Naïve Bayesians

Back to Basics Series

13 Feb 2021

Developing the Bayesian muscle to solve a wide range of problems

Naïve Bayesian Philosophy

Intuitive (Visual)
Understanding of the
Bayesian Reasoning

Ability to model real world problems in a Bayesian Setting

Starting from Simple Probabilistic modelling

Adapting it in a a Bayesian setting
And moving towards ML models

Fluency in the Calculus of Bayesian Stats & ML model

Season 2: Back to Basics

Back to Basics

		Canonical Problem	Applications
Ep 1	Bayes Theorem	There are 2 boxes from which cookies can be taken from. Box A and Box B. Box A contains 10 chocolate cookies, Box B contains 5 ginger cookies. Given that you get a chocolate cookie which box was it taken from?	The Shy Librarian Problem Naive Bayes algorithm
Ep 2	Problems with Binomial Likelihoods	You have 2 coins C1 and C2. p(heads for C1) = .7 & P(heads for C2) = 0.6 You flip the coin 10 times. What is the probability that the given coin you picked is C1 given you have 7 heads and 3 tails?	A/B Testing
Ep 4	Disease Detection	A particular disease affects 1% of the population. There is an imperfect test for this disease: The test gives a positive result for 90% of people who have the disease, and 5% of the people who are disease-free. Given a positive test result – what is the probability of having the disease?	COVID Tests (PCR & Antibody)! Fraud Detection
Ep 5	Naive Bayes Classification	Given these words occur in this text what's the probability it's spam?	
Ep 6	Gaussian Naive Bayes Classification	Given the weights and heights of basketball players, what's the probability that person a is a basketball player given weight = w and height = h?	Any Classification Problem

Back to Basics

Canonical Problem **Applications** Ep 7 Suppose tanks were given a serial number based on the order in which they were German Tank manufactured. Given that you've observed a tank with serial number "10", how Problem many tanks were actually manufactured in total? Waiting Times Suppose you need to gather 10 patients for a trial. Each signup happens at time Planning Trials t_i (i=1, 10). How long do you have to wait after it took you 3 weeks to accrue 2 (Continuous Estimating Queues Distributions) signups?

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$

$$\sum_{all \ j} P(D \mid \theta_j) P(\theta_j)$$
Normalising Constant

Canonical Problem

Suppose tanks were given a serial number based on the order in which they were manufactured.

You've observed a tank with serial number "41"

How many tanks were manufactured in total?

Canonical Problem Simplified

Suppose N tanks were manufactured.

Each were labelled d = 1, ..., N based on the order in which they were manufactured.

You've observed a tank with serial number "d=41"

What's N?

Let's say N = 100 tanks were manufactured in total.

Let's say N = 100 tanks were manufactured in total.

$$P(d=150)$$

Let's say N = 100 tanks were manufactured in total.

$$P(d=150 | N=100)$$

Let's say N = 100 tanks were manufactured in total.

$$P(d=150 | N=100)$$

= 0

Let's say N = 100 tanks were manufactured in total.

$$P(d=0 | N=100)$$

= 0

Let's say N = 100 tanks were manufactured in total.

$$P(d=-1 | N=100)$$

= 0

Let's say N = 100 tanks were manufactured in total.

$$P(d=41 | N=100)$$

$$P(d=41 | N=100) = 1/100$$

$$P(d=41 | N=100) = 1/150$$

$$P(d=41|N) = 1/N$$
 for $N \ge d$
= 0 otherwise

$$P(d \mid N) = 1/N$$
 for $N \ge d$
= 0 otherwise

MLE:
$$\underset{N}{\operatorname{argmax}} P(d=i \mid N) = 1/N$$

$$P(d=i \mid N=i) = 1/i$$

$$N_{MLE} = i$$

Bayes Rule

Posterior Likelihood Prior
$$P(\theta_i \mid D) = P(D \mid \theta_i) P(\theta_i)$$
$$P(D)$$
Normalising Constant

Bayes Rule

Posterior Likelihood Prior
$$P(N_i \mid d) = P(d \mid N_i) P(N_i)$$
$$P(d)$$
Normalising Constant

Step 1: Choose a set of M hypotheses $N_1, ..., N_M$

M is the max number of tanks that one could possibly imagine e.g. $N_M = 500$

Step 1: Choose a set of M hypotheses $N_1, ..., N_M$

M is the max number of tanks that one could possibly imagine e.g. $N_M = 500$

N_i	P(N _i)
1	1/500
	•••
40	1/500
41	1/500
42	1/500
43	1/500
500	1/500
Σ all i	1

Step 2: Find the likelihood of observing the data for every N_i

$$P(d \mid N_i) = 1/N_i$$
 for $N_i \ge d$,
= 0 otherwise.

N_i	P(N _i)	$P(d = 41 N_i)$	
1	1/500	0	
40		0	
41	1/500	1/41	
42	1/500	1/42	
43	1/500	1/43	
500	1/500	1/500	
Σ_{all} i	1		

Step 3: Find the likelihood x prior for every N_i

N_i	P(N _i)	$P(d = 41 N_i)$	$P(d N_i) \times P(N_i)$
1	1/500	0	0
	•••		
40	1/500	0	
41	1/500	1/41	1/(500x41)
42	1/500	1/42	1/(500x42)
43	1/500	1/43	1/(500x43)
500	1/500	1/500	1/(500x500)
Σ_{all} i	1		

Step 4: Find the probability of data P(d)

		$P(d N_i) \times P(N_i)$
		0
		1/(500x41)
		1/(500x42)
		1/(500x43)
		1/(500x500)
Σ_{all} i	1	1/(500x41) + + 1/(500x500)

$$P(d) = \sum_{all i} P(d | N_i) \times P(N_i)$$

Step 5: Find the posterior probability of data P($N_i \mid d=41$)

D/ NI I	J_11\	$(N_i) \times P(N_i)$	$P(N_i \mid d = 41)$
$P(N_i \mid c$	J-41)	0	0
D/ 1			
= P(d=	$=41 \mid N_i) P(N_i)$	1/(500×41)	[1/(500x41)] / P(d)
	D/ 1)	1/(500×42)	[1/(500x42)] / P(d)
	P(d)	1/(500×43)	[1/(500x43)] / P(d)
		1/(500×500)	[1/(500x500)] / P(d)
		1/(500x41) +	
∠all i 1		+ 1/(500×500)	1

Step 5: Find the posterior probability of data P($N_i \mid d=41$)

N_i	P(N _i)	$P(d = 41 N_i)$	$P(d N_i) \times P(N_i)$	$P(N_i \mid d = 41)$
1	1/500	0	0	0
40	1/500	0		
41	1/500	1/41	1/(500x41)	[1/(500x41)] / P(d)
42	1/500	1/42	1/(500x42)	[1/(500x42)] / P(d)
43	1/500	1/43	1/(500x43)	[1/(500x43)] / P(d)
500	1/500	1/500	1/(500x500)	[1/(500x500)] / P(d)
Σ_{all} i	1		1/(500x41) + + 1/(500x500)	1

Step 6: Find the point estimate for N

Step 6: Find the point estimate for N

Suppose N tanks were manufactured.

Each were labelled d = 1, ..., N based on the order in which they were manufactured.

You've observed 5 tanks with serial numbers "d=41, 31, 25, 39, 32, 37"

What's N?

Suppose N tanks were manufactured.

Each were labelled d = 1, ..., N based on the order in which they were manufactured.

You've observed 2 tanks with serial numbers "d=41, 31"

What's N?

N_i	$P(N_i d = 41)$	
1	0	
40		
41	[1/(500x41)] / P(d)	
42	[1/(500x42)] / P(d)	
43	[1/(500x43)] / P(d)	
•••		
500	[1/(500x500)] / P(d)	
$\Sigma_{all\ i}$	1	

Trick:

Use the **posterior** distribution from the d=41 as the prior for the next observation

Step 2: Find the likelihood of observing the data for every N_i

N_i	$P(N_i d = 41)$	$P(d = 31 N_i)$
1	0	0
40		0
41	[1/(500x41)] / P(d)	1/41
42	[1/(500x42)] / P(d)	1/42
43	[1/(500x43)] / P(d)	1/43
500	[1/(500x500)] / P(d)	1/500
Σ_{all} i	1	

Step 3: Find the likelihood x prior for every N_i

Step 4: Find the probability of data P(d)

N_i	$P(N_i d = 41)$	$P(d = 31 N_i)$	$P(d N_i) x$ $P(N_i d = 41)$
1	0	0	
40		0	
41	[1/(500x41)] / P(d)	1/41	
42	[1/(500x42)] / P(d)	1/42	
43	[1/(500x43)] / P(d)	1/43	
500	[1/(500x500)] / P(d)	1/500	
Σ_{all} i	1		P(d)

Step 5: Find the posterior probability of data P($N_i \mid d=41,31$)

N_i	$P(N_i d = 41)$	$P(d = 31 N_i)$	$P(d N_i) x$ $P(N_i d = 41)$	$P(N_i \mid d = 41, 31)$
1	0	0		
40		0		
41	[1/(500x41)] / P(d)	1/41		
42	[1/(500x42)] / P(d)	1/42		
43	[1/(500x43)] / P(d)	1/43		
•••				
500	[1/(500x500)] / P(d)	1/500		
Σ_{all} i	1		P(d)	1

References

Think Stats: Probability and Statistics for Programmers (Allen B. Downey) https://greenteapress.com/thinkstats/html/thinkstats009.html#toc75

