Name: Maurice Wenig

Numerische Mathematik 2. Übungsserie

Aufgabe 2.1:

(a)
$$\underline{\kappa}^{rel}(f, x) = \max_{i, j} \frac{|x_j|}{|f_i(x)|} \cdot \left| \frac{\partial f_i}{\partial x_j}(x) \right| = \frac{x}{\sqrt{x}} \cdot \frac{1}{2} x^{-\frac{1}{2}} = \frac{1}{2}$$

(b)
$$\underline{\kappa}^{rel}(f, x) = \max_{i, j} \frac{|x_j|}{|f_i(x)|} \cdot \left| \frac{\partial f_i}{\partial x_i}(x) \right|,$$

$$\begin{aligned} \frac{|x_1|}{|f(x)|} \cdot \left| \frac{\partial f}{\partial x_1}(x) \right| &= \frac{|x_1|}{|x_1^{x_2}|} \cdot \left| x_2 x_1^{x_2 - 1} \right| = |x_2| \\ \frac{|x_2|}{|f(x)|} \cdot \left| \frac{\partial f}{\partial x_2}(x) \right| &= \frac{|x_2|}{|x_1^{x_2}|} \cdot |x_1^{x_2} \ln x_1| = |x_2| \cdot |\ln x_1| \end{aligned}$$

$$\implies \underline{\kappa}^{rel}(f, x) = \begin{cases} x_2 & \text{falls } e^{-1} \le x \le e \\ x_2 \ln x_1 & \text{sonst} \end{cases}$$

Aufgabe 2.2:

 $\blacksquare \qquad \text{(a)} \qquad \qquad \text{not done yet!}$

(b) not done yet!

(c)
$$\overline{u} = 4.000 \times 10^{0} \qquad \overline{v} = 3.990 \times 10^{0} \qquad \overline{w} = 1.997 \times 10^{0}$$

$$\epsilon = 0 \qquad \epsilon \approx 0 \qquad \epsilon \approx 2.5 \times 10^{-4}$$

$$\overline{y}_{2} = -3.997 \times 10^{0} \qquad \overline{y}_{1} = \frac{\overline{p}}{2} + \overline{w} = -3.000 \times 10^{-3} \qquad \overline{y}_{1} = \frac{\overline{q}}{\overline{y}_{2}} = 2,501 \times 10^{-3}$$

$$\epsilon \approx 1.2 \times 10^{-4} \qquad \epsilon \approx 2 \times 10^{-1} \qquad \epsilon \approx 2.2 \times 10^{-4}$$

Aufgabe 2.3:

not done yet!

Aufgabe 2.4:

Da $|f(x)| \leq 1$ ist der absolute Rundungsfehler $|\delta| \leq \epsilon$. Der Rundungsfehler von W(h) ist höchstens $\frac{\epsilon}{h} + o(\delta)$

$$f(a+h) = f(a) + f'(a)h + \frac{f''(a)}{2}h^2 + \frac{f'''(\xi_1)}{6}h^3$$
$$f(a-h) = f(a) - f'(a)h + \frac{f''(a)}{2}h^2 - \frac{f'''(\xi_2)}{6}h^3$$

mit ξ_1 zwischen a und $a+h,\,\xi_2$ zwischen a und a-h

$$W(h) = \frac{f(a+h) - f(a-h)}{2h} = \frac{2f'(a)h + \frac{f'''(\xi_1) + f'''(\xi_2)}{6}h^3}{2h} = f'(a) + \frac{f'''(\xi_1) + f'''(\xi_2)}{12}h^2$$

Dadurch ist der Verfahrensfehler höchstens $\frac{h^2}{6}$, denn $f'''(\xi_1) + f'''(\xi_2) \le 2$. Der kleinste Fehler ist somit bei $\frac{\epsilon}{h} = \frac{h^2}{6}$ zu erwarten. $\implies h = (6\epsilon)^{\frac{1}{3}} = \underline{3^{\frac{1}{3}} \cdot 2^{-\frac{52}{3}}}$

Nun zum Test:

h	f(1) - W(h)
2^{-10}	$8.587876854 \times 10^{-8}$
2^{-13}	$1.341690758 \times 10^{-9}$
2^{-15}	$8.385958594 \times 10^{-11}$
2^{-16}	$2.201394622 \times 10^{-11}$
$3^{\frac{1}{3}} \cdot 2^{-\frac{52}{3}}$	$1.860733789 \times 10^{-13}$
2^{-17}	$1.860733789 \times 10^{-13}$
2^{-18}	$-7.089884235 \times 10^{-12}$
2^{-20}	$-2.164179946 \times 10^{-11}$
2^{-23}	$-7.984946038 \times 10^{-11}$

Unser vorhergesagtes h funktioniert super und teilt sich unter den gewählten Werten mit 2^{17} den Thron.