Math H110 Definitions.

- 1. **Endomorphism.** An endomorphism is a group homomorphism from a set to itself (NOTE: does not have to be invertible.)
- 2. **End V.** The symbol End V is the set of all endomorphisms on V (and multiplication on End V is defined to be function composition).
- 3. **F-Module.** An F-module is a generalization of vector spaces over rings.
- 4. **Subspace.** Let V be a vector space. X is a subspace of V if $X \subseteq V$ and closed under all relevant operations of V, $X \neq \emptyset$, and $X \ni 0$.
- 5. **Linear Map / Linear Transformation.** Let V be a vector space over a field F with $v, w \in V$. Let T be a map on V with T(v + w) = T(v) + T(w) and $T(\lambda v) = \lambda T(v)$ for all $\lambda \in F$. Then, T is called a linear map or linear transformation.
- 6. **Linear Operator.** If T is a linear transformation on a vector spaces V with $T: V \to V$, then T is linear operator on V.
- 7. **Spans.** The list v_1, \ldots, v_n spans V iff $T: F^n \to V$ is onto.
- 8. **Linearly Independent.** The list v_1, \ldots, v_n is linearly independent iff $T: F^n \to V$ is 1-1. Equivalently, the list v_1, \ldots, v_n is linearly independent if $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ implies $\lambda_i = 0$ for all i.
- 9. **Linearly Dependent.** The list v_1, \ldots, v_n is linearly dependent iff $\lambda_1 v_1 + \cdots + \lambda_n v_n = 0$ implies $\lambda_i \neq 0$ for some i.
- 10. **Basis.** The list v_1, \ldots, v_n is a basis of V if span $\{v_1, \ldots, v_n\} = V$ and v_1, \ldots, v_n is linearly independent.
- 11. **Finite-dimensional.** V is finite-dimensional if V is spanned by a finite list of vectors.
- 12. **Sum of Subspaces.** Let X_1, \ldots, X_t be subspaces of V. Then, we define their sum as $X_1 + \cdots + X_t = \{x_1 + \cdots + x_t \mid x_1 \in X_1, \ldots, x_t \in X_t\}$.
- 13. **Direct Sum of Subspaces.** Let X_1, \ldots, X_t be subspaces of V. Then, their direct sum, $X_1 \oplus \cdots \oplus X_t$, is given by a 1-1 linear map T, with $T: X_1 \times \cdots \times X_t \to V$.
- 14. Complement of Subspace. Let X, Y be subspaces of Y. Then, Y is a complementary subspace of X iff X + Y = V and $X + Y = X \oplus Y$.
- 15. Rank, Nullity. The rank of a linear map is the dimension of the range of the linear map. The nullity is the dimension of the null space of the linear map.
- 16. Null Space. The null space is the set of vectors that are mapped to 0.
- 17. **Isomorphic Vector Spaces.** Two vector spaces V, W are isomorphic if there exists a linear map $T: V \to W$ that is 1-1 and onto.

- 18. Quotient Space. Suppose U is a subspace of V. Then, the quotient space V/U is the set $V/U = \{v + U \mid v \in V\}$.
- 19. Column Rank. The column rank (rank of the column span of a matrix) is defined to be $\operatorname{rank} T_A$.
- 20. **Conjugation.** Let A be an $n \times n$ matrix (over F) and let Q be an $n \times n$ matrix (over F). Then, the conjugation of A by Q is $Q^{-1}AQ$.
- 21. **Dual Space.** Let V be an F-vector space. Then the dual space of V is $V' = \mathcal{L}(V, F)$ where the elements of V' are called linear functionals.
- 22. **Annihilator.** For a subspace $U \subseteq V$, we define the annihilator of U to be $U_0 = \{ \phi \in V' \mid \phi(u) = 0 \forall u \in U \}.$
- 23. **Double Dual.** Let V be a finite-dimensional vector space with dual V'. Then the double dual of V is (V')' = V'' = V. Also, dim $V = n = \dim V' = \dim V''$.
- 24. **Eigenvector** / **eigenvalue.** Let $T \in \mathcal{L}(V)$. Then an eigenvector of T is a $v \in V$ ($v \neq 0$) such that $Tv = \lambda v$ ($\lambda \in F$ is called an eigenvalue), and v is an eigenvector of T.
- 25. **Eigenspace.** Let $T \in \mathcal{L}(V)$ and take λ to be an eigenvalue of T. Then, $E(\lambda, T) = \{v \in V \mid Tv = \lambda v\} \neq \emptyset$ is written as V_{λ} and is called the eigenspace of λ , which is a subspace of V.
- 26. **Invariant subspace.** E is a T-invariant subspace if $T \in \mathcal{L}(V)$ with $T(E) \subseteq E$.
- 27. textbfIdempotent. If $e = e^2$, then e is called idempotent.
- 28. **Generalized Eigenvector.** Consider a minimal polynomial $(x \lambda_1)^{e_1} \cdot \cdots \cdot (x \lambda_m)^{e_m}$ on X with $(T \lambda_1 I)^{e_1} v = 0$. Then, v is called a generalized eigenvector for $\lambda = \lambda_1$.
- 29. Characteristic polynomial. The characteristic polynomial of $T: V \to V$ (with eigenvalues $\lambda_1, \ldots, \lambda_t$) is the polynomial $\prod_{i=1}^t (x \lambda_i)^{\dim X_i}$, where $V = X_1 \oplus \cdots \oplus X_t$.
- 30. Simultaneously diagonalizable. Operators S and T on V are simulatenously diagonalizable if there is a basis of V that consts of vectors that are eigenvectors for both S and T (i.e. there exists a basis v_1, \ldots, v_n of V so that for $i, 1 \le i \le n$, there are λ_i and μ_i so that $Sv_i = \lambda_i v_i$ and $Tv_i = \mu_i v_i$).
- 31. **Inner product.** Let V be a vector space over \mathbb{R} , possibly infinite-dim. An inner product on V is a bilinear functon $\langle \cdot, \cdot, \rangle : V \times V \to \mathbb{R}$ such that $\langle x, x \rangle \geq 0$ for all $x \in V$ and $\langle x, x \rangle = 0$ iff x = 0.

- 32. Complex Inner product. Let $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$ be in \mathbb{C}^n . We have $\langle z, w \rangle = \sum_i z_i \overline{w_i}$, with $\langle w, z \rangle = \overline{\langle z, w \rangle}$ and $\langle \alpha z, w \rangle = \alpha \langle z, w \rangle$ and $\langle w, \alpha z \rangle = \overline{\alpha} \langle z, w \rangle$.
- 33. **Norm.** Norm of $v \in V$ is $||v|| = \sqrt{\langle v, v \rangle}$.
- 34. **Orthogonal.** Two vectors are orthogonal if $\langle v, w \rangle = 0$, where $v, w \in V$.
- 35. Orthogonal Complement. Take U to be a subset of V. Then, $U^{\perp} = \{v \in V \mid \langle v, u \rangle = 0 \forall u \in U\} = \{v \in V \mid \langle u, v \rangle = 0 \forall u \in U\} = \{v \in V \mid \phi_v = 0 \text{ in } U\} = \{v \in V \mid \phi_v \in U^0\}.$
- 36. **Adjoint.** Let $T: V \to W$. Then the adjoint of T is $T^*: W \to V$ such that $T^* = \alpha_V^{-1} \circ T' \circ \alpha_W$, where $\alpha_V: V \to V'$ and $\alpha_W: W \to W'$.