Intervals, Transformations, and Slope Solution (version 128)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-6, -4) \cup (2, 7)$
Negative	$(-10, -6) \cup (-4, 2)$
Increasing	$(-9, -5) \cup (-3, 7)$
Decreasing	$(-10, -9) \cup (-5, -3)$
Domain	(-10,7)
Range	(-9,3)

Intervals, Transformations, and Slope Solution (version 128)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=68$ and $x_2=83$. Express your answer as a reduced fraction.

$$\begin{array}{c|cc} x & g(x) \\ \hline 26 & 83 \\ 44 & 68 \\ 68 & 26 \\ 83 & 44 \\ \hline \end{array}$$

$$\frac{f(83) - f(68)}{83 - 68} = \frac{44 - 26}{83 - 68} = \frac{18}{15}$$

The greatest common factor of 18 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{6}{5}$$

2