1.
$$T(n) = 25T(\frac{n}{5}) + n^2$$

Решение:

$$a = 25, b = 5, f(n) = n^2.$$

$$c = \log_b a = \log_5 25 = 2$$

Получим, что $f(n) = \Theta(n^c) = \Theta(n^2)$ тогда применяем 3 случай Мастер-теоремы:

 $T(n) = \Theta(n^2 \log n).$

Ответ: $T(n) = \Theta(n^2 \log n)$.

2.
$$T(n) = 16T(\frac{n}{2}) + n^3$$

Решение:

$$a = 16, b = 2, f(n) = n^3.$$

$$c = \log_b a = \log_2 16 = 4$$

Получим, что $\exists \epsilon \ f(n) = O(n^{(c-\epsilon)})) = O(n^{(4-\epsilon)})$ тогда применяем 1 случай Мастер-теоремы:

 $T(n) = \Theta(n^4).$

Ответ: $T(n) = \Theta(n^4)$.

3.
$$T(n) = 9T(\frac{n}{3}) + n^3$$

Решение:

$$a = 9, b = 3, f(n) = n^3.$$

$$c = \log_b a = \log_3 9 = 2$$

Получим, что $\exists \epsilon \ f(n) = \Omega(n^{(c+\epsilon)}) = \Omega(n^{(c+\epsilon)})$ тогда применяем 2 случай Мастер-теоремы:

Проверка условия регулярности: $\exists k = 0.5$

$$9 * f(\frac{n}{3}) < k * f(n)$$

$$\frac{n^3}{3} < \frac{n^3}{2}$$

 $\frac{n^3}{3} < \frac{n^3}{2}$ Значит усорвия регулярности выполняются и получаем:

$$T(n) = \Theta(n^3)$$

Ответ: $T(n) = \Theta(n^3)$.

4.
$$T(n) = T(n-1) + 3n$$

Решение:

Видно, что здесь нельзя применить Мастер-теорему из-за того, что T(n) не подходит по общему виду функции для применения Мастер-теоремы, т.е. $T(n) = aT(\frac{n}{h}) + f(n)$

Поэтому просто руками распишем рекурсию для оценки асимптотики T(n):

$$T(n) = T(n-1) + 3n = T(n-2) + 3n + 3(n-1) = T(n-3) + 3n + 3(n-1) + 3(n-2) = T(0) + 3\sum_{k=1}^{n} k = T(0) + \frac{3}{2}n(n+1).$$

И так как T(0) является просто константой, а сумма стремиться к n^2 при $n->\infty$, то получим асимптотическую оценку T(n)

$$T(n) = \Theta(n^2).$$

Ответ: $T(n) = \Theta(n^2)$.

5.
$$T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n$$

Решение:

Видно, что здесь нельзя применить Мастер-теорему из-за того, что Т(n) не подходит по общему виду функции для применения Мастер-теоремы, т.е. $T(n) = aT(\frac{n}{b}) + f(n)$

Поэтому просто руками распишем рекурсию для оценки асимптотики T(n):

$$T(n) = T(\frac{n}{4}) + T(\frac{3n}{4}) + n = T(\frac{n}{16}) + T(\frac{3n}{16}) + \frac{n}{4} + T(\frac{3n}{16}) + T(\frac{9n}{16}) + \frac{3n}{4} + n = T(\frac{3n}{16}) + T($$

$$=T(\frac{n}{16})+2T(\frac{3n}{16})+T(\frac{9n}{16})+2n=$$

$$= T(\frac{n}{16}) + 2T(\frac{3n}{16}) + T(\frac{9n}{16}) + 2n =$$

$$= T(\frac{n}{64}) + T(\frac{3n}{64}) + \frac{n}{16} + 2(T(\frac{3n}{64}) + T(\frac{9n}{64}) + \frac{3n}{16}) + T(\frac{9n}{64}) + T(\frac{27n}{64}) + (\frac{9n}{16}) + 2n$$

Расписанный вид рекурсии помогает понять, что на каждом шаге нашей рекурсии мы всегда делаем n операций и продолжаем ветвление. Значит на каждом шаге асимптотическая оценка функции T(n) = $\Theta(n)$. А количество шагов оценивается $\log_{\frac{4}{3}}$, так как под знаком θ это будет самый большой \log , так как на каждом шаге мы уменьшаем n в $\frac{1}{4}$ или $\frac{3}{4}$.

Тогда асимптотическая сложность $\mathrm{T}(\mathrm{n})$ равна:

$$T(n) = \Theta(n \log_{\frac{4}{3}} n) = \Theta(n \log n).$$

Otbet: $T(n) = \Theta(n \log n)$.