	Chance Variation: inherent errors that we cannot control
	Assignable Cause: errors caused that we can control
13.2	Control Charts for Average Values: The X Control Chart
	- When the process is in control, the successive items produced have measurable characteristics that are independent, normal
	random variables with mean M and variance σ^2
	- if the process is in control throughout the production of subgroup i, then $\frac{(\overline{x}-M)}{\overline{r}/\overline{n}}$ has a standard normal
	distribution. $\frac{4}{3}$ a standard normal variable \times will almost always be between -3 and +3. $M-\frac{30}{50}$ $< \overline{X}_1 < M+\frac{30}{50}$
	lower control limits upper control limits
	- Suppose the process has gone out of contol by a chance that a shift has occurred in mean, $M o M + \alpha$
	$-3 < \sqrt{n} \frac{(\overline{X} - M)}{\sqrt{T}} < 3 \rightarrow -3 - \frac{a \sqrt{n}}{\sqrt{T}} < \sqrt{n} \frac{(\overline{X} - M - \alpha)}{\sqrt{T}} < 3 - \frac{a \sqrt{n}}{\sqrt{T}}$, hence, since \overline{X} is normal
	With mean $M+\alpha$ and variance $\frac{\nabla^2}{n}$, $\ln \frac{(\bar{x}-M-\alpha)}{\bar{x}}$ has a standard normal distribution.
	$\Rightarrow \rho\left(-3 - \frac{\sqrt{n}}{\sqrt{r}} < Z < 3 - \frac{\sqrt{n}}{\sqrt{r}}\right) = \cancel{p}\left(3 - \frac{\sqrt{n}}{\sqrt{r}}\right) - \cancel{p}\left(-3 - \frac{\sqrt{n}}{\sqrt{r}}\right) \approx \cancel{p}\left(3 - \frac{\sqrt{n}}{\sqrt{r}}\right), \text{ so the}$
	probability that it falls outside is approximately $1 - \mathbb{E}(3 - \frac{a \ln}{\nabla})$.
	the number of subgroups that will be needed to detect the shift has a geometric distribution
	with mean $\left[1-\sqrt{3}\left(3-\frac{a\sqrt{n}}{\sqrt{n}}\right)\right]^{-1}$
13.2.1	Case of Unknown M and T
	- the unbiased estimator of M is \overline{X} , the average of \overline{X}_1 's.
	- the unbiased estimator of ∇ is $\frac{E(S_1)}{C(n)}$, where $E(S_1) = \frac{\sqrt{12} T(\frac{n-1}{2})}{\sqrt{n-1} T(\frac{n-1}{2})}$, $C(n) = \frac{\sqrt{12} T(\frac{n-1}{2})}{\sqrt{n-1} T(\frac{n-1}{2})}$
	=> Lower Control Limits = $\bar{X} - \frac{3\bar{5}}{c(n)\bar{1}\bar{n}}$, Upper Control Limits = $\bar{X} + \frac{3\bar{5}}{c(n)\bar{1}\bar{n}}$, and check if each of \bar{X} ;'s falls within these
	lower and upper limits.
13,3	S-Control Charts
	- remember, $E(S_i) = c(n) \nabla$
	$\Rightarrow Var(S_i) = E(S_i^2) - \{E(S_i)\}^2$
	$= \nabla^2 - \left\{ C(n) \right\}^2 \nabla^2$
	$= \nabla^2 \left\{ \left(- \left(c(n) \right)^2 \right\} \right.$
	=> $P\{E(S_i) - 3\sqrt{Var(S_i)} < S_i < E(S_i) + 3\sqrt{Var(S_i)} = 0.99$
	= VCL =
	$LCL = \nabla \left[c(n) - 3 \sqrt{1 - c^2(n)} \right] , \text{ but if } \tau \text{ is unknown, it can be estimated from } \frac{\overline{S}}{c(n)}$

	UCL = S[1+3/1/c2(n)-1]
	$LCL = \overline{S}[1 - 3\sqrt{1/c^2(n) - 1}]$
13.4	Control Charts For the Fraction Defective
	- Let X denote the number of defective items in a subgroup of n items, then $X \sim binom(n,p)$. If $F = \frac{X}{n}$,
	$\Rightarrow E(F) = \frac{E(X)}{n} = \frac{n\rho}{n} = \rho$
	$\Rightarrow \overline{Var(F)} = \sqrt{\frac{Var(X)}{n^2}} = \sqrt{\frac{np(1-p)}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$
	$UCL = P + 3 \sqrt{\frac{P(I-P)}{n}}, LCL = P - 3 \sqrt{\frac{P(I-P)}{n}}$
	L to start such a control chart, it is necessary to estimate P.
	$\overline{F} = \frac{1}{K} \sum_{i=1}^{K} F_{i}, Var(\overline{F}) = \int_{\underline{F}(1-\overline{F})}^{\overline{F}(1-\overline{F})} n$
	$= VCL = F + 3 \int_{-R}^{E(I-F)} LCL = P - 3 \int_{-R}^{E(I-F)} n$
13.5	Control Charts For Number of Defects
	- Let X be a poisson random variable, then $E(X_i) = \lambda = Var(X_i) = \lambda$ UCL = $\lambda + 3\sqrt{\lambda}$ LCL = $\lambda - 3\sqrt{\lambda}$
	$\Rightarrow \overline{X} = \frac{1}{K} \sum_{i=1}^{K} X_{i} = Var(\overline{X}) \Rightarrow UCL = \overline{X} + 3\sqrt{\overline{X}}$
	, , , , , , , , , , , , , , , , , , ,
	?
13.6	Other Control Charts for Detecting Changes in the Population Mean
, 0	The complete to the good of the population recurs