Notes on filtration of logics containing **K5**

Daniel Rogozin

1 Preliminaries

Definition 1. An n-normal modal logic is a set of formulas that contains all Boolean tautologies, formulas $\Diamond_i p \lor \Diamond_i q \leftrightarrow \Diamond_i (p \lor q)$ and $\Diamond_i \bot \leftrightarrow \bot$ for $i \leqslant n$, and is closed under modus ponens, substitution, and monotonicity: from $\varphi \to \psi$ infer $\Diamond_i \varphi \to \Diamond_i \psi$ for $i \leqslant n$.

Definition 2. An n-Kripke model is a triple $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$, where $R_i \subseteq W \times W$, $\vartheta : PV \to 2^W$, and the connectives have the following semantics:

- 1. $\mathcal{M}, w \models p \Leftrightarrow w \in \vartheta(p)$
- 2. $\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, w \not\models \varphi$
- 3. $\mathcal{M}, w \models \varphi \lor \psi \Leftrightarrow \mathcal{M}, w \models \varphi \text{ or } \mathcal{M}, w \models \psi$
- 4. $\mathcal{M}, w \models \Diamond_i \varphi \Leftrightarrow \exists v \in R_i(w) \mathcal{M}, v \models \varphi$

By **K5** we mean the logic $\mathbf{K} \oplus A5$, where $A5 = \Diamond p \to \Box \Diamond p$. It is known that **K5** is the modal logic of all Euclidean frames. A frame is called Euclidean if for each x, y, z, xRy and xRz implies yRz.

Proposition 1. Let $\mathcal{F} = \langle W, R \rangle$ be an Euclidean frame.

- 1. For each $x, y, z \in W$, xRy and xRz implies either yRz or zRy.
- 2. For each $x \in W$, $R^*(x) = \{x\} \cup R(R(x))$.
- 3. $R^{-1} \circ R \subseteq R$.

Proposition 2. K5 proves

- 1. $\Box^3 p \leftrightarrow \Box^2 p$
- 2. $\Box^2 \Diamond p \leftrightarrow \Box \Diamond p$
- $3. \Box \Diamond \Box p \leftrightarrow \Box \Box p$
- 4. $\Box \diamondsuit^2 p \leftrightarrow \Box \diamondsuit p$

Proposition 3. Let \mathcal{M} be a K5 model, xRy for $x, y \in W$ then one has

$$\mathcal{M}, x \models \Diamond \Box \varphi \text{ iff } \mathcal{M}, y \models \Diamond \Box \varphi.$$

Proof.

- 1. Suppose $\mathcal{M}, x \models \Diamond \Box \varphi$. One also has $\mathcal{M}, x \models \Diamond \Box \varphi \rightarrow \Box \Diamond \Box \varphi$, so $\mathcal{M}, x \models \Box \Diamond \Box \varphi$. Thus, $\mathcal{M}, y \models \Diamond \Box \varphi$ since $y \in R(x)$.
- 2. Suppose $\mathcal{M}, y \models \Diamond \Box \varphi$, then $\mathcal{M}, y \models \Box \varphi$, so $\mathcal{M}, x \models \Diamond \Box \varphi$.

1.1 Filtrations: general definitions

Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ a set of formulas closed under subformulas. An equivalence relation \sim is set to have a finite index if the quotient set W/\sim is finite. The equivalence relation \sim_{Γ} induced by Γ is defined as

$$w \sim_{\Gamma} v \Leftrightarrow \forall \varphi \in \Gamma (\mathcal{M}, w \models \varphi \Leftrightarrow \mathcal{M}, v \models \varphi).$$

If Γ is finite, then \sim_{Γ} has a finite index. An equivalence relation \sim respects \sim_{Γ} , if $w \sim v$ implies $w \sim_{\Gamma} v$.

Definition 3. Let $\mathcal{M} = \langle W, R_1, \dots, R_n, \vartheta \rangle$ be a Kripke model and Γ be a Sub-closed set formulas. A Γ -filtration of \mathcal{M} is a model $\widehat{\mathcal{M}} = \langle \widehat{W}, \widehat{R_1}, \dots, \widehat{R_n}, \widehat{\vartheta} \rangle$ such that:

- 1. $\widehat{W}=W/\sim$, where \sim is an equivalence relation having a finite index that respects Γ
- 2. $\hat{\vartheta}(p) = \{ [x]_{\sim} \mid x \in W \& x \in \vartheta(p) \}$
- 3. For each $i \in I$ one has $\widehat{R}_i^{min} \subseteq \widehat{R}_i \subseteq \widehat{R}_i^{max}$. $\widehat{R}_{i,\sim}^{min}$ is the i-th minimal filtered relation on \widehat{W} defined as

$$\hat{x}\hat{R}_{i,\sim}^{min}\hat{y} \Leftrightarrow \exists x' \sim x \; \exists y' \sim y \; xR_i y$$

 $\widehat{R}_{\Gamma,i}^{max}$ is the i-th maximal filtered relation on \widehat{W} induced by Γ defined as

$$\hat{x}\hat{R}_{\Gamma i}^{max}\hat{y} \Leftrightarrow \forall \Box_{i}\varphi \in \Gamma \left(\mathcal{M}, x \models \Box_{i}\varphi \Rightarrow \mathcal{M}, y \models \varphi\right)$$

If Φ is finite subset of Γ and $\sim = \sim_{\Phi}$, then $\widehat{\mathcal{M}}$ is a definable Γ -filtration of \mathcal{M} through Φ . If $\sim = \sim_{\Gamma}$, then such a filtration by means of the definition above is called *strict*.

Lemma 1. Let Γ be a finite set of formulas closed under subformulas and $\widehat{\mathcal{M}}$ a filtration of \mathcal{M} through Γ , then for each $x \in W$ and for each $\varphi \in \Gamma$ one has

$$\mathcal{M}, x \models \varphi \Leftrightarrow \widehat{\mathcal{M}}, \hat{x} \models \varphi$$

Definition 4. Let \mathbb{F} be a class of Kripke frames and Γ a finite set of formulas closed under subformulas. If for every model \mathcal{M} over $\mathcal{F} \in \mathbb{F}$ there exists a model that is a Γ -definable filtration of \mathcal{M} , then \mathbb{F} admits definable filtration. A class of models \mathbb{M} admits definable filtration if for every $\mathcal{M} \in \mathbb{M}$ there exists a model belonging to the same class that is a definable Γ -filtration of \mathcal{M} .

Lemma 2.

- 1. Let \mathcal{L} be a complete normal modal logic. If Frames(\mathcal{L}) admits filtration, then \mathcal{L} has the finite model property.
- 2. If the class of models $Mod(\mathcal{L})$ admits filtration, then \mathcal{L} has the finite model property and Kripke complete as well.

2 Filtration of Euclidean logics

First of all, let us ensure that a minimal filtration of an Euclidean frame is not necessary Euclidean. Let $[x] \sim_{\Gamma} [y]$ and $[x] \sim_{\Gamma} [z]$. Then for some $x' \in [x]$ $y' \in [y]$, one has x'Ry' and x''Rz' for some $x'' \in [x]$ and $z' \in [z]$. Clearly, we cannot claim that x' = x'' in general. Thus, minimal filtration does not preserve the required property.

Lemma 3. K5 admit filtration.

Proof. Let \mathcal{M} be a **K5**-model and Γ_0 a finite set of formulas closed under subformulas. Let us put $\Gamma = \Gamma_0 \cup \operatorname{Sub}(\{\Diamond \Box \psi \mid \Box \psi \in \Gamma_0\}) \cup \Psi$, where $\Psi = \nabla_1 \nabla_2 \dots \nabla_n \Box \psi$ for $\Box \psi \in \Gamma_0$ and $\nabla_i \in \{\Diamond, \Box\}$. By Proposition 2, any element of Φ has one of the four forms. Thus, $W \sim_{\equiv_{\Gamma}}$ has a finite index. We put $\hat{R} = R_{\Gamma}^{\max}$.

Definition 5. A first-order formula is called Horn if it has the following form:

$$\forall x_1, \dots, x_n(x_{i_1}Rx_{j_1} \wedge \dots \wedge x_{i_s}Rx_{j_s} \rightarrow x_kRx_l)$$

Definition 6. Let H be a Horn property and $\langle W, R \rangle$ a Kripke frame. A Horn closure of a binary relation R is the minimal relation R^H containing R and satisfying H.

Lemma 4.
$$R^H = \bigcup_{n < \omega} R_n$$
 where

- 1. $R_0 = R$.
- 2. $R_{n+1} = R_n \cup \{(a,b) \in W \mid \exists \vec{c} \in W \ P(a,b,\vec{c})\}, \text{ where } P \text{ is a premise of } H.$

E-closure (an Euclidean Horn closure of a binary relation) has the following equivalent definitions:

Lemma 5. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. The following conditions are equivalent:

- 1. \mathbb{R}^E is the smallest Euclidean relation containing \mathbb{R} .
- 2. $R^E = \bigcup_{i < \omega} R_i$, where
 - $R_0 = R$
 - $\bullet \ R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$
- 3. xR^Ey iff there exists $n < \omega$ such that either xRy or $\exists z_1, \ldots, z_n$ with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \le n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} .

4.
$$R^E = R \cup \bigcup_{i < \omega} (R^{-1} \circ (R \circ R^{-1})^n \circ R).$$

Proof.

- 1. (1) \Rightarrow (2) Let us show that if R^E is the smallest Euclidean relation containing R, then $R^E = \bigcup_{i \leq \omega} R_i$. There are two inclusions:
 - $R^E \subseteq \bigcup_{i < \omega} R_i$. Recall that R^E has the form (?):

$$R^E = \bigcap \{ R' \mid R \subseteq R', \forall a, b \in W \ R'(a, b) \Rightarrow \exists x \in W \ R'(x, a) \& R'(x, b) \}$$

- $\bigcup_{i<\omega} R_i \subseteq R^E$. Let us show that xR_ny for each $n<\omega$ implies xR^Ey by induction on n. If n=0, then xRy, thus, xR^Ey , since R is a subrelation of R^E . Suppose n=m+1 and $xR_{m+1}y$. Let us show that xR^Ey . From $xR_{m+1}y$, one has $(x,y) \in R^n \cup (R_n^{-1} \circ R_n)$. There are two cases:
 - $-xR^{n}y$, one needs to merely apply the IH.
 - $-xR_n^{-1}\circ R_ny$. Then $\exists z\in W\ xR_n^{-1}z\ \&\ zR_n$. That is, zR_nx and zR_ny for some z. R_n is already a subrelation of R^E . Thus, zR^Ex and zR^Ey . That implies xR^Ey .
- 2. (2) \Rightarrow (3) Let $(x,y) \in R_m$, let us the statement by induction on m.
 - (a) Suppose m = 0, then xRy, and the statement is shown putting n = 0.
 - (b) Suppose m=p+1 and $xR_{p+1}y$. Assume that either xRy or $\exists z_1,\ldots,z_p$ with z_1Rx and $z_{p-1}Ry$ and for each $1 < i \le p$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . $xR_{p+1}y$ implies $(x,y) \in R_p \cup (R_p^{-1} \circ R_p)$. If $(x,y) \in R_p$, then we merely apply the IH. Suppose $(x,y) \in R_p^{-1} \circ R_p$, then $(z,x) \in R_p$ and $(z,y) \in R_p$
- 3. (3) \Rightarrow (4) Suppose either xRy or there exist $n \geqslant 1$ and z_1, \ldots, z_n with z_1Rx and $z_{n-1}Ry$ and for each $1 < i \leqslant n$ one has either $z_{i-1}Rz_i$ or z_iRz_{i-1} . If xRy, then we are done. Otherwise there exists $n \geqslant 1$ with the condition above. Then $(x,y) \in R_{n+1}$ that follows from the condition.

4. $(4) \Rightarrow (1)$

Lemma 6. Let $\mathcal{F} = \langle W, R \rangle$ be a Kripke frame. Let us define $R^E = \bigcup_{i \leq w} R_i$ where:

1. $R_0 = R$

2. $R_{n+1} = R_n \cup (R_n^{-1} \circ R_n)$

Then R^E is Euclidean.

Proof. Let $(x,y), (x,z) \in R^E$, one needs to show that $(y,z) \in R^E$. Clearly that $(x,y) \in R_i$ and $(x,y) \in R_j$ for some $i,j < \omega$. Thus, we need $(y,z) \in R_m$ for some m depending on i and j. Let us consider the following cases:

- 1. i = 0 and j = 0Suppose $(x, y), (x, z) \in R_0 = R$, then $(y, z) \in R^{-1} \circ R$. Thus, $(y, z) \in R_1$
- 2. i=0 and j=k+1Suppose $(x,y)\in R$ and $(x,z)\in R_{k+1}=R_k\cup ({R_k}^{-1}\circ R_k)$. Clearly that $(x,y)\in R_{k+1}$ as well. It is obviously that $(y,z)\in R_{k+2}$ since $(y,x)\in R_{k+1}^{-1}$ and $(x,z)\in R_{k+1}$.
- 3. The case with i = k + 1 and j = 0 is similar to the previous one.
- 4. Suppose i=m+1 and i=k+1. That is, $(x,y) \in R_{m+1} = R_m \cup (R_m^{-1} \circ R_m)$ and $(x,z) \in R_{k+1} = R_k \cup (R_k^{-1} \circ R_k)$. Consider the following four subcases:
 - (a) Suppose $(x,y) \in R_m$ and $(x,z) \in R_k$ and $m \le k$ without loss of generality. $m \le k$ implies $R_m \subseteq R_k$ and $(x,y) \in R_k$ in particular. Thus, $(y,z) \in R_k^{-1} \circ R_k$, so $(y,z) \in R_{k+1}$.

(b) The rest of the cases are similar to the first one.

Lemma 7. Let $\mathcal{M} = \langle W, R, \vartheta \rangle$ be an Euclidean model, Γ a set of Sub-closed formulas, and \sim an equivalence relation having a finite index that respects Γ , then $\widehat{R} = (R_{\Phi}^{min})^E \subseteq R_{\Gamma}^{max}$, where $\Phi = \Gamma \cup \{ \Diamond \Box \varphi \mid \Box \varphi \in \Gamma \}$.

Thus, K5 admits strict filtrations.

Proof. Recall that $(R_{\Phi}^{min})^E$ has the form $(R_{\Phi}^{min})^E = \bigcup_{n < \omega} (R_{\Phi}^{min})_n$, where

- 1. $(R_{\Phi}^{min})_0 = R_{\Phi}^{min}$
- 2. $(R_{\Phi}^{min})_{m+1} = (R_{\Phi}^{min})_n \cup (((R_{\Phi}^{min})_n)^{-1} \circ (R_{\Phi}^{min})_n)$

One needs to show that for each $n < \omega$ $(R_{\Phi}^{min})_n \subseteq R_{\Gamma}^{max}$. We prove this by induction. Suppose $\mathcal{M}, x \models \Box \varphi$ for $\Box \varphi \in \Phi$ and $[x](R_{\Phi}^{min})^E[y]$. We need $\mathcal{M}, y \models \varphi$.

- 1. $([x],[y]) \in (R_{\Phi}^{min})_0$, then $([x],[y]) \in R_{\Phi}^{min}$. Then there exist $x' \in [x]$ and $y' \in [y]$ such that x'Ry'. So $\mathcal{M}, x' \models \Box \varphi$ and, thus, $\mathcal{M}, y' \models \varphi$. Then $\mathcal{M}, y' \models \varphi$ as well since $y' \in [y]$.
- 2. $([x], [y]) \in (R_{\Phi}^{min})_{m+1}$, then $([x], [y]) \in (R_{\Phi}^{min})_m \cup (((R_{\Phi}^{min})_m)^{-1} \circ R_{\Phi}^{min})_m)$.

If $([x], [y]) \in (R_{\Phi}^{min})_m$, then we apply the IH.

Suppose $([x],[y]) \in (R_{\Phi}^{min})_m)^{-1} \circ (R_{\Phi}^{min})_m$, then there exists $[z] \in W/\sim_{\Phi}$ such that $([z],[x]) \in (R_{\Phi}^{min})_m$ and $([z],[y]) \in (R_{\Phi}^{min})_m$.

Then one has the following picture (using Lemma 5):

$$[z] \stackrel{R_{\Phi}^{min}}{\Leftarrow} [z_1] \stackrel{R'}{-} [z_2] \stackrel{R'}{-} \dots \stackrel{R'}{-} [z_{m-1}] \stackrel{R'}{-} [z_m] \stackrel{R_{\Phi}^{min}}{\Longrightarrow} [x]$$

$$[z] \underset{R_{x}^{min}}{\longleftarrow} [z_{1}^{'}] \xrightarrow{R'} [z_{2}^{'}] \xrightarrow{R'} \dots \xrightarrow{R'} [z_{m-1}] \xrightarrow{R'} [z_{m}^{'}] \xrightarrow{R_{x}^{min}} [y]$$

Where R' is either R_{Φ}^{min} or its converse. One has $\mathcal{M}, x \models \Box \varphi$ for $\Box \varphi \in \Phi$, where \widehat{M} is the minimal filtration of \mathcal{M} through Φ . One has $[z_m]R_{\Phi}^{min}[x]$, then a_mRa for some $a_m \in [z_n]$ and $a \in [x]$. Thus, $\mathcal{M}, a_m \models \Diamond \Box \varphi$ and, thus, $\widehat{\mathcal{M}}, [z_m] \models \Diamond \Box \varphi$.

Applying Proposition 3 several times, one may show that $\widehat{\mathcal{M}}$, $[z_1] \models \Diamond \Box \varphi$. One has $[z_1]R_{\Phi}^{min}[z]$, then for some $a \in [z]$ and $a_1 \in [z_1]$ we have a_1Ra .

Then $\mathcal{M}, a \models \Box \varphi$ and $\widehat{M}, [z] \models \Box \varphi$.

We have $[z_{1}^{'}]R_{\Phi}^{min}[z]$, thus, $a_{1}^{'}Ra^{'}$ for some $a_{1}^{'} \in [z_{1}^{'}]$ and $a^{'} \in [z]$. Then $\mathcal{M}, a_{1}^{'} \models \Diamond \Box \varphi$, and, thus, $\widehat{M}, [z_{1}^{'}] \models \Diamond \Box \varphi$.

One may show that $\widehat{M}, [z_m'] \models \Diamond \Box \varphi$ in the same way via Lemma 3. Thus, $\mathcal{M}, z_m' \models \Diamond \Box \varphi$. We also have $\mathcal{M}, z_m' \models \Diamond \Box \varphi \rightarrow \Box \varphi$, and, thus, $\mathcal{M}, z_m' \models \Box \varphi$. Then $\widehat{\mathcal{M}}, [z_m'] \models \Box \varphi$.

One has $[z'_m]R_{\Phi}^{min}[y]$, then a'_mRy' for some $a'_m \in [z'_m]$ and $y' \in [y]$. Then $\mathcal{M}, y' \models \varphi$. But $y' \sim_{\Phi} y$, so $\mathcal{M}, y \models \varphi$.

2.1 Clusters

Let $\mathcal{F} = \langle W, R \rangle$ be a transitive frame. Let us put $xR^{\bullet}y \Leftrightarrow xRy \& \neg (xRy)$. A point x is proper if xRx. Let us define the following equivalence relation:

$$x \equiv y \Leftrightarrow xRy \& yRx \lor x = y.$$

A cluster is an element of the quotient set W/\equiv . Given $x\in W$, C_x is a cluster containing x. Thus $C_x=\{x\}\cup\{y\,|xRyx\}$. The original relation lifts to the antisymmetric transitive relation on W/\equiv defined as C_xRC_y iff xRy. A cluster C is called maximal if CRC' implies C=C'. A point is R-maximal if C_x is a maximal cluster, that is, $R^{\bullet}(x)=\varnothing$. A degenerated cluster is a singleton $\{x\}$ with $\neg(xRx)$. A cluster is called simple if it has the form $\{x\}$ with xRx. If $\langle W', R' \rangle$ is an inner substructure of $\langle W, R \rangle$, then every R'-cluster is an R-cluster and every R-cluster that intersects R' is a subset of R' and is an R'-cluster itself. Given a Kripke model R, a set of formulas R is satisfied by a cluster R if every member of R is true at some point of R.

If clusters coincide then their poitns have the same theory in the original model:

Lemma 8.
$$C_x = C_y$$
 implies $\mathcal{M}, x \models \Box \varphi \Leftrightarrow \mathcal{M}, y \models \Box \varphi$

Let us describe the bulldozing technique allowing one to eliminate nondegenerated clusters [3]. Let \mathcal{L} be a transitive logic and \mathcal{F} its frame. We construct first a frame $\mathcal{F}^0 = \langle W^0, R^0 \rangle$ replacing every nondegenerated frame C of W by $C^0 = \{\langle x, i \rangle \mid x \in C, i < \omega\}$. We also replace each degenerated cluster C by $\{\langle x, 0 \rangle\}$. Elements of these subsets form W^0 . The relation R^0 is defined as

$$\langle x, i \rangle R^0 \langle y, j \rangle \Leftrightarrow x R^{\bullet} y \text{ or } (x \equiv y \& i < j) \text{ or } i = j \& x <_C y$$

where $<_C$ is an arbitrary strict ordering on the proper cluster C containing x and y.

Each nondegenrated cluster C is replaced by an infinite set C_0 such that $\langle C_0, R_0 \rangle$ is a strict linear order. Moreover, $\langle y, j \rangle$, a copy of y, occurs after $\langle y, j \rangle$, a copy of x.

Bulldozing might be extended to models $\mathcal{M} = \langle W, R, \vartheta \rangle$ defining ϑ^0 as follows

$$\vartheta^{0}(p_{i}) = \{\langle x, i \rangle \mid x \in \vartheta(p_{i}), i < \omega \}.$$

One may show inductively the following fact.

Lemma 9.
$$\mathcal{M}, x \models \varphi \Leftrightarrow \mathcal{M}^0, \langle x, i \rangle \models \varphi$$

Let us concretise the case of transitive Euclidean frames. First of all, we consider clusters in $\mathbf{K}45$ frames.

 $\mathbf{2.2}$

- 3 Transitive closure stuff
- 4 PDLisation of Euclidean logics
- 5 Transitive closure and fusion

References

[1] Philippe Balbiani, Dimiter Georgiev, and Tinko Tinchev. Modal correspondence theory in the class of all euclidean frames. *Journal of Logic and Computation*, 28(1):119–131, 2018.

- [2] Patrick Blackburn, Maarten De Rijke, and Yde Venema. *Modal logic*, volume 53. Cambridge University Press, 2002.
- [3] Robert Bull and Krister Segerberg. Basic modal logic. In *Handbook of philosophical logic*, pages 1–88. Springer, 1984.
- [4] Michael J Fischer and Richard E Ladner. Propositional dynamic logic of regular programs. Journal of computer and system sciences, 18(2):194–211, 1979.
- [5] Olivier Gasquet, Andreas Herzig, Bilal Said, and François Schwarzentruber. Modal logics with transitive closure. In *Kripke's Worlds*, pages 157–189. Springer, 2014.
- [6] Robert Goldblatt. Logics of time and computation. csli, 1987.
- [7] Robert Goldblatt and Ian Hodkinson. The finite model property for logics with the tangle modality. *Studia Logica*, 106(1):131–166, 2018.
- [8] Stanislav Kikot, Ilya Shapirovsky, and Evgeny Zolin. Filtration safe operations on frames. *Advances in modal logic*, 10:333–352, 2014.
- [9] Grigori Schwarz. In search of a "true" logic of knowledge: the nonmonotonic perspective. *Artificial Intelligence*, 79(1):39–63, 1995.
- [10] Krister Segerberg. An essay in classical modal logic (3 vols.). Filoso ska studier, (13), 1971.
- [11] Ilya Shapirovsky and Evgeny Zolin. On completeness of logics enriched with transitive closure modality. *Topology, Algebra and Categories in Logic 2015*, page 255, 2015.
- [12] Ilya B Shapirovsky. Glivenko's theorem, finite height, and local tabularity. arXiv preprint arXiv:1806.06899, 2018.