Relatório de Análise de Machine Learning - Dataset Diabetes

Resumo Executivo

Este relatório apresenta uma análise completa de machine learning aplicada ao dataset de diabetes, comparando dois algoritmos de classificação: Decision Tree e Random Forest. O objetivo é desenvolver um modelo capaz de predizer a presença de diabetes com base em variáveis clínicas.

Principais Resultados:

- Melhor Modelo: Decision Tree (max depth=3) com 75% de acurácia no teste
- Feature Mais Importante: Dobra cutânea do tríceps (56.85% de importância)
- Desafio Principal: Dataset desbalanceado (67% não-diabéticos vs 33% diabéticos)

1. Análise Exploratória dos Dados

Características do Dataset:

- Tamanho: 394 amostras, 6 variáveis
- Variáveis Explicativas: glicemia, pressão sanguínea, dobra cutânea do tríceps, insulina, IMC
- Variável Alvo: diabetes (binária: 0 = não, 1 = sim)
- Qualidade: Dataset completo, sem valores nulos

Distribuição da Variável Alvo:

- Classe 0 (Não diabético): 264 casos (67.0%)
- Classe 1 (Diabético): 130 casos (33.0%)
- Status: Dataset moderadamente desbalanceado

Estatísticas Descritivas:

Variável	Média	Desvio Padrão	Min	Max
Glicemia	70.65	12.47	24	110
Pressão San- guínea	29.11	10.50	7	63
Dobra Cutânea Tríceps	155.89	168.79	7	846
Insulina	31.99	5.18	14.7	43.3
IMC	0.53	0.35	0.085	2.42

2. Metodologia

Divisão dos Dados:

Seguindo as especificações solicitadas:

- Treino: 280 amostras (71.1%)- Validação: 94 amostras (23.9%)

- **Teste**: 20 amostras (5.1%)

A estratificação foi aplicada para manter as proporções das classes em todos os conjuntos.

Modelos Implementados:

1. Decision Tree Classifier

• Parâmetros: max_depth=3, random_state=42

• Justificativa: Profundidade limitada para evitar overfitting e manter interpretabilidade

2. Random Forest Classifier

• Parâmetros: max_depth=2, n_estimators=100, random_state=42

• Justificativa: Ensemble method com árvores ainda mais rasas para maior generalização

3. Resultados e Performance

3.1 Acurácias por Conjunto

Modelo	Treino	Validação	Teste
Decision Tree	81.07%	67.02%	75.00%
Random Forest	78.57%	62.77%	65.00%

3.2 Análise de Overfitting

Decision Tree:

- Diferença treino-validação: 14.05%

- Indica possível overfitting moderado

Random Forest:

- Diferença treino-validação: 15.81%

- 1 Indica possível overfitting mais acentuado

3.3 Métricas Completas (Conjunto de Teste)

Modelo	Acurácia	Precisão	Recall	F1-Score	AUC
Decision Tree	0.750	0.667	0.571	0.615	0.731
Random Forest	0.650	0.500	0.143	0.222	0.725

3.4 Análise das Matrizes de Confusão (Teste)

Decision Tree:

- Verdadeiros Negativos: 11

Falsos Positivos: 2 Falsos Negativos: 3 Verdadeiros Positivos: 4

Random Forest:

- Verdadeiros Negativos: 12

Falsos Positivos: 1 Falsos Negativos: 6 Verdadeiros Positivos: 1

3.5 Interpretação das Métricas

Decision Tree:

- ✓ Melhor balance entre precisão e recall
- **V** F1-Score superior (0.615 vs 0.222)
- ✓ Melhor capacidade de detectar casos positivos (recall = 57.1%)

Random Forest:

- X Muito conservador na predição de casos positivos
- X Recall extremamente baixo (14.3%)
- X Subestima significativamente a presença de diabetes

4. Importância das Features

Ranking por Modelo:

Posição	Feature	Decision Tree	Random Forest
1º	Dobra Cutânea Trí- ceps	56.85%	42.39%
2º	Insulina	23.04%	20.43%
35	IMC	12.60%	13.21%
4º	Glicemia	7.51%	14.09%
5º	Pressão Sanguínea	0.00%	9.88%

Insights sobre Features:

- 1. Dobra Cutânea do Tríceps: Feature dominante em ambos os modelos
 - Indicador importante de gordura corporal
 - Correlação forte com resistência à insulina

- 2. Insulina: Segunda feature mais importante
 - Diretamente relacionada ao diabetes
 - Consistente entre ambos os modelos
- 3. Pressão Sanguínea: Não utilizada pela Decision Tree
 - Pode indicar redundância com outras variáveis
 - Random Forest consegue extrair algum valor (9.88%)

5. Análise ROC e AUC

Curvas ROC:

Decision Tree AUC: 0.731
Random Forest AUC: 0.725

Ambos os modelos apresentam performance similar em termos de AUC, indicando capacidade discriminativa moderada. A diferença mínima (0.006) sugere que ambos têm potencial similar para distinguir entre classes.

6. Limitações e Considerações

6.1 Limitações do Estudo:

- 1. Tamanho da Amostra de Teste: Apenas 20 casos
 - Pode gerar variabilidade alta nas métricas
 - Recomenda-se validação cruzada para maior robustez

2. Desbalanceamento das Classes:

- 67% vs 33% pode enviesar os modelos
- Técnicas de balanceamento poderiam melhorar o recall

3. Overfitting Observado:

- Ambos os modelos mostram sinais de overfitting
- Regularização adicional pode ser necessária

6.2 Qualidade dos Dados:

Pontos Positivos:

- Dataset completo (sem valores nulos)
- Variáveis clinicamente relevantes
- Estratificação adequada

♠ Pontos de Atenção:

- Possíveis outliers na dobra cutânea (máximo de 846)
- Escala muito diferente entre variáveis
- Normalização poderia beneficiar alguns algoritmos

7. Conclusões e Recomendações

7.1 Modelo Recomendado: Decision Tree (max depth=3)

Justificativas:

- 1. Performance Superior: 75% de acurácia vs 65% do Random Forest
- 2. Melhor Balance: F1-Score de 0.615 vs 0.222
- 3. Maior Sensibilidade: Detecta 57.1% dos casos positivos vs 14.3%
- 4. Interpretabilidade: Estrutura de árvore facilita explicação clínica

7.2 Recomendações Estratégicas:

Curto Prazo:

- 1. Implementar o Decision Tree como modelo de triagem inicial
- 2. Validar com dados externos antes da aplicação clínica
- 3. Estabelecer protocolo de revisão médica para casos positivos

Médio Prazo:

- 1. Coletar mais dados para aumentar o conjunto de teste
- 2. Implementar validação cruzada para métricas mais robustas
- 3. Explorar técnicas de balanceamento (SMOTE, undersampling)

Longo Prazo:

- 1. **Testar algoritmos avançados** (Gradient Boosting, SVM, Neural Networks)
- 2. Incluir novas features (histórico familiar, idade, etc.)
- 3. Desenvolver ensemble personalizado combinando múltiplos modelos

7.3 Aplicação Prática:

Cenário de Uso Recomendado:

- Ferramenta de triagem inicial em unidades básicas de saúde
- Complemento à avaliação médica, não substituto
- Identificação de pacientes para exames mais detalhados

Protocolo Sugerido:

- 1. Aplicar o modelo nos dados do paciente
- 2. Se positivo: encaminhar para avaliação médica detalhada
- 3. Se negativo: manter acompanhamento de rotina
- 4. Sempre considerar contexto clínico completo

7.4 Métricas de Sucesso:

Para implementação em produção, monitorar:

- Acurácia ≥ 70%
- **Recall** ≥ 50% (para não perder casos positivos)
- **Precisão** ≥ 60% (para evitar alarmes falsos excessivos)

8. Próximos Passos

8.1 Melhorias Técnicas:

1. **Feature Engineering**: Criar variáveis derivadas (ratios, interações)

- 2. Normalização: Aplicar StandardScaler ou MinMaxScaler
- 3. Seleção de Features: Usar técnicas como RFE ou LASSO
- 4. Hyperparameter Tuning: Grid Search ou Random Search

8.2 Validação Adicional:

- 1. Validação Cruzada Estratificada (k=5 ou k=10)
- 2. Teste em dados externos de outras instituições
- 3. Análise de estabilidade temporal dos modelos

8.3 Expansão do Estudo:

- 1. Incluir mais variáveis (demográficas, laboratoriais)
- 2. Análise de subgrupos (idade, sexo, etc.)
- 3. **Estudo longitudinal** para predição de risco futuro

Anexos

Arquivos Gerados:

- analise_diabetes_ml.ipynb Notebook completo com código
- metricas_modelos.csv Todas as métricas por modelo e conjunto
- importancia_features.csv Importância das features
- resumo_final_modelos.csv Resumo das métricas de teste
- distribuicao_variaveis.html Gráficos de distribuição
- matrizes_confusao.html Matrizes de confusão interativas
- comparação visual das métricas
- curvas_roc.html Curvas ROC interativas
- importancia_features.html Gráfico de importância das features

Contato e Suporte:

Para dúvidas sobre a implementação ou interpretação dos resultados, consulte a documentação técnica no notebook Jupyter ou entre em contato com a equipe de Data Science.

Relatório gerado em: 20 de julho de 2025

Versão: 1.0

Autor: Sistema de Análise ML - Abacus.Al