UNIVERSIDAD AUTÓNOMA "TOMAS FRÍAS" CARRERA DE INGENIERÍA DE SISTEMAS

Materia:	Arquitectura de computadoras (SIS-522)	AS TO SI - BOURT
Nombre:	Alan Cristopher Mamani Zelaya	
Docente:	Ing. Gustavo A. Puita Choque	N° Práctica
Auxiliar:	Univ. Aldrin Roger Perez Miranda	
20/10/2024	Fecha publicación	/
03/11/2024	Fecha de entrega	'
Grupo:	1 Sede Potosí	

1) Explique los tipos de buses que existen

Bus de datos: sería como una autopista a través de la cual la información viaja entre el procesador y la memoria. Cada vez que el procesador necesita leer o guardar algo en la memoria, los datos pasan por este bus.

/

Bus de direcciones: sería como un GPS para los datos. Cada trozo de información viaja por un bus de señalización hacia su dirección exacta ya sea en la memoria o en otro dispositivo, lo que aquí significa la carga al menos.

Bus de control es como las señales de tráfico: dictamina cuándo comienzan y finalizan las operaciones de lectura y escritura.

2) Cuál es la jerarquía de los buses

- El Bus del Sistema y del Sistema frontal
- los buses de expansion
- El bus de periféricos o entrada/salida.

X Bus Local

3. Diferencias entre un Bus y un Puerto

- Bus: Es una conexión interna que permite la comunicación entre componentes dentro de la computadora, como el procesador y la memoria RAM. Piensa en él como una "autopista" interna de alta velocidad.
- Puerto: Es una conexión física o lógica que permite conectar dispositivos externos (impresora, teclado, etc.) a la computadora. Sería como una "puerta" para la entrada de otros dispositivos.

Resumen:

- **Ubicación:** Los buses son internos, los puertos son externos.
- Función: El bus comunica partes internas; el puerto conecta dispositivos externos.
- **Tipo de Comunicación:** Los buses manejan múltiples canales, mientras que los puertos suelen usar una sola conexión.

4. Componentes en una Placa Base

1.	Buses: Son las conexiones internas (líneas de circuitos) entre el procesador, la RAM y otros componentes.		
2.	Chipset Norte (Northbridge): Cerca del procesador, este chip gestiona la comunicación entre CPU, RAM y, en algunas placas, la tarjeta gráfica.		
3.	Chipset Sur (Southbridge): Cerca de las ranuras de expansión, controla la comunicación con dispositivos externos y puertos (como USB).		
4.	Bus Local: Conecta el procesador con la RAM. Lo verás cerca de la CPU y los módulos de memoria.		
5.	Bus del Sistema: Conecta el procesador con el chipset y los módulos de RAM.		
6.	Bus de Expansión: Ranuras PCIe o PCI en la placa, donde se pueden conectar tarjetas		
	adicionales (video, sonido, etc.). SE TENIA QUE SEÑALA EN ESA PLACA MADRE PROPORCIONADA EN LA PRÁCTICA		
5. Respuestas sobre la Historia			
1.	¿Por qué Miguel verificó los cables? Para asegurar una conexión estable y rápida entre el router y los dispositivos.		
2.	Relación entre el ancho de la ruta de datos y la cantidad de información: A mayor ancho de la ruta, más información se puede enviar y recibir simultáneamente.		
3.	¿Por qué Miguel revisó la velocidad del reloj del router? Para asegurarse de que los datos se procesen rápidamente.		
4.	Efecto de la velocidad del reloj en la eficiencia de comunicación: A mayor velocidad de reloj, menor tiempo de respuesta entre dispositivos.		
5.	¿Por qué Miguel verificó el ancho de banda? Para confirmar que la conexión soporta actividades intensivas como ver videos y jugar en línea.		
6.	Influencia del ancho de banda en la experiencia de Laura: Mayor ancho de banda permite una transmisión sin interrupciones, mejorando la experiencia.		
7.	Beneficios de ajustar correctamente el ancho de la ruta, velocidad del reloj y ancho de banda: Mejora la velocidad, estabilidad y calidad de la conexión.		
8.	Problemas si Miguel no hubiera hecho estos ajustes: Laura podría experimentar conexión lenta, interrupciones en videos o juegos, y una experiencia de internet poco confiable.		