

# On Dynamics of Gradient Descent Einstein, Rao and Nesterov

Yilin Zhang

September 10, 2024



## Problem Formulation



One of the crucial problems to tackle in machine learning is how to optimize a function  $f: \mathcal{M}_x \to \mathbb{R}$  with a metric  $^xg$  defined on a n dimensional manifold  $\mathcal{M}_x$ .

$$\min_{x \in \mathcal{M}_x} f(x) \tag{1}$$

To clearly state the results, we make the following assumptions.

- f is m-strictly convex and  $\nabla f$  is l-Lipschitz continuous.
- $h \in C^3$  is  $m_h$ -strictly convex.
- The distance between two points is measured by Bregman divergence  $B_h$ .

# Assumption Explanation



#### Strongly Convex

A differentiable function f is called m-strongly convex if  $\exists m>0$  s.t.  $\forall x,y$ 

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + m||y - x||^2.$$

#### Lipschitz Continuous

A function f is called l-lipschitz continuous if  $\exists l > 0$ , s.t.  $\forall x, y$ 

$$||f(y) - f(x)|| \le l||y - x||.$$

Note: f is m-strictly convex and  $\nabla f$  is l-Lipschitz continuous. It means f is locally upper and lower bounded by a quadratic form.

# Development of First Order Methods I



Vanilla Gradient Descent(VGD)

$$x_{k+1} = x_k - s\nabla f(x_k).$$

Heavy Ball Method(HVM)

$$x_{k+1} = x_k - s\nabla f(x_k) + \alpha(x_k - x_{k-1}).$$

Nesterov Methods(Nes-sc)

$$y_{k+1} = x_k - s\nabla f(x_k),$$
  
$$x_{k+1} = y_{k+1} + \frac{1 - \sqrt{\mu s}}{1 + \sqrt{\mu s}}(y_{k+1} - y_k).$$

## A Geometrical View of Gradient Methods





Figure: Path of Gradient Methods



Figure: Convergence of Gradient Methods

# Development of "First" Order Methods II



Newton Nethod(NTM)

$$x_{k+1} = x_k - s\nabla^2 f(x_k)^{-1} \nabla f(x_k).$$

Natural Gradient Descent(NGD)

$$x_{k+1} = x_k - s\mathcal{F}^{-1}\nabla f(x_k),$$

here  $\mathcal{F}$  is Fisher matrix.

Bregman Mirror Descent(BMD)

$$x_{k+1} = \arg\min_{x \in \mathcal{X}} \{ \langle x, \nabla f(x_k) \rangle + sB_h(x, x_k) \},$$

here  $B_h$  is Bregman divergence.

# Bregman Divergence



## Bregman divergence

Given a convex  $h \in \mathbb{C}^3$  as Bregman potential function, the Bregman divergence  $B_h$  is defined as

$$B_h(x,y) = h(x) - h(y) - \langle \nabla h(y), x - y \rangle.$$

Table 1: Bregman divergences generated from some convex functions.

| Domain            | $\varphi(\mathbf{x})$           | $d_{\mathbf{\phi}}(\mathbf{x}, \mathbf{y})$                             | Divergence                 |  |
|-------------------|---------------------------------|-------------------------------------------------------------------------|----------------------------|--|
| R                 | $x^2$                           | $(x-y)^2$                                                               | Squared loss               |  |
| $\mathbb{R}_+$    | $x \log x$                      | $x\log(\frac{x}{y})-(x-y)$                                              |                            |  |
| [0,1]             | $x\log x + (1-x)\log(1-x)$      | $x\log(\frac{x}{y}) + (1-x)\log(\frac{1-x}{1-y})$                       | Logistic loss 3            |  |
| $\mathbb{R}_{++}$ | $-\log x$                       | $\frac{x}{v} - \log(\frac{x}{v}) - 1$                                   | Itakura-Saito distance     |  |
| $\mathbb{R}$      | ex                              | $e^x - e^y - (x - y)e^y$                                                |                            |  |
| $\mathbb{R}^d$    | $  \mathbf{x}  ^2$              | $\ \mathbf{x} - \mathbf{y}\ ^2$                                         | Squared Euclidean distance |  |
| $\mathbb{R}^d$    | $\mathbf{x}^T A \mathbf{x}$     | $(\mathbf{x} - \mathbf{y})^T A(\mathbf{x} - \mathbf{y})$                | Mahalanobis distance 4     |  |
| d-Simplex         | $\sum_{j=1}^{d} x_j \log_2 x_j$ | $\sum_{j=1}^{d} x_j \log_2(\frac{x_j}{y_j})$                            | KL-divergence              |  |
| $\mathbb{R}^d_+$  | $\sum_{j=1}^{d} x_j \log x_j$   | $\sum_{j=1}^{d} x_j \log(\frac{x_j}{y_j}) - \sum_{j=1}^{d} (x_j - y_j)$ | Generalized I-divergence   |  |

# Geometrical Explanation



An explanation to bregman divergence is that it measures the distance between h and its linear approximation.



Figure: Geometrical Meaning of Bregman Divergence<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Hanzhang Qin. *How to understand Bragman Divergence*. https://www.zhihu.com/question/22426561.

## Continuous Limit of Discrete Methods



Consider that  $x_k$  is sampled from flow of x(t) with step size  $\delta$ . We take  $x_k = x(\delta k) = x(t)$ , where  $\delta$  is the step size. Then we have the following Talyor series:

$$x_{k+1} = x(k\delta + \delta) = x(t + \delta) = x(t) + \dot{x}(t)\delta + \frac{\ddot{x}(t)}{2}\delta^{2} + O(\delta^{3})$$

$$x_{k-1} = x(k\delta - \delta) = x(t - \delta) = x(t) - \dot{x}(t)\delta + \frac{\ddot{x}(t)}{2}\delta^{2} + O(\delta^{3})$$

$$\nabla f(x_{k-1}) = \nabla f(x(k\delta - \delta)) = \nabla f(x(t - \delta)) = \nabla f(x(t)) - \delta \nabla^{2} f(x(t)) \dot{x}(t) + O(\delta^{2})$$

Note: This is more like a reverse version of numerical solution.

## Flows of Vanilla Gradient Methods



From the form that  $x_{k+1} = x_k - s\nabla f(x_k)$ , we have that

$$\frac{d}{dt}(x(t)) = -\sqrt{s}\nabla f(x(t)),$$

where  $\delta = \sqrt{s}$ . Therefore, we have a vanilla gradient flow.

#### Vanilla Gradient Flow

$$\dot{x} = -\sqrt{s}\nabla f(x),\tag{2}$$

# High-resolution Flow of HVB



From the discretization  $x_{k+1} = x_k - s\nabla f(x_k) + \alpha(x_k - x_{k-1})$  we have that

$$\begin{aligned} x_{k+1} - x_k &= \alpha (x_k - x_{k-1}) - s \nabla f(x_k) \\ \Leftrightarrow \delta^2 \ddot{x(t)} + \frac{2(1-\alpha)}{1+\alpha} \delta \dot{x(t)} + \frac{2s}{1+\alpha} \nabla f(x(t)) + O(\delta^3) = 0 \end{aligned}$$

If we take  $\delta = \sqrt{\frac{2s}{1+lpha}}$ , the equation turns to be

$$\begin{split} \ddot{x(t)} + \frac{2(1-\alpha)}{(1+\alpha)}\sqrt{\frac{1+\alpha}{2s}}\dot{x(t)} + \nabla f(x(t)) &= 0\\ \Rightarrow \frac{d}{dt}(x + \frac{(1+\alpha)}{2(1-\alpha)}\sqrt{\frac{2s}{1+\alpha}}\dot{x}) &= -\frac{(1+\alpha)}{2(1-\alpha)}\sqrt{\frac{2s}{1+\alpha}}\nabla f(x). \end{split}$$

# High-resolution Flow of Nesterov



From the discretization that  $y_{k+1} = x_k - s\nabla f(x_k), x_{k+1} = y_{k+1} + \frac{1 - \sqrt{\mu s}}{1 + \sqrt{\mu s}}(y_{k+1} - y_k).$  we have that

$$x_{k+1} = x_k - s\nabla f(x_k) + \frac{1 - \sqrt{\mu s}}{1 + \sqrt{\mu s}} (x_k - s\nabla f(x_k) - x_{k-1} + s\nabla f(x_{k-1}))$$

$$\Leftrightarrow \delta^2 \ddot{x(t)} + 2\sqrt{\mu s} \delta \dot{x(t)} + (s - \sqrt{\mu s}) \delta \nabla^2 f(X_t) \dot{x(t)} + s(1 + \sqrt{\mu s}) \nabla f(x(t)) = 0$$

If we take  $\delta = \sqrt{s(1+\sqrt{\mu s})}$ , then we get

$$\begin{split} \ddot{x(t)} + 2\sqrt{\frac{\mu}{1 + \sqrt{\mu s}}}\dot{x(t)} + \sqrt{\frac{s}{1 + \sqrt{\mu s}}}\nabla^2 f(x(t))\dot{x(t)} + \nabla f(x(t)) &= 0 \\ \Rightarrow \frac{d}{dt}\left(x + \frac{1}{2}\sqrt{\frac{1 + \sqrt{\mu s}}{\mu}}\dot{x}\right) &= -\frac{1}{2}\sqrt{\frac{1 + \sqrt{\mu s}}{\mu}}\left(\nabla f(x) + \frac{s(1 - \sqrt{\mu s})}{\sqrt{s(1 + \sqrt{\mu s})}}\nabla^2 f(x)\dot{x}\right) \end{split}$$

# High-resolution Flow of HVB and Nes-sc



#### Heavy Ball Flow

$$\frac{d}{dt}\left(x + \frac{(1+\alpha)}{2(1-\alpha)}\sqrt{\frac{2s}{1+\alpha}}\dot{x}\right) = -\frac{(1+\alpha)}{2(1-\alpha)}\sqrt{\frac{2s}{1+\alpha}}\nabla f(x) \tag{3}$$

#### Nesterov Flow

$$\frac{d}{dt}\left(x + \frac{1}{2}\sqrt{\frac{1+\sqrt{\mu s}}{\mu}}\dot{x}\right) = -\frac{1}{2}\sqrt{\frac{1+\sqrt{\mu s}}{\mu}}\left(\nabla f(x) + \frac{s(1-\sqrt{\mu s})}{\sqrt{s(1+\sqrt{\mu s})}}\nabla^2 f(x)\dot{x}\right) \tag{4}$$

## Newton's, Natural Gradient and Mirror Descent



An insight in information geometry shows that NTM, NGC, and BMD are equivalent.

#### Fisher Matrix and KL Divergence

Fisher information is the second derivative of KL divergence.

$$\mathcal{F}_{\theta} = \nabla_{\theta'}^2 KL(\theta||\theta')|_{\theta'=\theta}$$

Note: The equation above shows that the Fisher matrix is actually some Hessian matrix of a function, the same as Newton's form  $\nabla^2 f(x_k)$ . Actually, there is an intrinsic quantity that reflects to Hessian form, which is the Riemannian metric.

# Differential Geometry



#### Smooth Manifold

A smooth manifold is a topological space that is locally similar to euclidean space.



Figure: Möbius strip

#### Chat and Atlas



#### Chart

A chart is a domain that maps part of the manifold. The cover of manifold with a collection of charts is called an atlas.



Figure: Sphere with Chart

- Chart allows us to map a surface to  $\mathbb{R}^n$ .
- A representation on a chart is a coordinate.



#### Directional Derivative

The directional derivative of a scalar function f(x) along direction v is the function  $D_v f(x)$  defined as

$$D_v f(x) = \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}.$$



Figure: Directional Derivative

- Directional derivative is generalization of partial derivative.
- The direction depends on the direction chosen.

## Tangent Plane



#### Tangent Plane

The tangent plane  $T_pM$  at point p is space spanned by tangent vectors.



Figure: Tangent Plane

- Tangent plane is determined by surface parameterization.
- Directional derivative may not lay in tangent plane.

## Covariant Derivative



#### Covariant Derivative

A covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. Let n be the surface normal.

$$\nabla_v f(x) = D_v f(x) - n.$$

#### Geodesic

A geodesic is defined as a curve  $\gamma(t)$  such that parallel transport along the curve preserves the tangent vector to the curve on a manifold such that  $\nabla_{\dot{\gamma}}\dot{\gamma}=0$ .

Note: Geodesic can also be derived by finding the infimin of  $L=\int_a^b \sqrt{g_{\gamma(t)}(\dot{\gamma},\dot{\gamma})}.$ 

## Geodesic<sup>1</sup>





Figure: Geodesic on Sphere



Figure: Parallel Transport along Geodesic

Parallel Transport on Sphere



Figure: Parallel Transport on 1-D Sphere

## Riemannian Manifold



#### Riemannian Manifold

A Riemannian manifold (M,g) is a real, smooth manifold M equipped with a positive-definite inner product  $g_p$  on the tangent space  $T_pM$  at each point p.

Note: For 2-D surface embedded in  $\mathbb{R}^3$ , g is first fundamental form.

#### Levi-Civita Connection

The Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the Riemannian metric and is torsion-free. The Christoffel symbol of Levi-Civita connection is

$$\Gamma^{\mu}_{\lambda v} = \frac{1}{2} g^{\mu v} \left( \frac{\partial g_{\mu \lambda}}{\partial x^{v}} + \frac{\partial g_{v \mu}}{\partial x^{\lambda}} - \frac{\partial g_{\lambda v}}{\partial x^{v}} \right).$$

Here  $\Gamma^{\mu}_{v\lambda}$  is the second Christoffel symbol.

## Riemannian Manifold



#### Einstein notation

Take sum every repeated index in both upper and lower indices.

$$\sum_{i=1}^{3} c_i x^i \Rightarrow c_i x^i$$

#### Geodesic Equation

The geodesic equation defined on a Reimannian manifold with torsion free connection is

$$\frac{d^2x^{\mu}}{d\tau^2} + \Gamma^{\mu}_{v\lambda} \frac{dx^v}{d\tau} \frac{dx^{\lambda}}{d\tau} = 0.$$

# Information Geometry



Next we are going to consider a special manifold consisting of distribution parameters.

#### Convex Dual

The dual Bregman divergence is defined as  $B_{h^*}$  where  $h^*$  is the convex dual defined as

$$h^*(\theta) = \sup_{x \in \mathcal{M}} \{ \langle x, \theta \rangle - h(x) \}.$$

#### Fundamental Theorem of Information Geometry

If a torsion-free affine connection  $\nabla$  has constant curvature  $\kappa$  then its conjugate torsion-free connection  $\nabla^*$  has necessarily the same constant curvature  $\kappa$ .

# Information Geometry



#### Dual Flat Structure of Bregman Statistical Manifold

A dually flat manifold  $(\mathcal{M}_x, {}^h g, \nabla, \nabla^*)$  generated by a Bregman divergence  $B_h$  satisfies that  ${}^h g = \nabla^2 h(x)$ ,  $\mathcal{M}_x$  is both  $\nabla$ -flat and  $\nabla^*$ -flat. Here  $\nabla^*$  is generated by  ${}^h g^*$ .

Note: An affine connection is said to be flat if its curvature tensor is 0.

#### NGD and BMD

Bregman mirror descent on the Hessian manifold  $(M,g=\nabla^2 h(x))$  is equivalent to natural gradient descent on the dual Hessian manifold  $(M,g=\nabla^2 h(\eta))$ , where g is Bregman generator,  $=\nabla h(x)$  and  $x=\nabla h(\eta)$ .

## Dual Flat Manifold Geodesic



In a DFM, we have two global affine coordinate systems x() and () related by the Legendre-Fenchel transformation of a pair of potential functions h and  $h^*$ . That is, (M,h)(M,h), and the dual atlases are A=(M,x) and  $A=(M,\eta)$ . In a dually flat manifold, any pair of points P and Q can either be linked using the  $\nabla$ -geodesic (that is x-straight) or the  $\nabla$ -geodesic (that is -straight).



Figure: Dual Geodesic Connection

# General Relativity



Consider a manifold  $\mathcal{M}=\mathbb{R}\times\mathbb{R}^3$  such that  $X=(t,x^1,x^2,x^3)$ . Here t is real time,  $x^i$  is coordinate to describe position of particle. Then the equation describes the curvature of  $\mathcal{M}$ , energy and momentum is as below.

#### Einstein's Field Equation

 $R_{uv}$  is Ricci tensor,  $T_{uv}$  is the energy–momentum tensor,  $g_{uv}$  is Riemannian curvature.

$$R_{uv} - \frac{1}{2}Rg_{uv} + \Lambda g_{uv} = \kappa T_{uv}$$

Note: The Newton limit has parameter:  $\kappa = \frac{8\pi G}{c^4}$ .

# General Relativity



#### World Line

In general relativity, the world line of a particle free from all external, non-gravitational force is a particular type of geodesic in curved spacetime. In other words, a freely moving or falling particle always moves along a geodesic.



Figure: World Line Example

# Newton's Limit of General Relativity



#### Newton's Law

Under the following three assumptions, the geodesic equation of a particle is reduced to Newton's law.

- Slow motion  $|\frac{dX^i}{d\tau}| \ll |\frac{dX^0}{d\tau}|$ .
- Static field  $\frac{dg}{dX^0} = 0$ .
- Weak field  $g = \eta + \phi$ . Here  $\eta$  is Minkowski metric,  $\phi$  is a tiny disturbance.

# Geodesic Equation to Newton's Limit



Now consider the geodesic equation in  $\mathcal{M}$  as:

$$\frac{d^2X^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\gamma\lambda} \frac{dX^{\gamma}}{d\tau} \frac{dX^{\lambda}}{d\tau} = 0 \quad (\mu = 0, 1, 2, 3).$$

We consider "slow" motion of particle under "static" field. By "slow" we have  $|\frac{dX^i}{d\tau}| \ll \frac{dX^0}{d\tau}$  and by "static" we have  $\frac{\partial g}{\partial X^0} = 0$  This leads to

$$\begin{split} \frac{d^2 X^{\mu}}{d\tau^2} + \Gamma^{\mu}_{00} (\frac{dX^0}{d\tau})^2 &= 0\\ \frac{d^2 X^{\mu}}{d\tau^2} - \frac{1}{2} g^{\mu\nu} (\frac{\partial g_{00}}{\partial X^{\nu}}) (\frac{dX^0}{d\tau})^2 &= 0 \quad (\mu = 0, 1, 2, 3). \end{split}$$

When  $\mu=0$ , since  $\frac{\partial g_{00}}{\partial X^0}=0$ , we get  $\frac{d^2X^0}{d\tau^2}=0$ . Solve it gives  $t=c_1\tau+c_2$ . With out loss of generality, we select  $c_1=-1, c_2=0$  and the  $t=\tau$ .

# Geodesic Equation to Newton's Limit



Now we consider  $\mu = 1, 2, 3$ . With  $t = \tau$  we have

$$\frac{d^2X^{\mu}}{dt^2} + \sum_{v=1}^{3} \frac{1}{2} g^{\mu v} (\frac{\partial g_{00}}{\partial X^v}) = 0 \quad (\mu = 1, 2, 3).$$

Apply approximation  $g=\eta+\phi$  and omit  $O(h^2)$  we get

$$\frac{d^2X^{\mu}}{dt^2} + \frac{1}{2}\frac{\partial h_{00}}{\partial X^{\mu}} = 0 \quad (\mu = 1, 2, 3).$$

Then by taking  $h=-2\Phi+c$ , we get the Newton's law of a particle in 3-D space moving in potential field  $\Phi$  as

$$\ddot{X} = \nabla \Phi$$

## Geodesic of DFM



Now we repeat the above procedure for DFM. Take  $\mathcal{M} = \mathbf{R} \times \mathcal{M}_x$  where  $X = (t, x_1, ..., x_n)$ . Consider the geodesic equation in  $\mathcal{M}$  as:

$$\frac{d^2X^{\mu}}{d\tau^2} + \Gamma^{\mu}_{\gamma\lambda} \frac{dX^{\gamma}}{d\tau} \frac{dX^{\lambda}}{d\tau} = 0 \quad (\mu = 0, 1, ..., n).$$

We consider "slow" motion of particle under "static" field. By "slow" we have  $|\frac{dX^i}{d\tau}| \ll \frac{dX^0}{d\tau}$  and by "static" we have  $\frac{\partial g}{\partial X^0} = 0$  This leads to

$$\begin{split} \frac{d^2 X^{\mu}}{d\tau^2} + \Gamma^{\mu}_{00} (\frac{dX^0}{d\tau})^2 &= 0\\ \frac{d^2 X^{\mu}}{d\tau^2} - \frac{1}{2} g^{\mu\nu} (\frac{\partial g_{00}}{\partial X^{\nu}}) (\frac{dX^0}{d\tau})^2 &= 0 \quad (\mu = 0, 1, 2, ..., n). \end{split}$$

When  $\mu=0$ , since  $\frac{\partial g_{00}}{\partial X^0}=0$ , we get  $\frac{d^2X^0}{d\tau^2}=0$ . Solve it gives  $t=c_1\tau+c_2$ . With out loss of generality, we select  $c_1=1,c_2=0$  and the  $t=\tau$ .

## Geodesic of DFM



Now we consider  $\mu = 1, ..., n$ . With  $t = \tau$  we have

$$\frac{d^2X^{\mu}}{dt^2} - \sum_{v=1}^{n} \frac{1}{2} g^{\mu v} (\frac{\partial g_{00}}{\partial X^v}) = 0 \quad (\mu = 1, 2, ..., n).$$

Pile n equations we get

$$\frac{d^2}{dt^2} \begin{bmatrix} X^1 \\ \vdots \\ X^n \end{bmatrix} = \frac{1}{2} \begin{bmatrix} g^{11} & \cdots & g^{1n} \\ \vdots & \ddots & \vdots \\ g^{n1} & \cdots & g^{nn} \end{bmatrix} \begin{bmatrix} \frac{\partial g_{00}}{\partial X^1} \\ \vdots \\ \frac{\partial g_{00}}{\partial X^n} \end{bmatrix}$$
$$\Leftrightarrow \ddot{x} = \frac{1}{2} \nabla^2 h(x)^{-1} \nabla g_{00}$$

By taking  $g_{00}=-2\Phi(x)+C$  we get that  $\ddot{x}=-\nabla^2 h(x)^{-1}\nabla\Phi(x)$ 

# Damping System on DFM



Consider a damping system on the geodesic of DFM with  $\Phi(x) = \gamma f(x) + \frac{d}{dt}(\alpha h(x) + \beta f(x))$ . Then we have

$$\ddot{x} = -\nabla^2 h(x)^{-1} (\gamma \nabla f(x) + \nabla \frac{d}{dt} (\alpha h(x) + \delta f(x)))$$
  
$$\ddot{x} + \alpha \dot{x} = -\nabla^2 h(x)^{-1} (\gamma \nabla f(x) + \beta \nabla^2 f(x) \dot{x})$$
  
$$\nabla^2 h(x) (\ddot{x} + \alpha \dot{x}) + \beta \nabla^2 f(x) \dot{x} + \gamma \nabla f(x) = 0.$$

This is the unified form of all gradient based equations.

## Derivation from DFM to Flows of Gradient Methods



#### Theorem

Given a dually flat Bregman manifold  $(\mathcal{M}_x, {}^h g, \nabla, \nabla^*)$  generated by Bregman divergence  $B_h(\cdot, \cdot)$ , the first order gradient methods are derived from the geodesic on the statistical manifold  $(\mathcal{M}, g, \nabla)$  where  $\mathcal{M} = \mathbb{R} \times \mathcal{M}_x$ ,  $\nabla$  is Levi-Civita connection and

$$g = \left[ \begin{array}{cc} -2f(x) + C & 0 \\ 0 & \nabla^2 h(x) \end{array} \right]$$

## Parameters of Gradient Flows



| Method | $\alpha$                                                   | β                                                 | δ                            | $h(\cdot)$              |
|--------|------------------------------------------------------------|---------------------------------------------------|------------------------------|-------------------------|
| VGD    | $\sqrt{\frac{2}{s}}$                                       | 0                                                 | $\sqrt{2s}$                  | $\frac{  \cdot  ^2}{2}$ |
| HVB    | $\frac{2(1-\alpha)}{(1+\alpha)}\sqrt{\frac{1+\alpha}{2s}}$ | 0                                                 | $\sqrt{\frac{2s}{1+\alpha}}$ | $\frac{  \cdot  ^2}{2}$ |
| Nes-sc | $2\sqrt{\frac{\mu}{1+\sqrt{\mu s}}}$                       | $\sqrt{\frac{s}{1+\sqrt{\mu s}}}(1-\sqrt{\mu s})$ | $\sqrt{s(1+\sqrt{\mu s})}$   | $\frac{  \cdot  ^2}{2}$ |
| NGD    | $\sqrt{\frac{2}{s}}$                                       | 0                                                 | $\sqrt{2s}$                  | $h(\cdot)$              |
| BMD    | $\sqrt{\frac{2}{s}}$                                       | 0                                                 | $\sqrt{2s}$                  | $h^*(\cdot)$            |

## What's Next



- Sensitivity analysis of parameters.
- A better explanation to the acceleration.



Any question or suggestion is warmly welcomed.