ROBOTICA INDUSTRIAL

TEMA 2 MODELADO CINEMÁTICO

INTRODUCCIÓN

- Cinemática del robot : Estudio de su movimiento con respecto a un sistema de referencia sin considerar las fuerzas que intervienen
 - Relación entre la localización del extremo del robot y los valores de sus articulaciones
 - Descripción analítica del movimiento espacial en función del tiempo
- Problema cinemático directo: Determinar la posición y orientación del extremo final del robot, con respecto a un sistema de coordenadas de referencia, conocidos los valores de las articulaciones y los parámetros geométricos de los elementos del robot
- Problema cinemático inverso: Determinar la configuración que debe adoptar el robot para alcanzar una posición y orientación del extremo conocidas
- Modelo diferencial (matriz Jacobiana): Relaciones entre las velocidades de movimiento de las articulaciones y las del extremo del robot

Cinemática directa e inversa

Coordenadas articulares $(q_1,q_2,...,q_n)$ Cinemática Directa

Cinemática Inversa

Posición y orientación del extremo del robot (x, y, z, φ,θ,ψ)

Robótica Industrial 4º G. Ing Electrónica- Automática

Modelo cinemático directo. Cálculo

Métodos geométricos

- Método no sistemático (depende de la habilidad)
- Consideraciones geométricas (trigonometría, etc.)
- Válido para robots de pocos grados de libertad
- Métodos basados en cambios de base (MTH o Cuaternios)
 - Puede ser sistematizado (Denavit-Hartenberg)
 - Aplicable a cualquier cadena cinemática (n gdl)
 - Ayuda de herramientas computacionales.

MCD por métodos geométricos

 $x = q_2 \cos q_1$ $y = q_2 \sin q_1$ z = 0

MCD por métodos geométricos

$$x = l_1 \cos q_1 + l_2 \cos (q_1 + q_2)$$
$$y = l_1 sen q_1 + l_2 sen (q_1 + q_2)$$
$$z = 0$$

4º G. Ing Electrónica- Automática

Robótica Industrial

MCD por métodos geométricos

$$r = l_2 \cos q_2 + l_3 \cos(q_2 + q_3)$$

$$z = l_1 + l_2 \sin q_2 + l_3 \sin(q_2 + q_3)$$

$$x = r \cos q_1$$

$$y = r \sin q_1$$

MCD mediante cambios de base

- Asociar a cada eslabón del robot un sistema de referencia solidario a él.
- De un sistema al siguiente se pasa mediante un cambio de base definido por rotaciones y traslaciones.
- Estos cambios de base dependerán de las dimensiones del robot y de los valores de las variables articulares q_n
- Encontrar la MTH (o cuaternio-vector) que define el cambio de base de un sistema al siguiente.
- Multiplicar los sucesivos cambios de base en el orden adecuado, para obtener el cambio de base entre el origen y el extremo del robot. Este dependerá de los n grados de libertad q_n
- Y representará la relación entre la posición y orientación del extremo en el sistema de la base, en función de las coordenadas articulares (MCD)

4º G. Ing Electrónica- Automática

MCD mediante MTH

$$\begin{array}{l}
{}^{0}\mathbf{A}_{1} = \mathbf{Rotz}(q_{1}) \cdot \mathbf{T}(l_{1}, 0, 0) = \\
= \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & l_{1} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{1} & -S_{1} & 0 & l_{1}C_{1} \\ S_{1} & C_{1} & 0 & l_{1}S_{1} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{split} ^{1}\mathbf{A}_{2} &= \mathbf{Rotz}(q_{2}) \cdot \mathbf{T}(l_{2}, 0, 0) = \\ &= \begin{bmatrix} C_{2} & -S_{2} & 0 & 0 \\ S_{2} & C_{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & l_{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{2} & -S_{2} & 0 & l_{2}C_{2} \\ S_{2} & C_{2} & 0 & l_{2}S_{2} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Posición(x_2, y_2, z_2)

$$T = {^{0}A_{1}} {^{1}A_{2}} = \begin{bmatrix} C_{1}S_{2} - S_{1}S_{2} & -C_{1}S_{2} - S_{1}C_{2} & 0 & l_{1}C_{1} + l_{2}C_{12} \\ S_{1}C_{2} + C_{1}S_{2} & -S_{1}S_{2} + C_{1}C_{2} & 0 & l_{1}S_{1} + l_{2}S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{12} & -S_{12} & 0 & l_{1}C_{1} + l_{2}C_{12} \\ S_{12} & C_{12} & 0 & l_{1}S_{1} + l_{2}S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Orientación

Robótica Industrial

4º G. Ing Electrónica- Automática

- Un procedimiento de obtención del MCD basado en la realización de cambios de base mediante MTH
- Sistematiza la selección de los sistemas de coordenadas, garantizando que de uno a otro se pasa mediante una secuencia concreta de 4 movimientos simples (rotación o traslación entorno a ejes concretos).
- Cada movimiento simple depende de un parámetro
- De este modo la matriz de cambio de base de un sistema a otro ${}^{i-1}A_i$ responde a una expresión predefinida, función de los **4 parámetros**.
- Permite el utilizar un convenio estandarizado, que sirve de:
 - Lenguaje común
 - Desarrollo de herramientas de cálculo
- Hartenberg, R. S., & Denavit, J. (1955). A kinematic notation for lower pair mechanisms based on matrices.

Procedimiento general:

- 1. Establecer para cada elemento del robot un sistema de coordenadas cartesiano ortonormal (x_i, y_i, z_i) donde i = 0,1,2,...,n (n=número de gdl). Cada sistema de coordenadas corresponderá a la articulación i+1 y estará fijo en el elemento i (Algoritmo de D-H)
- 2. Encontrar los parámetros D-H de cada una de las articulaciones
- 3. Calcular, a partir de los parámetros, las matrices $^{i-1}A_i$
- 4. Calcular la matriz $T_n = {}^0A_1 {}^1A_2 ... {}^{n-1}A_n$
- T_n expresa el modelo cinemático directo

Transformaciones básicas

- Transformaciones básicas en cada articulación:
- (definidas sobre sistema móvil
- =>postmultiplicar):
- 1 Rotación alrededor del eje z_{i-1} un ángulo θ_i
- ${f 2}$ Traslación a lo largo de z_i una distancia d_i
- 3 Traslación a lo largo de x_i una distancia a_i
- 4 Rotación alrededor del eje x_i un ángulo α_i

Transformaciones básicas

$$\mathbf{1} \qquad \mathbf{2} \qquad \mathbf{3} \qquad \mathbf{4}$$

$$\mathbf{i}^{-1} \mathbf{A}_{i} = \mathbf{Rotz} (\theta_{i}) \mathbf{T}(0,0,d_{i}) \mathbf{T}(\mathbf{a}_{i},0,0) \mathbf{Rotx}(\alpha_{i})$$

$$\mathbf{A_i} = \begin{bmatrix} \mathbf{C}\boldsymbol{\theta_i} & -\mathbf{S}\boldsymbol{\theta_i} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}\boldsymbol{\theta_i} & \mathbf{C}\boldsymbol{\theta_i} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} = \mathbf{0} \begin{bmatrix} \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$= \begin{bmatrix} C\theta_i & -C\alpha_i S\theta_i & S\alpha_i S\theta_i & a_i C\theta_i \\ S\theta_i & C\alpha_i C\theta_i & -S\alpha_i C\theta_i & a_i S\theta_i \\ 0 & S\alpha_i & C\alpha_i & d_i \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz de D-H

 θ_i Es el ángulo que forman los ejes xi-1 y xi medido en un plano perpendicular al eje zi-1, utilizando la regla de la mano derecha. Se trata de un parámetro variable en articulaciones giratorias.

 \mathcal{Q}_{i} Es la distancia a lo largo del eje z_{i-1} desde el origen del sistema de coordenadas (i-1)-ésimo hasta la intersección del eje z_{i-1} con el eje x_i . Se trata de un parámetro variable en articulaciones prismáticas

 \mathcal{A}_i Es la distancia a lo largo del eje x_i que va desde la intersección del eje z_{i-1} con el eje x_i hasta el origen del sistema i-ésimo, en el caso de articulaciones giratorias. En el caso de articulaciones prismáticas, se calcula como la distancia más corta entre los ejes z_{i-1} y z_i .

 α_i Es el ángulo de separación del z_{i-1} y el eje z_i , medido en un plano perpendicular al eje x_i , utilizando la regla de la mano derecha

Algoritmo con ejemplos

Robot cilíndrico 4 gdl

Representación esquemática

Algoritmo con ejemplos

- D-H 1.- Numerar los eslabones comenzando con 1 (primer eslabón móvil de la cadena) y acabando con n (último eslabón móvil). Se numerará como eslabón 0 a la base fija del robot.
- D-H 2.- Numerar cada articulación comenzando por 1 (la correspondiente al primer grado de libertad) y acabando en n
- D-H 3.- Localizar el eje de cada articulación. Si ésta es rotativa, el eje será su propio eje de giro. Si es prismática, será el eje a lo largo del cual se produce el desplazamiento

Algoritmo con ejemplos

• **D-H 4**.- Para i de 0 a n-1 situar el eje z_i sobre el eje de la articulación i+1.

Algoritmo con ejemplos

• **D-H 5**.- Situar el origen del sistema de la base $\{S0\}$ en cualquier punto del eje z_0 . Los ejes x_0 e y_0 se situarán de modo que formen un sistema dextrógiro con z_0

Robótica Industrial 4º G. Ing Electrónica- Automática

Algoritmo con ejemplos

 D-H 6.- Para i de 1 a n — 1, situar el sistema $\{S_i\}$ (solidario al eslabón i) en la intersección del eje z_i con la línea normal común a z_{i-1} y z_i . Si ambos ejes se cortasen se situaría $\{S_i\}$ en el punto de corte. Si fuesen paralelos $\{S_i\}$ se situaría en la articulación i+1

Algoritmo con ejemplos

• **D-H 7**.- Situar x_i en la línea normal común a z_{i-1} y z_i

• $(x_i \perp z_i) \land (x_i \perp z_{i-1})$

Algoritmo con ejemplos

• **D-H 8**.- Situar y_i de modo que forme un sistema dextrógiro con x_i y z_i .

Algoritmo con ejemplos

• **D-H 9**.- Situar el sistema $\{S_n\}$ en el extremo del robot

de modo que z_n coincida con la dirección de z_{n-1} y x_n sea normal a z_{n-1} y z_n

Algoritmo con ejemplos

• **D-H 10.-** Obtener θ_i como el ángulo que hay que girar en torno a z_{i-1} para que x_{i-1} y x_i queden paralelos.

Articulación	θ
1	q_1
2	q₁ 90°
3	0
4	q_4

• **Ángulo** + $\rightarrow x_{i-1}$ a x_i regla mano derecha

Robótica Industrial 4º G. Ing Electrónica- Automática

Algoritmo con ejemplos

• **D-H 11.**- Obtener d_i como la distancia, medida a lo largo de z_{i-1} , que habría que desplazar $\{S_{i-1}\}$ para que x_i y x_{i-1} quedasen alineados.

Articulación	d
1	l ₁
2	d ₂
3	d ₃
4	l ₄

Algoritmo con ejemplos

• **DH 12.-** Obtener a_i como la distancia medida a lo largo de x_i (que ahora coincidiría con x_{i-1}) que habría que desplazar el nuevo $\{S_{i-1}\}$ para que su origen coincidiese con $\{S_i\}$

Articulación	a
1	0
2	0
3	0
4	0

Algoritmo con ejemplos

DH 13.- Obtener α_i como el ángulo que habría que girar entorno a x_i (que ahora coincidiría con x_{i-1}), para que el nuevo $\{S_{i-1}\}$ coincidiese totalmente con $\{S_i\}$. α_i es el ángulo de separación del z_{i-1} y el eje z_i , medido en un plano perpendicular al eje x_i , utilizando la regla de la mano derecha

d ₃	
θ_1 Z_2 Z_2	X_3 Θ_4 X_4 X_4 Z_4
d_2 X_1 X_1	
Z ₀ Y ₀ X ₀	$x_i \uparrow z_i$

Articulación	α
1	0
2	90°
3	0
4	0

• **Ángulo +** \rightarrow z_{i-1} a z_i reglamano derecha

Robótica Industrial 4º G. Ing Electrónica- Automática

Algoritmo con ejemplos

Algoritmo con ejemplos

DH 14.- Obtener las matrices de transformación $^{n-1}A_n$

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}\mathbf{A}_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}\mathbf{A}_{4} = \begin{bmatrix} C_{4} & -S_{4} & 0 & 0 \\ S_{4} & C_{4} & 0 & 0 \\ 0 & 0 & 1 & l_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} C_{1} & -S_{1} & 0 & 0 \\ S_{1} & C_{1} & 0 & 0 \\ 0 & 0 & 1 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}\mathbf{A}_{2} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad {}^{1}\mathbf{A}_{1} = \begin{bmatrix} C\theta_{i} & -C\alpha_{i}S\theta_{i} & S\alpha_{i}S\theta_{i} & a_{i}C\theta_{i} \\ S\theta_{i} & C\alpha_{i}C\theta_{i} & -S\alpha_{i}C\theta_{i} & a_{i}S\theta_{i} \\ 0 & S\alpha_{i} & C\alpha_{i} & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} C_{4} & -S_{4} & 0 & 0 \end{bmatrix}$$

Algoritmo con ejemplos

- **DH 15**.- Obtener la matriz de transformación entre la base y el extremo del robot $T_n={}^0A_1\, {}^1A_2...\, {}^{n-1}A_n\,$ POSMULTIPLICAR
- **DH 16**.- La matriz T define la orientación (submatriz de rotación) y posición (submatriz de traslación) del extremo referido a la base en función de las n coordenadas articulares

$$\mathbf{T} = {}^{0}\mathbf{A}_{1} {}^{1}\mathbf{A}_{2} {}^{2}\mathbf{A}_{3} {}^{3}\mathbf{A}_{4} = \begin{bmatrix} -S_{1}C_{4} & S_{1}S_{4} & C_{1} & C_{1}(d_{3} + l_{4}) \\ C_{1}C_{4} & -C_{1}S_{4} & S_{1} & S_{1}(d_{3} + l_{4}) \\ S_{4} & C_{4} & 0 & d_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Robot SCARA

MCD mediante Denavit-Hatenverg. ABB IRB 6400C

Articulación	θ	d	a	α
1	θ_1	0	0	-90
2	θ_2	11	0	90
3	θ_{3} -90	0	- 1 ₂	90
4	θ_4	13	0	-90
5	θ ₅	0	0	90
6	Θ_6	14	0	0

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} C_{1} & 0 & -S_{1} & 0 \\ S_{1} & 0 & C_{1} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$^{1}\mathbf{A}_{2} = \begin{bmatrix} C_{2} & 0 & S_{2} & 0 \\ S_{2} & 0 & -C_{2} & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{2}\mathbf{A}_{3} = \begin{bmatrix} S_{3} & 0 & -C_{3} & -I_{2}S_{3} \\ -C_{3} & 0 & -S_{3} & I_{2}C_{3} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{3}\mathbf{A}_{4} = \begin{bmatrix} C_{4} & 0 & -S_{4} & 0 \\ S_{4} & 0 & C_{4} & 0 \\ 0 & -1 & 0 & I_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{4}\mathbf{A}_{5} = \begin{bmatrix} C_{5} & 0 & S_{5} & 0 \\ S_{5} & 0 & -C_{5} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{5}\mathbf{A}_{6} = \begin{bmatrix} C_{6} & -S_{6} & 0 & 0 \\ S_{6} & C_{6} & 0 & 0 \\ 0 & 0 & 1 & I_{4} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ABB IRB 6400C

$$\mathbf{T} = {}^{0}\mathbf{A}_{1}^{1}\mathbf{A}_{2}^{2}\mathbf{A}_{3}^{3}\mathbf{A}_{4}^{4}\mathbf{A}_{5}^{5}\mathbf{A}_{6} = \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{array}{ll} \mathbf{n_x} &= \left(\mathbf{C_1} \mathbf{C_2} S_3 + S_1 C_3 \right) \left(C_4 C_5 C_6 - S_4 S_6 \right) + C_1 S_2 \left(S_4 C_5 C_6 + C_4 S_6 \right) + \left(-C_1 C_2 C_3 + S_1 S_3 \right) S_5 C_6 \\ \mathbf{n_y} &= \left(-\mathbf{S_1} \mathbf{C_2} S_3 + S_1 C_3 \right) \left(C_4 C_5 C_6 - S_4 S_6 \right) + S_1 S_2 \left(S_4 C_5 C_6 + C_4 S_6 \right) + \left(-S_1 C_2 C_3 - C_1 S_3 \right) S_5 C_6 \\ \mathbf{n_z} &= \left(-\mathbf{S_2} S_3 \right) \left(C_4 C_5 C_6 - S_4 S_6 \right) + C_2 \left(S_4 C_5 C_6 + C_4 S_6 \right) + S_2 C_3 S_5 C_6 \\ \mathbf{o_x} &= \left(\mathbf{C_1} \mathbf{C_2} S_3 + S_1 C_3 \right) \left(-C_4 C_5 C_6 - S_4 S_6 \right) + C_1 S_2 \left(-S_4 C_5 C_6 + C_4 S_6 \right) + \left(-C_1 C_2 C_3 + S_1 S_3 \right) \left(-S_5 C_6 \right) \\ \mathbf{o_y} &= \left(-\mathbf{S_1} \mathbf{C_2} S_3 + S_1 C_3 \right) \left(-C_4 C_5 C_6 - S_4 S_6 \right) + S_1 S_2 \left(-S_4 C_5 C_6 + C_4 S_6 \right) + \left(-S_1 C_2 C_3 - C_1 S_3 \right) \left(-S_5 C_6 \right) \\ \mathbf{o_z} &= \left(-\mathbf{S_2} S_3 \right) \left(-C_4 C_5 C_6 - S_4 S_6 \right) + C_2 \left(-S_4 C_5 C_6 + C_4 S_6 \right) + S_2 C_3 \left(-S_5 C_6 \right) \\ \mathbf{p_x} &= \left(\mathbf{C_1} \mathbf{C_2} S_3 + S_1 C_3 \right) \left(l_4 C_4 S_5 \right) + C_1 S_2 \left(l_4 S_4 S_5 \right) + \left(\mathbf{C_1} \mathbf{C_2} C_3 + S_1 S_3 \right) \left(-l_4 C_5 + l_3 \right) + \left(-l_2 C_1 C_2 S_3 - l_2 S_1 C_3 - l_1 S_1 \right) \\ \mathbf{p_y} &= \left(-\mathbf{S_1} \mathbf{C_2} S_3 - C_1 C_3 \right) \left(l_4 C_4 S_5 \right) + S_1 S_2 \left(l_4 S_4 S_5 \right) + \left(-\mathbf{C_1} \mathbf{C_2} C_3 - C_1 S_3 \right) \left(-l_4 C_5 + l_3 \right) + \left(-l_2 S_1 C_2 S_3 - l_2 S_1 C_3 - l_1 S_1 \right) \\ \left(-l_2 S_1 C_2 S_3 - l_2 C_1 C_3 + l_1 C_1 \right) \\ \end{array}$$

Robotica industriai

 $p_{z} = (-S_{2}S_{3})(l_{4}C_{4}C_{5}) + C_{2}(l_{4}S_{4}S_{5}) + S_{2}C_{3}(-l_{4}C_{5} + l_{3}) + l_{2}S_{2}S_{3}$

MCD mediante Denavit-Hatenverg. Robot puma 560

 Idéntico planteamiento al de las MTH, pero utilizando cuaternios y vectores para expresar las transformaciones:

Resultado de trasladar según p_i y rotar según Q_i

$$(0, \mathbf{a}_{i-1}) = Q_i(0, \mathbf{a}_i) Q_i^{\bullet} + (0, \mathbf{p}_i)$$
$$\mathbf{R}_{i-1} = Q_i \mathbf{R}_i$$

- 1. Seleccionar sistemas de coordenadas
- 2. Encontrar los cambios de base entre sistemas
- 3. Componer los cambios de base parciales
- 4. El cambio de base global recoge el MCD

Para obtener la relación entre {S₀} y {S₄} se irá convirtiendo sucesivamente {S₀} en {S₁}, {S₂}, {S₃} y {S₄} según la siguiente serie de transformaciones

- Desplazamiento de {S₀} una distancia I₁ a lo largo del eje z₀ y giro un ángulo q₁ alrededor del eje z₀, llegándose a {S₁}.
- Desplazamiento de {S₁} una distancia l₂ a lo largo del eje x₁ y giro un ángulo q₂ alrededor del nuevo eje z , para llegar al sistema {S₂}.
- Desplazamiento a lo largo del eje x₂ una distancia l₃ para llegar al sistema {S₃}.
- 4. Desplazamiento de {S₃} una distancia q₃ a lo largo del eje z₃ y giro en torno a z₄ de un ángulo q₄ , llegándose finalmente a {S₄}.

$S_0 \rightarrow S_1$:	$T(z,l_1)$	$\mathbf{Rot}(\mathbf{z},q_1)$
$S_1 \rightarrow S_2$:	$T(\mathbf{x}, l_2)$	$\mathbf{Rot}(\mathbf{z},q_2)$
$S_2 \rightarrow S_3$:	$T(x,1_3)$	Rot(z,0)
$S_3 \rightarrow S_4$:	$\mathbf{T}(\mathbf{z}, -q_3)$	$\mathbf{Rot}(\mathbf{z},q_4)$

$$S_0 \rightarrow S_1$$
: $\mathbf{T}(\mathbf{z}, l_1)$ $\mathbf{Rot}(\mathbf{z}, q_1)$
 $S_1 \rightarrow S_2$: $\mathbf{T}(\mathbf{x}, l_2)$ $\mathbf{Rot}(\mathbf{z}, q_2)$
 $S_2 \rightarrow S_3$: $\mathbf{T}(\mathbf{x}, l_3)$ $\mathbf{Rot}(\mathbf{z}, 0)$

$$\mathbf{Rot}(\mathbf{z},q_1)$$

 $\mathbf{Rot}(\mathbf{z},q_2)$

$$\mathbf{p}_2 = (\hat{\mathbf{C}}_2, 0, 0)$$
 $\mathbf{Q}_2 = (\hat{\mathbf{C}}_2, 0, 0, \hat{\mathbf{S}}_2)$ con

$$Q_1 = (\hat{C}_1, 0, 0, \hat{S}_1)$$

$$Q_2 = (\hat{C}_1, 0, 0, \hat{S}_2)$$

$$\hat{C}_{i} = \cos\left(\frac{q_{i}}{2}\right)$$

Rot(**z**,0)
$$\mathbf{p}_3 = (1_3,0,0)$$
 $Q_3 = (1,0,0,0)$

$$\mathbf{p}_3 = (1_3, 0, 0)$$

$$Q_3 = (1,0,0,0)$$

$$\hat{S}_i = \operatorname{sen}\left(\frac{q_i}{q_i}\right)$$

 $S_3 \rightarrow S_4$: $T(z,-q_3)$

$$\mathbf{Rot}(\mathbf{z},q_4)$$

$$\mathbf{p_4} = (0,0,-\mathbf{q_3})$$

Rot
$$(\mathbf{z}, \mathbf{q_4})$$
 $\mathbf{p_4} = (0,0,-\mathbf{q_3})$ $Q_4 = (\hat{C}_4,0,0,\hat{S}_4)$

$$p_i = sen(\frac{1}{2})$$

 $(0, \mathbf{a}_{i \cdot 1}) = Q_i(0, \mathbf{a}_i) Q_i^{\bullet} + (0, \mathbf{p}_i)$

Operando con cuaternios se tiene

$$\mathbf{R}_{i-1} = Q_i \mathbf{R}_i$$

$$\begin{aligned} &(0, \mathbf{a}_0) = \mathbb{Q}_1(0, \mathbf{a}_1) \mathbb{Q}_1^{\bullet} + (0, \mathbf{p}_1) \\ &\mathbf{R}_0 = \mathbb{Q}_1 \mathbf{R}_1 \\ &(0, \mathbf{a}_1) = \mathbb{Q}_2(0, \mathbf{a}_2) \mathbb{Q}_2^{\bullet} + (0, \mathbf{p}_2) \\ &\mathbf{R}_1 = \mathbb{Q}_2 \mathbf{R}_2 \\ &(0, \mathbf{a}_2) = \mathbb{Q}_3(0, \mathbf{a}_3) \mathbb{Q}_3^{\bullet} + (0, \mathbf{p}_3) \\ &\mathbf{R}_2 = \mathbb{Q}_3 \mathbf{R}_3 \\ &(0, \mathbf{a}_3) = \mathbb{Q}_4(0, \mathbf{a}_4) \mathbb{Q}_4^{\bullet} + (0, \mathbf{p}_4) \\ &\mathbf{R}_3 = \mathbb{Q}_4 \mathbf{R}_4 \end{aligned}$$

$$\begin{aligned} (0,\mathbf{a}_{0}) &= Q_{1} \bigg[Q_{2} \bigg[Q_{4} \big(0,\mathbf{a}_{4} \big) Q_{4}^{'} + \big(0,\mathbf{p}_{4} \big) \bigg] Q_{3}^{'} + (0,\mathbf{p}_{3}) \bigg| Q_{1}^{'} + (0,\mathbf{p}_{1}) \bigg] Q_{1}^{'} + (0,\mathbf{p}_{1}) = \\ &= Q_{1} Q_{2} Q_{3} Q_{4} (0,\mathbf{a}_{4}) Q_{4}^{'} Q_{3}^{'} Q_{2}^{'} Q_{1}^{'} + Q_{1} Q_{2} Q_{3} (0,\mathbf{p}_{4}) Q_{3}^{'} Q_{2}^{'} Q_{1}^{'} + \\ &+ Q_{1} Q_{2} (0,\mathbf{p}_{3}) Q_{2}^{'} Q_{1}^{'} + Q_{1} (0,\mathbf{p}_{1}) Q_{1}^{'} + (0,\mathbf{p}_{1}) = \\ &= Q_{1234} (0,\mathbf{a}_{4}) Q_{1234}^{'} + Q_{123} (0,\mathbf{p}_{4}) Q_{123}^{'} + Q_{12} (0,\mathbf{p}_{3}) Q_{12}^{'} + Q_{1} (0,\mathbf{p}_{2}) Q_{1}^{'} + (0,\mathbf{p}_{1}) \end{aligned}$$

$$\mathbf{R}_0 = \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3 \mathbf{Q}_4 \mathbf{R}_4 = \mathbf{Q}_{1234} \mathbf{R}_4 = (\hat{\mathbf{C}}_{124}, 0, 0, \hat{\mathbf{S}}_{124}) \mathbf{R}_4$$

El extremo del robot $a_4=(0,0,0)$, se encuentra en:

$$\begin{split} (0, \mathbf{a}_0) &= (0, \mathbf{a}_{4x} \, \hat{\mathbf{C}}_{112244} - \mathbf{a}_{4y} \, \hat{\mathbf{S}}_{112244} + \mathbf{l}_3 \hat{\mathbf{C}}_{1122} + \mathbf{l}_2 \hat{\mathbf{C}}_{11}, \\ \mathbf{a}_{4y} \, \hat{\mathbf{C}}_{112244} - \mathbf{a}_{4x} \, \hat{\mathbf{S}}_{112244} + \mathbf{l}_3 \hat{\mathbf{S}}_{1122} + \mathbf{l}_2 \hat{\mathbf{S}}_{11}, \mathbf{a}_{4z} - \mathbf{q}_3 + \mathbf{l}_1) \\ &= (0, \mathbf{l}_3 \hat{\mathbf{C}}_{1122} + \mathbf{l}_2 \hat{\mathbf{C}}_{11}, \mathbf{l}_3 \hat{\mathbf{S}}_{1122} + \mathbf{l}_2 \hat{\mathbf{S}}_{11}, \mathbf{l}_1 - \mathbf{q}_3) \end{split} \\ \mathbf{x} = \mathbf{a}_{0x} = \mathbf{l}_3 \cos(\mathbf{q}_1 + \mathbf{q}_2) + \mathbf{l}_2 \cos \mathbf{q}_1 \\ \mathbf{y} = \mathbf{a}_{0y} = \mathbf{l}_3 \sin(\mathbf{q}_1 + \mathbf{q}_2) + \mathbf{l}_2 \sin \mathbf{q}_1 \\ \mathbf{z} = \mathbf{a}_{0z} = \mathbf{l}_1 - \mathbf{q}_3 \end{split}$$

El sistema del extremo (R_4 =(1,0,0,0))se encuentra girado respecto del de la base, según:

$$\mathbf{R}_0 = \mathbf{Q}_1 \mathbf{Q}_2 \mathbf{Q}_3 \mathbf{Q}_4 \mathbf{R}_4 = \mathbf{Q}_{1234} \mathbf{R}_4 = (\hat{\mathbf{C}}_{124}, 0, 0, \hat{\mathbf{S}}_{124}) \; \mathbf{R}_4$$

$$\textbf{Rotz} \left(q_1 + q_2 + q_4 \right)$$

 Objetivo: encontrar los valores que deben adoptar las coordenadas articulares del robot (q1, ..., qn) para que su extremo se posicione y oriente según una determinada localización espacial

Métodos

- Soluciones cerradas $q = f(x, y, z, \phi, \theta, \psi)$
 - Garantiza una solución en un tiempo definido
 - En caso de solución múltiple, permite seleccionar la más adecuada
 - No siempre existe
 - Métodos:
 - Basados en consideraciones geométricas
 - Manipulación de las ecuaciones del MCD
- Métodos iterativos
 - Algoritmo generalizable para cualquier robot
 - Problemas de convergencia

Modelo cinemático inverso Problemas

- No siempre existe una solución cerrada
- Posible solución múltiple
- Dificultad analítica si se busca una solución cerrada
- Problemas de convergencia y mínimos locales si se usa un método iterativo

Modelo cinemático inverso Problemas

- Soluciones múltiples:
- Unas coordenadas en el espacio de la tarea, pueden corresponder a varias coordenadas articulares

 Se deben evitar cambios bruscos de configuración

Robótica Industrial 4º G. Ing Electrónica- Automática

Modelo cinemático inverso Problemas

Dificultad analítica:

Directo:

q1,..q6 datos

n_x,...p_x incógnitas

$$n_x = (C_1C_2S_3 + S_1C_3)(C_4C_5C_6 - S_4S_6) + C_1S_2(S_4C_5C_6 + C_4S_6) + (-C_1C_2C_3 + S_1S_3)S_5C_6$$

$$n_y = \left(-S_1C_2S_3 + S_1C_3\right)\left(C_4C_5C_6 - S_4S_6\right) + S_1S_2\left(S_4C_5C_6 + C_4S_6\right) + \left(-S_1C_2C_3 - C_1S_3\right)S_5C_6$$

$$n_z = (-S_2S_3)(C_4C_5C_6 - S_4S_6) + C_2(S_4C_5C_6 + C_4S_6) + S_2C_3S_5C_6$$

$$o_x = (C_1C_2S_3 + S_1C_3)(-C_4C_5C_6 - S_4S_6) + C_1S_2(-S_4C_5C_6 + C_4S_6) + (-C_1C_2C_3 + S_1S_3)(-S_5C_6)$$

$$o_y = (-S_1C_2S_3 + S_1C_3)(-C_4C_5C_6 - S_4S_6) + S_1S_2(-S_4C_5C_6 + C_4S_6) + (-S_1C_2C_3 - C_1S_3)(-S_5C_6)$$

$$o_z = (-S_2S_3)(-C_4C_5C_6 - S_4S_6) + C_2(-S_4C_5C_6 + C_4S_6) + S_2C_3(-S_5C_6)$$

$$\mathbf{p}_{x} = \left(\mathbf{C}_{1}\mathbf{C}_{2}S_{3} + S_{1}C_{3}\right)\left(l_{4}C_{4}S_{5}\right) + C_{1}S_{2}\left(l_{4}S_{4}S_{5}\right) + \left(\mathbf{C}_{1}\mathbf{C}_{2}C_{3} + S_{1}S_{3}\right)\left(-l_{4}C_{5} + l_{3}\right) + C_{1}S_{2}\left(l_{4}S_{4}S_{5}\right) + C_{1}S_{2}\left(l_{4}S_{5}S_{5}\right) + C_{1}S_{2}\left(l_{4}S_{5$$

$$(-l_2C_1C_2S_3 - l_2S_1C_3 - l_1S_1)$$

$$p_{y} = (-S_{1}C_{2}S_{3} - C_{1}C_{3})(l_{4}C_{4}S_{5}) + S_{1}S_{2}(l_{4}S_{4}S_{5}) + (-C_{1}C_{2}C_{3} - C_{1}S_{3})(-l_{4}C_{5} + l_{3}) +$$

$$(-l_2S_1C_2S_3 - l_2C_1C_3 + l_1C_1)$$

$$\mathbf{p}_{z} = (-S_{2}S_{3})(l_{4}C_{4}C_{5}) + C_{2}(l_{4}S_{4}S_{5}) + S_{2}C_{3}(-l_{4}C_{5} + l_{3}) + l_{2}S_{2}S_{3}$$

Inverso:

q1,..q6 incógnitas

nx,...px datos

Resolución mediante métodos geométricos

- Aplicable a robots con poco grados de libertad.
- Busca relaciones geométricas
 (típicamente trigonométricas) entre
 las coordenadas en el espacio de la
 tarea y el de las articulaciones.

Resolución mediante métodos geométricos

$$r^2 + p_z^2 = l_2^2 + l_3^2 - 2l_2l_3\cos(\gamma)$$

$$\cos(\gamma) = -\cos(q_3)$$

Teorema del coseno
$$c^2 = a^2 + b^2 - 2abcos(\gamma)$$

Robótica Industrial

4º G. Ing Electrónica- Automática

Resolución mediante métodos geométricos

$$q_1 = \arctan\left(\frac{p_y}{p_x}\right)$$

$$r^{2} = p_{x}^{2} + p_{y}^{2}$$

$$r^{2} + p_{z}^{2} = l_{2}^{2} + l_{3}^{2} + 2l_{2}l_{3}\cos q_{3}$$

$$\cos q_{3} = \frac{p_{x}^{2} + p_{y}^{2} + p_{z}^{2} - l_{2}^{2} - l_{3}^{2}}{2l_{2}l_{3}}$$

$$\operatorname{sen} q_3 = \pm \sqrt{1 - \cos^2 q_3}$$

Solución Doble

$$q_3 = \arctan\left(\frac{\pm\sqrt{1-\cos^2 q_3}}{\cos q_3}\right)$$

con
$$\cos q_3 = \frac{p_x^2 + p_y^2 + p_z^2 - l_2^2 - l_3^2}{2l_2l_3}$$

Resolución mediante métodos geométricos

b) Codo arriba.

$$q_2 = \beta - \alpha$$

$$\beta = \arctan\left(\frac{p_z}{r}\right) = \arctan\left(\frac{p_z}{\pm \sqrt{p_x^2 + p_y^2}}\right)$$

$$\alpha = \arctan\left(\frac{1_3 \operatorname{sen} q_3}{1_2 + 1_3 \operatorname{cos} q_3}\right)$$

$$q_2 = \arctan\left(\frac{p_z}{\pm \sqrt{p_x^2 + p_y^2}}\right) - \arctan\left(\frac{l_3 \operatorname{sen} q_3}{l_2 + l_3 \cos q_3}\right)$$

Solución Doble

Resolución mediante MTH

- Se conoce la localización del robot T=[noap] (o equivalente) a donde se le quiere llevar
- Se conoce la cinemática del robot definida por sus parámetros DH y por lo tanto:

$${}^{0}A_{n}(q_{1},..,q_{n})={}^{0}A_{1}(q_{1})... {}^{n-1}A_{n}(q_{n})$$

• Se trata de encontrar q1,...,qn que satisfagan:

$${}^{0}A_{n}(q1,..,qn)=[noap]$$

 Esta ecuación corresponde a 12 ecuaciones no lineales con n incógnitas

Resolución mediante MTH

nx,...px datos

Robótica Industrial 4º G. Ing Electrónica- Automática

Resolución mediante MTH

Artic.	θ	d	a	α
1	q 1	11	0	90°
2	q ₂	0	0	-90°
3	0	q 3	0	0

$$\mathbf{A}_1 = \begin{bmatrix} C_1 & 0 & S_1 & 0 \\ S_1 & 0 & -C_1 & 0 \\ 0 & 1 & 0 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$=\begin{bmatrix} C_1C_2 & -S_1 & -C_1S_2 & 0 \\ S_1C_2 & C_1 & -S_1S_2 & 0 \\ S_2 & 0 & C_2 & l_1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{1}\mathbf{A}_{2} = \begin{bmatrix} C_{2} & 0 & -S_{2} & 0 \\ S_{2} & 0 & C_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{A}_{1} = \begin{bmatrix} C_{1} & 0 & S_{1} & 0 \\ S_{1} & 0 & -C_{1} & 0 \\ 0 & 1 & 0 & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{1}\mathbf{A}_{2} = \begin{bmatrix} C_{2} & 0 & -S_{2} & 0 \\ S_{2} & 0 & C_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad {}^{2}\mathbf{A}_{3} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & q_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$${}^{0}\mathbf{A}_{2} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & -C_{1}S_{2} & 0 \\ S_{1}C_{2} & C_{1} & -S_{1}S_{2} & 0 \\ S_{2} & 0 & C_{2} & l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix} \quad \mathbf{T} = {}^{0}\mathbf{A}_{3} = \begin{bmatrix} C_{1}C_{2} & -S_{1} & -C_{1}S_{2} & -q_{3}C_{1}S_{2} \\ S_{1}C_{2} & C_{1} & -S_{1}S_{2} & -q_{3}S_{1}S_{2} \\ S_{2} & 0 & C_{2} & q_{3}C_{2} + l_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1. Obtener el MCD

Resolución mediante MTH

2. Aislar q₁

$$\begin{pmatrix} {}^{0}A_{1} \end{pmatrix}^{-1} & {}^{0}T_{3} \\ \begin{pmatrix} {}^{0}A_{1} \end{pmatrix}^{-1_{0}} T_{3} = {}^{1}A_{2} {}^{2}A_{3} = \begin{bmatrix} C_{1} & S_{1} & 0 & 0 \\ 0 & 0 & 1 & -1_{1} \\ S_{1} & -C_{1} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} n_{x} & o_{x} & a_{x} & p_{x} \\ n_{y} & o_{y} & a_{y} & p_{y} \\ n_{z} & o_{z} & a_{z} & p_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{2} & 0 & -S_{2} & -S_{2}q_{3} \\ S_{2} & 0 & C_{2} & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C_{2} & 0 & -S_{2} & -S_{2}q_{3} \\ S_{2} & 0 & C_{2} & C_{2}q_{3} \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$S_{1}p_{x} - C_{1}p_{y} = 0 \implies tan(q_{1}) = \left(\frac{p_{y}}{p_{x}}\right) \implies q_{1} = arctan\left(\frac{p_{y}}{p_{x}}\right)$$

Resolución mediante MTH

3. Continuar aislando el resto de las incógnitas

$$\mathbf{T} = {}^{0}\mathbf{A}_{1}{}^{1}\mathbf{A}_{2}{}^{2}\mathbf{A}_{3} \\
 {}^{(0}\mathbf{A}_{1})^{-1}\mathbf{T} = {}^{1}\mathbf{A}_{2}{}^{2}\mathbf{A}_{3} \\
 {}^{(1}\mathbf{A}_{2})^{-1}{}^{(0}\mathbf{A}_{1})^{-1}\mathbf{T} = {}^{2}\mathbf{A}_{3}$$

$$\begin{pmatrix} {}^{1}\mathbf{A}_{2} \end{pmatrix}^{-1}{}^{(0}\mathbf{A}_{1})^{-1}\mathbf{T} = {}^{2}\mathbf{A}_{3}$$

$$\begin{pmatrix} {}^{1}\mathbf{A}_{1} \end{pmatrix}^{-1}{}^{(0}\mathbf{A}_{1})^{-$$

Resolución mediante desacoplo cinemático

- Los procedimientos anteriores son complejos, o inutilizables, cuando el número de grados de libertad es elevado
- El desacoplo cinemático divide un problema de 6 gdl a 2 problemas de 3gdl
- OJO! Solo puede aplicarse cuando los ejes de las 3 últimas articulaciones se cortan en un punto

Resolución mediante desacoplo cinemático

- A partir de a posición y orientación deseadas [noap], se obtiene el punto de corte de los 3 últimos ejes (punto de la muñeca: p_m)
- Se resuelve el modelo cinemático inverso para el robot de 3 gdl (q_1,q_2,q_3) que va desde la base hasta p_m
- La resolución de (q_1,q_2,q_3) , condiciona la posición y orientación del robot en p_m
- Se resuelve el problema cinemático inverso para el robot que va desde pm hasta el punto final p_r , encontrando (q_4, q_5, q_6) .

Resolución mediante desacoplo cinemático

- El punto p_m corresponde al centro del sistema ${\cal O}_5$
- El punto final del robot p_r corresponde al centro del sistema ${\it O}_6$
- Como la dirección del eje Z_6 coincide con Z_5 , y la distancia entre O_5 y O_6 es d_4 , $p_m=p_r-l_4$ Z_6
- Se calculan los valores (q_1, q_2, q_3) , a partir de un método geométrico
- Si 0R_6 es la matriz de rotación de 0T_6 , entonces

$${}^{0}R_{6} = [noa] = {}^{0}R_{3} {}^{3}R_{6}$$

$${}^{3}R_{6} = ({}^{0}R_{3})^{-1} [noa] = [r_{ij}]$$

Resolución mediante desacoplo cinemático

$${}^{3}\mathbf{R}_{4} = \begin{bmatrix} \mathbf{C}_{4} & 0 & -\mathbf{S}_{4} \\ \mathbf{S}_{4} & 0 & \mathbf{C}_{4} \\ 0 & -1 & 0 \end{bmatrix} \quad {}^{4}\mathbf{R}_{5} = \begin{bmatrix} \mathbf{C}_{5} & 0 & \mathbf{S}_{5} \\ \mathbf{S}_{5} & 0 & -\mathbf{C}_{5} \\ 0 & 1 & 0 \end{bmatrix} \quad {}^{5}\mathbf{R}_{6} = \begin{bmatrix} \mathbf{C}_{6} & -\mathbf{S}_{6} & 0 \\ \mathbf{S}_{6} & \mathbf{C}_{6} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} r_{ij} \end{bmatrix} = \begin{bmatrix} C_4 C_5 C_6 - S_4 S_6 & -C_4 C_5 S_6 - S_4 C_6 & C_4 S_5 \\ S_4 C_5 C_6 + C_4 S_6 & -S_4 C_5 S_6 + C_4 C_6 & -S_4 C_5 \\ -S_5 C_6 & S_5 S_6 & C_5 \end{bmatrix}$$

A partir de r13,r23,r31,r32,r33 se obtienen las ecuaciones

$$r_{13} = C_4 S_5$$
 $r_{23} = -S_4 C_5$ $r_{33} = C_5$
 $r_{31} = -S_5 C_6$ $r_{32} = S_5 S_6$

A partir de ellas los ángulos

$$q_4 = \arcsin\left(\frac{\mathbf{r}_{23}}{\mathbf{r}_{33}}\right)$$
$$q_5 = \arcsin\left(\mathbf{r}_{33}\right)$$
$$q_6 = \arctan\left(-\frac{\mathbf{r}_{32}}{\mathbf{r}_{31}}\right)$$

Tema 2. Modelado cinemático

Resolución mediante métodos numéricos

- Se modifican las coordenadas articulares hasta que la cinemática directa $\mathcal{K}(q)$ se ajusta a la pose deseada ζ
- Se trata de un problema de optimización multivariable, en el que se busca minimizar el error:

$$q^* = \underset{q}{argMIN} \|\mathcal{K}(q) - \zeta\|$$

- La solución encontrada dependerá del valor inicial $(q_1, q_2, ... q_N)$ y del algoritmo de optimización empleado
- Algunos algoritmos de optimización pueden detenerse en algún mínimo local y no encontrar el mínimo absoluto

Resolución mediante métodos numéricos

Tipos de algoritmos de optimización:

- Algoritmos clásicos
 - Directos: solo usan la función objetivo: random, simplex, Powel...
 - Indirectos: usan función objetivo y sus derivadas: gradiente, newton..
- Algoritmos de búsqueda
 - Voraz, A*, Hill-Climbing...
 - Minimax, Poda alfa-Beta
 - Algoritmos genéticos
- Ejemplos: Nelder-Mead Simplex Method (fminsearch)
- Ejemplos: BFGS Quasi-Newton (fminunc)
- Ejemplos: Trust Region Algorithm (fminunc)

Resolución mediante métodos numéricos

Ejemplo con Matlab
 Ejemplo de robot con 2 gdl

```
q2? (X,y)
```

```
>>R=SerialLink([L1,L2],'name','robot')
>>posExt=[0.6;0.7]
>>q=fminsearch(@(q) norm(R.fkine(q).t-posExt), [0 0])
q= -0.2295 2.1833
>>R.fkine(q).print
t=(0.6, 0.7), theta =112.9 deg
```

Usa el algoritmo Nelder-Mead Simplex Method

- Establece la relación entre las velocidades de las articulaciones, con las velocidades del extremo del robot
- Es utilizado por el sistema de control del robot para establecer qué velocidades debe imprimir a cada articulación (a través de sus respectivos actuadores) para conseguir que el extremo desarrolle una trayectoria temporal concreta.
- El modelo diferencial queda concretado en el jacobiano o matriz jacobiana.

Jacobiano

$$x = 1_{1} \cos q_{1} + 1_{2} \cos (q_{1} + q_{2})$$

$$y = 1_{1} sen q_{1} + 1_{2} sen (q_{1} + q_{2})$$

$$z = 0$$

$$p = (x, y)$$

Derivando p respecto de las coordenadas articulares q,

$$\frac{dp}{dq} = J(q)$$

J(q) es el jacobiano

$$J(q) = \begin{bmatrix} -l_1 S_1 - l_2 S_{12} & -l_2 S_{12} \\ l_1 C_1 + l_2 C_{12} & l_2 C_{12} \end{bmatrix}$$

$$x = \mathbf{1}_1 \cos q_1 + \mathbf{1}_2 \cos \left(q_1 + q_2\right)$$

$$p = J(q) \cdot dq, \frac{dp}{dt} = J(q) \cdot \frac{dq}{dt}$$

$$\dot{p} = J(q) \cdot \dot{q}$$

Robótica Industrial 4º G. Ing Electrónica- Automática

Jacobiano

 Generalizando la expresión anterior para recoger la orientación se obtiene:

$$v_{XYZ} = \begin{pmatrix} v_{\chi} \\ v_{y} \\ v_{z} \\ w_{\chi} \\ w_{y} \\ w_{z} \end{pmatrix} = J(q) \begin{pmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \vdots \\ \dot{q}_{N} \end{pmatrix} \text{ Jacobiano geométrico}$$

$$1 \text{ folumna por articulación} \\ 1 \text{ fila por componente espacial de velocidad} \\ \text{Normalmente matriz 6xN}$$

$$J(q) = 1 \text{ fila por componente matriz 6xN}$$

 $[v_x, v_y, v_z]$ vector de velocidad traslacional en O_{XYZ} o S_0 $[w_x, w_y, w_z]$ vector de velocidad angular en O_{XYZ} o S_0

Velocidad de giro es $\sqrt{w_x^2 + w_y^2 + w_z^2}$

Jacobiano

- El jacobiano así definido proporciona la velocidad del extremo del robot respecto del sistema de coordenadas ${\cal O}_{XYZ}$ o ${\cal S}_0$
- Para obtenerlo en el sistema de coordenadas del extremo ${\cal O}_{UVW}$ o ${\cal S}_N$

$$v_{UVW} = \begin{pmatrix} {}^{N}R_{0} & 0_{3x3} \\ 0_{3x3} & {}^{N}R_{0} \end{pmatrix} J(q) \begin{pmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dots \\ \dot{q}_{N} \end{pmatrix} = {}^{N}J(q) \begin{pmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dots \\ \dot{q}_{N} \end{pmatrix}$$

Jacobiano analítico

• Para algunas aplicaciones puede ser más intuitivo utilizar el jacobiano considerando las velocidades de roll, pitch y yaw $[\dot{\theta}_{r,}\dot{\theta}_{p,}\dot{\theta}_{y,}]$, $[\dot{\phi},\dot{\theta},\dot{\psi}]$ o $[\dot{r},\dot{p},\dot{y}]$ en vez del vector \overline{w} .

$$R(r,p,y) = R_x(r)R_y(p)R_z(y)$$

$$\frac{d}{dt}R(r,p,y) = \frac{d}{dr}R_x(r)\dot{r}R_y(p)R_z(y) + \frac{d}{dp}R_y(p)\dot{p}R_x(r)R_z(y) + \frac{d}{dy}R_z(y)\dot{y}R_x(r)R_y(p)$$

$$\frac{d}{dt}R(r,p,y) = S(w)\{R_x(r)R_y(p)R_z(y)\}$$

Resolviendo S(w)

Jacobiano analítico

$$\frac{d}{dt}R(r,p,y) = \mathbf{S}(\mathbf{w})\{R_{x}(r)R_{y}(p)R_{z}(y)\}$$

Resolviendo S(w)

jacobiano
$$\begin{pmatrix} \dot{r} \\ \dot{p} \\ \dot{y} \end{pmatrix} = B(\Gamma)\dot{\Gamma}$$
 $B(r, p, y) = \begin{pmatrix} 1 & 0 & \sin(p) \\ 0 & \cos(r) & -\cos(p)\sin(r) \\ 0 & \sin(r) & \cos(p)\cos(r) \end{pmatrix}$

$$v = J(q)\dot{q} = (v_x, v_y, v_z, w_x, w_y, w_z)^T$$

$$v' = J_A(q)\dot{q} = (v_x, v_y, v_z, \dot{r}, \dot{p}, \dot{y})^T$$

$$J_A(q) = \begin{pmatrix} I_{3x3} & \mathbf{0}_{3x3} \\ \mathbf{0}_{3x3} & B^{-1}(\Gamma) \end{pmatrix} J(q) \qquad \Gamma = (r, p, y)^T$$

Jacobiano inverso

Permite obtener las velocidades articulares, a partir de las velocidades en el espacio de la tareas

$$\begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dots \\ \dot{q}_N \end{pmatrix} = J^{-1}(q) \begin{pmatrix} v_x \\ v_y \\ v_z \\ w_x \\ w_y \\ w_z \end{pmatrix} \qquad \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dots \\ \dot{q}_N \end{pmatrix} = J_A^{-1}(q) \begin{pmatrix} v_x \\ v_y \\ v_z \\ \dot{r} \\ \dot{p} \\ \dot{y} \end{pmatrix}$$

Jacobiano inverso

Posibles métodos de cálculo:

- Inversión simbólica de la matriz jacobiana
 →complejo 6x6
- Derivando el modelo cinemático inverso
- Evaluación numérica de J e inversión numérica
 - Necesidad de recómputo continuo
 - En ocasiones J no es cuadrada \rightarrow pseudoinversa
 - En ocasiones $J=0 \rightarrow$ puntos singulares

Manipuladores infra y sobre actuados

Si el robot es infra-actuado (underactuated): N<6

$$v_{XYZ} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ w_y \\ w_z \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} & J_{13} & J_{14} \\ J_{21} & J_{22} & J_{23} & J_{24} \\ J_{31} & J_{32} & J_{33} & J_{34} \\ J_{41} & J_{42} & J_{43} & J_{44} \\ J_{51} & J_{52} & J_{53} & J_{54} \\ J_{61} & J_{62} & J_{63} & J_{64} \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{pmatrix} q_3$$

- Jacobiano no es cuadrado → no puede ser invertido
- $[w_x, w_y]$ no se pueden controlar

Manipuladores infra y sobre actuados

Si el robot es infra-actuado (underactuated): N<6

$$v_{XYZ} = \begin{pmatrix} v_x \\ v_y \\ v_z \\ w_z \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} & J_{13} & J_{14} \\ J_{21} & J_{22} & J_{23} & J_{24} \\ J_{31} & J_{32} & J_{33} & J_{34} \\ J_{61} & J_{62} & J_{63} & J_{64} \end{pmatrix} \begin{pmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \dot{q}_3 \\ \dot{q}_4 \end{pmatrix}$$

Ahora el Jacobiano ya puede ser invertido

Manipuladores infra y sobre actuados

Si el robot es sobre-actuado o redundante(overactuated):

$$v_{XYZ} = \begin{pmatrix} v_{\chi} \\ v_{y} \\ v_{z} \\ w_{\chi} \\ w_{y} \\ w_{z} \end{pmatrix} = \begin{pmatrix} J_{11} & J_{12} & \dots & J_{1N} \\ J_{21} & J_{22} & \dots & \dots \\ J_{N1} & J_{N2} & \dots & J_{NN} \end{pmatrix} \begin{pmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dots \\ \dot{q}_{N} \end{pmatrix}$$

Se pueden eliminar columnas

- No puede ser invertido el jacobiano
- Pero se puede usar la pseudoinversa

$$\dot{q} = J(q)^+ v$$
 $J^+ = (J^T J)^{-1} J^T$

N>6

Snake-robot de OC 20GDL

https://www.youtube.com/watch?v=cV7aT8nvUL4

Robótica Industrial 4º G. Ing Electrónica- Automática

73

Manipuladores infra y sobre actuados

Si el robot es sobre-actuado o redundante(overactuated):
 N>6

$$v = J(q)\dot{q}$$

 \dot{q} tiene infinitas soluciones

Aplicando la pseudoinversa

$$\dot{q} = J(q)^+ v \quad J^+ = (J^T J)^{-1} J^T$$

 $\dot{m{q}}$ es la solución con menor norma $\|\dot{m{q}}\|$

Snake-robot de OC 20GDL

https://www.youtube.com/watch?v=cV7aT8nvUL4

Manipuladores infra y sobre actuados

Si el robot es sobre-actuado o redundante(overactuated):

$$\dot{q} = J(q)^+ v + NN^+ \, \dot{q}_{NS}$$

Articulaciones que

no afectan a la
posición final

Estas articulaciones son útiles para evitar obstáculos Cambian la forma del manipulador

N es el espacio nulo de J(q) o Ker{J(q)}

- Conjunto de vectores $N = \{n_1, n_2, ... n_M\}$
- Tal que $J(q)n_i=0$
- Número de vectores=nº articulaciones -6

Snake-robot de OC 20GDL

N>6

https://www.youtube.com/watch?v=cV7aT8nvUL4

Robótica Industrial 4º G. Ing Electrónica- Automática

Manipuladores infra y sobre actuados

Si el robot es sobre-actuado o redundante(overactuated):

Ejemplo Matlab

```
>>mdl_hyper3d(20)
```

>>q=rand(1,20)

>>h3d.plot(q)

N = 20

Configuraciones singulares

- Cuando $|J(q)| = 0 \rightarrow \text{Ran}(J(q)) \neq Nfilas$
- $dp = J(q) \cdot dq \rightarrow$ Incremento infinitesimal de las coordenadas del robot necesita un incremento infinito de las coordenadas articulares
- Implica pérdida de algún grado de libertad

$$\begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} dq_1 \\ dq_2 \end{bmatrix}, \quad d\mathbf{x} = dq_1 + dq_2, d\mathbf{y} = 0,$$

$$\begin{bmatrix} dx \\ dy \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} dq_1 \\ dq_2 \end{bmatrix}, \quad d\mathbf{x} = dq_1 + dq_2, d\mathbf{y} = 2dq_1 + 2dq_2 = 2dx,$$

Tipos:

- En los límites del espacio de trabajo → bloqueo
- En el interior del espacio de trabajo
- Al calcular las trayectorias debemos evitar pasar por los puntos singulares

Configuraciones singulares

Ejemplo Scara

$$\begin{bmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} -\left(l_{3}S_{12} + l_{2}S_{1}\right) & -l_{3}S_{12} & 0 \\ l_{3}C_{12} + l_{2}C_{1} & l_{3}C_{12} & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} \dot{q}_{1} \\ \dot{q}_{2} \\ \dot{q}_{2} \end{bmatrix}$$

$$Det(J(q)) = l_2 l_3 (S_{12}C_1 - S_1C_{12}) = l_2 l_3 \sin(q_1 + q_2 - q_1) = l_2 l_3 \sin(q_2)$$

$$Detig(J(q)ig)=0$$
 para $oldsymbol{q_2}$ =0 o $oldsymbol{q_2}=oldsymbol{\pi}$

La velocidad crece conforme q se acerca a π , en π vale ∞

Configuraciones singulares

Ejemplo Scara

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -(l_3 S_{12} + l_2 S_1) & -l_3 S_1 \\ l_3 C_{12} + l_2 C_1 & l_3 C_{12} \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}$$

para
$$q_2$$
=0 o $q_2=\pi$

$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} -(l_3S_1 + l_2S_1) & -l_3S_1 \\ l_3C_1 + l_2C_1 & l_3C_1 \end{bmatrix} \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \end{bmatrix}$$

$$\dot{x} = -(l_3S_1 + l_2S_1)\dot{q}_1 - l_3S_1\dot{q}_2$$

$$\dot{y} = (l_3C_1 + l_2C_1)\dot{q}_1 + l_3C_1\dot{q}_2$$

$$\dot{x} = -S_1[(l_3 + l_2)\dot{q}_1 + l_3 \dot{q}_2]$$

$$\dot{y} = C_1[(l_3 + l_2)\dot{q}_1 + l_3\dot{q}_2] = -\frac{c_1}{s_1}\dot{x}$$

Tema 2. Modelado cinemático

Robótica Industrial 4º G. Ing Electrónica- Automática

Bibliografía

- Antonio Barrientos, (2007) Fundamentos de Robótica, 2ª, Mc Graw Hill,
- Anibal Ollero Baturone, (2001) ROBOTICA Manipuladores y Robots Móviles, Marcombo, 84-267-1313-0,
- Hartenberg, R. S., & Denavit, J. (1955). A kinematic notation for lower pair mechanisms based on matrices.
- Cinemática del Brazo articulado PUMA. Jose Cortes Parejo
- Jaber A.A. (2017) PUMA 560 Robot and Its Dynamic Characteristics. In: Design of an Intelligent Embedded System for Condition Monitoring of an Industrial Robot. Springer Theses (Recognizing Outstanding Ph.D. Research). Springer, Cham
- Lagarias, J. C., J. A. Reeds, M. H. Wright, and P. E. Wright. "Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions." SIAM Journal of Optimization. Vol. 9, Number 1, 1998, pp. 112–147.
- Shanno, D. F. "Conditioning of Quasi-Newton Methods for Function Minimization." Mathematics of Computing, Vol. 24, 1970, pp. 647–656.
- Coleman, T. F. and Y. Li. "An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds." SIAM Journal on Optimization, Vol. 6, 1996, pp. 418–445.
- https://robotacademy.net.au/

