Homework 6

Computer Science Theory for the Information Age

致远 12 级 ACM 班

刘爽

5112409048

June 17, 2013

1. Modify the proof that every monotone peroperty has a threshold for G(n,p) to apply to the 3-CNF satisfiability problem

Solution:

Let's call the 3-CNF model B(n, m).

We define an increasing property of B(n, m) as follows:

Q is an increasing property of B if when a 3-CNF B has the property any 3-CNF obtained by adding clauses to B must also have the property.

First we will proof the following lemma:

If Q is an increasing property and $0 \le m_1 \le m_2 \le 1$, then the probability that B(n, m1) has property Q is less than or equal to the probability that B(n, m2) has property Q.

Notice we could generate $B(n, m_2)$ in this way: First we generate $B(n, m_1)$, then we generate a set $B(n, m_2 - m_1)$ and take the intersection of them to get $B(n, m_2)$. If $B(n, m_1)$ has the property Q, $B(n, m_2)$ must has it too.

Next we will prove

Every increasing property of B(n,m) has a threshold at m(n), where for each n, m(n) is the minimum real number a for which the probability that B(n,a) has the property Q is $\frac{1}{2}$.

Suppose $m_0(n)$ is any function such that

$$\lim_{n \to \infty} \frac{m_0(n)}{m(n)} = 0$$

We will show that almost surely $B(n, m_0)$ does not have property Q. Suppose this is false. Then, the probability that $B(n, m_0)$ has the property Q does not converge to zero. By the definition of limit, there must be a positive real number ϵ for which the probability that $B(n, m_0)$ has property Q is at least ϵ on an infinite set I of n.

Here we define the m-fold replication of B be the intersection of m copies of B(n, m). Let $k = \lceil (1/\epsilon) \rceil$. Let 3-CNF H be the m-fold replication of $B(n, m_0)$. Since from the m-fold method we have

$$Prob(B(n,km) \text{ does not have Q}) \leq (Prob(B(n,m) \text{ does not have Q}))^k$$

Then the probability that H does not have Q is at most $(1-\epsilon)^m \leq e^{-1} \leq 1/2$ for all $n \in I$. So for these n, since m(n) is the minimum real number a for which the probability that B(n,a) has property Q is 1/2, $km_0 \geq m(n)$. This implies that $\frac{m_0(n)}{m(n)}$ is at leat 1/k infinitely often contradicting the hypothesis that $\lim_{n \to \infty} \frac{m_0(n)}{m(n)} = 0$. A symmetric argument shows that for any $m_1(n)$ such that $\frac{m(n)}{m_1(n)} \to 0$, $B(n,m_1)$ almost surely has property Q.

2. Verify that the sum of r rank-one matrices $\sum_{i=1}^{r} \sigma_i u_i v_i^T$ can be written as UDV^T , where the u_i are the columns of U and v_i are the columns of V. To do this, first verify that for any two matrices P and Q, we have

$$PQ^T = \sum_{i} p_i q_i^T$$

where p_i is the i^{th} column of P and q_i is the i^{th} column of Q.

Proof:

First we will prove

$$PQ^T = \sum_{i} p_i q_i^T$$

Let $A = PQ^T$

Then

$$a_{ij} = \sum_{k=1}^{\tau} p_{ik} q_{jk}$$

Let
$$B = \sum_{i} p_i q_i^T$$

Then

$$b_{ij} = \sum_{k=1}^{r} \{p_k q_k^T\}_{ij}$$
$$= \sum_{k=1}^{r} p_{ik} q_{jk}$$
$$= a_{ij}$$

Do some tiny modification, we can complete our proof.

Let
$$A = UDV^T$$

Then

$$a_{ij} = \sum_{k=1}^{r} u_{ik} d_{kk} v_{jk}$$

Let
$$B = \sum_{i} \sigma_{i} u_{i} v_{i}^{T}$$

Then

$$b_{ij} = \sum_{k=1}^{r} {\{\sigma_k u_k v_k^T\}_{ij}}$$
$$= \sum_{k=1}^{r} u_{ik} d_{kk} v_{jk}$$
$$= a_{ij}$$

Thus
$$UDV^T = \sum_{i=1}^r \sigma_i u_i v_i^T$$