Algorithm Analysis / Big Theta exercise

DATE: 4/3/2022

NAME: Shawn Armstrong

CONTACT: smarmstr@ucsc.edu, https://people.ucsc.edu/~smarmstr/#

SUMMARY:

The purpose of this document is to demonstrate a method of proof that seeks to show $f(n) = \Theta(g(n))$.

EXPLANATION:

LINE1: Show that $f(n) = \Theta(g(n))$ where $f(n) = \sqrt{n+10}$ and $g(n) = \sqrt{n}$.

(1) Essentially, this statement is saying that f(n) grows no faster or slower than g(n).

LINE2: If f(n) grows no faster than g(n) then f(n) = O(g(n)).

If f(n) grows no slower than g(n) then $f(n) = \Omega(g(n))$.

We can formally say that $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$.

LINE3: (2) Definition of f(n) = O(g(n))

Let g(n) be some function, c some constant, assume f(n) and g(n) are asymptotically non-negative.

 $O(g(n)) = \{ f(n) \mid \exists c > 0, \exists n_0 > 0, \forall n \ge n_0 : 0 \le f(n) \le c \cdot g(n) \}$

LINE4: (3) Definition of $f(n) = \Omega(g(n))$

Let g(n) be some function, c some constant, assume f(n) and g(n) are asymptotically non-negative.

 $\Omega(g(n)) \ = \ \{ \, f(n) \, | \, \exists x > 0, \, \exists n_0 > 0, \, \forall n \ge n_0 \colon 0 \le c \, \cdot \, g(n) \le f(n) \, \}$

LINE5: We can express (1) as an inequality using (2) and (3).

 $0 \le c_1 \sqrt{n} \le \sqrt{n + 10} \le c_2 \sqrt{n}$

LINE6: By finding values for c_1 , c_2 and n_0 then we assert the existence of a single case proving the

statement.

LINE7: $0 \le c_1 \cdot \sqrt{n} \le \sqrt{n+10} \le c_2 \cdot \sqrt{n}$ // Initial expression

LINE8: $0 \le c_1^2 \cdot n \le n + 10 \le c_2^2 \cdot n$ // We squared all sides of the inequality to simplify

operations.

LINE9: $c_1^2 \cdot n \le n + 10$ AND $n + 10 \le c_2^2 \cdot n$ // Split the inequality.

LINE10: $-10 \le n - (c_1^2 \cdot n)$ AND $10 \le c_2^2 \cdot n - n$ // Isolate n on both sides.

LINE11: $-10 \le (1-c_1^2)n$ AND $10 \le (c_2^2-1)n$ // factor n on both sides.

LINE12: $-10 \le (1-1)n$ AND $10 \le (2-1)n$ // Chose a c that'll allow us to select an n that'll make these inequalities true.

 $c_1 = 1$, $c_2 = \sqrt{2}$

LINE13: $-10 \le 0$ AND $10 \le n$ // Simplify

LINE14: By setting $c_1 = 1$, $c_2 = \sqrt{2}$, $n_0 = 10$ we've satisfied the requirements and illustrated that

 $f(n) = \Theta(g(n)).$

 $Q.\,E.\,D.$