IGEE-UMBB EE 174: Recitations set 6

1. Given the matrix
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ -1 & -1 & 1 \end{pmatrix}$$

- a) Determine the rank and nullity of A; What can you conclude about A?
- **b)** Find possible bases for the range space $\mathcal{R}(A)$ and determine if $Y = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$ is a

vector of $\mathcal{R}(A)$

- c) Find a basis for the null space $\mathcal{N}(A)$
- 2. Consider the matrix $A = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ representing the linear transformation T in R^2
 - (a) What is this transformation geometrically?
 - b) Determine its rank and nullity; What do you conclude?

3. Let
$$A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$$
 and $B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$; Compute AB and BA and comment your result. What are the rank and nullity of BA ? Comment.

- **4.** Consider the matrix $A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{pmatrix}$
 - a) Compute the determinant of A
 - **b)** Let the matrix B be obtained from A by replacing the second row of A by the sum of the second and third rows of A; Compute det(B) and comment.
 - c) Compute the inverse of A if it exists.