Strengths and Weaknesses of KASUMI: Analysis and Testing of the Cipher

Candidate: Teresa Tanzi Supervisor: Andrea Visconti

April 21, 2022

Context

Purpose:

- · analysis of the encryption algorithm used in 3G
- · implementation of an attack

Mobile telecommunication system:

- 7.1 bilion of smartphone users \rightarrow 89.9% of the global population
- 600 PB of voice call and packet data transmitted everyday
- wireless channel → necessity of encryption

KASUMI

KASUMI:

- · 64-bit block cipher
- 128-bit key K
- · 8 rounds
- recursive Feistel structure
- · linear key schedule

 \implies used in OFB mode as a stream cipher in f8, A5/3 and GEA3

State of the art

Attacks on KASUMI:

- single-key differential attacks
- related-key differential attacks

Sandwich and rectangle+ attacks

Sandwich:

- adaptive chosen plaintext and ciphertext
- · 4 related keys
- 2²⁶ data
- 232 encryptions
- 76% success rate

⇒ practically feasible

Rectangle+:

- chosen plaintext
- · 4 related keys
- 2^{41.6} data
- 2^{41.6} encryptions
- 95% success rate

Both based on the same 7-round related-key differential

- 1. Data collection:
 - a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$

1. Data collection:

a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$

- 1. Data collection:
 - a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$

- 1. Data collection:
 - a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$

- a. Generate 2^{24} pairs (C_a, C_b) s.t.
- $C_a^R = A$ and $P_b = P_a \oplus \alpha$ b. Generate 2^{24} pairs (C_c, C_d) s.t.
- $C_c^R = A \oplus \delta^L \text{ and } P_d = P_c \oplus \alpha$

- a. Generate 2²⁴ pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$
- b. Generate 2^{24} pairs (C_c, C_d) s.t.

$$C_c^R = A \oplus \delta^L$$
 and $P_d = P_c \oplus \alpha$

- a. Generate 2^{24} pairs (C_a, C_b) s.t.
- $C_a^R = A$ and $P_b = P_a \oplus \alpha$ b. Generate 2^{24} pairs (C_c, C_d) s.t.

$$C_c^R = A \oplus \delta^L$$
 and $P_d = P_c \oplus \alpha$

- a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$
- b. Generate 2^{24} pairs (C_c, C_d) s.t. $C_c^R = A \oplus \delta^L$ and $P_d = P_c \oplus \alpha$

- a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$
- b. Generate 2^{24} pairs (C_c, C_d) s.t. $C_c^R = A \oplus \delta^L$ and $P_d = P_c \oplus \alpha$
- c. Keep quartets (C_a, C_b, C_c, C_d) for which $C_b^R \oplus C_d^R = \delta^L$

1. Data collection:

- a. Generate 2^{24} pairs (C_a, C_b) s.t. $C_a^R = A$ and $P_b = P_a \oplus \alpha$
- b. Generate 2^{24} pairs (C_c, C_d) s.t. $C_c^R = A \oplus \delta^L$ and $P_d = P_c \oplus \alpha$
- c. Keep quartets (C_a, C_b, C_c, C_d) for which $C_b^R \oplus C_d^R = \delta^L$
- 2. Identifying the right quartets:

Keep quartets (C_a, C_b, C_c, C_d) for which $C_a^L \oplus C_c^L = const.$

⇒ right quartets

3. Analyzing right quartets:

- 3. Analyzing right quartets:
 - a. Guess $KO_{8,1}$ and $KI_{8,1} \rightarrow KL_{8,2}$

- 3. Analyzing right quartets:
 - a. Guess $KO_{8,1}$ and $KI_{8,1} \rightarrow KL_{8,2}$

- 3. Analyzing right quartets:
 - a. Guess $KO_{8,1}$ and $KI_{8,1} \rightarrow KL_{8,2}$
 - b. Guess $KO_{8,3}$ and $KI_{8,3} \rightarrow KL_{8,1}$

- 3. Analyzing right quartets:
 - a. Guess $KO_{8,1}$ and $KI_{8,1} \rightarrow KL_{8,2}$
 - b. Guess $KO_{8,3}$ and $KI_{8,3} \rightarrow KL_{8,1}$
- 4. Find the right key:
 - Guess the remaining bits of K and perform trial encryptions \Rightarrow correct key

Right quartets distribution

Theoretical distribution: Poisson with rate 4 Empirical success rate: 77.5% (theoretical: 76.1%)

Execution time (1)

Phases 1-2: 30 s

Phase 3:

1-2 min

on a standard machine

Phase 4: ~ 15 min per exhaustive search

Execution time (2)

Conclusions

Sandwich attack:

- · good execution time
- faster and higher success rate with more initial data

Rectangle+ attack:

- · unfeasible in practice
- implementable in a distributed fashion exploiting some big data processing framework

Not applicable to the 3G stream ciphers, but showing that KASUMI is not secure

©

Thank you for your attention