Big Data

GCP Analytics

Cloud Scheduler:

Cloud Scheduler is a fully managed enterprise-grade cron job scheduler. Here, I have set it to an interval of 1 hour so that the live data is loaded into the bucket on an hourly basis.

Cloud Function:

A serverless execution environment for constructing and linking cloud services is called Google Cloud Functions. We can create straightforward, one-purpose functions with Cloud Functions that are linked to events released by our cloud infrastructure and services. When an event being watched fires, the function is called.

Here, I have created a cloud function 'flight-streaming-1'. The properties are shown below:

The entry point is 'flightStreaming' which will trigger the function.

Logs are generated everytime the function is called.

Data Metrics for the cloud function:

Cloud Storage:

The batch and streaming data would be loaded into the folder I created in the bucket. Here, 'scheduled-streaming-data' folder would be filled with data regularly based on our frequency.

Live data gets uploaded into the folder every 1 hour based on our settings.

Dataflow:

I ran the following batch and streaming jobs to get the data into our folder in the bucket.

Batch Dataflow:

To read txt files from Google Cloud Storage to PubSub, I have used a Batch Job in Dataflow using the "Text files on CloudStorage to PubSub" data template.

Read Text Data Succeeded

Streaming dataflow:

To ingest messages from a PubSub topic, transform them, and write them to a BigQuery table that I created by using the provided schema I have used a streaming job in Data flow. The template used is "PubSub Topic to BigQuery".

GCS to Pub/Sub:

Pub/Sub to BigQuery:

Pub/Sub:

I created a PubSub topic to which messages were sent from the data flow job. The messages were in JSON and these were then stored as entries in a BigQuery table.

Topic:

Subscription:

BigQuery:

Data is loaded into the table 'gcs-ps-dest1' which is under the dataset 'streaming dataset1'.

To conduct further analysis and modeling, I wrote queries in BigQuery.

Data gets uploaded into the table I created in the bucket.

1. BQML logistic and linear regression models to predict, <u>for any two-hour time window, for flights leaving ORD</u>:

Create a logistic regression model to predict how many flights are ascending based on baro_altitude, heading, and velocity

```
CREATE OR REPLACE MODEL `2022_abhi_dataset.HW2_LogReg1`
    OPTIONS ( MODEL_TYPE = 'LOGISTIC_REG',
 3
        INPUT_LABEL_COLS = ['ASCENDING'],
        OPTIMIZE_STRATEGY = 'AUTO_STRATEGY',
 4
        MAX_ITERATIONS = 50,
 5
        LEARN_RATE_STRATEGY = 'CONSTANT',
 6
 7
        LEARN_RATE = 0.1,
 8
        EARLY_STOP = FALSE,
        DATA_SPLIT_METHOD = 'AUTO_SPLIT',
 9
10
        AUTO_CLASS_WEIGHTS = TRUE ) AS
11
    SELECT
12
      heading,
13
      velocity,
14
      baro_altitude,
15
      ASCENDING
16 FROM
17
      `2022_abhi_dataset.Flights` bts
18 INNER JOIN
19 `2022_abhi_dataset.gcs_ps_new2` ls
20 ON
21
     (ls.IATA_Code_rep = bts.IATA_CODE_Reporting_Airline
22
     AND CAST(bts.Flight_Number_Reporting_Airline AS STRING) = ls.reporting_airlined_code)
23 WHERE
      OriginAirportID = 13930 --Origin:ORD
24
25 AND time_bq BETWEEN '2022-12-03 23:18:31 UTC' AND '2022-12-04 01:18:31 UTC';
```


Create a linear regression model to predict velocity based on longitude, latitude, vertical rate and barometric altitude.

Mean absolute error	32.8561
Mean squared error	2,572.8547
Mean squared log error	0.8143
Median absolute error	19.3779
R squared	0.4184

```
1
   SELECT * FROM ML.PREDICT(MODEL `2022_abhi_dataset.HW2_LinReg1`,
2
 3
        SELECT DISTINCT Flight_Number_Reporting_Airline,
 4
          longitude,
 5
          latitude,
 6
          vertical_rate,
 7
          baro_altitude,
 8
          velocity
 9
        FROM
10
          `2022_abhi_dataset.Flights` bts
        INNER JOIN
11
12
          `2022_abhi_dataset.gcs_ps_new2` ls
13
          (ls.IATA_Code_rep = bts.IATA_CODE_Reporting_Airline
14
            AND CAST(bts.Flight_Number_Reporting_Airline AS STRING) = ls.reporting_airlined_code)
15
16
        WHERE
17
          OriginAirportID= 13930 --Origin:ORD
          AND time_bq BETWEEN '2022-12-03 23:18:31 UTC' AND '2022-12-04 01:18:31 UTC' ))
18
                                                                                           ≛ SAVE RESULTS ▼
Query results
JOB INFORMATION
                       RESULTS
                                      JSON
                                                  EXECUTION DETAILS
                                                                           EXECUTION GRAPH PREVIEW
       predicted_VELQ
                     Flight_Number_l
                                    longitude
                                                                 vertical_rate
                                                                                baro_altitude
  1
       227.513657...
                            1286
                                       -112.4781
                                                       26.8694
                                                                          0.0
                                                                                    11582.4
                                                                                                    233.62
  2
       231.590086...
                             582
                                        -97.2245
                                                       31.7619
                                                                        -0.33
                                                                                   11871.96
                                                                                                    236.16
```

2. DataStudio Dashboard to display results

 $\underline{https://datastudio.google.com/reporting/3405df41-e8ea-4431-93a5-30061585e1aa}$

About 90.6% of the prediction is correct for the ascending flights based on the data.

https://datastudio.google.com/reporting/69a91202-4175-42aa-bfff-b72182402fdd