If we want to use BJT as an amplifier, what biasing condition need to be applied across base-emitter and base-collector junctions?

If we want to use BJT as a switch, what should be regions of operations? \(^\gamma\)

Most of the carriers flowing through the base of a BJT are majority carriers or minority carriers?

Q4

What is the approximate gain of the amplifier shown in the Fig. below. The slope of the V_o-V_I graph in the active region is equal to -3

In the transfer characteristics of a MOSFET, the threshold voltage is the measure of the

- (a) minimum voltage to induce a n-channel/p-channel for conduction
- (b) minimum voltage till which temperature is constant
- (c) minimum voltage to turn off the device
- (d) none of the above mentioned is true

For the MOS capacitor with a n-type substrate, a ____ gate voltage must be applied to create the hole inversion layer.

- (a) zero
- (b) positive
- (c) negative
- (d) either positive or negative

Q7

What are the important characteristics of an ideal op-amp?

What is the voltage at node A in the following op-amp circuit?

Q1

If for a BJT, the common base current gain is 0.98, then what is the value of its common emitter current gain?

Why do we use an emitter resistance in a common emitter biasing configuration?

The BJT small signal output impedance r_o accounts for (a) change in i_c with v_{CE} in the active regime (b) change in i_c with v_{CE} in the saturation regime (c) change in i_b with v_{BE} in the active regime (d) change in i_b with v_{BE} in the saturation regime

In a BJT biased in common emitter configuration, V_{CEQ} depends on

- (a) collector resistance R_C
- (b) emitter resistance R_E
- (c) DC base current I_{BEQ}
- (d) all of the above

Which is the correct statement among the following?

- (a) MOSFET is an uncontrolled device
- (b) MOSFET is a voltage controlled device
- (c) MOSFET is a current controlled device
- (d) MOSFET is a temperature controlled device

The output characteristics of a MOSFET is a plot of

- (a) I_d as a function of V_{gs} with V_{ds} as a parameter
- (b) I_d as a function of V_{ds} with V_{gs} as a parameter
- (c) I_g as a function of V_{gs} with V_{ds} as a parameter
- (d) I_g as a function of V_{ds} with V_{gs} as a parameter

What is the value of common-mode gain for an ideal op-amp?

What is the output voltage (in terms of resistances)

Most of the carriers flowing through the base of a BJT are majority carriers or minority carriers? If for a BJT, the common base current gain is 0.98, then what is the value of its common emitter current gain?

Why do we use an emitter resistance in a common emitter biasing configuration?

The BJT small signal output impedance r_o accounts for (a) change in i_c with v_{CE} in the active regime (b) change in i_c with v_{CE} in the saturation regime (c) change in i_b with v_{BE} in the active regime (d) change in i_b with v_{BE} in the saturation regime