

Model:

$$\frac{dJ}{dt} = r[T]Ae^{-A} - m[T]J - d_J[T]J$$

$$\frac{dA}{dt} = m[T]J - d_A[T]A$$

J and A are the densities of the juvenile and adult stages, respectively, and r[T], m[T], $d_J[T]$, and $d_A[T]$ are the temperature responses of reproduction, development, juvenile mortality, and adult mortality, respectively. The temperature-response functions are:

$$\begin{split} r[T] &= r_{Topt} e^{-\frac{\left(T - T_{opt}\right)^{2}}{2s^{2}}} \\ m[T] &= m_{R} \frac{T}{T_{R}} \frac{e^{Am\left(\frac{1}{T_{R}} - \frac{1}{T}\right)}}{1 + e^{AL\left(\frac{1}{T_{L}} - \frac{1}{T}\right)} + e^{AH\left(\frac{1}{T_{H}} - \frac{1}{T}\right)}} \\ d_{J}[T] &= d_{JR} e^{AdJ\left(\frac{1}{T_{R}} - \frac{1}{T}\right)} \\ d_{A}[T] &= d_{AR} e^{AdA\left(\frac{1}{T_{R}} - \frac{1}{T}\right)} \end{split}$$

Temperature response functions are plotted in the left panels and the population dynamics from the model are given in the right panel for the case of T = 20. Parameter values are given in the following table.

Parameter	Value
r_{Topt}	1
T_{opt}	293

S	5
m_R	0.1
T_R	283
A_m	15000
A_L	5000
A_H	70000
T_L	278
T_H	295
d_{JR}	0.1
A_{dJ}	5000
d_{AR}	0.1
A_{dA}	2500