

Wyznaczenie pułapu tlenowego

Zachariasz Jażdżewski

21.10.2025

Numer indeksu: 193648 Data wykonania: 14.10.2025

Prowadzący: dr inż Ireneusz Linert

1. Cel doświadczenia

Celem laboratorium jest wyznaczenie pułapu tlenowego badanego na podstawie pomiaru tętna spoczynkowego.

2. Wprowadzenie teoretyczne

Pułap tlenowy ${
m VO}_2$ max to miara zdolności pochłaniania tlenu przez organizm. Jest to popularny wskaźnik wydolności fizycznej człowieka. Mierzy on to ile mililitrów tlenu może pobrać kilogram naszego ciała w ciągu minuty. Wzór, z którego skorzystamy estymuje pułap tlenowy za pomocą tętna maksymalnego ${
m HR}_{
m max}$ i tętna spoczynkowego ${
m HR}_{
m sp}$:

$$\mathrm{VO_{2}\,max}\bigg[\frac{\mathrm{ml}}{\mathrm{kg}\cdot\mathrm{min}}\bigg] = 15\cdot\frac{\mathrm{HR}_{\mathrm{max}}}{\mathrm{HR}_{\mathrm{sp}}}$$

gdzie HR_{max} to tętno maksymalne, a HR_{sp} to tętno spoczynkowe, oba mierzone jako liczba uderzeń serca na minutę $\left[\frac{N}{\min}\right]$.

Tętno maksymalne $\mathrm{HR}_{\mathrm{max}}$ wyznaczymy ze wzoru

$$\begin{aligned} \text{Dla kobiet}: \text{HR}_{\text{max}} &= 210-0.5 \cdot \text{wiek} - 0.022 \cdot \text{masa} \\ \text{Dla mężczyzn}: \text{HR}_{\text{max}} &= 210-0.5 \cdot \text{wiek} - 0.022 \cdot \text{masa} + 4 \end{aligned}$$

3. Metodologia

Pomiaru tętna spoczynkowego dokonamy w pozycji siedzącej, za pomocą stopera wbudowanego w zegarek. Będziemy rejestrować liczbę uderzeń serca w zadanym czasie uciskając nadgarstek palcami wskazującym i środkowym.

Wykonamy 3 serie pomiarów:

- 1. 12 razy pomiar tętna, czas każdego pomiaru 15 sekund
- 2. 2 razy pomiar tętna, czas pierwszego pomiaru 60 sekund, czas drugiego 180 sekund
- 3. 12 razy pomiar tętna w czasach 15 s, 30 s, 45 s, ..., 180 s

Za niepewność zliczania uderzeń przyjmiemy ± 1 uderzenia, zaś za niepewność pomiaru czasu przyjmiemy dwukrotność czasu reakcji badanego, który został wyliczony za pomocą stopera na 0.16 s, przyjmiemy więc niepewność pomiaru czasu jako ± 0.32 s.

4. Wyniki pomiarów

4.1. Zadanie 1

Cel zadania:

- Pomiar tętna spoczynkowego 12 razy po 15 sekund.
- · Obliczenie średniej, odchylenia standardowego.

Zebrane pomiary:

Nr. pomiaru i	Uderzenia N_i	Czas t_i [s]
1	21 ± 1	15 ± 0.32
2	21 ± 1	15 ± 0.32
3	22 ± 1	15 ± 0.32
4	22 ± 1	15 ± 0.32
5	20 ± 1	15 ± 0.32
6	21 ± 1	15 ± 0.32
7	22 ± 1	15 ± 0.32
8	22 ± 1	15 ± 0.32
9	20 ± 1	15 ± 0.32
10	21 ± 1	15 ± 0.32
11	21 ± 1	15 ± 0.32
12	23 ± 1	15 ± 0.32

Tabela 1: Wyniki pomiarów do zadania 1.

Dla każdego i-tego pomiaru policzmy tętno chwilowe f_i , liczone jako

$$f_i = \frac{N_i}{t_i} \times 60$$
 [uderzeń na minutę]

Gdzie N_i to ilość uderzeń serca zmierzona w i-tym pomiarze, a t_i to czas wykonywania pomiaru, czyli 15.00 s ± 0.32 s. Dla każdego pomiaru przyjmujemy takie samo t_i .

Ponadto dla każdego i-tego pomiaru policzmy jego niepewność. Niepewności będziemy oznaczać przez u.

Ze wzoru na propagację niepewności mamy:

$$\left(\frac{u(f)_i}{f_i}\right)^2 = \left(\frac{u(N_i)}{N_i}\right)^2 + \left(\frac{u(t_i)}{t_i}\right)^2$$

$$\Downarrow$$

$$u(f)_i = f_i \times \sqrt{\left(\frac{u(N_i)}{N_i}\right)^2 + \left(\frac{u(t_i)}{t_i}\right)^2}$$

Gdzie

- $u(N_i) = 1$
- $u(t_i) = 0.32 \text{ s}$
- $t_i = 15 \text{ s}$

Zatem dla każdego pomiaru i, niepewność wynosi

$$\begin{split} u(f_i) &= f_i \times \sqrt{\left(\frac{1}{N_i}\right)^2 + \left(\frac{0.32 \text{ s}}{15 \text{ s}}\right)^2} = \\ &= f_i \times \sqrt{\left(\frac{1}{N_i}\right)^2 + \left(\frac{8}{375}\right)^2} \end{split}$$

Mamy zatem

Nr. pomiaru i	Uderzenia N_i	Czas t_i [s]	Tętno chwilowe f_i	Niepewność pomiaru $u(f_i)$
1	21 ± 1	15 ± 0.32	84	± 4.38
2	21 ± 1	15 ± 0.32	84	± 4.38
3	22 ± 1	15 ± 0.32	88	± 4.42
4	22 ± 1	15 ± 0.32	88	± 4.42
5	20 ± 1	15 ± 0.32	80	± 4.35
6	21 ± 1	15 ± 0.32	84	± 4.38
7	22 ± 1	15 ± 0.32	88	± 4.42
8	22 ± 1	15 ± 0.32	88	± 4.42
9	20 ± 1	15 ± 0.32	80	± 4.35
10	21 ± 1	15 ± 0.32	84	± 4.38
11	21 ± 1	15 ± 0.32	84	± 4.38
12	23 ± 1	15 ± 0.32	92	± 4.46

Tabela 2: Wyniki pomiarów do zadania 1. wraz z wyliczonym tętnem chwilowym i niepewnością pomiaru

Policzmy średnie tętno chwilowe \overline{f} :

$$\overline{f} = \frac{1}{12} \sum_{i=1}^{12} f_i = \frac{1}{12} \cdot 1024 \approx 85.33$$

Policzmy odchylenie standardowe średniej (niepewność losową):

$$\sigma = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} \left(f_i - \overline{f} \right)^2} =$$

$$= \sqrt{\frac{1}{12 \cdot 11} \cdot \frac{416}{3}} = \sqrt{\frac{104}{99}} =$$

$$= 1.024941 \approx 1.02$$

Ze statystyki wiemy zatem, że wartość rzeczywista f znajduje się w przedziale $\left(\overline{f}-3\sigma,\overline{f}+3\sigma\right)$ czyli w przedziale $\left(82.27,88.39\right)$ z prawdopodobieństwem 0.997.

Wiedząc jednak ile wynosi niepewność dla każdego indywidualnego pomiaru możemy również policzyć średnią z niepewności pomiarów $u(f_i)$:

$$\overline{u(f_i)} = \frac{1}{n} \sum_{i=1}^{n} u(f_i) = \frac{1}{12} \cdot 52.74 = 4.395 \approx 4.40$$

Znając zatem statystyczną niepewność standardową, która wynosi $u_c=\sigma=1.02$ oraz niepewność systematyczną pomiarów, która wynosi $u_{\rm pom}=\overline{u(f_i)}=4.40$ i wiedząc, że są to niepewności niezależne od siebie, możemy obliczyć ostateczną niepewność jako:

$$u = \sqrt{(u_c)^2 + (u_{\text{pom}})^2} = \sqrt{1.02^2 + 4.40^2} = 4.51668 \approx 4.52$$

Zatem eksperymentalnie wyznaczyliśmy tętno spoczynkowe $\mathrm{HR}_{\mathrm{sp}}$ jako

$$HR_{sp} = 85.33 \pm 4.52$$

4.2. Zadanie 2

Cel zadania:

- Dwukrotny pomiar tętna spoczynkowego raz przez minutę, raz przez 3 minuty.
- Wyznaczenie tętna spoczynkowego korzystając z metody propagacji niepewności

Wyniki pomiarów:

Nr. pomiaru i	Uderzenia N_i	Czas t_i [s]
1	88 ± 1	60 ± 0.32
2	267 ± 1	180 ± 0.32

Tabela 3: Wyniki pomiarów do zadania 2.

Podobnie jak w zadaniu 1. dla każdego i-tego pomiaru policzmy tętno chwilowe f_i oraz niepewność pomiaru $u(f_i)$.

$$\begin{split} \left(\frac{u(f)_i}{f_i}\right)^2 &= \left(\frac{u(N_i)}{N_i}\right)^2 + \left(\frac{u(t_i)}{t_i}\right)^2 \\ & \quad \quad \ \ \, \downarrow \\ u(f_i) &= f_i \times \sqrt{\left(\frac{u(N_i)}{N_i}\right)^2 + \left(\frac{u(t_i)}{t_i}\right)^2} \end{split}$$

Więc

$$\begin{split} u(f_1) &= 88 \times \sqrt{\left(\frac{1}{88}\right)^2 + \left(\frac{0.32}{60}\right)^2} = 1.10466 \approx 1.10 \\ u(f_2) &= 89 \times \sqrt{\left(\frac{1}{267}\right)^2 + \left(\frac{0.32}{180}\right)^2} = 0.368979 \approx 0.37 \end{split}$$

Nr. pomiaru i	Uderzenia N_i	Czas t_i [s]	Tętno chwilowe f_i	Niepewność $u(f_i)$
1	88 ± 1	60 ± 0.32	88	± 1.10
2	267 ± 1	180 ± 0.32	89	± 0.37

Tabela 4: Wyniki pomiarów do zadania 2. wraz z wyliczonym tętnem chwilowym i niepewnością pomiaru

Policzmy średnią ważoną:

$$\overline{f}_{\text{ważona}} = \frac{\sum_i w_i f_i}{\sum_i w_i}$$

gdzie wagi w_i są odwrotnie proporcjonalne do kwadratu niepewności $u(f_i)$. Zatem

$$\begin{split} w_1 &= \frac{1}{(1.10)^2} = 0.826446 \approx 0.83 \\ w_2 &= \frac{1}{(0.37)^2} = 7.304602 \approx 7.30 \\ \overline{f}_{\text{ważona}} &= \frac{w_1 f_1 + w_2 f_2}{w_1 + w_2} = \frac{0.83 \cdot 88 + 7.30 \cdot 89}{0.83 + 7.30} = 88.897909 \approx 88.90 \end{split}$$

Niepewność średniej ważonej wynosi

$$u\Big(\overline{f}_{\text{ważona}}\Big) = \frac{1}{\sqrt{\sum_{i} w_{i}}} = \frac{1}{\sqrt{0.83 + 7.30}} = 0.350715 \approx 0.35$$

Zatem ostatecznie otrzymujemy tętno spoczynkowe

$$HR_{sp} = 88.90 \pm 0.35$$

4.3. Zadanie 3

Cel zadania:

- Wykonać pomiary w czasach 15 s, 30 s, 45 s, ..., 180 s.
- Wykonać wykres uderzeń w funkcji czasu.
- · Metodą regresji liniowej wyznaczyć współczynniki prostej.
- · Zaznaczyć niepewności

Wyniki pomiarów wraz z wyliczonym tętnem chwilowym f_i i niepewnością pomiaru $u(f_i)$, które zostały obliczone analogicznie do poprzednich zadań.

Nr. pomiaru i	Uderzenia N_i	Czas t_i [s]	Tętno chwilowe f_i	Niepewność $u(f_i)$
1	24 ± 1	15 ± 0.32	96.0	± 4.49
2	45 ± 1	30 ± 0.32	90.0	± 2.22
3	66 ± 1	45 ± 0.32	88.0	± 1.47
4	91 ± 1	60 ± 0.32	91.0	± 1.11
5	119 ± 1	75 ± 0.32	95.2	± 0.90
6	146 ± 1	90 ± 0.32	97.3	± 0.75
7	170 ± 1	105 ± 0.32	97.1	± 0.64
8	193 ± 1	120 ± 0.32	96.5	± 0.56
9	215 ± 1	135 ± 0.32	95.6	± 0.50
10	238 ± 1	150 ± 0.32	95.2	± 0.45
11	253 ± 1	165 ± 0.32	92.0	± 0.41
12	276 ± 1	180 ± 0.32	92.0	± 0.37

Tabela 5: Wyniki pomiarów do zadania 3. wraz z wyliczonym tętnem chwilowym i niepewnością pomiaru

Metodą regresji liniowej wyznaczymy współczynniki prostej

$$a = \frac{\overline{t \cdot N} - \overline{t} \cdot \overline{N}}{\overline{t^2} - \overline{t}^2}, \quad b = \overline{N} - a \cdot \overline{t}$$

Policzmy najpierw przydatne nam średnie

$$\overline{t} = 97.5$$

$$\overline{t^2} = 12187.5$$

$$\overline{N} = 153$$

$$\overline{t \cdot N} = 19113.75$$

Zatem

$$a = \frac{19113.75 - 97.5 \cdot 153}{12187.5 - 97.5^2} = 1.565035 \approx 1.57$$

$$b = 153 - 1.565035 \cdot 97.5 = 0.409088 \approx 0.41$$

Więc obliczone równanie prostej szacującej wartość oczekiwaną N przy konkretnych wartościach zmiennej t to

$$N(t) = 1.57t + 0.41$$

Przedstawmy zmierzone wyniki wraz z dopasowaną prostą na wykresie:

Wykres 1: Zależność zmierzonej ilości uderzeń serca od czasu pomiaru

Przedziały niepewności zostały uwzględnione, jednak są one zbyt małe, żeby być widoczne.

Policzmy jeszcze niepewności wyznaczonych stałych a i b:

$$\begin{split} u^2(a) &= \frac{1}{n-2} \cdot \frac{\overline{N^2} - a \cdot \overline{t \cdot N} - b \cdot \overline{N}}{\overline{t^2} - \overline{t}^2} = \\ &= \frac{1}{10} \cdot \frac{29993.17 - 1.565035 \cdot 19113.75 - 0.409088 \cdot 153}{12187.5 - 97.5^2} = 0.0063 \\ &\therefore u(a) = \sqrt{0.0063} = 0.079373 \approx 0.079 \end{split}$$

$$u^2(b) = u^2(a) \cdot \overline{t^2} = 0.0063 \cdot 12187.5 = 76.78125$$

$$u(b) = \sqrt{76.78125} = 8.762491 \approx 8.76$$

Otrzymaliśmy zatem stałe:

$$a = 1.57 \pm 0.079$$
$$b = 0.41 + 8.76$$

Teraz, podobnie jak w zadaniu 1. obliczymy odchylenie standardowe średniej

$$\sigma = \sqrt{\frac{1}{n(n-1)} \cdot \sum_{i=1}^{n} \left(f_i - \overline{f} \right)^2} =$$

$$= \sqrt{\frac{1}{12 \cdot 11} \cdot 105.1819} =$$

$$= 0.79683 \approx 0.80$$

oraz średnią niepewność pomiarów

$$\overline{u(f_i)} = \frac{1}{n} \sum_{i=1}^{n} u(f_i) = \frac{1}{12} \cdot 13.87 = 1.15583 \approx 1.16$$

Zatem niepewność ostateczna wynosi

$$u = \sqrt{0.80^2 + 1.16^2} = 1.409113 \approx 1.41$$

Więc przy średnim tętnie chwilowym, które wynosi $\overline{f_i} = 93.825 \approx 93.83$ otrzymujemy

$$\mathrm{HR_{sp}} = 93.83 \pm 1.41$$

5. Opracowanie wyników

Uzyskane wartości tętna spoczynkowego różnią się w zależności od zastosowanej metody:

- 1. $HR_{sp} = 85.33 \pm 4.52$
- 2. $HR_{sp} = 88.90 \pm 0.35$
- 3. $HR_{sp} = 93.83 \pm 1.41$

Najbardziej wiarygodna wydaje się metoda z zadania 2 (pomiar 1 min i 3 min), ponieważ dłuższy czas obserwacji redukuje wpływ błędu reakcji, a jednocześnie nie powoduje wzrostu tętna wskutek napięcia mięśniowego i większej aktywności podczas zapisywania wyników, jak w serii pomiarów z zadania trzeciego. Do obliczenia pułapu tlenowego wybierzemy więc wyniki z zadania drugiego.

6. Obliczenie pułapu tlenowego

Jako, że znamy już HR_{sp} oraz niepewności, możemy obliczyć pułap tlenowy.

$$\mathrm{VO_{2}\,max}\bigg[\frac{\mathrm{ml}}{\mathrm{kg}\cdot\mathrm{min}}\bigg] = 15\cdot\frac{\mathrm{HR}_{\mathrm{max}}}{\mathrm{HR}_{\mathrm{sp}}}$$

gdzie $\mathrm{HR}_{\mathrm{sp}}$ wyznaczyliśmy eksperymentalnie, a $\mathrm{HR}_{\mathrm{max}}$ dane jest wzorami

$$\begin{aligned} \text{Dla kobiet}: \text{HR}_{\text{max}} &= 210-0.5 \cdot \text{wiek} - 0.022 \cdot \text{masa} \\ \text{Dla mężczyzn}: \text{HR}_{\text{max}} &= 210-0.5 \cdot \text{wiek} - 0.022 \cdot \text{masa} + 4 \end{aligned}$$

W momencie pisania tego sprawozdania wartości te wynoszą (dla badanego):

wiek =
$$22.014$$
 [lat]
masa = 79.2 [kg]

Niepewność masy przyjmiemy jako ± 0.05 kg na podstawie rozdzielczości wagi łazienkowej, zaś niepewność wieku jako ± 1 dzień, czyli 0.00274 roku, zatem:

$$u(\text{wiek}) = 0.00274$$

 $u(\text{masa}) = 0.05$

Pułap tlenowy jest zależny od trzech wielkości (wiek, masa, tętno spoczynkowe), każdej obarczonej niepewnością. Zapiszemy go jako funkcję

$$\text{VO}_2 \max(m, w, f) = 15 \cdot \frac{210 - \frac{1}{2}w - 0.022 \cdot m + 4}{f}$$

Gdzie:

- w to wiek
- m to masa
- *f* to tetno spoczynkowe

Po obliczeniu pochodnych cząstkowych funkcji otrzymujemy

$$u(\text{VO}_2 \max) = \left| \frac{-0.5 \cdot 15}{f} \right| \cdot u(w) + \left| \frac{-0.022 \cdot 15}{f} \right| \cdot u(m) + \left| \frac{-15(210 - 0.5w - 0.022m + 4)}{f^2} \right| \cdot u(f)$$

$$u(\mathrm{VO_2\,max}) = 0.0002311586 + 0.0001856018 + 0.381966 = 0.382383 \approx 0.38$$

Możemy więc w końcu obliczyć pułap tlenowy badanego:

$$VO_2 \max = 15 \cdot \frac{210 - \frac{1}{2} \cdot 22.014 - 0.022 \cdot 79.2 + 4}{88.9} = 33.956794 \approx 33.96$$

Otrzymjemy zatem:

$$\mathrm{VO_{2}\,max} = 33.96 \pm 0.38 \, \left[\frac{\mathrm{ml}}{\mathrm{kg} \cdot \mathrm{min}} \right]$$

7. Wnioski i dyskusja

W trakcie ćwiczenia wyznaczono tętno spoczynkowe trzema różnymi metodami, uzyskując kolejno wyniki: 85.33 ± 4.52 uderzeń/min, 88.90 ± 0.35 uderzeń/min oraz 93.83 ± 1.41 uderzeń/min. Spośród tych wartości, najbardziej wiarygodny wynik uzyskano przy zastosowaniu drugiej metody, polegającej na pomiarze liczby uderzeń serca w dwóch przedziałach czasowych (1 min i 3 min). Na podstawie tego wyniku obliczono wartość pułapu tlenowego:

$$\mathrm{VO_{2}\,max} = 33.96 \pm 0.38 \, \left[\frac{\mathrm{ml}}{\mathrm{kg} \cdot \mathrm{min}} \right]$$

Uzyskana wartość pułapu tlenowego wydaje się zaniżona względem wartości oczekiwanej, co można przypisać zawyżonemu tętnu spoczynkowemu zmierzonemu podczas zajęć laboratoryjnych. Pomiar wykonano w warunkach nie w pełni odpowiadających rzeczywistemu stanowi spoczynku organizmu - w pozycji siedzącej, w obecności stresu eksperymentalnego oraz po wcześniejszej aktywności fizycznej.

Dla porównania, na podstawie długoterminowych pomiarów z zegarka sportowego, średnie tętno spoczynkowe badanego wynosi około 61 uderzeń/min, co wskazuje, że laboratoryjny pomiar (ok. 89 uderzeń/min) był niereprezentatywny dla rzeczywistego spoczynku.

W konsekwencji, ponieważ pułap tlenowy jest odwrotnie proporcjonalny do tętna spoczynkowego, otrzymana w eksperymencie wartość ${\rm VO_2}$ max jest zaniżona względem rzeczywistej wartości, którą można by uzyskać przy pomiarze w warunkach pełnego spoczynku fizjologicznego.