Universidade Tecnológica Federal do Paraná Campus Ponta Grossa

Departamento Acadêmico de Informática

Curso Superior de Bacharelado em Ciência da Computação Programa de Pós-Graduação em Ciência da Computação

ALUNO(S): Luiz Guilherme Monteiro Padilha

1. INTRODUÇÃO

É possível imaginar incontáveis cenários em que algoritmos de aprendizagem de máquina possam ser implementados e experimentados, a fim de restringir tal universo, foi selecionado uma aplicação em jogos, mais especificamente ao famoso jogo "Space Invaders" de 1978, para a plataforma de vídeo games Atari, aplicado ao jogo foram utilizados dois algoritmos de aprendizagem por reforço, Deep Q-Networks e Cross-Entropy Method, a fim de otimizar a quantidade de pontos obtidos em uma partida com 3 tentativas.

2. ALGORITMOS DE APRENDIZAGEM DE MÁQUINA

Os algoritmos escolhidos utilizam o processo de decisão de Markov, onde o agente utiliza um conjunto de ações, possui um conjunto de estados, recompensas, políticas de tomadas de decisão e valor.

Imagem 1: Processo de decisão de Markov no jogo.

2. 1 Deep Q-Networks

Utilizando a ideia de Deep Q-Learning que combina aprendizagem por reforço com deep learning, empregando uma rede neural onde o agente aprende a tomar decisões por tentativa e erro, ponderando as ações do mesmo com recompensas, no caso do jogo "Space Invaders" as recompensas estimulam as ações a fim de maximizar a quantidade de pontos acumulados em um episódio(3 vidas do jogador).

O algoritmo recebe como entrada os pixeis renderizados pela tela do simulador Stella, processa essa entrada em sua rede neural a fim de obter o valor Q do peso da ação tomada, então para saber qual ação deve ser tomada seguindo alguma política dado o estado atual, a fim de maximizar sua pontuação atual.

Universidade Tecnológica Federal do Paraná

Campus Ponta Grossa Departamento Acadêmico de Informática Curso Superior de Bacharelado em Ciência da Computação Programa de Pós-Graduação em Ciência da Computação

2. 2 Cross-Entropy Method

É um método de Monte Carlo para amostragem aleatória e otimização de importância, sendo um algoritmo evolutivo, onde algumas amostras são executadas e apenas as que possuam as melhores características serão carregadas para as gerações futuras, logo as sequencias de ações que empregaram melhores pontuações para dado estado, deve ser a

3. METODOLOGIA

Os algoritmos foram executados primeiramente como treino, onde passaram um total de dez mil passos(ações) de jogo, em uma instância determinada do jogo. Após isso foi executado um teste de cinquenta episódios de jogo para se extrair uma media de pontos de ambos os algoritmos.

4. RESULTADOS OBTIDOS

Como resultado se obteve a seguintes tabelas:

Tabela 1: Resultados obtidos

Episódio	Deep Q-Network	Cross-Entropy Method
	Score	
1	460	80
2	290	20
3	210	185
4	555	165
5	210	45
6	410	40
7	460	190
8	210	30
9	410	180
10	180	90
11	180	35
12	210	410
13	210	65
14	440	220
15	180	45
16	410	15
17	410	110
18	260	35
19	180	115
20	210	155
21	410	120

Universidade Tecnológica Federal do Paraná

Campus Ponta Grossa Departamento Acadêmico de Informática Curso Superior de Bacharelado em Ciência da Computação Programa de Pós-Graduação em Ciência da Computação

22	180	90
23	210	80
24	460	120
25	180	45
26	210	155
27	410	115
28	180	90
29	185	70
30	310	70
31	180	80
32	180	260
33	310	205
34	210	75
35	180	110
36	580	35
37	540	120
38	210	50
39	410	205
40	410	255
41	340	35
42	410	160
43	155	35
44	210	170
45	410	85
46	210	60
47	180	95
48	260	70
49	310	115
50	180	65
Media	293,9	109,4

5. CONCLUSÃO

Pode-se observar que o desempenho em maximizar a pontuação durante cada partida foi mais eficiente no emprego do algoritmo Deep Q-Network, dado o treinamento curto empregado aos dois algoritmos, nenhum obteve sucesso em terminar a primeira fazer do jogo, porem com um treinamento mais longo seria possível que ambos os algoritmos aprendessem a lidar com os desafios do game e superar as fazes seguintes maximizando ainda mais a pontuação.