Рекуррентные нейронные сети с механизмом внимания для анализа тональности русских текстов

Иванов Илья Сергеевич 1 Ботвиновский Евгений Александрович 2

 1 студент, Московский Физико-Технический Институт 2 к.ф.-м.н., DeepHackLab

2017

Цель исследования

Исследовать новые методы анализа тональности текстов на русском языке с применением рекуррентных нейронных сетей и механизма внимания.

Проблемы

Сложная морфология русского языка.

Особенности лексикона пользователей соц. сети.

Малый объём данных для обучения.

Предположения

Зависимость класса от порядка слов в тексте.

Разная значимость слов в тексте при классификации.

Литература

- Arkhipenko K., Kozlov I., Trofimovich J., Skorniakov K., Gomzin A., Turdakov D.. Comparison of Neural Network Architectures for Sentiment Analysis of Russian Tweets. Computational Linguistics and Intellectual Technologies. Dialog, 2016.
- Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alexander J. Smola, Eduard H. Hovy. Hierarchical Attention Networks for Document Classification. HLT-NAACL, 2016.
- Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation by Jointly Learning to Align and Translate. ICLR, 2014.

Постановка задачи классификации

Дано множество текстов (документов) $\mathfrak{D} = \{\mathbf{d}_i\}_{i=1}^n$.

Необходимо классифицировать документы из $\mathfrak D$ на три класса:

- положительной тональности (положительные);
- отрицательной тональности (отрицательные);
- не имеющие тональности (нейтральные).

Функционалы качества

- Точность (accuracy)
- Макро-усредненная F-мера относительно классов положительных и отрицательных сообщений.

В качестве классификатора предлагается использовать двунаправленную рекуррентную нейронную сеть с механизмом внимания.

Векторное представление слов

- $oldsymbol{\bullet}$ Документ $oldsymbol{d} \in \mathfrak{D}$ является последовательностью слов $oldsymbol{d} = oldsymbol{w}_1..oldsymbol{w}_{\mathcal{T}}$ из словаря $\mathfrak{W}.$
- Слово $\mathbf{w} \in \mathfrak{W}$ представляется вектором в D-мерном пространстве.
- Векторное представление для всех слов из словаря получается при помощи алгоритма Word2Vec, применённом на большом наборе неразмеченных данных.

(Mikolov et al., NAACL HLT, 2013)

И. С. Иванов 5 / 18

Рекуррентная нейронная сеть

- В качестве классификатора используется двунаправленная рекуррентная нейронная сеть типа GRU (Gated Recurrent Unit) с механизмом внимания.
- Функцией ошибки является перекрёстная энтропия для трёх классов.

$$J(W) = -\sum_{i=1}^{n} \sum_{k=1}^{3} y_i^{(k)} \log \hat{y}_i^{(k)},$$
$$\hat{y}_i^{(k)} = \frac{\exp s_i^{(k)}}{\sum_{j=1}^{3} \exp s_i^{(j)}}$$

Двунаправленный GRU

Уравнения GRU

$$z_t = \sigma_g(W_z x_t + U_z h_{t-1}) \tag{1}$$

$$r_t = \sigma_g(W_r x_t + U_r h_{t-1}) \tag{2}$$

$$\tilde{h}_t = \tanh(Wx_t + U(r_t \circ h_{t-1})) \tag{3}$$

$$h_t = (1 - z_t) \circ \tilde{h}_t + z_t \circ h_{t-1}$$
 (4)

Уравнения механизма внимания

$$v_t = \tanh\left(W_\omega \left[\overrightarrow{h_t}, \overleftarrow{h_t}\right] + b_\omega\right) \tag{5}$$

$$\alpha_t = \frac{\exp\left(v_t^T u_\omega\right)}{\sum_{j=1}^T \exp\left(v_j^T u_\omega\right)}$$
 (6)

$$v = \sum_{t=1}^{T} \alpha_t \left[\overrightarrow{h_t}, \overleftarrow{h_t} \right] \tag{7}$$

Наборы данных

В качестве коллекции документов $\mathfrak D$ используются следующие наборы данных:

- Оообщения пользователей соц. сети Twitter с упоминанием некоторых банков и телекоммуникационных компаний:
 - Размер выборки около 10 тыс. экземпляров
 - Размер сообщения не более 140 символов
 - Лексикон: сленг, сокращения, эмотиконы
 - Спец. символы: # (хэштег), @ (ссылка на пользователя)
 - Ссылки на внешние ресурсы
- 2 Отзывы на товары и рестораны:
 - Размер выборки около 70 тыс. экземпляров
 - Размер сообщения до 150 слов

Цели эксперимента

- Реализовать архитектуру двунаправленной рекуррентной сети с механизмом внимания (Python + TensorFlow)
- ② Обучить модель на предложенных выборках
- Сравнить результаты с предложенными ранее алгоритмами.

Вычислительный эксперимент

В ходе эксперимента сравниваются результаты предложенного алгоритма классификации с такими алгоритмами как двунаправленная рекуррентная нейронная сеть (без механизма внимания), метод опорных векторов и другие.

План эксперимента

- Предобработать наборы текстов
- Реализовать двунаправленный GRU с механизмом внимания
- Провести подбор оптимальных гиперпараметров и обучить модель на обучающей выборке
- Протестировать модель на отложенной выборке
- Оравнить результаты с другими алгоритмами

Предобработка данных

- ① Токенизация (NLTK)
- ② Лемматизация (PyMorphy2)
- Векторизация слов (Word2Vec, обученный на русскоязычном корпусе из социальных медиа)
- Дополнение последовательностей нулями до максимальной длины (zero-padding)

Предобработка данных

Рис.: Распределение кол-ва слов в сообщении

Визуализация механизма внимания

- 1. Почему-то не приходят смс-сообщения для подтверждения входа
- 2. IPhone-овское приложение от Сбербанка самое удобное в России
- 3. Заведение вполне приличное, кухня хорошая, но маловато выбора, зато с напитками никакой проблемы выбора нет!! много сортов пива и других более крепких напитков. из минусов можно сказать только черезмерная громкость живой музыки по выходным. соседа не слышно....

Сравнение качества полученных моделей

Таблица: F1-мера различных моделей на кросс-валидации (CV) и на тестовой выборке для выборок с твитами

	Banks		Telecommunication companies	
	5-fold CV (mean, std)	test	5-fold CV (mean, std)	test
Bi-GRU	0.74, 0.02	0.48	0.62, 0.01	0.52
Bi-GRU + Attention	0.74, 0.02	0.51	0.60, 0.02	0.49
2-layer GRU,				
reversed sequences	0.62, -	0.55	0.66, -	0.56
(Arhipenko)				
Bi-GRU (Arhipenko)	0.62, -	-	0.65, -	-
LSTM (Arhipenko)	0.60, -	-	0.64, -	-
CNN (Arhipenko)	-	0.48	-	0.47
SVM baseline	-	0.46	-	0.46
Majority baseline	-	0.31	-	0.19

И. С. Иванов 15 / 18

Сравнение качества полученных моделей

Таблица: Результаты эксперимента со смешиванием обучающей и тестовой выборок

	Banks			Telecommunication			
	'	Daliks		companies			
	cross-validation			cross-va	alidation	test	
	train	train+test	test	train	train+test	iesi	
Bi-GRU	0.74, 0.02	0.71, 0.02	0.48	0.62, 0.01	0.62, 0.01	0.52	
Bi-GRU+Attention	0.74, 0.02	0.72, 0.01	0.51	0.60, 0.02	0.62, 0.01	0.49	

Сравнение качества полученных моделей

Таблица: Качество различных моделей на кросс-валидации (CV) и на тестовой выборке для выборки с отзывами

	Reviews						
	10-fold CV	test					
	Accuracy	F1	Accuracy	F1			
Bi-GRU	0.906, 0.003	0.863, 0.007	0.901	0.861			
Bi-GRU+Attention	0.907, 0.004	0.865, 0.007	0.900	0.861			

Заключение

- Реализован алгоритм двунаправленной рекуррентной нейронной сети с механизмом внимания для классификации тональности русскоязычных текстов. Код отлажен и выложен в открытый доступ
- Проведён подбор гиперпараметров и обучены модели на вышеупомянутых выборках
- Проведено сравнение результатов с предложенными ранее алгоритмами
- Подготовлен отчет по результатам работы

Дальнейшее исследование

Проведение экспериментов на других наборах данных. Исследование применимости данной модели в качестве модуля для нейронной сети, генерирующей сообщения с заданной тональностью.