Aljabar Linier [KOMS119602] - 2022/2023

7.2 - Relation between Vectors in \mathbb{R}^2 and \mathbb{R}^3

Dewi Sintiari

Program Studi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 7-11 February 2022

Tujuan pembelajaran

Setelah pembelajaran ini, Anda diharapkan dapat:

- menjelaskan hasil kali titik antara dua vektor;
- menjelaskan norma komputasi dari sebuah vektor;
- menjelaskan jarak komputasi, sudut, dan proyeksi dua vektor;
- menjelaskan perkalian silang vektor.

Bagian 1: Inner Product & Norm

Dot (inner) product

Misalkan **u** dan **v** adalah vektor di \mathbb{R}^n :

$$\mathbf{u} = (u_1, u_2, \dots, u_n)$$
 and $\mathbf{v} = (v_1, v_2, \dots, v_n)$

Perkalian titik (dot product) atau hasil kali dalam (inner product) atau perkalian skalar (scalar product) dari **u** dan **v** ditentukan oleh:

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n$$

Dalam aljabar, perkalian titik adalah jumlah perkalian dari entri-entri yang bersesuaian dari dua barisan bilangan.

Bagaimana Anda menginterpretasikan hasil kali titik dua vektor secara geometris?

Contoh

1 Misal $\mathbf{u} = (1, -2, 3)$, $\mathbf{v} = (4, 5, -1)$, tentukan $\mathbf{u} \cdot \mathbf{v}$.

$$\mathbf{u} \cdot \mathbf{v} = 1(4) + (-2)(5) + (3)(-1) = 4 - 10 - 3 = -9$$

② Misalkan $\mathbf{u} = (1, 2, 3, 4)$ dan $\mathbf{v} = (6, k, -8, 2)$. Tentukan k sedemikian hingga $\mathbf{u} \cdot \mathbf{v} = 0$.

$$\mathbf{u} \cdot \mathbf{v} = 1(6) + 2(k) + 3(-8) + 4(2) = -10 + 2k$$

Jika $\mathbf{u} \cdot \mathbf{v} = 0$ maka -10 + 2k = 0, berarti bahwa k = 5.

Norma (panjang)vektor

Norma (norm) atau panjang sebuah vektor \mathbf{u} di \mathbb{R}^n didefinisikan sebagai:

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Ilustrasi secara 2D:

Sebuah vektor **u** adalah vektor satuan jika ||u|| = 1.

Contoh

1 Misalkan $\mathbf{u} = (1, -2, -4, 5, 3)$. Tentukan $\|\mathbf{u}\|$.

$$\|\mathbf{u}\|^2 = \mathbf{u} \cdot \mathbf{u} = 1^2 + (-2)^2 + (-4)^2 + 5^2 + 3^2 = 1 + 4 + 16 + 25 + 9 = 55$$

Maka, $\|\mathbf{u}\| = \sqrt{55}$.

② Diberikan vektor $\mathbf{v}=(1,-3,4,2)$ dan $w=(\frac{1}{2},-\frac{1}{6},\frac{5}{6},\frac{1}{6})$. Tentukan manakah dari kedua vektor tersebut yang merupakan vektor satuan?

$$\|\mathbf{v}\| = \sqrt{1+9+16+4} = \sqrt{30}$$
 and $\|w\| = \sqrt{\frac{9}{36} + \frac{1}{36} + \frac{25}{36} + \frac{1}{36}} = 1$

Oleh karena itu, \mathbf{w} adalah vektor satuan, dan \mathbf{v} bukan vektor satuan.

Vektor satuan standar

Vektor satuan standar di \mathbb{R}^n disusun oleh n vektor:

$$\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$$

dimana:

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \ \mathbf{e}_2 = (0, 1, 0, \dots, 0), \ \dots, \ \mathbf{e}_n = (0, 0, \dots, 0, 1)$$

Bagian 2: **Jarak, Sudut, Proyeksi**

Jarak (*distance*)

Jarak antara vektor $\mathbf{u} = (u_1, u_2, \dots, u_n)$ dan $\mathbf{v} = (v_1, v_2, \dots, v_n)$ dalam \mathbb{R}^n ditentukan oleh:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}$$

$$||u - v|| = \sqrt{(a_1 - a_2)^2 + (b_1 - b_2)^2}$$

Sudut (angle) antara dua vektor

Sudut θ antara vektor $u, \mathbf{v} \neq 0$ dalam \mathbb{R}^n didefinisikan oleh:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Apakah ini terdefinisi dengan baik? Perhatikan bahwa nilai cos berkisar dari -1 hingga 1. Sehingga:

$$-1 \leq \frac{\textbf{u} \cdot \textbf{v}}{\|\textbf{u}\| \|\textbf{v}\|} \leq 1$$

Latihan: buktikan ketaksamaan berikut!

Ketaksamaan Cauchy-Schwarz

Solusi soal latihan:

Jika **u** dan **v** adalah vektor di \mathbb{R}^n , maka $-1 \leq \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \leq 1$.

Theorem (Schwarz inequality)

Untuk setiap vektor \mathbf{u}, \mathbf{v} di \mathbb{R}^n , $\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$.

Proof.

Metode pembuktian lain dapat dibaca di:

https://www.uni-miskolc.hu/~matsefi/Octogon/volumes/volume1/article1_19.pdf.

Proyeksi

Proyeksi dari vektor **u** ke vektor **tak-nol v** didefinisikan oleh:

$$\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{v}\|^2}\mathbf{v} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}}\mathbf{v}$$

Panjang vektor $\operatorname{proj}_{v} u$ is $\|\mathbf{u}\| \cos(\theta)$. So,

$$\begin{aligned} \mathsf{proj}_{\nu} \mathbf{u} &= \| \mathbf{u} \| \cos(\theta) \ \mathbf{v} \\ &= \| \mathbf{u} \| \ \frac{\mathbf{u} \cdot \mathbf{v}}{\| \mathbf{u} \| \| \mathbf{v} \|} \ \mathbf{v} \\ &= \frac{\mathbf{u} \cdot \mathbf{v}}{\| \mathbf{v} \|} \ \mathbf{v} \\ &= \frac{\mathbf{u} \cdot \mathbf{v}}{\| \mathbf{v} \|} \ \mathbf{v} \end{aligned}$$

Apa kegunaan proyeksi vektor?

Ortogonalitas

Bagian 2: **Perkalian Silang** (Cross Product)

Perkalian Silang (Cross Product)

Misalkan **u** dan **v** adalah vektor dalam \mathbb{R}^3 :

$$\mathbf{u} = (u_1, u_2, u_3)$$
 dan $\mathbf{v} = (v_1, v_2, v_3)$

Cross product dari **u** dan **v** didefinisikan oleh:

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, \ u_3v_1 - u_1v_3, \ u_1v_2 - u_2v_1)$$

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix}, - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix}, \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \end{pmatrix}$$

Ini dapat dengan mudah dilihat dengan menggunakan metode berikut:

$$\begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \quad \begin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix} \quad \begin{array}{ccc} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$$

Contoh

Diberikan vektor:

$$\mathbf{u} = (0, 1, 7)$$
 and $\mathbf{v} = (1, 4, 5)$

Vektor dapat direpresentasikan sebagai matriks: $\begin{bmatrix} 0 & 1 & 7 \\ 1 & 4 & 5 \end{bmatrix}$

Jadi,

$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix}, - \begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix} \end{pmatrix}$$
$$= (5 - 28, -(0 - 7), 0 - 1)$$
$$= (-23, 7, -1)$$

Apa arti $\mathbf{u} \times \mathbf{v} = \mathbf{w}$?

Diberikan: $\mathbf{u} \times \mathbf{v} = \mathbf{w}$. Ini berarti bahwa:

$$\mathbf{w} \perp \mathbf{u}$$
 and $\mathbf{w} \perp \mathbf{v}$

Example

Diberikan $\mathbf{u} = (0, 1, 7)$ and $\mathbf{v} = (1, 4, 5)$, dan:

$$\mathbf{u} \times \mathbf{v} = \mathbf{w} = (-23, 7, -1)$$

Perhatikan bahwa

•
$$\mathbf{w} \cdot \mathbf{u} = (-23, 7, -1) \cdot (0, 1, 7) = 0 + 7 - 7 = 0$$

•
$$\mathbf{w} \cdot \mathbf{v} = (-23, 7, -1) \cdot (1, 4, 5) = -23 + 28 - 5 = 0$$

Sistem tangan kanan

Sifat-sifat perkalian silang

Theorem

Misalkan $\mathbf{u}, \mathbf{v}, \mathbf{w}$ adalah vektor dalam \mathbb{R}^3 , dan $k \in \mathbb{R}$. Kemudian:

- $\mathbf{2} \mathbf{u} \times (\mathbf{v} + \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) + (\mathbf{u} \times \mathbf{w})$
- $(\mathbf{u} + \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) + (\mathbf{v} \times \mathbf{w})$

- $\mathbf{0} \mathbf{u} \times \mathbf{u} = \mathbf{0}$

Sifat-sifat dot product and cross product

Theorem

Misalkan $\mathbf{u}, \mathbf{v}, \mathbf{w}$ adalah vectors in \mathbb{R}^3 . Then:

$$(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{u})$$

$$v \cdot (\mathbf{u} \times \mathbf{v}) = \mathbf{0}$$

$$(\mathbf{u} \times \mathbf{v} \text{ is orthogonal to } \mathbf{v})$$

3
$$||\mathbf{u} \times \mathbf{v}||^2 = ||\mathbf{u}||^2 ||\mathbf{v}||^2 - (\mathbf{u} \cdot \mathbf{v})^2$$

Latihan

Buktikan identitas berikut:

$$||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \ ||\mathbf{v}|| \sin \theta$$

dimana θ adalah sudut antara **u** dan **v**.

Jawabanr:

$$||\mathbf{u} \times \mathbf{v}||^{2} = ||\mathbf{u}||^{2} ||\mathbf{v}||^{2} - (\mathbf{u} \cdot \mathbf{v})^{2}$$

$$= ||\mathbf{u}||^{2} ||\mathbf{v}||^{2} - (||\mathbf{u}|| ||\mathbf{v}|| \cos \theta)^{2}$$

$$= ||\mathbf{u}||^{2} ||\mathbf{v}||^{2} - (||\mathbf{u}||^{2} ||\mathbf{v}||^{2} \cos^{2} \theta)$$

$$= ||\mathbf{u}||^{2} ||\mathbf{v}||^{2} (1 - \cos^{2} \theta)$$

$$= ||\mathbf{u}||^{2} ||\mathbf{v}||^{2} \sin^{2} \theta$$

Dengan demikian, $||\mathbf{u} \times \mathbf{v}|| = ||\mathbf{u}|| \, ||\mathbf{v}|| \sin \theta$

Cross product of standard unit vectors

The standard unit vectors in \mathbb{R}^3 :

$$\mathbf{i} = (1,0,0) \quad \mathbf{j} = (0,1,0) \quad \mathbf{k} = (0,0,1)$$

The cross product between \mathbf{i} and \mathbf{j} is given by:

$$\mathbf{i} \times \mathbf{j} = \begin{pmatrix} \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}, - \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = (0, 0, 1) = \mathbf{k} \end{pmatrix}$$

The cross product between i, j, and k:

$$\bullet$$
 $\mathbf{i} \times \mathbf{j} = \mathbf{k}$

$$\bullet$$
 $\mathbf{i} \times \mathbf{k} = \mathbf{i}$

•
$$\mathbf{k} \times \mathbf{i} = \mathbf{j}$$

•
$$\mathbf{j} \times \mathbf{i} = -\mathbf{k}$$

•
$$\mathbf{k} \times \mathbf{j} = -\mathbf{i}$$

$$\bullet \ \mathbf{i} \times \mathbf{k} = -\mathbf{j}$$

Perkalian silang dua vektor

Diberikan:

- $\mathbf{u} = (u_1, u_2, u_3) = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$
- $\mathbf{v} = (v_1, v_2, v_3) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k}$

Dengan menggunakan ekspansi kofaktor, diperoleh:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_2 & u_3 \\ v_2 & v_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} u_1 & u_3 \\ v_1 & v_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} u_1 & u_2 \\ v_1 & v_2 \end{vmatrix} \mathbf{k}$$

Perkalian silang dua vektor menggunakan ekspansi kofaktor

Dari contoh sebelumnya:

•
$$\mathbf{u} = (0, 1, 7) = \mathbf{j} + 7\mathbf{k}$$

•
$$\mathbf{v} = (1, 4, 5) = \mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$$

Maka:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 7 \\ 1 & 4 & 5 \end{vmatrix} = \begin{vmatrix} 1 & 7 \\ 4 & 5 \end{vmatrix} \mathbf{i} - \begin{vmatrix} 0 & 7 \\ 1 & 5 \end{vmatrix} \mathbf{j} + \begin{vmatrix} 0 & 1 \\ 1 & 4 \end{vmatrix} \mathbf{k}$$
$$= (5 - 28)\mathbf{i} - (0 - 7)\mathbf{j} + (0 - 1)\mathbf{k}$$
$$= -23\mathbf{i} + 7\mathbf{j} - \mathbf{k}$$

Interpretasi geometris dari perkalian silang (dalam \mathbb{R}^2)

Perkalian silang dua vektor \mathbf{u} dan \mathbf{v} dalam \mathbb{R}^2 sama dengan luas jajar genjang yang ditentukan oleh kedua vektor.

$$\begin{aligned} \mathsf{Area} &= \mathsf{base} \ \times \ \mathsf{height} \\ &= ||\mathbf{u}|| \ ||\mathbf{v}|| \sin \theta \\ &= ||\mathbf{u} \times \mathbf{v}|| \end{aligned}$$

Contoh

Tentukan luas segitiga yang ditentukan oleh titik-titik:

$$P_1 = (2, 2, 0), P_2 = (-1, 0, 2), \text{ and } P_3 = (0, 4, 3)$$

Area of
$$\triangle = 1/2$$
 Area of parallelogram

Two vectors that determine the parallelogram:

$$\mathbf{u} = P_1 \vec{P}_2 = O\vec{P}_2 - O\vec{P}_1$$

= $(-1, 0, 2) - (2, 2, 0) = (-3, -2, 2)$

$$\mathbf{v} = \vec{P_1P_3} = \vec{OP_3} - \vec{OP_1}$$

= $(0, 4, 3) - (2, 2, 0) = (-2, 2, 3)$

Hence:
$$\mathbf{u} \times \mathbf{v} = \begin{pmatrix} \begin{vmatrix} -2 & 2 \\ 2 & 3 \end{vmatrix}, - \begin{vmatrix} -3 & 2 \\ -2 & 3 \end{vmatrix}, \begin{vmatrix} -3 & -2 \\ -2 & 2 \end{vmatrix} \end{pmatrix} = (-10, 5, -10)$$
Jadi, luas jajaran genjang adalah:

$$||\mathbf{u} \times \mathbf{v}|| = \sqrt{(-10)^2 + (5)^2 + (-10)^2} = \sqrt{225} = 15$$

dan luas segitiga adalah 15/2 = 7, 5.

Interpretasi geometris dari perkalian silang (dalam \mathbb{R}^3)

Perkalian silang dari tiga vektor \mathbf{u} , \mathbf{v} , dan \mathbf{w} dalam \mathbb{R}^3 sama dengan volume paralelepiped yang ditentukan oleh ketiga vektor.

$$\begin{split} \text{Volume} &= \text{area of base } \times \text{ height} \\ &= ||\mathbf{v} \times \mathbf{w}|| \cdot (||\text{proj}_{\mathbf{v} \times \mathbf{w}} \mathbf{u}||) \\ &= ||\mathbf{v} \times \mathbf{v}|| \cdot \frac{|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|}{||\mathbf{v} \times \mathbf{w}||} \\ &= |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \end{split}$$

Interpretasi geometris dari perkalian silang (dalam \mathbb{R}^3)

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \mathbf{u} \cdot \begin{pmatrix} \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} \mathbf{k} \end{pmatrix}$$

$$= \begin{vmatrix} v_2 & v_3 \\ w_2 & w_3 \end{vmatrix} u_1 - \begin{vmatrix} v_1 & v_3 \\ w_1 & w_3 \end{vmatrix} u_2 + \begin{vmatrix} v_1 & v_2 \\ w_1 & w_2 \end{vmatrix} u_3$$

$$= \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$

which is the determinant of matrix whose first row is composed of elements of ${\bf u}$ and the 2nd and 3rd rows are composed with the elements of ${\bf v}$

The volume of the parallelepide is equal to $|\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})|$

Example

Find the volume of the *parallelepide* formed by three vectors:

$$u = 3i - 2j - 5k, v = i + 4j - 4k, w = 3j + 2k$$

Solution:

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \begin{vmatrix} 3 & -2 & -5 \\ 1 & 4 & -4 \\ 0 & 3 & 2 \end{vmatrix}$$
$$= 3 \begin{vmatrix} 4 & -4 \\ 3 & 2 \end{vmatrix} - (-2) \begin{vmatrix} 1 & -4 \\ 0 & 2 \end{vmatrix} + (-5) \begin{vmatrix} 1 & 4 \\ 0 & 3 \end{vmatrix}$$
$$= 60 + 4 - 15$$
$$= 49$$

Latihan 1

Tentukan luas jajar genjang yang dibentuk oleh dua buah vektor:

$$\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$$
 and $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$

Solution:

$$\det \left(\begin{bmatrix} 4 & 3 \\ 3 & -4 \end{bmatrix} \right) = \begin{vmatrix} 4 & 3 \\ 3 & -4 \end{vmatrix} = -16 - 9 = -25$$

Jadi, luas jajar genjang adalah |-25| = 25.

Exercise 2

Diberikan tiga vektor:

$$\mathbf{u} = (1, 1, 2), \ \mathbf{v} = (1, 1, 5), \ \mathbf{v} = (3, 3, 1)$$

Tentukan volume paralelepide yang dibentuk oleh ketiga vektor tersebut!

Solution:

$$\begin{vmatrix} 1 & 1 & 2 \\ 1 & 1 & 5 \\ 3 & 3 & 1 \end{vmatrix} = (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} - (1) \begin{vmatrix} 1 & 5 \\ 3 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 3 & 3 \end{vmatrix}$$
$$= (1)(-14) - (-1)(-14) + (2)(0)$$
$$= -14 + 14 + 0$$
$$= 0$$

Rekap

Kita telah mendiskusikan:

- the definition of vectors in Linear Algebra;
- some operations on vectors:
 - penjumlahan vektor dan perkalian skalar;
 - kombinasi linier;
 - hasil kali titik antara dua vektor;
 - komputasi norma dari sebuah vektor;
 - menghitung jarak, sudut, dan proyeksi dua vektor

Task: tulislah ringkasan tentang diskusi kita, dan kerjakan latihannya!

bersambung...