2.4.1 Proving Statements about odd and even integers with direct proofs

a. The sum of an odd and an even integer is odd

Proof. Let x be an even integer and y be an odd integer. x = 2k for some integer k and y = 2j + 1 for some integer j.

$$x + y = 2k + 2j + 1$$

= $2(k + j) + 1$

Since k and j are integers, k+j is an integer. Therefore, 2(k+j)+1 is an odd integer. \therefore the sum of an odd and an even integer is odd

e. If x is an even integer and y is an odd integer, then $x^2 + y^2$ is odd

Proof. Since x is an even integer, x=2k for some $k \in \mathbb{Z}$. Since y is an odd integer, x=2j+1 for some $j \in \mathbb{Z}$.

$$x^{2} + y^{2} = (2k)^{2} + (2j + 1)^{2}$$
$$= 4k^{2} + 4j^{2} + 4j + 1$$
$$= 2(2k^{2} + 2j^{2} + 2j) + 1$$

Since $k, j \in \mathbb{Z}$, $2k^2 + 2j^2 + 2j \in \mathbb{Z}$. Therefore $2(2k^2 + 2j^2 + 2j) + 1$ is an odd integer. \therefore if x is an even integer and y is an odd integer, then $x^2 + y^2$ is odd

2.4.2 Proving statements about rational numbers with direct proofs

c. If x and y are rational numbers, then 3x + 2y is also a rational number

Proof. Since $x \in \mathbb{Q}$, $x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Since $y \in \mathbb{Q}$, $y = \frac{c}{d}$ for some $c, d \in \mathbb{Z}$ with $d \neq 0$.

$$3x + 2y = 3\frac{a}{b} + 2\frac{c}{d}$$

$$= \frac{3ad}{bd} + \frac{2bc}{bd}$$

$$= \frac{3ad + 2bc}{bd}, b \neq 0, d \neq 0$$

Since both $b \neq 0$ and $d \neq 0$, $bd \neq 0$. $3ad + 2bc \in \mathbb{Z}$ by properties of \mathbb{Z} . $bd \in \mathbb{Z}$ by properties of \mathbb{Z} . Therefore $\frac{3ad + 2bc}{bd}$ takes the form of a rational number.

 \therefore if x and y are rational numbers, then 3x + 2y is also a rational number

f. The average of two rational number is also rational

Proof. Let $x, y \in \mathbb{Q}$.

Since $x \in \mathbb{Q}$, $x = \frac{a}{b}$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Since $y \in \mathbb{Q}$, $y = \frac{c}{d}$ for some $c, d \in \mathbb{Z}$ with $d \neq 0$. The average of two numbers is found by $\frac{x+y}{2}$.

$$\frac{x+y}{2} = \frac{\frac{a}{b} + \frac{c}{d}}{2}$$

$$= \frac{\frac{a}{b}}{2} + \frac{\frac{c}{d}}{2}$$

$$= \frac{a}{2b} + \frac{c}{2d}$$

$$= \frac{ad}{2bd} + \frac{bc}{2bd}$$

$$= \frac{ad + bc}{2bd}, b \neq 0, d \neq 0$$

Since both $b \neq 0$ and $d \neq 0$, $bd \neq 0$. $ad + bc \in \mathbb{Z}$ by properties of \mathbb{Z} . $2bd \in \mathbb{Z}$ by properties of \mathbb{Z} . Therefore $\frac{ad+bc}{2bd}$ takes the form of a rational number.

... The average of two rational number is also rational

2.4.3 Proving algebraic statements with direct proofs

a. For any positive real numbers x and y, $(x+y)^2 \ge xy$

Proof. Let $x \in \mathbb{R}$ such that x > 0. Let $y \in \mathbb{R}$ such that y > 0. Since x > 0 and y > 0, $x^2 > 0$, xy > 0, and $y^2 > 0$. Therefore their sum is also greater than 0.

$$x^{2} + xy + y^{2} \ge 0$$

$$x^{2} + xy + y^{2} \ge 0$$

$$x^{2} + 2xy + y^{2} \ge xy$$

$$(x+y)^{2} \ge xy$$

 \therefore for any positive real numbers x and y, $(x+y)^2 \ge xy$

b. If x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$

Proof. Let $x \in \mathbb{R}$ such that $x \leq 3$.

$$x \leq 3$$

$$x-3 \leq 0$$

$$(x-3)(x-4) \geq 0, \text{ since } x-4 < 0 \text{ and therefore negative}$$

$$12-7x+x^2 \geq 0$$

 \therefore if x is a real number and $x \le 3$, then $12 - 7x + x^2 \ge 0$

c. If n is a real number and n > 1, then $n^2 > n$

Proof. Let $n \in \mathbb{R}$ such that n > 1.

$$n>1$$

$$n\cdot n>1\cdot n, \text{ since } n \text{ is positive}$$

$$n^2>n$$

 \therefore if n is a real number and n > 1, then $n^2 > n$

d. If x is a real number such that 0 < x < 1, then $\frac{1}{x(1-x)} \ge 4$