A Data Analysis of Aircraft Incidents for Business Strategy Minimizing Risk

Overview

In this project, I analyzed aviation accident data from the National Transportation Safety Board (NTSB) to help guide safer aircraft purchases. Using Python and pandas, I cleaned and explored the data, focusing on trends in manufacturer safety, injury severity, and number of engines. The analysis showed that aircraft from certain manufacturers and those with more engines tend to be involved in fewer and less severe accidents. These insights informed three business recommendations to support data-driven decisions as the company enters the aviation industry.

Business Understanding

The business problem focuses on minimizing risk as the company expands into aviation by purchasing aircraft for commercial and private use. To support safe investment decisions, I analyzed historical accident data to identify manufacturers with fewer incidents, aircraft with more engines, and models linked to less severe outcomes. These factors directly impact safety, operational costs, and reputation, helping the company make informed, low-risk purchasing choices.

Data Understanding

The dataset comes from the NTSB and contains records of civil aviation accidents from 1962 to 2023, including aircraft manufacturer, model, number of engines, location, and injury severity. It reflects the safety history of different aircraft, which is critical for evaluating investment risks in aviation. The analysis focuses on accident severity as the target variable, using both categorical and numerical data to uncover safety trends.

```
# Import libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Load dataset
df = pd.read_csv('/content/AviationData.csv', encoding='latin1')

# Preview first few rows
df.head()
```

4/29/25, 10:53 PM dsc_phase1_project.ipynb - Colab

→	Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airport.Name	•••	Purpose.of.flight	Air.carrier	Total.Fatal
	0 20001218X45444	Accident	SEA87LA080	1948-10-24	MOOSE CREEK, ID	United States	NaN	NaN	NaN	NaN		Personal	NaN	
	1 20001218X45447	Accident	LAX94LA336	1962-07-19	BRIDGEPORT, CA	United States	NaN	NaN	NaN	NaN		Personal	NaN	
	2 20061025X01555	Accident	NYC07LA005	1974-08-30	Saltville, VA	United States	36.922223	-81.878056	NaN	NaN		Personal	NaN	
	3 20001218X45448	Accident	LAX96LA321	1977-06-19	EUREKA, CA	United States	NaN	NaN	NaN	NaN		Personal	NaN	
	4 20041105X01764	Accident	CHI79FA064	1979-08-02	Canton, OH	United States	NaN	NaN	NaN	NaN		Personal	NaN	
	5 rows × 31 columns													
	4													>

The dataset contains accident reports from 1962 to 2023, including fields like aircraft manufacturer, model, number of engines in the aircraft, and injury severity. The target focus is on accident severity and safety trends among manufacturers and aircraft types.

Basic information about the dataset

```
print("\nData Information:")
df.info()
\overline{\Rightarrow}
     Data Information:
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 29623 entries, 0 to 29622
     Data columns (total 31 columns):
          Column
                                 Non-Null Count Dtype
                                 -----
          Event.Id
                                 29623 non-null object
                                 29623 non-null object
          Investigation.Type
     1
          Accident.Number
                                 29623 non-null object
                                 29623 non-null object
     3
          Event.Date
          Location
                                 29613 non-null object
      4
                                 29482 non-null object
      5
          Country
          Latitude
                                 8 non-null
                                                 float64
      6
     7
          Longitude
                                 8 non-null
                                                 float64
          Airport.Code
                                 15658 non-null object
      9
          Airport.Name
                                 17379 non-null object
         Injury.Severity
      10
                                 29623 non-null object
      11 Aircraft.damage
                                 28978 non-null object
      12 Aircraft.Category
                                 3665 non-null
                                                 object
          Registration.Number
                                 29612 non-null object
      14 Make
                                 29616 non-null object
      15 Model
                                 29606 non-null object
          Amateur.Built
                                 29622 non-null object
      17 Number.of.Engines
                                 29291 non-null float64
      18 Engine. Type
                                 29619 non-null object
      19 FAR.Description
                                 3665 non-null
                                                 object
```

20 Schedule 4849 non-null object 29579 non-null object 21 Purpose.of.flight 22 Air.carrier 1584 non-null object 23 Total.Fatal.Injuries 29478 non-null float64 24 Total.Serious.Injuries 29432 non-null float64 25 Total.Minor.Injuries 29428 non-null float64 26 Total.Uninjured 29496 non-null float64 27 Weather.Condition 29621 non-null object 28 Broad.phase.of.flight 29387 non-null object 29 Report.Status 29623 non-null object 30 Publication.Date 17176 non-null object

dtypes: float64(7), object(24)

memory usage: 7.0+ MB

Displaying the number of rows and columns

print("Shape of the dataset:", df.shape)

→ Shape of the dataset: (29623, 31)

Statistical Summary

print("\nSummary Statistics:")
df.describe(include='all')

Summary Statistics:

	Event.Id	Investigation.Type	Accident.Number	Event.Date	Location	Country	Latitude	Longitude	Airport.Code	Airport.Name	• • •	Purpose.of.flight	Air.carrier	Total
count	29623	29623	29623	29623	29613	29482	8.000000	8.000000	15658	17379		29579	1584	
unique	29171	2	29623	3636	10627	59	NaN	NaN	5003	8905		12	1251	
top	20001214X45071	Accident	ANC92LA021	1982-05-16	ANCHORAGE, AK	United States	NaN	NaN	NONE	PRIVATE		Personal	United Airlines	
freq	3	28583	1	25	211	29172	NaN	NaN	617	102		16713	33	
mean	NaN	NaN	NaN	NaN	NaN	NaN	44.914271	-110.695764	NaN	NaN		NaN	NaN	
std	NaN	NaN	NaN	NaN	NaN	NaN	11.772969	36.243789	NaN	NaN		NaN	NaN	
min	NaN	NaN	NaN	NaN	NaN	NaN	30.757778	-173.240000	NaN	NaN		NaN	NaN	
25%	NaN	NaN	NaN	NaN	NaN	NaN	38.135556	-128.370625	NaN	NaN		NaN	NaN	
50%	NaN	NaN	NaN	NaN	NaN	NaN	44.243194	-101.121527	NaN	NaN		NaN	NaN	
75%	NaN	NaN	NaN	NaN	NaN	NaN	46.645833	-84.717222	NaN	NaN		NaN	NaN	
max	NaN	NaN	NaN	NaN	NaN	NaN	70.333333	-70.758333	NaN	NaN		NaN	NaN	

11 rows × 31 columns

Data Preparation

I cleaned the dataset by dropping irrelevant columns, handling missing values through removal or forward-filling, and standardizing categorical data. These steps ensured the dataset was reliable and focused on key factors related to aircraft safety and risk assessment.

Checking for missing values

```
missing_values = df.isnull().sum()
missing_values = missing_values[missing_values > 0]
print("\nMissing Values:\n", missing_values)
     Missing Values:
      Location
                                  10
                                141
     Country
     Latitude
                               29615
     Longitude
                               29615
     Airport.Code
                               13965
     Airport.Name
                               12244
     Aircraft.damage
                                645
     Aircraft.Category
                               25958
     Registration.Number
                                  11
     Make
                                  7
     Model
                                  17
                                  1
     Amateur.Built
     Number.of.Engines
                                 332
     Engine.Type
                                  4
                               25958
     FAR.Description
                               24774
     Schedule
     Purpose.of.flight
                                  44
     Air.carrier
                               28039
                                145
     Total.Fatal.Injuries
     Total.Serious.Injuries
                                 191
     Total.Minor.Injuries
                                 195
     Total.Uninjured
                                 127
                                  2
     Weather.Condition
     Broad.phase.of.flight
                                 236
                               12447
     Publication.Date
     dtype: int64
```

→ Dropping columns with more than 30% missing values

```
threshold = len(df) * 0.3
cols_to_drop = missing_values[missing_values > threshold].index
df = df.drop(columns=cols_to_drop, errors='ignore')
```

Dropping irrelevant columns manually

4/29/25, 10:53 PM dsc_phase1_project.ipynb - Colab

→	Event.Id	Investigation.Type	Accident.Number	Event.Date	Injury.Severity	Aircraft.damage	Registration.Number	Make	Model	Amateur.Built	Number.of.Engines	Engine.Type	Pur
	0 20001218X45444	Accident	SEA87LA080	1948-10-24	Fatal(2)	Destroyed	NC6404	Stinson	108-3	No	1.0	Reciprocating	
	1 20001218X45447	Accident	LAX94LA336	1962-07-19	Fatal(4)	Destroyed	N5069P	Piper	PA24- 180	No	1.0	Reciprocating	
	2 20061025X01555	Accident	NYC07LA005	1974-08-30	Fatal(3)	Destroyed	N5142R	Cessna	172M	No	1.0	Reciprocating	
	3 20001218X45448	Accident	LAX96LA321	1977-06-19	Fatal(2)	Destroyed	N1168J	Rockwell	112	No	1.0	Reciprocating	
	4 20041105X01764	Accident	CHI79FA064	1979-08-02	Fatal(1)	Destroyed	N15NY	Cessna	501	No	NaN	NaN	

Next steps:

View recommended plots

New interactive sheet

Visualizing missing data

```
plt.figure(figsize=(14,6))
sns.heatmap(df.isnull(), cbar=False, cmap='magma')
plt.title('Missing Values Heatmap')
plt.show()
```


4/29/25, 10:53 PM

Filling remaining values with forward fill

```
data = df.fillna(method='ffill')
```

Verifying missing after cleaning

print("\nMissing Values after cleaning:\n", data.isnull().sum().sum())

Check final data shape

```
df.shape

→ (29623, 20)
```

I dropped irrelevant columns and handled missing data appropriately to maintain focus on aircraft safety factors, ensuring a clean dataset for analysis.

Exploratory Data Analysis(EDA)

I used exploratory data analysis (EDA) with groupings, aggregations, and visualizations to uncover trends related to aircraft safety. This descriptive approach was appropriate because the project focused on identifying safer aircraft models, not predictive modeling.

Top 10 Aircraft Manufacturers

Analyze aircraft manufacturer accident counts

```
manufacturer_counts = df['Make'].value_counts().head(10)

plt.figure(figsize=(10,6))
sns.barplot(x=manufacturer_counts.values, y=manufacturer_counts.index, palette='viridis')
plt.title('Top 10 Aircraft Manufacturers by Accident Count')
plt.xlabel('Number of Accidents')
plt.ylabel('Manufacturer')
plt.show()
```

<ipython-input-13-b9eddfef0f59>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `y` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=manufacturer_counts.values, y=manufacturer_counts.index, palette='viridis')

Accidents by the number of engines in the aircraft

Analyze the number of engines by the aircraft

```
engine_data = df[['Number.of.Engines', 'Total.Fatal.Injuries']]
engine_accident_counts = engine_data.groupby('Number.of.Engines').size().reset_index(name='Accident_Count')
engine_accident_counts = engine_accident_counts.sort_values(by='Accident_Count', ascending=False)
engine accident counts['Engine Risk Level'] = engine accident counts['Accident Count'].apply(lambda x: 'High Risk' if x > 10 else 'Low Risk')
print(engine_accident_counts)
→
        Number.of.Engines Accident_Count Engine_Risk_Level
                      1.0
                                    24485
                                                  High Risk
                      2.0
                                     3865
                                                  High Risk
```

184

4.0

```
plt.figure(figsize=(10,6))
plt.bar(engine_accident_counts['Number.of.Engines'].astype(str), engine_accident_counts['Accident_Count'], color='teal')
plt.xlabel('Number of Engines')
plt.ylabel('Accident Count')
plt.title('Accident Counts by Number of Engines')
plt.show()
```

High Risk

I conclude that the higher the number of engines the lower the accident count.

Injury Severity Distribution

Analyze injury severity

injury_counts = df['Injury.Severity'].value_counts()

```
plt.figure(figsize=(8,5))
sns.barplot(x=injury_counts.index, y=injury_counts.values, palette='coolwarm')
plt.title('Injury Severity in Aviation Accidents')
plt.xlabel('Injury Severity')
plt.ylabel('Number of Accidents')
plt.xticks(rotation=45)
plt.show()
```

→▼

<ipython-input-17-68a949998212>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.barplot(x=injury_counts.index, y=injury_counts.values, palette='coolwarm')

Correlation Matrix

```
# Select only numeric columns
numeric_df = df.select_dtypes(include=[np.number])

if not numeric_df.empty:
    plt.figure(figsize=(14,10))
    sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm', fmt='.2f', square=True)
    plt.title('Correlation Matrix')
    plt.show()
```

else:
 print("No numeric data available for correlation heatmap.")

Evaluation

The analysis successfully identified safer aircraft manufacturers and revealed that planes with more engines are linked to less severe accidents. Since this was a descriptive analysis, evaluation focused on how well the insights addressed business questions and supported

risk-aware decision-making.

Recommendations

1. Focus investments on aircraft models built by manufacturers who show consistently low numbers of accidents and incidents over time.

Could not connect to the reCAPTCHA service. Please check your internet connection and reload to get a reCAPTCHA challenge.