Psedo code of Heter-LP

Input

- 1) σ : convergence threshold
- 2) α : diffusion parameter of label propagation
- 3) S_1 , S_2 , S_3 : homo-subnetwork similarity matrices
- 4) $S_{1,2}$, $S_{1,3}$, $S_{2,3}$: hetero-subnetwork matrices
- 5) drugs list (n_1 is the number of total drugs)
- 6) diseases list (n_2 is the number of total diseases)
- 7) targets list (n_3 is the number of total targets)

Output

- 1) F_1 , F_2 , F_3 : homo-subnetwork matrices of final label values
- 2) $F_{1,2}$, $F_{1,3}$, $F_{2,3}$: hetero-subnetwork matrices of final label values

Algorithm

- 1) $F_k=0$, $F_{k,k'}=0$ for all k,k'=1,2,3
- 2) Define three vectors for initial labels: $y_1=0$ with n_1 entries, $y_2=0$ with n_2 entries, $y_3=0$ with n_3 entries

//Projection

- 3) W_1 = projection of $S_{1,2}$ on S_1 ; $size(W_1) = (n_1 * n_1)$
- 4) W'_1 = projection of $S_{1,3}$ on S_1 ; $size(W'_1) = (n_1 * n_1)$
- 5) W_2 = projection of $S_{1,2}$ on S_2 ; $size(W_2) = (n_2 * n_2)$
- 6) $W'_2 = \text{projection of } S_{2,3} \text{ on } S_2; size(W'_2) = (n_2 * n_2)$
- 7) W_3 = projection of $S_{1,3}$ on S_3 ; $size(W_3) = (n_3 * n_3)$
- 8) $W'_3 = \text{projection of } S_{2,3} \text{ on } S_3; \ size(W'_3) = (n_3 * n_3)$

//Integration of similarity matrix with projected matrices

```
9) M_I = \text{NormalizeSumOf}(S_I, W_I, W_I)
```

10)
$$M_2$$
=NormalizeSumOf(S_2, W_2, W'_2)

11)
$$M_3$$
=NormalizeSumOf(S_3, W_3, W_3)

// label propagation

12) **for**
$$i=1... y_1.length$$

12.1)
$$y_1[i]=1$$
, $y_1[j]=0$ for all $j\neq i$

12.2)
$$y_2=y_3=0$$

$$(12.3) f_1 = y_1, f_2 = y_2, f_3 = y_3$$
 // vectors of final label values

12.4) LabelPropagation(
$$f_1, f_2, f_3$$
)

12.5) Update (
$$F_1$$
, $F_{1,2}$, $F_{1,3}$, i, f_1 , f_2 , f_3)

13) **for** $i=1... y_2.length$

13.1)
$$y_2[i]=1$$
, $y_2[j]=0$ for all $j\neq i$

13.2)
$$y_1 = y_3 = 0$$

$$(13.3) f_1 = y_1, f_2 = y_2, f_3 = y_3$$

13.4) LabelPropagation
$$(f_1, f_2, f_3)$$

13.5) Update
$$(F_2, F_{2,1}, F_{2,3}, i, f_1, f_2, f_3)$$

14) **for** $i=1... y_3.length$

14.1)
$$y_3[i]=1$$
, $y_3[j]=0$ for all $j\neq i$

14.2)
$$y_1=y_2=0$$

 $(14.3)f_1=y_1$, $f_2=y_2$, $f_3=y_3$ // vectors of final label values

14.4) LabelPropagation
$$(f_1, f_2, f_3)$$

14.5) Update
$$(F_3, F_{3,1}, F_{3,2}, i, f_1, f_2, f_3)$$

- 15) $F_{1,2}$ =mean $(F_{1,2}, transpose(F_{2,1}))$
- 16) $F_{1,3}$ =mean $(F_{1,3}$, transpose $(F_{3,1})$)
- 17) $F_{2,3}$ =mean ($F_{2,3}$, transpose($F_{3,2}$))
- 18) **return** F_1 , F_2 , F_3 , $F_{1,2}$, $F_{1,3}$, $F_{2,3}$

- 1. d=0 //a vector with S.numberOfRows length
- 2. for i=1..S.numberOfRows
 - 2.1. for j=1..S.numberOfColumns

2.1.1 **if**
$$(i \neq j)$$

$$2.1.1.1 M[i,j] = S[i,j] + W[i,j] + W'[i,j]$$

$$2.1.1.2 d[i]=d[i]+M[i,j]$$

$$2.1.2$$
 else $M[i,j]=0$

2.2 **if**
$$(d[i]==0) d[i]=1$$

- 3. for i=1..M.numberOfRows
 - 3.1. for j=1..M.numberOfColumns

3.1.1 **if** (
$$i! = j$$
 and $M[i, j]! = 0$) $M[i, j] = \frac{M[i, j]}{\sqrt{d[i]d[j])}}$

3. **return** (*M*)

LabelPropagation (f_1, f_2, f_3)

- 1. $y_i=fi$
- 2. **repeat** (steps 3-12)

//drug

3.
$$f_{1_old} = f_1$$

4.
$$y'_1 = (1-\alpha)y_1 + \alpha(S_{1,2}*f_2 + S_{1,3}*f_3)$$

5.
$$f_1 = (1-\alpha)y'_1 + \alpha *M_1*f_1$$

//disease

6.
$$f_{2_old} = f_2$$

7.
$$y'_2 = (1-\alpha)y_2 + \alpha((S_{1,2})^T * f_1 + S_{2,3} * f_3)$$

8.
$$f_2 = (1-\alpha)y'_2 + \alpha * M_2 * f_2$$

//target

9.
$$f_{3_old} = f_3$$

10.
$$y'_3 = (1-\alpha)y_3 + \alpha((S_{1,3})^T * f_1 + (S_{2,3})^T * f_2)$$

11.
$$f_3 = (1-\alpha)y'_3 + \alpha * M_3 * f_3$$

12. **while** $(||f_1-f_{1_old}|| > \sigma \text{ or } ||f_2-f_{2_old}|| > \sigma \text{ or } ||f_3-f_{3_old}|| > \sigma)$

Update $(F_a, F_b, F_c, i, f_1, f_2, f_3)$

- 1. $F_a[i,]=f_1$
- 2. $F_b[i,]=f_2$
- 3. $F_c[i,]=f_3$