Mark Scheme Moments Past Paper Questions

Jan 2002 to Jan 2009

3

3	Q3 Jun 2004	
(a)	product of the force and the perpendicular distance ✓ reference to a point/pivot ✓	(2)
(b)(i)	since W is at a greater distance from A \checkmark then W must be less than P if moments are to be equal \checkmark	
(ii)	P must increase ✓ since moment of girl's weight increases as she moves from A to B ✓ correct statement about how P changes (e.g. P minimum at A, maximum at B, or P increases in a linear fashion) ✓	max (4) (6)
1 (a)(i)	resultant force acting on tray is zero $[or P + W = Q]$ \checkmark Q1 Jan 2003 [or correct moments equation or anticlockwise moments = clockwise moments] \checkmark	
(a)(ii)	$W = 0.12 \times 9.81 = 1.2 \text{ N} \checkmark (1.18 \text{ N})$	
(a)(iii)	(taking moments about P gives) $Q \times 0.1 = 0.12 \times 9.81 \times 0.25 \checkmark$ $Q = 2.9 \text{ N} (2.94 \text{ N}) \checkmark$ $P = 2.9 - 1.2 = 1.7 \text{ N} \checkmark \text{ (or } 2.94 - 1.18 = 1.76 \text{ N)}$ (allow C.E. for values of W and Q)	(6)
(b)	placed at Q ✓	
	no additional turning moment about Q ✓	(2) (8)

Q4 Jan 2004

- (a) for a body in equilibrium ✓
 the (sum of the) clockwise moments about a point ✓
 are equal to (the sum of) the anticlockwise moments ✓
 [or resultant torque about a point ✓
 is zero ✓]
- (b)(i) diagram to show: pivot/fulcrum/balance point ✓ masses or appropriate objects ✓
 - (ii) known masses on either side of pivot ✓
 move this mass until ruler is in equilibrium/balanced ✓
 measure distances ✓
 repeat with other masses ✓
- (iii) (calculate) weights of masses (on left and right of pivot) ✓ product of weight and distance to pivot on either side of pivot ✓ hence should be equal ✓

 $\max(7)$ (10)

(3)

Question 3	Q3 Jan 2006	
(a)	the point (in a body) ✓ where the weight (or gravity) of the object appears to act [or resultant torque zero] ✓	2
(b) (i)	$P \times 0.90 = 160 \times 0.50 \checkmark P = 89 \text{ N } \checkmark (88.9 \text{ N})$	3
(ii)	$Q = (160 - 89) = 71 \text{ N }\checkmark$ (allow C.E. for value of P from (i))	
(c)	(minimum) force $\times 0.10 = 160 \times 0.40 \checkmark$ force = 640 N \checkmark	2
(d)	force is less ✓ because distance to pivot is larger ✓ smaller force gives large enough moment ✓	3
	Total	10

- (b) point in the body through which the weight/mass (appears to) acts [or point where resultant torque/moment is zero]

 [or point where body would balance] ✓ (1)
- (c)(i) towards A ✓

so that weight of ruler ✓ provides balancing moment ✓

(ii) (moments about pivot give)
$$1.0 \times (0.30 - d) = 0.50 \times d$$

 $1.5 d = 0.30$ and $d = 0.20$ m \checkmark (5)

Question 6

- (a) (moment) force × perpendicular ✓ distance (from the point) ✓ (2)
- (b)(i) the point in a body where the resultant torque is zero
 [or where the (resultant) force of gravity acts or where the weight acts through] ✓
 - (ii) $F \times 2.5 = 1800 \times 0.35 \checkmark$ $F = 250 \text{ N} \checkmark$ (252 N)

Q6 Jan 2005

(iii)
$$F_R = (1800 - 252) \checkmark$$

= 1500 N \checkmark (1548) N
[use of $F = 250$ N gives $F_R = 1550$ N or 1600 N)
(allow C.E. for incorrect value of F from (ii)) (5)

(c) force must have a horizontal component \checkmark F (therefore) increases in magnitude \checkmark and act at an angle (to the vertical) towards the car \checkmark (3)

(10)

Que	stion 3	Q3 Jun 2006	
(a)		resultant force zero ✓ resultant torque about any point zero ✓	2
(b)	(i) (ii)	force due to wire $P = 5.0 - 2.0 = 3.0 \text{N}$ (moments give) $5.0 \times d = 2.0 \times 0.90$ d = 0.36 m	3
		Total	5

Question 5		Q5 Jan 2007		
(a)		the product of force ✓ and perpendicular distance from a point	//	2
(b)	(i)	(use of moment = force × perpendicular distance gives) 46 = F × 0.25 cos 40 F = 240 N	//	4
	(ii)	increases to a maximum (when shaft is horizontal) and then decreases because the perpendicular distance changes	//	4
			Total	6

Que	stion 6					
(a)		for a body in equilibrium (or for a stationary body) ✓ the sum of the clockwise moments about any point is equal to the sum of the anti-clockwise moments ✓ (about the same point)			2	
(b)	(i)	weight of object A/N	weight of object B/N	weight of object C/N	weight of object D/N	
		0.40	0.40 ✓	0.70 ✓	0.10	
	(ii)	(use of $F_1 \times d_1 = F_1$ $0.70 \times d = 0.10 \times d = 0.011 \text{m}$,	Q6 Jur	n 2007	5
	(iii)	T = 0.40 + 0.40 =	0.80 N ✓			
(c)	(i)	beam (holding B) or beam tips right or moves up		. ✓		
	(ii)	beams falls ✓				
	(iii)	(main) beam rotation or beam tips right all due to because (explanation can	: e of unbalanced	I moment ✓		3
		(all three rotations		,	orrect 1 mark)	
					Total	10

Question 2		
(a)	the sum of clockwise and anticlockwise moments about any point ✓ is zero ✓	2
(b) (i)	R ✓	
/::\	(use of $F_1 \times d_1 = F_2 \times d_2$)	5
(ii)	$F \times 1.5 = 500 \times 0.7 \checkmark$ $F = 23(3) N \checkmark$	
(iii)	$R + 233 = 500 \checkmark R = 270 N \checkmark (267 N)$ (c.e. from (i))	
	Total	7

Question 1		Q1 Jun 200		
(a)		resultant force must be zero ✓ (or forces balance)		
		resultant torque must be zero ✓ (or acm = cm or no turning effect)		
		otherwise object will accelerate ✓ (or change direction)	4	
		otherwise object would rotate/turn (with angular acceleration) ✓		
(b)	(i)	(use of $w_1 \times d_1 = w_2 \times d_2$)		
		<i>U</i> × 1.1 = 200 × 1.85 ✓		
		<i>U</i> = 340 N ✓	3	
	(ii)	CE from (i)		
		$D = 340 - 200 = 140 \text{N} \checkmark \text{ (or by moments)}$		
(c)		U must decrease ✓		
		because greater distance ✓		
		(means for same moment force can be less)	max 3	
		change in D consistent with $U \checkmark$ (if U wrong max 1 mark)		
		as U has decreased but weight of pole remained the same \checkmark		
		(or U = D + 200)		
		Total	10	