Assignment2

Computer Vision 2023 Spring

1953921 陈元哲

1

(Math) In the augmented Euclidean plane, there is a line x - 3y + 4 = 0, what is the homogeneous coordinate of the infinity point of this line?

The homogeneous coordinate of the line is x-3y+4z=0. In the projective plane, a point at infinity is represented by setting z=0. We plug z=0 into the equation to find the homogeneous coordinates of the infinity point

$$x - 3y = 0$$

let x=3, we have y=1

Therefore, the homogeneous coordinate of the infinity point is (3,1,0).

2

(**Math**) On the normalized retinal plane, suppose that \mathbf{p}_n is an ideal point of projection without considering distortion. If distortion is considered, $\mathbf{p}_n = (x, y)^T$ is mapped to $\mathbf{p}_d = (x_d, y_d)^T$ which is also on the normalized retinal plane. Their relationship is,

$$\begin{cases} x_d = x(1 + k_1 r^2 + k_2 r^4) + 2\rho_1 xy + \rho_2 (r^2 + 2x^2) + xk_3 r^6 \\ y_d = y(1 + k_1 r^2 + k_2 r^4) + 2\rho_2 xy + \rho_1 (r^2 + 2y^2) + yk_3 r^6 \end{cases}$$

where
$$r^2 = x^2 + v^2$$

For performing nonlinear optimization in the pipeline of camera calibration, we need to compute the Jacobian matrix of \mathbf{p}_d w.r.t \mathbf{p}_n , i.e.,

$$\frac{d\mathbf{p}_d}{d\mathbf{p}_n^T}$$

It should be noted that in this question \mathbf{p}_d is the function of \mathbf{p}_n and all the other parameters can be regarded as constants.

We plug $r^2 = x^2 + y^2$

$$\begin{cases} x_d = x[1 + k_1(x^2 + y^2) + k_2(x^4 + 2x^2y^2 + y^4)] + 2\rho_1xy + \rho_2(3x^2 + y^2) + xk_3(x^6 + 3x^4y^2 + 3x^2y^4 + y^6) \\ y_d = y[1 + k_1(x^2 + y^2) + k_2(x^4 + 2x^2y^2 + y^4)] + 2\rho_2xy + \rho_1(x^2 + 3y^2) + yk_3(x^6 + 3x^4y^2 + 3x^2y^4 + y^6) \end{cases}$$

 $\mathbf{p}_n = (x,y)^T$ is mapped to $\mathbf{p}_d = (x_d,y_d)^T$, we have $F: \mathbb{R}_2 o \mathbb{R}_2$

$$\frac{\mathrm{d}\mathbf{p}_{d}}{\mathrm{d}\mathbf{p}_{n}^{T}} = J_{F}(x,y) = \begin{bmatrix} \frac{\partial x_{d}}{\partial x} & \frac{\partial x_{d}}{\partial y} \\ \frac{\partial y_{d}}{\partial x} & \frac{\partial y_{d}}{\partial y} \end{bmatrix}$$

$$= \begin{bmatrix} 1 + k_{1}(3x^{2} + y^{2}) + k_{2}(5x^{4} + 6x^{2}y^{2} + y^{4}) + & 2k_{1}xy + k_{2}(4x^{3}y + 4xy^{3}) + \\ 2\rho_{1}y + 6\rho_{2}x + k_{3}(7x^{6} + 15x^{4}y^{2} + 9x^{2}y^{4} + y^{6}) & 2\rho_{1}x + 2\rho_{2}y + k_{3}(6x^{5}y + 12x^{3}y^{3} + 6xy^{5}) \\ 2k_{1}xy + k_{2}(4x^{3}y + 4xy^{3}) + & 1 + k_{1}(x^{2} + 3y^{2}) + k_{2}(x^{4} + 6x^{2}y^{2} + 5y^{4}) + \\ 2\rho_{1}x + 2\rho_{2}y + k_{3}(6x^{5}y + 12x^{3}y^{3} + 6xy^{5}) & 2\rho_{2}x + 6\rho_{1}y + k_{3}(x^{6} + 9x^{4}y^{2} + 15x^{2}y^{4} + 7y^{6}) \end{bmatrix}$$

$$= \begin{bmatrix} 1 + k_{1}(2x^{2} + r^{2}) + k_{2}r^{2}(4x^{2} + r^{2}) + \\ 2\rho_{1}y + 6\rho_{2}x + k_{3}r^{4}(6x^{2} + r^{2}) \\ 2k_{1}xy + 4k_{2}xyr^{2} + 2\rho_{1}x + 2\rho_{2}y + 6k_{3}xyr^{4} \end{bmatrix}$$

$$= \begin{bmatrix} 1 + k_{1}(2y^{2} + r^{2}) + k_{2}r^{2}(4x^{2} + r^{2}) + \\ 2\rho_{2}x + 6\rho_{1}y + k_{3}r^{4}(6y^{2} + r^{2}) \end{bmatrix}$$

(Math) In our lecture, we mentioned that for performing nonlinear optimization in the pipeline of camera calibration, we need to compute the Jacobian of the rotation matrix (represented in a vector) w.r.t its axis-angle representation. In this question, your task is to derive the concrete formula of this Jacobian matrix. Suppose that

$$\mathbf{d} = \theta \mathbf{n} \in \mathbb{R}^{3 \times 1}$$
, where $\mathbf{n} = \begin{bmatrix} n_1 \\ n_2 \\ n_3 \end{bmatrix}$ is a 3D unit vector and θ is a real number denoting the rotation angle.

With Rodrigues formula, d can be converted to its rotation matrix form,

$$\mathbf{R} = \cos\theta \mathbf{I} + (1 - \cos\theta) \mathbf{n} \mathbf{n}^T + \sin\theta \mathbf{n}$$

and obviously
$$\mathbf{R} \triangleq \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
 is a 3×3 matrix.

Denote \mathbf{r} by the vectorized form of \mathbf{R} , i.e.

$$\mathbf{r} \triangleq (r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33})^{T}$$

Please give the concrete form of Jacobian matrix of \mathbf{r} w.r.t \mathbf{d} , i.e., $\frac{d\mathbf{r}}{d\mathbf{r}} \in \mathbb{R}^{9\times 3}$.

In order to make it easy to check your result, please follow the following notation requirements, $\alpha \triangleq \sin \theta, \beta \triangleq \cos \theta, \gamma \triangleq 1 - \cos \theta$

In other words, the ingredients appearing in your formula are restricted to $\alpha, \beta, \gamma, \theta, n_1, n_2, n_3$.

We have

$$\mathbf{n}\mathbf{n}^T = egin{bmatrix} n_1^2 & n_1n_2 & n_1n_3 \ n_1n_2 & n_2^2 & n_2n_3 \ n_1n_3 & n_2n_3 & n_3^2 \end{bmatrix} \quad \mathbf{n}^\wedge = egin{bmatrix} 0 & -n_3 & n_2 \ n_3 & 0 & -n_1 \ -n_2 & n_1 & 0 \end{bmatrix}$$

We plug them into ${f R}$

$$\mathbf{R} = \begin{bmatrix} \cos\theta + n_1^2 (1 - \cos\theta) & n_1 n_2 (1 - \cos\theta) - n_3 \sin\theta & n_1 n_3 (1 - \cos\theta) + n_2 \sin\theta \\ n_1 n_2 (1 - \cos\theta) + n_3 \sin\theta & \cos\theta + n_2^2 (1 - \cos\theta) & n_2 n_3 (1 - \cos\theta) - n_1 \sin\theta \\ n_1 n_3 (1 - \cos\theta) - n_2 \sin\theta & n_2 n_3 (1 - \cos\theta) + n_1 \sin\theta & \cos\theta + n_3^2 (1 - \cos\theta) \end{bmatrix}$$

let $\mathbf{d} = (d_1, d_2, d_3)^T$, we have

$$\mathbf{d} = \theta \mathbf{n} = \begin{bmatrix} \theta n_1 \\ \theta n_2 \\ \theta n_3 \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$$

 $d_i = \theta n_i \quad (i = 1, 2, 3)$

 \mathbf{n} is a 3D unit vector, therefore

$$d_1^2 + d_2^2 + d_2^2 = \theta^2(n_1^2 + n_2^2 + n_2^2) = \theta^2$$

We plug the relationship above, have

$$\begin{split} \frac{\partial \alpha}{\partial d_i} &= \frac{\partial \sin \theta}{\partial d_i} = \cos \theta \frac{\partial \theta}{\partial d_i} = \cos \theta \frac{\partial \sqrt{d_1^2 + d_2^2 + d_3^2}}{\partial d_i} = \cos \theta \frac{d_i}{\theta} = n_i \cos \theta \\ & \frac{\partial \beta}{\partial d_i} = \frac{\partial \cos \theta}{\partial d_i} = -\sin \theta \frac{\partial \theta}{\partial d_i} = -n_i \sin \theta \\ & \frac{\partial \gamma}{\partial d_i} = \frac{\partial 1 - \cos \theta}{\partial d_i} = -\frac{\partial \cos \theta}{\partial d_i} = n_i \sin \theta \\ & \frac{\partial n_i}{\partial d_i} = \frac{\partial \frac{d_i}{\theta}}{\partial d_i} = \frac{\theta - d_i \frac{\partial \theta}{\partial d_i}}{\theta^2} = \frac{\theta - \frac{d_i^2}{\theta}}{\theta^2} = \frac{1 - n_i^2}{\theta} \\ & \frac{\partial n_j}{\partial d_i} = \frac{\partial \frac{d_j}{\theta}}{\partial d_i} = \frac{-d_j \frac{\partial \theta}{\partial d_i}}{\theta^2} = -\frac{n_i n_j}{\theta} \quad (i \neq j) \end{split}$$

$$egin{aligned} rac{\mathbf{d}\mathbf{r}}{\mathbf{d}\mathbf{d}^T} &= J_F(r_{11}, r_{12}, r_{13}, r_{21}, r_{22}, r_{23}, r_{31}, r_{32}, r_{33}) \ &= egin{bmatrix} rac{\partial r_{11}}{\partial d_1} & rac{\partial r_{11}}{\partial d_2} & rac{\partial r_{11}}{\partial d_3} \ rac{\partial r_{12}}{\partial d_1} & rac{\partial r_{12}}{\partial d_2} & rac{\partial r_{12}}{\partial d_3} \ dots & dots & dots \ rac{\partial r_{33}}{\partial d_1} & rac{\partial r_{33}}{\partial d_2} & rac{\partial r_{33}}{\partial d_3} \end{bmatrix} \end{aligned}$$

$$= \begin{bmatrix} n_1(1-n_1^2)(\frac{2\gamma}{\theta}-\alpha) & n_1^2n_2(\alpha-\frac{2\gamma}{\theta})-n_2\alpha & n_1^2n_3(\alpha-\frac{2\gamma}{\theta})-n_3\alpha \\ n_1^2n_2(\alpha-\frac{2\gamma}{\theta})+n_1n_3(\frac{\alpha}{\theta}-\beta)+n_2\frac{\gamma}{\theta} & n_1n_2^2(\alpha-\frac{2\gamma}{\theta})+n_2n_3(\frac{\alpha}{\theta}-\beta)+n_1\frac{\gamma}{\theta} & n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})-(1-n^3)\frac{\alpha}{\theta}-n_3^2\beta \\ n_1^2n_3(\alpha-\frac{2\gamma}{\theta})-n_1n_2(\frac{\alpha}{\theta}-\beta)+n_3\frac{\gamma}{\theta} & n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})+(1-n_2^2)\frac{\alpha}{\theta}+n_2^2\beta & n_1n_3^2(\alpha-\frac{2\gamma}{\theta})-n_2n_3(\frac{\alpha}{\theta}-\beta)+n_1\frac{\gamma}{\theta} \\ n_1^2n_2(\alpha-\frac{2\gamma}{\theta})-n_1n_3(\frac{\alpha}{\theta}-\beta)+n_2\frac{\gamma}{\theta} & n_1n_2^2(\alpha-\frac{2\gamma}{\theta})-n_2n_3(\frac{\alpha}{\theta}-\beta)+n_1\frac{\gamma}{\theta} & n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})+(1-n^3)\frac{\alpha}{\theta}+n_3^2\beta \\ n_1n_2^2(\alpha-\frac{2\gamma}{\theta})-n_1\alpha & n_2(1-n_2^2)(\frac{2\gamma}{\theta}-\alpha) & n_2^2n_3(\alpha-\frac{2\gamma}{\theta})+n_1n_3(\frac{\alpha}{\theta}-\beta)+n_2\frac{\gamma}{\theta} \\ n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})-(1-n_1^2)\frac{\alpha}{\theta}-n_1^2\beta & n_2^2n_3(\alpha-\frac{2\gamma}{\theta})+n_1n_2(\frac{\alpha}{\theta}-\beta)+n_3\frac{\gamma}{\theta} & n_2n_3^2(\alpha-\frac{2\gamma}{\theta})+n_1n_3(\frac{\alpha}{\theta}-\beta)+n_1\frac{\gamma}{\theta} \\ n_1^2n_3(\alpha-\frac{2\gamma}{\theta})+n_1n_2(\frac{\alpha}{\theta}-\beta)+n_3\frac{\gamma}{\theta} & n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})-(1-n_2^2)\frac{\alpha}{\theta}-n_2^2\beta & n_1n_3^2(\alpha-\frac{2\gamma}{\theta})+n_2n_3(\frac{\alpha}{\theta}-\beta)+n_1\frac{\gamma}{\theta} \\ n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})+(1-n_1^2)\frac{\alpha}{\theta}+n_1^2\beta & n_2^2n_3(\alpha-\frac{2\gamma}{\theta})-n_1n_2(\frac{\alpha}{\theta}-\beta)+n_3\frac{\gamma}{\theta} & n_2n_3^2(\alpha-\frac{2\gamma}{\theta})-n_1n_3(\frac{\alpha}{\theta}-\beta)+n_2\frac{\gamma}{\theta} \\ n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})-n_1\alpha & n_2n_3^2(\alpha-\frac{2\gamma}{\theta})-n_1n_2(\frac{\alpha}{\theta}-\beta)+n_3\frac{\gamma}{\theta} & n_2n_3^2(\alpha-\frac{2\gamma}{\theta})-n_1n_3(\frac{\alpha}{\theta}-\beta)+n_2\frac{\gamma}{\theta} \\ n_1n_2n_3(\alpha-\frac{2\gamma}{\theta})-n_1\alpha & n_2n_3^2(\alpha-\frac{2\gamma}{\theta})-n_2\alpha & n_3(1-n_3^2)(\alpha-\frac{2\gamma}{\theta}) \end{pmatrix}$$

4

(**Programming**) Bird's-eye-view generation. The geometric transform between the physical plane and its bird's-eye-view image can be simply described by a **similarity transformation** matrix. Bird's-eye-view is very useful in autonomous industrial inspection, ADAS, etc. In this question, your task is to create the bird's-eye-view image of a physical plane, e.g., the wall of your room. For this purpose, you may need to,

- make a calibration board with chessboard patterns;
- calibrate your camera (the camera mounted on your laptop or the camera of your mobile phone with fixed focal length) to get its intrinsics;
- 3) attach regular patterns (e.g., chessboard patterns) to the wall, determine the 2D coordinate system C_W of the wall, and determine the coordinates $\left\{\mathbf{x}_{Wi}\right\}_{i=1}^{N}$ of the feature points of the regular patterns with

respect to C_W ;

- 4) take the image I_d of the wall with regular patterns;
- 5) undistort image I_d with the camera's intrinsics to get the undistorted image I_i
- 6) For each \mathbf{x}_{Wi} , determine its image \mathbf{x}_{Ii} on I;
- 7) solve the homography matrix $P_{W \to I}$ between the wall and the image I wall using $\left\{ \mathbf{x}_{Wi} \longleftrightarrow \mathbf{x}_{Ii} \right\}_{i=1}^{N}$;
- 8) generate the final bird's-eye-view image of the wall using the technique introduced in our lecture.

For submission, you **only** need to submit the following items to TA:

- 1) the intrinsic parameters of your camera;
- 2) the original image of the wall (or other physical planes) taken by your camera; make sure that your name is painted or attached on the wall (or the plane); (maybe similar to following image I provide to you)
- 3) the generated bird's-eye-view image of the wall (or other physical planes).

Where is my submisson

1. the intrinsic parameters of my camera

In the file camera_intrinsic.txt, here is the content

```
Camera Matrix:
[1658.360919958824, 0, 1210.66914163179;
0, 1626.412676277487, 556.1001190421206;
0, 0, 1]
Distortion Coefficients:
[-0.2582572766295772, 1.287844698344425, 0, 0, -0.8617458966204036]
```

2. the original image of the physical planes taken by my camera

In the file input.jpg

3. the generated BEV image

In the file result.jpg

And the source code is in file BEV.cpp