Section 1: Input files

1."data#.mat

Data#.mat files contain following

✓ ano	123886x1	123886	logical
✓ blue	123886x34	4212124	logical
() name	68x1	9528	cell
abc title	1x3	6	char

ano: anomaly vector in logical form

blue: the whole logical matric of events with corresponding literal (X and ~X).

name: the name entity for each literal.

Title: the camera name of the data.

Section 2: How to run.

To run the algorithm, just simply call file "sample#.m"

- 1. Choose the # of DNF
- 2. Modify the value of o in the sample# file, if you had 4 data files, change it to 4.

```
6 %input o: the numebr of "data" file 7 - for o=1:4
```

3. Modify fraction coverage vector for different setting

```
10 - p=[0.001 0.003 0.005 0.01 0.03 0.05];
```

Section 3: Output file

For our case, we only need the result for the third one.

In the third file (e.g #dnf#3.m)

Name 📤	Value	
error_all	2x6 double	
error_temp	2x6 double	
error_train	2x6 double	
{} result_all	1x6 cell	

Error_all: the testing error rate for adding up all the 3 fold testing error together. To obtain the final result, you should divide this result by 3. Since we are using 3-fold cross validation.

Error_train: the training error rate.

Result_all: the choosing literals set for current testing fold result.