Automatentheorie endliche Maschinen

Prof. Dr. Franz-Karl Schmatzer schmatzf@dhbw-loerrach.de

- C.Wagenknecht, M.Hielscher; Formale Sprachen, abstrakte Automaten und Compiler; 2.Aufl. Springer Vieweg 2014;
- A.V.Aho, M.S.Lam,R.Savi,J.D.Ullman, Compiler Prinzipien,Techniken und Werkzeuge. 2. Aufl., Pearson Studium, 2008.
- Güting, Erwin; Übersetzerbau –Techniken, Werkzeuge, Anwendungen, Springer Verlag 1999
- Sipser M.; Introduction to the Theory of Computation; 2.Aufl.; Thomson Course Technology 2006
- Hopecroft, T. et al; Introduction to Automata Theory, Language, and Computation; 3. Aufl. Pearson Verlag 2006

- Moore-Maschine
- Mealy-Maschine
- Beispiele

- Endliche Maschinen sind Automaten, die um eine Ausgabefunktion erweitert werden.
- Eine Ausgabe kann dabei entweder durch einem Zustand (Moore) oder während einer Zustandsänderung erfolgen (Mealy).
- Døher unterscheidet man
 - Moore und Mealy Automaten
- Das Modell des endlichen Automaten muss nun um eine Ausgabefunktion erweitert werden.

Einführung I

- Allgemeines Modell einer Maschine
 - Ein Einleseband mit Eingabezeichen,
 - Ein Ausgabeband mit Ausgabezeichen,
 - eine Maschine, die endliche viele interne Zustände haben kann und
 - eine Funktion, die abhängig von dem gelesenen Eingabezeichen und des momentanen Zustandes der Maschine, die Zustände der Maschine ändern kann.
 - Eine Ausgabefunktion
 - eine Startkonfiguration der Maschine
- Bem:
 - und Endkonfigurationen der Maschine existiert nicht!

Modell

Beim Lesen des Zeichens a geht mittels δ die Maschine in einen neuen Zustand über und gibt über die Ausgabefunktion γ das Zeichen b aus.

Einführung formal

- Sei A = (Q, Σ, Z, δ, γ, q_0) eine endliche Maschine.
 - $\Sigma = \{e_1,...,e_n\}$ eine nicht leere Menge von Zeichen, das Eingabealphabet
 - $Q = \{q_0, ,q_n\}$ eine nicht leere Menge von Zuständen
 - $Z = \{z_1,...,z_n\}$ eine nicht leere Menge von Zeichen, das Ausgabealphabet
 - $\delta: Q \times \Sigma \rightarrow Q$ eine Funktion, die Überführungsfunktion
 - $\gamma: Q \times \Sigma \to Z$ eine Funktion, die Ausgabefunktion
 - q₀ ∈ Q der Anfangszustand

- Ausgabe erfolgt an den Knoten
- Überführungsfunktion δ und Ausgabefunktion γ
- $Mo_1 = ({s_0, s_1, s_2, s_3}, {a, b}, {0, 1}, δ, γ, s_0)$
- Wie arbeitet die Maschine?
- Einlesen des Wortes w = ababba

String		a	b	а	b	b	а
Zustand	s ₀	S_1	S ₁	S ₃	S ₂	S ₃	S ₃
Ausgabe	1	0	0	1	0	1	1

Zustände	8	γ	
	а	b	
S ₀	S ₁	S ₃	1
s_{1}	S ₃	S ₁	0
S ₂	s _o	S ₃	0
S ₃	S ₃	S ₂	1

Beispiel Konstruktion

- Konstruieren Sie einen Moore Automaten, der jedes Mal eine 1 ausgibt, wenn der Zeichenstring z = aab in einem Wort erkannt wird. Sonst gibt der Automat eine 0 aus.
 - Geben Sie den Automatengraph und die Überführungsfunktion mit der Ausgabe an.
 - Lesen des Wortes w = aaababbaabb und geben Sie die Ausgabe beim Lesen an.

Beispiel Konstruktion

- Konstruieren Sie einen Moore Automaten, der jedes Mal eine 1 ausgibt, wenn der Zeichenstring z = aab in einem Wort erkannt wird. Sonst gibt der Automat eine 0 aus.
- ► Lösung:
 - Jedes Mal, wenn der substring z= aab erkannt wird, soll die Maschine eine 1 ausgeben, sonst eine 0.
 - Die Anzahl der 1er ist die gesuchte Lösung!

Zustände	8	γ	
	а	b	
S ₀	S ₁	S ₀	0
S ₁	S ₂	s _o	0
S ₂	S ₂	S ₃	0
S ₃	S ₁	s _o	1

Beispiel Arbeitsweise

Lesen des Wortes w = aaababbaabb

String		а	а	а	b	а	b	b	a	а	b	b
Zustand	s ₀	S ₁	S ₂	S ₂	S ₃	S ₁	s _o	s ₀	S ₁	S ₂	S ₃	s ₀
Ausgabe	0	0	0	0	1	0	0	0	0	0	1	0

Moore Maschine Mo₁

- Ausgabe erfolgt an den Übergängen (Kanten)
- Überführungsfunktion δ und Ausgabefunktion γ
- Me₁ = ({s₀, s₁, s₂, s₃}, {a, b}, {0, 1}, δ, γ, s₀)
- Wie arbeitet die Maschine?
- Einlesen des Wortes w = ababba

String		a	a	а	b	b	а
Zustand	s ₀	S ₁	S ₃	S ₃	s ₀	S ₃	S ₃
Ausgabe		0	1	1	1	0	1

Mealy Maschine Me₁

Zustände	δ/γ			
	а	b		
s_0	s ₁ /0	s ₃ /0		
S_1	s ₃ /1	s ₂ /1		
S ₂	s ₃ /0	s ₃ /1		
S ₃	s ₃ /1	s ₀ /1		

Beispiel Konstruktion

- Konstruieren Sie einen Mealy Automaten, der ein Paritätsbit an eine Zeichenkette anfügt, d.h.
 - für eine gerade Anzahl von 1 Bits wird ein 0 angefügt.
 - für eine ungerade Anzahl von 1 Bits wird eine 1 angefügt
- Was ist das Eingabe, was das Ausgabealphabet
- Geben Sie den Automatengraphen an.
- Geben Sie die Überführungsfunktion und die Ausgabe an.
- Zeigen Sie die Arbeitsweise für das Wort w = 01011011p

Beispiel Konstruktion

- Konstruieren Sie einen Mealy Automaten, der ein Paritätsbit an eine Zeichenkette anfügt, d.h.
 - für eine gerade Anzahl von 1 Bits wird ein 0 angefügt.
 - für eine ungerade Anzahl von 1 Bits wird eine 1 angefügt
- Lösung:
 - Die Maschine hat 2 Zustände gerade und ungerade
 - Eingabe {0, 1, p}; Ausgabe {0,1}
 - $ightharpoonup Me_1 = ({0, 1, p}, {g,υ}, {0, 1}, δ, γ, g)$

Zustände			
	0	1	р
9	g/0	u/1	g/0
u	u/0	g/1	g/1

Mealy Maschine Me₂

Beispiel Arbeitsweise

Lesen des Wortes w = 01011011p

String	0	1	0	1	1	0	1	1	р
Zustand	g	u	u	g	u	u	g	u	u
Ausgabe	0	1	0	1	1	0	1	1	1

Aufgaben endliche Maschinen

- 1. Konstruieren Sie einen Kaffee-Automaten.
 - 1. Er soll nur 1€ und 50 Cent akzeptieren.
 - 2. Der Kaffeepreis beträgt 1,50€
- 2. Was ist das Eingabe-, was das Ausgabealphabet?
- 3. Welche Zustände hat der Automat?
- 4. Geben Sie den Graphen und die Übertragungsfunktion Γ an.

Kaffee-Automat 1

A) Münzmenge M{0,5€, 1€}. Ein Kaffeepreis 1,5€

- Eingabemenge (50,100,R, A)
- Ausgabemenge(-,K,50,100)
- Zustände (0,50,100,150)
- Übertragungsfunktion [

	50E	100E	R	Α
0	50/-	100/-	0/-	0/-
50	100/-	150/-	0/50	0/50
100	150/-	150/50	0/100	0/100
150	150/50	150/100	0/(100+50)	0/K

Aufgaben endliche Maschinen

- 1. Konstruieren Sie einen Kaffee-Automaten.
 - 1. Er soll nur 1€ und 50 Cent akzeptieren.

Es gibt 3 Kaffeevarianten

- 0,5€ Espresso
- 1,0€ Cappuccino
- 1,5€ Kaffee
- Es gibt eine Abbruchtaste.
- Was ist das Eingabe-, was das Ausgabealphabet?
- 3. Welche Zustände hat der Automat?
- 4. Geben Sie den Graphen und die Übertragungsfunktion Γan.

Kaffee-Automat 2

A) Münzmenge M{0,5€, 1€}.

- Kaffeepreise
 - 0,5€ Espresso
 - 1,0€ Cappuccino
 - 1,5€ Kaffee
- Eingabemenge (50,100,R, E,C,K)
- Ausgabemenge (-,AE,AC,AK,50,100)
- Zystände (0,50,100,150)
- Übertragungsfunktion Γ

	50E	100E	R	E	С	K
0	50/-	100/-	0/-	0/-	0/-	0/-
50	100/-	150/-	0/50	0/E	0/50	0/50
100	150/-	150/50	0/100	0/E+50	0/C	0/100
150	150/50	150/100	0/(100+50)	0/E+100	0/C+50	0/K

Aufgaben endliche Maschinen

- Kønstruieren Sie einen Moore Automaten, der jedes Mal eine 1 ausgibt, wenn der Zeichenstring z = bab in einem Wort erkannt wird. Sonst gibt der Automat eine 0 aus. Geben Sie den Automatengraph und die Überführungsfunktion mit der Ausgabe an.
- 2. Konstruieren Sie eine Mealy-Maschine, die aus einer binären Zahl d, die zugehörige negative Zahl im 2er-Komplement erstellt.

Lösung Aufgabe 2

- Lösungsidee:
 - Jedes Mal, wenn der substring z= bab erkannt wird, soll die Maschine eine 1 ausgeben, sonst eine 0.
 - Die Anzahl der 1er ist die gesuchte Lösung!
- Es muss der String bab erkannt werden, d.h man benötigt eine Maschine mit mindestens 4 Zuständen.

Zustände	8	γ	
	а	b	
s_0	S ₀	S ₁	0
S_1	S ₂	S ₁	0
S ₂	S ₂	S ₃	0
S_3	S ₂	S ₁	1

Lösung Aufgabe 3

- Konstruieren Sie eine Mealy-Maschine, die aus einer binären Zahl d, die zugehörige negative Zahl im 2er-Komplement erstellt.
 - Sei d := $d_n d_{n-1} ... d_1 d_0$ eine Zeichen Kette mit $d_i \in \{0,1\}$
 - Das 2er-Komplement ist: $d^{C} := d_{n}^{C} d_{n-1}^{C} ... d_{1}^{C} d_{0}^{C} + 1$ mit $d_{i}^{C} := XOR(1,d_{i})$
 - \blacksquare Beispiel: d=100101 \Rightarrow d^C=011010+1=011011

d	d ^c
1011100	0100100
0100110	1011010
1100011	0011101

Lösung Aufgabe 3

- Beobachtung 0 und 1 werden zuerst in 1 und 0 gewandelt und dann eine 1 addiert.
- Falls die letzte Ziffer eine 0 war, wird bei der Addition daraus eine 1 und es erfolgt keine weiteres Propagieren der 1 (no carry) in die nachfolgenden Ziffern.
- Falls die letzte Ziffer eine 1 war, wird bei der Addition daraus eine 0 und die 1 wird in die nächste Ziffer weiter propagiert (carry).

Wir starten mit 3 Zustände (Start s , carry c und no carry n)

Geht es auch mit 2 Zuständen?

Lösung Aufgaben 1

- Konstruieren Sie einen Mealy-Automaten oder Moore-Automaten über das Eingabealphabet {0,1} mit folgenden Eigenschaften.
 - Die Eingabezeichen werden mit einer NOT-Funktion verknüpft und ausgegeben.

 $011011011... \Rightarrow 100100100...$

Je zwei Folgezeichen werden über ein AND verknüpft und ausgegeben.

 $011011011... \Rightarrow 011011011... AND 11011011... = 01001001...$

Lösung Aufgabe 4 (NOT-Funktion)

Moore-Maschine

Mo = $({0, 1}, {s_0, s_1}, {0, 1}, \delta, \gamma, s_0)$

Die erste Ausgabe (0) der Maschine wird verworfen.

Zustände	8	γ	
	0	1	
s_0	S ₁	S ₀	0
S ₁	S ₁	s _o	1

Mealy-Maschine

Me = $(\{0, 1\}, \{s_0\}, \{0, 1\}, \delta, \gamma, s_0)$

Zustände	δ/γ			
	0	1		
s_0	s ₀ /1	s ₀ /0		

Lösung Aufgabe 5 (AND-Funktion)

Moore-Maschine

 $Mo = (\{0, 1\}, \{s_0, s_1, s_2\}, \{0, 1\}, \delta, \gamma, s_0)$

Die erste beiden Ausgaben der Maschine (00) werden verworfen.

Zustände	8	γ	
	0	1	
\$0	S ₁	S ₁	0
s_1	s _o	s ₂	0
S ₂	s ₀	S ₂	1

Mealy-Maschine

Me = $({0, 1}, {s_0, s_1}, {0, 1}, \delta, \gamma, s_0)$

Die erste Ausgabe (0) wird verworfen

Zustände	δ/γ			
	0	1		
S ₀	s ₀ /0	s ₁ /0		
S_1	s ₀ /0	s ₁ /1		

Aufgabe logische Schaltung

- Konstruieren Sie eine Mealy-Maschine zu folgender logischen Schaltung
- In der Komponente "Delay" wird das Eingabesignal um 1 Takt verzögert.

Lösung Aufgabe (1. Schritt)

- Zur Lösung wichtig sind die Signale an den Punkten A und B
- Dazu schauen wir uns an, wie die Maschine arbeitet
 - new B = old A
 - new A = (input) NAND (old A OR old B)
 - output = (input) OR (old B)
- Um aus einem Input einen Output zu generieren, müssen wir uns die Zustände in A und B merken, dh. Insgesamt 4 Zustände.

Lösung Aufgabe (2. Schritt)

- Aufstellen der Übergangsfunktionnew B = old A
 - new A = NAND(input, OR(old A, old B))
 - output = OR(input, old B)
- Setze s_0 als den Zustand mit A=B=0, den Zustand s_1 mit A=0 und B=1, usw.

Input = 0 und old A = old B = $0 \Rightarrow$

- new A = NAND(0,OR(0,0))=1 und
- new B = old A = 0; d,h. Zustand s_2
- output = OR(0,0) = 0;

Input = 1 und old A = old B = $0 \Rightarrow$

- new A = NAND(1,OR(0,0))=1 und
- new B = old A = 0; d.h. Zustand s_2
- output = OR(1,0) = 1;

Zuständ	Zustände A,B		Input 0		Inp	ut 1
Α	В	old	Zustand	output	Zustand	output
0	0	s ₀	S ₂	0	S ₂	1
0	1	S ₁	S ₂	1	S ₀	1
1	0	S ₂	S ₃	0	S ₁	1
1	1	S ₃	S ₃	1	S ₁	1

Lösung Aufgabe (3. Schritt) Mealy-Maschine

- Start mit 00 und befindet sich in s₃ unabhängig wo die Maschine zuvor war.
- Die Eingabe 011011 produziert dann 111011

Aufgabe logische Schaltung 2

- Konstruieren Sie eine Mealy-Maschine zu folgender logischen Schaltung
- In der Komponente "Delay" wird das Eingabesignal um 1 Takt verzögert.

Lösung Aufgabe 2 (1. Schritt)

- Zur Lösung wichtig sind die Signale an den Punkten A und B
- Dazu schauen wir uns an, wie die Maschine arbeitet
 - new B = old A
 - new A = (input) OR (old A OR old B)
 - output = (input) AND (old B)
- Um aus einem Input einen Output zu generieren, müssen wir uns die Zustände in A und B merken, d.h. Insgesamt 4 Zustände.

Lösung Aufgabe 2 (2. Schritt)

- Aufstellen der Übergangsfunktion
 - new B = old A
 - new A = (input) OR (old A OR old B)
 - output = (input) AND (old B)
- Setze s_0 als den Zustand mit A=B=0, den Zustand s_1 mit A=0 und B=1, usw.

- Input = 0 und old A = old B = $0 \Rightarrow$
 - new A = OR(0,OR(0,0))=0 und
 - new B = old A = 0; d,h. Zustand s_0
 - output = AND(0,0) = 0;
- Input = 1 und old A = old B = $0 \Rightarrow$
 - new A = OR(1,OR(0,0))=1 und
 - new B = old A = 0; d.h. Zustand s_2
 - output = AND(1,0) = 0;

Zustände A,B			Input 0		Inp	ut 1
Α	В	old	Zustand	output	Zustand	output
0	0	s_0	s_0	0	S ₂	0
0	1	S ₁	S ₂	0	S ₂	1
1	0	S ₂	S ₃	0	S ₃	1
1	1	S ₃	S ₃	0	S ₃	1 33