

CMPE361 Computer Organization

Department of Computer Engineering
TED University- Fall 2023

Single Cycle Processor - II

Single-Cycle Control

- In a single-cycle datapath design, the control signals are inserted whenever required.
- All control signals can be assembled in a dedicated circuit blocks.

Single-Cycle Main Control Unit with multiple ALU

Single-Cycle Control

- The desired values of control signals can be generated from 6-bit operation code field and 6-bit function fields Instr_{31:26} and Instr_{5:0}.
- The control can be divided into two decoding units.
 - ✓ The **main decoder** computes most of control signals related nonzero opcode.
 - ✓ It uses 2-bit ALUOp signal to let **ALU decoder block** to compute the control signals based on the function field.

Internal structure of SCD: main decoder, ALU decoder

Single-Cycle Control

- ALUOp signal can take values 00, 01, 10, 11.
 - ✓ ALUOp of 10 examines to function field to determine the control signal, 00 is add, 01 is subract.
- Both lw and sw require add operation to compute the target address,
- beq requires sub operation
- A truth table for decoding logic can be used to help creating the proper signals

Control Unit: Truth Table for the Main ALU Decoder 1

Extend the Truth table for 2 bit ALUOp₁₋₀

Instruction	$\mathrm{Op}_{5:0}$	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	$\mathrm{ALUOp}_{1:0}$
R-type	000000	1	1	0	0	0	0	
lw	100011	1	0	1	0	0	1	
SW	101011	0	X	1	0	1	X	
beq	000100	0	X	0	1	0	X	

Control Unit: Truth Table for the Main ALU Decoder 2

R-Type instruction depends on function code

Instruction	Op _{5:0}	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	$\mathrm{ALUOp}_{1:0}$
R-type	000000	1	1	0	0	0	0	Check funct code
lw	100011	1	0	1	0	0	1	add
SW	101011	0	X	1	0	1	X	add
beq	000100	0	X	0	1	0	X	sub

Control Unit: Truth Table for the Main ALU Decoder 3

ALUOP₁₋₀ is determined to control ALU datapath

Instruction	Op _{5:0}	RegWrite	RegDst	AluSrc	Branch	MemWrite	MemtoReg	$\mathrm{ALUOp}_{1:0}$
R-type	000000	1	1	0	0	0	0	10
lw	100011	1	0	1	0	0	1	00
SW	101011	0	X	1	0	1	X	00
beq	000100	0	X	0	1	0	X	01

ALU decoder output

- For the instructions that do not write to the register file (e.g., sw and beq), the RegDst and MemtoReg control signals are don't cares (X);
- The address and data arriving at the register write port do not matter, because RegWrite is not asserted.
- When ALUOp is 10, the ALU decoder examines the funct field to determine the ALUControl₂₋₀ signals.

Summary of control signals

ALUOp _{1:0}	Meaning
00	Add
01	Subtract
10	Look at Funct
11	Not Used

F _{2:0}	Function
000	A & B
001	A B
010	A + B
011	not used
100	A & ~B
101	A ~B
110	A - B
111	SLT

$\overline{\mathrm{ALUOp}_{1:0}}$	Funct	$\mathrm{ALUControl}_{2:0}$
00	X	010 (Add)
X1	X	110 (Subtract)
1X	100000 (add)	010 (Add)
1X	100010 (sub)	110 (Subtract)
1X	100100 (and)	000 (And)
1X	100101 (or)	001 (Or)
1X	101010(slt)	111 (SLT)

ALUControl₂₋₀ Signal

Extend SCP with or instruction (Example 7.1)

- Determine the values of the control signals and the portions of the datapath that are used when executing an or instruction.
- or is an R-type instruction.

- In the following figure, the main flow of data through the register file and ALU is represented with a dashed blue line.
- The control signals are shown by the light blue color

Control and data flow for or instruction

Instruction or control signals

- The register block reads the two source registers specified by Instr25:21 and Instr20:16 bits.
- SrcB come from the second port (A1) of the register file (not SignImm), so ALUSrc = 0, ALUOp = 10
- Result is taken from the ALU, so MemtoReg signal is 0
- RegWrite is 1, MemWrite = 0
- The destination register is specified in the rd field, Instr15:11, so RegDst = 1
- Branch = 0, PCSrc = 0 to get PC next value from PCPlus4.

Or instruction design

Note that data can always flow through the available paths; however, the control signals configured for each instruction will allow only the right ones to to be effective...

Re-arranging the control and datapath

- The separation of instruction and data memories from rest of the processor seems a better design.
 - The memory is connected with address and data busses to the processor.
- The controller can also be configured into 2 parts: main decoder, ALU decoder.

Re-arranging the modules

