

Olimpiada Națională de Matematică Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019

CLASA a X-a

Problema 1. Să se determine funcțiile $f: \mathbb{R} \to (0, \infty)$, cu proprietatea

$$2^{-x-y} \le \frac{f(x)f(y)}{(x^2+1)(y^2+1)} \le \frac{f(x+y)}{(x+y)^2+1},$$

oricare ar fi $x, y \in \mathbb{R}$.

Gazeta Matematică

Problema 2. Fie $n \in \mathbb{N}, n \geq 3$.

a) Să se arate că există $z_1, z_2, \dots, z_n \in \mathbb{C}$ astfel încât

$$\frac{z_1}{z_2} + \frac{z_2}{z_3} + \ldots + \frac{z_{n-1}}{z_n} + \frac{z_n}{z_1} = ni.$$

b) Care sunt valorile lui n pentru care există numere complexe z_1, z_2, \ldots, z_n , de acelaşi modul, astfel încât

$$\frac{z_1}{z_2} + \frac{z_2}{z_3} + \dots + \frac{z_{n-1}}{z_n} + \frac{z_n}{z_1} = ni?$$

Problema 3. Fie a, b, c numere complexe distincte, cu proprietatea |a| = |b| = |c| = 1. Arătaţi că dacă $|a+b-c|^2 + |b+c-a|^2 + |c+a-b|^2 = 12$, atunci punctele de afixe a, b, c sunt vârfurile unui triunghi echilateral.

Problema 4. Să se găsească cel mai mic număr real strict pozitiv λ astfel încât, pentru orice numere reale $a_1, a_2, a_3 \in \left[0, \frac{1}{2}\right]$ şi $b_1, b_2, b_3 \in (0, \infty)$ cu $\sum_{i=1}^3 a_i = \sum_{i=1}^3 b_i = 1$, avem

 $b_1b_2b_3 \leq \lambda(a_1b_1 + a_2b_2 + a_3b_3).$

Timp de lucru 4 ore.

Fiecare problemă este notată cu 7 puncte.