Domain-Specific Metamodeling, and language families

Specifying families of packet filtering languages.

Introduction

Scenario

Challenge

Overview of solutions

Introduction

Scenario

Challenge

Overview of solutions

Cybersecurity

THREAT Joons

by: Alex Savchuk

THE CYBERSECURITY SAVANNA

Hackers everywhere

Idea!! A real hardware filter

Idea: Packet filtering domain

Introduction

Scenario

Challenge

Overview of solutions

Variability everywhere obsessive compulsive syndrome

Challenge: How do we write our policies?

Filtering messages

Expressiveness, precision and correction

- One policy, multiple protocols
- Policies may change over time

A policy example: From DCHP cherry to DCHP cherry 2

Introduction

Scenario

Challenge

Overview of solutions

Example: A family of languages for packet filtering

Example: A family of languages for packet filtering

Tooling

Introduction

Scenario

Challenge

Overview of solutions

A case study for families of languages

A set of approaches

L1 L2 L3 L4

Variability-based development model for DSLs

- Variability modeling
- Components-based languages development

Families of Languages

Variants

Typing Theory for Agile Modeling

- Language interfaces
- Model polymorphism
- Viewpoints management

Language Manipulation

- Evolution
- Extension
- Restriction
- Customization
- Assembly

Insights

- Enables reuse of abstract syntax, concrete syntax and semantic.
- Allows us to configure the most convenient language for each case.

Can we increase the reuse between concepts?

Another solution to explore: Deep meta-modeling

Introduction

Scenario

Challenge

Overview of solutions

Lot's of things to be done

 Integrate David and Thomas solutions within the case study.

Investigate the Deep meta-modeling solution

 Explore and quantify of many reuse do we get in each case.

Domain-Specific Metamodeling, and language families

Specifying families of packet filtering languages.

