

Johannes Nicolaus BRÖNSTED Chimiste danois 1879 –1947

1. Théorie de Brönsted

Acide = espèce chimique susceptible de donner un ou plusieurs protons H+

$$AH \rightleftharpoons A^- + H^+$$

$$Ex$$
: $CH_3CO_2H = CH_3CO_2^- + H^+$
 $H_2S = HS^- + H^+$ puis $HS^- = S^{2-} + H^+$

Base = espèce chimique susceptible de capter un ou plusieurs protons H+

Ex:
$$NH_3 + H^+ = NH_4^+$$

 $CO_3^{2-} + H^+ = HCO_3^-$ puis $HCO_3^- + H^+ = H_2CO_3^-$

CH₃CO₂H et CH₃CO₂-forment un **couple acide-base conjugués** : c'est le couple CH₃CO₂H/CH₃CO₂-

1. Théorie de Brönsted

autres couples:

 NH_4^+/NH_3

HCO₃-/ CO₃²-

H₂CO₃ / HCO₃

 $C_6H_5NH_3^+/C_6H_5NH_2$

2. Les ampholytes

<u>Définition</u>: une espèce ampholyte est une espèce qui est acide dans un couple et base dans un autre couple

Ex: L'ion hydrogénophosphate H₂PO₄-

couple 1 : $H_3PO_4/H_2PO_4^$ couple 2 : $H_2PO_4^-/HPO_4^{2-}$

Ex: L'ion hydrogénocarbonate HCO₃-

couple 1 : H_2CO_3 / HCO_3 couple 2 : HCO_3 / CO_3 ²

Ex: L'eau H₂O

L'eau est un acide : H_2O / OH^- L'eau est une base : H_3O^+ / H_2O

3. Réactions acido-basiques

Le proton H⁺ seul en solution n'existe pas, une réaction acido-basique est un échange de proton entre 2 couples:

$$A_1 + B_2 = B_1 + A_2$$

Couple A₁/B₁ Couple A₂/B₂

Ex:
$$CH_3CO_2H$$
 + $NH_3 \leftrightarrows CH_3CO_2^-$ + NH_4^+

4. Rôle de l'eau

 En l'absence d'un autre acide, l'eau va jouer le rôle d'acide face à une base :

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

 En l'absence d'une autre base, l'eau va jouer le rôle de base face à un acide :

Couple
$$A_1/B_1$$

 $CH_3CO_2H + H_2O \leftrightarrows CH_3CO_2^- + H_3O^+$

 L'équilibre d'autoprotolyse de l'eau est une réaction acidobasique.

$$H_2O + H_2O + H_3O^+$$

II- Le pH et pOH

La couleur des hortensias dépend du pH du sol

Le pH de l'eau d'une piscine doit être parfaitement

contrôlé

II- Le pH et pOH

1. Définitions

Le pH :

pH = - log a(H₃O⁺) = - log[H₃O⁺]/C° (si solution diluée)
On écrira pH = - log[H₃O⁺]
$$\Rightarrow$$
 [H₃O⁺] = 10^{-pH}

• Le pOH:

pOH = - log a(HO⁻) = - log[HO⁻]/C° (si solution diluée)

On écrira pOH = - log [HO⁻]
$$\Rightarrow$$
 [HO⁻] = 10^{-pOH}

II- Le pH et pOH

1. Définitions

Le pH :

pH = - log a(H₃O⁺) = - log[H₃O⁺]/C° (si solution diluée)
On écrira pH = - log[H₃O⁺]
$$\Rightarrow$$
 [H₃O⁺] = 10^{-pH}

Le pOH :

On écrira pOH = -
$$log [HO^-] \Rightarrow [HO^-] = 10^{-pOH}$$

2. Relation entre le pH et le pOH

L'équilibre d'autoprotolyse de l'eau est une réaction acido-basique : $H_2O + H_2O + H_3O^+$

$$Ke = [HO^{-}][H_3O^{+}] = 10^{-14} \text{ à } 25^{\circ}C$$

$$pOH + pH = 14$$
 à 25°C

1. ACIDES et BASES FAIBLES dans l'eau

a) La réaction entre un acide faible et l'eau est équilibrée.

La constante d'équilibre de <u>la réaction de l'ACIDE avec l'EAU</u> s'appelle la <u>constante d'ACIDITE</u> K_a du couple A/B, elle est fonction de la température seulement pour un couple donné.

Exemple: l'acide méthanoïque

$$A + H_2O \Rightarrow B + H_3O^+$$

$$K_{a} = \frac{[B] \cdot [H_{3}O^{+}]}{[A]} = \frac{[B] \cdot h}{[A]}$$

$$pK_{a} = -\log K_{a}$$

$$K_{a} = 10^{-pK_{a}}$$

Plus $K_a \uparrow$, càd plus $pK_a \downarrow$, plus la force de l'acide \uparrow .

1. ACIDES et BASES FAIBLES dans l'eau

b) La réaction entre une base faible et l'eau est équilibrée.

La constante d'équilibre de <u>la réaction de la BASE avec l'EAU</u> s'appelle la <u>constante de BASICITE</u> K_b du couple A/ B, elle est fonction de la température seulement pour un couple donné.

Exemple: l'ammoniaque

$$B + H_2O \Rightarrow A + OH^-$$

$$K_{b} = \frac{[A] \cdot [OH^{-}]}{[B]} = \frac{[A] \cdot \omega}{[B]}$$

$$pK_{b} = -\log K_{b}$$

$$K_{b} = 10^{-pK_{b}}$$

Plus $K_b \uparrow$, càd plus $pK_b \downarrow$, plus la force de la base \uparrow .

1. ACIDES et BASES FAIBLES dans l'eau

c) Différence entre le pK_a et pK_b ?

ACIDES FAIBLES

 $A + H_2O \leftrightarrows B + H_3O^+$

$$K_{a} = \frac{h \cdot [B]}{[A]}$$

$$pK_{a} = -logK_{a}$$

$$K_{a} = 10^{-pK_{a}}$$

A/B

BASES FAIBLES

$$B + H_2O \leftrightarrows A + HO^-$$

$$K_{b} = \frac{\omega \cdot [A]}{[B]}$$

$$pK_{b} = -\log K_{b}$$

$$K_{b} = 10^{-pK_{b}}$$

$$\Rightarrow K_a K_b = ?$$

$$K_a K_b = K_e$$
 ou $pK_a + pK_b = pK_e = 14 à 25°C$

2. ACIDES et BASES FORTS dans l'eau

a) Réaction entre un acide fort et l'eau est considérée comme totale

Exemple: l'acide nitrique :
$$HNO_3 + H_2O \rightarrow NO_3^- + H_3O^+$$

Le seul acide présent dans la solution est : H₃O⁺ (et H₂O).

Les acides forts sont tous équivalents à H₃O⁺ dans l'eau, leur pK_a dans l'eau vaut 0

b) Réaction entre une base forte et l'eau est considérée comme totale

Exemple: I'ion éthanolate : $C_2H_5O^- + H_2O \rightarrow C_2H_5OH + OH^-$

La seule base présente dans la solution est : OH- (et H₂O). C'est pourquoi on appelle bases fortes des composés ioniques comme la soude NaOH et la potasse KOH.

Toutes les bases fortes sont équivalentes à OH⁻ dans l'eau, leur pK_a dans l'eau vaut 14.

3. Constantes d'acidité des couples de l'eau

$$H_3O^+/H_2O$$
 ? pKa = 0

$$H_2O / OH^{-?}$$

pKa = 14

4. Classement des couples acide/base dans l'eau

L'échelle de pKa dans l'EAU va de 0 à 14.

Application aux réactions acido-basiques

a) Constante d'équilibre d'une réaction acide-base

Ex: $HCOOH/HCOO^{-1}$ couple 1 A_1/B_1 pK_{a1} = 3,8

 NH_{4}^{+}/NH_{3}

couple 2 A_2/B_2 pK₂₂ = 9,2

Exprimer la constante d'équilibre de la réaction entre HCOOH et NH₃ et la calculer. **Conclusion?**

$$K = \frac{K_a \text{ du couple qui apporte l'acide}}{K_a \text{ du couple qui apporte la base}}$$

$$K = \frac{K_{a,1}}{K_{a,2}}$$

5. Application aux réactions acido-basiques

b) Schématisation sur l'axe de pK_a

$$K > 1$$
 si $K_{a1} > K_{a2}$ soit $pK_{a1} < pK_{a2}$

Si c'est l'acide le plus fort des 2 couples qui réagit avec la base la plus forte des 2 couples : K > 1, réaction favorisée dans le sens 1

Si $pK_{a2} - pK_{a1} > 4$ réaction quantitative

5. Application aux réactions acido-basiques

b) Schématisation sur l'axe de pK_a

Remarque : calcul de la constante d'équilibre de la réaction entre NH₄⁺ et HCOO⁻

Si c'est l'acide le plus faible des 2 couples qui réagit sur la base la plus faible des 2 couples : K < 1, la réaction est favorisée dans le sens 2.

IV- Diagrammes de PREDOMINANCE (D. P.)

Une espèce A prédomine sur une espèce B si [A] > [B].

En chimie des solutions, [B] est négligeable devant [A] si [A] > 10 [B].

1. couple A/B

$$K_a = \frac{h \cdot [B]}{[A]} \Leftrightarrow pH = pK_a + \log \frac{[B]}{[A]}$$

IV- Diagrammes de PREDOMINANCE (D. P.)

1. couple A/B

Si pH < pK_a-1, on peut considérer que l'espèce acido-basique est entièrement sous la forme acide A.

Si $pH > pK_a+1$, on peut considérer que l'espèce acido-basique est entièrement sous la forme basique B.

IV- Diagrammes de PREDOMINANCE (D. P.)

2. couple de l'eau

On peut montrer que:

- H₃O⁺ est négligeable devant OH⁻ si pH > 7,5
- OH⁻ est négligeable devant H₃O⁺ si pH < 6,5

V- Réaction PREPONDERANTE

Une réaction est prépondérante lorsque son taux d'avancement est nettement supérieur à celui des autres réactions.

Les concentrations des espèces majoritaires ne dépendent alors que de cette réaction.

On pourra considérer en général que la réaction prépondérante est **celle dont la constante d'équilibre est la plus grande** (il faut 10³ à 10⁴ fois supérieure à celle des autres réactions).

Cependant, le taux d'avancement dépendant aussi des concentrations initiales, il faudra comparer le taux d'avancement des diverses réactions susceptibles de se produire.

