Principles of Public-Key Cryptosystems

■ Evolved from an attempt to solve two of the most difficult problems associated with **symmetric encryption**.

- **►** Key distribution
- **■** Digital signature

■ Diffie and Hellman in **1976** came up with a method

- Each user **generates a pair of keys** to be used for the encryption and decryption
- Each user places one of the two keys in a public register or other accessible file. This is the **public key**
- The other key is kept private, which is the private key
- Either of the two related keys can be used for encryption, with the other used for decryption.

A public-key encryption scheme has six ingredients

- **■** Plaintext
- Encryption algorithm
- **■** Public key
- **→** Private key
- **■** Cipher text
- Decryption algorithm

Figure 9.1 Public-Key Cryptography

Encryption using Public key

- With the message X and the encryption key PUb as input
- A forms the **ciphertext Y** , given by

$$\rightarrow Y = E(PUb, X)$$

■ Receiver in possession of the matching private key *PRb*, is able to invert the transformation

$$\rightarrow X = D(PRb, Y)$$

- An adversary, observing Y and having access to PUb, but not having access to PRb or X, must attempt to recover X and/or PRb.
- It is assumed that the adversary does have knowledge of the encryption (E) and decryption (D) algorithms.
- If the adversary is interested only in this **particular message**, then the focus of effort is to recover X by generating a plaintext estimate Xn.
- Often, however, the adversary is interested in being able to read future messages as well, in which case an attempt is made to recover PRb by generating an estimate PRnb.

Encryption using Private key

- A encrypts it using A's private key before transmitting it.
- B can decrypt the message using A's public key.

$$\longrightarrow$$
 $Y = E(PRa,X)$

$$\rightarrow X = D(PUa, Y)$$

■ Only A could have prepared the message, Therefore, the entire encrypted message serves as a digital signature.

- In addition, it **is impossible to alter** the message without access to A's private key
- The message being sent is safe from alteration.
- But **not confidentiality** because any observer can decrypt the message by using the sender's public key.

Authentication and confidentiality

■ Both the authentication function and confidentiality by a double use of the public-key scheme

$$ightharpoonup Z = E(PUb, E(PRa,X))$$

$$\rightarrow X = D(PUa, D(PRb, Z))$$

- We begin by encrypting a message, using the sender's private key.
- This provides the digital signature.
- Next, we encrypt again, using the receiver's public key.
- The final ciphertext can be decrypted only by the intended receiver, who alone has the matching private key.
- Thus, confidentiality is provided.

Applications for Public-Key Cryptosystems

- Encryption/decryption
- Digital signature
- Key exchange
- Some algorithms are suitable for all three applications,
- Some used only for one or two of these applications.

Requirements for Public-Key Cryptography

- 1. It is computationally easy for a party B to generate a pair of key (public key *PUb*, private key *PRb*).
- 2. It is computationally easy for a sender A, knowing the public key and the message to be encrypted, *M*, to generate the corresponding ciphertext:

$$\blacksquare$$
 $C = E(PUb, M)$

■ 3. It is computationally easy for the receiver B to decrypt the resulting ciphertext using the private key to recover the original message:

$$\blacksquare$$
 $M = D(PRb, C) = D[PRb, E(PUb, M)]$

- 4. It is computationally infeasible for an adversary, knowing the public key, *PUb*, to determine the private key, *PRb*.
- **► 5.** It is computationally infeasible for an adversary, knowing the public key, *PUb*, and a ciphertext, *C*, to recover the original message, *M*
- 6. The two keys can be applied in either order:
 - lacktriangleq M = D[PUb, E(PRb, M)] = D[PRb, E(PUb, M)]

Public-Key Cryptanalysis

- Vulnerable to a brute-force attack.
- The countermeasure is the same: Use large keys.
- ► Key size must be large enough to make brute-force attack impractical but small enough for practical encryption and decryption.

thank you