Eigenfaces

A face recognition project for data structures and algorithms (documentation written in finnish)

The problem to be solved

This project intents to use Principal Component Analysis and general ideas relating to linear algebra, eigenvectors and such to create a face recognition system. A large set of facial images will be translated into vectors via PCA. This vector set is then converted into a set of eigenvectors (or more familially, eigenfaces) which can be used to create any given face within the dataset. Used datastructures are vectors and matrices, with the primary algorithm being a self-implemented PCA algorithm.

The reason for the selection of these specific algorithms is derived from the fact that linear algebra is COOL, and using it to solve a face recognition problem seems like an interesting idea.

Programming languages

This project utilises python. I also know some C#, haskell and some lisp.

Language

All related documents are in english.

Specific data structures and algorithms ### algorithms

_The following is a paraphrase of the wikipedia-article about PCA: https://www.wikiwand.com/en/Principal_component_analysis, specifically the section "Computing PCA using covariance method". The idea is to present a rough sketch of the algorithm, and it is very likely that this will not reflect the state of the final project..

Principal Component Analysis (PCA) (covariance method):

- 1. Sorting images into matrices; time complexity is O(_p_*_n_), as the size of each vector is _p_ and they will be processed only once:
 - a. Turn each image into a row vector p (p is based on the resolution of the image).
- b. Use vectors $_p$ to create matrix $_m$ so that $Dim(_m) = _n x _p$, each vector being length $_p$, with $_n$ being the amount of images in the dataset
- 2. Calculating empirical mean; time complexity is O(_p_*_n_) as the size of each vector is _p_, and there's _n_ of them:
 - a) Find empirical mean from columns 1,...,_p_
 - b) Add mean to column vector _u_
- 3. Create matrix $_B_$ that contains all row vectors $_u^T$ (transpose); Time complexity is $O(_p^*_n_)$ as the length of each vector is $_p_$ and there's $_n_$ of them.
 - a) For each row of _m_ calculate row _u^T_ (transpose)

- b) Create new matrix _B_ intailing all of these row vectors.
- 4. ![Find covariance-matrix C with this

formula.](https://github.com/MiikaMatias/Eigenface/tree/main/assets/images/CovarianceMatr ix_formula.png); From this point onward my knowledge of the required algorithms is not enough to attempt a time-complexity analysis.

- 5. Find the eigenvalues and eigenvectors of _C_
- 6. Sort the eigenvectors and eigenvalues of _C_
- 7. Calculate cumulative energy content
- 8. Choose a basis from C.
- 9. Project the image into the basis of _C_.

data structures

- Vectors, matrices and other such datastructures either found in python libraries or made myself.

inputs and outputs

The program takes an input of a face and outputs it as a combination of eigenvectors from the model.

Study program

I am a computer science (TkT) student from Helsinki University TkT study track

Sources

All information par from PCA information is from this article: https://www.wikiwand.com/en/Eigenface

The PCA paraphrase is form this article:

https://www.wikiwand.com/en/Principal_component_analysis