Sets

Dhruva Sambrani

20 January, 2020

Sets

Set is a well defined collection of objects. Well defined here means that an element of the Domain x should be unambiguously belong to or not belong to set S.

```
x \in A \equiv "x belongs to set A" x \notin A \equiv "x does not belong to set A"
```

Properties

- All elements unique.
- Unordered.

Types

Sets need not be of a particular "type" - $\{\{1,2,3\},6,7\}$ May also be infinite. $\{1,2,3,4....\}$ Null/Empty set = $\{\}$ = \emptyset

Operations on sets

- Subset: $A \subseteq B$. "A is a subset of B." $x \in A \Longrightarrow x \in B$.
- Equality: A=B iff A⊆B \land B⊆A. "A is equal to B." x∈A \Longrightarrow x∈B \land x∉A \Longrightarrow x∉B
- Proper Subset: $A \subset B \ x \in A \implies x \in B \land A \neq B$.
- Complement: U\A OR Ac. Exactly all x's in U NOT in A.
- Union: $A \cup B$. "A union B". Exactly all elements in $A \vee B$.
 - If $\{A\alpha\}$ is a collection of sets indexed by I, then $\bigcup A\alpha = \text{set of } x \text{ st } x \in \alpha 0 \text{ for some } \alpha \in I.$
- \bullet Intersection: A \cap B "A intersection B". Contains exactly all elements in A AND B.
 - $-x \in \bigcap A\alpha \text{ iff } x \forall \alpha \in I, x \in A\alpha$

- Cartesian Product: $A \times B$ "Cartesian Product of A and B". Its the collection of all 2 element sequences (a,b) st $a \in A$, $b \in B$
 - A1×A2×...×An is the collection of all n element sequences (ai) st ai∈Ai
- \bullet Relation operator: a Rb "a is related to b". A relation is a subset of A×B.
- \bullet Function: f: A \rightarrow B. It is a relation such that
 - 1. $\forall a \in A, \exists b \text{ st aRb.}$
 - 2. aRb and aRc \Longrightarrow b=c.
 - Equality of functions f=g \Longrightarrow f \subseteq g \land g \subseteq f.

Languages

 Σ is a finite set called an "alphabet".

The finite sequence is called a string.

A language over Σ is a set of strings.