ANALISIS SPASIAL GEOSTATISTIKA

Rr. Kurnia Novita Sari, M.Si.

Faculty of Mathematics and Natural Sciences
Bandung Institute of Technology, Indonesia
e-mail: kurnia@math.tb.ac.id

Peta Kejahatan di Kota Boston (Sumber: google map)

Peta Indonesia (Sumber: google map)

Apa saja yang bisa diamati berkaitan dengan analisis spasial?

DATA SPASIAL

Contoh: Data kandungan minyak bumi di Prov. Kalimantan Timur

Keterangan:

 s_i : lokasi i, berupa koordinat (x_i, y_i)

 h_k: jarak antar pasangan lokasi dihitung melalui pasangan koordinat lokasi

Z(s_i) : nilai observasi pada lokasi *i* cth: kandungan minyak bumi

ANALISIS SPASIAL

DATA SPASIAL

SEMIVARIOGRAM

 Semivariogram adalah alat ukur kebergantungan antara observasi yang didasarkan pada jarak (h) antar pasangan lokasi.

$$2\gamma(h) = Var\{Z(s) - E[Z(s+h)]\}$$
$$= E[Z(s) - Z(s+h)]^{2}$$

Semivariogram Eksperimental

$$\hat{\gamma}(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[Z(s_i) - Z(s_i + h) \right]^2$$
Model semivariogram

PARAMETER MODEL SEMIVARIOGRAM

Range (a)

jarak lag hingga nilai semivariogram konstan (jarak maksimum antara lokasi yang masih memiliki korelasi spasial)

Sill (C₀+C)

nilai semivariogram yang konstan untuk h yang tidak terbatas. Umumnya, nilai sill mendekati variansi data

Efek Nugget (C₀)

merupakan kesalahan pengukuran dimana nilai semivariogram pada lag jarak nol nilainya tidak nol.

Efek nugget akan hilang dengan memperkecil jarak antara titik-titik sampel.

MODEL SEMIVARIOGRAM

Model Sperikal

$$\gamma(h) = \begin{cases} C \left[\frac{3}{2} \left(\frac{h}{a} \right) - \frac{1}{2} \left(\frac{h}{a} \right)^{3} \right], h < a \end{cases}, h \ge a$$

diaplikasikan pada pertambangan

Model Eksponensial

$$\gamma(h) = C \left(1 - \exp\left(-\frac{h}{a}\right) \right)$$

Model Gauss

$$\gamma(h) = C \left(1 - \exp\left(-\left(\frac{h}{a}\right)^2 \right) \right)$$

diaplikasikan pada hidrologi

diaplikasikan pada perminyakan

SEMIVARIOGRAM ISOTROPIK DAN ANISOTROPIK

- Semivariogram Isotropik
 - → bergantung hanya pada jarak antar pasangan lokasi.
- Semivariogram Anisotropik
 - → bergantung pada jarak dan sudut antar pasangan lokasi.
- Semivariogram Anisotropik dikembangkan oleh Isaaks dan dikekmbangkan oleh:
 - 1. Srivastava (1989) & Zimmerman (1993).
 - 2. Ecker & Gelfand (1999) → menggunakan vektor jarak.
 - 3. Eriksson & Siska (2000) → anisotropik dibagi menjadi 3 yaitu: anisotropik geometri, sill/zonal, & nugget.

KASUS: DISTRIBUSI SERANGGA BRADYSIA

OCELLARIS (BO)

21 Lokasi penempatan jamur tiram

Penomoran 21 Lokasi penempatan jamur tiram & Banyaknya serangga BO

KONTUR DISTRIBUSI BO

STATISTIKA DESKRIPTIF

Statistics Descriptive					
Number	21	Range	473		
Mean	227,24	Minimum	57		
Median	174	Maksimum	530		
Standard deviation	155,534	Percentile 25th	114		
Kurtosis	-0,323	Percentile 75th	280		
Skewness	0,961	Standard error	33,94		

Catatan:

ANALISIS SEMIVARIOGRAM

1.	NI(I _c)	$\gamma(h)$	1.	NI(L)	$\gamma(h)$
<u>h</u>	N(h)	7 (10)	<u> </u>	N(h)	
0	21	0	11	9	27032,72
2,75	32	11845,24	11,339	6	48993
3,889	12	23332,25	12,298	3	97018,17
5,5	22	16741,26	13,75	6	29187,08
6,149	10	32300,3	14,022	4	47881,63
7,778	5	54677	16,5	3	22008,33
8,25	12	17405,54	16,728	2	44005,25
8,696	8	42836,25	17,393	1	89888

Model Gauss

$$\hat{\gamma}(h) = 38000 \left(1 - \exp\left(-\left(\frac{h}{5,5}\right)^2 \right) \right)$$

LATIHAN

10	30	10	55
5	20	50	35
40	15	40	30
5	35	10	10

15	35	20	35
15	20	45	25
40	10	30	30
15	35	20	10

20	25	15	40
15	25	45	30
35	15	35	25
10	35	20	10

Langkah-langkah:

- 1. Menentukan koordinat setiap lokasi.
- 2. Menghitung jarak pasangan antar lokasi dari mulai yang terdekat hingga terjauh.
- 3. Menghitung nilai semivariogram untuk semua arah yang mungkin (arah BT, US, TG-BL, TL-BD).
- 4. Membuat grafik semivariogram eksperimental.
- 5. Menentukan model semivariogram yang sesuai

CONTOH DATA Sumur Minyak Jatibarang (JTB)

SUMUR MINYAK JTB

- Sumur minyak (reservoir) Jatibarang (JTB) terletak di Kab. Indramayu, Jawa Barat.
- Sejak 1969, telah dibuka + 200 sumur
- Sampai 1998, produksi minyak kumulatif sekitar 13 juta m³.
- Karakteristik sumur minyak JTB:
 - Saturasi minyak sangat rendah sekali
 - Permeabilitasnya berubah-ubah tergantung dari ukuran dan densitas fracture
 - Kompresibilitas porinya tergantung pada porositas formasi batuan volkanik.

DATA SUMUR MINYAK JTB

Koordinat L		at Lokasi	si Variabel			
NO NO SUMUR JTE	NO SUMUR JTB	X (km)	Y (km)	DZ	K-FRACTURE (mD)	Pormatrik
8	52	0,6309	-1,3109	213	35,445	12,16
18	62	0,9241	-1,2761	291	26,645	13,53
28	72	0,5677	-1,0127	291	51,72	15,13
38	86	1,0561	-0,8133	388	14,331	10,62
48	95	0,1290	-0,5951	138	13,333	8,43
58	107	0,9848	-0,3901	108	4,683	5,57
68	119	1,2489	-0,4034	168	49,754	15,32
78	134	1,2200	-0,6375	256	35,832	10,38
88	145	0,3510	-0,9461	239	177,021	19,24
98	154	0,5042	-1,5291	238	30,467	12,67
108	164	0,5174	-1,2708	326	26,741	12,33
118	175	0,4646	-0,6614	181	16,776	14,08
128	186	0,8448	-0,9009	359	40,154	14,16

Lokasi 13 Sumur di JTB

Kontur K-Fracture pada 13 Sumur JTB

-0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.1 -1.1 -1.2 -1.3 -1.4 -1.5 -0.8

Boxplot K-Fracture

SEMIVARIOGRAM

Semivariogram Eksperimental

Model Semivariogram

Model Eksponensial untuk Permeabilitas Reservoir JTB
Direction: 0.0 Tolerance: 90.0

MODEL SEMIVARIOGRAM

Marila I	Scale	Length	Anisotropic		
Model	(C)	(a)	Ratio	Angle	
Eksponensial	6090	5.29	2	40.14	
Spherikal	4340	3.36	2	42.52	
Gauss	5830	1.55	2	43.49	

$$\hat{\gamma}(h) = 5830 \left(1 - \exp\left(-\left(\frac{h}{1,55}\right)^2 \right) \right)$$

KRIGING

- metode geostatistik untuk menginterpolasi nilai dari suatu titik atau blok yang tidak terobservasi.
- Taksiran nilai berupa kombinasi linear dari nilai observasi yang terdapat di sekitar titik atau blok yang akan diestimasi

Blok yang akan diinterpolasi

KRIGING

Faktor-faktor yang mempengaruhi akurasi hasil estimasi kriging (Amstrong, 1998, hlm 83-84):

- Banyaknya sampel
- Kualitas data di setiap titik observasi
- Posisi koordinat sampel
- Jarak antara sampel dan titik atau blok yang diestimasi.
- Fluktuasi atau penyebaran sampel (reguler atau irreguler).

ESTIMATOR KRIGING

- Asumsi persamaan kriging:
 - a. Variabel regional memiliki nilai $Z(s_i)$ pada lokasi s_i .
 - b. Variabel regional memenuhi stasioner orde dua.
- Estimator kriging pada lokasi s₀:

$$\hat{Z}(s_0) = \lambda_1 Z(s_1) + \lambda_2 Z(s_2) + \dots + \lambda_n Z(s_n) = \sum_{i=1}^n \lambda_i Z(s_i)$$

dengan λ_i adalah bobot kriging.

- Sifat bobot kriging:
 - Tak bias: $E[\hat{Z}(s_0) Z(s_0)] = 0$
 - Variansi kriging: $Var[\hat{Z}(s_0) Z(s_0)]$ minimum

TIPE KRIGING

- Ordinary Kriging (OK)
 - mean tidak diketahui
- Simple Kriging (SK)
 - mean diketahui
- Universal Kriging (UK)
 - Jika tidak memenuhi kestasioneran orde 2
- Bayesian Kriging (BK)
- Co-Kriging