PROBABILITY

SAMPLE SPACE: The set of all possible outcomes of an experiment is known as sample space. It's denoted by S. **EVENT:** Any subset of the sample set is known as event.

COUNTABLY INFINITE SET	: UN-COUNTABLY INFINITE SET:	UN-COUNTABLY FINITE SET:
E.g. $S = \{x x = 0,1,2,3,\}$	E.g. $S = \{x x \ge 0\}$	E.g. $S = \{x 0 \le x \le 5\}$

PROBABILITY: If the sample space S of an experiment consist of finitely many outcomes that are equally likely, then the probability	$p(A) = \frac{No. of \ Values \ in \ A}{No. of \ Values \ in \ S} = \frac{n(A)}{n(S)}$
of an event A is given by $p(A)$	

GENERAL DEFINITION OF PROBABILITY: Given a sample space S, with each event A of S, there is a number p(A) called the probability of A, such that the following axioms of probability are satisfied,

$0 \le p(A) \le 1$	p(S) = 1	Exclusive Events: $A \cap B = \emptyset$ hence, $p(A \cup B) = p(A) + p(B)$

COMPLEMENT RULE: For an event <i>A</i> and it'	ADDITIONAL RULES FOR MUTUALLY EXCLUSIVE
Compliment A^C in a sample space S,	EVENTS: n mutually exclusive events A_n
$p(A^C) = 1 - p(A)$	$p(A_0 \cup A_1 \cup A_2 \cup) = p(A_0) + p(A_1) + p(A_2) + \cdots$
$p(A \cap A^C) = \emptyset \qquad p(A \cup A^C) = S$	$A_i \cap A_j = \emptyset, Where \ i \neq j$

ADDITIONAL RULE FOR ARBITRARY EVENTS: For events A and B in the sample space S,

$p(A \cup B) = p(A) + p(B) - p(A \cap B)$ $p(A \cup B \cup C) = p(A) + p(B) - p(A \cap B) - p(A \cap B) - p(A \cap B) + p(A \cap B \cap C)$

ADDITIONAL RULE FOR "n" ARBITRARY EVENTS:

$$p(A_0 \cup A_1 \cup A_2 \cup \dots) = \sum_{i=1}^n p(A_i) - \sum_{i1 \le i2} p(A_{i1} \cap A_{i2}) + \sum_{i1 \le i2 \le i3} p(A_{i1} \cap A_{i2} \cap A_{i3}) \dots + (-1)^{n+1} p(A_0 \cap A_1 \cap A_2 \cap \dots)$$

	<12<13	
CONDITIONAL PROBABILITY:	MULTIPLICATION THEOREM:	
$p(A \cap B) \qquad p(A \cap B)$	$p(A \cap B) = p(A B) p(B) = p(B A) p(A)$	
$p(A B) = \frac{p(A \cap B)}{p(B)} \text{ And } p(B A) = \frac{p(A \cap B)}{p(A)}$		
MUTUALLY EXCLUSIVE EVENTS	INDEPENDENT EVENTS	
Mutually exclusive events only have significance if we	Independent Events can only be considered in multiple	
consider one particular performance of one particular	performances of the same experiment or different	
experiment.	experiment or different experiments together.	
$p(A B) = p(B A) = 0 [\because p(A \cap B) = 0]$	p(A B) = p(A) And p(B A) = p(B)	
$p(A \cup B) = p(A) + p(B)[Can be used for n events]$	$p(A \cap B) = p(A) p(B)[Can be used for n events]$	

Bay's Rule: $p(A) = \sum_{j=1}^{n} p(A B_j) p(B_j)$	$p(A B_i) p(B_i)$
Here , $B_i \cap B_j = \emptyset$, <i>Where</i> $i \neq j$ [Mutually Exclusive]	$p(B_i A) = \frac{p(A B_i) p(B_i)}{\sum_{j=1}^n p(A B_j) p(B_j)}$

SAMPLING: Randomly drawing objects from a given set of objects.		
With Replacement	Without Replacement	
The object that was drawn at random is placed back to the	The object that was drawn is put aside.	
given set and the set is mixed thoroughly.		

	FACE			
52 Cards	26 Cards	13 Heart Suits	A, 2, 3,, 10, K, Q, J	CARDS
		13 Diamond Suits	A, 2, 3,, 10, K, Q, J	K, Q, J
	26 Cards	13 Spades Suits	A, 2, 3,, 10, K, Q, J	
		13 Clubs Suits	A, 2, 3,, 10, K, Q, J	

RANDOM VARIABLE: Random Variable is a function whose domain is a sample space and whose range is same set of real numbers.

PROBABILITY MASS FUNCTION: $PMF = f(x) = p(X = x)$	X	= Random Variable
$\sum p(x_i) = 1 \text{ And } 0 \le f(x) \le 1, \forall x$	p(X)	= Probability of R. V.

Cumulative Distribution Function $CDF = F(x) = p(X \le x) = \sum_{x_i \le x} p(X = x_i) = \sum_{x_i \le x} f(x_i)$

CONTINUOUS RANDOM VARIABLE (CRV): A random variable x and it's distribution are of continuous type if it's cumulative distribution (CDF) F(x) is given by,

The second activition (CDF)
$$F(x)$$
 is given by,
$$F(x) = \sum_{x \le x_i} f(x) = \sum_{x \le x_i} p(X = x) = \int_{-\infty}^{x} f(v) dv$$
Where, f = Probability density function (PDF) of x Relation Between CDF & PDF: $f(x) = \frac{d}{dx} F(x)$

PROPERTIES OF CRV:

- 1. NON-NEGATIVITY: The PDF f(x) is a Non-Negative function. $f(x) \ge 0$
- **2.** NORMALIZATION: The total area under the graph of the PDF is equal to Unity. $\int_{-\infty}^{\infty} f(x) dx = 1$

EXPECTED VALUE OF RANDOM VARIABLE			
DISCRETE RAN	DOM VARIABLE	CONTINUOUS RANDOM VARIABLE	
$E[X] = \sum_{\forall x} x p(X = x)$		$E[X] = \int_{-\infty}^{\infty} x f(x) dx$	
PROPERTIES			
E[aX] = aE[X]	E[aX + b] = aE[X] + b	$E[g(x)] = \int_{-\infty} g(x)f(x) dx$	
E[E[X]] = E[X]	E[K] = K	If $g(x) = x^n$, $E[g(x)] = n^{th}$ moment	

VARIANCE OR SECOND CENTRAL MOMENT OF A RANDOM VARIABLE:

 $E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2} = Variance = [Std. Deviation (\sigma)]^{2}$

PROPERTIES	$Var\left(x\right) \geq 0$
$Var(ax) = a^2 Var(x)$	Var(K) = 0
$Var(ax+b) = a^2 Var(x)$	$Var(x \pm y) = Var(x) + Var(y) \pm Cov(x, y)$
Cov(x,y) = E[xy] - E[x] E[y]	

For independent Random variables,

Cov(x, y) = 0	$Var(x \pm y) = Var(x) + Var(y)$
---------------	----------------------------------

FUNCTION	f(x)	E[X]	$E[X^2]$	Var(x)
Uniform Random Variable	$-\frac{1}{\sqrt{(For a < x < b)}}$	a+b	$a^2 + b^2 + ab$	$(b - a)^2$
	$= \frac{1}{b-a} (For \ a \le x \le b)$ = 0 (Otherwise)	2	3	12
Exponential Random Variable	$=\lambda e^{-\lambda x}(For \ x \ge 0)$	1_	2	1
	= 0 (Otherwise)	λ	$\overline{\lambda^2}$	$\overline{\lambda^2}$
Poisson Random Variable	$\lambda^x e^{-\lambda}$	λ	$\lambda(\lambda+1)$	λ
(Parameter λ)	$=\frac{\lambda^x e^{-\lambda}}{x!}(x=0,1,2,)$			
	= 0 (Otherwise)			
Normal or Gaussian Distribution	$=\frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}(For-\infty\leq x\leq \infty)$	μ	-	σ^2
Std. Normal or Gaussian Distribution ($\sigma^2 = 1, \mu = 0$)	$=\frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}}(For-\infty \le x \le \infty)$	0	-	<u>±</u> 1
For $\sigma^2 = 1$, Area = 0.6827	For $\sigma^2 = 2$, Area = 0.9545	For a	$\sigma^2 = 3, Area = 0$).996

If x is Normal Random variable with mean μ and variance σ^2 then $Z = (x - \mu)/\sigma$ is also Normal random variable with $\mu = 0$ and $\sigma^2 = 1$.

Question Can be twist in the form of integral problem.

BERNOULLI RANDOM VARIABLE	BINOMIAL RANDOM VARIABLE	
Suppose that a trail or an experiment whose outcome can	Suppose now that "n" independent trails each if which	
be classified as either success or failure is performed. If	results in a success with probability p and in a failure with	
we let $X=1$, when the outcomes is success and $X=0$,	probability $1 - p$ are to be performed. If X represents the	
when outcome is failure, the probability mass function of	number of success that occurrence in the "n" trails then X	
X is given by,	is said to Binomial Random variable with parameters	
p(X = 1) = p, p(X = 0) = 1 - p,	(n, p). It's Probability mass function given by,	
Where $0 \le p \le 1$	$p(X = x) = {}^{n}C_{x}p^{x}(1-p)^{n-x}, Where x = 0,1,2,,n$	
It's Special case of binomial random variable with $x = 0,1$	E[X] = np Var(x) = np(1-p)	
$_{n}P_{r} = (n!)/(n-r)!$	${}^{n}C_{x} = {}_{n}P_{r}/r!$	

NORMAL APPROXIMATION TO BINOMIAL RANDOM VARIABLE:

When "n" is large, a binomial random variable with parameters "n" and "p" will have approximately the same distribution as a normal random variable with the same mean and variance as the binomial. If X denotes the number of success that occur when "n" independent trails each resulting in a success with probability "p" are performed then for any a < b,

$$p\left(a \le \frac{X - np}{\sqrt{np(1 - p)}} \le b\right) = \int_a^b \frac{1}{\sqrt{2\pi}} e^{\frac{-x^2}{2}} dx$$

$$p\left(a \le \frac{X - \mu}{\sigma} \le b\right) = p(a \le X \le b)$$
Here, Mean $\mu = np$ And Variance $\sigma^2 = np(1 - p)$

POISSON APPROXIMATION TO BINOMIAL RANDOM VARIABLE:

When "n" is large and "p" is small then binomial distribution is very closely approximated by Poisson distribution, Poisson distribution is a limiting case of binomial distribution as $n \to \infty$ and $p \to 0$.

$$p(X = x) = \frac{\lambda^x e^{-\lambda}}{x!} = {^nC_x}p^x (1-p)^{n-x}$$
 Here, λ is mean of Poisson Random variable.
Hence, $\lambda = np$

Exponential Random Variable (Parameter λ)	Poisson Random Variable
In practice, It's often arises as the distribution of the	a. The number of misprints on a page of book.
amount of time until some specific event occurs.	b. The number of people in a community who survive
a. amount of time until an earthquake occurs.	to age 100.
b. amount of time until a new war breaks out.	c. The number of Wrong telephone numbers that are
c. amount of time until a telephone call you receive	dialled in a day.
turns out to be a wrong number.	d. The number of customers entering in a day in office.

- If X and Y are independent Poisson R.V. with respective parameters λ_1 and λ_2 , then X+Y has a Poisson Distribution with parameter $\lambda_1 + \lambda_2$.
- If X and Y are independent Binomial R.V. with respective parameters (n, p) and (m, p), then X+Y has a Poisson Distribution with parameter (n + m, p).
- If X and Y are independent Normal R.V. with respective parameters (μ_1, σ_1^2) and (μ_2, σ_2^2) then X+Y has a Poisson Distribution with parameter $(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

SIGNIFICANCE VARIANCE OR SECOND CENTRAL MOMENT OF A RANDOM VARIABLE:

It's just description about how closely data is scattered about it's mean value.

STATISTICS

MEAN	MEDIAN	MODE
$\bar{X} = (\sum x_i)/n$	It's the middle value of the sample, if	The sample point that occurs
$\sum_{i=1}^{n} (\sum_{i=1}^{n})^{i} i^{n}$	sample points are arranged in ascending	with highest frequency.
	order. If the number of elements in the	
	sample is even, then the arrange of the	
	two middle values can be taken as	
	median.	
Let X be a discrete random variable	The median of probability distribution	For a discrete random variable,
having the possible values x_n ,	is the point at which the distribution	mode is the value x at which it's
If $p(X = x_i) = f(x_i)$	function has the value of 0.5.	probability mass function takes
$\sum_{i=1}^{\infty} C(x_i) = \int_{-\infty}^{\infty} C(x_i) dx_i$	$F(x) = p(X \le x) = 0.5 = p(X \ge x)$	maximum value. For continuous
$E[X] = \sum_{i=0}^{\infty} x_i f(x_i) = \int_{-\infty}^{\infty} x f(x) dx$	In case of a continuous distribution, the	random variable, mode is the x at
	median corresponds to a point "x"	which it's probability density
	which separates the density curve into	function has maximum value. So
	two parts having equal areas.	any peak is a mode.

Std. Deviation
$$\sigma = \sqrt{\left[\sum (x_i - \bar{X})^2\right]/n}$$
 Mode = 3 Median – 2 Mean