7.1: Games on Networks

٨

Outline

- Part I: Background and Fundamentals
 - Definitions and Characteristics of Networks (1,2)
 - Empirical Background (3)
- Part II: Network Formation
 - Random Network Models (4,5)
 - Strategic Network Models (6, 11)
- Part III: Networks and Behavior
 - Diffusion and Learning (7,8)
 - Games on Networks (9)

Games on Networks

- Decisions to be made
 - not just diffusion
 - not just updating
- Complementarities...
- ``Strategic'' Interplay
 - Inter-dependencies

Games on Networks - Outline

- Basic Definitions
- Examples
- Strategic Complements/Substitutes
- Equilibrium existence and structure
- Equilibrium response to network structure

Games on Networks

- Care about actions of neighbors
- Early literature: How complex is the computation of equilibrium in worse case games?
- Second branch: what can we say about behavior and how it relates to network structure

Start with a Canonical Special Case:

- Each player chooses action x_i in {0,1}
- payoff will depend on
 - how many neighbors choose each action
 - how many neighbors a player has

Definitions

- Each player chooses action x_i in {0,1}
- Consider cases where i's payoff is

$$u_{d_i}(x_i, m_{N_i})$$

depends only on $d_i(g)$ and $m_{N_i(g)}$ - the number of neighbors of i choosing 1

Example: Simple Complement

 agent i is willing to choose 1 if and only if at least t neighbors do:

• Payoff action 0: $u_{d_i}(0, m_{N_i}) = 0$

• Payoff action 1: $u_{d_i}(1,m_{N_i}) = -t + m_{N_i}$

Example:

 An agent is willing to take action 1 if and only if at least two neighbors do

Example:

 An agent is willing to take action 1 if and only if at least two neighbors do

Example: Best Shot

 agent i is willing to choose 1 if and only if no neighbors do:

• Payoff action 0:
$$u_{d_i}(0, m_{N_i}) = 1 \text{ if } m_{N_i} > 0$$

= 0 if $m_{N_i} = 0$

• Payoff action 1: $u_{d_i}(1, m_{N_i}) = 1 - c$

Another Example: Best Shot Public Goods

 An agent is willing to take action 1 if and only if no neighbors do

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.2: Complements and Substitutes

Games on Networks - Outline

- Basic Definitions
- Examples
- Strategic Complements/Substitutes
- Equilibrium existence and structure
- Equilibrium response to network structure

Complements/Substitutes

- strategic complements -- for all d, m≥m'
 - Increasing differences:

$$u_d(1,m)-u_d(0,m) \ge u_d(1,m')-u_d(0,m')$$

- strategic substitutes -- for all d, m≥m'
 - Decreasing differences:

$$u_d(1,m)-u_d(0,m) \le u_d(1,m')-u_d(0,m')$$

Externalities:

- Others' behaviors affect my utility/welfare
- Others' behaviors affect my *decisions*, *actions*, *consumptions*, *opinions*...
 - others' actions affect the *relative* payoffs to my behaviors

(Strategic) Complements/Substitutes

- Complements: Choice to take an action by my friends increases my relative payoff to taking that action (e.g., friend learns to play a video game)
- Substitutes: Choice to take an action by my friends decreases my relative payoff to taking that action (e.g., roommate buys a stereo/fridge)

Examples

- Complements:
 - education decisions
 - care about number of neighbors, access to jobs, etc. –
 invest if at least k neighbors do
 - smoking & other behavior among teens, peers, ...
 - technology adoption how many others are compatible...
 - learn a language, ...
 - cheating, doping
- Substitutes
 - information gathering
 - e.g., payoff of 1 if anyone in neighborhood is informed, cost to being informed (c<1)
 - local public goods (shareable products...)
 - competing firms (oligopoly with local markets)
 - **–** ...

Games on Networks - Outline

- Basic Definitions
- Examples
- Strategic Complements/Substitutes
- Equilibrium existence and structure
- Equilibrium response to network structure

Equilibrium

- Nash equilibrium: Every player's action is optimal for that player given the actions of others
- Often look for pure strategy equilibria
- May require some mixing

Best shot

- Maximal independent set: each 1 has no 1's in its neighborhood, each 0 has at least one 1
- Different distributions of utilities, and different total costs

Maximal Independent Set

- Independent Set: a set S of nodes such that no two nodes in S are linked,
- Maximal: every node in N is either in S or linked to a node in S

Useful Observation

- Complements: there is a threshold t(d), such that i prefers 1 if m_{Ni} > t(d) and 0 if m_{Ni} < t(d)
- Substitutes: there is a threshold t(d), such that i prefers 1 if m_{Ni} < t(d) and 0 if m_{Ni} > t(d)
- Can be indifferent at the threshold

Complements:

- threshold is two
- multiple equilibria
- lattice structure to set of equilibria

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.3: Properties of Equilibria

Complete lattice

- Complete Lattice: for every set of equilibria X
 - there exists an equilibrium x' such that x'≥x
 for all x in X, and
 - there exists an equilibrium x" such that
 x"≤x for all x in X.

Lattice:

Proposition

In a game of strategic complements where the individual strategy sets are complete lattices:

the set of pure strategy equilibria are a (nonempty) complete lattice.

Contrast: Complements and Substitutes

- In a game of complements: pure strategy equilibria are a nonempty complete lattice
- In a game of strategic substitutes:
 - Best shot game: pure strategy equilibria exist and are related to maximal independent sets
 - Others: pure strategy may not exist, but mixed will (with finite action spaces)
 - Equilibria usually do not form a lattice

Best Shot Public Goods

- invest if and only if no neighbors do (threshold is 1)
- again, multiple equilibria
- but, no lattice structure...

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.4: Multiple Equilibria

Games on Networks - Outline

- Basic Definitions
- Examples
- Strategic Complements/Substitutes
- Equilibrium existence and structure
- Equilibrium relation to network structure

When can multiple actions be sustained:

- Morris (2000) Coordination game
- Care only about fraction of neighbors
- prefer to take action 1 if fraction q or more take 1

Equilibrium Structure

Let S be the group that take action 1

- Each i in S must have fraction of at least q neighbors in S
- Each i not in S must have a fraction of at least 1-q neighbors outside of S

Cohesion

A group S is r-cohesive relative to g if $\min_{i \text{ in S}} |\{j \text{ in } N_i(g) \text{ and S}\}|/d_i(g) \ge r$

At least a fraction r of each member of S's neighbors are in S

Cohesiveness of S is $\min_{i \text{ in S}} |\{j \text{ in } N_i(g) \text{ and S}\}|/d_i(g)$

Both groups are 2/3 cohesive

Equilibria where both strategies are played:

Morris (2000): there exists a pure strategy equilibrium where both actions are played if and only if there is a group S that is at least q cohesive and such that its complement is at least 1-q cohesive.

Homophily?

- If q=1/2 players want to match majority
- Then two groups that have more self-ties than cross-ties suffices to sustain both actions
- As q rises (game payoffs become more asymmetric), need more homophilous behavior between the groups to sustain both actions

Blue: Black "strong friendships" **Reds: Hispanic** cross group links less than half as frequent **Yellow: White** Jackson 07 **Pink: Other Light Blue: Missing**

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.5: An Application

•

Application:

Drop out decisions

Strategic complements

Application:

Drop out decisions

Strategic complements

Labor Participation Decisions (Calvo-Armengol & Jackson 04,07,09)

- Value to being in the labor market depends on number of friends in labor force, value to non-labor activities depend on number of friends outside of labor market
- Participate if at least some fraction of friends do
- Homophily and different starting conditions (history)
 lead to different outcomes for different groups...

Drop-Out Rates

• Chandra (2000) Census – males 25 to 55

	1940	1950	1960	1970	1980	1990
whites	3.3	4.2	3.0	3.5	4.8	4.9
blacks	4.2	7.5	6.9	8.9	12.7	12.7

See DiCecio et al 2008, data from BLS for more recent, and by gender, including Hispanics

Drop-Out Decisions

- Value to being in the labor market depends on number of friends in labor force
- Drop out if some number of friends drop out
- Some heterogeneity in threshold (different costs, natural abilities...)
- Homophily segregation in network
- Different starting conditions: history...

Two groups exhibit homophily...

Drop-out if at least half of neighbors do -- begin with two initial dropouts...

Drop-out if at least half of neighbors do...

Drop-out if at least half of neighbors do...

End up with persistent differences across groups... Applications to social mobility, wage inequality, etc.

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.6: Beyond 0-1 Choices

Beyond 0-1 choices

Graphical game

• x_i in [0,1]

 Start with Bramoulle and Kranton: information acquisition

Bramoulle-Kranton Setting:

- payoff $f(x_i + \sum_{j \text{ in } N_i(g)} x_j) c x_i$ concave f
- Let $x^*>0$ solve $f'(x^*) = c$

Bramoulle-Kranton Setting:

- payoff $f(x_i + \sum_{j \text{ in } N_i(g)} x_j) c x_i$ concave f
- Let $x^*>0$ solve $f'(x^*) = c$
- In all pure strategy Nash equilibria: $x_i + \sum_{j \text{ in } N_i(g)} x_j \ge x^*$ for all i, and if >, then $x_i = 0$

Bramoulle-Kranton Setting:

- payoff $f(x_i + \sum_{j \text{ in } N_i(g)} x_j) c x_i$ concave f
- Let $x^*>0$ solve $f'(x^*) = c$
- In all pure strategy Nash equilibria: $x_i + \sum_{j \text{ in } N_i(g)} x_j \ge x^* \text{ for all } i, \text{ and if } >, \text{ then } x_i = 0$
- Look at two types of pure equilibria
 - **distributed:** $x^* > x_i > 0$ for some i's
 - **specialized:** for each i either $x_i=0$ or $x_i=x^*$

Various Equilibria

• Case $x^* = 1$

Specialized Equilibria

- Maximal independent set set S of nodes such that
 - no two nodes in S are linked, and
 - every node in N is either in S or linked to a node in S
- Proposition (B&K): The set of specialized Nash equilibria are profiles such that a maximal independent set = the specialists (x_i = x*)

Stability Notion: pure strategy equilibrium perturb x to $x^0 = (x_1 + \varepsilon_1, ... x_n + \varepsilon_n)$, being sure that

- all entries are feasible
- Let x^1 be the best response to x^0 , x^t to x^{t-1}
- If for all small enough ε_i 's converge back to x, then ``stable''

Stable equilibria:

Dyad: nothing is stable:

• let
$$x_1 \le x_2$$

• $x_1 + \varepsilon$, $x_2 - \varepsilon$ stays there

Stable equilibria, BK:

Only stable equilibria are specialist
 equilibria such that every non-specialist has
 two specialists in his or her neighborhood

stable:

unstable:

Sketch of Proof

- Stability of such equilibria: for small perturbations, BR of non-specialists is 0, converge right back
- For any other equilibrium, if there is an agent providing is a non-specialists, then perturb the agent up, neighbors go down...
- If all specialists or not then some nonspecialist just has one neighbor as specialist – raise that nonspecialist, lower the specialist...

Stability and Pairwise Stability:

- Suppose links are costly
- specialists drop links to non
- non-specialized equilibria are only ``stable'' ones...

Heterogeneity?

 Introduction of heterogeneous costs and benefits, and some less than perfect spillovers

Would change the nature of equilibria

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.7: A Linear Quadratic Model

A Linear-Quadratic Model

Ballester, Calvo-Armengol and Zenou (2006)

$$u_i(x_i, x_{-i}) = a x_i - b x_i^2 / 2 + \sum_j w_{ij} x_i x_j$$

strategic complements

$$u_i(x_i,x_{-i}) = a x_i - b x_i^2/2 + \Sigma_j w_{ij} x_i x_j$$

Best response of x_i to x_{-i} :

$$a - b x_i + \Sigma_j w_{ij} x_j = 0$$

$$(a + \Sigma_j w_{ij} x_j)/b = x_i$$

$$x_i = (a + \Sigma_j w_{ij} x_j)/b$$

Thus,
$$x = \alpha + g x$$

where
$$\alpha = (a/b,...,a/b)$$
 and $g_{ij} = w_{ij}/b$

$$x = \alpha + g x$$

or
$$\mathbf{x} = \mathbf{\alpha} + \mathbf{g} (\alpha + \mathbf{g} (\alpha + \mathbf{g}))) = \sum_{k \ge 0} \mathbf{g}^k \mathbf{\alpha}$$

or
$$\mathbf{x} = (\mathbf{I} - \mathbf{g})^{-1} \mathbf{\alpha}$$
 if invertible

(or if a=0, then x=gx, so unit eigenvector)

- Actions are related to network structure:
- higher neighbors' actions, higher own action
- higher own action, higher neighbors actions
- feedback for solution need b to be large and/or w_{ij}'s to be small

Relation to centrality measures:

$$\mathbf{x} = \mathbf{\Sigma}_{k \ge 0} \ \mathbf{g}^k \, \mathbf{\alpha}$$
or
$$\mathbf{x} = (\mathbf{I} - \mathbf{g})^{-1} \, \mathbf{\alpha}$$

Recall Bonacich centrality:

$$B(g) = (I - g)^{-1} g1 = \Sigma_{k \ge 0} g^{k+1} 1$$

(number of paths from i to j of length k+1, summed over all k+1, here weighted and directed w_{ij}/b)

Relation to centrality measures:

$$\mathbf{x} = \mathbf{\Sigma}_{k \ge 0} \ \mathbf{g}^k \, \mathbf{\alpha}$$
or
$$\mathbf{x} = (\mathbf{I} - \mathbf{g})^{-1} \, \mathbf{\alpha}$$

Bonacich centrality:

$$B(g) = (I - g)^{-1} g1 = \Sigma_{k \ge 0} g^{k+1} 1$$

So,
$$x = (1 + B(g))(a/b)$$

- Natural feedback from complementarities, actions relate to the total feedback from various positions
- Centrality: relative number of weighted influences going from one node to another
- Captures complementarities

Example

- $\mathbf{x} = (\mathbf{1} + B(\mathbf{g}))(a/b)$
- Scales with a/b so ignore that
- $g_{ij} = w_{ij} / b$ let us take w_{ij} in {0,1} and then only b matters

Example

•
$$x = (1 + B(g))(a/b)$$

• $g_{ij} = w_{ij} / b$ let us take w_{ij} in {0,1} and then only b matters

Example

- x = (1 + B(g))(a/b)
- B(g) = 1.75, 1.88, 1.72 for 1,2,3 if b=10
 = 8.33, 9.17, 7.88 for 1,2,3 if b=5

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved.

7.8: Repeated Games and Networks

Repeated Games on Networks: Favor Exchange

- How does successful favor exchange depend on/influence network structure?
- Co-determination of network and behavior

Repeated Games on Networks: Favor Exchange

- Jackson, Rodriguez-Barraquer, Tan 12
- Many interactions are not contractible, and need to be self-enforcing
- How does successful favor exchange depend on/influence network structure?

Kero-Come Medic

Social Enforcement

Social capital literature's
 (e.g., Coleman, Bourdieu,
 Putnam...) discussion of
 enforcement has been interpreted
 as high clustering/transitivity:

 If we model social pressure and enforcement what comes out?

High? Clustering Coefficients -

- Prison friendships
 - .31 (MacRae 60) vs .0134
- co-authorships
 - .15 math (Grossman 02) vs .00002,
 - .09 biology (Newman 01) vs .00001,
 - .19 econ (Goyal et al 06) vs .00002,
- www
 - .11 for web links (Adamic 99) vs .0002

Favors

v value of a favor

c cost of a favor, v > c > 0

 δ discount factor $1 > \delta > 0$

p prob. i needs a favor from j in a period

Repeated Game of Favor Exchange

Favor need arises at random to (at most) one of the two agents

Other agent decides whether to provide favor

If provided, value v to receiver, - c to giver Otherwise, value 0 to both

Favor Exchange

Favor exchange between two agents

expected value of relationship per period

Favor Exchange

Favor exchange between two agents

$$p(v-c)/(1-\delta)$$

value of **perpetual** relationship

Favor Exchange

Favor exchange between two agents iff:

cost

current value of future relationship

Three agents (a ``triad''):

Ostracize agent who does not perform a favor

$$c < 2 \delta p (v - c) / (1 - \delta)$$

Three agents (a ``triad''):

Ostracize agent who does not perform a favor

$$c < 2 \delta p (v - c) / (1 - \delta)$$

Three agents (a ``triad''):

Ostracize agent who does not perform a favor

$$c < 2 \delta p (v - c) / (1 - \delta)$$

Three agents (a ``triad''):

Ostracize agent who does not perform a favor

$$c < 2 \delta p (v-c)/(1-\delta)$$
 (2)

Game: Period t

- At most one agent i_t is called upon to perform a favor for j_t ∈ N_i (g_t) (p small)
- i_t keeps or deletes the link
- Others can respond: announce which (remaining) links they wish to maintain
- Links are retained if mutually agree resulting network is g_{t+1}

Robustness Against Social Contagion

A network such that the punishment for failing to perform a favor only impacts neighbors of original players lose links

Impact of a deletion/perturbation is local

Supported links:

link ij \in g is **supported** if there exists k such that ik \in g and jk \in g

Friend in common:

Thm: Implications of the game

If no pair of players could sustain favor exchange in isolation and a network is robust, then all of its links are supported.

Theory:

Usual Measure:

Support: With what frequency do a typical pair of connected nodes, A and B, have a common neighbor?

Clustering: With what frequency are a typical node A's neighbors, say B and C neighbors of each other?

Support=1, Clustering=.47

— Favor clustering — Social clustering — All culstering — Favor support measure — Social support measure

g'=Favors, g=All

Conclusions

- Robust enforcement gives social quilts;
- Theory for: Support Friends in Common (which differs significantly from clustering)
- Support is ``high'' in favor exchange data
 - favor/advice/business networks show significantly more support than purely social

Week 7 Wrap

- Behavior and network structure
 - complements provide nice lattice structure to equilibria
 - substitutes less structured (except best-shot games)
 - comparative statics: higher density more activity with complements...
 - multiple behaviors related to homophily, cohesion –
 splits in network allow for different behaviors on
 different parts of network
 - linear-quadratic games: intensity of behavior depends on position, relates to centrality measures, tractable model

Social and Economic Networks: Models and Analysis

Matthew O. Jackson

Stanford University, Santa Fe Institute, CIFAR,

www.stanford.edu\~jacksonm

Copyright © 2013 The Board of Trustees of The Leland Stanford Junior University. All Rights Reserved. Figures reproduced with permission from Princeton University Press.

7.9: Course Wrap

▶

Summary – Games on Networks:

- Strategic Complements and Substitutes exhibit very different patterns
- Position matters:
 - more connected take
 - higher actions in complements (and earlier)
 - lower actions in substitutes
- Structure matters:
 - some networks lead to diffusion of behavior others do not
 - Homophily /cohesion is a critical determinant of diversity of actions

To do list:

- Study impact of homophily, clustering, and other network characteristics on behavior
- More integration behavior with network formation
- Take models of games on networks to data: structural modeling of peer effects

Whither Now?

- Bridging random/economic models of formation
- New statistical models of network formation
- Relate Networks to outcomes
 - Applications: labor, knowledge, mobility, voting, trade, collaboration, crime, www, risk sharing, ...
 - markets, international trade, growth...
- Co-evolution networks and behavior
- Empirical/Experimental
 - enrich modeling of social interactions from a structural perspective - fit network models to data, test network models
- Foundations and Tools—centrality, power, allocation rules, community structures, ...

Week 7: References in order mentioned

- Kearns, M.J., M. Littman, and S. Singh (2001) Graphical Models for Game Theory, in Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, J.S. Breese and D. Koller, eds., San Francisco: Morgan Kaufmann.
- Galeotti A., Goyal S., Jackson M.O., Vega-Redondo F. and L. Yariv (2010), Network games," Review of Economic Studies 77, 218-244.
- Hirshleifer, J. (1983) "From Weakest-Link to Best-Shot: The Voluntary Provision of Public Goods," *Public Choice 41(3):371–386*.
- Jackson M.O. and L. Yariv (2007), "The diffusion of behavior and equilibrium structure properties on social networks," American Economic Review Papers and Proceedings 97, 92-98.
- Jackson, M.O. and L. Yariv (2011), "Diffusion, Strategic Interaction, and Social Structure," In: J. Benhabib, A. Bisin and M.O. Jackson (Eds.), Handbook of Social Economics Volume 1A, Amsterdam: Elsevier Science, 645 678.
- Morris, S. (2000) "Contagion," Review of Economic Studies 67:57–78.
- Calv´o-Armengol, A., and M.O. Jackson (2004) "The Effects of Social Networks on Employment and Inequality," *American Economic Review* 94(3):426–454.
- — (2009) "Like Father, Like Son: Labor Market Networks and Social Mobility," American Economic Journal: Microeconomics,
- —(2007) "Networks in Labor Markets: Wage and Employment Dynamics and Inequality," *Journal of Economic Theory 132(1):27–46.*
- Chandra, A. (2000) "Labor-Market Dropouts and the Racial Wage Gap: 1940–1990." *American Economic Review, May (Papers and Proceedings)*, 90(2), pp. 333–38.
- DiCecio, R. KM. Engemann, M.T. Owyang, and C.H.Wheeler (2008) Changing Trends in the Labor Force: A Survey, FEDERAL RESERVE BANK OF ST. LOUIS *REVIEW*, 47-62
- Jackson M.O. 2007 Social Structure, Segregation, and Economic Behavior, Nancy Schwartz Memorial Lecture, given in April 2007 at Northwestern University, printed version: http://www.stanford.edu/jacksonm/schwartzlecture.pdf
- Bramoull'e Y, Kranton R. (2007) "Public Goods in Networks" J. Econ. Theory 135:1, 478 494

Week 7: References Cont'd

- Ballester C, Calv'o-Armengol A, Zenou Y. 2006. Who's who in networks: wanted the key player. Econometrica 74(5):1403-17
- Jackson, M.O., T. Rodriguez-Barraquer, and X. Tan (2012), Social Capital and Social Quilts: Network Patterns of Favor Exchange," *American Economic Review* 102:5, 1857- 1897.
- Jackson, M.O. and Y. Zenou <u>`(2012) `Games on Networks''</u> Forthcoming in the: Handbook of Game Theory Vol. 4, edited by Peyton Young and Shmuel Zamir, Elsevier Science