Image Filters (Week 4)

Laplacian of Gaussian Filter

- Laplacian of Gaussian Filter first smoothes the image before proceeding to Laplacian filtering process. This two-step process is known as Laplacian of Gaussian (LoG) operation.
- We know, a two-dimensional Gaussian kernel can be defined as:

$$g(x,y) = \frac{1}{2\pi\sigma^2}e^{-\frac{x^2+y^2}{2\sigma^2}}$$

• To estimate the expression of Laplacian of Gaussian Filter, we have to evaluate partial first and second derivative of g(x, y), i.e.

$$LoG(x,y) = \nabla^2 g(x,y) = \frac{\partial^2 g(x,y)}{\partial x^2} + \frac{\partial^2 g(x,y)}{\partial y^2}$$

Estimate
$$\frac{\partial^2 g(x,y)}{\partial x^2}$$
, $\frac{\partial^2 g(x,y)}{\partial y^2}$

Laplacian of Gaussian Filter

• For discrete kernel using $\sigma = 1.4$, LoG 9×9 filter is given by:

										17		1	Т	-		
0	0	3	2	2	2	3	0	0								-
0	2	3	5	5	5	3	2	0	2	2 -					1	_
3	3	5	3	0	3	5	3	3							П	-
2	5	3	-12	-23	-12	3	5	2	4	1					1	
2	5	0	-23	-40	-23	0	5	2							П	
2	5	3	-12	-23	-12	3	5	2	6	6						_
3	3	5	3	0	3	5	3	3								
0	2	3	5	5	5	3	2	0	8	3 -						-
0	0	3	2	2	2	3	0	0				,	,	1		
											2	4	6	8		

Laplacian of Gaussian Filter: Application

Image

Laplacian Filter

LoG Filter

Image Padding

CMP020L014S

Image Padding

- Image padding is a process of putting the numerical values across the edges of the image, examples include, zeros, mirrored reflection of edge array, etc.
 - Valid padding (or no padding)
 - Zero padding
 - Constant padding
 - Reflection padding
 - Replication padding

Binary Thresholding of Images

Drone Remote Sensing and Thresholding

- Drone remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object.
- One of the limitations while working with a consumer-grade drone is the amount of noise one can encounter in data.
- Due to the small size of the drone's sensor, the captured image looks noisy with non-linear illumination.
- Is it necessary to apply filters to whole image?

Image Histogram Binary Thresholding

- In digital image processing, thresholding is the simplest method of segmenting images.
 - For a grayscale image, thresholding can be used to create binary images.
- The simplest thresholding methods replace each pixel in an image with a black/white pixels depending upon pixel intensity.
- Challenges in image thresholding which leads to imperfect binary image with false positive and false negative regions. Some challenges are as follows:
 - High level of noise,
 - Lower variance between background and foreground groups,
 - Non-homogeneous lighting, etc.

Binary Thresholding: Restoration of Biometric Data

- Fingerprint biometrics is used to both authenticate (match a person's biometric template) and identify (determine the identification of a person).
- Retaining fingerprints from surfaces require pre-processing before authentication.
- Input image is noisy as well as blurry.

Within-/Intra-Class Variance Based Thresholding

- In the simplest form, the algorithm tells you a possible intensity threshold that separate matrix into two classes, foreground and background.
- This threshold is determined by finding a minimal or maximal withinclass variance (which we will find out).
- In computer vision and image processing, within-class variance is used to perform image thresholding.

DOI: 10.1109/TSMC.1979.4310076

Within-Class Variance

• Consider histogram having L bins. Then, within-class variance is defined as: $\sigma_W^2 = \omega_b \sigma_b^2 + \omega_f \sigma_f^2$

where, σ^2 s are respective variances, ω_b and ω_f are the probabilities of two classes separated via threshold t.

$$\omega_b = \sum_{i=0}^{t-1} p(i)$$

$$\omega_f = \sum_{i=t}^{L-1} p(i)$$