Exercises

1. The game "Conway's Soldiers" is modified so that the initial arrangement of soldiers has only n soldiers below a horizontal line (instead of having a soldier in every position below a horizontal line). Show that if it is possible to progress a soldier four rows forwards, then $n \ge 19$.

Basics of Group Theory

- 2. Consider the set $A = \{\{1,2\}, \{1,3\}, \{1,4\}, \{2,3\}, \{2,4\}, \{3,4\}, \} \text{ of pairs of elements of } \{1,2,3,4\}$. Any permutation f of $\{1,2,3,4\}$ induces a permutation of the set of pairs of elements of $\{1,2,3,4\}$ in a natural way. Namely, $\{x,y\} \mapsto \{f(x),f(y)\}$. So, for example, the permutation $(1\ 2\ 4)$ of $\{1,2,3,4\}$ induces the permutation $(\{1,2\}\ \{2,4\}\ \{1,4\})(\{1,3\}\ \{2,3\}\ \{3,4\})$ of A. The following question generalises this and shows how to view it as a homomorphism. Let S be a finite non-empty set, let $0 \le k \le |S|$, and let $\binom{S}{k}$ denote the set of all k-element subsets of S. Consider the function $\theta: \operatorname{Sym}(S) \to \operatorname{Sym}(\binom{S}{k})$ given by $(\theta(f))(\{x_1, x_2, \dots, x_k\}) = \{f(x_1), f(x_2), \dots, f(x_k)\}$ for all $\{x_1, x_2, \dots, x_k\} \in \binom{S}{k}$. Show that θ is a homomorphism. What is the kernel of θ ?
- 3. Show that the function $f: \mathbb{Z}_{12} \to \mathbb{Z}_8$ given by $f([x]_{12}) = [x+x]_8$ for all $x \in \mathbb{Z}_{12}$ is well defined and is a homomorphism. Determine ker f and Im f, and verify that the first isomorphism theorem holds.
- 4. List the elements of A_4 .
- 5. (Challenge Question) A 1-factor in a graph is a 1-regular spanning subgraph, and a 1-factorisation of a k-regular graph is a set of k pairwise edge-disjoint 1-factors. A 1-factorisation of a graph is perfect is the union of any pair of distinct 1-factors is a Hamilton cycle. Show that if the complete bipartite graph $K_{n,n}$ has a perfect 1-factorisation, then n = 2 or n is odd. Hint: think of the 1-factors as permutations and make use of the alternating group A_n .

Permutation Groups

- 6. For which values n and t, $n \ge 2$ and $1 \le t \le n$, is the alternating group A_n t-transitive?
- 7. Let p be an odd prime and for each $a, b \in \mathbb{Z}_p$ define $\pi_{a,b} : \mathbb{Z}_p \to \mathbb{Z}_p$ by $\pi_{a,b}(x) = ax + b$ for all $x \in \mathbb{Z}_p$.

- Show that $G = \{\pi_{a,b} : a \in \mathbb{Z}_p \setminus \{0\}\}, b \in \mathbb{Z}_p\}$ is a permutation group acting on \mathbb{Z}_p .
- Show that G is 2-transitive.
- Show that $H = \{\pi_{a,b} : a \in \{1,2,4\} \setminus \{0\}\}, b \in \mathbb{Z}_7\}$ has a regular action on the set of unordered pairs of elements of \mathbb{Z}_7 .
- 8. Show that a finite transitive permutation group of degree at least 2 has an element with no fixed points.
- 9. Show that if G is a transitive permutation group acting on a finite set S, then the following are equivalent.
 - (a) G is regular.
 - (b) The only element of G with any fixed points is the identity.
 - (c) |G| = |S|.
- 10. Show that if G is a transitive abelian permutation group acting faithfully on a finite set S, then G is regular.

Some Exceptional Objects

11. If G is a group, then the conjugacy class of $x \in G$ is $\{g^{-1}xg : g \in G\}$. Any element of the conjugacy class of x is called a conjugate of x. Show that the conjugacy classes of G partition G. Show that automorphisms of a group map conjugacy classes to conjugacy classes.

Polygons and Pick's Theorem

- 12. What is the area of a fundamental n-gon? Explain briefly.
- 13. What is the maximum number of lattice points that can be covered by an m by n rectangle that has its vertices on lattice points? You should show that your answer is indeed a maximum.
- 14. Determine the maximum and minimum number of lattice points that can be covered by a 5 by 5 square whose vertices are lattice points? You should show that your answers are indeed the maximum and minimum.

- 15. Let $m \geq 2$ and $n \geq 2$ be integers, let V be the set of lattice points with x-coordinate in $\{0, 1, 2, \ldots, m\}$ and y-coordinate in $\{0, 1, 2, \ldots, n\}$, let E be the set of line segments of length 1 that join points of V, and let G be the graph with vertex set V and edge set E.
 - Let P be a Hamilton path from (0,0) to (m,n) in the graph G, and let R be the rectangle with vertices (0,0), (m,0), (0,n) and (m,n). The path P partitions R into regions. Let A be the set of regions which open to either the bottom side or to the right side of R ((0,0)(m,0)) is the bottom side of R, and (m,0)(m,n) is the right side of R).
 - (a) Derive a formula in terms of m and n for the sum of the areas of the regions in A.
 - (b) Substitute m = 9 and n = 11 into your formula and explain why the result is not an integer, even though the regions of A can be partitioned into unit squares.
- 16. The Farey sequence F_N consists of the ascending set containing all irreducible fractions $\frac{a}{b}$ where $0 \le \frac{a}{b} \le 1$ and $b \le N$.

Use Pick's Theorem to show that if $\frac{a}{b}$ and $\frac{c}{d}$ are successive terms of a Farey sequence, then bc - ad = 1. (Hint: Plot each fraction $\frac{a}{b}$ as the point (b, a).) Deduce that for three successive terms $\frac{a_1}{b_1}$, $\frac{a_2}{b_2}$ and $\frac{a_3}{b_3}$, we have $\frac{a_2}{b_2} = \frac{a_3 + a_1}{b_3 + b_1}$.

17. Let a, b and n be distinct positive integers with gcd(a, n) = gcd(b, n) = 1. Determine a formula for the number of lattice points in the interior of the triangle whose vertices are the (0,0), (a, n-a) and (b, n-b).

Sperner's Lemma

18. Outline the proof of Sperner's Lemma in n-dimensions.

Regular Polytopes

- 19. Prove that the full symmetry group of the dodecahedron is $A_5 \times \mathbb{Z}_2$.
- 20. For a d-polytope P, the Euler characteristic $\chi(P)$ is defined by

$$\chi(P) = n_0 - n_1 + n_2 - n_3 + \dots + (-1)^{d-1} n_{d-1}$$

where n_i is the number of *i*-faces. Prove that the Euler characteristic of the *d*-simplex is 2 if *d* is odd, and 0 if *d* is even.

Sphere Packing

- 21. Let A and B be two adjacent spheres of an optimal sphere packing in \mathbb{R}^8 . How many spheres touch both A and B?
- 22. In \mathbb{R}^3 , determine the maximum value of r such that 12 non-overlapping spheres of radius r can touch a sphere of radius 1.
- 23. In \mathbb{R}^3 , determine the maximum value of r such that 20 non-overlapping spheres of radius r can touch a sphere of radius 1.

Projective and Affine Planes

- 24. Let $k \geq 3$, let P be a finite set of points and let L be a set of lines such that
 - (a) |P| = |L|,
 - (b) each line has k points, and
 - (c) there is exactly one line through each pair of points from P.

Show that (P, L) is a projective plane of order k-1.

- 25. In a projective plane, an arc is a set S of points such that no three distinct points of S are collinear.
 - (a) Show that the maximum number of points in an arc of a projective plane of order 2 is 4.
 - (b) Show that the maximum number of points in an arc of a projective plane of order 3 is 4.
 - (c) Show that if S is an arc in a projective plane of order n, then $|S| \le n+2$.
 - (d) Show that if a projective plane of order n has an arc with n+2 points, then n is even.
 - (e) Let $t \in S_6$ be a transposition, let T be the set of all transpositions of S_6 , let θ be an automorphism of S_6 , and suppose $t\theta$ is the composition of three disjoint transpositions. Show that $T\theta$ is the set of all permutations consisting of three disjoint transpositions.
 - (f) Show that a projective plane of order 4 with an arc consisting of 6 points can be constructed as follows. Take the vertices and edges of K_6 as the points, with the vertices forming the arc. For each vertex v of K_6 , there is a line whose points are the edges incident with v. For each edge uv of K_6 , there is a line whose points are u, v and the edges ab, cd and ef where $(a\ b)(c\ d)(e\ f) = (u\ v)\theta$, and θ is as defined in part (e).
- 26. Use the construction which yields a projective plane of order n from an affine plane of order n to construct a projective plane of order 3 from an affine plane of order 3.
- 27. Prove that there are infinitely many values of n for which there is no projective plane of order n. You may use Dirichlet's Theorem (from 1837) which guarantees that if gcd(a, d) = 1, then there are infinitely many primes congruent to $a \pmod{d}$.

Projective and Affine Geometries PG(n,q) and AG(n,q)

- 28. Construct an S(2,4,16) system as the set of d-flats in AG(n,q) (for some suitable d, n and q).
- 29. Write down the parameters and blocks, with the blocks resolved into parallel classes, of the design (X, \mathcal{B}) arising from the 2-flats of AG(3, 2). Visualise this design by drawing a cube. What can we say about the design with point set $X \setminus \{(0,0,0)\}$ and block set $\{B \setminus \{(0,0,0)\}: (0,0,0) \in B, B \in \mathcal{B}\}$?

Singer's Theorem

- 30. Use Singer's theorem and the primitive polynomial $x^4 + x + 1$ over \mathbb{F}_2 to construct a block B such that the orbit of B under the action of \mathbb{Z}_{15} is a (15,7,3)-design.
- 31. The polynomial $x^3 + x^2 + x + y$ is a primitive polynomial over \mathbb{F}_4 where \mathbb{F}_4 consists of the residue classes of polynomials modulo $f(y) = y^2 + y + 1$ over \mathbb{F}_2 . Use this fact to construct a line whose orbit under \mathbb{Z}_{21} is a projective plane of order 4.
- 32. A primitive polynomial over \mathbb{F}_3 is $x^3 + 2x + 1$. Construct a (27, 3, 1)-design \mathcal{D} with point set $\{\infty\} \cup \mathbb{Z}_{26}$ such that $\mathbb{Z}_{26} \leq \operatorname{Aut}(\mathcal{D})$.
- 33. What is the order of the (full) automorphism group of the design (V, \mathcal{B}) where $V = \{1, 2, \dots, 9\}$ and

 (v, k, λ) -designs

t-designs

34. Write out the blocks of a 1 - (10, 4, 2)-design.

Extensions and Contractions

- 35. A 3 (8, 4, 1)-design can be constructed by taking the vertices of a (3-dimensional) cube as points and the following blocks. The four vertices on each face form a block. The four vertices on each pair of opposite edges form a block. The two sets of four pairwise nonadjacent vertices forms of block. Verify that this design is an extension of the (7,3,1)-design arising from PG(2,2).
- 36. Prove that $\mathbb{Z}_{11} \leq \operatorname{Aut}(\mathcal{D})$ where \mathcal{D} is the 3 (22, 6, 1)-design constructed in the notes.

Inversive Planes

- 37. Construct a 2-(9,3,1)-design by letting AGL(1,9) act on \mathbb{F}_3 .
- 38. Use the construction of a $2 (q^2, q, 1)$ -design via the action of AGL $(1, q^2)$ on \mathbb{F}_q to prove the affine analogue of Singer's Theorem (for the case of $(q^2, q, 1)$ -designs).
- 39. Using the construction of a $3-(q^2+1,q+1,1)$ -design via the action of $\operatorname{PGL}(2,q^2)$ on the subset B of the projective line $\operatorname{PG}(1,q^2)$ given by $B=\{\langle \binom{x}{y} \rangle \in \operatorname{PG}(1,q^2): x,y \in \mathbb{F}_q\}$, explicitly construct the points and three blocks of a 3-(10,4,1)-design.

Steiner Systems

Baranyai's Theorem

- 40. Determine the minimum number of colours needed to colour the blocks of the complete design with 14 points and blocks of size 4 such that any two blocks of the same colour are disjoint.
- 41. Show that an r by s array A with entries from $\{1, 2, ..., n\}$ can be completed to an n by n latin square (n by n array where each element of $\{1, 2, ..., n\}$ occurs exactly once in each row and exactly once in each column) if and only if
 - \bullet each row of A contains s distinct symbols;
 - \bullet each column of A contains r distinct symbols; and

- each element of $\{1, 2, \dots, n\}$ occurs at least r + s n times in A.
- 42. Use the method of the proof of Baranyai's Theorem to show that there is a resolvable 2-(v, 2, 1)-design with a subdesign that is a resolvable 2-(u, 2, 1)-design and having the property that each resolution class of the 2-(u, 2, 1)-design is a subset of a resolution class of the 2-(v, 2, 1)-design if and only if u and v are even and $v \ge 2u$.
- 43. Let u and v be positive integers with $v \geq u$, let C be a set of v-1 colours, and suppose we have a proper edge colouring of the complete graph of order u with colour set C. Show that this proper edge colouring can be extended to a proper edge colouring of a complete graph of order v with colour set C if and only if v is even and each colour occurs on at least $u-\frac{v}{2}$ edges of the complete graph of order u. By "extended" it is meant that v-u new vertices are added, then new edges are added to form a complete graph of order v, and then the newly added edges are coloured the colours of the edges of the complete graph of order u remain unchanged.

(Hint: See the proof of Baranyai's Theorem.)

Vertex-Transitive and s-Arc-Transitive Graphs

- 44. Determine the automorphism group of
 - the path with vertices v_1, v_2, \ldots, v_n and edges $v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n$;
 - the star with vertices $c, v_1, v_2, \ldots, v_{n-1}$ and edges $cv_1, cv_2, \ldots, cv_{n-1}$;
 - the cycle with vertices v_1, v_2, \ldots, v_n and edges $v_1 v_2, v_2 v_3, \ldots, v_{n-1} v_n, v_n v_1$.
- 45. Show that the 2-transitive graphs (that is, graphs with 2-transitive automorphism groups) are precisely the complete graphs and the empty graphs (a graph is empty if it has no edges).
- 46. Show that the Heawood graph is a bipartite 3-regular graph of order 14 with girth 6 and determine the order of its automorphism group.
- 47. For integers $s \ge 1$ and $m \ge 3$, determine the number of s-arcs in an m-cycle. Investigate s-arc-transitivity of the m-cycle.
- 48. How many graphs with vertex set $\{1, 2, \dots, 8\}$ are isomorphic to the graph of the cube?

- 49. Given any graph X, the line graph L(X) of X is the graph with a vertex for each edge of X, and with two vertices of L(X) adjacent if and only if their corresponding edges are adjacent. Let $n \geq 2$ be an integer. Show that $\operatorname{Aut}(K_n) \cong \operatorname{Aut}(L(K_n))$ if and only if $n \notin \{2, 4\}$.
- 50. Let X be a 3-regular graph and let X' be the graph obtained from X by replacing each vertex of X with a triangle. A more detailed description of the construction of X' from X is as follows. Let v be a vertex of X and let x, y and z be the neighbours of v. We delete the vertex v and the three edges vx, vy and vz from X, and we add three new vertices v_x , v_y and v_z , three new edges v_xv_y , v_yv_z and v_yv_z , and another three new edges xv_x , yv_y and zv_z . We then repeat this procedure for each vertex of X. Prove that X' is vertex-transitive if and only if X is arc-transitive.
- 51. Let P denote the Petersen graph.
 - (a) Show that P is 3-arc-transitive, but not 4-arc-transitive.
 - (b) Determine Aut(P).
 - (c) Does P have an automorphism group (not necessarily the full automorphism group) that acts regularly on its 2-arcs?
 - (d) Determine the stabilizer of a
 - vertex
 - edge
 - arc
 - (e) How many 5-cycles are there in P? Does Aut(P) act transitively on the 5-cycles? What is the stabilizer of a 5-cycle?
- 52. Recall that the Coxeter graph can be constructed from the Kneser graph $\mathcal{K}(7,3)$ by deleting a set of 7 vertices whose corresponding 3-subsets form a Fano plane. It is easily proved (you do not need to include a proof of this, but you may like to verify it for yourself) that if $g: \mathbb{Z}_7 \to \mathbb{Z}_7$ is an automorphism of the deleted Fano plane, then the induced action of g (given by $g(\{a,b,c\}) = \{g(a),g(b),g(c)\}$) on the vertex set of the Coxeter graph is an automorphism of the Coxeter graph.
 - (a) Shown below is a partial labelling of the vertices of the Coxeter graph. The 3-element subset $\{a, b, c\}$ is denoted by just abc. Complete this partial labelling so that the labels on each pair of adjacent vertices are disjoint 3-element subsets of \mathbb{Z}_7 .

- (b) Show that the Coxeter graph is 3-arc-transitive. Hint: Show that for $s \geq 1$, if a graph is (s-1)-arc-transitive, contains at least one s-arc, and the stabilizer of some (s-1)-arc $x_0, x_1, \ldots, x_{s-1}$ acts transitively on s-arcs of the form $x_0, x_1, \ldots, x_{s-1}, x$, then the graph is s-arc-transitive.
- (c) Show that the Coxeter graph is not 4-arc-transitive.
- 53. Show that the Tutte-Coxeter graph is 5-arc-transitive, but not 6-arc-transitive.
- 54. Show that the Pappus Graph is 3-arc-transitive and has girth 6.

Cayley Graphs

55. Show that for any finite group G and any integer k satisfying $0 \le k < |G|$, there exists a k-regular graph on which G acts regularly if and only if k|G| is even.

- 56. Write Q_3 as a Cayley graph on each of the following groups, or show that it cannot be done.
 - (a) $\mathbb{Z}_2 \times \mathbb{Z}_4$;
 - (b) \mathbb{Z}_8 ;
 - (c) D_4 .
- 57. For each $k \geq 1$, determine the largest value of s such that Q_k is s-arc-transitive.
- 58. For those values of k where Q_k is 2-arc-transitive, determine the stabilizer of a 2-arc.
- 59. For each $k \geq 2$, show that $\operatorname{Aut}(Q_k)$ acts transitively on the 4-cycles of Q_k and determine the order of the stabilizer of a 4-cycle.
- 60. Show that for all $k \geq 1$, there is no automorphism of Q_k that fixes exactly one vertex.
- 61. Show that $S_4 \leq \operatorname{Aut}(Q_3)$.
- 62. Show that the Petersen graph is not a Cayley graph.

Kneser Graphs and the Erdos-Ko-Rado Theorem

- 63. Describe the Kneser graphs $\mathcal{K}(n,k)$ for $n \leq 2k$.
- 64. How many independent sets of cardinality $\binom{2k-1}{k-1}$ are there in $\mathcal{K}(2k,k)$?
- 65. For $n \geq 2k + 1$, determine the order of a vertex-stabilizer in $\mathcal{K}(n, k)$.
- 66. Use the fact that $\mathcal{K}(7,3)$ is 3-arc-transitive to show that it has girth 6.
- 67. Determine all n and k such that K(n, k) is 2-arc-transitive.
- 68. Use the fact that the automorphism group of the Kneser graph $\mathcal{K}(6,2)$ is S_6 to prove that any outer automorphism of S_6 maps transpositions to compositions of three disjoint transpositions.

Johnson Graphs

69. Which Johnson graphs are Kneser graphs? Explain fully with proofs.

Distance-Transitive Graphs

70. Show that $\mathcal{K}(2k+1,k)$ is distance-transitive for all $k \geq 1$.

Hoffman-Singleton Theorem

- 71. Prove that the Petersen graph is the unique 3-regular graph of diameter 2 on 10 vertices.
- 72. Prove that the Hoffman-Singleton graph is 7-regular and has girth 5 and diameter 2.