

ME 397- ASBR Week 4-Lecture 1

a Curiosity NASA/JPLCaltech;
 b Savioke Relay;
 c self driving car, Oxford Univ.;
 d Cheetah legged robot, Boston Dynamics

FARSHID ALAMBEIGI, Ph.D.

Assistant Professor | Walker Department of Mechanical Engineering Cockrell School of Engineering | The University of Texas at Austin

Composition of Transformations

- Rigid body transformations can be **composed** to form new rigid body transformations.
- Let $g_{bc} \in SE(3)$ be the configuration of a frame C relative to a frame B, and g_{ab} the configuration of frame B relative to another frame A. Then, using equation, the configuration of C relative to frame A is

 Rotation: R_{ac} Translation: p_{ac}

 $\bar{g}_{ac} = \bar{g}_{ab} \; \bar{g}_{bc} = \begin{bmatrix} R_{ab} R_{bc} \\ 0 \end{bmatrix} \begin{bmatrix} R_{ab} p_{bc} + p_{ab} \\ 1 \end{bmatrix}$

given by

Properties of Transformation Matrices

- ► If g_1 , g_2 ∈ SE(3), then g_1g_2 ∈ SE(3).
 - \triangleright The 4 × 4 identity element, I, is in SE(3).
- The inverse of a transformation matrix $g \in SO(3)$ SE(3) is also a <u>transformation matrix</u>, and it has the following form: $R_{ba} = R^{-1}_{ab}$ P_{ba} : Origin of A defined in B

$$\bar{g}^{-1} = \begin{bmatrix} R^T \\ 0 \end{bmatrix} \begin{bmatrix} -R^T p \\ 1 \end{bmatrix} \in SE(3)$$

- The multiplication of transformation matrices is associative, so that $(T_1T_2)T_3 = T_1(T_2T_3)$, but generally **not commutative**: $T_1T_2 \neq T_2T_1$.
 - These properties show that the set of rigid transformations is a group.

Uses of Transformation Matrices

- As was the case for rotation matrices, there are **three major uses** for a transformation matrix g or T:
 - ✓ (a) to <u>represent</u> the configuration (position and orientation) of a rigid body;
 - ✓ (b) to <u>change</u> the <u>reference frame</u> in which a vector or frame is represented;
 - ✓ (c) to <u>displace</u> a vector or frame.
- In (a), g or T is thought of as representing a frame;
- In (b) and (c), **g** or **T** is thought of as an <u>operator</u> that acts on/move a vector or frame.

Uses of Transformation Matrices

(a) To represent an orientation:

The fixed frame $\{s\}$ is coincident with $\{a\}$ and the frames $\{a\}$, $\{b\}$, and $\{c\}$, represented by $T_{sa} = (R_{sa}; p_{sa})$, $T_{sb} = (R_{sb}; p_{sb})$, and $T_{sc} = (R_{sc}; p_{sc})$, respectively.

$$R_{sa} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad p_{sa} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$R_{sb} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad p_{sb} = \begin{bmatrix} 0 \\ -2 \\ 0 & 0 \end{bmatrix}$$

$$R_{sc} = \begin{bmatrix} \hat{x} & \hat{y} & \hat{z} \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \qquad p_{sc} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

$$R_{bc} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{bmatrix}, \qquad p_{bc} = \begin{bmatrix} 0 \\ -3 \\ -1 \end{bmatrix}$$

$$T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p_1 \\ r_{21} & r_{22} & r_{23} & p_2 \\ r_{31} & r_{32} & r_{33} & p_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Uses of Rotation Matrices

(b) Changing the reference frame

By a subscript cancellation rule analogous to that for rotations, for any three reference frames {a}, {b}, and {c}, and any vector v expressed in {b} as v_b,

T.T. - T.T. - T.

$$T_{ab}T_{bc} = T_{ab}T_{bc} = T_{ac}$$
$$T_{ab}v_b = T_{ab}v_b = v_a,$$

(c) Displacing (rotating and translating) a vector or a frame

- Transformation matrix \mathbf{T} , viewed as the pair $(\mathbf{R}; \mathbf{p}) = (\mathrm{Rot}(\widehat{\boldsymbol{\omega}}; \boldsymbol{\theta}); \mathbf{p})$, can act on a frame \mathbf{T}_{sb} by rotating it by $\boldsymbol{\theta}$ about an axis $\widehat{\boldsymbol{\omega}}$ and translating it by \mathbf{p} .
- We can extend the <u>3x3 rotation operator R</u> = Rot($\hat{\omega}$; θ); to a 4×4 transformation matrix that <u>rotates without translating</u> i.e., Rot($\hat{\omega}$, θ) = $\begin{bmatrix} R & 0 \\ 0 & 1 \end{bmatrix}$
- We can similarly define a <u>translation</u> operator that <u>translates without rotating</u>, $Trans(p) = \begin{bmatrix} 1 & 0 & 0 & p_x \\ 0 & 1 & 0 & p_y \\ 0 & 0 & 1 & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$

Uses of Rotation Matrices

Whether we pre-multiply or post-multiply T_{sb} by T = (R; p) determines whether the $\widehat{\omega}$ axis and p are interpreted as in the fixed frame $\{s\}$ or in the body frame $\{b\}$:

$$T_{sb'} = TT_{sb} = Trans(p) \operatorname{Rot}(\hat{\omega}, \theta) T_{sb} \qquad \text{(fixed frame)}$$

$$= \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} RR_{sb} & Rp_{sb} + p \\ 0 & 1 \end{bmatrix}$$

$$T_{sb''} = T_{sb}T = T_{sb} Trans(p) \operatorname{Rot}(\hat{\omega}, \theta) \qquad \text{(body frame)}$$

$$= \begin{bmatrix} R_{sb} & p_{sb} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} R_{sb}R & R_{sb}p + p_{sb} \\ 0 & 1 \end{bmatrix}$$

- The fixed-frame transformation can be interpreted as first rotating the $\{b\}$ frame by θ about an axis $\widehat{\omega}$ in the $\{s\}$ frame (this rotation will cause the origin of $\{b\}$ to move if it is not coincident with the origin of $\{s\}$), then translating it by p in the $\{s\}$ frame to get a frame $\{b'\}$.
- The **body-frame transformation** can be interpreted as <u>first translating {b} by p</u> considered to be in the {b} frame, <u>then rotating about $\widehat{\omega}$ </u> in this new body frame (this does not move the origin of the frame) to get {b"}.

Uses of Rotation Matrices

(Left: Fixed-frame Transformation) The frame {b} is first <u>rotated</u> by 90 about \hat{z}_s and <u>then translated</u> by two units in \hat{y}_s , resulting in the new frame {b'}.

(Right: Body-frame Transformation) The frame {b} is first (Right: Body-frame Transformation) The frame $\{D\}$ is <u>mst</u> translated by two units in \hat{y}_b and then rotated by 90 about its $T_{sb}T = T_{sb''} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ \hat{z}_b axis, resulting in the new frame $\{b''\}$.

$$\widehat{\mathbf{\omega}} = (0; 0; 1), \mathbf{\theta} = 90,$$

and $\mathbf{p} = (0; 2; 0).$

$$TT_{sb} = T_{sb'} = \begin{bmatrix} 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{sb}T = T_{sb''} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & -4 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Example

Figure shows a robot arm mounted on a wheeled mobile platform moving in a room, and a camera fixed to the ceiling.

- ✓ Frames {b} and {c} are respectively attached to the wheeled platform and the endeffector of the robot arm, and frame {d} is attached to the camera.
- ✓ A fixed frame {a} has been established, and the robot must pick up an **object** with **body** frame {e}.
- ✓ Suppose that the transformations T_{db} and T_{de} can be calculated from measurements obtained with the camera.
- \checkmark The transformation T_{bc} can be calculated using the arm's jointangle measurements.
- \checkmark The transformation T_{ad} is assumed to be known in advance. Suppose these calculated and known transformations are given as follows:

$$T_{ad} = \begin{bmatrix} 0 & 0 & -1 & 400 \\ 0 & -1 & 0 & 50 \\ -1 & 0 & 0 & 300 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

https://www.youtube.com/watch?v=J7Z49G443DQ

$$T_{db} = \begin{bmatrix} 0 & 0 & -1 & 250 \\ 0 & -1 & 0 & -150 \\ -1 & 0 & 0 & 200 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$T_{de} = \begin{bmatrix} 0 & 0 & -1 & 300 \\ 0 & -1 & 0 & 100 \\ -1 & 0 & 0 & 120 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$T_{ad} = \begin{bmatrix} 0 & 0 & -1 & 400 \\ 0 & -1 & 0 & 50 \\ -1 & 0 & 0 & 300 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad T_{bc} = \begin{bmatrix} 0 & -1/\sqrt{2} & -1/\sqrt{2} & 30 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & -40 \\ 1 & 0 & 0 & 25 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Calculate how to move the robot arm so as to pick up the object.

Example

In order to calculate how to move the robot arm so as to pick up the object, the <u>configuration of</u> the object relative to the robot hand, T_{ce} , must be determined. T_{ae}

We know that:

$$T_{ab}$$
 T_{bc} T_{ce} $=$ T_{ad} T_{de} ,

$$T_{ab} = T_{ad}T_{db}$$

From the given transformations we obtain

$$T_{ad}T_{de} = \begin{bmatrix} 1 & 0 & 0 & 280 \\ 0 & 1 & 0 & -50 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$T_{ad}T_{db}T_{bc} = \begin{bmatrix} 0 & -1/\sqrt{2} & -1/\sqrt{2} & 230 \\ 0 & 1/\sqrt{2} & -1/\sqrt{2} & 160 \\ 1 & 0 & 0 & 75 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

$$(T_{ad}T_{db}T_{bc})^{-1} = \begin{bmatrix} 0 & 0 & 1 & -75 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & -260/\sqrt{2} \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix},$$

$$(T_{ad}T_{db}T_{bc})^{-1} = \begin{bmatrix} 0 & 0 & 1 & -75 \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 70/\sqrt{2} \\ -1/\sqrt{2} & -1/\sqrt{2} & 0 & 390/\sqrt{2} \end{bmatrix},$$

 T_{bc}

Example: Computer-Assisted Osteotomy

Consider the pelvic osteotomy situation illustrated in the figure. Here we assume that a **three locating pins** have been inserted into the patient's pelvis, and that a CT scan of the pelvis with the pins inserted has been produced. The patient has been placed onto the operating table.

- A magnetic navigation system (here, the Northern Digital Aurora) is present in the room.
- > Two surgical tools are available:
 - ✓ A probe/pointer device
 - ✓ An osteotome (essentially a fancy chisel) CT scan of the pelvis that will be used to cut the pelvis.

https://www.youtube.com/watch?v=N8rfMzU4siQ

- ➤ 6 DOF Aurora tracking sensors have been attached to the **handle of each tool** and an additional 6 DOF sensor has been **affixed rigidly to the pelvis**. The <u>Aurora is capable of determining the position and orientation of each sensor relative to the Aurora base unit</u>.
- ightharpoonup Let $\mathbf{p}_{tip} = \mathbf{p}_{GE}$ be the position of the tip of the pointer tool relative to the reference marker coordinate system \mathbf{F}_G .
- \triangleright Give a formula for computing \mathbf{p}_{tip} , based on the available tracking system measurements \mathbf{F}_{Bx} .

Example is from the Computer Integrated Surgery course, Russell H. Taylor, JHU

Example: Computer-Assisted Osteotomy

$$F_{BE}$$
 F_{BE}

$$F_{BG}F_{GE}=F_{BD}F_{DE}$$

 p_{GE} is the last column of F_{GE}

Angular Velocities

- Suppose that a **body frame** with **unit** axes $\{\hat{x}, \hat{y}, \hat{z}\}$ is attached to a **rotating body**.
 - If we examine the body frame at times \mathbf{t} and $\mathbf{t}+\Delta\mathbf{t}$, the change in frame orientation can be described as a rotation of angle $\Delta\theta$ about some unit axis $\widehat{\boldsymbol{\omega}}$ passing through the origin.
- The axis $\widehat{\boldsymbol{\omega}}$ is **coordinate-free**; it is not **yet** represented in any particular reference frame.
- As t approaches zero, the ratio $\Delta\theta/\Delta t$ becomes the rate of rotation $\dot{\theta}$, and $\hat{\omega}$ is the <u>instantaneous</u> axis of rotation. Hence, angular velocity W is:

$$\mathbf{w} = \hat{\mathbf{w}}\dot{\theta}$$
.

 $\hat{\mathbf{x}} = \mathbf{w} \times \hat{\mathbf{x}},$ We can then calculate **linear velocities** as: $\dot{\hat{\mathbf{y}}} = \mathbf{w} \times \hat{\mathbf{y}},$ $\dot{\hat{\mathbf{z}}} = \mathbf{w} \times \hat{\mathbf{z}}$

To express these equations in **coordinates**, we have to choose a reference frame in which to represent **w** typically the **fixed frame {s}** or the body frame **{b}**.

Fixed-Frame Angular Velocities

- Let R(t) be the rotation matrix describing the **orientation of the body frame with respect to the fixed frame {s}** at time t and
 R(t) is its time rate of change.
- Let $R(t) = [r_1(t); r_2(t); r_3(t)]$ where $\mathbf{r_i}$ is the representation of the corresponding **body frame axis** in the fixed frame $\{s\}$.
- At a specific time t, let $\omega_s \in \mathbb{R}^3$ be the angular velocity ω expressed in **fixed-frame** then we have:

$$\dot{r}_i = \omega_s \times r_i, \qquad i = 1, 2, 3.$$

OR
$$\dot{R} = [\omega_s \times r_1 \ \omega_s \times r_2 \ \omega_s \times r_3]$$

$$\mathbf{w} = \hat{\mathbf{w}}\dot{\theta}$$
.

$$[x] = \begin{bmatrix} 0 & -x_3 & x_2 \\ x_3 & 0 & -x_1 \\ -x_2 & x_1 & 0 \end{bmatrix}$$
$$a \times b = (a)^b.$$

We can rewrite $\boldsymbol{\omega}_{s} \times \boldsymbol{r}_{i}$ as $[\boldsymbol{\omega}_{s}]R$, where $[\boldsymbol{\omega}_{s}]$ is a 3×3 skewsymmetric matrix representation of $\boldsymbol{\omega}_{s} \in \mathbb{R}^{3}$. Hence:

Skew-Symmetric angular velocity of ω represented in the fixed frame

$$[\omega_s]R = R$$
$$[\omega_s] = \dot{R}R^{-1}$$

Time rate of change of the orientation of the body frame with respect to the fixed frame {s}

Body-Frame Angular Velocities

Let ω_s and ω_b be two different vector representations of the same angular velocity w expressed in the fixed and body-frame coordinates, respectively. Hence: $\omega_s = R_{sb}\omega_b$.

R=R_{sb}(t)

Let us now use the skew-symmetric operator [.] to rewrite this equation in a matrix format:

Skew-Symmetric angular velocity of ω represented in the **body frame**

{b}

Time rate of change of the orientation of the body frame with respect to the fixed frame {s}

 $= R^{\mathrm{T}}\dot{R} = R^{-1}\dot{R}.$

Angular Velocities

Let R(t) denote the <u>orientation of the rotating</u> frame as seen from the fixed frame. Denote by w the angular velocity of the rotating frame. Then

$$\dot{R}R^{-1} = [\omega_s]$$

$$R^{-1}\dot{R} = [\omega_b]$$

where $\omega_s \in \mathbb{R}^3$ is the **fixed-frame vector** representation of \mathbf{w} and $[\omega_s] \in \mathbf{so}(3)$ is its 3×3 matrix representation, and where $\omega_b \in \mathbb{R}^3$ is the **body-frame vector** representation of \mathbf{w} and $[\omega_b] \in \mathbf{so}(3)$ is its 3×3 matrix representation.

- \triangleright It is important to note that the **fixed-frame angular velocity** ω_s does **not** depend on the choice of body frame.
- \triangleright <u>Similarly</u>, the body-frame angular velocity ω_b does not depend on the choice of fixed frame.
- An angular velocity expressed in an arbitrary frame {d} can be represented in another frame {c} if we know the rotation that takes {c} to {d}:

$$\omega_c = R_{cd}\omega_d$$

Twists

We now consider both the linear and angular velocities of a moving frame. Let

$$T_{sb}(t) = T(t) = \begin{bmatrix} R(t) & p(t) \\ 0 & 1 \end{bmatrix}$$

 \triangleright Let us pre-multiply $\dot{\mathbf{T}}$ by \mathbf{T}^{-1} :

$$T^{-1}\dot{T} = \begin{bmatrix} R^{T} & -R^{T}p \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \dot{R} & \dot{p} \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} R^{T}\dot{R} & R^{T}\dot{p} \\ 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \omega_{b} & v_{b} \\ 0 & 0 \end{bmatrix}. \quad v_{b} = R^{T}\dot{p} \text{ is the linear velocity of the origin of } \{b\}$$
expressed in $\{b\}$.

T⁻¹ T represents the linear and angular velocities of the moving frame relative to the stationary frame {b} <u>currently</u> aligned with the moving frame (i.e., current body frame).

{b}

References

- Murray, R.M., Li, Z., Sastry, S.S., "A Mathematical Introduction to Robotic Manipulation.", Chapter 2.
- Corke, Peter. "Robotics, vision and control: fundamental algorithms in MATLAB®" second, completely revised. Vol. 118. Springer, 2017, **Chapter 2.**
- Lynch and Park, "*Modern Robotics*," Cambridge U. Press, 2017, **Chapter 3.**