Übungsblatt 19 zur Homologischen Algebra II

Aufgabe 1. Nullmorphismen

- a) Zeige: Ein Morphismus f in D(A) ist genau dann Null, wenn ein Quasiisomorphismus s existiert, sodass sf nullhomotop ist.
- b) Zeige: Ein Komplex ist genau dann azyklisch, wenn sein Identitätsmorphismus in D(A) Null ist.
- c) Finde einen Morphismus, der nicht in Kom(\mathcal{A}), aber in $\mathcal{K}(A)$ Null ist; einen, der nicht in $\mathcal{K}(\mathcal{A})$, aber in $\mathcal{D}(\mathcal{A})$ Null ist; einen, der nicht in $\mathcal{D}(\mathcal{A})$ Null ist, aber in Kohomologie den Nullmorphismus induziert.
- d) Finde einen nichttrivialen Morphismus zwischen den folgenden Komplexen in D(Ab).

$$\cdots \longrightarrow 0 \longrightarrow 0 \longrightarrow \mathbb{Z}/(2) \longrightarrow 0 \longrightarrow \cdots$$

$$\cdots \longrightarrow 0 \longrightarrow \mathbb{Z} \longrightarrow 0 \longrightarrow 0 \longrightarrow \cdots$$

Aufgabe 2. Komplexe mit vorgegebener Kohomologie

Sei \mathcal{B} eine Serresche Unterkategorie einer abelschen Kategorie \mathcal{A} . Sei $\mathrm{Kom}_{\mathcal{B}}(\mathcal{A})$ die volle Unterkategorie derjenigen Objekte K^{\bullet} von $\mathrm{Kom}(\mathcal{A})$, deren Kohomologien $H^n(K^{\bullet})$ alle in \mathcal{B} liegen. Dann definieren wir $D_{\mathcal{B}}(\mathcal{A}) := \mathrm{Kom}_{\mathcal{B}}(\mathcal{A})[\mathrm{qis}^{-1}]$.

- a) Zeige, dass $D_{\mathcal{B}}(\mathcal{A})$ auf kanonische Art und Weise eine volle Unterkategorie von $D(\mathcal{A})$ ist.
- b) Sei jedes Objekt aus \mathcal{B} ein Unterobjekt eines Objekts aus \mathcal{B} , welches als Objekt von \mathcal{A} injektiv ist. Zeige, dass der kanonische Funktor $D^+(\mathcal{B}) \to D^+_{\mathcal{B}}(\mathcal{A})$ eine Kategorienäquivalenz ist.

Aufgabe 3. Zerfallende kurze exakte Sequenzen

- a) Zeige, dass folgende Bedingungen an eine kurze exakte Sequenz $0 \to X \xrightarrow{i} Y \xrightarrow{p} Z \to 0$ in einer abelschen Kategorie äquivalent sind:
 - 1. Die Sequenz zerfällt.
 - 2. Es gibt einen Morphismus $s: Z \to Y$ mit ps = id.
 - 3. Es gibt einen Morphismus $t: Y \to X$ mit ti = id.
- b) Folgere, dass wenn X injektiv oder Z projektiv ist, die Sequenz zerfällt.
- c) Folgere, dass additive Funktoren stets zerfallende kurze exakte Sequenzen bewahren.

Aufgabe 4. Klassifikation kurzer exakter Sequenzen

Für Objekte X und Y in einer abelschen Kategorie \mathcal{A} ist $\operatorname{Ext}^1(X,Y)$ die Klasse aller kurzen exakten Sequenzen der Form $0 \to Y \to ? \to X \to 0$ modulo der Äquivalenzrelation "obere Zeile ~ untere Zeile" für jedes kommutative Diagramm der Form

$$0 \longrightarrow Y \longrightarrow ? \longrightarrow X \longrightarrow 0$$

$$\parallel \qquad \qquad \downarrow \qquad \parallel$$

$$0 \longrightarrow Y \longrightarrow ?' \longrightarrow X \longrightarrow 0.$$

a) Ist $\varphi:Y\to Y'$ ein Morphismus und $E:0\to Y\to Z\to X\to 0$ eine kurze exakte Sequenz, so können wir das Diagramm

$$E \colon \qquad 0 \longrightarrow Y \xrightarrow{i} Z \longrightarrow X \xrightarrow{p} 0$$

$$\varphi \downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$\varphi E \colon \qquad 0 \longrightarrow Y' - - > Z \coprod_{Y} Y' - - > X \longrightarrow 0$$

konstruieren. Zeige, dass die untere Zeile φE wieder exakt ist, und dass die Zuordnung $E \mapsto \varphi E$ eine wohldefinierte Abbildung $\operatorname{Ext}^1(X,Y) \to \operatorname{Ext}^1(X,Y')$ induziert.

Tipp: Der auftretende Kolimes kann auch als $(Z \oplus Y')/\{(\varphi(y), -i(y)) \mid y : Y\}$ geschrieben werden. Beweise die Behauptung mit Diagrammjagden.

Analog kann man auch für Morphismen $\psi: X' \to X$ eine wohldefinierte Zuordnung $E \in \operatorname{Ext}^1(X,Y) \mapsto E\psi \in \operatorname{Ext}^1(X',Y)$ konstruieren. Nimm zur Kenntnis: $(\varphi_1 \circ \varphi_2)E = \varphi_1(\varphi_2 E), E(\psi_1 \circ \psi_2) = (E\psi_1)\psi_2, (\varphi E)\psi = \varphi(E\psi).$

Sind $E, E' \in \operatorname{Ext}^1(X, Y)$, so definieren wir ihre Baersumme als $\nabla_Y(E \oplus E')\Delta_X \in \operatorname{Ext}^1(X, Y)$. Dabei sind $\Delta_X : X \to X \oplus X$ und $\nabla_Y : Y \oplus Y \to Y$ die kanonischen Morphismen und $E \oplus E'$ die sich durch direkte Summenbildung ergebende Sequenz in $\operatorname{Ext}^1(X \oplus X, Y \oplus Y)$.

b) Zeige, dass $\operatorname{Ext}^1(X,Y)$ mit der Baersumme zu einer abelschen Gruppe mit Nullelement $[0 \to Y \to X \oplus Y \to X \to 0]$ wird.

Aufgabe 5. Die kanonische Filtrierung eines Komplexes

Die gute Abschneidung eines Komplexes K^{\bullet} über einer abelschen Kategorie $\mathcal A$ ist der Komplex

$$(\tau_{\leq n} K^{\bullet})^{i} := \begin{cases} K^{\bullet}, & \text{für } i < n, \\ \ker(K^{n} \to K^{n+1}), & \text{für } i = n, \\ 0, & \text{für } i > n. \end{cases}$$

- a) Es gibt auch die dumme Abschneidung. Die gute Abschneidung hat ihr gegenüber den Vorteil, dass $H^i(\tau_{\leq n}K^{\bullet})$ noch für $i \leq n$ mit $H^i(K^{\bullet})$ übereinstimmt. Beweise diesen Sachverhalt.
- b) Bestimme den Kokern der kanonischen Inklusion $\tau_{\leq n-1}K^{\bullet} \hookrightarrow \tau_{\leq n}K^{\bullet}$.
- c) Finde einen Quasiisomorphismus vom Kokern in den im Grad n konzentrierten Komplex $H^n(K^{\bullet})[-n]$.
- d) Folgere: In $K(D(\mathrm{Kom}^b(\mathcal{A})))$ gilt die Rechnung $K^{\bullet} = \sum_n (-1)^n H^n(K^{\bullet})$.

Die abgeleitete Kategorie $D(\mathrm{Kom}^b(\mathcal{A}))$ ist im Allgemeinen nicht abelsch. Ihre K-Theorie ist daher anders zu definieren: als die von den Objekten von $D(\mathrm{Kom}^b(\mathcal{A}))$ erzeugte abelsche Gruppe modulo den Relationen X = X' + X'' für jedes ausgezeichnete Dreieck $X' \to X \to X'' \to .$ Das muss dich jetzt aber noch nicht kümmern. Bestätige die Rechnung einfach in $K(\mathrm{Kom}^b(\mathcal{A}))$, verwende aber die zusätzlichen Rechenregeln, dass quasiisomorphe Komplexe dieselbe Klasse in der K-Theorie haben und $L^{\bullet}[1] = -L^{\bullet}$ gilt.