ResNet & ResNeXt

Kubig 1경 오원석

ResNet

Worse performance in deep layer

Causes?

- 1. gradient vanishing/exploding
- 2. overfitting

Deployment

Considering the phenomenon of **degradations** re the error of training data increases as the layer thickens, the conclusion is that learning itself is difficult when the layer thickens.

Hypotosis

Adding meaningless layers, such as **identity layers** shallow model should still have the same or higher performance compared to a shallow model.

Structure

Figure 2. Residual learning: a building block.

Residuals = F(x) = H(x) - x -> H(x) = F(x) + x(shortcut): Get the previously learned x and learn about the remaining parts of F(x) to learn fast / high performance

Comparison

Performance

Figure 4. Training on **ImageNet**. Thin curves denote training error, and bold curves denote validation error of the center crops. Left: plain networks of 18 and 34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual networks have no extra parameter compared to their plain counterparts.

Resnet

ResNeXt

Structure

ResNeixtates the same layers, the way VG and ResNet use them Additionally, it uses a split transform merge method one input in several directions, similar to that used in the input.

What differs from Inception-ResNet is that it has the same layer configuration for each path. This is called a grouped convolution

Structure

Differences from Resnet: cardinality

Figure 1. **Left**: A block of ResNet [14]. **Right**: A block of ResNeXt with cardinality = 32, with roughly the same complexity. A layer is shown as (# in channels, filter size, # out channels).

Configuration in paper

The configuration of ResNet-50 and ResNeXt-50 written in the paper

On ResNet, you can see that one convolution is made into a deep channel, while on ResNeXt, it is slightly deeper, but with 32 group convolution, you can see a significant reduction in the amount of computation.

stage	output	ResNet-50		ResNeXt-50 (32×4d)	
conv1	112×112	7×7, 64, stride 2		7×7, 64, stride 2	
conv2	56×56	3×3 max pool, stride 2		3×3 max pool, stride 2	
		1×1, 64	×3	1×1, 128	×3
		3×3, 64		3×3, 128, <i>C</i> =32	
		$[1\times1,256]$		1×1, 256	
conv3	28×28	1×1, 128	×4	[1×1, 256	×4
		3×3, 128		3×3, 256, <i>C</i> =32	
		[1×1, 512]		[1×1, 512]	
conv4	14×14	1×1, 256	×6	[1×1,512	×6
		3×3, 256		3×3, 512, <i>C</i> =32	
		1×1, 1024		[1×1, 1024]	
conv5	7×7	1×1, 512	 ×3	1×1, 1024	×3
		3×3, 512		3×3, 1024, <i>C</i> =32	
		1×1, 2048		1×1, 2048	
	1×1	global average pool		global average pool	
	1 X 1	1000-d fc, softmax		1000-d fc, softmax	
# params.		25.5 ×10 ⁶		25.0×10^6	
FLOPs		4.1 ×10 ⁹		4.2 ×10 ⁹	

Table 1. (**Left**) ResNet-50. (**Right**) ResNeXt-50 with a 32×4d template (using the reformulation in Fig. 3(c)). Inside the brackets are the shape of a residual block, and outside the brackets is the number of stacked blocks on a stage. "C=32" suggests grouped convolutions [24] with 32 groups. The numbers of parameters and FLOPs are similar between these two models.