

NTE74LS01 Integrated Circuit TTL - Quad 2-Input Positive NAND Gate with Open Collector Outputs

Description:

The NTE74LS01 contains four independent 2–Input NAND gates in a 14–Lead plastic DIP type package. The open collector outputs require pull–up resistors to perform correctly. They may be connected to other open collector outputs to implement active–low wired–OR or active–high wired–AND functions. Open collector devices are often used to generate higher V_{OH} levels.

Absolute Maximum Ratings: (Note 1)

Supply Voltage, V _{CC}	7V
DC Input Voltage, V _{IN}	5.5V
Operating Temperature Range, T _A	0°C to +70°C
Storage Temperature Range, T _{stg} –	65°C to +150°C
Note: 1 Unless otherwise specified all voltages are referenced to CND	

Note 1. Unless otherwise specified, all voltages are referenced to GND.

Recommended Operating Conditions:

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	4.75	5.0	5.25	V
High-Level Input Voltage	V _{IH}	2.0	_	-	V
Low-Level Input Voltage	V _{IL}	_	_	8.0	V
High-Level Output Voltage	V _{OH}	-	_	5.5	V
Low-Level Output Current	I _{OL}	-	_	8	mA
Operating Temperature Range	T _A	0	-	+70	°C

Electrical Characteristics: (Note 2, Note 3)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Clamp Voltage	V_{IK}	$V_{CC} = MIN, I_I = -18mA$	-	_	-1.5	V
High Level Output Current	I _{OH}	$V_{CC} = MIN, V_{IL} = MAX, V_{OH} = 5.5V$	-	_	0.1	mA
Low Level Output Voltage	V _{OL}	$V_{CC} = MIN, V_{IH} = 2V, I_{OL} = 4mA$	-	0.25	0.4	V
		$V_{CC} = MIN, V_{IH} = 2V, I_{OL} = 8mA$	-	0.35	0.5	V
Input Current	I _I	V _{CC} = MAX, V _I = 7V	_	_	0.1	mA

- Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.

Electrical Characteristics (Cont'd): (Note 2, Note 3)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
High Level Input Current	I _{IH}	$V_{CC} = MAX, V_I = 2.7V$	-	-	20	μΑ
Low Level Input Current	I _{IL}	$V_{CC} = MAX, V_I = 0.4V$	-	-	-0.4	mA
High Level Supply Current	I _{CCH}	$V_{CC} = MAX, V_I = 0$	_	0.8	1.6	mA
Low Level Supply Current	I _{CCL}	$V_{CC} = MAX, V_I = 4.5V$	_	2.4	4.4	mA

- Note 2. .For conditions shown as MIN or MAX, use the appropriate value specified under "Recommended Operation Conditions".
- Note 3. All typical values are at $V_{CC} = 5V$, $T_A = +25$ °C.

<u>Switching Characteristics</u>: $(V_{CC} = 5V, T_A = +25^{\circ}C)$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Propagation Delay Time	t _{PLH}	$R_L = 2k\Omega$, $C_L = 15pF$	-	17	32	ns
From A or B Input to Y Output)	t _{PHL}		-	15	28	ns

Truth Table (Each Gate):

Inp	Output	
Α	В	Υ
Н	Н	L
L	Х	Н
Х	L	Н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Pin Connection Diagram 14 V_{CC} 1Y 1 13 4Y 1A 2 1B **3 12** 4B 2Y 4 11 4A 2A 5 **10** 3Y 2B **6 9** 3B GND 7 **8** 3A 8 14 7 .300 (7.62) .785 (19.95) Max .200 (5.08) `Max[´] .099 (2.5) Min

.100 (2.45)

.600 (15.24)