Lecture 18: Change of Basis and Transformations
MAT2040 Linear Algebra

We will now combine coordinate transformations (change of basis) and linear transformations!

Theorem 17.12

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and W be a vector space with basis $\mathcal{C} = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$.

If $T(\mathbf{x})$ from V to W is a linear transformation then there exists an $m \times n$ matrix A so that

$$[T(\mathbf{x})]_{\mathcal{C}} = A[\mathbf{x}]_{\mathcal{B}}.$$

In fact,

$$A = \begin{bmatrix} [T(\mathbf{v}_1)]_{\mathcal{C}}, & [T(\mathbf{v}_2)]_{\mathcal{C}}, & \dots, [T(\mathbf{v}_n)]_{\mathcal{C}} \end{bmatrix}.$$

A is called the matrix for T relative to the bases B and C.

Theorem 17.12

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $VVV/b \notin AVV \in VV/b \in VV/$

$$[T(\mathbf{x})]_{\mathscr{C}_{\mathcal{B}}} = A[\mathbf{x}]_{\mathcal{B}}.$$

In fact,

$$\mathcal{A} = \begin{bmatrix} [T(\mathbf{v}_1)] \mathring{\varrho}_{\mathcal{B}}, & [T(\mathbf{v}_2)] \mathring{\varrho}_{\mathcal{B}}, & \dots, [T(\mathbf{v}_n)] \mathring{\varrho}_{\mathcal{B}} \end{bmatrix}.$$

A is called the matrix for T relative to \mathcal{B} the hardest \mathcal{B} is called the matrix for \mathcal{B} relative to \mathcal{B} the hardest \mathcal{B} is called the matrix for \mathcal{B} relative to \mathcal{B} the hardest \mathcal{B} is called the matrix for \mathcal{B} relative to \mathcal{B} the hardest \mathcal{B} relative to \mathcal{B}

Theorem 18.1

Let V be a vector space with basis $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$. If $T(\mathbf{x})$ from V to V is a linear transformation then there exists an $n \times n$ matrix A so that

$$[T(\mathbf{x})]_{\mathcal{B}} = A[\mathbf{x}]_{\mathcal{B}}.$$

In fact,

$$A = \begin{bmatrix} [T(\mathbf{v}_1)]_{\mathcal{B}}, & [T(\mathbf{v}_2)]_{\mathcal{B}}, & \dots, [T(\mathbf{v}_n)]_{\mathcal{B}} \end{bmatrix}.$$

A is called the matrix for T relative to \mathcal{B} (the \mathcal{B} -matrix for T).

This is useful, because often linear transformations are easier to understand (work with) in a certain basis.

Example 18.2

Consider
$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$.

Example 18.2

Consider
$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$.

What is the
$$\mathcal{B}$$
-matrix for T for $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$?

Example 18.2

Consider
$$T(\mathbf{x}) = A\mathbf{x}$$
 where $A = \begin{bmatrix} 7 & 2 \\ -4 & 1 \end{bmatrix}$.

What is the
$$\mathcal{B}$$
-matrix for T for $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ -2 \end{bmatrix} \right\}$?

Express A in terms of the \mathcal{B} -matrix for T.

Definition 18.3

The $n \times n$ matrices A and B are **similar matrices** if there exists an invertible $n \times n$ matrix P so that

$$A = PBP^{-1}$$
.

Definition 18.3

The $n \times n$ matrices A and B are **similar matrices** if there exists an invertible $n \times n$ matrix P so that

$$A = PBP^{-1}$$
.

The intuition is that A and B can be interpreted as matrices corresponding to the same linear transformation, just expressed in different bases.

Example 18.4 (Preview)

In the previous example we saw that there existed a basis in which the linear transformation could be expressed as multiplying with a diagonal matrix.

Example 18.4 (Preview)

In the previous example we saw that there existed a basis in which the linear transformation could be expressed as multiplying with a diagonal matrix.

How can we find such a basis?

Example 18.4 (Preview)

In the previous example we saw that there existed a basis in which the linear transformation could be expressed as multiplying with a diagonal matrix.

How can we find such a basis?

Suppose
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix}$$
.