Vibrational Analysis of Amino Acids and Short Peptides in Hydrated Media. VI. Amino Acids with Positively Charged Side Chains: L-Lysine and L-Arginine

Belén Hernández,† Fernando Pflüger,† Najoua Derbel,‡ Joël De Coninck,§ and Mahmoud Ghomi*,†

Groupe de Biophysique Moléculaire, UFR SMBH, Université Paris 13, 74 rue Marcel Cachin, 93017 Bobigny cedex, France, Laboratoire de Spectroscopie Atomique Moléculaire et Applications (LASMA), Département de Physique, Faculté des Sciences de Tunis, Campus Universitaire, 2092 EL MANAR II, Tunisia, and Centre de Recherche en Modélisation Moléculaire (CRMM), Université de Mons-Hainaut, Materia Nova, Parc Initialis, Avenue Copernic 1, B-7000 Mons, Belgium

Received: October 5, 2009; Revised Manuscript Received: November 4, 2009

In two recent reports of the same series (*J. Phys. Chem. B* **2007**, *111*, 1470–1477 and *J. Phys. Chem. B* **2009**, *113*, 3169–3178), we have described the geometrical and vibrational analysis of glycine and amino acids (AAs) with hydrophobic side chains through the joint use of optical spectroscopy and quantum mechanical calculations. Here, we report Raman scattering and Fourier-Transform Infrared (FT-IR) Attenuated Total Reflectance (ATR) spectra measured from the aqueous solutions (H₂O and D₂O) of L-lysine and L-arginine, i.e. two α-AAs with positively charged hydrophilic side chains. The discussion on the vibrational features of both AAs could be carried out thanks to the theoretical calculations performed by means of the Density Functional Theory (DFT) approach at the B3LYP/6-31++G* level. We have analyzed the influence of implicit (with a polarizable dielectric continuum) and explicit (by means of an H₂O cluster interacating with H-donor and H-acceptor sites of AAs) hydration models. In addition, through the calculated geometrical parameters and vibrational wavenumbers, a discussion was performed on the effect of the Cl⁻ anion interacting with the positively charged side chains of explicitly hydrated AAs.

I. Introduction

Lysine (K or Lys) belongs to essential and arginine (R or Arg) to conditionally essential groups of AAs. They cannot thus be synthesized by the organism and should be supplied by the daily diet. $^{1-3}$

Both amino acids, together with histidine (H), form the group of positively charged amino acids (PCAAs). The extra positive charge of K and R arises from the nitrogen-containing chemical groups located at the ultimate position of their side chains, i.e., the protonated amino group $-NH_3^+$ (K) and the guanidinium group $[-NH-C-(NH_2)_2]^+$ (R) (Figure 1). In histidine, the protonation of the side chain ring is responsible for its cationic character.⁴

PCAAs participate in many important biological processes in living organisms. First of all, their role in protein/nucleic acid interactions, basically through the long-range order electrostatic attraction between the AA side chains and nucleic acid phosphate groups, should be emphasized. Indeed, DNA condensation into nucleosomes (building block of a chromatine) is made possible by the intermediate of five histone proteins:^{5,6} H1 (K-rich), H2A, H2B (both moderately K-rich), H3, and H4 (both R-rich).⁷ K, R, and also H, spaced by neutral hydrophobic AAs, form tetrapeptide repeats in the center of the KR-rich histone of calf thymus.⁸ Different membrane proteins conform to a *positive-inside-rule*; i.e., PCAAs are located in their cytoplasmic domains. As a consequence, the topology of *E. coli* inner membrane proteins was found to depend on the number

Figure 1. Amino acids with positively charged branched side chains: L-lysine (K) and L-arginine (R). Note that the extra positive charge of both amino acids arises from the nitrogen-containing chemical groups located at the ultimate position of their side chains, i.e., the protonated amino group $-NH_3^+$ and the guanidinium group $[-NH-C-(NH_2)_2]^+$ in K and R, respectively.

of K and R, flanking the apolar transmembrane segments. Moreover, the presence and position of PCAAs in proteins are also pivotal in numerous important biological processes. For instance, it has been shown that these AAs (i) are located similarly in the toxins of different species such as sea anemone and scorpion, thus being essential in their interactions with their membrane receptor, ¹⁰ (ii) are fundamental in ligand binding and

^{*}To whom correspondence should be addressed. E-mail: mahmoud.ghomi@univ-paris13.fr.

[†] Université Paris 13.

[‡] Faculté des Sciences de Tunis.

[§] Université de Mons-Hainaut.

TABLE 1: Vibrational Modes of Lysine Observed in Aqueous Solutions (H,O) and Their Assignments^a

IABLE I:	VIDEATION	al Modes of Lysine Ope	VIDITATIONIAI MODES OF LYSINE ODSELVED III AQUEOUS SOUGIONS (II2O) AND THEIR ASSIGNMENTS	LS	
Raman	IR	calcd $K/8H_2O/Cl^-$ (I)	assignments (PED %) (I)	calcd $K/8H_2O/Cl^-$ (II)	assignments (PED %) (II)
1650 (w)		1777	$N\xi H_3^+$ asym bend (42); W6	1769	$N\xi H_3^+$ asym bend (51); W6; W8
200	1636 (sh)	1763	$N\xi H_3$ + asym bend (36); W8; W6	1753	$N\xi H_3$ asym bend (42); W6; W7; W8
(w) ¢191		1/51	NtH_3 asym bend (30)	1/50	NtH_3^+ asym bend (3/); W1
0	0	2891	0.00000000000000000000000000000000000	1685	$[NtH_3]$ asym bend $(2/)$; $H=0=H$ (Wb) (14); CtUO asym st (10)
1598 (w)	1599 (s)	1655	CtOO ⁻ asym st (45); H $-O-H$ (W3) (22)	1645	H=O=H (W6,W3) (31); CtOO ⁻ asym st (31)
000	1523 (s)	1616	NtH3 ' sym bend (35); NtH3 ' sym rock (31); W3	1619	NtH ₃ 'sym bend (32); NtH ₃ 'sym rock (30); w 3; w 2
1470 (sh)	1473 (sh)	1535	Ce-bend (63); C θ -bend (24)	1549	CO-bend (74); Ce-bend (15)
	1462 (sh)	1519	$C\delta$ -bend (41); $C\varepsilon$ -bend (34); $C\gamma$ -bend (22)	1528	$C\varepsilon$ -bend (82); $C\delta$ -bend (15)
1446 (s)		1511	$C\beta$ -bend (93)	1516	$C\gamma$ -bend (80); $C\beta$ -bend (11)
	1445 (sh)	1510	$C\gamma$ -bend (67); $C\delta$ -bend (30)	1510	$C\beta$ -bend (83); $C\gamma$ -bend (11)
1415 (s)		1448	$C\delta$ -rock (22); $C\varepsilon$ -rock (19); $C\gamma$ -rock (11); Nt - $C\alpha$ - $H\alpha$	1468	$C\delta$ -rock (64); C ϵ -rock (13); $C\gamma$ -rock (10)
	1413 (s)	1442	Ce-rock (25); CtOO ⁻ sym st (13); C δ -rock (12); Nt-C α -H α (10)	1437	Nt-C α -H α (24); CtOO ⁻ sym st (17); C β -rock (15)
		1420	$C\gamma$ -rock (39); $C\varepsilon$ -rock (26)	1410	Ce -rock (36); $C\delta$ -twist (17); $C\gamma$ -rock (9)
		1410	$C\beta$ -C α -H α (27); Nt-C α -H α (13); C β -twist (11); CtOO ⁻ sym st (10)	1406	$C\underline{\delta}$ -twist (17); Ce-rock (16); -C β C α -H α (11); CtOO ⁻ sym st (10);
					$C\gamma$ -rock (10)
		1396	$C\beta$ -rock (33); Nt-C α -H α (19); $C\gamma$ -wag (14)	1403	$C\delta$ -twist (37); $H\alpha - C\alpha - C\beta$ (11)
		1380	$C\varepsilon$ -twist (41); $N\zeta H_3^+$ asym rock (22)	1389	$C\beta$ -rock (45); Nt-C α -H α (15)
1353 (s)	1352 (s)	1367	$C\delta$ -twist (49); $C\gamma$ -wag (9); $C\epsilon$ -twist (9)	1367	$C\varepsilon$ -twist (40); $N\xi H_3^+$ asym rock (17); W6
1328 (s)	1329 (s)	1360	CtOO ⁻ sym st (28); C β -twist (18)	1364	CtOO ⁻ sym st (15); $C\gamma$ -rock (15); $C\beta$ -twist (14); $C\delta$ -rock (10)
	1315 (sh)	1347	$C\delta$ -rock (27); $C\gamma$ -rock (18); $C\delta$ -twist (10)	1350	CtOO ⁻ sym st (19); $C\gamma$ -rock (16); Ct - $C\alpha$ - $H\alpha$ (12)
		1318	$C\gamma$ -wag (38); $C\delta$ -wag (9)	1307	$C\gamma$ -wag (46); $C\delta$ -wag (9)
1293 (sh)	1292 (w)	1263	$C\beta$ -twist (27); Ct-C α -H α (10); N ζ H ₃ ⁺ asym rock (8)	1252	$C\beta$ -twist (33); $H\alpha$ - $C\alpha$ - Ct (11); $C\gamma$ -rock (9)
1234 (w)		1241	$C\gamma$ -twist (13); NtH ₃ ⁺ asym rock (12); $C\beta$ -C α -H α (10); $C\delta$ -wag (10)	1238	NtH_3^+ asym rock (15); $C\gamma$ -twist (12); $C\delta$ -wag (11)
1183 (m)	1181 (w)	1214	$N\xi H_3^+$ asym rock (21); Ce-rock (14)	1194	$N\zeta H_3^+$ asym rock (25); C ε -rock (14)
1143 (m)	1143 (m)	1179	NtH_3^+ asym rock (39); Ct C α -H α (18)	1177	NtH_3^+ asym rock (41); Ct-C α -H α (15)
1076 (sh)		1095	C_{γ} - C_{δ} (36); C_{β} - C_{γ} (26)	1099	C_{γ} - C_{δ} (44); C_{β} - C_{γ} (12)
1063 (m)		1078	$C\delta - C\varepsilon$ (13); $C\varepsilon - N\zeta$ (12); $C\delta - wag$ (11)	1067	$C\gamma$ -twist (11); $C\delta$ -wag (11); $W6$; $C\delta$ - $C\varepsilon$ (10); $C\varepsilon$ -twist (9)
1033 (sh)		1071	$C\varepsilon$ -N ζ (43); $C\delta$ -C ε (19)	1052	$C\delta$ -C ε (30); C ε -N ζ (15)
1012 (m)		1055	$C\beta$ - $C\gamma$ (17); $C\beta$ -wag (12); $C\gamma$ -scissor (12)	1042	$C\beta$ - $C\gamma$ (27); $C\alpha$ - $C\beta$ (13); $C\varepsilon$ - $N\zeta$ (10)
	1007 (m)	1012		1007	$C\varepsilon$ -N ζ (36); $C\gamma$ -C δ (14); $C\alpha$ -C β (14); Nt-C α (12)
961 (w)		994	Nt-C α (29); C δ -C ε (12)	986	$Nt-C\alpha$ (23); W4; W2
919 (sh)		957		950	$C\varepsilon$ -wag (16)
903 (m)		914	C_{γ} -C δ (10); $C\beta$ -wag (10); $C\beta$ -C γ (9); Nt-C α (9); $C\alpha$ -Ct (9)	913	$C\alpha$ -Ct (12); $C\beta$ -C γ (12); $C\beta$ -wag (12)
847 (s)		863	$C\gamma$ -twist (13); $C\varepsilon$ -wag (13); $C\beta$ -wag (10)	859	$C\gamma$ -twist (26); $C\varepsilon$ -wag (23)
(sh)		831	0-Ct-0 (13)	845	O-Ct-O (19); C β -wag (14); C α CtOO sym bend (9)
745 (w)		750	Cô-wag (18); $C\gamma$ -twist (14); Cl^- ; W7	092	$C\delta$ -wag (28); $C\gamma$ -twist (17); $\tau(C\gamma$ - $C\delta)$ (9)

^a s, intense; m, medium; w, weak; sh, shoulder. Raman: Raman spectra recorded in H₂O buffers (Figure 2). IR: FT-IR ATR spectra recorded in H₂O (Figure 2). Calculated wavenumbers obtained at the DFI/B3LYP/6-31++G* the level. K/8H₂O/Cl⁻: Neutral system formed by Iysine surrounded by 8 water molecules and a Cl⁻ anion (Figure 6). (I) and (II) correspond to the two optimized clusters shown in Figure 6. Assignments are based on the Potential Energy Distribution (PED). Only major contributions (PED ≥ 9%) are reported. The angular bending modes of the tetrahedrons located along the K side chain are referred to as bending (-bend), wagging (-wag), twisting (-twist), rocking (-rock), and scissoring (-scissor). τ designates a torsional internal coordinate. For atom numbering, see Figure 1. Water molecules are numbered from W1 to W8 (Figure 6).

signal transduction, 11 (iii) are responsible for the rectification of inward—outward currents through the ionic channels, by their presence on the wall of the cytoplasmic pore, 12 and (iv) are essential in enzymatic reactions appearing through digestive system. The action of trypsin that cleaves peptide chains at the carboxyl side of the K (or R) is to be noted.¹³

Beyond all these characteristics, since the discovery of the translocation of the third helix of the homeodomain of Antennapedia through the biological membranes, 14 peptides are considered as important molecular tools for drug delivery into cells. 15,16 In this framework, the capability of the amphipathic peptides, formed by an adequate combination of hydrophilic (basically K and R) and hydrophobic amino acids, was proved through the delivery of therapeutic DNA (antisense oligonucleoties, plasmids, ...). 15-18

It is a matter of fact that vibrational spectroscopy (Raman scattering and IR absorption) can be considered as rapid and efficient tools to elucidating the secondary structure of peptides and proteins, as well as their interactions with other molecules (nucleic acids, proteins, membranes, drugs, ...). In this framework, it is a fundamental task to achieve a good knowledge of the vibrational features of the peptide building blocks. We have recently reported and discussed in the manuscripts I and IV of this series^{19,20} the vibrational data from glycine and the amino acids with branched hydrophobic side chains (alanine, valine, isoleucine, leucine). In the present manuscript, our aim is to extend our analysis to lysine and arginine. Obviously, the present investigation uses as background all the experimental and theoretical works reported previously, among which should be mentioned: (i) Raman spectra obtained from L-arginine. HCl·H₂O single crystal as a function of temperature, ²¹ (ii) FT-Raman and ATR FT-IR spectra of L-arginine • HNO₃ • 0.5H₂O₂ . (iii) Raman spectra obtained from the solutions of L-lysine and its C-deuterated derivative, 23 (iv) FT-IR spectra of both AAs recorded in aqueous solutions,²⁴ and (v) ab initio calculations on the stability neutral and zwitterionic forms of isolated L-arginine.²⁵ Here we report Raman and FT-IR spectra of both AAs, recorded in H₂O and D₂O along with their interpretation by means of ab initio calculations.

II. Materials and Methods

Experimental. Monohydrochloride salts of K and R were purchased as lyophilized powder samples from Sigma-Aldrich. Water was taken from a Millipore filtration system. Heavy water (100% purity) was provided by Euriso-top (Saclay, France). Powder samples were dissolved in H₂O (or D₂O) to obtain aqueous solutions of each amino acid at 50 mM and 100 mM molecular concentrations for Raman and FT-IR measurements, respectively. To avoid D₂O/H₂O exchange, deuterated samples were prepared under a dry air atmosphere. For recording Raman spectra, 30 µL of solution placed in suprasil quartz cells (5 mm path length) was excited by the 488 nm line emitted by an Ar⁺ laser (Spectra Physics). Scattered light at a right angle was analyzed on a Jobin-Yvon T64000 spectrograph in a single spectrograph configuration with a 1200 grooves/mm holographic grating and a holographic notch filter. A liquid nitrogen cooled CCD detection system (Spectrum One, Jobin-Yvon) based on a Tektronix CCD chip of 2000 × 800 pixels was used to collect Stokes Raman data with an accumulation time of 40 min, using an effective spectral slit width set to ca. 5 cm⁻¹. FT-IR spectra were recorded on a Perkin-Elmer 2000 spectrophotometer under continuous dry air purge and equipped with a ZnSe crystal ATR accessory. To record each spectrum, 18 μL of a sample solution was deposed in drops on the ATR crystal and spread to cover the whole surface. The incident infrared beam meeting the ATR crystal surface under an effective angle of 45°, followed then 12 reflections from the entrance to the exit points. Each infrared spectrum corresponds to 20 scans and was collected with 1 cm⁻¹ spectral resolution and a medium Norton Beer apodization function. Postprocessing of Raman spectra, including subtraction of buffer contribution, baseline correction, and smoothing, was performed by means of GRAMS/32 software (Galactic Industries). ATR data treatment was carried out by the Perkin-Elmer Spectrum program. The final presentation of vibrational spectra has been performed by means of the SIGMAPLOT package.

Theoretical. The density functional theory (DFT) approach²⁶ by means of B3LYP functionals, i.e., Becke's three parameter (B3) exchange functional²⁷ with the Lee-Yang-Parr (LYP) nonlocal correlation functional, ²⁸ was used to estimate geometrical and harmonic modes of cationic AAs. Standard split valence, double-ζ Gaussian atomic basis sets containing diffuse functions on heavy and hydrogen atoms, as implemented in the GAUSSIAN03 pakage,²⁹ and referred to as 6-31++G*, were employed. As in our previous calculations on amino acids, ^{19,20} we have attempted to consider the effect of hydration on the vibrational features. Two hydration models were considered in this work based on: (i) an implicit hydration by means of a polarizable dielectric continuum model (COSMO),^{30,31} basically capable of mimicking an environment such as that created by bulk water around a molecule and (ii) an explicit hydration by the intermediate of n water molecules surrounding the solvated molecule, where n is minimally but significantly selected to reproduce the H-bond interactions with all the acceptor and donor sites of both AAs, such as NH₃⁺, NH₂, NH, and COO⁻ (Figure 1). Recently, through a systematic investigation on leucine, ²⁰ an AA with a large size hydrophobic side chain, we have shown that a cluster of 5H₂O can hydrate accurately its backbone by maintaining its zwitterionic character. On the basis of this result and also on those derived from other AAs with hydrophobic side chains, 20 we have derived the conclusion that for a reasonable and accurate hydration we should use as many water molecules as there are potential H-acceptor and H-donor sites in a molecule. The side chains of lysine and arginine possess 3 and 5 NH bonds, respectively. Consequently, quantum mechanical calculations were performed on the clusters containing 8 or 10 water molecules, hereafter referred to as K/8H₂O and R/10H₂O. Note that these two clusters, as well as that formed by lysine embedded in a dielectric continuum, referred to as K/dielec, are positively charged; i.e., each of them contains one extra positive charge. As the samples used for Raman and FT-IR experiments contain Cl⁻ counterions (see above, Experimental), neutralizing the positive charge of their side chains, we have also performed further calculations which have allowed us to analyze the counterion effect in the neutral clusters K/8H₂O/ Cl⁻ and R/10H₂O/Cl⁻ on both geometrical and vibrational data of hydrated AAs. The geometry of the above-mentioned systems was first fully optimized, before proceeding to harmonic vibrational calculations. The absence of imaginary frequency proved the assignment of an optimized geometry to a local minimum in the molecular energy landscape. Values of the electronic ($E_{\rm e}$) and vibrational energies ($E_{\rm v}=1/2~\Sigma$ $h\nu$, where h is the Plank constant and ν the frequency of a

Figure 2. Vibrational spectra of lysine (K) observed in aqueous solutions. From top to bottom: Raman spectrum recorded in H_2O buffer ($\lambda_L = 488$ nm), FT-IR ATR spectrum recorded in H_2O , Raman spectrum recorded in H_2O buffer ($\lambda_L = 488$ nm), FT-IR ATR spectrum recorded in H_2O . The intensity of each observed spectrum was normalized to the most intense peak to facilitate their comparison.

vibrational mode) were estimated from the quantum mechanical calculations carried out on different models of solvated AAs.

Harmonic force constants, output from Gaussian, were post-treated by a homemade program (BORNS), allowing us to remove redundancies among vibrational coordinates and to assign wavenumbers on the basis of the PED (Potential Energy Distribution) matrix elements as expressed in terms of a combination of local symmetry and internal coordinates. Local symmetry coordinates were preferentially used to achieve a better analysis of the vibrational modes arising from the CH_2 , NH_2 , NH_3^+ , and COO^- groups involved in the chemical constitution of the studied AAs (see also refs 19, 20, and 32 for more details). No scaling factor was used to improve the agreement between calculated and observed wavenumbers. In fact, the report of raw calculated wavenumbers leads to a better estimation of the inaccuracies related to the theoretical level, basis sets, as well as to the neglect of anharmonic effects.

III. Results

Observed vibrational spectra obtained from the aqueous samples of lysine and arginine are displayed in Figures 2 and

Figure 3. Vibrational spectra of arginine (R) observed in aqueous solutions. From top to bottom: Raman spectrum recorded in H₂O buffer ($\lambda_L = 488$ nm), FT-IR ATR spectrum recorded in H₂O, Raman spectrum recorded in D₂O buffer ($\lambda_L = 488$ nm), FT-IR ATR spectrum recorded in D₂O. The intensity of each observed spectrum was normalized to the most intense peak to facilitate their comparison.

3, respectively. In each figure, Raman and FT-IR spectra corresponding to the AAs dissolved in H_2O (native species) and D_2O (labile-hydrogen deuterated species) are presented. To facilitate the comparison between these spectra, each of them was normalized to its most intense peak. The wavenumbers of the main observed bands, together with their relative intensities, are also reported in Tables 1 and 2 for lysine and Tables 3 and 4 for arginine.

From the theoretical point of view, the streoviews of the optimized geometries of lysine and arginine in hydrated media (dielectrique continuum for K and explicit hydration for both K and R) are shown in Figures 4–6. Electronic and vibrational energies obtained from different molecular systems are indicated in Table 5. Tables S1 and S2, reporting the geometrical parameters of K and R in different environments, are provided as Supporting Information. In Table 6, the influence of implicit and explicit hydrations, as predicted by theoretical calculations, on a selection of characteristic vibrational modes, is indicated. The comparison between the observed and theoretical wavenumbers corresponding to native and deuterated species of both AAs, together with their calculated assignments, is performed in Tables 1–4.

TABLE 2: Vibrational Modes of Lysine Observed in Aqueous Solutions (D₂O) and Their Assignments^a

10) 1683 1550 1550 1558 1550 1558 1550 1558 15516 15511 1469 1428 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1402 1406 1400 14001 140	Raman IR	calcd $K/8D_2O/CI^-$ (I)	assignments (PED %)	calcd K/8D ₂ O/Cl ⁻ (II)) assignments (PED %)
1 1643 (m) 1688 CGOC saym st (80); CαCiOO saym bend (10) 1614 (s) 1688 CGOC saym st (80); CαCiOO saym bend (10) 1614 (s) 1519 Cg-bend (41); Cg-bend (32); Cg-bend (20) 1529 Cg-bend (41); Cg-bend (20) 1510 Cg-bend (41); Cg-bend (20) 1511 Cg-bend (41); Cg-bend (41); Cg-bend (41); Cg-bend (41); Cg-bend (41); Cg-bend (20) 1511 Cg-bend (21); Cg-bend (21); Cg-bend (21); Cg-bend (21); Cg-bend (22) 1511 Cg-bend (21); Cg-bend (21); Cg-bend (22) Cg-bend (23); Cg-bend					
1448 (sh) 1535 Cc-bend (23); Cy-bend (25) 1448 (sh) 1519 Cc-bend (41); Cc-bend (35); Cy-bend (20) 1418 (sh) 1510 Cq-bend (41); Cc-bend (35); Cy-bend (20) 1511 Cq-bend (41); Cc-bend (35); Cy-bend (20) 1512 Cq-bend (68); Cd-bend (20) 1435 CcOrO sym st (25); Cβ-rock (17) 1445 Cq-rock (31); Cc-rock (31); Cc-rock (31); Cf-rock			0	1683	CtOO ⁻ asym st (82); $C\alpha CtOO^-$ asym bend (10)
1448 (sh) 1519 CG-bend (41); Cg-bend (35), Cy-bend (20) 1518 1512 CG-bend (41); Cg-bend (36) Cd-bend (41) 1519 1445 CGOO'S sym 42; Cg-rock (13) 1519 1445 CGO-rock (31); Cg-rock (13) 1469 1445 CGO-rock (31); Cg-rock (13); Cg-rock (12); CGOO sym st (11); 1402 1415 CG-rock (31); Cg-rock (13); Cg-rock (12); CGOO sym st (11); 1402 CG-rock (10) CG-rock (13); Cg-rock (1			Ce-bend (62); C δ -bend (25)	1550	$C\delta$ -bend (76); $C\varepsilon$ -bend (14)
1413 (m) 1512 CG-bend (94) 1413 (m) 1510 CG-bend (89) CG-bend (29) 1415 CG-bend (80) CG-bend (20) CG-bend (20) 1415 CG-bend (81) CG-bend (10) CG-bend (10) 1415 CG-bend (10) CG-bend (10) CG-bend (10) 1417 CG-bend (10) CG-bend (10) CG-bend (10) 1418 NF-Ca-lett (10) CG-bend (10) CG-bend (10) 1419 NG-bend (10) CG-bend (10) CG-bend (10) 1410 CG-bend (10) CG-bend (10) CG-bend (10) 1410 CG-bend (10) CG-bend (10) CG-bend (10) 1411 CG-bend (10) CG-bend (10) CG-bend (10) 1412 CG-bend (10) CG-bend (10) CG-bend (10) 1412 CG-bend (10) CG-bend (10) CG-bend (10) 1414 CG-bend (10) CG-bend (10) CG-bend (10) 1415 CG-bend (10) CG-bend (10) CG-bend (10) 1416 CG-bend (10) CG-bend (10) CG-bend (10) 1417 CG-bend (10) CG-bend (10) CG-bend (10) 1419 CG-bend (10) CG-bend (10) CG-bend (10) 1410 CG-bend (10) CG-bend (10) CG-bend (10) 1411 CG-bend (10) CG-bend (10) CG-bend (10) CG-bend (10) 1411 CG-bend (10) CG			C δ -bend (41); C ϵ -bend (35); C γ -bend (20)	1528	C ε -bend (83); C δ -bend (15)
1413 (m) 1510 Cy-bend (68); Cφ-bend (129) 1445 CCOC (87); Cφ-rock (17) 1445 CCOC (87); Cφ-rock (17) 1455 CCOC (87); Cφ-rock (13) 1405 CCOC (87); Cφ-rock (13); Cφ-rock (13) 1412 Cγ-rock (13); Cφ-rock (13); Cφ-roc			C <i>β</i> -bend (94)	1516	$C\gamma$ -bend (79); $C\beta$ -bend (12)
1445 CGO-σxok (31); Cz-rock (11) 1469 1435 CGO-σxok (31); Cz-rock (12); Cy-rock (11) 1428 1415 Cy-rock (31); Cz-rock (13); Cz-rock (12); C10O 1402 1407 Cy-rock (31); Cz-rock (13); Cz-rock (12); C10O 1402 1375 Ny-Cα-Hα (18); Cβ-rock (13); Cβ-rock (12); C10O 1306 1374 Cβ-wist (11) Cβ-rock (13); Cβ-rock (12); Cβ-Cα-Hα (12); 1369 1374 Cβ-wist (11); Cβ-rock (13); Cβ-rock (12); 1369 1374 Cβ-wist (13); Cβ-rock (13); Cβ-rock (13); Cβ-α-Hα (12); 1369 1375 Ny-Cα-Hα (22); Cβ-rock (13); Cβ-rock (13); Cβ-α-Hα (12); 1369 1376 Cβ-wist (13); Cβ-rock (13); Cβ-rock (13); Cβ-α-Hα (13); 1370 1370 Cβ-rock (13); Cβ-rock (13); Cβ-α-Hα (13); 1370 1271 Nyβ-β- sym bend (22); Nyβ-β- sym rock (18); W6; W7 1271 Nyβ-β- sym bend (21); Nyβ-β-β-γα (13); Cβ-α-Hα (13); 1110 1270 Cβ-rock (13); Cβ-α-Cβ (13); Cβ-α-Rα (11) 1114 1270 Cβ-rock (13); Cβ-α-Cβ (13); Cβ-α-Rα (11) 1114 1270 Cβ-rock (13); Cβ-α-Cβ (13); Cβ-α-Cβ (13); Cβ-α-Rα (13); 1100 1103 Cβ-α-Cβ (13); Cβ			C_{γ} -bend (68); $C\delta$ -bend (29)	1511	$C\beta$ -bend (82); $C\gamma$ -bend (12)
1435 COO ² sym st (25); Cβ-rock (18) 1438 1412 Cy-rock (13); Cβ-rock (13); Cc+rock (11); 1406 1407 Cβ-Cα-Hα (18); Cβ-rock (12); COO ² sym st (11); 1402 Cγ-rock (10) 1375 Nt-Cα-Hα (18); Cβ-rock (13); Cβ-α-Hα (12); 1396 Cγ-rock (10) 1364 Cβ-twist (45); Cβ-rock (13); Cβ-α-Hα (12); 1388 Cγ-rwist (43); Cγ-rock (13); Cβ-α-Cα-Hα (12); 1369 Cγ-rwist (43); Cγ-rock (13); Cβ-α-Cα-Hα (12); 1338 Cγ-rwist (43); Cγ-rock (13); Cβ-α-Cα-Hα (12); 1340 Cγ-rwist (43); Cγ-rock (13); Cβ-α-Cα-Hα (12); 1340 1334 Cβ-twist (43); Cγ-rock (13); Cβ-α-Cα-Hα (12); 1340 Cγ-rwist (44); Cγ-rwigt (14); Cβ-α-Cα-Hα (12); 1340 1282 Cγ-rwigt (14); Cβ-α-Cα-Hα (12); 1274 N(Σ) ⁴ sym bend (21); NW3 1293 N(Σ) ⁴ sym bend (21); NW3 1200 Cβ-twist (17); (D-O-D) (W3) (14) 1210 N(D) ⁴ sym bend (31); W3 1117 Cγ-rwist (13); Cα-Cβ (13); Cγ-Cβ (13); Cα-Cβ (13); Cγ-Cβ (12); Cα-Cβ (13); Cα-Cβ (12); Cα-Cβ (13); Cα-C		1445	$C\delta$ -rock (37); $C\varepsilon$ -rock (21); $C\gamma$ -rock (17)	1469	$C\delta$ -rock (66); $C\epsilon$ -rock (12); $C\gamma$ -rock (10)
1412 Cy-rock (31); Cξ-rock (37); Cβ-twist (13) (26-cc+Hα (12); CQO ⁻ sym st (11); 1402 (27-cck (10)) (27-cck (10	1386 (w)	1435	CtOO ⁻ sym st (25); $C\beta$ -rock (18)	1428	$C\beta$ -rock (26); CtOO ⁻ sym st (25); Nt-C α -H α (13)
1407 Cβ-Cα-Hα (18); Cβ-rock (12); Ct0O ⁻ sym st (11); 1402 Cγ-rock (10) (1375 Nr-cch (10); Cβ-rock (13); Cβ-rock (12); 1396 Cβ-twist (11) (1375 Cβ-twist (11); Cβ-rock (13); Cβ-Cα-Hα (12); 1396 Cβ-twist (13); Ct-rock (13); Cβ-rock (13); Cβ		1412	C_{γ} -rock (31); Ce-rock (27); C_{β} -twist (13)	1406	Cô-twist (59)
1340 (w) 1355		1407	$C\beta - C\alpha - H\alpha$ (18); $C\beta$ -rock (13); $C\varepsilon$ -rock (12); $CtOO^-$ sym st (11);	1402	$C\beta$ -C α -H α (16); $C\beta$ -twist (15); $C\delta$ -twist (13); $C\beta$ -rock (10)
1375 N-Cα-Hα (27); Cγ-vag (26); Cβ-rock (13); Cβ-Cα-Hα (12); 1396 1340 (w) 1364 Cδ-twist (43); Cε-twist (17); Cβ-rock (9); 1369 1354 Cβ-twist (43); Cε-twist (17); Cβ-rock (9); 1358 1334 Cε-twist (40); Cγ-vag (12) 1299 NbD+ sym bend (21); NβD+ sym rock (18); W6; W7 1271 NbD+ sym bend (21); W6; W8 1272 Cγ-wag (14); Cε-twist (9) 1274 NβD+ asym bend (21); W6; W8 1270 NbD+ asym bend (21); W6; W8 1271 NbD+ asym bend (21); W6; W8 1270 NbD+ asym bend (21); W6; W8 1271 NbD+ asym bend (21); W6; W8 1270 Cβ-twist (17); Cβ-cwag (14); Cε-wag (11) 1271 NbD+ asym bend (21) 1270 Cβ-twist (17); Cβ-cwag (14); Cε-wag (11) 1271 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1271 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1272 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1273 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1274 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1275 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1276 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1277 Cβ-cc (23); Cβ-cc (11) 1278 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1279 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1270 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1271 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1272 Cβ-cc (23); Cβ-cc (24); Cβ-cc (6) 1273 Cβ-cc (23); Cβ-cc (6) 1274 Cβ-cc (23); Cβ-cc (6) 1275 Cβ-cc (23); Cβ-cc (6) 1276 Cβ-cc (23); Cβ-cc (6) 1277 Cβ-cc (23); Cβ-cc (6) 1278 Cβ-cc (23); Cβ-cc (6) 1279 Cβ-cc (23); Cβ-cc (6) 1270 Cβ-cc (23)			$C\gamma$ -rock (10)		
1340 (w) 1364 Cd-wist (45); Ce-twist (17); Cβ-rock (9); 1369 1354 Cβ-twist (23); CtOO ⁻ sym st (22); Ct-Cα-Hα (9) 1358 1334 Cg-twist (40); Cy-wag (12) 1320 1299 (NgD ₃ + sym bend (22); NgD ₃ + sym rock (18); W6; W7 1274 1290 (NgD ₃ + sym bend (22); NgD ₃ + sym rock (18); W6; W7 1274 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1201 (NgD ₃ + sym bend (23); W6; W8 1277 1202 (NgD ₃ + sym bend (23); W6; W8 1277 1203 (NgD ₃ + sym bend (23); W6; W8 1277 1204 (NgD ₃ + sym bend (23); W6; W8 1277 1207 (NgD ₃ + sym bend (23); W6; W8 1277 1208 (NgD ₃ + sym bend (23); W6; W8 1277 1209 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym bend (23); W6; W8 1277 1200 (NgD ₃ + sym rock (13); WgD ₃ + sym rock (12) 1277 1200 (NgD ₃ + sym rock (13); Octo (10) 1277 1200 (NgD ₃ + sym rock (13); Octo (10) 1277 1200 (NgD ₃ + sym rock (13); Octo (10) 1277 1200 (NgD ₃ + sym rock (13); Octo (10) 1277 1200 (NgD ₃ + sym rock (13); Octo (10) 1277 1200 (NgD ₃ + sym rock (12); Octo (10) 1277 1200 (NgD ₃ + sym rock (12); Octo (10) 1277 1200 (NgD ₃ + sym rock (12); Octo (10) 1277 1200 (NgD ₃ + sym rock (12); Octo (10); W4; W5 1271 1200 (NgD ₃ + sym rock (12); Octo (10); W4; W5 1271 1200 (NgD ₃ + sym rock (10); NcD ₃ + sym rock (12); Octo (10); W4; W5 1271	1343 (sh)	1375	Nt-Cα-Hα (27); Cγ-wag (26); Cβ-rock (13); Cβ-Cα-Hα (12); Cβ-twist (11)	1396	$C\varepsilon$ -rock (40); $C\gamma$ -rock (28)
1354	1340 (w		$C\delta$ -twist (45): CE-twist (17): $C\beta$ -rock (9):	1369	C_{t} - C_{t
1334			CB-twist (23); CtOO svm st (22); Ct-Ca-H α (9)	1358	$C8$ -twist (20): Ce -rock (19): $CtOO^-$ sym st (17): $C8$ -rock (11)
1330 Cδ-rock (30); Cγ-rock (10) 1299 NζD ₃ + sym bend (22); NζD ₃ + sym rock (18); W6; W7 1282 Cγ-wag (14); Cε-twist (9) 1271 NζD ₃ + asym bend (37); W6; W8 1271 NζD ₃ + asym bend (37) 1250 NζD ₃ + asym bend (31) 1250 Cβ-twist (17); Cθ-O-D) (W3) (14) 1210 ND ₃ + asym bend (31); W3 1211 Cγ-twist (15); Cθ-wag (14); Cα-Cβ (13); Cε-wag (11) 1114 Cγ-Cε (23); Cε-scissor (9); Cγ-Cβ (9) 1117 Cγ-twist (15); Cθ-wag (14); Cα-Cβ (15) 1119 Cβ-Cε (21); Cγ-Cβ (12); Cα-Cβ (12); 1111 Cβ-Cε (21); Cγ-Cβ (12); Cβ-Cε (9) 1111 Cβ-Cε (21); Cγ-Cβ (12); Cβ-Cε (12); 1112 Cβ-Cε (21); Cγ-Cβ (12); Cβ-Cε (12); 1113 Cβ-Cε (21); Cβ-Cε (13); Nh-Cα-Cβ (13); NhD ₃ + asym rock (12) 1111 Sβ Cβ-Cε (13); Nh-Cα-Cβ (13); NhD ₃ + asym rock (13); NhD ₃ + asym rock (13); NhD ₃ + asym rock (13); Nh-Cα-Cβ (13	1300 (sh)	1334	C_{ε} -twist (40); C_{γ} -wag (12)	1340	Ct-Ca-Ha (16); Cy-rock (16); Cd-rock (10); CtOO sym st (9);
1330 Co-rock (30); Cy-rock (10) 1320 1229 NCD3+ sym bend (22); NCD3+ sym rock (18); W6; W7 1285 1282 Cy-wag (14); Ce-twist 9) 1287 1271 NCD3+ asym bend (21); W6; W8 1272 1250 NCD3+ asym bend (21) 1220 1250 NCD3+ asym bend (21) 1220 1210 ND3+ asym bend (21) 1220 1211 Cy-rwist (17); CD-O-D) (W3) (14) 1228 1210 ND3+ asym bend (31); W3 1211 Cy-rwist (15); Cδ-wag (11) 1173 1212 Cy-rwist (15); Cδ-wag (14); Cα-Cβ (13); Cε-wag (11) 1110 1214 Co-Cε (22); Cε-sciscor (10); Cγ-Cδ (9) 1107 1210 NG3 (W) 1094 Cβ-Cγ (13); Cβ-Cγ (9) 1107 1210 Nc-Cα (22); Cβ-Cγ (13); Cβ-Cε (13) 1100 1210 Nc-Cα (22); Cβ-Cγ (13); Cβ-Cε (13) 1100 1210 Nc-Cα (22); Cβ-Cγ (13); ND3+ asym rock (12) 1100 1211 Cγ-rwist (19); NCβ-γ asym rock (17); Cβ-wag (13) 1100 1211 S87 NCD3+ asym rock (13); Cβ-wag (13) 1100 1211 S83 Cε-wag (12); Ncβ-γ asym rock (12); Cβ-wag (13) 1100 1211 S83 Cε-wag (12); Ncβ-γ asym rock (12); Cβ-wag (13); Cβ-wag (13) 1100 1211 S904 Cε-wag (12); Ncβ-γ asym rock (12); Cβ-wag (13); Cβ-cCβ (10); Ms-Cα-Cβ (1					Ce-rock (9)
1299 NçD ₃ + sym bend (22); NçD ₃ + sym rock (18); W6; W7 1285 1282 C ₇ -wag (14); Ce-twist (9) 1271 NζD ₃ + asym bend (37); W6; W8 1272 1250 NζD ₃ + asym bend (37); W6; W8 1228 1210 NζD ₃ + asym bend (31); W3 1290 1210 C ₇ -twist (17); (D-O-D) (W3) (14) 1210 N ₃ + asym bend (31); W3 1290 1211 C ₇ -twist (15); Cδ-wag (14); Cα-Cβ (13); Cε-wag (11) 1212 C ₇ -Cβ (22); Cα-Cβ (13) 1213 C ₇ -Cβ (22); Cα-Cβ (13) 1214 C ₇ -Cβ (22); Cα-Cβ (13) 1215 C ₇ -Nζ (22); Cα-Cβ (13) 1216 C ₇ -Nζ (22); Cα-Cβ (13) 1217 C ₇ -N(12); Cβ-Cρ (12); Cβ-Cρ (13) 1218 C ₇ -Nζ (22); Cβ-Nζ (13); NtD ₃ + asym rock (12) 1219 NtCα (32); Nt-Cα-Cβ (13) 1210 C ₇ -N(13); Ncβ ₃ + asym rock (13) 1211 C ₇ -Ch (13); Ncβ ₃ + asym rock (13) 1211 C ₇ -Ch (13); Ncβ ₃ + asym rock (13); N		1330	$C\delta$ -rock (30); $C\gamma$ -rock (13); $C\varepsilon$ -rock (10)	1320	Ce-twist (51); $C\gamma$ -wag (13); W6
1282 Cy-wag (14); Ce-twist (9) 1271 NζD ₃ + asym bend (37); W6; W8 1271 NζD ₃ + asym bend (37); W6; W8 1230 Cβ-twist (17); CO-O-D) (W3) (14) 1230 Cβ-twist (17); CO-O-D) (W3) (14) 1210 NuD ₃ + asym bend (31); W3 1117 Cy-twist (15); Cδ-wag (11) 1114 Cδ-Cε (23); Cε-scissor (10); Cy-scissor (9); Cy-Cδ (9) 1110 Cβ-Cγ (32); Cβ-Cγ (12); Cα-Cβ (12); 1106 Cδ-Cε (21); Cβ-Cγ (12); Cα-Cβ (12); 1117 Cγ-Twist (15); Cβ-Cε (9) 1118 Cδ-Cε (21); Cβ-Cγ (12); Cα-Cβ (12); 1119 Cβ-Cγ (12); Cβ-Cγ (13); NuD ₃ + asym rock (12) 1110 Ni-Cα (22); Ni-Cα-C1 (11) 1111 Cγ-Twist (19); NζD ₃ + asym rock (17) 1111 Cγ-Twist (19); NζD ₃ + asym rock (17) 1111 Cβ-Tα-Cβ (18); Cβ-Cε (9) 1111 Cβ-Tα-Cβ (18); Cβ-Cε (9) 1111 Cβ-Tα-Cβ (18); Cβ-Cε (9) 1111 Cβ-Tα-Cβ (18); Cβ-Cε (18) 1111 Cβ-Tα-Cβ (18); Cβ-Cε (1	1278 (w)	1299	$N\xi D_3^+$ sym bend (22); $N\xi D_3^+$ sym rock (18); W6; W7	1285	$C\gamma$ -wag (16); $N\xi D_3^+$ sym bend (10); W6
1271 NĞD³ + asym bend (37); W6; W8 1250 NĞD³ + asym bend (21) 1250 CĞ-twist (17); (D-O-D) (W3) (14) 1210 ND³ + asym bend (31) 1211 CÇ-twist (17); (D-O-D) (W3) (14) 1212 CĞ-twist (17); (D-O-D) (W3) (14) 1214 CĞ-CE (23); CĞ-wag (14); CĞ-cwag (11) 1250 CĞ-CE (23); CĞ-cxisor (10); Cζ-cxisor (9); Cζ-CĞ (9) 1261 CĞ-CE (21); Cζ-CĞ (12); CĞ-CĞ (12); 1272 (W3) 1283 (W) 1293 (W) 1294 CĞ-CE (11); CĞ-CE (11); CĞ-CE (12); CĞ-CE (12); CĞ-CE (13);		1282	$C\gamma$ -wag (14); $C\varepsilon$ -twist (9)	1274	$N\xi D_3^+$ sym bend (9); $C\gamma$ -wag (9); W6
1250 NĞD³ asym bend (21) 1230 Cβ-twist (17); (D-O-D) (W3) (14) 1230 Cβ-twist (17); (D-O-D) (W3) (14) 1210 ND³ asym bend (31); W3 1210 ND³ asym bend (31); W3 1211 Cγ-twist (15); Cβ-wag (14); Cγ-cx ag (11) 1211 Cγ-cx (23); Cε-scissor (10); Cγ-cλ (9) 1211 Cγ-cx (12); Cγ-cλ (12); Cα-Cβ (15) 1212 Cβ-Cγ (30); Cγ-Cβ (12); Cα-Cβ (12); 1213 Cβ-Cγ (10); Cγ-cλ (12); Cα-Cβ (12); 1214 Cβ-Cγ (15); Cβ-Cγ (15); Cβ-Cγ (17); 1215 Cβ-Nζ (21) 1216 Cβ-Nζ (21) 1217 Cγ-cλ (12); Cβ-Cγ (13); NiD₃ asym rock (12) 1219 Sβ NiCρ³ asym rock (17) 1210 NiCρ³ asym rock (17); Ni-Cα (18); Cβ-αg (18) 1210 Cβ-wag (12); Ngρ³ asym rock (17); Ni-Cα (18); Cβ-αg (18) 1210 Cβ-wag (18); Cα-Cβ (10) 1210 Cβ-wag (18); Ngρ³ asym rock (17) 1210 Cβ-wag (18); Ngρ³ asym rock (18) 1210 Cβ-wag (18); Ngρ³ asym rock (18) 1210 Cβ-wag (18); Ng-Cα-Cβ (10) 1210 Cβ-wag (18); Ng-Cα-Cβ (18);		1271	$N\xi D_3^+$ asym bend (37); W6; W8	1272	$N\xi D_3^+$ asym bend (47); W6; W8
1230	1215 (w)	1250	$N\xi D_3^+$ asym bend (21)	1240	$N\xi D_3^+$ asym bend (21); W6; W7
1210 NtD ₃ ⁺ asym bend (31); W3 1210 TCγ-twist (15); Cδ-wag (14); Cα-Cβ (13); Cε-wag (11) 1114 Cβ-Cε (23); Cε-scissor (10); Cγ-cδ (9) 1110 Cβ-Cγ (32); Cα-Cβ (15) 1104 Cβ-Cγ (32); Cα-Cβ (15) 1105 Cβ-Cγ (31); Cγ-Cβ (12); 11067 Cβ-Cγ (15); Cβ-Cγ (12); 1107 Cβ-Cγ (15); Cβ-Cγ (12); 11083 (w) 1094 Cβ-Cγ (15); Cβ-Cγ (12); 1017 Cβ-Cγ (15); Cβ-Cγ (13); NtD ₃ ⁺ asym rock (12) 1018 Cβ-Cγ (11) 1019 Cβ-Cγ (11) 1011 Cβ-Cγ (12); Cβ-Cγ (13); NtD ₃ ⁺ asym rock (12) 1011 Cβ-Cγ (13); NfD ₃ ⁺ asym rock (13) 1012 Cβ-wag (13); Nf-Cβ-Cγ (13); NfD ₃ ⁺ asym rock (13) 1013 Cβ-wag (12); NfD ₃ ⁺ asym rock (13) 1014 Cβ-wag (12); NfD ₃ ⁺ asym rock (12) 1015 Cβ-wag (15); Cα-Cβ (10) 1016 Cβ-wag (15); Cα-Cβ (10) 1110 Cβ-wag (15); Cα-Cβ (10) 1110 Cβ-wag (10); Nf-Cα-Ct (9); W4; W5 1110 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 111 1111 1111 1111 1111 1111 1111 1111 111 11111 111 1111 1111 1111 111 1111 111 1111 111 111		1230		1228	$C\beta$ -twist (11)
1177 Cγ-twist (15); Cδ-wag (14); Cε-wag (11) 1173 1179 Cγ-twist (15); Cδ-wag (14); Cε-wag (11) 1114 Cδ-Cε (23); Cε-scissor (10); Cγ-cδ (9) 1097 1094 Cβ-Cγ (30); Cγ-Cβ (12); Cα-Cβ (15) 1065 1065 Cε-Nζ (20); Cα-Cβ (12); Cα-Cβ (12); 1065 1070 Cε-Nζ (21); Cγ-Cβ (12); Cδ-Cε (9) 1001 973 (w) 996 Nτ-Cα (32); Nt-Cα-Ct (11) 994 967 Cγ-Cδ (22); Cε-Nζ (14); Cβ-Cγ (13); NtD₃ ⁺ asym rock (12) 994 967 Cγ-Cδ (22); Cε-Nζ (14); Cβ-Cγ (13); NtD₃ ⁺ asym rock (12) 917 887 Nτ-Cα (32); Nτ-Cα (13); Cα-Cβ (10) 172 (w) 769 Cε-wag (12); Nτ-Cα (13); Nτ-C	1178 (w)	1210	NtD_3^+ asym bend (31); W3	1209	NtD_3^+ asym bend (35); W3
1114 Cό-Cε (23); Cε-scissor (10); Cγ-scissor (9); Cγ-Cδ (9) 1110 1094 Cβ-Cγ (30); Cγ-Cβ (15) 1097 1065 Cδ-Cε (21); Cγ-Cβ (12); Cα-Cβ (12) 107 Cδ-Cε (21); Cγ-Cδ (12); Cα-Cβ (12) 1088 Cε-Nζ (29); Cβ-Cγ (15); Cδ-Cε (9) 1001 1012 Cε-Nζ (21) 1012 Cε-Nζ (11) 994 1012 Cε-Nζ (12); Cβ-Cγ (13); NtD ₃ + asym rock (12) 994 967 Cγ-Cδ (22); Cε-Nζ (14); Cβ-Cγ (13); NtD ₃ + asym rock (12) 994 107 Cγ-twist (19); NζD ₃ + asym rock (17) 887 1088 NζD ₃ + asym rock (17); Nt-Cα (13); OctO (10) 829 1096 Cε-wag (12); NζD ₃ + asym rock (12) 829 1097 Cε-wag (12); NζD ₃ + asym rock (12) 829 1098 Cε-wag (12); NζD ₃ + asym rock (12) 829 1099 Cε-wag (15); Cα-Cβ (10) 1001 1090 Cε-wag (15); Cα-Cβ (10) 1001 1090 Cε-wag (16); Nt-Cα-Ct (10) 1001 1090 Cε-wag (16); Nt-Cα-Ct (10) 1001 1090 Cε-wag (16); Nt-Cα-Ct (10) 1001 1090 Cε-wag (10); Nt-Cα-Ct (1	1163 (w)	1177	$C\gamma$ -twist (15); $C\delta$ -wag (14); $C\alpha$ - $C\beta$ (13); $C\varepsilon$ -wag (11)	1173	$C\gamma$ -twist (14); $C\alpha$ - $C\beta$ (13); $C\delta$ -wag (13); $C\varepsilon$ -wag (11)
1) 1083 (w) 1094	1107 (m)	1114	$C\delta$ - $C\varepsilon$ (23); $C\varepsilon$ -scissor (10); $C\gamma$ -scissor (9); $C\gamma$ - $C\delta$ (9)	1110	$C\delta$ - $C\varepsilon$ (18); $C\gamma$ - $C\delta$ (12); $C\gamma$ -scissor (10); $C\varepsilon$ -scissor (10)
1067 $C\delta - C\varepsilon (21); C\gamma - C\delta (12); C\alpha - C\beta (12);$ 1088 $C\varepsilon - N\zeta (29); C\beta - C\varepsilon (9)$ 1012 $C\varepsilon - N\zeta (29); C\beta - C\varepsilon (9)$ 1012 $C\varepsilon - N\zeta (21)$ 1014 $C\varepsilon - N\zeta (21)$ 1015 $C\varepsilon - N\zeta (21)$ 1016 $C\varepsilon - N\zeta (21)$ 1017 $C\varepsilon - N\zeta (21)$ 1018 $C\varepsilon - N\zeta (21)$ 1019 $C\varepsilon - N\zeta (21)$ 1010 $C\varepsilon - N\zeta (21)$ 1011 $C\varepsilon - N\zeta (21)$ 1012 $C\varepsilon - N\zeta (21)$ 1011 $C\varepsilon - N\zeta (21)$ 1012 $C\varepsilon - N\zeta (21)$ 1013 $N_1 - C\alpha - C\varepsilon (11)$ 1014 $C\gamma - C\varepsilon (11)$ 1015 $C\varepsilon - N\zeta (11)$ 1016 $C\varepsilon - N\zeta (11)$ 1017 $C\varepsilon - N\zeta (11)$ 1018 $C\varepsilon - N\zeta (11)$ 1019 $C\varepsilon - N\zeta (11)$ 1019 $C\varepsilon - N\zeta (11)$ 1019 $C\varepsilon - N\zeta (11)$ 1010 $C\varepsilon - N\zeta (11)$ 1010 $C\varepsilon - N\zeta (11)$ 1011 $C\varepsilon - N\zeta (11)$ 1011 $C\varepsilon - N\zeta (11)$ 1012 $C\varepsilon - N\zeta (11)$ 1013 $C\varepsilon - N\zeta (11)$ 1014 $C\varepsilon - N\zeta (11)$ 1015 $C\varepsilon - N\zeta (11)$ 1016 $C\varepsilon - N\zeta (11)$ 1017 $C\varepsilon - N\zeta (11)$ 1018 $C\varepsilon - N\zeta (11)$ 1019 $C\varepsilon - N\zeta (11)$ 1020			$C\beta - C\gamma$ (30); $C\gamma - C\delta$ (22); $C\alpha - C\beta$ (15)	1097	C_{γ} - C_{δ} (33); C_{δ} - C_{ε} (22); C_{β} - C_{γ} (15); C_{α} - C_{β} (9)
1038	1068 (m)	1067	$C\delta$ - $C\varepsilon$ (21); $C\gamma$ - $C\delta$ (12); $C\alpha$ - $C\beta$ (12);	1065	$C\alpha$ - $C\beta$ (20); $C\delta$ - $C\varepsilon$ (16)
1012 Ce-Nζ (21) 973 (w) 996 Nt-Cα (32); Nt-Cα-Ct (11) 975 (w) 996 Nt-Cα (32); Nt-Cα-Ct (11) 976 Cγ-Cδ (22); Ce-Nζ (14); Cβ-Cγ (13); NtD ₃ + asym rock (12) 977 Cγ-twist (19); NζD ₃ + asym rock (17) 879 S87 NζD ₃ + asym rock (18); Cδ-Cε (9) 879 S89 NζD ₃ + asym rock (18); Cδ-Cε (9) 879 S89 NζD ₃ + asym rock (17); Nt-Cα (13); OctO (10) 879 S89 Cε-wag (12); NζD ₃ + asym rock (12) 879 S89 Cε-wag (12); NζD ₃ + asym rock (12) 870 Cε-wag (12); NζD ₃ + asym rock (12) 871 Cε-wag (10); Nt-Cα-Cβ (10) 872 Cε-wag (10); Nt-Cα-Cβ (10) 873 Cε-wag (10); Nt-Cα-Cβ (10) 874 Cε-wag (10); Nt-Cα-Cβ (10)	1012 (sh)	1038	C_{ε} -N ζ (29); $C\beta$ -C γ (15); $C\delta$ -C ε (9)	1025	$C\beta$ - $C\gamma$ (21); $C\varepsilon$ - $N\zeta$ (13); W6
973 (w) 996 Nt-Cα (32); Nt-Cα-Ct (11) 994 995 975 (w) 966 Cy-Cδ (22); Cε-Nξ (14); Cβ-Cγ (13); NtD ₃ ⁺ asym rock (12) 964 917 Cγ-twist (19); NξD ₃ ⁺ asym rock (17) 887 NξD ₃ ⁺ asym rock (15); Cβ-wag (13) 879 879 879 NξD ₃ ⁺ asym rock (18); Cδ-Cε (9) 879 879 879 NξD ₃ ⁺ asym rock (18); Cδ-Cε (9) 829 879 879 870 Cε-wag (12); NξD ₃ ⁺ asym rock (17); Nt-Cα (13); OCtO (10) 829 829 829 829 829 829 829 829 829 829	994 (sh)	1012	$C\varepsilon$ -N ζ (21)	1001	Ce-NÇ (22)
967 Cy-Cδ (22); Cε-Nξ (14); Cβ-Cγ (13); NtD ₃ ⁺ asym rock (12) 964 917 Cy-twist (19); NξD ₃ ⁺ asym rock (17) 879 887 NξD ₃ ⁺ asym rock (18); Cδ-Cε (9) 879 848 NξD ₃ ⁺ asym rock (18); Cδ-Cε (9) 839 840 NξD ₃ ⁺ asym rock (17); Nt-Cα (13); OCtO (10) 829 833 Cε-wag (12); NξD ₃ ⁺ asym rock (12) 829 833 Cε-wag (12); NξD ₃ ⁺ asym rock (12) 829 874 Cε-wag (10); Nτ-Cα-Cβ (10) 879 772 (w) 769 Cβ-wag (10); Nτ-Cα-Ct (9); W4; W5		966	Nt-Cα (32); Nt-Cα-Ct (11)	994	Nt-Ca (30); Nt -Ca-Ct (9)
917 Cy-twist (19); NξD ₃ ⁺ asym rock (17) 887 NξD ₃ ⁺ asym rock(15); Cβ-wag (13) 888 NξD ₃ ⁺ asym rock (18); Cδ-Cε (9) 840 NξD ₃ ⁺ asym rock (17); Nt-Cα (13); OCtO (10) 829 833 Cε-wag (12); NξD ₃ ⁺ asym rock (12) 834 Cε-wag (12); NςD ₃ ⁺ asym rock (12) 835 Cε-wag (12); NςD ₃ ⁺ asym rock (12) 836 Cε-wag (15); Cα-Cβ (10) 837 Cε-wag (10); Nt-Cα-Ct (9); W4; W5	(m) 796	296	C_{γ} - C_{δ} (22); C_{ϵ} - N_{ξ} (14); C_{β} - C_{γ} (13); N_{ξ} - C_{γ} asym rock (12)	964	$C\varepsilon-N\zeta$ (30); $C\gamma-C\delta$ (15); $C\beta-C\gamma$ (13)
833 (w) 887 N ζ D ₃ + asym rock(15); C J-wag (13) 879 848 N ζ D ₃ + asym rock (18); C J-C ε (9) 839 840 N ζ D ₃ + asym rock (17); Nt-C α (13); OCtO (10) 829 833 C ε -wag (12); N ζ D ₃ + asym rock (12) 824 803 (sh) 804 C ε -wag (15); C α -C β (10) 802 772 (w) 769 C β -wag (10); Nt-C α -Ct (9); W4; W5	918 (sh)	917	$C\gamma$ -twist (19); $N\zeta D_3^+$ asym rock (17)	917	$C\gamma$ -twist (23); NtD ₃ ⁺ asym rock (11); N ζ D ₃ ⁺ asym rock (9); W6
833 (w) 848 N ζ D $_3$ + asym rock (18); C δ -C ϵ (9) 839 840 N ζ D $_3$ + asym rock (17); Nt-C α (13); OCtO (10) 829 824 833 C ϵ -wag (12); N ζ D $_3$ + asym rock (12) 824 824 803 (sh) 804 C ϵ -wag (15); C α -C β (10) ϵ -wag (16); Nt-C α -Ct (9); W4; W5 751	(m) 668	887	$N\xi D_3^+$ asym rock(15); $C\beta$ -wag (13)	879	$C\beta$ -wag (16); N ξ D ₃ ⁺ asym rock (13); Nt-C α (11); W6
840 N ζ D $_3^+$ asym rock (17); Nt-C α (13); OCtO (10) 829 833 Ce -wag (12); N ζ D $_3^+$ asym rock (12) 824 803 (sh) 804 Ce -wag (15); $C\alpha$ -C β (10) 802 772 (w) 769 $C\beta$ -wag (10); Nt-C α -Ct (9); W4; W5 751			$N\xi D_3^+$ asym rock (18); $C\delta - C\varepsilon$ (9)	839	NtD_3^+ sym rock (20); OCtO (18); C α CtOO $^-$ sym bend (9)
833 $C\varepsilon$ -wag (12); $N\zeta D_3^+$ asym rock (12) 824 803 (sh) 804 $C\varepsilon$ -wag (15); $C\alpha$ - $C\beta$ (10) 802 772 (w) 769 $C\beta$ -wag (10); Nt - $C\alpha$ -Ct (9); W4; W5 751		840	$N\xi D_3^+$ asym rock (17); Nt-C α (13); OCtO (10)	829	$N\xi D_3^+$ sym rock (25)
803 (sh) 804 Ce -wag (15); Ca -C β (10) 802 772 (w) 769 $C\beta$ -wag (10); Nt - $C\alpha$ -Ct (9); $W4$; $W5$ 751			$C\varepsilon$ -wag (12); $N\xi D_3^+$ asym rock (12)	824	$N_5^2D_3^+$ sym rock (12); W6
769 $C\beta$ -wag (10); Nt-C α -Ct (9); W4; W5			C ε -wag (15); C α -C β (10)	802	$N\xi D_3^+$ asym rock(12); C ε -wag (10)
	772 (w)		$C\beta$ -wag (10); Nt-C α -Ct (9); W4; W5	751	$C\delta$ -wag (26); $C\gamma$ -twist (16); $\tau(C\gamma$ - $C\delta)$ (11)

^a s, intense; m, medium; w, weak; sh, shoulder. Raman: Raman spectra recorded in H₂O buffers (Figure 2). IR: FT-IR ATR spectra recorded in H₂O (Figure 2). Calcd: Calculated wavenumbers obtained at the DFT/B3LYP/6-31++G* level. See also Figure 6 for optimized geometries. Assignments based on the Potential Energy Distribution (PED). Only major contributions (PED ≥ 9%) are reported. The angular bending modes of the tetrahedrons located along the K side chain are referred to as bending (-bend), wagging (-wag), twisting (-twist), rocking (-rock), and scissoring (-scissor). τ designates a torsional internal coordinate. For atom numbering, see Figure 1. Water molecules are numbered from W1 to W8 (Figure 6).

TABLE 3: Vibrational Modes of Arginine Observed in Aqueous Solutions (H₂O) and Their Assignments^a

Raman	R	calcd R/10H ₂ O	assignments (PED %)	calcd R/10H ₂ O/Cl	assignments (PED %)
	1669 (sh)	1770	NtH ₃ ⁺ asym bend (40); H–O–H (W2) (14)	1766	NtH ₃ ⁺ asym bend (36); NtH ₃ ⁺ asym bend (19); W2(H1-O-H2)
1605 (sh)	1620 (s) 1600 (s)	1762 1756 1733	NtH ₃ ⁺ asym bend (56) N η 2-H ₂ bend (39); C ξ N η 2H ₂ sym bend (19) N η 1-H ₂ bend (42); N η 1-C ξ -N η 2 asym st (19); C ξ N η 2H ₂ sym bend	1763 1757 1681	NtH ₃ ⁺ asym bend (25); NtH ₃ ⁺ asym bend (19); COO ⁻ asym st (11) Nη1-H ₂ (36); C ξ Nη 1H ₂ sym bend (11); Nη1-C ξ - Nη2 asym st (9) Nη2-H ₂ (41); C ξ Nη2H ₂ sym bend (15)
1594 (m) 1581 (sh)	1520 (s)	1677 1654 1639	(17); H-O-H (W8) (13) CtOO ⁻ asym st (42); H-O-H (W4, W3) (41) NtH ₃ ⁺ sym bend (38); NtH ₃ ⁺ sym rock (35)	1662 1657	CtOO ⁻ asym st (40); H-O-H (W3, W4) (40) Nɛ-Cţ (20); CţNη2H₂ asym bend (11); Nη1-Cţ- Nη2 asym st (10)
1470 (sh)	1468 (m)	1614 1549 1531	N&-C\(\xi\) (19); \(N\)\eta 1-(\xi\)-\text{N} \(\gamma\) asym st (16) \(C\sigma\)-bend (72); \(C\gamma\)-bend (11) \(C\gamma\)-bend (49); \(C\sigma\)-bend (29); \(C\sigma\)-bend (20)	1635 1549 1530	NtH ₃ ⁺ sym bend (38); NtH ₃ ⁺ sym rock (35) C <i>b</i> -bend (80) C <i>y</i> -bend (50); C <i>β</i> -bend (34); C <i>b</i> -bend (11)
1445 (s) 1415 (s)	(iii) (2) (1) (1)	1511 1447 1421	$C_{P-CCH}(0.5, C_{P-CCH}(0.5), C_{P-CCH}(0.5))$ $N\eta 1$ - $C_{S-N}(0.5)$, $C_{$	1499 1449 1437	Cy-wag (41); Cβ-nock (14) Ny Ca Ua (73); Cβ-nock (14)
1353 (s) 1323 (s)	1353 (s) 1353 (m) 1331 (m) 1315 (sh)	1431 1399 1392 1371	Cy-wag (23), Co-rock (20), M-Ca-Ha (10) CtOO ⁻ sym st (25); Nt-Ca-Ha (25); C β -Ca-Ha (17) C β -rock (29); C δ -rock (24) C β -twist (23); CtOO ⁻ sym st (17); Cy-rock (17); C β -Ca-Ha (10)	1427 1393 1389 1370	Nt-C α -H α (22), CO-TOA (14), COO sym st (19) Nt-C α -H α (25); CtOO ⁻ sym st (20); C β -C α -H α (19) C β -rock (26); C δ -rock (26) C γ -rock (28); C β -twist (24); CtOO ⁻ sym st (16)
1290 (m) 1264 (w) 1214 (m)	1293 (w) 1263 (w) 1217 (w)	1354 1321 1314 1245	Cy-rock (46); C δ -twist (16) Cy-wag (25); C β -rock (20); C δ -twist (11) C δ -twist (32); Cy-wag (9); C β -twist (9) NtH ₃ + asym rock (17); C β -twist (12); C δ -twist (10)	1354 1321 1308 1249	Cγ-rock (39); CtOO ⁻ sym st (13); Cδ-twist (10); Ct-Cα-Hα (9) Cγ-wag (30); Cβ-rock (28); Cδ-rock (11) Cδ-twist (44); Cβ-twist (14); Cγ-twist (10) Cδ-Nε (22); CξNη1H ₂ asym bend (16); Nε-Cξ (15); CζNη2H ₂
1176 (m) 1164 (sh)	1176 (m) 1164 (sh)	1220 1209	C ξ N η 2H ₂ asym bend (30); C δ -N ε (17); N ε -C ξ (14); W9 NtH ₃ ⁺ asym rock (20); Ct-C α -H α (17); C β -C α -H α (11); C δ -wag (9)	1241 1207	asym bend (15) NtH ₃ ⁺ asym rock (16); $C\beta$ -twist (12) $C\delta$ -wag (18); $C\beta$ - $C\alpha$ -H α (12); NtH ₃ ⁺ asym rock (9)
1092 (s) 1056 (m)	1117 (w) 1100 (w) 1080 (w)	1199 1137 1132 1122	$C_{\zeta}^{(N)}$ asym rock (29); Ct-C α -H α (11) $C_{\zeta}^{(N)}$ 1H ₂ asym bend (62) $C\delta$ -N ϵ (29); N η 1-C ξ -N η 2 sym st (12) $C\gamma$ -twist (11); N η 1-C ξ -N η 2 sym st (9)	1186 1177 1137 1119	NiH ₃ ⁺ asym rock (35); Ct-C α -H α (21) C ζ N η 1H ₂ asym bend (32); C ζ N η 2H ₂ asym bend (16); N η 1-C ζ - N η 2 asym st (11); Cl ⁻ C δ -N ε (28); N η 1-C ζ - N η 2 sym st (18); C ζ N η 2H ₂ asym bend (14) C γ -twist (11); C β -wag (10); C β -twist (9); Ct-C α -C β (9); C δ -wag
1035 (sh) 1011 (m) 981 (m) 970 (sh) 934 (w)	1049 (m) 1018 (s)	1081 1068 1029 998 980	C_{γ} -C δ (46) C_{β} -C γ (55) C_{α} -C β (31); Nt-C α (23) Nt-C α (29); C α -C β (15); C α -Ct (13) $N\eta$ 1-C ξ -N η 2 sym st (19); C δ -N ϵ (14); C β -C γ (14); N ϵ -C ξ (13)	1082 1076 1026 997 981	(9) Cγ-Cδ (41) Cβ-Cγ (55); Cγ-Cδ (10) Cα-Cβ (35); Nt-Cα (18) Nt-Cα(23); Cα-Ct (12); Cα-Cβ (10) Cβ-Nε (10)
900 (sh) 891 (w) 860 (m)		919	Cô-wag (20); C β -wag (17) τ (C ξ -N η 2) (25); W7	911 870	Co-wag (13); W6 OCtO (12); W4
828 (w) 809 (w)		977	$C\gamma$ -twist (23)	801	ω(Nη 1-H2) (20); W8; W10 Cγ-twist (22); Cβ-Cα-Ct (14); $τ$ (Cγ-Cδ) (11); Cδ-wag (9); W2; W4

obtained at the DFT/B3LYP/6-31++G* level. R/10H₂O: Positively charged cluster formed by arginine surrounded by 10 water molecules. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters. R/10H₂O/Cl $^{-}$: Neutral cluster formed by arginine surrounded by 10 water molecules and a Cl $^{-}$ anion. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters. Assignments based on the Potential Energy Distribution (PED). Only major contributions (PED \geq 9%) are reported. ω and τ designate an out-of-plane bending and a torsional internal coordinate, respectively. For atom numbering see Figure 1. Water molecules are numbered from W1 to W10 (Figure 5). as, intense; m, medium; w, weak; sh, shoulder. Raman: Raman spectra recorded in H₂O buffers (Figure 3). IR: FT-IR ATR spectra recorded in H₂O (Figure 3). Calculated wavenumbers

TABLE 4: Vibrational Modes of Arginine Observed in Aqueous Solutions (D₂O) and Their Assignments^a

Raman	IR	calcd R/10D ₂ O	assignments (PED %)	calcd R/10D ₂ O/Cl-	assignments (PED %)
~ ~ ~ ~ ~ ~ ~		000,		7 00 7	
(s) 9191	1614 (s)	1689		1694	CtOO asym st (84)
1588 (sh)	1590 (sh)	1652	$Nn1-C\xi-Nn2$ asym st (36): Ne-C ξ (23): Nn1-C ξ -Nn2 sym st (12)	1652	$N_{\rm e}$ -C2 (50): $N_{\rm n}1$ -C2- $N_{\rm n}2$ svm st (18): $N_{\rm n}1$ -C2- $N_{\rm n}2$ (12)
()	(10)	10001		4001	NIT OF NITO OF THE OWNER THE CALL
		1600	$N\eta_1$ -C5- $N\eta_2$ asym st (43); $N\varepsilon$ -C5 (26)	5091	$N\eta_1$ -C5- $N\eta_2$ asym st (60); $N\varepsilon$ -C5- $N\eta$ asym bend (17)
1470 (s)	1474 (sh)	1548	$C\delta$ -bend (71); $C\gamma$ -bend (13)	1549	$C\delta$ -bend (79)
1445 (s)	1457 (m)	1531	C_{ν} -bend (46): C_{β} -bend 31): C_{δ} -bend (18)	1530	C_{N} -bend (49): C_{B} -bend (34): C_{A} -bend (12)
(2) (3)	1137 (m)	, ,		0 7	
1413 (s)	1413 (m)	1521	$C\beta$ -bend (59); $C\gamma$ -bend (37)	1519	$C\beta$ -bend (58); $C\gamma$ -bend (39)
1388 (sh)		1445	$C\gamma$ -wag (33); $C\beta$ -rock (20); $C\delta$ -rock (18)	1449	C_{γ} -wag (42); C_{δ} -rock (21); C_{δ} -rock (15)
1371 (ch)		1420	C_{8}^{2} -rock (27). CtOO = sym et (21). C_{8} -rock (11). Nt-Co-Ho (9)	1422	$C\delta_{-\text{mod}}k$ (22): $C\beta_{-\text{mod}}k$ (20): $CtOO^-$ evm et (19): $NtC\alphaH\alpha$ (9)
(10) 1771	0.00	77+1	(2) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	777	COLOR (EL), (C) TOON (EQ), (COLOR) STATES (C)
1343 (sh)	1343 (w)	1400		1393	CtOO sym st (26); C θ -rock (12); C β -rock (11); C γ -wag (10)
1331 (s)	1330 (w)	1380	Nt-C α -H α (37); H α -C α -C β (22); C γ -wag (12); C δ -rock (9)	1376	Nt-C α -H α (31); H α -C α -C β (25); C γ -wag (10); C β -twist (9);
					$C\delta$ -rock (9)
1318 (ch)		1367	CR_{-twist} (37): Cv_{-rocb} (31): $CtOO^-$ sym st (10)	1366	$C_{M-mock}(A6)$: $C_{B-twist}(D2)$
(116) 0101		1501	C_{p-1}^{p-1} wist (52) , C_{p-1}^{p-1} or (51) , ClO symmetry (10)	1300	$C_{-1} \text{UCA} (+0), C_{D}^{-1} \text{Wist} (22)$
1296 (m)		1351	$C\gamma$ -rock (29); CO -twist (22); Ct - $C\alpha$ - $H\alpha$ (10)	1348	$C\gamma$ -rock (21); Ct-C α -H α (17); Co-twist (14); CtOO sym st (11)
1288 (sh)		1335	$N\eta 2-D_2$ bend (19); $N\eta 1-D_2$ bend (12); $N\eta 1-C\xi-N\eta 2$ sym st (9);	1327	$N\eta 2-D_2$ (20); $N\eta 1-D_2$ (11); $C\beta$ -rock (11); $N\eta 1-C\xi$ - $N\eta 2$ sym st (9)
			$C\xi N\eta 2D$, sym bend (9)		
1251 (w)		1315	$C\delta$ -twist (21). CB -rock (16). $C\nu$ -was (11)	1309	$C\beta$ -rock (22): $C\nu$ -was (15): $C\delta$ -twist (14)
1015 ()		1205	$O(S_{\text{mod}} (10), O(S_{\text{mod}} (10), O(S_{\text{min}} (10)))$	1202	CA twingt (27), CA mas (12), CO this (11)
(w) C171		coci	C_{ρ} -rock (10); C_{γ} -wag (10); C_{σ} -twist (10)	1302	CO-IWISI(2/); $CP-IOCK(9)$
1196 (w)		1255	NtD_3^+ asym bend (18); NtD_3^+ sym bend (14); NtD_3^+ sym rock	1259	NtD_3^+ asym bend (36); D-O-D (W3) (9)
			(13); D $-0-D$ (W2) (16)		
1180 (w)	1175 (w)	1239	NtD_3^+ asym bend (25); NtD_3^+ sym bend (20); NtD_3^+ sym rock (18)	1240	NtD_3^+ asym bend (24); NtD_3^+ sym bend (22); NtD_3^+ sym rock (20)
1155 (m)	()	2001	Γ	1213	CO truit (01). OS (10). OS truit (15). Cu (0)
(III) CC11		5771	D-O-D (W3) (29); $CD-I$ WISI (10); $CO-wag$ (9)	121/	CD-IWISI (21); CO-wag (10); CO-IWISI (13); CY-IUCK (9)
1122 (w)		1202	$C\theta$ -N ε (15); N η 2-D ₂ bend (14)	1180	$N\eta 2-D_2$ (32); $C\zeta N\eta 2D_2$ sym bend (15); $C\partial$ -N ε (10)
1095 (sh)		1149	$C\alpha$ - $C\beta$ (16); $C\gamma$ -twist (14); $C\beta$ -wag (10); $C\delta$ -wag (9)	1150	$C\alpha - C\beta$ (17); $C\gamma$ -twist (13); $C\delta$ -wag (10); $C\beta$ -wag (9)
		1125	C_{γ} - C_{δ} (10)	1124	C_{V} - C_{δ} (9); C_{t} - C_{α} - H_{α} (9)
1084 (m)		1071	CB-Cv (40): Cv-CB (17)	1078	CB-Cv (57)· Cv-CB (20)
1062 (m)		1069	C. C.S (20): C.S (21): C.S (20)	1070	
(III) COOT		1000	$C\gamma$ -CO (39); $C\beta$ -C γ (14); $C\alpha$ -C γ (9)	10/0	CC-CD (23)
1025 (w)		1026	$Co-N\varepsilon$ (25); $Co-N\varepsilon-H\varepsilon$ (11); $Nt-C\alpha$ (10); $W6$	1048	$C\gamma$ -C δ (22); C δ -N ε (15); W δ
983 (sh)		266	Nt-C α (22); C γ -C δ (14); C β -C γ (10)	962	Nt -C α (30)
948 (sh)		972	NtD_3^+ asym rock (18); Nt -C α (11); $C\delta$ -wag (10)	696	NtD_{λ}^+ asym rock (16); $C\delta$ -wag (11)
(8) 206		935	$Nn1-C\xi-Nn2$ asym st (27); C $\xi Nn1D_2$ asym bend (18); $Nn1-C\xi$ -	955	$C(N_N 1D)$ asym bend (25): Ne-C'z (10):
(a) (a)		,	$N\eta^2$ sym et (10): W7		
			11/2 5/III 51 (10), W /	000	OIN SIN SECTION SECTION SECTION
		67.6	$N\eta_1$ -C5-N η_2 (26); N ϵ -C ζ (15); W10	953	$N\eta_1$ -C ₅ -N η_2 sym st (36); C ₅ N η_2 D ₂ asym bend (11) W6; W8
835 (sh)		988	$C\xi N\eta 1D_2$ asym bend (38); $C\xi N\eta 2D_2$ asym bend (20); W9	868	$C\xi N\eta 2D_2$ asym bend (28); $C\xi N\eta 1D_2$ asym bend (19); CI^-
		879	$C\beta$ -wag (23); $C\delta$ -wag (20); NtD_3^+ asym rock (10)	877	$C\beta$ -wag (24); $C\delta$ -wag (18); NtD_3^+ asym rock (13)
814 (s)		698	NtD_3^+ asym rock (44); $C\alpha$ - $C\beta$ (11)	865	NtD_3^+ asym rock (47); $C\alpha$ - $C\beta$ (12); W2
		840	OCtO (21); NtD ₃ ⁺ asym rock (13); C α CtOO ⁻ sym bend (11)	833	OCtO (22); NtH3 asym rock (13); $C\alpha CtOO^-$ sym bend (10)
784 (sh)		788	$CB-C\alpha-Ct$ (19): $Cv-twist$ (16): $\pi(Cv-C\delta)$ (14): $\pi(Nt-C\alpha)$ (12)	785	$CB-C\alpha-Ct$ (19); $C\nu$ -twist(17); $\pi(Nt-C\alpha)$ (14); $\pi(C\nu-C\delta)$ (12); W3
738 (w)		764	$C_{B-wpq}(31)$: $C_{A-twist}(30)$: $\tau(N_t-C_A)$ (1): $C_{B-C_A-C_T}(10)$	758	$C_{N-\text{twist}}$ (20): $C_{S-\text{was}}$ (28): $t(N_1-C_N)$ (14): $t(C_S-C_N)$ (10)
723 (w)		10/	C_{p}^{-} and C_{1}^{-} , C_{p}^{-} twist (Z_{2}) , C_{1}^{-} , C_{2}^{-} , C_{1}^{-} , C_{2}^{-} , C_{1}^{-}	120	C_f -twist (2), C_f -wag (20), throw (14), the C_f (10)
(w) c7/		/0/	$\omega(N\eta_1-D_2)$ (41); $\omega(N\eta_2-D_2)$ (40)	/41	$\omega(\ln \eta z - D_2)$ (3.2); $\omega(\ln \eta_1 - D_2)$ (30)
	•	,			

 a s, intense; m, medium; w, weak; sh, shoulder. Raman: Raman spectra recorded in H_2O buffers (Figure 3). IR: FT-IR ATR spectra recorded in H_2O (Figure 3). Calculated wavenumbers obtained at the DFT/B3LYP/6-31++G* the level. See also Figure 5 for optimized geometries. Assignments based on the Potential Energy Distribution (PED). Only major contributions (PED $\geq 9\%$) are reported. For atom numbering see Figure 1. ω and τ designate an out-of-plane bending and a torsional internal coordinate, respectively. For atom numbering see Figure 1. Water molecules are numbered from W1 to W10 (Figure 5).

K/dielec

Figure 4. Stereoviews of the geometry optimized lysine (K) placed in a polarizable dielectric continuum mimicking a bulk water environment. See also Table 5 for energy values and Table S1 (Supporting Information) for geometrical parameters.

TABLE 5: Electronic and Vibrational Energies of Hydrated Amino Acids^a

Amino Ac	:las"			
	polarizable	dielectric continuum		
	K/dielec			
$E_{\rm e}$	-497.540773			
$E_{ m v}$	141.341			
	expli	cit hydration		
	K/8H ₂ O (I)	K/8H ₂ O (II)	R/10H ₂ O	
$E_{\rm e}$	-1108.982436	-1108.992147	-1371.386830	
$E_{ m v}$	267.730	269.75	304.34	
Δ (I $-$ II)	+4	1.08		
е	explicit hydration in	the presence of a C	l ⁻ anion	
	$K/8H_2O/Cl^-$ (I)	$K/8H_2O/Cl^-$ (II)	R/10H ₂ O/Cl ⁻	
$E_{\rm e}$	-1569.408081	-1569.404344	-1831.815227	
$E_{\rm v}$	269.873	270.210	305.656	
Δ (I $-$ II)	-2	2.68		

^a Calculations were performed at the DFT/B3LYP/6-31++G* level of theory. K/dielec: A lysine embedded in a polarizable dielectric continuum. See Figure 4 for the optimized geometry and Table S1 (Supporting Information) for geometrical parameters. K/ 8H₂O: Positively charged cluster formed by a lysine surrounded by 8 water molecules. See Figure 6 for optimized geometries (I and II) and Table S1 (Supporting Information) for geometrical parameters. K/8H₂O/Cl⁻: Neutral system formed by lysine surrounded by 8 water molecules and a Cl⁻ anion. See also Figure 6 for optimized geometries I and II. R/10H2O: Positively charged cluster formed by a lysine surrounded by 8 water molecules. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters. R/10H2O/Cl-: Neutral cluster formed by an arginine surrounded by 10 water molecules and a Cl⁻ anion. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters. Ee: Electronic energy (Hartree). E_v : Zero-point vibrational energy (kcal/mol). Δ (kcal/ mol): difference between total energies ($E_{\rm tot} = E_{\rm e} + E_{\rm v}$) calculated for the clusters (I) and (II) of lysine, see Figure 6.

IV. Discussion

Effect of Hydration and Cl- Anion on Geometrical and Energetic Features. The geometric features of lysine embedded in a polarizable dielectric continuum (K/dielec) are taken as reference in our discussion. In this environment, the lysine side chain prefers an *all-trans* conformation, as confirmed by $\sim 180^{\circ}$ values of the three torsion angles defined around the three successive side chain bonds $C\beta - C\gamma$, $C\gamma - C\delta$, and $C\delta - N\zeta$ (Table S1, Supporting Information). This extended conformation of the K side chain, corresponding to its lowest-energy orientation, is certainly correlated with the isotopic electric properties of the polarized continuum. In contrast, when lysine is bound to explicit water molecules (K/8H₂O), the situation becomes different, and the torsion angle around $C\beta$ – $C\gamma$ undergoes a drastic reorientation to -gauche region (Table S1, Supporting Information). Due to this conformational change, the lysine side chain is bent, and its terminal NζH₃⁺ gets closer to the negatively charged group CtOO of the backbone (Figures 4 and 6). In the course of geometry optimization on the K/8H₂O cluster, we have found two different low-energy configurations, referred to as (I) and (II) (Figure 6). The main difference between these two configurations is related to the location of the water molecules along the K side chain. For instance, in the K/8H₂O (II), each of the CtOO⁻ oxygens are H-bonded to two surrounding H₂O (Figure 6). Consequently, the configuration (II) is more stable by 4.08 kcal/mol than its sister configuration (I) (Table 5). We have analyzed the energetic and geometrical changes produced in both of these configurations, in the presence of a Cl⁻ anion in the vicinity of the side chain terminal $N_{\xi}H_3^+$ group (Tables S1, Supporting Information). The neutral cluster K/8H₂O/Cl⁻ was geometry optimized in both configurations (I) and (II). The presence of Cl- leads to a substantial rearragement of water molecules around the K side chain terminal N_EH₃⁺ group (Figure 6). More surprisingly, in the presence of the anion, the energy order of the configurations (I) and (II) is reversed; i.e., the configuration (I) becomes more stable than the configuration (II) by 2.68 kcal/mol (Table 5). It is also to be emphasized that the explicit presence of solvent and counterion around lysine leads not only to perceptible

R/10 H₂O

R/10 H₂O/Cl⁻

Figure 5. Stereoviews of the geometry optimized arginine (R) in an explicitly hydrated environment. Positively charged cluster R/10H₂O (top). Neutral cluster R/10H₂O/Cl⁻ (bottom). See Table 5 for energy values and Table S2 (Supporting Information) for geometrical parameters.

changes in the bond lengths and valence angles of the terminal groups but also to other geometrical parameters (Table S2, Supporting Information).

The explicit hydration of arginine does not lead to the same torsion angle behavior as observed in lysine (see above); i.e., the arginine side chain keeps an overall all-trans orientation (Table S2, Supporting Information). This can be explained by the presence of the $N_{\varepsilon}H_{\varepsilon}$ bond (existent in R and not in K) which stabilizes this conformation through an extra H-bond with one of the surrounding water molecules (Figure 5). However, as in the case of K (see above), the presence of Cl- leads to a substantial rearrangement of the H-bond network around the R side chain (Figure 5). The bond lengths of all three C-N bonds including the C_{ξ} atom are included in the 3.33–3.50 Å range (Table S2, Supporting Information). In contrast, the adjacent $C_{\delta}-N_{\varepsilon}$ bond is longer by ~ 1 Å compared to the abovementioned CN bonds (Table S2, Supporting Information). Furthermore, in the absence or presence of the anion, the four atoms C_{ζ} , N_{ϵ} , $N_{\eta 1}$, and $N_{\eta 2}$ remain in the same plane. All these facts prove an equivalent electron delocalization over the $C_{\xi}N_{\epsilon}$, $C_{\xi}N_{\eta 1}$, and $C_{\xi}N_{\eta 2}$, bonds. Consequently, none of these bonds manifest a privileged double bond character. Finally, in the positively charged cluster (R/10H₂O) as well as in the neutral cluster (R/10H₂O/Cl⁻), the NH₂ groups centered on η 1 and η 2 sites of the guanidium group are slightly nonplanar. NH₂ pyramidalization is more important in R/10H₂O compared

Figure 6. Stereoviews of the geometry optimized lysine (K) in an explicitly hydrated environment. Positively charged $K/8H_2O$ cluster (top). Neutral $K/8H_2O/Cl^-$ cluster (bottom). (I) and (II) refer to two configurations which differ mainly by the H-bond network of the AA with surrounding water molecules. See Table 5 for energy values and Table S1 (Supporting Information) for geometrical parameters.

to that corresponding to $R/10H_2O/Cl^-$, reflecting the fact that the H-bond network around the R side chain (vide supra) affects differently the nonplanar distortion of its terminal amino groups.

Effect of Hydration and Anion on a Selection of Characteristic Vibrational Modes. To open the discussion on the influence of hydration and anion on the vibrational modes, we have first only reported in Table 6 the characteristic vibrations in which the NH and CO bonds of their terminal groups of the AAs are involved. The most striking effects are observed for NH₃⁺ (NtH₃⁺ in both AAs and N₅H₃⁺ in K) angular bendings whose wavenumbers show an upshift of more than 100 cm⁻¹ in going from implicit to explicit hydration. The $N_{\xi}H_3^+$ in K as well as $N_{\eta 1}H_2$ and $N_{\eta 2}H_2$ stretching modes are the most affected by the presence of the anion. One can easily find the correlation between the variation of geometrical parameters (bond lengths and valence angles, see Tables S1 and S2, Supporting Information, for more details) and that of the vibrational wavenumbers upon interaction with explicit water and counterion in K and R. In conclusion, the explicit hydration principally, and the presence of Cl⁻ to a lesser extent, leads to a global improvement of the abovementioned characteristic vibrational modes; i.e., their wavenumbers get closer to the spectral ranges where they are generally observed.

Estimation of the Effect of Hydration and Cl⁻ Anion on the Observed Vibrational Modes in Aqueous Solutions. Arginine. In Tables 3 and 4 are compared the theoretical wavenumbers obtained from the positively charged (R/ 10H₂O) and neutral (R/10H₂O/Cl⁻) clusters with those observed in Raman and FT-IR spectra of arginine in aqueous solutions (Figure 3). The guanidium group vibrational modes contribute to the complexe and partially resolved bands observed in the 1700-1550 cm⁻¹ region. Upon deuteration, the shape of these bands is simplified because of the sensitivity of the corresponding vibrational modes to deuteration. Note the intense FT-IR bands at 1520 cm⁻¹, as well as the intense Raman band at 1092 cm⁻¹, which vanish upon deuteration because both of them originate from the guanidium group vibrational modes. The deuterated counterpart of the Raman mode at 1092 cm⁻¹ is the intense mode at 907 cm⁻¹ appearing in the D₂O Raman spectrum (Figure 3). Other

TABLE 6: Effect of Implicit and Explicit Hydrations and Counterion on a Selection of Calculated Vibrational Modes^a

K/continuum	K/8H ₂ O (I)	K/8H ₂ O (II)	K/8H ₂ O/Cl ⁻ (I)	K/8H ₂ O/Cl ⁻ (II)	R/10H ₂ O	R/10H ₂ O/Cl ⁻	tentative assignments
3350; 3337	3339; 3306	3324; 3285	3369; 3308	3361; 3317	3341; 3044	3376; 3175	NtH ₃ ⁺ asymmetric stretch
3280	3112	3124	3100	3103	3160	3084	NtH ₃ ⁺ symmetric stretch
1652; 1603	1768; 1761	1746; 1712	1751; 1712	1750; 1722	1770; 1762	1766; 1763	NtH ₃ ⁺ asymmetric bending
1488	1620	1622	1616	1619	1639	1635	NtH ₃ ⁺ symmetric bending
3322; 3319	3325; 2963	3319; 3045	3152; 2811	3249; 2956			$N\zeta H_3^+$ asymmetric stretcing
3264	3290	3180	3165	3210			$N\zeta H_3^+$ symmetric stretching
1642; 1639	1747; 1704	1782; 1753	1777; 1763	1769; 1753			$N\zeta H_3^+$ asymmetric bending
1521	1645	1636	1685	1665			$N\zeta H_3^+$ symmetric bending
					3606	3500	$N\eta 1H_2$ asymmetric stretching
					3497	3379	$N\eta 1H_2$ symmetric stretching
					1733	1757	$H-N\eta$ 1-H bending
					3466	3593	$N\eta 2H_2$ asymmetric stretching
					3325	3406	$N\eta 2H_2$ symmetric stretching
					1756	1681	$H-N\eta 2-H$ bending
					3418	3199	$N\varepsilon$ -H ε stretching
1631	1641	1631	1655	1645	1654	1662	C _t OO ⁻ asymmetric stretching
1350	1363	1362	1360	1364	1399	1393	C _t OO ⁻ symmetric stretching

^a Calculations were performed at the DFT/B3LYP/6-31++G* level of theory. K/dielec: Lysine embedded in a polarizable dielectric continuum. See Figure 4 for optimized geometry and Table S1 (Supporting Information) for geometrical parameters. K/8H₂O: Positively charged cluster formed by a lysine surrounded by 8 water molecules. See Figure 6 for optimized geometry and Table S1 (Supporting Information) for geometrical parameters. K/8H₂O/Cl⁻: Neutral system formed by lysine surrounded by 8 water molecules and a Cl⁻ anion (Figure 6). R/10H₂O: Positively charged cluster formed by a lysine surrounded by 8 water molecules. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters. R/10H₂O/Cl⁻: Neutral cluster formed by an arginine surrounded by 10 water molecule and a Cl⁻ anion. See Figure 5 for optimized geometry and Table S2 (Supporting Information) for geometrical parameters.

vibrational modes arising from the aliphatic part of the side chain are included in the 1500-1400 cm⁻¹ (less sensitive to deuteration) and 1350-1300 cm⁻¹ (more sensitive to deuteration) spectral regions.

By the examination of the calculated wavenumbers derived from the R/10H₂O and R/10H₂O/Cl⁻ clusters, we can confirm that the presence of the anion improves in many cases the agreement between the calculated and observed wavenumbers. In addition, the use of the positively charged cluster ($R/10H_2O$) alone is not sufficient for assigning the whole vibrational modes observed in aqueous solutions of arginine.

Lysine. Taking into account the discussion on the vibrational modes of arginine (vide supra), we have only reported in Tables 1 and 2 the calculated wavenumbers obtained from the neutral clusters K/8H₂O/Cl⁻. Despite their energy difference, both configurations (I) and (II) provide globally similar results, except in the spectral regions corresponding to the N_EH₃⁺ group and the CtOO⁻ groups. Upon deuteration, the NtH₃⁺ and N₂H₃⁺ asymmetric bendings, appearing in the 1700-1600 cm⁻¹ spectral region, are shifted to lower wavenumber regions. Only a unique and intense band at \sim 1615 cm⁻¹ remains in this region, mainly arising from the CtOO⁻ asymmetric bond stretch (Figure 2). In the same manner, the intense IR band at 1523 cm⁻¹, assigned to NtH₃⁺ symmetric bending motions, disappers in D₂O (Figure 2). Like in R, the modes involving the aliphatic part of the K side chain give rise to an intense band, nonsenstive to deuteration, in the 1500–1400 cm⁻¹ spectral region (Figure 2). In contrast, because of the backbone contribution to the vibrational modes observed in the 1350–1300 cm⁻¹ region, they show a higher sensitivity to H/D exchange on labile hydrogens (Figure 2, Tables 1 and 2). Lower spectral regions of both Raman and FT-IR spectra provide other useful information especially on the angular bending motions of the backbone and side chain.

V. Concluding Remarks

On the basis of the aqueous phase vibrational spectra of two major cationic AAs and through a few theoretical examples mimicking their aqueous phase environment, we could basically analyze how the whole molecule may suffer subtle geometrical changes in its bond lengths, valence, and torsion angles, upon interactions with explicit water molecules and in the presence of the counterion. Especially, we have seen that the rearrangement of water molecules around the K side chain may be responsible for the transition between its conformations belonging to its local minima, either in the presence or in the absence of the anion.

From the vibrational point of view, the assignments of the observed modes based on the theoretical calculations show that the internal motions of both AAs are closely coupled to the surrounding water motions (see Tables 1-4 for more details). We have also shown how the presence of the anion and its role in modifying the H-bond network between water and AAs can be appreciated through the analysis of vibrational spectra.

It is a matter of fact that only the quantum mechanical calculations in the presence of explicit water and counterions can provide realistic responses to fundamental questions on geometrical and vibrational features of amino acids in aqueous solution. However, the scope of this investigation was not to elucidate the whole conformations adopted by the amino acid side chains. To achieve this goal, future investigations on the dynamic interactions of the amino acids (and peptides) with water and counterions in hydrated media are necessary.

Acknowledgment. The cooperation between the French (GBM) and Belgian (CRMM) laboratories was supported by a PHC (Partenariat Hubert Curien)-Tournesol France-Belgique, ref 13982ZL covering the travels and scientific exchanges between the partners during the period 2007–2008. We would also like to thank two French supercomputer centers: IDRIS (Orsay, France) and CINES (Montpellier, France) for the computational facilities on IBM workstation networks.

Supporting Information Available: Tables S1 and S2, reporting the geometrical parameters as well as atomic Cartesian coordinates of all the optimized geometries discussed in this

report. This material is available free of charge via the Internet at http://pubs.acs.org.

References and Notes

- (1) Young, V. R. J. Nutr. 1994, 124, 1517S-1523S.
- (2) Imura, K.; Okada, A. Nutrition 1998, 14, 143–148.
- (3) Reeds, P. J. J. Nutr. 2000, 130, 1835S-1840S
- (4) Schulz, G. E.; Schrimer, R. H. *Principles of Protein Structure*; Cantor, R. H., Ed.; Springer-Verlag: New York, 1990.
- (5) Klug, A.; Rhodes, D.; Smith, J.; Finch, J. T.; Thomas, J. O. *Nature* 1980, 287, 509–516.
- (6) Kornberg, R. D.; Lorch, Y. Annu. Rev. Cell Biol. 1992, 8, 563-
- (7) Delange, R. H.; Smith, E. L. Annu. Rev. Biochem. 1971, 40, 279–314
- (8) Yeoman, L. C.; Olson, M. O. J.; Sugano, N.; Jordan, J. J.; Taylor, C. W.; Starbuck, W. C.; Busch, H. *J. Biol. Chem.* **1972**, 247, 6018–6023.
- (9) Loret, E. P.; Soto del Valle, R. M.; Mansuelle, P.; Sampieri, F.; Rochat, H. J. Biol. Chem. 1994, 269, 16785–16788.
- (10) Andersson, H.; Bakker, E.; von Heijne, G. J. Biol. Chem. 1992, 267, 1491–1495.
 - (11) Audoly, R.; Breyer, R. M. Mol. Pharmacol. 1997, 51, 61-67.
 - (12) Fujiwara, Y.; Kubo, Y. J. Gen. Physiol. 2006, 127, 401–419.
- (13) Rawlings, N. D.; Barrett, A. J. Methods Enzymol. 1994, 244, 19-61.
- (14) Derossi, D.; Joliot, A. H.; Chassaing, G.; Prochiantz, A. *J. Biol. Chem.* **1994**, 269, 10444–10450.
- (15) Fernánez-Carneado, J.; Kogan, M. J.; Pujals, S.; Giralt, E. *Biopolymers* **2004**, *76*, 196–203.
- (16) Heitz, F.; Morris, M. C.; Divita, G Br. J. Pharmacol. 2009, 157, 195–206.
- (17) Boukhalfa-Heniche, F. Z.; Hernández, B.; Gaillard, S.; Coi C, Y. M.; Huynh-Dinh, T.; Lecouvey, M.; Seksek, O.; Ghomi, M. *Biopolymers* **2004**, *73*, 727–34.
- (18) Tagounits, A.; Briane, D.; Hernández, B.; Coïc, Y. M.; Ghomi, M.; Cao, A. *Int. J. Biomed. Pharm. Sci.* **2007**, *1*, 135–139.
- (19) Derbel, N.; Hernández, B.; Pflüger, F.; Liquier, J.; Geinguenaud, F.; Jaïdane, N.; Ben Lakhdar, Z.; Ghomi, M. J. Phys. Chem. B 2007, 111, 1470–1477.

- (20) Hernández, B.; Pflüger, F.; Nsangou, M.; Ghomi, M. J. Phys. Chem. B **2009**, 113, 3169–3178.
- (21) Lima, R. J. C.; Freire, P. T. C.; Sasaki, J. M.; Melo, F. E. A.; Mendes Filho, J. *J. Raman Spectrosc.* **2002**, *33*, 625–630.
- (22) Petrosyan, A. M.; Sukiasyan, R. P. J. Mol. Struct. 2008, 874, 51–56.
 - (23) Wolpert, M.; Hellwig, P. Spectrochim. Acta A 2006, 64, 987-1001.
- (24) Overman, S. A.; Thomas, G. J., Jr. *Biochemistry* **1999**, *38*, 4018–4027
- (25) Skurski, P.; Gutowski, M.; Barrios, R.; Simons, J. Chem. Phys. Lett. 2001, 337, 143–150.
 - (26) Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140, A1133-A1138.
 - (27) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
 - (28) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev B 1988, 37, 785-789.
- (29) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, revision C.02; Gaussian, Inc.: Wallingford CT, 2004.
 - (30) Barone, V.; Cossi, M. J. Phys. Chem. A 1998, 102, 1995-2001.
- (31) Cossi, M.; Rega, G.; Scalmani, G.; Barone, V. J. Comput. Chem. **2003**, *24*, 669–681.
- (32) Dhaouadi, Z.; Nsangou, M.; Hernández, B.; Pflüger, F.; Liquier, J.; Ghomi, M. Spectrochim. Acta A 2009, 73, 805–814.

JP909517R