Module: 4 Greedy Perogramming,

A grundy muthed is a problem solution that works in always this to find buse solution that works in stages considering one input at a time with the hope that me get an eptimal solution.

* Minimum spanning tru (MS7):

the spanning true is a true in which all nodes are connected multhout forming cycle or select path the minimum spanning true is a spanning true whose rost is minimum.

Mulneds of obtaining a MST

1/ Prim's Algorithm

2/ unishal's Algorithm

1/2 Puints Algorithm ?

(1,4) = 10

Letteted node 2 as starting nose.

MST = 12

$$(2,1) = 5 \times - \text{ forms a eyer}$$

 $(2,3) = 2 \times \text{ second sower}$
 $(3,1) = 4 \times (3,4) = 6 \times (3,4) = 6$

LAB PROGRAM: 8

Enclude / stdio . h> # include < como o h>

ent puims (ent a [10][10], ent n, ent seuce) int u, v, i, j, d[10], rum, s[10]; for (i ≥ 0 g i <= n; i++)

S[i] = 0 ;

s[i] = 0; [i] = a[iouu][i]; S[iouu] = 1 fer liz 1; i <= n=1; i++)

Ent min = 999 5 for (j=1; j<=n; j++) ig LS () = =0)

150 z 0. lum.

```
of (d[1] < min)
     min = d[j];
     u=j;
   s[u]=1; // making node visited
   dum + = d[u];
   factv=1; v=n;v++)
     if (5[v]==0 ge a[u][v]~d[v])
       d[v] = a[u][v];
    return sum ;
veid main ()
int n, ario][10], sum, î, j, source;
 enscri);
pf ("Entre che no. of nodes (n");
df (1% d", 2 n);
to l'entre the core adjacency matrix);
He' for le=0; e( n; 2++)
    Hardy Califill;
 of (" Enter source (n');
 All'90 de, lesource);
 sum = prime(a, n, source);
  Sy ( um > = 999)
     pb ("MST den not eristin");
geteh (); (4 cost of MST is %od In, sum) ;
```


demce = 1

$$(2/16) = 25$$
 $(1,2) = 25$ $(2/14)$ $(1,3) = 10$ $(3,5) = 20$

$$(5,2) = 40$$

 $(5,4) = 10$
 $(5,6) = 45$

10

$$(2,1) = 25 \times X$$

$$(2,5) = 40$$

$$(2,6) = 35. \checkmark$$

$$(6,4) = 50\%$$

 $(6,5) = 45.x$

26 Kurshal's Algerithm?

Step 1: Arrange the edges recording to their rost in

ascerding order

elip 2 % start relecting zhe edger to

If the selected edge form a syste diseardit and shoese the next edge

			\bowtie		M
Edge	(2,3)	(1, 3)	(1,2)	(4, 3)	(4,1)
coit	2	4	5	6	10


```
LAB PROGRAM 4
# indude (stlio. h)
# include (como. h>
int Pauent [20] = 803, min, mincolint 20, ne=1, n,
 count [20][20] 3
int a, b, i, j, u, v;
 void muskal (void);
void main ()
  cuscu ();
  Af l' Entre the no. of nodes (n");
  4 ( % % d4, en);
  of (" Enter the cost matrix");
     for li=0; i2n; i++)
       fail j=0; j<n;j++)
         ٤ الله الله على م و و و الم الناليان ع
           ig lost [?][]] = =0)
             cost [[][]] = 9993.
    kuishal ()
quich () 3
  while (ne < n)
    fei li=1 € min=999 ; i<=/n ; i++)
          for (j=1, j <= n; j++)
              if (cost [i] [j] < min)
```

```
Min = cost [i][j];
         a= u= 1;
       while (paint [u])
         u = paunt [u];
       while (parent[v])
          v= parent [v];
         ig (u! = v)
          Af (" % d It edge It (% d, % d) = % d In,
                                  nc++, a, b, man);
    puint flu The minimum cost is % d In, mincost);
Example 3-
                                (6,8) (2,3) (7,8)
             (2,8) (1,9) (2,5)
                                 12 14 14
(6, 4) (5, 6)
                           8
 2
             (3,4) (4,5) (3,5)
(1,2) (7,9)
                           23. 28.
               18
                     20
 16
                     X
                            \infty
                                  X
```


MST =

Dijkelia's Algerithm: - (dingle source shortest par

solve the foll, ringle source shortest path proble assuring vertex 5 as the source. M.

leuri = 5

d[5]

dlo]		00		
d[1]	= 00	14	14	14.
ر [2]	z 00	∞ 0 ·	29	29
9[3]	= 4	4:	4	4
2547	z 00			34

8	Unuisited	d[U] = min(d[v],d[v]+w[v][v]) u,d[w]				
	nedi	0				
5	0,1,2,3,4	- <u>3</u> , 4				
5,3	0, 1, 2,4	$d[0] = \min(00, 4 + \infty) = 00$				
		d[1]: min (00, 4 + 10)= 14 / 1,14.				
		d[2] = min(00, 4+00) = 00				
		d[4] = min(2, 4+35) = 39				
5,3,1	0,2,4	$d[0] = \min(0, 14 + \infty) = \infty.$				
		$d[2] = min(\infty, 14 + 15) = 29$.				
		d[1] = min (39, 14+20)=34.				
5,3,1,2	0,4	d[0] = min(0, 29+20)=49 . [4, 34				
		$d[4] = \min(34, 29+\infty) = 34$				
5,3,1,2,	4 0	d[0] = min (49,34+00)=49/0;49				
5,371,24						
LP:9	· / /	Paullel				
0	15dinoh>					
# incl	ule. < como	h>				
reid	dijk (int c	ou hostlos, ac				
	J	int acros);				
void main ()						
int n, cost[10][10], source, v[10], d[10], i, j')						
enery;						
for (" Enter the no. of nodes");						
of lyolod's land; acting matrix);						
P (ENCH 201/ = N : L++)						
for (i=13i < = n3i + 7)						
forlj=1; j <= n; j++)						
of C'2.d', 2 cour (i)(,7);						

```
Af i" enter em source node (n');
  4 ( % d, 2 source);
for li= 1; i<=n; i++)
dri] = cost[source][i];
                                Pt ( The shortest
Listance is: In!)
    V[i] = 0;
 dijkliest, n, souice, v, d);
  for Li = 0; (< n; i++)
    Pf ( % d - → % d = % d In', source, i, d(i)).
void dijk (int cost [10][10], int n; int source, into
  int least, i,j, u;
    v (source ] = 1;
   forle=1;2c=n;2++)
      least = 999 ;
      forlj=1; j <=n; j++)
        ig (V[j] = = 0 28 d[j] < want)
Prant = d[j];
         ر د ا = ا ا
       per lj = 1 3 j <= n ; j ++ )
        عَمْرُ الا الَّا == 2 1 و [ طال ] > (طال سا + cost[سا
             arj] = dru]+ contrudijo;
```


