Dr.-Ing.

Chandramouli Gnanasambandham

Steinweg 24 71263 Weil der Stadt

- 🛱 6. August 1990
- +49 179 6588043
- chandramouli681990@gmail.com

Profil

Ich bin ein leidenschaftlich neugieriger Ingenieur mit hervorragenden interkulturellen Kommunikationsfähigkeiten. Aktuell leite ich die Entwicklung robuster Fahrzeugmodelle für hochskalierbare Simulationen, mit mehr als 200 aktiven Nutzern. Die Abstimmung mit interdisziplinären, internationalen Nutzern findet über verschiedene Zeitzone hinweg. Während meiner Zeit an der Universität war ich Erstautor von 6 Artikeln in renommierten Fachzeitschriften im Bereich Partikeldynamik, verfasst mit führenden Wissenschaftsexperten. All dies wurde durch meine Anpassungsfähigkeit sowie herausragende analytische und Teamfähigkeiten ermöglicht. Jetzt strebe ich eine neue Herausforderung als Senior Engineer an, um meine Expertise in Simulation in innovative Mobilitätslösungen einzubringen.

Sprachen

fließend| Deutsch fließend | Englisch Muttersprache | Tamil fortgeschritten | Hindi

Web

linkedin.com/in/gnanasambandhamc

github.com/chandramouli6890

Beruflicher Werdegang

Staff Software Engineer

Torc Europe GmbH, Stuttgart

04/2023 - 03/2025

- Leitung eines Teams zur Entwicklung eines skalierbaren Fahrzeugmodells in C++ mit Test-Driven Development (TDD) und objektorientierter Programmierung (OOP).
- Integration von Fahrzeugmodellen in einen ROS-basierten Simulator zur virtuellen Validierung von Level-4 autonomen LKWs.
- Kommunikation und Präsentation von Teamergebnissen gegenüber dem höheren Management und innerhalb des Unternehmens.
- Erstellung und Pflege automatisch generierter Dokumentation aus C++ Code basierend auf Git-events.
- Zusammenarbeit mit externen Partnern, um eine skalierbare Qualifizierungsstrategie für Fahrzeugmodelle gemäß den ISO-26262 zu entwickeln.

Entwicklungsingenieur

Daimler Truck AG, Stuttgart

08/2021 - 03/2023

- Entwicklung von Fahrzeugmodelle mit unterschiedlichem Detailierungsgrad für skalierbare Simulationen in MATLAB/Simulink.
- Entwicklung einer C++ Co-Simulations-Schnittstelle zur Kopplung eines hochdetaillierten Mehrkörpermodells mit einem virtuellen Fahrer für hochdynamischen Manöversimulationen.

Wissenschaftlicher Mitarbeiter

05/2016 - 04/2021

Universität Stuttgart

- Entwicklung & Administration der Partikelsimulationssoftware Pasimodo in C++.
- Planung und Durchführung von Analysen schwingungsbehafteter Systeme mit Laser-Doppler Vibrometer.
- Organisation und Durchführung von Veranstaltungen für die Vorlesung "Fahrzeugdunamik" und Durchführung von Laborpraktika.

Werkstudent

10/2015 - 04/2016

Fraunhofer Institute (ITWM), Kaiserslautern

Preise

Best Presentation Award 2014

Optimization of Vehicle Parameters based on Lap-Time Simulations using Multiobjective Evolutionary Algorithm

Best Presentation Award 2015

An Adaptive Approach to Real-Time Estimation of Vehicle Dynamics Parameters using Kalman Filtering

Sonstige Projekte

07/2020 - heute

Raspberry Pi gesteuerte Smart-Home

Im Rahmen eines laufenden Hobbyprojekts habe ich ein vielseitiges Raspberry-Pi-Smart-Home-Netzwerk aufgebaut. Es umfasst Remote-SSH-Zugriff, einen flexiblen Datenserver mit automatischen Backups über rsync, einen Zigbee2Mqtt-Server zur Steuerung von IoT-Geräten z.B. über Siri.

06/2015

Machine Learning Suite

Implementierung eines Deep-Convolution-Neural-Networks zur optischen Zeichenerkennung im Rahmen eines freiberuflichen Softwareprojekts in MATLAB. Zur Leistungssteigerung wurde die MEX-API genutzt.

06/2014

Driver-in-the-Loop Simulator

Im Rahmen meiner Arbeit für ein Formula-Student-Rennteam entwickelte ich einen Driver-in-the-Loop-Simulator auf Basis einer Kommunikationsschnittstelle zwischen IPG CarMaker und MATLAB/Simulink.

Ausbildung

Universität Stuttgart

05/2016 - 04/2021

Dr.-Ing. (Note: magna cum laude)

• Dissertationstitel: Particle Dampers - Enhancing Energy Dissipation using Fluid/Solid Interactions and Rigid Obstacle-Grids

Technische Universität Kaiserslautern

10/2012 - 04/2016

M.Sc. in Commercial Vehicle Tech. (Note: 1.9)

Anna University, Chennai, Indien

06/2008 - 04/2012

B.Eng. in Fertigunstechnik (Note: 8.3/10 sehr gut)

Technische Qualifikationen

Programmiersprachen:

■ ■ ■ ■ 12 Jahre | C/C++

■ ■ ■ ■ 12 Jahre | MATLAB

■ ■ □ □ □ 9 Jahre | BASH
■ ■ □ □ □ 6 Jahre | Python

Betriebssystem:

■ ■ ■ ■ Linux (Debian, Ubuntu)

■ ■ ■ □ Microsoft Windows

Prgramm-Kenntnisse:

- MATLAB/Simulink: Modellierung, Simulation, Optimierung, SiL/DiL simulations, MATLAB GUI, FMI
- C/C++: MEX API, SilverBypass, FMI, ROS, TCP/IP and UDP
- Mehrkörpersimulation: LMS Virtual.Lab Motion, Neweul-M², MSC Adams, Project Chrono
- ADAS/AD-Simulationen: Applied Object-Sim, IPG CarMaker
- sonstige Programme: Silver Virtual-ECU, COMSOL Multiphysics, OptiSlang, Oracle VM VirtualBox

Software Entwicklung:

- Continuous Integration: Git, GitHub Actions, Jenkins, Docker
- Testumgebungen: pytest, Google test
- Technologien: PETSc, EIGEN, OpenGL
- Debuggers/Profilers: gdb, valgrind, calgrind, Intel VTune

Ausgewählte Publikationen*

Gnanasambandham, C.; Fleissner, F.; Eberhard, P.: Enhancing the Dissipative Properties of PDs using Rigid Obstacle-Grids. Journal of Sound and Vibration, 2020.

Gnanasambandham, C.; Stender, M.; Hoffmann, N.; Eberhard, P.: Multi-Scale Dynamics of PDs using Wavelets: Extracting Particle Activity Metrics from Ring Down Experiments. Journal of Sound Vibration, 2019.

*scholar.google.com/citations?user=azp3ffYAAAAJhl=de

120: