

Learning Objectives

- $1_{\text{\tiny N}}$ What are binary, multinomial and Gaussian distributions and their conjugate prior distributions?
- 2. What are the common properties of Gaussian distributions?
- 3. What are exponential families and their properties?
- 4. How to choose non-informative prior*?
- 5. How to use non-parametric methods for learning?
- 6. What are KNN based methods?

Outlines

- Binary Distributions
- Multinomial Distributions
- Gaussian Distributions
- Exponential Families
- Non-informative Priors
- Non-parametric Methods
- > KNN

The Exponential Family (1)

$$p(\mathbf{x}|\boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp \{\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\}$$

where η is the *natural parameter* and

$$g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x}) \right\} d\mathbf{x} = 1$$

so $g(\eta)$ can be interpreted as a normalization coefficient.

 $\mathbf{u}(\mathbf{x})$: statistics of \mathbf{x}

The Exponential Family (2.1)

The Bernoulli Distribution

$$p(x|\mu) = \operatorname{Bern}(x|\mu) = \mu^{x} (1 - \mu)^{1 - x}$$

$$= \exp \{x \ln \mu + (1 - x) \ln(1 - \mu)\}$$

$$= (1 - \mu) \exp \left\{ \ln \left(\frac{\mu}{1 - \mu}\right) x \right\}$$

Comparing with the general form we see that

$$\eta = \ln\left(rac{\mu}{1-\mu}
ight) \quad ext{and so} \quad \mu = \sigma(\eta) = rac{1}{1+\exp(-\eta)}.$$
 Logistic sigmoid

The Exponential Family (2.2)

The Bernoulli distribution can hence be written as

$$p(x|\eta) = \sigma(-\eta) \exp(\eta x)$$

where

$$u(x) = x$$
 $h(x) = 1$
 $g(\eta) = 1 - \sigma(\eta) = \sigma(-\eta).$

The Exponential Family (3.1)

The Multinomial Distribution

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{M} \mu_k^{x_k} = \exp\left\{\sum_{k=1}^{M} x_k \ln \mu_k\right\} = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right)$$

where,
$$\mathbf{x}=(x_1,\ldots,x_M)^{\mathrm{T}}$$
, $\boldsymbol{\eta}=(\eta_1,\ldots,\eta_M)^{\mathrm{T}}$ and

$$\eta_k = \ln \mu_k$$
 $\mathbf{u}(\mathbf{x}) = \mathbf{x}$
 $h(\mathbf{x}) = 1$
 $g(\boldsymbol{\eta}) = 1$.

NOTE: The η_k parameters are not independent since the corresponding μ_k must satisfy $_M$

$$\sum_{k=1}^{M} \mu_k = 1$$

The Exponential Family (3.2)

Let
$$\mu_M = 1 - \sum_{k=1}^{M-1} \mu_k$$
. This leads to

$$\eta_k = \ln\left(rac{\mu_k}{1-\sum_{j=1}^{M-1}\mu_j}
ight) ext{ and } \mu_k = rac{\exp(\eta_k)}{1+\sum_{j=1}^{M-1}\exp(\eta_j)}.$$

Here the η_k parameters are independent. Note that

$$0\leqslant \mu_k\leqslant 1$$
 and $\sum_{k=1}^{M-1}\mu_k\leqslant 1.$

The Exponential Family (3.3)

The Multinomial distribution can then be written as

$$p(\mathbf{x}|\boldsymbol{\mu}) = h(\mathbf{x})g(\boldsymbol{\eta}) \exp\left(\boldsymbol{\eta}^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right)$$

where

$$\mathbf{\eta} = (\eta_1, \dots, \eta_{M-1}, 0)^{\mathrm{T}}$$
 $\mathbf{u}(\mathbf{x}) = \mathbf{x}$
 $h(\mathbf{x}) = 1$
 $g(\mathbf{\eta}) = \left(1 + \sum_{k=1}^{M-1} \exp(\eta_k)\right)^{-1}$.

The Exponential Family (4)

The Gaussian Distribution

$$p(x|\mu, \sigma^{2}) = \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}(x-\mu)^{2}\right\}$$

$$= \frac{1}{(2\pi\sigma^{2})^{1/2}} \exp\left\{-\frac{1}{2\sigma^{2}}x^{2} + \frac{\mu}{\sigma^{2}}x - \frac{1}{2\sigma^{2}}\mu^{2}\right\}$$

$$= h(x)g(\eta) \exp\left\{\eta^{T}\mathbf{u}(x)\right\}$$

where

$$\boldsymbol{\eta} = \begin{pmatrix} \mu/\sigma^2 \\ -1/2\sigma^2 \end{pmatrix} \qquad h(\mathbf{x}) = (2\pi)^{-1/2}$$
$$\mathbf{u}(x) = \begin{pmatrix} x \\ x^2 \end{pmatrix} \qquad g(\boldsymbol{\eta}) = (-2\eta_2)^{1/2} \exp\left(\frac{\eta_1^2}{4\eta_2}\right).$$

ML for the Exponential Family (1)*

From the definition of $g(\eta)$ we get

$$\nabla g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} d\mathbf{x} + g(\boldsymbol{\eta}) \int h(\mathbf{x}) \exp\left\{\boldsymbol{\eta}^{\mathrm{T}} \mathbf{u}(\mathbf{x})\right\} \mathbf{u}(\mathbf{x}) d\mathbf{x} = 0$$

$$1/g(\boldsymbol{\eta})$$

$$\mathbb{E}[\mathbf{u}(\mathbf{x})]$$

Thus

$$-\nabla \ln g(\boldsymbol{\eta}) = \mathbb{E}[\mathbf{u}(\mathbf{x})]$$

ML for the Exponential Family (2)*

Give a data set, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$, the likelihood function is given by

$$p(\mathbf{X}|\boldsymbol{\eta}) = \left(\prod_{n=1}^{N} h(\mathbf{x}_n)\right) g(\boldsymbol{\eta})^N \exp\left\{\boldsymbol{\eta}^T \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)\right\}.$$

Thus we have

$$-\nabla \ln g(\boldsymbol{\eta}_{\mathrm{ML}}) = \frac{1}{N} \sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n)$$

Sufficient statistic

Conjugate priors

For any member of the exponential family, there exists a prior

$$p(\boldsymbol{\eta}|\boldsymbol{\chi}, \nu) = f(\boldsymbol{\chi}, \nu)g(\boldsymbol{\eta})^{\nu} \exp\left\{\nu \boldsymbol{\eta}^{\mathrm{T}} \boldsymbol{\chi}\right\}.$$

Combining with the likelihood function, we get

$$p(\boldsymbol{\eta}|\mathbf{X}, \boldsymbol{\chi}, \nu) \propto g(\boldsymbol{\eta})^{\nu+N} \exp \left\{ \boldsymbol{\eta}^{\mathrm{T}} \left(\sum_{n=1}^{N} \mathbf{u}(\mathbf{x}_n) + \nu \boldsymbol{\chi} \right) \right\}.$$

Prior corresponds to ν pseudo-observations with value χ .

Outlines

- Binary Distributions
- Multinomial Distributions
- Gaussian Distributions
- > Exponential Families
- Non-informative Priors
- Non-parametric Methods
- > KNN

Non-informative Priors (1)*

With little or no information available a-priori, we might choose a non-informative prior.

- λ discrete, K-nomial : $p(\lambda) = 1/K$.
- $\lambda \in [a,b]$ real and bounded: $p(\lambda) = 1/b a$.
- λ real and unbounded: improper!

A constant prior may no longer be constant after a change of variable; consider $p(\lambda)$ constant and $\lambda = \eta^2$:

$$p_{\eta}(\eta) = p_{\lambda}(\lambda) \left| \frac{\mathrm{d}\lambda}{\mathrm{d}\eta} \right| = p_{\lambda}(\eta^2) 2\eta \propto \eta$$

Non-informative Priors (2)*

Translation invariant priors. Consider

$$p(x|\mu) = f(x - \mu) = f((x + c) - (\mu + c)) = f(\widehat{x} - \widehat{\mu}) = p(\widehat{x}|\widehat{\mu}).$$

For a corresponding prior over μ , we have

$$\int_{A}^{B} p(\mu) d\mu = \int_{A-c}^{B-c} p(\mu) d\mu = \int_{A}^{B} p(\mu - c) d\mu$$

for any A and B. Thus $p(\mu) = p(\mu - c)$ and $p(\mu)$ must be constant.

Non-informative Priors (3)*

Example: The mean of a Gaussian, μ ; the conjugate prior is also a Gaussian,

$$p(\mu|\mu_0, \sigma_0^2) = \mathcal{N}(\mu|\mu_0, \sigma_0^2)$$

As $\sigma_0^2 \to \infty$, this will become constant over μ .

Non-informative Priors (4)*

Scale invariant priors. Consider $p(x|\sigma) = (1/\sigma)f(x/\sigma)$ and make the change of variable $\widehat{x} = cx$

$$p_{\widehat{x}}(\widehat{x}) = p_x(x) \left| \frac{\mathrm{d}x}{\mathrm{d}\widehat{x}} \right| = p_x \left(\frac{\widehat{x}}{c} \right) \frac{1}{c} = \frac{1}{c\sigma} f\left(\frac{\widehat{x}}{c\sigma} \right) = p_x(\widehat{x}|\widehat{\sigma}).$$

For a corresponding prior over σ , we have

$$\int_{A}^{B} p(\sigma) d\sigma = \int_{A/c}^{B/c} p(\sigma) d\sigma = \int_{A}^{B} p\left(\frac{1}{c}\sigma\right) \frac{1}{c} d\sigma$$

for any A and B. Thus $p(\sigma) / 1/\sigma$ and so this prior is improper too. Note that this corresponds to $p(\ln \sigma)$ being constant.

Non-informative Priors (5)*

Example: For the variance of a Gaussian, σ^2 , we have

$$\mathcal{N}(x|\mu,\sigma^2) \propto \sigma^{-1} \exp\left\{-((x-\mu)/\sigma)^2\right\}.$$

If $\lambda=1/\sigma^2$ and $p(\sigma)\neq 1/\sigma$, then $p(\lambda)\neq 1/\lambda$.

• We know that the conjugate distribution for λ is the Gamma distribution,

$$\operatorname{Gam}(\lambda|a_0,b_0) \propto \lambda^{a_0-1} \exp(-b_0\lambda).$$

• A non-informative prior is obtained when $a_0 = 0$ and $b_0 = 0$.

Outlines

- Binary Distributions
- Multinomial Distributions
- Gaussian Distributions
- > Exponential Families
- Non-information Priors
- Non-parametric Methods
- > KNN

Non-parametric Methods (1)

- Parametric distribution models are restricted to specific forms, which may not always be suitable; for example, consider modelling a multimodal distribution with a single, unimodal model.
- Non-parametric approaches make few assumptions about the overall shape of the distribution being modelled.

Non-parametric Methods (2)

Histogram methods partition the data space into distinct bins with widths Δ_i and count the number of observations, n_i , in each bin.

$$p_i = \frac{n_i}{N\Delta_i}$$

- Often, the same width is used for all bins, $\Delta_i = \Delta$.
- Δ acts as a smoothing parameter.

In a D-dimensional space, using M bins in each dimension will require M^D bins!

Non-parametric Methods (3)

• Assume observations drawn from a density $p(\mathbf{x})$ and consider a small region \mathbf{R} containing \mathbf{x} such that

$$P = \int_{\mathcal{R}} p(\mathbf{x}) \, \mathrm{d}\mathbf{x}.$$

• The probability that K out of N observations lie inside R is $\mathrm{Bin}(K|N,P)$ and if N is large

$$K \simeq NP$$
.

• If the volume of R, V, is sufficiently small, $p(\mathbf{x})$ is approximately constant over R and

$$P \simeq p(\mathbf{x})V$$

Thus

$$p(\mathbf{x}) = \frac{K}{NV}.$$

V small, yet K>0, therefore N large?

Non-parametric Methods (4)

Kernel Density Estimation: fix V, estimate K from the data. Let R be a hypercube centred on x and define the kernel function (Parzen window)

$$k((\mathbf{x} - \mathbf{x}_n)/h) = \begin{cases} 1, & |(x_i - x_{ni})/h| \leq 1/2, & i = 1, \dots, D, \\ 0, & \text{otherwise.} \end{cases}$$

It follows that

$$K = \sum_{n=1}^{N} k\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right) \text{ and hence } p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^D} k\left(\frac{\mathbf{x} - \mathbf{x}_n}{h}\right).$$

Non-parametric Methods (5)

To avoid discontinuities in p(x), use a smooth kernel, e.g. a Gaussian

$$p(\mathbf{x}) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{(2\pi h^2)^{D/2}}$$
$$\exp\left\{-\frac{\|\mathbf{x} - \mathbf{x}_n\|^2}{2h^2}\right\}$$

Any kernel such that

$$k(\mathbf{u}) \geqslant 0,$$

$$\int k(\mathbf{u}) d\mathbf{u} = 1$$

will work.

Non-parametric Methods (6)

Nearest Neighbour Density Estimation: fix K, estimate V from the data. Consider a hypersphere centred on x and let it grow to a volume, V^* , that includes K of the given N data points. Then

$$p(\mathbf{x}) \simeq \frac{K}{NV^{\star}}.$$

Non-parametric Methods (7)

- Nonparametric models (not histograms) requires storing and computing with the entire data set.
- Parametric models, once fitted, are much more efficient in terms of storage and computation.

Outlines

- Binary Distributions
- Multinomial Distributions
- Gaussian Distributions
- > Exponential Families
- Non-informative Priors
- Non-parametric Methods
- > KNN

K-Nearest-Neighbours for Classification (1)

• Given a data set with N_k data points from class C_k , we have $\sum_k N_k = N$

and correspondingly

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{K_k}{N_k V}.$$

• Since $p(C_k) = N_k/N$, Bayes' theorem gives

$$p(C_k|\mathbf{x}) = \frac{p(\mathbf{x}|C_k)p(C_k)}{p(\mathbf{x})} = \frac{K_k}{K}.$$

K-Nearest-Neighbours for Classification (2)

K-Nearest-Neighbours for Classification (3)

- K acts as a smother
- For $N \to \infty$, the error rate of the 1-nearest-neighbour classifier is never more than twice the optimal error (obtained from the true conditional class distributions).

Summary

- Binary Distributions
- Multinomial Distributions
- Gaussian Distributions
- Exponential Families
- Non-information Priors
- Non-parametric Methods
- > KNN