# Contents

| 1                    | Lea | rning Goals                                | 1  |
|----------------------|-----|--------------------------------------------|----|
| 2                    | The | e 4-Queens Problem                         | 2  |
|                      | 2.1 | The CSP formulation                        | 2  |
|                      | 2.2 | The AC-3 Arc Consistency Algorithm         | 3  |
|                      | 2.3 | Backtracking Search with Arc Consistency   | 3  |
| 3 Practice Questions |     | 4                                          |    |
|                      | 3.1 | Arc Consistency with an Initial Assignment | 4  |
|                      | 3.2 | Backtracking Search with Forward Checking  | 10 |

# 1 Learning Goals

By the end of the exercise, you should be able to

- Formulate a real-world problem as a constraint satisfaction problem by defining variables, domains, and constraints.
- Trace the execution of the backtracking search algorithm with the full AC-3 arc consistency algorithm on the 4-queens problem.
- Trace the execution of the backtracking search algorithm with forward checking on the 4queens problem.

# 2 The 4-Queens Problem

The 4-queens problem consists of a 4x4 chessboard with 4 queens. The goal is to place the 4 queens on the chessboard such that no two queens can attack each other. Each queen attacks anything in the same row, in the same column, or in the same diagonal.

### 2.1 The CSP formulation

Formulate the state of the 4-queens problem below.

- Assume that exactly one queen is in each column. Given this, we only need to keep track of the row position of each queen.
- Variables:  $x_0, x_1, x_2, x_3$  where  $x_i$  is the row position of the queen in column i, where  $i \in \{0, 1, 2, 3\}$ .
- Domains:  $dom(x_i) = \{0, 1, 2, 3\}$  for all  $x_i$ .
- Constraints: No pair of queens are in the same row or diagonal.

$$(\forall i (\forall j ((i \neq j) \rightarrow ((x_i \neq x_j) \land (|x_i - x_j| \neq |i - j|))))))$$

All the constraints are explicitly given below.

$$((x_0 \neq x_1) \land (|x_0 - x_1| \neq 1) \land (x_0 \neq x_2) \land (|x_0 - x_2| \neq 2) \land (x_0 \neq x_3) \land (|x_0 - x_3| \neq 3) \land (x_1 \neq x_2) \land (|x_1 - x_2| \neq 1) \land (x_1 \neq x_3) \land (|x_1 - x_3| \neq 2) \land (x_2 \neq x_3) \land (|x_2 - x_3| \neq 1))$$

Formulate the 4-queens problem as a CSP below.

- State: one queen per column in the leftmost k columns with no pair of queens attacking each other.
- Initial state: no queens on the board.
- Goal state: 4 queens on the board. No pair of queens are attacking each other.
- Successor function: add a queen to the leftmost empty column such that it is not attacked by any other existing queen.

## 2.2 The AC-3 Arc Consistency Algorithm

### **Algorithm 1** Revise $(X_i, C)$

```
1: revised \leftarrow false

2: for x in dom(X_i) do

3: if \neg \exists y \in dom(X_j) s.t. (x,y) satisfies the constraint C then

4: remove x from dom(X_i)

5: revised \leftarrow true

6: end if

7: end for

8: return revised
```

### **Algorithm 2** The AC-3 Algorithm

```
1: Put (v, C) in the set S for every variable v and every constraint involving v.
 2: while S is not empty do
      remove (X_i, C_{ij}) from S (C_{ij} is a constraint between X_i and X_j.)
      if Revise(X_i, C_{ij}) then
 4:
        if dom(X_i) is empty then return false
 5:
 6:
        for X_k where C_{ki} is a constraint between X_k and X_i do
           add (X_k, C_{ki}) to S
 7:
        end for
 8:
      end if
 9:
10: end while
11: return true
```

# 2.3 Backtracking Search with Arc Consistency

## **Algorithm 3** BACKTRACK-INFERENCES(assignment, csp)

```
1: if assignment is complete then return true
2: var \leftarrow SELECT-UNASSIGNED-VARIABLE(csp)
3: for all value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
      if adding {var = value} satisfies every constraint then
4:
5:
        add \{var = value\} to assignment
        inf-result \leftarrow INFERENCES(assignment, csp)
6:
7:
        if inf-result is true then
           add the inference results to assignment
8:
           result \leftarrow BACKTRACK(assignment, csp)
9:
           if result is true then return result
10:
        end if
11:
12:
      end if
      remove {var = value} and the inference results from assignment
13:
14: end for
15: return false
```

# 3 Practice Questions

## 3.1 Arc Consistency with an Initial Assignment

Start with an initial assignment of  $x_0=0$  for the 4-queens problem. Let's execute the AC-3 algorithm.

The starting domains and assignment:

$$x_0 = 0$$
,  $dom(x_1) \in \{0, 1, 2, 3\}$ ,  $dom(x_2) \in \{0, 1, 2, 3\}$ , and  $dom(x_3) \in \{0, 1, 2, 3\}$ 

The set of variable-constraint pairs:

$$(x_0, x_0 \neq x_1), (x_1, x_0 \neq x_1), (x_0, x_0 \neq x_2), (x_2, x_0 \neq x_2), (x_0, x_0 \neq x_3), (x_3, x_0 \neq x_3), (x_1, x_1 \neq x_2), (x_2, x_1 \neq x_2), (x_1, x_1 \neq x_3), (x_3, x_1 \neq x_3), (x_2, x_2 \neq x_3), (x_3, x_2 \neq x_3), (x_0, |x_0 - x_1| \neq 1), (x_1, |x_0 - x_1| \neq 1), (x_0, |x_0 - x_2| \neq 2), (x_2, |x_0 - x_2| \neq 2), (x_0, |x_0 - x_3| \neq 3), (x_3, |x_0 - x_3| \neq 3), (x_1, |x_1 - x_2| \neq 1), (x_2, |x_1 - x_2| \neq 1), (x_1, |x_1 - x_3| \neq 2), (x_3, |x_1 - x_3| \neq 2), (x_2, |x_2 - x_3| \neq 1), (x_3, |x_2 - x_3| \neq 1).$$

Note that every constraint appears in exactly two pairs, one for each variable in the constraint.

Below, we will write out the details of a few steps. Executing the AC-3 algorithm from start to finish will take roughly 24 steps. I encourage you to trace through all the execution steps on your own.

Answer the three questions below.

#### Question 1:

Let the starting domains and assignment be

$$x_0 = 0$$
,  $dom(x_1) \in \{0, 1, 2, 3\}$ ,  $dom(x_2) \in \{0, 1, 2, 3\}$ , and  $dom(x_3) \in \{0, 1, 2, 3\}$ 

Suppose that we remove the pair  $(x_0, x_0 \neq x_1)$  from the set.

Describe any change to the domain of the variable.

**Solution:**  $x_0$  is arc-consistent with respect to  $x_1$  for the constraint  $x_0 \neq x_1$ . We do not need to change the domain of  $x_0$ .

Describe any variable-constraint pairs that we need to add back to the set.

**Solution:** We do not need to add any pairs back because we did not change the domain of  $x_0$ .

#### Question 2:

Let the starting domains and assignment be

$$x_0 = 0$$
,  $dom(x_1) \in \{0, 1, 2, 3\}$ ,  $dom(x_2) \in \{0, 1, 2, 3\}$ , and  $dom(x_3) \in \{0, 1, 2, 3\}$ 

Suppose that we remove the pair  $(x_1, x_0 \neq x_1)$  from the set.

Describe any change to the domain of the variable.

**Solution:** If  $x_1 = 0$ , there no value for  $x_0$  such that  $x_0 \neq x_1$ . Therefore, we need to remove 0 from  $dom(x_1)$ .

Describe any variable-constraint pairs that we need to add back to the set.

**Solution:** We will need to add back the following pairs if they are not in the set already.

$$(x_0, x_0 \neq x_1), (x_2, x_1 \neq x_2), (x_3, x_1 \neq x_3), (x_0, |x_0 - x_1| \neq 1), (x_2, |x_1 - x_2| \neq 1), (x_3, |x_1 - x_3| \neq 2).$$

### Question 3:

Let the starting domains and assignment be

$$x_0 = 0$$
,  $dom(x_1) \in \{2, 3\}$ ,  $dom(x_2) \in \{1, 3\}$ , and  $dom(x_3) \in \{1, 2\}$ 

Suppose that we remove the pair  $(x_3, |x_2 - x_3| \neq 1)$  from the set.

Describe any change to the domain of the variable.

**Solution:** If  $x_3 = 2$ , there is no value for  $x_2$  such that  $|x_2 - x_3| \neq 1$ . Therefore, we need to remove 2 from  $dom(x_3)$ .

Describe any variable-constraint pairs that we need to add back to the set.

**Solution:** We will need to add back the following pairs if they are not in the set already.

$$(x_2, x_2 \neq x_3), (x_0, x_0 \neq x_3), (x_1, x_1 \neq x_3), (x_0, |x_0 - x_3| \neq 3), (x_1, |x_1 - x_3| \neq 2), (x_2, |x_2 - x_3| \neq 1)$$

#### **Solution:**

Start with an initial assignment of  $x_0 = 0$  for the 4-queens problem. Execute the AC-3 algorithm.

1. Remove  $(x_0, x_0 \neq x_1)$ 

No change to domains

2. Remove  $(x_1, x_0 \neq x_1)$ 

Remove 0 from  $dom(x_1)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{1, 2, 3\}$ ,  $dom(x_2) = \{0, 1, 2, 3\}$ , and  $dom(x_3) = \{0, 1, 2, 3\}$ 

Add back constraints  $(x_0, x_0 \neq x_1)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ .

Constraints:  $(x_0, x_0 \neq x_2)$ ,  $(x_2, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_3, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_1, |x_0 - x_1| \neq 1)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_2, |x_0 - x_2| \neq 2)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_3, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_4, |x_1 - x_2| \neq 1)$ ,  $(x_5, |x_2 - x_3| \neq 1)$ ,  $(x_5, |x_3 - x_3| \neq 1)$ ,  $(x_5, |x_3$ 

3. Remove  $(x_0, x_0 \neq x_2)$ 

No change to domains

4. Remove  $(x_2, x_0 \neq x_2)$ 

Remove 0 from  $dom(x_2)$ 

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{1, 2, 3\}$ ,  $dom(x_2) = \{1, 2, 3\}$ , and  $dom(x_3) = \{0, 1, 2, 3\}$ 

Add back constraints  $(x_0, x_0 \neq x_2)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ .

Constraints:  $(x_0, x_0 \neq x_3)$ ,  $(x_3, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_1, |x_0 - x_1| \neq 1)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_2, |x_0 - x_2| \neq 2)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_3, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ .

5. Remove  $(x_0, x_0 \neq x_3)$ 

No change to domains

6. Remove  $(x_3, x_0 \neq x_3)$ 

Remove 0 from  $dom(x_3)$ 

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{1, 2, 3\}$ ,  $dom(x_2) = \{1, 2, 3\}$ , and  $dom(x_3) = \{1, 2, 3\}$ 

Add back constraints  $(x_0, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ .

Constraints:  $(x_1, x_1 \neq x_2)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_1, |x_0 - x_1| \neq 1)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_2, |x_0 - x_2| \neq 2)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_3, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ .

- 7. Remove  $(x_1, x_1 \neq x_2)$ No change to domains
- 8. Remove  $(x_2, x_1 \neq x_2)$ No change to domains
- 9. Remove  $(x_1, x_1 \neq x_3)$ No change to domains
- 10. Remove  $(x_3, x_1 \neq x_3)$ No change to domains
- 11. Remove  $(x_2, x_2 \neq x_3)$ No change to domains
- 12. Remove  $(x_3, x_2 \neq x_3)$ No change to domains
- 13. Remove  $(x_0, |x_0 x_1| \neq 1)$ No change to domains
- 14. Remove  $(x_1, |x_0 x_1| \neq 1)$

Remove 1 from  $dom(x_1)$ 

Add back constraints  $(x_0, x_0 \neq x_1)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{2, 3\}$ ,  $dom(x_2) = \{1, 2, 3\}$ , and  $dom(x_3) = \{1, 2, 3\}$ 

Constraints:  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_2, |x_0 - x_2| \neq 2)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_3, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ .

15. Remove  $(x_0, |x_0 - x_2| \neq 2)$ 

No change to domains

16. Remove  $(x_2, |x_0 - x_2| \neq 2)$ 

Remove 2 from  $dom(x_2)$ .

Add back constraints  $(x_0, x_0 \neq x_2)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{2, 3\}$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{1, 2, 3\}$ 

Constraints:  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_3, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ .

17. Remove  $(x_0, |x_0 - x_3| \neq 3)$ 

No change to domains

18. Remove  $(x_3, |x_0 - x_3| \neq 3)$ 

Remove 3 from  $dom(x_3)$ .

Add back constraints  $(x_0, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{2, 3\}$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{1, 2\}$ 

Constraints:  $(x_1, |x_1 - x_2| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ .

19. Remove  $(x_1, |x_1 - x_2| \neq 1)$ 

Remove 2 from  $dom(x_1)$ .

Add back constraints  $(x_0, x_0 \neq x_1)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{3\}$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{1, 2\}$ 

Constraints:  $(x_2, |x_1 - x_2| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_3, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ .

20. Remove  $(x_2, |x_1 - x_2| \neq 1)$ 

No change to domains

21. Remove  $(x_1, |x_1 - x_3| \neq 2)$ 

No change to domains

22. Remove  $(x_3, |x_1 - x_3| \neq 2)$ 

Remove 1 from  $dom(x_3)$ .

Add back constraints  $(x_0, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{3\}$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{2\}$ 

Constraints:  $(x_2, |x_2 - x_3| \neq 1)$ ,  $(x_3, |x_2 - x_3| \neq 1)$ ,  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ .

23. Remove  $(x_2, |x_2 - x_3| \neq 1)$ 

No change to domains

# 24. Remove $(x_3, |x_2 - x_3| \neq 1)$

Remove 2 from  $dom(x_3)$ .

Add back constraints  $(x_0, x_0 \neq x_3)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ .

Domains:  $x_0 = 0$ ,  $dom(x_1) = \{3\}$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{\}$ 

Constraints:  $(x_0, x_0 \neq x_1)$ ,  $(x_0, x_0 \neq x_2)$ ,  $(x_0, x_0 \neq x_3)$ ,  $(x_2, x_1 \neq x_2)$ ,  $(x_3, x_1 \neq x_3)$ ,  $(x_1, x_1 \neq x_2)$ ,  $(x_3, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_2| \neq 2)$ ,  $(x_1, x_1 \neq x_3)$ ,  $(x_2, x_2 \neq x_3)$ ,  $(x_0, |x_0 - x_3| \neq 3)$ ,  $(x_0, |x_0 - x_1| \neq 1)$ ,  $(x_1, |x_1 - x_3| \neq 2)$ ,  $(x_2, |x_2 - x_3| \neq 1)$ .

No solution since the domain of  $x_3$  is empty.

## 3.2 Backtracking Search with Forward Checking

Start with an initial assignment of  $x_0 = 0$  for the 4-queens problem. Execute the backtracking search algorithm with forward checking until a solution is reached.

The starting domains and assignment:

$$x_0 = 0$$
,  $dom(x_1) = \{0, 1, 2, 3\}$ ,  $dom(x_2) = \{0, 1, 2, 3\}$ , and  $dom(x_3) = \{0, 1, 2, 3\}$ 

Choose variables and values using the following conventions.

- When choosing which variable to assign value to, always choose the left most unassigned variable.
- When choosing which value to assign to a variable, always choose the top unassigned value.

Show the steps of backtracking search with forward checking below.

#### **Solution:**

1. Assign  $x_0 = 0$ .

Domains and assignments:  $x_0 = 0$ ,  $dom(x_1) = \{0, 1, 2, 3\}$ ,  $dom(x_2) = \{0, 1, 2, 3\}$ , and  $dom(x_3) = \{0, 1, 2, 3\}$ 

Forward checking:

- Remove 0 from  $dom(x_1)$  since  $x_0 \neq x_1$
- Remove 1 from  $dom(x_1)$  since  $|x_0 x_1| \neq 1$
- Remove 0 from  $dom(x_2)$  since  $x_0 \neq x_2$
- Remove 2 from  $dom(x_2)$  since  $|x_0 x_2| \neq 2$
- Remove 0 from  $dom(x_3)$  since  $x_0 \neq x_3$
- Remove 3 from  $dom(x_3)$  since  $|x_0 x_3| \neq 3$

Updated domains and assignment:  $x_0=0,\ dom(x_1)=\{2,3\},\ dom(x_2)=\{1,3\},\ and\ dom(x_3)=\{1,2\}$ 

2. Assign  $x_1 = 2$ .

Domains and assignments:  $x_0 = 0$ ,  $x_1 = 2$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{1, 2\}$ 

Forward Checking:

- Remove 1 from  $dom(x_2)$  since  $|x_1 x_2| \neq 1$
- Remove 3 from  $dom(x_2)$  since  $|x_1 x_2| \neq 1$

Updated domains and assignments:  $x_0 = 0$ ,  $x_1 = 2$ ,  $dom(x_2) = \{\}$ , and  $dom(x_3) = \{1, 2\}$ This attempt yields **no solution** since  $dom(x_2)$  is empty.

#### Backtrack!

3. Assign  $x_1 = 3$ .

Domains and assignments:  $x_0 = 0$ ,  $x_1 = 3$ ,  $dom(x_2) = \{1, 3\}$ , and  $dom(x_3) = \{1, 2\}$ 

Forward Checking:

- Remove 3 from  $dom(x_2)$  since  $x_1 \neq x_2$
- Remove 1 from  $dom(x_3)$  since  $|x_1 x_3| \neq 2$

Updated domains and assignments:  $x_0 = 0$ ,  $x_1 = 3$ ,  $dom(x_2) = \{1\}$ , and  $dom(x_3) = \{2\}$ 

4. Assign  $x_2 = 1$ .

Domains and assignments:  $x_0 = 0$ ,  $x_1 = 3$ ,  $x_2 = 1$ , and  $dom(x_3) = \{2\}$ 

Forward Checking:

• Remove 2 from  $dom(x_3)$  since  $|x_2 - x_3| \neq 1$ 

Updated domains and assignments:  $x_0 = 0$ ,  $x_1 = 3$ ,  $x_2 = 1$ , and  $dom(x_3) = \{\}$ 

This attempt yields **no solution** since  $dom(x_3)$  is empty.

#### Backtrack!

5. Assign  $x_0 = 1$ .

Domains and assignments:  $x_0 = 1$ ,  $dom(x_1) = \{0, 1, 2, 3\}$ ,  $dom(x_2) = \{0, 1, 2, 3\}$ , and  $dom(x_3) = \{0, 1, 2, 3\}$ 

Forward Checking:

- Remove 0 from  $dom(x_1)$  since  $|x_0 x_1| \neq 1$
- Remove 1 from  $dom(x_1)$  since  $x_0 \neq x_1$
- Remove 2 from  $dom(x_1)$  since  $|x_0 x_1| \neq 1$
- Remove 1 from  $dom(x_2)$  since  $x_0 \neq x_2$
- Remove 3 from  $dom(x_2)$  since  $|x_0 x_2| \neq 2$
- Remove 1 from  $dom(x_3)$  since  $x_0 \neq x_3$

Updated domains and assignments:  $x_0 = 1$ ,  $dom(x_1) = \{3\}$ ,  $dom(x_2) = \{0, 2\}$ , and  $dom(x_3) = \{0, 2, 3\}$ 

6. Assign  $x_1 = 3$ .

Domains and assignments:  $x_0 = 1$ ,  $x_1 = 3$ ,  $dom(x_2) = \{0, 2\}$ , and  $dom(x_3) = \{0, 2, 3\}$ 

Forward Checking:

- Remove 2 from  $dom(x_2)$  since  $|x_1 x_2| \neq 1$
- Remove 3 from  $dom(x_3)$  since  $x_1 \neq x_3$

Updated domains and assignments:  $x_0 = 1$ ,  $x_1 = 3$ ,  $dom(x_2) = \{0\}$ , and  $dom(x_3) = \{0, 2\}$ 

7. Assign  $x_2 = 0$ .

Domains and assignments:  $x_0 = 1$ ,  $x_1 = 3$ ,  $x_2 = 0$ , and  $dom(x_3) = \{0, 2\}$ 

Forward Checking:

• Remove 0 from  $dom(x_3)$  since  $x_2 \neq x_3$ 

Updated domains and assignments:  $x_0 = 1$ ,  $x_1 = 3$ ,  $x_2 = 0$ , and  $dom(x_3) = \{2\}$ 

8. Assign  $x_3 = 2$ .

A solution is reached!

**Solution:**  $x_0 = 1$ ,  $x_1 = 3$ ,  $x_2 = 0$ , and  $x_3 = 2$ .

**Solution:** See the search tree of backtracking search and forward checking below.

