Missing Values

```
In [1]:
```

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np
```

In [3]:

	First	Score	Second	Score	Third	Score
0		100.0		30.0		NaN
1		90.0		45.0		40.0
2		NaN		56.0		80.0
3		95.0		NaN		98.0

Out[3]:

First Score Second Score Third Score

0	False	False	True
1	False	False	False
2	True	False	False
3	False	True	False

In [5]:

```
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
print(df)
```

	First Name	Gender	Start Date	Last Login Ti	me Salary	Bonus %	١
0	Douglas	Male	8/6/1993	12:42	PM 97308	6.945	
1	Thomas	Male	3/31/1996	6 : 53	AM 61933	4.170	
2	Maria	Female	4/23/1993	11:17	AM 130590	11.858	
3	Jerry	Male	3/4/2005	1:00	PM 138705	9.340	
4	Larry	Male	1/24/1998	4:47	PM 101004	1.389	
995	Henry	NaN	11/23/2014	6:09	AM 132483	16.655	
996	Phillip	Male	1/31/1984	6:30	AM 42392	19.675	
997	Russell	Male	5/20/2013	12:39	PM 96914	1.421	
998	Larry	Male	4/20/2013	4:45	PM 60500	11.985	
999	Albert	Male	5/15/2012	6:24	PM 129949	10.169	

Team	Management	Senior	
Marketing	True	0	0
NaN	True	1	1
Finance	False	2	2
Finance	True	3	3
Client Services	True	4	4

```
. . .
995
               False
                             Distribution
996
               False
                                 Finance
997
              False
                                 Product
               False Business Development
998
999
               True
                                   Sales
[1000 rows x 8 columns]
In [6]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
                     Non-Null Count Dtype
 # Column
---
                      _____
0
                     933 non-null
   First Name
                                     object
   Gender
1
                     855 non-null
                                     object
   Start Date
                      1000 non-null
                                     object
   Last Login Time
                                   object
                      1000 non-null
    Salary
                      1000 non-null int64
 5
   Bonus %
                      1000 non-null float64
 6
   Senior Management 933 non-null object
7 Team
                      957 non-null
                                     object
dtypes: float64(1), int64(1), object(6)
memory usage: 62.6+ KB
In [7]:
df.describe()
```

Out[7]:

	Salary	Bonus %
count	1000.000000	1000.000000
mean	90662.181000	10.207555
std	32923.693342	5.528481
min	35013.000000	1.015000
25%	62613.000000	5.401750
50%	90428.000000	9.838500
75%	118740.250000	14.838000
max	149908.000000	19.944000

In [8]:

```
# creating bool series True for NaN values
bool_series = pd.isnull(df["Gender"])

# filtering data
# displaying data only with Gender = NaN
df[bool_series]
```

Out[8]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
20	Lois	NaN	4/22/1995	7:18 PM	64714	4.934	True	Legal
22	Joshua	NaN	3/8/2012	1:58 AM	90816	18.816	True	Client Services
27	Scott	NaN	7/11/1991	6:58 PM	122367	5.218	False	Legal
31	Joyce	NaN	2/20/2005	2:40 PM	88657	12.752	False	Product
41	Christine	NaN	6/28/2015	1:08 AM	66582	11.308	True	Business Development

								•••
961	First Name Antonio	Gender NaN	Start Date 6/18/1989	Last Login Time 9:37 PM	Salary 103050	Bonus % 3.050	Senior Management False	Team Legal
972	Victor	NaN	7/28/2006	2:49 PM	76381	11.159	True	Sales
985	Stephen	NaN	7/10/1983	8:10 PM	85668	1.909	False	Legal
989	Justin	NaN	2/10/1991	4:58 PM	38344	3.794	False	Legal
995	Henry	NaN	11/23/2014	6:09 AM	132483	16.655	False	Distribution

145 rows × 8 columns

In [11]:

Out[11]:

First Score Second Score Third Score

0	True	True	False
1	True	True	True
2	False	True	True
3	True	False	True

In [12]:

```
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
# creating bool series True for NaN values

bool_series = pd.notnull(df["Gender"])

# filtering data
# displayind data only with Gender = Not NaN

df[bool_series]
```

Out[12]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
994	George	Male	6/21/2013	5:47 PM	98874	4.479	True	Marketing
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

855 rows × 8 columns

- ----

```
In [13]:
```

```
First Score Second Score Third Score
             30.0
0
      100.0
                              NaN
1
       90.0
                   45.0
                              40.0
2
                  56.0
                             80.0
        NaN
3
        95.0
                   NaN
                              98.0
```

Out[13]:

First Score Second Score Third Score 0 100.0 30.0 0.0 90.0 45.0 40.0 1 2 0.0 56.0 80.0 3 95.0 0.0 98.0

In [1]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
    'Second Score': [30, 45, 56, np.nan],
    'Third Score':[np.nan, 40, 80, 98]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
print(df)
# filling a missing value with
# previous ones
df.fillna(method ='pad')
```

	First	Score	Second	Score	Third	Score
0		100.0		30.0		NaN
1		90.0		45.0		40.0
2		NaN		56.0		80.0
3		95.0		NaN		98.0

Out[1]:

	First Score	Second Score	Third Score
0	100.0	30.0	NaN
1	90.0	45.0	40.0
2	90.0	56.0	80.0
3	95.0	56.0	98.0

In [2]:

```
# importing pandas as pd
import pandas as pd
```

```
# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, 90, np.nan, 95],
    'Second Score': [30, 45, 56, np.nan],
    'Third Score':[np.nan, 40, 80, 98]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
print(df)
# filling null value using fillna() function
df.fillna(method ='bfill')
```

```
First Score Second Score Third Score
0 100.0 30.0 NaN
1 90.0 45.0 40.0
2 NaN 56.0 80.0
3 95.0 NaN 98.0
```

Out[2]:

	First Score	Second Score	Third Score
0	100.0	30.0	40.0
1	90.0	45.0	40.0
2	95.0	56.0	80.0
3	95.0	NaN	98.0

In [3]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"

df = pd.read_csv(path)
# Printing the first 10 to 24 rows of
# the data frame for visualization
df[10:25]
```

Out[3]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
10	Louise	Female	8/12/1980	9:01 AM	63241	15.132	True	NaN
11	Julie	Female	10/26/1997	3:19 PM	102508	12.637	True	Legal
12	Brandon	Male	12/1/1980	1:08 AM	112807	17.492	True	Human Resources
13	Gary	Male	1/27/2008	11:40 PM	109831	5.831	False	Sales
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14.543	True	Finance
15	Lillian	Female	6/5/2016	6:09 AM	59414	1.256	False	Product
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7.369	False	Human Resources
17	Shawn	Male	12/7/1986	7:45 PM	111737	6.414	False	Product
18	Diana	Female	10/23/1981	10:27 AM	132940	19.082	False	Client Services
19	Donna	Female	7/22/2010	3:48 AM	81014	1.894	False	Product
20	Lois	NaN	4/22/1995	7:18 PM	64714	4.934	True	Legal
21	Matthew	Male	9/5/1995	2:12 AM	100612	13.645	False	Marketing
22	Joshua	NaN	3/8/2012	1:58 AM	90816	18.816	True	Client Services
23	NaN	Male	6/14/2012	4:19 PM	125792	5.042	NaN	NaN
24	John	Male	7/1/1992	10:08 PM	97950	13.873	False	Client Services

In [5]:

```
df["Gender"].fillna("No Gender", inplace = True)
```

Out[5]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
1	Thomas	Male	3/31/1996	6:53 AM	61933	4.170	True	NaN
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
							•••	***
995	Henry	No Gender	11/23/2014	6:09 AM	132483	16.655	False	Distribution
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

1000 rows × 8 columns

In [6]:

df[10:25]

Out[6]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
10	Louise	Female	8/12/1980	9:01 AM	63241	15.132	True	NaN
11	Julie	Female	10/26/1997	3:19 PM	102508	12.637	True	Legal
12	Brandon	Male	12/1/1980	1:08 AM	112807	17.492	True	Human Resources
13	Gary	Male	1/27/2008	11:40 PM	109831	5.831	False	Sales
14	Kimberly	Female	1/14/1999	7:13 AM	41426	14.543	True	Finance
15	Lillian	Female	6/5/2016	6:09 AM	59414	1.256	False	Product
16	Jeremy	Male	9/21/2010	5:56 AM	90370	7.369	False	Human Resources
17	Shawn	Male	12/7/1986	7:45 PM	111737	6.414	False	Product
18	Diana	Female	10/23/1981	10:27 AM	132940	19.082	False	Client Services
19	Donna	Female	7/22/2010	3:48 AM	81014	1.894	False	Product
20	Lois	No Gender	4/22/1995	7:18 PM	64714	4.934	True	Legal
21	Matthew	Male	9/5/1995	2:12 AM	100612	13.645	False	Marketing
22	Joshua	No Gender	3/8/2012	1:58 AM	90816	18.816	True	Client Services
23	NaN	Male	6/14/2012	4:19 PM	125792	5.042	NaN	NaN
24	John	Male	7/1/1992	10:08 PM	97950	13.873	False	Client Services

In [7]:

df.replace(to_replace = np.nan, value = -99)

Out[7]:

ı	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing

_							_	
Team	Senior Management True	Bonus %	Salary 61933	Last Login Time 6:53 AM	Start Date 3/31/1996	Gender Male	First Name Thomas	1
Finance	False	11.858	130590	11:17 AM	4/23/1993	Female	Maria	2
Finance	True	9.340	138705	1:00 PM	3/4/2005	Male	Jerry	3
Client Services	True	1.389	101004	4:47 PM	1/24/1998	Male	Larry	4
Distribution	False	16.655	132483	6:09 AM	11/23/2014	No Gender	Henry	995
Finance	False	19.675	42392	6:30 AM	1/31/1984	Male	Phillip	996
Product	False	1.421	96914	12:39 PM	5/20/2013	Male	Russell	997
Business Development	False	11.985	60500	4:45 PM	4/20/2013	Male	Larry	998
Sales	True	10.169	129949	6:24 PM	5/15/2012	Male	Albert	999

1000 rows × 8 columns

```
In [8]:
```

Out[8]:

```
        A
        B
        C
        D

        0
        12.0
        NaN
        20.0
        14.0

        1
        4.0
        2.0
        16.0
        3.0

        2
        5.0
        54.0
        NaN
        NaN

        3
        NaN
        3.0
        3.0
        NaN

        4
        1.0
        NaN
        8.0
        6.0
```

In [9]:

```
df.interpolate(method ='linear', limit_direction ='forward')
```

Out[9]:

	A	В	С	D
0	12.0	NaN	20.0	14.0
1	4.0	2.0	16.0	3.0
2	5.0	54.0	9.5	4.0
3	3.0	3.0	3.0	5.0
4	1.0	3.0	8.0	6.0

In [10]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np
```

Out[10]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52	NaN
1	90.0	NaN	40	NaN
2	NaN	45.0	80	NaN
3	95.0	56.0	98	65.0

In [11]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score': [100, 90, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score': [52, 40, 80, 98],
    'Fourth Score': [np.nan, np.nan, np.nan, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)

# using dropna() function
df.dropna()
```

Out[11]:

First Score Second Score Third Score Fourth Score 3 95.0 56.0 98 65.0

In [12]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[np.nan, np.nan, np.nan, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
df
```

Out[12]:

0	First Score	Second Score	Third Score	Fourth Score
1	NaN	NaN	NaN	NaN
2	NaN	45.0	80.0	NaN
3	95.0	56.0	98.0	65.0

In [14]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[np.nan, np.nan, np.nan, 65]}

df = pd.DataFrame(dict)

# using dropna() function
df.dropna(how = 'all')
```

Out[14]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52.0	NaN
2	NaN	45.0	80.0	NaN
3	95.0	56.0	98.0	65.0

In [15]:

```
# importing pandas as pd
import pandas as pd

# importing numpy as np
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[60, 67, 68, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)
df
```

Out[15]:

	First Score	Second Score	Third Score	Fourth Score
0	100.0	30.0	52.0	60
1	NaN	NaN	NaN	67
2	NaN	45.0	80.0	68
3	95.0	56.0	98.0	65

In [16]:

```
# importing pandas as pd
import pandas as pd
# importing numpy as np
```

```
import numpy as np

# dictionary of lists
dict = {'First Score':[100, np.nan, np.nan, 95],
    'Second Score': [30, np.nan, 45, 56],
    'Third Score':[52, np.nan, 80, 98],
    'Fourth Score':[60, 67, 68, 65]}

# creating a dataframe from dictionary
df = pd.DataFrame(dict)

# using dropna() function
df.dropna(axis = 1)
```

Out[16]:

Four	th Score
0	60
1	67
2	68
3	65

In [17]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\employees.csv"
data = pd.read_csv(path)

# making new data frame with dropped NA values
new_data = data.dropna(axis = 0, how ='any')
new_data
```

Out[17]:

	First Name	Gender	Start Date	Last Login Time	Salary	Bonus %	Senior Management	Team
0	Douglas	Male	8/6/1993	12:42 PM	97308	6.945	True	Marketing
2	Maria	Female	4/23/1993	11:17 AM	130590	11.858	False	Finance
3	Jerry	Male	3/4/2005	1:00 PM	138705	9.340	True	Finance
4	Larry	Male	1/24/1998	4:47 PM	101004	1.389	True	Client Services
5	Dennis	Male	4/18/1987	1:35 AM	115163	10.125	False	Legal
994	George	Male	6/21/2013	5:47 PM	98874	4.479	True	Marketing
996	Phillip	Male	1/31/1984	6:30 AM	42392	19.675	False	Finance
997	Russell	Male	5/20/2013	12:39 PM	96914	1.421	False	Product
998	Larry	Male	4/20/2013	4:45 PM	60500	11.985	False	Business Development
999	Albert	Male	5/15/2012	6:24 PM	129949	10.169	True	Sales

764 rows × 8 columns

In [18]:

```
print("Old data frame length:", len(data))
print("New data frame length:", len(new_data))
print("Number of rows with at least 1 NA value: ", (len(data)-len(new_data)))

Old data frame length: 1000
New data frame length: 764
Number of rows with at least 1 NA value: 236
```

In [19]:

```
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read_csv(path)
print(df)
    Rollno Marks Gender
                             Age
                                   PhD
0
            140.0
                            47.0
         1
                                   Yes
1
         2
             30.0
                            65.0
                                  Yes
             35.1
2
         3
                         0
                            56.0
                                    No
3
         4
             30.0
                            23.0
                         1
                                    No
         5
4
             80.0
                         0
                                  Yes
                             NaN
              . . .
95
        96
             18.6
                         1
                            26.0
                                    No
96
        97
            152.0
                         1
                            56.0
                                   Yes
97
        98
              1.8
                         1
                            28.0
98
        99
             35.0
                         0
                            44.0
                                   NaN
99
       100
              4.0
                         0
                            24.0
[100 rows x 5 columns]
In [20]:
df.shape
Out[20]:
(100, 5)
In [21]:
print(df.isnull().sum())
Rollno
           0
           0
Marks
           0
Gender
Age
          16
PhD
          13
dtype: int64
In [22]:
df.dropna(inplace=True)
print(df.isnull().sum())
Rollno
          0
Marks
          0
Gender
          0
Age
          0
PhD
          0
dtype: int64
In [24]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                                   PhD
                             Age
0
            140.0
                            47.0
         1
                         1
                                   Yes
         2
             30.0
                         0
                            65.0
1
                                   Yes
2
         3
             35.1
                         0
                            56.0
                                    No
3
             30.0
         4
                         1
                            23.0
                                    No
         5
4
             80.0
                         0
                             NaN
                                   Yes
               . . .
       . . .
                              . . .
. .
95
        96
             18.6
                            26.0
                         1
                                    No
96
        97
            152.0
                         1
                            56.0
                                   Yes
97
        98
              1.8
                         1
                            28.0
                                   No
98
        99
             35.0
                         0
                            44.0
                                   NaN
99
       100
                         0
                            24.0
              4.0
                                    No
[100 rows x 5 columns]
```

```
In [25]:
df["Age"] = df["Age"].replace(np.NaN, df["Age"].mean())
print(df["Age"][:10])
0
    47.000000
1
     65.000000
2
     56.000000
3
     23.000000
4
    47.821429
5
     27.000000
6
    53.000000
7
    47.821429
8
    44.000000
9
    63.000000
Name: Age, dtype: float64
In [26]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                           Age
                                 PhD
           140.0
0
                    1 47.0
       1
                                 Yes
1
         2
            30.0
                        0 65.0
                                Yes
2
        3
            35.1
                       0
                          56.0
3
        4
             30.0
                       1 23.0
                                 No
4
        5
           80.0
                       0
                          NaN Yes
. .
       . . .
             . . .
                      . . .
                           . . .
                      1 26.0
95
       96
           18.6
                                 No
       97 152.0
96
                       1 56.0 Yes
97
                       1 28.0
       98
            1.8
                                 No
98
       99
           35.0
                      0 44.0 NaN
99
      100
            4.0
                       0 24.0
[100 rows x 5 columns]
In [28]:
df["Age"] = df["Age"].replace(np.NaN, df["Age"].median())
print(df["Age"][:10])
0
     47.0
1
     65.0
2
     56.0
3
     23.0
    50.0
4
    27.0
5
6
    53.0
7
    50.0
8
    44.0
9
    63.0
Name: Age, dtype: float64
In [29]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
    Rollno Marks Gender
                          Age
                                 PhD
0
        1
           140.0
                       1
                          47.0
            30.0
                        0 65.0
1
         2
                                Yes
2
        3
            35.1
                       0 56.0
                                 No
3
        4
            30.0
                       1 23.0
                                 No
4
        5
           80.0
                       0 NaN Yes
             . . .
95
       96
            18.6
                      1 26.0
                                No
```

```
96
        97
           152.0
                       1 56.0
                                Yes
97
        98
            1.8
                       1 28.0
                                No
98
       99
            35.0
                       0 44.0 NaN
99
      100
            4.0
                       0 24.0
                                No
[100 rows x 5 columns]
In [30]:
import statistics
df["Age"] = df["Age"].replace(np.NaN, statistics.mode(df["Age"]))
print(df["Age"][:10])
0
     47.0
1
     65.0
2
    56.0
3
    23.0
4
    65.0
5
    27.0
6
    53.0
7
    65.0
8
    44.0
9
    63.0
Name: Age, dtype: float64
In [31]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
df = pd.read csv(path)
print(df)
   Rollno Marks Gender
                          Age PhD
0
       1 140.0
                  1 47.0
                                Yes
1
         2 30.0
                       0 65.0
                               Yes
2
        3 35.1
                       0 56.0
                                No
3
        4 30.0
                       1 23.0
                                No
4
        5 80.0
                      0
                          NaN Yes
. .
       . . .
            . . .
                      . . .
                           . . .
                                 . . .
95
      96 18.6
                      1 26.0
                                No
96
      97 152.0
                       1 56.0
                               Yes
97
       98
                       1 28.0
            1.8
                                No
98
       99
            35.0
                       0 44.0
                                NaN
                      0 24.0
      100
99
            4.0
                                No
[100 rows x 5 columns]
In [32]:
df.isnull().sum()
Out[32]:
Rollno
           0
Marks
           0
Gender
           0
Age
          16
PhD
          13
dtype: int64
In [33]:
df["PhD"] = df["PhD"].fillna('U')
df.isnull().sum()
Out[33]:
Rollno
           0
Marks
           0
Gender
           0
Age
          16
PhD
           0
d+ + + + 61
```

```
acype: Incoa
In [34]:
print(df)
   Rollno Marks Gender
                          Age
                                PhD
          140.0
                       1 47.0
                                Yes
        1
1
        2
            30.0
                       0 65.0 Yes
2
        3
           35.1
                       0 56.0
                                No
3
        4
            30.0
                       1 23.0
                                No
4
        5
           80.0
                       0
                          NaN Yes
             . . .
                       1 26.0
95
       96
            18.6
                                 No
                         56.0
96
       97
          152.0
                       1
                               Yes
                         28.0
97
       98
             1.8
                       1
98
        99
            35.0
                       0
                          44.0
                                 U
99
      100
             4.0
                       0 24.0
                                 No
[100 rows x 5 columns]
In [35]:
import pandas as pd
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read csv(path)
#LOCF - last observation carried forward
dataset["Age"] = dataset["Age"].fillna(method ='ffill')
dataset.isnull().sum()
print(dataset)
   Rollno Marks Gender
                                PhD
                         Age
0
        1
          140.0
                       1
                         47.0
                                Yes
1
        2
            30.0
                       0
                         65.0
                                Yes
            35.1
2
        3
                       0 56.0
                                No
3
        4
            30.0
                       1 23.0
                                No
        5 80.0
                      0 23.0 Yes
4
            . . .
95
       96
           18.6
                      1 26.0
                                No
96
       97 152.0
                       1 56.0 Yes
97
       98
            1.8
                      1 28.0
                                Nο
98
        99
           35.0
                      0 44.0 NaN
                      0 24.0
99
      100
             4.0
                                No
[100 rows x 5 columns]
In [36]:
import pandas as pd
import numpy as np
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read csv(path)
#interpolation - linear
dataset["Age"] = dataset["Age"].interpolate(method='linear', limit direction='forward',
axis=0)
print(dataset)
dataset.isnull().sum()
   Rollno Marks Gender
                          Age PhD
0
           140.0
                      1 47.0
        1
                                Yes
1
        2
            30.0
                       0
                          65.0
                                Yes
2
        3
            35.1
                       0
                         56.0
                                 No
3
        4
            30.0
                       1
                          23.0
                                 No
        \sqsubseteq
                          25 0
```

0 0 0

 \cap

Vaa

```
. . .
            . . .
                    ... ... ...
. .
                    1 26.0
9.5
     96 18.6
                               No
                     1 56.0 Yes
96
      97 152.0
                     1 28.0 No
97
      98 1.8
98
      99 35.0
                     0 44.0 NaN
99
     100 4.0
                     0 24.0 No
[100 rows x 5 columns]
Out[36]:
Rollno
         0
Marks
Gender
Age
     13
PhD
dtype: int64
In [37]:
#for knn imputation - we need to remove normalize the data and categorical data we need t
o convert
cat variables = dataset[['PhD']]
cat dummies = pd.get dummies(cat variables, drop first=True)
cat dummies.head()
dataset = dataset.drop(['PhD'], axis=1)
dataset = pd.concat([dataset, cat dummies], axis=1)
dataset.head()
#removing unwanted features
dataset = dataset.drop(['Gender'], axis=1)
dataset.head()
#scaling mandatory before knn
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
dataset = pd.DataFrame(scaler.fit transform(dataset), columns = dataset.columns)
dataset.head()
#knn imputer
from sklearn.impute import KNNImputer
imputer = KNNImputer(n neighbors=3)
dataset = pd.DataFrame(imputer.fit transform(dataset),columns = dataset.columns)
#checking for missing
dataset.isnull().sum()
Out[37]:
Rollno
Marks
Age
          0
PhD Yes
         0
dtype: int64
In [2]:
import pandas as pd
import numpy as np
path="C:\\Users\\OJUS\\OneDrive\\Desktop\\ \\DBDA\\Data Set\\AcademicPerformance.csv"
dataset = pd.read_csv(path)
print(dataset)
   Rollno Marks Gender Age PhD
          140.0 1 47.0 Yes
0
       1
                      0 65.0 Yes
1
           30.0
       3
           35.1
                      0 56.0
2
                     1 23.0 No
0 NaN Yes
           30.0
3
        4
4
       5 80.0
            . . .
      . . .
                    . . .
                         18.6 1 26.0
     96
95
          18.0
```

No

F C O

 \sim \neg

0 23.0 169

J 0U.U

4

```
1 56.U Yes
96
       9/ 152.0
97
       98
          1.8
                      1 28.0
98
      99 35.0
                     0 44.0 NaN
99
     100 4.0
                     0 24.0
                              No
[100 rows x 5 columns]
In [39]:
dataset["PhD"].isnull()
Out[39]:
0
     False
1
     False
2
     False
3
     False
4
     False
     . . .
95
     False
96
     False
97
     False
98
      True
99
     False
Name: PhD, Length: 100, dtype: bool
In [40]:
# Detecting numbers
cnt=0
for row in dataset['PhD']:
   try:
       int(row)
       dataset.loc[cnt, 'PhD']=np.nan
    except ValueError:
       pass
    cnt+=1
In [41]:
dataset["PhD"].isnull()
print(dataset)
   Rollno Marks Gender Age PhD
0
       1 140.0
                  1 47.0 Yes
1
        2 30.0
                      0 65.0 Yes
2
        3 35.1
                     0 56.0
                               No
3
        4 30.0
                      1 23.0
                               No
       5 80.0
                         NaN Yes
4
                     0
            . . .
          18.6
                     1 26.0
95
       96
                                No
                      1 56.0
96
       97
          152.0
                              Yes
                      1 28.0
97
       98
            1.8
                      0 44.0 NaN
98
       99
           35.0
99
     100
            4.0
                      0 24.0
[100 rows x 5 columns]
In [4]:
dataset.skew(axis=0)
Out[4]:
        0.00000
Rollno
Marks
         1.077026
Gender
         0.000000
       -0.236916
Age
dtype: float64
In [5]:
import seaborn as sn
```

```
sn.distplot(dataset["Marks"])
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[5]:
<AxesSubplot:xlabel='Marks', ylabel='Density'>
  0.012
  0.010
  0.008
  0.006
  0.004
  0.002
  0.000
       -50
                    50
                          100
                                 150
                                       200
                                              250
                         Marks
In [6]:
np.log(1.077026)
Out[6]:
0.07420353901563533
In [7]:
log Marks=np.log(dataset["Marks"])
In [8]:
log_Marks.head()
Out[8]:
0
    4.941642
     3.401197
1
2
     3.558201
3
     3.401197
4
     4.382027
Name: Marks, dtype: float64
In [9]:
log Marks.skew()
Out[9]:
-1.3980101345258154
In [10]:
import seaborn as sn
sn.distplot(log Marks)
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[10]:
```

<AxesSubplot:xlabel='Marks', ylabel='Density'>

In [11]:

```
log_Marks_sq=np.sqrt(dataset["Marks"])
```

In [12]:

```
log_Marks_sq.head()
```

Out[12]:

```
0 11.832160
1 5.477226
2 5.924525
3 5.477226
4 8.944272
```

Name: Marks, dtype: float64

In [13]:

```
log_Marks_sq.skew()
```

Out[13]:

0.21202620353224017

In [14]:

```
import seaborn as sn
sn.distplot(log_Marks_sq)
```

D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[14]:

<AxesSubplot:xlabel='Marks', ylabel='Density'>

Marks In [15]: log Marks cb=np.cbrt(dataset["Marks"]) In [16]: log_Marks_cb.head() Out[16]: 0 5.192494 1 3.107233 2 3.274179 3 3.107233 4 4.308869 Name: Marks, dtype: float64 In [17]: log Marks cb.head() Out[17]: 0 5.192494 1 3.107233 2 3.274179 3 3.107233 4 4.308869 Name: Marks, dtype: float64 In [18]: log Marks cb.skew() Out[18]: -0.18525230594632391 In [19]: import seaborn as sn sn.distplot(log_Marks_cb) D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning : `distplot` is a deprecated function and will be removed in a future version. Please ada pt your code to use either `displot` (a figure-level function with similar flexibility) o r `histplot` (an axes-level function for histograms). warnings.warn(msg, FutureWarning) Out[19]: <AxesSubplot:xlabel='Marks', ylabel='Density'> 0.35 0.30 0.25 0.20 0.15 0.15

In [21]:

0.10

0.05

0.00

3

Marks

5

```
Marks reci=np.reciprocal(dataset["Marks"])
In [22]:
Marks reci.head()
Out[22]:
0
     0.007143
1
     0.033333
2
     0.028490
3
     0.033333
4
     0.012500
Name: Marks, dtype: float64
In [23]:
import seaborn as sn
sn.distplot(Marks reci)
D:\Program Files\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning
: `distplot` is a deprecated function and will be removed in a future version. Please ada
pt your code to use either `displot` (a figure-level function with similar flexibility) o
r `histplot` (an axes-level function for histograms).
  warnings.warn(msg, FutureWarning)
Out[23]:
<AxesSubplot:xlabel='Marks', ylabel='Density'>
  10
   8
Density
   6
   4
   2
                                ż
                       Marks
In [24]:
Marks reci.skew()
Out[24]:
9.14246062263327
In [25]:
import matplotlib.pyplot as plt
his Marks cplt=plt.hist(dataset["Marks"])
 25
 20
 15
```

10

5

```
0 25 50 75 100 125 150 175
```

In [26]:

```
plot marks=sn.kdeplot(dataset["Marks"])
```


In [27]:

```
import scipy.stats as stats
import pylab
```

In [28]:

```
stats.probplot(dataset["Marks"],plot=pylab)
```

Out[28]:

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
         -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
         -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
         -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
         -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
         -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
         -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
         -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
         -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
          0.01248789,
                       0.03747145,
                                     0.06247843,
                                                   0.08752455,
                                                                 0.1126257
          0.13779803,
                       0.16305799,
                                                   0.21390872,
                                      0.18842244,
                                                                  0.23953472,
          0.26531902,
                        0.29128096,
                                      0.31744076,
                                                   0.34381966,
                                                                  0.37044003,
                        0.42450149,
                                      0.45199463,
                                                   0.47983378,
          0.39732558,
                                                                  0.50804994,
                                                                  0.65606548,
          0.53667655,
                        0.56574992,
                                      0.59530962,
                                                   0.62539893,
          0.68736185,
                        0.71934648,
                                      0.75208458,
                                                    0.78564937,
                                                                  0.82012357,
          0.85560121,
                        0.89218993,
                                      0.93001393,
                                                    0.96921765,
                                                                  1.00997067,
          1.05247413,
                        1.09696931,
                                      1.14374949,
                                                    1.19317644,
                                                                  1.24570419,
          1.30191411,
                                      1.42869743,
                                                    1.50174123,
                        1.36256869,
                                                                  1.58381122,
                                                                  2.46203784]),
          1.67819304,
                        1.79044653,
                                      1.93122778,
                                                    2.12570747,
                    1.7 ,
                            1.8 ,
                                     2.5 ,
                                             3. ,
 array([ 0.25,
                                                      3.
                                                               4.
                                                                       4.6 ,
                                             9.5 ,
                                                     10.
           7.
                    9.
                            9.
                                     9.
                                                              12.
                                                                      14.7 ,
                                    16.
                                                                      20.
          15.
                   15.
                           15.2 ,
                                            18.6 ,
                                                     19.
                                                              20.
                  20.
                           22.
                                            24.
                                                     25.
          20.
                                    22.3
                                                              25.
                                                                      25.8
                                            30.
                                                     30.
          28.
                   28.6
                           30.
                                    30.
                                                              30.
                                                                      31.1
                                    35.
                                            35.
                                                     35.
          32.
                   32.
                           34.8
                                                              35.1
                                                                      36.
                                    40.
          38.
                   38.8
                           39.8
                                            40.7
                                                     41.
                                                              45.6
                                                                      46.
                           51.
                                    52.
                                            52.
                                                     52.
          48.
                   50.
                                                              55.
                                                                      55.
          55.
                   60.
                           62.
                                    63.
                                            65.
                                                     66.
                                                              72.
                                                                      72.
          72.
                   73.
                           74.
                                    80.
                                            81.
                                                     84.
                                                              84.
                                                                      89.
                                    90.
                                            92.
                                                     96.
          89.
                   90.
                           90.
                                                            100.
                                                                     102.
                        , 120.
         106.
                 115.
                                , 125.
                                          130.
                                                  , 130.
                                                           , 140.
                                                                   , 150.
         152.
                        , 160.
                                 , 190.
                , 152.
                                         ])),
 (40.79054296233955, 52.5244999999999, 0.9515395328716016))
```


In [29]:

stats.probplot(log Marks cb,plot=pylab)

```
Out[29]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
                -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
                -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
                -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
                -0.82012357, \ -0.78564937, \ -0.75208458, \ -0.71934648, \ -0.68736185, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.82012357, \ -0.8
                -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
                -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
                -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
                -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
                -0.1126257 , -0.08752455, -0.06247843, -0.03747145, -0.01248789,
                                                                                          0.08752455,
                  0.01248789,
                                         0.03747145,
                                                                  0.06247843,
                                                                                                                 0.1126257 ,
                  0.13779803,
                                          0.16305799,
                                                                  0.18842244,
                                                                                           0.21390872,
                                                                                                                   0.23953472,
                  0.26531902,
                                          0.29128096,
                                                                  0.31744076,
                                                                                           0.34381966,
                                                                                                                   0.37044003,
                  0.39732558,
                                          0.42450149,
                                                                  0.45199463,
                                                                                           0.47983378,
                                                                                                                   0.50804994,
                                          0.56574992,
                                                                  0.59530962,
                                                                                           0.62539893,
                                                                                                                   0.65606548,
                  0.53667655,
                                                                  0.75208458,
                                                                                           0.78564937,
                  0.68736185,
                                          0.71934648,
                                                                                                                   0.82012357,
                  0.85560121,
                                          0.89218993,
                                                                  0.93001393,
                                                                                           0.96921765,
                                                                                                                   1.00997067,
                                                                  1.14374949,
                                                                                           1.19317644,
                  1.05247413,
                                          1.09696931,
                                                                                                                   1.24570419,
                                                                                           1.50174123,
                                          1.36256869,
                                                                  1.42869743,
                                                                                                                   1.58381122,
                  1.30191411,
                                          1.79044653,
                                                                  1.93122778,
                                                                                           2.12570747,
                                                                                                                   2.46203784]),
                  1.67819304,
   array([0.62996052, 1.19348319, 1.2164404 , 1.35720881, 1.44224957,
                1.44224957, 1.58740105, 1.6631035 , 1.91293118, 2.08008382, 2.08008382, 2.11791179, 2.15443469, 2.28942849,
                2.44965982, 2.46621207, 2.46621207, 2.47712466, 2.5198421
                2.64954306, 2.66840165, 2.71441762, 2.71441762, 2.71441762,
                2.71441762, 2.80203933, 2.81471841, 2.88449914, 2.92401774,
                2.92401774, 2.95488036, 3.03658897, 3.05812578, 3.10723251,
                3.10723251, 3.10723251, 3.10723251, 3.10723251, 3.14475486,
                3.1748021 , 3.1748021 , 3.2648238 , 3.27106631, 3.27106631,
                3.27106631, 3.27417865, 3.30192725, 3.36197541, 3.38540456,
                3.41424245, 3.41995189, 3.43978636, 3.44821724, 3.57263198,
                3.58304787, 3.63424119, 3.6840315 , 3.70842977, 3.73251116,
                3.73251116, 3.73251116, 3.80295246, 3.80295246, 3.80295246,
                3.91486764, 3.95789161, 3.97905721, 4.02072576, 4.04124002,
                4.16016765, 4.16016765, 4.16016765, 4.1793392 , 4.19833645,
                4.30886938, 4.32674871, 4.37951914, 4.37951914, 4.4647451 ,
                4.4647451 , 4.48140475, 4.48140475, 4.48140475, 4.51435744,
                4.57885697, 4.64158883, 4.67232873, 4.73262349, 4.86294413,
                                                         , 5.06579702, 5.06579702, 5.1924941 ,
                4.93242415, 5.
                5.31329285, 5.3368033 , 5.3368033 , 5.42883523, 5.74889708])),
 (1.0964930316814503, 3.441077741563151, 0.9963217176950497))
```



```
2 - 1 0 1 2 Theoretical quantiles
```

In [30]:

stats.probplot(log Marks sq,plot=pylab)

```
Out[30]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
         -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
         -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
         -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
         -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
         -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
         -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
         -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
         -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
          0.01248789,
                       0.03747145,
                                     0.06247843,
                                                   0.08752455,
                                                                 0.1126257 ,
          0.13779803,
                       0.16305799,
                                     0.18842244,
                                                   0.21390872,
                                                                 0.23953472,
          0.26531902,
                       0.29128096,
                                     0.31744076,
                                                   0.34381966,
                                                                 0.37044003,
          0.39732558,
                       0.42450149,
                                     0.45199463,
                                                   0.47983378,
                                                                 0.50804994,
                       0.56574992,
                                     0.59530962,
          0.53667655,
                                                   0.62539893,
                                                                 0.65606548,
                       0.71934648,
                                     0.75208458,
                                                   0.78564937,
                                                                 0.82012357,
          0.68736185,
                                                   0.96921765,
          0.85560121,
                       0.89218993,
                                     0.93001393,
                                                                 1.00997067,
          1.05247413,
                       1.09696931,
                                     1.14374949,
                                                   1.19317644,
                                                                 1.24570419,
          1.30191411,
                       1.36256869,
                                     1.42869743,
                                                   1.50174123,
                                                                 1.58381122,
          1.67819304,
                       1.79044653,
                                     1.93122778,
                                                   2.12570747,
                                                                 2.46203784]),
 array([ 0.5
                        1.30384048,
                                     1.34164079,
                                                   1.58113883,
                                                                 1.73205081,
          1.73205081,
                        2.
                                     2.14476106,
                                                   2.64575131,
                        3.
                                                                 3.46410162,
          3.
                                     3.082207
                                                   3.16227766,
          3.8340579
                        3.87298335,
                                     3.87298335,
                                                   3.89871774,
                                                                 4 .
          4.31277173,
                        4.35889894,
                                     4.47213595,
                                                   4.47213595,
                                                                 4.47213595,
                                                   4.89897949,
                                                                 5.
          4.47213595,
                        4.69041576,
                                      4.72228758,
                        5.07937004,
                                                                 5.47722558,
                                     5.29150262,
                                                   5.34789678,
          5.47722558,
                        5.47722558,
                                     5.47722558,
                                                   5.47722558,
                                                                 5.5767374
          5.65685425,
                        5.65685425,
                                     5.89915248,
                                                   5.91607978,
                                                                 5.91607978.
          5.91607978,
                        5.9245253 ,
                                     6.
                                                   6.164414
                                                                 6.2289646 ,
          6.30872412,
                        6.32455532,
                                     6.37965516,
                                                   6.40312424,
                                                                 6.75277721,
          6.78232998,
                       6.92820323,
                                     7.07106781,
                                                   7.14142843,
                                                                 7.21110255,
                       7.21110255,
                                     7.41619849,
          7.21110255,
                                                   7.41619849,
                                                                 7.41619849,
          7.74596669,
                       7.87400787,
                                     7.93725393,
                                                   8.06225775,
                                                                 8.1240384 ,
          8.48528137,
                       8.48528137,
                                     8.48528137,
                                                   8.54400375,
                                                                 8.60232527,
                       9.
          8.94427191,
                                     9.16515139,
                                                   9.16515139,
                                                                 9.43398113,
          9.43398113,
                       9.48683298,
                                     9.48683298,
                                                   9.48683298,
                                                                 9.59166305,
          9.79795897, 10.
                                  , 10.09950494, 10.29563014, 10.72380529,
         10.95445115, 11.18033989, 11.40175425, 11.40175425, 11.83215957,
         12.24744871, 12.32882801, 12.32882801, 12.64911064, 13.78404875])),
 (2.983044720739973, 6.6254088687442305, 0.9951899042212309))
```


In [31]:

```
stats.probplot(Marks reci,plot=pylab)
```

```
Out[31]:
```

```
((array([-2.46203784, -2.12570747, -1.93122778, -1.79044653, -1.67819304,
         -1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
        -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
        -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
        -0.82012357, \ -0.78564937, \ -0.75208458, \ -0.71934648, \ -0.68736185,
        -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
        -0.50804994, -0.47983378, -0.45199463, -0.42450149, -0.39732558,
        -0.37044003, -0.34381966, -0.31744076, -0.29128096, -0.26531902,
        -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
        -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
         0.01248789, 0.03747145, 0.06247843, 0.08752455,
                                                             0.1126257 ,
         0.13779803, 0.16305799, 0.18842244,
                                                0.21390872,
                                                              0.23953472,
                                                              0.37044003,
         0.26531902,
                      0.29128096,
                                   0.31744076,
                                                 0.34381966,
         0.39732558,
                      0.42450149,
                                   0.45199463,
                                                 0.47983378,
                                                              0.50804994,
                      0.56574992,
                                   0.59530962,
                                                 0.62539893,
         0.53667655,
                                                              0.65606548,
         0.68736185,
                      0.71934648,
                                   0.75208458,
                                                 0.78564937,
                                                              0.82012357,
         0.85560121,
                      0.89218993,
                                    0.93001393,
                                                 0.96921765,
                                                              1.00997067,
         1.05247413,
                      1.09696931,
                                    1.14374949,
                                                 1.19317644,
                                                              1.24570419,
         1.30191411,
                      1.36256869,
                                    1.42869743,
                                                 1.50174123,
                                                              1.58381122,
         1.67819304,
                      1.79044653,
                                   1.93122778,
                                                 2.12570747,
                                                              2.46203784]),
                              , 0.00657895, 0.00657895, 0.00666667,
 array([0.00526316, 0.00625
                                                      , 0.00833333,
         0.00714286, 0.00769231, 0.00769231, 0.008
                                                       , 0.01041667,
        0.00869565, 0.00943396, 0.00980392, 0.01
        0.01086957, 0.011111111, 0.011111111, 0.011111111, 0.01123596,
        0.01123596, 0.01190476, 0.01190476, 0.01234568, 0.0125
        0.01351351, 0.01369863, 0.01388889, 0.01388889, 0.01388889,
        0.01515152, 0.01538462, 0.01587302, 0.01612903, 0.01666667,
        0.01818182, 0.01818182, 0.01818182, 0.01923077, 0.01923077,
        0.01923077, 0.01960784, 0.02
                                           , 0.02083333, 0.02173913,
        0.02192982, 0.02439024, 0.02457002, 0.025
                                                       , 0.02512563,
        0.0257732 , 0.02631579, 0.02777778, 0.02849003, 0.02857143,
        0.02857143, 0.02857143, 0.02873563, 0.03125
                                                      , 0.03125
        0.03215434, 0.03333333, 0.03333333, 0.03333333, 0.03333333,
        0.03333333, 0.03496503, 0.03571429, 0.03875969, 0.04
                   , 0.04166667, 0.04484305, 0.04545455, 0.05
        0.04
                                          , 0.05263158, 0.05376344,
                   , 0.05
        0.05
                               , 0.05
        0.0625
                   , 0.06578947, 0.06666667, 0.06666667, 0.06802721,
        0.08333333, 0.1
                               , 0.10526316, 0.111111111, 0.111111111,
                                                      , 0.33333333,
        0.111111111, 0.14285714, 0.2173913 , 0.25
                               , 0.55555556, 0.58823529, 4.
         0.33333333, 0.4
                                                                   ])),
 (0.16654238388625658, 0.0958160800017085, 0.4031270817229625))
```


In [32]:

```
stats.probplot(log_Marks,plot=pylab)
```

Out[32]:

```
 \hbox{((array([-2.46203784,\ -2.12570747,\ -1.93122778,\ -1.79044653,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1.67819304,\ -1
```

```
-1.58381122, -1.50174123, -1.42869743, -1.36256869, -1.30191411,
        -1.24570419, -1.19317644, -1.14374949, -1.09696931, -1.05247413,
        -1.00997067, -0.96921765, -0.93001393, -0.89218993, -0.85560121,
        -0.82012357, -0.78564937, -0.75208458, -0.71934648, -0.68736185,
        -0.65606548, -0.62539893, -0.59530962, -0.56574992, -0.53667655,
        -0.50804994, \ -0.47983378, \ -0.45199463, \ -0.42450149, \ -0.39732558,
        -0.37044003, \ -0.34381966, \ -0.31744076, \ -0.29128096, \ -0.26531902,
        -0.23953472, -0.21390872, -0.18842244, -0.16305799, -0.13779803,
        -0.1126257, -0.08752455, -0.06247843, -0.03747145, -0.01248789,
         0.01248789, 0.03747145,
                                   0.06247843,
                                                 0.08752455,
                                                               0.1126257 ,
         0.13779803,
                      0.16305799,
                                    0.18842244,
                                                  0.21390872,
                                                                0.23953472,
                      0.29128096,
                                    0.31744076,
                                                  0.34381966,
                                                                0.37044003,
         0.26531902,
         0.39732558,
                      0.42450149,
                                    0.45199463,
                                                  0.47983378,
                                                                0.50804994,
                      0.56574992,
                                    0.59530962,
                                                  0.62539893,
                                                                0.65606548,
         0.53667655,
         0.68736185,
                      0.71934648,
                                    0.75208458,
                                                  0.78564937,
                                                                0.82012357,
         0.85560121,
                      0.89218993,
                                    0.93001393,
                                                  0.96921765,
                                                                1.00997067,
         1.05247413,
                      1.09696931,
                                    1.14374949,
                                                  1.19317644,
                                                                1.24570419,
         1.30191411,
                      1.36256869,
                                    1.42869743,
                                                  1.50174123,
                                                                1.58381122,
         1.67819304,
                      1.79044653,
                                    1.93122778,
                                                  2.12570747,
                                                                2.46203784]),
                                    0.58778666,
array([-1.38629436,
                      0.53062825,
                                                  0.91629073,
                                                                1.09861229,
                                                                2.19722458,
         1.09861229,
                      1.38629436,
                                    1.5260563 ,
                                                  1.94591015,
                                    2.2512918 ,
                                                  2.30258509,
         2.19722458,
                      2.19722458,
                                                                2.48490665,
                                    2.7080502 ,
                                                  2.72129543,
         2.68784749,
                      2.7080502 ,
                                                                2.77258872,
         2.92316158,
                      2.94443898,
                                    2.99573227,
                                                  2.99573227,
                                                                2.99573227,
                                    3.10458668,
                                                  3.17805383,
         2.99573227,
                       3.09104245,
                                                                3.21887582,
         3.21887582,
                       3.25037449,
                                    3.33220451,
                                                  3.35340672,
                                                                3.40119738,
         3.40119738,
                      3.40119738,
                                    3.40119738,
                                                  3.40119738,
                                                                3.43720782,
         3.4657359 ,
                      3.4657359 ,
                                    3.54961739,
                                                  3.55534806,
                                                                3.55534806,
         3.55534806,
                      3.55820113,
                                    3.58351894,
                                                  3.63758616,
                                                                3.65842025,
         3.68386691,
                      3.68887945,
                                    3.70622809,
                                                  3.71357207,
                                                                3.81990772,
         3.8286414 ,
                      3.87120101,
                                    3.91202301,
                                                  3.93182563,
                                                                3.95124372,
         3.95124372,
                      3.95124372,
                                    4.00733319,
                                                  4.00733319,
                                                                4.00733319,
         4.09434456,
                      4.12713439,
                                    4.14313473,
                                                  4.17438727,
                                                                4.18965474,
         4.27666612,
                      4.27666612,
                                    4.27666612,
                                                  4.29045944,
                                                                4.30406509,
                      4.39444915,
                                    4.4308168 ,
                                                  4.4308168 ,
                                                                4.48863637,
         4.38202663,
                                    4.49980967,
                                                  4.49980967,
         4.48863637,
                      4.49980967,
                                                                4.52178858,
         4.56434819,
                      4.60517019,
                                    4.62497281,
                                                  4.66343909,
                                                                4.74493213,
                                    4.86753445,
                                                  4.86753445,
         4.78749174,
                      4.82831374,
                                                                4.94164242,
                                                  5.07517382,
         5.01063529,
                       5.02388052,
                                    5.02388052,
                                                                5.24702407])),
(1.1033972747040552, 3.522558182933606, 0.9494491339528739))
```

