

Universidade Eduardo Mondlane

Exame:	Matemática	Nº Questões:	58
Duração:	120 minutos	Alternativas por questão:	4
Ano:	2009		

INSTRUÇÕES

- Preencha as suas respostas na FOLHA DE RESPOSTAS que lhe foi fornecida no início desta prova. Não será aceite qualquer outra folha adicional, incluindo este enunciado.
- 2. Na FOLHA DE RESPOSTAS, assinale a letra que corresponde à alternativa escolhida pintando completamente o interior do rectângulo por cima da letra. Por exemplo, pinte assim A, se a resposta escolhida for A
- 3. A máquina de leitura óptica anula todas as questões com mais de uma resposta e/ou com borrões. Para evitar isto, preencha primeiro à lápis HB, e só depois, quando tiver certeza das respostas, à esferográfica.

1.	A expressão $\frac{0.00014 \times 2100}{0.000100000000000000000000000000000$				
	0,06				
	A. 49 B. 490	C. 4,9		D. 0,49	
2.	A igualdade $-x = -x $ é válida para:				
	A. $x \in]-\infty, 0]$ B. $x \in]0, +\infty[$	C. $\forall x \in R$	D.	ϕ	
3.	Qual das seguintes relações é uma função?				
	A. $x = 4$ B. $x = y^2 + 1$	C. y = 4	D.	$x^2 + y^2 = 16$	
4.	Nyma aymailmais signt/flag ayanda a maistan A a a mais	ton P aão ligados mum sin	wite marelele, a registêr	ois total 6 For	a francão acomolova á
	Numa experiência científica, quando o resistor A e o resis	tor D sao ngados num ene	unto paralelo, a resister	$\frac{1}{1+1} \cdot E^{s}$	a nacção complexa e
	equivalente a:			$\frac{1}{A} + \frac{1}{B}$	
	1 1	C. $A+B$	D.	AB	
	B. $\frac{AB}{A+B}$				
5.	Qual das seguintes expressões é a equação da recta com c	coeficiente angular 0 e, pas	sando pelo ponto (4,6):	•	
	A. $x = 4$ B. $x = -4$	C. y = 6	D.	<i>y</i> = −6	
6.	Se as raízes de $ax^2 + bx + c = 0$ são números reais e iguais	s, é correcto afirmar que o	gráfico da função y =	$ax^2 + bx + c$:	
	A. Intersecta o eixo OX em 2 pontos diferentes			amente acima do eixo OX	
7.	C. Situa-se completamente abaixo do eixo OX	() 0 1	D. É tangente ao eix	xo OX	
**	Um ponto dado $V(-3;2)$ pertence a uma função impar y			Y. ↑	
	correcto afirmar que, dos pontos representados na figura a	ao iado, também pertence	$\mathbf{a} y = g(x) \mathbf{o}$		
	A. S B. Q C. P	D. R		3 2	.R
				. 1	
				3 -2 -1	1 2 3 x
				3	P
8.	A figura ao lado mostra um triângulo ABC com o segmen	to AB prolongado até ao p	onto D e o		
	ângulo externo CBD medindo 145 ⁰ . A soma dos ângulos			С	
	angulo externo ODD medina i 13 - 11 doma dos angulos	Tre o e iguar a.		/%	·
	A. 135° B. 155° C. 165'	o D. 145 ^o		/	The same of the sa
				/	145
				A	B D
9.	A expressão $\sqrt{27} + \sqrt{12}$ é equivalente a:				
	A. $5\sqrt{3}$ B. $10\sqrt{3}$	C. 5√6	D.	$\sqrt{39}$	
10.	<u>i</u>	C. 3¥0	D.	Ψ39	
10.	Se $x^y = 3$ então $x^{3y} + 2$ é igual a:	3 20	D (
11.		C. 29	D. 6		
11.	20% de $\frac{2}{3}$ é:				
		5	13		
	A. $\frac{2}{15}$ B. $\frac{4}{5}$	C. $\frac{5}{4}$	D. $\frac{13}{15}$		
12.	A equação da recta que passa pela origem e tem uma incli	inação α = 120 ⁰ á:			
	A. $y = \sqrt{3}x$ B. $\sqrt{3}x + y = 0$		3x = 0	D. y = 3x	
	$A. y = \mathbf{v} \ni x \qquad \qquad B. \mathbf{v} \ni x + y = 0$	·	-	·	

13.	Dada a função $y = h(x)$ no domínio R, o domínio da função $g(x) = \sqrt{h(x)}$ é: A. R B. $]-2;0[\ \]];+\infty[$ C. $]-\infty;-2[\ \ \]0;1[$ D. $]-2;0[$
14.	Na figura está representada parte do gráfico de uma função f de domínio R. É correcto afirmar: A. A função admite limite no ponto $x = a$ B. $\lim_{x \to a^{-}} f(x) \neq f(a)$ e $\lim_{x \to a^{+}} f(x) = f(a)$ C. $\lim_{x \to a^{-}} f(x) = f(a)$ e $\lim_{x \to a^{+}} f(x) = f(a)$ D. A função é contínua
15.	Sejam dadas as funções $y = g(x)$ e $y = h(x)$. A expressão $h[g(0)]$ é igual a: A. 0 B. 1 C. 2 D. 3
16.	Seja dado o polinómio $P(x) = x^3 + ax^2 - x + d$ divisível por $x - 1$ e cujo resto da divisão por $x + 2$ é igual a -12 . Os valores de $a = d$ são:
	A. $d = -2 \land a = 2$ B. $a = 6 \land d = -6$ C. $d = 2 \land a = -2$ D. $a = -6 \land d = 6$
17.	A equação $2^x = -3x + 2$ com $x \in R$
	A. Não tem solução B. Tem uma única solução no intervalo $\left]0; \frac{2}{3}\right[$
	C. Tem uma única solução no intervalo $\left -\frac{2}{3};0 \right $ D. Uma solução positiva e outra negativa
18.	Uma cidade cuja população varia sistematicamente tem hoje 30000 habitantes. Se o ritmo de variação se mantiver, então o número de habitantes daqui a t
	 anos, P(t), é calculado aplicando-se a fórmula P(t) = P₀(0,9)^t. Supondo que o ritmo de variação se mantenha, é verdadeira a afirmação: A. A sucessão P(1), P(2), P(3) do número de habitantes por ano é uma progressão geométrica B. Daqui a dois anos a cidade terá 24300 habitantes C. No primeiro ano a população diminuiu 10% D. Todas as respostas estão correctas
19.	Seja $\log_2 3 = x$ e $\log_2 5 = y$ então $\log_3 15$:
	A. $5x$ B. $\frac{y-x}{x}$ C. $\frac{x+y}{y}$ D. $\frac{y+x}{x}$
20. 21.	Passe para a pergunta seguinte!
	O valor de x que satisfaz a condição $\frac{1}{2} + \frac{1}{3} + \frac{1}{4} = \frac{x}{48}$ é:
	A. 16 B. 36 C. 52 D. 39
22.	Se $f(x) = 3 + 2^{-x}$ então $f(\log_2 5)$ é igual a:
	A. $\frac{16}{5}$ B. $3-2\log_2 5$ C. 8 D. $\frac{4}{5}$
23.	Se $\cos\theta = \frac{\sqrt{3}}{2}$ e $sen\theta = -\frac{1}{2}$ então:
	A. $sen2\theta = -\frac{\sqrt{3}}{2}$ B. $sen2\theta = \frac{\sqrt{3}}{2}$ C. $sen2\theta = -\frac{\sqrt{3}}{4}$ D. $sen2\theta = -1$
24.	Sejam f e g funções de R em R, sendo R o conjunto dos números reais, dadas por $f(x) = 2x - 3$ e $f[g(x)] = -4x + 1$. Nestas condições, $g(-1)$ é igual a: A. -5 B. 0 C. 4 D. 5
25.	O conjunto imagem (contradomínio) da função $y = \frac{1}{x-1}$ é o conjunto:
	A. $R \setminus \{1\}$ B. $R \setminus \{0\}$ C. $[0;2[$ D. $]-\infty;2]$
26.	Seja a função definida por $f(x) = \frac{2x-3}{5x}$. O elemento do domínio de f que tem $-\frac{2}{5}$ como imagem é:
	A. 0 B. $\frac{2}{5}$ C. $\frac{3}{4}$ D. $\frac{4}{3}$
27.	A função f é definida por $f(x) = ax + b$. Sabe-se que $f(-1) = 3$ e $f(3) = 1$, então podemos afirmar que $f(1)$ é igual a: A. 2 B. -2 C. 0 D. 3
28.	Sabe-se que -2 e 3 são raízes de uma função quadrática. Se o ponto (-1;8) pertence ao gráfico dessa função, então o seu valor: A. máximo é 1,25 B. mínimo é 1,25 C. mínimo é 12,5 D. máximo é 12,5.
29.	S
	Se x_1 e x_2 são os zeros da função $y = 3x^2 + 4x - 2$, então o valor de $\frac{1}{x_1} + \frac{1}{x_2}$ é igual a: A. $1/2$ B. $8/3$ C. 1 D. 2
:	A. 1/2 B. 8/3 C. 1 D. 2

A. $y_{\text{max}} = -3$

B. $y_{\text{max}} = 3$

30.	O preço dos produtos agrícolas oscila de acordo com a safra de cada um: mais baixo no período da colheita, mais alto no período entre safras. Suponha que
	o preço aproximado $P(t)$, em meticais, do quilograma de tomate seja dado pela função $P(t) = 0.8sen \left[\frac{2\pi}{360} (t - 101) \right] + 2.7$, na qual t é o número de dias
	contados de 1 de Janeiro a 31 de Dezembro de um determinado ano. Para este período de tempo, calcule os valores de t para os quais o preço $P(t)$ seja igual a 3,10 Mts.
	A. 200 dias B. 131 dias C. 190 dias D. 191 dias
31.	A razão das idades de duas pessoas é $\frac{2}{3}$. Achar estas idades sabendo que sua soma é 35 anos.
	A. 15 e 20 anos; B. 14 e 21 anos; C. 18 e 17 anos D. 13 e 22 anos
32.	Simplifique a expressão $\frac{c^2 + 6c + 9}{c^2 - 9}$.
	A. 1 B. $\frac{c+3}{c-3}$ C. $\frac{c-3}{c+3}$ D. $\frac{c+1}{c-1}$
33.	Seja a expressão $P(x) = (x-1)(x+2)-2(x+2)(x-5)$. Se $Q(x) = 2(x+2)(x-5)$, simplifique o quociente $\frac{P}{Q}$.
	x+9 $-x+9$ $x+9$ $x+9$
	A. $\frac{x+9}{2x}$ B. $\frac{-x+9}{2(x-1)}$ C. $\frac{-x+9}{2(x-5)}$ D. $\frac{x+9}{2(x+5)}$
34.	Qual o conjunto solução da seguinte inequação $-7 < -3x - 1 < 2$?
	A. $x \in \{R: 2 < x < -1\}$ B. $x \in \{R: -5 < x < 2\}$ C. $x \in \{R: -1 < x < 2\}$ D. $x \in \{R: -3 < x < 1\}$
35.	Uma senhora comprou uma caixa de bombons para seus dois filhos. Um destes tirou para si metade dos bombons da caixa. Mais tarde o outro menino também tirou para si metade dos bombons que encontrou na caixa. Restaram 10 bombons. Calcule o número de bombons que existiam inicialmente na caixa. A. 18 B. 20 C. 40 D. 80
36.	Determine a área das seguintes figuras (em cm), sabendo que cada quadrado mede de lado
	1cm A. 8cm ² B. 12 cm ² C. 16 m ² D. 10 cm ²
	A. ochi- B. 12 chi- C. 10 hi- D. 10 chi-
37.	Sabendo que <i>a, b, c</i> e 240 são directamente proporcionais aos números 180, 120, 200 e 480, respectivamente, determine os números <i>a, b</i> e <i>c.</i> A. a = 90, b = 40, c = 100 B. a = 90, b = 70, c = 110 C. a = 80, b = 60, c = 100 D. a = 90, b = 60, c = 100
38.	A derivada da função $f(x) = \ln(2x-1)$ é:
	A. $\frac{1}{2x-1}$ B. $\frac{2}{2x-1}$ C. $2\ln(2x-1)$ D. Nenhuma das alternativas anteriores
39.	$r^2 - 9$
	Dada a função $g(x) = \frac{x^2 - 9}{x - 3}$. O ponto de abcissa $x = 3$:
	A. é um ponto de descontinuidade não eliminável de 1ª espécie B. é um ponto de descontinuidade não eliminável de 2ª espécie D. é um ponto de descontinuidade eliminável
40.	
	Resolva a inequação $\left(\frac{1}{2}\right)^{3x-x^2} > 1$
	A. $x \in]-\infty, 0[$ B. $x \in]-\infty, 0[\cup]3, +\infty[$ C. $x \in]0, 3[$ D. $]-\infty, -3[\cup]0, +\infty[$
41.	Resolva a equação $\log_5(x+1) + \log_5(2x+3) = 0$
	A. $x \in \left\{-\frac{1}{2}, -2\right\}$ D. $x \in [-2, -1]$
	A. $x \in \left\{-\frac{1}{2}, -2\right\}$ B. $x \in \left\{-\frac{3}{2}, -1\right\}$ C. $x = -\frac{1}{2}$ D. $x \in \left[-2, -1\right]$
42.	A expressão $1-\frac{x+1}{x-1}$ (quando, $x \neq 1$), é equivalente a:
	A. 0 B. 2 C. $\frac{2}{x-1}$ D. $-\frac{2}{x-1}$
43.	Passe para a pergunta seguinte!
44.	A expressão algébrica $\frac{1}{x+1} + \frac{1}{x}$, onde $x \in R \setminus \{-1,0\}$, pode ser dada por uma única fracção que é:
	A. $\frac{2x+3}{x^2+x}$ B. $\frac{2x+1}{x^2+x}$ C. $\frac{2}{2x+1}$ D. $\frac{3}{x^2}$
	$x^2 + x x^2 + x 2x + 1 x^2$
45.	A função $y = \frac{x^3 + 4}{x^2}$, tem como extremo:

C. $y_{\min} = -3$

D. $y_{\min} = 3$

6.	2			
	O valor numérico de $\sqrt{\frac{3 \cdot \left(sen240^{\circ}\right)^{2} - \cos 90^{\circ}}{\left(sen\ 270^{\circ}\right)^{2}}} \text{\'e:}$			
	A. $\frac{9}{2}$ B. $\frac{3}{2}$	C. 3	D. $\frac{9}{4}$	
7.	Se $k + \frac{1}{k} = a$ então $k^2 + \frac{1}{k^2}$ será igual a:			
	A. a^2 B. a^2-2	C. $a^2 + 2$	D. <i>a</i> – 2	
3.	Na figura estão representadas a recta $x+3y-6=0$ e a que tem corigem. A área do triângulo OAB será igual a: A. 3 B. 4 C. $\frac{4}{3}$,	pela	
	A. 3 B. 4 C. 3	D. 3	0 A x	
•	0,2 semanas corresponde a:			
).	A. 1 hora e 40 minutos B. 1 dia e 4 horas Simplificando a expressão $ \eta \frac{600}{25^{n+2} - 25^{n+1}} $ obtém-se:	C. 1 di	ia, 9 horas e 36 minutos D. 1 hora e 96 minuto	tos
	A.	C. $\frac{1}{24}$	D. $\sqrt[m]{\frac{1}{24}}$	
•	Se $10^x = 16$ então: A. $x = \log_{16} 10$ B. $x = \lg^2 4$	$C. \qquad x = 4 \lg 2$	D. $x = 2\lg 8$	
	A expressão log ₃ 2·log ₂ 3 é equivalente a:			
	A. 1 B. log 5 6	C. log ₆ 5	D. log ₂ 9	
•	Simplificando $\sqrt{18} + \sqrt[3]{-8} - \sqrt{50}$ tem-se: A. Não é possível resolver B. $2(\sqrt{2} - 1)$	$C. \qquad -2\left(\sqrt{2}+1\right)$	D. $-2(\sqrt{2}-1)$	
•	A expressão $\left(\frac{1}{2^x}\right)^{\frac{1}{y}}$ corresponde a:			
	$ \begin{array}{ccc} & \frac{x+y}{A} & \frac{1}{xy} \\ A. & 2 & xy \end{array} $ B. $2 & xy$	C. $\frac{x}{2^y}$	D. $\frac{y}{2x}$	
•	Ao lado está representada parte do gráfico da função $y = g(x)$. O		y /g(g)	
		$x \to -\infty g(x)$	1 ×	
	A. $\frac{1}{2}$ B. $-\frac{1}{2}$ C. -2	D. 0	1 2 3	
•	De uma função h , contínua no intervalo $[1;3]$, sabe-se que $h(1) = A$. A função h tem pelo menos um zero no intervalo $[1;3]$	B. A funç	ção h não tem zeros no intervalo $egin{bmatrix} 1;3 \end{bmatrix}$	
	C. A equação $h(x) = 5$ tem pelo menos uma solução no inter Na função $g(x)$ representada no gráfico ao lado o valor de x tal		ação $h(x) = 5$ não tem solução no intervalo [1;3]	
	A. 2 B2 C. 1	D1	1	
			-4 -3 -2 -1 1 2 3	
			1	
	i		círculo cujo raio vai aumentando com o decorrer do to	

D. Meio minuto

 $t \ge 0$. Ao fim de quantos minutos o raio da mancha circular será de 2cm?
A. 2 minutos
B. 5 minutos
C. 3 minutos

Exame de admissão de Matemática - 2009

CEAdmUEM

FIM

Página $\mathbf{5}$ of $\mathbf{5}$

Conheça o seu estado de saúde Faça o teste de HIV!