

			SLOT: B2			
	School of Inf	ormation Technology	and Engineering			
Winter Semester 2022-2023		Continuous Assessment Test – I				
Programme Name & Branch		MCA				
Course	ITA5006	Course	Distributed Operating Systems			
Class	VL2022230500270 , VL2022230500524, VL2022230500243					
Faculty	Dr.M.RAJKUMAR, Dr.T.SENTHIL KUMAR, Dr.D.KARTHIKEYAN					

Exam Duration: 90 Min. Maximum Marks: 50

General instruction(s): Answer ALL Ouestions.

Q.No.	Question						
1.	(a) Identify the best choice scheduling algorithm for the following cases and justify your answer.						
	Case 1: The incoming processes are short and there is no need for the processes to execute in a specific order. (2 marks)						
	Case 2: The processes are a mix of long and short processes and the task will only be completed if all the processes are executed successfully in a given time. (2marks)						
	Case 3: The processes are a mix of user based and kernel- based processes. (2 marks)						
	(b) Compare and contrast the various scheduling algorithms highlighting their advantages and disadvantages. (4 marks)						
2.	Experiment the various classical problems depicting flaws of process synchronization in systems where cooperating processes are present. Explain with the help of pseudocode.						
3.	Consider the following process with the CPU burst time						
	givenin milliseconds.						
	Process	Arrival Time	Burst time	Priority			
	P1	0	10	4			
	P2	1	4	2			
	Р3	2	12	1			
	P4	4	5	3			

Process arrives in P1, P2, P3, P4 order, all process arrives at 0 msec.

- i) Draw Gantt chart to show execution using Priority, and RR (Quantum Time=2ms) Scheduling.(4 Marks)
- Also calculate the Average waiting time and Turnaround time. (4 Marks)
- iii) Comment on the algorithm which produces minimum Average waiting time and Turnaround time. (2 Marks)

10

- 4. Assume that source and destination in the same network. One of the process in the source system wants to make a reliable communication to the one of the application in the destination system. Elaborate with the neat sketch on layer communication, protocol functionalities, encapsulation and de-capsulation happens at both sender and receiver side.
- (a) Demonstrate the need for communication primitives in Distributed OS. (5 marks)
 (b) Explain how remote procedure call will be implemented
 - (b) Explain how remote procedure call will be implemented and how it handles the structuring and procedure call.(5 marks)