

About TTC:

Toronto Transit is the public transport agency that operates bus, subway, streetcar, and paratransit services in Toronto, Ontario. There are around 2000 buses, 204 streetcars and 800 subway cars operating currently across the system. It facilitates over 1.6 million daily rides and is vital for day-to-day commute for a large number of citizens of Toronto. Yet, this extensive transport system does run into problems sometimes, and we hear a lot of incidents of delays and breakdowns in TTC.

In this report, we have tried to analyze the situation of TTC delays. We have tried to understand the factors contributing to delays and disruptions in TTC services by querying the data at hand and presenting it through visualizations, so that it can be used by the TTC management to identify the loopholes in the system and improve the situation.

Our dataset:

Our dataset consists of TTC delay data for two years: 2022 and 2023. We obtained our dataset from Kaggle

The dataset characteristics are: Date, Route, Time, Day, Location, Incident, Minimum Delay, Minimum Gap, and Direction in both the dataset.

We aggregated dataset and made an aggregate dataset named *transit_data_combined* using **HIVE**. The dataset characteristics remain the same.

Our Tech stack:

Platform	Use case
HIVE	Data Collection and Storage: To establish a centralized repository for TTC delay data. Data Processing: To create tables for each dataset and loaded data into them. Data Integration: To tables from 2022 and 2023 into a single table for comprehensive analysis.
ZEPPELIN	Data Visualization: To derive visual insights and analyze the combined data.

Creating, loading and combining datasets

1) CREATED TABLE TRANSIT_DATA _2022 TO LOAD THE DATA FOR THE YEAR 2022

2) LOADED THE DATA FOR 2022 IN THE ABOVE TABLE

3) CREATED TABLE TRANSIT_DATA _2023 TO LOAD THE DATA FOR THE YEAR 2023

4) LOADED THE DATA FOR 2023 IN THE ABOVE TABLE

```
LOAD DATA INPATH '/user/maria_dev/group_project_ttc/ttc-bus-delay-data-2023.csv'

OVERWRITE INTO TABLE transit_data_2023;

Execute

Save As Insert UDF > % Visual Explain
```

5) CREATED TABLE TRANSIT_DATA_COMBINED TO MERGE BOTH THE TABLES

Visualization steps

Steps:

1. We created a new notebook in Zeppelin and loaded data into the data data frame.

```
Val transit_data_combined = (spark.read.option("header","true").option("inferSchema","true").csv("/user/maria_dev/gr oup_project_ttc/transit_data_combined.csv"))
```

(We couldn't take the screenshot because we lost access)

- 2. After loading the data in spark data frame, we tried to query the dataset to gain insights. Below are some queries and their outputs.
 - 1. Maximum incident count by location:

Table view for 2022: Table view for 2023:

Location	Incident_Count	Location	Incident_Count
KENNEDY STATION	1384	KENNEDY STATION	1231
KIPLING STATION	1276	KIPLING STATION	1065
PIONEER VILLAGE STA	1138	WILSON STATION	976
FINCH STATION	1101	FINCH STATION	924
EGLINTON STATION	1056	EGLINTON STATION	902
WILSON STATION	839	PIONEER VILLAGE S	874
EGLINTON WEST STAT	785	PAPE STATION	671
SCARBOROUGH CEN	698	WARDEN STATION	611
WARDEN STATION	683	SCARBOROUGH CE	596
PAPE STATION	658	EGLINTON WEST ST	523

Observations:

- Kennedy station and Kipling station had maximum incidents of delay for both the years.
- There is a drop in the overall rate of incidents.
- Pape station, Wilson station saw a rise in incidents. On the other hand, Pioneer Village Station, Eglinton West station saw a decrease in the number of incidents, which is a good thing.
- 2. Top 10 routes with maximum delay

```
%sql
SELECT Location,Route,SUM(Min_Delay)AS Total_Delay
FROM transit_data_combined
GROUP BY Location,Route
ORDER BY Total_Delay DESC
LIMIT 10
```

Observations:

- Routes with maximum delays are: Lawrence West Station, Pape Station, Eglinton Station.

3. Months with maximum delay

```
%sql
SELECT
   YEAR(Date) AS Year,
   MONTH(Date) AS Month,
   SUM(Min_delay) AS Total_Minutes_Delay
FROM
   transit_data_combined
WHERE
   YEAR(Date) = 2022
GROUP BY
   YEAR(Date),
   MONTH(Date)
ORDER BY
   Year,
   Month
```

Table view for 2022:	Table view for 2023:
----------------------	----------------------

Month	Total_Minutes_Delay	Month	Total_Minutes_Delay
1	116637	8	111660
8	109327	9	107798
7	109181	10	107482
10	108666	7	104142
12	103668	11	98253
9	101285	12	96306
2	100488	3	91890
6	97007	1	91007
5	93103	6	87607
11		2	
4	76467	5	
3	71419	4	

Observation:

- We can observe delay increases at the end months of the year from July to December.
- This can be due to holiday season, weather conditions and traffic conditions.
 - 4. Top 10 Incident Types and The Frequency

```
#sql SELECT Incident, COUNT(*) AS Frequency FROM transit_data_combined WHERE YEAR(Date) = 2022 GROUP BY Incident ORDER BY Frequency DESC LIMIT 10
```

Table view for 2022:		Table view for 2023:		
Incident	Frequency	Incident	Frequency	
Operations - Operate	19583	Mechanical	19228	
Mechanical	16465	Operations - Opera	ator 11359	
Collision - TTC	3511	Security	4803	
Security	3373	Collision - TTC	3909	
Utilized Off Route	3240	Diversion	3805	
General Delay	3217	General Delay	3199	
Diversion	2881	Emergency Service	es 3016	
Emergency Services	2416	Utilized Off Route	2361	
Cleaning - Unsanitar		Cleaning - Unsanit	ary 2152	
Investigation	905	Investigation	1247	

Observation:

- Incidents with Maximum Frequency: Operator, Mechanical, Collision, Security
- Incidents with Minimum Frequency: Cleaning and Investigation.

- It can be observed that operations were improved which led to decrease in its incident frequency. However, mechanical disruptions increased from 2022 to 2023, which needs to be looked into by the management.

5. Max Incident Count by Station

```
| %sql | SELECT Location, COUNT(Incident) AS Incident_Count | FROM transit_data_combined | WHERE Date >= '2022-01-01' AND Date <= '2022-12-31' | GROUP BY Location | ORDER BY Incident_Count DESC | LIMIT 10
```

- For both years (2022 & 2023), the station with maximum incident counts are Kennedy Station, Kipling Station
- Both of these stations are terminal stations on Line 2.

6. Maximum delay by vehicle number

```
%sql
SELECT Vehicle, SUM(Min_delay) AS Total_Delay
FROM transit_data_combined
WHERE Vehicle != 0 AND YEAR(Date) = 2022
GROUP BY Vehicle
ORDER BY Total_Delay DESC
LIMIT 10
```

Table view for 2022	:		Table view for	r 2023:	
Vehicle	Total_Dela	у		Vehicle	Total_Delay
84	18 2538			8053	2675
83	2481			8301	2204
84	56 2231			3358	2031
84	.09 1854			3513	1940
84	.04 1721			3537	1904
1:	.03 1699			3213	1845
8	62 1684			8568	1792
8	02 1672			8594	1754
34	83 1667			8431	1701
93	1649			8079	1646

- Vehicle number with maximum delay in 2022: 8418, 8456, 8201 (42.18, 41.21, 37.11 HRS)
- Vehicle number with maximum delay in 2023: 8053, 8301, 3358 (44.35, 36.44, 33.51 HRS)

References:

Iamsuzank. (2023, October 16). TTC delay analysis 2022 to 2023. Kaggle. https://www.kaggle.com/code/iamsuzank/ttc-delay-analysis-2022-to-2023/notebook