אלגברה ב' (104168) — אביב 2020-2021 תרגול 4 — הטלות ומרחבים עצמיים מוכללים

אלעד צורני

2021 במאי 17

1 הטלות

1.1 חזרה

 $U\oplus W=V$ עבורם $U,W\leq V$ ו־V ו־V מרחב וקטורי מעל V ו־היו עבורם עבורם עבורם $U,W\leq V$ עבורם עבורם מגדיר את ההטלה על V להיות ההעתקה

$$P_U \colon V \to V$$
$$u + w \mapsto u$$

.W- הערה 1.2. ההטלה P_U תלויה ב

 $V=\mathbb{R}^2$ ויהיו והיו $V=\mathbb{R}^2$

$$U = \operatorname{\mathsf{Span}}(e_1)$$
 $W_1 = \operatorname{\mathsf{Span}}(e_2)$ $W_2 = \operatorname{\mathsf{Span}}(e_1 + e_2)$

. בהתאמה W_1,W_2 ל ל־במקביל ל- W_1,W_2 בהתאמה ויהיו בהתאמה על U

$$P_1 (e_1 + e_2) = e_1$$

ארל

$$P_2(e_1 + e_2) = e_1 + e_2$$

 $.P=P_U$ עבורם $U,W\leq V$ הגדרה אם קיימים $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ עבורם $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ עבורם $P^2=P$ עובדה 1.5. העתקה $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ היא הטלה אם ורק אם

1.2 תרגילים

תרגיל 1. מצאו את כל הערכים העצמיים האפשריים של הטלה.

v עב וקטור עצמי של הטלה P עם וקטור עצמי λ אז אוז אוי λ

$$\lambda^2 v = P^2 v = Pv = \lambda v$$

 $\lambda \in \{0,1\}$ לכן

אפשר לקחת $P=0_V$ או $P=\mathsf{Id}_V$ אפשר לקחת אפשר אפשר אופציות אווי

 $U=\operatorname{Im} P$ אם ורק אם $W\leq V$ אם במקביל ל־ $U\leq V$ אם הטלה. הראו כי $P\in\operatorname{End}_{\mathbb{F}}(V)$ אם ורק אם $W\in\operatorname{End}_{\mathbb{F}}(V)$ וגם $W=\ker P$

פתרון. $u \in U$ לכל W. לכל U במקביל ל־U מתקיים • נניח כי

$$P\left(u\right) = P\left(u+0\right) = u$$

לכן $v=P(u+w)=u\in U$ עבורם $u\in U,w\in W$ יש $v\in \operatorname{Im} P$ אם $U\subseteq \operatorname{Im} P$ לכן .lm $U\subseteq \operatorname{Im} P$

יהי $w \in W$ יהי

$$P(w) = P(0+w) = 0$$

לכן v=u+w ונכתוב $v\in\ker P$ לכו להיפך, נניח כי $W\subseteq\ker(P)$ אז

$$0 = Pv = u$$

. $\ker P = \operatorname{Im} P$ לכן $v = w \in W$ לכן

$$\begin{split} \dim\left(\operatorname{Im}P+\ker P\right) &= \dim\left(\operatorname{Im}P\right) + \dim\left(\ker P\right) - \dim\left(\operatorname{Im}P\cap\ker P\right) \\ &= \dim\left(\operatorname{Im}P\right) + \dim\left(\ker P\right) \\ &= V \end{split}$$

לכן $u=P\left(u'
ight)$ נכתוב $u\in U,w\in W$ עבור $V=U\oplus W$ לכן

$$P(u + w) = P(u) + P(w)$$
$$= P(u)$$
$$= u$$

. ker Pלכן מון בניצב ל־ $|\operatorname{Im} P|$ בניצב ל־ $|\operatorname{Im} P|$ בניצב ל־ $|\operatorname{Im} P|$ כאשר השוויון האחרון נכון כי

 $V = \operatorname{Im} P \oplus \ker P$ בכיוון השני בפתרון הראינו שעבור הטלה P מתקיים בפתרון השני בפתרון הראינו

. לכסינה $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$ תהי $P\in \mathrm{End}_{\mathbb{F}}\left(V
ight)$

לכן המטריצה $P|_{\ker P}=0$ וכי $P|_{\ker P}=0$ וכי אפר וליהי $P|_{\ker P}=0$ לכן המטריצה אויהי והי $P|_{\ker P}=0$ וכי $P|_{\ker P}=0$ לכן המטריצה אהיא אבסיס עבור $P|_{\ker P}=0$ וכי $P|_{\ker P}=0$ וכי $P|_{\ker P}=0$ איא

$$\begin{pmatrix}
1 & 0 & & \cdots & & 0 \\
0 & \ddots & 0 & \cdots & & 0 \\
& & 1 & 0 & \cdots & 0 \\
\vdots & & & 0 & & \vdots \\
& & & & \ddots & \\
0 & & \cdots & & 0
\end{pmatrix}$$

תרגיל $\operatorname{ker} P$ הוא הוא $\operatorname{End}_{\mathbb{F}}(V)$ הטלה ותהי הראו כי $\operatorname{End}_{\mathbb{F}}(V)$ הטלה ותהי $\hat{T} \in \operatorname{End}_{\mathbb{F}}(V)$ לינארית המקיימת $\hat{T} \colon \ker P \to \ker P$

$$.\hat{T}\circ P=P\circ T$$

כלומר, כך שהדיאגרמה

$$\begin{array}{ccc} V & \xrightarrow{T} & V \\ P \downarrow & & \downarrow P \\ \operatorname{Im} P & \xrightarrow{\hat{T}} & \operatorname{Im} P \end{array}$$

מתחלפת.

 $P\left(u
ight)=P^{2}\left(u
ight)=n$ נניח כי $P\left(v
ight)=u$ ואז פתרון. $v\in V$ יש $u\in \mathrm{Im}\,P$ שמור ויהי T שמור ויהי $P\left(v
ight)=u$ נגדיר גדיר ויהי $P\left(v
ight)=u$

$$\hat{T}(u) = P \circ T(u)$$

יהי $v \in V$ יהי, צריך להראות שמתקיים

$$P \circ T(v) = \hat{T} \circ P(v)$$

געוב $\operatorname{Im} P, w \in \ker P$ כאשר v = u + w נכתוב

$$\hat{T} \circ P(v) = \hat{T}(u) = P \circ T(u)$$

וגם

$$T(w) \in \ker P$$

לכן

$$.P\circ T\left(u\right)=P\circ T\left(u\right)+P\circ T\left(w\right)=P\circ T\left(u+w\right)=P\circ T\left(v\right)$$

בסך הכל

$$\hat{T} \circ P(v) = P \circ T(u) = P \circ T(v)$$

כנדרש.

אז $w \in \ker P$ נניח כי יש העתקה \hat{T} כמתואר ויהי

$$PT(w) = \hat{T}P(w) = \hat{T}(0) = 0$$

 $T(\ker P) \subseteq \ker P$ נקבל . $T(w) \in \ker P$ ולכן

2 מרחבים עצמיים מוכללים והפולינום האופייני

2.1 תזכורת

T של המוכלל של המרחב העצמי המרחב (מרחב עצמי המוכלל). תהי ונסמן ונסמן $T\in \mathsf{End}_{\mathbb{F}}(V)$. תהי תהי מוכלל של $T\in \mathsf{End}_{\mathbb{F}}(V)$. תהי עבור ערך עצמי λ הוא

$$V_{\lambda}' \coloneqq \ker \left(\left(T - \lambda \operatorname{Id}_{V} \right)^{n} \right)$$

הריבוי האלגברי של λ הוא

$$.r_{a,T}\left(\lambda\right)\coloneqq\dim V_{\lambda}^{\prime}$$

שערכיה $T\in \mathsf{End}_{\mathbb{F}}(V)$ שערכיה הפולינום אופייני). יהי V מרחב וקטורי סוף־מימדי. הפולינום האופייני של שונים אופייני). ההוא מרחב וקטורי סוף־מימדי. הפולינום הוב (λ_i) הוא

$$p_{T}(x) := \sum_{i \in [k]} (x - \lambda_{i})^{r_{a,T}(\lambda_{i})}$$

מתקיים $T \in \mathsf{End}_{\mathbb{F}}\left(V
ight)$. לכל (קיילי־המילטון). משפט 2.3

$$p_T(T) = 0$$

2.2 תרנילים

תרגיל 5. תהי

$$.A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

A מצאו את המרחבים העצמיים ואת המרחבים העצמיים המוכללים של

. נחשב. 1 הערכים העצמיים של A הם 1 מריבוי אלגברי 2 ו־3 מריבוי אלגברי A נחשב.

$$\ker(A - I) = \ker\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

$$= \operatorname{Span} \{e_1\}$$

$$\ker(A - I)^2 = \ker\begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 4 \\ 0 & 0 & 4 \end{pmatrix}$$

$$= \operatorname{Span} \{e_1, e_2\}$$

$$\ker(A - 3I) = \ker\begin{pmatrix} -2 & 1 & 0 \\ 0 & -2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \ker\begin{pmatrix} 2 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \ker\begin{pmatrix} 2 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

$$= \operatorname{Span} \left\{\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}\right\}$$

בסך הכל

$$V_1 = \operatorname{Span}\left\{e_1\right\}$$

$$V_1' = \operatorname{Span}\left\{e_1, e_2\right\}$$

$$.V_3 = V_3' = \operatorname{Span}\left\{\begin{pmatrix}1\\2\\2\end{pmatrix}\right\}$$

 (v_1,\ldots,v_s) בסיס של V_λ' כאשר (v_1,\ldots,v_r) ויהי λ ערך עצמי של λ . יהי $T\in \operatorname{End}_{\mathbb C}(V)$ כאשר $T\in \operatorname{End}_{\mathbb C}(V)$ בסיס של $\hat V_\lambda:=\operatorname{Span}\{v_{s+1},v_{s+2},\ldots,v_r\}$ של λ . הראו כי

פתרון. אם \hat{V}_λ מרחב T־שמור, לההעתקה Tיש ערך עצמי μ . אבל, אז μ ערך עצמי של T. אם T- נקבל \hat{V}_λ אם \hat{V}_λ אם \hat{V}_λ בסתירה להגדרת בסתירה. אחרת, יש ל־ $\hat{V}_{\hat{V}_\lambda}$ וקטור עצמי עם ערך עצמי λ , כלומר $\hat{V}_\lambda \cap \hat{V}_\lambda \neq \{0\}$ בסתירה להגדרת $\hat{V}_\lambda \cap \hat{V}_\lambda \neq \{0\}$.

. תרגיל $P_1,P_2\colon V o V$ ויהיו $1_\mathbb{F}+1_\mathbb{F}
eq 0$ שמתקיים כך שמתקיים מעל שדה $P_1,P_2\colon V o V$ ויהיו

- $(\operatorname{Id}_V + P_1)^{-1}$ את הפיכה ומצאו אם $\operatorname{Id}_V + P_1$.1
 - $P_1 P_2 = 0$ כי מניח כי $P_1 + P_2$ הטלה. הוכיחו כי
- $.1_{\mathbb{F}}+1_{\mathbb{F}}=0$ מצאו דוגמאות נגדיות לשני הסעיפים במקרה 3.
- פתרון. 1 בלכד. בפרט $I+P_1$ הם $I+P_1$ הם $I+P_1$ בלבד. בפרט $I+P_1$ פתרון. 1 בלכסינה עם ערכים עצמיים לכסינה עם איברי אלכסונית $I+P_1$ אלכסונית עם איברי אלכסונית $I+P_1$ אלכסונית עם איברי אלכסונית $I+P_1$ אלכסונית עם איברי אלכסונית $I+P_1$ אז בקבוצה $I+P_1$ אז

$$[T + Id_V]_B = [T]_B + [Id_V]_B = D + I$$

 $.(\mathsf{Id}_V+P)^{-1}=\mathsf{Id}_V$ עם איברי אלכסון בקבוצה $P=\mathsf{Id}_V$. אם זאת מטריצת היחידה, D=0 ואז D=0 ונקבל $P=\mathsf{Id}_V$. אם זאת מטריצת היחידה, $P=\mathsf{Id}_V$ אם $P=\mathsf{Id}_V$ אם $P=\mathsf{Id}_V$ אם אם $P=\mathsf{Id}_V$ נקבל $P=\mathsf{Id}_V$.

$$D = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

ונקבל

$$\left(I - \frac{1}{2}D\right)(I + D) = I$$

לכן

$$.\left(\operatorname{Id}_V-\frac{1}{2}P\right)\left(\operatorname{Id}_V+P\right)=\operatorname{Id}_V$$

נציג דרך נוספת. מתקיים $P^2 = P$ לכן אז $P^2 - P = 0$ אז

$$(P + Id_V - Id_V)^2 - (P + Id_V - Id_V) = 0$$

. נפתח את הביטוי, נכפול ב־ $(P + \mathsf{Id}_V)^{-1}$ ונקבל את התוצאה

2. מתקיים

$$P_1 + P_2 = (P_1 + P_2)^2 = P_1^2 + P_1P_2 + P_2P_1 + P_2^2 = P_1 + P_1P_2 + P_2P_1 + P_2$$

לכן

$$.P_1P_2 = -P_2P_1$$

נניח בשלילה ש־ $P_2\left(v
ight)
otin V$ אז יש $v\in V$ אז יש $P_1P_2
otin P_2$ אז $u\coloneqq P_2\left(v
ight)$ נניח בשלילה ש־

$$-P_{2}P_{1}\left(v\right)=P_{1}P_{2}\left(u\right)=-P_{2}P_{1}\left(u\right)=-P_{2}P_{1}P_{2}\left(v\right)=P_{2}^{2}P_{1}\left(v\right)=P_{2}P_{1}\left(v\right)$$

לכן $P_{2}P_{1}\left(v\right)=0$ אז

$$P_1(u) = P_1 P_2(v) = -P_2 P_1(v) = 0$$

.כלומר $u \in \ker(P_1)$ בסתירה עלומר

 $\mathsf{Id}_V+P_1=2\,\mathsf{Id}_V=0$ כמו כן $P_1P_2=\mathsf{Id}_V
eq 0$. מולה אבל $P_1+P_2=0$ אינה הפיכה . $P_1=P_2=\mathsf{Id}_V$ אינה הפיכה

 $p_i\coloneqq p_{T|_{V_i}}$ יהי $i\in[m]$ לכל V. לכל שמורים של T שמורים ויהיו $T\in\operatorname{End}_{\mathbb{C}}(V)$ יהי ויהיו $T\in\operatorname{End}_{\mathbb{C}}(V)$ הוכיחו כי

$$p_T = \prod_{i \in [m]} p_i$$

פתרון. ראינו בהרצאה כי כל אנדומורפיזם של מרחב וקטורי יש בסיס לפיו הוא מיוצג כמטריצה משולשת עליונה. $B=B_1*\ldots*B_m$ לכן יש בסיסים $B_1*\ldots*B_m$ עבור $B_1*\ldots*B_m$ כך ש־ B_1 משולשות עליונות. יהי $B_1*\ldots*B_m$ עבור של $B_1*\ldots*B_m$ הוא מספר הפעמים שהוא מופיע על האלכסון, לכן נקבל $B_1*\ldots*B_m$ משולשת עליונה. הריבוי האלגברי של A הוא מספר הפעמים שהוא מופיע על האלכסון, לכן נקבל

$$r_{a,T}\left(\lambda\right) = \sum_{i \in [m]} r_{a,T|_{V_i}}\left(\lambda\right)$$

ולכן החזקות בי p_i . אלגברית, היא מכפלת החזקות בי $x-\lambda$ אלגברית,

$$\begin{split} r_{a,T}\left(\lambda\right) &= \dim \ker \left(T - \lambda \operatorname{Id}_{V}\right) \\ &= \dim \ker \left(\bigoplus_{i \in [m]} \left. T - \lambda \operatorname{Id}_{V} \right|_{V_{i}}\right) \\ &= \dim \bigoplus_{i \in [m]} \ker \left(T - \lambda \operatorname{Id}_{V} \right|_{V_{i}}\right) \\ &= \sum_{i \in [m]} r_{a,T|_{V_{i}}}\left(\lambda\right) \end{split}$$