Computer Architecture

Processor Pipelining

Single-cycle datapath

Single-cycle datapath

The speed of a processor is determined by what?

- A. slower instruction
- B. faster instruction

Single-cycle datapath

Speed limited by the slowest path

Single-cycle execution times

Single-cycle execution times

Single-cycle execution times

- Slowest instruction determines cycle time
- Much of the time is wasted

Wasted time.
The instruction doesn't need this time You Tuk

- Let the fastest instruction determine the clock cycle
- And have slower instructions take multiple cycles

- Let the fastest instruction determine the clock cycle
- And have slower instructions take multiple cycles

- Let the fastest instruction determine the clock cycle
- And have slower instructions take multiple cycles

- Let the fastest instruction determine the clock cycle
- And have slower instructions take multiple cycles

Which of the following statement is NOT necessarily TRUE?

- A. In a single-cycle processor, the longest instruction determines the speed of the processor.
- B. In a multi-cycle processor, the clock cycle is determined by the fastest instruction.
- C. In a pipelined processor, the slowest instruction determines the speed of the processor.
- D. None of the above

Which of the following statement is NOT necessarily TRUE?

- A. In a single-cycle processor, the longest instruction determines the speed of the processor.
- B. In a multi-cycle processor, the clock cycle is determined by the fastest instruction.
- C. In a pipelined processor, the slowest instruction determines the speed of the processor.
- D. None of the above

MIPS 5 stage pipeline

MIPS 5 stage pipeline

MIPS 5 stage pipeline

What is the ALU doing in cycle 7?

Pipelining to do work in parallel...

Differentiate throughput and latency.

Why is there a need to put pipeline registers?

- What are the control signals for add, load, and bne?
- What do they do?
- Fill in the table below specifying the value and meaning. (For ALUOp you can write the name of the op such as "Add".)

		EX			MEM			WB	
	Inst. Type	ALU Src	Reg Dst	ALU Op	Branch	Mem Write	Mem Read	Mem toReg	RegW rite
add									
load									
bne									