EA044A - Planejamento e Análise de Sistemas de Produção

20. Semestre de 2010 - Prova 2 - Prof. Vinícius A.Armentano

Questão 1

a)

Para que o lucro de x_3 seja competitivo, $\bar{c}_3'=\bar{c}_3-\delta\leq 0$, e portanto, $\delta\geq 2$.

Daí,
$$c_{3}^{'}=c_{3}+\delta\geq c_{3}+2=15.$$

b)

$$\mathbf{a}_{1}^{'} = \mathbf{B}^{-1}\mathbf{a}_{1} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ -3 \end{bmatrix}$$

$$\bar{c}_{1}^{'} = c_{1}^{'} - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{1} = 24 - \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = 14$$

z	x_1	x_2	x_3	s_1	s_2	LD	VB
1	-14		2	5		100	z
	2	1	3	1		20	x_2
	-3		-2	-4	1	10	s_2

 x_1 entra na base e $\min\{20/2\}=10 \rightarrow x_2$ sai da base.

z	x_1	x_2	x_3	s_1	s_2	LD	VB
1		7	24	12		240	z
	1	1/2	3/2	1/2		10	x_1
		3/2	-5/2	-5/2	1	40	s_2

c)

$$\vec{c}_{4}' = c_{4}' - \mathbf{c}_{\mathbf{B}} \mathbf{B}^{-1} \mathbf{a}_{4} = 20 - \begin{bmatrix} 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 5 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = -5$$

$$\mathbf{a}_{4}' = \mathbf{B}^{-1} \mathbf{a}_{4} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 5 \end{bmatrix} = \begin{bmatrix} 5 \\ -15 \end{bmatrix}$$

z	x_1	x_2	x_3	x_4	s_1	s_2	LD	VB
1	10		2	5	5		100	z
	1	1	3	5	1		20 10	x_2
	8		-2	-15	-4	1	10	s_2

d)

$$\mathbf{c_B}\mathbf{B}^{-1} = \begin{bmatrix} 5+\delta & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 5+\delta & 0 \end{bmatrix}$$

$$\bar{c}_1 = c_1 - \mathbf{c_B} \mathbf{B}^{-1} \mathbf{a}_1 = -5 - \begin{bmatrix} 5 + \delta & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 12 \end{bmatrix} = -10 - \delta$$

$$\bar{c}_3 = 13 - \begin{bmatrix} 5 + \delta & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 10 \end{bmatrix} = -2 - 3\delta$$

$$\bar{c}_{s_1} = 0 - \begin{bmatrix} 5 + \delta & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = -5 - \delta$$

$$-10 - \delta \le 0 \quad -2 - 3\delta \le 0 \quad -5 - \delta \le 0$$

$$\delta \ge -\frac{2}{3}$$

e)

 $2x_1 + 2x_2 + 5x_3 + s_3 = 30$

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	z
	1	1	3	1	0	0	20	x_2
	8	0	-2	-4	1	0	10	s_2
	2	2	5	0	0	1	100 20 10 30	s_3

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10	0	2	5	0	0	100	7.
	1		3	1	0	0	20 10	x_2
	8	0	-2	-4	1	0	10	s_2
	0	0	-1	-2	0	1	-10	s_3

 s_3 sai da base. $\max\{-2/1,-5/2\}=-2 \rightarrow x_3$ entra na base.

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	10			1		2	80	z
	1	1		-5		3	80 -10 30 10	x_2 s_2
	8			0	1	-2	30	s_2
	0		1	2		-1	10	x_3

 x_2 sai da base. $\max\{-1/5\} = -1/5 \rightarrow s_1$ entra na base.

z	x_1	x_2	x_3	s_1	s_2	s_3	LD	VB
1	51/5	1/5				13/5	78	z
	-1/5	-1/5		1		-3/5	2	s_1
	8	0			1	-2	30	s_2
	0	2/5	1			-3/5 -2 $1/5$	6	x_3

Questão 2

a)

$$\begin{array}{lll} \min w = & 15u_1 & +20u_2 \\ & u_1 & +u_2 & \geq 4 \\ \text{Problema dual} & & 3u_1 & +5u_2 & \geq 15 \\ & 2u_1 & +u_2 & \geq 2 \\ & u_1 \geq 0 & u_2 \geq 0 \end{array}$$

b)

c) Solução do dual: $w=67,5,\ u_1=\frac{5}{2},\ u_2=\frac{3}{3}.$ Isto implica que as restrições do problema primal estão ativas. Como a terceira restrição do dual não está ativa, tem-se $x_3=0.$ Portanto, a solução ótima do primal é dada pela solução do sistema

$$x_1 +3x_2 = 15$$

 $x_1 +5x_2 = 20$

que fornece
$$x_1 = \frac{15}{2}, \ x_2 = \frac{5}{2}, \ z = 67, 5.$$

Questão 3

Solução inicial

Cálculo das variáveis duais e dos custos reduzidos

$$\bar{c}_{21} = c_{21} - (u_2 - u_1) = 1 - (12 - 0) = -11$$

$$\bar{c}_{41} = c_{41} - (u_4 - u_1) = 12 - (17 - 0) = -5$$

Nova solução

A base permanece igual e o fluxo no arco (2,1) vai para seu limite superior.

Nova solução

Cálculo das variáveis duais e dos custos reduzidos

$$\bar{c}_{21} = c_{21} - (u_2 - u_1) = 1 - (7 - 0) = -6$$

 $\bar{c}_{31} = c_{42} - (u_3 - u_1) = 20 - (15 - 0) = 5$

Solução corrente é ótima.

Questão 4. Admite duas soluções equivalentes

Solução 1

Custo unitário nos arcos

$$c_{14} = 4$$
, $c_{15} = 4 + 2 = 6$, $c_{16} = 4 + 2 + 2 = 8$
 $c_{24} = 4 + 15 = 19$, $c_{25} = 4$, $c_{26} = 4 + 2 = 6$
 $c_{34} = 4 + 15 + 15 = 34$, $c_{35} = 4 + 15 = 19$, $c_{36} = 4$

Solução 2

Custo unitário nos arcos

$$c_{14} = 4$$
, $c_{25} = 4$, $c_{36} = 4$
 $c_{45} = 2$, $c_{54} = 15$, $c_{56} = 2$, $c_{65} = 15$