Confidence rating task

Simulate 100 trials from an unequal variance observer with μ_s = 2 and σ_s = 1.5 in a confidence rating task where the observer can respond 'yes', 'no' and 'maybe'. Fit the unequal observer model to your simulated data.

Can you find the correct values for μ_s and σ_s ?

Compare your solution to this problem with your solution to the unequal variance model problem in Homework 1_2

Problem Psychometric Function

An observer responds according to a psychometric function shaped like a cumulative Gaussian probability function in a signal detection task. The table lists the number of yesresponses out of 50 trials for five stimulus levels given in arbitrary units.

Stimulus level	0.4	0.9	1.2	1.7	2.3
Number of yes Responses	1	6	13	32	49

Fit the psychometric function to the data using the maximum likelihood principle. You can use any numerical optimization routine that you like.

- What are the estimates of the parameters of the psychometric function?
- In a follow-up experiment we use only intensity levels 1 and 2. The task of the observer is to say whether the intensity level is 'high' or 'low'. What value do we expect for the sensitivity (d')?