Data Structures Instructor: Hafiz Tayyeb Javed Week-15-Lecture-01

22. Minimum Spanning Tree (MST) Kruskal Algorithm

Spanning Trees

- A spanning tree of a graph is a subgraph that contains all the vertices and is a tree
- Formal definition
 - Given a connected graph with |V| = n vertices
 - A spanning tree is defined a collection of n 1 edges which connect all n vertices
 - The n vertices and n 1 edges define a connected sub-graph

Spanning Trees

• A spanning tree is not necessarily unique

Spanning Trees – Example

All 16 of its Spanning Trees

Spanning Trees

- Why such a collection of |V|-1 edges is called a tree?
 - If any vertex is taken to be the root, we form a tree by treating the adjacent vertices as children, and so on...

Spanning Tree on Weighted Graphs

- Weight of a spanning tree
 - Sum of the weights on all the edges which comprise the spanning tree

• The weight of this spanning tree is 20

Minimum Spanning Tree (MST)

- Which spanning tree which minimizes the weight?
 - Such a tree is termed a minimum spanning tree

The weight of this spanning tree is 14

Spanning Forest

- Suppose that a graph is composed of N connected sub-graphs
- A spanning forest as a collection of N spanning trees
 - One for each connected sub-graph

- A minimum spanning forest
 - A collection of N minimum spanning trees
 - One for each connected vertex-induced sub-graph

Applications

- Consider supplying power to
 - All circuit elements on a board
 - A number of loads within a building
- A minimum spanning tree will give the lowest-cost solution

Application

- First application of a minimum spanning tree algorithm was by the Czech mathematician Otakar Borůvka
 - Designed electricity grid in Morovia in 1926

Application

- Consider attempting to find the best means of connecting a number of Local Area Networks (LANs)
 - Minimize the number of bridges
 - Costs not strictly dependent on distances

Algorithms For Obtaining MST

• Kruskal's Algorithm

• Prim's Algorithm

- Kruskal's algorithm creates a forest of trees
- Initially forest consists of N single node trees (and no edges)
- Sorts the edges by weight and goes through the edges from least weight to greatest weight
- At each step one edge (with least weight) is added so that it joins two trees together
 - As long as the addition does not create a cycle

The halting conditions are as follows:

- 1. When |V| 1 edges have been added
 - In this case we have a minimum spanning tree
- 2. We have gone through all edges
 - A forest of minimum spanning trees on all connected sub-graphs

- 1. The forest is constructed with each node in a separate tree
- 2. The edges are placed in a priority queue
- 3. Until we've added n-1 edges (assumption: connected graph)
 - Extract the cheapest edge from the queue
 - 2. If it forms a cycle, reject it
 - 3. Else add it to the forest. Adding it to the forest will join two trees
- Every step will have joined two trees in the forest together, so that at the end, there will only be one tree in T

Complete Graph

• Sort Edges: in reality priority queue is used

Add Edge

Add Edge

Add Edge

Add Edge

• Minimum spanning tree

Complete graph

• Sort edges based on weight

{C, E}	
{H, I}	
_ {G, I} _	
_ {F, G}	
7 7	
{B, E}	
{E, H}	
{B, C}	
{H, K}	
{H, L}	
(D, E)	
{G, H}	
• •	
{I, K}	
{B, D}	
{D, F}	
{E, G}	
{K, L}	
{J, K}	
{J, I}	
{J, G}	
{A, B}	
{A, D}	
{E, F}	37
_	

• We start by adding edge {C, E}

 $\{C, E\}$ $\longrightarrow \{H, I\}$

• We add edge {H, I}

• We add edge {G, I}

{C, E} {H, I} → {G, I} {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} {K, L} {J, K} {J, I} {J, G} {A, B} {A, D} {E, F} 40

• We add edge {F, G}

• We add edge {B, E}

- We add edge {E, H}
 - This coalesces the two spanning sub-trees into one

• We try adding {B, C}, but it creates a cycle

• We add edge {H, K}

• We add edge {H, L}

• We add edge {D, E}

• We try adding {G, H}, but it creates a cycle

• We try adding {I, K}, but it creates a cycle

• We try adding {B, D}, but it creates a cycle

• We try adding {D, F}, but it creates a cycle

• We try adding {E, G}, but it creates a cycle

By observation, we can still add edges {J, K} and {A, B}

{H, I} {G, I} {F, G} {B, E} {E, H} {B, C} {H, K} {H, L} {D, E} {G, H} {I, K} {B, D} {D, F} {E, G} {K, L} {J, K} {A, B} {A, D} {E, F}

{C, E}

- Having added {A, B}, we now have 11 edges
 - We terminate the loop
 - We have our minimum spanning tree


```
{C, E}
{H, I}
{G, I}
{F, G}
{B, E}
{E, H}
{B, C}
{H, K}
{H, L}
{D, E}
{G, H}
{I, K}
{B, D}
{D, F}
{E, G}
{K, L}
{J, K}
{A, D}
{E, F}
```

Detecting a Cycle

- To determine if a cycle is created, we could perform a traversal
 - A run-time of O(|V|)

• Consider edges in the same connected sub-graph as forming a set

- Consider edges in the same connected sub-graph as forming a set
- If the vertices of the next edge are in different sets
 - Take the union of the two sets

- Consider edges in the same connected sub-graph as forming a set
- If the vertices of the next edge are in different sets
 - Take the union of the two sets

- Consider edges in the same connected sub-graph as forming a set
- If the vertices of the next edge are in different sets
 - Take the union of the two sets
- Do not add an edge if both vertices are in the same set

Any Question So Far?

