Stat210B: Theoretical Statistics

Lecture Date: April 03, 2007

Lecture 22

Lecturer: Michael I. Jordan Scribe: Sriram Sankararaman

1 Convergence to a Normal experiment

Definition 1. Given an observation X, a randomized statistic T(X,U) is a measurable map that depends on X and also on a Uni(0,1) random variable U.

Theorem 2. (van der Vaart, 1998, Theorem 7.10) Assume that the experiment P_{θ} is q.m.d at a point θ with non-singular Fisher information I_{θ} . Let T_n be statistics in the experiments $(P_{\theta+\frac{h}{\sqrt{n}}}^n:h\in\mathbf{R})$ such that T_n converges in distribution under every h. Then there exists a randomized statistic T in the experiment $\mathcal{N}(h,I_{\theta}^{-1})$ such that $T_n \stackrel{h}{\leadsto} T$ for every h.

Proof of Theorem 2 reposes on the following lemma.

Lemma 3. (van der Vaart, 1998, Lemma 7.11, p. 99) Given a RV (S, Δ) and an independent uniform RV $U \sim Unif(0,1)$, $\exists \ a \ RV \ T = T(\Delta, U)$ such that $(T(\Delta, U), \Delta) \sim (S, \Delta)$.

Proof. Use quantile transform.

Theorem 2. Define

$$P_{n,h} = P_{\theta + \frac{h}{\sqrt{n}}}^n, \quad \Delta_n = \frac{1}{\sqrt{n}} \sum_i \dot{l}_{\theta}(X_i), J = I_{\theta}$$

By assumption, the marginals of (T_n, Δ_n) converge in distribution under h = 0. So

Prohorov \Rightarrow uniform tightness

Marginal tightness \Rightarrow joint tightness of (T_n, Δ_n)

Applying Prohorov in the converse, there exists a subsequence $\{n\}$ along which $(T_n, \Delta_n) \stackrel{h=0}{\leadsto} (S, \Delta)$ jointly. Since Δ_n converges marginally to Δ , we have $\Delta \sim \mathcal{N}(0, J^{-1})$.

The assumption that P_{θ} is QMD

$$\Rightarrow (T_n, \log \frac{dP_{n,h}}{dP_{n,0}}) \xrightarrow{0} (S, h^T \Delta - \frac{1}{2}h^T Jh), \text{ (van der Vaart, 1998, Theorem 7.2)}$$

$$\Rightarrow \log \frac{dP_{n,h}}{dP_{n,0}} \xrightarrow{0} \mathcal{N}(-\frac{1}{2}h^T Jh, h^T Jh)$$

$$\Rightarrow P_{n,h} \triangleleft P_{n,0}$$

Using Le Cam's third lemma (van der Vaart (1998, Example 6.7)), the limit law of T_n under h is L_h where

$$L_h(B) = E1_B(S)e^{h^T \Delta - \frac{1}{2}h^T Jh}$$

2 Lecture 22

Consider an observation X in the limiting experiment

$$X \sim \mathcal{N}(h, J^{-1})$$

 $JX \sim \mathcal{N}(Jh, J)$
 $= \mathcal{N}(0, J) \text{ under } h = 0$

Thus, JX is equal in law to Δ .

From Lemma 3, we can find T(JX, U) such that

$$(T(JX,U),JX) \sim (S,\Delta), \text{ under } h=0$$
 (1)

$$P_{h}(T(JX,U) \in B) = \int dx P(T(Jx,U) \in B) e^{-\frac{1}{2}(x-h)^{T}J(x-h)} \sqrt{\frac{|J|}{(2\pi)^{k}}}$$

$$= \int dx P(T(Jx,U) \in B) e^{-\frac{1}{2}h^{T}Jh+h^{T}Jx} \sqrt{\frac{|J|}{(2\pi)^{k}}} e^{-\frac{1}{2}x^{T}Jx}$$

$$= E_{0}1_{T(JX,U) \in B} e^{h^{T}JX-\frac{1}{2}h^{T}Jh}$$

The RHS is equal to $L_h(B)$ from Equation 1. It then follows that the statistic $T_n \stackrel{h}{\leadsto} T(JX, U)$ under h.

2 Application to Testing

The power function is a function of the distribution of a statistic so the theory described so far applies. In an experiment $(\mathcal{X}, \mathcal{A}, P_h : h \in H)$, a test ϕ is a map $\phi : \mathcal{X} \to [0, 1]$ *i.e.*, it is the probability of rejecting the null hypothesis based on an observation $x \in \mathcal{X}$. The power function $\pi(h) \equiv E_h \phi(X)$ is the probability of rejection under hypothesis h. The test is of level α is $\sup_{h \in H_0} \pi(h) \leq \alpha$.

Theorem 4. van der Vaart (1998, Theorem 15.1) Consider a sequence of experiments $P_{n,h}$ converging to a limit experiment P_h (For us, this just means LAN). Suppose that the sequence of power functions $\pi_n(h)$ converges to $\pi(h)$, $\forall h$. Then $\pi(h)$ is a power function in the limiting experiment i.e., $\exists \phi \ni \pi(h) = E_h \phi(X)$.

References

van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.