Detection of Safe Angle for Water Vehicles due to Vulnerable Swing

Authors:

Md. Shahidul Islam Sarfaraz Newaz * Abdul Hasib Uddin * Rafia Sharmin Alice Presented by

Md. Shahidul Islam

shahidcseku@gmail.com

Overview

- ➤ Introduction & Problem Statement
- Methodology
- > System Architecture
- > Experimental Results
- > Conclusion

Introduction

Natural disasters like rapid winds and storms cause the vast quantity of waves in the river and ocean. Which inhibits the movement of water vehicles.

During such a hostile situation the most important thing is safety.

> To remain safe we need a safe position.

Introduction cont.

- To reach to the safe position we calculate a parameter called Safe Angle.
- > Safe Angle is defined as the angle between the current heading of the vehicle and the most safety position.

Introduction cont.

Methodology

- Measuring tilt angles
- Measuring Y-factor
- Measuring threshold values
- Measuring safe angle

Measuring Tilt Angle

- ➤ We used ADXL345 accelerometer which gives the acceleration in x, y, and z axes as Ax, Ay, and Az.
- \triangleright Using the following equations we calculated the roll (a), pitch (β), yaw (γ) angle [1].

$$ightharpoonup a = \arctan\left(\frac{A_{\chi}}{\sqrt{A_{y}^{2} + A_{z}^{2}}}\right)$$

$$\Rightarrow \beta = \arctan\left(\frac{A_y}{\sqrt{A_x^2 + A_z^2}}\right)$$

$$ightharpoonup \gamma = \arctan\left(\frac{A_Z}{\sqrt{A_\chi^2 + A_y^2}}\right)$$

Measuring Y-Factor

- > It has been proven that "Tilt angle is proportional to the sine component of the wave force acting on a boat."[2]
- ➤ Mathematically, Tilt ∝ V sinθ
 - Where V is the acting force on boat.
- \succ We defined Y -Factor as the ratio of rolling (a) and pitch angle (β) of the boat.
- > Therefore we express as, $Y factor = \frac{|\alpha|}{|\beta|}$

Measuring Threshold Values

- > Threshold values help to determine wheatear the boat is in vulnerable position or not.
- We have used two thresholds T_x , the threshold for x-axis and T_y , the threshold for y-axis.
- > We have measured the maximum threshold angles, T_{xmax} and T_{ymax} in which angle the boat capsize.

Measuring Safe Angle

- > If $|a| > T_x$ or $|\beta| > T_y$, then we step to find the safe angle.
- > Safe angle is calculated using the following equation:

$$\theta = \arctan\left(\frac{|\alpha|}{Y - factor \times |\beta|}\right)$$

 \triangleright The safe angle is normalized between 0 to \pm 90 degrees.

Safe Angle Direction

Roll angle	Pitch angle	Direction
a ≥ 0	β≥0	Clockwise
a ≥ 0	β < 0	Anti-Clockwise
a < 0	β≥0	Anti-Clockwise
a < 0	β < 0	Clockwise

Table. Safe angle direction

System Architecture

- > Main components:
 - > Arduino Uno 3
 - > ADXL345 accelerometer
 - > Servo Motor
 - > 16x2 LCD display
 - > Bazaar alarm

Fig. Block diagram of the system.

System Architecture cont.

System Architecture cont.

Start

Experimental Results

SL	LOA (ft.)	BOC (ft.)	Y-Factor	T _{xmax} (θ °)	T _{ymax} (θ°)
1	9	2	2.35	30	44
2	12	3	2.44	34	45
3	12	3	2.49	34	46
4	5	2	7.02	35	40
5	0.66	0.66	0.99	47	47

Table. Boat geometry, Y-Factor, and maximum threshold values.

Experimental Results cont.

Experimental Results cont.

Experimental Results cont.

SL.	Roll	Pitch	Yaw	Safe Angle
1	-4	15	73	6
2	-12	8	74	33
3	18	11	67	-35
4	29	11	57	-48
5	-19	7	68	49
6	-11	-1	78	-78
7	-14	1	75	90
8	-16	1	73	90
9	-14	-2	75	-71
10	-15	1	74	81

Table. Safe Angle Sample Result for Boat 1

Conclusions

- > Our device is suitable for on-board real-time implementation.
- > It could be an ideal method for the autonomous marine vehicle also.
- The Y-factor used in this paper is not universal for all the boats with the same dimensions, before using the device, the Y-Factor of the boat must be calculated.

Reference

[1] C. J. Fisher, "Using an accelerometer for inclination sensing," AN-1057, Application note, Analog Devices, 2010.

[2] Detection of Safe Angle for Water Vehicles due to Vulnerable Swing, ICASERT 2019, paper ID - 246

Thank You