Elements of Dynamic Programming COMS10018 - Algorithms

Dr Christian Konrad

Solving a Problem with Dynamic Programming:

Identify optimal substructure

- Identify optimal substructure
- @ Give recursive solution

- Identify optimal substructure
- ② Give recursive solution
- Ompute optimal costs

- Identify optimal substructure
- ② Give recursive solution
- Ompute optimal costs
- Construct optimal solution

Solving a Problem with Dynamic Programming:

- Identify optimal substructure
- ② Give recursive solution
- Ompute optimal costs
- Construct optimal solution

Discussion:

Solving a Problem with Dynamic Programming:

- Identify optimal substructure
- @ Give recursive solution
- Compute optimal costs
- Construct optimal solution

Discussion:

Steps 1 and 2 requires studying the problem at hand

Solving a Problem with Dynamic Programming:

- Identify optimal substructure
- ② Give recursive solution
- Compute optimal costs
- Construct optimal solution

Discussion:

- Steps 1 and 2 requires studying the problem at hand
- Steps 3 and 4 are usually straightforward

Optimal Substructure

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to **P** contains within it optimal solutions to subproblems of **P**.

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to **P** contains within it optimal solutions to subproblems of **P**.

Examples: Let *OPT* be optimal solution

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to **P** contains within it optimal solutions to subproblems of **P**.

Examples: Let *OPT* be optimal solution

• Pole-Cutting:

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to **P** contains within it optimal solutions to subproblems of **P**.

Examples: Let *OPT* be optimal solution

• POLE-CUTTING: If *OPT* cuts at position k then cuts within $\{1,\ldots,k-1\}$ form opt. solution to pole of len. k, and cuts within $\{k+1,\ldots,n\}$ form opt. solution to pole of len. n-k.

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to ${\bf P}$ contains within it optimal solutions to subproblems of ${\bf P}$.

Examples: Let OPT be optimal solution

• POLE-CUTTING: If *OPT* cuts at position k then cuts within $\{1,\ldots,k-1\}$ form opt. solution to pole of len. k, and cuts within $\{k+1,\ldots,n\}$ form opt. solution to pole of len. n-k.

• Matrix-Chain-Parenthesization:

Optimal Substructure Problem **P** exhibits *optimal substructure* if:

An optimal solution to ${\bf P}$ contains within it optimal solutions to subproblems of ${\bf P}$.

Examples: Let OPT be optimal solution

• POLE-CUTTING: If *OPT* cuts at position k then cuts within $\{1, \ldots, k-1\}$ form opt. solution to pole of len. k, and cuts within $\{k+1, \ldots, n\}$ form opt. solution to pole of len. n-k.

• MATRIX-CHAIN-PARENTHESIZATION: If in *OPT* final multiplication is $A_{1k} \times A_{(k+1)n}$ then *OPT* contains optimal parenthesizations of $A_1 \times \cdots \times A_k$ and $A_{k+1} \times \cdots \times A_n$

$$(A_1 \times (A_2 \times A_3)) \times ((A_4 \times A_5) \times A_6)$$

Define Table for Storing Optimal Solutions to Subproblems:

Define Table for Storing Optimal Solutions to Subproblems: Optimal substructure indicates how subproblems look like

Define Table for Storing Optimal Solutions to Subproblems: Optimal substructure indicates how subproblems look like

• Pole-Cutting:

Define Table for Storing Optimal Solutions to Subproblems:

Optimal substructure indicates how subproblems look like

POLE-CUTTING:
 OPT contains optimal solutions to shorter lengths

Define Table for Storing Optimal Solutions to Subproblems:

Optimal substructure indicates how subproblems look like

• Pole-Cutting:

```
OPT contains optimal solutions to shorter lengths
```

 \rightarrow Store optimal solutions for every length in $\{1, \ldots, n\}$ (table of length n)

Define Table for Storing Optimal Solutions to Subproblems:

- POLE-CUTTING:
 OPT contains optimal solutions to shorter lengths
 → Store optimal solutions for every length in {1,...,n}
 (table of length n)
- Matrix-Chain-Parenthesization:

Define Table for Storing Optimal Solutions to Subproblems:

- POLE-CUTTING:
 OPT contains optimal solutions to shorter lengths
 → Store optimal solutions for every length in {1,..., n}
 (table of length n)
- MATRIX-CHAIN-PARENTHESIZATION: OPT contains optimal parenthesizations for subproducts $A_i \times \cdots \times A_j$

Define Table for Storing Optimal Solutions to Subproblems:

- POLE-CUTTING:
 OPT contains optimal solutions to shorter lengths
 → Store optimal solutions for every length in {1,...,n}
 (table of length n)
- MATRIX-CHAIN-PARENTHESIZATION: OPT contains optimal parenthesizations for subproducts $A_i \times \cdots \times A_j$
 - ightarrow Store optimal parenthesizations for every subproduct

Define Table for Storing Optimal Solutions to Subproblems:

- Pole-Cutting:
 - OPT contains optimal solutions to shorter lengths
 - \rightarrow Store optimal solutions for every length in $\{1, \ldots, n\}$ (table of length n)
- Matrix-Chain-Parenthesization:
 - OPT contains optimal parenthesizations for subproducts
 - $A_i \times \cdots \times A_i$
 - \rightarrow Store optimal parenthesizations for every subproduct
 - $A_i \times \cdots \times A_j$ (table of size n^2)

Express Optimal Solutions Recursively:

Express Optimal Solutions Recursively:

• Pole-Cutting: (p_k) : price for selling a pole of length k)

m[i] := maximum revenue to pole of length i

Express Optimal Solutions Recursively:

• Pole-Cutting: (p_k) : price for selling a pole of length k)

m[i] := maximum revenue to pole of length i

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

Express Optimal Solutions Recursively:

• Pole-Cutting: (p_k) : price for selling a pole of length k)

m[i] := maximum revenue to pole of length i

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

• Matrix-Chain-Parenthesization:

Express Optimal Solutions Recursively:

• Pole-Cutting: (p_k) : price for selling a pole of length k) m[i] := maximum revenue to pole of length i

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

• Matrix-Chain-Parenthesization:

 $m[i,j] := \min$. # scalar mult. to compute $A_i \times A_{i+1} \times \cdots \times A_j$

Express Optimal Solutions Recursively:

• Pole-Cutting: (p_k) : price for selling a pole of length k) m[i] := maximum revenue to pole of length i

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

• Matrix-Chain-Parenthesization:

$$m[i,j] := \min$$
. # scalar mult. to compute $A_i \times A_{i+1} \times \cdots \times A_j$

$$m[i,j] = \min_{\substack{i \le k < j}} m[i,k] + m[k+1,j]$$

+ "cost for computing $A_{ik} \times A_{(k+1)j}$ "

Two Possibilities:

Two Possibilities:

Bottom-up

Two Possibilities:

- Bottom-up
- Top-down with memoization

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example:

Two Possibilities:

- Bottom-up
- Top-down with memoization

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
-	-	-	-	-	-	-	-	-	-	-

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
-	-	-	-	-	-	-	-	-	-	-

Initialize base cases: m[0] = 0 and $m[1] = p_1$

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	-	-	-	-	-	-	-	-	-

Initialize base cases: m[0] = 0 and $m[1] = p_1$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[2] = \max\{p_1 + m_1, p_2 + m_0\} = \max\{1 + 1, 5 + 0\} = 5$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[2] = \max\{p_1 + m_1, p_2 + m_0\} = \max\{1 + 1, 5 + 0\} = 5$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[3] = \max\{p_1 + m_2, p_2 + m_1, p_3 + m_0\} = \max\{1+5, 5+1, 8+0\} = 8$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[3] = \max\{p_1 + m_2, p_2 + m_1, p_3 + m_0\} = \max\{1+5, 5+1, 8+0\} = 8$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	-	-	-	-	-	-	-

$$m[4] = \max\{p_1 + m_3, p_2 + m_2, p_3 + m_1, p_4 + m_0\} = \max\{1 + 8, 5 + 5, 8 + 1, 9\} = 10$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

$$m[4] = \max\{p_1 + m_3, p_2 + m_2, p_3 + m_1, p_4 + m_0\} = \max\{1 + 8, 5 + 5, 8 + 1, 9\} = 10$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

- 1						l			l .	l	10
	0	1	5	8	10	-	-	-	-	-	-

$$m[5] = \max\{p_1 + m_4, p_2 + m_3, p_3 + m_2, p_4 + m_1, p_5 + m_0\} = \max\{1 + 10, 5 + 8, 8 + 2, 9 + 1, 10\} = 13$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 10 | 10 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 | $m[i] = \max_{i} p_i + m_i$

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	-	ı	-	-	-

$$m[5] = \max\{p_1 + m_4, p_2 + m_3, p_3 + m_2, p_4 + m_1, p_5 + m_0\} = \max\{1 + 10, 5 + 8, 8 + 2, 9 + 1, 10\} = 13$$

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

. . .

Two Possibilities:

- Bottom-up
- Top-down with memoization

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	17	18	22	25	30

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30 |
$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	17	18	22	25	30

The maximum revenue obtainable for a pole of length 10 is 30

Two Possibilities:

- Bottom-up
- Top-down with memoization

Example: Bottom-up for Pole-Cutting

length
$$i$$
 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
price $p(i)$ | 1 | 5 | 8 | 9 | 10 | 17 | 17 | 20 | 24 | 30

$$m[i] = \max_{1 \le k \le i} p_k + m_{i-k}$$

0	1	2	3	4	5	6	7	8	9	10
0	1	5	8	10	13	17	18	22	25	30

But how can we find out how to cut the pole?

Step 4: Construct Optimal Solution

Keep Track of Optimal Choices: store optimal choices in array s

```
Require: Integer n, array p of length n with prices Let r[0 \dots n] be a new array r[0] \leftarrow 0 for j = 1 \dots n do r[j] \leftarrow -\infty for i = 1 \dots j do r[j] \leftarrow \max\{r[j], p[i] + r[j-i]\} return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

Step 4: Construct Optimal Solution

Keep Track of Optimal Choices: store optimal choices in array s

```
Require: Integer n, array p of length n with prices
  Let r[0...n] be a new array, let s[1...n] be a new array
  r[0] \leftarrow 0
  for j = 1 \dots n do
     r[i] \leftarrow -\infty
     for i = 1 \dots j do
        if p[i] + r[j-i] > q then
           r[i] \leftarrow p[i] + r[i-i]
           s[i] \leftarrow i
  return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

Step 4: Construct Optimal Solution

Keep Track of Optimal Choices: store optimal choices in array s

```
Require: Integer n, array p of length n with prices
  Let r[0...n] be a new array, let s[1...n] be a new array
  r[0] \leftarrow 0
  for j = 1 \dots n do
     r[i] \leftarrow -\infty
     for i = 1 \dots i do
        if p[i] + r[j-i] > q then
           r[i] \leftarrow p[i] + r[i-i]
           s[i] \leftarrow i
  return r[n]
```

Algorithm BOTTOM-UP-CUT-POLE(p, n)

- s[i] contains position of first cut in optimal solution
- Easy to reconstruct all cuts

Subproblem Graph

Subproblem Graph

One node for each subproblem

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Runtime of Dynamic Programming Algorithm:

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Runtime of Dynamic Programming Algorithm:

• Total number of subproblems t

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Runtime of Dynamic Programming Algorithm:

- Total number of subproblems t
- Maximum number of subproblems a subproblem depends on s

Subproblem Graph

- One node for each subproblem
- Directed edge from a subproblem A to subproblem B if the solution of A depends on the solution of B

Example: Pole-Cutting

Runtime of Dynamic Programming Algorithm:

- Total number of subproblems t
- Maximum number of subproblems a subproblem depends on s
- Runtime: $O(s \cdot t)$ (assuming that computing solution takes time O(s))

Fibonacci Numbers

Fibonacci Numbers:

$$F_0 = 0, F_1 = 1$$

 $F_n = F_{n-1} + F_{n-2} \text{ for } n \ge 2$.

```
Require: Integer n \ge 0

if n \le 1 then

return n

else

A \leftarrow \text{ array of size } n

A[0] \leftarrow 1, A[1] \leftarrow 1

for i \leftarrow 2 \dots n do

A[i] \leftarrow A[i-2] + A[i-1]

return A[n]
```

DynPrgFib
$$(n)$$

Why is this a dynamic programming algorithm?

Identify Optimal Substructure:

Identify Optimal Substructure:

• Recall: $F_n = F_{n-1} + F_{n-2}$

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

Recursive solution is already given in the problem description

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

- Recursive solution is already given in the problem description
- $F_n = F_{n-1} + F_{n-2}$

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

- Recursive solution is already given in the problem description
- $F_n = F_{n-1} + F_{n-2}$

Compute Optimal Costs & Compute Optimal Solution

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

- Recursive solution is already given in the problem description
- $F_n = F_{n-1} + F_{n-2}$

Compute Optimal Costs & Compute Optimal Solution

Cost and solution is identical for Fibonacci numbers

Identify Optimal Substructure:

- Recall: $F_n = F_{n-1} + F_{n-2}$
- (Optimal) solution to size n problem equals sum of (optimal) solutions to subproblems of sizes n-1 and n-2 \checkmark

Give Recursive Solution:

- Recursive solution is already given in the problem description
- $F_n = F_{n-1} + F_{n-2}$

Compute Optimal Costs & Compute Optimal Solution

- Cost and solution is identical for Fibonacci numbers
- There is no need to keep track of optimal choices, since there is only a single choice

Problem: Maximum-Subarray

Problem: Maximum-Subarray

- **Input:** Array A of n numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Problem: MAXIMUM-SUBARRAY

- **Input:** Array A of n numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Example:

Problem: Maximum-Subarray

- **Input:** Array *A* of *n* numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Example:

$$-25$$
 20 -3 -16 -23 18 20 -7 12 -5 1

Problem: Maximum-Subarray

- **Input:** Array A of n numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Example:

$$-25$$
 20 -3 -16 -23 18 20 -7 12 -5 1

Problem: Maximum-Subarray

- **Input:** Array A of n numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Example:

$$-25 \quad 20 \quad -3 \quad -16 \quad -23 \quad \textbf{18} \quad \textbf{20} \quad -\textbf{7} \quad \textbf{12} \quad -5 \quad \textbf{1}$$

Divide-and-Conquer Algorithm

• In lecture 7 we gave a divide-and-conquer algorithm with runtime $O(n \log n)$

Problem: Maximum-Subarray

- **Input:** Array A of n numbers
- **Output:** Indices $0 \le i \le j \le n-1$ such that $\sum_{l=i}^{j} A[l]$ is maximum.

Example:

$$-25 \ 20 \ -3 \ -16 \ -23 \ 18 \ 20 \ -7 \ 12 \ -5 \ 1$$

Divide-and-Conquer Algorithm

- In lecture 7 we gave a divide-and-conquer algorithm with runtime $O(n \log n)$
- We will give now a faster dynamic programming algorithm

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

- **Input:** Array *A* of *n* numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25$$
 20 -3 -16 -23 18 20 -7 12 -5 1

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25$$
 20 -3 -16 -23 18 20 -7 12 -5 1

Related Problem: MAXIMUM-SUFFIX-ARRAY

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25 20 -3 -16 -23 18 20 -7 12 -5 1$$

Related Problem: MAXIMUM-SUFFIX-ARRAY

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25 20 -3 -16 -23 18 20 -7 12 -5 1$$

Optimal Substructure for Maximum-Subarray:

• Let i, j be the indices of the optimal solution

Related Problem: MAXIMUM-SUFFIX-ARRAY

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25 20 -3 -16 -23 18 20 -7 12 -5 1$$

- Let i, j be the indices of the optimal solution
- Then i is the optimal solution for MAXIMUM-SUFFIX-ARRAY on input A[0...j]

Related Problem: MAXIMUM-SUFFIX-ARRAY

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25 20 -3 -16 -23 18 20 -7 12 -5 1$$

- Let i, j be the indices of the optimal solution
- Then i is the optimal solution for MAXIMUM-SUFFIX-ARRAY on input A[0...j]

$$-25$$
 20 -3 -16 -23 18 20 -7 12 -5 1

Related Problem: MAXIMUM-SUFFIX-ARRAY

- **Input:** Array A of n numbers
- **Output:** Index $0 \le i \le n-1$ such that $\sum_{l=i}^{n-1} A[l]$ is maximum.

$$-25 20 -3 -16 -23 18 20 -7 12 -5 1$$

- Let i, j be the indices of the optimal solution
- Then i is the optimal solution for MAXIMUM-SUFFIX-ARRAY on input A[0...j]

$$-25$$
 20 -3 -16 -23 18 20 -7 12

Optimal Substructure:

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on $A[0 \dots n-2]$ is also i.

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Proof.

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Proof. Suppose that the lemma is not true and suppose that $i' \neq i$ is the optimal solution to MAXIMUM-SUFFIX-ARRAY on A[0...n-2].

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Proof. Suppose that the lemma is not true and suppose that $i' \neq i$ is the optimal solution to MAXIMUM-SUFFIX-ARRAY on A[0...n-2]. Then,

$$\sum_{j=i'}^{n-2} A[j] > \sum_{j=i}^{n-2} A[j]$$

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Proof. Suppose that the lemma is not true and suppose that $i' \neq i$ is the optimal solution to MAXIMUM-SUFFIX-ARRAY on A[0...n-2]. Then,

$$\sum_{j=i'}^{n-2} A[j] > \sum_{j=i}^{n-2} A[j]$$

But then $\sum_{i=i'}^{n-1} A[j] > \sum_{i=i}^{n-1} A[j]$,

Optimal Substructure:

Lemma

Let A be an array of length n. Let i be the optimal solution for Maximum-Suffix-Array on A. If i < n-1 then the optimal solution to Maximum-Suffix-Array on A[0...n-2] is also i.

$$A[0]$$
 $A[1]$... $A[i]$ $A[i+1]$... $A[n-2]$ $A[n-1]$

Proof. Suppose that the lemma is not true and suppose that $i' \neq i$ is the optimal solution to MAXIMUM-SUFFIX-ARRAY on A[0...n-2]. Then,

$$\sum_{j=i'}^{n-2} A[j] > \sum_{j=i}^{n-2} A[j]$$

But then $\sum_{j=i'}^{n-1} A[j] > \sum_{j=i}^{n-1} A[j]$, a contradiction to the fact that i is optimal for A.

Recursive Solution:

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

Recursive Solution:

m[i] :=value of maximum suffix array of $A[0 \dots i]$

$$m[i] = \begin{cases} A[0] & \text{if } i = 0 \\ A[i] & \text{if } m[i-1] \le 0 \\ m[i-1] + A[i] & \text{if } m[i-1] > 0 \end{cases}.$$

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & \text{if } i = 0 \ A[i] & \text{if } m[i-1] \le 0 \ m[i-1] + A[i] & \text{if } m[i-1] > 0 \ . \end{cases}$$

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & \text{if } i = 0 \ A[i] & \text{if } m[i-1] \leq 0 \ m[i-1] + A[i] & \text{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m											

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25										

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & \text{if } i = 0 \ A[i] & \text{if } m[i-1] \leq 0 \ m[i-1] + A[i] & \text{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20									

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
A	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17								

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
\overline{A}	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17	1							

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17	1	-22						,

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & \text{if } i = 0 \ A[i] & \text{if } m[i-1] \leq 0 \ m[i-1] + A[i] & \text{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17	1	-22	18					

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & \text{if } i = 0 \ A[i] & \text{if } m[i-1] \leq 0 \ m[i-1] + A[i] & \text{if } m[i-1] > 0 \ . \end{cases}$$

		0	1	2	3	4	5	6	7	8	9	10
_		-25	l					1	1	12	-5	1
_	m	-25	20	17	1	-22	18	38				

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
	-25							1	l	-5	1
m	-25	20	17	1	-22	18	38	31			,

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

	0	1	2	3	4	5	6	7	8	9	10
\overline{A}	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17	1	-22	18	38	31	43		

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

		l			4		1	1			
	-25										
m	-25	20	17	1	-22	18	38	31	43	38	

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

					4						
Α	-25	20	-3	-16	-23	18	20	-7	12	-5	1
m	-25	20	17	1	-22	18	38	31	43	38	39

Recursive Solution:

 $m[i] := \text{value of maximum suffix array of } A[0 \dots i]$

$$m[i] = egin{cases} A[0] & ext{if } i = 0 \ A[i] & ext{if } m[i-1] \leq 0 \ m[i-1] + A[i] & ext{if } m[i-1] > 0 \ . \end{cases}$$

Example: Bottom-up Computation

				3							
	-25										
m	-25	20	17	1	-22	18	38	31	43	38	39

Maximum constitutes optimal solution to MAXIMUM-SUBARRAY!

Dynamic Programming Algorithm for Maximum Subarray

Algorithm: Input is an array A of integers of length n

- Compute dyn. prog. table for MAXIMUM-SUFFIX-ARRAY
- Return the maximum value in the table

```
Require: Array A of n integers
  Let m[0...n-1] be a new array
  m[0] \leftarrow A[0]
  q \leftarrow A[0]
  for i = 1 ... n - 1 do
     if m[i-1] < 0 then
        m[i] \leftarrow A[i]
     else
        m[i] \leftarrow A[i] + m[i-1]
     q \leftarrow \max\{q, m[i]\}
  return q
```

Kadane's Algorithm for MAXIMUM-SUBARRAY

Kadane's Algorithm

Kadane's Algorithm

• Runtime: O(n) (n subproblems, only one subproblem needed to compute current value)

Kadane's Algorithm

- Runtime: O(n) (n subproblems, only one subproblem needed to compute current value)
- Recall that Divide-and-Conquer solution has a runtime of O(n log n)

Kadane's Algorithm

- Runtime: O(n) (n subproblems, only one subproblem needed to compute current value)
- Recall that Divide-and-Conquer solution has a runtime of O(n log n)
- Observe that for MAXIMUM-SUBARRAY Dynamic Programming and Divide-and-Conquer is applicable

Challenges:

- Compute max. subarray of size at most k, for some k
- Compute subarray A[i,j] such that

$$\frac{\sum_{k=i}^{j} A[k]}{\sqrt{j-i+1}}$$

is maximized.

