

CHINESE ACADEMY OF SCIENCES

Evolving Parameterized Prompt Memory for Continual Learning

Muhammad Rifki Kurniawan¹, Xiang Song¹, Zhiheng Ma³, Yuhang He², Yihong Gong^{1,2}, Qi Yang⁴, Xing Wei¹

¹School of Software Engineering, Xi'an Jiaotong University, ²College of Artificial Intelligence, Xi'an Jiaotong University ³Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, ⁴School of Computer Science and Technology, Xi'an Jiaotong University

Prompting Foundational Model in Continual Learning (CL)

- Continual learning objective involves finding generalized parameters through sequential task learning, integrating new concepts in each task while minimizing catastrophic forgetting.
- Learning limited parameters from foundational Vision Transformer (ViT), instead from tabula rasa, becoming new trend in CL, specifically those utilized prompting, selected discretely based on instance query.
- Pool of key-prompt pair, establishing new one each task/concept, emerge as prevalent framework in CL from foundational model.

Issues with Previous Prompt-based CL

- Discrete prompting: test-time prediction may experience prompt selection mismatches and incorrect prompt associations due to a discrete bottleneck in key-prompt within prompt pool.
- Lack shareability: orthogonal categories that belong to the same task use an identical prompt if coming from task, prevent sharing prompts nearly similar categories.
- Dynamically expand: introducing new prompt at each task, thus the pool dynamically expand.
- Backward incompatible: rely on trick that learning to contrasting intra-task categories only, overlooking discrimination across intertask classes.

Proposed Ideas

- Prompt parameterization: formulating prompting as feed-forward networks (FFNs) with multilayer perceptron (MLP) bottleneck with soft assignment.
- Prompt incremental fusion: linearly weighted fusion between optimal transport-based (OT) aligned working prompt memory (WPM) with generalized reference prompt memory (RPM).
- Compositional classifier initialization: inferring the future classifiers from available old classifiers and prior prototypical relations between classes.

Compositional Classifier Initialization

- The prior-aware classifier initialization solves backward compatibility issue.
- Inspired by bias-adjustment heuristic in psychology, where the unknown is estimated by leveraging relevant available

and the knowns are learned classifiers and old-new tasks prototypical relations from pretrained as foundational relational presumption.

Prototypical Attention (PA):

Multi-head Prototypical Attention: (MPA):

$$\varphi_{new} = \text{PA} = \text{Softmax} \left(\frac{d \left(\boldsymbol{\mu}_{new}, \boldsymbol{\mu}_{old} \right)}{\tau} \right) \boldsymbol{\varphi}_{old} = \text{Concat} \left(\text{PA}_{1} \left(\boldsymbol{\mu}_{new,1}, \boldsymbol{\mu}_{old,1}, \boldsymbol{\varphi}_{old,1} \right), \dots, \text{PA}_{k} \left(\boldsymbol{\mu}_{new,k}, \boldsymbol{\mu}_{old,k}, \boldsymbol{\varphi}_{old,k} \right) \right).$$

Evolving Parameterized Prompt Memory

Continuous Prompting

Non-negative unnormalized coefficient for assigning corresponding prompt in $W^{(b,v)}$:

$$\mathbf{p}_{b} = f_{\mathbf{W}^{(b)}} \left(q\left(x \right); \mathbf{W}^{(b)} \right),$$

$$= \text{ReLU} \left(q\left(x \right) \cdot \mathbf{W}^{(b,k)} \right) \cdot \mathbf{W}^{(b,v)}$$

Functional Alignment

Resolving OT problem to align functionally similar memory segment of WPM to RPM:

$$\mathbf{\hat{W}}_{f,\ell}^t \leftarrow \operatorname{diag}\left(\frac{1}{\beta_{\ell}}\right) \mathbf{P}_{\ell} \mathbf{W}_{f,\ell}^t \mathbf{P}_{\ell-1} \operatorname{diag}\left(\frac{1}{\beta_{\ell-1}}\right)$$

Incremental Fusion with Awareness to Attribution

Prompt memory evolution via momentum merging, considering importance λ of each node while merging memory, determining the fusion weight of node parameter vectors:

$$\mathbf{W}_{g,\ell}^{t+1} \leftarrow \lambda_{\ell} \hat{\mathbf{W}}_{f,\ell}^{t} + (1 - \lambda_{\ell}) \mathbf{W}_{g,\ell}^{t}$$

Empirical Results From Experiments

Class Incremental Learning: Evaluation results Accuracy and forgetting on Split ImageNet-R.

	Split ImageNet-R								
Method	5 Steps		10 Steps		20 Steps		Avg	Avg	
	Acc.(↑)	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)	Acc.(↑)	Forget. (\downarrow)	Acc.(\u00e7)	Forget. (\downarrow)	
FT-seq	61.41 ± 0.38	5.76 ± 0.48	50.28 ± 2.29	24.28 ± 1.73	39.25 ± 0.90	40.38 ± 0.77	50.31 (+0.00)	23.48 (-0.00)	
LP-seq	59.83 ± 0.33	$1.50{\scriptstyle~ \pm 0.41}$	55.30 ± 0.12	$7.85{\scriptstyle~ \pm 0.10}$	51.97 ± 0.34	$13.87{\scriptstyle~\pm 0.21}$	53.64 (+3.33)	7.74 (-15.74)	
NME-seq	61.06	6.64	61.40	0.76	61.76	2.89	61.41 (+11.10)	$3.43 \ (-20.05$	
L2P	66.63 ± 0.33	$6.65{\scriptstyle~ \pm 0.38}$	64.05 ± 0.39	$10.05{\scriptstyle~ \pm 0.26}$	60.34 ± 0.17	$14.44{\scriptstyle~ \pm 0.61}$	63.67 (+13.36)	10.38 (-13.10	
DualPrompt	71.06 ± 0.35	$4.19{\scriptstyle~ \pm 0.25}$	69.71 ± 0.25	$5.44{\scriptstyle~ \pm 0.12}$	66.26 ± 0.46	8.74 ± 0.33	69.01 (+18.70)	6.12 (-17.36)	
ESN	73.42 ± 0.40	$3.79{\scriptstyle~ \pm 0.55}$	71.07 ± 0.29	$4.99{\scriptstyle~ \pm 0.49}$	64.77 ± 0.71	$6.65{\scriptstyle~\pm1.24}$	69.75 (+19.44)	5.14 (-18.34)	
CODA-P-S	73.80 ± 0.40	$\overline{5.56}_{\pm0.64}$	71.95 ± 0.41	$5.92{\scriptstyle~ \pm 0.35}$	69.67 ± 0.35	$6.23{\scriptstyle~ \pm 0.40}$	71.81 (+21.50)	5.90 (-17.58)	
CODA-P	73.77 ± 0.48	$6.60{\scriptstyle~ \pm 0.52}$	72.42 ± 0.40	$6.26{\scriptstyle~ \pm 0.61}$	70.18 ± 0.43	$5.53{\scriptstyle~\pm 0.21}$	72.12 (+21.81)	6.13 (-17.35)	
EvoPrompt-S	76.79 ± 0.23	$9.84_{\pm 0.15}$	76.22 ± 0.16	2.33 ± 0.24	$ \hline 74.68 \pm 0.51 \\ \hline$	$2.70_{\pm 0.19}$	75.90 (+25.59)	4.96 (-18.52)	
EvoPrompt	$\overline{77.16} \pm 0.18$	$9.89{\scriptstyle~ \pm 0.30}$	$\overline{76.83}_{\pm 0.08}$	$\overline{2.78}_{\pm 0.06}$	74.41 ± 0.23	$\overline{2.56 \pm \scriptstyle 0.22}$	$\boxed{76.13} (+25.82)$	$\overline{5.08}$ (-18.40)	
Upper-bound†	79.13 ± 0.18	-	79.13 ± 0.18	-	79.13 ± 0.18	-	79.13	-	

Online Learning: Results on single epoch on 10 tasks CIL, measuring effectiveness on acquisition.

 61.09 ± 0.18 CODA-P-S 84.72 ± 0.94 0.89 ± 0.72 | 74.05 ± 0.48 3.66 ± 0.36

Domain Incremental Learning: Results on CORe50 dataset, measuring generalization to unseen domains.

Method	Test Acc. (\uparrow)	Δ Acc. (\uparrow)
NME-seq	78.20	+00.00
EWC [†]	74.82 ± 0.60	-3.38
LwF [†]	75.45 ± 0.40	-2.75
$\mathrm{L2P}^\dagger$	78.33 ± 0.06	+0.13
S-iPrompts [‡]	83.13 ± 0.51	+4.93
S-liPrompts [‡]	89.06 ± 0.86	+10.86
ESN [‡]	91.80 ± 0.31	+13.60
EvoPrompt-S	94.77 ± 0.50	+16.57
EvoPrompt	95.27 ± 0.15	+17.07
Upper-bound	91.32 ± 0.23	-

Not Quite Clear? See If This Helps

Architectural Comparison from Previous Methods

Our approach uses minimal parameters, $5 \times and 13 \times smaller$ than CODA-P, without dynamically expanding parameters for new tasks like L2P, DualPrompt, or ESN.

Method	Prompt selection	Dynamically expand	Acc. (†)	Addition M	nal Params %
L2P	discrete	/	64.05	0.89	1.21%
DualPrompt	discrete	✓	69.71	0.95	1.28%
ESN	_	✓	71.07	3.67	3.52%
CODA-P-S	continuous	✓	71.95	0.92	1.25%
CODA-P	continuous	✓	72.42	3.84	4.65%
EvoPrompt-S	continuous	×	76.22	0.29	$oldsymbol{0.69\%}$
EvoPrompt	continuous	×	76.83	0.74	1.21%

Analysis on Prompt Diversity and Recency Bias

The adaptive prompt coefficient varies with the dataset, being more diverse for datasets like Split ImageNet-R than Split CIFAR-100. Incremental fusion is crucial for balancing parameters, ensuring general solutions and preventing recency bias.

Does Ours Suffer from Stability Gap?

Both random and CCI show no signs of a stability gap. Nevertheless, CCI showcases stability in performance, smooth task transitions, and accelerated acquisition of current knowledge.

Embedding Separability and Backward Compatibility

Our initialization reduces intra-class point distances, signifies greater intra-class compactness, and balances inter-class margins, leading to smaller inter-class distances than random initialization, better backward-compatibility.

