BSJE JOINT EXAMINATION

- 2024 -

Kenya Certificate of Secondary Education

233/2	CHEMISTRY	PAPER 2
	June, 2024	TIME: 2½ Hrs
Name:		Admission No:
Stream:	Signature:	
		Monday, 3 rd June, 2024
<u>Instructions</u>		Afternoon 2.00-4.30pm

- (a) Write your name, admission number, date, stream and signature in the spaces provided above.
- (b) Non programmable silent electronic calculators may be used.
- (c) All answers must be written in the spaces provided in the booklet.
- (d) This paper consists of 9 printed pages with 7 questions. Candidates should check the question paper to ascertain that all the pages are printed as indicated and that no questions are missing

(<i>e</i>)	Candidate should answer	r the questions in	English

FOR EXAMINERS'USE ONLY

Question	Maximum	Candidate's
	Score	Score
1	12	
2	12	
3	12	
4	12	
5	12	
6	10	
7	10	

Download More Resources: Enovate KCSE Revision App

Highschool.co.ke

Total Score	80	

1. The grid below represents a section of the periodic table. Study it and answer the questions that follow

							Q
A			С	N	Н	J	
В	X	R		Е	P	D	
M						F	

(a) Give the formula of the compound formed between X and N	(1 mark)
(b) Which element forms a stable trivalent cation?	(1 mark)
(c) Identify the least reactive element	(1 mark)
(d) Explain how the melting point of D and F compare	(2 marks)
(e) Explain the difference in atomic and ionic radius of F	(2 marks)
(f) How do atomic radii of X and D compare? Explain	(2 marks)

Page 3 of

	(g) Write the electron arrangement of X^{2+}	(1 mark)
	(h) What would be the pH of aqueous solution of chloride of M?	(1 mark)
	(i) Identify an element which;	
	(I) is the strongest reducing	(½ mark)
	(II) is the most electronegative	(½ mark)
2. ((a). What is meant by rate of reaction?	(1 mark)
(b)	Define activation energy (E _A)	(1 mark)
(c)	An experiment was carried out to measure the volume of hydrogen gas prod	uced when 1.0 g of
Zin	ac chippings (excess) is reacted with 25cm ³ of dilute sulphuric (VI) acid. G	ive two other ways
of s	speeding up the reaction apart from addition of catalyst.	(2 marks)

(d) The decomposition of a compound M carried out at 30°C was monitored by measuring the concentration of the compound remaining at different time intervals and recorded as shown below.

Time (min)	0	1.0	2.0	3.0	4.0	5.0
Concentration (mol litre)	1.20	0.54	0.36	0.26	0.17	0.10

(i) Plot a graph of the concentration of compound M (vertical axis) against time (3 marks)

(ii) From the graph, determine the rate of decomposition of M at 2.5 minutes	(2 marks)
(iii) On the same axis, sketch the curve that would be obtained if the decomposition was	
at 15°C, label the curve A and give a reason for your answer.	(3 marks)
3. Study the flow chart and use it to answer the questions that follow	
5. Study the now chart and use it to answer the questions that follow	

Download More Resources: **Enovate KCSE Revision App**

Highschool.co.ke

Page 6 of

W.		
P		
E		
D.		
Ga	s Q	
(b) State t	he conditions and reagents that are required for processes:	
1:	Reagent	(½ mark)
	Condition	(½ mark)
2:	Reagent	(½ mark)
	Condition	(½ mark)
3:	Reagent	(½ mark)
	Condition	(½ mark)
(c) (i) Wr	ite the formula and the name of the compound formed in chamber 1.	(2marks)
•••		
(ii) Give	the uses of the compound in \mathbf{c} (i) above	(2 marks)
•••		
•••		
(d) State th	ne physical property of compound M and write its structural formula	(2 marks)
•••••		
4. The di	agram below represents a blast furnace used for extraction of iron.	

(a) Name three substance contained in the charge mixture	(3 marks)
(b) Name substances labelled A and B	(2 marks)
(c) Arrange regions J, K and L in order of decreasing temperature	(1 mark)
(d) Write an equation for the reaction that occurs in region L	(1 mark)
(e) What is the function of the tuyeres?	(1 mark)
(f) Distinguish between cast iron and wrought iron	(1 mark)

	Write an equation for the reaction between heated iron and chlorine	(1 mark)
	Iron -60 is a radio isotope of iron (half - life 2.6 x 10 ⁶ years). Its ultimate dec nickel -60. Write a nuclear equation for this process. (Atomic numbers Fe	ay product is =26, Ni=28)
. ,	State one use of stainless steel	(1 mark)

5. The flow chart below illustrates two industrial processes, Haber and Contact processes, each with air as one of the starting materials and other chemical reactions

Page 9 of

	(1 mark)
(ii) Apart from oxygen and nitrogen gases produced in a(i) above , name a	
produced in the process above.	(1 mark)
(b) Name the substances which are represented by the letter	(2 marks)
A	
В	
C	
D	
(c) Name the catalyst used in	
(i) Haber process	(1 mark)
(ii) Contact process	(1 mark)
(iii) Explain the role of the catalyst in both the Haber and Contact processes.	(2 marks)
	•••••
(i) Write a balanced equation for the formation of compound D	(1 mark)
(ii) Calculate the percentage by mass of nitrogen present in compound D	

6. The following are reduction potential of some element, study them and answer the questions that follow.

Half Reaction	Electrode Potential (Volts)
$R^{2+}_{(aq)} + 2e \longrightarrow R_{(S)}$	-0.34
$G^{2+}_{(aq)} + 2e \longrightarrow R_{(S)}$	+1.32
$^{1}/_{2}L_{2 (aq)} + e \longrightarrow L_{(aq)}$	+2.07
$J^{+}_{(aq)} \ + e \qquad \longrightarrow ^{1}/_{2}J_{2}_{(g)}$	0.00
$Q_{(aq)}^{2+} + 2e \longrightarrow Q_{(S)}$	-2.70
$S_{(aq)}^{2+} + 2e \longrightarrow S_{(S)}$	-1.20

(a) What is the reduction potential of the strongest reducing agent? (1 mark)

(b) which element is most likely to be substance J? Explain your answer	(1 mark)
(c) (i) Draw a well labeled diagram for the electrochemical cell that v	
elements G and S are combined	(3marks)
	(4 1)
(c) Calculate the electromotive force of cell formed above	(1 mark)
(d) During electrolysis of dilute sodium chloride solution using graphite	electrodes, a current of
0.8 amperes was passed through the cell for two and a half hours.	(4 1)
(i) Write an ionic equation for the reaction that occurred at the cathode	(1 mark)
(ii) Calculate the volume of the gas produced at the anode in cm ³ . (Faraday=	
at $r.t.p = 24dm^3$)	(3 marks)

acid and	acid and sodium hydroxide was determined. 100cm ³ of 1.0M hydrochloric acid was reacted with 50cm ³ of 2M sodium hydroxide solution.		
	Initial temperature of the base was 25°C		
	Initial temperature of the acid was 27°C		
	The final stable temperature when the acid and base were mixed was 34	.0C	
(a) Write	e an ionic equation for the reaction	(1 mark)	
(b) Calculat	te the,		
(i) Change in	n temperature	(1 mark)	
(ii) Heat of solution=1.0	change for the reaction (specific heat capacity= $4.2KJ g k$ and $g cm^3$).	density of (1 mark)	
(iii) Molar he	eat of neutralization of hydrochloric acid	(2 marks)	
(c) Draw an o	energy level diagram for the reaction	(2 marks)	

(d) Account for the heat loss	(1 mark)
(e) How can the heat loss be minimized?	(1 mark)
(f) Write the thermochemical equation for the reaction	(1 mark)

THIS IS THE LAST PRINTED PAGE