd__type_name: [public xsd__super_type_name]
{ public: Type __item;
    [public:] [private] [protected:]
    method1;
    method2;
    ...
};
```

where <u>Type</u> is a primitive C type. The <u>litem</u> field MUST be the first field in this wrapper class. For example, the XML schema type hierarchy can be copied to C++ with the following declarations:

```
class xsd__anyType { };
class xsd__anySimpleType: public xsd__anyType { };
typedef char *xsd__anyURI;
```

```
class xsd__anyURI_: public xsd__anySimpleType { public: xsd__anyURI __item; };
typedef bool xsd__boolean;
class xsd_boolean: public xsd_anySimpleType { public: xsd_boolean _ item; };
typedef char *xsd__date;
class xsd__date_: public xsd__anySimpleType { public: xsd__date __item; };
typedef time_t xsd__dateTime;
class xsd__dateTime_: public xsd__anySimpleType { public: xsd__dateTime __item; };
typedef double xsd__double;
class xsd__double_: public xsd__anySimpleType { public: xsd__double __item; };
typedef char *xsd__duration;
class xsd__duration_: public xsd__anySimpleType { public: xsd__duration __item; };
typedef float xsd__float:
class xsd__float_: public xsd__anySimpleType { public: xsd__float __item; };
typedef char *xsd__time;
class xsd__time_: public xsd__anySimpleType { public: xsd__time __item; };
typedef char *xsd__decimal;
class xsd__decimal_: public xsd__anySimpleType { public: xsd__decimal __item; };
typedef char *xsd__integer;
class xsd__integer_: public xsd__decimal_ { public: xsd__integer __item; };
typedef LONG64 xsd__long;
class xsd__long_: public xsd__integer_ { public: xsd__long __item; };
typedef long xsd__int;
class xsd__int_: public xsd__long_ { public: xsd__int __item; };
typedef short xsd__short;
class xsd__short_: public xsd__int_ { public: xsd__short __item; };
typedef char xsd__byte;
class xsd__byte_: public xsd__short_ { public: xsd__byte __item; };
typedef char *xsd__nonPositiveInteger;
class xsd__nonPositiveInteger_: public xsd__integer_ { public: xsd__nonPositiveInteger __item; };
typedef char *xsd_negativeInteger;
class xsd__negativeInteger_: public xsd__nonPositiveInteger_ { public: xsd__negativeInteger _ _item;
};
typedef char *xsd__nonNegativeInteger;
class xsd__nonNegativeInteger_: public xsd__integer_ { public: xsd__nonNegativeInteger __item; };
typedef char *xsd_positiveInteger;
class xsd_positiveInteger_: public xsd_nonNegativeInteger_ { public: xsd_positiveInteger__item;
};
typedef ULONG64 xsd__unsignedLong;
class xsd_unsignedLong_: public xsd_nonNegativeInteger_ { public: xsd_unsignedLong_litem;
}:
typedef unsigned long xsd__unsignedInt;
class xsd_unsignedInt_: public xsd_unsignedLong_ { public: xsd_unsignedInt __item; };
typedef unsigned short xsd__unsignedShort;
class xsd_unsignedShort_: public xsd_unsignedInt_ { public: xsd_unsignedShort __item; };
typedef unsigned char xsd_unsignedByte;
class xsd_unsignedByte_: public xsd_unsignedShort_ { public: xsd_unsignedByte__item; };
typedef char *xsd__string;
class xsd__string_: public xsd__anySimpleType { public: xsd__string __item; };
typedef char *xsd__normalizedString;
class xsd_normalizedString_: public xsd_string_ { public: xsd_normalizedString __item; };
typedef char *xsd__token;
class xsd_token_: public xsd_normalizedString_ { public: xsd_token _ item; };
```

Note the use of the trailing underscores for the **class** names to distinguish the **typedef** type names from the **class** names. Only the most frequently used built-in schema types are shown. It is also allowed to include the xsd:base64Binary and xsd:hexBinary types in the hierarchy:

```
class xsd_base64Binary: public xsd_anySimpleType { public: unsigned char *_ptr; int __size; };
class xsd_hexBinary: public xsd_anySimpleType { public: unsigned char *_ptr; int __size; };
```

See Sections 11.10 and 11.11.

Methods are allowed to be added to the classes above, such as constructors and getter/setter methods, see Section 11.5.4.

Wrapper structs are supported as well, similar to wrapper classes. But they cannot be used to implement polymorphism. Rather, the wrapper structs facilitate the use of XML attributes with a primitive typed object, see 11.5.7.

11.2.3 XML Schema Type Decoding Rules

The decoding rules for the primitive C and C++ data types is given in the table below:

Type	Allows Decoding of	Precision Los
bool	$[\mathtt{xsd:}]$ boolean	no
char* (C string)	any type, see 11.2.5	no
wchar_t * (wide string)	any type, see 11.2.5	no
double	[xsd:]double	no
	[xsd:]float	no
	[xsd:]long	no
	$[\mathtt{xsd:}]$ int	no
	[xsd:]short	no
	[xsd:]byte	no
	$[\mathtt{xsd:}]$ unsignedLong	no
	$[\mathtt{xsd:}]$ unsignedInt	no
	$[\mathtt{xsd:}]$ unsignedShort	no
	$[\mathtt{xsd:}]$ unsignedByte	no
	$[\mathtt{xsd:}]\mathtt{decimal}$	possibly
	$[\mathtt{xsd:}]$ integer	possibly
	$igl[\mathtt{xsd:}igl]\mathtt{positiveInteger}$	possibly
	$[\mathtt{xsd:}]$ negativeInteger	possibly
	[xsd:]nonPositiveInteger	possibly
	[xsd:]nonNegativeInteger	possibly
float	[xsd:]float	no
	xsd: long	no
	[xsd:]int	no
	xsd: short	no
	xsd: byte	no
	xsd: unsignedLong	no
	xsd: unsignedInt	no
	xsd: unsignedShort	no
	xsd: unsignedByte	no
	xsd: decimal	possibly
	xsd: integer	possibly
	xsd: positiveInteger	possibly
	 xsd: negativeInteger	possibly
	xsd: nonPositiveInteger	possibly
	[xsd:]nonNegativeInteger	possibly
long long	[xsd:]long	no
	[xsd:]int	no
	[xsd: short	no
	xsd: byte	no
	xsd: unsignedLong	possibly
	xsd: unsignedInt	no
	xsd: unsignedShort	no
	xsd: unsignedByte	no
	 xsd: integer	possibly
	xsd: positiveInteger	possibly
	xsd: negativeInteger	possibly
	xsd: nonPositiveInteger	possibly
	xsd: nonNegativeInteger	possibly

Type	Allows Decoding of	Precision Lost?
long	[xsd:]long	possibly, if long is 32 bit
	[xsd:]int	no
	xsd: short	no
	[xsd:]byte	no
	xsd: unsignedLong	possibly
	xsd: unsignedInt	no
	xsd: unsignedShort	no
	[xsd:]unsignedByte	no
int	[xsd:]int	no
	xsd: short	no
	[xsd:]byte	no
	[xsd:]unsignedInt	possibly
	$[\mathtt{xsd:}]$ unsignedShort	no
	$[\mathtt{xsd:}]$ unsignedByte	no
short	[xsd:]short	no
	xsd: byte	no
	xsd: unsignedShort	no
	[xsd:]unsignedByte	no
char	[xsd:]byte	no
	[xsd:]unsignedByte	possibly
unsigned long long	[xsd:]unsignedLong	no
0 0	xsd: unsignedInt	no
	xsd: unsignedShort	no
	 xsd: unsignedByte	no
	xsd: positiveInteger	possibly
	[xsd:]nonNegativeInteger	possibly
unsigned long	[xsd:]unsignedLong	possibly, if long is 32 bit
	xsd: unsignedInt	no
	xsd: unsignedShort	no
	[xsd:]unsignedByte	no
unsigned int	[xsd:]unsignedInt	no
anielgirea iii	[xsd:]unsignedShort	no
	[xsd:]unsignedByte	no
unsigned short	[xsd:]unsignedShort	no
unsigned short	xsd: unsignedByte	no
		110
unsigned char	$[\mathtt{xsd:}]$ unsigned \mathtt{Byte}	no
time_t	[xsd:]dateTime	no(?)

Due to limitations in representation of certain primitive C++ types, a possible loss of accuracy may occur with the decoding of certain XML schema types as is indicated in the table. The table does

not indicate the possible loss of precision of floating point values due to the textual representation of floating point values in SOAP.

All explicitly declared XML schema encoded primitive types adhere to the same decoding rules. For example, the following declaration:

```
typedef unsigned long long xsd__nonNegativeInteger;
```

enables the encoding and decoding of xsd:nonNegativeInteger XML schema types (although decoding takes place with a possible loss of precision). The declaration also allows decoding of xsd:positiveInteger XML schema types, because of the storage as a unsigned long long data type.

11.2.4 Multi-Reference Strings

If more than one **char** pointer points to the same string, the string is encoded as a multi-reference value. Consider for example

```
char *s = "hello", *t = s;
```

The s and t variables are assigned the same string, and when serialized, t refers to the content of s:

```
<string id="123" xsi:type="string">hello</string>
...
<string href="#123"/>
```

The example assumed that s and t are encoded as independent elements.

Note: the use of **typedef** to declare a string type such as xsd_string will not affect the multi-reference string encoding. However, strings declared with different **typedef**s will never be considered multi-reference even when they point to the same string. For example

```
typedef char *xsd__string;
typedef char *xsd__anyURI;
xsd__anyURI *s = "http://www.myservice.com";
xsd__string *t = s;
```

The variables s and t point to the same string, but since they are considered different types their content will not be shared in the SOAP payload through a multi-referenced string.

11.2.5 "Smart String" Mixed-Content Decoding

The implementation of string decoding in gSOAP allows for mixed content decoding. If the SOAP payload contains a complex data type in place of a string, the complex data type is decoded in the string as plain XML text.

For example, suppose the getInfo remote method returns some detailed information. The remote method is declared as:

```
// Contents of header file "getInfo.h":
getInfo(char *detail);
```

The proxy of the remote method is used by a client to request a piece of information and the service responds with:

```
HTTP/1.1 200 OK
Content-Type: text/xml
Content-Length: nnn

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
    xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
    xmlns:xsd="http://www.w3.org/1999/XMLSchema"

<SOAP-ENV:Body>
<getInfoResponse>
<detail>

</detail>
</getInfoResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

As a result of the mixed content decoding, the detail string contains "<picture>Mona Lisa by <i>Leonardo da Vinci</i></picture>".

11.2.6 STL Strings

gSOAP supports STL strings std::string and std::wstring. For example:

```
typedef std::string xsd__string;
class ns__myClass
{ public:
    xsd__string s; // serialized with xsi:type="xsd:string"
    std::string t; // serialized without xsi:type
...
};
```

Caution: Please avoid mixing std::string and C strings (char*) in the header file when using SOAP 1.1 encoding. The problem is that multi-referenced strings in SOAP encoded messages cannot be assigned simultaneously to a std::string and a char* string.

11.2.7 Changing the Encoding Precision of float and double Types

The double encoding format is by default set to "%.18G" (see a manual on printf text formatting in C), i.e. at most 18 digits of precision to limit a loss in accuracy. The float encoding format is by default "%.9G", i.e. at most 9 digits of precision.

The encoding format of a double type can be set by assigning a format string to soap.double_format, where soap is a variable that contains the current runtime environment. For example:

```
struct soap soap;
soap_init(&soap); // sets double_format = "%.18G"
soap.double_format = "%e"; // redefine
```

which causes all doubles to be encoded in scientific notation. Likewise, the encoding format of a float type can be set by assigning a format string to the static soap_float_format string variable. For example:

```
struct soap soap;
soap_init(&soap); // sets float_format = "%.9G"
soap_float_format = "%.4f"; // redefine
```

which causes all floats to be encoded with four digits precision.

Caution: The format strings are not automatically reset before or after SOAP communications. An error in the format string may result in the incorrect encoding of floating point values.

11.2.8 INF, -INF, and NaN Values of float and double Types

The gSOAP runtime stdsoap2.cpp and header file stdsoap2.h support the marshalling of IEEE INF, -INF, and NaN representations. Under certain circumstances this may break if the hardware and/or C/C++ compiler does not support these representations. To remove the representations, remove the inclusion of the <math.h> header file from the stdsoap2.h file. You can control the representations as well, which are defined by the macros:

```
#define FLT_NAN
#define FLT_PINFTY
#define FLT_NINFTY
#define DBL_NAN
#define DBL_PINFTY
#define DBL_NINFTY
```

11.3 Enumeration Type Encoding and Decoding

Enumerations are generally useful for the declaration of named integer-valued constants, also called enumeration constants.

11.3.1 Symbolic Encoding of Enumeration Constants

The gSOAP stub and skeleton compiler encodes the constants of enumeration-typed variables in symbolic form using the names of the constants when possible to comply to SOAP's XML schema enumeration encoding style. Consider for example the following enumeration of weekdays:

```
enum weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};
```

The enumeration-constant Mon, for example, is encoded as

```
<weekday xsi:type="weekday">Mon</weekday>
```

The value of the xsi:type attribute is the enumeration-type identifier's name. If the element is independent as in the example above, the element name is the enumeration-type identifier's name.

The encoding of complex types such as enumerations requires a reference to an XML schema through the use of a namespace prefix. The namespace prefix can be specified as part of the enumeration-type identifier's name, with the usual namespace prefix conventions for identifiers. This can be used to explicitly specify the encoding style. For example:

```
enum ns1__weekday {Mon, Tue, Wed, Thu, Fri, Sat, Sun};
```

The enumeration-constant Sat, for example, is encoded as:

```
<ns1:weekday xsi:type="ns1:weekday">Sat</ns1:weekday>
```

The corresponding XML schema for this enumeration data type would be:

11.3.2 Encoding of Enumeration Constants

If the value of an enumeration-typed variable has no corresponding named constant, the value is encoded as a signed integer literal. For example, the following declaration of a workday enumeration type lacks named constants for Saturday and Sunday:

```
enum ns1__workday {Mon, Tue, Wed, Thu, Fri};
```

If the constant 5 (Saturday) or 6 (Sunday) is assigned to a variable of the workday enumeration type, the variable will be encoded with the integer literals 5 and 6, respectively. For example:

```
<ns1:workday xsi:type="ns1:workday">5</ns1:workday>
```

Since this is legal in C++ and SOAP allows enumeration constants to be integer literals, this method ensures that non-symbolic enumeration constants are correctly communicated to another party if the other party accepts literal enumeration constants (as with the gSOAP stub and skeleton compiler).

Both symbolic and literal enumeration constants can be decoded.

To enforce the literal enumeration constant encoding and to get the literal constants in the WSDL file, use the following trick:

```
enum ns1_nums \{ 1 = 1, 2 = 2, 3 = 3 \};
```

The difference with an enumeration type without a list of values and the enumeration type above is that the enumeration constants will appear in the WSDL service description.

11.3.3 Initialized Enumeration Constants

The gSOAP compiler supports the initialization of enumeration constants, as in:

```
enum ns1_relation {LESS = -1, EQUAL = 0, GREATER = 1};
```

The symbolic names LESS, EQUAL, and GREATER will appear in the SOAP payload for the encoding of the ns1_relation enumeration values -1, 0, and 1, respectively.

11.3.4 How to "Reuse" Symbolic Enumeration Constants

A well-known deficiency of C and C++ enumeration types is the lack of support for the reuse of symbolic names by multiple enumerations. That is, the names of all the symbolic constants defined by an enumeration cannot be reused by another enumeration. To force encoding of the same symbolic name by different enumerations, the identifier of the symbolic name can end in an underscore (_) or any number of underscores to distinguish it from other symbolic names in C++. This guarantees that the SOAP encoding will use the same name, while the symbolic names can be distinguished in C++. Effectively, the underscores are removed from a symbolic name prior to encoding.

Consider for example:

```
enum ns1__workday {Mon, Tue, Wed, Thu, Fri};
enum ns1__weekday {Mon_, Tue_, Wed_, Thu_, Fri_, Sat_, Sun_};
```

which will result in the encoding of the constants of enum nsl_weekday without the underscore, for example as Mon.

Caution: The following declaration:

```
enum nsl_workday {Mon, Tue, Wed, Thu, Fri};
enum nsl_weekday {Sat = 5, Sun = 6};
```

will not properly encode the weekday enumeration, because it lacks the named constants for workday in its enumeration list.

11.3.5 Boolean Enumeration Type Encoding and Decoding for C Compilers

When a pure C compiler is used to create SOAP clients and services, the bool type may not be supported by the compiler and in that case an enumeration type should be used. The C enumeration-type encoding adopted by the gSOAP stub and skeleton compiler can be used to encode boolean values according to the SOAP encoding style. The namespace prefix can be specified with the usual namespace prefix convention for identifiers to explicitly specify the encoding style. For example, the built-in boolean XML schema type supports the mathematical concept of binary-valued logic. The boolean XML schema encoding style can be specified by using the xsd prefix. For example:

```
enum xsd__boolean {false_, true_};
```

The value false., for example, is encoded as:

```
<xsd:boolean xsi:type="xsd:boolean">false</xsd:boolean>
```

Peculiar of the SOAP boolean type encoding is that it only defines the values 0 and 1, while the built-in XML schema boolean type also defines the false and true symbolic constants as valid values. The following example declaration of an enumeration type lacks named constants altogether to force encoding of the enumeration values as literal constants:

```
enum SOAP_ENC_ _boolean {};
```

The value 0, for example, is encoded with an integer literal:

```
<SOAP-ENC:boolean xsi:type="SOAP-ENC:boolean">0<SOAP-ENC:boolean>
```

11.3.6 Bitmask Enumeration Encoding and Decoding

A bitmask is an enumeration of flags such as declared with C#'s [Flags] **enum** annotation. gSOAP supports bitmask encoding and decoding for interoperability. However, bitmask types are not standardized with SOAP RPC.

A special syntactic convention is used in the header file input to the gSOAP compiler to indicate the use of bitmasks with an asterisk:

```
enum * name { enum-constant, enum-constant, ... };
```

The gSOAP compiler will encode the enumeration constants as flags, i.e. as a series of powers of 2 starting with 1. The enumeration constants can be or-ed to form a bitvector (bitmask) which is encoded and decoded as a list of symbolic values in SOAP. For example:

```
enum * ns__machineStatus { ON, BELT, VALVE, HATCH};
int ns__getMachineStatus(char *name, char *enum ns__machineStatus result);
```

Note that the use of the **enum** does not require the asterisk, only the definition. The gSOAP compiler generates the enumeration:

```
enum ns__machineStatus { ON=1, BELT=2, VALVE=4, HATCH=8};
```

A remote method implementation in a Web service can return:

```
\begin{tabular}{ll} \textbf{int} & ns\_getMachineStatus(\textbf{struct} & soap *soap, \textbf{char} *name, \textbf{enum} & ns\_machineStatus result) \\ \{ & ... & *result = BELT — HATCH; \\ & \textbf{return} & SOAP\_OK; \\ \} \end{tabular}
```

11.4 Struct Encoding and Decoding

A **struct** data type is encoded as a SOAP compound data type such that the **struct** name forms the data type's element name and schema type and the fields of the **struct** are the data type's

accessors. This encoding is identical to the **class** instance encoding without inheritance and method declarations, see Section 11.5 for further details. However, the encoding and decoding of **structs** is more efficient compared to **class** instances due to the lack of inheritance and the requirement by the marshalling routines to check inheritance properties at run time.

Certain type of fields of a **struct** can be (de)serialized as XML attributes. See 11.5.7 for more details.

11.5 Class Instance Encoding and Decoding

A class instance is encoded as a SOAP compound data type such that the class name forms the data type's element name and schema type and the data member fields are the data type's accessors. Only the data member fields are encoded in the SOAP payload. Class methods are not encoded.

The general form of a **class** declaration is:

```
class [namespace_prefix__]class_name1 [:[public:] [private:] [protected:] [namespace_prefix__]class_name2]
{
    [public:] [private:] [protected:]
    field1;
    field2;
    ...
    [public:] [private:] [protected:]
    method1;
    method2;
    ...
};
```

where

namespace_prefix_ is the optional namespace prefix of the compound data type (see identifier translation rules 10.3)

class_name1 is the element name of the compound data type (see identifier translation rules 10.3).

class_name2 is an optional base class.

field is a field declaration (data member). A field MAY be declared **static** and **const** and MAY be initialized.

method is a method declaration. A method MAY be declared **virtual**, but abstract methods are not allowed. The method parameter declarations are REQUIRED to have parameter identifier names.

[public:] [private:] [protected:] are OPTIONAL and have no effect on the declaration and MAY therefore be omitted. All access permissions are converted to public by the gSOAP stub and skeleton compiler.

A class name is REQUIRED to be unique and cannot have the same name as a **struct**, **enum**, or remote method name specified in the header file input to the gSOAP compiler. The reason is that

remote method requests are encoded similarly to class instances in SOAP and they are in principle undistinguishable (the method parameters are encoded just as the fields of a **class**).

Only single inheritance is supported by the gSOAP compiler. Multiple inheritance is not supported, because of the limitations of the SOAP protocol.

If a constructor method is present, there MUST also be a constructor declaration with empty parameter list.

Classes should be declared "volatile" if you don't want gSOAP to add serialization methods to these classes, see Section 15.6 for more details.

Class templates are not supported by the gSOAP compiler, but you can use STL containers, see Section 11.9.8. You can also define your own containers similar to STL containers.

Certain fields of a class can be (de)serialized as XML attributes. See 11.5.7 for more details.

Arrays may be embedded within a class (and struct) using a pointer field and size information, see Section 11.9.7. This defines what is sometimes referred to in SOAP as "generics".

Void pointers may be used in a class (or struct), but you have to add a type field so the gSOAP runtime can determine the type of object pointed to, see Section 11.7.

A **class** instance is encoded as:

```
<[namespace-prefix:]class-name xsi:type="[namespace-prefix:]class-name">
<basefield-name1 xsi:type="...">...</basefield-name1>
<basefield-name2 xsi:type="...">...</basefield-name2>
...
<field-name1 xsi:type="...">...</field-name1>
<field-name2 xsi:type="...">...</field-name2>
...
</[namespace-prefix:]class-name>
```

where the field-name accessors have element-name representations of the class fields and the basefield-name accessors have element-name representations of the base class fields. (The optional parts resulting from the specification are shown enclosed in [].)

The decoding of a class instance allows any ordering of the accessors in the SOAP payload. However, if a base class field name is identical to a derived class field name because the field is overloaded, the base class field name MUST precede the derived class field name in the SOAP payload for decoding. gSOAP guarantees this, but interoperability with other SOAP implementations is cannot be guaranteed.

11.5.1 Example

The following example declares a base class ns_ Object and a derived class ns_ Shape:

```
// Contents of file "shape.h":
class ns__Object
{
   public:
      char *name;
};
class ns__Shape : public ns__Object
```

```
{
  public:
  int sides;
  enum ns__Color {Red, Green, Blue} color;
  ns__Shape();
  ns__Shape(int sides, enum ns__Green color);
  ~ns__Shape();
};
```

The implementation of the methods of **class** ns__Shape must not be part of the header file and need to be defined elsewhere.

An instance of class ns_Shape with name Triangle, 3 sides, and color Green is encoded as:

```
<ns:Shape xsi:type="ns:Shape">
<name xsi:type="string">Triangle</name>
<sides xsi:type="int">3</sides>
<color xsi:type="ns:Color">Green</color>
</ns:shape>
```

The namespace URI of the namespace prefix ns must be defined by a namespace mapping table, see Section 10.4.

11.5.2 Initialized static const Fields

A data member field of a class declared as **static const** is initialized with a constant value at compile time. This field is encoded in the serialization process, but is not decoded in the deserialization process. For example:

```
// Contents of file "triangle.h":
class ns__Triangle : public ns__Object
{
   public:
   int size;
   static const int sides = 3;
};
```

An instance of **class** ns__Triangle is encoded in SOAP as:

```
<ns:Triangle xsi:type="ns:Triangle">
<name xsi:type="string">Triangle</name>
<size xsi:type="int">15</size>
<sides xsi:type="int">3>/sides>
</ns:Triangle>
```

Decoding will ignore the sides field's value.

Caution: The current gSOAP implementation does not support encoding **static const** fields, due to C++ compiler compatibility differences. This feature may be provided the future.

11.5.3 Class Methods

A class declaration in the header file input to the gSOAP compiler MAY include method declarations. The method implementations MUST NOT be part of the header file but are required to be defined in another C++ source that is externally linked with the application. This convention is also used for the constructors and destructors of the class.

Dynamic binding is supported, so a method MAY be declared virtual.

11.5.4 Getter and Setter Methods

Setter and getter methods are invoked at run time upon serialization and deserialization of class instances, respectively. The use of setter and getter methods adds more flexibility to the serialization and deserialization process.

A setter method is called in the serialization phase from the virtual soap_serialization method generated by the gSOAP compiler. You can use setter methods to process a class instance just before it is serialized. A setter method can be used to convert application data, such as translating transient application data into serializable data, for example. You can also use setter methods to retrieve dynamic content and use it to update a class instance right before serialization. Remember setters as "set to serialize" operations.

Getter methods are invoked after descrialization of the instance. You can use them to adjust the contents of class instances after all their members have been descrialized. Getters can be used to convert descrialized members into transient members and even invoke methods to process the descrialized data on the fly.

Getter and setter methods have the following signature:

```
[virtual] int get(struct soap *soap) [const];
virtual int set(struct soap *soap);
```

The active soap struct will be passed to the get and set methods. The methods should return SOAP_OK when successful. A setter method should prepare the contents of the class instance for serialization. A getter method should process the instance after describing and the contents of the class instance for serialization.

Here is an example of a base64 binary class:

```
class xsd__base64Binary
{ public:
    unsignedchar *__ptr;
    int__size;
    int get(struct soap *soap);
    int set(struct soap *soap);
};
```

Suppose that the type and options members of the attachment should be set when the class is about to be serialized. This can be accomplished with the set method from the information provided by the _-ptr to the data and the soap struct passed to the set method (you can pass data via the void*soap.user field).

The get method is invoked after the base64 data has been processed. You can use it for post-processing purposes.

Here is another example. It defines a primitive update type. The class is a wrapper for the time_t type, see Section 11.2.2. Therefore, elements of this type contain xsd:dateType data.

```
class update
{ public:
    time_t __item;
    int set(struct soap *soap);
};
```

The setter method assigns the current time:

```
int update::set(struct soap *soap)
{
   this->__item = time(NULL);
   return SOAP_OK;
}
```

Therefore, serialization results in the inclusion of a time stamp in XML.

Caution: a get method is invoked only when the XML element with its data was completely parsed. The method is not invoked when the element is an xsi:nil element or has an href attribute.

Caution: The soap_serialize method of a class calls the setter (when provided). However, the soap_serialize method is declared **const** while the setter should be allowed to modify the contents of the class instance. Therefore, the gSOAP-generated code recasts the instance and the **const** is removed when invoking the setter.

11.5.5 Streaming XML with Getter and Setter Methods

Getter methods enable streaming XML operations. A getter method is invoked when the object is describilized and the rest of the SOAP/XML message has not been processed yet. For example, you can add a getter method to the SOAP Header class to implement header processing logic that is activated as soon as the SOAP Header is received. An example code is shown below:

```
class h__Authentication
{ public:
    char *id;
    int get(struct soap *soap);
};
class SOAP_ENV__Header
{ public:
    h__Authentication *h__authentication;
};
```

The Authentication SOAP Header field is instantiated and decoded. After decoding, the getter method is invoked, which can be used to check the id before the rest of the SOAP message is processed.

11.5.6 Polymorphism, Derived Classes, and Dynamic Binding

Interoperability between client and service applications developed with gSOAP is established even when clients and/or services use derived classes instead of the base classes used in the declaration

of the remote method parameters. A client application MAY use pointers to instances of derived classes for the input parameters of a remote method. If the service was compiled with a declaration and implementation of the derived class, the remote method base class input parameters are demarshalled and a derived class instance is created instead of a base class instance. If the service did not include a declaration of the derived class, the derived class fields are ignored and a base class instance is created. Therefore, interoperability is guaranteed even when the client sends an instance of a derived classes and when a service returns an instance of a derived class.

The following example declares Base and Derived classes and a remote method that takes a pointer to a Base class instance and returns a Base class instance:

```
// Contents of file "derived.h"
class Base
{
   public:
      char *name;
   Base();
      virtual void print();
};
class Derived: public Base
{
   public:
    int num;
   Derived();
   virtual void print();
};
int method(Base *in, struct methodResponse { Base *out; } &result);
```

This header file specification is processed by the gSOAP compiler to produce the stub and skeleton routines which are used to implement a client and service. The pointer of the remote method is also allowed to point to Derived class instances and these instances will be marshalled as Derived class instances and send to a service, which is in accord to the usual semantics of parameter passing in C++ with dynamic binding.

The Base and Derived class method implementations are:

```
// Method implementations of the Base and Derived classes:
#include "soapH.h"
...
Base::Base()
{
   cout << "created a Base class instance" << endl;
}
Derived::Derived()
{
   cout << "created a Derived class instance" << endl;
}
Base::print()
{
   cout << "print(): Base class instance" << name << endl;
}
Derived::print()
{</pre>
```

```
cout << "print(): Derived class instance " << name << " " << num << endl; }
```

Below is an example CLIENT application that creates a Derived class instance that is passed as the input parameter of the remote method:

```
// CLIENT
#include "soapH.h"
int main()
{
    struct soap soap;
    soap_init(&soap);
    Derived obj1;
    Base *obj2;
    struct methodResponse r;
    obj1.name = "X";
    obj1.num = 3;
    soap_call_method(&soap, url, action, &obj1, r);
    r.obj2->print();
}
```

The following example SERVER1 application copies a class instance (Base or Derived class) from the input to the output parameter:

```
// SERVER1
#include "soapH.h"
int main()
{
    soap_serve(soap_new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{
    obj1->print();
    result.obj2 = obj1;
    return SOAP_OK;
}
```

The following messages are produced by the CLIENT and SERVER1 applications:

```
CLIENT: created a Derived class instance
SERVER1: created a Derived class instance
SERVER1: print(): Derived class instance X 3
CLIENT: created a Derived class instance
CLIENT: print(): Derived class instance X 3
```

Which indicates that the derived class kept its identity when it passed through SERVER1. Note that instances are created both by the CLIENT and SERVER1 by the demarshalling process.

Now suppose a service application is developed that only accepts Base class instances. The header file is:

```
// Contents of file "base.h":
class Base
{
   public:
    char *name;
   Base();
   virtual void print();
};
int method(Base *in, Base *out);
```

This header file specification is processed by the gSOAP stub and skeleton compiler to produce skeleton routine which is used to implement a service (so the client will still use the derived classes).

The method implementation of the Base class are:

```
// Method implementations of the Base class:
#include "soapH.h"
...
Base::Base()
{
   cout << "created a Base class instance" << endl;
}
Base::print()
{
   cout << "print(): Base class instance" << name << endl;
}</pre>
```

And the SERVER2 application is that uses the Base class is:

```
// SERVER2
#include "soapH.h"
int main()
{
    soap_serve(soap_new());
}
int method(struct soap *soap, Base *obj1, struct methodResponse &result)
{
    obj1->print();
    result.obj2 = obj1;
    return SOAP_OK;
}
```

Here are the messages produced by the CLIENT and SERVER2 applications:

```
CLIENT: created a Derived class instance
SERVER2: created a Base class instance
SERVER2: print(): Base class instance X
CLIENT: created a Base class instance
CLIENT: print(): Base class instance X
```

In this example, the object was passed as a Derived class instance to SERVER2. Since SERVER2 only implements the Base class, this object is converted to a Base class instance and send back to CLIENT.

11.5.7 XML Attributes

The SOAP RPC/LIT and SOAP DOC/LIT encoding styles support XML attributes in SOAP messages while SOAP RPC with "Section 5" encoding does not support XML attributes other than the SOAP and XSD specific attributes. SOAP RPC "Section 5" encoding has advantages for cross-language interoperability and data encodings such as graph serialization. However, RPC/LIT and DOC/LIT enables direct exchange of XML documents, which may include encoded application data structures. Language interoperability is compromised, because no mapping between XML and the typical language data types is defined. The meaning of the RPC/LIT and DOC/LIT XML content is Schema driven rather than application/language driven.

gSOAP supports XML attribute (de)serialization of members in structs and classes. Attributes are primitive XSD types, such as strings, enumerations, boolean, and numeric types. To declare an XML attribute in a struct/class, the qualifier **@** is used with the type of the attribute. The type must be primitive type (including enumerations and strings), which can be declared with or without a **typedef** to associate a XSD type with the C/C+ type. For example

```
typedef char *xsd__string;
typedef bool *xsd__boolean;
enum ns__state { _0, _1, _2 };
struct ns__myStruct
{
    @ xsd__string ns__type; // encode as XML attribute 'ns:type' of type 'xsd:string'
    @ xsd__boolean ns__flag = false; // encode as XML attribute 'ns:flag' of type 'xsd:boolean'
    @ enum ns__state ns__state = _2; // encode as XML attribute 'ns:state' of type 'ns:state'
    struct ns__myStruct *next;
};
```

The @ qualifier indicates XML attribute encoding for the ns_type, ns_flag, and ns_state fields. Note that the namespace prefix ns is used to distinguish these attributes from any other attributes such as xsi:type (ns:type is not to be confused with xsi:type).

Default values can be associated with any field that has a primitive type in a struct/class, as is illustrated in this example. The default values are used when the receiving message does not contain the corresponding values.

String attributes are optional. Other type of attributes should be declared as pointers to make them optional:

```
struct ns__myStruct
{
    @int *a; // omitted when NULL };
```

Because a remote method request and response is essentially a struct, XML attributes can also be associated with method requests and responses. For example

```
int ns__myMethod(@char *ns__name, ...);
```

Attributes can also be attached to the dynamic arrays, binary types, and wrapper classes/structs of primitive types. Wrapper classes are described in Section 11.2.2. For example

```
struct xsd__string
{
    char *__item;
    @ xsd__boolean flag;
};
and

struct xsd__base64Binary
{
    unsigned char *__ptr;
    int __size;
    @ xsd__boolean flag;
};
```

The attribute declarations MUST follow the __item, __ptr, and __size fields which define the characteristics of wrapper structs/classes and dynamic arrays.

Caution: Do not use XML attributes with SOAP RPC encoding. You can only use attributes with RPC literal encoding.

11.5.8 QName Attributes and Elements

gSOAP ensures the proper decoding of XSD QNames. An element or attribute with type QName (Qualified Name) contains a namespace prefix and a local name. You can declare a QName type as a **typedef char** *xsd_QName. Values of type QName are internally handled as regular strings. gSOAP takes care of the proper namespace prefix mappings when describing QName values. For example

```
typedef char *xsd__QName;
struct ns__myStruct
{
    xsd__QName elt = "ns:xyz"; // QName element with default value "ns:xyz"
    @ xsd__QName att = "ns:abc"; // QName attribute with default value "ns:abc"
};
```

When the elt and att fields are serialized, their string contents are just transmitted (which means that the application is responsible to ensure proper formatting of the QName strings prior to transmission). When the fields are descrialized however, gSOAP takes care mapping the qualifiers to the appropriate namespace prefixes. Suppose that the inbound value for the elt is x:def, where the namespace name associated with the prefix x matches the namespace name of the prefix ns (as defined in the namespace mapping table). Then, the value is automatically converted into ns:def. If the namespace name is not in the table, then x:def is converted to "URI":def where "URI" is the namespace URI bound to x in the message received. This enables an application to retrieve the namespace information, whether it is in the namespace mapping table or not.

Note: QName is a pre-defined typedef type and used by gSOAP to (de)serialize SOAP Fault codes which are QName elements.

11.6 Pointer Encoding and Decoding

The serialization of a pointer to a data type amounts to the serialization of the data type in SOAP and the SOAP encoded representation of a pointer to the data type is indistinguishable from the encoded representation of the data type pointed to.

11.6.1 Multi-Reference Data

A data structure pointed to by more than one pointer is serialized as SOAP multi-reference data. This means that the data will be serialized only once and identified with a unique id attribute. The encoding of the pointers to the shared data is done through the use of href attributes to refer to the multi-reference data (also see Section 9.12 on options to control the serialization of multi-reference data). Cyclic C/C++ data structures are encoded with multi-reference SOAP encoding. Consider for example the following a linked list data structure:

```
typedef char *xsd__string;
struct ns__list
{
    xsd__string value;
    struct ns__list *next;
};
```

Suppose a cyclic linked list is created. The first node contains the value "abc" and points to a node with value "def" which in turn points to the first node. This is encoded as:

```
<ns:list id="1" xsi:type="ns:list">
    <value xsi:type="xsd:string">abc</value>
    <next xsi:type="ns:list">
        <value xsi:type="xsd:string">def</value>
        <next href="#1"/>
        </next>
</ns:list>
```

In case multi-referenced data is received that "does not fit in a pointer-based structure", the data is copied. For example, the following two **structs** are similar, except that the first uses pointer-based fields while the other uses non-pointer-based fields:

```
typedef long xsd__int;
struct ns__record
{
    xsd__int *a;
    xsd__int *b;
} P;
struct ns__record
{
    xsd__int a;
    xsd__int b;
} R;
...
    P.a = &n;
    P.b = &n;
...
```

Since both a and b fields of P point to the same integer, the encoding of P is multi-reference:

```
<ns:record xsi:type="ns:record">
    <a href="#1"/>
    <b href="#1"/>
</ns:record>
<id id="1" xsi:type="xsd:int">123</id>
```

Now, the decoding of the content in the R data structure that does not use pointers to integers results in a copy of each multi-reference integer. Note that the two **struct**s resemble the same XML data type because the trailing underscore will be ignored in XML encoding and decoding.

11.6.2 NULL Pointers and Nil Elements

A NULL pointer is **not** serialized, unless the pointer itself is pointed to by another pointer (but see Section 9.12 to control the serialization of NULLs). For example:

```
struct X
{
   int *p;
   int **q;
}
```

Suppose pointer q points to pointer p and suppose p=NULL. In that case the p pointer is serialized as

```
<... id="123" xsi:nil="true"/>
```

and the serialization of q refers to href="#123". Note that SOAP 1.1 does not support pointer to pointer types (!), so this encoding is specific to gSOAP. The pointer to pointer encoding is rarely used in codes anyway. More common is a pointer to a data type such as a **struct** with pointer fields.

Caution: When the description as XML element that has a xsi:nil="true" attribute but the corresponding C++ data is not a pointer or reference, the description will terminate with a SOAP_NULL fault when the SOAP_XML_NIL flag is set. The types section of a WSDL description contains information on the "nilability" of data.

11.7 Void Pointers

In general, void pointers (void*) cannot be (de)serialized because the type of data referred to is untyped. To enable the (de)serialization of the void pointers that are members of structs or classes, you can insert a int _type field right before the void pointer field. The int _type field contains run time information on the type of the data pointed to by void* member in a struct/class to enable the (de)serialization of this data. The int _type field is set to a SOAP_TYPE_X value, where X is the name of a type. gSOAP generates the SOAP_TYPE_X definitions in soapH.h and uses them internally to uniquely identify the type of each object. The type naming conventions outlined in Section 8.4.1 are used to determine the type name for X.

Here is an example to illustrate the (de)serialization of a void* field in a struct:

```
struct myStruct
{
   int __type; // the SOAP_TYPE pointed to by p
   void *p;
};
```

The __type integer can be set to 0 at run time to omit the serialization of the void pointer field.

The following example illustrates the initialization of myStruct with a void pointer to an int:

```
struct myStruct S;
int n;
S.p = &n;
S._type = SOAP_TYPE_int;
```

The serialized output of S contains the integer.

The descrializer for myStruct will automatically set the __type field and void pointer to the descrialized data, provided that the XML content for p carries the xsi:type attribute from which gSOAP can determine the type.

Important: when (de)serializing strings via a **void*** field, the **void*** pointer MUST directly point to the string value rather than indirectly as with all other types. For example:

```
struct myStruct S;
S.p = (void*)"Hello";
S.__type = SOAP_TYPE_string;
```

This is the case for all string-based types, including types defined with typedef char*.

You may use an arbitrary suffix with the __type fields to handle multiple void pointers in structs/classes. For example

```
struct myStruct
{
   int __typeOfp; // the SOAP_TYPE pointed to by p
   void *p;
   int __typeOfq; // the SOAP_TYPE pointed to by q
   void *q;
};
```

Because service method parameters are stored within structs, you can use __type and void* parameters to pass polymorphic arguments without having to define a C++ class hierarchy (Section 11.5.6). For example:

```
typedef char *xsd__string;
typedef int xsd__int;
typedef float xsd__float;
enum ns__status { on, off };
struct ns__widget { xsd__string name; xsd__int part; }; int ns__myMethod(int __type, void *data,
struct ns__myMethodResponse { int __type; void *return_; } *out);
```

This method has a polymorphic input parameter data and a polymorphic output parameter return. The _type parameters can be one of SOAP_TYPE_xsd_string, SOAP_TYPE_xsd_int, SOAP_TYPE_xsd_float, SOAP_TYPE_ns_status, or SOAP_TYPE_ns_widget. The WSDL produced by the gSOAP compiler declares the polymorphic parameters of type xsd:anyType which is "too loose" and doesn't allow the gSOAP importer to handle the WSDL accurately. Future gSOAP releases might replace xsd:anyType with a choice schema type that limits the choice of types to the types declared in the header file.

11.8 Fixed-Size Arrays

Fixed size arrays are encoded as per SOAP 1.1 one-dimensional array types. Multi-dimensional fixed size arrays are encoded by gSOAP as nested one-dimensional arrays in SOAP. Encoding of fixed size arrays supports partially transmitted and sparse array SOAP formats.

The decoding of (multi-dimensional) fixed-size arrays supports the SOAP multi-dimensional array format as well as partially transmitted and sparse array formats.

An example:

```
// Contents of header file "fixed.h":
struct Example
{
  float a[2][3];
};
```

This specifies a fixed-size array part of the **struct** Example. The encoding of array a is:

```
<a xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[][2]">
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>
<SOAP-ENC:Array xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="float[3]"
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
<float xsi:type="float">...</float>
</SOAP-ENC:Array>
</soap-ENC:Array>
</a>
```

Caution: Any decoded parts of a (multi-dimensional) array that do not "fit" in the fixed size array are ignored by the descrializer.

11.9 Dynamic Arrays

As the name suggests, dynamic arrays are much more flexible than fixed-size arrays and dynamic arrays are better adaptable to the SOAP encoding and decoding rules for arrays. In addition, a typical C application allocates a dynamic array using malloc, assigns the location to a pointer variable, and deallocates the array later with free. A typical C++ application allocates a dynamic array using new, assigns the location to a pointer variable, and deallocates the array later with

delete. Such dynamic allocations are flexible, but pose a problem for the serialization of data: how does the array serializer know the length of the array to be serialized given only a pointer to the sequence of elements? The application stores the size information somewhere. This information is crucial for the array serializer and has to be made explicitly known to the array serializer by packaging the pointer and array size information within a **struct** or **class**.

11.9.1 SOAP Array Bounds Limits

SOAP encoded arrays use the SOAP-ENC: Array type and the SOAP-ENC: arrayType attribute to define the array dimensionality and size. As a security measure to avoid denial of service attacks based on sending a huge array size value requiring the allocation of large chunks of memory, the total number of array elements set by the SOAP-ENC: arrayType attribute cannot exceed SOAP_MAXARRAYSIZE, which is set to 100,000 by default. This constant is defined in stdsoap2.h. This constant only affects multi-dimensional arrays and the dimensionality of the receiving array will be lost when the number of elements exceeds 100,000. One-dimensional arrays will be populated in sequential order as expected.

11.9.2 One-Dimensional Dynamic Arrays

A special form of **struct** or **class** is used for one-dimensional dynamic arrays that contains a pointer variable and a field that records the number of elements the pointer points to in memory.

The general form of the **struct** declaration for one-dimensional dynamic SOAP arrays is:

where <u>Type</u> MUST be a type associated with an XML schema or MUST be a primitive type. If these conditions are not met, a vector-like XML (de)serialization is used (see Section 11.9.7). A primitive type can be used with or without a **typedef**. If the array elements are structs or classes, then the struct/class type names should have a namespace prefix for schema association, or they should be other (nested) dynamic arrays.

An alternative to a **struct** is to use a **class** with optional methods that MUST appear after the __ptr and __size fields:

To encode the data type as an array, the name of the **struct** or **class** SHOULD NOT have a namespace prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.9.7.

The descrializer of a dynamic array can decode partially transmitted and/or SOAP sparse arrays, and even multi-dimensional arrays which will be collapsed into a one-dimensional array with row-major ordering.

Caution: SOAP 1.2 does not support partially transmitted arrays. So the __offset field of a dynamic array is ignored.

11.9.3 Example

The following example header file specifies the XMethods Service Listing service getAllSOAPServices remote method and an array of SOAPService data structures:

```
// Contents of file "listing.h":
      class ns3__SOAPService
        public:
        int ID;
        char *name;
        char *owner:
        char *description;
        char *homepageURL;
        char *endpoint;
        char *SOAPAction;
        char *methodNamespaceURI;
        char *serviceStatus;
        char *methodName;
        char *dateCreated;
        char *downloadURL;
        char *wsdIURL:
        char *instructions:
        char *contactEmail;
        char *serverImplementation;
      class ServiceArray
        ns3__SOAPService *__ptr; // points to array elements
        int __size; // number of elements pointed to
        ServiceArray();
        ~ServiceArray();
        void print();
      int ns__getAllSOAPServices(ServiceArray &return_);
An example client application:
      #include "soapH.h" ...
      // ServiceArray class method implementations:
      ServiceArray::ServiceArray()
```

```
_{-}ptr = NULL;
  \_size = 0;
ServiceArray:: ~ServiceArray()
{ // destruction handled by gSOAP
void ServiceArray::print()
  for (int i = 0; i = 1 size; i++)
    \mathsf{cout} << \_\_\mathsf{ptr}[i].\mathsf{name} << ":" << \_\_\mathsf{ptr}[i].\mathsf{homepage} << \mathsf{endl};
// Request a service listing and display results:
  struct soap soap;
  ServiceArray result;
  const char *endpoint = "www.xmethods.net:80/soap/servlet/rpcrouter";
  const char *action = "urn:xmethodsServicesManager#getAllSOAPServices";
  soap_init(&soap);
  soap_call_ns__getAllSOAPServices(&soap, endpoint, action, result);
  result.print();
  soap_destroy(&soap); // dealloc class instances
  soap_end(&soap); // dealloc deserialized data
  soap_done(&soap); // cleanup and detach soap struct
}
```

11.9.4 One-Dimensional Dynamic Arrays With Non-Zero Offset

The declaration of a dynamic array as described in 11.9 MAY include an **int__offset** field. When set to an integer value, the serializer of the dynamic array will use this field as the start index of the array and the SOAP array offset attribute will be used in the SOAP payload. Note that array offsets is a SOAP 1.1 specific feature which is not supported in SOAP 1.2.

For example, the following header file declares a mathematical Vector class, which is a dynamic array of floating point values with an index that starts at 1:

```
// Contents of file "vector.h":
typedef float xsd__float;
class Vector
{
    xsd__float *__ptr;
    int __size;
    int __offset;
    Vector();
    Vector(int n);
    float& operator[](int i);
}
```

The implementations of the Vector methods are:

```
Vector::Vector()
```

```
{
    __ptr = NULL;
    __size = 0;
    __offset = 1;
}
Vector::Vector(int n)
{
    __ptr = (float*)malloc(n*sizeof(float));
    __size = n;
    __offset = 1;
}
Vector::~Vector()
{
    if (__ptr)
        free(__ptr);
}
float& Vector::operator[](int i)
{
    return __ptr[i-__offset];
}
```

An example program fragment that serializes a vector of 3 elements:

```
struct soap soap;

soap_init(&soap);

Vector v(3);

v[1] = 1.0;

v[2] = 2.0;

v[3] = 3.0;

soap_begin(&soap);

v.serialize(&soap);

v.put("vec");

soap_end(&soap);
```

The output is a partially transmitted array:

```
<vec xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="xsd:float[4]" SOAP-ENC:offset="[1]">
<item xsi:type="xsd:float">1.0</item>
<item xsi:type="xsd:float">2.0</item>
<item xsi:type="xsd:float">3.0</item>
</vec>
```

Note that the size of the encoded array is necessarily set to 4 and that the encoding omits the non-existent element at index 0.

The decoding of a dynamic array with an __offset field is more efficient than decoding a dynamic array without an __offset field, because the __offset field will be assigned the value of the SOAP-ENC:offset attribute instead of padding the initial part of the array with default values.

11.9.5 Nested One-Dimensional Dynamic Arrays

One-dimensional dynamic arrays MAY be nested. For example, using **class** Vector declared in the previous section, **class** Matrix is declared:

The Matrix type is essentially an array of pointers to arrays which make up the rows of a matrix. The encoding of the two-dimensional dynamic array in SOAP will be in nested form.

11.9.6 Multi-Dimensional Dynamic Arrays

The general form of the **struct** declaration for K-dimensional (K > 1) dynamic arrays is:

where <u>Type</u> MUST be a type associated with an XML schema, which means that it must be a **typedef**ed type in case of a primitive type, or a **struct/class** name with a namespace prefix for schema association, or another dynamic array. If these conditions are not met, a generic vector XML (de)serialization is used (see Section 11.9.7).

An alternative is to use a **class** with optional methods:

In the above, K is a constant denoting the number of dimensions of the multi-dimensional array.

To encode the data type as an array, the name of the **struct** or **class** SHOULD NOT have a namespace prefix, otherwise the data type will be encoded and decoded as a generic vector, see Section 11.9.7.

The descrializer of a dynamic array can decode partially transmitted multi-dimensional arrays.

For example, the following declaration specifies a matrix class:

```
typedef double xsd__double;
class Matrix
{
    public:
    xsd__double *__ptr;
    int __size[2];
    int __offset[2];
};
```

In contrast to the matrix class of Section 11.9.5 that defined a matrix as an array of pointers to matrix rows, this class has one pointer to a matrix stored in row-major order. The size of the matrix is determined by the __size field: __size[0] holds the number of rows and __size[1] holds the number of columns of the matrix. Likewise, __offset[0] is the row offset and __offset[1] is the columns offset.

11.9.7 Encoding XML Generics Containing Dynamic Arrays

XML "generics" extend the concept of a struct by allowing repetitions of elements within the struct. A simple generic is an array-like data structure with a repetition of one element. To achieve this, declare a dynamic array as a **struct** or **class** with a name that is qualified with a namespace prefix. SOAP arrays are declared without prefix.

For example:

```
struct ns__Map
{
    struct ns__Binding {char *key; char *val;} *__ptr;
    int __size;
};
```

This declares a dynamic array, but the array will be serialized and deserialized as a generic with a list-like data structure. For example:

```
<ns:Map xsi:type="ns:Map">
<ns:Binding xsi:type="ns:Binding">
<key>Joe</key>
<val>555 77 1234</val>
</ns:Binding>
<ns:Binding xsi:type="ns:Binding">
<key>Susan</key>
<val>555 12 6725</val>
</ns:Binding>
<ns:Binding xsi:type="ns:Binding">
<key>Pete</key>
<val>555 99 4321</val>
</ns:Binding>
</ns:Map>
```

Descrialization is less efficient compared to an array, because the size of the list is not part of the SOAP encoding. Internal buffering is used by the descrializer to collect the elements. When the

end of the list is reached, the buffered elements are copied to a newly allocated space on the heap for the dynamic array.

Multiple arrays can be used in a struct/class to support the concept of generics. Each array results in a repetition of elements in the struct/class. This is achieved with a <code>int __size</code> field in the struct/class where the next field (i.e. below the __size field) is a pointer type. The pointer type is assumed to point to an array of values at run time. The __size field holds the number of values at run time. Multiple arrays can be embedded in a struct/class with __size fields that have a distinct names. To make the __size fields distinct, you can end them with a unique name suffix such as __sizeOfstrings, for example.

The general convention for embedding arrays is:

where <u>name1</u> and <u>name2</u> are identifiers used as a suffix to distinguish the <u>__size</u> field. These names can be arbitrary and are not visible in XML.

For example, the following struct has two embedded arrays:

```
struct ns_Contact
{
    char *firstName;
    char *lastName;
    int __sizePhones;
    ULONG64 *phoneNumber; // array of phone numbers
    int __sizeEmails;
    char **emailAddress; // array of email addresses
    char *socSecNumber;
};
```

The XML serialization of an example ns_-Contact is:

```
<mycontact xsi:type="ns:Contact">
  <firstName>Joe</firstName>
  <lastName>Smith</lastName>
  <phoneNumber>5551112222</phoneNumber>
  <phoneNumber>5551234567</phoneNumber>
  <phoneNumber>5552348901</phoneNumber>
  <emailAddress>Joe.Smith@mail.com</emailAddress>
  <emailAddress>Joe@Smith.com</emailAddress>
  <socSecNumber>999999999</socSecNumber>
</mycontact>
```

122

11.9.8 STL Containers

gSOAP supports the STL containers std::deque, std::list, std::set, and std::vector.

STL containers can only be used within classes to declare members that contain multiple values. This is somewhat similar to the embedding of arrays in structs in C as explained in Section 11.9.7, but the STL container approach is more flexible.

You need to import stideque, stillist, stillist, or stivector, to enable std::deque, std::list, std::set, and std::vector (de)serialization. Here is an example:

```
#import "stlvector.h"
class ns_ myClass
{ public:
    std::vector<int> *number;
    std::vector<xsd_ string> *name;
    ...
};
```

The use of pointer members is not required but advised. The reason is that interoperability with other SOAP toolkits may lead to copying of ns_myClass instances at run time when (de)serializing multi-referenced data. When a copy is made, certain parts of the containers will be shared between the copies which could lead to disaster when the classes with their containers are deallocated. Another way to avoid this is to declare class ns_myClass within other data types via a pointer. (Interoperability between gSOAP clients and services does not lead to copying.)

The XML schema that corresponds to the ns_myClass type is

You can specify the minOccurs and maxOccurs values as explained in Section 15.2.

You can also implement your own containers similar to STL containers. The containers must be class templates and should define an iterator type, and **void** clear(), iterator begin(), iterator end(), and iterator insert(iterator pos, const_reference val). The iterator should have a dereference operator to access the container's elements. The dereference operator is used by gSOAP to send a sequence of XML element values. The insert method can be used as a setter method. gSOAP reads a sequence of XML element values and inserts them in the container via this method.

Here is in example user-defined container template class:

```
// simpleVector.h
template <class T>
class simpleVector
{
public:
    typedef T value_type;
```

```
typedef value_type * pointer;
  typedef const value_type * const_pointer;
  typedef value_type & reference;
  typedef const value_type & const_reference;
  typedef pointer iterator;
  typedef const_pointer const_iterator:
protected:
  iterator start;
  iterator finish;
  size_t size;
public:
  simpleVector() { clear(); }
  ~simpleVector() { delete[] start; }
  void clear() { start = finish = NULL; }
  iterator begin() { return start; }
  const_iterator begin() const { return start; }
  iterator end() { return finish; }
  const_iterator end() const { return finish; }
  iterator insert(iterator pos, const_reference val)
       if (!start)
         start = finish = new value_type[size = 4];
       else if (finish >= start + size)
         iterator i = start;
         iterator j = new value_type[2 * size];
          start = i;
         finish = start + size;
         size *= 2:
         if (pos)
            pos = j + (pos - i);
          while (i != finish)
            *j++=*i++;
       if (pos && pos != finish)
       { iterator i = finish;
         iterator j = i - 1;
          while (j != pos)
            *i-=*j-;
       *finish++ = val;
       return pos;
};
```

To enable the container, we add the following two lines to our gSOAP header file:

```
#include "simpleVector.h"
template <class T> class simpleVector;
```

The container class should not be defined in the gSOAP header file. It must be defined in a separate header file (e.g. "simpleVector.h"). The **template** <class T> **class** simpleVector declaration ensures that gSOAP will recognize simpleVector as a container class.

Caution: when parsing XML content the container elements may not be stored in the same order given in the XML content. When gSOAP parses XML it uses the insert container methods to store elements one by one. However, element content that is "forwarded" with href attributes will be appended to the container. Forwarding can take place with multi-referenced data that is referred to from the main part of the SOAP 1.1 XML message to the independent elements that carry ids. Therefore, your application should not rely on the preservation of the order of elements in a container.

11.9.9 Polymorphic Dynamic Arrays and Lists

Polymorphic arrays (arrays of polymorphic element types) can be encoded when declared as an array of pointers to class instances. and lists. For example:

The pointers in the array can point to the ns_Object base class or ns_Data derived class instances which will be serialized and describilized accordingly in SOAP. That is, the array elements are polymorphic.

11.9.10 How to Change the Tag Names of the Elements of a SOAP Array or List

The __ptr field in a **struct** or **class** declaration of a dynamic array may have an optional suffix part that describes the name of the tags of the SOAP array XML elements. The suffix is part of the field name:

```
Type *__ptrarray_elt_name
```

The suffix describes the tag name to be used for all array elements. The usual identifier to XML translations apply, see Section 10.3. The default XML element tag name for array elements is item (which corresponds to the use of field name __ptritem).

Consider for example:

SOAP 1.1 and 1.2 do not require the use of a specific tag name for array elements. gSOAP will deserialize a SOAP array while ignoring the tag names. Certain XML schemas used in doc/literal encoding may require the declaration of array element tag names.

11.10 Base64Binary XML Schema Type Encoding

The base64Binary XML schema type is a special form of dynamic array declared with a pointer (_-ptr) to an unsigned char array.

For example using a **struct**:

```
struct xsd__base64Binary
{
    unsigned char *__ptr;
    int __size;
};

Or with a class:

class xsd__base64Binary
{
    public:
    unsigned char *__ptr;
    int __size;
};
```

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate base64Binary serializers and descrializers.

The SOAP_ENC:base64 encoding is another type for base 64 binary encoding specified by the SOAP data type schema and some SOAP applications may use this form (as indicated by their WSDL descriptions). It is declared by:

```
struct SOAP_ENC__base64
{
   unsigned char *__ptr;
   int __size;
};
```

Or with a class:

```
class SOAP_ENC__base64
{
   unsigned char *__ptr;
   int __size;
};
```

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate SOAP-ENC: base64 serializers and describilizers.

The advantage of using a **class** is that methods can be used to initialize and manipulate the __ptr and __size fields. The user can add methods to this class to do this. For example:

```
class xsd__base64Binary
{
    public:
    unsigned char *__ptr;
    int __size;
    xsd__base64Binary(); // Constructor
    xsd__base64Binary(struct soap *soap, int n); // Constructor
    ~xsd__base64Binary(); // Destructor
    unsigned char *location(); // returns the memory location
    int size(); // returns the number of bytes
};
```

Here are example method implementations:

```
xsd_base64Binary::xsd_base64Binary()
{
    __ptr = NULL;
    __size = 0;
}
xsd_base64Binary::xsd_base64Binary(struct soap *soap, int n)
{
    __ptr = (unsigned char*)soap_malloc(soap, n);
    __size = n;
}
xsd_base64Binary::~xsd_base64Binary()
{
    unsigned char *xsd_base64Binary::location()
{
        return __ptr;
}
int xsd_base64Binary::size()
{
        return __size;
}
```

The following example in C/C++ reads from a raw image file and encodes the image in SOAP using the base64Binary type:

```
...
FILE *fd = fopen("image.jpg", "r");
xsd_base64Binary image(&soap, filesize(fd));
```

127

```
fread(image.location(), image.size(), 1, fd);
fclose(fd);
soap_begin(&soap);
image.soap_serialize(&soap);
image.soap_put(&soap, "jpegimage", NULL);
soap_end(&soap);
...
```

where filesize is a function that returns the size of a file given a file descriptor.

Reading the xsd:base64Binary encoded image.

```
...
xsd__base64Binary image;
soap_begin(&soap);
image.get(&soap, "jpegimage");
soap_end(&soap);
...
```

The **struct** or **class** name soap_enc__base64 should be used for SOAP-ENC:base64 schema type instead of xsd__base64Binary.

11.11 hexBinary XML Schema Type Encoding

The hexBinary XML schema type is a special form of dynamic array declared with the name xsd_hexBinary and a pointer (__ptr) to an unsigned char array.

For example, using a **struct**:

```
struct xsd_hexBinary
{
    unsigned char *_ptr;
    int __size;
};

Or using a class:

class xsd_hexBinary
{
    public:
    unsigned char *_ptr;
    int __size;
};
```

When compiled by the gSOAP stub and skeleton compiler, this header file specification will generate base64Binary serializers and descrializers.

11.12 Literal XML Encoding Style

gSOAP supports SOAP RPC encoding by default. Literal encoding is optional. Just as with SOAP RPC encoding, literal encoding requires the XML schema of the message data to be provided e.g. in

WSDL in order for the gSOAP compiler to generate the (de)serialization routines. Alternatively, the optional DOM parser (dom.c and dom++.cpp) can be used to handle generic XML or arbitrary XML documents can be (de)serialized into regular C strings or wide character strings (wchar_t*) by gSOAP (see Section 11.12.1).

gSOAP supports literal encoding by default. The //gsoap service encoding, //gsoap service method-encoding, and //gsoap service method-response-encoding directives explicitly enable SOAP encoded or literal encoded messages. For example, to enable RPC encoding style for the entire service, use:

```
//gsoap ns service encoding: encoded
```

To enable encoding for particular service methods, use:

```
//gsoap ns service method-encoding: myMethod encoded int ns_myMethod(...)
```

To enable encoding for particular service methods responses when the method request is literal, use:

```
//gsoap ns service method-response-encoding: myMethod encoded int ns_myMethod(...)
```

Instead of the encoded value, you can use literal, or a specific encoding style value.

Consider the following example that uses the directive to make the literal encoding explicit. The LocalTimeByZipCode remote service method of the LocalTime service provides the local time given a zip code and uses literal encoding (with MS .NET). The following header file declares the method:

```
int LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);
```

Note that none of the data types need to be namespace qualified using namespace prefixes.

```
//gsoap ns service name: localtime
//gsoap ns service encoding: literal
//gsoap ns service namespace: http://alethea.net/webservices/
int ns_LocalTimeByZipCode(char *ZipCode, char **LocalTimeByZipCodeResult);
```

In this case, the method name requires to be associated with a schema through a namespace prefix, e.g. ns is used in this example. See Section 15.2 for more details on gSOAP directives. With these directives, the gSOAP compiler generates client and server sources with the specified settings.

The example client program is:

```
#include "soapH.h"
#include "localtime.nsmap" // include generated map file
int main()
{
    struct soap soap;
    char *t;
    soap_init(&soap);
    if (soap_call_ns__LocalTimeByZipCode(&soap, "http://alethea.net/webservices/LocalTime.asmx",
    "http://alethea.net/webservices/LocalTimeByZipCode", "32306", &t))
```

```
soap\_print\_fault(\&soap, stderr);\\ \textbf{else}\\ printf("Time = %s\n", t);\\ \textbf{return 0};\\ \}
```

To illustrate the manual doc/literal setting, the following client program sets the required properties before the call:

```
#include "soapH.h"
                 #include "localtime.nsmap" // include generated map file
                int main()
                 {
                      struct soap soap;
                      char *t:
                      soap_init(&soap);
                      soap.encodingStyle = NULL; // don't use SOAP encoding
                      soap\_set\_omode(\&soap, SOAP\_XML\_TREE);" // don't produce multi-ref data (but can accept) \\ \textbf{if } (soap\_call\_ns\_LocalTimeByZipCode(\&soap, "http://alethea.net/webservices/LocalTime.asmx", and the soap\_call\_ns\_LocalTime.asmx is a so
                "http://alethea.net/webservices/LocalTimeByZipCode", "32306", &t))
                             soap_print_fault(&soap, stderr);
                      else
                             printf("Time = %s\n", t);
                      return 0;
The SOAP request is:
                POST /webservices/LocalTime.asmx HTTP/1.0
                Host: alethea.net
                Content-Type: text/xml; charset=utf-8
                Content-Length: 479
                SOAPAction: "http://alethea.net/webservices/LocalTimeByZipCode"
                 <?xml version="1.0" encoding="UTF-8"?>
                 <SOAP-ENV:Envelope
                       xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
                       xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
                       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
                       xmlns:xsd="http://www.w3.org/2001/XMLSchema"
                       <SOAP-ENV:Body>
                              <LocalTimeByZipCode xmlns="http://alethea.net/webservices/">
                 <ZipCode>32306</ZipCode></LocalTimeByZipCode>
                        </SOAP-ENV:Body>
                 </SOAP-ENV:Envelope>
```

11.12.1 Serializing and Deserializing Mixed Content XML With Strings

To declare a literal XML "type" to hold XML documents in regular strings, use:

```
typedef char *XML;
```

To declare a literal XML "type" to hold XML documents in wide character strings, use:

```
typedef wchar_t *XML;
```

Note: only one of the two storage formats can be used. The differences between the use of regular strings versus wide character strings for XML documents are:

- Regular strings for XML documents MUST hold UTF-8 encoded XML documents. That is, the string MUST contain the proper UTF-8 encoding to exchange the XML document in SOAP messages.
- Wide character strings for XML documents SHOULD NOT hold UTF-8 encoded XML documents. Instead, the UTF-8 translation is done automatically by the gSOAP runtime marshalling routines.

Here is an example of a remote method specification in which the parameters of the remote method uses literal XML encoding to pass an XML document to a service and back:

```
typedef char *XML;
ns__GetDocument(XML m__XMLDoc, XML &m__XMLDoc_);
```

The ns__Document is essentially a **struct** that forms the root of the XML document. The use of the underscore in the ns__Document response part of the message avoids the name clash between the **structs**. Assuming that the namespace mapping table contains the binding of ns to http://my.org/and the binding of m to http://my.org/mydoc.xsd, the XML message is:

```
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns="http://my.org/"
 xmlns:m="http://my.org/mydoc.xsd"
 SOAP-ENV:encodingStyle="">
  <SOAP-ENV:Body>
    <ns:GetDocument>
      <XMLDoc xmlns="http://my.org/mydoc.xsd">
      </XMLDoc>
    </ns:Document>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

When using literal encoding of method parameters and response as shown in the example above, the literal XML encoding style MUST be specified by setting soap.encodingStyle. For example, to specify no constraints on the encoding style (which is typical) use NULL:

```
struct soap soap;
soap_init(&soap);
soap.encodingStyle = NULL;
```

As a result, the SOAP-ENV: encodingStyle attribute will not appear in the SOAP payload.

For interoperability with Apache SOAP, use

```
\label{eq:struct} \begin{split} & struct \text{ soap soap;} \\ & soap\_init(\&soap); \\ & soap.encodingStyle = "http://xml.apache.org/xml-soap/literalxml";} \end{split}
```

When the response parameter is an XML type, it will store the entire XML response content but without the enveloping response element.

The XML type can be used as part of any data structure to enable the rendering and parsing of custom XML documents. For example:

```
typedef char *XML;
struct ns__Data /* data in namespace 'ns' */
{
  int number;
  char *name;
  XML m__document; /* XML document in default namespace 'm' */
};
ns__Example(struct ns__Data data, struct ns__ExampleResponse { struct ns__Data data; } *out);
```

12 SOAP Fault Processing

A predeclared standard SOAP Fault data structure is generated by the gSOAP stub and skeleton compiler for exchanging exception messages. The built-in **struct** SOAP_ENV__Fault data structure is defined as:

```
struct SOAP_ENV__Fault
  char *faultcode; // MUST be string
  char *faultstring; // MUST be string
  char *faultactor;
  struct SOAP_ENC__Detail *detail; // detail field
  struct SOAP_ENV__Code *SOAP_ENV__Code; // MUST be a SOAP_ENV__Code struct defined
below
  char *SOAP_ENV__Reason; // MUST be string
  struct SOAP_ENV__Detail SOAP_ENV__Detail; // SOAP 1.2 detail field
}; struct SOAP_ENV__Code
  char *SOAP_ENV__Value; // MUST be string
  char *SOAP_ENV__Node;
  char *SOAP_ENV__Role;
struct SOAP_ENV__Detail
  int __type; // The SOAP_TYPE_ of the object serialized as Fault detail
  void *value; // pointer to the object, or NULL
  char *__any; // any other detail element content (stored in XML format)
};
```

The first four fields in SOAP_ENV_Fault are SOAP 1.1 specific. The last three fields are SOAP 1.2 specific. You can redefine these structures in the header file. For example, you can use a class for the SOAP_ENV_Fault and add methods for convenience.

The data structure content can be changed to the need of an application, but this is generally not necessary because the application-specific SOAP Fault details can be serialized via the __type and value fields in the SOAP_ENV__Detail field, see Section 11.7 on the serialization of data referred to by __type and value.

The __type field allows application data to be serialized as part of the SOAP Fault. The application data SHOULD be defined as XML elements, which requires you to declare the type names with a leading underscore to ensure that the types are compatible with XML elements and not just simpleTypes and complexTypes.

When the skeleton of a remote method returns an error (see Section 10.2), then soap fault contains the SOAP Fault data at the receiving side (client).

Server-side faults are raised with soap_sender_fault or soap_receiver_fault. The soap_sender_fault call should be used to inform that the sender is at fault and the sender (client) should not resend the request. The soap_receiver_fault call should be used to indicate a temporary server-side problem, so a sender (client) can resend the request later. For example:

```
int ns1_myMethod(struct soap *soap, ...)
{
    ...
    return soap_receiver_fault(soap, "Resource temporarily unavailable", NULL); // return fault to sender
}
```

In the example, the SOAP Fault details were empty (NULL). You may pass an XML fragment, which will be literally included in the SOAP Fault message. For WS-I Basic Profile compliance, you must pass an XML string with one or more namespace qualified elements, such as:

```
return soap_receiver_fault(soap, "Resource temporarily unavailable", "<errorcode xmlns='http://tempuri.org'>123</errorcode xmlns='http://tempuri.org'>abc</errorinfo>");
```

When a remote method must raise an exception with application SOAP Fault details, it does so by assigning the soap.fault field of the current reference to the runtime environment with appropriate data associated with the exception and by returning the error SOAP_FAULT. For example:

```
soap_receiver_fault(soap, "Stack dump", NULL);
if (soap->version == 2) // SOAP 1.2 is used
{
    soap->fault->SOAP_ENV__Detail = (struct SOAP_ENV__Detail*)soap_malloc(soap, sizeof(struct SOAP_ENV__Detail);
    soap->fault->SOAP_ENV__Detail->__type = SOAP_TYPE_ns1__myStackDataType; // stack type
    soap->fault->SOAP_ENV__Detail->value = sp; // point to stack
    soap->fault->SOAP_ENV__Detail->__any = NULL; // no other XML data
}
else
{
    soap->fault->detail = (struct SOAP_ENV__Detail*)soap_malloc(soap, sizeof(struct SOAP_ENV__Detail);
```

```
soap->fault->detail->__type = SOAP_TYPE_ns1__myStackDataType; // stack type
soap->fault->detail->value = sp; // point to stack
soap->fault->detail->__any = NULL; // no other XML data
}
return SOAP_FAULT; // return from remote method call
```

When soap_receiver_fault allocates a fault struct, this data is removed with the soap_end call (or soap_dealloc). Note that the soap_receiver_fault function is called to allocate the fault struct and set the fault string and detail fields, i.e. soap_receiver_fault(soap, "Stack dump", NULL). The advantage is that this is independent of SOAP 1.1 and SOAP 1.2. However, setting the custom detail fields requires inspecting the SOAP version used, using the soap->version attribute which is 1 for SOAP 1.1 and 2 for SOAP 1.2.

Each remote method implementation in a service application can return a SOAP Fault upon an exception by returning an error code, see Section 8.2.1 for details and an example. In addition, a SOAP Fault can be returned by a service application through calling the soap_send_fault function. This is useful in case the initialization of the application fails, as illustrated in the example below:

```
int main()
{
    struct soap soap;
    soap_init(&soap);
    some initialization code
    if (initialization failed)
    {
        soap.error = soap_receiver_fault(&soap, "Init failed", NULL); // set the error condition (SOAP_FAULT)
        soap_send_fault(&soap); // Send SOAP Fault to client
        return 0; // Terminate
    }
}
```

13 SOAP Header Processing

A predeclared standard SOAP Header data structure is generated by the gSOAP stub and skeleton compiler for exchanging SOAP messages with SOAP Headers. This predeclared data structure is:

```
struct SOAP_ENV__Header
{ void *dummy;
}:
```

which declares and empty header (some C and C++ compilers don't accept empty structs so a transient dummy field is provided).

To adapt the data structure to a specific need for SOAP Header processing, a new **struct** SOAP_ENV__Header can be added to the header file input to the gSOAP compiler. A **class** for the SOAP Header data structure can be used instead of a **struct**.

For example, the following header can be used for transaction control:

```
struct SOAP_ENV__Header
{ char *t__transaction;
};
```

with client-side code:

```
struct soap soap;
soap_init(&soap);
...
soap.header = NULL; // do not use a SOAP Header for the request (as set with soap_init)
soap_actor = NULL; // do not use an actor (receiver is actor)
soap_call_method(&soap, ...);
if (soap_header) // a SOAP Header was received
    cout << soap_header->t__transaction;
// Can reset, modify, or set soap_header here before next call
soap_call_method(&soap, ...); // reuse the SOAP Header of the service response for the request ...
```

The SOAP Web service response can include a SOAP Header with a transaction number that the client is supposed to use for the next remote method invocation to the service. Therefore, the next request includes a transaction number:

```
...
<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<transaction xmlns="..." xsi:type="int">12345</transaction>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

This is just an example and the transaction control is not a feature of SOAP but can be added on by the application layer to implement stateful transactions between clients and services. At the client side, the soap.actor attribute can be set to indicate the recipient of the header (the SOAP SOAP-ENV:actor attribute).

A Web service can read and set the SOAP Header as follows:

See Section 15.2 on how to generate WSDL with the proper method-to-header-part bindings.

The SOAP-ENV:mustUnderstand attribute indicates the requirement that the recipient of the SOAP Header (who must correspond to the SOAP-ENV:actor attribute when present or when the attribute has the value SOAP-ENV:actor="http://schemas.xmlsoap.org/soap/actor/next") MUST handle the Header part that carries the attribute. gSOAP handles this automatically on the background. However, an application still needs to inspect the header part's value and handle it appropriately. If a remote method in a Web service is not able to do this, it should return SOAP_MUSTUNDERSTAND to indicate this failure.

The syntax for the header file input to the gSOAP compiler is extended with a special storage qualifier mustUnderstand. This qualifier can be used in the SOAP Header declaration to indicate which parts should carry a SOAP-ENV:mustUnderstand="1" attribute. For example:

```
struct SOAP_ENV__Header
{
   char *t__transaction;
   mustUnderstand char *t__authentication;
};
```

When both fields are set and soap.actor="http://some/actor" then the message contains:

```
<SOAP-ENV:Envelope ...>
<SOAP-ENV:Header>
<transaction xmlns="...">5</transaction>
<authentication xmlns="..." SOAP-ENV:actor="http://some/actor" SOAP-ENV:mustUnderstand="1">XX
</authentication>
</SOAP-ENV:Header>
<SOAP-ENV:Body>
...
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
```

14 DIME Attachment Processing

gSOAP can transmit binary data with DIME attachments with or without streaming. With DIME output streaming, the binary data is retrieved from an application's data source at run time in parts without storing the entire content. With DIME input streaming, the binary data will be handed to the application in parts. DIME streaming is implemented with function callbacks. See Section 14.2 for more details.

14.1 Non-Streaming DIME

Without streaming, the binary data is stored in augmented xsd:base64Binary and xsd:hexBinary structs/classes. These structs/classes have three additional fields: an id field for attachment referencing (typically a content id (CID) or UUID), a type field to specify the MIME type of the binary data, and an options field to piggy-back additional information with a DIME attachment. DIME attachment support is fully automatic, which means that gSOAP will test for the presence of attachments at run time and use SOAP in DIME accordingly.

A xsd:base64Binary type with DIME attachment support is declared by

```
struct xsd__base64Binary
{
    unsigned char *__ptr;
    int __size;
    char *id;
    char *type;
    char *options;
};
```

The specification order of the fields is significant. In addition, no other fields or methods may be declared before any of these fields in the struct/class, but additional fields and methods can appear after the field declarations. A xsd:hexBinary declaration is similar. When the id field and/or type field is non-NULL during run-time serialization of the data, DIME attachment transmission is used for the entire SOAP message, as per SOAP in DIME specifications. When only the type field is set, gSOAP will assign a default DIME id to the attachment (see also below). The options field is an optional string with a special layout: the first two bytes are reserved for the option type, the next two bytes store the size of the option data, followed by the option data. The function

```
char *soap_dime_option(struct soap *soap, unsigned short type, const char *option)
```

returns a string with this encoding. For example

```
struct xsd__base64Binary image;
image.__ptr = ...;
image.__size = ...;
image.id = "uuid:09233523-345b-4351-b623-5dsf35sgs5d6";
image.type = "image/jpeg";
image.options = soap_dime_option(soap, 0, "My wedding picture");
```

When receiving DIME attachments, the fields will be set according to the DIME attachment content. If binary data is received without attachments, the id, type, options fields are all NULL. Note that SOAP messages may contain binary data that references external resources not provided as attachments. In that case, the __ptr field is NULL and the id field refers to the external data source. Non-augmented binary data types xsd:base64Binary and xsd:hexBinary can be used to receive DIME attachments, but the id, type, and options information are absent. Also DIME attachments can be received and stored in strings, but not send from strings.

When necessary, the xsd:base64Binary schema type and its attachment-based counterpart can be specified with class inheritance. For example:

```
class xsd__base64Binary
{
    unsigned char *__ptr;
    int __size;
};
class xsd__base64Binary_ : xsd__base64Binary
{
    char *id;
    char *type;
    char *options;
};
```

The dime_id_format attribute of the current gSOAP run-time environment can be set to the default format of DIME id fields. The format string MUST contain a %d format specifier (or any other int-based format specifier). The value of this specifier is a non-negative integer, with zero being the value of the DIME attachment id for the SOAP message. For example,

```
\label{eq:struct} \begin{split} & struct \text{ soap soap;} \\ & soap\_init(\&soap); \\ & soap\_dime\_id\_format = "uuid:09233523-345b-4351-b623-5dsf35sgs5d6-%x"; \end{split}
```

As a result, all attachments with a NULL id field will use a gSOAP-generated id value based on the format string.

14.2 Streaming DIME

Streaming DIME is achieved with callback functions to fetch and store data during transmission. Three function callbacks for streaming DIME output and three callbacks for streaming DIME input are available. These callbacks are used to access application data resources.

Callback (function pointer)

void *(*soap.fdimereadopen)(struct soap *soap, void *handle, const char *id, const char *type, const char *options)

Called by the gSOAP run-time DIME attachment sender to start reading from a (binary) data source for outbound transmission. The content will be read from the application's data source in chunks using the fdimeread callback and streamed into the SOAP/XML/DIME output stream. The handle contains the value of the _ptr field of an attachment struct/class, which could be a pointer to specific information such as a file descriptor or a pointer to a string to be passed to this callback. Both _ptr and _size fields should have been set by the application prior to the serialization of the content. The id, type, and options arguments are the DIME id, type, and options, respectively. The callback should return handle, or another pointer value which will be passed as a handle to fdimeread and fdimereadclose. The callback should return NULL (and not set soap->error) when this particular DIME attachment is not to be streamed.

size_t (*soap.fdimeread)(struct soap *soap, void *handle, char *buf, size_t len)

Called by the gSOAP run-time DIME attachment sender to read more data from a (binary) data source for streaming into the output stream. The handle contains the value returned by the fdimeread-open callback. The buf argument is the buffer of length len into which a chunk of data should be stored. The actual amount of data stored in the buffer may be less than len and this amount should be returned by the application. A return value of 0 indicates an error (the callback may set soap->errnum to errno). The __size field of the attachment struct/class should have been set by the application prior to the serialization of the content. The value of __size indicates the total size of the content to be transmitted. When the __size is zero then DIME chunked transfers can be used under certain circumstances to stream content without prior determination of attachment size, see Section 14.3 below.

void(*soap.fdimereadclose)(struct soap *soap, void *handle)

Called by the gSOAP run-time DIME attachment sender at the end of the streaming process to close the data source. The handle contains the value returned by the fdimereadopen callback. The fdimewriteclose callback is called after successfully transmitting the data or when an error occurred.

void *(*soap.fdimewriteopen)(**struct** soap *soap, **const char** *id, **const char** *type, **const char** *options)

Called by the gSOAP run-time DIME attachment receiver to start writing an inbound DIME attachment to an application's data store. The content is streamed into an application data store through multiple fdimewrite calls from the gSOAP attachment receiver. The id, type, and options arguments are the DIME id, type, and options respectively. The callback should return a handle which is passed to the fdimewrite and fdimewriteclose callbacks. The __ptr field of the attachment struct/class is set to the value of this handle. The __size field is set to the total size of the attachment after receiving the entire content. The size is unknown in advance because DIME attachments may be chunked

int (*soap.fdimewrite)(struct soap *soap, void *handle, const char *buf, size_t len)

Called by the gSOAP run-time DIME attachment receiver to write part of an inbound DIME attachment to an application's data store. The handle contains the value returned by the fdimewriteopen callback. The buf argument contains the data of length len. The callback should return a gSOAP error code (e.g. SOAP_OK when no error occurred).

void(*soap.fdimewriteclose)(struct soap *soap, void *handle)

Called by the gSOAP run-time DIME attachment receiver at the end of the streaming process to close the data store. The fdimewriteclose callback is called after successfully receiving the data or when an error occurred. The handle contains the value returned by the fdimewriteopen callback.

In addition, a **void***user field in the **struct** soap data structure is available to pass user-defined data to the callbacks. This way, you can set soap.user to point to application data that the callbacks need such as a file name for example.

The following example illustrates the client-side initialization of an image attachment struct to stream a file into a DIME attachment:

```
int main()
  struct soap soap;
  struct xsd_ _base64Binary image;
  FILE *fd;
  struct stat sb;
  soap_init(&soap);
  if (!fstat(fileno(fd), &sb) && sb.st_size > 0)
  { // because we can get the length of the file, we can stream it
    soap.fdimereadopen = dime_read_open;
    soap.fdimereadclose = dime_read_close;
    soap.fdimeread = dime_read;
    image.__ptr = (unsigned char*)fd; // must set to non-NULL (this is our fd handle which we
need in the callbacks)
    image.__size = sb.st_size; // must set size
  else
  \{\ //\ don't\ know\ the\ size,\ so\ buffer\ it
    size_t i;
    int c:
    image.__ptr = (unsigned char*)soap_malloc(&soap, MAX_FILE_SIZE);
    for (i = 0; i < MAX\_FILE\_SIZE; i++)
       if ((c = fgetc(fd)) == EOF)
         break;
       image.\_\_ptr[i] = c;
    fclose(fd);
    image.\_size = i;
  image.type = "image/jpeg";
  image.options = soap_dime_option(&soap, 0, "My picture");
  soap_call_ns_ _method(&soap, ...);
void *dime_read_open(struct soap *soap, void *handle, const char *id, const char *type, const
char *options)
{ return handle;
void dime_read_close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
size_t dime_read(struct soap *soap, void *handle, char *buf, size_t len)
 return fread(buf, 1, len, (FILE*)handle);
```

The following example illustrates the streaming of a DIME attachment into a file by a client:

```
int main()
{ struct soap soap;
```

```
soap_init(&soap);
  soap.fdimewriteopen = dime_write_open;
  soap.fdimewriteclose = dime_write_close;
  soap.fdimewrite = dime_write;
  soap_call_ns_ _method(&soap, ...);
void *dime_write_open(struct soap *soap, const char *id, const char *type, const char *options)
  FILE *handle = fopen("somefile", "wb");
  if (!handle)
    soap->error = SOAP\_EOF;
    soap->errnum = errno; // get reason
  return (void*)handle;
void dime_write_close(struct soap *soap, void *handle)
{ fclose((FILE*)handle);
int dime_write(struct soap *soap, void *handle, const char *buf, size_t len)
  size_t nwritten:
  while (len)
    nwritten = fwrite(buf, 1, len, (FILE*)handle);
    if (!nwritten)
      soap->errnum = errno; // get reason
      return SOAP_EOF;
    len -= nwritten;
    buf += nwritten;
  return SOAP_OK;
```

Note that compression can be used with DIME to compress the entire message. However, compression requires buffering to determine the HTTP content length header thereby canceling the benefits of streaming DIME. Use chunked HTTP (with the output-mode SOAP_IO_CHUNK flag) with compression and streaming DIME. However, compression introduces a significant processing overhead that should not be ignored.

Caution: DIME attachments MAY be send in a different order than the order of the pointers to DIME attachments visited by the serializer of an array, for example. A streaming DIME attachment receiver must be able to handle the reordering using the attachment's id or options fields.

Caution: The options field is a DIME-specific data structure, consisting of a 4 byte header containing the option type info (hi byte, lo byte), option string length (hi byte, lo byte), followed by a non-'\0' terminated string. The gSOAP DIME handler recognizes one option at most.

14.3 Streaming Chunked DIME

gSOAP automatically handles inbound chunked DIME attachments (streaming or non-streaming). To transmit outbound DIME attachments, the attachment sizes MUST be determined in advance to calculate HTTP message length required to stream DIME over HTTP. However, gSOAP also supports the transmission of outbound chunked DIME attachments without prior determination of DIME attachment sizes when certain conditions are met. These conditions require either non-HTTP transport (use the output-mode SOAP_ENC_XML flag), or chunked HTTP transport (use the output-mode SOAP_IO_CHUNK flag). You can also use the SOAP_IO_STORE flag (which is also used automatically with compression to determine the HTTP content length header) but that cancels the benefits of streaming DIME.

To stream chunked DIME, set the __size field of an attachment to zero and enable HTTP chunking. The DIME fdimeread callback then fetches data in chunks and it is important to fill the entire buffer unless the end of the data has been reached and the last chunk is to be send. That is, fdimeread should return the value of the last len parameter and fill the entire buffer buf for all chunks except the last.

15 Advanced Features

15.1 Internationalization

gSOAP uses regular strings by default. Regular strings cannot be used to hold UCS characters outside of the character range [1,255]. gSOAP can handle wide-character content in two ways. First, applications can utilize wide-character strings (wchar_t*) instead of regular strings to store wide-character content. For example, the xsd:string string schema type can be declared as a wide-character string and used subsequently:

```
typedef wchar_t *xsd__string;
...
int ns__myMethod(xsd__string input, xsd__string *output);
```

Second, regular strings can be used to hold wide-character content in UTF-8 format. This is accomplished with the SOAP_C_UTFSTRING flag (for both input/output mode), see Section 9.12. With this flag set, gSOAP will deserialize XML into regular strings in UTF-8 format. An application is responsible for filling regular strings with UTF-8 content to ensure that strings can be correctly serialized XML. Third, the SOAP_C_MBSTRING flag (for both input/output mode) can be used to activate multibyte character support. Multibyte support depends on the locale settings for dealing with extended natural language encodings.

Both regular strings and wide-character strings can be used together within an application. For example, the following header file declaration introduces two string schema types:

```
typedef wchar_t *xsd__string;
typedef char *xsd__string_; // trailing '_' avoids name clash
...
int ns__myMethod(xsd__string input, xsd__string_ *output);
```

The input string parameter is a wide-character string and the output string parameter is a regular string. The regular string has UCS character content in the range [1,255] unless the SOAP_C_UTFSTRING

flag is set. With this flag, the string has UTF-8 encoded content.

Please consult the UTF-8 specification for details on the UTF-8 format. Note that the ASCII character set [1-127] is a subset of UTF-8. Therefore, with the SOAP_C_UTFSTRING flag set, strings may hold ASCII character data and UTF-8 extensions.

15.2 Customizing the WSDL and Namespace Mapping Table File Contents With gSOAP Directives

A header file can be augmented with directives for the gSOAP Stub and Skeleton compiler to automatically generate customized WSDL and namespace mapping tables contents. The WSDL and namespace mapping table files do not need to be modified by hand (Sections 8.2.8 and 10.4). In addition, the sample SOAP/XML request and response files generated by the compiler are valid provided that XML schema namespace information is added to the header file with directives so that the gSOAP compiler can produce example SOAP/XML messages that are correctly namespace qualified. These compiler directive are specified as //-comments. (Note: blanks can be used anywhere in the directive, except between // and gsoap.)

Three directives are currently supported that can be used to specify details associated with namespace prefixes used by the remote method names in the header file. To specify the name of a Web Service in the header file, use:

```
//gsoap namespace-prefix service name: service-name
```

where namespace-prefix is a namespace prefix used by identifiers in the header file and service-name is the name of a Web Service (only required to create new Web Services). The name may be followed by text up to the end of the line which is incorporated into the WSDL service documentation. Alternatively, the service documentation can be provided with the directive below.

To specify the documentation of a Web Service in the header file, use:

```
//gsoap namespace-prefix service documentation: text
```

where *namespace-prefix* is a namespace prefix used by identifiers in the header file and *text* is the documentation text up to the end of the line. The text is incorporated into the WSDL service documentation.

To specify the portType of a Web Service in the header file, use:

```
//gsoap namespace-prefix service portType: portType
```

where *namespace-prefix* is a namespace prefix used by identifiers in the header file and *portType* is the portType name of the WSDL service portType.

To specify the location (or port endpoint) of a Web Service in the header file, use:

```
//gsoap namespace-prefix service location: URL or alternatively 
//gsoap namespace-prefix service port: URL
```

where URL is the location of the Web Service (only required to create new Web Services). The URL specifies the path to the service executable (so URL/service-executable is the actual location of the executable when declared).

To specify the name of the executable of a Web Service in the header file, use:

```
//gsoap namespace-prefix service executable: executable-name
```

where executable-name is the name of the executable of the Web Service.

When doc/literal encoding is required for the entire service, the service encoding can be specified in the header file as follows:

```
//gsoap namespace-prefix service encoding: literal
```

or when the SOAP-ENV: encodingStyle attribute is different from the SOAP 1.1/1.2 encoding style:

```
//gsoap namespace-prefix service encoding: encoding-style
```

To specify the namespace URI of a Web Service in the header file, use:

```
//gsoap namespace-prefix service namespace: namespace-URI
```

where namespace-URI is the URI associated with the namespace prefix.

In addition, the schema namespace URI can be specified in the header file:

```
//gsoap namespace-prefix schema namespace: namespace-URI
```

where namespace-URI is the schema URI associated with the namespace prefix. If present, it defines the schema-part of the generated WSDL file and the URI in the namespace mapping table. This declaration is useful when the service declares its own data types that need to be associated with a namespace. Furthermore, the header file for client applications do not need the full service details and the specification of the schema namespaces for namespace prefixes suffices.

The directive above specifies a new schema and the gSOAP compiler generates a schema files (.xsd) file for the schema. An existing schema namespace URI can be imported with:

```
//gsoap namespace-prefix schema import: namespace-URI
```

where namespace-URI is the schema URI associated with the namespace prefix. gSOAP does not produce XML schema files for imported schemas and imports the schema namespaces in the generated WSDL file.

A schema namespace URI can be imported from a location with:

```
//gsoap namespace-prefix schema namespace: namespace-URI//gsoap namespace-prefix schema import: schema-location
```

To document a method, use:

```
//gsoap namespace-prefix service method-documentation: method-name //text
```

where method-name is the unqualified name of the method and text is a line of text terminated by a newline. Do not use any XML reserved characters in text such as < and >. Use XML and XHTML markup instead. For example:

```
//gsoap ns service method-documentation: getQuote This method returns a stock quote int ns_getQuote(char *symbol, float &_result);
```

To specify the SOAPAction for a method, use:

```
//gsoap namespace-prefix service method-action: method-name action
```

where *method-name* is the unqualified name of the method and *action* is a quoted or non-quoted string (spaces and blanks are not allowed). For example:

```
//gsoap ns service method-action: getQuote "" int ns_getQuote(char *symbol, float &_result);
```

When document style is preferred for a particular service method, use:

```
//gsoap namespace-prefix service method-style: method-name document
```

When SOAP RPC encoding is required for a particular service method, use:

```
//gsoap namespace-prefix service method-encoding: method-name encoded
```

When literal encoding is required for a particular service method, use:

```
//gsoap namespace-prefix service method-encoding: method-name literal
```

or when the SOAP-ENV: encodingStyle attribute is different from the SOAP 1.1/1.2 encoding style, use:

```
//gsoap namespace-prefix service method-encoding: method-name encoding-style
```

When SOAP RPC encoding is required for a particular service method response when the request message is literal, use:

```
//gsoap namespace-prefix service method-response-encoding: method-name encoded
```

When literal encoding is required for a particular service method response when the request message is encoded, use:

```
//gsoap namespace-prefix service method-response-encoding: method-name literal
```

or when the SOAP-ENV: encoding Style attribute is different from the SOAP 1.1/1.2 encoding style, use:

```
//gsoap namespace-prefix service method-response-encoding: method-name encoding-style
```

Note that the method-response-encoding is set to the value of method-encoding by default.

When header processing is required, each method declared in the WSDL should provide a binding to the parts of the header that may appear as part of a method request message. Such a binding is given by:

```
//gsoap namespace-prefix service method-header-part: method-name header-part
```

For example:

```
struct SOAP_ENV__Header
{
   char *h__transaction;
   struct UserAuth *h__authentication;
};
```

Suppose method ns_login uses both header parts (at most), then this is declared as:

```
//gsoap ns service method-header-part: login h_transaction //gsoap ns service method-header-part: login h_authentication int ns_login(...);
```

Suppose method ns_search uses only the first header part, then this is declared as:

```
//gsoap ns service method-header-part: search h_transaction int ns_search(...);
```

Note that the method name and header part names MUST be namespace qualified. The headers MUST be present in all operations that declared the header parts.

To specify the header parts for the method input (method request message), use:

```
//gsoap namespace-prefix service method-input-header-part: method-name header-part
```

Similarly, to specify the header parts for the method output (method response message), use:

```
//gsoap namespace-prefix service method-output-header-part: method-name header-part
```

The declarations above only affect the WSDL. For example:

```
struct SOAP_ENV__Header
{
    char *h__transaction;
    struct UserAuth *h__authentication;
};
//gsoap ns service method-input-header-part: login h__authentication
//gsoap ns service method-input-header-part: login h__transaction
//gsoap ns service method-output-header-part: login h__transaction
int ns__login(...);
```

The headers MUST be present in all operations that declared the header parts.

The use of these directive is best illustrated with an example. The quotex.h header file of the quotex example in the gSOAP distribution for Unix/Linux is:

```
//gsoap ns1 service namespace: urn:xmethods-delayed-quotes int ns1__getQuote(char *symbol, float &result);

//gsoap ns2 service namespace: urn:xmethods-CurrencyExchange int ns2__getRate(char *country1, char *country2, float &result);

//gsoap ns3 service name: quotex

//gsoap ns3 service style: rpc

//gsoap ns3 service encoding: encoded

//gsoap ns3 service location: http://www.cs.fsu.edu/~engelen

//gsoap ns3 service namespace: urn:quotex
int ns3__getQuote(char *symbol, char *country, float &result);
```

The quotex example is a new Web Service created by combining two existing Web Services: the XMethods Delayed Stock Quote service and XMethods Currency Exchange service.

Namespace prefix ns3 is used for the new quotex Web Service with namespace URI urn:quotex, service name quotex, and location http://www.cs.fsu.edu/~engelen. Since the new Web Service invokes the ns1_getQuote and ns2_getRate remote methods, the service namespaces of these methods are given. The service names and locations of these methods are not given because they are only required for setting up a new Web Service for these methods (but may also be provided in the header file for documentation purposes). After invoking the gSOAP Stub and Skeleton compiler on the quotex.h header file:

```
soapcpp2 quotex.h
```

the WSDL of the new quotex Web Service is saved as quotex.wsdl. Since the service name (quotex), location (http://www.cs.fsu.edu/~engelen), and namespace URI (urn:quotex) were provided in the header file, the generated WSDL file does not need to be changed by hand and can be published immediately together with the compiled Web Service installed as a CGI application at the designated URL (http://www.cs.fsu.edu/~engelen/quotex.cgi and http://www.cs.fsu.edu/~engelen/quotex.wsdl).

The namespace mapping table for the quotex.cpp Web Service implementation is saved as quotex.nsmap. This file can be directly included in quotex.cpp instead of specified by hand in the source of quotex.cpp:

```
#include "quotex.nsmap"
```

The automatic generation and inclusion of the namespace mapping table requires compiler directives for all namespace prefixes to associate each namespace prefix with a namespace URI. Otherwise, namespace URIs have to be manually added to the table (they appear as http://tempuri.org).

15.3 How to Specify minOccurs and maxOccurs

By default, gSOAP generates WSDL and schemas with minOccurs=1 and maxOccurs=1 for non-array types, and minOccurs=0 and maxOccurs=unbounded for array types. The minOccurs and maxOccurs attribute values of fields in **struct** and **class** types are specified as

```
Type <u>fieldname</u> [<u>minOccurs</u>[:<u>maxOccurs</u>]] [= value]
```

The minOccurs and maxOccurs values must be integer literals.

For example

```
struct ns__MyRecord
{
    int n;
    int m 0;
    int __size 0:10;
    int *item;
}

gSOAP generates:

<complexType name="MyRecord">
    <all>
        <element name="n" type="xsd:int" minOccurs="1" maxOccurs="1"/>
              <element name="m" type="xsd:int" minOccurs="0" maxOccurs="1"/>
              <element name="item" type="xsd:int" minOccurs="0" maxOccurs="1"/>
              <element name="item" type="xsd:int" minOccurs="0" maxOccurs="10"/>
              </all>
        </complexType>
```

15.4 How to Specify a SimpleType and Pattern

You can define a schema simple Type with a **typedef**, which takes a base primitive type and defines a new simple Type. For example:

```
typedef int time__seconds;
```

This defines the following schema type in time.xsd:

```
<simpleType name="seconds">
  <restriction base="xsd:int"/>
</simpleType>
```

To associate a pattern with a simple Type, you can define a simple Type with a **typedef** and a pattern string:

```
typedef int time__seconds "[1-5]?[0-9]—60";
```

This defines the following schema type in time.xsd:

```
<simpleType name="seconds">
    <restriction base="xsd:int">
        <pattern value="[1-5]?[0-9]|60"/>
        </restriction base="xsd:int"/>
        </simpleType>
```

The pattern string MUST contain a valid regular expression.

15.5 Transient Data Types

There are situations when certain data types have to be ignored by gSOAP for the compilation of (de)marshalling routines. For example, in certain cases only a few members of a class or struct need not be (de)serialized, or the base class of a derived class should not be (de)serialized. Certain built-in classes such as ostream cannot be (de)serialized. Data parts that should be kept invisible to gSOAP are called "transient". Transient data types and transient struct/class members are declared with the extern keyword or are declared within [and] blocks in the header file. The extern keyword has a special meaning to the gSOAP compiler and won't affect the generated codes. The special [and] block construct can be used with data type declarations and within struct and class declarations. The use of extern or [] achieve the same effect, but [] may be more convenient to encapsulate transient types in a larger part of the header file. The use of extern with typedef is reserved for the declaration of user-defined external (de)serializers for data types, see Section 15.7.

First example:

```
extern class ostream; // ostream can't be (de)serialized, but need to be declared to make it visible
to gSOAP
class ns__myClass
{ ...
    virtual void print(ostream &s) const; // need ostream here
    ...
};

Second example:

[
    class myBase // base class need not be (de)serialized
    { ... };
]
class ns__myDerived : myBase
{ ... };
```

Third example:

```
[ typedef int transientInt; ]
class ns__myClass
{
  int a; // will be (de)serialized
  [
  int b; // transient field
  char s[256]; // transient field
  ]
  extern float d; // transient field
  char *t; // will be (de)serialized
  transientInt *n; // transient field
  [
  virtual void method(char buf[1024]); // does not create a char[1024] (de)serializer
  ]
};
```

In this example, <code>class ns__myClass</code> has three transient fields: b, s, and n which will not be (de)serialized in SOAP. Field n is transient because the type is declared within a transient block. Pointers, references, and arrays of transient types are transient. The single class method is encapsulated within [and] to prevent gSOAP from creating (de)serializers for the <code>char[1024]</code> type. gSOAP will generate (de)serializers for all types that are not declared within a [and] transient block.

15.6 Volatile Data Types

While transient data types are supposed to be hidden from gSOAP, volatile data types are visible to gSOAP but their declaration and implementation is assumed to be hidden. That is, volatile data types are assumed to be part of an existing non-modifiable software package, such as a built-in library. It would not make sense to redefine the data types in a gSOAP header file. When you need to (de)serialize such data types, you must declare them in a gSOAP header file and use the **volatile** qualifier.

Consider for example **struct** tm, declared in time.h. The structure may actually vary between platforms, but the tm structure includes at least the following fields:

```
volatile struct tm
{
  int tm_sec; /* seconds (0 - 60) */
  int tm_min; /* minutes (0 - 59) */
  int tm_hour; /* hours (0 - 23) */
  int tm_mday; /* day of month (1 - 31) */
  int tm_mon; /* month of year (0 - 11) */
  int tm_year; /* year - 1900 */
  int tm_yday; /* day of week (Sunday = 0) */
  int tm_yday; /* day of year (0 - 365) */
  int tm_isdst; /* is summer time in effect? */
  char *tm_zone; /* abbreviation of timezone name */
  long tm_gmtoff; /* offset from UTC in seconds */
};
```

Note that we qualified the structure **volatile** in the gSOAP header file to inform the gSOAP compiler that it should not attempt to redeclare it. We can now readily serialize and describing the tm structure. The following program fragment serializes the local time stored in a tm structure to stdout:

```
time_t T = time(NULL);
struct tm *t = localtime(&T);
struct soap *soap = soap_new();
soap_set_omode(soap, SOAP_XML_GRAPH); // good habit to use this
soap_begin_send(soap);
soap_put_tm(soap, t, "myLocalTime", NULL);
soap_end_send(soap);
soap_end(soap);
soap_done(soap);
free(soap);
```

It is also possible to serialize the tm fields as XML attributes using the @ qualifier, see Section 11.5.7.

If you must produce a schema file, say time.xsd, that defines an XML schema and namespace for the tm struct, you can add a **typedef** declaration to the header file:

```
typedef struct tm time__struct_tm;
```

We used the **typedef** name time_struct_tm rather than time_tm, because a schema name clash will occur with the latter since taking off the time prefix will result in the same name being used.

Classes should be declared volatile to prevent modification of these classes by gSOAP gSOAP adds serialization methods to classes to support polymorphism. However, this is a problem when you can't modify class declarations because they are part of a non-modifiable software package. The solution is to declare these classes **volatile**, similar to the tm structure example illustrated above. You can also use a **typedef** to associate a schema with a class.

15.7 How to Declare User-Defined Serializers and Descriptions

Users can declare their own (de)serializers for specific data types instead of relying on the gSOAP-generated (de)serializers. To declare a external (de)serializer, declare a type with **extern typedef**. gSOAP will not generate the (de)serializers for the type name that is declared. For example:

```
extern typedef char *MyData;
struct Sample
{
   MyData s; // use user-defined (de)serializer for this field
   char *t; // use gSOAP (de)serializer for this field
};
```

The user is required to supply the following routines for each extern typedef'ed name T:

```
void soap_mark_\underline{T}(struct soap *soap, const \underline{T} *a) void soap_default_\underline{T}(struct soap *soap, \underline{T} *a) void soap_out_\underline{T}(struct soap *soap, const char *tag, int id, const \underline{T} *a, const char *type) \underline{T} *soap_in_\underline{T}(struct soap *soap, const char *tag, \underline{T} *a, const char *type)
```

The function prototypes can be found in soapH.h.

For example, the (de)serialization of MyData can be done with the following code:

```
if (soap_element_begin_in(soap, tag))
  return NULL:
if (!a)
  a = (MyData**)soap_malloc(soap, sizeof(MyData*));
if (soap->null)
  *a = NULL; // xsi:nil element
if (*soap->type && soap_match_tag(soap, soap->type, type))
  soap->error = SOAP\_TYPE;
  return NULL; // type mismatch
if (*soap->href)
  a = (MyData**)soap_id_forward(soap, soap->href, a, SOAP_MyData, sizeof(MyData*))
else if (soap->body)
  char *s = soap_value(soap); // fill buffer
  *a = (char*)soap_malloc(soap, strlen(s)+1);
  strcpy(*a, s);
if (soap->body && soap_element_end_in(soap, tag))
  return NULL:
return a:
```

More information on custom (de)serialization will be provided in this document or in a separate document in the future. The writing of the (de)serializer code requires the use of the low-level gSOAP API.

15.8 How to Serialize Data Without Generating XSD Type Attributes

gSOAP serializes data in XML with xsi:type attributes when the types are declared with namespace prefixes to indicate the schema type of the data contained in the elements. SOAP 1.1 and 1.2 requires xsi:type attributes in the presence of polymorphic data or when the type of the data cannot be deduced from the SOAP payload. The namespace prefixes are associated with the type names of typedefs (Section 11.2) for primitive data types, struct/class names, and enum names.

To prevent the output of these xsi:type attributes in the XML serialization, you can simply use type declarations that do not include these namespace prefixes. That is, don't use the typedefs for primitive types and use unqualified type names with structs, classes, and enums.

However, there are two issues. Firstly, if you want to use a primitive schema type that has no C/C++ counterpart, you must declare it as a **typedef** name with a leading underscore, as in:

```
typedef char *_xsd__date;
```

This will produce the necessary xsd:date information in the WSDL output by the gSOAP compiler. But the XML serialization of this type at run time won't include the xsi:type attribute. Secondly, to include the proper schema definitions in the WSDL produced by the gSOAP compiler, you should use qualified struct, class, and enum names with a leading underscore, as in:

```
struct _ns_ _myStruct
{ ... };
```

This ensures that myStruct is associated with a schema, and therefore included in the appropriate schema in the generated WSDL. The leading underscore prevents the XML serialization of xsi:type attributes for this type in the SOAP/XML payload.

15.9 Function Callbacks for Customized I/O and HTTP Handling

gSOAP provides five callback functions for customized I/O and HTTP handling:

Callback (function pointer)

int (*soap.fopen)(struct soap *soap, const char *endpoint, const char *host, int port)

Called from a client proxy to open a connection to a Web Service located at endpoint. Input parameters host and port are micro-parsed from endpoint. Should return a valid file descriptor, or SOAP_INVALID_SOCKET and soap->error set to an error code. Built-in gSOAP function: tcp_connect int (*soap.fget)(struct soap *soap)

Called by the main server loop upon an HTTP GET request. The SOAP_GET_METHOD error is returned by the default fget routine. This callback can be used to respond to HTTP GET methods with content, see Section 15.12. Built-in gSOAP function: http_get

int (*soap.fpost)(struct soap *soap, const char *endpoint, const char *host, int port, const char *path, const char *action, size_t count)

Called from a client proxy to generate the HTTP header to connect to endpoint. Input parameters host, port, and path are micro-parsed from endpoint, action is the SOAP action, and count is the length of the SOAP message or 0 when SOAP_ENC_XML is set or when SOAP_IO_LENGTH is reset. Use function soap_send(struct soap *soap, char *s) to write the header contents. Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: http_post.

int (*soap.fposthdr)(struct soap *soap, const char *key, const char *val)

Called by http_post and http_response (through the callbacks). Emits HTTP key: val header entries. Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: http_post_header.

int (*soap.fresponse)(struct soap *soap, int soap_error_code, size_t count)

Called from a service to generate the response HTTP header. Input parameter <code>soap_error_code</code> is a gSOAP error code (see Section 10.2 and <code>count</code> is the length of the SOAP message or 0 when <code>SOAP_ENC_XML</code> is set or when <code>SOAP_IO_LENGTH</code> is reset. Use function <code>soap_send(struct soap *soap, char *s)</code> to write the header contents. Should return <code>SOAP_OK</code>, or a <code>gSOAP</code> error code Built-in <code>gSOAP</code> function: <code>http_response</code>

int (*soap.fparse)(struct soap *soap)

Called by client proxy and service to parse an HTTP header (if present). When user-defined, this routine must at least skip the header. Use function **int** soap_getline(struct soap *soap, char *buf, int len) to read HTTP header lines into a buffer buf of length len (returns empty line at end of HTTP header). Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: http_parse

int (*soap.fparsehdr)(struct soap *soap, const char *key, const char *val)

Called by http_parse (through the fparse callback). Handles HTTP key: val header entries to set gSOAP's internals. Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: http_parse_header

int (*soap.fclose)(struct soap *soap)

Called by client proxy **multiple times**, to close a socket connection before a new socket connection is established and at the end of communications when the SOAP_IO_KEEPALIVE flag is not set and soap.keep_alive $\neq 0$ (indicating that the other party supports keep alive). Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: tcp_disconnect

int (*soap.fsend)(struct soap *soap, const char *s, size_t n)

Called for all send operations to emit contents of s of length n. Should return SOAP_OK, or a gSOAP error code. Built-in gSOAP function: fsend

size_t (*soap.frecv)(struct soap *soap, char *s, size_t n)

Called for all receive operations to fill buffer **s** of maximum length **n**. Should return the number of bytes read or 0 in case of an error, e.g. EOF. Built-in gSOAP function: frecv

int (*soap_fignore)(struct soap *soap, const char *tag)

Called when an unknown XML element was encountered on the input and tag is the offending XML element tag name. Should return SOAP_OK, or a gSOAP error code such as SOAP_TAG_MISMATCH to throw an exception. Built-in gSOAP function: none.

int (*soap_faccept)(struct soap *soap, struct sockaddr *a, int *n)

Called by soap_accept. This is a wrapper routine for accept. Should return a valid socket descriptor or SOAP_INVALID_SOCKET and set soap->error to an error code. Built-in gSOAP function: tcp_accept

In addition, a **void***user field in the **struct** soap data structure is available to pass user-defined data to the callbacks.

The following example uses I/O function callbacks for customized serialization of data into a buffer and deserialization back into a datastructure:

```
char buf[10000]; // XML buffer
int len1 = 0; // #chars written
int len2 = 0; // #chars read
// mysend: put XML in buf[]
int mysend(struct soap *soap, const char *s, size_t n)
  if (len1 + n > sizeof(buf))
    return SOAP_EOF;
  strcpy(buf + len1, s);
  len1 += n:
  return SOAP_OK;
// myrecv: get XML from buf[]
size_t myrecv(struct soap *soap, char *s, size_t n)
  if (len2 + n > len1)
    n = len1 - len2;
  strncpy(s, buf + len2, n);
  len2 += n;
  return n;
main()
  struct soap soap;
  struct ns__person p;
  soap_init(&soap);
  len1 = len2 = 0; // reset buffer pointers
  p.name = "John Doe";
  p.age = 25;
  soap.fsend = mysend; // assign callback
  soap.frecv = myrecv; // assign callback
  soap_begin(&soap);
  soap_set_omode(&soap, SOAP_XML_GRAPH);
  soap_serialize_ns__person(&soap, &p);
  soap_put_ns__person(&soap, &p, "ns:person", NULL);
  if (soap.error)
    soap_print_fault(&soap, stdout);
    exit(1);
  soap_end(&soap);
  soap_begin(&soap);
  soap_get_ns__person(&soap, &p, "ns:person", NULL);
  if (soap.error)
    soap_print_fault(&soap, stdout);
    exit(1);
  }
```

```
soap_end(&soap);
soap_init(&soap); // disable callbacks
}
```

The soap_done function can be called to reset the callback to the default internal gSOAP I/O and HTTP handlers.

The following example illustrates customized I/O and (HTTP) header handling. The SOAP request is saved to a file. The client proxy then reads the file contents as the service response. To perform this trick, the service response has exactly the same structure as the request. This is declared by the struct ns_test output parameter part of the remote method declaration. This struct resembles the service request (see the generated soapStub.h file created from the header file).

The header file is:

```
//gsoap ns service name: callback
      //gsoap ns service namespace: urn:callback
      struct ns__person
        char *name;
        int age;
      int ns__test(struct ns__person in, struct ns__test &out);
The client program is:
      #include "soapH.h"
      int myopen(struct soap *soap, const char *endpoint, const char *host, int port)
        if (strncmp(endpoint, "file:", 5))
          printf("File name expected\n");
          return SOAP_EOF:
        if ((soap->sendfd = soap->recvfd = open(host, O_RDWR|O_CREAT, S_IWUSR|S_IRUSR)) < 0)
          return SOAP_EOF;
        return SOAP_OK;
      void myclose(struct soap *soap)
        if (soap->sendfd > 2) // still open?
          close(soap->sendfd); // then close it
        soap->recvfd = 0; // set back to stdin
        soap->sendfd = 1; // set back to stdout
      int mypost(struct soap *soap, const char *endpoint, const char *host, const char *path, const
      char *action, size_t count)
        return soap_send(soap, "Custom-generated file\n"); // writes to soap->sendfd
      int myparse(struct soap *soap)
```

```
char buf[256]:
  if (lseek(soap->recvfd, 0, SEEK_SET) < 0 \mid | soap_getline(soap, buf, 256)) // go to begin and
skip custom header
    return SOAP_EOF;
  return SOAP_OK;
main()
  struct soap soap;
  struct ns__test r;
  struct ns__person p;
  soap_init(&soap); // reset
  p.name = "John Doe";
  p.age = 99;
  soap.fopen = myopen; // use custom open
  soap.fpost = mypost; // use custom post
  soap.fparse = myparse; // use custom response parser
  soap.fclose = myclose; \ // \ use \ custom \ close
  soap_call_ns__test(&soap, "file://test.xml", "", p, r);
  if (soap.error)
    soap_print_fault(&soap, stdout);
    exit(1);
  soap_end(&soap);
  soap_init(&soap); // reset to default callbacks
```

SOAP 1.1 and 1.2 specify that XML elements may be ignored when present in a SOAP payload on the receiving side. gSOAP ignores XML elements that are unknown, unless the XML attribute mustUnderstand="true" is present in the XML element. It may be undesirable for elements to be ignored when the outcome of the omission is uncertain. The soap fignore callback can be set to a function that returns SOAP_OK in case the element can be safely ignored, or SOAP_MUSTUNDERSTAND to throw an exception, or to perform some application-specific action. For example, to throw an exception as soon as an unknown element is encountered on the input, use:

```
int myignore(struct soap *soap, const char *tag)
{
   return SOAP_MUSTUNDERSTAND; // never skip elements (secure)
}
...
soap.fignore = myignore;
soap_call_ns__method(&soap, ...); // or soap_serve(&soap);
```

To selectively throw an exception as soon as an unknown element is encountered but element ns:xyz can be safely ignored, use:

```
int myignore(struct soap *soap, const char *tag)
{
  if (soap_match_tag(soap, tag, "ns:xyz") != SOAP_OK)
    return SOAP_MUSTUNDERSTAND;
  return SOAP_OK;
```

Function soap_match_tag compares two tags. The third parameter may be a pattern where * is a wildcard and - is a single character wildcard. So for example soap_match_tag(tag, "ns:*") will match any element in namespace ns or when no namespace prefix is present in the XML message.

The callback can also be used to keep track of unknown elements in an internal data structure such as a list:

```
struct Unknown
  char *tag;
  struct Unknown *next;
int myignore(struct soap *soap, const char *tag)
  char *s = (char^*)soap_malloc(soap, strlen(tag)+1);
  struct Unknown *u = (struct Unknown*)soap_malloc(soap, sizeof(struct Unknown));
  if (s && u)
    strcpy(s, tag);
    u->tag=s;
    u->next = ulist:
    ulist = u;
}
struct soap *soap;
struct Unknown *ulist = NULL;
soap_init(&soap);
soap.fignore = myignore;
soap_call_ns_ _method(&soap, ...); // or soap_serve(&soap)
// print the list of unknown elements
soap_end(&soap); // clean up
```

15.10 HTTP 1.0 and 1.1

gSOAP uses HTTP 1.1 by default. You can revert to HTTP 1.0 as follows:

```
struct soap soap;
soap_init(&soap);
...
soap.http_version = "1.0";
```

15.11 HTTP 307 Temporary Redirect Support

The client-side handling of HTTP 307 code "Temporary Redirect" is not automated in gSOAP. Client application developers may want to consider adding a few lines of code to support redirects. It was decided not to automatically support redirects for the following reasons:

- Redirecting a secure HTTPS address to a non-secure HTTP address via 307 creates a security vulnerability.
- Cyclic redirects must be detected (e.g. allowing only a limited number of redirect levels).
- Redirecting HTTP POST will result in re-serialization and re-post of the entire SOAP request.
 The SOAP request message must be re-posted in its entirity when re-issuing the SOAP operation to a new address.

To implement 307 redirect, add the following code:

15.12 HTTP GET Support

A gSOAP server normally only grants HTTP (and HTTPS) POST requests. To support HTTP (HTTPS) GET, you need to set the soap.fget callback. The callback is required to produce a response to the request in textual form, such as a Web page or a SOAP/XML response.

The following example produces a Web page upon a HTTP GET request (e.g. from a browser):

```
struct soap *soap = soap_new();
soap->fget = http_get();
...
soap_serve(soap);
```

```
int http_get(struct soap *soap)
        soap_response(soap, SOAP_HTML); // HTTP response header with text/html
        soap_send(soap, "¡HTML; My Web server is operational.¡/HTML;");
        soap_end_send(soap);
        return SOAP_OK;
The example below produces a WSDL file upon a HTTP GET with path ?wsdl:
     int http_get(struct soap *soap)
        char *s = strchr(soap->path, '?');
        if (!s || strcmp(s, "?wsdl"))
          return SOAP_GET_METHOD;
        fd = fopen("myservice.wsdl", "r"); // open WSDL file to copy
          return 404; // return HTTP not found error
        soap->http_content = "text/xml"; // HTTP header with text/xml content
        soap_response(soap, SOAP_FILE);
        for (;;)
          r = fread(soap->tmpbuf, 1, sizeof(soap->tmpbuf), fd);
            break;
          if (soap_send_raw(soap, soap->tmpbuf, r))
            break; // can't send, but little we can do about that
        fclose(fd);
        soap_end_send(soap);
        return SOAP_OK;
Using one-way SOAP/XML message, you can also return a SOAP/XML response:
     int http_get(struct soap *soap)
        if ((soap->omode & SOAP_IO) != SOAP_IO_CHUNK)
          soap_set_omode(soap, SOAP_IO_STORE); // if not chunking we MUST buffer entire content
     to determine content length
        soap_response(soap, SOAP_OK);
        return soap_send_ns1__mySendMethodResponse(soap, "", NULL, ... params ...);
      }
where ns1_mySendMethodResponse is a one-way message declared in a gSOAP header file as:
     int ns1__mySendMethodResponse(... params ..., void);
```

The generated soapClient.cpp includes the sending-side stub function.

15.13 HTTP Keep-Alive

gSOAP supports keep-alive socket connections. To activate keep-alive support, set the SOAP_IO_KEEPALIVE flag for both input and output modes, see Section 9.12. For example

```
struct soap soap;
soap_init2(&soap, SOAP_IO_KEEPALIVE, SOAP_IO_KEEPALIVE);
```

When a client or a service communicates with another client or service that supports keep alive, the attribute soap.keep_alive will be set to 1, otherwise it is reset to 0 (indicating that the other party will close the connection). The connection maybe terminated on either end before the communication completed, for example when the server keep-alive connection has timed out. This generates a "Broken Pipe" signal on Unix/Linux platforms. This signal can be caught with a signal handler:

```
signal(SIGPIPE, sigpipe_handle);
where, for example:
    void sigpipe_handle(int x) { }
```

Alternatively, broken pipes can be kept silent by setting:

```
soap.socket\_flags = MSG\_NOSIGNAL;
```

This setting will not generate a sigpipe but read/write operations return SOAP_EOF instead. Note that Win32 systems do not support signals and lack the MSG_NOSIGNAL flag. The sigpipe handling and flags are not very portable.

A connection will be kept open only if the request contains an HTTP 1.0 header with "Connection: Keep-Alive" or an HTTP 1.1 header that does not contain "Connection: close". This means that a gSOAP client method call should use "http://" in the endpoint URL of the request to the stand-alone service to ensure HTTP headers are used.

If the client does not close the connection, the server will wait forever when no recv-timeout is specified. In addition, other clients will be denied service as long as a client keeps the connection to the server open. To prevent this from happening, the service should be multi-threaded such that each thread handles the client connection:

```
int main(int argc, char **argv)
{
    struct soap soap, *tsoap;
    pthread_t tid;
    int m, s;
    soap_init2(&soap, SOAP_IO_KEEPALIVE, SOAP_IO_KEEPALIVE);
    soap.accept_timeout = 600; // optional: let server time out after ten minutes of inactivity
    m = soap_bind(&soap, NULL, 18000, BACKLOG); // use port 18000 on the current machine
    if (m < 0)
    {
        soap_print_fault(&soap, stderr);
        exit(1);
    }
}
</pre>
```

```
fprintf(stderr, "Socket connection successful %d\n", m);
  for (count = 0; count >= 0; count++)
    soap.socket_flags = MSG_NOSIGNAL; // use this
    soap.accept_flags = SO_NOSIGPIPE; // or this to prevent sigpipe
    s = soap\_accept(\&soap);
    if (s < 0)
      if (soap.errnum)
         soap_print_fault(&soap, stderr);
         fprintf(stderr, "Server timed out\n"); // Assume timeout is long enough for threads to
complete serving requests
      break;
    fprintf(stderr, "Accepts socket %d connection from IP %d.%d.%d.%d.n", s, (int)(soap.ip>>24)&0xFF,
(int)(soap.ip >> 16)\&0xFF, (int)(soap.ip >> 8)\&0xFF, (int)soap.ip\&0xFF);
    tsoap = soap\_copy(\&soap);
    pthread_create(&tid, NULL, (void*(*)(void*))process_request, (void*)tsoap);
  return 0;
void *process_request(void *soap)
  pthread_detach(pthread_self());
  ((struct soap*)soap)->recv_timeout = 300; // Timeout after 5 minutes stall on recv
  ((struct soap*)soap)->send_timeout = 60; // Timeout after 1 minute stall on send
  soap_serve((struct soap*)soap);
  soap_destroy((struct soap*)soap);
  soap_end((struct soap*)soap);
  soap_done((struct soap*)soap);
  free(soap);
  return NULL:
}
```

To prevent a malicious client from keeping a thread waiting forever by keeping the connection open, timeouts are set in the process_request routine. See Section 15.19 for more details on timeout settings.

A gSOAP client call will automatically attempt to re-establish a connection to a server when the server has terminated the connection for any reason. This way, a sequence of calls can be made to the server while keeping the connection open. Client stubs will poll the server to check if the connection is still open. When the connection was terminated by the server, the client will automatically reconnect.

A client should reset SOAP_IO_KEEPALIVE just before the last call to a server to close the connection after this last call. This will close the socket after the call and also informs the server to gracefully close the connection.

15.14 HTTP Chunked Transfer Encoding

gSOAP supports HTTP chunked transfer encoding. Un-chunking of inbound messages takes place automatically. Outbound messages are never chunked, except when the SOAP_IO_CHUNK flag is set for the output mode. Most Web services, however, will not accept chunked inbound messages.

15.15 HTTP Buffered Sends

The entire outbound message can be stored to determine the HTTP content length rather than the two-phase encoding used by gSOAP which requires a separate pass over the data to determine the length of the outbound message. Setting the flag SOAP_IO_STORE for the output mode will buffer the entire message. This can speed up the transmission of messages, depending on the content, but may require significant storage space to hold the verbose XML message.

Zlib compressed transfers require buffering. The SOAP_IO_STORE flag is set when the SOAP_ENC_ZLIB flag is set to send compressed messages. The use of chunking significantly reduces memory usage and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by setting the SOAP_IO_CHUNK flag with SOAP_ENC_ZLIB for the output mode.

15.16 HTTP Authentication

HTTP authentication (basic) is enabled at the client-side by setting the soap.userid and soap.passwd strings to a username and password, respectively. A server may request user authentication and denies access (HTTP 401 error) when the client tries to connect without HTTP authentication (or with the wrong authentication information).

Here is an example client code fragment to set the HTTP authentication username and password:

```
struct soap soap;
soap_init(&soap);
soap.userid = "guest";
soap.passwd = "visit";
```

A client SOAP request will have the following HTTP header:

```
POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...
```

A client MUST set the soap.userid and soap.passwd strings for each call that requires client authentication. The strings are reset after each successful or unsuccessful call.

A stand-alone gSOAP Web Service can enforce HTTP authentication upon clients, by checking the soap.userid and soap.passwd strings. These strings are set when a client request contains HTTP authentication headers. The strings SHOULD be checked in each service method (that requires authentication to execute).

Here is an example service method implementation that enforced client authentication:

```
int ns__method(struct soap *soap, ...)
{
    if (!soap->.userid || !soap->.passwd || strcmp(soap->.userid, "guest") || strcmp(soap->.passwd, "visit"))         return 401; ...
}
```

When the authentication fails, the service response with a SOAP Fault message and a HTTP error code "401 Unauthorized". The HTTP error codes are described in Section 10.2.

15.17 HTTP Proxy Authentication

HTTP proxy authentication (basic) is enabled at the client-side by setting the soap.proxy_userid and soap.proxy_passwd strings to a username and password, respectively. For example, a proxy server may request user authentication. Otherwise, access is denied by the proxy (HTTP 407 error). Example client code fragment to set proxy server, username, and password:

```
struct soap soap;
soap_init(&soap);
soap.proxy_host = "xx.xx.xxxxx"; // IP
soap.proxy_port = 8080;
soap.proxy_userid = "guest";
soap.proxy_passwd = "guest";
```

A client SOAP request will have the following HTTP header:

```
POST /XXX HTTP/1.0
Host: YYY
User-Agent: gSOAP/2.2
Content-Type: text/xml; charset=utf-8
Content-Length: nnn
Proxy-Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=
...
```

15.18 Speed Improvement Tips

Here are some tips you can use to speed up gSOAP gSOAP's default settings are choosen to maximize portability and compatibility. The settings can be tweaked to optimize the performance as follows:

- Increase the buffer size SOAP_BUFLEN by changing the SOAP_BUFLEN macro in stdsoap2.h. Use buffer size 65536 for example.
- Use HTTP keep-alive at the client-side, see 15.13, when the client needs to make a series of calls to the same server. Server-side keep-alive support can greatly improve performance of both client and server. But be aware that clients and services under Unix/Linux require signal handlers to catch dropped connections.

- Use HTTP chunked transfers, see 15.14.
- Do NOT use gzip compression, even when transferring data over a modem connection. Modems already compress data transfers.

15.19 Timeout Management for Non-Blocking Operations

Socket connect, accept, send, and receive timeout values can be set to manage socket communication timeouts. The soap.connect_timeout, soap.accept_timeout, soap.send_timeout, and soap.recv_timeout attributes of the current gSOAP runtime environment soap can be set to the appropriate user-defined socket send, receive, and accept timeout values. A positive value measures the timeout in seconds. A negative timeout value measures the timeout in microseconds (10^{-6} sec) .

The soap.connect_timeout specifies the timeout value for soap_call_ns__method calls.

The soap.accept_timeout specifies the timeout value for soap_accept(&soap) calls.

The soap.send_timeout and soap.recv_timeout specify the timeout values for non-blocking socket I/O operations.

Example:

```
struct soap soap;
soap_init(&soap);
soap.send_timeout = 10;
soap.recv_timeout = 10;
```

This will result in a timeout if no data can be send in 10 seconds and no data is received within 10 seconds after initiating a send or receive operation over the socket. A value of zero disables timeout, for example:

```
soap.send_timeout = 0;
soap.recv_timeout = 0;
```

When a timeout occurs in send/receive operations, a SOAP_EOF exception will be raised ("end of file or no input"). Negative timeout values measure timeouts in microseconds, for example:

```
#define uSec *-1
#define mSec *-1000
soap.accept_timeout = 10 uSec;
soap.send_timeout = 20 mSec;
soap.recv_timeout = 20 mSec;
```

The macros improve readability.

Caution: Many Linux versions do not support non-blocking connect(). Therefore, setting soap.connect_timeout for non-blocking soap_call_ns_ method calls may not work under Linux.

15.20 Socket Options and Flags

gSOAP's socket communications can be controlled with socket options and flags. The gSOAP run-time environment **struct** soap flags are: **int** soap.socket_flags to control socket send() and recv()

calls, int soap.connect_flags to set client connection socket options, int soap.bind_flags to set server-side port bind socket options, int soap.accept_flags to set server-side request message accept socket options. See the manual pages of send and recv for soap.socket_flags values and see the manual pages of setsockopt for soap.connect_flags, soap.bind_flags, and soap.accept_flags (SOL_SOCKET) values. These SO_ socket option flags (see setsockopt manual pages) can be bit-wise or-ed to set multiple socket options at once. The client-side flag soap.connect_flags=SO_LINGER is supported with values l_onoff=1 and l_linger=0.

For example, to disable signipe signals on Unix/Linux platforms use: soap.socket_flags=MSG_NOSIGNAL and/or soap.connect_flags=SO_NOSIGPIPE (i.e. client-side connect) depending on your platform.

Use soap.bind_flags=SO_REUSEADDR to enable server-side port reuse and local port sharing (but be aware of the security issues when the port is not blocked by a firewall and open to the Internet).

15.21 Secure SOAP Web Services with HTTPS/SSL

When a Web Service is installed as CGI, it uses standard I/O that is encrypted/decrypted by the Web server that runs the CGI application. Therefore, HTTPS/SSL support must be configured for the Web server (not CGI-based Web Service application itself).

To enable OpenSSL, first install OpenSSL and use option -DWITH_OPENSSL to compile the sources with your C or C++ compiler, for example:

```
g++\ -DWITH\_OPENSSL\ -o\ myprog\ myprog.cpp\ stdsoap2.cpp\ soapC.cpp\ soapServer.cpp\ -lssl\ -lcrypto
```

SSL support for stand-alone gSOAP Web services is enabled by calling soap_ssl_accept after soap_accept. In addition, a key file, a CA file (or path to certificates), DH file (if RSA is not used), and password need to be supplied. Instructions on how to do this can be found in the OpenSSL documentation http://www.openssl.org. See also Section 15.24.

Let's take a look at an example SSL secure multi-threaded stand-alone SOAP Web Service:

```
int main()
{
    int m, s;
    pthread_t tid;
    struct soap soap, *tsoap;
    if (CRYPTO_thread_setup())
    {
        fprintf(stderr, "Cannot setup thread mutex\n");
        exit(1);
    }
    soap_init(&soap);
    if (soap_ssl_server_context(&soap,
        SOAP_SSL_DEFAULT,
        "server.pem", /* keyfile: required when server must authenticate to clients (see SSL docs on how to obtain this file) */
        "password", /* password to read the key file */
        "cacert.pem", /* optional cacert file to store trusted certificates */
        NULL, /* optional capath to directory with trusted certificates */
    }
}
```

```
"dh512.pem", /* DH file, if NULL use RSA */
    NULL, /* if randfile!=NULL: use a file with random data to seed randomness */
    NULL /* optional server identification to enable SSL session cache (must be a unique name)
    soap_print_fault(&soap, stderr);
    exit(1);
  m = soap_bind(&soap, NULL, 18000, 100); // use port 18000
    soap_print_fault(&soap, stderr);
  fprintf(stderr, "Socket connection successful: master socket = %d\n", m);
  for (;;)
    s = soap\_accept(\&soap);
    fprintf(stderr, "Socket connection successful: slave socket = %d\n", s);
    if (s < 0)
       soap_print_fault(&soap, stderr);
       break:
    tsoap = soap_copy(&soap); /* should call soap_ssl_accept on a copy */
    if (!tsoap)
       break;
    if (soap_ssl_accept(tsoap))
       soap_print_fault(tsoap, stderr);
       soap_done(tsoap);
       free(tsoap);
       continue; /* when soap_ssl_accept fails, we should just go on */
    pthread_create(&tid, NULL, &process_request, (void*)tsoap);
  soap_done(&soap); /* deallocates SSL context */
  CRYPTO_thread_cleanup();
  return 0;
void *process_request(void *soap)
  pthread_detach(pthread_self());
  soap_serve((struct soap*)soap);
  soap_destroy((struct soap*)soap);
  soap_end((struct soap*)soap);
  soap_done((struct soap*)soap);
  free(soap);
  return NULL;
}
```

The soap_ssl_server_context function initializes the server-side SSL context. The server.pem key file is the server's private key. The cafile.pem is used to authenticate clients and contains the client

certificates. Alternatively a directory name can be specified. This directory is assumed to contain the certificates. The dh512.pem file specifies that DH will be used for key agreement instead of RSA. The randfile entry can be used to seed the PRNG. The last entry enable server-side session caching. A unique server name is required.

The CRYPTO_thread_setup() and CRYPTO_thread_cleanup() routines can be found in openssl/crypto/threads/th-lock.c. These routines are required to setup locks for multi-threaded applications that use SSL. We give a Windows and POSIX threads implementation of these here:

```
#include <unistd.h> /* defines _POSIX_THREADS if pthreads are available */
#ifdef _POSIX_THREADS
# include <pthread.h>
#endif
#if defined(WIN32)
# define MUTEX_TYPE HANDLE
# define MUTEX_SETUP(x) (x) = CreateMutex(NULL, FALSE, NULL)
# define MUTEX_CLEANUP(x) CloseHandle(x)
# define MUTEX_LOCK(x) WaitForSingleObject((x), INFINITE)
# define MUTEX_UNLOCK(x) ReleaseMutex(x)
# define THREAD_ID GetCurrentThreadID()
#elif defined(_POSIX_THREADS)
# define MUTEX_TYPE pthread_mutex_t
# define MUTEX_SETUP(x) pthread_mutex_init(&(x), NULL)
# define MUTEX_CLEANUP(x) pthread_mutex_destroy(&(x))
# define MUTEX_LOCK(x) pthread_mutex_lock(&(x))
# define MUTEX_UNLOCK(x) pthread_mutex_unlock(&(x))
# define THREAD_ID pthread_self()
#else
# error "You must define mutex operations appropriate for your platform"
# error "See OpenSSL /threads/th-lock.c on how to implement mutex on your platform"
#endif
struct CRYPTO_dynlock_value { MUTEX_TYPE mutex; };
static MUTEX_TYPE *mutex_buf;
static struct CRYPTO_dynlock_value *dyn_create_function(const char *file, int line)
  struct CRYPTO_dynlock_value *value;
  value = (struct CRYPTO_dynlock_value*)malloc(sizeof(struct CRYPTO_dynlock_value));
  if (value)
    MUTEX_SETUP(value->mutex);
  return value:
static void dyn_lock_function(int mode, struct CRYPTO_dynlock_value *I, const char *file, int
line)
  if (mode & CRYPTO_LOCK)
    MUTEX_LOCK(I->mutex);
  else
    MUTEX_UNLOCK(I->mutex);
static void dyn_destroy_function(struct CRYPTO_dynlock_value *I, const char *file, int line)
  MUTEX_CLEANUP(I-¿mutex);
  free(I);
```

```
void locking_function(int mode, int n, const char *file, int line)
  if (mode & CRYPTO_LOCK)
    MUTEX_LOCK(mutex_buf[n]);
    MUTEX_UNLOCK(mutex_buf[n]);
unsigned long id_function()
  return (unsigned long)THREAD_ID;
int CRYPTO_thread_setup()
  int i;
  mutex\_buf = (MUTEX\_TYPE*)malloc(CRYPTO\_num\_locks() * sizeof(pthread\_mutex\_t));
  if (!mutex_buf)
    return SOAP_EOM;
  for (i = 0; i < CRYPTO_num_locks(); i++)
    MUTEX_SETUP(mutex_buf[i]);
  CRYPTO_set_id_callback(id_function);
  CRYPTO_set_locking_callback(locking_function);
  CRYPTO_set_dynlock_create_callback(dyn_create_function):
  CRYPTO_set_dynlock_lock_callback(dyn_lock_function);
  CRYPTO_set_dynlock_destroy_callback(dyn_destroy_function);
  return SOAP_OK;
void CRYPTO_thread_cleanup()
  int i;
  if (!mutex_buf)
    return;
  CRYPTO_set_id_callback(NULL);
  CRYPTO_set_locking_callback(NULL);
  CRYPTO_set_dynlock_create_callback(NULL);
  CRYPTO_set_dynlock_lock_callback(NULL);
  CRYPTO_set_dynlock_destroy_callback(NULL);
  for (i = 0; i < CRYPTO_num\_locks(); i++)
    MUTEX_CLEANUP(mutex_buf[i]);
  free(mutex_buf);
  mutex\_buf = NULL;
```

For Unix and Linux, make sure you have signal handlers set in your service and/or client applications to catch broken connections (SIGPIPE):

```
signal(SIGPIPE, sigpipe_handle);
where, for example:
    void sigpipe_handle(int x) { }
```

By default, clients are not required to authenticate. To support client authentication use the following:

```
if (soap_ssl_server_context(&soap,
    SOAP_SSL_REQUIRE_CLIENT_AUTHENTICATION,
    "server.pem",
    "password",
    "cacert.pem",
    NULL,
    "dh512.pem",
    NULL,
    NULL
))
{
    soap_print_fault(&soap, stderr);
    exit(1);
}
```

This requires each client to authenticate with its certificate.

The cacert file and capath are optional. Either one can be specified when clients must run on non-trusted systems. We want to avoid storing trusted certificates in the default location on the file system when that is not secure. Therefore, a flat cacert.pem file or directory can be specified to store trusted certificates.

Caution: it is important that the WITH_OPENSSL macro MUST be consistently defined to compile the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due to a mismatches in the declaration and access of the gSOAP environment.

15.22 Secure SOAP Clients with HTTPS/SSL

You need to install the OpenSSL library on your platform to enable secure SOAP clients to utilize HTTPS/SSL. After installation, compile all the sources of your application with option -DWITH_OPENSSL. For example on Linux:

```
g++ -DWITH\_OPENSSL\ myclient.cpp\ stdsoap.cpp\ soapC.cpp\ soapClient.cpp\ -lssl\ -lcrypto
```

or Unix:

```
g++ -DWITH\_OPENSSL \ myclient.cpp \ stdsoap.cpp \ soapC.cpp \ soapClient.cpp \ -lxnet \ -lsocket \ -lnsl \ -lssl \ -lcrypto
```

or you can add the following line to soapdefs.h:

```
#define WITH_OPENSSL
```

and compile with option -DWITH_SOAPDEFS_H to include soapdefs.h in your project. A client program simply uses the prefix https: instead of http: in the endpoint URL of a remote method call to a Web Service to use encrypted transfers (if the service supports HTTPS). You need to specify the client-side key file and password of the keyfile:

```
"client.pem", /* keyfile: required only when client must authenticate to server (see SSL docs on how to obtain this file) */
   "password", /* password to read the key file */
   NULL, /* optional cacert file to store trusted certificates */   NULL, /* optional capath to direcoty with trusted certificates */
   NULL /* if randfile!=NULL: use a file with random data to seed randomness */
))
{
   soap_print_fault(&soap, stderr);
   exit(1);
}
soap_call_ns__mymethod(&soap, "https://domain/path/secure.cgi", "", ...);
```

By default, server authentication is enabled. To disable server authentication for testing purposes, use the following:

```
if (soap_ssl_client_context(&soap,
    SOAP_SSL_NO_AUTHENTICATION,
    NULL,
    NULL,
    NULL,
    NULL
))
{
    soap_print_fault(&soap, stderr);
    exit(1);
}
```

This also assumes that the server does not require clients to authenticate (the keyfile is absent).

The cacert file and capath are optional. Either one can be specified when clients must run on non-trusted systems. We want to avoid storing trusted certificates in the default location on the file system when that is not secure. Therefore, a flat cacert.pem file or directory can be specified to store trusted certificates.

Make sure you have signal handlers set in your application to catch broken connections (SIGPIPE):

```
signal(SIGPIPE, sigpipe_handle);
where, for example:
    void sigpipe_handle(int x) { }
```

Caution: it is important that the WITH_OPENSSL macro MUST be consistently defined to compile the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due to a mismatches in the declaration and access of the gSOAP environment. Caution: concurrent client calls MUST be made using separate soap structs copied with soap_copy from an originating struct initialized with soap_ssl_client_context. In addition, the thread initialization code discussed in Section 15.21 MUST be used to properly setup OpenSSL in a multi-threaded client application.

15.23 SSL Authentication Callback

gSOAP provides a callback function for authentication initialization:

Callback (function pointer)

int (*soap.fsslauth)(struct soap *soap)

Initialize the authentication information for clients and services, such as the certificate chain, password, read the key and/or DH file, generate an RSA key, and initialization of the RNG. Should return a gSOAP error code or SOAP_OK. Built-in gSOAP function: ssl_auth_init

15.24 SSL Certificates

The .pem files in the gSOAP distribution are examples. Developers will have to generate certificates as needed (client only, server only or both). There is more than one way to generate pem files for clients and servers. See http://www.openssl.org for information on OpenSSL and http://sial.org/howto/openssl/ca/ on how to setup and manage a local CA and http://sial.org/howto/openssl/ca/ on how to setup self-signed test certificates.

Here is the simplest way to setup self-signed certificates:

Create a private Certificate Authority (CA). The CA is used in SSL to verify the authenticity of a given certificate. The CA acts as a trusted third party who has authenticated the user of the signed certificate as being who they say. The certificate is signed by the CA, and if the client trusts the CA, it will trust your certificate. For use within your organization, a private CA will probably serve your needs. However, if you intend use your certificates for a public service, you should probably obtain a certificate from a known CA (e.g. VeriSign). In addition to identification, your certificate is also used for encryption.

Creating a private CA:

- Go to the OpenSSL bin directory (/usr/local/ssl/misc by default and /System/Library/OpenSSL/misc on Mac OS X).
- There should be a script called CA.sh (and a CA.pl that does the same stuff). This hides all the gruesome details of how this works. Without the script this is a very annoying process.
- su to root
- Make sure that the OpenSSL bin directory is in your path.
- ./CA.sh -newca
- When prompted for CA filename hit return.
- Answer the rest of the questions intelligently. The common name would be how this certificate might be referred to. For example, the Equifax Secure CA uses the common name of Equifax Secure Certificate Authority. Do not forget the password!

Creating certificates should be done through a certificate authority to obtain signed certificates. But you can create your own certificates for testing purposes as follows.

• ./CA.sh -newreq

- This creates an unsigned certificate request.
- The procedure is the same as creating a private CA except you'll want to use the name of the host that will use the certificate as the common name. If they don't match, the client will not like it when you set SOAP_SSL_DEFAULT or SOAP_SSL_REQUIRE_SERVER_AUTHENTICATION.
- You probably don't want to use the same passphrase for this as you did with the CA.
- ./CA.sh -sign
- It will ask for a PEM pass phrase, that's the passphrase you set for the private CA you created.
- This signs the certificate that you just created with the CA you created just moments before.
- The signed certificate is now in the current directory as newcert.pem. If you are going to create more, you should rename this or it will be overwritten be subsequent signatures.

Now do the following at the prompt:

```
cat newreq.pem newcert.pem > server.pem (or client.pem as needed)
```

You now have generated a client and a server certificate in PEM format by repeating the same process and changing the common name for the client (e.g. gSOAP client). You also need the CA certificate.

Finally you need to generate Diffie-Helmann parameters for the server. Do the following at the prompt:

```
openssl dhparam -outform PEM -out dh.pem 1024
```

File dh.pem is the output file and 1024 is the number of bits used (this will take a long time, you can safely use 512).

Of course the developer using your server cert on her machine will find that if require_server_auth=1 the client will exit before doing the handshake.

15.25 SSL Hardware Acceleration

You can specify a hardware engine to enable hardware support for cryptographic acceleration. This can be done once in a server or client with the following statements:

```
static const char *engine = "cswift"; /* engine name */
int main()
{
    ...
    ENGINE *e;
    if (!(e = ENGINE_by_id(engine)))
        fprintf(stderr, "Error finding engine %s\n", engine);
    else if (!ENGINE_set_default(e, ENGINE_METHOD_ALL))
        fprintf(stderr, "Error using engine %s\n", engine);
    ...
```

The following table lists the names of the hardware and software engines:

Name	Description
openssl	The default software engine for cryptographic operations
openbsd_dev_crypto	OpenBSD supports kernel level cryptography
cswift	CryptoSwift acceleration hardware
chil	nCipher CHIL acceleration hardware
atalla	Compaq Atalla acceleration hardware
nuron	Nuron acceleration hardware
ubsec	Broadcom uBSec acceleration hardware
aep	Aep acceleration hardware
sureware	SureWare acceleration hardware

15.26 SSL on Windows

Set the full path to libssl.lib and libcrypto.lib under the MSVC++ "Projects" menu, then choose "Link": "Object/Modules". The path to libssl32.dll and libeay32.dll need to be specified in the PATH environment variable when running gSOAP applications.

Alternatively, you can use the WinInet interface available in the extras directory of the gSOAP package. API instructions are included in the source.

15.27 Zlib Compression

To enable deflate and gzip compression with Zlib, install Zlib from http://www.zlib.org if not already installed on your system. Compile stdsoap2.cpp (or stdsoap2.c) and all your sources that include stdsoap2.h or soapH.h with compiler option -DWITH_GZIP and link your code with the Zlib library, e.g. -Iz on Unix/Linux platforms.

The gzip compression is orthogonal to all transport encodings such as HTTP, SSL, DIME, and can be used with other transport layers. You can even save and load compressed XML data to/from files.

gSOAP supports two compression formats: deflate and gzip. The gzip format is used by default. The gzip format has several benefits over deflate. Firstly, gSOAP can automatically detect gzip compressed inbound messages, even without HTTP headers, by checking for the presence of a gzip header in the message content. Secondly, gzip includes a CRC32 checksum to ensure messages have been correctly received. Thirdly, gzip compressed content can be decompressed with other compression software, so you can decompress XML data saved by gSOAP in gzip format.

Gzip compression is enabled by compiling the sources with -DWITH_GZIP. To transmit gzip compressed SOAP/XML data, set the output mode flags to SOAP_ENC_ZLIB. For example:

```
soap_init(&soap);
...
soap_set_omode(&soap, SOAP_ENC_ZLIB); // enable Zlib's gzip
if (soap_call_ns__myMethod(&soap, ...))
...
soap_clr_omode(&soap, SOAP_ENC_ZLIB); // disable Zlib's gzip
...
```

This will send a compressed SOAP/XML request to a service, provided that Zlib is installed and linked with the application and the -DWITH_GZIP option was used to compile the sources.

Receiving compressed SOAP/XML over HTTP either in gzip or deflate formats is automatic. The SOAP_ENC_ZLIB flag does not have to be set at the server side to accept compressed messages. Reading and receiving gzip compressed SOAP/XML without HTTP headers (e.g. with other transport protocols) is also automatic.

To control the level of compression for outbound messages, you can set the soap.z_level to a value between 1 and 9, where 1 is the best speed and 9 is the best compression (default is 6). For example

```
soap_init(&soap);
...
soap_set_omode(&soap, SOAP_ENC_ZLIB);
soap.z_level = 9; // best compression
...
```

To verify and monitor compression rates, you can use the values soap.z_ratio_in and soap.z_ratio_out. These two float values lie between 0.0 and 1.0 and express the ratio of the compressed message length over uncompressed message length.

```
soap\_call\_ns\_\_myMethod(\&soap, \dots);\\ ...\\ printf("Compression ratio: %f%% (in) %f%% (out)\n", 100*soap.z\_ratio\_out, 100*soap.z\_ratio\_in);\\ ...\\
```

Note: lower ratios mean higher compression rates.

Compressed transfers require buffering the entire output message to determine HTTP message length. This means that the SOAP_IO_STORE flag is automatically set when the SOAP_ENC_ZLIB flag is set to send compressed messages. The use of HTTP chunking significantly reduces memory usage and may speed up the transmission of compressed SOAP/XML messages. This is accomplished by setting the SOAP_IO_CHUNK flag with SOAP_ENC_ZLIB for the output mode. However, some Web servers do not accept HTTP chunked request messages (even when they return HTTP chunked messages!). Stand-alone gSOAP services always accept chunked request messages.

To restrict the compression to the deflate format only, compile the sources with -DWITH_ZLIB. This limits compression and decompression to the deflate format. Only plain and deflated messages can be exchanged, gzip is not supported with this option. Receiving gzip compressed content is automatic, even in the absence of HTTP headers. Receiving deflate compressed content is not automatic in the absence of HTTP headers and requires the flag SOAP_ENC_ZLIB to be set for the input mode to decompress deflated data.

Caution: it is important that the WITH_GZIP and WITH_ZLIB macros MUST be consistently defined to compile the sources, such as stdsoap2.cpp, soapC.cpp, soapClient.cpp, soapServer.cpp, and all application sources that include stdsoap2.h or soapH.h. If the macros are not consistently used, the application will crash due to a mismatches in the declaration and access of the gSOAP environment.

15.28 Client-Side Cookie Support

Client-side cookie support is optional. To enable cookie support, compile all sources with option -DWITH_COOKIES, for example:

```
g++ -DWITH_COOKIES -o myclient stdsoap2.cpp soapC.cpp soapClient.cpp
```

or add the following line to stdsoap.h:

```
#define WITH_COOKIES
```

Client-side cookie support is fully automatic. So just (re)compile stdsoap2.cpp with -DWITH_COOKIES to enable cookie-based session control in your client.

A database of cookies is kept and returned to the appropriate servers. Cookies are not automatically saved to a file by a client. An example cookie file manager is included as an extras in the distribution. You should explicitly remove all cookies before terminating a gSOAP environment by calling soap_free_cookies(soap) or by calling soap_done(soap).

To avoid "cookie storms" caused by malicious servers that return an unreasonable amount of cookies, gSOAP clients/servers are restricted to a database size that the user can limit (32 cookies by default), for example:

```
struct soap soap;
soap_init(&soap);
soap.cookie_max = 10;
```

The cookie database is a linked list pointed to by soap.cookies where each node is declared as:

```
struct soap_cookie
{
    char *name;
    char *value;
    char *domain;
    char *path;
    long expire; /* client-side: local time to expire; server-side: seconds to expire */
    unsigned int version;
    short secure;
    short session; /* server-side */
    short env; /* server-side: 1 = got cookie from client */
    short modified; /* server-side: 1 = client cookie was modified */
    struct soap_cookie *next;
};
```

Since the cookie database is linked to a soap struct, each thread has a local cookie database in a multi-threaded implementation.

15.29 Server-Side Cookie Support

Server-side cookie support is optional. To enable cookie support, compile all sources with option -DWITH_COOKIES, for example:

```
g{+}{+} -DWITH_COOKIES -o myserver \dots
```

gSOAP provides the following cookie API for server-side cookie session control:

Function

struct soap_cookie *soap_set_cookie(struct soap *soap, const char *name, const char *value, const char *domain, const char *path);

Add a cookie to the database with name name and value value. domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns pointer to a cookie node in the linked list, or NULL otherwise.

struct soap_cookie *soap_cookie(struct soap *soap, const char *name, const char *domain, const char *path);

Find a cookie in the database with name name and value value. domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns pointer to a cookie node in the linked list, or NULL otherwise.

char *soap_cookie_value(struct soap *soap, const char *name, const char *domain, const char *path); Get value of a cookie in the database with name name. domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns the string pointer to the value, or NULL otherwise.

long soap_cookie_expire(struct soap *soap, const char *name, const char *domain, const char *path); Get expiration value of the cookie in the database with name name (in seconds). domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. Returns the expiration value, or -1 if cookie does not exist.

int soap_set_cookie_expire(struct soap *soap, const char *name, long expire, const char *domain,
const char *path);

Set expiration value expire of the cookie in the database with name name (in seconds). domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns SOAP_OK, or SOAP_EOF otherwise.

int soap_set_cookie_session(struct soap *soap, const char *name, const char *domain, const char
*path);

Set cookie in the database with name name to be a session cookie. This means that the cookie will be returned to the client. (Only cookies that are modified are returned to the client). domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns SOAP_OK, or SOAP_EOF otherwise.

int soap_clr_cookie_session(struct soap *soap, const char *name, const char *domain, const char
*path);

Clear cookie in the database with name name to be a session cookie. domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path. If successful, returns SOAP_OK, or SOAP_EOF otherwise.

void soap_clr_cookie(struct soap *soap, const char *name, const char *domain, const char *path); Remove cookie from the database with name name. domain and path may be NULL to use the current domain and path given by soap_cookie_domain and soap_cookie_path.

int soap_getenv_cookies(struct soap *soap);

Initializes cookie database by reading the 'HTTP_COOKIE' environment variable. This provides a means for a CGI application to read cookies send by a client. If successful, returns SOAP_OK, or SOAP_EOF otherwise.

void soap_free_cookies(struct soap *soap);

Release cookie database.

The following global variables are used to define the current domain and path:

Attribute	value
const char *cookie_domain	MUST be set to the domain (host) of the service
const char *cookie_path	MAY be set to the default path to the service
int cookie_max	maximum cookie database size (default=32)

The cookie_path value is used to filter cookies intended for this service according to the path prefix rules outlined in RFC2109.

The following example server adopts cookies for session control:

```
int main()
  struct soap soap;
  int m, s;
  soap_init(&soap);
  soap.cookie\_domain = "...";
  soap.cookie_path = "/"; // the path which is used to filter/set cookies with this destination
  if (argc < 2)
    soap_getenv_cookies(&soap); // CGI app: grab cookies from 'HTTP_COOKIE' env var
    soap_serve(&soap);
  else
    m = soap_bind(&soap, NULL, atoi(argv[1]), 100);
    if (m < 0)
       exit(1);
    for (int i = 1; i++)
       s = soap\_accept(\&soap);
       if (s < 0)
         exit(1);
       soap_serve(&soap);
       soap_end(&soap); // clean up
       soap_free_cookies(&soap); // remove all old cookies from database so no interference occurs
with the arrival of new cookies
  return 0;
int ck__demo(struct soap *soap, ...)
  int n;
  const char *s;
  s = soap_cookie_value(soap, "demo", NULL, NULL); // cookie returned by client?
    s = "init-value"; // no: set initial cookie value
  else
    ... // modify 's' to reflect session control
  soap_set_cookie(soap, "demo", s, NULL, NULL);
  soap_set_cookie_expire(soap, "demo", 5, NULL, NULL); // cookie may expire at client-side in 5
seconds
  return SOAP_OK;
```

15.30 Connecting Clients Through Proxy Servers

When a client needs to connect to a Web Service through a proxy server, set the soap.proxy_host string and soap.proxy_port integer attributes of the current soap runtime environment to the proxy's host name and port, respectively. For example:

```
struct soap soap;
soap_init(&soap);
soap.proxy_host = "proxyhostname";
soap.proxy_port = 8080;
if (soap_call_ns__method(&soap, "http://host:port/path", "action", ...))
    soap_print_fault(&soap, stderr);
else
```

The attributes soap.proxy_host and soap.proxy_port keep their values through the remote method calls, so they only need to be set once.

15.31 FastCGI Support

To enable FastCGI support, install FastCGI and compile *all* sources (including your application sources that use stdsoap2.h) with option -DWITH_FASTCGI or add

```
#define WITH_FASTCGI
```

to stdsoap2.h.

15.32 How to Create gSOAP Applications With a Small Memory Footprint

To compile gSOAP applications intended for small memory devices, you may want to remove all non-essential features that consume precious code and data space. To do this, compile the gSOAP sources with -DWITH_LEAN to remove many non-essential features. The features that will be disabled are:

- No I/O timeouts. Note that many socket operations already obey some form of timeout handling, such as a connect timeout for example.
- No HTTP keep alive
- No HTTP cookies
- No HTTP authentication
- No HTTP chunked output (but input is OK)
- No HTTP compressed output (but input is OK when compiled with WITH_GZIP)
- No socket flags (no soap.socket_flag, soap.connect_flag, soap.bind_flag, soap.accept_flag)
- No canonical XML output

- No logging
- Limited TCP/IP and HTTP error diagnostic messages
- No support for time_t serialization
- No support for unsigned short and ULONG64 serialization (use typedef unsigned int xsd__unsignedShort or typedef long xsd__unsignedLong)

Use -DWITH_LEANER to make the executable even smaller by removing DIME attachment handling. Note that DIME attachments are not essential to achieve SOAP/XML interoperability. DIME attachments are a convenient way to exchange non-text-based (i.e. binary) content, but are not required for basic SOAP/XML interoperability. The DIME requirements are predictable. That is, applications won't suddenly decide to use DIME instead of XML to exchange content.

It is safe to try to compile your application with -DWITH_LEAN, provided that your application does not rely on I/O timeouts. When no linkage error occurs in the compilation process, it is safe to assume that your application will run just fine.

15.33 Build a Client or Server in a C++ Code Namespace

You can use a C++ code namespace of your choice in your header file to build a client or server in that code namespace. In this way, you can create multiple clients and servers that can be combined and linked together without conflicts, which is explained in more detail in the next section (which also shows an example combining two client libraries defined in two C++ code namespaces).

At most one namespace can be defined for the entire gSOAP header file. The code namespace MUST completely encapsulate the entire contents of the header file:

```
namespace myNamespaceName {
... gSOAP header file contents ...
}
```

When compiling this header file with the gSOAP compiler, all type definitions, the (de)serializers for these types, and the stub/skeleton codes will be placed in this namespace. The XML namespace mapping table (saved in a .nsmap file) will not be placed in the code namespace to allow it to be linked as a global object. You can use option -n to create local XML namespace tables, see Section 9.1 (but remember that you explicitly need to initialize the soap.namespaces to point to a table at run time). The generated files are prefixed with the code namespace name instead of the usual soap file name prefix to enable multiple client/server codes to be build in the same project directory (a code namespace automatically sets the -p compiler option, see Section 9.1 for options).

Because the SOAP Header and Fault serialization codes will also be placed in the namespace, they cannot be called from the stdsoap2.cpp run time library code and are therefore rendered unusable. Therefore, these serializers are not compiled at all (enforced with #define WITH_NOGLOBAL). To add SOAP Header and Fault serializers, you MUST compile them separately as follows. First, create a new header file env.h with the SOAP Header and Fault definitions. You can leave this header file empty if you want to use the default SOAP Header and Fault. Then compile this header file with:

```
soapcpp2 -penv env.h
```

The generated envC.cpp file holds the SOAP Header and Fault serializers and you can link this file with your client or server application.

15.34 How to Create Client/Server Libraries

The gSOAP compiler produces soapClientLib.cpp and soapServerLib.cpp codes that are specifically intended for building static or dynamic client/server libraries. These codes export the stubs and skeletons, but keep all marshaling code (i.e. parameter serializers and deserializers) local (i.e. as static functions) to avoid link symbol conflicts when combining multiple clients and/or servers into one executable.

To build multiple libraries in the same project directory, you can define a C++ code namespace in your header file (see Section 15.33) or you can use soapcpp2 with option -p to rename the generated soapClientLib.cpp and soapServerLib.cpp (and associated) files. The -p option specifies the file name prefix to replace the soap prefix. The libraries don't have to be C++ codes. You can use option -c to generate C code. A clean separation of libraries can also be achieved with C++ code namespaces, see Section 15.33.

The library codes do not define SOAP Header and Fault serializers. You MUST add SOAP Header and Fault serializers to your application, which are compiled separately as follows. First, create a new header file env.h with the SOAP Header and Fault definitions. You can leave this header file empty if you want to use the default SOAP Header and Fault. Then compile this header file with:

```
soapcpp2 -penv env.h
```

The generated envC.cpp file holds the SOAP Header and Fault serializers and you can create a (dynamic) library for it to link this code with your client or server application.

You MUST compile the stdsoap2.cpp library using -DWITH_NONAMESPACES:

```
g++ -DWITH_NONAMESPACES -c stdsoap2.cpp
```

This omits the reference to the global namespaces table, which is nowhere defined. You MUST explicitly set the namespaces value of the gSOAP environment in your code every time after initialization of the soap struct:

```
soap_init(&soap);
soap_set_namespaces(&soap, namespaces);
```

where the namespaces[] table is defined in the client/server source, e.g. by including the generated .nsmap files. It is important to rename the tables using option -n, see Section 9.1, to avoid namespace table name clashes.

Note: Link conflicts may still occur in the unlikely situation that identical remote method names are defined in two or more client stubs or server skeletons when these methods share the same XML namespace prefix. You may have to use C++ code namespaces to avoid these link conflicts or rename the namespace prefixes used by the remote method defined in the header files.

15.34.1 C++ Example

As an example we will build a Delayed Stock Quote client library and a Currency Exchange Rate client library.

First, we create an empty header file env.h (which may contain optional SOAP Header and Fault definitions), and compile it as follows:

```
soapcpp2 -penv env.h
g++ -c envC.cpp
```

We also compile stdsoap2.cpp without namespaces:

```
g++ -c -DWITH_NONAMESPACES stdsoap2.cpp
```

Note: when you forget to use -DWITH_NONAMESPACES you will get an unresolved link error for the global namespaces table. You can define a dummy table to avoid having to recompile stdsoap2.cpp.

Second, we create the Delayed Stock Quote header file specification, which may be obtained using the WSDL importer. If you want to use C++ namespaces then you need to manually add the **namespace** declaration to the generated header file:

```
namespace quote {
//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-delayed-quotes
//gsoap ns service method-action: getQuote ""
int ns__getQuote(char *symbol, float &Result);
}
```

We then compile it as a library and we use option -n to rename the namespace table to avoid link conflicts later:

```
\begin{array}{l} soapcpp2 -n \ quote.h \\ g++ -c \ quoteClientLib.cpp \end{array}
```

If you don't want to use a C++ code namespace, you should compile quote.h "as is" with soapcpp2 option -pquote:

```
soapcpp2 -n -pquote quote.h
g++ -c quoteClientLib.cpp
```

Third, we create the Currency Exchange Rate header file specification:

```
namespace rate {
//gsoap ns service name: Service
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://services.xmethods.net/soap
//gsoap ns schema namespace: urn:xmethods-CurrencyExchange
//gsoap ns service method-action: getRate ""
int ns__getRate(char *country1, char *country2, float &Result);
}
```

Similar to the Quote example above, we compile it as a library and we use option -n to rename the namespace table to avoid link conflicts:

```
soapcpp2 -n rate.h
g++ -c rateClientLib.cpp
```

Fourth, we consider linking the libraries to the main program. The main program can import the quoteServiceProxy.h and rateServiceProxy.h files to obtain client proxies to invoke the services. The proxy implementations are defined in the quoteClientLib.cpp and rateClientLib.cpp files compiled above. The -n option also affects the generation of the quoteServiceProxy.h and rateServiceProxy C++ proxy codes to ensure that the gSOAP environment is properly initialized with the namespace table (so you don't have to initialize explicitly – this feature is only available with C++ proxy and server object classes).

```
#include "quoteServiceProxy.h" // get quote Service proxy
#include "rateServiceProxy.h" // get rate Service proxy
#include "quote.nsmap" // get quote namespace bindings
#include "rate.nsmap" // get rate namespace bindings
int main(int argc, char *argv[])
  if (argc \ll 1)
     std::cerr << "Usage: main ticker [currency]" << std::endl
     exit(0);
  quote::Service quote;
  float q:
  if (quote.getQuote(argv[1], q)) // get quote
     soap_print_fault(quote.soap, stderr);
  else
    if (argc > 2)
       rate::Service rate;
       float r:
       if (rate.getRate("us", argv[2], r)) // get rate in US dollars
         soap_print_fault(rate.soap, stderr);
         q *= r; // convert the quote
     std::cout << argv[1] << ": " << q << std::endl;
  return 0;
```

Compile and link this application with stdsoap2.o, envC.o, quoteClientLib.o, and rateClientLib.o.

To compile and link a server object is very similar. For example, assume that we need to implement a calculator service and we want to create a library for it.

```
namespace calc {
//gsoap ns service name: Service
```

```
//gsoap ns service style: rpc
//gsoap ns service encoding: encoded
//gsoap ns service location: http://www.cs.fsu.edu/ engelen/calc.cgi
//gsoap ns schema namespace: urn:calc
int ns__add(double a, double b, double &result);
int ns__sub(double a, double b, double &result);
int ns__mul(double a, double b, double &result);
int ns__div(double a, double b, double &result);
}
We compile this with:
soapcpp2 -n calc.h
g++ -c calcServerLib.cpp
```

The effect of the -n option is that it creates local namespace tables, and a modified calcServiceObject.h server class that properly initializes the gSOAP run time with the table, and renames the global soap_serve function to calc_serve. Function calc_serve is invoked with the serve method of the generated calc::Service class:

```
#include "calcServiceObject.h" // get Service object
#include "calc.nsmap" // get calc namespace bindings
...
calc::Service calc;
calc.serve(); // calls request dispatcher to invoke one of the functions below
...
int calc::ns__add(struct soap *soap, double a, double b, double &result);
{ result = a + b; returnSOAP_OK; }
int calc::ns__sub(struct soap *soap, double a, double b, double &result);
{ result = a - b; returnSOAP_OK; }
int calc::ns__mul(struct soap *soap, double a, double b, double &result);
{ result = a * b; returnSOAP_OK; }
int calc::ns__div(struct soap *soap, double a, double b, double &result);
{ result = a / b; returnSOAP_OK; }
```

In fact, the calc::Service class is derived from the **struct** soap and passed to the remote method implementations. So when you invoke calc.serve() you can be assured that the calc::Service object is passed to the remote service functions.

15.34.2 C Example

This is the same example as above, but the clients are build with pure C.

First, we create an empty header file (which may contain optional SOAP Header and Fault definitions), and compile it as follows:

```
soapcpp2 -c -penv env.h gcc -c envC.c
```

We also compile stdsoap2.c without namespaces:

```
gcc -c -DWITH_NONAMESPACES stdsoap2.c
```

Second, we create the Delayed Stock Quote header file specification, which may be obtained using the WSDL importer.

```
//gsoap ns service name: Service

//gsoap ns service style: rpc

//gsoap ns service encoding: encoded

//gsoap ns service location: http://services.xmethods.net/soap

//gsoap ns schema namespace: urn:xmethods-delayed-quotes

//gsoap ns service method-action: getQuote ""

int ns__getQuote(char *symbol, float *Result);
```

We compile it as a library and we use options -n and -p to rename the namespace table to avoid link conflicts:

```
soapcpp2 -c -n -pquote quote.h gcc -c quoteClientLib.c
```

Third, we create the Currency Exchange Rate header file specification:

```
//gsoap ns service name: Service

//gsoap ns service style: rpc

//gsoap ns service encoding: encoded

//gsoap ns service location: http://services.xmethods.net/soap

//gsoap ns schema namespace: urn:xmethods-CurrencyExchange

//gsoap ns service method-action: getRate ""

int ns_getRate(char *country1, char *country2, float *Result);
```

We compile it as a library and we use options -n and -p to rename the namespace table to avoid link conflicts:

```
soapcpp2 -c -n -prate rate.h gcc -c rateClientLib.c
```

The main program is:

```
#include "quoteStub.h" // get quote Service stub
#include "rateStub.h" // get rate Service stub
#include "quote.nsmap" // get quote namespace bindings
#include "rate.nsmap" // get rate namespace bindings
int main(int argc, char *argv[])
{
   if (argc <= 1)
    {
      fprintf(stderr, "Usage: main ticker [currency]\n");
      exit(0);
   }
   struct soap soap;
   float q;
   soap_init(&soap);</pre>
```

```
soap_set_namespaces(&soap, quote_namespaces);
if (soap_call_ns__getQuote(&soap, "http://services.xmethods.net/soap", "", argv[1], &q)) // get
quote
    soap_print_fault(&soap, stderr);
else
{
    if (argc > 2)
    {
        soap_set_namespaces(&soap, rate_namespaces);
        float r;
        if (soap_call_ns__getRate(&soap, "http://services.xmethods.net/soap", "", "us", argv[2], &r)) // get rate in US dollars
        soap_print_fault(&soap, stderr);
    else
        q *= r; // convert the quote
    }
    printf("%s: %f \n", argv[1], q);
}
return 0;
}
```

Compile and link this application with stdsoap2.o, envC.o, quoteClientLib.o, and rateClientLib.o.

To compile and link a server library is very similar. Assuming that the server is named "calc" (as specified with options -n and -p), the application needs to include the calcStub.h file, link the calcServerLib.o file, and call calc_serve(&soap) function at run time.

15.35 How to Create DLLs

15.35.1 Create the Base stdsoap2.dll

First, create a new header file env.h with the SOAP Header and Fault definitions. You can leave this header file empty if you want to use the default SOAP Header and Fault. Then compile this header file with:

```
soapcpp2 -penv env.h
```

The generated envC.cpp file holds the SOAP Header and Fault serializers, which need to be part of the base library functions.

The next step is to create stdsoap2.dll which consists of the file stdsoap2.cpp and envC.cpp. This DLL contains all common functions needed for all other clients and servers based on gSOAP. Compile envC.cpp and stdsoap2.cpp into stdsoap2.dll using the C++ compiler option -DWITH_NONAMESPACES and the MSVC Pre-Processor definitions SOAP_FMAC1=__declspec(dllexport) and SOAP_FMAC3=__declspec(dllexport) (or you can compile with -DWITH_SOAPDEFS_H and put the macro definitions in soapdefs.h). This exports all functions which are preceded by the macro SOAP_FMAC1 in the soapcpp2.cpp source file and macro SOAP_FMAC3 in the envC.cpp source file.

15.35.2 Creating Client and Server DLLs

Compile the soapClientLib.cpp and soapServerLib.cpp sources as DLLs by using the MSVC Pre-Processor definitions SOAP_FMAC5=__declspec(dllexport) and SOAP_CMAC=__(dllexport), and by using the C++ compiler option -DWITH_NONAMESPACES. This DLL links to stdsoap2.dll.

To create multiple DLLs in the same project directory, you SHOULD use option -p to rename the generated soapClientLib.cpp and soapServerLib.cpp (and associated) files. The -p option specifies the file name prefix to replace the soap prefix. A clean separation of libraries can also be achieved with C++ namespaces, see Section 15.33.

Unless you use the client proxy and server object classes (soapXProxy.h and soapXObject.h where X is the name of the service), all client and server applications MUST explicitly set the namespaces value of the gSOAP environment:

```
soap_init(&soap);
soap_set_namespaces(&soap, namespaces);
```

where the namespaces[] table should be defined in the client/server source. These tables are generated in the .nsmap files. You can rename the tables using option -n, see Section 9.1.

15.35.3 gSOAP Plug-ins

The gSOAP plug-in feature enables a convenient extension mechanism of gSOAP capabilities. When the plug-in registers with gSOAP, it has full access to the run-time settings and the gSOAP function callbacks. Upon registry, the plug-in's local data is associated with the gSOAP run-time. By overriding gSOAP's function callbacks with the plug-in's function callbacks, the plug-in can extend gSOAP's capabilities. The local plug-in data can be accessed through a lookup function, usually invoked within a callback function to access the plug-in data. The registry and lookup functions are:

```
int soap_register_plugin_arg(struct soap *soap, int (*fcreate)(struct soap *soap, struct soap_plugin
*p, void *arg), void *arg)
void* soap_lookup_plugin(struct soap*, const char*);
```

Other functions that deal with plug-ins are:

```
int soap_copy(struct soap *soap);
void soap_done(struct soap *soap);
```

The soap_copy function returns a new dynamically allocated gSOAP environment that is a copy of another, such that no data is shared between the copy and the original environment. The soap_copy function invokes the plug-in copy callbacks to copy the plug-ins' local data. The soap_copy function returns a gSOAP error code or SOAP_OK. The soap_done function de-registers all plugin-ins, so this function should be called to cleanly terminate a gSOAP run-time environment.

An example will be used to illustrate these functions. This example overrides the send and receive callbacks to copy all messages that are sent and received to the terminal (stderr).

First, we write a header file plugin.h to define the local plug-in data structure(s) and we define a global name to identify the plug-in:

```
#include "stdsoap2.h"
      #define PLUGIN_ID "PLUGIN-1.0" // some name to identify plugin
      struct plugin_data // local plugin data
        int (*fsend)(struct soap*, const char*, size_t); // to save and use send callback
        size_t (*frecv)(struct soap*, char*, size_t); // to save and use recv callback
      int plugin(struct soap *soap, struct soap_plugin *plugin, void *arg);
Then, we write the plugin registry function and the callbacks:
      #include "plugin.h"
      static const char plugin_id[] = PLUGIN_ID; // the plugin id
      static int plugin_init(struct soap *soap, struct plugin_data *data);
      static int plugin_copy(struct soap *soap, struct soap_plugin *dst, struct soap_plugin *src);
      static void plugin_delete(struct soap *soap, struct soap_plugin *p);
      static int plugin_send(struct soap *soap, const char *buf, size_t len);
      static size_t plugin_recv(struct soap *soap, char *buf, size_t len);
      // the registry function:
      int plugin(struct soap *soap, struct soap_plugin *p, void *arg)
        p->id = plugin_id;
        p->data = (void*)malloc(sizeof(struct plugin_data));
        p->fcopy = plugin_copy; /* optional: when set the plugin must copy its local data */
        p->fdelete = plugin_delete;
        if (p->data)
           if (plugin_init(soap, (struct plugin_data*)p->data))
             free(p->data); // error: could not init
             return SOAP_EOM; // return error
        return SOAP_OK;
      static int plugin_init(struct soap *soap, struct plugin_data *data)
        data->fsend = soap->fsend; // save old recv callback
        data->frecv = soap->frecv; // save old send callback
        soap->fsend = plugin_send; // replace send callback with new
        soap->frecv = plugin_recv; // replace recv callback with new
        return SOAP_OK;
      // copy plugin data, called by soap_copy() // This is important: we need a deep copy to avoid data
      sharing by two run-time environments
      static int plugin_copy(struct soap *soap, struct soap_plugin *dst, struct soap_plugin *src)
        if (!(dst->data = (struct plugin_data*)malloc(sizeof(struct plugin_data))))
           return SOAP_EOM;
        *dst->data = *src->data:
        return SOAP_OK;
      // plugin deletion, called by soap_done()
      static void plugin_delete(struct soap *soap, struct soap_plugin *p)
      { free(p->data); // free allocated plugin data
```

```
}
// the new send callback
static int plugin_send(struct soap *soap, const char *buf, size_t len)
{
    struct plugin_data *data = (struct plugin_data*)soap_lookup_plugin(soap, plugin_id); // fetch
plugin's local data
    fwrite(buf, len, 1, stderr); // write message to stderr
    return data->fsend(soap, buf, len); // pass data on to old send callback
}
// the new receive callback
static size_t plugin_recv(struct soap *soap, char *buf, size_t len)
{
    struct plugin_data *data = (struct plugin_data*)soap_lookup_plugin(soap, plugin_id); // fetch
plugin's local data
    size_t res = data->frecv(soap, buf, len); // get data from old recv callback
    fwrite(buf, res, 1, stderr);
    return res;
}
```

The fdelete callback of **struct** soap_plugin MUST be set to register the plugin. It is the responsibility of the plug-in to handle registry (init), copy, and deletion of the plug-in data and callbacks.

A plugin is copied with the soap_copy() call. This function copies a soap struct and the chain of plugins. It is up to the plugin implementation to share the plugin data or not:

- 1. if the fcopy() callback is set by the plugin initialization, this callback will be called to allow the plugin to copy its local data upon a soap_copy() call. When soap_done() is called on the soap struct copy, the fdelete() callback is called for deallocation and cleanup of the local data.
- 2. if the fcopy() callback is not set, then the plugin data will be shared (i.e. the data pointer points to the same address). The fdelete() callback will not be called upon a soap_done() on a copy of the soap struct. The fdelete() callback will be called for the original soap struct with which the plugin was registered.

The example plug-in should be used as follows:

```
struct soap soap;
soap_init(&soap);
soap_register_plugin(&soap, plugin);
...
soap_done(&soap);
```

Note: soap_register_plugin(...) is an alias for soap_register_plugin_arg(..., NULL). That is, it passes NULL as an argument to plug-in's registry callback.