Polar Coordinates *

Problem Submissions Leaderboard Editorial 🖰

Polar coordinates are an alternative way of representing Cartesian coordinates or Complex Numbers.

A complex number **z**

z = x + yj

is completely determined by its real part $m{x}$ and imaginary part $m{y}$. Here, $m{j}$ is the imaginary unit.

A polar coordinate (r, φ)

is completely determined by modulus ${m r}$ and phase angle ${m arphi}$.

If we convert complex number \boldsymbol{z} to its polar coordinate, we find:

- ${m r}$: Distance from ${m z}$ to origin, i.e., $\sqrt{{m x}^2+{m y}^2}$
- φ : Counter clockwise angle measured from the positive x-axis to the line segment that joins z to the origin.

Python's cmath module provides access to the mathematical functions for complex numbers.

$cmath.\, phase$

This tool returns the phase of complex number \boldsymbol{z} (also known as the argument of \boldsymbol{z}).

>>> phase(complex(-1.0, 0.0)) 3.1415926535897931

abs

This tool returns the modulus (absolute value) of complex number $oldsymbol{z}$.

>>> abs(complex(-1.0, 0.0))

Task

You are given a complex z. Your task is to convert it to polar coordinates.

Input Format

Polar Coordinates | HackerRank

Language Python 3

Change Theme

A single line containing the complex number z. Note: complex() function can be used in python to convert the input as a complex number.

Constraints

Given number is a valid complex number

Output Format

Output two lines:

The first line should contain the value of r.

The second line should contain the value of $\pmb{\varphi}$.

Sample Input

1+2j

Sample Output

```
2.23606797749979
```

1.1071487177940904

Note: The output should be correct up to 3 decimal places.

EMACS Line: 7 Col: 1

Blog | Scoring | Environment | FAQ | About Us | Helpdesk | Careers | Terms Of Service | Privacy Policy