컴퓨터공학 기초 실험2

Lab #10

Memory & Bus

32×32 Memory

PRACTICE I

Project Properties

- > New Project Wizard
 - ✓ Project name : ram
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- Verilog file
 - ✓ Add files:
 - ✓ New files: ram.v

Functional Description

> Address에 기반하여 데이터를 저장하는 hardware

> Features

- ✓ Address 의 bandwidth는 5bit이다.
- ✓ Data의 bandwidth는 32bit이다.
- ✓ RAM의 내부에 32개의 데이터를 address에 기반하여 저장한다.

Pin Description

Direction	Port name	Description
	clk	Clock
	cen	Chip enable
Input	wen	Write enable
	addr[4:0]	Address
	din[31:0]	Data in
Output	dout[31:0]	Data out

- ➤ cen과 wen이 모두 1이면 address가 가리키는 memory에 din을 write한다. 이 때 dout은 0을 출력한다.
- > cen이 1이고, wen이 0이면, address가 가리키는 memory의 값을 dout 에 write한다.
- > cen이 0이면, dout은 0이 된다.

Memory Declaration & Coding

- ➤ VerilogHDL에서의 메모리 선언
 - ✓ reg[wordsize-1:0] variable_name[0:storagesize-1];
- ▶ 메모리 초기화 필수
 - ✓ initial 구문 내에서 작성
 - ✓ for문을 이용하여 초기화

```
module ram(clk, cen, wen, addr, din, dout);
  input
                   clk;
  input
                   cen, wen;
 input [4:0] addr;
  input [31:0] din;
  output reg [31:0] dout;
  req [31:0] mem
                   [0:31];
  integer i;
  initial begin
//memory initialization
//Fill the initial syntax
  end
  always @(posedge clk)
 begin
// read/write performance
  end
endmodule
```

32-bit Bus with 8-bit address

PRACTICE II

Project Properties

- New Project Wizard
 - ✓ Project name: bus
 - ✓ Family & Device: Cyclone V 5CSXFC6D6F31C6(밑에서 6번째)
- > Verilog file (예시)
 - Add files: mux2_32bit.v, mux3_32bit, mux2_8bit.v, mux2.v
 - ✓ New files: bus.v, bus_arbit.v, bus_addr.v

Functional Description

- ▶ Bus는 여러 component들 간에 data를 전송(transfer)할 수 있도록 연결해주는 component이다.
 - ✓ Bus는 새로운 component들을 추가하기가 쉬우며, 가격이 저렴한 특징을 가지고 있다.

> Feature

- ✓ 2개의 master와 2개의 slave를 가지고 있다.
- ✓ Address의 bandwidth는 8 bits이다.
- ✓ Data의 bandwidth는 32bits이다.
- ✓ 각 slave가 가지는 주소 범위는 다음과 같다.

Memory map			
Slave 0	$0x00 \sim 0x1F$		
Slave 1	0x20 ~ 0x3F		

Pin Description

Direction	Port name	Description
Input	clk	Clock
	reset_n	Active low reset
	m0_req	Master 0 request
	m0_wr	Master 0 write/read
	m0_address[7:0]	Master 0 address
	m0_dout[31:0]	Master 0 data output
	m1_req	Master 1 request
	m1_wr	Master 1 write/read
	m1_address[7:0]	Master 1 address
	m1_dout[31:0]	Master 1 data out
	s0_dout[31:0]	Slave 0 data out
	s1_dout[31:0]	Slave 1 data out
Output	m0_grant	Master 0 grant
	m1_grant	Master 1 grant
	m_din[31:0]	Master data input
	s0_sel	Slave 0 select
	s1_sel	Slave 1 select
	s_address[7:0]	Slave address
	s_wr	Slave write/read
	s_din[31:0]	Slave data input

Design

Arbiter

> Finite State Diagram

Address Decoder

Address Decoder

Testbench I

- ▶ 입력을 통해 들어오는 address에 따라 slave0 또는 slave1이 선택된다
 - ✓ Slave 0과 slave 1에 해당하지 않은 주소가 들어왔을 경우에는 어느 slave도 선택되지 말아야 한다.

Testbench II

- ▶ Master는 bus를 통해 data를 transfer하고자 할 때, 자신에게 해당하는 request signal을 1로 한 이후에, 그에 대한 확인으로grant signal을 받은 후 data transfer를 올바르게 할 수 있다.
- ▶ Master가 grant signal을 받은 후 request signal이 1인 동안에는 bus의 소유권을 빼앗기지 않고 data transfer를 계속 할 수 있다.
- ▶ 만약 두 개의 master 모두 request를 하고 있지 않다면 grant는 master 0이 받는다.

Assignment 10

- > Report
 - ✓ 자세한 사항은 homework & practice document 참고
- > Submission
 - ✓ Soft copy
 - 수업 후 1 주일까지 제출 (딜레이 2일 (20% 감점))

Q&A

THANK YOU