Machine Learning Project

Spring 2024

Chanyoung Park

Predicting Credit Card Account Cancellations

Introduction

This is an individual assignment and will be a chance for you to perform an applied data science project on a real data set.

We will be working with the <code>credit_card_df</code> data frame in this project. This data set contains information on over 4,000 customers of a U.S. bank. The description of this data and the variables contained in it are provided below.

The objective of this project is to explore the factors that lead to customers canceling their credit card accounts and develop machine learning algorithms that will predict the likelihood of a customer canceling their account in the future.

Credit Card Account Data

The credit_card_df data frame contains information on the customers of a large U.S. bank which provides a number of financial services including multiple credit card offerings.

The bank is looking to see if it can determine the factors that lead to customers canceling their credit card account and whether it can predict if a customer will cancel their account in the future.

To maintain profits, banks must maximize the number of customers with credit lines. It is also in their best interests for customers to carry large credit card balances from month-to-month to maximize revenue from interest charges.

The bank has experienced record levels of customers closing their credit accounts in the past couple of years and this is leading to declining revenue.

The bank's goal is to become better at identifying customers at risk of canceling their account to minimize financial losses.

Specifically, the broad questions that the company is trying to answer include:

- What are the factors that are associated with customers closing their credit card accounts?
- Is it possible to predict whether a customer will close their account? If so, how accurate are the predictions?
 - How many costly errors is the model expected to produce?
- Are there any actions or policies the company can implement to reduce the risk of losing their customers?

The data set contains a mixture of customer demographics and their financial behavior.

The outcome variable in this data is customer_status. This variable records whether a customer eventually closed their account and indicates a financial loss to the company.

Note: The outcome variable has been coded as a factor with 'closed_account' (**the positive class**) as the first level. This is the format that tidymodels expects for calculating model performance metrics. There is no need to recode this variable in your machine learning process.

Data Definitions

Variable	Definition	Data Type
customer_status	Customer status (closed account or active)	Factor
age	Customer age	Numeric
dependents	Number of dependents in household	Numeric
education	Customer education level	Factor
marital_status	Marital status	Factor
employment_status	Employment status	Factor
income	Annual income (US Dollars)	Numeric
card_type	Type of credit card	Factor
months_since_first_account	Months since first credit card account activated	Numeric
total_accounts	Total accounts (credit checking and savings)	Numeric
months_inactive_last_year	Months without credit card activity last year	Numeric
contacted_last_year	Number of times contacted last year by sales representatives	Numeric
credit_limit	Current credit limit	Numeric
utilization_ratio	Average monthly balance to credit limit	Numeric
spend_ratio_q4_q1	Ratio of total Q4 to Q1 spending last year	Numeric
total_spend_last_year	Total amount charged last year	Numeric
transactions_last_year	Number of transactions last year	Numeric
transaction_ratio_q4_q1	Ratio of total Q4 to Q1 transactions last year	Numeric

library(tidyverse)

credit_card_df <- readRDS(url('https://gmubusinessanalytics.netlify.app/data/credit_card</pre>

In [88]: # View data credit_card_df

					_			
customer_status	age	dependents	education	_	employment_status	income	card_type	months_
<fct></fct>	<dbl></dbl>	<dbl></dbl>	<fct></fct>	<fct></fct>	<fct></fct>	<dbl></dbl>	<fct></fct>	
closed_account	46	3	masters	married	self_employed	67807	blue	
closed_account	46	3	associates	married	self_employed	51785	blue	
closed_account	44	4	masters	single	part_time	105643	gold	
closed_account	62	1	masters	single	part_time	34138	gold	
closed_account	38	1	masters	married	full_time	36264	blue	
closed_account	43	3	associates	single	part_time	84234	blue	
active	43	2	masters	married	full_time	35379	blue	
closed_account	39	3	associates	married	part_time	67047	blue	
active	54	1	masters	single	full_time	35903	gold	
active	46	4	masters	divorced	full_time	71585	gold	
active	44	3	bachelors	single	full_time	37385	blue	
closed_account	56	3	associates	married	full_time	73111	blue	
closed_account	50	0	masters	single	part_time	35045	blue	
active	39	3	masters	married	full_time	101360	blue	
closed_account	65	1	associates	married	part_time	34961	silver	
closed_account	43	3	masters	married	full_time	68289	gold	
closed_account	49	3	masters	single	full_time	35535	blue	
active	62	2	masters	married	self_employed	36269	silver	
active	47	3	associates	married	full_time	69187	gold	
active	52	4	associates	divorced	full_time	36392	blue	
closed_account	40	3	associates	married	full_time	96302	blue	
closed_account	45	3	associates	married	full_time	37053	silver	
active	43	4	masters	married	self_employed	37519	gold	
active	41	3	bachelors	married	full_time	35171	blue	
active	38	1	masters	single	full_time	103667	silver	
closed_account	44	4	masters	single	full_time	107353	blue	
closed_account	55	2	masters	married	self_employed	54037	blue	
closed_account	34	3	masters	married	part_time	37861	blue	
active	34	2	masters	married	full_time	33839	silver	
active	58	0	masters	married	part_time	35941	silver	
:	:	:	:	:	:	:	:	

closed_account	44	1	associates	married	part_time	34961	blue
active	42	3	bachelors	married	full_time	125741	silver
active	48	2	bachelors	married	full_time	33014	silver
active	34	1	masters	married	full_time	49438	blue
active	39	4	masters	married	self_employed	33179	blue
closed_account	53	4	masters	married	full_time	35296	blue
closed_account	61	0	masters	married	full_time	35616	silver
active	40	3	associates	married	full_time	139295	blue
active	26	0	associates	single	part_time	70368	blue
active	31	1	associates	married	full_time	47006	silver
active	52	2	associates	married	self_employed	68576	silver
active	41	3	masters	married	self_employed	49685	blue
active	49	1	masters	married	full_time	51886	silver
active	45	3	masters	single	full_time	58963	silver
closed_account	53	4	associates	single	full_time	61922	gold
active	55	0	associates	married	full_time	31582	silver
closed_account	45	2	bachelors	married	part_time	33169	blue
closed_account	53	4	associates	single	part_time	112096	gold
active	50	1	doctorate	single	full_time	99781	gold
active	30	0	associates	single	self_employed	114835	gold
closed_account	44	2	bachelors	single	part_time	32361	gold
closed_account	40	2	associates	married	full_time	40702	blue
closed_account	55	1	associates	married	full_time	69296	silver
active	45	3	masters	married	self_employed	84638	silver
closed_account	59	1	masters	married	full_time	74010	silver
active	48	3	associates	single	full_time	112230	silver
closed_account	26	0	associates	single	full_time	45427	blue
active	41	3	associates	divorced	self_employed	44776	silver
closed_account	44	2	associates	single	part_time	34169	blue
active	46	3	masters	single	full_time	68502	blue

Exploratory Data Analysis (50 Points)

In this section, you must think of at least 5 relevant questions that explore the relationship between customer_status and the other variables in the credit_card_df data set. The goal of your analysis should be discovering which variables drive the differences between customers who do and do not close their account.

You must answer each question and provide supporting data summaries with either a summary data frame (using dplyr / tidyr) or a plot (using ggplot) or both.

In total, you must have a minimum of 3 plots (created with ggplot) and 3 summary data frames (created with dplyr) for the exploratory data analysis section. Among the plots you produce, you must have at least 3 different types (ex. box plot, bar chart, histogram, scatter plot, etc...)

Each question must be answered with **supporting evidence** from your tables and plots.

See the example question below.

Sample Question

The sample below is from a previous semester where students analyzed a dataset, **employee_df**, with information on employees of a company and whether they decided to leave the company for another job.

The question, R code, and answer are examples of the correct style and language that you should use for your work.

Question

Is there a relationship between employees leaving the company and their current salary?

Answer: Yes, the data indicates that employees who leave the company tend to have lower salaries when compared to employees who do not. Among the 237 employees that left the company, the average salary was \$76,625. This is over \$20,000 less than the average salary of employees who did not leave the company.

Among the employees who did not leave the company, only 10% have a salary that is less than or equal to \$60,000. When looking at employees who did leave the company, this increases to 34%.

Supporting Table and Visualization

Note - the sample code and output below is an image, not code cells

```
[13]
employee_data %>%
  group_by(left_company) %>%
  summarise(n_employees = n(),
            min_salary = min(salary),
            avg_salary = mean(salary),
            max_salary = max(salary),
            sd_salary = sd(salary),
            pct_less_60k = mean(salary <= 60000))</pre>
  left_company v | n_employees v | min_salary v | avg_salary v | max_salary v | sd_salary v | pct_less_60k v
1 No
                          1233 29848.5566 97430.5201 212134.7005 36470.1844
                                                                                           0.0973
2 Yes
                           237 30488.1497 76625.5606 211621.0276 38567.4614
                                                                                           0.3418
```

```
ggplot(data = employee_data, aes(x = salary, fill = left_company)) +
    geom_histogram(aes(y = after_stat(density)), color = "white", bins = 20) +
    facet_wrap(~ left_company, nrow = 2) +
    labs(title = "Employee Salary Distribution by Status (Left the Comapny - Yes/No)",
        x = "Salary (US Dollars", y = "Proportion of Employees")
```


Question: How does the age and income distribution differ between customers who close their account and those who do not?

Answer: The analysis of the data shows that the age distribution is quite similar for both customers who closed their accounts and those who did not, suggesting that age may not be a significant factor in the decision to close a credit card account. The average age for active customers is approximately 46.22 years, and for closed accounts, it's slightly higher at about 46.56 years.

In terms of income, the distributions again are similar, with active customers having an average income of around 62,843,compared to 61,602 for customers who have closed their accounts. This minor difference indicates that income level might not be a decisive factor for closing an account.

Supporting Analysis

age income summary <- credit card df %>%

A tibble: 2×3

customer_status Average_Age Average_Income

<fct></fct>	<dbl></dbl>	<dbl></dbl>
closed_account	46.56166	61601.51
active	46.21696	62842.83

Age Distribution by Customer Status

Question: Does marital status influence the likelihood of closing an account?

Answer: The data suggests that marital status might have an influence on the decision to close an account. Married customers show a higher number of closed accounts compared to their single or divorced counterparts. Specifically, out of the married customer segment, there are 1,277 active accounts and 989 closed accounts, which indicates a substantial proportion of account closures. For single customers, the numbers are 1,063 active accounts to 944 closed accounts, showing a more balanced ratio but still a notable number of closures.

Supporting Analysis

```
In [91]: # Summary dataframe
marital_status_summary <- credit_card_df %>%
    count(customer_status, marital_status) %>%
    spread(key = customer_status, value = n)
marital_status_summary

# Bar plot
ggplot(credit_card_df, aes(x = marital_status, fill = customer_status)) +
    geom_bar(position = "dodge") +
    labs(title = "Account Closure by Marital Status", x = "Marital Status", y = "Count")
```

A tibble: 3×3

marital_status closed_account active

<fct> <int> <int>

single	944	1063
married	989	1277
divorced	159	195

Question: Is there a relationship between credit card utilization and account closure?

Answer: Yes, there appears to be a relationship between credit card utilization and account closure. Customers with active accounts have a higher average credit card utilization ratio (approximately 0.29) than those who have closed their accounts (average utilization ratio around 0.16). This suggests that customers who make more use of their available credit are less likely to close their accounts.

Supporting Analysis

```
`3rd Quartile` = quantile(utilization ratio, 0.75, na.rm = TRUE),
   Max = max(utilization ratio, na.rm = TRUE)
 ) 응>응
 ungroup()
# Summary dataframe for utilization ratio
utilization summary
library(ggplot2)
# Boxplot for Utilization Ratio by Customer Status
ggplot(credit card df, aes(x = customer status, y = utilization ratio, fill = customer s
 geom boxplot() +
 scale fill brewer(palette = "Set3") +
 labs(title = "Utilization Ratio by Customer Status",
      x = "Customer Status",
      y = "Utilization Ratio") +
 theme minimal() +
  theme(legend.position = "none")
```

A tibble: 2 × 10

customer_status	Count	Mean	SD	Median	IQR	Min	1st_Quartile	3rd_Quartile	Max
<fct></fct>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
closed_account	2092	0.1610186	0.2643019	0.000	0.22725	0	0.000	0.22725	0.999
active	2535	0.2894635	0.2686318	0.207	0.46550	0	0.053	0.51850	0.983

Question: Do customers who have been inactive for longer periods or contacted less frequently by the bank more likely to close their accounts?

Answer: The data indicates that inactivity and less frequent contact are associated with a higher likelihood of account closure. Customers who closed their accounts show, on average, longer periods of inactivity last year (about 2.69 months) compared to active customers (approximately 2.26 months). Additionally, those who closed their accounts were contacted more frequently last year (an average of 2.98 times) than those with active accounts (an average of 2.39 times), suggesting that while increased contact by the bank might be a response to potential account closure signals, it may not be effective in retaining the customer.

Supporting Analysis

A tibble: 2 × 3

customer_status	Average_Months_Inactive	Average_Contacted
-----------------	-------------------------	-------------------

<fct></fct>	<dbl></dbl>	<dbl></dbl>
closed_account	2.691205	2.978489
active	2.261538	2.389744

Question: How does the change in spending and transaction activity from Q4 to Q1 affect account closure?

Answer: The change in spending and transaction activity from Q4 to Q1 seems to affect account closure. Customers who remained with the bank demonstrate a higher average spend ratio from Q4 to Q1 (0.77) than those who closed their accounts (0.70). Moreover, the average transaction ratio for active customers is higher (0.74) compared to that of closed account customers (0.56). This points to a trend where decreases in spending and transaction activity could signal an increased likelihood of account closure, highlighting the importance of consistent customer activity for retention.

Supporting Analysis

```
ggplot(credit_card_df, aes(x = transaction_ratio_q4_q1, fill = customer_status)) +
  geom_density(alpha = 0.5) +
  facet_wrap(~customer_status) +
  theme_minimal() +
  labs(title = "transaction_ratio_q4_q1 Distribution by Customer Status")
```

A tibble: 2×5

$customer_status \quad Average_Spend_Ratio \quad Median_Spend_Ratio \quad Average_Transaction_Ratio \quad Median_Transaction_Ratio \quad Average_Spend_Ratio \quad Average_Spend_$

<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
closed_account	0.6951463	0.701	0.5554670	0.531
active	0.7712134	0.739	0.7367661	0.714

Spend Ratio Q4 to Q1 Distribution by Customer Status

Machine Learning Modeling (75 Points)

In this section of the project, you will fit **three classification algorithms** to predict the outcome variable, customer_status.

You must follow the machine learning steps below.

The data splitting and feature engineering steps should only be done once so that your models are using the same data and feature engineering steps for training.

- 1. Split the credit_card_df data into a training and test set (remember to set your seed)
- 2. Specify a feature engineering pipeline with the recipes package
 - You can include steps such as skewness transformation, dummy variable encoding or any other steps you find appropriate
- 3. Specify a parsnip model object
 - You may choose from the following classification algorithms:
 - Logistic Regression
 - LDA
 - QDA
 - KNN
 - Decision Tree
 - Random Forest
- 4. Package your recipe and model into a workflow
- 5. Fit your workflow to the training data
 - If your model has hyperparameters:

- Split the training data into 5 folds for 5-fold cross validation using vfold_cv (remember to set your seed)
- Perform hyperparamter tuning with a random grid search using the grid_random() function
- Refer to the following tutorial for an example Random Grid Search
- Hyperparameter tuning can take a significant amount of computing time. Be careful not to set
 the size argument of grid_random() too large. I recommend size = 10 or smaller.
- Select the best model with select_best() and finalize your workflow
- 6. Evaluate model performance on the test set by plotting an ROC curve using autoplot() and calculating the area under the ROC curve on your test data

Data Resampling

First split your data into training and test sets. If performing hyperparameter tuning, also create folds from your training data

```
In [96]: library(tidymodels)

set.seed(123) # Set seed for reproducibility
  data_split <- initial_split(credit_card_df, prop = 0.8) # 80-20 split
  train_data <- training(data_split)
  test_data <- testing(data_split)

# If hyperparameter tuning is needed, create folds from the training data
  folds <- vfold_cv(train_data, v = 5, strata = customer_status)</pre>
In [97]:
```

Feature Engineering Pipeline

Specify your feature engineering pipeline with the recipes package. You will use the pipeline when you create your modeling workflows below for each of your models.

```
In [98]: library(recipes)
    recipe <- recipe(customer_status ~ ., data = train_data) %>%
        step_normalize(all_numeric(), -all_outcomes()) %>% # Normalize numeric features
        step_dummy(all_nominal(), -all_outcomes()) # Create dummy variables
In [99]:
```

Model 1 Training

```
In [100... library(parsnip)

# Specify a logistic regression model
logistic_spec <- logistic_reg() %>%
    set_engine("glm") %>%
    set_mode("classification")
```

```
# Package the recipe and model into a workflow
workflow <- workflow() %>%
  add_recipe(recipe) %>%
  add_model(logistic_spec)

# Fit the workflow to the training data
logistic_fit <- workflow %>%
  fit(data = train_data)
```

In [101...

Model 1 Performance Evaluation

```
In [102... library(yardstick)
        # Predict on the test data
        logistic results <- predict(logistic fit, test data, type = "prob")</pre>
         # Bind the actual results
        logistic results <- logistic results %>%
          bind cols(test data %>% select(customer status))
         # Calculate ROC AUC for the positive class 'closed account'
        logistic auc <- logistic results %>%
          roc auc(truth = customer status, .pred closed account)
         # Print the AUC
        print(logistic auc)
        # Plot ROC curve
        logistic roc curve <- logistic results %>%
          roc curve(truth = customer status, .pred closed account) %>%
          autoplot()
        # Print the ROC curve plot
        print(logistic roc curve)
        \# A tibble: 1 \times 3
          .metric .estimator .estimate
```


In [103...

Model 2 Training

```
In [104... # Specify the random forest model
    rf_spec <- rand_forest(trees = 1000) %>%
        set_engine("ranger") %>%
        set_mode("classification")

# Create a workflow
    rf_workflow <- workflow() %>%
        add_recipe(recipe) %>%
        add_model(rf_spec)

# Fit the workflow to the training data
    rf_fit <- rf_workflow %>%
        fit(data = train_data)
```

In [105...

Model 2 Performance Evaluation

```
In [106... # Predict on the test data
    rf_results <- predict(rf_fit, test_data, type = "prob")

# Bind the actual results
    rf_results <- rf_results %>%
        bind_cols(test_data %>% select(customer_status))

# Calculate ROC AUC for the positive class 'closed_account'
```

```
rf_auc <- rf_results %>%
    roc_auc(truth = customer_status, .pred_closed_account)

# Print the AUC
print(rf_auc)

# Plot ROC curve
rf_roc_curve <- rf_results %>%
    roc_curve(truth = customer_status, .pred_closed_account) %>%
    autoplot()

# Print the ROC curve plot
print(rf_roc_curve)
```


In [107...

Model 3 Training

```
In [108... # Specify the decision tree model
    tree_spec <- decision_tree() %>%
        set_engine("rpart") %>%
        set_mode("classification")

# Create a workflow
    tree_workflow <- workflow() %>%
        add_recipe(recipe) %>%
        add_model(tree_spec)
```

```
# Fit the workflow to the training data
tree fit <- tree workflow %>%
 fit(data = train data)
```

In [109...

Model 3 Performance Evaluation

```
In [110... # Predict on the test data
         tree results <- predict(tree fit, test data, type = "prob")</pre>
         # Bind the actual results
         tree results <- tree results %>%
          bind cols(test data %>% select(customer status))
         # Calculate ROC AUC for the positive class 'closed account'
         tree auc <- tree results %>%
          roc auc(truth = customer status, .pred closed account)
         # Print the AUC
         print(tree auc)
         # Plot ROC curve
         tree roc curve <- tree results %>%
          roc curve(truth = customer status, .pred closed account) %>%
          autoplot()
         # Print the ROC curve plot
         print(tree roc curve)
         \# A tibble: 1 \times 3
          .metric .estimator .estimate
```


In [111...

Executive Summary (25 Points)

Write an executive summary of your overall findings and recommendations to the executives at the bank. Think of this section as your closing remarks of a presentation, where you summarize your key findings, model performance, and make recommendations to improve customer retention and service at the ban

Your executive summary must be written in a professional tone, with minimal grammatical errors, and should include the following sections:

- 1. An introduction where you explain the business problem and goals of your data analysis
- What problem(s) is this company trying to solve? Why are they important to their future success?
- What was the goal of your analysis? What questions were you trying to answer and why do they matter?
- 1. Highlights and key findings from your Exploratory Data Analysis section
- What were the interesting findings from your analysis and why are they important for the business?
- This section is meant to establish the need for your recommendations in the following section
- 1. Your "best" classification model and an analysis of its performance
 - In this section you should talk about the expected error of your model on future data
 - To estimate future performance, you can use your model performance results on the **test data**

- You should discuss at least one performance metric, such as an F1, sensitivity, specificity, or ROC
 AUC for your model. However, you must explain the results in an **intuitive**, **non-technical manner**.
 Your audience in this case are executives at a telecommunications company with limited knowledge of machine learning.
- 2. Your recommendations to the company
- Each recommendation must be supported by your data analysis results
- You must clearly explain why you are making each recommendation and which results from your data analysis support this recommendation
- You must also describe the potential business impact of your recommendation:
 - Why is this a good recommendation?
 - What benefits will the business achieve?

Please add your executive summary in the text block below

Introduction

The banking sector is fiercely competitive, and customer retention is a critical aspect of a bank's success. The goal of our analysis was to understand the factors that influence a customer's decision to close a credit card account with the bank. By identifying these factors, we aimed to provide actionable insights that could be used to improve customer retention strategies and, ultimately, ensure the bank's continued growth and success.

Key Findings

- Age and Income: There was no significant difference in the age and income distribution between customers who closed their accounts and those who did not.
- Marital Status: Married customers had a higher propensity to close their accounts compared to single or divorced customers.
- Credit Utilization: Customers with higher credit card utilization ratios were less likely to close their accounts, suggesting a value in active credit management.
- Inactivity and Contact: Longer periods of inactivity and higher contact frequency with the bank were associated with account closures.
- Spending and Transaction Activity: A decrease in spending and transaction activity from Q4 to Q1 was indicative of account closures.

These findings are crucial as they point towards potential areas of improvement in customer engagement and service offerings.

Modeling Results

We developed three classification models to predict the likelihood of account closure. The Random Forest model emerged as the "best" classification model with an ROC AUC of 0.992, suggesting excellent model performance and a high degree of accuracy in predicting account closure. This metric, ROC AUC, measures

the model's ability to distinguish between customers who will close their accounts and those who will not. The higher the score, closer to 1, the better the model is at making this distinction.

Recommendations

- Personalized Engagement for Married Customers: Implement targeted communication and special
 offers for married customers to address their unique needs, potentially mitigating the higher closure
 rates observed in this demographic.
- Credit Utilization Incentives: Encourage higher credit utilization through rewards programs or personalized credit offers, as customers who use their credit cards more are less likely to close their accounts.
- Proactive Engagement: Develop predictive models to identify at-risk customers based on inactivity and contact frequency, enabling proactive engagement before the customer decides to close their account.
- Monitoring Spending Patterns: Monitor changes in spending patterns, especially decreases from Q4 to Q1, to quickly engage with customers who may be at risk of closing their accounts.