Assignment 1

Predicting Heart Disease

Data Science and Machine Learning Bootcamp

<u>Introduction</u>

The UCI Heart Disease Data Set has 303 observations with 14 variables about patients with and without heart disease. The objective of this analysis is to predict a patient has heart disease based on their attributes. This report analyse this dataset to understand the factors that affect the likelihood of a patient having heart disease.

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	са	thal	num
0	63.0	1.0	1.0	145.0	233.0	1.0	2.0	150.0	0.0	2.3	3.0	0.0	6.0	0
1	67.0	1.0	4.0	160.0	286.0	0.0	2.0	108.0	1.0	1.5	2.0	3.0	3.0	2
2	67.0	1.0	4.0	120.0	229.0	0.0	2.0	129.0	1.0	2.6	2.0	2.0	7.0	1
3	37.0	1.0	3.0	130.0	250.0	0.0	0.0	187.0	0.0	3.5	3.0	0.0	3.0	0
4	41.0	0.0	2.0	130.0	204.0	0.0	2.0	172.0	0.0	1.4	1.0	0.0	3.0	0
298	45.0	1.0	1.0	110.0	264.0	0.0	0.0	132.0	0.0	1.2	2.0	0.0	7.0	1
299	68.0	1.0	4.0	144.0	193.0	1.0	0.0	141.0	0.0	3.4	2.0	2.0	7.0	2
300	57.0	1.0	4.0	130.0	131.0	0.0	0.0	115.0	1.0	1.2	2.0	1.0	7.0	3
301	57.0	0.0	2.0	130.0	236.0	0.0	2.0	174.0	0.0	0.0	2.0	1.0	3.0	1
302	38.0	1.0	3.0	138.0	175.0	0.0	0.0	173.0	0.0	0.0	1.0	?	3.0	0

303 rows × 14 columns

Data Exploration

Data set has been checked for null values, missing values and cleaned and prepare for the data for analysis.

```
# Check for missing values
print(DF_1.isnull().sum())

DF_1.isnull().any()

DF_1 = DF_1.replace("?", np.nan)
DF_1 = DF_1.dropna()
print(DF_1)
```

Data set has been divided into Categorical and Numerical datasets for further Analysis.

```
CATEGORICAL_COLS = ['sex', 'cp', 'fbs', 'restecg', 'exang', 'slope', 'thal', 'ca']

NUMERICAL_COLS = ['age', 'trestbps', 'chol', 'thalach', 'oldpeak']

C_DF = DF_1[CATEGORICAL_COLS]

N_DF = DF_1[NUMERICAL_COLS]
```

Manupulate the num Field to differentiate sick and Healthy

Value 0 - Healthy

Values 1,2,3,4,- Sick

Data Visualization

Descriptive Statistics for Numerical Data

	count	mean	std	min	25%	50%	75%	max
age	297.000000	54.542088	9.049736	29.000000	48.000000	56.000000	61.000000	77.000000
trestbps	297.000000	131.693603	17.762806	94.000000	120.000000	130.000000	140.000000	200.000000
chol	297.000000	247.350168	51.997583	126.000000	211.000000	243.000000	276.000000	564.000000
thalach	297.000000	149.599327	22.941562	71.000000	133.000000	153.000000	166.000000	202.000000
oldpeak	297.000000	1.055556	1.166123	0.000000	0.000000	0.800000	1.600000	6.200000

Bar Chats are generated for Categorical Data – Gender, Chest Pain, Fasting Blood Sugar, Resting Electrocardiographic Results, Exercise included Angina, Slope, Thal and ca

Gender and Heart disease Distribution

According to the Bar graph Male has higher vulnerability of heart disease than Female.

Chest Pain Type and Hart disease Distribution

Chest pain Type Asymptomatic has a higher amount of heart disease.

Slope and Heart disease Distribution

Box plots for Numerical type data

Age

···

```
# fig = px.box(DF_1, x='num', y='age')
fig.show()

550

450

450

250

200

150

1 num
```

Resting blood pressure

Cholesterol

fig = px.box(DF_1, x='num', y='chol')
fig.show()

Maximum heart rate achieved.

```
fig = px.box(DF_1, x='num', y='thalach')
fig.show()
```


ST depression induced by exercise relative to rest

Analyse the dot plots and remove outliers.

```
continous_features = ['age','trestbps','chol','thalach','oldpeak']
def outliers(df_out, drop = False):
    for each_feature in df_out.columns:
                 feature_data = df_out[each_feature]
Q1 = np.percentile(feature_data, 25.) # 25th percentile of the data of the given feature
Q3 = np.percentile(feature_data, 75.) # 75th percentile of the data of the given feature
IQR = Q3-Q1 #Interquartile Range
outlier_step = IQR * 1.5 #That's we were talking about above
outliers = feature_data[~((feature_data >= Q1 - outlier_step) & (feature_data <= Q3 + outlier_step))].index.tolist()
                        print('For the feature {}, No of Outliers is {}'.format(each_feature, len(outliers)))
                  if drop:
                       df.drop(outliers, inplace = True, errors = 'ignore')
print('Outliers from {} feature removed'.format(each_feature))
    outliers(DF_1[continous_features])
    For the feature age, No of Outliers is \emptyset
    For the feature trestbps, No of Outliers is 9
For the feature chol, No of Outliers is 5
For the feature thalach, No of Outliers is 1
    For the feature oldpeak, No of Outliers is 5
₩ #Drop the Outliers
    outliers(DF_1[continous_features], drop= True)
    Outliers from age feature removed
    Outliers from trestbps feature removed
    Outliers from chol feature removed
    Outliers from thalach feature removed
    Outliers from oldpeak feature removed
```


Oldpeak and Thalach have linear separation than other numerical variables

Corelation Between Variables -0.39 0.096 -0.092 0.11 0.15 0.16 0.22 0.0089 -0.092 -0.066 0.039 0.034 -0.06 0.14 0.033 -0.2 0.11 0.23 sex - 0.8 -0.037 0.11 0.0089 0.072 -0.058 0.064 -0.34 0.2 0.15 8 restbps - 0.6 -0.066 -0.037 0.13 0.18 0.15 -0.049 0.19 0.067 0.12 0.16 chol 0.013 0.2 -0.2 0.072 0.13 0.17 -7.5e-05 0.059 0.039 -0.0092 0.066 0.13 0.039 -0.058 0.013 0.069 -0.0078 -0.00089 0.0083 0.048 0.049 gg 0.18 restecg 0.15 0.069 -0.072 0.082 0.034 0.064 0.15 0.17 0.11 0.14 0.18 - 0.2 thalach -0.38 -0.39 -0.06 -0.34 -0.049 -7.5e-05 -0.0078 -0.072 -0.35 -0.39 -0.42 0.096 0.14 0.067 0.059 -0.00089 0.082 -0.38 0.25 - 0.0 oldpeak 0.2 0.11 0.2 0.19 0.039 0.0083 0.11 -0.35 **-** -0.2 slope 0.16 0.033 0.15 0.12 -0.0092 0.048 0.14 -0.39 0.25

Based on above Correlation Heat Map, it clearly shows CP, Exang, Slop has positive Correlation with num variable while thalach has a good negative Correlation. Fbs,chol and tresbps has only low Correlation

0.18

restecg

-0.42

oldpeak

- -0.4

0.22

age

0.23

ф

0.16

trestbps

0.066

0.049

Model Building and Evaluation

Logistic Regression Model has used for evaluation

Logistic model accuracy shows as 0.82

```
print('The Accuracy Score is: ', accuracy_score(y_test,y_pred))
```

The Accuracy Score is: 0.8166666666666667