

RÉPUBLIQUE FRANÇAISE

MINISTÈRE DE L'INDUSTRIE

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

COPIE OFFICIELLE

LE DOCUMENT CI-ANNEXÉ EST LA COPIE CERTIFIÉE CONFORME, D'UNE DEMANDE
DE TITRE DE PROPRIÉTÉ INDUSTRIELLE ENREGISTRÉE A L'INSTITUT NATIONAL DE LA
PROPRIÉTÉ INDUSTRIELLE.

ÉTABLIE A PARIS, LE 18 AOÛT 1981

313601
[Handwritten signature]
G. DAVID

Pour le Chef de Service,
Directeur de l'Institut National
de la Propriété Industrielle,

/ Pour le Chef de Division,

L'ATTACHEMENT DE LA DÉCLARATION DIVISIONNAIRE OU DE LA TRANSFORMATION NATURE, N° ET DATE DE LA DEMANDE INITIALE:

<input type="checkbox"/>	CERTIFICAT D'ADDITION
<input type="checkbox"/>	DEMANDE DIVISION/LAISE

DATE DU POUPOR GÉNÉRAL ET NOMBRE
DE TÉLÉPHONE DU DEMANDEUR OU DU MANDATAIRE:

LEVERVACO 0 IMICATO 1, 2-a PYRIDINE LEER PRÉPARATION ET
LEVERVACO 0 IMICATO 1, 2-a PYRIDINE LEER PRÉPARATION ET

卷之三

ב' יג' ב'

卷之三

LE DEMANDEUR REQUEUT LE	LE DEMANDEUR BEGEGE
LE DEMANDEUR REQUEUT LE	LE DEMANDEUR BEGEGE
LE DEMANDEUR REQUEUT LE	LE DEMANDEUR BEGEGE
LE DEMANDEUR REQUEUT LE	LE DEMANDEUR BEGEGE
LE DEMANDEUR REQUEUT LE	LE DEMANDEUR BEGEGE

卷之三

جغرافیا

وَالْمُؤْمِنُونَ هُمُ الْأَوَّلُونَ مَنْ يَعْمَلْ مِنْ حُسْنٍ يَرَهُ وَمَنْ يَعْمَلْ مِنْ شُرٍّ فَمَا يَرَهُ إِنَّ اللَّهَ عَزَّ ذِيْلَهُ عَلَىٰ كُلِّ خَلْقٍ

2004 RELEASE UNDER E.O. 14176

卷之三

卷之三

卷之三

NAME OF DEPT.

12

三

INVENTEURS

DEMANDE DE BREVET D'INVENTION POUR :
DERIVES D'IMIDAZO[1,2-a]PYRIDINE, LEUR PREPARATION
ET LEUR APPLICATION EN THERAPEUTIQUE.

La présente invention concerne des dérivés d'imidazo[1,2-a]pyridine, leur préparation et leur application en thérapeutique.

Des imidazo[1,2-a] pyridines ont déjà été décrites dans la littérature, par exemple dans les brevets britanniques 991 589 et 1 076 089 et dans diverses publications.

Les composés de la présente invention répondent à la formule (I):

GEORGE Pascal

39, rue Henri de Vilmorin
94400 - VITRY S/SEINE

NR₁R₂

laquelle

présente un atome d'hydrogène ou d'halogène ou un radi-

alyle,

représente un radical naphtyle ou un radical —
dans lequel X₁ et X₂ sont chacun indépendamment
l'un de l'autre, un atome d'hydrogène ou d'halogène, un
radical C₁₋₄ alkyl, un radical C₁₋₄ alcoxy, un radical C₁₋₄
CF₃',

• R₁ et R₂ représentent chacun indépendamment l'un de l'autre,
soit un atome d'hydrogène, soit un radical C₁₋₄ alkyle croisé
ou ramifié pouvant porter un atome d'halogène, un radical
hydroxy, N(C₁₋₄ alkyl)₂, carboamoyle ou C₁₋₄ alcoxy, soit le
radical allyle, soit le radical propargyle, soit un radical
C₃₋₆ cycloalkyle, soit le radical benzyle, soit le radical
phényle,
ou R₁ est un atome d'hydrogène et R₂ est soit un radical
C₁₋₄ alcoxy, soit un radical N(C₁₋₄ alkyle)₂,

R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène
ou bien
NR₁R₂ représentent ensemble un hétérocycle comportant de
à 6 atomes de carbone, ou un hétérocycle de formule —
D/

Le Mandataire
D'Inventeur
Elisabeth THOURET

Dans laquelle X est O, S, CHOR₂, R₁ étant un atome d'hydrogène ou le radical benzyle et R₂ étant un atome d'hydrogène, un radical C≡N alkyle ou le radical phényle pouvant porter un radical méthoxy ou un atome d'halogène, soit les composés préférés de l'invention sont ceux dans lesquels R₁ et R₂ sont tous deux des radicaux éthyliques.

Parmi ceux-ci le choix se porte sur les composés dans lesquels Y est en position 6 et représente soit un atome d'halogène, soit le radical méthyle.

Et enfin on peut citer parmi ces derniers les composés dans lesquels Z est un radical X₁ — — dans lequel X₁ est un atome d'halogène ou le radical CH₃.

Et enfin on peut citer parmi ces derniers les composés dans les-

quels Y est un radical X₁ — — dans lequel X₁ est un atome d'halogène ou le radical CH₃.

La réaction de transformation du nitrile (II) en amide primaire est effectuée selon une méthode classique par exemple à l'aide d'un acide, tel que l'acide chlorhydrique sec gazeux, dans un solvant tel que l'acide formique à une température allant de 55 à 50°C.

La saponification de l'amide primaire (III) en acide (IV) se fait dans de la potasse éthanologique à la température du reflux.

L'amidification de l'acide (IV) en composé (I) est réalisée 10 selon toute méthode appropriée, par exemple par réaction de l'acide (IV) avec l'amine HNR₁R₂² en présence de carbonyldiimidazole ou par réaction du chlorure de l'acide (IV) avec l'amine HNR₁R₂.

La méthode générale de préparation des nitriles de départ (II), décrite dans la littérature, en particulier dans le brevet 1076 089.

Exemples suivants illustrent la présente invention.

Analyses et les spectres IR et RMN confirmant la structure des composés.

20 EXEMPLE I Chlоро-6 N,N-diméthyl-(chloro-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide.

1. On ajoute 22 g (0,078 mmole) de chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide formiquée à 99%, on traite la solution par un courant d'acide chlorhydrique sec gazeux, pendant 3 à 4 heures. Quand tout le nitrate est transformé, on chauffe un peu la solution afin de la dégazer puis on verse la solution refroidie dans 1 l d'eau ; on agite 10 minutes puis on alcalinise avec 200 ml d'ammoniaque concentrée. On filtre le solide. Le lavage abondamment à l'eau et le sèche à la trompe d'eau. On fait recristalliser, dans de l'éthanol, le chlоро-6 (chloro-4 phényl)-2 imidazo[1,2-a]pyridine-3-acétamide.

Y = 285-7°C

2. à 550 ml d'éthanol à 75% , on ajoute successivement 19,2 g
 de chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a] pyridine-3-
 acétamide et 19 g de KOH . La suspension est portée à 12
 l'ampérette du reflux pendant 10-16 heures . La réaction ter-
 minée , la solution est concentrée sous vide et le résidu est
 dissous dans 1/2 litre d'eau . Le léger insoluble est filtré
 et le filtrat est traité par 50 ml d'acide acétique . L'acide
 attendu précipite , on le filtre et le séche grossièrement .
 On reprend le produit brut par 500 ml d'acétone et filtre à
 10 chaud l'acide chloro-6 (chloro-4 phényl)-2 imidazo[1,2-a]
 pyridine-3-acétique .
 F = 258-260°C

3.. On met en suspension dans 60 ml de tétrahydrofurane sec
 4 g (12,45 mmoles) d'acide chloro-6 (chloro-4 phényl)-2 imida-
 15 zo[1,2-a] pyridine-3-acétique et 2,42 g (14,94 mmoles) de car-
 bon imidazole . On agite le mélange réactionnel à 20°C
 jusqu'à la fin du dégagement de gaz carbonique puis on chauffe
 20 progressivement à 40°C pendant 15 minutes et on refroidit à 0°C .
 On ajoute alors 14,94 mmoles de diméthylamine
 en solu-
 tion dans 5 ml de tétrahydrofurane . On agite la suspension
 pendant 15 minutes à 20°C puis on la concentre ; on traite
 le résidu par 300 ml d'eau et 50 ml d'une solution aqueuse
 saturée de NaHCO₃ . On filtre l'insoluble , lave à l'eau et
 séche . On fait recristalliser le composé obtenu dans un sol-
 25 vait teli que l'éthanol .

$$F = 230^\circ\text{C}$$

EXEMPLE 2 Méthyl-4 { [(chloro-4 phényl)-2 imidazo[1,2-a]-
 5 pyridinyl-3] méthylcarbonyl }-1 pipérazine .

On ajoute 4,5 g (15,64 mmoles) d'acide (chloro-4 phényl)-2
 5 imidazo[1,2-a] pyridine-3-acétique à une suspension de chlorure
 de N,N-diméthyl-chloro-méthylèneiminium , préparé par addition
 de 2,2 g (17,75 mmoles) de chlorure d'oxaïyle à 30 ml de di-
 méthylformamide (DMF) à -10°C . On agite la suspension pen-
 dant 15 minutes à 0°C puis on y ajoute , peu à peu , à 0°C ,
 10 5,4 g (54 mmoles) de méthyl-4 pipérazine en solution dans
 10 ml de DMF sec . On agite la solution pendant 8 heures puis
 on la verse dans 750 ml d'eau . On extrait l'amide avec du
 CH₂Cl₂ , on sèche la phase organique sur Na₂SO₄ , on la concen-
 trate , on fait passer le résidu sur colonne de silice (éluant
 15 CH₃OH 9/1) puis on l'ait recristalliser le composé ob-
 tenu dans un mélange éther isopropylique/acétonitrile .
 F = 175°C

TABLEAU (Suite 1)

Composé	Y	Z	NR ₁ R ₂	$\Sigma ({}^{\circ}\text{C})$
16	6-Cl	4-Cl-C ₆ H ₄	NHC ₆ H ₅	265-7
17	6-Cl	4-Cl-C ₆ H ₄	NHCH ₂ C ₆ H ₅	253-4
5	18	6-Cl	4-Cl-C ₆ H ₄	250-1
		19	6-Cl	4-Cl-C ₆ H ₄
			NHCH ₂ CH ₂ OCH ₃	197
			NHCH ₂ CH ₂ N(CH ₃) ₂	195-201
		20	6-Cl	4-Cl-C ₆ H ₄
			NHCH ₂ CH=CH ₂	233
			NHCH ₂ -C≡CH	239
			NHOCH ₃	234
		21	6-Cl	4-Cl-C ₆ H ₄
		22	6-Cl	4-Cl-C ₆ H ₄
		23	6-Cl	4-Cl-C ₆ H ₄
			NHN(CH ₃) ₂	243
			NHCH ₂ CONH ₂	256-7
		24	6-Cl	4-Cl-C ₆ H ₄
			N(C ₂ H ₅) ₂	230
		25	6-Cl	4-Cl-C ₆ H ₄
			N(C ₂ H ₅) ₂	149
		26	6-Cl	4-Cl-C ₆ H ₄
			N(n-C ₃ H ₇) ₂	140-1
		27	6-Cl	4-Cl-C ₆ H ₄
		28	6-Cl	4-Cl-C ₆ H ₄
			CF ₃	160
		29	6-Cl	4-Cl-C ₆ H ₄
			N-n-C ₃ H ₇	185-6
		30	6-Cl	4-Cl-C ₆ H ₄
			CH ₃	
		31	6-Cl	4-Cl-C ₆ H ₄
		32	6-Cl	4-Cl-C ₆ H ₄

Composé	Y	Z	NR ₁ R ₂	F ({}^{\circ}\text{C})
1	H	4-Cl-C ₆ H ₄	NHCH ₃	234
2	H	4-Cl-C ₆ H ₄	N(CH ₃) ₂	179
3	H	4-Cl-C ₆ H ₄	-N(=O)C ₂ H ₅	167-8
4	H	4-Cl-C ₆ H ₄	-N(CH ₂) ₂	190
5	H	4-Cl-C ₆ H ₄	-N(CH ₂) ₂	175
6	H	3-CF ₃ -C ₆ H ₄	-N(CH ₂) ₂	157,5-158
7	H	4-Cl-C ₆ H ₄	-N(CH ₂) ₂	206-7
8	H	4-Cl-C ₆ H ₄	-N(CH ₂) ₂	242
9	6-Cl	4-Cl-C ₆ H ₄	NHCH ₂	>250
10	6-Cl	4-Cl-C ₆ H ₄	NHCH ₂ H ₅	280-2
11	6-Cl	4-Cl-C ₆ H ₄	NH-n-C ₃ H ₇	229-30
12	6-Cl	4-Cl-C ₆ H ₄	NH-t-C ₃ H ₇	259
13	6-Cl	4-Cl-C ₆ H ₄	NH-n-C ₄ H ₉	225
14	6-Cl	4-Cl-C ₆ H ₄	NH-t-C ₄ H ₉	225
15	6-Cl	4-Cl-C ₆ H ₄	NEt ₂	243-5

TABLEAU (suite 2)

COMPOSÉ	Σ_2	Z	$N_{\Sigma_2} R_2$	T_c (°C)	
33	6-C1	4-C1-C ₆ H ₄		219-220	
34	6-C1	4-C1-C ₆ H ₄		208-9	
35	6-C1	4-C1-C ₆ H ₄		190-2	
36	6-C1	4-C1-C ₆ H ₄		200	
37	6-C1	4-C1-C ₆ H ₄		204-6	
38	6-C1	4-C1-C ₆ H ₄		262	
39	6-C1	4-C1-C ₆ H ₄		239-241	
40	6-C1	4-C1-C ₆ H ₄		270	
41	6-C1	4-C1-C ₆ H ₄		261-2	
42	6-CH ₃	4-C1-C ₆ H ₄		224-5	
43	6-CH ₃	4-C1-C ₆ H ₄		246	
44	6-CH ₃	4-C1-C ₆ H ₄		215	
45	6-CH ₃	4-C1-C ₆ H ₄		202	
46	6-CH ₂	4-C1-C ₆ H ₄		194	
47	6-C1	C ₆ H ₅	N(CH ₃) ₂	276-7	
48	6-C1	C ₆ H ₅	N(CH ₃) ₂	192	
49	6-C1	4-CH ₃ -C ₆ H ₄	N(CH ₃) ₂	277-8	
50	6-C ₂	4-CH ₃ -C ₆ H ₄	N(CH ₃) ₂	185-6	

TABLEAU (suite 3)

COMPOSÉ	Σ	Z	$N_{\Sigma} R_2$	T_c (°C)
51	6-C1	4-CH ₃ O-C ₆ H ₄	NHCH ₃	273
52	6-C1	4-CH ₃ O-C ₆ H ₄	N(CH ₃) ₂	166
53	6-C1	4-Br-C ₆ H ₄	NHC ₂ H ₅	287
54	6-C1	4-Br-C ₆ H ₄	N(C ₂ H ₅) ₂	168
55	6-C1	naphtyl-2	-N(piperidin-1-yl)-CH ₃	217-8
56	6-C1	naphtyl-2	-N(oxazolidin-2-yl)-O-	193-4
57	6-C1	naphtyl-1	N(CH ₃) ₂	187-8
58	6-C1	2-CH ₃ -C ₆ H ₄	NHCH ₃	175-6
59	6-C1	2-CH ₃ -C ₆ H ₄	NHC ₂ H ₅	161-2
60	6-C1	2-CH ₃ O-C ₆ H ₄	NHC ₂ H ₅	172-3
61	6-C1	3-Cl-C ₆ H ₄	NHC ₂ H ₅	215-6
62	6-C1	3-CH ₃ O-C ₆ H ₄	N(C ₂ H ₅) ₂	98-9
63	6-C1	3-CH ₃ O-C ₆ H ₄	N(CH ₃) ₂	190
64	6-C1	2,4-Cl ₂ -C ₆ H ₃	N(CH ₃) ₂	221-2
65	6-C1	3,4-(CH ₂) ₂ -C ₆ H ₃	N(n-C ₃ H ₇) ₂	147
66	6-C1	3,4-(CH ₂) ₂ -C ₆ H ₃	N(CH ₃) ₂	215
67	7-CH ₃	4-Cl-C ₆ H ₄	NHC ₂ H ₅	223
68	7-CH ₃	4-Cl-C ₆ H ₄	N(CH ₃) ₂	205

TABLEAU (Suite)

COMPOSÉ	V	Z	N ₂ ¹⁴	Z (¹⁴ C)
69	8-CH ₃	4-Cl-C ₆ H ₄	NHCH ₃	234
70	8-CH ₃	4-Cl-C ₆ H ₄	N(C ₂ H ₅) ₂	175,5
71	6-Cl	4-Br-C ₆ H ₄	N(CH ₃) ₂	210
72	6-Cl	4-F-C ₆ H ₄	N(n-C ₄ H ₉) ₂	129
73	6-CH ₃	4-F-C ₆ H ₄	N(CH ₃) ₂	195
74	6-Cl	4-Br-C ₆ H ₄	N(CH ₃) ₂	228-5
6-CH ₃	4-CH ₃ -C ₆ H ₄	N(CH ₃) ₂	170	
5-CH ₃	4-Cl-C ₆ H ₄	N(n-C ₄ H ₉) ₂	116	
6-Cl	4-Cl-C ₆ H ₄		152	

Les composés de l'invention ont été soumis à des essais phar-maco-électrolytiques qui ont montré leurs intéressantes propriétés pharmacologiques dans les domaines anxiolytique, hypnotique et anticonvulsivant.

La toxicité des composés a été déterminée chez la souris par voie intraperitoneale.

La DL₅₀ est supérieure à 1000 mg/kg.

L'activité anxiolytique a été déterminée selon le "eating test" (Stephens, R.J. (1973) Brit. J. Pharmac., 49, 146 P.). Dans ce test, les doses qui augmentent la consommation alimentaire des souris varient de 0,1 à 10 mg/kg, i.p.

L'activité hypnotique a été déterminée en observant l'action des composés sur la durée du sommeil. L'induction a été déterminée par l'influence des composés sur la durée du "sommeil" induit par le 4-hydroxy-butyrat de (GHB) chez le rat curarisé scus respiration artificiellement. L'activité électrocorticographique est enregistrée à l'aide d'électrodes corticales.

Les composés de l'invention, administrés à une dose de 10 mg/kg i.p., augmentent la durée totale du sommeil de + 5 à 31%, pour une durée limitée à 75 min.

L'activité anticonvulsivante a été déterminée selon le test de l'agonisme vis à vis de la mortalité induite par la bicu-cuine chez la souris (Worms, P., Depoortere, E. and Lloyd, K.G. (1979) Life Sci., 25, 607-614).

Les produits à étudier sont injectés par voie intrapéri-tonéale, 30 mn avant la bicucuine (0,9 mg/kg i.v.). Le critère retenu pour ce test étant la léthalité, les pourcen-tages de mortalité sont notés pour chaque lot, 2 heures après administration de la bicucuine (lot décimé : 100% mortalité).

pour chaque produit la dose active 50% (DA 50 ou dose proté-
gée) et 5% d'effets secondaires de la dicumaroline est
évidemment évidemment.

La DA 50 des composés de l'invention varie entre 0,3 et
50 mg/kg par voie i.p.

Les résultats de ces différents tests montrent que les compo-
sés de l'invention possèdent des propriétés anxiolytiques,
hypnotiques et anticonvulsivantes sont utiles pour le traite-
ment des différents types d'épilepsies, pour le traitement des
états d'anxiété, des troubles du sommeil et autres affections
neurologiques et psychiatriques.

Les propriétés de l'invention peuvent être présentées sous toute
forme d'administration par voie orale, ou
par exemple sous forme de comprimés, de dragées,
de gélules, de solutions buvables ou injectables etc., avec
tout excipient approprié.
La posologie quotidienne peut aller de 0,5 à 2000 mg.

- 5 dans laquelle
- Y représente un atome d'hydrogène ou d'halogène ou un radical C₁₋₄ alkyle,
 - 2 représente un radical naphtyle ou un radical
- dans lequel X₁ et X₂ sont chacun indépendamment l'un de l'autre
- 10 ou ramifié pouvant porter un atome d'halogène, un radical hydroxy, N(C₁₋₄ alkyl)₂, carbamoyle ou C₁₋₄ alcoxy, un radical C₁₋₄ alkyle ou le groupe radical allyle, soit le radical propargyle, soit un radical C₃₋₆ cycloalkyle, soit le radical benzyle, soit le radical phényle,
- 15 où R₁ et R₂ représentent chacun indépendamment l'un de l'autre soit un atome d'hydrogène, soit un radical C₁₋₄ alkyle droit ou ramifié pouvant porter un atome d'halogène, un radical hydroxy, N(C₁₋₄ alkyl)₂, carbamoyle ou C₁₋₄ alcoxy, soit le radical allyle, soit le radical propargyle, soit un radical C₃₋₆ cycloalkyle, soit le radical benzyle, soit le radical phényle,
- 20 où R₁ est un atome d'hydrogène et R₂ est soit un radical C₁₋₄ alcoxy, soit un radical N(C₁₋₄ alkyl)₂, R₁ et R₂ ne pouvant être tous deux des atomes d'hydrogène ou bien
- 25 NR₁₋₂X représentent ensemble un hétérocycle comportant de 3 à 5 atomes de carbone ou un hétérocycle de formule
- 30 dans laquelle X est O, S, CHOR' ou N-R, R étant un atome d'hydrogène ou le radical benzyle et R étant un atome d'hydrogène, un radical C₁₋₄ alkyle ou le radical phényle pouvant porter un radical méthoxy ou un atome d'halogène, ainsi que leurs sels d'addition aux acides pharmacoïquement acceptables.

Le dérivé selon la revendication 1, dans la revendication 1, est obtenu en
utilisant deux radicaux alkyles.

3. Dérivés selon la revendication 1, dans lesquels Y est en position 6.

4. Dérivés selon la revendication 3, dans lesquels Y est un atome de chlore ou le radical méthyle.

5. Dérivés selon la revendication 1, dans lesquels Z est le radical ; X₁ ayant la signification donnée dans la revendication 1.

6. Dérivés selon la revendication 5, dans lesquels Z est le radical Hal-

7. Dérivés selon la revendication 1, dans lesquels R₁ et R₂ sont deux radicaux alkyles, Y est un atome d'halogène ou le méthyle en position 6 et Z est le radical X₁ ; X₁ étant un atome d'halogène ou le radical méthyle.

8. Procédé de préparation des composés selon la revendication 1, procédé caractérisé en ce que l'on transforme un nitrite de formule (II)

en amide primaire (III)

25 dans un transforme cet amide en acide (IV).

et après on élimine l'acide (IV).

9. Médicament caractérisé en ce qu'il contient un composé à la que spécifié dans l'une quelconque des revendications 1 à 7.

10. Composition pharmaceutique caractérisée en ce qu'elle contient un composé tel que spécifié dans l'une quelconque des revendications 1 à 7 en association avec tout excipient approprié.

