6 juin 2019 Erratum, du à la fatigue, au surmenage.

Ca se trouve dans la vidéo française à 10'10

https://www.youtube.com/watch?v=rgaapx9Vnkc&t=2s

Heureusement, je n'ai pas rajouté cette connerie dans la version anglaise

https://www.youtube.com/watch?v=Yhgwkt1-oLE&t=16s

où je montre simplement que :

Avec Lorentz réel : $L^{-1} = G L^{T}G$

Avec Lorentz complexe : $L^{-1} = G L^*G$

Et ça, c'est exact.

Revoyons tout cela proprement.

On a la matrice du groupe de Poincaré

$$\left(\begin{array}{cc} L & C \\ 0 & 1 \end{array}\right)$$

on forme l'élément de l'algèbre de Lie :

$$\left(\begin{array}{cc} \delta L & \delta C \\ 0 & 1 \end{array}\right)$$

Cette différenciation est prise autour de l'élément neutre, c'est à dire que :

$$L = I + \delta L$$

La matrice de Lorentz est définie axiomatiquement par :

$$L^{T}GL=G$$

Dans la vidéo j'ai écrit $L = I + \omega$ en « montrant » que ω est antisymétrique, ce qui est faux.

Voulant « apporter une précision » sur un calcul juste j'ai rajouté, par fatigue, un truc faux. En effet dans la vidéo à 13'35 on trouve :

We form the Poincaré group : (1)	We form the complex Poincaré group : (1)
$\mathbf{g} = \left(\begin{array}{cc} \mathbf{L} & \mathbf{C} \\ 0 & 1 \end{array} \right)$	$g = \left(\begin{array}{cc} L & C \\ 0 & 1 \end{array}\right)$
And its Lie algebra element: (2)	And its complex Lie algebra element: (2)
$Z = \left(\begin{array}{cc} G \omega & \gamma \\ 0 & 0 \end{array} \right)$	$Z = \left(\begin{array}{cc} G \omega & \gamma \\ 0 & 0 \end{array} \right)$
with	with
$\omega^{\mathrm{T}} = -\omega$	$\omega^* = -\omega$

Ca, c'est exact, mais dans ce que j'ai ajouté, je confonds ω avec δL !!!

Or si ω est antisymétrique, δL ne l'est pas. C'est qui est $G \delta L$ antisymétrique.

En revenant à cette équation (2) comment montrer que l'élément δL se met sous la forme de $G\omega$, la matrice ω étant une matrice antisymétrique, il reste à le montrer.

Ca se déduit de deux choses :

- La définition axiomatique de L
- Le fait qu'on différencie au voisinage de l'élément neutre.

Je détaille étape par étape.

$$L^{T}GL = G$$

$$\delta \left[L^{T}GL \right] = 0$$

$$\delta \left(L^{T} \right)GL + L^{T} \left(G \delta L \right) = 0$$

$$\delta \left(L^{T} \right) = \left(\delta L \right)^{T}$$

$$\left(\delta L \right)^{T}GL + L^{T} \left(G \delta L \right) = 0$$

Je replace L par la matrice unité, ce qui revient à négliger les termes du second ordre. Ca me donne :

$$\left(\delta L\right)^{T} G + \left(G \delta L\right) = 0$$

Mais je remarque que :

$$(\delta L)^{T}G = (G \delta L)^{T}$$

Donc j'ai:

$$(G \delta L)^{T} + G \delta L = 0$$

Donc G δ L est une matrice anti symétrique que j'appelle ω

Donc, en tenant compte que GG = I je peux dans mon éléments de l'algèbre de Lie remplacer δL par $G\omega$, qui est le produit de la matrice G par une matrice antisymétrique ω mais qui n'est pas une matrice antisymétrique.

Le transpose ça à mon groupe de Lorentz complexe. Ca me donne :

Calcul en complexe :

J'ai la définition de mon groupe de Lorentz complexe :

$$L^*GL = G$$

$$\delta[L^*GL] = 0$$

$$\delta(L^*)GL + L^*(G\delta L) = 0$$

$$\delta(L^*) = (\delta L)^*$$

$$(\delta L)^*GL + L^*(G\delta L) = 0$$

Je replace L par la matrice unité, ce qui revient à négliger les termes du second ordre. Ca me donne :

$$\left(\delta L\right)^* G + \left(G \delta L\right) = 0$$

Mais je remarque que :

$$(\delta L)^* G = (G \delta L)^*$$

Donc j'ai:

$$\left(G\,\delta L\right)^* + G\,\delta L = 0$$

Donc G δ L est une matrice antihermitique que j'appelle ω

Donc, en tenant compte que GG = I je peux dans mon éléments de l'algèbre de Lie remplacer δL par G ω , qui est le produit de la matrice G par une matrice antihermitique ω mais δL n'est pas une matrice antihermitique.