FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Use of a static code analysis tool can help detect some possible problems. Techniques like Code refactoring can enhance readability. Compilers harnessed the power of computers to make programming easier by allowing programmers to specify calculations by entering a formula using infix notation. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. After the bug is reproduced, the input of the program may need to be simplified to make it easier to debug. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Many applications use a mix of several languages in their construction and use. Provided the functions in a library follow the appropriate run-time conventions (e.g., method of passing arguments), then these functions may be written in any other language. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Code-breaking algorithms have also existed for centuries. Many programmers use forms of Agile software development where the various stages of formal software development are more integrated together into short cycles that take a few weeks rather than years. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Languages form an approximate spectrum from "low-level" to "high-level"; "low-level" languages are typically more machine-oriented and faster to execute, whereas "high-level" languages are more abstract and easier to use but execute less quickly. They are the building blocks for all software, from the simplest applications to the most sophisticated ones. Many applications use a mix of several languages in their construction and use. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Trade-offs from this ideal involve finding enough programmers who know the language to build a team, the availability of compilers for that language, and the efficiency with which programs written in a given language execute. Different programming languages support different styles of programming (called programming paradigms). By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers.