0/3

Sistemi Operativi PAP 2018 Prova Scritta +1/1/60+ Nome e Cognome: Locidno Mossira
Tempo a disposizione: 90 minuti / Documentazione ammessa: 1 foglio A5 manoscritto.
Domande a risposta multipla [60 punti]
Ogni domanda può avere una o più risposte corrette. Una risposta completamente corretta è valutata 3 punti.
short term scheduling medium term scheduling long term scheduling realtime scheduling
Domanda 2 ♦ In un sistema che implementa un'architettura di tipo NUMA
ogni CPU dispone di una parte privata di memoria i tempi di accesso alla memoria possono variare a dipendenza della CPU che effettua la richiesta i tempi di accesso alla memoria sono costanti
i tempi di accesso alla memoria non dipendono dalla presenza di cache
Domanda 3 ♦ In un programma multi-thread
ogni thread dispone del proprio stack lo stato di esecuzione può essere diverso per ogni thread ogni thread dispone del proprio spazio di indirizzamento ogni thread dispone del proprio heap
Domanda 4 ♦ Le funzioni async safe
sono eseguite in modo atomico

🔀 possono essere richiamate da thread diversi senza rischio di deadlock

sono eseguite in modo asincrono

possono essere utilizzate nei signal handlers

	Domanda 5 ♦ In un sistema che implementa lo scheduling Fair Share ho 3 utenti U1, U2 e U3 e un programma per il calcolo della meteo P con tempo di esecuzione costante T. Contemporaneamente, l'utente U3 mette in esecuzione un'istanza del programma P, l'utente U2 mette in esecuzione 4 istanze del programma P, mentre U1 mette in esecuzione 2 istanze del programma P. In una situazione del genere
	\bigotimes al termine dell'esecuzione ogni istanza di P avrà ricevuto complessivamente lo stesso tempo CPU \diagup
/3	 ☐ tutte le istanze del programma P di tutti gli utenti termineranno allo stesso momento ☐ al termine dell'esecuzione di tutte le istanze di P il tempo CPU ricevuto da ogni utente sarà diverso
	🔀 le istanze dell'utente U1 termineranno dopo l'istanza dell'utente U3
	Domanda 6 ♦ L'esecuzione pseudo-parallela dei processi è possibile
3/3	su sistemi con multi-tasking preemptive solo su sistemi con CPU multicore su sistemi con multi-tasking cooperativo solo su sistemi con CPU a un solo core
	Domanda 7 ♦ I segnali POSIX
3/3	possono essere gestiti in modo sincrono sono sincroni vengono utilizzati per le chiamate di sistema sono asincroni
	Domanda 8 ♦ La maschera dei segnali (signal mask)
3/3	 □ permette di associare uno o più segnali ad un gestore (handler) □ gestisce i segnali nello stato delivered □ può essere configurata dal processo/programma □ permette di bloccare ogni tipo di segnale in entrata (sia normale che realtime)
	Domanda 9 \diamondsuit Il segnale SIGINT (i.e. CTRL+C)
/3	può essere associato ad un gestore (handler) può essere bloccato modificando la maschera può essere inviato solamente a un processo eseguito in modalità privilegiata ha priorità più alta rispetto ad un segnale realtime

	Domanda 10 ♦ In un sistema che implementa lo scheduling a lotteria abbiamo 4 processi A,B,C e D con le seguenti priorità: A (priorità 4), B (priorità 3), C (priorità 2), D (priorità 1). La priorità minima è 1, la priorità massima è 5. Lo scheduler è pre-emptive e assegna un quanto di 25ms. Se lasciamo in esecuzione questi processi per un tempo totale complessivo di 50 minuti, con buona probabilità
1.5/3	B avrà ottenuto la CPU per più di 10 minuti C avrà ottenuto la CPU per circa di 20 minuti D avrà ottenuto la CPU per circa 10 minuti A avrà ottenuto la CPU per più di 15 minuti
	Domanda 11 ♦ In un sistema realtime di tipo event driven
1/3	posso utilizzare l'algoritmo di scheduling EDF posso utilizzare l'algoritmo di scheduling RMA non posso determinare il laxity time i task sono di tipo aperiodico
	Domanda 12 ♦ La latenza nei sistemi realtime
3/3	 □ influenza solo i task aperiodici □ può essere eliminata scegliendo un algoritmo di scheduling appropriato □ impedisce la schedulabilità dei task ☑ deve essere presa in considerazione per poter garantire il rispetto delle deadline
	Domanda 13 \diamondsuit Per implementare il multi-tasking preemptive è necessario disporre di un meccanismo che
0/3	☐ garantisca che il kernel venga eseguito su un core diverso rispetto ai processi utente ☑ garantisca che il kernel possa ottenere periodicamente il controllo della CPU ☐ permetta ai processi di rilasciare volontariamente la CPU (yield) ☐ garantisca che il kernel venga eseguito con una priorità più alta rispetto ai processi utente
	Domanda 14 ♦ Subito dopo un fork, (quindi prima di un eventuale exec)
2/3	il PID del processo figlio è sempre numericamente più grande rispetto a quello del padre il processo padre e il processo figlio condividono lo stesso stack il contenuto dello spazio di indirizzamento del processo padre è identico a quello del figlio il PID del processo figlio è sempre numericamente più piccolo rispetto a quello del padre
	Domanda 15 \diamondsuit Un sistema operativo basato su microkernel
3/3	esegue solo una parte minimale delle sue funzionalità in modalità privilegiata esegue tutte sue le funzionalità in modalità privilegiata permette l'accesso diretto all'hardware a partire dalla modalità utente si basa sul principio del privilegio minimo

Domanda 16 🛇 In un sistema realtime è più probabile ottenere la schedulabilità con... dei valori di slack time grandi utilizzando un algoritmo con priorità dinamiche 1/3 dei valori di laxity time grandi utilizzando un algoritmo con priorità statiche Domanda 17 \(\rightarrow \) Lo stato di un processo (i.e. ready, running e blocked)... può essere modificato da ogni thread del processo viene utilizzato dall'algoritmo di scheduling 1.5/3può essere modificato solo dal kernel può essere modificato da solo dal thread principale del processo Domanda 18 ♦ In un sistema multiprocessore l'hard affinity... permette di ottenere un migliore utilizzo delle risorse di calcolo può essere implementata solo attraverso un algoritmo di scheduling a coda multipla 3/3 permette ai thread di migrare tra CPU/Core diversi introduce dei vincoli all'algoritmo di scheduling Domanda 19 ♦ L'algoritmo Shortest Remaining Time Next (SRTN)... equivale a FIFO se l'esecuzione dei processi non viene sospesa o prelazionata (pre-emption) può portare a una situazione di starvation 1.5/3minimizza il tempo di risposta necessita di una stima del tempo totale di esecuzione dei processi Domanda 20 ♦ Le chiamate di sistema... sono necessarie per l'esecuzione di qualsiasi programma definiscono l'API del sistema operativo 0/3sfruttano gli interrupt asincroni sfruttano gli interrupt del timer

Domande a risposta aperta [9 punti]

Rispondere ad ogni domanda in modo preciso e conciso

Nel cooperativos: aspetto che il processoltherod tilasce voluntariamente (Yield) suo accesso a C PU obpo aver findo suo
job mentre pre emptine è forzado a farlo dopo ogni
"quantum di tempo stabilito comi di chi?

Domanda 22 Perché i processi di tipo *IO-Bound* possono portare un sistema ad avere più chiamate allo scheduler rispetto a processi di tipo *CPU-Bound*? [3 punti]

2/3

1/3

(a) w p- p+ c

0/3

Domanda 23 Uno degli obiettivi generali di un algoritmo di scheduling è l'equità (fairness). Puoi fare un esempio di algoritmo/situazione che non rispetta questo obiettivo? [3 punti]

Nel coso del Pround Probin Senza priorità si può portare
ad una siteazione di Starvation dei procossi con la
priorita più bosso)

$$24-8$$
 $\left(\frac{1}{7}+\frac{1}{4}=0.39$ 5077 400 $1 + 1 = 1.5 > 0.77$ $1 + 1 = 1.5 > 0.77$ $1 + 1 = 1.3 = 0.325 \le 0.77$, $1 + 1 = 1.5 > 0.77$

Scheduling realtime [12 punti]

Domanda 24 Considera un sistema realtime con i seguenti 2 task periodici:

- A, tempo di esecuzione 2, periodicità 7
- B, tempo di esecuzione 1, periodicità 4

Scegli l'algoritmo più semplice/opportuno tra i due visti durante il corso (RMA o EDF).

- ▶ Indica chiaramente l'algoritmo scelto sulla riga tratteggiata sotto alla tabella e motiva la tua scelta su un foglio a parte. [1 punto]
- ► Completa la tabella indicando l'ordine di scheduling in base all'algoritmo scelto. Nota: considera che si tratta di un sistema non-preemptive con una sola CPU/un solo core. [5 punti]

Te	emj	po	(m	s)	\rightarrow																												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
A	Α	A						A	A						A	A						A	A						A	A			
В	B				B				B				B				B				B				B				B			1	B
	B	A	A		B			A	A	B			B		A	A	В				В	A	A		B				B	A	A		R
			F	1	7																				protection	7050		7117				- Company	

Domanda 25 Considera un sistema realtime con i seguenti 2 task periodici:

- A, tempo di esecuzione 2, periodicità 5
- B, tempo di esecuzione 4, periodicità 8

Scegli l'algoritmo più semplice/opportuno tra i due visti durante il corso (RMA o EDF).

- ▶ Indica chiaramente l'algoritmo scelto sulla riga tratteggiata sotto alla tabella e motiva la tua scelta su un foglio a parte. [1 punto]
- ► Completa la tabella indicando l'ordine di scheduling in base all'algoritmo scelto. Nota: considera che si tratta di un sistema non-preemptive con una sola CPU/un solo core. [5 punti]

Te	emp	00	(m	s)	\rightarrow																												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33
A	A	A				A	A				A	A				A	A				A	A				A	A				A	A	
В	B	B	B	B					B	B	В	B					B	B	6	B					B	B	B	B					B
	A	A	B	B	B	B	A	A	B	В	B	B	A	A	/	A	A	B	В	B	B	A	A	/	B	В	В	B	A	A	A	A	B

6/6

4/4

2/2

Scheduling non-realtime [6 punti]

- ▶ Premessa alle domande che seguono Considera un sistema che utilizza l'algoritmo di scheduling round-robin con priorità in cui vengono eseguiti i seguenti quattro processi CPU-bound. Per ogni processo il tempo di arrivo (arrivo nella coda), la sua priorità (1 = massima, 5 = minima), e il tempo stimato di esecuzione sono:
 - A, arrivo dopo 2ms, priorità 4, tempo di esecuzione 9ms
 - B, arrivo dopo 7ms, priorità 2, tempo di esecuzione 5ms
 - C, arrivo dopo 9ms, priorità 1, tempo di esecuzione 6ms
 - D, arrivo dopo 5ms, priorità 3, tempo di esecuzione 10ms

Domanda 26 Determina l'ordine di scheduling completando la tabella seguente, considerando che lo scheduler è preemptive e il quanto dura 4ms. [4 punti]

Tempo (ms)	\rightarrow																			
1 2 3 4 5	6 7 8 9	10 11	12 13	14 15	16 1	7 18	19	20 2:	1 22	23	24	25	26	27	28	29	30	$31 \mid 3$	2 33	34
BAA	DDBB	CC	CC	CC	B 8	B	D/	DD	0	D	D	0	D	A	A	A	A	ALA	1	
	6						/												ri provincia di	
Α Ι	י כי כ	- 										0		1		2		3		4
											Arrest Co.		43/14/500	200	WINTER TO	CONTRACTOR OF THE PARTY OF THE			C AND DESCRIPTION	
Domanda 27 Calcola il tempo medio di elaborazione (quanto di 3ms) [2 punti]															il					
Domanda	21 00	icoia i	i ociii	po 11.	icaro	CI.	CIGO	OIW	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	٠ (.	qui			-	Г	No. of Lot	STATE	-	Page 1	7
										1					L		w L	p	1]C
								(,8	/										
A=30	A=30; B=11; C=6; D=21 T= 68 = 17ms																			
.1.1	(.1	/				. [
		1 00		1																
	artino	1 45	e c	_	Market Printers	,	V		1	1										
1-16	1 artino	6	m S	12		900	W11	in :		10	15									
5	Y			T	T															
2 8	5ms	181	1112>	-12	2															
3- h	5 ms	100	ms	1 5	2															
D	J W S	1			_	4000														
4 10	12ms	1	w <	6																