```
In [96]:
         %load ext sql
         import statsmodels.api as sma
         from statsmodels.sandbox.regression.predstd import wls prediction std
         import datetime
         from scipy import stats
         import math
         import fiona
         import shapely as shapely
         from geopandas import GeoSeries, GeoDataFrame
         from shapely.geometry import Point
         from shapely.geometry import asShape
         from time import qmtime, strftime
         from array import array
         # imports
         import pandas as pd
         import matplotlib.pyplot as plt
         import csv
         # follow the usual sklearn pattern: import, instantiate, fit
         from sklearn.linear model import LinearRegression
         import numpy as np
         from mpl toolkits.basemap import Basemap
         from matplotlib.patches import Polygon
         from matplotlib.collections import PatchCollection
         import statsmodels.formula.api as sm
         # this allows plots to appear directly in the notebook
         %matplotlib inline
```

The sql extension is already loaded. To reload it, use: %reload ext sql

In [97]: %sql mysql://prod:nerd@52.2.153.189/rental_nerd

Out[97]: u'Connected: prod@rental_nerd'

```
In [98]:
         result = %sql (\
         SELECT
         properties.id as 'property id', \
         properties.address,
         properties.bedrooms,
         properties.bathrooms,
         properties.sqft,
         properties.source,
         properties.origin url,
         properties.longitude,
         properties.latitude,
         properties.elevation,
         properties.year built,
         properties.garage,
         properties.level,
         properties.luxurious,
         properties.dist to park,
         property_transaction_logs.id 'ptl_id', \
         property transaction logs.transaction type,
         property transaction logs.price,
         property transaction logs.transaction status, \
         property transaction logs.days on market,
         property transaction logs.date closed,
         property transaction logs.date listed,
         neighborhoods.name as 'neighborhood', \
         neighborhoods.id as 'nid',
         neighborhoods.shapefile source,
         prediction results.pred std as 'pred std' \
         FROM \
         properties,
         property transaction logs,
         property neighborhoods, \
         neighborhoods,
         prediction results \
         WHERE
         property transaction logs.property id = properties.id AND
         property transaction logs.transaction type = "rental" AND
         neighborhoods.shapefile source = "PH" AND
         properties.id = property neighborhoods.property id AND \
         property neighborhoods.neighborhood id = neighborhoods.id AND \
         property transaction logs.date closed is not null AND \
         prediction results.property transaction_log_id = property_transaction_
         logs.id AND \
         properties.sqft > 0 AND \
         prediction results.pred std > 0 AND \
         property transaction logs.price > 0 )
         data = result.DataFrame()
```

6842 rows affected.

In [99]: result.csv(filename=strftime("%Y%m%d")+ " rentals.csv")

Out[99]: CSV results (./files/20160313 rentals.csv)

In [100]: plot_data = data #[(data.neighborhood == 'Deer Valley')] len(plot_data) plot data.describe()

Out[100]:

	property_id	bedrooms	bathrooms	sqft	longitude	latitude
count	6842.000000	6842.000000	6842.000000	6842.000000	6842.000000	6842.0000
mean	17616.179918	3.088278	2.077024	1788.656533	-112.038399	33.521540
std	8655.553708	0.942328	0.665565	817.102498	0.137573	0.129048
min	660.000000	0.000000	0.000000	1.000000	-112.300000	33.292200
25%	8512.250000	3.000000	2.000000	1281.250000	-112.140000	33.416400
50%	20670.000000	3.000000	2.000000	1622.000000	-112.053000	33.493000
75%	24287.000000	4.000000	2.000000	2104.500000	-111.932000	33.622800
max	30600.000000	8.000000	8.000000	11631.000000	-111.585000	33.881700

In [101]: from mpl_toolkits.basemap import Basemap

import fiona

from matplotlib.patches import Polygon

from matplotlib.collections import PatchCollection

```
In [102]: fig = plt.figure(figsize=(12,12))
          ax = fig.add subplot(111)
          # Create the Basemap
          event map = Basemap(projection='merc',
                               resolution='h', epsg=2227,
                               lat 0 = 33.65, lon 0=-112, # Map center
                               llcrnrlon=-112.5, llcrnrlat=33.3, # Lower left cor
          ner
                               urcrnrlon=-111.5, urcrnrlat=34) # Upper right corn
          er
          # Draw important features
          event map.arcgisimage(service='World Shaded Relief', xpixels = 1500, v
          erbose= True)
          # add neighborhoods
          event map.readshapefile(
             'data/ZillowNeighborhoods-AZ/ZillowNeighborhoods-AZ', 'PHX', color=
          'black', zorder=2)
          # create array storing lats and longs
          listing coords = zip(plot data.latitude, plot data.longitude, plot data
          .sqft, plot data.price, plot data.pred std)
          # Draw the points on the map:
          for longitude, latitude, sqft, price, pred std in listing coords:
              x, y = event map(latitude, longitude) # Convert lat, long to y, x
              if((1.0 * price/sqft) < 0.5):
                  color = 'ro'
              elif ((1.0 * price/sqft) < 0.8):
                  color = 'bo'
              elif ((1.0 * price/sqft) <1.1):
                  color = 'co'
              else:
                  color = 'go'
              event map.plot(x,y, color, alpha=0.3)
          plt.show()
```

http://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/export?bbox=9010228.80241,578944.092374,9290888.52907,860909.821619&bboxSR=2227&imageSR=2227&size=1500,1506&dpi=96&format=png32&f=image


```
In [103]: from decimal import *
          fig = plt.figure(figsize=(12,12))
          ax = fig.add subplot(111)
          # Create the Basemap
          event map = Basemap(projection='merc',
                               resolution='h', epsg=2227,
                               lat 0 = 33.65, lon 0=-112, # Map center
                               llcrnrlon=-112.5, llcrnrlat=33.3, # Lower left cor
          ner
                               urcrnrlon=-111.5, urcrnrlat=34) # Upper right corn
          er
          # Draw important features
          event map.arcgisimage(service='World Shaded Relief', xpixels = 1500, v
          erbose= True)
          # add neighborhoods
          event map.readshapefile(
              'data/ZillowNeighborhoods-AZ/ZillowNeighborhoods-AZ', 'PHX', color=
           'black', zorder=2)
          # create array storing lats and longs
          listing coords = zip(plot data.latitude, plot data.longitude, plot data
           .price, plot data.pred std)
          # Draw the points on the map:
          for longitude, latitude, price, pred std in listing coords:
              x, y = event map(latitude, longitude) # Convert lat, long to y,x
              price d = Decimal(price)
              pred d = Decimal(pred std)
              if((pred_d/price_d) < Decimal(0.1)):</pre>
                   color = 'ro'
              elif ((pred_d/price_d) < Decimal(0.2)):</pre>
                   color = 'bo'
              elif ((pred d/price d) < Decimal(0.3)):</pre>
                   color = 'co'
              else:
                   color = 'qo'
              event map.plot(x,y, color, alpha=0.3)
          plt.show()
```

http://server.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer/export?bbox=9010228.80241,578944.092374,9290888.52907,860909.821619&bboxSR=2227&imageSR=2227&size=1500,1506&dpi=96&format=png32&f=image

In [104]: # fill NaN values with some reasonable defaults data.year_built = data.year_built.fillna(1970) data.head()

Out[104]:

	property_id	address	bedrooms	bathrooms	sqft	source	origin_url
0	2514	11515 N 91st St UNIT 140, Scottsdale, AZ 85260	2	2	1270	zillow_ph	http://www.zillow.cor N-91st
1	2543	14000 N 94th St UNIT 1169, Scottsdale, AZ 85260	2	2	1279	zillow_ph	http://www.zillow.cor N-94th
2	2600	7979 E Princess Dr, Scottsdale, AZ 85255	3	3	2253	zillow_ph	http://www.zillow.cor E-Princ
3	2684	9990 N Scottsdale Rd APT 1005, Scottsdale, AZ	2	2	973	zillow_ph	http://www.zillow.cor N-Scott
4	2719	8027 E Del Timbre Dr, Scottsdale, AZ 85258	3	3	2778	zillow_ph	http://www.zillow.cor E-Del-T

5 rows × 26 columns

```
In [105]: Date_final = [0.1] * len(data)

for x in range(0,len(data)):
    data
    if data["date_closed"][x] is not None :
        # print " row: "+ `x` + ": using date_rented"
        # data.ix['Date_final',x]
        Date_final[x] = data["date_closed"][x]

elif data["date_listed"][x] is not None :
        # print " row: "+ `x` + ": using date_listed"
        Date_final[x] = data["date_listed"][x]

else:
        Date_final[x] = data["date_closed"][2]
        print " row: "+ `x` + ": we are screwed"

data['date'] = pd.to_datetime(Date_final)
data.head()
```

Out[105]:

	property_id	address	bedrooms	bathrooms	sqft	source	origin_url
0	2514	11515 N 91st St UNIT 140, Scottsdale, AZ 85260	2	2	1270	zillow_ph	http://www.zillow.cor N-91st
1	2543	14000 N 94th St UNIT 1169, Scottsdale, AZ 85260	2	2	1279	zillow_ph	http://www.zillow.cor N-94th
2	2600	7979 E Princess Dr, Scottsdale, AZ 85255	3	3	2253	zillow_ph	http://www.zillow.cor E-Princ
3	2684	9990 N Scottsdale Rd APT 1005, Scottsdale, AZ	2	2	973	zillow_ph	http://www.zillow.cor N-Scott
4	2719	8027 E Del Timbre Dr, Scottsdale, AZ 85258	3	3	2778	zillow_ph	http://www.zillow.cor E-Del-T

5 rows × 27 columns

In [108]:

data.describe() #identify filtering tresholds to clean up bad data

Out[108]:

	property_id	bedrooms	bathrooms	sqft	longitude	latitude
count	6842.000000	6842.000000	6842.000000	6842.000000	6842.000000	6842.0000
mean	17616.179918	3.088278	2.077024	1788.656533	-112.038399	33.521540
std	8655.553708	0.942328	0.665565	817.102498	0.137573	0.129048
min	660.000000	0.000000	0.000000	1.000000	-112.300000	33.292200
25%	8512.250000	3.000000	2.000000	1281.250000	-112.140000	33.416400
50%	20670.000000	3.000000	2.000000	1622.000000	-112.053000	33.493000
75%	24287.000000	4.000000	2.000000	2104.500000	-111.932000	33.622800
max	30600.000000	8.000000	8.000000	11631.000000	-111.585000	33.881700

Entries before filter: 6842 Entries after filter: 482

Out[109]:

	property_id	address	bedrooms	bathrooms	sqft	source	origin_url
1376	2563	8120 E Valley View Rd, Scottsdale, AZ 85250	3	2	2100	zillow_ph	http://www.zillow E-Valle
1377	2606	6620 E Earll Dr APT 2, Scottsdale, AZ 85251	1	1	600	zillow_ph	http://www.zillow E-Earll
1378	2641	7777 E Main St UNIT 153, Scottsdale, AZ 85251	2	2	1130	zillow_ph	http://www.zillow E-Main
1379	2664	7777 E Main St UNIT 304, Scottsdale, AZ 85251	2	2	1130	zillow_ph	http://www.zillow E-Main
1380	2674	7777 E Main St UNIT 124, Scottsdale, AZ 85251	2	2	1130	zillow_ph	http://www.zillow E-Main

5 rows × 29 columns

In []:

```
Out[110]: array([[<matplotlib.axes. subplots.AxesSubplot object at 0x121c3a350
           >,
                   <matplotlib.axes. subplots.AxesSubplot object at 0x1220937d0</pre>
                   <matplotlib.axes. subplots.AxesSubplot object at 0x122245a50</pre>
           >],
                   [<matplotlib.axes. subplots.AxesSubplot object at 0x121c2ee10</pre>
           >,
                   <matplotlib.axes. subplots.AxesSubplot object at 0x1222bbe90</pre>
           >,
                   <matplotlib.axes. subplots.AxesSubplot object at 0x121578750</pre>
           >],
                   [<matplotlib.axes. subplots.AxesSubplot object at 0x1218bca90
           >,
                   <matplotlib.axes. subplots.AxesSubplot object at 0x121910e10</pre>
           >,
                   <matplotlib.axes. subplots.AxesSubplot object at 0x121a05cd0</pre>
           >]], dtype=object)
```



```
In [112]: age = 2016 - data.year_built
    age.name = 'age'
    data = pd.concat([data,age],axis=1)
```

Out[113]: OLS Regression Results

Dep. Variable:	price	R-squared:	0.427
Model:	OLS	Adj. R-squared:	0.413
Method:	Least Squares	F-statistic:	29.18
Date:	Sun, 13 Mar 2016	Prob (F-statistic):	1.48e-49
Time:	13:55:00	Log-Likelihood:	-3814.5
No. Observations:	482	AIC:	7655.
Df Residuals:	469	BIC:	7709.
Df Model:	12		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Conf.	
--	------	---------	---	------	-----------------	--

					Int.]
Intercept	-1.17e+04	1393.105	-8.399	0.000	-1.44e+04 -8962.544
bedrooms	105.3274	55.807	1.887	0.060	-4.336 214.991
bathrooms	377.1120	77.044	4.895	0.000	225.717 528.507
age	-11.4125	2.396	-4.763	0.000	-16.121 -6.704
elevation	32.2234	3.599	8.954	0.000	25.151 39.295
neighborhood[South Scottsdale]:sqft:year[Period('2009', 'A- DEC')]	1.4258	0.296	4.824	0.000	0.845 2.007
neighborhood[South Scottsdale]:sqft:year[Period('2010', 'A- DEC')]	0.1612	0.163	0.986	0.324	-0.160 0.482
neighborhood[South Scottsdale]:sqft:year[Period('2011', 'A- DEC')]	0.1912	0.131	1.455	0.146	-0.067 0.449
neighborhood[South Scottsdale]:sqft:year[Period('2012', 'A- DEC')]	0.3346	0.095	3.512	0.000	0.147 0.522
neighborhood[South Scottsdale]:sqft:year[Period('2013', 'A- DEC')]	0.3944	0.103	3.844	0.000	0.193 0.596
neighborhood[South Scottsdale]:sqft:year[Period('2014', 'A- DEC')]	0.3399	0.086	3.931	0.000	0.170 0.510
neighborhood[South Scottsdale]:sqft:year[Period('2015', 'A- DEC')]	0.4216	0.065	6.466	0.000	0.293 0.550
neighborhood[South Scottsdale]:sqft:year[Period('2016', 'A- DEC')]	0.4735	0.076	6.201	0.000	0.323 0.624

Omnibus:	186.955	Durbin-Watson:	1.512
Prob(Omnibus):	0.000	Jarque-Bera (JB):	1172.607
Skew:	1.552	Prob(JB):	2.35e-255
Kurtosis:	9.982	Cond. No.	4.80e+04

Out[114]:

neighborhood	rent per foot			
South Scottsdale	0.42162683752082708			

```
In [115]: path = 'rentalnerd importer/lib/tasks/model files/'
          dtype = [('Effect', 'S100'), ('Coefficient', float)]
          with open(path + 'model features ph.csv', 'wb') as csvfile:
              modelwriter = csv.writer(csvfile, delimiter=',', quotechar='|', qu
          oting=csv.QUOTE MINIMAL)
              header = ['Effect','Coefficient']
              table.append(header)
              modelwriter.writerow(header)
              modelwriter.writerow(['base_rent', 0]) # result.params.Intercept])
          hardcode 0 as base rent
              modelwriter.writerow(['bedrooms', result.params.bedrooms])
              modelwriter.writerow(['bathrooms', result.params.bathrooms])
              modelwriter.writerow(['dist_to_park', 0])
              modelwriter.writerow(['elevation', result.params.elevation])
              modelwriter.writerow(['level', 0])
              modelwriter.writerow(['age', result.params.age])
              modelwriter.writerow(['garage', 0])
              modelwriter.writerow(['mean square error of residuals', result.mse
          resid])
          result.cov_params().to_csv(path + 'model_covs_ph.csv')
In [116]: with open(path + 'model_hoods_ph.csv', 'wb') as csvfile:
              hoodwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quo
          ting=csv.QUOTE MINIMAL)
```

```
for i in output:
    hoodwriter.writerow(i)
```

```
In [117]: hood = "North Scottsdale"
    subdata = data[(data.neighborhood == hood) & (data.date > datetime.dat
    e(2011, 5, 1))]
    plt.plot_date(x=subdata.date,y=subdata.price)
    plt.title(hood + " Rental Listings")
    plt.grid(True)
```



```
In [118]:
          errors = result.resid
          errors.name = 'error'
          pprice = errors + data.price
          pprice.name = "prediction"
          data = pd.concat([data, errors], axis=1)
          data = pd.concat([data, pprice], axis=1)
          # visualize the relationship between the features and the response usi
          ng scatterplots
          errors.sort values(inplace=True)
          errors.plot(kind='bar').get_xaxis().set_ticks([])
          # show errors by neighborhood to see if there are any neighborhoods wi
          th funky differences
          hooderrors = data[['neighborhood']]
          hooderrors = pd.concat([hooderrors,errors.abs()],axis=1)
          hood group = hooderrors.groupby('neighborhood')
```



```
In [119]: error_avg = hood_group.agg([np.median,len])
    error_avg.sort_values(by=('error','median'),ascending=False,inplace=Tr
    ue)
    error_avg.plot(kind='bar',figsize=(20,10))
```

Out[119]: <matplotlib.axes._subplots.AxesSubplot at 0x121a91650>

In []:

Out[120]: <matplotlib.axes._subplots.AxesSubplot at 0x12528e590>

In [121]: data['price'].mean

Out[121]: <bound method Series.mean of 1376 2500 1377 625 2100

 1379
 2100

 1380
 1400

 1381
 875

 1382
 2800

 1383
 1600

 1384
 2750

1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405	1975 1550 690 690 1600 1175 1175 1495 1750 1750 695 2800 2800 1600 1550 3275
1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867	4000 1150 1150 2100 2500 1095 1500 1400 975 2500 5500 1795 3400 1150 1250 2200 2450 2000 2450 2000 1250 1250 1745 1600 2600 1600

1868 5500 1869 1650

Name: price, dtype: int64>

In [122]: fig = plt.figure(figsize=(12,8))
fig = sma.graphics.plot_regress_exog(result, "elevation", fig=fig)

Regression Plots for elevation

In [123]: # prstd, iv_l, iv_u = wls_prediction_std(result)
zip(data.address, data.price, data.prediction, prstd, iv_l, iv_u)

In [132]: # Artnet white paper index converted to our dataset

create year dummy variables (because date isn't very intuitive varia
ble)
f = 'M'
data["period"] = pd.DatetimeIndex(data["date"]).to_period(f)

In [133]: data[['address','price','period','neighborhood']]

Out[133]: address price period neighborhood

1376 8120 E Valley View Rd, Scottsdale, AZ 85250 2500 2500 Scottsdale

1377	6620 E Earll Dr APT 2, Scottsdale, AZ 85251	625	2015- 09	South Scottsdale
1378	7777 E Main St UNIT 153, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1379	7777 E Main St UNIT 304, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1380	7777 E Main St UNIT 124, Scottsdale, AZ 85251	1400	2015- 09	South Scottsdale
1381	2614 N 72nd PI UNIT 3, Scottsdale, AZ 85257	875	2015- 09	South Scottsdale
1382	6711 E Camelback Rd UNIT 36, Scottsdale, AZ 85251	2800	2015- 09	South Scottsdale
1383	5101 N Casa Blanca Dr UNIT 3, Paradise Valley,	1600	2015- 10	South Scottsdale
1384	7127 E Rancho Vista Dr # 3005, Scottsdale, AZ	2750	2015- 10	South Scottsdale
1385	4020 N Scottsdale Rd # 3010, Scottsdale, AZ 85251	1975	2015- 08	South Scottsdale
1386	7940 E Camelback Rd UNIT 501, Scottsdale, AZ 8	1550	2015- 10	South Scottsdale
1387	7940 E Camelback Rd UNIT 501, Scottsdale, AZ 8	1550	2015- 10	South Scottsdale
1388	4525 N 74th St APT 8, Scottsdale, AZ 85251	690	2015- 10	South Scottsdale
1389	4525 N 74th St APT 8, Scottsdale, AZ 85251	690	2015- 10	South Scottsdale
1390	6824 E 2nd St # 2, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1391	6824 E 2nd St # 2, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1392	3500 N Hayden Rd APT 702, Scottsdale, AZ 85251	1175	2015- 10	South Scottsdale
1393	3500 N Hayden Rd APT 702, Scottsdale, AZ 85251	1175	2015- 10	South Scottsdale
			2015-	South

1394	6532 E Cypress Cir, Scottsdale, AZ 85257	1495	10	Scottsdale
1395	6532 E Cypress Cir, Scottsdale, AZ 85257	1495	2015- 10	South Scottsdale
1396	3508 N 81st St, Scottsdale, AZ 85251	1750	2015- 10	South Scottsdale
1397	3508 N 81st St, Scottsdale, AZ 85251	1750	2015- 10	South Scottsdale
1398	3126 N 68th St APT 1002, Scottsdale, AZ 85251	695	2015- 10	South Scottsdale
1399	3126 N 68th St APT 1002, Scottsdale, AZ 85251	695	2015- 10	South Scottsdale
1400	6565 E Thomas Rd #F1041, Scottsdale, AZ 85251	2800	2015- 10	South Scottsdale
1401	6565 E Thomas Rd #F1041, Scottsdale, AZ 85251	2800	2015- 10	South Scottsdale
1402	3914 N 83rd St, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1403	3914 N 83rd St, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1404	8353 E Granada Rd, Scottsdale, AZ 85257	1550	2015- 10	South Scottsdale
1405	4724 N 69th St, Scottsdale, AZ 85251	3275	2014- 06	South Scottsdale
	••			
1840	7822 E Sorrel Wood Ct, Scottsdale, AZ 85258	4000	2016- 01	South Scottsdale
1841	7901 E Mckinley St, Scottsdale, AZ 85257	1150	2016- 02	South Scottsdale
1842	7901 E Mckinley St, Scottsdale, AZ 85257	1150	2016- 03	South Scottsdale
1843	8101 E Via Del Desierto, Scottsdale, AZ 85258	2100	2016- 02	South Scottsdale
1844	8225 E Via De La Escuela, Scottsdale, AZ 85258	2500	2011- 11	South Scottsdale

1845	8343 E Cypress St, Scottsdale, AZ 85257	1095	2011- 04	South Scottsdale
1846	8437 E Bonnie Rose Ave, Scottsdale, AZ 85250	1500	2014- 09	South Scottsdale
1847	8544 E Plaza Ave, Scottsdale, AZ 85250	1400	2015- 03	South Scottsdale
1848	8625 E Belleview PI UNIT 1053, Scottsdale, AZ	900	2014- 04	South Scottsdale
1849	8625 E Belleview PI UNIT 1053, Scottsdale, AZ	975	2016- 02	South Scottsdale
1850	3130 N 62nd St, Scottsdale, AZ 85251	2500	2016- 03	South Scottsdale
1851	8355 E Via De La Luna, Scottsdale, AZ 85258	5500	2016- 03	South Scottsdale
1852	2018 N 81st Pl, Scottsdale, AZ 85257	1795	2016- 03	South Scottsdale
1853	7625 E Indian Bend Rd, Scottsdale, AZ 85250	3400	2013- 12	South Scottsdale
1854	6945 E 2nd St, Scottsdale, AZ 85251	1150	2016- 03	South Scottsdale
1855	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	1850	2010- 06	South Scottsdale
1856	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	2200	2016- 01	South Scottsdale
1857	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	2200	2013- 09	South Scottsdale
1858	7157 N Via De La Campana, Scottsdale, AZ 85258	2450	2016- 03	South Scottsdale
1859	8121 E Via De Viva, Scottsdale, AZ 85258	2000	2016- 03	South Scottsdale
1860	8121 E Via De Viva, Scottsdale, AZ 85258	1800	2016- 03	South Scottsdale
1861	6350 N 78th St UNIT 267, Scottsdale, AZ 85250	1250	2010- 01	South Scottsdale
			2009-	South

1862	6350 N 78th St UNIT 267, Scottsdale, AZ 85250	1250	10	Scottsdale
1863	8356 E Palm Ln, Scottsdale, AZ 85257	1745	2016- 03	South Scottsdale
1864	7610 E Minnezona Ave, Scottsdale, AZ 85251	1600	2010- 02	South Scottsdale
1865	7812 N Via Del Sol, Scottsdale, AZ 85258	2600	2016- 03	South Scottsdale
1866	4525 N 66th St, Scottsdale, AZ 85251	1600	2016- 03	South Scottsdale
1867	4525 N 66th St, Scottsdale, AZ 85251	1600	2016- 03	South Scottsdale
1868	7844 E Via Costa, Scottsdale, AZ 85258	5500	2009- 12	South Scottsdale
1869	8154 E Via De La Escuela, Scottsdale, AZ 85258	1650	2016- 03	South Scottsdale

482 rows × 4 columns

In [134]: paired = data[['property_id','address','price','period','neighborhood'
]]

identify the earliest date, number of periods, and number of pairs
base_period = paired.period.min()
num_periods = paired.period.max() - paired.period.min()
print "base period: " + `base_period` + " end period: " + `paired.peri
od.max()` + " and number of periods: " + `num_periods`
paired.head()

base period: Period('2009-10', 'M') end period: Period('2016-03', 'M') and number of periods: 77

Out[134]:

	property_id	address	price	period	neighborhood
1376	2563	8120 E Valley View Rd, Scottsdale, AZ 85250	2500	2015- 09	South Scottsdale
1377	2606	6620 E Earll Dr APT 2, Scottsdale, AZ 85251	625	2015- 09	South Scottsdale
1378	2641	7777 E Main St UNIT 153, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1379	2664	7777 E Main St UNIT 304, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1380	2674	7777 E Main St UNIT 124, Scottsdale, AZ 85251	1400	2015- 09	South Scottsdale

In [135]: paired

Out[135]:

	property_id	address	price	period	neighborhood
1376	2563	8120 E Valley View Rd, Scottsdale, AZ 85250	2500	2015- 09	South Scottsdale
1377	2606	6620 E Earll Dr APT 2, Scottsdale, AZ 85251	625	2015- 09	South Scottsdale
1378	2641	7777 E Main St UNIT 153, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1379	2664	7777 E Main St UNIT 304, Scottsdale, AZ 85251	2100	2015- 09	South Scottsdale
1380	2674	7777 E Main St UNIT 124, Scottsdale, AZ 85251	1400	2015- 09	South Scottsdale

1381	2724	2614 N 72nd PI UNIT 3, Scottsdale, AZ 85257	875	2015- 09	South Scottsdale
1382	2725	6711 E Camelback Rd UNIT 36, Scottsdale, AZ 85251	2800	2015- 09	South Scottsdale
1383	2857	5101 N Casa Blanca Dr UNIT 3, Paradise Valley,	1600	2015- 10	South Scottsdale
1384	3009	7127 E Rancho Vista Dr # 3005, Scottsdale, AZ	2750	2015- 10	South Scottsdale
1385	3010	4020 N Scottsdale Rd # 3010, Scottsdale, AZ 85251	1975	2015- 08	South Scottsdale
1386	3135	7940 E Camelback Rd UNIT 501, Scottsdale, AZ 8	1550	2015- 10	South Scottsdale
1387	3135	7940 E Camelback Rd UNIT 501, Scottsdale, AZ 8	1550	2015- 10	South Scottsdale
1388	3184	4525 N 74th St APT 8, Scottsdale, AZ 85251	690	2015- 10	South Scottsdale
1389	3184	4525 N 74th St APT 8, Scottsdale, AZ 85251	690	2015- 10	South Scottsdale
1390	3224	6824 E 2nd St # 2, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1391	3224	6824 E 2nd St # 2, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1392	3257	3500 N Hayden Rd APT 702, Scottsdale, AZ 85251	1175	2015- 10	South Scottsdale
1393	3257	3500 N Hayden Rd APT 702, Scottsdale, AZ 85251	1175	2015- 10	South Scottsdale
1394	3274	6532 E Cypress Cir, Scottsdale, AZ 85257	1495	2015- 10	South Scottsdale
1395	3274	6532 E Cypress Cir, Scottsdale, AZ 85257	1495	2015- 10	South Scottsdale
1396	3563	3508 N 81st St, Scottsdale, AZ 85251	1750	2015- 10	South Scottsdale
1397	3563	3508 N 81st St, Scottsdale, AZ 85251	1750	2015- 10	South Scottsdale
		3126 N 68th St APT 1002, Scottsdale,		2015-	South

1398	3610	AZ 85251	695	10	Scottsdale
1399	3610	3126 N 68th St APT 1002, Scottsdale, AZ 85251	695	2015- 10	South Scottsdale
1400	3643	6565 E Thomas Rd #F1041, Scottsdale, AZ 85251	2800	2015- 10	South Scottsdale
1401	3643	6565 E Thomas Rd #F1041, Scottsdale, AZ 85251	2800	2015- 10	South Scottsdale
1402	3759	3914 N 83rd St, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1403	3759	3914 N 83rd St, Scottsdale, AZ 85251	1600	2015- 10	South Scottsdale
1404	3777	8353 E Granada Rd, Scottsdale, AZ 85257	1550	2015- 10	South Scottsdale
1405	3835	4724 N 69th St, Scottsdale, AZ 85251	3275	2014- 06	South Scottsdale
1840	26333	7822 E Sorrel Wood Ct, Scottsdale, AZ 85258	4000	2016- 01	South Scottsdale
1841	26335	7901 E Mckinley St, Scottsdale, AZ 85257	1150	2016- 02	South Scottsdale
1842	26335	7901 E Mckinley St, Scottsdale, AZ 85257	1150	2016- 03	South Scottsdale
1843	26338	8101 E Via Del Desierto, Scottsdale, AZ 85258	2100	2016- 02	South Scottsdale
1844	26339	8225 E Via De La Escuela, Scottsdale, AZ 85258	2500	2011- 11	South Scottsdale
1845	26342	8343 E Cypress St, Scottsdale, AZ 85257	1095	2011- 04	South Scottsdale
1846	26343	8437 E Bonnie Rose Ave, Scottsdale, AZ 85250	1500	2014- 09	South Scottsdale
1847	26345	8544 E Plaza Ave, Scottsdale, AZ 85250	1400	2015- 03	South Scottsdale
1848	26347	8625 E Belleview PI UNIT 1053, Scottsdale, AZ	900	2014- 04	South Scottsdale

1849	26347	8625 E Belleview PI UNIT 1053, Scottsdale, AZ	975	2016- 02	South Scottsdale
1850	26906	3130 N 62nd St, Scottsdale, AZ 85251	2500	2016- 03	South Scottsdale
1851	26928	8355 E Via De La Luna, Scottsdale, AZ 85258	5500	2016- 03	South Scottsdale
1852	27615	2018 N 81st Pl, Scottsdale, AZ 85257	1795	2016- 03	South Scottsdale
1853	27619	7625 E Indian Bend Rd, Scottsdale, AZ 85250	3400	2013- 12	South Scottsdale
1854	27807	6945 E 2nd St, Scottsdale, AZ 85251	1150	2016- 03	South Scottsdale
1855	27808	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	1850	2010- 06	South Scottsdale
1856	27808	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	2200	2016- 01	South Scottsdale
1857	27808	7157 E Rancho Vista Dr UNIT 5008, Scottsdale,	2200	2013- 09	South Scottsdale
1858	27809	7157 N Via De La Campana, Scottsdale, AZ 85258	2450	2016- 03	South Scottsdale
1859	27811	8121 E Via De Viva, Scottsdale, AZ 85258	2000	2016- 03	South Scottsdale
1860	27811	8121 E Via De Viva, Scottsdale, AZ 85258	1800	2016- 03	South Scottsdale
1861	27987	6350 N 78th St UNIT 267, Scottsdale, AZ 85250	1250	2010- 01	South Scottsdale
1862	27987	6350 N 78th St UNIT 267, Scottsdale, AZ 85250	1250	2009- 10	South Scottsdale
1863	28797	8356 E Palm Ln, Scottsdale, AZ 85257	1745	2016- 03	South Scottsdale
1864	29123	7610 E Minnezona Ave, Scottsdale, AZ 85251	1600	2010- 02	South Scottsdale
1865	29124	7812 N Via Del Sol, Scottsdale, AZ 85258	2600	2016- 03	South Scottsdale
				2016-	South

1866	29721	4525 N 66th St, Scottsdale, AZ 85251	1600	03	Scottsdale
1867	29722	4525 N 66th St, Scottsdale, AZ 85251	1600	2016- 03	South Scottsdale
1868	29895	7844 E Via Costa, Scottsdale, AZ 85258	5500	2009- 12	South Scottsdale
1869	29896	8154 E Via De La Escuela, Scottsdale, AZ 85258	1650	2016- 03	South Scottsdale

482 rows × 5 columns

```
In [136]: len(paired.groupby("address").filter(lambda x: len(x['address']) >1).g
          roupby('property id'))
Out[136]: 146
          paired.groupby("address").filter(lambda x: len(x['address']) >1).group
In [137]:
          by('address').get group('210 W Helena Dr, Phoenix, AZ 85023')
          KeyError
                                                     Traceback (most recent cal
          l last)
          <ipython-input-137-1f59fbcdada3> in <module>()
          ---> 1 paired.groupby("address").filter(lambda x: len(x['address'])
          >1).groupby('address').get_group('210 W Helena Dr, Phoenix, AZ 85023
          ')
          /usr/local/lib/python2.7/site-packages/pandas/core/groupby.pyc in ge
          t group(self, name, obj)
                          inds = self. get index(name)
              644
                          if not len(inds):
              645
          --> 646
                              raise KeyError(name)
              647
              648
                          return obj.take(inds, axis=self.axis, convert=False)
```

KeyError: '210 W Helena Dr, Phoenix, AZ 85023'

```
In [138]: # group data into Sets and calc Y_ist of each item
  paired = paired.drop_duplicates().groupby("address").filter(lambda x:
  len(x) >1)
  paired.sort_values(['address','period'],inplace=True)
  paired_grp = paired.groupby('address')
  print 'number of paired transactions in the data: ' + `paired.shape[0]
```

number of paired transactions in the data: 242

```
In [139]: | d = paired
          res = sm.ols(formula="np.log(price) ~ period + address", data=d).fit()
          #calculate index
          linked = res.params[res.params.index.str.contains('Period')]
          linked.name = "Index"
          linked[0] = 100
          growth = pd.Series(linked, copy=True)
          growth.name = "Growth Rate"
          growth[0] = 0
          for i in range(1,len(linked)):
              linked[i] = (np.exp(res.params[i]))*100
              growth[i] = linked[i]/linked[i-1] - 1
          # add P values of each prediction
          p = res.pvalues[res.params.index.str.contains('Period')] * 100
          p.name = "P value"
          index = pd.concat([linked, growth, p], axis=1)
          index.index = pd.to datetime(index.index.str.split("'").str.get(1))
          print index
          index[['Index','P value']].plot()
          index[['Growth Rate']].plot()
```

```
Index Growth Rate
                                         P value
2010-01-01 100.000000 0.000000e+00 1.000000e+02
2010-06-01 100.000000 8.881784e-16
                                    3.622030e+01
2010-09-01 108.691411 8.691411e-02
                                    3.688223e+01
                                    5.747308e+00
2011-05-01 110.314696 1.493481e-02
2011-09-01 76.581135 -3.057939e-01
                                    2.772605e+01
2011-10-01 115.446650 5.075077e-01
                                    2.712512e+01
2011-11-01 111.388555 -3.515126e-02 3.517148e+01
2011-12-01 113.090596 1.528022e-02 5.191559e+01
2012-02-01 111.765434 -1.171771e-02
                                    9.564484e+01
2012-03-01 100.569434 -1.001741e-01
                                    4.843830e+01
2012-04-01 107.855475 7.244787e-02 5.811828e+00
2012-05-01 119.124377 1.044815e-01 8.516324e+01
```

```
2012-06-01
             96.985499 -1.858467e-01
                                       3.309599e+01
2012-07-01
            109.287649 1.268452e-01
                                       2.006762e-02
2012-08-01
             63.431659 -4.195899e-01
                                       3.564169e-01
2012-09-01
            146.770252 1.313833e+00
                                       1.047530e+01
2012-10-01
            117.372414 -2.002983e-01
                                       3.155620e+00
2012-11-01
            117.806663
                       3.699759e-03
                                       6.314744e+01
2012-12-01
            104.167677 -1.157743e-01
                                       3.189437e+00
2013-01-01
            115.920789 1.128288e-01
                                       6.225652e+00
2013-02-01
            113.391113 -2.182246e-02
                                       2.347135e+01
2013-03-01
            117.516064 3.637808e-02
                                       1.320041e+01
            120.774554
                        2.772804e-02
                                       3.422314e-03
2013-05-01
2013-06-01
            200.849120
                        6.630086e-01
                                       2.156424e+01
2013-07-01
            117.802704 -4.134766e-01
                                       3.442830e-03
2013-08-01
             52.556392 -5.538609e-01
                                       1.610047e+01
2013-09-01
            116.943043
                       1.225096e+00
                                       4.607189e-01
2013-10-01
            125.755120
                        7.535358e-02
                                       2.291892e-01
2014-01-01
            127.883894
                        1.692793e-02
                                       2.258765e+01
2014-04-01
            117.665216 -7.990591e-02
                                       1.912744e-01
2014-06-01
            118.183846
                       4.407675e-03
                                       4.838938e-02
            136.506635
2014-07-01
                        1.550363e-01
                                       4.396878e+00
2014-08-01
            119.127167 -1.273159e-01
                                       6.611467e-01
2014-09-01
            126.963386 6.578028e-02
                                       1.088221e+01
            118.344607 -6.788397e-02
                                       1.986690e-03
2014-10-01
2014-11-01
            142.943126 2.078550e-01
                                       3.233530e+00
2014-12-01
            130.872481 -8.444369e-02
                                       1.184156e+00
2015-01-01
            117.859200 -9.943481e-02
                                       1.400757e-02
2015-02-01
            124.958202 6.023290e-02
                                       6.065300e-01
2015-03-01
            123.894823 -8.509877e-03
                                       3.480578e+01
2015-04-01
            111.510605 -9.995751e-02
                                       3.594690e+00
2015-05-01
            133.806206
                       1.999415e-01
                                       3.039377e+01
2015-06-01
            112.467836 -1.594722e-01
                                       8.941176e-01
2015-07-01
             56.060151 -5.015450e-01
                                       5.175319e+00
            121.785713
                                       2.403115e+00
2015-08-01
                       1.172411e+00
2015-09-01
            130.180999
                       6.893490e-02
                                       1.766552e-01
2015-10-01
            126.507744 -2.821652e-02
                                       3.576020e-05
            134.628980 6.419557e-02
                                       7.439105e+00
2015-11-01
2015-12-01
            134.221442 -3.027116e-03
                                       7.225068e-04
            130.605078 -2.694327e-02
                                       7.210915e-06
2016-01-01
2016-02-01
            125.510646 -3.900638e-02
                                       8.313595e-14
2016-03-01
            128.543437 2.416361e-02
                                       2.209344e-09
```

Out[139]: <matplotlib.axes._subplots.AxesSubplot at 0x125219750>


```
In [ ]: table = ListTable()
        table.append(['Neighborhood','Period','Growth Rate','P Value'])
        for hood in paired.neighborhood.unique():
            d = paired[paired.neighborhood == hood]
            if len(d) < 10:
                continue
            res = sm.ols(formula="np.log(price) ~ period + address", data=d).f
        it()
            #calculate index
            linked = res.params[res.params.index.str.contains('Period')]
            linked.name = "Index"
            linked[0] = 100
            growth = pd.Series(linked, copy=True)
            growth.name = "Growth Rate"
            growth[0] = 0
            for i in range(1,len(linked)):
                linked[i] = (np.exp(res.params[i]))*100
                growth[i] = linked[i]/linked[i-1] - 1
            # add P values of each prediction
            p = res.pvalues[res.params.index.str.contains('Period')] * 100
            p.name = "P value"
            index = pd.concat([linked, growth, p], axis=1)
            index.index = pd.to datetime(index.index.str.split("'").str.get(1)
        )
            last = index.tail(1)
            table.append([hood
                           ,last.index[0]
                           ,round(last.iloc[0]['Growth Rate'] * 100,2)
                           ,round(last.iloc[0]['P value'], 2)])
            index[['Index','P value']].plot(title=hood)
            index[['Growth Rate']].plot()
        table
In [ ]:
In [ ]:
In [ ]:
In [ ]:
```

In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	
In	[]:	