PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, 15/00, 15/11, C07K 14/315, C07H 21/04, A61K 39/40, 39/395, G01N 33/569, G11B 5/00

(11) International Publication Number:

WO 98/26072

(43) International Publication Date:

18 June 1998 (18.06.98)

(21) International Application Number:

PCT/US97/22578

A1

(22) International Filing Date:

9 December 1997 (09.12.97)

(30) Priority Data:

60/036,281

13 December 1996 (13.12.96) US

(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).

(72) Inventors; and

(75) Inventors, and (75) Inventors, and (76) Inventors/Applicants (for US only): BALTZ, Richard, H. [US/US]; 6438 North Olney, Indianapolis, IN 46220 (US). BURGETT, Stanley, G. [US/US]; 818 Bitter Bark Lane, Indianapolis, IN 46227 (US). DEHOFF, Bradley, S. [US/US]; 7727 Maradona Drive South, Indianapolis, IN 46214 (US). HOSKINS, Jo, Ann [US/US]; 8229 Tem Court, Indianapolis, IN 46256 (US). JASKUNAS, Stanley, R., Jr. [US/US]; 16 Algonquian Drive, Natick, MA 07160 (US). MILLS, Bradley, J. [US/US]; 321 South Poplar, Morristown, IN 46161 (US). NORRIS, Franklin, H. [US/US]; 5518 South Arlington Avenue, Indianapolis, IN 46237 (US). PEERY, Robert, B. [US/US]; 372 Sycamore Street, Brownsburg, IN 46112 (US). ROCKEY, Pamela, K. [US/US]; 679 Ca-

nary Creek Drive, Franklin, IN 46131 (US). ROSTECK, Paul, R., Jr. [US/US]; 4247 Saffron Drive, Indianapolis, IN 46237 (US). SKATRUD, Paul, L. [US/US]; 5233 Tony Drive, Greenwood, IN 46143 (US). SMITH, Michele, C. [US/US]; 4515 North Lakeridge Drive, Indianapolis, IN 46234 (US). SOLENBERG, Patricia, J. [US/US]; 10116 Seabreeze Way, Indianapolis, IN 46256 (US). TREADWAY, Patti, J. [US/US]; 4268 West Fox Ridge Avenue, Greenwood, IN 46143 (US). YOUNG BELLIDO, Michele, L. [CA/US]; 4925 Common Vista Court, Indianapolis, IN 46220 (US).

- (74) Agents: WEBSTER, Thomas, D. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).
- (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

- (54) Title: STREPTOCOCCUS PNEUMONIAE DNA SEQUENCES
- (57) Abstract

Nucleotide fragments of the genome of the bacterium Streptococcus pneumoniae are provided. Also provided are ORFs encoded by said genome.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

	Armenia Austria Australia	FI FR	Finland			SI	Slovenia
J / Z / L H	Australia	FR		LT	Lithuania	SK	Slovakia
Z A			France	LU	Luxembourg	SN	Senegal
l I		GA	Gabon	LV	Latvia .	SZ	Swaziland
3 [Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
	Burkina Faso	GR	Greece	_	Republic of Macedonia	TR	Turkey
	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
	Belarus	IS	Iceland	MW	Malawi	US	•
	Canada	IT	Itały	MX	Mexico	UZ	United States of America
	Central African Republic	JP	Japan	NB	Niger	VN	Uzbekistan
	Congo	KE	Kenya	NL	Netherlands	YU	Viet Nam
I S	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Yugoslavia
C	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	ZW	Zimbabwe
1 C	Cameroon		Republic of Korea	PL	Poland		
i c	China	KR	Republic of Korea	PT	Portugal		
C	Cuba	KZ	Kazaksian	RO	Romania		
C	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
G	Germany -	u	Liechtenstein	SD	Sudan		
D	Denmark	LK	Sri Lanka	SE	Sweden		
E	istonia	LR	Liberia	===	Singapore		

-1-

STREPTOCOCCUS PNEUMONIAE DNA SEQUENCES

This invention provides DNA sequences from the Streptococcus pneumoniae genome, and methods of use of DNA fragments originating therefrom in a variety of biological and pharmaceutical applications.

The recent emergence of widespread antibiotic resistance in common pathogenic bacterial species has 10 justifiably alarmed the medical and research communities. Frequently these organisms are co-resistant to several different antibacterial agents. Particularly problematic has been the emergence and rapid spread of penicillin resistance 15 in Streptococcus pneumoniae, which frequently causes upper respiratory tract infections. Resistance to penicillin in this organism can be due to modifications of one or more of the penicillin-binding proteins (PBPs). Combating the phenomenon of increasing resistance to antibiotic agents 20 among pathogenic organisms such as Streptococcus pneumoniae will require intensified research into the fundamental molecular biology of such organisms. Greater knowledge about the molecular biology of pathogenic organisms will lead to new antibacterial agents having novel and effective actions.

While inroads in the development of new antibiotics and new targets for antibiotic compounds have been made with a variety of microorganisms, progress has been less apparent in Streptococcus pneumoniae. In part, Streptococcus pneumoniae presents a special case because this organism is highly recombinogenic and readily takes up exogenous DNA from its surroundings. Thus, the need for new antibacterial compounds and new targets for antibacterial therapy in Streptococcus pneumoniae is more acute than in other organisms.

25

30

10

15

20

25

compounds.

The present invention relates to the genome of S. pneumoniae. The genomic information disclosed by the present invention enables: (1) preparation of molecular hybridization probes for use in PCR amplification of genes and regulatory regions, physical mapping, sequencing, mutagenesis, and mutation analysis, (2) homology comparisons with the genomes and open reading frames (ORFs) of other organisms, (3) creation of specifically mutated strains of S. pneumoniae wherein the mutation is targeted to any site or sites in the DNA sequence disclosed herein, (4) identification of S. pneumoniae promoters and other gene regulatory sequences, (5) identification of proteins/ORFs encoded by S. pneumoniae, (6) identification of virulence genes in S. pneumoniae, (7) determination of the biological function of proteins/ORFs and RNAs encoded by S. pneumoniae, (8) production of kits useful for determining gene function in the cell, and kits for isolating and analyzing genes that are mutated in antibiotic resistant clinical isolates of S. pneumoniae, (9) production of proteins and RNAs encoded by S. pneumoniae, (10) production of antibodies against proteins and other antigens encoded by S. pneumoniae, (11) methods to identify compounds that bind to proteins and RNAs

In another embodiment the invention relates to substantially purified proteins encoded by the *S. pneumoniae* genome.

Table 1 summarizes the proteins and nucleic acids disclosed herein, contigs, SEQ ID NO's and predicted functions.

encoded by S. pneumoniae as potential new antibiotic

-3-

"Genome" refers to the full complement of chromosomal and extra-chromosomal DNA within a cell. The genome comprises the genetic blueprint for all proteins and RNAs encoded by the cell or organism.

5

10

15

20

25

30

"ORF" (i.e. "open reading frame") designates a region of genomic DNA beginning with a Met or other initiation codon and terminating with a translation stop codon, potentially encoding a protein product. "Partial ORF" means a portion of an ORF as disclosed herein such that the initiation codon, the stop codon, or both are not disclosed.

"DNA chip" or "Bio Chip" or "Bio DNA chip" refers to a solid matrix or support onto which is applied an array of oligonucleotides, or nucleotide sequences, or gene fragments, or genomic fragments, of *S. pneumoniae* which may further comprise a layer of *S. pneumoniae* cells suspended thereover in a semisolid medium such as agar or agarose.

"Consensus sequence" refers to an amino acid or nucleotide sequence that may suggest the biological function of a protein, DNA, or RNA molecule. Consensus sequences are identified by comparing proteins, RNAs, and gene homologs from different species.

"Contiguous fragment building" or "Contiguous fragment" or "Contig" refers to the process and result, respectively, by which a fragment of DNA is assembled from smaller constituent DNA fragments by arranging the constituent pieces in their correct order and register such that the resulting contiguous fragment accurately depicts the native DNA sequence from which the smaller fragments originated.

"Computer readable medium" includes, for example, a floppy disc, hard disc, random access memory, read only memory, and CD-ROM.

The terms "cleavage" or "restriction" of DNA refers to the catalytic cleavage of the DNA with a restriction enzyme that acts only at certain sequences in

-4-

the DNA (viz. sequence-specific endonucleases). The various restriction enzymes used herein are commercially available and their reaction conditions, cofactors, and other requirements are used in the manner well known to one of ordinary skill in the art. Appropriate buffers and substrate amounts for particular restriction enzymes are specified by the manufacturer or can be found in the literature.

"Diagnostics" as used herein relates to *in vitro* or *in vivo* diagnosis for disease states or biological status in mammals, preferably humans.

10

15

20

25

"Therapeutics" and "therapeutic/diagnostic combinations" means the treatment, or diagnosis and treatment, of disease states or biological status by in vivo administration to mammals, preferably humans, of compositions of the present invention, for example, antibodies.

"Essential genes" or "essential ORFs" or "essential proteins" refer to genomic information or the protein(s) or RNAs encoded therefrom, which, when disrupted by knockout mutation, or by other mutation, produce inviability in cells harboring said mutation.

"Non-essential genes" or "non-essential ORFs" or "non-essential proteins" refer to genomic information or the protein(s) or RNAs encoded therefrom, which, when disrupted by knockout mutation, or other mutation, do not result in inviability of cells harboring said mutation.

"Minimal gene set" refers to a genus of about 256 genes that are conserved among different bacteria such as M. genitalium and H. influenzae. The minimal gene set appears to be necessary and sufficient to sustain life. See e.g. A. Mushegian and E. Koonin, "A minimal gene set for cellular life derived by comparison of complete bacterial genomes" Proc. Nat. Acad. Sci. 93, 10268 - 273 (1996).

WO 98/26072

10

The term "fragment thereof" denotes a fragment of a nucleic acid molecule described herein, wherein said fragment comprises a region of contiguity within said nucleic acid of at least 15 base pairs. The term may also refer to a peptide of at least 5 contiguous amino acid residues of a protein disclosed herein.

The term "plasmid" refers to an extrachromosomal genetic element. The starting plasmids herein are either commercially available, publicly available on an unrestricted basis, or can be constructed from available plasmids in accordance with published procedures. In addition, equivalent plasmids to those described are known in the art and will be apparent to the ordinarily skilled artisan.

"Recombinant DNA cloning vector" as used herein refers to any autonomously replicating agent, including, but not limited to, plasmids and phages, comprising a DNA molecule to which one or more additional DNA segments can or have been added.

The term "recombinant DNA expression vector" as used herein refers to any recombinant DNA cloning vector, for example a plasmid or phage, in which a promoter and other regulatory elements are present to enable transcription of the inserted DNA.

The term "vector" as used herein refers to a nucleic acid compound used for introducing exogenous DNA into host cells. A vector comprises a nucleotide sequence which may encode one or more protein molecules. Plasmids, cosmids, viruses, and bacteriophages, in the natural state or which have undergone recombinant engineering, are examples of commonly used vectors.

The terms "complementary" or "complementarity" as used herein refers to the capacity of purine and pyrimidine nucleotides to associate through hydrogen bonding in double

-6-

stranded nucleic acid molecules. The following base pairs are complementary: guanine and cytosine; adenine and thymine; and adenine and uracil.

"Oligonucleotide" refers to a short polymeric nucleotide chain comprising from about 2 to 25 nucleotides.

"Isolated nucleic acid compound" refers to any RNA or DNA sequence, however constructed or synthesized, which is locationally distinct from its natural location.

A "primer" is a nucleic acid fragment which functions as an initiating substrate for enzymatic or synthetic elongation of a nucleic acid molecule.

5

10

20

25

30

The term "promoter" refers to a DNA sequence which directs transcription of DNA to RNA.

A "probe" as used herein is a labeled nucleic acid compound which can be used to hybridize with another nucleic acid compound.

The term "hybridization" or "hybridize" as used herein refers to the process by which a single-stranded nucleic acid molecule joins with a complementary strand through nucleotide base pairing.

"Recorded" as used herein refers to a process for storing information on a computer readable medium.

"Substantially identical" means a sequence having sufficient homology to hybridize under high stringency conditions and/or at least 90% identity at the nucleotide or amino acid sequence level to a sequence disclosed herein.

"Substantially purified" when used in reference to a protein or peptide means that the molecule has been largely, but not necessarily wholly, separated and purified from other cellular and non-cellular components. Typically a protein is substantially pure when it is at least about 60% by weight, free from other naturally occurring organic molecules. Preferably the purity is at least about 75%, more

-7-

preferably at least about 90%, and most preferably at least about 99% by weight pure.

"Selective hybridization" refers to hybridization under conditions of high stringency. Hybridization of nucleic acid molecules depends upon factors such as the degree of complementarity, stringency of hybridization conditions, and the length of hybridizing strands.

The term "stringency" relates to nucleic acid hybridization conditions. High stringency conditions disfavor non-homologous base pairing. Low stringency conditions have the opposite effect. Stringency may be altered, for example, by changes in temperature and salt concentration. Typical high stringency conditions comprise hybridizing at 50°C to 65°C in 5X SSPE and 50% formamide, and washing at 50°C to 65°C in 0.5X SSPE; typical low stringency conditions comprise hybridizing at 35°C to 37°C in 5X SSPE and 40% to 45% formamide and washing at 42°C in 1X-2X SSPE.

10

15

"SSPE" denotes a hybridization and wash solution comprising sodium chloride, sodium phosphate, and EDTA, at pH 7.4. A 20X solution of SSPE is made by dissolving 174 g of NaCl, 27.6 g of NaH₂PO4·H₂O, and 7.4 g of EDTA in 800 ml of H₂O. The pH is adjusted with NaOH and the volume brought to 1 liter.

"SSC" denotes a hybridization and wash solution comprising sodium chloride and sodium citrate at pH 7. A 20X solution of SSC is made by dissolving 175 g of NaCl and 88 g of sodium citrate in 800 ml of $\rm H_2O$. The volume is brought to 1 liter after adjusting the pH with 10N NaOH.

"Virulence gene" as used herein means a gene from a pathogenic organism such as *S. pneumoniae* that is required for infection and/or pathogenicity *in vivo*. Some virulence

genes are induced during infection of a host; others are expressed exclusively during in vivo infection.

The Streptococcus pneumoniae genome contains about 2.2 million nucleotide base pairs and comprises about 2000 to 3000 ORFs and other genes. This invention provides, among other things, contiguous fragments, genes, and proteins from the S. pneumoniae genome (SEQ ID NO:1 through SEQ ID NO:228).

Strain differences in *S. pneumoniae* may be associated with nucleotide sequence differences in one or more of the genomic fragments disclosed herein. Sequences that are substantially identical to the sequences disclosed herein are intended to be within the scope of the invention.

15 The sequence fragments disclosed herein provide a wide variety of utilities. For example, the fragments may be used to identify regions of the S. pneumoniae genome that are expressed as proteins (viz. transcribed into mRNA). The genomic fragments disclosed herein can also be used to 20 examine differential expression of S. pneumoniae genes under diverse environmental conditions, as occurs, for example, with the expression of virulence genes during in vivo infection of a host organism. Also contemplated by the invention are: (1) preparation of molecular hybridization 25 probes for use in physical mapping, sequencing, mutagenesis, mutation analysis, (2) homology comparisons of the sequences disclosed herein with the genomes and ORFs of other organisms, (3) creation of specifically mutated strains of S. pneumoniae wherein the mutation is targeted to any site in the DNA sequence disclosed herein, (4) identification of 30 S. pneumoniae promoters and other gene regulatory sequences, (5) identification of proteins and RNAs encoded by S. pneumoniae, (6) amplification of S. pneumoniae genes using

the PCR, and (7) production of kits for isolating and

-9-

analyzing genes that are mutated in antibiotic resistant clinical isolates of S. pneumoniae.

Genome Analysis

5

10

15

20

25

30

In one embodiment, the invention comprises the ORFs and fragments thereof encoded by the nucleotide sequences disclosed herein. Some of the nucleotide sequences disclosed herein encode ORFs and fragments of ORFs (Table 1). The ORFs or fragments thereof were identified by translation of the nucleic acid sequences disclosed herein. The biological function of a protein disclosed in Table 1 was determined by homology comparison with known proteins from other organisms. A number of computer programs are available to assist in homology comparisons, for example Genemark (Borodovsky and McIninch, Computers Chem. 17(2), 123, 1993).

Computer-Related Applications

The nucleotide and/or amino acid sequence information of this invention may be provided in a variety of media to facilitate use. In one embodiment the present invention comprises one or more of the sequences disclosed herein recorded on a computer readable medium. A variety of media are contemplated, for example, magnetic storage media such as floppy discs, hard disc storage, magnetic tape, and CD-ROM. A skilled artisan can readily adopt any presently known method for recording information on a computer readable medium to generate manufactures comprising the nucleotide or amino acid sequence information of the present invention. These embodiments are contemplated within the scope of this invention.

The choice of a data storage structure will generally be based on the means chosen to access the stored information. A variety of data processor programs and formats can be used to store the sequence information of the

-10-

invention on computer readable medium. For example, the sequence can be represented in a word processing text file that is formatted in commercially available software such as WordPerfect and MicroSoft Word, or it can be represented in the form of a text only file such as ASCII.

Having S. pneumoniae genomic sequence information in a computer readable format enables a skilled artisan to access the information for a variety of purposes. For example, computer-assisted searching algorithms may be used to identify open reading frames, and ascertain biological function based on homology to known proteins from other organisms. Suitable algorithms for sequence comparisons include BLAST (Altschul et al., J. Mol. Biol. 215, 403-410, 1990) and BLAZE (Brutlag et al., Comp. Chem. 17, 203-207 (1993). For identification of ORFs a number of commercially available software programs are suitable, such as FRAMES (Genetic Center Group, Madison, WI).

The genomic information of this invention in computerreadable form can be manipulated further using

20 bioinformatics to identify the biological function of
proteins encoded by ORFs as well as the cellular location of
said proteins. The skilled artisan will recognize several
computer-assisted algorithms for this purpose, for example,
PSORT which is useful for determining the likely location of
a protein within a cell (See K. Nakai & M. Kanehisa. "Expert
system for predicting protein localization sites in Gramnegative bacteria", Proteins: Structure, Function, and
Genetics, 11, 95-110 (1991).

30

5

10

15

Open Reading Frames and Proteins

The invention also provides proteins encoded by the S. pneumoniae genome in substantially purified form (See Table 1). The proteins are classified herein as (1) Hypothetical,

-11-

(2) Cell wall biosynthetic, (3) External target, or (4) Minimal gene set proteins.

Cells that carry knockout mutations in proteins of the hypothetical class are nonviable. Loss of viability suggests that these proteins may be essential for viability. Two such proteins, whose genes map to contigs m014 and m016, correspond respectively to Haemophillus influenzae ORFs HI1146 and HI1648. Two other hypothetical proteins, yyaF and ywbL, correspond to a GTP binding protein and transcriptional regulator, respectively.

The proteins of this invention can be used to raise antibodies. Antibodies against the hypothetical class of proteins are especially attractive. In targeting presumptively essential cellular functions, antibodies against "hypothetical proteins" could have therapeutic or prophylactic applications. Additionally, the "hypothetical" proteins can be used to screen for agents that bind or otherwise interact with said proteins. Such agents could lead to the identification of new antibacterial agents.

15

20 Proteins classified in Table 1 as cell wall biosynthetic proteins, and external target proteins, were identified by homology with known proteins. These proteins are useful for identifying agents that bind and inhibit bacterial growth. Therefore, in another embodiment of the 25 invention, the proteins of these classifications are prepared, preferably by recombinant means as described herein, substantially purified, and used in a screen to identify compounds that bind and/or inhibit the activity of said proteins. A variety of suitable screens are 30 contemplated for this purpose. For example, the protein(s) can be labeled by known techniques such as radiolabeling or fluorescent tagging, or by labeling with biotin/avidin; thereafter binding of a test compound to a labeled protein

-12-

can be determined by any suitable means, well known to the skilled artisan.

The proteins categorized as "minimal gene set" are homologous to a set of highly conserved proteins found in other bacteria. The minimal gene set proteins are thought to be essential for viability, and are useful targets for the development of new antibacterial compounds.

DNA Chips and Applications

25

30

10 The nucleic acids disclosed herein, or subfragments thereof, may be arrayed on any suitable solid surface, thereby constructing a "chip." DNA chip hybridizations provide greater sensitivity than do conventional hybridization means, such as Southern hybridization or 15 Northern hybridization. DNA chips are useful for a variety of purposes, for example, in mutation and gene expression analysis, and in probing the structure, function, and expression of the genome. This aspect of the invention relates to any one or more of the DNA fragments disclosed herein, wherein said fragments are attached to a solid 20 support (i.e. "chip" or "DNA chip" or "Bio chip"). Attachment of a nucleic acid to a support can be, but is not necessarily, accomplished by chemical or enzymatic means.

In one embodiment, DNA fragments of this invention are arrayed onto a solid support as a means for assessing gene expression in *S. pneumoniae*. The DNA fragments attached to a chip may be of any size that is suitable for hybridization to other nucleic acid molecules such as cDNAs, genomic DNAs, or RNAs. Suitably-sized DNA fragments are from 10 nucleotide residues to approximately several thousand residues. The preferred length is about 50 to 500 nucleotides.

Analysis of gene expression using the chips of this invention is assessed by hybridization of a chip to RNA samples, or cDNA samples prepared from S. pneumoniae grown

-13-

under any suitable conditions. Preferred samples for hybridization to a chip comprise cDNA. Methods for preparing RNA or cDNA are well known in the art.

A variety of suitable methods are known for fixing DNA fragments to solid support matrices [See e.g. D. Stimpson et al. "Real-time detection of DNA hybridization and melting on oligonucleotide arrays by using optical wave guides" Proc. Nat. Acad. Sci. 92, 6379 (1995)] Preferred surfaces for producing a chip are glass or polystyrene. Convenient surfaces are microscope slides, or cover slips (Corning), treated with silicon or silane to minimize non-specific binding by DNA or proteins. Also suitable for this purpose are 96-well microtiter plates.

10

A light-directed method may be used for attaching 15 oligonucleotides, enabling nucleotide synthesis directly on the solid surface using photolabile 5'protected N-acyldeoxynucleotide phosphoramidites and surface linker chemistry (See Pease et al. "Light-generated oligonucleotide arrays for rapid DNA sequence analysis" Proc. Nat. Acad. Sci. 91, 5022-5026, 1994). Alternatively, DNA fragments can 20 be bound to a surface via interaction with a specific DNA binding protein. Any suitable DNA binding protein may be used, for example bacteriophage DNA binding proteins, Adenovirus binding protein, the E. coli lac-repressor 25 protein, or 1-repressor protein. DNA binding proteins are attached to the surface of a chip by covalent chemical binding, essentially as described in U.S. Patent 5,561,071, the entire contents of which is incorporated by reference. The latter method requires that DNA fragments contain a 30 recognition sequence that enables binding by the DNA binding

protein. Specific sequences for a number of DNA binding proteins are known. Methods for incorporating specific

herein are well known in the cloning arts.

binding sequences into the genomic DNA fragments disclosed

-14-

DNA chip technology enables monitoring *S. pneumoniae* gene expression on a genome-wide level. This feature of the invention is particularly attractive for identifying (1) genes that are expressed or not expressed during the life cycle or infection cycle of *S. pneumoniae*, and (2) changes in gene expression that correlate with environmental change.

For example, virulence genes in S. pneumoniae can be identified by the DNA chip method disclosed herein. Identification of virulence genes in S. pneumoniae will provide new targets for developing novel antibiotics. For this aspect of the invention any suitable encapsulated strain of S. pneumoniae is introduced into a mouse, for example, by intraperitoneal injection, or by introduction directly into the lungs, or by any other suitable method. Approximatly 2 days after infection a peripheral blood titre level is reached of about 108 S. pneumoniae cells/ml. Cells recovered from peripheral blood, or other suitable tissue, are used in identifying virulence genes. For this purpose, cDNAs are prepared from cells recovered from an in vivo infection and from cells grown in vitro. After labeling, the cDNAs are hybridized against the DNA chip(s) disclosed herein. Genomic fragments that hybridize to the in vivo probe but not to the in vitro probe identify candidate virulence genes.

10

15

20

25

Also contemplated by this aspect of the invention is a method for analyzing gene expression in *S. pneumoniae* cells grown or harvested from any desireable *in vitro* or *in vivo* environment, wherein said environment may include compounds whose effects on gene expression are to be determined.

In another embodiment, the present invention relates to a DNA bio-chip, useful for correlating DNA sequence with biological function. The bio-chip comprises an array of the genomic DNA fragments disclosed herein, or portions thereof, attached to the surface of any suitable solid support

-15-

material. The bio chip further comprises a layer of competent *S. pneumoniae* cells suspended over the DNA array in any suitable semi-solid medium such as agar or agarose. The cells suspended on the bio chip comprise known or unknown mutant strains, or they may be wild-type cells. The cell layer is in contact with the DNA matrix such that DNA on the chip can be taken up by the cells.

The bio-chip is useful for several purposes. For example, the bio-chip can be used to localize an unknown mutation to a specific region of the genome by complementation. The bio-chip enables correlating a phenotype with a genetic locus. For example, mutant cells harboring one or more mutations and having at least one screenable or selectable phenotype can be applied to a bio chip and subjected to an environment that allows for selection, or for screening by complementation. If said phenotype is the result of a chromosomal mutation or mutations that map to a genomic fragment present on the chip, DNA uptake by the cells and repair of the mutation by recombination will be identifiable by a suitable screen or selection.

10

15

20

25

30

In a preferred embodiment, the bio-chip is overlayed with competent *S. pneumoniae* cells. Methods for preparing competent cells are known (*See e.g.* LeBlanc et.al. *Plasmid* 28, 130-145, 1992; Pozzi et al. *J. Bacteriol*.178, 6087-6090, 1996).

Other embodiments of this aspect of the invention are contemplated. For example the genomic fragments disclosed herein could be prepared and dispensed into individual wells of a 96-well micro titre plate. Competent S. pneumoniae cells could then be added to the wells under conditions suitable for DNA uptake followed by plating onto any suitable selection or screening medium, for example an agar

-16-

plate containing suitable growth and/or selection/screening components.

Diagnostic Kits and Assays

20

25

30

The present invention further relates to kits and assays that can be used for rapid and efficient detection of *S. pneumoniae* cells. Also contemplated are kits for detecting mutations carried by *S. pneumoniae* cells. Kits of this nature are particularly attractive in the clinical environment where knowledge about the identity of a pathogen and/or of the basis for resistance to antibiotic treatments is essential for effective medical treatment. In the long term, knowledge of the mutations that lead to resistance will enable the design of new antibacterial agents.

A kit for detecting *S. pneumoniae* cells can be based on antibody recognition of *S. pneumoniae* specific antigens or epitopes, or by nucleic acid hybridization techniques for the detection of *S. pneumoniae* specific nucleic acid molecules.

A variety of embodiments are contemplated in this aspect of the invention. In one embodiment a kit is provided for detecting mutations in drug-resistant *S. pneumoniae*. For this purpose, DNA is prepared from a resistant isolate and from a wild-type strain. In a preferred embodiment, the polymerase chain reaction (i.e. PCR) is used to amplify DNA samples representing any one or all of the genomic fragments disclosed herein. The amplified DNAs from the mutant and wild-type cells are hybridized to a DNA chip having fixed thereon any one or more of the genomic fragments disclosed herein. Amplified DNA samples from the mutant and wild-type strain are labeled by any suitable means, for example using radioisotopes or fluorescent labeling. Hybridization of the amplified DNAs to the chip under conditions that can discriminate single or multiple base pair mismatches enables

-17-

the detection of differences between the mutant and wildtype samples. This method identifies a specific fragment of the genome that is altered in the mutant strain. The specific mutation can be determined by conventional DNA sequence analysis.

This aspect of the invention also relates to the detection of *S. pneumoniae* proteins in a sample using antibody molecules raised against any suitable ORF disclosed herein. Antibody detection methods are well known to those skilled in the art including, for example, a variety of radioimmunological assays. (*See e.g.* P. Tijssen, <u>Practice</u> and Theory of Enzyme Immunoassays: Laboratory Techniques in Biochemistry and Molecular Biology, Elsevier Science Publishers, Amsterdam, The Netherlands, 1985).

Test samples suitable for use in this aspect of the invention include but are not limited to biological fluids such as sputum, blood, serum, plasma, urine, and to biopsy samples.

Skilled artisans will recognize that the disclosed method and reagents can be readily incorporated into a kit. For example, a kit would contain one or more receptacles comprising one or more of the following: PCR reagents, DNA chip reagents, labeling reagents, assorted buffers, and/or antibodies.

25

20

5

10

Production of Antibodies

The proteins of this invention and fragments thereof may be used in the production of antibodies. The term "antibody" as used herein describes antibodies,

30 fragments of antibodies (such as, but not limited, to Fab, Fab', Fab2', and Fv fragments), and chimeric, humanized, veneered, resurfaced, or CDR-grafted antibodies capable of binding antigens of a similar nature as the parent antibody

-18-

molecule from which they are derived. The instant invention also encompasses single chain polypeptide binding molecules.

The production of antibodies, both monoclonal and polyclonal, in animals is well known in the art. See, e.g., C. Milstein, Handbook of Experimental Immunology, (Blackwell Scientific Pub., 1986); J. Goding, Monoclonal Antibodies:

Principles and Practice, (Academic Press, 1983). For the production of monoclonal antibodies the process begins with injecting a mouse, or other suitable animal, with an immunogen. The mouse is subsequently sacrificed and cells taken from its spleen are fused with myeloma cells, resulting in a hybridoma that can be cultured in vitro. Hybridomas are screened for clones that secrete a single antibody species, specific for the immunogen.

10

15

20

25

Chimeric antibodies, described in U.S. Patent No. 4,816,567, herein incorporated by reference, teaches methods and vectors for preparing chimeric antibodies. An alternative approach is provided in U.S. Patent No. 4,816,397, the entire contents of which is herein incorporated by reference. This patent teaches coexpression of heavy and light chains in the same host cell.

The method taught in U.S. Patent 4,816,397 has been further refined in European Patent Publication No. 0 239 400. The teachings of this publication are preferred for engineering monoclonal antibodies. In this technology the complementarity determining regions (CDRs) of a human antibody are replaced with the CDRs of a murine monoclonal antibody, thereby converting the specificity of the human antibody to the specificity of the murine antibody.

Single chain antibodies and libraries thereof provide yet another means for genetically engineering antibody molecules. (See, e.g. R.E. Bird, et al., Science 242:423-426 (1988); PCT Publication Nos. WO 88/01649, WO 90/14430, and WO 91/10737. Single chain antibody technology

-19-

involves covalently joining the binding regions of heavy and light chains thereby generating a single polypeptide chain having the binding specificity of an intact antibody molecule.

The antibodies contemplated by the present invention are useful in diagnostics, therapeutics, or in diagnostic/therapeutic combinations.

5

10

15

20

25

30

The proteins of this invention, or suitable fragments thereof, can be used to generate polyclonal or monoclonal antibodies, and various inter-species hybrids, or humanized antibodies, or antibody fragments, or single-chain antibodies. The techniques for producing antibodies are well known to skilled artisans. (See e.g. A.M. Campbell, Monoclonal Antibody Technology: Laboratory Techniques in Biochemsitry and Molecular Biology, Elsevier Science Publishers, Amsterdam (1984); Kohler and Milstein, Nature 256, 495-497 (1975); Monoclonal Antibodies: Principles & Applications Ed. J.R.Birch & E.S. Lennox, Wiley-Liss, 1995.

A protein or peptide to be used as an immunogen may be administered in an adjuvant by subcutaneous or intraperitoneal injection into, for example, a mouse or a rabbit. For the production of monoclonal antibodies, spleen cells from immunized animals are removed, fused with myeloma cells, such as SP2/0-Ag14 cells, and allowed to become monoclonal antibody producing hybridoma cells in the manner known to the skilled artisan. Hybridomas that secrete the desired antibody molecule can be screened by a variety of well known methods, for example ELISA assay, western blot analysis, or radioimmunoassay (Lutz et al. Exp. Cell Res. 175, 109-124 (1988); Monoclonal Antibodies: Principles & Applications Ed. J.R.Birch & E.S. Lennox, Wiley-Liss, 1995).

For some applications it is desireable to have an antibody labeled in some fashion. Procedures for labeling antibody molecules with radioisotopes, affinity labels, such

-20-

as biotin or avidin, enzymatic labels, for example horseradish peroxidase, and fluorescent labels such as FITC or rhodamine, are widely known (See e.g. Enzyme-Mediated Immunoassay, Ed. T. Ngo, H. Lenhoff, Plenum Press 1985; Principles of Immunology and Immunodiagnostics, R.M. Aloisi, Lea & Febiger, 1988).

Labeled antibodies are useful for a variety of diagnostic applications. In one embodiment, the present invention relates to the use of labeled antibodies to detect the presence of S. pneumoniae cells and proteins. Also contemplated are applications that use antibodies, preferably single chain antibodies, directed against a S. pneumoniae protein. Proteins identified as "external targets" are preferred for the generation of single chain antibodies. Single chain antibody libraries directed against S. pneumoniae surface proteins and cell wall proteins can be produced by applying the phage display technique to crude membrane preparations. Antibodies that recognize and bind to external target proteins and/or cell wall proteins could be used as therapeutic agents to inhibit the growth of S. pneumoniae. Alternatively, the antibodies could be used in a screen to identify potential inhibitors of an external target protein. For example, in a competitive displacement assay, an antibody or compound to be tested is labeled by any suitable method. Competitive displacement of an antibody from an antibody-antigen complex by a test compound provides a means to identify new antibacterial compounds.

Protein Production Methods

10

15

20

25

30 The present invention relates further to substantially purified proteins encoded by the ORFs disclosed herein (SEQ ID NO:87 through SEQ ID NO:228).

Skilled artisans will recognize that proteins can be synthesized by different methods, for example, chemical

-21-

methods or recombinant methods, as described in U.S. Patent 4,617,149, hereby incorporated by reference.

The principles of solid phase chemical synthesis of polypeptides are well known in the art and may be found in general texts relating to this area. See, e.g., H. Dugas and C. Penney, <u>Bioorganic Chemistry</u> (1981) Springer-Verlag, New York, 54-92. Peptides may be synthesized by solid-phase methodology utilizing an Applied Biosystems 430A peptide synthesizer (Applied Biosystems, Foster City, CA) and synthesis cycles supplied by Applied Biosystems. Protected amino acids, such as t-butoxycarbonyl-protected amino acids, and other reagents are commercially available from many chemical supply houses.

5

10

25

30

The proteins and peptides of the present invention

can also be made by recombinant DNA methods. Recombinant
methods are preferred if a high yield is desired.

Recombinant methods involve expressing a cloned ORF/gene in
a suitable host cell. A gene is introduced into a host cell
by any suitable means, well known to those skilled in the

art. While chromosomal integration of a cloned gene is
within the scope of the present invention, it is preferred
that a cloned gene be maintained extra-chromosomally, as
part of a vector wherein the gene is in operable-linkage to
a constitutive or inducible promoter.

Recombinant methods are also useful in overproducing a membrane-bound or membrane-associated protein. In some cases, membranes prepared from recombinant cells that overexpress such proteins provide an enriched source of the protein. Such membranes are useful for evaluating the function of the protein and/or for evaluating inhibitors of the protein.

-22-

Expressing Recombinant Proteins in Procaryotic and Eucaryotic Host Cells

10

30

Procaryotes are generally used for cloning DNA sequences and for constructing vectors. For example, the Escherichia coli K12 strain 294 (ATCC No. 31446) is particularly useful for expression of foreign proteins. Other strains of E. coli, bacilli such as Bacillus subtilis, enterobacteriaceae such as Salmonella typhimurium or Serratia marcescans, various Pseudomonas species may also be employed as host cells in cloning and expressing the recombinant proteins of this invention. Also contemplated are various strains of Streptococcus and Streptocmyces.

For effective expression of a recombinant protein a gene or ORF may be linked to a known promoter sequence. Suitable bacterial promoters include b -lactamase [e.g. 15 vector pGX2907, ATCC 39344, contains a replicon and b lactamase gene], lactose systems [Chang et al., Nature (London), 275:615 (1978); Goeddel et al., Nature (London), 281:544 (1979)], alkaline phosphatase, and the tryptophan (trp) promoter system [vector pATH1 (ATCC 37695)] designed 20 for the expression of a trpE fusion protein. Hybrid promoters such as the tac promoter (isolatable from plasmid pDR540, ATCC-37282) are also suitable. Promoters for use in bacterial systems also will contain a Shine-Dalgarno sequence operably linked to the DNA encoding the desired 25 polypeptides. These examples are illustrative rather than limiting.

A variety of mammalian cell systems and yeasts are also suitable host cells. The yeast Saccharomyces cerevisiae is a commonly used eucaryotic microorganism.

Other yeasts such as Kluyveromyces lactis are also suitable. For expression of recombinant genes in Saccharomyces, the plasmid YRp7 (ATCC-40053), for example, may be used. See, e.g., L. Stinchcomb, et al., Nature, 282:39 (1979); J.

-23-

Kingsman et al., Gene, 7:141 (1979); S. Tschemper et al., Gene, 10:157 (1980). Plasmid YRp7 contains the TRP1 gene that provides a selectable marker in a trp1 mutant.

5 Purification of Recombinantly-Produced Protein

10

15

20

An expression vector carrying an ORF of the present invention is transformed or transfected into a suitable host cell using standard methods. Cells which contain the vector are propagated under conditions suitable for expression of the encoded protein. If the gene is under the control of an inducible promoter then suitable growth conditions would incorporate the appropriate inducer. The recombinantly-produced protein may be purified from cellular extracts of transformed cells by any suitable means.

In a preferred process for protein purification a gene/ORF is modified at the 5' end, or some other position, to incorporate a plurality of histidine residues at the amino terminus of the encoded protein. The "histidine tag" produced thereby enables a single-step protein purification method referred to as "immobilized metal ion affinity chromatography" (IMAC), essentially as described in U.S. Patent 4,569,794, hereby incorporated by reference. The IMAC method enables rapid isolation of substantially pure protein starting from a crude cellular extract.

As skilled artisans will recognize, the proteins of the invention can be encoded by a multitude of different nucleic acid sequences owing to the degeneracy of the genetic code. The present invention further comprises these alternate nucleic acid sequences.

The ribonucleic acid compounds of the present invention may be prepared using the polynucleotide synthetic methods discussed *supra*, or they may be prepared enzymatically using RNA polymerase to transcribe a DNA template.

-24-

The most preferred systems for preparing the ribonucleic acids of the present invention employ the RNA polymerase from the bacteriophage T7 or the bacteriophage SP6. These RNA polymerases are highly specific, requiring the insertion of bacteriophage-specific sequences at the 5' end of the template to be transcribed. See, J. Sambrook, et al., supra, at 18.82-18.84.

This invention also provides nucleic acids, RNA or DNA, which are complementary to the sequences disclosed herein.

10

The present invention also provides probes and primers useful for a variety of molecular biology techniques including, for example, hybridization screens of genomic or subgenomic libraries, detection and quantification of mRNA 15 species as a means to analyzing gene expression, and amplification of any region of the Streptococcus pneumoniae genome disclosed by the sequences herein. A nucleic acid compound is provided comprising any of the sequences disclosed herein, or a complementary sequence thereof, or a 20 fragment thereof, which is at least 15 base pairs in length, and which will hybridize selectively to Streptococcus pneumoniae DNA or mRNA. Preferably, the 15 or more base pair compound is DNA. A probe or primer length of at least 15 base pairs is dictated by theoretical and practical 25 considerations. See e.g. B. Wallace and G. Miyada, "Oligonucleotide Probes for the Screening of Recombinant DNA Libraries, "In Methods in Enzymology, Vol. 152, 432-442, Academic Press (1987).

The probes and primers of this invention can be prepared by methods well known to those skilled in the art (See e.g. Sambrook et al. supra). In a most preferred embodiment these probes and primers are synthesized by the polymerase chain reaction (PCR).

-25-

The present invention also relates to recombinant DNA cloning vectors and expression vectors comprising the nucleic acids of the present invention. Preferred nucleic acid vectors are those which comprise DNA. The skilled artisan understands that choosing the most appropriate cloning vector or expression vector depends on a number of factors including the availability of restriction enzyme sites, the type of host cell into which the vector is to be transfected or transformed, the purpose of the transfection or transformation (e.g., stable transformation as an extrachromosomal element, or integration into the host chromosome), the presence or absence of readily assayable or selectable markers (e.g., antibiotic resistance and metabolic markers of one type and another), and the number of gene copies desired in the host cell.

10

15

20

25

30

Vectors suitable to carry the nucleic acids of the present invention comprise RNA viruses, DNA viruses, lytic bacteriophages, lysogenic bacteriophages, stable bacteriophages, plasmids, viroids, and the like. The most preferred vectors are plasmids.

Host cells harboring the nucleic acids disclosed herein are also provided by the present invention. A preferred host is *E. coli* which has been transfected or transformed with a vector that comprises a nucleic acid of the present invention.

The present invention also provides a method for constructing a recombinant host cell capable of expressing an ORF disclosed herein, said method comprising transforming or otherwise introducing into a host cell a recombinant DNA vector that comprises an isolated DNA sequence which encodes said ORF. The preferred host cell is any strain of *E. coli* which can accomodate high level expression of an exogenously introduced gene. Transformed host cells are cultured under conditions well known to skilled artisans such that said ORF

is expressed, thereby producing the encoded protein in the recombinant host cell.

For the purpose of discovering new inhibitors of cell wall biosynthesis, it would be desirable to determine agents that inhibit enzymes required for synthesis of the cell wall and/or agents that interact with membrane proteins. A method for identifying compounds that interact with such enzymes and membrane proteins comprises contacting said proteins with a test compound and monitoring an interaction and/or inhibition by any suitable means.

The instant invention provides a screening system for compounds that interact with membrane proteins of this invention, said screening system comprising the steps of:

- a) preparing a membrane protein, or membranes enriched in said protein;
 - b) exposing the protein source of (a) to a test compound; and
 - c) quantifying the interaction of said protein with said compound by any suitable means.

20

25

10

15

The screening method of this invention may be adapted to automated procedures such as a PANDEX® (Baxter-Dade Diagnostics) system, allowing for efficient high-volume screening of compounds.

In a typical screening protocol, a protein to be tested is prepared as described herein, preferably using recombinant DNA technology. A test compound is introduced into a reaction vessel containing said protein. reaction/interaction of said protein and said compound is 30 monitored by any suitable means. For example, a radioactively-labeled or chemically-labeled compound or

-27-

protein may be used. Specific association between a test compound and protein is monitored by any suitable means.

The following examples more fully describe the present invention. Those skilled in the art will recognize that the particular reagents, equipment, and procedures described are merely illustrative and are not intended to limit the present invention in any manner.

EXAMPLE 1 <u>Vector for Expressing S. pneumoniae</u> ORF in a Host Cell

10

20

An expression vector suitable for expressing a S.

pneumoniae gene or fragment thereof in a variety of

procaryotic host cells, such as E. coli, is easily made. A

suitable parent vector contains an origin of replication

(Ori), a marker for selecting transformants, for example, an

ampicillin resistance gene (Amp), and further comprises

suitable transcriptional and translational signals, for

example, the T7 promoter and T7 terminator sequences, in

operable-linkage to a S. pneumoniae coding region. For

example, pET11A (obtained from Novogen, Madison WI) is linearized by restriction with endonucleases NdeI and BamHI. Linearized pET11A is ligated to a DNA fragment bearing NdeI and BamHI sticky ends and comprising a coding region for a S. pneumoniae ORF.

The ORF used in this construction may be modified at the 5' end (amino terminus of encoded protein or peptide) to simplify purification of the encoded protein or peptide. For this purpose, an oligonucleotide encoding 8 histidine residues is inserted after the transcriptional and translational start sites. Placement of the histidine residues at the amino terminus of the encoded protein enables the IMAC one-step protein purification procedure.

Example2

-28-

Recombinant Expression and Purification of a Protein Encoded by a S. pneumoniae ORF

An expression vector that carries an ORF from the S. pneumoniae genome, as disclosed in Example 1, and which ORF is operably-linked to an expression promoter, is transformed into E. coli BL21 (DE3) (hsdS gal lcIts857 indlSam7nin5lacUV5-T7gene 1) using standard methods. Transformants, selected for resistance to ampicillin, are chosen at random and tested for the presence of the vector by agarose gel electrophoresis using quick plasmid preparations. Colonies that contain the vector are grown in L broth and the protein produced by the vector-borne ORF is purified by IMAC, essentially as described in US Patent 4,569,794.

Briefly, the IMAC column is prepared as follows. A metal-free chelating resin (e.g. Sepharose 6B IDA, Pharmacia) is washed in distilled water to remove preservatives and then infused with a suitable metal ion [e.g. Ni(II), Co(II), or Cu(II)] by adding a 50mM metal chloride or metal sulfate aqueous solution until about 75% of the interstitial spaces of the resin are saturated with colored metal ion. The column is then ready to receive a crude cellular extract containing the recombinant protein product.

Unbound proteins and other materials are removed by washing the column with any suitable buffer, pH 7.5. Bound protein is eluted in any suitable buffer at pH 4.3, or preferably with an imidizole-containing buffer at pH 7.5.

30

Example 3

DNA Chip Production

Any one or more of the *S. pneumoniae* genome DNA fragments disclosed herein, or fragments thereof, are arrayed onto a solid support. It is preferred that fragments be in

-29-

the size range of 14 base pairs to 500 base pairs. The DNA samples are most conveniently synthesized by PCR using standard methods to amplify regions disclosed by the genomic sequences herein. The method of Schena et al. is used to spot about 1 ng to 10 ng of a DNA sample onto glass microscope slides that have been treated with poly-L-lysine (M. Schena et al. "Quantitative monitoring of gene expression patterns with a complementary DNA microarray" Science, 270, 467-470, 1995). After spotting DNA samples onto the chip and air-drying, the chips are rehydrated by incubation for about 2 hours in a humid chamber. Chips are then placed at 100° C for 1 minute, rinsed in 0.1% SDS, and treated with 0.05% succinic anhydride in 50% 1-methyl-2-pyrrolidinone and 50% boric acid.

15

20

25

30

10

Example 4 S. pneumoniae Gene Expression Analysis using DNA Chips

RNA prepared from cells grown under any desireable conditions is used to prime cDNA synthesis by reverse transcription, using methods well known to the skilled artisan (See e.g. Molecular Cloning, 2d Ed. J.Sambrook, E. Fritsch, T. Maniatis, 1989). For example, total RNA of strain R6 is prepared according to the method of Logeman et.al., (Analytical Biochemistry, 1987, 163, 16-20) using guanidine hydrochloride. After ethanol precipitation, the total RNA is dissolved in a buffered solution such as Tris-EDTA (TE). Complementary DNA's are synthesized with the aid of the StrataScript RT-PCR kit (Stratagene, Inc.) in accordance with the supplier's recommendations (See Schena et al. Id.). Briefly, a 50 ul reaction contains about 0.1 ug/ul of RNA. First strand synthesis is primed using random

primers, 1X first strand buffer, 0.03 U/ul ribonuclease

fluorescein-12-dCTP (New England Nuclear), and 0.03 U/ul

block, 500 uM dATP, 500 uM dTTP, 40 uM dGTP, 40 uM

-30~

reverse transcriptase. Reactions are incubated for 60 minutes at 37° C, precipitated with ethanol, and resuspended in 10 ul TE pH 8. Samples are heated for 3 minutes at 94° C and chilled on ice. The RNA is degraded by adding 0.25 ul of 10 N NaOH, followed by a 10 minute incubation at 37° C. The samples are neutralized with 2.5 ul of 1M Tris-HCl, pH 8 and 0.25 ul of 10 N HCl. After ethanol precipitation, the nucleic acid pellet is washed and dried *in vaccuo*.

Prior to hyrbrization, DNA chips prepared as in Example

3 are denatured by heating to 90°C for 2 minutes.

Hybridization reactions contain about 1 ul of fluorescentlylabeled cDNA, and 1 ul of hybridization buffer (10x SSC and
0.2% SDS). Probe mixtures are transferred to the surface of
the chip, covered with a cover slip, and incubated for 18

hours at 65° C. Chips are washed 5 minutes at room
temperature in 1X SSC, 0.1% SDS, then for 10 minutes at room
temperature in 0.1X SSC, 0.1% SDS. After hybridization,
chips are scanned with a laser-scanning device.

-31-

Example 5

A DNA Bio Chip for mutation analysis

Duplicate DNA chips are prepared as in Example 3. Each chip is overlayed with *S. pneumoniae* cells in a semi-solid medium, wherein said cells carry a temperature-sensitive (ts) mutation in a gene required for autolytic activity (Lyt⁻). This mutation leads to resistance to lysis at 37° C, but sensitivity to lytic treatments at 30° C.

- S. pneumoniae strain cwl is resistant to lysis by 10 detergent and penicillin when grown at 37° C, but remains sensitive when grown at 30°C (cwl is derived from strain R6; See P. Garcia et al. "Mutants of Streptococcus pneumoniae that contain a temperature-senstive autolysin" J. Gen. Microbiol. 132, 1401-05, 1986). Strain cwl is grown at 15 30° C and competent cells are prepared according to any suitable method (e.g. LeBlanc et.al. Plasmid 28, 130-145, 1992; Pozzi et al. J. Bacteriol.178, 6087-6090, 1996). Competent cwl cells are harvested by centrifugation and resuspended at about 105 cells per ml in 1% melted agar 20 supplemented with 0.1% (w/v) yeast extract (Difco) and containing 1% to 2% Triton X-100. Approximately 100 ul to 500 ul of the cell mixture is deposited per square centimeter onto the bio chip by pipetting onto the chip surface. After solidification of the agar layer, one of the 25 bio-chips is incubated at 37° C and the other at 30° C. Cells that take up a complementing genomic DNA fragment from the chip surface will be lysed at both 30° C and 37° C, while non-complemented cells are lysed only at 30° C. Cells
- while non-complemented cells are lysed only at 30° C. Cell that are complemented by the bio-chip are recognizable by 30 this phenotypic difference and can be further purified by well known methods.

TABLE 1

S. pneumoniae Genes and proteins

000	Secondated Obs.	Nical cet; de one in No	1 1 2 2	
ΩI		(Amino Acid SEQ ID NO)	category	
j001	ууағ	1 (123)	hypothet	yyaF= GTP-binding
			ical	protein
j002	bqo	2 (124)	external	external obg=GTP-binding
	,			protein
5005	lspA;	3 (126)	cell	lsp=prolipoprotein
	ywbI	3 (125)	wall	signal peptidase
			synth;	ywb1=hypothetical
			hypothet	transcriptional
			ical	regulator
j 004	pstA	4 (127)	external	pstA=high-affinity
				phosphate-specific
				transport
3005	pilB	5 (128)	external	pilB=fimbrial
				transcription
	•			regulation repressor
3006	pgsA	6, 111	external	pgsA=phosphatidylglyce
0	{			rophosphate synthase
3009	potc;	7 (130)	external	potC,potF=spermidine/p
	port	7 (131)		utrescine transport
				system permease
	;			proteins
0100	xngd ;	8, 9 (132)	external	pbuX=xanthine permease
	uraA(pyrP)	(133)	••	uraA=uracil permease
j012	nanB/A	10 (134)	external external	nan8/A=nemraminidase
			_)

spoIIIEB=sporulation	protein licC=(OM)	lipopolysaccharide phase variation protein										transport proteins	
external	external		thet	hypothet	hypothet	hypothet	hypothet	ical hypothet	hypothet	hypothet	ical	external t	hypothet ical
11 (135)	12 (136)		13 (137)	14 (138)	15 (139)	16, 95 (140)	17 (141)	18, 103	19 (142)	(143)	20 (144) 20 (145) 20 (146)		25 (151) 26, 121
spolIEB	licc		unk	unk	nnk	unk	nnk	murz	nnk	unk,	unk unk unk	abctran, aminoatrans, glutrans	unk (HI1146)
j013	j014		m001	m002	m003	m004	m005	m007	m008	m011		m012	m014

m015	ftsH	27, 117	external	external putative ATPase
	hgprt	(153)		involved in membrane functions
m016	unk, unk (HI1648)	28, 109 (154, 155)	hypothet	-
m017	nusG	29 (156)	min set	transcription
			w/o enk	elongation factor
			match	
m018	unk	30 (157)	hypothet ical	
m019	era	31, 91	external	membrane associated
1001	, 7, 7, 7,	32 (158)	external	GTP binding protein
1 1 2	7.1.6	(201)		trong dia
m022	rpoA,	33 (158)	-	rpoA encodes alpha
	secY	115	min set	subunit of RNA
	KAD	(159)	w/o enk	polymerase, secY is a
			match	translocator of
				proteins
				(multispanning
				membrane protein); KAD
m023	pyrG	34 (161)	external	CTP synthetase
m024	amir	35 (162)	external	amidase
m027	nnk	36 (163)	external	
m028	SpoT	37 (164)	external	guanosine 5'-
				diphosphate, 3'-
				uipiiospiiate pyrophosphatase

m030	mraY	38, 99	cell	UDP-N_acetylmuramoyl-
			syn/memb rane	nyl_P)4 phosphatase
m031	rodA	39, 113	int.	
			wall	
		-	syn/memb	
			rane int.	
m034	murB	40 (165)	cell	UDP-N-
			wall	acetylglucosaminy1-3-
			syn/memb	enolpyruvate reductase
-			rane	
700-	2.44	•	int.	
9501	ICSI	41, 119	cell	function in cell
			war, momb	HOTELATA
			rane	
p001	nrfE;	42 (166)	minimal	nrfE: Nitrite
	lackrepressor	(167)	set	reduction formate
	nrdF	(168)))	
				۲.
p002	ACPsyn;	43, 44, 45 (172)	external	fabB: fatty acid
••••	fabB;	(170)		biosynthesis, pepN:
	ACPtrans;	(171)		aminopeptidase N
	pepN;	(173)		•
	unk	(169)		
	unk	(174)		
p003	ligase	46, 47, 97	imal	ligase
p004	trigger factor	48 (176)	set minimal	trigger factor
			_	

		•	•	
p005	ptsI	49, 50 (177, 178)	set external	PRP-protein PTS enzyme
900d	fts2	51, 105	external	filamentous
				temperature sensitivity, cell septation
P004	unk;	52 (180)	cell	ftsE: filamentous
	unk; ftsE;	(181)	wall synth.	temperature sensitivity, ATP-
	nnk	(182)		binding protein
800d	glpF;	53 (183)	external	glpF: glycerol facilitator
600d	grpE;	54, 107	external	grpE: nucleotide
p010	unk;	55 (186)	cell	100000000000000000000000000000000000000
	unk	(187)	wall	
	un'.	(188)	synth	
	unk	(189)	(murI	
	nnk	(190)	region)	
	unk	(191)		
	4110	(192)		
p012	topA	56 (193)	minimal set	DNA topoisomerase I
p013	doeD	57 (194)	minimal	purine-nucleoside
	ï	, 1	set	phosphorylase
p014	rfbX;	58, (195)	cell	rfbX: hydrophobic
	11C-1 oberon	29, 60 (196-198)	wall	protein involved in 0-
_		_	synth.	antigen assembly

cation transporting	livH: leucine, isoleucine and valine	rimI: modification of 30S ribosomal subunit,	unknown function										ATP synthase B chain	DNA primase
external	external	external	hypothet	hypothet	hypothet	hypothet	hypothet	hypothet	hypothet	lcal hypothet	hypothet	hypothet	ı imal	ser minimal set
61, 62, 63, 64 (199-202) external cation transporting	65 (204) 65 (203)	66 (205) 93	67 (206–207)	68 (208)	(203)	70 (210)	71 (211–212)	72 (213-214)	73 (215)	74 (216-217)	75 (218)	76 (219)	77 (220)	78, 89
ATPase;	livH; braC	rimI; gcp	unk;	nnk	nnk	unk	unk;	unk;	nnk	unk;	unk	nnk	AtpF	DnaG
p016	p017	p018	Punk01	Punk02	Punk03	Punk04	Punk05	Punk06	Punk08	Punk09	Punk10	Punk12	s001	s002

elongation factor G; DNA polymerase III	FAD synthetase	regulatory protein LPS-heptosyl-2- transferase, small	prot. chromosomal	replication initiator replicative DNA	nellcase prolipoprotein diacylglyceryl	transferase UDPgalactose Epimerase	
minimal elo set DNA	mal	set reg minimal LPS set tra	mal	mal	set nel minimal pro set dia	trancell UDP wall synth	•
ES	E	N E S	E	S E	S E S	O X K	
79 (222) (221)	80 (223)	1 (224)	82 (225)	83, 87	4 (226)	5 (227) 5 (228)	101
7	60	81	80		84	8 8 86	
EL-G; polC	FAD	SmpB	DnaA	DnaB	Lgtp	UDPgalactoseEpime rase; glycosyl transferase	dpj-acps
s003	s004	s005	900s	800s	800s	s010	-

-39-

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
 5
           (i) APPLICANT: Baltz, Richard H.
                           Burgett, Stanley G.
                           DeHoff, Bradley S.
                            Jaskunas Jr., Stanley R.
10
                           Mills, Bradley J.
                           Norris, Franklin H.
Peery, Robert B.
                           Rosteck Jr., Paul R.
                            Skatrud, Paul L.
15
                            Smith, Michele C.
                           Rockey, Pamela K.
                           Young-Bellido, Michele
          (ii) TITLE OF INVENTION: Streptococcus Pneumoniae DNA Sequences
20
         (iii) NUMBER OF SEQUENCES: 122
          (iv) CORRESPONDENCE ADDRESS:
                 (A) ADDRESSEE: Eli Lilly and Company
25
                 (B) STREET: Lilly Corporate Center
                 (C) CITY: Indianapolis
                 (D) STATE: Indiana
                 (E) COUNTRY: U.S.
                 (F) ZIP: 46285
30
           (v) COMPUTER READABLE FORM:
                 (A) MEDIUM TYPE: Floppy disk
                 (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
35
                 (D) SOFTWARE: PatentIn Release #1.0, Version #1.30
          (vi) CURRENT APPLICATION DATA:
                 (A) APPLICATION NUMBER:
                 (B) FILING DATE:
40
                 (C) CLASSIFICATION:
        (viii) ATTORNEY/AGENT INFORMATION:
                 (A) NAME: Webster, Thomas D.
                 (B) REGISTRATION NUMBER: 39,872
45
                 (C) REFERENCE/DOCKET NUMBER: X-11162
          (ix) TELECOMMUNICATION INFORMATION:
                 (A) TELEPHONE: 317-276-3334
50
      (2) INFORMATION FOR SEQ ID NO:1:
           (i) SEQUENCE CHARACTERISTICS:
                 (A) LENGTH: 1267 base pairs
55
                 (B) TYPE: nucleic acid (C) STRANDEDNESS: single
                 (D) TOPOLOGY: linear
          (ii) MOLECULE TYPE: DNA (genomic)
60
         (iii) HYPOTHETICAL: NO
```

PCT/US97/22578 WO 98/26072

-40-

(iv) ANTI-SENSE: NO

5

	(xi) SE	QUENCE DESC	RIPTION: SI	EQ ID NO:1:			
	ATGGTGGAAG	TTCCAGATGA	ACGCCTACAA	AAACTAACTG	AAATGATAAC	TCCTAAAAAG	60
10	ACAGTTCCCA	CAACATTTGA	ATTTACAGAT	ATTGCAGGGA	TTGTAAAAGG	AGCTTCAAAA	120
	GGAGAAGGGC	TAGGGAATAA	ATTCTTGGCC	AATATTCGTG	AAGTAGATGC	GATTGTTCAC	180
15	GTAGTTCGTG	CTTTTGATGA	TGAAAATGTA	ATGCGCGAGC	AAGGACGTGA	AGACGCCTTT	240
	GTAGATCCAC	TTGCAGATAT	TGATACAATT	AATCTGGAAT	TAATTCTTGC	TGACTTAGAA	300
	TCAGTGAACA	AACGATATGC	GCGTGTAGAA	AAGATGGCAC	GTACGCAAAA	AGATAAAGAA	360
20	TCAGTAGCAG	AATTCAATGT	TCTTCAAAAG	ATTAAACCAG	TCCTAGAAGA	CGGGAAATCA	420
	GCTCGTACCA	TTGAATTTAC	AGATGAGGAA	CAAAAGGTTG	TCAAAGGTCT	TTTCCTTTTG	480
25	ACGACTAAAC	CAGTTCTTTA	TGTAGCTAAT	GTGGACGAGG	ATGTGGTTTC	AGAACCTGAC	540
	TCTATCGACT	ATGTCAAACA	AATTCGTGAA	TTTGCAGCGA	CAGAAAATGC	TGAAGTAGTC	600
	GTTATTTCTG	CGCGTGCTGA	GGAAGAAATT	TCTGAATTGG	ATGATGAAGA	TAAAAAAGAG	660
30	TTTCTTGAAG	CCATTGGTTT	GACAGAATCA	GGTGTAGATA	AGTTGACGCG	TGCAGCTTAC	720
	CACTTGCTTG	GATTGGGAAC	TTACTTCACA	GCTGGTGAAA	AAGAAGTTCG	CGCTTGGACT	780
35	TTCAAACGTG	GTATGAAGGC	TCCTCAAGCA	GCTGGTATTA	TCCACTCAGA	CTTTGAAAAA	840
	GGCTTTATTC	GTGCAGTAAC	CATGTCATAT	GAAGATCTAG	TGAAATACGG	ATCTGAAAAG	900
	GCCGTAAAAG	AAGCTGGACG	CTTGCGTGAA	GAAGGAAAAG	AATATATCGT	TCAAGATGGC	960
40	GATATCATGG	AATTCCGCTT	TAATGTCTAA	AATTAATAA	ATGGTGTCAA	TTAGGTTGGA	1020
	AAAAAATTCC	AACCCTTTTG	GCTTTTGAAA	GGAAAAATAA	ATGACCAAAT	TACTTGTAGG	1080
45	TTTGGGAAAT	CCAGGGGATA	AATATTTTGA	AACAAACACA	ATGTTGGTTT	TATGTTGATT	1140
	GATCAACTAG	CGAAGAAACA	GAATGTCACT	TTTACACACG	ATAAGATATT	TCAAGCTGAC	1200
	CTAGCATCCT	TTTTCCTAAA	TGGAGAAAAA	ATTTATCTGG	GTTAAACCAA	CGACCTTTAT	1260
50	GGATTGA						1267

(2) INFORMATION FOR SEQ ID NO:2:

55

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1255 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

60

(ii) MOLECULE TYPE: DNA (genomic)

-41-

(iii)	HYPOTHETICAL:	NO
-------	---------------	----

(iv) ANTI-SENSE: NO

5

60

10	(xi) SI	EQUENCE DESC	CRIPTION: SI	EQ ID NO:2:			
10	TGGTCCGTGG	TGCTGAGGAC	CCTTAGAGTT	CGAGTACCAC	AAGGTACCGA	CTGTTCGTGA	60
	TGCGGAGCTG	GCAAGGTTTT	AACAGATTTG	ATTGAACATG	GGCAAGAATT	TATCGTTGCC	120
15	CACGGTGGTC	GTGGTGGACG	TGGAAATATT	CGTTTCGCGA	CACCAAAAAT	CCTGCACCGG	180
	AATCTCTGAA	AATGGAGAAC	CAGGTCAGGA	ACGTGAGTTA	CAATTGGAAC	TAAAAATCTT	240
20	GGCAGATGTC	GGTTTAGTAG	GATTCCCATC	TGTAGGGAAG	TCAACACTTT	TAAGTGTTAT	300
20	TACCTCAGCT	AAGCCTAAAA	TTGGTGCCTA	CCACTTTACC	ACTATTGTAC	CAAATTTAGG	360
	TATGGTTCGC	ACCCAATCCA	GGTGAATCCT	TTGCAGTAGC	CGACTTGCCA	GGTTTGATTG	420
25	AAGGGGCTAG	TCCAAGGTGT	TGGTTTGGGA	ACTCAGTTCC	TCCGTCACAT	CGAGCGTACA	480
	CGTGTTATCC	TTCACATCAT	TGATATGTCA	GCTAGCGAAG	GCCGTGATCC	ATATGAGGAT	540
30	TACCTAGCTA	TCAATAAAGA	GCTGGAGTCT	TACAATCTTC	GCCTCATGGA	GCGTCCACAG	600
J 0	ATTATTGTAA	CTAATAAGAT	GGACATGCCT	GAGAGTCAGG	AAAATCTTGA	AGAATTTAAG	660
	AAAAAATTGG	CTGAAAATTA	TGATGAATTT	GAAGAGTTAC	CAGCTATCTT	CCCAATTTCT	720
35	GGATTGACCA	AGCAAGGTCT	GGCAACACTT	TTAGATGCTA	CAGCTGAATT	GTTAGACAAG	780
	ACACCAGAAT	TTTTGCTCTA	CGACGAGTCC	GATATGGAAG	AAGAAGTTTA	CTATGGATTT	840
40	GACGAAGAAG	AAAAAGCCTT	TGAAATTAGT	CGTGATGACG	ATGCGACATG	GGTACTTTCT	900
40	GGTGAAAAAC	TCATGAAACT	CTTTAATATG	ACCAACTTTG	ATCGTGATGA	ATCTGTCATG	960
	AAATTTGCCC	GTCAGCTTCG	TGGTATGGGG	GTTGATGAAG	CCCTTCGTGC	GCGTGGAGCT	1020
45	AAAGATGGGG	ATTTGGTCCG	CATTGGTAAA	TTTGAGTTTG	AATTTGTAGA	CTAGGAGACT	1080
	GGTATGGGAG	ATAAACCGAT	ATCTTTCCGA	GATGCGGATG	GTAATTTTGT	TTCCGCCGCA	1140
50	GACGTTTGGA	ATGAAAAGAA	ATTGGAAGAA	CTATTTAATC	GTCTCAATCC	AAATCGTGCC	1200
-0	TTGAGATTGG	CACGAACTAC	AAAGGAAAAT	CCATCTCAGT	AAAGAAGCTA	ААААА	1255
	(2) INFORM	ATION FOR SI	EQ ID NO:3:				

55 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1609 base pairs

- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genomic)

-42-

(iii)	HYPOTHETICAL:	NO
-------	---------------	----

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3: 10 TTACCCATCG CATGACTAAA AATCTCTACT ATCCAATACT AGTTCATATT CTCATCAATA 60 TCACTGCCTT CTGGGATGTT TGGTTACTCC TATTTTCAGG AAGTTAGCTT ACTAAAAAA 120 15 TGTCGGAATT TTCCGGCATT TTCTTTTTC ACAAATAGTC AACGTTTTTC TTTCCGATAC 180 TGAAGTGGTG TGTAGCCACT TATTTTTTTG AATTGATTTT GAAAATAAGA TTGGCGTGAG 240 AAAGGCAGAT AGTGAAGATA GTTAAGAAGA ATAGGATGTT CTTTTTCCT TTTTGGAAAA 300 20 CTTCTAAAAT ATGGTATAAT GAAAAGATAA AGAAGTTGGG GGTAGAAGAT GAACATTCAA 360 CAATTACGCT ATGTTGTGGC TATTGCCAAT AGTGGTACTT TTCGTGAAGC TGCTGAAAAG 420 25 ATGTATGTTA GTCAGCCGAG TCTGTCTATT TCTGTTCGTG ATTTGGAAAA AGAGTTGGGC 480 TTTAAGATTT TCCGTCGGAC CAGCTCAGGG ACTTTCTTGA CCCGTCGTGG GATGGAATTT 540 TATGAAAAAG CGCAAGAATT GGTTAAAGGA TTTGATATTT TTCAAAATCA GTATGCCAAT 600 30 CCTGAAGAAG AAAAAGATGA ATTTTCCGTT GCTAGCCAGC ACTATGACTT CTTACCACCA 660 ACTATTACGG CCTTTTCAGA GCGCTATCCT GACTATAAGA ACTTCCGTAT TTTTGAATCA 720 35 ACTACTGTTC AAATATTAGA TGAAGTGGCG CAAGGGCATA GTGAGATTGG GATTATCTAC 780 CTCAACAATC AAAATAAAAA GGGGATTATG CAACGGGTTG AAAAGTTAGG TCTGGAGGTC 840 ATCGAATTGA TTCCTTTCCA TACCCATATT TATCTCTGTG AGGGTCATCC TTTAGCCCAG 900 40 AAAGAGGAAT TAGTCATGGA GGATTTAGCG GATTTACCAA CGGTTCGTTT CACTCAAGAG 960 AAAGACGAGT ACCTTTATTA TTCAGAGAAC TTTGTCGATA CCAGCGCTAC TCACAGATGT 1020 45 TTAATGTGAC AGACCGTGCC ACCTTGAATG GTATTTTGGA GCGGACGGAC GCCTATGCGA 1080 CAGGTTCTGG ATTTTTAGAT AGTGACAGTG TTAATGGCAT TACAGTTATT CGTCTCAAGG 1140 ATAACCTAGA TAACCGCATG GTCTATGTTA AACGTGAAGA AGTGGAGCTT AGTCAAGCTG 1200 50 GGACTCTCTT CGTAGAAGTC ATGCAAGAAT ATTTTGATCA AAAGAGGAAA TCATGAAAAA 1260 AAGAGCAATA GTGGCAGTCA TTGTACTGCT TTTAATTGGG CTGGATCAGT TGGTCAAATC 1320 55 CTATATCGTC CAGCAGATTC CACTGGGTGA AGTGCGCTCC TGGATTCCCA ATTTCGTTAG 1380 CTTGACCTAC CTGCAAAATC GAGGTGCAGC CTTTTCTATC TTACAAGATC AGCAGCTGTT 1440 ATTCGCTGTC ATTACTCTGG TTGTCGTGAT AGGTGCCATT TGGTATTTAC ATAAACACAT 1500 60 GGAGGACTCA TTCTGGATGG TCTTGGGTTT GACTCTAATA ATCGCGGGTG GTCCTGGAAA 1560

-43-

	CTTTATTGAC AGGGTCAGTC AGGGCTTTGT TGTGGATATG TTCCACCTT	1609
	(2) INFORMATION FOR SEQ ID NO:4:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 763 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
	GTAACTTAGG GCCCCAAGTC CATAACTTGC TTGACGCATG CTATCACTAA CAGATAAAAG	60
25	GGCTTCTTCT GTTGAGCGAA TAATGACTGG CAACACCATG ATGACTGAGG TTAAGATTCC	120
	TGATAACAGA GAGTATTGAA AACCTAAGAA GACTACAAAG AAGAGCATGC CAAACAGACC	180
•	AAAAACAATG GAAGGAATCC CAGACAAGGT ATCTGAGGCC AATCGCATGA TTTTAACACA	240
30	AAGGGAATCT TTTTTTGTAT ATTCCACAAG ATAAAAACCA GCAAAAATCC CTATGGGCAA	300
	GGCTAAAAGA AGAGCACCAA AGACCAGAAT AACGGTGGAA ATAATCGCTG GCATAAGGGA	360
35	AATGTTCTCA GAAGTATAAG TCCAAGAAAA GAGGGATAGA CTTAGATGAG GTAAACCTTT	420
	GATGAGGATA AAACCAATGA TTAAAAAGAG AGAGCCAAAG GTTAAAGCTG AAAAACAATA	480
	AACGAGAAGT TTTAGCAGGT ATTTACTCAT AAGATGATTT TCCTTTCAAG TAGCCAAAGT	540
40	AGGCATTAAT CAAGAGAATA AGGAAAAAGA GAACTGCTGA GGTTGCAATA AGGGCTTCCC	600
	TATGCTGACC TGATGCGTAA GCCATTTCCA GAACAATATT GGTTGTTAAG GTTCTGGTTC	660
45	CTGAAAAGAG TCCACTTGGA ATAATCGGCT GGTTGCCTGC CACCAAAATA ACTGCCATGG	720
	TTTCACCTAC TGCGCGACCG ATGCCTAAAA TAACTGCTGA AAA	763
	(2) INFORMATION FOR SEQ ID NO:5:	
50 55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 897 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	

-44-

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	GGGTCTGTTT TGGCCTTGGC GGCTTCAGGT GGTTCAGGAG CTTGGCAGGG AGCTGGTCTC	. 60
	ATGTTGGTGT ATACGCTGGG CTTGGCGCTA CCATTCTTGC TTCTAGCTCT GACCTCTAGT	120
10	TATGTTTTGA AACATTTCCG AAAACTTCAT CCCTATCTCG GAATCCTCAA AAAAGTGGGT	180
	GGTTTTCTCA TTATTGTGAT GGGATTCTTG GTTCTGTTTG GAAATGCTTC AATTTTAAGT	240
15	CAATTATTTG AATAAAATGG AAAGGAATAT CAATATGAAA AAATGGCAAA CATGTGTTCT	300
	TGGAGCAGGT TCGCTCCTTT GTTTGACGGC TTGTTCAGGC AAGTCCGTGA CTAGTGAACA	360
20	CCAAACGAAA GATGAAATGA AGACGGAGCA GACAGCTAGT AAAACAAGCG CACTAAAAGG	420
20	GAAAGAGGTG GCTGATTTTG AATTGATGGG AGTAGATGGC AAGACCTACC GTTTATCTGA	480
	TTACAAGGGC AAGAAAGTCT ATCTCAAATT CTGGGCTTCT TGGTGTTCCA TCTGTCTGGC	540
25	TAGTCTTCCA GATACGGATG AGATTGCTAA AGAAGCTGGT GATGACTATG TGGTCTTGAC	600
	AGTAGTGTCA CCAGGACATA AGGGAGAGCA ATCTGAAGCG GACTTTAAGA ATTGGTATAA	660
2.0	GGGATTGGAT TATAAAAATC TCCCAGTCCT AGTTGACCCA TCAGGCAAAC TTTTGGAAAC	720
30	TTATGGTGTC CGTTCTTACC CAACCCAAGC CTTTATAGAC AAAGAAGGCA AGCTGGTCAA	780
	AACACATCCA GGATTCATGG AAAAAGATGC AATTTTGCAA ACTTTGAAGG AATTATCCTA	840
35	GGAGGCGTCT TATGAATGAT AAGTTAAAAA TCTTCTTGTT GCTAGGAGTA TTTTTTC	897
	(2) INFORMATION FOR SEQ ID NO:6:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3499 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
رر	TTTCTTTTTC CTAGGTGATT TTAATGAGGT TGAAATTCAA AATGTATTAG AATCATTTGG	60
	CTTTAAAGGT CGAAAAGGAG ATGTGAAGGT TCAGTATTGT CAACCTTATT CTAATATCCT	120
60	TCAGGAAGGT ATGGTTCGGA AAAATGTGGG ACAATCCATT TTGGAATTAG GTTATCATTA	180

-45-

	CCGTTCTAAA	TATGGTGATG	AGCAACATTT	ACCCATGATT	GTAATGAATG	GTTTACTTGG	240
	TGGATTTGCT	CACTCTAAGC	TCTTTACAAA	TGTCCGTGAA	AATGCTGGAT	TAGCTTATAC	300
5	CATTTCAAGT	GAGCTTGATT	TATTTAGTGG	ATTCTTGAGG	ATGTATGCTG	GTATCAATCG	360
	AGAAAATCGT	AACCAGGCTC	GTAAAATGAT	GAATAATCAA	CTGCTTGATT	TAAAAAAAGG	420
10	TTATTTTACA	GAGTTTGAGT	TAAATCAGAC	CAAGGAAATG	ATTCGTTGGT	CGTTGTTACT	480
10	TTCTCAAGAT	AATCAATCTT	CATTGATTGA	ACGTGCTTAT	CAAAATGCCT	TATTTGGAAA	540
	ATCTTCAGCA	GACTTTAAAA	GTTGGATTGC	AAAGCTTGAA	CAAATTGACA	AAGATGCTAT	600
15	TTGTAGAGTA	GCTAATAATG	TGAAACTACA	AGCGATTTAC	TTTATGGAAG	GAATAGAATG	660
	ACAAAGGTTG	TTTTTGAAGA	AAAATACTAT	CCAGCTGTAA	AAGAAAAGGT	TTATCGAACT	720
20	CGTTTGGCCA	ACGGATTGAC	AGTTGCTCTT	TTGCCTAAAA	AGGAATTTAA	AGAGGTTTAC	780
20	GGGAGTGTCA	CTGTACAGTT	TGGTTCGGTA	GATACGTTTG	TCACAGAAGT	TGACGGATAT	840
	GTAAAACAAT	ATCCTGGAGG	AATTGCTCAT	TTTCTTGAAC	ATAAATTATT	TGAGAGAGAA	900
25	GATTCTAGTG	ATTTGATGTC	GGCTTTTACĠ	AGTCTAGGTG	CAGATAGTAA	TGCCTTTACA	960
	AGCTTTACAA	AAACAAACTA	TCTTTTTCA	GCAACGGATT	ATTTTTTAGA	AAATTTAGAT	1020
30	TTACTTGATG	AATTGGTAAC	ATCAGCACAC	TTTACTGAAG	CTTCCATTCT	GACAGAGCAG	1080
30	GATATTATTC	AGCAAGAACG	AGAAATGTAC	CAAGATGATC	CAGATTCGTG	TTTATTCTTT	1140
	TCAACTTTAG	CGAATTTGTA	TCCTGGTACA	CCTTTAGCAA	CTGATATAGT	TGGAAGTGAG	1200
35	GAGTCCATTT	CCCAAATCAA	TCTAACTAAT	TTGCAAGAAA	ATTTTACAAA	GTTTTACAAA	1260
	CCTGTAAACA	TGTCTCTGTT	TTTAGTTGGT	AATTTTGATG	TGGAGCGAGT	ACAGGACTAT	1320
40	TTTGAAAGCA	AAGAACTGAA	AGATTCAGAT	TTTCAGGAAG	TAGCAAGAGA	AAAGTTGTTT	1380
40	TTACAGCCTG	TAAAGCCAAC	AGATAGTATG	AGAATGGAAG	TATCTTCTCC	CAAACTAGCG	1440
	ATTGGAGTTA	GAGGTAAGCG	AGAAGTTTCT	GAAGCGGATT	GCTATCGACA	TCATATTTTA	1500
45	TTAAAATTAT	TGTTTGCAAT	GATGTTTGGT	TGGACTTCGG	GATCGTTTTC	AAAAATGTTA	1560
	TGAATCAGGT	AAAATTGATG	CGTCCTTATC	TCTGGAAGTT	AAATAACAAG	TCGCTTTCAT	1620
50	TTTGTCATGT	TGACAATAGA	TACGAAAGAG	CCAGTTGCTT	TGTCTCATCA	ATTTAGGAAG	1680
50	GCTATTCGTA	ATTTTACAAA	GGATTTAGAT	ATTACAGAGG	AACATTTAGA	TATTATCAAA	174
	AGAGAGATGT	TTGGCGAATT	TTTCAGTAGC	ATGAACTCTC	TTGAATTTAT	TGCAACGCAA	180
55	TATGATGCTT	TTGAAAATGG	TGAGACAATT	TTTGATTTGC	CGAAAATTTT	ACAGGAAATT	186
	ACTTTAGAGG	ATGTCCTTGA	TGCTGGACAT	CATTTAATAG	ATGATGGTGA	CATAGTTGAT	192
60	тттасаатат	TCCCATCGTA	GTAACCTATC	ATAATAGACA	CTAGAAAGAA	GGGATGACAA	198
60	СТАТСАСАА	. מממממממ	GGAGAGGTTT	י דמרכמדדמכר	тасаатсаат	CAGGGATTGA	204

-46-

	GTTTAGATGA	ATTGCAGAAA	AAGACAGAAA	TCCAGTTAGA	TATGTTGGAA	GCAATGGAAG	2100
5	CAGACGATTT	CGATCAACTT	CCAAGTCCTT	TTTACACGCG	TTCTTTCTTG	AAAAAATATG	2160
,	CATGGGCTGT	TGAGTTAGAT	GACCAAATTG	TTTTGGATGC	TTATGATTCT	GGGAGTATGA	2220
	TTACTTATGA	GGAAGTAGAT	GTTGATGAAG	ATGAGTTGAC	AGGTCGTAGA	CGTTCAAGTA	2280
10	AGAAAAAGAA	GAAAAAAACA	TCATTTTTAC	CTTTATTTTA	TTTTATCCTT	TTTGCTTTAT	2340
	CGATTTTAAT	TTTTGTGACT	TATTATGTTT	GGAACTATAT	TCAAACTCAA	CCAGAGGAGC	2400
15	CTTCTCTTTC	TAATTACAGT	GTGGTTCAAT	CAACAAGTTC	AACTAGCTCT	GTTCCCCACT	2460
	CCTCAAGTAG	TAGTTCTTCT	AGTATAGAAT	CAGCTATAAG	TGTATCAGGC	GAAGGAAATC	2520
	ATGTAGAAAT	CGCTTATAAG	ACAAGTAAGG	AAACAGTTAA	ATTGCAATTG	GCAGTTTCAG	2580
20	ATGTTACAAG	TTGGGTCAGT	GTTTCAGAAA	GCGAACTTGA	GGGCGGTGTA	ACCTTATCGC	2640
	CAAAGAAGAA	AAGTGCAGAA	GCAACAGTTG	CAACTAAAAG	TCCTGTAACA	ATTACGTTAG	2700
25	GTGTTGTAAA	AGGTGTTGAT	TTGACAGTAG	ATAATCAGAC	TGTTGATTTA	TCGAAATTAA	2760
	CAGCTCAGAC	TGGACAAATC	ACTGTAACCT	TTACTAAAAA	TTAAGGAAAA	ACGAATGAAA	2820
	AAAGAACAAA	TTCCCAATCT	CTTAACAATA	GGTCGAATTC	TCTTTATACC	TATTTTTATC	2880
30	TTTATTTTAA	CGATAGGAAA	TTCGATAGAG	AGTCATATAG	TTGCAGCTAT	TATCTTTGCT	2940
	GTTGCCAGTA	TTACCGACTA	TTTAGATGGA	TATTTAGCTC	GTAAATGGAA	TGTGGTCAGT	3000
35	AATTTTGGTA	AATTTGCAGA	TCCTATGGCG	GATAAGTTAC	TAGTTATGTC	GGCTTTTATT	3060
	ATGTTGATTG	AGTTAGGTAT	GGCTCCGGCT	TGGATTGTTG	CAGTGATTAT	CTGTCGTGAG	3120
	TTAGCTGTGA	CAGGTTTAAG	GCTTTTATTG	GTTGAAACTG	GTGGAACAAT	TTTAGCAGCA	3180
10	GCAATGCCTG	GAAAAATTAA	AACTTTTAGT	CAGATGTTTG	CTATTATTTT	CTTGCTATTA	3240
	CATTGGACTT	TGCTTGGTCA	AGTTCTACTT	TATGTAGCCT	TATTTTTCAC	TATCTACTCT	3300
15	GGCTATGACT	ATTTCAAGGG	TAGTGCCTAT	GTATTTAAAG	GGACATTTGG	TTCGAAATGA	3360
	AATCAATAAT	TGATGTAAAA	AATCTTTCTT	TTCGCTATAA	AGAAAATCAG	AACTACTACG	3420
	ATGTGAAGGA	TATTACGTTT	CACGTGAAAC	GTGGAGAATG	GCTTTCGATT	GTAGGGCATA	3480
50	ATGGTAGTGG	TAAATCAAC					3499

(2) INFORMATION FOR SEQ ID NO:7:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 821 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
- 60 (ii) MOLECULE TYPE: DNA (genomic)

-47-

	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
5		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
10	ATTTTTGAAT AATCAAGCGG AACCAAGAGG TCTTCGTCCT TCATCTTGTT AATCATGTAT	60
	TCACTTGGAA TGGCAATATC GTAGGTCGTT CCACCCTGCT TTATCTTAGT GTACATGGCT	120
15	TCGTTGGAGT CAAAAGCCTC GTACTGAACT TGAATTCCTG TTTCTTCTGT AAACTGAGTC	180
	AAGAGTTCAG GATCGATATA GTCTCCCCAG TTATAGATAA CCAATTTTTG ACTATCTCGA	240
	CTATTGATTT TACTATCTAA ATGAGTCGCA ATTCCCCCACA AGACAAGGAT AATCGCTGCA	300
20	ATTCCTGCTA AAATGAATAG ATTTTTTCA TGCTTGCTCC TCCTTCTCAC GAGAGATAAA	360
	GTAATAACCT ACAACTAGGA TAATACTAAA GAGAAAGACT AGAGCAGAAA GGGCATTGAT	420
25	TTCTAGCGAA ATCCCCTTGC GAGCACGAGA GTAAATCTCG ACTGATAGGG TTGAAAAGCC	480
	ATTTCCTGTT ACAAAGAAGG TCACGGCAAA GTCATCTAAC GAATAGGTGA AGGCCATGAA	540
	ATAACCAGCA ATGATAGACG GAGTCAGGTA AGGAAGCATG ATTTCCTTAA ACATCTGAAA	600
30	TTGACTAGCT CCCAAGTCAT AGGCCGCATG AATCATGTCG CCATTCATTT CCTTGAGTCG	660
	GAGGCAAGAC CATCAAGACC ACGATAGGAA TGGAGAAGGC CACATGACTA GATAGAACGG	720
35	TCAAAAAGCC AAGTGAAAAC TTGAGTTGGG TAAAGAGAAT CAAGAAGTAG CACCAATCAT	780
35	AACGTCAGGC GCAACCATGA GGATATTATT GAGTGATAGA A	821
	(2) INFORMATION FOR SEQ ID NO:8:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1309 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
	GGCCGGTGCC ACAGTCCAAG CTATCGGTAT CGTGATTGAG AAATCCTTCC AAGATGGTCG	60
60	TGATTTGCTT GAAAAAGCAG GCTACCCTGT CCTATCACTT GCTCGCTTGG ATCGTTTTGA	120

AAATGGTCAG GTCGTATTTA AGGAGGCAGA TCTCTAATGC AAACTCAAGA AAAACACTCG

-48-

	CAAGCAGCCG TTCTCGGCTT GCAGCACTTA CTAGCCATGT ACTCAGGATC TATCCTGGTT	240
5	CCCATCATGA TTGCGACAGC CCTTGGCTAT TCAGCTGAGC AGTTGACCTA CCTGATTTCT	300
	ACAGATATCT TCATGTGTGG GGTGGCAACC TTCCTCCAAC TCCAACTCAA CAAATACTTT	360
	GGGATTGGAC TCCCAGTCGT TCTTGGAGTT GCATTCCAGT CGGTCGCTCC CTTGATTATG	420
10	ATTGGGCAAA GCCATGGTAG TGGCGCTATG TTTGGTGCCC TTATCGCATC TGGGATTTAC	480
	GTGGTTCTTG TTTCAGGCAT CTTCTCAAAA GTAGCCAATC TCTTCCCATC TATCGTAACA	540
1 5	GGATCTGTTA TTACCACGAT TGGTTTAACC TTGATCCCTG TCGCTATTGG AAATATGGGA	600
15	AATAACGTTC CAGAGCCAAC TGGTCAAAGT CTCTTGCTTG CAGCTATTAC TGTTCTGATT	660
	ATCCTCTTGA TCAACATCTT TACCAAAGGA TTTATCAAGT CTATCTCTAT TTTGATTGGT	720
20	CTGGTTGTTG GAACTGCCAT TGCTGCTACT ATGGGCTTGG TGGACTTCTC TCCTGTTGCG	780
	GTAGTCCACT TGTCCATGTC CCAACTCCAC TCTACTTTGG GATGCCAACC TTTGAAATCT	840
25	CATCTATTGT CATGATGTGT ATCATCGCAA CGGTGTCTAT GGTTGAGTCA ACTGGTGTTT	900
25	ATCTAGCCTT GTCTGATATC ACAAAAGATC CAATCGACAG CACGCGCCTT CGCAACGGTT	960
	ACCGCGCAGA AGGTTTGGCG GTACTTCTCG GAGGAATCTT TAACACCTTC CCTTACACCG	1020
30	GATTTTCACA AAACGTTGGT TTGGTTAAAT TGTCAGGCAT CAAAAAACGC CTGCCAATCT	1080
	ACTACGCAGG TGGTTTCCTG GTTCTCCTTG GACTGCTTCC TAAGTTTGGT GCCCTTGCCC	1140
35	AAATCATTCC AAGCTCCGTC CTCGGCGGTG CCATGCTGGT GATGTTTGGT TTTGTATCTA	1200
35	TTCAAGGGAT GCAAATCCTC GCCCGAGTTG ACTTTGTAAC AATGAACACA ACTTCCTTAT	1260
	CGCAGTGTTT CAATCGCTGC AGGTGTCGGT CTCAACAACA AGTAATCTC	1309
40	(2) INFORMATION FOR SEQ ID NO:9:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1031 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
50	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
55		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	THE STATE OF THE S	60

TGAAAGAAAT GGGGGGTGAT GTATCTGCTG CCCAAACAGG GGTTATCTTG ACTGGTTTGG

120

-49-

	TCTATGTCCT TGTTGCTACC AGCATCCGAT TTGTAGGAAC AAAATGGATT GATAAACTCT	180
5	TGCCACCAAT CATTATCGGT CCTATGATCA TCGTTATCGG TCTTGGACTT GCAGGTTCAG	240
5	CTGTTACCAA TGCAGGTCTT GTAGCAGACG GAAATTGGAA AAATGCTCTG GTAGCCGTTG	300
	TTACTTTCCT AATTGCTGCC TTTATCAATA CAAAAGGAAA AGGCTTCCTA CGAATCATTC	360
10	CATTCCTCTT TGCCATTATC GGTGGTTACC TTTTCGCACT AACTCTTGGC TTGGTTGACT	420
	TTACACCAGT TCTTAAAGCC AACTGGTTCG AAATTCCTGG TTTCTACTTG CCATTTAGCA	480
15	CAGGTGGTGC CTTTAAAGAG TACAATCTTT ACTTTGGTCC AGAAGCCATC GCTATCTTGC	540
15	CAATCGCTAT CGTAACAATT TCTGAACATA TCGGAGACCA TACTGTTTTG GGTCAAATCT	600
	GTGGCCGTCA ATTCTTAAAA GAACCAGGTC TTCATCGTAC TCTTCTTGGT GACGGTATCG	660
20	CAACTTCTGT TTCTGCCTTC CTTGGTGGAC CAGCCAATAC AACTTACGGA GAAAATACAG	720
	GGGTTATCGG TATGACTCGT ATCGCTTCTG TCTCAGTTAT CCGTAACGCT GCCTTCATCG	780
25	CGATTGCCCT CAGCTTCCTT GGTAAATTCA CTGCCTTGAT TTCAACTATT CCAAACGCTG	840
23	TACTTGGTGG TATGTCAATC CTTCTCTATG GGGTTATCGC CAGCAATGGT TTGAAAGTCT	900
	TGATTAAAGA ACGTGTTGAT TTCGCTCAAA TGCGAAACCT CATCATCGCA AGTGCTATGT	960
30	TGGTTCTTGG ACTTGGAGGA GCTATCCTTA AACTTGGTCC AGTACACTTT CAGGTACTGC	1020
	CCTTTCAGCC A	1031
35	(2) INFORMATION FOR SEQ ID NO:10:	
33	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 568 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEO ID NO:10:	
	ACAGTTTAAT CATTGCCTTG GCTACAACCC TCATTGCGAT TATTATTTCT GCTATGGCAG	60
55	CCTATGGTAT TGTTCGATTC TTTCCTAAAT TGGGAGCAAT CATGTCGAGA CTACTCGTCA	120
	TTACCTACAT TTTCCCACCA ATTTTGTTAG CAATTCCCTA TTCAATTGCC ATTGCTAAAG	180
	TTGGGTTAAC AAATAGTTTA TTTGGCTTGA TGATGGTTTA TCTATCTTTT AGTGTTCCAT	240
60		240

ATGCAGTTTG GCTCTTAGTT GGATTTTTCC AAACAGTTCC AATTGGAATT GAAGAAGCGG

.....

-50-

	CTAGAATTGA TGGTGCAAAT AAATTTGTTA CGTTTTATAA AGTTGTGCTA CCGATTGTAG	360
5	CACCAGGTAT TGTAGCAACA GCTATTTATA CATTTATCAA TGCTTGGAAT GAATTTCTGT	420
3	ATGCCTTGAT TTTGATTAAC AATACAGGAA AGATGACAGT AGCAGTAGCC CTTCGTTCAC	480
	TTAATGGTTC AGAAATACTA GACTGGGGAG ATATGATGGC AGCGTCTGTT ATTGTAGTTC	540
10	TTCCATCAAT TATTTCTTCT CTATCACC	568
	(2) INFORMATION FOR SEQ ID NO:11:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 468 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
30	ACCAAAGACT TAGCTTCTTC AAAAAGCGGA TCACCACCAG CATCTCCATC CGAAAATTCT	60
	CCTTCATTTT CAGAAACCTC ACCTGGATCA AAACTCTCAT CGTAGTCTGC ATCTGCCTGA	120
35	GTCTTGATGA AGTTCACAAT GCGCTCAACA TCGTCATCCG AGATAAAGGA GCCTTGGAGA	180
	CGAACTGGAT GATTTCATC AATCGGTTTA AAGAGCATGT CTCCTCGACC AAGAAGTTTT	240
40	TCTGCTCCAT TTTCATCCAA AATCGTACGG GAGTCTGTTC CTGATGAAAC CGCAAATGCT	300
40	ACACGAGATG GAACATTGGC CTTAATCAAA CCAGAGATGA CATCAACAGA TGGACGCTGA	360
	GTTGCAAGAA TCATGTGGAT ACCTGCAGCA CGCGCCTTCT GCCCAAGACG GATGATAGCA	420
45	TCTTCCACTT CCTTGCTGGC CACCATCATG AGGTCAGCCA ACTCATCC	468
	(2) INFORMATION FOR SEQ ID NO:12:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 466 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	

-51**-**

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
5	AAGCTGACAA TCTTTTCTGC AGTTGGAGCA TCCCAGAAGG ATACACCACT AAGGATGCGA	60
	CCTGCCTTGC TATCAACAAT AATGTCTTGA ACCTTGTAGT CATCTCCATA GACCAAGAAC	120
10	CATTCGTTGG TACAATCTTC ACGATAAACA CTAAAATAAG TCGAACGAGT CAAATCATTG	180
10	CGGAACATAT TTTTAAAGAG ATAGTTATCT GCATCAATAA CATAGCTGTT GGCCAATTCT	240
	TCTTTTACAA GATAGAGAGA GTAAAAGTTA TTGTAGTCAG CGTATTTATC ATTGAAAACG	300
15	AGACGAACAC CGTATTTCTC TTTCAAGTAA TCGAATTGTT CTTTAAGATA ACCAACAATG	360
	ATGATGATGT CATTGATTCC TTTTTCTTTG AGAAACTCAA TTTGGTACTC AATCAAAGGT	420
20	TTTTGATTAA CCTGAACCAA GGCTTTAGGG GTATTTTCAG TCATAG	466
20	(2) INFORMATION FOR SEQ ID NO:13:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1040 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
3.0	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
40	CACATAATCT GTATATTGAC TATAAGTTTT AAAAAACAAT TTTTAAGCTC TTCCTTGTCT	60
	TCTCTAACCA AGCGTGTTAT AATGAATACT GCTCAAGCGA CCTTCAATCG TGAAGCACAC	120
45	ACGACCTTCA ATCGTGAATA AACGAATAGA TGGGAGACTT ACCATGAGTG ATAACTCTAA	180
#2	AACACGTGTT GTCGTGGGGA TGAGTGGTGG TGTTGATTCG TCGGTGACGG CTCTTTTGCT	240
	CAAGGAGCAG GGCTACGATG TGATCGGTAT CTTCATGAAG AACTGGGATG ACACAGATGA	300
50	AAACGGCGTC TGTACGGCGA CCGAAGATTA CAAGGATGTG GTTGCGGTGG CAGATCAGAT	360
	TGGCATTCCC TACTACTCTG TCAATTTTGA AAAAGAGTAC TGGGACCGCG TTTTTGAGTA	420
55	TTTCCTAGCT GAATACCGTG CAGGGCGCAC GCCAAATCCG GACGTTATGT GCAACAAGGA	480
55	AATCAAGTTC AAGGCCTTTT TGGACTATGC CATGACCTTG GGGGCAGACT ATGTAGCGAC	540
	TGGGCACTAT GCTCGAGTGG CGCGTGATGA GGATGGCACT GTTCACATGC TTCGTGGCGT	600
60	GGACAATGGC AAGGATCAGA CCTATTTCCT CAGCCAACTT TCGCAAGAAC AACTTCAAAA	660

-52-

	AACCATGTTC CCACTAGGAC ATTTGAAAAA GCCTGAAGTT CGAAAACTAG CAGAAGAAGC	720
	AGGTCTTTCG ACTGCTAAGA AGAAAGACTC GACAGGGATT TGCTTTATCG GAGAAAAGAA	780
5	CTTTAAAAAC TTTCTCAGCA ACTACCTGCC AGCTCAGCCT GGTCGTATGA TGACTGTGGA	840
	TGGTCGTGAT ATGGGCGAGC ATGCTGGTCT TATGTACTAT ACAATCGGTC AGCGTGGCGG	900
10	ACTCGGTATC GGTGGGCAAC ACGGTGGTGA CAATGCCCCT TGGTTCGTTG TCGGAAAAGA	960
10	TCTAAGCAAG AATATTCTCT ATGTAGGCCA AGGTTTCTAC CATGATTCGC TCATGTCAAC	1020
	CACTAGAGGC TAGCCAAGTC	1040
15	(2) INFORMATION FOR SEQ ID NO:14:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3071 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
25	CCGGGGATCT GATAGCCAAT AGAAAACCGC AGAGTCAAAG GGTTTTGTAT GAATTGCGAG	60
35	ATCGTTTGAA GAGAAATCAG TTTATACTCA ATGATACCAA TCCGGATATT GTCATTTCCA	120
	TTGGCGGGGA TGGTATGCTC TTGTCGGCCT TTCATAAGTA CGAAAATCAG CTTGACAAGG	180
40	TCCGCTTTAT CGGTCTTCAT ACTGGACATT TGGGCTTCTA TACAGATTAT CGTGATTTTG	240
	AGTTGGACAA GCTAGTGACT AATTTGCAAC TAGATACTGG GGCAAGGGTT TCTTACCCTG	300
45	TTCTGAATGT GAAGGTCTTT CTTGAAAATG GTGAAGTTAA GATTTTCAGA GCACTCAACG	360
43	AAGCCAGCAT CCGCAGTCTG ATCGAACCAT GGTGGCAGAT ATTGTAATAA ATGGTGTTCC	420
	CTTTGAACGT TTTCGTGGAG ACGGGCTAAC AGTTTCGACA CCGACTGGTA GTACTGCCTA	480
50	TAACAAGTCT CTTGGCGGTG CTGTTTTACA CCCTACCATT GAAGCTTTGC AATTAACGGA	540
	GATTGCCAGC CTTAATAATC GTGTCTATCG AACATTGGGC TCTTCCATTA TTGTGCCTAA	600
55	GAAGGATAAG ATTGAACTTA TTCCAACAAG AAACGATTAT CATACTATTT CGGTTGACAA	660
- +	TAGCGTTTAT TCTTTCCGTA ATATTGAGCG TATTGAGTAT CAAATCGACC ATCATAAGAT	720
	TCACTTTGTC GCGACTCCTA GCCATACCAG TTTCTGGAAC CGTGTTAAGG ATGCCTTTAT	780
60	CGGTGAGGTG GATGAATGAG GTTTGAATTT ATCGCAGATG AACATGTCAA GGTTAAGACC	840

-53-

	TTTTTAAAAA	AGCACGAGGT	TTCTAAGGGA	TTGCTGGCCA	AGATTAAGTT	TCGAGGTGGA	900
	GCTATTCTGG	TCAATAATCA	ACCGCAAAAT	GCAACGTATC	TATTGGACGT	TGGAGACTAC	960
5	GTTACCATTG	ACATTCCCGC	TGAGAAAGGC	TTTGAAACCT	TGGAGGCTAT	TGAGCTTCCA	1020
	TTAGATATTC	TCTATGAGGA	TGACCACTTT	CTAGTCTTGA	АТАААСССТА	TGGAGTGGCT	1080
10	TCTATTCCTA	GTGTTAATCA	CTCTAATACC	ATTGCCAATT	TTATCAAGGG	TTACTATGTC	1140
10	AAGCAAAATT	ATGAAAATCA	GCAGGTTCAC	ATTGTTACCA	GACTAGATAG	GGACACTTCT	1200
	GGCTTGATGC	TCTTTGCCAA	GCACGGTTAT	GCCCATGCAC	GATTAGACAA	GCAGTTGCAG	1260
15	AAGAAATCTA	TCGAGAAACG	CTACTTTGCT	TTGGTTAAGG	GAGATGGACA	TTTGGAGCCA	1320
	GAAGGGGAAA	TTATTGCTCC	GATTGCGCGT	GATGAAGATT	CCATTATTAC	CAGACGAGTG	. 1380
20	GCTAAAGGCG	GAAAGTATGC	CCATACTTCA	TACAAGATTG	TAGCTTCTTA	TGGAAATATT	1440
20	CACTTGGTCT	ATATTCACCT	GCACACTGGT	CGAACCCATC	AAATCCGAGT	CCATTTTTCT	1500
	CATATCGGTT	TTCCTTTGCT	GGGAGATGAT	TTGTATGGTG	GTAGTCTGGA	AGATGGTATT	1560
25	CAACGTCAGG	CTCTGCATTG	CCATTACCTA	TCCTTTTATC	ATCCATTTTT	AGAGCAAGAC	1620
	TTGCAGTTAG	AAAGTCCCTT	GCCGGATGAT	TTCAGTAACC	TTATTACCCA	GTTATCAACT	1680
30	AATACTCTAT	AAAAACTGTC	TCAGAGTATA	ATTATTATCT	TAAAGGAGAA	AACTCATGGA	1740
	AGTTTTTGAA	AGTCTCAAAG	CCAACCTTGT	TGGTAAAAAT	GCTCGTATCG	TTCTCCCTGA	1800
	AGGGGAAGAG	CCTCGTATTC	TTCAAGCAAC	AAAACGCTTA	GTAAAAGAAA	CAGAAGTGAT	1860
35	TCCTGTTTTG	CTTGGAAATC	CTGAAAAAAT	TAAAATTTAT	CTTGAAATTG	AAGGAATCAT	1920
	GGATGGTTAT	GAGGTCATCG	ACCCTCAACA	TTATCCTCAA	TTTGAAGAAA	TGGTTTCTGC	1980
40	CTTGGTGGAG	CGTCGCAAGG	GCAAAATGAC	TGAAGAAGAT	GTACGCAAGG	TTTTGGTTGA	2040
	AGATGTCAAC	TACTTTGGTG	TGATGTTGGT	TTACTTGGGC	TTGGTTGATG	GAATGGTGTC	2100
	AGGAGCGATT	CACTCAACAG	CTTCAACAGT	TCGCCCAGCT	СТАСАААТСА	TCAAAACTCG	2160
45	TCCAAATGTA	ACTCGTACTT	CAGGAGCCTT	CCTCATGGTT	CGTGGTACGG	AACGTTACCT	2220
	ATTTGGAGAC	TGTGCCATTA	ATATCAATCC	AGATGCAGAA	GCCTTGGCTG	AAATTGCCAT	2280
50	CAACTCAGCA	ATCACAGCTA	AGATGTTTGG	CATCGAACCT	AAAATTGCCA	TGTTGAGCTA	2340
	TTCTACTAAA	GGTTCAGGGT	TTGGTGAAAG	CGTTGATAAG	GTCGTTGAAG	CAACTAAAAT	2400
	TGCTCACGAC	TTGCGTCCTG	ACCTTGAAAT	CGATGGTGAG	TTGCAATTTG	ATGCGGCCTT	2460
55	TGTTCCCGAA	ACTGCAGCTC	TGAAAGCTCC	GGGAAGTACA	GTAGCTGGTC	AAGCAAATGT	2520
	CTTCATCTTC	CCAGGTATCG	AGGCAGGAAA	TATCGGTTAC	AAGATGGCTG	AACGCCTGGG	2580
60	TGGCTTTGCG	GCTGTAGGAC	CTGTTTTGCA	AGGTTTAAAC	AAGCCAGTTA	ATGATCTTTC	2640
00	TCGTGGATGT	AATGCAGATG	ATGTTTACAA	GTTGACCCTC	ATCACAGCAG	CTCAAGCAGT	2700

-54-

	TCATCAATAG TGAAAACTAT AAAGTGATAT ACTATGCTAT ACTGTAGTTA TGAAACTATG	2760
_	TACGAAAAGC ACTGCCATTA ATTCCTGAGA ACTAAATTAC TGATTGGTGT CAAAAAGGAA	2820
5	AACTTCCAAG CGATGATATC CTGTCTATAC ACGACCTATA GAAATCTGTA ATATACATGT	2880
	CCGTAAAACG ATAAATTCCC TTTTTGATTT TAAATGAGTA TGAAAAGAGA ATTTTCCGGC	2940
LO	TCTTTGTCAA CTGTAGTGGG TTGAAAAAAA GCTAAGCTCG AGAAAGGACA AATTTTGTCC	3000
	TTTCTTTTTT GATATTCAGA GCGATAAAAA TCCGTTTTTT GAAGTTTTCA AAGTTTCGAC	3060
	TCTAGAGGAT C	3071
L5	(2) INFORMATION FOR SEQ ID NO:15:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 720 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
23	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
35	TTTCCATGGT ATGGTAAAGG TTTTTCTTTT TTTTAAAAGG AAAACGAGAA GAGGAGGTTC	60
	TTATGAAAGC AAGCATTGCC TTGCAAGTTT TACCCCTAGC ACAGGGGATT GATCGGATAG	120
	CTGTTATTGA TCAGGTCATT GCTTATCTGC AAACTCAAGA AGTGACGATG GTAGTGACAC	180
40	CATTTGAAAC GGTCTTGGAA GGGGAGTTTG ATGAGCTTAT GCGCATTCTA AAAGAAGCGC	240
	TGGAAGTGGC AGGGCAGGAG GCAGACAATG TCTTTGCCAA TGTCAAAATA AATGTAGGAG	300
45	AGATTTTAAG TATTGATGAG AAACTTGAAA AGTATACTGA GACGACACAT TAGTCTATTG	360
	GGCTTTCTCG GAGTATTGTC AATCTGGCAG TTAGCAGGTT TTCTTAAACT TCTCCCCAAG	420
50	TTTATCCTGC CGACACCTCT TGAAATTCTC CAGCCCTTTG TTCGTGACAG AGAATTTCTC	480
50	TGGCACCATA GCTGGGCGAC CTTGAGAGTG GCTTTACTGG GGCTGATTTT GGGAGTTTTG	540
	ATTGCCTGTC TTATGGCTGT GCTCATGGAT AGTTTGACTT GGCTCAATGA CCTGATTTAC	600
55	CCTATGATGG TGGTCATTCA GACCATTCCG ACCATTGCCA TAGCTCCTAT CCTGGTCTTG	660
	TGGCTGGGTT ATGGGATTTT TGCCCAAGAT TGTCTTGATT ATCTTAACAA CAACCTTTCC	720
60	(2) INFORMATION FOR SEC ID NO.16.	

-55-

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 852 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
15		
13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	
	GCCGTCATAA TCATGCGCCG AATCCGTCCC CATTAAAATC TGGGTCTGTA AAGACAATGA	60
20	CTCCATGACG TTGGTGTAGA CGCTGAATCC GCTCTATGTC CTGGTCATTG ATGGCAGAAC	120
	CTCGAGTCTC ATAGGTCTCC ACATCGAAAT AACGCTTGAG ATTGACCGTA TCATCACGAC	180
25	CTTCAACCAC GATAACTTGG GAAATTCTCT CTTTCATTAC TTGCTGTCCA ATCCCAAAAA	240
23	TGCGTTCTGC ATTTGCAGTC GTTGCTACCG CCAGCTCTTC TGTCGTCATA CCACGCAAGT	300
	CAGCGATAAA GTCGACCACA TAGCGAGTAT AGGCTGTTTT ATTTTCACGA CCACGCTTGG	360
30	GTACAGGTGC TAAGTAAGGC GCATCTGTTT CTACCAACAT CTTGTCCAAA GGTAACTCTT	420
	TAGCTGCTTC TTGGAGGTCA GTTGCCTTCT TGAAGGTCAC CACTCCTGAG AAGGAAATGG	480
35	TCATACCAAG ATCCCGGTAC CGAGCCCACT CAAGCGTCCC TGAAAATGAA TGCATGATAC	540
33	CACCACGAGG ACCAACGCCC TCACTCTTGA TAATCTCATA GGTATCTTCC AGCGCATCAC	600
	GGGTATGGAC AACAAAAGGC AAATCCAAGT CCTTAGATAG CTGAATCTGA CGGCGAAAAA	660
40	CCTGCTCCTG CACCTCTTGG GCGCTGTCAT CCAATGGTAG TCTAAGCCAA TTTCACCTAA	720
	AGCCACAACC TTGGAATGTT TTAACTTATC CAACAAGTAA GCCTCAACTT CCTCTGTATA	780
45	AGTACCAGCT TCTGTAGGAT GCCAACCAAT AGTCGCATAG AGCTGCTCAT ACTCATCTAC	840
43	CAAACTCCAA GG	852
	(2) INFORMATION FOR SEQ ID NO:17:	
50 55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 868 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	

-56-

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:					
,	GGGGATCCTC TAGAGTCGAT ATCTACGGTC TCAACCGTAC AGGACTGTTG AACGATGTAC	60				
	TGCAAGTTCT TTCAAATACA ACCAAGAATA TTTCAACGGT CAATGCCCAA CCAACCAAGG	120				
10	ATATGAAGTT TGCTAATATC CATGTGTCCT TCGGTATTGC CAACCTCTCT ACACTGACCA	180				
	CGGTTGTCGA TAAAATTAAG AGTGTGCCAG AAGTTTACTC TGTCAAACGG ACCAACGGCT	240				
15	AGTTGTCCTA GCTCTTACTA GAAAGGCTAT TATGAAAATC ATTATCCAAC GGGTTAAAAA	300				
13	AGCCCAAGTG AGTATAGAAG GCCAGATTCA GGGAAAAATC AATCAGGGAC TTTTATTGCT	360				
	GGTTGGTGTT GGACCAGAGG ACCAAGAGGA AGATTTGGAC TATGCTGTGA GAAAACTGGT	420				
20	CAATATGCGG ATTTTTTCAG ACGCAGAAGG CAAGATGAAC CTGTCTGTCA AAGATATTGA	480				
	AGGAGAAATC CTCTCTATTT CTCAGTTTAC CCTCTTTGCG GATACTAAGA AAGGCAATCG	540				
25	TCCAGCCTTT ACAGGGGCAG CTAAACCTGA TATGGCATCA GACTTCTATG ATGCTTTCAA	600				
	TCAAAAATTA GCGCAAGAAG TGCCCGTTCA GACAGGTATC TTTGGAGCAG ATATGCAGGT	660				
	TGAGCTGGTT AATAACGGAC CTGTTACCAT TATCCTAGAT ACTAAAAAGA GATAAGAAAG	720				
30	ACCAAGCCCA GTCGGCTTGG TCTTTCTCAT CGATCATAAA AATACTCCAA AAAGAAATCG	780				
	GTTCTTGATA TGCTTGGGGG ACTCTTTTCA GGCTTTGGCA GATGCGATAG GAAGGGATGA	840				
35	GATGTCCTAG GGTGAGGAGA GTTCCCTG	868				
	(2) INFORMATION FOR SEQ ID NO:18:					
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1399 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 					
45.	(ii) MOLECULE TYPE: DNA (genomic)					
4J.	(iii) HYPOTHETICAL: NO					
	(iv) ANTI-SENSE: NO					
50						
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:					
55	CGGTCCTCGT CCGATTGACT CACACCTTAA GGCGTTTGAA GCTATGGGTG CCACTGCTAG					
33		60				
	CTACGAGGGA GATAACATGA AGTTATCTGC TAAAGATACA GGACTTCATG GTGCAAGTAT	120				
60	TTACATGGAT ACGGTTAGTG TGGGAGCAAC GATTAATACG ATGATTGCTG CGGTTAAAGC	180				
	AAATGGTCGT ACTATTATTG AAAATGCAGC CCGTGAACCT GAGATTATTG ATGTAGCTAC	240				

-57-

	TCTCTTGAAT AATATGGGTG CCCATATCCG TGGGGCAGGA ACTAATATCA TCATTATTGA	300
5	TGGTGTTGAA AGATTACATG GGACACGTCA TCAGGTGATT CCAGACCGCA TTGAAGCTGG	360
	AACATATATA TCTTTAGCTG CTGCAGTTGG TAAAGGAATT CGTATAAATA ATGTTCTTTA	420
	CGAACACCTG GAAGGGTTTG TTGCTAAGTT GGAAGAAATG GGAGTGAGAA TGACTGTATC	480
10	TGAAGACAGC ATTTTTGTCG AGGAACAGTC TAATTTGAAA GCAATCAATA TTAAGACAGC	540
	TCCTTACCCA GGCTTTGCAA CTGATTTGCA ACAACCGCTT ACCCCTCTTT TACTAAGAGC	600
15	GAATGGTCGT GGTACAATTG TCGAGTCGAT ACGATTTACG AAAAACGTGT AAATCATGTT	660
10	TTTGAACTAG CAAAGATGGA TGCGGATATT TCGACAACAA ATGGTCATAT TTTGTACACG	720
	GGTGGACGTG ATTTACGTGG GGCCAGTGTT AAAGCGACCG ACTTAAGAGC TGGGGCTGCA	780
20	CTAGTCATTG CTGGGCTTAT GGCTGAAGGC AAAACTGAAA TTACCAATAT CGAGTTTATC	840
	TTACGTGGTT ATTCTGATAT TATCGAAAAA TTACGTAATT TAGGAGCGGA TATTAGACTT	900
25	GTTGAGGATT AAACCGTAGA GGTGTTTATG AATATTTGGA CCAAATTAGC AATGTTTTCT	960
23	TTTTTTGAAA CGGATCGCTT GTATTTGCGT CCTTTCTTTT TTAGTGATAG TCAGGACTTC	1020
	CGCGAGATAG CTTCAAATCC AGAAAATCTT CAATTTATTT TCCCAACGCA GGCAAGTCTG	1080
30	GAAGAAAGTC AATATGCACT GGCCAATTAC TTTATGAAGT CCCCTTTGGG AGTGTGGGCA	1140
	ATTTGTGACC AGAAAAATCA ACAAATGATT GGTTCTATTA AATTTGAGAA GTTAGATGAA	1200
35	ATCAAAAAAG AAGCTGAGCT TGGCTATTTT TTGAGAAAAG ATGCTTGGTC GCAAGGATTT	1260
33	ATGACAGAGG TTGTTAGAAA AATTTGTCAG CTTTCTTTTG AGGAATTTGG CTTAAAACAA	1320
	TTATCTATCA TTACCCACCT TGAAAATGAA GCTAGCCAAA GAGTTGCTCT TAAGTCTGGA	1380
40	TTTAGTTTGT TCCGTCAGT	1399
	(2) INFORMATION FOR SEQ ID NO:19:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1779 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

AGATTGCTCT TGAACACGAT GAAATACCAA TTGGTTGTGT GATTGTCAAA GATGGGAAAA 60

-58-

	TCATTGGTCG	TGGGCATAAT	GCGCGTGAGG	AATTACAGCG	ACGGTTATGC	ATGCGGAAAT	120
5	TATGGCTATA	GAGGATGCGA	ACTTGAGTGC	AGGAGACTGG	CGCTTGCTGG	ATTGCACACT	180
,	TTTTGTGACC	ATTGAACCAT	GTGTCATGTG	TAGTGGGGCG	ATTGGGCTTG	CCCGTATTCC	240
	AAATGTGGTC	TATGGGGCTA	AAAACCAGAA	ATTTGGCGCT	GCTGGAAGTT	TGTACGATAT	300
10	CTTGACAGAT	GAGCGTCTTA	ACCATCGTGT	AGAGGTTGAA	ACGGGAATTT	TGGAAGATGA	360
	ATGTGCAGCT	ATCATGCAGG	ACTTTTTTAG	AAATAGACGG	AAAAAATAAT	TTTGCTTTTA	420
15	AAATGAATAG	GAATGTGATA	TAATAAATAG	TGGAGCAACA	GTTCTGCGTG	AAGCGGGTCA	480
13	GGGGAGGAAT	CCCAGCAGCC	CTAAGCGATT	TGAATTGTGT	GCTCTTTTTT	TCGTGCTTTT	540
	TTCCGAATAA	ATAAGATAGA	ATAATCTAGA	ATAAATGATA	ATAGAAAAGA	GAAAATTATG	600
20	AAAATTCGTG	GTTTTGAATT	GGTTTCGAGT	TTTACAGATG	AAAATTTATT	GCCCAAGCGT	660
	GAGACAGCGC	ATGCGGCTGG	TTACGACTTA	AAGGTTGCTG	TGCGTACAGT	TGTTGCGCCA	720
25	GGAGAGATTG	TCTTGGTTCC	GACAGGGGTT	AAGGCTTATA	TGCAGCCGAC	TGAGGTTCTC	780
	TACCTCTATG	ATCGTTCTTC	AAATCCTCGT	AAGAAGGGCT	TGGTTTTAAT	TAACTCAGTT	840
	GGGGTCATTG	ATGGGGATTA	TTATGGAAAT	CCTGGAAATG	AAGGGCATAT	TTTTGCGCAG	900
3 0	ATGAAGAATA	TCACAGACCA	AGAGGTTGTT	CTTGAAGTTG	GGGAGCGTAT	TGTCCAGGCT	960
	GTTTTTGCTA	CTTTCTTAAT	TGCAGATGGA	GATGCAGCTG	ATGGCGTTCG	AACTGGTGGA	1020
35	TTTGGATCGA	CAGGGCACTA	GAATGAAGAT	TATCTTTGTA	CGTCATGGGG	AGCCAGATTA	1080
	CCGTGAGTTA	GAGGAGCGTT	CTTATATAGG	ATTTGGGATA	GATTTGGCAC	CCTTGTCTGA	1140
	GATGGGACGG	CAGCAAGTCC	AGAAATTGAG	CAAAAATCCT	TTACTCTCGT	CAGCTGAAAT	1200
40	AATCGTATCT	TCTGCAGTCA	CAAGAGCTTT	AGAAACGGCT	TCGTATGTGG	TCTGTGCTAC	1260
	GGGTCTTCCT	TTAAGAGTAG	AGCCTTTATT	ACATGAATGG	CAGGTCTATA	AAACAGGAAT	1320
45	AGAAAACTTT	GAAACAGCTA	GAAGACTGTT	TTTAGAAAAC	AAGGGGGAGT	TGCTTCCTAA	1380
1,7	TAGTCCTATT	CAATATGAGA	CAGCTACGGA	AATGAAGTCT	CGGTTTCTAG	AATGTATGTC	1440
	TAAGTATCGA	GAACATCAGA	CTGTGGTAGT	TGTTGCTCAT	CGACTCTAGA	GGAGCCAGTT	1500
50	TGTGCCAAAT	GAGAAGATTG	ATTTTTGCCA	AGTGATTGAG	TGTGAGTTAG	AGATATAGAA	1560
	AGAGGTTTGT	CATCGCAAAG	AAAAAAGCGA	CATTTGTATG	TCAAAATTGT	GGGTATAATT	1620
55	ССССТАААТА	TCTGGGACGT	TGCCCCAACT	GTGGGTCTTG	GTCTTCTTTT	GTGGAAGAGG	1680
رر	TTGAGGTTGC	CGAAGTTAAG	AATGCGCGTG	TGTCCTTGAC	AGGTGAGAAA	ACCAAGCCCA	1740
	TGAAACTAGC	TGAGGTGACT	TCCATCAATG	TCAATCGAC			1779
60	(2) INFORMA	ATION FOR SE	EQ ID NO:20:	:			

-59-

	(i)	SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 3725 base par	ir
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
5		(D) TOPOLOGY: linear	

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GCGGATCCTC TAGAGTCGAA AGATTACGAA GGTAAGAACC CTCTTTATTA CTGGTCACAT 60 20 CATGGTACAA CAAGCTGCAA CAGTATCTCT TATGGTTCTA TTCTTAGTAC CACAATTGCG 120 CAATGCTTAC GGTACAGCAG CGATTGGTAT CATCTGTGGA CTTTACTGGG CAGTTAGTTC 180 AAATATGACT GTTGAGGCAA CTCAACGCTT GACTGGTGGT GGCGGATTTG CGATTGGTCA 240 25 CCAACAGCAA TTTGCAATCT GGTTTGTAGA TAAAGTAGCA GGACGCTTTG GTAAGAAAGA 300 AGAAAGTTTA GACAATCTTA AATTACCTAA GTTCCTCTCA ATCTTCCACG ATACAGTTGT 360 30 TGCATCTGCT ACCTTGATGC TCGTATTCTT CGGGGCCATT CTTTTAATCT TGGGTCCAGA 420 CATTATGTCT AATAAAGAAG TCATCACTTC AGGAACTCTA TTCAATCCTG CTAAACAAGA 480 TTTCTTTATG TACATTATCC AAACAGCCTT TACCTTCTCA GTTTACTTGT TCGTTTTGAT 540 35 GCAAGGTGTC CGAATGTTCG TATCTGAGTT AACAAACGCT TTCCAAGGTA TTTCAAACAA 600 ATTGTTGCCA GGTTCATTCC CAGCGGTTGA CGTTGCAGCT TCTTATGGAT TTGGTTCTCC 660 40 AAATGCTGTC TTGTCAGGAT TTACCTTTGG TTTGATTGGT CAATTGATTA CAATTGTCTT 720 GCTCATCGTC TTTAAAAATC CGATTCTTAT TATTACAGGA TTTGTACCAG TGTTCTTTGA 780 CAATGCAGCC ATTGCGGTCT ACGCTGATAA ACGCGGCGGA TGGAAAGCGG CTGTTATCCT 840 45 TTCCTTTATA TCAGGTGTCC TTCAAGTTGC TCTAGGAGCT CTTTGTGTGG CCCTTCTCGA 900 TTTGGCATCT TATGGTGGCT ACCATGGAAA TATCGACTTT GAATTCCCAT GGCTTGGATT 960 50 TGGATATATC TTCAAATACC TTGGTATTGT TGGTTATGTA CTTGTGTGTC TCTTCTTGCT 1020 TGTTATTCCT CAACTTCAAT TTGCCAAAGC AAAAGATAAA GAGAAATATT ACAACGGTGA 1080 AGTTCAAGAA GAAGCTTAGT ATCTAGAAAA GGAGAAATAA AATGGTTAAA GTATTAGCAG 1140 55 CGTGCGGAAA TGGAATGGGT TCATCAATGG TTATCAAGAT GAAGGTTGAA AATGCTCTCC 1200 GTAAGCTTAA TCAAACAGAT TTTACAGTCA ATTCATGCAG TGTCGGTGAA GCTAAAGGTT 1260 60 TAGCAGTAGG ATATGACATC GTAATCGCTT CTCTTCATTT GATTCAAGAA TTGGAAGGGC 1320

-60-

•	GAACTAATGG	GAAGTTAATT	GGACTTGATA	ACTTGATGGA	TGATAAAGAA	ATCACCGAAA	1380
	AACTCAGTCA	AGCACTACAG	TAAAAGGTTG	GAGGGGGCTG	GACAGAAACT	GAGAGTTATC	1440
5	GTTTCTGTCC	TTCTCCCTCT	TTAAATAAAG	GAGGCAGATA	TGAATTTAAA	ACAAGCTTTA	1500
	ATTGACAATG	ACTCGATCCG	ACTAGGTTTA	GAGGCTAACA	ATTGGAAAGA	AGCAGTCAAG	1560
10	GTAGCAGTAG	ATCCCTTAAT	TGAAAGTGGG	GCAATTTTGC	CAGAGTATTA	CGATGCTATC	1620
10	ATTGAATCGA	CTGAAGAGTA	TGGGCCTTAC	TATATCTTGA	TGCCAGGTAT	GGCTATGCCC	1680
	CACGCTAGAC	CTGAAGCTGG	TGTGCAAAGT	GATGCCTTTT	CATTGATTAC	CTTACAAAAT	1740
15	CCTGTTGTAT	TTTCAGATGG	GAAAGAGGTA	TCTGTTTTGT	TGGCACTAGC	AGCAACAAGC	1800
	TCAAAAATTC	ACACAAGTGT	AGCCATTCCA	CAAATTATTG	CCCTGTTTGA	ATTAGAAGAT	1860
20	TCTATTGCAC	GTTTACAGGC	TTGCCAGACT	AAAGAAGATG	TCTTGGCTAT	GATTGAAGAA	1920
	TCTAAGGATA	GCCCTTATCT	CGAAGGATTG	GATTTGGAAA	GTTAGAAAGA	GGAATAAAGA	1980
	AATGACAAAA	AGAATACCTA	ATTTACAAGT	TGCATTAGAC	CATTCAGACT	TGCAAGGAGC	2040
25	GATTAAAGCA	GCTGTTTCTG	TTGGTCAGGA	AGTAGATATT	ATCGAAGCTG	GAACTGTTTG	2100
	CTTGCTTCAA	GTTGGAAGTG	AACTGGCTGA	AGTCTTGCGT	AGCCTTTTCC	CAGATAAGAT	2160
30	TATTGTGGCA	GACACAAAAT	GTGCTGATGC	TGGTGGAACA	GTTGCTAAAA	ATAATGCGGT	2220
	TCGTGGAGCA	GACTGGATGA	CTTGTATCTG	TTGTGCAACC	ATCCCTACTA	TGGAAGCAGC	2280
	TCTAAAGGCT	ATCAAGACTG	AACGAGGAGA	ACGAGGCGAA	ATCCAGATCG	AGCTTTATGG	2340
35	CGATTGGACT	TTTGAACAAG	CTCAGCTTTG	GCTAGATGCA	GGTATTTCAC	AAGCTATTTA	2400
	TCACCAATCT	CGTGATGCTC	TTCTTGCTGG	TGAAACTTGG	GGTGAAAAAG	ACCTTAATAA	2460
40	GGTTAAAAAA	CTCATTGACA	TGGGCTTCCG	TGTATCTGTA	ACAGGTGGTC	TAGATGTAGA	2520
	TACTCTCAAA	CTCTTTGAAG	GTGTTGATGT	CTTTACCTTT	ATCGCAGGTC	GTGGAATTAC	2580
	AGAGGCTGCG	GATCCAGCAG	GAGCAGCGCG	TGCCTTCAAG	GATGAAATCA	AACGAATTTG	2640
45	GGGGTAAATC	ATGGTACGTC	CAATTGGAAT	TTATGAAAAG	GCAACCCCAA	CACACTTTAC	2700
	TTGGCTAGAA	CGTTTAAATT	TTGCCAAGGA	GTTAGGCTTT	GATTTTGTCG	AGATGTCTAT	2760
50	TGACGAACGT	GACGAGCGTT	TAGCAAGACT	TGACTGGAGT	AAGGAAGAAC	GCTTGGAAGT	2820
	TGTCAAAGCA	ATCTATGAAA	CTGGTGTTCG	TATTCCTTCT	ATCTGTTTTT	CAGGCCATCG	2880
	TCGCTACCCA	TTGGGTTCAA	AAGATCCAGT	TCTAGAGGAA	AAATCTCTAG	AACTCATGAA	2940
55	AAAATGTATC	GAATTAGCTC	AAGACTTGGG	AGTTCGTACG	ATTCAATTAG	CTGGTTACGA	3000
	TGTTTACTAT	GAGGAAAAGT	CACCCCAGAC	ACGCCAACGT	TTTATCAAAA	ATTTGAGAAA	3060
60	AGCCTGTGAC	TGGGCTGAAG	AAGCTCAGGT	GGTACTTGCT	ATTGAAATTA	TGGATGATCC	3120
	TTTCATCAAT	AGCATCGAAA	AATATTTGGC	TATAGAAAAA	GAGATTGACT	CTCCCTTCCT	3180

-61-

	CTTTGTATAT CCAGATATTG GTAATGTGTC TGCATGGCAT AATGATATCT ATAGTGAGTT	3240
5	TTATCTTGGT CATCATGCCA TCGCAGCTCT CCATCTCAAG GATACTTATG CAGTGACAGA	3300
,	AAGTTCAAAG GGCCAGTTCC GAGATGTACC TTTCGGGCAA GGTTGTGTCA AATGGGAAGA	3360
	AGCTTTCGAT ATTTTAAAGG AAACCAATTA TAATGGACCT TTCCTAATCG AAATGTGGTC	3420
10	TGAAAATTGT GAAACAGTAG AAGAAACACG CGCAGCCGTT CAAGAGGCGC AAGCTTTTCT	3480
	CTATCCACTC ATTAAGAAAG CAGGTTTGAT GTAAGATGAA TCAAGTAATC AATGCTATGC	3540
15	GTAAACGAGT CTGTGATGCC AATCAATCAT TGCCAAAACA TGGACTTGTC AAATTTACCT	3600
	GGGGGAATGT ATCTGAAGTT AATCGCGAAC TCGGTGTCAT TGTTATCAAA CCATCAGGCG	3660
	TGGATTATGA CGAATTGACA CCTGAAAACA TGGTAGTGAC TGATCTAGAT GGTAAGATCC	3720
20	CCGGT	3725
	(2) INFORMATION FOR SEQ ID NO:21:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2483 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: NO	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	TCTAGAATCA TTTCCCAGCA GTTGGCTCAG GAAGTCGCAA TTATCTGGGT GAGTTTTCAG	60
	CGTGTTGGAC TGAAGTGGAG ATTGATGAGA TATACCGCGC CTTTGTCATG GCACATTTCA	120
45	AGAGTTCGCG TCCAGATGCC CAGACCTTGA TTTTCTATAC CCACTATGAC ACTGTGCCAG	180
	CGGATGGGGA TCAGGTCTGG ACAGAGGATC CTTTTACGCT TTCGGTCCGC AATGGCTCAT	240
50	GTATGGGCGT GGGGTTGATG ACGACAGGGT CATATCACAG CTCGCTTGAG TGCTTGAGAA	300
	AATATATGCA GCCCTGATGA TTACCTGTCA ATATCAGCTT TATCATGGAG GGAGCGGAGG	360
	AATCGGCTTC AACAGACCTA GATAAGTATT TGGAAAAGCA TGCAGACAAA CTCCGTGGGG	420
55	CGGATTTGTT GGTCTGGGAA CAAGGGACCA AAAATGCCTT GGAACAGCTG GAAATTTCTG	480
	GTGGCAATAA GGGGATTGTG ACCTTTGATG CCAAGGTAAA AAGCGCTGAT GTGGATATCC	540
60	ACTCGAGTTA TGGTGGTGTT GTGGAATCAG CTCCTTGGTA TCTCCTCCAA GCCTTACAGT	600
00	CTCTTCGTGC TGCGGATGGC CGTATCTTGG TTGAAGGCTT GTACGAAGAA GTACAAGAGC	660

-62-

	CCAATGAACG	AGAAATGGCC	TTGCTAGAAA	CTTATGGTCA	ACGAAACCCA	GAGGAAGTTA	720
_	GTCGGATTTA	TGGATTGGAG	TTGCCTCTCT	TACAGGAGGA	GCGGATGGCC	TTTCTAAAAC	780
5	GTTTCTTTTT	CGAGCCAGCG	CTTAATATCG	AAGGAATCCA	GTCTGGTTAT	CAAGGTCAGG	840
	GTGTTAAGAC	TATTTTGCCT	GCAGAAGCCA	GTGCCAAGCT	AGAGGTTCGT	CTGGTTCCGG	900
10	GCCTAGAACC	GCATGATGTT	CTGGAAAAA	TTCGGAAACA	GCTAGACAAA	AATGGCTTTG	960
	ATAAGGTAGA	ATTATACTAT	ACCTTGGGAG	AGATACTAGA	GTCGAAGCGA	TATGAGCGCA	1020
15	CCAGCCATTC	TCAATGTGAT	CGAGTTGGCC	AAGAAATTCT	ATCCACAGGG	CGTTTCAGTC	1080
15	TTGCCGACGA	CAGCGGGGAC	AGGACCTATG	CATACGGTCT	TTGATGCCCT	AGAGGTACCA	1140
	ATGGTTGCAT	TCGGTCTAGG	AAATGCCAAT	AGCCGAGACC	ACGGTGGAGA	TGAAAATGTG	1200
20	CGAATCGCTG	ATTATTACAC	CCATATCGAA	TTAGTAGAGG	AGCTGATTAG	AAGCTATGAG	1260
	TAGAGATATT	ATCAAGTTAG	ATCAGATCGA	TGTGACTTTT	CACCAAAAGA	AGAGAACCAT	1320
25	CACAGCGGTT	AAGGATGTGA	CCATTCACAT	CCAAGAAGGG	GATATCTACG	GAATCGTTGG	1380
23	ATATTCTGGA	GCAGGGAAAT	CAACCCTTGT	ACGGGTGATT	AACCTCTTGC	AAAAACCATC	1440
	TGCAGGGAAA	ATTACCATTG	ACGACGATGT	GATTTTTGAC	GGCAAGGTGA	CCTTGACGGC	1500
30	AGAGCAGTTG	CGTCGTAAAC	GTCAAGATAT	CGGGATGATT	TTCCAGCATT	TTAACCTGAT	1560
	GAGCCAAAAG	ACAGCAGAGG	AGAATGTAGC	CTTTGCCCTT	AAACACTCTG	GACTCAGCAA	1620
35	GGAAGAAAAG	AAGGCTAAAG	TAGCTAAGTT	GTTGGACTTG	GTTGGTTTGG	CAGATCGTGC	1680
33	TGAAAACTAC	CCTTCACAAC	TATCTGGAGG	GCAAAAACAG	CGTGTGGCAA	TTGCGCGTGC	1740
	CTTGGCCAAT	GATCCAAAAA	TCTTGATTTC	AGACGAGTCA	ACTTCTGCCC	TTGACCCTAA	1800
40	GACAACCAAG	CAGATTTTGG	CCTTGTTGCA	AGATTTGAAC	CAAAAATTAG	GATTGACAGT	1860
	TGTCTTGATT	ACGCATGAAA	TGAGATTGTC	AAAGACATTG	CCAACCGTGT	GGCGGTTATG	1920
45	CAGGATGGGC	ATTTGATTGA	AGAGGGAAGT	GTCCTTGAAA	TCTTCTCAAA	CCCTAAACAA	1980
43	CCTTTGACTC	AAGACTTTAT	CTCAACAGCC	ACAGGTATTG	ACGAAGCCAT	GGTCAAAATC	2040
	GAGAAGCAAG	AAATCGTGGA	ACACTTGTCT	GAAAACAGTC	TCTTGGTGCA	ACTTCAAGTA	2100
50	CGCTGGAGCT	TCAACAGACG	AGCCACTTTT	GAATGAATTG	TACAAGCATT	ACCAAGTAAT	2160
	GGCTAATATT	CTCTATGGGA	ATATCGAAAT	TCTCGATGGT	ACTCCTGTTG	GAGGAATTGG	2220
55	TGGTGGTCTT	GTCAGGTGAA	AAAGCAGCGT	TGGCAGGTGC	CCAAGAAGCC	ATTCGTCAAG	2280
در	CAGGTGTACA	ACTAAAAGTA	TTGAAGGGAG	TACAGTAAGA	TGGAATCATT	GATTCAAACC	2340
	TATTTACCAA	ATGTCTATAA	AATGGGTTGG	GCTGTCAGGC	AGGCTGGGGG	ACGGCTATCT	2400
60	ACTTAACTCT	TTATATGCAG	TTCTTTCCTT	CATTATTCGG	GTTCTTGGGG	CTAGTGGCAG	2460

-63-

	GTCTTCTCGT CTTAAGCGCC AGT	2483				
	(2) INFORMATION FOR SEQ ID NO:22:					
5 10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1010 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 					
LU	(ii) MOLECULE TYPE: DNA (genomic)					
	(iii) HYPOTHETICAL: NO					
15	(iv) ANTI-SENSE: NO					
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:					
	CCAATTAATG TGAGTTAGCT CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG	60				
25	GCTCGTATGT TGTGTGGAAT TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC	120				
2.5	CATGATTACG CCAAGCTTGC ATGCCTGCAG GTCGACTCTA GAGGATCCAA GCCATAGTTA	180				
	GACATGACTG CCAAATCTAA GGTTTGAGCA GTTGTTAAAT AAGCATTAGC TGTCGCCTCC	240				
30	ATGTTGGGAC TGGTTACTTT GAGGCCTACT AAGGCTAGAG ATCCCAACAT CATCAGGATC	300				
	AAGATGGATA AAAAACGCCC TTGGAGCCTG TGAAGGACTG AATTAAGTCC TTCCGAATAA	360				
35	GTTTTTCGCT TGATCATGCT AGTACTCCAA ACTGTCAATA TCCTGAGGAT GCTGGTTGAG	420				
, ,	CACCACATCC TTGACACTGG CATCGTGCAT TTGAATCACG CGATCAGCAA TGGGCGCCCAA	480				
	AGCTCCATTA TGAGTCACGA TGATCACCGT CGCTCCCTTT TGACGAGACA TGTCTTGGAG	540				
40	AATTTTCAAA ACCTGCTTGC CCGTCTGATA ATCCAAGGCT CCAGTCGGTT CATCACAAAG	600				
	GAGAATTTTA GGATTTTTGG CTACCGCGCG TGCAATGGAG ACTCGCTGTT GCTCCCCTCC	660				
45	AGAAAGCTGG GCTGGAAAGT TATTTAGACG ATGAGCCAGA CCTACATCTG TCAAGACCTG	720				
13	ATCAGAATTC AAGGCATCTG TCACAATTTC AGAAGCAGTT CCACATTTTC CTTAGCTGTC	780				
	AGATTAGAAA CTAGATTATA AAACTGAAAA ACAAACCCCA CATCATTTCT ACGGTAATTG	840				
50	GTGCGCTGGT GGGAACTATA ATCCGCAATA TTAACACCAT CAATCCAGAT TTCCCCTTCA	900				
	TCATTGGTAT CCATTCCCCC AAGAAGGTTA AGAACTGTTG ACTTGCCTGC ACCTGAAGCA	960				
55	CCAAGGATAA TAACCAGTTC CCCCTTTTCA ATCTCAAAAT TCACATCACG	1010				
,,	(2) INFORMATION FOR SEQ ID NO:23:					
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1299 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single					

-64-

(D) TOPOLOGY: 1	inear
-----------------	-------

(ii) MOLECULE TYPE: DNA (genomic)

5 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23: TCGATCGCAC CGTCCTCTCC TCGTTCTGCT CTTGCTGGGC TATAGTTCCC TCTTCTAGTC 60 15 TTGATTTCT TTGCCCATGC GTTCTTACCA CTTCTACTGT TTGCAGGTTT TACATGTCTG 120 GATATACTAT TTGTGCTAGG CTTAGCTTCT AGGATGGAGA AAAGAAGTCT AGTAGAGTTA 180 20 TTGAAAGGGG GCATCTTATG ATTGAGTTGA AAAATATTAC CAAAACCATT GGGGGAAAAG 240 TGATTTTGGA TAACTTATCT CTCAGGATTG ATCAGGGGGA TTTGGTAGCT ATTGTTGGTA 300 AGAGTGGTAG TGGGAAGTCG ACCTTGTTAA ATTTATTGGG TTTGATAGAT GGTGATTATA 360 25 GCGGACGGTA TGAGATTTTT GGTCAGACAA ATCTAGCGGT TAATTCTGCT AAGTCGCAAA 420 CAATAATCCG TGAACATATC TCTTATCTGT TTCAAAATTT TGCCCTGATT GATGATGAAA 480 30 CGGTCGAGTA CAATCTCATG CTGGCGCTGA AATATGTGAA ATTGCCTAAG AAAGACAAGC 540 600 TCAAAAAGGT GGAAGAGATT TTAGAGAGAG TAGGTTTGTC AGCTACTTTG CATCAAAGGG 660 TCTCCGAGTT GTCTGGGGGC GAACAACAAC GAATTGCAGT TGCTAGAGCC ATCTTAAAAC 35 CCAGCCAGCT GATTTTAGCC GATGAACCTA CAGGTTCGCT GGATCCTGAA AATAGAGATT 720 TGGTCTTGAA GTTTCTCTTA GAGATGAATC GAGAAGGGAA AACAGTCATT ATTGTGACCC 780 40 ACGATGCTTA TGTAGCCCAA CAATGTCATC GTGTCATTGA ATTGGGCGAG GGAAAATGAG 840 TTCATTCAGC TCCTTTTGAC TGGCTGAATA CTCATGTTTT CCAGAGAAAA ATAGCATAAA 900 TACGCCTAGG AATGACATTT TATGTAGCAT TTCTAGGTTT TTTTGTTTCA AATTGAAAAT 960 45 1020 TTTTTCAATT TAGGCTTGAC AAAGGATGAG TATAGGAGTA TTATTTATAC AATAAAAAAG AATAAACATA AAGAAGGCTT TGTTATGAAT AAGATGAAGA AGGTGTTGAT GACGATGTTT 1080 50 GGTTTAGTGA TGCTCCCCT ACTATTGCT TGTAGTAACA ATCAATCGGC TGGAATTGAA 1140 GCCATCAAGT CCAAAGGAAA ATTGGTTGTA GCCCTCAATC CAGATTTTGC TCCATTTGAA 1200 TATCAAAAAG TGGTTGATGG GAAAAATCAG ATTGTGGGTT CAGATATCGA CTTAGCCAAG 1260 55 CTATCGCAAC AGAACTAGGT GTCGACTCTA GAGGATCCC 1299

(2) INFORMATION FOR SEQ ID NO:24:

60 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 252 base pairs

-66-

5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 913 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15		-
1.5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
	AAACACTGCT TCTTGAGCGA ATGACGCTTT GTCCTTTTAA TGAGGTTACC AACGGCTTCA	
20	AAGAGGATTC CCAGCTCGTT CAGCTGTGGA GGTAGCTCGT CTTCCTCGTG ATGTAAAAGT	60
	CGAAATTGAA GTCATCGCAG AGATTGGATA AGCTAGTTGA AGTTTGGTGT TGCCAAACTT	120
25		180
23	CTTTTGATAT AAGGAGAAAA AGATGACAAA GAAACAACTT CACTTGGTGA TTGTGACAGG	240
	GATGGGTGGC GCAGGGAAAA CTGTAGCCAT TCAGTCCTTC GAGGATCTAG GTTATTTCAC	300
30	CATTGATAAT ATGCCGCCAG CTCTCTTGCC TAAGTTTTTG CAGCTGGTTG AAATTAAGGA	360
	AGACAATCCT AAGTTGGCCT TGGTAGTGGA TATGCGTAGT CGTTCTTTCT TTTCAGAGAT	420
25	TCAAGCTGTT TTGGATGAGT TGGAAAATCA AGATGGTTTG GATTTCAAAA TCCTCTTTTT	480
35	GGATGCGGCT GATAAGGAAT TGGTCGCTCG TTACAAGGAA ACCAGACGGA GTCACCCACT	540
	AGCAGCAGAC GGTCGTATTT TAGATGGAAT CAAGTTGGAA CGTGAACTCT TGGCACCTTT	600
40	GAAAAATATG AGCCAAAATG TGGTGGATAC GACTGAACTC ACTCCACGTG AGCTGCGCAA	660
	AACCCTTGCA GAGCAGTTTT CAGACCAAGA ACAAGCTCAG TCTTTCCGTA TCGAAGTCAT	720
	GTCTTTCGGA TTTAAGTATG GAATCCCGAT TGATGCGGAC TTGGTCTTTG ATGTCCGTTT	780
45	CTTGCCAAAT CCCTATTATT TACCAGAACT GAGAAACCAA ACGGGTGTGG ATGAACCTGT	840
	TTATGATTAT GTCATGAACC ATCCTGAGTC AGAAGACTTT TATCAACATT TATTGGCCTT	900
50 50	GATTGAGCCG ATT	913
	(2) INFORMATION FOR SEQ ID NO:27:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5919 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
60	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	

-67-

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

10	TCGATTCGTG	GAGCAGGAAA	TCTTTTAGGA	AAATCCCAGT	CTGGTTTCAT	TGATTCTGTT	60
10	GGTTTTGAAT	TGTATTCGCA	GTTATTAGAG	GAAGCTATTG	CTAAACGAAA	CGGTAATGCT	120
	AACGCTAACA	CAAGAACCAA	AGGGAATGCT	GAGTTGATTT	TGCAAATTGA	TGCCTATCTT	180
15	CCTGATACTT	ATATTTCTGA	TCAACGACAT	AAGATTGAAA	TTTACAAGAA	AATTCGTCAA	240
	ATTGACAACC	GTGTCAATTA	TGAAGAGTTA	CAAGAGGAGT	TGATAGACCG	TTTTGGAGAA	300
20	TACCCAGATG	TAGTAGCCTA	TCTTTTAGAG	ATTGGTTTGG	TCAAATCATA	CTTGGACAAG	360
	GTCTTTGTTC	AACGTGTGGA	AAGAAAAGAT	ATTAAAATTA	CAATTCAATT	TGAAAAAGTC	420
	ACTCAACGAC	TGTTTTTAGC	TCAAGATTAT	TTTAAAGCTT	TATCCGTAAC	GAACTTAAAA	480
25	GCAGGCATCG	CTGAGAATAA	GGGATTAATG	GAGCTTGTAT	TTGATGTCCA	AAATAAGAAA	540
	GATTATGAAA	TTTTAGAAGG	TCTGCTGATT	TTTGGAGAAA	GTTTATTAGA	GATAAAAGAG	600
30	TCTAAGGAAA	AAAATTCCAT	TTGATATTTT	TCTTCTATAA	AATAGATAAA	ATGGTACAAT	660
30	AATAAATTGA	GGTAATAAGG	ATGAGATTAG	ATAAATATTT	AAAAGTATCG	CGAATTATCA	720
	AGCGTCGTAC	AGTCGCAAAG	GAAGTAGCAG	ATAAAGGTAG	AATCAAGGTT	AATGGAATCT	780
35	TGGCCAAAAG	TTCAACGGAC	TTGAAAGTTA	ATGACCAAGT	GAAATCGCTT	GGCAATAAGT	840
	TGCTGCTTGT	AAAGGTACTA	GAGATGAAAG	ATAGTACAAA	AAAAGAAGAT	GCAGCAGGAA	900
40	TGTATGAAAT	TATCAGTGAA	ACACGGGTAG	AAGAAAATGT	CTAAAAATAT	TGTACAATTG	960
	AATAATTCTT	TTATTCAAAA	TGAATACCAA	CGTCGTCGCT	ACCTGATGAA	AGAACGACAA	1020
	AAACGGAATC	GTTTTATGGG	AGGGGTATTG	ATTTTGATTA	TGCTATTATT	TATCTTGCCA	1080
45	ACTTTTAATT	TAGCGCAGAG	TTATCAGCAA	TTACTCCAAA	GACGTCAGCA	ATTAGCAGAC	1140
	TTGCAAACTC	AGTATCAAAC	TTTGAGTGAT	GAAAAGGATA	AGGAGACAGC	ATTTGCTACC	1200
50	AAGTTGANAC	ATGAAGATTA	TGCTGCTAAA	TATACACGAG	CGAAGTACTA	TTATTCTAAG	1260
	TCGAGGGAAA	AAGTTTATAC	GATTCCTGAC	TTGCTTCAAA	GGTGATAAAA	TGGAAAATTT	1320
	ATTAGACGTA	ATAGAGCAAT	TTTTGAGTTT	GTCAGATGAA	AAGCTGGAAG	AATTGGCTGA	1380
55	TAAAAATCAA	TTATTGCGTT	TACAAGAAGA	AAAGGAAAGG	AAGAATGCGT	AAATTCTTAA	1440
	TTATTTTGTT	GCTACCAAGT	TTTTTGACCA	TTTCAAAAGT	CGTTAGCACA	GAAAAAGAAG	1500
60	TCGTCTATAC	TTCGAAAGAA	ATTTATTACC	TTTCACAATC	TGACTTTGGT	ATTTATTTTA	1560
50	GAGAAAAATT	AAGTTCTCCC	ATGGTTTATG	GAGAGGTTCC	TGTTTATGCG	AATGAAGATT	1620

-68-

	TAGTAGTGGA	ATCTGGGAAA	TTGACTCCCA	AAACAAGTTT	TCAAATAACC	GAGTGGCGCT	1680
5	TAAATAAACA	AGGAATTCCA	GTATTTAAGC	TATCAAATCA	TCAATTTATA	GCTGCGGACA	1740
,	AACGATTTTT	ATATGATCAA	TCAGAGGTAA	CTCCAACAAT	AAAAAAAGTA	TGGTTAGAAT	1800
	CTGACTTTAA	ACTGTACAAT	AGTCCTTATG	ATTTAAAAGA	AGTGAAATCA	TCCTTATCAG	1860
10	CTTATTCGCA	AGTATCAATC	GACAAGACCA	TGTTTGTAGA	AGGAAGAGAA	TTTCTACATA	1920
	TTGATCAGGC	TGGATGGGTA	GCTAAAGAAT	CAACTTCTGA	AGAAGATAAT	CGGATGAGTA	1980
15	AAGTTCAAGA	AATGTTATCT	GAAAAATATC	AGAAAGATTC	TTTCTCTATT	TATGTTAAGC	2040
13	AACTGACTAC	TGGAAAAGAA	GCTGGTATCA	ATCAAGATGA	AAAGATGTAT	GCAGCCAGCG	2100
	TTTTGAAACT	CTCTTATCTC	TATTATACGC	AAGAAAAAA	TAAATGAGGG	TCTTTATCAG	2160
20	TTAGATACGA	CTGTAAAATA	CGTATCTGCA	GTCAATGATT	TTCCAGGTTC	ТТАТАААССА	2220
	GAGGGAAGTG	GTAGTCTTCC	TAAAAAAGAA	GATAATAAAG	AATATTCTTT	AAAGGATTTA	2280
25	ATTACGAAAG	TATCAAAAGA	ATCTGATAAT	GTAGCTCATA	ATCTATTGGG	ATATTACATT	2340
23	TCAAACCAAT	CTGATGCCAC	ATTCAAATCC	AAGATGTCTG	CCATTATGGG	AGATGATTGG	2400
	GATCCAAAAG	AAAAATTGAT	TTCTTCTAAG	ATGGCCGGGA	AGTTTATGGA	AGCTATTTAT	2460
30	AATCAAAATG	GATTTGTGCT	AGAGTCTTTG	ACTAAAACAG	ATTTTGATAG	TCAGCGAATT	2520
	GCCAAAGGTG	TTTCTGTTAA	AGTAGCTCAT	AAAATTGGAG	ATGCGGATGG	ATTTAAGCAT	2580
35	GATACGGGTG	TTGTCTATGC	AGATCCTCCA	TTTATTCTTT	CTATTTTCAC	TAAGAATTCT	2640
33	GATTATGATA	CGATTTCTAA	GATAGCCAAG	GATGTTTATG	AGGTTCTAAA	ATGAGGGAAC	2700
	CAGATTTTTT	AAATCATTTT	CTCAAGAAGG	GATATTTCAA	AAAGCATGCT	AAGGCGGTTC	2760
40	TAGCTCTTTC	TGGTGGATTA	GATTCCATGT	TTCTATTTAA	GGTATTGTCT	ACTTATCAAA	2820
	AAGAGTTAGA	GATTGAATTG	ATTCTAGCTC	ATGTGAATCA	TAAGCAGAGA	ATTGAATCAG	2880
45	ATTGGGAAGA	AAAGGAATTA	AGGAAGTTGG	CTGCTGAAGC	AGAGCTTCCT	ATTTATATCA	2940
	GCAATTTTTC	AGGAGAATTT	TCAGAAGCGC	GTGCACGAAA	TTTTCGTTAT	GATTTTTTC	3000
	AAGAGGTCCA	TGAAAAAGAC	AGGTGCGACA	GCTTTAGTCA	CTGCCCACCA	TGCTGATGAT	3060
50	CAGGTGGAAA	CGATTTTTAT	GCGCTTGATT	CGAGGAACCT	CCTTGCGCTA	TCTATCAGGA	3120
	ATTAAGGAGA	AGCAAGTAGT	CGGAGAGATA	GAAATCATTC	GTCCCTTCTT	GCATTTTCAG	3180
55	AAAAAAGACT	TTCCATCAAT	TTTTCACTTT	GAAGATACAT	CAAATCAGGA	GAATCATTAT	3240
	TTTCGAAATC	GTATTCGAAA	TTCTTACTTA	CCAGAATTGG	AAAAAGAAAA	TCCTCGATTT	3300
	AGGGATGCAA	TCCTTAGGCA	TTGGCAATGA	AATTTTAGAT	TATGATTTGG	CAATAGCTGA	3360
60	ATTATCTAAC	AATATTAATG	TGGAAGATTT	ACAGCAGTTA	TTTTCTTACT	CTGAGTCTAC	3420

-69-

	ACAAAGAGTT	TTACTTCAAA	CTTATCTGAA	TCGTTTTCCA	GATTTGAATC	TTACAAAAGC	3480
	TCAGTTTGCT	GAAGTTCAGC	AGATTTTAAA	ATTTAAAAGC	CAGTATCGTC	ATCCGATTAA	3540
5	AAATGGCTAT	GAATTGATAA	AAGAGTACCA	ACAGTTTCAG	ATTTGTAAAA	TCAGTCCGCA	3600
	GGCTGATGAA	AAGGAAGATG	AACTTGTGTT	ACACTATCAA	AATCAGGTAG	CTTATCAAGG	3660
10	ATATTTATTT	TCTTTTGGAC	TTCCATTAGA	AGGTGAATTA	ATTCAACAAA	TACCTGTTTC	3720
10	ACGTGAAACA	TCCATACACA	TTCGTCATCG	AAAAACAGGA	GATGTTTTGA	TTAAAAATGG	3780
	GCATAGAAAA	AAACTCAGAC	GTTTATTTAT	TGATTTGAAA	ATCCCTATGG	AAAAGAGAAA	3840
15	CTCTGCTCTT	ATTATTGAGC	AATTTGGTGA	AATTGTCTCA	ATTTTGGGAA	TTGCGACCAA	3900
	TAATTTGAGT	AAAAAAACGA	AAAATGATAT	AATGAACACT	GTACTTTATA	TAGAAAAAT	3960
20	AGATAGGTAA	AAAATGTTAG	AAAACGATAT	TAAAAAAGTC	CTCGTTTCAC	ACGATGAAAT	4020
20	TACAGAAGCA	GCTAAAAAAC	TAGGTGCTCA	ATTAACTAAA	GACTATGCAG	GAAAAAATCC	4080
	AATCTTAGTT	GGGATTTTAA	AAGGATCTAT	TCCTTTTATG	GCTGAATTGG	TCAAACATAT	4140
25	TGATACACAT	ATTGAAATGG	ACTTCATGAT	GGTTTCTAGC	TACCATGGTG	GAACAGCAAG	4200
	TAGTGGTGTT	ATCAATATTA	AACAAGATGT	GACTCAAGAT	ATCAAAGGAA	GACATGTTCT	4260
30	ATTTGTAGAA	GATATCATTG	ATACAGGTCA	AACTTTGAAG	AATTTGCGAG	ATATGTTTAA	4320
30	AGAAAGAGAA	GCAGCTTCTG	TTAAAATTGC	AACCTTGTTG	GATAAACCAG	AAGGACGTGT	4380
	TGTAGAAATT	GAGGCAGACT	ATACCTGCTT	TACTATCCCA	AATGAGTTTG	TAGTAGGTTA	4440
35	TGGTTTAGAC	TACAAAGAAA	ATTATCGTAA	TCTTCCTTAT	ATTGGAGTAT	TGAAAGAGGA	4500
	AGTGTATTCA	AATTAGAAAG	AATAATCTTT	AATGAAAAAA	CAAAATAATG	GTTTAATTAA	4560
40	AAATCCTTTT	CTATGGTTAT	TATTTATCTT	TTTCCTTGTG	ACAGGATTCC	AGTATTTCCT	4620
40	ATTCTGGGAA	TAACTCAGGA	GGAAGTCAGC	AAATCAACTA	TACTGAGTTG	GTACAAGAAA	4680
	TTACCGATGG	TAATGTAAAA	GAATTAACTT	ACCAACCAAA	TGGTAGTGTT	TCGAAGTTTC	4740
45	TGGTGTCTAT	AAAAATCCTA	AAACAAGTAA	AGAAGGAACA	GGTATTCAGT	TTTTCACGCC	4800
	ATCTGTTACT	AAGGTAGAGA	AATTTACCAG	CACTATTCTT	CCTGCAGATA	CTACCGTATC	4860
50	AGAATTGCAA.	AAACTTGCTA	CTGACCATAA	AGCAGAAGTA	ACTGTTAAGC	ATGAAAGTTC	4920
30	AAGTGGTATA	TGGATTAATC	TACTCGTATC	CATTGTGCCA	TTTGGAATTC	TATTCTTCTT	4980
	CCTATTCTCT	ATGATGGGAA	ATATGGGAGG	AGGCAATGGC	CGTAATCCAA	TGAGTTTTGG	5040
55	ACGTAGTAAG	GCTAAAGCAG	CAAATAAAGA	AGATATTAAA	GTAAGATTTT	CAGATGTTGC	5100
	TGGAGCTGAG	GAAGAAAAC	AAGAACTAGT	TGAAGTTGTT	GAGTTCTTAA	AAGATCCAAA	5160
60	ACGATTCACA	AAACTTGGAG	CCCGTATTCC	AGCAGGTGTT	CTTTTGGAGG	GACCTCCGGG	5220
	GACAGGTAAG	ACTTTGCTTG	CTAAGGCAGT	CGCTGGAGAA	GCAGGTGTTC	CATTCTTTAG	5280

-70-

	TATCTCAGGT TCTGACTTTG TAGAAATGTT TGTCGGAGTT GGAGCTAGTC GTGTTCGCTC	5340
5	TCTTTTTGAG GATGCCAAAA AAGCAGCACC AGCTATCATC TTTATCGACT GAAATGGATG	5400
,	CCCGTGGGAC GTCAACGTGG AGTCGGTCTC GGCGGAGGTA ATGACGAACG TGAACAAACC	5460
	TTGAACCAAC TTTTGATTGA GATGGATGGT TTTGAGGGAA ATGAAGGGAT TATCGTCATC	5520
10	GCTGCGACAA ACCGTTCAGA TGTACTTGAT CCTGCCCTTT TGCGTCCAGG ACGTTTTGAT	5580
	AGAAAAGTAT TGGTTGGCCG TCCTGATGTT AAAGGTCGTG AAGCAATCTT GAAAGTTCAC	5640
15	GCTAAGAACA AGCCTTTAGC AGAAGATGTT GATTTGAAAT TAGTGGCTCA ACAAACTCCA	5700
	GGCTTTGTTG GTGCTGATTT AGAGAATGTC TTGAATGAAG CAGCTTTAGT TGCTGCTCGT	5760
	CGCAATAAAT CGATAATTGA TGCTTCAGAT ATGATGAAAG CAGAAGATAG AGTTATTGCT	5820
20	GGACCTTCTA AGAAAGATAA GACAGTTTCA CAAAAAGAAC GAGAATTGGT TGCTTACCAT	5880
	GAGGCAGGAC ATACCATTGT TGGTCTAGTC TTGTCGACT	5919
25	(2) INFORMATION FOR SEQ ID NO:28:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1863 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
30	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
35	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
	GAGCTCGGTA CCCGGGGATC ATACTCAAGA GGAGGTAATC CAATGAACAC TAGTCTTAAA	60
15	CTCAGCAAAC AACTCAGTTT TGGAGAGGAG ATTGCTAATA GCGTGACCCA TGCTGTGGGT	120
	GCAGTCATCA TGCTTATCTT GCTGCCTATT TCATCCATCT ATAGTTATGA AGCACACGGA	180
	TTTTTATCCT CTATCGGCGT TTCCATTTTC GTCATCAGTC TCTTTCTCAT GTTCCTATCA	240
50	TCCACCATTT ATCACTCTAT GGCCTATGGT TCGACCCACA AATATGTTTT GCGAATCATT	300
	GACCATTCTA TGATTTACGT TGCCATTGCC GGCTCATACA CGCCCGTTGT CTTGACCTTG	360
55	ATGAATAACT GGTTTGGCTA TCTGATTATT GTCATCCAAT GGGGAACGAC CATCTTTGGT	420
	ATTCTCTATA AAATCTTTGC TAAAAAGGTC AATGAGAAAT TTAGCCTTGC TCTTTACCTG	480
- 0	ATTATGGGCT GGTTGGTTCT GGCTATCATT CCTGCCATTA TCAGTCAAAC GACACCCGTT	540
50	TTCTGGAGTC TCATGGTAAC TGGCGGACTC TGTTATACAG TTGGAGCTGG ATTTTATGCC	600

-71-

	AAGAAAAAAC	CTTATTTCCA	CATGATTTGG	CATCTCTTTA	TCCTAGCTGC	GTCCGCACTC	660
5	CAATACATCG	CTATTGTTTA	TTACATGTAA	AAAAGTTGAG	AAATTCAATC	TCAACTTTTT	720
,	TCTTTACACA	TATTGATAAA	GTACTGGTGC	AAGCGCACAT	CATCAGTCAA	TTCTGGATGA	780
	AAAGAACTTA	CCAACATATT	TTTTTCTTGG	GCTGCAACAA	TTTGATTGTT	CACTATTGCT	840
10	AAAATTTCTA	CACCCTCACC	AACACTACTG	ATAATCGGAC	CACGGATAAA	GGTCATTGGA	900
	ATCTTGCCAA	CTCCCTTACA	TTCTGCTTCC	GTGTAGAAAC	TTCCTAATTG	GCGCCCATAA	960
15	GCATTACGCT	CGACCACCAT	ATCCATAGTT	CCTAGATGAC	TCTCTTTCTG	AGAAGTGATT	1020
13	TCCTTAGCCA	GCAAAATTAA	GCCCGCACAG	GTCCCAAACA	CTGGTAAGCC	AGATAGAATG	1080
	GCTTCTCGTA	TGGGAAGTAG	CATGTTCTGG	TCACGTAAGA	GCTTGCCCAT	GGTTGTAGAC	1140
20	TCACCACCAG	GCAAAATAAA	CCCGACAAGT	CACTCTGATC	TTGCTGAAAA	CATCTAGATT	1200
	TCTGAGTTCT	ACACTCTCGA	CACCTAATTG	ATCTAGCACT	TTTGCATGTT	CTGCAAAGGC	1260
25	CCCTTGCAAG	GCCAATATTC	CGATTTTCAT	CTATTTTCCT	CGTTCAGCCA	TGAGAATTTG	1320
	GATTCATTTT	CATTAATACC	AACCATGGCT	TCTCCTAAAT	CTTCAGAGAT	TTGAGCTAGG	1380
	ATTTGAGGAT	TACGGAAGTT	AGTCACAGCC	TTAACAATGG	CACTCGCTCG	TTTAACAGGA	1440
30	TCTCCTGACT	TGAAAATACC	TGAACCGACA	AAGACCCCCT	CTGCCCCTAA	TTGCATCATT	1500
	AACGCAGCAT	CTGCTGGCGT	TGCAACACCT	CCAGCAGCGA	AATTTACAAC	TGGCAATTTT	1560
35	CCATGTTCAT	GAACATATTG	GACCAATTCT	ACAGGGACTT	GCAAATCCTT	GGCAGCAACA	1620
	TAAAGCTCGT	CCTCACGTAA	GTTTTGAATG	CGGCGAATTT	CCTGATTCAT	CATACGCATA	1680
	TGACGAACAG	CTTGGACTAT	ATCCCCTGTC	CCTGGTTCTC	CTTTAGTACG	AATCATGGAA	1740
40	GCACCTTCAG	CGATACGACG	CAAGGCTTCA	CCCAAATCCT	TAGCACCACA	GACAAAAGGA	1800
	ACTTGGAATT	CTTTCTTGTC	CACATGGAAA	CGGTCATCAG	CTGGAGATAG	AACTTCACTC	1860
45	TCG	,					1863
	(2) INFORMA	TION FOR SE	EQ ID NO:29:	:			
50	(QUENCE CHAF A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY	5448 base pacleic acid ONESS: singl	pairs			
55	(ii) MO	LECULE TYPE	E: DNA (geno	omic)			

60

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

WO 98/26072

PCT/US97/22578

-72-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

5	TAAAGAAGGT	GGATTTGAAG	TTAACGGTAA	ATTCATCAAA	GTTTCTGCTG	AACGTGATCC	60
J	AGAACAAATC	GACTGGGCTA	CTGACGGTGT	AGAAATCGTT	CTTGAAGCTA	CTGGTTTCTT	120
	TGCTAAGAAA	GAAGCAGCTG	AAAAACACCT	TAAAGGTGGA	GCTAAAAAAG	TTGTTATCAC	180
10	TGCTCCTGGT	GGAAACGACG	TTAAAACAGT	TGTATTCAAC	ACTAACCACG	ACGTTCTTGA	240
	CGGTACTGAA	ACAGTTATCT	CAGGTGCTTC	ATGTACTACA	AACTGCTTGG	CTCCAATGGC	300
15	TAAAGCTCTT	CAAGACAACT	TTGGTGTTGT	TGAAGGATTG	ATGACTACTA	TCCACGCTTA	360
13	CACTGGTGAC	CAAATGATCC	TTGACGGACC	ACACCGTGTG	GTGACCTTCG	CCGTGCTCGC	420
	GCTGGTGCTG	CAAACATCGT	TCCTAACTCA	ACTGGTGCTG	CAAAAGCTAT	CGGTCTTGTA	480
20	ATCCCAGAAT	TGAATGGTAA	ACTTGATGGA	TCTGCACAAC	GCGTTCCAAC	TCCAACTGGA	540
	TCAGTTACTG	AATTGGTCGC	AGTTCTTGAA	AAGAACGTTA	CTGTTGATGA	AGTGAACGCA	600
25	GCTATGAAAG	CAGCTTCAAA	CGAATCATAC	GGTTACACAG	AAGATCCAAT	CGTATCTTCA	660
2.7	GATATCGTAG	GTATGTCTTA	CGGTTCATTG	TTTGACGCAA	СТСАААСТАА	AGTTCTTGAC	720
	GTTGACGGTA	AACAATTGGT	TAAAGTTGTA	TCATGGTACG	ACAACGAAAT	GTCATACACT	780
30	GCACAACTTG	TTCGTACTCT	TGAATACTTC	GCAAAGATTG	СТАААТААТТ	CTTGAGTTGA	840
	TAGAAAGCAA	GGCTTTGTGG	TCTTGCTTTT	TTATATGGAA	AAATGGATGA	CACGATCATC	900
35	CATTCTTTTT	TAATTCTTTT	TCAAATGTAT	TTGAAAGGGT	AGTGAAAGTT	AGCCTCTCTA	960
33	AAGTAAGTGG	GTGGGTAAAG	GAAAGTCGGA	AGGCATGAAG	CATAAGCCGG	CTTGTCTTTG	1020
	ATTTACTATT	ATAGAGAGGG	TCTCCCAGGA	TAGGAAGATT	ATGATGCAAA	AGGTGCACAC	1080
40	GAATCTGATG	GGTTCGCCCT	GTCTTTAGCT	TGCAATGAGC	CAAGGAAGTC	TTGTTTGAGA	1140
	ATTGCTTTAA	TCTGCTTACA	TGCGTTTCAG	CATATTTCCC	ATTTTTTGCA	TCAACTATTC	1200
45	TTTTTCTACG	ATCATGGCGA	TCACGTCCAA	TTTTGTCTCT	GAAAACAAGT	TCTTTTCTGT	1260
13	TGATATTTCC	ATCAACTAGA	GCCCAATATT	CTCTAGAAAT	CTCTTTTTC	TCCAATAAGC	1320
	GATTGAGAAT	GGGCAGGATA	AAAGGATTTT	TGGCAAAGAG	AACTAAGCCA	CTGGTTTCCA	1380
50	TGTCCAGACG	ATGAACGACA	TAGCAGGTTT	GGCCAACATA	GGTACTGACA	TGGTTAAGAA	1440
	GGGCAATTTC	GTTTGGTTGA	TTACCATGCG	TTTTCATCCC	CTCTGGTTTG	TTTACAATAA	1500
55	TCAAGTGTTG	ATCTTGATAA	ACTTCCTGCA	CTAAGTCTGG	GTTGCCCCAA	GGGATCGTCT	1560
23	TTTGGGGATA	ATCTTCCTCG	TCAAAAGTCA	ACTGGCAAAC	ATCTCCAGGA	TTTACGATTT	1620
	CGTTCCAGCG	GACTTCTTCT	TGATTTATCA	AAATATGTTT	CTTGATTCTC	AAAAAATGAC	1680
60	GGATTTTTCT	AGGGATGAGG	AGTTGTTCCT	CAAGTAATTG	CTTTACCGTC	ATTTGAGGTA	1740

-73-

	GAGAGGCGGG	TAATGTAAAT	GTGAATTGCA	TACAGATATT	GTAACAAAAA	AAGCCCTATT	1800
	TGGATAGGAA	ATAGCTAAAT	TCTTGTCTTC	CTATGATGAA	GATGATAAAA	TAAACGCATG	1860
5	AAATTAGATA	AATTATTTGA	GAAATTTCTT	TCTCTTTTTA	AAAAAGAAAC	AAGTGAACTA	1920
	GAGGACTCTG	ATTCTACTAT	CTTACGTCGC	TCTCGTAGTG	АТСБААААА	ATTAGCCCAA	1980
	GTAGGTCCGA	TTCGAAAATT	CTGGCGTCGT	TATCATCTAA	CAAAGATTAT	CCTTATACTA	2040
10	GGTTTGAGTG	CAGGCTTGCT	AGTTGGAATC	TATTTGTTTG	CTGTAGCCAA	GTCGACCAAT	2100
	GTCAATGATT	TGCAAAATGC	CTTGAAAACT	CGGACTCTTA	TTTTTGACCG	TGAAGAAAAA	2160
15	GAGGCTGGTG	CCTTGTCTGG	TCAAAAGGGA	ACCTATGTTG	AGCTGACTGA	CATCAGTAAA	2220
	AACTTGCAGA	ATGCTGTTAT	TGCGACAGAA	GACCGTTCTT	ТСТАТАААА	TGACGGGATT	2280
20	AACTATGGCC	GTTTCTTCTT	GGCTATTGTC	ACTGCTGGAC	GTTCAGGTGG	TGGCTCTACC	2340
20	ATTACCCAAC	AGCTGGCTAA	AAACGCCTAT	TTATCGCAGG	ATCAAACTGT	TGAGAGAAAA	2400
	GCGAAAGAAT	TTTTCCTTGC	CTTAGAATTA	AGCAAAAAAT	ATAGTAAGGA	GCAAATTCTA	2460
25	ACCATGTACC	TTAACAACGC	TTATTTTGGA	AATGGTGTGT	GGGGTGTAGA	AGATGCGAGT	2520
	AAGAAATACT	TTGGAGTTTC	TGCATCAGAA	GTGAGTCTGG	ATCAAGCTGC	GACTCTGGCA	2580
30	GGGATGCTCA	AGGGGCCGGA	ACTGTATAAT	CCCTTGAATT	CCGTAGAAGA	TTCTACTAAT	2640
30	CGGCGCGATA	CTGTCTTGCA	GAATATGGTT	GCAGCAGGAT	ATATTGATAA	AAACCAAGAA	2700
	ACCGAAGCTG	CTGAAGTTGA	TATGACTTCG	CAATTGCACG	ATAAGTATGA	AGGAAAAATC	2760
35	TCAGATTACC	GTTACCCCTC	TTATTTTGAT	GCGGTGGTTA	ATGAAGCTGT	TTCCAAGTAT	2820
	AATCTAACAG	AGGAAGAGAT	TGTCAATAAT	GGCTACCGCA	TTTACACAGA	GCTGGACCAA	2880
40	AACTACCAAG	CAAATATGCA	GATTGTTTAT	GAAAACACAT	CGCTATTTCC	GAGGGCAGAG	2940
40	GATGGAACGT	TTGCTCAATC	AGGAAGTGTA	GCTCTCGAAC	CGAAAACAGG	GGGAGTTCGT	3000
	GGAGTTGTCG	GTCAAGTTGC	TGACAATGAT	AAAACTGGAT	TCCGGAATTT	CAACTATGCA	3060
45	ACCCAATCAA	AGCGTAGTCC	TGGTTCTACA	ATTAAGCCTT	TAGTTGTTTA	TACACCAGCA	3120
	GTTGAAGCAG	GCTGGGCTTT	GAATAAGCAG	TTGGATAACC	ATACCATGCA	GTATGATAGC	3180
50	TATAAGGTTG	ATAACTATGC	AGGGATCAAA	ACAASTCGAC	AAGTTCCTAT	GTATCAATCC	3240
	TTGGCAGAAT	CGCTTAATCT	ACCTGCTGTT	GCCACTGTTA	ATGATTTGGG	TGTTGACAAG	3300
	GCTTTTGAGG	CAGGCGAAAA	ATTCGGACTC	AACATGGAAA	AGGTCGACCG	TGTTCTTGGT	3360
55	GTCGCCTTGG	GAAGCGGTGT	TGAAACCAAC	CCTCTTCAAA	TGGCTCAAGC	ATACGCTGCC	3420
	TTTGCAAATG	AAGGTTTAAT	GCCTGAAGCT	CATTTTATTA	GTAGAATTGA	AAATGCTAGT	3480
60	GGACAAGTTA	TTGCGAGTCA	TAAAAATTCA	CAAAAACGGG	TGATTGATAA	GTCTGTAGCT	3540
	GACAAGATGA	CCAGTATGAT	GTTGGGGACT	TTCACCAACG	GTACCGGTAT	TAGTTCATCG	3600

-74-

	CCTGCAGACT	ATGTCATGGC	AGGGAAAACT	GGAACAACTG	AAGCAGTTTT	CAATCCGGAG	3660
_	TACACAAGTG	ACCAGTGGGT	AATTGGTTAT	ACTCCGGATG	TAGTGATTAG	CCACTGGCTT	3720
5	GGCTTTCCGA	CCACTGATGA	AAATCACTAT	CTAGCTGGCT	CTACTTCAAA	CGGTGCAGCT	3780
	CATGTCTTTA	GAAACATTGC	CAATACTATT	TTACCTTATA	CGCCAGGAAG	TACCTTTACG	3840
10	GTTGAAAATG	CTTATAAGCA	AAATGGAATT	GCACCAGCCA	ATACAAAAAG	ACAAGTACAA	3900
	ACCAATGATA	ATAGCCAGAC	AGATGATAAT	TTGTCTGATA	TTCGAGGGCG	TGCGCAAAGT	3960
1 5	CTAGTAGATG	AGGCTAGCCG	GGCTATCTCA	GATGCGAAGA	TTAAGGAAAA	GGCTCAAACA	4020
15	ATATGGGATT	CGATAGTCAA	TCTATTTCGC	TAAGATGCTT	GTCAAAGCCT	AGCTTTCTTG	4080
	TTATAATGGA	TAAGATGGAG	GCGTTATGGC	АСТАААААА	GCAAGCCTAG	CTTGTGCGGT	4140
20	TTGTGGTTCG	AGAAACTATT	CAATCAAGAT	CAGCGGAAAC	CCCAAGCCTA	CACGACTAGA	4200
	AGTAAATAAA	TTTTGTAAGC	ATTGTGGCAA	GTACACTACA	CACAGAGAAA	CGAGATAGGA	4260
25	GAGAGCGATG	CGTTTTATTG	GAGATATTTT	TAGACTTCTT	AAAGACACAA	CATGGCCAAC	4320
25	TCGCAAGGAA	AGCTGGAGAG	ATTTTCGTTC	TATCATGGAA	TACACAGCTT	TCTTTGTAGT	4380
	AATTATTTAC	ATTTTTGACC	AGTTGATTGT	TTCAGGTTTG	ATTCGATTTA	TTAACATTTT	4440
30	TTAGAAGATT	AGTGGAGTTA	ATTACACTAG	AAATCTTCTA	TTTATGAAAG	GAAATATCAT	4500
	GGATAGTTTT	GATAAAGGAT	GGTTTGTTTT	ACAAACTTAT	TCTGGTTATG	AAAATAAGGT	4560
35	GAAAGAAAAT	CTATTACAAC	GTGCACAAAC	CTACAATATG	TTGGATAATA	TTCTACGCGT	4620
35	TGAAATTCCA	ACACAAACAG	TGCAAGTTGA	AAAAAATGGA	AAGAGAAAAG	AAGTAGAAGA	4680
	AAATCGCTTT	CCAGGTTATG	TTCTTGTAGA	AATGGTCATG	ACAGATGAAG	CTTGGTTTGT	4740
40	TGTTCGAAAC	GCACAGAGTC	CTACAAAATT	CATTTCAGAA	CAAACAGCTT	ATGAAATTGA	4800
	TGAAGAGGTT	CGTTCATTAT	TAAATGAGGC	ACGAAATAAA	GCTGCTGAAA	TTATTCAGTC	4860
45	AAATCGTGAA	ACTCACAAGT	TAATTGCAGA	AGCATTATTG	AAATACGAAA	CATTGGATAG	4920
45	TACACAAATT	AAAGCTCTTT	ACGAAACAGG	AAAGATGCCT	GAAAGCAGTA	GAAGAGGAAT	4980
	CTCATGCACT	ATCCTATGAT	GAAGTAAAGT	CAAAAATGAA	TGACGAAAAA	TAACCCTGAG	5040
50	AGAGGCTGGA	GCCTCTCTTT	TTTGTGCAGT	TTAGGAGCTA	AAGGGAACAG	AATGGAGAAA	5100
	ATGGAACAAA	TGTGTTTTCT	AATCTGTTAG	ACTGTATCTA	GAAAGGGGAA	AATTATGATT	5160
	AAAGAATTGT	ATGAAGAAGT	CCAAGGGACT	GTGTATAAGT	GTAGAAATGA	ATATTACCTT	5220
55	CATTTATGGG	AATTGTCGGA	TTGGGACCA	GAAGGCATGC	TCTGCTTACA	TGAATTGATT	5280
	AGTAGAGAAG	AAGGACTGGT	AGACGATATI	CCACGTTTAA	GGAAATATTT	CAAAACCAAG	5340
60	TTTCGAAATC	GAATTTTAGA	CTATATCCGT	AAGCAGGAAA	GTCAGAAGCG	TAGATACGAT	5400

-75-

	AAAGAACCCT ATGAAGAAGT GGGTGAGATC CCCGGTACCG AGCTCGAA	5448
	(2) INFORMATION FOR SEQ ID NO:30:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1040 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
	(IV) ANII SENSE NO	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:	
	TAGTGAATTC GAGCTCGGTA CCCGGGGATC GTTTCTCGGT TCTTTTGGAG CACAAGGGCA	60
25	TCCATCCCAT TGTCTATATT TCCAAAATGG ATTTGTTGGA AGATAGGGGA GAACTGGATT	120
	TTTACCAGCA GACCTATGGT GACATCGGCT ATGACTTTGT GACCAGTAAA GAGGAACTCC	180
	TGTCTTTGTT AACAGGCAAG GTTACGGTCT TTATGGGGCA GACAGGTGTT GGGAAGTCAA	240
30	CTCTTCTCAA TAAAATCGCA CCAGACCTCA ATCTTGAAAC GGGAGAAATT TCAGACAGTC	300
	TAGGTCGCGG TCGCCATACC ACTCGAGCTG TTAGTTTTTA CAATCTCAAC GGGGGTAAAA	360
2 =	TCGCAGATAC ACCAGGATTT TCATCCTTGG ACTATGAAGT ATCAAGGGCT GAAGACCTCA	420
35	ATCAGGCTTT CCCAGAGATT GCTACTGTTA GCCGAGATTG TAAGTTCCGT ACTTGTACCC	480
	ATACCCATGA GCCGTCTTGT GCCGTCAAAC CAGCTGTTGA AGAGGGTGTT ATTGCAACCT	540
40	TCCGTTTTGA CAATTACCTG CAATTCCTTA GTGAAATTGA AAATCGTAGA GAAACCTATA	600
	AAAAAGTCAG CAAAAAAATT CCAAAATAAG GAGAAACCTA TGTCTCAATA CAAGATTGCT	660
4.5	CCGTCAATTC TGGCAGCAGA TTATGCCAAC TTTGAACGTG AAATCAAACG TCTAGAAGCA	720
45	ACTGGGGCAG AATATGCCCA TATCGATTCT GGACAGTCAT TTTGTACCGC AAATCAGTTT	780
	TGGTGCAGGT GTGGTCGAGA GCTTCGTCCT CATAGTAAGA TGGTTTTCGA TTGCCACTTG	840
50	ATGGTGTCAA ACCCTGAGCA TCATCTGGAA GATTTTGCGC GTGCAGGTGC AGACATCATC	900
	AGTATCCATG TAGAAGCAAC ACCTCATATT CATGGCGCCC TCCAAAAAAT TCGTTCACTC	960
	GGAGTTAAGC CTTCAGTCGT TATCAATCCT GGCACACCAG TTGAAGCCAT CAAGCACGTC	1020
55	CTTCATCTAG TGACAAGTTT	1040
	(2) INFORMATION FOR SEQ ID NO:31:	
60	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 789 base pairs	

-76-

	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
10	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
15	ATATCACGAC GGAGCCATAC TACCGATTTT CTTAAGCATA GCGCCACCTT TACCGATGAT	60
	AATCCCTTTT TGGCTATCGC GCTCGACCAT GATGGTTGCA CGGATGTGAA CCTTGTCTGT	120
20	CTCTTCGTCT CGTTTCATAG AGTCAACAAC TACTGCTACA GAATGCGGAA TCTCTTCACG	180
	AGTTAGGTGC AAGACTTTCT CGCGAACCAT TTCTGAAACT AAGAAACGTT CTGGATGATC	240
25	TGTGATTTGA TCAGACGGGA AATATTGGAA ACCTTCATCC AGATTTTCAC TCAAAATATC	300
25	CACTAGACGA GACACGTTAT TTCCCTGAAG GGCTGAGATT GGAACAATTT CCTTAAAGTC	360
	CATTIGATTA CGGAAGTCAT CAATCTGAGA CAAGAGCTGG TCTGGATGGA CCTTATCGAT	420
30	TTTATTCACC ACCAAAATCA CAGGAACCTT GGCAGCCTTG GAGACGCTCG ATAATCATAT	480
	CGTCCCCCTT ACCACGCGCT TCATCAGCAG GCACCATGAA AAGAACAGTG TCCACTTCGC	540
35	GAAGGTACTG TAGGCAGACT CAACCATGAA ATCTCCGAGA GCTGTTTTAA GTTTGTGAAT	600
33	CCCTGGTGTG TCGATAAAGA CAATTTGCTC CTTATCAGTC GTGTAATTCC CATGATTTTA	660
	TTGCGCGTTG TCTGCGCCTT GTCACTCATG ATGGCAATCT TTTGCCCCAT AACGTGATTT	720
40	AAAAAGGTTG ACTTCCCAAC ATTGGGACTC CTAAAATGGC TACAAACCTG ATTTAAAATT	780
	CATAATTCC	789
45	(2) INFORMATION FOR SEQ ID NO:32:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1233 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
c c	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

60

-77-

-	TGAGATAAAC T	TGCGACTCA	TATGAGAATA	TGAATCAAGC	CGTCCTCGTG	AACCCCGATA	60
5	TCAACGAAGG C	ACCGAAGTC	AACAACGTTA	CGCACAACAC	CTTCTAGCTT	CTGACCTACC	120
,	ACTAGGTCTT TO	GATATCTAG	GACATCTTGG	CGAAGCACAG	GTGCGTCAAA	GGAATCACGG	180
	AAATCTCGAC C	TGGTTTGAG	AAGATCTGCA	ATGATATCTT	TAAGGGTTTC	TGGACCGAGG	240
10	TCTAGCTCTT G	AGCCATTTC	CTTGACTGAA	AGGGACTTGA	GTTTGCTTGG	GCTTCTTCGT	300
	TTAGGTCTTT A	АТАТСТААА	CGTTTGAAGA	GTCCTTAACT	GCAGTGTAAT	TCTCTGGGTG	360
15	AACTCCTGTA T	TATCAAGGA	TATTGCTACT	TTCAGGGATA	CGAAGGAAAC	CAGCAGCCTG	420
13	CTCAAAGGCC T	TGGCTCCCA	GACGAGGAAC	TTTCTTGATT	TGGGCGCGTG	AAGTGATTTT	480
	TCCTTCTTCC TO	CGCGGTATT	TGACAATATT	TTCAGAGATA	GTTTTGTTGA	GTCCAGCTAC	540
20	GTGTGAAAGA A	GAGCTGGGC	TAGCTGTATT	GACATTGACA	CCAACTTGGT	TAACCACTGT	600
	ATCGACAACA A	AGTCCAGAC	TCTCAGATAG	TTTCTTCTGA	CTGACATCGT	GTTGGTATTG	660
25 ·	ACCGACACCA AT	ITGACTTA G	GATCGATTTT	GACCAATTCC	GCAAGAGGAT	CTTGCAAACG	720
	ACGGGCGATA GA	AAATGGCAG	AGCGTTTTTC	AACGGTCAAG	TCTGGAAACT	CCTGACGAGC	780
	AAGTTCGCTG GO	CAGAATAGA	CAGAAGCACC	ACTTTCATTA	ACGATAACAT	AGCTGACTTC	840
30	AGGGAAATCT TT	rcagaactt	CCGCTACAAA	AGCTTCACTT	TCACGACTGG	CCGTTCCATT	900
	TCCAATGGCA AT	PAATCTCTA	CACCGTATTG	ACCAATTAAA	TCTGCTAAAT	CTTTCTTGGC	960
35	TTCTTCGATT TO	GACGAGCTG	ATGCTGGTTT	AACAGGATAA	ATAACCTGAG	TTGTCAGCAT	1020
	TTTTCCTGTT GO	CATCCACGA	CAGCTAACTT	GGCACCTGTA	CGAAAGGCTG	GGTCAAATCC	1080
	AAGAACCACG CO	GCCCTTTCA	GTGGAGCAAC	CAAGAGGAGA	TTGCGCAGAT	TGTCAGAAAA	1140
40	AAGTTGGATA GO	CTCCCTCTT	CAGCTTTCTC	AGTTAATTCT	GTCCGAATAC	GACGCTCAAT	1200
	AGCAGGCAAG AG	CCTTTTTCT	TAACGGATTG	CTG			1233
15	(2) INFORMATI	ION FOR SE	Q ID NO:33:				
			ACTERISTICS 6679 base p				
	(B)	TYPE: nu	cleic acid NESS: singl				
50		TOPOLOGY					
	(ii) MOLE	ECULE TYPE	: DNA (geno	mic)			
55	(iii) HYPO	THETICAL:	NO				
	(iv) ANTI	-SENSE: N	0				

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

60

-78-

	ACAAGGCGTC	ATCCGTGTAT	TTCTTAAATA	CGGACCAAAT	GGTGAGAAAG	TTATCACTAA	60
5	CTTGAAACGT	GTTTCTAAAC	CAGGACTTCG	TGTCTACAAA	AAACGTGAAG	ACCTTCCAAA	120
,	AGTTCTTAAC	GGACTTGGAA	TTGCCATCCT	TTCAACTTCT	GAAGGTTTGC	TTACTGATAA	180
	AGAAGCACGC	CAAAAGAATG	TTGGTGGTGA	GGTTATCGCT	TACGTTTGGT	AAAATCAAGA	240
10	TACAAAGCTC	GTAAAGAACA	AAGCAAAATT	AGGAAGTTGG	AGAAGTTTGT	TTACAAACAA	300
	GCCAACTTAT	CTATTTTGCA	CAGTTCTTAG	ATCGTGTTCA	GTTCAGCTCT	TGAACTAAAT	360
15	AAGTATCTGA	ACCCCGTGAA	AACTGGCCGT	TCTGGCTGAC	AATTTAACAG	GAGAAAATAA	420
	ACATGTCACG	TATTGGTAAT	AAAGTTATCG	TGTTGCCTGC	TGGTGTTGAA	CTCGCTAACA	480
	ATGACAACGT	TGTAACTGTA	AAAGGACCTA	AAGGAGAACT	TACTCGTGAG	TTCTCAAAAG	540
20	ATATTGAAAT	CCGTGTGGAA	GGTACTGAAG	TAACTCTTCA	CCGTCCAAAC	GATTCAAAAG	600
	AAATGAAAAC	TATCCACGGA	ACTACTCGTG	CCCTTTTGAA	CAACATGGTT	GTTGGTGTAT	660
25	CAGAAGGATT	CAAGAAAGAA	CTTGAAATGC	GTGGGGTTGG	TTACCGTGCA	CAGCTTCAAG	720
د ی	GATCTAAACT	TGTTTTGGCT	GTTGGTAAAT	CTCATCCAGA	CGAAGTTGAA	GCTCCAGAAG	780
	GAATTACTTT	TGAACTTCCA	AACCCAACAA	CAATCGTTGT	TAGCGGAATT	TCAAAAGAAG	840
30	TAGTTGGTCA	AACAGCTGCT	TACGTACGTA	GCCTTCGTTC	ACCAGAACCA	TATAAAGGTA	900
	AAGGTATCCG	TTACGTTGGT	GAATTCGTTC	GTCGTAAAGA	AGGTAAAACA	GGTAAATAAT	960
35	GTTGAGTGGT	TGATCATCAA	CCACCAACCT	ATTTTCCAAC	TTTGTGCATA	GCAACGATTT	1020
, ,	AAAACTAAAG	AGGTGAAAAC	TGTGATTTCA	AAACCAGATA	ААААСАААСТ	CCGCCAAAAA	1080
	CGCCACCGTC	GCGTTCGGGA	AAACTCTCTG	GAACTGCTGA	TCGCCCACGT	TTGAACGTAT	1140
10	TCCGTTCTAA	TACAGGCATC	TACGCTCAAG	TGATTGATGA	CGTAGCGGGT	GTAACGCTCG	1200
	CAAGTGCTTC	AACTCTTGAT	AAAGAAGTTT	CAAAAGGAAC	TAAAACTGAA	CAAGCCGTTG	1260
15	CTGTCGGTAA	ACTCGTTGCA	GAACGTGCAA	ACGCTAAAGG	TATTTCAGAA	GTGGTGTTCG	1320
2)	ACCGCGGTGG	ATATCTATAT	CACGGACGTG	TGAAAGCTTT	GGCTGATGCA	GCTCGTGAAA	1380
	ACGGATTGAA	ATTCTAATAG	GAGGACACTA	GAAAATGGCA	TTTAAAGACA	ATGCAGTTGA	1440
50	ATTAGAAGAA	CGCGTAGTTG	CTGTCAACCG	TGTTACAAAA	GTTGTTAAAG	GTGGACGTCG	1500
	TCTTCGTTTC	GCAGCTCTTG	TTGTTGTTGG	TGACCACAAT	GGTCGCGTAG	GATTTGGTAC	1560
55	TGGTAAAGCT	CAAGAAGTTC	CAGAAGCAAT	CCGTAAAGCA	GTAGATGATG	CTAAGAAAAA	1620
ر ر	CTTGATCGAA	GTTCCTATGG	TTGGAACAAC	AATCCCACAC	GAAGTTCTTT	CAGAATTCGG	1680
	TGGAGCTAAA	GTATTGTTGA	AACCTGCTGT	AGAAGGTTCT	GGAGTTGCCG	CTGGTGGTGC	1740
50	AGTTCGTGCC	GTTGTGGAAT	TGGCAGGTGT	GGCAGATATT	ACATCTAAAT	CACTTGGTTC	1800

.

-79-

	TAACACTCCA	ATCAACATTG	TTCGTGCAAC	TGTTGAAGGT	TTGAAACAAT	TGAAACGCGC	1860
	TGAAGAAATT	GCTGCCCTTC	GTGGTATTTC	AGTTTCTGAT	TTGGCATAAG	AAAGGGGATA	1920
5	AAATGGCTCA	AATTAAAATT	ACTTTGACTA	AGTCTCCAAT	CGGACGCATT	CCATCACAAC	1980
	GTAAAACTGT	TGTAGCACTT	GGACTTGGCA	AATTGAACAG	CTCTGTTATT	AAAGAAGATA	2040
10	ACGCTGCTAT	CCGTGGTATG	ATTACAGCAG	TATCTCACTT	AGTAACAGTT	GAAGAAGTAA	2100
LU	ACTAATGAAG	TTTTAGGGGA	TGTGCACTGT	ACCATCCCCT	AAAACTAGAT	ATAGTCATCT	2160
	ATGATGACAT	CGTATAGGCG	AGTTGATGGG	GGAGACAACC	TTTTCTCCCT	TATCGGCGCT	2220
15	AGCATTTTAC	AAAAGAGGAG	аааатаааа	TGAAACTTCA	TGAATTGAAA	CCTGCAGAAG	2280
	GTTCTCGTAA	AGTACGTAAC	CGCGTTGGTC	GTGGTACTTC	ATCAGGTAAC	GGTAAAACAT	2340
20	CTGGTCGTGG	TCAAAAAGGT	CAAAAAGCTC	GTAGCGGTGG	CGGAGTTCGC	CTTGGTTTTG	2400
20	AAGGTGGACA	AACTCCATTG	TTCCGTCGTC	TTCCAAAACG	TGGATTCACT	AACATCAACG	2460
	CTAAAGAATA	CGCAATTGTG	AACCTTGACC	AATTGAACGT	CTTTGAAGAT	GGTGCTGAAG	2520
25	TAACTCCAGT	TGTTCTTATC	GAAGCAGGAA	TTGTTAAAGC	TGAAAAGTCA	GGTATTAAAA	2580
	TTCTTGGTAA	CGGTGAGTTG	ACTAAGAAAT	TGACTGTGAA	AGCAGCTAAA	TTCTCTAAAT	2640
30	CAGCTGAAGA	AGCTATCACT	GCTAAAGGTG	GTTCAGTAGA	AGTCATCTAA	GAGAGGTGAC	2700
50	CTATGTTTTT	TAAATTATTA	AGAGAAGCTC	TTAAAGTCAA	GCAGGTTCGA	TCAAAAATTT	2760
	TATTTACAAT	TTTTATCGTT	TTGGTCTTTC	GTATCGGAAC	TAGCATTACA	GTTCCTGGTG	2820
35	TGAATGCCAA	TAGCTTGAAT	GCTTTAAGTG	GATTATCCTT	CTTAAACATG	TTGAGCTTGG	2880
	TGTCGGGGAA	TGCCCTAAAA	AACTTTTCGA	TTTTTGCCCT	AGGAGTTAGT	CCCTATATCA	2940
40	CCGCTTCTAT	TGTTGTCCAA	CTCTTGCAAA	TGGATATTTT	ACCCAAGTTT	GTAGAGTGGG	3000
4 0	GTAAACAAGG	GGAAGTAGGT	CGAAGAAAAT	TGAATCAAGC	TACTCGTTAT	ATTGCTCTAG	3060
	TTCTCGCTTT	TGTGCAATCT	ATCGGGATTA	CAGCTGGTTT	TAATACCTTG	GCTGGAGCTC	312
45	AATTGATTAA	AACTGCTTTA	ACTCCACAAG	TTTTTCTGAC	GATTGGTATC	ATCTTAACAG	318
	CTGGTAGTAT	GATTGTCACT	TGGTTGGGTG	AGCAAATTAC	AGATAAGGGA	TACGGAAACG	324
50	GTGTTTCCAT	GATTATCTTT	GCCGGGATTG	TTTCCTCAAT	TCCAGAGATG	ATTCAGGGCA	330
50	TCTATGTGGA	CTACTTTGTG	AACGTCCCAA	GTAGCCGTAT	CACTTCATCT	ATCATTTTCG	336
	TAATCATTTT	GATTATTACT	GTATTGTTGA	TTATTTACTT	TACAACTTAT	GTTCAACAAG	342
55	CAGAATACAA	AATTCCAATC	СААТАТАСТА	AGGTTGCACA	AGGTGCTCCA	TCTAGCTCTT	348
	ACCTTCCGTT	AAAGGTAAAT	CCTGCTGGAG	TTATCCCTGT	TATCTTTGCC	AGTTCGATTA	354
60	CTGCAGCGCC	TGCGGCTATT	CTTCAGTTTT	TGAGTGCCAC	AGGTCATGAT	TGGGCTTGGG	360
00	TAAGGGTAGC	ACAAGAGATG	TTGGCAACTA	CTTCTCCAAC	TGGTATTGCC	ATGTATGCTT	366

-80-

	TGTTGATTAT	TCTCTTTACA	TTCTTCTATA	CGTTTGTACA	GATTAATCCT	GAAAAAGCAG	3720
5	CAGAGAGCCT	ACAAAAGAGT	GGTGCCTATA	TCCATGGAGT	TCGTCCTGGT	AAAGGTACAG	3780
ر	AAGAATATAT	GTCTAAACTT	CTTCGTCGTC	TTGCAACTGT	TGGTTCCCTC	TTCCTTGGTG	3840
	TGATTTCCAT	TTTACCGATT	GCAGCTAAAG	ATGTATTTGG	TCTTTCTGAT	GTTGTTGCCT	3900
10	TTGGTGGAAC	AAGTCTCTTG	ATCATTATCT	CTACAGGTAT	CGAAGGAATC	AAGCAATTGG	3960
	AAGGTTACCT	ATTGAAACGT	AAGTATGTTG	GTTTCATGGA	CAGAACAGAA	TAAAAGTATT	4020
15	TACTGAATCA	GTAAATACTG	AGGGAGTGGA	GGTTTAAACT	CTGACATTTG	TAAGAGTTGG	4080
	ATCTCCCCTC	TTCTATTTTG	TTTTTAAATC	GGGGTGAAAA	AACTTTTTGC	TTCTATTTAA	4140
	AAACAAAATA	AGGAGATCAA	ATCATGAATC	TTTTGATTAT	GGGCTTACCT	GGTGCAGGTA	4200
20	AGGGAACTCA	AGCAGCAAAA	ATCGTAGAAC	AATTCCATGT	TGCACATATC	TCAACAGGTG	4260
	ATATGTTCCG	CGCTGCAATG	GCAAATCAAA	CTGAAATGGG	TGTTCTTGCT	AAGTCATATA	4320
25	TTGACAAGGG	TGAATTGGTT	CCTGACGAAG	TTACAAATGG	AATCGTAAAA	GAACGCCTTT	4380
. J	CACAAGATGA	TATTAAAGAA	ACAGGATTCT	TATTGGATGG	TTACCCACGT	ACAATTGAAC	4440
	AAGCTCATGC	CTTGGACAAA	ACATTGGCTG	AACTTGGCAT	TGAACTAGAA	GGTATTATCA	4500
30	ATATTGAAGT	GAACCCTGAC	AGCCTCTTGG	AACGTTTGAG	TGGCCGTATC	ATCCACCGCG	4560
	TAACTGGAGA	AACTTTCCAC	AAGGTCTTTA	ACCCACCAGT	TGACTATAAA	GAAGAAGATT	4620
35	ACTACCAACG	TGAAGATGAT	AAGCCTGAGA	CAGTAAAACG	TCGTTTGGAT	GTTAATATTG	4680
-	CTCAAGGAGA	ACCAATCATT	GCTCACTACC	GTGCCAAAGG	TTTGGTTCAT	GACATCGAAG	4740
	GTAATCAAGA	TATCAATGAT	GTCTTCTCAG	ATATTGAAAA	AGTATTGACA	AATTTGAAAT	4800
40	AAAGCGTTTT	TCACACTTGC	AAAAATCCGC	TACAAATGTT	ATACTGAAAT	AGTCTGACTT	4860
	ATAATTGTTG	TCTCTGTGTC	TAGAGGCATC	GAATCGAAAT	TTATGGAGGT	GCTTTTGCGT	4920
45	GGCAAAAGAC	GATGTGATTG	AAGTTGAAGG	CAAAGTAGTT	GATACAATGC	CGAATGCAAT	4980
_	GTTTACGGTT	GAACTTGAAA	ATGGACATCA	GATTTTAGCA	ACAGTTTCTG	GTAAAATTCG	5040
	TAAAAACTAT	ATTCGTATTT	TAGCGGGAGA	TCGTGTTACT	GTCGAAATGA	GTCCATATGA	5100
50	CTTGACACGT	GGACGTATCA	CTTACCGCTT	TAAATAATCG	AAAAACTTGG	AGGGATAAGA	5160
	AATGAAAGTA	AGACCATCGG	TCAAACCAAT	TTGCGAATAC	TGTAAAGTTA	TTCGTCGTAA	5220
55	TGGTCGTGTT	ATGGTAATTT	GCCCAGCAAA	TCCAAAACAC	AAACAACGTC	AAGGATAAGA	5280
- •	TAGAAAGGAG	AAAACATGGC	TCGTATTGCT	GGAGTTGATA	TTCCAAATGA	CAAACGCGTA	5340
	GTAATCTCAT	TGACTTATGT	TTATGGTATC	GGACTTGCAA	CATCTAAGAA	AATTTTGGCT	5400
50	CCTCCTCCAA	тстсьсььсь	тсттсстста	CCTCATCTTA	CATCACATCA	ACAACATCCT	5460

-81-

	ATCCGTCGTG	AAGTGGATGC	AATCAAAGTT	GAAGGTGACC	TTCGTCGTGA	AGTAAACTTG	5520
	AACATCAAAC	GTTTGATGGA	AATCGGTTCA	TACCGTGGTA	TCCGTCACCG	TCGTGGACTT	5580
5	CCTGTCCGTG	GACAAAATAC	ТАААААСААС	GCTCGCACTC	GTAAAGGTAA	AGCTGTTGCG	5640
	ATTGCTGGTA	AGAAAAAATA	ATATAGGAGG	TAAAAGTCTT	GGCTAAACCA	ACACGTAAAC	5700
1.0	GTCGTGTGAA	AAAGAATATC	GAATCTGGTA	TTGCTCATAT	TCACGCTACA	TTTAATAACA	5760
10	CTATTGTTAT	GATTACTGAT	GTGCATGGTA	ATGCAATTGC	TTGGTCATCA	GCTGGTGCTC	5820
	TTGGTTTCAA	AGGTTCTCGT	AAATCTACAC	CATTCGCTGC	TCAAATGGCT	TCTGAAGCTG	5880
15	CTGCTAAATC	TGCACAAGAA	CACGGTCTTA	AATCAGTTGA	AGTTACTGTA	AAAGGTCCAG	5940
	GTTCTGGTCG	TGAGTCAGCT	ATTCGTGCGC	TTGCTGCCGC	TGGTCTTGAA	GTAACAGCAA	6000
20	TTCGTGATGT	GACTCCAGTG	CCACACAATG	GTGCTCGTCC	TCCAAAACGT	CGCCGTGTAT	6060
20	AATCATCGCA	TTACACTGCT	TTTCGTTTAA	GAGGGAGTAA	CTAAATGATC	GAGTTTGAAA	6120
	AACCAAATAT	AACAAAAATT	GATGAAAATA	AAGATTATGG	CAAGTTTGTA	ATCGAACCAC	6180
25	TTGAACGTGG	CTACGGTACA	ACTCTTGGTA	ACTCTCTTCG	TCGTGTACTT	CTAGCTTCTC	6240
	TACCAGGAGC	AGCTGTGACA	TCTATCAACA	TTGATGGTGT	GTTACATGAG	TTTGACACAG	6300
30	TTCCAGGTGT	TCGTGAAGAC	GTGATGCAAA	TCATTCTGAA	CATTAAAGGA	ATTGCAGTGA	6360
30	AATCGTACGT	TGAAGACGAA	AAAATCATCG	AACTGGATGT	TGAAGGTCCT	GCTGAAGTAA	6420
	CAGCTGGTGA	CATTTTGACA	GATAGCGATA	TTGAAATTGT	AAATCCAGAT	CATTATCTCT	6480
35	TTACAATCGG	TGAAGGTTCT	TCTCTAAAAG	CGACTATGAC	TGTTAACAGT	GGTCGTGGAT	6540
	ATGTACCTGC	TGACGAAAAT	AAAAAGGATA	ATGCACCAGT	TGGAACACTT	GCTGTAGATT	6600
40	CTATTTATAC	ACCAGTTACA	AAAGTCAACT	ATCAAGTGGA	ACCTGCTCGT	GTAGGTAGCA	6660
40	ATGATGGTTT	CGACTCTAG	•				6679
	(2) INFORM	ATION FOR S	EQ ID NO:34	:			
45	(i) SI	EQUENCE CHA	RACTERISTIC	S:			

- (A) LENGTH: 1703 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

- (iii) HYPOTHETICAL: NO
- 55 (iv) ANTI-SENSE: NO

50

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

-82-

	AGAATACCTT	GGGGCAACTG	TTCAAGTCAT	TCCTCATATC	ACAGATGCTT	TGAAAGAAAA	60
	AATCAAGAGT	GCCGCTCTAA	CGACCGACTC	TGATGTCATT	ATCACAGAGG	TTGGTGGAAC	120
5	AGTAGGAGAT	ATCGAGTCCT	TGCCATTCCT	AGAGGCTCTT	CGCAGATGAA	GGCAGATGTG	180
	GGGCGGATAA	TGTCATGTAT	ATCCATACAA	CCTTCTTCCT	TACCTCAAGG	CTGCTGGTGA	240
LO	AATGAAACCA	AACCAACCCA	ACACTCTGTC	AAAGATTGCG	TGGCTTGGGA	ATCCAACCAA	300
. 0	ATATGTTGGT	TATTCGTACA	GAAGAGCCAG	CTGGTCAAGG	AATTAAAAAT	AAACTGGCCC	360
	AGTTCTGTGA	TGTGGCACCA	GAATCCCTAA	TCGAATCGTT	GGATGTTGAA	CACCTTTACC	420
L 5	AAATTCCACT	GAACTTGCAG	GCACAAGGGA	TGGACCAAAT	TGTTTGTGAT	CATTTGAAAT	480
	TAGACGCACC	AGCAGCGGAT	ATGACAGAAT	GGTCAGCCAT	GGTGGACAAG	GTCATGAACC	540
20	TCAAGAAACA	AGTTAAGATT	TCCCTTGTTG	GTAAGTATGT	GGAGTTGCAA	GATGCCTATA	600
. 0	TCTCAGTGGT	CGAAGCCTTG	AAACACTCTG	GCTATGTCAA	TGATGTAGAA	GTTAAAATCA	660
	ATTGGGTCAA	TGCCAATGAT	GTGACAGCAG	AGAATGTAGC	AGAACTCTTG	TCTGATGCGG	720
25	ACGGGATCAT	CGTACCAGGT	GGTTTTGGTC	AACGTGGTAC	AGAAGGGAAA	ATCCAAGCCA	780
٠	TCCGCTATGC	GCGTGAAAAT	GATGTTCCAA	TGTTGGGAGT	CTGCTTGGGA	ATGCAGTTGA	840
30	CATGTATCGA	GTTTGCTCGT	CACGTTTTAG	GTCTTGAAGG	TGCCAATTCT	GCAGAGCTTG	900
	CACCAGAAAC	AAAATACCCT	ATCATTGATA	TCATGCGTGA	TCAGATTGAT	ATTGAGGATA	960
	TGGGTGGAAC	CCTTCGTTTG	GGACTTTATC	CGTCTAAGTT	GAAACGTGGC	TCTAAGGCTG	1020
35	CTGCTGCTTA	TCACAATCAA	GAAGTGGTGC	AACGCCGTCA	CCGTCACCGT	TATGAGTTTA	1080
	AATAATGCCT	TCCGTGAGCA	GTTTGAGGCA	GCAGGTTTGT	CTTTTCAGGA	GTTTCTCCAG	1140
10	ACAATCGTTT	GGTAGAAATC	GTGGAAATCC	TGAAAATAAA	TTCTTTGTAG	CTTGTCAGTA	1200
	TCACCCTGAA	CTGTCAGCCG	TCCAACCGAC	CAGAAGAACT	CTACACTGCC	TTTGTTACTG	1260
	CAGCGGTTGA	GAACAGCAAT	TAGCAAAATC	AGAACCTTTG	AGAAAAATCT	CAGAGGTTTT	1320
15	TTGCATACGA	TGATATTGCA	GTATATCTGA	GGTAGGAGTC	CTCTGTATGT	ACCTGCTACC	1380
	GTTGAAATCA	ATAGCGACTC	CCTCTTGCCC	TGTGCTAGTG	AATGGATTTA	TCAGTATATT	1440
50	GAAATGAAAT	AAAATTTGAA	CAAATTAATT	CGGAAAGCCA	AATCAATTTC	TAGCAAAGTT	1500
	TTAGGAACTG	GATTGTATAG	TGAATTGAAA	TAAGATGTGA	ACATCTCTAT	CAGGAAAGTC	1560
	AAATTAATTT	ATAGAAATAT	TTTAGCAGTC	AAGATGGACT	GTTATAGATT	CAATATACTA	1620
55	TACTTTTTTA	ATTTAATCCA	СТАТААТААА	ATGAAATAAT	AACAGGACAA	ATCGTTCAGG	1680
	ACAGTCAAAT	CGACTCTAGA	GGA				1703

(2) INFORMATION FOR SEQ ID NO:35:

60

(i) SEQUENCE CHARACTERISTICS:

-83-

(A) LENGTH: 1620 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear

5

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

10 (iv) ANTI-SENSE: NO

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35: ATTGTAAAAC ACCAAGGAAA AACAGCTAAA GAAGCGAAAG AATTGGCCAT TGACTACATG 60 AATAAGGTTG GCATTCCAGA CGCAGATAGA CGTTTTAATG AATACCCATT CCAATATTCT 120 20 GGAGGAATGC GTCAACGTAT CGTTATTGCG ATTGCCCTTG CCTGCCGACC TGATGTCTTG 180 ATCTGTGATG AGCCAACAAC TGCCTTGGAT GTAACTATTC AAGCTCAGAT TATTGATTTG 240 25 CTAAAATCTT TACAAAACGA GTATCATTTC ACAACAATCT TTATTACCCA CGACCTTGGT 300 GTGGTGGCAA GTATTGCGGA TAAGGTAGCG GTTATGTATG CAGGAGAAAT CGTTGAGTAT 360 GGAACGGTTG AGGAAGTCTT CTATGACCCT CGCCATCCAT ATACATGGAG TCTCTTGTCT 420 30 AGCTTGCCTC AGCTTGCTGA TGATAAAGGG GATCTTTACT CAATCCCAGG AACACCTCCG 480 TCACTTTATA CTGACCTGAA AGGGGATGCT TTTGCCTTGC GTTCTGACTA CGCAATGCAG 540 35 ATTGACTTCG AACAAAAAGC TCCTCAATTC TCAGTATCAG AGACACATTG GGCTAAAACT 600 TGGCTTCTTC ATGAGGATGC TCCAAAAGTA GAAAAACCAG CTGTGATTGC AAATCTCCAT 660 GATAAGATCC GTGAAAAAAT GGGATTTGCC CATCTGGCTG ACTAGGAGGA AGGAAATGTC 720 40 TGAAAAATTA GTAGAAATCA AAGATTTAGA AATTTCCTTC GGTGAAGGAA GTAAGAAGTT 780 TGTCGCGGTT AAAAATGCTA ACTTCTTTAT CAACAAGGGA GAAACTTTCT CGCTTGTAGG 840 45 TGAGTCCGGT AGTGGGAAAA CAACTATTGG TCGTGCTATC ATCGGTCTAA ATGATACAAG 900 TAATGGAGAT ATCATTTTTG ATGGTCAAAA GATTAATGGT AAGAAATCGC GTGAACAAGC 960 TGCGGAATTG ATTCGTCGAA TCCAGATGAT TTTCCAAGAC CCTGCCGCAA GTTTGAATGA 1020 50 ACGTGCGACT GTTGATTATA TTATTTCTGA AGGTCTTTAC AATCACCGTT TATTTAAGGA 1080 TGAAGAAGAA CGTAAAGAGA AAGTTCAAAG TATTATCCGT GAAGTAGGTC TTCTTGCTGA 1140 55 GCACTTGACT CGTTACCCTC ATGAATTCTC AGGCGGTCAA CGTCAACGTA TCGGTATTGC 1200 CCGTGCCTTG GTCATGCAAC CAGACTTTGT TATTGCAGAT GAGCCAATTT CAGCCTTGGA 1260 CGTTTCTGTA CGTGCCCAAG TCTTGAACTT GCTCAAAAAA TTCCAAAAAG AGCTCGGCTT 1320 60 GACCTATCTC TTCATCGCCC ATGACTTGTC GGTTGTTCGC TTTATTTCAG ATCGTATCGC 1380

-84-

	AGTTATTTAC AAGGGTGTTA TTGTAGAGGT TGCAGAAACA GAAGAATTGT TTAACAATCC	1440
_	AATTCACCCA TATACTCAAG CCTTGCTTTC AGCGGTACCA ATCCCAGATC CAATCTTGGA	1500
5	ACGTAAGAAG GTCTTGAAGG TTTACGACCC AAGTCAACAC GACTATGAGA CTGATAAGCC	1560
	ATCTATGGTA GAAATCCGTC CAGGTCACTA TGTTTGGGCG AACCAAGCCG AATTAGCACG	1620
10	(2) INFORMATION FOR SEQ ID NO:36:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 984 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:	
30	GTACCCGGGG ATCAGGTTTT ACGGATTCTT GAAGTTCTCT GTGGGCAGGA CCTCTTGCAG	60
	GTAAGAGTAA GAGTGATTCT ACAAGATTTA CTAGAAGCTA GAAAAATGTG GCAAGCTAAT	120
	GTCAGCTTTC AAAATGCCAT GGAATATCTG GTCTTGAAAG AAATATAAAC TCAAAAATGA	180
35	ATGATAAAGA AAGGAAAGGG CTGTTTTATG GACAAAAAAG AATTATTTGA CGCGCTGGAT	240
	GATTTTTCCC AACAGTTATT GGTAACCTTG GCCGATGTGG AAGCCATCAA GAAAAATCTC	300
40	AAGAGCCTGG TAGAGGAAAA TACAGCTCTT CGTTTGGAAA ATTCTAAGTT GCGAGAACGC	360
	TTGGGTGAGG TGGAAGCAGA TGCTCCTGTC AAGGCCAAGC ATGTTCGTGA AAGTGTCCGT	420
	CGCATTTACC GTGATGGATT TCACGTATGT AATGATTTTT ATGGACAACG TCGAGAGCAG	480
45	GACGAGGAAT GTATGTTTTG TGACGAGTTG CTATACAGGG AGTAGGCATG CAGATTCAAA	540
	AAAGTTTTAA GGGGCAGTCT CCCTATGGCA AGCTGTATCT AGTGGCAACG CCGATTGGCA	600
50	ATCTAGATGA TATGACCTTT CGAGCTATCC AGACCTTGAA AGAAGTAGAT TGGATTGCTG	660
	CTGAGGATAC GCGCAATACA GGTCTTTTGC TCAAGCATTT TGACATTTCC ACCAAGCAGA	720
	TCAGTTTTCA TGAGCACAAT GCCAAGGAAA AAATTCCTGA TTTGATTGGT TTCTTGAAAG	780
55	CAGGGCAAAG TATTGCTCAG GTCTCTGATG CCGGTTTGCC TAGCATTTCA GACCCTGGTC	840
	ATGATTTAGT TAAGGCAGCT ATTGAGGAAG AAATTGCAGT TGTGACAGTT CCAGGTGCCT	900
60	CTGCAGGAAT TTCTGCCTTG ATTGCCAGTG GTTTAGCGCC ACAGCCACAT ATCTTTTACG	960

-85-

	GTTTTTTACC GAGAAAATCA GGTC	984
	(2) INFORMATION FOR SEQ ID NO:37:	
5	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1554 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
10		
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	
	CTAGAGTCGA AAAGACAAGC AGGAGCGTAT TTCCAAAGAA ACCATGGAAA TCTATGCCCC	60
25	GCTTGCCCAT CGTTTGGGGA TTTCCAGTGT CAAATGGGAA TTAGAAGACT TGTCTTTCCG	120
25	TTATCTCAAT CCAACGGAGT TTTACAAGAT TACCCATATG ATGAAGGAAA AGCGCAGGGA	180
	GCGTGAGGCC TTGGTGGATG AGGTAGTCAC AAAATTAGAG GAGTATACGA CAGAACGTCA	240
30	CTTGAAAGGG AAGATTTATG GTCGTCCCAA GCATATTTAC TCAATTTTCC GCAAAATGCA	300
	GGACAAGAGA AAACGGTTTG AGGAAATCTA TGATCTGATT GCTATTCGTT GTATTTTAGA	360
` -	TACCCAAAGT GATGTTTATG CCATGCTTGG TTACGTGCAT GAATTTTGGA AACCGATGCC	420
35	AGGTCGCTTC AAAGACTATA TCGCCAACCG CAAGGCCAAT GGTTATCAGT CTATCCATAC	480
	GACTGTTTAT GGACCAAAAG GGCCGATTGA ATTCCAGATT CGAACCAAGG AAATGCACGA	540
40	GGTGGCTGAG TACGGGGTTG CGGCTCACTG GGCTTATAAG AAAGGTATAA AGGGGCAAGT	600
	TAACAGCAAG GAATCAGCTA TTGGAATGAA CTGGATCAAG GAGATGATGG AGCTCCAAGA	660
4 =	CCAGGCTGAT GATGCTAAGG AATTTGTGGA CTCTGTTAAG GAAAACTATT TGGCTGAGGA	720
45	GATTACCGTT TTACCCCAGA TGGAGCTGTC CGTTCCTTCC CAAAGATTCA GGACCGATTG	780
	ATTTTGCCTA CGAAATCCAT ACCAAGGTCG GTGAAAAGCA ACTGGTGCCA AGGTCAATGG	840
50	CCGCATGGTT CCACTGACAC CCAAGTTAAA GGACAGGGGA TCAGGTTGAA ATTATCGCCA	900
	ACCCGAACTC CTTTGGACCT TAGCCGTGAC TGGCTCAATA TGGTCAAGAC TAGCAAGGCG	960
	CGCAATAAGA TTCGCCAGTT CTTTAAAAAC CAAGATAAGG AATTGTCTGT CAACAAGGGT	1020
55	CGTGAGATGC TGATGGCTCA GTTCCAAGAA AATGGCTATG TGGCAAATAA ATTTATGGAC	1080
	AAGCGCCACA TGGATCAAGT TCTGCAAAAG ACCAGTTACA AGACAGAAGA CTCCCTCTTT	1140
60	GCGGCCATTG GTTTTGGGGA AATCGGTGCG ATTACCGTCT TTAACCGTCT GACTGAAAAG	1200

-86-

	GAGCGCCGTG AGGAAGAGCG TGCCAAGGCC AAGGCTGAGG CAGAGGAGCT TGTCAAAGGT	1260
	GGCGAGGTCA AGGTTGAAAA TAAAGAAACT CTCAAGGTCA AGCATGAGGG GGGAGTGGTT	1320
5	ATTGAAGGTG CTTCTGGTCT CCTAGTGCGG ATTGCTAAGT GTTGTAACCC CGTGCCTGGT	1380
	GACGATATTG TTGGCTACAT TACCAAGGGT CGTGGTGTGG CTATTCACCG TGTGGACTGT	1440
10	ATGAACCTGC GTGCCCAAGA AAACTACGAG CAACGTCTCC TTGATGTGGA ATGGGAAGAC	1500
10	CAGTACTCTA GCTCAAATAA GGAGTATATG GCCCATATCG ACTCTAGAGG ATCC	1554
	(2) INFORMATION FOR SEQ ID NO:38:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3190 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:	
	CGTCAGTGCT AAAACAGGGG AAATTCTGGC AACAACGCAA CGACCGACCT TTGATGCAGA	60
35	TACAAAAGAA GGCATTACAG AGGACTTTTT TGGCGTGATA TCCTTTACCA AAGTAACTAT	120
	GAGCCAGGTT CCACTATGAA AGTGATGATG TTGGCTGCTG CTATTGATAA TAATACCTTT	180
	CCAGGAGGAG AAGTCTTTAA TAGTAGTGAG TTAAAAATTG CAGATGCCAC GATTCGAGAT	240
40	TGGGACGTTA ATGAAGGATT GACTGGTGGC AGAATGATGT CTTTTTCTCA AGGTTTTGCA	300
	CACTCAAGTA ACGTTGGGAT GACCCTCCTT GAGCAAAAGA TGGGAGATGC TACCTGGCTT	360
45	GATTATCTTA ATCGTTTTAA ATTTGGTGTT CCGACCCGTT TCGGTTTGAC GGATGAGTAT	420
	GCTGGTCAGC TTCCTGCGGA TAATATTGTC AACATTGCGC AAAGCTCATT TGGACAAGGG	480
	ATTTCAGTGA CCCAGACGCA AATGATTCGT GCCTTTACAG CTATTGCTAA TGACGGTGTC	540
50	ATGCTGGAGC CTAAATTTAT TAGTGCCATT TATGATCCAA ATGATCAAAC TGCTCGGAAA	600
	TCTCAAAAAG AAATTGTGGG AAATCCTGTT TCTAAAGATG CAGCTAGTCT AACTCGGACT	660
55	AACATGGTTT TGGTAGGGAC GGATCCGGTT TATGGAACCA TGTATAACCA CAGCACAGGC	720
در	AAGCCAACTG TAACTGTTCC TGGGCAAAAT GTAGCCCTCA AGTCTGGTAC GGCTCAGATT	780
	GCTGACGAGA AAAATGGTGG TTATCTAGTC GGGTTAACCG ACTATATTTT CTCGGCTGTT	840
60	CGATGAGTCC GGCTGAAAAT CCTGGATTTT ATCTTGTATG TGACGGTCCA ACAACCTGGA	900

-87-

	ACATTATTCA	GGTATTCAGT	TGGGAGAATT	TGCCAATCCT	ATCTTGGAGC	GGGCTTCAGC	960
	TATGAAAGAC	TCTCTCAATC	TTCAAACAAC	AGCTAAGGCT	TTGGAGCAAG	TAAGTCAACA	1020
5	AAGTCCTTAT	CCTATGCCCA	GTGTCAAGGA	TATTTCACCT	GGTGATTTAG	CAGAAGAATT	1080
	GCGTCGCAAT	CTTGTACAAC	CCATCGTTGT	GGGAACAGGA	ACGAAGATTA	AAAACAGTTC	1140
10	TGCTGAAGAA	GGGAAGAATC	TTGCCCCGAA	CCAGCAAGTC	CTTATCTTAT	CTGATAAAGC	1200
10	AGAGGAGGTT	CCAGATATGT	ATGGTTGGAC	AAAGGAGACT	GCTGAGACCC	TTGCTAAGTG	1260
	GCTCAATATA	GAACTTGAAT	TTCAAGGCTC	GGGCTCTACT	GTGCAGAAGC	AAGATGTTCG	1320
15	TGCTAACACA	GCTATCAAGG	ACATTAAAAA	AATTACATTA	ACTTTAGGAG	ACTAATATGT	1380
	TTATTTCCAT	CAGTGCTGGA	ATTGTGACAT	TTTTACTAAC	TTTAGTAGGA	ATTCCGGCCT	1440
20	TTATCCAATT	TTATAGAAAG	GCGCAAATTA	CAGGCCAGCA	GATGCATGAG	GATGTCAAAC	1500
20	AGCATCAGGC	AAAAGCTGGG	ATTCCTACAA	TGGGAGGTTT	GGTTTTCTTG	ATTACTTCTG	1560
	TTTTGGTTGC	TTTCTTTTTC	GCCCTATTTA	GTAGCCAATT	CAGCAATAAT	GTGGGAATGA	1620
25	TTTTGTTCAT	CTTGGTCTTG	TATGGCTTGG	TCGGATTTTT	AGATGACTTT	CTCAAGGTCT	1680
	TTCGTAAAAT	CAATGAGGGG	CTTAATCCTA	AGCAAAAATT	AGCTCTTCAG	CTTCTAGGTG	1740
30	GAGTTATCTT	CTATCTTTTC	TATGAGCGCG	GTGGCGATAT	CCTGTCTGTC	TTTGGTTATC	1800
30	CAGTTCATTT	GGGATTTTTC	TATATTTTCT	TCGCTCTTTT	CTGGCTAGTC	GGTTTTTCAA	1860
	ACGCAGTAAA	CTTGACAGAC	GGTGTTGTAC	GGTTTAGCTA	GTATTTCCGT	TGTGATTAGT	1920
35	TTGTTTGCCT	ATGGAGTTAT	TGCCTATGTG	CAAGGTCAGA	TGGATATTCT	TCTAGTGATT	1980
	CTTGCCATGA	TTGGTGGTTT	GCTCGGTTTC	TTCATCTTTA	ACCATAAGCC	TGCCAAGGTC	2040
40	TTTATGGGTG	ATGTGGGAAG	TTTGGCCCTA	GGTGGGATGC	TGGCAGCTAT	CTCTATGGCT	2100
10	CTCCACCAGG	AATGGACTCT	CTTGATTATC	GGAATTGTGT	ATGTTTTTGA	AACAACTTCT	2160
	GTTATGATGC	AAGTCAGTTA	TTTCAAACTG	ACAGGTGGTA	AACGTATTTT	CCGTATGACG	2220
45	CCTGTACATC	ACCATTTTGA	GCTTGGGGGA	TTGTCTGGTA	AAGGAAATCC	TTGGAGCGAG	2280
	TGGAAGGTTG	ACTTCTTCTT	TTGGGGAGTT	GGGCTTCTAG	CAAGTCTCCT	GACCCTCGCA	2340
50	ATTTTGTATT	TGATGTAAGA	ATGGCACCCT	GATGTTTCAG	GGTGTTTTTG	TGTTTAAATA	2400
50	CACAATGAAA	ATCAAAGAAC	AAACTAGAAA	GCTAACTTTA	GGCTGCTCAA	AATATAATAT	2460
	ATTGAAACTA	GAATAGTACA	CCTCTACTTC	TAAAACATTG	TTAGAAATCG	ATTTGACTGT	2520
55	CCTGAACGAT	TTATCCTGTT	CTTATTTCAT	TTTACTATAC	AGTTTCGAGG	TTGTAGATAA	2580
	GGCGAAGCTG	ATGTGGTTTG	AAGAGATTTT	CTGAAAAGTG	TTAACACCTA	CAGACAAGCC	2640
60	TGACGATAGC	AAGAACTACC	CTACTCGATA	GGTATCGGCT	TTTGCTTTCT	GAAAAAATT	2700
50	ATTTTAAGCA	TTTGACAAAT	CTAGCAACAA	AAAATTCTAT	AAATATAATA	GATTGAAACT	2760

-88-

	AGAATAGTAC ACATCTACTT CTAAAACATT GTTAGAAATC GATTTGACTG TCCTGATCGA	2820
5	TTTGTCCTGT TCTTGTTTCA TTTTACTATA TTTCTATGAT AAAACGCATA GTATCAAGTT	2880
J	TTCTTAATCC CCTGATACTA TGCGTGTTTG TAATTTTTAA GATTTTGTGC TTAGAGTCGA	2940
	CTCCTTATTT TAGATATTTA AAAGGAATCT CACTTCCACA GAGCCAGTTG TAGACTTGGT	3000
10	CATTAACAAA TACATTCATG GCTTCGTGAG CATACTCAGG CATGATACGA TAGGTTTTAT	3060
	CGCAGGTCAG ACGATTATAA ATCGCAAACT GGGTAATGGG ATAGCAAACA TCGTCGTCCA	3120
15	AGCCCGTAAT CATCTTAACC TCACCTTGGA TACGATGGGC AAGATTTTTG ACATCGACTC	3180
+ J	TAGAGGATCC	3190
-	(2) INFORMATION FOR SEQ ID NO:39:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5992 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
25	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
30	(iv) ANTI-SENSE: NO	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:	
	TTGTTCTTAG TGTTCCGACA AAGATTCTTC AAAATCAAAT CATGGAAGAA GAAGGTAAAC	60
	GTCTCAAGGA AGTGTTCCAT ACAGATATTC ATAGCTTAAA GGGACCACAA AATTATCTGA	120
40	AGTTGGATGC CTTTTATCAT TCTTGCAGGA AAATGATGAA AATCGCTTAT TTAGACGCTT	180
	TAAAATGCAA GTCTTGGTCT GGCTTACTGA GACAGAGACA GGAGATTTGG ATGAAATCGG	240
45	GCAACTCTAC CGTTACCAAC ATTTTCTAGC AGACCTTCGT CATAATGGGA ATTTATCATC	300
	CCAGAGCTTA TTTGTGACGG AAGATTTTTG GAAACGTAGT CAAGAAAGGG CAGAGACTTG	360
	CAAGCTTTTA GTGACTAATC ATGCCTATCT CGTAACCAGA CTTGAAGATA ATCCTGAATT	420
50	TGTCAGTGAC CGTTTACTGA TTATTGATGA AGTCCAAAAG ATTTTGTTAG CTCTAGAAAA	480
	TCTGCTTCAA GAGACCTACG ATATACAATC TATTATCGAT TTAATTGATA AGGCTTTAGT	540
55	AGGAGAAGAA AACAGGGTTC AACAACGGAT ACTAGAAAGT ATTCGCTTTG AGTGCCTCTA	600
	CTTGATAGAA CAATTTCAGT CTGGCAAATC TAGGAAAAAT ATCTTAGATT CTCTGGACAA	660
	CITCHIAGA CARITICAGI CIGGCAAATC TAGGAAAAAT ATCTTAGATT CTCTGGACAA	660
60	TCTCCATCAG TATTTTCAG AATTAGAAGT GGAAGGCTTT GATGAGCTGG TTCGCTATTT	720

-89-

	TTCTTCTACA	AAATCAGGCC	GTACTCTTCT	GTCCTCTTTA	CTTCCTGAGA	GTTGCCAAGT	840
_	CTTGGGAGTA	TCGGCTACTC	TTGAGATTAG	TCAGAGGGTT	TCTTTGGCAG	ACCTTTTAGG	900
5	CTATCCTGAA	GCCAAATTTG	TCAAGATTGA	ATCTCGGGGA	AAACAGGAAC	AAGAAGTGGT	960
	TATGGTCAAA	GATTTCCCTC	TGGTAACAGA	AACCTCCTTA	GAAGTCTATG	CCAGAGAGGT	1020
10	AGCTGCTTTA	CTAGTGGAAA	TTCAAGCTTT	CCAGCAACCG	ATTTTGGTTC	TCTTTACCGC	1080
	TAAAGACATG	CTTCTAGCAG	TATCGGATTT	ACTTACAGTT	AGCCACTTGG	CCCAGTATAA	1140
15	AAATGGGGAT	GTTCATCAGC	TAAAGAAACG	CTTTGAAAAA	GGTGAACAAC	AAATCTTGCT	1200
13	TGGTGCAGCA	AGTTTCTGGG	AGGGAGTTGA	TTTTTCAAGC	CATCCTTTTG	TGATTCAAGT	1260
	TGTACCGAGG	CTTCCTTTCC	AAAATCCTCA	AGAACCCTTG	ACGAAAAAGA	TTAATCAAGA	1320
20	ACTGAATCAA	GAAGGGAAAA	ATGCCTTTTA	TGATTATCAA	TTGCCAATGG	CCATTATTCG	1380
	TTTAAAACAG	GCTTTGGGAA	GAAGTATGAG	ACGTGAATAC	CAACGTTCCT	TAACTCTTAT	1440
25	TTTGGATAGG	AGAATCATCG	GAAAACGATA	CGGCAAACAA	ATAGTAGCAT	CTCTAGCAGA	1500
23	AGAAGCGACT	GTTAAAACCA	TCTCTCGATC	CGAAGTTGAC	GAGGCTATTG	ATAGATTTTT	1560
	TAATGAACTT	TGATAAATAG	TATTGTATGA	AAGTATAAGG	TTAGTACATA	TGAAACGTTC	1620
30	TCTCGACTCT	AGAGTCGATT	ATAGTTTGCT	CTTGCCAGTA	TTTTTTCTAC	TGGTCATCGG	1680
	TGTGGTGGCT	ATCTATATAG	CCGTTAGTCA	TGATTATCCC	AATAATATTC	TGCCCATTTT	1740
35	AGGGCAGCAG	GTCGCCTGGA	TTGCCTTGGG	GCTTGTGATT	GGTTTTGTGG	TCATGCTCTT	1800
33	TAATACAGAA	TTTCTTTGGA	AGGTGACCCC	CTTTCTATAT	ATTTTAGGCT	TGGGACTTAT	1860
	GATCTTGCCG	ATTGTATTTT	ATAATCCAAG	CTTAGTTGCA	TCAACGGGTG	CCAAAAACTG	1920
40	GGTATCAATA	AATGGAATTA	CCCTATTTCA	ACCGTCAGAA	TTTATGAAGA	TATCCTATAT	1980
	CCTCATGTTG	GCTCGTGTCA	TTGTCCAATT	TACAAAGAAA	CATAAGGAAT	GGAGACGCAC	2040
45	GGTTCCGCTG	GACTTTTTGT	TAATTTTCTG	GATGATTCTC	TTTACCATTC	CAGTCCTAGT	2100
40	TCTTTTAGCA	CTTCAAAGTG	ACTTGGGGAC	GGCTTTGGTT	TTTGTAGCCA	TTTTCTCAGG	2160
	AATCGTTTTA	TTATCAGGGG	TTTCTTGGAA	AATTATTATC	CCAGTATTTG	TGACTGCTGT	2220
50	AACAGGAGTT	GCTGGTTTCT	TAGCTATCTT	TATTAGCAAG	GACGGACGAG	CTTTTCTTCA	2280
	CCAGATTGGA	ATGCCGACCT	АССАААТСАА	TCGGATTTTG	GCTTGGCTCA	ATCCCTTTGA	2340
55	GTTTGCCCAA	ACAACGACTT	ACCAGCAGGC	TCAAGGGCAG	ATTGCCATTG	GGAGTGGTGG	2400
رر	CTTATTTGGT	CAGGGATTTA	ATGCTTCGAA	TCTGCTTATC	CCAGTTCGAG	AGTCAGATAT	2460
	GATTTTTACG	GTTATTGCAG	AAGATTTTGG	CTTTATTGGC	TCTGTCCTGG	TTATTGCCCT	2520
60	CTATCTCATG	TTGATTTACC	GTATGTTGAA	GATTACTCTT	АААТСАААТА	ACCAGTTCTA	2580

-90-

	CACTTATATT	TCCACAGGTT	TGATTATGAT	GTTGCTCTTC	CACATCTTTG	AGAATATCGG	2640
	TGCTGTGACT	GGACTACTTC	CTTTGACGGG	GATTCCCTTG	CCTTTCATTT	CGCAAGGGGG	2700
5	ATCAGCGATT	ATCAGTAATC	TGATTGGTGT	TGGTTTGCTT	TTATCGATGA	GTTACCAGAC	2760
	TAATCTAGCT	gaagaaaaga	GCGGAAAAGT	CCCATTCAAA	CGGAAAAAGG	TTGTATTAAA	2820
10	АСАААТТААА	TAAGGAGAAA	ATCATGGTAA	AAGTAGCAGT	TATGTTAGCT	CAGGGCTTTG	2880
10	AAGAAATTGA	AGCCTTGACA	GTTGTAGATG	TCTTGCGTCG	AGCCAATATC	ACATGTGATA	2940
	TGGTTGGTTT	TGAAGAGCAA	GTAACGGGTT	CGCATGCAAT	CCAAGTAAGA	GCAGATCATG	3000
15	TCTTTGATGG	AGATTTATCA	GACTATGATA	TGATTGTTCT	TCCTGGAGGT	ATGCCTGGTT	3060
	CTGCACATTT	ACGTGATAAT	CAGACCTTGA	TTCAAGAATT	GCAAAGCTTC	GAGCAAGAAG	3120
20	GGAAGAAACT	AGCAGCCATT	TGTGCGGCAC	CAATTGCCCT	CAATCAAGCA	GAGATATTGA	3180
20	AAAATAAGCG	ATACACTTGT	TATGACGGCG	TTCAAGAGCA	AATCCTTGAT	GGTCACTACG	3240
	TCAAGGAAAC	AGTAGTGGTA	GATGGTCAGT	TGACAACCAG	TCGGGGTCCT	TCAACAGCCC	3300
25	TTGCCTTTGC	CTACGAGTTG	GTGGAGCAAC	TAGGAGGGGA	CGCAGAGAGT	TTACGAACAG	3360
	GAATGCTCTA	TCGAGATGTC	TTTGGGTAAA	AATCAGTAAA	ACGGGAGTTA	TTCTCTCGTT	3420
2.0	TTTTATGTGG	AAAACTCAGG	GAAATCATCG	CTTTTTTCAT	AAAAAAATGC	TATAATGAAG	3480
30	GGTATGAAAT	ATCACGATTA	CATCTGGGAT	TTAGGTGGAA	CTTTACTGGA	TAATTATGAA	3540
	ACTTCAACAG	CTGCATTTGT	TGAAACATTG	GCACTGTATG	GTATCACACA	AGACCATGAC	3600
35	AGTGTCTATC	AAGCTTTAAA	GGTTTCTACT	CCTTTTGCGA	TTGAGACATT	CGCTCCCAAT	3660
	TTAGAGAATT	TTTTAGAAAA	GTACAAGGAA	AATGAAGCCA	GAGAGCTTGA	ACACCCGATT	3720
4.0	TTATTTGAAG	GAGTTTCTGA	CCTATTGGAA	GACATTTTAA	ATCAAGGTGG	CCGTCATTTT	3780
40	TTGGTCTCTC	ATCGAAATGA	TCAGGTTTTG	GAAATTTTAG	AAAAAACCTC	TATAGCAGCT	3840
	TATTTTACAG	AAGTGGTGAC	TTCTAGCTCA	GGCTTTAAGA	GAAAGCCAAA	TCCCGAATCC	3900
45	ATGCTTTATT	TAAGAGAAAA	GTATCAGATT	AGCTCTGGTC	TTGTCATTGG	TGATCGGCCG	3960
	ATTGATATCG	AAGCAGGTCA	AGCTGCAGGA	CTTGATACCC	ACTTGTTTAC	CAGTATCGTG	4020
- 0	AATTTAAGAC	AAGTATTAGA	CATATAAGAA	AĄAGGAATAA	GATGACAGAA	GAAA.TCAAAA	4080
50	ATCTGCAGGC	ACAGGATTAT	GATGCCAGTC	AAATTCAAGT	TTTAGAGGGC	TTAGAGGCTG	4140
	TTCGTATGCG	TCCAGGGATG	TACATTGGAT	CAACCTCAAA	AGAAGGTCTT	CACCATCTAG	4200
55	TCTGGGAAAT	TGTTGATAAC	TCAATTGACG	AGGCCTTGGC	AGGATTTGCC	AGCCATATTC	4260
	AAGTTTTTAT	TGAGCCAGAT	GATTCGATTA	CTGTTGTGGA	TGATGGGCGT	GGTATCCCAG	4320
<i>c</i>	TCGATATTCA	GGAAAAAACA	GGTCGTCCTG	CTGTTGAGAC	CGTCTTTACA	GTCCTTCACG	4380
60	CTGGAGGAAA	GTTCGGCGGT	GGTGGATACA	AGGTTTCAGG	TGGTCTTCAC	GGGGTGGGGT	4440

-91-

	CGTCAGTTGT	TAATGCCCTT	TCCACTCAAT	TAGACGTTCA	TGTCCATAAA	AACGGTAAGA	4500
5	TTCATTACCA	AGAATACCGT	CGTGGTCATG	TTGTCGCAGA	TCTTGAAATA	GTTGGAGATA	4560
3	CGGATAAAAC	AGGAACAACT	GTTCACTTCA	CACCGGACCC	AAAAATCTTC	ACTGAAACAA	4620
	CAATCTTTGA	TTTTGATAAA	TTAAATAAAC	GGATTCAAGA	GTTGGCCTTT	CTAAATCGCG	4680
10	GTCTTCAAAT	TTCTATCACT	GATAAGCGCC	AAGGTTTGGA	ACAAACCAAG	CATTATCATT	4740
	ATGAAGGTGG	GATTGCTAGT	TACGTTGAAT	ATATCAACGA	GAACAAGGAT	GTAATCTTTG	4800
15	ATACACCAAT	CTATACAGAC	GGTGAGATGG	ATGATATCAC	AGTTGAGGTA	GCCATGCAGT	4860
13	ACACAACGGG	TTACCATGAA	AAATGTCATG	AGTTTCGCCA	ATAATATTCA	TACACATGAA	4920
	GGTGGAACGC	ATGAACAAGG	TTTCCGTACA	GCCTTGACAC	GTGTTATCAA	CGATTATGCT	4980
20	CGTAAGAATA	AGTTACTGAA	AGACAATGAA	GACAATCTAA	CAGGGGAAGA	TGTTCGCGAA	5040
	GGCTTAACTG	CAGTTATCTC	AGTTAAACAC	CCAAATCCAC	AGTTTGAAGG	ACAAACGAAG	5100
25	ACCAAATTGG	GAAATAGCGA	AGTGGTCAAG	ATTACCAATC	GCCTCTTCAG	TGAAGCCTTC	5160
	TCCGATTTCC	TCATGGAAAA	TCCACAGATT	GCCAAACGTA	TCGTAGAAAA	AGGAATTTTG	5220
	GCTGCCAAGG	CTCGTGTGGC	TGCCAAGCGT	GCGCGTGAAG	TCACACGTAA	AAAATCTGGT	5280
30	TTGGAAATTT	CCAACCTTCC	AGGGAAACTA	GCAGACTGTT	CTTCTAATAA	CCCTGCTGAA	5340
	ACAGAACTCT	TCATCGTCGA	AGGAGACTCA	GCTGGTGGAT	CAGCCAAATC	TGGTCGTAAC	5400
35	CGTGAGTTTC	AGGCTATCCT	TCCAATTCGC	GGTAAGATTT	TGAACGTTGA	AAAAGCAAGT	5460
	ATGGATAAGA	TTCTAGCTAA	CGAAGAAATT	CGTAGTCTTT	TCACAGCCAT	GGGAACAGGA	5520
	TTTGGCGCAG	AATTTGATGT	TTCGAAAGCC	CGTTACCAAA	AACTCGTTTT	GATGACCGAT	5580
40	GCCGATGTCG	ATGGAGCCCA	CATTCGTACC	CTTCTTTTAA	CCTTGATTTA	TCGTTATATG	5640
	AAACCAATCC	TAGAAGCTGG	CTATGTTTAT	ATTGCCCAAC	CACCAATCTA	TGGTGTCAAG	5700
45	GTTGGAAGCG	AGATTAAAGA	ATATATCCAG	CCGGGTGCAG	ATCAAGAAAT	CAAACTCCAA	5760
	GAAGCTTTAG	CCCGTTATAG	TGAAGGTCGT	ACCAAACCGA	CTATTCAGCG	TTATAAGGGG	5820
	CTAGGTGAAA	TGGACGATCA	TCAGCTGTGG	GAAACAACCA	TGGATCCCGA	ACATCGCTTG	5880
50	ATGGCTAGAG	TTTCTGTAGA	TGATGCTGCA	GAAGCAGATA	AAATCTTTGA	TATGTTGATG	5940
	GGGGATCGAG	TAGAGCCTCG	TCGTGAGTTT	ATCGACTCTA	GAGGATCCCC	GG	5992
55	(2) INFORM	ATION FOR S	EQ ID NO:40	:			

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 907 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- 60

-92-

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

60

.

5	(iv) ANTI-SENSE: NO	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:	
	TACAAAAGTA GGTGGAGAGG CTGATTATTT GGTCTTTCCA CGAAATCGTT TTGAGTTGGC	60
15	TCGCGTTGTG AAATTTGCCA ACCAAGAAAA TATCCCTTGG ATGGTTCTTG GCAATGCAAG	120
13	CAATATCATC GTTCGTGATG GTGGGATTCG TGGATTTGTC ATCTTGTGTG ACAAGCTCAA	180
	TAACGTTTCT GTTGATGGCT ATACCATTGA AGCAGAAGCT GGGGCTAACT TGATTGAAAC	240
20	AACTCGCATT GCCCTCCGTC ATAGTTTAAC TGGCTTTGAG TTTGCTTGTG GTATTCCAGG	300
	AAGCGTTGGC GGTGCTGTCT TTATGAATGC GGGTGCCTAT GGTGGCGAGA TTGCTCACAT	360
25	CTTGCAGTCT TGTAAGGTCT TGACCAAGGA TGGAGAAATC GAAACCCTGT CTGCTAAAGA	420
23	CTTGGCTTTT GGTTACCGCC ATTCAGCTAT TCAGGAGTCT GGTGCAGTTG TCTTGTCAGT	480
	TAAATTTGCC CTAGCTCCAG GAACCCATCA GGTTATCAAG CAGGAAATGG ACCGCTTGAC	540
30	GCACCTACGT GAACTCAAGC AACCTTTGGA ATACCCATCT TGTGGCTCGG TCTTTAAGCG	600
	TCCAGTCGGG CATTTTGCAG GTCAGTTAAT TTCAGAAGCT GGCTTGAAAG GCTATCGTAT	660
35	CGGTGGCGTA GAAGTGTCAG AAAAGCATGC AGGATTTATG ATCAATGTCG CAGATGGAAC	720
J J	GGCCAAAGAC TACGAGGACT TGATCCAATC GGTTATCGAA AAAGTCAAGG AACACTCAGG	780
	TATTACGCTT GAAAGAGAAG TCCGGATCTT GGGTGAAAGC CTATCGGTAG CGAAGATGTA	840
40	TGCAGGTGGT TTTACTCCCT GCAAGAGGTA GTGGGGACCT GACAGAGCCC CGATCGGTTA	900
	AGCTATG	907
45	(2) INFORMATION FOR SEQ ID NO:41:	
43	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2764 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: NO	
-	(iv) ANTI-SENSE: NO	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

-93-

	AGAACCCTTG	GATGCAGCCA	TTCAGAAGAT	TTCTCCAGAA	TTGTTTGACC	AATATGAAAT	60
5	CTTTAAATCA	CGTGAAATGT	TGCTAGAATG	GTCACCAAAG	AATGTTCATA	AAGCAACAGG	120
3	TTTGGCAAAA	CTAATCAGCC	ATCTTGGAAT	CGACCAAAGT	CAAGTGATGG	CTTGTGGTGA	180
	CGAGGCCAAT	GACCTCTCTA	TGATTGAATG	GGCAGGTCTT	GGTGTTGCTA	TGCAAAACGC	240
10	TGTTCCTGAA	GTAAAGGCAG	CCGCAAATGT	AGTGACGCCG	ATGACCAACG	ATGAGGAAGC	300
	TGTCGCCTGG	GCTATCGAAG	AATATGTGCT	AAAGGAGAAC	TAAGATATGG	GATTGTTTGA	360
15	CCGTCTATTC	GGAAAAAAAG	AAGAACCTAA	AATCGAAGAA	GTTGTAAAAG	AAGCTCTGGA	420
13	AAATCTTGAT	TTGTCTGAAG	ATGTTGATCC	TACCTTCACA	GAAGTTGAGG	AAGTTTCTCA	480
	GGAAGAAGCA	GAGGTTGAAA	TTGTTGAACA	AGCTGTGTTC	CAAGAAGAGG	AAATCCAAGA	540
20	CACAGTTGAA	GAAAGTCTGG	ATTTAGAGCC	AGTTGTAGAA	GTTTCTCAAA	AAGAAGTCGA	600
	AGAATTTCCA	CACTCAGAAG	AAGGGAATAC	TGAGTTTCTA	GAGACTATAG	AAGAAAATAA	660
25	TTCTGAAGTT	CTTGAACCAG	AAAGGCCTCA	AGCAGAAGAA	ACCGTTCAGG	AAAAATATGA	720
23	CCGCAGTCTT	AAGAAAACTC	GTACAGGTTT	CGGTGCCCGC	TTGAATGCCT	TCTTTGCTAA	780
	CTTCCGCTCT	GTTGACGAAG	AATTTTTCGA	GGAACTGGAA	GAACTGCTGA	TTATGAGTGA	840
30	TGTTGGTGTC	CAAGTCGCTT	CTAACTTAAC	GGAGGAACTA	CGTTACGAAG	CCAAGCTTGA	900
	AAATGCCAAG	AAACCTGATG	CACTTCGTCG	TGTCATCATT	GAGAAATTGG	TTGAGCTTTA	960
35	TGAAAAGGAT	GGTAGCTACG	ATGAAAGCAT	CCACTTCCAA	GATAACTTGA	CAGTTATGCT	1020
55	CTTTGTTGGT	GTGAATGGTG	TTGGGAAAAC	AACTTCTATC	GGAAAACTAG	CCCACCGCTA	1080
	CAAACAAGCT	GGTAAGAAGG	TCATGCTGGT	TGCAGCAGAT	ACCTTCCGTG	CGGGTGCAGT	1140
40	AGCTCAGCTA	GCTGAATGGG	GCCGACGAGT	AGATGTTCCA	GTAGTAACTG	GACCTGAAAA	1200
	AGCTGATCCA	GCCAGCGTGG	TCTTTGATGG	TATGGAACGT	GCCGTGGCTG	AAGGTATCGA	1260
45	TATTCTCATG	ATTGATACTG	CTGGTCGTCT	GCAAAATAAG	GATAACCTTA	TGGCTGAGTT	1320
13	GGAAAAGATT	GGTCGTATTA	TCAAACGTGT	TGTGCCAGAA	GCACCACATG	AAACCTTCTT	1380
	GGCACTTGAT	GCATCAACAG	GTCAAAATGC	CCTAGTACAG	GCCAAAGAAT	TTTCGAAAAT	1440
50	CACACCTTTA	ACGGGAATTG	TTTTGACTAA	GATTGATGGA	ACTGCTCGAG	GAGGTGTGGT	1500
	TCTAGCCATT	CGTGAAGAAC	TCAATATTCC	TGTAAAATTG	ATTGGTTTTG	GTGAAAAAAT	1560
55	CGATGATATT	GGAGAGTTTA	ACTCAGAAAA	CTTTATGAAA	GGTCTCTTGG	AAGGTTTAAT	1620
	CTAATCAGAA	GCAAAAATCC	TGCAAGGCAT	AAACTTGCAG	GAAATTTTTT	TATTCTAAGC	1680
	GACCATCTTG	ACGATAGGTG	ATATCTGGTT	GCCAAGTCCA	TTTGGCACCG	AATTTTTCAA	1740
60	GTAGGTCAAA	GCTGGCTTGA	GGTCCCATGC	TTCCAGCTTT	ATAGTCATGA	AGTGGGGCAC	1800

-94-

	CATTTCAGC CCAGAGCTTT TCAATACGGT CAATCAACTT CCATGACGCA CAAACTTCAT	1860
	CCCAGTGGCT AAAGTTAGTT GAGTTGTTAT TTAGGACATC ATAAATCAAT TTTTCGTATG	1920
5	GTTCTGGAGA AGCACCAGTT GCAGTCGCAT CTGTACGGTA ATCAAGTGAG TTAGGAGCCA	1980
	AGTTAAATTC TTCTCCTACT TGCTTCCCAT TTAGGCTAAG AGAGAAGCCT TCTGTTGGTT	2040
10	GAATATAGAT GGTCAAAATA TTTGGAGCAA GTGGTTCTCC AAAGATAGAA TCCATTTGTT	2100
10	TAAAGACGAT GTTGACATGA GTTCCTTTTT CAGTCAGTCG TTTACCTGTA CGGAAAAAGA	2160
	AAGGAACACC ACGGAATCGA TCGCTGTCTA CAAAGAAGGC ACCAGATGTA AAGGTTTCAG	2220
15	TTGTTGATTC TGGATTCACA TTTGGCTCGC TACGATAAGA GATGTATTTC ATGCCATCAA	2280
	TCTTACCAGA GCGGTATTGC CCACGGATAA AGTGTTCTTT GAGTTCTTCA TCAGTTGGAT	2340
20	GATAGAGGTT TTTAAAGACC TTAATCTTTT CAGCACGAAT CTCGTCTTTT GTGAAGCTTG	2400
	CTGGTTTGTC CATGGCGAGG AGCGAAAGAA GTTGTAGAGT GTGGTTTTGG ACCATGTCAC	2460
	GGAGGGCACC GGATTGGTCA TAGTAGCCAC CACGTTCTTC TACACCCAAG CTCCGCAAAG	2520
25	GTAATTTGAA CATTGTCGAA AAATCCTTGT TCCAAACGTT TTCAAAAATC AAGTTTGCAA	2580
	AGCGAACTGC AAAGATGCTT TGGATCATTT CCTTACCAAG ATAATGGTCG ATACGGAAAA	2640
30	TTTGTTCTTC GTCAAATGTT GCTAGGAGTT CGTCATTCAA CTTGTTTGCA GTTGCGTAAT	2700
	CTGTACCAAA TGGTTTTTCA ACGATCAAGC GCTCAAAACC TTTGCCATCG ACTCTAGAGG	2760
	ATCC	2764
35	(2) INFORMATION FOR SEQ ID NO:42:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3189 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
50		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
55	ACACTGTTTA CGATGATGGT CGTATTGATT ACGTGAAAAA CACTTGGAGA TCTTGTCTGA	60
<i>33</i>	TGCGATTGCA GATGGAGCTA ATGTAAAAGG TTACTTCATT TGGTCATTAA TGGATGTCTT	120
	CTCATGGTCA AACGGTTATG AGAAACGTTA TGGTCTCTTC TACGTAGATT TTGAAACTCA	180
60	AGAACGTTAT CCTAAGAAAT CAGCTCACTG GTACAAGAAA GTAGCGGAAA CTCAGATTAT	240

-95-

	AGACTAGTAG	AATTAGTCAT	TAGATATAGA	ATTTTAGTGA	GTCCAAAAGA	TGTTCAAAGA	300
	TTTTATCCAA	TCTATTTATG	AAAAAGTTTA	TATTATAAAT	TTCGAAAAAT	GCTCTCAAAT	360
5	ACCGTGTTTG	ACGAGTGAAG	AATTGAAAGT	CTTGGAAAAT	GGTATGTCTC	GACTGGTAAA	420
	GAATGGATTT	GTCATTCAGA	TGATGAGCTG	GAAGAATTTA	AAAATCTATT	TTTAAATTTT	480
10	ATCAATCCTG	AAGAATGGGA	TACTATCTCC	TTTGATTCAG	ATTTTATGCC	GTTTCAACAA	540
	TCGTAACCAA	TTTCTCAAAA	AAGTTAAATC	TTATATTTAG	TACTCTGTAA	AACTCTTATC	600
	TAATCACGTT	GCTTATACTC	AATGAAAATC	ATAGAAAAA	GCATAGTATC	AGGTGTTGAA	660
15	ACACCTGATA	CTATGCTTTT	TATTGTGGGA	AGATTTACTT	TTTTTCTTCT	GAAATTGAGT	720
	TGTTACCCAG	GCTCTTTCAG	TTTATTAAGG	CTTGATGACT	TTAATGTGTT	TAGATAGCTT	780
20	AAAAAGGATT	GAATCACTTA	GTTTAGAATC	TGAAACAATA	GTATCAAGAT	TTGATATATT	840
	ATAAAAAGTA	TAAAAATCAA	ACTTATTGAA	CTTACTATGA	TCTGCGAGTA	AATATTTTTT	900
	ATTAGAATTA	TTTAAAGCGA	TGCGTTGAGC	CTCTCCCTCT	TCCTCGCTAA	AAGTAGCTAG	960
25	AGCTCCGTTT	TGAATACCAT	TACAGCTAAC	GAAAGCTTTA	GAAAATTGGA	GATTAGAGAG	1020
	ATTTTGTAGG	GTCAATGTGC	CAACAAAAGC	ACCTGTAATA	TCGCGATAAT	TTCCACCTAT	1080
30	CAAAATCAAA	TCTGTTAATT	TTCGTTCGCT	TAAAATCAGA	AAAACAGGTA	GACTGTTGGT	1140
	TACGACGCGG	ATATTGTCAA	TAGGCAACTC	ACGCGCAAAA	AACTCTAATG	TTGTTCCTGG	1200
	TCCAATGAAA	ATAGTTTCTC	TTTCTTCTAC	TAGACTGCCT	GCAAAATGGG	CTATTTCTTG	1260
35	TTTTTCTGCC	GTTTGGAGGG	CTTGTTTTTC	AATATTTGAT	CGCTCATTAG	TCAAAAGGGA	1320
	GTTGGTTCGA	AGTTTTTCAG	CTCCACCATG	CACACGAATC	AGCAAATCTT	TATCAGCTAA	1380
40	TTCCTGTAAA	TAGCGCCTTG	CAGTCATATC	TGAAACGGCT	ATTTCGTCCA	TAATCTGTTT	1440
	AACTGTTATG	GTTCCTTTAC	TATTTACTAT	CTCTAAAATT	TTGGCTAATT	TTTCTTGTTT	1500
	GAGCATATTA	TCACCTCGTT	TCCTACTACT	ATCTTACCAT	AAACAAACTC	ATCATTCAAA	1560
45	TACAAAAACA	ACAAAATGAA	АСАААААСАА	AAATATCGAA	GTTTGTTTTC	AAAACTTTCG	1620
	ATATTTTTGT	TGGGTTATAA	CTTTGATGTT	TCTAGTTTAC	TTTTTGATGA	TTGAGAGTGA	1680
50	TGGAGAATTA	GTCTAAACCG	TAGTTATAGT	CATCGTCTTG	CATGGCTTCA	ACTTCGCCAA	1740
	GAAGGTAACC	ATTTCCGACT	TGAGAGAAGA	AGTCATGGTT	GGAAGTTCCT	GTTGAAATAC	1800
	CGTTCATAAC	GATTGGGTTG	ACATCTTCAG	CTGAATCTGG	GAAAAGTGGA	TCTTGTCCCA	1860
55	TGTTCATGAG	AGCTTTATTG	GCATTGTAGC	GAAGGAAGGT	TTTAACCTCT	TCAGTCCAAC	1920
	CAACACCGTC	ATAAAGACTC	TCTGTGTAGC	CTTCTTCATT	TTCATAAAGA	GTATAGAGTA	1980
60	GGTCGTACAT	CCATTCTTTG	AGTTTTTCTT	GCTCTTCTTC	AGGCAATTCA	TTGAAACCAA	2040
	GTTGGAATTT	GTAACCAATG	TAGGTTCCGT	GAACAGACTC	GTCACGAATA	ATCAATTTAA	2100

-96-

	TGATTTCTGC AACG	STTGGCT AGTTT	GTTGT	TACCGAGATA	GTAGAGGGGA	GTGAAGAAAC	2160
5	CAGAGTAGAA GAGG	SAAGGTT TCGAG	GAAGA	CGCTGGCAAC	TTTCTTTTCA	AGTGGGCTGC	2220
3	CGTTTAGGTA GATT	TCGTTG ACAAT	CTCAG	CCTTCTTTTG	TAGGTAAGGA	TTGGTATTGG	2280
	TCCATTCGAA AATT	TCTTCA ATCTC	AGCCT	TAGTATTCAA	GGTAGAAAAG	ATTGATGAGT	2340
10	AAGATTTAGC GTGG	ACAGAT TCCAT	AAATT	GGATGTTATT	GAAAACAGCT	TCCTCATGTG	2400
	GTGTACGGAT GTCT	GCGCGA AGGGC	TTGAA	CCCCAGTTTC	AGATTGCATA	GTGTCAAGAA	2460
15	GGGTTAAACC ACCA	AAAACT TTTCC	GACCA	AGTCTTTCTC	TTTGTTAGAT	AGCTTTCTCC	2520
13	AGTCATCCAA GTC	STTTGAT AAGGG	AATAC	GTGTATCGAG	CCAAAATTGC	TCCGTCAGTT	2580
	TTTCCCAAGT TGAT	TTGTCG ATGAC	ATCTT	CGATGGCATT	CCAGTTAATG	GCTTTGTAGT	2640
20	AAGTTTCCAT TTAA	AATCTC TTTCT	GTGTT	TAGTATTGCG	AACTCACAAT	TATTTCTACT	2700
	TTACCATAAT TCTA	TAGGAG TATCG	CACAA	AAAGTCGGAA	GCCCGACTTT	TAAAATGTTA	2760
25	CATAAATTAT GTTA	TGACAT AGTAG	ATTTG	ATTTTATCAG	TGCTGCTTAG	GGAAAAATAA	2820
2,5	TGTTTCTATG CTAG	AAACTA AATCA	CACAG	CTTTCACATT	GGTTGGCGCC	GACTTCTCCA	2880
	CCGTCATCTG TAAA	GGTACG GACGT	AGTAG	ATAGACTTGA	TTCCCTTGTT	AAAGGCATAG	2940
30	TTACGAAGGA TGGA	CAAGTC ACGTG	TCGTT	TGTTTATTT	CCCTCTTCCA	TTCGTAAAGG	3000
	CCTTTTGGAA TGTC	ACTACG CATGA	AGAGG	GTGAGTGAAA	GTCCTTGATC	CACGTGTTCA	3060
35	GTCGCAGCAG CGTA	AACATC GATGA	CTTTA	CGCATATCCA	TATCGTAGGC	AGAAGTGTAG	3120
33	TAAGGAATGG TTTC	TGTAGA CAAGC	CAGCA	GCAGGGTAGT	AGATTTTACC	AATTTTCTTC	3180
	TCTTGGCGT						3189
40	(2) INFORMATION	FOR SEQ ID	NO:43:				
45	(A) I (B) T (C) S	CE CHARACTER ENGTH: 3580 P PYPE: nucleic TRANDEDNESS: OPOLOGY: line	base p acid singl	airs			
	(ii) MOLECU	LE TYPE: DNA	(geno	mic)			
50	(iii) HYPOTH	ETICAL: NO					
	(iv) ANTI-S	ENSE: NO					
55							
	(xi) SEQUEN	CE DESCRIPTION	ON: SE	Q ID NO:43:			
60	TTATTGAAGA AGGT	GTTAAA GTTGT	CACAA	CAGGAGCAGG	AAATCCAAGC	AAGTATATGG	60

AACGTTTCCA TGAAGCTGGG ATAATCGTTA TTCCTGTCGT TCCTAGTGTC GCTTTAGCTA 120

-97-

	AACGCATGGA	AAAAATCGGT	GCAGACGCTG	TTATTGCAGA	AGGAATGGAA	GCTGGGGGGC	180
5	ATATCGGTAA	ATTAACAACC	ATGACCTTGG	TGCGACAGGT	AGCCACAGCT	GTATCTATTC	240
,	CTGTTATTGC	TGCAGGAGGA	ATTGCGGATG	GTGAAGGTGC	TGCGGCTGGC	TTTATGCTAG	300
	GTGCAGAGGC	TGTACAGGTG	GGGACACGGT	TTGTAGTTGC	AAAAGAGTCG	AATGCCCATC	360
10	CAAACTACAA	GGAGAAAATT	TTAAAAGCAA	GGGATATTGA	CACTACGATT	TCAGCTCAGC	420
	ACTTTGGTCA	TGCTGTTCGT	GCTATTAAAA	ATCAGTTGAC	TAGAGATTTT	GAACTGGCTG	480
15	AAAAAGATGC	CTTTAAGCAG	GAAGATCCTG	ATTTAGAAAT	CTTTGAACAA	ATGGGAGCAG	540
	GTGCCCTAGC	CAAAGCAGTT	GTTCACGGTG	ATGTGGAGGG	TGGCTCTGTC	ATGGCAGGTC	600
	AAATCGCAGG	GCTTGTTTCT	AAAGAAGAAA	CAGCTGAAGA	AATCCTAAAA	GATTTGTATT	660
20	ACGGAGCCGC	TAAGAAAATT	CAAGAAGAAG	CCTCTCGCTG	GACAGGAGTT	GTAAGAAATG	720
	ACTAAAACAG	CCTTTTTATT	TGCTGGTCAA	GGTGCCCAGT	ATCTAGGGAT	GGGACGGGAT	780
25	TTCTATGATC	AGTATCCGAT	TGTTAAAGAA	ACGATTGATC	GAGCGAGTCA	GGTGCTAGGT	840
	TATGATTTGC	GTTATCTCAT	CGATACGGAA	GAAGACAAAC	TCAATCAGAC	CCGCTATACG	900
	CAACCAGCCA	TTCTAGCGAC	TTCGGTTGCT	ATCTACCGTT	TATTGCAAGA	AAAGGGCTAT	960
30	CAGCCTGATA	TGGTTGCTGG	TTTGTCTCTT	GGAGAATACT	CTGCCTTGGT	GGCAAGCGGC	1020
	GCCTTGGATT	TTGAAGATGC	GGTTGCCTTG	GTAGCTAAGC	GTGGAGCCTA	TATGGAAGAA	1080
35	GCGGCTCCTG	CTGACTCTGG	CAAGATGGTA	GCAGTTCTCA	ATACGCCAGT	AGAGGTCATT	1140
	GAAGAAGCCT	GTCAAAAAGC	TTCTGAACTT	GGAGTGGTTA	CTCCAGCCAA	CTATAACACA	1200
	CCTGCACAAA	TCGTCATTGC	TGGAGAAGTG	GTTGCAGTTG	ATCGAGCGGT	TGAACTTTTG	1260
40	CAAGAAGCAG	GTGCCAAACG	CTTGATTCCT	CTTAAGGTGT	CAGGTCCCTT	TCACACCTCT	1320
	CTCCTTGAAC	CTGCTAGCCA	GAAACTAGCT	GAAACTCTGG	CTCAGGTAAG	TTTTTCAGAT	1380
45	TTTACTTGTC	CCCTAGTCGG	CAATACAGAA	GCTGCTGTGA	TGCAAAAAGA	GGACATTGCT	1440
	CAGCTCTTGA	CGCGTCAGGT	CAAGGAACCC	GTTCGTTTCT	ATGAAAGTAT	TGGGGTCATG	1500
	CAAGAAGCAG	GCATAAGCAA	CTTTATCGAG	ATTGGACCGG	GGAAAGTCTT	GTCAGGTTTT	1560
50	GTTAAAAAAA	TTGATCAAAC	TGCTCACTTA	GCTCATGTGG	AAGATCAAGC	GAGTTTAGTA	1620
	GCACTTTTAG	AAAAATAGAC	TAAAATAAGT	AGAAGTTTTG	AAAGGAAAAA	AATGAAACTA	1680
55	GAACATAAAA	ATATCTTTAT	TACAGGTTCG	AGTCGTGGAA	TTGGTCTTGC	CATCGCCCAC	1740
-	AAGTTTGCTC	AAGCAGGAGC	CAACATTGTC	TTAAACAGTC	GTGGGGCAAT	CTCAGAAGAA	1800
	TTGCTCGCTG	AGTTTTCAAA	CTATGGTATC	AAGGTGGTTC	CCATTTCAGG	AGATGTATCA	1860
60	GATTTTGCAG	ACGCTAAGCG	TATGATTGAT	CAAGCTATTG	CAGAACTGGG	ТТСАСТАСАТ	1920

PCT/US97/22578 WO 98/26072

-98-

	GTTTTGGTCA	ACAATGCAGG	GATTACCCAA	GATACTCTTA	TGCTCAAGAT	GACAGAAGCA	1980
	GATTTTGAAA	AAGTGCTCAA	GGTCAATCTG	ACTGGTGCCT	TTAATATGAC	ACAATCAGTC	2040
5	TTGAAACCGA	TGATGAAAGC	CAGAGAAGGT	GCTATCATTA	ATATGTCTAG	TGTTGTTGGT	2100
	TTGATGGGGA	ATATTGGTCA	AGCTAACTAT	GCTGCTTCTA	AGGCTGGCTT	GATTGGCTTT	2160
10	ACCAAGTCTG	TGGCACGCGA	GGTCGCTAGT	CGGAATATAC	GAGTCAATGT	GATTGCTCCA	2220
10	GGAATGATTG	AGTCTGATAT	GACAGCTATC	TTATCAGATA	AGATTAAGGA	AGCTACACTA	2280
	GCTCAGATTC	CGATGAAAGA	ATTTGGGCAG	GCAGAGCAGG	TTGCAGATTT	GACAGTATTT	2340
15	TTAGCAGGCC	AAGATTATCT	AACTGGTCAA	GTGATTGCCA	TTGATGGTGG	CTTAAGTATG	2400
	TAGCGAAAGC	TAGAGGTGAA	AAGAATGAAA	CTAAATCGAG	TAGTGGTAAC	AGGTTATGGA	2460
20	GTAACATCTC	CAATCGGAAA	TACACCAGAA	GAATTTTGGA	ATAGTTTAGC	AACTGGGAAA	2520
20	ATCGGCATTG	GTGGCATTAC	AAAATTTGAT	CATAGTGACT	TTGATGTGCA	TAATGCGGCA	2580
	GAAATCCAAG	ATTTTCCGTT	CGATAAATAC	TTTGTAAAAA	AAGATACCAA	CCGTTTTGAT	2640
25	AACTATTCTT	TATATGCCTT	GTATGCAGCC	CAAGAGGCTG	TAAACCAGCC	AATCTTGATG	2700
	TAGAGGCTCT	TAATAGGGAT	CGTTTTGGTG	TTATCGTTGC	ATCTGGTATT	GGTGGAATCA	2760
30	AGGAAATTGA	AGATCAGGTA	CTTCGCCTTC	ATGAAAAAGG	ACCCAAACGT	GTCAAACCAA	2820
30	TGACTCTTCC	AAAAGCTTTA	CCAAATATGG	CTTCTGGGAA	TGTAGCCATG	CGTTTTGGTG	2880
	CAAACGGTGT	TTGTAAATCT	ATCAATACTG	CCTGCTCTTC	ATCAAATGAT	GCGATTGGGG	2940
35	ATGCCTTCCG	CTCCATTAAG	TTTGGTTTCC	AAGATGTGAT	GTTGGTGGGA	GGAACAGAAG	3000
	CTTCTATCAC	ACCTTTTGCC	ATCGCTGGTT	TCCAAGCCTT	AACAGCTCTC	TCTACTACAG	3060
40	AGGATCCAAC	TCGTGCTTCG	ATCCCATTTG	ATAAGGATCG	CAATGGGTTT	GTTATGGGTG	3120
40	AAGGTTCAGG	GATGTTGGTT	CTAGAAAGTC	TTGAACACGC	TGAAAAACGT	GGAGCTACTA	3180
	TCCTGGCTGA	AGTGGTTGGT	TACGGAAATA	CTTGTGATGC	CTACCACATG	ACTTCTCCAC	3240
45	ATCCAGAAGG	TCAGGGAGCT	ATCAAGGCCA	TCAAACTAGC	CTTGGAAGAA	GCTGAGATTT	3300
	CTCCAGAGCA	AGTAGCTATG	TTAATGCTCA	CGGAACGTCA	ACTCCTGCCA	ATGAAAAAGG	3360
50	AGAAAGTGGT	GCTATCGTAG	CTGTTCTTGG	TAAGGAAGTA	CCTGTATCAT	CAACCAAGTC	3420
30	TTTTACAGGA	CATTTGCTGG	GGGCTGCGGG	TGCAGTAGAG	CTATCGCACC	ATCGAGCTAT	3480
	GCGTCATACT	TTGTACCATG	CCAGCTGGGC	AAGTGAGGTA	TCAGATATAT	CGAGCTAATG	3540
55	TCGTTATGGC	AGGTTTGAGA	AGAATTCATA	CGTATTCAAA			3580

(2) INFORMATION FOR SEQ ID NO:44:

.

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1780 base pairs (B) TYPE: nucleic acid

-99-

(C)	STRANDEDNES	3S:	single
(D)	TOPOLOGY:]	Lin	ear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

15	ATGTCCGCAA	GAATGTGATT	AATCAGCAAT	CATCCTTGAT	CGGAGATGAA	TCGATCTTGG	60
	CTTTTGGAGT	GAACCAGCCT	TTTAGCGGAT	TTGGTGTTAA	AGGAGAAAGA	CAGCAACAGC	120
2.0	ATCAGCCTAT	GACCTCTATG	TACTGAAGCG	ACCACTTCCC	CAAGTAGGAC	CTCGATGTCA	180
	TTTTAGATAG	TCAAAATCAG	GCTGTCTGCA	TTGTCGAAAT	TACAAAGGTT	TCTGTTGAAC	240
	TCTTCAATCA	AGTTTCTGCG	CAACATGCCT	TTAAGGAAGG	TGAGGGAGAC	AAATCACTTG	300
25	CCTATTGGCG	CCAGGTTCAT	GAGGACTTTT	TCACAGACTG	TTTGGGTGAA	GTAGGGCTGA	360
	CTTTTACACC	TGAAAGCAAG	GTTGTTTTAG	AAGAATTTCG	CAAGGTCTAC	CCACTGTAGA	420
30	CTATTAGAAG	GAAGAAAGTT	TTGGAAATCG	CTGTCCAATC	CTTTTTTCTC	AAGCAAAATA	480
, ,	TGATATAATA	AGTTTGTTTG	AAGAAGAGCA	GCAGCTCTTA	AACTTAGAAT	AGGAGAAAAC	540
	TATGCAAGCA	GTTGAACATT	TTATTAAGCA	ATTTGTTCCT	GAACATTATG	ATTTATTTT	600
35	AGATTTGAGT	CGTGAGACCA	AGACTTTTTC	TGGGAAAGTG	ACCATCACTG	GTCAAGCACA	660
	GAGTGACCGC	ATCTCCCTCC	ACCAAAAAGA	CTTGGAAATC	ACCTCTGTAG	AAGTTGCAGG	720
10	TCAAGCTCGT	CCATTTACAG	TTGACCATGA	CAATGAAGCC	CTTCATATCG	AATTGGCTGA	780
- 0	GGCTGGTCAA	GTTGAATTGG	TTCTTGCCTT	TTCTGGTAAA	ATTACAGACA	ACATGACAGG	840
	GATTTACCCT	TCTTATTATA	CAGTTGATGG	AGTCAAGAAG	GAGGTCTTGT	CTACTCAGTT	900
1 5	CGAGAGCCAT	TTTGCGCGCG	AAGCTTTCCC	ATGTGTGGAT	GAGCCTGAAG	CCAAAGCAAC	960
	TTTTGACCTC	TCTCTTCGCT	TTGACCAAGC	AGAAGGTGAA	TTGGCCTTGT	CAAACATGCC	1020
50	AGAAATCGAT	GTTGAAAACC	GTAAGGAAAC	AGGTATCTGG	AAGTTTGAGA	CAACACCTCG	1080
	CATGTCTTCT	TACTTGTTGG	CCTTTGTTGC	TGGTGATTTG	CAAGGGGTGA	CCGCTAAAAC	1140
	TAAAAATGGT	ACCCTGGTAG	GTGTCTACTC	AACCAAAGCA	CATCCACTTT	CAAATCTTGA	1200
55	TTTCTCACTG	GATATCGCTG	TTCGCTCTAT	CGAGTTTTAC	GAAGATTACT	ATGGAGTTAA	1260
	GTACCCAATT	CCTCAATCTC	TCCACATCGC	CCTTCCTGAC	TTCTCAGCTG	GTGCTATGGA	1320
50	AAACTGGGGT	CTTGTGACCT	ACCGTGAAGT	TTACTTGGTT	GTCGATGAGA	ACTCTACATT	1380
U	TGCTAGCCGT	CAACAAGTTG	CCCTTGTTGT	GGCCCATGAA	TTGGCTCACC	AATGGTTTGG	1440

-100-

	GAACCTCGTG ACTATGAAAT GGTGGGATGA CCTTTGGCTC AATGAAAGTT TCGCTAATAT	1500
5	GATGGAATAC GTCTGTGTGG ATACCATCGA ACCAAGCTGG AATATCTTTG AAGATTTCCA	1560
	AACAGGTGGA GTACCTCTTG CTCTTGAACG TGACGCTACT GATGGCGTTC AGTCTGTCCA	1620
	CGTCGAAGTT AAACATCCAG ATGAGATCAA TACACTCTTT GACGGCGCTA TCGTCTATGC	1680
10	AAGGAAGCGT CTCATGCACA TGCTTCGCGT TGCTAGAGAT GCTGATTTGT AAGGTTGCAC	1740
	GCCTACTTTG GAAACACCAT ACAGCACACC ATTGGAGTGA	1780
15	(2) INFORMATION FOR SEQ ID NO:45:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 671 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:	
	GTCTTTTGTA GCGAGGCCAG TGTCTTTTGC CCATCATTTG TCAGGCAGAT AAAACTAGAG	60
35	CGTCTATCTT GATGGCAACA CATGCGACTG AGTAGACCGC AATTTTTAGC TTCCAAGCGA	120
	GCCACCATCC TAGAAACTGC GCTCGGGCTC AGATGAAGCT TATCTGGCAG GTCAATCTGG	180
40	CGTAGAGATT TTTCTTCAGC CAAGTCCAGA TAGTAGAGCA GGTAGAACTC TTTCAAGGTC	240
40	AGACTTTGCT CGCTCTGTTG GGCAATGGTC TCTTCCAAGA GACTTTCAAT TTCTTTCTGA	300
	CGCCGATTGA AGTCAAACCA TTTTTCCAAA TAGGTCATAG TGTCTCCTTT CTTTTTAGAG	360
45	TCATAAAATA GAAGAAAGTC CATTAACGGG CAGTCTCTGC GTCACAAGAT GATTGCGCAT	420
	GCAATAATTA TACTACTTTT CAAGAATGCT GGCAAGCTCT GTTTTTTAGT GGTTTTCTTT	480
50	TTTACTGTCT ATATTTTTGG TAAAAATCAA CTTTTACTTG GATGAAGGTT TTGGCTTCAC	540
	GTAGGAGTTG AAGAAGGGTG GCGCGGGTTT CAATTCTTCT CTTGTCTTGG GCAGACTGCG	600
	GTTCCGGAAG ACTTCCAGAT AACGTTCAAT TTCATCTAGC AATCAGAGCA GGATTGGTCT	660
55	GGCTCAGTGA C	671
	(2) INFORMATION FOR SEQ ID NO:46:	
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1557 base pairs(B) TYPE: nucleic acid	

-101-

(C)	STRANDEDNI	ESS:	single
(D)	TOPOLOGY:	line	ear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

15	TTTCAGCTCA	CAAATATAGG	TCGGATGAGC	CACTTCCTTA	CGAACACGCG	CATCAAAAGC	60
	ATCTAGCTCC	TCACGTGAAA	AAGCATCCTG	САААСТАТАА	AGAGGATACT	GATGACTGTA	120
	TTTTTCAAAA	ССАТСТАААА	CCTTGCCACC	AACACGATGA	GTCGGACTGT	CTGCTAGCAC	180
20	TTGCTCTGGA	TAAGCAGTTT	CTAACTCGAC	CAACTCACGG	TAAAGGCGGT	CATACTCACT	240
	GTCTGAAACC	GAGGGATTAT	CGCTGGTATA	GTACTCAGTC	GCATAGCGAT	TGAGCAAAGC	300
25	GACTAACTCA	TTCATTCTTT	TATTCATAAG	ACCATTTTAC	САТААААСАА	GCCCTCCTCA	360
	CAAACGAGAA	GGGCGGAAAA	AACACTTAGT	TTGAAATTAT	TTTTGAAACT	CAAGCAACCT	420
30	TATATCAATT	TTTCAAAATG	AGTTCGAACA	TAAATAAACG	ATATACAAGA	CAAGATGATA	480
30	ACACCACTTC	CAATTATCAG	GAAAGAAGAG	AGATGTACAC	TTGGCAAGAC	TGTCATAAAT	540
	CCTTTTGCAA	TAGGCATAAA	TAGAATAGCT	AAGGTAAAAA	TTGTACTCAG	TACTCTTCCA	600
35	AGAAATTCGC	TCTCAACCTT	GGTTTGTACT	TGAGTAAAAA	AGTGAATATT	AAAAATCGTC	660
	ATAAACAATT	CACAAACTAA	ATTTCCAGAA	AAGGAAAGAA	AAGTTGGAAG	TGGTAATCCC	720
40	ATCATAAAAA	CTCCGACACC	TGTCAAAGCC	AGTAAAATCA	AAAGATTATA	AATATTAGCT	780
	TTAATTTTAC	TAGCTAGAAG	AGCCCCAATG	ATGGAACCAA	TAGCCCCCAT	AGTTAAAATA	840
	CTTGCATAGG	CTCCTTCTGA	CCCGTAAAGC	TGATTCGAAA	AGGGAAGTAG	AAATTCAAAA	900
45	GCTGCAAAAA	AGAAATTAAC	GCTGGAAGCT	ACCAGCAAAA	GGAAGAAAAT	TTCTTGCTGA	960
	TGCCAGATAT	AGTGTAACCC	ATCCTTGATA	TCTACAAAAA	TATCTCTCCC	AGTAAAAGCC	1020
50	TTTTTCTCTT	GAACTTTTGC	TTCCTCTTTT	GGAAGGAAAG	CCACTAGAAC	AAAAGCAATG	1080
30	AAAAAAGTCA	GCGAGTCTAG	CAGTAGCGTC	ATATGGAGAC	TTGCAAACTG	TAAAACAAGG	1140
	AAGGAAAGAA	CAGGAGAGCT	AACACCTACA	ACCTGCAAAA	CCAGCTCTAA	GCGAGAATTA	1200
55	TAGATCACAA	TCTCATTTT	CTCCACCACT	TCAGTTATGA	TAGCTTTATT	GGCTGTGCGA	1260
	GAAAAGGCAA	AAGCAATAGC	CTGCACAATG	TTAGCAACAA	TCAAAGCGCC	AATCATCCAG	132
60	CTATCATTCC	TTATGAAAGA	AATAGCCAGA	CAAAGAATCC	CACAAACAAG	ATCTGCCGTC	138
00	ATTAAAATCT	TACGACGAGA	AAAACGGTCT	GAAATAACTC	CGCCAAAGGG	ATTGACGAGA	144

-102-

	ATAGATGTGA CGAGCTCAGA AATCTGATAC ATTCCTAAAA CTGTCTGTCC TATAGTCCCC	1500
5	ATAGAAGCCA ACCAGACACT ATTTCCATAA TCATAGAGCA TATTCCCATT TTATTGA	1557
5	(2) INFORMATION FOR SEQ ID NO:47:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 658 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
15	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:	
25	CTTATTTGGT TTGGGAATTC GTCATGTCGG AAGCAAGGCT AGTCAGCTTT TACTTCAATA	60
	TTTCCATTCA ATTGAAAATC TGTATCAGGC AGATTCAGAG GAAGTGGCTA GTATTGAAAG	120
	TCTAGGTGGC GTGATTGCCA AAAGTCTTCA GACTTATTTT GCGGCAGAAG GCTCTGAAAT	180
30	TCTGCTCAGA GAATTGAAAG AAACTGGGGT CAATCTGGAC TATAAAGGAC AGACGGTAGT	240
	AGCGGATGCG GCCTTGTCAG GTTTGACCGT GGTATTGACA GGAAAATTGG AACGACTCAA	300
35	GCGCTCAGAA GCTAAAAGTA AACTCGAAAG TCTGGGTGCC AAAGTGACAG GTAGTGTTTC	360
	TAAAAAGACC GACCTCGTCG TGGTAGGTGC AGACGCTGGA AGTAAACTGC AAAAAGCACA	420
40	AGAACTTGGT ATCCAGGTCA GAGATGAGGC ATGGCTAGAA AGTTTGTAAT GGATCGTTTA	480
40	AAAACAGAGT TTAGAGAATA TGACTATGTC TGTTAATTGA GACGAGATTG ACAAAAATTT	540
	ATTAGTGAAA TAGGAAACAA AGTAAAAAGG AAAAATAAAA AATGTATACT ACCCTATGCG	600
45	CATTCATTAC CATCGTAAGA ATGGAGAATA TGACCTTGCT CCTTTGTAAA AGTCAGGA	658
	(2) INFORMATION FOR SEQ ID NO:48:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2474 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
55	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
60	(iv) ANTI-SENSE: NO	

-103-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

5	ACAATCGATC	AGACAGTCAA	TCGATTTCTA	AAATGTTTAG	AGTAGAGATG	TACCTATTCT	60
	AGTTCAATAT	ACTATATAAC	TGAAAATTTA	GATAAATTAG	TTTTGGAAAT	GACTAACCAA	120
10	AGATATCCAA	AGTAGTCTAA	AATTGTCTAT	ACTTTATGAG	TGTTTTAGTT	AGGAAAAAGG	180
10	CTTGTTGTCT	ATAATTGGCG	CATTAGTCTA	GATTTTATTT	ATAGAAAATG	TTATAATAGA	240
	CTGTATTTAA	AAAATTTTAA	GGAGAAATGA	CAGAATGTCT	GTATCATTTG	AAAACAAAGA	300
15	AACAAACCGT	GGTGTCTTGA	CTTTCACTAT	CTCTCAAGAC	CAAATCAAAC	CAGAATTGGA	360
	CCGTGTCTTC	AAGTCAGTGA	AGAAATCTCT	TAATGTTCCA	GGTTTCCGTA	AAGGTCACCT	420
20	TCCACGCCCT	ATCTTCGACC	AAAAATTTGG	TGAAGAAGCT	CTTTATCAAG	ATGCAATGAA	480
20	CGCACTTTTG	CCAAACGCTT	ATGAAGCAGC	TGTAAAAGAA	GCTGGTCTTG	AAGTGGTTGC	540
	CCAACCAAAA	ATTGACGTAA	CTTCAATGGA	AAAAGGTCAA	GACTGGGTTA	TCACTGCTGA	600
25	AGTCGTTACA	AAACCTGAAG	TAAAATTGGG	TGACTACAAA	AACCTTGAAG	TATCAGTTGA	660
	TGTAGAAAAA	GAAGTAACTG	ACGCTGATGT	CGAAGAGCGT	ATCGAACGCG	AACGCAACAA	720
30	CCTGGCTGAA	TTGGTTATCA	AGGAAGCTGC	TGCTGAAAAC	GGCGACACTG	TTGTGATCGA	780
30	CTTCGTTGGT	TCTATCGACG	GTGTTGAATT	TGACGGTGGA	AAAGGTGAAA	ACTTCTCACT	840
	TGGACTTGGT	TCAGGTCAAT	TCATCCCTGG	TTTCGAAGAC	CAATTGGTAG	GTCACTCAGC	900
35	TGGCGAAACC	GTTGATGTTA	TCGTAACATT	CCCAGAAGAC	TACCAAGCAG	AAGACCTTGC	960
	AGGTAAAGAA	GCTAAATTCG	TGACAACTAT	CCACGAAGTA	AAAGCTAAAG	AAGTTCCAGC	1020
40	TCTTGACGAT	GAACTTGCAA	AAGACATTGA	TGAAGAAGTT	GAAACACTTG	CTGACTTGAA	1080
40	AGAAAAATAC	CGCAAAGAAT	TGGCTGCTGC	TAAAGAAGAA	ACTTACAAAG	ATGCAGTTGA	11,40
	AGGTGCAGCA	ATTGATACAG	CTGTAGAAAA	CGCTGAAATC	GTAGAACTTC	CAGAAGAAAT	1200
45	GATCCATGAA	GAAGTTCACC	GTTCAGTAAA	TGAATTCCTT	GGGAACTTGC	AACGTCAAGG	1260
	GATCAACCCT	GACATGTACT	TCCAAATCAC	TGGAACTACT	CAAGAAGACC	TTCACAACCA	1320
50	ATACCAAGCA	GAAGCTGAGT	CACGTACTAA	GACTAACCTT	GTTATCGAAG	CAGTTGCCAA	1380
50	AGCTGAAGGA	TTTGATGCTT	CAGAAGAAGA	AATACAAAAA	GAAGTTGAGC	AATTGGCAGC	1440
	AGACTACAAC	ATGGAAGTTG	CACAAGTTCA	AAACTTGCTT	TCAGCTGACA	TGTTGAAACA	1500
55	TGATATCACT	ATCAAAAAAG	CTGTTGAATT	GATCACAAGC	ACAGCAACAG	TAAAATAATC	1:560
	ТТААТАААСА	GAAAACCCAC	CTGAATTGGT	GGGTTTTCTG	ATGCACTATT	TTCCAAAAAT	1620
60	CTCTTTGAGG	TCTGTGTCTG	TAATCCCAAT	CATGGCTGGG	ATGCGGTCCC	AGTTTTCTTC	1680
60	CCTTACCATC	TACCATTCTT	CACACCCACT	TO TO THE TOTAL TOTAL TO THE TO	CTTTC > C > C >	CACCTTCTTC	1740

-104-

	CTTTTCTTCA ACATTCTCCA GTAGATCACT GAAGCGTTCA ATCAGATAGG TTTTTCGGGC	1800							
5	AGTTCCGATG TGTTGGGTAG CATAGTCGAA GGCTTGTAAT TCGCCTAGTA AGATGAGTTT	1860							
J	GCTTTTGGCA CGTGTAATGG CTGTGTAGAT GAGATTTCGC TCCAGCATAC GTCGGCTAGC	1920							
	ACTAGTAATC GGTAGGATGA CAACTGGGAA CTCACTTCCC TGAGACTTAT GAATACTCAT	1980							
10	GGCATAGGCC AAGCGAATCT TGTACCATTC GTTACGGGGG TAAGAGACTT CATTACTATC	2040							
	AAAATCAATG ACAATCTCGT CTTGTTTCGA TTCGGTGTAT TTACCAGGAA TCAGGTCTGT	2100							
15	GATAGCTCCT AAATCCCCAT TAAAGACATT GATTTCAGCA TCGTTAACCA AATGAATGAC	2160							
	CTTGTCTCTC TTACGATAGT GACACTGAGG AGCTTCAAAA CTGAGTTGAT CTTTTTGTGG	2220							
	GGGATTGAGC AGGTCTTGCA TGAGCTGATT GATAGCATCA ATCCCTGCCG TCCCTCGGTA	2280							
20	CATAGGAGCC AGAACTTGGA TATCACGGGC GGGAATACCA TTTCTGAGGG CGGCACCTAA	2340							
	GATTTTTCA ATGGTGGCAG GAATATGGCC ACTAGCAATT TCAAAGTAGG AACGGTCAGC	2400							
25	TTTTTTTTGG GTGAAATCAG CTGGCAAGAT GCCCTGTCGA ATCTGACTAG CTAGGGTGAC	2460							
<i>-</i>	GATGGTTGAT TCTT	2474							
	(2) INFORMATION FOR SEQ ID NO:49:								
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 716 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear								
55	(ii) MOLECULE TYPE: DNA (genomic)								
	(iii) HYPOTHETICAL: NO								
40	(iv) ANTI-SENSE: NO								
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:								
	ATCAAAATTA ACGTATTCTT TTTGAAGTTC AAGAACTTCT TCCATTGTTG AGCATTCTGT	60							
50	AAGGGCACGG TTTGCGTACT CTTCCATCTT AGCTGTGTCG AGTTTCTTCA TCAAGCTGCG	120							
	TGTACGAAGT ACAGATGTTG CTGACATAGA GAACTCATCC AAGCCCATTC CGACAAGAAG	180							
	TGGAACAGCT TGTTGGTCAC CAGCCATCTC ACCACACATA CCAGCCCATT TACCTTCAGC	240							
55	GTGAGCTGCT TTGATCACAT TGTTAATCAA GCGTAGGATT GATGGGTTGT ATGGTTGGTA	300							
	AAGGTATGAA ACTTGTTCGT TCATACGGTC TGCTGCCATT GTATATTGGA TCAAGTCGTT	360							
60	TGTACCAATT GAGAAGAAGT CAACTTCTTT AGCAAATTGG TCTGCAAGCA TAGCCGCTGC	420							
	AGGAATCTCG ATCATGATAC CAACTTGAAT GTTATCCGCA ACTGCAACAC CTTCAGCAAG	480							

-105-

	AAGGTTTGCT TTTTCTTCAT CAAAGACTGC TTTCGCTGCA CGGAATTCTT TCAAGAGCGC	540
5	AACCATTGGG AACATGATAC GCAATTGACC GTGAACAGAC GCACGAAGAA GAGCACGGAT	600
3	TTGTGTGCGG AACATAGCAT CTCCAGTCTC AGAGATAGAG ATACGAAGAG CACGGAATCC	660
	AAGGAATGGG TCATTCGTGA GGCATATCGA AGTAAGGAAG TCCTTATCTC CACCGA	716
10	(2) INFORMATION FOR SEQ ID NO:50:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 962 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
20	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
25		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:	
	AGTAACCTAA ATCAATTATG GTGTTATGAG TCTTGGTGTG CCCAAAGTGC TGACGTAACT	60
30	ATCTCAGCTG AAGGTGCAGA TGCAGATGGC CTATCGCTGC AATCTCAGAA ACAATGGAAA	120
	AAGAAGGATT GGCATAAGGG AAATGACAGA AATGCTTAAA GGAATCGCAG CATCTGACGG	180
35	TGTTGCAGTT GCAAAAGCAT ATCTACTCGT TCAGCCGGAT TTGTCATTTG AGACTATTAC	240
	AGTCGAAGAT ACAAACGCAG AAGAAGCTCG CCTTGATGCC GCTCTACAGG CATCACAAGA	300
40	CGAGCTTTCT GTTATTCGCG AGAAAGCAGT AGGTACGCTC GGTGAAGAAG CAGCTCAAGT	360
40	TTTTGATGCT CACTTAATGG TTCTTGCTGA CCCAGAAATG ATCAGCCAAA TCAAGGAAAC	420
	TATCCGTGCG AAGAAAGTGA ATGCAGAAGC AGGTCTGAAA GAAGTTACAG ATATGTTTAT	480
45	CACTATCTTT GAAGGCATGG AAGACAACCC ATACATGCAA GAACGCGCAC GGATATCCGC	540
	GACGTGACAA AACGTGTATT GGCAAACCTT CTTGGTAAAA AATTGCCAAA CCCAGCTTCT	600
50	ATCAATGAAG AAGTGATTGT GATTGCGCAT GACTTGACTC CTTCAGATAC AGCTCAATTG	660
	GACAAAAACT TTGTAAAAGC TTTTGTAACC AACATTGGTG GACGTACAAG CCACTCAGCT	720
	ATCATGGCAC GTACACTTGA AATTGCTGCT GTATTAGGTA CAAACAACAT CACTGAAATC	780
55	GTTAAAGACG GTGACATCCT TGCTGTTAAC GGGATCACTG GAGAAGTGAT TATCAACCCA	840
	ACAGATGAAC AAGCGGCAGA ATTTAAAGCA GCTGGTGAAG CCTATGCGAA CAAAAAGCTG	900
60	AATGGGCACT TTTGAAAGAT GCTCAACAGT GACTGCTGAC GGTAACACTC GAGTTGGCTG	960
	CC	962

-106-

(2) I	NFORMATION	FOR	SEQ	ID	NO:	51	:
-------	------------	-----	-----	----	-----	----	---

	(i) SEQUENCE CHARACTERISTICS:
5	(A) LENGTH: 2702 base pair
	(B) TYPE: nucleic acid
	(C) STRANDEDNESS: single
	(D) TOPOLOGY: linear

10 (ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GATCGTTTCC GTGGCTTGAT CGGAAGCATG TTTGACGAAT AAAGAGGAAA AATAAATTAT 60 GACATTTTCA TTTGATACAG CTGCTGCTCA AGGGGCAGTG ATTAAAGTAA TTGGTGTCGG 120 25 TGGAGGTGGT GGCAATGCCA TCAACCGTAT GGTCGACGAA GGTGTTACAG GCGTAGAATT 180 TATCGCAGCA AACACAGATG TACAAGCATT GAGTAGTACA AAAGCTGAGA CTGTTATTCA 240 GTTGGGACCT AAATTGACTC GTGGTTTGGG TGCAGGAGGT CAACCTGAGG TTGGTCGTAA 300 30 AGCCGCTGAA GAAAGCGAAG AAACACTGAC GGAAGCTATT AGTGGTGCCG ATATGGTCTT 360 CATCACTGCT GGTATGGGAG GAGGCTCTGG AACTGGAGCT GCTCCTGTTA TTGCTCGTAT 420 35 CGCCAAAGAT TTAGGTGCGC TTACAGTTGG TGTTGTAACA CGTCCCTTTG GTTTTGAAGG 480 AAGTAAGCGT GGACAATTTG CTGTAGAAGG AATCAATCAA CTTCGTGAGC ATGTAGACAC 540 TCTATTGATT ATCTCAAACA ACAATTTGCT TGAAATTGTT GATAAGAAAA CACCGCTTTT 600 40 GGAGGCTCTT AGCGAAGCGG ATAACGTTCT TCGTCAAGGT GTTCAAGGGA TTACCGATTT 660 GATTACCAAT CCAGGATTGA TTAACCTTGA CTTTGCCGAT GTGAAAACGG TAATGGCAAA 720 45 CAAAGGGAAT GCTCTTATGG GTATTGGTAT CGGTAGTGGA GAAGAACGTG TGGTAGAAGC 780 GGCACGTAAG GCAATCTATT CACCACTTCT TGAAACAACT ATTGACGGTG CTGAGGATGT 840 TATCGTCAAC GTTACTGGTG GTCTTGACTT AACCTTGATT GAGGCAGAAG AGGCTTCACA 900 50 AATTGTGAAC CAGGCAGCAG GTCAAGGAGT GAACATCTGG CTCGGTACTT CAATTGATGA 960 AAGTATGCGT GATGAAATTC GTGTAACAGT TGTCGCAACG GGTGTTCGTC AAGACCGCGT 1020 55 AGAAAAGGTT GTGGCTCCAC AAGCTAGATC ACCGCGCCTA GGATAACAAT TTTAGCAATC 1080 AAGATAAACC AAAACATCAT AACAACAAGA AGAACGGAAC CTAAAATTCG GACATCCACC 1140 AAATGATGGA CATAGTAATT GAGATAACTA GAGAACAGAG TTAGTACACC TAAAATCACC 1200 60 AAGAGAACAA AGGCACTGCC TGGTAGGGTA TAGCTAATTT TCCTGTTAGA TAGATTGGGA 1260

-107-

	AGAAAATAAT	AAAGCATGAC	CAAGATAGCA	AAGAGGAGGG	CGTAAATCAG	AGGACCTGCC	1320
5	AACCCTTGTA	AAGCCTGATA	GATAATGCCA	TCTTTTGTCC	AATAATGAGC	AAGTAAAGCC	1380
	AAAATCATCT	GACCAAATAA	GATCAAAAAC	AAGGCAAACG	CAAAGAGGAA	CTGCAAGCCA	1440
	AAACTGACTA	GGAGACTTAG	CATCTGATGG	GAAATAAGTC	CACGACTCTT	TTCGACGCCA	1500
10	TAAGCCTTGT	TAAAAGCTTT	TTGCAAGAAA	TTTATAGATT	TTGAAAAACT	CCATAACGCC	1560
	GATAAAACAG	AAAAACTCAA	TAAACCTGTT	GAAGGTTGCG	TCAAAGACTT	CTCTGGCTAT	1620
15	TTTTTCCACA	CCTTCATAGA	GGCTTGGGGG	CAGGACGTCT	TTCATAAAGC	CCAGAAATTC	1680
	TCCCACAGGA	ATCTGAAAAT	AGGGGAGGAT	ATTGACCACC	ACCAAAAGCA	GGGGGAAAAT	1740
	CGAAATCAAC	CAATAGTACG	CTACTGCGAC	ACTGGTCAAA	CTCACTATCT	GATGCTTGAT	1800
20	AATAATGCAA	AAAAGCTTTT	AATAAAGGCT	TGTCTATCAG	CTCTTTCCAC	CACTTTTTCA	1860
	TGTCATACTC	CTTCATTTAT	AATCTTATAC	TCAATGAAAA	TCAAAGAGCA	AACTAGAAAG	1920
25	CTAGCCGCAA	GCTGCTCAAA	ACACTGTTTT	GAGGTTGTAG	ATAAGACTGA	CGAAGTCAGT	1980
	CACATACATA	CGGTAAGGCG	ACGCTGACGT	GGTTTGAAGA	GATTTTCGAA	GAGTATTAAC	2040
	TAATTTCTTC	TTACCAATTC	CACCATATCA	TACGGTAGGG	TATTGGCAGC	TTCCTTCAAG	2100
30	GAATAGTTCT	CTAAGTTATT	TACATTTTGT	CGTAATTTCT	TGGCATACTT	AGTTGTAATT	2160
	AATCGTTTTT	CTTCGTATTC	GAAAATCAAC	TTGCGCTCCA	GATAATAGCC	TCTCAGCATT	2220
35	TCATTGATAT	TGTTGGGTTT	GACACGATTG	ATAACCCGTT	CGACAAAGGC	ACCACTGCTG	2280
33	ATAATAGTTG	TTTCTCGAAG	ACGAGACTCC	TGCATAAAAC	TAATCAAAGA	GCGTCTGTAG	2340
	ACTCCCTTCA	GGTTTTCCAA	ACTTTCAATA	ATCATCTCCG	TATTGGCAAG	ATAGAGCTCT	2400
40	GCAATTTGGT	CATAATCAAG	AGCACGGAGA	CGGCTTTGCT	CCTTGTCCTT	CCAGCTACGG	2460
	AAGGTCTTTC	CAAGAGTAAA	AACTTCATGA	AGGAGAAAAC	GTAAAATCCT	CAAGGAAACA	2520
45	AGAAAATAAT	AGGTCAGTCT	TGAGGCAAGT	TTACGATTGA	TTCCTTGTTC	TATATTTTTC	2580
	AGATAACGTT	GGTAAACTCG	GTAAGCACGA	TTGCTAATGT	TCCCCTCTTC	ATAGGCCTGT	2640
	TCCAAACCAT	CACTTTCAAT	ACTAAGAATC	AAGAGTTTCA	AAGCAGCCCA	GTCTTCTTGA	2700
50	TC				·		2702

(2) INFORMATION FOR SEQ ID NO:52:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6217 base pairs
 (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: single (D) TOPOLOGY: linear
- 60 (ii) MOLECULE TYPE: DNA (genomic)

55

-108-

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

10	GAATTCCAAG	AAGCTAGCCA	AGAAAGTCGT	GAACGTAGTG	ATCCGCTAAA	TAGTTATCTC	6
						TTTGGGTTAT	
1.0	AAAGCAAGTG	CTGACCGAAA	GATACCGCCC	TATTTTCTTG	CTTTTCGAAT	ATTACTAAAT	180
15	CCCCTTATTT	TAATTAGTTT	AGCAATATTT	GGCTTATCTT	TCTTTGCTTT	AGTGATTATC	240
	ACTCGGATTA	AGGAAATGAG	AGCAGCAGGT	ATAAAACTCT	TTTCTGGTCA	GACTCTCTTA	306
20	TCCATCATGG	GGCATTCTTT	ATCTACTGAT	ATCAAATGGC	TCCTTCTATC	AGCCCTCCTT	360
	TCCTTCCTAG	GTGGGGGTGT	CGTTCTTTTT	AGTCAAGGTT	TGTTTTATCC	TATCTTGTTA	420
25	GCCACCTATG	GTTTTGGGAT	TAGTTTCTAT	CTGTTGTTTT	TATTGGCGAT	TTCAATTTTA	480
2.3	CTAATGCTTC	TTTATCTAAT	GAGTTTGAAT	ACAAAGCATT	AGTTCCCGTT	ATTAGGGGGA	540
	GATTCCCCCT	GAACCCTGAT	GAATAACCCA	TTGTTTCAGT	AGACCTGTTT	TTTCAGTAGG	600
30	ATACGCTTTA	AGACAGGTTG	ACGTCTTACC	AACGATTGAA	AGAACTTGAA	ATTTCAGACA	660
	AGATGGCAGG	ATAGAGTAGA	CTATTATCAC	GATTTCTTTT	GACTTAGGTT	ATAGAGGTTG	720
35	AGATTCAGAA	AATCAGAGCA	AGTGGTATGC	CTTTACCAAG	GGAGCAGCGA	AGAAGAACAA	780
	GCTCTTTATG	TAAAGGATAA	TCTGCTCCAT	TTTGCCAATC	CACAAGGAAA	AAATGAACAG	840
	GGAGAGACAC	TGGATACCTA	TAGTCCAGAT	GCTAATACGC	TCTATGTTAG	TCCCAGTTAT	900
40	TTGGACAAGG	AAAAGGTCGT	GGTAGATGCT	GAGACCAAAC	AGAAGTTAGC	CCATCTCCAA	960
	AAAGGTGAGT	TTATCCTCTT	GCTCCCAGAA	CATTTGCGCT	CTCGAGAAGC	AGAACTTAAG	1020
45	AAAGTTTTTG	AAGAAAGATT	GAGTTATTAT	GGAAAATCTG	GTGAGGAGGC	AAGTGCTCCT	1080
	TTGGATTATG	AGATGAAAGC	GCACGTTAGT	TATCTTTCAA	TGGGAGAAA	GCGGTTTGTT	1140
	TATAATAACG	GTGAGAATCC	CGTATCTACT	CAGTATTTGA	CTGATCCGAT	TTTAGTTGTA	1200
50	TTCACGCCGA	CTTCTACAGG	TGATAGTTTT	ATATCCTTAT	CTAGTTGGTC	TATCAATGCT	1260
	GGAAAACAAC	TCTTTATCAA	AGGATATGAG	AGTGGGCTAG	AACTCTTGAA	GAAAGCTGGA	1320
55	ATTTATGAGC	AAGTATCCTA	TCTTAAAGAA	GGAAGAAGTG	TTTATCTAAC	TCGTTATAAT	1380
-	GAAGTTCAAA	CTGAAACAGC	AACTTTAATC	TTAGGAGCTA	TTGTGGGGAT	AGCTAGTTCC	1440
	TTGTTACTCT	TTTATTCTGT	CAATCTTCTA	TATTTCGAGC	AATTCCGCCG	AGATATCTTG	1500
60	ATTAAACGAA	TTTCAGGTTT	ΔCCΔͲͲͲͲͲͲ	CANACACATC	CTC A CT A T A T A T	CCMM3 CMC3 3	1560

-109-

	TTTGCCAGTT	TTGTATTTGG	TGCTAGTCTC	TTTATTTTAA	GCAGTCGAGA	CTTGGTGATT	1620
	GGCTTGCTCA	CTTTATTAGT	CTTTCTAGCT	AGTGCAGTTT	TGACGCTTTA	CCGTCAAGCG	1680
5	CAGAAAGAAT	CTCGTGTTTC	TATGACAATT	ATGAAAGGAA	AATAGGATGA	TTGAACTAAA	1740
	GAATATATCT	AAAAAATTGG	AAGCCGTCAG	CTATTTTCAG	ATACGAATCT	TCATTTTGAA	1800
10	GGTGGGAAAA	TTTATGCCTT	AATCGGTACA	AGTGGCTGTG	GTAAGACAAC	ACTCTCGAAT	1860
10	ATGATTGGAC	GATTGGCGCC	ATATGACAAA	GGGCAAATCA	TCTATGATGG	CACTTCTCTT	1920
	AAGGACATCA	AGCCTTCTGT	TTTCTTTAGA	GATTACTTAG	GATACTTATT	TCAAGATTTT	1980
15	GGCTTAATTG	AAAGCCAAAC	CGTCAAAGAG	AATCTCAATC	TGGGTTTAGT	TGGTAAAAAG	2040
	TTGAAGGAAA	AAGAGAAAAT	CTCTTTGATG	AAACAAGCTC	TAAACCGTGT	AAACCTCTCT	2100
20	TATTTGGATT	TGAAGCAACC	TATATTTGAG	TTATCAGGAG	GAGAAGCACA	ACGTGTTGCA	2160
20	CTAGCGAAGA	TAATTTTAAA	GGATCCGCCT	TTGATTCTTG	CAGATGAACC	AACCGCTTCC	2220
	TTAGACCCCA	AAAATTCTGA	GGAATTACTT	TCCATCCTAG	AATCTTTAAA	AAATCCGAAT	2280
25	CGGACCATTA	TTATTGCGAC	CCACAATCCT	CTGATTTGGG	AGCAAGTGGA	TCAGGTCATT	2340
	CGAGTTACCG	ATTTATCACA	TAGATGATAT	GGTAAGATTC	AGTTAGAAGA	AAGAGTCACA	2400
30	AACACACTTT	GTGGCTTTTT	TATTTCCATA	AAAATGGTAA	AATAGTAGGA	GTAGAAATGA	2460
J 0	GTTCGAGACA	TGAAAGTAAT	AGATCAATTT	AAAAATAAGA	AAGTTCTTGT	TTTAGGTTTG	2520
	GCCAAGTCTG	GTGAATCTGC	AGCTCGTTTG	TTGGACAAGC	TAGGTGCCAT	TGTGACAGTA	2580
35	AATGATGGGA	AACCTTTCGA	GGACAATCCA	GCTGCCCAAA	GTTTGCTGGA	AGAAGGGATC	2640
	AAGGTCATTA	CAGGTGGCCA	TCCTTTGGAA	CTCTTGGATG	AAGAGTTTGC	CCTTATGGTG	2700
40	AAAAATCCAG	GTATCCCCTA	CAACAATCCC	atgattgaaa	AGGCTTTGGC	CAAGAGAATT	2760
	CCAGTCTTGA	CTGAGGTGGA	ATTGGCTTAT	TTGATTTCAG	AAGCACCGAT	TATTGGTATC	2820
	ACAGGATCGA	ACGGTAAGAC	AACCACAACG	ACTATGATTG	GGGAAGTTTT	GACTGCTGCT	2880
45	GGGCAACATG	GTCTTTTATC	AGGGAATATC	GGCTATCCTG	CCAGTCAGGT	TGCTCAAATA	2940
	GCATCAGATA	AGGACACGCT	TGTTATGGAA	CTTTCTTCTT	TCCAACTCAT	GGGTGTTCAA	3000
50	GAATTCCATC	CAGAGATTGC	GGTTATTACC	AACCTCATGC	CAACTCATAT	CGACTACCAT	3060
	GGGTCATTTT	CTGAATATGT	AGCAGCCAAG	TGGAATATCC	AGAACAAGAT	GACAGCAGCT	3120
	GATTTCCTTG	TCTTGAACTT	TAATCAAGAC	TTGGCAAAAG	ACTTGACTTC	CAAGACAGAA	3180
55	GCCACTGTTG	TACCATTTTC	AACACTTGAA	AAGGTTGATG	GAGCTTATCT	GGAAGATGGT	3240
	CAACTCTACT	TCCGTGGTGA	AGTAGTCATG	GCAGCGAATG	AAATCGGTGT	TCCAGGTAGC	3300
60	CACAATGTGG	AAAATGCCCT	TGCGACTATT	GCTGTAGCCA	AGCTTCGTGA	TGTGGACAAT	3360
	CAAACCATCA	AGGAAACTCT	TTCAGCCTTC	GGTGGTGTCA	AACACCGTCT	CCAGTTTGTG	3420

-110-

	GATGACATCA	AGGGTGTTAA	ATTCTATAAC	GACAGTAAAT	CAACTAATAT	CTTGGCTACT	3480
5	CAAAAAGCCT	TATCAGGATT	TGACAACAGC	AAGGTCGTCT	TGATTGCAGG	TGGTTTGGAC	3540
,	CGTGGCAATG	AGTTTGACGA	ATTGGTGCCA	GACATTACTG	GACTCAAGAA	GATGGTCATC	3600
	CTGGGTCAAT	CTGCAGAACG	TGTCAAACGG	GCAGCAGACA	AGGCTGGTGT	CGCTTATGTG	3660
10	GAGGCGACAG	ATATTGCAGA	TGCGACCCGC	AAGGCCTATG	AGCTTGCGAC	TCAAGGAGAT	3720
	GTGGTTCTTC	TTAGTCCTGC	CAATGCCAGC	TGGGATATGT	ATGCTAACTT	TGAAGTACGT	3780
15	GGCGACCTCT	TTATCGACAC	AGTAGCGGAG	TTAAAAGAAT	AAAATATGAA	AAAAATTGTC	3840
	TTTACAGGTG	GGGGGACGGT	TGGACACGTT	ACCCTCAATC	TTTTGTTAAT	GCCCAAGTTC	3900
	ATCGAAGATG	GTTGGGAAGT	CCACTATATC	GGGGACAAGC	GTGGTATCGA	ACACCAAGAA	3960
20	ATCCTTAAGT	CAGGTTTGGA	TGTCACTTTC	CACTCCATTG	CGACTGGGAA	ATTGCGTCGC	4020
	TATTTCTCTT	GGCAAAATAT	GCTGGACGTC	TTCAAAGTTG	GCTGGGGAAT	CGTCCAATCG	4080
25	CTCTTTATCA	TGTTGCGACT	TCGTCCACAG	ACCCTTTTTT	CAAAGGGGGG	CTTTGTCTCA	4140
	GTACCGCCTG	TTATCGCAGC	GCGTGTGTCA	GGAGTGCCTG	TCTTTATTCA	CGAATCTGAC	4200
•	CTGTCTATGG	GCTTGGCCAA	TAAAATCGCC	TATAAATTTG	CGACTAAGAT	GTATTCAACC	4260
30	TTTGAGCAAG	CTTCGAGTTT	GTCTAAGGTT	GAGCATGTGG	GAGCAGTGAC	CAAGGTTTCA	4320
	GATCAAAAAA	ATCCAGAACC	AGATGAATTG	GTGGATATTC	AAACCCACTT	TAATCATAAA	4380
35	TTGCCGACTG	TATTGTTTGT	TGGCGGTTCT	GCAGGTGCTC	GTGTCTTTAA	CCAATTGGTG	4440
	ACAGACCATA	AGAAAGAACT	AACAGAGCGC	TACAATATTA	TCAATCTAAC	TGGAGATTCT	4500
	AGTCTGAACG	AGTTGAGCCA	AAATCTTTTT	CGTGTTGACT	ATGTGACCGA	TCTCTATCAA	4560
40	CCCTTGATGG	AATTGGCTGA	TATTGTTGTG	ACACGAGGTG	GTGCCAATAC	GATTTTTGAG	4620
	CTCTTGGCGA	TAGCAAAATT	GCATGTCATT	GTGCCGCTTG	GTCGTGAAGC	TAGTCGTGGT	4680
45	GACCAGATTG	AAAATGCAGC	TTACTTTGTA	AAAAAAGGCT	ATGCAGAAGA	CCTTCAAGAA	4740
	AGCGATTTGA	CCTTGGATAG	TTTGGAAGAG	AAGCTTTCTC	ACTTACTAAG	TCACAAGGAA	4800
	GATTACCAAG	CTAAGATGAA	AGCTTCTAAG	GAATTGAAAT	CTCTAGCAGA	TTTTTATCAA	4860
50	TTGTTGAAAA	AAGATTTÄTC	ATAAGGAAAG	TAAATGTCAA	AAGATAAGAA	AAATGAGGAC	4920
	AAAGAAACCC	TCGAAGAATT	GAAAGAGTTA	TCAGAATGGC	AGAAACGAAA	CCAAGAATAT	4980
55	CTAAAAAAGA	AGGCTGAAGA	AGAGGTGGCT	CTAGCTGAGG	AGAAGGAAAA	GGAAAGACAA	5040
	GCTCGAATGG	GAGAAGAATC	TGAGAAGTCA	GAGGACAAAC	AGGACCAGGA	GAGTGAAACA	5100
	GACCAGGAAG	ATTCAGAATC	AGCTAAGGAA	GAGTCTGAAG	AAAAAGTAGC	ATCCTCAGAG	5160
60	GCTGACAAAG	AGAAAGAAGA	ACCAGAGTCT	AAAGAGAAGG	AGGAACAGGA	TAAAAAGCTT	5220

WO 98/26072	PCT/US97/22578
*** *** *******************************	I C 1/00/ //223/0

-111-

	GCTAAAAAGG CTACAAAGGA AAAACCAGCC AAAGCAAAGA TTCCTGGTAT CCATATCTTG	5280				
	CGAGCCTTCA CGATTTTATT TCCAAGTCTG CTTTTATTGA TTGTCTCTGC CTACTTGCTC	5340				
5	AGTCCTTATG CGACCATGAA AGATATTCGT GTTGAGGGAA CGGTGCAAAC TACAGCTGAT	5400				
	GATATTCGAC AGGCTTCAGG CATTCAGGAT TCGGATTATA CGATTAACCT TCTGCTAGAC	5460				
10	AAGGCAAAAT ATGAAAAGCA GATTAAGTCT AACTATTGGG TTGAATCAGC TCAACTTGTC	5520				
10	TATCAATTTC CAACTAAGTT CACTATTAAG GTCAAGGAAT ATGATATTGT GGCCTACTAT	5580				
	ATTTCTGGTG AAAATCATTA TCCTATTCTT TCCAGTGGTC AGCTTGAGAC TAGTTCTGTG	5640				
15	AGTCTGAACA GTTTACCAGA AACTTATTTA TCAGTTCTCT TTAATGATAG TGAACAAATC	5700				
	AAGGTTTTTG TCTCAGAACT TGCTCAAATT AGCCCAGAAC TCAAGGCGGC TATCCAAAAG	5760				
20	GTGGAATTAG CCCCAAGCAA GGTGACATCC GATTTAATTC GATTGACCAT GAATGATTCG	5820				
20	GACGAAGTCT TGGTTCCTCT ATCTGAAATG AGTAAGAAAC TGCCATATTA CAGTAAGATT	5880				
	AAGCCACAAT TGTCAGAACC GAGTGTGGTC GACATGGAAG CTGGAATTTA CAGTTACACT	5940				
25	GTGGCGGATA AATTAATTAT GGAGGCTGAG GAAAAAGCCA AACAAGAGGC CAAGGAAGCT	6000				
	GAGAAAAAC AAGAAGAAGA ACAGAAAAAA CAAGAGGAAG AGAGCAATCG AAATCAAACA	6060				
30	AATCAGCGTT CATCGCGTCG CTAGGTTTAC CTTTTCTCTT ATAGTTCTTT AGTGACCATG	6120				
30	TTTTTACGTT TAATATTTGA CATTTGTTTT TCTTTATGTT ACATCTGCAA TGTAATCGAT	6180				
	TACAAAATAA TTTTTGATGA AGAAGGTAAC ACATATG	6217				
35	(2) INFORMATION FOR SEQ ID NO:53:					
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1491 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 					
	(ii) MOLECULE TYPE: DNA (genomic)					
45	(iii) HYPOTHETICAL: NO					
	(iv) ANTI-SENSE: NO					
50						
	(xi) SEQUENCE DESCRIPTION: SEO ID NO:53:					
	CTTGACACTT GATTGCGACT GTTGAATCTT ATCTCTCCAA GAAAAACACG TGAAGATGTT	60				
55	GAGTCTGCTG TCAGCAAGCT TGAAAGTAGC ACATCTGAGA AACATTGGAT CCATCTGCAG	120				
	TTTCTCGTGG GTCTAGCTTG GATCGTGATG ACAATGGTCT TTTGACTCTT GCTGGCGGTA	180				
60	AAATCACAGA CTACCGTAAG ATGGGTGACG AGGCGCTATG GAGCGCGTGG TTGACATCCT	240				

-112-

	CAAAGCAGAA	TTTGACCGTA	GCTTTAAATT	GATCAATTCT	AAAACTTACC	CTGTTTCAGG	300
	TGGAGAATTG	AACCCAGCAA	ATGTGGATTC	AGAAATCGAA	GCCTTTGCGC	AACTTGGAGT	360
5	TTCACGTGGT	TTGGATAGCA	AGGAAGCTCA	TTACCTAGCA	AATCTTTACG	GTTCAAATGC	420
	ACCGAAGGTC	TTTGCACTTG	CTCACAGCTT	GGAACAAGCG	CCAGGACTCA	GCTTGGCAGA	480
10	TACTTTGTCC	CTTCACTATG	CAATGCGCAA	CGAGTTGGCT	CTTAGCCCAG	TTGACTTCCT	540
LU	TCTTCGTCGT	ACCAACCATA	TGCTCTTTAT	GCGTGATAGC	TTGGATAGCA	TCGTTGAGCC	600
	AGTTTTGGAT	GAAATGGGAC	GATTCTATGA	CTGGACAGAA	GAAGAAAAAG	CAACTTACCG	660
15	TGCTGATGTC	GAAGCAGCTC	TCGCTAACAA	CGATTTAGCA	GAATTAAAAA	ATTAAGAAAA	720
	AATAAAAGAG	GTGGAGGGCA	GCATTCCTTG	TCGCCCGTCC	CTTCTTTTTA	ATGGAGACAG	780
20	AAAGATGATG	AATGAATTAT	TTGGAGAATT	TCTAGGGACT	TTAATCCTGA	TTCTTCTAGG	840
20	AAATGGTGTT	GTTGCAGGTG	TGGTTCTTCC	TAAAACCAAG	AGCAATAGCT	CAGGTTGGAT	900
	TGTGATTACT	ATGGGTTGGG	GGATTGCAGT	TGCGGTTGCA	GTCTTTGTAT	CTGGCAAGCT	960
25	CAGTCCAGCT	CATTTAAACC	CAGCTGTGAC	CATCGGTGTG	GCCTTAAAAG	GTGGTTTGCC	1020
	TTGGGCTTCC	GTTTTGCCTT	ATATCTTAGC	CCAGTTCGCA	GGGGCCATGC	TGGGTCAGAT	1080
30	TTTGGTTTGG	TTGCAATTCA	AACCTCACTA	TGAGGCAGAA	GAAAATGCAG	GCAATATCCT	1140
, (GGCAACCTTC	AGTACTGGAC	CAGCCATCAA	GGATACTGTA	TCAAACTTGA	TTAGCGAAAT	1200
	CCTTGGAACC	TTTGTTTTGG	TGTTGACAAT	CTTTGCTTTG	GGTCTTTACG	ATTTTCAGGC	1260
35	AGGTATCGGA	ACCTTTGCAG	TGGGAACTTT	GATTGTCGGT	ATCGGTCTAT	CACTAGGTGG	1320
	GACAACAGGT	TATGCCTTGA	ACCCAGCTCG	TGACCTTGGA	CCTCGTATCA	TGCACAGCAT	1380
40	CTTGCCAATT	CCAAACAAGG	GAGACGGAGA	CTGGTCTTAC	GCTTGGATTC	CTGTTGTAGG	1440
. U	CCCTGTTATC	GGAGCAGCCT	TGGCCGTGCT	TGTATTGTCA	CTTTTCTAAT	С	1491
	(2) INFORM	ATION FOR SI	EQ ID NO:54				
45		EQUENCE CHAI (A) LENGTH: (B) TYPE: no (C) STRANDEI (D) TOPOLOGY	1229 base pucleic acid DNESS: sing	pairs			
50	(ii) MO	OLECULE TYPI	E: DNA (gen	omic)			

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

55

-113-

	ACAACGGATA ATGTCATCGA TCTCTTTGAA CACATCTTTA AGGAATGTTC AACGAAAACA	60				
	TTGTGATGGC GGGCAAGGTC AATCTCTTGA ATTTTGCCAA TCTAGCAGCC TATCAGTTCT	120				
5	TTGACCAACC GCAAAAGGTG GCCTTGGAGA TTCGTGAGGG GTTGCGTGAG GATCAGATGC	180				
	AAAATGTTCG TGTTGCAGAC GGTCAAGAGT CCTGTTTAGC TGACCTAGCG GTGATTAGTA	240				
1.0	GTAAGTTCCT CATTCCTTAT CGGGGAGTTG GAATTCTAGC CATTATCGGT CCAGTTAATC	300				
10	TGGATTACCA ACAGCTAATC AATCAAATCA ATGTGGTCAA CCGTGTTTTG ACCATGAAGT	360				
	TGACAGATTT TTACCGCTAC CTCAGCAGTA ATCATTACGA AGTACATTAA GATTGAAATC	420				
15	ATTAAAGGAG GCGAACATGG CCCAAGATAT AAAAAATGAA GAAGTAGAAG AAGTTCAAGA	480				
	AGAGGAAGTT GTGGAAACAG CTGAAGAAAC AACTCCTGAA AAGTCTGAGT TGGACTTGGC	540				
20	AAATGAACGT GCAGATGAGT TCGAAAACAA ATATCTTCGC GCTCATGCAG AAATGCAAAA	600				
20	TATCCAACGC CGTGCCAATG AAGAACGTCA AAACTTGCAA CGTTATCGTA GCCAGGACTT	660				
	GGCAAAAGCA ATCTTACCAT CTCTTGACAA CCTTGAGCGT GCACTTGCAG TTGAAGGTTT	720				
25	GACAGATGAT GTGAAGAAGG GCTTGGCGAT GGTGCAAGAA AGCTTGATTC ACGCTTTGAA	780				
	AGAAGAAGGA ATTGAAGAAA TCGCAGCAGA TGGCGAATTT GACCATAACT ACCATATGGC	840				
30	CATCCAAACT CTCCCAGGAG ACGATGAACA CCCAGTAGAT ACCATCGCCC AAGTCTTTCA	900				
30	AAAAGGCTAC AAACTCCATG ACCGCATCCT ACGCCCAGCA ATGGTAGTGG TGTATAACTA	960				
	AGATACAAAC GCTCGTAAAA AGCTCGCAGT AAAAATAGGA GATTGACGAG TGTTCGATGA	1020				
35	ACACAAGAAA ATCTATCTTT TTTACTCAGA GCTTAGGGCG TGTTCGATTC GGCAATTCTG	1080				
	ACGGTAGCTA AAGCAACTCG TCAGAAAACG GCAATCGCTA TGACGTTTGC CTAGCTTCCT	1140				
40	TACTAACTCG TCGTCGAAAT AAAATCGATT TCGACTCCTC GTGTCGCAAT TTACATAATA	1200				
40	GAAAACTTGT CCGAACGACA TAAACTATG	1229				
	(2) INFORMATION FOR SEQ ID NO:55:					
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 5816 base pairs (B) TYPE: pucloic acid					
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear					
50	(ii) MOLECULE TYPE: DNA (genomic)					
	(iii) HYPOTHETICAL: NO					
5 5	(iv) ANTI-SENSE: NO					

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

-114-

	AAGAAGAAGA	CTGTATGGAT	AATCGACCAA	TTGGTTTTTT	GGATTCGGGT	GTCGGGGGCT	60
	TGACCGTTGT	GCGCGAGCTC	ATGCGCCAGC	TTCCCCATGA	AGAAATCGTC	TATATTGGAG	120
5	ATTCGGCGCG	GGCGCCCTAT	GGCCCCCGTC	CTGCTGAGCA	AATTCGTGAA	TATACTTGGC	180
	AGCTGGTCAA	CTTTCTCTTG	ACCAAGGATG	TCAAAATGAT	TGTCATTGCT	TGTAACACTG	240
10	CGACTGCGGT	TGTCTGGGAA	GAAATCAAGG	CTCAACTAGA	TATTCCTGTC	TTGGGTGTAA	300
10	TTTTGCCAGG	AGCTTCGGCA	GCCATCAAGT	CCAGTCAAGG	TGGGAAAATC	GGAGTGATTG	360
	GAACGCCCAT	GACGGTACAA	TCAGACATAT	ACCGTCAGAA	AATCCATGAT	CTGGATCCCG	420
15	ACTTACAGGT	GGAGAGCTTG	GCCTGTCCCA	AGTTTGCTCC	CTTGGTTGAG	TCAGGTGCCC	480
	TGTCAACCAG	TGTTACCAAG	AAGGTGGTCT	ATGAAACCCT	GCGTCCCTTG	GTTGGAAAGG	540
20	TGGATAGCCT	GATTTTGGGC	TGTACTCATT	ATCCACTCCT	TCGCCCTATT	ATCCAAAATG	600
20	TGATGGGGCC	AAAGGTTCAG	CTCATCGATA	GTGGGGCAGA	GTGCGTACGG	GATATTTCAG	660
	TCTTACTCAA	TTATTTTGAA	ATCAATCGTG	GTCGCGATGC	TGGACCACTC	CATCACCGTT	720
25	TTTACACAAC	AGCCAGTAGC	CAAAGTTTTG	CACAAATTGG	TGAAGAATGG	CTGGAAAAAG	780
	AGATTCATGT	GGAGCATGTA	GAATTATGAC	AAATAAAATT	TATGAATATA	AGGATGACCA	840
30	GAACTGGTAT	GTTGGGTCTT	ATAGTATTT	TGGTGGCGTT	AACAGTTTGA	GCGACTATAA	900
30	GGCAGATTTT	CCTCTGTTTG	AATTCTCCAA	AATATTTGGA	GATGAAGAGT	ATGGTTTCCC	960
	GCTTTCAGTT	ACTGTTTTAC	GCTATGGTTC	TACCTACCGT	TTGTTCTCCT	TTGTGGTAGA	1020
35	CATGCTTAAT	CAAGAAATGG	GACGAAACTT	GGAAGTTATT	CAACGTCATG	GGGCCCTGCT	1080
	CTTGGTTGAA	AATGGGCAAC	TCTTGTATGT	AGAATTGCCT	AAAGAAGGGG	TCAATGTTCA	1140
40	TGATTTCTTT	GAGACAAGCA	AGGTCAGAGA	AACCTTGTTG	ATTGCGACTC	GTAACGAAGG	1200
40	TAAAACCAAG	GAATTCCGAG	CTATCTTTGA	TAAGTTAGGC	TACGATGTGG	AAAATCTTAA	1260
	TGACTACCCT	GACCTGCCTG	AAGTAGCAGA	AACAGGTATG	ACCTTTGAAG	AAAATGCCCG	1320
45	CCTTAAGGCA	GAAACCATTT	CTCAATTAAC	GGGCAAGATG	GTTTTGGCAG	ATGATTCTGG	1380
	TCTCAAAGTC	GATGTCCTTG	GTGGCTTACC	AGGCGTCTGG	TCAGCTCGTT	TCGCAGGTGT	1440
50	GGGAGCAACT	GACCGTGAAA	ATAATGCCAA	ACTCTTGCAC	GAATTGGCCA	TGGTCTTTGA	1500
	ACTCAAGGAC	CGCTCGGCTC	AGTTCCACAC	AACCCTAGTC	GTAGCCAGCC	CAAATAAGGA	1560
	AAGTTTAGTT	GTTGAAGCAG	ACTGGTCAGG	TTATATTAAC	TTTGAACCTA	AGGGTGAAAA	1620
55	TGGCTTTGGC	TATGATCCCC	TCTTCCTTGT	AGGAGAGACA	GGTGAGTCAT	CAGCTGAATT	1680
	AACCCTGGAA	GAAAAAAATA	GTCAATCTCA	CCGTGCCTTA	GCCGTTAAGA	AACTTTTGGA	1740
60	GGTATTTCCA	TCATGGCAAA	GCAAACCATC	ATTGTAATGA	GCGATTCCCA	TGGCGATAGC	1800
	TTGATTGTGG	AAGAAGTCCG	TGATCGCTAT	GTGGGCAAAG	TCGATGCCGT	TTTTCATAAC	1860

-115**-**

	GGCGATTCTG	AACTACGTCC	GGATTCTCCA	CTTTGGGAGG	GCATCCGCGT	TGTTAAAGGG	1920
5	AACATGGACT	TCTACGCCGG	CTACCCAGAA	CGTCTGGTGA	CTGAGCTTGG	TTCGACCAAG	1980
,	ATTATCCAAA	CTCATGGTCA	CTTGTTTGAC	ATCAATTTCA	ACTTTCAAAA	GTTGGACTAC	2040
	TGGGCTCAGG	AGGAAGAGGC	CGCTATCTGC	CTCTATGGTC	ACTTGCATGT	GCCAAGTGCT	2100
10	TGGATGGAAG	GCAAGATCCT	CTTTCTAAAT	CCAGGTTCTA	TCAGTCAACC	ACGAGGTACC	2160
	ATCAGAGAAT	GTCTCTATGC	TCGTGTGGAG	ATTGATGATA	GTTACTTCAA	AGTGGACTTT	2220
15	TTGACACGAG	ATCACGAGGT	GTATCCAGGT	TTGTCCAAGG	AGTTTAGCCG	ATGATTGCCA	2280
13	AGGAGTTTGA	GACTTTCTTG	TTGGGGCAGG	AGGAAACTTT	TTTGACCCCT	GCTAAAAATC	2340
	TAGCTGTGTT	GATTGATACC	CACAATGCGG	ATCATGCGAC	CCTCTTGCTC	AGTCAGATGA	2400
20	CCTATACCCG	TGTTCCCGTT	GTGACAGATG	AAAAACAGTT	TGTTGGGACG	ATTGGACTCA	2460
	GAGATATTAT	GGCTTATCAG	ATGGAGCATG	ACTTGAGCCA	AGAAATCATG	GCGGATACGG	2520
25	ATATCGTTCA	TATGACAAAA	ACGGACGTAG	CGGTTGTTTC	GCCTGATTTC	ACCATTACGG	2580
2,5	AGGTCTTGCA	CAAGCTAGTA	GATGAGTCCT	TCTTACCGGT	CGTGGATGCA	GAGGGTATTT	2640
	TCCAAGGGAT	TATTACGCGC	AAGTCCATCC	TCAAGGCCGT	TAATGCCCTC	TTGCATGACT	2700
30	TTAGTAAGGA	ATATGAGATT	CGATGCCAAT	GAGAGACAGG	ATTTCAGCCT	TTTTAGAGGA	2760
	AAAGCAGGGC	TTGTCTGTCA	ATTCCAAGCA	GTCCTATAAG	TATGATTTGG	AGCAATTTTT	2820
35	AGACATGGTA	GGTGAGCGGA	TTTCTGAGAC	CAGTCTCAAG	ATTTACCAAG	CCCAGCTAGC	2880
33	CAATCTAAAA	ATCAGCGCCC	AGAAGCGAAA	GATTTCGGCC	TGTAACCAAT	TTCTATACTT	2940
	TCTCTATCAA	AAAGGAGAGG	TGGACAGCTT	TTACCGCTTG	GAATTAGCTA	AACAAGCTGA	3000
40	AAAGAAGACG	GAAAAGCCAG	AGATTCTATA	CCTAGACTCT	TTTTGGCAGG	AAAGCGACCA	3060
	TCCAGAGGGC	CGCTTGCTAG	CGCTCTTAAT	CCTAGAAATG	GGGCTCTTGC	CCAGTGAGAT	3120
45	TTTAGCCATC	AAGGTTGCGG	ACATCAATCT	GGATTTTCAG	GTGCTGCGAA	TCAGCAAGGC	3180
49	TTCCCAACAG	AGGATTGTCA	CCATTCCCAC	GGCCTTGCTT	TCAGAATTGG	AACCCTTGAT	3240
	GGGGCAGACC	TATCTTTTTG	AAAGAGGAGA	GAAACCCTAT	TCTCGTCAGT	GGGCCTTTCG	3300
50	TCAGTTAGAA	TCTTTTGTCA	GGAGAAGGTT	TCCATCCTTA	TCAGCTCAAG	TCTTACGTGA	3360
	CAGTTTATTC	TAAGCAAATA	GAAACAGGTC	GATTTGTACG	AATTGCAAAA	AATTAGGATT	3420
55	AAAAACAGTC	CTGACCTTAG	AAAATATAGA	TAATGGATAT	TAAATTAAAA	AGATTTTTGA	3480
<i></i>	AGGACCCTGG	ACTTGCTCTT	TGCATCTGGT	TTCTAAGTAC	CAAGATGGAT	ATCTACGATG	3540
	TGCCCATTAC	GGAAGTCATC	GAACAGTATC	TAGCCTATGT	TTCAACCCTG	CAGGCCATGC	3600
60	GTCTGGAAGT	GACGGGTGAG	TACATGGTCA	TGGCTAGTCA	GCTCATGCTG	ATTAAGAGTC	3660

-116-

	GTAAACTCCT	TCCGAAGGTA	GCAGAAGTGA	CAGACTTGGG	GGATGACCTG	GAGCAGGACC	3720
	TCCTCTCTCA	AATCGAAGAA	TATCGCAAGT	TCAAGCTCTT	GGGTGAGCAC	TTGGAAGCCA	3780
5	AGCACCAAGA	ACGGGCCCAG	TATTATTCCA	AAGCGCCGAC	AGAGTTGATT	TACGAAGATG	3840
	CGGAGCTTGT	GCATGACAAG	ACGACCATTG	ACCTCTTTTT	GGCTTTTTCA	AATATCCTAG	3900
10	CCAAGAAAAA	AGAGGAGTTT	GCACAAAATC	ACACGACGAT	CTTGCGGGAT	GAGTATAAGA	3960
	TTGAGGACAT	GATGATTATT	GTGAAAGAAT	CCTTGATTGG	ACGAGATCAA	TTGCGCTTGC	4020
	AGGATTTGTT	CAAGGAAGCC	CAGAATGTCC	AAGAGGTCAT	CACCCTCTTT	TTGGCAACCC	4080
15	TAGAGTTAAT	CAAAACCCAG	GAGCTGATCC	TCGTGCAAGA	GGAGAGTTTC	GGAGATATCT	4140
	ATCTCATGGA	AAAGAAGGAA	GAAAGTCAAG	TGCCTCAAAG	CTAGACTTGA	TAGAGAGGAA	4200
20	AGATGAGTAC	TTTAGCAAAA	ATAGAAGCGC	TCTTGTTTGT	AGCGGGTGAA	GATGGGATTC	4260
20	GGGTCCGCCA	GTTAGCTGAA	CTCCTCTCTC	TGCCACCGAC	AGGCATCCAG	CAGAGTTTAG	4320
	GAAAATTAGC	CCAGAAGTAT	GAAAAGGACC	CAGATTCCAG	TTTGGCTTTG	ATTGAGACAA	4380
25	GTGGTGCTTA	TAGATTGGTG	ACCAAGCCTC	AATTTGCAGA	GATTTTGAAG	GAATACTCTA	4440
	AGGCGCCTAT	CAACCAGAGC	TTGTCTCGGG	CTGCCCTTGA	GACCTTGTCC	ATTATTGCCT	4500
30	ACAAACAGCC	GATTACGCGG	ATAGAAATTG	ATGCCATCCG	TGGGGTTAAC	TCGAGTGGAG	4560
	CCTTGGCAAA	GTTGCAAGCT	TTTGACCTGA	TAAAGGAAGA	CGGGAAAAAG	GAAGTATTGG	4620
	GGCGCCCCAA	CCTCTATGTG	ACTACGGATT	ATTTCCTAGA	TTACATGGGG	ATAAACCATT	4680
35	TAGAAGAATT	ACCAGTGATT	GATGAGCTTG	AGATTCAAGC	CCAAGAAAGC	CAATTATTTG	4740
	GTGAAAGGAT	AGAAGAAGAT	GAGAATCAAT	AAGTATATTG	CCCACGCAGG	TGTGGCCAGT	4800
40	AGGAGAAAAG	CAGAAGAGCT	GATCAAGCAA	GGTTTGGTGA	CAGTTAACGG	ACAAGTGGTG	4860
	CGTGAACTAG	CAACCACTAT	CAAGTCAGGC	GACAAGGTCG	AAGTTGAAGG	TCAACCTATC	4920
	TACAACGAAG	AAAAGGTCTA	TTATCTGCTT	AACAAACCAC	GCGGTGTCAT	TTCCAGTGTA	4980
45	ACAGATGACA	AGGGTCGCAA	GACGGTTGTC	GACCTCTTGC	CCAATGTCAA	AGAGCGCATT	5040
	TACCCTGTGG	GTCGTTTGGA	CTGGGATACA	TCAGGAGTCT	TGATTTTGAC	CAATGATGGG	5100
50	GACTTTACAG	ACGAGATGAT	TCACCCTCGT	AATGAGATTG	ACAAGGTTTA	TGTCGCGCGT	5160
	GTTAAAGGTG	TGGCCAATAA	GGACAATCTT	CGCCCCTTGA	CCCGTGGTCT	TGAGATTGAT	5220
	GGTAAGAAAA	CCAAGCCAGC	TGTTTATGAA	ATTCTCAAAG	TGGACCCAGT	CAAAAATCGC	5280
5 5	TCTGTGGTGC	AGTTGACCAT	CCATGAAGGG	CGTAACCATC	AGGTTAAAAA	GATGTTTGAA	5340
	GCTGTTGGTC	TCCAAGTAGA	TAAGTTGTCT	CGGACTCGTT	TCGGACACCT	AGACTTGACA	5400
60	GACTCCGTCC	AGGAGAATCC	CGTCGTCTTA	ATAAAAAAGA	AATCAGCCAA	CTACACACCA	5460
	TGGCTGTAAC	TAAGAAATAA	TGAAACGAAT	TTTAATAGCG	CTTGTGCGCT	TTTACCAACG	5520

-117-

	TTTTATCTCA CCAGTCTTTC CACCCTCTTG TCGCTTTGAG CTGACTTGTT CCAACTACAT	5580
5	GATTCAGGCT ATTGAAAAAC ATGGTTTTAA GGGGGTATTG ATGGGCTTGG CTCGGATTTT	5640
,	ACGTTGTCAT CCCTGGTCGA AAACAGGTAA GGACCCCGTT CCAGACCACT TTTCCCTTAA	5700
	ACGAAATCAA GAAGGGGAAT GAGGTGGGGT AAATAGATTT CAAAATGATA AAAACGCATC	5760
10	CTATCAGGTT TGAGGACT TGATAGGATG CGTTTTAGAA TGTCAAAATT TTATAC	5816
	(2) INFORMATION FOR SEQ ID NO:56:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 725 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:	
30	TTGAAAATAA TTATGAACCG CAATATATTA ATATCCGAGG AAAAGGCCCT CTTATCAATG	60
	ACTTGAAAAA AGAAGCTAAA AAAGCTAATA AAGTTTTTCT CGCGAGTGAC CCGGACCGTG	120
35	AAGGAGAAGC GATTTCTTGG CATTTGGCCC ATATTCTCAA CTTGGATGAA AATGATGCCA	180
	ACCGTGTGGT CTTCAATGAA ATCACCAAGG ATGCAGTCAA AAATGCTTTT AAAGAACCTC	240
	GTAAGATCGA TATGGACTTG GTCGATGCCC AACAAGCTCG TCGGATCTTG GATCGCTTGG	300
40	TAGGGTATTC GATTTCGCCT ATTTTGTGGA AGAAGGTCAA GAAGGGCTTG TCAGCAGGTC	360
	GCGTTCAGTC CATTGCCCTT AAACTCATCA TTGACCGTGA AAATGAAATC AATGCCTTCC	420
45	AGCCAGAAGA ATACTGGACA GTTGATGCTG TCTTTAAAAA GGGAACCAAA CAATTTCATG	480
	CTTCCTTCTA TGGAGTAGAT GGTAAAAGA TGAAACTGAC CAGCAATAAC GAAGTCAAGG	540
50	ARETETTETE TEGTETGACS AGTARGACT TTTCAGTAGA TEAGGTGGAT AAGAAAGAGE	600
50	GTAAGGCAAA TGCTCCTTTA CCCTATACCA CTTCATCTAT GCAGATGGGA TGCTGCCAAT	660
	AAAATCAATT TCCGTACTCG AAAAACCATG ATGGTTGCCC AACAAGCTCT ATGAAGGAAT	720
55	TATAT	725
	(2) INFORMATION FOR SEQ ID NO:57:	
60	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1935 base pairs(B) TYPE: nucleic acid	

-118-

(C)	STRANDEDNE	ESS:	single
(D)	TOPOLOGY:	line	ear

(ii) MOLECULE TYPE: DNA (genomic)

5 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

10

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

15	AACCCATCTG	AAGAACTTTT	CCGTGCTGCT	AGCTCAGCTA	TCGATAAAGC	AGAAACTAAA	60
	GGTTTGATTC	АСАААААСАА	AGCAAGCCGC	GATAAAGCTC	GTCTTTCAGC	TAAACTTGCT	120
20	AAATAAGAAA	CAGTCCATAG	AGGCTGTTTT	TTTGTCTCCA	AATAGGAAAA	GGTAGAAAAT	180
	GAAAATCACA	ATTATCGGAT	ATTCTGGTTC	TGGTAAGTCA	ACTCTAGCAG	AAAAGTTATC	240
	TAACTACTAC	TCCATTCCAA	AACTGCACAT	GGACACACTC	CAATTTCAAC	CTGGTTGGCA	300
25	AGACAGTGAC	TGCGAATGGA	TGTTAACCGA	GATAAAAAAC	TTTCTCACCA	AGCATAAAGC	360
	TTGGGTCATC	GATGGTAATT	ATTCTTGGTG	CTACTACCAA	GAACGAATGC	AAGAAGCTGA	420
30	CCAAATCATC	TTTCTCAATT	TTTTGCCATT	GACCTGTCTC	TTTAGAGCCT	TTAAGCGTTA	480
	TCTTAAATAC	CGTGGAAAAG	TCAGAGAAAG	TATGGCGGCA	GATTGCCCTG	AACGCTTTGA	540
	GTGGGAGTTT	ATCAGATGGA	TTCTTTGGGA	TGGGCGTAGC	ААААСТСААА	AAGAAAATTA	600
35	CCAAAAACTT	TGCCAAGAAT	ATTCACATAA	AGTCACTATC	CTTCGAAATC	AGAGAGAGCT	660
	AGATCAATTT	CTGGATAAGA	AAAGGAAGTC	CTACAATTCA	TAAAGGGCTT	CCTTTTTGGC	720
10	TATAATTATT	CTGCAATCAA	GGTTTCCAAA	CCAACCTTCA	TCATATCAGT	GAAGGTATTT	780
	TGACGTTCTT	CTGCAGTTGT	GTCTTCGTCT	GGATTGACCA	AGCTATCAGA	GATGGTCATG	840
	ATAGCTAGCG	CATCAACATG	GTATTGGGCA	GCAAGATAGT	AAAGAGCTGC	TGCTTCCATT	900
15	TCCACAGCCT	TGACTCCCCA	TTTACCAAGC	TCGATATTCT	TTTCAAAGTA	ATTTGAGTAA	960
	AAGACATCAG	ATGACAAAAC	GTTCCCAACG	TGAGTAGTCA	TACCAAGTTC	TTTGGCGAȚA	1020
50	TGGTAGGCTT	TATCAAGCAA	ATCAAAGCTA	GCAATTTGTG	GAAAATCGTA	CTGTGGCCAG	1080
	TCATTACGAA	CGATGTTTGA	GTTGGTTGCA	GCCGCCTGCG	ССААААСТАА	TTCACGAACA	1140
	TGAACCTCTT	CATTCAAAGA	ACCTGCAGTT	CCCACACGAA	TCAATTTCTT	CACACCGTAG	1200
55	TCTACGATTA	ACTCACGCGC	ATAAATCGAA	ATAGATGGCA	TTCCCATCCC	AGTTCCCATG	1260
	ACAGATACAC	GGTGACCCTT	GTAAGTACCA	GTGTAACCAA	ACATGTTACG	CACTTCGTTA	1320
50	AAACAAACAG	CATCACCAAG	GAAATTCTCC	GCAATAAACT	TAGCACGAAG	AGGATCCCCA	1380
. •	GGAAGAAGAA	TTTTATCAGC	AATTTCACCC	TGCTGAGCAG	CAATATGGAT	AGACATAATT	1440

-119-

	TATGATACAA AGAGCGAGAA GAAAACGACT GAAAATTAGG AACCTGACGA GAAATCCTGA	1500
5	TTTTTCAGTC AGATTATCTA TTTTCCGAGT TTTCCGCTCG TGTTCAAATC AAAACACACG	1560
,	CTCTACCTTT CTTTATTTA TATTTTATAT TGAGAAAGAT ACCAAACCCA TCAAAAAGCG	1620
	AAGGGAAAAT AGGAGTTGGG CGCAGTGAGC GATGCTCGCT AGACCAACTA TCTTTTTCCC	1680
10	ACTGCTTTTA GGGTGGGGTC AATTCCTTTC TTTCTTAATT TTGATTTAGA GGAGAGTCGC	1740
	CCGTATTCAG TTCAGCGAAT ACAGTTTACC CATCCTTTCG TTTTTATTTT TAGAAAAGTT	1800
15	TTCTACTCGT GTTCAAATTA GAACACGCGC TCTACCTTTC TGTTTATACT CTTCGAAAAT	1860
	CTCTTCAAAC CACGTCAACG TCGACTTGGA TTATATATGT GACTGACTTC GTCATCTTTA	1920
	TCTACAACCT CAAAG	1935
20	(2) INFORMATION FOR SEQ ID NO:58:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2221 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
30	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
35		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:	
	TATTATTTT CCCATCCTAA CTGGAACCTA TGTCGCGCGT GTCTTGGACC GAACTGACTA	60
40	TGGTTACTTC AACTCAGTCG ACACTATTTT GTCATTTTTC TTGCCCTTTG CAACTTATGG	120
	TGTCTATAAC TACGGTTTAA GGGCTATCAG TAATGTCAAG GATAACAAAA AAGATCTTAA	180
45	CAGAACCTTT TCTAGTCTTT TTTATTTGTG CATCGCTTGT ACGATTTTGA CCACTGCTGT	240
	CTATATCCTA GCCTATCCTC TCTTCTTTAC TGATAATCCA ATCGTCAAAA AGGTCTACCT	300
	TGTTATGGGG ATTCAACTCA TTGCCCAGAT TTTTTCAATC GAATGGGTCA ATGAAGCTCT	360
50	GGAAAATTAC AGTTTTCTCT TTTACAAAAC TGCCTTCATC CGTATCCTGA TGCTGGTCTC	420
	TATTTTCTTA TTTGTTAAAA ATGAACACGA TATTGTTGTC TATACACTTG TGATGAGTTT	480
55	ATCGACGCTG ATTAACTACC TGATTAGTTA TTTTTGGATT AAAAGAGACA TCAAACTTGT	540
	TAAAATTCAC CTAAGTGATT TTAAACCACT CTTTCTCCCT CTGACAGCCA TGTTAGTCTT	600
. 0	TGCCAATGCC AATATGCTCT TCACTTTTT AGATCGCCTC TTCCTCGTTA AAACAGGGAT	660
50	TGATGTCAAC GTTAGTTACT ATACCATAGC TCAGCGAATT GTGACCGTTA TAGCTGGGGT	720

-120-

TGTAACAGGT	GCAATTGGAG	TGAGTGTGCC	TCGTCTCAGT	TACTATCTGG	GGAAAGGAGA	780
CAAAGAAGCC	TATGTTTCTC	TGGTTAATAG	AGGTAGTCGA	ATCTTTAACT	TCTTTATCAT	840
TCCACTGAGT	TTTGGACTCA	TGGTTTTAGG	ACCAAATGCC	ATCCTACTTT	ACGGTAGTGA	900
AAAATATATC	GGAGGCGGCA	TCTTGACCTC	TCTCTTCGCT	TTTCGTACGA	TTATCCTGGC	960
CTTAGATACC	ATTCTTGGTT	CCCAAATTCT	CTTTACCAAT	GGCTATGAAA	AACGTATCAC	1020
AGTCTATACA	GTCTTTGCTG	GGCTACTCAA	TTTGGGCTTG	AATAGTCTCC	TTTTTTTCAA	1080
CCATATCGTG	GCTCCTGAAT	ACTACTTACT	GACAACTATG	CTATCAGAGA	CTTCTCTACT	1140
TGTTTTCTAT	ATCATTTTCA	TCCATAGAAA	ACAACTCATC	CACTTGGGAC	ATATCTTTAG	1200
CTATACTGTT	CGATACTCTC	TCTTTTCACT	TTCCTTTGTA	GCAATTTATT	TCCTGATTAA	1260
TTTCGTGTAT	CCTGTAGATA	TGGTCATTAA	TTTGCCATTT	TTGATTAATA	CTGGTTTGAT	1320
TGTCTTGCTA	TCAGCTATCT	CTTATATTAG	TCTACTTGTC	TTCACAAAAG	ATAGCATTTT	1380
CTATGAATTT	TTAAACCATG	TCCTAGCCTT	алалаатала	TTAAAAAAT	CATAGGAGTT	1440
TAAAATGAAA	CAACTAACCG	TTGAAGATGC	CAAACAAATT	GAATTAGAAA	TTTTGGATTA	1500
TATTGATACT	CTCTGTAAAA	AGCACAATAT	CAACTATATT	ATTAACTACG	GTACTCTGAT	1560
TGGGGCGGTT	CGACATGAGG	GCTTTATCCC	TTGGGACGAC	GATATTGATC	TGTCCATGCC	1620
TAGAGAAGAC	TACCAACGAT	TTATTAACAT	TTTTCAAAAG	GAAAAAAGCA	AGTATAAGCT	1680
CCTATCCTTA	GAAACTGATA	AGAACTACTT	TAACAACTTT	ATCAAGATAA	CCGACAGTAC	1740
GACTAAAATT	ATTGATACTC	GAAATACAAA	AACCTATGAG	TCTGGTATCT	TTATCGACCT	1800
GCAGGCATGC	AAGCTTGGCG	TAATCATGGT	CATAGCTGTT	TCCTGTGTGA	AATTGTTATC	1860
CGCTCACAAT	TCCACACAAC	ATACGAGCCG	GAAGCATAAA	GTGTAAAGCC	TGGGGTGCCT	1920
AATGAGTGAG	CTAACTCACA	TTAATTGCGT	TGCGCTCACT	GCCGGCTTTC	CAGTCGGGAA	1980
ACCTGTCGTG	CCAGCTGCAT	TAATGAATCG	GCCAACGCGC	GGGGAGAGGC	GGTTTGCGTA	2040
TTGGGCGCCA	GGGTGGTTTT	TCTTTTTCAC	CAGTGAGACG	GGCAACAGCT	GATTGCCCTT	2100
CACCGCCTGG	CCCTGAGAGA	GTTGCAGCAA	GCGGTCCACG	CTGGTTTGCC	CCAGCAGGCG	2160
AAAATCCTGT	TTGATGGTGG	TTCCGCAAAT	CGGCAAAATT	CCTTATAAAA	TCAAAAGGAA	2220
T						2221
	CAAAGAAGCC TCCACTGAGT AAAATATATC CTTAGATACA CCATATCGTG TGTTTTCTAT CTATACTGTT TTTCGTGTAT TGTCTTGCTA CTATGAATTT TAAAATGAAA TATTGATACT TAGAGAAGAC CCTATCCTTA GACTAAAATT GCAGGCATGC CGCTCACAAT AATGAGTGAG ACCTGTCGTG TTGGGCGCCA CACCGCCTGG AAAATCCTGT	CAAAGAAGCC TATGTTTCTC TCCACTGAGT TTTGGACTCA AAAATATATC GGAGGCGGCA CTTAGATACC ATTCTTGGTT AGTCTATACA GTCTTTGCTG CCATATCGTG GCTCCTGAAT TGTTTTCTAT ATCATTTTCA CTATACTGTT CGATACTCTC TTTCGTGTAT TCAGCTATCT CTATGAATTT TTAAACCATG TAAAATGAAA CAACTAACCG TAGGGGCGGTT CGACATGAGG TAGAGAAGAC TACCAACGAT CCTATCCTTA GAAACTGATA GCAGGCATGC AAGCTTGGCG CGCTCACAAT TCCACACAAC AATGAGTGAG CTAACTCACA ACCTGTCGTG CCAGCTGCAT TTGGGCGCCA GGGTGGTTTT CACCGCCTGG CCCTGAGAGA AAAATCCTGT TTGATGGTGG	CAAAGAAGCC TATGTTTCTC TGGTTTAATAG TCCACTGAGT TTTGGACTCA TGGTTTTAGG AAAATATATC GGAGGCGGCA TCTTGACCTC CTTAGATACC ATTCTTGGTT CCCAAATTCT AGTCTATACA GCTCCTGAAT ACTACTTACT TGTTTTCTAT ATCATTTCA TCCATAGAAA CTATACTGTT CGATACTCTC TCTTTTCACT TTTCGTGTAT CCTGTAGATA TGGTCATTAA TGTCTTGCTA TCAGCTATCT CTTATATTAG TGTATGAATTT TTAAACCATG TCCTAGCCTT TAAAATGAAA CAACTAACCG TTGAAGATGC TAGGGGCGGTT CGACATGAGG GCTTTATCCC TAGGAGAAGAC TACCAACGAT TTATTAACAT CCTATCCTTA GAAACTGATA AGAACTACTT GCAGGCATGC AAGCTTGGCG TAATCATGGT CGCTCACAAT TCCACACAAC ATACGAGCCG AATGAGTGAG CTAACTCACA ATAATGAATCG AACTGGCGCA CCAGCTGCAT TAATGAATCG ACCTGTCGTG CCAGCTGCAT TAATGAATCG ACCTGCCCGG CCAGCTGCAT TAATGA	CAAAGAAGCC TATGTTTCTC TGGTTAATAG AGGTAGTCGA TCCACTGAGT TTTGGACTCA TGGTTTTAGG ACCAAATGCC AAAATATATC GGAGGCGGCA TCTTGACCTC TCTCTCGCT CTTAGATACC ATTCTTGGTT CCCAAATTCT CTTTACCAAT AGTCTATACA GCTCCTGAAT ACTACTTACT GACAACTATG CCATATCGTG GCTCCTGAAT ACCACTACT TTCCTTGTA CTATACTGTT CGATACTCTC TCTTTTCACT TTCCTTTGTA TTTCGTGTAT CCTGTAGATA TGGTCATTAA TTTGCCATTT TGTCTTGCTA TCAGCTATCT CTTATATTAG TCTACTTGTC TGTATGATAT TTAAACCATG TCCTAGCCTT AAAAAAATAA TAAAATGAAA CAACTAACCG TTGAAGATGC CAAACAAATT TAGGGGCGGTT CGACATGAGG GCTTTATCCC TTGGGACGAC TAGAGAAGAC TACCAACGAT TTATTAACAT TTTTCAAAAG GCCTAACATT AAGCTAGATA AACCTATGAG CATAGCTGTT GCAAGGCATGC AAGCTTGGCG TAATCATGGT CATAGCTGTT GCCTCACAAT TCAACCACAC ATA	CAAAGAAGCC TATGTTTCTC TGGTTAATAG AGGTAGTCGA ATCTTAACT TCCACTGAGT TTTGGACTCA TGGTTTTAGG ACCAAATGCC ATCCTACTTT AAAATATATC GGAGGCGGCA TCTTGACCTC TCTCTTCGCT TTTCGTACGA CTTAGATACC ATTCTTGCTG GCCTACATTCT CTTTACCAAT GGCTATGAAA AGTCTATACA GTCTTTGCTG GGCTACTAA TTTGGGCTTG AATAGTCTCC CCATATCGTG GCTCCTGAAT ACTACTTACT GACAACTATG CACTTGGGAC CTATACTGTT CGATACTCT TCCATAGAAA ACAACTCATC CACTTGGGAC CTATACTGTT CGATACTCT TCTTTTCACT TTCCTTTGTA GCAATTATT TTTCGTGTAT CCGTAGATA TGGTCATTAA TTTGCCATTT TTGATTAATA TGTCTTGCTA TCAGCTATCT CTTATATTAG TCTACTTGCT TTCACAAAAG CTATGAATTT TTAAACCATG TCCTAGCCTT AAAAAAATAAA TTTAAAAAAT TAAAATGAAA CAACTAACCG TTGAAGATG CAAACAAATT GAATTAGAAA TATTGATACT CTCTGTAAAA AGCACAATAT CAACTAATT ATTAACTACG TGGGGCGGTT CGACAACGAT TTATTAACAT TTTTCAAAAAG GAAAAAAAGCA CCTATCCTTA GAAACTGATA AGAACTACTT TAACAACTT ATCAAGAATA GACTAAAATT ATTGATACTC GAAATACAA AACCTATGGT TCCTGGTATCT GCAGGCATGC AAGCTTGGCG TAATCACTG TAACAACTT TCCTGTGTGA GCAGGCATGC AAGCTTGGCG TAATCACTG CATAGCTGT TCCTGGTATCT GCAGGCATGC AAGCTTGGCG TAATCACTG TCCTGGTATCT ACCTGTCCTTA CACACAAC ATACGAGCG GAAGCATAAA GCCTGTGTGC AAGCGAAAATT ATCAACACAC TAATCAAGGC GAAGCATAAA GTGTAAAGCC AATGAGTGAG CTAACCACA TTAATTGCGT TCCCGCTCACT GCCGGCTTTC ACCTGTCCTG CCAGCACAC TAATTGCGT TCCGCTCACC GCGGGCGTTC CACCGCCTGG CCTGAGAGA GTTGCACAA CGGGCC GGGGAGAGGC CACCGCCTGG CCCTGAGAGA GTTGCACAA CGGGCC CTGGTTTCCC AAAAATCCTGT TTGATGGGG TTCCCGCAAAT CGGCCCG CTGGTTTCCC AAAAATCCTGT TTGATGGGG TTCCCGCAAAT CCGGCCCG CTGGTTTTCCC CACCGCCTGG CCCTGAGAGA GTTCCACAA CGGGCC CTGGTTTTCCC CACCGCCTGG CCCTGAGAGA GTTCCACAAA CGGCCCC CTGGTTTCCC	TETRACAGET GCAATTGGAG TGAGTGTGCC TCGTCTCAGT TACTATCTG GGAAAGGAGA CAAAGAAGCC TATGTTTCTC TGGTTAATAG AGGTAGTCGA ATCTTTAACT TCTTTATCAT TCCACTGAGT TTTGGACTCA TGGTTTTAGG ACCAAATGCC ATCCTACTTT ACGGTAGTGA AAAATAATC GGAGGCGGCA TCTTGACCTC TCTCTTCGCT TTTCGTACGA TTATCCTGGC CTTAGATACC ATTCTTGGTT CCCAAATTCT CTTTACCAAT GGCTAGAAA AACGTATCAC AGTCTATACA GTCTTTGCTG GGCTACTCAA TTTGGGCTTG AATAGTCTCC TTTTTTCAAA CCATATCGTG GCTCCTGAAT ACTACTTACT GACAACTATG CTATCAGAGA CTTCTCTACT TGTTTTCTAT ATCATTTCA TCCATAGAAA ACAACTCATC CACTTGGGAC ATATCTTTAG CTATACTGTT CGGATACTCT CTCTTTCACT TTCCTTTGTA GCAAATTATT TCCTGATTAA TTTCGTGTAT CCGTAGATA TGGTCATTAA TTTGCCATTT TTGATTAATA CTGGTTTGAT TGTCTTGCTA TCAGCTATCT CTTATATTAG TCTACTTGCT TTCACAAAAG ATAGCATTTT CTATGAATTT TTAAACCATG TCCTAGCCTT AAAAAATAAA TTTAAAAAAA TATTAGGAGTT TAAAATGAAA CAACTAACCG TTGAAGATG CAAACAAATT GAATTAGAAA TTTTGGATTA TATTGATACT CTCTGTAAAA AGCACAATAT CAACAAAATT AATAACAAA TTTTGGATTA TATTGATACT CTCTGTAAAA AGCACAATAT CAACAAATT AATAACAAA TTTTGGATTA TAGGGGGGGT CGACATGAGG GCTTTATCCC TTGGGACGAC GATATTGATC TGTCCATGCC TAGGAGAAGA TACCAACGAT TTATTAAACAT TTTTCAAAAG GAAAAAAGCA AGTATAAGCT CCTATCCTTA GAAACTGATA AGAACTACTT TAACAACTTT ATCAAGAATA CCGACAGTAC GCAGGCATGC AAGCTGAGA AGAACTACAT TAACAACTTT ATCAAGAATA CCGACAGTAC GCAGGCATGC AAGCTTGGCG TAATCATGGT CATGGCTT TCCTGTGTA AATTGTTATC GCAGGCATGC AAGCTTGGCG TAATCACAG TAACTAGAA ACCTATGAG TCTGGTTATC TTATCGACCT GCAGGCATGC AAGCTTGGCG TAATCACAG GAACAACACT TCCTGGTATC TTATCGACCT AATGAGTGAG CTAACTCACA TTAATTGCGT TGCGCTCACA TCCTGGGGGGGC GCACACAGCT CCAGCTGCAT TAATTGCGT TGCGCTCAC GCGGGTACC TCGGGGGGCC AAAAATCCTGT TCCTGAGAGA GTTGCCCTT CACCCGCCTGG CCCTGAGAGA GTTGCCCTT CACCCGCCTGG CCCTGAGAGA GTTGCCCTT CACCCGCCTGG CCCTGAGAGA GTTGCCCCTT CACCCGCCTGG CCCTGAGAGA GTTGCCCTT TTGGGGCGCCA GGGTGGTTT TCTTTTTCAC CAGTGAGAC GCGGCACACCC CCAGCAGGCG AAAATCCTGT TTGATGGTGG TCCCCCAAAAT CCGCCAAAATT CCTTATAAAA TCAAAAAGGAA TCCACCGCCTGG CCCTGAGAGA GTTGCCCAAACCC CCTGGTTTGCC CCAGCAGGCG AAAATCCTGT TTGATGGTGG TTCCCCAAAAT CCGCAAAATT CCTTATAAAA TCAAAAAGGAA

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1509 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

- 60

55

-121-

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

5 (iv) ANTI-SENSE: NO

10 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:59: TGAATTTTGA ACAGTACACA GAATACTAAA ATATTTCTAG AAATTAATTT GAATTTTCTA 60 ATTGGATTTG TCGCATCTTA TTTCAATCTA CTATAGAAAA AAGTCTTTAA AATTATAAAA 120 15 CGCATCATAT CAAGGTTTTT CAAAAACCTT GATATGATGC CTTTTATTGT GGGAATATGT 180 ATTTCATTTT CTACTAAAAT TATGTTTTTG AATAACCTCT ATCTTAGTAG TTTGTATAAT 240 20 CCCCCTCAAT CAGTTTTTGC GATAAGCTTT AATGCTATGA CTATACCACT CTTGCATTTC 300 360 TTTTGATGGT GGTGTCATAT AATCGCCATA CATCTGGGTT AAAAATTGGT CATATTTTTT 420 GGGAACAGGC AACATACGGC CCTCAAACTC AGTTAAAATC AGTTCTTTAA AGGTATCAAC 25 TGGGAAGATT TCTTCATCC CTTCCTTACC GATCCCAACT CCTCCTTCAT ATTGAGGAGT 480 GTTGGTTACA GCATTTTTGA CTAGTTGATC AATTTTCTTG TAAAAGTAGC GAGGATTGAC 540 30 600 AAATCGGAGA GCGTACCAGC TACATAATCT AAGAAAATCT TTTAGTTTGC TATCACCGTG AACTGCTCGT GATTTTTTGA TATAAGCTAG TTGACGAAGA GCCACATACT TATAGCTCTT 660 GTCGACATG CTCAAGTCTG TAAATCGATC AATTGGGAAG ACATCGATGA AAAGGCTGGT 720 35 ATCATGACGC TTGTACTTAA CATGGTCTTC TATAACAGTA GAAGTGTCCA AAATCGATGC 780 GAAATTATGG AAGTACCAAG AAGATGTATC GTAGGAAAGA ACCTTGTAGC GAGGGTGATT 840 40 TTCTTCTTCA ATAATCTTCA GTAAACGCTC ATAATCCTCA CGATAAAGGG AAATATCAAT 900 ATCATCATCC CAAGGAATCA TACCTTTGTG GCGGATGGCT CCAAGCATGG TTCCATAACT 960 GAGAAAATAA GGAATATCAT GTTTCTTACA AGTCTCATCA ATATAGTCCA GCAGGGCTAG 1020 45 TTGAATTTCT TTAATTTCTT TTTTTTCTAA ATATTGCATC CTAATCCTCC AATTTATAAG 1080 CGTGAAATTC ATGACTGTAG AAGCGTTTTT CTTCTGGTGG TAGGGTCATA TAATCTCCAT 1140 50 AAAATTGTGT CAAAATAGTA TCAAATTTTT CAGGTGCAGG AAGGCTTAAA TTCTCAAAGG 1200 GTAAATCGAT TGTTTTATCA AAGGTACCAC TTGGGAAGAC TTCCTTTTCC TTAAATTTTG 1260 AAGGGATAAA AGCCATATAT TGCCCATTTT CACGACTATA TTTTTGAATT TCTTTCTCGA 1320 55 TTTTATTTGC AAAATAACGA GGAGAAACCG GTCGAAGGAG TAACCAGAAG GCTGTTCGTA 1380 TCCAATCTTT TAAAAGGCTA TCCTTATAGA CAATATTTTT ATGTTTACTG AAAGACAGCA 1440 60 GTTTGAAGCT TTCCAGTTTA TAACAAGTAT CAATGACCTT AGGATCATCA AAGCGATCTA 1500

-122-

	TAGGGAAAA	1509
	(2) INFORMATION FOR SEQ ID NO:60:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 671 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
10		
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
15	(iv) ANTI-SENSE: NO	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:	
	ACAAGGGATT TATTCCTTGG GACGACGACC TAGACTTTTT TATGCCTCGT AAAGATTATG	60
	AGAAATTAGC AGAATTATGG CCTCGTTATG CAGATGAACG TTATTTCTTG TCAAAGAGTC	120
25	ACAAGGATTT TGTTGATCGT AATCTTTTTA TTACCATTCG TGACAAGAAA ACCACCTGTA	180
	TCAAGCCTTA TCAGCAGGAT TTGGATTTGC CACATGGTCT GGCCTTGGAT GTTTTGCCTT	240
30	TGGATTATTA TCCGAAAAAT CCAGCTGAGC GGAAAAAACA GGTTCGTTGG GCCTTGATTT	300
	ATTCACTCTT TTGTGCGCAA ACTATTCCAG AAAAGCATGG TGATCTCATG AAATGGGGAA	360
35	GTCGCATTTT ACTGGGTTTG ACTCCAAAAT CTCTCCGTTA TCGCATCTGG AAAAAAGCTG	420
<i>J J</i>	AGAAAGAAAT GACTAAGTAT GATTTGGCTG ATTGTGATGG CATTACAGAA TTATGCTCAG	480
	GTCCTGGCTA CATGAGAAAC AAGTACCCAA TCACATCTTT TGAAGACAAT CTTTTCTTGC	540
40	CATTTGAAGG AACAGAGATG CCTATTCCAA TCGGCTATGA TGTCTATCTC AGAACTGCTT	600
	TTGGGGATTA TATGACGCCT CCACCAGCAG ACAAGCAGGT ACCGCATCAT GATACTGTCA	660
45	CTGCTGATAT G	671
10	(2) INFORMATION FOR SEQ ID NO:61:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2766 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
55	(ii) MOLECULE TYPE: DNA (genomic)	
=	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	

60

-123-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

-	ATCTTATACA	AGTCGTAAGC	CGCTTCCTTA	AAACCAGCTT	CTAGTAATTC	TTCCAATAAG	60
5	ATAGTAACCT	TCACACCATT	TGGTGTTCCC	AGTGAATAAA	GCTGAAAAGC	TTGTTCTCCT	120
	TTTGGCAAGT	TTTGTTCGAA	ACGGGCACCT	GCTGTTGGTC	TGTTTAGCCC	CGTAAAAGCT	180
10	CCTTGATTAC	TAGCTTCATC	CTGCCATACG	GTCGGTAATT	GATATGCTGA	CATCCGAGAC	240
	CTCCCTTAAA	TCGCATTCTT	GTCAAAACCG	AGTTTGCGTT	GAATAAACTT	AACGATTTCG	300
	ACGATGATAA	TCATTGAGAA	GCTTCCAGCC	ATAACAATTC	CCCATTGTGA	CAAGTCTAGT	360
15	TTGGTTACGT	GGAAGATTCC	TTCAAGCGGT	TCTACAACGA	TTGTTGCCAT	GAGAAGGATA	420
	AAGGATACCA	AGATGGACCA	GTTAAAGGTC	TTAGACTTGA	ATGGGCCAAC	TGTCAAGATG	480
20	GATTGGTAGA	CAGACTTGAC	ATTGTAGGCA	TGGAAGAGCT	GAATCAAACC	AAGGGTTGCA	540
	AAGGCCATCG	TTAGGGCATC	TGCATGAATA	GCATGATTGT	CACCCACATG	AACTGGGTAA	600
	GCAATCGCAA	GGCCATAAAC	ACTCATAACA	AGAGCTGCTT	GGAGTACACC	TTGATAAATG	660
25	ATAGAACTCA	AAACACCACC	TGAGAAGAAG	CTTGCCTTGC	GTCCACGTGG	TTTATGATTC	720
	ATGACACCAG	GTTCCGCAGG	TTCAACACCA	AGAGCGATAG	CTGGGAAGGT	ATCCGTTACC	780
30	AAGTTGATCC	ACAAAAGATG	AACCGGCTGC	AAGACATCCC	AACCAAACAA	GGTTGATAGG	840
	AAGATGGTTA	ATACTTCAGC	AGTATTAGCA	GAAAGTAGGT	ACTGAATAGT	CTTTTGAATG	900
2.5	TTTGAGAAGA	CCTTACGTCC	TTCTTCCACT	GCGACGATAA	TAGTCGCAAA	GTTATCATCT	960
35	GCAAGAATCA	TATCAGAAGC	CCCCTTAGAA	ACCTCTGTAC	CAGTGATTCC	CATACCGATA	1020
•	CCAATATCGG	CTGTTTTCAG	AGCTGGCGCG	TCATTGACAC	CGTCACCTGT	CATGGCAACG	1080
40	ACTTTACCTT	GTTTTTGCCA	AGCCTTGACG	ATACGAACCT	TGTGTTCTGG	AGACACACGG	1140
	GCATAAACAG	AGTATTGACC	AACAACTTTT	TCAAATTCTT	CATCTGACAG	TTCATTGAGT	1200
4.5	TCAGCACCAG	TTAAAACGTG	ACCTTCTGTA	TCGTTTGCGT	CAATGATTCC	CAAACGTTTG	1260
45	GCAATGGCTT	CCGCTGTGTC	TTGGTGGTCA	CCTGTAATCA	TAATTGGACG	GATTCCCGCT	1320
	TCCTTAGCCA	CACGAACAGC	CTCAGCGGCT	TCAGGACGTT	CAGGGTCAAT	CATCCCAATC	1380
50	AAACCAGTAA	AAATTAAATC	ATTTTCAAGO	TCTTCAGAAG	TGAGATTTTC	TGGAATACTA	1440
	TCGATAATCT	TATAAGCACC	TGCAAGGACA	CGCAAGGCTT	GATGAGCCAT	TTCAGAATTG	1500
	TTTGTATGAA	TGAGATTTGT	AACCTTCTCA	TCAATCGGAG	CAATATCCCC	AGCCTTATCA	1560
55	CGAAGAAGAC	AACGTTTTAA	GAGTTGGTCT	GGCGCACCCT	TGACTGCTAC	AAGGAAACGA	1620
	CTATCTGGCA	ATGGGTGAAC	TGTTGACAT	AGCTTACGGT	CAGAGTCAAA	TGGCAATTCA	1680
60	GCTACACGAG	GATATTTCTC	TAAGAAACCI	TTGACATCAT	AGCCCTTGTC	CAAGGCATAT	1740

-124-

	TGGATAAAGG CTGTTTCGGT TGGGTCACCA ATCAAGTTAC CTTCCACATC GATTTTCGTA	1800
	TCATTGGCCA AGACAACTGA ACGAAGTAGT GGCATTTCAA GACCTAGTTC AATATCATCA	1860
5	GCTGAGTCAT GTAGAACCGC ATCGTAGAAG ACTTTTTCGA CTGTCATCTT GTTCATAGTC	1920
	AGCGTACCAG TCTTATCAGA AGCGATGATT TCAGTTGAAC CAAGTGTTTC AACTGCTGGC	1980
10	AACTTACGAA CGATGGAATG TCGTTTGGCC AAAACTTGAG TACCAAGAGA AAGAACGATG	2040
10	GTAACGATAG CAGGAAGTCC TTCTGGAATG GCTGCAACAG CAAGGGCAAC AGAAGTCAAC	2100
	AACTCACCAA GTGGATTTTT CCCTTGAATG AAGACACCCA CTACAAAAGT AACAAGGGCA	2160
15	ATGACCAAGA TAGCATAGGT CAAGACCTTA GAAAGGTTGT TCAAGTTTTG TTTGAGTGGT	2220
	GTATCAGTCT CATCCGCATC TTGAAGCATA CCAGCAATAT GACCAACTTC AGTATACATA	2280
20	CCTGTATTGA CAACAACACC CATCCCACGA CCATAGGTTA CGTTTGAGTT TTGGAAGGCC	2340
	ATGTTGACAC GGTCACCAAT GCCAGCATCT GTCGCAAGAT CGACTGACAA GTCTTTTTCG	2400
	ACTGGTACAG ATTCACCTGT CAAGGCTGCT TCTTCAATTT TAAGAGAGTT GGCTTCTATC	2460
25	AAACGTAGGT CCGCTGGTAC CACGTCACCT GCTTCAAGGG CAACGATATC GCCTGGTACC	2520
	AATTCTTTAG AGTCAATCTC TGCCATGTGT CCATCACGAA GAACGCGGGC AACTGGACTA	2580
30	GACATGGATT TGAGGGCTTC AATAGCTTCT TCAGCTTTTC CTTCTTGGTA AACACCAAAG	2640
	GCAGCGTTGA TGATAACCAC AGCTAGGATG ATAATGGCAT CTGCGATATC TTCCCCACCA	2700
	GAAGTCACGA CTGACAAGAT TCTGCCGCAA CTAGGATGAT AATCATCAAA TCCTTAAATT	2760
35	GCTCGA	2766
	(2) INFORMATION FOR SEQ ID NO:62:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1577 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:	
J J	TGGATTTATC CTCTTTTCG TTCTTTTGGG AGCAGTTTTT GAGGAAAAAA TGAGAAAAAA	60
	TACGTCCCAA GCTGTGGAGA AATTACTGGA CTTGCAAGCT AAAACCGCAG AAGTCTTGAG	120
60	TGATGATAGT TATGTCCAAG TTCCTTTGGA ACAAGTCAAG GTAGGCGACC TGATTCGAGT	180

-125-

	GCGTCCCGGT	GAAAAGATTG	CTGTTGATGG	TGTCGTAGTA	GAAGGTGTCT	CTAGTATTGA	24
	CGAATCCATG	GTGACAGGTG	AGAGTCTGCC	TGTGGACAAG	ACAGTTGGAG	ATACTGTCAT	300
5	TGGCTCAACC	ATCAATCATA	GTGGAACGCT	TGTCTTTAGA	GCAGAAAAAG	TTGGCTCAGA	360
	GACTGTTTTG	GCTCAGATTG	TGGATTTTGT	GAAGAAAGCT	CAGACAAGTC	GTGCGCCGAT	420
10	TCAGGACTTG	ACGGATAAGA	TTTCAGGGAT	TTTTGTCCCA	GTAGTTGTCA	TTTTAGGAAT	480
	CATGACCTTT	TGGGTTTGGT	TCGTCTTGCT	CAGGGATAGT	GTGGTCGTGC	TTGGAGCTAG	540
	CTTTGTGTCC	TCTCTTCTCT	ACGGAGTGGC	GGTTTGATTA	TCGCCTGTCC	TTGTGCCTTG	600
L5	GGACTTGCAA	CACCGACAGC	CCTTATGGTG	GGGACAGGAC	GTAGTGCCAA	GATGGGGGTT	660
	CTCCTCAAAA	ATGGAACTGT	CTTACAGGAA	ATCCAGAAAG	TTCAAACTCT	TGTCTTTGAT	720
20	AAGACCGGGA	CTTTGACGGA	AGGGAAACCT	GTGGTAACAG	ATATCATCGG	CGACGAAGTA	780
	GAAGTGTTTG	GATTGGCAGC	CTCCTTGGAA	GATGCTTCTC	AACACCCACT	GGCTGAGGCT	840
	ATCGTTAAGC	GAGCGAGTGA	AGCTGGACTT	GAGTTTCAAA	CTGTTGAAAA	TTTTCAGGCC	900
25	TTGCACGGGA	AAGGTGTTTC	AGGGCGAATC	AATGGAAAAC	AAGTTTTACT	TGGAAATGCT	960
	AAAATGCTGG	ATGGCATGGA	TATTTCTAAT	ACTTATCAAG	ATAAACTAGA	AGAACTAGAA	1020
30	AAAGAAGCTA	AGACAGTTGT	GTTTTTAGCT	GTTGACAATG	AAATCAAAGG	CTTGCTTGCT	1080
	TTGCAAGATA	TTCCTAAGGA	AAATGCTAAG	CTAGCCATCA	GTCAGCTAAA	AAAACGTGGT	1140
	CTCCGAACAG	TCATGCTGAC	AGGAGACAAT	GCTGGTGTGG	CGCGTGCTAT	TGCAGATCAA	1200
35	ATCGGAATTG .	AAGAGGTCAT	TGCAGGCGTC	TTGCCAGAAG	AAAAAGCCCA	TGAAATCCAT	1260
	AAACTGCAAG	CGGCTGGCAA	AGTAGCCTTT	GTTGGGGACG	GTATCAATGA	CGCTCCTGCC	1320
10	CTTAGTGTAG	CAGATGTGGG	AATTGCTATG	GGTGCTGGAA	CAGATATCGC	CATCGAGTCA	1380
	GCAGATTTGG	TGTTGACAAC	CAATAATCTT	TTAGGAGTGG	TTCGTGCCTT	TGATATGAGT	1440
	AAGAAAACCT	TTCATCGAAT	TCTACTCAAT	CTTTTCTGGG	СТТТТАТСТА	CAATGTTGTC	1500
15	GGAATTCCGA	TTGCAGCAGG	AGTCTTTTCA	GGTGTTGGCT	GGCTCTCAAC	CCAGATTGGC	1560
	AAGGCTAGCC	CAATGGC					1577
50	(2) INFORMA	TION FOR SE	Q ID NO:63:				
			ACTERISTICS				
	(:	B) TYPE: nu					
55	•	D) TOPOLOGY					
	(ii) MO	LECULE TYPE	: DNA (geno	omic)			

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

60

-126-

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:	
	AAAATGATAT AATAGAATTT ATGGATAAAA ATAAGATTAT GGGATTAACC CAAAGAGAAG	60
10	TCAAGGAAAG ACAGGCTGAG GGTTTGGTCA ATGACTTTAC CGCATCAGCC AGTACCAGCA	120
10	CTTGGCAAAT CGTTAAACGA AATGTCTTTA CCCTTTTTAA CGCTTTGAAC TTTGCCATTG	180
	CTTTGGCCCT TGCCTTTGTG CAGGCTTGGA GCAATCTGGT CTTCTTTGCT GTTATCTGCT	240
15	TTAACGCTTT TTCTGGGATT GTGACCGAGC TACGAGCCAA ACACATGGTG GACAAGCTCA	300
	ATCTCATGAC CAAGGAAAAG GTCAAAACCA TCCGTGATGT CAGGAAGTTG CTCTTAATCC	360
20	TGAAGAATTA GTGCTAGGAG ATGTCATTCG TTTGTCTGCA GGAGAGCAGA TTCCTAGTGA	420
20	TGCCTTGGTT TTGGAAGGCT TTGCGGAAGT CAATGAAGCC ATGTTAACGG GAGAAAGTGA	480
	TTTGGTGCAA AAGGAAGTTG ACGGCTTACT TTTGTCAGGA AGTTTCCTAG CCAGTGGGTC	540
25	AGTTTTATCT CAAGTTCACC ATGTCGGTGC AGACAACTAT GCTGCCAAAC TCATGCTTGA	600
	GGCTAAGACC GTTAAACCCA TCAACTCCCG TATCATGAAA TCGCTGGACA AGTTGGCTGG	660
30	TTTTACTGGG AAGATTATCA TTCCCTTTGG TCTGGCTCTC TTGCTGGAAG CCTTGCTTTT	720
50	AAAAGGCCTG CCTCTCAAGT CATCCGTTGT AAACTCGTCG ACAGCTCTTT TGGGAATGTT	780
	GCCTAAGGGA ATTGCCCTTT TGACCATTAC TTCGCTCTTG ACTGCAGTGA TTAAGTTGGG	840
35	CTTGAAAAAG GTCTTGGTGC AGGAGATGTA CTCTGTTGAG ACCTTGGCGC GCGTGGATAT	900
	GCTCTGTCTG GACAAGACGG GCACCATCAC CCAAGGAAAG ATGCAGGTGG AGGCTGTTCT	960
40	TCCACTGACG GAAACTTACG GTGAAGAGGC TATTGCCAGC ATCTTGACTA GCTACATGGC	1020
-+	CCATAGTGAG GATAAGAATC CAACTGCCCA AGCCATTCGC CAGCGTTTGT GGGAGATGTT	1080
	GCTTATCCT	1089
45	(2) INFORMATION FOR SEQ ID NO:64:	
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 731 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	

60

-127-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:						
	GCTAGCAATA TCATGTTTAT GCTTGATTTG GGGAATCATT TAGATCAGTG GTCCTTGAAA	60					
5	AAAACTGCAA CAGATTTAGA ACAGAGTCTT CTTGCAAAAG AGAGCGATGT ATTCCTAGTA	120					
	CAGGGCGATA CGGTTGTTAG TATCAAGAGT TCCGATGTTC AAATAGGAGA TGTCTTGATC	180					
10	TTATCTCAAG GAAATGAAAT TCTGTTTGAT GGACAAGTAG TTTCAGGTTT AGGTATGGTC	240					
10	AACGAAAGTT CCTTGACAGG AGAGAGTTTT CCAGTTGAAA AAAGAGAGTC TGATTTGGTT	.300					
	TGTGCAAATA CAGTATTAGA AACTGGAGAG TTACGCATTC GTGTAACAGA TAATCAGATG	360					
15	AACAGCCGTA TTTTACAGCT GATTGAGTTG ATGAAGAAAT CTGAAGAAAA CAAGAAAACG	420					
	AAACAACGCT ATTTCATCAA GATGGCGGAT AAAGTCGTCA AATATAATTT CTTGGGGTCT	480					
20	GGGCTGACTT ACCTATTGAC AGGTTCTTTT TCTAAGGCTA TTTCTTTCCT ATTGGTCGAT	540					
20	TTCTCCTGCG CTTTGAAAAT CTCTACTCCT GTAGCTTATT TGACAGTTAT CAAGGTAGGG	600					
	TTGAACCGTG AAATGGTGAT TAAGGATGGA GATGTTCTGG AGAAATATCT GGTAGTTGAT	660					
25	ACTTTCTTGT TTGATAAGAC AGGACCAATC ACAACTAGTT ATCCTATAGT TGAAAAGGTG	720					
	TACCCTTTGG G	731					
30	(2) INFORMATION FOR SEQ ID NO:65:						
35	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2197 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 						
	(ii) MOLECULE TYPE: DNA (genomic)						
4.0	(iii) HYPOTHETICAL: NO						
40	(iv) ANTI-SENSE: NO						
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:						
	TATATTATTC CATTTGTGGT AAATCTGTAC ATGATAGATT AAGTACTCCG ACTGAAACCA	60					
50	GTACACTAAT CAAGCTATAG CCAGCTAACA AAAGGAGTAA CCATAGAATA TTAACTTTTA	120					
	AATTTTCCTT CATCGTTTAC ACCTTCTCTT TCACATTCTT ACCAAGGATA CCAGCTGGGC	180					
55	GGACAATCAA GATCAACAAC AAGATTCCAT AAACAATGGC ATCACGGAAA TCTGACATCC	240					
ر ر	CAAAGGCTGT CGCAAAGGTT TCCAATAGAC CAATCACAAA GCCACCAAGA GCCGCACCAG	300					
	GAATAATTCC GATACCACCA AGTACTGCGG CAACGAAAGA TTTAAGACCT GGAGTAACCC	360					
60	CCATCAAAGG CTCAAGAGAG TTATAATAAA GAGCAATCAG AACACCAGCC GCACCCGCAA	420					

-128-

	GAGCAGAACC	CAAAGCGAAG	GTAAAGCTAA	TCGTACGGTT	TATATTGATC	CCCATCAATT	480
	GCGCCGCGTC	GCTATCTACT	GATACTGCAC	GCATGGCTTT	CCCCATCTTA	GTCTTTTGGA	540
5	CAATGACTTG	TAACAAAATC	ATCAAAATCA	AGGAAATGCC	CAAAATCATT	AACTGCACAT	600
	TTGTTAAGCT	AATTGGTCCC	AAATCATATC	GAACTGTTTG	AATCGCTTGA	GGGAAGGCAC	660
10	GGGTATTGGC	ACCAACCAGA	TAGACCATTC	CATACTCCAA	TAGGAAAGAA	ACCCCAATAG	720
LU	CCGTAATCAA	AACAGCAATA	CGAGTAGAGT	GGCGCAAAGG	TCGGTAAGCA	AGAAACTCAA	780
	TCACGACACC	AAGAATAGCT	GTCGCTAGCA	TAGCTACAAT	AAGCGCTACA	AAGAAATTCA	840
15	TTTGGAAAGA	ATTGATCAAG	AAATAACCGA	TAAAGGCTCC	CATCATATAA	ATATCACCAT	900
	GGGCGAAGTT	GATGAGCTTG	ATAATTCCGT	AAACCATGGT	ATATCCTAGG	GCTAACAGCG	960
20	CGTAAACACT	ACCTAGAATC	AAACCATTTA	CGAGTTGTTG	GAGCATAAGA	TTCACTCTTT	1020
20	CTATTTATAA	TTCCGAGGGT	TTTCCCTCAC	TTTTTGATAG	GTTCTTATAC	TCAATGAAAA	1080
	TCAAAGAGCA	AACTAGGAAA	CTAGCCGCAG	GTTGCTCAAA	GCACTGCTTT	GAGGTTGTAG	1140
25	ATAAGACTGA	CGAAGTCAGT	CACATATATA	ATCCAAGGCG	ACGTTGACGC	AGTTTGAAGA	1200
	GATTTTCGAA	GAGTATTAAA	TATCGAAACA	GGGAGTGAGT	CAAAGGCTCA	TTCCCTATTT	1260
30	CAACATTTTT	CTATTATGGT	TTTACAACTT	CTGCTGCTTC	AACTTTACCA	TTGTTCATGG	1320
, ,	TCATCATGTA	AGCAGTTTTG	ACTGTGTTGT	GGTCTGCATC	GAAGCTTGTT	TGACCAGTTA	1380
	CACCTTCAAA	ATCTTTTGTT	TTAGCAAGGT	TATTCTTGAT	TTCACCTGAA	TTTTTAGCAC	1440
35	CTTTTGCTGC	GTTTGCTACA	AGGTGAACTG	AATCATAAGC	CAAGGCTGCA	AATGTTGAAG	1500
	GCTCTTCATT	GTACTTAGCA	CGGTAAGCGT	CAAGGAAGGC	TTTAGCTTTA	GCTGAAACTT	1560
40	CTACAGTAGT	TGAGAAGCCT	GAGATAAAGT	AGATGTTTGA	TGCTTTTTCA	GCAGTTGCTT	1620
= 0	GTTGTACAAA	CTCCTCACCG	TTGAATCCAT	CACCACCAAC	GATTGGTTTG	TCAATTCCCA	1680
	TACCACGCGC	TTGGTTTACA	ATCTTACCAG	CCTCATTATA	GTAACCAGGA	ACAACGATAG	1740
45	CATCAAAGTC	TTTCCCTTTC	ATTTTTGTAA	GGGCTGCTTG	GAAGTCTGTG	TCACCTGCTA	1800
	CGAAAGTTTC	ATCTGCAACG	ATTTCACCCT	TGTATGACTC	GCGGAAAGAT	TTGGCAATCC	1860
50	CTTTAGCATA	GTCACTGGCA	TTGTCAGTGT	AAAGAACAAC	TTTCTTAGCA	TTTAATTTTT	1920
50	CAGAAACATA	GTTTGAGATA	ATTTTTCCTT	GGAAGCTATC	TTGGAAAGTT	CCAATAAAGA	1980
	GGTAATCTTG	ACCTTTAGTC	AATCCATCTT	GAGTCGCACT	TGGTGAGATC	AATGGAACAC	2040
55	CTGCTTTTGT	AGCGTTCGCT	ACCGCAGCTG	CAGTCGCACC	AGATGTCGCA	GGTCCTACGA	2100
	CTGCTGATAC	TTTAGATTGG	GTTACAAGGT	TAGTTGTAAC	TGAAGCAGCC	TCAGCTGTTT	2160
50	CAGACTTATT	ATCTTTATCG	ACTACTTCGA	TTTGTTT			2197
	(2) INFORM	ATION FOR SI	EQ ID NO:66	;			

-129-

(i) SEQUENCE CHARACTERISTICS:

5	(A) LENGTH: 900 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
10	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:	
	TGTCCCAAGA CCAGACTTGG TATGCTCTGG CCTATGATGG GGCAGAAGTG ATTGGCTTTC	60
20	TAACTGTTCA GGAGACTCTC TTTGAAGCAG AAGTCCTGCA AATCGCTGTC AAAGGAGCTT	120
	ATCAGGGTCA GGGAATTGCG TCAGCCTTGT TTGCTCAATT GCCGACAGAC AAGGAAATTT	180
25	TCCTCGAAGT CAGACAGTCA AATCAACGAG CGCAAGCATT TTACAAGAAA GAAAAGATGG	240
-	CAGTTATCGC TGAGCGAAAG GCCTACTACC ATGACCCAGT CGAGGACGCC ATTATCATGA	300
	AGAGAGAAAT AGATGAAGGA TAGATATATT TTAGCATTTG AGACATCCTG TGATGAGACCC	360
30		
	AGTGTCGCCG TCTTGAAAAA CGACGATGAG CTCTTGTCCA ATGTCATTGC TAGTCAAATT	420
35	GAGAGTCACA AACGTTTTGG TGGCGTAGTG CCCGAAGTAG CCAGTCGTCA CCATGTCGAG	480
33	GTCATTACAG CCTGTATCGA GGAGGCATTG GCAGAAGCAG GGATTACCGA AGAGGACGTG	540
	ACAGCTGTTG CGGTTACCTA CGGACCAGGC TTGGTCGGAG CCTTGCTAGT TGGTTTGTCA	600
40	GCTGCCAAGG CCTTTGCTTG GGCTCACGGA CTTCCACTGA TTCCTGTTAA TCACATGGCT	660
	GGGCACCTCA TGGCAGCTCA GAGTGTGGAG CCTTTTGGAG TTTCCCTTGC TAGCCCTTTT	720
	AGTTCAGTGG GTGGGGCACA CAGAGTTGGT CTATGTTTCT GAGGCTGGCG ATTACAAGAA	780
45	TTGTTGGGGA AGACACGAGA CGATGCAGTT GGGGAGGCTT ATGACAAGGT CGGTCGTGTC	840
	ATGGCTTGAC CTATCCTGCA GGTCGTGAGA TTGACGAGCT GGCTCATCAG GGGCAGGATA	900
50	(2) INFORMATION FOR SEQ ID NO:67:	
55	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1023 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
60	(iii) HYPOTHETICAL: NO	

-130-

(iv) ANTI-SENSE: NO

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:	
	CCGGCGATCT TCCGCTAGAA ATAGTCTACC AAGATGAGGA TGTGGCTGTC GTTAACAAAC	60
10	CTCAGGGAAA TGGTTGTGCA CCCGAGTGCT GGTCATACCA GTGGAACCCT AGTAAATGCC	120
	CTCATGTATC ATATTAAGGA CTTGTCGGGT ATCAATGGGG TTCTGCGTCC AGGGATTGTT	180
1 -	CACCGTATTG ATAAGGATAC GTCAGGTCTT CTCATGATTG CTAAAAACGA TGATGCGCAT	240
15	CTAGTACTTG CCCAAGAACT CAAAGATAAA AAGTCTCTCC GCAAATATTG GGCGATTGTT	300
	CATGGAAATC TGCCTAATGA TCGTGGTGTA ATTGAAGCGC CGATTGGCCG GAGTGAAAAA	360
20	GACCGTAAGA AACAGGCTGT AACTGCTAAA GGGAAGCCTG CAGTGACGCG TTTTCACGTC	420
	TTGGAACGCT TTGGCGATTA TAGCTTAGTA GAGTTGCAAC TGGAGACAGG GCGCACTCAT	480
25	CAAATCCGTG TCCACATGGC TTATATCGGC CATCCAGTCG CTGGTGATGA GGTCTATGGT	540
	CCTGCAAGAC TTTGAAAGGA CATGGACAAT TTCTTCATGC CAAGACTTTA GGTTTTACTC	600
	ATCCGAGAAC AGGTAAGACC TTGGAATTTA AAGCAGATAT CCCAGAGATT TTTAAGGAAA	660
30	CCTTGGAGAG ATTGAGAAAG TAAGAATGAA AAAGAAATTA ACTAGTTTAG CACTTGTAGG	720
	CGCTTTTTTA GGTTTGTCAT GGTATGGGAA TGTTCAGGCT CAAGAAAGTT CCAGGAAATA	780
35	AAATCCACTT TATCAATGTT CAAGAAGGTG GCAGTGATGC GATTATTCTT GAAAGCAATG	840
	GACATTTTGC CATGGTGGAT ACAGGAGAAG ATTATGATTT CCCAGATGGA AGTGATTCTC	900
	GTTATCCATG GAGAGAAGGA ATTGAAACGT CTTATAAGCA TGTTCTAACA GACCGTGTCT	960
40	TTCGTCGTTT GAAGGAATTG AGTGTCCAAA AACTTGATTT TATTTTGGTG ACCCATACCC	1020
	ACA	1023
45	(2) INFORMATION FOR SEQ ID NO:68:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 675 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
50	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
55	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

-131-

	GCTCGGTACC CGGGGATCCT CTAGAGTCGA TAATATCAAC CTGCAGGTTG ATGAACGAGA	60						
5	TCGGATTGCT CTTGTTGGGA AAAATGGTGC AGGTAAGTCT ACTCTTTTGA AGATTTTAGT	120						
	TGGAGAAGAG GAGCCAACTA GCGGAGAAAT CAATAAGAAA AAAGATATTT CTCTGTCTTA	180						
	CCTAGCCCAA GATAGCCGTT TTGAGTCTGA AAATACCATC TACGATGAAA TGCTTCATGT	240						
10	CTTTAATGAT TTGCGTCGGA CGGAGAGACA ACTGCGTCAG ATGGAGCTGG AGATGGGTGA	300						
	AAAGTCTGGT GAGGATTTGG ATAAACTGAT GTCAGATTAT GACCGCTTAT CTGAGAATTT	360						
15	TCGCCAAGCA GGTGGCTTTA CCTATGAAGC TGATATTCGA GCGATTTTGA ATGGATTCAA	420						
	GTTTGACGAG TCTATGTGGC AGATGAAAAT TGCTGAGCTT TCTGGTGGTC AAAATACTCG	480						
	TTTGGCACTT GCCAAAATGC TCCTTGAAAA GCCCAATCTC TTGGTCTTGG ACGAGCCAAC	540						
20	TAACCACTTG GATATTGAAA CCATCGCCTG GCTAGAGAAT TACTTGGTAA ACTATAGCGG	600						
	TGCCCTCATT ATCGTCAGCC ACGACCGTTA TTTCTTGGAC AAGGTTGCGA CAATTACGCT	660						
25	AGATTTGACC AGCAT	675						
25	(2) INFORMATION FOR SEQ ID NO:69:							
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 582 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 							
35	(ii) MOLECULE TYPE: DNA (genomic)							
	(iii) HYPOTHETICAL: NO							
	(iv) ANTI-SENSE: NO							
40								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:							
45	TAGAGTCGAT AGCAATAGAT TGAGTAAGTT GTAGCCTTAC CAGCATCGAT AGAAACAAGG	60						
	GCACCACGGT GACGTCCACC AATTTCCCCT GGAATCAATG GCAAGTATTG GTCGAAGGTA	120						
	TGGTTCATGA TACCGTAACC ACGAGTCATT GACAAGAACT CAGTTGAGTA TCCAATCAAA	180						
50	CCACGCGCTG GAACAAGGAA GACCAAACGA GTTTGACCAT TACCAGTTGA AATCATATCC	240						
	AACATTTCAC CTTTACGTTC AGAAAGGCTT TGGATAACAG ACCCTTGGTA TTCTTCTGGA	300						
55								
	GTGTCGATTT GTACACGTTC AAATGGTTCA CATTTAACAC CGTCGATTTC TTTTACGATA	360						
	ACTTCTGGAC GAGATACTTG AAGTTCATAG CCCTCACGAC GCATTGTTTC GATAAGGATT	420						
60	GACAAGTGCA ATTCTCCACG TCCTGAAACA GTCCATTTAT CTGCGTGAAT CAGTTGGGTC	480						
	AACACGAAGG AACGTCTGTT TGCAATTCTG CCTGCAAGCG TTCTTCCACC TTACGAGAAG	540						

-132-

		500						
	TTACCCATTT ACCTTCTTTA CCAGCAAATG GTGAGTTGTT GA	582						
5	(2) INFORMATION FOR SEQ ID NO:70:							
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1337 base pairs							
	(B) TYPE: nucleic acid							
10	(C) STRANDEDNESS: single (D) TOPOLOGY: linear							
	(ii) MOLECULE TYPE: DNA (genomic)							
_	(iii) HYPOTHETICAL: NO							
15	(iv) ANTI-SENSE: NO							
20								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:							
	TTGGATTGAA GAACAAAGAT TTGGACTCTA TTGACCTTAT GGTTTGGGGG AAATTTGGAA	60						
25	TTTCAAAGTC GCCCAACCCC CTCATTTCTA AAGAATTGGA AGCCGGATGG GACTCTACCA	120						
	AACACGTTTA ACCCAAAGAA AATTGGCAGG AAGAAATGGA AAAAATTTGA TTTTTAAAAA	180						
3 A	ATACTTAAGG AAACTTTAAG CTAGGGAGTG TACCCTAAGT TCAATAAAGT TAAAGAAGAC	240						
30	CTTAACTTAA ACTCCTAAAA CTTTTTCAAT AATAATCTCC CTATAAAAAT AAAGTCGCCC	300						
	AATCAGGCGG CTTAATTTTT TTGAAAAATG GGCTTGGTGC CTGAGAATAA ATAGCTTAGT	360						
35	GATAGAAGAA AATGGGGAAA TATGGTATAA TGAAACGATA GATTTTTGAA TAGGAATAAG	420						
	ATCATGTTTG GATTTTTTAA GAAAGATAAG GCTGTGGAAG TAGAGGTTCC GACACAGGTT	480						
	CCTGCTCATA TCGGCATCAT CATGGATGGC AATGGCCGTT GGGCTAAAAA ACGTATGCAA	540						
40	CCGCGAGTTT TTGGACACAA GGCGGGCATG GAAGCATTGC AAACCGTGAC CAAGGCAGCC	600						
	AACAAACTGG GCGTCAAGGT TATTACGGTC TATGCTTTTT CTACGGAAAA CTGGACCCGT	660						
45	CCAGATCAGG AAGTCAAGTT TTCATGAACT TGCCAGTAGA GTTTTATGAT AATTATGTCC	720						
	CGGAACTACA TGCGAATAAT GTTAAGATTC AAATGATTGG GGAGACAGAC CGCCTGCCTA	780						
	AGCAAACCTT TGAAGCTTTA ACCAAGGCTG AGGAATTGAC TAAGAACAAC ACAGGATTGA	840						
50	TTCTTAATTT TGCTCTTAAC TATGGTGGAC GTGCTGAGAT TACACAGGCG CTTAAGTTGA	900						
	TTTCCCAGGA TGTTTTAGAT GCCAAAATCA ACCCAGGTGA CATCACAGAG GAATTGATTG	960						
55	GTAACTATCT CTTTACTCAG CATTTGCCTA AGGACTTACG AGACCCAGAC TTGATTATCC	1020						
, ,	GTACTAGTGG AGAATTACGT TTGAGCAATT TCCTTCCATG GCAGGGAGCC TATAGTGAGC	1080						
60	TTTATTTTAC GGACACCTTA TGGCCTGATT TTGACGAAGC GGCCTTGCAG GAAGCTATTC	1140						
	TTGCCTATAA TCGTCGTCAT CGCCGATTTG GAGGAGTTTA GGAGGAAATA TGACCCAGGA	1200						

-133-

	TTTACAGAAA AGAACCTTGT TTGCAGGGAT TGCCCTGGCT ATTTTCCTAC CAATTTTAAT	1260							
5	GATTGGGGGC TCTTGCTTCA GATAGCAATC GGAATCGTAG CCATGCTAGC CATGCATGAA	1320							
5	CTTTTGAAGA TAAGAGG								
	(2) INFORMATION FOR SEQ ID NO:71:								
10 15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 818 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 								
	(ii) MOLECULE TYPE: DNA (genomic)								
	(iii) HYPOTHETICAL: NO								
20	(iv) ANTI-SENSE: NO								
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:								
	TCGGTACCCG GGGATCCTCT AGAGTCGATA GTCGCCAAGC AGAAGAAGGG AACACCATTC	60							
	GTAGAAGACG TGAGTGCGAC GAATGCCAAC ACCGTTTTAC AACCTACGAA CGAGTAGAAG	120							
30	AAAGAACCTT AGTGGTTGTT AAAAAAGATG GCACACGGGA ACAATTCTCC AGAGATAAAA	180							
	TCTTTAATGG GATTATCCGC TCAGCCCAGA AACGTCCTGT GTCAAGTGAT GAAATCAACA	240							
35	TGGTGATCCT CTAGAGTCGA ACAGAAACTC CGTGGTCGAA ATGAAAATGA AATTCAAAGT	300							
, ,	GAGGACATTG GTTCACTCGT CATGGAGGAG TTGGCTGAAT TGGACGAGAT TACCTATGTA	360							
40	CGTTTTGCTA GTGTCTATCG TAGTTTTAAG GATGTCAGTG AGTTAGAGAG CTTGCTCCAA	420							
	CAAATCACCC AGTCCTCTAA AAAGAAAAAG GAAAGATAAA TGAAGCCAAT TGACCGTTTT	480							
A =	TCTTATCTAA AGAATAATCG GGTGTCGCAA GATACCTCAT CTCTGGTACA GTGCTACCTC	540							
45	CCGATTATCG GTCAGGAGGC ACTGAGCCTT TATCTTTATA CGATTAGTTT TTGGGATAAT	600							
	GGTAGAAAGG AATATCTTTT TTCAAGTATC CTCAATCATC TTAACTTTGG AATGGATAGA	660							
50	CTGATAAAAT CATTGAAAAT CTTATCTGCT TTTAATCTCT TGACTCTCTA TCAAAAGGGG	720							
	GATGTTTATC AGCTAGCCCT CCATGCTCCT CTATCTAGTC AAGACTTCTT GGGGCATCCT	780							
	GTTTATCGCA GACTCTTAGA GAAAAAGATT GGGGACAA	818							
55	(2) INFORMATION FOR SEQ ID NO:72:								
60	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 746 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 								

-134-

	(ii) MOLECULE TYPE: DNA (genomic)							
5	(iii) HYPOTHETICAL: NO							
,	(iv) ANTI-SENSE: NO							
10	(wi) SEQUENCE DESCRIPTION OF TO NO TO							
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:							
15	TTACCCGGGG ATCCTCTAGA GTCGATATGC TCTCTGAGGG TCAATTCCTC ATACAGACTA	60						
13	GGCGTCTCAG GAATGTAGCC AATCTGCTTG CGGTAGCTAG TCGCATCTCC TTGCAGAGTC	120						
	AGGCCATTGA TATTGATGGA GCCACTATAA GGTGCCAACA GACCGATAAT CTCATTGATC	180						
20	GTCGTTGATT TCCCAGCACC ATTGAGACCA ATCAAACCGA CCAACTGCCC ACTTTCAACA	240						
	GTAAAGGACA CATCTTTCAA AACAGGAACA TGAACATAGC CACCTGTCAG GTTTTTAATT	300						
	TCTAACATAT TTTCTCCAAA TCTGGTATAA TGTAGCTATA TTATATCAAA ATTCAGTACA	360						
25	GTAGAGGTAG ATTTTATGTC AGATTGCATT TTTTGTAAAA TCATCGCAGG GGAAATTCCT	420						
	GCTTCGAAAG TATATGAAGA TGAGCAGGTC CTTGCCTTTC TTGATATCTC TCAAGTAACA	480						
30	CTAGGACACA CCTTGGTCGT GCCAAAAGAA CACTATCGCA ATCTTTTGGA GATGGATGCT	540						
	ACGAGCGCCA CCAACTCTTT GCCCAAGTAC CAAAAGTAGC TCAAAAAGTC ATGAAAGTCA	600						
	CTAAGGCTGC TGGTATGAAT ATCATTTCCA ACTGTGAAGA AGTCGCTGGT CAAACAGTTT	660						
35	TTCATACTCA CGTTCACCTT GTGCCTCGCT ACAGTGCTGA CGATGACCTC AAGATTGATT	720						
	TTATCGCCCA CGAAACAGAC TTTGAC	746						
40	(2) INFORMATION FOR SEQ ID NO:73:							
40	(i) SEQUENCE CHARACTERISTICS:							
	(A) LENGTH: 767 base pairs(B) TYPE: nucleic acid							
45	(C) STRANDEDNESS: single (D) TOPOLOGY: linear							
	(ii) MOLECULE TYPE: DNA (genomic)							
	(iii) HYPOTHETICAL: NO							
50	(iv) ANTI-SENSE: NO							
55								
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:							
	GATCCAAGCA GTCCGTGATG TAAGCTTTGA AGTTAATGAA GGAGAAGTTG TTTCCCTTAT	60						
60	CGGTGCCAAC GGTGCAGGTA AGACAACTAT TCTTCGCACC TTGTCAGGTT TGGTTCGACC	120						

-135-

	AAGTTCAGGA AAGATTGAAT TTTTAGGTCA AGAAATCCAA AAAATGCCAG CTCAGAAAAT	180
	TGTGGCAGGT GGTCTTTCAC AAGTTCCAGA AGGACGCCAC GTCTTTCCTG GCTTGACTGT	240
5	TATGGAAAAT CTTGAAATGG GAGCTTTCTT AAAGAAAAAT CGTGAAGAAA ATCAAGCTAA	300
	CTTGAAGAAG GTTTTCTCAC GCTTTCCTCG TCTTGAAGAA CGTAAGAACC AAGATGCAGC	360
10	TACTCTTTCA GGAGGGGAAC AACAAATGCT TGCCATGGGA CGCGCTCTTA TGTCAACACC	420
10	AAAACTTCTT CTTTTAGATG AACCATCAAT GGGACTTGCC CCAATCTTCA TCCAAGAGAT	480
	TTTTGATATC ATTCAAGATA TTCAGAAGCA AGGAACAACC GTCCTCTTGA TTGAACAAAA	540
15	TGCCAATAAA GCACTTGCAA TCTCTGACCG AGGATATGTA CTGGAACAGG GAAATCGTCT	600
	ATCAGGGACA GGGAAAGACT CGCTCATCAG AGGAGTCAGA GCATATCTAG GTGGTAAACA	660
20	TCCAGTGGAT TTTTGTCGGC AGTGAGTTCG GGATCATCAT TTAGTTGGGG CTTGTTAGGT	720
20	TCAGTAAGTC GGTTATCAAA TCAGGGTTGT TTGCCGCAGT GGGGTCG	767
	(2) INFORMATION FOR SEQ ID NO:74:	
25	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 695 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
30	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
35	(iv) ANTI-SENSE: NO	
	-	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:	
	GAGCTCGGTA CCCGGGGATC CTCTAGAGTC GATAATTCGT TGGTTGGACG AACCTCGAAA	60
45	CTGGAGCATG AGATTTCTCT TAGTTCGATC ATATCTTCCA TCGACAAGAA TGTCAATCAA	120
	TGATAAGAGT TCCAGTTTAT CTGGAGTTTC CGGGATCATT TCTTCCCAAG TGTAGCCCGT	180
	CCAGGACCAA ATGTCCTTGT CTGGCAATTC CTTTCGGATG CGTTTAACTA GAGGCAAGAG	240
50	AATGCCAGTA TTGAGAAAAG GCTCCCCTCC CAGCAAAGTC AAGCCTTGAA CATAGGGTTG	300
	GGCAAGGTCT GCCATAATCT GCTCTTCTAA TTCTGCTGTA TAGGGAATGC CAGCATTAAA	360
55	AGACCAAGTC GCAACATTAT AACATCCCTC GCAGTGAAAC ATACAGCCTG ATACATAGAG	420
	AGAGTTGCGC ACGCCTTCGC CGTCCACAAA GTTAAAGGCC TTGTAGTCAA TGATACGACC	480
	TTGACTAAGT TCCTCGCTTT TCCATTCTTG TGGTTTTGGA TTATTCATTC GCTACCTCTA	540
60	TCCAATAACG CTCGACTCCA TTGCGAGCAT CCTCAAATAT TCCACCATTT GCTAGAATGA	600

-136-

	CTGCTCTGCT AGCAGGATTA TTCACGCTAC AGGGCACCAG AGCTTTCTTG ATGTCTTTTC	660
	CCTAGCAACT TCAAGCCCTG ACGGAAGTCT TTTTT	695
5	(2) INFORMATION FOR SEQ ID NO:75:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 723 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
15	(iii) HYPOTHETICAL: NO	
	(iv) ANTI-SENSE: NO	
20		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:	
	CTCGGTACCC GGGGATCCTC TAGAGTCGAC GGCTACAATG ATATTAAGAT GGATGATGTG	60
25	ATTGACGCGT ATGTCATGGA AGAAATCAAG AGATAAGATT TTTTGCTCCT TTCTTAGGTG	120
	GTGAGGGACG CAAGCAAACC GATGGTTTCA TTGCTTATTT TTGAGCCTAG GGTCTCAAAA	180
30	ATCCCCTGTG ATGGGACTGA TAAATCAGTT CCATCACTTT CACCACGGCG AAAGAAGCAG	240
	ATGACTTCAA ATTGAACTTC GTTTCAATTT AAACTGAAAA TCAAGAAGTT TAAAATAGCT	300
	AGGTCTGCTG GCCTAGCTTT TGGTTCAAAG TAGAGAAAGG AATATCATGG TAAATCATTT	360
35	CCGTATAGAT CGTGTGGGCA TGGAAATCAA GCGTGAAGTC AATGAGATTT TGCAAAAGAA	420
	AGTCCGTGAT CCACGTGTCC AAGGTGTGAC CATCACAGAT GTTCAGATGC TGGGTGACTT	480
40	GTCTGTTGCC AAGGTTTATT ACACCATTTT GAGTAACCTT GCTTCGGATA ACCAAAAAGC	540
	CCAAATCGGG CTTGAAAAAG CAACTGGTAC CATCAAACGT GAACTTGGTC GCAATTTGAA	600
4 =	ATTGTACAAA TCCCAGATTT GACCTTCGTC AAAGACGAGT CCATCGAGAT GGAACCAAGA	660
45	TTGACGAGAT GCTACGAAAT CTGGATAAGA CTAAAGAAGA GGGGGTTGCC CCCCTTTTTT	720
	GGG	723
50	(2) INFORMATION FOR SEQ ID NO:76:	
55	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 970 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: DNA (genomic)	
60	(iii) HYPOTHETICAL: NO	

-137-

(iv) ANTI-SENSE: NO

5	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:	
	TGTCCTTATT TGTCTGACCA AGTGCAAGCT GGTCGGATTT GTGGTAACAT TGGATAAGAT	60
10	TTGACAAAGG AATTTCCATC ATGTAACGGT CTTACTCCAC GAAACGATTG ATATGCTTGA	120
	CGTAAAGCCT GAAGGTATCT ACGTTGATGC GACTTTGGGC GGAGCAGGAC ATAGCGAGTA	180
15	TTTATTAAGT AAATTAAGTG AAAAAGGCCA TCTCTATGCC TTTGACCAGG ATCAGAATGC	240
	CATTGACAAT GCGCAAAAAC GCTTGGCACC TTACATTGAG AAGGGAATGG TGACCTTTAT	300
	CAAGGATAAC TTCCGTCATT TACAGGCACG TTTGCGCGAA GCTGGTGTTC AGGAAATTGA	360
20	TGGAATTTGT TATGACTTGG GAGTGTCTAG TCCTCAATTG GACCAGCGTG AGCGTGGTTT	420
	TTCTTATAAA AAGGATGCGC CACTGGACAT GCGGATGAAT CAGGATGCTA GTCTGACAGC	480
25	CTATGAAGTG GTTAATCATT ATGACTATCA TGATTTGGTT CGTATTTTCT TCAAATACGG	540
2,5	TGAGGATAAA TTCTCTAAAC AGATTGCGCG TAAGATTGAG CAAGCGCGTG AAGTGAAGCC	600
	GATTGAGACA ACGACTGAGT TAGCAGAGAT TATCAAGTTG GTCAAACCTG CCAAGGAACT	660
30	CAAGAAGAAG GGTCATCCTG CTAAGCAGAT TTTCCAGGCT ATTCGAATTG AAGTCAATGA	720
	TGAACTGGGA GCGGCAGATG AGTCCATCCA GCAGGCTATG GATATGTTGG CTCTGGATGG	780
35	TAGAATTTCA GTGATTACCT TTCATTCCTT AGAAGACCGC TTGACCAAGC AATTGTTCAA	840
J J	GGAGCTTCAA CAGTTGAAGT TCCAAAAGGC TTGCTTTCAT CCCAGATGAT CTCAAGCCCA	900
	AGATGGAATT GGTGTCCCGT AAGCCAATCT TGCCAAGTGC GGAAGAGTTA GAAGCCAATA	960
40	ACCGTTGACT	970
	(2) INFORMATION FOR SEQ ID NO:77:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 954 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
50	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:	

GAAAGGAGTA ACTGATGCAC GTAACAGTAG GTGAATTAAT TGGTAATTTT ATTTTAATCA

60

-138-

	CTGGCTCTTT TATTCTTTTG CTAGTCTTGA TTAAAAAATT TGCATGGTCT AATATTACAG	120
5	GCATTTTCGA AGAAAGAGCT GAAAAAATTG CTTCAGATAT TGACAGAGCT GAAGAAGCCC	180
5	GTCAAAAAGC AGAAGTATTG GCTCAAAAAC GCGAAGATGA ATTGGCTGGT AGCCGTAAAG	240
	AAGCTAAGAC AATCATTGAA AATGCAAAGG AAACAGCTGA GCAAAGTAAG GCTAATATCT	300
10	TAGCAGATGC TAAACTAGAA GCGGGACACT TAAAAGAAAA AGCCAATCAA GAAATTGCTC	360
	AAAATAAAGT AGAAGCTTTA CAGAGTGTTA AGGGTGAGGT CGCAGATTTG ACCATCAGCT	420
15	TAGCTGGTAA AATCATCTCA CAAAACCTTG ACAGTCATGC CCATAAAGCA CTCATTGATC	480
40	AGTATATCGA TCAGCTAGGA GAAGCTTAAT GGACAAGAAA ACAGTAAAGG TAATTGAAAA	540
	ATACAGCATG CCTTTTGTCC AATTGGTACT TGAAAAAGGA GAAGAAGACC GTATCTTTTC	600
20	AGACTTGACT CAAATCAAGC AAGTTGTTGA AAAAACAGGT CTGCCTTCTT TTTTAAAACA	660
	AGTGGCAGTA GACGAGTCGG ATAAGGAAAA AACAATTGCT TTTTTCCAAG ATTCTGTGTC	720
25	ACCTTTATTA CAAAACTTTA TCCAGGTTCT GGCCTACAAT CACAGAGCAA ATCTTTTTTA	780
23	TGATGTGCTT GTAGATTGCT TGAACCGACT TGAAAAAGAA ACAAATCGAT TTGAAGTGAC	840
	GATTACGTCT GCTCATCCTC TAACTGATGA ACAGAAGACT CGTTTGCTCC CTTTGATTGA	900
30	GAAAAAATG TCTCTGAAAG TAAGGAGTGT AAAAGAACAA ATCGATGAAA GTCT	954
	(2) INFORMATION FOR SEQ ID NO:78:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1602 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
40	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
45	(iv) ANTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:	
30	CCTGATTATA CCCAACCTCT TTGCATCAAG TCGGAAAAAT GAGTGAAATG GGTTTCCAGT	60
	TTTCCTGAAA TAAGGTATCC TATATAAAGT ACCCTATGAT AACCATGGAG GTATTGTGTA	120
55	TGGTTCAAAC AAGTCATTGA AGAAATACAA AACAATGCCA ACATTGTGGA AGTCATAGGA	180
	GATGTGATAT CTTACAAAAG GCAGGACGGA ACTATCTAGG GCTCTGTCCT TTTCATGGTG	240
60	AAAAAACACC ATCTTTCAGC GTTGTAGAGA ACAAGCAGTT TTACCACTGT TTTGGTTGTG	300
	CTCCCTCACC TCATCTCTTT AAAATTCATC CACCACTACC AACCCCTTAC CTTTATCCAC	360

-139-

	GCTGTCCAAA TCTTAGGTCA GCGTGTCGGG ATTGAGGTTG AAAAACCGCT TTATAGTGAA	420
5	CAGAAGCCAG CCTCGCCTCA CCAAGCTCTT TATGATATGC ACGAAGATGC GGCTAAATTT	480
J	TACCATGCTA TTCTCATGAC AACGACTATG GGCGAAGAGG CCAGAAATTA CCTTTATCAG	540
	CGGGGTTTGA CAGATGAAGT GCTTAAACAT TTTTGGATTG GTTTAGCACC TCCAGAACGA	600
10	AACTATCTCT ATCAACGTTT GTCTGATCAG TATCGTGAAG AGGATTTACT GGATTCAGGC	660
	CTGTTTTATC TTTCGGATGC CAATCAATTT GTAGACACCT TTCACAATCG CATTATGTTT	720
15	CCCCTGACAA ATGACCAAGG AAAGGTCATT GCCTTCTCAG GTCGTATCTG GCAAAAAACG	780
	GATTCACAAA CTTCTAAGTA TAAAAACAGC CGTTCGACTG TAATTTTTAA CAAAAGTTAC	840
	GAATTATATC ATATGGATAG GGCAAAAAGA TCTTCTGGAA AAGCTAGTGA GATTTACCTG	900
20	ATGGAAGGAT TCATGGATGT TATTGCAGCC TATCGGGCTG GAATCGAAAA TGCTGTGGCG	960
	TCGATGGGAA CGGCCTTGAG TCGAGAGCAT GTTGAGCATC TGAAAAGGTT AACCAAGAAA	1020
25	TTGGTTCTTG TTTACGATGG AGATAAGGCT GGGCAAGCCG CGACATTGAA AGCATTGGAT	1080
	GAAATTGGTG ATATGCCTGT GCAAATCGTC AGCATGCCTG ATAACTTGGA TCCTGATGAA	1140
	TATCTACAAA AAAATGGTCC AGAAGACTTG GCCTATCTAT TAACGAAAAC TCGTATTAGT	1200
30	CCGATTGAGT TCTACATTCA TCAGTACAAA CCTGAAAACG GTGAAAATCT GCAGGCTCAG	1260
	ATTGAGTTTC TTGAAAAAAT AGCTCCCTTG ATTGTTCAAG AAAAGTCCAT CGCTGCTCAA	1320
35	AACAGCTATA TTCATATTTT AGCTGACAGT CTGGCGTCCT TTGATTATAC CCAGATTGAG	1380
	CAGATTGTTA ATGAGAGTCG TCAGGTGCAA AGGCAGAATC GCATGGAAAG AATTTCCAGA	1440
	CCGACGCCAA TCACCATGCC TGTCACCAAG CAGTTATCGG CTATTATGAG GGCAGAAGCC	1500
40	CATCTACTCT ATCGGATGAT GGAATCCCCT CTCGTTTTGA ACGATTACCG TTTGCGAGAA	1560
	GACTTTGCAT TTGCTACACC TGAATTTCAG GTCTTACATG AC	1602
45	(2) INFORMATION FOR SEQ ID NO:79:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7203 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
55	(iv) ANTI-SENSE: NO	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

60

-140-

	CCTCCATCAA	ATCTGAGACT	GATTCAAAAG	ACTGGCTCAT	ATTACGATTT	TGGTCTAAAT	60
5	GCGTTAACAC	TTGGAGCAAC	TTCCGATTTT	CGTCTAGTCT	AACATCAAAA	GGTAATCCCT	120
J	GATATTGAAT	TGCCTGACGA	AAGGAAAATA	TTAATAGCTG	TTGTCATATC	CATTCCCAGA	180
	TTACTAAACA	CCTGTTGGGC	CTGCTCCTTA	ACCTCACTAT	CCAGACGGAT	GCTCATACTC	240
10	ATCTTTGACA	TACTCTCACC	CTCTTTCCAT	AGACTATTTT	AACAAAAAAG	AAAGCTAATG	300
	TAAATCTATT	GGATATACGT	TAGCCTCTTC	TAATAGATTA	TTAAGCAATT	TTTTAAAACA	360
15	ACTCATCAAA	CAAACTCAAC	TGGTTATCCT	CTGGCATATT	TCCAAGAATA	CCCATCTCAT	420
13	CCATCTTTTC	AACCAAGGTT	GATGAGAGTC	CACCACGCTT	GCGTAGTTCT	GTTTTAGAGA	480
	GGAATTCTCC	CTCTTCACGC	GCCCGCACCA	GTTGCTTGGC	AACGTTCTCT	CCCAGACCAT	540
20	CCATTGCTAC	AAATGGTGGG	ATAAGGGTAT	CCCCGTCGAT	GAGGAACTCT	GTCGCCTGAC	600
	TACGGTAGAG	ATCTAATTTG	CCAAACTTGA	AACCTCGTTC	CCACATCTCA	TTGACAATCT	660
25	CAAGAGTTGT	ATAGAGATCG	ATTTCCACAT	TAGAGGCTTC	ATTGTTCTTC	CGTTTTTCAG	720
23	AGATTTCTTC	CATTCTGCGC	TTGATGGCCT	CCAAGCCCGC	ACCCATGGTC	TTGATATCAA	780
	AAGCCTTAGC	ACGAATGGAG	AAGTAAGCAC	AGTAGTAATA	AATAGGATGG	TGAACCTTGA	840
30	AGTAAGCTAC	ACGCAAGGCC	ATCATAACGT	AGGCTGCCGC	ATGGGCCTTA	GGGAACATGT	900
	ACTTAATTTT	CCCACAGGAT	TCGATATACC	ACTCTGGCAC	CTTATTAGCC	TTCATGGCTT	960
35	CGATATAGCC	ATTTCTCTCC	TCTTCTGAAA	TCTTTAGCCA	CAAACCCTTA	CGTACCCGTT	1020
,,	CCATAATGGT	AAAGGCCATC	TTAGGTTCCA	GACCCGCATG	CATGAGGTAA	ACCATGATGT	1080
	CGTCCCGACA	ACCGATAACA	GTCGATAGGT	CCGCTATTCC	TTGCTTAATC	AGATCCTGAG	1140
40	CATTCCCCAA	CCAAACGTCA	GTACCGTGGG	ACAGACCAGA	CAGCTGAAGC	AATTCCGCAA	1200
	AGGTTGTCGG	ATGGGTTTCG	TCTACCATTC	CACGTACGAA	ATTTGTTCCA	AACTCTGGAA	1260
45	TCCCTAACAT	ACCCGTAGCG	TTCCAATTTG	TTCAGGTGTT	ACCCCTAGCA	CATCAGTCCC	1320
	AGAAAAGAGT	GCCATCACGC	CTTCGTCATC	CATAGGAATT	TTATTAGGGT	CAATACCAGA	1380
	CAAATCCTGA	AGTTTTCGAA	TCATGGTCGG	ATCATCATGT	CCCAGTACAT	CGAGTTTGAG	1440
50	GACGTTCTCA	TCGATATCGT	GGAAGTTAAA	GTGAGTGGTC	TGCCATTCAG	CCGTGACATC	1500
	ATCTGCTGGA	TACTGGACAG	GCGTAAAATC	GTAGACATCC	ATGTAGTTCG	GAATAACAAC	1560
55	GATTCCCCCC	GGGTGTTGGC	CTGTTGTCCG	CTTGACACCC	GCCGCTCCTT	GAGCGAGGCG	1620
	TTCTACTTCT	GCATCACGAT	AAAACTTGCC	ATAATCTCGC	TCGTAACCCT	TGACAAATCC	1680
	ATAGGCAGTC	TTGGCAGCTA	CCGTACCAAC	TGTTCCCGCA	CGGAAGGCAT	ATTCTTCACC	1740
60	AAAGATATCA	CGCACATCCA	AGTGGGCGCT	AGGCTGATCT	TCTCCCGAGA	AGTTCAAGTC	1800

-141-

	AATATCAGGA	ACCTTATCCC	CATCAAAACC	AAGGAAGGTC	TCAAACGGAA	TATCCTGTCC	1860
	GTTTTTACTG	AGTTTGTGAC	CACAGTTTGG	ACAGTCCTTA	TGGGGCATAT	CAAATCCTGA	1920
5	ACCGTACGAA	CCATCTGTGA	TAAACTCACT	GTACTGACAC	TGACCACAGA	CATAGTGAGG	1980
	AGAGAGAGGA	TTGACCTCCG	TAATCCCAAT	CATGGTCGCA	ACGAAACTAG	ATCCGACAGA	2040
10	CCCACGAGAA	CCAACCAAAT	AACCCCGTTC	ATTAGAACGT	TGCACCAGCA	TCTGCGATGC	2100
	CAGATAAATC	ACAGCAAATC	CATTCCCCAG	TATGGATGTT	AATTCTTTTT	CAATCCGCAA	2160
	ATCAACAATA	TCTGGCAGCG	GATTTCCATA	AATCTCAAAA	GCTTTCTTAT	AGGTCAACTC	2220
15	AGCAACTGTT	TCTTCAGCCT	TGTCGATGAA	AGGCGTATAC	AAGTCACCCT	TAACGACTTC	2280
	AACGGGTTCA	AATATTTCTG	CCAAGGCATT	GGTGTTTTCA	ATAACCAGTT	TACGAGCCAG	2340
20	TTCCTCTCCC	AAAAAGGCAA	ATTCATCCAA	CATCTCATTA	GTCGTTCGAA	AATGAGCCTT	2400
	TGGAAGTGGT	GCTGGTTGGG	CATGTTCACC	ATGACCGATA	GTTCGGTTAA	TCATCGCACC	2460
	CTGTCCCAAA	CTACGGACGA	TAATTTCACG	ATAAATCTCT	TCTTCCGGTT	CGATATAGTG	2520
25	AACATTTCCC	GTAGCCAAAA	CAGGCTTGCC	AAGGCGGTCT	CCAACCTCTA	TCAAACTCTT	2580
	GATAATGGTC	TGGAGTTCCT	CCATATCCTT	GACCTGCTCT	TTAGCAATCA	AGGGCGCATA	2640
30	GATAGCCGGT	GGCATGACCT	CGATAAAGTC	ATAATACTTG	GCCACCTCAA	CCGCCGCATC	2700
	CACACCTTGA	GAAACGACCA	CGTCAAAAAC	TTCACCCTCT	GAACAGGCTG	AACCTAAAAT	2760
	CAAGCCCTCT	CGATGGGCAT	CTAGAACCGT	TCTCGGAATC	CGTGACACTC	CTTCAAAATA	2820
35	CTTGGTATTA	GACAAGGAAA	CCAGCTTAAA	GATATTTTTT	AGACCTACCT	GATTCTTGAC	2880
	ATAGATGGTC	GCATGCTTGA	TCCGAGCTTT	TTTGTAAGAA	TCTGGACTGA	TTAGATCAAT	2940
40	GTTGAGTCTA	GCTAAATCGG	TCACACCATG	TTTTTCTGCT	ACCTCTTTGA	TAAAGATAAA	3000
	GCAGACGACC	AGTCGCTTCC	GCATCGTATT	GGCCATGTGG	TGATGTTCCĄ	AGCCACACCA	3060
	AAACGCTTGG	TCAAAGGCCC	AAACCATGAT	TTATACTCAG	GATAGAGGTT	TCAGCAAACT	3120
45	CCAGGTATCA	ATAACGGCTG	ACTAATCTTT	GGCCATGACG	СТСАТААТТА	GCATTCATAA	3180
	AGCCAACGTC	AAAGGTAGCA	TTGTGGGCAA	CTAGGACCGT	ATCCTTGCAA	ATTCTTGGAA	3240
50	TTCTTGCAAA	ACTTGTTCTA	GTGGTTTGGC	ATTTTTGACA	TGATCATCTG	TAATTCCAGT	3300
	TAACTCTGTA	GTAAAAGCTG	ACAAGGGATG	CCCAGGATTG	ATAAATTCAT	CAAATTCAGC	3360
	AATAACATTC	CCCTTGTACA	TCTTAGAGGC	CGCAACCTGA	ATCAAGTCAT	TATAGATAGC	3420
55	TGAAAGTCCC	GTCGTTTCCA	CGTCAAAGAC	CACGTAGGTT	GCTTCTGATA	AGTCCATCTA	3480
	CATTCGTTAT	AGACGATAGG	GACACGGTCC	TCCACGATAT	TGGCTTCTAT	CCCATAGATC	3540
60	AGCTGGATTC	CCGCTTTCTT	AGCCGCCTTA	TAGCCATGTG	GAAAGGACTG	GACATTCCCA	3600
= =	TGGTCTGTGA	TAGCAACCGC	CTTGTGTCCC	CACTTAGCAG	CTGTTGCAAC	AATCTCTTCG	3660

-142-

	ACCTCTGGCA	AAGCATCCAT	AGTCGACATG	TTAGTATGAG	CATGAAACTC	AACCCGACGC	3720
5	TCACCTTCTG	GCATCAAATC	CTTCCGCTCA	TAGTGAACAA	CTTCCTGCAG	ATCCTGTACG	3780
,	TTCATAGTCA	AATCGCGTGT	GAAGTTATTC	ATCTCCACAT	TCCCTCGAAC	TCGGAGCCAA	3840
	GAATTCTTCT	TGATGAGGTC	AAACTTCTGG	GCCTCTTCCT	CGTTTTTAAC	CCACTTTTGC	3900
10	ATAGAAAAAC	TTGAAGTATA	GTCCGTCATT	TTAAAGTTGA	TTAAAACACG	ACCTGTTCTA	3960
	GTCACTTTTT	GCTCCACATC	AAAAACAACC	CCTTCAAATA	CCAGACGATT	TTCCTCTGTC	4020
15	GTCACTTCGA	TCATAGGAGT	AATCTCCGCC	TTATCCAGCT	TGGGTTTAGC	TGCAGCTTTT	4080
	TTCGCTTGAA	AATCAAAGAC	TGGTTTCTCT	TCCGCTGGAG	GAGGTGCCAT	CTGCTCCAGT	4140
	TGTTCCATAG	CACGGAGCGC	TTCCTCATTG	GCAGCTTGAA	CAATCTGCTC	ATTTTCAGCA	4200
20	TGAAAGGCCT	CTTCCTGCTC	TTGGGTCAGG	ACATCATTCT	TCTCGACTTG	ACAGTTAAAA	4260
	GTTGGAAAAC	CAAACTTTTC	AAGTTGTTTG	GCTAAATTAG	GAAGATGATT	СТТСТТАААА	4320
25	TGTTCCTTAT	CAATCGCTTC	AGATCCTTCA	ATAAATAGCT	GATTACCCTC	AGCACGAACT	4380
	TGCAAATTTT	GATAAAGGGA	CTTAAAACCT	TGACTAGCAC	ATGGACCTTC	AGAGAAAGCC	4440
	TCCCTATAGT	AGGACTGCAA	GAGCTGATTT	GAAAATTCTT	GAGACCGAGC	CTTAATTTCA	4500
30	AAAACAGCTT	TATTGCCTGT	CTTAGAAAAT	TCTTCGCTCA	AACCTTTCTT	TAATTCTAAA	4560
	AAGATTTCAA	TCGGTAAAAT	ATTAGAAAAT	ACGAAATGAA	ACTCCCATAC	CTTACTAATT	4620
35	TTATGAACCA	CAACTCGCTC	AATATTGGCC	TGTGCTAAAG	CAGGAGCCTG	TCTCATTTCA	4680
	GCAGGCATCC	CCAATTGATT	CATCAAAATT	TCAAAACTAT	TTGACATTCA	TTTTCCTCAC	4740
	ATTATTCTTC	TACTATTTTA	CCATATTTAG	AGGTATTTTC	TAAAGACAAA	AGGAAGCCAC	4800
40	TAAGTGACTT	CCTTCTAGAG	TGAGGACGGA	TTAGTCTTCA	CCTTTATTTT	TCTTAATAAT	4860
	TTCTTCTTGT	ACTGACTTAG	GTACATCTTC	GTAGTGGTCA	AATACCATCA	TGAATGTACC	4920
45	ACGTCCTTGA	GATGCAGAAC	GAAGAACTGT	TGCGTAACCG	AACATTTCAG	CAAGTGGAAC	4980
	GTAAGCACGA	ACGATTTGGC	TGTTACCGTG	TGCTTCCATA	CCATCTACAC	GTCCACGACG	5040
	AGCAGTTACG	TGACCCATAA	CATCACCAAG	GTTTTCTTCT	GGAACAGTGA	TTGTTACAAG	5100
50	CATCATTGGT	TCAAGGATAG	CTGGTTGTGC	TGATTTAGCA	GCTTCTTTAA	GGGAAAGTGA	5160
	AGCCGCAATC	TTGAAGGCAG	TTTCAGATGA	GTCGACATCG	TGATATGAAC	CATCATAAAG	5220
55	CTTAGCTTTA	ACGTCAACCA	TTGGGTAACC	TGCAAGAACA	CCGTTAGCCA	TAGATTCTAC	5280
	CAAACCTTTT	TCAACCGCTG	GGATAAATTC	ACGAGGAACC	ACACCACCGA	CGATTGCGTT	5340
	TTCGAATTCG	AATCCTTTAC	CTTCTTCGTT	TGGAGTAAAT	тсаатссата	CATCACCGAA	5400
60	TTGACCTTTA	CCACCAGACT	GACGTTTGAA	GAATCCGCGT	GCTTGAGTAG	AAGCGCGGAA	5460

-143-

	TGTTTCACGG	TAAGATACTT	GAGGAGCACC	TACGTTCGCT	TCAACTTTGA	ACTCACGACG	5520
5	CATACGATCA	ACAAGGACGT	CAAGGTGAAG	TTCACCCATA	CCTGAGATAA	CTGTTTCACC	5580
	AGTTTCAACG	TTTGTTTCAA	CGCGGAATGT	TGGATCTTCT	TCAGCCAATT	TTTGAAGGGC	5640
	GATACCCATC	TTGTCTTGGT	CAGCTTTAGA	TTTTGGCTCA	ACCATCAATT	GGATAACTGG	5700
10	TTCTGGAACG	TTGATTGACT	CAAGGATGAT	TTTAGCTTTT	TCATCTGTCA	ATGAGTCACC	5760
	AGTTGTAGTA	TCTTTCAAAC	CAACGGCAGC	AGCGATATCA	CCTGAGTAAA	CAGTGTCGAT	5820
15	TTCTTGACGG	CTGTTAGCGT	GCATTTGAAG	GATACGTCCG	ATACGTTCAC	GTTTACCTTT	5880
	AGAAGTATTC	AATACGTATG	AACCTGATTG	AAGAACACCT	GAGTAAACAC	GGAAGAATGT	5940
	CAAACGACCT	ACGAATGGGT	CAGTCATGAT	CTTGAAGGCA	AGAGCTGCAA	ATGGCTCTTC	6000
20	GTCAGATGCT	GGACGAATTT	CTTCAGCGTC	TGTATCTGGG	TTAATACCTT	TGATTGCTGG	6060
	GATGTCAAGT	GGACTTGGAA	GGTAGTCGAT	AACCGCATCA	AGCATCAATT	GAACACCTTT	6120
	GTTTTTGAAG	GCTGAACCAC	ACAATACTGG	GAAGAATTCA	ACGTTGATAG	TCGCTTTACG	6180
25	GATACCAGCT	TTCAATTCTT	CGTTAGTGAT	TTCTTCACCT	TCGAGGTATT	TCATCATCAA	6240
	TTCTTCGTCA	GTTTCAGCAA	CTGCTTCAAT	CAATTTTTCA	CGGTATTCTT	GAGCTTGGTC	6300
30	AAGGTATTCA	GCTGGGATGT	CTTCTTCAAG	GATATCCGTA	CCAAGGTCGT	TAGTATAGAT	6360
	TTCAGCTTTC	ATCTTGATCA	AGTCAATGAT	ACCACGGAAG	TCATCTTCAG	AACCGATTGG	6420
35 40	CAATTGGATT	GGGTGTGCAT	TTGCTTGAAG	ACGATCGTGA	AGTGTGCTTA	CAGAGTAAAG	6480
	GAAGTCAGCA	CCGATTTTGT	CCATTTTGTT	GGCAAATACG	ATACGTGGAA	CTCCGTACTC	6540
	AGTTGCTTGA	CGCCAAACTG	TTTCAGTTTG	AGGCTCAACA	CCTGATTGTG	AGTCAAGAAC	6600
	GGTAACCGCA	CCATCCAATA	CACGAAGAGA	ACGTTGTACT	TCGATTGTGA	AGTCCACGTG	6660
	TCCTGGTGTG	TCGATGATGT	TTACGCGGTG	GTTGTTCCAT	TGAGCTGTTG	TCGCAGCAGA	6720
	TGTGATCGTG	ATACCACGTT	CTTGCTCTTG	CTCCATCCAG	TCCATTTGTG	ACGCACCTTC	6780
4 5	GTGAGTTTCA	CCGATTTTGT	GGATTTTACC	AGTGTAGTAA	AGAATACGCT	CAGTAGTTGT	6840
50	TGTTTTACCG	GCATCGACGT	GAGCCATGAT	ACCGATATTA	CGAGTTTTTT	CAAGTGAAAA	6900
	TTCGCGTGCC	ATGAGGTTTG	TTTCTCCTAT	TTATTTTTGA	TTTCTATTCT	ATTATAACAC	6960
	GATTTTAATA	AAAACGGATA	GGCAGGACCT	ACCCGTTCTC	AATGTTTTCA	TGCTATTGTT	7020
55	GGTTTCAACT	TACGAGATGG	TAAGCTGAGT	TATAGCTAAT	ACTAATCGAT	TTAGCTAATT	7080
	TGAACCCGGG	CTAAAGTTAG	TTAGCCGATA	TGAGCTGGAA	CGGGATGCTG	CGCGAAAAAG	7140
	ATAAAACTCC	TTGTATTCAT	CGAATACTGC	GTCAGTTTCC	TATTTTCACC	TTGCATCCTT	7200
60	ACC						7203

(2) INFORMATION FOR SEQ ID NO:80:

-144-

5	(i)	SEQUENCE CHAF (A) LENGTH: (B) TYPE: nu (C) STRANDED (D) TOPOLOGY	1581 base pacleic acid NESS: sing	pairs			
	(ii)	MOLECULE TYPE	E: DNA (gend	omic)			
10	(iii)	HYPOTHETICAL:	NO				•
	(iv)	ANTI-SENSE: N	10				
15							
13	1	CEOUENCE DECC	DIDMION. G	70 TD WO-00			
		SEQUENCE DESC				1 mmm 2 mm 4 mm	
20		G GGCATCAAGA					60
		A TGACCTTAAT					120
25		A TATTTTGAAC					180
25	•	A TCTCCTTGAT					240
		A TATCAAGGCT					300
30		A CAAAAAAACA					360
	TTGTTCCAC	C TGTAGAAGAT	GAGAAAGGAA	AGATTAGTTC	AACTCGTATC	CGTCAAGCTA	420
	TTTTAGATG	G AAATGTGAAA	GAAGCAGGAA	AACTTTTGGG	GGCACCGCTT	CCATCAAGAG	480
35	GTATGGTAG	T TCATGGTAAT	GCTCGTGGTC	GTACAATTGG	TTATCCGACA	GCGAATTTAG	540
	TGCTTTTAG	A CCGTACTTAT	ATGCCAGCAG	ATGGCGTTTA	TGTCGTTGAT	GTTGAGATTC	600
40	AAAGACAGA	A GTATCGTGCT	ATGGCTAGTG	TCGGGAAAAA	TGTGACCTTT	GATGGAGAAG	660
	AAGCACGTT	T TGAAGTCAAT	ATTTTTGATT	TTAATCAAGA	TATTTATGGG	GAAACCGTCA	720
	TGGTTTATT	G GCTTGATCGC	ATTCGTGATA	TGACCAAATT	TGACTCAGTT	GACCAATTAG	780
45	TGGATCAGT	T AAAGGCTGAT	GAAGAAGTAA	CTCGGAATTG	GTCTTAAGAG	CTTGAGTAAA	840
	ТААААСААА	A AAGAGGTTGT	CTGTAACCCA	AAAGATAGAT	GATTTAGTCT	AACTTTTGAG	900
50	GTCACGACA	T TACCTCTTTT	TATTCTTTTT	CAAAGGTGAA	GCCTTCTCCT	AGGATTTCAT	960
50	GGGCTTCTG	T AATAGTTATA	AAGGCTTGAG	GATCGATTCG	ATGAATCATT	TCCTTCGTTT	1020
	TCACAATTT	C ATTTCTTCCG	ACAATACAGT	AGATGATTTT	CAAATTTTCT	TTACTATAGT	1080
55	AGCCTTGAC	C AGAAATAAAA	GTAACACCTC	TTCCGAGGTC	ATCATTAATC	GCCTTAGCAA	1140
	GTTGGTCAG	G ACGTTTTGTG	ATAATCATAA	AGCCTTTGCC	GGCATATCCT	CCTTCACCAA	1200
CO	TCAAATCAA	T AACACGAGAA	АСААТААААТ	CAAACAAAAG	CGTGTAGGAA	ACCAATCTCA	1260
60	AATCCTTGA	A GATTAGGAGA	ATCAACATGA	GAATACAAAA	ATCTAAGATA	AAGAGCAGTT	1320

-145-

	TTCCTATGGA TATATGAGTG TATTTGTTGA GAATACGAGC TAGAATATCA GTTCCGCCAG	138
5	TTGTACCTCC AGCATTAAAA ATAATTCCAA GGCCAATTCC CAATAGGATT CCCGCTATAA	144
5	GGGCTGTGAT TAGTAAATCA CCTTGAAGAT CAATATGAAG GGGAATATGC TCAAAAAAAG	150
	CTAACCAGGC GGACAAAGCT AAGGTTCCTA GTAAACTAGA ATAGAGGGAT TTGGCTCCAA	156
10	AGATCTTCCA AGCTAGGATG A	158
	(2) INFORMATION FOR SEQ ID NO:81:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 879 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
~ ~	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:	
30	CAAGTTTGTC GAATTGCCAA ACACAGTTGA AGGCTTGATT CACATCACTA ATCTACCTGA	60
	ATTTTATCAT TTCAATGAGC GTGATTTGAC TCTTCGTGGA GAAAAATCAG GTATCACTTT	120
35	CCGAGTGGGT CAGCAGATCC GTATCCGTGT TGAAAGAGCG GATAAAATGA CTGGAGAGAT	180
	TGATTTTCA TTCGTACCTA GTGAGTTTGA TGTGATTGAA AAAGGCTTGA AACAGTCTAG	240
	TCGTAGTGGC AGAGGGCGTG GTTCAAATCG TCGTTCGGAT AAGAAGGAAG ACAAGAGAAA	300
40	ATCAGGACGC TCAAATGATA AGCGTAACAT TTCACAAAAA GACAAGAAGA AAAAAGGAAA	360
	GAAACCTTTT TACAAGGAAG TAGCTAAGAA AGGAGCCAAG CATGGCAAAG GGCGAGGGAA	420
45	AGGTCGTCGC ACAAAATAAA AAGGCACGCC ACGACTATAC AATCGTAGAT ACGCTAGAGG	480
	CAGGGATGGT CCTGACTGGA ACTGAAATCA AGAGTGTACG AGCTGCTCGA ATTAATCTCA	540
50	AGGATGGCTT TGCTCAAGTG AAAAATGGAG AAGTTTGGCT GAGTAATGTT CATATCGCGC	600
	CTTACGAAGA GGGCAATATC TGGAACCAGG AACCAGAACG TCGTCGTAAA CTCCTGCTCC	660
	ATAAAAAGCA AATTCAAAAA TTGGAACAAG AGACCAAAGG GACAGGAATG ACCTTAGTTC	720
55	CCCTTAAGGT CTATATAGAT GGCTACGCTA AGCTTCTTTT AGGACTTGCC AAGGGAAGCA	780
	TGACTATGAC AAACGGAGTC TATCAAACGT CGTGAGCAAA TCGAGATATC GCGCGTGTGA	840
60	TGAAGCTGTT AATCAGCGAT AAAGAGAGGA ATTGAGATG	879
	(2) INFORMATION FOR SEC ID NO.82.	

-146-

5	(i)	SEQUENCE CHA (A) LENGTH: (B) TYPE: n (C) STRANDE (D) TOPOLOG	1550 base ucleic acid DNESS: sing	pairs			
	(ii)	MOLECULE TYP	E: DNA (gen	omic)			
10	(iii)	HYPOTHETICAL	: NO				
	(iv)	ANTI-SENSE:	NO				
15							
13	1	CROUENCE DEC	TO TOME ON	70 TR WO 00			
		SEQUENCE DES					
20		А ТАААТСААТА					60
		A TTATTTTCA					120
	CTAGTATTA	А АСТТТТАААТ	AGTAAAGGAG	GAGAAAGGAT	TGAAAGAAAA	ACAATTTTGG	180
25	AATCGTATA	T TAGAATTTGC	ACAAGAAAGA	CTGACTCGAT	CCATGTATGA	TTTCTATGCT	240
	ATTCAAGCT	G AACTTATCAA	GGTAGAGGAA	AATGTTGCCA	CTATATTTCT	ACCTCGCTCT	300
30	GAAATGGAA	A TGGTCTGGGA	AAAACAACTA	AAAGATATTA	TTGTAGTAGC	TGGTTTTGAA	360
	ATTTATGAC	G CTGAAATAAC	TCCCCACTAT	ATTTTCACCA	AACCTCAAGA	TACGACTAGC	420
	TCACAAGTT	G AAGAAGCTAC	AAATTTAACT	CTTTATGACT	ATAGTCCAAA	GTTAGTATCT	480
35	ATTCCTTAT	T CAGATACGGG	ATTAAAAGAA	AAGTATACCT	TTGATAACTT	TATTCAAGGG	540
	GATGGAAAT	G TTTGGGCTGT	ATCAGCCGCT	TTAGCTGTCT	CTGAAGATTT	GGCTCTGACC	600
40	TATAACCCT	C TTTTTATCTA	TGGAGGACCA	GGCCTTGGTA	AGACTCACTT	ATTAAACGCT	660
40	ATTGGAAAT	G AAATTCTAAA	AAATATTCCT	AATGCGCGTG	TTAAATATAT	CCCTGCCGAA	720
	AGCTTTATT	A ATGACTTTCT	TGATCACCTA	AGACTTGGGG	AAATGGAAAA	GTTTAAAAAG	780
45	ACCTATCGT	A GTCTTGATCT	TTTGTTAATC	GATGATATCC	AGTCACTCAG	CGGAAAAAA	840
	GTCGCAACT	C AGGAAGAATT	TTTCAATACC	TTTAACGCCC	TTCATGACAA	GCAAAAACAG	900
	ATTGTCCTA	A CGAGTGATCG	TAGTCCAAAA	CATCTAGAAG	GGCTCGAGGA	GAGGCTTGTC	960
50	ACGCGTTTT	A GTTGGGGATT	GACACAAACT	ATCACACCCC	CTGACTTTGA	AACACGTATT	1020
	GCCATTTTA	C AAAGTAAAAC	GGAACATTTA	GGCTACAATT	TCCAAAGTGA	TACTCTAGAA	1080
55		G GGCAATTTGA					1140
		G CCAGAGTAAA					1200
		C GCAAACAAGA					
60		GTAACTTTTA					1260
		- SINNCILLIA	1991911W01	YI CAVACAAA	TOWAGGGWAG	IAGACGCCTT	1320

-147-

CAAAATATTG TTTTGGCCCG TCAAGTAGCC ATGTATTTAT CTAGAGAACT AACAGATAAT	1380
AGTCTTCCAA AAATTGGGAA GGAATTGGGG GAAAAGTCAT ACCACAGTCA TTCATGCCCA	1440
TGCCAAAATA AAATCTTGAA TTGATCAAGA CGATAATTTA CGTTTAGAAA TTGAATCATC	1500
AAAAGGAAAA TCAAATAATT TGTGGAAACT TTAGGTTTTT ACCTTTTAGC	1550
(2) INFORMATION FOR SEQ ID NO:83:	
 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1292 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
(ii) MOLECULE TYPE: DNA (genomic)	
(iii) HYPOTHETICAL: NO	
(iv) ANTI-SENSE: NO	
(xi) SEQUENCE DESCRIPTION, SEC ID MO.83.	
	60
	60
	120 180
· · · · · · · · · · · · · · · · · · ·	240
	300
	360
	420
	480
	540
	600
	660
·	720
	780
	840
	900
	960
CAAACGACCG ATATTACAGG TATTGCGACA GGTTATCGTG ATTTGGATCA TATGACAACA	1020
	AGGETTECAA AAATTEGGAA GGAATTEGGG GAAAAGTCAT ACCACAGTCA TTCATGCCCA TGCCAAAATA AAATCTTGAA TTGATCAAGA CGATAATTTA CGTTTAGAAA TTGAATCATC AAAAGGAAAA TCAAATAATT TGGGAAACT TTAGGTTTT ACCTTTTAGC (2) INFORMATION FOR SEQ ID NO:83: (i) SEQUENCE CHARACTERISTICS:

-148-

	GGACTTCATG AGGAGGAGTT GATTATCTTA GCAGCTCGTC CAGCAGTTGG TAAGACAGCA	1080
5	TTTGCCTTGA ATATCGCTCA GAATATTGGG ACTAAGTTGG ACAAAACGGT TGCTATTTTT	1140
Э	TCACTCGAAA TGGGTGCGGA AAGCTTGGTA GACCGTATGT TAGCTGCAGA AGGCTTGGTG	1200
	GAGTCACATT CTATCCGTAC AGGGCAATTG ACAGATGAGG AGTGGCAAAA ATATACTATT	1260
10	GCTCAGGGTA ATCGTACTAA CGCCAGTATC TA	1292
	(2) INFORMATION FOR SEQ ID NO:84:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1876 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear	
20	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
25	(iv) ANTI-SENSE: NO	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:	
	AGGCTGATCC TGCGGTTATT GACCCATGGA AGAGCACCTA GAAGGAGATC ATTCCCAGAC	60
	GATATTTTAG TTTTATCCTA GTAGCCTTCC CTGGCTATTT TAGGAGCTCG TCTCTACTAT	120
35	GTATTTCCGA TTTGATTACT ATAGTCAGAA TTTAGGAGAG ATTTTTGCCA TTGGAATGGT	180
	GGTTGGCCAT TTACGGTGGT TGATAACTGG GGCTCTTGTG CTCTATATCT TTGCTGACCG	240
40	TAAACTCATC AATACTTGGG ATTTTCTAGA TATTGCGGCG CCTAGCGTTA TGATTGCTCA	300
	AAGTTTGGGG CGTTGGGGTA ATTTCTTTAA CCAAGAAGCT TATGGTGCAA CAGTGGATAA	360
	TCTGGATTAT CTACCTGGCT TTATCCGTGA CCAGATGTAT ATTGAGGGGA GCTACCGTCA	420
45	ACCGACTITC CITTATGAGI CICTATGGAA TCTGCTTGGC TTTGCCTTGA TTCTGATTTT	480
	TAGACGGAAA TGGAAGAGTC TCAGACGAGG TCATATCACG GCCTTTTACT TGATTTGGTA	540
50	TGGTTTCGGT CGTATGGTCA TCGAAGGTAT GCGAACAGAT AGTCTCATGT TCTTCGGACT	600
	TCGAGTGTCC CAATGGCTGT CAGTTGTCCT TATCGGTCTC GGTATAATGA TCGTTATTTA	660
	TCAAAATCGA AAGAAGGCCC CTTACTATAT TACAGAGGAG GAAAACTAAA TGTTAGAAGT	720
55	TGCATATATT CTTGTTGCCC TAGCTTTGAT TGTCTTTTTG GTCTATCTGA TCATTACTGT	780
	ACAAAAGCTT GGTCGTGTCA TCGATGAAAC AGAAAAGACG ATTAAAACCT TGACTTCAGA	840
60	TGTGGATGTG ACCTTGCATC ACACCAATGA GTTGTTGGCT AAGGTCAATG TCTTGGCAGA	900
00	TGATATCAAT GTCAAGGTGG CTACGATTGA TCCACTCTTC AGTGCTGTTG CAGATTTATC	960

-149-

	TCTATCTGTT TCAGACCTCA ATGACCATGC GCGTGTCTTG AGCAAGAAAG CTTCATCAGC	1020
_	TGGTTCAAAA ACACTCAAGA CTGGTGCAAG TCTGTCAGCT CTTCGTCTTG CAAGTAAATT	1080
5	TTTCAAAAAA TAAAAAAAGGA GAATCCTTAT GGGTAAATTA TCCTCAATCC TTTTAGGAAC	1140
	GGTTTCAGGT GCAGCTCTTG CCTTGTTTTT AACAAGTGAT AAGGGCAAAC AAGTTTGCAG	1200
10	TCAGGCTCAA GATTTTCTAG ATGATTTGAG AGAAGATCCG GAGTATGCCA AGGAGCAAGT	1260
	CTGTGAAAAA CTGACAGAAG TTAAGGAGCA GGCTACAGAT TTTGTTCTGA AAACAAAAGA	1320
15	ACAGGTTGAG TCAGGTGAAA TCACTGTGGA CAGTATACTT GCTCAAGCTA AATCCTATGC	1380
13	TTTTCAAGCG ACAGAAGCAT CAAAAAATCA ATTAAATAAT CTCAAGGAAC AATGGCAAGA	1440
	AAAAGCCGAA GCTCTTGATG ACTCAGAAGA GATTGTGATT CATATAACAG AAGAATAAAC	1500
20	CATCACCATC TCCGGACGGA CTATGTATCT GGGGATGGTG ATTTTTATCT GGAATCTAGT	1560
	CTTTGTGGTA TAATAATTAC TATGCAGAAA AAACCAACGT CAGCCTATGT GCACATCCCA	1620
25	TTTTGTACCC AGATTTGTTA TTATTGTGAT TTTTCAAAGG TCTTCATCAA AAATCAGCCA	1680
	GTCGACAGCT ATTTAGAGCA TCTGCTGGAA GAGTTTCGTT CTTATGATAT TGAAAAGTTG	1740
	TCAACCCTTT ATATCGGTGG TGGAACACGA CAGCCCTGTC GGCTCCGCAA CTGGAGGTGT	1800
30	TACTGAATGG CTTGACTAAA AACTTGGATT TGTCTGCTTG GAGAGTGACC ATTGAAGCCA	1860
	TCCAGGCGAT TTGGAA	1876
35	(2) INFORMATION FOR SEQ ID NO:85:	
33	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1574 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
45	(iii) HYPOTHETICAL: NO	
43	(iv) ANTI-SENSE: NO	
50	(xi) SEQUENCE DESCRIPTION: SEO ID NO:85:	
	TTGGAAGATT TCCCACTTC AGTGACCAAC CCATACGGTC GTACTAAGCT CATGCTAGAG	60
55		60
,,	GAAATTTTGA CTGATATTTA CAAAGCAGAC TCAGAATGGA ATGTTGTCTT GCTTCGTTAC	120
	TTTAACCCAA TCGGAGTCCA TGAGAGTGGT GATTTGGGAG AAAATCCAAA CGGTATTCCA	180
60	AACAATCTCT TGCCATATGT GACTCAAGTA GCCGTTGGAA AATTAGAGCA AGTGCAAGTG	240
	TTTGGAGACG ATTACGATAC GGAAGATGGA ACAGGTGTTC GTGACTATAT CCACGTTGTC	300

-150-

	GATTTGGCTA 2	AGGGTCACGT	TGCAGCTTTG	AAAAAAATCC	AAAAAGGTTC	AGGACTAAAC	360
5	GTTTATAACC '	TTGGAACTGG	TAAAGGTTAC	TCAGTTCTTG	AAATTATCCA	AAACATGGAA	420
J	AAAGCGGTGG	GATGTCCTAT	TCCTTACCGC	ATCGTAGAAC	GTCGCCCAGG	TGATATCGCT	480
	GCCTGCTACT	CAGACCCAGC	AAAGGCTAAA	GCAGAACTCG	GTTGGGAAGC	AGAACTCGAC	540
10	ATCACCCAAA	TGTGTGAAGG	CCATGGCGTT	GGCAGAGCAA	GCATCCAAAT	GGATTTGAAG	600
	ACTAAGATGA	TGATTTCAAT	CATCGTCCCT	TGTTTAACGA	AGAGGAAGTA	CTTCCTCTTT	660
15	TTTATCAGGC '	TCTGGAAGCT	TTACTTCCAG	ATTTGGAAAC	AAAATCGAGT	ATGTCTTTGT	720
1.0	CGATGATGGA	TCAAGTGATG	GGACCTTGGA	ACTCTTAAAG	GCCTATCGGG	AGCAAAATCC	780
	GGCAGTCCAT	PATATTTCTT	TCTCTCGAAA	TTTTGGCAAA	GAAGCAGCCC	TTTATGCAGG	840
20	CTTGCAATAT (GCGACAGGAG	ATTTGGTGGT	GGTGATGGAT	GCAGACCTCC	AAGATCCTCC	900
	TAGTATGTTG	ITTGAGATGA	AAAATGTACT	AGACAAAAAT	GTAGACTTGG	ACTGCGTTGG	960
25	GACACGGAGA	ACTAGTCGGG	AGGGAGAACC	CTTCTTTCGC	AGTTTCTGTG	CTGTTCTCTT	1020
2,5	TTATCGCCTC 2	ATGCAAAAAA	TCAGCCCAGT	AGCTCTGCCG	TCGGGTGTCC	GTGATTTTCG	1080
	TATGATGAGA	AGGTCTGTGG	TCGATGCCAT	TTTAAGCTTG	ACTGAGTCCA	ATCGTTTTTC	1140
30	TAAGGGACTC !	TTTGCCTGGG	TCGGCTTTAA	AACCCACTAT	CTGGACTATC	CAAATGTCGA	1200
	AAGGCAGGCT	GGCAAGACCA	GTTGGAGTTT	TAGGCAACTC	TTTTTTTACT	CCATTGAAGG	1260
35	GATTGTTAAT	ITTTCAGATT	TCCCTTTGAC	TATAGCCTTT	GTAGCTGGTC	TCCTATCTTG	1320
<i>.</i>	TTTTCTTCT	CTGCTGATGA	CCTTTTTTGT	TGTGGTTCGG	ACCCTCATTT	TGGGCAATCC	1380
	GACATCTGGT	rggacctctc	TGATGGCTGT	TATTCTCTAT	CTTGGAGGCA	TTCAACTCTT	1440
40	GACCATTGGG A	ATTCTCGGTA	AGTATAATCA	GTAAGATTAT	TTAGAGACTA	AAAAAAAGAC	1500
	CACTTTATCT :	TATCAAAGAA	AAAGTGACCT	TCCTGATTTT	ACAGAAACCT	AAAGTGAAAA	1560
45	GACTATAATT	TTCC					1574
1.5	(2) INFORMA	TION FOR SE	Q ID NO:86:				
50	(2	A) LENGTH: B) TYPE: nu	ACTERISTICS 969 base pa scleic acid NESS: singl	irs			

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

60

55

-151-

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:	
_	GTTATAATTA TTGATGATAA TTATAGTAAT GTAAATTTAA GAAATAAAAT TATCCATCAA	60
5	TTTGGCTATA CCAATCATAG AATTAAGTTA ATTTTAAGTA ATGAAGATTT AGGTGCAACT	120
	AATGCCAGAA ACATAGGTAT CAAAAATTCT AGAGGTAAGT ATATATCATT TTTAGACGAT	180
LO	GATGATGAAT ATATGCCAGA TCGAATTTTA AAGTTGATGG CTTGTTTTAA AAAGAGTAGA	240
	ATGAAGAATT TAGCTTTAGT TTATAGTTAT GGCATAATAA TTTATCCAAA TGGTACACGA	300
	GAAGAGGAGA AGACCGATTT TGTTGGAAAT CCCTTGTTTG TTCAAATGGT TCACAATATA	360
15	GCAGGTACGT CATTTTGGTT GTGTAAAAAA GAGGTGCTAG AATTAATTAA TGGTTTTGAG	420
	AAAATAGATT CACATCAGGA CGGTGTTGTT TTATTAAAAC TACTTGCTCA AGGATACCAA	480
20	ATTGATATAG TGCGAGAATT CTTGGTGAAT TACTACGCTC ACAGTAAAGA AAACGGTATC	540
	ACTGGAGTGA CACAAAAAC AATTAATGCA GATGAAGAAT ATTATAATTA CTGTAGGAAA	600
25	TATTTAATT TATTGAGTTT CAACGAGAGA ATATTGGTTA CAAAGAAATA TTATTCTTTA	660
25	AACATAAAGC GGTTACTATT AATAGGAGAC AAATGCAAGG CTTTAAAAGT AATCAAGAAG	720
	GCAAGAGAA AAAAAATTTT TAACGAATTT CTTTTTTTGA AATATATGTT ATTATATAAC	780
30	GTAGTTTTTT CTATTGTATA TATGACAACT ATGTTCAATT AAAATTTAGA AAGTGAGAAA	840
	CTATTGTGTA TACTATTATA AATTCAATAT AAACATTTAG GTTAATTAAC GATAATTAAT	90
35	CGGTGCTGGG TCATTAATTG CTAATTTAAT GCAGCACTAT TAATGCTCAG GTGTTGAATG	96
,,	AATTAATGC	96
	(2) INFORMATION FOR SEQ ID NO:87:	
40	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1353 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
45	(ii) MOLECULE TYPE: DNA (genomic)	
	(iii) HYPOTHETICAL: NO	
50	(iv) ANTI-SENSE: NO	
55	<pre>(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11350 (D) OTHER INFORMATION: DNA B</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:	
60	ATG GCA GAA GTA GAA GAG TTA CGA GTA CAA CCT CAA GAT ATC TTA GCT	4

-152-

	1				5					10					15		
5	GAG Glu	CAA Gln	TCC Ser	GTT Val 20	TTA Leu	GGG Gly	GCT Ala	ATC Ile	TTT Phe 25	ATT Ile	GAT Asp	GAG Glu	AGT Ser	AAA Lys 30	CTT Leu	GTT Val	96
10	TTT Phe	GTG Val	CGA Arg 35	GAA Glu	TAC Tyr	ATT Ile	GAG Glu	TCT Ser 40	CGG Arg	GAC Asp	TTT Phe	TTT Phe	AAG Lys 45	TAT Tyr	GCC Ala	CAT His	144
10	CGT Arg	TTG Leu 50	ATT Ile	TTC Phe	CAA Gln	GCC Ala	ATG Met 55	GTC Val	GAT Asp	TTA Leu	TCC Ser	GAT Asp 60	CGT Arg	GGT Gly	GAT Asp	GCC Ala	192
15	ATA Ile 65	GAT Asp	GCA Ala	ACA Thr	ACG Thr	GTT Val 70	CGT Arg	ACT Thr	ATC Ile	CTT Leu	GAT Asp 75	AAT Asn	CAA Gln	GGT Gly	GAT Asp	TTA Leu 80	240
20	CAG Gln	AAT Asn	ATT Ile	GGT Gly	GGC Gly 85	TTG Leu	TCT Ser	TAC Tyr	TTG Leu	GTT Val 90	GAG Glu	ATT Ile	GTT Val	AAT Asn	TCT Ser 95	GTG Val	288
25	CCA Pro	ACT Thr	TCT Ser	GCT Ala 100	AAT Asn	GCG Ala	GAG Glu	TAT Tyr	TAT Tyr 105	GCT Ala	AAG Lys	ATT Ile	GTT Val	GCA Ala 110	GAA Glu	AAA Lys	336
30	GCA Ala	ATG Met	CTA Leu 115	CGT Arg	CGT Arg	TTA Leu	ATT Ile	GCC Ala 120	AAG Lys	TTG Leu	ACA Thr	GAG Glu	TCT Ser 125	GTC Val	AAC Asn	CAA Gln	384
	GCT Ala	TAC Tyr 130	Glu	GCG Ala	TCA Ser	CAA Gln	CCA Pro 135	GCT Ala	GAT Asp	GAA Glu	ATT Ile	ATT Ile 140	GCT Ala	CAG Gln	GCA Ala	GAA Glu	432
35	AAA Lys 145	Gly	TTG Leu	ATT Ile	GAT Asp	GTC Val 150	AGT Ser	GAA Glu	AAT Asn	GCA Ala	AAT Asn 155	CGA Arg	AGC Ser	GGG Gly	TTT Phe	AAG Lys 160	480
40	AAC Asn	ATT Ile	CGA Arg	GAT Asp	GTG Val 165	TTG Leu	AAT Asn	CTC Leu	AAC Asn	TTT Phe 170	GGA Gly	AAT Asn	CTG Leu	GAA Glu	GCT Ala 175	CGC Arg	528
45					Thr							ACA Thr				GAT Asp	576
50	TTG Leu	GAT Asp	CAT His 195	Met	ACA Thr	ACA Thr	GGA Gly	CTT Leu 200	His	GAG Glu	GAG Glu	GAG Glu	TTG Leu 205	Ile	ATC Ile	TTA Leu	624
30			Arg					Lys				GCC Ala 220				GCT Ala	672
55		Asn					Leu					Ala				CTC Leu 240	720
60						Ser					Met					GGC	768

-153-

5							CAA Gln		Glu		816
-	-						CTA Leu				864
10							ACA Thr				912
15							CTT Leu 315				960
20							CGA Arg				1008
25							ATA Ile				1056
							TCT Ser				1104
30							ATT Ile				1152
35							CTC Leu 395				1200
40							ATC Ile			_	1248
45							GCT Ala				1296
							TCA Ser				1344
50	GAG Glu	GCA Ala 450	TAA								1353

55 (2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 450 amino acids
(B) TYPE: amino acid
(D) TOPOLOGY: linear

60

-154-

(ii) MOLECULE TYPE: prot	.eir	1
--------------------------	------	---

(xi) S	EOUENCE	DESCRIPTION:	SEO	ID	NO:88:
--------	---------	--------------	-----	----	--------

5	Met 1	Ala	Glu	Val	Glu 5	Glu	Leu	Arg	Val	Gln 10	Pro	Gln	Asp	Ile	Leu 15	Ala
10	Glu	Gln	Ser	Val 20	Leu	Gly	Ala	Ile	Phe 25	Ile	Asp	Glu	Ser	Lys 30	Leu	Val
10	Phe	Val	Arg 35	Glu	Tyr	Ile	Glu	Ser 40	Arg	Asp	Phe	Phe	Lys 45	Tyr	Ala	His
15	Arg	Leu 50	Ile	Phe	Gln	Ala	Met 55	Val	Asp	Leu	Ser	Asp 60	Arg	Gly	Asp	Ala
	Ile 65	Asp	Ala	Thr	Thr	Val 70	Arg	Thr	Ile	Leu	Asp 75	Asn	Gln	Gly	Asp	Leu 80
20	Gln	Asn	Ile	Gly	Gly 85	Leu	Ser	Tyr	Leu	Val 90	Glu	Ile	Val	Asn	Ser 95	Val
25	Pro	Thr	Ser	Ala 100	Asn	Ala	Glu	Tyr	Tyr 105	Ala	Lys	Ile	Val	Ala 110	Glu	Lys
23	Ala	Met	Leu 115	Arg	Arg	Leu	Ile	Ala 120	Lys	Leu	Thr	Glu	Ser 125	Val	Asn	Gln
30	Ala	Tyr 130	Glu	Ala	Ser	Gln	Pro 135	Ala	Asp	Glu	Ile	Ile 140	Ala	Gln	Ala	Glu
	Lys 145	Gly	Leu	Ile	Asp	Val 150	Ser	Glu	Asn	Ala	Asn 155	Arg	Ser	Gly	Phe	Lys 160
35	Asn	Ile	Arg	Asp	Val 165	Leu	Asn	Leu	Asn	Phe 170	Gly	Asn	Leu	Glu	Ala 175	Arg
40	Ser	Gln	Gln	Thr 180	Thr	Asp	Ile	Thr	Gly 185	Ile	Ala	Thr	Gly	Tyr 190	Arg	Asp
10	Leu	Asp	His 195	Met	Thr	Thr	Gly	Leu 200	His	Glu	Glu	Glu	Leu 205	Ile	Ile	Leu
45	Ala	Ala 210	Arg	Pro	Ala	Val	Gly 215	Lys	Thr	Ala	Phe	Ala 220	Leu	Asn	Ile	Ala
	Gln 225	Asn	Ile	Gly	Thr	Lys 230	Leu	Asp	Lys	Thr	Val 235	Ala	Ile	Phe	Ser	Leu 240
50	Glu	Met	Gly	Ala	Glu 245	Ser	Leu	Val	Asp	Arg 250	Met	Leu	Ala	Ala	Glu 255	Gly
55	Leu	Val	Glu	Ser 260	His	Ser	Ile	Arg	Thr 265	Gly	Gln	Leu	Thr	Asp 270	Glu	Glu
<i></i>	Trp	Gln	Lys 275	Tyr	Thr	Ile	Ala	Gln 280	Gly	Asn	Leu	Ala	Asn 285	Ala	Ser	Ile
60	Tyr	Ile 290	Asp	Asp	Thr	Pro	Gly 295	Ile	Arg	Ile	Thr	Glu 300	Ile	Arg	Ser	Arg

-155-

	Ser 305	Arg	Lys	Leu	Ala	Gln 310	Glu	Thr	Gly	Asn	Leu 315	Gly	Leu	Ile	Leu	11e 320	
5	Asp	Tyr	Leu	Gln	Leu 325	Ile	Thr	Gly	Thr	Gly 330	Arg	Glu	Asn	Arg	Gln 335	Gln	
	Glu	Val	Ser	Glu 340	Ile	Ser	Arg	Gln	Leu 345	Lys	Ile	Leu	Ala	Lys 350	Glu	Leu	
10	Lys	Val	Pro 355	Val	Ile	Ala	Leu	Ser 360	Gln	Leu	Ser	Arg	Gly 365	Val	Glu	Gln	
	Arg	Gln 370	Asp	Lys	Arg	Pro	Val 375	Leu	Ser	Asp	Ile	Arg 380	Glu	Ser	Gly	Ser	
15	Ile 385		Gln	Asp	Ala	Asp 390	Ile	Val	Ala	Phe	Leu 395	Tyr	Arg	Asp	Asp	Tyr 400	
20	Tyr	Glu	Arg	Gly	Gly 405		Glu	Glu	Glu	Gly 410	Ile	Pro	Asn	Asn	Lys 415	Val	
	Glu	Val	Ile	11e 420	Glu	Lys	Asn	Arg	Ser 425	Gly	Ala	Arg	Gly	Thr 430	Val	Glu	
25	Leu	Ile	Phe 435		Lys	Glu	Tyr	Asn 440	Lys	Phe	Ser	Ser	Ile 445	Ser	Lys	Arg	
30	Glu	Ala 450							•								
30	(2)				FOR												
35		(1	(A) I B) T C) S	CE C ENGT YPE: TRAN	H: 1 nuc DEDN	785 leic ESS:	base aci sin	pai d	rs							
40		•			LE T			. (ge	nomi	.c)		-					
		•			ETIC ENSE												
45			() FE	EATUI 1 (A)		'KEY:	CDS	1782									
50					OTHER					IA G							
		(xi	L) SI	EQUE	NCE I	DESCI	RIPTI	ON:	SEQ	ID N	10:89) :					
55	Me	G ATA t Ile l	A ACC	C ATO	t Gl	G GTA u Val	A TTO L Leu	TGT LCys	ATO Met	GTT Val	Asp	AAA Lys	A CAA	Val	ATT I Ile	GAA Glu	48
60	GA:	A ATO	C AA	A AA	n Ası	r GCC n Ala	AAC AASI	TATI	GTC Val	l Gli	A GTO	E ATA	A GGA e Gly	A GAT Asi 30	Va.	ATT lle	96

-156-

	TCT Ser	TTA Leu	CAA Gln 35	AAG Lys	GCA Ala	GGA Gly	CGG Arg	AAC Asn 40	TAT Tyr	CTA Leu	GGG Gly	CTC Leu	TGT Cys 45	CCT Pro	TTT Phe	CAT His	144
5	GGT Gly	GAA Glu 50	AAA Lys	ACA Thr	CCT Pro	TCT Ser	TTC Phe 55	AGC Ser	GTT Val	GTA Val	GAG Glu	GAC Asp 60	AAG Lys	CAG Gln	TTT Phe	TAC Tyr	192
10	CAC His 65	TGT Cys	TTT Phe	GGT Gly	TGT Cys	GGT Gly 70	CGC Ar g	TCA Ser	GGT Gly	GAT Asp	GTC Val 75	TTT Phe	AAA Lys	TTC Phe	ATC Ile	GAG Glu 80	240
15	GAG Glu	TAC Tyr	CAA Gln	GGG Gly	GTT Val 85	ACC Thr	TTT Phe	ATG Met	GAG Glu	GCT Ala 90	GTC Val	CAA Gln	ATC Ile	TTA Leu	GGT Gly 95	CAG Gln	288
20	CGT Arg	GTC Val	GGG Gly	ATT Ile 100	GAG Glu	GTT Val	GAA Glu	AAA Lys	CCG Pro 105	CTT Leu	TAT Tyr	AGT Ser	GAA Glu	CAG Gln 110	AAG Lys	CCA Pro	336
	Ala	Ser	Pro 115	His	Gln	Ala	Leu	Tyr 120	Asp	Met	His	Glu	Asp 125	Ala	Ala		384
25	Phe	Tyr 130	His	Ala	Ile	Leu	Met 135	Thr	Thr	Thr	Met	Gly 140	Glu	Glu	Ala		432
30	Asn 145	Tyr	Leu	Tyr	Gln	Arg 150	Gly	Leu	Thr	Asp	Glu 155	Val	CTT Leu	Lys	His	Phe 160	480
35	Trp	Ile	Gly	Leu	Ala 165	Pro	Pro	Glu	Arg	Asn 170	Tyr	Leu	Tyr	Gln	Arg 175		528
40	Ser	Asp	Gln	Tyr 180	Arg	Glu	Glu	Asp	Leu 185	Leu	Asp	Ser	Gly	Leu 190	Phe		576
	Leu	Ser	Asp 195	Ala	Asn	Gln	Phe	Val 200	Asp	Thr	Phe	His	Asn 205	Arg	Ile		624
45	Phe	Pro 210	Leu	Thr	Asn	Asp	Gln 215	Gly	Lys	Val	Ile	Ala 220	Phe	Ser	Gly		672
50	Ile 225	Trp	Gln	Lys	Thr	Asp 230	Ser	Gln	Thr	Ser	Lys 235	Tyr	Lys	Asn	Ser	CGA Arg 240	720
55	TCG Ser	ACT	GTA Val	ATT Ile	TTT Phe 245	Asn	AAA Lys	AGT Ser	TAC Tyr	GAA Glu 250	Leu	TAT Tyr	CAT His	ATG Met	GAT Asp 255	AGG Arg	768
60	GCA Ala	AAA Lys	AGA Arg	TCT Ser 260	Ser	GGA Gly	AAA Lys	GCT Ala	AGT Ser 265	Glu	ATT	TAC Tyr	: CTG : Leu	Met 270	Glu	GGA Gly	816
	TTC	ATC	GAT	GTI	` ATI	GCA	GCC	TAT	CGG	GCI	GGA	ATC	GAA	LAA	GCT	GTG	864

-157-

	Phe	Met	Asp 275	Val	Ile	Ala	Ala	Tyr 280	Arg	Ala	Gly	Ile	Glu 285	Asn	Ala _.	Val	
5	GCG Ala	TCG Ser 290	ATG Met	GGA Gly	ACG Thr	GCC Ala	TTG Leu 295	AGT Ser	CGA Arg	GAG Glu	CAT His	GTT Val 300	GAG Glu	CAT His	CTG Leu	AAA Lys	912
10			ACC Thr														960
1 =			GCG Ala														1008
15			GTC Val														1056
20			GGT Gly 355														1104
25	AGT Ser	CCG Pro 370	ATT Ile	GAG Glu	TTC Phe	TAC Tyr	ATT Ile 375	CAT His	CAG Gln	TAC Tyr	AAA Lys	CCT Pro 380	GAA Glu	AAC Asn	GGT Gly	GAA Glu	1152
30			CAG Gln														1200
25			GAA Glu														1248
35			AGT Ser														1296
40	AAT Asn	GAG Glu	AGT Ser 435	Arg	CAG Gln	GTG Val	CAA Gln	AGG Arg 440	CAG Gln	AAT Asn	CGC Arg	ATG Met	GAA Glu 445	AGA Arg	ATT Ile	TCC Ser	1344
45			ACG Thr														1392
50		Arg	GCA Ala				Leu					Met					1440
			AAC Asn			Arg					Phe						1488
55			CAG Gln		Leu					Gly							1536
60			GTT Val														1584

-158-

			515					520					525				
5				GCT Ala													1632
10				GAG Glu													1680
				AAA Lys													1728
15				CTA Leu 580													1776
20		GAG Glu	TAA														1785
25	(2)				ENCE LEN	CHAI	RACTI		FICS:		3						
				(D)	TO	POLO	3Y:]	linea	ar								
30				MOLE SEQUI			-) ID	NO: 9	90:					
35	Met 1	()	ki) S		ENCE	DESC	CRIPT	rion:	: SEÇ	-			Gln	Val	Ile 15	Glu	
	1	(z Ile	ki) :	SEQUI	ENCE Glu 5	DESC Val	CRIPT	Cys	: SE(Val 10	Asp	Lys			15		
35	1 Glu	() Ile Ile	(i) S Thr Lys	SEQUI Met Asn	Glu 5 Asn	DESC Val Ala	CRIPT Leu Asn	Cys Ile	SEQ Met Val 25	Val 10 Glu	Asp Val	Lys Ile	Gly	Asp 30	15 Val	Ile	
35	1 Glu Ser	() Ile Ile Leu	Thr Lys Gln 35	Met Asn 20	Glu 5 Asn Ala	DESC Val Ala Gly	Leu Asn Arg	Cys Ile Asn 40	Met Val 25	Val 10 Glu Leu	Asp Val Gly	Lys Ile Leu	Gly Cys 45	Asp 30 Pro	15 Val Phe	Ile His	
35 40	1 Glu Ser	Ile Ile Leu Glu 50	ti) S Thr Lys Gln 35 Lys	Met Asn 20 Lys	Glu 5 Asn Ala Pro	DESC Val Ala Gly Ser	Leu Asn Arg Phe	Cys Ile Asn 40 Ser	Met Val 25 Tyr	Val 10 Glu Leu Val	Asp Val Gly Glu	Lys Ile Leu Asp 60	Gly Cys 45 Lys	Asp 30 Pro Gln	15 Val Phe Phe	Ile His Tyr	
35 40	Glu Ser Gly His 65	Ile Ile Leu Glu 50 Cys	ti) S Thr Lys Gln 35 Lys	Met Asn 20 Lys	Glu 5 Asn Ala Pro Cys	DESC Val Ala Gly Ser Gly 70	Leu Asn Arg Phe 55	Cys Ile Asn 40 Ser	Met Val 25 Tyr Val Gly	Val 10 Glu Leu Val	Asp Val Gly Glu Val 75	Lys Ile Leu Asp 60 Phe	Gly Cys 45 Lys Lys	Asp 30 Pro Gln Phe	15 Val Phe Phe	Ile His Tyr Glu 80	
35 40 45	Glu Ser Gly His 65	Ile Ile Leu Glu 50 Cys	Thr Lys Gln 35 Lys Phe Gln	Met Asn 20 Lys Thr	Glu 5 Asn Ala Pro Cys Val 85	DESC Val Ala Gly Ser Gly 70	Leu Asn Arg Phe 55 Arg	Cys Ile Asn 40 Ser Ser	Met Val 25 Tyr Val Gly	Val 10 Glu Leu Val Asp	Asp Val Gly Glu Val 75 Val	Lys Ile Leu Asp 60 Phe	Gly Cys 45 Lys Lys	Asp 30 Pro Gln Phe Leu	15 Val Phe Phe Ile Gly 95	Ile His Tyr Glu 80 Gln	
35 40 45	Glu Ser Gly His 65 Glu Arg	Ile Ile Leu Glu 50 Cys Tyr	Thr Lys Gln 35 Lys Phe Gln Gly	Met Asn 20 Lys Thr Gly Gly Ile	Glu 5 Asn Ala Pro Cys Val 85 Glu	DESC Val Ala Gly Ser Gly 70 Thr	Leu Asn Arg Phe 55 Arg Phe Glu	Cys Ile Asn 40 Ser Ser Met	Met Val 25 Tyr Val Gly Glu Pro 105	Val 10 Glu Leu Val Asp Ala 90 Leu	Asp Val Gly Val 75 Val Tyr	Lys Ile Leu Asp 60 Phe Gln Ser	Gly Cys 45 Lys Lys Ile Glu	Asp 30 Pro Gln Phe Leu Gln 110	15 Val Phe Phe Ile Gly 95 Lys	Ile His Tyr Glu 80 Gln Pro	

-159-

	Asn 145	Tyr	Leu	Tyr	Gln	Arg 150	Gly	Leu	Thr	Asp	Glu 155	Val	Leu	Lys	His	Phe 160
5	Trp	Ile	Gly	Leu	Ala 165	Pro	Pro	Glu	Arg	Asn 170	Tyr	Leu	Tyr	Gln	Arg 175	Let
	Ser	Asp	Gln	Tyr 180	Arg	Glu	Glu	Asp	Leu 185	Leu	Asp	Ser	Gly	Leu 190	Phe	Ту
10	Leu	Ser	Asp 195	Ala	Asn	Gln	Phe	Val 200	Asp	Thr	Phe	His	Asn 205	Arg	Ile	Met
L5	Phe	Pro 210	Leu	Thr	Asn	Asp	Gln 215	Gly	Lys	Val	Ile	Ala 220	Phe	Ser	Gly	Arg
	Ile 225	Trp	Gln	Lys	Thr	Asp 230	Ser	Gln	Thr	Ser	Lys 235	Tyr	Lys	Asn	Ser	Arg 240
20	Ser	Thr	Val	Ile	Phe 245	Asn	Lys	Ser	Tyr	Glu 250	Leu	Tyr	His	Met	Asp 255	Arg
	Ala	Lys	Arg	Ser 260	Ser	Gly	Lys	Ala	Ser 265	Glu	Ile	Tyr	Leu	Met 270	Glu	Gl
25	Phe	Met	Asp 275	Val	Ile	Ala	Ala	Tyr 280	Arg	Ala	Gly	Ile	Glu 285	Asn	Ala	Va]
30	Ala	Ser 290	Met	Gly	Thr	Ala	Leu 295	Ser	Arg	Glu	His	Val 300	Glu	His	Leu	Lys
	Arg 305	Leu	Thr	Lys	Lys	Leu 310	Val	Leu	Val	Tyr	Asp 315	Gly	Asp	Lys	Ala	G1 ₃ 320
35	Gln	Ala	Ala	Thr	Leu 325	Lys	Ala	Leu	Asp	Glu 330	Ile	Gly	Asp	Met	Pro 335	Va]
	Gln	Ile	Val	Ser 340	Met	Pro	Asp	Asn	Leu 345	Asp	Pro	Asp	Glu	Tyr 350	Leu	Glr
40	Lys	Asn	Gly 355	Pro	Glu	Asp	Leu	Ala 360	Tyr	Leu	Leu	Thr	Lys 365	Thr	Arg	Ile
15	Ser	Pro 370	Ile	Glu	Phe	Tyr	Ile 375	His	Gln	Tyr	Lys	Pro 380	Glu	Asn	Gly	Glı
	Asn 385	Leu	Gln	Ala	Gln	Ile 390	Glu	Phe	Leu	Glu	Lys 395	Ile	Ala	Pro	Leu	11e
50	Val	Gln	Glu	Lys	Ser 405	Ile	Ala	Ala	Gln	Asn 410	Ser	Tyr	Ile	His	Ile 415	Leı
	Ala	Asp	Ser	Leu 420	Ala	Ser	Phe	Asp	Tyr 425	Thr	Gln	Ile	Glu	Gln 430	Ile	Va]
55	Asn	Glu	Ser 435	Arg	Gln	Val	Gln	Arg 440	Gln	Asn	Arg	Met	Glu 445	Arg	Ile	Ser
50	Arg	Pro 450	Thr	Pro	Ile	Thr	Met 455	Pro	Val	Thr	Lys	Gln 460	Leu	Ser	Ala	Ile
	Met	Arg	Ala	Glu	Ala	His	Leu	Leu	Tyr	Arg	Met	Met	Glu	Ser	Pro	Let

-160-

	465					470					475					480	
-	Val	Leu	Asn	Asp	Tyr 485	Arg	Leu	Arg	Glu	Asp 490	Phe	Ala	Phe	Ala	Thr 495	Pro	
5	Glu	Phe	Gln	Val 500	Leu	His	Asp	Leu	Leu 505	Gly	Gln	Tyr	Gly	Asn 510	Leu	Pro	
10	Pro	Glu	Val 515	Leu	Ala	Glu	Gln	Thr 520	Glu	Glu	Val	Glu	Arg 525	Ala	Trp	Tyr	
	Gln	Val 530	Leu	Ala	Gln	Asp	Leu 535	Pro	Ala	Glu	Ile	Ser 540	Pro	Gln	Glu	Leu	
15	Ser 545	Glu	Val	Glu	Met	Thr 550	Arg	Asn	Lys	Ala	Leu 555	Leu	Asn	Gln	Asp	Asn 560	
20	Met	Arg	Ile	Lys	Lys 565	Lys	Val	Gln	Glu	Ala 570	Ser	His	Val	G1 y	Asp 575	Thr	
	Asp	Thr	Ala	Leu 580	Glu	Glu	Leu	Glu	Arg 585	Leu	Ile	Ser	Gln	Lys 590	Arg	Arg	
25	Met	Glu															
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID 1	10:93	1:								
30		(i)	(I	A) LE 3) TY C) ST	engti (PE : [rani	i: 90	00 ba leic ESS:	ase p acid sind	oair: 1	5							
35		(ii)	MOI	LECUI	LE TY	YPE:	DNA	(ger	nomi	=)							
		(iii)	HYI	POTHE	ETICA	AL: 1	10										
40		(iv)	ANT	ri-si	ENSE:	: NO											
45		(ix)	(E	A) N2 3) L0	AME/I	KEY: ION: INFO	1	B97 TION:	: Era	ı							
		(xi)	SEÇ	QUENC	CE DI	ESCR	PTIC	ON: 5	SEQ I	D NO	91:	:					
50			TTT Phe														48
55			TCA Ser														96
60	ATG Met	AGT Ser	GAC Asp 35	AAG Lys	GCG Ala	CAG Gln	ACA Thr	ACG Thr 40	CGC Arg	AAT Asn	AAA Lys	ATC Ile	ATG Met 45	GGA Gly	ATT Ile	TAC Tyr	· 144

-161-

															ATT Ile		192
5															TAC Tyr		240
10															GAT Asp 95		288
15															GCT Ala		336
20															CAT His		384
															GAC Asp		432
25															TCT Ser		480
30															TAT Tyr 175		528
35															TCA Ser		576
40															CCG Pro		624
															ACA Thr		672
45	AAG Lys 225	GTT Val	CAC His	ATC Ile	Arg	GCA Ala 230	Thr	ATC Ile	ATG Met	Val	GAG Glu 235	CGC Arg	GAT Asp	AGC Ser	CAA Gln	AAA Lys 240	720
50	GGG Gly	ATT Ile	ATC Ile	ATC Ile	GGT Gly 245	AAA Lys	GGT Gly	GGC Gly	GCT Ala	ATG Met 250	CTT Leu	AAG Lys	AAA Lys	ATC Ile	GGT Gly 255	AGT Ser	768
55															TTC Phe		816
60	GAA Glu	ACC Thr	TGG Trp 275	GTC Val	AAG Lys	GTC Val	AAG Lys	AAA Lys 280	AAC Asn	TGG Trp	CGC Arg	GAT Asp	AAA Lys 285	AAG Lys	CTA Leu	GAT Asp	864
	TTG	GCT	GAC	TTT	GGC	TAT	AAT	GAA	AGA	GAA	TAC	TAA					900

-162-

Leu Ala Asp Phe Gly Tyr Asn Glu Arg Glu Tyr 290 295

5	(2)	INF	ORMA	TION	FOR	SEQ	ID	NO:9	2:							
10			(i)	(B	ENCE) LE) TY) TO	NGTH PE:	: 29 amin	9 am o ac	ino id		s					
		(ii)	MOLE	CULE	TYP	E: p	rote	in							
15		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	92:				
	Met 1	Thr	Phe	Lys	Ser 5	Gly	Phe	Val	Ala	Ile 10	Leu	Gly	Arg	Pro	Asn 15	Val
20	Gly	Lys	Ser	Thr 20	Phe	Leu	Asn	His	Val 25	Met	Gly	Gln	Lys	Ile 30	Ala	Ile
	Met	Ser	Asp 35	Lys	Ala	Gln	Thr	Thr 40	Arg	Asn	Lys	Ile	Met 45	Gly	Ile	Tyr
25	Thr	Thr 50	Asp	Lys	Glu	Gln	Ile 55	Val	Phe	Ile	Asp	Thr 60	Pro	Gly	Ile	His
30	Lys 65	Pro	Lys	Thr	Ala	Leu 70	Gly	Asp	Phe	Met	Val 75	Glu	Ser	Ala	Tyr	Ser 80
	Thr	Leu	Arg	Glu	Val 85	Asp	Thr	Val	Leu	Phe 90	Met	Val	Pro	Ala	Asp 95	Glu
35	Ala	Arg	Gly	Lys 100	Gly	Asp	Asp	Met	Ile 105	Ile	Glu	Arg	Leu	Lys 110	Ala	Ala
	Lys	Val	Pro 115	Val	Ile	Leu	Val	Val 120	Asn	Lys	Ile	Asp	Lys 125	Val	His	Pro
40	Asp	Gln 130	Leu	Leu	Ser	Gln	Ile 135	Asp	Asp	Phe	Arg	Asn 140	Gln	Met	Asp	Phe
45	Lys 145	Glu	Ile	Val	Pro	Ile 150	Ser	Ala	Leu	Gln	Gly 155	Asn	Asn	Val	Ser	Arg 160
	Leu	Val	Asp	Ile	Leu 165	Ser	Glu	Asn	Leu	Asp 170	Glu	Gly	Phe	Gln	Tyr 175	Phe
50	Pro	Ser	Asp	Gln 180	Ile	Thr	Asp	His	Pro 185	Glu	Arg	Phe	Leu	Val 190	Ser	Glu
	Met	Val	Arg 195	Glu	Lys	Val	Leu	His 200	Leu	Thr	Arg	Glu	Glu 205	Ile	Pro	His
55	Ser	Val 210	Ala	Val	Val	Val	Asp 215	Ser	Met	Lys	Arg	Asp 220	Glu	Glu	Thr	Asp
60	Lys 225	Val	His	Ile	Arg	Ala 230	Thr	Ile	Met	Val	Glu 235	Arg	Asp	Ser	Glņ	Lys 240
	Gly	Ile	Ile	Ile	Gly	Lys	Gly	Gly	Ala	Met	Leu	Lys	Lys	Ile	Gly	Ser

-163-

					245					250					255		
5	Met	Ala	Arg	Arg 260	Asp	Ile	Glu ·	Leu	Met 265	Leu	Gly	Asp	Lys	Val 270	Phe	Leu	
5	Glu	Thr	Trp 275	Val	Lys	Val	Lys	Lys 280	Asn	Trp	Arg	Asp	Lys 285	Lys	Leu	Asp	
10		Ala 290	Asp	Phe	Gly	Tyr	Asn 295	Glu	Arg	Glu	Tyr						
	(2)	INFO	RMAI	MOI	FOR	SEQ	ID N	10:93	3:								
15			(<i>I</i> (E . (C	A) LE 3) TY C) ST	CE CH ENGTH (PE: TRANI DPOLO	i: 10 nucl	011 l Leic ESS:	acio sino	pai: d	rs							
20		(ii)	MOI	LECUI	LE TY	PE:	DNA	(gei	nomi	=)							
	(iii)	HYE	POTHE	ETICA	\L: 1	10								•		
25		(iv)	ANT	ri-si	ENSE	NO											
		/ ÷ \	E E 7	mtter													
30		(IX)	(<i>I</i>	3) LO	ME/I	ON:	1		: Gc <u>ı</u>	Þ							
35		(xi)	SEÇ	QUENC	CE DE	ESCRI	EPTIC	on: s	SEQ :	ID NO	D: 93	:					
	ATG Met 1								TTT Phe								48
40	AGT Ser	GTC Val	GCC Ala	GTC Val 20	TTG Leu	AAA Lys	AAC Asn	GAC Asp	GAT Asp 25	GAG Glu	CTC Leu	TTG Leu	TCC Ser	AAT Asn 30	GTC Val	ATT Ile	96
45	GCT Ala								CGT Arg								144
50	GTA Val	GCC Ala 50	AGT Ser	CGT Arg	CAC His	CAT His	GTC Val 55	GAG Glu	GTC Val	ATT Ile	ACA Thr	GCC Ala 60	TGT Cys	ATC Ile	GAG Glu	GAG Glu	192
55	GCA Ala 65								GAA Glu								240
<i></i>									GGA Gly								288
60	GCT Ala								CAC								336

-164-

				100					105					110			
5			ATG Met 115														384
10	GAG Glu	TTT Phe 130	CCC	TTG Leu	CTA Leu	GCC Ala	CTT Leu 135	TTA Leu	GTC Val	AGT Ser	GGT Gly	GGG Gly 140	CAC His	ACA Thr	GAG Glu	TTG Leu	432
10			GTT Val														480
15			GCA Ala														528
20			TAT Tyr														576
25			ATT Ile 195														624
30			TCC Ser														672
			GAG Glu														720
35			CAA Gln														768
4 0			GAG Glu														816
45	GCA Ala	GCC Ala	AAT Asn 275	AAA Lys	GGT Gly	CTC Leu	AGA Arg	GAA Glu 280	CGC Arg	CTA Leu	GCA Ala	ACT Thr	GAA Glu 285	ATC Ile	ACA Thr	GAT Asp	864
50			GTT Val														912
	ATG Met 305	ATT Ile	GCT Ala	TAT Tyr	GCC Ala	AGT Ser 310	GTC Val	AGC Ser	GAG Glu	TGG Trp	AAC Asn 315	AAA Lys	GAA Glu	AAC Asn	TTT Phe	GCA Ala 320	960
55	AAC Asn	TTG Leu	GAC Asp	CTC Leu	AAT Asn 325	GCC Ala	AAA Lys	CCA Pro	AGT Ser	CTT Leu 330	GCC Ala	TTT Phe	GAT Asp	ACC Thr	ATG Met 335	GAA Glu	1008
60	TAA																1011

-165-

(2) INFORMATION FOR SEQ ID NO:94:

5			(i) :	(B)	LEN TYI	NGTH:	: 336 amino	ERIS: 5 am: 5 ac: line	ino a id		S					
		(:	ii) 1	MOLE	CULE	TYPI	E: pı	rote	in							
10		(2	xi) :	SEQUI	ENCE	DESC	CRIPT	CION	: SEQ	Q ID	NO:	94:				
	Met 1	Lys	Asp	Arg	Tyr 5	Ile	Leu	Ala	Phe	Glu 10	Thr	Ser	Cys	Asp	Glu 15	Thr
15	Ser	Val	Ala	Val 20	Leu	Lys	Asn	Asp	Asp 25	Glu	Leu	Leu	Ser	Asn 30	Val	Ile
20	Ala	Ser	Gln 35	Ile	Glu	Ser	His	Lys 40	Arg	Phe	Gly	Gly	Val 45	Val	Pro	Glu
	Val	Ala 50	Ser	Arg	His	His	Val 55	Glu	Val	Ile	Thr	Ala 60	Cys	Ile	Glu	Glu
25	Ala 65	Leu	Ala	Glu	Ala	Gly 70	Ile	Thr	Glu	Glu	Asp 75	Val	Thr	Ala	Val	Ala 80
	Val	Thr	Tyr	Gly	Pro 85	Gly	Leu	Val	Gly	Ala 90	Leu	Leu	Val	Gly	Leu 95	Ser
30	Ala	Ala	Lys	Ala 100	Phe	Ala	Trp	Ala	His 105	Gly	Leu	Pro		Ile 110	Pro	Val
35	Asn	His	Met 115	Ala	Gly	His	Leu	Met 120	Ala	Ala	Gln	Ser	Val 125	Glu	Pro	Leu
	Glu	Phe 130	Pro	Leu	Leu	Ala	Leu 135	Leu	Val	Ser	Gly	Gly 140	His	Thr	Glu	Leu
40	Val 145	Tyr	Val	Ser	Glu	Ala 150	Gly	Asp	Tyr	Lys	Ile 155	Val	Gly	Glu	Thr	Arg 160
	Asp	Asp	Ala	Val	Gly 165	Glu	Ala	Tyr	Asp	Lys 170	Val	Gly	Arg	Val	Met 175	Gly
45	Leu	Thr	Tyr	Pro 180	Ala	Gly	Arg	Glu	Ile 185	Asp	Glu	Leu	Ala	His 190	Gln	Gly
50	His	Asp	Ile 195	Tyr	Asp	Phe	Pro	Arg 200	Ala	Met	Ile	Lys	Glu 205	Asp	Asn	Leu
- •	Glu	Phe 210	Ser	Phe	Ser	Gly	Leu 215	Lys	Ser	Ala	Phe	Ile 220	Asn	Leu	His	His
55	Asn 225	Ala	Glu	Gln	Lys	Gly 230	Glu	Ser	Leu	Ser	Thr 235	Glu	Asp	Leu	Cys	Ala 240
	Ser	Phe	Gln	Ala	Ala 245	Val	Met	Asp	Ile	Leu 250	Met	Ala	Lys	Thr	Lys 255	Lys
60	Ala	Leu	Glu	Lys 260	Tyr	Pro	Val	Lys	Thr 265	Leu	Val	Val	Ala	Gly 270	Gly	Val

-166-

	Ala	Ala	Asn 275	Lys	Gly	Leu	Arg	Glu 280	Arg	Leu	Ala	Thr	Glu 285	Ile	Thr	Asp		
5	Val	Asn 290	Val	Ile	Ile	Pro	Pro 295	Leu	Arg	Leu	Cys	Gly 300	Asp	Asn	Ala	Gly		
LO	Met 305	Ile	Ala	Tyr	Ala	Ser 310	Val	Ser	Glu	Trp	Asn 315	Lys	Glu	Asn	Phe	Ala 320		
	Asn	Leu	Asp	Leu	Asn 325	Ala	Lys	Pro	Ser	Leu 330	Ala	Phe	Asp	Thr	Met 335	Glu		
L5	(2)	INF	ORMAT	NOI	FOR	SEQ	ID N	10:95	5:									
20		(i)	() ()	QUENC A) LE B) TY C) ST O) TO	engti (PE: (Rani	i: 77 nucl	74 ba leic ESS:	ase p acid sind	pairs d	5								
		(ii)	MOI	LECUI	LE TY	YPE:	DNA	(ger	nomi	=)								
25		(iii)	HYI	POTHE	ETIC	AL: 1	10	•										
		(iv	CNA (ri-si	ENSE	: NO												
30		(ix)	(I	ATURE A) NA B) LO	AME/I	ON:	1		: HI(0454								
35		(xi)) SEQ	QUENC	CE DI	ESCR	[PTI	ON: 5	SEQ 1	ID NO	o: 95:	:				•		
10			TTT Phe															48
			GCA Ala															96
15			ATT Ile 35														1	44
50			GAT Asp														1	92
55			GCT Ala														2	40
50			AAA Lys														2	88
	TAC	CAT	TGG	ATG	ACA	GCG	CCC	AAA	GAG	GTG	CAG	GAG	CAG	GTT	TTT	CGC	3	36

-167-

	Tyr	His	Trp	Met 100	Thr	Ala	Pro	Lys	Glu 105	Val	Gln	Glu	Gln	Val 110	Phe	Arg	
5										GAT Asp							384
10										GAG Glu							432
15										TCA Ser							480
										ATG Met 170							528
20										CTC Leu							576
25										ACA Thr							624
30										AAA Lys							672
35										GGT Gly							720
,,,										CGC Arg 250							768
40	AAG Lys	TAA															774
45	(2)	INFO															
50			(1)	(B	LEI TY	NGTH:	25°		ino a id	: acid:	5						
		(:	Li) 1	MOLE	CULE	TYP	E: p	rote	in								
55		(2	ki) :	SEQU	ENCE	DES	CRIP'	rion:	: SE	Q ID	NO:	96:					
	Met 1	Ile	Phe	Asp	Thr 5	His	Thr	His	Leu	Asn 10	Val	Glu	Glu	Phe	Ala 15	Gly	•
60	Arg	Glu	Ala	Glu 20	Glu	Ile	Ala	Leu	Ala 25	Ala	Glu	Met	Gly	Val 30	Thr	Gln	

-168-

	Met	Asn	Ile 35	Val	Gly	Phe	Asp	Lys 40	Pro	Thr	Ile	Glu	His 45	Ala	Leu	Glu
5	Leu	Val 50	Asp	Glu	Tyr	Glu	Gln 55	Leu	Tyr	Ala	Thr	Ile 60	Gly	Trp	His	Pro
	Thr 65	Glu	Ala	Gly	Thr	туr 70	Thr	Glu	Glu	Val	Glu 75	Ala	Tyr	Leu	Leu	Asp 80
LO	Lys	Leu	Lys	His	Ser 85	Lys	Val	Val	Ala	Leu 90	Gly	Glu	Ile	Gly	Leu 95	Asp
15	Tyr	His	Trp	Met 100	Thr	Ala	Pro	Lys	Glu 105	Val	Gln	Glu	Gln	Val 110	Phe	Arg
LO	Arg	Gln	Ile 115	Gln	Leu	Ser	Lys	Asp 120	Leu	Asp	Leu	Pro	Phe 125	Val	Val	His
20	Thr	Arg 130	Asp	Ala	Leu	Glu	Asp 135	Thr	Tyr	Glu	Ile	Ile 140	Lys	Ser	Glu	Gly
٠	Val 145	Gly	Pro	Arg	Gly	Gly 150	Ile	Met	His	Ser	Phe 155	Ser	Gly	Thr	Leu	Glu 160
25	Trp	Ala	Glu	Lys	Phe 165	Val	Asp	Leu	Gly	Met 170	Thr	Ile	Ser	Phe	Ser 175	Gly
30	Val	Val	Thr	Phe 180		Lys	Ala	Thr	Asp 185	Leu	Gln	Glu	Ala	Ala 190	Lys	Glu
20	Leu	Pro	Leu 195		Lys	Met	Leu	Val 200		Thr	Asp	Ala	Pro 205		Leu	Ala
35	Pro	Val 210		Lys	Arg	Gly	Arg 215		Asn	Lys	Thr	Ala 220		Thr	Arg	Tyr
	Val 225		Asp	Phe	Ile	Ala 230		Leu	Arg	Gly	Met 235		Thr	Glu	Glu	Leu 240
40	Ala	Val	Ala	Thr	Thr 245		Asn	Ala	Glu	Arg 250		Phe	Gly	Leu	Asp 255	Ser
45	Lys	;														
47	(2)			TION												
50		(1	((A) I (B) I (C) S (D) I	ENGT YPE: TRAN	H: 1 nuc IDEDN	.959 :leic IESS:	base aci sir	pai .d	.rs						
55				OLEC				A (ge	enomi	.c)						
		•	•	YPOTI NTI-:												
60		(i:	k) F1	EATU	RE:											

PCT/US97/22578 WO 98/26072

-169-

(A) NAME/KEY: CDS(B) LOCATION: 1..1959(D) OTHER INFORMATION: Ligase

5	(xi)	SEÇ	UENC	CE DE	ESCRI	PTIC	N: 5	SEQ I	D NO	97:	:					
10													TAT Tyr 15		4	18
15													GAG Glu		9	96
13													CCA Pro		14	14
20													GTT Val		19	12
25													TTG Leu		24	10
30													GTT Val 95		28	18
35													GAT Asp		33	36
33													GGG Gly	GTA Val	38	34
40													CTC Leu		43	32
45													ATC Ile	ACA Thr 160	48	30
50													GTT Val 175		52	28
														AAT Asn	57	76
55				_						-			GCC Ala	AAG Lys	62	24
60														CGT Arg	67	72

-170-

		210					215					220					
5															TTT Phe		720
10															TGG Trp 255		768
															GAT Asp		816
15															GAA Glu		864
20															TTC Phe		912
25	GCT Ala 305	GAA Glu	GAA Glu	AAA Lys	GAA Glu	GCT Ala 310	CAA Gln	CTC Leu	TTA Leu	TCA Ser	GTT Val 315	GAC Asp	TGG Trp	ACA Thr	GTT Val	GGC Gly 320	960
30															CAA Gln 335		1008
30															TAT Tyr		1056
35															AAG Lys		1104
40															CGG Arg		1152
45	TCT Ser 385	GAA Glu	GAA Glu	AAA Lys	CTA Leu	GAT Asp 390	ATC Ile	CCT Pro	ACA Thr	AAC Asn	TGT Cys 395	CCA Pro	AGT Ser	TGT Cys	AAC Asn	TCT Ser 400	1200
50															AAT Asn 415		1248
30	CGT Arg	TGC Cys	CCT Pro	GCT Ala 420	CAA Gln	ATC Ile	ATG Met	GAA Glu	GGC Gly 425	TTG Leu	ATT Ile	CAC His	TTT Phe	GCT Ala 430	TCT Ser	CGT Arg	1296
55	GAT Asp	GCT Ala	ATG Met 435	AAT Asn	ATT Ile	ACA Thr	GGC Gly	CTT Leu 440	GGT Gly	CCA Pro	TCT Ser	ATT Ile	GTT Val 445	GAG Glu	AAG Lys	CTT Leu	1344
60	TTT Phe	GCT Ala 450	GCT Ala	AAT Asn	TTA Leu	GTC Val	AAG Lys 455	GAT Asp	GTG Val	GCG Ala	GAT Asp	ATT Ile 460	TAT Tyr	CGT Arg	TTG Leu	CAA Gln	1392

-171-

5											AAG Lys 475						1440
J											GAA Glu						1488
10											GGA Gly						1536
15											AAT Asn						1584
20	TCA Ser	GAG Glu 530	GAA Glu	GTG Val	GCT Ala	AGT Ser	ATT Ile 535	GAA Glu	AGT Ser	CTA Leu	GGT Gly	GGC Gly 540	GTG Val	ATT Ile	GCC Ala	AAA Lys	1632
25	AGT Ser 545	CTT Leu	CAG Gln	ACT Thr	TAT Tyr	TTT Phe 550	GCG Ala	GCA Ala	GAA Glu	GGC Gly	TCT Ser 555	GAA Glu	ATT Ile	CTG Leu	CTC Leu	AGA Arg 560	1680
											TAT Tyr						1728
30											GTG Val						1776
35											AGT Ser						1824
40	GGT Gly	GCC Ala 610	AAA Lys	GTG Val	ACA Thr	GGT Gly	AGT Ser 615	GTT Val	TCT Ser	AAA Lys	AAG Lys	ACC Thr 620	GAC Asp	CTC Leu	GTC Val	GTG Val	1872
45	GTA Val 625	GGT Gly	GCA Ala	GAC Asp	GCT Ala	GGA Gly 630	AGT Ser	AAA Lys	CTG Leu	CAA Gln	AAA Lys 635	GCA Ala	CAA Gln	GAA Glu	CTT Leu	GGT Gly 640	1920
	ATC Ile	CAG Gln	GTC Val	AGA Arg	GAT Asp 645	GAG Glu	GCA Ala	TGG Trp	CTA Leu	GAA Glu 650	AGT Ser	TTG Leu	TAA				1959
50	(2)					_		10:98									
55		((i) S	(A) (B)	LEN TYE	IGTH:	653 mino	ERIST Bami Daci Linea	.no a .d		3						
		(i	li) N	OLE	CULE	TYPE	E: p1	otei	.n								

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

60

-172-

Met Asn Lys Arg Met Asn Glu Leu Val Ala Leu Leu Asn Arg Tyr Ala Thr Glu Tyr Tyr Thr Ser Asp Asn Pro Ser Val Ser Asp Ser Glu Tyr 5 Asp Arg Leu Tyr Arg Glu Leu Val Glu Leu Glu Thr Ala Tyr Pro Glu 10 Gln Val Leu Ala Asp Ser Pro Thr His Arg Val Gly Gly Lys Val Leu Asp Gly Phe Glu Lys Tyr Ser His Gln Tyr Pro Leu Tyr Ser Leu Gln 65 70 75 80 15 Asp Ala Phe Ser Arg Glu Glu Leu Asp Ala Phe Asp Ala Arg Val Arg Lys Glu Val Ala His Pro Thr Tyr Ile Cys Glu Leu Lys Ile Asp Gly 20 Leu Ser Ile Ser Leu Thr Tyr Glu Lys Gly Ile Leu Val Ala Gly Val 25 Thr Arg Gly Asp Gly Ser Ile Gly Glu Asn Ile Thr Glu Asn Leu Lys Arg Val Lys Asp Ile Pro Leu Thr Leu Pro Glu Glu Leu Asp Ile Thr 30 Val Arg Gly Glu Cys Tyr Met Pro Arg Ala Ser Phe Asp Gln Val Asn Gln Ala Arg Gln Glu Asn Gly Glu Pro Glu Phe Ala Asn Pro Arg Asn 35 Ala Ala Ala Gly Thr Leu Arg Gln Leu Asp Thr Ala Val Val Ala Lys 40 Arg Asn Leu Ala Thr Phe Leu Tyr Gln Glu Ala Ser Pro Ser Thr Arg 215 Asp Ser Gln Glu Lys Gly Leu Lys Tyr Leu Glu Gln Leu Gly Phe Val 230 45 Val Asn Pro Lys Arg Ile Leu Ala Glu Asn Ile Asp Glu Ile Trp Asn 250 Phe Ile Gln Glu Val Gly Gln Glu Arg Glu Asn Leu Pro Tyr Asp Ile 50 Asp Gly Val Val Ile Lys Val Asn Asp Leu Ala Ser Gln Glu Glu Leu 55 Gly Phe Thr Val Lys Ala Pro Lys Trp Ala Val Ala Tyr Lys Phe Pro Ala Glu Glu Lys Glu Ala Gln Leu Leu Ser Val Asp Trp Thr Val Gly 310 60 Arg Thr Gly Val Val Thr Pro Thr Ala Asn Leu Thr Pro Val Gln Leu

-173-

					325					330					335	
5	Ala	Gly	Thr	Thr 340	Val	Ser	Arg	Ala	Thr 345	Leu	His	Asn	Val	Asp 350	Tyr	11
	Ala	Glu	Lys 355	Asp	Ile	Arg	Lys	Asp 360	Asp	Thr	Val	Ile	Val 365	Tyr	Lys	Ala
10	Gly	Asp 370	Ile	Ile	Pro	Ala	Val 375	Leu	Arg	Val	Val	Glu 380	Ser	Lys	Arg	Va.
	Ser 385	Glu	Glu	Lys	Leu	Asp 390	Ile	Pro	Thr	Asn	Cys 395	Pro	Ser	Cys	Asn	Se:
15	Asp	Leu	Leu	His	Phe 405	Glu	Asp	Glu	Val	Ala 410	Leu	Arg	Cys	Ile	Asn 415	Pro
20	Arg	Cys	Pro	Ala 420	Gln	Ile	Met	Glu	Gly 425	Leu	Ile	His	Phe	Ala 430	Ser	Ar
	Asp	Ala	Met 435	Asn	Ile	Thr	Gly	Leu 440	Gly	Pro	Ser	Ile	Val 445	Glu	Lys	Let
25	Phe	Ala 450	Ala	Asn	Leu	Val	Lys 455	Asp	Val	Ala	Asp	Ile 460	Tyr	Arg	Leu	Gli
	Glu 465	Glu	Asp	Phe	Leu	Leu 470	Leu	Glu	Gly	Val	Lys 475	Glu	Lys	Ser	Ala	Ala 480
30	Lys	Leu	Tyr	Gln	Ala 485	Ile	Gln	Ala	Ser	Lys 490	Glu	Asn	Ser	Ala	Glu 495	Lys
35	Leu	Leu	Phe	Gly 500	Leu	Gly	Ile	Arg	His 505	Val	Gly	Ser	Lys	Ala 510	Ser	Glr
	Leu	Leu	Leu 515	Gln	Tyr	Phe	His	Ser 520	Ile	Glu	Asn	Leu	Tyr 525	Gln	Ala	Asp
40	Ser	Glu 530	Glu	Val	Ala	Ser	Ile 535	Glu	Ser	Leu	Gly	Gly 540	Val	Ile	Ala	Lys
	Ser 545	Leu	Gln	Thr	Tyr	Phe 550	Ala	Ala	Glu	Gly	Ser 555	Glu	Ile	Leu	Leu	Arg 560
45	Glu	Leu	Lys	Glu	Thr 565	Gly	Val	Asn	Leu	Asp 570	Tyr	Lys	Gly	Gln	Thr 575	Val
50	Val	Ala	Asp	Ala 580	Ala	Leu	Ser	Gly	Leu 585	Thr	Val	Val	Leu	Thr 590	Gly	Lys
	Leu	Glu	Arg 595	Leu	Lys	Arg	Ser	Glu 600	Ala	Lys	Ser	Lys	Leu 605	Glu	Ser	Leu
55	Gly	Ala 610	Lys	Val	Thr	Gly	Ser 615	Val	Ser	Lys	Lys	Thr 620	Asp	Leu	Val	Val
	Val 625	Gly	Ala	Asp	Ala	Gly 630	Ser	Lys	Leu	Gln	Lys 635	Ala	Gln	Glu		Gly 640
50	Ile	Gln	Val	Arg	Asp 645	Glu	Ala	Trp	Leu	Glu 650	Ser	Leu				

-174-

	(2)	INF	ORMA	TION	FOR	SEQ	ID 1	NO: 9	9:								
5		(i	() ()	QUEN A) L B) T C) S	engt: Ype: Tran:	H: 9 nuc DEDN	81 b leic ESS:	ase pacions acions	pair d	s							
10				D) T					-								
		(ii) MO	LECU:	LE T	YPE:	DNA	(ge	nomi	c)							
		(iii) HY:	POTH	ETIC	AL: 1	7O										
15				ri-si		: NO											
20			() () ()	ATURI A) NI B) LO D) O	AME/I DCATI THER	ION: INF	1! DRMA	rion			- 00						
	»mc			DUEN:					_								
25	Met 1	Phe	Ile	Ser	Ile 5	Ser	Ala	GLY	Ile	Val 10	Thr	Phe	Leu	Leu	Thr 15	TTA Leu	48
30	GTA Val	GGA Gly	ATT Ile	CCG Pro 20	GCC Ala	TTT Phe	ATC Ile	CAA Gln	TTT Phe 25	TAT Tyr	AGA Arg	AAG Lys	GCG Ala	CAA Gln 30	ATT Ile	ACA Thr	96
35	GGC Gly	CAG Gln	CAG Gln 35	ATG Met	CAT His	GAG Glu	GAT Asp	GTC Val 40	AAA Lys	CAG Gln	CAT His	CAG Gln	GCA Ala 45	AAA Lys	GCT Ala	GGG Gly	144
	ACT Thr	CCT Pro 50	ACA Thr	ATG Met	GGA Gly	GGT Gly	TTG Leu 55	GTT Val	TTC Phe	TTG Leu	ATT Ile	ACT Thr 60	TCT Ser	GTT Val	TTG Leu	GTT Val	192
40	GCT Ala 65	TTC Phe	TTT Phe	TTC Phe	GCC Ala	CTA Leu 70	TTT Phe	AGT Ser	AGC Ser	CAA Gln	TTC Phe 75	AGC Ser	AAT Asn	AAT Asn	GTG Val	GGA Gly 80	240
45	ATG Met	ATT Ile	TTG Leu	TTC Phe	ATC Ile 85	TTG Leu	GTC Val	TTG Leu	TAT Tyr	GGC Gly 90	TTG Leu	GTC Val	GGA Gly	TTT Phe	TTA Leu 95	GAT Asp	288
50	GAC Asp	TTT Phe	CTC Leu	AAG Lys 100	GTC Val	TTT Phe	CGT Arg	AAA Lys	ATC Ile 105	AAT Asn	GAG Glu	GGG Gly	CTT Leu	AAT Asn 110	CCT Pro	AAG Lys	336
55	CAA Gln	AAA Lys	TTA Leu 115	GCT Ala	CTT Leu	CAG Gln	CTT Leu	CTA Leu 120	GGT Gly	GGA Gly	GTT Val	ATC Ile	TTC Phe 125	TAT Tyr	CTT Leu	TTC Phe	384
	TAT Tyr	GAG Glu 130	CGC Arg	GGT Gly	GGC Gly	GAT Asp	ATC Ile 135	CTG Leu	TCT Ser	GTC Val	TTT Phe	GGT Gly 140	TAT Tyr	CCA Pro	GTT Val	CAT His	432
60	TTG Leu	GGA Gly	TTT Phe	TTC Phe	TAT Tyr	ATT Ile	TTC Phe	TTC Phe	GCT Ala	CTT Leu	TTC Phe	TGG Trp	CTA Leu	GTC Val	GGT Glv	TTT Phe	480

-175-

	145					150					155					160	
5			GCA Ala														528
10			GTG Val														576
10			ATG Met 195														624
15			TTC Phe														672
20			GGA Gly														720
25			CAC His														768
30			ACA Thr														816
			AAA Lys 275														864
35			GGA Gly														912
40			TTC Phe														960
45			TTG Leu				TAA		٠								981
50	(2)		ORMAT							•							
55		,		(A)	LEN TYI	NGTH:	320 amino	6 ami	ino a id		5						
			Li) N				•					¥					
60	\ \$		(i) S										_			_	
60	Met 1	Phe	Ile	Ser	Ile 5	Ser	Ala	Gly	Ile	Val 10	Thr	Phe	Leu	Leu	Thr 15	Leu	

-176-

	Val	Gly	lle	Pro 20	Ala	Phe	Ile	Gln	Phe 25		Arg	Lys	Ala	Gln 30		Thr
5	Gly	Gln	Gln 35		His	Glu	Asp	Val 40	Lys	Gln	His	Gln	Ala 45	Lys	Ala	Gly
10	Thr	Pro 50		Met	Gly	Gly	Leu 55		Phe	Leu	Ile	Thr 60		Val	Leu	Val
	65					70					75					Gly 80
15	Met	Ile	Leu	Phe	Ile 85	Leu	Val	Leu	Tyr	Gly 90	Leu	Val	Gly	Phe	Leu 95	
	Asp	Phe	Leu	Lys 100	Val	Phe	Arg	Lys	Ile 105	Asn	Glu	Gly	Leu	Asn 110	Pro	Lys
20	Gln	Lys	Leu 115	Ala	Leu	Gln	Leu	Leu 120	Gly	Gly	Val	Ile	Phe 125	Tyr	Leu	Phe
25	Tyr	Glu 130	Arg	Gly	Gly	Asp	Ile 135	Leu	Ser	Val	Phe	Gly 140	Tyr	Pro	Val	His
	Leu 145	Gly	Phe	Phe	Tyr	Ile 150	Phe	Phe	Ala	Leu	Phe 155	Trp	Leu	Val	Gly	Phe 160
30	Ser	Asn	Ala	Val	Asn 165	Leu	Thr	Asp	Gly	Val 170	Asp	Gly	Leu	Ala	Ser 175	Ile
	Ser	Val	Val	Ile 180	Ser	Leu	Phe	Ala	Tyr 185	Gly	Val	Ile	Ala	Tyr 190	Val	Gln
35	Gly	Gln	Met 195	Asp	Ile	Leu	Leu	Val 200	Ile	Leu	Ala	Met	Ile 205	Gly	Gly	Leu
40	Leu	Gly 210	Phe	Phe	Ile	Phe	Asn 215	His	Lys	Pro	Ala	Lys 220	Val	Phe	Met	Gly
	Asp 225	Val	Gly	Ser	Leu	Ala 230	Leu	Gly	Gly	Met	Leu 235	Ala	Ala	Ile	Ser	Met 240
45	Ala	Leu	His	Gln	Glu 245	Trp	Thr	Leu	Leu	Ile 250	Ile	Gly	Ile	Val	Tyr 255	Val
	Phe	Glu	Thr	Thr 260	Ser	Val	Met	Met	Gln 265		Ser	Tyr	Phe	Lys 270	Leu	Thr
50	Gly	Gly	Lys 275	Arg	Ile	Phe	Arg	Met 280	Thr	Pro	Val	His	His 285	His	Phe	Glu
55	Leu	Gly 290	Gly	Leu	Ser	Gly	Lys 295	Gly	Asn	Pro	Trp	Ser 300	Glu	Trp	Lys	Val
	Asp 305	Phe	Phe	Phe	Trp	Gly 310	Val	Gly	Leu	Leu	Ala 315	Ser	Leu	Leu	Thr	Leu 320
60	Ala	Ile	Leu	Tyr	Leu 325	Met										

-177-

	(2)	INF	ORMA	TION	FOR	SEQ	ID :	NO:1	01:								
5		(i	(QUEN A) L B) T C) S D) T	engt Ype: Tran	H: 3 nuc DEDN	69 b leic ESS:	ase aci sin	pair d	s							
10		(ii) MO	LECU:	LE T	YPE:	DNA	(ge	nomi	c)							
		(iii) HY	POTH	ETIC.	AL: 1	NO										
15		(iv) AN	TI-S	ENSE	: NO											
20		(ix	(ATURI A) NI B) LO	AME/	ION:	1		: Dp	j							
		(xi) SE	QUEN	CE D	ESCR:	IPTI(ON:	SEQ :	ID N	0:10	1:					
25	ATG Met 1	Arg	ATG Met	ATA Ile	GTT Val 5	GGA Gly	CAC His	GGA Gly	ATT Ile	GAC Asp 10	ATC Ile	GAA Glu	GAA Glu	TTG Leu	GCT Ala 15	TCG Ser	48
30	ATA Ile	GAA Glu	AGC Ser	GCA Ala 20	GTT Val	ACA Thr	CGA Arg	CAT His	GAA Glu 25	GGA Gly	TTT Phe	GCT Ala	AAG Lys	CGT Arg 30	GTA Val	CTG Leu	96
35	ACC Thr	GCT Ala	CAG Gln 35	GAA Glu	ATG Met	GAG Glu	CGC Arg	TTC Phe 40	ACC Thr	AGT Ser	CTC Leu	AAA Lys	GGA Gly 45	CGC Arg	AGG Arg	CAA Gln	144
40	ATA Ile	GAA Glu 50	TAT Tyr	TTA Leu	GCT Ala	GGT Gly	CGC Arg 55	TGG Trp	TCG Ser	GCT Ala	AAG Lys	GAG Glu 60	GCC Ala	TTT Phe	TCC Ser	AAG Lys	192
10	GCT Ala 65	ATG Met	GGA Gly	ACG Thr	GGC Gly	ATT Ile 70	AGC Ser	AAG Lys	CTC Leu	GGT Gly	TTT Phe 75	CAG Gln	GAT Asp	TTG Leu	GAA Glu	GTC Val 80	240
45	TTG Leu	AAC Asn	AAT Asn	GAA Glu	CGT Arg 85	GGG Gly	GCG Ala	CCT Pro	TAT Tyr	TTT Phe 90	AGT Ser	CAG Gln	GCA Ala	CCA Pro	TTT Phe 95	TCA Ser	288
50	GGA Gly	AAG Lys	ATT Ile	TGG Trp 100	CTG Leu	TCT Ser	ATC Ile	AGC Ser	CAC His 105	ACC Thr	GAT Asp	CAG Gln	TTT Phe	GTG Val 110	ACA Thr	GCC Ala	336
55			ATT Ile 115								TAG						369
	(2)	INFO	ORMA!	rion	FOR	SEQ	ID 1	NO:10	02:								

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 122 amino acids

60

-178-

	(B) TYPE: amino acid (D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: protein	
,	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:	
10	Met Arg Met Ile Val Gly His Gly Ile Asp Ile Glu Glu Leu Ala Ser 1 5 10 15	
	Ile Glu Ser Ala Val Thr Arg His Glu Gly Phe Ala Lys Arg Val Leu 20 25 30	
15	Thr Ala Gln Glu Met Glu Arg Phe Thr Ser Leu Lys Gly Arg Arg Gln 35 40 45	
	Ile Glu Tyr Leu Ala Gly Arg Trp Ser Ala Lys Glu Ala Phe Ser Lys 50 55 60	
20	Ala Met Gly Thr Gly Ile Ser Lys Leu Gly Phe Gln Asp Leu Glu Val 65 70 75 80	
25	Leu Asn Asn Glu Arg Gly Ala Pro Tyr Phe Ser Gln Ala Pro Phe Ser 85 90 95	
	Gly Lys Ile Trp Leu Ser Ile Ser His Thr Asp Gln Phe Val Thr Ala 100 105 110	
30	Ser Val Ile Leu Glu Glu Asn His Glu Ser 115 120	
	(2) INFORMATION FOR SEQ ID NO:103:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1260 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
40	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO	
4 5	(iv) ANTI-SENSE: NO	
50	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11260 (D) OTHER INFORMATION: Murz	
55	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:	
	ATG AGA AAA ATT GTT ATC AAT GGT GGA TTA CCA CTG CAA GGT GAA ATC Met Arg Lys Ile Val Ile Asn Gly Gly Leu Pro Leu Gln Gly Glu Ile 1 5 10 15	4
60	ACT ATT AGT GGT GCT AAA AAT AGT GTC GTT GCC TTA ATT CCA GCT ATT Thr Ile Ser Gly Ala Lys Asn Ser Val Val Ala Leu Ile Pro Ala Ile	9

-179-

				20					25					30			
5				GAT Asp													144
10				AGT Ser													192
10	AAG Lys 65	CGT Arg	TAT Tyr	GAC Asp	GAT Asp	GTA Val 70	TTG Leu	GAG Glu	ATT Ile	GAC Asp	CCA Pro 75	AGA Arg	GGT Gly	GTT Val	CAA Gln	AAT Asn 80	240
15				CCT Pro													288
20				AGC Ser 100													336
25				TGT Cys													384
30				GCT Ala													432
				GCT Ala													480
35				AGT Ser													528
40				GGT Gly 180													576
4 5				GTA Val													624
50				ACT Thr													672
				CAT His													720
55				GCT Ala													768
60				CAC His 260													816

-180-

-												GTC Val					864
5												TAC Tyr 300					912
10												CTA Leu					960
15												CGT Arg					1008
20												ACA Thr					1056
25												GCC Ala					1104
												GCT Ala 380					1152
30												ATC Ile					1200
35												GCG Ala					1248
40	_	GAG Glu		TAA													1260
	(2)	INFO	ORMAT	NOI	FOR	SEQ	ID N	10:10)4:								,
45		!	(i) S	(B)	LEN TYI	IGTH:	RACTE 419 mino SY:]	ami aci	no a		3						
50				OLE			-										
	N - L			EQU													
55	met 1	Arg	гÀг	ile	Val 5	Ile	Asn	GTÀ	GIA	Leu 10	Pro	Leu	Gln	Gly	Glu 15	Ile	
	Thr	Ile	Ser	Gly 20	Ala	Lys	Asn	Ser	Val 25	Val	Ala	Leu	Ile	Pro 30	Ala	Ile	
60	Ile	Leu	Ala 35	Asp	Asp	Val	Val	Thr 40	Leu	Asp	Cys	Val	Pro 45	Asp	Ile	Ser	

-181-

	Asp	Val 50	Ala	Ser	Leu	Val	Glu 55	Ile	Met	Glu	Leu	Met 60	Gly	Ala	Thr	Va]
5	Lys 65	Arg	Tyr	Asp	Asp	Val 70	Leu	Glu	Ile	Asp	Pro 75	Arg	Gly	Val	Gln	Asr 80
10	Ile	Pro	Met	Pro	Tyr 85	Gly	Lys	Ile	Asn	Ser 90	Leu	Arg	Ala	Ser	Tyr 95	Туі
	Phe	Tyr	Gly	Ser 100	Leu	Leu	Gly	Arg	Phe 105	Gly	Glu	Ala	Thr	Val 110	Gly	Leu
15	Pro	Gly	Gly 115	Cys	Asp	Leu	Gly	Pro 120	Arg	Pro	Ile	Asp	Leu 125	His	Leu	Lys
	Ala	Phe 130	Glu	Ala	Met	Gly	Ala 135	Thr	Ala	Ser	Tyr	Glu 140	Gly	Asp	Asn	Met
20	Lys 145	Leu	Ser	Ala	Lys	Asp 150	Thr	Gly	Leu	His	Gly 155	Ala	Ser	Ile	Tyr	Met 160
25	Asp	Thr	Val	Ser	Val 165	Gly	Ala	Thr	Ile	Asn 170	Thr	Met	Ile	Ala	Ala 175	Val
	Lys	Ala	Asn	Gly 180	Arg	Thr	Ile	Ile	Glu 185	Asn	Ala	Ala	Arg	Glu 190	Pro	Glu
30	Ile	Ile	Asp 195	Val	Ala	Thr	Leu	Leu 200	Asn	Asn	Met	Gly	Ala 205	His	Ile	Arg
	Gly	Ala 210	Gly	Thr	Asn	Ile	11e 215	Ile	Ile	Asp	Gly	Val 220	Glu	Arg	Leu	His
35	Gly 225	Thr	Arg	His	Gln	Val 230	Ile	Pro	Asp	Arg	Ile 235	Glu	Ala	Gly	Thr	Tyr 240
40	Ile	Ser	Leu	Ala	Ala 245	Ala	Val	Gly	Lys	Gly 250	Ile	Arg	Ile	Asn	Asn 255	Val
	Leu	Tyr	Glu	His 260	Leu	Glu	Gly	Phe	Val 265	Ala	Lys	Leu	Glu	Glu 270	Met	Gly
45	Val	Arg	Met 275	Thr	Val	Ser	Glu	Asp 280	Ser	Ile	Phe	Val	Glu 285	Glu	Gln	Ser
	Asn	Leu 290	Lys	Ala	Ile	Asn	Ile 295	Lys	Thr	Ala	Pro	Tyr 300	Pro	Gly	Phe	Ala
50	Thr 305	Asp	Leu	Gln	Gln	Pro 310	Leu	Thr	Pro	Leu	Leu 315	Leu	Arg	Ala	Asn	Gly 320
55	Arg	Gly	Thr	Ile	Val 325	Asp	Thr	Ile	Tyr	Glu 330	Lys	Arġ	Val	Asn	His 335	Val
	Phe	Glu	Leu	Ala 340	Lys	Met	Asp	Ala	Asp 345	Ile	Ser	Thr	Thr	Asn 350	Gly	His
60	Ile	Leu	Tyr 355	Thr	Gly	Gly	Arg	Asp 360	Leu	Arg	Gly	Ala	Ser 365	Val	Lys	Ala

-182-

	Thr Asp Leu Arg Ala Gly Ala Ala Leu Val Ile Ala Gly Leu Met Ala 370 375 380	
5	Glu Gly Lys Thr Glu Ile Thr Asn Ile Glu Phe Ile Leu Arg Gly Tyr 385 390 395 400	
	Ser Asp Ile Ile Glu Lys Leu Arg Asn Leu Gly Ala Asp Ile Arg Leu 405 410 415	
10	Val Glu Asp 419	
15	(2) INFORMATION FOR SEQ ID NO:105: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1008 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: single (D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: DNA (genomic)	
25	(iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO	
30	(ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 11008 (D) OTHER INFORMATION: FtsZ	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:	
40	ATG ACA TTT TCA TTT GAT ACA GCT GCT GCT CAA GGG GCA GTG ATT AAA Met Thr Phe Ser Phe Asp Thr Ala Ala Ala Gln Gly Ala Val Ile Lys 1 5 10 15	18
10	GTA ATT GGT GTC GGT GGA GGT GGT GGC AAT GCC ATC AAC CGT ATG GTC Val Ile Gly Val Gly Gly Gly Gly Asn Ala Ile Asn Arg Met Val 20 25 30	96
45	GAC GAA GGT GTT ACA GGC GTA GAA TTT ATC GCA GCA AAC ACA GAT GTA Asp Glu Gly Val Thr Gly Val Glu Phe Ile Ala Ala Asn Thr Asp Val 35 40 45	14
50	CAA GCA TTG AGT AGT ACA AAA GCT GAG ACT GTT ATT CAG TTG GGA CCT Gln Ala Leu Ser Ser Thr Lys Ala Glu Thr Val Ile Gln Leu Gly Pro 50 55 60	92
55	AAA TTG ACT CGT GGT TTG GGT GCA GGA GGT CAA CCT GAG GTT GGT CGT Lys Leu Thr Arg Gly Leu Gly Ala Gly Gly Gln Pro Glu Val Gly Arg 65 70 75 80	40
60	AAA GCC GCT GAA GAA AGC GAA GAA ACA CTG ACG GAA GCT ATT AGT GGT Lys Ala Ala Glu Glu Ser Glu Glu Thr Leu Thr Glu Ala Ile Ser Gly 85 90 95	88
60	GCC GAT ATG GTC TTC ATC ACT GCT GGT ATG GGA GGC TCT GGA ACT	36

-183-

	Ala	Asp	Met	Val 100	Phe	Ile	Thr	Ala	Gly 105	Met	Gly	Gly	Gly	Ser 110	Gly	Thr	
5			GCT Ala 115														384
10	ACA Thr	GTT Val 130	GGT Gly	GTT Val	GTA Val	ACA Thr	CGT Arg 135	CCC Pro	TTT Phe	GGT Gly	TTT Phe	GAA Glu 140	GGA Gly	AGT Ser	AAG Lys	CGT Arg	432
15			TTT Phe														480
13			TTG Leu														528
20	AAA Lys	ACA Thr	CCG Pro	CTT Leu 180	TTG Leu	GAG Glu	GCT Ala	CTT Leu	AGC Ser 185	GAA Glu	GCG Ala	GAT Asp	AAC Asn	GTT Val 190	CTT Leu	CGT Arg	576
25			GTT Val 195														624
30	AAC Asn	CTT Leu 210	GAC Asp	TTT Phe	GCC Ala	GAT Asp	GTG Val 215	AAA Lys	ACG Thr	GTA Val	ATG Met	GCA Ala 220	AAC Asn	AAA Lys	GGG Gly	AAT Asn	672
35	GCT Ala 225	CTT Leu	ATG Met	GGT Gly	ATT Ile	GGT Gly 230	ATC Ile	GGT Gly	AGT Ser	GGA Gly	GAA Glu 235	GAA Glu	CGT Arg	GTG Val	GTA Val	GAA Glu 240	720
33	GCG Ala	GCA Ala	CGT Arg	AAG Lys	GCA Ala 245	ATC Ile	TAT Tyr	TCA Ser	CCA Pro	CTT Leu 250	CTT Leu	GAA Glu	ACA Thr	ACT Thr	ATT Ile 255	GAC Asp	768
40	GGT Gly	GCT Ala	GAG Glu	GAT Asp 260	GTT Val	ATC Ile	GTC Val	AAC Asn	GTT Val 265	ACT Thr	GGT Gly	GGT Gly	CTT Leu	GAC Asp 270	TTA Leu	ACC Thr	816
45	TTG Leu	ATT Ile	GAG Glu 275	GCA Ala	GAA Glu	GAG Glu	Ala	TCA Ser 280	CAA Gln	ATT Ile	GTG Val	AAC Asn	CAG Gln 285	GCA Ala	GCA Ala	GGT Gly	864
50	CAA Gln	GGA Gly 290	GTG Val	AAC Asn	ATC Ile	TGG Trp	CTC Leu 295	GGT Gly	ACT Thr	TCA Ser	ATT Ile	GAT Asp 300	GAA Glu	AGT Ser	ATG Met	CGT Arg	912
55	GAT Asp 305	GAA Glu	ATT Ile	CGT Arg	GTA Val	ACA Thr 310	GTT Val	GTC Val	GCA Ala	ACG Thr	GGT Gly 315	GTT Val	CGT Arg	CAA Gln	GAC Asp	CGC Arg 320	960
JJ	GTA Val	GAA Glu	AAG Lys	GTT Val	GTG Val 325	GCT Ala	CCA Pro	CAA Gln	GCT Ala	AGA Arg 330	TCA Ser	CCG Pro	CGC Arg	CTA Leu	GGA Gly 335	TAA *	1008
60	/21	TME	NDW N III	7.T.O.Y	EOD	CDC	TD .	10 - 1 (۱¢.								

(2) INFORMATION FOR SEQ ID NO:106:

-184-

5			(i) :	(B)	LEN TY	IGTH:	: 330 amino	ERIST 5 ami 5 aci 1inea	ino a id		5					
		(:	ii) 1	MOLE	CULE	TYPE	E: p:	rote	in							
10				SEQUI					-	-						
	Met 1	Thr	Phe	Ser	Phe 5	Asp	Thr	Ala	Ala	Ala 10	Gln	Gly	Ala	Val	Ile 15	Lys
15	Val	Ile	Gly	Val 20	Gly	Gly	Gly	Gly	Gly 25	Asn	Ala	Ile	Asn	Arg 30	Met	Va.
	Asp	Glu	Gly 35	Val	Thr	Gly	Val	Glu 40	Phe	Ile	Ala	Ala	Asn 45	Thr	Asp	Va]
20	Gln	Ala 50	Leu	Ser	Ser	Thr	Lys 55	Ala	Glu	Thr	Val	Ile 60	Gln	Leu	Gly	Pro
25	Lys 65	Leu	Thr	Arg	Gly	Leu 70	Gly	Ala	Gly	Gly	Gln 75	Pro	Glu	Val	Gly	Arg 80
	Lys	Ala	Ala	Glu	Glu 85	Ser	Glu	Glu	Thr	Leu 90	Thr	Glu	Ala	Ile	Ser 95	Gl
30	Ala	Asp	Met	Val 100	Phe	Ile	Thr	Ala	Gly 105	Met	Gly	Gly	Gly	Ser 110	Gly	Thi
	Gly	Ala	Ala 115	Pro	Val	Ile	Ala	Arg 120	Ile	Ala	Lys	Asp	Leu 125	Gly	Ala	Let
35	Thr	Val 130	Gly	Val	Val	Thr	Arg 135	Pro	Phe	Gly	Phe	Glu 140	Gly	Ser	Lys	Arg
40	Gly 145	Gln	Phe	Ala	Val	Glu 150	Gly	Ile	Asn	Gln	Leu 155	Arg	Glu	His	Val	Asp 160
	Thr	Leu	Leu	Ile	Ile 165	Ser	Asn	Asn	Asn	Leu 170	Leu	Glu	Ile	Val	Asp 175	Lys
45	Lys	Thr	Pro	Leu 180	Leu	Glu	Ala	Leu	Ser 185	Glu	Ala	Asp	Asn	Val 190	Leu	Arç
	Gln	Gly	Val 195	Gln	Gly	Ile	Thr	Asp 200	Leu	Ile	Thr	Asn	Pro 205	Gly	Leu	Ile
50	Asn	Leu 210	Asp	Phe	Ala	Asp	Val 215	Lys	Thr	Val	Met	Ala 220	Asn	Lys	Gly	Asr
55	Ala 225	Leu	Met	Gly	Ile	Gly 230	Ile	Gly	Ser	Gly	Glu 235	Glu	Arg	Val	Val	Glu 240
در	Ala	Ala	Arg	Lys	Ala 245	Ile	Tyr	Ser	Pro	Leu 250	Leu	Glu	Thr	Thr	Ile 255	Asp
60	Gly	Ala	Glu	Asp 260	Val	Ile	Val	Asn	Val 265	Thr	Gly	Gly	Leu	Asp 270	Leu	Thi

-185-

	Leu	Ile	Glu 275	Ala	Glu	Glu	Ala	Ser 280	Gln	Ile	Val	Asn	Gln 285	Ala	Ala	Gly	
5	Gln	Gly 290	Val	Asn	Ile	Trp	Leu 295	Gly	Thr	Ser	Ile	Asp 300	Glu	Ser	Met	Arg	
	Asp 305	Glu	Ile	Arg	Val	Thr 310	Val	Val	Ala	Thr	Gly 315	Val	Arg	Gln	Asp	Arg 320	
10	Val	Glu	Lys	Val	Val 325	Ala	Pro	Gln	Ala	Arg 330	Ser	Pro	Arg	Leu	Gly 335		
	(2)	INFO	ORMA?	NOIT	FOR	SEQ	ID 1	10:10	07:								
15		(i)	(E	QUENCA) LE B) T' C) S' C) T'	engti (PE : [rani	i: 52 nucl	25 ba leic ESS:	ase p acid sind	oair: i	5							
20		(ii)	MOI	LECUI	LE TY	PE:	DNA	(ger	nomi	=)							
		(iii)	HYI	РОТН	ETICA	AL: N	10										
25			ANT														
23		(10)	Aut	11-21	MOE:	. NO											
30		(ix)	(E	ATURI A) NA B) LO	AME/I	ON:	1		: grī	ρĒ							
		,										_					
35		(xi)	SEÇ	QUENC	CE DI	ESCRI	[PTIC	ON: S	SEQ :	ID NO	0:10	/:					
		GCC Ala															48
40		GTT Val															96
45		TTG Leu															144
50		CAT His 50															192
55		AAC Asn															240
		TCT Ser															288
60		GAT Asp															336

-186-

				100					105					110			
5			AAA Lys 115														384
																GAA Glu	432
10			GTA Val														480
15			CGC Arg														525
20	(2)	INF	ORMA	rion	FOR	SEQ	ID N	10:10	08:								
25			(i) \$	(A) (B)	LEN TYI	NGTH:	RACTE 174 amino GY: 1	ami aci	ino a id		3						
		()	ii) N	OLE	ULE	TYPE	: p1	otei	in								
30	Met	_	ki) S Gln										Val	Cl =	Cl.	Cl v	
	1	Λια	GIII	Asp	5	пур	ASII	GIU	GIU	10	GIU	GIU	vai	GIII	15	GIU	
35	Glu	Val	Val	Glu 20	Thr	Ala	Glu	Glu	Thr 25	Thr	Pro	Glu	Lys	Ser 30	Glu	Leu	
	Asp	Leu	Ala 35	Asn	Glu	Arg	Ala	Asp 40	Glu	Phe	Glu	Asn	Lys 45	Tyr	Leu	Arg	
40	Ala	His 50	Ala	Glu	Met	Gln	Asn 55	Ile	Gln	Arg	Arg	Ala 60	Asn	Glu	Glu	Arg	
45	Gln 65	Asn	Leu	Gln	Arg	Tyr 70	Arg	Ser	Gln	Asp	Leu 75	Ala	Lys	Ala	Ile	Leu 80	
	Pro	Ser	Leu	Asp	Asn 85	Leu	Glu	Arg	Ala	Leu 90	Ala	Val	Glu	Gly	Leu 95	Thr	
50	Asp	Asp	Val	Lys 100	Lys	Gly	Leu	Ala	Met 105	Val	Gln	Glu	Ser	Leu 110	Ile	His	
	Ala	Leu	Lys 115	Glu	Glu	Gly	Ile	Glu 120	Glu	Ile	Ala	Ala	Asp 125	Gly	Glu	Phe	
55	Asp	His 130	Asn	Tyr	His	Met	Ala 135	Ile	Gln	Thr	Leu	Pro 140	Gly	Asp	Asp	Glu	
50	His 145	Pro	Val	Asp	Thr	Ile 150	Ala	Gln	Val	Phe	Gln 155	Lys	Gly	Tyr	Lys	Leu 160	
J U	His	Asp	Arg	Ile	Leu	Arg	Pro	Ala	Met	Val	Val	Val	Tyr	Asn			

-187-

					165					170			174		
	(2)	INFO	RMAT	NOI	FOR	SEQ	ID N	0:10	9:						
5		(i)	(E	A) LE B) TY C) ST	NGTH PE: RANI	i: 58 nucl EDNE	2 ba eic SS:	se p acid sing	airs I	:					
10		(ii)	I) IOM) TO LECUI					omic	:)					
	((iii)	нүн	OTHE	TICA	T: 1	10								
15		(iv)	rna i	TI-SE	NSE:	NO									
20		(ix)	(E	ATURE A) NA B) LO D) OT	ME/F	ON:	15		HI]	1648					
25		(xi)	SEC	QUENC	E DE	ESCRI	PTIC	ON: 5	SEQ I	D NO	:109):	1		
			ATC Ile												48
30			CTA Leu												96
35			TTT Phe 35												144
40			GAG Glu												192
45			CCC Pro												240
43			GCG Ala												288
50			CAT His												336
55			CAA Gln 115												384
60			ATT Ile												432

-188-

	GGT GA Gly Gl 145	G GGT u Gly	GTA Val	GAA Glu	ATT Ile 150	TTA Leu	GCA Ala	ATA Ile	GTG Val	AAC Asn 155	AAT Asn	CAA Gln	ATT Ile	GTT Val	GCA Ala 160	480
5	GCC CA Ala Gl	A GAA n Glu	AAA Lys	AAT Asn 165	ATG Met	TTG Leu	GTA Val	AGT Ser	TCT Ser 170	TTT Phe	CAT His	CCA Pro	GAA Glu	TTG Leu 175	ACT Thr	528
10	GAT GA Asp As	T GTG p Val	CGC Arg 180	TTG Leu	CAC His	CAG Gln	TAC Tyr	TTT Phe 185	ATC Ile	AAT Asn	ATG Met	TGT Cys	AAA Lys 190	GAA Glu	AAA Lys	576
15	AGT TG Ser *															582
	(2) IN	FORMA	TION	FOR	SEQ	ID N	NO: 1	10:								
20		(i)	(B	ENCE) LEN) TYI) TOI	GTH:	: 194 amino	am:	ino a id		5						
25		(ii)	MOLE	CULE	TYPI	E: p	rote	in								
		(xi)	SEQU	ENCE	DESC	CRIP	rion	: SE	Q ID	NO:	110:					
30	Met Ly l			5					10					15		
	Lys Va	ıl Lev	Asp 20		Leu	Gly	Val	Glu 25	Ser	Val	Glu	Leu	Arg 30		Leu	
35	Asp As	sp Phe 35		Gln	Asp	Gln	Ser 40		Leu	Ser	Gly	Leu 45	Ile	Leu	Pro	
40	Gly G	ly Glu 50	Ser	Thr	Thr	Met 55	Gly	Lys	Leu	Leu	Arg 60	Asp	Gln	Asn	Met	
40	Leu Le 65	eu Pro	Ile	Arg	Glu 70	Ala	Ile	Leu	Ser	Gly 75	Leu	Pro	Val	Phe	Gly 80	
45	Thr C	ys Ala	Gly	Leu 85		Leu	Leu	Ala	Lys 90		Ile	Thr	Ser	Gln 95		
	Glu S	er His	Leu 100		Thr	Met	Asp	Met 105		Val	Glu	Arg	Asn 110		Tyr	
50	Gly A	rg Gli 11		Gly	Ser	Phe	Tyr 120		Glu	Ala	Glu	Cys 125		Gly	Val	
55	Gly L	ys Ile 30	e Pro	Met	Thr	Phe 135		Arg	Gly	Pro	11e 140		Ser	Ser	Val	
JO	Gly G 145	lu Gl	y Val	Glu	Ile 150		Ala	Ile	Val	Asn 155		Gln	Ile	· Val	Ala 160	
60	Ala G	ln Gl	ı Lys	Asn 165		Leu	Val	Ser	Ser 170		His	Pro	Glu	Leu 175		

-189-

	Asp	Asp	Val	Arg 180	Leu	His	Gln	Tyr	Phe 185	Ile	Asn	Met	Cys	Lys 190	Glu	Lys
5	Ser															

(2) INFORMATION FOR SEQ ID NO:111: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 546 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 1..543 25 (D) OTHER INFORMATION: pgsA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:111: ATG AAA AAA GAA CAA ATT CCC AAT CTC TTA ACA ATA GGT CGA ATT CTC Met Lys Lys Glu Gln Ile Pro Asn Leu Leu Thr Ile Gly Arg Ile Leu TTT ATA CCT ATT TTT ATC TTT ATT TTA ACG ATA GGA AAT TCG ATA GAG Phe Ile Pro Ile Phe Ile Phe Ile Leu Thr Ile Gly Asn Ser Ile Glu 35 AGT CAT ATA GTT GCA GCT ATT ATC TTT GCT GTT GCC AGT ATT ACC GAC Ser His Ile Val Ala Ala Ile Ile Phe Ala Val Ala Ser Ile Thr Asp 40 35 40 TAT TTA GAT GGA TAT TTA GCT CGT AAA TGG AAT GTG GTC AGT AAT TTT Tyr Leu Asp Gly Tyr Leu Ala Arg Lys Trp Asn Val Val Ser Asn Phe 50 45

48

96

144 192 GGT AAA TTT GCA GAT CCT ATG GCG GAT AAG TTA CTA GTT ATG TCG GCT 240 Gly Lys Phe Ala Asp Pro Met Ala Asp Lys Leu Leu Val Met Ser Ala 288 50 TTT ATT ATG TTG ATT GAG TTA GGT ATG GCT CCG GCT TGG ATT GTT GCA Phe Ile Met Leu Ile Glu Leu Gly Met Ala Pro Ala Trp Ile Val Ala 336 GTG ATT ATC TGT CGT GAG TTA GCT GTG ACA GGT TTA AGG CTT TTA TTG 55 Val Ile Ile Cys Arg Glu Leu Ala Val Thr Gly Leu Arg Leu Leu 105 GTT GAA ACT GGT GGA ACA ATT TTA GCA GCA GCA ATG CCT GGA AAA ATT 384 Val Glu Thr Gly Gly Thr Ile Leu Ala Ala Ala Met Pro Gly Lys Ile 60 120

-190-

				AGT Ser													4	132
5				GGT Gly													4	180
10				TAT Tyr													5	528
15				TCG Ser 180	-	TGA											5	646
20	(2)			(B)	ENCE	CHAI IGTH:	RACTE 181	ERIST Lami	rics: ino a	: acids	3							
25		(i)	Li) N	OLEC	CULE	TYPE	E: p1	rotei	in									
		()	(i) S	EQUE	ENCE	DESC	CRIPT	CION:	SE	O ID	NO:	112:						
30	Met 1	Lys	Lys	Glu	Gln 5	Ile	Pro	Asn	Leu	Leu 10	Thr	Ile	Gly	Arg	Ile 15	Leu		
	Phe	Ile	Pro	Ile 20	Phe	Ile	Phe	Ile	Leu 25	Thr	Ile	Gly	Asn	Ser 30	Ile	Glu		
35	Ser	His	Ile 35	Val	Ala	Ala	Ile	Ile 40	Phe	Ala	Val	Ala	Ser 45	Ile	Thr	Asp		
40	Tyr	Leu 50	Asp	Gly	Tyr	Leu	Ala 55	Arg	Lys	Trp	Asn	Val 60	Val	Ser	Asn	Phe		
	Gly 65	Lys	Phe	Ala	Asp	Pro 70	Met	Ala	Asp	Lys	Leu 75	Leu	Val	Met	Ser	Ala 80		
45	Phe	Ile	Met	Leu	Ile 85	Glu	Leu	Gly	Met	Ala 90	Pro	Ala	Trp	Ile	Val 95	Ala		
	Val	Ile	Ile	Cys 100	Arg	Glu	Leu	Ala	Val 105		Gly	Leu	Arg	Leu 110	Leu	Leu		
50	Val	Glu	Thr 115	Gly	Gly	Thr	Ile	Leu 120	Ala	Ala	Ala	Met	Pro 125	Gly	Lys	Ile		
55	Lys	Thr 130	Phe	Ser	Gln	Met	Phe 135	Ala	Ile	Ile	Phe	Leu 140	Leu	Leu	His	Trp		
	Thr 145	Leu	Leu	Gly	Gln	Val 150	Leu	Leu	Tyr	Val	Ala 155	Leu	Phe	Phe	Thr	Ile 160		
60	Tyr	Ser	Gly	Tyr	Asp 165		Phe	Lys	Gly	Ser 170	Ala	Tyr	Val	Phe	Lys 175			

-191-

Thr Phe Gly Ser Lys 180

E	(2) I	NFO	RMAI	NOI	FOR	SEQ	ID N	10:11	13:								
.5		(i)	(P) LE	ENGTH	1: 12	TERI 24 h Leic	oase	pair	:s							
10			(0	:) SI	RANI	DEDNE	ESS: line	sing									
	(ii)	MOI	ECUI	E TY	PE:	DNA	(ger	omic	:)							
15	(i	ii)	HYE	OTHE	ETICA	T: N	10										
	. (iv)	INA	'I-SE	ENSE:	NO											
20	(ix)	(<i>P</i>	3) LC	ME/F	ON:	CDS 11 DRMAT		Roc	ia							
25	(xi)	SEÇ	UENC	CE DE	ESCRI	PTIC	on: 2	SEQ I	D NO	:113	3:					
30	ATG A Met L 1															48	
30	GTA T Val P															96	
35	AGT C Ser H														;	144	
40	GCC T Ala T															192	
45	AAT A Asn T 65														:	240	
50	TTG G Leu G														:	288	
	GCA T Ala S														:	336	
55	TTT C	ln														384	
60	CGT G Arg V							Lys								432	

-192-

5											ATG Met 155						480
J	CCA Pro	GTC Val	CTA Leu	GTT Val	CTT Leu 165	TTA Leu	GCA Ala	CTT Leu	CAA Gln	AGT Ser 170	GAC Asp	TTG Leu	GGG Gly	ACG Thr	GCT Ala 175	TTG Leu	528
10											TTA Leu						576
15											GCT Ala						624
20											GGA Gly						672
25											CGG Arg 235						720
											TAC Tyr						768
30											GGT Gly						816
35											GAT Asp						864
40											GTC Val						912
45											ATT Ile 315						960
											TTG Leu						1008
50					Glu						ACT Thr					TTG Leu	1056
55									Ser		GGG Gly						1104
60			Leu					Leu			TCG Ser		Ser				1152

-193-

	AAT Asn 385	CTA Leu	GCT Ala	GAA Glu	GAA Glu	AAG Lys 390	AGC Ser	GGA Gly	AAA Lys	GTC Val	CCA Pro 395	TTC Phe	AAA Lys	CGG Arg	AAA Lys	AAG Lys 400	1200
5			TTA Leu					TAA									1224
10	(2)	INFO	RMAT	ION	FOR	SEQ	ID N	0:11	4:								
15		((i) S	(A) (B)		GTH: E: a	407 mino	ami aci	ino a id	cids	i						
		į)	ii) N	OLEC	ULE	TYPE	: pr	otei	in	-							
20		()	ki) S	EQUE	ENCE	DESC	RIPT	ION	: SE(O ID	NO: 1	14:					
20	Met 1	Lys	Arg	Ser	Leu 5	Asp	Ser	Arg	Val	Asp 10	Tyr	Ser	Leu	Leu	Leu 15	Pro	
25	Val	Phe	Phe	Leu 20	Leu	Val	Ile	Gly	Val 25	Val	Ala	Ile	Tyr	Ile 30	Ala	Val	
	Ser	His	Asp 35	Tyr	Pro	Asn	Asn	Ile 40	Leu	Pro	Ile	Leu	Gly 45	Gln	Gln	Val	
30	Ala	Trp 50	Ile	Ala	Leu	Gly	Leu 55	Val	Ile	Gly	Phe	Val 60	Val	Met	Leu	Phe	
35	Asn 65	Thr	Glu	Phe	Leu	Trp 70	Lys	Val	Thr	Pro	Phe 75	Leu	Tyr	Ile	Leu	Gly 80	
33	Leu	Gly	Leu	Met	Ile 85	Leu	Pro	Ile	Val	Phe 90	Tyr	Asn	Pro	Ser	Leu 95	Val	
40	Ala	Ser	Thr	Gly 100	Ala	Lys	Asn	Trp	Val 105	Ser	Ile	Asn	Gly	Ile 110	Thr	Leu	
	Phe	Gln	Pro 115	Ser	Glu	Phe	Met	Lys 120		Ser	Tyr	Ile	Leu 125		Leu	Ala	
45	Arg	Val 130	Ile	Val	Gln	Phe	Thr 135	Lys	Lys	His	Lys	Glu 140	Trp	Arg	Arg	Thr	
50	Val 145		Leu	Asp	Phe	Leu 150		Ile	Phe	Trp	Met 155		Leu	Phe	Thr	Ile 160	
30	Pro	Val	Leu	Val	Leu 165		Ala	Leu	Gln	Ser 170		Leu	Gly	Thr	Ala 175	Leu	
55	Val	Phe	Val	Ala 180		Phe	Ser	Gly	11e 185		Leu	Leu	Ser	Gly 190		Ser	•
	Trp	Lys	Ile 195		Ile	Pro	Val	Phe 200		Thr	Ala	Val	Thr 205		Val	Ala	
60	Gly	Phe 210		Ala	Ile	Phe	Ile 215		: Lys	Asp	Gly	Arg 220		Phe	Leu	His	

-194-

	Gln 225	Ile	Gly	Met	Pro		Tyr	Gln	Ile	Asn		Ile	Leu	Ala	Trp	
_			_,			230					235					240
5	Asn	Pro	Phe	Glu	Phe 245	Ala	Gln	Thr	Thr	Thr 250	Tyr	Gln	Gln	Ala	Gln 255	Gly
10	Gln	Ile	Ala	Ile 260	Gly	Ser	Gly	Gly	Leu 265	Phe	Gly	Gln	Gly	Phe 270	Asn	Ala
10	Ser	Asn	Leu 275	Leu	Ile	Pro	Val	Arg 280	Glu	Ser	Asp	Met	Ile 285	Phe	Thr	Val
15	Ile	Ala 290	Glu	Asp	Phe	Gly	Phe 295	Ile	Gly	Ser	Val	Leu 300	Val	Ile	Ala	Leu
	Tyr 305	Leu	Met	Leu	Ile	Tyr 310	Arg	Met	Leu	Lys	Ile 315	Thr	Leu	Lys	Ser	Asn 320
20	Asn	Gln	Phe	Tyr	Thr 325	Tyr	Ile	Ser	Thr	Gly 330	Leu	Ile	Met	Met	Leu 335	Leu
25	Phe	His	Ile	Phe 340	Glu	Asn	Ile	Gly	Ala 345	Val	Thr	Gly	Leu	Leu 350	Pro	Leu
25	Thr	Gly	Ile 355	Pro	Leu	Pro	Phe	Ile 360	Ser	Gln	Gly	Gly	Ser 365	Ala	Ile	Ile
30	Ser	Asn 370	Leu	Ile	Gly	Val	Gly 375	Leu	Leu	Leu	Ser	Met 380	Ser	Tyr	Gln	Thr
	Asn 385	Leu	Ala	Glu	Glu	Lys 390	Ser	Gly	Lys	Val	Pro 395	Phe	Lys	Arg	Lys	Lys 400
35	Val	Val	Leu	Lys	Gln 405	Ile	Lys									
	(2)	INFO	RMAI	NOI	FOR	SEQ	ID N	0:11	5:							
40		(i)	(B) LE	NGTH	: 13 nucl	11 b eic	ase acid	pair	s						
) SI) TC					le							
45		(ii)	MOL	ECUL	E TY	PE:	DNA	(gen	omic)						
	(iii)	HYP	ОТНЕ	TICA	L: N	0									
50		(iv)	ANT	'I-SE	NSE:	NO										
55		(ix)	(B	TURE) NA) LO) OT	ME/K CATI	ON:	11		Sec	Y						
60		(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:115	:				
	ATC	ተ	ጥጥጥ	**	mm z	mm x										

-195-

	Met 1	Phe	Phe	Lys	Leu 5	Leu	Arg	Glu	Ala	Leu 10	Lys	Val	Lys	Gln	Val 15	Arg		
5	TCA Ser	AAA Lys	ATT Ile	TTA Leu 20	TTT Phe	ACA Thr	ATT Ile	TTT Phe	ATC Ile 25	GTT Val	TTG Leu	GTC Val	TTT Phe	CGT Arg 30	ATC Ile	GGA Gly		96
10															GCT Ala		1	144
15															AAT Asn		1	192
**															ATC Ile		2	240
20															AAG Lys 95		2	288
25															AAT Asn		3	336
30															ATC Ile			384
35															AAA Lys		4	432
															ACA Thr		4	480
40															AAG Lys 175	GGA Gly		528
45					Val										TCC Ser	TCA Ser	!	576
50									Tyr						AAC Asn		(624
55 .															TTG Leu		(672
															CAA Gln	GCA Ala 240	•	720
60																CCA Pro		768

-196-

					245					250					255		
5	TCT Ser	AGC Ser	TCT Ser	TAC Tyr 260	CTT Leu	CCG Pro	TTA Leu	AAG Lys	GTA Val 265	AAT Asn	CCT Pro	GCT Ala	GGA Gly	GTT Val 270	ATC Ile	CCT Pro	816
10															CTT Leu		864
10	TTT Phe	TTG Leu 290	AGT Ser	GCC Ala	ACA Thr	GGT Gly	CAT His 295	GAT Asp	TGG Trp	GCT Ala	TGG Trp	GTA Val 300	AGG Arg	GTA Val	GCA Ala	CAA Gln	912
15	GAG Glu 305	ATG Met	TTG Leu	GCA Ala	ACT Thr	ACT Thr 310	TCT Ser	CCA Pro	ACT Thr	GGT Gly	ATT Ile 315	GCC Ala	ATG Met	TAT Tyr	GCT Ala	TTG Leu 320	960
20															AAT Asn 335		1008
25															CAT His		1056
30															CTT Leu		1104
30	CGT 'Arg														ATT Ile		1152
35															GCC Ala		1200
40															GGA Gly 415		1248
45					Gly					Arg					TTC Phe		1296
50				GAA Glu	TAA *												1311
30																	
55	(2)	INF		SEQU (A (B	FOR ENCE) LE) TY) TO	CHA NGTH PE:	RACT : 43 amin	ERIS 7 am o ac	TICS ino id		s						
		(ii)	MOLE	CULE	TYP	E: p	rote	in								
60																	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

-197-

	Met 1	Phe	Phe	Lýs	Leu 5	Leu	Arg	Glu	Ala	Leu 10	Lys	Val	Lys	Gln	Val 15	Arg
5	Ser	Lys	Ile	Leu 20	Phe	Thr	Ile	Phe	Ile 25	Val	Leu	Val	Phe	Arg 30	Ile	Gly
10	Thr	Ser	Ile 35	Thr	Val	Pro	Gly	Val 40	Asn	Ala	Asn	Ser	Leu 45	Asn	Ala	Leu
10	Ser	Gly 50	Leu	Ser	Phe	Leu	Asn 55	Met	Leu	Ser	Leu	Val 60	Ser	Gly	Asn	Ala
15	Leu 65	Lys	Asn	Phe	Ser	Ile 70	Phe	Ala	Leu	Gly	Val 75	Ser	Pro	Tyr	Ile	Thr 80
	Ala	Ser	Ile	Val	Val 85	Gln	Leu	Leu	Gln	Met 90	Asp	Ile	Leu	Pro	Lys 95	Phe
20	Val	Glu	Trp	Gly 100	Lys	Gln	Gly	Glu	Val 105	Gly	Arg	Arg	Lys	Leu 110	Asn	Gln
25	Ala	Thr	Arg 115	Tyr	Ile	Ala	Leu	Val 120	Leu	Ala	Phe	Val	Gln 125	Ser	Ile	Gly
	Ile	Thr 130	Ala	Gly	Phe	Asn	Thr 135	Leu	Ala	Gly	Ala	Gln 140	Leu	Ile	Lys	Thr
30	Ala 145	Leu	Thr	Pro	Gln	Val 150	Phe	Leu	Thr	Ile	Gly 155	Ile	Ile	Leu	Thr	Ala 160
	_				165					170	Gln				175	
35	Tyr	Gly	Asn	Gly 180		Ser	Met	Ile	Ile 185	Phe	Ala	Gly	Ile	Val 190	Ser	Ser
40	Ile	Pro	Glu 195	Met	Ile	Gln	Gly	11e 200		Val	Asp	Tyr	Phe 205	Val	Asn	Val
	Pro	Ser 210		Arg	Ile	Thr	Ser 215		Ile	Ile	Phe	Val 220	Ile	Ile	Leu	Ile
45	Ile 225		Val	Leu	Leu	11e 230	Ile	Tyr	Phe	Thr	Thr 235	Tyr	Val	Gln	Gln	Ala 240
	Glu	Tyr	Lys	Ile	Pro 245		Gln	Tyr	Thr	Lys 250	Val	Ala	Gln	Gly	Ala 255	Pro
50	Ser	Ser	Ser	Tyr 260		Pro	Leu	Lys	Val 265		Pro	Ala	Gly	Val 270		Pro
55	Val	Ile	Phe 275		Ser	Ser	Ile	280		Ala	Pro	Ala	Ala 285		Leu	Gln
	Phe	290		Ala	Thr	Gly	His 295		Trp	Ala	Trp	Val 300		Val	Ala	Gln
60	Glu 305		Leu	Ala		Thr 310		Pro	Thr	Gly	7 Ile 315		Met	Tyr	Ala	Leu 320

-198-

	Leu	Ile	Ile	Leu		Thr	Phe	Phe	Tyr		Phe	Val	Gln	Ile		Pro	
		_			325	_				330			_		335		
5	Glu	Lys	Ala	340	Glu	Ser	Leu	Gln	Lys 345	Ser	Gly	Ala	Tyr	350	His	Gly	
	Val	Arg	Pro 355	Gly	Lys	Gly	Thr	Glu 360	Glu	Tyr	Met	Ser	Lys 365	Leu	Leu	Arg	
10	Arg	Leu 370	Ala	Thr	Val	Gly	Ser 375	Leu	Phe	Leu	Gly	Val 380	Ile	Ser	Ile	Leu	
15	Pro 385	Ile	Ala	Ala	Lys	Asp 390	Val	Phe	Gly	Leu	Ser 395	Asp	Val	Val	Ala	Phe 400	
13	Gly	Gly	Thr	Ser	Leu 405	Leu	Ile	Ile	Ile	Ser 410	Thr	Gly	Ile	Glu	Gly 415	Ile	
20	Lys	Gln	Leu	Glu 420	Gly	Tyr	Leu	Leu	Lys 425	Arg	Lys	Tyr	Val	Gly 430	Phe	Met	
	Asp	Arg	Thr 435	Glu													
25	(2)	INFO	RMAT	CION	FOR	SEQ	ID N	10:13	17:								
		(i)				HARAC											
30			(E	3) T	PE:	nuc] DEDNI	eic	acio	į	. 3							
						OGY:			,								,
		(ii)	MOI	LECUI	LE T	YPE:	DNA	(ger	nomi	=)							
35		(iii)	HYE	отні	ETIC	AL: N	10										
		(iv)	ANT	ri-si	ENSE	: NO											
40		(ix)	(<i>)</i>	3) LO	ME/I	KEY: ION: INFO	1		• ፑተ፡	:H							
45			•-	•													
		(xi)	SEC	QUENC	CE DI	ESCRI	PTIC	ON: S	SEQ 1	D NO	0:117	7:					
50	ATG Met 1	AAA Lys	AAA Lys	CAA Gln	AAT Asn 5	AAT Asn	GGT Gly	TTA Leu	ATT Ile	AAA Lys 10	AAT Asn	CCT Pro	TTT Phe	CTA Leu	TGG Trp 15	TTA Leu	48
	TTA Leu	TTT Phe	ATC Ile	TTT Phe 20	TTC Phe	CTT Leu	GTG Val	ACA Thr	GGA Gly 25	TTC Phe	CAG Gln	TAT Tyr	TTC Phe	TAT Tyr 30	TCT Ser	GGG Gly	96
55	AAT Asn	AAC Asn	TCA Ser 35	GGA Gly	GGA Gly	AGT Ser	CAG Gln	CAA Gln 40	ATC Ile	AAC Asn	TAT Tyr	ACT Thr	GAG Glu 45	TTG Leu	GTA Val	CAA Gln	144
60	GAA Glu	ATT Ile	ACC	GAT Asp	GGT Gly	AAT Asn	GAA Glu	AAA	GAA Glu	TTA Leu	ACT Thr	TAC Tyr	CAA	CCA Pro	AAT Asn	GTT Val	192

-199-

		50					55					60						
5	AGT Ser 65	GTT Val	ATC Ile	GAA Glu	GTT Val	TCT Ser 70	GGT Gly	GTC Val	TAT Tyr	AAA Lys	AAT Asn 75	CCT Pro	AAA Lys	ACA [°] Thr	AGT Ser	AAA Lys 80	240	
10	GAA Glu	GGA Gly	ACA Thr	GGT Gly	ATT Ile 85	CAG Gln	TTT Phe	TTC Phe	ACG Thr	CCA Pro 90	TCT Ser	GTT Val	ACT Thr	AAG Lys	GTA Val 95	GAG Glu	288	
10	AAA Lys	TTT Phe	ACC Thr	AGC Ser 100	ACT Thr	ATT Ile	CTT Leu	CCT Pro	GCA Ala 105	GAT Asp	ACT Thr	ACC Thr	GTA Val	TCA Ser 110	GAA Glu	TTG Leu	336	
15	CAA Gln	AAA Lys	CTT Leu 115	GCT Ala	ACT Thr	GAC Asp	CAT His	AAA Lys 120	GCA Ala	GAA Glu	GTA Val	ACT Thr	GTT Val 125	AAG Lys	CAT His	GAA Glu	384	
20	AGT Ser	TCA Ser 130	AGT Ser	GGT Gly	ATA Ile	TGG Trp	ATT Ile 135	AAT Asn	CTA Leu	CTC Leu	GTA Val	TCC Ser 140	ATT Ile	GTG Val	CCA Pro	TTT Phe	432	
25	GGA Gly 145	ATT Ile	CTA Leu	TTC Phe	TTC Phe	TTC Phe 150	CTA Leu	TTC Phe	TCT Ser	ATG Met	ATG Met 155	GGA Gly	AAT Asn	ATG Met	GGA Gly	GGA Gly 160	480	
30	GGC Gly	AAT Asn	GGC Gly	CGT Arg	AAT Asn 165	CCA Pro	ATG Met	AGT Ser	TTT Phe	GGA Gly 170	CGT Arg	AGT Ser	AAG Lys	GCT Ala	AAA Lys 175	GCA Ala	528	
30	GCA Ala	AAT Asn	AAA Lys	GAA Glu 180	GAT Asp	ATT Ile	AAA Lys	GTA Val	AGA Arg 185	TTT Phe	TCA Ser	GAT Asp	GTT Val	GCT Ala 190	GGA Gly	GCT Ala	576	i
35	GAG Glu	GAA Glu	GAA Glu 195	AAA Lys	CAA Gln	GAA Glu	CTA Leu	GTT Val 200	GAA Glu	GTT Val	GTT Val	GAG Glu	TTC Phe 205	TTA Leu	AAA Lys	GAT Asp	624	,
40	CCA Pro	AAA Lys 210	Arg	TTC Phe	ACA Thr	AAA Lys	CTT Leu 215	GGA Gly	GCC Ala	CGT Arg	ATT Ile	CCA Pro 220	Ala	GGT Gly	GTT Val	CTT Leu	672	;
45	TTG Leu 225	Glu	GGA Gly	CCT Pro	CCG Pro	GGG Gly 230	Thr	GGT Gly	AAG Lys	ACT Thr	TTG Leu 235	Leu	GCT Ala	AAG Lys	GCA Ala	Val 240	720)
50	GCT Ala	GGA Gly	GAA Glu	GCA Ala	GGT Gly 245	, Val	CCA Pro	TTC Phe	TTT Phe	AGT Ser 250	Ile	TCA Ser	GGT Gly	TCT Ser	GAC Asp 255	TTT Phe	768	3
50	GTA Val	GAA Glu	ATG Met	TTT: Phe 260	• Val	: GGA . Gly	GTT Val	GGA Gly	GCT Ala 265	Ser	CGT	GTT Val	CGC Arg	Ser 270	Let	TTT Phe	816	5
55	GAG Glu	GAT Asp	GC0 Ala 275	Lys	AAA Lys	A GCA s Ala	GCA Ala	CCA Pro 280	Ala	ATC	ATC	TTI Phe	ATC 116 285	Asp	CTA Lev	AAT ASD	864	4
60	GAT Asp	GCT Ala 290	a Val	r GGA L Gly	CG7	CAP Glr	CGT Arg 295	Gl3	A GTO	GGT Gly	CTC Lev	GGC 1 Gly 300	, Gl	GGT Gly	AA! Ası	GAC Asp	91:	2

-200-

5	GAA Glu 305	CGT Arg	GAA Glu	CAA Gln	ACC Thr	TTG Leu 310	AAC Asn	CAA Gln	CTT Leu	TTG Leu	ATT Ile 315	GAG Glu	ATG Met	GAT Asp	GGT Gly	TTT Phe 320	960
J												ACA Thr					1008
10												TTT Phe					1056
15												GCA Ala					1104
20												GAT Asp 380					1152
25												TTA Leu					1200
												AAA Lys					1248
30												ATT Ile					1296
35												GAA Glu					1344
40												TTG Leu 460					1392
45												CGT Arg	_	_			1440
												CTA Leu					1488
50												CGT Arg				GAA Glu	1536
55									Gly			AAC Asn				CAA Gln	1584
60			Gln									TAC Tyr 540				GAA Glu	1632

-201-

	AAA Lys 545	CTT Leu	GGC Gly	CCA Pro	GTA Val	CAA Gln 550	TAT Tyr	GAA Glu	GGA Gly	AAC Asn	CAT His 555	GCT Ala	ATG Met	CTT Leu	GGT Gly	GCA Ala 560	1680
5	CAG Gln	AGT Ser	CCT Pro	CAA Gln	AAA Lys 565	TCA Ser	ATT Ile	TCA Ser	GAA Glu	CAA Gln 570	ACA Thr	GCT Ala	TAT Tyr	GAA Glu	ATT Ile 575	GAT Asp	1728
10	GAA Glu	GAG Glu	GTT Val	CGT Arg 580	TCA Ser	TTA Leu	TTA Leu	AAT Asn	GAG Glu 585	GCA Ala	CGA Arg	AAT Asn	AAA Lys	GCT Ala 590	GCT Ala	GAA Glu	1776
15	Ile	Ile	Gln 595	Ser	Asn	Arg	Glu	Thr 600	His	Lys	Leu	Ile	GCA Ala 605	Glu	Ala	Leu	1824
20	Leu	Lys 610	Tyr	Glu	Thr	Leu	Asp 615	Ser	Thr	Gln	Ile	Lys 620	GCT Ala	Leu	Tyr	Glu	1872
	ACA Thr 625	GGA Gly	AAG Lys	ATG Met	CCT Pro	GAA Glu 630	GCA Ala	GTA Val	GAA Glu	GAG Glu	GAA Glu 635	TCT Ser	CAT His	GCA Ala	CTA Leu	TCC Ser 640	1920
25					AAG Lys 645	Ser							TAA			•	1959
30	(2)				FOR ENCE												
35			(1)	(A (B) LE) TY) TO	NGTH PE:	: 65 amin	2 am o ac	ino id	acid	s						
		(ii)	MOLE	CULE	TYP	E: p	rote	in								
40					ENCE									_	_	•	
	Met 1	_	Lys	Gln	Asn 5		Gly	Leu	Ile	Lys 10		Pro	Phe	Leu	15	Leu	
45				20)				25					30	ı	Gly	
	Asn	Asn	Ser 35		Gly	Ser	Gln	Gln 40		Asn	Tyr	Thr	Glu 45	Leu	Val	Gln	
50	Glu	Ile 50		: Asp	Gly	Asn	Glu 55		Glu	. Leu	Thr	Tyr 60		Pro	Asn	Val	
	Ser 65		. Ile	Glu	val	. Ser 70		Val	Туг	Lys	Asn 75		Lys	Thr	Ser	Lys 80	
55	Glu	Gly	Thr	: Gl	7 Ile 85		n Phe	Phe	Thr	Pro 90		Val	Thr	Lys	95	Glu	

-202-

	Gln	Lys	Leu 115	Ala	Thr	Asp	His	Lys 120	Ala	Glu	Val	Thr	Val 125	Lys	His	Glu
5	Ser	Ser 130	Ser	Gly	Ile	Trp	Ile 135	Asn	Leu	Leu	Val	Ser 140	Ile	Val	Pro	Phe
	Gly 145	Ile	Leu	Phe	Phe	Phe 150	Leu	Phe	Ser	Met	Met 155	Gly	Asn	Met	Gly	Gly 160
LO	Gly	Asn	Gly	Arg	Asn 165	Pro	Met	Ser	Phe	Gly 170	Arg	Ser	Lys	Ala	Lys 175	Ala
15	Ala	Asn	Lys	Glu 180	Asp	Ile	Lys	Val	Arg 185	Phe	Ser	Asp	Val	Ala 190	Gly	Ala
	Glu	Glu	Glu 195	Lys	Gln	Glu	Leu	Val 200	Glu	Val	Val	Glu	Phe 205	Leu	Lys	Asp
20	Pro	Lys 210	Arg	Phe	Thr		Leu 215	Gly	Ala	Arg	Ile	Pro 220	Ala	Gly	Val	Leu
	Leu 225	Glu	Gly	Pro	Pro	Gly 230	Thr	Gly	Lys	Thr	Leu 235	Leu	Ala	Lys	Ala	Val 240
25	Ala	Gly	Glu	Ala	Gly 245	Val	Pro	Phe	Phe	Ser 250	Ile	Ser	Gly	Ser	Asp 255	Phe
30	Val	Glu	Met	Phe 260	Val	Gly	Val	Gly	Ala 265	Ser	Arg	Val	Arg	Ser 270	Leu	Phe
	Glu	Asp	Ala 275	Lys	Lys	Ala	Ala	Pro 280	Ala	Ile	Ile	Phe	11e 285	Asp	Leu	Asn
35	Asp	Ala 290	Val	Gly	Arg	Gln	Arg 295	Gly	Val	Gly	Leu	Gly 300	Gly	Gly	Asn	Asp
	Glu 305	Arg	Glu	Gln	Thr	Leu 310	Asn	Gln	Leu	Leu	Ile 315		Met	Asp	Gly	Phe 320
40	Glu	Gly	Asn	Glu	Gly 325	Ile	Ile	Val	Ile	Ala 330	Ala	Thr	Asn	Arg	Ser 335	
45	Val	Leu	Asp	Pro 340	Ala	Leu	Leu	Arg	Pro 345		Arg	Phe	Asp	Arg 350	Lys	Val
	Leu	Val	Gly 355	Arg	Pro	_			-		Glu		Ile 365		Lys	Val
50	His	Ala 370		Asn	Lys	Pro	Leu 375	Ala	Glu	Asp	Val	Asp 380		Lys	Leu	Val
	Ala 385		Gln	Thr	Pro	Gly 390		Val	Gly	Ala	Asp 395	Leu	Glu	Asn	Val	Leu 400
55	Asn	Glu	Ala	Ala	Leu 405		Ala	Ala	Arg	Arg 410		Lys	Ser	Ile	Ile 415	
60	Ala	Ser	Asp	1le 420	_	Glu	Ala	Glu	Asp 425		Val	Ile	Ala	Gly 430		Ser
	Lys	Lys	Asp	Lys	Thr	Val	Ser	Gln	Lys	Glu	Arg	Glu	Leu	Val	Ala	Tyr

-203-

			435					440					445			
5	His	Glu 450	Ala	Gly	His	Thr	Ile 455	Val	Gly	Leu	Val	Leu 460	Ser	Thr	Ala	Arg
•	Val 465	Val	His	Lys	Val	Thr 470	Ile	Val	Pro	Arg	Gly 475	Arg	Ala	Gly	Gly	Туг 480
10	Met	Ile	Ala	Leu	Pro 485	Lys	Glu	Asp	Gln	Met 490	Leu	Leu	Ser	Lys	Glu 495	Asp
	Met	Lys	Glu	Gln 500	Leu	Ala	Gly	Leu	Met 505	Gly	Gly	Arg	Val	Ala 510	Glu	Glu
15	Ile	Ile	Phe 515	Asn	Val	Gln	Thr	Thr 520	Gly	Ala	Ser	Asn	Asp 525	Phe	Glu	Gln
20	Ala	Thr 530	Gln	Met	Ala	Arg	Ala 535	Met	Val	Thr	Glu	Tyr 540	Gly	Met	Ser	Glu
	Lys 545	Leu	Gly	Pro	Val	Gln 550	Tyr	Glu	Gly	Asn	His 555	Ala	Met	Leu	Gly	Ala 560
25	Gln	Ser	Pro	Gln	Lys 565	Ser	Ile	Ser	Glu	Gln 570	Thr	Ala	Tyr	Glu	Ile 575	Asp
	Glu	Glu	Val	Arg 580	Ser	Leų	Leu	Asn	Glu 585	Ala	Arg	Asn	Lys	Ala 590	Ala	Glu
30	Ile	Ile	Gln 595	Ser	Asn	Arg	Glu	Thr 600	His	Lys	Leu	Ile	Ala 605	Glu	Ala	Leu
35	Leu	Lys 610	Tyr	Glu	Thr	Leu	Asp 615	Ser	Thr	Gln	Ile	Lys 620	Ala	Leu	Tyr	Glu
	Thr 625	Gly	Lys	Met	Pro	Glu 630	Ala	Val	Glu	Glu	Glu 635	Ser	His	Ala	Leu	Ser 640
40	Tyr	Asp	Glu	Val	Lys 645	Ser	Lys	Met	Asn	Asp 650	Glu	Lys				
	(2)	INFO	ORMA'I	NOI	FOR	SEQ	ID 1	10:1	19:							
45		(i)	(E	A) LE 3) TY	ENGTI (PE:	i: 12	278 k Leic	STIC Dase acid	pair i	cs						
50					POLO											
			MOI					(ger	omic	=)						
	(•	HYE				10									
55			I'MA			NO										
		(ix)		A) NA	ME/I											
60					CATI THER			L278 CION:	Fts	·Υ						

-204-

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

		(XI)	SEQ	OEMC	E DE	SCVI	1110	M	LQ I			•						
5	ATG Met 1	GGA Gly	TTG Leu	TTT Phe	GAC Asp 5	CGT Arg	CTA Leu	TTC Phe	GGA Gly	AAA Lys 10	AAA Lys	GAA Glu	GAA Glu	CCT Pro	AAA Lys 15	ATC Ile	•	48
10	GAA Glu	GAA Glu	GTT Val	GTA Val 20	AAA Lys	GAA Glu	GCT Ala	CTG Leu	GAA Glu 25	AAT Asn	CTT Leu	GAT Asp	TTG Leu	TCT Ser 30	GAA Glu	GAT Asp	9	96
10	GTT Val	GAT Asp	CCT Pro 35	ACC Thr	TTC Phe	ACA Thr	GAA Glu	GTT Val 40	GAG Glu	GAA Glu	GTT Val	TCT Ser	CAG Gln 45	GAA Glu	GAA Glu	GCA Ala	. 1	44
15	GAG Glu	GTT Val 50	GAA Glu	ATT Ile	GTT Val	GAA Glu	CAA Gln 55	GCT Ala	GTG Val	TTC Phe	CAA Gln	GAA Glu 60	GAG Glu	GAA Glu	ATC Ile	CAA Gln	1:	92
20	GAC Asp 65	ACA Thr	GTT Val	GAA Glu	GAA Glu	AGT Ser 70	CTG Leu	GAT Asp	TTA Leu	GAG Glu	CCA Pro 75	GTT Val	GTA Val	GAA Glu	GTT Val	TCT Ser 80	2	40
25	CAA Gln	AAA Lys	GAA Glu	GTC Val	GAA Glu 85	GAA Glu	TTT Phe	CCA Pro	CAC His	TCA Ser 90	GAA Glu	GAA Glu	GGG Gly	AAT Asn	ACT Thr 95	GAG Glu	2	88
30	TTT Phe	CTA Leu	GAG Glu	ACT Thr 100	ATA Ile	GAA Glu	GAA Glu	AAT Asn	AAT Asn 105	TCT Ser	GAA Glu	GTT Val	CTT Leu	GAA Glu 110	CCA Pro	GAA Glu	3	36
30	AGG Arg	CCT Pro	CAA Gln 115	GCA Ala	GAA Glu	GAA Glu	ACC Thr	GTT Val 120	CAG Gln	GAA Glu	AAA Lys	TAT Tyr	GAC Asp 125	CGC Arg	AGT Ser	CTT Leu	3	84
35	AAG Lys	AAA Lys 130	Thr	CGT Arg	ACA Thr	GGT Gly	TTC Phe 135	GGT Gly	GCC Ala	CGC Arg	TTG Leu	AAT Asn 140	Ala	TTC Phe	TTT Phe	GCT Ala	4	32
40	AAC Asn 145	Phe	CGC Arg	TCT Ser	GTT Val	GAC Asp 150	GAA Glu	GAA Glu	TTT Phe	TTC Phe	GAG Glu 155	Glu	CTG Leu	GAA Glu	GAA Glu	CTG Leu 160	4	180
45	CTG Leu	ATT	ATG Met	AGT Ser	GAT Asp 165	Val	GGT Gly	GTC Val	CAA Gln	GTC Val 170	Ala	TCT Ser	AAC Asn	TTA Leu	ACG Thr 175	GAG Glu	5	528
50	GAA Glu	CTA Leu	CGT Arg	TAC Tyr 180	Glu	GCC Ala	AAG Lys	CTT Leu	GAA Glu 185	Asn	GCC Ala	AAG Lys	AAA Lys	Pro 190	Asp	GCA Ala	5	576
50	CTT Leu	CGT	CGT Arg 195	Val	ATC Ile	ATT Ile	GAG Glu	AAA Lys 200	Leu	GTT Val	GAG Glu	CTI Lev	TAT Tyr 205	Glu	AAG Lys	GAT Asp	(624
55	GGT Gly	AG0 Se1 210	Туг	GAT Asp	GAA Glu	AGC Ser	ATC Ile 215	His	TTC Phe	CAP Glr	GAT Asp	AAC Asr 220	Let	ACA Thr	GTT Val	ATG Met	(672
60	CTC Let 225	ı Phe	GTT Val	GGT Gly	GTG Val	AAT Asn 230	Gly	GTT Val	r GGC	AAA Lys	A ACA Thi 235	Thi	TCT Sei	TATO	GGA Gly	AAA Lys 240	•	720

PCT/US97/22578 WO 98/26072

-205-

r	CTA Leu	GCC Ala	CAC His	CGC Arg	TAC Tyr 245	AAA Lys	CAA Gln	GCT Ala	GGT Gly	AAG Lys 250	AAG Lys	GTC Val	ATG Met	CTG Leu	GTT Val 255	GCA Ala	768
5	GCA Ala	GAT Asp	ACC Thr	TTC Phe 260	CGT Arg	GCG Ala	GGT Gly	GCA Ala	GTA Val 265	GCT Ala	CAG Gln	CTA Leu	GCT Ala	GAA Glu 270	TGG Trp	GGC Gly	816
10															GAT Asp		864
15															GGT Gly	ATC Ile	912
20															GAT Asp		960
25															GTT Val 335		1008
23															ACA Thr		1056
30															CCT Pro		1104
35			Ile												GGT Gly		1152
40															ATT Ile	GGT Gly 400	1200
45															AAC Asn 415		1248
10				CTC Leu 420	Leu					*							1278
50	(2)	INF		TION		_											
55			(1)	(B	ENCE) LE) TY) TO	NGTH PE:	: 42 amin	5 am o ac	ino id		s						
		(ii)	MOLE	CULE	TYP	E: p	rote	in								
60		(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	120:					

-206-

	Met 1	Gly	Leu	Phe	Asp 5	Arg	Leu	Phe	Gly	Lys 10	Lys	Glu	Glu	Pro	Lys 15	Ile
5	Glu	Glu	Val	Val 20	Lys	Glu	Ala	Leu	Glu 25	Asn	Leu	Asp	Leu	Ser 30	Glu	Asp
	Val	Asp	Pro 35	Thr	Phe	Thr	Glu	Val 40	Glu	Glu	Val	Ser	Gln 45	Glu	Glu	Ala
10	Glu	Val 50	Glu	Ile	Val	Glu	Gln 55	Ala	Val	Phe	Gln	Glu 60	Glu	Glu	Ile	Glr
15	Asp 65	Thr	Val	Glu	Glu	Ser 70	Leu	Asp	Leu	Glu	Pro 75	Val	Val	Glu	Val	Ser 80
	Gln	Lys	Glu	Val	Glu 85	Glu	Phe	Pro	His	Ser 90	Glu	Glu	Gly	Asn	Thr 95	Glu
20	Phe	Leu	Glu	Thr 100	Ile	Glu	Glu	Asn	Asn 105	Ser	Glu	Val	Leu	Glu 110	Pro	Glu
	Arg	Pro	Gln 115	Ala	Glu	Glu	Thr	Val 120	Gln	Glu	Lys	Tyr	Asp 125	Arg	Ser	Leu
25	Lys	Lys 130	Thr	Arg	Thr	Gly	Phe 135	Gly	Ala	Arg	Leu	Asn 140	Ala	Phe	Phe	Ala
30	Asn 145	Phe	Arg	Ser	Val	Asp 150	Glu	Glu	Phe	Phe	Glu 155	Glu	Leu	Glu	Glu	Leu 160
	Leu	Ile	Met	Ser	Asp 165	Val	Gly	Val	Gln	Val 170	Ala	Ser	Asn	Leu	Thr 175	Glu
35	Glu	Leu	Arg	Tyr 180	Glu	Ala	Lys	Leu	Glu 185	Asn	Ala	Lys	Lys	Pro 190	Asp	Ala
	Leu	Arg	Arg 195	Val	Ile	Ile	Glu	Lys 200	Leu	Val	Glu	Leu	Tyr 205	Glu	Lys	Asp
40	Gly	Ser 210	Tyr	Asp	Glu	Ser	Ile 215	His	Phe	Gln	Asp	Asn 220	Leu	Thr	Val	Met
45	Leu 225	Phe	Val	Gly	Val	Asn 230	Gly	Val	Gly	Lys	Thr 235	Thr	Ser	Ile	Gly	Lys 240
	Leu	Ala	His	Arg	Tyr 245		Gln	Ala	Gly	Lys 250		Val	Met	Leu	Val 255	
50	Ala	Asp	Thr	Phe 260	Arg	Ala	Gly	Ala	Val 265	Ala	Gln	Leu	Ala	Glu 270	Trp	G17
	Arg	Arg	Val 275	Asp	Val	Pro	Val	Val 280	Thr	Gly	Pro	Glu	Lys 285	Ala	Asp	Pro
55	Ala	Ser 290	Val	Val	Phe	Asp	Gly 295	Met	Glu	Arg	Ala	Val 300	Ala	Glu	Gly	Ile
60	Asp 305	Ile	Leu	Met	Ile	Asp 310	Thr	Ala	Gly	Arg	Leu 315	Gln	Asn	Lys	Asp	Asr 320
30	Leu	Met	Ala	Glu	Leu	Glu	Lvs	Ile	Glv	Ara	Ile	Ile	Lvs	Ara	Val	Va I

-207-

					325					330					335		
5	Pro	Glu	Ala	Pro 340	His	Glu	Thr	Phe	Leu 345	Ala	Leu	Asp	Ala	Ser 350		Gly	
,	Gln	Asn	Ala 355	Leu	Val	Gln	Ala	Lys 360	Glu	Phe	Ser	Lys	Ile 365	Thr	Pro	Leu	
10	Thr	Gly 370	Ile	Val	Leu	Thr	Lys 375	Ile	Asp	Gly	Thr	Ala 380	Arg	Gly	Gly	Val	
	Val 385	Leu	Ala	Ile	Arg	Glu 390	Glu	Leu	Asn	Ile	Pro 395	Val	Lys	Leu	Ile	Gly 400	
15	Phe	Gly	Glu	Lys	Ile 405	Asp	Asp	Ile	Gly	Glu 410	Phe	Asn	Ser	Glu	Asn 415	Phe	
20	Met	Lys	Gly	Leu 420	Leu	Glu	Gly	Leu	Ile 425								
	(2)	INFO	ORMA:	rion	FOR	SEQ	ID 1	VO: 12	21:								
25		(i)	(7 (1 (0	QUENCA) LI B) TY C) SY	engti Pe: Prani	nucl	91 ba Leic ESS:	ase p acid	oairs i	3							
30		(ii)	MO	LECUI	LE T	YPE:	DNA	(ger	omic	=)							
		(i i i)	HYI	РОТН	ETICA	AL: 1	10										
35		(iv)) ANT	ri-si	ENSE	: NO											
40		(ix)	(<i>I</i>	ATURI A) NA B) LO D) OT	ME/I	ON:	18		HII	1146			-				
4 0		(xi)	SEÇ	QUENC	CE DI	ESCRI	PTIC	on: s	SEQ I	D NO	0:121	l:					
45	ATG Met 1	ACA Thr	AAG Lys	AAA Lys	CAA Gln 5	CTT Leu	CAC His	TTG Leu	GTG Val	ATT Ile 10	GTG Val	ACA Thr	GGG Gly	ATG Met	GGT Gly 15	GGC Gly	48
50	GCA Ala	GGG Gly	AAA Lys	ACT Thr 20	GTA Val	GCC Ala	ATT Ile	CAG Gln	TCC Ser 25	TTC Phe	GAG Glu	GAT Asp	CTA Leu	GGT Gly 30	TAT Tyr	TTC Phe	96
50	ACC Thr	ATT Ile	GAT Asp 35	AAT Asn	ATG Met	CCG Pro	CCA Pro	GCT Ala 40	CTC Leu	TTG Leu	CCT Pro	AAG Lys	TTT Phe 45	TTG Leu	CAG Gln	CTG Leu	144
55	GTT Val	GAA Glu 50	ATT Ile	AAG Lys	GAA Glu	GAC Asp	AAT Asn 55	CCT Pro	AAG Lys	TTG Leu	GCC Ala	TTG Leu 60	GTA Val	GTG Val	GAT Asp	ATG Met	192
50	CGT Arg 65	AGT Ser	CGT Arg	TCT Ser	TTC Phe	TTT Phe 70	TCA Ser	GAG Glu	ATT Ile	CAA Gln	GCT Ala 75	GTT Val	TTG Leu	GAT Asp	GAG Glu	TTG Leu 80	240

-208-

5	GAA Glu	AAT Asn	CAA Gln	GAT Asp	GGT Gly 85	TTG Leu	GAT Asp	TTC Phe	AAA Lys	ATC Ile 90	CTC Leu	TTT Phe	TTG Leu	GAT Asp	GCG Ala 95	GCT Ala	288
5													CGG Arg				336
10													TTG Leu 125				384
15													GTG Val				432
20													GAG Glu				480
25													ATG Met				528
													TTT Phe				576
30													AAC Asn 205				624
35													CCT Pro				672
40													ATT Ile				720
45													ATG Met				768
													TTG Leu				816
50									Glu				GAC Asp 285				864
55		AAG Lys 290															891

(2) INFORMATION FOR SEQ ID NO:122:

60

(i) SEQUENCE CHARACTERISTICS:

-209-

					TYF	E: a	mino	ami aci inea	.d	cids	;					
5		(i	.i) M	OLEC	ULE	TYPE	: pı	otei	.n							
		(з	i) S	EQUE	NCE	DESC	RIPI	:NOI	SEC] ID	NO: 1	.22:				
LO	Met 1	Thr	Lys	Lys	Gln 5	Leu	His	Leu	Val	Ile 10	Val	Thr	Gly	Met	Gly 15	Gly
.5	Ala	Gly	Lys	Thr 20	Val	Ala	Ile	Gln	Ser 25	Phe	Glu	Asp	Leu	Gly 30	Tyr	Phe
	Thr	Ile	Asp 35	Asn	Met	Pro	Pro	Ala 40	Leu	Leu	Pro	Lys	Phe 45	Leu	Gln	Let
20	Val	Glu 50	Ile	Lys	Glu	Asp	Asn 55	Pro	Lys	Leu	Ala	Leu 60	Val	Val	Asp	Met
	Arg 65	Ser	Arg	Ser	Phe	Phe 70	Ser	Glu	Ile	Gln	Ala 75	Val	Leu	Asp	Glu	Let 80
25	Glu	Asn	Gln	Asp	Gly 85	Leu	Asp	Phe	Lys	Ile 90	Leu	Phe	Leu	Asp	Ala 95	Alá
30	Asp	Lys	Glu	Leu 100	Val	Ala	Arg	Tyr	Lys 105	Glu	Thr	Arg	Arg	Ser 110	His	Pro
, ,	Leu	Ala	Ala 115	Asp	Gly	Arg	Ile	Leu 120	Asp	Gly	Ile	Lys	Leu 125	Glu	Arg	Glu
35	Leu	Leu 130	Ala	Pro	Leu	Lys	Asn 135	Met	Ser	Gln	Asn	Val 140	Val	Asp	Thr	Thi
	Glu 145	Leu	Thr	Pro	Arg	Glu 150	Leu	Arg	Lys	Thr	Leu 155	Ala	Glu	Gln	Phe	Se:
40	Asp	Gln	Glu	Gln	Ala 165	Gln	Ser	Phe	Arg	Ile 170	Glu	Val	Met	Ser	Phe 175	Gl ₂
15	Phe	Lys	Tyr	Gly 180	Ile	Pro	Ile	Asp	Ala 185	Asp	Leu	Val	Phe	Asp 190	Val	Ar
- 3	Phe	Leu	Pro 195	Asn	Pro	Tyr	Tyr	Leu 200	Pro	Glu	Leu	Arg	Asn 205	Gln	Thr	G1
50	Val	Asp 210	Glu	Pro	Val	Tyr	Asp 215	Tyr	Val	Met	Asn	His 220	Pro	Glu	Ser	Gl
	Asp 225	Phe	Tyr	Gln	His	Leu 230	Leu	Ala	Leu	Ile	Glu 235	Pro	Ile	Leu	Pro	Se. 24
55	Tyr	Gln	Lys	Glu	Gly 245	Lys	Ser	Val	Leu	Thr 250	Ile	Ala	Met	Gly	Cys 255	Th
60	Gly	Gly	Gln	His 260	Arg	Ser	Val	Ala	Phe 265	Ala	Lys	Arg	Leu	Val 270	Gln	As
00	Leu	Ser	Lys	Asn	Trp	Ser	Val	Asn	Glu	Gly	His	Arg	Asp	Lys	Asp	Ar

-210-

	2	75				2	80				2	85				
5	Arg Lys G 290	lu T	hr V	al A		rg S 95	er									
	(2) INFOR	MATI	ON F	or s	EQ I	D NO	:123	:								
10	(i)	(A) (B) (C)	ENCE LEN TYP STR TOP	GTH: E: a ANDE	329 mino DNES	ami aci S: n	.no a .d .ot r	cids elev								
15	(ii)	MOLE	CULE	TYP	E: p	epti	.de									
	(iii)	HYPC	THET	'ICAI	.: NC	•										
20	(iv)	ANTI	-SEN	SE:	NO											
	(xi)	SEQU	JENCE	DES	CRIE	MOIT?	1: SE	EQ II	о ио:	123:						
25	Met 1	Val	Glu	Val	Pro 5	Asp	Glu	Arg	Leu	Gln 10	Lys	Leu	Thr	Glu	Met 15	Ile
	Thr	Pro	Lys	Lys 20	Thr	Val	Pro	Thr	Thr 25	Phe	Glu	Phe	Thr	Asp 30	Ile	Ala
30	Gly	Ile	Val 35	Lys	Gly	Ala	Ser	Lys 40	Gly	Glu	Gly	Leu	Gly 45	Asn	Lys	Phe
35	Leu	Ala 50	Asn	Ile	Arg	Glu	Val 55	Asp	Ala	Ile	Val	His 60	Val	Val	Arg	Ala
33	Phe 65	Asp	Asp	Glu	Asn	Val 70	Met	Arg	Glu	Gln	Gly 75	Arg	Glu	Asp	Ala	Phe 80
40	· Val	Asp	Pro	Leu	Ala 85	Asp	Ile	Asp	Thr	Ile 90	Asn	Leu	Glu	Leu	Ile 95	Leu
	Ala	Asp	Leu	Glu 100	Ser	Val	Asn	Lys	Arg 105	Tyr	Ala	Arg	Val	Glu 110	Lys	Met
45	Ala	Arg	Thr 115	Gln	Lys	Asp	Lys	Glu 120	Ser	Val	Ala	Glu	Phe 125	Asn	Val	Leu
E 0	Gln	Lys 130		Lys	Pro	Val	Leu 135		Asp	Gly	Lys	Ser 140	Ala	Arg	Thr	Ile
50	Glu 145		Thr	Asp	Glu	Glu 150		Lys	Val	Val	Lys 155	Gly	Leu	Phe	Leu	Leu 160
55	Thr	Thr	Lys	Pro	Val 165		Tyr	Val	Ala	Asn 170	Val	Asp	Glu	Asp	Val 175	Val
	Ser	Glu	Pro	Asp 180		Ile	Asp	Tyr	Val 185	Lys	Gln	Ile	Arg	Glu 190		Ala
60	Ala	Thr	Glu	Asn	Ala	Glu	Val	Val	Val	Ile	Ser	Ala	Arg	Ala	Glu	Glu

-211-

			195					200					205			
5	Glu	Ile 210	Ser	Glu	Leu	Asp	Asp 215	Glu	Asp	Lys	Lys	Glu 220	Phe	Leu	Glu	Ala
,	Ile 225	Gly	Leu	Thr	Glu	Ser 230	Gly	Val	Asp	Lys	Leu 235	Thr	Arg	Ala	Ala	Tyr 240
10	His	Leu	Leu	Gly	Leu 245	Gly	Thr	Tyr	Phe	Thr 250	Ala	Gly	Glu	Lys	Glu 255	Val
	Arg	Ala	Trp	Thr 260	Phe	Lys	Arg	Gly	Met 265	Lys	Ala	Pro	Gln	Ala 270	Ala	Gly
15	Ile	Ile	His 275	Ser	Asp	Phe	Glu	Lys 280	Gly	Phe	Ile	Arg	Ala 285	Val	Thr	Met
20	Ser	Tyr 290	Glu	Asp	Leu	Val	Lys 295	Tyr	Gly	Ser	Glu	Lys 300	Ala	Val	Lys	Glu
- •	Ala 305	Gly	Arg	Leu	Arg	Glu 310	Glu	Gly	Lys	Glu	Tyr 315	Ile	Val	Gln	Asp	Gly 320
25	Asp	Ile	Met	Glu	Phe 325	Arg	Phe	Asn	Val							
	(2) INFO	RMAT:	ION 1	OR S	SEQ I	D NO	:124	4:								
30	(i)	(B)	JENCI LEI TYI STI	NGTH: PE: 6 RANDI	: 189 amino EDNES	ami aci	ino a id not a	acid: rele								
35	(ii)	MOLI	ECULI	E TYI	PE: p	pept	ide									
	(iii)	HYP	OTHE:	ricai	L: NO)										
40	(iv)	ANT	I-SEI	ISE:	NO											
	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	v: si	EQ I	D NO	:124	:					
45	Met 1	Ser	Ala	Ser	Glu 5	Gly	Arg	Asp	Pro	Tyr 10	Glu	Asp	Tyr	Leu	Ala 15	Ile
	Asn	Lys	Glu	Leu 20	Glu	Ser	Tyr	Asn	Leu 25	Arg	Leu	Met	Glu	Arg 30	Pro	Gln
50	Ile	Ile	Val 35	Thr	Asn	Lys	Met	Asp 40	Met	Pro	Glu	Ser	Gln 45	Glu	Asn	Leu
55	Glu	Glu 50	Phe	Lys	Lys	Lys	Leu 55	Ala	Glu	Asn	Tyr	Asp 60	Glu	Phe	Glu	Glu
	Leu 65	Pro	Ala	Ile	Phe	Pro 70	Ile	Ser	Gly	Leu	Thr 75	Lys	Gln	Gly	Leu	Ala 80
60	Thr	Leu	Leu	Asp	Ala 85	Thr	Ala	Glu	Leu	Leu 90	Asp	Lys	Thr	Pro	Glu 95	Phe

-212-

	Leu	Leu	Tyr	Asp 100	Glu	Ser	Asp	Met	Glu 105	Glu	Glu	Val	Tyr	Tyr 110	Gly	Phe
5	Asp	Glu	Glu 115	Glu	Lys	Ala	Phe	Glu 120	Ile	Ser	Arg	Asp	Asp 125	Asp	Ala	Thr
	Trp	Val 130	Leu	Ser	Gly	Glu	Lys 135	Leu	Met	Lys	Leu	Phe 140	Asn	Met	Thr	Asn
LO	Phe 145	Asp	Arg	Asp	Glu	Ser 150	Val	Met	Lys	Phe	Ala 155	Arg	Gln	Leu	Arg	Gly 160
15	Met	Gly	Val	Asp	Glu 165	Ala	Leu	Arg	Ala	Arg 170	Gly	Ala	Lys	Asp	Gly 175	Asp
	Leu	Val	Arg	Ile 180	Gly	Lys	Phe	Glu	Phe 185	Glu	Phe	Val	Asp			
	(2) INFO	TAMS	ON E	OR S	SEQ I	D NO	:125	5 :								
20	(i)	(B)	LEN TYP	IGTH: PE: a	226 mino	ami aci	ino a	cids								
25			STF TOP						vant							
	(ii)	MOLI	ECULE	E TYI	PE: p	epti	lde									
30	(iii)	HYPO	OTHE	CAI	L: NO)										
, 0	(iv)	ANT	-SE	ISE:	NO											
35	(xi)	SEQU	JENCI	E DES	CRI	PTION	1: SI	EQ II	NO:	125	:					
55	Met 1	Asn	Ile	Gln	Gln 5	Leu	Arg	Tyr	Val	Val 10	Ala	Ile	Ala	Asn	Ser 15	Gly
10	Thr	Phe	Arg	Glu 20	Ala	Ala	Glu	Lys	Met 25	Tyr	Val	Ser	Gln	Pro 30	Ser	Leu
	Ser	Ile	Ser 35	Val	Arg	Asp	Leu	Glu 40	Lys	Glu	Leu	Gly	Phe 45	Lys	Ile	Phe
45	Arg	Arg 50	Thr	Ser	Ser	Gly	Thr 55	Phe	Leu	Thr	Arg	Arg 60	Gly	Met	Glu	Phe
50	Tyr 65	Glu	Lys	Ala	Gln	Glu 70	Leu	Val	Lys	Gly	Phe 75	Asp	Ile	Phe	Gln	Asn 80
	Gln	Tyr	Ala	Asn	Pro 85	Glu	Glu	Glu	Lys	Asp 90	Glu	Phe	Ser	Val	Ala 95	Ser
55	Gln	His	Tyr	Asp 100	Phe	Leu	Pro	Pro	Thr 105	Ile	Thr	Ala	Phe	Ser 110	Glu	Arg
	Tyr	Pro	Asp 115	Tyr	Lys	Asn	Phe	Arg 120	Ile	Phe	Glu	Ser	Thr 125	Thr	Val	Gln
60	Ile	Leu 130	Asp	Glu	Val	Ala	Gln 135	Gly	His	Ser	Glu	Ile 140	Gly	Ile	Ile	Tyr

-213-

	Leu 145	Asn	Asn	Gln	Asn'	Lys 150	Lys	Gly	Ile	Met	Gln 155	Arg	Val	Glu	Lys	Leu 160
5	Gly	Leu	Glu	Val	Ile 165	Glu	Leu	Ile	Pro	Phe 170	His	Thr	His	Ile	Tyr 175	Leu
10	Cys	Glu	Gly	His 180	Pro	Leu	Ala	Gln	Lys 185	Glu	Glu	Leu	Val	Met 190	Glu	Asp
10	Leu	Ala	Asp 195	Leu	Pro	Thr	Val	Arg 200	Phe	Thr	Gln	Glu	Lys 205	Asp	Glu	Tyr
15	Leu	Tyr 210	Tyr	Ser	Glu	Asn	Phe 215	Val	Asp	Thr	Ser	Ala 220	Thr	His	Arg	Cys
	Leu 225	Met														
20	(2) INFO	RMAT 1	ON F	OR S	SEQ I	D NO	:126	5:								
25	(i)	(B)	JENCE) LEN) TYI) STI) TOI	IGTH: PE: 3 VANDI	: 119 amino EDNE:	ami aci	ino a id not i	acids relev								
	(ii)	MOL	ECULE	E TY	PE: 1	pept	ide									
30	(iii)	HYP	OTHET	CA	L: N)										
	(iv)	ANT	I-SEN	ISE:	МО											
35	(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ I	ои о	:126	:					
	Met 1	Lys	Lys	Arg	Ala 5	Ile	Val	Ala	Val	Ile 10	Val	Leu	Leu	Leu	Ile 15	Gly
40	Lev	Asp	Gln	Leu 20	Val	Lys	Ser	Tyr	Ile 25	Val	Gln	Gln	Ile	Pro 30	Leu	Gly
45	Gli	val	Arg 35	Ser	Trp	Ile	Pro	Asn 40	Phe	Val	Ser	Leu	Thr 45	Tyr	Leu	Gln
	Ası	Arg 50	Gly	Ala	Ala	Phe	Ser 55	Ile	Leu	Gln	Asp	Gln 60	Gln	Leu	Leu	Phe
50	Ala 65	val	Ile	Thr	Leu	Val 70	Val	Val	Ile	Gly	Ala 75	Ile	Trp	Tyr	Leu	His 80
	Lys	His	Met	Glu	Asp 85	Ser	Phe	Trp	Met	Val 90	Leu	Gly	Leu	Thr	Leu 95	Ile
55	110	e Ala	Gly	Gly 100		Gly	Asn	Phe	Ile 105		Arg	Val	Ser	Gln 110		Phe
60	Va.	l Val	Asp 115		Phe	His	Leu									
-	(2) INF	ORMAT	CION	FOR	SEQ	ID N	0:12	7:								

-214-

5	(i)	(B)	JENCE LEN TYI STI TOI	IGTH: PE: a RANDI	: 170 amino EDNES) ami o aci SS: r	ino a id iot i	cids								
	(ii)	MOLE	CULE	TY!	?E: p	epti	ide									
10	(iii)	нүрс	THE	CAI	L: NO	•										
	(iv)	ANT	-SEN	ISE:	NO											
15	(xi)	SEQU	JENCE	E DES	SCRI	OITS	1: SI	EQ II	ONO	127	:					
	Met 1	Ser	Lys	Tyr	Leu 5	Leu	Lys	Leu	Leu	Val 10	Tyr	Cys	Phe	Ser	Ala 15	Leu
20	Thr	Phe	Gly	Ser 20	Leu	Phe	Leu	Ile	Ile 25	Gly	Phe	Ile	Leu	Ile 30	Lys	Gly
25	Leu	Pro	His 35	Leu	Ser	Leu	Ser	Leu 40	Phe	Ser	Trp	Thr	Tyr 45	Thr	Ser	Glu
25	Asn	Ile 50	Ser	Leu	Met	Pro	Ala 55	Ile	Ile	Ser	Thr	Val 60	Ile	Leu	Val	Phe
30	Gly 65	Ala	Leu	Leu	Leu	Ala 70	Leu	Pro	Ile	Gly	Ile 75	Phe	Ala	Gly	Phe	Tyr 80
	Leu	Val	Glu	Tyr	Thr 85	Lys	Lys	Asp	Ser	Leu 90	Cys	Val	Lys	Ile	Met 95	Arg
35	Leu	Ala	Ser	Asp 100	Thr	Leu	Ser	Gly	Ile 105	Pro	Ser	Ile	Val	Phe 110	Gly	Leu
40	Phe	Gly	Met 115	Leu	Phe	Phe	Val	Val 120	Phe	Leu	Gly	Phe	Gln 125	Tyr	Ser	Leu
40	Leu	Ser 130	Gly	Ile	Leu	Thr	Ser 135	Val	Ile	Met	Val	Leu 140	Pro	Val	Ile	Ile
45	Arg 145	Ser	Thr	Glu	Glu	Ala 150	Leu	Leu	Ser	Val	Ser 155	Asp	Ser	Met	Arg	Glr 160
	Ala	Ser	Tyr	Gly	Leu 165	Gly	Ala	Leu	Ser	Tyr 170						
50	(2) INFO	RMAT:	ION :	FOR	SEQ :	ID N	0:12	8:								
55	(i)	(B (C	UENC:) LEI) TY:) ST:	NGTH PE: RAND	: 15 amin EDNE	4 am o ac SS:	ino id not	acid rele	vant							
	(ii)	MOL														
60	(iii)	HYP	OTHE	TICA	L: N	0										

-215-

	(1V)	ANT	I-SEN	ISE:	NO											
_	(xi)	SEQ	JENCE	E DES	CRI	OITS	N: SI	EQ II	ои с	:128:	;					
5	Met 1	Lys	Thr	Glu	Gln 5	Thr	Ala	Ser	Lys	Thr 10	Ser	Ala	Leu	Lys	Gly 15	Lys
10	Glu	Val	Ala	Asp 20		Glu	Leu	Met	Gly 25	Val	Asp	Gly	Lys	Thr 30	Tyr	Arg
	Leu	Ser	Asp 35	Tyr	Lys	Gly	Lys	Lys 40	Val	Tyr	Leu	Lys	Phe 45	Trp	Ala	Ser
15	Trp	Cys 50	Ser	Ile	Cys	Leu	Ala 55	Ser	Leu	Pro	Asp	Thr 60	Asp	Glu	Ile	Ala
20	Lys 65	Glu	Ala	Gly	Asp	Asp 70	Tyr	Val	Val	Leu	Thr 75	Val	Val	Ser	Pro	Gly 80
	His	Lys	Gly	Glu	Gln 85	Ser	Glu	Ala	Asp	Phe 90	Lys	Asn	Trp	Tyr	Lys 95	Gly
25	Leu	Asp	Tyr	Lys 100	Asn	Leu	Pro	Val	Leu 105	Val	Asp	Pro	Ser	Gly 110	Lys	Leu
	Leu	Glu	Thr 115	Tyr	Gly	Val	Arg	Ser 120	Tyr	Pro	Thr	Gln	Ala 125	Phe	Ile	Asp
30	Lys	Glu 130	Gly	Lys	Leu	Val	Lys 135	Thr	His	Pro	Gly	Phe 140	Met	Glu	Lys	Asp
35	Ala 145	Ile	Leu	Gln	Thr	Leu 150	Lys	Glu	Leu	Ser						
,,	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:129	€:								
40	(i)	(B)	UENCI) LEI) TY!) ST!) TO!	NGTH: PE: & RANDI	: 18: amino EDNE:	l ami o aci	ino a id not a	acid: relev								
45	(ii)	MOL	ECULI	E TYI	PE: 1	pept:	ide									
4.0	(iii)	HYP	OTHE:	rical	L: N	o										
	(iv)	ANT	I-SEI	NSE:	NO											
50										•						
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ II	D NO	:129	:					
55	Met 1	Lys	Lys	Glu	Gln 5	Ile	Pro	Asn	Leu	Leu 10	Thr	Ile	Gly	Arg	Ile 15	Leu
50	Phe	Ile	Pro	Ile 20	Phe	Ile	Phe	Ile	Leu 25	Thr	Ile	Gly	Asn	Ser 30	Ile	Glu
- •	Ser	His	Ile	Val	Ala	Ala	Ile	Ile	Phe	Ala	Val	Ala	Ser	Ile	Thr	Asp

-216-

			35					40					45			
5	Tyr	Leu 50	Asp	Gly	Tyr	Leu	Ala 55	Arg	Lys	Trp	Asn	Val 60	Val	Ser	Asn	Phe
J	Gly 65	Lys	Phe	Ala	Asp	Pro 70	Met	Ala	Asp	Lys	Leu 75	Leu	Val	Met	Ser	Ala 80
10	Phe	Ile	Met	Leu	Ile 85	Glu	Leu	Gly	Met	Ala 90	Pro	Ala	Trp	Ile	Val 95	Ala
	Val	Ile	Ile	Cys 100	Arg	Glu	Leu	Ala	Val 105	Thr	Gly	Leu	Arg	Leu 110	Leu	Leu
15	Val	Glu	Thr 115	Gly	Gly	Thr	Ile	Leu 120	Ala	Ala	Ala	Met	Pro 125	Gly	Lys	Ile
20	Lys	Thr 130	Phe	Ser	Gln	Met	Phe 135	Ala	Ile	Ile	Phe	Leu 140	Leu	Leu	His	Trp
	Thr 145	Leu	Leu	Gly	Gln	Val 150	Leu	Leu	Tyr	Val	Ala 155	Leu	Phe	Phe	Thr	Ile 160
25	Tyr	Ser	Gly	Tyr	Asp 165	Tyr	Phe	Lys	Gly	Ser 170	Ala	Tyr	Val	Phe	Lys 175	Gly
	Thr	Phe	Gly	Ser 180	Lys											
30	(2) INFO	RMAT]	ON I	FOR S	SEQ I	ID NO	0:130):								
35	(i)	(B)	LEN TYI	NGTH: PE: & RANDI	: 11: amino EDNE:	lam: cac: SS: 1	ino a	acid: relev								
	(ii)	MOLE	ECULI	E TY	PE: I	pept:	ide									
40	(iii)	нүрс	OTHE	rical	L: NO)										
	(iv)	ANTI	(-SE)	NSE:	МО											
45																
	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	N: SI	EQ II	ои с	:130	:					
50	Leu 1	Arg	Leu	Lys	Glu 5	Met	Asn	Gly	Asp	Met 10	Ile	His	Ala	Ala	Tyr 15	Asp
	Leu	Gly	Ala	Ser 20	Gln	Phe	Gln	Met	Phe 25	Lys	Glu	Ile	Met	Leu 30	Pro	Tyr
55	Leu	Thr	Pro 35	Ser	Ile	Ile	Ala	Gly 40	Tyr	Phe	Met	Ala	Phe 45	Thr	Tyr	Ser
60	Leu	Asp 50	Asp	Phe	Ala	Val	Thr 55	Phe	Phe	Val	Thr	Gly 60	Asn	Gly	Phe	Ser
	Thr	ī.eu	Ser	Val	Glu	Tle	Tur	Ser	Δra	Δ 1 =	Ara	Luc	Glv	Tle	Ser	T.e.s

-217-

	65			70				75					80
	Glu	Ile Asn A	la Leu 85	Ser Ala	. Leu	Val	Phe 90	Leu	Phe	Ser :	Ile	Ile 95	Leu
5	Val	Val Gly 1	yr Tyr 100	Phe Ile	e Ser	Arg 105	Glu	Lys	Glu	Glu	Gln 110	Ala	
	(2) INFO	RMATION FO	OR SEQ I	D NO:1	31:								
10	(i)	SEQUENCE	CHARACT	ERISTI	cs:								
15		(B) TYPI	GTH: 59 E: amino ANDEDNES DLOGY: n	acid S: not	rele	vant							
	(ii)	MOLECULE	TYPE: p	eptide									
20	(iii)	HYPOTHET	ICAL: NO)									
20	(iv)	ANTI-SEN	SE: NO										
25	(xi)	SEQUENCE	DESCRI	PTION:	SEQ I	D NO:	:131:	:					
23	Pro 1	Gln Phe	Thr Glu 5	Glu Th	r Gly	Ile	Gln 10	Val	Gln	Tyr	Glu	Ala 15	Phe
30	Asp	Ser Asn	Glu Ala 20	Met Ty	r Thr	Lys 25	Ile	Lys	Gln	Gly	Gly 30	Thr	Thr
	Tyr	Asp Ile	Ala Ile	Pro Se	r Glu 40	Tyr	Met	Ile	Asn	Lys 45	Met	Lys	Asp
35	Glu	Asp Leu 50	Leu Val	Pro Le		Tyr	Ser	Lys					
	(2) INFO	ORMATION E	OR SEQ	ID NO:	132:								
40	(i)	SEQUENCE	CHARAC	TERIST:	CS:	ds							
		(B) TY	E: amin	o acid									
45		(D) TO	OLOGY:	not re	Levan	t							
	(ii)) MOLECULI	E TYPE:	peptid	e								
	(iii)) HYPOTHE	rical: N	0									
50	(iv) ANTI-SE	NSE: NO										
) SEQUENC											
55	Me 1	t Gln Thr	Gln Glu 5	Lys H	is Se	r Glr	Ala 10	Ala	\Val	L Leu	Gly	Leu 15	Gln
	Hi	s Leu Leu	Ala Met 20	Tyr S	er Gl	y Sei 25	r Ile	e Leu	ı Val	l Pro	11e 30	Met	Ile
60	Al	a Thr Ala		y Tyr S	er Al	a Glı	u Glr	ı Lev	ı Th:	r Tyr	Lei	ılle	Sei

-218-

			35					40					45			
5	Thr	Asp 50	Ile	Phe	Met	Cys	Gly 55	Val	Ala	Thr	Phe	Leu 60	Gln	Leu	Gln	Leu
3	Asn 65	Lys	Tyr	Phe	Gly	Ile 70	Gly	Leu	Pro	Val	Val 75	Leu	Gly	Val	Ala	Phe 80
10	Gln	Ser	Val	Ala	Pro 85	Leu	Ile	Met	Ile	Gly 90	Gln	Ser	His	Gly	Ser 95	Gly
	Ala	Met	Phe	Gly 100	Ala	Leu	Ile	Ala	Ser 105	Gly	Ile	Tyr	Val	Val 110	Leu	Val
15	Ser	Gly	Ile 115	Phe	Ser	Lys	Val	Ala 120	Asn	Leu	Phe	Pro	Ser 125	Ile	Val	Thr
20	Gly	Ser 130	Val	Ile	Thr	Thr	11e 135	Gly	Leu	Thr	Leu	Ile 140	Pro	Val	Ala	Ile
20	Gly 145	Asn	Met	Gly	Asn	Asn 150	Val	Pro	Glu	Pro	Thr 155	Gly	Gln	Ser	Leu	Leu 160
25	Leu	Ala	Ala	Ile	Thr 165	Val	Leu	Ile	Ile	Leu 170	Leu	Ile	Asn	Ile	Phe 175	Thr
	Lys	Gly	Phe	Ile 180	Lys	Ser	Ile	Ser	Ile 185	Leu	Ile	Gly	Leu	Val 190	Val	Gly
30	Thr	Ala	Ile 195	Ala	Ala	Thr	Met	Gly 200	Leu	Val	Asp	Phe	Ser 205	Pro	Val	Ala
35	Val	Val 210	His	Leu	Ser	Met	Ser 215	Gln	Leu	His	Ser	Thr 220	Leu	Gly	Cys	Gln
J J	Pro 225	Leu	Lys	Ser	His	Leu 230	Leu	Ser								
40	(2) INFO	RMAT:	ION 1	FOR :	SEQ :	ID NO	0:13	3:								
	(i)	(B)) LEI) TY	NGTH PE:	: 343 amin	am:	ino a id	acid								
45		(C)			EDNE:				vant							
	(ii)	MOL	ECUL	E TY	PE: 1	pept:	ide									
50	(iii)	HYPO	OTHE'	rica	L: No	0										
	(iv)	ANT:	I-SE	NSE:	NO											
55	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: 5	EQ I	D NO	:133	:					
	Lys 1	Val	Pro	Val	Tyr 5	Leu	Gly	Ser	Ser	Phe 10	Ala	Phe	Ile	Thr	Ala 15	Met
60	Ser	Leu	Ala	Met 20	Lys	Glu	Met	Gly	Gly 25	Asp	Val	Ser	Ala	Ala 30	Gln	Thr

-219-

	Gly	Val	Ile 35	Leu	Thr	Gly	Leu	Val 40	Tyr	Val	Leu	Val	Ala 45	Thr	Ser	Ile
5	Arg	Phe 50	Val	Gly	Thr	Lys	Trp 55	Ile	Asp	Lys	Leu	Leu 60	Pro	Pro	Ile	Ile
	Ile 65	Gly	Pro	Met	Ile	Ile 70	Val	Ile	Gly	Leu	Gly 75	Leu	Ala	Gly	Ser	Ala 80
10	Val	Thr	Asn	Ala	Gly 85	Leu	Val	Ala	Asp	Gly 90	Asn	Trp	Lys	Asn	Ala 95	Leu
15	Val	Ala	Val	Val 100	Thr	Phe	Leu	Ile	Ala 105	Ala	Phe	Ile	Asn	Thr 110	Lys	Gly
13	Lys	Gly	Phe 115	Leu	Arg	Ile	Ile	Pro 120	Phe	Leu	Phe	Ala	Ile 125	Ile	Gly	Gly
20	Tyr	Leu 130	Phe	Ala	Leu	Thr	Leu 135	Gly	Leu	Val	Asp	Phe 140	Thr	Pro	Val	Leu
	Lys 145	Ala	Asn	Trp	Phe	Glu 150	Ile	Pro	Gly	Phe	Tyr 155	Leu	Pro	Phe	Ser	Thr 160
25	Gly	Gly	Ala	Phe	Lys 165	Glu	Tyr	Asn	Leu	Tyr 170	Phe	Gly	Pro	Glu	Ala 175	Ile
30	Ala	Ile	Leu	Pro 180	Ile	Ala	Ile	Val	Thr 185		Ser	Glu	His	Ile 190	Gly	Asp
30	His	Thr	Val 195	Leu	Gly	Gln	Ile	Cys 200	Gly	Arg	Gln	Phe	Leu 205	Lys	Glu	Pro
35	Gly	Leu 210		Arg	Thr	Leu	Leu 215	Gly	Asp	Gly	Ile	Ala 220	Thr	Ser	Val	Ser
	Ala 225		Leu	Gly	Gly	Pro 230	Ala	Asn	Thr	Thr	Tyr 235	Gly	Glu	Asn	Thr	Gly 240
40	Val	Ile	Gly	Met	Thr 245		Ile	Ala	Ser	Val 250	Ser	Val	Ile	Arg	Asn 255	Ala
45	Ala	Phe	Ile	Ala 260		Ala	Leu	Ser	Phe 265		Gly	Lys	Phe	Thr 270	Ala	Leu
43	Ile	: Ser	Thr 275		Pro	Asn	Ala	Val 280		Gly	Gly	Met	Ser 285	Ile	Leu	Lev
50	Туг	Gly 290		Ile	Ala	Ser	Asn 295		Leu	Lys	Val	Leu 300	Ile	Lys	Glu	Arq
	Va] 305		Phe	Ala	Gln	Met 310		Asn	Leu	lle	Ile 315		Ser	Ala	Met	Le:
55	Va]	L Lev	Gly	Leu	Gly 325		Ala	Ile	. Leu	Lys 330		Gly	Pro	Val	His 335	Phe
	Glı	val	. Lev	Pro 340		Gln	Pro	•								
60				500	020	TD N	1 3									

(2) INFORMATION FOR SEQ ID NO:134:

-220-

5	(i)	(B)	LEI TYI	E CHI NGTH: PE: & RANDI POLO	: 184 amine EDNE:	4 am: bac: SS: 1	ino a id not :	acid rele								
	(ii)	MOL	ECUL	E TYI	PE: 1	pept:	ide									
10	(iii)	HYPO	THE!	ricai	L: N)										
	(iv)	ANT	I-SEI	NSE:	NO											
15	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	1: SI	EQ I	ON O	:134	:					
	Ser 1	Leu	Ile	Ile	Ala 5	Leu	Ala	Thr	Thr	Leu 10	Ile	Ala	Ile	Ile	Ile 15	Ser
20	Ala	Met	Ala	Ala 20	Tyr	Gly	Ile	Val	Arg 25	Phe	Phe	Pro	Lys	Leu 30	Gly	Ala
25	Ile	Met	Ser 35	Arg	Leu	Leu	Val	Ile 40	Thr	Tyr	Ile	Phe	Pro 45	Pro	Ile	Leu
	Leu	Ala 50	Ile	Pro	Tyr	Ser	Ile 55	Ala	Ile	Ala	Lys	Val 60	Gly	Leu	Thr	Asn
30	Ser 65	Leu	Phe	Gly	Leu	Met 70	Met	Val	Tyr	Leu	Ser 75	Phe	Ser	Val	Pro	Tyr 80
	Ala	Val	Trp	Leu	Leu 85	Val	Gly	Phe	Phe	Gln 90	Thr	Val	Pro	Ile	Gly 95	Ile
35	Glu	Glu	Ala	Ala 100	Arg	Ile	Asp	Gly	Ala 105	Asn	Lys	Phe	Val	Thr 110	Phe	Tyr
40	Lys	Val	Val 115	Leu	Pro	Ile	Val	Ala 120	Pro	Gly	Ile	Val	Ala 125	Thr	Ala	Ile
10	Tyr	Thr 130	Phe	Ile	Asn	Ala	Trp 135	Asn	Glu	Phe	Leu	Tyr 140	Ala	Leu	Ile	Leu
45	Ile 145	Asn	Asn	Thr	Gly	Lys 150	Met	Thr	Val	Ala	Val 155	Ala	Leu	Arg	Ser	Leu 160
	Asn	Gly	Ser	Glu			Asp					Met	Ala	Ala	Ser 175	Val
50	Ile	Val	Val	Leu 180	Pro	Ser	Ile	Ile								
	(2) INFO	RMAT]	ои і	FOR S	SEQ I	D NO	0:13	5:								
55	(i)	(B)	LEI TYI STI	E CHANGTH: PE: 8 RANDI	: 15: amino EDNE:	s ami	ino a id not a	acids relev								
60	(ii)							vaiit								
	(+ +)	ותטהו	اللابات	TIL	:c: I	rept:	rae									

-221-

	(iii)	HYP	OTHE	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	NO											
ر	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:135	:					
10	Asp 1	Glu	Leu	Ala	Asp 5	Leu	Met	Met	Val	Ala 10	Ser	Lys	Glu	Val	Glu 15	As
	Ala	Ile	Ile	Arg 20	Leu	Gly	Gln	Lys	Ala 25	Arg	Ala	Ala	Gly	Ile 30	His	Me
15	. Ile	Leu	Ala 35	Thr	Gln	Arg	Pro	Ser 40	Val	Asp	Val	Ile	Ser 45	Gly	Leu	Il
	Lys	Ala 50	Asn	Val	Pro	Ser	Arg 55	Val	Ala	Phe	Ala	Val 60	Ser	Ser	Gly	Th
20	Asp 65	Ser	Arg	Thr	Ile	Leu 70	Asp	Glu	Asn	Gly	Ala 75	Glu	Lys	Leu	Leu	61 80
25	Arg	Gly	Asp	Met	Leu 85	Phe	Lys	Pro	Ile	Asp 90	Glu	Asn	His	Pro	Val 95	Ar
	Leu	Gln	Gly	Ser 100	Phe	Ile	Ser	Asp	Asp 105	Asp	Val	Glu	Arg	Ile 110	Val	Ası
30	Phe	Ile	Lys 115	Thr	Gln	Ala	Asp	Ala 120	Asp	Tyr	Asp	Glu	Ser 125	Phe	Asp	Pro
	Gly	Glu 130	Val	Ser	Glu	Asn	Glu 135	Gly	Glu	Phe	Ser	Asp 140	Gly	Asp	Ala	Gl
35	Gly 145	Asp	Pro	Leu	Phe	Glu 150	Glu	Ala	Lys	Ser	Leu 155					
	(2) INFO	RMATI	ON E	FOR S	SEQ 1	D NC	:136	5:								
40	(i)	(A) (B) (C)	LEN TYP STF	IGTH: PE: a VANDE	: 154 mino EDNES	reris i ami o aci ss: n	no a d ot r	cids elev								
45	(ii)							anc								
	(iii)						ue									
50	(iv)					,										
	(= -,															
55	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	136:						
	Met 1	Thr	Glu	Asn	Thr 5	Pro	Lys	Ala	Leu	Val 10	Gln	Val	Asn	Gln	Lys 15	Pro
60	Leu	Ile	Glu	Tyr 20	Gln	Ile	Glu		Leu 25	Lys	Glu	Lys	Gly	Ile 30	Asn	Asp

-222-

	Ile	Ile	Ile 35	Ile	Val	Gly	Tyr	Leu 40	Lys	Glu	Gln	Phe	Asp 45	Tyr	Leu	Lys
5	Glu	Lys 50	Tyr	Gly	Val	Arg	Leu 55	Val	Phe	Asn	Asp	Lys 60	Tyr	Ala	Asp	Тул
10	Asn 65	Asn	Phe	Tyr	Ser	Leu 70	Tyr	Leu	Val	Lys	Glu 75	Glu	Leu	Ala	Asn	Sei 80
	Tyr	Val	Ile	Asp	Ala 85	Asp	Asn	Tyr	Leu	Phe 90	Lys	Asn	Met	Phe	Arg 95	Asr
15	Asp	Leu	Thr	Arg 100	Ser	Thr	Tyr	Phe	Ser 105	Val	Tyr	Arg	Glu	Asp 110	_	Thr
	Asn	Glu	Trp 115	Phe	Leu	Val	Tyr	Gly 120	Asp	Asp	Tyr	Lys	Val 125	Gln	Asp	Ile
20	Ile	Val 130	Asp	Ser	Lys	Ala	Gly 135	Arg	Ile	Leu	Ser	Gly 140	Val	Ser	Phe	Trp
25	Asp 145	Ala	Pro	Thr	Ala	Glu 150	Lys	Ile	Val	Ser						
	(2) INFO	RMAT	I NO	FOR S	SEQ 1	ED NO	:13	7:								
30	(i)	(B)	JENCI LEN TYI STI	IGTH: PE: 3 RANDI	: 286 amino EDNES	5 ami 5 aci 55: r	ino a id not a	acid: relev								
2.5	(ii)	MOLE	ECULI	TY!	?E: p	epti	ide									
35	(iii)	НҮРС	THE	CAI	: NO)										
	(iv)	ANTI	-sen	ISE:	ИО											
40																
	(xi)	SEQU	JENCE	DES	CRIE	OITS	1: SE	EQ II	NO:	:137:						
45	Met 1	Ser	Asp	Asn	Ser 5	Lys	Thr	Arg	Val	Val 10	Val	Gly	Met	Ser	Gly 15	Gly
50	Val	Asp	Ser	Ser 20	Val	Thr	Ala	Leu	Leu 25	Leu	Lys	Glu	Gln	Gly 30	Tyr	Asp
30	Val	Ile	Gly 35	Ile	Phe	Met	Lys	Asn 40	Trp	Asp	Asp	Thr	Asp 45	Glu	Asn	Gly
55	Val	Суз 50	Thr	Ala	Thr	Glu	Asp 55	Tyr	Lys	Asp	Val	Val 60	Ala	Val	Ala	Asp
	Gln 65	Ile	Gly	Ile	Pro	Tyr 70	Tyr	Ser	Val	Asn	Phe 75	Glu	Lys	Glu	Tyr	Trp 80
60	Asp	Arg	Val	Phe	Glu 85	Tyr	Phe	Leu	Ala	Glu 90	Tyr	Arg	Ala	Gly	Arg 95	Thr

-223-

	Pro	Asn	Pro	Asp 100	Val	Met	Cys	Asn	Lys 105	Glu	Ile	Lys	Phe	Lys 110		Phe
5	Leu	Asp	Tyr 115	Ala	Met	Thr	Leu	Gly 120	Ala	Asp	Tyr	Val	Ala 125	Thr	Gly	His
10	Tyr	Ala 130	Arg	Val	Ala	Arg	Asp 135	Glu	Asp	Gly	Thr	Val 140	His	Met	Leu	Arg
	Gly 145	Val	Asp	Asn	Gly	Lys 150	Asp	Gln	Thr	Tyr	Phe 155	Leu	Ser	Gln	Leu	Ser 160
15	Gln	Glu	Gln	Leu	Gln 165	Lys	Thr	Met	Phe	Pro 170	Leu	Gly	His	Leu	Lys 175	Lys
	Pro	Glu	Val	Arg 180	Lys	Leu	Ala	Glu	Glu 185	Ala	Gly	Leu	Ser	Thr 190	Ala	Lys
20	Lys	Lys	Asp 195	Ser	Thr	Gly	Ile	Суз 200	Phe	Ile	Gly	Glu	Lys 205	Asn	Phe	Lys
25	Asn	Phe 210	Leu	Ser	Asn	Tyr	Leu 215	Pro	Ala	Gln	Pro	Gly 220	Arg	Met	Met	Thr
	Val 225	Asp	Gly	Arg	Asp	Met 230	Gly	Glu	His	Ala	Gly 235	Leu	Met	Tyr	Tyr	Thr 240
30	Ile	Gly	Gln	Arg	Gly 245	Gly	Leu	Gly	Ile	Gly 250	Gly	Gln	His	Gly	Gly 255	Asp
	Asn	Ala	Pro	Trp 260	Phe	Val	Val	Gly	Lys 265	Asp	Leu	Ser	Lys	Asn 270	Ile	Leu
35	Tyr	Val	Gly 275	Gln	Gly	Phe	Tyr	His 280	Asp	Ser	Leu	Met	Ser 285	Thr		
	(2) INFO	RMAT1	ON E	OR S	SEQ I	D NC	:138	3:								
40	(i)	(B)	LEN TYP STF	IGTH: PE: & RANDE	648 amino EDNES	TERIS ami aci ss: r	no a .d .ot 1	cids								
45	(ii)															
	(iii)						. 									
50	(iv)	ANTI	-SEN	ISE:	NO											
	(xi)	SEQU	JENCE	DES	CRIE	MOIT	: SE	Q II	NO:	138:						
55	Met 1	Glu	Val	Phe	Glu 5	Ser	Leu	Lys	Ala	Asn 10	Leu	Val	Gly	Lys	Asn 15	Ala
60	Arg	Ile	Val	Leu 20	Pro	Glu	Gly	Glu	Glu 25	Pro	Arg	Ile	Leu	Gln 30	Ala	Thr
	Lys	Arg	Leu	Val	Lys	Glu	Thr	Glu	Val	Ile	Pro	Val	Leu	Leu	Gly	Asn

-224-

			35					40					45			
_	Pro	Glu 50	Lys	Ile	Lys	Ile	Tyr 55	Leu	Glu	Ile	Glu	Gly 60	Ile	Met	Asp	Gly
5	Tyr 65	Glu	Val	Ile	Asp	Pro 70	Gln	His	Tyr	Pro	Gln 75	Phe	Glu	Glu	Met	Val 80
10	Ser	Ala	Leu	Val	Glu 85	Arg	Arg	Lys	Gly	Lys 90	Met	Thr	Glu	Glu	Asp 95	Val
	Arg	Lys	Val	Leu 100	Val	Glu	Asp	Val	Asn 105	Tyr	Phe	Gly	Val	Met 110	Leu	Val
15	Tyr	Leu	Gly 115	Leu	Val	Asp	Gly	Met 120	Val	Ser	Gly	Ala	Ile 125	His	Ser	Thr
20	Ala	Ser 130	Thr	Val	Arg	Pro	Ala 135	Leu	Gln	Ile	Ile	Lys 140	Thr	Arg	Pro	Asn
20	Val 145	Thr	Arg	Thr	Ser	Gly 150	Ala	Phe	Leu	Met	Val 155	Arg	Gly	Thr	Glu	Arg 160
25	Tyr	Leu	Phe	Gly	Asp 165	Cys	Ala	Ile	Asn	Ile 170	Asn	Pro	Asp	Ala	Glu 175	Ala
	Leu	Ala	Glu	Ile 180	Ala	Ile	Asn	Ser	Ala 185	Ile	Thr	Ala	Lys	Met 190	Phe	Gly
30	Ile	Glu	Pro 195	Lys	Ile	Ala	Met	Leu 200	Ser	Tyr	Ser	Thr	Lys 205	Gly	Ser	Gly
35	Phe	Gly 210	Glu	Ser	Val	Asp	Lys 215	Val	Val	Glu	Ala	Thr 220	Lys	Ile	Ala	His
33	Asp 225		Arg	Pro	Asp	Leu 230		Ile	Asp	Gly	Glu 235	Leu	Gln	Phe	Asp	Ala 240
40	Ala	Phe	Val	Pro	Glu 245	Thr	Ala	Ala	Leu	Lys 250	Ala	Pro	Gly	Ser	Thr 255	Val
•	Ala	Gly	Gln	Ala 260		Val	Phe	Ile	Phe 265	Pro	Gly	Ile	Glu	Ala 270	Gly	Asn
45	Ile	Gly	Tyr 275	Lys	Met	Ala	Glu	Arg 280		Gly	Gly	Phe	Ala 285	Ala	Val	Gly
50	Pro	Val 290	Leu	Gln	Gly	Leu	Asn 295		Pro	Val	Asn	Asp 300		Ser	Arg	Gly
50	Cys 305		Ala	Asp	Asp	Val 310		Lys	Leu	Thr	Leu 315		Thr	Ala	Ala	Gln 320
55	Ala	Val	His	Gln	Met 325		Val	Phe	Glu	Ser 330		Lys	Ala	Asn	Leu 335	Val
	Gly	/ Lys	Asn	Ala 340		Ile	· Val	Leu	Pro 345		Gly	Glu	Glu	Pro 350		Ile
60	Lev	Gln	Ala 355		Lys	Arg	Leu	Val 360		Glu	Thr	Glu	Val 365		Pro	Val

-225-

	1	beu	Leu 370	Gly	Asn	Pro	Glu	Lys 375	Ile	Lys	Ile	Tyr	Leu 380	Glu	Ile	Glu	Gly
5		[le 385	Met	Asp	Gly	Tyr	Glu 390	Val	Ile	Asp	Pro	Gln 395	His	Tyr	Pro	Gln	Phe 400
	C	Glu	Glu	Met	Val	Ser 405	Ala	Leu	Val	Glu	Arg 410	Arg	Lys	Gly	Lys	Met 415	Thr
10	C	Glu	Glu	Asp	Val 420	Arg	Lys	Val	Leu	Val 425	Glu	Asp	Val	Asn	Tyr 430	Phe	Gly
15	`	Val	Met	Leu 435	Val	Tyr	Leu	Gly	Leu 440	Val	Asp	Gly	Met	Val 445	Ser	Gly	Ala
	1	Ile	His 450	Ser	Thr	Ala	Ser	Thr 455	Val	Arg	Pro	Ala	Leu 460	Gln	Ile	Ile	Lys
20		Thr 465	Arg	Pro	Asn	Val	Thr 470	Arg	Thr	Ser	Gly	Ala 475	Phe	Leu	Met	Val	Arg 480
25	(Gly	Thr	Glu	Arg	Tyr 485	Leu	Phe	Gly	Asp	Cys 490	Ala	Ile	Asn	Ile	Asn 495	Pro
25	i	Asp	Ala	Glu	Ala 500	Leu	Ala	Glu	Ile	Ala 505	Ile	Asn	Ser	Ala	Ile 510	Thr	Ala
30		Lys	Met	Phe 515	Gly	Ile	Glu	Pro	Lys 520	Ile	Ala	Met	Leu	Ser 525	Tyr	Ser	Thr
		Lys	Gly 530		Gly	Phe	Gly	Glu 535	Ser	Val	Asp	Lys	Val 540	Val	Glu	Ala	Thr
35		Lys 545	Ile	Ala	His	Asp	Leu 550	Arg	Pro	Asp	Leu	Glu 555	Ile	Asp	Gly	Glu	Leu 560
40		Gln	Phe	Asp	Ala	Ala 565	Phe	Val	Pro	Glu	Thr 570		Ala	Leu	Lys	Ala 575	Pro
40		Gly	Ser	Thr	Val 580		Gly	Gln	Ala	Asn 585	Val	Phe	Ile	Phe	Pro 590	Gly	Ile
45		Glu	Ala	Gly 595		Ile	Gly	Tyr	Lys 600		Ala	Glu	Arg	Leu 605	Gly	Gly	Phe
		Ala	Ala 610	Val	Gly	Pro	Val	Leu 615	Gln	Gly	Leu	Asn	Lys 620	Pro	Val	Asn	Asp
50		Leu 625		Arg	Gly	Cys	Asn 630	Ala	Asp	Asp	Val	Tyr 635	Lys	Leu	Thr	Leu	11e 640
E C		Thr	Ala	Ala	Glm	Ala 645		. His	Gln	l						•	
55	(2)]	INFO	RMAI	NOI	FOR	SEQ	ID N	10:13	9:								
60		(i)	(<i>P</i>) LE 3) TY	ength (PE:	I: 13 amir	35 ar 10 ac	STIC mino cid not	acio		:						

-226-

		(D)	TOE	Oroc	SY: r	ot i	elev	vant								
	(ii)	MOL	ECULI	E TYP	e: p	epti	.de									
5	(iii)	HYPO	OTHE	ricai	: NC)										
	(iv)	ANT	I-SEN	ISE:	NO											
10	(xi)	SEQ	JENCI	E DES	SCRIE	PTION	l: SI	EQ II) NO:	:139:	:					
	Met 1	Arg	Asn	Leu	Lys 5	Ser	Ile	Leu	Arg	Arg 10	His	Ile	Ser	Leu	Leu 15	Gly
15	Phe	Leu	Gly	Val 20	Leu	Ser	Ile	Trp	Gln 25	Leu	Ala	Gly	Phe	Leu 30	Lys	Leu
20	Leu	Pro	Lys 35	Phe	Ile	Leu	Pro	Thr 40	Pro	Leu	Glu	Ile	Leu 45	Gln	Pro	Phe
20	Val	Arg 50	Asp	Arg	Glu	Phe	Leu 55	Trp	His	His	Ser	Trp 60	Ala	Thr	Leu	Arg
25	Val 65	Ala	Leu	Leu	Gly	Leu 70	Ile	Leų	Gly	Val	Leu 75	Ile	Ala	Cys	Leu	Met 80
	Ala	Val	Leu	Met	Asp 85	Ser	Leu	Thr	Trp	Leu 90	Asn	Asp	Leu	Ile	Tyr 95	Pro
30	Met	Met	Val	Val 100	Ile	Gln	Thr	Ile	Pro 105	Thr	Ile	Ala	Ile	Ala 110	Pro	Ile
35	Leu	Val	Leu 115		Leu	Gly	Tyr	Gly 120	Ile	Phe	Ala	Gln	Asp 125	Cys	Leu	Asp
,,,	Tyr	Leu 130	Asn	Asn	Asn	Leu	Ser 135								•	
40	(2) INFO	RMAT	ION	FOR	SEQ :	ID N	0:14	0:								
40	(i)	(Ã	UENC) LE) TY	ngth	: 27	9 am	ino		s							
45		•) ST						vant							
	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
50	(iii)	HYP	OTHE	TICA	L: N	0										
50	(iv)	ANT	'I-SE	NSE:	МО											
55	(xi)	SEÇ	UENC	E DE	SCRI	PTIO	N: S	EQ I	ои о	:140	:					
<i></i>	Pro 1	Trp	Ser	Leu	Val 5	Asp	Glu	Tyr	Glu	Gln 10	Leu	Tyr	Ala	Thr	Ile 15	Gly
60	Trp	His	Pro	Thr 20	Glu	Ala	Gly	Thr	Tyr 25	Thr	Glu	Glu	Val	Glu 30	Ala	Туг

-227-

	Leu	Leu	Asp 35	Lys	Leu	Lys	His	Ser 40	Lys	Val	Val	Ala	Leu 45	Gly	Glu	Ile
5	Gly	Leu 50	Asp	Tyr	His	Trp	Met 55	Thr	Ala	Pro	Glu	Val 60	Gln	Glu	Gln	Val
	Phe 65	Arg	Arg	Gln	Ile	Gln 70	Leu	Ser	Lys	Asp	Leu 75	Asp	Leu	Pro	Phe	Val 80
10	Val	His	Thr	Arg	Asp 85	Ala	Leu	Glu	Asp	Thr 90	Tyr	Glu	Ile	Ile	Lys 95	Ser
15	Glu	Gly	Val	Gly 100	Pro	Arg	Gly	Gly	Ile 105	Met	His	Ser	Phe	Ser 110	Gly	Thr
	Leu	Glu	Trp 115	Ala	Arg	Tyr	Arg	Asp 120	Leu	Gly	Met	Thr	Ile 125	Ser	Phe	Ser
20	Gly	Val 130	Val	Thr	Phe	Lys	Lys 135	Ala	Thr	Asp	Leu	Gln 140	Glu	Ala	Ala	Lys
	Glu 145	Leu	Pro	Leu	Asp	Lys 150	Met	Leu	Val	Glu	Thr 155	Asp	Ala	Pro	Tyr	Leu 160
25	Ala	Pro	Val	Pro	Lys 165	Arg	Gly	Arg	Glu	Asn 170	Lys	Thr	Ala	Tyr	Thr 175	Arg
30	Tyr	Val	Val	Asp 180	Phe	Ile	Ala	Asp	Leu 185	Arg	Gly	Met	Thr	Thr 190	Glu	Glu
	Leu	Ala	Val 195	Ala	Thr	Thr	Ala	Asn 200	Ala	Glu	Arg	Ile	Phe 205	Gly	Ile	Gly
35	Gln	Gln 210	Val	Met	Lys	Glu	Arg 215	Ile	Ser	Gln	Val	Ile 220	Val	Val	Glu	Gly
	Arg 225	Asp	Asp	Thr	Val	Asn 230	Leu	Lys	Arg	Tyr	Phe 235	Asp	Val	Glu	Thr	Tyr 240
40	Glu	Thr	Arg	Gly	Ser 245	Ala	Ile	Asn	Asp	Gln 250	Asp	Ile	Glu	Arg	Ile 255	Gln
45	Arg	Leu	His	Gln 260	Arg	His	Gly	Val	11e 265	Val	Phe	Thr	Asp	Pro 270	Asp	Phe
	Asn	Gly	Asp 275	Gly	Phe	Gly	Ala									
50	(2) INFO				_											
55	(1)	(B) (C)	LENCE LEN TYP STF	IGTH: PE: a VANDE	147 mino EDNES	ami aci SS: r	ino a id not i	cids								
	(ii)	MOLE	CULE	TYP	?E: p	epti	de									
50	(iii)	НҮРС	THET	CAI	.: NC)										
- 0	(iv)	ANTI	-SEN	ISE:	NO											

-228-

	(xi)	SEQU	JENCE	E DES	SCRIE	OITS	1: SE	EQ II	ONO:	141:	:					
5	Met 1	Lys	Ile	Ile	Ile 5	Gln	Arg	Val	Lys	Lys 10	Ala	Gln	Val	Ser	Ile 15	Glu
LO	Gly	Gln	Ile	Gln 20	Gly	Lys	Ile	Asn	Gln 25	Gly	Leu	Leu	Leu	Leu 30	Val	Gly
	Val	Gly	Pro 35	Glu	Asp	Gln	Glu	Glu 40	Asp	Leu	Asp	Tyr	Ala 45	Val	Arg	Lys
L5	Leu	Val 50	Asn	Met	Arg	Ile	Phe 55	Ser	Asp	Ala	Glu	Gly 60	Lys	Met	Asn	Leu
	Ser 65	Val	Lys	Asp	Ile	Glu 70	Gly	Glu	Ile	Leu	Ser 75	Ile	Ser	Gln	Phe	Thr 80
20	Leu	Phe	Ala	Asp	Thr 85	Lys	Lys	Gly	Asn	Arg 90	Pro	Ala	Phe	Thr	Gly 95	Ala
25	Ala	Lys	Pro	Asp 100	Met	Ala	Ser	Asp	Phe 105	Tyr	Asp	Ala	Phe	Asn 110	Gln	Lys
	Leu	Ala	Gln 115	Glu	Val	Pro	Val	Gln 120	Thr	Gly	Ile	Phe	Gly 125	Ala	Asp	Met
30	Gln	Val 130	Glu	Leu	Val	Asn	Asn 135	Gly	Pro	Val	Thr	Ile 140	Ile	Leu	Asp	Thr
	Lys 145	Lys	Arg													
35	(2) INFO	RMAT:	I NO	FOR S	SEQ 1	ED NO	0:142	2:								
40	(i)	(B)	JENCI) LEI) TYI) STI) TOI	NGTH PE: 6 RANDI	: 238 amino EDNES	3 am: 5 ac: 55: 1	ino a id not a	acid: rele								
	(ii)	MOL	ECULI	E TY	PE: p	pept:	ide									
45	(iii)	HYP	OTHE	rica	L: NO	0										
	(iv)	ANT	I-SEI	NSE:	NO											
50	(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: S	EQ I	ои о	:142	:					
	Met 1	Ile	Leu	Ser	Met 5	Val	Ser	Thr	Pro	Leu 10	Pro	Ser	Ser	Pro	Cys 15	Lys
55	Tyr	Arg	Lys	Gln 20	Leu	Tyr	Leu	Gln	Glu 25	Asp	Leu	Arg	Gly	Lys 30	Asn	Val
	Glu	Lys	Val 35	Lys	Glu	Leu	Ala	Thr 40	Glu	Lys	Lys	Val	Ser 45	Ile	Ser	Trp
60	Thr	Ser	Lys	Lys	Ser	Leu	Ser	Glu	Met	Thr	Glu	Gly	Ala	Val	His	Gln

-229-

		50					55					60				
_	Gly 65	Phe	Val	Leu	Arg	Val 70	Ser	Glu	Phe	Ala	Tyr 75	Ser	Glu	Leu	Asp	Tyr 80
5	Ile	Leu	Ala	Lys	Thr 85	Arg	Gln	Glu	Glu	Asn 90	Pro	Leu	Leu	Leu	Ile 95	Leu
LO	Asp	Gly	Leu	Thr 100	Asp	Pro	His	Asn	Leu 105	Gly	Ser	Ile	Leu	Arg 110	Thr	Ala
	Asp	Ala	Thr 115	Asn	Val	Ser	Gly	Val 120	Ile	Ile	Pro	Lys	His 125	Arg	Ala	Val
15	Gly	Val 130	Thr	Pro	Val	Val	Ala 135	Lys	Thr	Ala	Thr	Gly 140	Ala	Ile	Glu	His
20	Val 145	Pro	Ile	Ala	Arg	Val 150	Thr	Asn	Leu	Ser	Gln 155	Thr	Leu	Asp	Lys	Leu 160
20	Lys	Asp	Glu	Gly	Phe 165	Trp	Thr	Phe	Gly	Thr 170	Asp	Met	Asn	Gly	Thr 175	Pro
25	Cys	His	Lys	Trp 180	Asn	Thr	Lys	Gly	Lys 185	Ile	Ala	Leu	Ile	Ile 190	Gly	Asn
	Glu	Gly	Lys 195	Gly	Ile	Ser	Ser	Asn 200	Ile	Lys	Lys	Gln	Val 205	Asp	Glu	Met
30	Ile	Thr 210		Pro	Met	Asn	Gly 215	His	Val	Gln	Ser	Leu 220	Asn	Ala	Ser	Val
35	Ala 225	Ala	Ala	Ile	Leu	Met 230	-	Glu	Val	Phe	Arg 235	Asn	Arg	Leu		
<i>.</i>	,	RMAT														
40	(1)	(B	UENC) LE) TY :) ST)) TO	NGTH PE: RAND	: 34 amin EDNE	5 am o ac SS:	ino id not	acid rele	vant	·						
45	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
		HYP ANT				0	٠									
50		SEC				PTIC	N: S	EQ I	D NC	:143	:					
	Me: 1	t Val	Glr	Gln	Ala 5	Ala	Thr	. Val	Ser	Leu 10	Met	Val	Leu	Phe	Leu 15	Val
55	Pr	o Glr	ı Lev	Arç 20	j Asr	Ala	Туг	: Gly	7 Thr 25	: Ala	Ala	Ile	Gly	Ile 30	lle	Cys
60	Gl	y Lev	1 Ty1 35	Trp) Ala	. Val	. Ser	Ser 40	Asn	Met	Thr	· Val	. Glu 45	Ala	Thr	Glr

-230-

		Arg	Leu 50	Thr	Gly	Gly	Gly	Gly 55	Phe	Ala	Ile	Gly	His 60	Gln	Gln	Gln	Phe
5		Ala 65	Ile	Trp	Phe	Val	Asp 70	Lys	Val	Ala	Gly	Arg 75	Phe	Gly	Lys	Lys	Glu 80
		Glu	Ser	Leu	Asp	Asn 85	Leu	Lys	Leu	Pro	Lys 90	Phe	Leu	Ser	Ile	Phe 95	His
10		Asp	Thr	Val	Val 100	Ala	Ser	Ala	Thr	Leu 105	Met	Leu	Val	Phe	Phe 110	Gly	Ala
15		Ile	Leu	Leu 115	Ile	Leu	Gly	Pro	Asp 120	Ile	Met	Ser	Asn	Lys 125	Glu	Val	Ile
13		Thr	Ser 130	Gly	Thr	Leu	Phe	Asn 135	Pro	Ala	Lys	Gln	Asp 140	Phe	Phe	Met	Tyr
20		Ile 145	Ile	Gln	Thr	Ala	Phe 150	Thr	Phe	Ser	Val	Tyr 155	Leu	Phe	Val	Leu	Met 160
		Gln	Gly	Val	Arg	Met 165	Phe	Val	Ser	Glu	Leu 170	Thr	Asn	Ala	Phe	Gln 175	Gly
25		Ile	Ser	Asn	Lys 180	Leu	Leu	Pro	Gly	Ser 185	Phe	Pro	Ala	Val	Asp 190	Val	Ala
30		Ala	Ser	Tyr 195		Phe	Gly	Ser	Pro 200		Ala	Val	Leu	Ser 205	Gly	Phe	Thr
50		Phe	Gly 210	Leu	Ile	Gly	Gln	Leu 215	Ile	Thr	Ile	Val	Leu 220	Leu	Ile	Val	Phe
35		Lys 225		Pro	Ile	Leu	11e 230		Thr	Gly	Phe	Val 235	Pro	Val	Phe	Phe	Asp 240
		Asn	Ala	Ala	Ile	Ala 245		Tyr	Ala	Asp	Lys 250	Arg	Gly	Gly	Trp	Lys 255	Ala
40		Ala	Val	. Ile	Leu 260		Phe	Ile	Ser	Gly 265	Val	Leu	Gln	Val	Ala 270	Leu	Gly
45		Ala	Leu	Cys 275		Ala	Leu	Leu	Asp 280		Ala	Ser	Tyr	Gly 285	Gly	Tyr	His
13		Gly	Asn 290	ıle	: Asp	Phe	Glu	295	Pro	Trp	Lev	Gly	7 Phe 300	Gly	Tyr	Ile	Phe
50		Lys 305		Lev	ı Gly	/ Ile	Val 310		туг	: Val	. Lei	315	. Cys	Leu	Phe	Leu	1 Leu 320
		Va]	l Ile	e Pro	Glr	1 Lev 325		n Phe	: Ala	Lys	330	Lys)	. Asp	Lys	: Glu	335	Tyr
55		Ту	r Ası	n Gly	7 Glu 340		Glr	ı Glu	ı Glı	1 Ala 345	5						
	(2)	INF	ORMA!	TION	FOR	SEQ	ID N	NO:14	14:		•						

60 (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 287 amino acids

-231-

		(C)	TYI STI TOI	RANDI	EDNE:	SS: 1	not i		vant							
5	(ii)	MOLI	ECULI	E TY	PE: p	pept:	ide									
	(iii)	HYPO	THE	ricai	L: NO)										
10	(iv)	ANT	(-SE)	ISE:	NO											
15	(xi)	SEQU	JENCI	E DES	SCRII	PTIO	1: SI	EQ II	ои с	:144	:					
	Met 1	Val	Arg	Pro	Ile 5	Gly	Ile	Tyr	Glu	Lys 10	Ala	Thr	Pro	Thr	His 15	Phe
20	Thr	Trp	Leu	Glu 20	Arg	Leu	Asn	Phe	Ala 25	Lys	Glu	Leu	Gly	Phe 30	Asp	Phe
	Val	Glu	Met 35	Ser	Ile	Asp	Glu	Arg 40	Asp	Glu	Arg	Leu	Ala 45	Arg	Leu	Asp
25	Trp	Ser 50	Lys	Glu	Glu	Arg	Leu 55	Glu	Val	Val	Lys	Ala 60	Ile	Tyr	Glu	Thr
30	Gly 65	Val	Arg	Ile	Pro	Ser 70	Ile	Cys	Phe	Ser	Gly 75	His	Arg	Arg	Tyr	Pro 80
30	Leu	Gly	Ser	Lys	Asp 85	Pro	Val	Leu	Glu	Glu 90	Lys	Ser	Leu	Glu	Leu 95	Met
35	Lys	Lys	Cys	Ile 100	Glu	Leu	Ala	Gln	Asp 105	Leu	Gly	Val	Arg	Thr 110	Ile	Gln
	Leu	Ala	Gly 115	Tyr	Asp	Val	Tyr	Tyr 120	Glu	Glu	Lys	Ser	Pro 125	Gln	Thr	Arg
40	Gln	Arg 130	Phe	Ile	Lys	Asn	Leu 135	Arg	Lys	Ala	Cys	Asp 140	Trp	Ala	Glu	Glu
45	Ala 145	Gln	Val	Val	Leu	Ala 150	Ile	Glu	Ile	Met	Asp 155	Asp	Pro	Phe	Ile	Asn 160
40	Ser	Ile	Glu	Lys	Tyr 165	Leu	Ala	Ile	Glu	Lys 170	Glu	Ile	Asp	Ser	Pro 175	Phe
50	Leu	Phe	Val	Tyr 180	Pro	Asp	Ile	Gly	Asn 185	Val	Ser	Ala	Trp	His 190	Asn	Asp
	Ile	Tyr	Ser 195	Glu	Phe	Tyr	Leu	Gly 200	His	His	Ala	Ile	Ala 205	Ala	Leu	His
55	Leu	Lys 210	Asp	Thr	Tyr	Ala	Val 215	Thr	Glu	Ser	Ser	Lys 220	Gly	Gln	Phe	Arg
60	Asp 225	Val	Pro	Phe	Gly	Gln 230	Gly	Cys	Val	Lys	Trp 235	Glu	Glu	Ala	Phe	Asp 240
00	Ile	Leu	Lys	Glu	Thr	Asn	Tyr	Asn	Gly	Pro	Phe	Leu	Ile	Glu	Met	Trp

-232-

					245					250					255	
_	Ser	Glu	Asn	Cys 260	Glu	Thr	Val	Glu	Glu 265	Thr	Arg	Ala	Ala	Val 270	Gln	Glu
5	Ala	Gln	Ala 275	Phe	Leu	Tyr	Pro	Leu 280	Ile	Lys	Lys	Ala	Gly 285	Leu	Met	
LO	(2) INFO															
15	(1)	(B) (C)	LENCE LEN TYP STF	GTH: PE: a RANDE	221 mino DNES	. ami aci S: r	no a d not i	cids								
	(ii)	MOLE	ECULE	E TYE	E: p	epti	de									
20	(iii)	HYPO	OTHET	CICAI	.: NC)										
20	(iv)	ANT	I-SEN	ISE:	NO											
25	(xi)	SEQU	JENCE	E DES	CRIE	OITS	1: SI	EQ II	O NO:	:145	:					
	Met 1	Thr	Lys	Arg	Ile 5	Pro	Asn	Leu	Gln	Val 10	Ala	Leu	Asp	His	Ser 15	Asp
30	Leu	Gln	Gly	Ala 20	Ile	Lys	Ala	Ala	Val 25	Ser	Val	Gly	Gln	Glu 30	Val	Asp
	Ile	Ile	Glu 35	Ala	Gly	Thr	Val	Cys 40	Leu	Leu	Gln	Val	Gly 45	Ser	Glu	Leu
35	Ala	Glu 50	Val	Leu	Arg	Ser	Leu 55	Phe	Pro	Asp	Lys	Ile 60	Ile	Val	Ala	Asp
4 0	Thr 65	Lys	Cys	Ala	Asp	Ala 70	Gly	Gly	Thr	Val	Ala 75	Lys	Asn	Asn	Ala	Val 80
4 0	Arg	Gly	Ala	Asp	Trp 85	Met	Thr	Cys	Ile	Cys 90	Cys	Ala	Thr	Ile	Pro 95	Thr
45	Met	Glu	Ala	Ala 100	Leu	Lys	Ala	Ile	Lys 105	Thr	Glu	Arg	Gly	Glu 110	Arg	Gly
	Glu	Ile	Gln 115	Ile	Glu	Leu	Tyr	Gly 120	Asp	Trp	Thr	Phe	Glu 125	Gln	Ala	Gln
50	Leu	Trp 130	Leu	Asp	Ala	Gly	Ile 135	Ser	Gln	Ala	Ile	Tyr 140	His	Gln	Ser	Arg
55	Asp 145	Ala	Leu	Leu	Ala	Gly 150	Glu	Thr	Trp	Gly	Glu 155	_	Asp	Leu	Asn	Lys 160
رر	Val	Lys	Lys	Leu	Ile 165	Asp	Met	Gly	Phe	Arg 170	Val	Ser	Val	Thr	Gly 175	Gly
60	Leu	Asp	Val	Asp	Thr	Leu	Lys	Leu	Phe		Gly	Val	Asp	Val		Thr

-233-

Phe Ile Ala Gly Arg Gly Ile Thr Glu Ala Ala Asp Pro Ala Gly Ala 200 Ala Arg Ala Phe Lys Asp Glu Ile Lys Arg Ile Trp Gly 5 (2) INFORMATION FOR SEQ ID NO:146: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 161 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant 15 (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:146: Met Asn Leu Lys Gln Ala Leu Ile Asp Asn Asp Ser Ile Arg Leu Gly 25 Leu Glu Ala Asn Asn Trp Lys Glu Ala Val Lys Val Ala Val Asp Pro Leu Ile Glu Ser Gly Ala Ile Leu Pro Glu Tyr Tyr Asp Ala Ile Ile 30 Glu Ser Thr Glu Glu Tyr Gly Pro Tyr Tyr Ile Leu Met Pro Gly Met 35 Ala Met Pro His Ala Arg Pro Glu Ala Gly Val Gln Ser Asp Ala Phe Ser Leu Ile Thr Leu Gln Asn Pro Val Val Phe Ser Asp Gly Lys Glu 40 Val Ser Val Leu Leu Ala Leu Ala Ala Thr Ser Ser Lys Ile His Thr Ser Val Ala Ile Pro Gln Ile Ile Ala Leu Phe Glu Leu Glu Asp Ser 45 120 Ile Ala Arg Leu Gln Ala Cys Gln Thr Lys Glu Asp Val Leu Ala Met 50 Ile Glu Glu Ser Lys Asp Ser Pro Tyr Leu Glu Gly Leu Asp Leu Glu 145 150 Ser 55 (2) INFORMATION FOR SEQ ID NO:147: (i) SEQUENCE CHARACTERISTICS: 60 (A) LENGTH: 293 amino acids

(B) TYPE: amino acid

-234-

			TOI						vant							
-	(ii)	MOL	ECULI	E TY	PE: p	pepti	ide									
5	(iii)	нүрс	OTHE	ricai	L: NO)										
	(iv)	ANT	I-SE	NSE:	ио											
10	(xi)	SEQ	JENCI	E DES	SCRII	PTION	N: S1	EQ II	о ио:	: 147	:					
15	Met 1	Ser	Arg	qzA	Ile 5	Ile	Lys	Leu	Asp	Gln 10	Ile	Asp	Val	Thr	Phe 15	His
13	Gln	Lys	Lys	Arg 20	Thr	Ile	Thr	Ala	Val 25	Lys	Asp	Val	Thr	Ile 30	His	Ile
20	Gln	Glu	Gly 35	Asp	Ile	Tyr	Gly	Ile 40	Val	Gly	Tyr	Ser	Gly 45	Ala	Gly	Lys
	Ser	Thr 50	Leu	Val	Arg	Val	Ile 55	Asn	Leu	Leu	Gln	Lys 60	Pro	Ser	Ala	Gly
25	Lys 65	Ile	Thr	Ile	Asp	Asp 70	Asp	Val	Ile	Phe	Asp 75	Gly	Lys	Väl	Thr	Leu 80
30	Thr	Ala	Glu	Gln	Leu 85	Arg	Arg	Lys	Arg	Gln 90	Asp	Ile	Gly	Met	Ile 95	Phe
30	Gln	His	Phe	Asn 100	Leu	Met	Ser	Gln	Lys 105	Thr	Ala	Glu	Glu	Asn 110	Val	Ala
35	Phe	Ala	Leu 115	Lys	His	Ser	Gly	Leu 120	Ser	Lys	Glu	Glu	Lys 125	Lys	Ala	Lys
	Val	Ala 130	Lys	Leu	Leu	Asp	Leu 135	Val	Gly	Leu	Ala	Asp 140	Arg	Ala	Glu	Asn
40	Tyr 145	Pro	Ser	Gln	Leu	Ser 150	Gly	Gly	Gln	Lys	Gln 155	Arg	Val	Ala	Ile	Ala 160
45	Arg	Ala	Leu	Ala	Asn 165	Asp	Pro	Lys	Ile	Leu 170	Ile	Ser	Asp	Glu	Ser 175	Thr
13	Ser	Ala	Leu	Asp 180	Pro	Lys	Thr	Thr	Lys 185	Gln	Ile	Leu	Ala	Leu 190	Leu	Gln
50	Asp	Leu	Asn 195	Gln	Lys	Leu	Gly	Leu 200	Thr	Val	Val	Leu	Ile 205	Thr	His	Glu
	Met	Gln 210	Ile	Val	Lys	Asp	Ile 215	Ala	Asn	Arg	Val	Ala 220	Val	Met	Gln	Asp
55	Gly 225	His	Leu	Ile	Glu	Glu 230	Gly	Ser	Val	Leu	Glu 235	Ile	Phe	Ser	Asn	Pro 240
60	Lys	Gln	Pro	Leu	Thr 245	Gln	Asp	Phe	Ile	Ser 250	Thr	Ala	Thr	Gly	Ile 255	Asp
60	Glu	Ala	Met	Val	Lys	Ile	Glu	Lys	Gln	Glu	Ile	Val	Glu	His	Leu	Ser

-235-

			2	260				2	265					270		
	Glu 2	Asn S	Ser I 275	Leu I	eu V	al G	Sln I	Leu (280	Gln \	/al /	Arg :	rp :	Ser : 285	Phe 2	Asn	Arg
5		Ala 1 290	Chr I	Phe (Slu											
10	(2) INFOR															
15	(1)	(B) (C)	LENG TYPI STRI	GTH: E: ai	209 mino DNES:	amin acio 3: no	no a d ot r	cids elev	ant							
	(ii)	MOLE	CULE	TYP	E: p	eptio	de									
20	(iii)	нүро	THET	ICAL	: NO											
20	(iv)	ANTI	-SEN	SE:	NO											
25		SEQU														_
	Arg 1	Asp	Val	Asn	Phe 5	Glu	Ile	Glu	Lys	Gly 10	Glu	Leu	Val	Ile	11e 15	Leu
30	Gly	Ala	Ser	Gly 20	Ala	Gly	Lys	Ser	Thr 25	Val	Leu	Asn	Leu	Leu 30	Gly	Gly
	Met	Asp	Thr 35	Asn	Asp	Glu	Gly	Glu 40	Ile	Trp	Ile	Asp	Gly 45	Val	Asn	Ile
35	Ala	Asp 50	Tyr	Ser	Ser	His	Gln 55	Arg	Thr	Asn	Tyr	Arg 60	Arg	Asn	Asp	Val
40	Gly 65	Phe	Val	Phe	Gln	Phe 70	Tyr	Asn	Leu	Val	Ser 75	Asn	Leu	Thr	Ala	Lys 80
40	Glu	Asn	Val	Glu	Leu 85	Ser	Glu	Ile	Val	Thr 90	Asp	Ala	Leu	Asn	Ser 95	Asp
45		Val		100					105					110		
		Gln	115					120					125			
50	Val	Ala 130	Lys	Asn	Pro	Lys	Ile 135	Leu	Leu	Cys	Asp	Glu 140	Pro	Thr	Gly	Ala
55	145					150					155					160
JJ		Arg			165					170					1/:	•
60	Lev	ı Ala	Pro	Ile 180		Asp	Arg	Val	11e	Gln	Met	His	Asp	Ala 190	Sei	c Val

-236-

Lys Asp Val Val Leu Asn Gln His Pro Gln Asp Ile Asp Ser Leu Glu 195 200 205

Tyr

5

- (2) INFORMATION FOR SEQ ID NO:149:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 213 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant
- 15 (ii) MOLECULE TYPE: peptide
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO

20

10

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:149:
- Met Ile Glu Leu Lys Asn Ile Thr Lys Thr Ile Gly Gly Lys Val Ile
 1 5 10 15
- Leu Asp Asn Leu Ser Leu Arg Ile Asp Gln Gly Asp Leu Val Ala Ile 30 20 25 30
 - Val Gly Lys Ser Gly Ser Gly Lys Ser Thr Leu Leu Asn Leu Leu Gly 35 40 45
- 35 Leu Ile Asp Gly Asp Tyr Ser Gly Arg Tyr Glu Ile Phe Gly Gln Thr
 50 55 60
 - Asn Leu Ala Val Asn Ser Ala Lys Ser Gln Thr Ile Ile Arg Glu His 65 70 75 80
- 40
 Ile Ser Tyr Leu Phe Gln Asn Phe Ala Leu Ile Asp Asp Glu Thr Val
 85
 90
 95
- Glu Tyr Asn Leu Met Leu Ala Leu Lys Tyr Val Lys Leu Pro Lys Lys 45 100 105 110
 - Asp Lys Leu Lys Lys Val Glu Glu Ile Leu Glu Arg Val Gly Leu Ser 115 120 125
- Ala Thr Leu His Gln Arg Val Ser Glu Leu Ser Gly Gly Glu Gln Gln
 130 135 140
 - Arg Ile Ala Val Ala Arg Ala Ile Leu Lys Pro Ser Gln Leu Ile Leu 145 150 155 160
- 55
 Ala Asp Glu Pro Thr Gly Ser Leu Asp Pro Glu Asn Arg Asp Leu Val
 165 170 175
- Leu Lys Phe Leu Leu Glu Met Asn Arg Glu Gly Lys Thr Val Ile Ile 60 180 185 190

-237-

Val Thr His Asp Ala Tyr Val Ala Gln Gln Cys His Arg Val Ile Glu 200 Leu Gly Glu Gly Lys 5 210 (2) INFORMATION FOR SEQ ID NO:150: (i) SEQUENCE CHARACTERISTICS: 10 (A) LENGTH: 84 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant 15 (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:150: Ala Lys Pro Lys Gln Leu Ser Gly Gly Gln Lys Gln Arg Val Ala Ile 25 Ala Arg Ala Leu Ser Met Asn Pro Asp Ala Ile Leu Phe Asp Glu Pro 30 Thr Ser Ala Leu Asp Pro Glu Met Val Gly Glu Val Leu Lys Ile Met Gln Asp Leu Ala Gln Glu Gly Leu Thr Met Ile Val Val Thr His Glu 35 Met Glu Phe Ala Arg Asp Val Ser His Arg Val Ile Phe Met Asp Lys Gly Val Ile Pro 40 (2) INFORMATION FOR SEQ ID NO:151: (i) SEQUENCE CHARACTERISTICS: 45 (A) LENGTH: 118 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant 50 (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:151: Tyr Tyr Gly Asp Tyr His Ala Leu Arg Asn Ile Asn Leu Arg Phe Glu 60

-238-

	Lys	Gly	Gln	Val 20	Val	Val	Leu	Leu	Gly 25	Pro	Ser	Gly	Ser	Gly 30	Lys	Ser
5	Thr	Leu	Ile 35	Arg	Thr	Ile	Asn	Gly 40	Leu	Glu	Ala	Val	Asp 45	Lys	Gly	Ser
	Leu	Leu 50	Val	Asn	Gly	His	Gln 55	Val	Ala	Gly	Ala	Ser 60	Gln	Lys	Asp	Leu
10	Val 65	Pro	Leu	Arg	Lys	Glu 70	Val	Gly	Met	Val	Phe 75	Gln	His	Phe	Asn	Leu 80
15	Tyr	Pro	His	Lys	Thr 85	Val	Leu	Glu	Asn	Val 90	Thr	Leu	Ala	Pro	Ile 95	Lys
	Val	Leu	Gly	Ile 100	Asp	Lys	Lys	Glu	Ala 105	Glu	Lys	Thr	Ala	Gln 110	Lys	Tyr
20	Leu	Glu	Phe 115	Val	Asn	Met										
	(2) INFO	RMAT]	ION I	FOR S	SEQ 1	ID NO	: 152	2:								
25	(i)	(B)	JENCI LEI TYI STI	ngth: PE: a Randi	: 23 amino EDNES	7 ami o aci SS: 1	ino a id not a	cid:								
30	(ii)	MOLI	ECULI	E TYI	?E: I	pept	ide									
	(iii)	HYPO	OTHE:	ricai	ن: No)										
35	(iv)	ANT	(-SEI	NSE:	NO											
	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	ОИО	:152	:					
40	Met 1	Thr	Lys	Lys	Gln 5	Leu	His	Leu	Val	Ile 10	Val	Thr	Gly	Met	Gly 15	Gly
	Ala	Gly	Lys	Thr 20	Val	Ala	Ile	Gln	Ser 25	Phe	Glu	Asp	Leu	Gly 30	Tyr	Phe
15	Thr	Ile	Asp 35	Asn	Met	Pro	Pro	Ala 40	Leu	Leu	Pro	Lys	Phe 45	Leu	Gln	Leu
50	Val	Glu 50	Ile	Lys	Glu	Asp	Asn 55	Pro	Lys	Leu	Ala	Leu 60	Val	Val	Asp	Met
	Arg 65	Ser	Arg	Ser	Phe	Phe 70	Ser	Glu	Ile	Gln	Ala 75	Val	Leu	Asp	Glu	Leu 80
55	Glu	Asn	Gln	Asp	Gly 85	Leu	Asp	Phe	Lys	Ile 90	Leu	Phe	Leu	Asp	Ala 95	Ala
	Asp	Lys	Glu	Leu 100	Val	Ala	Arg	Tyr	Lys 105	Glu	Thr	Arg	Arg	Ser 110	His	Pro
50	Leu	Ala	Ala 115	Asp	Gly	Arg	Ile	Leu 120	Asp	Gly	Ile	Lys	Leu 125	Glu	Arg	Glu

-239-

	Leu	Leu 130	Ala	Pro	Leu	Lys	Asn 135	Met	Ser	Gln	Asn	Val 140	Val	Asp	Thr	Thr
5	Glu 145	Leu	Thr	Pro	Arg	Glu 150	Leu	Arg	Lys	Thr	Leu 155	Ala	Glu	Gln	Phe	Ser 160
. 0	Asp	Gln	Glu	Gln	Ala 165	Gln	Ser	Phe	Arg	Ile 170	Glu	Val	Met	Ser	Phe 175	Gly
10	Phe	Lys	Tyr	Gly 180	Ile	Pro	Ile	Asp	Ala 185	Asp	Leu	Val	Phe	Asp 190	Val	Arg
15	Phe	Leu	Pro 195	Asn	Pro	Tyr	Tyr	Leu 200	Pro	Glu	Leu	Arg	Asn 205	Gln	Thr	Gly
	Val	Asp 210	Glu	Pro	Val	Tyr	Asp 215	Tyr	Val	Met	Asn	His 220	Pro	Glu	Ser	Glu
20	Asp 225	Phe	Tyr	Gln	His	Leu 230	Leu	Ala	Leu	Ile	Glu 235	Pro	Ile			
	(2) INFO	RMAT	ION E	OR S	SEQ 1	D NO	:153	3:								
25	(i)	(A)	UENCE	IGTH:	: 180 amino	ami aci	ino a id	cids								
) STI) TOI						ant							
30	(ii)	MOLI	ECULI	E TY	PE: p	pept	ide									
	(iii)	HYPO	OTHE	CA	L: NO)										
35	(iv)	ANT	I-SE	ISE:	МО											
	(xi)	SEQ	UENCI	E DE	SCRI	PTIO	N: S1	EQ II	ои о	:153:	:					
40	Met 1	Leu	Glu	Asn	Asp 5	Ile	Lys	Lys	Val	Leu 10	Val	Ser	His	Asp	Glu 15	Ile
45	Thr	Glu	Ala	Ala 20	Lys	Lys	Leu	Gly	Ala 25	Gln	Leu	Thr	Lys	Asp 30	Tyr	Ala
	Gly	Lys	Asn 35	Pro	Ile	Leu	Val	Gly 40	Ile	Leu	Lys	Gly	Ser 45	Ile	Pro	Phe
50	Met	Ala 50	Glu	Leu	Val	Lys	His 55	Ile	Asp	Thr	His	Ile 60	Glu	Met	Asp	Phe
	Met 65	Met	Val	Ser	Ser	Tyr 70	His	Gly	Gly	Thr	Ala 75	Ser	Ser	Gly	Val	Ile 80
55	Asn	Ile	Lys	Gln	Asp 85	Val	Thr	Gln	Asp	Ile 90	Lys	Gly	Arg	His	Val 95	Leu
60	Phe	Val	Glu	Asp 100		Ile	Asp	Thr	Gly 105	Gln	Thr	Leu	Lys	Asn 110	Leu	Arg
60	Asp	Met	Phe	Lys	Glu	Arg	Glu	Ala	Ala	Ser	Val	Lys	Ile	Ala	Thr	Leu

-240-

			115					120					125			
_	Leu	Asp 130	Lys	Pro	Glu	Gly	Arg 135	Val	Val	Glu	Ile	Glu 140	Ala	Asp	Tyr	Thr
5	Cys 145	Phe	Thr	Ile	Pro	Asn 150	Glu	Phe	Val	Val	Gly 155	Tyr	Gly	Leu	Asp	Tyr 160
10	Lys	Glu	Asn	Tyr	Arg 165	Asn	Leu	Pro	Tyr	Ile 170	Gly	Val	Leu	Lys	Glu 175	Glu
	Val	Tyr	Ser	Asn 180												
15	(2) INFO	RMATI	ON F	OR S	SEQ I	D NO):154	l:								
20	(i)	(B)	JENCE LEN TYP STF	GTH: E: & KANDI	193 mino EDNES	3 ami o aci 5S: 1	ino a id not 1	cids								
	(ii)	MOLE	ECULE	E TY	PE: p	pept:	ide									
25	(iii)	HYPO	OTHEI	CA	L: NO)										
	(iv)	ANT	[-SEN	ISE:	NO											
30		SEQ														
	Met 1	Lys	Ile	Gly	Ile 5	Leu	Ala	Leu	Gln	Gly 10	Ala	Phe	Ala	Glu	His 15	Ala
35	Lys	Val	Leu	Asp 20	Gln	Leu	Gly	Val	Glu 25	Ser	Val	Glu	Leu	Arg 30	Asn	Leu
40	Asp	Asp	Phe 35	Gln	Gln	Asp	Gln	Ser 40	Asp	Leu	Ser	Gly	Leu 45	Ile	Leu	Pro
40	Gly	Gly 50	Glu	Ser	Thr	Thr	Met 55	Gly	Lys	Leu	Leu	Arg 60	Asp	Gln	Asn	Met
45	Leu 65	Leu	Pro	Ile	Arg	Glu 70	Ala	Ile	Leu	Ser	Gly 75	Leu	Pro	Val	Phe	Gly 80
	Thr	Cys	Ala	Gly	Leu 85	Ile	Leu	Leu	Ala	Lys 90	Glu	Ile	Thr	Ser	Gln 95	Lys
50	Glu	Ser	His	Leu 100		Thr	Met	Asp	Met 105	Val	Val	Glu	Arg	Asn 110		Tyr
55	Gly	Arg	Gln 115		Gly	Ser	Phe	Tyr 120		Glu	Ala	Glu	Cys 125		Gly	Val
<i>.</i>	Gly	Lys 130		Pro	Met	Thr	Phe 135		Arg	Gly	Pro	Ile 140		Ser	Ser	Val
60	Gly 145	Glu	Gly	Val	Glu	Ile 150		Ala	Ile	Val	Asn 155		Gln	Ile	Val	Ala 160

-241-

Ala Gln Glu Lys Asn Met Leu Val Ser Ser Phe His Pro Glu Leu Thr Asp Asp Val Arg Leu His Gln Tyr Phe Ile Asn Met Cys Lys Glu Lys 5 Ser 10 (2) INFORMATION FOR SEQ ID NO:155: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 189 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant 15 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 20 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 25 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:155: Glu Ser Glu Val Leu Ser Pro Ala Asp Asp Arg Phe His Val Asp Lys 30 Lys Glu Phe Gln Val Pro Phe Val Cys Gly Ala Lys Asp Leu Gly Glu Ala Leu Arg Arg Ile Ala Glu Gly Ala Ser Met Ile Arg Thr Lys Gly 35 Glu Pro Gly Thr Gly Asp Ile Val Gln Ala Val Arg His Met Arg Met 40 Met Asn Gln Glu Ile Arg Arg Ile Gln Asn Leu Arg Glu Asp Glu Leu Tyr Val Ala Ala Lys Asp Leu Gln Val Pro Val Glu Leu Val Gln Tyr 45 Val His Glu His Gly Lys Leu Pro Val Val Asn Phe Ala Ala Gly Gly Val Ala Thr Pro Ala Asp Ala Ala Leu Met Met Gln Leu Gly Ala Glu 50 Gly Val Phe Val Gly Ser Gly Ile Phe Lys Ser Gly Asp Pro Val Lys 55 Arg Ala Ser Ala Ile Val Lys Ala Val Thr Asn Phe Arg Asn Pro Gln Ile Leu Ala Gln Ile Ser Glu Asp Leu Gly Glu Ala Met Val Gly Ile 60 Asn Glu Asn Ile Gln Ile Leu Met Ala Glu Arg Gly Lys

-242-

180	185

	(2) INFORMATION FOR SEQ ID NO:156:
5	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 162 amino acids
	(B) TYPE: amino acid
	(C) STRANDEDNESS: not relevant
	(D) TOPOLOGY: not relevant
10	

(ii) MOLECULE TYPE: peptide

(iii) HYPOTHETICAL: NO

15 (iv) ANTI-SENSE: NO

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:156: Asp Lys Gly Trp Phe Val Leu Gln Thr Tyr Ser Gly Tyr Glu Asn Lys 25 Val Lys Glu Asn Leu Leu Gln Arg Ala Gln Thr Tyr Asn Met Leu Asp Asn Ile Leu Arg Val Glu Ile Pro Thr Gln Thr Val Gln Val Glu Lys 30 Asn Gly Lys Arg Lys Glu Val Glu Glu Asn Arg Phe Pro Gly Tyr Val Leu Val Glu Met Val Met Thr Asp Glu Ala Trp Phe Val Val Arg Asn 35 70 Ala Gln Ser Pro Thr Lys Phe Ile Ser Glu Gln Thr Ala Tyr Glu Ile 40 Asp Glu Glu Val Arg Ser Leu Leu Asn Glu Ala Arg Asn Lys Ala Ala Glu Ile Ile Gln Ser Asn Arg Glu Thr His Lys Leu Ile Ala Glu Ala 45 Leu Leu Lys Tyr Glu Thr Leu Asp Ser Thr Gln Ile Lys Ala Leu Tyr 135

Glu Thr Gly Lys Met Pro Glu Ser Ser Arg Arg Gly Ile Ser Cys Thr

55 (2) INFORMATION FOR SEQ ID NO:157:

Ile Leu

50

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 208 amino acids
 - (B) TYPE: amino acid
- 60 (C) STRANDEDNESS: not relevant
 - (D) TOPOLOGY: not relevant

-243-

	(ii)	MOL	ECUL	E TY	PE:	pept.	ide									
5	(iii)	нүр	OTHE	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	ио											
10																
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:157	:					•
15	Val 1	Asn	Ser	Ser	Ser 5	Val	Pro	Gly	Asp	Arg 10	Phe	Ser	Val	Leu	Leu 15	Gl
	His	Lys	Gly	Ile 20	His	Pro	Ile	Val	Tyr 25	Ile	Ser	Lys	Met	Asp 30	Leu	Le
20	Glu	Asp	Arg 35	Gly	Glu	Leu	Asp	Phe 40	Tyr	Gln	Gln	Thr	Tyr 45	Gly	Asp	Ile
	Gly	Tyr 50	Asp	Phe	Val	Thr	Ser 55	Lys	Glu	Glu	Leu	Leu 60	Ser	Leu	Leu	Th
25	Gly 65	Lys	Val	Thr	Val	Phe 70	Met	Gly	Gln	Thr	Gly 75	Val	Gly	Lys	Ser	Th:
30	Leu	Leu	Asn	Lys	Ile 85	Ala	Pro	Asp	Leu	Asn 90	Leu	Glu	Thr	Gly	Glu 95	Ile
30	Ser	Asp	Ser	Leu 100	Gly	Arg	Gly	Arg	His 105	Thr	Thr	Arg	Ala	Val 110	Ser	Phe
35	Tyr	Asn	Leu 115	Asn	Gly	Gly	Lys	Ile 120	Ala	Asp	Thr	Pro	Gly 125	Phe	Ser	Se
	Leu	Asp 130	Tyr	Glu	Val	Ser	Arg 135	Ala	Glu	Asp	Leu	Asn 140	Gln	Ala	Phe	Pro
40	Glu 145	Ile	Ala	Thr	Val	Ser 150	Arg	Asp	Cys	Lys	Phe 155	Arg	Thr	Cys	Thr	His 160
45	Thr	His	Glu	Pro	Ser 165	Cys	Ala	Val	Lys	Pro 170	Ala	Val	Glu	Glu	Gly 175	Va]
43	Ile	Ala	Thr	Phe 180	Arg	Phe	Asp	Asn	Tyr 185	Leu	Gln	Phe	Leu	Ser 190	Glu	Ile
50	Glu	Asn	Arg 195	Arg	Glu	Thr	Tyr	Lys 200	Lys	Val	Ser	Lys	Lys 205	Ile	Pro	Lys
	(2) INFOR	TAMS	ON E	FOR S	SEQ 1	D NC):158	3:								
55	(i)	(B) (C)	LEN TYP STP	igth: Pe: a Randi	403 minc EDNES	ami aci SS: r	ino a id not r	acids celev								
60					SY: r			zant								
	(ii)	MOLE	CULE	TY	?E: p	epti	ide									

-244-

	(111)	HYPO	OTHE:	l'ICA	L: NO)										
5	(iv)	ANT:	I-SE)	NSE:	NO											
	(xi)	SEQU	JENCI	E DE	SCRI	PTIO	1: SI	EQ I	D NO	:158	:					
10	Gln 1	Gln	Ser	Val	Lys 5	Lys	Lys	Val	Leu	Pro 10	Ala	Ile	Glu	Arg	Arg 15	Ile
	Arg	Thr	Glu	Leu 20	Thr	Glu	Lys	Ala	Glu 25	Glu	Gly	Ala	Ile	Gln 30	Leu	Phe
15	Ser	Asp	Asn 35	Leu	Arg	Asn	Lėu	Leu 40	Leu	Val	Ala	Pro	Leu 45	Lys	Gly	Arg
20	Val	Val 50	Leu	Gly	Phe	Asp	Pro 55	Ala	Phe	Arg	Thr	Gly 60	Ala	Lys	Leu	Ala
- •	Val 65	Val	Asp	Ala	Thr	Gly 70	Lys	Met	Leu	Thr	Thr 75	Gln	Val	Ile	Tyr	Pro 80
25	Val	Lys	Pro	Ala	Ser 85	Ala	Arg	Gln	Ile	Glu 90	Gĺu	Ala	Lys	Lys	Asp 95	Leu
	Ala	Asp	Leu	Ile 100	Gly	Gln	Tyr	Gly	Val 105	Glu	Ile	Ile	Ala	Ile 110	Gly	Asn
30	Gly	Thr	Ala 115	Ser	Arg	Glu	Ser	Glu 120	Ala	Phe	Val	Ala	Glu 125	Val	Leu	Lys
35	Asp	Phe 130	Pro	Glu	Val	Ser	Туг 135	Val	Ile	Val	Asn	Glu 140	Ser	Gly	Ala	Ser
	Val 145	Tyr	Ser	Ala	Ser	Glu 150	Leu	Ala	Arg	Gln	Glu 155	Phe	Pro	Asp	Leu	Thr 160
40	Val	Glu	Lys	Arg	Ser 165	Ala	Ile	Ser	Ile	Ala 170	Arg	Arg	Leu	Gln	Asp 175	Pro
	Leu	Ala	Glu	Leu 180	Val	Lys	Ile	Asp	Pro 185	Lys	Ser	Ile	Gly	Val 190	Gly	Gln
4 5	Tyr	Gln	His 195	Asp	Val	Ser	Gln	Lys 200	Lys	Leu	Ser	Glu	Ser 205	Leu	Asp	Phe
50	Val	Val 210	Asp	Thr	Val	Val	Asn 215	Gln	Val	Gly	Val	Asn 220	Val	Asn	Thr	Ala
50	Ser 225	Pro	Ala	Leu	Leu	Ser 230	His	Val	Ala	Gly	Leu 235	Asn	Lys	Thr	Ile	Ser 240
55	Glu	Asn	Ile	Val	Lys 245	Tyr	Arg	Glu	Glu	Glu 250	Gly	Lys	Ile	Thr	Ser 255	Arg
	Ala	Gln	Ile	Lys 260	Lys	Val	Pro	Arg	Leu 265	Gly	Ala	Lys	Ala	Phe 270	Glu	Gln
60	Ala	Ala	Gly 275	Phe	Leu	Arg	Ile	Pro 280		Ser	Ser	Asn	Ile 285	Leu	Asp	Asn

-245-

	Thr	Gly 290	Val	His	Pro	Glu	Asn 295	Tyr	Thr	Ala	Val	Lys 300	Leu	Phe	Lys	Arg
5	Leu 305	Asp	Ile	Lys	Asp	Leu 310	Asn	Glu	Glu	Ala	Ser 315	Lys	Leu	Lys	Ser	Leu 320
L O	Ser	Val	Lys	Glu	Met 325	Ala	Gln	Glu	Leu	Asp 330	Leu	Gly	Pro	Glu	Thr 335	Leu
	Lys	Asp	Ile	Ile 340	Ala	Asp	Leu	Leu	Lys 345	Pro	Gly	Arg	Asp	Phe 350	Arg	Asp
15	Ser	Phe	Asp 355	Ala	Pro	Val	Leu	Arg 360	Gln	Asp	Val	Leu	Asp 365	Ile	Lys	Asp
	Leu	Val 370	Val	Gly	Gln	Lys	Leu 375	Glu	Gly	Val	Val	Arg 380	Asn	Val	Val	Asp
20	Phe 385	Gly	Ala	Phe	Val	Asp 390	Ile	Gly	Val	His	Glu 395	Asp	Gly	Leu	Ile	His 400
	Ile	Leu	Ile													
25	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID NO	0:159	€:								
30	(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 179 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant MOLECULE TYPE: peptide														
35	(ii)	MOLI	ECUL	E TYI	PE: 1	pept	ide									
, ,	(iii)	HYPO	OTHE!	rical	L: NO)							•			
	(iv)	ANT	I-SE	NSE:	ИО											
40																
	(xi)	SEQ	JENC	E DES	SCRI	PTIO	1: SI	EQ II	NO:	:159	;					
4 5	Met 1	Phe	Arg	Ala	Ala 5	Met	Ala	Asn	Gln	Thr 10	Glu	Met	Gly	Val	Leu 15	Ala
50	Lys	Ser	Tyr	Ile 20	Asp	Lys	Gly	Glu	Leu 25	Val	Pro	Asp	Glu	Val 30	Thr	Asn
	Gly	Ile	Val 35	Lys	Glu	Arg	Leu	Ser 40	Gln	Asp	Asp	Ile	Lys 45	Glu	Thr	Gly
55	Phe	Leu 50	Leu	Asp	Gly	Tyr	Pro 55	Arg	Thr	Ile	Glu	Gln 60	Ala	His	Ala	Leu
	Asp 65	Lys	Thr	Leu	Ala	Glu 70	Leu	Gly	Ile	Glu	Leu 75	Glu	Gly	lle	Ile	Asn 80
60	Ile	Glu	Val	Asn	Pro 85	Asp	Ser	Leu	Leu	Glu 90	Arg	Leu	Ser	Gly	Arg 95 .	Ile

-246-

	Ile	His	Arg	Val 100	Thr	Gly	Glu	Thr	Phe 105	His	Lys	Val	Phe	Asn 110	Pro	Pro
5	Val	Asp	Tyr 115	Lys	Glu	Glu	Asp	Tyr 120	Tyr	Gln	Arg	Glu	Asp 125	Asp	Lys	Pro
10	Glu	Thr 130	Val	Lys	Arg	Arg	Leu 135	Asp	Val	Asn	Ile	Ala 140	Gln	Gly	Glu	Pro
-0	Ile 145	Ile	Ala	His	Tyr	Arg 150	Ala	Lys	Gly	Leu	Val 155	His	Asp	Ile	Glu	Gly 160
15	Asn	Gln	Asp	Ile	Asn 165	Asp	Val	Phe	Ser	Asp 170	Ile	Glu	Lys	Val	Leu 175	Thr
	Asn	Leu	Lys													
20	(2) INFO	RMAT	ION I	OR S	SEQ 1	ED NO	0:160):								
25	(i)	(A) (B) (C)	UENCI) LEM) TYI) STI) TOI	igth: Pe: & Randi	: 19: amino EDNE:	l ami o aci SS: r	ino a id not a	acid: relev								
	(ii)	MOL	ECULI	E TYI	PE: I	pepti	ide									
30	(iii)	HYPO	OTHE	CICA	L: NO)										
	(iv)	ANT	I-SEI	ISE:	МО											
35																
	(xi)	SEQ	JENC	E DES	SCRII	PTION	N: SI	EQ II	ON C	:160:	;					
40	Met 1	Ile	Glu	Phe	Glu 5	Lys	Pro	Asn	Ile	Thr 10	Lys	Ile	Asp	Glu	Asn 15	Lys
	Asp	Tyr	Gly	Lys 20	Phe	Val	Ile	Glu	Pro 25	Leu	Glu	Arg	Gly	Tyr 30	Gly	Thr
45	Thr	Leu	Gly 35	Asn	Ser	Leu	Arg	Arg 40	Val	Leu	Leu	Ala	Ser 45	Leu	Pro	Gly
50	Ala	Ala 50	Val	Thr	Ser	Ile	Asn 55	Ile	Asp	Gly	Val	Leu 60	His	Glu	Phe	Asp
	Thr 65	Val	Pro	Gly	Val	Arg 70	Glu	Asp	Val	Met	Gln 75	Ile	Ile	Leu	Asn	Ile 80
55	Lys	Gly	Ile	Ala	Val 85	Lys	Ser	Tyr	Val	Glu 90	Asp	Glu	Lys	Ile	Ile 95	Glu
	Leu	Asp	Val	Glu 100	Gly	Pro	Ala	Glu	Val 105	Thr	Ala	Gly	Asp	Ile 110	Leu	Thr
60	Asp	Ser	Asp 115	Ile	Glu	Ile	Val	Asn 120	Pro	Asp	His	Tyr	Leu 125	Phe	Thr	Ile

.-247-

	Gly	Glu 130	Gly	Ser	Ser	Leu	Lys 135	Ala	Thr	Met	Thr	Val 140	Asn	Ser	Gly	Arg
5	Gly 145	Tyr	Val	Pro	Ala	Asp 150	Glu	Asn	Lys	Lys	Asp 155	Asn	Ala	Pro	Val	Gly 160
10	Thr	Leu	Ala	Val	Asp 165	Ser	Ile	Tyr	Thr	Pro 170	Val	Thr	Lys	Val	Asn 175	Tyr
•	Gln ·	Val	Glu	Pro 180	Ala	Arg	Val	Gly	Ser 185	Asn	Asp	Gly	Phe	Asp 190	Ser	
1 5	(2) INFO	RMAT	ON E	OR S	SEQ 1	D NO	:161	l:								
15 20	(i)	(B)	LEN TYP STP	igth: PE: & Randi	: 335 amino EDNES	ERIS ami aci SS: r	ino a id not i	acids relev								
	(ii)	MOLI	ECULE	E TYE	?E: p	epti	ide									
	(iii)	нүрс	OTHE	CICAI	L: NO)										
25	(iv)	ANT	[-SEN	ISE:	NO											
30	(xi)	SEQU	JENCE	E DES	SCRIE	40ITS	1: SI	EQ II	ои с	161:	:					
50	Glu 1	Tyr	Leu	Gly	Ala 5	Thr	Val	Gln	Val	Ile 10	Pro	His	Ile	Thr	Asp 15	Ala
35	Leu	Lys	Glu	Lys 20	Ile	Lys	Ser	Ala	Ala 25	Leu	Thr	Thr	Asp	Ser 30	Asp	Val
	Ile	Ile	Thr 35	Glu	Val	Gly	Gly	Thr 40	Val	Gly	Asp	Ile	Glu 45	Ser	Leu	Pro
40	Phe	Leu 50	Glu	Ala	Leu	Arg	Gln 55	Met	Lys	Ala	Asp	Val 60	Gly	Ala	Asp	Asn
45	Val 65	Met	Tyr	Ile	His	Thr 70	Thr	Leu	Pro	Tyr	Leu 75	Lys	Ala	Ala	Gly	Glu 80
	Met	Lys	Lys	Pro	Thr 85	Gln	His	Ser	Val	Lys 90	Leu	Arg	Gly	Leu	Gly 95	Ile
50	Gln	Pro	Asn	Met 100		Val	Ile	Arg	Thr 105	Glu	Glu	Pro	Ala	Gly 110	Gln	Gly
	Ile	Lys	Asn 115	Lys	Leu	Ala	Gln	Phe 120	Суѕ	Asp	Val	Ala	Pro 125	Glu	Ser	Leu
55	Ile	Glu 130	Ser	Leu	Asp	Val	Glu 135	His	Leu	Tyr	Gln	Ile 140	Pro	Leu	Asn	Leu
60	Gln 145	Ala	Gln	Gly	Met	Asp 150	Gln	Ile	Val	Cys	Asp 155	His	Leu	Lys	Leu	Asp 160
	Ala	Pro	Ala	Ala	Asp	Met	Thr	Glu	Trp	Ser	Ala	Met	Val	Asp	Lys	Val

-248-

					165					170					175	
5	Met	Asn	Leu	Lys 180	Lys	Gln	Val	Lys	Ile 185	Ser	Leu	Val	Gly	Lys 190	Туr	Val
,	Glu	Leu	Gln 195	Asp	Ala	Tyr	Ile	Ser 200	Val	Val	Glu	Ala	Leu 205	Lys	His	Ser
10	Gly	Tyr 210	Val	Asn	Asp	Val	Glu 215	Val	Lys	Ile	Asn	Trp 220	Val	Asn	Ala	Asn
	Asp 225	Val	Thr	Ala	Glu	Asn 230	Val	Ala	Glu	Leu	Leu 235	Ser	Asp	Ala	Asp	Gly 240
15	Ile	Ile	Val	Pro	Gly 245	Gly	Phe	Gly	Gln	Arg 250	Gly	Thr	Glu	Gly	Lys 255	Ile
20	Gln	Ala	Ile	Arg 260	Tyr	Ala	Arg	Glu	Asn 265	Asp	Val	Pro	Met	Leu 270	Gly	Val
	Cys	Leu	Gly 275	Met	Gln	Leu	Thr	Cys 280	Ile	Glu	Phe	Ala	Arg 285	His	.Val	Leu
25	Gly	Leu 290	Glu	Gly	Ala	Asn	Ser 295	Ala	Glu	Leu	Ala	Pro 300	Glu	Thr	Lys	Tyr
	Pro 305	Ile	Ile	Asp	Ile	Met 310	Arg	Asp	Gln	Ile	Asp 315	Ile	Glu	Asp	Met	Gly 320
30	Gly	Thr	Leu	Arg	Leu 325	Gly	Leu	Tyr	Pro	Ser 330	Lys	Leu	Lys	Arg	Leu 335	
	(2) INFO	RMATI	ION 1	FOR S	EQ 1	D NO):162	2:								
35	(i)	RMATION FOR SEQ ID NO:162: SEQUENCE CHARACTERISTICS: (A) LENGTH: 301 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant														
40	(ii)	MOLI	ECULI	E TYI	PE: 1	pepti	ide									
	(iii)	нүрс	THE:	ricai	ւ: NG)										
45	(iv)	ANT	I-SEI	NSE:	NO											
	(xi)	SEQU	JENCI	E DES	SCRI	OITS	1: SI	EQ II	NO:	162	:					
50	Met 1	Ser	Glu	Lys	Leu 5	Val	Glu	Ile	Lys	Asp 10	Leu	Glu	Ile	Ser	Phe 15	Gly
55	Glu	Gly	Ser	Lys 20	Lys	Phe	Val	Ala	Val 25	Lys	Asn	Ala	Asn	Phe 30	Phe	Ile
	Asn	Lys	Gly 35	Glu	Thr	Phe	Ser	Leu 40	Val	Gly	Glu	Ser	Gly 45	Ser	Gly	Lys
60	Thr	Thr 50	Ile	Gly	Arg	Ala	Ile 55	Ile	Gly	Leu	Asn	Asp 60	Thr	Ser	Asn	Gly

-249-

		Asp 65	Ile	Ile	Phe	Asp	Gly 70	Gln	Lys	Ile	Asn	Gly 75	Lys	Lys	Ser	Arg	Glu 80
5		Gln	Ala	Ala	Glu	Leu 85	Ile	Arg	Arg	Ile	Gln 90	Met	Ile	Phe	Gln	Asp 95	Pro
		Ala	Ala	Ser	Leu 100	Asn	Glu	Arg	Ala	Thr 105	Val	Asp	Tyr	Ile	Ile 110	Ser	Glu
10		Gly	Leu	Tyr 115	Asn	His	Arg	Leu	Phe 120	Lys	Asp	Glu	Glu	Glu 125	Arg	Lys	Glu
15		Lys	Val 130	Gln	Ser	Ile	Ile	Arg 135	Glu	Val	Gly	Leu	Leu 140	Ala	Glu	His	Leu
13		Thr 145	Arg	Tyr	Pro	His	Glu 150	Phe	Ser	Gly	Gly	Gln 155	Arg	Gln	Arg	Ile	Gly 160
20		Ile	Ala	Arg	Ala	Leu 165	Val	Met	Gln	Pro	Asp 170	Phe	Val	Ile	Ala	Asp 175	Glu
		Pro	Ile	Ser	Ala 180	Leu	Asp	Val	Ser	Val 185	Arg	Ala	Gln	Val	Leu 190	Asn	Leu
25		Leu	Lys	Lys 195	Phe	Gln	Lys	Glu	Leu 200	Gly	Leu	Thr	Tyr	Leu 205	Phe	Ile	Ala
		His	Asp 210		Ser	Val	Val	Arg 215	Phe	Ile	Ser	Asp	Arg 220	Ile	Ala	Val	Ile
30		Tyr 225	Lys	Gly	Val	Ile	Val 230		Val	Ala	Glu	Thr 235	Glu	Glu	Leu	Phe	Asn 240
35		Asn	Pro	Ile	His	Pro 245		Thr	Gln	Ala	Leu 250	Leu	Ser	Ala	Val	Pro 255	Ile
		Pro	Asp	Pro	11e 260		Glu	Arg	Lys	Lys 265	Val	Leu	Lys	Val	Tyr 270	Asp	Pro
40		Ser	Gln	His 275		Tyr	Glu	Thr	Asp 280		Pro	Ser	Met	Val 285	Glu	Ile	Arg
45		Pro	Gly 290		Tyr	Val	Trp	Ala 295		Gln	Ala	Glu	Leu 300				
43	(2)	INFO	RMAT	ON	FOR	SEQ	ID N	0:16	3:								
50		(i)	(B	LE S) TY C) ST	NGTH PE: RANI	I: 15 amin EDNE	TERI l am lo ac SS: not	ino id not	rele	vant	:						
55		(ii)	MOI	ECUI	E TY	PE:	pept	ide									
,,	(iii)	HYE	OTHE	TICA	AL: N	10										
		(iv)	ANT	ri-se	ENSE:	: NO											
60																	

-250-

	(X1)	2 EQ	DEMCI	r DES	SCRI	FITOI	N: 21	SQ II	טא כ	103	•					
5	Gln 1	Ile	Gln	Lys	Ser 5	Phe	Lys	Gly	Gln	Ser 10	Pro	Tyr	Gly	Lys	Leu 15	Tyr
	Leu	Val	Ala	Thr 20	Pro	Ile	Gly	Asn	Leu 25	Asp	Asp	Met	Thr	Phe 30	Arg	Ala
10	Ile	Gln	Thr 35	Leu	Lys	Glu	Val	Asp 40	Trp	Ile	Ala	Ala	Glu 45	Asp	Thr	Arg
15	Asn	Thr 50	Gly	Leu	Leu	Leu	Lys 55	His	Phe	Asp	Ile	Ser 60	Thr	Lys	Gln	Ile
	Ser 65	Phe	His	Glu	His	Asn 70	Ala	Lys	Glu	Lys	Ile 75	Pro	Asp	Leu	Ile	Gly 80
20	Phe	Leu	Lys	Ala	Gly 85	Gln	Ser	Ile	Ala	Gln 90	Val	Ser	Asp	Ala	Gly 95	Leu
	Pro	Ser	Ile	Ser 100	Asp	Pro	Gly	His	Asp 105	Leu	Val	Lys	Ala	Ala 110	Ile	Glu
25	Glu	Glu	Ile 115	Ala	Val	Val	Thr	Val 120	Pro	Gly	Ala	Ser	Ala 125	Gly	Ile	Ser
30	Ala	Leu 130	Ile	Ala	Ser	Gly	Leu 135	Ala	Pro	Gln	Pro	His 140	Ile	Phe	Tyr	Gly
	Phe 145	Leu	Pro	Arg	Lys	Ser 150	Gly									
35	(2) INFO		ION I UENCI													
40		(B)) LEI) TYI) STI) TOI	PE: a	amino EDNES	o aci	id not i	relev			•					
	(ii)															
45	(iii)	HYP	OTHE?	ricai	L: NO)										
	(iv)	ANT:	I-SEI	NSE:	NO											
50	(xi)	SEQ	UENCI	E DES	SCRII	PTIO	N: SI	EQ II	о ио:	:164:	•					
	Ser 1	Arg	Lys	Asp	Lys 5	Gln	Glu	Arg	Ile	Ser 10	Lys	Glu	Thr	Met	Glu 15	Ile
55	Tyr	Ala	Pro	Leu 20	Ala	His	Arg	Leu	Gly 25	Ile	Ser	Ser	Val	Lys 30	Trp	Glu
5 0	Leu	Glu	Asp	Leu	Ser	Phe	Arg	Tyr	Leu	Asn	Pro	Thr	Glu	Phe	Tyr	Lys

-251-

	Ile	Thr 50	His	Met	Met	Lys	Glu 55	Lys	Arg	Arg	Glu	Arg 60	Glu	Ala	Leu	Val
5	Asp 65	Glu	Val	Val	Thr	Lys 70	Leu	Glu	Glu	Tyr	Thr 75	Thr	Glu	Arg	His	Leu 80
	Lys	Gly	Lys	Ile	Tyr 85	Gly	Arg	Pro	Lys	His 90	Ile	Tyr	Ser	Ile	Phe 95	Arg
10	Lys	Met	Gln	Asp 100	Lys	Arg	Lys	Arg	Phe 105	Glu	Glu	Ile	Tyr	Asp 110	Leú	Ile
15	Ala	Ile	Arg 115	Cys	Ile	Leu	Asp	Thr 120	Gln	Ser	Asp	Val	Tyr 125	Ala	Met	Leu
	Gly	Tyr 130	Val	His	Glu	Phe	Trp 135	Lys	Pro	Met	Pro	Gly 140	Arg	Phe	Lys	Asp
20	Tyr 145	Ile	Ala	Asn	Arg	Lys 150	Ala	Asn	Gly	Tyr	Gln 155	Ser	Ile	His	Thr	Thr 160
	Val	Tyr	Gly	Pro	Lys 165	Gly	Pro	Ile	Glu	Phe 170	Gln	Ile	Arg	Thr	Lys 175	Glu
25	Met	His	Glu	Val 180	Ala	Glu	Tyr	Gly	Val 185	Ala	Ala	His	Trp	Ala 190	Tyr	Lys
30	Lys	Gly	Ile 195	Lys	Gly	Gln	Val	Asn 200	Ser	Lys	Glu	Ser	Ala 205	Ile	Gly	Met
	Asn	Trp 210	Ile	Lys	Glu	Met	Met 215	Glu	Leu	Gln	Asp	Gln 220	Ala	Asp	Asp	Ala
35	Lys 225	Glu	Phe	Val	Asp	Ser 230	Val	Lys	Glu	Asn	Tyr 235	Leu	Ala	Glu	Glu	Ile 240
	Thr	Val	Leu	Pro	Gln 245	Met	Glu	Leu	Ser	Val 250	Pro	Ser	Gln	Arg	Phe 255	Arg
40	Thr	Asp														
	(2) INFO	RMATI	ои в	FOR S	SEQ 1	D NC	:165	:								
4 5	(i)	(B)	LEN TYI STI	NGTH: PE: a RANDI	289 amino EDNES	TERIS ami aci SS: r	.no a .d .ot r	cids								
50	(ii)															
	(iii)					_										
55	(iv)	ANTI	-sen	ISE:	NO											
	(xi)	SEQU	JENCE	E DES	CRIE	PTION	l: SE	Q II) NO:	165:						
50	Thr 1	Lys	Val	Gly	Gly 5	Glu	Ala	Asp	Tyr	Leu 10	Val	Phe	Pro	Arg	Asn 15	Arg

-252- ·

	Phe	Glu	Leu	Ala 20	Arg	Val	Val	Lys	Phe 25	Ala	Asn	Gln	Glu	Asn 30	Ile	Pro
5	Trp	Met	Val 35	Leu	Gly	Asn	Ala	Ser 40	Asn	Ile	Ile	Val	Arg 45	Asp	Gly	Gly
10	Ile	Arg 50	Gly	Phe	Val	Ile	Leu 55	Суз	Asp	Lys	Leu	Asn 60	Asn	Val	Ser	Val
	Asp 65	Gly	Tyr	Thr	Ile	Glu 70	Ala	Glu	Ala	Gly	Ala 75	Asn	Leu	Ile	Glu	Thr 80
15	Thr	Arg	Ile	Ala	Leu 85	Arg	His	Ser	Leu	Thr 90	Gly	Phe	Glu	Phe	Ala 95	Cys
	Gly	Ile	Pro	Gly 100	Ser	Val	Gly	Gly	Ala 105	Val	Phe	Met	Asn	Ala 110	Gly	Ala
20	Tyr	Gly	Gly 115	Glu	Ile	Ala	His	Ile 120	Leu	Gln	Ser	Cys	Lys 125	Val	Leu	Thr
25	Lys	Asp 130	Gly	Glu	Ile	Glu	Thr 135	Leu	Ser	Ala	Lys	Asp 140	Leu	Ala	Phe	Gly
	Tyr 145	Arg	His	Ser	Ala	Ile 150	Gln	Glu	Ser	Gly	Ala 155	Val	Val	Leu	Ser	Val 160
30	Lys	Phe	Ala	Leu	Ala 165	Pro	Gly	Thr	His	Gln 170	Val	Ile	Lys	Gln	Glu 175	Met
	Asp	Arg	Leu	Thr 180	His	Leu	Arg	Glu	Leu 185	Lys	Gln	Pro	Leu	Glu 190	Tyr	Pro
35	Ser	Cys	Gly 195	Ser	Val	Phe	Lys	Arg 200	Pro	Val	Gly	His	Phe 205	Ala	Gly	Gln
40	Leu	Ile 210	Ser	Glu	Ala	Gly	Leu 215	Lys	Gly	Tyr	Arg	Ile 220	Gly	Gly	Val	Glu
	Val 225	Ser	Glu	Lys	His	Ala 230	Gly	Phe	Met	Ile	Asn 235	Val	Ala	Asp	Gly	Thr 240
45	Ala	Lys	Asp	Tyr	Glu 245	Asp	Leu	Ile	Gln	Ser 250	Val	Ile	Glu	Lys	Val 255	Lys
	Glu	His	Ser	Gly 260	Ile	Thr	Leu	Glu	Arg 265	Glu	Val	Arg	Ile	Leu 270	Gly	Glu
50	Ser	Leu	Ser 275	Val	Ala	Lys	Met	Tyr 280	Ala	Gly	Gly	Phe	Thr 285	Pro	Суѕ	Lys
	Arg															
55																

(2) INFORMATION FOR SEQ ID NO:166:

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 114 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: not relevant

-253-

		(D)	TO:	POLO	GY: 1	not :	rele	vant								
	(ii)	MOL	ECULI	E TY	PE: 1	pept:	ide									
5	(iii)	нүрс	OTHE:	rica	L: N	o										
	(iv)	ANT	I-SE	NSE:	NO											
10	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: S1	EQ II	ON O	:166	:					
	Ala 1	Lys	Arg	Arg	Lys 5	Leu	Val	Lys	Ser	Thr 10	Thr	Leu	Leu	Leu	Ala 15	Cys
15	Leu	Gln	Lys	Pro 20	Phe	Leu	Thr	Thr	Leu 25	Leu	Pro	Thr	Ile	Trp 30	Ile	Cys
20	Val	Lys	Ser 35	Ser	Met	Phe	Thr	Leu 40	Leu	Arg	Leu	Asn	Thr 45	Trp	Ile	Lys
	Asp	Phe 50	His	Ser	Pro	Ser	Ser 55	Cys	Val	Val	Thr	Phe 60	Gln	Lys	Ala	Phe
25	Thr 65	Asn	Gly	Arg	Gly	Lys 70	Ile	Asn	Lys	Arg	His 75	Val	Thr	Cys	Pro	Ser 80
	Phe	Val	Thr	Met	Pro 85	Leu	Thr	Arg	Glu	Ser 90	Ser	Leu	Ser	Thr	Thr 95	Ser
30	Val	Pro	Leu	Gln 100	Met	Thr	Val	Glu	Lys 105	Ser	Ala	Pro	Thr	Asn 110	Val	Lys
	Ala	Val														
35	(2) INFO	RMATI	ON I	FOR S	SEQ I	D NO	0:16	7:								
40	(i)	(B)	LEN TYI	GTH: PE: a RANDI	253 mino EDNES	3 ami o aci 35: 1	ino a id not i	acids relev								
45	(ii)	MOLE	ECULI	E TYI	?E: p	pepti	ide									
	(iii)	HYPO	THE	CAI	Z: NC)										
	(iv)	ANT	-SEN	ISE:	ИО											
50	(xi)	SEQU	JENCI	E DES	CRI	PTION	V: SI	II QE	NO:	:167:	:					
55	Met 1	Leu	Lys	Gln	Glu 5	Lys	Leu	Ala	Lys	Ile 10	Leu	Glu	Ile	Val	Asn 15	Ser
J J	Lys	Gly	Thr	Ile 20	Thr	Val	Lys	Gln	Ile 25	Met	Asp	Glu	Ile	Ala 30	Val	Ser
60	Asp	Met	Thr 35	Ala	Arg	Arg	Tyr	Leu 40	Gln	Glu	Leu	Ala	Asp 45	Lys	Asp	Leu

-254-

	Leu	Ile 50	Arg	Val	His	Gly	Gly 55	Ala	Glu	Lys	Leu	Arg 60	Thr	Asn	Ser	Leu
5	Leu 65	Thr	Asn	Glu	Arg	Ser 70	Asn	Ile	Glu	Lys	Gln 75	Ala	Leu	Gln	Thr	Ala 80
	Glu	Lys	Gln	Glu	Ile 85	Ala	His	Phe	Ala	Gly 90	Ser	Leu	Val	Glu	Glu 95	Arg
10	Glu	Thr	Ile	Phe 100	Ile	Gly	Pro	Gly	Thr 105	Thr	Leu	Glu	Phe	Phe 110	Ala	Arg
15	Glu	Leu	Pro 115	Ile	Asp	Asn	Ile	Arg 120	Val	Val	Thr	Asn	Ser 125	Leu	Pro	Val
	Phe	Leu 130	Ile	Leu	Ser	Glu	Arg 135	Lys	Leu	Thr	Asp	Leu 140	Ile	Leu	Ile	Gly
20	Gly 145	Asn	Tyr	Arg	Asp	Ile 150	Thr	Gly	Ala	Phe	Val 155	Gly	Thr	Leu	Thr	Leu 160
	Gln	Asn	Leu	Ser	Asn 165	Leu	Gln	Phe	Ser	Lys 170	Ala	Phe	Val	Ser	Cys 175	Asn
25	Gly	Ile	Gln	Asn 180	Gly	Ala	Leu	Ala	Thr 185	Phe	Ser	Glu	Glu	Glu 190	Gly	Glu
30	Ala	Gln	Arg 195	Ile	Ala	Leu	Asn	Asn 200	Ser	Asn	Lys	Lys	Tyr 205	Leu	Leu [.]	Ala
	Asp	His 210	Ser	Lys	Phe	Asn	Lys 215	Phe	Asp	Phe	Tyr	Thr 220	Phe	Tyr	Asn	Ile
35	Ser 225	Asn	Leu	Asp	Thr	Ile 230	Val	Ser	Asp	Ser	Lys 235	Leu	Ser	Asp	Ser	Ile 240
	Leu	Phe	Lys	Leu	Ser 245	Lys	His	Ile	Lys	Val 250	Ile	Lys	Pro			
40	(2) INFO	RMATI	ON E	FOR S	EQ 1	D NO	:168):								
15	(i)	(B)	LEN TYE STE	NGTH: PE: & RANDI	320 mino EDNES	ami aci S: r	.no a	cids elev								
	(ii)	MOLE	CULE	E TYE	e: p	epti	.de									
50	(iii)	HYPO	тнет	ricai	.: NC)										
	(iv)	ТТИА	-sen	ISE:	ИО											
55	(xi)	SEQU	ENCE	E DES	CRIE	PTION	: SE	Q II	NO:	168:						
	Met 1	Glu	Thr	Tyr	Tyr 5	Lys	Ala	Ile	Asn	Trp 10	Asn	Ala	Ile	Glu	Asp 15	Val
50	Ile	Asp	Lys	Ser 20	Thr	Trp	Glu	Lys	Leu 25	Thr	Glu	Gln	Phe	Trp	Leu	Asp

PCT/US97/22578 WO 98/26072

-255-

	Thr	Arg	Ile 35	Pro	Leu	Ser	Asn	Asp 40	Leu	Asp	Asp	Trp	Arg 45	Lys	Leu	Ser
5	Asn	Lys 50	Glu	Lys	Asp	Leu	Val 55	Gly	Lys	Val	Phe	Gly 60	Gly	Leu	Thr	Leu
10	Leu 65	Asp	Thr	Met	Gln	Ser 70	Glu	Thr	Gly	Val	Gln 75	Ala	Leu	Arg	Ala	Asp 80
	Ile	Arg	Thr	Pro	His 85	Glu	Glu	Ala	Val	Phe 90	Asn	Asn	Ile	Gln	Phe 95	Met
15				100		-	Ser		105					110		
			115		•		Glu	120					125			
20	Tyr	Leu 130	Gln	Lys	Lys	Ala	Glu 135	Ile	Val	Asn	Glu	Ile 140	Tyr	Leu	Asn	Gly
25	145					150	Val				155					160
		_			165		Thr			170					175	
30				180			Ile		185					190		
			195				Gly	200					205			
35		210					Glu 215					220				
40	225	_			-	230	Asn				235					240
					245		Glu			250					255	
45				260			Asn		265					270		
	Ser	Ala	Glu 275	Asp	Val	Asn	Pro	11e 280	Val	Met	Asn	Gly	11e 285	Ser	Thr	Gly
50	Thr	Ser 290		His	Asp	Phe	Phe 295		Gln	Val	Gly	Asn 300	Gly	Tyr	Leu	Leu
55	Gly 305		Val	Glu	Ala	Met 310	Gln	Asp	Asp	Asp	Tyr 315		Tyr	Gly	Leu	Asp 320

(2) INFORMATION FOR SEQ ID NO:169:

60

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 240 amino acids (B) TYPE: amino acid

-256-

						SS: 1			vant							
5	(ii)	MOL	ECULI	E TY	PE: 1	pepti	ide									
5	(iii)	HYPO	OTHE	ricai	L: NO)										
	(iv)	ANT	I-SEN	NSE:	NO											
10	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	N: S)	EQ II	O NO	:169	:					
	Ile 1	Glu	Glu	Gly	Val 5	Lys	Val	Val	Thr	Thr 10	Gly	Ala	Gly	Asn	Pro 15	Ser
15	Lys	Tyr	Met	Glu 20	Arg	Phe	His	Glu	Ala 25	Gly	Ile	Ile	Val	Ile 30	Pro	Val
20	Val	Pro	Ser 35	Val	Ala	Leu	Ala	Lys 40	Arg	Met	Glu	Lys	Ile 45	Gly	Ala	Asp
	Ala	Val 50	Ile	Ala	Glu	Gly	Met 55	Glu	Ala	Gly	Gly	His 60	Ile	Gly	Lys	Leu
25	Thr 65	Thr	Met	Thr	Leu	Val 70	Arg	Gln	Val	Ala	Thr 75	Ala	Val	Ser	Ile	Pro 80
2.0	Val	Ile	Ala	Ala	Gly 85	Gly	Ile	Ala	Asp	Gly 90	Glu	Gly	Ala	Ala	Ala 95	Gly
30	Phe	Met	Leu	Gly 100	Ala	Glu	Ala	Val	Gln 105	Val	Gly	Thr	Arg	Phe 110	Val	Val
35	Ala	Lys	Glu 115	Ser	Asn	Ala	His	Pro 120	Asn	Tyr	Lys	Glu	Lys 125	Ile	Leu	Lys
	Ala	Arg 130	Asp	Ile	Asp	Thr	Thr 135	Ile	Ser	Ala	Gln	His 140	Phe	Gly	His	Ala
40	Val 145	Arg	Ala	Ile	Lys	Asn 150	Gln	Leu	Thr	Arg	Asp 155	Phe	Glu	Leu	Ala	Glu 160
45	Lys	Asp	Ala	Phe	Lys 165	Gln	Glu	Asp	Pro	Asp 170	Leu	Glu	Ile	Phe	Glu 175	Gln
40	Met	Gly		Gly 180		Leu	Ala				Val	His	Gly	Asp 190		Glu
50	Gly	Gly	Ser 195	Val	Met	Ala	Gly	Gln 200	Ile	Ala	Gly	Leu	Val 205	Ser	Lys	Glu
	Glu	Thr 210	Ala	Glu	Glu	Ile	Leu 215	Lys	Asp	Leu	Tyr	Tyr 220	Gly	Ala	Ala	Lys
55	Lys 225	Ile	Gln	Glu	Glu	Ala 230	Ser	Arg	Trp	Thr	Gly 235	Val	Val	Arg	Asn	Asp 240

- (2) INFORMATION FOR SEQ ID NO:170:
- 60 (i) SEQUENCE CHARACTERISTICS:

-257-

5		(B (C	TY ST.	PE: RAND	amin EDNE	o ac SS:	id not	rele	vant							
,	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
	(iii)	HYP	отне	TICA	L: N	0										
10	(iv)	ANT	I-SE	NSE:	NO											
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:170	:					
15	Met 1	Lys	Leu	Glu	His 5	Lys	Asn	Ile	Phe	Ile 10	Thr	Gly	Ser	Ser	Arg 15	Gl
20	Ile	Gly	Leu	Ala 20	Ile	Ala	His	Lys	Phe 25	Ala	Gln	Ala	Gly	Ala 30	Asn	Ile
	Val	Leu	Asn 35	Ser	Arg	Gly	Ala	Ile 40	Ser	Glu	Glu	Leu	Leu 45	Ala	Glu	Phe
25	Ser	Asn 50	Tyr	Gly	Ile	Lys	Val 55	Val	Pro	Ile	Ser	Gly 60	Asp	Val	Ser	Asp
	Phe 65	Ala	Asp	Ala	Lys	Arg 70	Met	Ile	Asp	Gln	Ala 75	Ile	Ala	Glu	Leu	80 80
30	Ser	Val	Asp	Val	Leu 85	Val	Asn	Asn	Ala	Gly 90	Ile	Thr	Gln	Asp	Thr 95	Let
35	Met	Leu	Lys	Met 100	Thr	Glu	Ala	Asp	Phe 105	Glu	Lys	Val	Leu	Lys 110	Val	Asr
	Leu	Thr	Gly 115	Ala	Phe	Asn	Met	Thr 120	Gln	Ser	Val	Leu	Lys 125	Pro	Met	Met
40	Lys	Ala 130	Arg	Glu	Gly	Ala	Ile 135	Ile	Asn	Met	Ser	Ser 140	Val	Val	Gly	Let
	Met 145	Gly	Asn	Ile	Gly	Gln 150	Ala	Asn	Tyr	Ala	Ala 155	Ser	Lys	Ala	Gly	Leu 160
45	Ile	Gly	Phe	Thr	Lys 165	Ser	Val	Ala	Arg	Glu 170	Val	Ala	Ser	Arg	Asn 175	Ile
50	Arg	Val	Asn	Val 180	Ile	Ala	Pro	Gly	Met 185	Ile	Glu	Ser	Asp	Met 190	Thr	Ala
	Ile	Leu	Ser 195	Asp	Lys	Ile	Lys	Glu 200	Ala	Thr	Leu	Ala	Gln 205	Ile	Pro	Met
55	Lys	Glu 210	Phe	Gly	Gln	Ala	Glu 215	Gln	Val	Ala	Asp	Leu 220	Thr	Val	Phe	Leu
	Ala 225	Gly	Gln	Asp	Tyr	Leu 230	Thr	Gly	Gln	Val	Ile 235	Ala	Ile	Asp	Gly	Gly 240
60	Leu	Ser	Met													

-258-

	(2) INFOR	ITAM	ON F	OR S	EQ I	D NO	:171	:								
5	(i)	(A) (B) (C)	ENCE LEN TYP STR TOP	GTH: E: a ANDE	306 mino DNES	ami aci S: n	no a d ot r	cids elev								
10	(ii)	MOLE	CULE	TYP	E: p	epti	de									
	(iii)	HYPC	THET	ICAL	: NO)										
15	(iv)	ANTI	-SEN	SE:	NO											
	(xi)	SEQU	JENCE	DES	CRIP	TION	l: SE	Q II	NO:	171:						
20	Met 1	Thr	Lys	Thr	Ala 5	Phe	Leu	Phe	Ala	Gly 10	Gln	Gly	Ala	Gln-	Tyr 15	Leu
	Gly	Met	Gly	Arg 20	Asp	Phe	Tyr	Asp	Gln 25	Tyr	Pro	Ile	Val	Lys 30	Glu	Thr
25	Ile	Asp	Arg 35	Ala	Ser	Gln	Val	Leu 40	Gly	Tyr	Asp	Leu	Arg 45	Tyr	Leu	Ile
30 ·	Asp	Thr 50	Glu	Glu	Asp	Lys	Leu 55	Asn	Gln	Thr	Arg	Tyr 60	Thr	Gln	Pro	Äla
30	Ile 65	Leu	Ala	Thr	Ser	Val 70	Ala	Ile	Tyr	Arg	Leu 75	Leu	Gln	Glu	Lys	Gly 80
35	Tyr	Gln	Pro	Asp	Met 85	Val	Ala	Gly	Leu	Ser 90	Leu	Gly	Glu	Tyr	Ser 95	Ala
	Leu	Val	Ala	Ser 100	Gly	Ala	Leu	Asp	Phe 105	Glu	Asp	Ala	Val	Ala 110	Leu	Val
40	Ala	Lys	Arg 115	Gly	Ala	Tyr	Met	Glu 120	Glu	Ala	Ala	Pro	Ala 125	Asp	Ser	Gly
4 5	Lys	Met 130	Val	Ala	Val	Leu	Asn 135	Thr	Pro	Val	Glu	Val 140	Ile	Glu	Glu	Ala
43	Cys 145		Lys	Ala	Ser	Glu 150	Leu	Gly	Val	Val	Thr 155	Pro	Ala	Asn	Tyr	Asn 160
50	Thr	Pro	Ala	Gln	Ile 165	Val	Ile	Ala	Gly	Glu 170	Val	Val	Ala	Val	Asp 175	Arg
	Ala	Val	Glu	Leu 180		Gln	Glu	Ala	Gly 185		Lys	Arg	Leu	Ile 190	Pro	Leu
55	Lys	Val	Ser 195		Pro	Phe	His	Thr 200		Leu	Leu	Glu	Pro 205		Ser	Gln
60	Lys	Leu 210		Glu	Thr	Leu	Ala 215		Val	Ser	Phe	Ser 220		Phe	Thr	Суз
00	Pro	Leu	Val	Gly	Asn	Thr	Glu	Ala	Ala	Val	Met	Gln	Lys	Glu	Asp	Ile

-259-

	225					230					235					240
	Ala	Gln	Leu	Leu	Thr 245	Arg	Gln	Val	Lys	Glu 250	Pro	Val	Arg	Phe	Tyr 255	Glu
5	Ser	Ile	Gly	Val 260	Met	Gln	Glu	Ala	Gly 265	Ile	Ser	Asn	Phe	Ile 270	Glu	Ile
LO	Gly	Pro	Gly 275	Lys	Val	Leu	Ser	Gly 280	Phe	Val	Lys	Lys	Ile 285	Asp	Gln	Thr
	Ala	His 290	Leu	Ala	His	Val	Glu 295	Asp	Gln	Ala	Ser	Leu 300	Val	Ala	Leu	Leu
15	Glu 305	Lys														
	(2) INFO	RMATI	ON E	OR S	SEQ 1	D NC	: 172	2:								
20	(i)	(A) (B) (C)	JENCE LEM TYI STI	NGTH: PE: & RANDI	: 318 amino EDNES	3 ami 3 aci 35: r	no a ld lot i	cids								
25	(ii)					_	_									
					-	-										
. ^	(iii)					,										
30	(iv)	ANT	I-SEI	NSE:	NO											
	(xi)	SEQU	JENCI	E DES	SCRI	OIT	1: SI	II QI	ONO:	172	:					
35	Met 1	Lys	Leu	Asn	Arg 5	Val	Val	Val	Thr	Gly 10	Tyr	Gly	Val	Thr	Ser 15	Pro
40	Ile	Gly	Asn	Thr 20	Pro	Glu	Glu	Phe	Trp 25	Asn	Ser	Leu	Ala	Thr 30	Gly	Lys
4 0	Ile	Gly	Ile 35	Gly	Gly	Ile	Thr	Lys 40	Phe	Asp	His	Ser	Asp 45	Phe	Asp	Val
45	His	Asn 50	Ala	Ala	Glu	Ile	Gln 55	Asp	Phe	Pro	Phe	Asp 60	Lys	Tyr	Phe	Val
	Lys 65	Lys	Asp	Thr	Asn	Arg 70	Phe	Asp	Asn	Tyr	Ser 75	Leu	Tyr	Ala	Leu	Tyr 80
50	Ala	Ala	Gln	Glu	Ala 85	Val	Asn	His	Ala	Asn 90	Leu	Asp	Val	Glu	Ala 95	Leu
55	Asn	Arg	Asp	Arg 100	Phe	Gly	Val	Ile	Val 105	Ala	Ser	Gly	Ile	Gly 110	Gly	Ile
_	Lys	Glu	Ile 115	Glu	Asp	Gln	Val	Leu 120	Arg	Leu	His	Glu	Lys 125	Gly	Pro	Lys
60	Arg	Val 130	Lys	Pro	Met	Thr	Leu 135	Pro	Lys	Ala	Leu	Pro 140	Asn	Met	Ala	Ser

-260-

	Gly 145	Asn	Val	Ala	Met	Arg 150	Phe	Gly	Ala	Asn	Gly 155	Val	Cys	Lys	Ser	11e 160
5	Asn	Thr	Ala	Cys	Ser 165	Ser	Ser	Asn	Asp	Ala 170	Ile	Gly	Asp	Ala	Phe 175	Arg
	Ser	Ile	Lys	Phe 180	Gly	Phe	Gln	Asp	Val 185	Met	Leu	Val	Gly	Gly 190	Thr	Glu
LO	Ala	Ser	Ile 195	Thr	Pro	Phe	Ala	Ile 200	Ala	Gly	Phe	Gln	Ala 205	Leu	Thr	Ala
15	Leu	Ser 210	Thr	Thr	Glu	Asp	Pro 215	Thr	Arg	Ala	Ser	Ile 220	Pro	Phe	Asp	Lys
	Asp 225	Arg	Asn	Gly	Phe	Val 230	Met	Gly	Glu	Gly	Ser 235	Gly	Met	Leu	Val	Leu 240
20	Glu	Ser	Leu	Glu	His 245	Ala	Glu	Lys	Arg	Gly 250	Ala	Thr	Ile	Leu	Ala 255	Glu
	Val	Val	Gly	Tyr 260	Gly	Asn	Thr	Cys	Asp 265	Ala	Tyr	His	Met	Thr 270	Ser	Pro
25	His	Pro	Glu 275	Gly	Gln	Gly	Ala	Ile 280	Lys	Ala	Ile	Lys	Leu 285	Ala	Leu	Glu
30	Glu	Ala 290	Glu	Ile	Ser	Pro	Glu 295	Gln	Val	Ala	Met	Leu 300	Met	Leu	Thr	Glu
	Arg 305	Gln	Leu	Leu	Pro	Met 310	Lys	Lys	Glu	Lys	Val 315	Val	Leu	Ser		
35	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:17	3:								
40	(i)	(A (B (C	UENCI) LEI) TYI) STI) TOI	NGTH PE: 3 RAND	: 39 amin EDNE	6 am; o ac; SS: 1	ino : id not :	acid rele								
	(ii)		ECULI													
4.5	(iii)	HYP	OTHE:	rica:	L: N	0										
45	(iv)	ANT	I-SEI	NSE:	NO											
50	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:173	:					
50	Met 1	Gln	Ala	Val	Glu 5	His	Phe	Ile	Lys	Gln 10	Phe	Val	Pro	Glu	His 15	Tyr
55	Asp	Leu	Phe	Leu 20	Asp	Leu	Ser	Arg	Glu 25	Thr	Lys	Thr	Phe	Ser 30	Gly	Lys
	Val	Thr	Ile 35	Thr	Gly	Gln	Ala	Gln 40	Ser	Asp	Arg	Ile	Ser 45	Leu	His	Gln
60	Lys	Asp	Leu	Glu	Ile	Thr	Ser	Val	Glu	Val	Ala	Gly 60	Gln	Ala	Arg	Pro

-261-

	Phe 65	Thr	Val	Asp	His	Asp 70	Asn	Glu	Ala	Leu	His 75	Ile	Glu	Leu	Ala	Glu 80
5	Ala	Gly	Gln	Val	Glu 85	Leu	Val	Leu	Ala	Phe 90	Ser	Gly	Lys	Ile	Thr 95	Asp
10	Asn	Met	Thr	Gly 100	Ile	Tyr	Pro	Ser	Tyr 105	Tyr	Thr	Val	Asp	Gly 110	Val	Lys
10	Lys	Glu	Val 115	Leu	Ser	Thr	Gln	Phe 120	Glu	Ser	His	Phe	Ala 125	Arg	Glu	Ala
15	Phe	Pro 130	Cys	Val	Asp	Glu	Pro 135	Glu	Ala	Lys	Ala	Thr 140	Phe	Asp	Leu	Ser
	Leu 145	Arg	Phe	Asp	Gln	Ala 150	Glu	Gly	Glu	Leu	Ala 155	Leu	Ser	Asn	Met	Pro 160
20	Glu	Ile	Asp	Val	Glu 165	Asn	Arg	Lys	Glu	Thr 170	Gly	Ile	Trp	Lys	Phe 175	Glu
25	Thr	Thr	Pro	Arg 180	Met	Ser	Ser	Tyr	Leu 185	Leu	Ala	Phe	Val	Ala 190	Gly	Asp
2 3	Leu	Gln	Gly 195	Val	Thr	Ala	Lys	Thr 200	Lys	Asn	Gly	Thr	Leu 205	Val	Gly	Val
30	Tyr	Ser 210	Thr	Lys	Ala	His	Pro 215	Leu	Ser	Asn	Leu	Asp 220	Phe	Ser	Leu	Asp
	Ile 225	Ala	Val	Arg	Ser	11e 230	Glu	Phe	Tyr	Glu	Asp 235	Tyr	Tyr	Gly	Val	Lys 240
35	Tyr	Pro	Ile	Pro	Gln 245	Ser	Leu	His	Ile	Ala 250	Leu	Pro	Asp	Phe	Ser 255	Ala
40	Gly	Ala	Met	Glu 260	Asn	Trp	Gly	Leu	Val 265	Thr	Tyr	Arg	Glu	Val 270	Tyr	Leu
	Val	Val	Asp 275	Glu	Asn	Ser	Thr	Phe 280	Ala	Ser	Arg	Gln	Gln 285	Val	Ala	Leu
45	Val	Val 290	Ala	His	Glu	Leu	Ala 295	His	Gln	Trp	Phe	Gly 300	Asn	Leu	Val	Thr
	Met 305	Lys	Trp	Trp	Asp	Asp 310	Leu	Trp	Leu	Asn	Glu 315	Ser	Phe	Ala	Asn	Met 320
50	Met	Glu	Tyr	Val	Cys 325	Val	Asp	Thr	Ile	Glu 330	Pro	Ser	Trp	Asn	Ile 335	Phe
55	Glu	Asp	Phe	Gln 340	Thr	Gly	Gly	Val	Pro 345	Leu	Ala	Leu	Glu	Arg 350	Asp	Ala
	Thr	Asp	Gly 355	Val	Gln	Ser	Val	His 360	Val	Glu	Val	Lys	His 365	Pro	Asp	Glu
60	Ile	Asn 370	Thr	Leu	Phe	Asp	Gly 375	Ala	Ile	Val	Tyr	Ala 380	Arg	Lys	Arg	Leu

-262-

Met His Met Leu Arg Val Ala Arg Asp Ala Asp Leu (2) INFORMATION FOR SEQ ID NO:174: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 127 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant 10 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO 15 (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:174: 20 Met Asp Phe Leu Leu Phe Tyr Asp Ser Lys Lys Lys Gly Asp Thr Met Thr Tyr Leu Glu Lys Trp Phe Asp Phe Asn Arg Arg Gln Lys Glu Ile 25 Glu Ser Leu Leu Glu Glu Thr Ile Ala Gln Gln Ser Glu Gln Ser Leu 30 Thr Leu Lys Glu Phe Tyr Leu Leu Tyr Tyr Leu Asp Leu Ala Glu Glu Lys Ser Leu Arg Gln Ile Asp Leu Pro Asp Lys Leu His Leu Ser Pro 35 Ser Ala Val Ser Arg Met Val Ala Arg Leu Glu Ala Lys Asn Cys Gly Leu Leu Ser Arg Met Cys Cys His Gln Asp Arg Arg Ser Ser Phe Ile 40 Cys Leu Thr Asn Asp Gly Gln Lys Thr Leu Ala Ser Leu Gln Lys 45 (2) INFORMATION FOR SEQ ID NO:175: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 373 amino acids (B) TYPE: amino acid 50 (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 55 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:175:

60

-263-

	Met 1	Leu	Tyr	Asp	Tyr 5	Gly	Asn	Ser	Val	Trp 10	Leu	Ala	Ser	Met	15	Thr
5	Ile	Gly	Gln	Thr 20	Val	Leu	Gly	Met	Tyr 25	Gln	Ile	Ser	Glu	Leu 30	Val	Thr
	Ser	Ile	Leu 35	Val	Asn	Pro	Phe	Gly 40	Gly	Val	Ile	Ser	Asp 45	Arg	Phe	Ser
10	Arg	Arg 50	Lys	Ile	Leu	Met	Thr 55	Ala	Asp	Leu	Val	Cys 60	Gly	Ile	Leu	Cys
15	Leu 65	Ala	Ile	Ser	Phe	Ile 70	Arg	Asn	Asp	Ser	Trp 75	Met	Ile	Gly	Ala	Leu 80
	Ile	Val	Ala	Asn	Ile 85	Val	Gln	Ala	Ile	Ala 90	Phe	Ala	Phe	Ser	Arg 95	Thr
20	Ala	Asn	Lys	Ala 100	Ile	Ile	Thr	Glu	Val 105	Val	Glu	Lys	Asn	Glu 110	Ile	Val
	Ile	Tyr	Asn 115	Ser	Arg	Leu	Glu	Leu 120	Val	Leu	Gln	Val	Val 125	Gly	Val	Ser
25	Ser	Pro 130	Val	Leu	Ser	Phe	Leu 135	Val	Leu	Gln	Phe	Ala 140	Ser	Leu	His	Met
30	Thr 145	Leu	Leu	Leu	Asp	Ser 150	Leu	Thr	Phe	Phe	Ile 155	Ala	Phe	Val	Leu	Val 160
	Ala	Phe	Leu	Pro	Lys 165	Glu	Glu	Ala	Lys	Val 170	Gln	Glu	Lys	Lys	Ala 175	Phe
35	Thr	Gly	Arg	Asp 180	Ile	Phe	Val	Asp	Ile 185	Lys	Asp	Gly	Leu	His 190	Tyr	Ile
	Trp	His	Gln 195	Gln	Glu	Ile	Phe	Phe 200	Leu	Leu	Leu	Val	Ala 205	Ser	Ser	Val
40	Asn	Phe 210	Phe	Phe	Ala	Ala	Phe 215	Glu	Phe	Leu	Leu	Pro 220	Phe	Ser	Asn	Gln
45	Leu 225	Tyr	Gly	Ser	Glu	Gly 230	Ala	Tyr	Ala	Ser	Ile 235	Leu	Thr	Met	Gly	Ala 240
	Ile	Gly	Ser	Ile	11e 245	Gly	Ala	Leu	Leu	Ala 250	Ser	Lys	Ile	Lys	Ala 255	Asn
50	Ile	Tyr	Asn	Leu 260	Leu	Ile	Leu	Leu	Ala 265	Leu	Thr	Gly	Val	Gly 270	Val	Phe
	Met	Met	Gly 275	Leu	Pro	Leu	Pro	Thr 280	Phe	Leu	Ser	Phe	Ser 285	Gly	Asn	Leu
55	Val	Cys 290	Glu	Leu	Phe	Met	Thr 295	Ile	Phe	Asn	Ile	His 300	Phe	Phe	Thr	Gln
60	Val 305	Gln	Thr	Lys	Val	Glu 310	Ser	Glu	Phe	Leu	Gly 315	Arg	Val	Leu	Ser	Thr 320
	Ile	Phe	Thr	Leu	Ala	Ile	Leu	Phe	Met	Pro	Ile	Ala	Lvs	Gly	Phe	Met

-264-

					325					330					335	
_	Thr	Val	Leu	Pro 340	Ser	Val	His	Leu	Ser 345	Ser	Phe	Leu	Ile	Ile 350	Gly	Ser
5	Gly	Val	Ile 355	Ile	Leu	Ser	Cys	Ile 360	Ser	Phe	Ile	Tyr	Val 365	Arg	Thr	His
10	Phe	Glu 370	Lys	Leu	Ile											
	(2) INFOR	ITAMS	ON F	or s	EQ I	D NC	:176	i:								
15	(i)	(B)	LEN TYP STF	GTH: E: a	427 minc DNES	ERIS ami aci s: n ot r	.no a .d .ot r	cids elev								
20	(ii)	MOLE	CULE	TYE	e: p	epti	.de									
	(iii)	HYPO	THET	CAI	Z: NC											
25	(iv)	ANTI	-SEN	ISE:	NO											
	(xi)	SEOI	IFNCE	7 DF9	SCRT I	מרדים.	J. SF	eo Ti	NO:	176						
30		Ser) ra	G) v	Va 1	I.e.ii	Thr
	мес 1	ser	vai	ser	5	GIU	Asn	гуя	GIU	10	ASII	Arg	GIY	Val	15	1111
35	Phe	Thr	Ile	Ser 20	Gln	Asp	Gln	Ile	Lys 25	Pro	Glu	Leu	Asp	Arg 30	Val	Phe
	Lys	Ser	Val 35	Lys	Lys	Ser	Leu	Asn 40	Val	Pro	Gly	Phe	Arg 45	Lys	Gly	His
40	Leu	Pro 50	Arg	Pro	Ile	Phe	Asp 55	Gln	Lys	Phe	Gly	Glu 60	Glu	Ala	Leu	Tyr
45	Gln 65	Asp	Ala	Met	Asn	Ala 70	Leu	Leu	Pro	Asn	Ala 75	Tyr	Glu	Ala	Ala	Val 80
	Lys	Glu	Ala	Gly	Leu 85	Glu	Val	Val	Ala	Gln 90	Pro	Lys	Ile	Asp	Val 95	Thr
50	Ser	Met	Glu	Lys 100	Gly	Gln	Asp	Trp	Val 105	Ile	Thr	Ala	Glu	Val 110	Val	Thr
	Lys	Pro	Glu 115	Val	Lys	Leu	Gly	Asp 120	Tyr	Lys	Asn	Leu	Glu 125	Val	Ser	Val
55	Asp	Val 130	Glu	Lys	Glu	Val	Thr 135	Asp	Ala	Asp	Val	Glu 140	Glu	Arg	Ile	Glu
60	Arg 145	Glu	Arg	Asn	Asn	Leu 150	Ala	Glu	Leu	Val	Ile 155	Lys	Glu	Ala	Ala	Ala 160
	Glu	Asn	Gly	Asp	Thr	Val	Val	Ile	Asp	Phe	Val	Gly	Ser	Ile	Asp	Gly

-265-

					165					170					175	
_	Val	Glu	Phe	Asp 180	Gly	Gly	Lys	Gly	Glu 185	Asn	Phe	Ser	Leu	Gly 190	Leu	Gly
5	Ser	Gly	Gln 195	Phe	Ile	Pro	Gly	Phe 200	Glu	Asp	Gln	Leu	Val 205	Gly	His	Ser
LO	Ala	Gly 210		Thr	Val	Asp	Val 215	Ile	Val	Thr	Phe	Pro 220	Glu	Asp	Tyr	Gln
	Ala 225	Glu	Asp	Leu	Ala	Gly 230	Lys	Glu	Ala	Lys	Phe 235	Val	Thr	Thr	Ile	His 240
15	Glu	Val	Lys	Ala	Lys 245	Glu	Val	Pro	Ala	Leu 250	Asp	Asp	Glu	Leu	Ala 255	Lys
20	Asp	Ile	Asp	Glu 260	Glu	Val	Glu	Thr	Leu 265	Ala	Asp	Leu	Lys	Glu 270	Lys	Tyr
20	Arç	Lys	Glu 275	Leu	Ala	Ala	Ala	Lys 280	Glu	Glu	Thr	Tyr	Lys 285	Asp	Ala	Val
25	Glu	Gly 290		Ala	Ile	Asp	Thr 295	Ala	Val	Glu	Asn	Ala 300	Glu	Ile	Val	Glu
	Let 305	Pro	Glu	Glu	Met	Ile 310	His	Glu	Glu	Val	His 315	Arg	Ser	Val	Asn	Glu 320
30	Phe	e Leu	Gly	Asn	Leu 325	Gln	Arg	Gln	Gly	Ile 330	Asn	Pro	Asp	Met	Tyr 335	Phe
35	Gl	ı Ile	Thr	Gly 340		Thr	Gln	Glu	Asp 345	Leu	His	Asn	Gln	Tyr 350	Gln	Ala
<i>.</i>	Gli	Ala د	Glu 355		Arg	Thr	Lys	Thr 360		Leu	Val	Ile	Glu 365	Ala	Val	Ala
40	Ly	370		Gly	Phe	Asp	Ala 375	Ser	Glu	Glu	Glu	11e 380		Lys	Glu	Val
	G1: 38:	u Gln 5	Leu	Ala	Ala	Asp 390		Asn	Met	Glu	Val 395		Gln	Val	Gln	Asn 400
45	Le	u Leu	Ser	Ala	Asp 405		Leu	Lys	His	Asp 410		Thr	Ile	Lys	Lys 415	Ala
50	Va	l Glu	Leu	11e 420		Ser	Thr	Ala	Thr 425		Lys					
30	(2) INF	ORMAT	NOI	FOR	SEQ	ID N	0:17	7:								
55	(i	(E	QUENC A) LE B) TY C) SI C) TO	NGTH PE: RAND	: 20 amin EDNE	7 am lo ac SS:	ino id not	acid rele	vant	:						
60	(ii) MOI	LECUI	E TY	PE:	pept	ide									
υυ	(iii) HYI	POTHE	TICA	L: N	10										

-266-

(iv) ANTI-SENSE: NO

5	(xi)	SEQ	JENCI	E DES	SCRI	PTION	1: SI	EQ II	ONO:	: 177 :	:					
	Gly 1	Gly	Asp	Lys	Asp 5	Phe	Leu	Thr	Ser	Ile 10	Cys	Leu	Thr	Asn	Asp 15	Pro
10	Phe	Leu	Gly	Phe 20	Arg	Ala	Leu	Arg	Ile 25	Ser	Ile	Ser	Glu	Thr 30	Gly	Asp
15	Ala	Met	Phe 35	Arg	Thr	Gln	Ile	Arg 40	Ala	Leu	Leu	Arg	Ala 45	Ser	Val	His
	Gly	Gln 50	Leu	Arg	Ile	Met	Phe 55	Pro	Met	Val	Ala	Leu 60	Leu	Lys	Glu	Phe
20	Arg 65	Ala	Ala	Lys	Ala	Val 70	Phe	Asp	Glu	Glu	Lys 75	Ala	Asn	Leu	Leu	Ala 80
	Glu	Gly	Val	Ala	Val 85	Ala	Asp	Asn	Ile	Gln 90	Val	Gly	Ile	Met	Ile 95	Glu
25	Ile	Pro	Ala	Ala 100	Ala	Met	Leu	Ala	Asp 105	Gln	Phe	Ala	Lys	Glu 110	Val	Asp
30	Phe	Phe	Ser 115	Ile	Gly	Thr	Asn	Asp 120	Leu	Ile	Gln	Tyr	Thr 125	Met	Ala	Ala
	Asp	Arg 130	Met	Asn	Glu	Gln	Val 135	Ser	Tyr	Leu	Tyr	Gln 140	Pro	Tyr	Asn	Pro
35	Ser 145	Ile	Leu	Arg	Leu	Ile 150	Asn	Asn	Val	Ile	Lys 155	Ala	Ala	His	Ala	Glu 160
	Gly	Lys	Trp	Ala	Gly 165	Met	Суз	Gly	Glu	Met 170	Ala	Gly	Asp	Gln	Gln 175	Ala
40	Val	Pro	Leu	Leu 180	Val	Gly	Met	Gly	Leu 185	Asp	Glu	Phe	Ser	Met 190	Ser	Ala
45	Thr	Cys	Thr 195	Ser	Tyr	Thr	Gln	Leu 200	Asp	Glu	Glu	Thr	Arg 205	His	Ser	
1	(2) INFO	RMAT	ION	FOR	SEQ :	ID N	0:17	8:								
50	(i)	(B (C	UENC) LE) TY) ST) TO	NGTH PE: RAND	: 28 amin EDNE	3 am. o ac. SS:	ino d id not	acid rele								
55	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
	(iii)	HYP	OTHE	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	NO											

60

-267-

	(xi)	SEQU	JENCI	E DES	CRI	OITS	N: 51	EQ II	ON C	178	:					
·5	Met 1	Gln	Met	Ala	Tyr 5	Arg	Cys	Asn	Leu	Arg 10	Asn	Asn	Gly	Lys	Arg 15	Arg
	Ile	Gly	Ile	Arg 20	Glu	Met	Thr	Glu	Met 25	Leu	Lys	Gly	Ile	Ala 30	Ala	Ser
10	Asp	Gly	Val 35	Ala	Val	Ala	Lys	Ala 40	Tyr	Leu	Leu	Val	Gln 45	Pro	Asp	Leu
15	Ser	Phe 50	Glu	Thr	Ile	Thr	Val 55	Glu	Asp	Thr	Asn	Ala 60	Glu	Glu	Ala	Arg
LJ	Leu 65	Asp	Ala	Ala	Leu	Gln 70	Ala	Ser	Gln	Asp	Glu 75	Leu	Ser	Val	Ile	Arg 80
20	Glu	Lys	Ala	Val	Gly 85	Thr	Leu	Gly	Glu	Glu 90	Ala	Ala	Gln	Val	Phe 95	Asp
	Ala	His	Leu	Met 100	Val	Leu	Ala	Asp	Pro 105	Glu	Met	Ile	Ser	Gln 110	Ile	Lys
25	Glu	Thr	Ile 115	Arg	Ala	Lys	Lys	Val 120	Asn	Ala	Glu	Ala	Gly 125	Leu	Lys	Glu
30	Val	Thr 130	Asp	Met	Phe	Ile	Thr 135	Ile	Phe	Glu	Gly	Met 140	Glu	Asp	Asn	Pro
, ,	Tyr 145	Met	Gln	Glu	Arg	Ala 150	Arg	Asp	Ile	Arg	Asp 155	Val	Thr	Lys	Arg	Val 160
35	Leu	Ala	Asn	Leu	Leu 165	Gly	Lys	Lys	Leu	Pro 170	Asn	Pro	Ala	Ser	Ile 175	Asn
	Glu	Glu	Val	Ile 180	Val	Ile	Ala	His	Asp 185	Leu	Thr	Pro	Ser	Asp 190	Thr	Ala
10	Gln	Leu	Asp 195	Lys	Asn	Phe	Val	Lys 200	Ala	Phe	Val	Thr	Asn 205	Ile	Gly	Gly
15	Arg	Thr 210	Ser	His	Ser	Ala	Ile 215	Met	Ala	Arg	Thr	Leu 220	Glu	Ile	Ala	Ala
	Val 225	Leu	Gly	Thr	Asn	Asn 230	Ile	Thr	Glu	Ile	Val 235	Lys	Asp	Gly	Asp	11e 240
50	Leu	Ala	Val	Asn	Gly 245	Ile	Thr	Gly	Glu	Val 250	Ile	Ile	Asn	Pro	Thr 255	Asp
	Glu	Gln	Ala	Ala 260	Glu	Phe	Lys	Ala	Ala 265	Gly	Glu	Ala	Tyr	Ala 270	Thr	Lys
55	Ala	Glu	Trp 275	Ala	Leu	Leu	Lys	Asp 280	Ala	Gln	Gln					
	(2) INFO	RMAT:	ION :	FOR :	SEQ :	ID N	0:17	9:								

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 168 amino acids

60

-268-

		(C	ST	RANDI		SS: 1	id not : rele		vant							
5	(ii)	MOL	ECUL	E TY	PE: I	pept:	ide									
	(iii)	нүрс	THE?	rica	L: NO)										
10	(iv)	ANT	(-SE	NSE:	МО											
	(xi)	SEQ	JENC	E DE	SCRI	PTIO	v: S	EQ I	ON C	:179	:					
15	Met 1	Ile	Gly	Arg	Leu 5	Ala	Pro	Tyr	Asp	Lys 10	Gly	Gln	Ile	Ile	Tyr 15	Asp
	Gly	Thr	Ser	Leu 20	Lys	Asp	Ile	Lys	Pro 25	Ser	Val	Phe	Phe	Arg 30	Asp	Туг
20	Leu	Gly	Tyr 35	Leu	Phe	Gln	Asp	Phe 40	Gly	Leu	Ile	Glu	Ser 45	Gln	Thr	Va]
25	Lys	Glu 50	Asn	Leu	Asn	Leu	Gly 55	Leu	Val	Gly	Lys	Lys 60	Leu	Lys	Glu	Lys
	Glu 65	Lys	Ile	Ser	Leu	Met 70	Lys	Gln	Ala	Leu	Asn 75	Arg	Val	Asn	Leu	Ser 80
30	Tyr	Leu	Asp	Leu	Lys 85	Gln	Pro	Ile	Phe	Glu 90	Leu	Ser	Gly	Gly	Glu 95	Ala
	Gln	Arg	Val	Ala 100	Leu	Ala	Lys	Ile	Ile 105	Leu	Lys	Asp	Pro	Pro 110	Leu	Ile
35	Leu	Ala	Asp 115	Glu	Pro	Thr	Ala	Ser 120	Leu	Asp	Pro	Lys	Asn 125	Ser	Glu	Glu
40	Leu	Leu 130	Ser	Ile	Leu	Glu	Ser 135	Leu	Lys	Asn	Pro	Asn 140	Arg	Thr	Ile	Ile
	Ile 145	Ala	Thr	His	Asn	Pro 150	Leu	Ile	Trp	Glu	Gln 155	Val	Asp	Gln	Val	11e
45	Arg	Val	Thr	Asp	Leu 165	Ser	His	Arg								
	(2) INFO	RMAT	ON I	FOR :	SEQ :	ID NO	0:180):								
50	(i)	(B)	LEI TY	NGTH PE: a RAND!	: 210 amino EDNE:	0 am; 0 ac; 55: 1	ino a	cid: rele								
55	(ii)	MOL	ECUL	E TY	PE: I	pept	ide									
	(iii)	HYPO	THE'	rica	L: NO)										
60	(iv)	ANT	-SE	NSE:	МО											

-269-

	(xi)	SEQ	JENC	E DES	SCRI	PTIO	N: SI	EQ II	ON C	:180	:					
5	Met 1	Lys	Ala	His	Val 5	Ser	Tyr	Leu	Ser	Met 10	Gly	Glu	Lys	Arg	Phe 15	Va.
J	Tyr	Asn	Asn	Gly 20	Glu	Asn	Pro	Val	Ser 25	Thr	Gln	Tyr	Leu	Thr 30	Asp	Pro
10	Ile	Leu	Val 35	Val	Phe	Thr	Pro	Thr 40	Ser	Thr	Gly	Asp	Ser 45	Phe	Ile	Se
	Leu	Ser 50	Ser	Trp	Ser	Ile	Asn 55	Ala	Gly	Lys	Gln	Leu 60	Phe	Ile	Lys	Gl
15	Tyr 65	Glu	Ser	Gly	Leu	Glu 70	Leu	Leu	Lys	Lys	Ala 75	Gly	Ile	Tyr	Glu	Gl: 80
20	Val	Ser	Tyr	Leu	Lys 85	Glu	Gly	Arg	Ser	Val 90	Tyr	Leu	Thr	Arg	Tyr 95	Ası
20	Glu	Val	Gln	Thr 100	Glu	Thr	Ala	Thr	Leu 105	Ile	Leu	Gly	Ala	Ile 110	Val	Gl
25	Ile	Ala	Ser 115	Ser	Leu	Leu	Leu	Phe 120	Tyr	Ser	Val	Asn	Leu 125	Leu	Tyr	Phe
	Glu	Gln 130	Phe	Arg	Arg	Asp	Ile 135	Leu	Ile	Lys	Arg	Ile 140	Ser	Gly	Leu	Arq
30	Phe 145	Phe	Glu	Thr	His	Ala 150	Gln	Tyr	Met	Val	Ser 155	Gln	Phe	Ala	Ser	Pho 160
35	Val	Phe	Gly	Ala	Ser 165	Leu	Phe	Ile	Leu	Ser 170	Ser	Arg	Asp	Leu	Val 175	Ile
J J	Gly	Leu	Leu	Thr 180	Leu	Leu	Val	Phe	Leu 185	Ala	Ser	Ala	Val	Leu 190	Thr	Let
40	Tyr	Arg	Gln 195	Ala	Gln	Lys	Glu	Ser 200	Arg	Val	Ser	Met	Thr 205	Ile	Met	Ly
	Gly	Lys 210														
45	(2) INFO	RMAT	ION	FOR :	SEQ :	ID N	0:18	1:								
	(i)	(A) LE	NGTH	: 22	7 am	STIC		s							
50		(C) ST		EDNE	SS:	id not rele		vant							
	(ii)	MOL	ECUL	Е ТҮ	PE:]	pept	ide									
55	(iii)	HYP	OTHE	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	ио											
60	/ ne é \	C E C	iievia	מת מ	ccnt	DMTA		EO T	ח אים	.107						

-270-

	G1: 1	u Pr	ie (Gln	Glu	Ala 5	Ser	Gln	GLu	Ser	Arg 10	GIU	Arg	Ser	Asp	15	rer
5	Ası	n Se	er S	Гуr	Leu 20	Leu	Leu	Ser	Gly	Ser 25	Leu	Thr	Lys	Glu	Lys 30	Leu	Ala
	As	p Ly		Leu 35	Gly	Asp	Leu	Gly	Tyr 40	Lys	Ala	Ser	Ala	Asp 45	Arg	Lys	Ile
LO	Pro	o Pi 5(Tyr	Phe	Leu	Ala	Phe 55	Arg	Ile	Leu	Leu	Asn 60	Pro	Leu	Ile	Let
L5	11 65	e Se	er 1	Leu	Ala	Ile	Phe 70	Gly	Leu	Ser	Phe	Phe 75	Ala	Leu	Val	Ile	11e 80
	Th	r Ai	rg :	Ile	Lys	Glu 85	Met	Arg	Ala	Ala	Gly 90	Ile	Lys	Leu	Phe	Ser	Gl
20	G1:	n Tì	nr 1	Leu	Leu 100	Ser	Ile	Met	Gly	His 105	Ser	Leu	Ser	Thr	Asp 110	Ile	Lys
	Tr	p Le		Leu 115	Leu	Ser	Ala	Leu	Leu 120	Ser	Phe	Leu	Gly	Gly 125	Gly	Val	Va]
25	Le		ne :	Ser	Gln	Gly	Leu	Phe 135	Tyr	Pro	Ile	Leu	Leu 140	Ala	Thr	Tyr	Gly
30	Ph 14		Ly :	Ile	Ser	Phe	Tyr 150	Leu	Leu	Phe	Leu	Leu 155	Ala	Ile	Ser	Ile	Let 160
30	Le	u M	et :	Leu	Leu	Tyr 165	Leu	Met	Ser	Leu	Asn 170	Lys	Ala	Leu	Val	Pro 175	Va]
35	Il	e A	rg	Gly	Arg 180	Phe	Pro	Leu	Leu	Met 185	Thr	Leu	Phe	Gln	Pro 190	Val	Phe
	Se	r V		Gly 195	Tyr	Ala	Lys	Thr	Gly 200	Leu	Thr	Ser	Tyr	Gln 205	Arg	Leu	Lys
40	Gl		eu 10	Glu	Ile	Ser	Gln	Trp 215	Gln	Asp	Arg	Val	Asp 220	Tyr	Tyr	His	Asp
45	Ph 22	e Pi 5	he	Thr													
¥.J	(2) INF	ORM	ATI	ои і	FOR :	SEQ :	ID N	0:18	2:								
50	(i		(A) (B) (C)	LEI TYI STI	NGTH PE: RAND	: 39 amin EDNE	TERI: 6 am o ac: SS:: not	ino i id not :	acid: rele								
	(ii	.) M	OLE	CUL	E TY	PE: 1	pept:	ide									
55	(iii) H	YPO	THE:	rica	L: N	0										
	(iv) A	NTI	-SEI	NSE:	NO											
60	(xi) S	EOU	ENC	E DE	SCRT	ም ፕር	N· S	EO T	סוא ת	•182	•					

-271-

		Met 1	Ser	Lys	Asp	Lys 5	Lys	Asn	Glu	Asp	Lys 10	Glu	Thr	Leu	Glu	Glu 15	Let
5	5	Lys	Glu	Leu	Ser 20	Glu	Trp	Gln	Lys	Arg 25	Asn	Gln	Glu	Tyr	Leu 30	Lys	Lys
10	1	Lys	Ala	Glu 35	Glu	Glu	Val	Ala	Leu 40	Ala	Glu	Glu	Lys	Glu 45	Lys	Glu	Arg
	•	Gln	Ala 50	Arg	Met	Gly	Glu	Glu 55	Ser	Glu	Lys	Ser	Glu 60	Asp	Lys	Gln	Asp
15	;	Gln 65	Glu	Ser	Glu	Thr	Asp 70	Gln	Glu	Asp	Ser	Glu 75	Ser	Ala	Lys	Glu	Glu 80
		Ser	Glu	Glu	Lys	Val 85	Ala	Ser	Ser	Glu	Ala 90	Asp	Lys	Glu	Lys	Glu 95	Glu
20	•	Pro	Glu	Ser	Lys 100	Glu	Lys	Glu	Glu	Gln 105	Asp	Lys	Lys	Leu	Ala 110	Lys	Lys
25	;	Ala	Thr	Lys 115	Glu	Lys	Pro	Ala	Lys 120	Ala	Lys	Ile	Pro	Gly 125	Ile	His	Ile
		Leu	Arg 130	Ala	Phe	Thr	Ile	Leu 135	Phe	Pro	Ser	Leu	Leu 140	Leu	Leu	Ile	Val
30)	Ser 145	Ala	Tyr	Leu	Leu	Ser 150	Pro	Tyr	Ala	Thr	Met 155	Lys	Asp	Ile	Arg	Val 160
		Glu	Gly	Thr	Val	Gln 165	Thr	Thr	Ala	Asp	Asp 170	Ile	Arg	Gln	Ala	Ser 175	Gly
35	;	Ile	Gln	Asp	Ser 180	Asp	Tyr	Thr	Ile	Asn 185	Leu	Leu	Leu	Asp	Lys 190	Ala	Lys
40)	Tyr	Glu	Lys 195	Gln	Ile	Lys	Ser	Asn 200	Tyr	Trp	Val	Glu	Ser 205	Ala	Gln	Leu
		Val	Tyr 210	Gln	Phe	Pro	Thr	Lys 215	Phe	Thr	Ile	Lys	Val 220	Lys	Glu	Tyr	Asp
45	;	Ile 225	Val	Ala	Tyr	Tyr	Ile 230	Ser	Gly	Glu	Asn	His 235	Tyr	Pro	Ile	Leu	Ser 240
		Ser	Gly	Gln	Leu	Glu 245	Thr	Ser	Ser	Val	Ser 250	Leu	Asn	Ser	Leu	Pro 255	Glu
50	1	Thr	Tyr	Leu	Ser 260	Val	Leu	Phe	Asn	Asp 265	Ser	Glu	Gln	Ile	Lys 270	Val	Phe
55	;	Val	Ser	Glu 275	Leu	Ala	Gln	Ile	Ser 280	Pro	Glu	Leu	Lys	Ala 285	Ala	Ile	Gln
		Lys	Val 290	Glu	Leu	Ala	Pro	Ser 295	Lys	Val	Thr	Ser	Asp 300	Leu	Ile	Arg	Leu
60	I	Thr 305	Met	Asn	Asp	Ser	Asp 310	Glu	Val	Leu	Val	Pro 315	Leu	Ser	Glu	Met	Ser 320

-272-

	Lys	Lys	Leu	Pro	Tyr 325	Tyr	Ser	Lys	Ile	1330	Pro	Gln	Leu	Ser	Glu 335	Pro
5	Ser	Val	Val	Asp 340	Met	Glu	Ala	Gly	Ile 345	Tyr	Ser	Tyr	Thr	Val 350	Ala	Asp
	Lys	Leu	Ile 355	Met	Glu	Ala	Glu	Glu 360	Lys	'Ala	Lys	Gln	Glu 365	Ala	Lys	Glu
10	Ala	Glu 370	Lys	Lys	Gln	Glu	Glu 375	Glu	Gln	Lys	Lys	Gln 380	Glu	Glu	Glu	Ser
15	Asn 385	Arg	Asn	Gln	Thr	Asn 390	Gln	Arg	Ser	Ser	Arg 395	Arg				
	(2) INFO	RMAT:	ION 1	FOR S	SEQ :	ID N	0:18	3:								
20	(i)	(A (B (C) LEI) TY!) ST!	E CHANGTH: PE: 6 RANDI POLOG	16: amino EDNE:	5 am: o ac: SS: 1	ino a id not :	acid: rele								
25	(ii)	MOL	ECULI	E TYI	PE: 1	pept:	ide									
23	(iii)	HYP	OTHE:	ricai	L: NO	o										٠
	(iv)	ANT:	I-SE	NSE:	NO											
30	(xi)	SEQ	JENCI	E DES	SCRI	PTIO	V: SI	EQ II	ONO:	: 183	:					
35	Met 1	Glu	Arg	Val	Val 5	Asp	Ile	Leu	Lys	Ala 10	Glu	Phe	Asp	Arg	Ser 15	Phe
	Lys	Leu	Ile	Asn 20	Ser	Lys	Thr	Tyr	Pro 25	Val	Ser	Gly	Gly	Glu 30	Leu	Asn
40	Pro	Ala	Asn 35	Val	Asp	Ser	Glu	Ile 40	Glu	Ala	Phe	Ala	Gln 45	Leu	Gly	Val
	Ser	Arg 50	Gly	Leu	Asp	Ser	Lys 55	Glu	Ala	His	Tyr	Leu 60	Ala	Asn	Leu	Tyr
45	Gly 65	Ser	Asn	Ala	Pro	Lys 70	Val	Phe	Ala	Leu	Ala 75	His	Ser	Leu	Glu	Gln 80
	Ala	Pro	Gly	Leu	Ser 85	Leu	Ala	Asp	Thr	Leu 90	Ser	Leu	His	Tyr	Ala 95	Met
50	Arg	Asn	Glu	Leu 100	Ala	Leu	Ser	Pro	Val 105	Asp	Phe	Leu	Leu	Arg 110		Thr
55	Asn	His	Met 115	Leu	Phe	Met	Arg	Asp 120	Ser	Leu	Asp	Ser	Ile 125	Val	Glu	Pro
	Val	Leu 130	Asp	Glu	Met	Gly	Arg 135	Phe	Tyr	Asp	Trp	Thr 140	Glu	Glu	Glu	Lys
60	Ala 145	Thr	Tyr	Arg	Ala	Asp 150	Val	Glu	Ala	Ala	Leu 155	Ala	Asn	Asn	Asp	Leu 160

-273-

Ala Glu Leu Lys Asn 165

5	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0:18	4 :								
10	(i)	(B (C) LE	NGTH PE: RAND	: 23 amin EDNE	3 am o ac SS: :	ino	acid rele								
	(ii)	MOL	ECUL	E TY	PE: 1	pept:	ide									
15	(iii)	HYP	OTHE:	rica:	L: N	0										
	(iv)	ANT	I-SE	NSE:	NO											
20	(xi)	SEQ	JENCI	E DE	SCRI	PTIO	N: S	EQ I	D NO	:184	:					
	Met 1	Asn	Glu	Leu	Phe 5	Gly	Glu	Phe	Leu	Gly 10	Thr	Leu	Ile	Leu	Ile 15	Leu
25	Leu	Gly	Asn	Gly 20	Val	Val	Ala	Gly	Val 25	Val	Leu	Pro	Lys	Thr 30	Lys	Ser
30	Asn	Ser	Ser 35	Gly	Trp	Ile	Val	Ile 40	Thr	Met	Gly	Trp	Gly 45	Ile	Ala	Val
	Ala	Val 50	Ala	Val	Phe	Val	Ser 55	Gly	Lys	Leu	Ser	Pro 60	Ala	His	Leu	Asn
35	Pro 65	Ala	Val	Thr	Ile	Gly 70	Val	Ala	Leu	Lys	Gly 75	Gly	Leu	Pro	Trp	Ala 80
	Ser	Val	Leu	Pro	Tyr 85	Ile	Leu	Ala	Gln	Phe 90	Ala	Gly	Ala	Met	Leu 95	Gly
40	Gln	Ile	Leu	Val 100	Trp	Leu	Gln	Phe	Lys 105	Pro	His	Tyr	Glu	Ala 110	Glu	Glu
45	Asn	Ala	Gly 115	Asn	Ile	Leu	Ala	Thr 120	Phe	Ser	Thr	Gly	Pro 125	Ala	Ile	Lys
	Asp	Thr 130	Val	Ser	Asn	Leu	Ile 135	Ser	Glu	Ile	Leu	Gly 140	Thr	Phe	Val	Leu
50	Val 145	Leu	Thr	Ile	Phe	Ala 150	Leu	Gly	Leu	Tyr	Asp 155	Phe	Gln	Ala	Gly	Ile 160
	Gly	Thr	Phe	Ala	Val 165	Gly	Thr	Leu	Ile	Val 170	Gly	Ile	Gly	Leu	Ser 175	Leu
55	Gly	Gly	Thr	Thr 180	Gly	Tyr	Ala	Leu	Asn 185	Pro	Ala	Arg	Asp	Leu 190	Gly	Pro
60	Arg	Ile	Met 195	His	Ser	Ile	Leu	Pro 200	Ile	Pro	Asn	Lys	Gly 205	Asp	Gly	Asp
- -	Trp	Ser	Tyr	Ala	Trp	Ile	Pro	Val	Val	Gly	Pro	Val	Ile	Gly	Ala	Ala

-274-

210 220 215 Leu Ala Val Leu Val Leu Ser Leu Phe 230 5 (2) INFORMATION FOR SEQ ID NO:185: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 135 amino acids 10 (B) TYPE: amino acid (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 15 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:185: Thr Thr Asp Asn Val Ile Asp Leu Phe Glu His Ile Phe Lys Met Phe 25 Asn Glu Asn Ile Val Met Ala Gly Lys Val Asn Leu Leu Asn Phe Ala Asn Leu Ala Ala Tyr Gln Phe Phe Asp Gln Pro Gln Lys Val Ala Leu 30 Glu Ile Arg Glu Gly Leu Arg Glu Asp Gln Met Gln Asn Val Arg Val 35 Ala Asp Gly Gln Glu Ser Cys Leu Ala Asp Leu Ala Val Ile Ser Ser Lys Phe Leu Ile Pro Tyr Arg Gly Val Gly Ile Leu Ala Ile Ile Gly 40 Pro Val Asn Leu Asp Tyr Gln Gln Leu Ile Asn Gln Ile Asn Val Val Asn Arg Val Leu Thr Met Lys Leu Thr Asp Phe Tyr Arg Tyr Leu Ser 45 Ser Asn His Tyr Glu Val His 130 50 (2) INFORMATION FOR SEQ ID NO:186: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 153 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant 55 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 60 (iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

WO 98/26072

State Marie Control of the Control

PCT/US97/22578

-275-

5	(xi)	SEQ	UENC.	E DE	SCRI	PTIO	N: S	EQ I	D NO	:186	:					
•	Met 1	Ile	Ala	Lys	Glu 5	Phe	Glu	Thr	Phe	Leu 10	Leu	Gly	Gln	Glu	Glu 15	Thr
10	Phe	Leu	Thr	Pro 20	Ala	Lys	Asn	Leu	Ala 25	Val	Leu	Ile	Asp	Thr 30	His	Asn
	Ala	Asp	His 35	Ala	Thr	Leu	Leu	Leu 40	Ser	Gln	Met	Thr	Tyr 45	Thr	Arg	Val
15	Pro	Val 50	Val	Thr	Asp	Glu	Lys 55	Gln	Phe	Val	Gly	Thr 60	Ile	Gly	Leu	Arg
20	Asp 65	Ile	Met	Ala	Tyr	Gln 70	Met	Glu ·	His	Asp	Leu 75	Ser	Gln	Glu	Ile	Met 80
20	Ala	Asp	Thr	Asp	Ile 85	Val	His	Met	Thr	Lys 90	Thr	Asp	Val	Ala	Val 95	Val
25	Ser	Pro	Asp	Phe 100	Thr	Ile	Thr	Glu	Val 105	Leu	His	Lys	Leu	Val 110	Asp	Glu
	Ser	Phe	Leu 115	Pro	Val	Val	Asp	Ala 120	Glu	Gly	Ile	Phe	Gln 125	Gly	Ile	Ile
30	Thr	Arg 130	Lys	Ser	Ile	Leu	Lys 135	Ala	Val	Asn	Ala	Leu 140	Leu	His	Asp	Phe
35	Ser 145	Lys	Glu	Tyr	Glu	Ile 150	Arg	Cys	Gln							
33	(2) INFO	RMAT1	ON E	or s	SEQ 1	D NC	:187	7:								
40	(i)	(B) (C)	LEN TYE STF	IGTH: PE: a VANDE	173 mino DNES	ami aci	no a .d .ot 1	acids celev								
45	(ii)	MOLE	CULE	TYF	E: p	epti	.de									
45	(iii)	нүрс	тнет	CAL	.: NC)										
	(iv)	ANTI	-sen	SE:	NO											
50	(xi)	SEQU	ENCE	DES	CRIP	TION	i: SE	Q ID	NO:	187:						
55	Met 1	Ala	Lys	Gln	Thr 5	Ile	Ile	Val	Met	Ser 10	Asp	Ser	His	Gly	Asp 15	Ser
<i></i>	Leu	Ile	Val	Glu 20	Glu	Val	Arg	Asp	Arg 25	Tyr	Val	Gly	Lys	Val 30	Asp	Ala
60	Val	Phe	His 35	Asn	Gly	Asp	Ser	Glu 40	Leu	Arg	Pro	Ąsр	Ser 45	Pro	Leu	Trp

-276-

	Glu	Gly 50	Ile	Arg	Val	Val	Lys 55	Gly	Asn	Met	Asp	Phe 60	Tyr	Ala	Gly	Tyr
5	Pro 65	Glu	Arg	Leu	Val	Thr 70	Glu	Leu	Gly	Ser	Thr 75	Lys	Ile	Ile	Gln	Thr 80
	His	Gly	His	Leu	Phe 85	Asp	Ile	Asn	Phe	Asn 90	Phe	Gln	Lys	Leu	Asp 95	Tyr
10	Trp	Ala	Gln	Glu 100	Glu	Glu	Ala	Ala	Ile 105	Cys	Leu	Tyr	Gly	His 110	Leu	His
15	Val	Pro	Ser 115	Ala	Trp	Met	Glu	Gly 120	Lys	Ile	Leu	Phe	Leu 125	Asn	Pro	Gly
13	Ser	Ile 130	Ser	Gln	Pro	Arg	Gly 135	Thr	Ile	Arg	Glu	Cys 140	Leu	Tyr	Ala	Arg
20	Val 145	Glu	Ile	Asp	Asp	Ser 150	Tyr	Phe	Lys	Val	Asp 155	Phe	Leu	Thr	Arg	Asp 160
	His	Glu	Val	Tyr	Pro 165	Gly	Leu	Ser	Lys	Glu 170	Phe	Ser	Arg			
25	(2) INFO	RMATI	ON I	or s	SEQ :	D NO	:188	3:								
30	(i)	(B)	LEN TYI	ngth: PE: & Randi	: 189 amino EDNE:	ami aci SS: 1	ino a id not i	acid: relev								
		(D)	TO	POLO	GY: 1	not i	rele	vant								
	(ii)	MOL	ECULI	E TYI	PE: I	pepti	ide									
35	(iii)	HYPO	THE	[[CA]	L: NO)										
	(iv)	ANT	(-SE)	NSE:	NO											
40	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	۱: SI	EQ II	D NO	188	· ·					
	Met 1	Ser	Thr	Leu	Ala 5	Lys	Ile	Glu	Ala	Leu 10	Leu	Phe	Val	Ala	Gly 15	Glu
45	Asp	Gly	Ile	Arg 20	Val	Arg	Gln	Leu	Ala 25	Glu	Leu	Leu	Ser	Leu 30	Pro	Pro
50	Thr	Gly	Ile 35	Gln	Gln	Ser	Leu	Gly 40	Lys	Leu	Ala	Gln	Lys 45	Tyr	Glu	Lys
50	Asp	Pro 50	Asp	Ser	Ser	Leu	Ala 55	Leu	Ile	Glu	Thr	Ser 60	Gly	Ala	Tyr	Arg
55	Leu 65	Val	Thr	Lys	Pro	Gln 70	Phe	Ala	Glu	Ile	Leu 75	Lys	Glu	Tyr	Ser	Lys 80
	Ala	Pro	Ile	Asn	Gln 85	Ser	Leu	Ser	Arg	Ala 90	Ala	Leu	Glu	Thr	Leu 95	Ser
60	Ile	Ile	Ala	Tyr 100	Lys	Gln	Pro	Ile	Thr 105	Arg	Ile	Glu	Ile	Asp 110	Ala	Ile

-277-

	Arg	GIA	115	ASN	ser	ser	GLY	120	Leu	Ala	гÀ2	Leu	125	ATA	rne	ASP
5	Leu	Ile 130	Lys	Glu	Asp	Gly	Lys 135	Lys	Glu	Val	Leu	Gly 140	Arg	Pro	Asn	Lev
10	Tyr 145	Val	Thr	Thr	Asp	Tyr 150	Phe	Leu	Asp	Tyr	Met 155	Gly	Ile	Asn	His	Leu 160
10	Glu	Glu	Leu	Pro	Val 165	Ile	Asp	Glu	Leu	Glu 170	Ile	Gln	Ala	Gln	Glu 175	Ser
15	Gln	Leu	Phe	Gly 180	Glu	Arg	Ile	Glu	Glu 185	Asp	Glu	Asn	Gln			
	(2) INFO	RMATI	ON I	FOR S	SEQ :	ID NO	0:189	9:								
20	(i)	(B)	LEN TYI STI	NGTH: PE: & RANDI	: 214 amino EDNES	ami aci	ino a	acid: rele								
25	(ii)	MOLE	CUL	E TY	PE: I	pepti	ide									
	(iii)	НҮРС	THE	ricai	L: NO)										
30	(iv)	ANTI	-sen	NSE:	NO									-		
	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	N: SI	EQ II) ио:	189	:					
35	. Met 1	Arg	Asp	Arg	Ile 5	Ser	Ala	Phe	Leu	Glu 10	Glu	Lys	Gln	Gly	Leu 15	Ser
	Val	Asn	Ser	Lys 20	Gln	Ser	Tyr	Lys	Tyr 25	Asp	Leu	Glu	Gln	Phe 30	Leu	Asp
40	Met	Val	Gly 35	Glu	Arg	Ile	Ser	Glu 40	Thr	Ser	Leu	Lys	Ile 45	Tyr	Gln	Ala
45	Gln	Leu 50	Ala	Asn	Leu	Lys	Ile 55	Ser	Ala	Gln	Lys	Arg 60	Lys	Ile	Ser	Ala
	Cys 65	Asn	Gln	Phe	Leu	Tyr 70	Phe	Leu	Tyr	Gln	Lys 75	Gly	Glu	Val	Asp	Ser 80
50	Phe	Tyr	Arg	Leu	Glu 85	Leu	Ala	Lys	Gln	Ala 90	Glu	Lys	Lys	Thr	Glu 95	Lys
	Pro	Glu	Ile	Leu 100	Tyr	Leu	Asp	Ser	Phe 105	Trp	Gln	Glu	Ser	Asp 110	His	Pro
55	Glu	Gly	Arg 115	Leu	Leu	Ala	Leu	Leu 120	Ile	Leu	Glu	Met	Gly 125	Leu	Leu	Pro
60	Ser	Glu 130	Ile	Leu	Ala	Ile	Lys 135	Val	Ala	Asp	Ile	Asn 140	Leu	Asp	Phe	Gln
	Val	Leu	Arg	Ile	Ser	Lys	Ala	Ser	Gln	Gln	Arg	Ile	Val	Thr	Ile	Pro

-278-

	145					150					155					160
5	Thr	Ala	Leu	Leu	Ser 165		Leu	Glu	Pro	Leu 170		Gly	Gln	Thr	Tyr 175	Leu
J	Phe	Glu	Arg	Gly 180	Glu	Lys	Pro	Tyr	Ser 185		Gln	Trp	Ala	Phe 190	Arg	Gln
10	Leu	Glu	Ser 195	Phe	Val	Arg	Arg	Arg 200		Pro	Ser	Leu	Ser 205		Gln	Val
	Leu	Arg 210	Asp	Ser	Leu	Phe										
15	(2) INFO	RMAT	ION 1	FOR :	SEQ :	ID N	0:19	0:								
20	(i)	(A (B (C	UENC:) LEI) TY!) ST!) TO!	NGTH PE: a RANDI	: 23! amino EDNE:	9 am: 0 ac: 5S: 1	ino a id not :	acid rele								
	(ii)	MOL	ECULI	E TY!	?E: 1	pept:	ide									
25	(iii)	HYP	OTHE?	ricai	L: NO)										
	(iv)	ANT:	I-SEI	NSE:	NO											
30	(xi)	SEQ	UENCI	E DES	CRII	PTIO	N: SI	EQ II	ON C	:190	:					
	Met 1	Arg	Ile	Asn	Lys 5	Tyr	Ile	Ala	His	Ala 10	Gly	Val	Ala	Ser	Arg 15	Arg
35	Lys	Ala	Glu	Glu 20	Leu	Ile	Lys	Gln	Gly 25	Leu	Val	Thr	Val	Asn 30	Gly	Gln
40	Val	Val	Arg 35	Glu	Leu	Ala	Thr	Thr 40	Ile	Lys	Ser	GÏy	Asp 45	Lys	Val	Gl u
-0	Val	Glu 50	Gly	Gln	Pro	Ile	Tyr 55	Asn	Glu	Glu	Lys	Val 60	Tyr	Tyr	Leu	Leu
15	Asn 65	Lys	Pro	Arg	Gly	Val 70	Ile	Ser	Ser	Val	Thr 75	Asp	Asp	Lys	Gly	Arg 80
	Lys	Thr	Val	Val	Asp 85	Leu	Leu	Pro	Asn	Val 90	Lys	Glu	Arg	Ile	Tyr 95	Pro
50	Val	Gly	Arg	Leu 100	Asp	Trp	Asp	Thr	Ser 105	Gly	Val	Leu	Ile	Leu 110	Thr	Asn
55	Asp	Gly	Asp 115	Phe	Thr	Asp	Glu	Met 120	Ile	His	Pro	Arg	Asn 125	Glu	Ile	Asp
	Lys	Val 130	Tyr	Val	Ala	Arg	Val 135	Lys	Gly	Val	Ala	Asn 140	Lys	Asp	Asn	Leu
50	Arg 145	Pro	Leu	Thr	Arg	Gly 150	Leu	Glu	Ile	Asp	Gly 155	Lys	Lys	Thr	Lys	Pro 160

-279-

	Λţα	Val	ıyı	GIU	165	Leu	гуз	Val	ASP	170	Val	гуз	Asn	Arg	175	
5	Val	Gln	Leu	Thr 180	Ile	His	Glu	Gly	Arg 185	Asn	His	Gln	Val	Lys 190	Lys	Met
	Phe	Glu	Ala 195	Val	Gly	Leu	Gln	Val 200	Asp	Lys	Leu	Ser	Arg 205	Thr	Arg	Phe
10	Gly	His 210	Leu	Asp	Leu	Thr	Leu 215	Arg	Pro	Gly	Glu	Ser 220	Arg	Arg	Leu	Asn
15	Lys 225	Lys	Glu	Ile	Ser	Gln 230	Leu	His	Thr	Met	Ala 235	Val	Thr	Lys	Lys	
	(2) INFO	RMAT	ION I	FOR S	SEQ I	ID NO	0:191	L:								
20	(i)	(B)	LEN TYN	NGTH: PE: & RANDI	243 amino EDNES	TERIS ami aci ss: r	ino a id not 1	cid: celev								
25	(ii)	MOL	ECULI	E TYI	PE: p	pepti	ide									
23	(iii)	HYPO	OTHE	ricai	L: NO)										
	(iv)	ANTI	[-SE	NSE:	ИО											
30	(xi)	SEQU	JENCI	E DES	SCRIE	PTION	1: SI	EQ II	O NO:	:191:	:					
35	Met 1	Asp	Ile	Lys	Leu 5	Lys	Arg	Phe	Leu	Lys 10	Asp	Pro	Gly	Leu	Ala 15	Leu
	Cys	Ile	Trp	Phe 20	Leu	Ser	Thr	Lys	Met 25	Asp	Ile	Tyr	Asp	Val 30	Pro	Ile
10	Thr	Glu	Val 35	Ile	Glu	Gln	Tyr	Leu 40	Ala	Tyr	Val	Ser	Thr 45	Leu	Gln	Ala
	Met	Arg 50	Leu	Glu	Val	Thr	Gly 55	Glu	Tyr ·	Met	Val	Met 60	Ala	Ser	Gln	Leu
15	Met 65	Leu	Ile	Lys	Ser	Arg 70	Lys	Leu	Leu	Pro	Lys 75	Val	Ala	Glu	Val	Thr 80
50	Asp	Leu	Gly	Asp	Asp 85	Leu	Glu	Gln	Asp	Leu 90	Leu	Ser	Gln	Ile	Glu 95	Glu
	Tyr	Arg	Lys	Phe 100	Lys	Leu	Leu	Gly	Glu 105	His	Leu	Glu	Ala	Lys 110	His	Gln
55	Glu	Arg	Ala 115	Gln	Tyr	Tyr	Ser	Lys 120	Ala	Pro	Thr	Glu	Leu 125	Ile	Tyr	Glu
	Asp	Ala 130	Glu	Leu	Val	His	Asp 135	Lys	Thr	Thr	Ile	Asp 140	Leu	Phe	Leu	Ala
50	Phe 145	Ser	Asn	Ile	Leu	Ala 150	Lys	Lys	Lys	Glu	Glu 155	Phe	Ala	Gln	Asn	His 160

-280-

	Thr	Thr	Ile	Leu	Arg 165	Asp	Glu	Tyr	Lys	Ile 170	Glu	Asp	Met	Met	Ile 175	Ile
5	Val	Lys	Glu	Ser 180	Leu	Ile	Gly	Arg	Asp 185	Gln	Leu	Arg	Leu	Gln 190	Asp	Leu
10	Phe	Lys	Glu 195	Ala	Gln	Asn	Val	Gln 200	Glu	Val	Ile	Thr	Leu 205	Phe	Leu	Ala
10	Thr	Leu 210	Glu	Leu	Ile	Lys	Thr 215	Gln	Glu	Leu	Ile	Leu 220	Val	Gln	Glu	Glu
15	Ser 225	Phe	Gly	Asp	Ile	Tyr 230	Leu	Met	Glu	Lys	Lys 235	Glu	Glu	Ser	Gln	Val 240
	Pro	Gln	Ser													
20	(2) INFO	RMAT:	ON I	FOR S	SEQ I	D NO	0:192	2:								
25	(i)	(B)	LEI TYI STI	NGTH: PE: a RANDI	: 336 amino EDNES	s ami s aci	ino a	acid: relev								
	(ii)	MOL	ECULI	E TYI	?E: p	ept:	ide									
30	(iii)	HYPO	THE	ricai	Z: NO)										
	(iv)	ANT	[-SE	NSE:	NO											
35	(xi)	SEQU	JENCI	E DES	CRI	OITS	1: SI	EQ II	NO:	192:	:					
	Met 1	Ala	Gly	Lys	Arg 5	Asp	Ser	Cys	Gly	Ala 10	Cys	Arg	Ile	Met	Thr 15	Asn
40	Lys	Ile	Tyr	Glu 20	Tyr	Lys	Asp	Asp	Gln 25	Asn	Trp	Tyr	Val	Gly 30	Ser	Tyr
45	Ser	Ile	Phe 35	Gly	Gly	Val	Asn	Ser 40	Leu	Ser	Asp	Tyr	Lys 45	Ala	Asp	Phe
13	Pro	Leu 50	Phe	Glu	Phe	Ser	Lys 55	Ile	Phe	Gly	Asp	Glu 60	Glu	Tyr	Gly	Phe
50	Pro 65	Leu	Ser	Val	Thr	Val 70	Leu	Arg	Tyr	Gly	3er 75	Thr	Tyr	Arg	Leu	Phe 80
	Ser	Phe	Val	Val	Asp 85	Met	Leu	Asn	Gln	Glu 90	Met	Gly	Arg	Asn	Leu 95	Glu
55	Val	Ile	Gln	Arg 100	His	Gly	Ala	Leu	Leu 105	Leu	Val	Glu	Asn	Gly 110	Gln	Leu
60	Leu	Tyr	Val 115	Glu	Leu	Pro	Lys	Glu 120	Gly	Val	Asn	Val	His 125	Asp	Phe	Phe
	Glu	Thr	Ser	Lys	Val	Arg	Glu	Thr	Leu	Leu	Ile	Ala	Thr	Arg	Asn	Glu

-281-

		130					135					140				
5	Gly 145	Lys	Thr	Lys	Glu	Phe 150	Arg	Ala	Ile	Phe	Asp 155	Lys	Leu	Gly	Tyr	Asp 160
J	Val	Glu	Asn	Leu	Asn 165	Asp	Tyr	Pro	Asp	Leu 170	Pro	Glu	Val	Ala	Glu 175	Thi
10	Gly	Met	Thr	Phe 180	Glu	Glu	Asn	Ala	Arg 185	Leu	Lys	Ala	Glu	Thr 190	Ile	Sei
	Gln	Leu	Thr 195	Gly	Lys	Met	Val	Leu 200	Ala	Asp	Asp	Ser	Gly 205	Leu	Lys	Va]
15	Asp	Val 210	Leu	Gly	Gly	Leu	Pro 215	Gly	Val	Trp	Ser	Ala 220	Arg	Phe	Ala	Gly
20	Val 225	Gly	Ala	Thr	Asp	Arg 230	Glu	Asn	Asn	Ala	Lys 235	Leu	Leu	His	Glu	Let 240
	Ala	Met	Val	Phe	Glu 245	Leu	Lys	Asp	Arg	Ser 250	Ala	Gln	Phe	His	Thr 255	Thi
25	Leu	Val	Val	Ala 260	Ser	Pro	Asn	Lys	Glu 265	Ser	Leu	Val	Val	Glu 270	Ala	Asp
	Trp	Ser	Gly 275	Tyr	Ile	Asn	Phe	Glu 280	Pro	Lys	Gly	Glu	Asn 285	Gly	Phe	Gly
30	Tyr	Asp 290	Pro	Leu	Phe	Leu	Val 295	Gly	Glu	Thr	Gly	Glu 300	Ser	Ser	Ala	Glu
35	Leu 305	Thr	Leu	Glu	Glu	Lys 310	Asn	Ser	Gln	Ser	His 315	Arg	Ala	Leu	Ala	Val 320
	Lys	Lys	Leu	Leu	Glu 325	Val	Phe	Pro	Ser	Trp 330	Gln	Ser	Lys	Pro	Ser 335	Leu
40	(2) INFO	RMATI	ON E	FOR S	SEQ I	ID NO	0:193	3:								
45	(i)	(B)	LEN TYI	NGTH: PE: & RANDI	: 219 amino EDNES	e ami o aci	ino a	acids relev								
	(ii)	MOLE	ECULI	TY!	PE: p	pept	ide									
50	(iii)	HYPO	THE	ricai	L: NO)				٠						
	(iv)	ANT	(-SE)	ISE:	NO											
55	(xi)	SEQU	JENCI	E DES	SCRI	PTIO	1: SI	EQ II	O NO:	:193	:					
	Glu 1	Asn	Asn	Tyr	Glu 5	Pro	Gln	Tyr	Ile	Asn 10	Ile	Arg	Gly	Lys	Gly 15	Pro
60	Leu	Ile	Asn	Asp 20	Leu	Lys	Lys	Glu	Ala 25	Lys	Lys	Ala	Asn	Lys 30	Val	Phe

-282-

	Leu	Ala	Ser 35	Asp	Pro	Asp	Arg	Glu 40	Gly	Glu	Ala	Ile	Ser 45	Trp	His	Leu
5	Ala	His 50	Ile	Leu	Asn	Leu	Asp 55	Glu	Asn	Asp	Ala	Asn 60	Arg	Val	Val	Phe
10	Asn 65	Glu	Ile	Thr	Lys	Asp 70	Ala	Val	Lys	Asn	Ala 75	Phe	Lys	Glu	Pro	Arg 80
10	Lys	Ile	Asp	Met	Asp 85	Leu	Val	Asp	Ala	Gln 90	Gln	Ala	Arg	Arg	Ile 95	Leu
15	Asp	Arg	Leu	Val 100	Gly	Tyr	Ser	Ile	Ser 105	Pro	Ile	Leu	Trp	Lys 110	Lys	Val
	Lys	Lys	Gly 115	Leu	Ser	Ala	Gly	Arg 120	Val	Gln	Ser	Ile	Ala 125	Leu	Lys	Leu
20	Ile	Ile 130	Asp	Arg	Glu	Asn	Glu 135	Ile	Asn	Ala	Phe	Gln 140	Pro	Glu	Glu	Tyr
25	Trp 145	Thr	Val	Asp	Ala	Val 150	Phe	Lys	Lys	Gly	Thr 155	Lys	Gln	Phe	His	Ala 160
	Ser	Phe	Tyr	Gly	Val 165	Asp	Gly	Lys	Lys	Met 170	Lys	Leu	Thr	Ser	Asn 175	Asn
30	Glu	Val	Lys	Glu 180	Val	Leu	Ser	Arg	Leu 185	Thr	Ser	Lys	Asp	Phe 190	Ser	Val
	Asp	Gln	Val 195	Asp	Lys	Lys	Glu	Arg 200	Lys	Ala	Asn	Ala	Pro 205	Leu	Pro	Tyr
35	Thr	Thr 210	Ser	Ser	Met	Gln	Met 215	Gly	Cys	Cys	Gln					
	(2) INFO	TAMS	ON I	OR S	SEQ I	D NC	:194	l:								
40	(i)	(B)	JENCE LEN TYE STE	IGTH: PE: a	236	ami aci	.no a	cids								
45		(D)	TOE	OLOG	SY: n	ot r	elev	ant								
	(ii)	MOLE	CULE	E TYE	PE: p	epti	.de									
	(iii)	HYPO	THET	CAI	.: NC)										
50	(iv)	ANTI	-SEN	ISE:	ИО											
	(xi)	SEQU	ENCE	DES	CRIP	TION	f: SE	Q II	NO:	194:						
55	Met 1	Ser	Ile	His	Ile 5	Ala	Ala	Gln	Gln	Gly 10	Glu	Ile	Ala	Asp	Lys 15	Ile
60	Leu	Leu	Pro	Gly 20	Asp	Pro	Leu	Arg	Ala 25	Lys	Phe	Ile	Ala	Glu 30	Asn	Phe
	Leu	Gly	Asp	Ala	Val	Cys	Phe	Asn	Glu	Val	Arg	Asn	Met	Phe	Gly	Туr

-283-

		•	35					40					45			
5	Thr	Gly 50	Thr	Tyr	Lys	Gly	His 55	Arg	Val	Ser	Val	Met 60	Gly	Thr	Gly	Met
J	Gly 65	Met	Pro	Ser	Ile	Ser 70	Ile	Tyr	Ala	Arg	Glu 75	Leu	Ile	Val	Asp	Tyr 80
10	Gly	Val	Lys	Lys	Leu 85	Ile	Arg	Val	Gly	Thr 90	Ala	Gly	Ser	Leu	Asn 95	Glu
	Glu	Val	His	Val 100	Arg	Glu	Leu	Val	Leu 105	Ala	Gln	Ala	Ala	Ala 110	Thr	Asn
15	Ser	Asn	Ile 115	Val	Arg	Asn	Asp	Trp 120	Pro	Gln	Tyr	Asp	Phe 125	Pro	Gln	Ile
20	Ala	Ser 130	Phe	Asp	Leu	Leu	Asp 135	Lys	Ala	Tyr	His	Ile 140	Ala	Lys	Glu	Leu
	Gly 145	Met	Thr	Thr	His	Val 150	Gly	Asn	Val	Leu	Ser 155	Ser	Asp	Val	Phe	Tyr 160
25	Ser	Asn	Tyr	Phe	Glu 165	Lys	Asn	Ile	Glu	Leu 170	Gly	Lys	Trp	Gly	Val 175	Lys
	Ala	Val	Glu	Met 180	Glu	Ala	Ala	Ala	Leu 185	Tyr	Tyr	Leu	Ala	Ala 190	Gln	Tyr
30	His	Val	Asp 195	Ala	Leu	Ala	Ile	Met 200	Thr	Ile	Ser	Asp	Ser 205	Leu	Val	Asn
35	Pro	Asp 210	Glu	Asp	Thr	Thr	Ala 215	Glu	Glu	Arg	Gln	Asn 220	Thr	Phe	Thr	Asp
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Met 225	Met	Lys	Val	Gly	Leu 230	Glu	Thr	Leu	Ile	Ala 235	Glu				
40	(2) INFO	RMATI	ON E	FOR S	SEQ 1	D NO	:195	5:								
10	(i)		LEN	IGTH:	477	TERIS 7 ami 5 aci	ino a		5							
45		(C)	STF	RANDI	EDNES	SS: r	ot i		ant							
	(ii)	MOLE	ECULE	TY!	e: F	epti	lde									
50	(iii)	HYPO	тнет	CAI	Z: NC)										
	(iv)	ANTI	-sen	ISE:	ИО											
55	(xi)	SEQU	JENCE	DES	CRI	OITS	l: SE	II QE	NO:	195:						
-	Ile 1	Ile	Phe	Pro	Ile 5	Leu	Thr	Gly	Thr	Tyr 10	Val	Ala	Arg	Val	Leu 15	Asp
60	Arg	Thr	Asp	Tyr 20	Gly	Tyr	Phe	Asn	Ser 25	Val	Asp	Thr	Ile	Leu 30	Ser	Phe

-284-

	Phe	Leu	Pro 35	Phe	Ala	Thr	Tyr	Gly 40	Val	Tyr	Asn	Tyr	Gly 45	Leu	Arg	Ala
5	Ile	Ser 50	Asn	Val	Lys	Asp	Asn 55	Lys	Lys	Asp	Leu	Asn 60	Arg	Thr	Phe	Ser
	Ser 65	Leu	Phe	Tyr	Leu	Cys 70	Ile	Ala	Cys	Thr	Ile 75	Leu	Thr	Thr	Ala	Val 80
10	Tyr	Ile	Leu	Ala	Tyr 85	Pro	Leu	Phe	Phe	Thr 90	Asp	Asn	Pro	Ile	Val 95	Lys
15	Lys	Val	Tyr	Leu 100	Val	Met	Gly	Ile	Gln 105	Leu	Ile	Ala	Gln	Ile 110	Phe	Ser
	Ile	Glu	Trp 115	Val	Asn	Glu	Ala	Leu 120	Glu	Asn	Tyr	Ser	Phe 125	Leu	Phe	Tyr
20	Lys	Thr 130	Ala	Phe	Ile	Arg	Ile 135	Leu	Met	Leu	Val	Ser 140	Ile	Phe	Leu	Phe
	Val 145	Lys	Asn	Glu	His	Asp 150	Ile	Val	Val	Tyr	Thr 155	Leu	Val	Met	Ser	Leu 160
25	Ser	Thr	Leu	Ile	Asn 165	Tyr	Leu	Ile	Ser	Tyr 170	Phe	Trp	Ile	Lys	Arg 175	Asp
30	Ile	Lys	Leu	Val 180	Lys	Ile	His	Leu	Ser 185	Asp	Phe	Lys	Pro	Leu 190	Phe	Leu
	Pro	Leu	Thr 195	Ala	Met	Leu	Val	Phe 200	Ala	Asn	Ala	Asn	Met 205	Leu	Phe	Thr
35	Phe	Leu 210	Asp	Arg	Leu	Phe	Leu 215	Val	Lys	Thr	Gly	11e 220	Asp	Val	Asn	Val
	Ser 225	Tyr	Tyr	Thr	Ile	Ala 230	Gln	Arg	Ile	Val	Thr 235	Val	Ile	Ala	Gly	Val 240
40	Val	Thr	Gly	Ala	Ile 245	Gly	Val	Ser	Val	Pro 250	Arg	Leu	Ser	Tyr	Tyr 255	Leu
45	Gly	Lys	Gly	Asp 260	Lys	Glu	Ala	Tyr	Val 265	Ser	Leu	Val	Asn	Arg 270	Gly	Ser
	Arg	Ile	Phe 275	Asn	Phe	Phe	Ile	Ile 280	Pro	Leu	Ser	Phe	Gly 285	Leu	Met	Val
50	Leu	Gly 290	Pro	Asn	Ala	Ile	Leu 295	Leu	Tyr	Gly	Ser	Glu 300	Lys	Tyr	Ile	Gly
	Gly 305	Gly	Ile	Leu	Thr	Ser 310	Leu	Phe	Ala	Phe	Arg 315	Thr	Ile	Ile	Leu	Ala 320
55	Leu	Asp	Thr	Ile	Leu 325	Gly	Ser	Gln	Ile	Leu 330	Phe	Thr	Asn	Gly	Tyr 335	Glu
60	Lys	Arg	Ile	Thr 340	Val	Tyr	Thr	Val	Phe 345	Ala	Gly	Leu	Leu	Asn 350	Leu	Gly
•	Leu	Asn	Ser	Leu	Leu	Phe	Phe	Asn	His	Ile	Val	Ala	Pro	Glu	Tyr	Tyr

-285-

			355					360					365			
5	Leu	Leu 370	Thr	Thr	Met	Leu	Ser 375	Glu	Thr	Ser	Leu	Leu 380	Val	Phe	Tyr	Ile
,	Ile 385	Phe	Ile	His	Arg	Lys 390	Gln	Leu	Ile	His	Leu 395	Gly	His	Ile	Phe	Ser 400
10	Tyr	Thr	Val	Arg	Tyr 405	Ser	Leu	Phe	Ser	Leu 410	Ser	Phe	Val	Ala	Ile 415	Туг
	Phe	Leu	Ile	Asn 420	Phe	Val	Tyr	Pro	Val 425	Asp	Met	Val	Ile	Asn 430	Leu	Pro
15	Phe	Leu	Ile 435	Asn	Thr	Gly	Leu	Ile 440	Val	Leu	Leu	Ser	Ala 445	Ile	Ser	Tyr
20	Ile	Ser 450	Leu	Leu	Val	Phe	Thr 455	Lys	Asp	Ser	Ile	Phe 460	Tyr	Glu	Phe	Leu
	Asn 465	His	Val	Leu	Ala	Leu 470	Lys	Asn	Lys	Phe	Lys 475	Lys	Ser			
25	(2) INFO				_	ID NO FERIS										
		(B)	TYI STI	PE: a	amino EDNES	Bami Saci	id not i	relev								
30	(ii)					ot i		vant								
35	(iii))										
	(iv)															
10	(xi) Phe											Ile	Asp	Thr	Cys	Tvr
	1				5					10					15	-
15				20					25					30	Asn	
	Val	Tyr	Lys 35	Asp	Ser	Leu	Leu	Lys 40	Asp	Trp	Ile	Arg	Thr 45	Ala	Phe	Trp
50	Leu	Leu 50	Leu	Arg	Pro	Val	Ser 55	Pro	Arg	Tyr	Phe	Ala 60	Asn	Lys	Ile	Glu
55	Lys 65	Glu	Ile	Gln	Lys	Tyr 70	Ser	Arg	Glu	Asn	Gly 75	Gln	Tyr	Met	Ala	Phe 80
	Ile	Pro	Ser	Lys	Phe 85	Lys	Glu	Lys	Glu	Val 90		Pro	Ser	Gly	Thr 95	Phe
50	Asp	Lys	Thr	Ile 100	Asp	Leu	Pro	Phe	Glu 105	Asn	Leu	Ser	Leu	Pro	Ala	Pro

-286-

	Glu	Lys	Phe 2 115	Asp '	Thr	Ile :		Thr (Gln	Phe	Tyr	Gly	Asp 125	Tyr	Met	Thr
5	Leu	Pro 130	Pro (Glu	Glu :		Arg 135	Phe '	Tyr	Ser	His	Glu 140	Phe	His	Ala	Tyr
	Lys 145	Leu	Glu .	Asp												
10	(2) INFO	RMATI	ON F	OR S	EQ I	D NO	:197	:								
15	(i)	(B) (C)	ENCE LEN TYP STR TOP	GTH: E: a ANDE	280 mino DNES	ami aci S: n	no a d ot r	cids elev								
	(ii)	MOLE	CULE	TYP	E: p	epti	de									
20	(iii)	HYPO	THET	ICAL	.: NO	•										
	(iv)	ANTI	-SEN	SE:	ИО											
25	(xi)	SEQU	JENCE	DES	CRIP	TION	: SE	EQ ID	NO:	197:						
	Met 1	Asn	Phe	Thr	Leu 5	Ile	Asn	Trp	Arg	Ile 10	Arg	Met	Gln	Tyr	Leu 15	Glu
30	Lys	Lys	Glu	Ile 20	Lys	Glu	Ile	Gln	Leu 25	Ala	Leu	Leu	Asp	Tyr 30	Ile	Asp
35	Glu	Thr	Cys 35	Lys	Lys	His	Asp	Ile 40	Pro	Tyr	Phe	Leu	Ser 45	Tyr	Gly	Thr
,,,	Met	Leu 50	Gly	Ala	Ile	Arg	His 55	Lys	Gly	Met	Ile	Pro 60	Trp	Asp	Asp	Asp
40	11e 65	. Asp	Ile	Ser	Leu	Tyr 70	Arg	Glu	Asp	Tyr	Glu 75	Arg	Leu	Leu	Lys	Ile 80
	Ile	e Glu	Glu	Glu	Asn 85	His	Pro	Arg	Tyr	Lys 90	Val	Leu	Ser	Tyr	Asp 95	Thr
45	Ser	: Ser	Trp	Tyr 100		His	Asn	Phe	Ala 105		Ile	Leu	Asp	Thr 110	Ser	Thr
50	· Val	l Ile	Glu 115		His	Val	Lys	Tyr 120	Lys	Arg	His	Asp	Thr 125	Ser	Leu	Phe
30	Ile	2 Asp 130		Phe	Pro	Ile	Asp 135		Phe	Thr	Asp	Leu 140	Ser	Ile	Val	Asp
55	Lys 145	s Ser	Tyr	Lys	Tyr	Val 150		Leu	Arg	Gln	Leu 155		Tyr	: Ile	Lys	Lys 160
	Se	r Arg	Ala	Val	His 165		Asp	Ser	Lys	Leu 170		Asp	Phe	. Leu	175	Leu
60	Cy	s Ser	Trp	Tyr 180		Leu	Arg	Phe	Val 185		Pro	Arg	туг	Phe 190	ту:)	: Lys

-287-

PCT/US97/22578

Lys Ile Asp Gln Leu Val Lys Asn Ala Val Thr Asn Thr Pro Gln Tyr 5 Glu Gly Gly Val Gly Ile Gly Lys Glu Gly Met Lys Glu Ile Phe Pro Val Asp Thr Phe Lys Glu Leu Ile Leu Thr Glu Phe Glu Gly Arg Met 10 Leu Pro Val Pro Lys Lys Tyr Asp Gln Phe Leu Thr Gln Met Tyr Gly Asp Tyr Met Thr Pro Pro Ser Lys Glu Met Gln Glu Trp Tyr Ser His 15 Ser Ile Lys Ala Tyr Arg Lys Asn 275 20 (2) INFORMATION FOR SEQ ID NO:198: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 223 amino acids (B) TYPE: amino acid 25 (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 30 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:198: Lys Gly Phe Ile Pro Trp Asp Asp Leu Asp Phe Phe Met Pro Arg 40 Lys Asp Tyr Glu Lys Leu Ala Glu Leu Trp Pro Arg Tyr Ala Asp Glu Arg Tyr Phe Leu Ser Lys Ser His Lys Asp Phe Val Asp Arg Asn Leu 45 Phe Ile Thr Ile Arg Asp Lys Lys Thr Thr Cys Ile Lys Pro Tyr Gln 50 60 Gln Asp Leu Asp Leu Pro His Gly Leu Ala Leu Asp Val Leu Pro Leu 50 Asp Tyr Tyr Pro Lys Asn Pro Ala Glu Arg Lys Lys Gln Val Arg Trp 55 Ala Leu Ile Tyr Ser Leu Phe Cys Ala Gln Thr Ile Pro Glu Lys His Gly Asp Leu Met Lys Trp Gly Ser Arg Ile Leu Leu Gly Leu Thr Pro 60 Lys Ser Leu Arg Tyr Arg Ile Trp Lys Lys Ala Glu Lys Glu Met Thr

-288-

		130					135					140				
5	Lys 145	Tyr	Asp	Leu	Ala	Asp 150	Cys	Asp	Gly	Ile	Thr 155	Glu	Leu	Cys	Ser	Gly 160
J	Pro	Gly	Tyr	Met	Arg 165	Asn	Lys	Tyr	Pro	Ile 170	Thr	Ser	Phe	Glu	Asp 175	Asn
10	Leu	Phe	Leu	Pro 180	Phe	Glu	Gly	Thr	Glu 185	Met	Pro	Ile	Pro	Ile 190	Gly	Tyr
	Asp	Val	Tyr 195	Leu	Arg	Thr	Ala	Phe 200	Gly	Asp	Tyr	Met	Thr 205	Pro	Pro	Pro
15	Ala	Asp 210	Lys	Gln	Val	Pro	His 215	His	Asp	Thr	Val	Thr 220	Ala	Asp	Met	
	(2) INFO	RMAT:	ION I	FOR S	SEQ 3	ID NO	0:199	9:								
20	(i)	(B)	UENCI LENCI TYI STI	ngth: PE: & Randi	: 835 amino EDNES	Sami Saci	ino a id not i	acid: relev								
25	(ii)	MOLI	ECULI	E TYI	?E: p	pept	ide									
	(iii)	HYPO	OTHE	ricai	L: NO)										
30	(iv)	ANT:	I-SEN	NSE:	NO											
	(xi)	SEQ	JENCI	E DES	SCRI	OITS	N: SI	EQ II	ои с	199:	:					
35	Gly 1	Phe	Asp	Asp	Tyr 5	His	Pro	Ser	Cys	Gly 10	Arg	Ile	Leu	Ser	Val 15	Val
40	Thr	Ser	Gly	Gly 20	Glu	Asp	Ile	Ala	Asp 25	Ala	Ile	Ile	Ile	Leu 30	Ala	Val
	Val	Ile	Ile 35	Asn	Ala	Ala	Phe	Gly 40	Val	Tyr	Gln	Glu	Gly 45	Lys	Ala	Glu
45	Glu	Ala 50	Ile	Glu	Ala	Leu	Lys 55	Ser	Met	Ser	Ser	Pro 60	Val	Ala	Arg	Val
	Leu 65	Arg	Asp	Gly	His	Met 70	Ala	Glu	Ile	Asp	Ser 75	Lys	Glu	Leu	Val	Pro 80
50	Gly	Asp	Ile	Val	Ala 85	Leu	Glu	Ala	Gly	Asp 90	Val	Val	Pro	Ala	Asp 95	Leu
55	Arg	Leu	Ile	Glu 100	Ala	Asn	Ser	Leu	Lys 105	Ile	Glu	Glu	Ala	Ala 110	Leu	Thr
	Gly	Glu	Ser 115	Val	Pro	Val	Glu	Lys 120	Asp	Leu	Ser	Val	Asp 125	Leu	Ala	Thr
60	Asp	Ala 130	Gly	Ile	Gly	Asp	Arg 135	Val	Asn	Met	Ala	Phe 140	Gln	Asn	Ser	Asn

-289-

	Val 145	Thr	Tyr	Gly	Arg	Gly 150	Met	Gly	Val	Val	Val 155	Asn	Thr	Gly	Met	Tyr 160
5	Thr	Glu	Val	Gly	His 165	Ile	Ala	Gly	Met	Leu 170	Gln	Asp	Ala	Asp	Glu 175	Thr
	Asp	Thr	Pro	Leu 180	Lys	Gln	Asn	Leu	Asn 185	Asn	Leu	Ser	Lys	Val 190	Leu	Thr
10	Tyr	Ala	Ile 195	Leu	Val	Ile	Ala	Leu 200	Val	Thr	Phe	Val	Val 205	Gly	Val	Phe
15	Ile	Gln 210	Gly	Lys	Asn	Pro	Leu 215	Gly	Glu	Leu	Leu	Thr 220	Ser	Val	Ala	Leu
15	Ala 225	Val	Ala	Ala	Ile	Pro 230	Glu	Gly	Leu	Pro	Ala 235	Ile	Val	Thr	Ile	Val 240
20	Leu	Ser	Leu	Gly	Thr 245	Gln	Val	Leu	Ala	Lys 250	Arg	His	Ser	Ile	Val 255	Arg
	Lys	Leu	Pro	Ala 260	Val	Glu	Thr	Leu	Gly 265	Ser	Thr	Glu	Ile	11e 270	Ala	Ser
25	Asp	Lys	Thr 275	Gly	Thr	Leu	Thr	Met 280	Asn	Lys	Met	Thr	Val 285	Glu	Lys	Val
30	Phe	Tyr 290		Ala	Val	Leu	His 295	Asp	Ser	Ala	Asp	Asp 300	Ile	Glu	Leu	Gly
30	Leu 305		Met	Pro	Leu	Leu 310	Arg	Ser	Val	Val	Leu 315	Ala	Asn	Asp	Thr	Lys 320
35	Ile	Asp	Val	Glu	Gly 325		Leu	Ile	Gly	Asp 330	Pro	Thr	Glu	Thr	Ala 335	Phe
	Ile	Gln	Tyr	Ala 340		Asp	Lys	Gly	Tyr 345		Val	Lys	Gly	Phe 350	Leu	Glu
40	Lys	Tyr	Pro 355		Val	Ala	Glu	Leu 360		Phe	Asp	Ser	Asp 365		Lys	Leu
45	Met	Ser 370		Val	His	Pro	Leu 375		Asp	Ser	Arg	Phe 380	Leu	Val	Ala	Val
43	Lys 385		Ala	Pro	Asp	Gln 390	Leu	Leu	Lys	Arg	Cys 395	Leu	Leu	Arg	Asp	Lys 400
50	Ala	Gly	Asp	Ile	Ala 405		Ile	Asp	Glu	1 Lys 410		Thr	Asn	Leu	11e 415	His
	Thr	: Asn	Asn	Ser 420		Met	Ala	His	425		Leu	Arg	Val	Leu 430	Ala	Gly
55	Ala	Tyr	Lys 435		e Ile	: Asp	Ser	11e		Glu	Asn	Leu	Thr 445		Glu	Glu
60	Lev	450		Asp	Lev	ı Ile	Phe 455		Gly	/ Leu	Ile	Gly 460		Ile	: Asp	Pro
00	Glu	ı Arç	, Pro	Glu	ı Ala	a Ala	a Glu	Ala	a Val	l Arg	Val	. Ala	Lys	Glu	Ala	Gly

-290-

	465					470					475					480
5	Ile	Arg	Pro	Ile	Met 485	Ile	Thr	Gly	Asp	His 490	Gln	Asp	Thr	Ala	Glu 495	Ala
,	Ile	Ala	Lys	Arg 500	Leu	Gly	Ile	Ile	Asp 505	Ala	Asn	Asp	Thr	Glu 510	Gly	His
10	Val	Leu	Thr 515	Gly	Ala	Glu	Leu	Asn 520	Glu	Leu	Ser	Asp	Glu 525	Glu	Phe	Glu
	Lys	Val 530	Val	Gly	Gln	Tyr	Ser 535	Val	Tyr	Ala	Arg	Val 540	Ser	Pro	Glu	His
15	Lys 545	Val	Arg	Ile	Val	Lys 550	Ala	Trp	Gln	Lys	Gln 555	Gly	Lys	Val	Val	Ala 560
20	Met	Thr	Gly	Asp	Gly 565	Val	Asn	Asp	Ala	Pro 570	Ala	Leu	Lys	Thr	Ala 575	qeA
	Ile	Gly	Ile	Gly 580	Met	Gly	Ile	Thr	Gly 585	Thr	Glu	Val	Ser	Lys 590	Gly	Ala
25	Ser	Asp	Met 595	Ile	Leu	Ala	Asp	Asp 600	Asn	Phe	Ala	Thr	Ile 605	Ile	Val	Ala
	Val	Glu 610	Glu	Gly	Arg	Lys	Val 615	Phe	Ser	Asn	Ile	Gln 620	Lys	Thr	Ile	Gln
30	Tyr 625	Leu	Leu	Ser	Ala	Asn 630	Thr	Ala	Glu	Val	Leu 635	Thr	Ile	Phe	Leu	Ser 640
35	Thr	Leu	Phe	Gly	Trp 645	Asp	Val	Leu	Gln	Pro 650	Val	His	Leu	Leu	Trp 655	Ile
	Asn	Leu	Val	Thr 660	Asp	Thr	Phe	Pro	Ala 665	Ile	Ala	Leu	Gly	Val 670	Glu	Pro
40	Ala	Glu	Pro 675	Gly	Val	Met	Asn	His 680	Lys	Pro	Arg	Gly	Arg 685	Lys	Ala	Ser
	Phe	Phe 690	Ser	Gly	Gly	Val	Leu 695	Ser	Ser	Ile	Ile	Tyr 700	Gln	Gly	Val	Leu
45	Gln 705	Ala	Ala	Leu	Val	Met 710	Ser	Val	Tyr	Gly	Leu 715	Ala	Ile	Ala	Tyr	Pro 720
50	Val	His	Val	Gly	Asp 725	Asn	His	Ala	Ile	H1s 730	Ala	Asp	Ala	Leu	Thr 735	Met
	Ala	Phe	Ala	Thr 740	Leu	Gly	Leu	Ile	Gln 745	Leu	Phe	His	Ala	Tyr 750	Asn	Val
55	Lys	Ser	Val 755	Tyr	Gln	Ser	Ile	Leu 760	Thr	Val	Gly	Pro	Phe 765	Lys	Ser	Lys
	Thr	Phe 770	Asn	Trp	Ser	Ile	Leu 775	Val	Ser	Phe	Ile	Leu 780	Leu	Met	Ala	Thr
50	Ile 785	Val	Val	Glu	Pro	Leu 790	Glu	Gly	Ile	Phe	His 795	Val	Thr	Lys	Leu	Asp 800

-291-

	Leu	Ser	Gln	Trp	Gly 805	Ile	Val	Met	Ala	Gly 810	Ser	Phe	Ser	Met	Ile 815	Ile
5	Ile	Val	Glu	Ile 820	Val	Lys	Phe	Ile	Gln 825	Arg	Lys	Leu	Gly	Phe 830	Asp	Lys
10	Asn	Ala	Ile 835													
10	(2) INFO	RMAT:	ION 1	FOR :	SEQ :	ID N	0:20	0:								
15	(i)	(B)	LEI TYI	ngth Pe: a Randi	: 529 amino EDNE:	renis 5 ami 5 aci 5S: 1	ino a id not :	acid: rele			٠					
20	(ii)	MOLI	ECULI	E TY	PE: p	pept:	ide									
20	(iii)	HYPO	OTHE	ricai	L: NO)										
	(iv)	ANT	I-SEI	NSE:	NO											
25	(xi)	SEQ	JENCI	E DE	SCRII	PTIO	1: S	EQ II	O NO	:200	:					
30	Gly 1	Phe	Ile	Leu	Phe 5	Phe	Val	Leu	Leu	Gly 10	Ala	Val	Phe	Glu	Glu 15	Lys
	Met	Arg	Lys	Asn 20	Thr	Ser	Gln	Ala	Val 25	Glu	Lys	Leu	Leu	Asp 30	Leu	Gln
35	Ala	Lys	Thr 35	Ala	Glu	Val	Leu	Ser 40	Asp	Asp	Ser	Tyr	Val 45	Gln	Val	Pro
	Leu	Glu 50	Gln	Val	Lys	Val	Gly 55	Asp	Leu	Ile	Arg	Val 60	Arg	Pro	Gly	Glu
40	Lys 65	Ile	Ala	Val	Asp	Gly 70	Val	Val	Val	Glu	Gly 75	Val	Ser	Ser	Ile	Asp 80
45	Glu	Ser	Met	Val	Thr 85	Gly	Glu	Ser	Leu	Pro 90	Val	Asp	Lys	Thr	Val 95	Gly
	Asp	Thr	Val	Ile 100	Gly	Ser	Thr	Ile	Asn 105	His	Ser	Gly	Thr	Leu 110	Val	Phe
50	Arg	Ala	Glu 115	Lys	Val	Gly	Ser	Glu 120	Thr	Val	Leu	Ala	Gln 125	Ile	Val	Asp
	Phe	Val 130	Lys	Lys	Ala	Gln	Thr 135	Ser	Arg	Ala	Pro	Ile 140	Gln	Asp	Leu	Thr
55	Asp 145	Lys	Ile	Ser	Gly	Ile 150	Phe	Val	Pro	Val	Val 155	Val	Ile	Leu	Gly	Ile 160
60	Met	Thr	Phe	Trp	Val 165	Trp	Phe	Val	Leu	Leu 170	Arg	Asp	Ser	Val	Val 175	Val
	7	C1	21.	C	Db -	37- 7		C		•		63 .	11- 1			•

-292-

				180					185					190		
5	Ile	Ile	Ala 195	Cys	Pro	Cys	Ala	Leu 200	Gly	Leu	Ala	Thr	Pro 205	Thr	Ala	Leu
J	Met	Val 210	Gly	Thr	Gly	Arg	Ser 215	Ala	Lys	Met	Gly	Val 220	Leu	Leu	Lys	Asn
10	Gly 225	Thr	Val	Leu	Gln	Glu 230	Ile	Gln	Lys	Val	Gln 235	Thr	Leu	Val	Phe	Asp 240
	Lys	Thr	Gly	Thr	Leu 245	Thr	Glu	Gly	Lys	Pro 250	Val	Val	Thr	Asp	11e 255	Ile
15	Gly	Asp	Glu	Val 260	Glu	Val	Phe	Gly	Leu 265	Ala	Ala	Ser	Leu	Glu 270	Asp	Ala
20	Ser	Gln	His 275	Pro	Leu	Ala	Glu	Ala 280	Ile	Val	Lys	Arg	Ala 285	Ser	Glu	Ala
	Gly	Leu 290	Glu	Phe	Gln	Thr	Val 295	Glu	Asn	Phe	Gln	Ala 300	Leu	His	Gly	Lys
25	Gly 305	Val	Ser	Gly	Arg	Ile 310	Asn	Gly	Lys	Gln	Val 315	Leu	Leu	Gly	Asn	Ala 320
	Lys	Met	Leu	Asp	Gly 325	Met	Asp	Ile	Ser	Asn 330	Thr	Tyr	Gln	Asp	Lys 335	Leu
30	Glu	Glu	Leu	Glu 340	Lys	Glu	Ala	Lys	Thr 345	Val	Val	Phe	Leu	Ala 350	Val	Asp
35	Asn	Glu	11e 355	Lys	Gly	Leu	Leu	Ala 360	Leu	Gln	Asp	Ile	Pro 365	Lys	Glu	Asn
	Ala	Lys 370	Leu	Ala	Ile	Ser	Gln 375	Leu	Lys	Lys	Arg	Gly 380	Leu	Arg	Thr	Val
40	Met 385	Leu	Thr	Gly	Asp	Asn 390	Ala	Gly	Val	Ala	Arg 395	Ala	Ile	Ala	Asp	Gln 400
	Ile	Gly	Ile	Glu	Glu 405	Val	Ile	Ala	Gly	Val 410	Leu	Pro	Glu	Glu	Lys 415	Ala
45	His	Glu	Ile	His 420	Lys	Leu	Gln	Ala	Ala 425	Gly	Lys	Val	Ala	Phe 430	Val	Gly
50	Asp	Gly	Ile 435	Asn	Asp	Ala	Pro	Ala 440	Leu	Ser	Val	Ala	Asp 445	Val	Gly	Ile
	Ala	Met 450	Gly	Ala	GJÀ	Thr	Asp 455	Ile	Ala	Ile	Glu	Ser 460	Ala	Asp	Leu	Val
5 5 _.	Leu 465	Thr	Thr	Asn	Asn	Leu 470	Leu	Gly	Val	Val	Arg 475	Ala	Phe	Asp	Met	Ser 480
	Lys	Lys	Thr	Phe	His 485	Arg	Ile	Leu	Leu	Asn 490	Leu	Phe	Trp	Ala	Phe 495	Ile
60	Tyr	Asn	Val	Val 500	Gly	Ile	Pro	Ile	Ala 505	Ala	Gly	Val	Phe	Ser 510	Gly	Val

-293-

Gly Trp Leu Ser Thr Gln Ile Gly Lys Ala Ser Pro Met 520 5 (2) INFORMATION FOR SEQ ID NO:201: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 362 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant
(D) TOPOLOGY: not relevant 10 (ii) MOLECULE TYPE: peptide 15 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO 20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:201: Asn Asp Ile Ile Glu Phe Met Asp Lys Asn Lys Ile Met Gly Leu Thr 25 Gln Arg Glu Val Lys Glu Arg Gln Ala Glu Gly Leu Val Asn Asp Phe Thr Ala Ser Ala Ser Thr Ser Thr Trp Gln Ile Val Lys Arg Asn Val 30 Phe Thr Leu Phe Asn Ala Leu Asn Phe Ala Ile Ala Leu Ala Leu Ala Phe Val Gln Ala Trp Ser Asn Leu Val Phe Phe Ala Val Ile Cys Phe 35 Asn Ala Phe Ser Gly Ile Val Thr Glu Leu Arg Ala Lys His Met Val 40 Asp Lys Leu Asn Leu Met Thr Lys Glu Lys Val Lys Thr Ile Arg Asp Gly Gln Glu Val Ala Leu Asn Pro Glu Glu Leu Val Leu Gly Asp Val 45 Ile Arg Leu Ser Ala Gly Glu Gln Ile Pro Ser Asp Ala Leu Val Leu Glu Gly Phe Ala Glu Val Asn Glu Ala Met Leu Thr Gly Glu Ser Asp 50 Leu Val Gln Lys Glu Val Asp Gly Leu Leu Leu Ser Gly Ser Phe Leu 55 Ala Ser Gly Ser Val Leu Ser Gln Val His His Val Gly Ala Asp Asn 185 Tyr Ala Ala Lys Leu Met Leu Glu Ala Lys Thr Val Lys Pro Ile Asn 60

Ser Arg Ile Met Lys Ser Leu Asp Lys Leu Ala Gly Phe Thr Gly Lys

-294-

		210					215					220				
5	Ile 225	Ile	Ile	Pro	Phe	Gly 230	Leu	Ala	Leu	Leu	Leu 235	Gl u	Ala	Leu	Leu	Leu 240
,	Lys	Gly	Leu	Pro	Leu 245	Lys	Ser	Ser	Val	Val 250	Asn	Ser	Ser	Thr	Ala 255	Leu
10	Leu	Gly	Met	Leu 260	Pro	Lys	Gly	Ile	Ala 265	Leu	Leu	Thr	Ile	Thr 270	Ser	Leu
	Leu	Thr	Ala 275	Val	Ile	Lys	Leu	Gly 280	Leu	Lys	Lys	Val	Leu 285	Val	Gln	Glu
15	Met	Tyr 290	Ser	Val	Glu	Thr	Leu 295	Ala	Arg	Val	Asp	Met 300	Leu	Суз	Leu	Asp
20	Lys 305	Thr	Gly	Thr	Ile	Thr 310	Gln	Gly	Lys	Met	Gln 315	Val	Glu	Ala	Val	Leu 320
	Pro	Leu	Thr	Glu	Thr 325	Tyr	Gly	Glu	Glu	Ala 330	Ile	Ala	Ser	Ile	Leu 335	Thr
25	Ser	Tyr	Met	Ala 340	His	Ser	Glu	Asp	Lys 345	Asn	Pro	Thr	Ala	Gln 350	Ala	Ile
	Arg	Gln	Arg 355	Leu	Trp	Glu	Met	Leu 360	Leu	Ile						
30	(2) INFO	RMAT:	ION 1	FOR :	SEQ I	ID NO	20:20	2:								
35	(i)	(B)) LEI) TY!) ST!	NGTH PE: 8	: 243 amino EDNE:	TERIS ami ac: SS: 1	ino a id not :	acid: rele								
	(ii)	MOL	ECUL	E TY	PE: 1	pept:	ide									
40	(iii)	нүрс	OTHE!	ricai	L: NO	0										
	(iv)	ANT	I-SEI	NSE:	МО											
45	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	202	•					
	Ala 1	Ser	Asn	Ile	Met 5	Phe	Met	Leu	Asp	Leu 10	Gly	Asn	His	Leu	Asp 15	Gln
50	Trp	Ser	Leu	Lys 20	Lys	Thr	Ala	Thr	Asp 25	Leu	Glu	Gln	Ser	Leu 30	Leu	Ala
55	Lys	Glu	Ser 35	Asp	Val	Phe	Leu	Val 40	Gln	Gly	Asp	Thr	Val 45	Val	Ser	Ile
<i></i>	Lys	Ser 50	Ser	Asp	Val	Gln	Ile 55	Gly	Asp	Val	Leu	Ile 60	Leu	Ser	Gln	G1 y
60	Asn 65	Glu	Ile	Leu	Phe	Asp 70	Gly	Ġln	Val	Val	Ser 75	Gly	Leu	Gly	Met	Val 80

-295-

	Asn	Glu	Ser	Ser	Leu 85	Thr	Gly	Glu	Ser	Phe 90	Pro	Val	Glu	Lys	Arg 95	Glu
5	Ser	Asp	Leu	Val 100	Cys	Ala	Asn	Thr	Val 105	Leu	Glu	Thr	Gly	Glu 110	Leu	Arg
	Ile	Arg	Val 115	Thr	Asp	Asn	Gln	Met 120	Asn	Ser	Arg	Ile	Leu 125	Gln	Leu	Ile
10	Glu	Leu 130	Met	Lys	Lys	Ser	Glu 135	Glu	Asn	Lys	Lys	Thr 140	Lys	Gln	Arg	Туг
15	Phe 145	Ile	Lys	Met	Ala	Asp 150	Lys	Val	Val	Lys	Tyr 155	Asn	Phe	Leu	Gly	Ser 160
13	Gly	Leu	Thr	Tyr	Leu 165	Leu	Thr	Gly	Ser	Phe 170	Ser	Lys	Ala	Ile	Ser 175	Phe
20	Leu	Leu	Val	Asp 180	Phe	Ser	Суз	Ala	Leu 185	Lys	Ile	Ser	Thr	Pro 190	Val	Ala
	Tyr	Leu	Thr 195	Val	Ile	Lys	Val	Gly 200	Leu	Asn	Arg	Glu	Met 205	Val	Ile	Lys
25	Asp	Gly 210	Asp	Val	Leu	Glu	Lys 215	Tyr	Leu	Val	Val	Asp 220	Thr	Phe	Leu	Phe
30	Asp 225	Lys	Thr	Gly	Pro	11e 230	Thr	Thr	Ser	Tyr	Pro 235	Ile	Val	Glu	Lys	Val 240
	Tyr	Pro	Leu													
35	(2) INFO	RMAT	CON I	FOR S	SEQ 3	ID NO	203	3:								
	. (i)	(A)	LEN TYI	NGTH:	: 30°	TERIS 7 ami o aci	ino a id	cids								
40						SS: r			vant							
	(ii)	MOLI	ECULI	E TYI	PE: p	pepti	ide									
45	(iii)	HYPO	OTHE	ricai	L: NO											
	(iv)	ANT	(-SE)	NSE:	NO											
50	(xi)	SEQ	JENCI	E DES	SCRII	PTIO	V: SI	EQ II	ONO:	203	:					
	Lys 1	Gln	Ile	Glu	Val 5	Val	Asp	Lys	Asp	Asn 10	Lys	Ser	Glu	Thr	Ala 15	Glu
55	Ala	Ala	Ser	Val 20	Thr	Thr	Asn	Leu	Val 25	Thr	Gln	Ser	Lys	Val 30	Ser	Ala
	Val	Val	Gly 35	Pro	Ala	Thr	Ser	Gly 40	Ala	Thr	Ala	Ala	Ala 45	Val	Ala	Asn
60	Ala	Thr 50	Lys	Ala	Gly	Val	Pro 55	Leu	Ile	Ser	Pro	Ser 60	Ala	Thr	Gln	Asp

-296-

		Gly 65	Leu	Thr	Lys	Gly	Gln 70	Asp	Tyr	Leu	Phe	Ile 75	Gly	Thr	Phe	Gln	Asp 80
5		Ser	Phe	Gln	Gly	Lys 85	Ile	Ile	Ser	Asn	Tyr 90	Val	Ser	Glu	Lys	Leu 95	Asn
10		Ala	Lys	Lys	Val 100	Val	Leu	Tyr	Thr	Asp 105	Asn	Ala	Ser	Asp	Tyr 110	Ala	Lys
10		Gly	Ile	Ala 115	Lys	Ser	Phe	Arg	Glu 120	Ser	Tyr	Lys	Gly	Glu 125	Ile	Val	Ala
15		Asp	Glu 130	Thr	Phe	Val	Ala	Gly 135	Asp	Thr	Asp	Phe	Gln 140	Ala	Ala	Leu	Thr
		Lys 145	Met	Lys	Gly	Lys	Asp 150	Phe	Asp	Ala	Ile	Val 155	Val	Pro	Gly	Tyr	Tyr 160
20		Asn	Glu	Ala	Gly	Lys 165	Ile	Val	Asn	Gln	Ala 170	Arg	Gly	Met	Gly	Ile 175	Asp
25		Lys	Pro	Ile	Val 180	Gly	Gly	Asp	Gly	Phe 185	Asn	Gly	Glu	Glu	Phe 190	Val	Gln
		Gln	Ala	Thr 195	Ala	Glu	Lys	Ala	Ser 200	Asn	Ile	Tyr	Phe	Ile 205	Ser	Gly	Phe
30		Ser	Thr 210	Thr	Val	Glu	Val	Ser 215	Ala	Lys	Ala	Lys	Ala 220	Phe	Leu	Asp	Ala
		Tyr 225	Arg	Ala	Lys	Tyr	Asn 230	Glu	Glu	Pro	Ser	Thr 235	Phe	Ala	Ala	Leu	Ala 240
35		Tyr	Asp	Ser	Val	His 245	Leu	Val	Ala	Asn	Ala 250	Ala	Lys	Gly	Ala	Lys 255	Asn
40		Ser	Gly	Glu	11e 260	Lys	Asn	Asn	Leu	Ala 265	Lys	Thr	Lys	Asp	Phe 270	Glu	Gly
		Val	Thr	Gly 275	Gln	Thr	Ser	Phe	Asp 280	Ala	Asp	His	Asn	Thr 285	Val	Lys	Thr
45		Ala	Tyr 290	Met	Met	Thr	Met	Asn 295	Asn	Gly	Lys	Val	Glu 300	Ala	Ala	Glu	Val
		Val 305	Lys	Pro													
50	(2)	INFO	TAMS	ON I	FOR S	SEQ 1	D NO	:204	l:								
55		(i)	(B)	JENCE LEN TYE STE	IGTH: PE: a RANDI	289 amino EDNES	ami aci SS: r	no a d not r	cids								
		(ii)	MOLE	CULE	E TYE	?E: p	epti	.de									

60 (iii) HYPOTHETICAL: NO

-297-

(iv) ANTI-SENSE: NO

5	(xi)	SEQ	UENC:	E DES	SCRI	PTIO	N: S	EQ I	D NO	:204	:					
J	Met 1	Leu	Gln	Gln	Leu 5	Val	Asn	Gly	Leu	Ile 10	Leu	Gly	Ser	Val	Tyr 15	Ala
10	Leu	Leu	Ala	Leu 20	Gly	Tyr	Thr	Met	Val 25	Tyr	Gly	Ile	Ile	Lys 30	Leu	Ile
	Asn	Phe	Ala 35	His	Gly	Asp	Ile	Tyr 40	Met	Met	Gly	Ala	Phe 45	Ile	Gly	Tyr
15	Phe	Leu 50	Ile	Asn	Ser	Phe	Gln 55	Met	Asn	Phe	Phe	Val 60	Ala	Leu	Ile	Val
20	Ala 65	Met	Leu	Ala	Thr	Ala 70	Ile	Leu	Gly	Val	Val 75	Ile	Glu	Phe	Leu	Ala 80
	Tyr	Arg	Pro	Leu	Arg 85	His	Ser	Thr	Arg	Ile 90	Ala	Val	Leu	Ile	Thr 95	Ala
25	Ile	Gly	Val	Ser 100	Phe	Leu	Leu	Glu	Tyr 105	Gly	Met	Val	Tyr	Leu 110	Val	Gly
	Ala	Asn	Thr 115	Arg	Ala	Phe	Pro	Gln 120	Ala	Ile	Gln	Thr	Val 125	Arg	Tyr	Asp
30	Leu	Gly 130	Pro	Ile	Ser	Leu	Thr 135	Asn	Val	Gln	Leu	Met 140	Ile	Leu	Gly	Ile
35	Ser 145	Leu	Ile	Leu	Met	Ile 150	Leu	Leu	Gln	Val	Ile 155	Val	Gln	Lys	Thr	Lys 160
	Met	Gly	Lys	Ala	Met 165	Arg	Ala	Val	Ser	Val 170	Asp	Ser	Asp	Ala	Ala 175	Gln
40	Leu	Met	Gly	Ile 180	Asn	Ile	Asn	Arg	Thr 185	Ile	Ser	Phe	Thr	Phe 190	Ala	Leu
	Gly	Ser	Ala 195	Leu	Ala	Gly	Ala	Ala 200	Gly	Val	Leu	Ile	Ala 205	Leu	Tyr	Tyr
4 5	Asn	Ser 210	Leu	Glu	Pro	Leu	Met 215	Gly	Val	Thr	Pro	Gly 220	Leu	Lys	Ser	Phe
50	Val 225	Ala	Ala	Val	Leu	Gly 230	Gly	Ile	Gly	Ile	Ile 235	Pro	Gly	Ala	Ala	Leu 240
	Gly	Gly	Phe	Val	11e 245	Gly	Leu	Leu	Glu	Thr 250	Phe	Ala	Thr	Ala	Phe 255	Gly
55	Met	Ser	Asp	Phe 260	Arg	Asp	Ala	Ile	Val 265	Tyr	Gly	Ile	Leu	Leu 270	Leu	Ile
	Leu	Ile	Val 275	Arg	Pro	Ala	Gly	Ile 280	Leu	Gly	Lys	Asn	Val 285	Lys	Glu	Lys
50	Val															

-298-

	(2) INFO	RMATION	FOR	SEQ	ID N	0:20	5:								
5	(i)	SEQUENC (A) LE (B) TY (C) ST (D) TO	NGTH PE: RAND	: 10 amin EDNE	6 am o ac SS:	ino id not	acid rele								
10	(ii)	MOLECUL	E TY	PE: 1	pept.	ide									
	(iii)	нүротне	TICA	L: N	0										
15	(iv)	ANTI-SE	NSE:	NO											
	(xi)	SEQUENC	E DE	SCRI	PTIO	N: S	EQ I	ои о	:205	:					
20	Ser 1	Gln Asp	Gln	Thr 5	Trp	Tyr	Ala	Leu	Ala 10	Tyr	Asp	Gly	Ala	Glu 15	Va.
	Ile	Gly Phe	Leu 20	Thr	Val	Gln	Glu	Thr 25	Leu	Phe	Glu	Ala	Glu 30	Val	Le
25	Gln	Ile Ala 35	Val	Lys	Gly	Ala	Tyr 40	Gln	Gly	Gln	Gly	Ile 45	Ala	Ser	Ala
30	Leu	Phe Ala 50	Gln	Leu	Pro	Thr 55	Asp	Lys	Glu	Ile	Phe 60	Leu	Glu	Val	Ar
	Gln 65	Ser Asn	Gln	Arg	Ala 70	Gln	Ala	Phe	Tyr	Lys 75	Lys	Glu	Lys	Met	Ala 80
35	Val	Ile Ala	Glu	Arg 85	Lys	Ala	Tyr	Tyr	His 90	Asp	Pro	Val	Glu	Asp 95	Ala
	Ile	Ile Met	Lys 100	Arg	Glu	Ile	Asp	Glu 105	Gly						
40	(2) INFO	RMATION :	FOR S	SEQ 1	ED NO	0:20	6:								
45	(i)	SEQUENCE (A) LEI (B) TYE (C) STE (D) TOE	NGTH:	: 45 amino EDNES	amin o aci	no ad id not i	cids relev	vant							
	(ii)	MOLECUL	E TYI	PE: Ţ	ept	ide									
50	(iii)	HYPOTHE	ricai	L: NO)										
	(iv)	ANTI-SE	NSE:	NO											
55	(xi)	SEQUENC	E DES	SCRI	OITS	1: SI	EQ II	ON C	206	:					
	Lys 1	Thr Leu	Lys	Gly 5	His	Gly	Gln	Phe	Leu 10	His	Ala	Lys	Thr	Leu 15	Gly
60	Phe	Thr His	Pro	Arg	Thr	Gly	Lys	Thr	Leu	Glu	Phe	Lys	Ala	Asp	Ile

PCT/US97/22578 WO 98/26072

-299-

	Pro	Glu	Ile 35	Phe	Lys	Glu	Thr	Leu 40	Glu	Arg	Leu	Arg	Lys 45			
5	(2) INFO	RMATI	ON E	FOR S	EQ I	D NC	:207	':								
10	(i)	(B)	JENCE LEN TYI STI TOI	IGTH: PE: a VANDE	163 mino DNES	ami aci S: r	.no a .d .ot r	cids elev								
	(ii)	MOLE	ECULE	E TYP	e: p	epti	.de									
15	(iii)	HYPO	THE1	CAI	.: NC											
	(iv)	ANT	-SEN	ISE:	ИО											
20	(xi)	SEQ	JENCI	E DES	CRIE	OITS	l: SI	EQ II	NO:	207 :	:					
	Arg 1	Glu	Met	Val	Val 5	His	Pro	Ser	Ala	Gly 10	His	Thr	Ser	Gly	Thr 15	Leu
25	Val	Asn	Ala	Leu 20	Met	Tyr	His	Ile	Lys 25	Asp	Leu	Ser	Gly	Ile 30	Asn	Gly
2.0	Val	Leu	Arg 35	Pro	Gly	Ile	Val	His 40	Arg	Ile	Asp	Lys	Asp 45	Thr	Ser	Gly
30	Leu	Leu 50	Met	Ile	Ala	Lys	Asn 55	Asp	Asp	Ala	His	Leu 60	Val	Leu	Ala	Gln
35	Glu 65	Leu	Lys	Asp	Lys	Lys 70	Ser	Leu	Arg	Lys	Tyr 75	Trp	Ala	Ile	Val	His 80
	Gly	Asn	Leu	Pro	Asn 85	Asp	Arg	Gly	Val	Ile 90	Glu	Ala	Pro	Ile	Gly 95	Arg
40	Ser	Glu	Lys	Asp 100	Arg	Lys	Lys	Gln	Ala 105	Val	Thr	Ala	Lys	Gly 110	Lys	Pro
45	Ala	Val	Thr 115	Arg	Phe	His	Val	Leu 120	Glu	Arg	Phe	Gly	Asp 125	Tyr	Ser	Leu
45	Val	Glu 130	Leu	Gln	Leu	Glu	Thr 135	Gly	Arg	Thr	His	Gln 140	Ile	Arg	Val	His
50	Met 145	Ala	Tyr	Ile	Gly	His 150	Pro	Val	Ala	Gly	Asp 155	Glu	Val	Tyr	Gly	Pro 160
	Ala	Arg	Leu													
55	(2) INFO	RMAT	ION	FOR	SEQ	ID N	0:20	8:								
	(i)	(B) LE	NGTH PE:	: 22 amin	4 am o ac	ino id	acid							·	
60		•) ST													

-300-

•	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
	(iii)															
5	(iv)	ANT	I-SE	NSE:	NO											
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:208	:					
10										Asp		Ile	Asn	Leu		Val
15		Glu	Arg	Asp 20		Ile	Ala	Leu		10 Gly	Lys	Asn	Gly		15 Gly	Lys
	Ser	Thr	Leu 35		Lys	Ile	Leu		25 Gly	Glu	Glu	Glu		30 Thr	Ser	Gly
20	Glu	Ile 50		Lys	Lys	Lys		40 Ile	Ser	Leu	Ser		45 Leu	Ala	Gln	Asp
	Ser	Arg	Phe	Glu	Ser	Glu	55 Asn	Thr	Ile	Tyr		60 Glu	Met	Leu	His	Val
25	65 Ph.o.	·7 a.p.	200	T 0.11	3	70	m b	01			75	_				80
	rne	Asn	ASP	Leu	85	Arg	Thr	GIU	Arg	90	Leu	Arg	GIn	Met	Glu 95	Leu
30	Glu	Met	Gly	Glu 100	Lys	Ser	Gly	Glu	Asp 105	Leu	Asp	Lys	Leu	Met 110	Ser	Asp
	Tyr	Asp	Arg 115	Leu	Ser	Glu	Asn	Phe 120	Arg	Gln	Ala	Gly	Gly 125	Phe	Thr	Tyr
35	Glu	Ala 130	Asp	Ile	Arg	Ala	Ile 135	Leu	Asn	Gly	Phe	Lys 140	Phe	Asp	Glu	Ser
40	Met 145	Trp	Gln	Met	Lys	Ile 150	Ala	Glu	Leu	Ser	Gly 155	Gly	Gln	Asn	Thr	Arg 160
-0	Leu	Ala	Leu	Ala	Lys 165	Met	Leu	Leu	Glu	Lys 170	Pro	Asn	Leu	Leu	Val 175	Leu
45	Asp	Glu	Pro	Thr 180	Asn	His	Leu	Asp	Ile 185	Glu	Thr	Ile	Ala	Trp 190	Leu	Glu
	Asn	Tyr	Leu 195	Val	Asn	Tyr	Ser	Gly 200	Alā	Leu	Ile	Ile	Val 205	Ser	His	Asp
50	Arg	Tyr 210	Phe	Leu	Asp	Lys	Val 215	Ala	Thr	Ile	Thr	Leu 220	Asp	Leu	Thr	Ser
55	(2) INFOR	ITAMS	ON E	OR S	EQ I	D NC	- 209):								•
J.)	(i)		LEN	GTH:	192	ami	no a	: cids	;							
50		(C)	STF	ANDE	mino DNES Y: n	S: n	ot r	elev	ant							

-301-

	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
	(iii)	HYP	OTHE	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	NO											
		•														
10	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:209	:					
	Ser 1	Thr	Thr	His	His 5	Leu	Leu	Val	Lys	Lys 10	Val	Asn	Gly	Leu	Leu 15	Val
15	Arg	Trp	Lys	Asn 20	Ala	Cys	Arg	Gln	Asn 25	Cys	Lys	Gln	Thr	Phe 30	Xaa	Phe
20	Val	Leu	Thr 35	Gln	Leu	Ile	His	Ala 40	Asp	Lys	Trp	Thr	Val 45	Ser	Gly	Arg
	Gly	Glu 50	Leu	His	Leu	Ser	Ile 55	Leu	Ile	Glu	Thr	Met 60	Arg	Arg	Glu	Gly
25	Tyr 65	Glu	Leu	Gln	Val	Ser 70	Arg	Pro	Glu	Val	Ile 75	Val	Lys	Glu	Ile	Asp 80
	Gly	Val	Lys	Cys	Glu 85	Pro	Phe	Glu	Arg	Val 90	Gln	Ile	Asp	Thr	Pro 95	Glu
30	Glu	Tyr	Gln	Gly 100	Ser	Val	Ile	Gln	Ser 105	Leu	Ser	Glu	Arg	Lys 110	Gly	Glu
35	Met	Leu	Asp 115	Met	Ile	Ser	Thr	Gly 120	Asn	Gly	Gln	Thr	Arg 125	Leu	Val	Phe
33	Leu	Val 130	Pro	Ala	Arg	Gly	Leu 135	Xaa	Trp	Ile	Leu	Asn 140	Val	Leu	Val	Asn
40	Asp 145	Ser	Trp	Leu	Arg	Tyr 150	His	Glu	Pro	Tyr	Leu 155	Arg	Pro	Ile	Leu	Ala 160
	Ile	Asp	Ser	Arg	Gly 165	Asn	Trp	Trp	Thr	Ser 170	Pro	Trp	Cys	Pro	Cys 175	Phe
45	Tyr	Arg	Cys	Trp 180			Asn			Asn	Leu	Leu	Leu	Ser 190	Thr	Leu
50	(2) INFO	RMATI	EON I	FOR S	SEQ]	D NO	0:210):								
50	(i)	SEQU			ARACI				-							
55		(B)	TYI STI	PE: a	amino EDNES SY: r	aci SS: r	id 10t 1	relev								
	(ii)							ant			•					
C 0	(iii)				_	_										
60	(iv)	ANTI	-SE	ISE:	NO											

-302-

		(X1)	2 E O	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:210	:					
5		Met 1	Phe	Gly	Phe	Phe 5	Lys	Lys	Asp	Lys	Ala 10	Val	Glu	Val	Glu	Val 15	Pro
10		Thr	Gln	Val	Pro 20	Ala	His	Ile	Gly	Ile 25	Ile	Met	Asp	Gly	Asn 30	Gly	Arg
		Trp	Ala	Lys 35	Lys	Arg	Met	Gln	Pro 40	Arg	Val	Phe	Gly	His 45	Lys	Ala	Gly
15		Met	Glu 50	Ala	Leu	Gln	Thr	Val 55	Thr	Lys	Ala	Ala	Asn 60	Lys	Leu	Gly	Val
		Lys 65	Val	Ile	Thr	Val	Tyr 70	Ala	Phe	Ser	Thr	Glu 75	Asn	Trp	Thr	Arg	Pro 80
20		Asp	Gln	Glu	Val	Lys 85	Phe	Xaa	Met	Asn	Leu 90	Pro	Val	Glu	Phe	Tyr 95	Asp
25		Asn	Tyr	Val	Pro 100	Glu	Leu	His	Ala	Asn 105	Asn	Val	Lys	Ile	Gln 110	Met	Ile
		Gly	Glu	Thr 115	Asp	Arg	Leu	Pro	Lys 120	Gln	Thr	Phe	Glu	Ala 125	Leu	Thr	Lys
30		Ala	Glu 130	Glu	Leu	Thr	Lys	Asn 135	Asn	Thr	Gly	Leu	Ile 140	Leu	Asn	Phe	Ala
		Leu 145	Asn	Tyr	Gly	Gly	Arg 150	Ala	Glu	Ile	Thr	Gln 155	Ala	Leu	Lys	Leu	Ile 160
35						165				Ile	170					175	
40					180					Thr 185					190		
				195					200	Thr				205			
45			210					215		Tyr			220				
		225					230			Ala		235		Glu	Ala	Ile	Leu 240
50		Ala				245					Gly 250	Gly	Val				
	(2)	INFOR	ITAM	ON F	OR S	EQ I	D NC	:211	:								
55		(i)	(B) (C)	LEN TYP STR	GTH: E: a ANDE	RACT 67 mino DNES Y: n	amin aci S: n	o ac d ot r	ids elev	ant							
60		(111						V									

-303-

	(iii)	HYP	othe'	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	NO											
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:211	:					
10	Val 1	Glu	Gln	Lys	Leu 5	Arg	Gly	Arg	Asn	Glu 10	Asn	Glu	Ile	Gln	Ser 15	Gl
	Asp	Ile	Gly	Ser 20	Leu	Val	Met	Glu	Glu 25	Leu	Ala	Glu	Leu	Asp 30	Glu	Il
15	Thr	Tyr	Val 35	Arg	Phe	Ala	Ser	Val 40	Tyr	Arg	Ser	Phe	Lys 45	Asp	Val	Se
20	Glu	Leu 50	Glu	Ser	Leu	Leu	Gln 55	Gln	Ile	Thr	Gln	Ser 60	Ser	Lys	Lys	Ly
	Lys 65	Glu	Arg													
25	(2) INFO	RMAT:	ION I	FOR S	SEQ :	ID N	0:21	2:								
	(i)		JENCI) LEI) TYI	GTH:	75	ami	no a									
30		(C)	STI TOI	RANDI	EDNES	SS: 1	not :		vant							
	(ii)	MOLI	ECULI	E TY	E: p	pept:	ide									
35	(iii)	HYPO	THE	ricai	Z: NC)										
	(iv)	ANT	-sen	ISE:	NO											
40																
	(xi)															
45	Val 1	Asp	Ser	Arg	Gln 5	Ala	Glu	Glu	Gly	Asn 10	Thr	Ile	Arg	Arg	Arg 15	Arg
	Glu	Суз	Asp	Glu 20	Cys	Gln	His	Arg	Phe 25	Thr	Thr	Tyr	Glu	Arg 30	Val	Glu
50	Glu	Arg	Thr 35	Leu	Val	Val	Val	Lys 40	Lys	Asp	Gly	Thr	Arg 45	Glu	Gln	Phe
	Ser	Arg 50	Asp	Lys	Ile	Phe	Asn 55	Gly	Ile	Ile	Arg	Ser 60	Ala	Gln	Lys	Arg
55	Pro 65	Val	Ser	Ser	Asp	Glu 70	Ile	Asn	Met	Val	Ile 75					
	(2) INFOR	TAMS	ON E	OR S	EQ I	D NO	213	3:							•	
60	(i)	SEQU (A)	ENCE LEN													

-304-

		(C) ST	rand	EDNE	o ac SS: not	not			:						
5	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
	(iii)	HYP	OTHE'	TICA	L: N	0										
10	(iv)	ANT	I-SE	NSE:	NO											
	(xi)	SEQU	JENC!	E DE	SCRI	PTIO	N: S	EQ I	D NO	:213	:					
15	Phe 1	: Ala	Gln	Val	Pro 5	Lys	Val	Ala	Gln	Lys 10	Val	Met	Lys	Val	Thr 15	Lys
	Ala	Ala	Gly	Met 20	Asn	Ile	Ile	Ser	Asn 25	Cys	Glu	Glu	Val	Ala 30	Gly	Gln
20	Thr	Val	Phe 35	His	Thr	His	Val	His 40	Leu	Val	Pro	Arg	Tyr 45	Ser	Ala	Asp
25	Asp	Asp 50	Leu	Lys	Ile	Asp	Phe 55	Ile	Ala	His	Glu	Thr 60	Asp	Phe	Asp	
	Asp Asp Leu Lys Ile Asp Phe Ile Ala His Glu Thr Asp Phe Asp 50 55 60 (2) INFORMATION FOR SEQ ID NO:214: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 67 amino acids (B) TYPE: amino acid															
30	(i)	(A) (B) (C)	LEN TYI STI	NGTH: PE: a RANDE	: 67 amin EDNE:	ami	no a id not :	cids rele	vant							
2.5	(ii)	MOLE	CULE	E TYE	e: p	pept:	ide									
35	(iii)	НҮРО	THET	CAI	-: NO	5										
4.0	(iv)	ANTI	-SEN	ISE:	ИО											
40	(xi)	SEQU	ENCE	DES	CRI	PTION	1: SI	EQ II	ON C	214	:					
45	Met 1	Ser	Asp	Cys	Ile 5	Phe	Cys	Lys	Ile	Ile 10	Ala	Gly	Glu	Ile	Pro 15	Ala
	Ser	Lys	Val	Tyr 20	Glu	Asp	Glu	Gln	Val 25	Leu	Ala	Phe	Leu	Asp 30	Ile	Ser
50	Gln	Val	Thr 35	Leu	Gly	His	Thr	Leu 40	Val	Val	Pro	Lys	Glu 45	His	Tyr	Arg
	Asn	Leu 50	Leu	Glu	Met	Asp	Ala 55	Thr	Ser	Ala	Thr	Asn 60	Ser	Leu	Pro	Lys
55	Tyr 65	Gln :	Lys													
	(2) INFO	RMATI	ON F	or s	EQ I	D NO	:215	:								
60	(i)	SEQUI	ENCE LEN	CHA GTH:	RACT 212	ERIS ami	TICS .no a	: cids	;							

-305-

		(0) ST	RAND		ss:	id not rele									
5	(ii)	MOL	ECUL	Е ТҮ	PE:	pept	ide									
	(iii)	HYP	отне	TICA	L: N	0										
10	(iv)	ANT	I-SE	NSE:	МО											
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:215	:					
15	Ile 1	Gln	Ala	Val	Arg 5	Asp	Val	Ser	Phe	Glu 10	Val	Asn	Glu	Gly	Glu 15	Val
	Val	Ser	Leu	Ile 20	Gly	Ala	Asn	Gly	Ala 25	Gly	Lys	Thr	Thr	Ile 30	Leu	Arg
20	Thr	Leu	Ser 35	Gly	Leu	Val	Arg	Pro 40	Ser	Ser	Gly	Lys	Ile 45	Glu	Phe	Leu
25	Gly	Gln 50	Glu	Ile	Gln	Lys	Met 55	Pro	Ala	Gln	Lys	Ile 60	Val	Ala	Gly	Gly
	Leu 65	Ser	Gln	Val	Pro	Glu 70	Gly	Arg	His	Val	Phe 75	Pro	Gly	Leu	Thr	Val 80
30	Met	Glu	Asn	Leu	Glu 85	Met	Gly	Ala	Phe	Leu 90	Lys	Lys	Asn	Arg	Glu 95	Glu
	Asn	Gln	Ala	Asn 100	Leu	Lys	Lys	Val	Phe 105	Ser	Arg	Phe	Pro	Arg 110	Leu	Glu
35	Glu	Arg	Lys 115	Asn	Gln	Asp	Ala	Ala 120	Thr	Leu	Ser	Gly	Gly 125	Glu	Gln	Gln
40	Met	Leu 130	Ala	Met	Gly	Arg	Ala 135	Leu	Met	Ser	Thr	Pro 140	Lys	Leu	Leu	Leu
	Leu 145	Asp	Glu	Pro	Ser	Met 150	Gly	Leu	Ala	Pro	Ile 155	Phe	Ile	Gln	Glu	Ile 160
45	Phe	Asp	Ile	Ile	Gln 165	Asp	Ile	Gln	Lys	Gln 170	Gly	Thr	Thr	Val	Leu 175	Leu
	Ile	Glu	Gln	Asn 180	Ala	Ası	Lys	Ala	Leu 185	Ala	Ile	Ser	Asp	Arg 190	Gly	Tyr
50	Val	Leu	Glu 195	Gln	Gly	Asn	Arg	Leu 200	Ser	Gly	Thr	Gly	Lys 205	Asp	Ser	Leu
55	Ile	Arg 210	Gly	Val												
	(2) INFOR	MATI	ON F	OR S	EQ I	D NC	:216	i:								
60	(i)	(A)	LEN TYP	GTH: E: a	43 mino	amin aci	TICS to ac .d	ids	ant							

-306-

		(L) TO	POTO	GY:	not	rele	vant	•							
	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
5	(iii)	HYP	OTHE	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	МО											
10	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:216	:					
	Leu 1	Leu	Ser	Leu	Ile 5	Asp	Ile	Leu	Val	Asp 10	Gly	Arg	Tyr	Asp	Arg 15	Thr
15	Lys	Arg	Asn	Leu 20	Met	Leu	Gln	Phe	Arg 25	Gly	Ser	Ser	Asn	Gln 30	Arg	Ile
20	Ile	Asp	Ser 35	Arg	Gly	Ser	Pro	Gly 40	Thr	Glu	Leu					
	(2) INFO	RMAT	ION :	FOR :	SEQ	ID N	0:21	7:								
25	(i)	(A (B (C) LEI) TY:) STI	NGTH PE: a	: 13 emin EDNE:	TERI: 0 am 0 ac SS: 1	ino i id not	acid rele								
30	(ii)	MOL	ECUL	E TY	PE:]	pept:	ide									
30	(iii)	HYP	OTHE:	rica:	L: N	0										
	(iv)	ANT	I-SEI	NSE:	NO											
35	(xi)	SEQ	UENCI	E DES	SCRI	PTIO	1: S	EQ II	D NO	:217:	:					
40	Met 1	Asn	Asn	Pro	Lys 5	Pro	Gln	Glu	Trp	Lys 10	Ser	Glu	Glu	Leu	Ser 15	Gln
	Gly	Arg	Ile	Ile 20	Asp	Tyr	Lys	Ala	Phe 25	Asn	Phe	Val	Asp	Gly 30	Glu	Gly
45	Val	Arg	Asn 35	Ser	Leu	Tyr	Val	Ser 40	Gly	Cys	Met	Phe	His 45	Суз	Glu	Gly
	Cys	Tyr 50	Asn	Val	Ala	Thr	Trp 55	Ser	Phe	Asn	Ala	Gly 60	Ile	Pro	Tyr	Thr
50	Ala 65	Glu	Leu	Glu	Glu	Gln 70	Ile	Met	Ala	Asp	Leu 75	Ala	Gln	Pro	Tyr	Val 80
55	Gln	Gly	Leu	Thr	Leu 85	Leu	Gly	Gly	Glu	Pro 90	Phe	Leu	Asn	Thr	Gly 95	Ile
	Leu	Leu	Pro	Leu 100	Val	Lys	Arg	Ile	Arg 105	Lys	Glu	Leu	Pro	Asp 110	Lys	Asp
60	Ile	Trp	Ser 115	Trp	Thr	Gly	Tyr	Thr 120	Trp	Glu	Glu	Met	Ile 125	Pro	Gly	Asn

-307-

Ser Arg 130

60

(2) INFORMATION FOR SEQ ID NO:218: 5 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 126 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: not relevant 10 (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide (iii) HYPOTHETICAL: NO 15 (iv) ANTI-SENSE: NO (xi) SEQUENCE DESCRIPTION: SEQ ID NO:218: 20 Met Val Asn His Phe Arg Ile Asp Arg Val Gly Met Glu Ile Lys Arg Glu Val Asn Glu Ile Leu Gln Lys Lys Val Arg Asp Pro Arg Val Gln 25 Gly Val Thr Ile Thr Asp Val Gln Met Leu Gly Asp Leu Ser Val Ala 30 Lys Val Tyr Tyr Thr Ile Leu Ser Asn Leu Ala Ser Asp Asn Gln Lys Ala Gln Ile Gly Leu Glu Lys Ala Thr Gly Thr Ile Lys Arg Glu Leu 35 Gly Arg Asn Leu Lys Leu Tyr Xaa Ile Pro Asp Leu Thr Phe Val Lys Asp Glu Ser Ile Glu Xaa Gly Thr Lys Ile Asp Glu Met Leu Arg Asn 40 Leu Asp Lys Thr Lys Glu Glu Gly Val Ala Pro Leu Phe Trp 45 (2) INFORMATION FOR SEQ ID NO:219: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 267 amino acids (B) TYPE: amino acid 50 (C) STRANDEDNESS: not relevant (D) TOPOLOGY: not relevant (ii) MOLECULE TYPE: peptide 55 (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:219:

-308-

		Phe 1	His	His	Val	Thr 5	Val	Leu	Leu	His	Glu 10	Thr	Ile	Asp	Met	Leu 15	Asp
5		Val	Lys	Pro	Glu 20	Gly	Ile	Tyr	Val	Asp 25	Ala	Thr	Leu	Gly	Gly 30	Ala	Gly
		His	Ser	Glu 35	Tyr	Leu	Leu	Ser	Lys 40	Leu	Ser	⁻ Glu	Lys	Gly 45	His	Leu	Tyr
10		Ala	Phe 50	Asp	Gln	Asp	Gln	Asn 55	Ala	Ile	Asp	Asn	Ala 60	Gln	Lys	Arg	Leu
15		Ala 65	Pro	Tyr	Ile	Glu	Lys 70	Gly	Met	Val	Thr	Phe 75	Ile	Lys	Asp	Asn	Phe 80
		Arg	His	Leu	Gln	Ala 85	Arg	Leu	Arg	Glu	Ala 90	Gly	Val	Gln	Glu	Ile 95	Asp
20		Gly	Ile	Cys	Tyr 100	Asp	Leu	Gly	Val	Ser 105	Ser	Pro	Gln	Leu	Asp 110	Gln	Arg
		Glu	Arg	Gly 115	Phe	Ser	Tyr	Lys	Lys 120	Asp	Ala	Pro	Leu	Asp 125	Met	Arg	Met
25		Asn	Gln 130	Asp	Ala	Ser	Leu	Thr 135	Ala	Tyr	Glu	Val	Val 140	Asn	His	Tyr	Asp
30		Tyr 145	His	Asp	Leu	Val	Arg 150	Ile	Phe	Phe	Lys	Tyr 155	Gly	Glu	Asp	Lys	Phe 160
		Ser	Lys	Gln	Ile	Ala 165	Arg	Lys	Ile	Glu	Gln 170	Ala	Arg	Glu	Val	Lys 175	Pro
35		Ile	Glu	Thr	Thr 180	Thr	Glu	Leu	Ala	Glu 185	Ile	Ile	Lys	Leu	Val 190	Lys	Pro
		Ala	Lys	Glu 195	Leu	Lys	Lys	Lys	Gly 200	His	Pro	Ala	Lys	Gln 205	Ile	Phe	Gln
40		Ala	Ile 210	Arg	Ile	Glu	Val	Asn 215	Asp	Glu	Leu	Gly	Ala 220	Ala	Asp	Glu	Ser
45		Ile 225	Gln	Gln	Ala	Met	Asp 230	Met	Leu	Ala	Leu	Asp 235	Gly	Arg	Ile	Ser	Val 240
		Ile	Thr	Phe	His	Ser 245	Leu	Glu	Asp	Arg	Leu 250	Thr	Lys	Gln	Leu	Phe 255	Lys
50		Xaa	Ala	Ser	Thr 260	Val	Glu	Val	Pro	Lys 265	Gly	Leu					
	(2)	INFOR	ITAM	ON F	OR S	EQ I	D NO	:220) : .								
55		(i)	(B) (C)	LEN TYP STR	GTH: E: a ANDE	RACT 165 mino DNES Y: n	ami aci S: n	no a d ot r	cids								

60

(ii) MOLECULE TYPE: peptide

-309-

	(iii)	HYP	OTHE	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	NO											
5	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:220	:					
10	Leu 1	Met	His	Val	Thr 5	Val	Gly	Glu	Leu	Ile 10	Gly	Asn	Phe	Ile	Leu 15	Ile
	Thr	Gly	Ser	Phe 20	Ile	Leu	Leu	Leu	Val 25	Leu	Ile	Lys	Lys	Phe 30	Ala	Trp
15	Ser	Asn	Ile 35	Thr	Gly	Ile	Phe	Glu 40	Glu	Arg	Ala	Glu	Lys 45	Ile	Ala	Ser
	Asp	Ile 50	Asp	Arg	Ala	Glu	Glu 55	Ala	Arg	Gln	Lys	Ala 60	Glu	Val	Leu	Ala
20	Gln 65	Lys	Arg	Glu	Asp	Glu 70	Leu	Ala	Gly	Ser	Arg 75	Lys	Glu	Ala	Lys	Thr 80
25	Ile	Ile	Glu	Asn	Ala 85	Lys	Glu	Thr	Ala	Glu 90	Gln	Ser	Lys	Ala	Asn 95	Ile
23	Leu	Ala	Asp	Ala 100	Lys	Leu	Glu	Ala	Gly 105	His	Leu	Lys	Glu	Lys 110	Ala	Asn
30	Gln	Glu	Ile 115	Ala	Gln	Asn	Lys	Val 120	Glu	Ala	Leu	Gln	Ser 125	Val	Lys	Gly
	Glu	Val 130	Ala	Asp	Leu	Thr	Ile 135	Ser	Leu	Ala	Gly	Lys 140	Ile	Ile	Ser	Gln
35	Asn 145	Leu	Asp	Ser	His	Ala 150	His	Lys	Ala	Leu	Ile 155	Asp	Gln	Tyr	Ile	Asp 160
40	Gln	Leu	Gly	Glu	Ala 165											
40	(2) INFO	TAMS	ON F	OR S	EQ I	D NC	:221	. :								
45	(i)	(B) (C)	LEN TYP STR	GTH: E: a ANDE	629 mino DNES	ami aci S: n	no a	cids								
50	(ii)	MOLE	CULE	TYP	E: p	epti	.de									
	(iii)	НҮРО	THET	ICAL	: NO	ı										
	(iv)	ANTI	-SEN	SE:	NO											
55	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	221:						
60		Gln							Ile		Ser	Leu	Leu	Glu	Thr 15	Ser
60	Ile	Leu	Ser	Ile	His	Gly	Leu	Gly	Pro	Leu	Thr	Lys	Arg	Phe		Val

-310-

				20					25					30			
5	Ala	Leu	Glu 35	His	His	His	Met	Ala 40	Asn	Туг	: Asp	Ala	Glu 45	a Ala	a Thi	Gly	
•	Arg	Leu 50	Leu	Phe	Ile	Phe	Ile 55	Lys	Glu	Val	. Ala	Glu 60	Lys	His	Gly	/ Val	
10	Thr 65	Asp	Leu	Ala	Arg	Leu 70	Asn	Ile	Asp	Leu	Ile 75	Ser	Pro	Asp	Ser	Tyr 80	
	Lys	Lys	Ala	Arg	Ile 85	Lys	His	Ala	Thr	Ile 90	Tyr	Val	Lys	Asn	95	Val	
15	Gly	Leu	Lys	Asn 100	Ile	Phe	Lys	Leu	Val 105		Leu	Ser	Asn	Thr 110		Tyr	
20	Phe	Glu	Gly 115	Val	Ser	Arg	Ile	Pro 120	Arg	Thr	Val	Leu	Asp 125		His	Arg	
	Glu	Gly 130	Leu	Ile	Leu	Gly	Ser 135	Ala	Cys	Ser	Glu	Gly 140	Glu	Val	Phe	Asp	
25	145					150					Val 155					160	
					165					170	Ile				175	•	
30				180					185		Leu			190			
35	Ser	Leu	Ile 195	Glu	Val	Gly	Asp	Arg 200	Leu	Gly	Lys	Pro	Val 205	Leu	Ala	Thr	
	Gly	Asn 210	Val	His	Tyr	Ile	Glu 215	Pro	Glu	Glu	Glu	Ile 220	Tyr	Arg	Glu	Ile	
40	Ile 225	Val	Arg	Ser	Leu	Gly 230	Gln	Gly	Ala	Met	Ile 235	Asn	Arg	Thr	Ile	Gly 240	
	His	Gly	Glu	His	Ala 245	Gln	Pro	Ala	Pro	Leu 250	Pro	Lys	Ala	His	Phe 255	Arg	
45	Thr	Thr	Asn	Glu 260	Met	Leu	Asp	Glu	Phe 265		Phe	Leu	Gly	Glu 270		Leu	
50	Ala	Arg	Lys 275	Leu	Val	Ile	Glu	Asn 280	Thr	Asn	Ala	Leu	Ala 285	Glu	Ile	Phe	
	Glu	Pro 290	Val	Glu	Val	Val	Lys 295	Gly	Asp	Leu	Tyr	Thr 300	Pro	Phe	Ile	Asp	
55	Lys 305	Ala	Glu	Glu	Thr	Val 310	Ala	Glu	Leu	Thr	Tyr 315	Lys	Lys	Ala	Phe	Glu 320	
	Ile	Tyr	Gly	Asn	Pro 325	Leu	Pro	Asp	Ile	Val 330	Asp	Leu	Arg	Ile	Glu 335	Lys	
60	Glu	Leu	Thr	Ser 340	Ile	Leu	Gly	Asn	Gly 345	Phe	Ala	Val	Ile	Tyr 350	Leu	Ala	

-311-

		Ser	Gln	Met 355	Leu	Val	Gln	Arg	Ser 360		Glu	Arg	Gly	Tyr 365		Val	Gly
5		Ser	Arg 370	Gly	Ser	Val	Gly	Ser 375	Ser	Phe	Val	Ala	Thr 380		Ile	Gly	Ile
10		385					390					395				_	Gln 400
		Tyr	Ser	Glu	Phe	Ile 405	Thr	Asp	Gly	Ser	Tyr 410	Gly	Ser	Gly	Phe	Asp 415	
15		Pro	His	Lys	Asp 420	Cys	Pro	Asn	Cys	Gly 425	His	Lys	Leu	Ser	Lys 430	Asn	Gly
		Gln	Asp	Ile 435	Pro	Phe	Glu	Thr	Phe 440	Leu	Gly	Phe	Asp	Gly 445	Asp	Lys	Val
20		Pro	Asp 450	Ile	Asp	Leu	Asn	Phe 455	Ser	Gly	Glu	Asp	Gln 460	Pro	Ser	Ala	His
25		Leu 465	Asp	Val	Arg	Asp	Ile 470	Phe	Gly	Glu	Glu	Tyr 475	Ala	Phe	Arg	Ala	Gly 480
		Thr	Val	Gly	Thr	Val 485	Ala	Ala	Lys	Thr	Ala 490	Tyr	Gly	Phe	Val	Lys 495	Gly
30		Tyr	Glu	Arg	Asp 500	Tyr	Gly	Lys	Phe	Tyr 505	Arg	Asp	Ala	Glu	Val 510	Glu	Arg
		Leu	Ala	Gln 515	Gly	Ala	Ala	Gly	Val 520	Lys	Arg	Thr	Thr	Gly 525	Gln	His	Pro
35		Gly	Gly 530	Ile	Val	Val	Ile	Pro 535	Asn	Tyr	Met	Asp	Val 540	Tyr	Asp	Phe	Thr
40		Pro 545	Val	Gln	Tyr	Pro	Ala 550	Asp	Asp	Val	Thr	Ala 555	Glu	Trp	Gln	Thr	Thr 560
		His	Phe	Asn	Phe	His 565	Asp	Ile	Asp	Glu	Asn 570	Val	Leu	Lys	Leu	Asp 575	Val
45		Leu	Gly	His	Asp 580	Asp	Pro	Thr	Met	Ile 585	Arg	Lys	Leu	Gln	Asp 590	Leu	Ser
		Gly	Ile	Asp 595	Pro	Asn	Lys	Ile	Pro 600	Met	Asp	Asp	Glu	Gly 605	Val	Met	Ala
50		Leu	Phe 610	Ser	Gly	Thr	Asp	Val 615	Leu	Gly	Val		Pro 620	Glu	Gln	Ile	Gly
55		Thr 625	Leu	Arg	Val	Cys											
	(2)	INFOR	MATI	ON F	OR S	EQ I	D NO	:222	:								
60		(i)	(A) (B)	LEN TYP	GTH: E: a	693 mino	ERIS ami aci S: n	no a d	cids								

-312-

		(D) TO	POLC	GY:	not	rele	vant	:							
	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
5	(iii)	HYP	отне	TICA	L: N	0										
	(iv)	ANT	I-SE	NSE:	NO											
10																
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:222	:					
15	Met 1	Ala	Arg	Glu	Phe 5	Ser	Leu	Glu	Lys	Thr 10	Arg	Asn	Ile	Gly	7 Ile 15	: Me
	Ala	His	Val	Asp 20	Ala	Gly	Lys	Thr	Thr 25	Thr	Thr	Glu	Arg	Ile 30	Leu	Ту
20	Tyr	Thr	Gly 35	Lys	Ile	His	Lys	Ile 40	Gly	Glu	Thr	His	Glu 45	Gly	Ala	Se
25	Gln	Met 50	Asp	Trp	Met	Glu	Gln 55	Glu	Gln	Glu	Arg	Gly 60	Ile	Thr	Ile	Th
	Ser 65	Ala	Ala	Thr	Thr	Ala 70	Gln	Trp	Asn	Asn	His 75	Arg	Val	Asn	Ile	I1 80
30	Asp	Thr	Pro	Gly	His 85	Val	Asp	Phe	Thr	Ile 90	Glu	Val	Gln	Arg	Ser 95	Le
	Arg	Val	Leu	Asp 100	Gly	Ala	Val	Thr	Val 105	Leu	Asp	Ser	Gln	Ser 110	Gly	Va.
35	Glu	Pro	Gln 115	Thr	Glu	Thr	Val	Trp 120	Arg	Gln	Ala	Thr	Glu 125	Tyr	Gly	Va:
40	Pro	Arg 130	Ile	Val	Phe	Ala	Asn 135	Lys	Met	Asp	Lys	Ile 140	Gly	Ala	Asp	Pho
	Leu 145	Tyr	Ser	Val	Ser	Thr 150	Leu	His	Asp	Arg	Leu 155	Gln	Ala	Asn	Ala	Hi:
45	Pro	Ile	Gln	Leu	Pro 165	Ile	Gly	Ser	Glu	Asp 170	Asp	Phe	Arg	Gly	Ile 175	Ile
	Asp	Leu	Ile	Lys 180	Met	Lys	Ala	Glu	Ile 185	Tyr	Thr	Asn	Asp	Leu 190	Gly	Thi
50	Asp	Ile	Leu 195	Glu	Glu	Asp	Ile	Pro 200	Ala	Glu	Tyr	Leu	Asp 205	Gln	Ala	Gln
55	Glu	Tyr . 210	Arg	Glu	Lys	Leu	Ile 215	Glu	Ala	Val	Ala	Glu 220	Thr	Asp	Glu	Glu
	Leu : 225	Met 1	Met	Lys	Tyr	Leu 230	Glu	Gly	Glu	Glu	Ile 235	Thr	Asn	Glu	Glu	Leu 240
60	Lys	Ala	Gly	Ile	Arg 245	Lys	Ala	Thr	Ile	Asn 250	Val	Glu	Phe	Phe	Pro 255	Val

-313-

	Leu	Cys	Gly	Ser 260		Phe	Lys	Asn	Lys 265		Val	Gln	Leu	Met 270	Leu	As
5	Ala	Val	Ile 275		Tyr	Leu	Pro	Ser 280		Leu	Asp	Ile	Pro 285	Ala	Ile	Ly
	Gly	Ile 290	Asn	Pro	Asp	Thr	Asp 295		Glu	Glu	Ile	Arg 300		Ala	Ser	As
10	Glu 305	Glu	Pro	Phe	Ala	Ala 310	Leu	Ala	Phe	Lys	Ile 315		Thr	Asp	Pro	Ph 32
15	Val	Gly	Arg	Leu	Thr 325	Phe	Phe	Arg	Val	Tyr 330	Ser	Gly	Val	Leu	Gln 335	Se
	Gly	Ser	Tyr	Val 340	Leu	Asn	Thr	Ser	Lys 345	Gly	Lys	Arg	Glu	Arg 350	Ile	G1
20	Arg	Ile	Leu 355	Gln	Met	His	Ala	Asn 360	Ser	Arg	Gln	Glu	Ile 365	Asp	Thr	Va.
	Tyr	Ser 370	Gly	Asp	Ile	Ala	Ala 375	Ala	Val	Gly	Leu	Lys 380	Asp	Thr	Thr	Th:
25	Gly 385	Asp	Ser	Leu	Thr	Asp 390	Glu	Lys	Ala	Lys	Ile 395	Ile	Leu	Glu	Ser	I16
30	Asn	Val	Pro	Glu	Pro 405	Val	Ile	Gln	Leu	Met 410	Val	Glu	Pro	Lys	Ser 415	Ly
	Ala	Asp	Gln	Asp 420	Lys	Met	Gly	Ile	Ala 425	Leu	Gln	Lys	Leu	Ala 430	Glu	Gl
35	Asp	Pro	Thr 435	Phe	Arg	Val	Glu	Thr 440	Asn	Val	Glu	Thr	Gly 445	Glu	Thr	Va]
	Ile	Ser 450	Gly	Met	Gly	Glu	Leu 455	His	Leu	Asp	Val	Leu 460	Val	Asp	Arg	Met
40	Arg 465	Arg	Glu	Phe	Lys	Val 470	Glu	Ala	Asn	Val	Gly 475	Ala	Pro	Gln	Val	Se 1
45	Tyr	Arg	Glu	Thr	Phe 485	Arg	Ala	Ser	Thr	Gln 490	Ala	Arg	Gly	Phe	Phe 495	Lys
	Arg	Gln	Ser	Gly 500	Gly	Lys	Gly	Gln	Phe 505	Gly	Asp	Val	Trp	Ile 510	Glu	Phe
50	Thr	Pro	Asn 515	Glu	Glu	Gly	Lys	Gly 520	Phe	Glu	Phe	Glu	Asn 525	Ala	Ile	Val
	Gly	Gly 530	Val	Val	Pro	Arg	Glu 535	Phe	Ile	Pro	Ala	Val 540	Glu	Lys	Gly	Leu
55	Val 545	Glu	Ser	Met	Ala	Asn 550	Gly	Val	Leu	Ala	Gly 555	Tyr	Pro	Met	Val	Asp 560
60	Val	Lys	Ala	Lys	Leu 565	Tyr	Asp	Gly	Ser	Tyr 570	His	Asp	Val	Asp	Ser 575	Ser
-	Glu	Thr	Ala	Phe	Lys	Ile	Ala	Ala	Ser	Leu	Ser	Leu	Lys	Glu	Ala	Ala

-314-

				580)				58	5				59	0	
5	Ly	s Sei	Ala 595	Glr	Pro	Ala	a Ile	60	u Gl	u Pro) Met	t Me	t Le 60		l Th	r Ile
	Th	r Val 610	Pro	Glu	Glu	a Asr	1 Let 615	ı Gl	y As	p Val	Met	G1: 62:		s Va	l Th	r Ala
10	Arc 625	g Arg	Gly	'Arg	Val	. Asp 630	Gl _y	/ Met	Gl:	ı Ala	His 635	Gly	y As:	n Se	r Gl	n Ile 640
	Va]	l Arg	Ala	Tyr	Val 645	Pro	Lev	ı Ala	a Glu	1 Met 650	Phe	: Gly	ү Ту	r Ala	a Th:	r Val
15	Leu	Arg	Ser	Ala 660	Ser	Gln	Gly	' Arg	Gly 665	y Thr	Phe	Met	Me	t Val 670		e Asp
20	His	Tyr	Glu 675	Asp	Val	Pro	Lys	Ser 680	Val	Gln	Glu	Glu	116 685		: Lys	Lys
	Asn	Lys 690		Glu	Asp											
25	(2) INFO	RMAT SEQ														
	, , ,	(A (B	LEI TYI	NGTH PE:	: 27	4 am	ino . id	acid								
30	(++)	(D)) TO	POLO	GY: 1	not .	rele	vant	vanc							
	(iii)	MOLI					1de									
35		ANT				J										
40	(xi)	SEQU	JENCE	E DES	CRIE	PTIO	N: SI	EQ I	р ио	:223	:					
	Ala 1	Tyr	Lys	Gly	His 5	Gln	Glu	Tyr	Val	Leu 10	Pro	Gln	Ala	Ala	Arg 15	Lys
45	Ile	Tyr	Ala	Tyr 20	Arg	Arg	Tyr	Asp	Leu 25	Asn	Glu	Ser	Pro	Lys 30	Thr	Ala
	Leu	Asp	Leu 35	Ile	Ile	Pro	Asp	Leu 40	Phe	Leu	His	ïle	Leu 45	Asn	Pro	Ala
50	Glu	Arg 50	Glu	Arg	Lys	Leu	Lys 55	Arg	Glu	Gly	Val	Glu 60	Glu	Leu	Tyr	Leu
55	Leu 65	Asp	Phe	Ser	Ser	Gln 70	Phe	Ala	Ser	Leu	Thr 75	Ala	Gln	Glu	Phe	Phe 80
	Ala	Thr	Tyr	Ile	Lys 85	Ala	Met	Asn	Ala	Lys 90	Ile	Ile	Val	Ala	Gly 95	Phe
60	Asp	Tyr	Thr	Phe 100	Gly	Ser	Asp	Lys	Lys 105	Thr	Ala	Glu	Asp	Leu 110	Lys	Asp

-315-

	Туі	r Phe	115	Gly	Glu	Val	Ile	11e	Val	Pro	Pro	Val	Glu 125		Glu	Lys
5	G1)	/ Lys 130	Ile	Ser	Ser	Thr	Arg 135	Ile	Arg	Gln	Ala	Ile 140		Asp	Gly	Asn
	Val 145	Lys	Glu	Ala	Gly	Lys 150	Leu	Leu	Gly	Ala	Pro 155	Leu	Pro	Ser	Arg	Gly 160
10	Met	: Val	Val	His	Gly 165	Asn	Ala	Arg	Gly	Arg 170	Thr	Ile	Gly	Tyr	Pro 175	
15	Ala	Asn	Leu	Val 180	Leu	Leu	Asp	Arg	Thr 185	Tyr	Met	Pro	Ala	Asp 190	Gly	Val
	Туг	. Val	Val 195	Asp	Val	Glu	Ile	Gln 200	Arg	Gln	Lys	Tyr	Arg 205	Ala	Met	Ala
20	Ser	Val 210	Gly	Lys	Asn	Val	Thr 215	Phe	Asp	Gly	Glu	Glu 220	Ala	Arg	Phe	Glu
	Val 225	Asn	Ile	Phe	Asp	Phe 230	Asn	Gln	Asp	Ile	Tyr 235	Gly	Glu	Thr	Val	Met 240
25	Val	Tyr	Trp	Leu	Asp 245	Arg	Ile	Arg	Asp	Met 250	Thr	Lys	Phe	Asp	Ser 255	Val
30	Asp	Gln	Leu	Val 260	Asp	Gln	Leu	Lys	Ala 265	Asp	Glu	Glu	Val	Thr 270	Arg	Asn
	Trp	Ser														
35	(2) INFO	RMAT	ON E	FOR S	EQ I	D NC	224	l:								
	(i)	(B)	LEN TYP	IGTH: PE: a	124 mino	ami aci	.no a .d	cids								
40		(C) (D)	STR	OLOG	DNES	S: n	ot relev	elev ant	ant							
	(ii)	MOLE	CULE	TYP	E: p	epti	de									
45	(iii)	HYPO	THET	'ICAL	: NO	•										
	(iv)	ANTI	-SEN	SE:	NO					-						
50	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	No:	224:						
	Leu 1	Arg	Lys	Glu	Pro 5	Ser	Met	Ala		Gly 10	Glu (Gly	Lys		Val 15	Ala
55	Gln	Asn	Lys	Lys 20	Ala.	Arg	His .	Asp	Tyr 25	Thr	Ile '	Val .		Thr 30	Leu	Glu
	Ala	Gly	Met 35	Val	Leu '	Thr		Thr 40	Glu	Ile :	Lys :		Val . 45	Arg .	Ala.	Ala
60	Arg	Ile 50	Asn	Leu	Lys .	Asp	Gly 55	Phe .	Ala	Gln '		Lys i	Asn (Gly	Glu	Val

-316-

	Trp 65	Leu	Ser	Asn	Val	His 70	Ile	Ala	Pro	Tyr	Glu 75	Glu	Gly	Asn	Ile	Tr _l 80
5	Asn	Gln	Glu	Pro	Glu 85	Arg	Arg	Arg	Lys	Leu 90	Leu	Leu	His	Lys	Lys 95	Glı
10	Ile	Gln	Lys	Leu 100	Glu	Gln	Glu	Thr	Lys 105		Thr	Gly	Met	Thr 110		Va.
10	Pro	Leu	Lys 115	Val	Tyr	Met	Ala	Thr 120	Leu	Ser	Phe	Phe				
15	(2) INFO	RMAT:	ION :	FOR S	SEQ :	ID N	0:22	5:								
	(i)	(A (B) LEI) TY:	NGTH:	: 44: amin	TERI: l am: o ac: SS: 1	ino : id	acid								
20						not			vanc							
	(ii)	MOL	ECUL	E TYI	PE: 1	pept	ide									
25	(iii)	HYP	OTHE!	ricai	L: NO)										
	(iv)	ANT:	I-SEI	NSE:	ИО											
30																
	(xi)	SEQ	JENCI	E DES	SCRII	OITS	i: S	EQ II	ои о	:225	:					
35	Ile 1	Val	Lys	Glu	Glu 5	Lys	Gly	Leu	Lys	Glu 10	Lys	Gln	Phe	Trp	Asn 15	Arg
	Ile	Leu	Glu	Phe 20	Ala	Gln	Glu	Arg	Leu 25	Thr	Arg	Ser	Met	Tyr 30	Asp	Phe
40	Tyr	Ala	Ile 35	Gln	Ala	Glu	Leu	Ile 40	Lys	Val	Glu	Glu	Asn 45	Val	Ala	Thr
	Ile	Phe 50	Leu	Pro	Arg	Ser	Glu 55	Met	Glu	Met	Val	Trp 60	Glu	Lys	Gln	Leu
45	Lys 65	Asp	Ile	Ile	Val	Val 70	Ala	Gly	Phe	Glu	Ile 75	Tyr	Asp	Ala	Glu	Ile 80
50	Thr	Pro	His	Tyr	Ile 85	Phe	Thr	Lys	Pro	Gln 90	Asp	Thr	Thr	Ser	Ser 95	Gln
	Val	Glu	Glu	Ala 100	Thr	Asn	Leu	Thr	Leu 105	Tyr	Asp	Tyr	Ser	Pro 110	Lys	Leu
55	Val	Ser	Ile 115	Pro	Tyr	Ser	Asp	Thr 120	Gly	Leu	Lys	Glu	Lys 125	Tyr	Thr	Phe
	Asp	Asn 130	Phe	Ile	Gln	Gly	Asp 135	Gly	Asn	Val	Trp	Ala 140	Val	Ser	Ala	Ala
60	Leu 145	Ala	Val	Ser	Glu	Asp 150	Leu	Ala	Leu	Thr	Tyr 155	Asn	Pro	Leu	Phe	Ile 160

-317-

		Туг	Gly	Gly	, Pro	Gly 165		Gly	, Lys	Thi	His 170		Leu	ı Asr	a Ala	11e	
5		Asn	Glu	Ile	Leu 180	Lys	Asn	Ile	Pro	Asr 185		Arg	Val	. Lys	Tyr 190		Pro
10		Ala	Glu	Ser 195	Phe	Ile	Asn	Asp	200		Asp	His	Leu	Arg 205		Gly	Gli
		Met	Glu 210	Lys	Phe	Lys	Lys	Thr 215	Tyr	: Arg	Ser	Leu	Asp 220		Leu	Leu	Ile
15		Asp 225	Asp	Ile	Gln	Ser	Leu 230	Ser	Gly	Lys	Lys	Val 235	Ala	Thr	Gln	Glu	Glu 240
		Phe	Phe	Asn	Thr	Phe 245	Asn	Ala	Leu	His	Asp 250		Gln	Lys	Gln	Ile 255	
20		Leu	Thr	Ser	Asp 260	Arg	Ser	Pro	Lys	His 265	Leu	Glu	Gly	Leu	Glu 270		Arg
25		Leu	Val	Thr 275	Arg	Phe	Ser	Trp	Gly 280	Leu	Thr	Gln	Thr	Ile 285	Thr	Pro	Pro
		Asp	Phe 290	Glu	Thr	Arg	Ile	Ala 295	Ile	Leu	Gln	Ser	Lys 300	Thr	Glu	His	Leu
30		Gly 305	Tyr	Asn	Phe	Gln	Ser 310	Asp	Thr	Leu	Glu	Tyr 315	Leu	Ala	Gly	Gln	Phe 320
		Asp	Ser	Asn	Val	Arg 325	Asp	Leu	Glu	Gly	Ala 330	Ile	Asn	Asp	Ile	Thr 335	Leu
35		Ile	Ala	Arg	Val 340	Lys	Lys	Ile	Lys	Asp 345	Ile	Thr	Ile	Asp	Ile 350	Ala	Ala
40		Glų	Ala	Ile 355	Arg	Ala	Arg	Lys	Gln 360	Asp	Val	Ser	Gln	Met 365	Leu	Val	Ile
		Pro	Ile 370	Asp	Lys	Ile	Gln	Thr 375	Glu	Val	Gly	Asn	Phe 380	Tyr	Gly	Val	Ser
45		Ile 385	Lys	Glu	Met	Lys	Gly 390	Ser	Arg	Arg	Leu	Gln 395	Asn	Ile	Val	Leu	Ala 400
		Arg	Gln	Val	Ala	Met 405	Tyr	Leu	Ser	Arg	Glu 410	Leu	Thr	ĄzĄ	Asn	Ser 415	Leu
50		Pro	Lys	Ile	Gly 420	Lys	Glu	Leu	Gly	Glu 425	Lys	Ser	Tyr	His	Ser 430	His	Ser
55		Cys		Cys 435	Gln	Asn	Lys	Ile	Leu 440	Asn							
	(2)	INFOR	ITAM	ON F	OR S	EQ I	D NO	:226	i :								
		(i)	SEQU	ENCE	СНА	RACT	ERIS	TICS	:								
60					GTH:				cids	ı							

- (B) TYPE: amino acid
 (C) STRANDEDNESS: not relevant

-318-

		(1	<i>i</i>) TU	POTO	GY:	not	rele	vant	•							
	(ii)	MOL	ECUL	E TY	PE:	pept	ide									
5	(iii)	HYP	отне	TICA	L: N	0										
	(iv)	ANT	'I-SE	NSE:	NO											
10																
	(xi)	SEO	HENC	F DF	פריםד	חדר	M. C	FO T	D NO	. 226	_					
													_	_		_
15	1	Deu	vai	Der	5	MEC	ıyı	rne	Arg	10	Asp	туг	Tyr	Ser	GI n 15	Asn
	Leu	Gly	Glu	Ile 20	Phe	Ala	Ile	Gly	Met 25	Val	Val	Gly	His	Leu 30	Arg	Trp
20	Leu	Ile	Thr 35	Gly	Ala	Leu	Val	Leu 40	Tyr	Ile	Phe	Ala	Asp 45	Arg	Lys	Leu
25	Ile	Asn 50	Thr	Trp	Asp	Phe	Leu 55	Asp	Ile	Ala	Ala	Pro 60	Ser	Val	Met	Ile
	Ala 65	Gln	Ser	Leu	Gly	Arg 70	Trp	Gly	Asn	Phe	Phe 75	Asn	Gln	Glu	Ala	Tyr 80
30	Gly	Ala	Thr	Val	Asp 85	Asn	Leu	Asp	Tyr	Leu 90	Pro	Gly	Phe	Ile	Arg 95	Asp
	Gln	Met	Tyr	Ile 100	Glu	Gly	Ser	Tyr	Arg 105	Gln	Pro	Thr	Phe	Leu 110	Tyr	Glu
35	Ser	Leu	Trp 115	Asn	Leu	Leu	Gly	Phe 120	Ala	Leu	Ile	Leu	Ile 125	Phe	Arg	Arg
40	Lys	Trp 130	Lys	Ser	Leu	Arg	Arg 135	Gly	His	Ile	Thr	Ala 140	Phe	Tyr	Leu	Ile
	Trp 145	Tyr	Gly	Phe	Gly	Arg 150	Met	Val	Ile	Glu	Gly 155	Met	Arg	Thr	Asp	Ser 160
45	Leu	Met	Phe	Phe	Gly 165	Leu	Arg	Val	Ser	Gln 170	Trp	Leu	Ser	Val	Val 175	Leu
	Ile	Gly	Leu	Gly 180	Ile	Met	Ile	Val	Ile 185	Tyr	Gln	Asn	Arg	Lys 190	Lys	Ala
50	Pro	Tyr	Tyr 195	Ile	Thr	Glu	Glu	Glu 200	Asn							
	(2) INFOR	ITAM	ON F	OR S	EQ I	D NO	:227	:								
55	(i)	(A) (B) (C)	ENCE LEN TYP STR	GTH: E: a ANDE	491 mino DNES	ami aci S: n	no a d ot r	cids								
50			TOP					ant								
	(ii)	MOLE	CULE	TYP	E: p	epti	de									

-319-

	(111)	HYP	OTHE	TICA	L: N	0										
5	(iv)	ANT	I-SE	NSE:	NO											
	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:227	:					
10	Leu 1	Glu	Asp	Phe	Pro 5	Leu	Ser	Val	Thr	Asn 10	Pro	Tyr	Gly	Arg	Thr 15	Lys
	Leu	Met	Leu	Glu 20	Glu	Ile	Leu	Thr	Asp 25	Ile	Tyr	Lys	Ala	Asp 30	Ser	Glu
15	Trp	Asn	Val 35	Val	Leu	Leu	Arg	Tyr 40	Phe	Asn	Pro	Ile	Gly 45	Val	His	Glu
20	Ser	Gly 50	Asp	Leu	Gly	Glu	Asn 55	Pro	Asn	Gly	Ile	Pro 60	Asn	Asn	Leu	Leu
- 0	Pro 65	Tyr	Val	Thr	Gln	Val 70	Ala	Val	Gly	Lys	Leu 75	Glu	Gln	Val	Gln	Val 80
25	Phe	Gly	Asp	Asp	Tyr 85	Asp	Thr	Glu	Asp	Gly 90	Thr	Gly	Val	Arg	Asp 95	Tyr
	Ile	His	Val	Val 100	Asp	Leu	Ala	Lys	Gly 105	His	Val	Ala	Ala	Leu 110	Lys	Lys
30	Ile	Gln	Lys 115	Gly	Ser	Gly	Leu	Asn 120	Val	Tyr	Asn	Leu	Gly 125	Thr	Gly	Lys
35	Gly	Tyr 130	Ser	Val	Leu	Glu	Ile 135	Ile	Gln	Asn	Met	Glu 140	Lys	Ala	Val	Gly
	Cys 145	Pro	Ile	Pro	Tyr	Arg 150	Ile	Val	Glu	Arg	Arg 155	Pro	Gly	Asp	Ile	Ala 160
40	Ala	Cys	Tyr	Ser	Asp 165	Pro	Ala	Lys	Ala	Lys 170	Ala	Glu	Leu	Gly	Trp 175	Glu
	Ala	Glu	Leu	Asp 180	Ile	Thr	Gln	Met	Cys 185	Glu	Gly	His	Gly	Val 190	Gly	Arg
4 5	Ala	Ser	Ile 195	Gln	Met	Asp	Leu	Lys 200	Thr	Lys	Met	Met	11e 205	Ser	Ile	Ile
50	Val	Pro 210	Cys	Leu	Asn	Glu	Glu 215	Glu	Val	Leu	Pro	Leu 220	Phe	Tyr	Gln	Ala
,,,	Leu 225	Glu	Ala	Leu	Leu	Pro 230	Asp	Leu	Glu	Thr	Glu 235	Ile	Glu	Tyr	Val	Phe 240
55	Val	Asp	Ąsp	Gly	Ser 245	Ser	Asp	Gly	Thr	Leu 250	Glu	Leu	Leu	Lys	Ala 255	Tyr
	Arg	Glu	Gln	Asn 260	Pro	Ala	Val	His	Tyr 265	Ile	Ser	Phe	Ser	Arg 270	Asn	Phe
50	Gly	Lys	Glu 275	Ala	Ala	Leu	Tyr	Ala 280	Gly	Leu	Gln	Tyr	Ala 285	Thr	Gly	Asp

-320-

	Leu	Val 290	Val	Val	Met	Asp	Ala 295	Asp	Leu	Gln	Asp	Pro 300		Ser	Met	Leu
5	Phe 305	Glu	Met	Lys	Asn	Val 310	Leu	Asp	Lys	Asn	Val 315	Asp	Leu	Asp	Cys	Val 320
10	Gly	Thr	Arg	Arg	Thr 325	Ser	Arg	Glu	Gly	Glu 330	Pro	Phe	Phe	Arg	Ser 335	
_ •	Cys	Ala	Val	Leu 340	Phe	Tyr	Arg	Leu	Met 345	Gln	Lys	Ile	Ser	Pro 350		Ala
15	Leu	Pro	Ser 355	Gly	Val	Arg	Asp	Phe 360	Arg	Met	Met	Arg	Arg 365	Ser	Val	Val
	Asp	Ala 370	Ile	Leu	Ser	Leu	Thr 375	Glu	Ser	Asn	Arg	Phe 380	Ser	Lys	Gly	Leu
20	Phe 385	Ala	Trp	Val	Gly	Phe 390	Lys	Thr	His	Tyr	Leu 395	Asp	Tyr	Pro	Asn	Val 400
25	Glu	Arg	Gln	Ala	Gly 405	Lys	Thr	Ser	Trp	Ser 410	Phe	Arg	Gln	Leu	Phe 415	Phe
	Tyr	Ser	Ile	Glu 420	Gly	Ile	Val	Asn	Phe 425	Ser	Asp	Phe	Pro	Leu 430	Thr	Ile
30	Ala	Phe	Val 435	Ala	Gly	Leu	Leu	Ser 440	Cys	Phe	Leu	Ser	Leu 445	Leu	Met	Thr
	Phe	Phe 450	Val	Val	Val	Arg	Thr 455	Leu	Ile	Leu	Gly	Asn 460	Pro	Thr	Ser	Gly
35	Trp 465	Thr	Ser	Leu	Met	Ala 470	Val	Ile	Leu	Tyr	Leu 475	Gly	Gly	Ile	Gln	Leu 480
40	Leu	Thr	Ile	Gly	Ile 485	Leu	Gly	Lys	Tyr	Asn 490	Gln					
- •	(2) INFOR	TAM	ON F	OR S	SEQ I	D NO	:228	:								
45	(i)	(B) (C)	LEN TYP STR	GTH: E: a ANDE	277 mino DNES	ERIS ami aci S: n	no a d ot r	cids				٠				
50	(ii)	MOLE	CULE	TYF	E: p	epti	de									
,,	(iii)	НҮРО	THET	'ICAI	.: NO)										
	(iv)	ANTI	-SEN	SE:	NO											
55	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	228:						
50	Val 1	Ile	Ile	Ile	Asp 5	Asp	Asn	Tyr	Ser	Asn 10	Val	Asn	Leu	Arg	Asn 15	Lys
	Ile	Ile	His	Gln	Phe	Gly	Tyr	Thr .	Asn	His	Arg	Ile	Lys	Leu	Ile	Leu

-321-

				20					25					30		
5	Ser	Asn	Glu 35	Asp	Leu	Gly	Ala	Thr 40	Asn	Ala	Arg	Asn	Ile 45	Gly	Ile	Lys
	Asn	Ser 50	Arg	Gly	Lys	Tyr	Ile 55	Ser	Phe	Leu	Asp	Asp 60	Asp	Asp	Glu	Tyr
10	Met 65	Pro	Asp	Arg	Ile	Leu 70	Lys	Leu	Met	Ala	Cys 75	Phe	Lys	Lys	Ser	Arg 80
	Met	Lys	Asn	Leu	Ala 85	Leu	Val	Tyr	Ser	Tyr 90	Gly	Ile	Ile	Ile	Tyr 95	Pro
15	Asn	Gly	Thr	Arg 100	Glu	Glu	Glu	Lys	Thr 105	Asp	Phe	Val	Gly	Asn 110	Pro	Leu
20	Phe	Val	Gln 115	Met	Val	His	Asn	Ile 120	Ala	Gly	Thr	Ser	Phe 125	Trp	Leu	Cys
	Lys	Lys 130	Glu	Val	Leu	Glu	Leu 135	Ile	Asn	Gly	Phe	Glu 140	Lys	Ile	Asp	Ser
25	His 145	Gln	Asp	Gly	Val	Val 150	Leu	Leu	Lys	Leu	Leu 155	Ala	Gln	Gly	Tyr	Gln 160
	Ile	Asp	Ile	Val	Arg 165	Glu	Phe	Leu	Val	Asn 170	Tyr	Tyr	Ala	His	Ser 175	Lys
30	Glu	Asn	Gly	Ile 180	Thr	Gly	Val	Thr	Gln 185	Lys	Thr	Ile	Asn	Ala 190	Asp	Glu
35	Glu	Tyr	Tyr 195	Asn	Tyr	Cys	Arg	Lys 200	Tyr	Phe	Asn	Leu	Leu 205	Ser	Phe	Asn
	Glu	Arg 210	Ile	Leu	Val	Thr	Lys 215	Lys	Tyr	Tyr	Ser	Leu 220	Asn	Ile	Lys	Arg
40	Leu 225	Leu	Leu	Ile	Gly	Asp 230	Lys	Cys	Lys	Ala	Leu 235	Lys	Val	Ile	Lys	Lys 240
	Ala	Arg	Glu	Glu	Lys 245	Ile	Phe	Asn	Glu	Phe 250	Leu	Phe	Leu	Lys	Tyr 255	Met
45	Leu	Leu	Tyr	Arg 260	Ser	Phe	Phe	Tyr	Cys 265	Ile	Tyr	Asp	Asn	Tyr 270	Val	Gln
	Leu	Lys	Phe 275	Arg	Lys											

-322-

CLAIMS

- An isolated nucleic acid compound comprising a sequence identical to or substantially identical to a
 sequence selected from the group consisting of SEQ ID NO:1 through SEQ ID NO:86.
- 2. An isolated nucleic acid compound comprising a sequence identical to or substantially identical to a sequence selected from the group consisting of SEQ ID NO:87, SEQ ID NO:89, SEQ ID NO:91, SEQ ID NO:93, SEQ ID NO:95, SEQ ID NO:97, SEQ ID NO:99, SEQ ID NO:101, SEQ ID NO:103, SEQ ID NO:105, SEQ ID NO:107, SEQ ID NO:109, SEQ ID NO:111, SEQ ID NO:113, SEQ ID NO:115, SEQ ID NO:117, SEQ ID NO:119, and SEQ ID NO:121.
- 3. A substantially purified protein or fragment thereof from S. pneumoniae wherein said protein is selected from the group consisting of SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:92, SEQ ID NO:94, SEQ ID NO:96, SEQ ID NO:98, SEQ ID NO:100, SEQ ID NO:102, SEQ ID NO:104, SEQ ID NO:106, SEQ ID NO:108, SEQ ID NO:110, SEQ ID NO:112, SEQ ID NO:114, SEQ ID NO:116, SEQ ID NO:118, SEQ ID NO:120, SEQ ID NO:122, and SEQ ID NO:123 through SEQ ID NO:228.

25

- 4. An isolated nucleic acid compound encoding any one of the proteins or fragments thereof of Claim 3.
- $\,$ 5. A vector comprising any one of the nucleic acid $\,$ 30 $\,$ compounds of claims 1, 2, or 4.
 - 6. A recombinant host containing any one of the vectors of claim 5.

-323-

- 7. A substantially purified protein from Streptococcus pneumoniae as in Claim 3 wherein said protein is an external target protein selected from Table 1.
- 8. A substantially purified protein from Streptococcus pneumoniae as in Claim 3 wherein said protein is a hypothetical protein selected from Table 1.
- 9. A substantially purified protein from

 10 Streptococcus pneumoniae as in Claim 3 wherein said protein is a cell wall synthetic protein selected from Table 1.
- 10. A substantially purified protein from Streptococcus pneumoniae as in Claim 3 wherein said protein is a minimal gene set protein selected from Table 1.
 - 11. A DNA chip having arrayed thereon any at least 15 base pair fragment of any one or more of the nucleic acids of claim 1.

20

- 12. A DNA chip having arrayed thereon any at least 15 base pair fragment of any one or more of the nucleic acids of claim 2.
- 25
 13. A method for evaluating gene expression in

 Streptococcus pneumoniae comprising the step of incubating a

 DNA chip of claim 11 or Claim 12 with cDNA prepared from

 Streptococcus pneumoniae under conditions suitable for
 hybridization of complementary nucleic acid sequences.

30

14. A computer readable medium having recorded thereon any one or more of the nucleotide sequences of Claims 1 or Claim 2.

-324-

- 15. A method for identifying virulence genes in S. pneumoniae, comprising the steps of:
 - a) preparing a DNA chip as in claim 11,
 - b) preparing labeled cDNAs from
- 5 i) S. pneumoniae cells recovered from an in vivo environment, and
 - ii) S. pneumoniae cells grown in vitro,
 - c) hybridizing individually the cDNAs of steps(b) (i) and (b) (ii) to a chip of step (a); and
- d) identifying a genomic DNA fragment or fragments on said chip that hybridize to the cDNAs of (b)(i) but not with the cDNAs of (b)(ii).
- 16. An antibody that selectively binds to a
 15 protein or peptide of Claim 3.
 - 17. An antibody that selectively binds to an external target protein, or fragment thereof, identified in Table 1.

20

18. A DNA chip of Claim 11 or Claim 12 further comprising a layer of S. pneumoniae cells wherein said layer contacts with said nucleic acids.

International application No. PCT/US97/22578

to be of particular relevance Be earlier document published on or after the international filing date Comment which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified) Comment referring to an oral disclosure, use, exhibition or other means the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is obtained with one or more other underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is obtained with one or more other underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is obtained with one or more other underlying the invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.				
US CL. :336723.7, 23.1; 5307350, 387.1; 4357320.1, 223.3, 6; 360/1 R FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) U.S.: 536727, 72.3; 5307350, 387.1; 4357320.1, 252.3, 6; 360/1 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN, APS, chipf, dnaf, oligo? MPSRCH of nucleic cold and amino acid sequence databases of intellificenties (SEQ ID Nos 1-228) C DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. **A document defining the gamma into the set which is not considered to be of perioder natures as a species of species. One of moder desirate or other species or other species of the security of the se				
Miniatum documentation searched (classification system followed by classification symbols) U.S.: \$36/23.7, 23.1; \$30/350, 387.1; 435/320.1, 252.3, 6; 360/1 Documentation searched other than minimum documentation to the extent that such documents are included in the fickts searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN, APS, chipf, dang, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGentics (SEQ ID Nos 1-228) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages PUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y. GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y. STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology, February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Special congories of classification are of the document of the substitution to document with any drove during on protein finds or works in the substitution to conscitute of the substitution to document with any drove during date on protein finds or works are substituted in the constitution of the substitution of the su	US CL	:536/23.7, 23.1; 530/350, 387.1; 435/320.1, 252.:	3, 6; 360/1 th national classification and IPC	
U.S.: 536/23.7, 23.1; 530/350, 387.1; 435/320.1, 252.3, 6; 360/1 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN, APS, chip/, dnay, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGentics (SEQ ID Nos 1-228) C DOCUMENTS CONSIDERED TO BE RELEVANT Catagory* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Extraction of occuments are listed in the continuation of Box C. See patent family annex. Separate forming to one of the document. **A document drining the protein relevance in such as the international filing date of the service of the protein relevance in separation to be of protein relevance. To comment of proteins relevance in semble of the services service of the proteins and the service of the proteins relevance in service in the septiment of the services service of the proteins of the services of the proteins and the services are when the services the services of the proteins relavance of proteins relavance in services and the consideration of the proteins and the services are when the documents are serviced to more than the services are when the such documents are serviced to service and the consideration of the proteins and the services are when the d				
U.S.: 536/23.7, 23.1; 530/350, 387.1; 435/320.1, 252.3, 6; 360/1 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN, APS, chip/, dnay, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGentics (SEQ ID Nos 1-228) C DOCUMENTS CONSIDERED TO BE RELEVANT Catagory* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Extraction of occuments are listed in the continuation of Box C. See patent family annex. Separate forming to one of the document. **A document drining the protein relevance in such as the international filing date of the service of the protein relevance in separation to be of protein relevance. To comment of proteins relevance in semble of the services service of the proteins and the service of the proteins relevance in service in the septiment of the services service of the proteins of the services of the proteins and the services are when the services the services of the proteins relavance of proteins relavance in services and the consideration of the proteins and the services are when the documents are serviced to more than the services are when the such documents are serviced to service and the consideration of the proteins and the services are when the d	Minimum d	ocumentation searched (classification system follow	red by classification symbols)	
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) STN, APS, chipf, danf, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGemics (SEQ ID NOs 1-228) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. TUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y. GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y. STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Further documents are listed in the continuation of Box C. See patent family annex. See patent family annex. The document published on the start which is not considered to be of perturbed relatings the same and the observations of other starts of the search which may drove doubts on priority chainfor or which is not considered to be of perturbed relations of a sound relation of a sound becomes to be of perturbed relations of a sound becomes to be of perturbed relations of a sound becomes to be of perturbed relations of a sound becomes to be of perturbed relations of a sound becomes to be opening to perturbe relations to the sound becomes to be opening to perturbe relations to the sound becomes to be opening to perturbe relations to the sound becomes to be opening to perturbe relations to the sound becomes to be opening to see the sound becomes to the sound becomes to the sound becomes to be opening to see the sound becomes to the sound become				
STN. APS, chip#, dna#, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGentics (SEQ ID NOs 1-228) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y. FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y. GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosacchary! transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y. STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Further document published for each the international fling date of priority and channel of the service of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Further document document. A document defining the general state of the service that is not considered to be of personal relevance to each the international fling date or priority state channel of the service of th	Documentat	ion searched other than minimum documentation to ti	he extent that such documents are included	in the fields searched
STN. APS, chip#, dna#, oligo? MPSRCH of nucleic acid and amino acid sequence databases of IntelliGentics (SEQ ID NOs 1-228) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Y. FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y. GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosacchary! transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y. STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Further document published for each the international fling date of priority and channel of the service of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. X. Further document document. A document defining the general state of the service that is not considered to be of personal relevance to each the international fling date or priority state channel of the service of th	Electronic d	ata base consulted during the international search (name of data base and, where practicable	e, search terms used)
Category* Citation of document, with indication, where appropriate, of the relevant passages PUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Special outgoins of cited document Complete the protein relevance of the international filing data or priority data and particular to the protein relevance the fining data on or after the international filing data or priority data priority of the continued to be of purchase relevance (as specified) Special outgoins of cited documents which any throw continued to be of purchase relevance (as specified) Special outgoins of cited documents which any throw continued to be of purchase relevance (as specified) Special outgoins of cited documents that publication due or after the international filing data or priority classical or southless the publication due of such contents of purchase or accounts the contents of purchase or accounts	STN, AF	S, chip#, dna#, oligo?		,
FUKUNAGA et al. Expression cloning of a receptor for murine granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Special research of cited documents with the protection by of perticular letters and the series of the set within the protection of the series o	C. DOC	UMENTS CONSIDERED TO BE RELEVANT		
granulocyte colony-stimulating factor. Cell. 20 April 1990, Vol. 61, pages 341-350, see entire document. Y GEETHA-HABIB et al. Glycosylation site binding protein, a component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Special component of citied document:	Category*	Citation of document, with indication, where	appropriate, of the relevant passages	Relevant to claim No.
component of oligosaccharyl transferase, is highly similar to three other 57 kd liminal proteins of the ER. Cell. 23 September 1988, Vol. 54, pages 1053-1060, see entire document. Y STRAUSS et al. Complete nucleotide sequence of the genomic RNA of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. The special estagories of cited document. The special estagories of cited document on the set which is not considered to be of particular relevance to be interestional filing date or priority chain(s) or which is cited to stabilish the publication date of mother citation or other special reason (as specified) On document referring to as oral disclosure, use, anhibition or other means P document published prior to the international filing date but lear than the priority date chained invention cannot be considered to involve an inventive step when the document is taken alone of the actual completion of the international search 25 MARCH 1998 Name and mailing address of the ISA/US Commissioner of Paleots and Trademarks Box PCT Vashington, D.C. 20231 Recaimile No. (703) 305-3230	Y	granulocyte colony-stimulating factor.	ning of a receptor for murine Cell. 20 April 1990, Vol. 61,	11-13 and 15
of Sindbis virus. Virology. February 1984, Vol. 133, No. 1, pages 92-110, see entire document. Special cetegories of cited document: Special cetegories of cetegories of cited document: Special cetegories of cetegor	Y	component of oligosaccharyl transfer other 57 kd liminal proteins of the E	ase, is highly similar to three R. Cell. 23 September 1988,	11-13 and 15
Special cetegories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance B* earlier document published on or after the international filing date C** document which may throw doubts on priority claims(s) or which is cited to establish the publication date of smother cristion or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but leter than the priority date claimed Date of the actual completion of the international search O APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facaimile No. (703) 305-3230 International search to considered to involve an invention cannot be considered to involve an inventive step when the document is exampled to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art O APR 1998 Authorized officer JAMES MARTINEYL Telephone No. (703) 305-3230	Y	of Sindbis virus. Virology. February	sequence of the genomic RNA 1984, Vol. 133, No. 1, pages	11-13 and 15
Special cetegories of cited documents: A* document defining the general state of the art which is not considered to be of particular relevance B* earlier document published on or after the international filing date C** document which may throw doubts on priority claims(s) or which is cited to establish the publication date of smother cristion or other special reason (as specified) C** document referring to an oral disclosure, use, exhibition or other means C** document published prior to the international filing date but leter than the priority date claimed Date of the actual completion of the international search O APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facaimile No. (703) 305-3230 International search to considered to involve an invention cannot be considered to involve an inventive step when the document is exampled to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art O APR 1998 Authorized officer JAMES MARTINEYL Telephone No. (703) 305-3230				
document defining the general state of the art which is not considered to be of particular relevance "E" earlier document published on or after the international filing date "C" document which may throw doubts on priority claims(s) or which is cited to establish the publication date of snother citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document published prior to the international filing date but later than the priority date claimed "A" document member of the sense patent family Date of mailing of the international search report 0 9 APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Telephone No. (703) 305-3230	X Furth	er documents are listed in the continuation of Box	C. See patent family annex.	
The service document published on or after the international filing date "X" document which may throw doubts on priority claims(s) or which is crited to establish the publication date of smother cristion or other special resons (as specified) "Y" document referring to an oral disclosura, use, exhibition or other means P" document published prior to the international filing date but letter than the priority date claimed Date of the actual completion of the international scarch Date of the actual completion of the international scarch O APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Washington, D.C. 20231 Telepbone No. (703) 308-9136	"A" doo	ament defining the general state of the art which is not considered	date and not in conflict with the appli	cation but cited to understand
document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O' document referring to an oral disclosure, use, exhibition or other means P' document published prior to the international filing date but letter than the priority date claimed Date of the actual completion of the international search 25 MARCH 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facaimile No. (703) 305-3230 Controlled moved or cannot be considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is considered to involve an inventive step when the document is taken alone 'Y' document published prior to the international filing date but letter than the priority date claimed 'a' document meanber of the same patent family Date of mailing of the international search report O 9 APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Telephone No. (703) 308-9196	to b	e of particular relevance	"X" document of particular relevance; the	claimed invention cannot be
considered to involve an inventive step when the document is combined with one or more other such document, such combination being obvious to a person skilled in the art document published prior to the international filing date but later than the priority date claimed Date of the actual completion of the international search 25 MARCH 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Constituted to involve an inventive step when the document is combined with one or more other such document is combined with one or more other such document, such combination being obvious to a person skilled in the art document member of the same patent family Authorized of mailing of the international search report 1 9 APR 1998 Authorized officer JAMES MARTINELL Facsimile No. (703) 305-3230	"L" doct	ment which may throw doubts on priority claim(s) or which is to establish the publication date of snother citation or other	when the document is taken alone	ed to involve an inventive step
document published prior to the international filing date but letter them the priority date claimed Date of the actual completion of the international search 25 MARCH 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 JAMES MARTINEYL Telephone No. (703) 308-9196	°O° door	ment referring to an oral disclosure, use, exhibition or other	considered to myolve an inventive	step when the document is documents, such combination
25 MARCH 1998 O 9 APR 1998 Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Authorized officer JAMES MARTINELL Telephone No. (703) 308-9196	P door	ment published prior to the interactional filing date but later than priority date claimed		
Name and mailing address of the ISA/US Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facsimile No. (703) 305-3230 Authorized officer JAMES MARTINEYL Telephone No. (703) 308-9196	Date of the	ctual completion of the international search	Date of mailing of the international sear	rch report
Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231 Facaimile No. (703) 305-3230 Telephone No. (703) 308-9196	25 MARCI	H 1998	·	•
Facsimile No. (703) 305-3230 Telephone No. (703) 308-9196	Commission Box PCT	er of Patents and Trademarks		B
resolution (703) Queens	Washington,			160
			Telephone No. (703) 308-9196	70

International application No.
PCT/US97/22578

		PC1/039/122	378
C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
Y	WILSON et al. 2.2 Mb of contiguous nucleotide sequenchromosome III of C. elegans. Nature. 03 March 1994, No. 6466, pages 32-38, see entire document.	nce from Vol. 368,	11-13 and 15
Y	RESTREPO et al. Antigen diversity in the bacterium B. through "somatic" mutations in rearranged vmp genes. (September 1994, Vol. 78, pages 867-876, see entire doc	Cell. 09	11-13 and 15
Y	WHITEWAY et al. Dominant negative selection of hete genes: Isolation of Candida albicans genes that interfere Saccharomyces cerevisiae mating factor-induced cell cyc Proc. Natl. Acad. Sci. USA. 15 October 1992, Vol 89, Pages 9410-9414, see entire document.	with	11-13 and 15
Y	LACKS et al. Genetic basis of the complementary DpnI restriction systems of S. pneumoniae: An intracellular camechanism. Cell. 26 September 1986, Vol. 46, pages 99 see entire document.	assette	11-13 and 15
Y	STEENBERGH et al. Structure and expression of the hu calcitonin/CGRP genes. FEBS Letters. 01 December 19 209, No. 1, pages 97-103, see entire document.	man 86, Vol.	11-13 and 15
Y	SHAMBAUGH et al. The spliceosomal U small nuclear Ascaris lumbricoides. Molecular and Biochemical Parasit April 1994, Vol. 64, No. 2, pages 349-352, see entire do	tology.	11-13 and 15
Y	MAXWELL et al. A novel NF-kappaB p65 spliced trans lacking exons 6 and 7 in a non-small cell lung carcinoma Gene. 12 December 1995, Vol. 166, No. 2, pages 339-34 entire document.	a cell line	- 11–13 and 15
	KONYECSNI et al. Broad-host-range plasmid and M13 bacteriophage-derived vectors for promoter analysis in Escoli and Pseudomonas aeruginosa. Gene. 30 December 1974, No. 2, pages 375-386, see entire document.	scherichia 988, Vol.	11-13 and 15
	ALLIKMETS et al. Cloning and organization of the abc genes of Escherichia coli; Relationship to eukaryotic mu resistance. Gene. 22 December 1993, Vol. 136, Nos. 1 appages 231-236, see entire document.	ltidura	11-13 and 15
1	SCHWEIZER. Two plasmids, X1918 and Z1918, for eas recovery of the xylE and lacZ reproter genes. Gene. 30 N 1993, Vol. 134, No. 1, pages 89-91, see entire document.	lovember	11-13 and 15
DCT/ICA			

International application No.
PCT/US97/22578

C (Continue	ution). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant pa	assages Relevant to claim No
Y	KRAFT et al. Sequence of the complete P protein gene and the M protein gene form the histidine transport operon of Escherichia coli compared to that of Salmonella typhimuriu Nucleic Acids Res. 26 October 1987, Vol. 15, No. 20, page see entire document.	m.
Y	SCHULER et al., Characterization of the human gene encode LBR, an integral protein of the nuclear envelope inner mem J. Biol. Chem. 15 April 1994, Vol. 269, No. 15, pages 1131 11317, see entire document.	ibrane.,
Y	LOTTENBERG et al. Cloning, sequence analysis, and exprein Escherichia coli of a streptococcal plasmin receptor. J. Bandaugust 1992, Vol. 174, No. 16, pages 5204-5210, see entire document.	acteriol.
Y	COPPOLA et al. Sequence and transcriptional activity of the Escherichia coli K-12 chromosome region between rmC and ilvGMEDA. Gene. 02 January 1991, Vol. 97, No. 1, pages 2 see entire document.	d Ì
Y	MUTO et al. Preferential use of A- and U-rich codons for Mycoplasma capricolum ribosomal proteins S8 and L6. Nuc Acids Res. 1984, Vol. 12, No. 12, pages 8209-8217, see ent document.	11-13 and 15 dire
Y	RUDNER et al. The spo0K locus of Bacillus subtilis is homologous to the oligopeptide permease locus is required a sporulation and competence. J. Bacteriology. February 199 173, No. 3, pages 1388-1398, see entire document.	
Y .	GREEN et al. Isolation and characterisation of a bovine cD encoding eukaryotic initiation factor 2α. Biochim. Biophys. 08 October 1991, Vol. 1090, No. 2, pages 277-280, see entit document.	Acta.
Y	LOGEMANN et al. Modes of expression and common structeatures of the complete phenylalanine ammonia-lyase gene in parsley. Proc. Natl. acad. Sci. USA. 20 June 1995, Vol. 9. 13, pages 5905-5909, see entire document.	family
Y	SHERWOOD et al. Characterization of HIR1 and HIR2, two required for regulation of histone gene transcription in Saccharomyces cerevisiae. Molec. Cell. Biol. January 1993, '13, No. 1, pages 28-38, see entire document.	1

International application No.
PCT/US97/22578

			<u> </u>
C (Continua	uion). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relev	ant passages	Relevant to claim No.
Y	GAGNON et al. Cloning, sequencing and expression in coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate:sugar phosphotransferase transport from Streptococcus salivarius. Gene. 02 November 199. No. 1, pages 71-78, see entire document.	t system	11-13 and 15-17
Y	PUYET et al. Characterization of the Streptococcus pne maltosaccharide regulator MalR, a member of the LacI- family of repressors displaying distinctive genetic feature Chem. 05 December 1993, Vol. 268, No. 34, pages 254 see entire document.	GalR res. J. Biol.	11-13 and 15
Y	CROSS et al. Purification of CpG islands using a meth- binding column. Nature Genetics. March 1994, Vol. 6, 244, see entire document.	ylated DNA pages 236-	11-13 and 15
Y	SALUJA et al. The genetic basis of colony opacity in Streptococcus pneumoniae: evidence for the effect of boon the frequency of phenotypic variation. Molecular Mi April 1995, Vol. 16, No. 2, pages 215-227, see entire de	crobiology.	11-13 and 15-17
Y	ROTHNIE et al. Retrotransposon-like nature of Tp1 ele implications for the organisation of highly repetitive, hypermethylated DNA in the genome of Physarum poly Nucleic Acids Res. 25 January 1991, Vol. 19, No. 2, pa 286, see entire document.	cephalum.	11-13 and 15
Y	GITT et al, A strong sequence homology exists between RNA polymerase δ factors of Bacillus subtilis and Esch coli. J. Biol. Chem. 25 June 1985, Vol. 260, No. 12, pag 7185, see entire document.	erichia	11-13 and 15
į	LEUVEN et al. Structure of the gene (LRP1) coding for human α2-macroglobulin receptor lipoprotein receptor-reprotein. Genomics. 01 November 1994, Vol. 24, No. 1, 89, see entire document.	elated	11-13 and 15
	YOSHIOKA et al. Nucleotide sequence of the promoter region of the tra operon of plasmid R100, including tral helicase I) and traD genes. J. Mol. Biol. 05 July 1990, V. No. 1, pages 39-53, see entire document.	(DNA	11-13 and 15
	HUI et al. Genetic transformation in Streptococcus pner Nucleotide sequence analysis shows comA, a gene required competence induction, to be a member of the bacterial Adependent transport protein family. J. Bacteriol. January 173, No. 1, pages 372 381, see entire document.	red for	11-13 and 15

Form PCT/ISA/210 (continuation of second sheet)(July 1992)*

International application No. PCT/US97/22578

·	PC170S97/22	2018
C (Continu	uation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	BARON et al. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 13 September 1995, Vol. 23, No. 17, pages 3605-3606, see entire document.	11-13 and 15
Y	BORK et al. Exploring the Mycoplasma capricolum genome: a minimal cell reveals its physiology. Molecular Microbiology. June 1995, Vol. 16, No. 5, pages 955-967, see entire document.	11-13 and 15
Y	CHAMBERS et al. The pMTL nic cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 15 August 1988, Vol. 68, No. 1, pages 139-149, see entire document.	11-13 and 15
Y	FENOLL et al. Molecular basis of the optochin-sensitive phenotype of pneumococcus: characterization of the genes encoding the F ₀ complex of the Streptococcus pneumoniae and Streptococcus oralis H ⁺ -ATPases, Molecular Microbiology, May 1994, Vol. 12, No. 4, pages 587-598, see entire document.	11-13 and 15-17
Y	STEGLITZ-MORSDORF et al. Cloning, heterologous expression, and sequencing of the Proteus vulgaris glnAntrBC operon and implications of nitrogen control on heterologous urease expression. FEMS Microbiology Letters. 15 January 1993, Vol. 106, No. 2, pages 157-164, see entire document.	11-13 and 15
Y	DE WIT et al. Structure of the gene for the human myeloid IgA Fc receptor (CD89). J. Immunol. 01 August 1995, Vol. 155, No. 3, pages 1203-1209, see entire document.	11-13 and 15
Y	WEBSTER et al. Nucleotide sequence of the galactose gene cluster of Kluyveromyces lactis, Nucleic Acids Res. 25 August 1988, Vol. 16, No. 16, pages 8192-8194, see entire document.	11-13 and 15
Y	KIRSCH et al. Chemotactic methylesterase promotes adaptation to high concentrations of attractant in Bacillus subtilis. J. Biol. Chem. 05 September 1993, Vol. 268, No. 25, pages 18610-18616, see entire document.	11-13 and 15
Y	YAMASHITA et al. Molecular characterization of a Streptococcus mutans mutant altered in environmental stress responses. J. Bacteriol. October 1993, Vol. 175, No. 19, pages 6220-6228, see entire document.	11-13 and 15-17
Í	FRASER et al. The minimal gene complement of Mycoplasma genitalium. Science. 20 October 1995, Vol. 270, pages 397-403, see entire document.	11-13 and 15

International application No. PCT/US97/22578

C (Continue	ation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	t passages Relevant to	claim No.
Y	TOMINAGA et al. Upstream region of a genomic gene fi mitochondrial transcription factor 1. Biochim. Biophys. A June 1992, Vol. 1131, No. 2, pages 217-219, see entire de	cta_ 15	i 15
Y	CORTI et al. Molecular cloning of cDNAs encoding hum carnitine acetyltransferase and mapping of the correspond to chromosome 9q34.1. Genomics. 01 September 1994, V. No. 1, pages 94-99, see entire document.	ing gene	i 15
Y	LUSIS et al. Cloning and expression of apolipoprotein B, major protein of low and very low density lipoproteins. P Acad. Sci. USA. July 1985, Vol. 82, No. 14, pages 4597-entire document.	roc. Natl.	i 15
Y	KOHLBRECHER et al. Staphylococcal phosphoenolpyrus dependent phosphotransferase system: Molecular cloning nucleotide sequence of the Staphylococcus carnosus ptsI g expression and complementation studies of the gene produ Bacteriol. April 1992, Vol. 174, No. 7, pages 2208-2214, document.	and gene and act. J.	,
Y	FLEISCHMANN et al. Whole-genome random sequencing assembly of Haemophilus influenzae Rd. Science. 28 July Vol. 269, pages 496-512, see entire document.	g and 11-13 and	15-17
Y	PEASE et al. Light-generated oligonucleotide arrays for resequence analysis. Proc. Natl. Acad. Sci. USA. 24 May 1991, No. 11, pages 5022-5026, see entire document.	apid DNA 11-13 and 194, Vol.	15
Y,Y	CHENG et al. The com locus controls genetic transformat Streptococcus pneumoniae. Molecular Microbiology. Febru 1997, Vol. 23, No. 4, pages 683-692, see entire document.	uary	d 14
	MORIARTY et al. Antibodies to peptides detect new hepa antigen: Serological correlation with hepatocellular carcino Science. 25 January 1985, Vol. 227, pages 429-433, see endocument.	oma.	
x	WO 96/10647 A (FUSO PHARMACEUTICAL INDUSTR LTD.) 11 April 1996, see entire document.	IES, 1, 4-6, and	l 14
κ].	ALLOING et al. The ami locus of the Gram-positive bact	erium 1, 4-6, and	14
r 1	Streptococcus pneumoniae is similar to binding protein-deptransport operons of Gram-negative bacteria. Molecular Microbiology. 1990, Vol. 4, No. 4, pages 633-644, see entidocument.	16 and 17	

International application No. PCT/US97/22578

A GLASSIFICATION OF SUPERIOR					
A. CLASSIFICATION OF SUBJECT MATTER: IPC (6):					
C12N 15/31, 15/00, 1511; C07K 14/315; C07H 21/04; A61K 39/40, 39/395; G01N 33/569; G11B 5/00					
2007; OIII 3/00					
·					
	•				
•					
·					
	•-				

Form PCT/ISA/210 (extra sheet)(July 1992)*