Parameterform der Sinus- und Cosinusfunktion

10. November 2018

Seien $a,b,c,d\in\mathbb{R}$ und $a,b\neq 0.$ Die Paramterformen

$$f(x) = a\sin(bx + c) + d,$$

$$g(x) = a\cos(bx + c) + d$$

stellen die Gesamtheit aller Sinus- und Cosinusfunktionen dar.

Das ist die normale Sinus- und Cosinusfunktion: $f(x) = \sin(x)$, $g(x) = \cos(x)$. Im Folgenden sind alle Sinusfuntionen blau, alle Cosiunusfunktionen rot.

Amplitude a

Die Amplitude a beschreibt die Streckung (|a| > 1) oder Stauchung (0 < |a| < 1) in y-Richtung. Ist a negativ, so wird der Graph gespiegelt.

Die Funktion $f_1(x) = 2\sin(x)$ ist um zwei Einheiten in y-Richtung gestreckt, d.h. $\mathbb{W} = [-2, 2]$. Die Amplitude des Sinus ist 2. Die Funktion $g_1(x) = -3\cos(x)$ ist gespiegelt und um -3 Einheiten gestreckt.

Periode oder Frequenz b

Der Abstand zwischen zwei Minima/Maxima (Wellenberge/-täler) wird durch $\frac{2\pi}{b}$ dargestellt.

Die Abstände der Minima/Maxima der Funktion $f_2(x) = \sin(0, 5x)$ ist $\frac{2\pi}{b} = \frac{2\pi}{0,5} = 4\pi$ und die für $g_2(x) = \cos(2x)$ ist $\frac{2\pi}{b} = \frac{2\pi}{2} = \pi$.

Phasenverschiebung c

Der Parameter c verkörpert die Verschiebung in x-Richtung. Wenn c < 0 ist, wird der Graph nach rechts, wenn c > 0 ist, wird er nach links verschoben.

Die Funktion $f_3(x) = \sin(x-1)$ ist um eins nach rechts, $g_3 = \cos(x+2)$ ist nach um zwei links verschoben.

y-Achsenabschnitt d

Der Parameter d beschreibt die Verschiebung in y-Richtung. Ist d < 0, wird der Graph nach unten verschoben, ist d > 0, wird er nach oben verschoben.

Die Mittellinie der Funktion $f_4 = \sin(x) + 1$ ist um eine Einheit nach oben und die von $g_4 = \cos(x) + 2$ ist um zwei Einheiten nach unten verschoben.