

RECEIVED

JUL 08 2002

TECH CENTER 1600/2900

SEQUENCE LISTING

<110> Chiorini, John
Kotin, Robert M.
Safer, Brian
Davidson, Elizabeth
Zabner, Joseph

<120> AAV5 VECTOR FOR TRANSDUCING BRAIN CELLS AND LUNG CELLS

<130> 14014.0323U2

<140> 09/533,427

<141> 2000-03-22

<160> 26

<170> FastSEQ for Windows Version 3.0

<210> 1

<211> 4652

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 1

tggcactctc	ccccctgtcg	cgttcgctcg	ctcgctggct	cgtttggggg	ggtggcagct	60
caaagagctg	ccagacgacg	gccctctggc	cgtcgccccc	ccaaacgagc	cagcgagcga	120
gcgaacgcga	caggggggag	agtgcacac	tctcaagcaa	gggggttttg	taagcagtga	180
tgtcataatg	atgtaatgt	tattgtcacg	cgatagttaa	tgattaacag	tcatgtgatg	240
tgttttatcc	aataggaaga	aagcgcgcgt	atgagttctc	gcgagacttc	cggggtataa	300
aagaccgagt	gaacgagccc	gccgcattc	tttgctctgg	actgctagag	gaccctcgct	360
gccatggcta	ccttctatga	agtcattgtt	cgcgtcccat	ttgacgtgga	ggaacatctg	420
ccttggattt	ctgacagctt	tgtggactgg	gttaactggtc	aaatttggga	gctgcctcca	480
gagtcagatt	taaatttgcac	tctggttgaa	cagcctcagt	tgacgtggc	tgatagaatt	540
cgccgcgtgt	tcctgtacga	gttggaaacaaa	tttccaagc	aggagtccaa	attcttttg	600
cagtttggaaa	aggatctga	atatttcat	ctgcacacgc	ttgtggagac	ctccggcatc	660
tcttccatgg	tcctcgcccg	ctacgtgagt	cagattcgcc	cccagctgg	aaaagtggc	720
ttccaggggaa	ttgaacccca	gatcaacgac	tgggtcgcca	tcaccaaggt	aaagaagggc	780
ggagccaata	aggtgggtgg	ttctgggtat	attcccgcc	aaagggtccaa	840	
ccggagcttc	agtgggcgtg	gacaaacctg	gacgagttata	aattggccgc	cctgaatctg	900
gaggagcgc	aacggctcg	cgcgcagttt	ctggcagaat	cctcgccagcg	ctcgccaggag	960
gcggcttcgc	agcgtgagtt	ctcggtcgac	ccggcatca	aaagcaagac	ttcccgagaaa	1020
tacatggcgc	tcgtcaactg	gtctgtggag	cacggcatca	cttccggagaa	gcagtggtatc	1080
caggaaaatc	aggagagcta	cctctcccttc	aactccaccc	gcaactctcg	gagccagatc	1140
aaggccgcgc	tcgacacaacgc	gacaaaatt	atgagttctg	aaaaaagcgc	ggtggactac	1200
ctcggtggaa	gttcgttcc	cgaggacatt	tcaaaaaaca	aatctggca	atttttgag	1260
atgaatggct	acgacccggc	ctacgcggga	tccatccct	acggctgg	ttagcgtctcc	1320
ttcaacaaga	ggaacacccgt	ctggctctac	ggaccgc	cgacccgca	gaccaacatc	1380
gcggaggcga	tcgcccacac	tgtggccctt	tacggctcg	tgaactggac	caatgaaaac	1440
tttcccttta	atgactgtgt	ggacaaaatg	ctcattttgt	gggaggaggg	aaagatgacc	1500
aacaagggtgg	ttgaatccgc	caaggccatc	ctggggggct	caaagggtcg	ggtcgatcag	1560
aaatgtaaat	cctctgttca	aattgattct	accctgtca	ttgtacttc	caataacaac	1620
atgtgtgtgg	tggggatgg	gaattccacg	accttgaac	accagcagcc	gctggaggac	1680
cgcattttca	aatttgaact	gactaagcgg	ctcccgccag	atttggcaa	gattactaag	1740
caggaagtca	aggactttt	tgcttggca	aaggtaatc	aggtggcggt	gactcacgag	1800
tttaaagttc	ccagggaaatt	ggcgaaact	aaagggcg	agaaatctc	aaaacccca	1860

ctgggtgacg tcaccaatac tagctataaa agtctggaga agcgggccag gcttcattt	1920
tttcccaga cgcctcgac ttcatcgatg actgttgatc ccgtccctct gcgaccgctc	1980
aatttgaatt caaggatgtt gttcaaatgtt gactatcatg ctcaatttgc caacatttct	2040
aacaaatgtt atgaatgtt atatttgc attttgc cggggcaaaa atggatgtt ctgtcacaat	2100
gttaactcaat gtcaaatttgc tcatgggatt cccccctggg aaaagaaaa cttgtcagat	2160
tttgggatt ttgacatgc caataaagaa cagtaaataa agcagtagt catgtcttt	2220
gttgcatttcc ctccagattt gttggaaagaa gttggtaag gtcttcgcga gtttttggc	2280
cttgaagcgg gcccaccgaa accaaaaccc aatcagcgc atcaagatca agcccggtgt	2340
cttgtctgc ctgggttataa ctatctcgaa cccggaaacg gtctcgatcg aggagagcct	2400
gtcaacaggg cagacgaggt cgccgcgagag cacgacatct cgtacaacga gcagcttgag	2460
gcgggagaca accccttaccc caagtacaac cacgcggacg ccgagttca ggagaagctc	2520
gccgacgaca catcccttcgg gggaaaccc gggaaaggcag tctttcaggc caagaaaagg	2580
gttctcgaa acctttggctt gtttgcggat gtttgcggat cggccctac cggaaagcgg	2640
atagacgacc actttccaaa aagaaagaag gtcgggaccg aagaggactc caagccttcc	2700
acctcgtcag acggcgaagc tggaccggc ggtatcccggc agtgcggatcccggc	2760
ccagcctcaa gtttggggc tgatataatg tctgcggggat gtttgcggcc attgggcgac	2820
aataaccaag gtggcgatgg agtggggcaat gcctcgggat attggcatttgcgatccacg	2880
tggatggggg acagagtcgt caccatcgacc acccgaaacctt ggggtctgccc cagctacaac	2940
aaccaccatg accgagagat caaaagcggc tccgtcgacg gaagcaacgc caacgcctac	3000
tttggatatac gcacccctcg ggggtacttt gactttaaacc gtttgcacag ccactggggc	3060
ccccgagact ggcaaaagact catcaacaaac tactggggct tcagaccccg gtcacccctcg	3120
gtcaaaatct tcaacattca agtcaaaagag gtcacgggtgc aggactccac caccaccatc	3180
gccaacaacc tcaccccttcac cgtccaaatgtt tttacggacg acgactacca gtcacccctac	3240
gtcgtcgac acgggaccgaa gggatgcctt cccgccttc ctccgcaggcttacgc	3300
ccgcagttacg gttacgcgac gtcgaaccgc gacaacacag aaaatccac cggaggaggc	3360
agtttcttcgccttgcgttgc ctttcccgac aagatgttgcgaa acggggcaaa caacttttgcg	3420
tttaccttaca actttggat ggtgcaccccttc cactcccgatc tcgctcccgatc	3480
ttcaagctgg ccaacccgtt ggtggaccatg tactttgtacc gtttgcgttgcgatc	3540
actggcgatgg tccagttcaa caagaacccgtt gccggggat gtcacccac acatcaaaaac	3600
tggttcccg gggccatggg ccgaaccccg ggttgcggatc tgggtcccgatc ggtcaacccgc	3660
gccagtgtca ggcgccttcgc caccatcgacc agatggggc tcgaggggcgc gagttaccatc	3720
gtgccccccgc agccgaacgg catgacccatc aacccatcgacc gtcacccac acatcaaaaac	3780
gagaacacta tgatcttcaa cagccatcgacc gcaaccccg gtcacccac acatcaaaaac	3840
gagggcaaca tgctcatcac cagcgatcgacc gacgacgcggc cggtaaccgc cgtggcgatc	3900
aacgtcgccg ggcagatggc caccatcgacc cagatcgacc ccactggccgc gtcacccac	3960
acgtacaaacc tccaggaaat cgtggcccgatc acgtgttgcgatc tggagggat gtcacccac	4020
caaggaccatc tctggggccaa gatccatcgacc acggggccgc actttccatcc acatcaaaaac	4080
atggggcgat tccggactcaa acacccatcgacc cccatcgacc tcatcaaaaac acatcaaaaac	4140
cccgaaata tcacccatcgacc ctcggatcgatc cccatcgacc gtttgcacccatcgacc	4200
acccggccggat tcacccatcgacc gatggggat gtcacccatcgacc acatcaaaaac	4260
aacccatcgacc tccaggatcgacc aaacaactac aacgacccatcgacc acatcaaaaac	4320
gacagcaccatcgacc gggatcgacc aaccatcgacc cccatcgacc taccatcgacc	4380
ctttacccatcgacc ttcatcgacc ataccatcgacc taaaccatcgacc gtttgcacccatcgacc	4440
gccttgcgttgc gtcacccatcgacc gatggggat gtcacccatcgacc acatcaaaaac	4500
gagttgtggat ctcggcccgatcgacc gtcacccatcgacc tggatggggat gtcacccatcgacc	4560
cagctcaaaatcgacc agctggccatcgacc gtcacccatcgacc cccatcgacc taccatcgacc	4620
agcgagcgaa cgccacatcgacc gggatcgacc ca	4652

<210> 2

<211> 390

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 2

Met Ala Leu Val Asn Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys

1

5

10

15

Gln Trp Ile Gln Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr
 20 25 30
 Gly Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Thr Lys
 35 40 45
 Ile Met Ser Leu Thr Lys Ser Ala Val Asp Tyr Leu Val Gly Ser Ser
 50 55 60
 Val Pro Glu Asp Ile Ser Lys Asn Arg Ile Trp Gln Ile Phe Glu Met
 65 70 75 80
 Asn Gly Tyr Asp Pro Ala Tyr Ala Gly Ser Ile Leu Tyr Gly Trp Cys
 85 90 95
 Gln Arg Ser Phe Asn Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala
 100 105 110
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro
 115 120 125
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 130 135 140
 Cys Val Asp Lys Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Asn
 145 150 155 160
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg
 165 170 175
 Val Asp Gln Lys Cys Lys Ser Ser Val Gln Ile Asp Ser Thr Pro Val
 180 185 190
 Ile Val Thr Ser Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser
 195 200 205
 Thr Thr Phe Glu His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe
 210 215 220
 Glu Leu Thr Lys Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln
 225 230 235 240
 Glu Val Lys Asp Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val
 245 250 255
 Thr His Glu Phe Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala
 260 265 270
 Glu Lys Ser Leu Lys Arg Pro Leu Gly Asp Val Thr Asn Thr Ser Tyr
 275 280 285
 Lys Ser Leu Glu Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro
 290 295 300
 Arg Ser Ser Asp Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn
 305 310 315 320
 Trp Asn Ser Arg Tyr Asp Cys Lys Cys Asp Tyr His Ala Gln Phe Asp
 325 330 335
 Asn Ile Ser Asn Lys Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys
 340 345 350
 Asn Gly Cys Ile Cys His Asn Val Thr His Cys Gln Ile Cys His Gly
 355 360 365
 Ile Pro Pro Trp Glu Lys Glu Asn Leu Ser Asp Phe Gly Asp Phe Asp
 370 375 380
 Asp Ala Asn Lys Glu Gln
 385 390

<210> 3

<211> 610

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 3
 Met Ala Thr Phe Tyr Glu Val Ile Val Arg Val Pro Phe Asp Val Glu
 1 5 10 15
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asp Trp Val Thr Gly
 20 25 30
 Gln Ile Trp Glu Leu Pro Pro Glu Ser Asp Leu Asn Leu Thr Leu Val
 35 40 45
 Glu Gln Pro Gln Leu Thr Val Ala Asp Arg Ile Arg Arg Val Phe Leu
 50 55 60
 Tyr Glu Trp Asn Lys Phe Ser Lys Gln Glu Ser Lys Phe Phe Val Gln
 65 70 75 80
 Phe Glu Lys Gly Ser Glu Tyr Phe His Leu His Thr Leu Val Glu Thr
 85 90 95
 Ser Gly Ile Ser Ser Met Val Leu Gly Arg Tyr Val Ser Gln Ile Arg
 100 105 110
 Ala Gln Leu Val Lys Val Val Phe Gln Gly Ile Glu Pro Gln Ile Asn
 115 120 125
 Asp Trp Val Ala Ile Thr Lys Val Lys Lys Gly Ala Asn Lys Val
 130 135 140
 Val Asp Ser Gly Tyr Ile Pro Ala Tyr Leu Leu Pro Lys Val Gln Pro
 145 150 155 160
 Glu Leu Gln Trp Ala Trp Thr Asn Leu Asp Glu Tyr Lys Leu Ala Ala
 165 170 175
 Leu Asn Leu Glu Glu Arg Lys Arg Leu Val Ala Gln Phe Leu Ala Glu
 180 185 190
 Ser Ser Gln Arg Ser Gln Glu Ala Ala Ser Gln Arg Glu Phe Ser Ala
 195 200 205
 Asp Pro Val Ile Lys Ser Lys Thr Ser Gln Lys Tyr Met Ala Leu Val
 210 215 220
 Asn Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys Gln Trp Ile Gln
 225 230 235 240
 Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr Gly Asn Ser Arg
 245 250 255
 Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Thr Lys Ile Met Ser Leu
 260 265 270
 Thr Lys Ser Ala Val Asp Tyr Leu Val Gly Ser Ser Val Pro Glu Asp
 275 280 285
 Ile Ser Lys Asn Arg Ile Trp Gln Ile Phe Glu Met Asn Gly Tyr Asp
 290 295 300
 Pro Ala Tyr Ala Gly Ser Ile Leu Tyr Gly Trp Cys Gln Arg Ser Phe
 305 310 315 320
 Asn Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys
 325 330 335
 Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro Phe Tyr Gly Cys
 340 345 350
 Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Asp Lys
 355 360 365
 Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Asn Lys Val Val Glu
 370 375 380
 Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg Val Asp Gln Lys
 385 390 395 400
 Cys Lys Ser Ser Val Gln Ile Asp Ser Thr Pro Val Ile Val Thr Ser
 405 410 415
 Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu
 420 425 430
 His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe Glu Leu Thr Lys
 435 440 445
 Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp
 450 455 460
 Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe
 465 470 475 480

Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala Glu Lys Ser Leu
 485 490 495
 Lys Arg Pro Leu Gly Asp Val Thr Asn Thr Ser Tyr Lys Ser Leu Glu
 500 505 510
 Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro Arg Ser Ser Asp
 515 520 525
 Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn Trp Asn Ser Arg
 530 535 540
 Tyr Asp Cys Lys Cys Asp Tyr His Ala Gln Phe Asp Asn Ile Ser Asn
 545 550 555 560
 Lys Cys Asp Glu Cys Glu Tyr Leu Asn Arg Gly Lys Asn Gly Cys Ile
 565 570 575
 Cys His Asn Val Thr His Cys Gln Ile Cys His Gly Ile Pro Pro Trp
 580 585 590
 Glu Lys Glu Asn Leu Ser Asp Phe Gly Asp Phe Asp Asp Ala Asn Lys
 595 600 605
 Glu Gln
 610

<210> 4

<211> 724

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 4

Met Ser Phe Val Asp His Pro Pro Asp Trp Leu Glu Glu Val Gly Glu
 1 5 10 15
 Gly Leu Arg Glu Phe Leu Gly Leu Glu Ala Gly Pro Pro Lys Pro Lys
 20 25 30
 Pro Asn Gln Gln His Gln Asp Gln Ala Arg Gly Leu Val Leu Pro Gly
 35 40 45
 Tyr Asn Tyr Leu Gly Pro Gly Asn Gly Leu Asp Arg Gly Glu Pro Val
 50 55 60
 Asn Arg Ala Asp Glu Val Ala Arg Glu His Asp Ile Ser Tyr Asn Glu
 65 70 75 80
 Gln Leu Glu Ala Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala Asp
 85 90 95
 Ala Glu Phe Gln Glu Lys Leu Ala Asp Asp Thr Ser Phe Gly Gly Asn
 100 105 110
 Leu Gly Lys Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro Phe
 115 120 125
 Gly Leu Val Glu Glu Gly Ala Lys Thr Ala Pro Thr Gly Lys Arg Ile
 130 135 140
 Asp Asp His Phe Pro Lys Arg Lys Lys Ala Arg Thr Glu Glu Asp Ser
 145 150 155 160
 Lys Pro Ser Thr Ser Ser Asp Ala Glu Ala Gly Pro Ser Gly Ser Gln
 165 170 175
 Gln Leu Gln Ile Pro Ala Gln Pro Ala Ser Ser Leu Gly Ala Asp Thr
 180 185 190
 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala
 195 200 205
 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp
 210 215 220
 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro
 225 230 235 240

Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp
 245 250 255
 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr
 260 265 270
 Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln
 275 280 285
 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val
 290 295 300
 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr
 305 310 315 320
 Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp
 325 330 335
 Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys
 340 345 350
 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr
 355 360 365
 Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser
 370 375 380
 Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn
 385 390 395 400
 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser
 405 410 415
 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp
 420 425 430
 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln
 435 440 445
 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp
 450 455 460
 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly
 465 470 475 480
 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu
 485 490 495
 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr
 500 505 510
 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile
 515 520 525
 Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu
 530 535 540
 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg
 545 550 555 560
 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser
 565 570 575
 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro
 580 585 590
 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp
 595 600 605
 Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met
 610 615 620
 Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn
 625 630 635 640
 Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser
 645 650 655
 Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu
 660 665 670
 Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln
 675 680 685
 Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp
 690 695 700
 Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu
 705 710 715 720
 Thr Arg Pro Leu

<210> 5
<211> 588
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 5
Thr Ala Pro Thr Gly Lys Arg Ile Asp Asp His Phe Pro Lys Arg Lys
1 5 10 15
Lys Ala Arg Thr Glu Glu Asp Ser Lys Pro Ser Thr Ser Ser Asp Ala
20 25 30
Glu Ala Gly Pro Ser Gly Ser Gln Gln Leu Gln Ile Pro Ala Gln Pro
35 40 45
Ala Ser Ser Leu Gly Ala Asp Thr Met Ser Ala Gly Gly Gly Pro
50 55 60
Leu Gly Asp Asn Asn Gln Gly Ala Asp Gly Val Gly Asn Ala Ser Gly
65 70 75 80
Asp Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Val Thr Lys
85 90 95
Ser Thr Arg Thr Trp Val Leu Pro Ser Tyr Asn Asn His Gln Tyr Arg
100 105 110
Glu Ile Lys Ser Gly Ser Val Asp Gly Ser Asn Ala Asn Ala Tyr Phe
115 120 125
Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His Ser
130 135 140
His Trp Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Tyr Trp Gly
145 150 155 160
Phe Arg Pro Arg Ser Leu Arg Val Lys Ile Phe Asn Ile Gln Val Lys
165 170 175
Glu Val Thr Val Gln Asp Ser Thr Thr Ile Ala Asn Asn Leu Thr
180 185 190
Ser Thr Val Gln Val Phe Thr Asp Asp Asp Tyr Gln Leu Pro Tyr Val
195 200 205
Val Gly Asn Gly Thr Glu Gly Cys Leu Pro Ala Phe Pro Pro Gln Val
210 215 220
Phe Thr Leu Pro Gln Tyr Gly Tyr Ala Thr Leu Asn Arg Asp Asn Thr
225 230 235 240
Glu Asn Pro Thr Glu Arg Ser Ser Phe Phe Cys Leu Glu Tyr Phe Pro
245 250 255
Ser Lys Met Leu Arg Thr Gly Asn Asn Phe Glu Phe Thr Tyr Asn Phe
260 265 270
Glu Glu Val Pro Phe His Ser Ser Phe Ala Pro Ser Gln Asn Leu Phe
275 280 285
Lys Leu Ala Asn Pro Leu Val Asp Gln Tyr Leu Tyr Arg Phe Val Ser
290 295 300
Thr Asn Asn Thr Gly Gly Val Gln Phe Asn Lys Asn Leu Ala Gly Arg
305 310 315 320
Tyr Ala Asn Thr Tyr Lys Asn Trp Phe Pro Gly Pro Met Gly Arg Thr
325 330 335
Gln Gly Trp Asn Leu Gly Ser Gly Val Asn Arg Ala Ser Val Ser Ala
340 345 350
Phe Ala Thr Thr Asn Arg Met Glu Leu Glu Gly Ala Ser Tyr Gln Val
355 360 365
Pro Pro Gln Pro Asn Gly Met Thr Asn Asn Leu Gln Gly Ser Asn Thr
370 375 380

Tyr Ala Leu Glu Asn Thr Met Ile Phe Asn Ser Gln Pro Ala Asn Pro
 385 390 395 400
 Gly Thr Thr Ala Thr Tyr Leu Glu Gly Asn Met Leu Ile Thr Ser Glu
 405 410 415
 Ser Glu Thr Gln Pro Val Asn Arg Val Ala Tyr Asn Val Gly Gly Gln
 420 425 430
 Met Ala Thr Asn Asn Gln Ser Ser Thr Thr Ala Pro Ala Thr Gly Thr
 435 440 445
 Tyr Asn Leu Gln Glu Ile Val Pro Gly Ser Val Trp Met Glu Arg Asp
 450 455 460
 Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro Glu Thr Gly Ala
 465 470 475 480
 His Phe His Pro Ser Pro Ala Met Gly Gly Phe Gly Leu Lys His Pro
 485 490 495
 Pro Pro Met Met Leu Ile Lys Asn Thr Pro Val Pro Gly Asn Ile Thr
 500 505 510
 Ser Phe Ser Asp Val Pro Val Ser Ser Phe Ile Thr Gln Tyr Ser Thr
 515 520 525
 Gly Gln Val Thr Val Glu Met Glu Trp Glu Leu Lys Lys Glu Asn Ser
 530 535 540
 Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Asn Asn Tyr Asn Asp Pro
 545 550 555 560
 Gln Phe Val Asp Phe Ala Pro Asp Ser Thr Gly Glu Tyr Arg Thr Thr
 565 570 575
 Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Pro Leu
 580 585

<210> 6
 <211> 532
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/Note =
 synthetic construct

<400> 6

 Met Ser Ala Gly Gly Gly Pro Leu Gly Asp Asn Asn Gln Gly Ala
 1 5 10 15
 Asp Gly Val Gly Asn Ala Ser Gly Asp Trp His Cys Asp Ser Thr Trp
 20 25 30
 Met Gly Asp Arg Val Val Thr Lys Ser Thr Arg Thr Trp Val Leu Pro
 35 40 45
 Ser Tyr Asn Asn His Gln Tyr Arg Glu Ile Lys Ser Gly Ser Val Asp
 50 55 60
 Gly Ser Asn Ala Asn Ala Tyr Phe Gly Tyr Ser Thr Pro Trp Gly Tyr
 65 70 75 80
 Phe Asp Phe Asn Arg Phe His Ser His Trp Ser Pro Arg Asp Trp Gln
 85 90 95
 Arg Leu Ile Asn Asn Tyr Trp Gly Phe Arg Pro Arg Ser Leu Arg Val
 100 105 110
 Lys Ile Phe Asn Ile Gln Val Lys Glu Val Thr Val Gln Asp Ser Thr
 115 120 125
 Thr Thr Ile Ala Asn Asn Leu Thr Ser Thr Val Gln Val Phe Thr Asp
 130 135 140
 Asp Asp Tyr Gln Leu Pro Tyr Val Val Gly Asn Gly Thr Glu Gly Cys
 145 150 155 160
 Leu Pro Ala Phe Pro Pro Gln Val Phe Thr Leu Pro Gln Tyr Gly Tyr
 165 170 175
 Ala Thr Leu Asn Arg Asp Asn Thr Glu Asn Pro Thr Glu Arg Ser Ser
 180 185 190

Phe Phe Cys Leu Glu Tyr Phe Pro Ser Lys Met Leu Arg Thr Gly Asn
 195 200 205
 Asn Phe Glu Phe Thr Tyr Asn Phe Glu Glu Val Pro Phe His Ser Ser
 210 215 220
 Phe Ala Pro Ser Gln Asn Leu Phe Lys Leu Ala Asn Pro Leu Val Asp
 225 230 235 240
 Gln Tyr Leu Tyr Arg Phe Val Ser Thr Asn Asn Thr Gly Gly Val Gln
 245 250 255
 Phe Asn Lys Asn Leu Ala Gly Arg Tyr Ala Asn Thr Tyr Lys Asn Trp
 260 265 270
 Phe Pro Gly Pro Met Gly Arg Thr Gln Gly Trp Asn Leu Gly Ser Gly
 275 280 285
 Val Asn Arg Ala Ser Val Ser Ala Phe Ala Thr Thr Asn Arg Met Glu
 290 295 300
 Leu Glu Gly Ala Ser Tyr Gln Val Pro Pro Gln Pro Asn Gly Met Thr
 305 310 315 320
 Asn Asn Leu Gln Gly Ser Asn Thr Tyr Ala Leu Glu Asn Thr Met Ile
 325 330 335
 Phe Asn Ser Gln Pro Ala Asn Pro Gly Thr Thr Ala Thr Tyr Leu Glu
 340 345 350
 Gly Asn Met Leu Ile Thr Ser Glu Ser Glu Thr Gln Pro Val Asn Arg
 355 360 365
 Val Ala Tyr Asn Val Gly Gly Gln Met Ala Thr Asn Asn Gln Ser Ser
 370 375 380
 Thr Thr Ala Pro Ala Thr Gly Thr Tyr Asn Leu Gln Glu Ile Val Pro
 385 390 395 400
 Gly Ser Val Trp Met Glu Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp
 405 410 415
 Ala Lys Ile Pro Glu Thr Gly Ala His Phe His Pro Ser Pro Ala Met
 420 425 430
 Gly Gly Phe Gly Leu Lys His Pro Pro Pro Met Met Leu Ile Lys Asn
 435 440 445
 Thr Pro Val Pro Gly Asn Ile Thr Ser Phe Ser Asp Val Pro Val Ser
 450 455 460
 Ser Phe Ile Thr Gln Tyr Ser Thr Gly Gln Val Thr Val Glu Met Glu
 465 470 475 480
 Trp Glu Leu Lys Lys Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln
 485 490 495
 Tyr Thr Asn Asn Tyr Asn Asp Pro Gln Phe Val Asp Phe Ala Pro Asp
 500 505 510
 Ser Thr Gly Glu Tyr Arg Thr Thr Arg Pro Ile Gly Thr Arg Tyr Leu
 515 520 525
 Thr Arg Pro Leu
 530

<210> 7
 <211> 2307
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence:/Note =
 synthetic construct

<400> 7
 aggctctcat ttgttccccga gacgcctcgc agttcagacg tgactgttga tcccgctcct 60
 ctgcgaccgc tcaattggaa ttcaagtaaa taaagcgagt agtcatgtct tttgttgatc 120
 accctccaga ttgttggaa gaagtttgta aaggcttcgc cgagttttg ggccttgaag 180
 cgggcccacc gaaaccaaaa cccaatcagc accatcaaga tcaagccgt ggtcttgc 240
 tgcctggta taactatctc ggacccggaa acggctcga tcgaggagag cctgtcaaca 300
 gggcagacga ggtcgcgca gagcacgaca tctcgtacaa cgagcagctt gaggcgggag 360

acaaccccta cctcaagtac aaccacgcgg acgcccagtt tcaggagaag ctcgccgacg	420
acacatcctt cgggggaaac ctcggaaagg cagtcttca ggc当地agaaa agggttctcg	480
aacctttgg cctggttcaa gaggggtgcta agacggcccc taccggaaag cggatagacg	540
accactttcc aaaaagaaaag aaggctcgga cc当地agagga ctccaaagct tccacctcg	600
cagacgccga agctggaccc agcggatccc agcagctgca aatcccagcc caaccagct	660
caagtttggg agctgataca atgtctgcgg gaggtggcgg cccatgggc gacaataacc	720
aagggtccga tggagtggc aatgcctcg gagattggca ttgcgattcc acgtggatgg	780
gggacagagt cgtcaccaag tccacccgaa cctgggtgct gccagctac aacaaccacc	840
agtaccgaga gatcaaaaagc ggctccgtcg acggaagcaa cgccaaacgcc tactttggat	900
acagcacccc ctgggggtac ttgacttta accgcttca cagccactgg agccccccgag	960
actggcaaag actcatcaac aactactggg gttcagacc cgggtccctc agagtcaaaa	1020
tcttcaacat tcaagtcaaa gaggtcacgg tgaggactc caccaccacc atcgccaaca	1080
acctcaccc caccgtccaa gtgttacgg acgacgacta ccagctgccc tacgtcgctcg	1140
gcaacgggac cgagggtatgc ctggccgcct tcctccgca ggtcttacg ctgcccga	1200
acggtaacgc gacgctgaac cgc当地aca cagaaaatcc caccgagagg agcagcttct	1260
tctgcctaga gtactttccc agcaagatgc tgagaacggg caacaactt gagtttacct	1320
acaacttga ggaggtgccc ttccacttca gttcgcctc cagtcagaac ctgttcaagc	1380
tggccaaccc gctgggtggc cagtaactgt accgcttgcg gagcacaaat aacactggcg	1440
gagtcctagg caacaagaac ctggccggga gatacgccaa cacctacaaa aactggttcc	1500
cgggggccat gggccgaacc cagggttggg acctgggctc cggggtaaac cgcccccagtg	1560
tcagcgccctt cgccacgacc aataggatgg agctcgaggg cgc当地gttac caggtgccc	1620
cgc当地ccgaa cggcatgacc aacaacctcc agggcagcaa cacctatgcc ctggagaaca	1680
ctatgatctt caacagccag cggcgaacc cgggaccac cgc当地acgtac ctgcaggggca	1740
acatgctcat caccagcgag agcgagacgc agccgtgaa cgc当地ggcg tacaacgtcg	1800
gcgggcagat ggccaccaac aaccagagct ccaccactgc ccccgccacc ggcacgtaca	1860
acctccagga aatctgtgccc ggc当地gtgt ggatggagag ggacgtgtac ctccaaggac	1920
ccatctggc caagatccca gagacggggg cgc当地ttca cccctctccg gccatgggcg	1980
gattcggact caaacaccca cgc当地catga tgctcatcaa gaacacgcct gtgcccggaa	2040
atatcaccag cttctcgac gtgcccgtca gcagcttcat caccctgtac agcaccgggc	2100
aggtcaccgt ggagatggag tggagactca agaaggaaaa ctccaagagg tggaaacccag	2160
agatccagta cacaacaaac tacaacgacc cccagttgt ggacttgcc cggacagca	2220
ccgggaaata cagaaccacc agacctatcg gaacccgata ctttacccga ccccttaac	2280
ccattcatgt cgc当地accct caataaa	2307

<210> 8

<211> 2264

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 8

aggctctcat ttgttccga gacgcctcgc agttcagacg tgactgttga tcccgtcct	60
ctgc当地ccgc tcaattggaa ttcaagattg gtggaaagaa gttggtaag gtctcgca	120
gttttggc cttgaagcgg gcccaccgaa accaaaaccc aatcagcagc atcaagatca	180
agcccgttgt cttgtctgc ctggttataa ctatctcgga cccggaaacg gtctcgatcg	240
aggagagcct gtcaacaggg cagacgaggt cgc当地gagag cacgacatct cgtacaacga	300
gcagctttag gcgaggaca acccctacca cagactacaac cacgcccgc cgc当地ttca	360
ggagaagctc gcccacgaca catccttcgg gggaaacccctc gggaaaggcag tctttcaggc	420
caagaaaagg gttctcgacac cttttggcct ggttgaagag ggtgctaaga cggcccctac	480
cggaaagcgg atagacgacc actttccaaa aagaaagaag gctcgaccg aagaggactc	540
caaggcttcc acctcgctcag acgccc当地gc tgacccagc ggatcccagc agctgcaaaat	600
cccagcccaa ccagcctcaa gtttggagc tgatacaatg tctgc当地ggag gtggccggccc	660
attggccgac aataaccaag gtgcccgtgg agtgggcaat gcctcgggag attggcattg	720
cgattccacag tggatggggg acagactgt caccaagtcc acccgaaccc ggggtctgcc	780
cagctacaac acccaccaggc accgagagat caaaagcggc tccgtcgacg gaagcaacgc	840
caacgcctac tttggataca gcacccctg ggggtactt gactttaacc gcttccacag	900
ccactggagc ccccgagact ggccaaagact catcaacaaac tactgggct tcagaccccg	960
gtccctcaga gtcaaaaatct tcaacattca agtcaaaagag gtcacggc gaggactccac	1020

caccaccatc	gccaacaacc	tcacccctcac	cgtccaaagt	tttacggacg	acgactacca	1080
gctgccctac	gtcgccggca	acgggaccga	gggatgcctg	ccggccttcc	ctccgcagg	1140
ctttacgcgt	ccgcagtagc	gttacgcgac	gctgaaccgc	gacaacacag	aaaatcccac	1200
cgagaggagc	agcttcttct	gccttagagta	cttcccgac	aagatgtga	gaacgggcaa	1260
caacttgag	tttacctaca	actttgagga	ggtgccttc	cactccagct	tcgctcccag	1320
tcagaacctg	ttcaagctgg	ccaaccgct	ggtgaccag	tacttgtacc	gcttcgtgag	1380
cacaataaac	actggcggag	tccagttcaa	caagaacctg	gccggagat	acgccaacac	1440
ctacaaaaac	tggccccgg	ggcccatggg	ccgaacccag	ggctgaacc	tgggctccgg	1500
ggtaaccgc	gccagtgtca	gcgccttcgc	cacgaccaat	aggatggagc	tcgagggcgc	1560
gagttaccag	gtgccccgc	agccgaacgg	catgaccaac	aacccagg	gcagcaacac	1620
ctatgccctg	gagaacacta	tgatcttcaa	cagccagccg	gcaacccgg	gcaccaccgc	1680
cacgtaccc	gagggcaaca	tgctcatcac	cagcgagagc	gagacgcagc	cggtgaacc	1740
cgtggcgta	aacgtcgccg	ggcagatggc	caccaacaac	cagactcca	ccactgccc	1800
cgcgaccggc	acgtacaacc	tccagggaaat	cgtccccggc	agcgtgtgga	tggagaggg	1860
cgtgtaccc	caaggaccca	tctggccaa	gatcccagag	acggggcgc	actttcaccc	1920
ctctccggcc	atggcggat	tcggactcaa	acacccaccg	cccatgatgc	tcatcaagaa	1980
cacgcctgtg	cccggaaata	tcaccagctt	ctcgacgtg	cccgtcagca	gcttcatcac	2040
ccagtagc	accgggcagg	tcaccgtgga	gatggagtgg	gagctcaaga	aggaaaactc	2100
caagaggtgg	aaccagaga	tccagtagac	aaacaactac	aacgacccccc	agtttgtgga	2160
cttgcctcc	gacagcaccg	ggaaatacag	aaccaccaga	cctatcgaa	cccgataacct	2220
tacccgaccc	cttaacc	ttcatgtcgc	ataccctcaa	taaa		2264

<210> 9
<211> 2264
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 9						
aggctctcat	ttgttcccg	gacgcctcgc	agttcagacg	tgactgttga	tcccgcct	60
ctgcgaccgc	tcaattggaa	ttcaagattg	gttggaaagaa	gttggtaag	gtcttcgcga	120
gttttgggc	cttgaagcgg	gcccacccaa	acaaaaaccc	aatcagcagc	atcaagatca	180
agcccggtt	cttgcgtgc	ctggttataa	ctatctcgga	cccggaaacg	gtctcgatcg	240
aggagagcct	gtcaacacagg	cagacgaggt	cgcgcgagag	cacgacatct	cgtacaacga	300
gcagctttag	gccccggacca	acccctaccc	caagtacaac	cacgcggacg	ccgagtttca	360
ggagaagctc	gccgacgaca	catccttcgg	ggaaaaccc	ggaaaggcag	tctttcaggc	420
caagaaaagg	gttctcgaa	ctttggcct	gttggaaagag	gttgcataaga	cgccccctac	480
cggaaagcgg	atagacgacc	actttccaaa	aagaaagaag	gctcgaccc	aagaggactc	540
caaggcttcc	acctcgtag	acgcgcgaa	tgacccacg	ggatcccacg	agctgcaa	600
cccagcccaa	ccagcctaa	gtttgggagc	tgatacaatg	tctgcgggag	gtggcggccc	660
attggcgac	aataaccaag	gtgcccgttgg	agtgggcaat	gcctcgggag	attggcattg	720
cgattccacg	tggatgggg	acagagtcgt	caccaagtcc	acccgaacct	gggtgctgcc	780
cagctacaac	aaccaccagt	accgagagat	caaagcggc	tccgtcgacg	gaagcaacgc	840
caacgcctac	tttggataca	gcacccctg	gggtacttt	gactttaacc	gcttccacag	900
ccactggagc	ccccgagact	ggcaaagact	catcaacaaac	tactgggct	ttagaccccg	960
gtccctcaga	gtcaaaatct	tcaacattca	agtcaaaagag	gtcacggtgc	aggactccac	1020
caccaccatc	gccaacaacc	tcacccctcac	cgtccaaagt	tttacggacg	acgactacca	1080
gctgccctac	gtcgccggca	acgggaccga	gggatgcctg	ccggccttcc	ctccgcagg	1140
ctttacgcgt	ccgcagtagc	gttacgcgac	gctgaaccgc	gacaacacag	aaaatcccac	1200
cgagaggagc	agcttcttct	gccttagagta	cttcccgac	aagatgtga	gaacgggcaa	1260
caacttgag	tttacctaca	actttgagga	ggtgccttc	cactccagct	tcgctcccag	1320
tcagaacctg	ttcaagctgg	ccaaccgct	ggtgaccag	tacttgtacc	gcttcgtgag	1380
cacaataaac	actggcggag	tccagttcaa	caagaacctg	gccggagat	acgccaacac	1440
ctacaaaaac	tggccccgg	ggcccatggg	ccgaacccag	ggctgaacc	tgggctccgg	1500
ggtaaccgc	gccagtgtca	gcgccttcgc	cacgaccaat	aggatggagc	tcgagggcgc	1560
gagttaccag	gtgccccgc	agccgaacgg	catgaccaac	aacccagg	gcagcaacac	1620
ctatgccctg	gagaacacta	tgatcttcaa	cagccagccg	gcgaacccgg	gcaccaccgc	1680
cacgtaccc	gagggcaaca	tgctcatcac	cagcgagac	gagacgcagc	cggtgaacc	1740

cgtggcgtac aacgtcggcg ggcagatggc caccaacaac cagagctcca ccactgccc	1800
cgcgaccggc acgtacaacc tccagggaaat cgtgcccggc agcgtgtgga tggagaggga	1860
cgtgtaccc caaggacca tctggccaa gatcccagag acggggcgc actttcaccc	1920
ctctccggcc atggcggat tcggactcaa acacccaccc cccatgatgc tcataaga	1980
cacgcctgtg cccggaaata tcaccagctt ctcggacgtg cccgtcagca gcttcatcac	2040
ccagtagc accgggcagg tcaccgtgga gatggagtgg gagctcaaga aggaaaactc	2100
caagaggtgg aaccagaga tccagtacac aaacaactac aacgaccccc agtttgtgaa	2160
ctttcccccg gacagcaccg ggaaatacag aaccaccaga cctatcgaa cccgataacct	2220
tacccgaccc cttaacca ttcatgtcgc ataccctcaa taaa	2264

<210> 10
<211> 1292
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 10

agcgcaaacg gctcgctcg cagttctgg cagaatcctc gcagcgctcg caggaggcgg	60
cttcgcagcg tgagttctcg gctgacccgg tcataaaaag caagacttcc cagaaataca	120
tggcgctcgta caactggctc gtggagcacg gcatcacttc cgagaagcag tggatccagg	180
aaaatcagga gagctaccc tccttcaact ccacccggca ctctcgagc cagatcaagg	240
ccgcgctcgca caacgcgacc aaaattatga gtctgacaaa aagcgcgtg gactacctcg	300
tggggagctc cgttcccggag gacattcaa aaaacagaat ctggcaaatt tttgagatga	360
atggctacga cccggcctac gcgggatcca tcctctacgg ctgggttcag cgctccttca	420
acaagaggaa caccgtctgg ctctacggac ccgcacgcg cggcaagacc aacatcgccg	480
aggccatcgc ccacactgtg ccctttacg gctgcgtgaa ctggaccaat gaaaacttcc	540
ccttaatga ctgtgtggac aaaatgtca tttgggtggaa ggagggaaag atgaccaaca	600
aggtggttga atccgccaag gccatcctgg gggctcaaa ggtgcgggtc gatcagaat	660
gtaaatcctc tgttcaaatt gattctaccc ctgtcattgt aacttccaat acaaacatgt	720
gtgtgggttggatggatggat tccacgaccc ttgaacacca gcagccgtg gaggaccgca	780
tgttcaaatt tgaactgact aaggcggtcc cgccagatt tggcaagatt actaaggcagg	840
aagtcaagga ctttttgtc tggcaaaagg tcaatcagggt gcccggact caccgttta	900
aagtcccgag ggaattggcg ggaactaaag gggcggagaa atctctaaaa cggccactgg	960
gtgacgtcacaatactagc tataaaagtc tggagaagcg gcccggact tcatttggc	1020
ccgagacgcc tcgcagttca gacgtgactg ttgatccccgc tcctctgcga cccgtcaatt	1080
ggaattcaag gtatgattgc aaatgtgact atcatgctca atttgacaaat atttctaaca	1140
aatgtgatga atgtgaatat ttgaatcgaa gcaaaaaatgg atgtatctgt cacaatgtaa	1200
ctcaactgtca aatttgcatt gggattcccc cctggggaaaa ggaaaaacttg tcagattttg	1260
gggattttga cgatgcaat aaagaacagt aa	1292

<210> 11
<211> 1870
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 11

attctttgtc ctggactgct agaggaccct cgctgcccatt gctaccttct atgaagtcat	60
tgttcgcgtc ccatttgacg tggaggaaca tctgcctgaa atttctgaca gctttgtgga	120
ctggtaact ggtcaaaattt gggagctgcc tccagactca gatttaaatt tgactctggt	180
tgaacagcct cagttgacgg tggctgatag aattcgccgc gtgttctgt acgagtggaa	240
caaattttcc aagcaggagt ccaaattctt tggcgtt gaaaaggat ctgaatattt	300
tcatctgcac acgcttgg agacccctgg catcttccat gtcgttcccg gcccgtacgt	360
gagtcagatt cgcccccggc tggtaaaat ggtcttcccg ggaattgaac cccagatcaa	420

cgactgggtc	gccatcacca	aggtaaagaa	ggcgaggcc	aataagggtgg	tggattctgg	480
gtatattccc	gcctacctgc	tgccgaaggt	ccaaccggag	cttcagtggg	cgtggacaaa	540
cctggacgag	tataaattgg	ccgcccgtaa	tctggaggag	cgcaaacggc	tcgtcgccgca	600
gtttctggca	gaatcctcg	agcgctcgca	ggaggcggct	tcgcagcgtg	agttctcgcc	660
tgaccggtc	atcaaaaagca	agacttcca	gaaatacatg	gcgctcgtca	actggctcg	720
ggagcacggc	atcaacttcg	agaagcagtg	gatccaggaa	aatcaggaga	gctacctctc	780
cttcaactcc	accggcaact	ctcgagcca	gatcaaggcc	gcgctcgaca	acgcgaccaa	840
aattatgagt	ctgacaaaaaa	gcgcgggtgga	ctacctcg	gggagctccg	ttccccgagga	900
catttcaaaa	aacagaatct	ggcaaatttt	tgagatgaat	ggctacgacc	ccgcctacgc	960
gggatccatc	ctctacggct	ggtgtcagcg	ctcctcaac	aagagaaaca	ccgtctggct	1020
ctacggaccc	gccacgaccg	gcaagaccaa	catcgccgag	gccatcgccc	acactgtgcc	1080
cttttacggc	tgctgtact	ggaccaatga	aaactttcc	tttaatgact	gtgtggacaa	1140
aatgctcatt	tgggggagg	agggaaagat	gaccaacaag	gtggttgaat	ccgccaaggc	1200
catcctgggg	ggctcaaagg	tgcggtcga	tcagaaatgt	aaatccctcg	ttcaaatttg	1260
ttctaccctt	gtcattgtaa	cttccaatac	aaacatgtgt	gtgggtgtgg	atgggaattc	1320
cacgacctt	gaacaccagc	agccgctgga	ggacccatg	ttcaaaatttg	aactgactaa	1380
gcggctcccg	ccagatttt	gcaagattac	taagcagggaa	gtcaaggact	ttttgtcttg	1440
ggcaaaggc	aatcaggtgc	cggtgactca	cgagttaaa	gttcccaggg	aattggcggg	1500
aactaaaggg	gcggagaaat	ctctaaaacg	cccactgggt	gacgtcacca	atactagcta	1560
taaaagtctg	gagaagcggg	ccaggctctc	atttggtccc	gagacgcctc	gcagttcaga	1620
cgtgactgtt	gatcccgctc	ctctgcgacc	gctcaattgg	aattcaaggt	atgattgcaa	1680
atgtgactat	catgctcaat	ttgacaacat	ttctaaca	tgtgatgaat	gtgaatattt	1740
gaatcggggc	aaaaatggat	gtatctgtca	caatgtaaact	caactgtcaaa	tttgcatgg	1800
gattcccccc	tggaaaagg	aaaacttgc	agattttggg	gattttgacg	atgccaataa	1860
agaacagtaa						1870

<210> 12

<211> 330

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 12

Met	Ala	Leu	Val	Asn	Trp	Leu	Val	Glu	His	Gly	Ile	Thr	Ser	Glu	Lys
1						5			10					15	
Gln	Trp	Ile	Gln	Glu	Asn	Gln	Glu	Ser	Tyr	Leu	Ser	Phe	Asn	Ser	Thr
									20			25		30	

Gly	Asn	Ser	Arg	Ser	Gln	Ile	Lys	Ala	Ala	Leu	Asp	Asn	Ala	Thr	Lys
35						40					45				

Ile	Met	Ser	Leu	Thr	Lys	Ser	Ala	Val	Asp	Tyr	Leu	Val	Gly	Ser	Ser
50						55				60					

Val	Pro	Glu	Asp	Ile	Ser	Lys	Asn	Arg	Ile	Trp	Gln	Ile	Phe	Glu	Met
65						70			75			80			

Asn	Gly	Tyr	Asp	Pro	Ala	Tyr	Ala	Gly	Ser	Ile	Leu	Tyr	Gly	Trp	Cys
85									90			95			

Gln	Arg	Ser	Phe	Asn	Lys	Arg	Asn	Thr	Val	Trp	Leu	Tyr	Gly	Pro	Ala
100								105			110				

Thr	Thr	Gly	Lys	Thr	Asn	Ile	Ala	Glu	Ala	Ile	Ala	His	Thr	Val	Pro
115								120			125				

Phe	Tyr	Gly	Cys	Val	Asn	Trp	Thr	Asn	Glu	Asn	Phe	Pro	Phe	Asn	Asp
130								135			140				

Cys	Val	Asp	Lys	Met	Leu	Ile	Trp	Trp	Glu	Glu	Gly	Lys	Met	Thr	Asn
145								150			155		160		

Lys	Val	Val	Glu	Ser	Ala	Lys	Ala	Ile	Leu	Gly	Gly	Ser	Lys	Val	Arg
165									170			175			

Val	Asp	Gln	Lys	Cys	Lys	Ser	Ser	Val	Gln	Ile	Asp	Ser	Thr	Pro	Val
180								185			190				

Ile Val Thr Ser Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser
 195 200 205
 Thr Thr Phe Glu His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe
 210 215 220
 Glu Leu Thr Lys Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln
 225 230 235 240
 Glu Val Lys Asp Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val
 245 250 255
 Thr His Glu Phe Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala
 260 265 270
 Glu Lys Ser Leu Lys Arg Pro Leu Gly Asp Val Thr Asn Thr Ser Tyr
 275 280 285
 Lys Ser Leu Glu Lys Arg Ala Arg Leu Ser Phe Val Pro Glu Thr Pro
 290 295 300
 Arg Ser Ser Asp Val Thr Val Asp Pro Ala Pro Leu Arg Pro Leu Asn
 305 310 315 320
 Trp Asn Ser Arg Leu Val Gly Arg Ser Trp
 325 330

<210> 13

<211> 1115

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 13

aggagcgc	aa acggctcg	tc gcg	actt tc	tcg cag	gc tcg	caggagg	60
cggttc	gcgtgagt	tcggct	gacc	cgtcata	aagcaaga	cact	120
acatggcg	cgtcaact	ctcg	tgagg	acggcatc	ttccgaga	ag cagtgat	180
aggaaaat	ca ggagct	ctct	ccctca	actccacc	caactctcg	gaggatca	240
aggccgcg	cgacaac	acc	aaaaat	ttagtctg	aaaaaagc	gtggactacc	300
tcgtgggg	atccgttccc	gaggacatt	tttttttt	aatctgg	aaatctgg	gaga	360
tgaatggc	ta gacccgg	ccat	ccat	ccat	ccat	ccat	420
tcaacaag	gaa	ccat	ccat	ccat	ccat	ccat	480
cgaggggc	cat	gtgc	cccc	acgg	gact	ggacc	540
ttcccttta	tgactgtgt	gacaaaat	tttttgg	tttttgg	tttttgg	tttttgg	600
acaagggt	tgaatccg	tttttgg	tttttgg	tttttgg	tttttgg	tttttgg	660
aatgttaat	ctctgttcaa	attgatt	ccctgt	ccctgt	ccctgt	ccctgt	720
tgtgtgtgt	gttggatgg	atttccac	ccctt	ccctt	ccctt	ccctt	780
gcatgttca	atttgaact	actaagc	ccccc	ccccc	ccccc	ccccc	840
aggaagtca	ggacttttt	ttttgg	ttttgg	ttttgg	ttttgg	ttttgg	900
ttaaagtcc	cagggaaatt	actaagc	ttttgg	ttttgg	ttttgg	ttttgg	960
tgggtgac	gttggatgg	ttttgg	ttttgg	ttttgg	ttttgg	ttttgg	1020
ttcccgag	accaataact	ttttgg	ttttgg	ttttgg	ttttgg	ttttgg	1080
atttggaaat	ttttgg	ttttgg	ttttgg	ttttgg	ttttgg	ttttgg	1115

<210> 14

<211> 550

<212> PRT

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 14

Met Ala Thr Phe Tyr	Glu Val Ile Val Arg Val Pro Phe Asp Val Glu	1	5	10	15
---------------------	---	---	---	----	----

Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asp Trp Val Thr Gly
 20 25 30
 Gln Ile Trp Glu Leu Pro Pro Glu Ser Asp Leu Asn Leu Thr Leu Val
 35 40 45
 Glu Gln Pro Gln Leu Thr Val Ala Asp Arg Ile Arg Arg Val Phe Leu
 50 55 60
 Tyr Glu Trp Asn Lys Phe Ser Lys Gln Glu Ser Lys Phe Phe Val Gln
 65 70 75 80
 Phe Glu Lys Gly Ser Glu Tyr Phe His Leu His Thr Leu Val Glu Thr
 85 90 95
 Ser Gly Ile Ser Ser Met Val Leu Gly Arg Tyr Val Ser Gln Ile Arg
 100 105 110
 Ala Gln Leu Val Lys Val Val Phe Gln Gly Ile Glu Pro Gln Ile Asn
 115 120 125
 Asp Trp Val Ala Ile Thr Lys Val Lys Lys Gly Gly Ala Asn Lys Val
 130 135 140
 Val Asp Ser Gly Tyr Ile Pro Ala Tyr Leu Leu Pro Lys Val Gln Pro
 145 150 155 160
 Glu Leu Gln Trp Ala Trp Thr Asn Leu Asp Glu Tyr Lys Leu Ala Ala
 165 170 175
 Leu Asn Leu Glu Glu Arg Lys Arg Leu Val Ala Gln Phe Leu Ala Glu
 180 185 190
 Ser Ser Gln Arg Ser Gln Glu Ala Ala Ser Gln Arg Glu Phe Ser Ala
 195 200 205
 Asp Pro Val Ile Lys Ser Lys Thr Ser Gln Lys Tyr Met Ala Leu Val
 210 215 220
 Asn Trp Leu Val Glu His Gly Ile Thr Ser Glu Lys Gln Trp Ile Gln
 225 230 235 240
 Glu Asn Gln Glu Ser Tyr Leu Ser Phe Asn Ser Thr Gly Asn Ser Arg
 245 250 255

 Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Thr Lys Ile Met Ser Leu
 260 265 270
 Thr Lys Ser Ala Val Asp Tyr Leu Val Gly Ser Ser Val Pro Glu Asp
 275 280 285
 Ile Ser Lys Asn Arg Ile Trp Gln Ile Phe Glu Met Asn Gly Tyr Asp
 290 295 300
 Pro Ala Tyr Ala Gly Ser Ile Leu Tyr Gly Trp Cys Gln Arg Ser Phe
 305 310 315 320
 Asn Lys Arg Asn Thr Val Trp Leu Tyr Gly Pro Ala Thr Thr Gly Lys
 325 330 335
 Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro Phe Tyr Gly Cys
 340 345 350
 Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp Cys Val Asp Lys
 355 360 365
 Met Leu Ile Trp Trp Glu Glu Gly Lys Met Thr Asn Lys Val Val Glu
 370 375 380
 Ser Ala Lys Ala Ile Leu Gly Gly Ser Lys Val Arg Val Asp Gln Lys
 385 390 395 400
 Cys Lys Ser Ser Val Gln Ile Asp Ser Thr Pro Val Ile Val Thr Ser
 405 410 415
 Asn Thr Asn Met Cys Val Val Val Asp Gly Asn Ser Thr Thr Phe Glu
 420 425 430
 His Gln Gln Pro Leu Glu Asp Arg Met Phe Lys Phe Glu Leu Thr Lys
 435 440 445
 Arg Leu Pro Pro Asp Phe Gly Lys Ile Thr Lys Gln Glu Val Lys Asp
 450 455 460
 Phe Phe Ala Trp Ala Lys Val Asn Gln Val Pro Val Thr His Glu Phe
 465 470 475 480
 Lys Val Pro Arg Glu Leu Ala Gly Thr Lys Gly Ala Glu Lys Ser Leu
 485 490 495

<210> 15

<211> 1690

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 15

attcttgct ctggactgct agaggaccct cgctgccatg gctaccttct atgaagtcata
tgttcgcgtc ccatttgacg tggaggaaca tctgcctgga atttctgaca gctttgtgga 120
ctgggttaact ggtcaaaattt gggagctgcc tccagagtca gatttaaatt tgactctggt 180
tgaacagcct cagttgacgg tggctgatag aattcgccgc gtgttccctgt acgagtgaa 240
caaatttcc aagcaggagt ccaaattctt tgtgcagtt gaaaaggat ctgaatattt 300
tcatctgcac acgcttgtgg agacctccgg catctcttcc atggcctcg gccgctacgt 360
gagtcagatt cgcccccggc tggtaaaagt ggtcttccag ggaattgaac cccagatcaa 420
cgactgggtc gcacatcacca aggtaaagaa gggcggagcc aataaggtgg tggattctgg 480
gtatattccc gcctacctgc tgccgaaggt ccaaccggag cttcagtgaaa cgtggacaaa 540
cctggacgag tataaattgg ccgcctgaa tctggaggag cgcaaacggc tcgtcgcgca 600
gtttctggca gaatctcgca agcgctcgca ggaggcggct tcgcagcgtg agttctcgca 660
tgacccggtc atcaaaaagca agacttcca gaaatacatg gcgcgtcgtca actggctcgt 720
ggagcacggc atcaacttccg agaagcagtg gatccaggaa aatcaggaga gctacctctc 780
cttcaactcc accggcaact ctcggagcca gatcaaggcc ggcgtcgtaca acgcgaccaa 840
aattatgagt ctgacaaaaaa ggcgcgttggaa tacctcgat gggagctccg ttccccgagga 900
catttcaaaa aacagaatct ggcaaaattt tgagatgaat ggctacgacc cggcctacgc 960
gggatccatc ctctacggct ggtgtcagcg ctccttcaac aagaggaaca ccgtctggct 1020
ctacggaccc gccacgaccg gcaagaccaa catcgccggag gccatcgccc acacttgcc 1080
cttttacggc tgcgtgaact ggaccaatga aaactttccc ttaatgact gtgtggacaa 1140
aatgctcatt tgggtggagg agggaaagat gaccaacaag gtggttgaat ccggccaaaggc 1200
catcctgggg ggctcaaagg tgcgggtcga tcagaaaatgt aaatccctgt ttcaaaattga 1260
ttctaccctt gtcattgtaa ctccaaatac aaacatgtgt gtgggtgtgg atgggaattc 1320
cacgaccctt gaacaccaggc agccgctggc ggaccgcata ttcaaaatttg aactgactaa 1380
gcggctcccg ccagattttg gcaagattac taagcaggaa gtcaaggact ttttgcgtt 1440
ggcaaaaggc aatcagggtgc cgggtactca cgagttaaa gttcccgagg aattggcgaa 1500
aactaaaggc gcccggagaaat ctctaaaacg cccactgggt gacgtcaccatactagcta 1560
taaaaagtctg gagaagcggg ccaggctctc atttgcgttcc gagacgcctc gcagttcaga 1620
cgtgactgtt gatccccgtc ctctgcgacc gctcaattgg aattcaagat tggttggaaag 1680
aagttgggtga 1690

<210> 16

<211> 145

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 16

ccatcaccaa ggtaaagaag ggcggagcca ataagggttgt ggattctggg tatattcccg
cctacctgct gccgaaggtc caaccggagc ttcaagtgggc gtggacaaac ctggacgagt

ataaaattggc cgccctgaat ctgga 145

<210> 17
<211> 174
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 17
taaggcaggaa gtcaaggact ttttgcttg ggcaaagggtc aatcaggtgc cggactca 60
cgagttaaa gttcccaggg aattggcggg aactaaaggg gcggagaaat ctctaaaacg 120
cccaactgggt gacgtcacca atactagcta taaaagtctg gagaagcggg ccag 174

<210> 18
<211> 187
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 18
caactctcaag caagggggtt ttgttaagcag ttagtgcata atgtatgtat gcttattgtc 60
acgcgcatagt taatgattaa cagtcatgtg atgtttta tccaaatagga agaaaagcgcg 120
cgtatgagtt ctcgcgagac ttccgggta taaaagaccg agtgaacgag cccgcccaca 180
ttctttg 187

<210> 19
<211> 168
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 19
aaacccctt gctttagtgt gtggcactct ccccccgttc gcttcgttc gctcgctggc 60
tcgtttgggg gggcgacggc tcaaagagct gccagacgac gggccctctgg ccgtcgcccc 120
ccaaacgag ccagcgagcg agcgaacgag acagggggga gagtgc 168

<210> 20
<211> 168
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 20
aaacccctt gctttagtgt gtggcactct ccccccgttc gcttcgttc gctcgctggc 60
tcgtttgggg gggcgacggc cagaggcccg tcgtctgccc gctctttgag ctgccacccc 120
ccaaacgag ccagcgagcg agcgaacgag acagggggga gagtgc 168

<210> 21
<211> 8

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 21
cggtgtga 8

<210> 22
<211> 8
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 22
cggttgag 8

<210> 23
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:/Note =
synthetic construct

<400> 23
caaaaacctcc ttgcttgaga g 21

<210> 24
<211> 4675
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; Note =
synthetic construct

<400> 24
ttggccactc cctctctgcg cgctcgctcg ctcaactgagg ccggggcgacc aaagggtcgcc
cgacgccccgg gctttgcccgg ggcggccctca gtgagcgagc gagcgcgcag agagggagtg 60
gccaaactcca tcacttagggg ttcctggagg ggtggagtcg tgacgtgaat tacgtcatag 120
ggtagggag gtcctgtatt agaggtcacg tgagtgtttt gcgacatttt gcgacaccat 180
gtggtcacgc tgggtattta agcccgagtg agcacgcagg gtctccattt tgaagcggga 240
ggtttgaacg cgcagccgccc atgcccgggt tttacgagat tgtgattaag gtccccagcg 300
accttgacgg gcatctgccc ggcatttctg acagctttgt gaactgggtg gccgagaagg 360
aatgggagtt gcccggagat tctgacatgg atctgaatct gattgagcag gcacccctga 420
ccgtggccga gaagctgcag cgcaacttc tgacggaatg ggcggcgatg agtaaggccc 480
cggaggccct tttctttgtg caatttggaa agggagagag ctacttccac atgcacgtgc 540
tcgtggaaac caccggggtg aaatccatgg tttggggacg tttcctgagt cagattcgcg 600
aaaaactgat tcagagaatt taccgcggaa tcgagccgac tttgccaaac tggttcgccg 660
tcacaaagac cagaaatggc gccggaggcg ggaacaagggt ggtggatgag tgctacatcc 720
ccaatttactt gctccccaaa acccagcctg agctccagtg ggcgtggact aatatggAAC 780
agtatttaag cgcctgtttg aatctcacgg agcgtaaacg gttgggtggcg cagcatctga 840
cgcacgtgtc gcagacgcag gagcagaaca aagagaatca gaatccaaat tctgatgcgc 900
960

cggtgatca	atcaaaaact tcagccaggt acatggagct ggtcgggtgg ctcgtggaca	1020
aggggattac	ctcgagaag cagtggatcc aggaggacca ggcctcatac atctccttca	1080
atgcggcctc	caactcgccg tcccaaatac aggtgcctt ggacaatgcg gaaaagatta	1140
tgagcctgac	taaaaccgcc cccgactacc tggtgggcca gcagccctg gaggacattt	1200
ccagcaatcg	gatttataaa attttggAAC taaacggta cgatccccaa tatgcggctt	1260
ccgtctttct	gggatgggccc acgaaaaagt tcggcaagag gaacaccatc tgctgttttgc	1320
ggcctgcaac	taccgggaag accaacatcg cgaggccat agcccacact gtcccttct	1380
acgggtgcgt	aaactggacc aatgagaact ttcccttcaa cgactgtgtc gacaagatgg	1440
tgatctggtg	ggaggagggg aagatgaccg ccaaggtcggt ggagtccggcc aaagccattc	1500
tcggaggaag	caagggtgcgc gtggaccaga aatgcacgtc ctggcccaag atagacccga	1560
ctcccgtat	cgtcacctcc aacaccaaca tgtgcgcgt gattgacggg aactcaacga	1620
ccttcgaaca	ccagcagccg ttgcaagacc ggatgttcaa atttgaactc acccgccgtc	1680
tggatcatga	ctttgggaag gtcaccaagc aggaagtcaa agacttttc cgtggggcaa	1740
aggatcacgt	ggttgggtg gagcatgaat tctacgtcaa aaagggtgga gccaagaaaa	1800
gaccggcccc	cagtgacgca gatataagt agcccaaacg ggtgcgcgag tcagttgcgc	1860
agccatcgac	gtcagacgca gaaaccttca tcaactacgc agacaggta caaaacaaat	1920
gttctcgta	cgtggcatg aatctgatgc tgttccctg cagacaatgc gagagaatga	1980
atcagaattc	aaatatctgc ttcaactcacg gacagaaaaga ctgttagag tgctttcccg	2040
tgtcagaatc	tcaacccgtt tctgtcgta aaaaggcgta tcagaaactg tgctacattc	2100
atcatatcat	gggaaaggtg ccagacgctt gcactgcctg cgatctggc aatgtggatt	2160
tggatgactg	catctttgaa caataaatga tttaaatcag gtatggctgc cgatggttat	2220
cttccagatt	ggctcgagga cactctctc gaaggaataa gacagtggtg gaagctcaaa	2280
cctggcccac	caccacaaa gcccgcagag cggcataagg acgacagcag gggcttgc	2340
cttcctgggt	acaagttacct cggacccttca aacggactcg acaagggaga gccggtaac	2400
gaggcagacg	ccgccccctc cgagcacgta caaaggctac gaccggcagc tgacagcgg	2460
agacaacccg	tacctaagt acaaccacgc cgacgcggag tttcaggagc gccttaaaga	2520
agatacgtct	tttggggca acctcgacg agcagtctt cagggaaaa agagggttct	2580
tgaacctctg	ggcctgggtt aggaacctgt taagacggct cggggaaaa agaggccgt	2640
agagcactct	cctgtggagc cagactcctc ctgggaacc gggaaaggccg gccagcagcc	2700
tgcaagaaaa	agattgaatt ttgtcagac tggagacgca gactcagta ctgacccccca	2760
gcctctcgga	cagccaccag cagcccccctc tggctggga actaatacga tggctacagg	2820
cagtggcgc	ccaatggcag acaataacga gggcgccgac ggagtggta attcctccgg	2880
aaattggcat	tgcgattcca catggatgg cgacagatc atcaccacca gcacccgaac	2940
ctggggccctg	cccacctaca acaaccacct ctacaaaacaa atttccagcc aatcaggagc	3000
ctcgaacgcac	aatcactact ttggctacag cacccttgg ggttatattt acttcaacag	3060
attccactgc	cactttcac cacgtgactg gcaaaagactc atcaacaaca actggggatt	3120
ccgacccaag	agactcaact tcaagcttta taacattcaa gtcaaagagg tcacgcagaa	3180
tgacggta	acgacgattt ccaataacct taccagcagc gttcaggtgt ttactgactc	3240
ggagtaccag	ctccctgtacg tcctcggtc ggcgcataaa ggatgcctcc cgccgttccc	3300
agcagacgtc	ttcatggtgc cacagtatgg atacctcacc ctgaacaacg ggagtcaagg	3360
agtaggacgc	tcttcatttt actgccttga gtactttctc ttcagatgc tgcgtaccgg	3420
aaacaactt	accttcagct acactttga ggacgttctc ttccacagca gtaacgtc	3480
cagccagagt	ctggaccgtc tcatgaatcc tctcatcgac cagtacgtt attacttgag	3540
cagaacaaac	actccaagtg gaaccaccac gcagtcaagg cttcagttt ctcaggccgg	3600
agcgagtgc	attcgggacc agtcttagaa ctggcttctc ggaccctgtt accggcagca	3660
gcgagttatca	aagacatctg cggataacaa caacagtgaa tactcgttga ctggagctac	3720
caagtaccac	ctcaatggca gagactctt ggtgaatccg gccatggcaa gccacaaagg	3780
cgtgaagaa	aagtttttc ctcagagccg ggttctcattc ttggaaaggc aaggctcaga	3840
gaaaacaaat	gtgaacattt gaaaggatcat gattacagac gaagaggaaa tcgaaacaac	3900
caatccctgt	gctacggagc agtatggttc tgatctacc aacctccaga gaggcaacag	3960
acaaggcagct	accgcagatg tcaacacaca aggcttctt ccaggcatgg tctggcagga	4020
cagagatgt	tacccctcagg gggccatctg ggcaaaagatt ccacacacgg acggacattt	4080
tcacccctct	ccccatcggt gtggatttccg acttaaacac cctccctccac agattctcat	4140
caagaacacc	ccggtacctg cgaatccctc gaccacccatc agtgcggcaa agtttgc	4200
cttcatcaca	cagtactcca cgggacacgg tcagcgttga gatcgagtgg gagctgcaga	4260
aggaaaacag	caaacgctgg aatcccggaa ttcaactac ttcaactac aacaagtctg	4320
ttaatcgtgg	acttaccgtg gatactaatttgc gcgtgttattc agacgcctcgcccattggca	4380
ccagatactt	gactcgtaat ctgtatggc ttgttaatca ataaaccgtt taattcgtt	4440
cagttgaact	ttggctctcg cgtatatttttctt tcttatcttag ttccatggc tacgttagata	4500
agttagcatgg	cgggtaatc attaactaca aggaacccct agtgtatggag ttggccactc	4560
cctctctgcg	cgctcgctcg ctcaactgagg ccggcgcacc aaaggtcgcc cgacgccccgg	4620

gctttgcccg ggccgcctca gtgagcgagc gagcgcgac agagggagtg gccaa

4675

<210> 25
<211> 735
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence; Note =
synthetic construct

<400> 25
Met Ala Ala Asp Gly Tyr Leu Pro Asp Trp Leu Glu Asp Thr Leu Ser
1 5 10 15
Glu Gly Ile Arg Gln Trp Trp Lys Leu Lys Pro Gly Pro Pro Pro
20 25 30
Lys Pro Ala Glu Arg His Lys Asp Asp Ser Arg Gly Leu Val Leu Pro
35 40 45
Gly Tyr Lys Tyr Leu Gly Pro Phe Asn Gly Leu Asp Lys Gly Glu Pro
50 55 60
Val Asn Glu Ala Asp Ala Ala Leu Glu His Asp Lys Ala Tyr Asp
65 70 75 80
Arg Gln Leu Asp Ser Gly Asp Asn Pro Tyr Leu Lys Tyr Asn His Ala
85 90 95
Asp Ala Glu Phe Gln Glu Arg Leu Lys Glu Asp Thr Ser Phe Gly Gly
100 105 110
Asn Leu Gly Arg Ala Val Phe Gln Ala Lys Lys Arg Val Leu Glu Pro
115 120 125
Leu Gly Leu Val Glu Glu Pro Val Lys Thr Ala Pro Gly Lys Lys Arg
130 135 140
Pro Val Glu His Ser Pro Val Glu Pro Asp Ser Ser Ser Gly Thr Gly
145 150 155 160
Lys Ala Gly Gln Gln Pro Ala Arg Lys Arg Leu Asn Phe Gly Gln Thr
165 170 175
Gly Asp Ala Asp Ser Val Pro Asp Pro Gln Pro Leu Gly Gln Pro Pro
180 185 190
Ala Ala Pro Ser Gly Leu Gly Thr Asn Thr Met Ala Thr Gly Ser Gly
195 200 205
Ala Pro Met Ala Asp Asn Asn Glu Gly Ala Asp Gly Val Gly Asn Ser
210 215 220
Ser Gly Asn Trp His Cys Asp Ser Thr Trp Met Gly Asp Arg Val Ile
225 230 235 240
Thr Thr Ser Thr Arg Thr Trp Ala Leu Pro Thr Tyr Asn Asn His Leu
245 250 255
Tyr Lys Gln Ile Ser Ser Gln Ser Gly Ala Ser Asn Asp Asn His Tyr
260 265 270
Phe Gly Tyr Ser Thr Pro Trp Gly Tyr Phe Asp Phe Asn Arg Phe His
275 280 285
Cys His Phe Ser Pro Arg Asp Trp Gln Arg Leu Ile Asn Asn Asn Trp
290 295 300
Gly Phe Arg Pro Lys Arg Leu Asn Phe Lys Leu Phe Asn Ile Gln Val
305 310 315 320
Lys Glu Val Thr Gln Asn Asp Gly Thr Thr Ile Ala Asn Asn Leu
325 330 335
Thr Ser Thr Val Gln Val Phe Thr Asp Ser Glu Tyr Gln Leu Pro Tyr
340 345 350
Val Leu Gly Ser Ala His Gln Gly Cys Leu Pro Pro Phe Pro Ala Asp
355 360 365
Val Phe Met Val Pro Gln Tyr Gly Tyr Leu Thr Leu Asn Asn Gly Ser
370 375 380

Gln Ala Val Gly Arg Ser Ser Phe Tyr Cys Leu Glu Tyr Phe Pro Ser
 385 390 395 400
 Gln Met Leu Arg Thr Gly Asn Asn Phe Thr Phe Ser Tyr Thr Phe Glu
 405 410 415
 Asp Val Pro Phe His Ser Ser Tyr Ala His Ser Gln Ser Leu Asp Arg
 420 425 430
 Leu Met Asn Pro Leu Ile Asp Gln Tyr Leu Tyr Tyr Leu Ser Arg Thr
 435 440 445
 Asn Thr Pro Ser Gly Thr Thr Gln Ser Arg Leu Gln Phe Ser Gln
 450 455 460
 Ala Gly Ala Ser Asp Ile Arg Asp Gln Ser Arg Asn Trp Leu Pro Gly
 465 470 475 480
 Pro Cys Tyr Arg Gln Gln Arg Val Ser Lys Thr Ser Ala Asp Asn Asn
 485 490 495
 Asn Ser Glu Tyr Ser Trp Thr Gly Ala Thr Lys Tyr His Leu Asn Gly
 500 505 510
 Arg Asp Ser Leu Val Asn Pro Gly Pro Ala Met Ala Ser His Lys Asp
 515 520 525
 Asp Glu Glu Lys Phe Phe Pro Gln Ser Gly Val Leu Ile Phe Gly Lys
 530 535 540
 Gln Gly Ser Glu Lys Thr Asn Val Asp Ile Glu Lys Val Met Ile Thr
 545 550 555 560
 Asp Glu Glu Glu Ile Arg Thr Thr Asn Pro Val Ala Thr Glu Gln Tyr
 565 570 575
 Gly Ser Val Ser Thr Asn Leu Gln Arg Gly Asn Arg Gln Ala Ala Thr
 580 585 590
 Ala Asp Val Asn Thr Gln Gly Val Leu Pro Gly Met Val Trp Gln Asp
 595 600 605
 Arg Asp Val Tyr Leu Gln Gly Pro Ile Trp Ala Lys Ile Pro His Thr
 610 615 620
 Asp Gly His Phe His Pro Ser Pro Leu Met Gly Gly Phe Gly Leu Lys
 625 630 635 640
 His Pro Pro Pro Gln Ile Leu Ile Lys Asn Thr Pro Val Pro Ala Asn
 645 650 655
 Pro Ser Thr Thr Phe Ser Ala Ala Lys Phe Ala Ser Phe Ile Thr Gln
 660 665 670
 Tyr Ser Thr Gly Gln Val Ser Val Glu Ile Glu Trp Glu Leu Gln Lys
 675 680 685
 Glu Asn Ser Lys Arg Trp Asn Pro Glu Ile Gln Tyr Thr Ser Asn Tyr
 690 695 700
 Asn Lys Ser Val Asn Val Asp Phe Thr Val Asp Thr Asn Gly Val Tyr
 705 710 715 720
 Ser Glu Pro Arg Pro Ile Gly Thr Arg Tyr Leu Thr Arg Asn Leu
 725 730 735

<210> 26
 <211> 621
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence; Note =
 synthetic construct

<400> 26
 Met Pro Gly Phe Tyr Glu Ile Val Ile Lys Val Pro Ser Asp Leu Asp
 1 5 10 15
 Glu His Leu Pro Gly Ile Ser Asp Ser Phe Val Asn Trp Val Ala Glu
 20 25 30
 Lys Glu Trp Glu Leu Pro Pro Asp Ser Asp Met Asp Leu Asn Leu Ile
 35 40 45

Glu Gln Ala Pro Leu Thr Val Ala Glu Lys Leu Gln Arg Asp Phe Leu
 50 55 60
 Thr Glu Trp Arg Arg Val Ser Lys Ala Pro Glu Ala Leu Phe Phe Val
 65 70 75 80
 Gln Phe Glu Lys Gly Glu Ser Tyr Phe His Met His Val Leu Val Glu
 85 90 95
 Thr Thr Gly Val Lys Ser Met Val Leu Gly Arg Phe Leu Ser Gln Ile
 100 105 110
 Arg Glu Lys Leu Ile Gln Arg Ile Tyr Arg Gly Ile Glu Pro Thr Leu
 115 120 125
 Pro Asn Trp Phe Ala Val Thr Lys Thr Arg Asn Gly Ala Gly Gly Gly
 130 135 140
 Asn Lys Val Val Asp Glu Cys Tyr Ile Pro Asn Tyr Leu Leu Pro Lys
 145 150 155 160
 Thr Gln Pro Glu Leu Gln Trp Ala Trp Thr Asn Met Glu Gln Tyr Leu
 165 170 175
 Ser Ala Cys Leu Asn Leu Thr Glu Arg Lys Arg Leu Val Ala Gln His
 180 185 190
 Leu Thr His Val Ser Gln Thr Gln Glu Gln Asn Lys Glu Asn Gln Asn
 195 200 205
 Pro Asn Ser Asp Ala Pro Val Ile Arg Ser Lys Thr Ser Ala Arg Tyr
 210 215 220
 Met Glu Leu Val Gly Trp Leu Val Asp Lys Gly Ile Thr Ser Glu Lys
 225 230 235 240
 Gln Trp Ile Gln Glu Asp Gln Ala Ser Tyr Ile Ser Phe Asn Ala Ala
 245 250 255
 Ser Asn Ser Arg Ser Gln Ile Lys Ala Ala Leu Asp Asn Ala Gly Lys
 260 265 270
 Ile Met Ser Leu Thr Lys Thr Ala Pro Asp Tyr Leu Val Gly Gln Gln
 275 280 285
 Pro Val Glu Asp Ile Ser Ser Asn Arg Ile Tyr Lys Ile Leu Glu Leu
 290 295 300
 Asn Gly Tyr Asp Pro Gln Tyr Ala Ala Ser Val Phe Leu Gly Trp Ala
 305 310 315 320
 Thr Lys Lys Phe Gly Lys Arg Asn Thr Ile Trp Leu Phe Gly Pro Ala
 325 330 335
 Thr Thr Gly Lys Thr Asn Ile Ala Glu Ala Ile Ala His Thr Val Pro
 340 345 350
 Phe Tyr Gly Cys Val Asn Trp Thr Asn Glu Asn Phe Pro Phe Asn Asp
 355 360 365
 Cys Val Asp Lys Met Val Ile Trp Trp Glu Glu Gly Lys Met Thr Ala
 370 375 380
 Lys Val Val Glu Ser Ala Lys Ala Ile Leu Gly Ser Lys Val Arg
 385 390 395 400
 Val Asp Gln Lys Cys Lys Ser Ser Ala Gln Ile Asp Pro Thr Pro Val
 405 410 415
 Ile Val Thr Ser Asn Thr Asn Met Cys Ala Val Ile Asp Gly Asn Ser
 420 425 430
 Thr Thr Phe Glu His Gln Gln Pro Leu Gln Asp Arg Met Phe Lys Phe
 435 440 445
 Glu Leu Thr Arg Arg Leu Asp His Asp Phe Gly Lys Val Thr Lys Gln
 450 455 460
 Glu Val Lys Asp Phe Phe Arg Trp Ala Lys Asp His Val Val Glu Val
 465 470 475 480
 Glu His Glu Phe Tyr Val Lys Lys Gly Gly Ala Lys Lys Arg Pro Ala
 485 490 495
 Pro Ser Asp Ala Asp Ile Ser Glu Pro Lys Arg Val Arg Glu Ser Val
 500 505 510
 Ala Gln Pro Ser Thr Ser Asp Ala Glu Ala Ser Ile Asn Tyr Ala Asp
 515 520 525
 Arg Tyr Gln Asn Lys Cys Ser Arg His Val Gly Met Asn Leu Met Leu

530	535	540
Phe Pro Cys Arg Gln Cys	Glu Arg Met Asn Gln	Asn Ser Asn Ile Cys
545	550	555
Phe Thr His Gly Gln Lys Asp Cys Leu Glu Cys Phe Pro Val Ser Glu		560
565	570	575
Ser Gln Pro Val Ser Val Val Lys Lys Ala Tyr Gln Lys Leu Cys Tyr		
580	585	590
Ile His His Ile Met Gly Lys Val Pro Asp Ala Cys Thr Ala Cys Asp		
595	600	605
Leu Val Asn Val Asp Leu Asp Asp Cys Ile Phe Glu Gln		
610	615	620