Liquid scintillator tiles for high radiation environments

Alberto Belloni^{a,*}, Mahnegar Amouzegar^a, Burak Bilki^g, Jeff Calderon^a, Sarah C. Eno^a, Kenichi Hatakeyama^f, James Hirschauer^e, Geng-Yuan Jeng^a, Joseph Pastika^f, Kevin Pedro^e, Joshua Samuel^a, Elmer Sharp^d, Young Ho Shin^a, Emrah Tiras^f, Zishuo Yang^a, Yao Yao^a, Sung Woo Youn^c

^aDept. Physics, U. Maryland, College Park MD 30742 USA
^bEljen Technology, 1300 W. Broadway, Sweetwater, Tx 79556 USA
^cInstitute for Basic Science, Center for Axion and Precision Physics Research, IBS Center for Axion and Precision Physics Research Room 4315, Department of Physics, Natural Science Building (E6-2), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-701, South Korea

dElmer Sharp Engineering, 7007 Leesville Blvd. Springfield, VA 22151
 eFermi National Accelerator Laboratory, Batavia, IL, USA
 fBaylor University, Waco, Texas, USA
 gThe University of Iowa, Iowa City, IA, USA

Abstract

Future experiments in high energy and nuclear physics may require large, inexpensive calorimetery that can operate to doses of 50 Mrad or more. We present the results of a study of a scintillator tile based on EJ-309 liquid scintillator using cosmic rays, test beam, and 60 Co irradiations.

Keywords: organic scintillator, liquid scintillator,, radiation hardness, calorimetry

1. Introduction

Sampling calorimeters using plastic scintillator tiles with wave length shifting fibers, such as the CDF plug calorimeter [?], are popular due to their low cost and ease of construction. Plastic scintillator is available commercially from companies like Kuraray, St. Gobain, and Eljen. When irradiated, however, the performance of plastic scintillator deteriorates; light self-absorption (yellowing) increases and light output decreases. The resulting damage has been studied for

Email address: abelloni@umd.edu (Alberto Belloni)

^{*}Corresponding author

most common plastics[1], [2], [3], [4],[5],[6],[7],[8]. Generally, the light output decreases exponentially with dose, with an decay constant on order of a few Mrad. Future high energy and nuclear experiments, however, may have to operate in environments that will deliver doses of tens of Mrad. In this paper, we present the design and optimization of a liquid scintillator tile, based on EJ-309 liquid scintillator, that can operate in thie kind of environment.

2. Tile design

Our tile is based on EJ-309 scintillator, from Eljen Technology, which is based on naphthalene with wavelength shifting additives. It has a light output that is 75% of anthracene, a wavelength of maximum emisison of 424 nm, a refractive index of 1.57 and a flash point of 144°C. The low flash point is important for its suitability for a collider environment.

The design of tile to hold the liquid needs to consider light collection efficiency, light collection uniformity, and cost. The container should not leak and there should not be interactions between the container and its contents that degrade the light output over time or compromise the integrity of the container. Figure 1 shows the mechanical construction of our prototype. The case is made of aluminum. Two transparent support tubes with outer diameter of 2 mm run through the liquid and can hold either wavelength shifting fiber or liquid wavelength shifter. The support tube is sealed to the case with a viton fluoroelastomer o-ring. The thickness of the top and bottom Aluminum plates is 0.5 mm. The total internal volume is 88x88x4 mm. The inner surface of the contain is a lapped and polished Al6061 available for a McMaster Carr. The material comes with a plastic coating that can be used to maintain its mirror quality during the machining process and then removed before the welding step.

Several variations on this design were constructed. For the default design, the thickness of the liquid is 4 mm. A version with a 6 mm thickness was also made. The support tubes were quartz with an inner diameter of 1.3 mm and were used with Kuraray Y-11 fiber (doping of 200 ppm), double clad. Quartz

tubes with an outer diameter of xx and an inner diameter of yy were also used with liquid wave length shifter from Eljen. Sapphire tubes were also tested with both liquid and plastic wavelength shifter.

Figure 1: Mechanical design of a liquid scintillator tile. Units are mm.

3. Test beam results

The light yield and uniformity of the tiles was measured in the H2 test beam facility at CERN using $120~{\rm GeV}$ muons.

4. Light yield dependence on tile parameters and comparison with simulation

We use the GEANT4 [9] package to simulate the optics of our tile.

5. Radiation hardness tests

Several different tests were made using irradiations with a ⁶⁰Co source located at the University of Maryland. Performance of the tile under irradi-

ation in a proton-proton collision environment will be the subject of a future paper.

6. Conclusions

7. Acknowledgements

The authors would like to thank Randy Ruchti of Notre Dame for providing the capillaries and Yasar Onel's group at the University of Iowa for help with the test beam. We would like to thank Eric Johnston from the Quattrone Nanofabrication Facility at the University of Pennsylvania for measuring the indices of refraction of our support tubes. This work was supported in part by U.S. Department of Energy Grant YYYYY.

References

- [1] U. Holm, K. Wick, Radiation stability of plastic scintillators and wave-length shifters, Nuclear Science, IEEE Transactions on 36 (1) (1989) 579–583. doi: 10.1109/23.34504.
- [2] K. Wick, D. Paul, P. Schrder, V. Stieber, B. Bicken, Recovery and dose rate dependence of radiation damage in scintillators, wavelength shifters and light guides, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 61 (4) (1991) 472 486. http://dx.doi.org/http://dx.doi.org/10.1016/0168-583X(91)95325-8.
 - URL http://www.sciencedirect.com/science/article/pii/0168583X91953258
 - [3] B. Bicken, U. Holm, T. Marckmann, K. Wick, M. Rohde, Recovery and permanent radiation damage of plastic scintillators at different dose rates, Nuclear Science, IEEE Transactions on 38 (2) (1991) 188–193. doi:10. 1109/23.289295.

- [4] B. Bicken, A. Dannemann, U. Holm, T. Neumann, K. Wick, Influence of temperature treatment on radiation stability of plastic scintillator and wavelength shifter, Nuclear Science, IEEE Transactions on 39 (5) (1992) 1212– 1216. doi:10.1109/23.173180.
- [5] G. Buss, A. Dannemann, U. Holm, K. Wick, Radiation damage by neutrons to plastic scintillators, Nuclear Science, IEEE Transactions on 42 (4) (1995) 315–319. doi:10.1109/23.467829.
 - [6] B. Wulkop, K. Wick, W. Busjan, A. Dannemann, U. Holm, Evidence for the creation of short-lived absorption centers in irradiated scintillators, Nuclear Instruments and Methods in Physics Research Section
- B: Beam Interactions with Materials and Atoms 95 (1) (1995) 141 143. http://dx.doi.org/http://dx.doi.org/10.1016/0168-583X(94)00435-8 doi:http://dx.doi.org/10.1016/0168-583X(94)00435-8.
 - URL http://www.sciencedirect.com/science/article/pii/ 0168583X94004358
- [7] A. Bross, A. Pla-Dalmau, Radiation damage of plastic scintillators, Nuclear Science, IEEE Transactions on 39 (5) (1992) 1199–1204. doi:10.1109/23. 173178.
 - [8] V. Hagopian, I. Daly, Radiation damage of fibers, AIP Conference Proceedings 450 (1) (1998) 53-61. doi:http://dx.doi.org/10.1063/1.56958.
- URL http://scitation.aip.org/content/aip/proceeding/aipcp/10. 1063/1.56958
 - [9] S. Agostinelli, et al., Geant4a simulation toolkit, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506 (3) (2003) 250 303. http://dx.doi.org/http://dx.doi.org/10.1016/S0168-9002(03)01368-8 doi:http://dx.doi.org/10.1016/S0168-9002(03)01368-8.

100