5장 합성곱 신경망2

⊞ 날짜	@2025년 3월 26일 → 2025년 3월 31일
◈ 선택	DL세션 과제
⊘ 실습 파일	Week4_예습과제_이수나 (1).ipynb
⊙ 주차	4주차
🔆 진행 상태	완료

5.3 전이 학습

5.3.1 특성 추출 (feature extractor)

특성 추출 기법 실습

(Note) 계산 그래프

5.3.2 미세 조정(fine-tuning) 기법

5.4 설명 가능한 CNN(explainable CNN)

5.4.1 특성 맵 시각화 실습

5.5 그래프 합성곱 네트워크

5.5.1 그래프

5.5.2 그래프 신경망

5.5.3 그래프 합성곱 네트워크

5.3 전이 학습

: 이미지넷(ImageNet)처럼 아주 큰 데이터셋을 써서 훈련된 모델의 가중치를 가져와 해결 하려는 과제에 맞게 보정해서 사용하는 것

아주 큰 데이터셋을 사용하여 훈련된 모델: 사전 훈련된 모델(네트워크)

[문제 A] - 해결 → [문제 A를 해결하면서 얻은 지식 및 경험] -적용(전이학습) → [문제B]

5.3.1 특성 추출 (feature extractor)

: ImageNet 데이터셋으로 사전 훈련된 모델을 가져온 후, 마지막에 완전연결층 부분만 새로만듦.

- → 학습할 때는 마지막 완전연결층만 학습하고, 나머지 계층들은 학습되지 않도록 함.
 - 특성 추출은 이미지 분류를 위해 두 부분으로 구성됨

- **합성곱층**: 합성곱층 & 풀링층
- **데이터 분류기(완전연결층)**: 추출된 특성을 입력받아 최종적으로 이미지에 대한 클래스를 분류하는 부분

사전 훈련된 네트워크의 합성곱층(가중치 고정)에 새로운 데이터를 통과시키고, 그 출력을 데이터 분류기에서 훈련 시킴

• Xception, Inception V3, ResNet50, VGG16, VGG19, MobileNet

특성 추출 기법 실습

- RandomResizedCrop으로 이미지를 랜덤한 비율로 자른 후 데이터 크기를 조정
- ⇒ 데이터 확장 용도

pip install mxnet pip instal --user mxnet # 설치 실패 시

import matplotlib.pyplot as plt import mxnet as mx from mxnet.gluin.data.vision import transforms

```
example_image = mx.image.imread("cat.jpg")
plt.imshow(example_image.asnumpy())
# 함수 생성
def show_images(imgs, num_rows, num_cols, scale=2):
  aspect_ratio = imgs[0].shape[0]/imgs[0].shape[1]
  figsize = (num_cols*scale, num_rows*scale*aspect_ratio)
  _, axes = plt.subplots(num_rows, num_cols, figsize=figsize)
  for i in range(num_rows):
    for j in range(num_cols):
      axes[i][j].imshow(imgs[i*num_cols+j].asnumpy())
      axes[i][j].axes.get_xaxis().set_visible(False) #x축 전체를 숨김
      axes[i][j].axes.get_yaxis().set_visible(False) #y축 전체를 숨김
  plt.subplots_adjust(hspace=0.1, wspace=0)
  return axes
def apply(img, aug, num_rows=2, num_cols=4, scale=3):
  Y = [aug(img) for _ in range(num_rows*num_cols)]
  show_images(Y, num_rows, num_cols, scale)
  # 다양한 샘플을 얻기 위해 여러 번 데이터 확장 적용
# 적용된 이미지 출력
shape_aug = transforms.RandomResizedCrop(size=(200,100), scale=(0.1,1), ra
# 출력할 크기를 200*200으로 조정
# 면적 비율을 0.1~1 범위내에서 무작위로 자름
# 면적의 너비와 높이 비율을 0.5~2 범위 내에서 무작위로 조정
apply(example_image, shape_aug)
```

(Note) 계산 그래프

: 계산 과정을 그래프로 나타냄, node와 edge로 구성

- 국소적 계산이 가능
 - 그림에서 Z값이 변경되었다면, X,Y 계산 결과를 유지한 채 연산이 필요한 F=A*Z만 계산
- 역전파를 통한 미분 계산이 편리 by chain rule

구분	메모리	계산 그래프 상주 유무
tensor.clone()	새롭게 할당	계속 상주
tensor.detach()	공유해서 사용	상주하지 않음
tensor.clone().detach()	새롭게 할당	상주하지 않음

- tensor.clone()은 기본 텐서의 내용을 복사한 탠서 생성
- detach()는 기존 텐서에서 기울기가 전파되지 않는 텐서
- tensor.clone().detach()는 기존 텐서를 복사한 새로운 텐서를 생성하지만, 기울기에 영향을 주지 X

5.3.2 미세 조정(fine-tuning) 기법

: 특성 추출 기법에서 더 나아가, 사전 훈련된 모델과 합성곱층, 데이터 분류기의 가중치를 업데이트하여 훈련시키는 방법

 특성이 잘못 추출되었다면 미세 조정 기법으로 새로운 이미지 데이터를 사용하여 네트 워크의 가중치를 업데이트해서 특성을 다시 추출

사전 학습된 모델을 목적에 앚게 재학습시키거나 학습된 가중치의 일부 를 재학습 시키는 것

미세 조정 기법은 사전 훈련된 네트워크를 미세 조정하여 분석하려는 데이터셋에 잘 맞도록 모델의 파라미터를 조정하는 기법

	데이터셋	사전 훈련된 모델과 유사 성	전략
1	큼	작음	모델 전체를 재학습시킴
2	큼	큼	합성곱층의 뒷부분과 데이터 분 류기를 학습시킴 (데이터셋이 유사하기 때문에 전체를 학습시 키는 것보다는 강한 특징이 나 타나는 합성곱층의 뒷부분과 데 이터 분류기를 학습)
3	작음	작음	합성곱층의 일부분과 데이터 분 류기를 학습 (데이터가 적어 일 부 계층에 미세 조정 기법을 적 용하는 것이 효과가 없을 수 있 음 → 합성곱층 중 어디까지 새 로 학습시켜야 할지 적당히 설 정해야)
4	작음	吾	데이터 분류기만 학습, 데이터 가 적기 때문에 많은 계층에 미 세 조정 기법을 적용하여 과적 합이 발생할 수 있음. ⇒ 완전연 결층에 대해서만 미세 조정 기 법을 적용

5.4 설명 가능한 CNN(explainable CNN)

: 딥러닝 처리 결과를 사람이 이해할 수 있는 방식으로 제시

→ CNN 처리 과정을 시각화 → 결과에 대한 신뢰성 획득

[입력 x] → [블랙박스 blackbox] → [출력 y]

5.4.1 특성 맵 시각화 실습

■ 특성맵: 입력 이미지 또는 다른 특성 맵처럼 필터를 입력에 적용한 결과 → 특성 맵을 시각화하여 입력 특성을 감지하는 방법을 이해하도록 도움

5.5 그래프 합성곱 네트워크

: 그래프 데이터를 위한 신경망(graph convolutional network)

5.5.1 그래프

방향성이 있거나(directed) 없는(undirected) edge로 연결된 노드(nodes=verticals)의 집합

• 노드는 원소들을 의미하고, edge는 결합 방법(single, double, triple, aromatic 등)을 의미함

5.5.2 그래프 신경망

: 그래프 구조에서 사용하는 신경망

(1단계) 인접행렬(adjacency matrix)

- 노드 n개를 n x n 행렬로 표현
- 생성된 인접 행렬 내의 값은 'Aij는 i와 j의 관련성 여부'를 만족하는 값으로 채워줌
- ⇒ 인접 행렬 과정은 컴퓨터가 이해하기 쉽게 그래프로 표현하는 과정

(2단계) 특성행렬(feature matrix)

- 인접 행렬만으로는 특성을 파악하기 어려워 단위 행렬 적용
- 각 입력 데이터에서 이용할 특성을 선택함
- 특성 행렬에서 각 행은 선택된 특성에 대해 각 노드가 갖는 값을 의미

5.5.3 그래프 합성곱 네트워크

: 이미지에 대한 합성곱을 그래프 데이터로 확장한 알고리즘

(Graph Convolutional network, GCN)

- 리드아웃(readout): 특성 행렬을 하나 의 벡터로 변환하는 함수
 - → 전체 노드의 특성 벡터에 대해 평균을 구하고 그래프 전체를 표현하는 하나의 벡터를 생성

GCN에서 가장 중요한 부분은 그래프 합성곱층

그래프 합성곱층을 이용한 그래프 형태의 데이터는 행렬 데이터로 변환되어 딥러닝 알고리 즘을 적용할 수 있기 때문.

GCN 활용

- SNS에서 관계 네트워크
- 학술 연구에서 인용 네트워크
- 3D Mesh