Braid Group Cryptography

Liam Hardiman

March 4, 2019

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

ullet S is a set of symbols called **generators**.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

- *S* is a set of symbols called **generators**.
- R is a set of words in S called **relators**. A **word** in S is a finite string consisting of symbols in S and the symbols x_i^{-1} , where $x_i \in S$. The empty string, e, is also a word.

A finitely presented group $G = \langle S|R \rangle$ is specified by two sets, $S = \{x_i\}_{i \in I}$ and $R = \{r_j\}_{j \in J}$.

- *S* is a set of symbols called **generators**.
- R is a set of words in S called **relators**. A **word** in S is a finite string consisting of symbols in S and the symbols x_i^{-1} , where $x_i \in S$. The empty string, e, is also a word.
- We form a group by taking all possible words in S. The inverse of a word w is formed by writing the symbols in w in reverse order and replacing each x_j appearing in w by x_j^{-1} . The group operation is concatenation of words.

We form G from S and R by taking all equivalence classes of words in S. Two words v and w are equivalent if v can be transformed into w by a finite sequence of these operations.

• Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e

- **1** Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- 2 Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position

- **1** Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- 2 Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- \odot Replacing r_j with e

- Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- ② Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- \odot Replacing r_j with e
- \bullet Inserting r_j at any position

We form G from S and R by taking all equivalence classes of words in S. Two words v and w are equivalent if v can be transformed into w by a finite sequence of these operations.

- **1** Replacing $x_i x_i^{-1}$ or $x_i^{-1} x_i$ with e
- 2 Inserting $x_i x_i^{-1}$ or $x_i^{-1} x_i$ at any position
- \odot Replacing r_j with e
- \bullet Inserting r_i at any position

Equivalently, G is the quotient of the free group on S by the normal closure of R. We say G is **finitely presented** if S and R are finite sets.

Some examples of finitely presented groups include...

• Finite groups

- Finite groups
- The free group F_n on n generators

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

ullet Any group with infinitely many generators, e.g. $\mathbb{Z}^{\oplus \mathbb{Z}}$

Some examples of finitely presented groups include...

- Finite groups
- The free group F_n on n generators
- Finitely generated abelian groups
- The braid group B_n , $n \ge 0$.

Nonexamples include

- Any group with infinitely many generators, e.g. $\mathbb{Z}^{\oplus \mathbb{Z}}$
- There are finitely generated groups that are not finitely related, e.g. the wreath product of $\mathbb Z$ with itself.

Say we have a finitely presented group G.

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: yes if v is equivalent to w. no otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses.

Say we have a finitely presented group G.

The word problem in *G*

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses.

Given $v = aa^{-1}bba$ and $w = babb^{-1}a^{-1}ba$, we have

Say we have a finitely presented group G.

The word problem in G

input: two words v, w in the generators of G

output: **yes** if v is equivalent to w. **no** otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses. Given $v = aa^{-1}bba$ and $w = babb^{-1}a^{-1}ba$, we have

$$aa^{-1}bba = bba$$
$$babb^{-1}a^{-1}ba = bba$$

Say we have a finitely presented group G.

The word problem in *G*

input: two words v, w in the generators of G

output: yes if v is equivalent to w. no otherwise

Example (The word problem in $F_2 = \langle a, b \rangle$)

Iteratively scan through both words, deleting adjacent inverses. Given $v = aa^{-1}bba$ and $w = babb^{-1}a^{-1}ba$, we have

$$aa^{-1}$$
bba = bba

$$babb^{-1}a^{-1}ba = bba.$$

Output yes.

In 1955 Pyotr Novikov showed that there are finitely presented groups in which the word problem is **undecidable** - it is provably impossible to construct an algorithm that always outputs the correct answer.

Let G be a group.

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

This is analogous to the discrete logarithm problem in a finite abelian group H.

Let G be a group.

The Conjugacy Search Problem in G

input: Two conjugate words u and v in the generators of G.

output: A word w such that $u = w^{-1}vw = v^w$

This is analogous to the discrete logarithm problem in a finite abelian group H.

Discrete Logarithm Problem in H

input: Elements g, h of H such that $h \in \langle g \rangle$

output: An integer k such that $g^k = h$

Definition

The braid group on n strands, B_n is defined by the presentation

$$B_n = \langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, |i - j| = 1;$$

$$\sigma_i \sigma_j = \sigma_i \sigma_i, |i - j| > 1 \rangle.$$

Definition

The braid group on n strands, B_n is defined by the presentation

$$B_n = \langle \sigma_1, \sigma_2, \dots, \sigma_{n-1} \mid \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, \mid i - j \mid = 1;$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i, \mid i - j \mid > 1 \rangle.$$

There is, however, a more geometric understanding of the braid group.

 Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the *i*-th item on the left to the i+1st on the right and the i+1st on the left to the *i*-th on the right with the latter string passing over the former.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the *i*-th item on the left to the i+1st on the right and the i+1st on the left to the *i*-th on the right with the latter string passing over the former.
- Two connections that can be made to look the same by tightening the strings are considered the same braid.

- Arrange two sets of n items in vertical columns on opposite sides of the page. Fasten one end of a string to each item on the left side of the page. To each item on the right side attach the other end of one string. This connection is a braid.
- The generator σ_i represents connecting the i-th item on the left to the i+1st on the right and the i+1st on the left to the i-th on the right with the latter string passing over the former.
- Two connections that can be made to look the same by tightening the strings are considered the same braid.
- Composing two braids consists of drawing them next to one another, gluing the points in the middle, and connecting the strands.

Example

In B_4 the generators σ_1 , σ_2 , σ_3 can be represented by these braid diagrams.

Example

In B_4 the generators σ_1 , σ_2 , σ_3 can be represented by these braid diagrams.

Example

Here's an example of composition of braids in B_4 .

Example

Here's an example of composition of braids in B_4 .

Braid Group Facts

• B_1 is the trivial group. $B_2 \cong \mathbb{Z}$. B_n for $n \geq 3$ is infinite and non-commutative.

Braid Group Facts

- B_1 is the trivial group. $B_2 \cong \mathbb{Z}$. B_n for $n \geq 3$ is infinite and non-commutative.
- The n-1 transpositions (i,i+1) in the symmetric group S_n obey the braid relations and generate S_n . Consequently, there is a surjective homomorphism $\rho: B_n \to S_n$ that sends σ_i to (i,i+1).

Definition (Permutation Braid)

To each permutation $\tau = b_1 b_2 \cdots b_n \in S_n$, associate an n-braid A by connecting the right i-th point to the left b_i -th point with positive crossings (the strand from i to b_i passes under the one from j to b_j if i < j). A braid of this form is called a **permutation** braid or canonical factor. The set of all such braids is denoted $\tilde{\Sigma}_n$.

Definition (Permutation Braid)

To each permutation $\tau = b_1 b_2 \cdots b_n \in S_n$, associate an n-braid A by connecting the right i-th point to the left b_i -th point with positive crossings (the strand from i to b_i passes under the one from j to b_j if i < j). A braid of this form is called a **permutation braid** or **canonical factor**. The set of all such braids is denoted $\tilde{\Sigma}_n$.

Figure: The braid $A \in \tilde{\Sigma}_4$ corresponding to $\pi = 4213 \in S_4$.

Definition (Fundamental Braid)

The permutation braid corresponding to the permutation $\Omega_n = n(n-1)\cdots(2)1$ is called the **fundamental braid** and is denoted by Δ_n .

Definition (Fundamental Braid)

The permutation braid corresponding to the permutation $\Omega_n = n(n-1)\cdots(2)1$ is called the **fundamental braid** and is denoted by Δ_n .

Figure: The fundamental braid $\Delta_4 \in \mathcal{B}_4$ corresponding to the permutation $\Omega_4 = 4321$.

Theorem (Elrifai and Morton '94)

For any $W \in B_n$ there is a unique representation called the **left-canonical form** given by

$$W = \Delta^u A_1 A_2 \cdots A_p, \quad u \in \mathbb{Z}, A_i \in \tilde{\Sigma}_n \setminus \{e, \Delta\},$$

where A_iA_{i+1} is left-weighted for $1 \le i \le p-1$. We call p the canonical length of W.

Theorem (Elrifai and Morton '94)

For any $W \in B_n$ there is a unique representation called the **left-canonical form** given by

$$W = \Delta^u A_1 A_2 \cdots A_p, \quad u \in \mathbb{Z}, A_i \in \tilde{\Sigma}_n \setminus \{e, \Delta\},$$

where A_iA_{i+1} is left-weighted for $1 \le i \le p-1$. We call p the canonical length of W.

Note that the correspondence between a permutation $\pi \in S_n$ to its canonical factor $A \in B_n$ is a right inverse of the homomorphism $\rho: B_n \to S_n$, so the cardinality of $\tilde{\Sigma}_n$ is n!.

Theorem (Ko et al. 2000 using Epstein et al. '92)

• Let W be any word in $\sigma_1, \ldots, \sigma_n \in B_n$ with word length ℓ . Then the left-canonical form of W can be computed in time $O(\ell^2 n \log n)$.

Theorem (Ko et al. 2000 using Epstein et al. '92)

- Let W be any word in $\sigma_1, \ldots, \sigma_n \in B_n$ with word length ℓ . Then the left-canonical form of W can be computed in time $O(\ell^2 n \log n)$.
- ② Let $U = \Delta^u A_1 \cdots A_p$ and $V = \Delta^v B_1 \cdots B_q$ be the left-canonical forms of two n-braids. Then we can compute the left canonical form of UV in time $O(pqn \log n)$.

Theorem (Ko et al. 2000 using Epstein et al. '92)

- Let W be any word in $\sigma_1, \ldots, \sigma_n \in B_n$ with word length ℓ . Then the left-canonical form of W can be computed in time $O(\ell^2 n \log n)$.
- ② Let $U = \Delta^u A_1 \cdots A_p$ and $V = \Delta^v B_1 \cdots B_q$ be the left-canonical forms of two n-braids. Then we can compute the left canonical form of UV in time $O(pqn \log n)$.
- **③** If $U = \Delta^u A_1 \cdots A_p$ is the left-canonical form of $U \in B_n$, then we can compute the left-canonical form of U^{-1} in time O(pn).

Theorem (Ko et al. 2000 using Epstein et al. '92)

- Let W be any word in $\sigma_1, \ldots, \sigma_n \in B_n$ with word length ℓ . Then the left-canonical form of W can be computed in time $O(\ell^2 n \log n)$.
- ② Let $U = \Delta^u A_1 \cdots A_p$ and $V = \Delta^v B_1 \cdots B_q$ be the left-canonical forms of two n-braids. Then we can compute the left canonical form of UV in time $O(pqn \log n)$.
- **③** If $U = \Delta^u A_1 \cdots A_p$ is the left-canonical form of $U \in B_n$, then we can compute the left-canonical form of U^{-1} in time O(pn).

These two theorems show that the word problem in B_n is efficiently solvable, that is, we can efficiently differentiate between any two given elements of B_n .

• Alice and Bob publicly agree on subgroups B_n , $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.

- Alice and Bob publicly agree on subgroups B_n , $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- ② Alice picks a secret word x in the generators of A, $x = x(a_1, \ldots, a_k)$. Bob picks a secret word y in the generators of B, $y = y(b_1, \ldots, b_m)$.

- Alice and Bob publicly agree on subgroups B_n , $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- 2 Alice picks a secret word x in the generators of A, $x = x(a_1, \ldots, a_k)$. Bob picks a secret word y in the generators of B, $y = y(b_1, \ldots, b_m)$.
- **3** Alice sends b_1^x, \ldots, b_m^x to Bob, Bob sends a_1^y, \ldots, a_k^y to Alice.

- Alice and Bob publicly agree on subgroups B_n , $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- 2 Alice picks a secret word x in the generators of A, $x = x(a_1, \ldots, a_k)$. Bob picks a secret word y in the generators of B, $y = y(b_1, \ldots, b_m)$.
- **3** Alice sends b_1^x, \ldots, b_m^x to Bob, Bob sends a_1^y, \ldots, a_k^y to Alice.
- Alice computes $x(a_1^y, \ldots, a_k^y) = x^y = y^{-1}xy$. Bob computes $y(b_1^x, \ldots, b_m^x) = x^{-1}yx$.

- Alice and Bob publicly agree on subgroups B_n , $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- 2 Alice picks a secret word x in the generators of A, $x = x(a_1, \ldots, a_k)$. Bob picks a secret word y in the generators of B, $y = y(b_1, \ldots, b_m)$.
- **3** Alice sends b_1^x, \ldots, b_m^x to Bob, Bob sends a_1^y, \ldots, a_k^y to Alice.
- Alice computes $x(a_1^y, \ldots, a_k^y) = x^y = y^{-1}xy$. Bob computes $y(b_1^x, \ldots, b_m^x) = x^{-1}yx$.
- **⑤** Alice multiplies on the left by x^{-1} , obtaining $x^{-1}y^{-1}xy$. Bob multiplies on the left by y^{-1} and inverts, $(y^{-1}x^{-1}yx)^{-1} = x^{-1}y^{-1}xy$. Alice and Bob now share [x, y].

An eavesdropper, Eve, wants to derive the shared secret [x, y]. What does she know?

① The generators of the public subgroups $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.

- The generators of the public subgroups $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- ② The conjugates of these generators by secret elements: $a_1^y, \ldots, a_{\nu}^y, b_1^x, \ldots, b_m^x$.

- The generators of the public subgroups $A = \langle a_1, \ldots, a_k \rangle$ and $B = \langle b_1, \ldots, b_m \rangle$.
- ② The conjugates of these generators by secret elements: $a_1^y, \ldots, a_k^y, b_1^x, \ldots, b_m^x$.
 - This looks a lot like the classical Diffie-Hellman problem: find $g^{ab} \pmod{p}$ from g^a , g^b , g, and p. One way to solve the classical DHP is by solving the discrete logarithm problem in $\mathbb{Z}/p\mathbb{Z}$.

- The generators of the public subgroups $A = \langle a_1, \dots, a_k \rangle$ and $B = \langle b_1, \dots, b_m \rangle$.
- ② The conjugates of these generators by secret elements: $a_1^y, \ldots, a_k^y, b_1^x, \ldots, b_m^x$.
 - This looks a lot like the classical Diffie-Hellman problem: find $g^{ab} \pmod{p}$ from g^a , g^b , g, and p. One way to solve the classical DHP is by solving the discrete logarithm problem in $\mathbb{Z}/p\mathbb{Z}$.
 - How about solving the analog of the discrete log problem in B_n : the (simultaneous) conjugacy search problem?

• In the discrete log case, $g^a \equiv g^b \pmod{p}$ if and only if $a \cong b \pmod{p-1}$. In the conjugacy case, if $a_i^y = a_i^{y'}$ for all i then $y = c_a y$ for some c_a in the centralizer of A:

• In the discrete log case, $g^a \equiv g^b \pmod{p}$ if and only if $a \cong b \pmod{p-1}$. In the conjugacy case, if $a_i^y = a_i^{y'}$ for all i then $y = c_a y$ for some c_a in the centralizer of A:

$$y^{-1}a_iy = (y')^{-1}a_iy' \iff y'y^{-1}a_iy(y')^{-1} = a_i \iff y'y^{-1} \in C_A.$$

• That exponents are only defined mod p-1 in the discrete log case doesn't matter much. On the other hand, suppose $y'=c_ay$ and $x'=c_bx$ for $c_a\in C_A$ and $c_b\in C_B$. Then

• That exponents are only defined mod p-1 in the discrete log case doesn't matter much. On the other hand, suppose $y'=c_ay$ and $x'=c_bx$ for $c_a\in C_A$ and $c_b\in C_B$. Then

$$[x',y'] = (x')^{-1}(y')^{-1}x'y' = x^{-1}c_b^{-1}y^{-1}c_1^{-1}c_bxc_ay.$$

• That exponents are only defined mod p-1 in the discrete log case doesn't matter much. On the other hand, suppose $y'=c_ay$ and $x'=c_bx$ for $c_a\in C_A$ and $c_b\in C_B$. Then

$$[x',y'] = (x')^{-1}(y')^{-1}x'y' = x^{-1}c_b^{-1}y^{-1}c_1^{-1}c_bxc_ay.$$

• If $x' \in A$ and $y' \in B$, then $c_b \in A$ and $c_a \in B$, so we can move the c_a 's and c_b 's around to obtain [x, y] = [x', y'].

• That exponents are only defined mod p-1 in the discrete log case doesn't matter much. On the other hand, suppose $y'=c_ay$ and $x'=c_bx$ for $c_a\in C_A$ and $c_b\in C_B$. Then

$$[x',y'] = (x')^{-1}(y')^{-1}x'y' = x^{-1}c_b^{-1}y^{-1}c_1^{-1}c_bxc_ay.$$

- If $x' \in A$ and $y' \in B$, then $c_b \in A$ and $c_a \in B$, so we can move the c_a 's and c_b 's around to obtain [x, y] = [x', y'].
- So solving the simultaneous conjugacy problem doesn't seem to be enough for Eve to compute [x, y]. She needs to find conjugating elements that lie in the public subgroups A and B.

Membership Search Problem

The Membership Search Problem in G

```
input: elements x, a_1, \ldots, a_k \in G
```

output: an expression (if it exists) of x as a word in

 a_1,\ldots,a_k .

Membership Search Problem

The Membership Search Problem in G

```
input: elements x, a_1, \ldots, a_k \in G
```

output: an expression (if it exists) of x as a word in

 a_1,\ldots,a_k .

Shpilrain and Ushakov ('06) point out that the corresponding decision problem is unsolvable in B_n for $n \ge 6$ since such groups contain subgroups isomorphic to $F_2 \times F_2$, where the membership decision problem is unsolvable due to Mihailova ('58).