Indian Institute of Technology Guwahati Mid Semester Examination, September 19, 2022

MA201: Mathematics III

Answers without proper justifications will fetch zero mark.

Time: 2 hours (9.00AM - 11.00 AM) Marks: 30

- 1. Prove or disprove the following statements with proper justification.
 - (a) If f is an entire function and $f^n(0) \neq 0$, $\forall n = 0, 1, \dots$, then $f(z) \neq 0$ for all $z \in \mathbb{C}$.

Answer: Disprove. Take $f(z) = e^z - \alpha$ with $\alpha \neq 1$. Then $f^n(0) \neq 0$ for $n=0,1,2\cdots$. If we take $z_0=\log |\alpha|+iArg(\alpha)$ then $f(z_0)=0$

(b) There exists an entire function f such that $f'(z) = \frac{1}{z}$ for all $z \in \mathbb{C} \setminus \{0\}$.

Answer: Disprove. If exists an entire function f such that $f'(z) = \frac{1}{z}$ for all $z \in \mathbb{C} \setminus \{0\}$ then $\int_{|z|=1} \frac{1}{z} dz = 0$. But $\int_{|z|=1} \frac{1}{z} dz = 2\pi i \neq 0$.

(c) If f is an entire function satisfying $|f(z)-z| \leq |z|$ on $|z|=\frac{3}{2}$, then $|f'(a)| \le (1+|a|)^{-2} \ \forall a \in B(0,\frac{1}{2}).$ **Answer:** Disprove. Take $f(z) = z + \frac{1}{2}$. Then for any $a \in B(0,\frac{1}{2}) \setminus \{0\}$

the inequality $|f'(a)| \leq (1+|a|)^{-2} \ \forall a \in B(0,\frac{1}{2})$ does not hold.

(d) If f is a non-constant entire function, then there exists $a \in \mathbb{C}$ such that $\lim_{n \to \infty} f(a_n) \neq a \text{ for any } \{a_n\} \subset \mathbb{C}.$

Answer: Disprove. Assume that the given statement is true i. e. there exists an $\epsilon > 0$ such that $|f(z) - a| > \epsilon$ for all $z \in \mathbb{C}$. Then define $g(z) = \frac{1}{f(z)-a}$. By Liouville's theorem, g is constant implying f is constant.

(a) Find all entire functions f such that f'(0) = f(0) = 1 and $f''(1+\frac{1}{n}) = 7-\frac{3}{n}$ for all $n \in \mathbb{N}$.

Answer. Define g(z) = f''(z) + 3z - 10. Since $g(1 + \frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, by identity theorem f''(z) = 10 - 3z for all $z \in \mathbb{C}$. Using the conditions f'(0) = f(0) = 1 we get $f(z) = -\frac{1}{3}z^3 + 5z^2 + z + 1$ for all $z \in \mathbb{C}$.

(b) Let f and g be non-constant entire functions such that |f(z)+g(z)|=|f(z)|for all $z \in \mathbb{C}$. Then show that for any R > 0, f and q have the same number of zeros in B(0,R).

Answer. Define $h(z) = \frac{f(z) + g(z)}{f(z)}$. Then h is analytic on B(0, R) for every R > 0 with |h(z)| = 1 (on |z| = R). So by maximum and minimum modulus theorem h is constant. So $h(z) = e^{i\theta_0}$ for some θ (independent of z) for all $z \in B(0,R)$, which yields $f(z) + g(z) = e^{i\theta_0} f(z)$ $z \in B(0,R)$. Note that $\theta_0 \neq 2k\pi$ for any $k \in \mathbb{Z}$. (If $\theta_0 = 2k\pi$ for some $k \in \mathbb{Z}$, then g(z) = 0 for all $z \in \mathbb{C}$ contradicting the assumption that g is non constant).

So $g(z) = (1 - e^{i\theta_0})f(z)$ for all $z \in \mathbb{C}$ with $\theta_0 \neq 2k\pi$ for any $k \in \mathbb{Z}$. Thus for any R > 0, f and g have the same number of zeros in B(0, R).

- 3. (a) Let f be an entire function such that $f(z) \neq 0$ for all $z \in \mathbb{C}$. Then show that there exists an entire function g such that $f(z) = e^{g(z)}$ for all $z \in \mathbb{C}$. Answer. Since f never vanishes, $\frac{f'}{f}$ is an entire function. Therefore there exist an entire function g such that $g'(z) = \frac{f'(z)}{f(z)}$ for all $z \in \mathbb{C}$. Define $h(z) = e^{g(z)}$ for all $z \in \mathbb{C}$. Then $\frac{f}{h}$ is entire with $\frac{d}{dz} \left(\frac{f(z)}{h(z)} \right) = 0$. So $f(z) = Ce^{g(z)} = e^{g(z)+c'}$ for all $z \in \mathbb{C}$ and for some c'.
 - (b) Let f be an entire function such that $f(z) \in \mathbb{R}$ on |z| = 1. Then show that f is constant.

Answer. Define $g(z) = e^{if(z)}$ on B(0,1). Then By maximum and minimum modulus theorem |g(z)| = 1 for all $z \in B(0,1)$. By cauchy-Riemann equation g is constant in B(0,1). Againg by identity theorem g is constant in the whole complex plane. So f is constant.

4. (a) Evaluate $\lim_{r\to\infty} \int_{\gamma_r} \frac{e^{i(z-1)}}{z-1} dz$, where $\gamma_r(t) = 1 + re^{it}$, $t \in \left[\frac{\pi}{2}, \frac{3\pi}{4}\right]$.

Answer. Note that $I_r = \int_{\gamma} \frac{e^{i(z-1)}}{z-1} dz = \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} i e^{ir\cos t} e^{-r\sin t} dt$ and $|I_r| \leq$

 $\int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} e^{-r\sin t} dt. \text{ Since } \min_{t \in \left[\frac{\pi}{2}, \frac{3\pi}{4}\right]} \sin t > 0 \text{ therefore } \lim_{r \to \infty} |I_r| = 0.$

(b) Let $f: \mathbb{C} \to \mathbb{C}$ be a continuous function such that f is analytic on $\mathbb{C} \setminus \{0\}$. If there exists a M > 0 such that $|f(z)| \leq M|z|^{\frac{3}{2}}$ whenever |z| > 1, then show that f(z) = az + b for all $z \in \mathbb{C}$ and some constants $a, b \in \mathbb{C}$. Answer. Let f(0) = b. Given that f is continuous at 0. In order to apply cauchy integral formula we need to ensure the analyticity at the point z = 0. We make use of Morera's theorem to conclude the analyticity. let γ be a simple closed curve lying in \mathbb{C} .

Case I: If the point 0 lies in the outer region of γ then $\int_{\gamma} f(z) = 0$. If the point 0 lies in the interer region of γ then $\int_{\gamma} f(z)dz = \int_{|z|=r} f(z)dz$ for any r > 0. By ML - inequality $|\int_{\gamma} f(z)dz| \leq M.2\pi r \to 0$ as $r \to 0$. Case II: If γ passes through the point 0, then by deformation theorem $\int_{\gamma} f(z)dz = \int_{C_r} f(z)dz$, where C_r is a circle passing through 0 lying in the interier region of γ with any radius r > 0. By ML - inequality $|\int_{\gamma} f(z)dz| \leq M.2\pi r \to 0$ as $r \to 0$.

By Morera's theorem, f is an entire function. Since f is entire f has a power series expansion around 0. i.e. $f(z) = \sum_{k=0}^{\infty} a_k z^k$ where $a_k = \frac{f^k(0)}{k!}$.

Applying Cauchy's integral formula on $\overline{B(0,R)}$, R>1 we have

$$|f^{k}(0)| = \left| \frac{k!}{2\pi i} \int_{|z|=R} \frac{f(z)}{z^{k+1}} dz \right|$$

$$\leq \frac{k!}{2\pi} M R^{\frac{3}{2}} \frac{1}{R^{k+1}} 2\pi R$$

$$\leq \frac{k!M}{R^{(k-\frac{3}{2})}} \to 0.$$

as $R \to \infty$ for each $k > \frac{3}{2}$.

So $a_2 = a_3 = \cdots = 0$ i.e f is a polynomial of degree at most 1. So f(z) = az + b for all $z \in \mathbb{C}$ and some constants $a, b \in \mathbb{C}$.

-: Paper Ends:-