Feuille d'exercices n°12

Exercice 1 **n**//: petites questions

- 1. Rechercher les extremums des fonctions suivantes et esquisser les courbes de niveau de la surface d'équation z = f(x, y).
- a) $f(x,y) = x^2 + y^4$
- b) $f(x,y) = x^2 + y^3$
- c) $f(x,y) = x^2 y^2 + \frac{y^4}{4}$
- 2. Soit (x_i, y_i) des points du plan avec les x_i non tous égaux entre eux. Montrer qu'il existe des uniques λ et μ minimisant $\sum (\lambda x_i + \mu y_i)^2$.
- 3. Soit $(t,x) \mapsto F(t,x) = f_t(x)$ une fonction de classe \mathcal{C}^2 sur \mathbb{R}^2 . On suppose que f_0 admet un minimum local strict en x = a et que la dérivée seconde y est strictement positive. Montrer alors que pour t voisin de 0, f_t admet un minimum local strict en $\xi(t)$ voisin de a. Donner un développement limité au premier ordre de la valeur de f_t en ce point.

Dans cet exo toutes les fonctions seront \mathcal{C}^{∞} . On dit qu'une partie M de \mathbb{R}^n est une sous-variété si pour tout $x \in M$ il existe un voisinage U de x et un difféomorphisme local φ tel que l'on ait

$$\varphi(U \cap M) = \mathbb{R}^p \times \{0\} \cap \varphi(U).$$

L'entier p est appelé dimension de M. Il est indépendant du choix de U et $\varphi.$

1. Vérifier cette assertion. En déduire que la dimension d'une sous-variété est uniquement définie si celle-ci est connexe.

On va maintenant montrer trois caractérisations des sous-variété de \mathbb{R}^n .

- 2. a) (équation) Montrer que M est une sous-variété si et seulement si pour chaque point x il existe un voisinage ouvert W et une application \mathcal{C}^{∞} $F:W\to\mathbb{R}^{n-p}$ de différentielle surjective en x telle que $W\cap M=F^{-1}(0)$.
- b) (nappe paramétrée) Montrer que M est une sous-variété si et seulement si pour tout point x il existe un voisinage W et une application $j: \mathbb{R}^p \to \mathbb{R}^n$ \mathcal{C}^{∞} définie au voisinage de 0 et de différentielle injective en 0 telle que j soit un homéomorphisme de U sur $W \cap M$.
- c) (graphe) Montrer que M est une sous-variété si et seulement si pour tout point x il existe un changement linéaire de coordonnée A, un voisinage du point W et une fonction $f: \mathbb{R}^p \to \mathbb{R}^{n-p}$ tels que

$$W \cap M = W \cap \{A(z, f(z)) | z \in \mathbb{R}^p\}.$$

Examinons maintenant quelques exemples.

3. a) Montrer qu'un ouvert est toujours une sous-variété.

- b) Montrer que la sphère unité est une sous-variété de \mathbb{R}^n .
- c) Plus généralement, à quelle condition une quadrique est-elle une sous-variété de \mathbb{R}^n ?
- d) Montrer que le tore paramétré par $(\theta, \varphi) \mapsto ((r \rho \cos \theta) \cos \varphi, (r \rho \cos \theta) \sin \varphi, \rho \sin \theta)$ est une sous-variété.
- e) Montrer que le groupe orthogonal est une sous-variété de $\mathcal{M}_n(\mathbb{R})$.

Exercice 3 🖈 🎢 : lemme de Morse

1. [Lemme de réduction régulière des formes quadratiques]

On note $\mathcal{S}_n(\mathbb{R})$ l'espace des matrices carrées symétriques réelles de taille n. Fixons $A_0 \in \mathcal{S}_n(\mathbb{R})$ inversible. Soit :

$$\phi: M \in \mathcal{M}_n(\mathbb{R}) \to {}^t M A_0 M \in \mathcal{S}_n(\mathbb{R}).$$

- a) Montrer que ϕ est de classe \mathcal{C}^{∞} et calculer sa différentielle en Id.
- b) Montrer que $d\phi(\mathrm{Id})$ est surjective.
- c) Montrer qu'il existe un voisinage \mathcal{V} de A_0 dans $\mathcal{S}_n(\mathbb{R})$ et une application $P: \mathcal{V} \to \mathcal{M}_n(\mathbb{R})$ de classe \mathcal{C}^{∞} telle que :
 - 1. $P(A_0) = Id$
 - 2. $\forall A \in \mathcal{V}, A = {}^tP(A)A_0P(A)$
- 2. Soient U un ouvert de \mathbb{R}^n contenant 0 et $f \in \mathcal{C}^3(U,\mathbb{R})$. On suppose que f(0) = 0, df(0) = 0 et $d^{(2)}f(0)$ est une forme bilinéaire symétrique non-dégénérée, de signature (p, n-p).
- a) Montrer qu'il existe un voisinage de 0, $V \subset U$ et $(a_{i,j})_{i,j \leq n}$ des applications de classe C^1 de V vers $\mathbb R$ telles que :

$$\forall (x_1, ..., x_n) = x \in V, \qquad f(x) = \sum_{i,j \le n} a_{i,j}(x) x_i x_j.$$

[Indication : utiliser la formule de Taylor avec reste intégral.]

b) Montrer qu'il existe V_1, V_2 deux voisinages de 0 inclus dans U et $\phi: V_1 \to V_2$ un \mathcal{C}^1 difféomorphisme tels que $\phi(0) = 0$ et :

$$\forall x = (x_1, ..., x_n) \in V_1, \quad f(\phi(x_1, ..., x_n)) = x_1^2 + ... + x_n^2 - x_{n+1}^2 - ... - x_n^2.$$

Exercice 4 // : éclatement d'un point double

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction \mathcal{C}^3 telle que f(0,0) = 0 et $d_0 f = 0$. On pose pour $x \neq 0$

$$F(x,t) := \frac{1}{x^2} f(x,tx).$$

- 1. Montrer que f se prolonge en une fonction \mathcal{C}^1 sur \mathbb{R}^2 et calculer F(0,t). (penser à Taylor) On suppose maintenant que la différentielle seconde de f est de signature (1,-1) et que $\partial_{yy}^2 f(0) \neq 0$.
- 2. Montrer que l'équation F(0,t)=0 admet deux racines réelles distinctes t_1 et t_2 et que l'équation F(x,t)=0 permet de définir deux fonctions implicites $t=\varphi_1(x)$ et $t=\varphi_2(x)$ au voisinage de ces deux racines.

3. En déduire qu'au voisinage de l'origine

$$f(x,y) = 0 \Leftrightarrow y = x\varphi_{1/2}(x).$$

- 4. Montrer que l'équation des tangentes au point double à l'origine est donné par la hessienne.
- 5. Observer que cet exercice est plus facile avec le lemme de Morse.

Exercice 5 ###: théorème de Sard

Soient $m, n \in \mathbb{N}^*$. Posons $\Omega =]0; 1[^m]$. Soit $f : \Omega \to \mathbb{R}^n$ de classe \mathcal{C}^{∞} .

On dit que $x \in \Omega$ est un point critique de f si $df(x) : \mathbb{R}^m \to \mathbb{R}^n$ n'est pas surjective. On dit que $y \in \mathbb{R}^n$ est une valeur critique de f s'il existe un point critique $x \in \Omega$ tel que y = f(x).

1. Dans cette question, on suppose que m=n=1. Montrer que l'ensemble des valeurs critiques de f dans \mathbb{R} est de mesure de Lebesgue nulle.

[Indication : montrer d'abord que, pour tout $\epsilon > 0$, si $U \subset \Omega$ est un ouvert tel que $|f'(x)| \le \epsilon$ pour tout $x \in U$, alors $\lambda(f(U)) \le \epsilon \lambda(U)$ (où λ désigne la mesure de Lebesgue sur \mathbb{R}).]

On suppose maintenant m=2 et n=1 et on va montrer le même résultat. On note :

$$C_1 = \{x \in \Omega \text{ tq } df(x) = 0\}$$

 $C_2 = \{x \in \Omega \text{ tq } df(x) = 0 \text{ et } df^{(2)}(x) = 0\}$

2. a) Soit D un carré inclus dans Ω . Supposons qu'il existe $x_0 \in D$ tel que $df(x_0) = 0$. Montrer que, pour tout $x \in D$:

$$|f(x) - f(x_0)| \le \frac{||x - x_0||^2}{2} \sup_{z \in D} ||d^{(2)}f(z)||$$

- b) Montrer que $f(C_2)$ est de mesure nulle.
- 3. Soit $x_0 \in C_1 C_2$. Puisque $d^{(2)}f(x_0) \neq 0$, il existe $i, j \in \{1, 2\}$ tels que :

$$\frac{\partial^2 f}{\partial x_i \partial x_j}(x_0) \neq 0$$

On suppose i=1 et on pose $\rho=\frac{\partial f}{\partial x_j}$. On a donc $\frac{\partial \rho}{\partial x_1}(x_0)\neq 0$.

Soit $h: \Omega \to \mathbb{R}^2$ l'application suivante :

$$h(x_1, x_2) = (\rho(x_1, x_2), x_2)$$

a) Montrer qu'il existe un voisinage \mathcal{V} de x_0 sur lequel h est un \mathcal{C}^{∞} -difféomorphisme vers son image.

[Indication : utiliser le théorème d'inversion locale.]

Notons \mathcal{V}' l'image de \mathcal{V} par h et posons $g = f \circ h^{-1} : \mathcal{V}' \to \mathbb{R}$.

- b) Montrer que $h(\mathcal{V} \cap C_1) \subset (\{0\} \times \mathbb{R}) \cap \mathcal{V}'$.
- c) Soit g_1 l'application telle que $g_1(t) = g(0,t)$ si $(0,t) \in \mathcal{V}'$. Montrer que si $h^{-1}(0,t) \in C_1$, alors t est un point critique de g_1 .

- d) En déduire que $f(C_1 \cap \mathcal{V})$ est de mesure nulle.
- e) Montrer que $f(C_1 C_2)$ est de mesure nulle.
- 4. Montrer que l'ensemble des valeurs critiques de f est de mesure nulle dans \mathbb{R} .

[Ce résultat est vrai pour tous $m, n \in \mathbb{N}^*$ et peut être démontré avec une méthode similaire à celle que nous avons utilisée pour le cas m=2, n=1. Le fait que Ω soit borné n'est pas nécessaire.

Le théorème est encore vrai si, au lieu de supposer f de classe \mathcal{C}^{∞} , on suppose f de classe \mathcal{C}^r avec $r > \max(0, m - n)$.

Exercice 6 // : examen 2013

Soit A_n l'ensemble des polynômes unitaires de degré n à coefficients réels. Soient P et Q deux polynômes unitaires premiers entre eux de degré n et m. Montrer qu'il existe un voisinage U de PQ dans A_{n+m} et des voisinages V et W de P et Q dans A_n et A_m tels que, tout polynôme S de U admette une unique décomposition

$$S = P_S Q_S$$
,

comme produit d'un élément P_S de V et d'un élément Q_S de W. Montrer que cette décomposition dépend de façon \mathcal{C}^1 de S.

Exercice 7 //: un peu d'équa diff

Soit $n \in \mathbb{N}^*$. Soient $A : \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ et $b : \mathbb{R} \to \mathbb{R}^n$ deux applications continues. On considère l'équation suivante :

$$\dot{u} = A(t)u + b(t)$$

On suppose que A et b sont périodiques, de même période. Montrer que l'équation admet une solution périodique si et seulement si elle admet une solution bornée sur \mathbb{R}^+ . [Indication : utiliser la formule de Duhamel.]

Exercice 8 VV: lemme de Gronwall

Soit I un intervalle ouvert de \mathbb{R} , u une fonction dérivable sur I et ψ une fonction continue sur I. On suppose

$$\forall t \in I, u'(t) \le \psi(t)u(t).$$

Montrer que, pour tous $t_0 \leq t \in I$,

$$u(t) \le u(t_0) \exp\left(\int_{t_0}^t \psi(s)ds\right).$$