CENG 506 Deep Learning

Lecture 3 – Neural Networks and Backpropagation

Slides were prepared using the course material of Stanford's Machine Learning Course (CS229, Andrew Ng) and CNN Course (CS231n, Fei-Fei, Karpathy, Johnson)

Brain neurons

Neuron Model

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \end{bmatrix} \qquad w = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ w_3 \end{bmatrix}$$

The parameters w are called 'weights'.

This computation is determined by the *activation function*. In this example, activation function is sigmoid function.

Example: AND

Let's build a linear classifier with a network with no hidden layers.

Logical AND operation

 x_1 , x_2 are binary (0 or 1). y=1 if x_1 AND x_2 (So blue circle is the positive class)

Example: AND

$$f_w(x) = g(-30+20x_1+20x_2)$$

g: sigmoid function

x_1	\mathcal{X}_2	$f_w(x)$
0	0	$g(-30)\approx 0$
0	1	$g(-10) \approx 0$
1	0	$g(-10) \approx 0$
1	1	$g(10) \approx 1$

$$f_w(x) \approx x_1 \text{ AND } x_2$$

Example: OR

Another linear classifier for logical OR operation

 x_1 , x_2 are binary (0 or 1). y=1 if x_1 OR x_2

 $f_w(x) = g(-10+20x_1+20x_2)$

$$x_1$$
 x_2 $f_w(x)$
 0 0 $g(-10) \approx 0$
 0 1 $g(10) \approx 1$
 1 0 $g(10) \approx 1$
 1 1 $g(30) \approx 1$

$$f_w(x) \approx x_1 \text{ OR } x_2$$

Nonlinear classification example

Wait a minute! We said before that NNs are good for nonlinear classification.

This is done by adding more layers.

A non-linear classification example: XNOR

$$y=0$$
 if x_1 XOR x_2
 $y=1$ if NOT (x_1 XOR x_2)= x_1 XNOR x_2
(blue circles are the positive class)

Hint: x_1 XNOR x_2 = (NOT x_1 AND NOT x_2) OR (x_1 AND x_2)

Example: XNOR

2-layer Neural Network (or 1-hidden-layer neural network)

3-layer Neural Network (or 2-hidden-layer neural network)

As we go further in layers, more complex functions are modeled.

Effect of the number of hidden neurons/layers

More neurons, more capacity to learn complex boundaries

Forward Propagation

$$z_{1}^{(2)} = w_{10}^{(1)} + w_{11}^{(1)}x_{1} + w_{12}^{(1)}x_{2} + w_{13}^{(1)}x_{3}$$

$$a_{1}^{(2)} = g(z_{1}^{(2)})$$
Remember g is the sigmoid function
$$a_{i}^{(j)} = \text{``activation''} \text{ of unit } i \text{ in layer } j$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{4}^{(2)}$$

$$x_{5}$$

$$x_{6}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}^{(2)}$$

$$x_{4}$$

$$x_{5}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{7}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{6}$$

$$x_{7}$$

$$x_{8}$$

$$x_{9}$$

$$x_{9}$$

$$x_{9}$$

$$x_{9}$$

$$x_{9}$$

$$x_{9}$$

$$x_{9}$$

$$x_{1}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{4}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{9}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{9}$$

$$x_{1}$$

$$x_{2}$$

$$x_{3}$$

$$x_{4}$$

$$x_{5}$$

$$x_{7}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_{8}$$

$$x_$$

Forward Propagation

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{1}{1 + e^{-x}}$$

ReLU

tanh

Leaky ReLU

Neural Network Learning

We have learned about:

- Analogy with the human brain
- Layers of neural networks
- Forward propagation

But how do neural networks 'learn' actually?

Learning corresponds to determining the 'weights' of units.

These weights are optimized using a cost function.

We define 'loss' here.

Loss

To update the weights, we 'backpropagate' the loss to previous layers.

Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g.
$$x=-2$$
, $y=5$, $z=-4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want:
$$\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$$

Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g.
$$x=-2$$
, $y=5$, $z=-4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Derivatives for backpropagation

$$f(x, y, z) = (x + y)z$$

E.g.
$$x=-2$$
, $y=5$, $z=-4$

$$q=x+y \qquad rac{\partial q}{\partial x}=1, rac{\partial q}{\partial y}=1$$

$$f=qz$$
 $rac{\partial f}{\partial q}=z, rac{\partial f}{\partial z}=q$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:
$$\frac{\partial f}{\partial y} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial y}$$
 $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x}$

Gradients for backpropagation

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \end{aligned}$$

$$f(x)=rac{1}{x} \qquad \qquad \qquad rac{df}{dx}=-1/x^2 \ f_c(x)=c+x \qquad \qquad \qquad \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad o \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \ f_a(x)=ax \qquad o \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+c$$

$$f(x) = rac{1}{x} \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_c(x) = c + x \hspace{1cm}
ightarrow \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a \ \end{array} egin{aligned} f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \ \end{array}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(w,x) = rac{1}{1 + e^{-(w_0 x_0 + w_1 x_1 + w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x)=e^x \qquad \qquad
ightarrow \qquad rac{df}{dx}=e^x \qquad \qquad f(x)=rac{1}{x} \qquad
ightarrow \qquad rac{df}{dx}=-1/x^2 \ f_a(x)=ax \qquad \qquad
ightarrow \qquad rac{df}{dx}=a \qquad \qquad f_c(x)=c+x \qquad \qquad
ightarrow \qquad rac{df}{dx}=1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$f(x) = e^x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = e^x \hspace{1cm} f(x) = rac{1}{x} \hspace{1cm} o \hspace{1cm} rac{df}{dx} = -1/x^2 \ f_a(x) = ax \hspace{1cm} o \hspace{1cm} rac{df}{dx} = a \hspace{1cm} f_c(x) = c + x \hspace{1cm} o \hspace{1cm} rac{df}{dx} = 1$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

Multiplication

w2 -3.00

0.20

$$egin{aligned} f(x) = e^x &
ightarrow & rac{df}{dx} = e^x & f(x) = rac{1}{x} &
ightarrow & rac{df}{dx} = -1/x^2 \ f_a(x) = ax &
ightarrow & rac{df}{dx} = a & f_c(x) = c + x &
ightarrow & rac{df}{dx} = 1 \end{aligned}$$

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = \left(rac{1 + e^{-x} - 1}{1 + e^{-x}}
ight) \left(rac{1}{1 + e^{-x}}
ight) = \left(1 - \sigma(x)
ight)\sigma(x)$$

Another example

$$f(w,x)=rac{1}{1+e^{-(w_0x_0+w_1x_1+w_2)}}$$

$$\sigma(x) = rac{1}{1+e^{-x}}$$

sigmoid function

$$rac{d\sigma(x)}{dx} = rac{e^{-x}}{(1+e^{-x})^2} = \left(rac{1+e^{-x}-1}{1+e^{-x}}
ight) \left(rac{1}{1+e^{-x}}
ight) = \left(1-\sigma(x)
ight)\sigma(x)$$

Example of weight update

Gradients, when applied to weights, decreases the loss at each iteration.

Let's say that correct value for a training sample is 0.43 whereas the neuron gives 0.73 at the beginning (loss is 0.3).

Update in the 1st round (we subtract the gradients):

weights: $w_0=2.06 w_1=-2.88 w_2=-3.06$ function value: 0.66

Example of weight update

Gradients, when applied to weights, decreases the loss at each iteration.

Let's say that correct value for a training sample is 0.43 whereas the neuron gives 0.73 at the beginning (loss is 0.3).

Update in the,

```
1<sup>st</sup> round, weights: w_0=2.06 w_1=-2.88 w_2=-3.06 function value: 0.66
```

$$2^{nd}$$
 round, weights: $w_0=2.11$ $w_1=-2.78$ $w_2=-3.11$ function value: 0.58

$$3^{rd}$$
 round, weights: $w_0=2.14$ $w_1=-2.70$ $w_2=-3.15$ function value: 0.53

. .

. .

. .

19th round, weights: $w_0 = 2.21 \text{ w}_1 = -2.57 \text{ w}_2 = -3.21$ function value: **0.43**

Forward Propagation Refresher

$$z_1^{(2)} = w_{10}^{(1)} + w_{11}^{(1)} x_1 + w_{12}^{(1)} x_2 + w_{13}^{(1)} x_3$$
$$a_1^{(2)} = g(z_1^{(2)})$$

Backpropagation: multiple layers

Need to compute $\frac{\partial E}{\partial w_{ij}^{(l)}}$ for weight update

Backpropagation: multiple layers

$$\delta_j^{(l)} = \frac{\partial E}{\partial z_j^{(l)}}$$
 , aka node delta, is the error of unit j in layer l .

For output unit (layer 4 here) error is:

$$\delta_{1}^{(4)} = (\underline{a_{1}}^{(4)} - \underline{y}) \cdot \frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}$$

$$\underbrace{\frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}}_{local}$$

$$\underbrace{\frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}}_{local}$$

$$\underbrace{\frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}}_{local}$$

$$\underbrace{\frac{\partial a_{1}^{(4)}}{\partial z_{1}^{(4)}}}_{local}$$

$$\delta_1^{(4)} = (a_1^{(4)} - y) \cdot \underbrace{a_1^{(4)} \cdot (1 - a_1^{(4)})}_{local \ gradient}$$

Note: We assumed that we used sigmoid in the output unit $\,\delta_1^{(4)}\,$

Backpropagation: multiple layers

$$\delta_j^{(l)} = \frac{\partial E}{\partial z_j^{(l)}}$$
 , aka node delta, is the error of unit j in layer l .

For output unit (layer 4 here) error is:

$$\delta_1^{(4)} = (a_1^{(4)} - y) \cdot \frac{\partial a_1^{(4)}}{\partial z_1^{(4)}}$$

$$\delta^{(3)} = (w^{(3)})^T \cdot \delta^{(4)} \cdot * \frac{\partial a^{(3)}}{\partial z^{(3)}} \leftarrow a^{(3)} \cdot * (1 - a^{(3)})$$

$$\delta^{(2)} = (w^{(2)})^T \cdot \delta^{(3)} \cdot * \frac{\partial a^{(2)}}{\partial z^{(2)}} \leftarrow a^{(2)} \cdot * (1 - a^{(2)})$$

$$\delta^{(2)} = \left(w^{(2)}\right)^T \cdot \delta^{(3)} \cdot * \underbrace{\frac{\partial a^{(2)}}{\partial z^{(2)}}} \in a^{(2)}.*(1-a^{(2)})$$

We 'backpropagate' the error.

Backpropagation: example

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = a_1^{(3)} \cdot (1 - a_1^{(3)}) \cdot w_{11}^{(3)} \cdot \delta_1^{(4)}$$

Backpropagation: example

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = a_1^{(3)} \cdot (1 - a_1^{(3)}) \cdot w_{11}^{(3)} \cdot \delta_1^{(4)}$$

Backpropagation: example

$$\delta_1^{(3)} = \frac{\partial E}{\partial z_1^{(3)}} = a_1^{(3)} \cdot (1 - a_1^{(3)}) \cdot w_{11}^{(3)} \cdot \delta_1^{(4)}$$

Backpropagation: weight gradient

Backpropagation: weight gradient

A example of backpropagation with actual numbers

Please see the example given in https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/comment-page-5/#comments

