

Sistema de Classificação de SMSs para Identificação de Spam utilizando o Classificador Ingênuo de Bayes

Integrantes da Equipe

Amanda Cristina Fernandes M. de Lima (acfml)
Maria Letícia do N. Gaspar (mlng)
Mariana Melo dos Santos (mms11)
Victória Barbosa Cesar Figueiredo(vbcf)

Classificador ingênuo de Bayes

Trata-se de uma solução simples para problemas de classificação

O que é?

É um algoritmo de aprendizagem de máquina (Machine Learning) que realiza predições baseadas em estatísticas.

Como funciona?

Já como diz o nome, ele analisa a base de dados de forma "ingênua", ou seja, assume que os atributos dos dados são independentes entre si. ele também assume que eles sejam todos igualmente importantes para o resultado

a Matemática do CIB

- O cálculo é baseado no Teorema de Bayes
- Independência entre atributos
- probabilidade da predição dentro de uma hipótese

CIB na prática

-> define-se uma tabela de probabilidades das predições, com base nas variáveis de saída

-> a predição de maior probabilidade é escolhida como a classificação em spam ou não-spam.

Matemática do CIB

Classes

- Vermelha
- redonda
- diâmetro de 6 cm

Predição

- Maçã
- Não é maçã

Base de dados

Spambase – UCI Machine Learning

Análise Exploratória dos Dados

Visão geral do dataset

- 5.572 mensagens de texto
- 87% ham e 13% spam
- Tabela com 5 colunas
- Descarte de colunas irrelevantes
- Agrupamento de dados
- Análise por categoria

1. Análise Exploratória dos Dados

- visão geral do dataset
- tamanho da mensagem
- #importar database
 mensagens = pd.read_csv('spam.csv', encoding = 'latin-1')
 mensagens.sample(5)

Ŀ		v1	v2	Unnamed: 2	Unnamed: 3	Unnamed: 4
	3240	ham	Ok i've sent u da latest version of da project.	NaN	NaN	NaN
	4131	ham	Hi baby ive just got back from work and i was	NaN	NaN	NaN
	5387	ham	I will be gentle baby! Soon you will be taking	NaN	NaN	NaN
	1962	spam	it to 80488. Your 500 free text messages are v	NaN	NaN	NaN
	403	ham	None of that's happening til you get here though	NaN	NaN	NaN

```
#apagar as últimas três colunas
mensagens.drop(columns = ['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], inplace = True)

#renomear as colunas
mensagens = mensagens.rename(columns = {'v1':'categoria', 'v2': 'mensagem'})

mensagens.sample(5)
```

₽		categoria	mensagem
	2638	ham	Am in gobi arts college
	1642	ham	Sleeping nt feeling well
	4574	ham	Not directly behind Abt 4 rows behind i
	5269	spam	If you don't, your prize will go to another cu
	2990	spam	HOT LIVE FANTASIES call now 08707509020 Just 2

```
[ ] #agrupamento por categoria (spam or not spam)
mensagens.groupby('categoria').describe()
```

mensagem
count unique top freq
categoria

ham 4825 4516 Sorry, I'll call later 30
spam 747 653 Please call our customer service representativ... 4

```
#cria uma nova coluna que indica por dados numéricos (0,1) se é ou não spam - uso nos modelos de classificação mensagens['spam'] = mensagens['categoria'].apply(lambda x:1 if x == 'spam' else 0)

#cria uma nova coluna que indica a quantidade de caracteres mensagens['qtd_caracteres'] = mensagens['mensagem'].apply(len)

#cria uma nova coluna que indica a quantidade de palavras mensagens['qtd_palavras'] = mensagens['mensagem'].apply(lambda x:len(nltk.word_tokenize(x)))

mensagens.sample(5)
```

□ •		categoria	mensagem		qtd_caracteres	qtd_palavras
	4678	ham	Sry dajst nw only i came to home	0	36	11
	4091	ham	I remain unconvinced that this isn't an elabor	0	70	13
	1070	ham	alright, I'll make sure the car is back tonight	0	47	11
	3213	ham	Babe, have you got enough money to pick up bre	0	105	26
	3627	ham	Meeting u is my work Tel me when shall i	0	65	17

Frequência de caracteres e palavras por SMS

Ham

Pré-processamento dos dados

Etapas:

- Conversão para letras minúsculas
- Remoção de Pontuações
- Remoção de StopWords
- Tokenização
- Vetorização
- Ponderação TF-IDF

```
[] import string
    from nltk.corpus import stopwords

• string.punctuation

[ '!"#$%&\'()*+,-./:;<=>?@[\\]^_\{|}~'

[] stopwords.words('english')[100:105]

['here', 'there', 'when', 'where', 'why']

[] def processamento(texto):
    Npunct = [char for char in texto if char not in string.punctuation] #remove as Npunct = ''.join(Npunct)
    sms_limpo = [word.lower() for word in Npunct.split() if word.lower() not in stopwords.words('english')] #remove stopwords return sms_limpo
```

#cria uma nova coluna com a mensagem sem stopwords e pontuação (apenas os tokens)
mensagens['nova_mensagem'] = mensagens['mensagem'].apply(processamento)
mensagens.sample(5)

D)		categoria	mensagem	spam	qtd_caracteres	qtd_palavras	nova_mensagem
	3523	ham	Yeah that'd pretty much be the best case scenario	0	49	10	[yeah, thatd, pretty, much, best, case, scenario]
	3444	ham	wiskey Brandy Rum Gin Beer Vodka Scotch Shampa	0	91	17	[wiskey, brandy, rum, gin, beer, vodka, scotch
	1022	ham	We still on for tonight?	0	24	6	[still, tonight]
	5306	ham	III be at yours in about 3 mins but look out f	0	51	13	[ill, 3, mins, look]
	4303	ham	Good good, billy mates all gone. Just been jog	0	77	18	[good, good, billy, mates, gone, jogging, enjo

Palavras mais enviadas por SMSs Ham

Palavras mais enviadas por SMSs Spam

Modelo de Machine Learning

Naive Bayes

- MultinomialNB
- Teorema de Bayes
- Independência entre eventos

Pipeline

- Bag of words
- Tfidf
- Classificador: MultinomialNB

Resultado do Modelo

	Precision	Recall	f1- Score	Support
Ham	0.95	1.00	0.98	477
Spam	1.00	0.72	0.83	84
Accuracy			0.96	588
Macro AVG	0.98	0.86	0.91	588
Wighted AVG	0.96	0.96	0.96	588

```
sns.heatmap(confusion_matrix(y_test,predictions), annot=True, fmt = '.0f', cmap = 'Blues')
#análise do conjunto teste
#(0,0) - verdadeiro positivo - sms que não são spam que foram classificados corretamente
#(0,1) - falso negativo - sms que são spam que foram classificados como não spam
#(1,0) - falso positivo - sms que não são spam que foram classificados como spam
#(1,1) - verdadeiro negativo - sms que são spam que foram classificados corretamente
```


4. Testando SMSs

```
[] #teste sms não spam
   X_test = ["hey let's play soccer"]
   pipeline.fit(X_train, y_train)
   predictions = pipeline.predict(X_test)
   print(predictions)

[0]

#teste sms spam
```

```
#teste sms spam
X_test = ["Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005."
pipeline.fit(X_train, y_train)
predictions = pipeline.predict(X_test)
print(predictions)
```

Obrigada!