Congruence dans Z

I Propriétés – rappels :

Soit m un entier naturel non nul, et soient a, b, c, a' b' des entiers.

- 1) Transitivité: Si $a \equiv b(m)$ et $b \equiv c(m)$ alors: $a \equiv c(m)$
- 2) Compatibilité Si $a \equiv b(m)$ et, $a' \equiv b'(m)$ alors $a+a'\equiv b+b'(m)$ $a-a'\equiv b-b'(m)$ $aa' \equiv bb'(m)$ $a+c\equiv b+c(m)$

$$ac \equiv bc(m)$$

Soit
$$n \in \mathbb{N}^*$$
, $a^n \equiv b^n(m)$

Remarques: Attention les réciproques sont fausses!

les congruences sont compatibles avec l'addition, la soustraction, la multiplication, les puissances mais PAS avec la division.

II Exercices

Exercice1: recherche d'un inverse (methode 6 p99)

Montrer que 4 est inversible modulo 9.

Astricieux On tente de deviner

On cherche si il escrite un entros n tel que 4x m = 1(9)

ici n: 7 4 x 7 = 28 = 3 x 9 + 1 Done 7 when inverse de 4 module?

Done 7 est en inverse de 4 module?

Exercice 2: reste de division

Once 2 est en inverse de 4 module?

Exercice 2: reste de division

Once 2 est en inverse de 4 module?

Once 2 est en inverse de 4 module?

Once 2 est en inverse de 4 module?

On cherche uma puissona de 2 tel que 2^m = 1(3) 2²=4 4 = 1(3)

1225 told = 1011 (3)

2041 = 2×1020 +1 21 1020/3) 22010 = 1(3) 22011 = 2(3)

2° = +(3) (2°) 1020 = 1 (0) (3) Exercice3: reste de division avec puissant

- a) Déterminer les restes de la division de 7ⁿ par 9 (103p110)
- b) En déduire le reste de la division de 7^{2022} par 9

2 3 4 5 6 Confective 1 cr cos n = 0/3) revite = 1 7 = 11 4 2 3 4 5 6 Confective 1 cr cos n = 1/3) revite = 7 7 = 7 n = 1/3) revite = 4 7 = 6

107 (05) m = d(3) $\exists k \in \mathbb{Z} \text{ tel que } m = 3k$ $7^3 = 343 \text{ et } 343 = 1105$ Nonc $7^3 = 1(5)$ $(7^3)^k = 1^k(9)$ $7^{3k} = 1(9)$

Done 7 = 1/9)

3 ene 3 = 2(3) $\exists k \in \mathbb{Z} \text{ til que } n = 3k+2$ $\exists k+1 = 7(9)$ $\exists k+1 = 7(9)$ $\exists k+1 = 7(9)$ $\exists k+1 = 7(9)$ $\exists k+1 = 7(9)$

Done 7 = 4/9)

 $2^{eme} \cos m = 1(3)$ $\exists k \in \mathbb{Z} kl \text{ que } m = 3 k + 1$ $7^3 = 343 \text{ et } 343 = 101$ $7^{3k} = 101$ $7^{3k} = 701$ $7^{3k} = 701$ $7^{3k+1} = 701$

Donc 7 = 7/0)

 ℓ) 2022 = 93 Roz 2022 = 3×674 $7^{3(674)} = 1(9)$ $7^{2022} = 1(9)$ Done le rede = 1