Introduction
Infrastructure
Arithmetic
Computational Results
Conclusions and Future Work

Infrastructure, Arithmetic, and Class Number Computations in Purely Cubic Function Fields of Characteristic at Least 5

Eric Landquist

University of Illinois at Urbana-Champaign

January 27, 2009

Outline

- Introduction
 - Motivation
 - Notation
- 2 Infrastructure
- 3 Arithmetic
 - Ideals
 - Infrastructure
- 4 Computational Results
- **5** Conclusions and Future Work

Cryptography

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]
 - Can the Jacobians of other curves be used?

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]
 - Can the Jacobians of other curves be used?
 - Probably not: too slow, less secure, and the order of the Jacobian is difficult to compute.

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]
 - Can the Jacobians of other curves be used?
 - Probably not: too slow, less secure, and the order of the Jacobian is difficult to compute.
- Important problems in Algebraic Number Theory

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]
 - Can the Jacobians of other curves be used?
 - Probably not: too slow, less secure, and the order of the Jacobian is difficult to compute.
- Important problems in Algebraic Number Theory
 - "The determination of the structure of CI(K) and in particular of the class number h(K) is one of the main problems in algorithmic algebraic number theory." (Cohen)

- Cryptography
 - Elliptic Curves over \mathbb{F}_q : $Y^2 = x^3 + ax + b$ [Miller, 1986; Koblitz, 1987]
 - Jacobians of Hyperelliptic Curves over \mathbb{F}_q : $Y^2 + h(x)Y = f(x)$ [Koblitz, 1989]
 - Can the Jacobians of other curves be used?
 - Probably not: too slow, less secure, and the order of the Jacobian is difficult to compute.
- Important problems in Algebraic Number Theory
 - "The determination of the structure of CI(K) and in particular of the class number h(K) is one of the main problems in algorithmic algebraic number theory." (Cohen)
 - The infrastructure of a global field is not very well understood.

Cubic Function Fields

General cubic curve (standard form):

$$C: F(x, Y) = Y^3 - AY + B = 0$$
, $A, B \in \mathbb{F}_q[x]$

$$F(x, Y)$$
 abs. irred. and $\nexists Q \in \mathbb{F}_q[x] \setminus \mathbb{F}_q : Q^2 \mid A, Q^3 \mid B$.

Purely cubic curve:

$$C: Y^3 = GH^2$$
, $G, H \in \mathbb{F}_q[x]$ co-prime, monic, square-free

- $K = K_x = \mathbb{F}_q(C) = \mathbb{F}_q(x, y)$, with F(x, y) = 0
- $\mathcal{O} = \mathbb{F}_q[C]$: Maximal order of K with unit rank $r \in \{0, 1, 2\}$
- If $3 \nmid \deg(GH^2)$ then r = 0, sig(K) = (3, 1).
- If $3 \mid \deg(GH^2)$ and $q \equiv 2 \pmod{3}$, then r = 1, sig(K) = (1, 1; 1, 2).
- If $3 \mid \deg(GH^2)$ and $q \equiv 1 \pmod{3}$, then r = 2.

Notation

- $\mathcal{O} = [1, \, \rho, \, \omega], \, \rho^3 = GH^2, \, \omega = \rho^2/H$
- $S = \{\infty_0, \ldots, \infty_r\}$: Set of infinite places of K
- \mathcal{D} : The group of divisors of K
- D^+ : The effective part of $D \in \mathcal{D}$; $D^+ \geq 0$, $(D D^+) \leq 0$
- D_S : The finite part of $D \in \mathcal{D}$
- D^S : The infinite part of $D \in \mathcal{D}$; $D = D_S + D^S$
- $\mathcal{D}_0 = \{ D \in \mathcal{D} \mid \deg(D) = 0 \}$
- $\bullet \ \mathcal{D}^{\mathcal{S}} = \{ D \in \mathcal{D} \mid D = D^{\mathcal{S}} \}$
- $\mathcal{D}_0^S = \mathcal{D}_0 \cap \mathcal{D}^S$
- \mathcal{P} : The subgroup of \mathcal{D}_0 of principal divisors
- $\mathcal{P}^S = \mathcal{P} \cap \mathcal{D}_0^S$

Notation

- $\mathcal{J}_K = \mathcal{D}_0/\mathcal{P}$: divisor class group of K; $h = |\mathcal{J}_K|$
- $CI(\mathcal{O}) = \mathcal{I}(\mathcal{O})/\mathcal{P}(\mathcal{O})$: ideal class group of \mathcal{O} ; $h_x = |CI(\mathcal{O})|$
- $R^S = |\mathcal{D}_0^S/\mathcal{P}^S|$: S-regulator of K

$$\Phi: \mathcal{D}_S \to \mathcal{I}(\mathcal{O}), \ D_S \mapsto \{\alpha \in K^* \mid \operatorname{div}(\alpha)_S \ge D_S\}$$
 (2.4)

$$\Phi^{-1}: \mathcal{I}(\mathcal{O}) \to \mathcal{D}_{S}, \ \ \mathfrak{f} \mapsto \sum_{\mathfrak{p} \notin S} m_{\mathfrak{p}} \mathfrak{p} \ ,$$
 (2.5)

where $m_{\mathfrak{p}} = \min\{v_{\mathfrak{p}}(\alpha) \mid \alpha \in \mathfrak{f} \setminus \{0\}\}.$

$$\Psi: \mathcal{D}_0 \to \mathcal{I}(\mathcal{O}), \ D = D_S - \deg(D_S) \infty_0 \mapsto \Phi(D_S)$$

The Divisor-Theoretic Foundation of Infrastructures

Case r = 1:

- $\mathcal{O}^* = \langle \eta \rangle$, $\deg(\eta) > 0$
- $\mathcal{D}_0^S = \langle \infty_1 2\infty_0 \rangle \cong \mathbb{Z}$
- $\mathcal{P}^{\mathcal{S}} = \langle \mathsf{div}(\eta) \rangle = \langle R^{\mathcal{S}}(\infty_1 2\infty_0) \rangle \cong \Lambda = R^{\mathcal{S}} \mathbb{Z} \subseteq \mathbb{Z}$
- $\mathcal{D}_0^S/\mathcal{P}^S\cong \mathbb{Z}/\Lambda$ is a circle.

Case r = 2:

- $\mathcal{O}^* = \langle \eta_1, \eta_2 \rangle$
- $\{\eta_1, \eta_2\}$ found via HNF from any $\{\epsilon_1, \epsilon_2\}$
- $\mathcal{D}_0^S = \langle \infty_1 \infty_0, \, \infty_0 \infty_2 \rangle \cong \mathbb{Z}^2$
- $\mathcal{P}^{\mathcal{S}} = \langle \operatorname{div}(\eta_1), \operatorname{div}(\eta_2) \rangle \cong \Lambda \subseteq \mathbb{Z}^2$
- $\mathcal{D}_0^S/\mathcal{P}^S\cong\mathbb{Z}^2/\Lambda$ is a torus.

The Divisor-Theoretic Foundation of Infrastructures

From [Schmidt, 1931]:

$$(0) \to \mathcal{D}_0^{\mathcal{S}}/\mathcal{P}^{\mathcal{S}} \to \mathcal{J}_{\mathcal{K}} \to \mathit{Cl}(\mathcal{O}) \to \mathbb{Z}/f\mathbb{Z} \to (0) \tag{2.6}$$

 $f = \gcd(\deg(\infty_0), \ldots, \deg(\infty_r))$

$$fh = R^S h_X$$
.

In our cases, f = 1, so

$$(0) o \mathcal{D}_0^{\mathcal{S}}/\mathcal{P}^{\mathcal{S}} o \mathcal{J}_{\mathcal{K}} o \mathit{Cl}(\mathcal{O}) o (0)$$
 .

Reduced Divisors

Definition (Sections 2.5.4 and 3.3.1)

- A divisor $D \in \mathcal{D}$ is finitely effective if $D_S \geq 0$.
- A finitely effective divisor $D \in \mathcal{D}$ is *semi-reduced* if there is no non-empty subsum of D_S of the form $\operatorname{div}(a(x))_S$ for some $a(x) \in \mathbb{F}_q[x] \setminus \mathbb{F}_q$.
- A semi-reduced divisor $D \in \mathcal{D}$ is called *reduced* if $\deg(D^+) \leq g$

An ideal \mathfrak{a} is primitive iff $\Phi^{-1}(\mathfrak{a})$ is semi-reduced.

Distinguished Divisors

Definition (Definitions 3.3.5 and 3.3.10)

Let $K = K_x$ be a cubic function field such that $\deg(\infty_i) = 1$. We call a finitely effective divisor $D \in \mathcal{D}_0$ *i-distinguished* if

- D is of the form $D = D^+ \deg(D^+) \infty_i$, and
- for any other divisor $E = E^+ \deg(E^+) \infty_i \in \mathcal{D}_0$ equivalent to D, such that $\deg(E^+) \leq \deg(D^+)$, we have D = E.

We call *D* distinguished if $deg(\infty_0) = 1$ and

- D is of the form $D = D_S \deg(D_S) \infty_0$, and
- for any other finitely effective divisor $E \sim D$, such that $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$, we have D = E.

Reduced and Distinguished Ideals

Definition (Definitions 3.3.5 and 3.3.10 and Lemma 3.3.11)

- An ideal $\mathfrak a$ is reduced, distinguished, or i-distinguished if $\Psi^{-1}(\mathfrak a)$ is.
- A fractional ideal \mathfrak{f} is reduced, distinguished, or i-distinguished if $-\Psi^{-1}(\mathfrak{f})$ is.

Results on (i-)Distinguished Divisors

Theorem (Lemma 3.3.12 and Theorem 3.3.15)

If $K = K_x$ is a cubic function field such that $\deg(\infty_0) = 1$, then there is a hierarchy of divisors:

distinguished \implies 0-distinguished \implies reduced \implies semi-reduced \implies finitely effective.

Theorem (Theorem 3.3.16)

If $K = K_x$ is a cubic function field such that $\deg(\infty_i) = 1$, for some $\infty_i \in S$, then every divisor class of \mathcal{D}_0 contains a unique *i*-distinguished divisor.

• Each divisor class contains a reduced divisor of the form: $E = E^+ - \deg(E^+) \infty_i$ (Lemma 3.3.4).

- Each divisor class contains a reduced divisor of the form: $E = E^+ \deg(E^+) \infty_i$ (Lemma 3.3.4).
- If E is principal, then $E \sim 0$; done.

- Each divisor class contains a reduced divisor of the form: $E = E^+ \deg(E^+) \infty_i$ (Lemma 3.3.4).
- If E is principal, then $E \sim 0$; done.
- If E is not principal, then $\dim_{\mathbb{F}_q}(L(E)) = I(E) = 0$.

- Each divisor class contains a reduced divisor of the form: $E = E^+ \deg(E^+) \infty_i$ (Lemma 3.3.4).
- If E is principal, then $E \sim 0$; done.
- If E is not principal, then $\dim_{\mathbb{F}_q}(L(E)) = I(E) = 0$.
- Set $E_m := E + m\infty_i$, for $m \in \mathbb{N}$.

- Each divisor class contains a reduced divisor of the form: $E = E^+ \deg(E^+) \infty_i$ (Lemma 3.3.4).
- If *E* is principal, then $E \sim 0$; done.
- If E is not principal, then $\dim_{\mathbb{F}_q}(L(E)) = I(E) = 0$.
- Set $E_m := E + m\infty_i$, for $m \in \mathbb{N}$.
- $0 = I(E) = I(E_0) \le I(E_1) \le I(E_2) \le \dots$

- Each divisor class contains a reduced divisor of the form: $E = E^+ \deg(E^+) \infty_i$ (Lemma 3.3.4).
- If *E* is principal, then $E \sim 0$; done.
- If E is not principal, then $\dim_{\mathbb{F}_q}(L(E)) = I(E) = 0$.
- Set $E_m := E + m\infty_i$, for $m \in \mathbb{N}$.
- $0 = I(E) = I(E_0) \le I(E_1) \le I(E_2) \le \dots$
- Use Riemann-Roch to show $0 \le I(E_{m+1}) I(E_m) \le 1$.

• Since E is reduced, via Riemann-Roch: $I(E_g) \ge 1$.

- Since *E* is reduced, via Riemann-Roch: $I(E_g) \ge 1$.
- There is minimal $0 < m \le g$ with $0 \le l(E_{m-1}) < l(E_m) = 1$.

- Since *E* is reduced, via Riemann-Roch: $I(E_g) \ge 1$.
- There is minimal $0 < m \le g$ with $0 \le I(E_{m-1}) < I(E_m) = 1$.
- $L(E_m) = \mathbb{F}_q \alpha$, for some $\alpha \in K^*$, so $div(\alpha) \ge -E_m$.

- Since *E* is reduced, via Riemann-Roch: $I(E_g) \ge 1$.
- There is minimal $0 < m \le g$ with $0 \le I(E_{m-1}) < I(E_m) = 1$.
- $L(E_m) = \mathbb{F}_q \alpha$, for some $\alpha \in K^*$, so $div(\alpha) \ge -E_m$.
- $D := E + \operatorname{div}(\alpha)$, $D \sim E$, $D^+ = D + m\infty_i$, $\deg(D^+) = m$

- Since *E* is reduced, via Riemann-Roch: $I(E_g) \ge 1$.
- There is minimal $0 < m \le g$ with $0 \le I(E_{m-1}) < I(E_m) = 1$.
- $L(E_m) = \mathbb{F}_q \alpha$, for some $\alpha \in K^*$, so $div(\alpha) \ge -E_m$.
- $D := E + \operatorname{div}(\alpha)$, $D \sim E$, $D^+ = D + m\infty_i$, $\deg(D^+) = m$
- Apply the definition to show that D is i-distinguished. \square

Infrastructure

Definition (Definition 3.4.1)

If $K = \mathbb{F}_q(C)$ is a cubic function field with r > 0, $\mathcal{O} = \mathbb{F}_q[C]$, and $\mathbf{C} \in Cl(\mathcal{O})$, then

$$\mathcal{R}_{\mathbf{C}} = \{ D \in \mathcal{D}_0 \mid D \text{ is distinguished and } \Psi(D) \in \mathbf{C} \}$$

is the infrastructure of C.

 $\mathcal{R} = \mathcal{R}_{[\mathcal{O}]}$ is the *(principal) infrastructure* of K.

• If $D_1 \in \mathcal{R}_{\mathbf{C}_1}$ and $D_2 \in \mathcal{R}_{\mathbf{C}_2}$, then $D_1 \nsim D_2$.

Results on (i-)Distinguished Divisors

Theorem (Theorem 3.3.18)

If $\deg(\infty_i) = 1$, then for each ideal class $\mathbf{C} \in Cl(\mathcal{O})$, there is a one-to-one correspondence between the i-distinguished divisors, D, with $\Psi(D) \in \mathbf{C}$ and the elements of $\mathcal{D}_0^S/\mathcal{P}^S$.

Allows us to:

- establish the distance measure on $\mathcal{R}_{\mathbf{C}}$ for r=2,
- improve bounds on the baby step operation, and
- identify the structure of infrastructures.

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

Divisors:

0: identity of \mathcal{R} nontrivial units distinguished 0-distinguished 3 deg(D_S), $D \in \mathcal{R}$

$$g = 3$$

 $R^{S} = |\mathcal{D}_{0}^{S}/\mathcal{P}^{S}| = 31$
 $|\mathcal{R}| = 16$
 $h = 279, h_{x} = 9$

Introduction
Infrastructure
Arithmetic
Computational Results
Conclusions and Future Work

Properties

Proposition (Proposition 3.4.3)

If $D \in \mathcal{R}_{\mathbf{C}}$, then $\deg(D_S) \leq g$ and this bound is sharp.

Proposition (Proposition 3.4.4)

$$|\mathcal{R}_{\mathbf{C}}| \leq R^{S}$$

Minima and Infrastructures

Definition (Section 3.3.2)

The *normed body* of θ in \mathfrak{f} is

$$\mathcal{N}_{\mathfrak{f}}(\theta) = \left\{ \alpha \in \mathfrak{f} \setminus \{0\} \mid \operatorname{div}(\alpha)^{\mathcal{S}} \ge \operatorname{div}(\theta)^{\mathcal{S}} \right\} \cup \{0\}$$
 (3.5)

If $\mathcal{N}_{\mathbf{f}}(\theta) = \mathbb{F}_{q}\theta$, then θ is called a *minimum* in \mathbf{f} .

Theorem (Theorem 3.3.7)

f is distinguished iff 1 is a minimum in f.

ullet Correspondence between divisor- and ideal-theoretic definitions of \mathcal{R} .

Proof of Theorem 3.3.7, \Rightarrow

Theorem (Theorem 3.3.7)

 $\mathfrak f$ is distinguished iff 1 is a minimum in $\mathfrak f.$

• Suppose that \mathfrak{f} is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.

Theorem (Theorem 3.3.7)

- Suppose that \mathfrak{f} is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.
- Choose $\alpha \in \mathfrak{f}$ with $\operatorname{div}(\alpha)^{\mathcal{S}} \geq 0$, so $\alpha \in \mathcal{N}_{\mathfrak{f}}(1)$.

Theorem (Theorem 3.3.7)

- Suppose that f is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.
- Choose $\alpha \in \mathfrak{f}$ with $\operatorname{div}(\alpha)^{\mathcal{S}} \geq 0$, so $\alpha \in \mathcal{N}_{\mathfrak{f}}(1)$.
- If $E = D + \operatorname{div}(\alpha)$, then $E^S = D^S + \operatorname{div}(\alpha)^S \ge D^S$.

Theorem (Theorem 3.3.7)

- Suppose that \mathfrak{f} is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.
- Choose $\alpha \in \mathfrak{f}$ with $\operatorname{div}(\alpha)^{\mathcal{S}} \geq 0$, so $\alpha \in \mathcal{N}_{\mathfrak{f}}(1)$.
- If $E = D + \operatorname{div}(\alpha)$, then $E^S = D^S + \operatorname{div}(\alpha)^S \ge D^S$.
- $\deg(\operatorname{div}(\alpha)_S) \leq 0$, so $\deg(E_S) \leq \deg(D_S)$.

Theorem (Theorem 3.3.7)

- Suppose that f is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.
- Choose $\alpha \in \mathfrak{f}$ with $\operatorname{div}(\alpha)^{\mathcal{S}} \geq 0$, so $\alpha \in \mathcal{N}_{\mathfrak{f}}(1)$.
- If $E = D + \operatorname{div}(\alpha)$, then $E^S = D^S + \operatorname{div}(\alpha)^S \ge D^S$.
- $\deg(\operatorname{div}(\alpha)_S) \leq 0$, so $\deg(E_S) \leq \deg(D_S)$.
- D distinguished implies E=D, so $\operatorname{div}(\alpha)=0$ and $\alpha\in\mathbb{F}_q^*$.

Theorem (Theorem 3.3.7)

- Suppose that f is distinguished, $D := -\Psi^{-1}(\mathfrak{f})$.
- Choose $\alpha \in \mathfrak{f}$ with $\operatorname{div}(\alpha)^{\mathcal{S}} \geq 0$, so $\alpha \in \mathcal{N}_{\mathfrak{f}}(1)$.
- If $E = D + \operatorname{div}(\alpha)$, then $E^S = D^S + \operatorname{div}(\alpha)^S \ge D^S$.
- $\deg(\operatorname{div}(\alpha)_S) \leq 0$, so $\deg(E_S) \leq \deg(D_S)$.
- D distinguished implies E=D, so $\operatorname{div}(\alpha)=0$ and $\alpha\in\mathbb{F}_q^*$.
- 1 is a minimum in f.

Introduction
Infrastructure
Arithmetic
Computational Results
Conclusions and Future Work

Proof of Theorem 3.3.7, \Leftarrow

```
Theorem (Theorem 3.3.7)
```

 $\mathfrak f$ is distinguished iff 1 is a minimum in $\mathfrak f.$

ullet Suppose that 1 is a minimum in \mathfrak{f} .

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.
- $E = D + \text{div}(\alpha)$, for some $\alpha \in K^*$.

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.
- $E = D + \text{div}(\alpha)$, for some $\alpha \in K^*$.
- $\operatorname{div}(\alpha)^S = E^S D^S \ge 0$ and $0 \le E_S = D_S + \operatorname{div}(\alpha)_S$.

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.
- $E = D + \text{div}(\alpha)$, for some $\alpha \in K^*$.
- $\operatorname{div}(\alpha)^S = E^S D^S \ge 0$ and $0 \le E_S = D_S + \operatorname{div}(\alpha)_S$.
- $\operatorname{div}(\alpha)_S \geq -D_S = \Phi^{-1}(\mathfrak{f}), \ \alpha \in \mathfrak{f}, \ \operatorname{and} \ \alpha \in \mathcal{N}_{\mathfrak{f}}(1).$

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.
- $E = D + \text{div}(\alpha)$, for some $\alpha \in K^*$.
- $\operatorname{div}(\alpha)^S = E^S D^S \ge 0$ and $0 \le E_S = D_S + \operatorname{div}(\alpha)_S$.
- $\operatorname{div}(\alpha)_S \geq -D_S = \Phi^{-1}(\mathfrak{f}), \ \alpha \in \mathfrak{f}, \ \operatorname{and} \ \alpha \in \mathcal{N}_{\mathfrak{f}}(1).$
- $\alpha \in \mathbb{F}_q^*$, so $\operatorname{div}(\alpha) = 0$ and E = D.

Theorem (Theorem 3.3.7)

- Suppose that 1 is a minimum in f.
- Suppose $E \sim D$ with $\deg(E_S) \leq \deg(D_S)$ and $E^S \geq D^S$.
- $E = D + \text{div}(\alpha)$, for some $\alpha \in K^*$.
- $\operatorname{div}(\alpha)^S = E^S D^S \ge 0$ and $0 \le E_S = D_S + \operatorname{div}(\alpha)_S$.
- $\operatorname{div}(\alpha)_S \geq -D_S = \Phi^{-1}(\mathfrak{f}), \ \alpha \in \mathfrak{f}, \ \operatorname{and} \ \alpha \in \mathcal{N}_{\mathfrak{f}}(1).$
- $\alpha \in \mathbb{F}_q^*$, so $\operatorname{div}(\alpha) = 0$ and E = D.
- D, and hence f, is distinguished.

Distance: A Measure on $\mathcal{R}_{\mathbf{C}}$

- Fix $E \in \mathcal{R}_{\mathbf{C}}$ and let $\mathfrak{b} = \Psi(E)$. If $\mathbf{C} = [\mathcal{O}]$, then E = 0.
- If $D \in \mathcal{R}_{\mathbf{C}}$ and $\mathfrak{a} = \Psi(D)$, then $\mathfrak{a} = \langle \alpha \rangle \mathfrak{b}$ for some $\alpha \in \mathcal{K}^*$.
- Choose α so $\operatorname{div}(\alpha) = (D E) + A_{\infty}$, where $A_{\infty} \in \mathcal{D}_0^S$ is "minimal" in $\mathcal{D}_0^S/\mathcal{P}^S$.

Definition (Section 3.4.2)

The *distance* of *D* with respect to *E* in r = 1 and r = 2, resp. is

$$\begin{split} &\delta_E(D) := \delta_0(D) := \deg(\alpha) \\ &\delta_E(D) := \left(\delta_0(D),\, \delta_1(D),\, \delta_2(D)\right) := \left(\deg(\alpha),\, \deg\left(\alpha'\right),\, \deg\left(\alpha''\right)\right) \end{split}$$

Ideal Inversion, Section 4.3

Lemma (Lemma 4.3.3)

If
$$\mathfrak{a} = [s, s'(u+\rho), s''(v+w\rho+\omega)]$$
, then
$$\overline{\mathfrak{a}} = \langle s \rangle \, \mathfrak{a}^{-1} = [S, S'(U+\rho), S''(V+W\rho+\omega)] \, ,$$

$$S = s \, , \quad S' = \frac{s}{s's_H} \, , \quad S'' = \frac{s_H}{s''} \, , \quad U \equiv -wH \, \left(\text{mod } \frac{S}{S'} \right) \, ,$$

$$W \equiv -ur_1 \, \left(\text{mod } S' \right) \, , \quad V \equiv -wWH - vs''r_2 \, \left(\text{mod } \frac{S}{S''} \right) \, ,$$

$$r_1H \equiv 1 \, \left(\text{mod } S' \right), \, r_2s'' \equiv 1 \, \left(\text{mod } s/s_H \right), \, and \, s_H = \gcd(s, H).$$

Example: Ideal Inversion, Section 4.3

$$K = \mathbb{F}_7(C), C: Y^3 = (x^4 + x^3 + x^2 - 2x^2 + 1)x^2$$

$$\mathfrak{a} = \left[(x^2 + 4x + 5), (x^2 + 4x + 5)\rho, (x + 6) + (3x + 3)\rho + \omega \right]$$

$$\overline{\mathfrak{a}} = \left[S, \, S'(U + \rho), \, S''(V + W\rho + \omega) \right]$$
 $S = x^2 + 4x + 5,$
 $S' = S'' = 1,$
 $U \equiv -wH = 4x^2 + 4x \equiv 2x + 1 \pmod{S/S'},$
 $W \equiv -ur_1 \equiv 0 \pmod{S'}, \text{ and }$
 $V \equiv -wWH - vs''r_2 \equiv 6x + 1 \pmod{S/S''}.$
 $\overline{\mathfrak{a}} = \left[(x^2 + 4x + 5), \, (2x + 1) + \rho, \, (6x + 1) + \omega \right] = \mathfrak{p}'$

Example: Ideal Multiplication, Theorem 4.4.5

 $K = \mathbb{F}_7(C)$, $C : Y^3 = (x^4 + x^3 + x^2 - 2x^2 + 1)x^2$

$$\mathfrak{a}_{1} = \left[(x^{2} + 4x + 5), (x^{2} + 4x + 5)\rho, (x + 6) + (3x + 3)\rho + \omega \right]
\mathfrak{a}_{2} = \left[(x^{2} + 4x + 5), (x^{2} + 4x + 5)\rho, (4x + 3) + (6x + 6)\rho + \omega \right]
\mathfrak{a}_{1}\mathfrak{a}_{2} = (\mathfrak{p}\mathfrak{p}'')(\mathfrak{p}\mathfrak{p}') = (\mathfrak{p}\mathfrak{p}'\mathfrak{p}'')\mathfrak{p} = \langle P \rangle \mathfrak{p}
d'' = d_{4} = d_{5} = 1
d_{1} = \gcd(s_{1}/(s'_{1}s_{1,H}), \ldots) = 1 = \gcd(s_{2}/(s'_{2}s_{2,H}), \ldots) = d_{2}
d_{3} = \gcd(x^{2} + 4x + 5, x^{2} + 4x + 5, 4x^{3} + x^{2} + 2x + 2) = x^{2} + 4x + 5 = d
\mathfrak{a}_{1}\mathfrak{a}_{2} = \langle x^{2} + 4x + 5 \rangle \mathfrak{a} = \langle x^{2} + 4x + 5 \rangle \widetilde{\mathfrak{a}}_{1}\widetilde{\mathfrak{a}}_{2}\widetilde{\mathfrak{a}}_{3}$$

Example: Ideal Multiplication, Theorem 4.4.5

$$\mathfrak{a}_{1}\mathfrak{a}_{2} = \langle x^{2} + 4x + 5 \rangle \,\mathfrak{a} = \langle x^{2} + 4x + 5 \rangle \,\widetilde{\mathfrak{a}}_{1}\widetilde{\mathfrak{a}}_{2}\widetilde{\mathfrak{a}}_{3}$$

$$\widetilde{\mathfrak{a}}_{1} = [1, \, \rho, \, (x+6) + (3x+3)\rho + \omega] = \mathcal{O}$$

$$\widetilde{\mathfrak{a}}_{2} = [1, \, \rho, \, (4x+3) + (6x+6)\rho + \omega] = \mathcal{O}$$

$$\widetilde{\mathfrak{a}}_{3} = [d_{3}d'', \, (w_{1} + w_{2})H + \rho, \, -w_{1}w_{2}H + \omega]$$

$$= [x^{2} + 4x + 5, \, (2x^{2} + 2x) + \rho, \, (3x^{3} + 6x^{2} + 3x) + \omega]$$

$$= [x^{2} + 4x + 5, \, (x+4) + \rho, \, (5x+2) + \omega] = \mathfrak{p}$$

$$\mathfrak{a}_1\mathfrak{a}_2 = \langle x^2 + 4x + 5 \rangle \left[x^2 + 4x + 5, (x+4) + \rho, (5x+2) + \omega \right]$$

= $\langle P \rangle \mathfrak{p}$

Ideal Reduction for r = 0

Lemma (Lemma 4.5.6; Lemma 8 of [Galbraith, Paulus, Smart, 2008])

If α is the element in $\overline{\mathfrak{a}}$ whose norm has minimal degree, then $\langle \alpha \rangle / \overline{\mathfrak{a}}$ is the unique distinguished ideal in $[\mathfrak{a}]$.

Algorithm (Alg. 4.5.7, 10.1 of [Bauer, 2004]: $Reduce(\mathfrak{a})$)

- Compute ā.
- **2** Find $\alpha \in \overline{\mathfrak{a}}$ with $deg(N(\alpha))$ minimal.
- **3** Compute $\langle \alpha \rangle = \langle d_1 \rangle [s, s'(u + \rho), s''(v + w\rho + \omega)].$
- Multiply $\mathfrak{a}[s, s'(u+\rho), s''(v+w\rho+\omega)] = \langle d_2 \rangle \mathfrak{b}$.
- Output b.

Ideal Reduction for r = 0

Theorem (Theorem 4.5.2)

Every nonzero $\mathfrak a$ has a unique element, α , with $\deg(\mathsf{N}(\alpha))$ minimal.

 α is found via Algorithm 4.5.3.

Proposition (Proposition 4.5.5)

Algorithm 4.5.4 computes

$$\langle \alpha \rangle = \langle d_1 \rangle [s, s'(u+\rho), s''(v+w\rho+\omega)].$$

These results generalize those of [Bauer, 2004] to all purely cubic function fields, K, with char(K) \neq 3.

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

0: identity of \mathcal{R} units

distinguished 0-distinguished $\deg(D_S),\ D\in\mathcal{R}$

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

units 0-chain

distinguished 0-distinguished 3 $deg(D_S)$, $D \in \mathcal{R}$

Baby Steps: 0-step

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

units 0-chain

2-chain

distinguished

0-distinguished

 $3 \deg(D_S), D \in \mathcal{R}$

Baby Steps:

0-step

2-step

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

units

0-chain

1-chain

2-chain

distinguished

<u>0-distinguished</u>

 $3 \deg(D_S), D \in \mathcal{R}$

Baby Steps:

0-step

1-step

2-step

$$\mathcal{R} = \mathcal{R}(\mathbb{F}_7(C)), C: Y^3 = x^6 + x^5 + x^4 - 2x^3 + x^2, r = 2$$

units

0-chain

1-chain

2-chain

distinguished

0-distinguished

 $3 \deg(D_S), D \in \mathcal{R}$

Baby Steps:

0-step

1-step

2-step

Degree Bounds on a Baby Step in ${\mathcal R}$

Theorem (Theorem 5.3.10)

Let $D \in \mathcal{R}_{\mathbf{C}}$ and $E = bs_i(D)$, for some $i \in \{0, 1, 2\}$.

If r = 1, then i = 0 and

- $1 \le \delta_D(E) \le g + 2 \deg(D_S) \le g + 2$; and
- $\deg(D_S) \leq \deg(E_S) + 1 \Rightarrow \deg(E_S) \deg(D_S) + 2 \leq \delta_D(E)$.

If r = 2, then

- $1 \le \delta_{D,i}(E) \le g + 1 \deg(D_S) \le g + 1$; and
- $\bullet \ \deg(D_S) \leq \deg(E_S) \Rightarrow \deg(E_S) \deg(D_S) + 1 \leq \delta_{D,i}(E).$

Giant Steps: Computing $D_1 \oplus D_2$ in $\mathcal R$

Divisors:

$$D_1 = \mathfrak{p}' - 2\infty_0$$
$$D_2 = \mathfrak{p}'' - 2\infty_0$$

Distances:

$$\delta(D_1) = (7, -3, -2)$$

 $\delta(D_2) = (8, -5, -1)$

Giant Steps: Computing $D_1 \oplus D_2$ in $\mathcal R$

Divisors:

$$D_{1} = \mathfrak{p}' - 2\infty_{0}$$

$$D_{2} = \mathfrak{p}'' - 2\infty_{0}$$

$$E = D_{1} + D_{2}$$

$$E = \mathfrak{p}' + \mathfrak{p}'' - 4\infty_{0}$$

Distances:

$$\delta(D_1) = (7, -3, -2)$$

 $\delta(D_2) = (8, -5, -1)$
 $\delta(D_1) + \delta(D_2) \sim$
 $(10, -2, -4)$

Giant Steps: Computing $D_1 \oplus D_2$ in $\mathcal R$

Divisors:

$$D_{1} = \mathfrak{p}' - 2\infty_{0}$$

$$D_{2} = \mathfrak{p}'' - 2\infty_{0}$$

$$E = D_{1} + D_{2}$$

$$E = \mathfrak{p}' + \mathfrak{p}'' - 4\infty_{0}$$

$$D = D_{1} \oplus D_{2}$$

$$D = \mathfrak{q} - 3\infty_{0}$$

Distances:

$$\delta(D_1) = (7, -3, -2)$$

$$\delta(D_2) = (8, -5, -1)$$

$$\delta(D_1) + \delta(D_2) \sim$$

$$(10, -2, -4)$$

$$\delta(D) = (10, -3, -4)$$

Complexity of S-Regulator Computation via Baby Steps

Proposition (Proposition 6.1.6)

If r=1, then Algorithm 6.1.5 (Algorithm 6.7 of [Scheidler, Stein, 2000]) requires at most $R^S=O(q^g)$ baby steps in $\mathcal R$ to compute R^S .

Proposition (Proposition 6.1.8)

If r=2, then Algorithm 6.1.7 (Algorithm 6.1 of [Lee, Scheidler, Yarrish, 2003]) requires at most $2R^S=O(q^g)$ baby steps in $\mathcal R$ to compute R^S . The storage requirement is at most $R^S=O(q^g)$ divisors and at most $2R^S=O(q^g)$ integers.

Idea to Compute h and R^S , r = 0 or r = 1

Algorithm (Algorithm 6.3.1, [Scheidler and Stein, 2007])

- Compute E and U such that $h \in (E U, E + U)$.
- **2** Determine extra information about h: congruences or distribution of h in (E U, E + U).
- **3** Search (E U, E + U) for h via the Baby Step-Giant Step or Kangaroo method.
- If r = 1, then determine $R^S \mid h$: minimal with $D(2R^S) = 0$.
 - $D(n) \in \mathcal{R}$ with $\delta(D(n)) \le n < \delta(bs(D(n)))$ (Alg. 5.3.26)

Step 1: Zeta Functions, Section 6.3.3

$$\zeta_{\mathcal{K}}(s) = \sum_{D \in \mathcal{D}^+} q^{-\deg(D)s}$$

Let $u = q^{-s}$. Then:

$$\zeta_K(s) = Z_K(u) = \prod_{\mathfrak{P} \in \mathbb{P}_K} \frac{1}{1 - u^{\deg(\mathfrak{P})}} = \frac{L_K(u)}{(1 - u)(1 - qu)}$$

Write

$$Z_K(u) = Z_K^{\infty}(u)Z_K^{\times}(u)$$

with

$$Z_K^\infty(u) = \prod_{i=0}^r rac{1}{1-u^{\deg(\infty_i)}} \quad ext{and} \quad Z_K^{\mathsf{x}}(u) = \prod_{P} \prod_{\mathfrak{p}|\langle P
angle} rac{1}{1-u^{\deg(\mathfrak{p})}}$$

Step 1: h and the L-Function, Section 6.3.3

$$h = L_{K}(1) = q^{g} L_{K}(1/q)$$

$$= \frac{q^{g+2}}{(q-x_{1})(q-x_{2})} \prod_{\nu=1}^{\infty} \prod_{\deg(P)=\nu} \frac{q^{2\nu}}{(q^{\nu}-z_{1}(P))(q^{\nu}-z_{2}(P))}$$
(6.5)

- x_1 and x_2 depend on the splitting of ∞ .
- $z_1(P)$ and $z_2(P)$ depend on the splitting of $\langle P \rangle$.
- $P \in \mathbb{F}_q[x]$ is irreducible.

Step 1: h and the L-Function, Section 6.3.3

$$A(K) = \log\left(\frac{q^{g+2}}{(q-x_1)(q-x_2)}\right) = (g+2)\log(q) - \log(q^2 + s_1q + s_2)$$

and

$$S_{\nu}(n) = \sum_{\deg(P)=\nu} (z_1^n(P) + z_2^n(P))$$

Theorem (Theorem 6.3.4; Theorem 4.12 of [Scheidler, Stein, 2007])

$$\log(h) = A(K) + \sum_{n=1}^{\infty} \frac{1}{nq^n} \sum_{\nu \mid n} \nu S_{\nu} \left(\frac{n}{\nu}\right)$$

Step 1: Two Approximations of h, Section 6.3.4

Fix a degree bound, λ .

$$E_{1} = \left[\exp \left(A(K) + \sum_{n=1}^{\lambda} \frac{1}{nq^{n}} \sum_{\nu \mid n} \nu S_{\nu} \left(\frac{n}{\nu} \right) \right) \right]$$

$$E_{2} = \left[\exp \left(A(K) + \sum_{n=1}^{\infty} \frac{1}{nq^{n}} \sum_{\substack{\nu \mid n \\ \nu < \lambda}} \nu S_{\nu} \left(\frac{n}{\nu} \right) \right) \right]$$

 U_1 , U_2 , and U_3 bound the tail of the Euler product of h.

• E_2 is a slightly better estimate than E_1 in practice. (Table 6.3)

Phase 2: Distribution of h in $(E_i - U_i, E_i + U_i)$

- $\alpha_i(q, g) = Mean(|h E_i|/U_i)$, over all cubic $K/\mathbb{F}_q(x)$ of genus g.
- $\alpha_i(q, g)$ is difficult to compute precisely.
- $\hat{\alpha}_i(q, g) = Mean_n(|h E_i|/U_i)$, over a sampling of n such K:

q	g	λ	$\hat{lpha}_1(q,g)$	$\hat{lpha}_2(q, g)$	$\hat{\alpha}_3(q,g)$	n
100003	3	1	0.27227076	0.20408453	0.27187490	10000
10009	4	1	0.19252978	0.15379110	0.19186318	10000
997	5	2	0.19188423	0.18894457	0.19190607	10000
463	6	2	0.15992960	0.15676849	0.15975657	10000
97	7	2	0.12684120	0.12176623	0.12602172	10000

Phase 3: Baby Step-Giant Step and Kangaroo

- BS-GS is deterministic, requires time and storage $O\left(\sqrt{U}\right)$.
- Kangaroo is heuristic, expected time $O\left(\sqrt{U}\right)$, parallelizable, little storage by setting traps every θ steps on average.
- Expected times improve by using the $\hat{\alpha}_i(q, g)$.
- For BS-GS, can take advantage of faster inverses.
- In $Cl(\mathcal{O})$, can take advantage of congruences, $h \equiv a \pmod{b}$.
- ullet In \mathcal{R} , can take advantage of faster baby steps.

Phase 3: Kangaroos in \mathcal{R} , r=1

- $\tau_3 = T_G/T_B = \text{giant step time/baby step time}$; $\tau_3 \approx g$.
- m processors

Under reasonable heuristic assumptions:

Proposition (Proposition 6.2.12)

The expected heuristic running time to compute a multiple, h_0 , of R^S is minimized by choosing an average jump distance of $\beta = \left\lceil m \sqrt{(2\tau-1)\alpha U} \right\rceil - 2(\tau-1)$, where $\tau = \lfloor \tau_3 \rfloor$ or $\tau = \lceil \tau_3 \rceil$.

The expected heuristic running time for each kangaroo is

$$\left((4/m)\sqrt{\alpha U/(2\tau-1)}+ heta/ au+O(1)\right)\left(1+(au-1)/ au_3\right)T_G.$$

Phase 4: Extracting R^S from h, r = 1

Algorithm (Algorithm 6.3.22; Algorithm 4.4 of [Stein, Williams, 1999])

Input: A multiple, h_0 of R^S , a lower bound, I, of R^S . Output: R^S

- Set: $h^* := 1$.
- **2** Factor $h_0 = \prod_{i=1}^k p_i^{a_i}$.
- **3** For $1 \le i \le k$:
 - a. If $p_i < h_0/I$, then:
 - i. Find $1 \le e_i \le a_i$ minimal with $D(2h_0/p_i^{e_i}) \ne 0$.
 - ii. Set $h^* := p_i^{e_i-1}h^*$.
- Output h_0/h^* .

Complexity of Algorithm 6.3.1

"I like fast algorithms. They're kind of like sports cars for nerds." (Nate Wentzel)

Theorem ([Scheidler, Stein, 2007])

The complexity of Algorithm 6.3.1 is

$$O\left(q^{[(2g-1)/5]+arepsilon(g)}
ight)$$

ideal or infrastructure compositions, as $q \to \infty$, where

$$\varepsilon(g) = \begin{cases} 0 & \text{if } g \equiv 0, 3 \pmod{5} \\ 1/4 & \text{if } g \equiv 1 \pmod{5} \\ -1/4 & \text{if } g \equiv 2 \pmod{5} \\ 1/2 & \text{if } g \equiv 4 \pmod{5} \end{cases}.$$

Comparison of the Running Times, Table 6.2

g	λ	H-W	E-U	H-W	E-U
1	0	$O\left(q^{1/4} ight)$	$O\left(q^{1/4} ight)$	$O(h^{0.25})$	$O(h^{0.25})$
2	0	$O(q^{3/4})$	$O(q^{3/4})$	$O(h^{0.375})$	$O(h^{0.375})$
3	1	$O(q^{5/4})$	$O(q^{4/4})$	$O(h^{0.417})$	$O(h^{0.333})$
4	1	$O\left(q^{7/4}\right)$	$O(q^{6/4})$	$O(h^{0.438})$	$O(h^{0.375})$
5	2	$O(q^{9/4})$	$O(q^{8/4})$	$O(h^{0.45})$	$O(h^{0.4})$
6	2	$O(q^{11/4})$	$ O(q^{9/4}) $	$O(h^{0.458})$	$O(h^{0.375})$
7	2	$O(q^{13/4})$	$O(q^{11/4})$	$O(h^{0.464})$	$O(h^{0.393})$

- ullet H-W: Hasse-Weil interval: $\left(\left(\sqrt{q}-1
 ight)^{2\mathsf{g}},\,\left(\sqrt{q}+1
 ight)^{2\mathsf{g}}
 ight)$
- E-U: uses the new interval (E U, E + U)

Unit Rank 0 Results, Genus 3

The largest example required 27.2 hours using 18 kangaroos: 20.4 days of total machine time.

$$C_4: Y^3 = x^4 + 512964174x^3 + 604076970x^2 + 208417608x + 702771176$$

For the function field $\mathbb{F}_{10^9+9}(C_4)$:

$$h = 1000020285132998304595632979$$
$$= 13 \cdot 19 \cdot 73 \cdot 114859 \cdot 482863041248304151$$

2880612442 jumps;
$$|h - E|/U = 0.0241890$$

Unit Rank 0 Results, Genus 4

The largest example required 3.62 days using 20 kangaroos: 72.4 days of total machine time.

$$C_8: Y^3 = x^5 + 537882x^4 + 755468x^3 + 137780x^2 + 366795x + 268815$$

For the function field $\mathbb{F}_{10^6+3}(C_8)$:

$$h = 1001264259802134080148796$$
$$= 2^2 \cdot 4549 \cdot 55026613530563534851$$

4872971415 jumps;
$$|h - E|/U = 0.3835040$$

Unit Rank 1 Results, Genus 3

The largest example required 3.46 days using 20 kangaroos: 69.2 days of total machine time.

$$C_{14}: Y^3 = x^6 + 852737742x^5 + 113051170x^4$$

+ $250054066x^3 + 513859851x^2$

For the function field $\mathbb{F}_{10^9+7}(C_{14})$:

$$h = h_x R^S = 12 \cdot 83333335063983400511867136$$
$$= 2^{10} \cdot 3^2 \cdot 7 \cdot 11 \cdot 109^2 \cdot 167 \cdot 710227281795313$$

3136227037 baby steps, 1568085553 giant steps; |h - E|/U = 0.0580483

Unit Rank 1 Results, Genus 4

The largest example required 4.91 days using 18 kangaroos: 88.4 days of total machine time.

$$C_{18}: Y^3 = (x^3 + 918037x^2 + 460902x + 923544)$$

 $\cdot (x^3 + 891576x^2 + 694204x + 79732)^2$

For the function field $\mathbb{F}_{10^6+37}(C_{18})$:

$$h = h_x R^S = 9 \cdot 111127791704815995713577$$
$$= 3^5 \cdot 25603 \cdot 160756322978377817$$

3127164698 baby steps, 1042434250 giant steps; |h - E|/U = 0.4230388

Projected Running Times to compute h, r = 0

q	g	Phase 1	Phase 3	Exp. time	Exp. Jumps
$10^{10} + 33$	3	7.92 d	142. d	150. d	$2.086 \cdot 10^{10}$
$10^{11} + 3$	3	83.8 <i>d</i>	3.90 <i>y</i>	4.13 <i>y</i>	$2.086 \cdot 10^{11}$
$10^{12} + 39$	3	2.43 <i>y</i>	39.0 <i>y</i>	41.4 <i>y</i>	$2.086 \cdot 10^{12}$
$10^7 + 141$	4	9.21 m	951. <i>d</i>	951. <i>d</i>	$6.398 \cdot 10^{10}$
$10^8 + 39$	4	1.69 h	82.4 <i>y</i>	82.4 <i>y</i>	$2.023 \cdot 10^{12}$
$10^9 + 9$	4	17.9 h	2604 y	2604 y	$6.398 \cdot 10^{13}$

- Program uses C++ with NTL
- Sun workstation, AMD Opteron 148 2.2 GHz processor, 1 GB RAM

Projected Running Times to compute R^S , r=1

q	g	$ \tau $	Exp. Time	Exp. Jumps	$\lg \theta$	Exp. Traps
$10^{10} + 19$	3	3	714. d	$4.846 \cdot 10^{10}$	24	2888
$10^{11} + 19$	3	3	19.6 <i>y</i>	$4.846 \cdot 10^{11}$	26	7221
$10^{12} + 61$	3	3	196. <i>y</i>	$4.846 \cdot 10^{12}$	28	18053
$10^7 + 19$	4	4	9.76 <i>y</i>	$1.675 \cdot 10^{11}$	24	9984
$10^8 + 7$	4	4	309. <i>y</i>	$5.296 \cdot 10^{12}$	26	88662
$10^9 + 7$	4	4	9762 <i>y</i>	$1.675 \cdot 10^{14}$	28	623986

• Times for Phases 1, 2, and 4 are negligible compared with the expected running times.

Summary of Main Results

- Characterization of unique divisor class representatives
- Divisor-theoretic description of $\mathcal{R}_{\mathbf{C}}$; correspondence with ideal-theoretic constructions
- Improved bounds on baby steps, reduction, elements of $\mathcal{R}_{\textbf{C}}$, and $|\mathcal{R}_{\textbf{C}}|$
- Complete description of ideal multiplication and inversion for $char(K) \neq 3$
- Ideal reduction in $CI(\mathcal{O})$ for sig(K) = (3,1)
- Reduction and giant steps in \mathcal{R} for char(K) ≥ 5 and r=2
- ullet Improvement to the Kangaroo method in ${\mathcal R}$
- Methods to extract R^S from h for r = 1
- Computation of 28-digit divisor class numbers, g = 3
- Computation of 25-digit divisor class numbers, g = 4

Future Work

- Extend Baby Step-Giant Step and Kangaroo methods to r=2
- Implement Index Calculus methods [Thériault, 2003; Diem, 2006; Diem and Thomé, 2008]
- Develop faster arithmetic [Flon and Oyono, 2004;
 Khuri-Makdisi, 2004, 2007; Galbraith, Harrison, and Mireles, 2008]
- ullet Speed up Pollard's Rho Method via baby steps in \mathcal{R} .
- Study periods of \mathcal{R} for r=2
- Study infrastructures of higher degree function fields
- Arithmetic of general cubic function fields
- Infrastructures of K with sig(K) = (1, 1; 2, 1)
- Characteristic 2 and 3

Acknowledgments

Thank you!

- Advisor: Prof. Scheidler
- Committee: Prof. Duursma, Prof. McCullough, Prof. Ullom, Prof. Zaharescu
- Assistance: CISaC (Calgary) and Prof. Stein (Oldenburg)
- Friends and colleagues in attendance
- Mom R. and Dad R.
- Mom and Dad
- Bethany