AVALIAÇÃO DA INFLUÊNCIA DO BRIX DO XAROPE NA DESIDRATAÇÃO OSMÓTICA DE MANGA (MANGIFERA INDICA L.) DA VARIEDADE TOMMY ATKINS

Francisco de Tarso R. CASELLI(1); Frederico FIGUEIREDO(2); Francisco Allan L. de CARVALHO(3) Marcelo Iran de Souza COELHO(4)Eliarley Elias de OLIVEIRA(5)

(1) Faculdade de Milagres Ceará-FAMICE,, Av. Santana 270 Milagres-Ce, e-mail: franciscodetarso@yahoo.com.br
(2) Faculdade de Milagres Ceará-FAMICE,, Av. Santana 270 Milagres-Ce, e-mail: fredericofig@hotmail.com
(3) IF Sertão Pernanbucano, BR 407, Km 08, Jardim São Paulo, Petrolina-PEEndereço, e-mail: allan_upe@hotmail.com
(4) IF Sertão Pernanbucano, BR 407, Km 08, Jardim São Paulo, Petrolina-PEEndereço, e-mail:marceloisc@yahoo.com.br

(5)Faculdade de Milagres Ceará-FAMICE,, Av. Santana 270 Milagres-Ce, e-mail:eliarley@hotmail.com

RESUMO

O Nordeste brasileiro produz 36% de toda manga do Brasil tendo como principal pólo produtor os municípios de Petrolina-Pe e Juazeiro-Ba. A conservação de alimentos por desidratação permite que o produto obtido tenha uma maior vida de prateleira devido a redução da atividade de água nos alimentos inibe o desenvolvimento de microorganismos e ação enzimática degenerativa aumento assim sua via de prateleira. Para tanto é necessário que se desenvolvam técnicas mais eficientes para remoção de umidade, nesse sentido este trabalho teve como objetivo comparar a perda de massa úmida da para manga Tommy Atkins imersa em xarope com diferentes concentrações de sólidos sendo desenvolvido no Laboratório de Análise de Alimentos-LEA do IF Sertão Pernambucano conduzido em Delineamento Inteiramente Casualisado-DIC concluindo que o xarope com maior concentração proporciona uma redução de peso e perda de umidade mais significativa

Palavras-chave: Conservação, Desidratação Osmótica, Manga.

1 INTRODUCÃO

A Região Nordeste do Brasil é uma das maiores produtoras de abacaxi, banana, cacau, coco-dabahia, goiaba, mamão, manga, melão, maracujá e castanha de caju do mundo. Segundo dados do IBGE (2008), produziu 36% de toda manga do Brasil tendo como principal pólo produtor os municípios de Petrolina-PE e Juazeiro-BA.

Na distribuição da cultura da manga no Brasil de acordo com dados do IBGE (2008), o estado da Bahia como maior produtor brasileiro da fruta. Petrolina, em Pernambuco, e Juazeiro e Livramento de Nossa Senhora, na Bahia, são os principais municípios produtores do Brasil com uma produção de 130.000, 108.000 e 49.500 toneladas, respectivamente.

O aproveitamento racional da manga é extremamente importante para o Brasil, o qual se apresenta como um grande produtor mundial de fruta. Porém, há uma super oferta do produto no mercado interno, provocando a queda dos preços. Dentre os vários fatores que prejudicam o aumento da exportação de frutas *in natura* manga são relacionados a perecibilidade que inviabilizam um maior tempo de vida de prateleira. Isso obriga os produtores enviarem remessas por múltiplos embarques de pequenas quantidades para seus clientes tornando o custo da operação muito alto.

Para Park(2007) a remoção de umidade inibe agentes deterioradores como enzimas e microorganismos que necessitam de água para agirem aumentado a vida do produto e diminuindo os custos logísticos de transporte e armazenamento além de agregar valor. Alimentos desidratados podem ser utilizados de forma bastante versátil, na fabricação de produtos como sorvetes, produtos de padaria entre outros produtos oferecendo maior mix e flexibilidade de produção. Conseqüentemente o emprego da desidratação se apresenta como forma de otimizar o aproveitamento de matéria-prima, mais possibilidade e aumento dos lucros, sendo importante desenvolver pesquisas nesse sentido.

2 MATERIAL E MÉTODOS

Mangas da variedade Tommy Atkins, foram adquiridas em feira-livre no município de Petrolina PE, isentas de doenças numa quantidade de 5 kg. O estado de maturação foi o comercial entre 2 e 3 com teor de sólidos solúveis totais entre 7-8° Brix para um maior tempo de armazenamento.

Todo o experimento foi desenvolvido no Laboratório Experimental de Alimentos-LEA do Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano-IF Sertão-Pe. Os frutos foram lavados em água clorada (50 ppm/15min), enxaguados e descascados, cortados manualmente.

Foi determinada isoterma de equilíbrio utilizando o método direto gravimétrico dinâmico estático descrito em Aguirre (2000), onde a amostra foi colocada em estufa a temperatura constante de 105° C até se obter variação de peso menor que 1mg/g durante três pesagens seguidas.

Foram produzidos xaropes de sacarose, nas concentrações de 45°Brix, 55°Brix e 65°Brix preparado por dissolução de açúcar em água, o xarope continha ácido cítrico (q.s.p. pH 3,0). Na desidratação osmótica as fatias de manga de manga foram imersas em quantidade de xarope durante 4 horas.

Essa concentração e intervalo de tempo estão dentro da média utilizada por SOUZA NETO (2005) e AZEREDO (2003). A secagem foi realizada em blocos em triplicata e os dados foram tabulados e analisados com ajuda do programa SISVAR 4.2. E posteriormente elaborados gráficos com auxilio do programa Microsoft EXCEL 2003 comparando os resultados e decidindo qual obteve melhor resultado.

Utilizou-se no experimento Delineamento Inteiramente Casualizado-DIC como recomendado por Costa(2003) onde foram testados manga xaropes com concentração 45°,55° e 65°Brix com as Hipóteses: H0: Brix do xarope não exerce influência na perda de massa e H1: o Brix do xarope exerce influência na perda de massa. Na ultima etapa foram confrontados os dados obtidos para solucionar o teste de hipóteses e confeccionado relatório dos resultados.

3 RESULTADOS E DISCUSSÕES

O A umidade obtida por meio do método direto em estufa foi de 87%, ou seja, apenas 13% da massa da manga corresponde a sólidos. Os valores médios das perdas de massa são mostrados na tabela 1 comparando a Massa Inicial-Mi e Massa Final-Mf em gramas. E percebido na tabela que a maior perda de massa aconteceu para o xarope com mair BRIX.

Tabela 1-Comparação das massas antes e posterior a desidratação osmótica

Brix	Mi (g)	Mf (g)
45°	151,1	125,7
55°	151,1	107,9
65°	151,2	98,4

Fonte: Dados da Pesquisa

A figura 01, abaixo, nos permite visualisar melhor a perda de massa comparando as diferente concentrações de de BRIX. Oo xarope que forneceu maior perda massa ao final do processo foi o de 65°Brix, sendo observada uma relação direta entre concentração do xarope e perda de massa.

Figura-01 Comparação da massa da manga antes e após a desidratação osmótica

Utilizando o programa SISVAR 4.2 para comparar os resultados foi constatado a 5% de significância existe diferença significativa entre os valores médios de perda de massa sendo demonstrado que o valor que apresenta melhor resultado por meio do gráfico de setores.

Figura-02 Porcentagem de perda de massa para xaropes com diferentes graus Brix

O valor de massa umida perdido com o xarope com Brix 65° é o dobro da perdida com a concentração de menor Brix. Podemos concluir que a relação direta do grau Brix com a perda de massa no processo de desidratação osmótica.

4 CONSIDERAÇÕES FINAIS

Os resultados obtidos demonstram que a maior perda de massa aconteceu com a manga imersa em xarope com Brix 65° perdendo 43% de massa e a menor foi do xarope de concentração Brix 45° obtendo perda de 21% da massa. Baseado nesse resultado se conclui que existe uma relação diretamente proporcional entre a perda de umidade da manga e a concentração de sólidos totais do xarope(Brix), pois quanto maior o grau Brix maior será a perda de massa umidade. Sabendo dessa informação é possível desenvolver uma metodologia que encontre o ponto ótimo de concentração de sólidos para a maior perda de umidade possível. Determinar esse ponto é fundamental para aplicabilidade dessa técnica em nível industrial para obter um melhor produto final. A desidratação osmótica também pode servir de pré-tratamento para o processo de desidratação a ar-quente reduzindo assim os custos de energia no processo de produção.

REFERÊNCIAS BIBLIOGRÁFICAS

AZEREDO, HENRIETTE MONTEIRO C. Maximization of the Performance Ratio of Osmotic Dehydration of Mango Cubes Proc. Interamer. Soc. Trop. Hort. 47:200-202 Fruit/Frutales - October 2003

FELLOWS; P. J. **Tecnologia do Processamento de Alimentos: princípios e práticas.** 2ºed. Artmed 2006.

PARK, Kil Jin et all. Conceitos de Processo e Equipamentos de Secagem CTEA, Campinas-2007

IBGE. **Relatório de Produção Agrícola**. Disponível em: http://www.ibge.gov.br/home/estatistica/calendario2008.shtm> Acessado em 20-10-2008

SOUZA NETO, M. A. MAIA, G. A. LIMA, J. R. FIGUEIREDO, R. W. SOUZA FILHO, M. S. M. LIMA A. S. **Desidratação Osmsótica de Manga seguida de Secagem Convencional: avaliação das variáveis de processo**. Ciênc. agrotec., Lavras, v. 29, n. 5, p. 1021-1028, set./out., 2005