

But below that
of the insulator, high contrast inspection testing by
laser-induced
photoelectron emission can be expected. ***** SEE
ORIGINAL DOCUMENT

The band alignments for such an ideal situation in
the
insulating material of the package is depicted in Fig.
1(a).

With a
perfect host material, the Fermi level E_F would be at the
middle of
the energy gap E_G which separates the valence band
maximum E_{VAL} and

the conduction band minimum E_{COND} . The level for vacuum
emission is
the vacuum level E_{VAC} , which is normally just above E_{COND} .

Since
the material is assumed ideal, there are no electronic
states in the
energy gap, so the highest energy occupied electron
states lie at

E_{VAL} , and the minimum energy required to raise electrons
above E_{VAC}
is the photoelectric threshold $E_{PHOTO} = E_{VAC} - E_{VAL}$. If
any low
concentration of electrons were available within the band
gap,

electron emission would be possible at threshold
excitation energies
starting at $E_{THERMAL} = E_{VAC} - E_F$, because the highest
such occupied

electron states in the gap would be at E_F .
There are two contrasting situations which limit
this approach:

non-ideal band alignments due to defect states and ideal

FIG. 1

FIG. 2

Document_ID	Kind_Codes	Source	Issue Date	Pages	
1 JP 2002118156		JPO	20020419	5	APPAR
2 NB890887		IEM_TDB	19890801	1	Bias
3 NN87024105		IBM_TDB	19870201		Non-L
4 DE 10036177 A		DERWENT	20020214		Equir

FULL

Details Text Image HTML

Clipped