

STP6NB25 STP6NB25FP

N-CHANNEL 250V - 0.9Ω - 6A TO-220/TO-220FP
PowerMesh™ MOSFET

TYPE	V _{DSS}	R _{D(on)}	I _D
STP6NB25	250 V	< 1.1 Ω	6 A
STP6NB25FP	250 V	< 1.1 Ω	3.7 A

- TYPICAL R_{D(on)} = 0.9 Ω
- EXTREMELY HIGH dv/dt CAPABILITY
- 100% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED

DESCRIPTION

Using the latest high voltage MESH OVERLAY™ process, STMicroelectronics has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest R_{D(on)} per area, exceptional avalanche and dv/dt capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- UNINTERRUPTIBLE POWER SUPPLY (UPS)
- DC-DC & DC-AC CONVERTERS FOR TELECOM , INDUSTRIAL AND CONSUMER ENVIRONMENT

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value		Unit
		STP6NB25	STP6NB25FP	
V _{DS}	Drain-source Voltage (V _{GS} = 0)	250		V
V _{DGR}	Drain-gate Voltage (R _{GS} = 20 kΩ)	250		V
V _{GS}	Gate- source Voltage	±30		V
I _D	Drain Current (continuos) at T _C = 25°C	6	3.7	A
I _D	Drain Current (continuos) at T _C = 100°C	3.8	2.3	A
I _{DM (●)}	Drain Current (pulsed)	24	24	A
P _{TOT}	Total Dissipation at T _C = 25°C	75	30	W
	Derating Factor	0.6	0.24	W/°C
dv/dt (1)	Peak Diode Recovery voltage slope	5.5		V/ns
V _{ISO}	Insulation Withstand Voltage (DC)	-	2000	
T _{stg}	Storage Temperature	-60 to 150		°C
T _j	Max. Operating Junction Temperature	150		°C

(1)Pulse width limited by safe operating area

Jun 2000

(1)I_{SD} ≤ 6A, di/dt ≤ 100A/μs, V_{DD} ≤ V_{(BR)DSS}, T_j ≤ T_{JMAX}.

1/9

STP6NB25/FP

THERMAL DATA

		TO-220	TO-220FP	
Rthj-case	Thermal Resistance Junction-case Max	1.66	4.17	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	62.5		°C/W
Rthc-sink	Thermal Resistance Case-sink Typ	0.5		°C/W
T _I	Maximum Lead Temperature For Soldering Purpose	300		°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T _j max)	6	A
E _{AS}	Single Pulse Avalanche Energy (starting T _j = 25 °C, I _D = I _{AR} , V _{DD} = 50 V)	200	mJ

ELECTRICAL CHARACTERISTICS (TCASE = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0	600			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V _{DS} = Max Rating V _{DS} = Max Rating, T _C = 125 °C			1 50	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ±30V			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250 μA	2	3	4	V
R _{DSS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 3 A		0.9	1.1	Ω
I _{D(on)}	On State Drain Current	V _{DS} > I _{D(on)} × R _{DSS(on)max} , V _{GS} = 10V	6			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
g _{fs} (1)	Forward Transconductance	V _{DS} > I _{D(on)} × R _{DSS(on)max} , I _D = 3A		3		S
C _{iss}	Input Capacitance			260		pF
C _{oss}	Output Capacitance			68		pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 25V, f = 1 MHz, V _{GS} = 0		9		pF

ELECTRICAL CHARACTERISTICS (CONTINUED)

SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{d(on)}$	Turn-on Delay Time	$V_{DD} = 125 \text{ V}$, $I_D = 3 \text{ A}$		9		ns
t_r	Rise Time	$R_G = 4.7\Omega$, $V_{GS} = 10 \text{ V}$ (see test circuit, Figure 3)		9		ns
Q_g	Total Gate Charge	$V_{DD} = 200 \text{ V}$, $I_D = 6 \text{ A}$,		12		nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 10 \text{ V}$		7.5		nC
Q_{gd}	Gate-Drain Charge			3		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$t_{r(Voff)}$	Off-voltage Rise Time	$V_{DD} = 200 \text{ V}$, $I_D = 6 \text{ A}$,		8		ns
t_f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10 \text{ V}$		7		ns
t_c	Cross-over Time	(see test circuit, Figure 5)		15		ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
I_{SD}	Source-drain Current				6	A
$I_{SDM(2)}$	Source-drain Current (pulsed)				24	A
$V_{SD}(1)$	Forward On Voltage	$I_{SD} = 6 \text{ A}$, $V_{GS} = 0$			1.6	V
t_{rr}	Reverse Recovery Time	$I_{SD} = 6 \text{ A}$, $dI/dt = 100 \text{ A}/\mu\text{s}$,		160		ns
Q_{rr}	Reverse Recovery Charge	$V_{DD} = 100 \text{ V}$, $T_j = 150^\circ\text{C}$		720		μC
I_{RRM}	Reverse Recovery Current	(see test circuit, Figure 5)		9		A

Note: 1. Pulsed: Pulse duration = 300 μs , duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

Safe Operating Area for TO-220

Safe Operating Area for TO-220FP

STP6NB25/FP

Thermal Impedance for TO-220

Thermal Impedance for TO-220FP

Output Characteristics

Transfer Characteristics

Transconductance

Static Drain-source On Resistance

Gate Charge vs Gate-source Voltage**Capacitance Variations****Normalized Gate Threshold Voltage vs Temp.****Normalized On Resistance vs Temperature****Source-drain Diode Forward Characteristics**

STP6NB25/FP

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 2: Unclamped Inductive Waveform

Fig. 3: Switching Times Test Circuit For Resistive Load

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

TO-220FP MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
B	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
E	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.15		1.7	0.045		0.067
F2	1.15		1.7	0.045		0.067
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
H	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
Ø	3		3.2	0.118		0.126

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2000 STMicroelectronics – Printed in Italy – All Rights Reserved
STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -
Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

<http://www.st.com>