

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	

Лабораторная работа №2

Вариант №14

Дисциплина	Моделирование	
Тема	Распределение случайных величин	
Студент	Набиев Ф.М.	
Группа	ИУ7-73Б	
Оценка (баллы)		
Преподаватель	Рудаков И.В.	

1 Теоритическая часть

1.1 Равномерное распределение

Непрерывное равномерное распределение — распределение случайной вещественной величины, принимающей значения, принадлежащие некоторому промежутку конечной длины, характеризующееся тем, что плотность вероятности на этом промежутке почти всюду постоянна.

Плотность распределения представлена в формуле 1.1.

$$f_X(x) = \begin{cases} \frac{1}{b-a}, x \in [a, b] \\ 0, x \notin [a, b] \end{cases}$$
 (1.1)

Функция распределения представлена в формуле 1.2.

$$F_X(x) = \begin{cases} 0, x < a \\ \frac{x-a}{b-a}, a \le x < b \\ 1, x \ge b \end{cases}$$
 (1.2)

1.2 Нормальное распределение

Нормальное распределение — распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса.

Плотность распределения представлена в формуле 1.3.

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (1.3)

Функция распределения представлена в формуле 1.4.

$$F(x) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt$$
 (1.4)

2 Результаты работы

2.1 Равномерное распределение

Рис. 2.1 – Равномерное распределение при $a=0,\,b=15$

Рис. 2.2 – Равномерное распределение при $a=-10,\,b=10$

2.2 Нормальное распределение

Рис. 2.3 – Нормальное распределение при $\mu=0,\,\sigma=1$

Рис. 2.4 – Нормальное распределение при $\mu=-5,\,\sigma=5$