Stærðfræðimynstur í tölvunarfræði

Vika 1

Yfirlit

- Yrðingarökfræði
 - Yrðingar, sanngildi, rökvirkjar, sanntöflur, rökjöfnur, sannanir, rökstytting
- Umsagnarökfræði
 - ►Umsagnir, magnarar, rökjöfnur, faldaðir magnarar, sannanir, rökstytting

Yrðing: Fullyrðing sem er áreiðanlega annaðhvort sönn eða ósönn

- Dæmi (annaðhvort satt eða ósatt):
 - ► Tunglið er úr grænum osti
 - **2+2=4**
 - 1+2=5
- Gagndæmi (hvorki satt né ósatt):
 - Lokaðu hurðinni!
 - Hvað er klukkan?
- Vafasamt (kannski órætt):
 - ► x+1=2
- Vafasamt (kannski bæði satt og ósatt):
 - Spuni þessarar rafeindar er upp

Yrðingasegðir

- Yrðingabreytur: p,q,r,s,...
- Yrðingin sem er ávallt sönn er táknuð með T eða 1 og yrðingin sem er ávallt ósönn er táknuð með F eða 0
- Samsettar yrðingar eru settar saman úr smærri yrðingum og rökvirkjum:
 - ► Neitun (negation) ¬
 - ▶ Og-un (conjunction) ∧
 - ► Eð-un (disjunction) ∨
 - ► Afleiðing (implication) →
 - ▶ Jafngildi (biconditional) ↔

Neitun - ekki (negation)

Sanntafla neitunar:

\boldsymbol{p}	eg p
0	1
1	0

Dæmi: Ef p stendur fyrir "tunglið er úr grænum osti" þá stendur $\neg p$ fyrir "það er ekki svo að tunglið sé úr grænum osti", eða "tunglið er ekki úr grænum osti".

Og-un, og (conjunction)

Sanntafla og

\boldsymbol{p}	q	$p \wedge q$
0	0	0
0	1	0
1	0	0
1	1	1

Eð-un, eða (disjunction)

Sanntafla eða

$oldsymbol{p}$	q	$p \lor q$
0	0	0
0	1	1
1	0	1
1	1	1

Tvíræðni "eða" í mæltu og rituðu máli

- ► Ef skrifað er á matseðil "með þessum rétti fylgir súpa eða salat", hvað þýðir það?
- Hvað ef skrifað er "með þessum rétti fylgir súpa og salat"?
- Sumir myndu skrifa "með þessum rétti fylgir súpa og salat en ekki bæði", en það er ambögulegt og flestum myndi finnast "en ekki bæði" óþarfi (nema kannski rökfræðingum)
- Sumir myndu skrifa hina merkinguna með "með þessum rétti fylgir súpa og/eða salat" en það er verulega ambögulegt
- Í stærðfræði og rökfræði er merking "eða" skýr og er samkvæmt sanntöflunni að framan
- Hin tegundin af "eða" er kölluð "aðgreind eðun" og hefur aðra sanntöflu en venjulegt "eða"
- Aðgreint "eða" kallast "exclusive or" á ensku, oft er sagt "xor"

Aðgreind eðun, xor

Sanntafla

p	q	$p\oplus q$
0	0	0
0	1	1
1	0	1
1	1	0

Afleiðing, af því leiðir, ef ... þá ...

Sanntafla

p	q	$m{p} o m{q}$
0	0	1
0	1	1
1	0	0
1	1	1

- ► Takið eftir að $p \rightarrow q$ er þá og því aðeins ósatt að p sé satt en q ósatt
- Sér í lagi er $p \rightarrow q$ satt alltaf þegar p er ósatt

$p \rightarrow q$ í mæltu máli og ritmáli

- ef p þá q
- p leiðir til q
- p leiðir af sér q
- ightharpoonup q ef p
- ightharpoonup q hvenær sem p
- \triangleright p aðeins ef q
- q er nauðsynlegt skilyrði fyrir p
- p er nægjanlegt skilyrði fyrir q
- Nægjanlegt skilyrði fyrir q er p
- Nauðsynlegt skilyrði fyrir p er q

Ef ... þá ... og öfugt

- Á ensku: "and conversely" eða jafnvel "and inversely"
- ► Tengd ensk hugtök: Converse, Contrapositive, Inverse
- Ef ég mæti þá er ég heill heilsu
- Og öfugt:
 - ► Ef ég er heill heilsu þá mæti ég (converse)
 - ► Ef ég mæti ekki þá er ég ekki heill heilsu (inverse)
- Contrapositive: Ef ég er ekki heill heilsu þá mæti ég ekki
 - jafngilt upphaflegu yrðingunni

Ef ... þá ... og öfugt (framhald)

- Inverse: Ef ég mæti ekki þá er ég ekki heill heilsu
 - converse er contrapositive af inverse
 - ▶ þau eru jafngild hvoru öðru en ekki jafngild upphaflegu yrðingunni
 - ▶ Íhugið þann sem mætir ekki (aldrei) en er (stundum) heill heilsu.
 - ▶ Uppfyllir hann skilyrðið "ef ég mæti þá er ég heill heilsu"? JÁ!
 - ► En hvað með skilyrðið "ef ég mæti ekki þá er ég ekki heill heilsu"? Nei.
- $p \rightarrow q$
 - ► Converse: $q \rightarrow p$
 - ▶ Inverse: $\neg p \rightarrow \neg q$
 - ► Contrapositive: $\neg q \rightarrow \neg p$

Jafngildi (biconditional)

- ightharpoonup p er nauðsynlegt og nægjanlegt fyrir q
- ▶ Ef p þá q og öfugt
- $\triangleright p \text{ eff } q$
- p þá og því aðeins að q
- , ég mæti þá og því aðeins að ég sé heill heilsu"
- "nauðsynlegt og nægjanlegt skilyrði fyrir því að ég mæti er að ég sé heill heilsu"
- $p \leftrightarrow q$

Jafngildi - sanntafla

p	q	p o q	q o p	$p \leftrightarrow q$	$(p o q) \wedge (q o p)$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	1	1	1	1

Önnur algeng leið til að skilgreina tvíundarvirkja, sbr. margföldunartöflur

$p \leftrightarrow q$	$oldsymbol{q}$		
		0	1
$oldsymbol{p}$	0	1	0
	1	0	1

Sanntöflur samsettra yrðinga

- Ein súla fyrir hverja breytu
- Ein súla fyrir hverja aðgerð
- Niðurstöðusúlan er súla síðustu aðgerðar

Jafngildar yrðingar

- Hvernig komumst við að því hvort tvær yrðingar, p og q eru jafngildar, þ.e. $p \equiv q$? (Athugið að p og q geta hér verið samsettar með rökvirkjum svo sem \rightarrow og \land og \neg o.s.frv.)
- 1. Búum til sanntöflur fyrir báðar yrðingarnar og athugum hvort útkomusúlan er eins í báðum
- 2. Notum þekkt jafngildi til að breyta annarri yrðingunni í hina
- 3. Athugum hvort samsetta yrðingin $p\leftrightarrow q$ er sísanna (tautology), til dæmis með aðferðum 1 og 2
- 4. Athugum, hvort í sínu lagi, hvort $p \to q$ og $q \to p$ (þetta er algengasta aðferðin og sú sem er minnst líkleg til að vera vandræðaleg)
- 5. ...

Notkun sanntaflna til að sanna eða afsanna jafngildi

p	q	$\neg p$	$m{p} ightarrow m{q}$	$ eg p \lor q$
0	0	1	1	1
0	1	1	1	1
1	0	0	0	0
1	1	0	1	1

Spurning: Hve margar raðir eru í sanntöflu með n breytum?

- I hvert sinn sem breytu er bætt við tvöfaldast fjöldi raða
- ▶ Ef engin breyta er til staðar er aðeins ein röð, til dæmis yrðingarnar 1 < 2 og 2 < 1:

1 < 2
1

2 < 1	
0	

Forgangur aðgerða

Aðgerð (virki)	Forgangur
コ	1
Λ	2
V	3
\rightarrow	4
\leftrightarrow	5

Framhald - Yfirlit

- Uppfyllanlegar yrðingar, sísönnur og mótsagnir
- Rökfræðilegt jafngildi
 - Mikilvæg jafngildi
 - ► Sönnun jafngilda
- Staðalsnið (bæði oft notuð í rökrásum)
 - ► Eð-að staðalsnið
 - Og-að staðalsnið (notað í rökstyttingu)

Uppfyllanlegar kröfur, samræmanleiki (consistency, satisfiability)

- Yrðing sem hefur þann eiginleika að til eru gildi fyrir rökbreyturnar þannig að yrðingin sé sönn kallast uppfyllanleg, samræmanleg (consistent, satisfiable)
- Einstakur möguleiki á að gefa rökbreytunum gildi er oft kallaður túlkun
- Samræmanleg (uppfyllanleg) yrðing er því yrðing sem hefur túlkun sem gerir hana sanna
- Hver túlkun samsvarar einni röð í sanntöflunni
- Engar mótsagnir eru samræmanlegar, en allar aðrar yrðingar eru það
- Allar sísönnur eru því samræmanlegar

Mikilvæg jafngildi

Regla	Íslenskt nafn reglu	Enskt nafn reglu
$p \vee q \equiv q \vee p$	Víxlregla	Commutative
$p \wedge q \equiv q \wedge p$	VIXII Cgia	Commutative
$(p \lor q) \lor r \equiv q \lor (p \lor r)$	Tengiregla	Associative
$(p \land q) \land r \equiv q \land (p \land r)$	ichgh egta	ASSOCIACIVE
$p \land (q \lor r) \equiv p \land q \lor p \land r$ $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$	Dreifiregla	Distributive
$p \lor q \land r \equiv (p \lor q) \land (p \lor r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$	Dicinicgia	Distributive
$p \wedge 1 \equiv p$	Samsemdarregla	Idempotent
$p \lor 0 \equiv p$	Jamsemaarregta	idempotent
$p \land (p \lor q) \equiv p$		
$p \lor (p \land q) \equiv p$ $p \lor p \land q \equiv p$	Gleypiregla	Absorbtion
$p \lor \neg p \equiv 1$	Neitunarregla	Complementation
$p \wedge \neg p \equiv 0$	Netturiarregia	Complementation
$\neg(p \lor q) \equiv \neg p \land \neg q$	De Morgans regla	De Morgan
$\neg(p \land q) \equiv \neg p \lor \neg q$	De Morgans regia	De Morgan
$\neg \neg p \equiv p$	Tvöföld neitun	Involution
$p \to q \equiv \neg p \lor q$		

Röksemdafærslur

- ► Algeng sönnunarverkefni eru
 - ► Sanna að $p \equiv q$ eða (næstum sama merking) $p \leftrightarrow q$
 - $ightharpoonup p \equiv q$ þýðir "yrðingin p er jafngild yrðingunni q"
 - $p \leftrightarrow q$ þýðir "yrðingin $p \leftrightarrow q$ er sönn"
 - ► Ef önnur þessara fullyrðinga er sönn þá er hin sönn
 - ► ≡ er ekki yrðinaaðgerð heldur svokallað metatákn
 - ► Sanna að $p \vdash q$ eða (næstum sama merking) $p \rightarrow q$
 - $ightharpoonup p \vdash q$ þýðir "yrðingin p leiðir til yrðingarinnar q"
 - ightharpoonup p
 ightarrow q þýðir "yrðingin p
 ightarrow q er sönn"
 - ► Ef önnur þessara fullyrðinga er sönn þá er hin sönn
 - ► er ekki yrðinaaðgerð heldur svokallað metatákn

Staðalsnið - normal forms

- Fyrir sérhverja yrðingu er hægt að finna jafngilda yrðingu á eð-uðu staðalsniði (disjunctive normal form) og jafngilda yrðingu á og-uðu staðalsniði (conjunctive normal form)
- Eð-að staðalsnið

$$(a_{11} \wedge a_{12} \wedge \cdots \wedge a_{1r_1}) \vee (a_{21} \wedge a_{22} \wedge \cdots \wedge a_{2r_2}) \vee \cdots \vee (a_{n1} \wedge a_{n2} \wedge \cdots \wedge a_{nr_n})$$

$$= \bigvee_{i=1}^{n} \bigwedge_{j=1}^{r_n} a_{ij}$$

Og-að staðalsnið

$$(b_{11} \lor b_{12} \lor \cdots \lor b_{1s_1}) \land (b_{21} \lor b_{22} \lor \cdots \lor b_{2s_2}) \land \cdots \land (b_{m1} \lor b_{m2} \lor \cdots \lor b_{ms_m})$$

$$= \bigwedge_{i=1}^{m} \bigvee_{j=1}^{s_m} b_{ij}$$

ightharpoonup Þar sem sérhvert a_{ij} og b_{ij} er á sniðinu p eða $\neg p$ fyrir einhverja yrðingarbreytu p

Staðalsnið - dæmi

Yrðingin

$$p \leftrightarrow q$$

hefur eð-aða staðalsniðið $(p \land q) \lor (\neg p \land \neg q)$
Hún hefur og-aða staðalsniðið $(p \lor \neg q) \land (\neg p \lor q)$

Ritháttur - sértilfelli

Athugið að

 $\bigvee_{i=1} c_i = 0$

 $\bigwedge_{i=1}^{0} c_i = 1$

Svipað eins og

$$\sum_{i=1}^{0} c_i = 0$$

$$\prod_{i=1}^{0} c_i = 1$$

Staðalsnið - sértilfelli

Og-að staðalsnið fyrir 0 og 1:

$$0 = \bigwedge_{i=1}^{1} 0 = \bigwedge_{i=1}^{1} \bigvee_{j=1}^{0} p$$

$$1 = \bigwedge_{i=1}^{0} 0 = \bigwedge_{i=1}^{0} \bigvee_{j=1}^{0} p$$

Eð-að staðalsnið fyrir 0 og 1:

$$0 = \bigvee_{i=1}^{0} 1 = \bigvee_{i=1}^{0} \bigwedge_{j=1}^{0} p$$

$$1 = \bigvee_{i=1}^{1} 1 = \bigvee_{i=1}^{1} \bigwedge_{i=1}^{0} p$$

Rökstytting

- Notuð til að sanna $u \vdash v$ fyrir yrðingar eða fyrstu gráðu röksegðir u og v
- ▶ Breytum fyrst segðinni $u \land \neg v$ (neitunin af $u \to v$) á og-að staðalsnið
- Eftir það er aðeins ein röksemdafærsluregla notuð:
 - $(a \lor b) \land (\neg b \lor c) \rightarrow a \lor c$
 - ightharpoonup a og c geta verið eð-un núll eða fleiri liða
 - ▶ Ef bæði a og c eru tóm þá er niðurstaða afleiðingarinnar 0 (eða F, ef það hljómar betur)
- Höldum áfram að framleiða afleiðingar þar til afleiðingin 0 fæst eða ekki er hægt að framleiða fleiri afleiðingar
- ightharpoonup Afleiðingarnar eru allar klausur í og-aða staðalsniðinu af $u \wedge \neg v$
 - Athugið að klausurnar sem bætt er við í rökstyttingu breyta ekki merkingu heildarsegðarinnar, en gefa okkur vonandi innsýn í merkinguna, sérstaklega þegar við komumst að því að ein afleiðingin er 0

Umsagnareikningur, umsagnarökfræði, fyrstu gráðu rökfræði

- Viðbætur:
 - Breytur: x,y,z
 - ightharpoonup Umsagnir: P(x), Q(x), M(x)
 - Magnarar
- Umsagnir eru almennari útgáfa af yrðingabreytum
 - Innihalda umsagnir og breytur
 - Í stað breytu má setja stak úr viðkomandi óðali
 - Eða breytan getur verið bundin magnara

Umsagnir

- Fyrir gefið mengi (kallast óðal) getum við skilgreint umsagnir
- ► Til dæmis fyrir óðal allra lífvera getum við skilgreint
 - M(x) = x er maður
 - \triangleright D(x) = x er dauðlegur
- Fyrir óðal allra rauntalna getum við skilgreint
 - ► N(x) = x er náttúrleg tala
 - $ightharpoonup Z(x) = x ext{ er heiltala}$
 - ightharpoonup Q(x) = x er ræð tala
 - P(x) = x > 0
- Óðalið er oft táknað með tákninu U

Magnarar - tilvistarmagnari 3

- ► Til er dauðleg lífvera
 - $ightharpoonup \exists x : D(x)$
 - $ightharpoonup \exists x \ D(x)$
 - $ightharpoonup \exists y : D(y)$
- ► Til er jákvæð tala
 - $ightharpoonup \exists x : P(x)$
- ► Til er jákvæð heiltala
 - $ightharpoonup \exists x : P(x) \land N(x)$

Magnarar - almagnari ∀

- ► Allar lífverur eru dauðlegar
 - $\blacktriangleright \forall x : D(x)$
- Allar tölur eru jákvæðar
 - $ightharpoonup \forall x: P(x)$
 - $\triangleright \forall y : P(y)$

Forgangur magnara

- Magnarar hafa hærri forgang en rökaðgerðir
 - ▶ $\forall x$: $P(x) \land Q(x)$ hefur sömu merkingu og $(\forall x$: $P(x)) \land Q(x)$
 - Reyndar hefur hvorugt merkingu nema sem hluti stærri segðar vegna þess að x í Q(x) er **óbundið** og hefur ekkert gildi hvorugt er lögleg umsagnasegð, ef við erum smámunasöm
 - $ightharpoonup \forall x : (P(x) \land Q(x))$ hefur aðra merkingu og er lögleg umsagnasegð

Löglegar og ólöglegar (með og án merkingar)

- Löglegar umsagnasegðir
 - ► *P*(0)
 - $\rightarrow \forall x: P(x)$
 - $ightharpoonup \exists x : Q(x)$
 - $\forall x: \forall y: \exists z: R(x, y, z)$
 - $\forall x, y: \exists z: R(x, y, z)$
 - ightharpoonup R(1,2,3)
- Ólöglegar umsagnasegðir
 - ightharpoonup P(x)
 - ightharpoonup R(1,2,z)

De Morgans reglur fyrir magnara

Neitun tilvistar breytist í almögnun

$$\neg \exists x : P(x) \equiv \forall x : \neg P(x)$$

Neitun alvistar breytist í tilvist

$$\neg \forall x : P(x) \equiv \exists x : \neg P(x)$$

Dæmi um sannanir - dæmi frá Lewis Carroll, höfundi Lísu í Undralandi

- Gefið er:
 - "Öll ljón eru grimm"
 - "Sum ljón drekka ekki kaffi"
- Viljum sanna:
 - "Sumar grimmar skepnur drekka ekki kaffi"
- Túlkun í umsagnareikningi:
 - ▶ Óðalið er allar skepnur eða allar lífverur
 - Táknum "x er ljón" með L(x)
 - \blacktriangleright Táknum "x er grimm skepna" með G(x)
 - ightharpoonup Táknum "x drekkur kaffi" með K(x)

- Forsendurnar eru þá
 - $\blacktriangleright \forall x : (L(x) \to G(x))$
 - $ightharpoonup \exists x : (L(x) \land \neg K(x))$
- Viljum sanna
 - $ightharpoonup \exists x : (G(x) \land \neg K(x))$
- Notum rökstyttingu, setjum fyrst forsendur á Skolemiserað og-að staðalsnið
 - $\forall x: (L(x) \to G(x)) \text{ verður } \forall x: (\neg L(x) \lor G(x))$
 - ▶ $\exists x : (L(x) \land \neg K(x))$ verður $L(c) \land \neg K(c)$ þar sem c er skolem-fasti sem stendur fyrir eitthvert ljón sem ekki drekkur kaffi

- Neitum síðan afleiðingunni sem við viljum sanna, því við ætlum að nota óbeina sönnun, einföldum og setjum á og-að staðalsnið
 - $ightharpoonup \neg \exists x : (G(x) \land \neg K(x))$
 - ► Notum De Morgans fyrir magnara:
 - $\blacktriangleright \forall x: \neg (G(x) \land \neg K(x))$
 - ▶ De Morgans fyrir neitun og-unar
 - $ightharpoonup \forall x : (\neg G(x) \lor \neg \neg K(x)))$
 - ► Neitun neitunar styttist út
 - $ightharpoonup \forall x : (\neg G(x) \lor K(x))$

- Við erum nú tilbúin í rökstyttingu, við höfum forsendur (klausur) k_1 , k_2 , k_3 og k_4 , og utan um allt er almögnunin $\forall x$:
 - $\blacktriangleright k_1: \neg L(x) \lor G(x)$
 - \triangleright k_2 : L(c)
 - \triangleright k_3 : $\neg K(c)$
 - \triangleright k_4 : $\neg G(x) \lor K(x)$

- Við erum nú tilbúin í rökstyttingu, við höfum forsendur (klausur) k_1 , k_2 , k_3 og k_4 , og utan um allt er almögnunin $\forall x$:
 - $ightharpoonup k_1: \neg L(x) \lor G(x)$
 - \triangleright k_2 : L(c)
 - \triangleright k_3 : $\neg K(c)$
 - \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta

- $ightharpoonup k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- $ightharpoonup k_4: \neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - Næst er rökstytting á k_4 og k_5

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- $\triangleright k_4: \neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - ightharpoonup Næst er rökstytting á k_4 og k_5
- $\triangleright k_6$: K(c)

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - Næst er rökstytting á k_4 og k_5
- \triangleright k_6 : K(c)

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- $\triangleright k_3: \neg K(c)$
- \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - ightharpoonup Næst er rökstytting á k_4 og k_5
- $\triangleright k_6: K(c)$
 - ightharpoonup Næst rökstyttum við k_3 og k_6

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- $\triangleright k_3: \neg K(c)$
- $\blacktriangleright k_4: \neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - ightharpoonup Næst er rökstytting á k_4 og k_5
- $\triangleright k_6$: K(c)
 - Næst rökstyttum við k_3 og k_6
- ► *k*₆: 0

- $\blacktriangleright k_1: \neg L(x) \lor G(x)$
- \triangleright k_2 : L(c)
- \triangleright k_3 : $\neg K(c)$
- \triangleright k_4 : $\neg G(x) \lor K(x)$
 - \blacktriangleright Beitum nú rökstyttingu á k_1 og k_2 með því að gefa x gildið c í k_1 og stytta
- \triangleright k_5 : G(c)
 - Næst er rökstytting á k_4 og k_5
- \triangleright k_6 : K(c)
 - ightharpoonup Næst rökstyttum við k_3 og k_6
- \triangleright k_7 : 0 Sem sagt: "Sumar grimmar skepnur drekka ekki kaffi"

Annað dæmi í svipuðum stíl

- Gefið er
 - "Allar skepnur sem drekka svaladrykki eru friðsamar"
 - "Svali er tegund af svaladrykk"
 - "Fyrir allar tegundir svaladrykkja eru til ljón sem drekka þann drykk"
- Viljum sanna
 - "Sum ljón eru friðsöm"
- Búum til líkan
 - ightharpoonup F(x) táknar "x er friðsöm skepna"
 - \triangleright D(x,y) táknar "x drekkur svaladrykk af tegund y"
 - ightharpoonup L(x) táknar "x er ljón"
 - \triangleright S(y) táknar "y er tegund svaladrykks"
- Óðalið getur til dæmis verið skepnur og vörumerki

- Þá fáum við forsendur sönnunar
 - "Allar skepnur sem drekka svaladrykki eru friðsamar"
 - $\blacktriangleright \forall x, y : (S(y) \land D(x, y) \rightarrow F(x))$
 - "Svali er tegund af svaladrykk"
 - **►** *S*(*Svali*)
 - "Fyrir allar tegundir svaladrykkja eru til ljón sem drekka þann drykk"
 - $\blacktriangleright \forall y : \Big(S(y) \to \exists x : \Big(L(x) \land D(x,y) \Big) \Big)$
- Bætum við neituninni af afleiðingunni
 - "Öll ljón eru ekki friðsöm"
 - $\blacktriangleright \forall x : L(x) \rightarrow \neg F(x)$

- Setjum á Skolemiserað og-að staðalsnið, með almagnara $\forall x, y$:
 - ► $S(y) \land D(x,y) \rightarrow F(x)$ verður (skv. reglunni $p \rightarrow q \equiv \neg p \lor q$)
 - ► $\neg (S(y) \land D(x,y)) \lor F(x))$ og síðan (skv. De Morgan)
 - \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x))$
 - \triangleright k_2 : S(Svali)
 - k₂ er þegar komið á rétt snið

- ► $S(y) \rightarrow \exists x : (L(x) \land D(x,y))$ verður (með skolemiseringu, þar sem j(y) er ljón sem drekkur y)
 - ► $S(y) \rightarrow (L(j(y)) \land D(j(y), y))$ og síðan (skv. reglunni $p \rightarrow q \equiv \neg p \lor q$)
 - ► $\neg S(y) \lor (L(j(y)) \land D(j(y), y))$ og síðan (skv. dreifireglu)
 - ► $(\neg S(y) \lor L(j(y))) \land (\neg S(y) \lor D(j(y), y))$ sem gefur tvær klausur
 - $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
 - \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- Neitunin af afleiðingunni, þ.e.

$$L(x) \rightarrow \neg F(x)$$

verður (skv. reglunni $p \rightarrow q \equiv \neg p \lor q$) ein klausa

 \triangleright k_5 : $\neg L(x) \lor \neg F(x)$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\triangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

Rökstyttum fyrst k_1 og k_2 (látum y vera Svali)

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\triangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\triangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali))

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- $\triangleright k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- \triangleright $k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- \blacktriangleright k_6 : $\neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - \blacktriangleright Síðan k_2 og k_7

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- \blacktriangleright k_6 : $\neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\triangleright k_8: F(j(Svali))$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\triangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\triangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali))

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- \triangleright k_5 : $\neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\triangleright k_8: F(j(Svali))$
 - Siðan k_5 og k_8 (látum x vera j(\$vali)) og fáum
- $ightharpoonup k_9: \neg L(j(Svali))$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- $\blacktriangleright k_1: \neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- \blacktriangleright k_6 : $\neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\blacktriangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali)) og fáum
- $ightharpoonup k_9: \neg L(j(Svali))$
 - Síðan k_3 og k_9 (látum y vera Svali)

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $ightharpoonup k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\blacktriangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali)) og fáum
- \triangleright $k_9: \neg L(j(Svali))$
 - Síðan k_3 og k_9 (látum y vera Svali)
- $ightharpoonup k_{10}: \neg S(Svali)$

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\blacktriangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali)) og fáum
- \triangleright k_9 : $\neg L(j(Svali))$
 - Síðan k_3 og k_9 (látum y vera Svali)
- $\triangleright k_{10}: \neg S(Svali)$
 - ightharpoonup Og loks k_2 og k_{10}

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- \triangleright k_4 : $\neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- \blacktriangleright k_6 : $\neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - \blacktriangleright Síðan k_2 og k_7 og fáum
- $\blacktriangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali)) og fáum
- \triangleright k_9 : $\neg L(j(Svali))$
 - Síðan k_3 og k_9 (látum y vera Svali)
- $\triangleright k_{10}: \neg S(Svali)$
 - ightharpoonup Og loks k_2 og k_{10}
- **O**

- Heildarklaususafnið í upphafi rökstyttingar verður því
- \triangleright k_1 : $\neg S(y) \lor \neg D(x,y) \lor F(x)$
- \triangleright k_2 : S(Svali)
- $\blacktriangleright k_3: \neg S(y) \lor L(j(y))$
- $ightharpoonup k_4: \neg S(y) \lor D(j(y), y)$
- $\blacktriangleright k_5: \neg L(x) \lor \neg F(x)$

- Rökstyttum fyrst k_1 og k_2 (látum y vera Svali) og fáum
- $\blacktriangleright k_6: \neg D(x, Svali) \lor F(x)$
 - Síðan k_4 og k_6 (látum y vera Svali, x vera j(Svali)) og fáum
- $ightharpoonup k_7: \neg S(Svali) \lor F(j(Svali))$
 - ightharpoonup Síðan k_2 og k_7 og fáum
- $\blacktriangleright k_8: F(j(Svali))$
 - Síðan k_5 og k_8 (látum x vera j(Svali)) og fáum
- \triangleright k_9 : $\neg L(j(Svali))$
 - Síðan k_3 og k_9 (látum y vera Svali)
- \triangleright $k_{10}: \neg S(Svali)$
 - \triangleright Og loks k_2 og k_{10}
- $k_{11}:0$
 - Sum ljón eru því friðsöm