Does the US have an Infrastructure Cost Problem? Evidence from the Interstate Highway System

Neil Mehrotra, Juan Pablo Uribe and Matthew Turner

September 2022

Trends in the interstate highway system

Introduction I

- ► Expenditure and VMT about double as extent increases and pavement quality improves ⇒ cost decreasing?
- ► Construction cost of a lane mile or pavement quality increases ⇒ cost increasing?
- ▶ We need some theory. We pose the problem of managing the interstate as an optimal capital stock problem ⇒ 'user cost' is charge per vehicle mile that rationalizes investment.

Introduction II

► Results

- Capital cost of lane miles contributes 100 times as much to user cost as the capital cost of pavement quality or depreciation.
- ► The price of lane miles increased by about a factor of 2.5 from 1992-2008 and the price of pavement quality by about a factor of 2.
- ▶ User cost fell by half from 1992-2008 because (1) interest rates fell from 4% to 1%, (2) VMT doubled. Things could have been different.
- ► Increase in construction cost is not a composition effect.

 Increase in resurfacing costs is from materials costs.

 Stagnation/decline of infrastructure TFP is partial at most.
- ► Also, ... we have lots of work on the benefits of highways. We want to get better estimates of costs.

Literature

- ► Brooks and Liscow, unpublished, (2018). Estimate cost of miles 1950-1993. Find 4-fold increase mostly from 1970-1993. They suggest 'citizen's voice'. We find about a 2.5-fold increase 1992-2008, and larger for 1984-2008.
- ► Small and Winston AER (1978). The only other analysis of roughness. Much higher cost of resurfacing than we find.
- ➤ Smith et al. (1999a), Smith et al. (1999b), environmental regulation associated with higher costs per mile constructed (1990-1994)
- ► Keeler and Small, JPE (1978). Similar model, SF bay area, only. Less interested in dynamics.
- ► Allen and Arkolakis QJE (2014), Duranton and Turner RES (2012). 'Steady state' cost estimates.

Defining the 'cost of the interstate' (1)

We want τ_t to rationalize observed investment in lane miles and pavement quality.

$$V(L_{0}, q_{0}) = \max_{I_{t}^{L}, \iota_{t}^{q}} \sum_{t=0}^{\infty} \frac{\tau_{t} v(q_{t}^{-1}, L_{t}) - p_{t}^{L} I_{t}^{L} - p_{t}^{q} \iota_{t}^{q} L_{t}}{(1+r)^{t}}$$
s.t. $L_{t+1} = L_{t} + I_{t}^{L}$ (1)
$$q_{t+1} = q_{t} + \kappa \frac{v(q_{t}^{-1}, L_{t})}{I_{t}} - \iota_{t}^{q}$$
 (2)

 $\tau_t \sim \text{user cost of capital/user fee per vehicle mile.}$

 $q_t, p_t^q \sim IRI$

 $L_t, p_t^L \sim \text{lane miles}$

 $v(q_t^{-1}, L_t) \sim \mathsf{VMT}$, CRS in q^{-1}, L_t

 $r \sim$ time-varying real interest rate.

 $\kappa \sim$ depreciation rate of q

Defining the 'cost of the interstate' (2)

- ► This is a standard optimal capital stock problem adjusted to describe the interstate.
- ► The value of travel is the subject of ongoing research. We make two simplifying assumptions about the objective
 - ▶ v CRS
 - linearity in user costs.

These were the weakest assumptions we could find.

- ► It looks a lot like the FHA problem: the FHA gets gas taxes and pays for pavement quality and lane miles.
- ► In a steady state,

$$\tau = \left\lceil rp^{L}L + rp^{q}qL + \kappa p^{q}v\right\rceil / v.$$

This is the user fee that rationalizes given steady state quality and extent must offset the capital cost of lane-miles, the capital cost of keeping lanes miles at quality q, and offset depreciation, $\kappa_{\rm VMT}$. N.B.: CRS makes this expression a lot simpler.

► The dynamic version is interesting, too.

Data

We rely on three main data sources:

- ► Highway Statistics, state-year data on expenditure for construction, resurfacing and maintenance (1984–).
 - ► Construction: 'ROW', 'New Construction', 'Major Widening'.
 - ► Resurfacing: 'Reconstruction', 'Rehabilitation, Restoration and Resurfacing'.
 - ► Maintenance: signage, emergency services, snow removal, etc.
- ► HPMS Universe data, state-year data on lane miles for ALL interstate segments (1980-2008).
- ► HPMS Sample data, segment-year level data on IRI and resurfacing for a SAMPLE of interstate segments. (1992-2008)
- ► Various other, mostly GIS data sets, track system characteristics over time, e.g., proximity to water.
- ▶ We estimate p^q using segment-year level data, HPMS Sample×Highway Statistics. We estimate p^L using state-year data, HPMS Universe×Highway Statistics.

Resurfacing and the (inverse) price of IRI p_t^q over time

Inches of roughness per million dollars of expenditure $(1/p^q)$. About 820 inches per million dollars in 1992, 490 in 2008. Inverting, $p_{1992}^q=1,200\$/\text{inch}$, $p_{1992}^q=2,050\$/\text{inch}$. Solid line is linear fit we use in our calibration.

Inverse price of lane-miles, p_t^L , over time (1)

- Mean new lane miles per million of state expenditure $(1/p^L)$, by year.
- ► These are inverse prices. Solid line is linear fit we use in our calibration.

Why do p_t^q and p_t^L increase? I

- ▶ Over time, the network is: More urban/busier; flatter and lower; less exposed to unions; more exposed to wetlands; stronger (Structural # increases); and less likely to be concrete. Maybe prices are increasing because we are building and resurfacing different roads over time?
- For both p_t^q and p_t^L ,
 - $ightharpoonup p_t^q$ and p_t^L are higher for urban roads, but urban premium declines. Shift to more urban roads does not explain trend.
 - $ightharpoonup p_t^q$ and p_t^L are higher in more union states, but union share and union premia decline. Changes in union exposure do not explain trends.
 - Proximity to water, elevation, grade, all affect level of p_t^q and p_t^L , but not trend.
 - ▶ Only structural number explains trend in p_t^q and p_t^L .

Why do p_t^q and p_t^L increase? II

Left: Inches of roughness per million dollars of expenditure $(1/p^q)$.

Right: Lane miles of asphaltic concrete per million (x-1).

Increase in price of asphaltic concrete tracks increase in price of roughness.

Materials prices do not explain increase in the price of lane miles.

Calculate User Cost per VMT I

lacktriangle Recall steady state expression for au

$$\tau = \left[rp^{L}L + rp^{q}qL + \kappa p^{q}v \right] / v.$$

- \blacktriangleright We observe L, q, v directly.
- ► *r* is the risk free rate, linear fit to 10 year treasury rate adjusted for inflation.
- ▶ We estimate p^q and p^L .
- ightharpoonup from engineering books.

Calculate User Cost per VMT II

▶ Steady state expression for τ ,

$$\tau = \left\lceil rp^{L}L + rp^{q}qL + \kappa p^{q}VMT \right\rceil / VMT.$$
0.35
0.20
0.25
0.20
1992 1996 2000 2004 2008

- ▶ This shows how τ changes if we fix other variables in a particular year.
- ▶ Dynamic/Euler equations give much smaller and sometimes negative τ .

Calculate User Cost per VMT III

ightharpoonup Steady State expression for au,

$$\tau = \left\lceil rp^{L}L + rp^{q}qL + \kappa p^{q}VMT \right\rceil / VMT.$$

▶ Let o(k) denote a term of order 10^k , then we can evaluate the order of magnitude of the three terms in the numerator of τ ,

$$rp^L L \sim o(-2) \times o(7) \times o(5) = o(10)$$

 $rp^q qL \sim o(-2) \times o(3) \times o(2) \times o(5) = o(8)$
 $\kappa p^q \text{VMT} \sim 0(-6) \times o(3) \times o(11) = o(8).$

Only the first term matters. This is the rental price for lane miles. It is the components of this term, p^L , r (and VMT). Quality and depreciation are not important determinants of user costs.

Sensitivity and Counterfactuals

		$ au_{2007}$	$ au_{1992}$	$ au_{2007}/ au_{1992}$
Α.	Baseline	0.19	0.33	0.59
B. Counterfactuals	VMT ₉₂	0.26	0.33	0.81
	p_{92}^L	0.09	0.33	0.27
	P ₉₂ P ₉₂	0.18	0.33	0.56
	r ₉₂	0.51	0.33	1.60
C. Sensitivity	IV 92-08	0.06	0.15	0.40
	IV All	0.08	0.15	0.50
	Non parametric (Smooth)	0.07	0.14	0.50

Note: Values of τ in 1992, 2007, and percentage change between the two years. Panel A gives baseline values based on the same data and calculation as presented in the figure. Panel B considers four counterfactual cases identical to the baseline, except with a single variable held fixed. Panel C considers three cases identical to the baseline except for the technique used to estimate p^L .

Conclusion I

- ▶ Between 1994 and 2008, the price of IRI about doubled. This probably reflects increases in materials prices. This affects almost half of 2008 interstate expenditure.
- ▶ Between 1984 and 2008 the price of new construction increased by about a factor of 7. This may reflect hard to observe changes in construction or 'citizen's voice' (Brooks and Liscow, 2020).
- Composition effects are important for level effects, not for trend. The urban and union premia decrease.
- ► The steady state user cost of the interstate is declining. Interest rate decreases and VMT increases more than offset price increases. If interest rates go up, we have a problem.

Conclusion II

Does the US have an infrastructure cost problem?

- ► Prices relevant to 80% of the interstate budget are increasing rapidly.
- ► This is not strictly about 'construction costs'. The cost of resurfacing increases only because of materials costs.
- Overall, user costs decline. Increases in the price of new construction are not as important as the decline in interest rate and increase in VMT.
- ► Suggestive evidence indicates that new lane miles are changing in ways that we can't quite see. Do these (speculative) design changes pass a cost benefit test?
 - ► Early roads probably did not do enough externality mitigation (Brooks and Liscow 2020, Brinkman and Lin (2020)).
 - ► The interstate carries twice as much traffic through more urban places in 2008 than 1990. More externality mitigation makes sense.