AFCRL-67-0274 MAY 1967 AIR FORCE SURVEYS IN GEOPHYSICS, NO. 193

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

A Statistical Model of the Temperature Field at Supersonic Aircraft Altitudes

IRVING I. GRINGORTEN

OFFICE OF AEROSPACE RESEARCH United States Air Force

RECEIVED AUG 1 8 1967 CFSTI

AFCRL-67-0274 MAY 1967 AIR FORCE SURVEYS IN GEOPHYSICS, NO. 193

AEROSPACE INSTRUMENTATION LABORATORY

PROJECT 8624

AIR FORCE CAMBRIDGE RESEARCH LABORATORIES

L. G. HANSCOM FIELD, BEDFORD, MASSACHUSETTS

A Statistical Model of the Temperature Field at Supersonic Aircraft Altitudes

IRVING I. GRINGORTEN

Distribution of this document is unlimited. It may be released to the Clearinghouse, Department of Commerce, for sale to the general public.

OFFICE OF AEROSPACE RESEARCH United States Air Force

Abstract

Data archives are such that, for a selected cruising level, a reasonably large sample of daily average temperatures along a specific route can be obtained and summarized into a frequency distribution. But if, as in Air Force operations, many different and constantly changing routes are involved, then the climatologic tools and methods must be such as to provide estimates of the route average temperature without recourse to the archives and the processing of raw data. A method has been devised that utilizes a model of the horizontal spatial correlations of temperature. It has been demonstrated on a continent-wide area, and shows promise of hemisphere-wide application.

		Contents
1.	INTRODUCTION	1
2.	THE BASIC RELATION	3
3.	THE MODEL	5
4.	DATA AND RESULTS	9
5.	APPLICATION	12
6.	SUMMARY	14
7.	CONCLUSIONS	16
AC	KNOW LEDGMENTS	43
RE	FERENCES	45
		Illustrations
1.	The Cumulative Frequency Distribution P(T) of Ter	
	50 mb, Winter, Over (a) San Francisco, and (b) Trancisco — Thule Route Average	Thule; (\underline{c}) San 2
2.	Isopleths of Correlation Coefficient Between the 50- Winter, Over San Francisco and Other North Ame	
3.	Graph of the Model of Correlation Coefficient ($ ho_{ij}$) I Distance γ_{ij}	Decay With 7

Illustrations

42.	Isotherms of Mean Temperature \overline{T}_i , 50 mb, December, January February	17
4 <u>b</u> .	Isopleths of Standard Deviation σ_i , of the Temperature at 50 mb, December, January, February	18
4 <u>c</u> .	Isopleths of the Model Parameter a; 50 mb, December, January, February	19
5 <u>a</u> .	Isotherms of Mean Temperature Ti, 50 mb, March, April, May	20
5b.	Isopleths of Standard Deviation σ_i , 50 mb, March, April, May	21
5ç.	Isopleths of the Model Parameter a, 50 mb, March, April, May	22
6 a .	Isotherms of Mean Temperature \overline{T}_i , 50 mb, June, July, August	23
6 <u>b</u> .	Isopleths of Standard Deviation σ_i , 50 mb, June, July, August	24
6 <u>c</u> .	Isopleths of the Model Parameter a; 50 mb, June, July, August	25
7 <u>a</u> .	Isotherms of Mean Temperature T _i , 50 mb, September, October, November	26
7 <u>b</u> .	Isopleths of Standard Deviation σ_i , 50 mb, September, October, November	27
7 <u>c</u> .	Isopleths of Model Parameter α_i , 50 mb, September, October, November	28
8 ą .	Isotherms of Mean Temperature \overline{T}_i , 30 mb, December, January, February	29
8 <u>b</u> .	Isopleths of Standard Deviation σ_i , 30 mb, December, January, February	30
8ç.	Isopleths of Model Parameter α_i , 30 mb, December, January, February	31
9 <u>a</u> .	Isotherms of Mean Temperature T _i , 30 mb, March, April, May	32
9 <u>b</u> .	Isopleths of Standard Deviation σ_i , 30 mb, March, April, May	33
9 <u>c</u> .	Isopleths of Model Parameter a, 30 mb, March, April, May	34
0 <u>a</u> .	Isotherms of Mean Temperature \overline{T}_i , 30 mb, June, July, August	35
0 <u>b</u> .	Isopleths of Standard Deviation σ_i , 30 mb, June, July, August	36
0 <u>c</u> .	Isopleths of Model Parameter a, 30 mb, June, July, August	37
1 <u>a</u> .	Isotherms of Mean Temperature \overline{T}_i , 30 mb, September, October, November	38
1 <u>b</u> .	Isopleths of Standard Deviation σ_i , 30 mb, September, October, November	39
1 <u>c</u> .	Isopleths of Model Parameter α_i , 30 mb, September, October, November	40
2.	Isopleths of the Difference D Between Mean Temperatures, 30 mb, Winter, at Times 0000Z and 1200Z (D = \overline{T}_{1200} - \overline{T}_{0000})	41
3.	Isopleths of the Difference D Between Mean Temperatures, 30 mb, Summer, at Times 0000Z and 1200Z (D = \overline{T}_{1200} - \overline{T}_{0000})	42

		Tables
1.	The San Francisco — Thule Route Temperatures, Winter, 50 mb, at Eight Checkpoints (with correlation coefficients)	4
2.	Comparison of Means and Standard Deviations of Route Average Temperatures at 50 mb	5
3.	Construction of Scale Yielding Segments of Equal Length on the Polar Stereographic Chart	8
4.	The Sixty-six Stations Whose Observations of the 50-mb and 30-mb Temperatures for the Period of Record, December 1958 to November 1963, Were Correlated for This Report	10
5.	The Straightline Route on the Polar Stereographic Chart, San Francisco — Thule, Winter, 50 mb	13
6.	Comparison of Two Estimates of the 1-Percentile and 5-Percentile of Average Route Temperature	14

A Statistical Model of the Temperature Field at Supersonic Aircraft Altitudes

1. INTRODUCTION

Supersonic aircraft (SSA) will cruise at 60000- to 80000-ft altitudes where the ambient air temperature will affect the rate of fuel consumption. It has been estimated (Nelms, 1964), with some qualification (Stickle, 1965), that the allowable payload on a 3000-mile trip will be reduced by perhaps nine passengers and their baggage when the average route temperature at cruising level is 20°F warmer than the U.S. Standard. At the same time it appears that a flying mission will not gain by a diversion from a great-circle route to avoid extremes of route temperature (Serebreny, 1964).

The subject of the average, or integrated, route temperature has not been neglected in the past half-dozen years (Crutcher, 1963; Charles, 1964; Court and Abrahms, 1964). The U.S. Weather Bureau, under FAA sponsorship, issued three special reports on the routes New York to San Francisco (1963), San Francisco to Thule to Stockholm (1964) and New York to Paris (1964), in which there are tables of the distribution of average route temperatures at several key levels for all seasons. The method that the USWB used to obtain the route averages was unequivocally sound. On each of a large sample of days, at each level and season, the average temperature along the selected route was computed. In Figure 1, curve (c) shows the frequency distribution of these averages for the San Franciso to Thule

⁽Received for publication 18 April 1967)

Figure 1. The Cumulative Frequency Distribution P(T) of Temperature T, 50 mb, Winter, Over (a) San Francisco, and (b) Thule; (c) San Francisco – Thule Route Average

route in winter. Boeing Aircraft Co. (Wells, 1962 a, b) has issued two reports on the average route temperature means and standard deviations for many conceivable routes throughout the world. All these tables, however, have to date been limited to the levels of subsonic jet aircraft. Neal Barr, of Boeing, has in a private communication mentioned that a revision that will include the 50-mb level is about to be published.

From the standpoint of Air Force operations, consideration must not be restricted to a set of preselected routes. It must be possible to find the probability of temperature — warm or cold — at relatively short notice for any route and without recourse to the data archives and a computer effort. It has therefore been deemed necessary to devise a model whereby temperatures can be related spatially.

On the assumption that the SSA will fly at a constant pressure height, the model described below has been applied to the North American continent, at levels 50-mb and 30-mb (67500 and 78000 ft) in all four seasons of the year.

2. THE BASIC RELATION

At any given altitude and season, the temperature frequency distribution over a given station generally departs from a normal or gaussian distribution (Barr, 1964). More often than not this departure is small, but sometimes it becomes large, especially over the polar regions at altitudes of 60000 to 80000 ft where the temperature distribution in winter is bimodal, owing to a well-documented phenomenon termed the explosive warming (Reed et al., 1963; Craig and Hering, 1959). When the temperature is averaged over a route of 2000 naut. mi. or longer, however, a centralizing effect produces a more nearly normal distribution. For example, Figure 1 shows the cumulative frequency distribution of the temperature in winter at 50 mb; (a) over San Francisco, (b) over Thule, Greenland. Curve (b) shows distinct bimodality, but curve (c), the distribution of the average over the entire route from San Francisco to Thule, is much less bimodal. For the model described below, all route-integrated temperatures are assumed to be normally distributed and therefore adequately defined by the mean and the standard deviation of the distribution.

Consider a route defined by (n+1) checkpoints X_0, \ldots, X_n , including the point of departure X_0 and the destination X_n . Let s_0, \ldots, s_n , be the weights to be attached to each observation for a suitable determination of route average temperature, and T_0, \ldots, T_n , the temperature of each of the (n+1) checkpoints. Then the route average T is given by

$$T = \sum_{i=0}^{n} s_i T_i / \sum_{i=0}^{n} s_i$$
, (1)

to give the mean

$$\overline{T} = \sum_{i=0}^{n} s_i \overline{T}_i / \sum_{i=0}^{n} s_i.$$
 (2)

The standard deviation σ of the route average is given in terms of the standard deviation σ_i of each temperature T_i and the correlation ρ_{ij} between the <u>ith</u> and <u>ith</u> terms in the average. Thus,

$$\sigma^2 = \sum_{i,j=0}^{n,n} s_i s_j \rho_{ij} \sigma_i \sigma_j / \left(\sum_{i=0}^{n} s_i\right)^2.$$
 (3)

When a route is divided into relatively short segments by the checkpoints X_0,\ldots,X_n , the weight s_0 should be taken as the length from X_0 to midway between X_0 and X_1 , the weight s_1 should be taken as the length from midway between X_0 and X_1 to midway between X_1 and X_2 , and so on. Table 1 lists the winter 50-mb mean \overline{T}_1 and standard deviation σ_i at each of eight checkpoints on the route from San Francisco to Thule. The total distance of 2810 naut. mi. was divided into eight lengths, shown as the weighting factors s_i . The data sample that yielded the means and standard deviations (1958 to 1963) also yielded the correlation coefficients in the table. Thus, Table 1 provides the information necessary and sufficient for estimating mean \overline{T} and standard deviation σ by means of Eqs. (2) and (3).

Table 1. The San Francisco — Thule Route Temperatures, Winter, 50 mb, at Eight Checkpoints. (\overline{T}_i = temperature mean, in °C; σ_i = standard deviation, in °C; s_i = length of the route, in nautical miles, represented by the temperature at the checkpoints. The body of the table contains correlation coefficients between temperatures of pairs of checkpoints.)

Station No. Location	0 SF	1 Medford	2 Seattle	3 Edmonton	4 Ft. Smith	5 Baker Lake	6 Resolute	7 Thule
Mean Τ _i SD σ _i Length s _i	-60 3. 3 150	-59 3. 8 320	-58 4. 1 390	-57 6. 0 390	-57 8. 4 400	-57 8.8 480	-62 10. 6 470	-62 9.7 210
Station No.								
0	1.000	. 85	. 73	. 43	. 24	. 05	09	27
1		1,000	. 89	. 63	. 53	. 19	.00	28
2			1.000	. 80	. 68	. 22	. 12	26
3				1.000	. 90	. 66	. 40	. 06
4					1,000	. 89	. 69	. 38
5						1.000	. 85	. 62
6							1.000	. 89
7								1,000

This technique yielded the means of the average route temperatures and estimated standard deviations in Column B, Table 2. For comparison, the FAA standard deviation values based on 1957 to 1962 data, computed directly from day-to-day route averages, are shown in Column C.

Both Column B and C estimates are made without modeling and are equally valid. The difference is therefore an indication of the error in estimating the route-temperature standard deviation. The root-mean-square difference of the four pairs of values is 0.4°C.

The same technique could be applied to obtain the mean and standard deviation of the route average for any hemispheric route. Success would depend on using a sufficient number of route checkpoints and knowing not only the individual means and standard deviations of each checkpoint but the correlation coefficients between pairs. The correlation coefficients present a difficulty. To adequately cover the Northern Hemisphere, or even the North American quadrant, the tables to give such intercorrelations would have to be voluminous, to say nothing of the massive effort that would be required to produce them. It has therefore been found necessary to develop a model that yields usable estimates of these correlation coefficients.

Table 2. Comparison of Means and Standard Deviations of Route Average Temperatures at 50 mb

Season	Route	Mean (℃)	Standard Devia		tion (°C)	
Summer	SF — NY	-53. 5	. 98	. 96	1. 00	
	SF — Thule	-48	1. 22	1. 26	1. 17	
W inter	SF — NY	-59	2. 70	2. 62	2. 36	
	SF — Thule	-59	5. 63	5. 68	5. 48	

^{*}by model

3. THE MODEL

Figure 2 is an example of the kind of field that a model must be able to approx-mate. The lines join points having equal correlation coefficients, based on the 50-mb winter temperature at the master station, San Francisco, and the continental slave stations. As might be expected, the correlation close to the master station is high. It decreases to zero at about 1800 naut. mi. from the master station, and becomes slightly negative at greater distances.

After some trial and error, a model with a single parameter (α_{ij}) was chosen to estimate the correlation ρ_{ij} between points X_i and X_j . If the distance between these points is γ_{ij} as measured in earth radians on a polar stereographic chart, then the estimate of ρ_{ij} is

tby formula (3)

⁺from USWB reports

Figure 2. Isopleths of Correlation Coefficient Between the 50-mb Temperature, Winter, Over San Francisco and Other North American Stations [projection: polar stereographic; scale measure: earth radians (tenths)]

$$\widehat{\rho}_{ij} = \exp \left[-\frac{1}{2} (\alpha_{ij} \gamma_{ij})^2 \right] \cos (\alpha_{ij} \gamma_{ij}), \qquad (4)$$

as drawn in Figure 3.

Figure 3. Graph of the Model of Correlation Coefficient (ρ_{ij}) Decay With Distance $[\gamma_{ij}]$ = Distance in Radians Between ith and ith Stations, α_{ij} = Model Parameter

The model in Figure 3 [Eq. (4)], has merit but it also has limitations. The correlation coefficient will decrease to zero and become somewhat negative; it cannot be more negative than -0.06, but this is not an important consideration when the distance between stations is great. Of greater significance, the more independent the temperature over a given station, the larger the parameter α_{ij} . Since the distance γ_{ij} is mode equal to the distance as measured on a polar stereographic projection instead of equal to the actual terrestrial distance between stations, the effect of the varying scale is absorbed in the parameter α_{ij} .

To construct the model, let the origin on a polar stereographic chart be at the N pole, the x axis positive along the 0° meridian, and the y axis positive along the 90°E meridian. Let λ denote longitude and ϕ denote latitude. Then the distance γ_{ij} between the two points (x_i, y_i) and (x_j, y_j) , which respectively represent the two points (λ_i, ϕ_i) and (λ_j, ϕ_i) , is given by

$$\gamma_{ij} = \sqrt{(x_j - x_i)^2 + (y_j - y_i)^2}$$
, (5)

where

$$x_i = 2 \cos \lambda_i \tan(\frac{\pi}{4} - \frac{\phi_i}{2})$$
,

$$y_i = 2 \sin \lambda_i \tan (\frac{\pi}{4} - \frac{\phi_i}{2}).$$

Likewise,

$$x_j = 2 \cos \lambda_j \tan(\frac{\pi}{4} - \frac{\phi_j}{2}),$$

$$y_j = 2 \sin \lambda_j \tan (\frac{\pi}{4} - \frac{\phi_j}{2})$$
.

Thus, the radial distance from pole to equator, which is $\pi/2$ radians on the earth's surface, is 2.0 radians on the polar stereographic chart. Figure 2 contains a constant scale for the chart, marked off in tenths of radians (see Table 3).

Table 3. Construction of Scale Yielding Segments of Equal Length on the Polar Stereographic Chart [All measurements are made from the N pole along the 0° meridian (x axis).]

y = 0; x =	$2\tan(\frac{\pi}{4}-\frac{\phi}{2})$
х	φ(°N)
0, 1	84. 2
0, 2	78, 6
0, 3	67. 4
0, 4	67. 4
0, 5	62. 0
0.6	56, 6
0. 7	51.4
0, 8	46. 4
0. 9	41.6
1.0	3 6, 8

At this stage the model does not appear especially useful. The parameter α_{ij} is a function of the two stations X_i and X_j . What is needed is a single parameter that can be assigned to each station individually so that it can be mapped in much the same way as the mean or standard deviation is mapped.

Arbitrarily assign the number α_i to the station and make the parameter α_{ij} the average of two values:

$$\alpha_{ij} = \frac{(\alpha_i + \alpha_j)}{2} \tag{6}$$

But this arbitrary settlement of the question leads to another question: What is the best value of α_i to assign to station X_i ? Clearly, it should be a value that minimizes the error in estimation of ρ_{ij} by Eqs. (4) and (6).

To attack the problem expeditiously it was decided to find the value of α_i at each master station X_i so that when α_i was used in place of α_{ij} in Eq. (4), the result would be a set of estimates of ρ_{ij} between the <u>i</u>th station and all other stations within a reasonable distance of the <u>i</u>th station. The value of α_i was chosen such that

$$E_{i} = \sum_{j=1}^{65} w_{ij} (\rho_{ij} - \hat{\rho}_{ij})^{2}$$
 (7)

was a minimum, where E is the weighted sum of squares of error. The quantity w_{ij} is a weighting factor. It can be seen from Eq. (3) and its application in Table 1 that it is more important to closely estimate the correlations of neighboring stations than to estimate the correlations of stations farther apart. After a few trials, it was decided to set the weighting factor

$$w_{ij} = 0.6 - \gamma_{ij}, \quad \gamma_{ij} < 0.6,$$

$$= 0, \qquad \gamma_{ij} \ge 0.6.$$
(8)

4. DATA AND RESULTS

To apply the model, the semidaily temperatures for the five years 1959 to 1963 were assembled for the 50- and 30-mb heights at which SST are expected to cruise. The data, from 66 stations over North and Central America (Table 4), were grouped

Table 4. The Sixty-six Stations Whose Observations of the 50-mb and 30-mb Temperatures for the Period of Record, December 1958 to November 1963, Were Correlated for This Report

Sta. No.	Location	Latitude	Longitud
1	San Diego, California	32 49	117 08
2	Balboa, Panama, Canal Zone	8 59	079 34
3	San Juan, Puerto Rico	18 26	066 00
4	Grand Cayman, BWI/Roberts Fld	19 18	081 22
5	San Andres, Colombia	12 35	081 42
6	Miami, Florida	25 48	080 16
7	Burrwood, Louisiana	28 58	089 22
8	Merida, Mexico	20 55	089 40
9	Brownsville, Texas	25 54	097 26
10	Greensboro, North Carolina	36 05	071 57
11	Charleston, South Carolina	32 54	080 02
12	Nashville, Tennessee	36 07	086 41
13	Fort Worth, Texas/Carswell AFB	32 50	097 03
14	Jackson, Mississippi	32 20	090 13
15	Dodge City, Kansas	37 46	099 58
16	Sable Island, Nova Scotia	43 56	060 02
17	Nantucket, Massachusetts	41 15	070 04
18	Portland, Maine	43 39	070 19
19	Peoria, Illinois	40 40	089 41
20	Sault Ste Marie, Michigan	46 28	084 22
21	Goose, Newfoundland	53 18	060 27
22	Fort Chimo, Quebec	58 06	068 26
23	Nitchequon, Quebec	53 12	070 54
24	Fort Harrison, Quebec	58 27	078 08
25	Moosonee, Ontario	51 16	080 39
26	Trout Lake, Ontario	53 50	089 52
27	Churchill, Manitoba	58 45	094 04
28	Frobisher Bay, Northwest Territory	63 45 68 47	068 33 087 15
29 30	Hall Lake, Northwest Territory Baker Lake, Northwest Territory	64 18	096 00
31	Thule, Greenland	76 33	068 49
32	Resolute Bay, Northwest Territory	74 43	094 59
33	Alert, Northwest Territory	82 30	062 20
34	Eureka Sound, Northwest Territory	80 00	085 50
35	Del Rio, Texas	29 23	100 46
36	Midland, Texas/Sloan Fld	32 56	102 12
37	El Paso, Texas	31 48	106 24
38	Grand Junction, Colorado	39 07	108 32
39	Ely, Nevada	39 17	114 51
40	Tucson, Arizona	32 07	110 56
41	Oakland, California	37 44	122 12
42	Bismarck, North Dakota	46 46	100 45
43	North Platte, Nebraska	41 08	100 41
44	Great Falls, Montana	47 29	111 21
45	Medford, Oregon	42 22	122 52
46	Olympia, Washington	47 27	122 18
47	The Pas, Manitoba	53 58	101 06
48	Edmonton, Alberta	53 34	113 31
49	Prince George, British Columbia	53 50	122 41
50	Fort Velson, British Columbia	58 50	122 35
51	Annette, Alaska	55 02	131 34
52	Yakutat, Aleska	59 31	139 40
53	Cold Bay, Alaska	55 12	162 43
54	St Paul Island, Alaska	57 09	170 13
55	Fort Smith, Northwest Territory	60 01	111 58
56	Coppermine, Northwest Territory	67 49	115 05
57	Anchorage, Alaska	61 10	149 59
58	Fairbanks, Alaska	64 49	147 52
59	Bethel, Alaska	60 47	161 48
60	Nome, Alaska	64 30	165 26
61	Isachsen, Northwest Territory	78 47	103 32
62	Mould Bay, Northwest Territory	76 14	119 20
63	Barter Island, Alaska	70 08	143 38
64	Barrow, Alaska	71 18	156 07
65	Shernya, Alaska	52 43	174 06
66	Pittsburgh, Pennsylvania	40 30	080 13

by seasons (winter: December, January, February; summer: June, July, August). For each station in each season the sample mean and standard deviation of the temperature were found and the correlation coefficient between pairs of all stations calculated. The means and standard deviations were then plotted and isopleths drawn (Figures 4 to 11, \underline{a} , \underline{b}). Equation (4) was used in making the estimate \hat{p}_{ij} (α_i) and the error of estimate

$$[\rho_{i,j} - \hat{\rho}_{i,j} (\alpha_i)]$$

was squared, multiplied by w_{ij} and added with other squared errors to give, for the \underline{i} th station:

$$E_{i} = \sum w_{ij} \left[\rho_{ij} - \hat{\rho}_{ij} \left(\alpha_{i}\right)\right]^{2}$$
(9)

By trying a set of values for α_i ,

$$\alpha_i = 0.5, 1.5, ..., 10.5$$

it was possible to find the value of α_i that minimized E_i . The results for α are shown in Figures 4 to 11 (c).

In determining the sample mean \bar{T}_i , standard deviation σ_i , and the correlation coefficient ρ_{ij} , between stations, the diurnal cycle was ignored. To find out how serious an oversight this could be, the 0000Z and 1200Z temperatures were averaged separately and their difference $D(D = \bar{T}_{1200} - \bar{T}_{0000})$ plotted for the winter and summer seasons at 50 mb (Figures 12 and 13). The effect of the daytime heating at the 50-mb level is apparent. Close to the 90°W meridian the difference is zero; to the east it is positive and to the west it is negative. It is not, however, clear whether the effect is real or due to heating of the instrument. This subject has been dealt with in some detail by Chiu (1959), Badgley (1959), and Harris et al. (1962).

Between the standard deviations of 0000Z and 1200Z observations, there is a root-mean-square difference of 0.124°C in summer and 0.272°C in winter. Errors of observation should increase the observed variances by a mean-square amount

$$\epsilon^2 = \sigma^2_{\text{(observed)}} - \sigma^2_{\text{(true)}}$$
(10)

The value of ϵ has been found to be (Johannessen, 1959) approximately 0.7. By comparison, the root-mean-square difference between 0000Z and 1200Z observations can be considered negligible, whether it is real or due to errors of the instrument.

For the present study, since the standard deviation is of the order of 2° to 10°C, all errors of observation are considered to have only slight effect on the values of the standard deviation and are therefore neglected. Eventually, refined observations and larger samples of data could be used to yield improved values of means, standard deviations, and correlation coefficients, so that the charts of this paper might be improved. There are similarities, but also significant differences, between the charts in this report and the charts or tables of Ratner (1957), Air Weather Service (1953), Li Peng (1965), and Smith, McMurray, and Crutcher (1963). All the charts differ from one another in significant values but the 50-mb and 30-mb averages given by Ratner from the 1946-1955 records are in satisfactory agreement with Figures 4a to 11a in this report.

5. APPLICATION

From the (a) and (b) charts of Figures 4 to 11 we read the mean and standard deviation of temperatures at checkpoints along a selected route. From the (c) charts of Figures 4 to 11 we read the value of α at each checkpoint, and then obtain the correlation coefficients between checkpoints. This provides the requisite information for obtaining the mean and standard deviation of the route average. The results obtained for the San Francisco — Thule route, winter, 50 mb (Table 5), illustrate the procedure.

The chart route is divided into equal segments 0.1 radian long (Table 3). For the San Francisco – Thule route this calls for nine segments, the last one somewhat overshooting Thule. Table 5 gives the means \overline{T}_i from Figure 4a, the standard deviations σ_i from Figure 4b and the parameters α_i from Figure 4c. Since the checkpoints are evenly spaced on the chart, each weight s_i is made inversely proportional o the scale factor, that is,

$$\mathbf{s_i} = 1 + \sin \phi_i \,. \tag{11}$$

The end points X_0 and X_9 are given half this weight. For each pair of points,

$$\alpha_{ij} = \frac{(\alpha_i + \alpha_j)}{2}$$
,

$$\gamma_{ij} = \frac{(j-i)}{10}$$
 radians,

Table 5. The Straightline Route on the Polar Stereographic Chart, San Francisco to Thule, Winter, 50 mb. (Segment divisions are 0.1 earth radian in length. For each checkpoint the table shows latitude ϕ_i , in °N; mean temperature \overline{T}_i , in °C; standard deviation σ_i , in °C; weighting factor s_i , which is inversely proportional to the scale factor; and parameter α_i . The terms α_{ij} , ρ_{ij} , and $s_i s_j \sigma_i \sigma_j$, in that order, are listed in the body of the table.)

Station No.	U	1	2	3	4	5	6	7	8	9
Latitude ∳ _i	38	42	47	52	57	62	66	71	75	78
Mean T	-60	-59	-58	-57	-57	-57	-57	-58	-62	-64
SD σ_i	3. 3	3. 7	4. 2	5. 0	6. 2	7. 4	8, 5	10.0	10, 5	9.8
si	0, 8	1.7	1.7	1.8	1.8	1.9	1.9	1, 9	2. 0	1.0
$\alpha_{\mathbf{i}}$	2. 5	2. 5	2. 5	2. 4	2. 2	2. 0	2, 3	2. 3	2. 4	2. 4
Station No.				N.						
0	1.00 6.8	2. 5 0, 93 16. 4	2. 5 . 77 18. 5	2, 4 , 58 23, 4	2. 4 . 36 29. 1	2. 3 . 20 36. 7	2. 3 . 05 42. 1	2. 4 03 49. 4	2. 4 -, 05 54. 6	2. 4 05 25. 5
1		1, 00 39, 7	2. 5 . 93 44. 7	2. 4 . 74 56. 7	2. 3 . 61 70. 6	2. 3 . 40 88. 8	2. 4 . 18 102. 1	2. 4 . 05 119. 7	2, 4 -, 03 132, 3	2. 4 05 61, 7
2			1, 00 50, 4	2. 4 . 94 63. 9	2. 4 . 78 79. 5	2. 3 . 61 100, 1	2. 4 . 36 115. 0	2.4 .18 134.9	2. 4 . 05 149, 1	2, 4 03 69, 6
3				1,00 81,8	2. 3 . 95 100. 8	2. 2 . 82 126. 9	2. 4 . 58 145. 8	2. 4 . 36 171. 0	2. 4 . 18 189. 0	2. 4 . 05 88. 2
4					1,00 125,4	2. 1 . 95 157. 9	2. 2 . 82 181. 4	2, 2 , 64 212, 8	2, 3 , 40 235, 2	2. 3 . 21 109. 8
5						1, 00 198, 8	2, 2 , 95 228, 4	2. 2 . 82 267. 9	2. 2 . 63 296, 1	$\begin{array}{c} 2.3 \\ .43 \\ 138.1 \end{array}$
6							1,00 262,4	2. 3 . 95 307. 8	2. 4 . 78 340, 2	2. 4 . 58 158, 8
7								1,00 361,0	2. 4 . 94 399. 0	2. 4 . 79 186. 2
8							1		1,00 441,0	2. 4 . 94 205. 8
3				ů						1,00 96,0

from which it is possible to obtain $\hat{\sigma}_{ij}$ from Figure 3 or Eq. (4). In Table 5 the values of $\hat{\sigma}_{ij}$ are shown together with the associated values of $s_i s_j \sigma_i \sigma_j$. Finally, the route variance σ^2 is obtained by cumulative multiplication:

$$\sigma^2 = \left[\sum_{i=0}^9 \mathbf{s}_i^2 \sigma_i^2 + 2\sum_{i\neq j} \mathbf{s}_i \mathbf{s}_j \sigma_i \sigma_j \hat{\boldsymbol{p}}_{ij}\right] / \left(\sum_i \mathbf{s}_i\right)^2. \tag{12}$$

Table 2 shows the standard deviations estimated according to the model (Column A). The root-mean-square difference between these estimates and estimates of the FAA is 0.4°C, the same as the difference between the estimates of Columns B and C, the latter two being equally valid.

To test the efficiency of the assumption that the route average is normally distributed, the 1-percentiles and 5-percentiles were computed by the formula

$$\widehat{\mathbf{T}} = \widehat{\mathbf{T}} + \mathbf{y}\sigma_{s} \tag{13}$$

where y = 2.33 for the 1-percentile, y = 1.645 for the 5-percentile. This estimate was compared with the estimates given by the distributions in the tables of the FAA - studies. (The latter distributions are actual distributions independent of assumptions about their nature.) The results are shown in Table 6. The root-mean-square difference is 1.1°C for the 1-percentile and 0.1°C for the 5-percentile.

Table 6. Comparison of Two Estimates of the 1-Percentile and 5-Percentile of Average Route Temperature

Season	Route	1-Perc	entile	5-Percentile		
Season	Noute	A*	Bt	A*	Bt	
Summer	SF — NY	-51, 2	-52. 1	-51.9	-52. 5	
	SF — Thule	-45, 2	-45. 0	-46.0	-45. 6	
Winter	SF - NY	-52. 7	-53. 9	-54. 5	-55. 3	
	SF - Thule	-46. 0	-47. 6	-49. 8	-49. 5	

^{*} by model

6. SUMMARY

To obtain the frequency distribution of the route average temperature on a constant-pressure surface, it is assumed that the route average has a normal gaussian distribution. The mean of the route average is given by:

tfrom USWB-FAA studies

$$\bar{T} = \sum_{i=0}^{n} s_i \bar{T}_i / \sum_{i=0}^{n} s_i , \qquad [Eq. (2)]$$

where there are (n+1) checkpoints along the route, including the point of departure and destination. The mean temperature at each checkpoint is \overline{T}_i and the weight given to it, s_i , is made directly proportional to the fraction of the route over which \overline{T}_i is a representative temperature. In this paper (see page 12),

$$s_{i} = 1 + \sin \phi_{i}$$
, [Eq. (11)]

where ϕ_i is the latitude of the <u>i</u>th checkpoint. The variance of the route average is given by [see Eq. (12)]

$$\sigma^2 = \sum_{i,j=0}^{n,n} s_i s_j \sigma_i \sigma_j p_{ij} / \left(\sum_{i=0}^{n} s_i\right)^2$$
,

where σ_i is the standard deviation at the <u>i</u>th checkpoint, and $\hat{\rho}_{ij}$ is the correlation coefficient given by

$$\hat{\rho}_{ij} = \exp\left[-\frac{1}{2}(\alpha_{ij} \gamma_{ij})^2\right] \cos(\alpha_{ij} \gamma_{ij}). \qquad [Eq. (4)]$$

The distance γ_{ij} in this paper is the chart distance, in earth radians, given by

$$\gamma_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$$
, [Eq. (5)]

where

$$x_i = 2\cos\lambda_i \tan(\frac{\pi}{4} - \frac{\phi_i}{2})$$
,

$$y_i = 2 \sin \lambda_i \tan (\frac{\pi}{4} - \frac{\phi_i}{2})$$
,

where (ϕ_i, λ_i) are the latitude and longitude of the <u>i</u>th checkpoint. The parameter α_{ij} is an average, that is,

$$\alpha_{ij} = \frac{\alpha_i + \alpha_j}{2}$$
 [Eq. (6)]

where α_i is the parameter value at the <u>i</u>th station, depicted in the (<u>c</u>) charts of Figures 4 to 11.

7. CONCLUSIONS

The sample application shows that the model, consisting primarily of a parameter to obtain spatial correlation of temperature on a constant-pressure surface, is an efficient tool for estimating the standard deviation of the route average temperature and an effective one for estimating the 5- or 1-percentiles. There are refinements that could have been tried but would have been unnecessary. For example, the correlation coefficient might decay more rapidly in a N-S direction than in an E-W direction, hence making it desirable for the value of the parameter α to be a vector combination of two other values (say α_n , α_w). Since the simpler model with only a single parameter per station works so well, attempts at refinements were abandoned.

Figure 4a. Isotherms of Mean Temperature \overline{T}_i , 50 mb, December, January, February

Figure 4<u>b</u>. Isopleths of Standard Deviation $\sigma_{\hat{i}}$ of the Temperature at 50 mb, December, January, February

Figure 4c. Isopleths of the Model Parameter α_i , 50 mb, December, January, February

Figure 5a. Isotherms of Mean Temperature \overline{T}_i , 50 mb, March, April, May

Figure $5\underline{b}$. Isopleths of Standard Deviation $\sigma_{\underline{i}}$, 50 mb, March, April, May

Figure 5c. Isopleths of the Model Parameter α_i , 50 mb, March, April, May

Figure 6a. Isotherms of Mean Temperature \overline{T}_i , 50 mb, June, July, August

Figure 6b. Isopleths of Standard Deviation σ_{i} , 50 mb, June, July, August

Figure 6c. Isopleths of the Model Parameter α_i , 50 mb, June, July, August

Figure 7a. Isotherms of Mean Temperature \overline{T}_i , 50 mb, September, October, November

Figure 7b. Isopleths of Standard Deviation σ_i , 50 mb, September, October, November

Figure 7c. Isopleths of Model Parameter α_i , 50 mb, September, October, November

Figure 8a. Isotherms of Mean Temperature \overline{T}_i , 30 mb, December, January, February

Figure 8b. Isopleths of Standard Deviation σ_i , 30 mb, December, January, February

Figure 8c. Isopleths of Model Parameter α_i , 30 mb, December, January, February

Figure 9a. Isotherms of Mean Temperature \overline{T}_{i} , 30 mb, March, April, May

Figure 9b. Isopleths of Standard Deviation $\sigma_{\bf i}$, 30 mb, March, April, May

Figure 9c. Isopleths of Model Parameter α_i , 30 mb, March, April, May

Figure 10a. Isotherms of Mean Temperature \overline{T}_i , 30 mb, June, July, August

Figure 10b. Isopleths of Standard Deviation $\sigma_{\rm i}$, 30 mb, June, July, August

Figure 10c. Isopleths of Model Parameter $\alpha_{\dot{1}},~30$ mb, June, July, August

Figure 11a. Isotherms of Mean Temperature \overline{T}_i , 30 mb, September, October, November

Figure 11<u>b</u>. Isopleths of Standard Deviation σ_{i} , 30 mb, September, October, November

Figure 11c. Isopleths of Model Parameter α_i , 30 mb, September, October, November

Figure 12. Isopleths of the Difference D Between Mean Temperatures, 30 mb, Winter, at Times 0000Z and 1200Z (D = \overline{T}_{1200} - \overline{T}_{0000})

Figure 13. Isopleths of the Difference D Between Mean Temperatures, 30 mb, Summer, at Times 0000Z and 1200Z (D = \overline{T}_{1200} - \overline{T}_{0000})

Acknowledgments

The upper-air data for 66 North and Central American stations for the five years from December 1958 to November 1963 were obtained through the cooperation of ETAC-USAF. The computer work was accomplished by the AFCRL Data Analysis Branch.

The benefit of several stimulating discussions with Mr. N. Sissenwine, Director, Design Climatology Branch, AFCRL, is gratefully acknowledged.

References

- Air Weather Service (1953) Mean Monthly Maps of 300-, 200-, 100-, 50-, and 25-mb Surfaces over North America, AWS-TR-105-107, Washington, D.C., 23 pp.
- Badgley, F. I. (1957) Response of radiosonde thermistors, Rev. Sci. Instr. 28:1079-1084.
- Barr, Neal M. (1964) Wind and temperature regimes affecting supersonic transport route planning, <u>Fourth Western National Meeting</u>, AGU, 28-30 Dec 1964, Seattle, Wash., 18 pp.
- Charles, B. (1964) Wind and Temperature Environment and Forecasting Capability for the SST Operation, No. D2-90503, The Boeing Co., 51 pp.
- Chiu, W.C. (1959) The diurnal temperature variation of the lower stratosphere over the United States, <u>J. Meteorol</u>. 16:354-363.
- Court, A., and Abrahms, G. (1964) Temperature and Densities at SST Cruise Altitudes, LR/17730, Lockheed-California, 8 pp.
- Craig, R.A., and Hering, W. (1959) The stratospheric warming of January and February 1957, J. Meteorol. 16:91.
- Crutcher, H. L. (1963) Climatology of the Upper Air as Related to the Design and Operation of Supersonic Aircraft, U.S. Weather Bureau, Washington, D.C., 72 pp.
- Harris, M. F., Finger, F. C., and Teweles, S. (1962) Diurnal variation of wind, pressure, and temperature in the troposphere and stratosphere over the Azores, J. Atm. Sci. 19:136-149.
- Johannessen, K. (1959) Accuracies of Meteorological Upper Air Data. AWS internal letter circulated to all detachments.
- Nelms, W. P., Jr. (1964) <u>Some Effects of Atmospheric Temperature Variations on Performance of the Supersonic Transport</u>, TMX-54040, NASA Ames Research Center, Moffett Field, Calif., 12 pp.

- Peng, Li (1965) <u>Stratospheric Wind, Temperature and Isobaric Height Conditions</u>
 <u>During the IGY Period</u>, MIT Planetary Circulations Project, Cambridge, Mass., 201 pp.
- Ratner, B. (1957) Upper-Air Climatology of the United States, Part 1: Averages for Isobaric Surfaces, U.S.W.B. Tech. Paper No. 32, Washington, D.C., 199 pp.
- Reed, R.J., Wolfe, J.L., and Nishimoto, H. (1963) A spectral analysis of the energies of the stratospheric warming of early 1957, J. Atm. Sci., 20:256-275.
- Serebreny, S. M. (1964) Study of the Sensitivity of a Supersonic Aircraft to the Effect of Various Horizontal Temperature Distributions, Rpt No. RD-64-111, Stanford Research Institute, Menlo Park, Calif., 50 pp.
- Smith, O. E., McMurray, W. M., and Crutcher, H. L. (1963) <u>Cross Sections of Temperature</u>, <u>Pressure and Density Near the 80th Meridian West</u>, NASA Tech. Note D-1641, 145 pp.
- Stickle, J.W. (1965) Consideration of fuel requirements for supersonic transport operation, NASA SP-83, Paper No. 21, NASA Conference on Aircraft Operation Problems, 10-12 May 1965, NASA Langley Research Center.
- U.S. Weather Bureau (1963) Climatological Summaries for the Supersonic Aircraft New York San Francisco Route, Project No. 206-3R, prepared for FAA, Washington, D.C., 313 pp.
- U.S. Weather Bureau (1964) Climatological Summaries for the Supersonic Aircraft, San Francisco Thule Stockholm Route, Project No. 206-003R, prepared for FAA, Washington, D.C., 77 pp.
- U.S. Weather Bureau (1964) Climatological Summaries for the Supersonic Aircraft,
 New York Paris Route, Project No. 206-003R, prepared for FAA, Washington,
 D.C., 53 pp.
- Wells, R. M. (1962a) Temperature for North American Air Routes at Heights of 5000, 10000, 15000, 20000, 30000, 40000 and 53000 ft. Boeing Company, Transport Div., Renton, Wash., 202 pp.
- Wells, R. M. (1962b) <u>Temperatures for World Air Routes at Heights of 10000, 20000, 30000, 40000 and 53000 ft.</u> Reviews in Geophysics No. 7, Boeing Company, Transport Div., Renton, Wash., 244 pp.

Security Classification								
OCUMENT CONTROL DATA - R&D (Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)								
	2a. REPORT SECURITY CLASSIFICATION							
1. ORIGINATING ACTIVITY (Corporate author) Hq AFCRL, OAR (CRE)	Unclassified							
United States Air Force	2% GROUP							
Bedford, Massachusetts 01730								
3 REPORT TITLE								
A Statistical Model of the Temperature F	ield at Supersonic Aircraft Altitudes							
4. DESCRIPTIVE NOTES (Type of report and inclusive dates)								
Scientific Report. Interim.								
S. AUTHON(S) (Last name, first name, initial)								
GRINGORTEN, Irving I.								
6. REPORT DATE	74 TOTAL NO. OF PAGES 74 NO. OF REFS							
May 1967	52 22							
BIL CONTRACT OR GRANT NO.	94 ORIGINATOR'S REPORT NUMBER(S) AFCRL-67-0274							
h. PROJECT AND TASK NO. 8624-02-01	ASFG, No. 193							
c. DOD ELEMENT 62405394	9 b. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)							
d. DOD SUBELEMENT 681000	AFCRL-67-0274							
10. AVAILABILITY/LIMITATION NOTICES								
Distribution of this document is unlimited. Department of Commerce, for sale to the	. It may be released to the Clearinghouse,							
	general public.							
11. SUPPLEMENTARY NOTES	Hq AFCRL, OAR (CRE)							
	United States Air Force							
	Bedford, Massachusetts 01730							
Data archives are such that, for a set sample of daily average temperatures alor summarized into a frequency distribution. many different and constantly changing routools and methods must be such as to provature without recourse to the archives and has been devised that utilizes a model of themperature. It has been demonstrated or promise of hemisphere-wide application.	lected cruising level, a reasonably large ng a specific route can be obtained and But if, as in Air Force operations, utes are involved, then the climatologic ride estimates of the route average temperate processing of raw data. A method he horizontal spatial correlations of							

DD FORM 1473

Unclassified
Security Classification

Security Classification

14. KEY WORDS	LIN	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT	
Supersonic aircraft							
SSA							
SST	1	•			Í ,		
Stratospheric temperature field			•				
Statistical model							
Spatial variability							
North American stratospheric temperatures						ı	
Route average temperature							

INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2a. REPORT SECURITY CLASSIFICATION: Enter the over-all security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(S): Enter the name(a) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 96. OTHER REPORT NUMBER(S): If the report has been assigned any other report numb rs (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:

 - (1) "Qualified requesters may obtain copies of this report from DDC."
 (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
 (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
 - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
 - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indi-cate this fact and enter the price, if known.

- 11. SUPPLEMENTARY NOTES: Use for additional explana-
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

Unclassified

Security Classification