数据库管理1

授课教师:秦建斌

邮箱: qinjianbin@szu.edu.cn

深圳大学 计算机与软件学院

- □数据库安全(对应第4章) □数据库完整性(对应第5章)
- □并发控制(对应第11章)

数据库管理

- ☐ Database System = Database + DBMS
- □DBMS (database management system)数据库管理系统

- □数据库安全(对应第4章)
- □数据库完整性 (对应第5章)

- ■数据库系统中的数据共享不能是无条件的共享
- ■计算机系统中,安全措施是一级一级层层设置

- □数据库安全性控制的常用方法
 - ■用户标识和鉴定
 - ■存取控制
 - ■视图
 - ■审计
 - ■数据加密

- □用户身份鉴别 (Identification & Authentication)
 - ■系统提供的最外层安全保护措施
 - ■用户标识:由用户名和用户标识号组成

(用户标识号在系统整个生命周期内唯一)

- □存取控制
 - ■定义用户权限,并将用户权限登记到数据字典中
- ■通过 SQL 的GRANT 语句和REVOKE 语句实现
- □用户权限组成
 - ■数据对象
 - ■操作类型
- □定义存取权限称为授权

□关系数据库系统中存取控制对象

对象类型	对象	操作类型		
	模式	CREATE SCHEMA 总建数据序。		
数据库	基本表	CREATE TABLE, ALTER TABLE		
模式	视图	CREATE VIEW		
	索引	CREATE INDEX		
数据	基本表 和视图	SELECT, INSERT, UPDATE, DELETE, REFERENCES, ALL PRIVILEGES		
	属性列	SELECT, INSERT, UPDATE, REFERENCES, ALL PRIVILEGES		

关系数据库系统中的存取权限

授权: 授予与回收

1.GRANT

□GRANT语句的一般格式:

GRANT <权限>[,<权限>]...

ON <对象类型> <对象名>[,<对象类型> <对象名>]...

TO <用户>[,<用户>]...

AN PRITAK

[WITH GRANT OPTION];

□语义:将对指定操作对象的指定操作权限授予指定的用户

例题

[例4.1] 把查询Student表权限授给用户U1

GRANT SELECT
ON TABLE Student
TO U1;

GRANT (续)

■发出GRANT:

- ●数据库管理员
- 数据库对象创建者(即属主Owner)
- ●拥有该权限的用户
- ■按受权限的用户
 - ●一个或多个具体用户
 - PUBLIC (即全体用户)

WITH GRANT OPTION子句

■WITH GRANT OPTION子句:

■指定:可以再授予

■没有指定:不能传播

□不允许循环授权

例题 (续)

[例4.2] 把对Student表和Course表的全部权限授予用户U2和U3

GRANT ALL PRIVILIGES
ON TABLE Student, Course
TO U2,U3;

例题 (续)

[例4.3] 把对表SC的查询权限授予所有用户

GRANT SELECT

ON TABLE SC

例题 (续)

[例4.5] 把对表SC的INSERT权限授予U5用户,并允许他再将此权限授予其他用户

GRANT INSERT

ON TABLE SC

TO U5

WITH GRANT OPTION;

授权: 授予与回收(续)

2.REVOKE

□授予的权限可以由数据库管理员或其他授权者用 REVOKE语句收回

□REVOKE语句的一般格式为:

REVOKE <权限>[,<权限>]...

ON <对象类型> <对象名>[,<对象类型><对象名>]...

FROM <用户>[,<用户>];

REVOKE (续)

[例4.8] 把用户U4修改学生学号的权限收回

REVOKE UPDATE(Sno)

ON TABLE Student

FROM U4;

REVOKE(续)

[例4.9] 收回所有用户对表SC的查询权限

REVOKE SELECT ON TABLE SC FROM PUBLIC;

小结:SQL灵活的授权机制

- □数据库管理员:
 - ■拥有所有对象的所有权限
 - ■根据实际情况不同的权限授予不同的用户
- □用户:
 - ■拥有自己建立的对象的全部的操作权限
 - ■可以使用GRANT,把权限授予其他用户
- □被授权的用户
 - ■如果具有"继续授权"的许可,可以把获得的权限再授 予其他用户
- □所有授予出去的权力在必要时又都可用REVOKE语句收回

视图机制

- □把要保密的数据对无权存取这些数据的用户隐 藏起来,对数据提供一定程度的安全保护
- □间接地实现支持存取谓词的用户权限定义

视图机制 (续)

[例4.14] 建立计算机系学生的视图,把对该视图的SELECT权限授于王平,把该视图上的所有操作权限授于张明

```
先建立计算机系学生的视图CS_Student
CREATE VIEW CS_Student
AS
SELECT *
FROM Student
WHERE Sdept='CS';
```

视图机制 (续)

[例4.14] 建立计算机系学生的视图,把对该视图的SELECT

权限授于王平, 把该视图上的所有操作权限授于张明

在视图上进一步定义存取权限

GRANT SELECT

ON CS_Student

TO 王平;

GRANT ALL PRIVILIGES ON CS_Student TO 张明;

视图机制 (续)

视图可以是一个具体信息定义:

```
CREATE VIEW zwu (name, address, salary)
AS
SELECT Name, Address, Salary
```

FROM personnel WHERE personnel.Name = "Zimin Wu";

GRANT select ON zwo TO Zimin;

也可以是一个统计信息

CREATE VIEW salary_summary (total_salary)
AS SELECT sum(Salary)
FROM personnel;

GRANT select ON salary_summary TO bank_manager;

A actual scenario

- □ Suppose a teacher asks the teaching assistant (TA)to key in the scores of those students who have taken the re-sit exam of Database(2701) for him in a database system. What solution should the teacher have in order to protect the privacy of each student? (Hint: show only necessary information and grant proper privileges to the TA)
- ■Student information Table
- □Score{SID,CID,score,resit,sname}

数据库完整性

- □数据库的完整性
 - ■数据的正确性
 - 是指数据是符合现实世界语义,反映了当前实际状况的
 - ■数据的相容性
 - ●是指数据库同一对象在不同关系表中的数据是符合逻辑的 例如,
 - ●学生的学号必须唯一
 - ●性别只能是男或女
 - ●本科学生年龄的取值范围为14~50的整数
 - 学生所选的课程必须是学校开设的课程,学生所在的院系 必须是学校已成立的院系
 - ●等

数据库完整性

- 1 实体完整性
- 2 参照完整性
- 3 用户定义的完整性

1实体完整性定义

- □关系模型的实体完整性
 - ■CREATE TABLE中用PRIMARY KEY定义
- □单属性构成的码有两种说明方法
 - ■定义为列级约束条件
 - ■定义为表级约束条件
- □对多个属性构成的码只有一种说明方法
 - ■定义为表级约束条件

实体完整性定义(续)

[例5.1]将Student表中的Sno属性定义为码

```
CREATE TABLE Student
( Sno CHAR(9) PRIMARY KEY,
  Sname CHAR(20) NOT NULL,
  Ssex CHAR(2),
  Sage SMALLINT,
  Sdept CHAR(20)
```

实体完整性定义(续)

```
(2) 在表级定义主码
CREATE TABLE Student
  (Sno CHAR(9),
     Sname CHAR(20) NOT NULL,
    Ssex CHAR(2),
    Sage SMALLINT,
    Sdept CHAR(20),
    PRIMARY KEY (Sno)
```

实体完整性定义(续)

```
[例5.2] 将SC表中的Sno, Cno属性组定义为码
  CREATE TABLE SC.
    ( Sno CHAR(9) NOT NULL,
     Cno CHAR(4) NOT NULL,
     Grade SMALLINT,
     PRIMARY KEY (Sno,Cno) /*只能在表级定义主码*/
```

实体完整性检查和违约处理

□插入或对主码列进行更新操作时,关系数据库管理

系统按照实体完整性规则自动进行检查。包括:

- ■检查主码值是否唯一,如果不唯一则拒绝插入或修改
- ■检查主码的各个属性是否为空,只要有一个为空就拒绝插 入或修改

2参照完整性定义

- □关系模型的参照完整性定义
 - ■在CREATE TABLE中用FOREIGN KEY短语定义哪些列为外码
 - ■用REFERENCES短语指明这些外码参照哪些表的主码

参照完整性定义(续)

例如,关系SC中(Sno,Cno)是主码。Sno,Cno分别参照Student表的主码和Course表的主码

```
[例5.3]定义SC中的参照完整性
   CREATE TABLE SC
   ( Sno CHAR(9) NOT NULL,
     Cno CHAR(4) NOT NULL,
     Grade SMALLINT,
     PRIMARY KEY (Sno, Cno), /*在表级定义实体完整性*/
     FOREIGN KEY (Sno) REFERENCES Student(Sno),
     /*在表级定义参照完整性*/
     FOREIGN KEY (Cno) REFERENCES Course(Cno)
      /*在表级定义参照完整性*/
    );
```

参照完整性检查和违约处理

- □一个参照完整性将两个表中的相应元组联系起来
- □对被参照表和参照表进行增删改操作时有可能破

坏参照完整性,必须进行检查

被参照表(例如						
studen	t)	参照表(例如 SC)		违约如	违约处理	
可能破坏参照完整性		<	插入元组	拒绝	Carlow an	
可能破坏参照	完整性	<	修改主码值	拒绝	解机炸品州烧,	
删除元组	>	可能	破坏参照完整性	拒绝/	级连删除/设置为空值	
修改主码值	>	可能	破坏参照完整性	拒绝/	级连删除/设置为空值	

参照完整性检查和违约处理(续)

[例5.4] 显式说明参照完整性的违约处理示例 CREATE TABLE SC (Sno CHAR(9) NOT NULL, Cno CHAR(4) NOT NULL, Grade SMALLINT, PRIMARY KEY(Sno,Cno), FOREIGN KEY (Sno) REFERENCES Student(Sno) ON DELETE CASCADE /*级联删除SC表中相应的元组*/ ON UPDATE CASCADE, /*级联更新SC表中相应的元组*/ FOREIGN KEY (Cno) REFERENCES Course(Cno) ON DELETE NO ACTION /*当删除course 表中的元组造成了与SC表不一致时拒绝删除*/ ON UPDATE CASCADE /*当更新course表中的cno时,级联更新SC表中相应的元组*/

3 用户定义的完整性

- □用户定义的完整性是:针对某一具体应用的数据必须满足的语义要求
- □关系数据库管理系统提供了定义和检验用户定义完整性的机制,不必由应用程序承担

属性上约束条件的定义

- □CREATE TABLE时定义属性上的约束条件
 - ■列值非空(NOT NULL)
 - ■列值唯一(UNIQUE)
 - ■检查列值是否满足一个条件表达式(CHECK)

(1) 不允许取空值

[例5.5] 在定义SC表时,说明Sno、Cno、Grade属性不允许取空值。

```
CREATE TABLE SC
( Sno CHAR(9) NOT NULL,
 Cno CHAR(4) NOT NULL,
 Grade SMALLINT NOT NULL,
 PRIMARY KEY (Sno, Cno),
 /* 如果在表级定义实体完整性,隐含了Sno, Cno不允许取空值,则在
 列级不允许取空值的定义 可以不写 */
);
```

(2) 列值唯一

```
[例5.6]建立部门表DEPT,要求部门名称Dname列取值唯一,部门编号Deptno列为主码
CREATE TABLE DEPT
   Deptno NUMERIC(2),
   Dname CHAR(9) UNIQUE NOT NULL,
               /*要求Dname列值唯一,并且不能取空值*/
   Location CHAR(10),
   PRIMARY KEY (Deptno)
  );
```

(3) 用CHECK短语指定列值应该满足的条件

```
[例5.7] Student表的Ssex只允许取"男"或"女"。
CREATE TABLE Student
  (Sno CHAR(9) PRIMARY KEY,
   Sname CHAR(8) NOT NULL,
   Ssex CHAR(2) CHECK (Ssex IN ('男','女')),
                  /*性别属性Ssex只允许取'男'或'女' */
   Sage SMALLINT,
   Sdept CHAR(20)
  );
```

```
[例5.8] SC表的Grade的值应该在0和100之间。
 CREATE TABLE SC
    (Sno CHAR(9),
     Cno CHAR(4),
     Grade SMALLINT CHECK (Grade>=0 AND Grade <=100),
                   /*Grade取值范围是0到100*/
     PRIMARY KEY (Sno,Cno),
     FOREIGN KEY (Sno) REFERENCES Student(Sno),
     FOREIGN KEY (Cno) REFERENCES Course(Cno)
     );
```