

Predicting Job Offer Acceptance with Fractional Factorial Design

Alex Caruso, Erika Deckter, Gorav Kumar BIA 654 5/7/2019

Project Summary

- The objective of this project is to determine which factors influence the likelihood that a candidate accepts a job offer
- The population of interest is undergraduate and graduate students at Stevens

Project Applications & Value

- This experiment will be of interest to HR departments and hiring managers when deciding the best way to recruit top talent
 - Our analysis will help to maximize the likelihood that a candidate accepts an offer, thus minimizing wasted expenses incurred during the recruiting process
- In addition, as students about to enter the job market ourselves, this topic is relevant to us in terms of what to look for when evaluating job offers

Factors

Factor ID	Factor	- Level	+ Level
Α	Salary	Median - \$10,000	Median + \$10,000
В	Insurance	No	Yes
С	401K	No	Yes
D	Relocation Required	No	Yes
E	Travel Required	No	Yes
F	Work Remotely	No	Yes
G	Vacation/Paid Time Off	2 weeks	3 weeks

Our experimental design is a fractional factorial design using a 2⁷⁻³ design

The design is resolution IV

- Main effects are confounded with three-factor interactions
- Two-factor interactions are confounded with other two-factor interactions
- Interactions of three-factors and above are ignored in the analysis

Generators:

- E = ABC
- F = BCD
- G = ACD

Design Matrix

			-					AB =	AC =	AD =	BC =	BD =	CD=	AF =
					E =	F=	G =	CE =	BE =	CG =	AE =	CF =	AG=	BG =
Run ID	A	В	C	D	ABC	BCD	ACD	FG	DG	EF	DF	EG	BF	ED
1	-1	-1	-1	-1	-1	-1	-1	+1	+1	+1	+1	+1	+1	+1
2	+1	-1	-1	-1	+1	-1	+1	-1	-1	-1	+1	+1	+1	-1
3	-1	+1	-1	-1	+1	+1	-1	-1	+1	+1	-1	-1	+1	-1
4	+1	+1	-1	-1	-1	+1	+1	+1	-1	-1	-1	-1	+1	+1
5	-1	-1	+1	-1	+1	+1	+1	+1	-1	+1	-1	+1	-1	-1
6	+1	-1	+1	-1	-1	+1	-1	-1	+1	-1	-1	+1	-1	+1
7	-1	+1	+1	-1	-1	-1	+1	-1	-1	+1	+1	-1	-1	+1
8	+1	+1	+1	-1	+1	-1	-1	+1	+1	-1	+1	-1	-1	-1
9	-1	-1	-1	+1	-1	+1	+1	+1	+1	-1	+1	-1	-1	-1
10	+1	-1	-1	+1	+1	+1	-1	-1	-1	+1	+1	-1	-1	+1
11	-1	+1	-1	+1	+1	-1	+1	-1	+1	-1	-1	+1	-1	+1
12	+1	+1	-1	+1	-1	-1	-1	+1	-1	+1	-1	+1	-1	-1
13	-1	-1	+1	+1	+1	-1	-1	+1	-1	-1	-1	-1	+1	+1
14	+1	-1	+1	+1	-1	-1	+1	-1	+1	+1	-1	-1	+1	-1
15	-1	+1	+1	+1	-1	+1	-1	-1	-1	-1	+1	+1	+1	-1
16	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1	+1

Data Collection

1870

Response Variable

- Likelihood of accepting a job offer given a set of factor levels (treatments)
- Respondents rated each job offer on a scale of 0 (will not accept) to 100 (definitely accept)

Example of Job Offer Treatment as Shown on Survey

Salary	Median - \$10,000
Insurance	No
401K	Yes
Relocation Required	Yes
Travel Required	Yes
Work Remotely	No
Vacation/Paid Time Off	2 weeks
Rating (0 to 100)	

Process

- Each respondent saw all 16 treatments in the fractional factorial design
- The treatments were randomized by creating 10 separate versions of the survey
- Each respondent got a randomized version of one of the 10 survey versions

Analysis

- Each respondent was considered a "block" in the analysis
- ANOVA analysis was used to evaluate the significance of each factor and the two-factor interactions
- The analysis was performed in R
- Significant effects are in the red boxes

Analysis of Variance Table

Response: Response

```
Df Sum Sq Mean Sq F value
                      53366
                    145144
                             145144
                      81004
                      1975
                               1975
                                       5.1000
                                                 0.02407
                      1318
                               1318
                                                 0.06520
                                      19.2410 1.231e-05
                       7450
                               7450
                     11241
                              11241
Respondent_ID
                102 417367
                               4092
A:B
                                       0.2558
                                                 0.61311
                         89
                                       0.2311
                                                 0.63079
A:C
B:C
                       2466
                               2466
                                       6.3691
                                                 0.01171 *
A:D
                         20
                                       0.0519
                                                 0.81980
                        100
                                100
                                                 0.61135
B:D
                                       0.2583
                        125
                                125
C:D
                                       0.3230
                                                 0.56989
                                       0.1964
D:E
                                                 0.65772
                                 12
                                       0.0307
A:B:D
                                                 0.86090
Residuals
               1530 592428
                                 387
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Results

- Significant Main Effects
 - Salary
 - Insurance
 - o 401K
 - Relocation Required
 - Work Remotely
 - Vacation/Paid Time Off
- Travel Required was not a significant main effect
- BC interaction (Insurance and 401k) is also significant
 - Confounded with AE (Salary and Travel Required) and DF (Relocation and Work Remotely) interactions
 - Using the effect heredity principle, we can rule out AE as a significant effect, since E
 (Travel Required) is not a significant main effect
 - There is still ambiguity on which of the remaining two interactions is driving the significance

Results

Regression Equation

$$\hat{y} = 29.4 + 5.7x_A + 9.4x_B + 7.0x_C - 1.1x_D + 2.1x_F + 2.6x_G + 1.2x_{BC} + \sum_{i=1}^{\kappa} \beta_i x_i + \varepsilon$$

where

 $\sum_{i=1}^{k} \beta_{i} x_{i}$ are the terms representing the blocks with k = the number of respondents (103)

and \mathcal{E} is the error term

Residuals for Regression Equation

Conclusions & Recommendations

Experiment Summary

- Based on the regression equation, factors A, B, C, F and G should be set at their + levels.
- Factor D should be set to its level
 - There is a slight (0.2 point) improvement in the outcome if D is set to its + level assuming that the significant two-factor interaction is DF (and not BC); however, since this is not confirmed, we will favor the primary interaction

Recommendation

A successful job offer (high likelihood of acceptance) should have the following characteristics:

- Salary \$10,000 above industry median
- Offer insurance
- Offer 401k
- Allow employee to work remotely
- Minimum of 3 weeks vacation
- No relocation required

Future Research

- In order to definitively determine which of the potential two-factor interactions are significant, a follow-up experiment with the four main effects (B, C, D and F) can be performed
- This follow-up experiment should be a full factorial design of 2⁴ = 16 runs
- An experiment with additional levels for certain factors can be conducted to obtain more granular results
 - E.g. 401k: None, Match 50%, Match 100%
- Qualitative analysis of constraints for employers
 - Determine how to maximize the likelihood that a candidate accepts an offer, given certain constraints (e.g. maximum salary that can be offered)

Questions?