Question 3, Page 73

Enderton provides 3 equivalent definitions of transitive sets on page 71. We will call them definitions 1, 2, 3, 4.

A set A is transitive if one of the following holds.

- 1. $x \in a \in A \Rightarrow x \in A$
- 2. $\bigcup A \subseteq A$
- 3. $a \in A \Rightarrow a \subseteq A$
- $A. A \subseteq P(A)$

(a)

Required: Show that if a is a transitive set, then P(a) is a transitive set.

Proof. Assume a is a transitive set.

By definition 4, we have that $a \subseteq P(a)$.

Assume $b \in P(a)$. Then, $b \subseteq a$. Since $b \subseteq a$ and $a \subseteq P(a)$, by transitivity of containment we have that $b \subseteq P(a)$.

Therefore, we have that $b \in P(a) \Rightarrow b \subseteq P(a)$ which satisfies definition 3. Therefore P(a) is transitive.

(b)

Required: Show that if P(a) is a transitive set, then a is a transitive set.

Proof. Assume P(a) is a transitive set.

By definition 2, we have that $\bigcup P(a) \subseteq P(a)$.

Note that $\bigcup P(a)$ is the union of all the elements of all the subsets of a. Therefore, $\bigcup P(a) = a$.

Therefore, $a \subseteq P(a)$ which satisfies definition 4. Therefore a is a transitive set.

Question 4, Page 73

Enderton provides 3 equivalent definitions of transitive sets on page 71. We will call them definitions 1, 2, 3, 4.

A set A is transitive if one of the following holds.

- 1. $x \in a \in A \Rightarrow x \in A$
- 2. $\bigcup A \subseteq A$
- 3. $a \in A \Rightarrow a \subseteq A$
- $A. A \subseteq P(A)$

Required: Show that if a is a transitive set, then $\bigcup a$ is a transitive set.

Proof. Assume a is a transitive set. By definition 2, we have that $\bigcup a \subseteq a$.

We will show that $\bigcup a$ satisfies definition 3. i.e. $b \in \bigcup a \Rightarrow b \subseteq \bigcup a$.

Now, let $b \in \bigcup a$. Since $\bigcup a \subseteq a$, we have that $b \in a$.

Let $c \in b$.

Since $c \in b$ and $b \in a$, it follows that $c \in \bigcup a$.

Since $c \in b$ was arbitrary, it follows that $b \subseteq \bigcup a$.

Therefore, we have proven that $b \in \bigcup a \Rightarrow b \subseteq \bigcup a$ satisfying definition 3.

Therefore, $\bigcup a$ is transitive.

Question 5, Page 73

(a)

Required: Assume that every member of A is a transitive set. Show that $\bigcup A$ is a transitive set.

Proof. We will show that $a \in \bigcup A \Rightarrow a \subseteq \bigcup A$. i.e. that $\bigcup A$ satisfies definition 3.

Let $a \in \bigcup A$. This means that $\exists b \in A (a \in b)$.

Since $b \in A$, by assumption we know that b is a transitive set.

Now let $x \in a$. So, we have that $x \in a \in b$.

By definition 1, since $x \in a \in b$ and b is transitive, we have that $x \in b$.

Since $x \in b$ and $b \in A$, we have that $x \in \bigcup A$.

Since $x \in a$ was arbitrary, we have that $a \subseteq \bigcup A$.

Therefore, we have shown that $a \in \bigcup A \Rightarrow a \subseteq \bigcup A$.

Therefore, $\bigcup A$ is transitive.

(b)

Required: Assume that every member of A is a transitive set. Show that $\bigcap A$ is a transitive set.

Proof. We will show that $a \in \bigcap A \Rightarrow a \subseteq \bigcap A$. i.e. that $\bigcap A$ satisfies definition 3.

Let $a \in \bigcap A$. This means that $\forall b \in A(a \in b)$

For every $b \in A$, we have that b is a transitive set by assumption.

Now let $x \in a$. So, we have that $x \in a \in b$.

By definition 1, since $x \in a \in b$ and b is transitive for every b, we have that $x \in b$ for all b.

Since $x \in b$ and $b \in A$ for each b, we have that $x \in \bigcap A$.

Since $x \in a$ was arbitrary, we have that $a \subseteq \bigcap A$.

Therefore, we have shown that $a \in \bigcap A \Rightarrow a \subseteq \bigcap A$. Therefore, $\bigcap A$ is transitive.

Question 8, Page 78

Let $f: A \to A$ be one-to-one and assume that $c \in A-ran(f)$. Define $h: \omega \to A$ by recursion:

$$h(0) = c \text{ and } h(n^+) = f(h(n)).$$

Required: Prove that h is one-to-one.

Proof. Let
$$T = \{n \in \omega | h(n) \text{ is one-to-one}\} = \{n \in \omega | \forall m \in \omega ((h(n) = h(m) \Rightarrow n = m))\}$$

We will show that $T = \omega$ by induction.

First consider whether or not $0 \in T$.

$$h(0) = h(m) \Rightarrow c = h(m)$$

If m = 0, then clearly $0 \in T$.

If $m \neq 0$, then $m = q^+$ for some $q \in \omega$. Then, we have that,

$$c = h(m) = h(q^+) = f(h(q))$$

This says that $c \in ran(f)$. But, we know that $c \in A - ran(f)$ which means that $c \notin ran(f)$.

This is a contradiction. So, m=0 which implies that $0 \in T$.

Now, assume that $n \in T$, where $n \in \omega$. We will show that $n^+ \in T$.

Consider $h(n^+) = h(m)$. If m = 0, then since $0 \in T$, this would mean that $n^+ = 0$ which is impossible by definition of successor. So $m \neq 0$ which means that $m = q^+$ for some $q \in \omega$.

Now,

$$h(n^+) = h(m) \Rightarrow h(n^+) = h(q^+)$$

 $\Rightarrow f(h(n)) = f(h(q))$ By definition of h
 $\Rightarrow h(n) = h(q)$ Since f is one-to-one
 $\Rightarrow n = q$ Since $n \in T$

Since n = q, we have that $\{n\} = \{q\}$ which implies that $n \cup \{n\} = q \cup \{q\}$ which is the same as saying that $n^+ = q^+ = m$.

Therefore, $n^+ \in T$.

By induction, we have that $T = \omega$.

Therefore, h is one-to-one, as required.

Question 9, Page 78

Let $f: B \to B$ and $A \subseteq B$.

Let $C^* = \{X | A \subseteq X \subseteq B \land F[X] \subseteq X\}$

Also, h(0) = A and $h(n^{+}) = h(n) \cup f[h(n)]$

 $C_* = \bigcup_{i \in \omega} h(i)$

Required: Show $C^* = C_*$

Proof. We will first show that $C^* \subseteq C_*$.

Since h starts with h(0) = A and since $f: B \to B$, we have that $A \subseteq C_* \subseteq B$.

Now consider the following.

$$\begin{split} f[C^*] &= f[\bigcup_{i \in \omega} h(i)] \\ &= \bigcup_{i \in \omega} f[h(i)] \qquad \qquad \text{By Theorem 3K} \\ &\subseteq \bigcup_{i \in \omega} h(i^+) \qquad \qquad \text{Since } h(i^+) = h(i) \cup f[h(i)] \Rightarrow f[h(i)] \subseteq h(i^+) \\ &\subseteq \bigcup_{i \in \omega} h(i) \qquad \qquad \text{Since } \omega \text{ is an inductive set} \\ &= C_* \end{split}$$

Thus, $f[C^*] \subseteq C_*$

Since $A \subseteq C_* \subseteq B$ and $f[C^*] \subseteq C_*$ and C^* is an intersection of sets containing C_* , we have that $C^* \subseteq C_*$.

Now we will show that $C_* \subseteq C^*$.

Let $T = \{i \in \omega | h(i) \subseteq C^*\}.$

We will prove that $T = \omega$ which would show that $C_* = \bigcup_{i \in \omega} h(i) \subseteq C^*$.

By definition, $h(0) = A \subseteq C^*$. So $0 \in T$.

Assume that $i \in T$ where $i \in \omega$. i.e. $h(i) \subseteq C^*$.

We must now show that $h(i^+) \subseteq C^*$.

Notice that $h(i^+) = h(i) \cup f[h(i)]$. By assumption $h(i) \subseteq C^*$. So we need that $f[h(i)] \subseteq C^*$ in order for $h(i^+) \subseteq C^*$.

Since $h(i) \subseteq C^*$, we have that $h(i) \subseteq X$ for each X such that $A \subseteq X \subseteq B \land f[X] \subseteq X$.

Since $h(i) \subseteq X$, by applying f we get that $f[h(i)] \subseteq f[X]$. Furthermore, $f[X] \subseteq X$. So, $f[h(i)] \subseteq f[X] \subseteq X$.

Therefore $f[h(i)] \subseteq C^*$.

Therefore, $h(i^+) \subseteq C^*$.

Therefore, $i^+ \in T$ which means that $T = \omega$ by induction.

Therefore, $C_* \subseteq C^*$.

Thus, we have proven that $C^* = C_*$. This completes the proof.

Question 19, Page 88

Required: Prove that if m is a natural number and d is a nonzero natural number, then there exists numbers q and r such that $m = (d \cdot q) + r$ where $r \in d$.

Proof. We will prove that $T = \{m \in \omega | (\exists q \in \omega)(\exists r \in \omega)(m = (d \cdot q) + r \land r \in d) \}$ is inductive.

First, notice that $0 = d \cdot 0 + 0$ and that $r = 0 \in d \neq 0$. Therefore, $0 \in T$.

Now, assume that $m \in T$ where $m \in \omega$. i.e. there exists $q, r \in \omega$ such that $m = (d \cdot q) + r$ and $r \in d$.

We will now show that $m^+ \in T$. Consider the following.

$$m^+ = ((d \cdot q) + r)^+$$
 By successor
= $(d \cdot q) + r^+$ By A1

We must now show that $r^+ \in d$.

We know that $r \in d \Rightarrow r^+ \in d^+ \Rightarrow r^+ \in d \lor r^+ = d$.

We now consider two cases.

Case 1: If $r^+ \in d$, then we are done.

Case 2: If $r^+ = d$, then consider the following.

$$m^+ = (d \cdot q) + r^+$$

 $= (d \cdot q) + d$ Since $r^+ = d$
 $= (d \cdot q^+)$ By M2
 $= (d \cdot q^+) + 0$ By A1

Since $d \neq 0$, we know that $0 \in d$.

Therefore, $m^+ \in T$ and by induction, $T = \omega$, as required.

Question 20, Page 88

Required: Let A be a nonempty subset of ω such that $\bigcup A = A$. Show that $A = \omega$.

Proof. We will show that $A = \omega$ by induction.

If $0 \in A$, then we are done with the base case.

If $0 \notin A$, then since A is nonempty, there exists an $m \in A$ such that $m \neq 0$.

But, we know that $0 \in m$ for every nonzero $m \in \omega$.

So,
$$0 \in \bigcup A = A$$
.

Now, assume that $n \in A$. This is the hypothesis for strong induction.

Since $A = \bigcup A$, we have that $n \in \bigcup A$. It follows that $\exists m \in A (n \in m)$.

Now, consider the following 2 cases for m.

Case 1: If $m = n^+$, then $n^+ \in A$ and we're done.

Case 2: If $m \neq n^+$, then have the following.

If $m \in n^+$, then $m \in n \vee m = n$ which is is impossible because it would violate trichotomy since $n \in m$.

So it must be that $n^+ \in m$. Since $m \in A$, this implies that $n^+ \in \bigcup A$. Since $A = \bigcup A$, we have that $n^+ \in A$.

Therefore, by induction, we have that $A = \omega$, as required.

Question 21, Page 88

Required: Prove that no natural number is a subset of any of its elements.

Proof. Let $a \in \omega$, If a = 0, then clearly $a = \emptyset$ which means a has no elements. Therefore a is not a subset of any of its elements.

Now, consider $a \neq 0$.

Assume for the sake of contradiction that $\exists b \in a (a \subseteq b)$.

But, by 4M in Enderton, we know that $a \subseteq b \Leftrightarrow a \in b \lor a = b$.

But, we have that $b \in a$. So we cannot have $a \in b \lor a = b$ since the natural numbers satisfies trichotomy.

This is a contradiction. Therefore no natural number is a subset of any of its elements.

This completes the proof, as required.

Question 22, Page 88

Required: Show that for any natural numbers m and p, we have $m \in m + p^+$.

Proof. Let $m, p \in \omega$.

Notice, that $p^+ \neq 0$. Then, since every natural number contains all numbers less than it, we have that $0 \in p^+$.

Consider the following.

$$0 \in p^+$$

 $m + 0 \in m + p^+$ By Theorem 4N
 $m \in m + p^+$ Since $m + 0 = m$ by A1

This completes the proof, as required.

Question 23, Page 88

Required: Assume that m and n are natural numbers with m less than n. Show that there is a p in ω for which $m + p^+ = n$.

Proof. Let $n \in \omega$ be arbitrary and fixed such that $n \neq 0$.

Let
$$T = \{m \in n | \exists p \in \omega(m + p^+ = n)\}.$$

We will show that T = n by induction.

Consider m = 0.

Then, $0 + p^+ = n$ means that we can take $p^+ = n$. Since $n \neq 0$, we know that there exists a corresponding $p \in \omega$.

So, $0 \in T$.

Assume $m \in T$. i.e. There exists a $p \in \omega$ such that $m + p^+ = n$.

Now consider m^+ . If $m^+ = n \lor n \in m^+$, then we don't have to do anything since $m^+ \not\in n$ which would mean that $m^+ \notin T$. So, consider $m^+ \in n$.

Now, consider the following.

$$m+p^+=n$$
 By induction hypothesis $(m+p)^+=n$ By A2 By commutativity $p+m^+=n$ By A2 By commutativity By A2 By commutativity

Since we know that $m^+ \in n$, we know that $p \neq 0$.

This means that $p = a^+$ for some $a \in \omega$.

Thus, $m^+ + a^+ = n$.

Therefore $m^+ \in T$.

Therefore, T = n, completing the proof, as required.