

Projekt: MSS54 Modul: Dynamikvorhalt

Seite 1 von 5

MSS54 Modulbeschreibung

Dynamikvorhalt

	Abteilung	Datum	Name	Filename
Bearbeiter		18.06.1996	Name	8.02

Modulbeschreibung

Projekt: MSS54 Modul: Dynamikvorhalt

Seite 2 von 5

Änderungsdokumentation:

V:5.00 Erweiterung K_DYN_TRIGGER_DBGR zu KL_DYN_TRIGGER_DBGR = f(n)

Inhaltsverzeichnis:

1. Dynamikvorhalt	3
1.1. Klopfschutz Dynamikvorhalt	
1.2. Dynamikvorhalt für Zylinder Druckbegrenzung	
1.3. Prinzip Zündwinkeleingriff	
1.4. Daten Dynamikvorhalt	

	Abteilung	Datum	Name	Filename
Bearbeiter		18.06.1996	Name	8.02

Modulbeschreibung

Projekt: MSS54 Modul: Dynamikvorhalt

Seite 3 von 5

1. DYNAMIKVORHALT

Abhängig vom Lastsprung und dem aktuellen Betriebspunkt existieren drei unterschiedliche Instationäreingriffe in die Zündung.

- Klopfschutz Dynamikvorhalt
- Dynmikvorhalt f
 ür Zylinder Druckbegrenzung

Basis für die Auslösung eines Dynamikvorhalts ist das Erkennen eines Lastsprunges innerhalb des letzten Winkelsegments (6Zyl: 120°; 8Zyl: 90°). Die Berechnung des Lastsprunges erfolgt über ein Delta_rf, welches für das Dynamikmodul in ein Delta_tl umgerechnet wird.

Berechnung des Lastsprunges:

```
delta_rf = KF_N_DK(wdk_t, n_t) - KF_RF_N_DK(wdk_{t-20ms}, n_t)
dyn trigger = Umrechnung rf tl(delta rf, n)
```

Bei erfüllter Auslösebedingung zieht der Dynamikvorhalt den Zündwinkel um einen definierten Offset in Richtung spät. Dies erfolgt direkt und ohne Änderungsbegrenzung. Dieser Offset verharrt dann für eine applizierbare Anzahl von Winkelsegmenten auf diesen Betrag. Anschließend wird der Zündwinkeleingriff winkelsynchron über eine Änderungsbegrenzung ZWB abgeregelt.

Sind mehrere gleichzeitige Dynamikvorhalte aktiv, werden alle Maßnahmen einschließlich ihrer Änderungsbegrenzung berechnet und der am weitesten in Richtung spät verstellende Eingriff in den Zündwinkelpfad eingerechnet.

Ein Retriggern eines Dynamikvorhalts wird nur dann berücksichtigt, wenn der daraus resultierende Zündwinkeloffset weiter in Richtung spät verstellt als der momentane Wert der ZWB.

1.1. KLOPFSCHUTZ DYNAMIKVORHALT

```
Auslösebedingung:
```

```
B_TL oder B_VL
und d_wdk > K_DYN_DWDK_MIN // minimaler positiver DK Gradient
und dyn_trigger > KL_DYN_TRIGGER_KR( n )
// Lastsprung größer Triggerschwelle
```

Berechnung des Zündwinkeloffsets:

```
dyn_comf_tz = KL_DYN_TZ_KR( tan )
```

Eingriffsdauer: K_TZ_SEGM_DYN_KR Aufregelrampe: K_TZ_ZWB_DYN_KR

	Abteilung	Datum	Name	Filename
Bearbeiter		18.06.1996	Name	8.02

Projekt: MSS54 Modul: Dynamikvorhalt

Seite 4 von 5

1.2. DYNAMIKVORHALT FÜR ZYLINDER DRUCKBEGRENZUNG

Auslösebedingung:

B_TL oder B_VL

und d_wdk > K_DYN_DWDK_MIN // minimaler positiver DK Gradient

und dyn_trigger > KL_DYN_TRIGGER_DBGR

// Lastsprung größer Triggerschwelle

 $\label{eq:control_norm} \text{und} \qquad n > \text{K_DYN_DBGR_N_MIN} \qquad \qquad // \text{ Drehzahlschwelle}$

 $\label{eq:wdk} \mbox{ und } \mbox{ wdk} > \mbox{K_DYN_DBGR_WDK_MIN } \mbox{ // DK-Schwelle}$

und tmot > K_DYN_DBGR_TMOT_MIN // Motortemperaturschwelle

Berechnung des Zündwinkeloffsets:

dyn_dbgr = KL_DYN_TZ_DBGR(n)

Eingriffsdauer: K_TZ_SEGM_DYN_DBGR Aufregelrampe: K_TZ_ZWB_DYN_DBGR

1.3. PRINZIP ZÜNDWINKELEINGRIFF

	Abteilung	Datum	Name	Filename
Bearbeiter		18.06.1996	Name	8.02

Projekt: MSS54 Modul: Dynamikvorhalt

Seite 5 von 5

1.4. DATEN DYNAMIKVORHALT

Variable

Name	Bedeutung	
dyn_trigger	Lastsprung des letzten Segments	
dyn_trigger_dbgr	Triggerschwelle Druckbegrenzung	
dyn_trigger_kr	Triggerschwelle KR Dynamik	
dyn_kr_tz	Zündwinkeleingriff KR Dynamik	
dyn_dbgr_tz	Zündwinkeleingriff Dynamik Druckbegrenzung	
dyn_kr_st	Status KR Dynamik	
dyn_dbgr_st	Status Dynamik Druckbegrenzung	

Konstante

Name	Bedeutung
K_DYN_DWDK_MIN	minimaler DK-Gradient für alle Dynmikvorhalte
K_DYN_DBGR_N_MIN	Drehzahlschwelle fürDruckbegrenzung
K_DYN_DBGR_WDK_MIN	DK-Schwelle für Druckbegrenzung
K_DYN_DBGR_TMOT_MIN	Tmot-Schwelle für Druckbegrenzung
KL_DYN_TRIGGER_DBGR	Triggerschwelle für Druckbegrenzung = f(n)
KL_DYN_TRIGGER_KR	Triggerschwelle für KR Dynamik
KL_DYN_TZ_KR	Zündwinkeloffset bei KR = f(tan
KL_DYN_TZ_DBGR	Zündwinkeloffset bei Druckbegrenzung = f(n)
K_TZ_DYN_KR_SEGM	Eingriffsdauer der KR-Dynamik
K_TZ_DYN_DBGR_SEGM	Eingriffsdauer der Dynamik Druckbegrenzung

	Abteilung	Datum	Name	Filename
Bearbeiter		18.06.1996	Name	8.02