What if I turn my project into a shared task participation?

Not a bad idea

Shared task

 Organised to tackle problems that are challenging to be addressed by a single (group of) researcher(s)

- Organised to tackle problems that are challenging to be addressed by a single (group of) researcher(s)
- They are challenging by definition: they propose non-trivial problems, still they are specific and doable

- Organised to tackle problems that are challenging to be addressed by a single (group of) researcher(s)
- They are challenging by definition: they propose non-trivial problems, still they are specific and doable
- They provide an evaluation framework: dataset + evaluation metrics (+ submission infrastructure)

- Organised to tackle problems that are challenging to be addressed by a single (group of) researcher(s)
- They are challenging by definition: they propose non-trivial problems, still they are specific and doable
- They provide an evaluation framework: dataset + evaluation metrics (+ submission infrastructure)
- They give a deadline: so one does not end up tweaking the model forever

- Organised to tackle problems that are challenging to be addressed by a single (group of) researcher(s)
- They are challenging by definition: they propose non-trivial problems, still they are specific and doable
- They provide an evaluation framework: dataset + evaluation metrics (+ submission infrastructure)
- They give a deadline: so one does not end up tweaking the model forever
- Visit the lesson website to see some interesting alternatives

+ You could turn a COLI star!

L'algoritmo di Arianna: "Così su Twitter do la caccia ai post contro le donne"

di Emanuela Giampaoli

La Repubblica (Bologna); 31 March, 2021

RAI News 24; 8 April, 2021

92586 Computational Linguistics

Lesson 12. "More than One" Neuron

Alberto Barrón-Cedeño

Alma Mater Studiorum-Università di Bologna a.barron@unibo.it @_albarron_

30/03/2022

Previously

- The perceptron
- Intro to neural networks

Table of Contents

Backpropagation (brief)

2 Keras

3 Some Guidelines

Chapter 5 of ?

Backpropagation (brief)

Weight Updating

Learning in a "simple" perceptron vs a fully-connected network

(?, p. 158, 168)

Remember: aka linear regression

Weight Updating

Learning in a "simple" perceptron vs a fully-connected network

(?, p. 158, 168)

Remember: aka linear regression

²Notice that the first W_{1i} should be W_{1i}

- The error is computed on the output vector
- How much error did W_{1i} "contribute"?

²Notice that the first W_{1j} should be W_{1i}

- The error is computed on the output vector
- How much error did W_{1i} "contribute"?
- "Path": $W_{1i} \rightarrow [W_{1j}, W_{2j}] \rightarrow \textit{output}$

²Notice that the first W_{1i} should be W_{1i}

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

9/21

Alberto Barrón-Cedeño (DIT-UniBO) 92586 Computational Linguistics 30/03/2022

³The change of the output is not proportional to the change of the input ≥ ≥ ≥ <

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

3The change of the output is not proportional to the change of the input ≥ ✓ ९०

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

Let us see

³The change of the output is not proportional to the change of the input ≥ ✓ ०००

A better activation function

Step function:
$$f(\vec{x}) = \begin{cases} 1 & \text{if } \sum_{i=0}^{n} x_i w_i > \text{threshold} \\ 0 & \text{otherwise} \end{cases}$$

Sigmoid function: non-linear³ and continuously differentiable

$$S(x) = \frac{1}{1 + e^{-x}} \tag{1}$$

■ Let us see

Non-linear \rightarrow model non-linear relationships Continuously differentiable \rightarrow partial derivatives wrt various variables to update the weights

Differentiating to adjust

Squared error (in (?, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Differentiating to adjust

Squared error (in (?, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Differentiating to adjust

Squared error (in (?, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
(4)

Differentiating to adjust

Squared error (in (?, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
 (4)

With (4) we can find the derivative of the actfunct \forall neuron wrt its input.

Differentiating to adjust

Squared error (in (?, p. 171) they say this is MSE; wrong)

$$SE = (y - f(x))^2 \tag{2}$$

Mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y - f(x))^{2}$$
 (3)

Calculus chain rule

$$f(g(x))' = F'(x) = f'(g(x))g'(x)$$
 (4)

With (4) we can find the derivative of the actfunct \forall neuron wrt its input. **Plain words**: find the contribution of a weight to the error and adjust it! (no further math)

 \sim Gradient descent: minimising the error

Convex error curve

 \sim Gradient descent: minimising the error

Initial random, weight #1

Weight 1

Weight 1

Non-convex error curve

Batch learning

- Aggregate the error for the batch
- Update the weight at the end

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet o more likely to make it to the global minimum

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet ightarrow more likely to make it to the global minimum

Mini-batch

- Much smaller batch, combining the best of the two worlds
- ullet o Fast as batch, resilient as stochastic gradient descent

Batch learning

- Aggregate the error for the batch
- Update the weight at the end
- ullet ightarrow hard to find global minimum

Stochastic gradient descent

- Look at the error for each single instance
- Update the weights right away
- ullet ightarrow more likely to make it to the global minimum

Mini-batch

- Much smaller batch, combining the best of the two worlds
- ullet o Fast as batch, resilient as stochastic gradient descent

Important parameter: learning rate α

A parameter to define at what extent should we "correct" the error

Keras

Some Available Libraries

There are many high- and low-level libraries in many languages

PyTorch

Community-driven; https://pytorch.org/

Theano

MILA (UdeM); www.deeplearning.net/software/theano/4

TensorFlow

Google Brain; https://www.tensorflow.org/

Others

Some Available Libraries

There are many high- and low-level libraries in many languages

• PyTorch
Community-driven; https://pytorch.org/

Theano
 MILA (UdeM); www.deeplearning.net/software/theano/⁴

• TensorFlow Google Brain; https://www.tensorflow.org/

Others

We will use **Keras**; https://keras.io/

⁴Non active

What is Keras

High-level wrapper with an accessible API for Python

What is Keras

- High-level wrapper with an accessible API for Python
- Gives access to three alternative backends
 - ► Theano
 - ▶ TensorFlow
 - ► CNTK (MS)

input		output
0	0	0
0	1	1
1	0	1
1	1	0

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ► 30 parameters

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ► 30 parameters
 - $\blacktriangleright \ 2\times 10 \rightarrow 20$

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ▶ 30 parameters
 - $\blacktriangleright \ 2\times 10 \rightarrow 20$
 - ▶ But we also have the bias! That's 10 more weights
- Second dense layer

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ▶ 30 parameters
 - $\blacktriangleright \ 2\times 10 \rightarrow 20$
 - ▶ But we also have the bias! That's 10 more weights
- Second dense layer
 - ▶ 10 inputs, 1 neuron
 - ▶ 11 parameters

Logical exclusive OR in Keras

inp	out	output
0	0	0
0	1	1
1	0	1
1	1	0

- First dense layer
 - ▶ 2 inputs, 10 neurons
 - ► 30 parameters
 - $\blacktriangleright \ 2\times 10 \rightarrow 20$
 - ▶ But we also have the bias! That's 10 more weights
- Second dense layer
 - ▶ 10 inputs, 1 neuron
 - ► 11 parameters

Now we can compile the model

Alberto Barrón-Cedeño (DIT-UniBO)

Some Guidelines

17 / 21

Design Decisions Activation functions

Sigmoid

RelU Rectified linear unit (and variations) tanh Hyperbolic tangent

Activation functions

Sigmoid

RelU Rectified linear unit (and variations)

tanh Hyperbolic tangent

Activation functions

- Sigmoid
- RelU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Activation functions

- Sigmoid
- RelU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Dropout

 Ignore randomly-chosen weights in a training pass to prevent overfitting

Activation functions

- Sigmoid
- RelU (rectified linear unit)
- tanh (hyperbolic tangent)

Learning rate

- Choosing one in advance
- Use momentum to perform dynamic adjustments

Dropout

 Ignore randomly-chosen weights in a training pass to prevent overfitting

Regularisation

 Dampen a weight from growing/shrinking too far from the rest to prevent overfitting

Example House classification.

Input number of bedrooms, last selling price
Output Likelihood of selling
Vector input_vec = [2, 90000]

Example House classification.

Input number of bedrooms, last selling price
Output Likelihood of selling
Vector input_vec = [2, 90000]

All input dimensions should have comparable values

Ideally, all features should be in the range $\left[-1,1\right]$ or $\left[0,1\right]$

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [2, 90000]

All input dimensions should have comparable values

Ideally, all features should be in the range $\left[-1,1\right]$ or $\left[0,1\right]$

Typical normalisation: mean normalization, feature scaling, coefficient of variation

Example House classification.

Input number of bedrooms, last selling price

Output Likelihood of selling

Vector input_vec = [2, 90000]

All input dimensions should have comparable values

Ideally, all features should be in the range [-1,1] or [0,1]

Typical normalisation: mean normalization, feature scaling, coefficient of variation

NLP uses TF-IDF, one-hot encoding, word2vec (already normalised!)

References

Kandel, I. and M. Castelli

2020. Transfer learning with convolutional neural networks for diabetic retinopathy image classification. a review. *Applied Sciences*, 10(6).

Lane, H., C. Howard, and H. Hapkem

2019. *Natural Language Processing in Action*. Shelter Island, NY: Manning Publication Co.