

B2 – Mathématiques :

L'intégration

Amine ILMANE

110borwein

Saving years of calculations...

$$\forall n \in \mathbb{N}, I_n = \int_0^{+\infty} \prod_{k=0}^n \frac{\sin(\frac{x}{2k+1})}{\frac{x}{2k+1}} dx = \frac{\pi}{2}$$

Projet 110: borwein

$$\forall n \in \mathbb{N}, I_n = \int_0^{+\infty} \prod_{k=0}^n \frac{\sin(\frac{x}{2k+1})}{\frac{x}{2k+1}} dx = \frac{\pi}{2}$$

```
Terminal - + \times ~/B-MAT-200> ./110borwein 0 Midpoint:  
I0 = 1.5707651076  
diff = 0.0000312192 = \left| \frac{\pi}{2} - I_0 \right|  
Trapezoids:  
I0 = 1.5707660806  
diff = 0.0000302462  
Simpson:  
I0 = 1.5707654320  
diff = 0.0000308948
```

Projet 110: borwein

$$\forall n \in \mathbb{N}, I_n = \int_0^{+\infty} \prod_{k=0}^n \frac{\sin(\frac{x}{2k+1})}{\frac{x}{2k+1}} dx = \frac{\pi}{2}$$

$$f(\mathbf{x})$$

- L'infini sera représenté par la valeur 5000.
- 10 000 sous intervalles (pas 10 000 points!!) de même longueur.
- Le **n** de la formule n'a rien avoir avec le nombre de subdivision.

• Le symbole
$$\prod_{i=1}^N u_i = u_1 imes u_2 imes \cdots imes u_N$$

Utiliser des double float et attention aux arrondis.

• Cas
$$x = 0$$
: $\lim_{x \to 0} \frac{\sin(x)}{x} = 1$

Et on n'attend pas le follow-up pour commencer !!

Analyse : une discipline des mathématiques

L'analyse est une branche des mathématiques chargée " de la formulation rigoureuse du calcul infinitésimal".

Nous disposons maintenant des outils de calcul infinitésimal suivants :

- domaine de définition ;
- l'infiniment grand est noté ∞ (asymptote, divergence);
- l'infiniment petit est noté ξ (la loupe);
- La convergence (diviser quelque chose en un infinité de petit morceaux);
- la limite ;
- la continuité;
- La dérivation ;
- Aujourd'hui, l'intégration

Discrétisation d'un intervalle

Définition Une subdivision d'ordre n d'un intervalle [a,b] est une partie finie $X = \{x_0, x_1, \dots, x_n\} \subset [a,b]$ telle que

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$
.

On notera $S_{a,b}$ l'ensemble des subdivisions de [a,b].

Discrétisation régulière d'un intervalle

- Il est parfois plus intéressant (automatiser les calculs via des formules récursives) de choisir une subdivision avec un pas régulier h.
- Le pas est donnée par la formule $h = \frac{b-a}{n}$
- On parle dans ce cas de pas régulier ou uniforme

Surface sous la courbe

Problème:

On voudrait calculer la surface qui est délimitée par la courbes C_f

Surface sous la courbe

Solution:

• Subdiviser l'intervalle [a,b], puis calculer la surface des rectangles

Surface = Longueur x largeur =
$$\Delta f \cdot \Delta x$$

- La somme de ces surfaces donne une approximation de la surface sous la courbe.
- Plus la subdivision est fine (h petit) plus l'approximation est meilleure.

Discrétiser (mesh) : grille de points à pas régulier, aléatoire pavage

Somme de Darboux

D n 1.1.3 La **somme de Darboux inférieure** resp. **supérieure** de f: $[a, v] \to \mathbb{R}$ relativement à une subdivision $X = \{x_0, \dots, x_n\}$ sont définies par

$$s(f,X) := \sum_{i=1}^{n} h_i \underbrace{\inf f(I_i)}_{resp.} resp. S(f,X) := \sum_{i=1}^{n} h_i \underbrace{\sup f(I_i)}_{resp.},$$

où $h_i = x_i - x_{i-1}$ est la longueur du i^e sous-intervalle $I_i = [x_{i-1}, x_i]$.

Somme de Darboux

$$\mathbf{S} = \Delta \mathbf{f}_1 \cdot \Delta \mathbf{x}_1 + \Delta \mathbf{f}_2 \cdot \Delta \mathbf{x}_2 + \Delta \mathbf{f}_3 \cdot \Delta \mathbf{x}_3 + \Delta \mathbf{f}_4 \cdot \Delta \mathbf{x}_4 = \mathbf{h} \cdot (\Delta \mathbf{f}_1 + \Delta \mathbf{f}_2 + \Delta \mathbf{f}_3 + \Delta \mathbf{f}_4)$$

$$\mathbf{S} = \Delta \mathbf{F}_1 \cdot \Delta \mathbf{x}_1 + \Delta \mathbf{F}_2 \cdot \Delta \mathbf{x}_2 + \Delta \mathbf{F}_3 \cdot \Delta \mathbf{x}_3 + \Delta \mathbf{F}_4 \cdot \Delta \mathbf{x}_4 = \mathbf{h} \cdot (\Delta \mathbf{F}_1 + \Delta \mathbf{F}_2 + \Delta \mathbf{F}_3 + \Delta \mathbf{F}_4)$$

- Ce qui différencie **s** et **S** est l'approximation de la valeur de la fonction dans un sous intervalle donnée.
- Cette liberté de choix donne naissance à beaucoup de méthodes d'intégration numériques.

Intégrale de Riemann

Définition 1.1.7 La fonction f est **Riemann-intégrable sur** [a, b] ssi les deux nombres

$$s_a^b(f) := \sup_{X \in S_{a,b}} s(f,X) , \ S_a^b(f) := \inf_{X \in S_{a,b}} S(f,X) .$$

coïncident; ce nombre est alors appellé l'intégrale de Riemann de f sur [a,b] (ou de a à b), et noté $\int_a^b f(x) dx$.

L'ensemble des fonctions Riemann-intégrables sur [a,b] est noté $R_{a,b}$.

$$S(f,X) - s(f,X) < \varepsilon \qquad y = f(x) \\ y = f(x) \pm \varepsilon/2$$

Théorème:

Toute fonction monotone continue sur [a,b] est intégrable au sens de Riemann

fonctions en escalier.

Intégrale de Riemann

À présent nous allons voir ce qui se passe lorsqu'on augmente le nombre de subdivisions :

- o **h** devient petit;
- o L'approximation devient meilleure;
- Si $\mathbf{n} \to \infty$ alors $\mathbf{h} = \Delta \mathbf{x} = \mathbf{dx} \to \mathbf{0}$, pour respecter la notation $\Delta \mathbf{f} = \mathbf{df}$

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} \Delta f_i \Delta x_i = \lim_{n \to \infty} s(f, [a, b]_n) = \lim_{n \to \infty} S(f, [a, b]_n)$$

Un peu de numérique (méthode des rectangles)

Les sommes de Darboux ne sont pas très utiles pour le calcul effectif d'une intégrale, par exemple à l'aide d'un ordinateur, car il est en général assez difficile de trouver les inf et sup sur les sous-intervalles. On considère plutôt

$$s_n(f) = \sum_{i=1}^n (x_i - x_{i-1}) f(x_{i-1})$$
 ou $S_n(f) = \sum_{i=1}^n (x_i - x_{i-1}) f(x_i)$.

$$s(f, X) \le \int_a^b f(x) \, \mathrm{d}x \le S(f, X)$$

Intégrale entre 0 et 4 de $x^2 = 21,33$

i	X	$f(x_i) = x_i^2$	$\Delta \mathbf{x_i}$	$s = \Delta x_i f(x_{i-1})$	$S = \Delta x_i f(x_i)$
1	a = 0	0	1	0	1
2	1	1	1	1	4
3	2	4	1	4	9
4	3	9	1	9	16
5	b = 4	16	-	15	30

Propriétés des intégrales

Propriétés des intégrales

Soit $a \le c \le b$. Alors

*
$$\int_a^b f(x) dx = 0$$
 intégration en un point
* $\int_a^b f(x) dx = -\int_b^a f(x) dx$ inversion des bornes
* $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$ partage de l'intervalle
relation de Chasles

La linéarité

$$\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx.$$

Propriétés des intégrales

Pour $f, g \in R_{a,b}$, (a < b), on a

*
$$\int_a^b \lambda . f(x) \, dx = \lambda . \int_a^b f(x) \, dx$$
 produit par un nombre

*
$$\int_a^b (f(x)+g(x))\,dx = \int_a^b f(x)\,dx + \int_a^b g(x)\,dx \quad \text{addition}$$

*
$$\left| \int_{a}^{b} f(x) dx \right| \le \int_{a}^{b} \left| f(x) \right| dx$$
 valeur absolue

* Si f
$$\leq$$
 g, alors $\int_a^b f(x) \, dx \leq \int_a^b g(x) \, dx$ ordre

* Si m
$$\leq$$
 f(x) \leq M dans [a,b],
alors m.(b-a) $\leq \int_a^b f(x) dx \leq$ M.(b-a) propriété du min-max

Théorème de la moyenne :
$$\exists c \in [a,b]: \ \underbrace{\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x}_{movenne \ de \ f \ sur \ [a,b]} = f(c)$$

Méthode numériques

Suite arithmétique de raison h

Subdivision de [a,b]:
$$h=\frac{b-a}{n} \qquad \left\{ \begin{array}{l} x_0=a\\ x_n=b\\ x_{i+1}=x_i+h,\quad i=0,...,n-1 \end{array} \right.$$

Choix de f:
$$\begin{cases} \text{soit } f(x) = f(x_i) & \text{valeur à gauche} \\ \text{soit } f(x) = \frac{f(x_i) + f(x_{i+1})}{2} & \text{valeur milieu} \\ \text{soit } f(x) = f(x_{i+1}) & \text{valeur à droite} \\ \dots \end{cases}$$

Méthode des rectangles

Méthode des trapèzes

Méthode des rectangles (erreur en 1/n)

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \underbrace{f(x)} dx$$

Méthode des rectangles (erreur en 1/n)

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

$$\approx \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x_{i}) dx$$

$$\approx \sum_{i=0}^{n-1} h.f(x_{i})$$

$$\approx h. \sum_{i=0}^{n-1} f(a+i.h)$$

$$\approx \frac{b-a}{n}. \sum_{i=0}^{n-1} f(a+i.h)$$

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{n} \cdot \sum_{i=0}^{n-1} f(a+i.h)$$

Subdivision de [a,b] : $h = \frac{b-a}{n}$

Méthode du point milieu (erreur en 1/n)

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{n} \cdot \sum_{i=0}^{n-1} f(a+i.h)$$

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{n} \cdot \sum_{i=0}^{n-1} f(a+i.h + \frac{h}{2})$$

Subdivision de [a,b] :
$$h = \frac{b-a}{n}$$

Méthode des trapèzes (erreur en 1/n²)

Méthode des trapèzes (erreur en 1/n²)

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} f(x) dx$$

$$\simeq \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \underbrace{\frac{f(x_{i}) + f(x_{i+1})}{2}}_{dx} dx \qquad \text{moyenne}$$

$$\simeq \sum_{i=0}^{n-1} h. \frac{f(a+i.h)}{2} + \sum_{i=0}^{n-1} h. \frac{f(a+(i+1).h)}{2}$$

$$\simeq \frac{h}{2} \sum_{i=0}^{n-1} f(a+i.h) + \frac{h}{2} \sum_{i=1}^{n} f(a+i.h)$$

$$\simeq \frac{b-a}{2n} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a+i.h) \right)$$

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{2n} \left(f(a) + f(b) + 2 \sum_{i=1}^{n-1} f(a+i.h) \right)$$

Méthode de Simpson (erreur en 1/n4)

Comme dans le développement en série les méthodes ont un ordre aussi

- Ordre 0 (constante): une ligne horizontale (méthodes des rectangles);
- Ordre 1 (droite): une ligne incliné (méthodes des trapèzes);
- Ordre 2 : on introduit la courbure avec x^2 : une parabole (méthode de Simpson).
- On essaye d'interpoler la fonction entre les point x_i en utilisant un polynôme de degrés 2.
- Nous n'allons pas traiter les méthodes d'interpolation (3ème année)

Méthode de Simpson (erreur en 1/n⁴)

Suite arithmétique de raison h

Subdivision de [a,b] :
$$h=rac{b-a}{n}$$

Subdivision de [a,b] :
$$h=\frac{b-a}{n} \qquad \left\{ \begin{array}{l} x_0=a\\ x_n=b\\ x_{i+1}=x_i+h,\quad i=0,...,n-1 \end{array} \right.$$

$$\int_{a}^{b} f(x) dx = \sum_{i=0}^{n-1} \int_{x_{i}}^{x_{i+1}} \underbrace{f(x)} dx$$

$$\int_{x_i}^{x_{i+1}} f(x) dx = \frac{h}{6} \left(f(x_i) + f(x_{i+1}) + 4.f\left(\frac{x_i + x_{i+1}}{2}\right) \right)$$

$$\int_{a}^{b} f(x) dx \simeq \frac{b-a}{6n} \left(f(a) + f(b) + 2 \cdot \sum_{i=1}^{n-1} f(a+i.h) + 4 \cdot \sum_{i=0}^{n-1} f(a+i.h + \frac{h}{2}) \right)$$

L'intégration

Sum becomes Integral

