BLATT 7

(28.10.2016)

Aufgabe 1

Sei $\mathcal{L} = \{R_0, R_1, f_0, f_1, c_0, c_1\}$, wobei R_0 ein ein- und R_1 ein zweistelliges Relationszeichen ist, f_0 ein ein- und f_1 ein zweistelliges Funktionszeichen und c_0, c_1 Konstantenzeichen sind. Sind folgende Zeichenfolgen \mathcal{L} -Terme? Geben Sie in den negativen Fällen eine kurze Begründung an.

- (a) $f_0 f_0 f_1 c_0 c_1$
- (b) $f_0 f_1 f_0 c_0 c_1$ (c) $v_0 v_2$
- (d) $f_1 f_0 f_1 c_1 c_0$

- (e) $f_1v_0R_0c_0$ (f) $f_1v_2f_0f_1c_0v_2$ (g) $f_1f_0c_0f_0f_0f_0$ (h) $f_1v_0f_1f_1c_0f_0c_1f_1f_0c_0v_3$

Dozent: PD Dr. Markus Junker Assistent: Andreas Claessens

Aufgabe 2

Sei \mathcal{L} wie in Aufgabe 1 definiert. Welche der folgenden Zeichenfolgen sind \mathcal{L} -Formeln? Geben Sie in den negativen Fällen eine kurze Begründung an.

- $\begin{array}{lll} (a) \; \exists v_1 \exists v_1 \; R_0 v_1 & \qquad (b) \; \neg f_1 v_0 \dot{=} c & \qquad (c) \; \exists c_1 \; R_1 c_1 c_1 & \qquad (d) \; \exists v_1 \; (R_1 v_2 v_0 \wedge R_0 v_0) \\ (e) \; (\exists v_0 \; f c_0 v_0 \vee R_0 c_1) & \qquad (f) \; R_0 v_0 v_2 & \qquad (g) \; v_2 \dot{=} \neg v_1 & \qquad (h) \; \forall v_0 \exists v_2 \; (R_1 v_0 v_2) \end{array}$

Aufgabe 3

Sei $\mathcal{L} = \{R_0, R_1, c_0\}$; dabei sei R_0 ein ein- und R_1 ein zweistelliges Relationszeichen und c_0 ein Konstantenzeichen. Wir betrachten einen gerichteten Graphen M, bei dem die Knoten blau gefärbt sein können, als \mathcal{L} -Struktur \mathcal{M} . Wir interpretieren $c_0^{\mathcal{M}}$ als einen beliebigen Knoten in M, $R_0^{\mathcal{M}} = \{x \in M \mid x \text{ ist blau}\}$ und $R_1^{\mathcal{M}}$ als Kantenrelation. Drücken Sie die folgenden Aussagen als \mathcal{L} -Formeln aus.

- (a) Es gibt keine Schleifen.
- (b) Auf den blauen Knoten sind die Kanten symmetrisch.
- (c) Wenn c_0 blau ist, dann gibt es keine Senken.
- (d) Es gibt genau 3 blaue Senken.
- (e) c_0 ist eine globale Quelle.
- (f) Jeder Pfad der Länge 4 geht durch einen blauen Punkt.
- (g) Es gibt unendlich viele blaue Punkte.
- (h) Es gibt keine geschlossenen Pfade.

Hinweis: die beiden letzten Aussagen lassen sich nicht durch eine einzige Formel ausdrücken.

Aufgabe 4

Betrachten Sie folgende Formeln

$$F = (\dots((A_n \to A_{n-1}) \to A_{n-2}) \to \dots \to A_0)$$

$$G = (A_0 \to \dots \to (A_{n-2} \to (A_{n-1} \to A_n)) \dots)$$

$$H = (\dots((A_n \leftrightarrow A_{n-1}) \leftrightarrow A_{n-2}) \leftrightarrow \dots \leftrightarrow A_0)$$

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

Zeigen Sie

- (a) Für $n \ge 1$ gilt $\beta(F) = 1$ genau dann, wenn min $\{i \mid \beta(A_i) = 1\}$ gerade ist. Hierbei ist $\min(\emptyset) = n + 1$
- (b) Für $n \ge 1$ gilt $\beta(G) = 0$ genau dann, wenn $\beta(A_n) = 0$ und $\beta(A_0) = \cdots = \beta(A_{n-1}) = 1$.
- (c) Für $n \ge 1$ gilt $\beta(H) = 1$ genau dann, wenn $(n+1) |\{i \mid \beta(A_i) = 1\}|$ gerade ist.