

주요 CNN 구조 소개

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 대용량의 이미지셋 (1000개의 클래스) 에 대한 이미지 분류 알고리즘 성능 평가 대회

우승 알고리즘의 분류 에러율(%)

- 2개의 GPU로 병렬 연산을 수행하기 위해 병렬적인 구조로 설계
- 총 8개의 layer로 구성(5개의 컨볼루션 레이어, 3개의 Fully connected layer)

- Activation function으로 ReLU함수를 사용(TanH함수를 사용할 때마다 6배 빠름)
- Over-fitting을 막기위해 Dropout을 사용

(b) After applying dropout.

- 3x3 Overlapping pooling 사용 (Stride = 2)
- Data augmentation으로 데이터 양을 증가 → overfitting 문제 줄임

AlexNet (3x3 Max Pooling@S2, ReLU)

주요 CNN 구조 소개

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 대용량의 이미지셋 (1000개의 클래스) 에 대한 이미지 분류 알고리즘 성능 평가 대회

우승 알고리즘의 분류 에러율(%)

GooGleNet(2014)

- VGGNet을 이기고 우승을 차지한 알고리즘 (Inception)
- 총 22개 layer로 구성

<GoogLeNet 구조>

주요 CNN 구조 소개

- ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 - 대용량의 이미지셋 (1000개의 클래스) 에 대한 이미지 분류 알고리즘 성능 평가 대회

우승 알고리즘의 분류 에러율(%)

VGGNet(VGG-16 / VGG-19)

- Weight parameter의 개수와 성능에 대한 trade-off를 탐색
- Network의 깊이가 깊어짐에 따라 높은 성능을 보임을 증명 (이후부터 네트워크 레이어를 증가시키는 추세가 활발히 이루어짐)
- 필터크기는 3x3으로 고정 & ReLU 사용

		ConvNet C	onfiguration		
A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool	***	
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
			conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
				0	conv3-512
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
		7.07	4096		
	·		4096		
			1000		
		soft	-max		

< VGGNet 실험 설정 예시>

VGGNet(VGG-16, 2014)

- 기존 높은 필터사용을 없애고 3x3필터로 통일
 - → Parameter 수를 줄임(3x3x2=18개, 5x5=25개) -> Light Memory
 - → Fast Training

VGGNet(VGG-16 / VGG-19)

- Weight parameter의 개수와 성능에 대한 trade-off를 탐색
- Network의 깊이가 깊어짐에 따라 높은 성능을 보임을 증명 (이후부터 네트워크 레이어를 증가시키는 추세가 활발히 이루어짐)
- 필터크기는 3x3으로 고정 & ReLU 사용

A	A-LRN	В	C	D	E
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight
layers	layers	layers	layers	layers	layers
	i	nput (224×2	24 RGB image	e)	
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64
	LRN	conv3-64	conv3-64	conv3-64	conv3-64
			pool	***	**
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128
		conv3-128	conv3-128	conv3-128	conv3-128
			pool		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256
- 111	1 - 1 - 1 - 1		conv1-256	conv3-256	conv3-256
					conv3-256
			pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
	111		conv1-512	conv3-512	conv3-512
				0	conv3-512
		max	pool		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512
			conv1-512	conv3-512	conv3-512
					conv3-512
			pool		
			4096		
			4096		
		FC-	1000		

< VGGNet 실험 설정 예시>

REVIEW (PART1 MLP)

- MLP(FC Layer) Forward Propagation: Perceptron, Activation Functions, L1/L2 Loss Functions
- MLP(FC Layer) Backward Propagation: Gradient Descent(GD) Method
- Various Techniques & Implementations
 - Overfitting Problem
 - Vanishing Gradient
 - Data Argumentation
 - Optimization
 - Drop-out
 - Hyper-parament Control (Ex., Adaptive Learning Rate, mini-batch, epoch, etc...)
 - Ablation Works

REVIEW (PART2 CNN)

- CNN Forward Propagation: Convolution, Max/Avg Pooling, Padding, Stride, Kernel(Filter)
- CNN Backward Propagation
- CNN Network Design Schemes: SKIP Connection, Dense Connection, Channel Attention, Bottleneck Layer
- Popular CNN Networks: LeNet5, AlexNet, VGG, ResNet
- CNN Implementation: LeNet5, VGG

CNN 1D BACKPROPAGATION

CNN 2D CONVOLUTION OPERATION (FORWARD PASS@S1/P0)

1,	1 _{×0}	1,	0	0
0,0	1,	1,0	1	0
0,,1	0,0	1,	1	1
0	0	1	1	0
0	1	1	0	0

Image

Convolved Feature

CNN 1D CONVOLUTION OPERATION (FORWARD PASS@S1/P0)

input extract
$$\lambda_1$$
 λ_2 \times kernel λ_3 λ_4 λ_5 λ_4 λ_5 λ_4 λ_5 λ_5

$$\frac{\partial L}{\partial w_1} = S_1 \cdot \frac{\partial O_1}{\partial w_1} + S_2 \cdot \frac{\partial O_2}{\partial w_1} + S_3 \cdot \frac{\partial O_3}{\partial w_1}$$
$$= S_1 A_1 + S_2 A_2 + S_3 A_3$$

$$\frac{\partial O_1}{\partial w_1} = \lambda_1$$

$$\frac{\partial O_2}{\partial w_1} = \lambda_2$$

$$\frac{\partial O_3}{\partial w_1} = \lambda_3$$

Local Gradient

CNN 1D CONVOLUTION OPERATION (FORWARD PASS@S1/P0)

$$O_2 = W_1 A_2 + W_2 A_3 + W_3 A_4$$

$$O_i = \sum_{j} W_{\bar{j}} A_{\bar{i}} + \bar{u}_{\bar{j}} - 1$$

= S1 22 + S2 23 + S3 24

$$\frac{\partial O_1}{\partial W_2} = d_2$$

$$\frac{\partial O_2}{\partial W_2} = d_3$$

$$\frac{\partial O_3}{\partial W_2} = d_4$$

Local Gradient

CNN 1D CONVOLUTION OPERATION (FORWARD PASS@S1/P0)

$$O_{i} = \sum_{j} W_{j} d_{i+j-1}$$

$$O_{i} = \sum_{j} W_{j} d_{i+j-1}$$

input autput
$$\lambda_1$$
 λ_2 \times kernel λ_3 λ_4 λ_2 λ_4 λ_2 λ_3 λ_4 λ_3 λ_4 λ_3 λ_4 λ_3 λ_4 λ_3 λ_4 λ_5 λ_5

GRADIENT W₃?

$$O_{1} = W_{1}X_{1} + W_{2}X_{3} + W_{3}X_{4}$$

$$O_{2} = W_{1}X_{3} + W_{2}X_{4} + W_{3}X_{4}$$

$$O_{3} = W_{1}X_{3} + W_{2}X_{4} + W_{3}X_{4}$$

$$O_{3} = W_{1}X_{3} + W_{2}X_{4} + W_{3}X_{4}$$

$$\begin{array}{lll}
\boxed{2} & \overrightarrow{\partial} &$$

$$\therefore \frac{\partial L}{\partial w_i} = \sum_{j} \delta_j \, \alpha_{i+j-1}$$

GRADIENT X?

GRADIENT X?

CNN 2D BACKPROPAGATION

Image

Convolved Feature

참고

Average Pooling

$$\delta_{21} = \frac{1}{m} \times \delta_2$$

$$\delta_{22} = \frac{1}{m} \times \delta_2$$

$$\delta_{22} = \frac{1}{m} \times \delta_2$$

Max Pooling

