```
In [135]: import numpy as np
          import matplotlib.pyplot as plt
          import pydotplus
          import pandas as pd
          from sklearn.datasets import load boston, load iris
          from IPython.display import Image
          from sklearn import tree
          from sklearn.cross validation import train test split
          from sklearn.metrics import accuracy score, classification report
          from sklearn.cross validation import cross val score
          from collections import Counter
          from imblearn.over sampling import RandomOverSampler
          from tqdm import tqdm
          import warnings
          from collections import Counter
          warnings.filterwarnings('ignore')
          %matplotlib inline
```

Теоретические задачи

#1

```
В задаче регрессии в лист попадают объекты выборки X_1, X_2, \dots, X_n с целевыми переменными y_1, y_2, \dots, y_n. В первом случае оценкой является M=\frac{1}{n}\sum_{i=1}^n y_i. Во втором - \xi с равномерным дискретным распределением на y_1, y_2, \dots, y_n. Оценим матожидание MSE, обозначим \widehat{y} оценку в общем случае, тогда: E(\sum_{i=1}^n (\widehat{y}-y_i)^2) = \sum_{i=1}^n E(\widehat{y}-y_i)^2 = \sum_{i=1}^n Ey_i^2 - 2\sum_{i=1}^n Ey_i\widehat{y} + \sum_{i=1}^n E\widehat{y}^2 Посмотрим на слагамые в случае 1-ой и 2-ой оценок:
```

1-ое слагаемое независит от оценок, поэтому одинаковое в обоих случаях

2-ое слагаемое в первом случае EM = M, а во втором $E \frac{1}{n} \sum_{i=1}^{n} y_i = EM = M$

3-е слагаемое в первом случае: $EM^2 = M^2$, а во втором $E\xi^2$, но $E\xi^2 >= (E\xi)^2 = M^2$,

таким образом во втором случае матожидание MSE не меньше, чем в первом, то есть оптимальнее отвечать средним значением.

#2

Как мы помним с лекции, при разбиении в каждом узле мы минимизируем взвешенный MSE, таким образом построение линейных моделей в листьях не должно дать никакого прироста в качестве, ведь мы не предполагаем никакой линейной зависимости данных в листе. Как вариант, можно попробовать минимизировать не MSE при разбиении, а разбивать данные, обучать линейные регрессии на разбиениях и снова минимизировать взвешенный MSE уже для регрессий, но это будет работать достаточно долго, так как потребуется находить оптимальные коэффициенты для регрессии, а это требует либо нахождения обратной матрицы и перемножения матриц (в случае аналитического решения) либо оптимизации, например из scipy.optimize в случае питона.

Daniil Korbut 494

#3

Формула плотности многомерного нормального распределения:

$$p(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{0.5}} e^{-0.5(x-\mu)^T \Sigma^{-1}(x-\mu)},$$

в таком случе энтропия нормального распределения:

$$\begin{split} & \mathsf{H}(\mathsf{p}) = -\int \dots \int p(x) ln(p(x)) dx = \int \dots \int p(x) (\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) + ln((2\pi)^{n/2} |\Sigma|^{0.5})) dx = \\ & = \frac{1}{2} \Sigma_{ij} (E((x_i - \mu_i)(x_j - \mu_j))(\Sigma_{ij}^{-1})) + \frac{1}{2} ln((2\pi)^n |\Sigma|) = \frac{1}{2} \Sigma_i \Sigma_j (\Sigma)_{i,j} (\Sigma^{-1})_{i,j} + \frac{1}{2} ln((2\pi)^n |\Sigma|) = \\ & = \frac{1}{2} \Sigma_i (\Sigma \Sigma^{-1})_{i,i} + \frac{1}{2} ln((2\pi)^n |\Sigma|) = \frac{1}{2} \Sigma_i (E)_{i,i} + \frac{1}{2} ln((2\pi)^n |\Sigma|) = \frac{n}{2} + \frac{1}{2} ln((2\pi)^n |\Sigma|) = \frac{1}{2} ln((2\pi e)^n |\Sigma|) \end{split}$$

Применение решающего дерева

In [2]: data = pd.read_csv("german_credit.csv", index_col=False)

Видим, что классы сильно несбалансированы, я не думаю, что в этом задании подразумевались преобразование признаков и балансировка классов, судя по времени выполнения (30 минут), но давайте сделаем хотя бы oversampling.

In [5]: data.head()

Out[5]:

	Creditability	Account Balance	Duration of Credit (month)		Purpose	Credit Amount	Value Savings/Stocks	Length of current employment	Instalment per cent	Sex & Marital Status	***	Duration in Current address	Most valuable available asset
0	1	1	18	4	2	1049	1	2	4	2		4	2
1	1	1	9	4	0	2799	1	3	2	3		2	1
2	1	2	12	2	9	841	2	4	2	2		4	1
3	1	1	12	4	0	2122	1	3	3	3		2	1
4	1	1	12	4	0	2171	1	3	4	3		4	2

5 rows × 21 columns

In [6]: data.describe()

Out[6]:

	Creditability	Account Balance	Duration of Credit (month)	Payment Status of Previous Credit	Purpose	Credit Amount	Value Savings/Stocks	Length of current employment	Instalment per cent	Sex & Marita Status
count	1000.000000	1000.000000	1000.000000	1000.00000	1000.000000	1000.00000	1000.000000	1000.000000	1000.000000	1000.0
mean	0.700000	2.577000	20.903000	2.54500	2.828000	3271.24800	2.105000	3.384000	2.973000	2.6820
std	0.458487	1.257638	12.058814	1.08312	2.744439	2822.75176	1.580023	1.208306	1.118715	0.7080
min	0.000000	1.000000	4.000000	0.00000	0.000000	250.00000	1.000000	1.000000	1.000000	1.0000
25%	0.000000	1.000000	12.000000	2.00000	1.000000	1365.50000	1.000000	3.000000	2.000000	2.0000
50%	1.000000	2.000000	18.000000	2.00000	2.000000	2319.50000	1.000000	3.000000	3.000000	3.0000
75%	1.000000	4.000000	24.000000	4.00000	3.000000	3972.25000	3.000000	5.000000	4.000000	3.0000
max	1.000000	4.000000	72.000000	4.00000	10.000000	18424.00000	5.000000	5.000000	4.000000	4.0000

8 rows × 21 columns

```
In [7]: y = data['Creditability']
    del data['Creditability']
    X = data
```

In [8]: X.head()

Out[8]:

	Account Balance	Duration of Credit (month)		Purpose	Credit Amount	Value Savings/Stocks	Length of current employment	Instalment per cent	Sex & Marital Status	Guarantors	Duration in Current address		Ag (ye
0	1	18	4	2	1049	1	2	4	2	1	4	2	21
1	1	9	4	0	2799	1	3	2	3	1	2	1	36
2	2	12	2	9	841	2	4	2	2	1	4	1	23
3	1	12	4	0	2122	1	3	3	3	1	2	1	39
4	1	12	4	0	2171	1	3	4	3	1	4	2	38

```
In [13]: train_data, test_data, train_target, test_target = train_test_split(X_resampled, y_resampled, test_size = 0.3)

In [14]: # novemy-mo npu bonoweŭ znybune y mens bonemano c owubkoŭ npu nonownku susyanusuposamo depeso, s ne cmoz nonsmo, s vëm npobnema model = tree.DecisionTreeClassifier(max_depth=4)

In [15]: target_names = ['0', '1']

In [16]: model.fit(train_data, train_target)

Out[16]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=4, max_features=None, max_leaf_nodes=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, presort=False, random_state=None, splitter='best')

In [17]: dot_data = tree.export_graphviz(model, out_file="small_tree.out", feature_names=list(data.keys()), class_names=target_names, filled=True, rounded=False, special_characters=True)
```

Out[18]:

Account Balance <= 3.5

Как я увидел из описания, Account Balance признак отвечаюющий количеству денег из интервала:

1 -> <100DM

2 -> 100DM<= ... < 500DM,

3 -> 500DM<= ... < 1000DM,

4 -> >= 1000DM

Тогда логично, что кредит лучше выдавать людям с большим счётом (больше надежды, что они его вернут).

Duration of Credit (month) <= 11.5 - очевидно, что означает этот признак

Логично, что мы скорее выдадим кредит на не очень большой период, чем на очень большой срок.

Length of current employment <= 3.5 - также очевидно, что означает этот признак

Если посомотреть дальше на структуру дерева при ответах True и False в этом узле, то видно, что мы выдаём небольшие кредиты тем, у кого небольшой опыт работы, в то же время выдаём кредиты тем, у кого большой стаж и уже взято немного кредитов, либо им > 22.5 лет

In [21]: accuracy Out[21]: [0.67428571428571438, 0.65142857142857147, 0.6835714285714285, 0.7299999999999998, 0.72714285714285709, 0.73642857142857143, 0.75571428571428567, 0.76071428571428579, 0.77357142857142858, 0.78785714285714281, 0.79714285714285715, 0.80357142857142849, 0.81500000000000006, 0.815000000000000006, 0.8264285714285714, 0.82071428571428573, 0.81785714285714284, 0.81928571428571428, 0.8242857142857144, 0.8249999999999996, 0.82571428571428584, 0.82571428571428584, 0.8264285714285714, 0.82642857142857141

```
In [59]: plt.figure(figsize=(12, 6))
    plt.plot(range(1, 25), accuracy, color="orange", marker='.')
    plt.plot()
```

Out[59]: []

Реализация решающего дерева (опциональная часть)

```
In [31]: boston = load_boston()
In [38]: data = pd.DataFrame(boston.data)
    data.columns = boston.feature_names
    data['target'] = boston.target
```

In [39]: data.head()

Out[39]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	target
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2

In [40]: data.describe()

Out[40]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRAT
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000
mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455
std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.16494
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.6000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.4000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.0500
75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.2000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.0000

Нам нужно предсказывать target переменную, которая является вещественным признаком, поэтому будем строить дерево для регрессии

```
In [44]: | X = data.iloc[:, :-1]
         y = data['target']
         X_train, X_test, y_train, y_test = train_test_split(data.iloc[:, :-1], data['target'], test_size=0.25)
```

```
In [127]: def mse(y):
              try:
                  y mean = y.mean()
              except AttributeError:
                  y = np.array(y)
                  y mean = y.mean()
              return ((y - y mean) ** 2).mean()
          def criterion(left, right, root):
                  return len(left) / len(root) * mse(left) + len(right) / len(root) * mse(right)
          class DecisionRule:
              def init (self, k, bound):
                  self.k = k
                  self.bound = bound
              def call (self, x):
                  return not x[self.k] < self.bound</pre>
          class TreeNode:
              EPS = 1e-5
              def init (self, tree, depth=0):
                  self.depth = depth
                  self.tree = tree
                  self.edges = list()
                   self.rule = None
                  self.inds = list()
              def get class(self, x):
                  if not self.edges:
                       return self.tree.y[self.inds].mean()
                  return self.edges[self.rule(x)].get class(x)
              def _get_classes(self, inds):
                  return Counter(self.tree.y[inds])
              def split inds(self, inds, bound, k):
                  left = list(filter(lambda idx: self.tree.X[idx][k] < bound - TreeNode.EPS, inds))</pre>
                  right = list(filter(lambda idx: not self.tree.X[idx][k] < bound - TreeNode.EPS, inds))
                  return left, right
```

```
def learn(self, inds):
        self.inds = inds
        if self.depth == self.tree.max depth or len(inds) < self.tree.min items:</pre>
            return
        best k = -1
        best bound = -1
        c value = float('Inf')
        for k in range(len(self.tree.bounds)):
            for bound in self.tree.bounds[k]:
                left, right = self. split inds(inds, bound, k)
                new c value = criterion(left, right, inds)
                if new c value < c value:</pre>
                    best k, best bound = k, bound
                    c value = new c value
        if best k == -1:
            return
        self.rule = DecisionRule(best k, best bound)
        left, right = self. split inds(inds, best bound, best k)
        l node = TreeNode(self.tree, self.depth + 1)
        r node = TreeNode(self.tree, self.depth + 1)
        l node.learn(left)
        r node.learn(right)
        self.edges = [l node, r node]
class DecisionTree:
    def init (self, max depth=3, min items=5):
        self.root = TreeNode(self)
        self.X = None
        self.y = None
        self.bounds = None
        self.max_depth = max_depth
        self.min_items = min_items
    def fit(self, X, y):
        self.X = np.asarray(X)
        self.y = np.asarray(y)
        self.bounds = list()
        for k in range(X.shape[1]):
```

```
self.bounds.append(np.linspace(np.min(self.X[:, k]), np.max(self.X[:, k]), num=10))
self.root.learn(list(range(len(X))))

def predict(self, X):
    return [self.root.get_class(x) for x in np.asarray(X)]

In [128]: model = DecisionTree()

In [129]: model.fit(X_train, y_train)

In [130]: def msel(y, y_test):
    return (((np.array(y) - np.array(y_test)) ** 2).mean()) ** 0.5

In [131]: msel(model.predict(X_test), y_test)

Out[131]: 8.3642757254935827

In []:
```