BUNDESREPUBLIK DEUTSCHLAND

CERTIFIED COPY OF

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 58 296.7

Anmeldetag:

12. Dezember 2003

Anmelder/Inhaber:

IRWIN Industrial Tools GmbH,

85399 Hallbergmoos/DE

Bezeichnung:

Antrieb für ein Spann- oder Spreizwerkzeug

und Spann- und/oder Spreizwerkzeug

IPC:

B 25 B 5/06

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 29. September 2005 Deutsches Patent- und Markenamt Der Präsident

Im Auftrag

Brosig

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Boehmert & Boehmert • P.O.B. 15 03 08 • D-80043 München

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München DR. NG. KARL BOEHMERT, PA (1973-1973)
DPL.-NG. ALBERT BOEHMERT, PA (1973-1973)
WILHELM J. H. STAHLBERG, RA. Brumes
DPL.-PHYS. DR. HEIRZ GODDAR, PA. Monches
DPL.-PHYS. DR. GOBERT MOTOLYHIBER, PA. P. (1933-1972)
DR. LUDWIG KOUKER, RA. Brumen
DPL.-PHYS. ROBERT MOTOLYHIBER, PA. P. (1933-1972)
DR. LUDWIG KOUKER, RA. Brumen
MICHAELA HUTH-DIERIG, RA. Motoches
DPL-PHYS. DR. MARION TONHARDT, PA. Domeshorf
DR. ANDREAS EBERT-WEIDENFELLER, RA. Brumen
DPL-PHYS. DR. MARION TONHARDT, PA. Domeshorf
DR. ANDREAS EBERT-WEIDENFELLER, RA. Brumen
DPL-PHYS. DR. DOROTHER WEDER-BRILLS, PA. Friedden
DR. ANDREAS EBERT-WEIDENFELLER, RA. Brumen
DPL-PHYS. DR. DOROTHER WEDER-BRILLS, PA. Friedden
DR. ANDREAS ERSTEN WEIDENFELLER, RA. Brumen
DPL-PHYS. DR. DOROTHER WEDER-BRILLS, PA. Friedden
DR. ARATIN WRITZ, RA. Domeshorf
DR. ARATIN WRITZ, RA. Domeshorf
DR. LAN BERNDN NORDEMANN, LA. RA Derich
DR. CHRISTAN NE CYCHEN WEST, RA. A Monches
DR. CHRISTAN NE CORNELL RA. A MONCHES
DR. CHRISTAN NE CORNELL RA. A MONCHES
DR. CHRISTAN NE CORNELL RA. A MONCHES
DPL.-PHYS. DR. THOMAS EL BITTNER, PA. Bettie
DPL.-PHYS. DR. THOMAS EL BITTNER, PA. Bettie
DPL.-PHYS. DR. THOMAS EL BITTNER, PA. Bettie

PA - Patentanwalt/Patent Attorney RA - Rechtsanwalt/Attorney at Law

- Maitre en Droit
- Diplôme d'Etudes Approfondies en Conception de Produits e Innovation

Alle zugeinnen zur Vertretung vor dem Europäischen Markenamt, Alican Professional Representation at the Community Trademark Office, Alicant PROF. DR. WILHELM NORDEMANN, RA. Nation
DPL., PHYS. EDUARD BALMANN, PA., Membridge
DR., ING, GERALD KLOPSCH, PA., Domestorf
DPL., DNG, SEGGRIED SCHENGER, PA., Domestorf
DPL., DNG, SEGGRIED SCHENGER, PA., Domestorf
DPL., DNG, SEGGRIED SCHENGER, PA., Bandelma
DPL., DNG, STANNON, PREMEMBER, PA., Parker
DPL., DNG, DR., ANN TONNIES PA., BA. SER.
DPL., DNG, DR., ANN TONNIES PA., BA. SER.
DPL., DNG, DR., ANN TONNIES PA., BA. SER.
DR., ANKE NORDEMANN, SCHIFFEL, PA., Parker
DR., ANDREAS DUSTRANN, LL.M., RA., Parelson
DR., ADMINIST, F.S., SCHAMD, PARA, Membrian
DR., LORIST, F.S., CHAMD, PARA, Martinella
DR., DNG, DRIST, F.S., SCHAMD, PARA, Martinella
DR., DROBER, DR., MARKES, SMGELBARD, PA. Membrian
DR., CHEM. DR., KARLHEDNZ, B., METTEN, PA., Frendfert
PASCAL DECKER, RA, Botte
DPL., CHEM. DR., KARLHEDNZ, B., METTEN, PA., Frendfert
PASCAL DECKER, RA, Botte
DPL., CHEM. DR., KARLHEDNZ, B., METTEN, PA., Frendfert
PASCAL DECKER, RA, Botte
DPL., CHEM. DR., KARLHEDNZ, B., METTEN, PA., Frendfert
DPL., CHEM. DR., KARLHEDNZ, PA., Brenden
DPL., CHEM. DR., KARLHEDNZ, PA., Brenden

In Zusammenarbeit mit/in cooperation with DIPL.-CHEM. DR. HANS ULRICH MAY, PA*, Mende

Ihr Zeichen Your ref. Ihr Schreiben Your letter of Unser Zeichen Our ref

München,

Neuanmeldung

I30140

12. Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Antrieb für ein Spann- oder Spreizwerkzeug und Spann und/oder Spreizwerkzeug

Die Erfindung betrifft einen Antrieb für ein Spann- und/oder Spreizwerkzeug zum Verlagern einer Schub- oder Zugstange mit einer daran fest angebrachten beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger in Längsrichtung der Schub- oder Zugstange.

Es ist bekannt, insbesondere Spann- und/oder Spreizwerkzeuge mit einem Schrittgetriebe zu versehen, mit dem sowohl die bewegliche Backe zur ortsfesten Backe hin schrittweise annäherbar ist als auch die zwischen den Spannbacken hervorzurufenden Spannkräfte aufgebracht werden können. Ein derartiges Spann- und/oder Spreizwerkzeug ist aus der DE 3917473 be-

- 64.355 -

Pettenkoferstraße 20-22 · D-80336 München · P.O.B. 15 03 08 · D-80043 München · Telephon +49-89-559680 · Telefax +49-89-347010

kannt, welche ein Schrittgetriebe mit einer ausreichend großen Schrittweite je Betätigungshub eines Antriebsarms des Schrittgetriebes aufweist, wobei mit relativ geringer Betätigungskraft Spannkräfte beim Verspannen eines zwischen den Spannbacken ergriffenen Gegenstands hervorgerufen werden können. Ein derartiges Spann- und/oder Spreizwerkzeug hat sich im alltäglichen Gebrauch sehr bewährt.

Das US-Patent 6.568.667 offenbart ein Spann- und/oder Spreizwerkzeug mit identischem Schrittgetriebe und einem zusätzlichen Schnellschließantrieb, der bei Betätigung einer Rückdrücksperre, welche eine Verlagerung der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes verhindert, ein Schließen der Spannbacken, also eine Bewegung der beweglichen Backe auf die ortsfeste Backe zu, betreibt. Die Kraftmaschine des Schnellschließantriebs ist durch eine Spiraldruckfeder gebildet, die zwischen Abstützstellen auf einer der beweglichen Backe abgewandten Seite des Trägers wirkt. Nachteilig bei diesem Schnellschließmechanismus ist, daß ein hoher Platzbedarf erforderlich ist, um dem Schnellschließmechanismus den notwendigen Weg zur Entfaltung der gespeicherten Antriebskraft bereitzustellen. Des weiteren geht mit der Spiraldruckfeder eine nicht-lineare Kraftabgabe einher, d.h. zu Beginn der Schließbewegung treten hohe Druckkräfte auf, die allmählich während der Schließbewegung abnehmen. Der bekannte Antrieb birgt eine Verletzungsgefahr wegen der explosionsartig schließenden beweglichen Backe in sich. Außerdem fordert die Duckfeder-Anordnung einen langen Antriebsweg zur Entfaltung der Antriebskraft, so daß derartige Spann- und/oder Spreizwerkzeuge eine große axiale Ausdehnung haben sowie sehr schwer sind, was die Handhabe des Spann- und/oder Spreizwerkzeugs erschwert.

Es ist Aufgabe der Erfindung, die Nachteile des Standes der Technik zu überwinden, insbesondere einen Antrieb für ein Spann- und/oder Spreizwerkzeug zum insbesondere kontinuierlichen Verlagern einer Schub- oder Zugstange bereitzustellen, wobei geringe räumliche Abmessungen sowie ein geringeres Gewicht für das Spann- und Spreizwerkzeug vorgesehen sind und eine gleichmäßige Schließbewegung mit insbesondere einer gleichmäßigen Schließkraft sichergestellt ist.

Diese Aufgabe wird durch die Merkmale von Patentanspruch 1 gelöst. Danach ist ein drehantreibbares Getriebeelement vorgesehen, das mit der Schub- oder Zugstange zu deren Verlagerung zusammenwirkt. Das drehantreibbare Getriebeelement bedarf keines sich in einer Längsrichtung erstreckenden Antriebsweges, wodurch die axiale Ausdehnung des erfindungsgemäßen Spann- und/oder Spreizwerkzeugs erheblich gegenüber den bekannten Spann- und/oder Spreizwerkzeugen mit entsprechender Funktionsweise reduziert ist. Diese Abmessungen bewirken nicht nur eine Reduzierung des Gewichts, sondern verbessern auch die Hantierbarkeit mit dem Spann- und/oder Spreizwerkzeug dahingehend, daß keine weit über den Träger vorstehenden Schub- oder Zugstangenabschnitte ein Bedienen des Spann- und/oder Spreizwerkzeug, insbesondere des Schrittgetriebes, behindern. Insbesondere in engen Räumen, in welchen Spann- oder Spreizkräfte einzubringen sind und die Handhabe des Schrittgetriebes eingeschränkt ist, kann das erfindungsgemäße Spann- und/oder Spreizwerkzeug wesentlich einfacher als die bekannten bedient werden. Während der bekannte Schnellverschlußmechanismus mit Schraubendruckfeder auch eine Verletzungsgefahr für die Bedienperson dahingehend in sich birgt, daß Körperteile zwischen den Spiralwindungen eingeklemmt werden können und die Antriebskräfte explosionsartig abgegeben werden, weist der erfindungsgemäße Antrieb derartige Gefahrenpotentiale nicht auf.

Bei einer Weiterbildung der Erfindung ist das Getriebeelement mit einem Drehmotor betriebsmäßig gekoppelt. Der Drehmotor kann als mechanische Kraftmaschine mit mechanischem Energiespeicher, wie zum Beispiel eine Drehfeder, die beides in sich vereint, oder als ein Elektromotor ausgebildet sein. Der Elektromotor kann von einem Speicher elektrischer Energie, wie einer Batterie oder einem Akkumulator, versorgt werden. Die mechanische Kraftmaschine ist gegenüber der elektrischen Alternative dahingehend vorteilhaft, daß sie von elektrischer Energieversorgung unabhängig ist. Dagegen ist die elektrische Realisierung des Motors sowie des Energiespeichers gegenüber der mechanischen vorzuziehen, wenn weniger aufwendige mechanische Kraftübertragungsmechanismen vorgesehen sein sollen.

Bei einer Weiterbildung der Erfindung ist das drehantreibbare Getriebeelement ein Antriebsrad. Das Antriebsrad kann in drehübertragenden Eingriff mit der Schub- oder Zugstange gebracht werden. Vorzugsweise ist das Antriebsrad direkt mit der Schub- oder Zugstange berührend angeordnet insbesondere für einen reib- oder kraftschlüssigen Eingriff. Das Antriebsrad ist derart der Schub- oder Zugstange zugeordnet, daß betriebsmäßig die Drehbewegung des Antriebsrads in eine translatorische Bewegung für die Schub- oder Zugstange umgewandelt werden kann. Bei dieser Ausführung des Getriebeelements als Antriebsrad ist eine Drehfeder als Motor heranziehbar, welche insbesondere eine einzige Drehantriebsrichtung aufweist. Um eine Verlagerung der Schub- oder Zugstange in beide Längsrichtungen der Schub- oder Zugstange zu gewährleisten, ist eine entsprechende Getriebeanordnung zwischen der Drehfeder und dem die Drehbewegung in eine translatorische Bewegung umwandelnden Bauteil zwischenzuschalten. Bei der Verwendung eines Elektromotors kann die Verlagerung in beide Längsrichtungen der Schub- oder Zugstange einfach durch Umkehr der Drehrichtung mittels Umpolung des Elektromotors realisiert werden.

Bei einer bevorzugten Ausführung des erfindungsgemäßen Antriebs insbesondere mit einem Drehfedermotor ist ein Mechanismus zum Wechseln der Verlagerungsrichtung der Schuboder Zugstange vorgesehen. Der Wechsel kann dabei von einer Schließverlagerung in eine Öffnungsverlagerung und/oder umgekehrt von statten gehen. Vorzugsweise weist der Mechanismus einen Drehrichtungswechsler auf, der dazu ausgelegt ist, das der Schub- oder Zugstange von dem Getriebeelement mitgeteilte Drehmoment umzukehren. Beim Elektromotor kann der Drehrichtungswechsler als Umpoler ausgeführt sein, welcher automatisch beispielsweise beim Detektieren einer an dem Werkzeug manuell aufgebrachten Kraft oder durch ein Betätigungselement aktivierbar ist.

Bei einer besonderen Ausführung des Drehrichtungswechsler, insbesondere im Falle eines Drehfeder-Motors, ist ein Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung zwischen dem Getriebeelement und der Schub- oder Zugstange angeordnet. Das insbesondere drehantreibbare Getriebebauteil ist in einen und aus einem drehmomentübertragbaren Eingriff mit dem Getriebeelement bringbar. Bei der Getriebekonfiguration für einen drehmomentübertragbaren Eingriff ist eine Verlagerung der Schub- oder Zugstange in einer Richtung möglich, während in einer den Eingriff mit dem Getriebeelement freigebenden Position des Getriebebauteils eine entgegengesetzte Verlagerungsrichtung bereitgestellt ist. Der Wechsel des Getriebebauteils von einer aktiven Stellung zum Umsetzen der Drehbe-

wegung in eine translatorische Bewegung in eine passive, drehbewegungsumsetzfreie Stellung und umgekehrt, kann manuell durch die Bedienperson durchgeführt werden.

Bei einer besonderen Ausführung des Mechanismus zum Wechseln der Verlagerungsrichtung ist ein Zwischengetriebeelement vorgesehen, das mit dem Getriebeelement und dem Getriebebauteil betriebsmäßig koppelbar ist. Diese Koppelung ist wechselseitig ausschließlich. Beispielsweise treibt bei einer ersten Getriebekonfiguration für eine erste Verlagerungsrichtung das Getriebeelement das Getriebebauteil über das Zwischengetriebeelement an. Bei einer zweiten Getriebekonfiguration treibt das Getriebeelement das Getriebebauteil direkt ohne Zwischenschaltung des Getriebeelements an.

Vorzugsweise ist das Zwischengetriebeelement mit dem Getriebeelement und/oder dem Getriebebauteil in form- oder kraftschlüssigen Eingriff bringbar. Dabei können ein Reibungskontakt oder eine Verzahnungsverbindung herangezogen werden.

Bei einer Weiterbildung der Erfindung ist der Mechanismus zum Wechseln der Verlagerungsrichtung mit einer insbesondere von der das Spann und/oder Spreizwerkzeugzeugs bedienenden Person manuell betätigbaren Schaltung zum Wählen der Verlagerungsrichtung versehen. Die Schaltung kann insbesondere bei einer Elektromotorkonfiguration durch einen Schalthebel ausgebildet sein. Im Falle eines als Drehfeder ausgebildeten Motors ist die Schaltung als Betätigungselement ausgebildet, das den Drehrichtungswechsler aktiviert und/oder deaktiviert.

Insbesondere bei einem Spann- und/oder Spreizwerkzeug bekannter Bauart mit Schrittgetriebe und Rückdrücksperre zum Verhindern einer Verlagerung der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes kann erfindungsgemäß die Rückdrücksperre als Betätigungselement der Schaltung herangezogen werden.

Das Betätigungselement umfaßt eine insbesondere unbetätigte Sperrstellung zum Verhindern einer Verlagerung der Schub- oder Zugstange in Schließ und/oder Öffnungsrichtung. Bei der Ausführung des Betätigungselements durch die Rückdrücksperre eines Schrittgetriebes ist die

- 6 -

Sperrstellung durch eine unbetätigte Stellung der Rückdrücksperre gebildet. Zum einen ist eine Verlagerung der Schub- oder Zugstange funktionsbedingt entgegen der Vorschubrichtung des Schrittgetriebes, also zum Öffnen der Spannbacken, blockiert.

Das Betätigungselement kann eine erste Freigabestellung zum Freigeben einer Drehbewegung für eine erste Verlagerungsrichtung aufweisen. Insbesondere bei der Rückdrücksperre als Betätigungselement kann diese erste Freigabestellung dadurch realisiert werden, daß der Hebel der Rückdrücksperre leicht betätigt wird, insbesondere in eine Zwischenstellung, so daß die Sperrfunktion aufgehoben wird und eine Verlagerung der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes ermöglicht ist.

Des weiteren kann das Betätigungselement eine zweite Freigabestellung, insbesondere eine End- oder Anschlagsstellung, zum Freigeben einer Drehbewegung für eine zweite Verlagerungsrichtung aufweisen. Insbesondere bei der Rückdrücksperre als Betätigungselement kann diese zweite Freigabestellung dadurch erreicht werden, daß der Hebel der Rückdrücksperre vollständig betätigt wird, also bis zu einem Anschlag, wodurch beispielsweise ein Drehrichtungswechsler aktivierbar ist, so daß eine Verlagerung der Schub- oder Zugstange entgegengesetzt zur ersten Verlagerungsrichtung, also beispielsweise zum Öffnen der Spannbacken, realisiert ist.

Insbesondere bei einer Freigabestellung ist für einen Mechanismus zum Wechseln der Verlagerungsrichtung mit Getriebebauteil und Zwischengetriebeelement ein Stellorgan vorgesehen, das entweder das Getriebebauteil oder das Zwischengetriebeelement derart stellt, daß eines von beiden in einen oder aus einem form- oder kraftschlüssigen Eingriff mit dem Getriebeelement gebracht wird.

Ferner betrifft die Erfindung ein Spann- oder Spreizwerkzeug mit einem erfindungsgemäßen Antrieb.

Weitere Vorteile, Merkmale und Eigenschaften der Erfindung werden durch die folgende Beschreibung bevorzugter Ausführungen anhand der beiliegenden Zeichnungen deutlich, in denen zeigen:

- Figur 1a eine Seitenansicht einer Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenstellung;
- Figur 1b eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 1a entlang der Schnittlinie A-A;
- Figur 2 eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit geöffneter Spannbackenstellung, wobei ein erfindungsgemäßer Antrieb in seinem Antriebsbetrieb zum Öffnen der Spannbacken gezeigt ist;
- Figur 3 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2, wobei der erfindungsgemäße Antrieb in seinem Antriebsbetrieb zum Schließen der Spannbacken gezeigt ist;
- Figur 4 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit einem deaktivierten Antrieb, wobei ein erfindungsgemäßer Mechanismus zum Laden von Antriebsenergie bei einer Schließbewegung der Backen gezeigt ist;
- Figur 5 eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 2 mit einem deaktivierten Antrieb, wobei der erfindungsgemäße Mechanismus zum Laden von Antriebsenergie bei einer Öffnungsbewegung der Spannbacken gezeigt ist;
- Figur 6a eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spannund/oder Spreizwerkzeugs mit Spannbacken im einspannenden Zustand;

- 8 -

Figur 6b	eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 6a;	
Figur 7a	eine Seitenansicht der erfindungsgemäßen Ausführung des Spann- und/oder	
	Spreizwerkzeugs gemäß Figuren 6a, 6b mit einer geöffneten Spannbackenkon-	
	figuration;	
• • •		
Figur 7b	eine Querschnittsansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 7a	
	entlang der Schnittlinie B-B;	
Figur 8a	eine Seitenansicht des Spann- und/oder Spreizwerkzeugs gemäß den Figuren	
	6a bis 7b in einem Betriebsmodus des Schließens der Spannbacken;	
Figur 8b	eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 8a;	
•		
Figur 9a	eine Seitenansicht einer weiteren erfindungsgemäßen Ausführung eines Spann-	
	und/oder Spreizwerkzeugs mit einer geöffneten Spannbackenkonfiguration;	
. ,		
Figur 9b	eine Draufsicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a;	
Figur 9c	eine vergrößerte Detailansicht des Bereichs C gemäß Figur 9b;	
Figur 9d	eine Stirnansicht des Spann- und/oder Spreizwerkzeugs gemäß Figur 9a.	

Die in den Figuren 1a und 1b dargestellte bevorzugte Ausführung eines Spann- und/oder Spreizwerkzeugs 1 umfaßt eine Schub- oder Zugstange 3, die an einem Träger 5 in deren Längsrichtung beweglich gelagert ist. Der Träger 5 umfaßt ein geschlossenes Gehäuse 7, wobei auf einer Spannseite 9 der Schub- oder Zugstange 3 eine feste Spannbacke 11 vorgesehen ist, die einer beweglichen Spannbacke 13 diametral gegenüberliegt, welche an einem Ende 14 der Schub- oder Zugstange 3 lösbar befestigt ist.

In Figur 1a ist der Spannbetriebsmodus des Spann- und/oder Spreizwerkzeugs 1 dargestellt. Ist die bewegliche Backe 13 an dem gegenüberliegenden Ende 16 der Schub- oder Zugstange 3 befestigt, besitzt das Spann- und/oder Spreizwerkzeugs 1 einen Spreizbetriebsmodus.

Auf der der Spannseite 9 gegenüberliegenden Betätigungsseite 15 der Zug- oder Schubstange 3 ist an dem Träger 5 ein Griff 17 zum Halten des Spann- und/oder Spreizwerkzeugs mit einer Hand einstückig befestigt. Zudem ist an dem Träger 5 ein Schrittgetriebe 19 gelagert, das später im Detail erläutert wird. Das Gehäuse 7 des Trägers 5 umfaßt und schützt einen erfindungsgemäßen Antrieb 21, der durch eine Drehfeder 23, die eine Rotationsachse aufweist, und ein drehbar gelagertes Antriebsrad 25 gebildet ist, dessen Drehachse mit der Rotationsachse der Drehfeder 23 zusammenfällt.

Das Antriebsrad 25 steht kraftübertragend mit einem Längsrand 27 der Schub- oder Zugstange 3 im Eingriff. In Figur 1a ist der drehmomentübertragende Eingriff durch Reibungsschluß zwischen Antriebsrad 5 und Schub- oder Zugstange 3 gebildet.

Das Antriebsrad 25 ist derart an dem Träger 5 gelagert, daß in jeder Verlagerungsposition der Schub- oder Zugstange 3 ein Eingriff des Antriebsrads 25 mit der Schub- oder Zugstange 3 gewährleistet ist. Das Antriebsrad 25 ist aus einem Gummi enthaltenden Werkstoff gebildet, wobei die Schub- oder Zugstange 3 zum Antriebsrad 25 derart liegt, daß eine eine Normalkraft erzeugende Vorspannung zwischen den beiden Bauteilen wirkt.

Mit dieser Ausführung eines drehantreibbaren Getriebeelements in Form eines Antriebsrads 25 und einer Drehfeder 23 als Motor und Energiespeicher wird der Schub- oder Zugstange 3 in jeder ihrer Verlagerungspositionen eine Antriebskraft zum Schließen der Spannbacken 11, 13 mitgeteilt, also eine Antriebskraft zum Bewegen der Schub- oder Zugstange 3 von rechts nach links, wie in Figur 1a durch den Pfeil S, wie Schließrichtung, angezeigt ist.

Aufgrund des ständigen Eingriffs des Antriebsrads 25 mit der Schub- oder Zugstange 3 ist weiterhin gewährleistet, daß bei einer Öffnungsbewegung der Spannbacke 13, d.h. bei einer Bewegung der Schub- oder Zugstange 3 von links nach rechts, die Drehfeder 23 gespannt

- 10 -

wird, um für den anschließenden Öffnungsvorgang ausreichende potentielle Energie zum erneuten Öffnen des Spann- und/oder Spreizwerkzeugs 1 bereitzustellen.

Eine Drehfeder 23 als Kraftmaschine ist insofern von Vorteil, als sie für eine im wesentlichen kontinuierliche Drehmoment-Bereitstellung sorgt, so daß ein kontinuierlicher Schließvorgang mit gleichmäßiger Schließkraft und Schließgeschwindigkeit bereitgestellt ist.

Die Reibungskraft, welche zur Übertragung des Drehmoments von dem Antriebsrad 25 auf die Schub- oder Zugstange 3 notwendig ist, ist derart insbesondere durch Wahl eines hohen Reibungskoeffizienten einzustellen, daß es bei einem Stillstand der Schub- oder Zugstange 3 nicht zu einem Durchdrehen des Antriebsrads 25 kommt. Auf diese Weise ist gewährleistet, daß sich die potentielle Energie der Drehfeder 23 nicht selbständig durch Durchrutschen des Antriebsrads 25 löst.

Die Ausführung gemäß den Figuren 2 und 3 stellt ein Spann- und/oder Spreizwerkzeug dar, die sich im wesentlichen von dem Spann- und/oder Spreizwerkzeug gemäß Figur 1a und 1b darin unterscheidet, daß eine alternative Ausführung eines erfindungsgemäßen Antriebs für das Spann- und/oder Spreizwerkzeug vorgesehen ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden für identische und ähnliche Bauteile zur Ausführung gemäß den Figuren 1a und 1b identische Bezugszeichen verwendet, die um 100 erhöht sind, wobei es einer erneuten Erläuterung der Funktionsweise der Bauteile nicht bedarf.

Die Figuren 2 und 3 zeigen zwei unterschiedliche Antriebskonfigurationen eines Getriebes eines erfindungsgemäßen Antriebs. In beiden Konfigurationen ist der Antrieb durch eine Freistellung einer Klinke 131 aus einer Klinkenverzahnung 133 aktiviert.

Bei der Getriebekonfiguration gemäß Figur 2 wird ein Öffnen der Spannbacken 111 und 113 realisiert. Die Öffnungsrichtung der Verlagerung der Schub- und/oder Zugstange 103 ist mit O angedeutet.

- 11 -

Der erfindungsgemäße Antrieb 121 umfaßt ein drehantreibbares Getriebeelement, das als Antriebsrad 135 über eine Drehfeder 123 angetrieben ist. Die Drehfeder 123 ist derart montiert, daß eine Drehung des Antriebsrads 135 im Uhrzeigersinn bewirkt wird.

Ein mit dem Antriebsrad 135 drehmomentübertragend gekoppeltes Zwischengetrieberad 137 wird entgegen dem Uhrzeigersinn durch das Antriebsrad 135 gedreht, wobei das Zwischengetrieberad 137 drehmomentübertragend ein als Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung ausgebildetes Abtriebsrad 139 antreibt. Das Abtriebsrad 139 kommt mit dem der Betätigungsseite 115 zugewandten Rand 127 der Schuboder Zugstange 103 kraftübertragend in Eingriff. Da das Abtriebsrad 139 in einer Drehbewegung im Uhrzeigersinn angetrieben ist, wird der Schub- oder Zugstange 103 eine Translationszugkraft mitgeteilt, welche die bewegliche Backe 113 in Öffnungsrichtung O von der ortsfesten Backe 111 entfernen läßt.

Sämtliche Drehmomentübertragungen können entweder durch Reibschluß oder durch Formschluß in Form von Verzahnungen oder durch eine Kombination aus beiden realisiert werden.

Im Anschluß wird nun eine bevorzugte Weiterbildung der Erfindung erläutert, die einen Mechanismus zum Wechseln der Verlagerungsrichtung von einer Öffnungsverlagerung, wie in Figur 2 dargestellt ist, in eine Schließverlagerung und umgekehrt betrifft, welcher Betriebsmodus in Figur 3 dargestellt ist.

Der Mechanismus zum Wechseln der Verlagerungsrichtung weist eine Schaltung auf, welche durch eine Rückdrücksperre betätigbar ist. Die Rückdrücksperre stellt eine Blockade gegen das Verlagern der Schub- oder Zugstange entgegen der Vorschubrichtung des Schrittgetriebes dar, die durch den Pfeil V angedeutet ist. Die Sperrwirkung der Rückdrücksperre wird durch die Verkantung eines Durchgangsbereichs eines Freigabehebels 141 mit der Schub- oder Zugstange 103 bewerkstelligt.

Soll also die Schub- oder Zugstange 103 in Öffnungsrichtung O (Figur 2), die der Vorschubrichtung V des Schrittgetriebes 119 entgegengesetzt ist, verlagert werden, so ist zum

einen der Freigabehebel 141 zu betätigen, um die in Öffnungsrichtung O wirkende Sperrwirkung des Freigabehebels 141, die aufgrund der Verkantung des Freigabehebels 141 mit der Schub- oder Zugstange 103 besteht, zu lösen. Die Betätigung des Freigabehebels 141 ist in Figur 2 nicht näher dargestellt. Es reicht ein leichtes Kippen des Freigabehebels 141, um die Sperrwirkung in Öffnungsrichtung O aufzuheben.

Soll nun die Verlagerungsrichtung von O nach S gewechselt werden, ist der Freigabehebel 141 derart stark zu drücken (Figur 3), daß eine Schalteinrichtung aktiviert wird, die durch einen in seiner Längsrichtung verlagerbaren Druckstab 143 gebildet ist, der auf ein Lager 145 für das Abtriebsrad 139 drückt. Das Lager 145 gewährleistet eine Verschiebung des Abtriebsrads 139 in Längsrichtung, nämlich in Schließrichtung S, der Schub- oder Zugstange 103. Eine nicht dargestellte Vorspannung, insbesondere eine Druckfeder, für das Lager drückt das Abtriebsrad 139 in die in Figur 2 dargestellte Position, in der Abtriebsrad 139 mit dem Zwischengetrieberad 137 in Eingriff steht.

Bei Betätigung des Druckstabs 143, also bei Aktivierung der Schaltung, wird das Lager 145 des Abtriebsrads 139 derart verschoben, daß das Abtriebsrad 139 von dem Zwischengetrieberad 137 freikommt und in einen unmittelbaren drehmomentübertragenden Kontakt mit dem Antriebsrad 135 gelangt. Mit diesem strukturellen Aufbau ist ein Drehrichtungswechsler in dem Antrieb integriert, der einen Wechsel der Drehrichtung des Abtriebsrads 139 realisiert. Im geschaltenen Zustand (Figur 3) treibt die Drehbewegung des von der Drehfeder 123 angetriebenen Antriebsrads 135 das Abtriebsrad 139 entgegen dem Uhrzeigersinn an, wodurch die Schub- oder Zugstange 103 in Schließrichtung S kontinuierlich verlagert wird.

In beiden in den Figuren 2 und 3 dargestellten Getriebekonfigurationen sind Antriebsrad, Zwischengetrieberad und Abtriebsrad an ihren Drehmomentübertragungspunkten derart vorgespannt, daß eine ausreichende Normalkraft zur Bildung der erforderlichen Reibungskraft zur Drehmomentübertragung erzeugt ist. Die erforderliche Andrückkraft des Abtriebsrads 139 gegen die Schub- oder Zugstange 103 wird bei dem Öffnungsmechanismus gemäß Figur 2 aufgrund der Vorspannung des Lagers 143 sichergestellt, wobei die erforderliche Andruck-

kraft im Schließmechanismus gemäß Figur 3 durch die dem Druckstab 143 an dem Freigabehebel 141 mitgeteilte Betätigungskraft gewährleistet ist.

In den Figuren 4 und 5 ist ein Spann- und/oder Spreizwerkzeug 101 dargestellt, das im Hinblick auf den strukturellen Aufbau des Spann und/oder Spreizwerkzeugs gemäß den Figuren 2 und 3 im wesentlichen identisch ist. Zur besseren Lesbarkeit der Figurenbeschreibung werden identische Bezugszeichen für identische oder ähnliche Bauteile verwendet. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile bedarf es nicht.

Das Spann- und/oder Spreizwerkzeug 101 gemäß den Figuren 4 und 5 unterscheidet sich in dem Betriebszustand des Antriebs gegenüber dem Spann- und/oder Spreizwerkzeug gemäß den Figuren 2 und 3. Der Antrieb ist nämlich durch die Sperrklinke 131 deaktiviert, die in einer an dem Antriebsrad 135 radial außen liegenden Verzahnung 133 eingerastet ist und somit die Freigabe der in der Drehfeder 123 gespeicherten Drehantriebsenergie blockiert.

In diesem Betriebsmodus wird der Drehfeder 123 die zum Schließen und Öffnen notwendige Drehantriebsenergie zugeführt. Durch die Bewegung der Schub- oder Zugstange 103 wird über das zwischen der Schub- oder Zugstange 103 und der Drehfeder 123 angeordnete Getriebe eine Drehbewegung am Antriebsrad 135 entgegen dem Uhrzeigersinn induziert, wodurch die Drehfeder 123 gespannt wird.

Mit Hilfe des oben beschriebenen Mechanismus zum Wechseln der Verlagerungsrichtung kann der Spannvorgang unabhängig von einer bestimmten Verlagerungsrichtung der Schuboder Zugstange realisiert werden.

In Figur 4 ist der Lademechanismus in einer Betriebskonstellation dargestellt, bei der ein Spannen der Drehfeder 123 durch Schließen der Backen 111, 113 realisiert ist. Bei der Bewegung der Schub- oder Zugstange 103 von rechts nach links, also in Schließrichtung S, wird dem Abtriebrad 139 eine Drehbewegung entgegen dem Uhrzeigersinn induziert, wobei dem Zwischengetrieberad 137 eine Drehbewegung in dem Uhrzeigersinn mitgeteilt wird. Durch

Drehung des Antriebsrads 135 entgegen dem Uhrzeigersinn wird die Drehfeder 123 gegen den Uhrzeigersinn gespannt oder aufgezogen.

Da ohnehin zum Öffnen der Spannbacken, also für eine Bewegung der Schub- oder Zugstange von links nach rechts, die Rückdrücksperre durch den Freigabehebel 141 betätigt werden muß, ist bei vollständiger Betätigung des Freigabehebels 141 automatisch sichergestellt, daß über den Druckstab 143 der Drehrichtungswechsler aktiviert ist und das Abtriebsrad 139 aus dem Eingriff mit dem Zwischengetrieberad befreit ist.

Auf diese Weise ist es mit dem erfindungsgemäßen Antrieb möglich, ein Laden von potentieller Energie in den Speicher für Antriebsenergie bereitzustellen, wobei ein Ladevorgang sowohl beim Öffnen als auch beim Schließen durchführbar ist. Wird also die bewegliche Backe auf die ortsfeste Backe mittels des Schrittgetriebes zubewegt, wird automatisch die Drehfeder des Antriebs gespannt. Ein Aufladen durch Hin- und Herbewegen der Schub- oder Zugstange ist möglich.

In den Figuren 6a, 6b, 7a, 7b, 8a und 8b ist eine weitere Ausführung eines erfindungsgemäßen Spann- und/oder Spreizwerkzeugs mit einer alternativen Ausführung eines Antriebs zur kontinuierlichen Verlagerung einer Schub- oder Zugstange dargestellt. Zur besseren Lesbarkeit sind identische oder ähnliche Bauteile zu den vorstehenden Ausführungen mit der gleichen Bezugsziffer versehen, die um 100 oder 200 erhöht ist. Einer erneuten Erläuterung der identischen oder ähnlichen Bauteile wie deren Funktionsweise bedarf es nicht.

Die Ausführung gemäß den Figuren 6a bis 8b unterscheidet sich von den oben stehenden Ausführungen in der Ausgestaltung des Antriebs. Eine Einrichtung zum Ziehen der Schuboder Zugstange von einer offenen Stellung, wie sie in den Figuren 7a dargestellt ist, in eine geschlossenen Stellung, wie sie in Figur 6a dargestellt ist, ist vorgesehen. Die Zugeinrichtung ist bei der Ausführung gemäß den Figuren 6a bis 8b durch eine Drehfeder 223 gebildet, die mit einem wickelbaren Strang 245 gekoppelt ist. Der wickelbare Strang 245 ist an seinem freien Ende an der Schub- oder Zugstange 203 befestigt. Hierfür ist eine Befestigungseinrichtung 247 vorgesehen, welche über einen Freigabeknopf 248 von der Schub- oder Zugstange 203 befestigt.

stange 203 lösbar ist, um die Befestigungseinrichtung 247 des wickelbaren Strangs 245 längs der Schub- oder Zugstange 203 umsetzen zu können. Beispielsweise bei Spann- und/oder Spreizwerkzeugen für besonders breite Gegenstände 249 ist eine sehr lange Schub- oder Zugstange (hier nicht dargestellt) vorgesehen. Um nicht eine ebenso lange Zugeinrichtung einsetzen zu müssen, kann die Befestigungseinrichtung 247 näher zum Träger 205 gerückt werden.

Für den wickelbaren Strang 245 ist eine Spule 251 vorgesehen, auf die der wickelbare Strang 245 beim Zuziehen der Spannbacke 213 wickelbar ist. Der Wickelstrang 245 erstreckt sich von der Spule 251 über eine in der Nähe der Spule in Richtung auf die bewegliche Backe 213 versetzte Führung 253, welche den Wickelstrang 245 in eine Vertiefung 255 der Schub- oder Zugstange 203 leitet. Von der Führung 253 läuft der Wickelstrang 245 längs der Schub- oder Zugstange 203 in deren Vertiefung 255 zur Befestigungseinrichtung 247.

Der Wickelstrang 245 kann als Faden oder als ein metallisch verstärkter Stoffaden gebildet sein. Auch Nylonschnüre mit kleinem Querschnitt sind als Wickelstrang einsetzbar.

Die Schub- oder Zugstange 203 mit der Vertiefung 255 zur Aufnahme des Wickelstrangs 245 ist, wie in Figur 7b ersichtlich ist, als I-Träger mit zwei seitlichen Vertiefungen 255 ausgeführt. Die Vertiefungen sind derart bemessen, daß der Wickelstrang berührungsfrei hinsichtlich des Gehäuses 207 des Trägers 205 entlanggleiten kann.

Eine besondere erfinderische Maßnahme besteht darin, der drehbar gelagerten Spule 251, die mit der Drehfeder 223 drehantreibend gekoppelt ist, eine Dämpfungseinrichtung 257 zuzuordnen, die schematisch in den Figuren 6a, 7a und 8a angedeutet ist.

Die Dämpfungseinrichtung 257 ist dazu ausgelegt, die durch die Zugkraft der Zugeinrichtung auf die bewegliche Backe 213 wirkenden Kraft derart zu dämpfen, daß eine kontrollierbare Schließgeschwindigkeit der beweglichen Backe 213 gewährleistet ist. Die gewünschte Schließgeschwindigkeit hängt von den Wünschen der das Spann- und/oder Spreizwerkzeug 201 benutzenden Personen ab. Die Dämpfungseinrichtung 257 kann auf einem Reibungsverlust- oder Pantschverlustprinzip eines Arbeitsfluids basieren.

Die Dämpfungseinrichtung 257 ist insbesondere vorteilhaft, sollte eine Drehfeder verwendet werden, welche eine nicht lineare Kraftbereitstellung bietet. Die Dämpfungseinrichtung 257 kann derart auf die Drehfeder abgestimmt sein, daß ein lineare Kraftvermittlung erzielt wird.

In dem in den Figuren 6a bis 8b gezeigten erfindungsgemäßen Antrieb ist ein Mechanismus zum Speichern und Laden von Energie durch die Drehfeder realisiert. Den niedrigsten Niveauwert im Speicher enthält die Drehfeder 223 dann, wenn die Spannbacken 211 und 213 geschlossen sind. Durch Wegziehen der Spannbacke 213 von der ortsfesten Backe 211 bei leichter Betätigung des Freigabehebels 241 der Rückdrücksperre zum Lösen des Spannund/oder Spreizwerkzeugs wird die Drehfeder 223 über den Wickelstrang 245 gespannt. Bei Freigabe des Freigabehebels 241 verbringen Federn 259 und 261 den Freigabehebel 241 in eine gegenüber der Schub- oder Zugstange 203 verkantete Stellung. Die in der verkanteten Stellung auftretenden Reibungs- und Verkantungskräfte sind derart groß, daß ein selbständiges Schließen der Spannbacke 213 durch die Zugeinrichtung nicht möglich ist. Die dafür erforderliche Reibungs- oder Verkantkraft an dem Freigabehebel 241 kann unter Berücksichtigung der Federkonstanten der Federn 259 und 261 eingestellt werden.

Betätigt die Bedienperson den Freigabehebel 241, so werden die Reibungs- oder Verkantungskräfte an der Schub- oder Zugstange gelöst, wodurch die Drehantriebsenergie in der Drehfeder 223 freigegeben wird und die bewegliche Backe über den Wickelstrang 245 zur ortsfesten Backe 211 hin gezogen wird. Der Betriebszustand des Schließens ist in den Figuren 8a und 8b dargestellt. Die Zugeinrichtung wirkt so lange, bis der Gegenstand 249 von den Backen 211, 213 ergriffen ist (Figur 6a, 6b) und die Zugkraft der Drehfeder 223 nicht mehr ausreicht, ein weiteres Verlagern der Schub- oder Zugstange 203 in Schließrichtung S zu bewirken.

Nach dem Beenden des Schnellschließvorgangs durch die erfindungsgemäße Zugeinrichtung können über das Schrittgetriebe 219 dem Gegenstand 249 hohe Spannkräfte mitgeteilt werden, welches Schrittgetriebe kleiner Schrittweite später detaillierter beschrieben wird.

- 17 -

In den Figuren 9a bis 9d ist ein weiteres erfindungsgemäßes Spann- und/oder Spreizwerkzeug gezeigt, wobei zur besseren Lesbarkeit der Figurenbeschreibung für identische oder ähnliche Bauteile die gleichen Bezugsziffern verwendet werden, die um 100, 200 oder 300 erhöht sind, wobei es einer erneuten Erläuterung der identischen oder ähnliche Bauteile nicht bedarf.

Die Ausführung des Spann- und/oder Spreizwerkzeugs 301 gemäß den Figuren 9a bis 9d unterscheidet sich von der Ausführung des Spann- und/oder Spreizwerkzeugs gemäß den Figuren 6a bis 8b darin, daß die Einrichtung zum Ziehen der beweglichen Backe 313 auf die ortsfeste Backe 311 ausschließlich mit einer Drehfeder 323 bewerkstelligt wird, d.h. ohne Nutzung eines Wickelstranges, welcher die Drehfeder mit der Schub- oder Zugstange 303 oder der beweglichen Backe 313 verbindet.

Die Drehfeder 323 gemäß der Ausführung der Figuren 9a bis 9d ist eine Spiralbandfeder, welche drehbar im Gehäuse 207 des Trägers 205 gelagert ist. Zur Speicherung der Drehantriebsenergie kann die Spiralbandfeder abgewickelt werden, wobei der abgewickelte Abschnitt 365 in der Vertiefung 355 der Schub- oder Zugstange aufgenommen ist. Die Basis 367 der Spiralbandfeder ist zum Aufwickeln des abgewickelten Spiralbandabschnitts 365 drehbar am Träger 305 gelagert. Das freie Ende des abwickelbaren Spiralbandabschnitts 365 ist an der Schub- oder Zugstange 303 oder an der beweglichen Backe 313 befestigt. Die hierfür notwendige Befestigungseinrichtung (hier nicht dargestellt) für den Spiralbandabschnitt 365 ist lösbar, wobei die Befestigungseinrichtung längs der Schub- oder Zugstange 303 umsetzbar ist, insbesondere um bei großen zu spannenden Gegenständen (hier nicht näher dargestellt) kein zu starkes Abwickeln der Spiralbandfeder zu bedingen.

Der besondere Vorteil der Spiralbandfeder liegt darin, eine unabhängig vom zurückgelegten Weg gleichmäßige lineare Antriebskraft der beweglichen Backe 313 oder der Schub- oder Zugstange 303 mitzuteilen.

Somit erfüllt die Spiralbandfeder sowohl die Aufgabe einer Zugeinrichtung als auch die einer Dämpfungseinrichtung zum Erzeugen gleichmäßiger Schließgeschwindigkeiten.

Zur Aufnahme der mit dem Spiralbandabschnitt 365 gewickelten Spiralbandbasis 367 kann das Gehäuse 307 eine seitliche Öffnung aufweisen, durch welche die Basis 367 samt gewikkeltem Spiralbandabschnitt 365 ragen kann, was in den Figuren 9b und 9c dargestellt ist.

Der Schließbetriebsmodus sowie die Bedienung des Spann- und/oder Spreizwerkzeugs 303 mit der Spiralbandfeder entspricht im wesentlichen dem Spann- und/oder Spreizwerkzeug 203, das gemäß den Figuren 6a bis 8b anhand der dort verwendeten Zugeinrichtung mit Wikkelstrang beschrieben ist.

Nach der durch die Spiralbandfeder bewirkte Schließbewegung der beweglichen Backe 313 kann mittels des Schrittgetriebes 319 kleiner Schrittweite die gewünschte hohe Spannkraft zwischen den Backen 311 und 313 aufgebaut werden.

Im folgenden wird der Aufbau sowie die Funktionsweise des Schrittgetriebes kleiner Schrittweiten beschrieben, welches Schrittgetriebe im wesentlichen dem entspricht, das in der deutschen Patentanmeldung DE 10335365.8 von der Anmelderin angegeben wird.

Das Schrittgetriebe 19 bis 319 ist dazu ausgelegt, einen Kraftbetrieb des Spann- und/oder Spreizwerkzeugs 1 bis 301 bereitzustellen, bei dem die Schub- oder Zugstange 3 bis 303 in Vorschubrichtung V mit kleinen Schrittweiten verlagerbar ist. In diesem Kraftbetrieb ist ein Wirkhebel eines Antriebsarms 71 bis 371 wirksam, welcher Wirkhebel durch den Abstand eines Schwenklagers 73 bis 373 des Antriebsarm 71 bis 371 und eines Krafteintragsbolzens 75 bis 375 definiert ist. Da der Betätigungshebel des Antriebsarms 71 bis 371 weit größer ist als der Wirkhebel, können Spannkräfte erzeugt werden, die um das 10-fache höher sind als die, die mit dem Schrittgetriebe gemäß dem US-Patent 6,568,667 möglich sind.

Durch eine im Gehäuse 307 gelagerte Druckfeder 77 bis 377 wird ein Mitnahmeschieber 79 bis 379 stets an den Krafteintragsbolzen 75 bis 375 des Antriebsarms 71 bis 371 gedrückt. Weiterhin dient die Druckfeder 77 bis 377 dazu, den Mitnahmeschieber 79 bis 379 in eine stets gegenüber der Schub- oder Zugstange 3 bis 303 verkanteten Stellung zu bringen. Dies wird dadurch erreicht, daß die Druckkrafteintragsstelle der Druckfeder 77 bis 377 näher zur

Schub- oder Zugstange 3 bis 303 liegt als der Krafteintragsbolzen 75 bis 375, wodurch der Mitnahmeschieber 79 bis 379 um den Krafteintragsbolzen 75 bis 375 gegen den Uhrzeigersinn geschwenkt wird, bis der Mitnahmeschieber 79 bis 379 mit der Schub- oder Zugstange 3 bis 303 verkantet. Damit ist gewährleistet, daß bei Betätigung des Antriebsarms 71 bis 371 in einer Schwenkbewegung um das Schwenklager 73 bis 373 unmittelbar eine Verlagerung der Schub- oder Zugstange bewirkt wird, womit unmittelbar Spannkräfte zwischen den Spannbacken 13, 15 bis 313, 315 hervorgerufen werden können. Nach einem Hub des Antriebsarms 71 bis 371 ist letzterer von der Bedienperson freizugeben, wodurch die Druckfeder 77 bis 377 die Mitnehmerverkantung des Mitnahmeschiebers 79 bis 379 gegenüber der Schub- oder Zugstange 3 bis 303 freigibt und der Antriebsarm 71 bis 371 in die in der Figur 9a beispielsweise dargestellte Ausgangsstellung zurückgeführt ist.

Die günstigen Hebelverhältnisse für das Schrittgetriebe kleiner Schrittweite wird vor allem dadurch realisiert, daß sowohl das Schwenklager 73 bis 373 als auch der Krafteintragsbolzen 375 auf der Spannseite 9 bis 309 liegen.

Die in der vorstehenden Beschreibung, den Figuren und den Ansprüchen offenbarten Merkmale können sowohl einzeln als auch in beliebiger Kombination für die Realisierung de Erfindung in den verschiedenen Ausgestaltungen von Bedeutung sein. Beispielsweise ist es möglich, die unterschiedlichen Antriebsmechanismen untereinander auszutauschen und zu kombinieren. Zum Beispiel ist es durchaus im erfindungsgemäßen Gedanken, die Dämpfungseinrichtung (257) mit Drehfederantrieben, wie in den Figuren 1a und 1b oder 2 bis 5 dargestellt, zu kombinieren.

Bezugszeichenliste

1, 101, 201, 301	Spann- und/oder Spreizwerkzeug
3, 103, 203, 303	Schub- oder Zugstange
5, 105, 205, 305	Träger
7, 107, 207, 307	Gehäuse
9, 109, 209, 309	Spannseite
11, 111, 211, 311	feste Spannbacke
13, 113, 213, 313	bewegliche Spannbacke
14, 114, 214, 314	Ende der Schub- oder Zugstange
15, 115, 215, 315	Betätigungsseite der Schub- oder Zugstange
16, 116, 216, 316	Ende der Schub- oder Zugstange
17, 117, 217, 317	Griff
19, 119, 219, 319	Schrittgetriebe
21, 121, 221, 321	Antrieb
23, 123, 223, 323	Drehfeder
25	Antriebsrad
27, 127, 227, 327	Längsrand der Schub- oder Zugstange
41, 141, 241, 341	Freigabehebel
55, 155, 255, 355	Vertiefung
71, 171, 271, 371	Antriebsarm
73, 173, 273, 373	Schwenklager
75, 175, 275, 375	Krafteintragsbolzen
77, 177, 277, 377	Druckfeder
79, 179, 279, 379	Mitnahmeschieber
131	Sperrklinke
133	Klinkenverzahnung
135	Antriebsrad
137	Zwischengetrieberad
139	Abtriebsrad
143	Druckstab

144	Lager
245	wickelbarer Strang
247	Befestigungseinrichtung
248	Freigabeknopf
. 249	einzuspannender Gegenstand
251	Spule
253	Führung
255, 355	Vertiefung
257	Dämpfungseinrichtung
259	Feder
261	Feder
365	Spiralbandabschnitt
367	Basis
Ο	Öffnungsrichtung
S	Schließrichtung
V	Vorschubrichtung des Schrittgetriebes

0

BOEHMERT & BOEHMERT ANWALTSSOZIETÄT

Bochmert & Bochmert • P.O.B. 15 03 08 • D-80043 München

Deutsches Patent- und Markenamt Zweibrückenstraße 12 80297 München DR. ING. KARL BOEJIMERT, PA (1974-1973)
DPL.-ING. ALBERT BOEJIMERT, PA (1976-1973)
WILHELM J. H. STAHLBERG, RA. Demen
DPL.-PHYS. DR. HEINZ GODDAR, PA. Michelm
DPL.-PHYS. DR. HEINZ GODDAR, PA. Michelm
DPL.-PHYS. DR. HEINZ GODDAR, PA. Michelm
WOLF-JETER KUNTZE, RA. Demen, Alleans
DPL.-PHYS. ROBERT HONZOLTHIBER, PA (1973-1972)
DR. LUDWIG KOUKER, RA. Browne
MCCHAELA HUTH-DEBUG, RA. Monthe
MCCHAELA HUTH-DEBUG, RA. Monthe
DPL.-PHYS. DR. DEBEK WYGENELE, RA. Browne
DPL.-PHYS. DR. DEBEK WYGENELE, PA P. Browne
DPL.-PHYS. DR. DRORTH-ED PHELLER, RA. Browne
DPL.-PHYS. DR. DRORTH-ED PHELLER, RA. Browne
DPL.-PHYS. DR. DRORTH-ED WEBER-BRULS, PA*, Frankfart
DPL-PHYS. DR. DRORTH-ED WEBER-BRULS, PA*, Frankfart
DPL-PHYS. DR. STEFAN SCHOHE, PA*, Monthe
DR. MARTIN WRITZ, RA. Demokraf
DR. DETMAR SCHAFER, RA. Browne
DR. LANDERND NORDEMANN, LL. M., RA. Berlin
DR. LANDERND NORDEMANN, LL. M., RA. Berlin
DR. CARL-RICHARD HARKMANN, LL. M., RA. Berlin
DR. CARL-RICHARD HARKMANN, LL. M., RA. Berlin
DR. CARL-RICHARD HARKMANN, LL. M. MÖRGER
DPL.-PHYS. CHUSTIAN W. APPELT, PA*, Monthe
DPL.-PHYS. CHUSTIAN W. APPELT, PA*, J. Browne

PA - Patentanwalt/Patent Attorney RA - Rechisanwalt/Attorney at Law

- European Patent Atte
 Mitte en Droit
- Licencié en Droit
- Diplome d'Etudes Approfondies en Conception de Produits e Innovation

Alle zugelassen zur Vertretung vor dem Europäischen Markenamt, Alicante Professional Representation at the Community Tradomark Office, Alicante PROF. DR. WILHELM NORDEMANN, AA Poodes
DPIL-PHYS. EDUARD BAUMANN, AAN, Nobesider
DR. NRG. GERALD KLOPSCH, PA: Douester
DPIL-ING. HANN W. GROENING, PA: Meether
DIPIL-ING. SEGFRIED SCHEMER, PA: Desider
DIPIL-ING. SEGFRIED SCHEMER, PA: Besider
DIPIL-ING. SEGFRIED SCHEMER, PA: Besider
DIPIL-ING. ANTON FREHERR REDDERER V. PAAR, PA: Low
DIPIL-PHYS. CHRUSTLAN BIEHL, PA: Pandem
DIR. ALOUS DISTIAGNAY, L.M., RA. Pandem
DIPIL-CHEM. DR. SCHWIGE, PA: Devices
DIPIL-CHEM. DR. KARLL-HEINZ B. METTEN, PA: Possible
DIPIL-CHEM. DR. VORKER, SCHOLZ, PA: Devices
DIPIL-CHEM. DR. VORKER SCHOLZ, PA: Devices
DIPIL-CHEM. DR. JORK ZWICKER, PA: Devices

In Zusammenarbeit mivin cooperation with DIPL-CHEM. DR. HANS ULRICH MAY, PA*. Monches

Ihr Zeichen Your ref. Ihr Schreiben Your letter of

Neuanmeldung

Unser Zeichen Our ref.

I30140

München,

12. Dezember 2003

IRWIN Industrial Tools GmbH Lilienthalstraße 7 85399 Hallbergmoos

Antrieb für ein Spann- oder Spreizwerkzeug, Spann- und/oder Spreizwerkzeug

Ansprüche

 Antrieb für ein Spann- und/oder Spreizwerkzeug zum Verlagern einer Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger in Längsrichtung umfassend ein drehantreibbares Getriebeelement, das mit der Schub- oder Zugstange zu deren Verlagerung zusammenwirkt.

- 64.355 -

- 2. Antrieb nach Anspruch 1, dadurch gekennzeichnet, daß ein Drehmotor, insbesondere eine Drehfeder oder ein Elektromotor mit wenigstens einer Drehantriebsrichtung, vorzugsweise zwei Drehantriebsrichtungen, vorgesehen ist, der mit dem Getriebeelement betriebsmäßig verbunden ist.
- 3. Antrieb nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß das Getriebeelement ein Antriebsrad ist, das in drehmomentübertragenden Eingriff mit der Schub- oder Zugstange bringbar ist, insbesondere die Schub- oder Zugstange reib- oder kraftschlüssig berührt, insbesondere derart, daß eine Drehbewegung in eine translatorische Bewegung umgesetzt ist.
- 4. Antrieb nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Mechanismus zum Wechseln der Verlagerungsrichtung der Schub- oder Zugstange von einer Schließrichtung, insbesondere zum Aufbringen von Spann- oder Spreizkräften, in eine Öffnungsrichtung und/oder umgekehrt vorgesehen ist.
- 5. Antrieb nach Anspruch 4, dadurch gekennzeichnet, daß der Mechanismus einen Drehrichtungswechsler aufweist, der dazu ausgelegt ist, das an der Schub- oder Zugstange durch das Getriebeelement wirkende Drehantriebsmoment umzukehren.
- 6. Antrieb nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß ein Getriebebauteil zum Umsetzen einer Drehbewegung in eine translatorische Bewegung zwischen dem Getriebeelement und der Schub- oder Zugstange angeordnet ist, wobei insbesondere das Getriebebauteil in einen und aus einem drehmomentübertragenen Eingriff mit dem Getriebeelement bringbar ist und/oder insbesondere derart beweglich gelagert ist, daß es in eine aktive Stellung zum Umsetzen einer Drehbewegung in eine translatorische Bewegung und in eine passive, drehbewegungsumsetzfreie Stellung bringbar ist.
- 7. Antrieb nach Anspruch 6, dadurch gekennzeichnet, daß der Mechanismus zum Wechseln der Verlagerungsrichtung ein Zwischengetriebeelement aufweist, das mit dem

Getriebeelement und dem Getriebebauteil betriebsmäßig koppelbar ist, wobei insbesondere das Getriebeelement bei einer ersten Getriebekonfiguration für eine erste Verlagerungsrichtung das Getriebebauteil über das Zwischengetriebeelement und bei einer zweiten Getriebekonfiguration für eine zweite, entgegengesetzte Verlagerungsrichtung das Getriebebauteil direkt antreibt.

- 8. Antrieb nach Anspruch 7, dadurch gekennzeichnet, daß das Zwischengetriebeteil mit dem Getriebeelement und/oder dem Getriebebauteil in form- oder kraftschlüssigen Eingriff, insbesondere in einen Reibungs- oder Verzahnungseingriff, bringbar ist.
- 9. Antrieb nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, daß der Mechanismus eine Schaltung zum Wählen der Verlagerungsrichtung aufweist.
- 10. Antrieb nach Anspruch 9, dadurch gekennzeichnet, daß die Schaltung ein Betätigungselement aufweist, das einen Drehrichtungswechsler aktiviert und/oder deaktiviert.
- 11. Antrieb nach Anspruch 10, dadurch gekennzeichnet, daß das Betätigungselement eine Sperre gegen eine Verlagerung der Schub- oder Zugstange in einer Schließrichtung, insbesondere zum Halten von Spann- und/oder Spreizkräften zwischen den Backen, aufweist.
- 12. Antrieb nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Betätigungselement eine insbesondere unbetätigte Sperrstellung zum Verhindern einer Verlagerung
 der Schub- oder Zugstange in Schließ- und/oder Öffnungsrichtung, eine erste Freigabestellung zum Freigeben einer Drehbewegung für eine erste Verlagerungsrichtung und eine
 zweite Freigabestellung zum Freigeben einer Drehbewegung für eine zweite Verlagerungsrichtung aufweist.
- 13. Antrieb nach Anspruch 12, dadurch gekennzeichnet, daß in einer Freigabestellung des Betätigungselements ein Stellorgan das Getriebebauteil oder das Zwischengetriebe-

element stellt, insbesondere das Getriebebauteil in form- oder kraftschlüssigen Eingriff mit dem Getriebeelement bringt.

- 14. Antrieb nach Anspruch 1 oder 2, gekennzeichnet durch eine Schalteinrichtung zum Wählen einer Drehantriebsrichtung.
- 15. Antrieb nach einem der Ansprüche 1 bis 3 oder 14, dadurch gekennzeichnet, daß eine Einrichtung zum Steuern der Verlagerungsgeschwindigkeit vorgesehen ist.
- 16. Antrieb nach einem der Ansprüche 1 bis 3 oder 14 oder 15, dadurch gekennzeichnet, daß eine manuell bedienbare Stelleinrichtung zum Steuern eines Motors des Antriebs vorgesehen ist.
- 17. Spann- und/oder Spreizwerkzeug mit einem nach einem der Ansprüche 1 bis 16 ausgebildeten Antrieb.

Zusammenfassung

Bei einem Antrieb für ein Spann- und/oder Spreizwerkzeug zum Verlagern einer Schub- oder Zugstange mit einer daran fest angebrachten, beweglichen Backe relativ zu einem eine ortsfeste Backe haltenden Träger in Längsrichtung ist ein drehantreibbares Getriebeelement vorgesehen, das mit der Schub- oder Zugstange zu deren Verlagerung zusammenwirkt.

