PLSC 503 – Fall 2023 Central Tendency and Variation

September 18, 2023

Current Premier League Statistics

Team	Won	Drew	Lost	${\tt GoalsFor}$	${\tt GoalsAgainst}$	${\tt GoalDifference}$	Points
Manchester City	5	0	0	14	3	11	15
Tottenham Hotspur	4	1	0	13	5	8	13
Liverpool	4	1	0	12	4	8	13
Arsenal	4	1	0	9	4	5	13
Brighton and Hove Albion	4	0	1	15	7	8	12
West Ham United	3	1	1	10	7	3	10
Aston Villa	3	0	2	11	10	1	9
Crystal Palace	2	1	2	6	7	-1	7
Fulham	2	1	2	5	10	-5	7
Brentford	1	3	1	8	6	2	6
Newcastle United	2	0	3	8	7	1	6
Nottingham Forest	2	0	2	6	6	0	6
Manchester United	2	0	3	6	10	-4	6
Chelsea	1	2	2	5	5	0	5
Bournemouth	0	3	2	4	8	-4	3
Wolverhampton Wanderers	1	0	4	5	11	-6	3
Sheffield United	0	1	4	5	9	-4	1
Everton	0	1	4	2	9	-7	1
Burnley	0	0	3	3	11	-8	0
Luton Town	0	0	4	2	10	-8	0

Premier League Points: Histogram

The Arithmetic Mean

The "mean":

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$$

implies that:

$$\sum_{i=1}^{N} X_i = N\bar{X}$$

and so:

$$\sum_{i=1}^{N}(X_{i}-\bar{X})=0$$

\bar{X} Minimizes Squared Deviations

Find the value of X μ that minimizes the sum of squared deviations...

$$f(X) = \sum_{i=1}^{N} (X_i - \mu)^2$$
$$= \sum_{i=1}^{N} (X_i^2 + \mu^2 - 2\mu X_i)$$
$$\frac{\partial f(X)}{\partial \mu} = \sum_{i=1}^{N} (2\mu - 2X_i)$$

\bar{X} Minimizes Squared Deviations

Solve:

$$\sum_{i=1}^{N} (2\mu - 2X_i) = 0$$

$$2N\mu - 2\sum_{i=1}^{N} X_i = 0$$

$$2N\mu = 2\sum_{i=1}^{N} X_i$$

$$\mu = \frac{1}{N}\sum_{i=1}^{N} X_i \equiv \bar{X}$$

Means from Sums of Frequencies

Frequency table:

Points	Frequency f _j
0	2
1	2
3	2
5	1
:	:
15	1

For J different unique values of X:

$$\bar{X} = \frac{1}{N} \sum_{i=1}^{J} f_i X_i$$

Weighted Means

For "weights" w_i , the weighted mean is:

$$\bar{W} = \frac{\sum_{i=1}^{N} w_i X_i}{\sum_{i=1}^{N} w_i}$$

Things to remember:

- If $w_i = \frac{1}{N} \ \forall \ i$, then $\bar{W} = \bar{X}$
- If $w_i = w \ \forall i$, then $\bar{W} = w\bar{X}$
- Weighted means are simpler if $\sum_{i=1}^{N} w_i = 1.0...$
- ... we can normalize any set of weights by $w_i' = \frac{w_i}{\sum_{i=1}^N w_i}$.

Geometric Mean

$$\bar{X}_{G} = \left(\prod_{i=1}^{N} X_{i}\right)^{\frac{1}{N}}$$

$$= \sqrt[N]{X_{1} \cdot X_{2} \cdot \dots \cdot X_{N}}$$

$$= \exp\left[\frac{1}{N} \sum_{i=1}^{N} \ln X_{i}\right]$$

$$= \left[\frac{1}{N} \sum_{i=1}^{N} \ln X_{i}\right]$$

 \overline{X}_{G}

 X_1

Geometric Mean (continued)

Note: Geometric means don't like negative values...

- Formally, \bar{X}_G is defined only if $X_i > 0 \ \forall i$
- R's geometric.mean() defaults to removing them before calculation...
- If all values of X are negative, the geometric mean will be NaN.

Consider percentage changes:

```
\{ +12\%, +5\%, -9\%, +2\%, -10\% \}
```

```
> geometric.mean(c(12,5,-9,2,-10))
[1] 4.932424
Warning message:
In log(x) : NaNs produced
> geometric.mean(c(1.12,1.05,0.91,1.02,0.90))
[1] 0.9964563
```

Harmonic Mean

The harmonic mean is:

$$\bar{X}_{H} = \frac{N}{\sum_{i=1}^{N} \frac{1}{X_{i}}}$$
$$= \frac{1}{\left(\frac{1}{X}\right)}$$

Note that:

$$\bar{X}_H \leq \bar{X}_G \leq \bar{X}$$

The Median

Median:

$$\check{X}$$
 = "middle observation" of X
= 50th *percentile* of X .

Minimizes absolute distance:

$$\check{X} = \min\left(\sum_{i=1}^N |X_i - c|\right).$$

The Mode

The $\underline{\text{mode}}$ of X is "the value of X that appears most frequently in the data."

- That works fine for discrete variables...
 - · There can be zero, one, two, or more modes,
 - · If (say) two values of X have *nearly* the same number of cases, we often refer to that as "bimodal" data.
- For continuous variables:
 - There is often no mode (no two observations have exactly the same values of X)
 - Modes are usually defined as any local maximum of the probability density function of X

Modes: Discrete *X*

Modes: Continuous X

Means, Medians, Modes, and Skewness

Central Tendencies: Premier League Data

Variation

Range and Percentiles

Range:

$$\mathsf{Range}(X) = \mathsf{max}(X) - \mathsf{min}(X)$$

The kth percentile is the value of the variable below which k percent of the observations fall.

- 50th percentile = \check{X}
- 0th percentile = minimum(X)
- 100th percentile = maximum(X)

More Percentiles

- *Quartiles* = {25th, 50th, 75th percentiles}
- Interquartile Range (IQR):

$$IQR(X) = 75$$
th percentile $(X) - 25$ th percentile (X)

• *Deciles* = {10th, 20th, 30th, etc. percentiles}

"Mean Deviation"

$$\frac{1}{N}\sum_{i=1}^{N}(X_{i}-\bar{X}).$$

$$\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X}) = \frac{1}{N} \left[\left(\sum_{i=1}^{N} X_i \right) - N \bar{X} \right]$$

$$= \frac{1}{N} \left[\sum_{i=1}^{N} X_i - N \left(\frac{1}{N} \sum_{i=1}^{N} X_i \right) \right]$$

$$= \frac{1}{N} \left(\sum_{i=1}^{N} X_i - \sum_{i=1}^{N} X_i \right) = \frac{1}{N} (0)$$

$$= 0$$

Squared Deviation

Mean squared deviation:

$$\mathsf{MSD} = \frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Also known as *mean squared error* ("MSE") in regression models...

Note that MSD is "average squared difference from the mean" \rightarrow expressed in "squared" units of X...

A more useful quantity is "root mean squared deviation":

$$\mathsf{RMSD} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2}$$

An Important Fact

Consider N = 1:

Team Points
Tottenham Hotspur 14

This gives:

$$\bar{X} = \frac{14}{1} = 14$$
 and $RMSD = \sqrt{\frac{(14 - 14)^2}{1}} = 0$

For N=2:

Team Points
Tottenham Hotspur 14
Leeds United 8

we get:

$$\bar{X} = \frac{14+8}{2} = 11$$
 and $RMSD = \sqrt{\frac{(14-11)^2 + (8-11)^2}{2}} = 3$

You cannot learn about more characteristics of data than you have observations.

Variance:

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2$$

Standard deviation:

$$\sigma = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N}(X_i - \bar{X})^2}$$

"Geometric" Standard Deviation:

$$\sigma_G = \exp\left[\sqrt{\frac{\sum_{i=1}^N (\ln X_i - \ln \bar{X}_G)^2}{N}}\right]$$

PL Points Data

```
> summary(PL$Points)
  Min. 1st Qu. Median Mean 3rd Qu. Max.
     0.0     3.0     6.0     6.8     10.5     15.0
> var(PL$Points)
[1] 22.1
> sd(PL$Points)
[1] 4.7
```

Standardizing Variables

Sometimes useful to put variables on a common scale... ("z-scores")...

Typically:

$$Z_i = \frac{X_i - \bar{X}}{\sigma}$$

A standardized variable Z has:

- A mean of zero, and
- A standard deviation (and therefore variance) of 1.0

Standardizing Example

- > library(psych)
- > PLSmall<-PL[,4:10]
- > describe(PLSmall,trim=0,skew=FALSE)

	vars	n	${\tt mean}$	sd	\min	${\tt max}$	range	se
Won	1	20	2.00	1.62	0	5	5	0.36
Drew	2	20	0.80	0.95	0	3	3	0.21
Lost	3	20	2.00	1.41	0	4	4	0.32
GoalsFor	4	20	7.45	3.94	2	15	13	0.88
GoalsAgainst	5	20	7.45	2.48	3	11	8	0.55
GoalDifference	6	20	0.00	5.80	-8	11	19	1.30
Points	7	20	6.80	4.70	0	15	15	1.05

- > PL.Z<-scale(PLSmall)
- > describe(PL.Z,trim=0,skew=FALSE)

	vars	n	mean	sd	min	max	range	se
Won	1	20	0	1	-1.23	1.85	3.08	0.22
Drew	2	20	0	1	-0.84	2.31	3.15	0.22
Lost	3	20	0	1	-1.41	1.41	2.83	0.22
GoalsFor	4	20	0	1	-1.38	1.92	3.30	0.22
GoalsAgainst	5	20	0	1	-1.79	1.43	3.22	0.22
${\tt GoalDifference}$	6	20	0	1	-1.38	1.90	3.27	0.22
Points	7	20	0	1	-1.45	1.75	3.19	0.22

Absolute Deviations and MAD

Median Absolute Deviation ("MAD"):

$$\mathsf{MAD} = \mathsf{median}[|X_i - \check{X}|]$$

Mean Absolute Deviation:

Mean Absolute Deviation =
$$\frac{1}{N} \sum_{i=1}^{N} |X_i - \bar{X}|$$

Moments

Moments are functions of distributions that characterize their shape...

For a random variable X, the kth raw moment is:

$$m_k = \begin{cases} \sum f(X) \Pr(X) \text{ if } X \text{ is discrete} \\ \int f(X) \Pr(X) dX \text{ if } X \text{ is continuous.} \end{cases}$$

The kth central moment is:

$$M_k = \begin{cases} \mathsf{E}[(X - \mu)^k] \text{ for discrete } X\\ \int_{-\infty}^{+\infty} (X - \mu)^k f(X) \, dX \text{ for continuous } X \end{cases}$$

A distribution for X can be completely characterized by its non-zero moments...

Why Might We Care?

The first (raw) moment of a variable is the mean:

$$\mu = \mathsf{E}(X)$$

The second (central) moment of a variable is its variance:

$$\sigma^2 = \mathsf{E}[(X - \mu)^2]$$

[†]The first central moment is zero (why?)...

Skewness

Third central moment:

$$M_3 = \mathsf{E}[(X - \mu)^3]$$

More typically, we use the third *standardized moment* (usually called *skewness*):

$$\mu_{3} = \frac{M_{3}^{2}}{\sigma^{3}}$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{3}}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_{i} - \bar{X})^{2}\right]^{3/2}}$$

- Skewness = $0 \rightarrow \text{symmetrical}$
- Skewness $> 0 \rightarrow$ "positive" (tail to the right)
- Skewness $< 0 \rightarrow$ "negative" (tail to the left)

Skewness Illustrated

Symmetry

If a distribution is symmetrical, then:

- $\mu_3 = 0$
- $\check{X} = (Q_{25} + Q_{75})/2$,
- $MAD = \frac{IQR}{2}$

Note that:

- Both discrete and continuous variables can be symmetrical or asymmetrical;
- Every distribution with no mode is symmetrical, but
- Unimodal, bimodal, etc. distributions can be symmetrical or asymmetrical.

Kurtosis

Fourth moment:

$$M_4 = \mathsf{E}[(X - \mu)^4]$$

More typically, kurtosis ("excess kurtosis"):

$$\mu_4 = \frac{M_4}{\sigma^4} - 3$$

$$= \frac{\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^4}{\left[\frac{1}{N} \sum_{i=1}^{N} (X_i - \bar{X})^2\right]^2} - 3$$

Note that:

$$\frac{M_4}{\sigma^4} \ge \left(\frac{M_3}{\sigma^3}\right)^2 + 1$$

Kurtosis Intuition

Kurtosis is "the average of the standardized X raised to the fourth power (minus three)."

- Taking X^4 when $|X| \le 1$ gives values very close to 0
- ullet o only those values on the "tail" of the distribution contribute significantly to kurtosis

Kurtosis Explained

Kurtosis:

- "Fat-tailed" = leptokurtic: μ_4 is positive.
- "Medium-tailed" = mesokurtic: μ_4 is close to zero.
- "Thin-tailed" = platykurtic: μ_4 is negative.

Kurtosis Illustrated

Kurtosis Examples

PL Points Data

- > library(moments)
- > skewness(PL\$Points)
- [1] 0.2408431
- > kurtosis(PL\$Points)-3
- [1] -0.8326687

Binary Variables

For a Bernoulli (binary) variable *D*:

- $mode(D) = \check{D} (why?)$
- The mean of *D* is:

$$\bar{D} = \frac{1}{N} \sum_{i} D_{i}$$

$$= \pi \left[\equiv \Pr(D=1) \right]$$

• The variance is:

$$\sigma_D^2 = \pi \times (1 - \pi)$$

• and so the standard deviation is:

$$\sigma_D = \sqrt{\pi \times (1 - \pi)}$$

Implies:

- $\sigma_D > \sigma_D^2$
- $\max(\sigma_D^2) \leftrightarrow \pi = 0.5$

Binary Variables (continued)

For a binary variable, skewness is:

$$\mu_3 = \frac{1-2\pi}{\sqrt{\pi(1-\pi)}}$$

and the (excess) kurtosis is:

$$\mu_4 = rac{1 - 6\pi(1 - \pi)}{\pi(1 - \pi)}$$

Getting Summary Statistics

Good: summary

```
> summary(PLSmall)
     Won
                    Drew
                                 Lost
                                           GoalsFor
                                                        GoalsAgainst
       :0.00
               Min.
                      :0.0
                            Min. :0
                                        Min. : 2.00
                                                       Min. : 3.00
 Min.
 1st Qu.:0.75
               1st Qu.:0.0
                            1st Qu.:1
                                        1st Qu.: 5.00
                                                        1st Qu.: 5.75
Median :2.00
               Median:1.0
                            Median :2
                                        Median: 6.00
                                                       Median: 7.00
      :2.00
                    :0.8
                                             : 7.45
                                                              : 7.45
 Mean
               Mean
                            Mean
                                        Mean
                                                        Mean
3rd Qu.:3.25
               3rd Qu.:1.0
                            3rd Qu.:3
                                        3rd Qu.:10.25
                                                       3rd Qu.:10.00
 Max
       :5.00
               Max
                      .3.0
                            Max
                                   . 4
                                        Max.
                                               .15.00
                                                        Max
                                                              .11.00
 GoalDifference
                    Points
       :-8.00
                      : 0.0
 Min.
                Min.
 1st Qu.:-4.25
               1st Qu.: 3.0
Median: 0.00
               Median: 6.0
Mean : 0.00
                     : 6.8
               Mean
 3rd Qu.: 3.50
                3rd Qu.:10.5
 Max
       .11.00
                Max
                       15.0
```

Better: describe (in psych)

> describe(PLSmall)

	vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
Won	1	20	2.00	1.62	2	1.94	2.22	0	5	5	0.21	-1.34	0.36
Drew	2	20	0.80	0.95	1	0.62	1.48	0	3	3	1.07	0.21	0.21
Lost	3	20	2.00	1.41	2	2.00	1.48	0	4	4	0.00	-1.33	0.32
GoalsFor	4	20	7.45	3.94	6	7.25	3.71	2	15	13	0.43	-1.11	0.88
GoalsAgainst	5	20	7.45	2.48	7	7.50	2.97	3	11	8	-0.14	-1.34	0.55
GoalDifference	6	20	0.00	5.80	0	-0.19	6.67	-8	11	19	0.29	-1.20	1.30
Points	7	20	6.80	4.70	6	6.75	5.19	0	15	15	0.15	-1.28	1.05

Reporting Summary Statistics

> stargazer(PLSmall,title="Summary Statistics")

Table: Summary Statistics

Statistic	N	Mean	Std. Dev.	Min	Max
Won	20	2.000	1.620	0	5
Drew	20	0.800	0.951	0	3
Lost	20	2.000	1.410	0	4
Goals For	20	7.450	3.940	2	15
Goals Against	20	7.450	2.480	3	11
Goal Difference	20	0.000	5.800	-8	11
Points	20	6.800	4.700	0	15