- **1. а)** Докажите, что в \mathbb{R}^n есть порождающий набор из n векторов. Есть ли порождающий набор из n+1 вектора?
- **б)** Докажите, что любые два неколлинеарных вектора в \mathbb{R}^2 являются порождающим набором.
- **в)** Придумайте порождающий набор в пространстве бесконечных последовательностей вещественных чисел.
- **2. а)** Докажите, что если набор векторов линейно зависим, то один из векторов выражается в виде линейной комбинации через другие.
- б) Приведите пример линейно зависимой системы векторов, в которой какой-нибудь вектор не выражается через остальные.
- 3. Докажите, что минимальная система порождающих векторов всегда линейно независима.
- 4. а) Постройте какой-нибудь базис в пространстве всех многочленов от одной переменной.
- б) Можно ли выбрать в этом пространстве конечный базис?
- **5.** Пусть (v_1, \ldots, v_n) базис в пространстве V. Покажите, что следующие наборы векторов тоже базисы в V:
- а) $(\lambda_1 v_1, \dots, \lambda_n v_n)$, где $\lambda_1, \dots, \lambda_n$ ненулевые скаляры.
- **б)** $(v_1, v_2 + \lambda_2 v_1, v_3 + \lambda_3 v_1, \dots, v_n + \lambda_n v_1)$, где $\lambda_2, \dots, \lambda_n$ ненулевые скаляры.
- в) $(v_{\sigma_1}, \dots, v_{\sigma_n})$, где $\sigma: (1, 2, \dots, n) \to (1, 2, \dots, n)$ произвольная биекция.
- **6.** Постройте изоморфизм между произвольным n-мерным векторным пространством V и \mathbb{R}^n . Покажите, что изоморфизмам взаимно-однозначно соответствуют базисы в пространстве V.
- **7.** Рассмотрим множество $\mathbb{R}[x]$ многочленов с вещественными коэффициентами как вещественное векторное пространство.
 - а) Представьте вектор x^3 как линейную комбинацию векторов 1, (x-1), $(x-1)^2$, $(x-1)^3$.
 - **б)** Являются ли векторы $1, (x-1)^2, (x-2)^3, x^3$ линейно зависимыми?
- в) Отождествите с \mathbb{R}^n (для какого-то n) следующие пространства: пространство многочленов степени не выше 5; пространство многочленов степени не выше 5, зануляющихся в точке 0; пространство многочленов степени не выше 5, зануляющихся в -1 и 1; пространство многочленов степени не выше 5, чья производная в нуле равна 0.
- **8.** Пусть V вещественное векторное пространство всех вещественных функций на отрезке [0,1].
- а) Являются ли функции x^3 , $\sin(x)$, $\cos(x)$ и e^x линейно зависимыми в V?
- **б)** Тот же вопрос для функций $1, x^2, \operatorname{tg}(x), \sin^2(x), e^x, \cos^2(x)$.
- **9.** Обозначим через E_{ij} квадратную матрицу $n \times n$, у которой на пересечении i-той строки и j-того столбца стоит 1, а все остальные коэффициенты равны 0.
- а) Для каждой матрицы E_{ij} при n=3 опишите геометрически линейное отображение трёхмерного пространства в себя, заданное матрицей E_{ij} (например, представьте E_{ij} в виде композиции проекционного оператора и вращения).
- **б)** Докажите матричные тождества: $E_{ij}E_{jk}=E_{ik}; \quad E_{ij}E_{j'k}=0$ при $j\neq j'$. Каков геометрический смысл этих тождеств?
- **10.** а) Введите на множестве $\mathrm{Mat}_{m \times n}$ матриц размера $m \times n$ структуру вещественного векторного пространства.
 - **б**) Предъявите базис и вычислите размерность пространства $\mathrm{Mat}_{m \times n}$.

- **11.** Квадратная матрица A размера $n \times n$ называется диагональной, если все её коэффициенты кроме, возможно, $a_{11}, a_{22}, \ldots, a_{nn}$ равны нулю.
- а) Проверьте, что диагональные матрицы образуют подпространство в пространстве $\mathrm{Mat}_{n\times n}$, и найдите размерность этого подпространства.
- **б)** Для диагональной матрицы $D=2E_{11}+\frac{1}{3}E_{22}+\frac{1}{2}E_{33}$ при n=3 опишите геометрически линейное отображение трёхмерного пространства в себя, заданное матрицей D.
- **в)** Проверьте, что произведение двух диагональных матриц снова диагональная матрица.
- г) Пусть $D = \lambda_1 E_{11} + \lambda_2 E_{22} + \ldots + \lambda_n E_{nn}$. Найдите все матрицы A, которые коммутируют с D (то есть AD = DA).
- 12. Пусть $\mathbb{R}[x]_{\leqslant n}$ векторное пространство многочленов степени не выше n. Зафиксируем n+1

12. Пусть
$$\mathbb{R}[x]_{\leqslant n}$$
 — векторное пространство многочленов степени не выше n . Зафиксируем $n+1$ число a_0,a_1,\ldots,a_n . Докажите, что многочлены $f_i(x)=\dfrac{\displaystyle\prod_{j=0,j\neq i}^n x-a_j}{\displaystyle\prod_{j=0,j\neq i}^n a_i-a_j}, \ i=0,\ldots,n$ образуют базис $\mathbb{R}[x]_{\leqslant n}$. Каковы координаты произвольного многочлена $g(x)$ в этом базисе?