Week 5

Applications and Generalizations

5.1 Special Normal Subgroups

10/24:

- Last time: If $H \triangleleft S_n$, $n \neq 4$, then $H = \{e\}, S_n, A_n$. If n = 4, H can also equal $\{e\} \cup \{(xx)(xx)\}$.
- Theorem: Let $n \neq 4$. Then the only normal subgroups of A_n are the identity and A_n .
 - Let $H \triangleleft A_n \triangleleft S_n$. From this, you could propose concluding that since we know all normal subgroups of S_n , and H is less than or equal to A_n , we know that $H = \{e\}, A_n$.
 - Issue: ⊲ is not transitive. Conjugacy classes change depending on where you're sitting.
 - Consider A, B, C: If $A \triangleleft B \triangleleft C$, then is $A \triangleleft C$?
 - This theorem is on HW5.
 - Counterexample:

$$A = \langle (1,2)(3,4) \rangle$$
 $B = \{e\} \cup \{(xx)(xx)\}$ $C = S_4$

- This is not so far from the simplest example.
- Calegari reemphasizes that, "if you understand everything about S_4 , then you understand everything in this class."
- We know that if $H \leq A_4$, then |H||12 by Lagrange's theorem.
- Claim: A_4 has no subgroups of order 6.
 - If H has index 2, then $H \triangleleft A_4$. This was a HW problem.
 - Thus, we can try to understand conjugacy classes in A_n . Whereas in S_n , we have a beautifully simple way to characterize all conjugacy classes, we do not have that in A_n . For example, (1,2,3) and (1,3,2) are not conjugate. (2,3)(1,2,3)(2,3)=(1,3,2). (1,2)(1,2,3)(1,2)=(2,1,3). (1,3)(1,2,3)(1,3)=(3,2,1). But none of these transpositions are in A_n .
 - There are four conjugacy classes in A_4 .

$$\{e\}$$
 $\{(12)(34), (13)(24), (14)(23)\}$ $\{(123), (243), (134), (142)\}$ $\{(132), (234), (143), (124)\}$

- Note that if $x, y \in A_4$ are of order 3, either $x \sim y$ or $x \sim y^{-1}$.
- In A_5 , all 3-cycles are conjugate; in A_4 , they're not.
- The sizes of the conjugacy classes in A_4 are 1+4+4+3. That's enough to prove that there is no subgroup of order 6.
- Alternate proof.

Proof. Suppose for the sake of contradiction that A_4 has a normal subgroup H of index 2. Then by the proposition from Lecture 4.1, there exists a surjective homomorphism from $A_4 \to A_4/H$. Additionally, since $|A_4/H| = 2$ and there is only one group of order 2, $A_4/H \cong \mathbb{Z}/2\mathbb{Z}$. Thus, there exists a surjective homomorphism $\phi: A_4 \to \mathbb{Z}/2\mathbb{Z}$.

We know that every alternating group (including A_4) is generated by 3-cycles. Let σ be an arbitrary 3-cycle generator of A_4 . We know that $\phi(\sigma) = 0$ or $\phi(\sigma) = 1$. If $\phi(\sigma) = 1$, then

$$0 = \phi(e) = \phi(\sigma^3) = 3\phi(\sigma) = 1 +_2 1 +_2 1 = 1$$

which clearly cannot happen. Thus, $\phi(\sigma) = 0$. Consequently, the image of all of the generators of A_4 under ϕ is 0. But this implies that $\phi(A_4) = \{0\} \subsetneq \mathbb{Z}/2\mathbb{Z}$, contradicting our hypothesis that ϕ is surjective.

- Here ends the material that will be covered on the midterm.
- We now move on to something we will come back to later.
- A_n in nature for n=4,5.

(a) Tetrahedron.

(b) Cube.

(c) Octahedron.

(d) Dodecahedron.

(e) Icosahedron.

Figure 5.1: The platonic solids.

- Recall the cube group Cu.
- The cube is an example of a **platonic solid**.
- Other examples: Tetrahedron, octahedron, icosahedron, and dodecahedron. We define corresponding symmetry groups Te, Oc, Do, and Ic.
- Consider the tetrahedral group to start.
 - Since any rigid motion permutes the vertices, we have a map $Te \hookrightarrow S_4$. Moving 2 vertices fixes the rest. Thus, $Te \leq S_4$. Therefore, |Te| = 12 so $Te \cong A_4$.
- We determined in HW2 that...
 - Do $\hookrightarrow S_5$ and |Do| = 60. Thus, Do $\cong A_5$.
- Consider the octahedron.

Figure 5.2: Inscribing a cube in an octahedron.

- $|Oc| = 6 \cdot 4 = 24$. Rationale: Fix one vertex anywhere and then fix another (the other one can only take on the four adjacent positions, though); the positions of the rest are determined from these two.
- Let's look at fixing opposite faces. This does give an injective map to S_4 , and it follows that $Oc \cong S_4$.

- Relation between Oc and Cu. We can inscribe a cube in the octahedron by connecting each vertex of the cube to the midpoint of one of the faces of the octahedron and vice versa. Thus, we get maps $Oc \rightarrow Cu$, leading to $Oc \cong Cu$.
- We can similarly inscribe a dodecahedron in an icosahedron.
- Thus, the cube and the octahedron have the same symmetry, and the dodecahedron and icosahedron have the same symmetry.
- Platonic solid: A solid geometric shape in three dimensions for which the faces, edges, and vertices are all indistinguishable.
 - We will study the platonic solids in more depth later.
- Problem: What symmetries can objects in \mathbb{R}^3 have?
 - Rephrase: What are the finite subgroups of SO(3)?
 - An octagon is Calegari's favorite polygon.
 - An octagonal prism has much the same symmetry in \mathbb{R}^3 as an octagon does in \mathbb{R}^2 . This leads to $D_{2n} \leq SO(3)$.
 - Recall the map from the blog post.
 - We also have $\mathbb{Z}/n\mathbb{Z} \leq D_{2n}$.
- It follows that the groups $\mathbb{Z}/n\mathbb{Z}$, D_{2n} , A_4 , S_4 , and S_5 occur as finite subgroups of SO(3).
- Theorem: All finite subgroups of SO(3) are on this list. Moreover, all related versions are conjugate.
 - This is a companion theorem to the theorem that there are only five platonic solids.
 - Neither theorem implies the other, but they are related.
- Infinite subgroups of SO(3): O(2), SO(3), SO(2).
- This theorem will be completely evident by the end of the course.
- You can either use this theorem to understand A_4 , A_5 , or use an understanding of A_4 , A_5 to rationalize this theorem.
- Points to the main focus of the class: Understanding groups not just based on writing down elements but by their action on a certain set. This is the focus of the second half of the course.
- Midterm: 50 mins, closed book, Wednesday. Final exam must be in-person by department rules, but Calegari is fighting for us. Calegari is hoping that the midterm should not be a speed test.
 - Trying to test our skills, not our ability to memorize stuff.
 - How to do well: Learn group theory.
- The quaternion group.
 - A 4D vector space where you define a noncommutative product. If you just take 8 specific quaternions, the group of order 8 is distinct from D_8 but related.

5.2 Group Actions

- 10/28: Let G be a group and X be a set.
 - Group action (of G on X): A map $: G \times X \to X$ satisfying the following. Denoted by $G \subset X$.
 - 1. For all $g, h \in G$ and $x \in X$, $g \cdot (h \cdot x) = gh \cdot x$.
 - 2. For all $x \in X$, $e \cdot x = x$.

- Note that condition 2 does not follow from condition 1, and an "inverse condition" follows from both.
 - In particular, condition 1 relates certain elements of the domain of the group action but does not relate any elements of the domain to elements of X (as condition 2 does).
 - The inverse condition $g^{-1} \cdot (g \cdot x) = g \cdot (g^{-1} \cdot x) = x$ follows from conditions 1-2 via

$$g^{-1} \cdot (g \cdot x) = g^{-1}g \cdot x = e \cdot x = x = e \cdot x = gg^{-1} \cdot x = g \cdot (g^{-1} \cdot x)$$

- Example: If G is any group and X is any set, we may define a group action by $g \cdot x = x$ for all $g \in G$ and $x \in X$.
- Lemma: Let $G \subset X$ and $g \in G$. Define $\psi_q : X \to X$ by $x \mapsto g \cdot x$. Then ψ_q is a bijection.

Proof. Injectivity:

$$\psi_g(x) = \psi_g(y)$$

$$g \cdot x = g \cdot y$$

$$g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot y)$$

$$e \cdot x = e \cdot y$$

$$x = y$$

Surjectivity: Given $x \in X$, we want y such that $\psi_q(y) = x$. Choose $y = g^{-1} \cdot x$.

- This allows us to recast group actions into the following equivalent form.
- Let X be a set and S_X be the set of all bijections from $X \to X$ under composition. Note that if |X| = n, then $S_X \cong S_n$.
- Proposition: An action G on the set X is equivalent to a homomorphism from G to S_X defined by $g \mapsto \psi_g$.

Proof. A statement of the proposition that makes it more clear what exactly it is we want to prove is, "there exists an action $\cdot: G \times X \to X$ iff there exists a homomorphism $\phi: G \to X$ defined by $g \mapsto \psi_g$." Let's begin.

Suppose first that $\cdot: G \times X \to X$ is group action of G on X. Define $\phi: G \to S_X$ by $g \mapsto \psi_g$. To prove that ϕ is a homomorphism, it will suffice to show that $\phi(gh) = \phi(g) \circ \phi(h)$ for all $g, h \in G$. Let $g, h \in G$ be arbitrary. Then by condition 1, we have for any and all $x \in X$ that

$$g \cdot (h \cdot x) = gh \cdot x$$
$$\psi_g(\psi_h(x)) = \psi_{gh}(x)$$
$$[\psi_g \circ \psi_h](x) = \psi_{gh}(x)$$
$$[\phi(g) \circ \phi(h)](x) = [\phi(gh)](x)$$

Therefore, $\phi(gh) = \phi(g) \circ \phi(h)$, as desired.

Now suppose that $\phi: G \to S_X$ is a homomorphism defined by $g \mapsto \psi_g$. Define $\cdot: G \times X \to X$ by $g \cdot x = [\phi(g)](x)$. To prove that \cdot is a group action, it will suffice to show that for all $g, h \in G$ and $x \in X$, $g \cdot (h \cdot x) = gh \cdot x$ and $e \cdot x = x$. Let $g, h \in G$ and $x \in X$ be arbitrary. Then

$$g \cdot (h \cdot x) = g \cdot \psi_h(x) = [\psi_g \circ \psi_h](x) = [\phi(g) \circ \phi(h)](x) = [\phi(gh)](x) = \psi_{gh}(x) = gh \cdot x$$

and

$$e \cdot x = \psi_e(x) = x$$

as desired. \Box

- You need to be careful with what the set is and what the group is; $x \cdot y$ probably doesn't make any sense (unless you start to get into cases where X is a group, too).
- **Kernel** (of a group action): The set of all $g \in G$ such that $g \cdot x = x$ for all $x \in X$.
 - The kernel is a (normal) subgroup of G.
 - We know this since it is equivalent to the kernel of the homomorphism described by the above proposition.
- Faithful (group action): A group action for which the kernel is trivial, i.e., $ker = \{e\}$.
 - Such a group action is "faithful" because it is telling the whole story, i.e., not leaving out any information, i.e., mapping everything to everything.
 - The trivial group action is an example of a group action that isn't faithful.
- **Orbit** (of $x \in X$): The set of $g \cdot x$ for all $g \in G$. Denoted by **Orb**(x).
 - A subset of X.
 - Everywhere you can get to from your starting point x.
- Transitive (group action): A group action for which Orb(x) = X for some (any) $x \in X$.
 - In what way is a transitive group action transitive??
- Stabilizer (of $x \in X$): The set of all $g \in G$ for which $g \cdot x = x$. Denoted by Stab(x).
 - A subgroup of G.
- The kernel is a subgroup of the stabilizer. More specifically,

$$\ker = \bigcap_{x \in X} \operatorname{Stab}(x)$$

- This is because the elements of the stabilizer fix some $x \in X$, whereas the elements of the kernel fix all $x \in X$.
- Orbits are equivalence relations, i.e., $x \in \text{Orb}(x)$ and $x \in \text{Orb}(y)$ imply that Orb(x) = Orb(y).
 - In particular,

$$X = | |$$
Orbits

- Let $G = S_n$ and X = [n].
- Let G = Cu.
- Examples.

G	X	X	Transitive	Faithful	Kernel	$\operatorname{Stab}(x)$	$ \operatorname{Stab}(x) $
	Faces	6	✓	✓	$\{e\}$	$\mathbb{Z}/4\mathbb{Z}$ (rotations by 90°)	4
	Vertices	8	✓	✓	$\{e\}$	$\mathbb{Z}/3\mathbb{Z}$	3
	Edges	12	✓	✓	$\{e\}$	$\mathbb{Z}/2\mathbb{Z}$	2
Cu	Diagonals	4	✓	✓	$\{e\}$	$S_3 \cong D_6$	6
	Pairs of opposite faces	3	✓	X	Rotations by 180° , in particular, $ K = 4$	D_8	8
	Inscribed tetrahedra	2	✓	X	A_4	A_4	12
	$\operatorname{Ed} \cup \operatorname{Fac}$	18	X	✓	$\{e\}$	$\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z}$	4 or 2

Table 5.1: Examples of group actions.

- The last two rows we filled out by first asserting transitivity, A_4 , and 12; and edges union faces, not transitive.
- On Monday, we will look into group actions where the geometry is not so convenient.