Supervised Learning

Data Mining Process

AutoML

Supervised Learning

- The computer is provided with example inputs that are labeled with their desired outputs.
- Supervised learning uses patterns to predict label values on additional unlabeled data.
- An algorithm may be fed data with images of sharks labeled as fish and images of oceans labeled as water.
- By being trained on this data, the supervised learning algorithm should be able to later identify unlabeled shark images as fish and unlabeled ocean images as water.

Supervised Learning

What is Classification

Training & Testing

Percentage Split

Cross Validation

 Repeated holdout (in Lesson 2.3, hold out 10% for testing, repeat 10 times)

Cross Validation

10-fold cross-validation

- Divide dataset into 10 parts (folds)
- Hold out each part in turn
- Average the results
- Each data point used once for testing, 9 times for training

Stratified cross-validation

Ensure that each fold has the right proportion of each class value

In Simple Terms?

Iris-setosa Iris-versicolor Iris-virginica

		True cond	lition			
	Total population	Condition positive	Condition negative	$\frac{\sum Condition\ positive}{\sum Total\ population}$	Σ True positi	racy (ACC) = ve + Σ True negative tal population
Predicted condition	Predicted condition positive	True positive	False positive, Type I error	Positive predictive value (PPV), Precision = Σ True positive Σ Predicted condition positive	False discovery rate (FDR) = Σ False positive Σ Predicted condition positive	
	Predicted condition negative	False negative, Type II error	True negative	False omission rate (FOR) = Σ False negative Σ Predicted condition negative	Negative predictive value (NPV) = Σ True negative Σ Predicted condition negative	
		True positive rate (TPR), Recall, Sensitivity, probability of detection, Power $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False positive rate (FPR), Fall-out, probability of false alarm $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Condition negative}}$	Positive likelihood ratio (LR+) = TPR FPR	Diagnostic odds ratio	F ₁ score =
		False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	Specificity (SPC), Selectivity, True negative rate (TNR) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	Negative likelihood ratio (LR-) = FNR TNR	$(DOR) = \frac{LR+}{LR-}$	2 · Precision · Recall Precision + Recall

ş

Accuracy of NB

- Error Rate
 - (T C) / T
 - T Number of Objects
 - C correctly classified objects.

Confusion matrix

Predicated Class	True Class		
	Α	В	С
Α	8	1	1
В	2	9	2
C	0	0	7

Classification Performance Measures

- Recall = a/(a+c) where a + c > 0 (o.w. undefined).
 - Did we find all of those that belonged in the class?
- Precision = a/(a+b) where a+b>0 (o.w. undefined).
 - Of the times we predicted it was "in class", how often are we correct?

$$Precision = \frac{tp}{tp + fp}$$

$$\operatorname{Recall} = rac{tp}{tp + fn}$$

F1 Score / F1 Measure

$$F_1 = rac{2}{ ext{recall}^{-1} + ext{precision}^{-1}} = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}.$$

Matthews Correlation Coefficient

$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

The MCC doesn't depend on which class is the positive one, which has the advantage over the F1 score to avoid incorrectly defining the positive class.

- False Positive (FP)
 - FP cases are those that did not belong to a class but allocated to it.
- False Negative (FN)
 - FN are cases that belong to a class but were not allocated to it.

	FP	FN
Class 1	2	2
Class 2	4	1
Class 3	0	3

- Sensitivity = TP / (TP + FN)
- Specificity = TN/(TN + FP)

Decision Trees

D	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

