```
Total Return (in USD) ≈
```

```
Contribution from yield
= beginning-of-period yield * days in holding period / 360]
```

+ Contribution from benchmark-rate move Contribution from spread [= -1 * spread duration * spread change] = -1 * interest-rate duration * yield-change of comparable-duration US Treasury]

+ Contribution from currency [= Exchange-rate (USD/local currency) effect]

Contribution from Spread ≈

Systematic Component [= -1 * spread duration * applicable market move a]

Idiosyncratic Component [= -1 * spread duration * idiosyncratic spread change]

^a The applicable spread change of the market is typically estimated by the spread change of an industry-standard single-B rated corporate could be estimated by the change in option-adjusted spread (OAS) of the Barclays U.S. benchmark to which the security might belong. For example, the systematic portion of the spread change of a High-Yield Corporate Index, Single-B component.

Contribution from Term Structure

Chop the treasury yield curve into duration buckets.

Then, for each duration bucket

- * calculate the portfolio's interest-rate duration-dollar exposure (= weight * average duration)
- * calculate the benchmark's interest-rate duration-dollar exposure
- * calculate net exposure = portfolio exposure benchmark exposure
- * determine the yield change for a reference treasury falling in the bucket
- * determine bucket's contribution to excess return from yield change =

- net exposure * Δ yield of an applicable treasury

Contribution from term structure due to rate moves a = sum of bucket contributions

Contribution from duration posture b

= sum of bucket contributions where the same Δ yield (i.e., the parallel yield curve shift) is applied

Contribution from curve posture $^{
m c}=$ contribution from term structure - contribution from duration posture

This calculation speaks to the impact of the distribution of duration-dollars along the yield curve. distribution of dollars along the curve influences the yield of the portfolio relative to the yield of the benchmark. that isolates the term-structure contribution due to the distribution of dollars along the curve. This second effect examines how the There is a separate calculation

This is the contribution to excess return from a parallel yield curve shift.

This is the contribution to excess return from a reshaping of the yield curve

General framework for factor-based performance attribution

Contribution from duration posture (parallel yield curve shift)

as defined on page 3

Contribution from curve posture (curve reshaping)

as defined on page 3

Contribution from yield

Contribution from sector weighting (systematic spread risk factor)

= - net spread-duration dollar exposure * spread change of applicable benchmark sector

Contribution from issue selection within a sector (nonsystematic spread risk factor)

- group portfolio constituents by sector
- calculate spread duration-dollar exposure of each constituent in the sector
- sum contributions of individual securities, where

contribution = -spread duration-dollar exposure * idiosyncratic segment of spread change a

^a As defined on page 2, a security's spread change is the sum of the security's systematic spread change (i.e., the spread change defined by the applicable segment of the benchmark) and a residual, which is the security's non-systematic (idiosyncratic) spread change.

Two Factset Frameworks for Performance Attribution

Returns-Based Attribution

(Factset two-factor model)

Hybrid Model

Risk-Based Attribution

(as illustrated on page 4)

- of sectors view portfolio/benchmark as a collection
- (return contribution = average weight * average return) each sector contributes return
- sectors' return contributions sum to the portfolio (or benchmark) return
- excess return is explained by differences portfolio and the benchmark between sector return contributions in the
- complete flexibility with sector definition across sectors distribute comprehensively and uniquely as long as portfolio and benchmark constituents
- no explicit reference to measures of price sensitivity (i.e., various forms of duration)

- of risk factors and loadings on those view portfolio/benchmark as a collection factors
- excess return arises from differences in factor loadings
- excess return factors that comprehensively explains collection of non-overlapping risk challenging to identify a compact

hybrid approach lying Factset four-factor model is a between these two extremes.

Allocation Effect

= (portfolio sector weight – benchmark sector weight) * (benchmark sector return – total benchmark return)

Selection Effect

= portfolio sector weight * (portfolio sector return – benchmark sector return)

Note: This approach makes no explicit reference of interest-rate or spread duration. The approach has its best applicability to portfolios with a mostly bottoms-up investment style.

Factset framework (four-factor model)

Shift effect (contribution from duration)

shift may be based on something other than a duration-weighted average of yield shifts across the curve as defined on page 3, although the estimate of the magnitude of the parallel

Twist effect (contribution from curve reshaping)

as defined on page 3

Allocation effect Selection effect

- ° allocation and selection effects are based on a decomposition of residual return (where residual return is total return excluding the contribution from rate move a,b)
- Allocation effect
- = (portfolio sector weight benchmark sector weight) * (benchmark sector residual return – total benchmark residual return)
- Selection effect
- = (portfolio sector weight) * (portfolio sector residual return benchmark sector residual return)

^a The contribution from rate move would have already been explained by the shift and twist effects.

b Residual return should approximate the sum of the contributions of spread duration, yield, and currency as defined on page 1.