THE NORTH CAROLINA COLLEGE OF AGRICULTURE AND MECHANIC ARTS

AGRICULTURAL EXPERIMENT STATION

W. A. WITHERS, A.M., ACTING DIRECTOR.

Rational Stock Feeding

INCLUDING

- I. Definitions of Terms, and Composition and Digestibility of Foods
- II. Feeding Standard
- III. How Stock Rations can be Calculated

F. E. EMERY AND J. M. JOHNSON

RALEIGH, N. C.

511

NORTHAGAROLINA COLLEGE OF AGRICULTURE AND MECHANIC ARTS

AGRICULTURAL EXPERIMENT STATION

RALEIGH, N. C.

BOARD OF TRUSTEES

W. S. Primrose, Raleigh, President of the Board.

A. LEAZAR, Mooresville. H. E. FRIES, Salem. D. A. TOMPKINS, Charlotte. T. B. TWITTY, Rutherfordton. Frank Wood, Edenton.
J. C. L. Harris, Raleigh.
L. C. Edwards, Oxford.
Jno. W. Harden, Jr., Raleigh. H. E. BONITZ, Wilmington.
MATT MOORE, Kenansville.

J. Z. WALLER, Burlington. W. H. RAGAN, High Point. DAVID CLARK, Charlotte. DAVID CLARK, Charlotte.
R. L. SMITH, Albemarle.
P. J. SINCLAIR, Marion.
J. B. STOKES, Windsor.
W. J. PEELE, Raleigh.
E. Y. Webb, Shelby.
W. C. FIELDS, Sparta.
J. FRANK RAY, Franklin. ALEX. Q. HOLLADAY, President of the College.

EXPERIMENT STATION STAFF.

ALEX. Q. HOLLADAY, LL.D., President of the College.* W. A. WITHERS, A.M., Acting Director and Chemist.*
F. E. EMERY, M.S., Agriculturist.*
W. F. MASSEY, C.E., Horticulturist.*
COOPER CURTICE, D.V.S., M.D. (1) Veterinarian.* G. S. Fraps, B.S. (2) Assistant Chemist. J. A. Bizzell, B.S., Assistant Chemist. H. W. Primrose, B.S., Assistant Chemist. ALEX. RHODES. Assistant Horticulturist. C. W. Hyams, Assistant Botanist.
J. M. Johnson, M.S., Assistant Agriculturist.
B. S. Skinner, Farm Superintendent. J. M. FIX, Secretary. C. M. HUGHES, B.E., Clerk. MRS. L. V. DARBY, Stenographer.

FERTILIZER CONTROL DIVISION,

A. W. Blair, A.M., State Chemist.
C. B. Williams, M.S., Assistant Chemist.
C. D. Harris, B.S., Assistant Chemist.
F. G. Kelly, Assistant Chemist.
W. G. Haywood, B.Litt, Assistant Chemist.
H. E. King, Chief Clerk.
Miss M. S. Birdsong, Stenographer.

The Director's office is in the main building of the College. Telephone No. 185 C. The street cars pass within one hundred yards of the College building.

The Station is glad to receive any inquiries on agricultural subjects. Address all communications to the Agricultural Experiment Station, and not to individuals. They will be referred to the members of the Station staff most competent to answer them. Samples for analysis should be sent to the State Chemist.

^{*} Member of Station Council,

⁽¹⁾ On leave of absence.
(2) On leave of absence. The duties are performed temporarily by J. M. Pickel, Ph.D.

RATIONAL STOCK-FEEDING.

INCLUDING

I. DEFINITIONS OF TERMS, AND COMPOSITION AND DIGESTIBILTY OF FOODS.

II. FEEDING STANDARDS.

III. HOW STOCK RATIONS CAN BE CALCULATED.

BY:F. E. EMERY, M. S., AGRICULTURIST. J. M. JOHNSON, M. S., ASS'T IN AGRICULTURE.

I. DEFINITIONS OF TERMS, AND COMPOSITION AND DIGESTIBILITY OF FOODS.

The value of food materials depend largely upon their composition and digestibility. The former is ascertained by chemical analysis; the latter by actual trials with animals.

Composition of Feeding-Stuffs. Nutrients.

By chemical analysis, foods are separated into six classes of substances, viz.:

1. Water, which is present in all feeding-stuffs. It composes about 80 per cent. of green and succulent fodders, about 90 per cent. of root crops, 75 per cent. of silage, and 10 to 15 per cent. of hays and grains. In these it is present as mechanically adhering or hydroscopic moisture. It is a necessary constituent of the animal body, of which it makes up 40 to 65 per cent. Water is determined by heating the substance for several hours at the temperature of boiling water, at which temperature it passes off as steam.

2. Ash is the inorganic, or mineral matter of plants, and is the residue left after burning till all volatile material is driven off. It is composed mainly of soda, potash, lime, and magnesia, in the form of phosphates, sulphates, chlorides, and carbonates. Ash furnishes the materials for the bony structure of animals, and enters to a much

less extent into the tissues and organs.

3. Fats (ether extract) represents whatever is dissolved from foods by dry ether. It is composed mainly of fats and oils, but contains, in addition, quantities of gums, wax and coloring matter, depending upon the substances extracted.

4. Protein, the term as used in connection with fodder analyses, includes Albuminoids and Amides, the albuminoids being the more

Note.—This bulletin is a revision of No. 106, with many additions to the tables which increases the usefulness of the work to the practical feeder.

valuable, and, at the same time, composing by far the larger portion of the protein compounds. They are the nitrogenous compounds of plants and animals, and are determined by estimating the nitrogen in them, which element composes about 16 per cent. of the weight of protein substances. None of the other classes of substances contain nitrogen. They are represented in the animal body by ligaments, lean meat, muscles, tendons and tissues. Amides are unorganized protein, or protein in a transitory stage, and are very abundant in pasture grass and young growing plants, but change largely into organized protein as the plant reaches maturity. Amides are considered of much less nutritive value than albuminoids, and act as protectors or conservers of the latter.

5. Orude fiber, or cellulose, is the cell wall and structure material of plants, and is usually the most indigestible portion of them, but when digested is considered of equal value to starch and sugar. The lint of cotton is almost pure cellulose. Its composition is similar to that of starch. It is determined by boiling the food-stuff with weak acid and alkali, thus dissolving all other constituents. Orude fiber and nitrogen free extract taken together are known as carbohy-

drates.

6. Nitrogen-free extract is the term applied to those non-nitrogenous constituents of foods which are represented in the main by sugars, starch, dextrin, and gums. They all contain carbon, hydrogen, and oxygen, but no nitrogen, as does protein. Nitrogen-free extract is estimated by difference, it being equal to the difference between the sum of the above five constituents, water, ash, protein, fats, and crude fiber, and 100. It is, perhaps, the most inaccurate of all the determinations in a food analysis, inasmuch as all the errors and differences in the other determinations fall upon it. It seems very desirable that some of the constituents, at least, of the nitrogen-free extract should be determined directly. This is already being done to a limited extent. Some preliminary work has been done in this laboratory in that line, and the study will be carried on.

Dry matter and organic matter. Neither of these terms represent a single class of constituents, or nutrients. Dry matter is what is left of a plant, or food stuff, after the water is driven off or subtracted, and organic matter is dry matter minus the ash, for example: If the original food-stuff as fed is represented as 100 per cent., and it contains 10 per cent. of water and 5 per cent. of ash, then dry matter is equal to 100 per cent., less ten per cent. water, or 90 per cent., and organic matter is 90 per cent. dry matter less 5 per

cent. ash, or 85 per cent.

To enable those not familiar with the subject to gain a clear idea of the parts of food stuffs, and the terms representing them as used in fodder analyses, the following statement is presented:

Food-stuff. { Water. Organic matter. { Protein. Fats. Carbohydrates. } N1trog'n-free ex't.

Nutrients. Protein, fats, carbohydrates, nitrogen-free extract and crude fiber and mineral matter are called nutrients, because of their functions in animal nutrition. Nitrogen-free extract and crude fiber are included together under the one name of carbohydrates, because they are all compounds of carbon, hydrogen and oxygen, and the digestible portion of each is considered of equal value and perform the same offices in animal nutrition. Familiar examples of the four classes of nutrients are presented below. Water is omitted because it is the same, whether taken in food or drink, and we do not feed a fodder for the sake of the water it contains:

Protein.

Albumen (white of egg), washed lean meat, casein, or curd of milk, gluten of flour, fibrin of blood, gelatin, glue, etc.

Cotton-seed oil, linseed oil, olive oil, corn oil, wheat oil, oat oil; the fat of milk (butter), the fat of meat (hog lard), mutton (mutton suet), beef (tallow), fish oil, etc.

Carbohydrates.

Mineral
Sodium chloride (common salt), phosphates of lime and soda, etc.

FUNCTIONS OF NUTRIENTS.

Having defined the classes of nutrients as they occur in foods, it is of interest now to state the offices performed by them in animal nutrition.

Water is not a nutrient in the sense in which the term is here used,

though the animal body can not be supported without it.

The ash, or mineral matter furnishes the material for the bony structure of the body, and, to a far less extent, of the soft tissues. Most of our foods and rations contain an abundant supply of the mineral element, so little or no notice need be taken of them in

feeding.

Protein differs from all the other nutrients, in containing the element nitrogen, and is the producer of flesh, ligaments, muscles, tendons, sinews, hair, hide, and all portions of the animal machine which has strength, except the bones. The protein bodies are of the utmost importance in the animal structure. They compose the larger part of the animal machinery, and are the exclusive source of its repair as occasioned by the continuous wear and tear of the system, due to the internal and external movements of the body; they are the basis of blood, and the source of casein in milk; and in the absence of sufficient quantities of fats and carbohydrates in the food for the production of heat and energy, they are transformed into fats, and perform the office of fats in nutrition. This latter transformation may also result from an excess of protein. The heat-producing power of protein is but little different from that of

carbohydrates; the amount of fat it produces is probably much less, while as a heat-producer, fat is worth about 2.25 times as much as protein. These facts, combined with the high cost of protein in foods, renders it usually uneconomical to feed protein for the production of fat to be either stored in the body as such, or to be used as fuel, since the fats and carbohydrates perform these offices, and cost much less. It is to be remembered that the protein bodies are the "flesh formers," and though they can perform the offices of fats and carbohydrates in nutrition, fats and carbohydrates can not take

the place of protein.

Fats and carbohydrates perform the same offices in the body—those of the production of heat to keep the body warm, and the force by which the animal mechanism is run. They are the "heat and force producers," and are consumed in the body as fuel, giving out heat, muscular, and intellectual energy. For the production of heat and energy one pound of fat is worth about 2.25 times as much as a pound of carbohydrates. Fats give out about 2.25 times the heat that carbohydrates do. Besides serving as heat and force producers, carbohydrates are converted in the animal body into fats, and, together with the fats of the food, are stored as such in fatty tissue. The value of carbohydrates for the production of fats is supposed to be in about the same proportion as the heat-producing powers of carbohydrates to fats.

Carbohydrates are not found in the animal body as such, but are converted into fats. There are, therefore, only four classes of substances composing the animal body, viz: water, ash, fats, and protein.

The main and distinctive offices of the nutrients of foods are: Ash, or mineral constituents, these are bone-producers; the protein bodies are the flesh-formers; and fats and carbohydrates are the heat and force producers. The nutrients already located in the animal body perform the same offices as the corresponding ones of foods. In case of a deficiency of nutrients in foods given, the fats, or protein and fats, are drawn upon to assist in running the animal machine. Carbohydrates and fats, in being consumed, prevent the consumption of protein, but so soon as they become insufficient to supply the necessary heat and force for the body, protein substances, in the form of lean meat, muscle, etc., are drawn upon. A sufficient supply of carbohydrates and fats is, therefore, necessary to the protection of the animal frame-work. The following is a statement of the

FUNCTIONS OF FOOD IN THE ANIMAL BODY.

Food nourishes and supports the body.

By supplying-

1. The materials of which it is made.

2. The materials to repair its waste and wear. By producing—

3. Heat to keep it warm.

4. Force and energy for muscular and other work.

These offices are performed by the nutrients:

Which is the basis of blood, lean meat, tendons, ligaments, sinews, hair, skin, etc.—

Is converted into fats.

Is used as fuel for heat and force. Are used as fuel for heat and force.

Are stored in the fatty tissue of the body. Carbohydrates (Nitrogen-free extract and

Are converted into fats and stored in the body, or Are used as fuel for heat and force.

crude fiber) Forms bone and a very small part of muscular Mineral matter and fatty tissues.

THE DIGESTIBILITY OF FEEDING-STUFFS.

As was stated in the beginning, the value of feeding-stuffs depends upon their composition and digestibility. The element of composition has been discussed; next will be considered the digestibility.

All the food eaten by an animal is not digested and used in nutrition, but only that portion which is dissolved by the alimentary agents and taken into the circulation of the system, the portion which is assimilated. The residue, or undigested portion, forms the

solid excrement of the animal.

The digestibility of a considerable number of American cattle foods have already been determined. This is done by feeding a uniform and weighed quantity of food of known composition for sufficient length of time to eliminate all residues of previously fed fodders, then collecting the dung for a number of days, usually five or six, weigh and analyze. The dung contains the undigested food residue, and the difference between this and the total food consumed gives the portion digested. Thus, two foods having the same composition, their values would be determined by the amounts of nutrients digested from each.

AVERAGE COMPOSITION AND DIGESTIBLE NUTRIENTS IN FEEDING-STUFFS.

In Table V is presented the composition, most of them averages, of quite a number of analyses, of American feeding stuffs of most interest in North Carolina. The composition, especially of coarse fodders, is affected by so many conditions, as soil, climate, season, cultivation, harvesting, handling, stage of maturity, etc., that the greater the number of good analyses entering into an average the nearer may the average be expected to represent the general composition.

The analyses of the feeding-stuffs shown in the table represent their composition as they are usually fed to animals. In addition

to the chemical composition of the foods obtained by analysis, is presented, also, the percentages of digestible nutrients in each, calculated from the percentage composition of the foods in the table by multiplying by the *coefficients of digestibility* of each food and nutrient contained in Table IV, which follows.

COEFFICIENTS OF DIGESTIBILITY.

The proportions of the different nutrients digested are obtained by dividing the total amount of each nutrient consumed by the amount digested. In Table IV are brought together the coefficients of digestibility of all the fodders, the compositions of which are presented in Table V. These are mainly the results of American experiments.

AMOUNT OF DIGESTIBLE MATTER IN FEEDING STUFFS.

In Table V is given the average composition of foods, and in Table IV their digestibility. By combining the data of these two tables the per cents. of digestible matter of the same foods, also shown in Table V, are obtained in the following way:

con	tains per , or pounds 100 of (see		Coefficients of digestibility of cowpea vine hay (see Table		Per cent., or lbs of digestible matter in 100 of cowpea-vine.
7.	Table V).		IV).		hay.
Dry matter	88.10	X	59.2	=	52.15
Protein	14.43	×	64.5	=	9.31
Fats	2.49	×	50.0	=	1.24
Nitrogen-free extract	41.22	X	70.7	=	29.14
Crude fiber		X	42.9	_	9.24
Ash	8.42	×	45.1	=	3.79

They may be regarded as representing, as well as per cent, the number of pounds of digestible nutrients in 100 pounds of the various foods in the condition in which they are fed, and are the amounts of these foods used by animals in the support of their bodies.

From this table of percentage of digestible matter in foods, it is easy to ascertain the amounts of digestible nutrients eaten per day by the animals we may be feeding. We only need to multiply the number of pounds of the food or foods eaten by the per cent of digestible nutrients in them. Say a cow is eating 20 pounds cowpea-vine hay per day, then the amounts of digestible nutrients consumed are found as follows:

	Per cent, of diges tible matter in cowpea vine hay		No. 1bs hay eaten.		Lbs of diges- tible mat ter eaten.
Dry matter	52.15	X	20	=	10.43
Protein	9 31	X	20	=	1.86
Fats	1.24	X	20	gallenia Mindre	
Nitrogen free extract	29.14	X	20	=	5.82
Crude fiber	9.24	X	20	=	1.85
Ash	3.79	X	20	=	.76

The amount of digestible matter eaten by any animal may be obtained in a similar way. Where two foods are fed in a ration each will have to be operated upon separately, and their sums taken

for the total digestible nutrients consumed.

To save the feeder the time and trouble of making these calculations, the amounts of digestible dry matter and nutrients in 1, 2, 3, 4, 5, 10, and 2,000 pounds of the coarse fodders, grains, seeds, and by-products, whose composition and digestibility are presented in Tables V and IV, have been carefully calculated, and are given in Table III. The nitrogen-free extract and crude fiber have been combined in this table under the one name of carbohydrates, because the digestible portion of each is considered of equal value, and they perform the same offices in animal nutrition. The ash is also omitted, for the reason given in the first part of this bulletin. This table must not be supposed to give the absolute amounts of digestible nutrients contained in all the qualities of these various foods, for no two of the same kind are likely to have exactly the same composition, and may differ very widely, nor are any two animals, even of the same kind, likely to possess the same digestive capacity and power of assimilating foods. Even with these unavoidable defects the knowledge thus ascertained can be put to practical use, and, in connection with the Feeding Standards, soon to be described, stock can be fed far more intelligently, safely, and economically.

The digestible nutrients have been calculated for the most convenient numbers only, but by combining these and adding the corresponding nutrients, the amounts of digestible nutrients can be easily obtained for any quantity of food that is likely to be fed under ordinary circumstances. Thus, suppose we desire to know the pounds of nutrients in 15 pounds of any of the foods, we have merely to add the nutrients corresponding to the 10 and 5 pound weights; for 19 add those for 10, 5, and 4, and so on for any number up to 20, which may be obtained by moving the decimal point two places to the left in the line for 2,000 pounds. For numbers larger than 20, multiples may be used, as for 40 take four times

the nutrients for 10.

The nutrients in 2,000 pounds of each of the foods were inserted in this table to enable comparison of the digestible nutrients in one ton of the different foods. The chief value of Table III will be found in the compounding of rations, and it will receive further

consideration under that head.

II. FEEDING STANDARDS.

The composition and digestibility of feeding stuffs have been considered, and in the following tables the amounts of digestible nutrients in different quantites of foods will be presented. The next question asked by the interested feeder is, how much and in what proportion should the digestible nutrients be fed to different animals

for different purposes? This is a very difficult question to answer with accuracy. The results of a great many years patient investigation on this subject in Germany have found expression in the German Feeding Standards. In these it has been attempted to give the needs of various animals, both as to amount of food and amount and proportion of digestible nutrients. The standards compiled by Wolff (Tables I and II) on this subject have been widely published and used in this country, and have, especially of late years, been the subject of discussion and criticism. We have no feeding standards of our own in America, and while the German ones no doubt need to be modified and changed to suit our climate, foods and animals, yet the principle and example are good, and can serve as guides till we have accumulated sufficient data to formulate ones better suited to our particular needs.

It is to be remembered that the feeding standards presented do not represent invariable scientific facts, but are the average results of a great many carefully conducted experiments; then, too, the compositions and coefficients of digestibility of the feeding-stuffs are the averages of analyses and digestion experiments. These facts borne in mind, the feeder will not expect certain definite results

from them.

Another observation of interest in connection with feeding standards, is the greater proportion of protein to carbohydrates and fats in the rations for young and growing animals, than in those for grown, fattening, and working ones. This is precisely as would be expected, since the bodily frame work of the young animal is being built up at this stage of growth, and hence requires a larger proportion of protein, or flesh formers.

NUTRITIVE RATIO.

"Total organic matter" in the above table represents the water-free food, minus the ash; the "total nutritive substance" is the sum of digestible protein, carbohydrates, and fats; and the "nutritive ratio" is the ratio of the digestible protein to the sum of the digestible carbohydrates and fats, the fats being previously multiplied by 2.5.*

It will be seen from Table I that the standards are for animals of 1,000 pounds live weight. The standards are to be increased or diminished in proportion as the weight of the animal is greater or less than 1,000. In Table II, they have been thus culculated to correspond with the weights of some animals weighing less than

1,000 pounds.

^{*}Experimenters and feeders now generally use factors varying from 2.2 to 2.27 for bringing fats to the same nutritive basis as carbohydrates, and we agree with them that these factors are more nearly correct than 2.5; but we adhere to the latter in order that our ratios may be comparable with those in the German standard.

TABLE I. FEEDING STANDARDS.—ACCORDING TO WOLFF. Per day and per 1,000 lbs. live weight.

_		NUTRITIVE (DIGESTI- BLE) SUBSTANCES.				ΛΘ.**	tio.
		Total organic substance.	Protein,	Carbohy- drates.†	Fats.	Total nutritive substance,**	Nutritive ratio.
2. 3. 4. 5. 6.	Oxen at rest in stall Wool sheep, coarser breeds Wool sheep, finer breeds Oxen moderately worked Oxen heavily worked Horses lightly worked Horses moderately worked Milk cows Fattening oxen, 1st period Fattening oxen, 2d period Fattening sheep, 1st period Fattening sheep, 2d period	Lhs. 17.5 20.0 22.5 24.0 26.0 27.0 27.0 26.0 25.0 25.0 25.0 25.0	Lbs. 0.7 1.2 1.5 1.6 2.4 1.5 1.8 2.8 2.5 2.5 3.0 2.7 3.0 8.5	Lbs. 8.0 10.3 11.4 11.3 13.2 9.5 11.2 13.4 12.5 15.0 14.8 14.8 15.2 14.4	Lbs. 0.15 0.20 0.25 0.30 0.50 0.40 0.60 0.70 0.60 0.50 0.60	Lbs. 8.85 11.70 13.15 13.20 16.10 11.40 13.6 16.2 15.40 18.50 18.50 18.10 18.70 18.50	Lbs. 1:12,0 1:9.0 1:8,0 1:7.5 1:7.0 1:7.0 1:6.0 1:5.4 1:6.5 1:5.5 1:6.0 1:5.5
	Fattening swine, 1st period Fattening swine, 2d period Fattening swine, 3d period	36.0 31.0 23.5	5.0 4.0 2.7	27 24 17		32.50 28.00 20.20	1: 5.5 1: 6.0 1: 6.5
	Growing cattle: Av. live weight Age. Mos. per head. 2— 3 150 lbs. 3— 6 300 lbs. 6—12 500 lbs. 12—18 700 lbs. 18—24 850 lbs.	22.0 23.4 24.0 24.0 24.0	4.0 3 2 2.5 2.0 1.6	13.8 13.5 13.5 13.0 12.0	2.0 1.0 0.6 0.4 0.3	19.8 17.7 16 6 15.4 13.9	1: 4.7 1: 5.0 1: 6.0 1: 7.0 1: 8.0
	Growing sheep: 5	28 0 25.0 23.0 22.5 22.0	3.2 2.7 2.1 1.7 1.4	15.6 13.3 11.4 10.9 10.4	0.8 0.6 0.5 0.4 0.3	19.6 16.6 14.0 13.0 12.1	1: 5.5 1: 5.5 1: 6.0 1: 7.0 1: 8.0
11.	Growing fat pigs: 2— 3	42.0 34.0 31.5 27.0 21.0	7.5 5.0 4.3 3.4 2.5	25 23 20	3.7	37.5 30.0 28.0 23.8 18.7	1: 4.0 1: 5.0 1: 5.5 1: 6.0 1: 6.5

Note.—The feeding periods mentioned in the above table have reference to the divisions of the whole time an animal is fed, and their respective lengths will depend on how long the animal is to be fed, its condition at beginning, and the judgment of the feeder.
*Represents the water free food (or dry matter), less the ash.

†Nitrogen-free extract and crude fiber are taken together to form carbohydrates.

**Sum of the three preceding columns.

TABLE II. FEEDING STANDARDS.

Per day and per head.

-		000		TIVE (DI SUBSTA		Ve ICe.	ratio,
		Total organic substance,	Protein.	Carbohy- drates.	Fats.	Tctal nutritive substance	Nutritive rat
	Av. live weight	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.	Lbs.
Age. Mos. 2— 3	per head.	3 3	0.6	2.1	0.30	3.00	1:4.7
3-6	300 lbs	7.0	1.0	4.1	0.30	5 40	1:5.0
6-12	500 lbs	12.0	1.3	6.8	0.30	8.40	1:6.0
12—18	700 lbs	16.8	1.4	9.1	0 28	10.78	1:7.0
18—24	850 lbs	20.4	1.4	10.3	0.26	11.96	1:8.0
Growing sheep:							
5— 6	56 lbs	1.6	0.18	0.87	0.045	1.095	1:5.5
6 8	67 lbs	1.7	0.17	0.85	0.040	1.060	1:5.5
8-11	75 lbs	1.7	0.16	0.85	0.037	1 047	1:6.0
11—15	82 lbs	18	0.14	0.89	0.032	1 062	1:7.0
15—20	85 lbs	1.9	0 12	0.88	0.025	1 026	1:8.0
Growing fat swine		0.1	0.90	1	50	1 1 00	4.40
2— 3 3— 5	50 lbs 100 lbs	2.1 3.4	0.38	1.		1.88 3.00	1:4.0
5— 5 5— 6	125 lbs	3 9	0.50	2.		3.50	1:5.5
6— 8	170 lbs	4.6	. 0 58	3		4.05	1:6.0
8—12	250 lbs	5,2	0.62	4		4 67	1:6.5

NOTE.—The German pound equals 1 1 pounds avoirdupois. The above figures should therefore be increased correspondingly to represent American pounds, but in practice this is probably not necessary, since these weights represent only the approximate needs of the animals.

III. HOW STOCK RATIONS CAN BE CALCULATED.

A ration is the amount of food eaten by an animal per day. Table III contains data in a most available and handy form for compounding rations to correspond with the German standards just given, or with any other formula which may have proven valuable in the experience of the individual feeder, or for estimating the amounts of digestible nutrients the farm animals may now be consuming.

An example or two will make sufficiently clear the calculation and compounding of rations, so that the feeder, by applying results in Table I to whatever foods he may have, can make up rations to correspord with whatever formula he may wish. Suppose we want to compound a ration for a 1,000 pound milch cow, and have corn silage, cowpea-vine hay, corn meal, and cotton-seed meal from which to make it up. By reference to Table III, we find the following amounts of nutrients corresponding to the weights of food taken.

		D	IGESTIBLE.	
Foods Taken.	Weight. Lbs.	Protein. Lbs.	Carbo- hydrates. Lbs.	Fats. Lbs.
Corn silage	30 12 5	.216 1.117 .266	3.984 4.605 2.958	.120 .148 .180
Total	47	1 599	11.547	.448

Using the amounts of corn silage, cowpea-vine hay, and corn meal for making the ration, it falls only slightly below the standard in amounts of carbohydrates and fats, but is notably deficient in protein, so we need to add to it a small quantity of some food rich in protein. Cotton-seed meal is a common food with us, and a good one for this purpose. We will then add to the ration as above, $2\frac{1}{2}$ pounds of cotton-seed meal:

		DIGESTIBLE.			
FOODS TAKEN.	Weight. Lbs.	Protein.	Carbo- hydrates. Lbs.	Fats. Lbs.	
Ration as above	47 2½	1.599 .840	11.547 .575	.448 .240	
Total Sandard for 1,000-pound cow	49½	2.439 2.50	12.122 12.50	.688	

Nutritive ratio of above ration. 1 to 5 67, obtained thus: $(fats.688 \times 2.5) + carbohydrates$, (12.122) = 13.842, $13.842 \div protein$, (2.439) = 5.67.

The 21 pounds cotton seed meal are thus seen to bring the ration very near the German standard for a 1,000-pound milch cow. There is a deficiency of carbohydrates, but the excess of fats compensates for this. It is near enough to the standard for all practical purposes. The proportion of the foods in the above ration is not absolute and unchangeable, but may be varied in a number of ways, so as to get practically the same amounts and proportions of digestible nutrients. What we would have understood is that the above is not the only ration that can be made from those foods containing those quantities of digestible nutrients, but a number may be by varying the proportions of them. This the feeder will have to do for himself, taking into account the quantity and foods he may have and the purposes for which he is feeding The above is merely an example. If the animal weighs 700 or 800 pounds take seven-tenths $(\frac{7}{10})$ or eighttenths (1%) of the ration for the 1,000-pound animal, or whatever proportion the weight bears to 1,000.

It will be observed that the total "organic matter" was calculated in the feeding standards, but not in the ration presented above. Organic matter is merely a measure of the bulk of the ration, and, if the ration is not made too bulky, or too concentrated, it need not

be further considered.

TABLE III. SHOWING AMOUNT OF ORGANIC SUBSTANCE AND OF DIGESTIBLE NUTRIENTS IN 1, 2, 3, 4, 5, 10, AND 2,000 POUNDS OF FEEDING STUFFS.

Foods.	Weight.	Organic Substance. Lbs.	Total Protein. Lbs.	Carbo- hydrates. Lbs.	Fats.
Cowpea-vine bay	1	.7958	.093	.3838	,0124
	2	1.5916	.186	.767	.024
	3 4	2.3874 3.1832	$\frac{.279}{.372}$	1.151	.037
	5	3.9790	.465	1.919	.062
	10	7.9580	.931	3.838	.124
	2,000	1591.60	186.20	767.60	24.80
Crimson clover hay	1	.8142	.1050	.4131	.00898
	2	1.6384	.210	.826	.018
	3 4	2.4426 3.2568	,315 ,420	1 239	.027
	5	4.0710	.525	2.065	.045
	10	8.1420	1.050	4 131	.089
	2,000	1628 40	210 00	826.26	17.96
Lucerne, or alfalfa hay		.8157	,1085	.3716	.0115
	2 3	1.6314 2 4471	,217	.743	.023
	4	3.2628	434	1.486	.046
	5	4.0785	.542	1 858	.057
	10	8.1570	1.085	3.716	.115
	2,000	1631.40	217.00	743.20	23.00
Red-clover hay		.8222	.0617	.3602	.0103
	2 3	1.6444 2 4666	.123	1.080	.020
	4	3,2888	.246	1 440	.041
	5	4,1110	,308	1.801	.051
	10	8 2220	.617	3.602	.103
	2,000	1644.40	123.40	720.40	20.60
Alsike clover hay	1 2	: .8346	.073	.3852	.0136
	3	1.6692 2.5038	.146	.770 1 155	.040
	4	3.3384	.292	1,540	.054
	5	4.1730	.365	1.926	.068
	10	8.3460	.731	3.852	.136
General to be a second of the second	2,000	1669.20	146.20	770.40	27.20
Soy (soja) beans (sheep)	1 2	.8451 1.6902	.2964	.17964	.15886
	3	2,5353	.889	.5389	4766
	4	3.3804	1.186	.7186	.6354
	5	4.2255	1.482	.8982	.7943
	10	8 4510	2.964	1.796	1.588
Soy bean hay	2,000	1690.20 .8213	592.8	359.28	317.72
boy boat hay	2	1.6426	.225	.846	.034
	3	2 4639	.338	1 269	.052
	4	3.2852	.450	1.692	.069
	5	4 1065	,563	2.115	.087
	2.000	8.2130 1642.60	1.12 225.40	4.23 846.20	174 34.80
Soy (soja) bean silage		,2296	.03069	.08930	.0159
(ada) ada sambosses	2	.4592	.061	.178	.031
	3	.6888	,092	.267	.047
	4	.9184	.122	.357	.063
	5	1,1480 2,2960	.153	.446	.079
	2,000			.893	31.80

TABLE III. SHOWING AMOUNT OF ORGANIC SUBSTANCE AND OF DIGESTIBLE NUTRIENTS IN 1, 2, 3, 4, 5, 10, AND 2,000 POUNDS OF FEEDING STUFFS.—Continued.

Foods.	Weight. Lbs.	Organic Substance. Lbs.	Total Protein. Lbs.	Carbo- hydrates. L ^h s	Fats. Lbs.
Peanut vine hay	1 2 3	.8461 1.6922 2 5383	.0653 .13060 .195.	.4442 883 1.332	.0298
Corn fodder (whole plant)	10 2,000 1 2 8	3 3844 4.2305 8.4610 1692.20 .6349 1 2698 1 9047 2.5396 3.1745	.261. .326. .653. .130.60 .0260 .052 .078	1.776 2 221 4.442 888.40 .3747 .749 1.124 1.498	.089 .119 .149 .298 59.60 .00903 .018 .027
Corn stover (whole plant, minus ears).	2,000	6.3490 1269.80 .7227 1.4454 2.1681 2.8908 3.6135	.130 .260 .52.0 .02806 .054 .084 .112 .140	1.873 3.747 749.40 4233 846 1.269 1.693 2.116	.045 .090 .18.06 .0069 .013 .020 .027 .034
Corn tops, cut above ears	2,000 1 2 3 4 5	7.2270 1445.40 .8059 1.6118 2.4177 3.2236 4.0295	.280 56.12 .0308 .061 .092 .123	4.233 846.60 .4424 .884 1.327 1.769 2.212	.069 13.80 .0162 .032 .048 .064
Corn butts or stubble, portion below ears.	2,000	8,0590 1611.80 5067 1,0134 1,5201 2,0268 2,5335	.134 .308 .61.60 .0037 .007 .011 .014	4.42 884.80 3393 .678 1.017 1.357 1.696	.16 32.40 .0086 .017 .025 .034
Corn husks or shucks	10 2,000 1 2 3 4 5 10	5.0670 1013.40 .8854 1.7708 2.6562 3.5416 4.4270 8.8540	7.40 .0098 .019 .029 .039 .049	8.393 678.60 .6473 1.294 1.941 2.589 3.236	.086 17.20 .0028 .005 .008 .011 .014
Pulled fodder, blades alone	2,000	8.5540 1770.80 .8134 1.6268 2.4402 3.2536 4.0670 8.1340	19.60 .0534 .106 .160 .213 .267	6.47 1,294.60 .4334 .866 1 300 1.733 2.167	,028 5.60 .0196 .039 .058 .078
Corn silage, whole plant	2,000 1 2,000 3 4 5 10 2,000	1626.80 .2686 .5372 .8058 1.0744 1.3480 2.6860 587.20	.534 106.80 .00726 .014 .021 .029 .036 .072 14.52	4.334 866.80 .1328 .265 .398 .531 .664 1.328 .265.60	.196 39.20 .0040 .008 .012 .016 .020 .040

TABLE III. Showing Amount of Organic Substance and of Digestible Dry Matter and Nutrients in 1, 2–3–4, 5, 10, and 2,000 Pounds of Feeding–Stuffs —Continued.

			•		
Foods.	Weight. Lbs.	Organic substance. Lbs.	Total protein.	Carbo- hydrates. Lbs.	Fats. Lbs.
Timothy hay	1 2	.8557 1.7114	.0303	.4630	.0121
	3 4	2 5671 3 4228	.090	1.389	.036
D. J. J. (Association and	3 10 2,000	4.2785 8.5570	.151	2.315 4.630	.121
Red top hay (Agrostis vulgaris)	2,000	1711.40 .8455 1.6910	60.60 .0465 .093	926.00 .4475 .895	.0094 .018
	3 4	2.5365 3 3820	.139	1.342 1.790	.028
	$ \begin{array}{c c} 5 & \\ 10 & \\ 2.000 & \\ \end{array} $	4 2275 8.4550	.232	2 237	.047
Orchard grass hay	2,000	1691.00 .8457 1.6914	93.00 .0408 .081	895 00 .4382 .876	18.80 .0129 .025
	3 4	2.5371 3.3828	.122	1.314 1.752	.038
	$\begin{bmatrix} 5 \\ 10 \\ 2,000 \end{bmatrix}$	4.2285 8.4570	.204	2.191 4.382	.064
Johnson grass hay	1 2	1691.40 .8179 1.6358	81.60 .0337 .067	876 40 .3980 .796	25.8 .0116 .023
	3 4	2.4537 3.2716	.101 .134	1.194 1.592	.034
	$\begin{bmatrix} 5 \\ 10 \\ 2,000 \end{bmatrix}$	4.0895 8.1790 1635.80	.168 .337 67.40	1.990 3.980 796.00	.058 .116 .23.20
Mixed hays	1 2	.7986 1.5972	.0299	.3788 .757	.0104
	3 4	2.3958 3.1944	.089	1.136 1.515	.031
	5 10 2,000	3.9930 7.9860 1597,20	.149 .299 59.80	1.894 3.788 757.60	.052 .104 20.80
Mixed hays (horse)	1 2	.7986 1.5972	.036	.356 .712	.00376 .007
	3 4 5	2.3958 3.1944 3.9930	.108 0.144 .180	1.068 1.424 1.780	.011 .015 .018
	2,000	7.9860 1597.20	360	3.560	.037
Cattail, or pearl millet	1 2	.8331 1.6662	.0622	4211	.0091
	3 4 5	2.4993 3 3324 4.1655	.186 .248 .311	1.263 1 644 2.105	.027 .036 .045
	2,000	8.3310 1666.20	.622 124.40	4.21 t 842 20	.091 18.20
Sorghum fodder (leaves only)	2 3	.8301 1.6602 2.4903	.0584 .116 .175	.4582 .906 1.364	.0212 .042 .063
	5	3.3204 4.1505	.233	1.832 2.291	.084 .106
	2,000	8.3010 1660.20	.584 116.80	4.783 956.60	.212 42.40

TABLE III. Showing Amount of Organic Substance and of Digestible Dry Matter and Nutrients in 1, 2, 3, 4, 5, 10, and 2,000 Pounds of Feeding-Stuffs.—Continued.

Foods.	Weight.	Organic Substance. Lbs.	Total protein.	Carbo- hydrates. Lbs.	Fats. Lbs.
Sorghum bagasse	1 2	.8587 1.7174	.0047	5218 1.043	.0067
	3 4 5 10	2 5761 3 4348 4.2935 8 5870	.014 018 .028 047	1.565 2.087 2.609 5.218	.020 .026 .033 .067
Rice bran (sheep)	2,000	1717.40 8038 1.6076	9 40 .0933 .186	1.043.60 .5643 1.128	13 40 .0782 .156
	3 4 5	2 4114 3 2152 4 0190 8 0380	.280 .373 .466	1.693 2.257 2.822	.234 .313 .391
Oat straw	2,000 1 2	1607.60 8644 1 7288	.933 186.68 ?	5.644 1.128.78 .4456 .891	.782 .156.48 .0088 .017
	3 4 5	2 5932 3 4576 4 3220	3	1.336 1.782 2 228	.026 .035 .044
Whole raw cotton-seed	2 000 1 2	8 6440 1728 80 .7959 1 5918	? ? .0988 .196	4.456 891.20 .2792 .558	.088 17.60 .1689 .387
	3 4 5	2 3×77 3.1×36 3 9795	.294 .393 .491	.837 1.116 1.396	.506 .675 .844
Whole roasted cotton-seed	2,000	7 9590 1591.80 .8842 1 7684	.983 196.60 .0756 .151	2.792 558 40 .2909	1 688 337 60 .1611
	3 4 5	2 6526 3.5368 4.4210	.131 .226 .302 .378	.581 .872 1 163 1.454	.3:.2 .483 .644 .805
Cotton-seed meal	2 000	8 8420 1768 40 .8560	.756 151.20 .3405	2.909 581.80 .2153	1.611 322.20 .0919
	2 3 4 5	1.7120 2.6680 3.4240 4.2800	.681 1.021 1.362 1.702	.430 .645 .861 1 076	.183 .275 .367
Cotton-seed hulls	2,000	8.5600 1712 00 8612	3.405 681.00 .00244	2.153 430.60 .3232	.459 .919 .183 80 .0232
	3 4	1.7224 2.5836 3.4448	.0048	.646 .969 1.292	.046 .069 .092
Wheat bran	5 10 2,000 1	4 3060 8 6120 1722.40 .8197	0122 .0244 48.80 .1197	1.6:6 3.232 646.40 .3684	.116 .232 46.40 .0282
	3 4	1.6394 2.4591 3 2788	.239 .359 .478	.736 1.105 1.473	.056 .084 .112
	10 2,000	4.0985 8.1970 1639,40	.598 1.197 239.40	1.842 3.684 786.80	.141 .282 56.40

TABLE III. Showing Amount of Organic Substances and of Digestible Dry MATTER AND NUTRIENTS IN 1, 2, 3, 4, 5, 10, AND 2,000 POUNDS OF FEEDING-STUFFS.—Continued.

	STUFFS	-Continuea.			
Foods.	Weight Lbs.	Organic Substance. Lbs.	Total protein.	Carbo- hydrates. Lbs.	Fats. Lbs.
Corn meal (cows)	1	.8294	.0532	.5916	.0361
Corn mear (cows)	2	1.6588	.106	1.183	.072
	3	2 4882	.159	1.774	.108
	4.	3 3176	.212	2.366	.144
	5	4.1470	.266	2 958	.180
	10	8 2940	.532	5 916	.361
Claus and (miss)	2,000	1658.80 .8294	106.40	1.183.20	72.20
Corn meal (pigs)	2	1 6588	.157	1.291	.064
	3	2 4882	.235	1.936	096
	4	3 3176	.314	2.582	.128
	5	4.1470	.392	3.228	.160
	10	8.2940	.785	6.456	.321
C 187	2.000	1658.80	157.00	1 291 20	64.20
Corn meal (goats)	1 2	.8294 1 6588	.0532	.591 6 1.183	.0361
	3	2.4882	.159	1.774	.108
	4	3 3176	.212	2 366	.144
	5	4 1470	.266	2 958	.180
	10	8 2940	.532	5.916	.361
~	2.000	1658 80	106 40	1,183,20	72.20
Cowpeas (swine)	1	.8197	.1828	.5664	.00708
	2 3	1.6394 2.4591	.365 .548	1 132 1 699	021
	4	3.2788	.731	2.266	.028
	5	4 0985	.914	2 832	.035
	10	8.1977	1.828	5 664	.070
	2,000	1639 40	365 6	1.132 8	14.16
Potatces (swine)	1 2	.2076	.0155	.1733	
	3	4152 .6228	.031	.346 .519	
	4	.8304	.062	.693	
	5	1.0380	.077	.866	
	10	2 0760	.155	1.733	
D: 1 1 (!)	2,000	415 20	31.04	346.6	0010
Rice bran, or douse (swine)	1 2	8718 1.7436	.0638	.7888 1.577	.0013
	8	2.6154	.191	2 366	.003
	4	3.4872	.255	3.155	,005
	5	4.3590	.319	3 944	.006
	10	8.7180	.638	7 888	.0130
D 1 (i)	2,000	1743.60	127.68	1.577.6	2.60
Rye bran (swine)	$\frac{1}{2}$.8477 1.6954	.194	.4747 .949	.0161
	8	2.5431	.291	1.494	.048
	4	3,3908	.389	1 898	.064
	5	4.2385	.486	2 373	.080
	10	8.4770	.972	4 747	.161
Clamata (homas)	2,000	1695.40	194.0	949.48	32.34
Carrots (horse)	1 2	.1039	.0113	.0709	
	3	,2078 ,3117	.022	.141	
	4	.4156	.045	.283	
	5	.5195	.056	.354	
	10	1.0390	.113	.709	
	2,000	207.80	22.64	141.84	

TABLE III. Showing Amount of Organic Substance and of Digestible Dry Matter and Nutrients in 1, 2, 3, 4, 5. 10, and 2,000 Pounds of Feeding Stuffs.—Continued.

STOFFS.—Continuea.							
FOODS.	Weight Lbs.	Organic Substance. Lbs.	Total protein. Lbs.	Carbo- hydrates. Lbs.	Fats. Lbs.		
Corn and cob meal (goats)	1 2 3	.8396 1.6792 2.5188	.0545 .109 .163	.5904 1.180 1.771	.0297 .059 .089		
	4 5 10 2,000	3.3584 4 1980 8 3960 1679 20	.218 .272 .545 109 00	2.361 2.952 5 904 1,180.00	.118 .148 .297 59 40		
Corn and cob meal (pigs)	1 2 3	.8396 1 6792 2 5188	.0633 .126 .189	.5638 1.127 1. 6 91	.0288 .057 .086		
	4 5 10 2,000	3.3584 4 1980 8 3960 1679,20	.253 .316 .633 126 60	2.255 2.819 5.638 1,127.60	.115 .144 .288 57.60		
Whole corn (pigs)	1 2 3	.8793 1.7586 2 6379	.0840 .168 .252	.6465 1.293 1 939	.0362 .072 .108		
	5 10 2,000	3 5172 4 3965 8.7930 1758 60	.336 ,420 .840 168.00	2.586 3.232 6.465 1 293.00	.144 .181 .362 72 40		
Corn (horse)	1 3 4	.8793 1 7586 2 6379 3.5172	.0809 .161 .242 .323	.6515 1 303 1.954 2.606	.0332 .066 .099		
	5 10 2,000	4.3965 8 7930 1758 60	.404 .809 161.80	3,257 6 515 1 302.92	.166 .332 66.40		
O.tts	1 2 3 4	8609 1.6218 2.5827 3.4436	0876 .175 .262 .350	.4611 $.922$ 1.383 1.844	.0394 .078 .118 .157		
	10 2 000	4 3045 8 6090 1621.80	.438 .876 175 20	2 305 4.61 922 20	.197 .394 78-80		
Oats (horse)	1 2 3 4	.8609 1 6218 2.5827 3 4436	.0904 .180 .271 .361	,4795 ,959 1,438 1,918	.0342 .068 .102 .136		
20 10 10	5 10 2 000	4 3045 8 6090 1621 80	.452 .904 180.96	2 397 4.795 959.08	.171 0.342 68.40		
Cowpeas, ground (horse)	1 2 3 4	.8197 1 6394 2 4591 3.2788	.178 .356 .534 .712	.5479 1.095 1.643 2.191	.0019 .003 .005 .007		
(large one ground (nave in an ta)	5 10 2,000	4 0985 8 1970 1639.40	.890 1.780 356 0	2.739 5 479 1 095.80	0.019 3 80		
Cowpeas, ground (ruminants).	1 2 3 4	8197 1.0394 2 4591 3 2788	.1827 .365 .548 .731	.5401 1 080 1.620 2.160	.0117 .023 .035 .046		
	5 10 2 000	4.0985 8.1970 1639.40	.913 1 827 365.40	2.700 5.401	.058		

TABLE III. SHOWING AMOUNT OF DIGESTIBLE DRY MATTER AND NUTRIENTS IN 1, 2, 3, 4, 5, 10, AND 2 000 POUNDS OF FEEDING-STUFFS.

1, 2, 0, 4, 0, 10, A	ND 2 000	I OUNDS OF	FEBDING-5	TUFFS.	
Foods.	Weight. Lbs.	Organic Substance. Lbs.	Total Protein. Lbs.	Carbo- hydrates. Lbs.	Fats. Lbs.
Corn and cob-meal	1 2 3	.834 1.668 2.502	.065 .129 .194	.563 1 12 1.788	.029 .057 .086
	5 10	3.336 4.170 8 340 1668 0	.258 .323 .646 129.2	2.251 2.814 5.628 1125 6	.115 .144 .287 57.4
Barley meal	2,000 1 2 3	.855 1 710 2.565	.074 .147 .221	.629 1 258 1 886	.020 .039 .059
	4 5 10 2,000	3 420 4.275 8 550 1710 0	294 .368 .736 147.2	2.515 3.244 6 488 1257.6	.078 .098 .196 39.2
Linseed meal (new process)	1 2 3 4	840 1 680 2 520 3 360	.279 .558 .837 1 116	.364 .727 1 091 1.454	.027 .055 .082 .109
	5 10 2,000	4.200 8.400 1680 0	1 395 2.789 557.8	1.818 3.636 727.2	.137 .273 54.6
Peanut meal	1 2 3	846 1 693 2.538 3.384	.429 .858 1 288 1 718	.228 .456 .685 .913	.069 .137 .206 .274
Hominy chops	5 10 2,000	4 230 8 460 1692.0 864	2.147 4.294 858.8	1.141 2 282 456.4 .552	.343 .686 137.2
Hommy enops	3 4	1 728 2 593 3 456	.149 .223 .298	1.105 1.657 2 210	.136 .204 .272
Corn and oats	$egin{array}{c c} 5 & \\ 10 & \\ 2 & 000 & \\ 1 & \end{array}$	4.320 8 640 1728.0 859	.372 .745 149.0	2.762 5 524 1104.8	.340 .680 136.0
(equal parts ground)	2 3 4 5	1.718 2 577 3 436 4.295	.148 .222 .296 .369	1.224 1.836 2.448 3.060	.074 .112 .149
Barley	2,000	8 590 1718 0 867	.739 147 8 .087	6 120 1224.0 .648	.186 .372 .74 4 .016
	2 3 4 5	1 734 2 601 3 468 4 335	.174 .261 .348 .435	1 296 1 944 2.592 3.241	.032 .048 .064 .080
Rye	2,000	8.670 1734.0 .865	.869 173.8 .091	6.483 1296.6 .697	.160 82.0 .014
	2 3 4 5	1 730 2,595 3 460 4.325	.182 .273 .365 .456	1.394 2.092 2.789 3.486	.027 .041 .054 .068
	2,000	8.650 1730.	.912 182.4	6.973	.136 27.2

TABLE III. Showing Amount of Digestible Dry Matter and Nutrients in 1, 2, 3, 4, 5, 10, and 2,000 Pounds of Feeding-Stuffs.

1, 2, 5, 1, 5, 10,		1 JOHDO OF	1	102201	
	Weight.	Organic	Total	Carbo	The desired
Foods.	Lbs.	Substance.	Protein.	hydrates.	Fats.
	Los.	Lbs.	Lbs.	Lbs.	Lbs.
	·				
Wheat	1	.877	100	692	.017
Wheat	2	1.754	.102	1.384	.034
	3	2 631	.307	2 076	.050
	4	3 508	.409	2.768	.067
	5	4, 385	.511	3 460	.084
	10	8 770	1,023	6,921	.168
	2,000	1754.	.204.6	1384.2	33.6
Wheat midling	1	.807	.128	.531	.034
9	2	1.614	.256	1 063	.068
	3	2 421	.384	1 594	.102
	4	3 228	.512	2.126	.136
	5	4 035	.640	2 657	.170
	10	8 070	1 279	5.315	.340
WWY	2 000	1614.	255.8	1063 0	68.0
Wheat shorts	1	.836	.122	,500	038
	2 3	1.672	.244	1,000	.077
	4	2 508 3 344	.367	1.499 1.999	.115
	5	4.180	.611	2.499	,195
	10	8.360	1.222	4.998	.383
	2,000	1672.	.244.4	999 6	77.6
Buckwheat midling	1	.820	.173	.266	.045
	2	1 640	.347	.532	.091
	3	2 460	.520	:797	.136
	4	3.280	. 694	1 063	.181
	5	4.100	.867	1.334	.227
	10	8 200	1.734	2.658	.454
_	2 000	1640.	346.8	531.6	90.8
Beets	1.	.121	.012	.088	
	. 2	.242	.024	.176	.001
	3	.363	.036	.264	.001
	5	.605	.048	,352 ,440	.002
	10	1.210	.060	.880	.002
	2.000	242.	24.	.176.	1,
Mangel Wurzels	1	.080	.010	.056	.001
801 11 001 001	2	.160	.020	112	.002
	3	,240	030	.168	.003
	4	.320	.040	.224	.004
	5	.400	.050	.280	.005
	10	1 600	.100	1.120	.011
***	2 000	160.	20.	112.	2.
Turnips	1	.085	.008	.065	.001
1.	2	.170	.016	.129	.002
	3 4	. 255	.024	.194	.003
	5	,340 ,425	.032	,258 ,323	.004
	10	4 250	,400	.646	.005
	2,000	170.	16.	129.	2.
Ruta-bagas	1	.102	.009	.077	.001
	2	,204	.018	.155	.002
	8	,306	.026	.232	.003
	4	.408	.036	.309	.004
	5	.510	.044	387	.005
	10	2.040	.088	.774	.011
	2,000	204.	18.	.155.8	2.

TABLE III. Showing amount of Digestible Dry Matter and Nutrients in 1, 2, 3, 4, 5, 10, and 2,000 Pounds of Feeding-Stuffs.

Foods.	Weight.	Organic Substance,	Total Protein.	Carbo- hydrates.	Fats.
		Lbs.	Lbs.	Lbs.	
Wheat straw	1	862	,008	.379	.005
	2	1 724	.016	.758	.009
	3	2 586		1.137	.014
	4	3.448	.032	1.516	.018
	5	4 310	.040	1.895	.023
	2 000	$8.620 \\ 1724$.080 32.	3.790 758.	.045
Rye straw	2 000	.897	.007	.427	9. .004
	2	1 794	.014	.854	.007
	3	2,691	.021	1 281	.011
	4	3.588	.028	1.708	.014
	5	4.485	.035	2 135	.018
	2,000	8.970	.078	4 270	.035
Hungarian grass hay	2,000	1794. .863	14. .045	854. 517	7.
	2	1.626	.090	1.034	.013
	3	2.489	.135	1.551	.039
	4	3 252	.180	2.068	.052
	5	. 4 115	.225	2.585	.065
	10	8.230	.450	5.170	.130
Full cow's milk (calves)	2 000	1626. .1402	90	1034.	26.
I dil cow s talla (carves)	2	.2804	.0309 .061	.0536	.0534
	3	.4206	.092	.160	.160
	4	.5608	.123	.214	,213
	5	.7010	.154	.268	.267
	10	1.4020	.309	.536	.534
Buttermilk	2 000	280 40	61.8	107.2	106.84
Dutter milk	1 2	.0795	0305	.0442	.0025
	3	.2385	.091	.132	.005
	4	.3180	.122	.176	.010
	5	.3975	.152	.221	.012
	10	.7950	.305	.442	.025
Skim milk	2,000	159.00	61.00	88.46	5.13
(Cream raised by setting)	$\begin{array}{c c} 1 \\ 2 \end{array}$.088 .176	.031	.047	.008
(STAME TRIBER OF BOURING)	3	.264	.094	.141	.016
	4	,352	,125	.188	.033
	5	.440	.155	.234	.041
	10	.880	.318	.469	.083
Skim milk	2,000	176.0	62.6	93.8	16.6
(Cream raised by separator)	1 2	.086	.029	.052	.003
(Cream raised by soparator)	3	.258	,088	.105	.006
	4	.344	.118	.210	.009
	5	.430	.147	262	.015
	10	.860	.294	.524	.029
	2,000	172 0	58.8	104.8	5,8

AUTHORITY.	N. C. Expt. Sta., Bulletin 87D N. Y. State Expt. Sta. and O'Brine, Maine Expt. Sta., 1886–87. N. C. Expt. Sta., Bulletin 87D, Arnaby. N. C. Expt. Sta., Bulletin 97. Me. and N. Y. Expt. Sta., Ann. Rep., 1888, and 8th. Maine Expt. Sta., Ann. Rep., 1888, 9.96 Maine Expt. Sta., Ann. Rep., 1888, 9.96 N. Y. Expt. Sta., Ann. Rep., 1888, 9.95 Ger. Ex., Zusum. u. Verd. der Futtermittel, p. 1916. Maine Expt. Sta., Ann. Rep., 1886–87, p. 76. N. C. Expt. Sta., Ann. Rep., 1886–87, p. 76. Maryland Expt. Sta., Ann. Rep., 1896–87, p. 76. N. C. Expt. Sta., Bulletin 97. Maryland Expt. Sta., Bulletin 87D. Maryland Expt. Sta., Bulletin 87D. Maryland Expt. Sa., Bull tin 20, p. 12. Texas Sta., Bull 15, and Maryland Sta., Bul. 20. N. C. Expt. Sta., Bulletin 97.
.daA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Crude fiber.	44444666666466666466666666666666666666
Nitrogen- free ex- tract,	70.70 71
Fats.	0.00 0.00
Total protein,	4655565 689.1 699.1
Dry matter,	66 60 60 60 60 60 60 60 60 60 60 60 60 6
Foods.	Cowpea-vine hay 59.2 64.5 50.0 Lucerne, or alfalfa hay 59.4 72.9 51.2 Alsike clover hay 62.2 69.1 48.8 Red clover hay 69.3 69.3 69.3 69.3 Soy (soja) bean silage 69.4 7.0 41.6 70.5 41.6 Soy (soja) bean silage 69.4 7.0 71.9 71.9 71.9 71.0

by Pennsylvania Station, Annual Report 1890, p. 62.

COEFFICIENTS OF DIGESTIRILITY OF FEEDING STUFFS. - Continued. TABLE IV.

							the second secon
Foods,	Dry matter.	Total protein,	Fats.	Nitrogen- free ex- tract,	Orude fiber.	.deA	АОТНОВИТУ.
Green rape Green rape Whole raw cotton seed Whole roasted cotton seed Cotton seed meal Cotton seed meal Corn bran Rice bran Rice bran Corn meal (gosts) Corn meal (gosts) Corn meal (gosts) Corn and cob meal (gosts) Field beaus, ground (horse) Corn and cob meal (gosts) Sobre and cob meal (gosts)	\$4.2000.0000.0000.0000.0000.0000.0000.00	80 0 0 4 2 4 2 6 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	84.7.7.8.8.8.8.8.8.8.8.9.9.9.9.9.9.9.9.9.9	0 8 9 4 6 1 7 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	287 29 29 4 4 8 4 9 4 9 9 9 9 9 9 9 9 9 9 9 9 9	6.05 6.02 6.12 6.12 6.12 6.13	N. C. Experiment Station. N. C. Expt. Sta., Bulletin 87D. N. C. Expt. Sta., Ann. R. pts. 1889 and 1891, pp. 61, 39. N. C. Experiment Station. Ger. Exp., Zusam. u. Verd. der Futtermittel, p. 1118. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1118. N. C. Experiment Station. N. Y. Expt. Sta., Bulletin 97. N. C. Expt. Sta., Bulletin 97. M. G. Expt. Sta., Bulletin 97. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1110. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Ger. Ex., Zusam. u. Verd. der Futtermittel, p. 1216. Der. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. Dr. D
W HILLIN (CALVES)	2016	200	0 00	200	: 1		Di III. Divaren and Dia e Aven Si
**Organio"substance.							

"Organic"substance.

TABLE IV. COEFFICIENTS OF DIGESTIBILITY OF FEEDING-STUFFS.—Continued.

Аυтновіту,	periment Station.	periment Station,	periment Station,	periment Station.	periment Sation,	periment Station.	periment Station.	periment Station.	periment Station.
	North Carolina Experiment Station.	North Carolina Experiment Station,	North Carolina Experiment Station.	North Carolina Experiment Station.	North Carolina Experiment S'ation.	North Carolina Experiment Station.	North Carolina Experiment Station	North Carolina Experiment Station	North Carolina Experiment Station.
.dsA	45.9	16.5	26.3	22.8	21.3	10.4	5 70	14.68	27.40
Crude fiber.	64.3	59.7	56.0	48 9	47.3	41.7	42.73	39.45	27.80
Nitrogen-free extract.	76.5	74.4	0.99	62.1	59.9	55.0	57.30	66 92	68.80
Fats.	54.7	69.1	82.3	50.1	64.1	61.5	74.73	84.87	89.00
Total protein.	70.5	48.7	52 4	50.7	55.9	54.9	60.59	71.49	75,60
Dry matier.	6 04	66 1	59.7	55.3	53,6	48.9	51.5	59.1	61.4
Foods,	ixed rations— Crab-grass hay 1 and cowpea meal 1	Crab-grass hay 1 {	Crab grass hay 1 }	Timothy hay 16 }	Timothy hay 12 Cotton-seed meal 1	Fimothy hay 8 Cotton-seed meal 1 }	Timothy hav 4 Cotton-seed meal 1	Timothy hay 2 Cotton-seed meal 1	Cotton seed meal 1)
	Mixed rations- Crab-grass he and cowpea	Crab-grass Corn bran	Crab grass Rice bran	Timo	Timo	Timo	Timo	Timo	Timo

TABLE V. SHOWING AVERAGE COMPOSITION OF FEEDING-STUFFS-AMERICAN ANALYSES.

1			
LTER.	.daA	81.4 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
LE MA	Crude fiber.	2.6.2.3.1.2.2.2.3.1.2.2.2.3.1.2.2.2.3.1.2.2.2.3.1.2.2.2.2	INIT
GESTIB	N-free extract.	629 828 828 828 828 828 828 828 828 828 8	MO.TW
OF DI	Fats.	2.1. 1.0.0 2.1. 1.0.0 2.0.1. 1.0.0 2.0.0	10:
PERCENTAGE OF DIGESTIBLE MATTER.	Protein.		2000
PERCI	Dry matter.	552.15 552.15 552.15 552.15 552.15 552.55	TOTAL
	.daA	88.00 44.00 60	-
ON.	Crude fiber,	21.54 22.565 22.655 23.0565 23.0565 23.0565 23.0565 25.056	
POSITI	N-free extract,	40.30 40.30 40.48 40.48 40.48 40.48 40.48 40.48 40.48 40.48 40.48 40.80 40.80	-
HE COM	Fats (Eth.	21.03.03.03.44. E.	2000
PERCENTAGE COMPOSITION	Total protein.	41.8.18.18.19.10.11.18.19.19.19.19.19.19.19.19.19.19.19.19.19.	
PER	Dry matter.	888.10 99.15 99.166 87.196 87.196 87.196 87.196 87.196 87.197 88.157 88.	book a
	Water.	11.58 11.58 11.58 11.58 11.58 12.50 12.50 12.50 13.50	
'səs	No. of analys		
	Foods,	Cowpea-vine hay Crimson clover hay Lucerne, or alfalfa hay Red clover hay Red clover hay Alsike clover hay Soy fooja) bean silage Soy bean hay Peanut-vine hay Porn silage, whole plant Corn stover, whole plant, Corn stover, whole plant, Corn butts or stubble, portion below ears* Corn tops, cut above ears Corn tops, cut above ears Corn tops, cut above ears Sorghum fodder, leaves alone Sorghum fodder, leaves alone Sorghum togasse. Timothy hay Sorghum togasse. Timothy hay Orchard grass hay Johnson grass hay Johnson grass hay Mixed hays and horse)	

*Analyses from Bulletin 20, Maryland Experiment Station.

TABLE V. SHOWING AVERAGE COMPOSITION OF FEEDING-STUFFS-AMERICAN ANALYSES -Continued,

FER.	.daA	2.10	
PERCENTAGE OF DIGESTIBLE MATTER.	Crude fiber.	84.64.96.96.96.96.96.96.96.96.96.96.96.96.96.	.30
GESTIBI	N-free extract.	20.20 113.26 118.26 118.25 118.25 12.25 12.25 12.25 13	47.47 17.02 4.42 7.09 5.34
OF DI	Fats.		1.61
ENTAGI	Protein.	2.25.44. 2.25.45. 2.25. 2.25.45. 2.25. 2.25.45.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.45. 2.25.4	
PERC	Dry matter.	45.85 46	
	.dsA		0.95 0.95 0.95 0.72 0.72
N.	Crude fiber.	20.20 30 30 30 30 30 30 30 30 30 30 30 30 30	3.48 0.35 0.56 1.27 1.27
POSITI	N-free extract.	29.12 25.74 25.74 30.20 30.20 30.20 30.20 30.20 46.93 46.03	25.83 63.74 79.20 17.36 4.49 7.56 7.56 7.56 Eatlon,
E COM	Fats (Etb. extract.)		2.81 0.19 0.19 0.42 0.42 0.42 0.42 0.42 0.43
PERCENTAGE COMPOSITION.	Total protein.	3.80 16.04 28.78 38.78 4.15 9.12 9.12 9.13 10.59 8.36 10.59 8.36 11.38 11.38 11.38	25.37 14.74 14.74 14.74 11.14 11.14 11.14 12.19 13.19
PER	Dry matter.	91.16 99.249 99.26 99.26 99.26 99.26 88.50 88.50 88.35 88.43 88.448 88.448 88.448 88.448 88.48 88 88 88 88 88 88 88 88 88 88 88 88 8	88.36 87.56 87.71 851.71 851.71 14.74
	Water.	8.84 91.16 1 17.51 82.49 1 9.22 90.68 4 774 92.26 5 11.50 88.50 70 12.43 87.57 63 15.61 84.39 Same composit 10.52 89.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48 9 14.52 85.48	10.80 11.64 12.44 778.89 91.49 88.59 88.59 85.26
.89	No. of analys	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	120 120 130 131 132 133 133 133 133 133 133 133 133
	Foods,	Oat straw Whole raw cotton-seed Whole roasted cutor seed Cotton-seed meal Cotton-seed hulls Cotton seed hulls Corn meal (cows) Corn meal (pigs) Corn (digested by horee) Corn meal (digested by goats) Whole corn (pigs) Corn-and-cob meal (goats) Corn-and-cob meal (pigs)	Soy beans (sheep) 8 10.80 88.20 55.87 10.50 26.58 4 Rye bran (swite) 12 116.4 88.36 14.74 2.81 67.4 88.36 14.8 19.20 <

MEDICAN ANALYSES - Continued.

PERCENTAGE COMPOSITION. PERCENTAGE OF DIGESTIALE MATTER.	Mo. of analyse Water. To:al protein. Fats (Eth. extract.) N-free extract. Crude fiber. Dry matter. Protein. Protein. Tats.	2 10 31 89.69 6.92 1.62 40.96 32.92 7.27 2.21 0.577 21 63 21.20 3.77 11.6.8 87.37 22.25 1.59 56.47 36.9 3.77 8.49 9.50 8.65 31.7 0.20 11.0.22 89.78 13.50 10.72 46.47 10.86 8.23 8.49 9.50 86.65 31.7 0.20 11.0.20 89.20 9.77 5.74 61.96 9.32 2.37 5.22 415 49.32 4.95 10.80 89.20 9.77 8.13 2.29 2.29 2.29 2.29 2.29 2.29 2.29 2.2
'8	No. of analyse	00 H H H H H
	Foods,	Crab-grass hay Cowpea meal Rice bran Corn bran Rape (first growth)