Практическое занятие №2. Расчет технико-экономического обоснования автоматизированных информационных систем и программных продуктов

Технико-экономическое обоснование проекта автоматизированной информационной системы проводится с целью:

- доказать целесообразность инвестиционного проекта по внедрению автоматизированной системы;
- рассчитать и проанализировать составляющие денежного потока для рассматриваемого срока службы системы;
- сопоставить затраты на создание и функционирование автоматизированной системы с результатами, получаемыми от ее внедрения, оценить прибыль, определить условия и сроки окупаемости затрат.

В процессе проектирования системы обработки информации проектировщик может ориентироваться на несколько вариантов аппаратной платформы и разработать несколько вариантов технологических процессов, среди которых ему необходимо выбрать наилучший. К основным требованиям, предъявляемым к выбираемому технологическому процессу, относятся:

- обеспечение пользователя своевременной информацией;
- обеспечение высокой степени достоверности полученной информации;
- обеспечение минимальности трудовых и стоимостных затрат, связанных с обработкой данных.

2.1. Определение трудоемкости работ по созданию программного продукта

Трудоемкость разработки программного обеспечения в чел.-ч определяется по формуле:

$$T = T_o + T_u + T_a + T_u + T_{\sigma T \pi} + T_{\pi}$$

$$(2.1)$$

где Т – общие затраты труда, чел.ч;

То – затраты труда на описание задачи;

Т_и – затраты на исследование предметной области;

Та – затраты на разработку блок-схемы;

 T_{π} – затраты на программирование;

Тотл – затраты на отладку программы;

Т_л – затраты на подготовку документации.

Все составляющие определяются через условное число операторов - Q.

$$\mathbf{Q} = \mathbf{q} \cdot \mathbf{c} \cdot (\mathbf{1} + \mathbf{p}) \tag{2.2}$$

где q – число операторов;

с – коэффициент сложности задачи, 1,25...2;

p — коэффициент коррекции программы, учитывающий новизну проекта (для совершенно новой программы p=0,1).

Затраты труда на описание задачи T_o – точно определить невозможно. Принимают $T_o = 30...40$ чел.ч.

Затраты труда на исследование предметной области T_{μ} с учетом уточнения описания и квалификации программиста определяется по формуле:

$$T_{\mathbf{u}} = \mathbf{Q} * \mathbf{B} / (\mathbf{S}_{\mathbf{u}} * \mathbf{K}) \tag{2.3}$$

где Q – условное число операторов;

B – коэффициент увеличения затрат труда, вследствие недостаточного описания задачи (1,2...1,5);

 S_u – количество операторов, приходящееся на 1 чел.ч. (75...85);

К – коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет – 0,8; от 2-х до 3-х – 1,0; от 3-х до 5-1,1...1,2; от 5 до 7-1,3...1,4; свыше семи – 1,5...1,6).

Затраты труда на разработку алгоритма решения задачи T_a рассчитывается по формуле:

$$T_a=Q/(S_a*k)$$

(2.4)

где S_a - количество операторов, занятых разработкой блок-схемы, приходящееся на 1 чел.ч

В данном случае $S_a = 20...25$.

Затраты труда на составление программы на ЭВМ по готовой блоксхеме:

$$T_n=Q/(S_n*k)$$
 (S_n = 20...25). (2.5)

где S_{π} - количество операторов, занятых программированием, приходящееся на 1 чел.ч.

Затраты труда на отладку программы на ЭВМ:

$$T_{\text{отл}} = Q/(S_{\text{отл}} * k) (S_{\text{отл}} = 4...5).$$
 (2.6)

где $S_{\text{от}}$ - количество операторов, занятых отладкой программы, приходящееся на 1 чел.ч.

Затраты труда на подготовку документации по задаче:

$$\mathbf{T}_{\mathbf{J}} = \mathbf{T}_{\mathbf{J}\mathbf{p}} + \mathbf{T}_{\mathbf{J}\mathbf{0}} \tag{2.7}$$

где $T_{дp}$ – затраты труда на подготовку материалов в рукописи.

$$T_{\text{дp}} = Q/(S_{\text{дp}} *k) (S_{\text{дp}} = 15...20)$$
 (2.8)

где $S_{\text{др}}$ - количество операторов, занятых подготовкой материалов в рукописи, приходящееся на 1 чел.ч.

 $T_{\text{до}}$ – затраты труда на редактирование, печать и оформление документов.

$$T_{\text{дo}} = 0.75 * T_{\text{дp}}$$
 (2.9)

Полученное значение общей трудоемкости Т необходимо скорректировать с учетом уровня языка программирования.

$$T_{\kappa op} = T^* k_{\kappa op} \tag{2.10}$$

где $k_{\text{кор}}$ – коэффициент, учитывающий уровень языка программирования 0.8...1,0.

2.2. Расчет себестоимости автоматизированной информационной системы

Себестоимость создания автоматизированной информационной системы определяется по следующим статьям калькуляции:

- основная заработная плата производственного персонала;
- дополнительная заработная плата производственного персонала;
- отчисления на социальные нужды (страховые взносы);
- затраты на электроэнергию;
- затраты на амортизацию и ремонт вычислительной техники.
- расходы на материалы и запасные части.

Основная заработная плата обслуживающего персонала определяется по формуле:

$$3_0 = S_{\mathbf{u}} * T_{\mathbf{K}\mathbf{0}\mathbf{p}} \tag{2.11}$$

где 3₀ - основная заработная плата

 $S_{\rm u}$ – часовая тарифная ставка программиста: $S_{\rm u} = S_{\rm mec}/165,5;$

 $S_{\text{мес}}$ – месячный оклад.

165,5- среднемесячное рабочее время (в час) в 2012 г. при 40-час. рабочей неделе.

Дополнительная заработная плата:

$$3_{n}=3_{o}*k \tag{2.12}$$

где $k - \kappa$ оэффициент, дополнительной заработной платы (1, 1 - 1, 2).

Отчисления на социальные нужды (страховые взносы):

$$\mathbf{R}_{\rm BH} = (3_0 + 3_{\rm J})/100 * \mathbf{r} \tag{2.13}$$

где $R_{\text{вн}}$ – отчисления на социальные нужды (страховые взносы)

r — тарифы страховых взносов (32,2%). Размеры тарифов страховых взносов устанавливаются Федеральными законами. На момент проектирования необходимо руководствоваться действующим законодательством.

Затраты на потребляемую электроэнергию:

$$\mathbf{3}_{9} = \mathbf{P} * \mathbf{\Phi}_{\mathbf{B}} * \mathbf{I} \mathbf{I}_{9} \tag{2.14}$$

где Р – мощность ЭВМ, кВт;

 Φ_{B} – время работы вычислительного комплекса, ч;

Ц_э – стоимость 1 кВт.ч электроэнергии (действующий на данный момент тариф), руб.

Расходы на материалы и запасные части:

$$3_{\scriptscriptstyle M} = \sum_{i=1}^{n} m_i \coprod_{i} \tag{2.15}$$

где Зм - расходы на материалы и запасные части;

і...п – перечень видов материалов;

m_i – количество і-го вида материалов;

 \coprod_{i} – цена 1 единицы і-го вида материалов.

Затраты на техническое обслуживание (TO) и текущий ремонт (TP): $3_p = \coprod_B *a_p/100 * \Phi_B/\Phi_{Br}$ (2.16)

где 3_p - затраты на техническое обслуживание (TO) и текущий ремонт (TP);

Ц_В – балансовая стоимость вычислительной техники (BT);

 $\Phi_{\rm BT..rog}$ – годовой фонд времени работы BT (в 2012 г.- 1986 ч);

 $a_p = 4\%$ - норма отчислений на ремонт BT.

При этом фонд рабочего времени при создании программного продукта можно определить по формуле:

$$Φ_B=1,15*(T_\Pi+T_{\Pi 0}+T_{0\Pi\Pi})*κ_{κορ}$$
(2.17)

где $\Phi_{\rm B}$ - фонд рабочего времени при создании программного продукта;

1,15 — коэффициент, учитывающий затраты времени на профилактические работы.

Оптовая цена программного продукта с учетом 30% прибыли:

$$\mathbf{H}_{\text{опт}} = \mathbf{C} * \mathbf{1.3}$$
 (2.18)

Договорная цена определяется с учетом НДС.

$$\mathbf{U}_{\text{дог}} = \mathbf{U}_{\text{онт}} * (1 + \mathbf{H} \mathbf{Д} \mathbf{C} / 100)$$
 (2.19)

где НДС– налог на добавленную стоимость (18%). (Гл.21 Налогового кодекса РФ). Размеры ставки налога на добавленную стоимость устанавливается законодательством. На момент проектирования необходимо руководствоваться действующим законодательством.

2.3. Оценка экономической эффективности внедрения программного продукта.

Показатель эффективности определяет прибыль (П), полученную при использовании программного продукта. Прибыль от использования продукта за год определяется по формуле:

$$\Pi = P_{\Gamma} - 3_{\Gamma} \tag{2.20}$$

где $P_{\scriptscriptstyle \Gamma}$ – стоимостная оценка результатов применения программного продукта в течение года.;

 $3_{\scriptscriptstyle \Gamma}$ – стоимостная оценка затрат при использовании программного продукта.

$$P_{\Gamma} = (3_{\text{руч}} - 3_{\text{авт}}) + 9_{\Gamma,\text{доп}}$$
 (2.21)

где 3_{руч} – затраты на ручную обработку информации, руб./год;

 $3_{\text{авт}}$ — затраты на автоматизированную обработку информации, руб./год;

 $Э_{\rm r.доп}$ — дополнительный экономический эффект, связанный с уменьшением числа используемых бланков, высвобождением рабочего времени и т.д.

где V_p – время, затрачиваемое на обработку информации вручную, ч/год;

Ц_ч – цена 1 ч работы, руб./год;

 $K_{\mbox{\tiny μ}} = 1...2$ — коэффициент, учитывающий дополнительные затраты времени на логические операции.

где V_p – затраты времени на автоматизированную обработку информации, руб./год.

Кроме этого, годовые затраты при использовании программного продукта (ПП) включают в себя затраты на техническое обслуживание (ТО) и текущий ремонт (ТР) ($3_{то}$ и $3_{тр}$) и затраты на электроэнергию (3_{9}).

$$3_r = 3_{ro} + 3_{rp} + 3_3$$

(2.24)

$$3_{p} = 3_{T0} + 3_{Tp} = \coprod_{B} *0.04 *\Phi_{HII}/\Phi_{BT}$$
(2.25)

$$\mathbf{3}_{3} = \mathbf{I} \mathbf{I}_{3} * \mathbf{P} * \mathbf{\Phi}_{\mathbf{n}\mathbf{n}} \tag{2.26}$$

где Φ_{nn} – время работы программы в году, час.

2.4. Определение капитальных вложений

Капитальные вложения, осуществляемые потребителем программного продукта, складываются из стоимости программного продукта (ПП) и вычислительной техники (ВТ) (если ВТ имеется в наличии или приобретаемый компьютер активно используется и в др. целях стоимость ВТ не учитывается).

$$\mathbf{K} = \mathbf{\Pi}_{\mathsf{дог}} + \mathbf{\Pi}_{\mathsf{B}}$$
 (2.27)

где К – капитальные вложения;

Цлог – цена договорная;

Ц_в – балансовая стоимость вычислительной техники (BT).

Капитальные вложения могут быть равны себестоимости, если работа по созданию программного продукта ведется собственными работниками. Далее необходимо рассчитать основные экономические показатели: ЧДД,

ВНД, срок окупаемости $T_{\text{ок}}$. Чистый дисконтированный доход (ЧДД) характеризует превышение

суммарных денежных поступлений над суммарными затратами для данного проекта с учетом неравномерности эффектов (затрат, результатов), относящихся к различным моментам времени.

Основой для исчисления чистого дисконтированного дохода является «План денежных потоков», который строится путем анализа денежных потоков и оттоков.

В проекте величину ЧДД рекомендуется определять по следующей формуле:

$$4 \pi \Pi = \sum_{m=1}^{n} \Pi_{m} \frac{1}{(1-E)^{m}} - K \tag{2.28}$$

где: П_т-прибыль, получаемая на m том шаге;

Е – норма дисконта;

К – капитальные вложения.

Под внутренней нормой доходности (ВНД) понимают значение ставки дисконтирования Е=Е_{вн}, при которой ЧДД проекта равен нулю.

Сроком окупаемости называется время, за которое поступления от производственной деятельности предприятия покрывают затраты на инвестиции.

$$\mathbf{Tok} = \mathbf{H}/\mathbf{\Pi},\tag{2.29}$$

где: Ц – цена проекта;

П – прибыль.

Пример 2. Расчет технико-экономического обоснования автоматизированных информационных систем и программных продуктов

С целью облегчения работы инженера-электронщика расчетно-кассовых центров (РКЦ) в сфере администрирования локальной вычислительной сети и систем передачи банковской информации, а также отчетности о составе технических средств привело к необходимости создания специальной банковской программы "Учет технических и программных средств РКЦ". Эта программа позволит инженерам больше уделять внимания своим непосредственным обязанностям.

Данная программа выполняет следующие основные функции:

- ведение базы данных (БД) о составе технических средств, включая их конфигурацию и комплектацию;
- ведение БД об используемых программных средствах на серверах и рабочих станциях РКЦ;
- формирование заявки на ремонт технических средств согласно утвержденной форме;
- формирование заявки на доступ пользователя к ресурсам локальной вычислительной сети РКЦ;
- формирование заявки на подключение рабочей станции к локальной вычислительной сети РКЦ;
- формирование справки о составе технических средств, находящихся в эксплуатации;
- формирование справки о составе технических средств, выведенных из эксплуатации;
- формирование справки о рабочих станциях, подключенных к локальной вычислительной сети РКЦ;
- формирование справки о составе программных средств, устанавливаемых на каждом APMe;
- формирование ежеквартальной справки о средствах вычислительной техники, находящейся в эксплуатации, в резерве и в ремонте.

Язык программирования – Object Pascal.

На вышеперечисленные обязанности без автоматизации инженер тратил в среднем 8,7% своего рабочего времени, т.е. 14,4 ч. в месяц. После внедрения ПП ожидается, что затраты времени на эти обязанности составят 2,6% рабочего времени, т.е. 4,30 ч. в месяц.

Ориентировочный срок службы программы до морального старения - 3 года, что и будет рассматриваться как расчетный период n.

Программа разрабатывается работниками РКЦ с различным квалификационным уровнем. Число операторов программы q = 2000.

Условное число операторов (2.2):

Q=2000*1.4*(1+0,1)=3080

где: 1,4 - коэффициент сложности задачи;

0,1 - коэффициент коррекции программы, учитывающий новизну проекта (для совершенно новой программы p=0,1).

Затраты труда на подготовку описания задачи: T_o — точно определить невозможно. Принимают T_o = 30...40 чел.ч., поэтому принимаем: T_o = 40 чел.ч. (инженер-технолог, месячный оклад — 8000 руб./мес).

Затраты труда на исследование предметной области (2.3):

 $T_{\text{и}}$ =3080*1,4/(74*1,3)=44,8 чел.-ч. (инженер-технолог, месячный оклад — 8000 руб./мес, k = 1,3)

- где: 1,4 коэффициент увеличения затрат труда, вследствие недостаточного описания задачи (1,2...1,5);
 - 74 количество операторов, приходящееся на 1 чел.ч. (74...85);
- 1,3 коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет -0,8; от 2-х до 3-х -1,0; от 3-х до 5-1,1...1,2; от 5 до 7-1,3...1,4; свыше семи -1,5...1,6).

Затраты труда на разработку алгоритма решения задачи (2.4): $T_a = 3080/20*1,3=118,5$ чел.-ч. (инженер-технолог).

- где: 20 количество операторов, занятых разработкой блок-схемы, приходящееся на 1 чел.ч. ($S_a = 20...25$);
- 1,3 коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет -0,8; от 2-х до 3-х -1,0; от 3-х до 5-1,1...1,2; от 5 до 7-1,3...1,4; свыше семи -1,5...1,6).

Затраты труда на написание программы (2.5):

 T_n =3080/20*1,4=110 чел.-ч. (инженер программист 1 категории, получает оклад – 9000 руб./мес, k = 1,4).

- где: 20 количество операторов, занятых программированием, приходящееся на 1 чел.ч. ($S_{\pi} = 20...25$);
- 1,4 коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет -0,8; от 2-х до 3-х -1,0; от 3-х до 5-1,1...1,2; от 5 до 7-1,3...1,4; свыше семи -1,5...1,6).

Затраты труда на отладку программы (2.6):

 $T_{\text{отл}}$ =3080/4*1,4=550 чел.-ч. (инженер-программист 1 категории). где: 4 - количество операторов, занятых отладкой программы, приходящееся на 1 чел.ч;

1,4 - коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет -0,8; от 2-х до 3-х -1,0; от 3-х до $5-1,1\ldots 1,2$; от 5 до $7-1,3\ldots 1,4$; свыше семи $-1,5\ldots 1,6$).

Затраты труда на подготовку материалов в рукописи <mark>(2.8):</mark>

 $T_{дp}$ =3080/15*1,2=171,1 чел. ч. (инженер-программист 2 кат., оклад – 7000 руб./мес., k =1,2).

- где: 15 количество операторов, занятых подготовкой материалов в рукописи, приходящееся на 1 чел.ч. ($S_{np} = 15...20$).
- 1,2 коэффициент квалификации работника (определяется в зависимости от стажа работы и составляет: для работающих до 2-х лет -0,8; от 2-х до 3-х -1,0; от 3-х до 5-1,1...1,2; от 5 до 7-1,3...1,4; свыше семи -1,5...1,6).

Затраты труда на редактирование, печать и оформление документов (2.9):

 $\mathbf{T}_{\mathbf{дo}} = \mathbf{0,75*171,1} = \mathbf{128,3}$ чел.-ч. (инженер-программист 2 категории).

Полные трудозатраты:

$$T = 40+44,8+118,5+550+110+171,1+128,3=1162,7$$
 чел.-ч.

Часовая тарифная ставка инженера-программиста 1 категории:

Инженера-программиста 2 категории:

$$Sy = 7000/165,5=42,30 \text{ py6}.$$

Инженера-технолога:

$$S_{4} = 8000/165,5=48,34 \text{ py6}.$$

Время работы ВТ при создании ПП (написание программы, ее отладка и оформление документов):

$$\Phi_B = 1,15*(110+550+128,3)*0,8=725,24.$$

где: - 1,15 — коэффициент, учитывающий затраты времени на профилактические работы;

110 чел. ч. – затраты труда на написание программы;

550 чел. ч. – затраты труда на отладку программы;

128,3чел.ч. - затраты труда на редактирование, печать и оформление документов.

0.8- коэффициент, учитывающий уровень языка программирования 0.8...1,0 . $(k_{\text{кор}).}$

Таблица 4.1 – Калькуляция статей себестоимости

№	Наименование	Формулы для расчета	Сумма
п/п	составляющих		затрат,
	себестоимости		руб
1	2	3	4
1	Основная з/п с	$3_{\text{по}} = (550 + 110) *0,8 *54,38 + (171,1 + 128,3)$	46 706
	учетом	*0,8*42,30 +(40+44,8+118,5) *0,8*48,34 =	
	коэффициента	46706,36 руб.	
	корректировки:		
2	Дополнительная	3пд=20/100*46706,36 =9341 руб.	9 341
	3/п.		
3	Отчисления на	$3_{\text{cou}} = 32,2/100*(46706,36+9341,27) = 18047$	18 047
	социальные нужды	руб.	
	(страховые взносы)		
	(32,2%).		
4	Затраты на	3 _{ээ} =2,10*0,8*725,2=1218 руб.	1 218
	потребляемую		
	электроэнергию		
5	Расходы на	n	200
	материалы и	$3_{\scriptscriptstyle M} = \sum_{i=1}^{n} m_i \mathcal{U}_i$, $3_{\scriptscriptstyle M} \approx 200$ py6.	
	запасные части	1=1Расходы на материалы и запасные части для	
		данного примера взяты условно.	

	n	При проектировании необходимо брать данные конкретного предприятия	
6	Затраты на ТО и ТР	3 _p =20000*4/100*725,2/1986=292 руб.	292
7	ИТОГО (С)	С=46706+9341+18047+1218+200+292=75804 руб.	75 804

Расчет экономического эффекта от внедрения ПП

Капиталовложения при внедрении программного продукта равняются его себестоимости и в приведении к расчетному году не нуждаются:

Данный продукт используется 11-ю РКЦ. Оклад инженера-электронщика РКЦ – 8000 руб., премиальный фонд – 20% от оклада.

Часовая ставка инженера:

$$S_{4} = (8000 + 20/100 * 8000)/165,5 = 58,01 \text{ pv}$$
6.

Тогда годовые затраты 11 РКЦ за год (12 месяцев):

1. При ручной обработке информации затраты времени на ручную обработку информации составляют 14,4 ч, в месяц:

$$3_{py4} = 14,4*11*12*58,01=110 265 py6.$$

2. При автоматизированной затраты времени 4,30 ч. в месяц:

$$3_{\text{авт}} = 4,30*11*12*58,01=32 926 \text{ py6}.$$

Дополнительного эффекта не ожидается, поэтому годовой результат от внедрения программного продукта:

$$P_r=110265-32926=77$$
 339py6.

Затраты при использовании программного продукта сложатся из затрат на электроэнергию и техническое обслуживание (ТО) и текущие ремонты (ТР) ВТ с учетом времени работы данного программного продукта в году (2.25., 2.26):

где: 0,8 кВт - мощность ЭВМ;

2,10 руб.- стоимость 1 кВт.ч электроэнергии (действующий на данный момент тариф);

51 час. - время работы вычислительного комплекса.

где: 20000 руб. –балансовая стоимость ВТ;

4 – норма отчислений на ремонт ВТ (%);

51 час. - время работы вычислительного комплекса;

1986 час. – годовой фонд работы в 2012 году ВТ.

Тогда 3г=3э+3р=85,68+20,54=106,22 руб.

Прибыль определяется по формуле (2.21):

П=77339-106=77233 руб.

Таким образом, мы имеем следующий денежный поток:

0 шаг (капиталовложения) 75804 руб.

1 шаг 77233 руб.

2 шаг 77233 руб.

3 шаг

Чистый дисконтированный доход за 3 года использования программного продукта при норме дисконта E=20/100 (20%) составит (1.5):

ЧДД – положителен, т.е. проект эффективен.

Рассчитаем срок окупаемости проекта:

Величины приведенных (дисконтированных) годовых эффектов по годам расчетного периода равны:

$$\Theta_{1}=77233/(1+0,2)=64361$$
 py6.
 $\Theta_{2}=77233/(1+0,2)^2=53634$ py6
 $\Theta_{3}=77233/(1+0,2)^3=44695$ py6.

Величина дохода за первый год составит 64361 руб., что меньше величины капиталовложений (75804 руб).

За первые 2 года:

 Σ Э2=64 361+53 634=117 995 руб., что больше величины капиталовложений. Тогда срок окупаемости находится как:

$$Toκ = 1+(75 804 -64 361)/53 634=1,21 ≈ 1 Γ.$$