Lecture 03 Matrix Norms; Singular Value Decomposition

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Outline

1 Matrix Norms

2 Singular Value Decomposition

Outline

1 Matrix Norms

2 Singular Value Decomposition

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior.

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior.

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $\mathbf{A}\in\mathbb{C}^{m\times n}$, respectively, the induced matrix norm $\|\mathbf{A}\|_{(m,n)}$ is the smallest number $C\in\mathbb{R}$ for which the following inequality holds for all $\mathbf{x}\in\mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \leqslant C\|\mathbf{x}\|_{(n)}.$$

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior.

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $\mathbf{A}\in\mathbb{C}^{m\times n}$, respectively, the induced matrix norm $\|\mathbf{A}\|_{(m,n)}$ is the smallest number $C\in\mathbb{R}$ for which the following inequality holds for all $\mathbf{x}\in\mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \leqslant C\|\mathbf{x}\|_{(n)}.$$

• In other words, it is supremum of ratio $\|\mathbf{A}\mathbf{x}\|_{(n)}/\|\mathbf{x}\|_{(n)}$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^n$. Maximum factor by which \mathbf{A} can "strech" $\mathbf{x} \in \mathbb{C}^n$

$$\|\mathbf{A}\|_{(m,n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \mathbf{x} \neq \mathbf{0}} \|\mathbf{A}\mathbf{x}\|_{(m)} / \|\mathbf{x}\|_{(n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{(n)} = 1} \|\mathbf{A}\mathbf{x}\|_{(m)}$$

- Viewing $m \times n$ matrix as mn-vectors is not always useful, as operations involving $m \times n$ matrices do not behave this way
- Induced matrix norms capture such behavior.

Definition

Given vector norms $\|\cdot\|_{(n)}$ and $\|\cdot\|_{(m)}$ on domain and range of $\mathbf{A}\in\mathbb{C}^{m\times n}$, respectively, the induced matrix norm $\|\mathbf{A}\|_{(m,n)}$ is the smallest number $C\in\mathbb{R}$ for which the following inequality holds for all $\mathbf{x}\in\mathbb{C}^n$:

$$\|\mathbf{A}\mathbf{x}\|_{(m)} \leqslant C \|\mathbf{x}\|_{(n)}.$$

• In other words, it is supremum of ratio $\|\mathbf{A}\mathbf{x}\|_{(n)}/\|\mathbf{x}\|_{(n)}$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^n$. Maximum factor by which \mathbf{A} can "strech" $\mathbf{x} \in \mathbb{C}^n$

$$\|\mathbf{A}\|_{(m,n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \mathbf{x} \neq \mathbf{0}} \|\mathbf{A}\mathbf{x}\|_{(m)} / \|\mathbf{x}\|_{(n)} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{(n)} = 1} \|\mathbf{A}\mathbf{x}\|_{(m)}$$

• Is vector norm consistent with matrix norm of $m \times 1$ matrix?

• By definition

$$\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1$$

By definition

$$\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1$$

- What is it equal to?
 - Maximum of 1-norm of column vectors of A
 - "maximum column sum" of A

By definition

$$\|\mathbf{A}\|_1 = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_1 = 1} \|\mathbf{A}\mathbf{x}\|_1$$

- What is it equal to?
 - Maximum of 1-norm of column vectors of A
 - "maximum column sum" of A
- To prove it, note that for $\mathbf{x} \in \mathbb{C}^n$, $\|\mathbf{x}\|_1 = 1$

$$\|\mathbf{A}\mathbf{x}\|_1 = \|\sum_{j=1}^n x_j \mathbf{a}_j\|_1 \leqslant \sum_{j=1}^n |x_j| \|\mathbf{a}_j\|_1 \leqslant \max_{1 \leqslant j \leqslant n} \|\mathbf{a}_j\|_1 \|\mathbf{x}\|_1$$

• Let $k=arg\max_{1\leqslant j\leqslant n}\|\mathbf{a}_j\|_1$, then $\|\mathbf{Ae}_k\|_1=\|\mathbf{a}_k\|_1$, so $\max_{1\leqslant j\leqslant n}\|\mathbf{a}_j\|_1$ is tight upper bound

• By definition

$$\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{\infty} = 1} \|\mathbf{A}\mathbf{x}\|_{\infty}$$

By definition

$$\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{\infty} = 1} \|\mathbf{A}\mathbf{x}\|_{\infty}$$

- What is it equal to?
 - Maximum of 1-norm of row vectors of A
 - Maximum of 1-norm of column vectors of A*
 - "maximum row sum" of A

By definition

$$\|\mathbf{A}\|_{\infty} = \sup_{\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{\infty} = 1} \|\mathbf{A}\mathbf{x}\|_{\infty}$$

- What is it equal to?
 - Maximum of 1-norm of row vectors of A
 - Maximum of 1-norm of column vectors of A*
 - "maximum row sum" of A
- To prove it, note that for $\mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_{\infty} = 1$

$$\|\mathbf{A}\mathbf{x}\|_{\infty} = \max_{1 \leqslant i \leqslant m} |\mathbf{a}_i^*\mathbf{x}| \leqslant \max_{1 \leqslant i \leqslant m} \|\mathbf{a}_i^*\|_1 \|\mathbf{x}\|_{\infty}$$

where \mathbf{a}_{i}^{*} denotes *i*-th row vector of \mathbf{A} .

- Furthermore, $\max_{1 \leq i \leq m} \|\mathbf{a}_i^*\|_1$ is a tight bound.
 - Which vector can we choose to reach the bound?
 - •

• What is 2-norm of a matrix?

- What is 2-norm of a matrix?
- Answer: Its largest singular value.
- We will talk more about singular-value decomposition

- What is 2-norm of a matrix?
- Answer: Its largest singular value.
- We will talk more about singular-value decomposition

• What is 2-norm of a diagonal matrix?

- What is 2-norm of a matrix?
- Answer: Its largest singular value.
- We will talk more about singular-value decomposition

• What is 2-norm of a diagonal matrix?

Cauchy-Schwarz and Hölder Inequalities

• Hölder Inequality: let p and q satisfy 1/p+1/q=1 with $1\leqslant p,q\leqslant \infty$, then

$$|\mathbf{x}^*\mathbf{y}| \leqslant \|\mathbf{x}\|_p \|\mathbf{y}\|_q$$

• Cauchy-Schwarz inequality (p = q = 2),

$$|\mathbf{x}^*\mathbf{y}|\leqslant \|\mathbf{x}\|_2\|\mathbf{y}\|_2$$

Cauchy-Schwarz and Hölder Inequalities

• Hölder Inequality: let p and q satisfy 1/p + 1/q = 1 with $1 \leqslant p, q \leqslant \infty$, then

$$|\mathbf{x}^*\mathbf{y}| \leqslant \|\mathbf{x}\|_p \|\mathbf{y}\|_q$$

• Cauchy-Schwarz inequality (p = q = 2),

$$|\mathbf{x}^*\mathbf{y}|\leqslant \|\mathbf{x}\|_2\|\mathbf{y}\|_2$$

 Example: What is 2-norm of rank-one matrix? Hint: Use Cauchy-Schwarz inequality.

Bounding Matrix-Matrix Multiplication

• Let **A** be an $I \times m$ matrix and **B** be an $m \times n$ matrix, then

$$\|\mathbf{A}\mathbf{B}\|_{(l,n)} \leqslant \|\mathbf{A}\|_{(l,m)} \|\mathbf{B}\|_{(m,n)}$$

Bounding Matrix-Matrix Multiplication

• Let **A** be an $I \times m$ matrix and **B** be an $m \times n$ matrix, then

$$\|\mathbf{AB}\|_{(l,n)} \leqslant \|\mathbf{A}\|_{(l,m)} \|\mathbf{B}\|_{(m,n)}$$

• To prove it, note

$$\|\mathbf{A}\mathbf{B}\mathbf{x}\| \leqslant \|\mathbf{A}\| \|\mathbf{B}\mathbf{x}\| \leqslant \|\mathbf{A}\| \|\mathbf{B}\| \|\mathbf{x}\|$$

Bounding Matrix-Matrix Multiplication

• Let **A** be an $I \times m$ matrix and **B** be an $m \times n$ matrix, then

$$\|\mathbf{AB}\|_{(l,n)} \leqslant \|\mathbf{A}\|_{(l,m)} \|\mathbf{B}\|_{(m,n)}$$

To prove it, note

$$\|\mathbf{A}\mathbf{B}\mathbf{x}\| \leqslant \|\mathbf{A}\| \|\mathbf{B}\mathbf{x}\| \leqslant \|\mathbf{A}\| \|\mathbf{B}\| \|\mathbf{x}\|$$

- In general, this inequality is not an equality
- In particular, $\|\mathbf{A}^n\| \leq \|\mathbf{A}\|^n$ but $\|\mathbf{A}^n\| \neq \|\mathbf{A}\|^n$ in general for $n \geq 2$.

General Matrix Norms

- One can view $m \times n$ matrices as mn-dimensional vectors and obtain general matrix norms, which satisfy (for $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{m \times n}$)
 - $\|\mathbf{A}\| \ge 0$, and $\|\mathbf{A}\| = 0$ only if $\mathbf{A} = \mathbf{0}$.
 - $\|A + B\| \le \|A\| + \|B\|$
 - $\bullet \ \|\alpha \mathbf{A}\| = |\alpha| \|\mathbf{A}\|$

Frobenius Norm

• One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{j=1}^n \|\mathbf{a}_j\|_2^2}$$

i.e., 2-norm of mn-vector

Furthermore,

$$\|\mathbf{A}\|_F = \sqrt{tr(\mathbf{A}^*\mathbf{A})}$$

where $tr(\mathbf{B})$ denotes trace of \mathbf{B} , the sum of its diagonal entries

Frobenius Norm

• One useful norm is Frobenius norm (a.k.a. Hilbert-Schmidt norm)

$$\|\mathbf{A}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2} = \sqrt{\sum_{j=1}^n \|\mathbf{a}_j\|_2^2}$$

i.e., 2-norm of mn-vector

• Furthermore,

$$\|\mathbf{A}\|_F = \sqrt{tr(\mathbf{A}^*\mathbf{A})}$$

where $tr(\mathbf{B})$ denotes trace of \mathbf{B} , the sum of its diagonal entries

Note that

$$\|\mathbf{AB}\|_F \leqslant \|\mathbf{A}\|_F \|\mathbf{B}\|_F$$

because

$$\|\mathbf{AB}\|_F = \sum_{i=1}^n \sum_{j=1}^n |\mathbf{a}_i^* \mathbf{b}_j|^2 \leqslant \sum_{i=1}^n \sum_{j=1}^n (\|\mathbf{a}_i^*\|_2 \|\mathbf{b}_j\|_2)^2 \leqslant \|\mathbf{A}\|_F^2 \|\mathbf{B}\|_F^2$$

Invariance under Unitary Multiplication

Theorem

For any $\mathbf{A} \in \mathbb{C}^{m \times n}$ and unitary $\mathbf{Q} \in \mathbb{C}^{m \times m}$, we have

$$\|\mathbf{Q}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$$
 and $\|\mathbf{Q}\mathbf{A}\|_F = \|\mathbf{A}\|_F$

In other words, 2-norm and Frobenius norms are invariant under unitary multiplication.

Invariance under Unitary Multiplication

Theorem

For any $\mathbf{A} \in \mathbb{C}^{m \times n}$ and unitary $\mathbf{Q} \in \mathbb{C}^{m \times m}$, we have

$$\|\mathbf{Q}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$$
 and $\|\mathbf{Q}\mathbf{A}\|_F = \|\mathbf{A}\|_F$

In other words, 2-norm and Frobenius norms are invariant under unitary multiplication.

• Proof for 2-norm: $\|\mathbf{Q}\mathbf{y}\|_2 = \|\mathbf{y}\|_2$ for $\mathbf{y} \in \mathbb{C}^m$ and therefore $\|\mathbf{Q}\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{C}^n$. It then follows from definition of 2-norm.

Invariance under Unitary Multiplication

Theorem

For any $\mathbf{A} \in \mathbb{C}^{m \times n}$ and unitary $\mathbf{Q} \in \mathbb{C}^{m \times m}$, we have

$$\|\mathbf{Q}\mathbf{A}\|_2 = \|\mathbf{A}\|_2$$
 and $\|\mathbf{Q}\mathbf{A}\|_F = \|\mathbf{A}\|_F$

In other words, 2-norm and Frobenius norms are invariant under unitary multiplication.

- Proof for 2-norm: $\|\mathbf{Q}\mathbf{y}\|_2 = \|\mathbf{y}\|_2$ for $\mathbf{y} \in \mathbb{C}^m$ and therefore $\|\mathbf{Q}\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{A}\mathbf{x}\|_2$ for $\mathbf{x} \in \mathbb{C}^n$. It then follows from definition of 2-norm.
- Proof for Frobenius norm:

$$\|\mathbf{QA}\|_F^2 = tr((\mathbf{QA})^*(\mathbf{QA})) = tr(\mathbf{A}^*\mathbf{Q}^*\mathbf{QA}) = tr(\mathbf{A}^*\mathbf{A}) = \|\mathbf{A}\|_F^2$$

Outline

Matrix Norms

2 Singular Value Decomposition

Geometric Observation

- ullet The image of unit sphere under any m imes n matrix is a hyperellipse
- Given a unit sphere $S \in \mathbb{R}^n$, let $\mathbf{A}S$ denote the shape after transformation
- SVD is

$A = U\Sigma V^*$

where $\mathbf{U} \in \mathbb{C}^{m \times m}$ and $\mathbf{V} \in \mathbb{C}^{n \times n}$ and $\mathbf{\Sigma} \in \mathbf{R}^{m \times n}$ is diagonal.

- Singular values are diagonal entries of Σ , correspond to the principal semiaxes, with entries $\sigma_1 \geqslant \sigma_2 \geqslant \cdots \geqslant \sigma_n \geqslant 0$.
- \bullet Left singular vectors of ${\bf A}$ are column vectors of ${\bf U}$ and are oriented in the directions of the principal semiaxes of ${\bf A}S$
- Right singular vectors of ${\bf A}$ are column vectors of ${\bf V}$ and are the preimages of the principal semiaxes of ${\bf A}S$
- $\mathbf{Av}_j = \sigma_j \mathbf{u}_j$ for $1 \leqslant j \leqslant n$