

DT - curs 10 - w11

GSM frequency spectrum:

- 124 de purtătoare pentru GSM-ul primar
- ARFN = absolute radio frequency number

Question: De ce este purtătoarea cea mai mică din celulă ca find baliză (?)

Answer: caută frecvența cea mai mică de jos în sus

- fiecare frecvență e împărțită pe timeslots (8 în total)

Def: un canal fizic reprezintă un același timeslot de pe o purtătoare de frecvență, mai multe cadre de TDMA consecutive

- o purtătoare într o celulă => 8 canale fizice (uplink și downlink sunt văzute ca același canal)
- 2 purtătoare într o celulă => 16 canale fizice (8 pentru fiecare purtătoare)
- 8 timeslots formează un cadru TDMA, utilizează pe rând aceeași purtătoare
- **burst** = rafală radio (simboluri radio trimise fară recepționare)

Physical channels: Normal burst structure (TS):

- în buffer-ul de recepție caută
- frecvență de antrenare pe 26 biți
- **Training sequence** = rolul de a identifica în mod rapid și în mod unic unul din cei 8 timeslots dintr un cadru de TDMA; ajută modelul intern din telefon să se 'antreneze' conform cu canalul radio (?)
- Stealing flags:
 - indicatori de furt
 - starea default pe 0
 - fură din vocea ta debit
 - în loc de trafic, biții utili vor conține informații de semnalizare
- Payload: 57 biţi - Tail bits: 3 biţi
- Interval de garda (Guard delays):
 - 8 biţi şi 1/8
 - interval de timp corespunzător unui bit
 - la nivel de burst e 8 și 1/8
- nr de canale fizice într o celulă = nr de purtătoare * 8 timeslots
- canalul (?) vehiculat la un moment dat pe un canal fizic
- pe un canal fizic se pot mapa mai multe canale logice

Family	Abbr.	Name	1	Гуре	Description	Format
Broadcast	FCCH	Frequency Correction Ch.	MP	→ UE	Identifies the beacon freq.	Frequency
	SCH	Synchronization Ch.	MP	→ UE	UE reception sync.	Synchro
	ВССН	Broadcast Common Ch.	MP	→ UE	System info from network	Normal
CCCH	RACH	Random Access Ch.	PP	← UE	Network access req. from UE	Access
	PCH	Paging Ch.	MP	→ UE	Search of UE within network	Normal
	AGCH	Access Grant Ch.	PP	→ UE	Dedicated channel assignment	Normal
	СВСН	Cell Broadcast Control Ch.	MP	→ UE	Broadcast SMS	Normal
	NCH	Notification Ch.	MP	→ UE	Netwk. access & extra info for UE	Normal
Dedicated signaling (Out of call)	SDCCH	Standalone Dedicated Ctrl. Ch.	PP	← →	Signaling with a particular UE	Normal
	SACCH	Slow Associated Control Ch.	PP	← →	Pwr. ctrl., timing adv., SMS	Normal
Dedicated Traffic + Signaling (During a call)	TCH/F	Traffic / Full Rate Ch.	PP	← →	Traffic speech: 13 kbps; data	Normal
	TCH/H	Traffic / Half Rate Ch.	PP	← →	Traffic speech: 5.6 kbps; data	Normal
	SACCH	Slow Associated Control Ch.	PP	← →	Pwr. ctrl., timing advance	Normal
	FACCH	Fast Associated Control Ch.	PP	← →	Handover, FAX/data	Normal

- CH de la sfârșit de la abreviere înseamnă channel
- FFCH:
- frequency correction
- familia de tip Broadcast
- tip downlink
- folosit pt a identifica frecvența validă
- frequency burst (142 de 0-uri consecutive pe burst)
- 142 de 0-uri consecutive folosit la sistemul de modulație GSM(?)
- SCH:
- difuzare la nivel de celulă pentru toate dispozitivele
- ajută telefonul să și reglaze (?)
- synchronization channel
- BCCH:
- canalul de pe care telefonul citește
- RACH:
- random access channel
- poate fi folosit aleator la orice moment pentru cereri de resurse/de access
- este mai scurt
- PCH:
- rețeaua caută un anumit abonat, un anumit mobil
- AGCH:
- răspunsul de access al rețelei
- se transmite nuj ce
- CBCCH:
- se transmit
- mă arunc pe geam

Logical channels: Usage in a typical UE-network transaction

Off Attach	Idle	Access	Connected (Out of call)	Connected (During a call)
Synchronization: FCCH + SCH	Access info, extra info, SMS Broadcast: NCH, CBCH	(Paging): (PCH)	Dedicated signaling channel: SDCCH + SACCH	Dedicated traffic speech / data channel: TCH + SACCH
System		Network access		TOIL - BACOII
Information:		request:		(5.1116
вссн		RACH		(Dedicated fast signaling channel): (FACCH + SACCH)
		Access		()
		acknowledge:		
		AGCH		

- cum se mapează canalele logice pe canale fizice?

- pe TS0 sunt mapate 5 canale logice
- dacă TSO pică a picat toată celula, este esențială
- pentru uplink, TSO este folosit pentru requests
- TS18 canale de semnalizare dedicate
- galben, restu TS sunt pentru tarfic ca resursă dedicate

Q: în acest ex de celulă, câti utilizatori pot să vb la telefon?

A: 14, număram TS galbeni, câte canale de trafic avem, 6 pe baliză, 8 pe purtătoare (dacă e full rate, dacă e half rate e x2)

Q: Trafic fullrate, câți utilizatori pot să vb la telefon și să primească și sms în același timp?

A: SMS-ul se poate primi pe SDCCH, 8(SDCCH) + 14(canale de vb la telefon)

Q: în celula asta, câți utilizatori pot să se autentifice simultan?

A: SDCCH => 8, 'simultan' = într un anumit interval de timp