In [45]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
 from sklearn.linear_model import LogisticRegression
 from sklearn.preprocessing import StandardScaler
 import re
 from sklearn.datasets import load_digits
 from sklearn.model_selection import train_test_split

Out[89]:

	date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	TOL
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	NaN	NaN
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	0.8
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	NaN	1.1
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	NaN	NaN
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	NaN	NaN
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	NaN	NaN
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	NaN	NaN
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	NaN	NaN
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	NaN	NaN
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	NaN	NaN

69096 rows × 16 columns

```
In [90]: a.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69096 entries, 0 to 69095
Data columns (total 16 columns):
    Column
             Non-Null Count Dtype
    -----
             -----
0
    date
             69096 non-null object
    BEN
             16950 non-null float64
1
2
    CH4
             8440 non-null
                             float64
 3
    CO
             28598 non-null float64
4
             16949 non-null float64
    EBE
5
    NMHC
             8440 non-null
                             float64
 6
    NO
             68826 non-null float64
7
    NO 2
             68826 non-null float64
8
    NOx
             68826 non-null float64
             40049 non-null float64
9
    0 3
    PM10
             36911 non-null float64
10
11
    PM25
             18912 non-null float64
                             float64
12
    SO 2
             28586 non-null
13
    TCH
             8440 non-null
                             float64
14
    TOL
             16950 non-null float64
    station 69096 non-null int64
15
dtypes: float64(14), int64(1), object(1)
memory usage: 8.4+ MB
```

In [91]: b=a.fillna(value=108)
b

Out[91]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	TCF
0	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	29.0	31.0	108.0	108.0	108.0	2.0	108.00
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.4
2	2018- 03-01 01:00:00	0.4	108.00	108.0	0.2	108.00	4.0	41.0	47.0	108.0	108.0	108.0	108.0	108.00
3	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	35.0	37.0	54.0	108.0	108.0	108.0	108.00
4	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	27.0	29.0	49.0	108.0	108.0	3.0	108.00
69091	2018- 02-01 00:00:00	108.0	108.00	0.5	108.0	108.00	66.0	91.0	192.0	1.0	35.0	22.0	108.0	108.00
69092	2018- 02-01 00:00:00	108.0	108.00	0.7	108.0	108.00	87.0	107.0	241.0	108.0	29.0	108.0	15.0	108.00
69093	2018- 02-01 00:00:00	108.0	108.00	108.0	108.0	108.00	28.0	48.0	91.0	2.0	108.0	108.0	108.0	108.00
69094	2018- 02-01 00:00:00	108.0	108.00	108.0	108.0	108.00	141.0	103.0	320.0	2.0	108.0	108.0	108.0	108.00
69095	2018- 02-01 00:00:00	108.0	108.00	108.0	108.0	108.00	69.0	96.0	202.0	3.0	26.0	108.0	108.0	108.00

69096 rows × 16 columns

In [92]: b.columns

In [93]: c=b.head(30) c

Out[93]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	T(
0	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	29.0	31.0	108.0	108.0	108.0	2.0	108.00	108
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	(
2	2018- 03-01 01:00:00	0.4	108.00	108.0	0.2	108.00	4.0	41.0	47.0	108.0	108.0	108.0	108.0	108.00	1
3	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	35.0	37.0	54.0	108.0	108.0	108.0	108.00	108
4	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	27.0	29.0	49.0	108.0	108.0	3.0	108.00	108
5	2018- 03-01 01:00:00	0.3	108.00	0.3	0.2	108.00	1.0	27.0	29.0	57.0	8.0	108.0	6.0	108.00	1
6	2018- 03-01 01:00:00	0.4	1.11	0.2	0.1	0.06	1.0	25.0	27.0	55.0	5.0	4.0	4.0	1.16	1
7	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	37.0	39.0	54.0	108.0	108.0	108.0	108.00	108
8	2018- 03-01 01:00:00	108.0	108.00	0.5	108.0	108.00	3.0	43.0	47.0	29.0	108.0	108.0	5.0	108.00	108
9	2018- 03-01 01:00:00	108.0	108.00	0.2	108.0	108.00	2.0	26.0	29.0	108.0	4.0	108.0	6.0	108.00	108
10	2018- 03-01 01:00:00	0.4	108.00	108.0	0.3	108.00	2.0	30.0	34.0	108.0	2.0	2.0	3.0	108.00	(
11	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	28.0	29.0	59.0	108.0	108.0	108.0	108.00	108
12	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	31.0	33.0	108.0	4.0	108.0	5.0	108.00	108
13	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	30.0	32.0	108.0	2.0	2.0	108.0	108.00	108
14	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	40.0	41.0	108.0	8.0	7.0	108.0	108.00	108
15	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	26.0	27.0	26.0	108.0	108.0	108.0	108.00	108
16	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	11.0	41.0	58.0	108.0	6.0	5.0	108.0	108.00	108
17	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	15.0	17.0	66.0	108.0	108.0	108.0	108.00	108

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	T(
18	2018- 03-01 01:00:00	0.3	1.37	108.0	0.3	0.03	1.0	49.0	51.0	108.0	5.0	108.0	108.0	1.41	1
19	2018- 03-01 01:00:00	108.0	108.00	0.2	108.0	108.00	9.0	57.0	71.0	37.0	12.0	9.0	108.0	108.00	108
20	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	29.0	31.0	108.0	3.0	108.0	11.0	108.00	108
21	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	23.0	25.0	41.0	108.0	108.0	108.0	108.00	108
22	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	29.0	31.0	54.0	108.0	108.0	108.0	108.00	108
23	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	23.0	25.0	67.0	1.0	108.0	108.0	108.00	108
24	2018- 03-01 02:00:00	108.0	108.00	0.3	108.0	108.00	1.0	24.0	25.0	108.0	108.0	108.0	2.0	108.00	108
25	2018- 03-01 02:00:00	0.4	1.42	0.2	0.1	0.01	4.0	26.0	32.0	64.0	4.0	4.0	3.0	1.44	(
26	2018- 03-01 02:00:00	0.2	108.00	108.0	0.1	108.00	3.0	24.0	29.0	108.0	108.0	108.0	108.0	108.00	(
27	2018- 03-01 02:00:00	108.0	108.00	0.2	108.0	108.00	1.0	17.0	19.0	67.0	108.0	108.0	108.0	108.00	108
28	2018- 03-01 02:00:00	108.0	108.00	108.0	108.0	108.00	1.0	15.0	16.0	57.0	108.0	108.0	3.0	108.00	108
29	2018- 03-01 02:00:00	0.2	108.00	0.2	0.1	108.00	4.0	21.0	26.0	62.0	6.0	108.0	6.0	108.00	(

Out[94]:

	BEN	СО	EBE	NMHC	NO_2	O_3	PM10	SO_2	TCH	TOL	station
0	108.0	0.3	108.0	108.00	29.0	108.0	108.0	2.0	108.00	108.0	28079004
1	0.5	0.3	0.2	0.02	40.0	52.0	5.0	3.0	1.41	8.0	28079008
2	0.4	108.0	0.2	108.00	41.0	108.0	108.0	108.0	108.00	1.1	28079011
3	108.0	0.3	108.0	108.00	35.0	54.0	108.0	108.0	108.00	108.0	28079016
4	108.0	108.0	108.0	108.00	27.0	49.0	108.0	3.0	108.00	108.0	28079017
5	0.3	0.3	0.2	108.00	27.0	57.0	8.0	6.0	108.00	1.0	28079018
6	0.4	0.2	0.1	0.06	25.0	55.0	5.0	4.0	1.16	1.4	28079024
7	108.0	108.0	108.0	108.00	37.0	54.0	108.0	108.0	108.00	108.0	28079027
8	108.0	0.5	108.0	108.00	43.0	29.0	108.0	5.0	108.00	108.0	28079035
9	108.0	0.2	108.0	108.00	26.0	108.0	4.0	6.0	108.00	108.0	28079036
10	0.4	108.0	0.3	108.00	30.0	108.0	2.0	3.0	108.00	0.9	28079038
11	108.0	0.3	108.0	108.00	28.0	59.0	108.0	108.0	108.00	108.0	28079039
12	108.0	108.0	108.0	108.00	31.0	108.0	4.0	5.0	108.00	108.0	28079040
13	108.0	108.0	108.0	108.00	30.0	108.0	2.0	108.0	108.00	108.0	28079047
14	108.0	108.0	108.0	108.00	40.0	108.0	8.0	108.0	108.00	108.0	28079048
15	108.0	108.0	108.0	108.00	26.0	26.0	108.0	108.0	108.00	108.0	28079049
16	108.0	108.0	108.0	108.00	41.0	108.0	6.0	108.0	108.00	108.0	28079050
17	108.0	108.0	108.0	108.00	15.0	66.0	108.0	108.0	108.00	108.0	28079054
18	0.3	108.0	0.3	0.03	49.0	108.0	5.0	108.0	1.41	1.1	28079055
19	108.0	0.2	108.0	108.00	57.0	37.0	12.0	108.0	108.00	108.0	28079056
20	108.0	0.3	108.0	108.00	29.0	108.0	3.0	11.0	108.00	108.0	28079057
21	108.0	108.0	108.0	108.00	23.0	41.0	108.0	108.0	108.00	108.0	28079058
22	108.0	108.0	108.0	108.00	29.0	54.0	108.0	108.0	108.00	108.0	28079059
23	108.0	108.0	108.0	108.00	23.0	67.0	1.0	108.0	108.00	108.0	28079060
24	108.0	0.3	108.0	108.00	24.0	108.0	108.0	2.0	108.00	108.0	28079004
25	0.4	0.2	0.1	0.01	26.0	64.0	4.0	3.0	1.44	0.7	28079008
26	0.2	108.0	0.1	108.00	24.0	108.0	108.0	108.0	108.00	0.5	28079011
27	108.0	0.2	108.0	108.00	17.0	67.0	108.0	108.0	108.00	108.0	28079016
28	108.0	108.0	108.0	108.00	15.0	57.0	108.0	3.0	108.00	108.0	28079017
29	0.2	0.2	0.1	108.00	21.0	62.0	6.0	6.0	108.00	0.8	28079018

In [95]: sns.pairplot(d)

Out[95]: <seaborn.axisgrid.PairGrid at 0x1d52eb02bb0>


```
In [96]: sns.distplot(a['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Plea se adapt your code to use either `displot` (a figure-level function with similar flex ibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[96]: <AxesSubplot:xlabel='NO 2', ylabel='Density'>

In [97]: sns.heatmap(d.corr())

Out[97]: <AxesSubplot:>


```
In [98]: x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

```
In [99]: from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

```
In [100]: from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[100]: LinearRegression()

```
In [101]: print(lr.intercept_)
          1.3113198883086454
In [102]: coeff=pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
          coeff
Out[102]:
                  Co-efficient
             BEN
                   -0.343592
              CO
                    0.000062
             EBE
                    0.343201
           NMHC
                    0.987878
            NO_2
                    0.001203
In [103]: prediction=lr.predict(x_test)
          plt.scatter(y_test,prediction)
Out[103]: <matplotlib.collections.PathCollection at 0x1d547eba550>
                                                          100
             80
             60
             40
             20
             0
                       20
                                       60
                                               80
                                                      100
In [104]: print(lr.score(x_test,y_test))
          0.9999963827290002
         from sklearn.linear_model import Ridge,Lasso
In [105]:
In [106]: rr=Ridge(alpha=10)
          rr.fit(x_train,y_train)
Out[106]: Ridge(alpha=10)
In [107]: rr.score(x_test,y_test)
Out[107]: 0.9999955176655577
```

```
In [108]: la=Lasso(alpha=10)
la.fit(x_train,y_train)
```

Out[108]: Lasso(alpha=10)

In [109]: la.score(x_test,y_test)

Out[109]: 0.9999650862226702

In [110]: a1=b.head(7000)

Out[110]:

	date	BEN	CH4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тсн	
0	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	29.0	31.0	108.0	108.0	108.0	2.0	108.00	11
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.41	
2	2018- 03-01 01:00:00	0.4	108.00	108.0	0.2	108.00	4.0	41.0	47.0	108.0	108.0	108.0	108.0	108.00	
3	2018- 03-01 01:00:00	108.0	108.00	0.3	108.0	108.00	1.0	35.0	37.0	54.0	108.0	108.0	108.0	108.00	11
4	2018- 03-01 01:00:00	108.0	108.00	108.0	108.0	108.00	1.0	27.0	29.0	49.0	108.0	108.0	3.0	108.00	11
6995	2018- 03-13 04:00:00	108.0	108.00	0.2	108.0	108.00	1.0	9.0	11.0	60.0	108.0	108.0	108.0	108.00	11
6996	2018- 03-13 04:00:00	108.0	108.00	108.0	108.0	108.00	1.0	38.0	39.0	108.0	15.0	108.0	3.0	108.00	11
6997	2018- 03-13 04:00:00	108.0	108.00	108.0	108.0	108.00	1.0	17.0	18.0	108.0	8.0	3.0	108.0	108.00	11
6998	2018- 03-13 04:00:00	108.0	108.00	108.0	108.0	108.00	1.0	14.0	16.0	108.0	7.0	5.0	108.0	108.00	11
6999	2018- 03-13 04:00:00	108.0	108.00	108.0	108.0	108.00	1.0	10.0	11.0	49.0	108.0	108.0	108.0	108.00	11

7000 rows × 16 columns

```
In [112]: f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [113]: h=StandardScaler().fit transform(f)
In [114]: logr=LogisticRegression(max iter=10000)
          logr.fit(h,g)
Out[114]: LogisticRegression(max iter=10000)
In [115]: | from sklearn.model_selection import train_test_split
          h train,h test,g train,g test=train test split(h,g,test size=0.3)
In [116]: | i=[[10,20,30,40,50,60,15,26,37,47,58]]
In [117]: | prediction=logr.predict(i)
          print(prediction)
          [28079050]
In [118]: logr.classes_
Out[118]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                  28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                 28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                 28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
                dtype=int64)
In [119]: |logr.predict_proba(i)[0][0]
Out[119]: 0.0
In [120]: logr.predict_proba(i)[0][1]
Out[120]: 0.0
In [121]: logr.score(h_test,g_test)
Out[121]: 0.9514285714285714
In [122]: from sklearn.linear_model import ElasticNet
          en=ElasticNet()
          en.fit(x_train,y_train)
Out[122]: ElasticNet()
In [123]: print(en.coef_)
          [1.07602847e-04 1.84741801e-04 4.51418614e-04 9.86808025e-01
           0.0000000e+00]
In [124]: | print(en.intercept_)
          1.3480982529327292
```

```
In [125]: prediction=en.predict(x test)
          print(en.score(x test,y test))
          0.9999978021904281
In [126]: | from sklearn.ensemble import RandomForestClassifier
          rfc=RandomForestClassifier()
          rfc.fit(h_train,g_train)
Out[126]: RandomForestClassifier()
In [127]: parameters={'max_depth':[1,2,3,4,5],
            'min_samples_leaf':[5,10,15,20,25],
            'n estimators':[10,20,30,40,50]
In [128]: | from sklearn.model_selection import GridSearchCV
          grid search=GridSearchCV(estimator=rfc,param grid=parameters,cv=2,scoring=<mark>"accuracy"</mark>)
          grid_search.fit(h_train,g_train)
Out[128]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                        param_grid={'max_depth': [1, 2, 3, 4, 5],
                                    'min samples leaf': [5, 10, 15, 20, 25],
                                    'n estimators': [10, 20, 30, 40, 50]},
                        scoring='accuracy')
In [129]: grid_search.best_score_
Out[129]: 0.9959183673469387
In [130]: rfc_best=grid_search.best_estimator_
In [131]: from sklearn.tree import plot tree
          plt.figure(figsize=(80,50))
          plot_tree(rfc_best.estimators_[2],filled=True)
```

Conclusion: from this data set i observed that the ELASTIC NET has the highest accuracy of 0.9999978021904281

In []: