CS 344: Design and Analysis of Computer Algorithms

(Spring 2022 — Sections 5,6,7,8)

Lecture 21: Network Flow

The Network Flow Problem

- Think of a collection of pipes
- A source s and a sink t the source produces some material, say, water, and the sink consumes it
- Each pipe ${\bf e}$ can carry a certain amount of water c_e at any point of time
- Maximize the rate of sending water from source to sink

- Think of a collection of pipes
- A source s and a sink t the source produces some material, say, water, and the sink consumes it
- Each pipe ${\bf e}$ can carry a certain amount of water c_e at any point of time
- Maximize the rate of sending water from source to sink

- Think of a collection of pipes
- A source s and a sink t the source produces some material, say, water, and the sink consumes it
- Each pipe ${\bf e}$ can carry a certain amount of water c_e at any point of time
- Maximize the rate of sending water from source to sink

- Think of a collection of pipes
- A source s and a sink t the source produces some material, say, water, and the sink consumes it
- Each pipe ${\bf e}$ can carry a certain amount of water c_e at any point of time
- Maximize the rate of sending water from source to sink

Networks

- Directed graph G=(V,E)
- A source vertex s and a sink vertex t
- Capacity c_e on any edge e

Flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint:
 - for any edge $e=(u,v): f(u,v) \leq c_e$ if there is no edge from u to v, then f(u,v)=0

Flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow: for any vertex $v \in V \{s, t\}$:

$$\sum_{w \in V} f(w, v) = \sum_{w \in V} f(v, w)$$

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow

Flow

- A function $f: V \times V \to \mathbb{R}$ with the following properties:
- Capacity constraint
- Preservation of flow

Value of a flow f: amount of flow leaving $s = \sum_{v \in V} f(s, v)$

Network Flow Problem

- Network flow (or maximum flow) problem:
- Input:
 - A network G=(V,E) with edge-capacities and a source and a sink
- Output:
 - Find a flow with largest value in G

Algorithms for Network Flow

- So how do we solve the network flow problem?
- There are numerous algorithms for the problem:

So how do we solve the network flow problem?

So how do we solve the network flow problem?

So how do we solve the network flow problem?

- We will NOT go through any of these algorithms
 - The early ones are not particularly too complicated (the latter ones definitely are!)
 - But they are still considerably more challenging than everything we covered so far
- Instead, we will see many important applications of network flow
- We use graph reduction so we can use ANY algorithm for network flow for solving these problems

Pointers

- If you are interested just to see how complicated these recent algorithms can be:
- Breakthrough result that solves the problem in $O(m^{1+o(1)})$ time
 - https://arxiv.org/pdf/2203.00671.pdf
 - https://www.youtube.com/watch?v=KsMtVthpkzl

Ford-Fulkerson

• For concreteness, we stick with the first and simplest network flow algorithm

Ford-Fulkerson

- For concreteness, we stick with the first and simplest network flow algorithm
- Ford-Fulkerson Algorithm:
 - Solves maximum flow in $O(m \cdot F)$ time where F is the value of maximum flow from s to t.

Application I: Edge-Disjoint Paths

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

Edge-Disjoint Paths Problem

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

Edge-Disjoint Paths Problem

- Input:
 - An undirected graph G=(V,E)
 - Two vertices s and t
- Output:
 - Maximum number of edge-disjoint paths between s and t

Application: Fault-Tolerance

- Create a network G' = (V', E') as follows:
 - Vertices are the same as G
 - For any undirected edge {u,v} in G, add both directed edges (u,v) and (v,u) in G' with capacity 1
 - Let source be s and sink be t

- Create a network G' = (V', E') as follows:
 - Vertices are the same as G
 - For any undirected edge {u,v} in G, add both directed edges (u,v) and (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'

- Create a network G' = (V', E') as follows:
 - Vertices are the same as G
 - For any undirected edge {u,v} in G, add both directed edges (u,v) and (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edge-disjoint paths possible in G

Value of f = 3

Value of f = 3

• Can Ford-Fulkerson pick both direction of an undirected edge?

• Can Ford-Fulkerson pick both direction of an undirected edge?

• Can Ford-Fulkerson pick both direction of an undirected edge?

- Can Ford-Fulkerson pick both direction of an undirected edge?
- This is a form of a flow-cycle

- Can Ford-Fulkerson pick both direction of an undirected edge?
- This is a form of a flow-cycle
- Flow-cycles are valid by the definition of flow

- Can Ford-Fulkerson pick both direction of an undirected edge?
- This is a form of a flow-cycle
- Flow-cycles are valid by the definition of flow

Removing them will NOT change the value of flow (or its feasibility)

- Can Ford-Fulkerson pick both direction of an undirected edge?
- This is a form of a flow-cycle
- Flow-cycles are valid by the definition of flow

- Removing them will NOT change the value of flow (or its feasibility)
- Ford-Fulkerson never outputs a flow with flow-cycles

Proof of Correctness

- Create a network G' = (V', E'):
 - Vertices are the same as G
 - For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

Part one: Any flow of value k
in G' can be turned into k
edge-disjoint paths in G

Proof of Correctness

- Create a network G' = (V', E'):
 - Vertices are the same as G
 - For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

 Part two: Any collection of k edge-disjoint paths in G can be turned into a flow of value k in G'

Proof of Correctness

- Create a network G' = (V', E'):
 - Vertices are the same as G
 - For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

 So maximum flow f in the reduction gives maximum number of edge-disjoint paths

- Create a network G' = (V', E'):
 - Vertices are the same as G
 - For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

- It takes O(n+m) time to create the network G'
- G' has 2m directed edges
- So Ford-Fulkerson takes O(mF) time

- Create a network G' = (V', E'):
- Are we done?
- Vertices are the same as G
- For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
- Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

- Create a network G' = (V', E'):
- Are we done? NO!

- Vertices are the same as G
- For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
- Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

- Create a network G' = (V', E'):
 - Vertices are the same as G
 - For any edge {u,v} in G, add
 both directed edges (u,v) and
 (v,u) in G' with capacity 1
 - Let source be s and sink be t
- Compute a maximum flow f in G'
- Return the value of f as the maximum number of edgedisjoint paths possible in G

- Are we done? NO!
- We cannot leave F here in the runtime as it is not a parameter of the original problem but only the solution.
- But we know F < n as s only has n-1 outgoing edges
- So the runtime is O(mn) at most

Application II: Bipartite Matching

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R
- Matching M in G:
 - A subset of edges in E
 - No vertex used more than once

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R
- Matching M in G:
 - A subset of edges in E
 - No vertex used more than once

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R
- Matching M in G:
 - A subset of edges in E
 - No vertex used more than once

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R
- Matching M in G:
 - A subset of edges in E
 - No vertex used more than once

- Bipartite graph G=(V,E):
 - There are two sets of vertices L and R
 - All edges are only between L and R
- Matching M in G:
 - A subset of edges in E
 - No vertex used more than once

Input:

a bipartite graph G=(V,E) with bipartition L and R

Output:

 Output a maximum matching in G, i.e., a matching with the largest number of edges

Input:

a bipartite graph G=(V,E) with bipartition L and R

Output:

- Output a maximum matching in G, i.e., a matching with the

largest number of edges

Input:

a bipartite graph G=(V,E) with bipartition L and R

• Output:

- Output a maximum matching in G, i.e., a matching with the

largest number of edges

- Applications:
 - Online advertising
 - Auctions and markets
 - Students-Dorms Assignments
 - Kidney exchange program

– ...

- Create a network G'=(V',E') as follows:
 - Copy the vertices in L and R of G in G' also
 - For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
 - Add new vertices s and t, which will be source and sink
 - Connect s to every vertex in L with capacity 1
 - Connect every vertex in R to t with capacity 1

- Create a network G'=(V',E') as follows:
 - Copy the vertices in L and R of G in G' also
 - For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
 - Add new vertices s and t, which will be source and sink
 - Connect s to every vertex in L with capacity 1
 - Connect every vertex in R to t with capacity 1
- Compute a maximum flow f in G'

- Create a network G'=(V',E') as follows:
 - Copy the vertices in L and R of G in G' also
 - For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
 - Add new vertices s and t, which will be source and sink
 - Connect s to every vertex in L with capacity 1
 - Connect every vertex in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

Proof of Correctness

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

 Part one: A flow f of value k gives a matching M of size k

Proof of Correctness

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

 Part two: A matching M of size k gives a flow f of value k

Proof of Correctness

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

 So the maximum flow f gives a maximum matching M

Runtime Analysis

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

- Creating G' takes O(n+m) time
- G' has n+2 vertices and m+2n edges
- So Ford-Fulkerson takes O((m+n)*F) time

Runtime Analysis

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

- Creating G' takes O(n+m) time
- G' has n+2 vertices and m+2n edges
- So Ford-Fulkerson takes O((m+n)*F) time
- F <= n/2 as F is equal to the maximum matching size and that is <= n/2
- So it takes O((n+m)n) time

Runtime Analysis

- Create a network G'=(V',E') as follows:
- Copy the vertices in L and R of G in G'
- For any edge (u,v) in G with u in L and v in R, add a directed edge from u to v in G'. Set the capacities to +∞
- Add a source s and sink t
- Connect s to vertices in L with capacity 1
- Connect vertices in R to t with capacity 1
- Compute a maximum flow f in G'
- Return edges (u,v) in G if u in L and v in R and f(u,v) = 1

 We can make it O(mn) only by removing all vertices in G that have no edges so n = O(m)