CS & IT

ENGINERING

Discrete Mathematics

Graph Theory

Lecture No. 11

By- SATISH YADAV SIR

TOPICS TO BE COVERED

01 covering set

...

02 Covering number

. . .

03 Planar Graph

...

04 Euler's Formula In planarity

. . .

05 Sum of Degrees in Region

K1, 3.

m(K1,3)=1

< 2. 4·

m(k2,+)= 2.

m(km,n)=min {m,n}.

Perfect matching:

3 manimal matching which covers all vertices. touches

-> collection of edges -> vertices (touch)

manimal matching
L

not P.M.

perfect matching.

note If perfect matching enist then no of vertices will be even.

vice versa. is not true.

In a tree no of perfect matching is admost 1.

Total vertices = 2n. (even) no. of perfect matching Kzn.

$$\frac{2n}{(2n)!} \frac{(2n-2)(2n-3)(2n-4)(2n-6)}{(2n)!}$$

$$\frac{(2n)!}{(2n-2)!} \frac{(2n-4)}{(2n-4)}$$

$$\frac{(2n)!}{(2n-2)!} \frac{(2n-4)(2n-6)}{(2n-4)!}$$

$$\frac{(2n)!}{(2n-2)!} \frac{(2n-4)(2n-6)}{(2n-4)!}$$

$$\frac{(2n)!}{(2n-2)!} \frac{(2n-4)(2n-6)}{(2n-4)!}$$

GATE:

Total no of perfect matching in K6.

$$2n=6$$
 $n=3$
 $Ans:15$
 $(2n-1)(2n-3)(2n-5)...$

