安徽大学 2023—2024 学年第一学期

《线性代数 A》模拟题(二) (闭卷 时间 120 分钟)

考场登记表序号_____

题 号	_	11	111	四	总 分
得 分					
阅卷人					

	阅卷人							
一、)	先择题(5!	小题,每小	、题 3 分,	共 15 分)		得分		
1. †	•	B = A + B	B ;	(B) $AB =$	BA;			
	(C) $ AB =$	BA ;		(D) $(AB)^{-1}$	$A^{-1}B^{-1}$.			
2.)时,其科	失为 2.	
(A) 0	(B) 2		(C) 7/8	(D) 1		
3. 1	(A) A的行	向量组线	性相关;	(B)	A的行向	「零解的充分条 量组线性无关 量组线性无关	;	
4. 5		,				Hq ₃tt 和 A (D) -8, -1.)
5. X	付于二次型.	$f(x) = X^T A$	AX,其中	A为n阶实	对称矩阵,	下述各结论中	中正确的是 ()
(E	(2) 化 $f(x)$ 分 (3) 化 $f(x)$ 分 (4) $f(x)$ 的标 真空题(5 2	为规范形的 示准形是唯	」非退化线 一的	性替换是唯 (D) <i>j</i>	一的	形是唯一的		
,		4 /44	, C) 4 9	, , _ , , , ,				

6. 行列式 $\begin{vmatrix} 2 & x & 1 & 2x \\ 1 & 1 & x & -1 \\ 3 & 2x & 1 & 1 \\ x & 1 & 1 & 1 \end{vmatrix}$ 中, x^4 项的系数为______.

- 7. 设矩阵 A 满足 $A^2 + A 4I = 0$,其中 I 为单位矩阵,则 $(A I)^{-1} =$ ______.
- 8. 设 3 阶方阵 A 的伴随矩阵为 A^* , 且 $|A| = \frac{1}{2}$,则 $|(2A)^{-1} 2A^*| = ______$.

- 9. 已知矩阵 $A = \begin{bmatrix} 4 & 2 & 3 \\ 1 & 1 & 0 \\ -1 & 2 & 3 \end{bmatrix}$, 若矩阵 B 满足 AB = A + 2B,则 $B = \underline{\hspace{1cm}}$.
- 10. 设 $\alpha_1 = (0,0,1), \alpha_2 = (0,1,1), \alpha_3 = (1,1,1), \alpha = (3,4,5)$,则 α 在 $\alpha_1,\alpha_2,\alpha_3$ 下的坐标为______.
- 三、分析计算题(6小题,每小题10分,共60分)

得分

- 11. 讨论线性方程组 $\begin{cases} ax_1 + x_2 + x_3 = 1 \\ x_1 + ax_2 + x_3 = 1 \end{cases}$ 解的情况;若有解,则求出方程组的解. $\begin{cases} x_1 + x_2 + ax_3 = -2 \end{cases}$
- 12. 若 $\alpha_1 = (1,4,0,2), \alpha_2 = (2,7,1,3), \alpha_3 = (0,1,-1,a), \beta = (3,10,b,4)$. 问:
 - (1) a,b为何值时, β 不能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?
 - (2) a,b为何值时, β 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表示?并写出此表示式.
- 13. 设 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 和 $\beta_1,\beta_2,\beta_3,\beta_4$ 分别是 R^4 的两个基,它们的关系是

$$\begin{cases} \beta_1 = \alpha_1 + 2\alpha_2 + \alpha_3 \\ \beta_2 = 2\alpha_1 + 3\alpha_2 + \alpha_4 \end{cases}$$
$$\beta_3 = \alpha_3 - 2\alpha_4$$
$$\beta_4 = -2\alpha_3 + 6\alpha_4$$

- (1) 求基 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 到基 $\beta_1, \beta_2, \beta_3, \beta_4$ 的过渡矩阵;
- (2) 已知向量 $\alpha = \alpha_1 2\alpha_2 + 2\alpha_3 + \alpha_4$,求 α 在基 $\beta_1, \beta_2, \beta_3, \beta_4$ 下的坐标.
- 14. 求下列向量组

$$\alpha_1 = (1, -1, 2, 4)^T$$
, $\alpha_2 = (0, 3, 1, 2)^T$, $\alpha_3 = (3, 0, 7, 14)^T$, $\alpha_4 = (1, -1, 2, 0)^T$, $\alpha_5 = (2, 1, 5, 6)^T$ 的一个极大无关组和秩.

15. 已知 3 阶**实对称矩阵** A 的特征值为 1, 2, 3, 且属于特征值 1, 2 的特征向量分别为

$$\alpha_1 = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}, \alpha_2 = \begin{pmatrix} 1 \\ -2 \\ -1 \end{pmatrix}, 菜矩阵 A.$$

16. 用正交线性替换将二次型 $x_1^2 + 4x_2^2 + 4x_3^2 - 4x_1x_2 + 4x_1x_3 - 8x_2x_3$ 化为标准型,并写出所用的正交线性替换.

四、证明题(共10分)

得分

17. 设n维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_t$ 是齐次线性方程组AX=0一个基础解系,而n维向量 β 不是此方程组的解. 证明: 向量组 $\alpha_1+\beta,\alpha_2+\beta,\cdots,\alpha_t+\beta$ 线性无关.