The final Assignment Group Quattro

By: Paul Ycay

Jeesun Suppiah Ali Syed

The Problem

15.12 Chemotherapy Cancer treatment by EX1512 means of chemicals—chemotherapy—kills both cancerous and normal cells. In some instances, the toxicity of the cancer drug-that is, its effect on normal cells-can be reduced by the simultaneous injection of a second drug. A study was conducted to determine whether a particular drug injection reduced the harmful effects of a chemotherapy treatment on the survival time for rats. Two randomly selected groups of 12 rats were used in an experiment in which both groups, call them A and B, received the toxic drug in a dose large enough to cause death, but in addition, group B received the antitoxin, which was to reduce the toxic effect of the chemotherapy on normal cells. The test was terminated at the end of 20 days, or 480 hours. The survival times for the two groups of rats, to the nearest four hours, are shown in the table. Do the data provide sufficient evidence to indicate that rats receiving the antitoxin tend to survive longer after chemotherapy than those not receiving the antitoxin? Use the Wilcoxon rank sum test with $\alpha = 0.05$.

Chemotherapy Only Chemotherapy plus Drug

A	В	
84	140	
128	184	
168	368	
92	96	
184	480	
92	188	
76	480	
104	244	
72	440	
180	380	
144	480	
120	196	

 h_o : Rats survive the same amount of time regardless of the drug or no drug

 h_a : Rats given chemotherapy only survive less time than rats with chemotherapy and the drug.

Chemotherapy < Chemotherapy & Drug (Left Tailed Test)

Chemotherapy	Chemo Plus Drug				
72 (1)	96 (6)				
76 (2)	140 (10)				
84 (3)	184 (14.5)				
92 (4.5)	188 (16)				
92 (4.5)	196 (17)				
104 (7)	244 (18)				
120 (8)	368 (19)				
128 (9)	380 (20)				
144 (11)	440 (21)				
168 (12)	480 (22.5)				
180 (13)	480 (22.5)				
184 (14.5)	480 (22.5)				

$$T_1 = 1 + 2 + 3 + 4.5 + 7 + 8 + 9 + 11 + 12 + 13 + 14.5$$

= 89.5

$$T_1^* = 12(12+12+1)-89.5 = 210.5$$

: it is a L.T.T., we assume T_1 as our test stat = 89.5

$$\mu_T = \frac{[n_1(n_1 + n_2 + 1)]}{2} = 150$$

$$\sigma_T = \sqrt{\left[\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}\right]} = \sqrt{\left[\frac{12 \times 12 \times 25}{12}\right]} = 17.3$$

TABLE 3 Areas under the Normal Curve

				100000000000000000000000000000000000000	049-0943					
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0017	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0722	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
-0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

$$Z = \frac{(T_1 - \mu_T)}{\sigma_T} = \frac{(89.5 - 150)}{17.3} = -3.497$$

Looking at Z-table, where Z=-3.497, the area is 0.0002

•• 0.0002 < 0.05 &
$$p < \alpha$$

•• we reject the null hypothesis and conclude that there is significance that the drug enhances longevity