SBML Model Report

Model name: "Schmitz2014 - RNA triplex formation"

March 3, 2017

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Felix Winter¹ at October 23rd 2013 at 8:46 p. m. and last time modified at July 28th 2014 at 1:23 p. m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	10
events	0	constraints	0
reactions	17	function definitions	4
global parameters	0	unit definitions	1
rules	0	initial assignments	0

Model Notes

Schmitz2014 - RNA triplex formationThe model is parameterized using theparameters for gene CCDC3 from Supplementary Table S1. The twomiRNAs which form the triplex together with CCDC3 are miR-551b andmiR-138.

This model is described in the article:Cooperative gene regulation by microRNA pairs and their identification using a computational workflow.Schmitz U, Lai X, Winter F, Wolkenhauer O, Vera J, Gupta SK.Nucleic Acids Res. 2014 Jul; 42(12): 7539-7552

¹University of Rostock, winter@kapora.de

Abstract:

MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation. In this paper, we present a computational workflow for the prediction and analysis of cooperating miRNAs and their mutual target genes, which we refer to as RNA triplexes. The workflow integrates methods of miRNA target prediction; triplex structure analysis; molecular dynamics simulations and mathematical modeling for a reliable prediction of functional RNA triplexes and target repression efficiency. In a case study we analyzed the human genome and identified several thousand targets of cooperative gene regulation. Our results suggest that miRNA cooperativity is a frequent mechanism for an enhanced target repression by pairs of miRNAs facilitating distinctive and fine-tuned target gene expression patterns. Human RNA triplexes predicted and characterized in this study are organized in a web resource at www.sbi.uni-rostock.de/triplexrna/.

This model is hosted on BioModels Database and identified by: BIOMD0000000530.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit substance

Name substance

Definition mmol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_1	compartment		3	1	litre		

3.1 Compartment compartment_1

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains ten species. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_1	mRNA	compartment_1	$\operatorname{mmol} \cdot 1^{-1}$		
species_2	miRNA_1	${ t compartment}_{ t 1}$	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
species_3	miRNA_2	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		
${ t species}_{ extsf{-}}4$	duplex_1	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		\Box
species_5	duplex_2	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		\Box
species_6	triplex	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		\Box
species_7	TF_mRNA	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		\Box
species_8	TF_miRNA_1	${\tt compartment_1}$	$\text{mmol} \cdot 1^{-1}$		
species_9	TF_miRNA_2	${\tt compartment_1}$	$\operatorname{mmol} \cdot 1^{-1}$		\Box
${\tt species_10}$	protein	${\tt compartment_1}$	$\text{mmol} \cdot l^{-1}$		

5 Function definitions

This is an overview of four function definitions.

5.1 Function definition function_1

Name mRNA synthesis_1

Arguments k_syn_mRNA, [species_7]

Mathematical Expression

$$k_syn_mRNA \cdot [species_7]$$
 (1)

5.2 Function definition function_3

Name miRNA_2 synthesis_1

Arguments k_syn_miRNA_2, [species_9]

Mathematical Expression

$$k_syn_miRNA_2 \cdot [species_9]$$
 (2)

5.3 Function definition function_4

Name protein synthesis_1

Arguments k_syn_prot, [species_1]

Mathematical Expression

$$k_syn_prot \cdot [species_1]$$
 (3)

5.4 Function definition function_2

Name miRNA_1 synthesis_1

Arguments k_syn_miRNA_1, [species_8]

Mathematical Expression

$$k_{syn_miRNA_1} \cdot [species_8]$$
 (4)

6 Reactions

This model contains 17 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

No	Id	Name	Reaction Equation SBO
1	reaction_1	duplex 1 association	species_1 + species_2 $\xrightarrow{\text{species}_1, \text{ species}_2}$ species_4
2	reaction_2	duplex 2 association	species_1 + species_3 $\xrightarrow{\text{species}_1, \text{ species}_3}$ species_5
3	$reaction_3$	triplex association	species_1 + species_2 +
			species_3 species_1, species_2, species_3 species_6
4	${\tt reaction_4}$	mRNA synthesis	$\emptyset \xrightarrow{\text{species}_7, \text{ species}_7} \text{species}_1$
5	reaction_5	miRNA_1 synthesis	$\emptyset \xrightarrow{\text{species_8, species_8}} \text{species_2}$
6	reaction_6	miRNA_2 synthesis	$\emptyset \xrightarrow{\text{species_9, species_9}} \text{species_3}$
7	reaction_7	mRNA degradation	$species_1 \xrightarrow{species_1} \emptyset$
8	reaction_8	miRNA_1 degradation	species_2 $\xrightarrow{\text{species}_2} \emptyset$
9	${\tt reaction_9}$	miRNA_2 degradation	species_3 $\xrightarrow{\text{species}_3} \emptyset$
10	${\tt reaction_10}$	duplex 1 dissociation	species_4 $\xrightarrow{\text{species}_4}$ species_2 + species_1
11	${\tt reaction_11}$	duplex 2 dissociation	species_5 $\xrightarrow{\text{species}_5}$ species_3 + species_1
12	reaction_12	triplex dissociation	$species_6 \xrightarrow{species_6} species_2 + species_3 +$
			species_1
13	${\tt reaction_13}$	duplex 1 degradation	species_4 $\xrightarrow{\text{species}_4} \emptyset$
14	${\tt reaction_14}$	duplex 2 degradation	$species_5 \xrightarrow{species_5} \emptyset$

Nº	Id	Name	Reaction Equation	SBO
15	reaction_15	triplex degradation	$species_6 \xrightarrow{species_6} \emptyset$	
16	reaction_16	protein synthesis	$\emptyset \xrightarrow{\text{species}_1, \text{species}_1} \text{species}_10$	
17	reaction_17	protein degradation	$species_10 \xrightarrow{species_10} \emptyset$	

6.1 Reaction reaction_1

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name duplex 1 association

Reaction equation

$$species_1 + species_2 \xrightarrow{species_1, species_2} species_4$$
 (5)

Reactants

Table 5: Properties of each reactant.

Id	Name	SBO
species_1	mRNA	
${\tt species_2}$	$miRNA_{-}1$	

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
species_1 species_2		

Product

Table 7: Properties of each product.

Id	Name	SBO
species_4	duplex_1	

Kinetic Law

$$v_1 = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_1] \cdot [\text{species}_2]$$
 (6)

Table 8: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	4	$4.5298 \cdot 10^{-2}$	4	

6.2 Reaction reaction_2

This is an irreversible reaction of two reactants forming one product influenced by two modifiers.

Name duplex 2 association

Reaction equation

species_1 + species_3
$$\xrightarrow{\text{species}_1, \text{ species}_3}$$
 species_5 (7)

Reactants

Table 9: Properties of each reactant.

Id	Name	SBO
species_1 species_3		

Modifiers

Table 10: Properties of each modifier.

Id	Name	SBO
species_1	mRNA	
species_3	miRNA_2	

Product

Table 11: Properties of each product.

Id	Name	SBO
species_5	duplex_2	

Kinetic Law

$$v_2 = \text{vol} (\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_1] \cdot [\text{species}_3]$$
 (8)

Table 12: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1	k1	1	.30837 · 10-5	5	\overline{Z}

6.3 Reaction reaction_3

This is an irreversible reaction of three reactants forming one product influenced by three modifiers.

Name triplex association

Reaction equation

$$species_1 + species_2 + species_3 \xrightarrow{species_1, species_2, species_3} species_6$$
 (9)

Reactants

Table 13: Properties of each reactant.

Id	Name	SBO
species_1	mRNA	
species_2	$miRNA_{-}1$	
species_3	miRNA_2	

Modifiers

Table 14: Properties of each modifier.

Name	SBO
mRNA	
$miRNA_{-}1$	
$miRNA_2$	
	MRNA miRNA_1 miRNA_2

Table 15: Properties of each product.

Id	Name	SBO
species_6	triplex	

Derived unit contains undeclared units

$$v_3 = \text{vol}(\text{compartment_1}) \cdot \text{k1} \cdot [\text{species_1}] \cdot [\text{species_2}] \cdot [\text{species_3}]$$
 (10)

Table 16: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.000	

6.4 Reaction reaction_4

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name mRNA synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{species}_7, \text{ species}_7} \text{species}_1$$
 (11)

Modifiers

Table 17: Properties of each modifier.

Id	Name	SBO
species_7 species_7	TF_mRNA TF_mRNA	

Table 18: Properties of each product.

Id	Name	SBO
species_1	mRNA	

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{compartment_1}) \cdot \text{function_1} (\text{k_syn_mRNA}, [\text{species_7}])$$
 (12)

$$function_1(k_syn_mRNA, [species_7]) = k_syn_mRNA \cdot [species_7]$$
 (13)

function_1 (k_syn_mRNA, [species_7]) = k_syn_mRNA
$$\cdot$$
 [species_7] (14)

Table 19: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_syn_mRNA	k_syn_mRNA	1.0	

6.5 Reaction reaction_5

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name miRNA_1 synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{species_8, species_8}} \text{species_2}$$
 (15)

Modifiers

Table 20: Properties of each modifier.

Id	Name	SBO
-	TF_miRNA_1 TF_miRNA_1	

Table 21: Properties of each product.

		<u> </u>
Id	Name	SBO
species_2	miRNA_1	

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment_1}) \cdot \text{function_2} (\text{k_syn_miRNA_1}, [\text{species_8}])$$
 (16)

$$function_2(k_syn_miRNA_1, [species_8]) = k_syn_miRNA_1 \cdot [species_8]$$
 (17)

$$function_2(k_syn_miRNA_1, [species_8]) = k_syn_miRNA_1 \cdot [species_8]$$
 (18)

Table 22: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k_syn_miRNA_1	k_syn_miRNA_1		1.0		

6.6 Reaction reaction_6

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name miRNA_2 synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{species_9, species_9}} \text{species_3}$$
 (19)

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
species_9 species_9	TF_miRNA_2 TF_miRNA_2	

Table 24: Properties of each product.

Id	Name	SBO
species_3	miRNA_2	

Derived unit contains undeclared units

$$v_6 = \text{vol} (\text{compartment_1}) \cdot \text{function_3} (\text{k_syn_miRNA_2}, [\text{species_9}])$$
 (20)

$$function_3(k_syn_miRNA_2, [species_9]) = k_syn_miRNA_2 \cdot [species_9]$$
 (21)

Table 25: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k_syn_miRNA_2	k_syn_miRNA_2		1.0		

6.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name mRNA degradation

Reaction equation

$$species_{-1} \xrightarrow{species_{-1}} \emptyset$$
 (23)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_1	mRNA	

Modifier

Table 27: Properties of each modifier.

Id	Name	SBO
species_1	mRNA	

Derived unit contains undeclared units

$$v_7 = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_1]$$
 (24)

Table 28: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	

6.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name miRNA_1 degradation

Reaction equation

$$species_2 \xrightarrow{species_2} \emptyset$$
 (25)

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
species_2	miRNA_1	

Modifier

Table 30: Properties of each modifier.

Id	Name	SBO
species_2	miRNA_1	

Kinetic Law

$$v_8 = \text{vol}(\text{compartment_1}) \cdot \text{k1} \cdot [\text{species_2}]$$
 (26)

Table 31: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	

6.9 Reaction reaction_9

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name miRNA_2 degradation

Reaction equation

species_3
$$\xrightarrow{\text{species}_3} \emptyset$$
 (27)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
species_3	miRNA_2	_

Modifier

Table 33: Properties of each modifier.

Id	Name	SBO
species_3	miRNA_2	

Kinetic Law

$$v_9 = \text{vol} (\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_3]$$
 (28)

Table 34: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k 1	1.0	Ø

6.10 Reaction reaction_10

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name duplex 1 dissociation

Reaction equation

species_4
$$\xrightarrow{\text{species}_4}$$
 species_2 + species_1 (29)

Reactant

Table 35: Properties of each reactant.

Id	Name	SBO
species_4	duplex_1	

Modifier

Table 36: Properties of each modifier.

Id	Name	SBO
species_4	duplex_1	

Products

Table 37: Properties of each product.

Name	SBO
niRNA_1 nRNA	
	niRNA_1

Kinetic Law

$$v_{10} = \text{vol} \left(\text{compartment_1} \right) \cdot \text{k1} \cdot \left[\text{species_4} \right]$$
 (30)

Table 38: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.250	

6.11 Reaction reaction_11

This is an irreversible reaction of one reactant forming two products influenced by one modifier.

Name duplex 2 dissociation

Reaction equation

$$species_5 \xrightarrow{species_5} species_3 + species_1$$
 (31)

Reactant

Table 39: Properties of each reactant.

Id	Name	SBO
species_5	duplex_2	

Modifier

Table 40: Properties of each modifier.

Id	Name	SBO
species_5	duplex_2	

Products

Table 41: Properties of each product.

Id	Name	SBO
species_3 species_1		

Kinetic Law

$$v_{11} = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_5]$$
 (32)

Table 42: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.241	

6.12 Reaction reaction_12

This is an irreversible reaction of one reactant forming three products influenced by one modifier.

Name triplex dissociation

Reaction equation

species_6
$$\xrightarrow{\text{species}_6}$$
 species_2 + species_3 + species_1 (33)

Reactant

Table 43: Properties of each reactant.

Id	Name	SBO
species_6	triplex	

Modifier

Table 44: Properties of each modifier.

Id	Name	SBO
species_6	triplex	

Table 45: Properties of each product.

Name	SBO
miRNA_1	
miRNA_2	
mRNA	
	miRNA_1 miRNA_2

Derived unit contains undeclared units

$$v_{12} = \text{vol} (\text{compartment_1}) \cdot \text{k1} \cdot [\text{species_6}]$$
 (34)

Table 46: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	0.188	Ø

6.13 Reaction reaction_13

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name duplex 1 degradation

Reaction equation

species_4
$$\xrightarrow{\text{species}_4} \emptyset$$
 (35)

Reactant

Table 47: Properties of each reactant.

Id	Name	SBO
species_4	duplex_1	

Modifier

Table 48: Properties of each modifier.

Id	Name	SBO
species_4	duplex_1	

Kinetic Law

$$v_{13} = \text{vol} (\text{compartment_1}) \cdot \text{k1} \cdot [\text{species_4}]$$
 (36)

Table 49: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	

6.14 Reaction reaction_14

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name duplex 2 degradation

Reaction equation

species_5
$$\xrightarrow{\text{species}_5} \emptyset$$
 (37)

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
species_5	duplex_2	

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
species_5	duplex_2	

Kinetic Law

$$v_{14} = \text{vol} (\text{compartment}_{-1}) \cdot \text{k1} \cdot [\text{species}_{-5}]$$
 (38)

Table 52: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	Ø

6.15 Reaction reaction_15

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name triplex degradation

Reaction equation

$$species_6 \xrightarrow{species_6} \emptyset$$
 (39)

Reactant

Table 53: Properties of each reactant.

Id	Name	SBO
species_6	triplex	

Modifier

Table 54: Properties of each modifier.

Id	Name	SBO
species_6	triplex	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol} (\text{compartment_1}) \cdot \text{k1} \cdot [\text{species_6}]$$
 (40)

Table 55: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	\overline{Z}

6.16 Reaction reaction_16

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name protein synthesis

Reaction equation

$$\emptyset \xrightarrow{\text{species_1, species_1}} \text{species_10}$$
 (41)

Modifiers

Table 56: Properties of each modifier.

Id	Name	SBO
	mRNA mRNA	

Product

Table 57: Properties of each product.

Id	Name	SBO
species_10	protein	

Kinetic Law

Derived unit contains undeclared units

$$v_{16} = \text{vol}(\text{compartment_1}) \cdot \text{function_4}(\text{k_syn_prot},[\text{species_1}])$$
 (42)

$$function_4(k_syn_prot, [species_1]) = k_syn_prot \cdot [species_1]$$
 (43)

$$function_4(k_syn_prot,[species_1]) = k_syn_prot \cdot [species_1]$$
 (44)

Table 58: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k_syn_prot	k_syn_prot	1.0	

6.17 Reaction reaction_17

This is an irreversible reaction of one reactant forming no product influenced by one modifier.

Name protein degradation

Reaction equation

$$species_{-}10 \xrightarrow{species_{-}10} \emptyset$$
 (45)

Reactant

Table 59: Properties of each reactant.

Id	Name	SBO
species_10	protein	

Modifier

Table 60: Properties of each modifier.

Id	Name	SBO
species_10	protein	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = \text{vol}(\text{compartment}_1) \cdot \text{k1} \cdot [\text{species}_10]$$
 (46)

Table 61: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

7.1 Species species_1

Name mRNA

Initial concentration 1 mmol·l⁻¹

This species takes part in 14 reactions (as a reactant in reaction_1, reaction_2, reaction_3, reaction_7 and as a product in reaction_4, reaction_10, reaction_11, reaction_12 and as a modifier in reaction_1, reaction_2, reaction_3, reaction_7, reaction_16, reaction_16).

$$\frac{d}{dt} \text{species}_{1} = |v_{4}| + |v_{10}| + |v_{11}| + |v_{12}| - |v_{1}| - |v_{2}| - |v_{3}| - |v_{7}|$$
(47)

7.2 Species species_2

Name miRNA_1

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in reaction_1, reaction_3, reaction_8 and as a product in reaction_5, reaction_10, reaction_12 and as a modifier in reaction_1, reaction_3, reaction_8).

$$\frac{d}{dt} \text{species} \cdot 2 = |v_5| + |v_{10}| + |v_{12}| - |v_1| - |v_3| - |v_8| \tag{48}$$

7.3 Species species_3

Name miRNA_2

Initial concentration $0 \text{ } mmol \cdot l^{-1}$

This species takes part in nine reactions (as a reactant in reaction_2, reaction_3, reaction_9 and as a product in reaction_6, reaction_11, reaction_12 and as a modifier in reaction_2, reaction_3, reaction_9).

$$\frac{d}{dt} \text{species}_{3} = |v_{6}| + |v_{11}| + |v_{12}| - |v_{2}| - |v_{3}| - |v_{9}|$$
(49)

7.4 Species species_4

Name duplex_1

Initial concentration $0 \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in reaction_10, reaction_13 and as a product in reaction_1 and as a modifier in reaction_10, reaction_13).

$$\frac{d}{dt} \text{species}_{4} = |v_{1}| - |v_{10}| - |v_{13}| \tag{50}$$

7.5 Species species_5

Name duplex_2

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_11, reaction_14 and as a product in reaction_2 and as a modifier in reaction_11, reaction_14).

$$\frac{d}{dt} \text{species}_{5} = |v_{2}| - |v_{11}| - |v_{14}| \tag{51}$$

7.6 Species species_6

Name triplex

Initial concentration $0 \text{ mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in reaction_12, reaction_15 and as a product in reaction_3 and as a modifier in reaction_12, reaction_15).

$$\frac{d}{dt} \text{species}_{.6} = |v_3| - |v_{12}| - |v_{15}| \tag{52}$$

7.7 Species species_7

Name TF_mRNA

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in reaction_4, reaction_4).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}7 = 0 \tag{53}$$

7.8 Species species_8

Name TF_miRNA_1

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in reaction_5, reaction_5).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}8 = 0 \tag{54}$$

7.9 Species species_9

Name TF_miRNA_2

Initial concentration $1 \text{ } \mathrm{mmol} \cdot l^{-1}$

This species takes part in two reactions (as a modifier in reaction_6, reaction_6).

$$\frac{d}{dt} \text{species}_{9} = 0 \tag{55}$$

7.10 Species species_10

Name protein

Initial concentration $1 \text{ mmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_17 and as a product in reaction_16 and as a modifier in reaction_17).

$$\frac{d}{dt} \text{species}_{-10} = |v_{16}| - |v_{17}| \tag{56}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany