Convexité à l'ordre 0

Guillaume TOCHON

Laboratoire de Recherche de l'EPITA

G. TOCHON (LRE) OCVX1 1/17

Sous-parties de \mathbb{R}^n

Les espaces affines ne permettent qu'une description très restreinte des sous-parties de \mathbb{R}^n que l'on rencontre dans les problèmes d'optimisation en pratique :

ightarrow Dans \mathbb{R}^2 , les sous-espaces affines ne permettent que de décrire des points et des droites.

Sous-partie affine

Sous-parties de \mathbb{R}^n

Les espaces affines ne permettent qu'une description très restreinte des sous-parties de \mathbb{R}^n que l'on rencontre dans les problèmes d'optimisation en pratique :

- ightarrow Dans \mathbb{R}^2 , les sous-espaces affines ne permettent que de décrire des points et des droites.
- \Rightarrow Besoin d'une description plus générale pour des sous-parties plus complexes.

Sous-partie affine

Sous-parties de \mathbb{R}^n

Les espaces affines ne permettent qu'une description très restreinte des sous-parties de \mathbb{R}^n que l'on rencontre dans les problèmes d'optimisation en pratique :

- ightarrow Dans \mathbb{R}^2 , les sous-espaces affines ne permettent que de décrire des points et des droites.
- \Rightarrow Besoin d'une description plus générale pour des sous-parties plus complexes.

Sous-partie affine

Lieu de sous-niveau 1 de $f(x_1, x_2) = x_1^2 + 2x_2^2$

Solution : construire des sous-parties de \mathbb{R}^n comme lieux particuliers associés à certaines fonctions $f: \mathbb{R}^n \to \mathbb{R}$ bien choisies.

G. TOCHON (LRE) OCVX1 2/17

Représentation paramétrique

Graphe et épigraphe d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

 \rightarrow On appelle *graphe* de f la partie de \mathbb{R}^{n+1} :

$$Gr(f) = \left\{ (\mathbf{x}, f(\mathbf{x})), \mathbf{x} \in \mathbb{R}^n \right\} \subset \mathbb{R}^{n+1}$$

Représentation paramétrique

Graphe et épigraphe d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

 \rightarrow On appelle graphe de f la partie de \mathbb{R}^{n+1} :

$$Gr(f) = \left\{ (\mathbf{x}, f(\mathbf{x})), \mathbf{x} \in \mathbb{R}^n
ight\} \subset \mathbb{R}^{n+1}$$

 \rightarrow On appelle *épigraphe* de f la partie de \mathbb{R}^{n+1} :

$$\mathsf{Epi}(f) = \left\{ (\mathbf{x}, t) \in \mathbb{R}^n imes \mathbb{R}, f(\mathbf{x}) \leq t \right\} \subset \mathbb{R}^{n+1}$$

Représentation paramétrique

Graphe et épigraphe d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

ightarrow On appelle *graphe* de f la partie de \mathbb{R}^{n+1} :

$$Gr(f) = \left\{ (\mathbf{x}, f(\mathbf{x})), \mathbf{x} \in \mathbb{R}^n
ight\} \subset \mathbb{R}^{n+1}$$

 \rightarrow On appelle *épigraphe* de f la partie de \mathbb{R}^{n+1} :

$$Epi(f) = \{(\mathbf{x}, t) \in \mathbb{R}^n \times \mathbb{R}, f(\mathbf{x}) \leq t\} \subset \mathbb{R}^{n+1}$$

Ces deux descriptions sont dites *paramétriques* : lorsque \mathbf{x} parcourt \mathbb{R}^n , son image par f génère les parties de \mathbb{R}^{n+1} Gr(f) et Epi(f).

3/17

G. TOCHON (LRE) OCVX1

Représentation implicite

Courbe de niveau et lieu de sous niveau d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

 \rightarrow On appelle *courbe de niveau r* de f la partie de \mathbb{R}^n :

$$\mathcal{C}_r(f) = \left\{ \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) = r \right\} \subset \mathbb{R}^n$$

carte topographique ≡ lignes de niveaux

Représentation implicite

Courbe de niveau et lieu de sous niveau d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

ightarrow On appelle *courbe de niveau r* de f la partie de \mathbb{R}^n :

$$C_r(f) = \left\{ \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) = r \right\} \subset \mathbb{R}^n$$

 \rightarrow On appelle *lieu de sous-niveau r* de f la partie de \mathbb{R}^n :

$$C_{\leq r}(f) = \left\{ \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \leq r \right\} \subset \mathbb{R}^n$$

carte topographique ≡ lignes de niveaux

Représentation implicite

Courbe de niveau et lieu de sous niveau d'une fonction

Étant donné une fonction $f: \mathbb{R}^n \to \mathbb{R}$.

ightarrow On appelle courbe de niveau r de f la partie de \mathbb{R}^n :

$$C_r(f) = \left\{ \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) = r \right\} \subset \mathbb{R}^n$$

ightarrow On appelle *lieu de sous-niveau r* de f la partie de \mathbb{R}^n :

$$C_{\leq r}(f) = \left\{ \mathbf{x} \in \mathbb{R}^n, f(\mathbf{x}) \leq r \right\} \subset \mathbb{R}^n$$

carte topographique ≡ lignes de niveaux

Ces deux descriptions sont dites *implicites* : $C_r(f)$ est le lieu dans \mathbb{R}^n des zéros de la fonction $g(\mathbf{x}) = f(\mathbf{x}) - r$

G. Tochon (LRE) OCVX1 4/17

Lien entre les représentations paramétriques et implicites

paramétrique → implicite

Toute partie de \mathbb{R}^{n+1} décrite paramétriquement comme le graphe Gr(f) d'une fonction f peut s'écrire implicitement comme la courbe de niveau 0 de la fonction $g:(\mathbf{x},y)\mapsto f(\mathbf{x})-y$

$$C_0(g) = \left\{ (\mathbf{x}, y) \in \mathbb{R}^{n+1}, g(\mathbf{x}, y) = 0 \right\} = \left\{ (\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R}, y = f(\mathbf{x}) \right\} = Gr(f)$$

 $Gr(g(x,y)=x^2-y)$

Lien entre les représentations paramétriques et implicites

paramétrique → implicite

Toute partie de \mathbb{R}^{n+1} décrite paramétriquement comme le graphe $\mathit{Gr}(f)$ d'une fonction f peut s'écrire implicitement comme la courbe de niveau 0 de la fonction $g:(\mathbf{x},y)\mapsto f(\mathbf{x})-y$

$$\mathcal{C}_0(g) = \left\{ (\mathbf{x}, y) \in \mathbb{R}^{n+1}, g(\mathbf{x}, y) = 0 \right\} = \left\{ (\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R}, y = f(\mathbf{x}) \right\} = Gr(f)$$

Lien entre les représentations paramétriques et implicites

paramétrique → implicite

Toute partie de \mathbb{R}^{n+1} décrite paramétriquement comme le graphe Gr(f) d'une fonction f peut s'écrire implicitement comme la courbe de niveau 0 de la fonction $g:(\mathbf{x},y)\mapsto f(\mathbf{x})-y$

$$\mathcal{C}_0(g) = \left\{ (\mathbf{x}, y) \in \mathbb{R}^{n+1}, g(\mathbf{x}, y) = 0 \right\} = \left\{ (\mathbf{x}, y) \in \mathbb{R}^n \times \mathbb{R}, y = f(\mathbf{x}) \right\} = Gr(f)$$

implicite → paramétrique

€ L'écriture paramétrique d'une partie donnée implicitement n'est en général pas possible (cf théorème des fonctions implicites).

G. TOCHON (LRE) OCVX1 5/17

Une partie $A \subset \mathbb{R}^n$ est dite *convexe* si et seulement si

$$\forall \mathsf{x}, \mathsf{y} \in A, \forall t \in [0,1], t\mathsf{x} + (1-t)\mathsf{y} \in A$$

A est convexe si on peut relier n'importe quelle paire de points $\mathbf{x},\mathbf{y}\in A$ par un segment qui reste intégralement inclus dans A

G. TOCHON (LRE) OCVX1 6/17

Une partie $A \subset \mathbb{R}^n$ est dite *convexe* si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in A, \forall t \in [0, 1], t\mathbf{x} + (1 - t)\mathbf{y} \in A$$

A est convexe si on peut relier n'importe quelle paire de points $\mathbf{x}, \mathbf{y} \in A$ par un segment qui reste intégralement inclus dans A

G. TOCHON (LRE) OCVX1 6/17

Définition

Une partie $A \subset \mathbb{R}^n$ est dite *convexe* si et seulement si

$$\forall \mathbf{x}, \mathbf{y} \in A, \forall t \in [0, 1], t\mathbf{x} + (1 - t)\mathbf{y} \in A$$

A est convexe si on peut relier n'importe quelle paire de points $\mathbf{x},\mathbf{y}\in A$ par un segment qui reste intégralement inclus dans A

Exemples de parties convexes

- \rightarrow les intervalles $[a, b] \in \mathbb{R}$ sont convexes, $(a, b \in \mathbb{R} \cup \{-\infty, +\infty\})$
- ightarrow les sous-espaces affines de \mathbb{R}^n sont convexes (droites, plans, hyperplans \dots)
- \rightarrow les demi-espaces de \mathbb{R}^n sont convexes

G. TOCHON (LRE) OCVX1 6/17

Propriétés w

 \rightarrow Si $A_1, \dots A_n$ sont convexes, alors $\bigcap_{i=1}^n A_i$ est convexe : la convexité est stable par intersection.

- \rightarrow A est convexe si et seulement si toute combinaison convexe d'une famille finie de points $\mathbf{x}_1, \dots, \mathbf{x}_p$ de A est dans $A : \sum_{i=1}^p \lambda_i \mathbf{x}_i \in A$ avec $\sum_{i=1}^p \lambda_i = 1$.

Propriétés w

 \rightarrow Si $A_1, \dots A_n$ sont convexes, alors $\bigcap_{i=1}^n A_i$ est convexe : la convexité est stable par intersection.

- \rightarrow L'union de parties convexes n'est en général pas convexe.
- \rightarrow A est convexe si et seulement si toute combinaison convexe d'une famille finie de points $\mathbf{x}_1, \dots, \mathbf{x}_p$ de A est dans $A : \sum_{i=1}^p \lambda_i \mathbf{x}_i \in A$ avec $\sum_{i=1}^p \lambda_i = 1$.

Définitions

- \rightarrow On appelle dimension d'un ensemble convexe A la dimension du plus petit sous-espace affine contenant A.
- \rightarrow On appelle enveloppe convexe Conv(A) d'une partie $A \subset \mathbb{R}^n$ l'intersection de toutes les parties convexes contenant A. C'est la plus petite sous-partie convexe de R^n qui contient A.

G. TOCHON (LRE) OCVX1 7/17

son bord (w)

Hyperplan d'appui et séparation des convexes

On dit que \mathbf{x} est un *point du bord* de A si $\forall \varepsilon > 0, \mathcal{B}(\mathbf{x}, \varepsilon) \cap A \neq \emptyset$ et $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \mathbb{C}_A \neq \emptyset$ On appelle *bord* (ou *frontière*) de A l'ensemble ∂A des points de

son bord (w)

Hyperplan d'appui et séparation des convexes

On dit que \mathbf{x} est un point du bord de A si $\forall \varepsilon > 0$, $\mathcal{B}(\mathbf{x}, \varepsilon) \cap A \neq \emptyset$ et $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \mathbb{C}_A \neq \emptyset$ On appelle bord (ou frontière) de A l'ensemble ∂A des points de

Soit $A \in \mathbb{R}^n$ et $\mathbf{x} \in A$. On appelle *hyperplan d'appui* à A en \mathbf{x} un hyperplan \mathcal{H} de vecteur normal \mathbf{n} tel que $\mathbf{x} \in \mathcal{H}$, et $\forall \mathbf{y} \in A, \langle \mathbf{n}, \mathbf{y} - \mathbf{x} \rangle = \mathbf{n}^T (\mathbf{y} - \mathbf{x}) \leq 0$

son bord (w)

Hyperplan d'appui et séparation des convexes

On dit que \mathbf{x} est un *point du bord* de A si $\forall \varepsilon > 0, \mathcal{B}(\mathbf{x}, \varepsilon) \cap A \neq \emptyset$ et $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \mathbb{C}_A \neq \emptyset$ On appelle *bord* (ou *frontière*) de A l'ensemble ∂A des points de

Soit $A \in \mathbb{R}^n$ et $\mathbf{x} \in A$. On appelle *hyperplan d'appui* à A en \mathbf{x} un hyperplan \mathcal{H} de vecteur normal \mathbf{n} tel que $\mathbf{x} \in \mathcal{H}$, et $\forall \mathbf{y} \in A, \langle \mathbf{n}, \mathbf{y} - \mathbf{x} \rangle = \mathbf{n}^T (\mathbf{y} - \mathbf{x}) \leq 0$

En un point x donné, un ensemble A peut admettre :

plusieurs hyperplans d'appui

un hyperplan d'appui

aucun hyperplan d'appui

son bord (w)

Hyperplan d'appui et séparation des convexes

On dit que \mathbf{x} est un point du bord de A si $\forall \varepsilon > 0$, $\mathcal{B}(\mathbf{x}, \varepsilon) \cap A \neq \emptyset$ et $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \mathcal{C}_A \neq \emptyset$ On appelle bord (ou frontière) de A l'ensemble ∂A des points de

Soit $A \in \mathbb{R}^n$ et $\mathbf{x} \in A$. On appelle *hyperplan d'appui* à A en \mathbf{x} un hyperplan \mathcal{H} de vecteur normal \mathbf{n} tel que $\mathbf{x} \in \mathcal{H}$, et $\forall \mathbf{y} \in A, \langle \mathbf{n}, \mathbf{y} - \mathbf{x} \rangle = \mathbf{n}^T (\mathbf{y} - \mathbf{x}) \leq 0$

En un point x donné, un ensemble A peut admettre :

plusieurs hyperplans d'appui

un hyperplan d'appui aucun hyperplan d'appui

Une partie convexe admet un hyperplan d'appui en tout point de son bord

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dite *convexe* si

- son domaine de définition D_f est un ensemble convexe
- $\forall \mathbf{x}_1, \mathbf{x}_2 \in D_f, \forall t \in [0, 1], | f(t\mathbf{x}_1 + (1 t)\mathbf{x}_2) \le tf(\mathbf{x}_1) + (1 t)f(\mathbf{x}_2) |$

OCVX1 9/17 Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dite *convexe* si

- son domaine de définition D_f est un ensemble convexe
- $\forall \mathbf{x}_1, \mathbf{x}_2 \in D_f, \forall t \in [0,1], f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \leq tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$

Caractérisation à l'ordre 0 de la convexité

Le graphe d'une fonction f convexe est *en dessous* de n'importe quel segment reliant les points $(\mathbf{x}_1, f(\mathbf{x}_1))$ et $(\mathbf{x}_2, f(\mathbf{x}_2))$, peu importe ces points.

Une fonction $f: \mathbb{R}^n \to \mathbb{R}$ est dite *convexe* si

- son domaine de définition D_f est un ensemble convexe
- $\forall \mathbf{x}_1, \mathbf{x}_2 \in D_f, \forall t \in [0,1], f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) \leq tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$

Caractérisation à l'ordre 0 de la convexité

Le graphe d'une fonction f convexe est *en dessous* de n'importe quel segment reliant les points $(\mathbf{x}_1, f(\mathbf{x}_1))$ et $(\mathbf{x}_2, f(\mathbf{x}_2))$, peu importe ces points.

- \rightarrow On parle de *convexité stricte* si $f(t\mathbf{x}_1 + (1-t)\mathbf{x}_2) < tf(\mathbf{x}_1) + (1-t)f(\mathbf{x}_2)$
- \rightarrow On dit que f est concave si son opposé -f est convexe.

G. TOCHON (LRE) OCVX1 9/17

Exemples de fonctions convexes

Exemples de fonctions convexes

$$-x\mapsto |x|$$

-
$$x \mapsto x^n$$
, n pair

-
$$x \mapsto e^{\alpha x}$$
, $\forall \alpha \in \mathbb{R}$

-
$$x \mapsto -\log(x) (\log(x) \text{ est concave})$$

-
$$x \mapsto ax^2 + bx + c$$
, $a > 0$

-
$$x \mapsto bx + c$$
, $\forall b, c \in \mathbb{R}$

Une fonction affine $x \mapsto bx + c$ est convexe **et** concave.

⇒ Les seules fonctions convexes et concaves sont les fonctions affines.

G. TOCHON (LRE) OCVX1 10/17

Fonction convexe

Composition de fonctions convexes

Composition de fonctions convexes

- La somme pondérée $\sum_i \omega_i f_i$ de poids positifs $\omega_i \geq 0$ de fonctions convexes f_i est convexe.

Fonction convexe

Composition de fonctions convexes

Composition de fonctions convexes

- La somme pondérée $\sum_i \omega_i f_i$ de poids positifs $\omega_i \geq 0$ de fonctions convexes f_i est convexe.
- Le maximum $\max_i f_i$ de fonctions convexes f_i est convexe.

Fonction convexe

Composition de fonctions convexes

Composition de fonctions convexes

- La somme pondérée $\sum_i \omega_i f_i$ de poids positifs $\omega_i \ge 0$ de fonctions convexes f_i est convexe.
- Le maximum $\max_i f_i$ de fonctions convexes f_i est convexe.

- La composition $g \circ f$ d'une fonction convexe f avec une fonction convexe croissante g est convexe.
- La composition $f(\mathbf{A}\mathbf{x} + \mathbf{b})$ d'une fonction convexe f avec une fonction affine $\mathbf{A}\mathbf{x} + \mathbf{b}$, $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{x} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$, est convexe.

Norme et convexité

On appelle fonction sous-linéaire tout fonction $f: \mathbb{R}^n \to \mathbb{R}$ telle que :

- $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (sous-additivité)
- $\forall \lambda > 0, f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ (homogénéité positive)

Propriété : toute fonction sous-linéaire est convexe

OCVX1 12 / 17

Norme et convexité

On appelle fonction sous-linéaire tout fonction $f:\mathbb{R}^n \to \mathbb{R}$ telle que :

- $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (sous-additivité)
- $\forall \lambda > 0, f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ (homogénéité positive)

Propriété : toute fonction sous-linéaire est convexe

En particulier, toutes les normes sur \mathbb{R}^n sont des applications sous-linéaires.

 $\rightarrow \|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| = \text{inégalité triangulaire.}$

Toutes les normes sont des fonctions convexes

G. TOCHON (LRE) OCVX1 12/17

Norme et convexité

On appelle fonction sous-linéaire tout fonction $f:\mathbb{R}^n \to \mathbb{R}$ telle que :

- $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y})$ (sous-additivité)
- $\forall \lambda > 0, f(\lambda \mathbf{x}) = \lambda f(\mathbf{x})$ (homogénéité positive)

Propriété : toute fonction sous-linéaire est convexe

En particulier, toutes les normes sur \mathbb{R}^n sont des applications sous-linéaires.

 $\rightarrow \|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\| = \text{inégalité triangulaire.}$

Toutes les normes sont des fonctions convexes

G. TOCHON (LRE) OCVX1 12 / 17

Lien entre fonction convexe et partie convexe

Lien entre graphe et épigraphe

Une fonction f est convexe si et seulement si son épigraphe Epi(f) est une partie convexe

13 / 17

Lien entre fonction convexe et partie convexe

Lien entre graphe et épigraphe

Une fonction f est convexe si et seulement si son épigraphe Epi(f) est une partie convexe

Lien entre graphe et lieux de sous niveau

Les lieux de sous niveau d'une fonction convexe sont des parties convexes (la réciproque n'est pas vraie)

 \Rightarrow Puisque les normes $\|\cdot\|$ sont des fonctions convexes, les boules $\mathcal{B}_{\|\cdot\|}(\mathbf{0},r) = \mathcal{C}_{\leq r}(\|\cdot\|)$ qui en découlent sont des parties convexes

Rappels sur la continuité d'une fonction

Continuité d'une fonction $f: \mathbb{R} \to \mathbb{R}$

On dit que f est continue en $a \in D_f$ si et seulement si $f(x) \xrightarrow[x \to a]{} f(a)$

La continuité se réécrit en termes de voisinages :

$$\forall \varepsilon > 0, \exists \eta > 0, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \, \eta > 0, x \in \mathcal{B}(a, \eta) \, \Rightarrow f(x) \in \mathcal{B}(f(a), \varepsilon)$$

Rappels sur la continuité d'une fonction

Continuité d'une fonction $f: \mathbb{R} \to \mathbb{R}$

On dit que f est continue en $a \in D_f$ si et seulement si $f(x) \xrightarrow[x \to a]{} f(a)$

La continuité se réécrit en termes de voisinages :

$$\forall \varepsilon > 0, \exists \eta > 0, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \, \eta > 0, x \in \mathcal{B}(a, \eta) \, \Rightarrow f(x) \in \mathcal{B}(f(a), \varepsilon)$$

Pour tout voisinage $\mathcal{B}(f(a),\varepsilon)$ de f(a), il existe un voisinage $\mathcal{B}(a,\eta)$ de a tel que tout élément $x \in \mathcal{B}(a,\eta)$ a son image $f(x) \in \mathcal{B}(f(a),\varepsilon)$.

G. Tochon (LRE) OCVX1 14/17

Rappels sur la continuité d'une fonction

Continuité d'une fonction $f: \mathbb{R} \to \mathbb{R}$

On dit que f est continue en $a \in D_f$ si et seulement si $f(x) \xrightarrow[x \to a]{} f(a)$

La continuité se réécrit en termes de voisinages :

$$\forall \varepsilon > 0, \exists \eta > 0, |x - a| < \eta \Rightarrow |f(x) - f(a)| < \varepsilon$$

$$\Leftrightarrow \forall \varepsilon > 0, \exists \, \eta > 0, x \in \mathcal{B}(a, \eta) \, \Rightarrow f(x) \in \mathcal{B}(f(a), \varepsilon)$$

Pour tout voisinage $\mathcal{B}(f(a),\varepsilon)$ de f(a), il existe un voisinage $\mathcal{B}(a,\eta)$ de a tel que tout élément $x \in \mathcal{B}(a,\eta)$ a son image $f(x) \in \mathcal{B}(f(a),\varepsilon)$.

Continuité d'une fonction $f: \mathbb{R}^n \to \mathbb{R}^m$

La définition avec les voisinages s'adapte (et ne dépend pas de la norme $\|\cdot\|$ choisie) :

$$\forall \varepsilon > 0, \exists \eta > 0, \mathbf{x} \in \mathcal{B}_{\parallel \cdot \parallel}(\mathbf{a}, \eta) \Rightarrow f(\mathbf{x}) \in \mathcal{B}_{\parallel \cdot \parallel}(f(\mathbf{a}), \varepsilon)$$

G. TOCHON (LRE) OCVX1 14/17

Comment déterminer qu'une certaine fonction est continue :

- Une fonction $f: \mathbb{R}^n \to R^m$, $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_m(\mathbf{x}))$ est continue si chaque "fonction-coordonnée" $f_i: \mathbb{R}^n \to \mathbb{R}$, $i = 1, \dots, m$ est continue.
- Toute fonction $f: \mathbb{R}^n \to \mathbb{R}$ polynomiale est continue.
- Toute fonction rationnelle $r = \frac{f}{g}$ avec $f, g : \mathbb{R}^n \to \mathbb{R}$ polynomiales est continue partout ou g ne s'annule pas $(g(x) \neq 0)$.
- Si f et g sont continues, alors $\lambda f + \mu g$ est continue $\forall \lambda, \mu \in \mathbb{R}$ (structure d'espace vectoriel).
- Si $f, g : \mathbb{R}^n \to \mathbb{R}$ sont continues, alors fg est continue et $\frac{f}{g}$ continue partout ou g ne s'annule pas $(g(x) \neq 0)$.
- Si $f: \mathbb{R}^n \to \mathbb{R}^p$ et $g: \mathbb{R}^m \to \mathbb{R}^n$ sont continues, alors $g \circ f$ est continue.

G. TOCHON (LRE) OCVX1 15/17

Continuité d'une fonction à plusieurs variables

Il est tentant d'évaluer la continuité d'une fonction $f : \mathbb{R}^n \to \mathbb{R}$, en regardant les fonctions partielles selon les directions de la base canonique uniquement.

Malheureusement, il ne suffit pas que chaque fonction $t\mapsto f(\mathbf{a}+t\mathbf{e}_i)$ (restriction de f le long de l'axe engendré par \mathbf{e}_i) soit continue en \mathbf{a} pour que f le soit.

Continuité d'une fonction à plusieurs variables

Il est tentant d'évaluer la continuité d'une fonction $f: \mathbb{R}^n \to \mathbb{R}$, en regardant les fonctions partielles selon les directions de la base canonique uniquement.

Malheureusement, il ne suffit pas que chaque fonction $t\mapsto f(\mathbf{a}+t\mathbf{e}_i)$ (restriction de f le long de l'axe engendré par \mathbf{e}_i) soit continue en \mathbf{a} pour que f le soit.

Exemple pathologique classique

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $(x_1, x_2) \mapsto \frac{x_1 x_2}{x_1^2 + x_2^2}$ si $(x_1, x_2) \neq (0, 0)$, 0 si $(x_1, x_2) = (0, 0)$

Continuité d'une fonction à plusieurs variables

Il est tentant d'évaluer la continuité d'une fonction $f : \mathbb{R}^n \to \mathbb{R}$, en regardant les fonctions partielles selon les directions de la base canonique uniquement.

Malheureusement, il ne suffit pas que chaque fonction $t\mapsto f(\mathbf{a}+t\mathbf{e}_i)$ (restriction de f le long de l'axe engendré par \mathbf{e}_i) soit continue en \mathbf{a} pour que f le soit.

Exemple pathologique classique

Soit
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $(x_1, x_2) \mapsto \frac{x_1 x_2}{x_1^2 + x_2^2}$ si $(x_1, x_2) \neq (0, 0)$, 0 si $(x_1, x_2) = (0, 0)$

 $\forall t \in \mathbb{R}, \ t \mapsto f(t,0) = 0 \text{ et } t \mapsto f(0,t) = 0 \Rightarrow \text{ les fonctions partielles sont continues}$ Mais $t \mapsto f(t,t) = \frac{1}{2}$ si $t \neq 0$, 0 si $t = 0 \Rightarrow f$ n'est pas continue en (0,0)

Fonction k-lipschitzienne

On dit que f est k-lipschitzienne ($k \ge 0$) si et seulement si $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, ||f(\mathbf{x}) - f(\mathbf{y})|| \le k||\mathbf{x} - \mathbf{y}||$

Tout fonction k-lipschitzienne est continue

Fonction k-lipschitzienne

On dit que f est k-lipschitzienne ($k \ge 0$) si et seulement si $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, ||f(\mathbf{x}) - f(\mathbf{y})|| \le k||\mathbf{x} - \mathbf{y}||$

Tout fonction k-lipschitzienne est continue

En particulier si $f = \|\cdot\|: \|f(\mathbf{x}) - f(\mathbf{y})\| = \|\mathbf{x}\| - \|\mathbf{y}\|\| \le \|\mathbf{x} - \mathbf{y}\|$ (inégalité triangulaire inversée)

→ Toute norme est 1-lipschitzienne, donc continue

G. TOCHON (LRE) OCVX1 17/17

Fonction k-lipschitzienne

On dit que f est k-lipschitzienne ($k \ge 0$) si et seulement si $\forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^n, ||f(\mathbf{x}) - f(\mathbf{y})|| \le k||\mathbf{x} - \mathbf{y}||$

Tout fonction k-lipschitzienne est continue

En particulier si $f = \|\cdot\|: \|f(\mathbf{x}) - f(\mathbf{y})\| = \|\mathbf{x}\| - \|\mathbf{y}\|\| \le \|\mathbf{x} - \mathbf{y}\|$ (inégalité triangulaire inversée)

 \rightarrow Toute norme est 1-lipschitzienne, donc continue

Une fonction f k-lipschitzienne est dite:

- non expansive si $k \leq 1 \rightarrow$ c'est le cas des normes
- contractante si k<1 o se rencontrent fréquemment en optimisation dans les algorithmes itératifs de type point fixe

Soit f une fonction contractante avec 0 < k < 1. Alors f admet un unique point fixe \tilde{x} tel que $\tilde{x} = f(\tilde{x})$. Toute suite d'éléments vérifiant $x_{n+1} = f(x_n)$ vérifie la majoration $\|x_n - \tilde{x}\|_2 \le \frac{k^n}{1-k} \|x_1 - x_0\|_2$, donc converge vers \tilde{x} .

G. Tochon (LRE) OCVX1 17/17