

UFR Sciences

ANNÉE 2010-2011 1^{ère} session 25 Mars 2011

LICENCE Sciences et Technologie – 1^{ère} année Contrôle terminal EI62 - Langages et Compilation Durée de l'épreuve : 2 heures

Documents autorisés: Polycopié et notes personnelles

A. AUTOMATES

Soit A l'automate suivant :

- 1) Donner une expression régulière définissant le même langage. Décrivez ce langage en une phrase.
- 2) En utilisant la méthode du cours, déterminisez A. Soit A' l'AFD obtenu. Donner la table de transition et la représentation graphique.
- 3) A' est-il minimal ? Si non, donnez un automate minimal équivalent A". Bonus : appliquez la méthode du cours.
- 4) Appelons L(A") le langage défini par A". Donnez un AFD reconnaissant le complémentaire de L(A"). Justifiez votre réponse. Peut-on en déduire un automate reconnaissant le complémentaire de L(A)?
- **NB.** On peut aussi résoudre répondre à la question 4 en considérant A' au lieu de A". L'automate est juste un peu plus complexe.

B. GRAMMAIRES: ANALYSE SYNTAXIQUE

Soit G la grammaire hors contexte suivante :

 $S \rightarrow X A \mid b X$

 $X \rightarrow X d \mid c$

 $A \rightarrow a$

(a,b, c, d sont les terminaux; S, A et X les non terminaux; S est l'axiome.)

1) Analyse ascendante

En utilisant l'analyse ascendante, par décalage-réduction, analysez la chaîne suivante : w = c d d a

Vous appliquerez la méthode « non déterministe » (= en « devinant » les actions appropriées à chaque étape du calcul. On ne demande donc **pas** de calculer la table d'analyse, etc.). Vous expliquerez le principe de la méthode, par exemple en commentant les 3-4 premières étapes. Quelle est la dérivation produite ? est-ce une dérivation gauche ou droite ?

2) Analyse descendante

La grammaire G se prête-t-elle à l'analyse descendante ? si non, donnez une grammaire G' équivalente à G qui le permette.

Calculez les fonctions PREMIER et SUIVANT et la TABLE D'ANALYSE LL(1). La grammaire est-elle LL(1)?

Analysez la chaîne w = c d d a. Quelle est la dérivation produite ? est-ce une dérivation gauche ou droite ?

C. GRAMMAIRES: AMBIGUITE ET GRAMMAIRES ATTRIBUEES

Considérons la grammaire H:

- $S \rightarrow a S b S | b S a S | \epsilon$
- 1) En considérant la chaîne a b a b, montrez que cette grammaire est ambiguë. On expliquera *très précisément* en quoi consiste l'ambiguïté d'une grammaire.
- 2) A partir de la grammaire H, écrire une grammaire attribuée calculant le nombre de a dans l'expression analysée. Vous pourrez utiliser le format « théorique » du cours ou réécrire la grammaire au format de ANTLR en ajoutant les attributs.

A. Automates

- 1) (alb)*(aalbb)(alb)*. Mots sur {a,b} possédant une suite de 2 a ou de 2 b consécutifs. Autrement dit : mots sur {a,b} contenant le facteur aa ou bb.
- 2) Déterminisation. Init = $\{0\}$

Fin =
$$\{0,1,3\}$$
 et $\{0,2,3\}$

	[{0}	{0,1}	{0,2}	{0,1,3}	{0,2,3}
a	{0,1}	{0,1,3}	{0,1}	{0,1,3}	{0,1,3}
b	{0,2}	{0,2}	{0,2,3}	{0,2,3}	$\{0,2,3\}$

Notons :
$$A = \{0\}$$

 $E = \{0,2,3\}$

$$B = \{0,1\}$$

$$C=\{0,2\}$$

$$D=\{0,1,3\}$$

3) L'automate n'est pas minimal. Les deux états finaux sont clairement équivalents, ce que l'on vérifie avec l'algo du cours.

	A	В	C	D	E
~0	<u>A</u>	<u>A</u>	<u>A</u>	D D D D D D D D D D D D	E D D D D D D D
$ \begin{array}{c} \sim 0 \\ a \\ b \\ \sim 1 \\ \hline a \\ b \\ \sim 2 \end{array} $	<u>A</u> <u>A</u> <u>A</u> <u>A</u> <u>B</u> <u>C</u>	<u>A</u> <u>D</u> <u>A</u> <u>B</u> <u>D</u> <u>C</u> B	<u>A</u> <u>A</u> <u>D</u> <u>C</u> <u>B</u> <u>D</u> <u>C</u>	D	$\overline{\mathbf{D}}$
b	<u>A</u>	<u>A</u>	<u>D</u>	<u>D</u>	$\overline{\mathbf{D}}$
~1	<u>A</u>	<u>B</u>	<u>C</u>	D	$\underline{\mathbf{D}}$
a	<u>B</u>	D	<u>B</u>	D	$\underline{\mathbf{D}}$
b	<u>C</u>	<u>C</u>	<u>D</u>	<u>D</u>	$\overline{\mathbf{D}}$
~2	<u>A</u>	<u>B</u>	<u>C</u>	D	$\overline{\mathbf{D}}$

Classes stationnaires. On a l'automate A' avec identification des états D et E.

4) L(A) est aussi le langage reconnu par A" qui est un AFD complet. Son complémentaire est reconnu par l'automate égal à A" dont on a interverti les états acceptants et non acceptants.

B. GRAMMAIRES: ANALYSE SYNTAXIQUE

Soit G la grammaire hors contexte suivante :

$$S \rightarrow X A \mid b X$$

$$X \rightarrow X d \mid c$$

A → a1) Analyse ascendante.

PILE	TAMPON	ACTION
\$	c d d a \$	<u>Décaler</u>
\$ c	d d a \$	Réduire $X \rightarrow c$
\$ X	d d a \$	<u>Décaler</u>
\$ X d	da\$	Réduire $X \rightarrow X d$
\$ X	d a \$	<u>Décaler</u>
\$ X d	a \$	Réduire $X \rightarrow X d$
\$ X	a \$	<u>Décaler</u>
\$ X a	\$	<u>Réduire</u> A→ a
\$ X A	\$	<u>Réduire S→ X A</u>
\$ S	\$	SUCCES

<u>Description</u>: cf cours

DE BAS EN HAUT Dérivation (droite) :

 $S \rightarrow X A \rightarrow X a \rightarrow X d a \rightarrow X d d a \rightarrow c d d a$

2) Analyse descendante

G présente une récursivité gauche sur X. La transformation standard donne :

$$S \rightarrow X A \mid b X$$

$$X \rightarrow c X'$$

$$X' \rightarrow d X' \mid \epsilon$$

 $A \rightarrow a$

PREMIER		SUIVANT			
		(1)	(2)	(3)	
S	bс	\$	-	-	
X	c	-	a	\$	
Χ'	d	-	-	a \$	
٨	0			¢	

TABLE D'ANALYSE

	a	b	c	d	\$
S	-	(2)	(1)	-	-
X			(3)	-	-
X'	(5)	-	_	(4)	(5)
A	(6)				

PILE	TAMPON	ACTION
S \$	c d d a \$	Règle S \rightarrow X A
X A \$	c d d a \$	Règle $X \rightarrow c X'$
c X' A \$	c d d a \$	<u>Dépiler</u>
X' A \$	d d a \$	Règle $X' \rightarrow d X'$
d X' A \$	d d a \$	<u>Dépiler</u>
X' A \$	d a \$	Règle $X' \rightarrow d X'$
d X' A \$	d a \$	<u>Dépiler</u>
X' A \$	a \$	$\underline{\text{Règle X'} \rightarrow \epsilon}$
A \$	a \$	Règle A→ a
a \$	a \$	<u>Dépiler</u>
\$	\$	SUCCES

DE HAUT EN BAS

Dérivation (gauche) :S \rightarrow X A \rightarrow c X' A \rightarrow c d X' A \rightarrow c d d X' A \rightarrow c d d A \rightarrow c d d a

C. GRAMMAIRES: AMBIGUITE ET GRAMMAIRES ATTRIBUEES

1) c = a b a b

Par exemple 2 dérivations gauches, conduisant à 2 arbres syntaxiques différents.

 $S \rightarrow a S b S \rightarrow a b S \rightarrow a b a S b S \rightarrow a b a b S \rightarrow a b a b$

 $S \rightarrow a S b S \rightarrow a b S a S b S \rightarrow^* a$ b a b en finissant par des $S \rightarrow \epsilon$

Premier arbre

Deuxième arbre

2) attribut : a. Format du cours.

 $S \rightarrow a S b S$

S.a = S1.a + S2.a + 1

 $S \rightarrow b S a S$

S.a = S1.a + S2.a + 1

 $S \rightarrow \epsilon$

S.a = 0