Extração e Seleção de Características para Classificação de Gêneros Musicais

Matheus Augusto Monte Silva, Antônio Apolinário Barbosa, Mariana Melo dos Santos
Engenharia da Computação
Centro de Informática - UFPE
Email: mams4@cin.ufpe.br, aab2@cin.ufpe.br, mms11@cin.ufpe.br

Abstract—Este trabalho apresenta a extração e seleção de características de sinais de áudio para a classificação automática de músicas por gênero musical. Utilizando o dataset GTZAN, foi aplicada a técnica de Random Forest para identificar as características mais relevantes. Após um pré-processamento envolvendo a segmentação das faixas de áudio, foram extraídas características dos sinais, e o modelo Random Forest foi treinado e avaliado. O modelo atingiu uma acurácia de 72,26% sem perturbações no sinal e 70,88% quando ruído e eco foram adicionados. Além disso, foram analisadas as características mais influentes para a predição, permitindo um melhor entendimento dos padrões acústicos.

Index Terms—Processamento de áudio, Classificação de Gênero Musical, Machine Learning, Random Forest.

I. Introdução

A classificação automática de músicas por gênero é um problema relevante no campo do processamento de sinais de áudio e aprendizado de máquina. Neste trabalho, utilizamos o dataset GTZAN para a extração e seleção de características relevantes para essa tarefa, empregando a técnica Random Forest. A abordagem incluiu segmentação de áudio, seleção de características e treinamento de um modelo de aprendizado de máquina.

II. METODOLOGIA

A. Base de Dados

Foi utilizado o dataset GTZAN, que contém 1000 faixas de áudio distribuídas igualmente entre 10 gêneros musicais.

B. Pré-processamento

Cada faixa de áudio (30 segundos) foi dividida em segmentos de 3 segundos, e foram selecionados aleatoriamente 400 segmentos de cada gênero, totalizando 4000 amostras. Para garantir a preservação de informações relevantes e evitar perdas entre segmentos, foi utilizada a técnica de sobreposição de janela (overlap), permitindo maior continuidade temporal e melhor captura das características acústicas.

Além disso, as características extraídas foram representadas utilizando a escala de frequência Mel, através do Mel Spectrograma, que aproxima a percepção auditiva humana. Essa técnica reduz a dimensionalidade dos dados e enfatiza frequências mais relevantes para a distinção entre gêneros musicais.

C. Seleção de Características

A seleção das características foi realizada utilizando um arquivo CSV do próprio dataset GTZAN, contendo diversas características previamente extraídas. O algoritmo Random Forest foi aplicado para gerar um ranking de importância das características para a predição.

A Tabela I apresenta as dez características mais relevantes identificadas pelo modelo Random Forest.

TABLE I
CARACTERÍSTICAS MAIS RELEVANTES SEGUNDO O RANDOM FOREST

Característica	Importância
perceptr_var	0.049480
chroma_stft_mean	0.036692
rms_var	0.036440
rms_mean	0.032749
mfcc4_mean	0.030803
rolloff_mean	0.029650
spectral_bandwidth_mean	0.029431
perceptr_mean	0.027238
mfcc1_mean	0.025630
harmony_var	0.025062

D. Extração de Características

A extração de características foi realizada para capturar informações representativas da estrutura harmônica e espectral dos sinais de áudio. Foram utilizadas métricas como:

- Energia perceptual (perceptr_var e perceptr_mean):
 Mede a distribuição de energia ao longo do espectro de
 frequência, permitindo identificar padrões de intensidade
 sonora característicos de cada gênero musical.
- Coeficientes Cepstrais de Frequência Mel (MFCCs):
 Esses coeficientes extraem representações da envoltória espectral do sinal, sendo amplamente utilizados em tarefas de classificação de áudio.
- Espectro de Fourier (fft_mean e fft_var): A Transformada de Fourier permite decompor o sinal em suas componentes espectrais, auxiliando na distinção entre gêneros musicais que possuem padrões rítmicos e harmônicos distintos.

O uso dessas características melhora a capacidade do modelo de capturar padrões específicos de diferentes gêneros musicais, resultando em uma classificação mais eficiente.

E. Avaliação com Matrizes de Confusão

Para melhor visualização do desempenho do modelo, foram geradas matrizes de confusão comparando os resultados sem ruído e com ruído. As Figuras 1 e 2 mostram essas matrizes.

Fig. 1. Matriz de confusão do modelo sem ruído.

Fig. 2. Matriz de confusão do modelo com ruído.

F. Treinamento e Avaliação do Modelo

Utilizou-se o modelo Random Forest para a classificação das amostras, com uma divisão de 80% para treinamento e 20% para teste. A acurácia obtida foi de 72,26%.

G. Teste com Ruído e Eco

Para avaliar a robustez do modelo, foram adicionados ruído e eco a 10 amostras de áudio do conjunto de teste. Após a extração de características e nova avaliação com o Random Forest, a acurácia obtida foi de 70,88%.

III. CONCLUSÃO

O estudo demonstrou a viabilidade da classificação de gêneros musicais a partir da extração e seleção de características de sinais de áudio. A técnica Random Forest apresentou um desempenho satisfatório, mesmo com a adição de perturbações no sinal. A identificação das características mais relevantes permitiu um melhor entendimento dos aspectos que influenciam a predição do modelo. Além disso, o uso de pré-processamento, incluindo a separação por janelas, sobreposição de janelas e a escala de frequência Mel, foi essencial para melhorar a captura de padrões musicais. Futuras melhorias podem incluir otimizações no tempo de processamento e a exploração de outras abordagens de aprendizado de máquina.