0. 문제

Show a State Diagram and Logic Design(using D-FF) for Sequential Logic controller with Simulation

If input(X) is a charger button,

Apollo Battery has Up(Charge"1")/Down(Discharge "0") as Counter with Clock-time(100ns) based, when X-Charger input

- · Charger & Discharge operate as 1-step up or down
- · State(Green/ Yellow / Red)
- · Input(X)
- A logic Design that the output(Green) is greater than 6-V corresponding to battery voltage in step of 1V, Also Output(Yellow) has an alarm signal when between 7 to 10V. And produce the Output(Red) when below 6V.
- · Output display(7-Segment) the battery Range of the state(G/Y/R)
 - ~~ Happy and Great for your Study, Thank You.-~~

1. 상태도

방전하한(0V)과 충전상한(10V)에 도달한 경우 차기 상태는 각 하한과 상한으로 설정하여 주어진 범위 내에서 회로가 작동하도록 설계하였다.

2. 전체 회로 설계 (D 플립플롭을 이용한 로직 설계)

상태도를 참고하여 상태표를 만들면 다음과 같은 표를 얻을 수 있다.

현	재	상	태	값	입력	1.3	차기		낭태	값		현지	개 성	상태	값	입력		차기	' 상	상태	값
D	С	В	Α	S	Х	D	С	В	Α	S	D	С	В	Α	S	Х	D	С	В	Α	S
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	1	1	0	0	1	0	2
0	0	1	0	2	0	0	0	0	1	1	0	0	1	0	2	1	0	0	1	1	3
0	0	1	1	3	0	0	0	1	0	2	0	0	1	1	3	1	0	1	0	0	4
0	1	0	0	4	0	0	0	1	1	3	0	1	0	0	4	1	0	1	0	1	5
0	1	0	1	5	0	0	1	0	0	4	0	1	0	1	5	1	0	1	1	0	6
0	1	1	0	6	0	0	1	0	1	5	0	1	1	0	6	1	0	1	1	1	7
0	1	1	1	7	0	0	1	1	0	6	0	1	1	1	7	1	1	0	0	0	8

1	0	0	0	8	0	0	1	1	1	7	1	0	0	0	8	1	1	0	0	1	9
1	0	0	1	9	0	1	0	0	0	8	1	0	0	1	9	1	1	0	1	0	10
1	0	1	0	10	0	1	0	0	1	9	1	0	1	0	10	1	1	0	1	0	10
1	0	1	1	11	0	х	х	х	х	х	1	0	1	1	11	1	х	х	х	х	х
1	1	0	0	12	0	х	х	х	Х	х	1	1	0	0	12	1	х	х	х	х	х
1	1	0	1	13	0	х	х	х	Х	х	1	1	0	1	13	1	х	х	х	х	х
1	1	1	0	14	0	х	х	х	Х	х	1	1	1	0	14	1	х	х	х	х	х
1	1	1	1	15	0	х	х	х	х	х	1	1	1	1	15	1	х	х	х	х	х

상태표를 참조하여 D 플립플롭 D, C, B, A 에 대한 차기 상태 D(t+1), C(t+1), B(t+1), A(t+1)을 구하면 다음과 같다.

 $D(t+1) = (!X \land D \land !C \land !B \land A) + (!X \land D \land !C \land B \land !A) + (X \land !D \land C \land B \land A) + (X \land D \land !C \land !B \land !A) + (X \land D \land !C \land B \land A) + (X \land D \land !C \land B \land A)$

 $C(t+1) = (!X \wedge !D \wedge C \wedge !B \wedge A) + (!X \wedge !D \wedge C \wedge B \wedge !A) + (!X \wedge !D \wedge C \wedge B \wedge A) + (!X \wedge D \wedge !C \wedge !B \wedge !A) + (X \wedge !D \wedge C \wedge B \wedge A) + (X$

 $B(t+1) = (!X \wedge !D \wedge !C \wedge B \wedge A) + (!X \wedge !D \wedge C \wedge !B \wedge !A) + (!X \wedge !D \wedge C \wedge B \wedge A) + (!X \wedge D \wedge !C \wedge !B \wedge !A) + (X \wedge !D \wedge C \wedge B \wedge A) + (X \wedge !D \wedge C \wedge B \wedge !A) + (X \wedge !D \wedge C \wedge B \wedge !A) + (X \wedge D \wedge !C \wedge B \wedge !A) + (X \wedge D \wedge !C \wedge B \wedge !A)$ $+ (X \wedge D \wedge !C \wedge B \wedge !A)$

 $A(t+1) = (!X \wedge !D \wedge !C \wedge B \wedge !A) + (!X \wedge !D \wedge C \wedge !B \wedge !A) + (!X \wedge !D \wedge C \wedge B \wedge !A) + (!X \wedge D \wedge !C \wedge !B \wedge !A) + (!X \wedge D \wedge !C \wedge B \wedge !A) + (X \wedge !D \wedge !C \wedge !B \wedge !A) + (X \wedge !D \wedge$

 $D \land !C \land B \land !A) + (X \land !D \land C \land !B \land !A) + (X \land !D \land C \land B \land !A) + (X \land D \land !C \land !B \land !A)$

D 플립플롭의 특성 방정식은 Q(t+1)=D 로 표현되므로 D_D=D(t+1), D_C=C(t+1), D_B=B(t+1), D_A=A(t+1)로 표현할 수 있고 위의 식을 무관항을 고려한 카르노 맵을 이용하여 정리하고, 회로로 나타내면 다음과 같다.

D_D=D(t+1), D_C=C(t+1), D_B=B(t+1), D_A=A(t+1)로 표현할 수 있고 해당 식을 바탕으로 설계한 회로의 입출력 결과를 확인하면 다음과 같다.

 $D_D = (A \wedge B \wedge C \wedge X) + (A \wedge D) + (B \wedge D) + (D \wedge X)$

 $D_{-}C = (A \wedge B \wedge !C \wedge X) + (A \wedge C \wedge !X) + (!A \wedge B \wedge C) + (!A \wedge !B \wedge D \wedge !X) + (!B \wedge C \wedge X)$

 $D_B = (A \land B \land !X) + (A \land !B \land X) + (!A \land B \land X) + (!A \land !B \land C \land !X) + (!A \land !B \land D \land !X)$

 $D_A = (!A \wedge B \wedge !D) + (!A \wedge !B \wedge X) + (!A \wedge C) + (!A \wedge D \wedge !X)$

문제의 조건에 부합하는 R, Y, G LED Indicator 에 대한 진리표를 만들면 다음과 같다.

ė	!재 상태				색낕 상티		ė	ᅫ	상태	색깔 상태			
D	С	В	Α	R	Υ	G	D	С	В	Α	R	Υ	G
0	0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	0	1	1	0	0	1	0	0	1	0	1	1
0	0	1	0	1	0	0	1	0	1	0	0	1	1

0	0	1	1	1	0	0	1	0	1	1	x	x	x
0	1	0	0	1	0	0	1	1	0	0	x	x	x
0	1	0	1	1	0	0	1	1	0	1	x	x	х
0	1	1	0	0	0	1	1	1	1	0	x	x	х
0	1	1	1	0	1	1	1	1	1	1	x	x	x

무관항을 고려한 카르노 맵을 이용하여 진리표를 SOP form 으로 정리하면 다음과 같다.

 $R=(!B\wedge C)+(!C\wedge !D)$

 $Y=(A \wedge B \wedge C)+D$

 $G=(B \wedge C)+D$

(R, Y, G Indicator circuit)

조건에 제시된 전압을 7448 드라이버(BCD to 7-Segment Decoder)를 이용하여 FND로 표시하기 위해 BCD 입력을 받아 BCD Carry 와 B3, B2, B1, B0의 이진 BCD 값을 출력하는 BCDScaler를 설계 및 활용하였다. 이는 BCD 값이 10 이상일 때 1의 BCD Carry 값과 입력 BCD 값에서 10을 뺀 값을 반환하는 회로이다..

D Value	ED CARRY	aled BCD
		Value
0	0	0
1	0	1
2	0	2
3	0	3

해당 회로를 만들기 위해서는 BCDAdder를 활용할 수 있다. BCDAdder는 두 BCD 값을 더한 BCD 값을 출력하는 회로이다. 기존 과제에서 활용한 RCA 4bitAdder를 이용하여 BCDAdder를 설계하였다.

BCDAdder 는 두 수를 더한 값이 10 이상이면 CARRY 를 1 로 처리하기 때문에 한 입력에는 0 을, 한 입력에는 스케일할 BCD 값을 주면 BCDScaler 로 활용할 수 있다.

<BCDScaler>

(Voltage display circuit using 7448 driver)

과방전과 과충전을 감지하는 ALU 를 설계하기 위해서 출력 Overcharge, Overdischarge 에 대해 과방전, 과충전 조건을 통해 부울식을 세우면 다음과 같다.

전압이 10V (1010(2) V)로 충전상한에 다다르고 X(충전 입력)가 1 일 때 과충전이므로

Overcharge= $D \land B \land X$

전압이 0V (0000(2) V)로 방전하한에 다다르고 X(충전 입력)가 0 일 때 과충전이므로

Overdischarge=!D^!C^!B^!A^!X

위의 식을 이용하여 과방전, 과충전을 감지하는 ALU 를 설계하면 다음과 같다.

<AbnormalChargeDischargeDetector>

3. 전체 회로와 시뮬레이션

<Full circuit structure>

<Full circuit simulation>

4. 느낀 점

한 학기 동안 배운 것을 총 동원하여 본 문제와 같이 처음 강의에 입문하였을 때에는 생각지도 못했던 복잡한 회로를 설계하는 것을 해내서 정말 뿌듯함을 느꼈습니다.

한 학기 동안 카르노 맵, 조합 논리, 멀티 플렉서, FND, 플립플롭, State Machine, 카운터 등 전기 회로에 대해 많은 것을 공부하고 배울 수 있어서 정말 뜻깊은 시간이었습니다.

좋은 강의 감사합니다! :D

~~ Happy and Great for your Teaching, Thank You. ~~