Cavalieri – Simpson method

Davide Zordan (mail@davidezordan.net)

```
<< Graphics`FilledPlot`
```

```
f[x_] := Exp[x]
```

```
CavalieriSimpson[a_, b_, n_, f_] :=
Module [1, ap, bp, cp, h = (b - a) / n, integrale = 0,
   xi, xiprec, xim, grafico = {}, sistema, parabola},
  1 = \{\{"x_{i \setminus - \setminus 1}", "x_{im}", "x_{i}", "Parabola"\}\};
  Do[xi = xiprec + 2h; xim = xiprec + h;
   integrale += ((f[xiprec] + f[xi] + 4 f[xim]) / 6);
   sistema = Solve[{ap xi^2 + bp xi + cp = f[xi]},
      ap xiprec^2 + bp xiprec + cp == f[xiprec],
      ap xim^2 + bp xim + cp = f[xim], {ap, bp, cp}];
   parabola = N[ap x^2 + bp x + cp /. sistema];
   AppendTo[grafico, {FilledPlot[{f[x], parabola},
      {x, xiprec, xi}, PlotRange → Automatic, Fills →
       {{{1, Axis}, GrayLevel[.9]}, {{2, 3}, GrayLevel[.6]}},
      Curves → Front, DisplayFunction → Identity],
     Graphics[{GrayLevel[0.1], Thickness[0.009],
       Line[{{xi, 0}, {xi, f[xi]}}]}];
   AppendTo[1, {N[xiprec], N[xim], N[xi], parabola}],
   {xiprec, a, b-2h, 2h}];
  integrale *= 2 h;
  Show[grafico, DisplayFunction → $DisplayFunction];
  Print[TableForm[1]];
 Print["Integrale: ", N[\int_{a}^{b} f[x] dx]];
  Print["Integrale approssimato: ", N[integrale]];
```

2 Cavalieri-Simpson.nb

$X_{i \setminus - \setminus 1}$	X _{im}	Xi	Parabola	
-2.	-0.666667	0.666667	1.09855 + 1.07574 x	$+ 0.297066 x^2$
0.666667	2.	3.33333	4.92754 - 7.31994 x	+ 4.27535 x ²
3.33333	4.66667	6.	789.395 - 433.511 x	$+61.5305 x^2$

Integrale: 403.293

Integrale approssimato: 409.113