Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2022 CA5CO34 Data Structures & Algorithms

Branch/Specialisation: Computer Programme: MCA

Application

Duration: 3 Hrs. Maximum Marks: 60

		•		ternal choices, stead of only a,	if any, are indicated. Answe b, c or d.	ers (
Q.1	i.	Identify the no	otation: abc+-d	e*/.		1
		(a) Infix notat	ion	(b) Prefix nota	ation	
		(c) Postfix not	tation	(d) None of the	nese	
	ii.	Which of the	following is n	ot the correct s	tatement for a stack data	1
		structure?				
		(a) Arrays can	be used to imp	plement the sta	ck	
		(b) Stack follo	ows FIFO			
(c) Elements are stored in a sequential manner				ner		
		(d) Top of the	stack contains	the last inserte	d element	
	iii.	Rear is always	s in queue at po	osition where el	lement is	1
		(a) Inserted	(b) Deleted	(c) Push	(d) Add	
	iv.	When the use	er tries to delet	te the element f	from the empty queue then	1
		the condition is said to be a				
		(a) Underflow	7	(b) Overflow		
		(c) Garbage co	ollection	(d) Full		
	v.	What is the o	ptimal time co	mplexity to cou	unt the number of nodes in	1
		a linked list?	_			
		(a) O(n)	(b) O(1)	(c) O(log n)	(d) None of these	
	vi.		an element at of how many p		a linked list requires the	1
		(a) 1	(b) 2	(c) 3	(d) 4	
	vii.	· /	` '	` /	all, then sorting can	1
		be efficient.			,	
		(a) Merge	(b) Heap	(c) Selection	(d) Bubble	
		`	. , 1		P.T	.O.

	viii.	Which of the following algorithms is not feasible to implement in a linked list?			
		(a) Linear search (b) Merge sort			
		(c) Insertion sort (d) Binary search			
	ix.	A graph in which all vertices have equal degree is known as	1		
		(a) Complete graph (b) Regular graph			
		(c) Multi graph (d) Simple graph			
	х.	A graph is a tree if and only if graph is-	1		
		(a) Directed graph (b) Contains no cycles			
		(c) Planar (d) Completely connected			
Q.2 i.		If the Input sequence is 1, 2, 3, 4, 5 then, find out the total number of Stackable permutation are there.			
	ii.	Differentiate linear and non-linear data structure with example.	3		
	iii.	What is recursion? How recursion work in the form of stack justify by	5		
		using factorial program?			
OR iv.		Explain the different types of operations on stack in details. Write a	a 5		
		program for push operation.			
Q.3	i.	Explain heap data structure in details.	4		
	ii.	Explain the algorithm and working of "Tower of Hanoi" problem with	6		
		solution for 3 discs.			
OR	iii.	Write a program for Insertion –	6		
		(a) Into simple Queue (b) Into C-Queue			
Q.4	i.	Differentiate Malloc() and Calloc() with syntax and example.	3		
	ii.	Explain and write a program for singly linked list for-	7		
		(a) Inserting four nodes			
		(b) Display data of nodes			
		(c) Counting total number of node			
		These operations are executed into single program and also explain its			
		memory representation.			
OR	iii.	Explain and write a program for Doubly linked list-	7		
		(a) Inserting three nodes			
		(b) Delete the First node into the list.			
		These operations are executed into single program and explain with	ı		
		memory representation.			

		Attempt any two:		
Q.5	i.	What is binary search? Explain it by using an algorithm.	5	
	ii.	Write an algorithm for shell sort. Sort the following numbers in	5	
		ascending order 23, 12, 45, 54, 76, 67, 88, 97, 54 using shell sort.		
	iii.	Write an algorithm to sort N elements using Bubble sort also estimate	5	
		time and space complexity.		
Q.6	i.	Let us consider a forest with N vertices and k component then how	4	
		many edges are there in the forest.		
	ii.	What is Dijkstras algorithm? Explain it by using suitable example.	6	
OR	iii.	ii. Give the prefix & postfix form of the given expression, also draw its expression tree.		
		(a) $a + ((b*(c-e))/f)$ (b) $(a+b)*c-(d-e)*(f+g)$		

Marking Scheme CA5CO34 Data Structure & Algorithm

Q.1	i)	c) postfix notation	1 Mark	1
	ii)	b) Stack follows FIFO	1 Mark	1
	iii)	a) inserted	1 Mark	1
	iv)	a) underflow	1 Mark	1
	v)	a) O(n)	1 Mark	1
	vi)	d) 2	1 Mark	1
	vii)	c) Selection	1 Mark	1
	viii)	d) Binary Search	1 Mark	1
	ix)	b) Regular graph	1 Mark	1
	x)	b) Contains no cycles	1 Mark	1
	N)	b) Contains no cycles	1 Wark	1
Q.2	i.	42 by applying catalan formula	2 Marks	2
	ii.	Atl east three differences	1 Mark each	3
			(1 Mark*3)	
	iii.	Recursion	2 Marks	5
		Program	2 Marks	
		Memory representation	1 mark	
OR	iv.	Definition	1 mark	5
		Types	2 Marks	
		Program	2 Marks	
0.2	:	Definition	2 Marks	4
Q.3	i.	Definition May and min hear	2 Marks 2 Marks	4
	ii.	Max and min heap Explain	1 Marks	6
	11.	Algorithm	3 Marks	U
		3 dice shifted	2 Marks	
OR	iii.	Program: - simple Queue	3 Marks	6
011	1111	CQueue	3 Marks	Ü
		•		
Q.4	i.	Syntax	0.5 Marks	3
		example	0.5 Marks	
		At least 3 differences	2 Marks	
	ii.	Explanation	1 Marks	7
		For each program in which memory representation		
			2 Marks each	
			(2 Marks*3)	

OR	iii.	Explanation	1 Mark	7		
		For each program in which memory representation is include				
			3 Marks each			
			(3 Marks*2)			
Q.5	i.	For definition	2 Marks	5		
		For algorithm	3 Marks			
	ii.	For algorithm	3 Marks	5		
		For numerical question	2 Marks			
OR	iii.	For algorithm	3 Marks	5		
		For time and space complexity	2 Marks			
Q.6						
	i.	n-k is correct answer	4 Marks	4		
	ii.	Algorithm	3 Marks	6		
		Example	3 Marks			
	iii.	When exactly correct	3 Marks each (3 Marks*2)	6		
