

Distributing Candies

Aunty Khong esta preparando n cajas de caramelos para estudiantes de una escuela cercana. Las cajas están numeradas desde 0 a n-1 e inicialmente están vacias. La caja i ($0 \le i \le n-1$) tiene una capacidad de c[i] caramelos.

Aunty Khong pasa q dias preparando las cajas. En el día j ($0 \le j \le q-1$), ella hace una acción descrita por tres enteros $l[j], \ r[j] \ y \ v[j]$ donde $0 \le l[j] \le r[j] \le n-1$ y $v[j] \ne 0$. Por cada caja k que satisface $l[j] \le k \le r[j]$:

- Si v[j]>0, Aunty Khong agrega caramelos a la caja k, uno por uno, hasta que haya agregado exactamente v[j] caramelos o hasta que la caja se llene. En otras palabras, si la caja tenía p caramelos antes de la acción, tendrá $\min(c[k], p+v[j])$ caramelos después de la acción.
- Si v[j] < 0, Aunty Khong saca caramelos de la caja k, uno por uno, hasta que haya sacado exactamente -v[j] caramelos o hasta que la caja se vacie. En otras palabras, si la caja tiene p caramelos antes de la acción, tendrá $\max(0, p + v[j])$ caramelos después de la acción.

Tu tarea es determinar el número de caramelos en cada caja después de q días.

Detalles de Implementación

Debes implementar el siguiente procedimiento:

```
int[] distribute_candies(int[] c, int[] l, int[] r, int[] v)
```

- c: un arreglo de longitud n. Para $0 \leq i \leq n-1$, c[i] denota la capacidad de la caja i
- l, r y v: tres arreglos de longitud q. En el día j, para $0 \le j \le q-1$, Aunty Khong realiza una acción descrita por los enteros l[j], r[j] y v[j], como se ha explicado arriba.
- Este procedimiento debe retornar un arreglo de longitud n. Llamemoslo arreglo s. Para $0 \le i \le n-1$, s[i] debe ser el número de caramelos en la caja i después de q días.

Ejemplos

Ejemplo 1

Considera la siguiente llamada:

```
distribute_candies([10, 15, 13], [0, 0], [2, 1], [20, -11])
```

Esto significa que la caja $\,0\,$ tiene una capidad de $\,10\,$ caramelos, la caja $\,1\,$ tiene una capacidad de $\,15\,$ caramelos, y la caja $\,2\,$ tiene una capacidad de $\,13\,$ caramelos.

Al final del día 0, la caja 0 tiene $\min(c[0],0+v[0])=10$ caramelos, la caja 1 tiene $\min(c[1],0+v[0])=15$ caramelos y la caja 2 tiene $\min(c[2],0+v[0])=13$ caramelos.

Al final del día 1, la caja 0 tiene $\max(0,10+v[1])=0$ caramelos, la caja 1 tiene $\max(0,15+v[1])=4$ caramelos. Como 2>r[1], no hay cambio en el número de caramelos en la caja 2. El número de caramelos al final de cada día está sumarizados abajo:

Día	Caja 0	Caja 1	Caja 2
0	10	15	13
1	0	4	13

Entonces, el procedimiento debe retornar [0,4,13].

Restricciones

- $1 \le n \le 200\,000$
- $1 \le q \le 200000$
- $1 \le c[i] \le 10^9$ (para todo $0 \le i \le n-1$)
- $0 \le l[j] \le r[j] \le n-1$ (para todo $0 \le j \le q-1$)
- $-10^9 \leq v[j] \leq 10^9, v[j]
 eq 0$ (para todo $0 \leq j \leq q-1$)

Subtareas

- 1. (3 puntos) n, q < 2000
- 2. (8 puntos) v[j]>0 (para todo $0\leq j\leq q-1$)
- 3. (27 puntos) $c[0]=c[1]=\ldots=c[n-1]$
- 4. (29 puntos) l[j]=0 y r[j]=n-1 (para todo $0\leq j\leq q-1$)
- 5. (33 puntos) No hay restricciones adicionales.

Evaluador de ejemplo

El evaluador de ejemplo lee la entrada en el siguiente formato:

- línea 1: n
- Iínea 2: c[0] c[1] \dots c[n-1]
- línea 3: q
- Iínea 4+j ($0 \leq j \leq q-1$): $l[j] \ r[j] \ v[j]$

El evaluador de ejemplo imprime tus respuestas en el siguiente formato t:

• Iínea 1: s[0] s[1] \dots s[n-1]