EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

* indicalis printed answer

Paper No. M3

Question				
number	Scheme	Marks		
1.	$0.2a = \frac{5}{x+1}$	МІ		
	$0.2 \text{vdv} = \frac{5}{x+1}$	→ MI		
]	$\int V dV = \int \frac{25}{x+1} dx$	→MI		
	1 v2 = 25 ln(x+1) (+ C)	AL AI		
1	x=0, v=5 => C = 12.5	1		
	225 = 25 lm(x+1) + 12.5	LMI	②	
	z = 53.6 (35F)	भ		
2,6)	PE Lass = 0.59 (24x); EPE = 19.6x2	81;81		
	$0.55(2+x) = \frac{19.6x^2}{4}$	MI Ai		
	$k(x^2-2-2)=0$ Solving	HI	(4)	
	AC = 4m	⊁ 1 ✓	(6)	
(b)		B1 ✓		
	19.6 - 0.5g = 0.5a	ਸ।	(3)	
	$a = 29.4 \text{ ms}^{-2}$	(† i	(1)	
3.(4)	Line of action of weight must pass through a which is not above course of rod (or equivalent)	81	(1)	
(6)	Method A: R(along Ac): $T_1 = 2mgsid = \frac{6mg}{5}$ R(along Bc): $T_2 = 2mgsid = \frac{8mg}{5}$ [Equiv. to moments about A, B respectively]	MI MI AI FII AI		
°R	Method 8: RC1), $T_1 \sin \alpha + T_2 \cos \alpha = 2mg$ $L(\rightarrow)$, $T_1 \cos \alpha = T_2 \sin \alpha$ $Substitutes to find T_1 on T_2T_1 = Gns/s; T_2 = 8ms/s$	17H1 2M1 2H1 41; 41	(5)	
(%)	$\frac{8ma}{5} = \frac{\log(8c - a)}{a}$	HI AI		
	Bc = 205mg	В		
	<u>k = 8</u>	A I	(4)	

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

Question number	Scheme	Marks	
4.(0)	$\int_{0}^{\infty} (\pi) y^{2} \times dx = \int_{0}^{\infty} \int_{0}^{\infty} (\pi) y^{2} dx$ $\int_{0}^{\infty} rx^{2} dx = \int_{0}^{\infty} \int_{0}^{\infty} rx dx$	→ MIAI	
	$\sum_{n=1}^{\infty} \frac{2n}{n} = \sum_{n=1}^{\infty} \sum_{n=$	A1 A1	(6)
(y)	vertical the ct and lowest point of place face	mı	
	toux = $\frac{7}{1}$ $x = 72^{\circ}$ (uncorest diagram)	+1 +1	(4) (©)
5.	F R(1), Run 25° - Fsü 25° = mg R(4), Rsü 26° + Fun 25° = my² 40	> M1 A2	
	F= 0.6R used Eliminating R Solving for v	HI PRI LUI	
	V= 24.1ms-1, 24ms-1	A 1	(i)
6.(4)	1f S.H.M., $a = 1.2$ 0 AB C USing $V^2 = \omega^2(a^2 - \kappa^2)$ 0.27 = $\omega^2(1.2^2 - 0.6^2)$ or 0.2 = $\omega^2(1.2^2 - 0.8^2)$ Solve for ω (= 0.5) and use in other equal shown to be convert	B1 A1 A1 A1 A1 c.s.o.	(5)
(6)	V= aw = 1.2x0.5 = 0.6*	HI AT	(2)
(2)	x = 62 x 0.6 = 0.15 ms-2	71 AI	(2)
(a)	$0.6 = a \sin \omega t$ or $0.8 = a \sin \omega t$ $t = \frac{1}{\omega} \left(3 \sin^{-1} \frac{0.8}{a} - \sin^{-1} \frac{0.6}{a} \right)$	MIMIN	
	= 0.412s (3sf)	AI	(4)
)	(3)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6679

Paper No. M3

<u> </u>		,	
Question number	Scheme		Marks
7.(a)	1m 7ag - 1 mv2 = mga	, MIAI	
	$(4), R = Mv^2 = \frac{3ms}{a}$	M1 A1	(4)
(6)	1m. 700 - 1mv2 = mga (1+ 1000)	PMIAI	
	(V) , $M_3 cos Q = MV^2$ Eliminators V^2	⇒ MI AI	
	Eliminating V^2 Solving to give $IMO = IK$, $B = 60^\circ$ *	> H1 - H1 A ((7)
(0)	V cs60° t = asi60°	المرك	
	$v^2 = ag \cos 60^\circ$ Making templicit	B1 - 71	
	$t = \sqrt{\frac{6a}{5}}$	A 1	(*)
	<u> </u>		(<u>s</u>
-	~		
)		