Calculus I

Trig functions with power notation and the chain rule

Todor Milev

2019

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos(x^3)$$
.
Let $u =$
Let $g(u) =$
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$

$$(g(h(x)))' = g'(h(x)) \cdot h'(x)$$
 (notation 1)
 $(g(u))' = g'(u)u'$ where $u = h(x)$ (notation 2)
 $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$ where $y = g(u)$ (notation 3).

Example (Chain Rule, Notation 2)

Differentiate
$$f(x) = \cos^3 x$$
.
Let $u =$
Let $g(u) =$
Then $f(x) = g(u)$.
Chain Rule: $f'(x) = g'(u)u'$