Building ML Models

Week 1: Introductions, Onboarding, Intro to ML

Overview

- Introductions/Icebreakers
- Intro to ML
- Intro to Math
- Code a Perceptron

Administrivia

Administrivia

- Join the Slack channel if you haven't already
 - We post slides, links, and send announcements there
- Attendance policy: must attend every other session

Introductions

Isaac Heitmann

Major: Data Science

Year: Senior

Hometown: Andover, MA

Fun facts:

• I have a Pokemon card collection (potentially \$\$\$\$) that I can't find

I'm a transfer student from UMass

Amhorst

Kevin Calopisis

Major: Data Science (Eng)

Year: 3rd (and final)

Hometown: Seoul, South Korea, but I moved

to Michigan at 1 y/o

Fun Facts:

- I can solve a Rubik's Cube in under 15 seconds
- I'm fairly fast at typing

		10 words
173	158	209
100%	97%	100%

Icebreaker

- Count off by 5s...
- Get in your groups
- First group where one person gets all names right...

Intro to Machine Learning

What is Machine Learning vs Artificial Intelligence?

Artificial Intelligence

- A general term to describe machines performing intelligent, or human like tasks
- Contains all forms of statistical learning

Machine Learning

- A specific type of artificial intelligence where machines learn to classify or predict based of data
- Data driven, robust, low complexity

Neural Networks

- Ubiquitous ML model type
- Well-suited to tasks involving complex patterns
 - Natural language processing (NLP)
 - Computer vision (CV)
 - Financial forecasting and fraud detection
- Seems complex, but the design is quite human.

The Brain and Neural Networks

• Inspiration for ANNs: **The Brain**

- Key idea: Learning happens upon
 repeated recognition
- Similarly, ANNs
 improve weights
 (multiply inputs) to
 improve accuracy

How the Perceptron Works

- Based on a human neuron
- Some positive integer *n* inputs

$$X_1, X_2, \ldots, X_n$$

- A weight for each input
 W₁, W₂,..., W_n
- One output
- Weighted sum of inputs is taken
- Activation function applied to weighted sum to push all values between a manageable range

$$\bar{x} = \sum_{i=0}^{n} x_i w_i$$

Weighted Sum Formula

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Sigmoid Activation Function

Example Problem

Example Problem: Solution

Let's Code It!

Code Links:

- Github
 - Download the Jupyter Notebook
 - Use either Colab or VS Code to edit the notebook