Übung Künstliche Neuronale Netzwerke Wintersemester 2011/2012

- ① Abgabe am 4. 11. 2011 bis Ende der Vorlesung handschriftlich auf Papier (1x pro Person)
- ② Abgabe bis 11. 11. 2011, 23:59 Uhr per E-Mail an markus.lessmann@ini.rub.de (1x pro Gruppe)

1. Übungsblatt vom 28. 10. 2011

1.1 Polynomregression

Eine Messreihe ist gegeben durch eine Folge von Eingabewerten x_1, \ldots, x_P und Sollwerten t_1, \ldots, t_P (Trainingsbeispiele). Diese soll durch Polynome vom Grad M angenähert werden.

$$y(\underline{w}, x) = \sum_{m=0}^{M} w_m x^m$$

$$E(\underline{w}) = \sum_{n=1}^{P} (y(\underline{w}, x_p) - t_p)^2$$

a) Berechnen Sie die Ableitungen $\frac{\partial E}{\partial w_k}$ mit $0 \le k \le M$ für beliebige Modellkomplexität M. 3P $^{\textcircled{1}}$

Um den minimalen Fehler zu finden, muss für alle $k:\frac{\partial E}{\partial w_k}=0$ sein. Dies führt zu einem linearen Gleichungssystem der Form

$$\underline{\underline{\underline{A}}}\,\underline{\underline{w}} = \underline{b}$$

- b) Erstellen Sie das Gleichungssystem, indem Sie Berechnungsvorschriften für $A_{i,j}$ und b_j aufstellen. Welche Dimensionen haben $\underline{\mathbf{A}},\underline{\mathbf{b}}$ und $\underline{\mathbf{w}}$?
- c) Schreiben Sie eine Funktion, die aus einer gegebenen Trainingsmenge $\{(x_p,t_p)\mid p=1,\ldots,P\}$ für eine gegebene Modellkomplexität M die Matrix $\underline{\underline{A}}$ und den Vektor $\underline{\underline{b}}$ erstellt und das Gleichungssystem $\underline{\underline{A}}\,\underline{w}=\underline{b}$ löst.

Wählen Sie als Trainingsbeispiele

$$x_p = \frac{(2p-1)\pi}{P} - \pi$$
 $t_p = \cos\left(\frac{x_p}{2}\right)$

und als Testbeispiele

$$\hat{x}_p = \frac{2p\pi}{P} - \pi$$
 $\hat{t}_p = \cos\left(\frac{\hat{x}_p}{2}\right)$.

- d) Erzeugen Sie für P=11 die Trainings- und Testbeispiele. Berechnen Sie den Restfehler auf der Trainingsmenge und den Fehler auf der Testmenge für die Modellkomplexitäten $M=0,\ldots,M_{max}$, indem Sie jeweils $\underline{\mathbf{A}},\underline{\mathbf{b}}$ und $\underline{\mathbf{w}}$ erstellen. Was beobachten Sie? 5P $^{\textcircled{2}}$
- e) Ersetzen Sie in der Erzeugung der Beispiele die cos-Funktion durch eine Gaußfunktion

$$g_{\mu,\sigma}(x) = \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right), \mu = 0, \sigma = 0.6$$

und tragen wieder die beiden Fehler gegen M auf. Wie hat sich das Verhalten verändert? 3P $^{\textcircled{2}}$

Tabelle 1:

x-Wert	\mathcal{C}_1	\mathcal{C}_2	$ C_3 $			
$1.2 \pm .05$	1	6	1			
$1.3 \pm .05$	2	9	1			
$1.4 \pm .05$	3	10	2			
$1.5 \pm .05$	3	8	3			
$1.6 \pm .05$	2	11	5			
$1.7 \pm .05$	2	10	4			
$1.8 \pm .05$	1	7	8			
$1.9 \pm .05$	1	5	4			
$2.0 \pm .05$	0	4	5			
$2.1 \pm .05$	0	2	7			
$2.2 \pm .05$	0	0	10			
$2.3 \pm .05$	0	0	12			
$2.4 \pm .05$	0	0	16			
$2.5 \pm .05$	1	0	14			
$2.6 \pm .05$	2	0	12			
$2.7 \pm .05$	2	0	9			
$2.8 \pm .05$	3	0	5			
$2.9 \pm .05$	5	0	3			
$3.0 \pm .05$	7	0	1			
$3.1 \pm .05$	13	0	0			
$3.2 \pm .05$	17	0	0			
$3.3 \pm .05$	12	0	0			
$3.4 \pm .05$	7	0	0			

1.2 Bedingte Wahrscheinlichkeiten

Bei der Klassifikation von Mustern anhand eines eindimensionalen Merkmals x sind während der Trainingsphase die in Tabelle 1 aufgeführten Fälle aufgetreten (die leeren Zeilen und Spalten dienen zum Rechnen):

a) Berechnen Sie: 4P ①

(i)
$$P(\mathcal{C}_1)$$
, $P(\mathcal{C}_2)$, $P(\mathcal{C}_3)$

(v)
$$P(1.45 > x \mid C_2)$$

(ii)
$$P(1.65 \le x < 2.65)$$

(vi)
$$P(C_1 \mid 1.45 > x)$$

(iii)
$$P(1.65 \le x < 2.65 \mid C_3)$$

(vii)
$$P(C_2 \mid 1.45 > x)$$

(iv)
$$P(3.05 \le x \mid C_1)$$

(viii)
$$P(C_3 \mid 1.45 > x)$$

b) Berechnen Sie für jedes Intervall die a posteriori-Wahrscheinlichkeiten $P(C_i|x)$ zu den verschiedenen Klassen und zeichnen Sie diese in ein Diagramm. Welches sind die idealen Entscheidungsgrenzen?