PHY4103- Systèmes et fonctions électroniques II – Projet Electronique Numérique : Etude théorique

Coordonatrice: Nesma HOUMANI

Sommaire

Problème 1 : Réalisation de la commande d'un ascenseur	1
Problème 2 : Réalisation d'un chronomètre avec bouton de commande et affichage en décimal	4
Problème 3 : Réalisation d'un feu de signalisation pour piétons	8

Problème 1 : Réalisation de la commande d'un ascenseur

Contexte:

On souhaite réaliser la commande d'un ascenseur pouvant desservir quatre niveaux : 0, 1, 2 et 3. À tout moment, l'ascenseur se trouve dans l'un des trois états suivant : arrêt, montée, descente.

Postulats:

L'utilisateur interagit avec l'ascenseur en demandant un étage sur les quatre desservis. Nous utiliserons pour cela quatre boutons poussoirs, un pour chaque étage. En utilisant l'Arduino ou le FPGA, la demande de l'utilisateur sera codée sur deux bits :

• u_1u_0

L'ascenseur possède un attribut étage représentant l'étage actuel de l'ascenseur (codé également sur deux bits) et un attribut état indiquant si l'ascenseur se trouve à l'arrêt ou non (un bit) et s'il doit monter ou descendre (un bit) :

- $a_1 a_0$: étage de l'ascenseur
- e_1e_0 : pour e_1 : 0 = arrêt, 1 = non-arrêt, pour e_0 : 1 = monter, 0 = descendre

Il s'agit alors de comparer la demande de l'utilisateur avec l'étage actuel de l'ascenseur. Si la demande est plus petite, on passe e_1 à 1 et e_0 à 0 car l'ascenseur doit descendre. On répète le processus jusqu'à ce que l'ascenseur parviennent jusqu'à l'utilisateur. Le tout à l'aide de comparateurs et d'un compteur avec des bascules JK.

<u>Comparateur</u>:

Tableau 1 - Table de vérité du comparateur

Niveau	Utilis	Utilisateur		'ascenseur	Arrêt/ Non-arrêt	Montée/ Descente
	u_1	u_0	a_1	a_0	e_1	e_0
	0	0	0	0	0	Х
0	0	0	0	1	1	0
U	0	0	1	0	1	0
	0	0	1	1	1	0
	0	0	0	0	1	1
1	0	0	0	1	0	Х
1	0	0	1	0	1	0
	0	0	1	1	1	0
	1	1	0	0	1	1
2	1	1	0	1	1	1
2	1	1	1	0	0	X
	1	1	1	1	1	0
	1	1	0	0	1	1
3	1	1	0	1	1	1
	1	1	1	0	1	1
	1	1	1	1	0	Х

On obtient alors:

$$e_1 = (u_1 \oplus a_1) + (u_0 \oplus a_0)$$
$$e_0 = \overline{a_1} \, \overline{a_0} + u_1 \overline{a_1} + u_1 \overline{a_0}$$

Bascule JK:

Pour incrémenter ou décrémenter a_0 et a_1 on utilise un compteur avec des bascules JK. Il existe quatre état possible : 0 -> 3. On utilise alors un compteur synchrone modulo 4 et donc 2 bascules JK.

Nimesh TAHALOOA & Ahmed TSOROEV

<u>Compteur synchrone</u>:

Tableau 2 - Table de vérité du compteur synchrone

INC	a_1	a_0	a_1^+	a_0^+	J_1	K_1	J_0	K_0
0	0	0	0	0	0	Χ	0	Χ
0	0	1	0	0	0	0	Χ	1
0	1	0	0	1	Χ	1	1	Χ
0	1	1	1	0	Χ	0	Χ	1
1	0	0	0	1	0	Χ	1	Χ
1	0	1	1	0	1	Χ	Χ	1
1	1	0	1	1	Χ	0	1	Χ
1	1	1	1	1	Χ	0	Χ	0

<u>Tables de Karnaugh</u>:

J1:

e_0 a_1 a_0	00	01	11	10
0	0	0	Χ	Χ
1	0	1	Χ	Χ

K1:

e_0 a_1 a_0	00	01	11	10
0	Χ	0	0	1
1	Χ	Χ	0	0

JO:

e_0 a_1 a_0	00	01	11	10
0	0	Χ	Χ	1
1	1	Χ	Χ	1

K0:

e_0 a_1 a_0	00	01	11	10
0	Х	1	1	Χ
1	Х	1	0	Χ

$$J1 = INC. a_0$$

$$K1 = INC. \overline{a_0}$$

$$J0 = \overline{a_0}(INC + a_1)$$

$$K0 = a_0(INC + \overline{a_1})$$

On obtient alors le circuit suivant :

Figure 1 - Schéma logique du problème 1

Problème 2 : Réalisation d'un chronomètre avec bouton de commande et affichage en décimal

Contexte:

On souhaite réaliser un chronomètre qui pourra mesurer des temps entre 0 et 15 secondes, par pas d'une seconde. Le chronomètre sera contrôlé grâce à un bouton poussoir, BP, qui fera varier successivement l'état du compteur entre marche, arrêt et mise à zéro. Le compteur n'augmentera pas au-delà des 15 secondes. La valeur du chronomètre sera affichée.

Postulats:

Le comptage des secondes se fera à l'aide de bascules JK. Puisqu'on a 16 valeurs (0-15), 4 bascules seront utilisées pour cette partie. La fréquence de l'horloge en entrée de ces bascules sera 1 Hz (période : 1 s) pour avoir un incrément toutes les secondes. Le mot binaire, T, associée à la valeur du chronomètre se décompose selon les bits suivants :

 \bullet $t_3t_2t_1t_0$

L'état du chrono, E, sera déterminé par deux bits :

• e_1e_0 : pour e_1 : 0 = 'activation de e_0 ' (M/A), 1 = mise à zéro (Z), pour e_0 : 1 = démarrage (M), 0 = arrêt (A)

On bouclera de façon systématique entre ces valeurs lors de l'appui du bouton poussoir, en partant de Z.

Les entrées des bascules pour le comptage sont déterminées grâce à la table de transition (Tableau 2). L'astuce utilisée pour remettre à zéro le compteur est de faire un ET-logique entre T et e_1 . De ce fait, si e_1 vaut 1, e_1 sera égal à 0000.

Tableau 3 Récapitulatif des variables utilisées

Symbole	Description	Nombre de bits	Valeurs possibles
BP	Bouton Poussoir	1	{0,1}
Т	Valeur du chronomètre	4	{0000 - 1111}
E	Etat du chronomètre	2	{00,01,10}

Nimesh TAHALOOA & Ahmed TSOROEV

Tableau 4 Table de transition de T

t_3	t_2	t_1	t_0	t_3 ⁺	t_2^+	t_1^+	t_0^+	J_3K_3	J_2K_2	J_1K_1	J_0K_0
0	0	0	0	0	0	0	1	0X	0X	0X	1X
0	0	0	1	0	0	1	0	0X	0X	1X	X1
0	0	1	0	0	0	1	1	0X	0X	X0	1X
0	0	1	1	0	1	0	0	0X	1X	X1	X1
0	1	0	0	0	1	0	1	0X	X0	0X	1X
0	1	0	1	0	1	1	0	0X	X0	1X	X1
0	1	1	0	0	1	1	1	0X	X0	X0	1X
0	1	1	1	1	0	0	0	1X	X1	X1	X1
1	0	0	0	1	0	0	1	X0	0X	0X	1X
1	0	0	1	1	0	1	0	X0	0X	1X	X1
1	0	1	0	1	0	1	1	X0	0X	X0	1X
1	0	1	1	1	1	0	0	X0	1X	X1	X1
1	1	0	0	1	1	0	1	X0	X0	0X	1X
1	1	0	1	1	1	1	0	X0	X0	1X	X1
1	1	1	0	1	1	1	1	X0	X0	X0	1X
1	1	1	1	1	1	1	1	X0	X0	X0	X1

A partir de cette table, on retrouve les équations suivantes pour les $J_i K_i$:

$$J_{3} = \bar{t}_{3}t_{2}t_{1}t_{0} \quad et \quad K_{3} = 0$$

$$J_{2} = \bar{t}_{2}t_{1}t_{0} \quad et \quad K_{2} = \bar{t}_{3}t_{2}t_{1}t_{0} = J_{3}$$

$$J_{1} = \bar{t}_{1}t_{0} \quad et \quad K_{1} = t_{1}t_{0}(\bar{t}_{1}\bar{t}_{0} + (t_{1} \oplus t_{0})) = J_{3}$$

$$J_{0} = 1 \quad et \quad K_{0} = 1$$

On peut donc en déduire le circuit suivant :

Figure 2 Schéma logique du problème 2 (en excluant la mise à zéro)

Problème 3 : Réalisation d'un feu de signalisation pour piétons

Contexte:

On souhaite réaliser un feu de croisement entre voitures et piétons. Il y aura deux variantes de ce feu :

- Le premier sera un système cyclique, indépendant des voitures, V, et des piétons, P. Le feu pour les voitures passera du vert(V_V) à l'orange(V_O) puis au rouge(V_R). Le feu pour les piétons restera rouge(P_R) pendant que celui des voitures est vert ou orange. Dès que ce dernier passe au rouge, le feu du piéton passe au vert(P_V). Ensuite, quelques instants avant le passage au vert du feu des voitures, celui des piétons passe au rouge.
- Le système prend en compte l'arrivée d'un piéton, grâce à un bouton poussoir qui symbolisera une demande. Aussi longtemps qu'il n'y a pas de piétons, le feu des voitures reste vert. A l'arrivée du piéton, on fait une fois le cycle précédemment décrit, en espérant que le piéton ne mette pas trop de temps à traverser...

Postulats:

La base de temps du système est un mot binaire, C, de 4 bits (C0 étant le LSB et C3, le MSB). Un compteur modulo 16 est réalisé à base de bascules JK comme décrit dans la figure 3. La fréquence de l'horloge, H, sera de l'ordre du Hertz.

Figure 3 Compteur Modulo 16 avec des bascules JK

Puisque 4 bits ont été choisis pour le compteur, la période de changement des feux est de 16. Le feu des voitures maintiendra le vert et le rouge pendant 6 cycles chacun et l'orange, pendant 4 cycles. Donc, le vert du feu piétons durera 5 cycles $(6-1 \text{ car on souhaite que le feu du piéton passe au rouge quelques instants avant que celui des voitures passe au vert). Le rouge durera 11 cycles.$

Symbole	Description	Nombre de bits	Valeurs possibles
С	Compteur qui sert comme base de	4	{0000 – 1111}
	temps (LSB: C0, MSB: C3)		
V_V	Feu vert des voitures	1	{0,1}
V_O	Feu orange des voitures	1	{0,1}
V_R	Feu rouge des voitures	1	{0,1}
P_V	Feu vert des piétons	1	{0,1}
P_R	Feu rouge des piétons	1	{0,1}
BP	Bouton Poussoir pour demander de	1	{0,1}
	traverser		

Nimesh TAHALOOA & Ahmed TSOROEV

Tableau 5 Table de vérité des sorties (des feux)

С3	C2	C1	C0	V_V	V_0	V_R	P_V	P_R
0	0	0	0	1	0	0	0	1
0	0	0	1	1	0	0	0	1
0	0	1	0	1	0	0	0	1
0	0	1	1	1	0	0	0	1
0	1	0	0	1	0	0	0	1
0	1	0	1	1	0	0	0	1
0	1	1	0	0	1	0	0	1
0	1	1	1	0	1	0	0	1
1	0	0	0	0	1	0	0	1
1	0	0	1	0	1	0	0	1
1	0	1	0	0	0	1	1	0
1	0	1	1	0	0	1	1	0
1	1	0	0	0	0	1	1	0
1	1	0	1	0	0	1	1	0
1	1	1	0	0	0	1	1	0
1	1	1	1	0	0	1	0	1

On retrouve les expressions suivantes pour les sorties :

$$V_{-}V = \overline{C3}.\overline{C2} + \overline{C3}.\overline{C1}$$

$$V_{-}O = \overline{C3}C2C1 + C3\overline{C2}.\overline{C1}$$

$$V_{-}R = C3C1 + C3C2$$

$$P_{-}V = C3\overline{C2}C1 + C3C2\overline{C1} + C3C2\overline{C0}$$

$$P_{-}R = \overline{C3} + \overline{C2}.\overline{C1} + C2C1C0$$

Cela nous donne le circuit suivant :

Figure 4 Schéma logique des feux de signalisation