SOLUZIONI DELL' ESAME DI METÀ SEMESTRE

1. Sia F un campo e sia $f \in F[x]$ irriducibile. Mostrare che f ha radici multiple se e solo se F ha caratteristica finita $p \neq 0$ e esiste $g \in F[x]$ tale che $f(x) = g(x^p)$.

SOLUZIONE. Si tratta di parte dell'enunciato della Proposizione 2.12 a pagina 23 delle note di Milne.

2. Descrivere gli elementi del gruppo di Galois del polinomio $(x^2 + 1)(x^4 - 3) \in \mathbf{Q}[x]$ determinando anche tutti i sottocampi del campo di spezzamento.

SOLUZIONE. Le sei radici del polinomio sono $\pm i, \pm 3^{1/4}$ e $\pm i 3^{1/4}$; pertanto il campo di spezzamento è $E = \mathbf{Q}[i, 3^{1/4}]$ che ha dimensione 8 su \mathbf{Q} . Gli otto elementi del gruppo di Galois $G = \operatorname{Gal}(\mathbf{Q}[i, 3^{1/4}]/\mathbf{Q})$ sono:

$$\operatorname{id}: \left\{ \begin{array}{l} i \mapsto i \\ 3^{1/4} \mapsto 3^{1/4} \end{array} \right\} \quad \sigma: \left\{ \begin{array}{l} i \mapsto -i \\ 3^{1/4} \mapsto 3^{1/4} \end{array} \right\} \quad \tau: \left\{ \begin{array}{l} i \mapsto i \\ 3^{1/4} \mapsto i3^{1/4} \end{array} \right\} \quad \tau \sigma: \left\{ \begin{array}{l} i \mapsto -i \\ 3^{1/4} \mapsto i3^{1/4} \end{array} \right\}$$

$$\tau^2: \left\{ \begin{array}{l} i \mapsto i \\ 3^{1/4} \mapsto -3^{1/4} \end{array} \right\} \quad \tau^3: \left\{ \begin{array}{l} i \mapsto i \\ 3^{1/4} \mapsto -i3^{1/4} \end{array} \right\}$$

$$\tau^2 \sigma: \left\{ \begin{array}{l} i \mapsto -i \\ 3^{1/4} \mapsto -3^{1/4} \end{array} \right\} \quad \tau^3 \sigma: \left\{ \begin{array}{l} i \mapsto -i \\ 3^{1/4} \mapsto -i3^{1/4} \end{array} \right\}.$$

Denotiamo con D_4 il gruppo delle simmetrie del quadrato di vertici 1, 2, 3 e 4 e ne rappresentiamo gli elementi mediante permutazioni dei vertici. Pertanto

$$D_4 = \{(1), (1,2,3,4), (1,3)(2,4), (1,4,3,2), (1,2)(3,4), (1,4)(2,3), (1,3), (2,4)\}.$$

L'applicazione $G \longrightarrow D_4, \sigma \mapsto (1,3), \tau \mapsto (1,2,3,4)$ definisce un isomorfismo di gruppi. I 9 sottogruppi di D_4 sono i seguenti:

$$D_4$$

$$\langle (1,2,3,4) \rangle, \quad \langle (1,3), (2,4) \rangle, \quad \langle (1,2)(3,4), (1,4)(2,3) \rangle,$$
$$\langle (1,2)(3,4) \rangle, \quad \langle (1,3) \rangle, \quad \langle (2,4) \rangle, \quad \langle (1,3)(2,4) \rangle, \quad \langle (1,4)(2,3) \rangle,$$
$$\langle (1) \rangle.$$

e i 9 sottocampi corrispondenti attraverso la corrispondenza di Galois sono:

 \mathbf{Q}

$$\mathbf{Q}[i], \quad \mathbf{Q}[\sqrt{3}], \quad \mathbf{Q}[\sqrt{-3}],$$
 $\mathbf{Q}[(1-i)3^{1/4}], \quad \mathbf{Q}[3^{1/4}], \quad \mathbf{Q}[i3^{1/4}], \quad \mathbf{Q}[i,\sqrt{3}], \quad \mathbf{Q}[(1+i)3^{1/4}],$
 $\mathbf{Q}[i,3^{1/4}].$

3. Dopo aver verificato che è algebrico, calcolare il polinomio minimo di $\cos \pi/18$ su **Q**.

SOLUZIONE. Scriviamo $\nu = \cos \frac{\pi}{18} = \frac{1}{2}(\zeta_{36} + \overline{\zeta}_{36})$ e osserviamo che ν è algebrico in quanto si ottiene come il prodotto di un numero razionale e la somma di due numeri algebrici. Il fatto che ζ_{36} e $\overline{\zeta}_{36}$ sono algebrici segue subito dal fatto che soddisfano il polinomio $X^{36}-1$. Inoltre dalla fattorizzazione $X^{36}-1=(X^{18}-1)(X^6+1)(X^{12}-X^6+1)$ segue che il polinomio minimo è $f_{\zeta_{36}}(X)=X^{12}-X^6+1$ e che ν soddisfa un polinomio di grado sei. Osservando che

$$f_{\zeta_{36}}(\cos\frac{\pi}{18} + i\sin\frac{\pi}{18}) = 0,$$

che $\zeta_{36}^{12} = \zeta_3 = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, otteniamo

$$-\frac{1}{2} + i\frac{\sqrt{3}}{2} - (\cos\frac{\pi}{18} + i\sin\frac{\pi}{18})^6 + 1 = 0.$$

La parte reale dell'identità sopra è

$$-\nu^6 + 15\nu^4 \sin^2 \frac{\pi}{18} - 15\nu^2 \sin^4 \frac{\pi}{18} + \sin^6 \frac{\pi}{18} + \frac{1}{2} = 0.$$

Usando la relazione $\sin^2\frac{\pi}{18}=1-\cos^2\frac{\pi}{18}=1-\nu^2$, si arriva a

$$-\nu^6 + 15\nu^4(1-\nu^2) - 15\nu^2(1-\nu^2)^2 + (1-\nu^2)^3 + \frac{1}{2} = 0.$$

Un breve calcolo ci porta a

$$-32\nu^6 + 48\nu^4 - 18\nu^2 + \frac{3}{2} = 0.$$

Dunque si ha che $f_{\nu}(X) = X^6 - \frac{3}{2}X^4 + \frac{9}{16}X^2 - \frac{3}{64}$.

4. Si consideri $E = \mathbf{F}_2[\alpha]$ dove α è una radice del polinomio $X^3 + X + 1$. Determinare il polinomio minimo su \mathbf{F}_2 di $\alpha + 1$.

SOLUZIONE. Basta usare la regola generale che se E/F è un'estensione, $\alpha \in E$ e $f_{\alpha}(X) \in F[X]$ è il polinomio minimo di α su F, allora $f_{A\alpha+B}(X) = A^{\partial f_{\alpha}} f_{\alpha} \left(\frac{X-B}{A} \right)$ è il polinomio minimo di $A\alpha + B$ per ogni $A, B \in F$, $A \neq 0$. Questa proprietà segue dal fatto chiaro che $f_{A\alpha+B}(A\alpha+B) = 0$ e siccome $\mathbf{Q}(\alpha) = \mathbf{Q}(A\alpha+B)$, risulta $\partial f_{\alpha} = [\mathbf{Q}(\alpha) : \mathbf{Q}] = [\mathbf{Q}(A\alpha+B) : \mathbf{Q}] = \partial f_{A\alpha+B}$.

 $Nel\ caso\ in\ questione,\ A=B=1\ e\ quindi$

$$f_{\alpha+1}(X) = f_{\alpha}(X+1) = (X+1)^3 + (X+1) + 1 = X^3 + X^2 + 1.$$

5. Dimostrare che $\mathbf{Q}(\zeta_m)$ possiede almeno un sottocampo quadratico e fornire un esempio in cui i sottocampi quadratici sono più di uno.

SOLUZIONE. In effetti è necessario assumere che m>3 altrimenti $\mathbf{Q}(\zeta_m)=\mathbf{Q}$ e l'enunciato è falso per ragioni ovvie. Se $m=2^t$ è una potenza di due, allora $t\geq 2$. In questo caso $i=\zeta_4=\zeta_{2^t}^{2^{t-2}}\in\mathbf{Q}(\zeta_{2^t})$ e quindi $\mathbf{Q}(i)\subseteq\mathbf{Q}(\zeta_m)$ è un sottocampo quadratico. Altrimenti sia p>2 un primo tale che p|m. Allora $\zeta_m^{m/p}=\zeta_p$ e quindi $\mathbf{Q}(\zeta_p)\subseteq\mathbf{Q}(\zeta_m)$. Adesso osserviamo che per ogni p>3 il gruppo di Galois $\mathrm{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})\cong(\mathbf{Z}/p\mathbf{Z})^*\cong C_{p-1}$ è ciclico e pertanto ammette un unico sottogruppo per ogni divisore del suo ordine. Siccome d=(p-1)/2 divide p-1, dall'osservazione precedente otteniamo che $\mathrm{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})$ ammette un sottogruppo H con indice 2=(p-1)/d. Per il Teorema di corrispondenza otteniamo che il sottocampo fisso E^H ha grado 2 su \mathbf{Q} ed è quindi quadratico.

Per quanto riguarda la seconda parte, basta considerare $\mathbf{Q}[\zeta_8] = \mathbf{Q}[i, \sqrt{2}]$ in cui i sottocampi quadratici sono 3.

6. Mostrare che se F è un campo e $g \in F[X]$, allora il grado del campo di spezzamento E_g di g su F soddisfa

$$[E_q:F] \leq \partial(g)!$$
.

SOLUZIONE. Si tratta della Proposizione 2.4 a pagina 20 delle note di Milne.

7. Mostrare che se p_n denota l'*n*-esimo numero primo, allora

$$[\mathbf{Q}(\sqrt{p_1},\cdots,\sqrt{p_n}):\mathbf{Q}]=2^n.$$

Quanti sono i sottocampi quadratici?

SOLUZIONE. Dalla formula della moltiplicatività del grado si ottiene che

$$[\mathbf{Q}(\sqrt{p_1}, \cdots, \sqrt{p_n}) : \mathbf{Q}] = [\mathbf{Q}(\sqrt{p_1}) : \mathbf{Q}] \cdot \prod_{j=2}^n [\mathbf{Q}(\sqrt{p_1}, \cdots, \sqrt{p_j}) : \mathbf{Q}(\sqrt{p_1}, \cdots, \sqrt{p_{j-1}})].$$

Inoltre si ha che per ogni $j=2,\ldots,n, \sqrt{p_j} \notin \mathbf{Q}(\sqrt{p_1},\ldots,\sqrt{p_{j-1}})$ come è possibile verificare facendo il calcolo e usando il fatto che i primi sono tutti distinti. Quindi $[\mathbf{Q}(\sqrt{p_1},\cdots,\sqrt{p_j}):\mathbf{Q}(\sqrt{p_1},\ldots,\sqrt{p_{j-1}})]=2$ e l'enunciato segue immediatamente.

Per quando riguarda la seconda parte, osserviamo che il gruppo di Galois

$$\operatorname{Gal}(\mathbf{Q}(\sqrt{p_1},\cdots,\sqrt{p_n})/\mathbf{Q}) \cong C_2 \times \cdots \times C_2$$

è il prodotto diretto di n copie di C_2 . Un isomorfismo è il seguente: se $\varepsilon = (\varepsilon_1, \dots, \varepsilon_n) \in C_2^n$ con $\varepsilon_i \in \{0,1\}$, allora $\sigma_{\varepsilon} \in \operatorname{Gal}(\mathbf{Q}(\sqrt{p_1}, \dots, \sqrt{p_n})/\mathbf{Q})$ è l'automorfismo definito da $\sigma_{\varepsilon}(\sqrt{p_j}) = (-1)^{\varepsilon_j} \sqrt{p_j}$ per ogni $j = 1, \dots n$.

 $\sigma_{\varepsilon}(\sqrt{p_j}) = (-1)^{\varepsilon_j}\sqrt{p_j} \ per \ ogni \ j = 1, \dots n.$ Si ha che C_2^n ammette $2^n - 1$ sottogruppi di indice 2. Infatti per ogni $\varepsilon \in C_2^n \setminus \{(0, \dots, 0)\}$, l'omomorfismo $\varphi \mapsto \langle \varphi, \varepsilon \rangle$ ha per nucleo un diverso sottogruppo di indice due $(qui \ \langle \cdot, \cdot \rangle \ denota \ il \ prodotto \ scalare)$. Si verifica che tutti i sottogruppi di indice due si ottengono in questo modo.

Infine tutti e soli i sottocampi quadratici di $\mathbf{Q}(\sqrt{p_1},\cdots,\sqrt{p_n})$ sono della forma

$$\mathbf{Q}(\sqrt{p_{i_1}\cdots p_{i_k}})$$

dove $\{i_1,\ldots,i_k\}$ è un sottoinsieme non vuoto di $\{1,\ldots,n\}$. È chiaro che diversi sottoinsiemi danno luogo a diversi sottocampi e in questo modo si ottengono i 2^n-1 sottocampi quadratici. Il sottocampo fissato dal nucleo dell'omomorfismo $\langle \cdot, \varepsilon \rangle$ è $\mathbf{Q}(\sqrt{p_1^{\varepsilon_1} \cdots p_n^{\varepsilon_n}})$.

8. Si enunci nella completa generalità il Teorema di corrispondenza di Galois.

SOLUZIONE.

Teorema. Sia E/F un'estensione di Galois (cioè E è il campo di spezzamento di un polinomio separabile in F[x]) e sia G = Gal(E/F). Allora c'è una corrispondenza biunivoca tra i sottogruppi di G e i sottocampi di E che contengono F. Se $H \leq G$ e $F \subseteq M \subseteq E$, allora la corrispondenza è data da:

$$H \mapsto E^H$$
, $M \mapsto \operatorname{Gal}(E/M)$.

In oltre

- i G corrisponde a F e {1} corrisponde a E; ii $H_1 \leq H_2 \Leftrightarrow E^{H_1} \supseteq E^{H_2};$
- iii Se $H_1 \leq H_2$, allora $[H_2: H_1] = [E^{H_1}: E^{H_2}];$ iv Per ogni $\sigma \in G$, $E^{\sigma H \sigma^{-1}} = \sigma E^H;$

- 9. Mostrare che i polinomi irriducibili di grado 3 a coefficienti razionali che ammettono un'unica radice reale hanno S_3 come gruppo di Galois.

SOLUZIONE. Assumiamo il fatto che i gruppi di ordine 6 sono isomorfi a S₃ oppure a C_6 . Il fatto che il polinomio ammette un'unica radice reale implica che il suo campo di spezzamento ha grado 6 su \mathbf{Q} . Infatti se $\alpha, \beta, \overline{\beta} \in \overline{\mathbf{Q}}$ sono le radici del polinomio con $\alpha \in \mathbf{R}$, allora il campo di spezzamento è $\mathbf{Q}(\alpha, \beta)$ e siccome $\beta \notin \mathbf{Q}(\alpha)$, si ha

$$[\mathbf{Q}(\alpha, \beta) : \mathbf{Q}] = [\mathbf{Q}(\alpha, \beta) : \mathbf{Q}(\alpha)][\mathbf{Q}(\alpha) : \mathbf{Q}] = 2 \times 3 = 6.$$

Quindi il gruppo di Galois, che ha tanti elementi quanto il grado del campo di spezzamento, ha cardinalità 6. Infine i sottocampi $\mathbf{Q}(\alpha)$ e $\mathbf{Q}(\beta)$ hanno grado 3 su \mathbf{Q} pertanto il gruppo di Galois non può essere ciclico altrimenti avrebbe un unico sottocampo per ogni divisore dell'ordine.

- 10. Dopo aver definito la nozione di campo perfetto, dimostrare che i campi finiti sono perfetti.
- SOLUZIONE. La definizione è la 2.14 a pagina 23 delle note di Milne mentre la dimostrazione è una conseguenza diretta della Proposizione 2.15.
- 11. Sia ζ_{16} una radice primitiva 16-esima dell'unità. Descrivere gli $\mathbf{Q}(\sqrt{-1})$ -omomorfismi di $\mathbf{Q}(\zeta_{16})$ in \mathbf{C} .

SOLUZIONE. Innanzi tutto osserviamo che $\sqrt{-1} = \zeta_{16}^4$ e che tutti gli omomorfismi di $\mathbf{Q}(\zeta_{16})$ in \mathbf{C} sono della forma:

$$\sigma_i: \mathbf{Q}(\zeta_{16}) \longrightarrow \mathbf{C}, \zeta_{16} \mapsto \zeta_{16}^j,$$

dove $j \in \{1, 3, 5, 7, 9, 11, 13, 15\}$. Tali omomorfismi risultano $\mathbf{Q}(\sqrt{-1})$ -omomorfismi se e solo se fissano ζ_{16}^4 .

La condizione $\sigma_j(\zeta_{16}^4) = \zeta_{16}^4$ è equivalente a $4j \equiv 4 \mod 16$ e cioè $j \equiv 1 \mod 4$. Quindi j = 1, 5, 9, 13. Infine gli $\mathbf{Q}(\sqrt{-1})$ -omomorfismi sono $\{\sigma_1, \sigma_5, \sigma_9, \sigma_{13}\}$.

12. Sia E un'estensione finita di \mathbf{Q} e siano E_1 e E_2 due sottocampi di E. Dimostrare che se E_1 e E_2 sono estensioni di Galois di \mathbf{Q} allora anche il composto E_1E_2 è un'estensione di Galois di \mathbf{Q} .

SOLUZIONE. È una conseguenza immediata del Teorema di corrispondenza di Galois il fatto che l'intersezione di due sottogruppi H_1 e H_2 di Gal(E/F) corrisponde al composto dei due campi che corrispondono a H_1 e H_2 (i.e. $E^{H_1 \cap H_2} = E^{H_1}E^{H_2}$)

Infatti, per definizione l'intersezione di due sottogruppi è il più grande sottogruppo contenuto in entrambi mentre il composto di due campi è il più piccolo sottocampo contenente entrambi. Il fatto che la corrispondenza di Galois è antimonotona rispetto alla relazione di inclusione implica che l'intersezione corrisponde al composto.

Infine se E_1 e E_2 sono di Galois (e quindi normali) su F, allora $Gal(E/E_1)$ e $Gal(E/E_2)$ sono normali in Gal(E/F). Da questo segue che $Gal(E/E_1) \cap Gal(E/E_2)$ è normale in Gal(E/F) in quanto l'intersezione di sottogruppi normali è normale. Da quanto detto sopra segue anche che

$$E_1 E_2 = E^{\operatorname{Gal}(E/E_1) \cap \operatorname{Gal}(E/E_2)}$$

e corrispondendo ad un sottogruppo normale, anche E_1E_2 risulta normale.