2 RG&TC-Code

```
In[54]:= xCoord = \{t, \chi, \theta, \varphi\};
               g = {
                      \{-xy, 0, 0, 0\},\
                      \{0, xyt, 0, 0\},\
                      \{0, 0, z, 0\},\
                      {0, 0, 0, xt}
               RGtensors[g, xCoord]
              gdd \; = \; \begin{pmatrix} -x \, y & 0 & 0 & 0 \\ 0 & t \, x \, y & 0 & 0 \\ 0 & 0 & z & 0 \\ 0 & 0 & 0 & t \, x \end{pmatrix}
               LineElement = -x y d[t]^2 + z d[\theta]^2 + t x d[\varphi]^2 + t x y d[\chi]^2
             gUU = \begin{pmatrix} -\frac{1}{xy} & 0 & 0 & 0 \\ 0 & \frac{1}{txy} & 0 & 0 \\ 0 & 0 & \frac{1}{z} & 0 \\ 0 & 0 & 0 & \frac{1}{tx} \end{pmatrix}
               gUU computed in 0. sec
               Gamma computed in 0. sec
               Riemann(dddd) computed in 0. sec
               Riemann(Uddd) computed in 0. sec
               Ricci computed in 0. sec
              Weyl computed in 0. sec
               Einstein computed in 0. sec
Out[0]=
              All tasks completed in 0.
  In[57]:= (* Ricci Scalar *)
  In[58]:= R
Out[@]=
  In[59]:= (* Einstein Tensor *)
  In[60]:= EUd
Out[0]=
               \left\{ \left\{ -\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\emptyset,\,\emptyset,\,\emptyset\right\},\, \left\{ \emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\emptyset,\,\emptyset\right\},\, \left\{ \emptyset,\,\emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\,,\,\theta\right\},\, \left\{ \emptyset,\,\emptyset,\,\emptyset,\,\frac{1}{4\,\mathsf{t}^2\,\mathsf{x}\,\mathsf{v}}\right\} \right\}
  In[61]:= (* Christoffel Symbol *)
```

In[62]:= GUdd // MatrixForm

Out[•]//MatrixForm=

$$\begin{pmatrix}
\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ \frac{1}{2} \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ \frac{1}{2y} \end{pmatrix} \\
\begin{pmatrix} 0 \\ \frac{1}{2t} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 1 \\ 2t \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} & \begin{pmatrix} 0$$

In[63]:= Part[GUdd, 1, 2, 2] Part[GUdd, 2, 2, 1]

Out[@]= 1 2

Out[0]= 1

In[65]:= (* Riemann tensor *)

```
In[66]:= RUddd
Out[0]=
            \Big\{ \big\{ \{ \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\} \}, 
               \left\{\left\{0,-\frac{1}{4+},0,0\right\},\left\{\frac{1}{4+},0,0,0\right\},\left\{0,0,0,0\right\},\left\{0,0,0,0\right\}\right\}
               \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
               \left\{\left\{0,0,0,0,-\frac{1}{4+v}\right\},\left\{0,0,0,0,0\right\},\left\{0,0,0,0,0\right\},\left\{\frac{1}{4+v},0,0,0\right\}\right\}\right\}
              \left\{\left\{\left\{0,-\frac{1}{4+2},0,0\right\},\left\{\frac{1}{4+2},0,0,0\right\},\left\{0,0,0,0\right\},\left\{0,0,0,0\right\}\right\}\right\}
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
               \left\{ \{\emptyset, \, \emptyset, \, \emptyset, \, \emptyset\}, \, \left\{\emptyset, \, \emptyset, \, \emptyset, \, \frac{1}{4 \, t \, v} \right\}, \, \left\{\emptyset, \, \emptyset, \, \emptyset, \, \emptyset\}, \, \left\{\emptyset, \, -\frac{1}{4 \, t \, v}, \, \emptyset, \, \emptyset\right\} \right\} \right\}
              \{\{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\}\},
                \{\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\}\}
              \left\{\left\{\left\{0,0,0,0,-\frac{1}{4+2}\right\},\left\{0,0,0,0\right\},\left\{0,0,0,0\right\},\left\{\frac{1}{4+2},0,0,0\right\}\right\}\right\}
               \left\{\{0,0,0,0,0\},\left\{0,0,0,-\frac{1}{4+}\right\},\left\{0,0,0,0,0\right\},\left\{0,\frac{1}{4+},0,0\right\}\right\}
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},
                \{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\}\}\}
  In[67]:= (* Ricci Tensor *)
  In[68]:= Rdd
Out[0]=
            \left\{ \left\{ \frac{1}{2+2}, 0, 0, 0 \right\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\}, \{0, 0, 0, 0\} \right\}
  In[69]:= Part[Rdd, 1, 1]
Out[0]=
```

2. Maximally Symmetric Spaces

```
In[70]:= xCoord = \{r, \theta, \phi\};
         g = \{\{e^{(2*b[r])}, 0, 0\},\
            \{0, r^2, 0\},\
            \{0, 0, r^2 * (Sin[\theta])^2\}
Out[0]=
         \{\{e^{2b[r]}, 0, 0\}, \{0, r^2, 0\}, \{0, 0, r^2 Sin[\theta]^2\}\}
```

$$\{\{e^{2b[r]}, 0, 0\}, \{0, r^2, 0\}, \{0, 0, r^2 Sin[\theta]^2\}\}$$

In[73]:= RGtensors[g, xCoord]

$$gdd = \begin{pmatrix} e^{2b[r]} & 0 & 0 \\ 0 & r^2 & 0 \\ 0 & 0 & r^2 Sin[\theta]^2 \end{pmatrix}$$

LineElement = $e^{2b[r]}d[r]^2 + r^2d[\theta]^2 + r^2d[\varphi]^2Sin[\theta]^2$

$$gUU \ = \ \begin{pmatrix} e^{-2\,b\,[\,r\,]} & 0 & 0 \\ 0 & \frac{1}{r^2} & 0 \\ 0 & 0 & \frac{Csc\,[\,\theta\,]^{\,2}}{r^2} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Riemann(Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Testing for 3-dim conformal flatness...

••• Outer: Heads Times and List at positions 3 and 2 are expected to be the same.

Einstein computed in 0. sec

Out[0]=

All tasks completed in 0.

In[74]:= **R**

Out[0]=

$$\frac{2\,\,e^{-2\,b\,[\,r\,]}\,\,\left(-\,1\,+\,e^{2\,b\,[\,r\,]}\,\,+\,2\,\,r\,Log\,[\,e\,]\,\,b'\,[\,r\,]\,\right)}{r^2}$$

In[75]:= **Rdd**

Out[0]=

$$\begin{split} &\left\{\left\{\frac{2\,\text{Log}\,[\,e\,]\,\,b'\,[\,r\,]}{r}\,\text{, 0, 0}\right\},\,\left\{\text{0, e}^{-2\,b\,[\,r\,]}\,\left(-\,\text{1}\,+\,e^{2\,b\,[\,r\,]}\,+\,r\,\text{Log}\,[\,e\,]\,\,b'\,[\,r\,]\,\right)\,\text{, 0}\right\}\text{,} \\ &\left\{\text{0, 0, e}^{-2\,b\,[\,r\,]}\,\,\text{Sin}\,[\,\theta\,]^{\,2}\,\left(-\,\text{1}\,+\,e^{2\,b\,[\,r\,]}\,+\,r\,\text{Log}\,[\,e\,]\,\,b'\,[\,r\,]\,\right)\,\right\} \right\} \end{split}$$

In[76]:= FullSimplify[Rdd]

$$\left\{ \left\{ \frac{2 \, \mathsf{Log}\,[\,e\,] \, \, \mathsf{b'}\,[\,r\,]}{\mathsf{r}} \, , \, \emptyset \, , \, \emptyset \right\}, \, \left\{ \emptyset \, , \, 1 + \mathsf{e}^{-2 \, \mathsf{b}\,[\,r\,]} \, \, (-1 + \mathsf{r}\, \mathsf{Log}\,[\,e\,] \, \, \mathsf{b'}\,[\,r\,] \,) \, , \, \emptyset \right\}, \\ \left\{ \emptyset \, , \, \emptyset \, , \, \mathsf{Sin}\,[\,\Theta\,]^{\,2} \, \left(1 + \mathsf{e}^{-2 \, \mathsf{b}\,[\,r\,]} \, \, \left(-1 + \mathsf{r}\, \mathsf{Log}\,[\,e\,] \, \, \mathsf{b'}\,[\,r\,] \, \right) \, \right) \right\} \right\}$$

$$In[77]:=$$
 DSolve[b'[r] - k * r * Exp[2 * b[r]] == 0, b[r], r]

... Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information.

Out[0]=

$$\left\{ \left\{ b \left[r \right] \right. \right. \rightarrow \left. -\frac{1}{2} \left. Log \left[2 \left(-\frac{k \, r^2}{2} \, - \mathbb{c}_1 \right) \right] \right\} \right\}$$

In[78]:= **R**

Out[0]=

$$\frac{2\,e^{-2\,b\,[\,r\,]}\,\left(-\,1\,+\,e^{2\,b\,[\,r\,]}\,+\,2\,\,r\,Log\,[\,e\,]\,\,b'\,[\,r\,]\,\right)}{r^2}$$

In[79]:= **R / 6**

Out[0]=

$$\frac{e^{-2\,b\,[\,r\,]}\,\left(-\,1\,+\,e^{2\,b\,[\,r\,]}\,+\,2\,\,r\,Log\,[\,e\,]\,\,b'\,[\,r\,]\,\right)}{3\,\,r^2}$$

In[80]:= DSolve
$$\left[p'[r] = \frac{1}{\sqrt{1-k \star r^2}}, p[r], r\right]$$

Out[0]=

$$\left\{ \left\{ p \left[\, r\,\right] \,\rightarrow\, \varepsilon_{1} + \frac{k\, Log \left[\, -\, \sqrt{-\,k} \,\, r + \, \sqrt{1-k\,r^{2}}\,\,\right]}{\left(\, -\, k\,\right)^{\,3/2}}\, \right\} \right\}$$

In[81]:= Integrate
$$\left[\frac{1}{\sqrt{1-k+r^2}}, r\right]$$

Out[0]=

$$\frac{k \, Log \left[-\sqrt{-k} \, r + \sqrt{1-k \, r^2} \, \right]}{\left(-k \right)^{3/2}}$$

In[82]:= Solve
$$\left[p = \frac{k \log \left[-\sqrt{-k} r + \sqrt{1-k r^2} \right]}{(-k)^{3/2}}, r \right]$$

••• Solve: There may be values of the parameters for which some or all solutions are not valid.

Out[0]=

$$\left\{\left\{r \rightarrow -\frac{\text{i} \ \text{e}^{-\text{i} \ \sqrt{k} \ p} \ \left(-1 + \text{e}^{2 \ \text{i} \ \sqrt{k} \ p}\right)}{2 \ \sqrt{k}}\right\}\right\}$$

In[83]:= FullSimplify
$$\left[\left\{\left\{r \rightarrow -\frac{i \left(e^{-i \sqrt{k} p} \left(-1 + e^{2i \sqrt{k} p}\right)\right)}{2 \sqrt{k}}\right\}\right\}\right]$$

$$\Big\{ \Big\{ r \to \frac{\text{Sin} \big[\sqrt{k} \ p \big]}{\sqrt{k}} \Big\} \Big\}$$

In[84]:= DSolve
$$\left[p'[r] = \frac{1}{\sqrt[3]{1-k*r^2}}, p[r], r\right]$$

Out[0]=

$$\Big\{ \Big\{ p \, [\, r \,] \, \rightarrow \varepsilon_1 + \frac{k \, \text{Log} \Big[- \sqrt{-k} \, \, r + \sqrt{1 - k \, r^2} \, \Big]}{\left(- k \right)^{\, 3/2}} \, \Big\} \Big\}$$

3. The Geometry of Spacetime

$$_{\text{In[85]:=}} \text{ Integrate} \Big[\frac{1}{\sqrt{1-k \star r^2}} \text{ , } r \Big]$$

Out[0]=

$$\frac{k \, Log \left[-\sqrt{-k} \, r + \sqrt{1 - k \, r^2} \, \right]}{\left(-k \right)^{3/2}}$$

In[86]:= Solve
$$\left[p = \frac{k \log \left[-\sqrt{-k} r + \sqrt{1 - k r^2} \right]}{(-k)^{3/2}}, r \right]$$

••• Solve: There may be values of the parameters for which some or all solutions are not valid.

Out[0]=

$$\left\{ \left\{ r \, \rightarrow \, - \, \frac{\, \mathrm{i} \, \, \, \mathrm{e}^{-\mathrm{i} \, \, \sqrt{k} \, \, p} \, \, \left(-1 + \, \mathrm{e}^{2 \, \, \mathrm{i} \, \, \sqrt{k} \, \, p} \right)}{2 \, \, \sqrt{k}} \, \, \right\} \right\}$$

In [87]:= FullSimplify
$$\left[-\frac{i e^{-i \sqrt{k} p} \left(-1 + e^{2i \sqrt{k} p}\right)}{2 \sqrt{k}} \right]$$

Out[0]=

$$\frac{\text{Sin}\big[\,\sqrt{k}\,\,p\,\big]}{\sqrt{k}}$$

Christoffel Symbols for k = 1

In[88]:= **xCoord** = {**t**,
$$\chi$$
, θ , φ }
Out[*]=
{**t**, χ , θ , φ }

$$ln[89]:= g = \{\{-1, 0, 0, 0\}, \{0, q[t], 0, 0\}, \{0, 0, q[t] * Sin[\chi]^2, 0\}, \{0, 0, 0, q[t] * Sin[\chi]^2\}\}$$

Out[0]=

$$\left\{ \{-1,\,0,\,0,\,0\}\,,\,\{0,\,q[t]\,,\,0,\,0\}\,,\,\left\{0,\,0,\,q[t]\,\,\text{Sin}[\chi]^{\,2},\,0\right\},\,\left\{0,\,0,\,0,\,q[t]\,\,\text{Sin}[\chi]^{\,2}\right\} \right\}$$

In[90]:= RGtensors[g, xCoord]

$$gdd = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & q[t] & 0 & 0 \\ 0 & 0 & q[t] \sin[\chi]^2 & 0 \\ 0 & 0 & 0 & q[t] \sin[\chi]^2 \end{pmatrix}$$

 $\label{eq:lineElement} \text{LineElement} \ = \ -\mathsf{d}\left[\mathsf{t}\right]^2 + \mathsf{d}\left[\chi\right]^2 \, \mathsf{q}\left[\mathsf{t}\right] \, + \, \mathsf{d}\left[\varTheta\right]^2 \, \mathsf{q}\left[\mathsf{t}\right] \, \, \mathsf{Sin}\left[\chi\right]^2 + \, \mathsf{d}\left[\varTheta\right]^2 \, \mathsf{q}\left[\mathsf{t}\right] \, \, \mathsf{Sin}\left[\chi\right]^2$

$$gUU \ = \ \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{1}{q[t]} & 0 & 0 \\ 0 & 0 & \frac{Csc[\chi]^2}{q[t]} & 0 \\ 0 & 0 & 0 & \frac{Csc[\chi]^2}{q[t]} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Riemann(Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Einstein computed in 0. sec

Out[@]=

All tasks completed in 0.

In[91]:=

```
In[92]:= GUdd = GUdd /. \{\chi \to \chi[\lambda], \theta \to \theta'[\lambda], \varphi \to \varphi[\lambda]\};
           derivs = {t'[\lambda], \chi'[\lambda], \theta'[\lambda], \varphi'[\lambda]};
           geo1 =
               \chi''[\lambda] + Sum[Part[GUdd, 2, i, j] * derivs[i] * derivs[j], {i, 2, 4}, {j, 2, 4}];
           geo2 = \theta''[\lambda] + Sum[Part[GUdd, 3, i, j] * derivs[i] * derivs[j], {i, 2, 4}, {j, 2, 4}];
           geo3 = \varphi''[\lambda] + Sum[Part[GUdd, 4, i, j] * derivs[i]] * derivs[j]], {i, 2, 4}, {j, 2, 4}];
           sol1 = NDSolve \left[ \left\{ \text{geo1} = 0, \text{ geo2} = 0, \text{ geo3} = 0, \chi[0] = 0.2, \theta[0] = \frac{\pi}{2}, \varphi[0] = \frac{\pi}{2}, \right]
                 \chi'[0] = 0, \; \theta'[0] = 0, \; \varphi'[0] = -1 \Big\}, \; \{\chi[\lambda], \; \theta[\lambda], \; \varphi[\lambda]\}, \; \{\lambda, 0, 10\} \; \Big]
           sol2 = NDSolve \left[\left\{\text{geo1} = 0, \text{ geo2} = 0, \text{ geo3} = 0, \chi[0] = 0.2, \theta[0] = \frac{\pi}{2}, \varphi[0] = \frac{-\pi}{2}, \right]
                 \chi'[0] = 0, \; \theta'[0] = 0, \; \varphi'[0] = 1, \{\chi[\lambda], \; \theta[\lambda], \; \varphi[\lambda]\}, \; \{\lambda, 0, 10\}
           Show [
             ParametricPlot[Evaluate[\{\chi[\lambda] * Cos[\varphi[\lambda]], \chi[\lambda] * Sin[\varphi[\lambda]]\} /. sol1], {\lambda, 0, 10}],
             ParametricPlot[Evaluate[\{\chi[\lambda] * Cos[\varphi[\lambda]], \chi[\lambda] * Sin[\varphi[\lambda]]\} /. sol2], {\lambda, 0, 10}],
             PlotStyle → Orange]
Out[0]=
           \Big\{ \Big\{ \chi \, [\, \lambda \,] \, \to \, \text{InterpolatingFunction} \Big| \,
               \theta[\lambda] \rightarrow InterpolatingFunction
                                                                               Domain: {{0., 10.}}
               \varphi[\lambda] \rightarrow InterpolatingFunction
Out[0]=
           \Big\{ \Big\{ \chi \, [\, \lambda \, ] \, \to \, \text{InterpolatingFunction} \Big\}
                                                                               Domain: {{0., 10.}}
               \theta[\lambda] \rightarrow InterpolatingFunction
                                                                               Domain: {{0., 10.}}
               \varphi[\lambda] \rightarrow InterpolatingFunction
Out[0]=
            0.1
                                   0.5
                                                       1.0
```

For k = -1

In[100]:=

```
In[101]:=
           xCoord = \{t, \chi, \theta, \varphi\}
            g = \{\{-1, 0, 0, 0\}, \{0, 1, 0, 0\},\
               \{0, 0, \sinh[\chi]^2, 0\}, \{0, 0, 0, \sinh[\chi]^2 * \sin[\theta]^2\}
Out[0]=
            \{\mathsf{t}, \chi, \theta, \varphi\}
Out[0]=
            \left\{ \{-1, 0, 0, 0\}, \{0, 1, 0, 0\}, \{0, 0, \sinh[\chi]^2, 0\}, \{0, 0, 0, \sin[\theta]^2 \sinh[\chi]^2 \} \right\}
  In[@]:=
  In[0]:=
In[105]:=
            RGtensors[g, xCoord]
            gdd =
                        0 0 Sinh[\chi]^2
                      0 0 0 Sin[\theta]^2 Sinh[\chi]^2
            \mathsf{LineElement} \ = \ -\mathsf{d} \, [\, \mathsf{t} \, ]^{\, 2} \, + \, \mathsf{d} \, [\, \chi \, ]^{\, 2} \, + \, \mathsf{d} \, [\, \theta \, ]^{\, 2} \, \mathsf{Sinh} \, [\, \chi \, ]^{\, 2} \, + \, \mathsf{d} \, [\, \phi \, ]^{\, 2} \, \mathsf{Sinh} \, [\, \chi \, ]^{\, 2}
                        -1 0
                         0 1
            gUU =
                        0 0 Csch[\chi]^2
                                       0 \operatorname{Csc}[\theta]^2\operatorname{Csch}[\chi]^2
            gUU computed in 0. sec
            Gamma computed in 0. sec
            Riemann(dddd) computed in 0. sec
            Riemann(Uddd) computed in 0. sec
            Ricci computed in 0. sec
```

Weyl computed in 0. sec

In[@]:= "Aborted after 0."

Aborted after 0.

Out[0]=

Out[0]=

Einstein computed in 0. sec

All tasks completed in 0.

```
In[107]:=
            GUdd
            GUdd = GUdd /. \{\chi \to \chi[\lambda], \theta \to \theta'[\lambda], \varphi \to \varphi[\lambda]\};
            derivs = {t'[\lambda], \chi'[\lambda], \theta'[\lambda], \varphi'[\lambda]};
                \chi''[\lambda] + \mathsf{Sum}[\mathsf{Part}[\mathsf{GUdd},\ 2,\ i,\ j] * \mathsf{derivs}[\![i]\!] * \mathsf{derivs}[\![j]\!],\ \{i,\ 2,\ 4\},\ \{j,\ 2,\ 4\}];
            geo5 = \theta''[\lambda] + Sum[Part[GUdd, 3, i, j] * derivs[i] * derivs[j], \{i, 2, 4\}, \{j, 2, 4\}];
            \texttt{geo6} = \phi''[\lambda] + \texttt{Sum}[\texttt{Part}[\texttt{GUdd}, \ 4, \ i, \ j] * \texttt{derivs}[\![i]\!] * \texttt{derivs}[\![j]\!], \ \{i, \ 2, \ 4\}, \ \{j, \ 2, \ 4\}];
Out[0]=
            \{\{\{0,0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\},\{0,0,0,0\}\},\{\{0,0,0,0\}\},
               \{0, 0, 0, 0\}, \{0, 0, -Cosh[\chi] Sinh[\chi], 0\}, \{0, 0, 0, -Cosh[\chi] Sin[\theta]^2 Sinh[\chi]\}\},
              \{\{\textbf{0}, \textbf{0}, \textbf{0}, \textbf{0}\}, \{\textbf{0}, \textbf{0}, \mathsf{Coth}[\chi], \textbf{0}\}, \{\textbf{0}, \mathsf{Coth}[\chi], \textbf{0}, \textbf{0}\}, \{\textbf{0}, \textbf{0}, \textbf{0}, -\mathsf{Cos}[\theta] \mathsf{Sin}[\theta]\}\},
              \{\{0, 0, 0, 0\}, \{0, 0, 0, Coth[\chi]\}, \{0, 0, 0, Cot[\theta]\}, \{0, Coth[\chi], Cot[\theta], 0\}\}\}
```

In[0]:=

- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 0
- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 1
- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 1
- ••• General: Further output of Infinity::indet will be suppressed during this calculation.
- ••• NDSolve: Encountered non-numerical value for a derivative at $\lambda == 0$. \hat{U}

Out[0]=

NDSolve

$$\left\{ - \operatorname{Cosh}[\chi[\lambda]] \operatorname{Sinh}[\chi[\lambda]] \theta'[\lambda]^2 - \operatorname{Cosh}[\chi[\lambda]] \operatorname{Sin}[\theta'[\lambda]]^2 \operatorname{Sinh}[\chi[\lambda]] \varphi'[\lambda]^2 + \chi''[\lambda] = \emptyset, \\ - \operatorname{Cos}[\theta'[\lambda]] \operatorname{Sin}[\theta'[\lambda]] \varphi'[\lambda]^2 + 2 \operatorname{Coth}[\chi[\lambda]] \theta'[\lambda] \chi'[\lambda] + \theta''[\lambda] = \emptyset, \\ 2 \operatorname{Cot}[\theta'[\lambda]] \theta'[\lambda] \varphi'[\lambda] + 2 \operatorname{Coth}[\chi[\lambda]] \varphi'[\lambda] \chi'[\lambda] + \varphi''[\lambda] = \emptyset, \chi[\emptyset] = \emptyset.2, \theta[\emptyset] = \frac{\pi}{2}, \\ \varphi[\emptyset] = \frac{\pi}{2}, \chi'[\emptyset.2] = \emptyset, \theta'[\emptyset.2] = \emptyset, \varphi'[\emptyset] = -1 \right\}, \{\chi[\lambda], \theta[\lambda], \varphi[\lambda]\}, \{\lambda, \emptyset.2, 10\} \right]$$

- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 🕡
- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 0
- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 0
- ••• General: Further output of Infinity::indet will be suppressed during this calculation.
- ••• NDSolve: Encountered non–numerical value for a derivative at $\lambda == 0$. 0

Out[0]=

NDSolve

$$\left\{ - \operatorname{Cosh}[\chi[\lambda]] \operatorname{Sinh}[\chi[\lambda]] \theta'[\lambda]^2 - \operatorname{Cosh}[\chi[\lambda]] \operatorname{Sin}[\theta'[\lambda]]^2 \operatorname{Sinh}[\chi[\lambda]] \theta'[\lambda]^2 + \chi''[\lambda] = \emptyset, \\ - \operatorname{Cos}[\theta'[\lambda]] \operatorname{Sin}[\theta'[\lambda]] \psi'[\lambda]^2 + 2 \operatorname{Coth}[\chi[\lambda]] \theta'[\lambda] \chi'[\lambda] + \theta''[\lambda] = \emptyset, \\ 2 \operatorname{Cot}[\theta'[\lambda]] \theta'[\lambda] \psi'[\lambda] + 2 \operatorname{Coth}[\chi[\lambda]] \psi'[\lambda] \chi'[\lambda] + \psi''[\lambda] = \emptyset, \chi[\emptyset] = \emptyset.2, \theta[\emptyset] = \frac{\pi}{2}, \\ \psi[\emptyset] = -\frac{\pi}{2}, \chi'[\emptyset.2] = \emptyset.1, \theta'[\emptyset] = \emptyset, \psi'[\emptyset] = 1 \right\}, \{\chi[\lambda], \theta[\lambda], \psi[\lambda]\}, \{\lambda, \emptyset, 10\} \right]$$

For k = 0

$$\begin{split} & & \text{In} [*] := \ \mathbf{g} \ = \ \{ \{ -1, \ \emptyset, \ \emptyset, \ \emptyset, \ \{0, \ 1, \ \emptyset, \ \emptyset \}, \ \{0, \ 0, \ \chi^2, \ \emptyset \}, \ \{0, \ \emptyset, \ \emptyset, \ \chi^2 \times \text{Sin} [\Theta]^2 \} \} \\ & & \quad \left\{ \{ -1, \ \emptyset, \ \emptyset, \ \emptyset \}, \ \{0, \ 1, \ \emptyset, \ \emptyset \}, \ \left\{ \emptyset, \ \emptyset, \ \chi^2 \times \text{Sin} [\Theta]^2 \right\} \right\} \end{split}$$

$$\begin{array}{ll} & & & \\ & & & \\$$

In[*]:= RGtensors[g, xCoord]

$$gdd = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \chi^2 & 0 \\ 0 & 0 & 0 & \chi^2 \sin[\Theta]^2 \end{pmatrix}$$

LineElement = $-d[t]^2 + \chi^2 d[\Theta]^2 + d[\chi]^2 + \chi^2 d[\varphi]^2 Sin[\Theta]^2$

$$gUU = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{\chi^2} & 0 \\ 0 & 0 & 0 & \frac{Csc[\theta]^2}{\chi^2} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Flat Space!

Out[0]=

Aborted after 0.

In[•]:= **GUdd**

$$\left\{ \{ \{0,0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,0,0\}\}, \\ \{ \{0,0,0,0\}, \{0,0,0,0\}, \{0,0,-\chi,0\}, \{0,0,0,-\chi \sin[\theta]^2\} \}, \\ \left\{ \{0,0,0,0\}, \left\{0,0,\frac{1}{\chi},0\right\}, \left\{0,\frac{1}{\chi},0,0\right\}, \{0,0,0,-\cos[\theta] \sin[\theta] \} \right\}, \\ \left\{ \{0,0,0,0\}, \left\{0,0,0,\frac{1}{\chi}\right\}, \{0,0,0,\cot[\theta]\}, \left\{0,\frac{1}{\chi},\cot[\theta],0\right\} \right\} \right\}$$

```
In[\sigma]:= GUdd = GUdd /. \{\chi \to \chi[\lambda], \theta \to \theta'[\lambda], \varphi \to \varphi[\lambda]\};
       derivs = {t'[\lambda], \chi'[\lambda], \theta'[\lambda], \varphi'[\lambda]};
       geo7 =
          \chi''[\lambda] + Sum[Part[GUdd, 2, i, j] * derivs[i]] * derivs[j], {i, 2, 4}, {j, 2, 4}];
       geo8 = \theta''[\lambda] + Sum[Part[GUdd, 3, i, j] * derivs[i] * derivs[j], {i, 2, 4}, {j, 2, 4}];
       geo9 = \varphi''[\lambda] + Sum[Part[GUdd, 4, i, j] * derivs[i]] * derivs[j]], {i, 2, 4}, {j, 2, 4}];
```

$$\begin{aligned} &\inf\{\varepsilon\} := \text{sol5} = \text{NDSolve} \Big[\Big\{ \text{geo7} := 0, \text{ geo8} := 0, \text{ geo9} := 0, \chi[0] := 0.2, \theta[0] := \frac{\pi}{2}, \psi[0] := \frac{\pi}{2}, \\ &\chi'[0] := 0, \theta'[0] := 0, \psi'[0] := -1 \Big\}, \{\chi[\lambda], \theta[\lambda], \psi[\lambda]\}, \{\lambda, 0, 10\} \Big] \\ &\text{sol6} = \text{NDSolve} \Big[\Big\{ \text{geo7} := 0, \text{ geo8} := 0, \text{ geo9} := 0, \chi[0] := 0.2, \theta[0] := \frac{\pi}{2}, \psi[0] := \frac{-\pi}{2}, \\ &\chi'[0] := 0, \theta'[0] := 0, \psi'[0] := 1 \Big\}, \{\chi[\lambda], \theta[\lambda], \psi[\lambda]\}, \{\lambda, 0, 10\} \Big] \end{aligned}$$

- ... Infinity: Indeterminate expression 0. ComplexInfinity encountered.
- ••• NDSolve: Encountered non–numerical value for a derivative at $\lambda == 0$. 0

Out[0]=

$$\begin{split} &\operatorname{NDSolve}\Big[\Big\{-\chi[\lambda]\;\theta'[\lambda]^2-\operatorname{Sin}[\theta'[\lambda]]^2\chi[\lambda]\;\phi'[\lambda]^2+\chi''[\lambda]=\emptyset,\\ &-\operatorname{Cos}[\theta'[\lambda]]\;\operatorname{Sin}[\theta'[\lambda]]\;\phi'[\lambda]^2+\frac{2\,\theta'[\lambda]\,\chi'[\lambda]}{\chi[\lambda]}+\theta''[\lambda]=\emptyset,\\ &2\operatorname{Cot}[\theta'[\lambda]]\;\theta'[\lambda]\;\phi'[\lambda]+\frac{2\,\phi'[\lambda]\,\chi'[\lambda]}{\chi[\lambda]}+\varphi''[\lambda]=\emptyset,\chi[\emptyset]=\emptyset.2,\theta[\emptyset]=\frac{\pi}{2},\\ &\varphi[\emptyset]=\frac{\pi}{2},\chi'[\emptyset]=\emptyset,\theta'[\emptyset]=\emptyset,\varphi'[\emptyset]=-1\Big\},\{\chi[\lambda],\theta[\lambda],\varphi[\lambda]\},\{\lambda,\emptyset,10\}\Big] \end{split}$$

- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. 0
- ••• NDSolve: Encountered non-numerical value for a derivative at $\lambda == 0$. 0

Out[0]=

$$\begin{split} &\mathsf{NDSolve}\Big[\Big\{-\chi[\lambda]\ \theta'[\lambda]^2 - \mathsf{Sin}[\theta'[\lambda]]^2\chi[\lambda]\ \phi'[\lambda]^2 + \chi''[\lambda] = \emptyset,\\ &-\mathsf{Cos}[\theta'[\lambda]]\ \mathsf{Sin}[\theta'[\lambda]]\ \phi'[\lambda]^2 + \frac{2\,\theta'[\lambda]\,\chi'[\lambda]}{\chi[\lambda]} + \theta''[\lambda] = \emptyset,\\ &2\,\mathsf{Cot}[\theta'[\lambda]]\ \theta'[\lambda]\ \phi'[\lambda] + \frac{2\,\phi'[\lambda]\,\chi'[\lambda]}{\chi[\lambda]} + \phi''[\lambda] = \emptyset,\ \chi[\emptyset] = \emptyset.2,\ \theta[\emptyset] = \frac{\pi}{2},\\ &\varphi[\emptyset] = -\frac{\pi}{2},\ \chi'[\emptyset] = \emptyset,\ \theta'[\emptyset] = \emptyset,\ \phi'[\emptyset] = 1\Big\},\ \{\chi[\lambda],\ \theta[\lambda],\ \varphi[\lambda]\},\ \{\lambda,\emptyset,\ 10\}\Big] \end{split}$$

In[@]:= Show[

ParametricPlot[Evaluate[$\{\chi[\lambda] * Cos[\varphi[\lambda]], \chi[\lambda] * Sin[\varphi[\lambda]]\} /. sol5], \{\lambda, 0, 10\}],$ ParametricPlot[Evaluate[$\{\chi[\lambda] * Cos[\varphi[\lambda]], \chi[\lambda] * Sin[\varphi[\lambda]]\}$ /. sol6], $\{\lambda, 0, 10\}$], PlotStyle → Orange]

··· ReplaceAll:

$$\left\{ \text{NDSolve} \left[\left\{ -\chi[\lambda] \ll 1 \gg^{(\ll 1)} [\ll 1 \gg]^2 - \text{Sin}[\ll 1 \gg]^2 \chi[\lambda] \ll 1 \gg^{(\ll 1)} [\ll 1 \gg]^2 + \chi''[\lambda] == 0, -\text{Cos}[\ll 1 \gg^{(\ll 1)} [\ll 1 \gg] \right] \right\} \right. \\ \left. \left\{ \text{NDSolve} \left[\left\{ -\chi[\lambda] \ll 1 \gg] (\ll 1) \right\} + \frac{2 \theta'[\lambda] \chi'[\lambda]}{\chi[\ll 1]} + \theta''[\lambda] == 0, \ll 5 \gg, \theta'[0] == 0, \phi'[0] == -1 \right\}, \left\{ \chi[\lambda], \theta[\lambda], \phi[\lambda] \right\}, \left\{ \lambda, 0, 10 \right\} \right] \right\}$$

is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. 🕡

- ••• NDSolve: 0.00020408163265306123` cannot be used as a variable. 0
- ··· ReplaceAll:

 $\{\text{NDSolve}[\{-\chi[0.000204082]\ll1>^{(\ll1>)}[\ll1>)^2 - \text{Sin}[\ll1>)^2 \chi[0.000204082]\ll1>^{(\ll1>)}[\ll1>)^2 + \chi''[0.000204082] == 0, \ll7>, \varphi'[0.000204082] == 0, \%$ 0] == -1, { χ [0.000204082], θ [\ll 23 \gg], φ [0.000204082]}, {0.000204082, 0, 10}]} is neither a

list of replacement rules nor a valid dispatch table, and so cannot be used for replacing. 0

••• NDSolve: 0.00020408163265306123` cannot be used as a variable. 0

··· ReplaceAll:

 $\left\{ \text{NDSolve} \left[\left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^{(\ll 1 \gg)} \left[\, \ll \, 1 \right. \right\}^2 - 1. \, \\ \left[\, \approx \, 1 \right. \right\}^2 \, \chi[0.000204082] \, \ll \, 1 \right. \\ \left. \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left. \left\{ -1. \, \chi[0.000204082] \, \ll \, 1 \right. \right\}^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.000204082] = 0., \\ \left[-1. \, \chi[0.000204082] \, \ll \, 1 \right]^2 + \chi''[0.0$

replacement rules nor a valid dispatch table, and so cannot be used for replacing. 10

- General: Further output of ReplaceAll::reps will be suppressed during this calculation.
- ••• NDSolve: 0.2042857142857143` cannot be used as a variable. 0
- General: Further output of NDSolve::dsvar will be suppressed during this calculation.
- ••• Infinity: Indeterminate expression 0. ComplexInfinity encountered. ①
- ••• NDSolve: Encountered non–numerical value for a derivative at $\lambda == 0$.`

Out[0]=

In[127]:=

In[128]:=

In[129]:=

In[130]:=

4. Perfect Fluid

In[131]:=

xCoord = {t, r,
$$\theta$$
, φ };
g = {{-1, 0, 0, 0},
{0, $\frac{(a[t])^2}{1-k*r^2}$, 0, 0},
{0, 0, r^2*(a[t])^2, 0},
{0, 0, 0, r^2*(a[t])^2} Sin[θ]^2}

Out[0]=

$$\left\{ \{-1, 0, 0, 0\}, \left\{0, \frac{\mathsf{a[t]}^2}{1 - \mathsf{kr}^2}, 0, 0\right\}, \left\{0, 0, \mathsf{r}^2 \, \mathsf{a[t]}^2, 0\right\}, \left\{0, 0, 0, \mathsf{r}^2 \, \mathsf{a[t]}^2 \, \mathsf{Sin[\theta]}^2\right\} \right\}$$

In[133]:=

RGtensors[g, xCoord]

RGtensors[g, xCoord]
$$gdd = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & \frac{a[t]^2}{1-k r^2} & 0 & 0 \\ 0 & 0 & r^2 a[t]^2 & 0 \\ 0 & 0 & 0 & r^2 a[t]^2 Sin[\theta]^2 \end{pmatrix}$$

LineElement =
$$-\frac{a[t]^2 d[r]^2}{-1 + k r^2} - d[t]^2 + r^2 a[t]^2 d[\theta]^2 + r^2 a[t]^2 d[\phi]^2 Sin[\theta]^2$$

$$gUU \ = \ \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & -\frac{-1+k\,r^2}{a\,[t\,]^2} & 0 & 0 \\ 0 & 0 & \frac{1}{r^2\,a\,[t\,]^2} & 0 \\ 0 & 0 & 0 & \frac{Csc\,[\theta\,]^2}{r^2\,a\,[t\,]^2} \end{pmatrix}$$

gUU computed in 0. sec

Gamma computed in 0. sec

Riemann(dddd) computed in 0. sec

Riemann (Uddd) computed in 0. sec

Ricci computed in 0. sec

Weyl computed in 0. sec

Conformally Flat

Einstein computed in 0. sec

Out[0]=

All tasks completed in 0.

In[134]:=

Rdd

Out[0]=

$$\left\{ \left\{ -\frac{3 \, a''[t]}{a[t]}, \, \emptyset, \, \emptyset, \, \emptyset \right\}, \, \left\{ \emptyset, \, -\frac{2 \, k + 2 \, a'[t]^2 + a[t] \, a''[t]}{-1 + k \, r^2}, \, \emptyset, \, \emptyset \right\}, \\ \left\{ \emptyset, \, \emptyset, \, r^2 \, \left(2 \, k + 2 \, a'[t]^2 + a[t] \, a''[t] \right), \, \emptyset \right\}, \, \left\{ \emptyset, \, \emptyset, \, \emptyset, \, r^2 \, Sin[\theta]^2 \, \left(2 \, k + 2 \, a'[t]^2 + a[t] \, a''[t] \right) \right\} \right\}$$

In[136]:=

R

O u t [•] =

$$\frac{6 (k + a'[t]^2 + a[t] a''[t])}{a[t]^2}$$

In[137]:=

FullSimplify[Rdd]

Out[0]=

$$\begin{split} &\left\{\left\{-\frac{3\,a''[t]}{a[t]}\,\text{, 0, 0, 0}\right\}, \,\left\{0\,\text{, } \frac{2\,\left(k+a'[t]^2\right)+a[t]\,a''[t]}{1-k\,r^2}\,\text{, 0, 0}\right\}, \\ &\left\{0\,\text{, 0, } r^2\,\left(2\,\left(k+a'[t]^2\right)+a[t]\,a''[t]\right),\,0\right\}, \\ &\left\{0\,\text{, 0, 0, } r^2\,\text{Sin}[\varTheta]^2\,\left(2\,\left(k+a'[t]^2\right)+a[t]\,a''[t]\right)\right\}\right\} \end{split}$$

In[138]:=

GUdd

Out[0]=

$$\begin{split} & \left\{ \left\{ \{0,0,0,0,0\}, \left\{0,-\frac{a[t] \ a'[t]}{-1+k \ r^2},0,0\right\}, \left\{0,0,r^2 \ a[t] \ a'[t],0\right\}, \right. \\ & \left. \left\{0,0,0,r^2 \ a[t] \ Sin[\theta]^2 \ a'[t]\right\} \right\}, \left\{ \left\{0,\frac{a'[t]}{a[t]},0,0\right\}, \left\{\frac{a'[t]}{a[t]},-\frac{k \ r}{-1+k \ r^2},0,0\right\}, \right. \\ & \left. \left\{0,0,r \ \left(-1+k \ r^2\right),0\right\}, \left\{0,0,0,r \ \left(-1+k \ r^2\right) \ Sin[\theta]^2\right\} \right\}, \\ & \left. \left\{ \left\{0,0,\frac{a'[t]}{a[t]},0\right\}, \left\{0,0,\frac{1}{r},0\right\}, \left\{\frac{a'[t]}{a[t]},\frac{1}{r},0,0\right\}, \left\{0,0,0,-Cos[\theta] \ Sin[\theta]\right\} \right\}, \\ & \left\{ \left\{0,0,0,\frac{a'[t]}{a[t]}\right\}, \left\{0,0,0,\frac{1}{r}\right\}, \left\{0,0,0,Cot[\theta]\right\}, \left\{\frac{a'[t]}{a[t]},\frac{1}{r},Cot[\theta],0\right\} \right\} \right\} \end{split}$$

In[139]:=

EUd

Out[0]=

$$\begin{split} &\Big\{ \Big\{ -\frac{3 \left(k+a'[t]^2\right)}{a[t]^2} \text{, 0, 0, 0} \Big\} \text{, } \Big\{ \text{0, } -\frac{k+a'[t]^2+2 \, a[t] \, a''[t]}{a[t]^2} \text{, 0, 0} \Big\} \text{,} \\ &\Big\{ \text{0, 0, } -\frac{k+a'[t]^2+2 \, a[t] \, a''[t]}{a[t]^2} \text{, 0} \Big\} \text{, } \Big\{ \text{0, 0, 0, } -\frac{k+a'[t]^2+2 \, a[t] \, a''[t]}{a[t]^2} \Big\} \Big\} \end{split}$$

In[140]:=

R

$$\frac{6\,\left(k+a'[t]^{\,2}+a[t]\;a''[t]\,\right)}{a[t]^{\,2}}$$

```
In[141]:=
        Part[Rdd, 2, 2]
Out[0]=
          2k + 2a'[t]^2 + a[t]a''[t]
In[142]:=
        Show[Plot[y[x] = x^{(-3/2)}, {x, 0, 10}, AxesLabel \rightarrow {a, \rho}],
         Plot[y[x] = x^{(-3)}, {x, 0, 10}, PlotStyle \rightarrow Green],
          Plot[y[x] = 1, \{x, 0, 10\}, PlotStyle \rightarrow Orange]]
Out[0]=
        1.0
        8.0
        0.6
        0.4
        0.2
```

5. Friedmann Equations

```
In[143]:=
           Part[Rdd, 2, 2] + Part[Rdd, 3, 3] + Part[Rdd, 4, 4]
Out[0]=
           r^{2}(2k+2a'[t]^{2}+a[t]a''[t]) -
             \frac{2\,k + 2\,a'\,[\,t\,]^{\,2} + a\,[\,t\,]\,\,a''\,[\,t\,]}{-1 + k\,r^{2}} \,+\, r^{2}\,Sin\,[\,\theta\,]^{\,2}\,\left(2\,k + 2\,a'\,[\,t\,]^{\,2} + a\,[\,t\,]\,\,a''\,[\,t\,]\,\right)
In[144]:=
           lhs = FullSimplify[Part[Rdd, 2, 2] + Part[Rdd, 3, 3] + Part[Rdd, 4, 4]]
Out[0]=
            \left(r^{2} + \frac{1}{1 - k r^{2}} + r^{2} \sin[\Theta]^{2}\right) \left(2 \left(k + a'[t]^{2}\right) + a[t] a''[t]\right)
In[145]:=
In[146]:=
           rhs = FullSimplify[Part[gdd, 2, 2] + Part[gdd, 3, 3] + Part[gdd, 4, 4]]
Out[0]=
           a[t]^{2}\left(r^{2}+\frac{1}{1-k r^{2}}+r^{2} \sin [\theta]^{2}\right)
In[147]:=
In[148]:=
```

In[149]:=

1hs

Out[@]=

$$\left(r^{2} + \frac{1}{1 - k r^{2}} + r^{2} \sin[\Theta]^{2}\right) \left(2 \left(k + a'[t]^{2}\right) + a[t] a''[t]\right)$$

In[150]:=

rhs

Out[0]=

$$a[t]^{2}\left(r^{2}+\frac{1}{1-k r^{2}}+r^{2} \sin [\theta]^{2}\right)$$

In[151]:=

Show[Plot[y[x] = $x^(2/3)$, {x, 0, 1000}, AxesLabel \rightarrow {t, a[t]}], Plot[y[x] = $x^(1/2)$, {x, 0, 1000}, PlotStyle \rightarrow Green]]

Out[@]=

In[0]:=

Out[0]=

Failure

lessage: No Wolfram Language translation found.
ag: NoParse

liery.