# **HEV** model

## 1 subsystem description

Model of the whole car.

# 2 system organization





# 3 Signals and parameters

## **Inputs**

None

## **Outputs**

None

#### **Parameters**

#### **Native**

| Name   | Туре | Unit | Description                     | Source          | Linked |
|--------|------|------|---------------------------------|-----------------|--------|
|        |      |      |                                 |                 | to     |
| hev_te | Var  | S    | Time duration of the simulation | User defined    | -      |
|        |      |      |                                 | (depends of the |        |
|        |      |      |                                 | cycle)          |        |

#### **Inherited**

Include all the subsystem

#### **4 Notes**

- Simulation parameters set as follow:

| Simulation time                                        |                                 |  |  |  |  |  |
|--------------------------------------------------------|---------------------------------|--|--|--|--|--|
| Start time: 0.0                                        | Stop time: hev_te               |  |  |  |  |  |
| Solver options                                         |                                 |  |  |  |  |  |
| Type: Fixed-step ▼                                     | Solver: ode5 (Dormand-Prince) ▼ |  |  |  |  |  |
| Fixed-step size (fundamental sample time):             | 0.001                           |  |  |  |  |  |
| Tasking and sample time options                        |                                 |  |  |  |  |  |
| Periodic sample time constraint:                       | Unconstrained ▼                 |  |  |  |  |  |
| Tasking mode for periodic sample times:                | Auto ▼                          |  |  |  |  |  |
| Automatically handle rate transition for data transfer |                                 |  |  |  |  |  |
| Higher priority value indicates higher task priority   |                                 |  |  |  |  |  |
|                                                        |                                 |  |  |  |  |  |

- Continuous time model

#### 5 Discrete model

All the continuous transfer function were discretized with the Tustin method on MatLab.

It consists of replacing "s" with:  $\frac{2}{Te} \times \frac{z-1}{z+1}$  (Te is the sample time)

Then we had to check up if the discrete bloc had the same behavior than the previous continuous bloc. The following pictures describe the checking process:

- for the discretization of an integrator:



- for the discretization of a special integrator??? Explanations?
- for the discretization of the transfer function 1:



for the discretization of the transfer function 2:



for the discretization of the transfer function 3:



We observe that for every signal sent to the input the error is close to zero. Moreover the gap between the continuous and the discrete signal is very low regardless of the signals.