I. SET THEORY

- A. DEFINITION & NOTATION
 - SET IS AN UNORDERED COLLECTION OF ELEMENTS
 - P := SET
 - P = ELEMENTS
- R. BASIC RELATIONSHIPS

LET A, B, C RE SETS & X, Y, & BE ELEMENTS

 $A = \{x, y\}$ $B = \{y, z\}$ $C = \{x, y, z\}$

MEMBER X E A

NOT

 $x \notin \mathcal{B}$

SUBSET

 $BCC: \forall w \in B, w \in C$ $w \in B \Rightarrow w \in C$

INTERSECTION: A N B: WE ANB <=> WEA AOFB

UNION: AUB: WEAUB <=> WEA OR WEB

1. BASIC RELATIONSHIPS

UNIVERSAL SET

NULLSET O

EX: NON-NEG Z/ 24

$$S = \{ 0, 1, 2, 3 \}$$

5 6 5 2 4 6 5

SUBSETS OF S

$$A = \{0, 2\}$$
 $D = \{0, 1\}$

$$B = \{1, 3\}$$
 $E = \{0\}$
 $C = \{1, 2, 3\}$ $E = \{2\}$

COMPLEMENT: AC VIN STHAT IS NOT IN A

XES & X & A <=> X & A C

A < = B

SETS - MUTUALLY EXCLUSIVE

DUJOINTED SETS

PAIRWISE M.E.

PARTITION: COLLECTION OF SETS, ME & Ex.

ANY SET AND ITS COMPLEMENT IS ALWAY PARTITIONS OF EACHOTHER

COUNTABLY INFINITE: Z

UNCOUNTABLY INFINITE: [0,1]

VENN DIAGRAM: VISUAL REPRESENTATION

S: INTERIOR OF LARGE BOX

SUBJET: INTERIORS OF BOXES, OVALS, ETC.

RELATIONSHIP TO BOOLEAN ALGEBRA

N-AND, OR _U, NOT _ S

DEMORGANS LAW

 $\frac{PF \text{ outline}}{X \in (B \cup D)^c} (B \cup D)^c \subset (B^c \cap D^c)$