FIIT

Teoretické základy informatiky

Random Access Machine

Mgr. Daniela Chudá, PhD., chuda@fiit.stuba.sk

Random Access Machine

- výpočtový model RAM stroj s ľubovolným prístupom do pamäti
- model počítača, ktorý dokáže realizovať inštrukcie, podobný klasickým sekvenčným počítačom
- obsahuje:
 - pamäť dát, tvorenú registrami,
 - pamäť programu s inštrukciami,
 - aritmeticko-logickú jednotku,
 - rozhranie s okolím vstupná a výstupná jednotka.
- vhodný výpočtový model na skúmanie algoritmov z hľadiska výpočtovej a priestorovej zložitosti

Model RAM - RANDOM ACCESS MACHINE INPUT Program memory Data memory R₀ ACC **READ 2** R_1 READ 3 R_2 LOAD 2 ALU, CU R_3 ADD 3 R_4 **DIV** =2 AC WRITE 0 R_5 R_6 **OUTPUT** IC - instruction counter AC – argument counter

Adresovanie RAM

=i argument = konštanta i

obsah R_i

*i nepriama adresácia, obsah registra, na ktorý ukazuje adresa v R_i

Adresovanie RAM, typy operandov

Operand	Príklad	Popis		
=i	ADD =-5	Konštanta i. V príklade použitia sa k akumulátoru pričíta číslo 5.		
i	ADD 4	Priame adresovanie. Operand sa vyhodnotí ako obsah registra i. V príklade použitia sa k akumulátoru pričíta obsah registra s indexom 4.		
*i	ADD *7	Nepriame adresovanie. Obsah registra i určí register, ktorého obsah je výsledkom vyhodnotenia operandu. V príklade použitia sa k akumulátoru pričíta obsah registra s indexom daným obsahom registra číslo 7.		

Inštrukcie v RAM

INŠTRUKCIA: MENO operand

Manipulácia s pamäťou:

READ op WRITE op LOAD op STORE op Výpočty:

ADD op SUB op MULT op DIV op Riadiace príkazy:

JUMP label JZERO label JGZERO label HALT ACCEPT REJECT

Inštrukčná sada RAM

Inš	trukcia				
Kód Operand		Popis			
Inštruk	cie pre práct	ı s pamät'ou			
LOAD	operand	operand sa načíta do akumulátora			
STORE	operand	obsah akumulátora sa zapíše do pamäte podľa operandu			
Aritme	tické inštruk	cie			
ADD	operand	operand sa pričíta do akumulátora (an. addition)			
SUB	operand	operand sa odčíta od akumulátora (an. subtraction)			
MUL	operand	akumulátora sa prenásobí operandom (an. multiplication)			
DIV	operand	akumulátor sa predelý operandom (an. division)			
Vstupn	o výstupné i	nštrukcie			
READ	operand	údaj zo vstupnej pásky sa zapíše do pamäte podľa operandu			
WRITE	operand	operand sa zapíše na výstupnú pásku			
Riadiad	e inštrukcie				
JUMP	návestie	skok na návestie			
JZERO	návestie	skok na návestie, ak akumulátor nulový (an. jump if zero)			
JGTZ	návestie	skok, ak akum. väčší ako nula (an. jump if grater than zero)			
HALT		zastavenie výpočtu			

Fungovanie zariadenia RAM

- **Dátová pamäť** nekonečne veľa registrov R₁.....R_N, dá sa uvažovať, že využívam konečnú množinu registrov, reálny počítač uspokojivo veľká pamäť pre naše potreby
- **Akumulátor** špeciálny register R₀, spolupracuje ALU, uchováva si výsledok
- **Pamät' programu, Realizácia inštrukcií** inštrukcie sa realizujú jedna za druhou
- IC instruction counter, instruction pointer, ukazuje na inštrukciu, ktorá sa aktuálne vykonáva
- AC argument counter, ukazuje na argument, ktorý sa spracováva

Sémantika (1)

READ op WRITE op VSTUP/VÝSTUP číslo zo vstupu prenesie do op (input \to R_{op}) to čo je určené v op na výstup (R_{op} → output) nekonečná páska len s číslami, číta čísla vcelku

Uchovávanie dát v registroch

LOAD op

STORE op

z op zapíše do Acc (op $\rightarrow R_0$)

z Acc zapíše do op $(R_0 \rightarrow op)$

Aritmetické operácie

ADD

SUB

MULT

DIV

$$(R_0 + op \rightarrow R_0)$$

$$(R_0 - op \rightarrow R_0)$$

$$(R_0 * op \rightarrow R_0)$$

$$(R_0 / op \rightarrow R_0)$$

R₀ je prvý

celočíselne, R₀ je prvý

Sémantika (2)

Skoky
JUMP label
JZERO label
JGZERO label

nepodmienený skok na label GOTO label podmienený if R_0 =0 then GOTO label podmienený if R_0 >0 then GOTO label

Zastavenie HALT

zastavenie programu, bez návestia, ďalej sa nepokračuje

Modifikácie RAM

- zmena inštrukčnej sady
 RAM+ stroj bez MUL a DIV
- stroj na rozpoznávanie jazykov pridaním operácií ACCEPT a REJECT
- umožnením vlastnej modifikácie

RASP, môže modifikovať sám seba zmenou inštrukcií v pamäti, Random Access Stored program

PR.:Aritmetický priemer 2 hodnôt

READ 2

READ 3

LOAD 2

ADD 3

DIV = 2

WRITE C

U

načítam prvý argument do R₂

načítam prvý argument do R₃

prvý agrument umiestním do R₀

pripočítam obsah R₃

vydelím dvoma

v ACC je výsledok, vypíšem ho na výstup

vstup R₂, R₃

výstup R₀

Príklad

Pomocou stroja RAM realizujte funkciu f(n) = n!, kde $n \in \mathbb{N}^+$

```
read(n), fak = 1
for (i=1, i <= n, i++)
{
    fak = fak * i
}
write (fak)</pre>
```

READ 1

LOAD 1

STORE 2

Zac:

LOAD 1

SUB =1

STORE 1

JZERO End

MULT 2

STORE 2

JUMP Zac

End:

WRITE 2

HALT

Priklad Pomocou stroja RAM realizujte funkciu $f(n) = 2^n$, kde $n \in \mathbb{N}^+$

```
read(n), R2 = 1
for (i=1, i <= n, i++)
 R2 = R2 * 2
write (R2)
```

READ 1

LOAD 1

STORE =2

Zac: LOAD 1

SUB =1

STORE 1

JZERO End

MULT =2

STORE 2

JUMP Zac

End: **WRITE 2**

HALT

Príklad

Pomocou stroja RAM realizujte funkciu $f(n)=2^{2^n}$, kde $n\in\mathbb{N}^+$

read(n), R2 = 2 for (i=1, i <= n, i++) { R2 = R2 * R2 } write(R2) READ 1

LOAD = 2

STORE 2

LOAD 1

Zac: JGZERO For

WRITE 2

HALT

For: LOAD 2

MULT 2

STORE 2

LOAD 1

SUB =1

STORE 1

JUMP Zac

Zložitosť v modeli RAM

Výpočtová zložitosť v modeli RAM:

- časová
- priestorová, pamäťová

Zložitostné miery na RAM:

- jednotková zložitostná miera
- logaritmická zložitostná miera

RAM - Cena inštrukcií

- Jednotková cena cena každej inštrukcie je rovná 1
- Logaritmická cena Nech l(i) je logaritmická funkcia čísla daná takto: $l(i) = \lfloor log_2 i \rfloor + 1; i \neq 0$ l(i) = 1; i = 0

Časová náročnosť práce s jednotlivými operadami

Operand op	Cena $t(op)$	Popis
=i	l(i)	Cena daná náročnosťou manipulácie s číslom i .
i	l(i) + l(c(i))	Cena daná náročnosťou manipulácie s indexom registra i (čím vyšší index, tým nákladnejší prístup) a obsahom registra i .
*i	l(i)+l(c(i))+ $l(c(c(i)))$	Je nevyhnutné "zaplatit" za prístup do registra i , potom za prístup do registra $c(i)$ (register je určený nepriamou adresáciou pomocou registra i) a nakoniec za manipuláciu s číslom $c(c(i))$ v registri $c(i)$.

Časová náročnosť jednotlivých inštrukcií

Inš	trukcia	
Kód	Operand	Cena
LOAD	op	t(op)
STORE	i	l(c(0)) + l(i)
STORE	*i	l(c(0)) + l(i) + l(c(i))
ADD	op	l(c(0)) + t(op)
SUB	op	l(c(0)) + t(op)
MUL	op	l(c(0)) + t(op)
DIV	op	l(c(0)) + t(op)
READ	i	l(vstup) + l(i)
READ	*i	l(vstup) + l(i) + l(c(i))
WRITE	op	t(op)
JUMP	návestie	1
JZERO	návestie	l(c(0))
JGTZ	návestie	l(c(0))
HALT		1

<u>Pamäťová zložitosť</u> S <u>programu P na počítači RAM</u> sa rovná súčet maxím cien všetkých vykonaných inštrukcií cez všetky použité registre

 $S = \sum_{R_j \in \mathbb{R}} \max_{ins \in V(P)} Cena(insR_j)$

<u>Časová zložitosť</u> T programu P na počítači RAM sa rovná súčtu cien všetkých vykonaných inštrukcií počas výpočtu programu P

 $T = \sum_{ins \in V(P)} Cena(ins)$

Sumarizácia zložitostných mier na stroji RAM

	Zložitostná miera			
Typ zložitosti	Jednotková	Logaritmická		
Časová	Jednotková časová	Logaritmická časová		
Priestorová	Jednotková priestorová	Logaritmická priestorová		

Príklad

$f(x)=2^N$

read(N),	
R2 = 1	
for $(i=N, i >= 0, i)$	
{	
R2 = R2 * 2	
}	
write (R2)	
R1←N	
R2←2 ^N	

READ	1
LOAD	=1
STORE	2
LOAD	1
JZERO	=12
LOAD	2
MUL	=2
STORE	2
LOAD	1
SUB	=1
STORE	1
JUMP	=3
WRITE	2
HALT	

0		READ	N
1		LOAD	=1
2		STORE	RES
3	next:	LOAD	N
4		JZERO	end
5		LOAD	RES
6		MUL	=2
7		STORE	RES
8		LOAD	N
9		SUB	=1
10		STORE	N
11		JUMP	next
12	end:	WRITE	RES
13		HALT	

Inš	trukcia	L.	Počet vykonaní	Logaritmická cena		
	READ	1	1	l(n) + l(1)		
	LOAD	=1	1	l(1)		(4)
	STORE	2	1	l(2) + l(1)		— (1)
next:	LOAD	1	n+1	l(1) + l(n-i)		
	JZERO	end	n+1	l(n-i)		
	LOAD	2	n	$l(2) + l(n^i)$		
	MUL	=2	n	$l(n^i) + l(2)$		
	STORE	2	n	$l(n^{(i+1)}) + l(2)$		_ (2)
	LOAD	1	n	l(1) + l(n-i)		
	SUB	=1	n	l(n-i) + l(1)		
	STORE	1	n	l(n-i-1) + l(1)		
	JUMP	next	n	1		
end:	WRITE	2	1	$l(2) + l(2^n)$	4	(3
	HALT		1	1		(0

$$T_1(n) = 7 + 9n$$
 diffe $T_1(n) = O(n)$.

$$S_1(n) = 3$$
, čiže $S_1(n) = O(1)$.

$$S_l(n) = 2l(2^n) + l(n) \approx n \log 2 = O(n).$$

$$(2) = 7^{2}(n) = \sum_{i=1}^{n-1} \log(n^{i}) = \log(n) \sum_{i=1}^{n-1} (-\log(n) \frac{(n-1)n}{2} = O(n^{2}\log(n))$$

(3)
$$T_i^C(n) = 1 + l(2) + l(2^n) \approx \log 2^n = n \log 2 = O(n)$$

Pravidlá pri výpočte zložitosti

- <u>Linearita sumácie</u> $\Sigma_i(c_1.a_i + c_2.b_i) = c_1.\Sigma_i a_i + c_2.\Sigma_i b_i$
- Súčet členov aritmetickej postupnosti $\sum_{i=1}^{n} a_i = \frac{n}{2}(a_1 + a_n)$; $a_{i+1} = a_i + d$
- Vlastnosti logaritmov logA + logB = log(A.B) $logA^B = B.logA$ $log_aX = \frac{log_aX}{log_aa}$

Výpočtová zložitosť príkladu f(x)=2^N na modeli RAM

Inš	strukcia	ι,,	Počet vykonaní	Logaritmická cena
	READ	1	1	l(n) + l(1)
	LOAD	=1	1	l(1)
	STORE	2	1	l(2) + l(1)
next:	LOAD	1	n+1	l(1) + l(n-i)
	JZERO	end	n+1	l(n-i)
	LOAD	2	n	$l(2) + l(n^i)$
	MUL	=2	n	$l(n^i) + l(2)$
	STORE	2	n	$l(n^{(i+1)}) + l(2)$
	LOAD	1	n	l(1) + l(n-i)
	SUB	=1	n	l(n-i) + l(1)
	STORE	1	n	l(n-i-1) + l(1)
	JUMP	next	n	1
end:	WRITE	2	1	$l(2) + l(2^n)$
	HALT		1	1

	Zložitostná miera		
Typ zložitosti	Jednotková Logaritmická		
Časová	$T_1(n) = O(n)$	$T_l(n) = O(n^2 \log(n))$	
Priestorová	$S_1(n) = O(1)$	$S_l(n) = O(n)$	

$$f(n) = 2^{2^n}$$

READ N
$$(N \leftarrow n)$$

LOAD =2

$$\begin{array}{cccc} \mathsf{READ} & \mathsf{N} & (N \leftarrow n) \\ \mathsf{LOAD} & = 2 \\ \mathsf{while:} & \mathsf{STORE} & \mathsf{temp} & (temp \leftarrow 2^{2^{n-N}}) \end{array}$$

JGZERO body (while
$$N > 0$$
 do)

body: SUB
$$=1$$

STORE N
$$(N \leftarrow N-1)$$

$$\begin{array}{lll} \text{STORE} & \text{N} & (N \leftarrow N-1) \\ \text{LOAD} & \text{temp} \\ \text{MULT} & 0 & (R_0 \leftarrow temp^2) \end{array}$$

Analýza zložitosti programu

$$S(n) = O(1)$$
 $S(n) = O(2^n)$

$$T(n) = O(2^{logn})$$
 $T(n) = O(2^n)$

Ekvivalencia RAM <=> TS

Simulácia RAM na TS – 6 páskový TS, simuluje sa každá inštrukcia zvlášť podľa polohy IC

Ekvivalencia výpočtových modelov

Veta 6.4.1 (O ekvivalencií výpočtových modeloch) Nasledujúce výpočtové modely sú ekvivalentné:

- 1. Turingov stroj
- 2. Počítadlový stroj
- 3. Stroj RAM

Abstraktné zložitostné triedy

Uvažujme k-páskové (časovo / páskovo) ohraničené Turingove stroje so vstupným slovom w takým, že platí: |w|=n.

DTIME(f(n)) - trieda jazykov rozpoznávaných deterministickým Turingovym strojom s časovým ohraničením max. f(|w|).

NTIME(f(n)) - trieda jazykov rozpoznávaných nedeterministickým Turingovým strojom s časovým ohraničením max. f(|w|).

DSPACE(g(n)) - trieda jazykov rozpoznávaných deterministickým Turingovym strojom s časovým ohraničením max. g(|w|).

NSPACE(g(n)) - trieda jazykov rozpoznávaných nedeterministickým Turingovym strojom s časovým ohraničením max. g(|w|).

$$P = U_{k=0}^{\infty} DTIME(n^k)$$
$$NP = U_{k=0}^{\infty} NTIME(n^k)$$

Ďakujem za pozornosť. chuda@fiit.stuba.sk