Міністерство освіти і науки України

Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Факультет інформатики та обчислювальної техніки Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №7 з дисципліни

«Алгоритми структури даних»

«Дослідження лінійного пошуку в послідовностях»

Варіант 34

Виконав студент <u>ІП-1134 Шамков Іван Дмитрович</u> (прізвище, ім'я, по батькові)

Перевірив викладач <u>Мартинова Оксана Петрівна</u> (прізвище, ім'я, по батькові)

Київ 2021

Лабораторна робота №7 Дослідження лінійного пошуку в послідовностях

Лабораторна робота 7

Дослідження лінійного пошуку в послідовностях

Мета — дослідити методи послідовного пошуку у впорядкованих і невпорядкованих послідовностях та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант: 34

Умова задачі:

Завдання

Розробити алгоритм та написати програму, яка складається з наступних дій:

- 1. Опису трьох змінних індексованого типу з 10 символьних значень.
- 2. Ініціювання двох змінних виразами згідно з варіантом (табл. 1).
- 3. Ініціювання третьої змінної рівними значеннями двох попередніх змінних.
- 4. Обробки третьої змінної згідно з варіантом.

			- J J
34	44 + 2 * i	55 – 2 * i	Кількість елементів, коди яких діляться на 3

Математична модель:

Змінна	Тип	Ім'я	Призначення
Масив 1	Символьний	A	Початкове дане
Масив 2	Символьний	В	Проміжне значення
Масив 3	Символьний	С	Проміжне значення
Лічильник	Цілий	i	Проміжне значення
Лічильник	Символьний	j	Проміжне значення
Значення для підрахунку членів масиву	Цілий	b	Проміжне значення
Значення для підрахунку членів масиву	Цілий	k	Проміжне значення
Початок, з якого починаємо знаходити елементи масиву	Цілий	start	Проміжне значення

Значення для	Цілий	count	Результат
підрахунку			
кількості			
елементів, коди			
яких націло			
діляться на три			

Постановка задачі:

Отже, математичне формулювання нашої задачі полягає в тому, щоб створити два масиви розміром 10 за формулою b+k*i, де і – лічильник. Значення b та k залежать від масиву. Для A b=44 k=2, а для B b=55 k= (-1). Трохи змінимо умову для масиву B, щоб мати хоч якісь спільні елементи між A та B. Після цього створюємо третій масив C, заповнюючи його спільними елементами масивів A та B. Усе це робимо через лінійний пошук. Потім пробігаємося по третьому масиву та шукаємо елементи, коди яких діляться націло на три. Усе це виводимо.

Вважатимемо ord(x) отримання коду символу x у відповідності до таблиці ASCII, а chr(x), навпаки, переведення числа в символ у відповідності з кодом(числом x) за таблицею ASCII.

A.append(x) — заповнення масиву A одним елементом x з кінця Наступні функції ϵ створеними власноруч:

CreateArray(b, k, start)

ArraySame(A, B)

FindDiv(C)

Псевдокод:

Крок 1. Визначимо основні дії.

Крок 2. Деталізуємо значення А, В, С

Крок 3. Пошук елементів, коди яких діляться націло на три

Крок 4. Виведення A, B, C, count

Крок 1: Start Деталізуємо значення А, В, С Пошук елементів, коди яких діляться націло на три Виведення A, B, C, count End Крок 2: Start A=CreateArray(44, 2, 5) B=CreateArray(55, -1, -5) C=ArraySame(A, B) Деталізуємо переведення числа у десяткову систему числення Виведення A, B, C, count End Крок 3: Start A=CreateArray(44, 2, 5)

B=CreateArray(55, -1, -5)

C=ArraySame(A, B)

count=FindDiv(C)

Виведення A, B, C, count

End

```
Крок 4:
Start
A=CreateArray(44, 2, 5)
B=CreateArray(55, -1, -5)
C=ArraySame(A, B)
count=FindDiv(C)
CoutArray(A)
CoutArray(B)
CoutArray(C)
output count
End
                               Підпрограми
CreateArray(b, k, start)
  for i from start to start+9
    A.append(chr(b+k*i))
  end for
  return A
ArraySame(A, B)
  for i from 0 to len(A)-1
    for j from 0 to len(B)-1
       if A[i] == B[j]
         C.append(A[i])
       end if
    end for
  end for
  while len(C) < 10:
      repeat
```

```
C.append(chr(0))
  end while
  return C
FindDiv(C)
  for i from 0 to (len(C)-1)
    if ord(C[i])\%3==0 and ord(C[i])!=0
      then
       count+=1
    end if
  return count
CoutArray(A)
      for i from 0 to 9
            repeat
            output A[i]
      end for
```

return

Блок схема:

Підпрограми


```
import string
def CreateArray(b:int, k:int, start:int):
  A=[]
  for i in range(start, start+10):
     A.append(chr(b+k*i))
  return A
def ArraySame(A, B):
  C=[]
  for i in A:
    for j in B:
       if i==j:
          C.append(i)
  while len(C) < 10:
     C.append(chr(0))
  return C
def FindDiv(C):
  count=0
  for i in range (len(C)):
     if ord(C[i])\%3 == 0 and ord(C[i])! = 0:
       count+=1
  return count
A = CreateArray(44, 2, 5)
```

```
B=CreateArray(55, -1, -5)

C=ArraySame(A, B)

print(*A, sep='')

print(*B, sep='')

print(*C, sep='')

count=FindDiv(C)

print("The quantity of such numbers is", count)
```

```
import string
def CreateArray(b:int, k:int, start:int):
    A=[]
    for i in range(start, start+10):
        A.append(chr(b+k*i))
    return A
def ArraySame(A, B):
    C=[]
    for i in A:
        for j in B:
            if i==j:
                C.append(i)
    while len(C)<10:
        C.append(chr(0))
    return C
]def FindDiv(C):
    count=0
    for i in range (len(C)):
        if ord(C[i])%3==0 and ord(C[i])!=0:
            count+=1
    return count
A=CreateArray(44, 2, 5)
B=CreateArray(55, -1, -5)
C=ArraySame(A, B)
print(*A, sep=' ')
print(*B, sep=' ')
print(*C, sep=' ')
count=FindDiv(C)
print("The quantity of such numbers is", count)
```

```
6 8 : < > @ B D F H
< ; : 9 8 7 6 5 4 3
6 8 : <
The quantity of such numbers is 2
```

Блок	Дія
	Початок
1	A=CreateArray(44, 2, 5)
	[54, 56, 58, 60, 62, 64, 66, 68, 70, 72]
2	B=CreateArray(55, -1, -5)
	[60, 59, 58, 57, 56, 55, 54, 53, 52, 51]
3	C=ArraySame(A, B)
	[54, 56, 58, 60, 0, 0, 0, 0, 0, 0]
4	count=FindDiv(C)
	count=2(не враховуємо нуль)
	Кінець

Висновок

Отже, виконавши цю лабораторну роботу, ми навчилися використовувати лінійний пошук в масивах. Його реалізація полягає в тому, щоб порівняти кожен елемент масива А з кожним елементом масива В. Це відбувається за допомогою двох арифметичних циклів, один з яких вкладений в інший. У процесі виконання ми сформулювали задачу, побудували математичну модель та псевдокод алгоритму, що допомогло нам краще її зрозуміти. Основною частиною алгоритму є створення трьох масивів. Для перших двох було створено підпрограму, яку відповідно використовуємо двічі. Для третього ж масива використовуємо іншу підпрограму, адже спосіб його задання інший. Після створення трьох масивів, шукаємо в третьому такі коди символів значення, що націло ділять на три. Підраховуємо їхню кількість та в кінці виводимо це користувачу.