The following hydrogen data table is from "Atomic Transition Probabilities," 1966.

Transition	λ(Å)	$E_i(\text{cm}^{-1})$	$E_k(\mathrm{cm}^{-1})$	gı	gk	$A_{ki}(\mathrm{sec^{-1}})$
le 2n	1215.67	0	82259	2	6	6.265×10^{8}
$ \begin{array}{l} 1s-2p\\1s-3p \end{array} $	1025.72	ŏ	97492	2	6	1.672×10^{8}
1s-3p 1s-4p	972.537	ő	102824	$\frac{1}{2}$	6	6.818×10^{7}
1s-5p	949.743	0	105292	2 2 2 2 2	6	3.437×10^7
1s-6p	937.804	0	106632	2	6	1.973×10^{7}
2p-3s	6562.86	82259	97492	6	2	6.313×10^{6}
2p-4s	4861.35	82259	102824	6	2	2.578×10^{6}
2p-5s	4340.48	82259	105292	6	2 2 2 2	1.289×10^{6}
2p-6s	4101.75	82259	106632	6	2	7.350×10^{5}
2s-3p	6562.74	82259	97492	2	6	2.245×10^{7}
2s-4p	4861.29	82259	102824	2 2 2 2	6	9.668×10^{6}
2s-5p	4340.44	82259	105292	2	6	4.948×10^{6}
2s-6p	4101.71	82259	106632	2	6	2.858×10^{6}
2p-3d	6562.81	82259	97492	6	10	6.465×10^{7}
2p-4d	4861.33	82259	102824	6	10	2.062×10^{7}
2p-5d	4340.47	82259	105292	6	10	9.425×10^{6}
2p-6d	4101.74	82259	106632	6	10	5.145×10^{6}

The 2-3 transitions correspond to the H- α line of the hydrogen spectrum.

Transition	λ (Å)	$A_{ki} (\operatorname{second}^{-1})$
2p-3s	6562.86	6.313×10^6
2s-3p	6562.74	2.245×10^{7}
2p-3d	6562.81	6.465×10^7

 A_{ki} is the spontaneous emission rate for $k \to i$.

For H- α we have k=3 and i=2.

Let us compute A_{ki} for H- α and see if the results match the table.

Orbital names correspond to the following azimuthal quantum numbers.

Name	Azimuthal quantum number ℓ
s	0
p	1
d	2

Because of the magnetic quantum number m_{ℓ} there are multiple ways for each orbital transition to occur. $(m_{\ell} = 0, \pm 1, \dots, \pm \ell)$

There are three transitions for $3s \to 2p$.

$$\psi_{3,0,0} \to \psi_{2,1,1} \psi_{3,0,0} \to \psi_{2,1,0} \psi_{3,0,0} \to \psi_{2,1,-1}$$

There are three transitions for $3p \rightarrow 2s$.

$$\psi_{3,1,1} \to \psi_{2,0,0}$$

 $\psi_{3,1,0} \to \psi_{2,0,0}$
 $\psi_{3,1,-1} \to \psi_{2,0,0}$

Finally, there are fifteen transitions for $3d \rightarrow 2p$.

For each H- α line, an average A_{ki} is computed by summing over A_{ki} for individual transitions and dividing by the number of distinct initial states.

For example, $3d \rightarrow 2p$ has five distinct initial states, so the divisor is five.

 A_{ki} is computed from the following formula.

$$A_{ki} = \frac{e^2}{3\pi\varepsilon_0\hbar c^3} \,\omega_{ki}^3 \,|r_{ki}|^2$$

The transition frequency ω_{ki} is given by Bohr's frequency condition.

$$\omega_{ki} = \frac{1}{\hbar} (E_k - E_i)$$

The transition probability (multiplied by a physical constant) is

$$|r_{ki}|^2 = |x_{ki}|^2 + |y_{ki}|^2 + |z_{ki}|^2$$

For wave functions ψ in spherical coordinates we have the following transition amplitudes.

$$x_{ki} = \int \psi_k^* (r \sin \theta \cos \phi) \, \psi_i \, dV$$
$$y_{ki} = \int \psi_k^* (r \sin \theta \sin \phi) \, \psi_i \, dV$$
$$z_{ki} = \int \psi_k^* (r \cos \theta) \, \psi_i \, dV$$

Using Eigenmath we obtain the following values for average A_{ki} .

$$A_{3s2p} = 6.31358 \times 10^6 \text{ second}^{-1}$$

 $A_{3p2s} = 2.24483 \times 10^7 \text{ second}^{-1}$
 $A_{3d2p} = 6.4651 \times 10^7 \text{ second}^{-1}$

These values are essentially identical to the values shown in the table.

Some of the $|r_{ki}|^2$ are zero, indicating forbidden transitions.

The following tables show $|r_{ki}|^2$ for each transition (multiply given values by $a_0^2 = 2.8 \times 10^{-21}$ meter²).

Each row is an initial state ψ_i and each column is a final state ψ_k .

	Final state $\psi_{2,1,1}$	Final state $\psi_{2,1,0}$	Final state $\psi_{2,1,-1}$
Initial state $\psi_{3,0,0}$	0.293534	0.293534	0.293534

	Final state $\psi_{2,0,0}$
Initial state $\psi_{3,1,1}$	3.13103
Initial state $\psi_{3,1,0}$	3.13103
Initial state $\psi_{3,1,-1}$	3.13103

	Final state $\psi_{2,1,1}$	Final state $\psi_{2,1,0}$	Final state $\psi_{2,1,-1}$
Initial state $\psi_{3,2,2}$	9.01737	0	0
Initial state $\psi_{3,2,1}$	4.50868	4.50868	0
Initial state $\psi_{3,2,0}$	1.50289	6.01158	1.50289
Initial state $\psi_{3,2,-1}$	0	4.50868	4.50868
Initial state $\psi_{3,2,-2}$	0	0	9.01737