DATA130026.01 Optimization

Assignment 1

Due Time: at the beginning of the class, Mar. 9, 2023

- 1. Show that both the second order cone, i.e., $\{(x,t) \in \mathbb{R}^n \times \mathbb{R} : ||x||_2 \leq t\}$, and the semidefinite cone, i.e., $\{Z \in \mathbb{S}^n : Z \succeq 0\}$, are convex cones.
- 2. Let $a, b \in \mathbb{R}^n (a \neq b)$. For what values of μ $(\mu > 0)$ is the set

$$S_{\mu} = \{ x \in \mathbb{R}^n : ||x - a||_2 \le \mu ||x - b||_2 \}$$

convex?

3. Let $C \in \mathbb{R}^n$ be a nonempty convex set. For each $x \in C$ define the normal cone of C at x by

$$N_C(x) = \{ w \in \mathbb{R}^n : w^T(y - x) \le 0 \text{ for all } y \in C \},$$

and define $N_C(x) = \emptyset$ when $x \notin C$. Show that $N_C(x)$ is convex and closed. Particularly, when $x \in \text{int}(C)$, we have $N_C(x) = \{0\}$.

- 4. Supporting hyperplanes.
 - (a) Express the closed convex set $\{x \in \mathbb{R}^n_+ | x_1 x_2 \ge 1\}$ as an intersection of halfspaces.
 - (b) Let $C = \{x \in \mathbb{R}^n \mid ||x||_{\infty} \le 1\}$, the l_{∞} norm unit \mathbb{R}^n and let \hat{x} be a point in the boundary of C. Identify the supporting hyperplanes of C at \hat{x} explicitly.
- 5. The following question is only required for DATA130026h.01.
 - (a) Set distributive characterization of convexity [Rockafellar]. Show that $C \in \mathbb{R}^n$ is convex if and only if $(\alpha + \beta)C = \alpha C + \beta C$ for all nonnegative α, β .