Approach for Convolution

Let input Size be $28 \times 28 \times 10$ Kernel Size be $3 \times 3 \times 10$ (3 Let us use 20 such Kernels for 20 output channels

1) Kernels partition

2) Input

- -> Fetch only one layer of input
- → Store and reuse it until convolution with layer 1 of all 20 Kernels is completed

3) 2D - Convolution

0-0	0 001	0.02	a ₀₃	аон		K00	Koi	K02
α10	a_{i}	a12	a ₁₃	a14	8	K10	Κ ₁₁	k ₁₂
0.20	d ₂₁	022	1 a23	azy ···		K21	K22	k23
				9.214				

calculated

- -> Now continue the above process with 1^{St} layer of Kernel 2 -> This will give PO_2
- -> Once all 20 rernels are used, now we have 20 channels of partial outputs
- -> Next use 2nd input layer, and 2nd layer of 20 Kernels -> This will again give 20 channely of partial outputs, which we need to add with previous partial outputs