1. Let R be the set of positive real numbers and define addition, denoted by \oplus , and multiplication, denoted by \otimes , as follows. For every $a, b \in R$, $a \oplus b = ab$, and $a \otimes b = a^{\log b}$. Please prove or disprove (R, \oplus, \otimes) .

Since R contains only real positive numbers, both a and b are positive real numbers. axiom 4 states that for any number there must be some element that when the addition operator is applied, it results in 0. In range R, there cannot exist a number, b, in R where $a \oplus b = 0$. Therefore (R, \oplus, \otimes) is not a field

2. Denote the set 0,1,2,3 in Z_4 and define addition, denoted by +, and multiplication, denoted by \cdot or juxtapostion, via the following tables:

axiom 8 states that for every number in Z_4 there is a multiplicative inverse where $a \cdot a^{-1} = 1$. 2 from the range Z_4 has no multiplicative inverse because there exists no other number, b, in Z_4 where $a \cdot b = 1$.

3. Suppose x is a positive integer with n digits, say $x = d_1 d_2 d_3 ... d_n$ in other words, $d_i \in [0, 1, 2..., 9]$ for $1 \le i \le n$, but $d_1 \ne 0$. Please prove or disprove the following. Recall that, for $a, b \in Z$, a is a divisor of b if b = ak, for some $k \in Z$.

(a) If 9 is a divisor of $d_1 + d_2 + d_3 + ... + d_n$, then 9 is a divisor of x.

Given that for $a, b \in Z$, a is a divisor of b if b = ak, for some $k \in Z$ the only time where 9 is a divisor of $d_1 + d_2 + d_3 + ... + d_n$ is when it is also a value of 9 * k.

(b) If $d_n = 0$ or $d_n = 5$, then 5 is a divisor of x.

to begin consider all of the values in $x=d_1d_2d_3...d_n$ where $d_n=0$. this can be re-written as $x=d_1(10^n)+d_2(10^{n-1})+d_3(10^{n-2})+...+d_{n-1}(10^1)$ now we can factor out a 10 from the entire thing resulting in $x=10(d_1(10^{n-1})+d_2(10^{n-2})+d_3(10^{n-3})+...+d_{n-1})$. Since the 10 is divisible by 5, for all values of x where $d_n=0$ will be divisible by 5. Now to consider when $d_n=5$ given that any number where $d_n=0$ is divisible by 5, let us consider the following $x=10(d_1(10^{n-1})+d_2(10^{n-2})+d_3(10^{n-3})+...+d_{n-1})+5$ now if we were to factor out a five from the equation, it would result in $x=5(2(d_1(10^{n-1})+d_2(10^{n-2})+d_3(10^{n-3})+...+d_{n-1})+1)$ which will be divisible by 5 as well. Thus all numbers where $d_n=0$, 5 are divisible 5.

4. Please prove or disprove: if $n \in Z^+$, then $n^2 + n + 41$ is prime: question 4 asserts that if $n \in Z^+$, then for all values n, $n^2 + n + 41$ will be prime. In order to disprove this, there must be some value for n where the output isn't prime. take n = 40, this results in $40^2 + 40 + 41 = 1681$. 1681 is not prime because 41 is a factor of 1681. Therefore $n^2 + n + 41$ is not prime for all $n \in Z^+$.