

IEL – protokol k projektu

Jan Schoř xschorj00

14. prosince 2024

Obsah

1	Příklad 1	2
2	Příklad 2	4
3	Příklad 3	6
4	Příklad 4	8
5	Příklad 5	10
6	Shrnutí výsledků	12

Stanovte napětí U_{R3} a proud I_{R3} . Použijte metodu postupného zjednodušování obvodu.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
F	125	65	510	500	550	250	300	800	330	250

Rezistory R_2 , R_3 a R_4 tvoří trojúhelník. Použijeme převod a nahradíme je rezistory R_A , R_B a R_C .

Nahradíme tedy rezistory v obvodu za R_A , R_B a R_C . Při této příležitosti také zjednodušíme některé části obvodu. Zdroje U_1 a U_2 nahradíme jedním zdrojem U_{12} . Rezistory R_5 a R_6 nahradíme jedním rezistorem R_{56} .

$$U_{12} = U_1 + U_2$$

$$R_{56} = \frac{R_5 \cdot R_6}{R_5 + R_6}$$

$$R_a = \frac{R_2 R_3}{R_2 + R_3 + R_4} \quad R_b = \frac{R_2 R_4}{R_2 + R_3 + R_4} \quad R_c = \frac{R_3 R_4}{R_2 + R_3 + R_4}$$

Opět zjednodušíme obvod a překreslíme všechny sériově zapojené rezistory do jednoho.

$$R_{1A} = R_1 + R_A$$

 $R_{B56} = R_B + R_{56}$
 $R_{C7} = R_C + R_7$

Zjednodušíme paralelně zapojené rezistory do jednoho.

$$R_{B56C7} = \frac{R_{B56} \cdot R_{C7}}{R_{B56} + R_{C7}}$$

Nyní jsme schopni vypočítat celkový odpor R_{ekv} . Následně vypočítáme celkový proud, který protéká obvodem.

$$R_{ekv} = R_{1A} + R_{B56C7} + R_7$$

$$I = \frac{U_{12}}{R_{ekv}}$$

Spočítáme napětí na rezistoru R_{B56C7} a pomocí toho získáme proud protékající rezistorem R_{C7} .

$$\begin{array}{l} U_{RB56C7} = R_{B56C7} \cdot I \\ I_{RC7} = \frac{U_{RB56C7}}{R_{C7}} \end{array}$$

Cílem úlohy je získat hodnotu na rezistoru R_3 . Pro její výpočet využijeme II. K. Z. Potřebujeme tedy zjistit napětí na všech rezistorech ve smyčce obsahující rezistor R_3 .

$$U_{R1} = I \cdot R_1$$

$$U_{R7} = I_{RC7} \cdot R_7$$

$$U_{R8} = I \cdot R_8$$

Známe vše potřebné pro dopočítání napětí na R_3 . Po vypočítání napětí dokážeme spočítat i proud protékající tímto rezistorem.

$$U_{R3} = U_{12} - U_{R1} - U_{R7} - U_{R8}$$
$$I_{R3} = \frac{U_{R3}}{R_3}$$

Po dosazení hodnot získáme výsledky:

$$U_{R3} = 42.1208 \,\mathrm{V}$$

 $I_{R3} = 76.5833 \,\mathrm{mA}$

Stanovte napětí U_{R4} a proud I_{R4} . Použijte metodu Théveninovy věty.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
F	130	180	350	600	195	650	80
	R ₁	R_2			R ₅		

Zjednodušíme rezistory R_1 a R_2 do jednoho rezistoru R_{12} .

$$R_{12} = R_1 + R_2$$

To stejné uděláme pro rezistory R_3 a R_4 .

$$R_{34} = \frac{R_3 \cdot R_4}{R_3 + R_4}$$

Zjednodušený obvod potom bude vypadat takhle:

Na zjednodušeném obvodu již není samotný rezistor R_4 , u kterého potřebujeme zjistit napětí a proud. Místo toho zjistíme tyto hodnoty na rezistoru R_{34} a z nich poté odvodíme požadované výsledky pro R_4 .

Jako další krok odpojíme zátěž a zkratujeme zdroje napětí, abychom mohli vypočítat vnitřní odpor skutečného zdroje napětí. Určíme si takto 2 body A a B, mezi kterými byl rezistor R_{34} .

Vnitřní odpor R_i je tedy roven celkovému odporu rezistorů R_{12} a R_5 . Použijeme tedy vzoreček pro paralelní zapojení rezistorů.

$$R_i = \frac{R_{12} \cdot R_5}{R_{12} + R_5}$$

Nyní si vytvoříme obvod bez rezistoru R_{34} a pomocí II. K. Z. vypočítáme celkový proud protékající tímto obvodem. Pojmenuji si ho jako proud I_x

$$0 = I_x \cdot R_{12} + I_x \cdot R_5 + U_2 - U_1$$

$$0 = I_x(R_5 + R_{12}) + U_2 - U_1$$

$$I_x = \frac{U_1 - U_2}{R_5 + R_{12}}$$

Nyní si podle II. K. Z. vypočítáme napětí ve smyčce a získáme tak napětí U_i mezi body A a B.

$$0 = U_i - U_1 - I_x \cdot R_{12}$$
$$U_i = U_1 + R_{12} \cdot I_x$$

Obvod si nyní dokážeme překreslit na jeho variantu se skutečným zdrojem a zátěží.

Z tohoto obvodu nyní dokážeme dopočítat proud a napětí na rezistoru R_{34} .

$$I_{R34} = \frac{U_i}{R_i + R_{34}}$$

$$U_{R34} = R_{34} \cdot I_{R34}$$

Nyní se vrátíme k obvodu před zjednodušením. Jelikož jsou rezistory R_3 a R_4 zapojeny paralelně, napětí na nich bude stejné jako na rezistoru R_{34} . Jediné, co je tedy třeba dopočítat, je proud na R_4 , který vypočítáme pomocí vzorečku.

$$U_{R4} = U_{R34} I_{R4} = \frac{U_{R34}}{R_4}$$

Po dosazení hodnot vypočítáme konkrétní hodnoty U_{R4} I_{R4} .

$$U_{R4} = 118.0477 \,\mathrm{V}$$

 $I_{R4} = 181.6119 \,\mathrm{mA}$

Stanovte napětí U_{R2} a proud I_{R2} . Použijte metodu uzlových napětí $(U_A,\,U_B,\,U_C)$.

sk.	U_1 [V]	U_2 [V]	I[A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
Α	120	50	0.7	53	49	65	39	32	48

Tvorba rovnice pro každý uzel (A, B, C) podle I. K. Z.:

$$\begin{split} A: \quad & \frac{U_1-U_A}{R_1} - \frac{U_A+U_2-U_B}{R_3} + \frac{U_B-U_A}{R_4} - \frac{U_A}{R_2} = 0 \\ B: \quad & \frac{U_A+U_2-U_B}{R_3} + I - \frac{U_B-U_C}{R_6} - \frac{U_B-U_A}{R_4} = 0 \\ C: \quad & \frac{U_B-U_C}{R_6} - I - \frac{U_C}{R_5} = 0 \end{split}$$

Úprava rovnic pro dosazení do matice:

$$A: -\left(\frac{1}{R_1} + \frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_2}\right)U_A + \left(\frac{1}{R_3} + \frac{1}{R_4}\right)U_B + 0U_C = \frac{U_2}{R_3} - \frac{U_1}{R_1}$$

$$B: \left(\frac{1}{R_3} + \frac{1}{R_4}\right)U_A - \left(\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_6}\right)U_B + \frac{1}{R_6}U_C = -I - \frac{U_2}{R_3}$$

$$C: 0U_A + \frac{1}{R_6}U_B - \left(\frac{1}{R_5} + \frac{1}{R_6}\right)U_C = I$$

Maticový tvar rovnic:

$$\begin{bmatrix} -\left(\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{2}}\right) & \frac{1}{R_{3}} + \frac{1}{R_{4}} & 0\\ \frac{1}{R_{3}} + \frac{1}{R_{4}} & -\left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{6}}\right) & \frac{1}{R_{6}}\\ 0 & \frac{1}{R_{6}} & -\left(\frac{1}{R_{5}} + \frac{1}{R_{6}}\right) \end{bmatrix} \begin{bmatrix} U_{A} \\ U_{B} \\ U_{C} \end{bmatrix} = \begin{bmatrix} \frac{U_{2}}{R_{3}} - \frac{U_{1}}{R_{1}} \\ -I - \frac{U_{2}}{R_{3}} \\ I \end{bmatrix}$$

Po dosazení hodnot získáme výsledek U_A, U_B, U_C :

$$\begin{split} U_A &= 49.2546 \, \mathrm{V} \\ U_B &= 59.9700 \, \mathrm{V} \\ U_C &= 10.5480 \, \mathrm{V} \end{split}$$

Napětí mezi uzlem U_A a stanoveným referenčním uzlem je rovno napětí na rezistoru R_2 .

Pomocí Ohmova zákona dokážeme vypočítat proud \mathcal{I}_{R2} :

$$\begin{split} I_{R2} &= \frac{U_A}{R_2} \\ I_{R2} &= 1.0052 \, \mathrm{A} \\ U_{R2} &= U_A = 49.2546 \, \mathrm{V} \end{split}$$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$.

Ve vztahu pro napětí $u_{L_1} = U_{L_1} \cdot \sin(2\pi f t + \varphi_{L_1})$ určete $|U_{L_1}|$ a φ_{L_1} . Použijte metodu smyčkových proudů.

Pozn: Pomocné směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t = \frac{\pi}{2\omega})$.

			1 0			•	·	,	ω
sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [\mathrm{mH}]$	C_1 [μ F]	C_2 [μ F]	f [Hz]
F	2	3	12	10	170	80	150	90	65

Vytvořím si proudové smyčky a vytvořím si soustavu tří lineárních rovnic.

$$i_A: Z_{C1} \cdot I_A + R_1 \cdot I_A + U_1 + Z_{L2} \cdot (I_A - I_C) - U_2 = 0$$

$$i_B: Z_{L1} \cdot I_B + Z_{C2} \cdot (I_B - I_C) - U_1 = 0$$

$$i_C: R_2 \cdot I_C + Z_{L2} \cdot (I_C - I_A) + Z_{C2} \cdot (I_C - I_B) = 0$$

$$i_A: Z_{C1} \cdot I_A + R_1 \cdot I_A + Z_{L2} \cdot I_A + 0 \cdot I_B - Z_{L2} \cdot I_C = U_2 - U_1$$

$$i_B: 0 \cdot I_A + Z_{L1} \cdot I_B + Z_{C2} \cdot I_B - Z_{C2} \cdot I_C = U_1$$

$$i_C: -Z_{L2} \cdot I_A - Z_{C2} \cdot I_B + R_2 \cdot I_C + Z_{L2} \cdot I_C + Z_{C2} \cdot I_C = 0$$

$$i_A: (Z_{C1}+R_1+Z_{L2})I_A+0I_B-Z_{L2}\cdot I_C=U_2-U_1$$

$$i_B: 0I_A + (Z_{L1} + Z_{C2})I_B - Z_{C2} \cdot I_C = U_1$$

$$i_C: -Z_{L2} \cdot I_A - Z_{C2} \cdot I_B + (R_2 + Z_{L2} + Z_{C2}) \cdot I_C = 0$$

Nyní převedeme rovnice do matice a získáme tak hodnoty I_A , I_B a I_C :

$$\begin{bmatrix} Z_{C1} + R_1 + Z_{L2} & 0 & -Z_{L2} \\ 0 & Z_{L1} + Z_{C2} & -Z_{C2} \\ -Z_{L2} & -Z_{C2} & R_2 + Z_{L2} + Z_{C2} \end{bmatrix} \begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} U_2 - U_1 \\ U_1 \\ 0 \end{bmatrix}$$

Proud I_B je roven proudu na cívce L_1 . Vypočítáme si tedy velikost tohoto proudu a z něj dopočítáme napětí.

$$I_{L1} = I_B$$

 $U_{L1} = I_{L1} \cdot Z_{L1}$
 $|U_{L1}| = 1.3508 \text{ V}$

Dopočítáme fázový posuv pro $\varphi_{L1}.$ Za A a B si dosadíme reálnou a imaginární část proudu protékajícího $L_1.$

$$\varphi_{L1} = \arctan(\frac{A}{B})$$

$$\varphi_{L1} = -1.4730 rad$$

U

V obvodu na obrázku níže v čase t=0 [s] sepne spínač S. Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $i_L=f(t)$. Proveďte kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

	sk.	U[V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]
	F	25	10	50	8
	F	₹			
	\sqcap		٦i.		
= 0 s	_\		$\mathbf{I}_{\cdot \Gamma}$		
\leq	_		5		
	P) -		
			\supset		
+	\triangle		ŀ		
Ų-\	$\overline{\downarrow}$				
	1		1		

Hodnoty v obvodu dokážeme popsat třemi rovnicemi:

$$\begin{array}{l} i = \frac{U_R}{R} \implies u_R = R \cdot i \\ U = u_R + u_L \\ i' = \frac{u_L}{L}; \quad i(0) = i_{LP} \end{array}$$

Dosadíme vyjádřené u_R z první rovnice do druhé.

$$U = R \cdot i + u_L \implies u_L = U - R \cdot i$$

Hodnotu u_L následně můžeme dosadt do 3. rovnice:

$$i' = \frac{U - i \cdot R}{L}$$

$$L \cdot i' = U - i \cdot R$$

$$U = L \cdot i' + R \cdot i; \quad i(0) = i_{LP}$$

Nyní máme vytvořenou diferenciální rovnici. Sestavíme si charakteristickou rovnici.

$$i' = \lambda; \quad i = 1$$

Dosadíme zaměněné hodnoty pro i' a i do diferenciální rovnice a vyjádříme si λ .

$$L \cdot \lambda + R = 0 \implies \lambda = -\frac{R}{L}$$

Vypíšeme si očekávané řešení a dosadíme za λ hodnoty, které jsme si vyjádřili.

$$i(t) = k(t) \cdot e^{\lambda \cdot t}$$

$$i(t) = k(t) \cdot e^{-\frac{R}{L} \cdot t}$$

Nyní si rovnici zderivujeme a dosadíme ji do diferenciální rovnice. Takhle vytvořenou rovnici potom integrujeme.

$$i'(t) = k'(t) \cdot e^{\lambda \cdot t}$$

$$k'(t) = \frac{U}{L} \cdot e^{\frac{R}{L} \cdot t}$$

$$k(t) = \frac{\frac{U}{L}}{\frac{R}{L}} \cdot e^{\frac{R}{L} \cdot t} + k$$

$$k(t) = \frac{U}{R} \cdot e^{\frac{R}{L} \cdot t} + k$$

Dosadíme k(t) do očekávaného řešení.

$$i_{L} = \left(\frac{U}{R} \cdot e^{\frac{R}{L} \cdot t} + k\right) \cdot e^{-\frac{R}{L} \cdot t}$$

$$i_{L} = \frac{U}{R} \cdot e^{\frac{R}{L} \cdot t} \cdot e^{-\frac{R}{L} \cdot t} + k \cdot e^{-\frac{R}{L} \cdot t}$$

$$i_{L} = \frac{U}{R} + k \cdot e^{-\frac{R}{L} \cdot t}$$

Dosadíme hodnoty pro t=0 a dopočítáme derivační konstantu:

$$8 = \frac{25}{50} + k \cdot e^{-\frac{50}{10} \cdot 0}$$

$$k = 7.5$$

Jakmile známe derivační konstantu, jsme schopni vytvořit funkci pro výpočet i_L v závislosti na čase t. Dosadíme tedy zadané hodnoty.

$$i_L = \frac{1}{2} + 7.5 \cdot e^{-5t}$$

Díky Ohmově zákonu víme, že by se měl proud v obvodu přibližovat k 500 mA. Pojďme si tedy dosadit hodnoty pro t=0; t=0.2; t=0.5; t=1 a t=100:

$$\begin{split} i_L(0) &= \tfrac{1}{2} + 7.5 \cdot e^{-5 \cdot 0} = 8 \, \mathrm{A} \\ i_L(0.2) &= \tfrac{1}{2} + 7.5 \cdot e^{-5 \cdot 0.2} = 3.2591 \, \mathrm{A} \\ i_L(0.5) &= \tfrac{1}{2} + 7.5 \cdot e^{-5 \cdot 0.5} = 1.1156 \, \mathrm{A} \\ i_L(1) &= \tfrac{1}{2} + 7.5 \cdot e^{-5 \cdot 1} = 0.5505 \, \mathrm{A} \\ i_L(100) &= \tfrac{1}{2} + 7.5 \cdot e^{-5 \cdot 100} = 0.5 \, \mathrm{A} \end{split}$$

Tímto jsme si ověřili, že vzoreček pro funkci funguje.

Shrnutí výsledků

Příklad	Skupina	Výs	ledky
1	F	$U_{R3} = 42.1208 \mathrm{V}$	$I_{R3} = 76.5833 \mathrm{mA}$
2	F	$U_{R4} = 42.1208 \mathrm{V}$	$I_{R4} = 118.0477 \mathrm{mA}$
3	A	$U_{R2} = 49.2546 \mathrm{V}$	$I_{R2} = 1.0052 \mathrm{A}$
4	F	$ U_{L_1} = 1.3508 \mathrm{V}$	$\varphi_{L_1} = -1.4730 rad$
5	F	$i_L = \frac{1}{2} + \frac{1}{2}$	$-7.5 \cdot e^{-5t}$