Mastering R by Examples

Avan Suinesiaputra

Table of contents

Αŀ	oout		3
1	Rea	ding CSV file	4
		Without correction	
		With corrections	
	1.3	Table summary	7
2	Diff	erent ways to summarise	9
	2.1	desc_table	9
	2.2	skim	10
	2.3	tableone	12
	2.4	tbl_summary	12
Re	eferer	nces	15

About

This is a cookbook recipes for R using data directly. There is no structure in this book. All chapters are independent and can be executed directly. Use these recipe to quickly learn to solving data analytics with R.

1 Reading CSV file

R built-in function to load a CSV file is the read.csv() function, but I prefer to use read_csv() function from tidyverse package. It's more versatile and you have more controls over correctness of the data.

```
library(tidyverse)
```

This example demonstrates how to read a CSV file, correcting some column data types, and creating new categorical variables.

The data is taken from echocardiographic exams, but we only select some variables and cases to reduce the dimension for the sake of the explanation of this example.

1.1 Without correction

```
Rows: 10,000
Columns: 9
$ StudyID
                                                                           <dbl> 779077, 1670072, 2029178, 917043, 833855, 1717473, 19~
$ PatientID
                                                                           <dbl> 455277, 385496, 784046, 229541, 531403, 452658, 71343~
                                                                           <chr> "Female", "Male", "Female", "Male", "Ale", "A
$ Sex
$ Age_At_Echo
                                                                           <dbl> 43, 42, 44, 79, 65, 79, 85, 24, 19, 70, 65, 68, 90, 8~
$ Examination_Date <date> 2006-10-11, 2016-06-13, 2009-03-31, 2007-08-13, 2015~
                                                                           <chr> "Alive", "Alive", "Dead", "Alive", "Alive", ~
$ Outcome
$ SoV
                                                                           <dbl> 3.021, 3.577, 3.100, 3.000, 4.324, 3.600, 4.307, 2.70~
                                                                           <dbl> NA, 3.20, NA, 2.90, 3.90, 3.00, NA, NA, 2.30, 2.08, N~
$ STJ
$ AscAo
```

1.2 With corrections

and some new variables added

```
dt <- read_csv('.../NEDA/Version_03062024_SurvivalAllCases/Aortopathy_ECHO_Progression_03_V
         show_col_types = FALSE,
         col_types = cols(
           PatientID = col_character(),
           StudyID = col_character(),
           Examination_Date = col_date("%Y-%m-%d"),
           Sex = col_factor(),
           Outcome = col_factor())) %>%
  # select few variables for the sake of simplicity
  select(StudyID, PatientID, Sex, Age_At_Echo, Examination_Date, Outcome, SoV, STJ, AscAo)
  # just take randomly 10,000 rows for this demonstration
  sample_n(10000) %>%
  mutate(
    # we want to create a new variable Age that consists of range of ages
    Age = case_when(
      Age_At_Echo < 40 ~ "< 40",
      Age_At_Echo < 50 ~ "40-50",
      Age_At_Echo < 60 ~ "50-60",
      Age_At_Echo < 70 \sim "60-70",
      Age_At_Echo >= 70 ~ " 70"
    ) %>% factor(levels=c("< 40", "40-50", "50-60", "60-70", " 70"))
  # another computation is to create a new variable called Aorta_Size
  # which takes the maximum value between SoV, STJ, and Asc Ao values
  # for each scan, then categorise it to 4 groups of severities
  rowwise() %>%
  mutate(
    AortaSize = max(SoV, STJ, AscAo, na.rm=TRUE),
    AortaSize_cat = case_when(
      AortaSize <= 4.0 ~ "Normal",
      AortaSize <= 4.5 ~ "Mild",
      AortaSize <= 5.0 ~ "Moderate",
      AortaSize <= 9.0 ~ "Severe",
      .default = NA) %>% factor(levels = c("Normal", "Mild", "Moderate", "Severe"))) %>%
  ungroup()
# show the structure
glimpse(dt)
```

```
Rows: 10,000
Columns: 12
$ StudyID
                 <chr> "1805420", "1638511", "1594965", "1441877", "229036",~
$ PatientID
                 <chr> "299519", "520816", "591275", "482605", "384916", "74~
$ Sex
                 <fct> Female, Male, Female, Male, Male, Male, Female,~
                 <dbl> 88, 81, 60, 68, 88, 71, 65, 63, 67, 54, 86, 71, 53, 7~
$ Age_At_Echo
$ Examination Date <date> 2009-09-21, 2012-04-05, 2011-05-19, 2009-03-24, 2016~
$ Outcome
                 <fct> Dead, Alive, Dead, Alive, Dead, Alive, Alive, ~
$ SoV
                 <dbl> 3.700, 3.450, 2.700, 3.533, 2.892, 3.800, 4.300, 2.67~
$ STJ
                 <dbl> NA, 3.3, 2.0, NA, NA, NA, NA, NA, NA, NA, NA, NA, A.1, N~
                 $ AscAo
                            70, 60-70, 60-70, 70, 70, 60-70, 60-70, 6~
$ Age
                       70,
                 <dbl> 3.700, 3.450, 2.700, 3.533, 2.892, 3.800, 4.300, 2.67~
$ AortaSize
                 <fct> Normal, Normal, Normal, Normal, Normal, Mild,~
$ AortaSize_cat
```

Explanations

1. Correcting data types

The argument of

```
col_types = cols(
  PatientID = col_character(),
  StudyID = col_character(),
  Examination_Date = col_date("%Y-%m-%d"),
  Sex = col_factor(),
  Outcome = col_factor()
)
```

forces read_csv() to use specific data types for specific columns (see: cols specification).

2. Create a new variable with mutate

The statement

```
mutate(
    Age = case_when(
        Age_At_Echo < 40 ~ "< 40",
        Age_At_Echo < 50 ~ "40-50",
        Age_At_Echo < 60 ~ "50-60",
        Age_At_Echo < 70 ~ "60-70",
        Age_At_Echo >= 70 ~ " 70"
        ) %>% factor(levels=c("< 40", "40-50", "50-60", "60-70", " 70"))</pre>
```

)

creates a new column Age as a factor that shows a range of ages between <40, 40-50, 50-60, 60-70, 70 years old.

There is also another mutate statement to create a new column AortaSize and AortaSize_cat based on the maximum value between STJ, SoV and AscAo measurements. I separated this creation from the above because we need to specify R to calculate the maximum value row-wise instead of column-wise. Hence the rowwise() function preceded.

See more about mutate, case_when, and rowwise functions.

1.3 Table summary

Let's summarise our data to compare all patients based on their survival: dead or alive.

```
library('gtsummary')
```

Note that the data may contain multiple scans for a patient. Thus, we will search the earliest scan first for each patient for the comparison.

```
dt %>%
  # analyse examination date per patient
  group_by(PatientID) %>%
 mutate(
    Earliest_Date = min(Examination_Date)
  # release the grouping and now filter the earliest date only
  ungroup() %>%
  filter(Examination_Date == Earliest_Date) %>%
  # this should filter out multiple scan
  # we can safely give the data to tbl_summary function
  tbl_summary(
    by = Outcome,
    include = c(Sex, Age, SoV, STJ, AscAo, AortaSize, AortaSize_cat),
   missing = "no"
  ) %>%
  add p() %>%
  separate_p_footnotes()
```

Table printed with `knitr::kable()`, not {gt}. Learn why at https://www.danieldsjoberg.com/gtsummary/articles/rmarkdown.html
To suppress this message, include `message = FALSE` in code chunk header.

Characteristic	Alive, $N = 7,050$	$\mathbf{Dead},\mathrm{N}=2{,}830$	p-value
Sex			< 0.001
Male	3,725 (53%)	1,613 (57%)	
Female	3,325 (47%)	1,217 (43%)	
Age	,	,	< 0.001
< 40	1,174~(17%)	86 (3.0%)	
40-50	873 (12%)	94 (3.3%)	
50-60	1,347 (19%)	237~(8.4%)	
60-70	1,605 (23%)	532 (19%)	
70	2,051 (29%)	1,881 (66%)	
SoV	3.29 (2.96, 3.60)	3.37 (3.05, 3.70)	< 0.001
STJ	$3.20 \ (2.70, \ 3.60)$	3.40 (2.90, 3.80)	< 0.001
AscAo	$3.30 \ (3.00, \ 3.60)$	$3.50 \ (3.20, \ 3.80)$	< 0.001
AortaSize	$3.30 \ (3.00, \ 3.60)$	3.40 (3.09, 3.70)	< 0.001
AortaSize_cat			< 0.001
Normal	6,569 (93%)	2,539 (90%)	
Mild	406 (5.8%)	249 (8.8%)	
Moderate	64 (0.9%)	37 (1.3%)	
Severe	$11\ (0.2\%)$	5 (0.2%)	

2 Different ways to summarise

```
library(tidyverse)
Let's use mtcars data, but first we need to convert two numeric variables into factor:
  # fix some numeric variables into factor
  dt <- mutate( mtcars,</pre>
    vs = factor(vs, levels=c(0, 1), labels=c("V-shaped", "straight")),
    am = factor(am, levels=c(0, 1), labels=c("automatic", "manual"))
  glimpse(dt)
Rows: 32
Columns: 11
$ mpg <dbl> 21.0, 21.0, 22.8, 21.4, 18.7, 18.1, 14.3, 24.4, 22.8, 19.2, 17.8,~
$ cyl <dbl> 6, 6, 4, 6, 8, 6, 8, 4, 4, 6, 6, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 8,~
$ disp <dbl> 160.0, 160.0, 108.0, 258.0, 360.0, 225.0, 360.0, 146.7, 140.8, 16~
$ hp
       <dbl> 110, 110, 93, 110, 175, 105, 245, 62, 95, 123, 123, 180, 180, 180~
$ drat <dbl> 3.90, 3.90, 3.85, 3.08, 3.15, 2.76, 3.21, 3.69, 3.92, 3.92, 3.92,~
       <dbl> 2.620, 2.875, 2.320, 3.215, 3.440, 3.460, 3.570, 3.190, 3.150, 3.~
$ qsec <dbl> 16.46, 17.02, 18.61, 19.44, 17.02, 20.22, 15.84, 20.00, 22.90, 18~
       <fct> V-shaped, V-shaped, straight, straight, V-shaped, straight, V-sha~
       <fct> manual, manual, manual, automatic, automatic, automatic, automati~
```

2.1 desc_table

```
library(desctable)
```

\$ gear <dbl> 4, 4, 4, 3, 3, 3, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3,~
\$ carb <dbl> 4, 4, 1, 1, 2, 1, 4, 2, 2, 4, 4, 3, 3, 3, 4, 4, 4, 1, 2, 1, 1, 2,~

The library desctable provides desc_table() function to calculate main descriptive statistics. The output is a new dataframe. You can also change the output using desc_output() function.

Numeric variables

desc_table(dt %>% select(-c(am, vs))) %>% desc_output('pander')

	Min	Q1	Med	Mean	Q3	Max	sd	IQR
mpg	10	15	19	20	23	34	6	7.4
cyl	4	4	6	6.2	8	8	1.8	4
disp	71	121	196	231	326	472	124	205
hp	52	96	123	147	180	335	69	84
drat	2.8	3.1	3.7	3.6	3.9	4.9	0.53	0.84
wt	1.5	2.6	3.3	3.2	3.6	5.4	0.98	1
qsec	14	17	18	18	19	23	1.8	2
gear	3	3	4	3.7	4	5	0.74	1
carb	1	2	2	2.8	4	8	1.6	2

Categorical variables

desc_table(dt %>% select(c(am, vs))) %>% desc_output("pander")

	N	%
am	32	
automatic	19	59
manual	13	41
$\mathbf{v}\mathbf{s}$	32	
V-shaped	18	56
straight	14	44

See more: https://cran.r-project.org/web/packages/desctable/vignettes/desctable.html

2.2 skim

library(skimr)

skim() from skimr package provides a complete summary separated between numeric and categorical variables. Interestingly, histogram bars are shown in the last column for numeric variables.

skim(dt)

Table 2.3: Data summary

Name	${\mathrm{dt}}$
Number of rows	32
Number of columns	11
Column type frequency:	
factor	2
numeric	9
Group variables	None

Variable type: factor

skim_variable	n_missing	complete_rate	ordered	n_unique	top_counts
vs	0	1	FALSE	2	V-s: 18, str: 14
am	0	1	FALSE	2	aut: 19, man: 13

Variable type: numeric

skim_vari	able_missingcomple	ete_r	a tre ean	sd	p0	p25	p50	p75	p100	hist
$\overline{\mathrm{mpg}}$	0	1	20.09	6.03	10.40	15.43	19.20	22.80	33.90	
cyl	0	1	6.19	1.79	4.00	4.00	6.00	8.00	8.00	
disp	0	1	230.72	123.94	71.10	120.83	196.30	326.00	472.00	
$_{ m hp}$	0	1	146.69	68.56	52.00	96.50	123.00	180.00	335.00	
drat	0	1	3.60	0.53	2.76	3.08	3.70	3.92	4.93	
wt	0	1	3.22	0.98	1.51	2.58	3.33	3.61	5.42	
qsec	0	1	17.85	1.79	14.50	16.89	17.71	18.90	22.90	
gear	0	1	3.69	0.74	3.00	3.00	4.00	4.00	5.00	
carb	0	1	2.81	1.62	1.00	2.00	2.00	4.00	8.00	

See more: https://cran.r-project.org/web/packages/skimr/vignettes/skimr.html

2.3 tableone

```
library(tableone)
```

Table 1 is a common name used in biomedical research paper that describes the patient demographics. A package called **tableone** aims to ease the production of this table, and we can use this package to summarise our data.

```
CreateTableOne(data=dt, strata="am")
```

	Stratifi	ied by am				
	automat	cic	manual		p	test
n	19		13			
mpg (mean (SD))	17.15	(3.83)	24.39	(6.17)	<0.001	
cyl (mean (SD))	6.95	(1.54)	5.08	(1.55)	0.002	
disp (mean (SD))	290.38	(110.17)	143.53	(87.20)	<0.001	
hp (mean (SD))	160.26	(53.91)	126.85	(84.06)	0.180	
drat (mean (SD))	3.29	(0.39)	4.05	(0.36)	<0.001	
wt (mean (SD))	3.77	(0.78)	2.41	(0.62)	<0.001	
qsec (mean (SD))	18.18	(1.75)	17.36	(1.79)	0.206	
vs = straight (%)	7	(36.8)	7	(53.8)	0.556	
am = manual (%)	0	(0.0)	13	(100.0)	<0.001	
<pre>gear (mean (SD))</pre>	3.21	(0.42)	4.38	(0.51)	<0.001	
carb (mean (SD))	2.74	(1.15)	2.92	(2.18)	0.754	

2.4 tbl_summary

```
library(gtsummary)
```

The gtsummary package provides a rich collection of functions for summarising tables and results from different statistical analyses, e.g. regression, survival analysis, etc.. The simple one, tbl_summary(), can generate a beautiful summary table, ready for publication.

```
dt %>%
  tbl_summary(
   by = am,
  label = c(
   mpg ~ "Miles/gallon (US)",
```

```
cyl ~ "Number of cylinders",
    disp ~ "Displacement (cu.in)",
   hp ~ "Gross horsepower",
    drat ~ "Rear axle ratio",
   wt ~ "Weight (1,000 lbs)",
   qsec ~"Quarter mile time",
    vs ~ "Engine type",
    gear ~ "Number of forward gears",
    carb ~ "Number of carburators"
  ),
 statistic = c(all_continuous() ~ "{mean} ± {sd}")
) %>%
add_p() %>%
separate_p_footnotes() %>%
add_overall(last = TRUE) %>%
modify_spanning_header(c("stat_1", "stat_2") ~ "**Transmission**")
```

	automatic, N =	manual, N =		
Characteristic	19	13	p-value	Overall, $N = 32$
Miles/gallon (US)	17.1 ± 3.8	24.4 ± 6.2	0.002	20.1 ± 6.0
Number of			0.009	
cylinders				
4	3~(16%)	8~(62%)		11 (34%)
6	4(21%)	3(23%)		7~(22%)
8	12~(63%)	2(15%)		14 (44%)
Displacement	290 ± 110	144 ± 87	< 0.001	231 ± 124
(cu.in)				
Gross horsepower	160 ± 54	127 ± 84	0.046	147 ± 69
Rear axle ratio	3.29 ± 0.39	4.05 ± 0.36	< 0.001	3.60 ± 0.53
Weight $(1,000 \text{ lbs})$	3.77 ± 0.78	2.41 ± 0.62	< 0.001	3.22 ± 0.98
Quarter mile time	18.18 ± 1.75	17.36 ± 1.79	0.3	17.85 ± 1.79
Engine type			0.3	
V-shaped	12~(63%)	6~(46%)		18~(56%)
straight	7~(37%)	7~(54%)		14 (44%)
Number of forward			< 0.001	
gears				
3	15~(79%)	0 (0%)		15~(47%)
4	4(21%)	8~(62%)		12 (38%)
5	0 (0%)	5 (38%)		5 (16%)
Number of			0.3	
carburators				
1	3~(16%)	4 (31%)		7~(22%)

Characteristic	automatic, N = 19	manual, N = 13	p-value	Overall, N = 32
2	6 (32%)	4 (31%)		10 (31%)
3	3 (16%)	0 (0%)		3(9.4%)
4	7 (37%)	3(23%)		10 (31%)
6	0 (0%)	1(7.7%)		1 (3.1%)
8	0 (0%)	1(7.7%)		1(3.1%)

 $See\ more:\ https://www.danieldsjoberg.com/gtsummary/index.html$

References