splitting

October 29, 2023

Α

1 Implementare una procedura di Data Splitting per il calcolo dei p-value onesti.

Domanda: Supponendo di voler sapere quanto guadagna un battitore in base alle sue statistiche, vogliamo calcolare dei p-value onesti per verificare la significatività dei parametri.

Nel csv Hitters.csv ci sono i dati di circa 300 battitori e 19 statistiche più lo stipendio.

```
[]: import pandas as pd
     import numpy as np
[]: hitters = pd.read_csv(
          "Hitters.csv"
     print(hitters.shape)
     hitters.head()
     (322, 20)
                                                                     CHits
[]:
        AtBat
                Hits
                       HmRun
                               Runs
                                      RBI
                                            Walks
                                                   Years
                                                            CAtBat
                                                                            CHmRun
                                                                                      CRuns
           293
                   66
                                       29
                                                               293
                                                                                         30
                            1
                                  30
                                               14
                                                        1
                                                                        66
                                                                                  1
     1
           315
                   81
                            7
                                  24
                                       38
                                               39
                                                       14
                                                              3449
                                                                       835
                                                                                 69
                                                                                        321
     2
           479
                  130
                           18
                                  66
                                       72
                                               76
                                                        3
                                                              1624
                                                                       457
                                                                                 63
                                                                                        224
     3
           496
                           20
                                       78
                                                                                225
                                                                                        828
                  141
                                  65
                                               37
                                                       11
                                                              5628
                                                                      1575
                                                        2
           321
                   87
                           10
                                  39
                                       42
                                               30
                                                               396
                                                                       101
                                                                                 12
                                                                                         48
               CWalks League Division
                                           PutOuts
        CRBI
                                                     Assists
                                                               Errors
                                                                        Salary NewLeague
     0
           29
                    14
                                       Ε
                                               446
                                                           33
                                                                    20
                                                                           NaN
                             Α
                                                                                         Α
                   375
                                                           43
     1
          414
                             N
                                       W
                                               632
                                                                    10
                                                                         475.0
                                                                                         N
     2
          266
                   263
                             Α
                                       W
                                               880
                                                           82
                                                                    14
                                                                         480.0
                                                                                         Α
     3
          838
                   354
                             N
                                       Ε
                                               200
                                                                     3
                                                                         500.0
                                                                                         N
                                                           11
     4
                    33
                                       Ε
                                               805
                                                           40
                                                                          91.5
                                                                                         N
           46
                             N
```

1.1 Preparazione dei dati

Abbiamo 3 variabili categoriche:

• League

- Division
- NewLeague

Verifichiamo quante classi ci sono in queste variabili e creiamo variabili dummies di conseguenza, escludendone una come riferimento.

```
[]: print(f"League: {list(hitters['League'].unique())}")
    print(f"Division: {list(hitters['Division'].unique())}")
    print(f"NewLeague: {list(hitters['NewLeague'].unique())}")
```

League: ['A', 'N']
Division: ['E', 'W']
NewLeague: ['A', 'N']

Adesso che sappiamo le categorie possiamo aggiungere le dummies.

Essendo solo due classi a variabile categorica possiamo anche decidere di rinominare la colonna, ad esempio: **League -> League_A** e mettere 1 se League è A e 0 altrimenti. Il ragionamento può essere iterato anche alle altre variabili.

```
[]: hitters.dropna(inplace=True)
  print(hitters.shape)
  hitters.reset_index(inplace=True,drop=True)
  hitters.head()
```

(263, 20)

```
[]:
         AtBat
                        HmRun
                                 Runs
                                        RBI
                                                      Years
                                                               {\tt CAtBat}
                                                                                CHmRun
                                                                                          CRuns
                 Hits
                                              Walks
                                                                        CHits
                             7
                                         38
                                                                                     69
                                                                                            321
     0
            315
                   81
                                   24
                                                  39
                                                          14
                                                                 3449
                                                                          835
     1
           479
                   130
                            18
                                   66
                                         72
                                                  76
                                                           3
                                                                 1624
                                                                           457
                                                                                     63
                                                                                            224
     2
           496
                   141
                            20
                                   65
                                         78
                                                  37
                                                          11
                                                                 5628
                                                                         1575
                                                                                    225
                                                                                            828
     3
           321
                   87
                            10
                                   39
                                         42
                                                  30
                                                           2
                                                                  396
                                                                           101
                                                                                     12
                                                                                             48
           594
                                   74
                                         51
                                                  35
                                                                 4408
                                                                         1133
                                                                                     19
                                                                                            501
                   169
                                                          11
                         League_A Division_E
                                                   PutOuts
                                                                                   Salary
         CRBI
                CWalks
                                                               Assists
                                                                         Errors
     0
          414
                    375
                                  0
                                                0
                                                         632
                                                                     43
                                                                              10
                                                                                    475.0
          266
                                  1
                                                0
     1
                    263
                                                         880
                                                                    82
                                                                              14
                                                                                    480.0
     2
          838
                    354
                                  0
                                                1
                                                         200
                                                                               3
                                                                                    500.0
                                                                     11
     3
           46
                     33
                                  0
                                                1
                                                         805
                                                                     40
                                                                               4
                                                                                     91.5
          336
                    194
                                  1
                                                         282
                                                                    421
                                                                              25
                                                                                    750.0
```

 ${\tt NewLeague_A}$

```
0 0
1 1
2 0
3 0
4 1
```

Adesso dividiamo il dataset e lo standardizziamo

```
[]: import statsmodels.api as sm

y = hitters["Salary"]
X = hitters.loc[:,hitters.columns != y.name]
categories_df = hitters.loc[:, hitters.columns.isin(categories)]
X = (X - X.mean())/X.std()
X[categories] = categories_df
```

1.2 Split del dataset

Solo a scopo d'esempio prendiamo la prima metà per il LASSO e la seconda metà per OLS con i parametri non nulli del LASSO

```
[]: half_df = len(X) // 2

lasso_df = X.iloc[:half_df , :]
lasso_response = y.iloc[:half_df]

ols_df = X.iloc[half_df: , :]
ols_response = y.iloc[half_df:]
ols_df = sm.add_constant(ols_df)
```

Adesso utilizziamo il **LASSO** per selezionare solo le variabili significative. Omettimo il calcolo di λ (α in questo caso) ottenibile per CrossValidation Per tale scopo è possibile utilizzare sklearn.

AtBat 0.000000 Hits 77.305082 HmRun -65.168593 Runs 0.000000

```
RBI
                      0.000000
    Walks
                     99.593163
    Years
                      0.000000
    CAtBat
                      0.000000
    CHits
                    107.214691
    CHmRun
                    215.678132
    CRuns
                      0.000000
    CRBI
                    110.292574
    CWalks
                   -203.887257
    League_A
                    145.164193
    Division_E
                    389.534130
    PutOuts
                     76.148036
    Assists
                      0.000000
    Errors
                      0.000000
    NewLeague_A
                    194.722584
    dtype: float64
[]: parameters = parameters[parameters != 0]
     to_Use = parameters.index.tolist()
     print(f"Parametri da usare: {to_Use}")
    Parametri da usare: ['Hits', 'HmRun', 'Walks', 'CHits', 'CHmRun', 'CRBI',
    'CWalks', 'League_A', 'Division_E', 'PutOuts', 'NewLeague_A']
[]: ols df = ols df.loc[:, ols df.columns.isin(to Use)]
     ols_df = sm.add_constant(ols_df)
     ols = sm.OLS(ols_response, ols_df)
     results = ols.fit()
     results.summary()
[]:
              Dep. Variable:
                                       Salary
                                                    R-squared:
                                                                          0.398
                                                    Adj. R-squared:
              Model:
                                        OLS
                                                                          0.343
              Method:
                                    Least Squares
                                                    F-statistic:
                                                                          7.219
              Date:
                                  Sun, 29 Oct 2023
                                                    Prob (F-statistic):
                                                                         2.43e-09
              Time:
                                      16:09:19
                                                    Log-Likelihood:
                                                                         -951.98
              No. Observations:
                                                    AIC:
                                        132
                                                                          1928.
              Df Residuals:
                                        120
                                                    BIC:
                                                                          1963.
              Df Model:
                                         11
              Covariance Type:
                                     nonrobust
```

	\mathbf{coef}	std err	\mathbf{t}	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	510.2050	58.021	8.793	0.000	395.327	625.083
Hits	-0.6886	46.670	-0.015	0.988	-93.091	91.714
HmRun	42.2921	46.344	0.913	0.363	-49.465	134.050
Walks	107.5083	52.318	2.055	0.042	3.923	211.093
\mathbf{CHits}	215.0919	171.479	1.254	0.212	-124.425	554.608
CHmRun	-80.5488	148.519	-0.542	0.589	-374.607	213.509
CRBI	88.7700	248.818	0.357	0.722	-403.873	581.412
\mathbf{CWalks}	-54.2604	115.034	-0.472	0.638	-282.019	173.498
${\bf League_A}$	-158.0517	124.150	-1.273	0.205	-403.860	87.757
Division_E	128.2603	61.447	2.087	0.039	6.600	249.920
PutOuts	49.6161	30.282	1.638	0.104	-10.340	109.572
${\bf NewLeague_A}$	73.6801	121.190	0.608	0.544	-166.267	313.627
Omnibus:	80.367 Durbin-Watson:			2.085		
$\mathbf{Prob}(\mathbf{Omnibus}): 0.$		000 Jarque-Bera (JB):			585.163	
Skew:	1.	996 Pr	Prob(JB):		8.58e-128	
Kurtosis:	12.511 Cond. No.			•	19.6	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2 References

- 1. Statsmodels
- 2. An Introduction to statistical learning