K-MEANS CLUSTERING

Ke Chen

Department of Computer Science, The University of Manchester

Ke.Chen@manchester.ac.uk

OUTLINE

Introduction

Partitioning clustering and history of K-means algorithm

DISTANCE AND SIMILARITY METRIC

Minkowski distance and cosine similarity/distance metrics

K-MEANS ALGORITHM

Algorithmic description of K-means clustering

ILLUSTRATIVE EXAMPLE

Step-by-step K-means clustering demo on synthetic datasets

Relevant Issue

How to partition with K-means, limitation and extension, scatter-based cluster validation

Introduction

- Partitioning clustering: clustering via iteratively dividing a given dataset into several non-empty and mutually exclusive clusters, which forms a partition of the dataset.
- \bullet The number of clusters in dataset, K, is assumed to be known or given in advance.
- A partitioning method would find out an optimal partition, $P^* = \{C_1^*, \dots, C_K^*\} \in \mathbb{P}_X$, for dataset, X, via minimising sum of squared distance of data items in each cluster to its "representative point" in each cluster:

$$P^* = \operatorname*{argmin}_{P \in \mathbb{P}_X} \sum_{k=1}^K \sum_{\boldsymbol{x} \in C_k} d^2(\boldsymbol{x}, \boldsymbol{m}_k), \quad P = \{C_1, \cdots, C_K\},$$

where \mathbb{P}_X is the set of all possible partitions of K clusters on X, C_k is the kth cluster and m_k is its "representative" point in P and $d(\cdot, \cdot)$ is a distance measure.

ullet When the "representative" point is set to mean of cluster, it is K-means clustering.

Introduction

- K-means clustering: finding out a global optimal solution is very hard and computationally expensive in general.
- Hugo Steinhauts (1887-1972) proposed an idea that efficiently find a local optimal solution to the K-means clustering problem in 1956.
- The current version of K-means algorithm carrying out Steinhauts' idea appeared in James MacQueen's paper regarding analysis of multivariate observations published in 1967.
- The K-means algorithm is among the simplest yet the most commonly used clustering algorithms (one of top 10 popular ML algorithms recently voted by ML and data science practitioners).

DISTANCE AND SIMILARITY METRIC

Minkowski distance

• For two data points, $\mathbf{a} = [a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$ and $\mathbf{b} = [b_1 \ b_2 \ \cdots \ b_n]^T \in \mathbb{R}^n$, Minknowski distance (family) for metric data is defined as follows:

$$d(\boldsymbol{a},\boldsymbol{b}) = \left(\sum_{i=1}^{n} |a_i - b_i|^p\right)^{\frac{1}{p}} = \left(|a_1 - b_1|^p + |a_2 - b_2|^p + \cdots + |a_n - b_n|^p\right)^{\frac{1}{p}}.$$

- Manhattan (city block) distance (p=1): $d(\boldsymbol{a},\boldsymbol{b}) = \sum_{i=1}^{n} |a_i b_i|$.
- Euclidean distance (p=2): $d(\boldsymbol{a},\boldsymbol{b}) = \sqrt{\sum_{i=1}^{n} (a_i b_i)^2}$.

DISTANCE AND SIMILARITY METRIC

Cosine similarity

• For two data points, $\mathbf{a} = [a_1 \ a_2 \ \cdots \ a_n]^T \in \mathbb{R}^n$ and $\mathbf{b} = [b_1 \ b_2 \ \cdots \ b_n]^T \in \mathbb{R}^n$, Cosine similarity for non-metric data is defined as follows:

$$s(\boldsymbol{a},\boldsymbol{b}) = \cos(\boldsymbol{a},\boldsymbol{b}) = \frac{\boldsymbol{a}^T \boldsymbol{b}}{||\boldsymbol{a}||||\boldsymbol{b}||} = \frac{\sum_{i=1}^n a_i b_i}{\sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}}.$$

• Property: $-1 \le s(a, b) \le 1$.

Cosine distance

- A similarity can be converted into the corresponding distance and vice versa.
- Cosine distance for non-metric data is defined as follows:

$$d(\mathbf{a}, \mathbf{b}) = 1 - \cos(\mathbf{a}, \mathbf{b}) = 1 - \frac{\mathbf{a}^T \mathbf{b}}{||\mathbf{a}|| ||\mathbf{b}||} = 1 - \frac{\sum_{i=1}^n a_i b_i}{\sqrt{\sum_{i=1}^n a_i^2} \sqrt{\sum_{i=1}^n b_i^2}}.$$

- Property: $0 \le d(a, b) \le 2$.
- Nonmetric data: frequency of words in documents, genes in micro-arrays, · · ·

K-MEANS ALGORITHM

Input: Data set, X, number of clusters, K, and an appropriate distance (similarity) measure reflecting the nature of data in X

- Initialisation: randomly choose K points as cluster centres (means)
- **Step 1**: calculate distances (similarities) between all the points in *X* and *K* cluster centres
- Step 2: find out the closest cluster centre for each data point in X and assign the data point to this cluster
- Step 3: update its cluster centre for every cluster changed in the last step by averaging all the new member points in this cluster
- **Step 4**: output *K* clusters if memberships in all *K* clusters do not change. Otherwise, go to **Step 1**.

Fact: K-means algorithm always converges (i.e., memberships of all K clusters no longer change) in a finite number of iterations but could end up with an unwanted partition.

• **Dataset 1**: Medicine clustering analysis (K = 2)

Medicine	Weight	pH-Index
A	1	1
В	2	1
С	4	3
D	5	4

• **Dataset 1**: Medicine clustering analysis (K = 2)

Determine in advance:

- Group to K=2 clusters.
- Use Euclidean distance to measure the dissimilarity between data points.
- · Set initial cluster centers. For instance,

C1: (1, 0.7) C2: (2, 0.7)

• **Dataset 1**: Medicine clustering analysis (K = 2)

A: (1, 1)

B: (2, 1)

C: (4, 3)

D: (5, 4)

Determine in advance:

- · Group to K=2 clusters.
- Use Euclidean distance to measure the (dis)similarity between data points.
- · Set initial cluster centers. For instance,

C1: (1, 0.7)

C2: (2, 0.7)

- Step 1: Calculate distances (or similarities) between the data points and the cluster center points.
- Step 2: Find the nearest cluster center to each data point, and assign the data point to that cluster.

• Dataset 1: Medicine clustering analysis (K = 2)

Determine in advance:

- Group to K=2 clusters.
- Use Fuclidean distance to measure the (dis)similarity between data points.
- Set initial cluster centers. For instance,

C1: (1, 0.7)

C2: (2, 0.7)

Step 3: Calculate the new cluster center for each cluster, by averaging its member points.

$$C1 = A = (1,1)$$

$$C2 = \frac{B+C+D}{3} = \frac{(2,1)+(4,3)+(5,4)}{3} = \left(\frac{2+4+5}{3}, \frac{1+3+4}{3}\right) = (3.67, 2.67)$$

• **Dataset 1**: Medicine clustering analysis (K = 2)

Determine in advance:

- Group to K=2 clusters.
- Use Euclidean distance to measure the (dis)similarity between data points.
- Set initial cluster centers. For instance,

C1: (1, 0.7) C2: (2, 0.7)

 Repeat Steps1-2 to update cluster membership.

• **Dataset 1**: Medicine clustering analysis (K = 2)

Determine in advance:

- Group to K=2 clusters.
- Use Euclidean distance to measure the (dis)similarity between data points.
- Set initial cluster centers. For instance, C1: (1, 0.7)

C2: (2, 0.7)

Repeat Step 3 to update cluster center.

$$C1 = \frac{A+B}{2} = \frac{(1,1)+(2,1)}{2} = (1,1.5)$$

$$C2 = \frac{C+D}{2} = \frac{(4,3)+(5,4)}{2} = (4.5,3.5)$$

• **Dataset 1**: Medicine clustering analysis (K = 2)

Determine in advance:

- Group to K=2 clusters.
- Use Euclidean distance to measure the (dis)similarity between data points.
- Set initial cluster centers. For instance,
 C1: (1, 0.7)

C2: (2, 0.7)

Stop repeating when there is no change in the membership of each cluster.

How *K*-means partition the data space?

- Once K cluster centres are set, they divide the entire data space into K mutually exclusive regions (clusters) to form a partition collectively.
- Boundary between two clusters passes the mid-points between their cluster centres.

How *K*-means partition the data space?

- Once K cluster centres are set, they divide the entire data space into K mutually exclusive regions (clusters) to form a partition collectively.
- Partition is a distance-dependent Voronoi diagram (named after Georgy Voronoy).

Euclidean Distance

- Limitation: sensitive to initial cluster centres
- Extension: K-medoids, K-means++, · · ·

- Limitation: sensitive to outliers and noisy data
- Extension: *K*-median, *K*-means++, · · ·

- Limitation: unable to deal with "overlapping" clusters properly
- Extension: Probabilistic generative model, e.g., GMM, · · ·

- Limitation: unable to discover non-convex clusters underlying data
- Extension: spectral clustering, density-based clustering, · · ·

RELEVANT ISSUE

Scatter-based Cluster Validation

- ullet Motivation: evaluate clustering quality and help finding clusters K if unknown
- Within-cluster-scatter (SSW) versus Between-cluster-scatter (SSB)

$$SSW(K) = \sum_{k=1}^{K} \sum_{\boldsymbol{x} \in C_k} d^2(\boldsymbol{x}, \boldsymbol{m}_k), \quad SSB(K) = \sum_{k=1}^{K} |C_k| d^2(\boldsymbol{m}, \boldsymbol{m}_k)$$

where $|C_k|$ is number of data points in C_k and m is global mean of entire dataset.

Scatter-based Cluster Validation

- F-ratio (W-B) index: measure ratio of the within-cluster-scatter (SSW) against the between-cluster-scatter (SSB)
- ullet For a partition of K (K>1) clusters on dataset X, F-ratio index is defined by

$$F(K) = \frac{K * SSW(K)}{SSB(K)} = \frac{K \sum_{k=1}^{K} \sum_{\mathbf{x} \in C_k} d^2(\mathbf{x}, \mathbf{m}_k)}{\sum_{k=1}^{K} |C_k| d^2(\mathbf{m}, \mathbf{m}_k)}$$

where the mean of cluster k is $\mathbf{m}_k = \frac{1}{|C_k|} \sum_{\mathbf{x} \in C_k} \mathbf{x}$ and the global mean of entire dataset X is $\mathbf{m} = \frac{1}{|X|} \sum_{\mathbf{x} \in X} \mathbf{x}$. $d(\cdot, \cdot)$ is distance measure.

• Property: promoting a partition of compactness, being well-separated, small number of clusters (K) and large cluster size $(|C_k|)$; i.e., the smaller F-ratio index, the better clustering quality

Scatter-based Cluster Validation

• Example 1: find out an optimal number of clusters with F-ratio index

Scatter-based Cluster Validation

• Example 2: find out an optimal number of clusters with F-ratio index

Reference

If you want to deepen your understanding and learn something beyond this lecture, you can self-study the optional references below.

- [Alpaydin, 2014] Alpaydin E. (2014): *Introduction to Machine Learning* (3rd Ed.), MIT Press. (Sections 7.1-7.3 & 7.9)
- [Goodfellow et al., 2016] Goodfellow I., Bengio Y., and Courville A. (2016): *Deep Learning*, MIT Press. (Section 5.8.2)
- [Barber, 2012] Barber D. (2012): Bayesian Reasoning and Machine Learning, Cambridge University Press. (Sections 20.3)
- [Jain et al., 1999] Jain A.K., Murty M.N. and Flynn P.J. (1999): Data clustering: A review. *ACM Computing Survey*, Vol. 31, No. 3, pp. 264-323.