Sub-Riemannian manifolds and their abnormal curves

Eero Hakavuori

University of Helsinki

December 1, 2022

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

- a smooth manifold M
- a distribution $\Delta \subset TM$, which is bracket-generating:

$$\Delta + [\Delta, \Delta] + [\Delta, [\Delta, \Delta]] + \cdots = TM$$

ullet a smoothly varying inner product $\langle\cdot,\cdot
angle$ on Δ

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

- a smooth manifold M
- ullet a distribution $\Delta\subset TM$, which is bracket-generating:

$$\Delta + [\Delta, \Delta] + [\Delta, [\Delta, \Delta]] + \cdots = TM$$

- \bullet a smoothly varying inner product $\langle\cdot,\cdot\rangle$ on Δ Important quantities:
 - rank = rank of $\Delta = \dim(\Delta \cap T_p M)$, $p \in M$
 - step = minimal length of Lie brackets needed to span TM

Example: standard contact structure on \mathbb{R}^3

Standard contact structure on \mathbb{R}^3 :

- $M = \mathbb{R}^3$

Example: standard contact structure on \mathbb{R}^3

Standard contact structure on \mathbb{R}^3 :

- $M = \mathbb{R}^3$
- $\Delta = \ker(dz x dy)$. $\Delta + [\Delta, \Delta] = T\mathbb{R}^3$:

$$X = \partial_x$$
 $Y = \partial_y + x\partial_z$ $[X, Y] = \partial_z$

Example: standard contact structure on \mathbb{R}^3

Standard contact structure on \mathbb{R}^3 :

•
$$M = \mathbb{R}^3$$

•
$$\Delta = \ker(dz - x \, dy)$$
.
 $\Delta + [\Delta, \Delta] = T\mathbb{R}^3$:

$$X = \partial_x$$
 $Y = \partial_y + x\partial_z$ $[X, Y] = \partial_z$

equip with a sub-Riemannian metric

 \bullet $\langle \cdot, \cdot \rangle$ defined by declaring X and Y orthonormal

Sub-Riemannian path-distance

An absolutely continuous curve $\gamma \colon (a,b) \to M$ such that $\dot{\gamma} \in \Delta$ is called *horizontal*.

$$d_{SR}(x,y) = \inf \left\{ \int_0^1 ||\dot{\gamma}|| : \gamma \text{ horizontal}, \gamma(0) = x, \gamma(1) = y \right\}$$

Sub-Riemannian path-distance

An absolutely continuous curve $\gamma\colon (a,b)\to M$ such that $\dot{\gamma}\in\Delta$ is called *horizontal*.

$$d_{SR}(x,y) = \inf \left\{ \int_0^1 \lVert \dot{\gamma} \rVert : \gamma \text{ horizontal}, \gamma(0) = x, \gamma(1) = y \right\}$$

Theorem (Chow 1939; Rashevsky 1938)

 Δ bracket-generating \implies $d_{SR} < \infty$.

Sub-Riemannian path-distance

An absolutely continuous curve $\gamma\colon (a,b)\to M$ such that $\dot{\gamma}\in\Delta$ is called *horizontal*.

$$d_{SR}(x,y) = \inf \left\{ \int_0^1 \lVert \dot{\gamma} \rVert : \gamma \text{ horizontal}, \gamma(0) = x, \gamma(1) = y \right\}$$

Theorem (Chow 1939; Rashevsky 1938)

 Δ bracket-generating \implies $d_{SR} < \infty$.

Fact

Lipschitz curves $\gamma: (a,b) \to (M,d_{SR})$ are horizontal.

Parametrizing the horizontal curves

Assume $\Delta = \text{span}\{X_1, \dots, X_r\}$ and X_1, \dots, X_r orthonormal.

Fix a base point $p \in M$. A horizontal curve $\gamma \colon [0,1] \to M$ starting from $\gamma(0) = p$ is uniquely characterized by

$$u_i(t) = \langle \dot{\gamma}(t), X_i \rangle, \quad i = 1, \ldots, r.$$

Parametrizing the horizontal curves

Assume $\Delta = \text{span}\{X_1, \dots, X_r\}$ and X_1, \dots, X_r orthonormal.

Fix a base point $p \in M$. A horizontal curve $\gamma \colon [0,1] \to M$ starting from $\gamma(0) = p$ is uniquely characterized by

$$u_i(t) = \langle \dot{\gamma}(t), X_i \rangle, \quad i = 1, \ldots, r.$$

Definition (Control)

 $u = (u_1, \ldots, u_r) \colon [0,1] \to \mathbb{R}^r$ is called the *control* of γ .

Note: $||u|| = ||\dot{\gamma}||$.

Assume $\Delta = \text{span}\{X_1, \dots, X_r\}$ and X_1, \dots, X_r orthonormal.

Fix a base point $p \in M$. A horizontal curve $\gamma: [0,1] \to M$ starting from $\gamma(0) = p$ is uniquely characterized by

$$u_i(t) = \langle \dot{\gamma}(t), X_i \rangle, \quad i = 1, \ldots, r.$$

Definition (Control)

Introduction 0000000000000

 $u = (u_1, \ldots, u_r) \colon [0,1] \to \mathbb{R}^r$ is called the *control* of γ .

Note: $||u|| = ||\dot{\gamma}||$.

Definition (Endpoint map)

The *endpoint map* is the map

End:
$$L^2([0,1]; \mathbb{R}^r) \to M$$
, $u \mapsto \gamma_u(1)$.

Abnormal curves

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control = critical point $u \in L^2$ of the endpoint map Abnormal curve = integral curve γ_u of an abnormal control uAbnormal set = the set of critical values of the endpoint map

Abnormal curves

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control = critical point $u \in L^2$ of the endpoint map Abnormal curve = integral curve γ_u of an abnormal control u Abnormal set = the set of critical values of the endpoint map = the subset of M that can be reached from the basepoint with an abnormal curve.

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

Length-minimality and abnormality

Fact

Suppose $\gamma\colon [0,1]\to M$ is length-minimizing and $\|\dot{\gamma}\|$ is constant. Then its control u is a critical point of

$$\widetilde{\mathsf{End}} \colon L^2([0,1];\mathbb{R}^r) o M imes \mathbb{R}, \quad \widetilde{\mathsf{End}}(v) = \Big(\, \mathsf{End}(v), \int_0^1 \lVert v \rVert^2 \Big)$$

Length-minimality and abnormality

Fact

Suppose $\gamma\colon [0,1]\to M$ is length-minimizing and $\|\dot{\gamma}\|$ is constant. Then its control u is a critical point of

$$\widetilde{\mathsf{End}} \colon L^2([0,1];\mathbb{R}^r) o M imes \mathbb{R}, \quad \widetilde{\mathsf{End}}(v) = \Big(\, \mathsf{End}(v), \int_0^1 \lVert v \rVert^2 \Big)$$

If u is not abnormal, then u satisfies

$$\langle u, v \rangle_{L^2} + \lambda (d_u \operatorname{End}(v)) = 0, \quad \lambda \in T^*M.$$

Needle variations $v \implies u$ satisfies a smooth ODE $\implies u$ is C^{∞} .

Length-minimality and abnormality

Fact

Suppose $\gamma\colon [0,1]\to M$ is length-minimizing and $\|\dot{\gamma}\|$ is constant. Then its control u is a critical point of

$$\widetilde{\mathsf{End}} \colon L^2([0,1];\mathbb{R}^r) o M imes \mathbb{R}, \quad \widetilde{\mathsf{End}}(v) = \Big(\, \mathsf{End}(v), \int_0^1 \lVert v \rVert^2 \Big)$$

If u is not abnormal, then u satisfies

$$\langle u, v \rangle_{L^2} + \lambda (d_u \operatorname{End}(v)) = 0, \quad \lambda \in T^*M.$$

Needle variations $v \implies u$ satisfies a smooth ODE $\implies u$ is C^{∞} .

Conjecture (Regularity)

All length-minimizing abnormal curves are smooth.

Abnormal dynamics

Theorem (Liu and Sussman 1995)

In sub-Riemannian manifolds of rank 2 and step 3, abnormal length-minimizers have C^{∞} regularity.

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal length-minimizers have C^1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set with codimension ≥ 1 .

Abnormal dynamics

Theorem (Liu and Sussman 1995)

In sub-Riemannian manifolds of rank 2 and step 3, abnormal length-minimizers have C^{∞} regularity.

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal length-minimizers have C^1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set with codimension > 1.

Strategy of the proofs:

- Abnormality can be restated as a dynamical system.
- Study the dynamics explicitly by reducing to various normal forms.

Abnormal dynamics and complexity

Theorem (H. 2020)

For every polynomial ODE system in \mathbb{R}^r , there exists a rank r sub-Riemannian structure on \mathbb{R}^n such that all trajectories of the ODE lift to abnormal curves.

Abnormal dynamics and complexity

Theorem (H. 2020)

For every polynomial ODE system in \mathbb{R}^r , there exists a rank r sub-Riemannian structure on \mathbb{R}^n such that all trajectories of the ODE lift to abnormal curves.

Definition (Lift)

The lift of a curve $x = (x_1, \dots, x_r) \colon [0, 1] \to \mathbb{R}^r$ is the horizontal curve γ_u with control $u = (\dot{x}_1, \dots, \dot{x}_r)$.

Abnormal dynamics and complexity

Abnormal curves can be as complicated as trajectories of polynomial ODE systems.

$$\dot{x}_1 = -x_1 - x_2$$

$$\dot{x}_2 = x_1 - x_2$$

$$\dot{z}=z^2, \quad z\in\mathbb{C}$$

$$\dot{x}_1 = 10(x_2 - x_1)
\dot{x}_2 = 28x_1 - x_2 - x_1x_3
\dot{x}_3 = x_1x_2 - \frac{8}{3}x_3$$

- Results that avoid the presence of abnormals.
- Results that do not use abnormality in any way.
- Results that specifically study abnormals.

Results that avoid the presence of abnormals:

- Strichartz 1986: C^{∞} -regularity for strongly bracket generating structures $(\Delta + [X, \Delta] = TM$ for any horizontal X)
- Chitour, Jean, and Trélat 2006: C^{∞} -regularity for a generic family of distributions Δ with dim $\Delta_p \geq 3$.

Results that do not use abnormality in any way:

- H. and Le Donne 2016: no corner-type singularities
- Monti, Pigati, and Vittone 2018: existence of tangent lines
- Monti and Socionovo 2021: no spiral-type singularities for sub-Riemannian structures where $[[\Delta, \Delta], [\Delta, \Delta]] = 0$.
- H. and Le Donne 2022: iterated metric blowups or blowdowns are lines

Results that specifically study abnormals:

- Liu and Sussman 1995: C^{∞} -regularity for a class of abnormal curves, called the regular abnormal extremals
- Sussmann 2014: analytic regularity on an open dense subset, if the sub-Riemannian structure is analytic
- Belotto da Silva, Figalli, Parusiński, and Rifford 2018:
 C¹-regularity for 3-dimensional analytic sub-Riemannian manifolds
- Barilari, Chitour, Jean, Prandi, and Sigalotti 2020:
 C¹-regularity for a class of abnormal curves generalizing the regular abnormal extremals

Some Sard results

Assume the sub-Riemannian structure is analytic.

Then the abnormal set is ...

- ...contained in a closed nowhere dense set (Agrachëv 2009)
- ...a countable union of semianalytic curves in 3d SR manifolds (Belotto da Silva, Figalli, Parusiński, and Rifford 2018)
- ...a proper algebraic subvariety in Carnot groups of step 2, in $\mathbb{F}_{2,4}$, and in $\mathbb{F}_{3,3}$ (Le Donne, Montgomery, Ottazzi, Pansu, and Vittone 2016)
- ...a proper sub-analytic subvariety in Carnot groups of rank 3 step 3, and in rank 2 step 4 (Boarotto and Vittone 2020)

Carnot groups

A Carnot group is a Lie group G whose Lie algebra $\mathfrak g$ is stratified:

$$\mathfrak{g}=\mathfrak{g}^{[1]}\oplus\mathfrak{g}^{[2]}\oplus\cdots\oplus\mathfrak{g}^{[s]},\quad [\mathfrak{g}^{[1]},\mathfrak{g}^{[i]}]=\mathfrak{g}^{[i+1]}$$

Carnot groups

A Carnot group is a Lie group G whose Lie algebra $\mathfrak g$ is stratified:

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}$$

A sub-Riemannian structure on a Carnot group G:

- Δ left-invariant with $\Delta_e = \mathfrak{g}^{[1]}$.
- $\langle \cdot, \cdot \rangle$ left-invariant.

The basepoint p is the identity element $e \in G$.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a sub-Riemannian Carnot group.

$$\begin{array}{c} \rho \mapsto \dim[\Delta,\Delta]_{\rho} \\ \text{equiregular} \iff \rho \mapsto \dim[\Delta,[\Delta,\Delta]]_{\rho} \qquad \text{are all constant.} \\ \rho \mapsto \dim[\Delta,[\Delta,[\ldots,\Delta]\ldots]]_{\rho} \end{array}$$

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a sub-Riemannian Carnot group.

$$\begin{array}{c} \rho \mapsto \dim[\Delta,\Delta]_{\rho} \\ \text{equiregular} \iff \rho \mapsto \dim[\Delta,[\Delta,\Delta]]_{\rho} \qquad \text{are all constant.} \\ \rho \mapsto \dim[\Delta,[\Delta,[\ldots,\Delta]\ldots]]_{\rho} \end{array}$$

Non-equiregular distribution $\Delta = \text{span}\{X, Y\} \subset T\mathbb{R}^3$:

$$X = \partial_{x}$$

$$Y = \partial_{y} + x^{2} \partial_{z}$$

$$[X, Y] = 2x \partial_{z}$$

$$[X, [X, Y]] = 2\partial_{z}$$

Theorem (Bellaïche 1996)

The metric tangent of any sub-Riemannian manifold is a sub-Riemannian homogeneous space, that is, a quotient G/H of sub-Riemannian Carnot groups.

Theorem (Bellaïche 1996)

The metric tangent of any sub-Riemannian manifold is a sub-Riemannian homogeneous space, that is, a quotient G/H of sub-Riemannian Carnot groups.

n-manifolds $\longleftrightarrow \mathbb{R}^n$ sub-Riemannian manifolds \longleftrightarrow sub-Riemannian Carnot groups

Free Carnot groups

Consider the free Lie algebra \mathfrak{f}_r with generators X_1,\ldots,X_r , so the only relations are generated by

$$[X,Y] + [Y,X] = 0 \quad \text{and} \\ [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0.$$

Free Carnot groups

Consider the free Lie algebra \mathfrak{f}_r with generators X_1,\ldots,X_r , so the only relations are generated by

$$[X,Y]+[Y,X]=0$$
 and $[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y]]=0.$

Denote $\mathfrak{f}_r^1 = \text{span}\{X_1, \dots, X_r\}$ and $\mathfrak{f}_r^{[k+1]} = [\mathfrak{f}_r^{[1]}, \mathfrak{f}_r^{[k]}]$.

Definition (Free Carnot group)

The free Carnot group $\mathbb{F}_{r,s}$ of rank r and step s is the Carnot group with Lie algebra $\mathfrak{f}_r/(\mathfrak{f}_r^{[s+1]}\oplus\mathfrak{f}_r^{[s+2]}\oplus\dots)$.

Free Carnot groups

Consider the free Lie algebra \mathfrak{f}_r with generators X_1,\ldots,X_r , so the only relations are generated by

$$[X,Y] + [Y,X] = 0 \quad \text{and} \quad [X,[Y,Z]] + [Y,[Z,X]] + [Z,[X,Y]] = 0.$$

Denote $\mathfrak{f}_r^1 = \operatorname{span}\{X_1, \dots, X_r\}$ and $\mathfrak{f}_r^{[k+1]} = [\mathfrak{f}_r^{[1]}, \mathfrak{f}_r^{[k]}]$.

Definition (Free Carnot group)

The free Carnot group $\mathbb{F}_{r,s}$ of rank r and step s is the Carnot group with Lie algebra $\mathfrak{f}_r/(\mathfrak{f}_r^{[s+1]}\oplus\mathfrak{f}_r^{[s+2]}\oplus\dots)$.

$$[X_1, [X_1, \dots, [X_1, X_2]]] \neq 0$$
$$[X_1, [X_1, [X_1, \dots, [X_1, X_2]]]] = 0$$

A tower of increasing complexity

The free Carnot groups have projections

$$\mathbb{R}^r = \mathbb{F}_{r,1} \leftarrow \mathbb{F}_{r,2} \leftarrow \mathbb{F}_{r,3} \leftarrow \cdots$$

A tower of increasing complexity

The free Carnot groups have projections

$$\mathbb{R}^r = \mathbb{F}_{r,1} \leftarrow \mathbb{F}_{r,2} \leftarrow \mathbb{F}_{r,3} \leftarrow \cdots$$

Definition (Lift)

The lift of a curve $x = (x_1, \dots, x_r) \colon [0, 1] \to \mathbb{R}^r$ is the horizontal curve γ_u with control $u = (\dot{x}_1, \dots, \dot{x}_r)$.

A tower of increasing complexity

The free Carnot groups have projections

$$\mathbb{R}^r = \mathbb{F}_{r,1} \leftarrow \mathbb{F}_{r,2} \leftarrow \mathbb{F}_{r,3} \leftarrow \cdots$$

Definition (Lift)

The lift of a curve $x = (x_1, \dots, x_r) \colon [0, 1] \to \mathbb{R}^r$ is the horizontal curve γ_u with control $u = (\dot{x}_1, \dots, \dot{x}_r)$.

Horizontal curves in $\mathbb{F}_{r,s}$ lift to horizontal curves in $\mathbb{F}_{r,\tilde{s}}$, $\tilde{s} > s$.

Fact

Abnormality is preserved by the lift.

Characterization of abnormals

G Carnot group with Lie algebra $\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}$.

Lemma

 $\gamma \colon [0,1] o G \text{ abnormal } \iff \lambda(\mathsf{Ad}_{\gamma(t)}\,\mathfrak{g}^{[1]}) = 0 \text{ for some } \lambda \in \mathfrak{g}^*.$

$$\operatorname{Ad}_{\gamma} \colon \mathfrak{g} \to \mathfrak{g}, \quad \operatorname{Ad}_{\gamma} X = \frac{d}{ds} \gamma \cdot \exp(sX) \cdot \gamma^{-1} \big|_{s=0}$$

Characterization of abnormals

G Carnot group with Lie algebra $\mathfrak{g}=\mathfrak{g}^{[1]}\oplus\mathfrak{g}^{[2]}\oplus\cdots\oplus\mathfrak{g}^{[s]}.$

Lemma

 $\gamma \colon [0,1] \to \textit{G abnormal} \iff \lambda \big(\mathsf{Ad}_{\gamma(t)} \, \mathfrak{g}^{[1]} \big) = 0 \, \, \textit{for some} \, \, \lambda \in \mathfrak{g}^*.$

$$\operatorname{\mathsf{Ad}}_\gamma\colon \mathfrak{g} o \mathfrak{g}, \quad \operatorname{\mathsf{Ad}}_\gamma X = rac{d}{ds} \left. \gamma \cdot \exp(sX) \cdot \gamma^{-1} \right|_{s=0}$$

Fact

In coordinates (x_1, \ldots, x_n) on G, the map

$$\mathbb{R}^n \to \mathbb{R}, \quad (x_1, \ldots, x_n) \mapsto \lambda(\operatorname{Ad}_{(x_1, \ldots, x_n)} X)$$

is a polynomial for every $X \in \mathfrak{g}$ and $\lambda \colon \mathfrak{g} \to \mathbb{R}$.

Theorem (H. 2020)

For every polynomial ODE system in \mathbb{R}^r , there exists a rank r sub-Riemannian structure on \mathbb{R}^n such that all trajectories of the ODE lift to abnormal curves.

Definition (Lift)

The lift of a curve $x = (x_1, \dots, x_r) \colon [0, 1] \to \mathbb{R}^r$ is the horizontal curve γ_u with control $u = (\dot{x}_1, \dots, \dot{x}_r)$.

Proof idea:

- Every polynomial ODE is a horizontal gradient...
- Curves contained in an algebraic variety are abnormal...

... in some lift.

Gradients in \mathbb{R}^r

$$P = (P_1, \dots, P_r) = \nabla Q$$
 for some $Q \colon \mathbb{R}^r \to \mathbb{R} \iff \partial_i P_j = \partial_j P_i$

Gradients in \mathbb{R}^r

$$P = (P_1, \dots, P_r) = \nabla Q$$
 for some $Q \colon \mathbb{R}^r \to \mathbb{R} \iff \partial_i P_j = \partial_j P_i$

Recursion for Q:

$$Q_1 = \int P_1 dx_1$$

$$Q_2 = Q_1 + \int (P_2 - \partial_2 Q_1) dx_2$$

$$\vdots$$

$$Q = Q_r = Q_{r-1} + \int (P_r - \partial_r Q_{r-1}) dx_r$$

A non-gradient vector field in \mathbb{R}^2

$$P(x) = (x_1 - x_2, x_1 + x_2) \neq (\partial_1 Q(x), \partial_2 Q(x)) = \nabla Q(x)$$

for any polynomial $Q: \mathbb{R}^2 \to \mathbb{R}$, since

$$\partial_1 P_2 = 1 \neq -1 = \partial_2 P_1$$
, but $\partial_1 \partial_2 Q = \partial_2 \partial_1 Q$.

A non-gradient vector field in \mathbb{R}^2

$$P(x) = (x_1 - x_2, x_1 + x_2) \neq (\partial_1 Q(x), \partial_2 Q(x)) = \nabla Q(x)$$

for any polynomial $Q: \mathbb{R}^2 \to \mathbb{R}$, since

$$\partial_1 P_2 = 1 \neq -1 = \partial_2 P_1$$
, but $\partial_1 \partial_2 Q = \partial_2 \partial_1 Q$.

Lift P to a horizontal vector field in the Heisenberg group.

$$X_1(x) = \partial_1$$

$$X_2(x) = \partial_2 + x_1 \partial_3$$

$$X_3(x) = [X_1, X_2](x) = \partial_3$$

$$P: H \to TH, \quad P(x) = (x_1 - x_2)X_1(x) + (x_1 + x_2)X_2(x)$$

Recursion for horizontal gradient integration

Suppose
$$P=
abla_{hor}Q=(X_1Q)X_1+(X_2Q)X_2$$
. Then $X_1Q=x_1-x_2$ $X_2Q=x_1+x_2$ $X_3Q=[X_1,X_2]Q=X_1(X_2Q)-X_2(X_1Q)=2$

Recursion for horizontal gradient integration

Suppose
$$P=
abla_{hor}Q=(X_1Q)X_1+(X_2Q)X_2$$
. Then $X_1Q=x_1-x_2$ $X_2Q=x_1+x_2$ $X_3Q=[X_1,X_2]Q=X_1(X_2Q)-X_2(X_1Q)=2$

Integrate backwards:

$$Q_3 = \int X_3 Q \, dx_3$$

$$Q_2 = Q_3 + \int (X_2 Q - X_2 Q_3) \, dx_2$$

$$Q = Q_1 = Q_2 + \int (X_1 Q - X_1 Q_2) \, dx_1$$

$$= \frac{1}{2} x_1^2 - x_1 x_2 + \frac{1}{2} x_2^2 + 2x_3$$

Lemma

Every polynomial vector field $P: \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

Lemma

Every polynomial vector field $P \colon \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_1, \ldots, X_r the horizontal gradient of $Q \colon G \to \mathbb{R}$ is

$$\nabla_{\mathsf{hor}} Q = \sum (X_i Q) X_i \colon G \to TG.$$

In coordinates, lift $P \colon \mathbb{R}^r \to \mathbb{R}^r$ to the horizontal vector field

$$P: G \to TG, \quad P(x_1, \ldots, x_r, \ldots, x_n) = \sum_{i=1}^r P_i(x_1, \ldots, x_r) X_i(x)$$

Why it works:

- As weighted differential operators, $[X_1, X_2]$ is a degree 2 operator, $[X_1, [X_1, X_2]]$ is degree 3, etc.
 - ⇒ partial derivatives of a polynomial eventually vanish
- There exist coordinates such that $X_i = \partial_i + \sum_{j>i} c_{ij} \partial_j$. \Longrightarrow integration variable by variable is possible

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field.

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field.

E.g. if $P_1 \neq 0$, integrate

$$X_1Q = -P_2$$
, $X_2Q = P_1$ $X_3Q = X_4Q = \cdots = X_rQ = 0$.

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field.

E.g. if $P_1 \neq 0$, integrate

$$X_1Q = -P_2$$
, $X_2Q = P_1$ $X_3Q = X_4Q = \cdots = X_rQ = 0$.

Then for a trajectory $x \colon [0,1] \to G$ of $\dot{x} = \sum P_i(x)X_i(x)$

$$\frac{d}{dt}Q(x) = P_1(x)X_1Q(x) + \cdots + P_r(x)X_rQ(x) = 0.$$

Abnormal factors

Theorem (H. 2020)

For every polynomial ODE system in \mathbb{R}^r , there exists a rank r sub-Riemannian structure on \mathbb{R}^n such that all trajectories of the ODE lift to abnormal curves.

Definition (Lift)

The lift of a curve $x = (x_1, \dots, x_r) \colon [0, 1] \to \mathbb{R}^r$ is the horizontal curve γ_u with control $u = (\dot{x}_1, \dots, \dot{x}_r)$.

Proof idea:

- Every polynomial ODE is a horizontal gradient...
- 2 Curves contained in an algebraic variety are abnormal...

... in some lift.

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] o G$$
 abnormal $\iff \lambda(\mathsf{Ad}_{\gamma(t)}\,\mathfrak{g}^{[1]}) = 0$

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] o G$$
 abnormal $\iff \lambda(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$

Definition

 γ abnormal of order $k \iff \lambda(\mathsf{Ad}_{\gamma(t)}(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]})) = 0$

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] o G$$
 abnormal $\iff \lambda(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$

Definition

$$\gamma$$
 abnormal of order $k \iff \lambda(\mathsf{Ad}_{\gamma(t)}(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]})) = 0$

Lemma

If $\gamma(0) = e$ and $\lambda(Ad_{\gamma(t)}\mathfrak{g}^{[k]}) = 0$, then γ is abnormal of order k.

Abnormal factors

Proposition

For any polynomial $Q: H \to \mathbb{R}$, there exists

- a Carnot group G with a projection $\pi \colon \mathsf{G} \to \mathsf{H}$
- \bullet $\lambda \in \mathfrak{g}^*$
- $k \in \mathbb{N}$

such that $Q \circ \pi \colon G \to \mathbb{R}$ is a factor of the polynomial $x \mapsto \lambda(\operatorname{Ad}_x Y)$ for every $Y \in \mathfrak{g}^{[k]}$.

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m \tag{1}$$

in the variables (λ, ν)

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m \tag{1}$$

in the variables (λ, ν) , where

- $P_i^{\lambda}(x) = \lambda(\operatorname{Ad}_x Y_i)$ for a basis Y_1, \ldots, Y_m of $\mathfrak{g}^{[k]}$
- $k = \deg Q + 1$
- S_i^{ν} are generic polynomials of the form

$$S^{\nu} = \nu_0 + \nu_1 x_1 + \nu_2 x_2 + \nu_3 x_3 + \nu_4 x_1^2 + \nu_5 x_1 x_2 + \nu_6 x_2^2 + \dots$$

such that $\deg(S_i^{\nu}) + \deg(Q) = \deg(P_i)$.

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m \tag{1}$$

in the variables (λ, ν) , where

- $P_i^{\lambda}(x) = \lambda(\operatorname{Ad}_x Y_i)$ for a basis Y_1, \ldots, Y_m of $\mathfrak{g}^{[k]}$
- $k = \deg Q + 1$
- S_i^{ν} are generic polynomials of the form

$$S^{\nu} = \nu_0 + \nu_1 x_1 + \nu_2 x_2 + \nu_3 x_3 + \nu_4 x_1^2 + \nu_5 x_1 x_2 + \nu_6 x_2^2 + \dots$$

such that $\deg(S_i^{\nu}) + \deg(Q) = \deg(P_i)$.

Lemma

The linear system (1) has a non-trivial solution (λ, ν) in $\mathbb{F}_{r,s}$ for large enough s.

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

② In step s, $\deg(P_i^{\lambda}) \leq s - k$. The number of equations is

$$(m-1) \cdot \#\{\text{monomials of degree up to } s-k\}$$

and the number of variables is

$$m \cdot \#\{\text{monomials of degree up to } s - k - \deg(Q)\}$$

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

② In step s, $\deg(P_i^{\lambda}) \leq s - k$. The number of equations is

$$(m-1) \cdot \#\{\text{monomials of degree up to } s-k\}$$

and the number of variables is

$$m \cdot \#\{\text{monomials of degree up to } s - k - \deg(Q)\}$$

3 Poincaré series asymptotics for $s \to \infty$ \implies #variables \gg #equations.

The entire proof

Theorem (H. 2020)

For every polynomial ODE system in \mathbb{R}^r , there exists a rank r sub-Riemannian structure on \mathbb{R}^n such that all trajectories of the ODE lift to abnormal curves.

Proof:

- Every polynomial ODE has a polynomial first integral in a lift.
 - Consider an orthogonal vector field.
 - Every polynomial vector field is a horizontal gradient.
- 2 Curves contained in an algebraic variety are abnormal in a lift.
 - Common factors of abnormal polynomials = linear system.
 - ullet Monomial counting \Longrightarrow the system is underdetermined.

An inefficient formula

Let $P: \mathbb{R}^r \to \mathbb{R}^r$ be a polynomial vector field.

Let
$$d(r,k) = \dim \mathfrak{f}_r^{[k]} = \frac{1}{k} \sum_{d|k} \mu(d) r^{k/d}$$
.

An inefficient formula

Let $P: \mathbb{R}^r \to \mathbb{R}^r$ be a polynomial vector field.

Let
$$d(r, k) = \dim \mathfrak{f}_r^{[k]} = \frac{1}{k} \sum_{d|k} \mu(d) r^{k/d}$$
.

Consider the rational function

$$\sum_{k=0}^{\infty} C_k t^k = \frac{\left(1 - (d(r, \deg(P) + 1))(1 - t^{\deg(P)})\right) t^{\deg(P) + 1}}{\prod_{k=1}^{\deg(P)} (1 - t^k)^{d(r, k)}}$$

An inefficient formula

Let $P: \mathbb{R}^r \to \mathbb{R}^r$ be a polynomial vector field.

Let
$$d(r,k) = \dim \mathfrak{f}_r^{[k]} = \frac{1}{k} \sum_{d|k} \mu(d) r^{k/d}$$
.

Consider the rational function

$$\sum_{k=0}^{\infty} C_k t^k = \frac{\left(1 - (d(r, \deg(P) + 1))(1 - t^{\deg(P)})\right) t^{\deg(P) + 1}}{\prod_{k=1}^{\deg(P)} (1 - t^k)^{d(r,k)}}$$

If $\sum_{k=0}^{s} C_k > 0$, then trajectories of P are abnormal in step s.

Inefficient numbers from an inefficient formula

P a polynomial vector field in \mathbb{R}^r . Trajectories abnormal in step:

$r \backslash deg(P)$	1	2	3	4	5
2	11	38	172	577	2372
3	89	724	6034	46036	365813
4	386	5322	73109	983505	13529000

Example

A polynomial vector field in \mathbb{R}^4 of degree 5 has abnormal lifts in the free Carnot group G of rank 4 and step 13529000.

dim
$$G \approx 4.1338 \cdot 10^{8145262}$$

Experimental abnormality steps

Theoretical bounds:

$r \backslash \deg(P)$	1	2	3	4	5
2	11	38	172	577	2372
3	89	724	6034	46036	365813
4	386	5322	73109	983505	13529000

Bounds in randomly sampled homogeneous ODE examples:

$r \backslash deg(P)$	1	2	3	4	5
2	7	13	19		
3	7	13			
4	7				