基于词频分类器集成的文本分类方法

姜远 周志华

组成

- 问题描述
- 困难点
- 解决方法
- 实现过程
- 表现
- 评价

问题描述

• 高效地分类文本!

文本的特征

高维向量

实时性

困难

计算代价

数据更新

解决方法。

很菜的分类器

集成

什么是菜?

学习算法对新鲜样本的适应能力

接下来都是实现过程

爱听不听

基分类器

因此,我们可以将单词和它出现的频率一起作为一个基分类器. 若文本 \mathbf{d}_i 表示为矢量(v_{i1} ,…, v_{in}), v_{ik} 表示 V 中的第 k 个单词 t_k 在文本 \mathbf{d}_i 中出现的次数,此时,基分类器被定义为

$$h_{t_k,f}(\boldsymbol{d}_i) = \begin{cases} 1, & \text{if } v_{ik} \geqslant f, \\ 0, & \text{if } v_{ik} < f. \end{cases}$$
 (2)

基分类器 (举例)

```
f("Taoxianping is smart")="Truth"

f("Majun is old")="Lie"
```

V={'Majun', 'Old', 'Is', 'Taoxianping', 'smart'}

$$h_{majun,0}(d_1) = 1$$

 $h_{majun,0}(d_2) = 1$
 $h_{majun,1}(d_2) = 1$
 $h_{majun,2}(d_2) = 0$

训练细节

每次都选择误差最小的学习器

组合弱学习器

好学生和差学生

$$H(x) = sign(\sum_{t=1}^{T} \alpha_t h_t(x))$$
where $\alpha_t = \log(\frac{1}{\beta_t})$
where $\beta_t = \frac{\epsilon_t}{1 - \epsilon_t}$

Reuters-21578

表现

Table 1 Experimental Data

表 1 实验数据的情况

Class Name	Number of	Number of
	Training Examples	Testing Examples
Earn	2877	1087
acq	1650	719
money-fx	538	179
grain	433	149
crude	389	189
trade	368	118
interest	347	131
wheat	212	71
ship	197	89

Fig. 1 Comparison of F1 values. (a) F1 on class "earn"; (b) F1 on class "acq"; and (c) F1 on class "money-fx".
图 1 F1 值的比较. (a) "earn"类上 F1 值; (b) "acq"类上 F1 值; (c) "money-fx"类上 F1 值

评价

- 性能较好
- 提出了新方法
- 缺乏运行速度比较
- 如何更新

不用谢!