# Lecture 2: Pixels and Filters

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

# Types of Images

#### **Binary**



# Types of Images

**Binary** 



**Gray Scale** 



# Types of Images

**Binary** 



**Gray Scale** 



Color



# Binary image representation



Slide credit: Ulas Bagci

/

6-Oct-16

# Grayscale image representation



6-Oct-16

# Color Image - one channel





Slide credit: Ulas Bagci

# Color image representation









Slide credit: Ulas Bagci

# Images are sampled

What happens when we zoom into the images we capture?





#### Resolution

is a **sampling** parameter, defined in dots per inch (DPI) or equivalent measures of spatial pixel density, and its standard value for recent screen technologies is 72 dpi



Slide credit: Ulas Bagci

#### Images are Sampled and Quantized

- An image contains discrete number of pixels
  - A simple example
  - Pixel value:
    - "grayscale" (or "intensity"): [0,255]



#### Images are Sampled and Quantized

- An image contains discrete number of pixels
  - A simple example
  - Pixel value:
    - "grayscale"

(or "intensity"): [0,255]

- "color"
  - RGB: [R, G, B]
  - Lab: [L, a, b]
  - HSV: [H, S, V]

[213, 60, 67]



# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

## Histogram

 Histogram captures the distribution of gray levels in the image.

How frequently each gray level occurs in the

image





# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Linear systems (filters)
- Convolution and correlation

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

#### Images as discrete functions

- Images are usually digital (discrete):
  - Sample the 2D space on a regular grid
- Represented as a matrix of integer values

|   |     |     |     |     |     |                | pixe |     |  |  |
|---|-----|-----|-----|-----|-----|----------------|------|-----|--|--|
|   | j   |     |     |     |     |                |      |     |  |  |
|   | 62  | 79  | 23  | 119 | 120 | 05             | 4    | 0   |  |  |
| i | 10  | 10  | 9   | 62  | 12  | <del>7</del> 8 | 34   | 0   |  |  |
|   | 10  | 58  | 197 | 46  | 46  | 0              | 0    | 48  |  |  |
| Ţ | 176 | 135 | 5   | 188 | 191 | 68             | 0    | 49  |  |  |
|   | 2   | 1   | 1   | 29  | 26  | 37             | 0    | 77  |  |  |
|   | 0   | 89  | 144 | 147 | 187 | 102            | 62   | 208 |  |  |
|   | 255 | 252 | 0   | 166 | 123 | 62             | 0    | 31  |  |  |
|   | 166 | 63  | 127 | 17  | 1   | 0              | 99   | 30  |  |  |

nival

## Images as coordinates

#### Cartesian coordinates



## Images as functions

- An Image as a function f from  $R^2$  to  $R^M$ :
  - I(x, y) gives the **intensity** at position (x, y)
  - Defined over a rectangle, with a finite range:

range

*I*:  $[a,b] \times [c,d] \rightarrow [0,255]$ 

**Domain** 

support



## Images as functions

- An Image as a function f from  $R^2$  to  $R^M$ :
  - I(x, y) gives the **intensity** at position (x, y)
  - Defined over a rectangle, with a finite range:

$$I: [a,b] \times [c,d] \rightarrow [0,255]$$
Domain range support

• A color image: 
$$I(x, y) = \begin{vmatrix} r(x, y) \\ g(x, y) \\ b(x, y) \end{vmatrix}$$

# What we will learn today?

- Image sampling and quantization
- Image histograms
- Images as functions
- Image filtering

Some background reading: Forsyth and Ponce, Computer Vision, Chapter 7

# Systems and Filters

#### Filtering:

 Forming a new image whose pixel values are transformed from original pixel values

#### **Goals:**

- Goal is to extract useful information from images, or transform images into another domain where we can modify/enhance image properties
  - Features (edges, corners, blobs...)
  - super-resolution; in-painting; de-noising

#### De-noising







Super-resolution





In-painting





Bertamio et al

- Image filters in spatial domain
  - Filter is a mathematical operation of a grid of numbers
  - Smoothing, sharpening, measuring texture

- Image filters in the frequency domain
  - Filtering is a way to modify the frequencies of images
  - Denoising, sampling, image compression

- Image filtering:
  - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Image filtering:
  - Compute function of local neighborhood at each position

h=output f=filter I=image 
$$h[m,n] = \sum_{k,l} f[k,l] \, I[m+k,n+l]$$
 2d coords=k,l 2d coords=m,n

## Example: box filter

$$f[\cdot\,,\cdot\,]$$

$$\frac{1}{9}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$



|   |   |    | _  |    |    |    |    |   |   |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$







$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$



| 0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                              |   |   |    |    |    |    |    |    |   |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|----|----|----|----|----|----|---|---|
| 0         0         90         90         90         90         90         90         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>0</td> | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0         0         90         90         90         90         90         90         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td>0</td> | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0       0       0       90       90       90       90       90       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>0</td> <td>0</td> <td>0</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>90</td> <td>0</td> <td>0</td>                                                                                                                      | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0       0       0       90       0       90       90       90       90       0       0         0       0       0       90       90       90       90       90       0       0         0       0       0       0       0       0       0       0       0       0         0       0       90       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     0     0     90     90     90     90     90     90     0     0       0     0     0     0     0     0     0     0     0     0     0       0     0     90     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0     0     0     0     0     0     0     0     0     0     0     0     0       0     0     90     0     0     0     0     0     0     0     0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 0 90 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$



| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$



| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$



| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$



| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

$$f[\cdot,\cdot]$$

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 0  | 10 | 20 | 30 | 30 | 30 | 20 | 10 |   |
|----|----|----|----|----|----|----|----|---|
| 0  | 20 | 40 | 60 | 60 | 60 | 40 | 20 |   |
| 0  | 30 | 60 | 90 | 90 | 90 | 60 | 30 |   |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |   |
| 0  | 30 | 50 | 80 | 80 | 90 | 60 | 30 |   |
| 0  | 20 | 30 | 50 | 50 | 60 | 40 | 20 |   |
| 10 | 20 | 30 | 30 | 30 | 30 | 20 | 10 |   |
| 10 | 10 | 10 | 0  | 0  | 0  | 0  | 0  |   |
|    |    |    |    |    |    |    |    | _ |

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Credit: S. Seitz

#### **Box Filter**

#### What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)



#### **Box Filter**

#### What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
- Why does it sum to one?



# Smoothing with box filter



## Image filtering

- Image filtering:
  - Compute function of local neighborhood at each position

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

- Really important!
  - Enhance images
    - Denoise, resize, increase contrast, etc.
  - Extract information from images
    - Texture, edges, distinctive points, etc.
  - Detect patterns
    - Template matching

### Think-Pair-Share time



1

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |

2.

| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |

3.

| 1 | 0 | -1         |
|---|---|------------|
| 2 | 0 | <b>-</b> 2 |
| 1 | 0 | -1         |

4.

| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |

|   | 1 | 1 | 1 |
|---|---|---|---|
|   | 1 | 1 | 1 |
| ) | 1 | 1 | 1 |



| $\sim$                 | •   | •          | 1   |
|------------------------|-----|------------|-----|
| ( )                    | 111 | <b>T11</b> | ıal |
| $\mathbf{\mathcal{O}}$ | 113 | 211        | ıaı |
|                        | •   | _          |     |

| 0 | 0 | 0 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 0 | 0 |





Original





Filtered (no change)



Original

| 0 | 0 | 0 |
|---|---|---|
| 0 | 0 | 1 |
| 0 | 0 | 0 |

?



Original





Shifted left By 1 pixel



| 1 | 0 | -1             |
|---|---|----------------|
| 2 | 0 | <del>-</del> 2 |
| 1 | 0 | -1             |

Sobel



Vertical Edge (absolute value)



| 1  | 2  | 1  |
|----|----|----|
| 0  | 0  | 0  |
| -1 | -2 | -1 |

Sobel



Horizontal Edge (absolute value)



Original

| 0 | 0 | 0 | 1        | 1 | 1 | 1 |
|---|---|---|----------|---|---|---|
| 0 | 2 | 0 | <u> </u> | 1 | 1 | 1 |
| 0 | 0 | 0 | 9        | 1 | 1 | 1 |

(Note that filter sums to 1)

Source: D. Lowe



| 0 | 0 | 0 |
|---|---|---|
| 0 | 2 | 0 |
| 0 | 0 | 0 |





Original

#### **Sharpening filter**

- Accentuates differences with local average





before after

#### Correlation and Convolution

2d correlation

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

h=filter2(f,I); or h=imfilter(I,f);

2d convolution

$$h[m,n] = \sum_{k,l} f[k,l] I[m-k,n-l]$$

h=conv2(f,I); or h=imfilter(I,f,'conv');

Correlation and convolution are identical when the filter is symmetric.

We are going to convolve a function f with a filter h.

$$g[n] = \sum_{k} f[k]h[n-k]$$





We are going to convolve a function f with a filter h.

$$g[n] = \sum_k f[k]h[n-k]$$

We first need to calculate h[n-k, m-l]







We are going to convolve a function **f** with a filter **h**.



We are going to convolve a function f with a filter h.



We are going to convolve a function **f** with a filter **h**.



We are going to convolve a function **f** with a filter **h**.



We are going to convolve a function **f** with a filter **h**.



We are going to convolve a function **f** with a filter **h**.



2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

n

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

2D convolution is very similar to 1D.

• The main difference is that we now have to iterate over 2 axis instead of 1.

$$f[n,m] * h[n,m] = \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} f[k,l] h[n-k,m-l]$$



Assume we have a filter(h[,]) that is 3x3. and an image (f[,]) that is 7x7.

6-Oct-16 65

|       |   |   | n  | -1     | 0  | 1  |        |     |     |
|-------|---|---|----|--------|----|----|--------|-----|-----|
| 1     | 2 | 3 | -1 | -1     | -2 | -1 | -13    | -20 | -17 |
| 4     | 5 | 6 | 0  | 0      | 0  | 0  | -18    | -24 | -18 |
| 7     | 8 | 9 | 1  | 1      | 2  | 1  | 13     | 20  | 17  |
| Input |   |   |    | Kernel |    |    | Output |     |     |

Slide credit: Song Ho Ahn



$$= x[-1,-1] \cdot h[1,1] + x[0,-1] \cdot h[0,1] + x[1,-1] \cdot h[-1,1]$$

$$+ x[-1,0] \cdot h[1,0] + x[0,0] \cdot h[0,0] + x[1,0] \cdot h[-1,0]$$

$$+ x[-1,1] \cdot h[1,-1] + x[0,1] \cdot h[0,-1] + x[1,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13$$



Output



$$= x[0,-1] \cdot h[1,1] + x[1,-1] \cdot h[0,1] + x[2,-1] \cdot h[-1,1]$$

$$+ x[0,0] \cdot h[1,0] + x[1,0] \cdot h[0,0] + x[2,0] \cdot h[-1,0]$$

$$+ x[0,1] \cdot h[1,-1] + x[1,1] \cdot h[0,-1] + x[2,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20$$



Output



$$= x[1,-1] \cdot h[1,1] + x[2,-1] \cdot h[0,1] + x[3,-1] \cdot h[-1,1]$$

$$+ x[1,0] \cdot h[1,0] + x[2,0] \cdot h[0,0] + x[3,0] \cdot h[-1,0]$$

$$+ x[1,1] \cdot h[1,-1] + x[2,1] \cdot h[0,-1] + x[3,1] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 2 \cdot 0 + 3 \cdot 0 + 0 \cdot 0 + 5 \cdot (-1) + 6 \cdot (-2) + 0 \cdot (-1) = -17$$



Output

| 1  | 2 1             | 1 2              | 3 |
|----|-----------------|------------------|---|
| 0  | 0 4             | <mark>0</mark> 5 | 6 |
| -1 | <sup>-2</sup> 7 | -1<br>8          | 9 |

$$= x[-1,0] \cdot h[1,1] + x[0,0] \cdot h[0,1] + x[1,0] \cdot h[-1,1]$$

$$+ x[-1,1] \cdot h[1,0] + x[0,1] \cdot h[0,0] + x[1,1] \cdot h[-1,0]$$

$$+ x[-1,2] \cdot h[1,-1] + x[0,2] \cdot h[0,-1] + x[1,2] \cdot h[-1,-1]$$

$$= 0 \cdot 1 + 1 \cdot 2 + 2 \cdot 1 + 0 \cdot 0 + 4 \cdot 0 + 5 \cdot 0 + 0 \cdot (-1) + 7 \cdot (-2) + 8 \cdot (-1) = -18$$



Output

| 1               | 2 2              | 1 3              |
|-----------------|------------------|------------------|
| 0 4             | <mark>0</mark> 5 | <mark>0</mark> 6 |
| <del>-1</del> 7 | <del>-2</del> 8  | -1<br>9          |

$$= x[0,0] \cdot h[1,1] + x[1,0] \cdot h[0,1] + x[2,0] \cdot h[-1,1]$$

$$+ x[0,1] \cdot h[1,0] + x[1,1] \cdot h[0,0] + x[2,1] \cdot h[-1,0]$$

$$+ x[0,2] \cdot h[1,-1] + x[1,2] \cdot h[0,-1] + x[2,2] \cdot h[-1,-1]$$

$$= 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 0 + 5 \cdot 0 + 6 \cdot 0 + 7 \cdot (-1) + 8 \cdot (-2) + 9 \cdot (-1) = -24$$



Output

| 1 | 1 2              | 2 3               | 1  |
|---|------------------|-------------------|----|
| 4 | <mark>0</mark> 5 | 0 6               | 0  |
| 7 | -1<br>8          | <mark>-2</mark> 9 | -1 |

$$= x[1,0] \cdot h[1,1] + x[2,0] \cdot h[0,1] + x[3,0] \cdot h[-1,1]$$

$$+ x[1,1] \cdot h[1,0] + x[2,1] \cdot h[0,0] + x[3,1] \cdot h[-1,0]$$

$$+ x[1,2] \cdot h[1,-1] + x[2,2] \cdot h[0,-1] + x[3,2] \cdot h[-1,-1]$$

$$= 2 \cdot 1 + 3 \cdot 2 + 0 \cdot 1 + 5 \cdot 0 + 6 \cdot 0 + 0 \cdot 0 + 8 \cdot (-1) + 9 \cdot (-2) + 0 \cdot (-1) = -18$$



Output

### **Convolution in 2D - examples**



#### **Convolution in 2D - examples**

\*





Original



Filtered (no change)

### **Convolution in 2D - examples**



Original

6-Oct-16 75

### **Convolution in 2D - examples**



Original





Shifted right By 1 pixel

77

#### **Convolution in 2D - examples**



Original





#### **Convolution in 2D - examples**



Original





Blur (with a box filter)

#### **Convolution in 2D - examples**





- 1 9 •1 •1 •1 •1 •1

"details of the image"

= ?

Original

(Note that filter sums to 1)

 •0
 •0
 •0
 •0
 •0
 •0
 •0
 •0
 •0
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 •1
 <td

6-Oct-16

79

#### What does blurring take away?







Let's add it back:







# Convolution in 2D – Sharpening filter









Original

Sharpening filter: Accentuates differences with local average

Commutative: a \* b = b \* a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a \* (b \* c) = (a \* b) \* c

- Often apply several filters one after another:  $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a \*  $(b_1 * b_2 * b_3)$

Proof of associativity of convolution

$$((f \star g) \star h)(n) = \sum_{k=0}^{n} (f \star g)(k)h(n-k)$$

$$= \sum_{k=0}^{n} \sum_{l=0}^{k} f(l)g(k-l)h(n-k)$$

$$= \sum_{l=0}^{n} \sum_{k=l}^{n} f(l)g(k-l)h(n-k)$$

$$= \sum_{l=0}^{n} \sum_{k=0}^{n-l} f(l)g(k)h(n-k-l)$$

$$= \sum_{l=0}^{n} f(l)(g \star h)(n-l)$$

$$= (f \star (g \star h))(n)$$

Commutative: a \* b = b \* a

- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality, e.g., image edges

Associative: a \* (b \* c) = (a \* b) \* c

- Often apply several filters one after another:  $(((a * b_1) * b_2) * b_3)$
- This is equivalent to applying one filter: a \*  $(b_1 * b_2 * b_3)$
- Correlation is \_not\_ associative
- Why important?

- Commutative: *a* \* *b* = *b* \* *a* 
  - Conceptually no difference between filter and signal
  - But particular filtering implementations might break this equality,
     e.g., image edges
- Associative: a \* (b \* c) = (a \* b) \* c
  - Often apply several filters one after another:  $(((a * b_1) * b_2) * b_3)$
  - This is equivalent to applying one filter: a \*  $(b_1 * b_2 * b_3)$
  - Correlation is \_not\_ associative (rotation effect)
  - Why important?
- Distributes over addition: a \* (b + c) = (a \* b) + (a \* c)
- Scalars factor out: ka \* b = a \* kb = k (a \* b)

#### Important filter: Gaussian

Weight contributions of neighboring pixels by nearness



|   |       |       | ^     |       |       |
|---|-------|-------|-------|-------|-------|
|   |       |       |       |       |       |
|   | 0.003 | 0.013 | 0.022 | 0.013 | 0.003 |
|   |       |       |       |       | 0.013 |
| У | 0.022 | 0.097 | 0.159 | 0.097 | 0.022 |
|   | 0.013 | 0.059 | 0.097 | 0.059 | 0.013 |
|   | 0.003 | 0.013 | 0.022 | 0.013 | 0.003 |
|   |       |       |       |       |       |

Y

$$5 \times 5$$
,  $\sigma = 1$ 

$$G_{\sigma} = \frac{1}{2\pi\sigma^2} e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

### Smoothing with Gaussian filter



## Smoothing with box filter



#### Gaussian filters

- Remove "high-frequency" components from the image (low-pass filter)
  - Images become more smooth
- Gaussian convolved with Gaussian...

...is another Gaussian

- So can smooth with small-width kernel, repeat, and get same result as larger-width kernel would have
- Convolving two times with Gaussian kernel of width  $\sigma$  is same as convolving once with kernel of width  $\sigma$ V2
- Separable kernel
  - Factors into product of two 1D Gaussians

#### Separability of the Gaussian filter

$$G_{\sigma}(x,y) = \frac{1}{2\pi\sigma^2} \exp^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$= \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{x^2}{2\sigma^2}}\right) \left(\frac{1}{\sqrt{2\pi}\sigma} \exp^{-\frac{y^2}{2\sigma^2}}\right)$$

The 2D Gaussian can be expressed as the product of two functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

### Separability example

2D convolution (center location only)



The filter factors into a product of 1D filters:

| 1 | 2 | 1 |   | 1 |
|---|---|---|---|---|
| 2 | 4 | 2 | = | 2 |
| 1 | 2 | 1 |   | 1 |

x 1 2 1

Perform convolution along rows:

Followed by convolution along the remaining column:

### Separability

Why is separability useful in practice?

### Separability

Why is separability useful in practice?

MxN image, PxQ filter

- 2D convolution: ~MNPQ multiply-adds
- Separable 2D: ~MN(P+Q) multiply-adds

Speed up = PQ/(P+Q)9x9 filter =  $\sim$ 4.5x faster

# Practical matters How big should the filter be?

- Values at edges should be near zero
- Gaussians have infinite extent...
- Rule of thumb for Gaussian: set filter half-width to about 3  $\sigma$

#### Practical matters

- What about near the edge?
  - the filter window falls off the edge of the image
  - need to extrapolate
  - methods:
    - clip filter (black)
    - wrap around
    - copy edge
    - reflect across edge



#### Convolution in Convolutional Neural Networks

- Convolution is the basic operation in CNNs
- Learning convolution kernels allows us to learn which `features' provide useful information in images.

#### **NON-LINEAR FILTERS**

#### Median filters

- Operates over a window by selecting the median intensity in the window.
- 'Rank' filter as based on ordering of gray levels
  - E.G., min, max, range filters

#### Image filtering - mean

$$f[\cdot,\cdot]^{\frac{1}{9}}$$

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |



$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Credit: S. Seitz

#### Image filtering - mean



| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

| 0 | 10 | 20 | 30 | 30 |  |  |
|---|----|----|----|----|--|--|
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    | 50 |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |
|   |    |    |    |    |  |  |

$$h[m,n] = \sum_{k,l} f[k,l] I[m+k,n+l]$$

Credit: S. Seitz

#### Median filter?

| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
|---|---|----|----|----|----|----|----|---|---|
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 0  | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 90 | 90 | 90 | 90 | 90 | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 90 | 0  | 0  | 0  | 0  | 0  | 0 | 0 |
| 0 | 0 | 0  | 0  | 0  | 0  | 0  | 0  | 0 | 0 |

# *h*[.,.]



#### Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?

# Noisy Jack - Salt and Pepper



#### Mean Jack – 3 x 3 filter



# Very Mean Jack – 11 x 11 filter



# Noisy Jack - Salt and Pepper



### Median Jack – 3 x 3



# Very Median Jack – 11 x 11



#### Median filters

- Operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?
- Is a median filter a kind of convolution?

#### Review: questions

- 1. Write down a 3x3 filter that both:
  - Returns a positive value if the average value of the 4-adjacent neighbors is less than the center,
  - Returns a negative value otherwise.

Slide: Hoiem

#### Review: questions

#### 1. Write down a 3x3 filter that both:

- Returns a positive value if the average value of the 4-adjacent neighbors is less than the center,
- Returns a negative value otherwise. [ 0 -1/4 0; -1/4 1 -1/4; 0 -1/4 0 ]

Slide: Hoiem