Chapitre 16: Dérivation

Dans ce chapitre, sauf mention explicite, I désigne un intervalle de \mathbb{R} .

I. Nombre dérivé, fonction dérivée

Dans ce paragraphe, on rappelle ce que sont un nombre dérivé et une fonction dérivée, puis on donne quelques compléments.

Définition 1

Soit $a \in I$. On dit qu'une fonction $f: I \to \mathbb{R}$ est dérivable en a si la limite

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

existe et est finie. Le cas échéant, cette limite est appelée nombre dérivé de f en a et notée f'(a).

On a (T): y = f'(a)(x - a) + f(a).

Remarque.

La limite ci-dessus peut aussi s'écrire

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Exemple 1

Soit $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ et soit a un nombre réel.

Pour tout $h \neq 0$:

$$\frac{f(a+h)-f(a)}{h} = \frac{(a+h)^2 - a^2}{h} = \frac{\cancel{a^2} + 2ah + h^2 - \cancel{a^2}}{h} = \frac{\cancel{h}(2a+h)}{\cancel{h}} = 2a + h.$$

On en déduit :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{h \to 0} (2a+h) = 2a + 0 = 2a.$$

La fonction f est donc dérivable en a et f'(a) = 2a.

On dit que $f:I\to\mathbb{R}$ est dérivable sur I si elle est dérivable en tout point $a\in I$. La fonction dérivée est

$$f': a \mapsto f'(a)$$
.

D'après l'exemple précédent, la fonction $f: x \mapsto x^2$ est dérivable sur \mathbb{R} et sa dérivée est $f': x \mapsto 2x$.

Nous renvoyons le lecteur aux chapitres précédents pour les dérivées des fonctions usuelles et les opérations sur les dérivées. Nous démontrons certains résultats en exercices.

Proposition 1

Si $f: I \to \mathbb{R}$ est dérivable en a, alors elle est continue en a.

Démonstration

On suppose f dérivable en a. On peut donc écrire :

$$\lim_{\substack{h \to 0 \\ \lim_{h \to 0} h}} \frac{f(a+h)-f(a)}{h} = f'(a)$$

$$\geqslant \lim_{\substack{h \to 0}} \frac{f(a+h)-f(a)}{h} \times h = f'(a) \times 0 = 0.$$

Autrement dit : $\lim_{h\to 0} (f(a+h) - f(a)) = 0$, et donc $\lim_{h\to 0} f(a+h) = f(a)$. La fonction f est bien continue en a.

Soit $a \in I$. On dit qu'une fonction $f: I \to \mathbb{R}$:

▶ est dérivable **à droite** en *a* si la limite

$$\lim_{h \to 0, h > 0} \frac{f(a+h) - f(a)}{h}$$

existe et est finie. Le cas échéant, cette limite est notée $f'_{d}(a)$.

▶ est dérivable **à gauche** en *a* si la limite

$$\lim_{h \to 0, h < 0} \frac{f(a+h) - f(a)}{h}$$

existe et est finie. Le cas échéant, cette limite est notée $f_{g}'(a)$.

Exemple 3

Définition 3

La fonction $f: x \mapsto |x|$ est:

• dérivable **à droite** en 0 car

$$\lim_{h \to 0, h > 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0, h > 0} \frac{|h| - |0|}{h}$$
$$= \lim_{h \to 0, h > 0} \frac{h}{h} = \lim_{h \to 0, h > 0} 1 = 1.$$

• dérivable à gauche en 0 car

$$\lim_{h \to 0, h < 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0, h < 0} \frac{|h| - |0|}{h}$$
$$= \lim_{h \to 0, h < 0} \frac{-h}{h} = \lim_{h \to 0, h < 0} (-1) = -1.$$

On a donc $f'_{\rm d}(0)=1$ (pente de la demi-droite rouge) et $f'_{\rm g}(0)=-1$ (pente de la demi-droite bleue).

Proposition 2

Une fonction $f: I \to \mathbb{R}$ est dérivable en a si, et seulement si elle est dérivable à droite et à gauche en a et si $f'_d(a) = f'_g(a)$. Dans ce cas, $f'(a) = f'_d(a) = f'_g(a)$.

Si f est dérivable en a, on peut approximer f(x) au voisinage de a en utilisant l'équation de la tangente :

$$f(x) \underset{x \to a}{\approx} f(a) + f'(a)(x - a).$$

Par exemple, avec $f(x) = \sin x$ et a = 0, cela donne:

$$f(x) \underset{x \to 0}{\approx} f(0) + f'(0)(x - 0)$$

$$\sin x \underset{x \to 0}{\approx} \sin 0 + \cos(0)x$$

$$\sin x \underset{x \to 0}{\approx} 0 + 1x$$

$$\sin x \underset{x \to 0}{\approx} x$$

L'équivalent ci-dessus est imprécis, car on ne connaît pas la marge d'erreur lorsqu'on fait l'approximation. En réalité, on peut faire mieux : si f est dérivable en a, alors $\lim_{x\to a} \frac{f(x)-f(a)}{x-a} = f'(a)$. Cette égalité se réécrit

$$\lim_{x \to a} \frac{f(x) - f(a) - (x - a)f'(a)}{x - a} = 0,$$

et on a donc

$$f(x) - f(a) - (x - a)f'(a) = o(x - a).$$

Autrement dit:

$$f(x) = f(a) + (x-a)f'(a) + o(x-a),$$

si bien que le « reste », o(x - a), est négligeable devant (x - a).

Plus généralement:

Proposition 3

Soit $f: I \to \mathbb{R}$.

• Si f est dérivable en a, alors

$$f(x) = f(a) + (x-a)f'(a) + o(x-a).$$

• Réciproquement, s'il existe un réel ℓ tel que $f(x) = f(a) + (x-a)\ell + o(x-a)$, alors f est dérivable en a et $f'(a) = \ell$.

Dans ce cas, on dit que f admet un développement limité à l'ordre 1 (DL1) en a.

Exemples 4

- 1. On reprend l'étude qui précède la proposition:
- **2.** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction vérifiant

$$f(x) = f(2) + 3(x-2) + o(x-2).$$

$$\sin x = x + o(x)$$

Alors f est dérivable en a = 2 et f'(2) = 3.

Remarque.

La forme générale d'un DL1 est $f(x) = a_0 + a_1(x-a) + o(x-a)$. Dans la proposition qui précède, $a_0 = f(a)$, $a_1 = f'(a)$. On rencontrera en fin d'année des DL2 : $f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + o\left((x-a)^2\right)$, des DL3,

Propriétés des fonctions dérivables

Proposition 4

Si $f: a, b \in \mathbb{R}$ admet un extremum local en $c \in a, b \in \mathbb{R}$ et si elle est dérivable en c, alors f'(c) = 0.

Démonstration

maximum local en c (la démonstration est vers 0: identique s'il s'agit d'un minimum). Rappelons que cela signifie qu'il existe un intervalle ouvert I contenant c et tel que

$$\forall x \in I, f(x) \leq f(c).$$

Dans ce cas, si h > 0 est assez petit :

$$\underbrace{\frac{\overbrace{f(c+h)-f(c)}^{\ominus}}{h\oplus}}_{\ominus}\leq 0,$$

donc en passant à la limite lorsque h tend vers 0:

$$f'_{\rm d}(c) \le 0.$$

Inversement, si h < 0 est assez petit :

$$\underbrace{\frac{f(c+h)-f(c)}{h\ominus}}_{\Theta} \ge 0,$$

On suppose par exemple que f admet un donc en passant à la limite lorsque h tend

$$f'_{\rm g}(c) \ge 0.$$

Or d'après la proposition 2, $f'(c) = f'_{d}(c) = f'_{g}(c)$, donc f'(c) est à la fois positif et négatif - il est donc nul.

Théorème 1 (Rolle)

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue sur [a,b], dérivable sur [a,b] et telle que f(a)=f(b). Alors il existe $c \in a, b$ [tel que f'(c) = 0.

Démonstration

n'importe quel nombre *c* convient.

Dans le cas contraire, comme f est continue sur [a,b], f([a,b]) est un segment [m,M](d'après une propriété de la leçon sur les fonctions continues). Le nombre *m* est le minimum de f sur [a,b], le nombre M son maximum.

On ne peut avoir à la fois f(a) = f(b) = met f(a) = f(b) = M, sinon on aurait m = Met f serait constante. Supposons donc (par exemple) que f(a) et f(b) (qui sont égaux) sont strictement plus grands que m. Dans

Si f est constante sur [a, b], f' est nulle et ce cas, il existe $c \in a, b$ tel que f(c) = m. La fonction f admet un minimum global (et donc local) en c, donc f'(c) = 0 d'après la proposition précédente.

Théorème 2 (des accroissements finis – TAF)

Soit $f:[a,b] \to \mathbb{R}$ une fonction continue sur [a,b] et dérivable sur [a,b]. Alors il existe $c \in [a,b]$ tel que

$$f(b) - f(a) = f'(c)(b - a).$$

Remarques.

- Le TAF est démontré en exercices.
- Reformulé géométriquement, le TAF affirme qu'il existe c tel que $\frac{f(b)-f(a)}{b-a}=f'(c)$, c'està-dire qu'il existe au moins un point C de la courbe tel que la pente de la tangente en C soit égal à la pente de la droite (AB).

Reformulé d'un point de vue physique, le TAF dit qu'il y a au moins un moment où la vitesse instantanée est égale à la vitesse moyenne, ce qui est une évidence.

Le théorème a un corollaire extrêmement important : si f est continue sur [a, b], dérivable sur]a,b[, et si f' est strictement positive sur]a,b[, alors f est strictement croissante sur [a,b]. En effet, si x < y sont deux réels dans [a, b], l'égalité f(y) - f(x) = f'(c) (y - x), avec x < c < y,

entraı̂ne f(y) > f(x).

On obtient de même la décroissance stricte d'une fonction continue sur [a, b], dérivable sur] a, b[, et dont la dérivée est strictement négative sur] a, b[.

5

Le théorème ci-dessous est un corollaire immédiat du TAF:

Théorème 3 (inégalité des accroissements finis – IAF)

Si f est dérivable sur un intervalle I et si $|f'(t)| \le M$ pour tout $t \in I$, alors pour tous x, y dans I:

$$|f(y) - f(x)| \le M|x - y|.$$

Exemple 5

La dérivée de $f: \mathbb{R} \to \mathbb{R}, x \mapsto \sin x$ est $x \mapsto \cos x$. Or $|\cos t| \le 1$ pour tout réel t, donc d'après l'IAF (avec M=1), pour tous réels x,y:

$$|\sin y - \sin x| \le |y - x|.$$

III. Dérivées successives

On peut définir (par récurrence) les dérivées successives d'une fonction f. On note $f^{(n)}$ la dérivée n-ième (la dérivée 0-ième étant la fonction f elle-même).

Remarques.

- Les fonctions de classe \mathscr{C}^0 sont les fonctions continues.
- Si f est de classe \mathcal{C}^n , alors elle est de classe \mathcal{C}^k pour tout $k \le n$.

Une fonction $f: I \to \mathbb{R}$ est dite de classe \mathscr{C}^n si elle est n fois dérivable et si $f^{(n)}$ est continue sur I. On note $\mathscr{C}^n(I,\mathbb{R})$ l'ensemble des fonctions de classe \mathscr{C}^n sur I.

Une fonction $f: I \to \mathbb{R}$ est dite de classe \mathscr{C}^{∞} si elle est de classe \mathscr{C}^k pour tout $k \in \mathbb{N}$.

Exemple 6

La fonction $f: x \mapsto e^{2x}$ est de classe \mathscr{C}^{∞} et pour tout entier naturel n:

$$f^{(n)}: x \mapsto 2^n e^{2x}.$$

Proposition 5

Si $u \in \mathcal{C}^n(I,\mathbb{R})$, $v \in \mathcal{C}^n(I,\mathbb{R})$ et si a et b sont deux réels, alors $(au + bv) \in \mathcal{C}^n(I,\mathbb{R})$ et $(au + bv)^{(n)} = au^{(n)} + bv^{(n)}$.

Remarque.

 $\mathscr{C}^n(I,\mathbb{R})$ est un espace vectoriel.

Proposition 6 (formule de Leibniz)

Si $u \in \mathcal{C}^n(I,\mathbb{R})$ et $v \in \mathcal{C}^n(I,\mathbb{R})$, alors $u \times v \in \mathcal{C}^n(I,\mathbb{R})$ et

$$(u \times v)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}.$$

Exemple 7

La fonction $f: x \mapsto x e^{2x}$ est de classe \mathscr{C}^{∞} , comme produit des fonctions \mathscr{C}^{∞}

$$u: x \mapsto x$$
 et $v: x \mapsto e^{2x}$.

D'après la formule de Leibniz, pour tout entier naturel n:

$$f^{(n)}(x) = \sum_{k=0}^{n} \binom{n}{k} u^{(k)}(x) v^{(n-k)}(x).$$
 (1)

Or $u^{(0)}(x) = u(x) = x$, $u^{(1)}(x) = u'(x) = 1$ et $u^{(k)}(x) = 0$ pour tout $k \ge 2$. Donc, dans la formule de Leibniz, tous les termes sont nuls à l'exception des termes d'indice 0 et 1. On obtient donc, pour $n \ge 1$:

$$f^{(n)}(x) = \binom{n}{0} u^{(0)}(x) v^{(n)}(x) + \binom{n}{1} u^{(1)}(x) v^{(n-1)}(x)$$
$$= 1 \times x \times 2^n e^{2x} + n \times 1 \times 2^{n-1} e^{2x}$$
$$= 2^{n-1} e^{2x} (2x + n).$$

Proposition 7

- **1.** Si $u \in \mathcal{C}^n(I,\mathbb{R})$, $v \in \mathcal{C}^n(I,\mathbb{R})$ et si v ne s'annule pas sur I, alors $\frac{u}{v} \in \mathcal{C}^n(I,\mathbb{R})$.
- **2.** Si $u \in \mathcal{C}^n(I, J)$, $v \in \mathcal{C}^n(J, \mathbb{R})$ alors $v \circ u \in \mathcal{C}^n(I, \mathbb{R})$.
- **3.** Si $f \in \mathcal{C}^n(I,\mathbb{R})$, avec $n \ge 1$, si f admet une fonction réciproque f^{-1} et si f' ne s'annule pas sur I, alors $f^{-1} \in \mathcal{C}^n(I,\mathbb{R})$.

Exercices 23 à 25

IV. Exercices

Exercice 1.

Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^3$ et soit a un réel.

1. Prouver que pour tout $h \neq 0$:

$$\frac{f(a+h)-f(a)}{h} = 3a^2 + 3ah + h^2.$$
Eduire $f'(a)$

2. En déduire f'(a).

Exercice 2.

Soit $g: \mathbb{R}^* \to \mathbb{R}$, $x \mapsto \frac{1}{x}$ et soit a un réel non nul.

1. Prouver que pour tout $h \neq 0$ suffisamment pe-

$$\frac{g(a+h)-g(a)}{h}=-\frac{1}{a(a+h)}.$$

2. En déduire g'(a).

Exercice 3 (8).

1. Placer sur le cercle trigonométrique un point M associé à $0 < X < \frac{\pi}{2}$. En comparant différentes aires, prouver que

$$\sin X \le X \le \tan X$$
.

2. En déduire $\lim_{X\to 0, X>0} \frac{\sin X}{X}$, puis $\lim_{X\to 0} \frac{\sin X}{X}$.

3. Soit *a* un nombre réel. Prouver que pour tout

$$\frac{\sin(a+h) - \sin a}{h} = \frac{\sin\left(\frac{h}{2}\right)\cos\left(a + \frac{h}{2}\right)}{\frac{h}{2}}.$$

4. En déduire $\sin'(a)$.

Exercice 4.

Soient $u, v : I \to \mathbb{R}$ deux fonctions dérivables sur I et soit $a \in I$. On pose $p(x) = u(x) \times v(x)$ pour tout $x \in I$.

1. Prouver que pour tout $h \neq 0$ suffisamment petit :

$$\frac{p(a+h)-p(a)}{h}=u(a+h)\times\frac{v(a+h)-v(a)}{h}+v(a)\times\frac{u(a+h)-u(a)}{h}.$$

2. En déduire p'(a).

Exercice $5 \ (\stackrel{\frown}{\blacksquare} \ \stackrel{\frown}{\bullet})$.

Dans chaque cas, déterminer l'ensemble de définition de la fonction et l'ensemble de définition de la dérivée, puis calculer la fonction dérivée.

1. $f: x \mapsto x^{x}$. 2. $g: x \mapsto \arctan(\frac{x}{2})$. 3. $h: x \mapsto \ln(\frac{x}{x^{2}+1})$. 4. $i: x \mapsto \sqrt{x^{2}+2x-3}$. 5. $j: x \mapsto \arccos(1-2x)$

Exercice 6 ($\widehat{\underline{\mathbf{m}}}$ $\overleftarrow{\mathbf{o}}$).

Démontrer les égalités suivantes.

1. $\forall x \in [-1;1]$:

 $\arccos x + \arcsin x = \frac{\pi}{2}$.

 $\arctan x + \arctan\left(\frac{1}{x}\right) = \begin{cases} \frac{\pi}{2} & \text{si } x > 0, \\ -\frac{\pi}{2} & \text{si } x < 0. \end{cases}$ **1.** $x \mapsto \cos x, \ a = 2.$ **4.** $x \mapsto (x+1)^3, \ a = 1.$ **2.** $x \mapsto \arctan x, \ a = 0.$ **3.** $x \mapsto (x+1)^3, \ a = -1.$ **5.** $x \mapsto xe^{-x}, \ a = 0.$

Exercice 7 $(\hat{\mathbf{m}})$.

Calculer les limites:

Exercice 8 $(\hat{\mathbf{m}})$.

Étudier la dérivabilité des fonctions :

1. $f: x \mapsto \begin{cases} x-1 & \text{si } x \ge 1, \\ (x-1)^2 & \text{si } x < 1. \end{cases}$ 2. $g: x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \ne 0, \\ 0 & \text{si } x = 0. \end{cases}$

(On commencera par étudier la continuité.)

Exercice 9 $(\hat{\mathbf{m}})$.

Donner des DL1 des fonctions au point a.

Exercice 10 (11).

Soit $f : \mathbb{R} \to \mathbb{R}$ vérifiant f(1) = 3 et

$$f(x) = 5 - 2x + o(x - 1).$$

Étudier la continuité et la dérivabilité de f en 1.

Exercice 11 (6).

Soit P(X) = (X-2)(X-3)(X-4)(X-5). En utilisant le théorème de Rolle, prouver que P' a au moins trois racines réelles.

Exercice 12 (8).

Un cycliste parcourt 30 km en 2 h. On note:

- t le temps, exprimé en heures, depuis son départ;
- *d*(*t*) la distance parcourue au temps *t*, exprimée en kilomètres.

En utilisant le TAF, prouver qu'à un moment donné de son parcours, le cycliste a roulé à la vitesse exacte de 15 km/h.

Exercice 13 (11).

En utilisant l'IAF, démontrer que pour tous réels x, y:

 $|\arctan x - \arctan y| \le |x - y|$.

Exercice 14 (11).

En utilisant le TAF, prouver que pour tout $x \ge 0$:

$$x \le e^x - 1 \le xe^x.$$

Exercice 15.

En utilisant l'IAF, majorer l'erreur commise lorsqu'on fait l'approximation $\sqrt{101} \approx 10$.

Exercice 16 (8).

1. Démontrer que pour tout $k \in \mathbb{N}^*$:

$$\ln(k+1) - \ln(k) \le \frac{1}{k}.$$

2. On pose $S_n = \sum_{k=1}^n \frac{1}{k}$ pour tout $n \in \mathbb{N}^*$.

En utilisant la question 1, prouver que pour tout $n \in \mathbb{N}^*$:

$$ln(n+1) \leq S_n$$
.

En déduire la limite de $(S_n)_{n \in \mathbb{N}^*}$.

Exercice 17 (preuve du TAF).

Dans cet exercice, on démontre le TAF. On se donne donc une fonction continue $f:[a,b]\to\mathbb{R}$ et on suppose que f est dérivable sur]a,b[.

1. On pose

$$g(x) = f(x) - \frac{f(b) - f(a)}{b - a}(x - a)$$

pour $x \in [a, b]$.

Calculer g(a) et g(b).

2. En utilisant le théorème de Rolle, prouver qu'il existe $c \in]a, b[$ tel que g'(c) = 0, puis conclure.

Exercice 18 (11 6).

Soit $f: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-\frac{2x}{3}}$

- 1. Prouver que l'équation f(x) = x a une unique solution dans \mathbb{R} , et que cette solution est dans [0;1]. On la note α
- **2.** Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=1$ et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n).$$

Représenter graphiquement les premiers termes de la suite.

- **3.** Montrer par récurrence que $u_n \in [0;1]$ pour tout $n \in \mathbb{N}$.
- 4. Justifier l'inégalité:

$$\forall x \in [0;1], |f'(x)| \le \frac{2}{3}.$$

5. Montrer par récurrence que pour tout $n \in \mathbb{N}$:

$$|u_n - \alpha| \le \left(\frac{2}{3}\right)^n$$
.

9

6. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 19 (**1 6**).

- 1. Prouver que l'équation $4 \ln x = x$ a une unique solution α dans $]0; +\infty[$ et justifier l'encadrement $2 \le \alpha \le 4$.
- **2.** On définit une suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=4$ et la relation de récurrence $u_{n+1} = g(u_n)$. où

$$g:]0; +\infty[\rightarrow \mathbb{R}, x \mapsto 4 - \ln x]$$

On note I = [2; 4].

- **a.** Montrer par récurrence que $u_n \in I$ pour tout
- **b.** Justifier l'inégalité :

$$\forall x \in I, \ |g'(x)| \le \frac{1}{2}.$$

c. Montrer par récurrence que pour tout $n \in$

$$|u_n - \alpha| \le \left(\frac{1}{2}\right)^{n-1}.$$

d. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 20 (**1 6**).

Soit *P* la parabole d'équation $y = \frac{1}{2}x^2 - 2$. On définit une suite $(u_n)_{n\in\mathbb{N}}$ de la façon suivante :

- $u_0 = 4$.
- Si M_n est le point de P d'abscisse u_n , la tangente à P au point M_n coupe l'axe des abscisses en u_{n+1} .
- 1. Faire une figure et construire sur l'axe des abscisses u_1 et u_2 .
- **2.** Démontrer que pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$,

$$f:]0; +\infty[\to]0; +\infty[, x \mapsto \frac{1}{2}x + \frac{2}{x}.$$

- 3. Étudier les variations de f et prouver que pour tout $n \in \mathbb{N}$, $2 \le u_n \le 4$.
- 4. Justifier l'inégalité:

$$\forall x \in [2;4], |f'(x)| \le \frac{3}{8}$$

5. Montrer par récurrence que pour tout $n \in \mathbb{N}$:

$$|u_n-2| \le 2\left(\frac{3}{8}\right)^n.$$

6. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 21 $(\hat{\mathbf{m}})$.

Soit $n \in \mathbb{N}$. Calculer la dérivée n-ième des fonctions:

- 1. $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^{100}$.

Exercice 22 (6).

- 1. La fonction $f: x \mapsto \begin{cases} x^2 \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$ est-elle de classe \mathscr{C}^1 sur $[0; +\infty[$?
- **2.** La fonction $g: x \mapsto \begin{cases} x^2 \sin(\frac{1}{x}) & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$ estelle de classe \mathscr{C}^1 sur \mathbb{R}^n

Exercice 23 ($\widehat{\mathbf{m}}$ $\widecheck{\mathbf{o}}$).

Soit n un entier supérieur ou égal à 2. Calculer la dérivée n-ième des fonctions :

- 1. $f: \mathbb{R} \to \mathbb{R}, x \mapsto (x^2 + 2x) e^{-x}$
- **2.** $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}, x \mapsto \frac{x^2}{r-1}$

Exercice 24 (6).

1. Soit *n* un entier naturel non nul. En calculant de deux facons différentes la dérivée n-ième de la fonction $f: x \mapsto x^{2n}$, démontrer la formule

$$\sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n}.$$

Redémontrer la formule par un raisonnement de dénombrement.

Exercice 25 $(\hat{\mathbf{m}})$.

Les fonctions suivantes sont-elles de classe \mathscr{C}^{∞} sur leur ensemble de définition?

- 1. $f: x \mapsto \arctan(1-\cos^2 x)$. 2. $g: x \mapsto \frac{\ln x}{x-1}$.
- 3. La réciproque de la fonction $h: \mathbb{R} \to \mathbb{R}, x \mapsto$