

2T839A/ИМ

переключательный мощный высоковольтный n-p-n транзистор

Назначение

Кремниевый эпитаксиально-планарный биполярный транзистор. Предназначен для использования в схемах вторичных источников электропитания, высоковольтных ключевых схемах, а также других узлах и блоках аппаратуры специального назначения.

Особенности

- Категория качества ВП
- Напряжение коллектор-база 1500 В
- Ток коллектора 10 А
- Мощность коллектора 65 Вт

• от - 60 до + 125 °C

Обозначение технических условий

• AEЯР.432140.254 ТУ

Корпусное исполнение

• металлостеклянный корпус КТ-9 (ТО-3)

Назначение выводов

Вывод	Назначение	
Nº1	Эмиттер	
Nº2	База	
Nº3	Коллектор	

Таблица 1. Электрические параметры транзистора при приемке и поставке

Наименование параметра, единица измерения (режим измерения)	Буквенное обозначение параметра	Норма параметра		Тем- пература среды,
		не менее	не более	корпуса, °С
Обратный ток коллектора, мА (U _{кБ} = 1 500 В)	I _{KБO}	_	0,2	25±10
Обратный ток коллектора, мА (U _{КБ} = 1 100 В)	І _{кбо}	_	1,0	125±5
Обратный ток коллектора, мА (U _{КБ} = 1 100 В)	І _{кбО}	_	1,0	-60±3
Обратный ток эмиттера, мА (U _{ЭБ} = 5 В)	I _{ЭБО}	_	10	25±10
Статический коэффициент передачи тока ($U_{K\Im}$ = 10 B, I_K = 4 A, $t_{\text{\tiny M}} \le 300$ мкс, $Q \ge 50$)*	h ₂₁₉	5	_	25±10
Граничное напряжение, В (I _K = 100 мА, L = 40 мГн)	U _{кэо гр}	700	_	25±10
Время спада, мкс ($I_K = 5$ A, $I_{B1} = I_{B2} = 1.8$ A, $U_{K3} = 500$ B, $t_{M1} = t_{M2} = 50$ мкс)	t _{cn}	_	1,5	25±10

^{*} В схеме с общей базой: U_{KB} = 9,0 B, I_{9} = 4,8 A.

Таблица 2. Справочные значения основных параметров при $T_{\kappa op} = (25\pm 10)$ °C

Наименование параметра,	Буквенное	Значение параметра		
единица измерения (режим измерения)	обозначение	Мини-	Типо-	Макси-
единица измерения (режим измерения)	параметра	мальное	вое	мальное
Статический коэффициент передачи тока (U $_{\text{K3}}$ = 10 B, I $_{\text{K}}$ = 4 A, t $_{\text{u}} \leq$ 300 мкс, Q \geq 50)*	h ₂₁₉	5	_	_
Граничное напряжение, В (I _K = 100 мА, L = 40 мГн)	U _{K90 гр}	700	-	_
Обратный ток эмиттера, мА (U _{ЭБ} = 5 B)	I _{ЭБО}	_	-	10
Обратный ток коллектора мА (U _{КБ} = 1 500 B)	I _{KБО}	_	_	0,2
Обратный ток коллектор-эмиттер, мА (U _{K3} = 300 B)	I _{KЭR}	_	_	1,0
Время спада, мкс (I_K = 5 A, U_{K9} = 500 B, I_{E1} = I_{E2} = 1,8 A, I_{M1} = I_{M2} = 50 мкс)	t _{en}	_	_	1,5

^{*} В схеме с общей базой: U_{KB} = 9,0 B, I_{\Im} = 4,8 A.

Таблица 3. Электрические параметры транзистора, изменяющиеся в течение минимальной наработки

Наименование параметра,	Буквенное обозначение	Норма па	араметра	Температура среды,
единица измерения (режим измерения)	параметра	не менее	не более	корпуса, °С
Статический коэффициент передачи тока (U_{K9} = 10 B, I_{K} = 4 A, $t_{\mu} \leq$ 300 мкс, $Q \geq$ 50)	h ₂₁₉	3	-	25±10

Таблица 4. Электрические параметры транзистора, изменяющиеся в процессе и после воздействия специальных факторов

паименование параметра,	Буквенное обозначение	Норма параметра		Температура среды,	
единица измерения (режим измерения)	параметра	не менее	не более	корпуса, °С	
Обратный ток коллектора (U _{КБ} = 1500 B), мА	I _{KБO}	-	3	25±10	
Статический коэффициент передачи тока (U_{K3} = 10 B, I_{K} = 4 A, $t_{u} \leq 300$ мкс, $Q \geq 50$)	h ₂₁₉	1,5		25±10	

Таблица 5. Предельно допустимые электрические режимы эксплуатации транзистора

Наименование параметра, единица измерения (режим и условия измерения)	Буквенное обозна- чение параметра	Норма параметра
Максимально допустимое постоянное напряжение коллектор-база, В *	U _{KБ max}	1 500
Максимально допустимое постоянное напряжение коллектор-эмиттер, В (R_{95} = 10 Ом, длительность нарастания импульса должна быть не менее 3 мкс) *	U _{KЭR max}	1 500
Максимально допустимое постоянное напряжение база-эмиттер, В	U _{ЭБ тах}	5
Максимально допустимый постоянный ток коллектора, А	I _{K max}	10
Максимально допустимый импульсный ток коллектора, А	I _{K, и max}	10
Максимально допустимая постоянная рассеиваемая мощность коллектора, Вт (при T _{кор} от минус 60 до 25 °C) **	P _{K max}	65
Максимально допустимая температура перехода, °С	Т _{пер тах}	150
Тепловое сопротивление переход-корпус, °С/Вт	R _{⊛ пер-кор}	1,92

^{*} Примечание: В диапазоне температур корпуса от минус 40 до 75 °C. При снижении температуры корпуса до минус 60 и повышении до 125 °C напряжение линейно снижается до 1 100 В.

 $P_{\text{KMAX}} = (T_{\text{ПЕР MAX}} - T_{\text{KOP}}) / R_{\Theta \text{ ПЕР-КОР}}$

^{**} Примечание: При температуре корпуса от 25 до 125 °C $P_{K max}$ определяют по формуле:

Конструктивные требования

Масса транзистора не более 20 г.

Показатель герметичности транзистора не более 5 ⋅10 ⁴ л⋅мкм рт.ст/с.

Значение растягивающей силы, направленной вдоль оси вывода, не более 20 (2,00) Н (кгс).

Минимальное расстояние от корпуса до места пайки выводов 5 мм.

Требования к электрическим параметрам и режимам эксплуатации

В процессе и после воздействия специальных факторов 7.И с характеристикой 7. H_6 допускается временная потеря работоспособности. По истечении 50 мс от начала воздействия работоспособность восстанавливается. Критериями работоспособности являются параметры I_{KEO} , I_{CEO} , I_{CE

Стойкость транзистора к воздействию статического электричества по VI степени жесткости ОСТ 11 073.062. Допустимое значение статического потенциала 2 000 В.

Требования по стойкости к внешним воздействующим факторам

Транзистор должен быть стойким к воздействию механических, климатических и биологических факторов и специальных сред по группе – 6У ГОСТ РВ 20.39.414.1 и ГОСТ В 28146 со следующими уточнениями:

- механический удар одиночного действия с пиковым ударным ускорением 15 000 м⋅с⁻² (1 500 g) и длительностью действия от 0,1 до 2 мс;
- механический удар многократного действия с пиковым ударным ускорением 1 500 м⋅с⁻² (150 g) и длительностью действия от 1 до 5 мс;
- линейное ускорение 5 000 м·с⁻² (500 g);
- акустический шум в диапазоне частот от 50 до 10 000 Гц с уровнем звукового давления (относительно 2·10⁻⁵ Па) 170 дБ;
- атмосферное пониженное давление 1,3 ·10⁻⁴ (10⁻⁶) Па (мм рт. ст);
- повышенная рабочая и предельная температура среды (корпуса) 125 °C;
- повышенная относительная влажность воздуха 98 % при температуре 35 °C.

Значения характеристик $7.\text{M}_1$, $7.\text{C}_4$ — по группе исполнения 1Y_{C} ; $7.\text{C}_1$ — 1Y_{C} , $7.\text{M}_6$ — 4Y_{C} ГОСТ РВ 20.39.414.2. Остальные требования по стойкости к воздействию специальных факторов к транзистору не предъявляются.

Уровень бессбойной работы транзистора при воздействии специальных факторов 7.И с характеристикой 7.И $_{6}$ (по критерию I_{KEO} ≤ 3 мA) составляет (2,8 х 10 $^{-5}$) х 1У $_{C}$.

Требования надежности

Минимальная наработка транзистора в режимах $T_{\text{н.м.}}$ и условиях, допускаемых ТУ, должна быть не менее 25 000 ч, а в облегченных режимах ($P_{\text{K max}}$ = 0,7 $P_{\text{K max}}$; $T_{\text{кор}}$ = 100 °C, T_{nep} = 125 °C) – 50 000 ч.

Гамма - процентный срок сохраняемости $T_{c\gamma}$ транзистора при γ = 99,5 % при хранении в упаковке изготовителя в условиях отапливаемых хранилищ, хранилищ с кондиционированием воздуха по ГОСТ В 9.003, а также вмонтированных в защищенную аппаратуру или находящихся в защищенном комплекте ЗИП во всех местах хранения, должен быть не менее 25 лет.

Значения $T_{c\gamma}$ в условиях, отличных от указанных в зависимости от мест хранения приведены в таблице 2 ГОСТ В 28146.

Указания по эксплуатации

Указания по применению и эксплуатации – по ГОСТ В 28146, ОСТ 11 336.907.0 и РД 11 336.907.8 с дополнениями и уточнениями, приведенными в настоящем разделе.

Основное назначение транзистора – использование в схемах источников питания, высоковольтных ключевых схемах и других схемах аппаратуры специального назначения.

Значение собственной резонансной частоты элементов конструкции транзистора 10,3 кГц.

Допустимое значение статического потенциала 2 000 В.

95-процентный ресурс транзистора T_v в режимах и условиях, допускаемых ТУ, 50 000 ч.

95-процентный ресурс транзистора Т_v в облегченных режимах и условиях – 100 000 ч.

Транзистор пригоден для монтажа в аппаратуре методом пайки паяльником.

Температура припоя – не выше 265 °C. Время пайки – не более 4 с. Время лужения – 2 с.

Допустимое число перепаек выводов транзистора при проведении монтажных (сборочных) операций не более трех.

Расстояние от корпуса до места лужения и пайки (по длине вывода) не менее 5 мм.

При распайке температура корпуса не должна превышать 125 °C. За температуру корпуса принимается температура любой точки основания транзистора диаметром не более 19 мм со стороны опорной плоскости.

Допускаются другие режимы и условия пайки при обеспечении сохранения целостности конструкции и надежности транзистора, что должно подтверждаться проведением ресурсных испытаний на предприятии-потребителе.

Не допускается прикладывать к выводам вращающих и изгибающих усилий.

Транзистор необходимо применять с теплоотводом. Крепление транзистора к теплоотводу должно обеспечивать надежный тепловой контакт.

Не рекомендуется эксплуатация транзистора при рабочих токах, соизмеримых с неуправляемыми обратными токами во всем диапазоне температур.

При конструировании схем следует учитывать возможность самовозбуждения за счет паразитных связей.

Для транзистора, смонтированного в аппаратуру, максимально допустимую постоянную рассеиваемую мощность рассчитывают по формуле:

$$P_{\text{Kmax}} = (T_{\text{пер.max}} - T_{\text{тепл}}) / (R_{\Theta \text{ пер-кор}} + R_{\Theta \text{ кор} - \text{тепл}})$$

где $R_{Y \text{ кор-тепл}}$ – тепловое сопротивление корпус - теплоотвод; $T_{\text{тепл}}$ – температура на теплоотводе.

Допускается применение транзистора, изготовленного в обычном климатическом исполнении, в аппаратуре, предназначенной для эксплуатации во всех климатических условиях, при покрытии транзистора непосредственно в аппаратуре лаком (в 3 – 4 слоя) марки УР-231 ТУ 6-21-14 или ЭП-730 ГОСТ 20824 с последующей сушкой каждого слоя.

Разморы	M	1M
Размеры	min	max
А	_	39.15
В	_	26.5
С	_	10.2
D	0.98	1.05
E	1.52	1.6
G	10.8	11.2
K	11	13
	16.7	17.1
N N	19.75	20.05
Ü	29.9	30.1
V	4.1	4.22
0	5.0	5.08

ОАО "ИНТЕГРАЛ", г. Минск, Республика Беларусь

Внимание! Данная техническая спецификация является ознакомительной и не может заменить собой учтенный экземпляр технических условий или этикетку на изделие.

ОАО "ИНТЕГРАЛ" сохраняет за собой право вносить изменения в описания технических характеристик изделий без предварительного уведомления.

Изображения корпусов приводятся для иллюстрации. Ссылки на зарубежные прототипы не подразумевают полного совпадения конструкции и/или технологии. Изделие ОАО "ИНТЕГРАЛ" чаще всего является ближайшим или функциональным аналогом.

Контактная информация предприятия доступна на сайте:

http://www.integral.by