PRODUCTION OF ALCOHOL-BASE SILICA SOL WHICH SILICA COATING FILM CAN BE FORMED BY LOW TEMPERATURE BAKING

Publication number: JP5085714

Publication date:

1993-04-06

Inventor:

YAMANAKA AKIHIKO

Applicant:

KORUKOOTO ENG KK

Classification:

- international:

C01B33/12; H01J9/20; C01B33/00; H01J9/20; (IPC1-7):

C01B33/12; H01J9/20

- european:

Application number: JP19910276395 19910930 Priority number(s): JP19910276395 19910930

Report a data error here

Abstract of JP5085714

PURPOSE:To provide a non-glare treating liquid for silica coating method for CRT faces or the like so that a nonglare coating film having excellent characteristics can be formed by baking at lower temp. (room temp.-100 deg.C) which is very low compared with a convenitional method of forming a nonglare coating film which requires high temp. (150-200 deg.C) and long time baking conditions. CONSTITUTION:The production of the alcohol-base silica sol features in hydrolysis of lower alkyl silicate expressed by formula Si(OR)4 (wherein R is methyl or ethyl group) and methanol and/or ethanol with specified amt. of water and catalyst. With using this silica sol, a silica coating film can be formed by low temp. baking.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-85714

(43)公開日 平成5年(1993)4月6日

(51)Int.Cl.⁵

識別記号

庁内整理番号

C 0 1 B 33/12 H 0 1 J 9/20

C 6971-4G

A 7161-5E

FI

技術表示箇所

(21)出願番号

特願平3-276395

(71)出願人 000105729

コルコートエンジニアリング株式会社

審査請求 未請求 請求項の数4(全 6 頁)

(22)出願日

平成3年(1991)9月30日

東京都大田区大森西3丁目28番6号 (72) 発明者 山中 昭彦

埼玉県行田市大字渡柳1131番地

(74)代理人 弁理士 水野 喜夫

(54) 【発明の名称 】 低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法

(57)【要約】

【目的】 CRTフェース面などのノングレア処理技術 としてシリカコート法が注目されているが、、特性に優 れたノングレア被膜を形成するにはベーキング条件とし て高温(150~200℃)で長時間の焼成条件が必要 である。本発明は従来と比較して格段に低い温度(室温 ~100℃)で焼成でき、かつ特性に優れたノングレア 被膜を形成することができるシリカコート法ノングレア 処理液を提供する。

【構成】 一般式 Si(OR), ……(1)(但しRは メチル基またはエチル基)で表わされる低級アルキルシ リケートを、メタノール及び/エタノール中で所望量の 水と触媒のもとで加水分解することを特徴とする低温焼 成でシリカコート膜を形成し得るアルコール性シリカゾ ルの製法。

【特許請求の範囲】

【請求項1】 一般式 Si(OR), ……(1)

(但し、Rはメチル基またはエチル基を示す。)で表わされる低級アルキルシリケートをメタノール及び/又はエタノール中で加水分解することを特徴とする低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法。

【請求項2】 加水分解率が、300~1500%である請求項1に記載の低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法。

【請求項3】 加水分解が、酸触媒を使用して行なわれるものである請求項1 に記載の低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法。

【請求項4】 アルコール性シリカゾルが、SiO、として、1~10%の固形分濃度を有するものである請求項1に記載の低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、種々の被覆(コーティ 20 方が特性に優れていることを示している。 ング)対象物に塗布し、かつ極めて低温度の焼成により 【0006】(3) 特開昭61-118 強固な無機質のシリカコート膜を形成することができる は、ブラウン管の前面パネルの外表面にS アルコール性シリカゾルの製造方法に関するものであ のアルコール溶液、またはHNO,を添加 R)。のアルコール溶液(但し、Rはアル

[0002]

【従来の技術】造膜性シリケートの応用例としてCRT (陰極線管)や液晶ディスプレイ装置のフェース面上にコーティングし、焼成することによりノングレア被膜 (防眩性被膜、乱反射性被膜)を形成する、いわゆるシリカコート法によるノングレア処理技術がある。周知の 30ように、例えば最近のディスプレイ用カラー受像管 (CRT)の技術開発は、高解像度化にはもとより、ディスプレイ使用者に対する見やすさや安全性の向上に努力が払われている。そして、このような開発動向を反映して、ディスプレイ表面のシリカコート法によるノングレア処理技術に対しても、ますます要求性能が高まってきている。

【0003】従来よりシリカコート法によるノングレア 処理技術に関して、以下のようなものが報告されている。

【0004】(1) 実公昭50-26277号には実公昭44-11150号に示される珪酸のアルカリ塩水溶液(通称水ガラス)を用いる欠点、即ち水溶液であるため、スプレー塗布後に流動状態になり易く、乱反射性の緻密な凹凸状の粗面が形成されにくいという欠点を改善する技術が開示されている。より具体的には、ブラウン管表面に四塩化珪素(SiCl.)とアルコール類またはエステル類の混和溶液(非水系)を吹き付け、熱処理することにより、ブラウン管表面に外光を拡散反射させて画像を見やすくするための微細な凹凸状の被膜を形 50

成した、いわゆるノングレア処理されたブラウン管が提示されている。

2

【0005】(2) 特開昭60-109134号に は、加水分解した珪酸エステル、アルコール、水、及び 塩酸(及び/又は硝酸)から成る処理液を、予め40~ 90℃に予熱したブラウン管フェース面に塗布し、次い で100~200℃で加熱焼成して光拡散層を形成する ことを特徴とした光拡散層を有するブラウン管の製造方 法が開示されている。なお、予めブラウン管フェース面 10 を40~90℃に予熱するのは、処理液により良好な拡 散層が得られ、かつ焼成後の膜の固着力を大きくするた めである。前記引用公報において、処理液として、エタ ノール等の溶媒100m7に対し、エチルシリケートを 0.0025~0.025モル(具体的には加水分解生 成物であるエチルシリケート40)、該エチルシリケー トのモル数の12倍以上の水、及び触媒量の塩酸を配合 したものが示されている。そして、単量体性の珪素化合 物(例えば四塩化珪素)と比較して、予め加水分解され た (別言すればオリゴマー性の) 珪酸エステルを用いた

【0006】(3) 特開昭61-118932号に は、ブラウン管の前面パネルの外表面にSi(OR)。 のアルコール溶液、またはHNO」を添加したSi(O R)。のアルコール溶液(但し、Rはアルキル基を示 す。)を吹付け塗布した後、80~150℃で焼成する ことを特徴とした前面パネルの表面にSiO,から成る 透明で防眩性の微細な凹凸被膜を有するブラウン管の製 造方法が開示されている。なお、HNO,を添加するの は形成される膜の接着強度を向上させるためであり、膜 強度について他の強化手段が採用されれば不要とされる ものである。また、前記引用公報には、80~150℃ (パネル表面温度)の低温焼成により、S i −O−S i のシロキサン構造の一部に、Si-OHのシラノール基 を残すことができるため帯電防止効果が得られることも 示されている。前記引用公報において、具体的な吹付け 液として溶質がSi(OC, H,)、溶媒がエタノー ル、その他の成分が水とHNO,から成るものが示さ れ、また該吹付け液を前面パネルの外表面にスプレー塗 布し80~150℃の焼成温度(30分間保持)により 40 シリカコート膜を形成することが示されている。

【0007】(4) 特開昭63-160131号には、ボリアルキルシロキサンを含む溶液をフェースプレート上に塗布し、次いで縮合反応させて該フェースプレートの表面にSiO、膜を形成することを特徴とした陰極線管(CRT)の製造方法が開示されている。この引用公報のものは、前記特開昭61-118932号に開示された方法を改良しようとするものと認められる。即ち、前記特開昭61-118932号におい付着力向上剤としてHNO、(なお、一般にこの種の酸は加水分解反応、即ち、シラノール基の生成反応を促進することは

よく知られている。)を使用しているが、これのみでは十分な付着力を得ることができない。従って、この欠点を改善するために該引用公報のものは、処理液にある程度のシロキサン結合を有したポリアルキルシロキサンを含有させるものである。前記引用公報において、具体的な塗布溶液としてポリアルキルシロキサン(平均重合度4量体)、加水分解反応を進めるための酸またはアルカリ、水、及びアルコールからなるアルコール液が示されている。なお、ポリアルキルシロキサンとしては平均2量体から6量体までのものが好ましいとされている。また、具体的な焼成条件として115℃で10分間、115℃で5分間という条件が開示されている。

【0008】(5) 特開平2-118601号には、 防眩性の観察面を有するスクリーンの製造方法におい て、(a) ガラス支持体を室温より高い第1の温度(例え ば48~50℃) に加熱する工程、(b) リチウム安定化 シリカゾル水溶液を前記した加熱された支持体の表面に 被覆し、かつ乾燥する工程、(c) 前記支持体の表面と被 膜を熱源に短時間さらし、第1の温度より高い第2の温 度(例えば65℃) に上昇させる工程、(d) 水洗工程、 (e) 乾燥工程とから成る工程を含む方法が開示されてい る。この引用公報のものは、支持体の表面及びその上に 形成された被膜の温度を第1の温度よりも高い温度に短 時間さらすことにより(例えば、60℃で約30秒間の スキン加熱を採用する。)、被膜の光学的及び物理的特 性を現出させるという知見に基づくものと認められる。 なお、引用公報は、従来法においては耐摩耗性の被膜を 得るためには150~300℃のベーキングが必要であ ったことを説明している。

【0009】以上のように、各種の被膜対象物上に防眩性のシリカコート膜を形成する方法として種々のものが提案されているが、これらには次のような欠点があり十分に満足できるものではない。

(i) 即ち、珪酸化合物として、単量体(モノマー)性 のSiCl,を使用する実公昭50-26277号のも のは、処理液が塩酸酸性液となるため処理装置(例えば スプレーノズル)の腐食の問題、及び膜特性の点(例え ばハロゲンイオンはブラウン管の生命であるエミッショ ンスランプに大きく影響する。)などから十分なもので はない。また、Si(OR)。のアルコール溶液、実際 40 的にはこれに水と硝酸を加えた処理液を使用する特開昭 61-118932号のものは、処理液をブラウン管の 前面パネル表面に塗布した後、該塗布面において加水分 解反応、縮合反応、ゲル化反応(シラノール基の生成、 シロキサン結合の生成と三次元化を生起させるため反応 が不均一、不安定であり十分に強固かつ特性に優れたシ リカコート膜を得るととができない(との点は、前記し たように特開昭63-160131号に指摘されてい る。)。

(ii) また、珪酸化合物として、オリゴマー性の予め加 50

水分解した珪酸エステルのアルコール溶液を使用するも の、実際的にはこれに水、触媒としての酸(またはアル カリ)を加えた処理液を使用する特開昭60-1091 34号及び特開昭63-160131号のものは、処理 液をフェースプレート上に塗布し、該塗布面において加 水分解反応の一部、縮合反応、ゲル化反応を生起させる ため、前記したと同様に反応が不均一、不安定であり、 特に100℃以下の低温焼成においては十分に強固かつ 特性に優れたシリカコート膜を得ることができない。更 に、オリゴマー性の予め加水分解した珪酸エステルとし てリチウム安定化シリカゾルを使用する特開平2-11 8601号のものは、前記実公昭50-26277号で 引用されている実公昭44-11150号に開示された ものと同種の珪酸のアルカリ塩水溶液(通称水ガラス) を出発物質として使用するものであり、この方法ではア ルカリが含有されているため形成膜が空気中の水分と反 応して白濁したり、表面が溶出したりする問題をかかえ ている。

[0010]

20

【発明が解決しようとする問題点】本発明者らは、前記した従来技術の問題点を解消すべく鋭意検討を加えた。特に100℃以下の低温加熱(あるいは焼成)により強固な接着力を有するシリカコート膜を形成することができる処理液について検討を加えた。その結果、低級アルキルシリケートをアルコール媒体中で所定量の水と触媒により所定の加水分解率まで加水分解して調製したアルコール性シリカゾルそれ自体が、低温加熱(焼成)により極めて接着力に優れた硬質の被膜を形成し得ることを見い出し本発明を完成するに至った。

30 [0011]

【問題点を解決するための手段】本発明を概説すれば、本発明は、一般式 Si(OR)、……(1)(但し、Rはメチル基またはエチル基を示す。)で表わされる低級アルキルシリケートをメタノール及び/又はエタノール中で加水分解することを特徴とする低温焼成でシリカコート膜を形成し得るアルコール性シリカゾルの製法に関するものである。

【0012】以下、本発明の技術的構成について詳しく説明する。本発明は、前記したようにシリカコート法ノングレア処理において、焼成工程の条件を極力低温、かつ短時間とするに最適な処理液の開発という課題の中から生まれたものである。焼成工程の条件としては、室温~100℃、好ましくは50~100℃、30~60分という低温短時間の処理条件が前提とされている。種々のシリカコート膜形成用の処理液を検討した結果、前記したアルコール性シリカゾルそれ自体が、低温かつ短時間という焼成条件のもとで各種の被覆対象物上で極めて接着力に優れた硬質のシリカコート膜を形成することができるという知見が見い出された。

【0013】本発明のシリカコート法によるノングレア

処理のために使用される処理液は、前記一般式(1)の低級アルキルシリケートをメタノール及び/又はエタノール媒体中で、かつ触媒のもとで加水分解することにより得られるアルコール性シリカゾルであり、そのゾル粒子の粒径は非常に小さい(1μ以下)のものである。本発明者らにおいて、かかるアルコール性シリカゾルが、どうして低温短時間という条件のもとで接着力に優れた硬質のシリカコート膜を形成するのかという点について十分に解明していないが、ゾル粒子の粒径が小さいこと、従ってゾル粒子の表面積が非常に大きいこと、各粒子表10面に多くのシラノール基(Si-OH)が存在することが、低温焼成においても強固な接着力を生むものと考えている。本発明の前記アルコール性シリカゾルからなるノングレア処理液は従来技術のノングレア処理液と比較して、

- (i) 単量体性モノマーを主成分とした処理液とは明らかに相違し、また
- (ii) オリゴマー性の珪素化合物、具体的には予め加水 分解した珪酸エステルのアルコール性シリカゾルに対 し、更に水と触媒を加えてノングレア処理液としたもの 20 とも明らかに相違する。

本発明のシリカコート法ノングレア処理に適用される前記アルコール性シリカゾルは、一見すると前記(ii)の従来技術のものと類似しているが、本発明のノングレア処理液は被覆対象物上に適用するに際して、水や触媒を添加する必要はないものである。本発明は、ゾル粒子の粒径が小さいアルコール性シリカゾルそれ自体が、低温かつ短時間の焼成工程により強固な接着力を有しかつ硬質の被膜を与えるという驚くべき事実をベースとしたものであり、従来の常識では理解し得ないものである。

【0014】本発明のシリカコート法ノングレア処理に適用されるアルコール性シリカゾルは、前記した反応条件のもとで調製されなければならない。即ち、一般式(1)の低級アルキルシリケートとして、Rがメチル基またはエチル基でなければならない。また、反応媒体としてメチルアルコール及び/又はエチルアルコールを使用しなければならない。

【0015】次に、加水分解工程について説明する。本発明において、加水分解の触媒として膜特性との関連も重視して一般には酸触媒が使用される。この種の酸触媒 40としては硝酸、塩酸、酢酸、硫酸などが使用され得る。特に、硝酸は比較的低く(bp 86℃)、また他の酸と比較して酸化力が強く鉄などを腐食させにくいという性質がある。このため硝酸は膜形成時に膜の酸化を促進して強固な膜を形成させるとともに膜中に残留する可能性も低く、また膜形成装置の腐食も抑えることができるので最も好ましい酸触媒である。本発明において加水分解反応は、300~1500%程度の加水分解率が達成されるまで行なわれる。ここでいう加水分解率とは、

化学反応式において、

加水分解率 (%) = [(反応に使用する水の量(g)/(アルキルシリケートが 100%SiO, になるために必要な水の量(g))] $\times 100$

6

のことを意味する。なお、加水分解率が300%未満の場合は、加水分解反応が充分に進行していないために、液中に残留するSi-ORが多くなり接着力が低下する。また、1500%以上の場合は、加水分解が逆に進行し過ぎるために、液中に形成されるシリカゾル粒子が大きくなるため表面積が小さくなり接着力が減少する。より具体的には、テトラメトキシシランまたはテトラエトキシシランのモル数の10倍~20倍程度の水と前記触媒を使用して、室温~50℃(好ましくは室温~30℃)の温度で1時間以上(好ましくは2~5時間)撹拌下で加水分解反応を行なえばよい。このようにしてSiO、濃度として20%以下、好ましくは1~10%の固形分濃度のアルコール性シリカゾルを調製する。

【0016】以上のようにして、調製したアルコール性シリカゾルをシリカコート法によるノングレア処理のための処理液とするには、所望の希釈媒体を用いることができる。この種の希釈液としてはメタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-プタノールなどのC、~C1。のアルコール類、酢酸エチル、酢酸ブチルなどのエステル類、メチルエチルケトンなどのケトン類、及びこれらの混合溶媒などか挙げられる。なお、これら希釈液を前記アルコール性シリカゾルに加えて希釈し、SiO、濃度として10%以下、好ましくは5%以下の固形分濃度とする。

【0017】以上のようにして調製されたシリカコート 30 法によるノングレア処理液はポットライフの観点から室 温以下に保存するのが望ましい。ノングレア処理に際しては、被覆対象物、例えばCRTフェース面あるいは液 晶ディスプレイ面などを40~90℃に加熱し、ここに 該ノングレア処理液をスプレー塗布し、塗布後60~100℃の温度で、30~60分間焼成すればよい。これ により強固な接着力を有するとともに表面硬度の高いシリカコート膜が得られる。

[0018]

【実施例】以下、本発明を実施例及び応用例により更に 詳しく説明する。

- (1) アルコール性シリカゾルの調製例
- (i) メチルシリケート系アルコール性シリカゾル テトラメトキシシラン61.5gを4つ口丸底フラスコ 11に入れ、MeOH 463.9gを加え、液温を3 0℃に一定に維持しながら攪拌し液を均一にした。次 に、水71.6gにHNO。 3.0gを加えた水溶液 を加え、30℃にて5時間攪拌した。
- 解反応は、300~1500%程度の加水分解率が達成 (ii) エチルシリケート系アルコール性シリカゾル されるまで行なわれる。ととでいう加水分解率とは、 テトラエトキシシラン85.7gを4つ口丸底フラスコSi(OR)、+2H, $O \rightarrow SiO$ 、+4ROH なる 50 11 C入れ、MeOH 356.7g を加え、液温を 3

*

7

に、水154.6gにHNO。 3.0gを加えた水溶 液を加え、30℃にて5時間攪拌した。

0℃に一定に維持しながら攪拌し液を均一にした。次 *【0019】(2)シリカコート法ノングレア処理液の 調製例(配合割合は重量%)

(i) メチルシリケート系アルコール性シリカゾル

(前記(1)-(i),実施例1) ……50%

I P A 5 0%

(ii) エチルシリケート系アルコール性シリカゾル

(前記(1)-(ii), 実施例1) ……50%

IPA......50%

(iii) エチルシリケート40-1(注1)(比較例1)

エチルシリケート40の60gを4つ口丸底フラスコ2 1 に入れ、MeOH 445.9gを加え、液温を30 ℃に一定に維持しながら攪拌し液を均一にした。次に、 水91.1gにHNO, 3.0gを加えた水溶液を加 え、30℃にて5時間撹拌した。その後IPA 600 gを加えて試料とした。

- (iv) メチルシリケート51(注2)(比較例2) エチルシリケート51の47.1gを4つ口丸底フラス コ21に入れ、MeOH455.6gを加え、液温を3 0℃に一定に、維持しながら攪拌し液を均一にした。次 20 に、水94.3gにHNO, 3.0gを加えた水溶液 を加え、30℃にて5時間攪拌した。その後 IPA 6 00gを加えて試料とした。
- (v) エチルシリケート40-2(注3)(比較例3) エチルシリケート40の60gを4つ口丸底フラスコ2 1に入れ、IPA 800g, n-BuOH 240gを 加え、液温を30℃に一定に維持しながら攪拌し液を均 一にした。次に、水90gにHC1 10gを加えた水 溶液を加え、30℃にて1時間攪拌して試料とした。

(注1) テトラエトキシシランの5量体が主成分であ る。

(注2) テトラメトキシシランの4量体が主成分であ る。

(注3) テトラエトキシシランの5量体が主成分であ る。

【0020】(3)シリカコート法ノングレア被膜の特 性

前記シリカコート法ノングレア処理液を下記要領でテス トピースに塗布、焼成し、次いで被膜特性を評価した。 結果を表1に示す。

- (i) **F**ストピース… * 1 2 インチCRT
- (ii) 処理方法
- (a) 予熱 *60℃×1.5時間(電気定温乾燥 器中)
- (b) スプレー条件*スプレーノズル……スプレーイング システムジャパン社製、2流体ノズル、 $\phi = 0$. 4 mm

*距離 ……25cm

*流量 10m1/分

*スプレー時間……60秒

*空気圧……2. 0 Kg/cm²

- (c) 焼成条件 *遠赤外線焼成炉を使用
- *昇温速度(60→100℃)……8℃/分
- *焼成……60℃または100℃、30分
- (iii) 評価方法
- (a) グロス値測定 日本電色工業(株)製 VG-2P -D3を用いてJIS Z 8741に準拠して測定。 測定条件 Gs (60°)
- (b) 消しゴム試験 LION No. 50-30を用いて 30 消しゴム試験器により往復摩擦試験を行ない、200回 後のグロス値と初期値を比較(△G200)し、肉眼に て表面状態を観察する。

測定条件 荷重 1 Kg

- (c) 鉛筆硬度試験 JIS K 5400(6, 14) 鉛筆引っかき試験に準拠して測定。
- ブラウン管を点灯させ、ブラウン管 (d) ギラツキ 表面のギラツキを肉眼にて観察する。

[0021]

【表1】

8

<表1>

10

		初期グロス値	△G200	ポラツキ	鉛筆硬度	焼成条件
		(%)	(%)			
実施例	1	47. 6	2	0	9 H	100℃, 30分
		43.2	2	0	9 H	60℃,30分
実施例	2	54.0	1	0	9 H	100℃, 30分
J C, E F ;	~	53.0	1	0	9 H	60℃,30分
比較例	1	50.0	7	0	· 6 H	60℃, 30分
比較例	2	51.1	7	. 0	6 H	60℃,30分
比較例	3	56.6	7	0	6 H	100℃, 30分
		52.1	13	0	5 H	60℃, 30分

【0022】表1より、実施例のものは比較例のもの比較してギラツキの点では殆ど同じであった。しかしながら、消しゴム試験及び鉛筆硬度試験の結果においては著 20 しい差が認められた。特に、実施例のものは比較例3の180℃,30分焼成時と殆ど変わらない結果を示した。なお、実施例の60℃,30分焼成時の膜硬度は、シリカコート法ノングレア膜として使用に耐え得るもの

である。

[0023]

【発明の効果】本発明により、従来と比較して格段に低温サイドで焼成することができ、かつ、種々の被覆対象物上に強固な接着力を有するとともに硬質のシリカコート膜を形成することができるシリカコート法ノングレア処理液が提供される。