

Algoritmy pro numerické výpočty

Jitka Kreslíková, Aleš Smrčka

2023

Fakulta informačních technologií Vysoké učení technické v Brně

IZP – Základy programování

Algoritmy pro numerické výpočty

- Výpočet hodnoty polynomu
- □ Řešení nelineárních rovnic
- Numerický výpočet určitého integrálu

Výpočet hodnoty polynomu

□ Definice polynomu:

Nechť n je přirozené číslo a nechť a_0 , a_1 , ..., a_n , jsou reálná, resp. komplexní čísla. Funkce P(x), kterou lze definovat pro všechna reálná, resp. komplexní čísla s předpisem:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = \sum_{i=0}^{n-1} a_i x^i, (1)$$

se nazývá **mnohočlen** (jedné proměnné x s reálnými, resp. komplexními koeficienty). Místo mnohočlen se také říká **polynom** nebo **celá racionální funkce**. Čísla a_0 , a_1 , ..., a_n , se nazývají **koeficienty polynomu** P(x).

Výpočet hodnoty polynomu

Stupněm polynomu P(x) nazýváme nejvyšší mocninu proměnné x ve výrazu (1), u níž je nenulový koeficient. Je-li v (1) $a_n \neq 0$, pak P(x) je ntého stupně

 $P\check{r}iklad$: $P(x) = 3x^4 + 2x^3 - x^2 + x + 4 => n = 4$

☐ **Výpočet hodnoty polynomu v bodě x**Prostá implementace funkce vyžaduje přímý výpočet pomocí funkce, která počítá xⁿ. Tento přístup potřebuje kvadratický čas O(n²).

Počet operací násobení: $n + n-1 + ... + 1 \Rightarrow O(n^2)$

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 =$$

$$(((a_n x + a_{n-1}) x + \ldots + a_1) x + a_0$$

$$n \text{ operaci sečítání}$$

$$P\check{r}iklad$$
: $P(x) = 3x^4 + 2x^3 - x^2 + x + 4 = (((3x + 2)x - 1)x + 1)x + 4$
 $P(2) = 66$

Příklad: výpočet polynomu v zadaném bodě.

Následující funkce předpokládá, že polynom je v paměti počítače reprezentován strukturou, která obsahuje stupeň polynomu a pole koeficientů polynomu. Funkce vrací hodnotu polynomu v bodě daném parametrem x.

Příklad: výpočet polynomu v zadaném bodě - pokračování.

```
double evalHorner (Tpoly *polynom, double x)
{
  double sum = 0.0;
  for (int i = 0; i <= polynom->degree; i++)
    sum = sum * x + polynom->coef[i];
  return sum;
}
```


Příklad: výpočet polynomu v zadaném bodě - pokračování.

- vyčíslení hodnoty čísla zapsaného v obecné číselné soustavě:
 - číslice vstupního čísla figurují jako koeficienty polynomu
 - základ číselné soustavy jako bod, ve kterém se má polynom spočítat.

Příklad: vyčíslení hodnoty čísla

$$(2352)_6 = 2 \times 6^3 + 3 \times 6^2 + 5 \times 6^1 + 2 \times 6^0 = ((2 \times 6 + 3) \times 6 + 5) \times 6 + 2 = (572)_{10}$$

Řešení nelineárních rovnic

□ Formulace problému:

Hledání reálných kořenů rovnice P(x) = 0, kde P(x) je polynom:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$$

Hledáme reálné číslo a pro které platí f(a) = 0; a je kořen rovnice f(x) = 0.

Při určování kořene rovnice je u některých metod požadováno, aby byl separován kořen rovnice

Řešení nelineárních rovnic

- Separaci lze provést několika způsoby:
 - Můžeme např. vyšetřit průběh funkce a z funkce f(x) spočítat první a druhou derivaci.
 - Z průběhů derivací lze zjistit, ve kterých intervalech je funkce rostoucí a klesající a vyšetřit pak lokální minima a maxima.
 - Je důležité si uvědomit, že reálné kořeny rovnice jsou průsečíky grafu funkce a osy x.
 - Zjištěné intervaly potom použijeme pro přibližný výpočet kořenů.

Numerické metody:

http://www.slu.cz/math/cz/knihovna/ucebni-texty/Numericke-metody/Numericke-metody.pdf

[on line, cit. 2019-11-17]

- konvergentní, univerzální metoda,
- musí být splněny dvě podmínky:
 - 1. funkce f musí být spojitá pro $\forall x \in I_0 = \langle a_0, b_0 \rangle$
 - funkční hodnoty v krajních bodech zvoleného intervalu musí mít opačná znaménka tj. musí platit: f(a₀) x f(b₀) < 0.
- pokud jsou obě podmínky splněny, pak tato metoda vždy konverguje

Princip metody půlení intervalu.

 $x_i = s_i$ je střed příslušného intervalu

Příklad: funkce pro hledání kořene metodou půlení intervalu

Příklad: funkce pro hledání kořene metodou půlení intervalu - pokračování

```
while (fabs(fmid) > eps) {
  if (evalFun(a) * fmid < 0)
    b = middle;
  else
    a = middle;
  if (fabs (fmid) > eps) {
    middle = (a + b) / 2;
    fmid = evalFun(middle);
return middle;
```


Definice:

Jestliže je funkce f(x) spojitá v uzavřeném intervalu <a,b> a známe-li její primitivní funkci F(x), můžeme vypočítat určitý integrál funkce f(x) v mezích od a do b pomocí vztahu:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

Metody numerického integrování užíváme v takových případech, kdy je obtížné najít funkci F(x), nebo v případě, že funkce f(x) je dána tabulkou.

Obdélníková metoda (pravidlo, vzorec)

Riemannův součet

Obdélníková metoda

Vzorec pro výpočet:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=1}^{n} h_{i} y_{i} = h \sum_{i=1}^{n} y_{i} ,$$

kde šířka dílčího intervalu h = (b-a)/n

Obdélníková metoda

Příklad: funkce pro výpočet integrálu obdélníkovou metodou

```
double integrate rectangle (double a, double b,
                int n, double (*evalFun)(double))
  double step, sum = 0.0;
  step = (b - a) / n;
  for (double x = a; x < b - (step/2); x += step)
    sum += evalFun(x);
  sum *= step;
  return sum;
```


Lichoběžníková metoda (pravidlo, vzorec)

Přesnější integraci funkce f(x) získáme použitím lichoběžníků, kterými aproximujeme danou funkci.

Lichoběžníková metoda (pravidlo, vzorec)

Lichoběžníková metoda

Příklad: funkce pro výpočet integrálu lichoběžníkovou metodou

```
double integrate trapezoid (double a, double b,
                 int n, double (*evalFun) (double))
  double step, sum = 0.0;
  step = (b - a) / n;
  for (double x = a+step; x < b-step; x += step)
    sum += evalFun(x);
  sum += (evalFun(a) + evalFun(b))/2;
  sum *= step;
  return sum;
```


Simpsonova metoda (pravidlo, vzorec)

- počet dílčích intervalů musí být sudé číslo
- □ tři sousední body na křivce f(x) se aproximují vhodnou parabolou.

Simpsonova metoda (pravidlo, vzorec)

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} (y_1 + 4y_2 + 2y_3 + 4y_4 + 2y_5 + \dots + 2y_{n-1} + 4y_n + y_{n+1})$$

Simpsonova metoda

Příklad: funkce pro výpočet integrálu Simpsonovou metodou

Simpsonova metoda

Příklad: funkce pro výpočet integrálu Simpsonovou metodou - pokračování

```
for (double x=a+step; x<b-(step/2); x+=step)
    tmp++;
    c = (tmp&1)?2:4; // lichý/sudý bod?
    sum += c * evalFun (x);
  sum += evalFun (a) + evalFun (b);
  sum *= step/3;
  return sum;
```


Příklad: použití funkcí pro numerický výpočet určitého integrálu

 $\int_{\Omega} (x^2 + 1) dx$

Příklad: použití funkcí pro numerický výpočet určitého integrálu

$$\int (x^{2} + 1)dx = \frac{x^{3}}{3} + x + C$$

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$
primitivní funkce

$$\int_{0}^{1} (x^{2} + 1) dx = 4/3$$

Příklad: použití funkcí pro numerický výpočet určitého integrálu

```
double parabola (double argument)
  return argument * argument + 1;
int main (void)
  int n, factor, lower limit=0;
  int upper limit=1;
  double eps, integral old, integral new = 0.0;
  // zadání hodnoty n - počáteční počet
  // dělení úseku
```


Příklad: použití funkcí pro numerický výpočet určitého integrálu -pokr.

```
// zadání faktoru násobení - jak se má zvyšovat
// počet dílčích úseků
// zadání hodnoty eps - přesnost výpočtu
do{
  integral old = integral new;
  integral new = integrate rectangle
          (lower limit, upper limit, n, parabola);
  n = n * factor;
} while(fabs(integral new - integral old)>eps);
// výpočet s hodnotou integrálu
return 0;
```


Experimentální výsledky:

n	obdélníková	lichoběžníková	Simpsonova
10	1.285000	1.335000	1.333333
100	1.328350	1.333350	1.333333
1000	1.332834	1.333334	1.333333
10000	1.333283	1.333333	1.333333
100000	1.333328	1.333333	1.333333
přesná	1.333333	1.333333	1.333333

Algoritmy pro numerické výpočty

Kontrolní otázky

- Co je Hornerovo schéma? Vysvětlete princip implementace funkce pro výpočet hodnoty polynomu pomocí Hornerova schématu.
- Vysvětlete algoritmus pro hledání kořene rovnice metodou půlení intervalu.
- Vysvětlete algoritmus pro výpočet integrálu obdélníkovou metodou.
- 4. Vysvětlete algoritmus pro výpočet integrálu lichoběžníkovou metodou.
- 5. Vysvětlete algoritmus pro výpočet integrálu Simpsonovou metodou.

Úkoly k procvičení

- 1. V jazyce C napište funkci pro výpočet hodnoty polynomu pomocí Hornerova schématu.
- 2. V jazyce C napište funkci pro hledání kořene rovnice metodou půlení intervalu.
- V jazyce C napište funkci pro výpočet integrálu obdélníkovou metodou.
- 4. V jazyce C napište funkci pro výpočet integrálu lichoběžníkovou metodou.
- 5. V jazyce C napište funkci pro výpočet integrálu Simpsonovou metodou.