Lesson 19 Thermometer

Introduction

In this lesson, you will learn how to use an LCD display to show the temperature.

Hardware Required

- √ 1 * RexQualis UNO R3
- √ 1 * LCD1602 module
- √ 1 * 10k ohm Resistor
- √ 1 * Thermistor
- √ 1 * Potentiometer
- √ 1 * Breadboard
- √ 18 * M-M Jumper Wires

Principle

Thermistor

Thermistor is a type of resistor whose resistance is dependent on temperature end have a electric resistance value for each absolute temperature.

Thermistor widely used to control temperature in electronics devices such as alarms, thermometers, "clocks", electronic circuit temperature compensation, heat sinks, air conditioning. There are two basic types of thermistors: a PTC thermistor (Positive Temperature coeficient) which substantially increases its electrical resistance with increased temperature, and the thermistor NTC (Negative Temperature coeficient), which substantially lowers its electrical resistance with increased temperature. The thermistor is not electrically

polarized. The most common thermistor in electronics store is the NTC type, so I will be using this for the application.

The major problem NTC thermistor is the calibration, that is, to establish a function between electrical resistance and temperature. The variation in its electrical resistance with temperature is non-linear it may be seen as an exponential function according to equation Steinhart-Hart

Code interpretation

```
#include <LiquidCrystal.h>
// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);
//declare variables
float tempC;
float tempF;
int tempPin = 0;
void setup(){
  // set up the LCD's number of columns and rows:
  lcd.begin(16, 2);
  lcd.print("Temp1=");
  lcd.setCursor(0, 1);
  lcd.print("Temp2=");
}
void loop(){
  tempC = analogRead(tempPin); //read the value from the sensor
```

Experimental Procedures

Step 1:Build the circui

Schematic Diagram

Step 2:Open the code:Thermometer_Code

Step 3:Attach Arduino UNO R3 board to your computer via USB cable and check that the 'Board Type' and 'Serial Port' are set correctly.

Step 4:Load the Library:LiquidCrystal

Step 5:Upload the code to the RexQualis UNO R3 board.

Then, you can see the temperature on the LCD display. As you change the temperature of the thermistor, the temperature displayed on the LCD display will change accordingly.

You can see the video of the experiment results on YouTube: https://youtu.be/ysRaTkLefps

If it isn't working, make sure you have assembled the circuit correctly, verified and uploaded the code to your board. For how to upload the code and install the library, check Lesson 0 Preface.