Grupo afín

1 / 19

Sean $\mathcal{A}=(A,V),\ \mathcal{B}=(B,V')$ y $\mathcal{C}=(C,V'')$ tres espacios afines, y sean $\psi:A\longrightarrow B$ y $\psi':B\longrightarrow C$ dos aplicaciones afines. La composición $\psi'\circ\psi:A\longrightarrow C$ es una aplicación afín y la aplicación lineal asociada es $\overrightarrow{\psi'}\circ\overrightarrow{\psi}=\overrightarrow{\psi'}\circ\overrightarrow{\psi}$.

Sean $\mathcal{A}=(A,V),\ \mathcal{B}=(B,V')$ y $\mathcal{C}=(C,V'')$ tres espacios afines, y sean $\psi:A\longrightarrow B$ y $\psi':B\longrightarrow C$ dos aplicaciones afines. La composición $\psi'\circ\psi:A\longrightarrow C$ es una aplicación afín y la aplicación lineal asociada es $\overrightarrow{\psi'}\circ\overrightarrow{\psi}=\overrightarrow{\psi'}\circ\overrightarrow{\psi}$.

Demostración

Para todo $x, y \in A$,

$$\overrightarrow{\psi'} \circ \overrightarrow{\psi}(\overrightarrow{xy}) = \overrightarrow{\psi'} \left(\overrightarrow{\psi}(\overrightarrow{xy}) \right)$$

$$= \overrightarrow{\psi'} \left(\overrightarrow{\psi}(x) \psi(y) \right)$$

$$= \overrightarrow{\psi'}(\psi(x)) \psi'(\psi(y))$$

$$= \overrightarrow{\psi'} \circ \psi(x) \psi' \circ \psi(y).$$

Por lo tanto, $\psi' \circ \psi$ es afín y la aplicación lineal asociada es $\overrightarrow{\psi'} \circ \overrightarrow{\psi}$.

40 > 40 > 40 > 40 > 40 > 40 > 40 >

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

3 / 19

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Inyectividad)

Como $\overrightarrow{\psi}(\overrightarrow{xy}) = \overrightarrow{\psi(x)\psi(y)}$ para todo $x,y \in A$, tenemos que $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ si y solo si $\psi(x) = \psi(y)$. Por lo tanto:

• (\Rightarrow) Sea ψ inyectiva.

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Inyectividad)

Como $\overrightarrow{\psi}(\overrightarrow{xy}) = \overrightarrow{\psi(x)\psi(y)}$ para todo $x,y \in A$, tenemos que $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ si y solo si $\psi(x) = \psi(y)$. Por lo tanto:

• (\Rightarrow) Sea ψ invectiva. Para todo $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ tenemos que $\psi(x) = \psi(y)$, y eso implica que x = y, por a invectividad de ψ . De ahí que $\ker \overrightarrow{\psi} = \{\overrightarrow{0}\}$, lo que implica que $\overrightarrow{\psi}$ es invectiva.

(□) (□) (□) (□) (□) (□)

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Inyectividad)

Como $\overrightarrow{\psi}(\overrightarrow{xy}) = \overrightarrow{\psi(x)\psi(y)}$ para todo $x,y \in A$, tenemos que $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ si y solo si $\psi(x) = \psi(y)$. Por lo tanto:

- (\Rightarrow) Sea ψ inyectiva. Para todo $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ tenemos que $\psi(x) = \psi(y)$, y eso implica que x = y, por a inyectividad de ψ . De ahí que $\ker \overrightarrow{\psi} = \{\overrightarrow{0}\}$, lo que implica que $\overrightarrow{\psi}$ es inyectiva.
- (\Leftarrow) Sea $\overrightarrow{\Psi}$ inyectiva.

(ロ) (리) (본) (본) (본) (인)

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Inyectividad)

Como $\overrightarrow{\psi}(\overrightarrow{xy}) = \overrightarrow{\psi(x)\psi(y)}$ para todo $x,y \in A$, tenemos que $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ si y solo si $\psi(x) = \psi(y)$. Por lo tanto:

- (\Rightarrow) Sea ψ inyectiva. Para todo $\overrightarrow{xy} \in \ker \overrightarrow{\psi}$ tenemos que $\psi(x) = \psi(y)$, y eso implica que x = y, por a inyectividad de ψ . De ahí que $\ker \overrightarrow{\psi} = \{\overrightarrow{0}\}$, lo que implica que $\overrightarrow{\psi}$ es inyectiva.
- (\Leftarrow) Sea $\overrightarrow{\psi}$ inyectiva. Si $\psi(x) = \psi(y)$, entonces $\overrightarrow{xy} \in \ker \overrightarrow{\psi} = \{\overrightarrow{0}\}$. De ahí que x = y, lo que implica que ψ es inyectiva.

< ロ > < 回 > < 巨 > < 巨 > 三 の < @ .

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Sobreyectividad=exhaustividad)

Sean $o \in A$ y $o' \in B$ tales que $\psi(o) = o'$.

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Sobreyectividad=exhaustividad)

Sean $o \in A$ y $o' \in B$ tales que $\psi(o) = o'$.

(⇒) Como \mathcal{B} es afín, para todo $\overrightarrow{v} \in V'$, existe $b \in B$ tal que $\overrightarrow{v} = \overrightarrow{o'b}$. Si ψ es sobreyectiva, entonces existe $a \in A$ tal que $\psi(a) = b$. En ese caso, $\overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi}(o) \psi(\overrightarrow{a}) = \overrightarrow{o'b} = \overrightarrow{v}$ y como $\overrightarrow{oa} \in V$ tenemos que $\overrightarrow{\psi}$ es sobreyectiva.

4□ > 4□ > 4 = > 4 = > = 90

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Entonces ψ es biyectiva si y solo si $\overrightarrow{\psi}$ es biyectiva.

Demostración (Sobreyectividad=exhaustividad)

Sean $o \in A$ y $o' \in B$ tales que $\psi(o) = o'$.

- $(\Rightarrow) \ \mathsf{Como} \ \mathscr{B} \ \mathsf{es} \ \mathsf{affn}, \ \mathsf{para} \ \mathsf{todo} \ \overrightarrow{v} \in V', \ \mathsf{existe} \ b \in B \ \mathsf{tal} \ \mathsf{que} \ \overrightarrow{v} = \overrightarrow{o'b}. \ \mathsf{Si} \ \psi \ \mathsf{es} \ \mathsf{sobreyectiva}, \ \mathsf{entonces} \ \mathsf{existe} \ a \in A \ \mathsf{tal} \ \mathsf{que} \ \psi(a) = b. \ \mathsf{En} \ \mathsf{ese} \ \mathsf{caso}, \\ \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi(o)\psi(a)} = \overrightarrow{o'b} = \overrightarrow{v} \ \mathsf{y} \ \mathsf{como} \ \overrightarrow{oa} \in V \ \mathsf{tenemos} \ \mathsf{que} \ \overrightarrow{\psi} \ \mathsf{es} \ \mathsf{sobreyectiva}.$
- (\Leftarrow) Como $\mathcal B$ es afín, para todo $b \in B$ se cumple $\overrightarrow{o'b} \in V'$. Si $\overrightarrow{\psi}$ es sobreyectiva, existe $\overrightarrow{u} \in V$ tal que $\overrightarrow{\psi}(\overrightarrow{u}) = \overrightarrow{o'b}$. Como $\mathcal A$ es afín, existe $a \in A$ tal que $\overrightarrow{u} = \overrightarrow{oa}$, y así $\overrightarrow{o'b} = \overrightarrow{\psi}(\overrightarrow{u}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi}(o) \psi(\overrightarrow{a}) = \overrightarrow{o'\psi}(\overrightarrow{a})$, lo que implica que $\psi(a) = b$, y por eso ψ es sobreyectiva.

4□ > 4□ > 4 = > 4 = > = 90

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Si ψ es inyectiva, entonces la aplicación inversa $\psi^{-1}:Im\psi\longrightarrow A$ es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$.

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Si ψ es inyectiva, entonces la aplicación inversa $\psi^{-1}:Im\psi\longrightarrow A$ es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$.

Demostración

Sea ψ inyectiva, y sea $B_1=Im\psi$ y $V_1'=Im\overrightarrow{\psi}$. Tomamos un punto $o\in A$ y otro $o'\in B$ tales que $\psi(o)=o'$.

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Si ψ es inyectiva, entonces la aplicación inversa $\psi^{-1}:Im\psi\longrightarrow A$ es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$.

Demostración

Sea ψ inyectiva, y sea $B_1 = Im\psi$ y $V_1' = Im\overline{\psi}$. Tomamos un punto $o \in A$ y otro $o' \in B$ tales que $\psi(o) = o'$.

Como $\psi: A \longrightarrow B_1$ es biyectiva, la aplicación lineal $\overrightarrow{\psi}: V \longrightarrow V_1'$ es biyectiva.

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Si ψ es inyectiva, entonces la aplicación inversa $\psi^{-1}:Im\psi\longrightarrow A$ es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$.

Demostración

Sea ψ inyectiva, y sea $B_1 = Im\psi$ y $V_1' = Im\overline{\psi}$. Tomamos un punto $o \in A$ y otro $o' \in B$ tales que $\psi(o) = o'$.

Como $\psi: A \longrightarrow B_1$ es biyectiva, la aplicación lineal $\overrightarrow{\psi}: V \longrightarrow V_1'$ es biyectiva.

Ahora bien, para todo $b \in B_1$ existe $a \in A$ tal que $\psi(a) = b$ y $\overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{o'b}$.

4 D > 4 B > 4 E > 4 E > 9 Q C

Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines, y sea $\psi:A\longrightarrow B$ una aplicación afín. Si ψ es inyectiva, entonces la aplicación inversa $\psi^{-1}:Im\psi\longrightarrow A$ es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$.

Demostración

Sea ψ inyectiva, y sea $B_1 = Im\psi$ y $V_1' = Im\overline{\psi}$. Tomamos un punto $o \in A$ y otro $o' \in B$ tales que $\psi(o) = o'$.

Como $\psi: A \longrightarrow B_1$ es biyectiva, la aplicación lineal $\overrightarrow{\psi}: V \longrightarrow V_1'$ es biyectiva.

Ahora bien, para todo $b \in B_1$ existe $a \in A$ tal que $\psi(a) = b$ y $\overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{o'b}$.

Por lo tanto, $(\overrightarrow{\psi})^{-1}(\overrightarrow{o'b}) = \overrightarrow{oa} = \overrightarrow{\psi^{-1}(o')\psi^{-1}(b)}$, lo que implica que ψ^{-1} es afín y su aplicación lineal asociada es la inversa de $\overrightarrow{\psi}$

4 D > 4 B > 4 E > 4 E > 9 Q @

5 / 19

De las tres proposiciones anteriores se infiere el siguiente resultado.

De las tres proposiciones anteriores se infiere el siguiente resultado.

Proposición

Si $\mathcal A$ es un espacio afín y $GA(\mathcal A)$ es el conjunto de aplicaciones afines biyectivas de $\mathcal A$ en $\mathcal A$, entonces $(GA(\mathcal A),\circ)$ es un grupo.

De las tres proposiciones anteriores se infiere el siguiente resultado.

Proposición

Si $\mathcal A$ es un espacio afín y $GA(\mathcal A)$ es el conjunto de aplicaciones afines biyectivas de $\mathcal A$ en $\mathcal A$, entonces $(GA(\mathcal A),\circ)$ es un grupo.

Definición

- $(GA(\mathcal{A}), \circ)$ recibe el nombre de el grupo afín de \mathcal{A} .
- Los elementos del grupo afín se denominan transformaciones afines o afinidades.

Homomorfismo de grupos

Dados dos grupos (G,\circ) y (H,*), un homomorfismo de grupos es una aplicación $f:G\longrightarrow H$ que preserva las operaciones de grupo. Es decir

$$f(g \circ g') = f(g) * f(g')$$
 para todo $g, g' \in G$.

Homomorfismo de grupos

Dados dos grupos (G,\circ) y (H,*), un homomorfismo de grupos es una aplicación $f:G\longrightarrow H$ que preserva las operaciones de grupo. Es decir

$$f(g\circ g')=f(g)*f(g') \text{ para todo } g,g'\in G.$$

Todo homorfismo de grupo transforma el neutro de G en el neutro de H, i.e., $f(e_G)=e_H.$

Homomorfismo de grupos

Dados dos grupos (G,\circ) y (H,*), un homomorfismo de grupos es una aplicación $f:G\longrightarrow H$ que preserva las operaciones de grupo. Es decir

$$f(g\circ g')=f(g)*f(g') \text{ para todo } g,g'\in G.$$

Todo homorfismo de grupo transforma el neutro de G en el neutro de H, i.e., $f(e_G)=e_H.$

Nótese que todo homomorfismo de grupos preserva el simétrico:

$$f(g)*f(g^{-1}) = f(g \circ g^{-1}) = f(e_G) = e_H,$$

y por esos $(f(g))^{-1} = f(g^{-1})$.

Sea $\mathcal{A}=(A,V)$ un espacio afín y sea $GT(\mathcal{A})$ el conjunto de todas las traslaciones de \mathcal{A} . Sabemos que, $(GT(\mathcal{A}),\circ)$ y (V,+) son grupos. La aplicación

$$f: GT(\mathcal{A}) \longrightarrow V$$
$$t_{\overrightarrow{u}} \longrightarrow \overrightarrow{u}$$

es un homomorfismo de grupos.

8 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín y sea $GT(\mathcal{A})$ el conjunto de todas las traslaciones de \mathcal{A} . Sabemos que, $(GT(\mathcal{A}),\circ)$ y (V,+) son grupos. La aplicación

$$f: GT(\mathcal{A}) \longrightarrow V$$
$$t_{\overrightarrow{u}} \longrightarrow \overrightarrow{u}$$

es un homomorfismo de grupos.

Esto es,

$$f(t_{\overrightarrow{u}} \circ t_{\overrightarrow{v}}) = f(t_{\overrightarrow{u}+\overrightarrow{v}}) = \overrightarrow{u} + \overrightarrow{v} = f(t_{\overrightarrow{u}}) + f(t_{\overrightarrow{v}}).$$

<ロ> <値> <値> < 値> < 値> < 0<0.

Sea $\mathcal{A}=(A,V)$ un espacio afín sobre un cuerpo \mathbb{K} y sea $GH_c(\mathcal{A})$ el conjunto de las homotecias de \mathcal{A} de centro en $c\in A$ y razón diferente de cero. Sabemos que, $(GH_c(\mathcal{A}),\circ)$ y $(\mathbb{K}\setminus\{0\},\cdot)$ son grupos. La aplicación

$$f: GH_c(\mathcal{A}) \longrightarrow \mathbb{K} \setminus \{0\}$$

 $h_{(c,\lambda)} \longrightarrow \lambda$

es un homomorfismo de grupos.

9 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín sobre un cuerpo \mathbb{K} y sea $GH_c(\mathcal{A})$ el conjunto de las homotecias de \mathcal{A} de centro en $c\in A$ y razón diferente de cero. Sabemos que, $(GH_c(\mathcal{A}),\circ)$ y $(\mathbb{K}\setminus\{0\},\cdot)$ son grupos. La aplicación

$$f: GH_c(\mathcal{A}) \longrightarrow \mathbb{K} \setminus \{0\}$$
$$h_{(c,\lambda)} \longrightarrow \lambda$$

es un homomorfismo de grupos.

Esto es,

$$f(h_{(c,\lambda)}\circ h_{(c,\lambda')})=f(h_{(c,\lambda\lambda')})=\lambda\lambda'=f(h_{(c,\lambda)})f(h_{(c,\lambda')}).$$

Grupo lineal

Dado un espacio vectorial V, el grupo lineal de V, denotado por GL(V), es el grupo de todas las aplicaciones lineales biyectivas de V en V.

Grupo lineal

Dado un espacio vectorial V, el grupo lineal de V, denotado por GL(V), es el grupo de todas las aplicaciones lineales biyectivas de V en V.

Proposición

Dado un espacio afín $\mathcal{A}=(A,V)$, la aplicación de $GA(\mathcal{A})$ en GL(V),

$$\sigma: GA(\mathcal{A}) \longrightarrow GL(V)$$

$$\psi \longrightarrow \overrightarrow{\psi}$$

que transforma una aplicación afín en su aplicación lineal asociada es un homomorfismo de grupos sobreyectivo cuyo núcleo es el grupo de traslaciones de \mathcal{A} .

Sea $f:V\longrightarrow V'$ una aplicación lineal. Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines. Prueba que para cada $o\in A$ y $o'\in B$, existe una única aplicación afín $\psi:A\longrightarrow B$ que transforma o en o' y cuya aplicación lineal asociada es f.

11 / 19

Sea $f:V\longrightarrow V'$ una aplicación lineal. Sean $\mathcal{A}=(A,V)$ y $\mathcal{B}=(B,V')$ dos espacios afines. Prueba que para cada $o\in A$ y $o'\in B$, existe una única aplicación afín $\psi:A\longrightarrow B$ que transforma o en o' y cuya aplicación lineal asociada es f.

Solución

Como f es una aplicación lineal, la aplicación $\psi:A\longrightarrow B$ definida por $\psi(x)=o'+f(\overrightarrow{ox})$ transforma o en o', es afín, y $\overrightarrow{\psi}=f$. Ahora bien, si existe otra aplicación afín $\psi':A\longrightarrow B$ con $\psi'(o)=o'$ y $\overrightarrow{\psi'}=f$, entonces para todo $x\in A$ tenemos

$$\psi(x) = o' + f(\overrightarrow{ox}) = \psi'(o) + \overrightarrow{\psi'}(\overrightarrow{ox}) = \psi'(x),$$

lo que implica que $\psi = \psi'$.

Grupo afín 11 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como $t_{-\overrightarrow{u}}: A \longrightarrow A$ es afín y $\psi: A \longrightarrow A$ es afín, la aplicación $\psi' = t_{-\overrightarrow{u}} \circ \psi$ es afín. Además, $\overrightarrow{\psi'} = \overrightarrow{\psi}$, ya que la aplicación lineal asociada a las traslaciones es la identidad.

12 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como $t_{-\overrightarrow{u}}:A\longrightarrow A$ es afín y $\psi:A\longrightarrow A$ es afín, la aplicación $\psi'=t_{-\overrightarrow{u}}\circ\psi$ es afín. Además, $\overrightarrow{\psi'}=\overrightarrow{\psi}$, ya que la aplicación lineal asociada a las traslaciones es la identidad.

Por otro lado,
$$\psi'(o) = \psi(o) + (-\overrightarrow{u}) = (o + \overrightarrow{u}) + (-\overrightarrow{u}) = o$$
.

◄□▷
◄□▷
◄□▷
◄□▷
◄□▷
◄□▷
◄□▷
◄□▷
◄□▷
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□
•□<

12 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como $t_{-\overrightarrow{u}}:A\longrightarrow A$ es afín y $\psi:A\longrightarrow A$ es afín, la aplicación $\psi'=t_{-\overrightarrow{u}}\circ\psi$ es afín. Además, $\overrightarrow{\psi'}=\overrightarrow{\psi}$, ya que la aplicación lineal asociada a las traslaciones es la identidad.

Por otro lado,
$$\psi'(o) = \psi(o) + (-\overrightarrow{u}) = (o + \overrightarrow{u}) + (-\overrightarrow{u}) = o$$
.

Por lo tanto, ψ' es la única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple $\psi=t_{\overrightarrow{u}}\circ\psi'$ ya que, como vimos antes, existe una única aplicación afín $\psi':A\longrightarrow A$ tal que $\psi'(o)=o$ y $\overrightarrow{\psi'}=\overrightarrow{\psi}$.

Ejercicio (Demuestra el ejercicio de antes por otra vía)

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Ejercicio (Demuestra el ejercicio de antes por otra vía)

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como vimos antes, existe una única aplicación afín $\psi': A \longrightarrow A$ tal que $\psi'(o) = o$ y $\overrightarrow{\psi'} = \overrightarrow{\psi}$. Así, para todo $a \in A$, tenemos $\overrightarrow{o\psi'(a)} = ???$?

Ejercicio (Demuestra el ejercicio de antes por otra vía)

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como vimos antes, existe una única aplicación afín $\psi': A \longrightarrow A$ tal que $\psi'(o) = o$ y $\overrightarrow{\psi'} = \overrightarrow{\psi}$. Así, para todo $a \in A$, tenemos $\overrightarrow{o\psi'(a)} = ???$

$$\overrightarrow{o\psi'(a)} = \overrightarrow{\psi'(o)\psi'(a)} = \overrightarrow{\psi'}(\overrightarrow{oa}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi(o)\psi(a)}.$$

Ejercicio (Demuestra el ejercicio de antes por otra vía)

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como vimos antes, existe una única aplicación afín $\psi': A \longrightarrow A$ tal que $\psi'(o) = o$ y $\overrightarrow{\psi'} = \overrightarrow{\psi}$. Así, para todo $a \in A$, tenemos $\overrightarrow{o\psi'(a)} = ???$

$$\overrightarrow{o\psi'(a)} = \overrightarrow{\psi'(o)\psi'(a)} = \overrightarrow{\psi'}(\overrightarrow{oa}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi(o)\psi(a)}.$$

Por la regla del paralelogramo,

< ロ ト 4 回 ト 4 三 ト 4 三 ト 9 Q (^)

13 / 19

Ejercicio (Demuestra el ejercicio de antes por otra vía)

Sea $\mathcal{A}=(A,V)$ un espacio afín y $\psi:A\longrightarrow A$ una aplicación afín. Prueba que para todo $o\in A$ y $\overrightarrow{u}\in V$ tales que $\psi(o)=o+\overrightarrow{u}$, existe una única aplicación afín $\psi':A\longrightarrow A$ que fija el punto o y cumple

$$\Psi = t_{\overrightarrow{u}} \circ \Psi'.$$

Solución

Como vimos antes, existe una única aplicación afín $\psi': A \longrightarrow A$ tal que $\psi'(o) = o$ y $\overrightarrow{\psi'} = \overrightarrow{\psi}$. Así, para todo $a \in A$, tenemos $\overrightarrow{o\psi'(a)} = ???$?

$$\overrightarrow{o\psi'(a)} = \overrightarrow{\psi'(o)\psi'(a)} = \overrightarrow{\psi'}(\overrightarrow{oa}) = \overrightarrow{\psi}(\overrightarrow{oa}) = \overrightarrow{\psi(o)\psi(a)}.$$

Por la regla del paralelogramo, $\overrightarrow{u} = \overrightarrow{o\psi(o)} = \overrightarrow{\psi'(a)\psi(a)}$, lo que implica $\psi(a) = \psi'(a) + \overrightarrow{u} = t_{\overrightarrow{u}}(\psi'(a)) = t_{\overrightarrow{u}} \circ \psi'(a)$. Por lo tanto, $\psi = t_{\overrightarrow{u}} \circ \psi'$.

Grupo afín 13 / 19

Definición

Dos transformaciones afines $\psi', \psi'' \in GA(\mathcal{A})$ son *conjugadas* si existe una transformación afín $\psi \in GA(\mathcal{A})$ tal que

$$\psi'' = \psi \circ \psi' \circ \psi^{-1}.$$

Definición

Dos transformaciones afines $\psi', \psi'' \in GA(\mathcal{A})$ son *conjugadas* si existe una transformación afín $\psi \in GA(\mathcal{A})$ tal que

$$\psi''=\psi\circ\psi'\circ\psi^{-1}.$$

Informalmente, existe un principio en geometría, llamado "principio de conjugación", que establece que dos transformaciones geométricas conjugadas tienen la misma naturaleza geométrica.

Sea $\mathcal{A}=(A,V)$ un espacio afín. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $\overrightarrow{u},\overrightarrow{v}\in V$ tales que $\overrightarrow{\psi}(\overrightarrow{u})=\overrightarrow{v}$,

$$t_{\overrightarrow{v}} = \psi \circ t_{\overrightarrow{u}} \circ \psi^{-1}.$$

Sea $\mathcal{A}=(A,V)$ un espacio afín. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $\overrightarrow{u},\overrightarrow{v}\in V$ tales que $\overrightarrow{\psi}(\overrightarrow{u})=\overrightarrow{v}$,

$$t_{\overrightarrow{v}} = \psi \circ t_{\overrightarrow{u}} \circ \psi^{-1}.$$

Solución

Sea $a \in A$. Si $b = a + \overrightarrow{u}$,

Sea $\mathcal{A}=(A,V)$ un espacio afín. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $\overrightarrow{u},\overrightarrow{v}\in V$ tales que $\overrightarrow{\psi}(\overrightarrow{u})=\overrightarrow{v}$,

$$t_{\overrightarrow{v}} = \psi \circ t_{\overrightarrow{u}} \circ \psi^{-1}.$$

Solución

Sea $a \in A$. Si $b = a + \overrightarrow{u}$, entonces $\psi(b) = \psi(t_{\overrightarrow{u}}(a)) = \psi \circ t_{\overrightarrow{u}}(a)$. Ahora bien, de

$$\overrightarrow{v} = \overrightarrow{\psi}(u) = \overrightarrow{\psi}(\overrightarrow{ab}) = \overrightarrow{\psi}(a)\overrightarrow{\psi}(b)$$

se deduce que $\psi(b) = t \rightarrow (\psi(a))$, y por eso

$$\psi \circ t_{\overrightarrow{u}}(a) = \psi(t_{\overrightarrow{u}}(a)) = \psi(b) = t_{\overrightarrow{v}}(\psi(a)) = t_{\overrightarrow{v}} \circ \psi(a).$$

Por lo tanto, $t_{\overrightarrow{v}} = \psi \circ t_{\overrightarrow{v}} \circ \psi^{-1}$.

4日 → 4日 → 4 目 → 4 目 → 9 Q (*)

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

• Nótese que $\psi(b) = \psi \circ h_{(o,\lambda)}(a)$.

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

- Nótese que $\psi(b) = \psi \circ h_{(o,\lambda)}(a)$.

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

- Nótese que $\psi(b) = \psi \circ h_{(o,\lambda)}(a)$.

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

- Nótese que $\psi(b) = \psi \circ h_{(o,\lambda)}(a)$.
- De ahí que $\psi(b) = h_{(o',\lambda)} \circ \psi(a)$.

16 / 19

Sea $\mathcal{A}=(A,V)$ un espacio afín y λ un escalar. Prueba que para toda transformación $\psi\in GA(\mathcal{A})$, y $o,o'\in A$ tales que $\psi(o)=o'$,

$$h_{(o',\lambda)} = \psi \circ h_{(o,\lambda)} \circ \psi^{-1}.$$

Solución

Para todo $a \in A$ y todo escalar λ , existe $b \in A$ tal que $b = o + \lambda \overrightarrow{oa}$.

- Nótese que $\psi(b) = \psi \circ h_{(o,\lambda)}(a)$.
- Además, $\overrightarrow{\psi}(\overrightarrow{ob}) = \lambda \overrightarrow{\psi}(\overrightarrow{oa}) = \lambda \overrightarrow{\psi}(o) \psi(a) = \lambda \overrightarrow{o'} \psi(a)$ y $\overrightarrow{\psi}(\overrightarrow{ob}) = \overrightarrow{\psi}(o) \psi(b) = \overrightarrow{o'} \psi(b)$.
- De ahí que $\psi(b) = h_{(o',\lambda)} \circ \psi(a)$.
- En resumen, $\psi \circ h_{(o,\lambda)} = h_{(o',\lambda)} \circ \psi$.

Ш