Classificação

Prof. Dra. Karina S. Machado Prof. Dr. Eduardo N. Borges Prof. Dr. Adriano Werhli

Classificação de dados

Definição

- Método supervisionado que determina um modelo para um determinado atributo classe que é função dos valores dos outros atributos. Pode ser utilizado para predizer a que classe de dados uma nova instância pertence (TAN; STEINBACH; KUMAR, 2005).
- Processo de encontrar, através de aprendizado de máquina supervisionado, um modelo ou função que descreva diferentes classes de dados (HAN; KAMBER, 2006).

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes
 - Bayes Net
 - ▶ RIPPER
 - C4.5
 - AdaBoost.MI

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes
 - Bayes Net
 - ▶ RIPPER
 - C4.5
 - AdaBoost.MI

$$P(A \mid B) = \frac{P(B \mid A) \cdot P(A)}{P(B)}$$

Com e sem dependência entre atributos

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes
 - Bayes Net
 - $r_i: (A_1 \circ p \lor v_1) \land (A_2 \circ p \lor v_2) \land \cdots \land (A_k \circ p \lor v_k) \rightarrow y_i$
 - C4.5
 - AdaBoost.MI

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes
 - Bayes Net
 - ▶ RIPPER
 - ▶ C4.5
 - AdaBoost.MI

- Algoritmos de classificação
 - Multilayer Perceptron (MLP)
 - Voted Perceptron
 - Sequential Minimal Optimization (SMO)
 - Naïve Bayes
 - Bayes Net
 - ▶ RIPPER
 - C4.5
 - AdaBoost.MI

"Contraceptive Methods Choice" - CMC

cmc.names cmc.data

```
24,2,3,3,1,1,2,3,0,1
45,1,3,10,1,1,3,4,0,1
43,2,3,7,1,1,3,4,0,1
42,3,2,9,1,1,3,3,0,1
36,3,3,8,1,1,3,2,0,1
19,4,4,0,1,1,3,3,0,1
38,2,3,6,1,1,3,2,0,1
21,3,3,1,1,0,3,2,0,1
27,2,3,3,1,1,3,4,0,1
45,1,1,8,1,1,2,2,1,1
38,1,3,2,1,0,3,3,1,1
42,1,4,4,1,1,1,3.0.1
44,4,4,1,1,0,1,4,0,1
42,2,4,1,1,0,3,3,0,1
38,3,4,2,1,1,2,3,0,1
26,2,4,0,1,1,4,1,0,1
48,1,1,7,1,1,2,4,0,1
39 7
    2 A 1 1
```

cmc.names cmc.data

- 1. Title: Contraceptive Method Choice
- 2. Sources:
 - (a) Origin: This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey
 - (b) Creator: Tjen-Sien Lim (limt@stat.wisc.edu)(c) Donor: Tjen-Sien Lim (limt@stat.wisc.edu)
 - (c) Date: June 7, 1997
- 3. Past Usage:

Lim, T.-S., Loh, W.-Y. & Shih, Y.-S. (1999). A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-three Old and New Classification Algorithms. Machine Learning. Forthcoming. (ftp://ftp.stat.wisc.edu/pub/loh/treeprogs/quest1.7/mach1317.pdf or (http://www.stat.wisc.edu/~limt/mach1317.pdf)

4. Relevant Information:

This dataset is a subset of the 1987 National Indonesia Contraceptive Prevalence Survey. The samples are married women who were either not pregnant or do not know if they were at the time of interview. The problem is to predict the current contraceptive method choice (no use, long-term methods, or short-term methods) of a woman based on her demographic and socio-economic characteristics.

- 5. Number of Instances: 1473
- 6. Number of Attributes: 10 (including the class attribute)

"Contraceptive Methods Choice" - CMC

```
24,2,3,3,1,1,2,3,0,1
45,1,3,10,1,1,3,4,0,1
43,2,3,7,1,1,3,4,0,1
42,3,2,9,1,1,3,3,0,1
36,3,3,8,1,1,3,2,0,1
19,4,4,0,1,1,3,3,0,1
38,2,3,6,1,1,3,2,0,1
21,3,3,1,1,0,3,2,0,1
27,2,3,3,1,1,3,4,0,1
45,1,1,8,1,1,2,2,1,1
38,1,3,2,1,0,3,3,1,1
42,1,4,4,1,1,1,3,0,1
44,4,4,1,1,0,1,4,0,1
42,2,4,1,1,0,3,3,0,1
38,3,4,2,1,1,2,3,0,1
26,2,4,0,1,1,4,1,0,1
```

48,1,1,7,1,1,2,4,0,1

20 _2

26112401

cmc.names cmc.data

7. Attribute Information:

8. Missing Attribute Values: None

```
1. Wife's age
                                   (numerical)
                                   (categorical)
                                                      1=low, 2, 3, 4=high
Wife's education
                                                      1=low, 2, 3, 4=high
Husband's education
                                   (categorical)
                                   (numerical)
4. Number of children ever born
5. Wife's religion
                                   (binary)
                                                       0=Non-Islam, 1=Islam
6. Wife's now working?
                                   (binary)
                                                      0=Yes, 1=No
7. Husband's occupation
                                   (categorical)
                                                      1, 2, 3, 4
8. Standard-of-living index
                                   (categorical)
                                                      1=low, 2, 3, 4=high
9. Media exposure
                                                      0=Good, 1=Not good
                                   (binary)
10. Contraceptive method used
                                   (class attribute)
                                                      1=No-use
                                                      2=Long-term
                                                       3=Short-term
```

ARFF - CMC

@data

24,2,3,3,1,1,2,3.0.1

Numéricos, categóricos, ordinais, strings Orelation CMC @attribute Idade real @attribute Educacao_Esposa {1,2,3,4} @attribute Educacao_Marido {1,2,3,4} @attribute Numero_Filhos real @attribute Religiao_Esposa |{0,1}| @attribute Esposa_Trabalha {0,1} @attribute Ocupacao_Marido {1,2,3,4} @attribute Padrao_Vida {1,2,3,4} @attribute Exposicao_Midia {0,1} @attribute Metodo_contraceptivo {1,2,3}

Tipos de dados

Árvores de decisão

- □ O que são árvores de decisão?
 - □ Um dos métodos mais usados e práticos para inferência indutiva
 - □ Indução a partir de um conjunto de **dados rotulados** (classificados)
 - A indução é feita baseada na abordagem dividir para conquistar
 - Um problema complexo é dividido em problemas mais simples, ou subproblemas
 - □ **Recursivamente** a mesma estratégia é aplicada a cada subproblema

Árvores de decisão

Exemplo	Febre	Enjôo	Manchas	Dor	Diagnóstico
T1	sim	sim	pequenas	sim	doente
T2	não	não	grandes	não	saudável
T3	sim	sim	pequenas	não	saudável
T4	sim	não	grandes	sim	doente
T5	sim	não	pequenas	sim	saúdavel
T6	não	não	grandes	sim	doente

Árvores de decisão

- Estrutura hierárquica consistindo de nodos e arestas direcionados
 - □ Nodos raiz, internos e folha
- Cada nó de decisão contém um teste de atributo
- Cada ramo descendente corresponde a um possível valor desse atributo
- Cada folha está associada a uma classe
- □ Abordagem top-down a partir do nodo raiz
- Cada percurso da árvore (raiz-folha)
 corresponde a uma regra de classificação

Tarefa de Classificação

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Concessão de empréstimo

categorical continuous

Tid	Casa Própria	Marital Status	Renda Anual	Inadimp lente
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Splitting Attributes Casa Pró Yes No pria NO MarSt Married Single, Divorced Renda NO > 80K < 80K YES NO

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

Tid	Casa Própria	Marital Status	Renda Anual	Inadimp lente
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Pode ter mais de uma árvore para o mesmo conjunto de dados

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Refund		Taxable Income	Cheat
No	Married	80K	?

Dados de teste

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Indução de uma árvore de Decisão

Muitos algoritmos

- Hunt's Algorithm (one of the earliest)
- ▶ CART
- ▶ ID3, C4.5
- ► SLIQ,SPRINT

Algoritmo de Hunt

Vamos ler no livro antes de discutir

Peguem o livro na página 180 – 186.

Após vamos discutir o que foi lido.

Algoritmo básico (hunt)

- 1. Escolha um atributo
- Estenda a árvore adicionando um ramo para cada valor do atributo
- 3. Passe os exemplos para as folhas (considerando o atributo escolhido)
- 4. Para cada folha
 - 1. Se todos os exemplos são da mesma classe, associe esta classe à folha
 - 2. Senão, repita os passos 1 a 4

Árvore Inicial:

$$Cheat = NO$$

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

> => maioria de quem pega empréstimo paga seus debitos

Necessidade de refinar => a árvore contém registros da outra classe CHEAT = YES

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Questões sobre a Indução

- Como os registros de treinamento devem ser tratados?
 - Cada passo recursivo do processo deve selecionar uma condição de teste de atributo para dividir os registros em subcojuntos menores. Qual o método???
- Como o procedimento de divisão deve parar??
 - Uma condição de parada é necessária para terminar o processo de crescimento de uma árvore. Uma estratégia é expandir até que só tenham elementos da mesma classe no nodo folha, mas nem sempre é possível.

Como especificar a condição de teste de um atributo???

exemplo: Como fazer o particionamento?

Pessoa		Comprimento	Peso	Idade	Classe:
		do Cabelo			Sexo
	Homer	0	250	36	M
	Marge	10	150	34	F
	Bart	2	90	10	M
	Lisa	6	78	8	F
	Maggie	4	20	1	F
	Abe	1	170	70	M
	Selma	8	160	41	F
	Otto	10	180	38	M
	Krusty	6	200	45	M

exemplo: Como fazer o particionamento?

Como especificar a condição de teste???

- Depende do tipo de atributo
 - Nominal
 - Ordinal
 - Contínuo
- Depende da forma que o atributo pode ser particionado
 - 2-way split
 - Multi-way split

Atributos binários

A condição para um atributo binário gera 2 resultados possíveis:

Atributos Nominais e Ordinais

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
Need to find optimal partitioning.

Atributos Contínuos

- Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
- ▶ Binary Decision: (A < v) or $(A \ge v)$
 - consider all possible splits and finds the best cut
 - > can be more compute intensive

Atributos Contínuos

(i) Binary split

(ii) Multi-way split

Como determinar a melhor divisão??

atributo de particionamento

- Existem várias possibilidades para escolha do atributo
 - Aleatória: seleciona um atributo aleatoriamento
 - ☐ Menos valores: escolhe o atributo com menor número de valores possíveis
 - ☐ Mais valores: escolhe o atributo com o maior número de valores possíveis
 - Ganho Máximo: Selecione o atributo que possui o maior ganho de informação esperado, isto é, selecione o atributo que resultará no menor tamanho para as subárvores
 - ☐ Indice GINI (Breiman et al. 1984)
 - Razão de Ganho (Quinlan, 1993)

Como determinar a melhor divisão?

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

Como determinar a melhor divisão?

- São definidos em termos da distribuição da classe dos registros antes e depois da divisão
 - O ideal é ser o mais heterogêneo
 - È necessária uma medida de impureza.

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

Impureza > 0

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Impureza ~ 0

Medidas de impureza

Gini Index

Entropy

Misclassification error

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j \mid t)]^{2}$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$
 $Gini = 1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
 $Gini = 1 - (2/6)^2 - (4/6)^2 = 0.444$

Quando um nó p é dividido em k partições (filhos), a qualidade da divisão é calculada como,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

onde, n_i = número de registros no filho i, n_i = número de registros no nó p.

Multi-way split

Two-way split (find best partition of values)

	CarType		
	Family	Sports	Luxury
C1	1	2	1
C2	4	1	1
Gini	0.393		

	CarType	
	{Sports, Luxury} {Family}	
C 1	3	1
C2	2	4
Gini	0.400	

	CarType	
	{Sports}	{Family, Luxury}
C 1	2	2
C2	1	5
Gini	0.419	

$$\frac{5}{10} \left[1 - \left(\frac{3}{5} \right)^2 - \left(\frac{2}{5} \right)^2 \right] + \frac{5}{10} \left[1 - \left(\frac{1}{5} \right)^2 - \left(\frac{4}{5} \right)^2 \right]$$

Examples for computing Entropy

$$Entropy(t) = -\sum_{j} p(j \mid t) \log_{2} p(j \mid t)$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Entropy =
$$-0 \log 0 - 1 \log 1 = -0 - 0 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Entropy = $-(1/6) \log_2 (1/6) - (5/6) \log_2 (1/6) = 0.65$

C1	2
C2	4

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Entropy =
$$-(2/6) \log_2(2/6) - (4/6) \log_2(4/6) = 0.92$$

Algoritmo de indução

E = registros F = atributos

CrescimentodaArvore(E,F)

- SE (cond_parada(E,F)= verdadeiro then
- 2. Folha = criarNodo()
- Folha.rotulo=classificar(E)
- Retorna folha
- 5. Senão
- Raiz=criarNodo()
- Raiz.cond_teste=encontrar_melhor_divisão(E,F)
- 8. Atribuir $V=\{v \mid v \text{ \'e um resultado possível de raiz.cond_teste}\}$
- Para cada v E V faça
- 10. $Ev=\{e \mid raiz.cond_teste(e) = v e e pertence E\}$
- 11. Filho=crescimentodaarvore(Ev,F)
- 12. Adicionar filho como descendente de raiz e rotule a aresta
- 13. FimPara
- 14. FimSe
- 15. Retornar Raiz

Critério de parada

 Stop expanding a node when all the records belong to the same class

 Stop expanding a node when all the records have similar attribute values

Early termination (to be discussed later)

Avaliação do modelo

Confusion Matrix and Statistics

Reference

Prediction	Iris.setosa	Iris.versicolor	Iris.virginica
Iris.setosa	13	0	- 0
Iris.versicolor	0	13	1
Iris.virginica	0	0	12

Overall Statistics

```
Accuracy: 0.9744
```

95% CI: (0.8652, 0.9994)

No Information Rate : 0.3333

P-Value [Acc > NIR] : < 2.2e-16

```
recall = number of documents retrieved that are relevant total number of documents that are relevant
```

precision = number of documents retrieved that are relevant total number of documents that are retrieved

Avaliação do modelo

Statistics by Class:

```
Class: Iris.setosa Class: Iris.versicolor
Sensitivity Recall (Pos)
                                  1.0000
                                                           1.0000
Specificity Recall (Neg)
                                  1.0000
                                                           0.9615
Pos Pred Value Precision (Pos) 1.0000
                                                           0.9286
Neg Pred Value Precision (Neg)
                                  1.0000
                                                           1.0000
Prevalence
                                  0.3333
                                                           0.3333
Detection Rate
                                                           0.3333
                                  0.3333
Detection Prevalence
                                  0.3333
                                                           0.3590
Balanced Accuracy
                                                           0.9808
                                  1.0000
                      Class: Iris.virginica
Sensitivity
                                     0.9231
Specificity
                                     1.0000
Pos Pred Value
                                     1.0000
```

```
recall = \frac{number of documents retrieved that are relevant}{total number of documents that are relevant}
precision = \frac{number of documents retrieved that are relevant}{total number of documents that are retrieved}.
```

Avaliação do modelo

```
Iris.setosa Iris.versicolor Iris.virginica
1 1.000000e+00 1.925186e-09 2.256862e-10
2 9.99999e-01 7.484844e-08 2.807169e-09
3 1.000000e+00 9.242904e-09 3.748854e-08
4 9.999943e-01 5.176429e-06 5.014183e-07
5 1.000000e+00 5.880422e-10 2.821031e-09
6 1.000000e+00 9.492960e-09 1.110844e-08
7 1.000000e+00
                 5.964081e-09
                             4.617001e-10
8 9.999998e-01
                1.998648e-07 8.309491e-09
9 9.999998e-01
                1.998648e-07 8.309491e-09
10 1.000000e+00
             9.540811e-09 2.391038e-09
11 9.999947e-01
                4.744178e-06 5.297235e-07
12 9.999998e-01 2.356624e-07 1.045023e-08
13 1.000000e+00 1.352047e-10 9.563372e-10
39
```

Cálculo de Precision e Recall

Descubra como são calculados os valores de precision e recall para o exemplo realizado

Mostre os cálculos de como voce chegou aos valores da tabela!!!

Exercício da semana

- Explique cada uma das medidas de impureza abaixo, relacionando-as com a entropia
 - Information Gain
 - ▶ Gain Ratio
- Exercite o algoritmo de indução de árvores considerando o Information Gain como medida de impureza e a altura da árvore igual a 2 como critério de parada
 - Construa o modelo de classificação apresentando os cálculos que determinam a escolha dos atributos dos nós internos
 - Apresente a acurácia do modelo para o mesmo dataset

Fronteiras de decisão

Sobreajuste (overfitting)

- (c) Decision boundary for tree with 5 leaf nodes.
- (d) Decision boundary for tree with 50 leaf nodes.

Figure 3.24. Decision trees with different model complexities.

Sobreajuste (overfitting)

(a) Varying tree size from 1 to 8.

(b) Varying tree size from 1 to 150.

Figure 3.23. Effect of varying tree size (number of leaf nodes) on training and test errors.

Sobreajuste (overfitting)

(a) Decision boundary for tree with 50 leaf nodes using 20% data for training.

(b) Training and test error rates using 20% data for training.

Figure 3.25. Performance of decision trees using 20% data for training (twice the original training size)