#### Sistemas de Numeração

Alexsandro Santos Soares prof.asoares@gmail.com

Universidade Federal de Uberlândia Faculdade de Computação

## Introdução

- A computação utiliza vários sistemas de numeração.
- Os computadores usam o binário, base 2, que somente possui dois símbolos para cada posição numérica: 0 ou 1.
- Programadores usam uma notação abreviada para representar números binários, a hexadecimal (base 16).
- Programadores também usam o sistema decimal, base 10.
- De vez em quando, também encontramos aplicações que usam a base 256.
- Como todos estes sistemas são usados em C, precimos de uma compreensão básica de cada um para entender verdadeiramente a linguagem.

#### Sistema posicional

- Todos os sistemas de numeração do slide anterior são posicionais:
  - A posição de um símbolo em relação aos outros símbolos determina seu valor.
- Nos inteiros e na parte inteira de um número real, a posição inicia com 0 e segue até n-1, com n sendo o número de símbolos na parte inteira.
- Na parte fracionária dos números reais, a posição inicia com -1 e vai até m, com m sendo o número de símbolos na parte fracionária.
- A cada posição é atribuído um peso que varia de acordo com a base usada.

### Números decimais (base 10)

- Todos já conhecemos os números decimais.
- O sistema decimal utiliza 10 símbolos para representar valores numéricos: 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9.
- Na figura abaixo, o número decimal 14782.721 possui oito dígitos nas posições de -3 a 4.

Note que

$$14782.721 = 1 \times 10^{4} + 4 \times 10^{3} + 7 \times 10^{2} + 8 \times 10^{1} + 2 \times 10^{0} + 7 \times 10^{-1} + 2 \times 10^{-2} + 1 \times 10^{-3}$$

• No sistema decimal, cada peso é 10 elevado à potência de sua posição.

#### Conversão de binário para decimal

- No sistema numérico binário, base 2, cada peso é igual a 2 elevado à potência de sua posição.
- Para converter um número binário para decimal, multiplicamos cada dígito por seu peso e somamos todos os resultados ponderados.
- Na figura a seguir é ilustrado o processo de converter o binário 1001110.101 para o seu equivalente decimal 78.625.



#### Conversão de decimal para binário – parte inteira

- Para converter de decimal para binário, separamos a parte inteira da fracionária.
- Para converter a parte inteira usamos o método das divisões sucessivas:
  - Dividimos o número por 2 e escrevemos o resto, que deve ser 0 ou 1. O primeiro resto torna-se o dígito binário menos significativo.
  - 2 Tomamos o quociente da divisão e novamente o dividimos por 2 e escrevemos o novo resto na segunda posição.
  - 3 Repetimos esse processo até que o quociente torne-se zero.

#### Exemplo de conversão da parte inteira para binário

Imagine que se deseje saber a representação binária do número decimal 78. Usando as divisões sucessivas, teremos



Logo,

$$(78)_{10} = (1001110)_2$$

#### Conversão de decimal para binário – parte fracionária

- Para converter a parte fracionária usamos as multiplicações sucessivas:
  - Multiplicamos o número por 2 e escrevemos a parte inteira desse produto, que deve ser 0 ou 1. Essa parte inteira torna-se um dígito binário.
  - ② Tomamos a parte fracionária da multiplicação e novamente a multiplicamos por 2, pegamos a parte inteira e a usamos como o próximo dígito binário.
  - 3 Repetimos esse processo até que o produto torne-se zero.
- Precisamos limitar o processo de multiplicações sucessivas pois o produto pode nunca se tornar zero. Assim, decidimos quantos dígitos precisamos no lado direito do número binário e paramos quando tivermos alcançado essa quantidade.

## Exemplo de conversão da parte fracionária para binário

Imagine que se deseje saber a representação binária do número decimal 0.625. Usando as multiplicações sucessivas, teremos

Desta forma,

$$(0.625)_{10} = (0.101)_2$$

#### Exemplo de conversão de decimal para binário

Na figura abaixo é esquematizado o processo para a obtenção da representação binária do número decimal 78.625.



Portanto,

$$(78.625)_{10} = (1001110.101)_2$$

#### Conversão de hexadecimal para decimal

- No sistema numérico hexadecimal, base 16, usamos 16 símbolos  $0, 1, \ldots, 9, A, B, C, D, E, F$  para os dígitos.
  - Os mesmos símbolos que a representação decimal mas, ao invés de 10, 11, 12, 13, 14 e 15, usamos A, B, C, D, E, F, respectivamente.
- Cada peso é igual a 16 elevado à potência de sua posição.
- Para converter um número hexadecimal para decimal, multiplicamos cada dígito por seu peso e somamos todos os resultados ponderados.
- Na figura a seguir é ilustrado o processo de converter o hexadecimal 3A73.A0C para o seu equivalente decimal 14 963.628.



#### Conversão de decimal para hexadecimal

- Para converter um número decimal em sua representação hexadecimal, procedemos de forma análoga ao que fizemos com a representação binária:
  - Separamos a parte inteira da fracionária.
  - Convertemos a parte inteira usando divisões sucessivas por 16.
  - Convertermos a parte fracionária usando multiplicações sucessivas por 16.

#### Exemplo de conversão da parte inteira para hexadecimal

Imagine que se deseje saber a representação hexadecimal do número decimal 14 963. Usando as divisões sucessivas, teremos



Logo,

$$(14963)_{10} = (3A73)_{16}$$

# Exemplo de conversão da parte fracionária para hexadecimal

Imagine que se deseje saber a representação hexadecimal do número decimal 0.628. Usando as multiplicações sucessivas, teremos

Desta forma,

$$(0.628)_{10} \approx (0.AOC)_{16}$$

Note que limitamos o número de dígitos hexadecimais em 3 na parte fracionária.

#### Exemplo de conversão de decimal para hexadecimal

Na figura abaixo é esquematizado o processo para a obtenção da representação hexadecimal do número decimal 14 963.628.



Portanto,

$$(14963.628)_{10} \approx (3A73.A0C)_{16}$$

#### Base 256

- A base 256 é normalmente usada em duas situações:
  - Criar um número a partir de bytes individuais.
  - Endereços IP da Internet.
- A conversão de um número na base 256 para decimal é similar à conversão de números binários e hexadecimais mas, agora, os pesos são potências de 256.
- Também, a conversão de números decimais para a base 256, segue a lógica das divisões sucessivas por 256, usando o resto como dígito.

#### Conversão de byte para decimal

Abaixo temos quatro bytes individuais, cada um contendo um número inteiro sem sinal entre 0 e 255. Às vezes, precisamos considerar vários destes bytes como um número.



O valor do número inteiro contido nestes quatro bytes é então

$$7 \times 256^3 + 14 \times 256^2 + 22 \times 256^1 + 130 \times 256^0 = 118363778$$

#### Comparação de três sistemas numéricos

• Na tabela abaixo é mostrado como os três sistemas representam os números decimais de 0 a 15.

| Decimal | Binário | Hexadecimal |  |  |  |  |
|---------|---------|-------------|--|--|--|--|
| 0       | 0       | 0           |  |  |  |  |
| 1       | 1       | 1           |  |  |  |  |
| 2       | 10      | 2           |  |  |  |  |
| 3       | 11      | 3           |  |  |  |  |
| 4       | 100     | 4           |  |  |  |  |
| 5       | 101     | 5           |  |  |  |  |
| 6       | 110     | 6           |  |  |  |  |
| 7       | 111     | 7           |  |  |  |  |
| 8       | 1000    | 8           |  |  |  |  |
| 9       | 1001    | 9           |  |  |  |  |
| 10      | 1010    | A           |  |  |  |  |
| 11      | 1011    | В           |  |  |  |  |
| 12      | 1100    | C           |  |  |  |  |
| 13      | 1101    | D           |  |  |  |  |
| 14      | 1110    | E           |  |  |  |  |
| 15      | 1111    | F           |  |  |  |  |

#### Outras conversões

- Ao convertermos números da base 2 para a 16 ou da base 16 para a 256 podemos usar a base 10 como intermediária.
  - Para mudar um número de binário para hexadecimal, primeiro convertemos o número de binário para decimal e depois de decimal para hexadecimal.
- Entretanto, existem maneiras mais fáceis de realizar estas conversões sempre que as bases em questão forem potências de 2.

#### Conversão de binário para hexadecimal

Para converter um número de binário para hexadecimal, agrupamos os dígitos binários da direita para a esquerda em grupos de quatro.

Depois convertemos cada grupo de quatro bits em seu equivalente hexadecimal usando a tabela vista no slide anterior.

No exemplo a seguir é ilustrada a técnica para converter o binário 1010001110 para hexadecimal.



#### Conversão de hexadecimal para binário

Para converter de hexadecimal para binário, convertemos cada dígito hexadecimal em seu equivalente binário usando a tabela vista anteriormente e concatenamos os resultados.

No exemplo a seguir é ilustrada a técnica para converter o hexadecimal 28E para binário.



#### Armazenando inteiros

- Discutimos como inteiros e números reais são representados em diferentes bases.
- Embora as bases 16 e 256 sejam usadas na ciência da computação, os dados são armazenados no computador em binário.
  - Números devem ser convertidos para a base 2 antes de serem armazenados.
- Ignoramos, até agora, o sinal do número.
- Vamos nos concentrar agora em como números inteiros são armazenados no computador e depois veremos a situação para os reais.

#### Inteiros sem sinal

- Armazenar inteiros sem sinal é direto:
  - O número é convertido em sua representação binária e depois armazenado.
- Na figura abaixo vemos como inteiros sem sinal de 0 a 15 podem ser armazenados como inteiros de 4 bits.



- A adição de inteiros sem sinal é simples desde que não haja overflow.
- Já a subtração deve ser realizada com cautela pois, se o resultado for negativo o número não será um inteiro sem sinal.
  - Em geral, os computadores promovem o resultado para um inteiro com sinal.

#### Inteiros com sinal

- Armazenar inteiros com sinal é diferente de armazenar inteiros sem sinal pois devemos converter tantos os números positivos quanto os negativos.
- Discutiremos quadro métodos para armazenar inteiros com sinal em um computador:
  - Sinal e magnitude.
  - Complemento para um.
  - Complementos para dois.
  - Sistema excesso-N.

#### Sinal e magnitude

- No sinal e magnitude dividimos o intervalo disponível entre os números positivos e negativos.
  - A parte inferior do intervalo fica com os números positivos.
  - A parte superior, fica com os negativos.
- Para conseguirmos isso, usamos o bit mais à esquerda para representar o sinal e os bits restantes para representar o valor absoluto do número (a magnitude).
- No exemplo abaixo vemos como um inteiro de 4 bits pode manter os números positivos e negativos do intervalo [-7, +7].



- Note que o bit mais à esquerda contém o sinal: 0 é positivo e 1 é negativo.
- Existem dois zeros: +0 (0000) e -0 (1000).

#### Complemento para um

- O complemento para um é similar ao sinal e magnitude mas, a partição do intervalo entre números positivos e negativos é diferente.
  - Os números são arranjados simetricamente.
- Um número positivo e um negativo são simétricos em relação ao meio do intervalo.



#### Propriedades do complemento para um



As propriedades do complemento para um são:

- O bit mais à esquerda contém o sinal.
- 2 Existem dois zeros.
- 3 Para inverter o sinal de um número, inverte-se cada bit individualmente.
- **1** Se somarmos A + (-A) obtemos -0 (todos os bits são 1).
- **⑤** Para somar A + B, somamos os números bit a bit. Para subtrair A B, somamos A ao complemento de B, ou seja, A B = A + (-B). A única coisa a considerar é adicionar o vai-um produzido na última coluna do resultado.

# Exemplos de somas e subtrações com complemento para um

Somas

Subtrações (adicione o primeiro com o complemento do segundo)

| 3     | ( |   |   |   |   |       |   |   |   |   | , |
|-------|---|---|---|---|---|-------|---|---|---|---|---|
|       |   |   | 1 | 1 |   |       |   |   | 1 |   |   |
| (+3)  |   | 0 | 0 | 1 | 1 | (-3)  |   | 1 | 1 | 0 | 0 |
| -(+4) | + | 1 | 0 | 1 | 1 | -(-2) | + | 0 | 0 | 1 | 0 |
| (-1)  |   | 1 | 1 | 1 | 0 | (-1)  | - | 1 | 1 | 1 | 0 |

## Complemento para dois

- $\bullet$  O complemento para dois de um número com N bits é definido como o complemento em relação a  $2^N.$ 
  - Por exemplo, para o número de 4 bits 0010  $(2_{10})$ , o complemento para dois é 0110, pois 0010+0110=10000.
  - $\bullet\,$  Note que  $2^N$  em binário é representado por 1 seguido de N zeros.
- O bit mais significativo (MSB) é o sinal: O para positivo e 1 para negativo.
- Os números positivos são representados na sua forma binária direta.
- Os números negativos são representados na forma de complemento para 2.
  - Por exemplo, para encontrar a representação em 4 bits de -5, calculamos  $2^4 5_{10} = (16 5)_{10} = 11_{10} = 1011_2$ . Aqui operamos na base 10 e apenas convertemos para binário no final.



### Propriedades do complemento para dois

- O bit mais à esquerda contém o sinal: O para positivo e 1 para negativo.
- Existe somente um zero neste método: 0 (0000).
- Para mudar o sinal de um número precisamos de duas operaçãoes. Primeiro precisamos inverter cada bit individualmente e depois adicionar 1.

- Se somarmos A + (-A) obteremos 0.
- Para somar A + B basta somar os números bit a bit. Para subtrair (A B), somamos A com o complemento de B. Se houver um vai um, basta descartá-lo.



# Exemplos de somas e subtrações com complemento para dois

Somas

Subtrações (adicione o primeiro com o complemento do segundo)

A maioria dos computadores modernos utiliza complemento para dois para armazenar inteiros com sinal.

#### Armazenando e recuperando em complemento para dois

- Vamos entender como uma função de leitura, tal como scanf, converte um número decimal inteiro com sinal em um complemento para dois.
- Veremos também o inverso: como uma função de saída, tal como printf, converte um número em complemento para dois em um decimal inteiro com sinal.
- No próximo slide há dois algoritmos de alto nível, expressos como fluxogramas, que poderiam ser usados por estas funções.

#### Armazenando e recuperando em complemento para dois





## Exemplo 1 de armazenamento em complemento para dois



Seguiremos o algoritmo para ver como +76 é armazenado como um inteiro de 16 bits.

O valor absoluto do número (76) é convertido para um número binário de 16 dígitos.

O sinal é positivo, assim o número é armazenado na memória como está.

Número decimal:

 $\pm 76$ 

Converte o valor absoluto:

0000000001001100

Valor armazenado:

0000000001001100

## Exemplo 2 de armazenamento em complemento para dois



Seguiremos o algoritmo para ver como -76 é armazenado como um inteiro de 16 bits.

O valor absoluto do número (76) é convertido para um número binário de 16 dígitos.

O sinal é negativo, assim precisamos do complemento do número e depois adicionar 1 ao resultado antes de armazená-lo na memória.

 Número decimal:
 -76

 Converte o valor absoluto:
 000000001001100

 Complemento:
 111111111011001

 Soma 1:
 1111111111011000

Valor armazenado: 1111111110110100

#### Exemplo de recuperação em complemento para dois



Seguiremos o algoritmo para ver como um valor armazenado como um inteiro de 16 bits é recuperado.

O processo é mostrado a seguir

Valor recuperado: 1111111111101011 (sinal -)

Complemento: 000000000010100 Soma 1: 000000000010101

Converte para decimal: 21
Acrescenta o sinal: -21

O valor recuperado é negativo, assim o sinal é guardado para ser acrescentado no final.

O número é então complementado e 1 é adicionado ao resultado.

O resultado é convertido para decimal e o sinal é acrescentado.

### Excesso-N

- Existem aplicações que necessitam mais comparações numéricas que operações aritméticas.
   Para esses casos o IEEE criou uma estratégia chamada Excesso N
- Para esses casos o IEEE criou uma estratégia chamada Excesso-N para armazenar inteiros com sinal.
- A ideia é adicionar um valor fixo N, chamado de valor de polarização, ao número de tal forma que qualquer número negativo no sistema torne-se não-negativo ao ser armazenado na memória.
- A figura a seguir mostra inteiros de 4 bits representados em Excesso-7. Note que o intervalo vai de -7 a 8 e que tantos os números negativos quanto os positivos são armazenados como inteiros sem sinal.



#### Overflow

- Um problema ocorre quando dois números somados produzem um resultado que necessita de mais bits para ser representado do que está disponível no computador.
- Chamamos esse problema de *overflow*, transbordo, e pode acontecer em somas ou subtrações.
- Por exemplo, se o tamanho de um inteiro em determinada máquina for de 4 bits podemos armazenar um inteiro sem sinal de 0 a 15 ou um inteiro com sinal entre -8 e 7, usando complemento para dois. Qualquer número fora deste intervalo transborda os valores possíveis.
- Em muitos sistemas n\u00e3o h\u00e1 uma mensagem de erro ou algum aviso.
  - Ele apenas descarta o bit extra ou os bits que não couberem no espaço alocado.
  - Isso cria um resultado inválido, positivo ou negativo, que ao ser impresso gera resultados inesperados.

#### Intervalo de valores inteiros

Podemos compreender melhor o *overflow* se mostrarmos o intervalo dos inteiros que podem ser armazenados na forma de um círculo.





No círculo para o inteiro sem sinal é mostrado que 15 + 1 é 0. Já no círculo do complemento para dois, 7 + 1 é -8.

Se incrementarmos um inteiro que mantenha o maior valor possível, obteremos o menor valor possível.

#### Armazenando números reais

- Em notação científica, escrevemos o número real -314.625 como  $-3.14625 \times 10^{+2}$ .
- Esta representação é composta por três partes: o sinal (-), a precisão (3.14625) e a potência de 10 (+2).
- Os computadores usam os conceitos da notação científica para armazenar um número real.
- Se escrevermos toda a informação em um sistema binário,
   -314.625 será representado como mostrado a seguir, com a potência também em binário (4)

$$-10011.10101010 \times 2^{100}$$

 Note que se fixarmos a base para a potência, 10 ou 2, não precisamos usar nem o operador de multiplicação nem a base na representação.

## Normalização

- Precisamos resolver um problema antes de armazenar um número real no computador:
  - A posição do ponto binário, ou seja, o ponto que separa a parte inteira da fracionária.
  - $\bullet\,$  Na memória, podemos armazenar apenas dígitos binários, 0 ou 1, não um ponto.
- A solução é chamada de normalização.
  - Normalizaremos o número de tal forma que o ponto sempre esteja em uma posição fixa e conhecida.
- Para normalizar um número, deslocamos o ponto para a esquerda ou para a direita, dependendo de sua posição original, até que haja apenas um dígito diferente de 0 antes do ponto decimal.
- Exemplos de normalização decimal:
  - deslocamentos para a esquerda:  $314.625 \rightarrow 31.4625 \times 10^1 \rightarrow 3.14625 \times 10^2$
  - deslocamentos para a direita:  $0.00712 \to 0.0712 \times 10^{-1} \to 0.712 \times 10^{-2} \to 7.12 \times 10^{-3}$
- Se o número for o zero, o dígito antes do ponto será 0.

## Normalização de números binários

- O número deve ter apenas um dígito binário à esquerda do ponto.
  - Para valores não nulos, o dígito é 1.
- Deslocar números binários requer a multiplicação ou a divisão por 2 em cada deslocamento.
  - Em outras palavras, se movermos o número para a esquerda, precisamos adicionar o número de dígitos deslocados ao expoente. Se, ao contrário, deslocarmos para a direita, precisamos subtrair do expoente o número de dígitos deslocados.
- Vamos aplicar esta ideia ao número  $-10011.10101010 \times 2^{100}$ :
  - Precisamos mover o ponto 4 casas para a esquerda. Assim, devemos acrescentar 4 ao expoente  $100_2 = 4_{10}$ , cujo resultado será  $8_{10} = 1000_2$ .
  - O número normalizado será então

#### $-1.001110101010 \times 2^{1000}$

- Após a normalização, teremos somente que armazenar o sinal, a precisão e o expoente.
  - Não temos que armazenar a parte inteira da precisão, que sempre será 1, e nem o ponto binário.

## Sinal, expoente e mantissa

- Os números reais contém três partes: o sinal (s), o expoente (e) e a mantissa (m).
- Podemos dizer que o número original (N) pode ser expresso por

$$N = (-1)^s \times 1.m \times 2^e$$

- O sinal do número é armazenado usando um bit: 0 para mais e 1 para menos.
- O expoente de uma potência de 2 pode ser negativo ou positivo. Vamos usar o método do Excesso-N para armazenar o expoente.
- A mantissa é o número binário à direita do ponto binário. Ela define a precisão do número e é armazenada como um inteiro sem sinal.

#### Padrões IEEE

- O Institute of Electrical and Electronics Engineers (IEEE) definiu o padrão IEEE 754-2008 para armazenar números na memória.
- Alguns deles são mostrados na tabela a seguir:

| Nome      | Nome<br>popular       | Bits na<br>mantissa | Bits no expoente | Valor de pola-<br>rização do Expo-<br>ente | Expoente<br>mínimo | Expoente<br>máximo |
|-----------|-----------------------|---------------------|------------------|--------------------------------------------|--------------------|--------------------|
| binary16  | meia<br>precisão      | 10                  | 5                | $2^4 - 1 = 15$                             | -14                | +15                |
| binary32  | precisão<br>simples   | 23                  | 8                | $2^7 - 1 = 127$                            | -126               | +127               |
| binary64  | precisão<br>dupla     | 52                  | 11               | $2^{10} - 1 = 1023$                        | -1022              | +1023              |
| binary128 | precisão<br>quádrupla | 112                 | 15               | $2^{14} - 1 = 16383$                       | -16382             | +16383             |
| binary256 | precisão<br>óctupla   | 236                 | 19               | $2^{18} - 1 = 262142$                      | -262142            | +262143            |

## Representação em ponto flutuante no padrão IEEE

#### Representação na memória para precisão simples



#### Representação na memória para precisão dupla



## Algoritmos de armazenamento e recuperação

- Usando o padrão IEEE veremos dois algoritmos para armazenar e recuperar números reais.
- Esses algoritmos, mostrados no próximo slide, não dão uma ideia de como as funções de entrada e de saída, tais como scanf e printf, poderiam armazer e recuperar números reais.

### Armazenando e recuperando em ponto flutuante





# Exemplo de armazenamento usando o padrão IEEE com precisão simples



Usaremos o algoritmo ao lado para armazenar o número real 123.8125 em precisão simples.

- O sinal é positivo: s = 0.
- O valor absoluto em binário é : 1111011.1101
- O valor de e em precisão simples é
   + 127 = 133 ou 10000101.
- 6 Ao concatenarmos s, e e m, obteremos o valor a seguir:

0 10000101 111011110100000000000000

## Exemplo de recuperação usando o padrão IEEE com precisão simples



Mostraremos como encontrar a representação decimal do seguinte número de 32 bits armazenado usando precisão simples:

#### 1 10000010 000110000000000000000000

- ① O bit mais à esquerda é 1: s = '-'
- O valor dos próximos 8 bits é 130. Vamos subtrair 127 dele obtendo 3.
- 3 Adicionamos 1 e o ponto binário a m e deslocamos o ponto binário 3 dígitos para a direita, obtendo 1000.11 e ignorando os zeros finais.
- Convertemos o número anterior para decimal obtendo D = 8.75.
- 6 Concatenamos S e D, obtendo -8.75

#### Para saber mais

- Forouzan, B. A and Gilbert, R. F. Computer Science: a structured programming approach using C. 3rd edition. Cengage Learning, 2007.
- IEEE 754. In: Wikipedia, The Free Encyclopedia. Disponível em https://en.wikipedia.org/w/index.php?title=IEEE\_754& oldid=840612631.

#### Fontes

- Forouzan, B. A and Gilbert, R. F. Computer Science: a structured programming approach using C. 3rd edition. Cengage Learning, 2007.
- IEEE 754. In: Wikipedia, The Free Encyclopedia. Disponível em https://en.wikipedia.org/w/index.php?title=IEEE\_754& oldid=840612631.