1 Model

We begin with a general model that encapsulates many of the works we will discuss. For an input \mathbf{x} , we want to predict a response \mathbf{y}^* . Our prediction is a function f_{θ} of \mathbf{x} . The function f_{θ} is parameterized by θ . We will consider models of the form

$$f_{\theta}(\mathbf{x}) = y_{\theta} \left(\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) \right). \tag{1}$$

Here, \mathbf{x} is an L-dimensional real vector and \mathbf{y}^* is an M-dimensional real vector. The ϕ_i are basis functions that map from \mathbb{R}^L to \mathbb{R}^K , and the α_i are real scalars. Additionally, the sum over i need not be finite. The coefficients α_i may depend on \mathbf{x} and our parameters θ , but we suppress the former dependence for notational simplicity. The function y_{θ} maps from \mathbb{R}^K to \mathbb{R}^M and is parameterized by θ as well.

We will show how this model encapsulates the works we are interested in understanding.

2 Ingrosso et al. (2022)

The model in Ingrosso et al. (2022) sets M=1, uses linear basis functions, and sets y_{θ} to be the mean function after applying a nonlinearity. That is,

$$\sum_{i} \alpha_{\theta}^{(i)} \phi_{\theta}^{(i)}(\mathbf{x}) = \Theta \mathbf{x} + b_{\theta}$$
 (2)

$$y_{\theta}(\mathbf{x}) = \frac{1}{K} \mathbf{1}^{\top} \sigma(\mathbf{x}). \tag{3}$$

Here, Θ is a $K \times L$ matrix, b_{θ} is a K-dimensional vector, and σ is a nonlinear function applied elementwise.