Investigating California Wildfires - Prediction and Prevention

•••

Akshay Bhide, Peter Larcheveque DSC 170 Fall 2020

Introduction

Wildfires In California Will 'Continue To Get Worse,' Climate Change Experts Explore Why

Why Does California Have So Many Wildfires?

California catches a break from worst-ever year for wildfires with cooler weather, but the threat remains

Chris Woodyard USA TODAY

California fires: Five reasons why this year is so bad

So far, 2.3 million acres have burned, surpassing old record with two months left in fire season

Problem Statement / Significance

- What factors contribute to wildfires, and can we analyze these factors before an incident to find high risk areas for wildfires and take the necessary precautions?
- Business Case
 - Resource Allocation
 - Financial Implication
 - 2020 California wildfire damages estimated at \$20B
 - Property Damage
 - Health Care Bills
 - Reverse Tourism

Analysis

Investigating Past Wildfire Locations

- tried to get a historical sense of wildfires with previous locations + geoenrichment
- through correlation analysis, a lot of the features we expected to highly correlate did not correlate well at all

Analysis Plan

• Suitability Model

• Fire Station Optimization

1. Suitability Model - Areas With Highest

Wildfire Risk

Input 1 : Rainfall

- used as an indication of soil moisture
- assumption soil moisture → more plants
- final raster weight: 10%

Input 2 : Temperature

- temperature drives humidity
- although humidity drives growth of vegetation, we've also seen that more arid areas promote wildfire growth
- final raster weight: 10%

Input 3 : Biomass

- higher biomass → more trees → fires
 can spread easier
- final raster weight: 60%

Input 4 : Slope

- "Typically, wildfires burn up a slope faster and more intensely than along flat ground. The steeper the slope the longer the flame lengths and faster-moving the fire." - RedZone
- final raster weight: 20%

Suitability Model - Results

- Darker areas indicate more susceptibility to wildfires
- Areas with most susceptibility generally reside inside National Parks
- Areas with little susceptibility reside inside San Joaquin Valley (farmland)

2. Optimizing Fire Station Locations

Visualizing Fire Station Locations

Produced 15 minute drive time buffers for
 200 random fire stations in CA

Takeaway:

• Fire stations *seem* to be reflective of general population

Closer View

Visualizing Fire Station Locations

Produced 15 mile buffers for all fire stations in CA

Takeaway:

Some mildly susceptible areas are not fully covered!

Finding Underserviced Areas

- Recommend prospective locations
 - Fire stations
 - Supply Depots
- Goal: Have fire stations within a 15 mile radius of susceptible locations

Example: Klamath National Forest & Modoc National Forest

Example: Stanislaus National Forest

Next Steps

1. Include wind speed raster \rightarrow one of the most crucial aspects of wildfire intensity

2. Perform location allocation of fire stations / supply depots

3. Consider metrics for assessing how effective these prospective fire stations will be in mitigating and preventing wildfires

Thank you for listening! Questions?