Asymptotic properties of the Hill estimator for error contaminated data

Mihyun Kim

Joint work with Piotr Kokoszka

Department of Statistics Colorado State University

EVA, July 4 2019

Outline

Motivation

2 Main results

Finite sample behavior

The Hill estimator

• Suppose that X_1, \ldots, X_n are i.i.d. nonnegative random variables with common distribution F_X , which has **regularly varying** tail probabilities $(\bar{F}_X \in RV_{-\alpha})$:

$$\bar{F}_X=1-F_X=P(X>\cdot)\in RV_{-\alpha},\ \alpha>0.$$

• α^{-1} is estimated by the Hill estimator

$$H_{k,n} := \frac{1}{k} \sum_{i=1}^{k-1} \log \frac{X_{(i)}}{X_{(k)}},$$

with the convention that $X_{(1)}$ is the largest order statistic.

Motivation

- In many applications, data are contaminated by noise, measurement errors or roundoff errors.
- An example of internet traffic anomalies

Fig 1: A map showing 14 two-directional links of the backbone internet network in the United States known as Internet?

Motivation - Internet Traffic Anomalies

Fig 2: Anomaly extraction process implemented by Bandara et al. (2014)

• Due to a huge amount of data to be processed, the algorithm computes an anomaly arrival time only with the **precision of five minutes**.

The Hill estimator for error contaminated data

• We assume that we observe $Y_i = X_i + \varepsilon_i$, $1 \le i \le n$, where $\bar{F}_X \in RV_{-\alpha}$, $\{\varepsilon_i\}$ are i.i.d. **random errors** following F_{ε} , and independent of the $\{X_i\}$.

- For example, in the case of the internet traffic data, $Y_i = X_i + \varepsilon_i$ where
 - the Y_i are observations,
 - the X_i are "true" interarrival time,
 - the errors ε_i are distributed on [-1,1]. (We use 5 minutes as a unit lag.)

Questions

• The Hill estimator for the **observations** $Y_i = X_i + \varepsilon_i$ is defined as

$$\widehat{H}_{k,n} := \frac{1}{k} \sum_{i=1}^{k-1} \log \frac{Y_{(i)}}{Y_{(k)}}.$$

In our context, $\hat{H}_{k,n}$ is the estimator that can be actually used.

• The question is, what would be suitable assumptions on the measurement errors ε_i to make $\hat{H}_{k,n}$ consistent or asymptotically normal?

Consistency

- The **consistency** of the Hill estimator has been studied for i.i.d. and dependent heavy tailed data, see e.g. Mason (1982, The Annals of Probability), Hsing (1991, The Annals of Statistics), Davis and Resnick (1996, The Annals of Applied Probability), Resnick and Stărică (1998, The Annals of Applied Probability).
- Suppose that the X_i are i.i.d. with $\bar{F}_X \in RV_{-\alpha}$. Then

$$H_{k,n} := \frac{1}{k} \sum_{i=1}^{k-1} \log \frac{X_{(i)}}{X_{(k)}} \stackrel{P}{\to} \frac{1}{\alpha},$$

as

$$n \to \infty, \ k \to \infty, \ \frac{k}{n} \to 0.$$
 (1)

Consistency

Theorem 1

Suppose that the X_i are i.i.d. random variables with $\bar{F}_X \in RV_{-\alpha}$, and ε_i are i.i.d. $\sim \bar{F}_{\varepsilon}$, which satisfies

$$P(|\varepsilon| > x) = o(P(X > x)), \text{ as } x \to \infty,$$

and independent of the $\{X_i\}$. Then **any estimator** of α computed from the $Y_i = X_i + \varepsilon_i$ is consistent as (1), if its counterpart computed from the unobservable X_i is consistent.

- The measurement error ε has a lighter tail than X; $\bar{F}_Y \in RV_{-\alpha}$ as well.
- This is no longer trivial if the X_i are dependent. (New theorems are established)

Asymptotic normality

- To obtain the **asymptotic normality** of the Hill estimator centered by the exponent α^{-1} , **second—order regular variation** needs to be assumed, see e.g. Hauesler and Teugels (1985, The Annals of Statistics), Resnick and Stărică (1997, Advances in Applied Probability), Resnick and Stărică (1997, Stochastic models).
- $2RV(-\alpha, \rho)$; there exists a positive function $g \in RV_{\rho}$ such that $g(t) \to 0$, as $t \to \infty$, and for $\alpha > 0$, $\rho \le 0$, $K \ne 0$.

$$\lim_{t\to\infty}\frac{1}{g(t)}\left(\frac{\bar{F}_X(tx)}{\bar{F}_X(t)}-x^{-\alpha}\right)=H(x):=Kx^{-\alpha}\frac{x^\rho-1}{\rho},\quad x>0.$$

• Suppose that the X_i are i.i.d. with $\bar{F}_X \in 2RV(-\alpha, \rho)$. Then

$$\sqrt{k} \left(H_{k,n} - \frac{1}{\alpha} \right) \Rightarrow N(0, 1/\alpha^2),$$

as

$$\sqrt{k}g(b(n/k)) \to 0.$$

Asymptotic normality - 2RV

• To obtain the centering α^{-1} , we consider conditions on F_X ; **2RV** case and **Pareto** case.

Theorem 2 - 2RV

Suppose that $\bar{F}_X \in 2RV(\alpha, \rho)$, and ε_i are i.i.d. $\sim \bar{F}_{\varepsilon}$, which satisfies

$$P(|\varepsilon| > x) = o(x^{-\beta}), \text{ as } x \to \infty,$$

for some $\beta>\alpha-\rho$. In addition, the sequence k=k(n) satisfies $\sqrt{k}g(b(n/k))\to 0$ if $\rho>-1$ and $\sqrt{k}/b(n/k)\to 0$ if $\rho\leqslant -1$. Then, for $\alpha\geqslant 1$

$$\sqrt{k}\left(\widehat{H}_{k,n}-\frac{1}{\alpha}\right)\Rightarrow N(0,1/\alpha^2).$$

• The measurement error ε has a lighter tail than some power function. We need an additional restriction on the k.

Asymptotic normality - Pareto

Theorem 2 - Pareto

Suppose that $\bar{F}_X(x)=x^{-\alpha}$, $x\geqslant 1$, and ε_i are i.i.d. $\sim \bar{F}_{\varepsilon}$, which satisfies

$$P(|\varepsilon| > x) = o(x^{-\beta}), \text{ as } x \to \infty,$$

for some $\beta > \alpha + 1$. In addition, the sequence k = k(n) satisfies $\sqrt{k}/b(n/k) \to 0$. Then, for $\alpha \geqslant 1$

$$\sqrt{k} \left(\hat{H}_{k,n} - \frac{1}{\alpha} \right) \Rightarrow N(0, 1/\alpha^2).$$

- Investigate the impact of errors on the Hill estimator in finite samples.
- We generate observations $Y_i = X_i + \varepsilon_i$, i = 1, 2, ..., N, N = 500, 2000.
- We use two models for the X_i , both having true tail index $\alpha = 2$.

Model 1 [Pareto] The X_i are i.i.d. random variables, which follow a Pareto distribution with $\alpha = 2$, $P(X_i > x) = x^{-2}$, $x \ge 1$.

Model 2 [2RV] The X_i are i.i.d. random variables, which follow the Hall/Weiss class with $\alpha=2$ and $\rho=-5$, $P(X_i>x)=x^{-2}(1+x^{-5})/2, \quad x\geqslant 1$.

- We consider four different distributions for the errors ε_i . For each of them, $P(|\varepsilon| > x) = o(x^{-\beta})$, for some $7 < \beta < 8$.
 - ullet a **normal** distribution with mean 0 and standard deviation σ
 - a scaled t-distribution with 8 degrees of freedom (scaled t_8)
 - a generalized Pareto distribution (GPD),

$$P(|\varepsilon| > z) = (1 + \xi(z - \mu)/\sigma)^{-1/\xi},$$

with location $\mu = 0$, shape $\xi = 1/8$, and scale σ_{GPD} .

- a **uniform** distribution on the interval [-a, a], a > 0.
- For each model/error pair, we have 1000 replications.

• The asymptotic level 1-p confidence interval for α^{-1} implied by the Theorem 2 is

$$\left(\frac{1}{\hat{\alpha}}-z_{p/2}\frac{1}{\hat{\alpha}\sqrt{k}},\ \frac{1}{\hat{\alpha}}+z_{p/2}\frac{1}{\hat{\alpha}\sqrt{k}}\right),$$

where $\hat{\alpha}^{-1} = \hat{H}_{k,n}$, and z_q is the upper quantile of the standard normal distribution defined by $\Phi(z_q) = 1 - q$.

 We investigate the impact of these errors on the empirical coverage probability of the interval.

- We examined four methods based on different underlying ideas of selecting a data-driven cut-off *k*.
 - Hall: It uses a bootstrap procedure to find the *k* which minimizes the AMSE, introduced by Hall (1990, Journal of Multivariate Analysis).
 - MAD: It is based on minimizing a penalty function of the distance between the observed quantile and the fitted Pareto type tail. The mean absolute distance is used for the penalty and it is introduced by Danielsson et al. (2016).
 - KS: The underlying idea is the same, but the supremum of the absolute distance is used for the penalty. It is introduced by Danielsson et al. (2016).
 - Eye: It is an Eye—Ball technique trying to find a stable portion of the Hill plot and obtain the k at which a considerable drop in the variance occurs, as k increases. Danielsson et al. (2016).

Result - Pareto

Method	Error	Error SD/Model SD Ratio								
	Type	0	0.01	0.02	0.05	0.1	0.2	0.3		
Hall	Normal	88.9	87.6	88.4	88.9	83.8	77.5	71.2		
	scaled t ₈	88.7	88.0	88.6	88.9	83.2	77.6	68.9		
	GPD	89.4	88.9	88.8	88.7	83.7	76.9	72.7		
	Uniform	89.1	88.2	88.3	87.9	80.1	73.1	61.3		
MAD	Normal	97.0	97.4	96.8	97.6	96.8	97.4	96.2		
	scaled t ₈	97.1	97.2	97.4	97.8	97.2	97.2	97.2		
KS	Normal	83.4	82.2	84.0	81.2	77.2	75.0	67.6		
	scaled t ₈	83.6	83.6	83.5	84.2	81.7	77.4	71.9		
Eye	Normal	95.3	95.1	94.8	95.2	94.8	93.2	90.5		
	scaled t ₈	95.3	95.4	95.5	95.3	93.5	92.7	88.2		

Table 1: Proportion (in percent) of the approximate 95% confidence intervals including $1/\alpha$, for n=500 and the **Pareto** model. The target coverage is 95 %.

Result - 2RV

Error	Error SD/Model SD Ratio							
Type	0	0.01	0.02	0.05	0.1	0.2	0.3	
Normal	75.3	75.6	75.0	12.9	8.8	37.2	34.7	
scaled t ₈	75.8	75.3	74.4	29.0	0.8	29.1	37.4	
GPD	75.8	76.2	72.5	28.3	1.9	17.6	38.3	
Uniform	75.6	75.2	74.0	33.8	26.4	35.0	30.3	
Normal	18.7	18.2	18.5	16.3	7.5	36.6	70.8	
scaled t ₈	18.7	18.9	18.8	17.0	8.5	21.0	51.7	
Normal	66.6	66.6	67.0	66.4	56.7	52.5	53.0	
scaled t ₈	66.6	66.9	66.8	67.0	66.3	53.9	53.0	
Normal	93.6	93.9	93.4	93.7	92.6	88.7	77.8	
scaled t ₈	93.6	93.9	94.6	93.9	91.9	91.1	83.3	
	Type Normal scaled t_8 GPD Uniform Normal scaled t_8 Normal scaled t_8	Type 0 Normal 75.3 scaled t_8 75.8 GPD 75.8 Uniform 75.6 Normal 18.7 scaled t_8 18.7 Normal 66.6 scaled t_8 66.6 Normal 93.6	Type00.01Normal 75.3 75.6 scaled t_8 75.8 75.3 GPD 75.8 76.2 Uniform 75.6 75.2 Normal 18.7 18.2 scaled t_8 18.7 18.9 Normal 66.6 66.6 scaled t_8 66.6 66.9 Normal 93.6 93.9	Type00.010.02Normal75.375.675.0scaled t_8 75.875.374.4GPD75.876.272.5Uniform75.675.274.0Normal18.718.218.5scaled t_8 18.718.918.8Normal66.666.667.0scaled t_8 66.666.966.8Normal93.693.993.4	Type 0 0.01 0.02 0.05 Normal 75.3 75.6 75.0 12.9 scaled t ₈ 75.8 75.3 74.4 29.0 GPD 75.8 76.2 72.5 28.3 Uniform 75.6 75.2 74.0 33.8 Normal 18.7 18.2 18.5 16.3 scaled t ₈ 18.7 18.9 18.8 17.0 Normal 66.6 66.6 67.0 66.4 scaled t ₈ 66.6 66.9 66.8 67.0 Normal 93.6 93.9 93.4 93.7	Type 0 0.01 0.02 0.05 0.1 Normal 75.3 75.6 75.0 12.9 8.8 scaled t ₈ 75.8 75.3 74.4 29.0 0.8 GPD 75.8 76.2 72.5 28.3 1.9 Uniform 75.6 75.2 74.0 33.8 26.4 Normal 18.7 18.2 18.5 16.3 7.5 scaled t ₈ 18.7 18.9 18.8 17.0 8.5 Normal 66.6 66.6 67.0 66.4 56.7 scaled t ₈ 66.6 66.9 66.8 67.0 66.3 Normal 93.6 93.9 93.4 93.7 92.6	Type 0 0.01 0.02 0.05 0.1 0.2 Normal 75.3 75.6 75.0 12.9 8.8 37.2 scaled t ₈ 75.8 75.3 74.4 29.0 0.8 29.1 GPD 75.8 76.2 72.5 28.3 1.9 17.6 Uniform 75.6 75.2 74.0 33.8 26.4 35.0 Normal 18.7 18.2 18.5 16.3 7.5 36.6 scaled t ₈ 18.7 18.9 18.8 17.0 8.5 21.0 Normal 66.6 66.6 67.0 66.4 56.7 52.5 scaled t ₈ 66.6 66.9 66.8 67.0 66.3 53.9 Normal 93.6 93.9 93.4 93.7 92.6 88.7	

Table 2: Proportion (in percent) of the approximate 95% confidence intervals including $1/\alpha$, for ${\bf n}={\bf 500}$ and the ${\bf 2RV}$ model. The target coverage is 95 percent.

Conclusions

• We derive broadly applicable **conditions on errors** under which the Hill estimator is **consistent** or **asymptotically normal**.

 From the simulation, the impact of the errors is robust for small ratios.

• There is no clear evidence that the coverage probability depends on the error distributions.

Thank you!