Prof. Marcelo José Dias Nascimento

2 de junho de 2010

Exercício 1. Calcule

(a)
$$\int x^3 \cos x^4 dx$$

(b)
$$\int \sin^5 x \cos x dx$$

(c)
$$\int \operatorname{tg} x \operatorname{sec}^2 x dx$$

(d)
$$\int \frac{\sec^2 x}{3 + 2 \operatorname{tg} x} dx$$

(a)
$$\int x^3 \cos x^4 dx$$
 (b) $\int \sin^5 x \cos x dx$ (c) $\int \operatorname{tg} x \sec^2 x dx$ (d) $\int \frac{\sec^2 x}{3 + 2 \operatorname{tg} x} dx$ (e) $\int \left(\frac{5}{x - 1} + \frac{2}{x}\right) dx$ (f) $\int \frac{1}{a^2 + x^2} dx$

(f)
$$\int \frac{1}{a^2 + x^2} dx$$

(g)
$$\int \frac{1}{x \ln x} dx$$

(h)
$$\int \frac{1}{x} \cos(\ln x) dx.$$

(Respostas: (a) $\frac{1}{4} \operatorname{sen} x^4 + k$ (b) $\frac{1}{6} \operatorname{sen}^6 x + k$ (c) $\frac{1}{2} \operatorname{tg}^2 x + k$ (d) $\frac{1}{2} \ln |3 + 2 \operatorname{tg} x| + k$

(b)
$$\frac{1}{6}\sin^6 x + k$$

$$2^{\log x + h}$$

(h)
$$\operatorname{con}(\ln n) + k$$

(e)
$$5 \ln |x - 1| + 2 \ln |x| + k$$
 (f) $\frac{1}{a} \arctan \frac{x}{a} + k$ (g) $\ln |\ln x| + k$ (h) $\operatorname{sen}(\ln x) + k$.)

(g)
$$\ln |\ln x| + k$$

(h)
$$\operatorname{sen}(\ln x) + k$$
.

Exercício 2. Calcule

(a)
$$\int_{-2}^{2} (3s^2 + 2s - 1)ds$$

(b)
$$\int_{1}^{2} \left(x^3 + \frac{1}{x} + \frac{1}{x^3} \right) dx$$

(c)
$$\int_{-\frac{\pi}{6}}^{\frac{\pi}{2}} (\cos 2x + \sin 5x) dx$$

(d)
$$\int_0^2 \frac{4}{1+u^2} \, du$$

(e)
$$\int_0^1 x e^{x^2} dx$$

(f)
$$\int_{-1}^{0} x(2x+1)^{50} dx$$

(g)
$$\int_0^1 \frac{x}{(x^2+1)^5} dx$$

(h)
$$\int_{-1}^{1} x^4 (x^5 + 3)^3 dx$$

(i)
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \operatorname{sen} x (1 - \cos^2 x) dx$$

$$(j) \int_0^{\frac{\pi}{3}} \sin^3 x dx$$

(Respostas: (a) 12 (b) $\frac{33}{8} + \ln 2$ (c) $\frac{3\sqrt{3}}{20}$ (d) $4 \operatorname{arctg} 2$ (e) $\frac{1}{2}e - \frac{1}{2}$ (f) $-\frac{1}{102}$ (g) $\frac{15}{128}$

(h) 12

(i) $\frac{3}{8}\sqrt{3}$ (j) $\frac{5}{24}$))

Exercício 3. Nos itens abaixo, desenhe o conjunto A dado e calcule sua área:

(a) $A = \{(x, y) \in \mathbb{R}^2; x^2 - 1 \le y \le 0\}$

(b) $A = \{(x, y) \in \mathbb{R}^2; 0 \le y \le |\text{sen x}|, 0 \le x \le 2\pi\}.$

(c) A é a região delimitada pelos gráficos de $y + x^2 = 6$ e y + 2x - 3 = 0.

(d) A é a região delimitada pelos gráficos de $y-x=6,\,y-x^3=0$ e 2y+x=0.

(Respostas: (a) $\frac{4}{3}$ (b) 4 (c) $\frac{32}{3}$ (d) 22)

Exercício 4. Sabendo-se que a função

$$f(x) = \begin{cases} \frac{\sqrt{x} - \sqrt{7}}{\sqrt{x^2 + 15} - 8}, & x \neq 7\\ a, & x = 7. \end{cases}$$

é contínua em x=7 e que $b=\int_0^{\pi/2}\cos 2x\,\sin 4x\,dx$, o valor de $\frac{a}{b}$ é: (a) $\frac{\sqrt{7}}{7}$ (b) $2\sqrt{7}$ (c) $\frac{6\sqrt{7}}{49}$ (d) $\frac{4\sqrt{7}}{49}$ (Resposta: (c))

- (e) $7\sqrt{7}$

(a) A equação da reta tangente ao gráfico de y = f(x) no ponto (1,3) é y = x + 2. Se em qualquer ponto (x, f(x)) do gráfico de f temos f''(x) = 6x, encontre a expressão de f.

(b) Em qualquer ponto (x, f(x)) do gráfico de y = f(x) temos f''(x) = 2. Encontre a expressão da função f , sabendo-se que o ponto (1,3) é um ponto do gráfico no qual o coeficiente angular da reta tangente é -2.

(Respostas: (a) $f(x) = x^3 - 2x + 4$ (b) $f(x) = x^2 - 4x + 6$)

Exercício 6. Suponha f contínua em [-1,1]. Calcule $\int_0^1 f(2x-1)dx$ sabendo que $\int_{-1}^1 f(u)du = 10$. (Resposta: 5)