LATEX: A Guide for the Curious Physicist

Nishtha Tikalal

#### $\ensuremath{\mathbb{O}}$ 2025 Nishtha Tikalal

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-sa/4.0/

# Contents

| 1        | $\mathbf{W}\mathbf{h}$ | y LaTeX for Physics?                           | 1  |
|----------|------------------------|------------------------------------------------|----|
|          | 1.1                    | Physics Needs Precision: Why LATEX?            | 1  |
|          | 1.2                    | Why Word Processors Fail for Physics           | 1  |
|          | 1.3                    | What You'll Learn in This Book                 | 2  |
|          | 1.4                    | Getting Started: Overleaf and Offline Tools    | 2  |
|          | 1.5                    | Your First Physics Document                    | 2  |
| <b>2</b> | Wri                    | iting Equations and Formulas in Physics        | 5  |
|          | 2.1                    | Math Mode Review for Physicists                | 5  |
|          | 2.2                    | Kinematic Equations, Energy, Momentum          | 5  |
|          | 2.3                    | Vectors, Greek Letters, and Operators          | 6  |
|          | 2.4                    | Gradient, Divergence, and Curl                 | 6  |
|          | 2.5                    | Dot and Cross Products                         | 6  |
|          | 2.6                    | Summation, Limits, and Integrals               | 7  |
|          | 2.7                    | Display Equations with Numbering               | 7  |
| 3        | Mo                     | deling Physical Systems                        | 9  |
|          | 3.1                    | Projectile Motion and Trajectories             | 9  |
|          | 3.2                    | The Bullet-and-Block Problem                   | 9  |
|          | 3.3                    | Spring-Mass and Pendulum Systems               | 10 |
|          | 3.4                    | Damped Oscillators and Driven Systems          | 10 |
|          | 3.5                    | Aligning and Annotating Derivations with align | 10 |
| 4        | Dia                    | grams and Visual Models in Physics             | 13 |
|          | 4.1                    | Using tikz for Physics Figures                 | 13 |
|          | 4.2                    | Drawing Free Body Diagrams                     | 13 |
|          | 4.3                    | Inclined Planes, Tension, and Pulley Systems   | 14 |

vi CONTENTS

|   | 4.4                                          | 2D/3D Coordinate Systems and Vector Fields            | 4          |  |  |  |
|---|----------------------------------------------|-------------------------------------------------------|------------|--|--|--|
|   | 4.5                                          | Highlighting with xcolor and Overlays                 | .4         |  |  |  |
| 5 | Fey                                          | nman Diagrams and Quantum Field Visuals               | 7          |  |  |  |
|   | 5.1                                          | Introduction to Feynman Diagrams                      | 17         |  |  |  |
|   | 5.2                                          | Installing and Using tikz-feynman                     | 17         |  |  |  |
|   | 5.3                                          | Fermion and Boson Lines: Syntax and Styles            | 7          |  |  |  |
|   | 5.4                                          | Basic QED Scattering: $e^+e^- \rightarrow \mu^+\mu^-$ | 18         |  |  |  |
|   | 5.5                                          | Loops, Vertices, and Complex Interactions             | 8          |  |  |  |
|   | 5.6                                          | Labeling Particles, Momenta, and Time Direction       | 8          |  |  |  |
|   | 5.7                                          | Advanced Styling: Curves, Loops, Momentum Arrows      | 8          |  |  |  |
| 6 | Vec                                          | tors and Coordinate Systems 2                         | :1         |  |  |  |
|   | 6.1                                          | Vectors in Component Form                             | 21         |  |  |  |
|   | 6.2                                          | Using the physics Package for Vectors                 | 21         |  |  |  |
|   | 6.3                                          | Drawing Vector Addition and Resolution                | 22         |  |  |  |
|   | 6.4                                          | Polar and Spherical Coordinates                       | 22         |  |  |  |
| 7 | Visualizing Motion and Change 2              |                                                       |            |  |  |  |
|   | 7.1                                          | Graphing Motion with pgfplots                         | 25         |  |  |  |
|   | 7.2                                          | Visualizing Trajectories Over Time                    | 25         |  |  |  |
|   | 7.3                                          | Phase Diagrams and Potential Energy Wells             | 26         |  |  |  |
|   | 7.4                                          | Multicolor Paths and Overlays                         | 27         |  |  |  |
| 8 | Usi                                          | ng Colors and Styles in Physics Documents 2           | 9          |  |  |  |
|   | 8.1                                          | The xcolor Package and Color Design                   | 29         |  |  |  |
|   | 8.2                                          | Coloring Forces and Highlighting Arrows               | 29         |  |  |  |
|   | 8.3                                          | Shading Areas Under Curves                            | 30         |  |  |  |
|   | 8.4                                          | Presentation-ready Aesthetics                         | <b>3</b> 0 |  |  |  |
| 9 | Writing Lab Reports and Scientific Papers 33 |                                                       |            |  |  |  |
|   | 9.1                                          | Physics Report Structure                              | 33         |  |  |  |
|   | 9.2                                          | Basic Document Setup                                  | 33         |  |  |  |
|   | 9.3                                          |                                                       | 34         |  |  |  |
|   |                                              | 9.3.1                                                 | 34         |  |  |  |
|   | 9.4                                          |                                                       | 34         |  |  |  |
|   | 9.5                                          |                                                       | 34         |  |  |  |
|   | 9.6                                          | Referencing Figures and Equations                     | ₹5         |  |  |  |

CONTENTS

| 10        | Presenting Physics with Beamer                 | 37 |
|-----------|------------------------------------------------|----|
|           | 10.1 Physics Slide Templates                   | 37 |
|           | 10.2 Animating Steps with \pause and \onslide  | 37 |
|           | 10.3 Diagrams in Presentations                 | 38 |
|           | 10.4 Overlaying Concepts and Graphs            | 38 |
| 11        | Citing Physics Literature                      | 41 |
|           | 11.1 Using biblatex with biber                 | 41 |
|           | 11.2 Adding arXiv, DOI, and Journal References | 41 |
|           | 11.3 Bibliography Styles for Physicists        | 42 |
|           | 11.4 Inline Citations and Hyperlinks           | 42 |
| <b>12</b> | Physics LaTeX Cheat Sheet                      | 45 |
| 13        | Physics Templates                              | 49 |
|           | 13.1 Lab Report Template                       | 49 |
|           | 13.2 Beamer Slide Template                     | 50 |
|           | 13.3 Quantum Field Theory Notes Template       | 51 |
| 14        | Further Resources                              | 53 |
|           | 14.1 TikZ, PGFPLOTS, and Physics Drawing Tools | 53 |
|           | 14.2 Physics Writing Templates                 | 53 |
|           | 14.3 TeX Communities and Forums                | 53 |
|           | 14.4 Reference Management                      | 54 |
|           | 14.5 Final Advice and Acknowledgments          | 54 |

viii CONTENTS

# Why LATEX for Physics?

# 1.1 Physics Needs Precision: Why LATEX?

Physics is inherently mathematical, symbolic, and visual. LaTeX is built for this world—allowing you to:

- Write precise equations like Maxwell's or Schrödinger's
- Label vectors, units, and derivatives cleanly
- Create professional plots, diagrams, and models
- Reference figures and formulas with accuracy

#### 1.2 Why Word Processors Fail for Physics

Word processors are designed for prose, not precision. They struggle with:

- Alignment and labeling of multi-line equations
- Complex symbols like  $\nabla$ ,  $\hat{x}$ , or  $\sum_{n=1}^{\infty}$
- Drawing force diagrams or Feynman diagrams cleanly
- Consistent formatting for units, references, or citations

LaTeX wins because it is a language of structure, not style.

#### 1.3 What You'll Learn in This Book

This book shows you how to:

- Typeset equations and derivations
- Draw physics diagrams: free body, vector fields, Feynman diagrams
- Use color and overlays to explain motion and forces
- Format reports and presentations professionally
- Cite physics sources from arXiv, journals, and conferences

Each chapter ends with tips and LaTeX code you can copy, modify, and deploy.

# 1.4 Getting Started: Overleaf and Offline Tools

#### Option A: Overleaf (Recommended)

- Free, browser-based LaTeX editor
- Auto-compiles and supports collaboration
- Supports 'tikz-feynman', 'physics', 'pgfplots', etc.

https://overleaf.com

#### Option B: Offline Installation

- Install a TeX distribution (TeX Live, MiKTeX, MacTeX)
- Use an editor: TeXstudio, VSCode + LaTeX Workshop, etc.

#### 1.5 Your First Physics Document

Try this in Overleaf:

\documentclass{article}
\usepackage{amsmath}
\usepackage{physics}
\begin{document}

Newton's Second Law:

```
\[
\vb{F} = m\vb{a}
\]
```

\end{document}

F = ma

#### Try This!

- Change the equation to p = mv
- Add a title and your name
- Use '\physics' for derivatives and vectors

# What's Next

Now that you know why LaTeX is powerful for physics, Chapter 2 will show you how to write clean, professional equations — from classical mechanics to quantum theory.

# Writing Equations and Formulas in Physics

## 2.1 Math Mode Review for Physicists

Use dollar signs  $\dots$  or  $\dots$  to enter math mode.

- Inline: \$E = mc^2\$  $\rightarrow E = mc^2$
- Display: \[ E = mc^2 \]  $\rightarrow$

$$E = mc^2$$

Use \text inside equations for units and labels: \$F = 10\ \text{N}\$\$  $\to F = 10$  N

# 2.2 Kinematic Equations, Energy, Momentum

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{1}{2}at^2$$

$$F = ma$$

$$K = \frac{1}{2}mv^2$$

$$p = mv$$

Use amsmath's align or equation for clean formatting.

## 2.3 Vectors, Greek Letters, and Operators

Load the physics package:

\usepackage{physics}

• Vectors:  $\vb{F} \rightarrow F$ 

• Unit vectors:  $\forall \mathbf{u}\{\mathbf{x}\} \to x$ 

• Derivatives:  $\forall y \{x\} \rightarrow yx$ 

• Partial derivatives:  $\pdv{f}{x} \rightarrow fx$ ,  $\pdv{2}{f}{x} \rightarrow [2]fx$ 

• Greek:  $\theta \rightarrow \theta$ ,  $\theta \rightarrow \psi$ 

## 2.4 Gradient, Divergence, and Curl

$$\begin{split} \phi &= \nabla \phi \\ \div F &= \nabla \cdot F \\ F &= \nabla \times F \end{split}$$

Symbols and commands:

• \nabla ightarrow 
abla

•  $\forall iv\{\} \rightarrow \div F$ 

•  $\curl{} \to F$ 

•  $\grad{} \to \phi$ 

#### 2.5 Dot and Cross Products

• Dot:  $\vb{A} \cdot \vb{B} \rightarrow A \cdot B$ 

• Cross:  $\vb{A} \to A \times B$ 

Example (Lorentz Force):

$$F = qE + qv \times B$$

#### 2.6 Summation, Limits, and Integrals

- Summation: \sum\_{n=1}^\infty a\_n  $\to \sum_{n=1}^\infty a_n$
- Limit:  $\lim_{x \to 0} \frac{\sin x}{x} \to \lim_{x \to 0} \frac{\sin x}{x}$
- Integral: \int\_0^L \vb{F} \cdot d\vb{x}  $\to \int_0^L F \cdot dx$
- Double integral: \iint, Triple: \iiint

$$\int_0^\infty e^{-x^2} x = \frac{\sqrt{\pi}}{2}$$

## 2.7 Display Equations with Numbering

Use 'equation' for numbering:

\begin{equation}

$$\nabla \cdot E = \frac{\rho}{\varepsilon_0} \tag{2.1}$$

# Try This!

- Write Gauss's Law, Ampère's Law, and Faraday's Law
- $\bullet~$  Use 'align' to list the four Maxwell equations
- Try partial derivatives for the Lagrangian  $\mathcal{L}(q,\dot{q},t)$

#### Lab Tip

Use physics macros consistently — they reduce errors and improve readability. Use \si{} for all physical units and label equations with \label{eq:} for referencing.

#### What's Next

In Chapter 3, we'll model real physical systems — projectiles, pendulums, oscillators — and learn how to align derivations in structured formats.

# Modeling Physical Systems

## 3.1 Projectile Motion and Trajectories

Use 'align' to display kinematic equations:

$$x(t) = v_0 \cos \theta \cdot t$$
$$y(t) = v_0 \sin \theta \cdot t - \frac{1}{2}gt^2$$

To draw a simple path:

```
\usepackage{tikz}
\begin{tikzpicture}[scale=0.8]
\draw[->] (0,0) -- (5,0) node[right] {$x$};
\draw[->] (0,0) -- (0,3) node[above] {$y$};
\draw[domain=0:4, smooth, variable=\x, thick]
    plot ({\x}, {2*\x - 0.5*9.8*(\x/2)^2});
\end{tikzpicture}
```

#### 3.2 The Bullet-and-Block Problem

Use 'cases' for piecewise outcomes:

$$v_f = \begin{cases} \frac{mv}{m+M} & \text{(perfectly inelastic)} \\ \text{solve from conservation} & \text{(elastic)} \end{cases}$$
(3.1)

#### 3.3 Spring-Mass and Pendulum Systems

Hooke's Law and Newton's 2nd Law:

$$m\ddot{x} + kx = 0$$

Solution:

$$x(t) = A\cos(\omega t + \phi), \quad \omega = \sqrt{\frac{k}{m}}$$

Pendulum (small-angle approximation):

$$\theta(t) = \theta_0 \cos\left(\sqrt{\frac{g}{\ell}}t\right)$$

# 3.4 Damped Oscillators and Driven Systems

Damped oscillator:

$$m\ddot{x} + b\dot{x} + kx = 0$$

Driven oscillator:

$$m\ddot{x} + b\dot{x} + kx = F_0 \cos(\omega t)$$

Use 'xt' or " from physics for clarity.

# 3.5 Aligning and Annotating Derivations with align

Use 'align' to show step-by-step reasoning:

$$F_{\text{net}} = T - mg \tag{3.2}$$

$$ma = T - mg (3.3)$$

$$T = m(a+g) (3.4)$$

Use "for in-line annotations.

# Diagrams for Physical Models

Simple Harmonic Oscillator (Mass on Spring)



#### Simple Pendulum



#### **Bullet and Block**



# Try This!

• Derive time of flight, max height, and range of a projectile

- Use 'align' to show a step-by-step derivation for SHM
- Sketch a damped oscillator response and label amplitude decay

#### Lab Tip

Use "to keep all reported values with consistent units. Use TikZ to sketch experimental setups and help communicate your assumptions and models clearly.

# What's Next

In Chapter 4, we'll transition from equations to illustrations — learning to draw free-body diagrams, coordinate systems, and vector fields using 'tikz'.

# Diagrams and Visual Models in Physics

# 4.1 Using tikz for Physics Figures

Add TikZ to your preamble:

\usepackage{tikz}
\usetikzlibrary{arrows.meta, decorations.pathreplacing, calc}

Start any drawing with:

\begin{tikzpicture}
 % your drawing
\end{tikzpicture}

# 4.2 Drawing Free Body Diagrams



# 4.3 Inclined Planes, Tension, and Pulley Systems



# 4.4 2D/3D Coordinate Systems and Vector Fields



# 4.5 Highlighting with xcolor and Overlays

Add:

\usepackage{xcolor}

To color elements:

- \textcolor{blue}{force}  $\rightarrow$  force
- \draw[red,->] for arrows

#### Example:



#### Try This!

- Draw a 2-block pulley system
- Add friction arrows to an inclined block
- Create a field map with arrows using a 'for' loop in TikZ

# Lab Tip

Use 'node' labels for clean vector naming. Align force vectors from the object's center, and use consistent angle conventions.

#### What's Next

In Chapter 5, we'll dive into drawing quantum field theory visuals with 'tikz-feynman', including real Feynman diagrams for QED.

# Feynman Diagrams and Quantum Field Visuals

## 5.1 Introduction to Feynman Diagrams

Feynman diagrams visually represent particle interactions in QFT. LaTeX offers a clean and professional way to render them using 'tikz-feynman'.

#### 5.2 Installing and Using tikz-feynman

```
Add to your preamble:

\usepackage{tikz-feynman}

\tikzfeynmanset{compat=1.1.0}

You may also need:

\usepackage{tikz}

\usepackage[compat=1.0.0]{tikz-feynman}
```

#### 5.3 Fermion and Boson Lines: Syntax and Styles

```
\feynmandiagram [horizontal=a to b] {
  i1 [particle=\(e^-\)] -- [fermion] a -- [fermion] i2 [particle=\(e^+\)],
  a -- [photon] b,
  f1 [particle=\(\mu^-\)] -- [fermion] b -- [fermion] f2 [particle=\(\mu^+\)],
```

};



# 5.4 Basic QED Scattering: $e^+e^- \rightarrow \mu^+\mu^-$

This represents electron-positron annihilation into a muon-antimuon pair.

#### 5.5 Loops, Vertices, and Complex Interactions

Example with a loop:

```
\feynmandiagram [layered layout, horizontal=a to b] {
  a -- [fermion] b -- [fermion] c -- [fermion] a,
  b -- [photon, out=45, in=135, loop, min distance=2cm] b,
};
```

#### 5.6 Labeling Particles, Momenta, and Time Direction

- Use particle=\(e^-\) to label lines
- Arrows indicate time direction
- Use 'momentum=p' to annotate lines

# 5.7 Advanced Styling: Curves, Loops, Momentum Arrows

```
\feynmandiagram [horizontal=a to b] {
  a -- [fermion, momentum=\(p\)] b -- [photon, edge label=\(\gamma\)] c,
};
```

You can customize:

- out and in angles for curved lines
- Use 'edge label', 'momentum', and color for clarity

# Try This!

- Create a t-channel diagram
- Add a loop with a virtual photon
- Label all external particles and include momenta

#### Lab Tip

For journal-quality diagrams, export TikZ pictures standalone and compile them into figures. Always use 'compat' with your Overleaf version.

#### What's Next

In Chapter 6, we return to classical vector tools — exploring coordinate systems, vector diagrams, and component notation.

# Vectors and Coordinate Systems

## 6.1 Vectors in Component Form

Use '' to denote vectors and '[…]' for component layout:

$$A = A_x i + A_y j + A_z k$$

$$r = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

In 2D:

$$v = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \quad |v| = \sqrt{3^2 + 4^2} = 5$$

# 6.2 Using the physics Package for Vectors

The 'physics' package simplifies derivatives, vector arrows, and unit vectors:

- $\forall v \forall v \forall v \forall v$
- $\vu\{x\} \to x$
- $\bullet \ \, \texttt{\ \, } \{\texttt{f}\} \to f$
- $\bullet \ \, \texttt{\div}\{\texttt{\vb}\{\texttt{E}\}\} \to \div E$

•  $\operatorname{\operatorname{Vob}\{B\}} \to B$ 

#### 6.3 Drawing Vector Addition and Resolution



Use vector triangles or parallelograms to show composition.

#### 6.4 Polar and Spherical Coordinates

Polar:

$$x = r\cos\theta, \quad y = r\sin\theta$$

Spherical:

$$x = r \sin \theta \cos \phi$$
,  $y = r \sin \theta \sin \phi$ ,  $z = r \cos \theta$ 

Vector in Spherical Form:

$$E = E_r r + E_\theta \theta + E_\phi \phi$$

Use r,  $\theta$  to denote directional unit vectors.

# Try This!

- Break a vector into components on an incline
- Draw a 3D coordinate system with labeled axes
- Convert between Cartesian and spherical vector representations

# Lab Tip

Use 'tikz' to visually verify directionality and component breakdowns. Highlight angles and axes using '[dashed]' and node labels.

#### What's Next

In Chapter 7, we'll explore how to visualize physical quantities dynamically — from motion graphs to potential wells and multicolor field plots.

# Visualizing Motion and Change

## 7.1 Graphing Motion with pgfplots

Load the package in your preamble:

```
\usepackage{pgfplots}
\pgfplotsset{compat=1.18}
```

#### Example: Position vs. Time

```
\begin{tikzpicture}
\begin{axis}[
    axis lines=middle,
    xlabel={$t$ (s)},
    ylabel={$x(t)$ (m)},
    domain=0:5,
    samples=100,
]
\addplot[blue, thick] {3*x + 0.5*x^2};
\end{axis}
\end{tikzpicture}
```

# 7.2 Visualizing Trajectories Over Time

Use parametric plots for curved paths:

```
\begin{tikzpicture}
\begin{axis}[axis lines=middle, xlabel=$x$, ylabel=$y$]
\addplot[domain=0:5, samples=100, thick]
     ({x}, {2*x - 0.5*9.8*(x/2)^2});
\end{axis}
\end{tikzpicture}
```

This simulates projectile motion.

# 7.3 Phase Diagrams and Potential Energy Wells

#### SHM Phase Diagram:

$$\frac{1}{2}mv^2 + \frac{1}{2}kx^2 = E$$



#### Potential Energy Well:



## 7.4 Multicolor Paths and Overlays

You can split plots with color stages:

```
\addplot[red, domain=0:2] {f(x)};
\addplot[blue, domain=2:4] {f(x)};
```

Or use 'nodes near coords' to annotate turning points.

# Try This!

- Plot a pendulum's angle over time
- Create a multistage graph showing motion segments
- Visualize escape velocity as a potential graph

## Lab Tip

Use 'axis lines=middle' and gridlines for clarity. Normalize units if plotting across different physical domains (e.g., energy vs. position).

#### What's Next

In Chapter 8, we'll refine visual design using 'xcolor', themes, and styles — to create professional documents and presentations.

# Using Colors and Styles in Physics Documents

# 8.1 The xcolor Package and Color Design

Add the package to your preamble:

\usepackage{xcolor}

### Example Usage:

- $\bullet \ \ \texttt{\ } \texttt{\$
- \color{blue} F = ma ightarrow F = ma
- Custom color: \definecolor{mygray}{gray}{0.7}

# 8.2 Coloring Forces and Highlighting Arrows

Color-coded force diagrams improve legibility:



# 8.3 Shading Areas Under Curves





This visually emphasizes the integral or work done.

# 8.4 Presentation-ready Aesthetics

Use consistent color themes:

- Titles and headings in 'blue!70!black'
- Vectors in 'red', fields in 'blue'
- Shaded potentials with 'gray!30'

You can also define reusable styles:

```
\tikzset{force/.style={->, thick, color=red}}
\tikzset{vector/.style={->, thick, blue}}
```

# Try This!

- Shade a velocity-time graph area (displacement)
- Color electric field lines differently than magnetic ones
- Apply custom styles to plot segments

# Lab Tip

Avoid overusing bright colors — use desaturated tones (e.g., 'blue!40!white') for diagrams. Use color primarily to distinguish concepts or forces.

### What's Next

In Chapter 9, you'll learn how to format physics lab reports and research papers with proper structure, equations, and citations.

# Writing Lab Reports and Scientific Papers

# 9.1 Physics Report Structure

A good report includes:

- Title and Abstract
- Introduction and Theory
- Experimental Method
- Data and Analysis
- Conclusion and References

# 9.2 Basic Document Setup

```
\documentclass[12pt]{article}
\usepackage{amsmath, siunitx, graphicx, physics}
\usepackage{caption}
\title{Conservation of Energy in a Pendulum}
\author{Nishtha Tikalal}
\date{\today}
Use '
```

9.3

' and '

9.3.1

' to structure content.

# 9.4 Tables, Units, and Error Propagation

Use 'siunitx' to present measurements and uncertainties:

\begin{tabular}{|c|c|}
\hline
Mass (g) & Time (s) \\
\hline
\SI{100.0 \pm 0.5}{\gram} & \SI{2.34 \pm 0.03}{\second} \\
\hline
\end{tabular}

For error propagation:

$$\Delta T = \sqrt{\left(\frac{\partial T}{\partial x}\Delta x\right)^2 + \left(\frac{\partial T}{\partial y}\Delta y\right)^2}$$

# 9.5 Incorporating Experimental Diagrams

Insert figures:

\begin{figure}[h]

\centering

\includegraphics[width=0.5\textwidth]{pendulum\_setup.png}

 $\verb|\caption{Experimental setup for the simple pendulum}| \\$ 

\label{fig:pendulum}

 $\verb|\end{figure}|$ 

Refer with: As seen in Figure-\ref{fig:pendulum}...

# 9.6 Referencing Figures and Equations

- Use \label{} and \ref{} to refer back
- Numbered equations: \begin{equation}...\end{equation}
- Add references to published results or constants using 'biblatex'

# Try This!

- Write a full lab report on projectile motion
- Include one table, one graph, one error analysis, and one diagram
- Use 'align' to derive an energy equation

# Lab Tip

Use separate '.tex' files for sections (e.g., 'intro.tex', 'data.tex') and ' ' them. Maintain a shared '.bib' file for citations.

### What's Next

In Chapter 10, you'll learn how to present physics visually using 'beamer' — ideal for slides, lectures, and defense presentations.

# Presenting Physics with Beamer

# 10.1 Physics Slide Templates

```
Basic slide setup:

\documentclass{beamer}
\usepackage{amsmath, physics, tikz}
\usetheme{CambridgeUS}
\title{Quantum Tunneling}
\author{Nishtha Tikalal}
\date{\today}

Start slides with:
\begin{document}
\frame{\titlepage}

Use '___' or '___.' for each slide.
```

# 10.2 Animating Steps with \pause and \onslide

```
Show derivations in steps:
```

```
\begin{frame}{Energy Derivation}
\begin{align*}
T &= \frac{1}{2}mv^2 \pause \\
&= \frac{1}{2}m\left(\frac{dx}{dt}\right)^2
```

```
\end{align*}
\end{frame}
Use '<2->' to control visibility precisely.
```

# 10.3 Diagrams in Presentations

```
You can use 'tikz', 'pgfplots', or 'tikz-feynman' inside frames:
```

```
\begin{frame}{Free Body Diagram}
\begin{tikzpicture}
  \draw[fill=gray!20] (0,0) rectangle (2,1);
  \draw[->, thick] (1,0.5) -- (1,-1) node[right] {$mg$};
\end{tikzpicture}
\end{frame}
```

# 10.4 Overlaying Concepts and Graphs

Beamer supports multi-stage visual explanation:

```
\begin{frame}{Projectile Motion}
\begin{tikzpicture}
  \draw[->] (0,0) -- (5,0) node[right] {$x$};
  \onslide<2->{\draw[->, thick, blue] (0,0) parabola (4,2);}
  \onslide<3->{\node at (2,1) {trajectory};}
\end{tikzpicture}
\end{frame}
```

## Try This!

- Create a 3-slide derivation of the work-energy theorem
- Use " to reveal one equation at a time
- Animate a diagram of circular motion

# Lab Tip

Avoid overloading slides — one idea per frame. Use colors for emphasis, not decoration. Keep fonts readable (minimum 11pt) and equations centered.

### What's Next

In Chapter 11, we'll learn how to cite physics literature from journals, arXiv, and databases using BibTeX and 'biblatex'.

# Citing Physics Literature

## 11.1 Using biblatex with biber

```
Add to your preamble:

\usepackage[style=numeric, backend=biber]{biblatex}
\addbibresource{refs.bib}

In your document:

As shown in \cite{einstein1905}, the mass-energy relation is...
```

# 11.2 Adding arXiv, DOI, and Journal References

Example entry from arXiv:

```
@article{hawking1975,
  author = {S. W. Hawking},
  title = {Particle Creation by Black Holes},
  journal = {Commun. Math. Phys.},
  volume = {43},
  pages = {199--220},
  year = {1975},
  doi = {10.1007/BF02345020}
}
```

From arXiv.org:

```
@article{weinberg1967,
  author = {Steven Weinberg},
  title = {A Model of Leptons},
  journal = {Phys. Rev. Lett.},
  volume = {19},
  year = {1967},
  pages = {1264--1266},
  doi = {10.1103/PhysRevLett.19.1264},
  eprint = {arXiv:hep-ph/9601357}
}
```

# 11.3 Bibliography Styles for Physicists

- **numeric** [1], [2], etc.
- authoryear Author (Year)
- ieee, apsrev4-2, aip

Use in preamble:

\usepackage[style=ieee]{biblatex}

# 11.4 Inline Citations and Hyperlinks

Use:

\usepackage[colorlinks=true,linkcolor=blue,citecolor=purple]{hyperref}

- $\cite{}$   $\rightarrow$  numbered or name-based reference
- \textcite{} → inline citation: Author (Year)

# Try This!

- Add 3 references: 1 from arXiv, 1 textbook, 1 peer-reviewed journal
- Apply IEEE or AIP bibliography style
- Insert a hyperlink to a DOI

# Lab Tip

Use Zotero or JabRef to export BibTeX entries. Always verify DOIs and page ranges — especially with arXiv preprints and physics journals.

### What's Next

In Chapter 12, we'll compile a physics LaTeX cheat sheet — your go-to reference for equations, packages, and diagrams.

# Physics LATEX Cheat Sheet

# Essential Math Symbols and Environments

```
\label{eq:linear_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_con
```

## Physics Package Commands

#### physics:

- $\forall u\{i\} \rightarrow i \text{ (unit vectors)}$
- $\d(x) \rightarrow x$  (differentials)
- $\abs{x} \rightarrow x$  (absolute value)

#### siunitx:

•  $SI{9.81}{\text{meter/per/square/second}} \rightarrow 9.81 \square \text{1.602e-19} \text{1.602} e - 19$ 

# Diagram Packages and Styles

#### tikz:

- draw[->] (0,0) -- (1,1);  $\to \text{arrow}$
- \node at (x,y) {label};
- Coordinate systems, field lines, mechanics setups

#### pgfplots:

- \begin{axis}...\addplot{...};
- Graphing functions, motion curves, energy wells

#### tikz-feynman:

- \feynmandiagram [horizontal=a to b] {...};
- Fermion lines, boson loops, QED scatterings

# Common Physical Equations in LaTeX

$$E = mc^{2}$$

$$F = ma$$

$$F = qE + qv \times B$$

$$p = mv$$

$$\mathcal{L} = T - V \quad \text{(Lagrangian)}$$

$$pt = -V$$

# Constants and Units

| $SI{6.626e-34}{\joule\second}$      | Planck's constant $(h)$               |
|-------------------------------------|---------------------------------------|
| $SI{1.602e-19}{\coulomb}$           | Elementary charge $(e)$               |
| $SI{8.854e-12}{\frac{per\meter}}$   | Vacuum permittivity $(\varepsilon_0)$ |
| \SI{9.81}{\meter\per\square\second} | Acceleration due to gravity           |

# **Best Practices Summary**

- Use 'physics', 'tikz', and 'siunitx' consistently
- Label all figures and equations
- Reference figures using '??' and cross-labels
- Use display math for key derivations

# Lab Tip

Keep this cheat sheet near your Overleaf or TeXStudio window as you write. You'll internalize commands by typing them often.

# What's Next

In the final chapter, we share full physics LaTeX templates for lab reports, problem sets, presentations, and theoretical notes.

# Physics Templates

## 13.1 Lab Report Template

```
\documentclass[12pt]{article}
\usepackage{amsmath, physics, siunitx, graphicx}
\title{Conservation of Energy in a Pendulum}
\author{Nishtha Tikalal}
\date{\today}
\begin{document}
\maketitle
\begin{abstract}
This experiment verifies conservation of mechanical energy using a simple pendulum.
\end{abstract}
\section{Theory}
1/
E = K + U = \frac{1}{2}mv^2 + mgh = \text{text}\{const\}
\backslash]
\section{Method}
\begin{itemize}
  \item Measure pendulum height and time period
```

```
\item Compute velocity and potential energy
\end{itemize}

\section{Results}
\begin{tabular}{|c|c|}
\hline
Height (m) & Speed (m/s) \\
\hline
0.50 & 3.13 \\
\hline
\end{tabular}

\section{Conclusion}

Mechanical energy is conserved within experimental uncertainty.
\end{document}
```

# 13.2 Beamer Slide Template

```
\documentclass{beamer}
\usepackage{physics, tikz}
\usetheme{Madrid}

\title{Work-Energy Theorem}
\author{Nishtha Tikalal}
\date{}

\begin{document}
\frame{\titlepage}

\begin{frame}{Statement}
\[
W = \Delta K = \frac{1}{2}mv^2 - \frac{1}{2}mv_0^2
\]
\end{frame}
```

```
\begin{frame}{Free Body Diagram}
\begin{tikzpicture}
  \draw[fill=gray!20] (0,0) rectangle (2,1);
  \draw[->, thick] (1,0.5) -- (1,-1) node[right] {$mg$};
\end{tikzpicture}
\end{frame}
\end{document}
```

## 13.3 Quantum Field Theory Notes Template

```
\documentclass[12pt]{article}
\usepackage{amsmath, physics, tikz-feynman}
\tikzfeynmanset{compat=1.1.0}
\title{Intro to QFT: Scattering Amplitudes}
\author{Nishtha Tikalal}
\begin{document}
\maketitle
\section{Feynman Diagrams}
1/
\feynmandiagram [horizontal=a to b] {
  i1 [particle=\(e^-\)] -- [fermion] a -- [fermion] i2 [particle=\(e^+\)],
  a -- [photon] b,
  f1 [particle=\(\mu^-\)] -- [fermion] b -- [fermion] f2 [particle=\(\mu^+\)],
};
\backslash]
\section{Amplitude}
\mathcal{M} \simeq \frac{e^2}{q^2}
/]
\end{document}
```

# Try This!

- Customize each template with your title, name, and topic
- Add one figure and one equation per section
- Compile on Overleaf to preview and export

# What's Next

In our final chapter, we'll point you toward excellent LaTeX resources, physics TeX communities, and advanced package documentation.

# Further Resources

# 14.1 TikZ, PGFPLOTS, and Physics Drawing Tools

- TikZ Core drawing library https://tikz.dev
- PGFPLOTS 2D/3D graph plotting https://ctan.org/pkg/pgfplots
- TikZ-Feynman Feynman diagram toolkit https://jpellis.me/projects/tikz-feynman/

## 14.2 Physics Writing Templates

- Overleaf Physics Report Template https://www.overleaf.com/latex/templates/physics-lab-report/zxvcpksvkfnt
- APS and AIP Manuscript Templates https://journals.aps.org/revtex, https://publishing.aip.org/resources/templates/
- arXiv Submission Help https://arxiv.org/help/submit tex

#### 14.3 TeX Communities and Forums

- TeX StackExchange (Physics-specific tags): https://tex.stackexchange.com/questions/tagged/physics
- LaTeX Reddit: https://reddit.com/r/LaTeX
- Overleaf Learn: https://www.overleaf.com/learn

• TikZ Gallery: https://www.texample.net/tikz/

# 14.4 Reference Management

- Zotero + Better BibTeX Plugin
- JabRef Open-source BibTeX GUI https://www.jabref.org
- BibGuru Online BibTeX generator https://www.bibguru.com/latex/

# 14.5 Final Advice and Acknowledgments

LaTeX is not just about formatting — it's about communicating physics clearly, rigorously, and beautifully.

#### With Thanks To:

- TeX developers and the physics LaTeX community
- Open-source authors of packages featured in this book
- Students and educators who inspired this guide

### License

This guide is authored by Nishtha Tikalal. Licensed under Creative Commons BY-NC-SA 4.0 International.

## Final Challenge

- Recreate your favorite problem set or derivation using LaTeX
- Submit your notes or poster using Overleaf
- Teach a fellow physicist to use LaTeX!