index

January 24, 2022

1 Dealing with Categorical Variables - Lab

1.1 Introduction

In this lab, you'll explore the Ames Housing dataset for categorical variables, and you'll transform your data so you'll be able to use categorical data as predictors!

1.2 Objectives

You will be able to: * Determine whether variables are categorical or continuous * Use one hot encoding to create dummy variables * Describe why dummy variables are necessary

1.3 Importing the Ames Housing dataset

Let's start by importing the Ames Housing dataset from ames.csv into a pandas dataframe using pandas read_csv()

```
[12]: # Import your data
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

//matplotlib inline

df = pd.read_csv("ames.csv")
```

Now look at the first five rows of ames:

```
[2]: # Inspect the first few rows df.head()
```

```
[2]:
             MSSubClass MSZoning LotFrontage
                                                   LotArea Street Alley LotShape
     0
          1
                      60
                                RL
                                             65.0
                                                       8450
                                                               Pave
                                                                      NaN
                                                                                 Reg
          2
     1
                      20
                                RL
                                             80.0
                                                       9600
                                                               Pave
                                                                      NaN
                                                                                 Reg
     2
          3
                      60
                                RL
                                             68.0
                                                      11250
                                                               Pave
                                                                      NaN
                                                                                 IR1
     3
                      70
          4
                                RL
                                             60.0
                                                       9550
                                                               Pave
                                                                      NaN
                                                                                 IR1
                      60
                                RL
                                             84.0
                                                      14260
                                                               Pave
                                                                      NaN
                                                                                 IR1
```

```
LandContour Utilities ... PoolArea PoolQC Fence MiscFeature MiscVal MoSold \
0 Lvl AllPub ... 0 NaN NaN NaN 0 2
```

1	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	5
2	Lvl	AllPub	•••	0	NaN	NaN	NaN	0	9
3	Lvl	AllPub		0	NaN	NaN	NaN	0	2
4	Lvl	AllPub	•••	0	${\tt NaN}$	NaN	NaN	0	12

	YrSold	SaleType	SaleCondition	SalePrice
0	2008	WD	Normal	208500
1	2007	WD	Normal	181500
2	2008	WD	Normal	223500
3	2006	WD	Abnorml	140000
4	2008	WD	Normal	250000

[5 rows x 81 columns]

1.4 Variable Descriptions

Look in data_description.txt for a full description of all variables.

A preview of some of the columns:

LotArea: Size of the lot in square feet

MSZoning: Identifies the general zoning classification of the sale.

- A Agriculture
- C Commercial
- FV Floating Village Residential
- I Industrial
- RH Residential High Density
- RL Residential Low Density
- RP Residential Low Density Park
- RM Residential Medium Density

OverallCond: Rates the overall condition of the house

- 10 Very Excellent
- 9 Excellent
- 8 Very Good
- 7 Good
- 6 Above Average
- 5 Average
- 4 Below Average
- 3 Fair
- 2 Poor
- 1 Very Poor

KitchenQual: Kitchen quality

- Ex Excellent
- Gd Good
- TA Typical/Average

Fa Fair Po Poor

 \mathbf{YrSold} : Year Sold (YYYY)

 ${\bf Sale Price} :$ Sale price of the house in dollars

Let's inspect all features using .describe() and .info()

[3]: # Use .describe()
df.describe()

[3]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	\
	count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	
	mean	730.500000	56.897260	70.049958	10516.828082	6.099315	
	std	421.610009	42.300571	24.284752	9981.264932	1.382997	
	min	1.000000	20.000000	21.000000	1300.000000	1.000000	
	25%	365.750000	20.000000	59.000000	7553.500000	5.000000	
	50%	730.500000	50.000000	69.000000	9478.500000	6.000000	
	75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	
	max	1460.000000	190.000000	313.000000	215245.000000	10.000000	
		OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	\
	count	1460.000000	1460.000000	1460.000000	1452.000000	1460.000000	•••
	mean	5.575342	1971.267808	1984.865753	103.685262	443.639726	•••
	std	1.112799	30.202904	20.645407	181.066207	456.098091	
	min	1.000000	1872.000000	1950.000000	0.000000	0.00000	•••
	25%	5.000000	1954.000000	1967.000000	0.000000	0.00000	•••
	50%	5.000000	1973.000000	1994.000000	0.000000	383.500000	•••
	75%	6.000000	2000.000000	2004.000000	166.000000	712.250000	•••
	max	9.000000	2010.000000	2010.000000	1600.000000	5644.000000	•••
		WoodDeckSF	OpenPorchSF	EnclosedPorch	. 3SsnPorch	ScreenPorch	\
	count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000	
	mean	94.244521	46.660274	21.954110	3.409589	15.060959	
	std	125.338794	66.256028	61.119149	29.317331	55.757415	
	min	0.000000	0.000000	0.000000	0.000000	0.000000	
	25%	0.000000	0.000000	0.000000	0.000000	0.000000	
	50%	0.000000	25.000000	0.000000	0.000000	0.000000	
	75%	168.000000	68.000000	0.000000	0.000000	0.000000	
	max	857.000000	547.000000	552.000000	508.000000	480.000000	
		PoolArea	MiscVal	MoSold	YrSold	SalePrice	
	count	1460.000000	1460.000000	1460.000000	1460.000000	1460.000000)
	mean	2.758904	43.489041	6.321918	2007.815753	180921.195890)
	std	40.177307	496.123024	2.703626	1.328095	79442.502883	}
	min	0.000000	0.000000	1.000000	2006.000000	34900.000000)
	25%	0.00000	0.000000	5.000000	2007.000000	129975.000000)
	50%	0.00000	0.000000	6.000000	2008.000000	163000.000000)

75% 0.000000 0.000000 8.000000 2009.000000 214000.000000 max 738.000000 15500.000000 12.000000 2010.000000 755000.000000

[8 rows x 38 columns]

[4]: # Use .info() df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	${\tt YearRemodAdd}$	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	${\tt BsmtCond}$	1423 non-null	object
32	${\tt BsmtExposure}$	1422 non-null	object
33	BsmtFinType1	1423 non-null	object

34	BsmtFinSF1	1460 non-null	int64
35	${\tt BsmtFinType2}$	1422 non-null	object
36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	${\tt HeatingQC}$	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60	GarageFinish	1379 non-null	object
61	GarageCars	1460 non-null	int64
62	GarageArea	1460 non-null	int64
63	•	1379 non-null	
64	GarageQual		object
65	GarageCond PavedDrive	1379 non-null	object
			object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch		
69		1460 non-null	
	ScreenPorch	1460 non-null	
71	PoolArea	1460 non-null	int64
72	•	7 non-null	object
73		281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76		1460 non-null	
	YrSold	1460 non-null	int64
78	V 1	1460 non-null	object
79			object
80		1460 non-null	int64
dtyp	es: float64(3),	int64(35), obj	ect(43)

1.4.1 Plot Categorical Variables

Now, pick 6 categorical variables and plot them against SalePrice with a bar graph for each variable. All 6 bar graphs should be on the same figure.

```
[5]: ## import matplotlib.pyplot as plt
     %matplotlib inline
     to_plot = ['BldgType', 'KitchenQual', 'SaleType', 'MSZoning',
                'Street', 'Neighborhood']
     fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(16,10))#, sharey=True)
     fig.tight_layout(w_pad = 4 , h_pad = 4)
     for i,item in enumerate(to_plot):
         grouped = df.groupby(item).SalePrice.mean()
         g = grouped.to_frame()
         g.reset_index(inplace = True)
          g.sort_values(by= "SalePrice", ascending=False, axis = 1)
         ax = axes[i//3][i\%3]
         sns.barplot(x = g[item], y = g["SalePrice"], ax = ax,
                     order=g.sort_values("SalePrice")[item],
                     color = "tab:blue")
         plt.xlabel(f"{item}")
         plt.xticks(rotation=90)
         plt.ylabel("Sale Price")
           plt.show()
     # Create bar plots
```



```
[7]: ### From gitHub Solution
     import matplotlib.pyplot as plt
     %matplotlib inline
     fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(16,10), sharey=True)
     categoricals = ['BldgType', 'KitchenQual', 'SaleType', 'MSZoning', 'Street', |
     for col, ax in zip(categoricals, axes.flatten()):
         (df.groupby(col)
                                        # group values together by column of interest
              .mean()['SalePrice']
                                          # take the mean of the saleprice for each_
      \hookrightarrow group
              .sort_values()
                                          # sort the groups in ascending order
              .plot
              .bar(ax=ax))
                                          # create a bar graph on the ax
         ax.set_title(col)
                                          # Make the title the name of the column
     fig.tight_layout()
```


1.5 Create dummy variables

Create dummy variables for the six categorical features you chose remembering to drop the first. Drop the categorical columns that you used, concat the dummy columns to our continuous variables and asign it to a new variable ames_preprocessed

```
[13]: # Create dummy variables for your six categorical features
      df_dummies = pd.get_dummies(df[to_plot], prefix = to_plot, drop_first = True)
[14]:
     df.drop(to_plot, inplace = True, axis = 1)
[15]: new_df = pd.concat([df_dummies, df], axis = 1)
      new_df.head()
[15]:
         BldgType_2fmCon
                           BldgType_Duplex
                                             BldgType_Twnhs
                                                               BldgType_TwnhsE
      0
                        0
                                          0
                                                           0
                                                                              0
      1
                        0
                                          0
                                                           0
                                                                              0
      2
                        0
                                          0
                                                           0
                                                                              0
      3
                        0
                                          0
                                                           0
                                                                              0
      4
                        0
                                          0
                                                            0
                                                                              0
                          KitchenQual_Gd KitchenQual_TA SaleType_CWD
         KitchenQual_Fa
                                                                            SaleType_Con
      0
                       0
                                                                        0
                                                                                       0
      1
                       0
                                        0
                                                         1
                                                                        0
                                                                                       0
                                                         0
                                                                        0
      2
                       0
                                        1
                                                                                       0
```

3		0		1			0		0		0
4		0		1			0		0		0
	SaleType	_ConLD	Scree	enPorch	PoolAre	a	PoolQC	Fence	${ t MiscFeature}$	\	
0		0		0		0	NaN	NaN	NaN		
1		0	•••	0		0	NaN	NaN	NaN		
2		0	•••	0		0	NaN	NaN	NaN		
3		0	•••	0		0	NaN	NaN	NaN		
4		0	•••	0		0	NaN	NaN	NaN		
	${ t MiscVal}$	MoSold	YrSold	SaleCo	ndition	Sa	alePrice				
0	0	2	2008		Normal		208500				
1	0	5	2007		Normal		181500				
2	0	9	2008		Normal		223500				
3	0	2	2006		Abnorml		140000				
4	0	12	2008		Normal		250000				

[5 rows x 119 columns]

1.6 Summary

In this lab, you practiced your knowledge of categorical variables on the Ames Housing dataset! Specifically, you practiced distinguishing continuous and categorical data. You then created dummy variables using one hot encoding.