Spatio-temporal statistics (MATH4341)

Easter term, 2025

Revision sheet

Lecturer & author: Georgios P. Karagiannis

georgios.karagiannis@durham.ac.uk

Part 1. Point referenced data / Geostatistics

Exercise 1. Consider the Gaussian c.f. $c(h) = \sigma^2 \exp(-\beta \|h\|_2^2)$ for $\sigma^2, \beta > 0$ and $h \in \mathbb{R}^d$. Compute the spectral density from Bochner's theorem

Solution. It is

$$f(\omega) = \left(\frac{1}{2\pi}\right)^{d} \int_{\mathbb{R}^{d}} \exp\left(-i\omega^{\top}h\right) \sigma^{2} \exp\left(-\beta \|h\|_{2}^{2}\right) dh$$

$$= \sigma^{2} \left(\frac{1}{2\pi}\right)^{d} \prod_{j=1}^{d} \int_{\mathbb{R}} \exp\left(-i\omega_{j}h_{j} - \beta h_{j}^{2}\right) dh$$

$$= \sigma^{2} \left(\frac{1}{2\pi}\right)^{d} \prod_{j=1}^{d} \left(\int_{\mathbb{R}} \exp\left(-\beta \left(h_{j} - \left(-i\omega_{j}/\left(2\beta\right)\right)\right)^{2}\right) dh_{j} \exp\left(-\omega_{j}^{2}/\left(4\beta\right)\right)$$

$$= \sigma^{2} \left(\frac{1}{4\pi\beta}\right)^{d/2} \exp\left(-\|\omega\|_{2}^{2}/\left(4\beta\right)\right)$$

Exercise 2. Let $(Z(s); s \in \mathcal{S})$ be a specified statistical model. Assume that process $(Z(s); s \in \mathcal{S})$ has known mean $\mu(s) = \mathrm{E}(Z(s))$ and known covariance function $c(\cdot, \cdot)$. Assume there is available a dataset $\{(s_i, Z_i := Z(s_i))\}_{i=1}^n$. Assume that the matrix C such as $[C]_{i,j} = c(s_i, s_j)$ has an inverse. Consider the "Kriging" estimator μ_{SK} Consider the "Kriging" estimator $Z_{SK}(s_0)$ of $Z(s_0)$ at an unseen spatial location s_0 as the BLUE (Best Linear Unbiased Estimator)

$$Z_{SK}(s_0) = w_{n+1} + \sum_{i=1}^{n} w_i Z(s_i) = w_{n+1} + w^{\top} Z,$$

for some unknown $\{w_i\}$ that we need to learn, and $Z = (Z_1, ..., Z_n)^{\top}$. Let $w = (w_1, ..., w_n)^{\top}$.

- (1) Find sufficient conditions on $w = (w_1, ..., w_n)^{\top}$ so that the Kriging estimator $Z_{SK}(s_0)$ to be unbiased.
- (2) Derive the MSE of $Z_{SK}(s_0)$ as

$$E(Z_{SK}(s_0) - Z(s_0))^2 = w^{\top}Cw + c(s_0, s_0) - 2w^{\top}C_0$$

where C_0 is a vector such as $[C_0]_i = c(s_0, s_i)$.

(3) Derive the Kriging estimator of $Z(s_0)$ as

$$Z_{SK}(s_0) = \mu(s_0) + C_0^{\top} C^{-1} [Z - \mu(s_{1:n})]$$

where $\mu(s_{1:n})$ is a vector such as $[\mu(s_{1:n})]_i = \mu(s_i)$.

(4) Compute the Kriging standard error $\sigma_{SK} = \sqrt{E(Z_{SK}(s_0) - Z(s_0))^2}$.

Solution. The method is called Simple Kriging, and hence we denote it as SK.

(1) It is

$$Z_{SK}(s_0) = w_{n+1} + \sum_{i=1}^{n} w_i Z(s_i) = w_{n+1} + w^{\top} Z,$$

where $\{w_i\}$ is a set of unknown weights to be learned.

We assume that assume zero systematic error (unbiasness), hence

$$E(Z_{SK}(s_0) - Z(s_0)) = E\left(w_{n+1} + \sum_{i=1}^{n} w_i Z(s_i) - Z(s_0)\right) = w_{n+1} + \sum_{i=1}^{n} w_i \mu(s_i) - \mu(s_0)$$

which is satisfied given the assumption

$$w_{n+1} = \mu(s_0) - \sum_{i=1}^{n} w_i \mu(s_i) \iff w_{n+1} = \mu(s_0) - w^{\top} \mu(s_{1:n})$$

where $w = (w_1, ..., w_n)^{\top}$.

(2) It is

$$E(Z_{SK}(s_0) - Z(s_0))^2 = Var(Z_{SK}(s_0) - Z(s_0)) = Var(w_{n+1} + w^{\top}Z - Z(s_0))$$

$$= Var(w_{n+1} + w^{\top}Z) + Var(Z(s_0)) - 2Cov(w_{n+1} + w^{\top}Z, Z(s_0))$$

$$= w^{\top}Cw + c(s_0, s_0) - 2w^{\top}Cov(Z, Z(s_0))$$

$$= w^{\top}Cw + c(s_0, s_0) - 2w^{\top}C_0$$

where $C_0 = \text{Cov}(Z, Z(s_0))$, i.e. $[C_0]_i = c(s_i, s_0)$.

(3) To learn the unknown weights $\{w_i\}$ we need to solve

$$w^{\text{SK}} = \underset{w}{\text{arg minE}} (Z_{\text{SK}}(s_0) - Z(s_0))^2$$
, subject to $w_{n+1} = \mu(s_0) - w^{\top} \mu(s_{1:n})$

As $\mathrm{E}\left(\mu_{\mathrm{SK}}-Z\left(s_{0}\right)\right)^{2}$ does not depend on w_{n+1} we minimize

$$0 = \nabla_w E (Z_{SK}(s_0) - Z(s_0))^2 = \nabla_w Var (Z_{SK}(s_0) - Z(s_0))$$

= $2Cw - 2C_0$

So I get

$$w_{\rm SK} = C^{-1}C_0$$

So

$$Z_{SK}(s_0) = w_{n+1} + C^{-1}C_0Z$$

$$= \mu(s_0) - (C^{-1}C_0)^{\top} \mu(s_{1:n}) + (C^{-1}C_0)^{\top} Z$$

$$= \mu(s_0) + C_0^{\top} C^{-1} [Z - \mu(s_{1:n})]$$

(4) It is

$$\sigma_{SK} = \sqrt{E (Z_{SK}(s_0) - Z(s_0))^2}$$

$$= \sqrt{w_{SK}^{\top} C w_{SK} + c(s_0, s_0) - 2w_{SK}^{\top} C_0}$$

$$= \sqrt{c(s_0, s_0) - C_0^{\top} C^{-1} C_0}$$

Part 2. Aerial unit data / spatial data on lattices

Exercise 3.

Exercise 4. Consider that Z(s) represents presence or absence of a characteristic at location $s \in \mathcal{S}$. Mathematically, assume random field Z taking values on a set of indices \mathcal{S} in $\mathcal{Z} = \{0,1\}$ on $\mathcal{S} = \{1,...,n\}$, $n \in \mathbb{N} - \{0\}$. Consider that for a given z_{-i} it is

$$\begin{cases} z_{i}|z_{-i} & \sim \text{Logit}(\theta_{i}(z_{-i})), & i \in \mathcal{S} \\ \theta_{i}(z_{-i}) & = \alpha_{i} + \sum_{j:j \sim i} \beta_{i,j} z_{j} \end{cases}$$

(1) Show that the conditionals $z_i|z_{-i}$ are compatible as a Besag's auto-model when $\{\alpha_i\}$ and $\{\beta_{i,j}\}$ satisfy certain conditions, and specify these conditions.

Hint: The PMF of Logistic distribution $x|\theta \sim \text{Logit}(\theta)$ can be written as

$$\Pr(x|\theta) = \frac{\exp(x\theta)}{1 + \exp(\theta)} 1 (x \in \{0, 1\})$$

- (2) Write down the marginal distribution of the associated random field.
- (3) What would be the sign of $\{\beta_{i,j}\}$ if you wish to introduce competition between neighboring sites? What would be the sign of $\{\beta_{i,j}\}$ if you wish to introduce similarity between neighboring sites? What does α_i represent when $\beta_{i,j} = 0$?

Solution.

(1) Then the characteristics are

$$\Pr_{i}(z_{i}|z_{-i}) = \frac{\exp(z_{i}\theta_{i}(z_{-i}))}{1 + \exp(\theta_{i}(z_{-i}))} 1 (z_{i} \in \{0, 1\})$$

Now, we have parameterized $\{\theta_i(\cdot)\}$ as

$$\theta_i(z_{-i}) = \alpha_i + \sum_{j:j \sim i} \beta_{i,j} z_j$$

for $\{\alpha_i\}$ and $\{\beta_{i,j}\}$ with $\beta_{i,j}=\beta_{j,i}$. Hence, we've got

$$\log\left(\Pr_{i}\left(z_{i}|z_{-i}\right)\right) = \underbrace{z_{i}}_{B_{i}\left(z_{i}\right)}\underbrace{\left(\alpha_{i} + \sum_{j \sim i} \beta_{i,j} z_{j}\right)}_{A_{i}\left(z_{-i}\right)} + \underbrace{0}_{C_{i}\left(z_{i}\right)} + \underbrace{\left(-\log\left(1 + \exp\left(\alpha_{i} + \sum_{j:j \sim i} \beta_{i,j} z_{j}\right)\right)\right)}_{D_{i}\left(z_{-i}\right)}$$

Notice that all the conditionals $z_i|z_{-i}$ follow an Exponential family with

$$A_{i}(z_{-i}) = \alpha_{i} + \sum_{j \sim i} \beta_{i,j} B_{i}(z_{j})$$

$$B_{i}(z_{i}) = z_{i}$$

$$C_{i}(z_{i}) = 0$$

$$D_{i}(z_{-i}) = -\log\left(1 + \exp\left(\alpha_{i} + \sum_{j: i \neq i} \beta_{i,j} z_{j}\right)\right)$$

I can get $C_i(\zeta) = 0$ and $B_i(\zeta) = 0$ by considering a reference point $\zeta = 0$. Hence the conditionals $z_i|_{z_{-i}}$ are compatible as a Besag's auto-model for any $\{\alpha_i\}$ and $\{\beta_{i,j}\}$ with $\beta_{i,j} = \beta_{j,i}$ according to a Theorem discussed in the Lectures.

(2) The Besag auto-model has marginal distribution

$$\Pr_{Z}(z) \propto \exp\left(\frac{\sum_{i} \underbrace{\alpha_{i} z_{i}}_{B_{i}(z_{i})} + \sum_{i} \sum_{j:j \sim i} \beta_{i,j} z_{i} z_{j}}{\sum_{\{i,j\}:j \sim i}}\right)$$

according to a Theorem discussed in the Lectures.

(3) I observe that: (1.) the model has spatially dependent coefficients $\{\alpha_i\}$ and $\{\beta_{i,j}\}$. (2.) when $\beta_{i,j} = 0$, for all j such as $j \sim i$, it is $\Pr_i(z_i|z_{-i}) = \frac{\exp(z_i\alpha_i)}{1+\exp(\alpha_i)}$ and (3.) Characteristic's present at site i is encouraged in neighboring site j when $\beta_{i,j} > 0$, and discouraged when $\beta_{i,j} < 0$.