Lecture 4

Biomaterials Surfaces: Chemistry

Like metallic implants, some polymers used in biomaterials applications are susceptible to chemical reactions that lead to degradation through hydrolysis. In many cases, a polymer is specifically chosen for its ability to degrade in vivo.

Polymer Hydrolysis

Polymer hydrolysis involves the scission of susceptible molecular groups by reaction with H₂O.

- ➤ May be acid, base or enzyme catalyzed
- ➤ Not surface-limited if water penetrates bulk

a) Molecular & Structural Factors Influencing Hydrolysis

- ➤ Bond Stability
- ightharpoonup Hydrophobicity: \uparrow hydrophobicity $\Rightarrow \downarrow$ hydrolysis
- \triangleright MW & architecture: higher MW $\Rightarrow \downarrow$ hydrolysis
- ➤ Morphology
 - crystallinity ↓ hydrolysis
 - porosity ↑ hydrolysis
- $ightharpoonup T_g$: less mobility $\Rightarrow \downarrow$ hydrolysis

Bond Stability

Susceptible linkages at bonds where resonance stabilized intermediates are possible...

Example 1: poly(lactide-co-glycolide)

Properties: rapid degradation, amorphous, T_g ~ 45-55°C Uses: bioresorbable sutures, controlled release matrices, tissue engineering scaffolds

O O
$$\parallel$$
 (-O-CH(CH₃)-C-)_x- r -(-O-CH₂-C-)_y lactic acid glycolic acid

Example 2: polyethylene terephthalate (Dacron)

Properties: very slow hydrolysis, semicrystalline, T_g~ 69°C Uses: vascular grafts, arterial patches, heart pumps

$$[-O-C \xrightarrow{\bigcirc} C-O-CH_2-CH_2-]_N$$

base-catalyzed polyester hydrolysis:

acid-catalyzed polyester hydrolysis:

• Amides: R-C-NH-R' +
$$H_2O \rightarrow R$$
-C-OH + H_2N -R' amide or peptide linkage, also found in proteins!

Example: Nylon 6,6 $(-NH-(CH_2)_6-NH-C-(CH_2)_4-C-)_N$ poly(hexamethylene adipamide)

Properties: ~9% H₂O uptake, semicrystalline, T_g~50°C Uses: removable sutures, prosthetic joints

Example: poly(sebacic acid anyhydride)
$$(-(CH_2)_8-C-O-C-)_N$$

Properties: rapid degradation (surface-based)

Uses: drug delivery matrices

• Ethers: R-O-R' + $H_2O \rightarrow R-CH_2-OH + HO-CH_2-R'$

Example: polyethylene oxide (PEO) $(-CH_2-O-CH_2-)_N$

Properties: water soluble, semicrystalline, $T_g \sim -60^{\circ}C$ Uses: hydrogels, protein-resistant coatings

Example: polyether urethane

Properties: "soft" block of SPU "Biomer", slow hydrolysis

Uses: pacemaker lead sheaths & connectors

Rates of Hydrolysis: anhydride > ester > amide > ether

Stable Polymer Chemistries:

- Olefins
 - e.g., UHMWPE: joint cup liners
- Halogenated hydrocarbons
 - e.g., PVC: catheters; PTFE: vascular grafts
- Siloxanes
 - e.g., PDMS: soft tissue prostheses
- Sulfones
 - e.g., PSf: renal dialysis membranes

b) Biological Factors Influencing Hydrolysis

- pH variations
 inflammation/infection ⇒ ↓pH, catalyzes hydrolysis
- Hydrolases—enzymes that catalyze hydrolytic reactions
 - ➤ Proteolases: catalyze hydrolysis of peptide bonds
 - Esterases: catalyze hydrolysis of ester bonds
 - > Produced by phagocytic cells

c) Influence of Hydrolysis on In Vivo Performance

- ➤ Loss of structural integrity
 - e.g., i) polyester urethanes: rapid degradation in orthopedic reconstructions (no longer used)
 - ii) PET fibers: deterioration after long periods in cardiovascular applications
- > Toxicity/mutagenicity
 - e.g., i) segmented polyurethanes (SPUs): suspected tumorigenicity of degradation products
 - ii) cyanoacrylates (soft tissue adhesive): hydrolysis generates formaldehyde