2019 级数理统计试卷

可能用到的数据:

$$\Phi(2) = 0.9772 \; , \quad \chi^2_{0.01}(1) = 6.6349 \; , \quad t_{0.025}(3) = 3.1824 , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(15) = 2.1315 . \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(15) = 2.1315 . \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \quad t_{0.025}(1,3) = 10.13 \; , \\ F_{0.05}(1,3) = 10.13 \; , \\ F_$$

 $F_{0.05}(2,4) = 6.944$, $F_{0.025}(2,4) = 10.65$.

一、(10分)设随机变量(X,Y)的概率密度函数为

$$f(x, y) = \begin{cases} 3x, & 0 \le x \le 1, 0 < y < x, \\ 0, & \text{ \psi \neq}. \end{cases}$$

求 $P\{Y \leq \frac{1}{6} \mid X = \frac{1}{4}\}.$

二、(10分) 已知随机变量分布律为 $\begin{pmatrix} -1 & 1 & 2 \\ 0.3 & 0.2 & 0.5 \end{pmatrix}$, 求其特征函数.

三、(10分)假设曹冲称象时把和一头大象等重的一堆石块分为 300 次称量,每次称量产生的误差相互独立,且都服从区间(-0.5, 0.5)上的均匀分布(单位:千克),求总误差的绝对值不超过 10 千克的概率.

四、(15 分) 设总体 X 的概率密度为
$$f(x, \theta) = \begin{cases} \frac{1}{5} x^{-\frac{x-\theta}{5}}, & x \ge \theta, \\ 0, & 其它. \end{cases}$$

- (1) 求 θ 的最大似然估计量 $\hat{\theta}$;
- (2) 判断 $\hat{\theta}$ 是否为 θ 的无偏估计量,若不是,请根据 $\hat{\theta}$ 构造一个 θ 的无偏估计量。

五、(10 分) 某种子公司经过试验获得A.B 两种杂交玉米的产量数据如下:

品种A: 86, 87, 56, 93, 84, 93, 75, 79, 80, 经计算得 $\sum x_i = 733$, $\sum x_i^2 = 60721$.

品种 B: 80, 79, 58, 91, 77, 82, 74, 66, 经计算得 $\sum y_i = 607$, $\sum y_i^2 = 46771$.

假定两种杂交玉米产量均服从正态分布,且方差相等。求两总体均值差 μ_1 - μ_2 的置信水平为 0.95 置信区间。

六、(10分)某医疗机构调查了 520 名中年以上的脑力劳动者,其中 136 人有高血压病史,另外 384 人无高血压病史,在有高血压史的 136 人中,经诊断冠心病及可疑者有 48 人,在无高血压史的 384 人中,经诊断冠心病及可疑者有 36 人。试根据这个资料对高血压与冠心病有无关联做显著性检验. $(\alpha=0.01)$

七、(15分)在摸索高产经验的过程中,为总结出根据小麦基本苗数,推算成熟期有效穗数的方法, 在五块田上进行试验,在同样的肥料和管理水平下,取得下表的数据,

编号	1	2	3	4	5
基本苗数 x_i 万株/亩	15	25.8	30	36.6	44.4
有效穗数 y _i 万株/亩	39.4	42.9	41	43.1	49.2

经计算得, $\sum x_i = 151.8$, $\sum x_i^2 = 5101.56$, $\sum y_i = 215.6$, $\sum y_i^2 = 9352.02$, $\sum x_i y_i = 6689.76$

- (1) 求基本苗数与有效穗数之间的线性回归方程 $y = \hat{a} + \hat{b}x$;
- (2) 计算 ε 的方差 σ^2 的无偏估计;
- (3) 对回归方程的效果进行显著性检验 $(\alpha = 0.05)$.

八、(15 分)为了提高某种产品的合格率,考察原料用量和来源地对产品的合格率(试验指标)是否有影响。假设原料来源于三个地方:甲、乙、丙。原料的使用量有三种方案:现用量、增加 5%、增加 8%。每个水平组合各做一次试验,得到下表的数据。

	原料来源(因素 A)	原料用量 (因素 B)			
		(现用量) B ₁	(增加 5%) B ₂	(增加 5%) B ₃	
产品合格率	甲地 A ₁	59	70	66	
	乙地 A2	63	74	70	
	丙地 A ₃	61	66	71	

要求:(1)将下面的方差分析表补充完整。

方差来源	平方和	自由度	均方和	F 值
因素 A				
因素 B	146			
误差				
总和				

(2) 在显著性水平 $\alpha = 0.05$ 的条件下,分析原料用量及来源地对产品合格率的影响是否显著.

九 (5 分) X_1, X_2, \dots, X_n 是独立同分布的正值随机变量,证明 $E(\frac{X_1 + X_2 + \dots + X_k}{X_1 + X_2 + \dots + X_n}) = \frac{k}{n}$.