

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	10, 15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	835 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 835 MHz

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW input power	0.457 A/m ± 8.2 % (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	168.6 V/m = 44.54 dBV/m
Maximum measured above low end	100 mW input power	165.9 V/m = 44.40 dBV/m
Averaged maximum above arm	100 mW input power	167.3 V/m ± 12.8 % (k=2)

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	108.0 V/m = 40.67 dBV/m
Maximum measured above low end	100 mW input power	107.9 V/m = 40.66 dBV/m
Averaged maximum above arm	100 mW input power	108.0 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
800 MHz	16.8 dB	41.0 Ω - 9.7 jΩ
835 MHz	23.2 dB	53.2 Ω + 6.4 jΩ
900 MHz	15.7 dB	52.8 Ω - 16.9 jΩ
950 MHz	23.1 dB	$48.9 \Omega + 6.9 j\Omega$
960 MHz	16.9 dB	58.6 Ω + 13.1 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 H-field Result

Test Laboratory: SPEAG Lab2

Date: 22.08.2017

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³ Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 30.12.2016
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole~H-Field~measurement~@~835MHz/H-Scan-835MHz~d=10mm/Hearing~Aid~Compatibility~Test

(41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.4830 A/m; Power Drift = 0.04 dB

PMR not calibrated. PMF = 1.000 is applied.

H-field emissions = 0.4568 A/m

Near-field category: M4 (AWF 0 dB)

PMF scaled H-field

-		
Grid 1 M4	Grid 2 M4	Grid 3 M4
0.368 A/m	0.405 A/m	0.392 A/m
Grid 4 M4	Grid 5 M4	Grid 6 M4
0.416 A/m	0.457 A/m	0.446 A/m
Grid 7 M4	Grid 8 M4	Grid 9 M4
0.373 A/m	0.409 A/m	0.398 A/m

0 dB = 0.4568 A/m = -6.81 dBA/m

Certificate No: CD835V3-1023_Aug17

DASY5 E-field Result

Date: 22.08.2017

Test Laboratory: SPEAG Lab2

DUT: HAC-Dipole 835 MHz; Type: CD835V3; Serial: CD835V3 - SN: 1023

Communication System: UID 0 - CW ; Frequency: 835 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: ER3DV6 SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016;
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=10mm/Hearing Aid Compatibility Test

(41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 108.5 V/m; Power Drift = -0.03 dB

Applied MIF = 0.00 dB

RF audio interference level = 44.54 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3 44.17 dBV/m	Grid 3 M3 44.08 dBV/m
Grid 4 M4 38.83 dBV/m	Grid 6 M4 38.86 dBV/m
Grid 7 M3 44.02 dBV/m	Grid 9 M3 44.45 dBV/m

Certificate No: CD835V3-1023_Aug17

Dipole E-Field measurement @ 835MHz/E-Scan - 835MHz d=15mm/Hearing Aid Compatibility Test

(41x361x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 108.0 V/m; Power Drift = 0.01 dB

Applied MIF = 0.00 dB

RF audio interference level = 40.67 dBV/m

Emission category: M3

MIF scaled E-field

Grid 1 M3 40.52 dBV/m	Grid 3 M3 40.47 dBV/m
Grid 4 M4 36.06 dBV/m	Grid 6 M4 36.03 dBV/m
Grid 7 M3 40.48 dBV/m	Grid 9 M3 40.6 dBV/m

0 dB = 168.6 V/m = 44.54 dBV/m

Dipole 1880 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

CTTL (Auden)

Certificate No: CD1880V3-1018 Aug 17

Object	CD1880V3 - SN:	1018	
Calibration procedure(s)	QA CAL-20.v6 Calibration proce	dure for dipoles in air	
Calibration date:	August 23, 2017		
The measurements and the unce	rtainties with confidence p	onal standards, which realize the physical unit robability are given on the following pages and ry facility: environment temperature $(22\pm3)^\circ$ C	d are part of the certificate.
Primary Standards	ID#	Cal Date (Certificate No.)	Cahadulad Calibration
Power meter NRP	SN: 104778	04-Apr-17 (No. 217-02521/02522)	Scheduled Calibration Apr-18
Power sensor NRP-Z91	SN: 103244	04-Apr-17 (No. 217-02521)	Apr-18
Power sensor NRP-Z91	SN: 103245	04-Apr-17 (No. 217-02522)	Apr-18
Reference 20 dB Attenuator	SN: 5058 (20k)	07-Apr-17 (No. 217-02528)	Apr-18
Type-N mismatch combination	SN: 5047.2 / 06327	07-Apr-17 (No. 217-02529)	Apr-18
Probe ER3DV6	SN: 2336	30-Dec-16 (No. ER3-2336_Dec16)	Dec-17
Probe H3DV6	SN: 6065	30-Dec-16 (No. H3-6065_Dec16)	Dec-17
DAE4	SN: 781	13-Jul-17 (No. DAE4-781_Jul17)	Jul-18
	ID#	Check Date (in house)	Scheduled Check
Secondary Standards		09-Oct-09 (in house check Sep-14)	In house check: Oct-17
Power meter Agilent 4419B	SN: GB42420191		
Power meter Agilent 4419B Power sensor HP E4412A	SN: US38485102	05-Jan-10 (in house check Sep-14)	In house check: Oct-17
Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A	SN: US38485102 SN: US37295597	05-Jan-10 (in house check Sep-14) 09-Oct-09 (in house check Sep-14)	In house check: Oct-17 In house check: Oct-17
Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: US38485102 SN: US37295597 SN: 832283/011	05-Jan-10 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 27-Aug-12 (in house check Oct-15)	In house check: Oct-17 In house check: Oct-17
Power meter Agilent 4419B Power sensor HP E4412A	SN: US38485102 SN: US37295597	05-Jan-10 (in house check Sep-14) 09-Oct-09 (in house check Sep-14)	In house check: Oct-17
Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585	05-Jan-10 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 27-Aug-12 (in house check Oct-15) 18-Oct-01 (in house check Oct-16)	In house check: Oct-17 In house check: Oct-17
Power meter Agilent 4419B Power sensor HP E4412A Power sensor HP 8482A RF generator R&S SMT-06	SN: US38485102 SN: US37295597 SN: 832283/011 SN: US37390585	05-Jan-10 (in house check Sep-14) 09-Oct-09 (in house check Sep-14) 27-Aug-12 (in house check Oct-15) 18-Oct-01 (in house check Oct-16)	In house check: Oct-17 In house check: Oct-17 In house check: Oct-17

Certificate No: CD1880V3-1018_Aug17

Page 1 of 8

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

References

- ANSI-C63.19-2007
 American National Standard for Methods of Measurement of Compatibility between Wireless Communications
 Devices and Hearing Aids.
- [2] ANSI-C63.19-2011 American National Standard, Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna
 (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes.
 In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a
 distance of 10 mm (15 mm for [2]) above the top metal edge of the dipole arms.
- Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All
 figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector
 is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a
 directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1] and [2], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (15 mm for [2]) (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.
- H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the
 antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The
 maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as
 calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the
 feed point.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CD1880V3-1018_Aug17 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.0
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	10, 15 mm	
Scan resolution	dx, $dy = 5 mm$	
Frequency	1880 MHz ± 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 1880 MHz

H-field 10 mm above dipole surface	condition	interpolated maximum
Maximum measured	100 mW input power	0.466 A/m ± 8.2 % (k=2)

E-field 10 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	139.3 V/m = 42.88 dBV/m
Maximum measured above low end	100 mW input power	137.4 V/m = 42.76 dBV/m
Averaged maximum above arm	100 mW input power	138.3 V/m ± 12.8 % (k=2)

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	91.7 V/m = 39.24 dBV/m
Maximum measured above low end	100 mW input power	87.4 V/m = 38.83 dBV/m
Averaged maximum above arm	100 mW input power	89.5 V/m ± 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters

Frequency	Return Loss	Impedance
1730 MHz	28.3 dB	54.0 Ω + 0.2 jΩ
1880 MHz	22.6 dB	54.2 Ω + 6.5 jΩ
1900 MHz	22.4 dB	56.3 Ω + 5.1 jΩ
1950 MHz	33.2 dB	52.2 Ω - 0.1 jΩ
2000 MHz	19.3 dB	47.9 Ω + 10.5 jΩ

3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is

therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 H-field Result

Date: 22.08.2017

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: H3DV6 SN6065; ; Calibrated: 30.12.2016
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 13.07.2017
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole~H-Field~measurement~@~1880MHz/H-Scan-1880MHz~d=10mm/Hearing~Aid~Compatibility~Test

(41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 0.4890 A/m; Power Drift = 0.02 dB

PMR not calibrated. PMF = 1.000 is applied.

H-field emissions = 0.4659 A/m

Near-field category: M2 (AWF 0 dB)

PMF scaled H-field

Grid 1 M2 0.394 A/m		The state of the s
Grid 4 M2	The second secon	
0.428 A/m	0.466 A/m	0.456 A/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
0.392 A/m	0.424 A/m	0.413 A/m

0 dB = 0.4659 A/m = -6.63 dBA/m

Certificate No: CD1880V3-1018_Aug17

DASY5 E-field Result

Date: 22.08.2017

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: CD1880V3 - SN: 1018

Communication System: UID 0 - CW ; Frequency: 1880 MHz Medium parameters used: σ = 0 S/m, ϵ_r = 1; ρ = 1000 kg/m³

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: ER3DV6 - SN2336; ConvF(1, 1, 1); Calibrated: 30.12.2016;

• Sensor-Surface: (Fix Surface)

Electronics: DAE4 Sn781; Calibrated: 13.07.2017

Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070

DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417)

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=10mm/Hearing Aid Compatibility Test

(41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 155.3 V/m; Power Drift = -0.01 dB

Applied MIF = 0.00 dB

RF audio interference level = 42.88 dBV/m

Emission category: M1

MIF scaled E-field

	Grid 2 M1 42.88 dBV/m	Grid 3 M1 42.74 dBV/m
Grid 4 M2 39.11 dBV/m	Grid 5 M2 39.45 dBV/m	
	Grid 8 M1 42.76 dBV/m	Grid 9 M1 42.65 dBV/m

Dipole E-Field measurement @ 1880MHz/E-Scan - 1880MHz d=15mm/Hearing Aid Compatibility Test

(41x181x1): Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 155.1 V/m; Power Drift = 0.01 dB

Applied MIF = 0.00 dB

RF audio interference level = 39.24 dBV/m

Emission category: M2

MIF scaled E-field

Grid 1 M2 38.99 dBV/m		Grid 3 M2 39.15 dBV/m
Grid 4 M2 37.01 dBV/m		ACRECO DESCRIPTION OF THE PARTY OF THE
Grid 7 M2 38.56 dBV/m	CONTRACTOR OF THE PROPERTY.	Decimal Street

0 dB = 139.3 V/m = 42.88 dBV/m

The photos of HAC test are presented in the additional document:

Appendix to test report No.I17Z61900-SEM03

The photos of HAC test