Laboratorio I Una primera simulación

IC-8031 Simulación Prof. Eddy Ramírez

Intrucciones generales

1. El laboratorio debe resolverse de forma original.

Cualquier sospecha de fraude se asignará nota mínima en el curso y se aplicará el reglamento del TEC para estos casos.

- 2. Debe desarrollar los ejercicios indicados utilizando LATEX, para clasificar los códigos escritos en C++ y entregar el PDF correspondiente.
- 3. Debe entregarse en código y en el correo enviar una descripción de cómo ejecutarlo así como las bibliotecas necesarias para su ejecución.
- 4. Eventualmente se pueden asignar citas de revisión del laboratorio
- 5. El laboratorio se puede realizar en parejas
- El incumplimiento de alguno de los ítemes marcados en la sección4 puede implicar una nota de cero en el laboratorio.

1. Objetivos del laboratorio

1.1. Objetivo general

Modelar y analizar el desarrollo de sistemas computacionales que reproduzcan de manera adecuada el comportamiento de sistemas del mundo real.

1.2. Objetivos específicos

1. Analizar los algoritmos de generación de distribuciones aleatorios.

2. Especificación

En este laboratorio vamos a simular el lanzamiento de un dado. Para ello vamos a utilizar como referencia un poliedro regular, lo que va a variar es el número de caras del dado. Todos los poliedros regulares tienen 4, 6, 8, 12 o 20 caras.

Luego se lanzará ese mismo dado varias veces y se contabilizará la suma de los valores marcados por el dado

Por ejemplo, si el dado es de 6 caras y se lanza 2 veces, la primera vez marcó 3 y la segunda marcó 4, la variable que se debe tomar en cuenta es 7, por lo tanto el 7 apareció ya una vez.

El programa va a recibir tres valores: C, N y K, siendo C el número de caras del dado, N, el número de veces que se va a lanzar cada dado y K el total de experimentos que se van a realizar. (Es decir, cuántas veces debe lanzarse el dado de C caras N veces, en total se lanzará el dado $N \times K$ veces).

Los datos deben ser ingresados por entrada y salida estándar (consola).

Al finalizar el programa debe mostrar un gráfico de barras con las frecuencias obtenidas.

2.1. Pregunta teórica

 \cite{L} Qué fenómeno se está graficando cuanto mayoes son N y K?

3. Evaluación

La evaluación se muestra en la siguiente tabla

VAD:	Variable	Aleatoria	Discreta
Producto			Valor
Lanzamiento del dado			5 %
Contabilización de la VAD			5 %
${\bf Lectura~de~E/S}$			10 %
Graficación apropiada de la distribución			65%
Pregunta Teórica			15%

4. Asuntos adicionales

- El laboratorio debe entregarse al correo edramirez@itcr.ac.cr . El asunto: IC-8031 Simulación

 Laboratorio I [Nombre del estudiante]. La última fecha en que se recibirán correos es el 13 de diciembre .
- 2. Todos los programas deben poder ejecutarse correctamente en GNU/Linux.
- La pregunta teórica debe estar respondida y justificada en un documento L^ATEX y entregado en PDF.
- 4. Los códigos deben entregarse en un tgz
- 5. El nombre de los archivos con el código debe ser los apellidos y nombre del autor(es), por ejemplo: RamírezJiménezEddy1.ext donde ext es la extensión propia del lenguaje, scm para Scheme, py para python, pl para prolog, etc.