## Allelic matching within and between populations

Jérôme Goudet and Bruce Weir

### **Matching Proportions**

If a sample of  $n_i$  alleles from population i have  $n_{iu}$  copies of allele u, the within-population sample matching proportion is

$$\tilde{M}_{Wi} = \frac{1}{n_i(n_i-1)} \sum_{u} n_{iu}(n_{iu}-1)$$

The sample matching proportion between populations i and i' is

$$\tilde{M}_{Bii'} = \frac{1}{n_i n_{i'}} \sum_{u} n_{iu} n_{i'u}$$

For a set of r populations

$$\tilde{M}_W = \frac{1}{r} \sum_{i} \tilde{M}_{Wi}$$
 ,  $\tilde{M}_B = \frac{1}{r(r-1)} \sum_{i \neq i'} \tilde{M}_{Bii'}$ 

#### **Allelic Indicators**

A useful approach is to attach indicator variables to each allele. For the jth allele sampled from the ith population:

$$x_{ij} = \begin{cases} 1 & \text{allele of type } u \\ 0 & \text{otherwise} \end{cases}$$

Weir and Hill (2002) described a model that specifies expectations for these indicators:

$$\mathcal{E}(x_{ij}) = p_u$$

$$\mathcal{E}(x_{ij}x_{ij'}) = \theta_i p_u + (1 - \theta_i) p_u^2, \ j \neq j'$$

$$\mathcal{E}(x_{ij}x_{i'j'}) = \theta_{ii'} p_u + (1 - \theta_{ii'}) p_u^2, \ i \neq i'$$

Expectation is over samples from each population and over replicates of each population.

### Sample Allele Frequencies

The sample proportions of each profile type can be expressed as averages of indicator variables

$$\tilde{p}_{iu} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}$$

and this leads to variances and covariances:

$$\operatorname{Var}(\tilde{p}_{iu}) = p_u(1 - p_u) \left(\theta_i + \frac{1 - \theta_i}{n_i}\right)$$

$$\operatorname{Cov}(\tilde{p}_{iu}, \tilde{p}_{iu'}) = -p_u p_{u'} \left(\theta_i + \frac{1 - \theta_i}{n_i}\right)$$

$$\operatorname{Cov}(\tilde{p}_{iu}, \tilde{p}_{i'u}) = p_u(1 - p_u)\theta_{ii'}$$

$$\operatorname{Cov}(\tilde{p}_{iu}, \tilde{p}_{i'u'}) = -p_u p_{u'}\theta_{ii'}$$

#### **Coancestries**

Corresponding to ibs measures M there are ibd probabilities  $\theta$ .

Taking expectations over samples from populations and over evolutionary replicates of populations:

$$\mathcal{E}(\tilde{M}_{Wi}) = 1 - H(1 - \theta_i) \ , \ \mathcal{E}(\tilde{M}_W) = 1 - H(1 - \theta_W)$$
  
 $\mathcal{E}(\tilde{M}_{Bii'}) = 1 - H(1 - \theta_{ii'}) \ , \ \mathcal{E}(\tilde{M}_B) = 1 - H(1 - \theta_B)$ 

where  $H = 1 - \sum_{u} p_u^2$ . These suggest moment estimates

$$\widehat{\beta}_{Wi} = \frac{\widetilde{M}_i - \widetilde{M}_B}{1 - \widetilde{M}_B} , \quad \mathcal{E}(\widehat{\beta}_{Wi}) = \frac{\theta_i - \theta_B}{1 - \theta_B}$$

$$\widehat{\beta}_W = \frac{\widetilde{M}_W - \widetilde{M}_B}{1 - \widetilde{M}_B} , \quad \mathcal{E}(\widehat{\beta}_W) = \frac{\theta_W - \theta_B}{1 - \theta_B}$$

The usual  $F_{ST}$  is the same as  $\beta_W = (\theta_W - \theta_B)/(1 - \theta_B)$ .

#### WC84 Estimator

Under this (Weir and Hill) model, the WC84 estimator has expectation

$$\mathcal{E}(\hat{\theta}_{WC}) = \frac{\theta_W^c - \theta_B^c + Q}{1 - \theta_B^c + Q} \text{ instead of } \frac{\theta_W - \theta_B}{1 - \theta_B}$$

where

$$\theta_W^c = \frac{\sum_i n_i^c \theta_i}{\sum_i n_i^c} \quad , \quad \theta_B^c = \frac{\sum_{i \neq i'} n_i n_{i'} \theta_{ii'}}{\sum_{i \neq i'} n_i n_{i'}}$$

$$n_i^c = n_i - \frac{n_i^2}{\sum_i n_i} \quad , \quad n_c = \frac{1}{r-1} \sum_i n_i^c$$

$$Q = \frac{1}{(r-1)n_c} \sum_i \left(\frac{n_i}{\bar{n}} - 1\right) \theta_i$$

If the WC84 model holds  $(\theta_i = \theta)$ , or if  $n_i = n$ , or if  $n_c$  is large, then Q = 0 and  $\mathcal{E}(\hat{\theta}_{WC}) = (\theta_W - \theta_B)/(1 - \theta_B)$ .

#### **Continent-Island Model**

A continent of infinite population size sends migrant alleles to islands with finite population sizes  $N_i$  at rate m. Alleles mutate to a new state at rate  $\mu$ .

Within island i, at equilibrium,

$$\theta_{Wi} = \frac{(1-m)^2(1-\mu)^2}{2N_i - (2N_i - 1)(1-m)^2(1-\mu)^2}$$

and the values of  $\theta_{Bii'}$  are all zero.

Simulations show that  $\widehat{\beta}_{Wi}$  values are close to  $\theta_{Wi}$  values but BayeScan estimates are too high.

## **Island Model Estimates**



#### **HGDP** Microsatellite Data

Pemberton, DeGiorgi and Rosenberg, 2013, G3 3:891-907.

Estimated  $F_{ST}$  as moment estimate  $\beta_{Wi}$ , with bootstrap over loci confidence intervals. (Solid dots).

Also by BayeScan with credible intervals. (empty diamonds)

Estimates colored by continent.

# **Human Genome Diversity STR Panel**



#### **HGDP SNP Data**

Li et al., 2008, Science 319:1100-1104.

Moment estimates  $\beta_{Wi}$  for each population and for each chromosome. Box plots show variation among chromosomes.

African estimates larger than those for European. Suggests that SNPs were chosen to favor high MAF in Arica.



## Moment vs Bayes: HGDP Chr 1 SNPs

#### SNPs from Chrom. 1



### HapMap3 SNP Data

Altshuler et al. 2010.

Moment estimates of  $\beta_{Wi}$  for SNP windows on chromosome 2. LCT gene location noted by dotted line, showing peaks for CEU and MKK populations.

# HapMap3 Chr 2 SNPs





### 1000 Genomes SNP Data

Altshuler et al. 2012.

Native American data not used (small sample size).

Estimates of  $\beta_{Wi}$  for each continent:

|            | Africa | EastAsia | Europe | SouthAsia | Overall |
|------------|--------|----------|--------|-----------|---------|
| PlotColor  | Black  | Orange   | Blue   | Brown     | Red     |
| SampleSize | 410    | 64       | 694    | 592       |         |
| Chr 1      | -0.117 | 0.215    | 0.171  | 0.140     | 0.102   |
| Chr 2      | -0.124 | 0.223    | 0.165  | 0.146     | 0.102   |
| Chr 6      | -0.090 | 0.193    | 0.141  | 0.125     | 0.092   |
| Chr 13     | -0.113 | 0.210    | 0.153  | 0.134     | 0.096   |

### **Estimate Details**

Next slides plot estimates of  $\beta_{Wi}$  against derived frequency for each allele.











#### Chr 13 Old world



#### **Private Alleles**

Suppose population i has MAF x at some SNP, but no other population is polymorphic at that position. The population matching proportions for this SNP are

$$M_{Wi} = x^2 + (1 - x)^2$$
 $M_{Wi'} = 1, i' \neq i$ 
 $M_{Bii'} = (1 - x), i \neq 1$ 
 $M_{Bi'i''} = 1, i'' \neq i' \neq i$ 
 $M_{W} = 1 - \frac{2x(1 - x)}{r}$ 
 $M_{B} = 1 - \frac{2x}{r}$ 

and the  $F_{ST}$  values are

$$\beta_{Wi} = 1 - r(1 - x)$$

$$\beta_{Wi'} = 1, i' \neq i$$

$$\beta_{W} = x$$

#### **Private Alleles**

For a population with a private SNP allele, at that locus  $\beta_i < 0$  for x < (r-1)/r.

A population with many SNPs with private alleles at low to intermediate frequencies will likely have a negative estimate of  $\beta_{Wi}$ . How negative will depend on how many populations are sampled.

Estimation procedures must allow population-specific  $\beta_{Wi}$  values to be negative - not a feature of current Bayesian methods that, in essence, regard populations as independent  $\beta_B = 0$ .

The next slide shows estimates from two populations, one of which has a private allele.

The BayeScan means and 95% credible intervals are in red.

## **Private Alleles: Two Populations**



#### **Human Evolution**

Several published scenarios for world colonization by *Homo sapiens*:

Gutenkunst et al. 2009. Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency Data. PLoS Genetics 5: e1000695.

Gravel et al. 2011. Demographic history and rare allele sharing among human populations. PNAS 108:1193-11988.

Gravel et al. gave the scenario on next slide.

## Gravel et al.



### Gravel et al. Parameters

Simulated data with software of Liang, Zollner and Abecasis, 2007, Bioinformatics 23:1565-1567.

Set parameters to correspond to Gravel et al.

### Gravel et al. Parameters

#### FST from gravel etal simulation scenario



### **Modified Parameters**

Then simulated data without the initial bottleneck followed by expansion in Africa.

### **Modified Parameters**

#### FST from simulation scenario without African expansion



# **Data viewpoint**



# **Model viewpoint**











