CS761 Artificial Intelligence

17. Inference with Bayesian Networks

Jiamou Liu The University of Auckland

Recall: Probability and Uncertainty

- We introduced probability theory as a language that extends from propositional logic to capture uncertainty.
- The probability of a proposition expresses the degree of belief (belief measure over a sample space) held about the proposition being true.
- When describing a world with uncertainty, we use a set of atomic propositions with a joint probability distribution.
 - Causal factor relation
 - Independence

Diagnosing a Complex Problem

Example. [coughing?]

- When a person gets influenza (INF), he may develop a sore throat (SOR), a fever (FEV), or maybe bronchitis (BRO).
- When a person is a smoker (SMO), he may also get bronchitis.
- When a person gets bronchitis, he may develop coughing (COU) and wheezing (WEE).

Prior knowledge:

- INF and SMO are independent.
- SOR, FEV, and BRO are directly affected by INF, and are conditionally independent given INF. (INF → SOR, INF → FEV, INF → BRO)
- BRO is also affected by SMO. (SMO \rightarrow BRO)
- COU and WEE are directly affected by BRO, and are conditionally independent given BRO. (BRO --> COU, BRO --> WEE)

For each atom, there is a conditional probability table:

				INF	SOR	\mathbf{P}_{SOR}	INF	FEV	\mathbf{P}_{FEV}
INF	P _{INF}	SMO	\mathbf{P}_{SMO}	0	0	0.9999	0	0	0.95
0	0.95	0	0.8	0	1	0.0001	0	1	0.05
1	0.05	1	0.2	1	0	0.7	1	0	0.1
				1 1	1	0.3	1	1	0.9

IINF	SMO	BRO	P_{BRO}	
0	0	0	0.9999	
0	0	1	0.0001	
0	1	0	0.3	
0	1	1	0.7	
1	0	0	0.1	
1	0	1	0.9	
1	1	0	0.01	
1	1	1	0.99	

BRO	COU	\mathbf{P}_{COU}	BRO	WEE	\mathbf{P}_{WEE}
0	0	0.93	0	0	0.999
0	1	0.07	0	1	0.05
1	0	0.2	1	0	0.4
1	1	0.8	1	1	0.6

Question. Suppose the person is coughing. What is the probability that he has influenza?

Probabilistic Model

The problem can be represented by a directed graph of the problem domain:

Note.

- The graph is acyclic (i.e. does not contain any directed cycles).
- A node X connects to another node Y by a directed edge if the X is a direct causal factor of Y.

Bayesian Networks

Definition [graph terminology]

Let G = (V, E) be a directed graph.

- A root of G is any node with no parent;
- parents(X) = { $Y \in V \mid (Y, X) \in E$ } is the set of parents of X.
- a leaf is any node that is not a parent of any others; the other nodes are called the intermediate nodes;
- A node *X* is a descendent of *Y* if there is a directed path from *Y* to *X*.

Bayesian Networks

Definition [graph terminology]

Let G = (V, E) be a directed graph.

- A root of G is any node with no parent;
- parents(X) = { $Y \in V \mid (Y, X) \in E$ } is the set of parents of X.
- a leaf is any node that is not a parent of any others; the other nodes are called the intermediate nodes;
- A node *X* is a descendent of *Y* if there is a directed path from *Y* to *X*.

Definition. [Bayesian network]

A Bayesian network is a tuple $(V, E, (\mathbf{P}_X)_{X \in V})$ where

- (V, E) forms a directed acyclic graph; each node X ∈ V represents an atomic proposition.
- For every node X, \mathbf{P}_X is a probability distribution of X conditioning on parents(X), i.e., $\mathbf{P}(X \mid \text{parents}(X))$.
- Local Markov property: Each node is independent from its non-descendants conditioned on its parents.

Example. [coughing?] A Bayesian network: $(V, E, (\mathbf{P}_X)_{X \in V})$ where

- V contains atoms INF, SMO, SOR, FEV, BRO, COU, WEE
- (Syntax) *E* represents all the dependencies between atoms:

$$INF \dashrightarrow SOR, INF \dashrightarrow FEV, INF \dashrightarrow BRO$$

 $SMO \dashrightarrow BRO, BRO \dashrightarrow COU, BRO \dashrightarrow WEE$

• (Semantics) The CPT given earlier.

Note. Local Markov property ensures all observed conditional independence.

Bayesian Network Inference

For any atom X, we use ℓ_X to denote a literal, i.e. X or $\neg X$.

Bayesian Network Inference Problem

INPUT Given a Bayesian network $(V, E, (\mathbf{P}_X)_{X \in V})$, two nodes $X, Y \in V$, and literal $\ell_Y \in \{Y, \neg Y\}$,

OUTPUT compute the probability $P(X \mid \ell_Y)$ and $P(\neg X \mid \ell_Y)$.

E.g. Given the earlier example Bayesian network, query for $P(INF \mid COU)$.

We now present methods to solve this problem.

Tools:

- ① CPT operations
- 2 Chain rule

CPT Operations

CPT Operation 1: Restriction

For a conditional probability table $f(Y_1, ..., Y_k, X)$, for $\ell_X \in \{X, \neg X\}$, the ℓ_X -restriction operation produces a table $g(Y_1, ..., Y_k)$ such that for any $\ell_{Y_i} \in \{Y_i, \neg Y_i\}$,

$$g(\ell_{Y_1},\ldots,\ell_{Y_k})=f(\ell_{Y_1},\ldots,\ell_{Y_k},\ell_X).$$

E.g.

Y	X	f(Y,X)			
0	0	0.99		Y	g(Y)
0	1	0.01	\Rightarrow	0	0.01
1	0	0.05		1	0.95
1	1	0.95			

CPT Operation 2: Multiplication

For CPT $f(Y_1,...,Y_k,X)$ and $g(X,Z_1,...,Z_m)$, the multiplication operation produces a new CPT $h(Y_1,...,Y_k,X,Z_1,...,Z_m)$ such that for any literals $\ell_{Y_i} \in \{Y_i, \neg Y_i\}$, $\ell_X \in \{X, \neg X\}$, $\ell_{Z_i} \in \{Z_j, \neg Z_j\}$,

$$h(\ell_{Y_1},\ldots,\ell_{Y_k},\ell_X,\ell_{Z_1},\ldots,\ell_{Z_m})=f(\ell_{Y_1},\ldots,\ell_{Y_k},\ell_X)\times g(\ell_X,\ell_{Z_1},\ldots,\ell_{Z_m}).$$

E.g.

В	f	
0	0.1	
1	0.9	
0	0.4	
1	0.6	
	0	0 0.1 1 0.9 0 0.4

	В	C	8	
	0	0	0.2	
<	0	1	0.8	=
	1	0	0.3	
	1	1	0.7	
				•

A	В	С	h
0	0	0	0.02
0	0	1	0.72
0	1	0	0.27
0	1	1	0.63
1	0	0	0.08
1	0	1	0.32
1	1	0	0.18
1	1	1	0.42
1	1	1	0.42

CPT Operation 3: Normalisation

For a conditional probability table $f(Y_1, ..., Y_k, X)$, the X-normalisation operation produces a new CPT $g(Y_1, ..., Y_k, X)$ such that for any $\ell_{Y_i} \in \{Y_i, \neg Y_i\}, \ell_X \in \{X, \neg X\}$,

$$g(\ell_{Y_1},\ldots,\ell_{Y_k},\ell_X)=\frac{f(\ell_{Y_1},\ldots,\ell_{Y_k},\ell_X)}{f(\ell_{Y_1},\ldots,\ell_{Y_k},X)+f(\ell_{Y_1},\ldots,\ell_{Y_k},\neg X)}.$$

E.g.

Χ	f(X)		X	g(X)
0	0.0096	\Rightarrow	0	0.2017
1	0.038		1	0.7983

CPT Operation 4: Summation

For a conditional probability table $f(Y_1, ..., Y_k, X)$, the X-sum operation produces a new CPT $g(Y_1, ..., Y_k)$ such that for any $\ell_{Y_i} \in \{Y_i, \neg Y_i\}$,

$$g(\ell_{Y_1},\ldots,\ell_{Y_k})=f(\ell_{Y_1},\ldots,\ell_{Y_k},X)+f(\ell_{Y_1},\ldots,\ell_{Y_k},\neg X).$$

E.g. *C*-sum of the following table:

A	В	С	f				
0	0	0	0.02				
0	0	1	0.72		A	В	g
0	1	0	0.27		0	0	0.74
0	1	1	0.63	\Rightarrow	0	1	0.9
1	0	0	0.08		1	0	0.4
1	0	1	0.32		1	1	0.6
1	1	0	0.18				
1	1	1	0.42				

Example. [simple diagnosis] To query P(Inf|Test):

Inf	\mathbf{P}_{Inf}	
0	0.96	and
1	0.04	
1	0.04	

Inf	Test	$\mathbf{P}_{Test}(Inf)$
0	0	0.99
0	1	0.01
1	0	0.05
1	1	0.95

Note. $P(Inf|Test) \propto P(Inf) \times P(Test \mid Inf)$.

Example. [simple diagnosis] To query P(Inf|Test):

Inf	\mathbf{P}_{Inf}	
0	0.96	and
1	0.04	

Inf	Test	$\mathbf{P}_{Test}(Inf)$
0	0	0.99
0	1	0.01
1	0	0.05
1	1	0.95

Note. $P(Inf|Test) \propto P(Inf) \times P(Test \mid Inf)$.

Step 1 Restriction. In P_{Test} keep only those rows where Test is true.

Inf	f(Inf)
0	0.01
1	0.95

Step 2 Multiplication.

Inf	\mathbf{P}_{Inf}	
0	0.96	×
1	0.04	

	Inf	f(Inf)
<	0	0.01
	1	0.95

$$\begin{array}{|c|c|c|}\hline Inf & g(Inf) \\\hline 0 & 0.01 \times 0.96 = 0.0096 \\ 1 & 0.95 \times 0.04 = 0.038 \\ \end{array}$$

Step 3. Normalisation.

Inf	g(Inf)
0	$0.0096/(0.0096 + 0.038) = 0.0096/0.0476 \approx 0.2017$
1	$0.038/(0.0096 + 0.038) = 0.038/0.0476 \approx 0.7983$

Therefore $P(Inf \mid Test) = 0.7983$ and $P(\neg Inf \mid Test) = 0.2017$.

Chain Rule

• For any two propositions a_1, a_2

$$P(a_1 \wedge a_2) = P(a_2 \mid a_1)P(a_1).$$

• For any three propositions a_1, a_2, a_3

$$P(a_1 \wedge a_2 \wedge a_3) = P(a_1 \wedge a_2 \mid a_3)P(a_3) = P(a_1 \mid a_2 \wedge a_3)P(a_2 \mid a_3)P(a_3).$$

Chain Rule

For any *n* propositions a_1, a_2, \ldots, a_n

$$P\left(\bigwedge_{i=1}^{n} a_{i}\right) = P(a_{1} \mid a_{2} \wedge \dots \wedge a_{n})P(a_{2} \mid a_{3} \wedge \dots \wedge a_{n}) \dots P(a_{n-1} \mid a_{n})P(a_{n})$$

$$= \prod_{i=1}^{n} P\left(a_{i} \mid \bigwedge_{j=i+1}^{n} a_{j}\right)$$

Example. [coughing?]

 \mathbf{P} (INF, SMO, BRO, COU)

Theorem [chain rule on a Bayesian network]

Let $(V, E, (\mathbf{P}_X)_{X \in V})$ be a Bayesian network. Then for any subset $S \subseteq V$

$$\mathbf{P}(S) = \prod_{X \in S} \mathbf{P}(X \mid parents(X)) = \prod_{X \in S} \mathbf{P}_X$$

Example. [coughing?] What is $P(INF \mid COU)$?

Idea:

$$\begin{aligned} \mathbf{P}(INF \mid COU) &= \mathbf{P}(COU \mid INF) \mathbf{P}(INF) = \mathbf{P}(COU, INF) \\ &= \sum_{BRO} \sum_{SMO} \mathbf{P}(INF, COU, BRO, SMO) \\ &= \sum_{RRO} \sum_{SMO} \mathbf{P}_{COU} \mathbf{P}_{BRO} \mathbf{P}_{SMO} \mathbf{P}_{INF} \end{aligned}$$

Starting from the set of CPT: P_{COU} , P_{BRO} , P_{SMO} , P_{INF}

INF	SMO	BRO	\mathbf{P}_{BRO}
0	0	0	0.9999
0	0	1	0.0001
0	1	0	0.3
0	1	1	0.7
1	0	0	0.1
1	0	1	0.9
1	1	0	0.01
1	1	1	0.99

\mathbf{P}_{INF}
0.95
0.05

SMO	\mathbf{P}_{SMO}
0	0.8
1	0.2

BRO	COU	\mathbf{P}_{COU}
0	0	0.93
0	1	0.07
1	0	0.2
1	1	0.8

Question. How to compute $\sum_{BRO} \sum_{SMO} \mathbf{P}_{COU} \mathbf{P}_{BRO} \mathbf{P}_{SMO} \mathbf{P}_{INF}$?

Naive method.

- ① **Step 1: Restriction.** In P_{COU} , keep only those rows where COU is true.
 - Obtain a new CPT f(BRO).
- **2 Step 2: Multiplication.** Compute $f(BRO) \times \mathbf{P}_{BRO} \times \mathbf{P}_{SMO} \times \mathbf{P}_{INF}$ Obtain a new CPT g(BRO, SMO, INF)
- Step 3: Sum (to eliminate variables). Perform SMO-sum and then BRO-sum, on g(BRO, SMO, INF).
 Obtain a new CPT h(INF)
- **Step 3: Normalisation.** Extract the conditional probabilities $P(INF \mid COU)$ and $P(\neg INF \mid COU)$.

Complexity. Suppose a CPT has r rows. The algorithm runs in $O(r^n)$.

We now present how to improve the running time of the algorithm.

Variable Elimination

Idea: Instead of multiply all tables and eliminate variables all at once, eliminate variables one-by-one.

- ① **Step 1: Restriction.** In P_{COU} , keep only those rows where COU is true. Obtain a new CPT f(BRO).
- **2 Step 2**: **Eliminate** *SMO*.
 - Step 2.1: Multiply $P_{BRO} \times P_{SMO}$ to get a new table g(INF, SMO, BRO)
 - **Step 2.2:** *SMO*-sum *g*(*INF*, *SMO*, *BRO*) to get a new table *h*(*INF*, *BRO*).
- **3** Step 3: Eliminate BRO.
 - **Step 3.1:** Multiply $f(BRO) \times h(INF, BRO)$ to get a new table $\ell(INF, BRO)$
 - **Step 3.2:** *BRO*-sum $\ell(INF, BRO)$ to get a new table r(INF).
- **4 Step 4: Multiplication.** $r(INF) \times P(INF)$ to a table s(INF).
- **5 Step 5: Normalisation.** Retrieve $P(INF \mid COU)$.

Illustration.

Step 1: Restriction. In P_{COU} , keep only those rows where COU is true.

В	RO	COU	\mathbf{P}_{COU}]		
	0	0	0.93		BRO	f(BRO)
	0	1	0.07	\Rightarrow	0	0.07
	1	0	0.2		1	0.8
	1	1	0.8			

Step 2: Eliminate SMO.

	INF	SMO	BRO	\mathbf{P}_{BRO}					INF	SMO	BRO	g(INF, SMO, BRO)
	0	0	0	0.9999					0	0	0	0.79992
	0	0	1	0.0001					0	0	1	0.00008
	0	1	0	0.3		SMO	\mathbf{P}_{SMO}		0	1	0	0.06
2.1	0	1	1	0.7	×	0	0.8	=	0	1	1	0.14
	1	0	0	0.1		1	0.2		1	0	0	0.08
	1	0	1	0.9					1	0	1	0.72
	1	1	0	0.01					1	1	0	0.002
	1	1	1	0.99					1	1	1	0.198

	INF	SMO	BRO	g(INF, SMO, BRO)
	0	0	0	0.79992
	0	0	1	0.00008
	0	1	0	0.06
2.2 <i>SMO-</i> Sum	0	1	1	0.14
	1	0	0	0.08
	1	0	1	0.72
	1	1	0	0.002
	1	1	1	0.100

	INF	BRO	h(INF, BRO)
	0	0	0.85992
\Rightarrow	0	1	0.14008
	1	0	0.082
	1	1	0.918

Step 3: Eliminate *BRO*.

				INF	BRO	h(INF, BRO)		INF	BRO	$\ell(INF, BRO)$	l
	BRO	\mathbf{P}_{COU}		0	0	0.85992		0	0	0.0601944	ĺ
3.1	0	0.07	×	0	1	0.14008	=	0	1	0.112064	l
	1	0.8		1	0	0.082		1	0	0.00574	l
			'	1	1	0.918		1	1	0.7344	J

	INF	BRO	$\ell(INF, BRO)$]		
	0	0	0.0601944]	INF	r(INF)
3.2 <i>BRO</i> -sum	0	1	0.112064	\Rightarrow	0	0.1722584
	1	0	0.00574		1	0.74014
	1	1	0.7344			

Step 4: Multiplication.

	INF	r(INF)		INF	P _{INF}			s(INF)
ĺ	0	0.1722584	×	0	0.95	=	0	0.16364548
	1	0.74014		1	0.05		1	0.037007

Step 5: Normalisation.

	s(INF)			result
0	0.16364548	⇒	$P(\neg INF \land COU)$	0.8156
1	0.037007		$P(INF \land COU)$	0.1844

The probability of a person getting influenza when (only) coughing is observed is 18.44%!

Variable Elimination Algorithm

Solving the Bayesian network inference problem using the variable elimination algorithm (VE)

Variable Elimination (Rough steps)

INPUT:

- CPT P_X for each $X \in V$.
- Query variables X_i , X_j ; Observed value for X_j .

OUTPUT: $P(X_i | X_j$

- ① Restrict tables that contain X_j to rows where X_j has the observed value.
- ② Eliminate each of the non-query variables X_k (in certain order):
 - Multiply all tables containing X_k .
 - Sum-out X_k from the product table.
- 3 Multiply the remaining tables to get a table over a single variable X_i .
- 4 Normalise and return the result.

Complexity: If every atom appears in at most 2 CPT and one of them has at most 4 rows, then the algorithm runs in O(n).

In the general case, the running time depends on the ordering in which we eliminate the variables, but finding the optimal ordering is NP-complete.

Summary of The Topic

The following are the main knowledge points covered:

- **Bayesian network:** $(V, E, (\mathbf{P}_X)_{X \in V})$ a graph structure denoting causal relations between atoms, CPTs
- Local markov property
- **Bayesian network inference:** Given a Bayesian network $(V, E, (\mathbf{P}_X)_{X \in V})$, nodes X, Y and observation $\ell_Y \in \{Y, \neg Y\}$, compute $\mathbf{P}(X \mid \ell_Y)$.
- CPT Operations:
 - Restriction
 - Multiplication
 - Normalisation
 - Summation
- Chain rule: $\pi(S) = \prod_{X \in S} \pi_X$
- Naive method for Bayesian network inference
- Variable elimination