Tutorial on Probabilistic Techniques for Robot Navigation

Wolfram Burgard

Probabilistic Techniques in Robotics

- Perception = state estimation
- Action = utility maximization

Key Questions

- Representation
- Maximization
 especially in the context of higher dimensions

Dimensions of Mobile Robot Navigation

Topics in this Talk

- State estimation
- Localization
- Mapping
- SLAM
- Exploration

Applications

Axioms of Probability Theory

P(A) denotes probability that proposition A is true.

$$0 \le P(A) \le 1$$

$$\blacksquare$$
 P(True) = 1

$$P(False) = 0$$

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

A Closer Look at Axiom 3

$$P(A \lor B) = P(A) + P(B) - P(A \land B)$$

Bayes Formula

$$P(x,y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$

$$\Rightarrow$$

$$P(x|y) = \frac{P(y|x) P(x)}{P(y)} = \frac{\text{likelihood } \cdot \text{prior}}{\text{evidence}}$$

Recursive Bayesian Updating

$$P(x \mid z_1,...,z_n) = \frac{P(z_n \mid x,z_1,...,z_{n-1}) P(x \mid z_1,...,z_{n-1})}{P(z_n \mid z_1,...,z_{n-1})}$$

Markov assumption:

 z_n is independent of z_1, \dots, z_{n-1} given x

$$P(x \mid z_{1},...,z_{n}) = \frac{P(z_{n} \mid x) P(x \mid z_{1},...,z_{n-1})}{P(z_{n} \mid z_{1},...,z_{n-1})}$$

$$= \eta P(z_{n} \mid x) P(x \mid z_{1},...,z_{n-1})$$

$$= \eta_{1...n} \left[\prod_{i=1}^{n} P(z_{i} \mid x) \right] P(x)$$

Modeling Actions

 To incorporate the outcome of an action u into the current "belief", we use the conditional pdf

 This term specifies the pdf that executing u changes the state from x' to x.

Example: Closing the door

State Transitions

P(x/u,x') for u = "close door":

If the door is open, the action "close door" succeeds in 90% of all cases

Integrating the Outcome of Actions

Continuous case:

$$P(x \mid u) = \int P(x \mid u, x') P(x') dx'$$

Discrete case:

$$P(x \mid u) = \sum P(x \mid u, x')P(x')$$

Markov Assumption

Underlying Assumptions

- Static world
- Independent noise
- Perfect model, no approximation errors

z = observationu = action

x = state

Bayes Filters

$$\begin{array}{ll} \boxed{\textit{Bel}(x_t)} = P(x_t \,|\, u_1, z_1, \dots, u_t, z_t) \\ \text{Bayes} &= \eta \; P(z_t \,|\, x_t, u_1, z_1, \dots, u_t) \; P(x_t \,|\, u_1, z_1, \dots, u_t) \\ \text{Markov} &= \eta \; P(z_t \,|\, x_t) \; P(x_t \,|\, u_1, z_1, \dots, u_t) \\ \text{Total prob.} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_1, z_1, \dots, u_t, x_{t-1}) \\ & \qquad \qquad P(x_{t-1} \,|\, u_1, z_1, \dots, u_t) \; dx_{t-1} \\ \text{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_t, x_{t-1}) \; P(x_{t-1} \,|\, u_1, z_1, \dots, u_t) \; dx_{t-1} \\ \text{Markov} &= \eta \; P(z_t \,|\, x_t) \; \int P(x_t \,|\, u_t, x_{t-1}) \; P(x_{t-1} \,|\, u_1, z_1, \dots, z_{t-1}) \; dx_{t-1} \end{array}$$

$$= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$

```
Algorithm Bayes_filter( Bel(x), d ):
1.
2.
      \eta=0
      If d is a perceptual data item z then
3.
         For all x do
4.
             Bel'(x) = P(z \mid x)Bel(x)
5.
             \eta = \eta + Bel'(x)
6.
7.
         For all x do
             Bel'(x) = \eta^{-1}Bel'(x)
8.
9.
      Else if d is an action data item u then
10.
         For all x do
             Bel'(x) = \int P(x \mid u, x') Bel(x') dx'
11.
      Return Bel'(x)
12.
```

Bayes Filters are Familiar!

$$Bel(x_t) = \eta \ p(z_t \mid x_t) \int p(x_t \mid u_t, x_{t-1}) Bel(x_{t-1}) dx_{t-1}$$

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)

Dimensions of Mobile Robot Navigation

Probabilistic Localization

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

There are Different Representations

- Kalman filters
- Multi-hypothesis tracking
- Grid-based representations
- Topological approaches
- Particle filters

Idea of a Particle Filter

Represent the posterior by a set of weighted samples.

$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$

State hypothesis Importance weight

- Particles are propagated according to the motion model $p(x \mid u, x')$
- They are weighted according to the observation likelihood $p(z \mid x)$
- They survive with a probability proportional to their importance weight w

Representations: Particle Filter

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

- 1. Draw x'from Bel(x)
- 2. Draw x from $p(x \mid u, x')$
- 3. Importance factor for $x: w = \alpha \ p(z \mid x)$
- 4. Re-sample

Mobile Robot Localization with Particle Filters

Sensor Update

$$Bel(x \mid z) = \alpha p(z \mid x) Bel(x)$$

Robot Motion & Resampling

$$Bel(x \mid u) = \int_{x'} p(x \mid u, x') Bel(x')$$

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- 2. $S_t = \emptyset$, $\eta = 0$
- 3. **For** i = 1...n

Generate new samples

- 4. Sample index j(i) from the discrete distribution given by w_{t-1}
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and u_{t-1}
- $6. w_t^i = p(z_t \mid x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$

Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. **For** i = 1...n
- 10. $w_t^i = w_t^i / \eta$

Normalize weights

Resampling

- Roulette wheel
- Binary search, n log n

- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Sensor Models for Proximity Sensors

- The central task is to determine P(z|x), i.e., the probability of a measurement z given that the robot is at position x.
- Question: Where do the probabilities come from?
- Approach: Let's try to explain a measurement.

Conditional Independence

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Beam-based Proximity Model

Measurement noise

Unexpected obstacles

$$P_{hit}(z \mid x, m) = \eta \frac{1}{\sqrt{2\pi b}} e^{-\frac{1}{2}\frac{(z - z_{\exp})^2}{b}}$$

$$P_{\text{unexp}}(z \mid x, m) = \left\{ \begin{array}{cc} \eta \lambda e^{-\lambda z} & z < z_{\text{exp}} \\ 0 & otherwise \end{array} \right\}$$

Beam-based Proximity Model

Max range

$$P_{rand}(z \mid x, m) = \eta \frac{1}{z_{\text{max}}}$$

$$P_{\max}(z \mid x, m) = \eta \frac{1}{z_{small}}$$

Resulting Mixture Density

$$P(z \mid x, m) = \begin{pmatrix} \alpha_{\text{hit}} \\ \alpha_{\text{unexp}} \\ \alpha_{\text{max}} \\ \alpha_{\text{rand}} \end{pmatrix}^{T} \cdot \begin{pmatrix} P_{\text{hit}}(z \mid x, m) \\ P_{\text{unexp}}(z \mid x, m) \\ P_{\text{max}}(z \mid x, m) \\ P_{\text{rand}}(z \mid x, m) \end{pmatrix}$$

How can we determine the model parameters?

Odometry Motion Model

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$.
- Odometry information $u = \langle \delta_{rot1}, \delta_{rot2}, \delta_{trans} \rangle$.

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

$$\delta_{rot1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \theta$$

$$\delta_{rot2} = \overline{\theta}' - \overline{\theta} - \delta_{rot1}$$

$$\langle \bar{x}, \bar{y}, \bar{\theta} \rangle$$
 δ_{rot1}

trans

Application

- Repeated application of the motion model for short movements.
- Typical banana-shaped distributions obtained for the 2d-projection of the 3d posterior.

Sampling from Our Motion Model

MCL: Global Localization (Sonar)

Vision-based Localization

Why Navigation is Relevant: Self-Driving Cars

Precise Localization and Positioning for Mobile Robots

Dimensions of Mobile Robot Navigation

Occupancy Grid Maps

- Introduced by Moravec and Elfes in 1985
- Represent environment by a grid.
- Estimate the probability that a location is occupied by an obstacle.
- Key assumptions
 - Occupancy of individual cells $m_t^{[xy]}$ is independent

$$Bel(m_t) = P(m_t \mid u_1, z_2 ..., u_{t-1}, z_t)$$

$$= \prod_{x,y} Bel(m_t^{[xy]})$$

Robot positions are known!

Updating Occupancy Grid Maps

Update the map cells using the inverse sensor model

$$Bel(m_t^{[xy]}) = 1 - \left(1 + \frac{P(m_t^{[xy]} \mid z_t, u_{t-1})}{1 - P(m_t^{[xy]} \mid z_t, u_{t-1})} \cdot \frac{1 - P(m_t^{[xy]})}{P(m_t^{[xy]})} \cdot \frac{Bel(m_{t-1}^{[xy]})}{1 - Bel(m_{t-1}^{[xy]})}\right)^{-1}$$

Or use the log-odds representation

$$\overline{B}\left(m_{t}^{[xy]}\right) = \log odds\left(m_{t}^{[xy]} \mid z_{t}, u_{t-1}\right) - \log odds\left(m_{t}^{[xy]}\right) + \overline{B}\left(m_{t-1}^{[xy]}\right)$$

$$\overline{B}\left(m_0^{[xy]}\right) := \log odds(m_0^{[xy]}) \qquad odds(x) := \left(\frac{P(x)}{1 - P(x)}\right)$$

Typical Sensor Model for Ultrasound Sensors

 $P(m_t^{[xy]}|z_t,u_{t-1})$ as a mixture of a linear function and a Gaussian:

Incremental Updating of Occupancy Grids (Example)

Resulting Map Obtained with Ultrasound Sensors

3D Occupancy Map (OctoMap)

Freiburg computer science campus

(292 x 167 x 28 m³, 20 cm resolution)

Dimensions of Mobile Robot Navigation

Simultaneous Localization and Mapping (SLAM)

- To determine its position, the robot needs a map.
- During mapping, the robot needs to know its position to learn a consistent model
- Simultaneous localization and mapping (SLAM) is a "chicken and egg problem"

Why SLAM is Hard: Raw Odometry

Scan Matching

Maximize the likelihood of the *t*-th pose and map relative to the pose and the map at *t-1*.

$$\hat{x}_t = \operatorname*{argmax} \left\{ p(z_t \mid x_t, \hat{m}_{t-1}) \cdot p(x_t \mid u_{t-1}, \hat{x}_{t-1}) \right\}$$
 current measurement robot motion

map constructed so far

Mapping using Scan Matching

Probabilistic Formulation of SLAM

$$Bel(x, m \mid z, u) = \alpha p(z \mid x, m) \int_{x'} p(x \mid u, x') Bel(x', m) dx'$$

 $n = axb dimensions$

three dimensions

A Graphical Model for SLAM

[Murphy et al., 99]

Rao-Blackwellized Particle Filters for SLAM

Observation:

Given the true trajectory of the robot, we can efficiently compute the map (mapping with known poses).

Idea:

- Use a particle filter to represent potential trajectories of the robot.
- Each particle carries its own map.
- Each particle survives with a probability that is proportional to the likelihood of the observation given that particle and its map.

Factorization Underlying Rao-Blackwellization

$$Bel(x, m \mid z, u)$$

$$= p(m \mid x, z >) p(x \mid z, u)$$

$$Mapping with known poses$$

Particle filter representing trajectory hypotheses

Particle Filter Realization

map of particle 1

map of particle 2

Challenge

Reduction of the number of particles.

Approaches:

- Focused proposal distributions (keep the samples in the right place)
- Adaptive re-sampling (avoid depletion of relevant particles)

Graphical Model for Mapping with Improved Odometry

Motion Model for Scan Matching

Incorporating the Current Measurement

End of a corridor:

Free space:

Corridor:

Application Example

Application Example

Application Example

Number of Effective Particles

$$n_{eff} = \frac{1}{\sum_{i} \left(w_t^{(i)}\right)^2}$$

- Empirical measure of how well the goal distribution is approximated by samples drawn from the proposal.
- $lacktriangleq n_{\it eff}$ describes "the variance of the particle weights"
- $n_{e\!f\!f}$ is maximal for equal weights. In this case, the distribution is close to the proposal.
- We only re-sample when n_{eff} drops below a given threshold (n/2)

Typical Evolution of n_{eff}

Map of the Intel Lab

15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

MIT Killian Court

Graph-Based SLAM

- Constraints connect the poses of the robot while it is moving
- Constraints are inherently uncertain

Graph-Based SLAM

 Observing previously seen areas generates constraints between nonsuccessive poses

Graph-Based SLAM in a

Nutshell

- Every node in the graph corresponds to a robot position and a laser measurement
- An edge between two nodes represents a spatial constraint between the nodes

KUKA Halle 22, courtesy of P. Pfaff

Graph-Based SLAM in a

Nutshell

 Every node in the graph corresponds to a robot position and a laser measurement

 An edge between two nodes represents a spatial constraint between the nodes

Graph-Based SLAM in aNutshell

 Once we have the graph, we determine the most likely map by correcting the nodes

Graph-Based SLAM in aNutshell

 Once we have the graph, we determine the most likely map by correcting the nodes

... like this

Graph-Based SLAM in a Nutshell

 Once we have the graph, we determine the most likely map by correcting the nodes

... like this

 Then, we can render a map based on the known poses

Least Squares in General

- Approach for computing a solution for an overdetermined system
- "More equations than unknowns"
- Minimizes the sum of the squared errors in the equations
- Standard approach to a large set of problems

Graphical Explanation

state (unknown) predicted measurements

real measurements

Error Function

 Error e_i is typically the difference between the predicted and actual measurement

$$\mathbf{e}_i(\mathbf{x}) = \mathbf{z}_i - f_i(\mathbf{x})$$

- We assume that the error has zero mean and is normally distributed
- Gaussian error with information matrix Ω_i
- The squared error of a measurement depends only on the state and is a scalar

$$e_i(\mathbf{x}) = \mathbf{e}_i(\mathbf{x})^T \mathbf{\Omega}_i \mathbf{e}_i(\mathbf{x})$$

The Graph

- It consists of n nodes $\mathbf{x} = \mathbf{x}_{1:n}$
- Each \mathbf{x}_i is a 2D or 3D transformation (the pose of the robot at time t_i)
- A constraint/edge exists between the nodes \mathbf{x}_i and \mathbf{x}_j if...

Create an Edge If... (1)

- ...the robot moves from \mathbf{x}_i to \mathbf{x}_{i+1}
- Edge corresponds to odometry

The edge represents the **odometry** measurement

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a **virtual measurement** about the position of \mathbf{x}_j seen from \mathbf{x}_i

Measurement from \mathbf{x}_i

Measurement from \mathbf{x}_j

Create an Edge If... (2)

- ...the robot observes the same part of the environment from \mathbf{x}_i and from \mathbf{x}_j
- Construct a **virtual measurement** about the position of \mathbf{x}_j seen from \mathbf{x}_i

Edge represents the position of \mathbf{x}_j seen from \mathbf{x}_i based on the **observation**

Pose Graph

• Goal:
$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \sum_{ij} \mathbf{e}_{ij}^T \Omega_{ij} \mathbf{e}_{ij}$$

Gauss-Newton: The Overall Error Minimization Procedure

- Define the error function
- Linearize the error function
- Compute its derivative
- Set the derivative to zero
- Solve the linear system
- Iterate this procedure until convergence

Example: CS Campus Freiburg

Application: Sparse Pose Adjustment

The KUKA Production Site

3D Map of the Stanford Parking Garage

Application: Navigation with the Autonomous Car Junior

 Task: reach a parking spot on the upper level of the garage.

Autonomous Parking

Dimensions of Mobile Robot Navigation

Which Action to Take?

Naïve Approach to Combine Exploration and Mapping

Learn the map using a Rao-Blackwellized particle filter.

Apply an exploration approach that minimizes the map uncertainty.

Disadvantage of the Naïve Approach

Exploration techniques only consider the map uncertainty for generating controls.

They avoid re-visiting known areas.

Data association becomes harder.

More particles are needed to learn a correct map.

Effectively Calculating the Map and Pose Uncertainty

$$H(p(x, m \mid d))$$

$$= H(p(x \mid d)) + \int_{x} p(x \mid d) H(p(m \mid x, d)) dx$$

$$\approx H(p(x \mid d)) + \sum_{i=1}^{\#particles} \omega^{[i]} H(p(m^{[i]} \mid x^{[i]}, d))$$
pose uncertainty map uncertainty

Goal

Integrated approach that considers

- exploratory actions,
- place revisiting actions, and
- loop closing actions

to control the robot.

Dual Representation for Loop Detection

- Trajectory graph stores the path traversed by the robot.
- Grid map represents the space covered by the sensors.
- Loops correspond to long paths in the trajectory graph and short paths in the geometric map.

Dual Representation for Loop Detection

Application Example

Real Exploration Example

Considering Pose Uncertainty during Exploration

Research Topics

- Large-scale maps
- Resource-constrained systems
- Data association
- Dynamic environments
- Continuous SLAM
- Semantics
- Efficiency of integrated problem

•

Summary

- Probabilistic methods are a powerful tool for realizing robust autonomous systems.
- By reasoning about controls, the given algorithms can get even more effective.
- Probabilistic approaches are highly relevant for building robust navigation systems