Kalman Filter

Juan F. Rubio-Ramírez

Emory University

State Space Form

• Transition equation:

$$x_{t+1} = Fx_t + G\omega_{t+1}, \ \omega_{t+1} \sim N(0, Q)$$

• Measurement equation

$$z_t = H'x_t + v_t, \ v_t \sim N(0, R)$$

- Where x_t are the states and z_t are the observables
- Assume we want to write the likelihood function of $z^T = \{z_t\}_{t=1}^T$.
- A necessary and sufficient condition for the system to be stable is that:

$$\left|\lambda_{i}\left(F\right)\right|<1$$

for all i, where $\lambda_i(F)$ stands for eigenvalue of F.

The State Space Representation is Not Unique

- Let the following system
 - Transition equation

$$\mathbf{x}_{t+1} = F\mathbf{x}_t + G\omega_{t+1}, \ \omega_{t+1} \sim N(0, Q)$$

Measurement equation

$$z_t = H'x_t + v_t, \ v_t \sim N(0, R)$$

- Let B be a non-singular squared matrix conforming with F. Then, if $x_t^* = Bx_t$, $F^* = BFB^{-1}$, $G^* = BG$, and $H^* = (H'B)'$, we can write:
 - Transition equation

$$x_{t+1}^{*} = F^{*}x_{t}^{*} + G^{*}\omega_{t+1}, \ \omega_{t+1} \sim N(0, Q)$$

Measurement equation

$$z_t = H^{*\prime} x_t^* + v_t, \ v_t \sim N(0, R)$$

Example

- Assume the following AR(2) process $z_t = \rho_1 z_{t-1} + \rho_2 z_{t-2} + v_t$, $v_t \sim N(0, \sigma_v^2)$.
- State Space I
 - Transition equation

$$x_t = \left[\begin{array}{cc} \rho_1 & 1 \\ \rho_2 & 0 \end{array} \right] x_{t-1} + \left[\begin{array}{cc} 1 \\ 0 \end{array} \right] v_t$$

- ullet Where $x_t = \left[egin{array}{ccc} y_t &
 ho_2 y_{t-1} \end{array}
 ight]'$ and measurement equation $z_t = \left[egin{array}{ccc} 1 & 0 \end{array}
 ight] x_t$
- State Space II
 - Transition equation

$$x_t = \begin{bmatrix} \rho_1 & \rho_2 \\ 1 & 0 \end{bmatrix} x_{t-1} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} v_t$$

- ullet Where $x_t = \left[egin{array}{ccc} y_t & y_{t-1} \end{array} \right]'$ and measurement equation $z_t = \left[egin{array}{ccc} 1 & 0 \end{array} \right] x_t$
- ullet Try $B={
 m diag}\left(egin{array}{cc} 1 &
 ho_2 \end{array}
 ight)$ on the second system to get the first system.

What is the Kalman Filter trying to do?

- Let $x_{t|t-1} = E(x_t|z^{t-1})$.
- Let $z_{t|t-1} = E(z_t|z^{t-1}) = H'x_{t|t-1}$.
- Let $x_{t|t} = E(x_t|z^t)$.
- Let assume we have $x_{t|t-1}$ and $z_{t|t-1}$.
- We observe a new z_t .
- We need to obtain $x_{t|t}$.
- Note that $x_{t+1|t} = Fx_{t|t}$ and $z_{t+1|t} = H'x_{t+1|t}$, so we can wait for z_{t+1} .
- Therefore, the key question is how to obtain from $x_{t|t-1}$ and z_t .

Kalman Filter Gain to find $x_{t|t}$

• Assume we use the following equation to get $x_{t|t}$ from z_t and $x_{t|t-1}$:

$$x_{t|t} = x_{t|t-1} + K_t (z_t - z_{t|t-1}) = x_{t|t-1} + K_t (z_t - H'x_{t|t-1})$$

- This formula will have some probabilistic justification (to follow).
- K_t is called the Kalman filter gain and it measures how much we update $x_{t|t-1}$ as a function in our error in predicting z_t .
- Let $\Sigma_{t|t-1} = E\left(\left(x_t x_{t|t-1}\right)\left(x_t x_{t|t-1}\right)'|z^{t-1}\right)$.
- Let $\Omega_{t|t-1} = E\left(\left(z_{t} z_{t|t-1}\right)\left(z_{t} z_{t|t-1}\right)'|z^{t-1}\right)$.
- Let $\Sigma_{t|t} = E\left(\left(x_t x_{t|t}\right)\left(x_t x_{t|t}\right)'|z^t\right)$.
- Let $\Phi_{t|t-1} = E\left(\left(z_t z_{t|t}\right)\left(x_t x_{t|t}\right)'|z^{t-1}\right)$.
- It can be shown that:

$$K_t = \sum_{t|t-1} H (H' \sum_{t|t-1} H + R)^{-1}$$

Intuition

• The gain:

$$K_t = \sum_{t|t-1} H \left(H' \sum_{t|t-1} H + R \right)^{-1}$$

• Update of $x_{t|t}$ given z_t and $x_{t|t-1}$ being:

$$x_{t|t} = x_{t|t-1} + K_t (z_t - H' x_{t|t-1})$$

- If we did a big mistake forecasting $x_{t|t-1}$ using past information ($\Sigma_{t|t-1}$ large) we give a lot of weight to the new information (K_t large).
- If the new information is noise (R large) we give a lot of weight to the old prediction (K_t small)

Example

- Assume the following model in State Space form:
 - Transition equation

$$x_t = \mu + v_t$$
, $v_t \sim N\left(0, \sigma_v^2\right)$

Measurement equation

$$z_t = x_t + \xi_t$$
, $\xi_t \sim N\left(0, \sigma_{\xi}^2\right)$

- Let $\sigma_{\xi}^2 = q\sigma_v^2$.
- Then, if $\Sigma_{t|t-1} = \sigma_v^2$, we have

$$\mathcal{K}_t = \sigma_v^2 rac{1}{1+q} \propto rac{1}{1+q}.$$

• The bigger σ_{ε}^2 relative to σ_{v}^2 (the bigger q) the lower K_t and the less we trust z_t .

The Algorithm

- Given $\Sigma_{t|t-1}$, z_t , and $x_{t|t-1}$, we can now set the Kalman filter algorithm:
- Let $\Sigma_{t|t-1}$, then we compute: $\Omega_{t|t-1} = E\left(\left(z_{t} z_{t|t-1}\right)\left(z_{t} z_{t|t-1}\right)'|z^{t-1}\right)$ $= E\left(\begin{array}{c} H'\left(x_{t} x_{t|t-1}\right)\left(x_{t} x_{t|t-1}\right)'H + \\ \upsilon_{t}\left(x_{t} x_{t|t-1}\right)'H + H'\left(x_{t} x_{t|t-1}\right)\upsilon'_{t} + \\ \upsilon_{t}\upsilon'_{t}|z^{t-1} \end{array}\right) = H'\Sigma_{t|t-1}H + R$
- Let $\Sigma_{t|t-1}$, then we compute: $\Phi_{t|t-1} = E\left(\left(z_{t} z_{t|t-1}\right)\left(x_{t} x_{t|t-1}\right)'|z^{t-1}\right)$ = $E\left(H'\left(x_{t} - x_{t|t-1}\right)\left(x_{t} - x_{t|t-1}\right)' + \upsilon_{t}\left(x_{t} - x_{t|t-1}\right)'|z^{t-1}\right) = H'\Sigma_{t|t-1}$
- Let $\Sigma_{t|t-1}$, then we compute $K_t = \Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}$.
- Let $\Sigma_{t|t-1}$, $X_{t|t-1}$, K_t , and Z_t then we compute $X_{t|t} = X_{t|t-1} + K_t \left(Z_t H' X_{t|t-1} \right)$

The Algorithm

• Let $\Sigma_{t|t-1}$ and K_t , then we compute: $\Sigma_{t|t} = E\left(\left(x_t - x_{t|t}\right)\left(x_t - x_{t|t}\right)'|z^t\right)$

$$= E \begin{pmatrix} (x_{t} - x_{t|t-1}) (x_{t} - x_{t|t-1})' - \\ (x_{t} - x_{t|t-1}) (z_{t} - H'x_{t|t-1})' K'_{t} - \\ K_{t} (z_{t} - H'x_{t|t-1}) (x_{t} - x_{t|t-1})' + \\ K_{t} (z_{t} - H'x_{t|t-1}) (z_{t} - H'x_{t|t-1})' K'_{t} | z^{t} \end{pmatrix} = \Sigma_{t|t-1} - K_{t}H'\Sigma_{t|t-1}$$

- \bullet Let $\Sigma_{t|t}$, then we compute $\Sigma_{t+1|t} = F\Sigma_{t|t}F' + \textit{GQG}'$
- Let $x_{t|t}$, then we compute:
 - $\bullet \ x_{t+1|t} = Fx_{t|t}$
 - $z_{t+1|t} = H'x_{t+1|t}$
- Therefore, from $x_{t|t-1}$, $\Sigma_{t|t-1}$, and z_t we compute $x_{t|t}$ and $\Sigma_{t|t}$.
- We also compute $z_{t|t-1}$, $\Omega_{t|t-1}$, and $\Phi_{t|t-1}$. Why for? As you will see later, they are necessary to calculate the likelihood function of $z^T = \{z_t\}_{t=1}^T$ (to follow).

Summary

We start with $x_{t|t-1}$ and $\Sigma_{t|t-1}$, the we observe z_t and....

•
$$\Omega_{t|t-1} = H'\Sigma_{t|t-1}H + R$$

$$\bullet \ z_{t|t-1} = H'x_{t|t-1}$$

•
$$K_t = \sum_{t|t-1} H (H' \sum_{t|t-1} H + R)^{-1}$$

$$\bullet \ \Sigma_{t|t} = \Sigma_{t|t-1} - K_t H' \Sigma_{t|t-1}$$

•
$$x_{t|t} = x_{t|t-1} + K_t (z_t - H'x_{t|t-1})$$

•
$$\Sigma_{t+1|t} = F\Sigma_{t|t}F' + GQG'$$

$$\bullet \ x_{t+1|t} = Fx_{t|t}$$

We finish with $x_{t+1|t}$ and $\Sigma_{t+1|t}$.

A Probabilistic Approach to K_t

Assume

$$Z|w = [X'|w \ Y'|w]' \sim N\left(\left[\begin{array}{c} \overline{x} \\ \overline{y} \end{array}\right], \left[\begin{array}{cc} \Sigma_{xx} & \Sigma_{xy} \\ \Sigma_{yx} & \Sigma_{yy} \end{array}\right]\right)$$

then

$$X|y,w \sim \textit{N}\left(\overline{x} + \Sigma_{xy}\Sigma_{yy}^{-1}\left(y - \overline{y}\right), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

- But $x_{t|t-1} = E\left(x_t|z^{t-1}\right)$ and $\Sigma_{t|t-1} = E\left(\left(x_t x_{t|t-1}\right)\left(x_t x_{t|t-1}\right)'|z^{t-1}\right)$
- If $z_t|z^{t-1}$ is the random variable z_t (observable) conditional on z^{t-1} , then:
 - Let $z_{t|t-1} = H'x_{t|t-1}$
 - Let $\Omega_{t|t-1} = H'\Sigma_{t|t-1}H + R$
 - Let $\Phi_{t|t-1} = H'\Sigma_{t|t-1}$

A Probabilistic Approach to K_t

• Assume we know $x_{t|t-1}$ and $\Sigma_{t|t-1}$, then

$$\left(\begin{array}{c} x_t \\ z_t \end{array} \middle| z^{t-1} \right) N \left(\left[\begin{array}{c} x_{t|t-1} \\ H'x_{t|t-1} \end{array} \right], \left[\begin{array}{cc} \Sigma_{t|t-1} & \Sigma_{t|t-1}H \\ H'\Sigma_{t|t-1} & H'\Sigma_{t|t-1}H + R \end{array} \right] \right)$$

• Remember that:

$$X|y,w \sim N\left(\overline{x} + \Sigma_{xy}\Sigma_{yy}^{-1}\left(y - \overline{y}\right), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

• Then, we can write $x_t|z_t, z^{t-1} = x_t|z^t \sim N\left(x_{t|t}, \Sigma_{t|t}\right)$, where

$$x_{t|t} = x_{t|t-1} + \underbrace{\sum_{t|t-1} H \left(H' \sum_{t|t-1} H + R \right)^{-1}}_{K_t} \left(z_t - H' x_{t|t-1} \right)$$

$$\Sigma_{t|t} = \Sigma_{t|t-1} - \underbrace{\Sigma_{t|t-1} H \left(H' \Sigma_{t|t-1} H + R \right)^{-1}}_{K_t} H' \Sigma_{t|t-1}$$