近世代数 (H) 第十四周作业

涂嘉乐 PB23151786

2025年5月31日

Exercise 1 假设存在域同构 $\delta: k \stackrel{\sim}{\to} k'$, 若有域扩张 K/k, K'/k', 则 $|\delta$ 的延拓| $< \dim_k K$

Proof 若 $\dim_k K = +\infty$,则命题显然成立,假设 $\dim_k K < +\infty$,因为有限维域扩张一定是有限生成的代数扩张,设生成元为 $\alpha_1, \dots, \alpha_m$,考虑域扩张塔

$$k \subseteq k(\alpha_1) \subseteq \cdots \subseteq k(\alpha_1, \cdots, \alpha_m) = K$$

设 α_1 在 k 上的最小多项式为 $g(x)=x^n+\cdots+a_1x+a_0$,假设 $\tilde{\delta}:k(\alpha_1)\to K'$ 为 δ 的延拓,即 $\tilde{\delta}|_k=\delta$,则由 $g(\alpha_1)=0$ 知, $\tilde{\delta}(\alpha_1)$ 在 $k(\alpha_1)$ 中满足

$$\alpha_1^n + \delta(a_{n-1})\alpha_1^{n-1} + \dots + \delta(a_1)\alpha_1 + \delta(a_0) = 0$$

即 $\tilde{\delta}(\alpha_1) \in \operatorname{Root}_{k(\alpha_1)}(\delta(g))$,故 $\exists \beta \in \operatorname{Root}_{K'}(\delta(g))$,s.t. $\tilde{\delta}(\alpha) = \beta$,又因为 $|\operatorname{Root}_{K'}(\delta(g))| \leq \deg(\delta(g)) = n$, 所以 δ 从 k 到 $k(\alpha_1)$ 的延拓至多只有 $\deg g(x) = n$ 个

对 $\dim_k K$ 的维数使用第二数学归纳法,则对于每一个 $\tilde{\delta}: k(\alpha_1) \to k'(\beta)$,至多有 $\dim_{k(\alpha_1)} K$ 种延拓,所以 $|\delta$ 的延拓 $| \leq \dim_k k(\alpha_1) \cdot \dim_{k(\alpha_1)} K = \dim_k K$

Exercise 2 求 $K = \mathbb{Q}(\sqrt[3]{2})$ 的绝对 *Galois* 双射

Solution 先求 $\operatorname{Aut}(K)$, 设 $\sigma \in \operatorname{Aut}(K)$, $f(x) = x^3 - 2$, 因为 $\sigma(1) = 1 \Longrightarrow \sigma|_{\mathbb{Q}} = \operatorname{Id}_{\mathbb{Q}}$, 则在 $K \perp \sqrt[3]{2}$ 满足 $f(\sqrt[3]{2}) = 0$, 对 $f(\sqrt[3]{2}) = 0$ 两边同时作用 σ 得 $\sigma(\sqrt[3]{2})^3 - 2 = 0$, 即 $\sigma(\sqrt[3]{2}) \in \operatorname{Root}_K(f) = \{\sqrt[3]{2}\}$ 所以只能是 $\sigma(\sqrt[3]{2}) = \sqrt[3]{2}$, 故 $\sigma = \operatorname{Id}_K$, 所以 $\operatorname{Aut}(K) = \{\operatorname{Id}_K\}$, 故 $\operatorname{Aut}(K)$ 是平凡群,所以 K 的 绝对 Galois 双射为

$$\{ \exists R \in Aut(K) \} \stackrel{1:1}{\longleftrightarrow} \{ K/k \exists R \notin Galois 扩张 \}$$

 $Aut(K) \longmapsto K$

Exercise 3 考虑域扩张塔 $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(\sqrt[3]{2},\omega) = (\mathbb{Q},x^3-2)$, 证明

- 1. $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[3]{2})$ 不是 Galois 扩张
- $2. \mathbb{Q}(\sqrt[3]{2}) \subseteq \mathbb{Q}(\sqrt[3]{2},\omega)$ 是 Galois 扩张

Proof (1). 由上一题知, $Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q}) = \{ \mathrm{Id}_{\sqrt[3]{2}} \}$,故 $|Gal(\mathbb{Q}(\sqrt[3]{2})/\mathbb{Q})| = 1 < 3 = \dim_{\mathbb{Q}}(\sqrt[3]{2})$,所以它不是 Galois 扩张

1

(2). 因为 ω 在 $\mathbb{Q}(\sqrt[3]{2})$ 上的最小多项式为 $f(x)=x^2+x+1$,故 $\dim_{\mathbb{Q}(\sqrt[3]{2})}\mathbb{Q}(\sqrt[3]{2},\omega)=2$,下面证明 $|\mathrm{Gal}(\mathbb{Q}(\sqrt[3]{2},\omega)/\mathbb{Q}(\sqrt[3]{2}))|=2$,它小于等于域扩张的维数 2,只需证明它确实有两个元素,因为在 $\mathrm{Root}_{\mathbb{Q}(\sqrt[3]{2},\omega)}(f)=\{\omega,\omega^2\}$,所以 $\mathrm{Id}_{\mathbb{Q}\sqrt[3]{2}}$ 有两个延拓

$$\delta_1: \mathbb{Q}(\sqrt[3]{2}, \omega) \longrightarrow \mathbb{Q}(\sqrt[3]{2}, \omega) \qquad \delta_2: \mathbb{Q}(\sqrt[3]{2}, \omega) \longrightarrow \mathbb{Q}(\sqrt[3]{2}, \omega)$$

$$\omega \longmapsto \omega \qquad \qquad \omega \longmapsto \omega^2$$

所以我们找到了 $\delta_1, \delta_2 \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \omega)/\mathbb{Q}(\sqrt[3]{2}))$,即 $|\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \omega)/\mathbb{Q}(\sqrt[3]{2}))| = 2 = \dim_{\mathbb{Q}(\sqrt[3]{2})} \mathbb{Q}(\sqrt[3]{2}, \omega)$,所以它是 Galois 扩张

Exercise 4 设 K/k 是 Galois 扩张, $G = Gal(K/k), g(x) \in k[x]$ 不可约, 则群作用 $G^{\curvearrowright} Root_K(g(x))$ 可迁

Proof 即证明 $\forall a, b \in \text{Root}_K(g), \exists \sigma \in G, \text{s.t. } \sigma(a) = b$ 因为 $a, b \in \text{Root}_K(g)$, 所以 $\exists \text{Id}_k$ 的延拓

$$\delta: k(a) \longrightarrow k(b)$$
$$a \longmapsto b$$

满足 $\delta|_k=\mathrm{Id}_k$,由延拓定理知存在 δ 的延拓 $\tilde{\delta}:K\to K$ 满足 $\tilde{\delta}|_{k(\alpha)}=\delta$,故 $\tilde{\delta}|_k=\mathrm{Id}_k$,所以 $\tilde{\delta}\in G$ 且 $\tilde{\delta}(a)=b$,因此 a,b 位于相同的轨道上,由 a,b 的任意性知,它是可迁的

Exercise 5 记 $K = \mathbb{Q}(\sqrt{2}, \sqrt{3}) = (\mathbb{Q}, (x^2 - 2)(x^2 - 3)), G = \operatorname{Gal}(K/\mathbb{Q})$,考虑群作用

$$G^{\curvearrowright} \text{Root}_K((x^2-2)(x^2-3)) = \{\sqrt{2}, -\sqrt{2}, \sqrt{3}, -\sqrt{3}\} \stackrel{\text{if. } 3}{=} \{a, b, c, d\}$$

求出 G 的子群和 K 的子域, 并画出 G 的子群格和 K 的子域格

Proof 先前作业求过 $G = \operatorname{Gal}(K/\mathbb{Q}) = \{\delta_{0,1}, \delta_{0,2}, \delta_{1,1}, \delta_{1,2}\}$,具体如下($\forall \sigma \in G$ 都由域扩张的生成元决定,所以以下只写出生成元的像)

$$\begin{cases} \delta_{0,1}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,\sqrt{2},\sqrt{3},\sqrt{6}) \\ \delta_{0,2}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,\sqrt{2},-\sqrt{3},-\sqrt{6}) \\ \delta_{1,1}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,-\sqrt{2},\sqrt{3},-\sqrt{6}) \\ \delta_{1,2}(1,\sqrt{2},\sqrt{3},\sqrt{6}) = (1,-\sqrt{2},-\sqrt{3},\sqrt{6}) \end{cases}$$

经计算可得 $\delta_{0,2}, \delta_{1,1}, \delta_{1,2}$ 的阶均为 2,所以 G 有子群 $\{\mathrm{Id}\}, <\delta_{0,2}>, <\delta_{1,1}>, <\delta_{1,2}>, G$,接下来求它们对应的不动子域

$$\{\operatorname{Id}\}:K^{\{\operatorname{Id}\}}=K$$

$$<\delta_{0,2}>$$
: 因为 $\delta_{0,2}(\sqrt{2})=\sqrt{2}$,所以 $\mathbb{Q}(\sqrt{2})\subseteq K^{<\delta_{0,2}>}$,又因为 $[G:<\delta_{0,2}>]=2=[K^{<\delta_{0,2}>}:\mathbb{Q}]$,

且 $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]=2$, 由维数公式

$$[K^{<\delta_{0,2}>}:\mathbb{Q}(\sqrt{2})] = \frac{[K^{<\delta_{0,2}>}:\mathbb{Q}]}{[\mathbb{Q}(\sqrt{2}):\mathbb{Q}]} = 1$$

所以 $\mathbb{Q}(\sqrt{2}) = K^{<\delta_{0,2}>}$

 $<\delta_{1,1}>$: 因为 $\delta_{1,1}(\sqrt{3})=\sqrt{3}$,所以 $\mathbb{Q}(\sqrt{3})\subseteq K^{<\delta_{1,1}>}$,同上的论述知 $\mathbb{Q}(\sqrt{3})=K^{<\delta_{1,1}>}$ $<\delta_{1,2}>$: 因为 $\delta_{1,2}(\sqrt{6})=\sqrt{6}$,所以 $\mathbb{Q}(\sqrt{6})\subseteq K^{<\delta_{1,2}>}$,同上的论述知 $\mathbb{Q}(\sqrt{6})=K^{<\delta_{1,2}>}$ G: 由定义知 $K^G=\mathbb{Q}$,所以

Exercise 6 设 L, L' 均为格, $f: L \xrightarrow{\sim} L'$ 为偏序集同构, 则 f 保最小上界和最大下界, 即

$$f(a \lor b) = f(a) \lor f(b), \quad f(a \land b) = f(a) \land f(b), \quad \forall a, b \in L$$

Proof 由 f 是同态知 $a,b \le a \lor b \Longrightarrow f(a), f(b) \le f(a \lor b)$, 因此

$$(f(a) \vee f(b)) \leq f(a \vee b)$$

另一方面,因为 f(a), $f(b) \preceq (f(a) \vee f(b))$,所以 $a,b \leq f^{-1}(f(a) \vee f(b))$,故 $a \vee b \leq f^{-1}(f(a) \vee f(b))$,因此

$$f(a \lor b) \preceq f(a) \lor f(b)$$

所以 $f(a \lor b) = f(a) \lor f(b)$

由 f 是同态知 $a \land b \le a, b \Longrightarrow f(a \land b) \le f(a), f(b)$, 因此

$$f(a \wedge b) \leq f(a) \wedge f(b)$$

另一方面,因为 $\left(f(a) \wedge f(b)\right) \leq f(a), f(b)$,所以 $f^{-1}\left(f(a) \wedge f(b)\right) \leq a, b$,故 $f^{-1}\left(f(a) \wedge f(b)\right) \leq a \wedge b$,因此

$$f(a) \wedge f(b) \leq f(a \wedge b)$$

所以
$$f(a \wedge b) = f(a) \wedge f(b)$$

Exercise 7 设 K/k 是有限维 Galois 扩张, $G=\mathrm{Gal}(K/k)$, $H\leq G, \sigma\in G$, 求证 $K^{\sigma H\sigma^{-1}}=\sigma(K^H)$

Proof 因为

$$\begin{split} x \in K^{\sigma H \sigma^{-1}} &\iff \forall \tau \in H, \sigma \tau \sigma^{-1}(x) = x \\ &\iff \forall \tau \in H, \tau(\sigma^{-1}(x)) = \sigma^{-1}(x) \\ &\iff \sigma^{-1}(x) \in K^H \\ &\iff x \in \sigma(K^H) \end{split}$$

Exercise 8 设 K/k 是有限维 Galois 扩张, G = Gal(K/k), $H \leq G$, $E = K^H$, 则 $Gal(E/k) = G_H/H$, 其中 $G_H = \{g \in G : gHg^{-1} = H\}$

Proof 考虑映射

$$\theta: G_H \longrightarrow \operatorname{Gal}(E/k) = \operatorname{Gal}(K^H/k)$$

 $\sigma \longmapsto \sigma|_E$

首先验证 θ 是合理的: 对于 $\forall \sigma \in G_H \leq G, (\sigma|_E)|_k = \mathrm{Id}_k$,故 $\sigma|_E \in \mathrm{Gal}(E/k)$;接下来证明它是满射,对 $\forall \tau \in \mathrm{Gal}(E/k)$,由 K/k 是有限维 Galois 扩张知, τ 可以延拓到 K 上的自同构 $\tilde{\tau}$,进而 $\theta(\tilde{\tau}) = \tau$;最后考虑 $\mathrm{Ker}(\theta)$,因为

$$\sigma \in \operatorname{Ker}(\theta) \iff \sigma|_E = \operatorname{Id}_E$$

$$\iff \sigma \in \operatorname{Gal}(K/E) \cap G_H$$

$$\iff \sigma \in H$$

第二行到第三行是因为 $\operatorname{Gal}(K/E) = \operatorname{Gal}(K/K^H) = H, H \cap G_H = H$, 由同态基本定理

$$G_H/H \simeq \operatorname{Gal}(E/k)$$

$$\mathbb{P} G_H/H \simeq \operatorname{Gal}(K^H/k)$$