

Dr. Ole Peter Smith

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - https://olepeter.mat.ufg.br

Curso: Engenharia de Elementos

Data: 15/02/2024
Disciplina: Cálculo Numérico

Prova: II

1. Os coeficientes binomiais para números não inteiros, $\alpha \in \mathbb{R}$:

$$C_{n,\alpha} = \binom{n}{\alpha} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$

Considere as funções:

$$f_{\alpha}(x) = (1+x)^{\alpha}$$

O polinômio de Taylor é dado por:

$$P_n(x) = \sum_{n=0}^{n} C_{n,\alpha} x^n$$

- (a) Ipt. Estabelece uma função (def) Python, Binomial (n, alpha), calculando o valor da coeficiente binomial, $C_{n,\alpha}$.
- (b) *1pt*. Lista os coeficiente binomiais, $C_{n,\alpha}$ para $\alpha = \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{10}$ e n = 1, ..., 10.
- (c) Ipt. Escreve uma função Python, def Pn, com argumentos α , x e n, retornando o valor do polinômio de Taylor, $P_n(x)$. Para n 'suficientemente grande', $P_n(x)$ aproxima-se à, $f_{\alpha}(x)$. Escreve uma função Python gerando uma tabela da seguinte forma com $x=\frac{1}{2}$:

α	\boldsymbol{x}	$f_{\alpha}(x)$	n	$P_n(x)$	$ \varepsilon(\alpha,x,n) $
-	-	-	1		
-	-	-	2		
-	-	-		•••	

onde $\varepsilon(\alpha, x, n)$ é o erro relativo (resíduo):

$$\varepsilon(\alpha, x, n) = f_{\alpha}(x) - P_{n}(x) / f_{\alpha}(x)$$

Exibe a tabela para $x=\frac{1}{2}$. Para cada destes valores de α e n, quantos termos é preciso incluir, para o erro relativo ser menor do que $\varepsilon=1.0E-4?$

2. Estamos procurendo um polinômio interpolador:

$$P(x) = p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0,$$

contendo os pontos:

Ou seja:

$$y_i = P(x_i), i = 0, ..., 4$$

- (a) 2pts. Encontre uma matriz, $\underline{\underline{\mathbf{A}}}$, tal que: $\underline{\underline{\mathbf{A}}} = \underline{\mathbf{y}} = \underline{\mathbf{y}}$ e resolve o sistema linear do item anterior, usando o método de Gauss com pivotação parcial.
- (b) 2pts. Encontre os polinômios de Lagrange, $H_0(x),...,H_4(x)$, associado aos valores $x_0,...,x_4$ e calcule o polinômio interpolador, $P(x)=\sum_{k=0}^4 y_k H_k(x)$, verificando que coincide com o polinômio obtido no item (a). Verifique também, que: $y_i=P(x_i),\ i=0,...,4$.
- (c) *1pt*. Encontre a fatorização LU da matriz **A**

Hint! Em Python, pode-se representar um polinômio de grau n:

$$P(x) = p_n x^n + p_2 x^2 + p_1 x + p_0,$$

com uma lista (list): $[p_0,p_1,...,p_n]$. Por exemplo: P(x)=3 é representado por [3], $P(x)=x^2+2x+3$ é representado por [3,2,1].

3. Considere a função e seu primitivo:

$$f(x) = \sqrt{1+x}, \qquad F(x) = \int_0^x f(t) dt$$

Dr. Ole Peter Smith

Instituto de Matemática e Estatística Universidade Federal de Goiás ole@ufg.br - https://olepeter.mat.ufg.br

- (a) Ipt. Escreve funções (def) Python, retornando o valor de f(x), respectivamente F(x).
- (b) 2pts. Para x=3, estime F(x) usando o Método de Trapézios e de 1/3 de Simpson, calculando os erros absolutos e relativos com n=10,20,...,100 intervalos.

Instruções:

- Salve suas respostas numa pasta nova, em arquivos respostas: 01.py, 02.py e 03.py.
- Responstas literais, deviam ser incluídas no código como comentários (#) ou print's.
- Pode-se utilizar os códigos disponibilizado no site abaixo, salvos como arquivos auxiliares (incluídos via import's) ou, alternativamente, copiando os códigos relevantes para os arquivos respostas.
- Entregar um arquivo ZIP de todo os arquivos deste pasta por email: ole@ufg.br.
- Incluir como assunto do email: CN, P1: seu nome completo.

http://www.olesmith.com.br/SmtC?ModuleName=Texts&Action=Root&Text=356

Destacamos também o link:

http://www.olesmith.com.br/SmtC?ModuleName=Texts&Action=Codes&Text=356