门限多方 ECDSA 方案

. 密钥生成阶段

此阶段主要生成门限多方 ECDSA 所需要的每个参与方的公私钥对、签名公钥、以及每个用户的签名私钥的分享 (share)。我们的方案是一个 (t,n)-门限方案,一共有 n 个参与方,当有超过 t 个参与方同意 (不包含 t),则可以生成一个有效签名。以下是具体过程:

第一步: 每一个参与方 P_i $(i \in [n])$,和两方方案的做法一样,生成一对 promise 加密的公私钥对(包括 Elgamal 的公私钥和 CL-Elgamal 的公私钥),我们记为 (pk_i, sk_i) 。

第二步: 每一个 P_i ,随机的选择 $u_i \leftarrow Z/qZ$ 并且计算承诺 $\mathrm{kgc}_i \leftarrow \mathrm{Com}(u_iP)$ 。 然后 P_i 将 ($\mathrm{pk}_i, \mathrm{kgc}_i$) 广播出去。

第三步:每一个 P_i ,收到其他所有参与方发送的公钥和承诺后,令 $Q_i = u_i P$,将 kgc_i 打开并广播出去。 P_i 收到来自于其他所有参与方的承诺打开信息后,验证承诺是否正确,如果存在一个承诺验证不通过则终止协议,否则,计算 $Q = \sum_{i \in [n]} Q_i$ 。Q 即是签名公钥。

第四步: 每一个 P_i ,随机生成一个 t 次的多项式 $p_i(X) = u_i + \sigma_{k \in [t]} a_{i,k} X^k \mod q$ (通过随机的选取每一项的系数 $a_{i,k}$,然后计算 $\sigma_{i,j} = p_i(j)$ 对于所有的 $j \in [n]$,然后计算 $V_{i,k} = a_{i,k} P$ 对于所有的 $k \in [t]$ 。 P_i 将 $\{V_{i,k}\}_{k \in [t]}$ 广播出去,并且通过两方信道将 $\sigma_{i,j}$ 发送给参与方 P_i 。

第五步: 每一个 Pi:

- 对于所有的 $j \neq i, j \in [n]$,验证 $\sigma_{j,i}$ 是否等于 $Q_j \prod_{k \in [t]} V_{j,k}^{i^k}$ 。如果存在一个 j 使得验证不通过,则终止协议。
- 计算 $x_i = \sum_{k \in [n]} \sigma_{k,i}$ ·
- 计算 $X_i = x_i P$, 并且生成一个与之相关的 NIZK 证明 $\pi_{kg,i}$ 。 $\pi_{kg,i}$ 证明的断言是 "存在一个 x_i ,使得 $X_i = x_i P$ 。" (这是为了证明 X_i 是正确生成的。)

• 将 X_i 和 $\pi_{kg,i}$ 广播出去。

第六步: 每一个 P_i ,收到所有的其他参与方从第五步传来的消息后,对于所有的 $j \in [n], j \neq i$,验证 X_j 和 $\pi_{kg,j}$ 是否正确,如果存在一个验证通不过,则终止协议。

. 签名阶段 在此阶段我们用密钥生成阶段生成的信息对消息 m 进行签名,我们记 $S \subset [n]$ 为参与这次签名过程的参与方的集合。具体过程如下:

预处理:对于 $i \in S$,每一个 P_i :

- if $\lambda_i = \prod_{j \in S, i \neq i} (-j) / \prod_{j \in S, i \neq i} (i-j)$.
- 计算 $W_k = \lambda_k X_k$ 对于所有的 $k \in S$, 且计算 $w_i = \lambda_i x_i$ 。 (所有的 $\{X_k\}_{k \in S}$ 都是公开的,而 P_i 只知道自己的 x_i ,所以 P_i 可以计算 $\{W_k\}_{k \in S}$ 和 w_i 。) 经过预处理后会有这样的关系 $\sum_{k \in S} W_k = Q$ 成立。

第一步: 对于 $i \in S$, P_i :

- 随机选择 $k_i, \gamma_i \leftarrow Z_q$ 以及 $r_i \leftarrow [A](r_i$ 是 promise 加密所用到的随机数,所以需要从一个大的整数范围里选取,和两方方案一样。)
- 计算密文 $c_{k_i} \leftarrow \operatorname{Enc}(\operatorname{pk}_i, k_i; r_i)$,并且生成一个 NIZK 证明 π_i 。 π_i 是用我们的 promise sigma 协议来生成的。然后计算承诺 $c_i \leftarrow \operatorname{Com}(\gamma_i P)$ 。
- 将 (c_i, c_{k_i}, π_i) 广播出去。
- 校验所有收到的 (c_{k_i}, π_i) 。

第二步: 对于所有的 $i \in S$, P_i 和其他每个 P_j $(j \in S, j \neq i)$ 都要通过两方信道进行一次两方的交互:

- P_i 随机的选取 $\beta_{j,i}, v_{j,i} \leftarrow Z_q$,并计算 $B_{j,i} = v_{j,i}P$;随机选择 $t_{j,i}, \hat{t}_{j,i} \leftarrow [A]$,计算 $t_{p,ji} = t_{j,i} \mod q$,前用 promise 加密的同态性质和在第一步中得到的密文 c_{k_j} 来计算密文 $c_{k_j\gamma_i}$ 和 $c_{k_jw_i}$,它们对应的明文分别应该是 $k_j(\gamma_i + \hat{t}_{j,i}) \beta_{j,i}$ 和 $k_j(w_i + t_{j,i}) v_{j,i}$ 。 P_i 将 $(c_{k_j\gamma_i}, c_{k_jw_i}, B_{j,i}, t_{p,ji}, \hat{t}_{p,ji})$ 发送给 P_j 。
- P_j 收到 P_i 的消息后,对密文解密得到 α_{j,i1} 和 μ_{j,i1} (其中 α_{j,i} = k_j(γ_i+t̂_{j,i}) β_{j,i} mod q 以及 μ_{j,i} = k_j(w_i + t_{j,i}) v_{j,i} mod q), 从而 P_j 可以利用自己知道的 k_j, t_{p,ji}, t̂_{p,ji} 来计算 α_{j,i} = k_jγ_i β_{j,i} mod q 和 μ_{j,i} = k_jw_i v_{j,i} mod q。
- P_i 验证 k_iW_i 是否等于 $\mu_{i,i}P + B_{i,i}$, 如果验证失败,则终止协议。

在所有的这些点对点的交互都完成后,对于 $i \in S$,每一个 P_i 都计算 $\delta_i = k_i \gamma_i + \sum_{j \neq i} (\alpha_{i,j} + \beta_{j,i})$ 以及 $\sigma_i = k_i w_i + \sum_{j \neq i} (\mu_{i,j} + v_{j,i})$ 。

第三步:对于 $i\in S$,所有的 P_i 将 δ_i 广播出去。在收到所有的广播消息后,计

算 $\delta = \sum_{i \in S} \delta_i$ 。

第四步:对于 $i \in S$,所有的 P_i :

- 将承诺 c_i 的打开信息广播出去。(在第一步,是对 $\gamma_i P$ 的承诺)。
- 不妨记 $\Gamma_i = \gamma_i P$,对断言"存在一个 γ_i ,使得 $\Gamma_i = \gamma_i P$ "生成一个 NIZK 证明 $\pi_{i\gamma}$ 。将 $\pi_{i\gamma}$ 广播出去。
- 对于收到的所有的 $\{c_j\}_{j\in S, j\neq i}$ 和 $\{\pi_{j\gamma}\}_{j\in S, j\neq i}$,验证证明是否正确,如果存在一个验证失败,则终止协议。
- 计算 $R = \delta^{-1}(\sum_{i \in S} \Gamma_i)$,然后令 r = rx,其中 rx 是 R 的横坐标(即 R 可以写成 (rx,ry))。

第五步: 对于 $i \in S$, 每一个 P_i :

- 计算 $s_i = k_i m + \sigma_i r$,随机选择 $\rho_i, l_i \leftarrow Z_q$,并计算 $V_i = s_i R + l_i P$, $A_i = \rho_i P$; 以及承诺 $c1_i \leftarrow \text{Com}(V_i, A_i)$ 。将 $c1_i$ 广播出去。
- 在接收到所有的承诺 $\{c1_j\}_{j\in S, j\neq i}$ 后,将 $c1_i$ 打开,然后对断言"存在 (s_i, ρ_i, l_i) ,使得 $(V_i = s_i R + l_i P) \wedge (A_i = \rho_i P)$ " 生成一个 NIZK 证明 π_{iVA} 。将 $c1_i$ 的 打开信息和 π_{iVA} 广播出去。
- 在收到所有的打开信息 $\{V_j, A_j\}_{j \in S, j \neq i}$ 和相应的 NIZK 证明 $\{\pi_{jVA}\}_{j \in S, j \neq i}$ 之后,验证这些承诺是否正确,以及左右的零知识证明是否正确,如果存在验证失败,则终止协议。
- 计算 $V = -mP rQ + \sum_{i \in S} V_i$ 和 $A = \sum_{i \in S} A_i$ 。然后计算 $U_i = \rho_i V$, $T_i = l_i A$, $c2_i \leftarrow \operatorname{Com}(U_i, T_i)$ 。将 $c2_i$ 广播出去。
- 在收到所有的 $\{c2_i\}_{i\in S, j\neq i}$ 之后,将 $c2_i$ 打开并广播。
- 收到所有的打开信息后,验证所有的承诺是否正确,如果存在验证失败,则终止协议;否则,验证 $\sum_{i \in S} T_i$ 是否等于 $\sum_{i \in S} A_i$,验证失败则终止协议。
- 将 S_i 广播出去。
- 在收到所有的 $\{s_j\}_{j\in S, j\neq i}$ 之后,计算 $s=\sum_{i\in S} s_i$ 。检查 (r,s) 是不是 m 的一个合法签名,如果是,则输出 (r,s),否则,终止协议。