Al in Digital Health Python Programming Course

UoN MedTech

Overview of the Course

Overview of the Course

Weeks 1 & 2

 Focused on learning the basics of Python

Week 3

- Data analysis
- Real world health dataset

Week 4

 Introduction to Machine Learning and Deep learning

Weeks 5

- Deep Learning
- Computer Vision
- Natural Language Processing

Week 6

- Deep Learning (contd.)
- NLP with Transformers
- GPT
- Reinforcement Learning

Graduation Hackathon 15th March

Attendance and Certificates

There will be Attendance + Feedback QR codes at the end of each session

Feedback is optional

Certificates will be given based on completion of these forms:

- Certificate of Participation : Must attend 3 sessions excluding 1st session
- Certificate of Achievement : Must participate in the Hackathon

Support and Resources

Support

 Weekly weekend Q&A sessions are available, or make use of the troubleshooting whatsapp group for questions

Resources

- Each week resources released
 - Slides
 - Collab answers

Graduation Hackathon

Saturday 15th May

- A full-day event
- Teams come together to generate Al-driven healthcare ideas
- The goal is to create at least a UI mockup (or prototype if possible)
- At the end of the day, judges will review the projects and select the best ideas based on innovation, feasibility, and impact.

Join at slido.com #4036777

Week 4 - Introduction to Machine Learning and Deep learning

What is AI?

What is AI?

"using machines to do things that would normally require human intelligence"

AI, ML & DL

Symbolic Al

Symbolic Al

Symbolic Al

Connectionist Al - a type of non-symbolic Al

- "Connectionist" = networks of connected artificial neurons
- Learning = adjusting connection strengths (weights)
- No explicit symbols or rules
- Examples: Image recognition, language models, AlphaGo

Machine Learning

Deep Learning

Deep
Learning =
neural
networks
with many
layers

Deep Learning

Some fundamental concepts

"Garbage in, garbage out"

Your analysis is as good as your data.

Feature (x) and Target (y) variables in ML

Classification vs Regression

Stages of an ML Project

Stages of an ML Project - Loading Data

1.Load the Data

2.Process the Data

3.Create the Model

4.Train the Model

5.Evaluate the Model

Stages of an ML Project - Processing Data

1.Load the Data

2.Process the Data

3.Create the Model

4.Train the Model

5.Evaluate the Model

Stages of an ML Project - Create Model

Stages of an ML Project - Train Model

1.Load the Data

2.Process the Data

3.Create the Model

4.Train the Model

5.Evaluate the Model

MSE

Improving your model - Hyperparameter Tuning

Improving your model - Hyperparameter Tuning

Neural network

Improving your model - Feature engineering

Linear Regression

Linear Regression

Logistic Regression

Sigmoid Function

$$f(x) = \frac{1}{1 + e^{-fx}}$$

$$0.5$$

$$-6 \quad -6 \quad -2 \quad -0 \quad -6 \quad -4 \quad -6$$

Decision tree

Random Forest

Gradient Boosting

XGBoost

XGBoost

eXtreme Gradient Boosting

Neural Network

Neural Network - Forward Propogation

Neural Network - Backpropogation

Neural Network - Backpropogation

Attendance QR

INSERT QR HERE

Support and Resources

Support

 Weekly weekend Q&A sessions are available, or make use of the troubleshooting whatsapp group for questions

Resources

- Each week resources released
 - Slides
 - Collab answers

0

Graduation Hackathon

Saturday 15th May

- A full-day event
- Teams come together to generate Al-driven healthcare ideas
- The goal is to create at least a UI mockup (or prototype if possible)
- At the end of the day, judges will review the projects and select the best ideas based on innovation, feasibility, and impact.

