

Marginal Linear Regression Models

Brady T. West

Marginal Modeling Approaches

- Researcher may not care about estimating between-cluster variance in slopes or intercepts; only *interested in marginal fixed effects* across all higher level clusters!
- Researcher only interested in overall marginal relationships, possibly for different subgroups
- Alternative methods for fitting marginal models
 - ~ focus on Generalized Estimating Equations (GEE)

Marginal Linear Regression Models

• When fitting marginal models to **normal** dependent variables, estimate parameters defined by this model (no random effects)

$$y_{ti} = \beta_0 + \beta_1 x_{1ti} + ... + \beta_p x_{pti} + e_{ti}$$

$$y_i = (y_{1i}, y_{2i}, ..., y_{ni})' \sim N(X_i \beta, V_i)$$

- General variance-covariance matrix V_i : many possible structures
- Do not explicitly estimate variances and covariances of random cluster effects (because there are none)!

When fitting models to dependent data using GEE \rightarrow seek estimates of parameters that solve score function (or estimating equation):

$$S(\beta) = \sum_{i=1}^{n} D_i^T V_i^{-1} (y_i - \mu_i) = 0$$

 D_i^T is $n_i \times p$ matrix with (i,j)th elements $\frac{\partial \mu_{ti}}{\partial \beta}$ V_i is $n_i \times n_j$ variance-covariance matrix for observations on cluster i (user-specified)

$$S(\beta) = \sum_{i=1}^{n} D_i^T V_i^{-1} (y_i - \mu_i) = 0$$

 y_i = vector (column) of outcome measures collected for i-th cluster

Equations solved: Iteratively weighted least squares or Fisher scoring algorithms

- GEE methodology first introduced by Liang and Zeger in seminal 1986 paper
- Seldom know true variance-covariance matrix for observations
 In practice → working correlation matrix ("plausible guess" for true structure)
- Typically specify correlations and *not* covariances ... for non-normal outcomes, variances defined by mean structure of model
- Allows methodology to be easily adapted to non-normal dependent variables (Poisson, Binomial, etc.)

Variances of parameter estimates computed using sandwich estimator (Liang and Zeger, 1986)

- Estimator based on specified working correlation matrix (e.g., exchangeable), and variance-covariance matrix of observations based on expected means from fitted model
- Estimators of fixed effect parameters are consistent even if specified working correlation matrix is incorrect; <u>bad choices affect standard</u> <u>errors</u>

- Choices for working correlation matrix in models fitted using GEE:
 - Independence (zero correlation, independent observations)
 - Exchangeable (constant correlation of observations in the same cluster)
 - AR(I) (first-order auto-regressive, decaying correlation over time)
 - Unstructured (completely general correlations of observations)
- Estimators of correlations proposed by Liang and Zeger (1986)
- Focus on fixed effects, *not* inferences about "nuisance" correlations

- Inference "robust" to possible variance-covariance matrix misspecification possible when using **Wald Tests** based on sandwich estimates of standard errors
- Adapted information criterion (QIC) to compare fits of competing models
- Good specification of mean structure (interactions, non-linear terms, etc.) important!
- With large data sets, alternative choices of working correlation matrix do not make large difference, but should still be considered

- Poor choices of working correlation matrix affect standard errors and inferences
 → try to choose reasonable model based on information criteria
- QIC (popular and widely implemented) has important shortcomings in choosing "correct" correlation structure
- Westgate and Burchett (2017) describe **better alternatives** for identifying correct correlation structure, and provide software to both fit GEE models and compute advocated information criteria

Revisiting the ESS Model

- Interested in relationship of trust in police (TRSTPLC, IV) with a person's attitude about whether people generally try to help others (PPLHLP, DV)
- Observations clustered by interviewer, ignored dependency in data in Week 2!
 GEE can account for this.
- Marginal linear regression model using GEE (with exchangeable correlation structure, assuming constant correlation of observations within interviewer) to make inference about overall, marginal relationship between two variables!

Revisiting the ESS Model

GEE estimate of fixed effect of TRSTPLC is positive (0.04) and **not significant** (p = 0.054); estimated intercept is 4.47 (p < 0.01)

Estimates suggest similar direction for relationship, but marginal estimate is 1/3 of the multilevel model (0.12), when explicitly controlling for random interviewer effects

Multilevel model:

"for a given interviewer

one-unit increase in trust in police
leads to 0.12 increase in helpfulness"

Marginal model:

"across all interviewers

one-unit increase ...

0.04 increase in helpfulness"

Model Diagnostics

- Assuming constant correlation within interviewers, the "nuisance" estimate of the correlation was 0.05; QIC = 6790.61
- Unstructured and first-order autoregressive correlation structures don't make sense; no time ordering of cross-sectional observations within each interviewer

What about independence? QIC = 6791.55

There is slight evidence of a better fit for the exchangeable model ~ important to account for correlation!

Conclusions from the Example

- Marginally, when looking at overall relationship across interviewers, did not find as much evidence of relationship as did when controlling for interviewer effects explicitly
- Accounting for dependency (rather than assuming independence of observations within each interviewer) did seem to improve model fit slightly; comparing models is important!

Remember

When fitting marginal models, can no longer make inference about between-cluster variance!

What's Next?

- Marginal logistic regression models or binary outcomes
 - ~ easily fitted using GEE.
- Revisit example of predicting probability of ever smoking 100 cigarettes in one's lifetime
 - ~ see what changes compared to multilevel modeling approach