SEQUENCE LISTING

5	<110> FMC Corporation Allenza, Paul Gilby, Susan Wong, Victoria Chen, Ruihua											
10	<120> Aphis gossypii glutamic acid decarboxylase											
	<130> 60301											
	<160> 4											
15	<170> PatentIn version 3.1											
20	<210> SEQ ID NO: 1 <211> 1936 <212> DNA <213> Aphis gossypii											
	<400> SEQ ID NO: 1 ccactgegte acttecataa gtettgatea tegtetagee accaaegaea egaettaetg	60										
25	ccgtctctgc agcgaaatac gcttccgaat aatccgatac agccaaccac cgtcgtgatg	120										
	aattotaago oogatggaca goagtocaag tatoagotgt caaaggatao agotggactt	180										
30	cgttcaacag atttattacc tcataatttg tccggacagg cacaaaccag agagtttctt	240										
	ttaaaagtcg ttgatatctt agtagattac attgatgacg ttaatgatag aaacgaaaaa	300										
35 40	gtattgcatt ttaagcaccc cgaagagatg ttacgactgc tacaattgga tattcccaac	360										
	gaaggtgtgc cattacaaaa tttaatcgac gattgcagtc taacactcaa gcatcaagta	420										
	aaaacaggac atccaagatt tttcaaccag ctttcatgcg gtctagacat cgtgtccatg	480										
	getggegaat ggetgaegge gaeggetaae aegaaeatgt teaeetaega aategeteea	540										
	gtatttattc tcatggaaaa cgtggtgtta accaagatga gagaaatcat tgggtggaag	600										
	accggcgact caatttttgc tccaggtgga tcaatatcga atatgtacgc gtttttggcc	660										
45	gecegteata aaatgtteee aggatacaag gaacaaggae tecaetegat caaaggacaa	720										
	ctggtcatgt acacatcaaa ccaatcgcat tattcggtta agagttgtgc atcggtatgc	780										
50	ggactaggaa ccgaaaattg tgtcgaagta cctagcgacg aaaggggccg catgatacct	840										
	tctgagctgg agcgcctcat attggaaaga aaatccaaag gccacatacc gtttttcgtc	900										
	tctgccactg caggcacgac tgttcttggt gcatttgatc caatcaacga cattgcggac	960										
55	atttgcgaaa aatataaget gtggcttcae attgatgetg eetggggtgg aggaetgett	1020										
	ctatctcgca agtaccgata teccegtetg getggeateg aaegggetaa etcagtgaet	1080										
60	tggaatccac acaaacttat gggcacccta ctccagtgct ccacaataca ttttcgagag	1140										
	aatggaattt tgatcagctg caaccaaatg agcgcggaat acttattcat gcaagacaaa	1200										
65	ctgtacgacg ttcaatacga cacaggcgac aaagttatac agtgtggtcg tcacaacgac	1260										
	gtgttcaagc tttggcttca atggcgcgcc aagggtaccg aaggtttcga aaaacacatg	1320										
	gatcacttga tggaactcag tgaatatatg gtggagaaaa ttaaagcatc gccagacaaa	1380										

WO 2004/084821 PCT/US2004/008457

	tattatti	tac tco	cttgaac	c gga	aatg	gtg a	aacg	tcagt	t ti	tgg	tacgt	to	cgaagcgc
5	ttgcgaaa	aca tto	cacatt	e tee	gaaad	ga	gcgg	aaago	c ti	ggca	aagat	ca	cgcctatt
	ctgaaggo	cca aaa	atgatgg	a agc	cggca	acg d	ctgai	tggta	a as	gtato	cageo	act	taaacgag
•	ataccgaa	act ttt	tccggaa	a catt	tatat	cc a	agcgo	cgcg	g to	acca	agga	aga	acgttgac
10	tttttgct	gt ccg	gaacttga	tcg	ettgg	ga d	caaga	accto	t aa	atca	ıggag	gaa	aagaaac
	gattaatg												
15	tttgtaga	cg cta	tgatcac	gatt	cccg	gt c	aatg	gcta	t at	tctt	gcca	cgc	gccgtca
10	ataataat												
	ataattaa												
20	attccaaa												
25	<211> 5: <212> P:	EQ ID 1 14 RT phis go	NO: 2 Ossypii										
		EQ ID 1											
. 30	Met Asn S	Ser Lys	s Pro A: 5	sp Gl	y Glr	ı Glı	n Se:	r Lys	з Туг	Glı	n Lev	. Se:	r Lys
35	Asp Thr A	Ala Gly 20	/ Leu Ai	rg Sei	r Thr	As _I) Let	ı Lev	Pro	His	Asn 30	Let	ı Ser
40	Gly Gln A	Ala Gln 85	Thr Ar	g Glı	ı Phe 40	Leu	ı Lev	ı Lys	Val	Val	. Asp	Ile	e Leu
	Val Asp T 50	yr Ile	Asp As	p Val 55	Asn	Asp	Arg	Asn	Glu 60	Lys	Val	Leu	His
45	Phe Lys H 65	is Pro	Glu Gl 70	u Met	Leu	Arg	Leu	Leu 75	Gln	Leu	Asp	Ile	Pro 80
50	Asn Glu G	ly Val	Pro Le 85	u Gln	Asn	Leu	Ile 90	Asp	Asp	Cys	Ser	Leu 95	Thr
55	Leu Lys H	is Gln 100	Val Ly	s Thr	Gly	His 105	Pro	Arg	Phe	Phe	Asn 110	Gln	Leu
60	Ser Cys G	ly Leu 15	Asp Ile	e Val	Ser 120	Met	Ala	Gly	Glu	Trp 125	Leu	Thr	Ala
65	Thr Ala As	on Thr	Asn Met	Phe 135	Thr	Tyr	Glu	Ile	Ala 140	Pro	Val	Phe	Ile
03	Leu Met Gl 145	u Asn	Val Val 150	Leu	Thr	Lys	Met	Arg 155	Glu	Ile	Ile	Gly	Trp 160

WO 2004/084821 PCT/US2004/008457

Lys Thr Gly Asp Ser Ile Phe Ala Pro Gly Gly Ser Ile Ser Asn Met 165 5 Tyr Ala Phe Leu Ala Ala Arg His Lys Met Phe Pro Gly Tyr Lys Glu 10 Gln Gly Leu His Ser Ile Lys Gly Gln Leu Val Met Tyr Thr Ser Asn Gln Ser His Tyr Ser Val Lys Ser Cys Ala Ser Val Cys Gly Leu Gly 15 215 Thr Glu Asn Cys Val Glu Val Pro Ser Asp Glu Arg Gly Arg Met Ile 20 Pro Ser Glu Leu Glu Arg Leu Ile Leu Glu Arg Lys Ser Lys Gly His 250 25 Ile Pro Phe Phe Val Ser Ala Thr Ala Gly Thr Thr Val Leu Gly Ala 265 30 Phe Asp Pro Ile Asn Asp Ile Ala Asp Ile Cys Glu Lys Tyr Lys Leu Trp Leu His Ile Asp Ala Ala Trp Gly Gly Gly Leu Leu Ser Arg 35 290 Lys Tyr Arg Tyr Pro Arg Leu Ala Gly Ile Glu Arg Ala Asn Ser Val 40 310 315 Thr Trp Asn Pro His Lys Leu Met Gly Thr Leu Leu Gln Cys Ser Thr 45 Ile His Phe Arg Glu Asn Gly Ile Leu Ile Ser Cys Asn Gln Met Ser 50 Ala Glu Tyr Leu Phe Met Gln Asp Lys Leu Tyr Asp Val Gln Tyr Asp 355 Thr Gly Asp Lys Val Ile Gln Cys Gly Arg His Asn Asp Val Phe Lys 55 Leu Trp Leu Gln Trp Arg Ala Lys Gly Thr Glu Gly Phe Glu Lys His 60 390 . Met Asp His Leu Met Glu Leu Ser Glu Tyr Met Val Glu Lys Ile Lys 65 Ala Ser Pro Asp Lys Tyr Tyr Leu Leu Glu Pro Glu Met Val Asn

420 425 430

Val Ser Phe Trp Tyr Val Pro Lys Arg Leu Arg Asn Ile Pro His Ser 5 440

Pro Lys Arg Ala Glu Ser Leu Gly Lys Ile Thr Pro Ile Leu Lys Ala 455 10

Lys Met Met Glu Ala Gly Thr Leu Met Val Gly Tyr Gln Pro Leu Asn 470 475

15 Glu Ile Pro Asn Phe Phe Arg Asn Ile Ile Ser Ser Ala Ala Val Thr 490

20 Lys Glu Asp Val Asp Phe Leu Leu Ser Glu Leu Asp Arg Leu Gly Gln 505

Asp Leu

25

<210> SEQ ID NO: 3

<211> 21 <212> DNA <213> Aphis gossypii

<400> SEQ ID NO: 3

CCACTGCGTC ACTTCCATAA G 11

35

<210> SEQ ID NO: 4 <211> 21 <212> DNA <213> Aphis gossypii

40 <400> SEQ ID NO: 4

CAGGAAGATT TGGAATAACG C 60