

Grafos e Algoritmos Computacionais

Ordenação Topológica

Prof. André Britto

<u>Alcançabilidade</u>

 Um vértice w é alcançável a partir do vértice v se houver um caminho entre w e v .

Fecho Transitivo Direto

O Fecho Transitivo Direto de um vértice v, denotado por $\hat{\Gamma}^+(v)$, é o conjunto dos vértices de um grafo alcançáveis a partir de v. Os vértices em $\hat{\Gamma}^+(v)$ são chamados de sucessores de v.

Fecho Transitivo Indireto

O Fecho Transitivo Indireto de um vértice v, denotado por $\hat{\Gamma}^-(v)$, é o conjunto dos vértices de um grafo a partir dos quais v é alcançável. Os vértices em $\hat{\Gamma}^-(v)$ são chamados de antecessores de v.

Ordenação Topológica

- Sequência de vértices tal que todas as arestas do grafo estejam direcionadas sempre para a esquerda. O grafo deve ser acíclico.
- Uma Ordenação Topológica de um grafo acíclico direcionado (GAD), é uma ordenação linear de seus vértices, na qual cada vértice aparece antes de seus antecessores.

Ordenação Topológica

Cada GAD possui uma ou mais ordenações topológicas. Caso um grafo possua ciclos ou seja não direcionado, não é possível estabelecer uma relação de precedência entre os vértices, e portanto, é impossível estabelecer uma ordenação topológica.

Ordenação Topológica

Exemplo: cadeia de pré-requisitos da grade curricular de um curso de graduação

Ordem de tarefas na construção de um software

Ex.:

Como encontrar uma **ordenação topológica** para *G*?

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Ex.:

Algoritmo de Kann

```
algoritmo Ordenação Topológica
{dados: dígrafo acíclico D}
início
   para i = 1,2,...,n faça
     início
       (1) Escolha um vértice v com grau de entrada
          nulo em D;
       (2) Retire de D o vértice v e as arestas dele
          divergentes;
       (3) Imprima v;
     fim
fim
```

Lema

Todo dígrafo acíclico *D* tem pelo menos um vértice com grau de entrada nulo.

Prova

Seja P um caminho orientado mais longo em D, ligando u a v. Como D é acíclico não existem arestas (w,u) tal que $w \in VP$. Por outro lado também não existem arestas (y,u), $y \in VD | VP$, pois senão P não seria um caminho mais longo em D. Logo, u tem grau de entrada nulo em D.

Proposição

O algoritmo de ordenação topológica está correto.

Todo dígrafo acíclico D tem uma ordenação topológica.

Prova

Por indução no número de vértices de D.

Se n = 1 (base) a prova é imediata

Suponha então que a proposição vale para todo |VD| < n.

Pelo lema anterior, sabemos que existe em D um vértice v, tal que g(v) = 0. Seja D' := D - v. Claramente |VD'| < n. A operação remoção de vértices não gera ciclos. Logo, por Hipótese de Indução temos uma ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

Prova

Por indução no número de vértices de D.

Se n = 1 (base) a prova é imediata

Suponha então que a proposição vale para todo |VD| < n.

Pelo lema anterior, sabemos que existe em D um vértice v, tal que g(v) = 0. Seja D' := D - v. Claramente /

Todo dígrafo acíclico *D* tem pelo menos um vértice com grau de entrada nulo.

O algoritmo parte do princípio de removermos um vértice de grau de entrada 0 a cada passo.

vértice v, tal que g(v) = 0. Seja D' := D-v. Claramente / VD' / < n. A operação remoção de vértices não gera ciclos. Logo, por Hipótese de Indução temos uma ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

O dígrafo D' resultante da remoção de v não possui ciclos. Só retiramos o vértice e todas arestas associadas a ele.

vértice v, tal que g(v) = 0. Seja D' := D-v. Claramente / VD' / < n. A operação remoção de vértices não gera ciclos. Logo, por Hipótese de Indução temos uma ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

Prova

Por indução no número de vértices de D.

Se n = 1 (base) a prova é imediata

Suponha então que a proposição vale para todo |VD| < n.

Pelo lema anterior, sabemos que existe em D um vértice v, tal que g(v) = 0. Seja D' := D - v. Claramente |VD'| < n. A operação remoção de vértices não gera ciclos. Logo, por Hipótese de Indução temos uma ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

Prova

Por indução no número de vértices de D.

Se n = 1 (base) a prova é imediata

Suponha então que a proposição vale para todo |VD| < n.

Se a ordenação topológica é válida para todo dígrafo D com |VD| < n, basta adicionar v nessa ordenação válida de D'.

ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

Prova

Por indução no número de vértices de D.

Se n = 1 (base) a prova é imediata

Suponha então que a proposição vale para todo |VD| < n.

Pelo lema anterior, sabemos que existe em D um vértice v, tal que g(v) = 0. Seja D' := D - v. Claramente |VD'| < n. A operação remoção de vértices não gera ciclos. Logo, por Hipótese de Indução temos uma ordenação topológica para D'. Adicione no início da ordenação encontrada em D' o vértice v e temos uma ordenação topológica para D.

■ Complexidade \rightarrow Tempo: O(n+m)

Espaço: O(n+m)

 A complexidade para percorrer todo o grafo no EA é O (n+m)

```
algoritmo Ordenação Topológica
{dados: dígrafo acíclico D}
início
   para i = 1,2,...,n faça
     início
       (1) Escolha um vértice v com grau de entrada
          nulo em D;
       (2) Retire de D o vértice v e as arestas dele
          divergentes;
       (3) Imprima v;
     fim
fim
```

Complexidade → Tempo: O(n+m)

Espaço: **O(n+m)**

Como podemos implementar este algoritmo ?

<u>Estrutura de Adjacências</u> + <u>vetor dos</u> <u>graus</u> da entrada de cada vértice em D.

+ <u>pilha</u> com vértices com <u>grau</u> de entrada nulo.

```
algoritmo OrdenaçãoTopológica(EAD);
{dados: dígrafo acíclico D representado por EAD}
início
   InicializaGrau(EAD);
   para i = 1, 2, \ldots, n faça
      se EAD[i].grau = 0 então empilhe(P, i);
   repita
        desempilhe(P, v); imprima(v);
        para todas as arestas (v,w) faça
          inicio
             EAD[w].grau := EAD[w].grau -1;
             se EAD[w].grau =0 então empilhe(P,w);
          fim
   até que P seja vazia;
fim
```

Exercícios Recomendados

- 1 Um dígrafo apresenta ordenação topológica se e somente se for acíclico. Provar ou dar um contra-exemplo.
- 2 Apresente uma ordenação topológica válida para o grafo abaixo usando Busca em Profundidade e o algoritmo de Kahn. O passo a passo dos algoritmos deve ser apresentado.

Referências

- Seções 3.6 do Szwarcfiter, J. L., Grafos e Algoritmos Computacionais, Ed. Campus, 1983.
- Capítulo 1 do Bondy J. A. e Murty U. S. R., Graph Theory with Applications, Elsevier, 1976.
- Seção 22.4 do Cormen, Introduction to Algorithms, MIT Press, 2001.
- Adaptado do material de aula da Profa. Leila Silva
- Adaptado do material de aula do Prof. Renê de Gusmão