EEEN 322 Communication Engineering

İpek Şen Spring 2019

Week 2

Last Week

- Analog versus digital communication
- Wired versus wireless communication
- What is AM?
- What is FM? PM?
- Why do we need AM and FM (or PM)? (instead of sending the the baseband signal directly)

- 1. Continuous-time and discrete-time signals
- 2. Analog and digital signals
- 3. Periodic and aperiodic signals
- 4. Energy and power signals
- 5. Deterministic and random signals

1. Continuous-time and discrete-time signals

2. Analog and digital signals

3. Periodic and aperiodic signals

A signal g(t) is said to be periodic if there exists some constant T_0 such that $g(t + T_0) = g(t)$, $\forall t$

The smallest value of T_0 that satisfies the above condition is called the **period** (or, **fundamental period**)

If g(t) is periodic with period T_0 , it is also periodic with mT_0 , where m is an integer. That is, $g(t + mT_0) = g(t)$, $\forall t, m \in \mathbb{Z}$

If a signal does not satisfy the above condition (if it is **not periodic**), it is called **aperiodic**.

Size* of a Signal

*The size of any entity is a quantity that indicates its strength

Assume that q(t) is the voltage across a one-ohm resistor.

Signal Energy

We define signal energy E_q of the signal g(t) as the energy that the voltage g(t) dissipates on the resistor.

$$E_g = \int_{-\infty}^{\infty} g(t)g^*(t)dt = \int_{-\infty}^{\infty} |g(t)|^2 dt$$
 $E_g = \int_{-\infty}^{\infty} g^2(t)dt$ if $g(t)$ is real

$$E_g = \int_{-\infty}^{\infty} g^2(t)dt$$
 if $g(t)$ is real

Signal Power

If the energy of a signal is not finite, a more meaningful measure of signal size is the time average of the energy (if it exists), i.e., the average power P_q , defined as

$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g(t)g^*(t)dt = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} |g(t)|^2 dt \qquad P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t)dt \quad \text{if } g(t) \text{ is real}$$

$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t) dt \quad \text{if } g(t) \text{ is real}$$

RMS Value

 Note that the average power P_g is the average (mean) of the square of the signal (→ mean-square)

$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t) dt$$

RMS value is the square-root of the average power (→ root-mean-square)

$$g_{RMS} = \sqrt{P_g} = \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t) dt}$$
root mean square

RMS value of g(t) is the DC value that would deliver the same power to the circuit as g(t)

4. Energy and power signals

A signal with finite energy ($0 < E_g < \infty$) is an energy signal A signal with finite power ($0 < P_g < \infty$) is a power signal

$$E_g = \int_{-\infty}^{\infty} g^2(t)dt$$

$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t)dt$$

4. Energy and power signals

A signal with finite energy ($0 < E_g < \infty$) is an energy signal A signal with finite power ($0 < P_q < \infty$) is a power signal

$$E_g = \int_{-\infty}^{\infty} g^2(t)dt$$

$$P_g = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^2(t)dt$$

An energy signal must have finite duration. (A physical signal is always an energy signal.) A power signal must have infinite duration.

A signal cannot be both an energy and a power signal (If it is one, it cannot be the other). A signal with finite energy has zero average power, a signal with finite average power has infinite energy.

Some signals are neither energy nor power signals.

5. Deterministic and random signals

- A signal whose physical description is known completely
 - either in a mathematical form
 - or in a graphical form

is a **deterministic** signal

- A signal that is known only in terms of a probabilistic description
 - such as a mean value
 - mean square value
 - distributions

rather than its full mathematical or graphical description is a random signal

5. Deterministic and random signals

- A signal whose physical description is known completely
 - either in a mathematical form
 - or in a graphical form

is a **deterministic** signal

- A signal that is known only in terms of a probabilistic description
 - such as a mean value
 - mean square value
 - distributions

rather than its full mathematical or graphical description is a random signal

Most of the noise signals encountered in practice are random signals.

All message signals are random signals, because a signal, to convey information, must have some uncertainty (randomness).

Unit Impulse Signal (Dirac Delta) $\delta(t)$

Consider:

In the limit as $\epsilon \to 0$

- the height goes to infinity
- the width goes to zero
- the area remains constant at unity

Unit Impulse: (Dirac Delta)

$$\delta(t) = 0, t \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$

Multiplication of a function by the unit impulse

$$\phi(t)\delta(t) = \phi(0)\delta(t) \qquad \text{(provided } \phi(t) \text{ is defined at } t = 0)$$

$$\phi(t)\delta(t-t_0) = \phi(t_0)\delta(t-t_0) \qquad \text{(provided } \phi(t) \text{ is defined at } t = t_0)$$

Sampling (or, sifting) property of the unit impulse

$$\int_{-\infty}^{\infty} \phi(t) \delta(t - t_0) dt = \int_{-\infty}^{\infty} \phi(t_0) \delta(t - t_0) dt = \phi(t_0) \int_{-\infty}^{\infty} \delta(t - t_0) dt = \phi(t_0)$$

Unit Step Signal u(t)

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & t < 0 \end{cases}$$

Note that: $u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$

From this result, it follows that: $\delta(t) = \frac{du(t)}{dt}$

Vector Space / Signal Space

Vector space

Signal space

Inner product

$$\begin{split} \vec{x} \cdot \vec{y} = <\vec{x}, \vec{y}> &= ||\vec{x}|| \, ||\vec{y}|| \cos \theta \\ &= \sum_i x_i y_i \end{split}$$

$$\langle x(t), y(t) \rangle = \int_{t_1}^{t_2} x(t)y^*(t)dt$$

Orthogonality

$$\vec{x} \cdot \vec{y} = \langle \vec{x}, \vec{y} \rangle = \sum_i x_i y_i = 0$$

$$\langle x(t), y(t) \rangle = \int_{t_1}^{t_2} x(t)y^*(t)dt = 0$$

Norm

$$||\vec{x}||^2 = \vec{x} \cdot \vec{x} = <\vec{x}, \vec{x}> = \sum_i x_i^2$$

 $||x(t)||^2 = \langle x(t), x(t) \rangle = \int_{t_1}^{t_2} |x(t)|^2 dt = E_x$

This is the square of the norm

This is the square of the norm

z(t)=x(t)+y(t), we have:

Norm of the sum of orthogonal vectors/signals

$$||z(t)||^2 = ||x(t)||^2 + ||y(t)||^2$$

If x(t) and y(t) are orthogonal signals and

$$E_z = E_x + E_y$$

$$||\vec{z}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$$

Orthogonal Vector Space / Orthogonal Signal Space

Vector space

Orthogonal set of basis vectors

$$<\vec{x}_m, \vec{x}_n> = \begin{cases} 0, & m \neq n \\ ||\vec{x}_m||^2, & m = n \end{cases}$$

If also $||\vec{x}_n||^2 = 1$, $\forall n$, then the set is **orthonormal** and we have $c_n = \langle \vec{g}, \vec{x}_n \rangle$, n = 1, 2, 3

Signal space

Set of signals orthogonal over (t_1, t_2)

$$\langle \vec{x}_{m}, \vec{x}_{n} \rangle = \begin{cases} 0, & m \neq n \\ ||\vec{x}_{m}||^{2}, & m = n \end{cases}$$

$$\langle x_{m}(t), x_{n}(t) \rangle = \int_{t_{1}}^{t_{2}} x_{m}(t) x_{n}^{*}(t) dt = \begin{cases} 0, & m \neq n \\ E_{m}, & m = n \end{cases}$$

If $\{x_n(t)\}\$ form a **complete set** for g(t), (i.e., is a set of basis signals), then g(t) can be written with zero error as

$$g(t) = \sum_{n=1}^{\infty} c_n x_n(t), \quad t_1 \le t \le t_2$$

where
$$c_n = \frac{\langle g(t), x_n(t) \rangle}{||x_n(t)||^2} = \frac{1}{E_n} \int_{t_1}^{t_2} g(t) x_n^*(t) dt$$

If $E_n = 1$, $\forall n$, then the set is **orthonormal**

17

Orthogonal Signal Space

$$g(t) = \sum_{n=1}^{\infty} c_n x_n(t), \quad t_1 \le t \le t_2$$

Generalized Fourier Series

where

$$c_n = \frac{1}{E_n} \int_{t_1}^{t_2} g(t) x_n^*(t) dt$$

Coefficients of the generalized **Fourier Series**

Since $\{x_n(t)\}\$ are orthogonal, we have

$$E_g = \sum_{n=1}^{\infty} |c_n|^2 E_n$$

For a periodic signal q(t) with period T_0 , complex exponentials $\{e^{jw_0nt}\}_{n=-\infty}^{\infty}$ form an orthogonal basis set over any interval of duration T_0 . (Note that $w_0 = \frac{2\pi}{T_0}$)

Then

$$g(t) = \sum_{n=-\infty}^{\infty} c_n e^{jw_0 nt}$$

Fourier Series Expansion of periodic signal g(t)

Synthesis equation

where

$$c_n = \frac{1}{T_0} \int_{T_0} g(t) e^{-jw_0 nt} dt$$

Fourier Series coefficients **Analysis equation**

$$\frac{1}{T_0} \int_{T_0} |g(t)|^2 dt = \sum_{n=-\infty}^{\infty} |c_n|^2$$

Parseval's Theorem (note that this is the exact equivalent of the one on the left)

Dirichlet Conditions

Let g(t) be a periodic signal with period T_0 . If the following (Dirichlet) conditions are satisfied:

- $1. \int_{T_0} |g(t)| dt < \infty$
- 2. The number of maxima and minima in each period is finite
- 3. The number of discontinuities of g(t) in a period is finite

then g(t) can be expanded in terms of complex exponential signals:

$$g(t) = \sum_{n=-\infty}^{\infty} c_n e^{jw_0 nt}$$
 where $c_n = \frac{1}{T_0} \int_{T_0} g(t) e^{-jw_0 nt} dt$ ($w_0 = \frac{2\pi}{T_0}$)

Dirichlet conditions are "sufficient" conditions, not "necessary" conditions

$$g(t) = \sum_{n=-\infty}^{\infty} c_n e^{jw_0 nt}$$

$$c_n = \frac{1}{T_0} \int_{T_0} g(t)e^{-jw_0nt}dt$$

$$w_0 = \frac{2\pi}{T_0}$$

 c_n is a complex number in general, therefore has a magnitude $|c_n|$ and phase $\sqrt{c_n}$

Plot of $|c_n|$ versus $n \to Magnitude$ spectrum Plot of $\angle c_n$ versus $n \to Phase$ spectrum

Rectangular wave (periodic)

Rectangular wave (periodic)

$$T_0 = 8T$$

Rectangular wave (periodic)

$$T_0 = 8T$$

$$T_0 = 16 T$$

