

CSC380: Principles of Data Science

Probability 3
Xinchen Yu

Review: "probability cheatsheet"

Additivity:

For any finite or countably infinite sequence of disjoint events $E_1, E_2, E_3, ..., P(\bigcup_{i>1} E_i) = \sum_{i>1} P(E_i)$

Inclusion-exclusion rule:
$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

 $P(A) = \sum_{i} P(A \cap B_i)$

Law of total probability: For events
$$B_1, B_2, ...$$
 that partitions Ω ,

 $P(A|B) \coloneqq \frac{P(A \cap B)}{P(B)}$ **Conditional probability:**

 $(P(A|B) \neq P(B|A)$ in general)

Probability chain rule: $P(A \cap B \cap C) = P(A|B \cap C)P(B|C)P(C)$

<u>Law of total probability + Conditional probability:</u> $P(A) = \sum P(A \cap B_i) = \sum P(B_i)P(A|B_i) = \sum P(A)P(B_i|A)$ $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$ Bayes' rule:

$$\frac{|A)P(A)}{P(B)}$$

Independence: (definition) A and B are independent if P(A,B) = P(A)P(B)(property) A and B are independent if and only if P(A|B) = P(A) (or P(B|A) = P(B))

Outline

- Random variables
- Distribution functions
 - probability mass functions (PMF)
 - cumulative distribution function (CDF)
- Summarizing distributions: mean and variance
- Example discrete random variables
- Continuous random variables
 - Probability density functions (PDF)
 - Examples

Random Variables

Random variables (RVs)

- A single random sample may have more than one characteristic that we can observe (i.e., it may be bi-/multivariate data).
- We can represent each characteristic (e.g., gender, weight, cancer status, etc.) using a separate random variable.

Random Variable

A **random variable** connects each possible outcome in the sample space to some property of interest.

Each value of the random variable (e.g., male or female) has an associated probability.

Random Variable: Example

X: people -> their genders

Random Variable: Example

Y: people -> their class year

Random Variable: Example

X: sequence of coin flips -> Number of heads

Types of Random Variables

- Discrete random variable: takes a finite or countable number of distinct values.
- Continuous random variable: takes an infinite number of values within a specified range or interval.

Distribution functions

- When a random variable is discrete, its distribution is characterized by the probabilities assigned to each distinct value.
- The probability that the random variable takes a particular value comes from the probability associated with the set of individual outcomes that have that value.
 - This set is an event
- E.g. P(X = Female)

• How to find P(X = Female)?

• How to find P(X = Female)?

What is the distribution of random variable X?

\boldsymbol{x}	Male	Female
P(X = x)	1/4	3/4

What is the distribution of random variable X?

$$\begin{array}{c|c|c} x & 0 & 1 & 2 \\ \hline P(X=x) & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{array}$$

Properties of Discrete Distributions

• We can write P(X = x) to mean "The probability that the random variable X takes the value x".

What must be true of these probabilities?

Properties of Discrete Distributions

- 1. Each P(X = x) is a probability, so must be between 0 and 1.
- 2. The P(X = x) must sum to 1 over all possible x values.

Probability Mass function (PMF)

The Probability Mass Function

A discrete random variable, X, can be characterized by its **probability mass function**, f (might sometimes write f_X if it's not clear from context which random variable we're talking about).

The PMF takes in values of the variable, and returns probabilities:

$$f(x)$$
 is defined to be $P(X = x)$

PMF is a table

Think of the PMF as a lookup table.

x	Male	Female
P(X=x)	1/4	3/4

 Best way to think of discrete random variables: they take various values, and each value has a certain probability of happening.

Visualizing discrete distributions: spike plot

Flip two coins at the same time, probability distribution of number of heads:

- Often use the spike plot
- Like a bar plot, but with probabilities, instead of frequencies or proportions, on the y-axis.

The cumulative distribution function (CDF)

- Often we are interested in the probability of falling in some range of values.
- We can use the cumulative distribution function (CDF), which gives the "accumulated probability" up to a particular value.

The Cumulative Distribution Function

A random variable, X, can be characterized by its **cumulative distribution function**, F (or sometimes F_X if we need to be explicit), which takes values and returns *cumulative* probabilities:

F(x) is defined to be $P(X \le x)$

Relating PMF to CDF

- How can we calculate F(x) from the PMF table f?
 - Add up all the probabilities up to and including f(x).
 - What is the value of F(-0.1) (i.e., $P(X \le -0.1)$)? F(1)?

 For discrete random variables, F(x) jumps at locations with nonzero probability mass

Relating PMF to CDF

• So the PMF of *X* is:

$$f(x) = \begin{cases} 1/8, & x = 0 \\ 3/8, & x = 1 \\ 3/8, & x = 2 \\ 1/8, & x = 3 \end{cases}$$

We can write the CDF of X:

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{8}, & 0 \le x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{7}{8}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

In-class activity

• Given by the PMF of X, find the CDF of X.

$$f(x) = \begin{cases} 1/2, & x = 1 \\ 1/4, & x = 2 \\ 1/4, & x = 3 \end{cases}$$

Answer:

$$F(x) = \begin{cases} 0, & x < 1 \\ \frac{1}{2}, & 1 \le x < 2 \\ \frac{3}{4}, & 2 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$
 0.25

Relating CDF to PMF

How could we find f(x) from a cumulative distribution function F? e.g., f(2)?

- Focus on "jumps": f(x) = F(x) F(jump just below x)
 - $f(2) = F(2) F(1) = \frac{7}{8} \frac{4}{8} = \frac{3}{8}$ $f(2.1) = F(2.1) F(2) = \frac{7}{8} \frac{7}{8} = 0$ $f(1.5) = F(1.5) F(1) = \frac{4}{8} \frac{4}{8} = 0$

Exercise: using CDF and PMF

Given the CDF F:

- How to calculate P(X > x)?
 - $P(X > x) = 1 P(X \le x) = 1 F(x)$
- How about P(X ≥ x)?
 - $P(X \ge x) = 1 P(X < x) = 1 (P(X \le x) P(X = x))$
 - 1 F(x) + f(x)
 - f(x) can be 0 or nonzero, depending on whether x is a jump

Exercise: using CDF and PMF

- What is $P(X \ge 2)$?
 - $P(X \ge x) = 1 F(x) + f(x)$
 - f(x) can be 0 or nonzero, depending on whether x is a jump

Using the formula:

•
$$P(X \ge 2) = 1 - F(2) + f(2) = 1 - \frac{7}{8} + \frac{3}{8} = \frac{1}{2}$$

Another way:

•
$$P(X \ge 2) = P(X = 2) + P(X = 3) = \frac{3}{8} + \frac{1}{8} = \frac{1}{2}$$

Exercise: using CDF and PMF

Given the CDF F:

How to calculate P(a < X ≤ b)?

$$= P(X \le b) - P(X \le a)$$

$$= F(b) - F(a)$$

- How to calculate P(a < X < b)?
 - (I'll leave this to you as an exercise..)

Transformations of random variables

• If X is a random variable, then $X + 5, 3X, X^2, ...,$ are all random variables

• Given any transformation function f, f(X) is a random variable

- How to find the PMF of f(X) based on that of X?
 - First, find all values f(X) can take
 - For each value c, try to find P(f(X) = c)

Examples

Suppose X has PMF

x	1	-1
P(X=x)	0.5	0.5

- What is the PMF of Y = X + 5?
 - Y can take values 6 and 4
 - P(Y = 6) = P(X = 1) = 0.5
 - P(Y = 4) = P(X = -1) = 0.5

у	6	4
P(Y=y)	0.5	0.5

Examples (cont'd)

Suppose X has PMF

x	1	-1
P(X=x)	0.5	0.5

• What is the PMF of Z = 3X?

Z	3	-3
P(Z=z)	0.5	0.5

• What is the PMF of $W = X^2$?

W	1
P(W=w)	1

Note:
$$\{W = 1\} = \{X = +1 \text{ or } X = -1\}$$