Latex projekt

Sztaracsek Mátyás - DEJAHQ

2024. május 8.

Tartalomjegyzék

1.	\mathbf{Bev}	ezetés	4
	1.1.	A fenntartható energia jövője: Innovációk és kihívások(Chatbot	
		interakció)	4
	1.2.	A generált téma összefoglalása	4
2.	Tét	elek	5
	2.1.	Rendszerelmélet 9. tétel	5
	2.2.	PID szabályozó a frekvencia tartományban, a paraméterbeállítás	
		módszerei	5
	2.3.	PI szabályozó frekvencia tartományban	5
		2.3.1. Aszimptota kisfrekvencia-tartományon: $\omega < \frac{1}{T}$	5
		2.3.2. Nagyfrekvenciás aszimptota	5
		2.3.3. PD-szabályozó hatása frekvenciaátvitelre	6
		2.3.4. PID-szabályozó frekvenciaátviteli karakterisztikája	7
		2.3.5. PID szabályozó paramétereinek hatása a szabályozás di-	
		namikájára	7
	2.4.		8
		$2.4.1.~~3.~{\rm Fourier\text{-}sor}$ és spektrum, Fourier-transzformáció (Fourier-	
		$\mathrm{integr\'al})$	8
3.	Kép	ozési tanácsok 1	1
	3.1.	Bevezető	. 1
	3.2.	Nappali tagozat	. 1
		3.2.1. Előnyök	. 1
		3.2.2. Hátrányok	. 1
	3.3.		2
		3.3.1. Előnyök	2
		3.3.2. Hátrányok	2
	3.4.	Duális képzés	2
		3.4.1. Előnyök	2
			2

Ábrák jegyzéke

2.1.	Aszimptota kisfrekvencia-tartományon	5
2.2.	Nagyfrekvenciás aszimptota	6
2.3.	Fourier-transzformáció	8
2.4.	Eltolási tétel	9
2.5.	FI jelek spektruma	9

Táblázatok jegyzéke

2.1.	Fourier felbontás																														
------	-------------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--

1. fejezet

Bevezetés

1.1. A fenntartható energia jövője: Innovációk és kihívások(Chatbot interakció)

A fenntartható energiaforrások, mint a szél-, nap- és vízenergia, kulcsfontosságúak a globális energiaigény kielégítésében, miközben csökkentik a környezeti lábnyomot. Az innovációk, mint az energiatárolási technológiák és az intelligens hálózatok, lehetővé teszik a megújuló energiaforrások hatékonyabb integrálását az energiarendszerekbe. Ugyanakkor számos kihívással is szembe kell néznünk, többek között a kezdeti beruházási költségekkel, a geopolitikai tényezőkkel és a termelés ingadozásával. A fenntartható energia jövője így egy dinamikus terület, amely folyamatos kutatást és fejlesztést igényel a zöldebb és élhetőbb bolygó érdekében.

1.2. A generált téma összefoglalása

Ez a generált téma a zöld,fenntartható energiákról szól, amik hozzájárulnak a környezeti lábnyom csökkentéséhez és köztük említést tesz a nap, szél és víz energiákról is. Emellett még szó van a problémákról amikkel ennek a dinamikusan fejlődő ágazatnak szembe kell néznie, mint például beruházási költség, geopolitikai tényezők.

2. fejezet

Tételek

- 2.1. Rendszerelmélet 9. tétel
- 2.2. PID szabályozó a frekvencia tartományban, a paraméterbeállítás módszerei
- 2.3. PI szabályozó frekvencia tartományban
- 2.3.1. Aszimptota kisfrekvencia-tartományon: $\omega < \frac{1}{T}$
 - 2. Logaritmikus skálán -20dB/dekád meredekségű egyenes egyenlete: ez azt jelenti, hogy integráló komponens dominál
- 2.3.2. Nagyfrekvenciás aszimptota
- iii. A PI-szabályozó hatása a hurok átviteli karakterisztikájára
 - 1. Kisfrekvencia tartománya

2.1. ábra. Aszimptota kisfrekvencia-tartományon

2.2. ábra. Nagyfrekvenciás aszimptota

- 2. Nagyobb frekvenciákon az amplitúdóviszony konstans: az arányos komponens dominál.
- 3. A két aszimptota $\omega = \frac{1}{T_i}$ -nél metszi egymást
 - (a) A szakasz amplitúdóviszony-görbe meredekségét megemeli ebben a frekvenciatartományban, az alacsony frekvencián megnövelt erősítést jelent
 - (b) Ez biztosítja, hogy a lassan változó jelet a tranziens lecsengésének vége felé el tudja távolítani és nem lesz maradó hiba
 - (c) A fázisgörbe ma. 90°-kal csökken (Phase Lag)
 - 2. Nagyfrekvencia tartományban
 - (a) Arányos hatás dominál: az amplitúdóviszony-görbe meredeksége nem változik, a függőleges tengellyel párhuzamosan eltolódik a szabályozó erősítésnek megfelelően
 - (b) Fázisgörbe nem változik
 - (c) Fázisgörbe inflexiós pontja $\frac{1}{T_i}$ -nél

2.3.3. PD-szabályozó hatása frekvenciaátvitelre

i.

- 1. Kisfrekvencia tartománya
 - (a) Lassan változó jelekre a P-rész a domináns. Az amplitúdóviszonygörbe meredekségét nem változtatja, csak a képzetes tengellyel párhuzamosan eltolja a K_p -nek megfelelően
 - (b) Fázisgörbét alacsony frekvenciákon nem módosítja
- 2. Nagyfrekvencia tartomány
 - (a) Amplitúdóviszony-görbe meredeksége 20 dB/dekád-al nő, az erősítés tehát nő a magas frekvenciákon. Ez biztosítja, hogy a gyorsan változó hibára erőteljes beavatkozással reagáljon a szabályozó

2.3.4. PID-szabályozó frekvenciaátviteli karakterisztikája

i.

- 1. Megfelelő jelformálás elérése érdekében az időállandókat megfelelően kell beállítani: $T_i>T_d$ azaz $\frac{1}{T_i}<\frac{1}{T_d}$ egyenlőtlenséget be kell tartani
- 2. Az arányos integráló és differenciáló rész más-más frekvencia
tartományok-ban fejti ki hatását, a körfrekvencia-tartományok határvonal
a $\frac{1}{T_i},\,\frac{1}{T_d}$
- 3. Kisfrekvencián
 - (a) Az I-hatás dominál, a PI-szabályozó alacsony frekvenciás tartományára leírtak érvényesek itt

2.3.5. PID szabályozó paramétereinek hatása a szabályozás dinamikájára.

ii.

- 1. Finomhangolás lépései
 - (a) Erősítési tényező, $K_p\text{-}$ növelésével a szabályozási idő csökkenthető
 - (b) Integráló tag használatával eltüntethető a maradó hiba
 - (c) D-tag használatával csökkentjük a túllendülést és a szabályozási időt

iii.

- 1. Kisfrekvencia tartománya
 - (a) A szakasz amplitúdóviszony-görbe meredekségét megemeli ebben a frekvenciatartományban, az alacsony frekvencián megnövelt erősítést jelent
 - (b) Ez biztosítja, hogy a lassan változó jelet a tranziens lecsengésének vége felé el tudja távolítani és nem lesz maradó hiba
 - (c) A fázisgörbe ma. 90°-kal csökken (Phase Lag)
- 2. Nagyfrekvencia tartományban
 - (a) Arányos hatás dominál: az amplitúdóviszony-görbe meredeksége nem változik, a függőleges tengellyel párhuzamosan eltolódik a szabályozó erősítésnek megfelelően
 - (b) Fázisgörbe nem változik
 - (c) Fázisgörbe inflexiós pontja $\frac{1}{T_i}$ -nél

2.3. ábra. Fourier-transzformáció

2.4. Rendszerelmélet 3. tétel

2.4.1. 3. Fourier-sor és spektrum, Fourier-transzformáció (Fourier-integrál)

Fourier tétel: tetszőleges periodikus jel előállítható harmonikus jelek szuperpozíciójaként

1. az előállításban szereplő szinuszos jelek körfrekvenciája, a közelítendő periodikus jel alap körfrekvenciájának egész számú többszöröse kell, hogy legyen

Jel típusa alapján megkülönböztetünk

- 1. Folytonos és periodikus: Fourier sorba fejtés
- 2. Folytonos és nem periodikus: Fourier transzformáció
- 3. Diszkrét és periodikus: Diszkrét Fourier sorba fejtés
- 4. Diszkrét és nem periodikus: Diszkrét idejű Fourier transzformáció

Fourier sor

- 1. Periodikus, folytonos jelekre alkalmazhatjuk
- 2. Periodikus jelek spektruma harmonikusakat tartalmaz. Vonalas spektrum
- 3. A spektrum csak az alapfrekvencia egész számú többszöröseinek megfelelő frekvenciákat tartalmazhat

Fourier-transzformáció

- 1. Cél: áttranszformálni a jelet idő tartományból frekvencia tartományba
- 2. Fourier-felbontás
 - (a) LI rendszerekre
 - (b) periodikus állandósult válasz számításra
 - (c) Fourier-felbontás a Fourier-transzformáció a spektrumban
- 5. Eltolási tétel

	s(t)	S(jw)
4	valós	komplex
4.	valós és páros	valós és páros
	valós és páratlan	képzetes és páratlan

2.1. táblázat. Fourier felbontás

2.4. ábra. Eltolási tétel

2.5.ábra. FI jelek spektruma

6. FI jelek spektruma

3. fejezet

Képzési tanácsok

3.1. Bevezető

Az alábbiakban összegyűjtöttem néhány előnyt és hátrányt, ami tanácsként szolgálhat azoknak, akik majd nappali, levelező vagy duális képzésre iratkoznak be.

3.2. Nappali tagozat

3.2.1. Előnyök

- Bármikor közvetlenül kérdezhetsz a tanároktól.
- Hatékony az oktatás.
- Könnyebben alakíthatsz ki kapcsolatokat.

3.2.2. Hátrányok

- A folyamatos figyelem fenntartása fárasztó
- A nappali tanulmányok általában merev időbeosztással járnak, ami korlátozhatja a diákok számára a rugalmasabb időbeosztás és az egyéni igényekhez való alkalmazkodás lehetőségét.
- A nappali tanulmányoknak gyakran magas a tanterv terhelése, ami sok diák számára okozhat stresszt és túlterheltséget, különösen ha sok házi feladatot és projektet kell egyszerre kezelniük.
- A nappali tagozatnak korai kezdési időpontja lehet, ami nem minden diák számára megfelelő, különösen ha a tanulók nehezen kelnek fel korán reggel.

3.3. Levelező tagozat

3.3.1. Előnyök

- A levelező tagozaton tanuló diákoknak lehetőségük van arra, hogy saját időbeosztásuk szerint tanuljanak és dolgozzanak.
- A diákoknak lehetőségük van részt venni távoktatási programokban, amelyek lehetővé teszik számukra, hogy akár otthonukból is elvégezzék tanulmányaikat.

3.3.2. Hátrányok

- A levelező tagozaton tanuló diákoknak kevesebb lehetőségük van a személyes interakcióra tanáraikkal és társaikkal.
- A diákoknak gyakran kevesebb motivációjuk van, mivel nincsenek ugyanolyan személyes kötelékek és elvárások

3.4. Duális képzés

3.4.1. Előnyök

- Sokkal gyakorlat központúbb, mint bármely más képzés.
- Valós tapasztalatot tudsz szerezni a tanulmányaid mellet.

3.4.2. Hátrányok

- Túlságosan megterhelő lehet, ha a munkáltató nem veszi igénybe az egyetemi tanulmányaidat.
- A munka az egyetemi tanulmányok rovására mehet.

Irodalomjegyzék

- 1. fejezet forrása: Bing AI chatbot
- 2. fejezet forrása: Kuczmann Miklós Jelek és rendszerek , Jelek és rendszerek Pletl Szilveszter, Kincses Zoltán