Explicación lema de posets

Agustín Curto Francisco Nievas

> Lógica FaMAF - UNC

> > 2017

Probaremos el siguiente lema:

Lemma

Sean (P, \leq) y (P', \leq') posets. Supongamos que f es un isomorfismo de (P, \leq) en (P', \leq') , entonces para $a, b \in P$, tenemos que $a \prec b$ si y solo si $f(a) \prec' f(b)$.

Recordemos, que por definición de $<: a < b \Leftrightarrow a \le b$ y $a \ne b$

Antes de comenzar, enunciaremos y probaremos lo siguiente

$$a < b \Rightarrow f(a) <' f(b)$$
 (†)

Probaremos el siguiente lema:

Lemma

Sean (P, \leq) y (P', \leq') posets. Supongamos que f es un isomorfismo de (P, \leq) en (P', \leq') , entonces para $a, b \in P$, tenemos que $a \prec b$ si y solo si $f(a) \prec' f(b)$.

Recordemos, que por definición de $<: a < b \Leftrightarrow a \le b$ y $a \ne b$

Antes de comenzar, enunciaremos y probaremos lo siguiente

$$a < b \Rightarrow f(a) <' f(b)$$
 (†)

Probaremos el siguiente lema:

Lemma

Sean (P, \leq) y (P', \leq') posets. Supongamos que f es un isomorfismo de (P, \leq) en (P', \leq') , entonces para $a, b \in P$, tenemos que $a \prec b$ si y solo si $f(a) \prec' f(b)$.

Recordemos, que por definición de $<: a < b \Leftrightarrow a \le b$ y $a \ne b$

Antes de comenzar, enunciaremos y probaremos lo siguiente:

$$a < b \Rightarrow f(a) <' f(b)$$
 (†)

Probaremos el siguiente lema:

Lemma

Sean (P, \leq) y (P', \leq') posets. Supongamos que f es un isomorfismo de (P, \leq) en (P', \leq') , entonces para $a, b \in P$, tenemos que $a \prec b$ si y solo si $f(a) \prec' f(b)$.

Recordemos, que por definición de $<: a < b \Leftrightarrow a \le b$ y $a \ne b$

Antes de comenzar, enunciaremos y probaremos lo siguiente:

$$a < b \Rightarrow f(a) <' f(b)$$
 (†)

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

Proof

Recordemos que por definición, $x \prec y$ en un poset $(P, \leq) \Leftrightarrow x < y$ y $\nexists z$ tal que x < z < y.

 \Rightarrow Supongamos $a \prec b$, veamos que $f(a) \prec' f(b)$. Debemos probar entonces:

- 1) f(a) <' f(b)
- 2) $\nexists z'$ tal que f(a) <' z' <' f(b)

- i) a < b
- ii) $\nexists z$ tal que x < z < y
- 1) Por la observación (†) y (i), este primer punto se cumple.

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple también $f(a) \prec' f(b)$.

 \leftarrow Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$.

Ya que $f^{-1}:(P',\leq') o (P,\leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$

$$a \prec b$$

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple también $f(a) \prec' f(b)$.

 $\sqsubseteq \subseteq$ Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$. Ya que $f^{-1}: (P', \leq') \to (P, \leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$

$$a \prec b$$

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple tambiér f(a) <' f(b)

 $\sqsubseteq \subseteq$ Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$. Ya que $f^{-1}: (P', \leq') \to (P, \leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$

$$a \prec b$$

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple también $f(a) \prec' f(b)$.

 $\sqsubseteq \subseteq$ Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$. Ya que $f^{-1}: (P', \leq') \to (P, \leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple también $f(a) \prec' f(b)$.

 \leftarrow Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$.

Ya que $f^{-1}:(P',\leq')\to(P,\leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$

2) Supongamos que $\exists z'$ tal que f(a) <' z' <' f(b). Luego, nuevamente utilizando (†), tenemos:

$$f^{-1}(f(a)) < f^{-1}(z') < f^{-1}(f(b))$$

 $a < f^{-1}(z') < b$

Lo cual, contradice (ii). El absurdo vino de suponer que $\exists z'$ tal que f(a) <' z' <' f(b), por lo tanto $\nexists z'$ tal que f(a) <' z' <' f(b). Finalmente, dado que se cumplen los puntos 1) y 2), se cumple también $f(a) \prec' f(b)$.

= Supongamos $f(a) \prec' f(b)$, veamos que $a \prec b$.

 $\overline{\mathsf{Ya}}\ \mathsf{que}\ f^{-1}: (P',\leq') \to (P,\leq)$ es isomorfismo, por lo ya visto tenemos:

$$f^{-1}(f(a)) \prec f^{-1}(f(b))$$
$$a \prec b$$