Лабораторная работа 2.1.1.

Измерение удельной теплоемкости воздуха при постоянном давлении.

Цель работы: 1) измерение повышения температуры воздуха в результате подвода тепла при стационарном течении через стеклянную трубку; 2) вычисление по результатам измерений теплоемкости воздуха при постоянном давлении.

В работе используются: теплоизолированная трубка; электронагреватель; газовый счетчик; источник питания; термопара; вольтметр; амперметр; секундомер.

1. Устройство установки:

2.Теор часть:

Теплоемкость определяется, как:

$$C = \frac{Q}{\Delta T}$$

Работа, совершенная газом при прохождении через трубку: $A=P_2V_2-P_1V_1$ Внутренняя энергия газа изменится на: $\Delta U=U_2-U_1$ Количество тепла, полученное газом: $Q=U_2-U_1+P_2V_2-P_1V_1=H_2-H_1$

 $H = C_p T \Longrightarrow Q = C_p (T_2 - T_1)$, откуда следует :

$$c_p = \frac{Q}{m\Delta T} = \frac{IV - N}{m\Delta T}$$

Где -мощность, выделяемая нагревателем, N-мощность тепловых потерь, m-масса газа, проходящая через калориметр за единицу времени, ΔT -разность температур, измеренная термопарой .

3.Ход работы:

1.Определим плотность воздуха в аудитории:

$$PV = \frac{m}{\mu}RT \Longrightarrow \rho = \frac{\mu P}{RT}$$

Показания барометра: Р=99600Па Показания термометра: T=297,65K

$$\rho = 1.16 \cdot 10^{-3} \text{kg/m}^3$$

- 2. Включим установку, установим небольшое напряжение на источнике питания(до 10 В).
- 3.Проведем на установке измерения расхода воздуха/мощности нагревателя/перепада температуры, занесем все данные в таблицу.

$$\Delta T = \frac{110}{42.3} \text{K} = 2,60 \text{K} \ \sigma \Delta T = 0,07 \text{K}.$$

$$\sigma V = 0.1$$
π; $\sigma \Delta t = 0.1c$; $\sigma U = 0.05$ Β; $\sigma I = 2.5$ мА

$$\sigma m \Delta T = \frac{V \rho \Delta T}{\Delta t} \sqrt{\left(\frac{\sigma V}{V}\right)^2 + \left(\frac{\sigma \Delta t}{\Delta t}\right)^2 + \left(\frac{\sigma \Delta T}{\Delta T}\right)^2} \qquad \sigma IV = U I \sqrt{\left(\frac{\sigma I}{I}\right)^2 + \left(\frac{\sigma U}{U}\right)^2}$$

V <i>,</i> л	5	5	5	5	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
Δt , c	7,9	9,4	8,8	9,3	16	18,6	16,6	18,8	19,6	19,7	20	22	18,5	17,8	19,4	20,2	20,9	17,1	19,5
mΔT,10 ⁻³ кг·К/с	1,91	1,60	1,71	1,62	1,89	1,62	1,82	1,60	1,54	1,53	1,51	1,37	1,63	1,69	1,55	1,49	1,44	1,76	1,55
<i>σт</i> Δ <i>T</i> ,10 ⁻³ кг·К/с	0,07	0,06	0,06	0,06	0,06	0,05	0,05	0,05	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,04	0,04	0,05	0,04
I <i>,</i> дел	59	55	57	57	59	57	59	55	55	54	54	53	55	56	55	54	52	59	56
							_ ,									_ ,	_ ,		
I,A	0,30	0,28	0,29	0,29	0,30	0,29	0,30	0,28	0,28	0,27	0,27	0,27	0,28	0,28	0,28	0,27	0,26	0,30	0,28
I,A U, дел	0,30 82	0,28 77	0,29 78	0,29 79	0,30 82	0,29 79	0,30 81	0,28 76	0,28 77	0,27 76	0,27 76	0,27 74	0,28 76	0,28 78	0,28 77	0,27 74	0,26 72	0,30 81	0,28 78
,		·	-			· ·	-	-	-			-		-		-	,		
U, дел	82	77	78	79	82	79	81	76	77	76	76	74	76	78	77	74	72	81	78

4.По полученным данным построим график $m\Delta T$ от IV.

$$c_{\rm p} = k = (1.0 \pm 0.1) \frac{\kappa \text{Дж}}{\text{кг} \cdot \text{K}}$$

 $N = b = (0.5 \pm 0.2) \text{Вт}$

Табличное значение c_p =1,005 $\frac{\kappa \not \perp_{\rm K}}{\kappa_\Gamma \cdot {\rm K}}$. Основной причиной возникновения разброса точек относительно линии тренда, является непостоянное давление поступающего воздуха, а значит меняющийся за время измерения расход $V/\Delta t$.