The crystal structure of a cyclodecabis[1,2,3]selenadiazole

Guillermo A. Morales⁽¹⁾ and Frank R. Fronczek, (*,1)

Received August 29, 1994

4,5,6,10,11,12-hexahydrocyclodeca[1,2-d:6,7-d']bis[1,2,3]selenadiazole, $C_{10}H_{12}N_4Se_2$, crystallizes in triclinic space group $P\bar{1}$ with a=5.4625(3), b=7.2091(4), c=8.3122(6) Å, $\alpha=65.313(5)$, $\beta=77.476(5)$, $\gamma=77.442(5)^\circ$, V=287.35(4) Å , Z=1. The structure was refined to R=0.031 and $R_w=0.030$ for 2018 observed reflections. The molecule lies on an inversion center. The cyclodecadiene ring adopts an elongated chair conformation. The near-zero torsion angle of the elongated chair lies at the ring-fusion bonds, with a magnitude of 2.9(3)°. The five atoms of the selenadiazole ring exhibit maximum deviation 0.005(2) Å from planarity, with the adjacent carbon atoms lying respectively 0.020(2) and 0.059(2) Å to the same side of this plane. The torsion angles about the bonds comprising the sides of the elongated chair vary in magnitude from $61.0(2)^\circ$ to $55.7(2)^\circ$. The cyclodecadiene C=C bond lengths are 1.368(2) Å. The selenium-carbon bond length is 1.850(2) Å. The Se-N distance is quite long, 1.888(2) Å.

KEY WORDS: Selenadiazole, Cyclodecadiene, conformation.

Introduction

This bisselenadiazole is a precursor to 1,6-cyclo-decadiyne by pyrolysis. However, yields of this pyrolysis are variable. As part of an investigation of the yield variation, we undertook to confirm in which of the two possible isomers, *syn* or *anti*, the title compound exists, by determining its crystal structure.

Experimental

The title compound was prepared according to a literature procedure. Pale yellow crystals were obtained by evaporation from chloroform, m.p. 171-172° (dec.). The data collection crystal was sealed in a capillary to prevent sublimation. The color of the crystal changed to orange, and its surfaces became crazed during data collection. Accurate unit cell parameters were obtained by least-squares refinement vs. $\sin\theta/\lambda$ values for 25 reflections ($12^{\circ} < \theta < 17^{\circ}$). Data reduction included corrections for background, Lorentz, and polarization effects. Absorption corrections were based on Ψ

scans. Standard reflections decreased by unequal amounts during data collection, and an anisotropic decay correction was applied. The structure was solved by direct methods using a partial data set which had been obtained from a fiber-mounted crystal which was lost by sublimation during data collection. Refinement was by full-matrix least squares, with neutral-atom scattering factors and anomalous dispersion corrections. All non-hydrogen atoms were refined anisotropically while all hydrogen atoms were refined isotropically.

Results and discussion

The molecule lies on a crystallographic inversion center, and thus is demonstrated to be the *anti* isomer. The molecule is illustrated in Fig. 1; the crystal data are given in Table 1; the atomic coordinates are given in Table 2, and geometric parameters are listed in Table 3. A search of the Cambridge Structural Database⁴ yields but one other crystal structure determination of a 1,2,3-selenadiazole, that of the complex⁵ of 4-methyl-1,2,3-selenadiazole with Cr(CO)₅. Bond distances to Se in the title structure are somewhat longer than in that Cr complex, 1.888(2) vs. 1.837(3) Å for Se—N and 1.850(2)

⁽¹⁾ Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804.

812 Morales and Fronczek

Fig. 1. Thermal ellipsoids at the 40% level and the numbering scheme for the title molecule.

Table 1. Crystal data and summary of intensity data collection and structure refinement

- Structure remement							
Compound	$C_{10}H_{12}N_4Se_2$						
Color/shape	yellow parallelepiped						
Formula weight	346.2						
Space group	ΡĪ						
Temp., °C	28						
Cell constants							
a, Å	5.4625(3)						
b, Å	7.2091(4)						
c. Å	8.3122(6)						
α, deg.	65.313(5)						
β , deg.	77.476(5)						
γ, deg.	77.442(5)						
Cell volume, Å ³	287.35(4)						
Formula units/unit cell	1						
Deale, g cm ⁻³	2.000						
$\mu_{\rm cate}$, cm ⁻¹	63.5						
Diffractometer/scan	Enraf-Nonius CAD4/ω-2θ						
Radiation, graphite monochromator	$MoK\alpha (\lambda = 0.71073 \text{ Å})$						
Max. crystal dimensions, mm	$0.15 \times 0.30 \times 0.50$						
Scan width	$0.60 + 0.35 \tan \theta$						
Standard reflections	300; 030; 006						
Decay of standards	-15.3%						
Reflections measured	2158						
2θ range, deg	$2 < \theta < 66$						
Range of h, k, l	$+8, \pm 11, \pm 12$						
Reflections observed $[I > 0]$	2018						
Computer programs ²	MolEN						
Structure solution ³	MULTAN						
No. of parameters varied	98						
Weights	$4F_0^2[\sigma^2(I) + (0.02F_0^2)^2]^{-1}$						
GOF	1.568						
$R = \Sigma F_0 - F_c /\Sigma F_0 $	0.031						
R_{w}	0.030						
Largest feature final diff. map	0.61 e ⁻ Å ⁻³						

Table 2. Coordinates and equivalent isotropic thermal parameters

atom	x	y	z	$B_{eq}(\mathring{A}^2)^a$	
Se	0.11869(3)	0.28516(3)	0.91783(2)	3.124(4)	
NI	0.2475(3)	0.0388(2)	0.8806(2)	3.23(3)	
N2	0.4496(3)	0.0578(2)	0.7729(2)	2.92(3)	
Cl	0.5398(3)	0.2452(2)	0.7032(2)	2.45(3)	
C2	0.3975(3)	0.3925(2)	0.7612(2)	2.54(3)	
C3	0.7805(3)	0.2619(3)	0.5735(2)	2.76(3)	
C4	0.2407(3)	0.7687(2)	0.5940(2)	2.83(3)	
C5	0.4370(3)	0.6108(2)	0.7054(2)	2.81(3)	

 $^{^{\}prime\prime}B_{eq} = 8\pi^2/3 \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j.$

vs. 1.817(5) Å for Se-C, and the N1-Se-C angle is slightly larger, 86.80(7) vs. $85.3(2)^{\circ}$. Se-C(sp²) and particularly Se-N distances are quite variable, even within five-membered rings. The average of $Se-C(sp^2)$ distances in 32 tetraselenafulvenes⁶ is 1.893 Å, and 5-(1,2-benzoselenazol-3-yl)-3,4-dimethyl-pentadienonitrile⁷ has a Se-C distance of 1.845(11) Å. Se-N distances in 5-membered rings range from 1.777(6) and 1.792(6) Å in 2,1,3-benzoselenadiazole to 1.807(5) and 1.814(4) Å in 3,4-diphenyl-1,2,5-selenadiazole, 9 to 1.833(7) Å in 5-(1,2-benzoselenazol-3-yl)-3,4-dimethyl-pentadienonitrile, all of which are shorter than that observed in the title compound. Dimorpholinodiselane 10 has Se-N distances of 1.846(4) and 1.852(4) Å, over 0.03 Å shorter than that in the title compound.

The endocyclic torsion angles of the 10-membered ring at the ring fusion bonds are $\pm 2.9(3)^{\circ}$. The 1,6-cyclodecadienyl ring adopts an elongated chair conformation^{11,12} with torsion angles: $\omega_1 = +2.9 (3)^{\circ}$, $\omega_2 = -118.9(2)^{\circ}$, $\omega_3 = +61.1(2)^{\circ}$, $\omega_4 = +55.7(2)^{\circ}$ and $\omega_5 = -109.5(2)^{\circ}$, that are similar to the ideal long-chair conformation (of cyclodecane) having torsion angles¹² of ω_1 : C5-C2-Cl-C3 = 0°; ω_2 : C2-C1-C3-C4 = -112.2°; ω_3 : Cl-C3-C4-C5' = +72.7°; ω_4 : C3-C4-C5'-C2' = +72.7° and ω_5 : C4-C5'-C2'-C1' = -112.2°.

Molecular stacking is illustrated in Fig. 2. Selenadiazole rings form in-plane intermolecular contacts about inversion centers, involving the Se-N1 bond and nitrogen atom N1 at -x, -y, 2-z. The Se···N1' distance is 3.094(2)Å, and the N1···N1' distance is 2.995(2)Å. The Se atom also forms a second in-plane contact with Se of another molecule at -x, 1-y, 2-z, with Se···Se distance 3.7633(3)Å. The Se-N1 bond also forms a somewhat longer, stacking contact of

Se	NI			1.888(2)	Cl	C3			1.501(2)
Se	C2			1.850(2)	C2	. C5			1.494(2)
NI	N2			1.254(2)	C3	C4'			1.529(3)
N2	C1			1.384(2)	C4	C5			1.524(2)
Cl	C2			1.368(2)					
NI	Se	C2		86.80(7)	N2	CI	C3		116.2(1)
Se	N1	N2		110.8(1)	Se	C2	Cl		108.7(1)
NI	N2	Cl		118.0(2)	Se	C2	C5		122.6(1)
N2	Cl	C2		115.7(1)					
N2	Cl	C3	C4'	61.0(2)	C2	Cl	C3	C4'	-118.9(2)
Se	C2	C5	C4	-66.2(2)	Cl	C2	C5	C4	109.5(2)
CI	C3	C4'	C5'	61.1(2)	C3	C4	C5'	C2'	55.7(2)

Table 3. Selected bond distances, angles, and torsion angles" (Å, °)

[&]quot;The prime refers to symmetry operation 1 - x, 1 - y, 1 - z.

Fig. 2. Stereoview of the molecular packing.

with N2 at 1 - x, -y, 2 - z. The N1 · · · N2 distance is 3.377(3) Å, and the Se · · · N2 distance is 3.614(2) Å.

References

- Gleiter, R.; Karcher, M.; Jahn, R.; Irngartinger, H. Chem. Ber. 1988, 121, 735.
- Fair, C.K. MolEN, An Interactive Structure Solution Procedure; Delft: The Netherlands, 1990.
- 3. Main, P.; Fiske, S.J.; Hull, S.E.; Lessinger, L.; Germain, G.; Declercq, J.P.; Woolfson, M.M. MULTAN-80, A System of Computer Programs for the Automatic Solution of Crystal Struc-

- tures from X-ray Diffraction Data; Universities of York: England, and Louvain, Belgium, 1980.
- Allen, F.H.; Kennard, O.; Taylor, R. Acc. Chem. Res. 1983, 16, 146.
- 5. Batzel, V.; Boese, R.Z. Naturforsch. Teil B, 1981, 36, 172.
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R. J. Chem. Soc. Perkin II, 1987, S1.
- Bryce, M.R.; Reynolds, C.D.; Hanson, P.; Vernon, J.M. J. Chem. Soc. Perkin Trans. I 1981, 607.
- Gomes, A.C.; Biswas, G.; Banerjee, A.; Duax, W.L. Acta Cryst., C (Cr. Str. Comm.) 1989, 45, 73.
- 9. Mellini, M.; Merlino, S. Acta Cryst. 1976, B32, 1074.
- 10. Foss, O.; Janickis, V.J. Chem. Soc. Dalton Trans. 1980, 628.
- 11. Hendrickson, J.B. J. Am. Chem. Soc. 1964, 86, 4854.
- 12. Hendrickson, J.B. J. Am. Chem. Soc. 1967, 89, 7047.