Подчеркнем, что запись $x \to x_0$ имеет здесь другой, чем обычно, смысл: она только указывает на то, что рассматриваемое свойство имеет место лишь в некоторой окрестности точки x_0 ; ни о каком пределе здесь речи нет.

A E M M A 3. Если $f(x) = \varphi(x)g(x)$, $x \in X$, и существует конечный предел

$$\lim_{x\to x_0}\varphi(x)=k,$$

mo

$$f(x) = O(g(x)), x \rightarrow x_0.$$

ДОКОЗОТЕЛЬСТВО. Из существования конечного предела $\lim_{x\to x_0} \varphi(x) = k$ (см. свойство 1^0 пределов функций в п. 5.10) $\lim_{x\to x_0} \varphi(x) = k$ (см. свойство 1^0 пределов функций в п. 5.10) следует существование такой окрестности $U(x_0)$ точки x_0 , что функция $\varphi(x)$ ограничена на $X\cap U(x_0)$, $\varphi(x)$ выполняется неравенство $|\varphi(x)| \le c$, следовательно, и неравенство $|f(x)| = |\varphi(x)||g(x)| \le c|g(x)|$. Это, согласно определению 1, и означает, что f(x) = O(g(x)), $x \to x_0$. \square

Примеры. 1. $\frac{1}{x}=O\Big(\frac{1}{x^2}\Big)$ при $x\to 0$, поскольку $\Big|\frac{1}{x}\Big|\leqslant \frac{1}{x^2}$ при $|x|\leqslant 1$.

2.
$$\frac{1}{x^2} = O\left(\frac{1}{x}\right)$$
 при $x \to \infty$, так как $\frac{1}{x^2} \le \left|\frac{1}{x}\right|$ при $|x| \ge 1$. Запись

$$f(x) = O(1), x \rightarrow x_0,$$

означает, что функция f ограничена в некоторой окрестности точки x_0 , например $\frac{\lg 2x}{x} = O(1)$ при $x \to 0$, ибо $\lim_{x \to 0} \frac{\lg 2x}{x} = 2$ и, значит, функция $\frac{\lg 2x}{x}$ ограничена в окрестности точки x = 0.

Определение 2. Если функции f(x) и g(x) такие, что f = O(g) и g = O(f) при $x \to x_0$, то они называются функциями одного порядка при $x \to x_0$; это записывается в виде $f(x) \times g(x)$, $x \to x_0$.

Это понятие наиболее содержательно в том случае, когда функции f и g являются либо бесконечно малыми, либо бесконечно большими при $x \to x_0$. Например, функции $\alpha = x$ и $\beta = x \Big(2 + \sin \frac{1}{x} \Big)$ являются при $x \to 0$ бесконечно малыми одного порядка, поскольку

$$\left|\frac{\alpha}{\beta}\right| = \frac{1}{\left|2+\sin\frac{1}{x}\right|} \leqslant \frac{1}{2-\left|\sin\frac{1}{x}\right|} \leqslant 1, \ \left|\frac{\beta}{\alpha}\right| = \left|2+\sin\frac{1}{x}\right| \leqslant 2+\left|\sin\frac{1}{x}\right| \leqslant 3.$$

ЛЕММА 4. Если существует конечный предел $\lim_{x \to x_0} \frac{f(x)}{g(x)} = k \neq 0$, то $f(x) \times g(x)$, $x \to x_0$.

Доказательство. При $x \to x_0$ определен предел дроби $\frac{f(x)}{g(x)}$, поэтому существует такая окрестность $U(x_0)$ точки x_0 , что для всех точек $x \in X \cap U(x_0)$ выполняется неравенство $g(x) \neq 0$. Для этих x положим $\phi(x) = \frac{f(x)}{g(x)}$. Тогда $f(x) = \phi(x)g(x)$ и $\lim_{x \to x_0} \phi(x) = k$. Следовательно, по лемме 3, f(x) = O(g(x)), $x \to x_0$.

Из условия $\lim_{x \to x_0} \frac{f(x)}{g(x)} \neq 0$ следует, что существует и такая окрестность $U(x_0)$ точки x_0 , что для всех $x \in X \cap U(x_0)$ выполняется неравенство $\frac{f(x)}{g(x)} \neq 0$ (см. свойство 2^0 пределов функций в п. 5.10), а следовательно, и неравенство $f(x) \neq 0$. Для $x \in X \cap U(x_0)$ положим $\psi(x) = \frac{g(x)}{f(x)}$; тогда $g(x) = \psi(x)f(x)$ и $\lim_{x \to x_0} \psi(x) = \frac{1}{k}$. Поэтому снова, согласно лемме 3, g(x) = O(f(x)), $x \to x_0$. \square

В качестве примера возьмем функции $f(x) = 3x^2$ и $g(x) = \sin x^2$. Имеем $\lim_{x\to 0} \frac{g(x)}{f(x)} = \frac{1}{3} \lim \frac{\sin x^2}{x^2} = \frac{1}{3}$ (см. (8.1)), поэтому, согласно лемме 4, функции $3x^2$ и $\sin x^2$ одного порядка при $x\to 0$.

З а м е ч а н и е. Отметим, что условие (8.19) равносильно следующему: существует такая ограниченная функция φ : $X \to R$, что в некоторой окрестности точки x_0 для всех $x \in X$ выполняется равенство $f(x) = \varphi(x)g(x)$.