

Derivative notation:
The derivative of a fusction fox) is denoted by
f'(x), reading as f prime of x.
$\underline{\text{Potice}}: f'(x)$ is a furction of X .
How to fird f(x)?
To find f'(4) me will use several "rules".
For example: addition rule, Quotient rule, Chair rule
Some basic rules:
() If f(x) = C (constant)
$= \int f'(x) = 0$
OR we can write: (C) = 0
$(3) \text{If} f(\lambda) = \lambda$
then f'(x) = 1
OR we can write: $(X)' = 1$

•

$$= f'(x) = n \cdot x$$

OR we can write:
$$(x^n)' = n \cdot x$$

Example:

Find f'(x):

$$(2) \quad f(x) = x^{10} = f'(x) = \underline{10} \cdot x^{9}$$

$$(4) \quad f(x) = \sqrt{x} = x^{1/2}$$

$$=) f'(x) = \frac{1}{2} \times = \frac{1}{2} \times$$

$$= f'(x) = \frac{1}{5} \times \frac{1}{5} = \frac{1}{5} \times \frac{1}{5}$$

$$\frac{1}{(x)} = \frac{1}{x^{10}} = x$$

$$=$$
) $f'(x) = -10 \cdot x$

$$\frac{1}{x} = \frac{1}{x} = x$$

Assignment: Find f(x)

(i)
$$f(x) = 10000$$

(2)
$$f(x) = X$$

$$(3) \quad f(x) = x$$

$$(4) \qquad f(\chi) = \frac{100}{\chi^{100}}$$

$$(5) \qquad f(4) = 2 + \sqrt{\chi}$$