RNA-seq gene-level analysis and differential expression

Michael Love

Biostatistics Department
Genetics Department
UNC Chapel Hill

Technology and quantification

RNA-SEQ PART I

Gene expression

- Dynamic across time, tissue, individuals
- Measurement is harder than for the genome

[Roadmap Epigenomics Project]

Why gene expression?

- Basic biology: transcription, translation, RNA enzyme
- As a phenotype: easier to measure than proteins
- Research: find interesting genetic loci
- Diagnostic: classify cancer subtypes ← FD (2007)
- · New and better measuring devices drive discovery

Statistical analysis of gene expression

- Previously: Northern blot, qPCR
- Era of microarrays: 1990s-now
- Clustering, differential expression
- Seems simple, but statistical methods offer huge benefit
- Key insight about expression data:
 - Costly, often few replicates (3-5)
 - Many genes over which to learn about parameters

Our goal: what is airway transcriptome response to glucocorticoid hormone?

Glucocorticoid mechanism of action

(C) CSLS / University of Tokyo http://csls-text3.c.u-tokyo.ac.jp/

Compare gene expression across treatment, cDNA libraries within cell line

control

✓ Test for differences in gene expression, one gene at a time

treated with dexamethasone

✓ Visualize differences across all genes

Compare gene expression across treatment,

within cell line

cDNA libraries

control

treated with dex.

PCA plot

RNA sequencing protocol

Biases of RNA-seq experiment

Love, "Modeling of RNA-seq fragment sequence bias..." (2016)

More complex

- Gene: region of genome
- Three "isoforms", also called "transcripts"

→ Isoform usage differs across tissue, relevant in disease, including cancer

High-throughput sequencing data

- often observed data consists of counts of reads/fragments across features (rows) and samples (columns)
- counts need an appropriate statistical model (normalization and variance modeling)

samples: want to see if differences across condition are significant (w.r.t. biological and technical variation)

mRNAs to RNA-seq fragments

K_{ij} = count of fragments aligned to gene i, sample j

is proportional to:

- expression of RNA
- length of gene
- sequencing depth
- lib. prep. factors (PCR)
- in silico factors (alignment)
- etc.

Sequencing depth

Need to have a robust estimator for sequencing depth

actual expression
sample 1:
sample 2:
gene 1, 2, 3, etc.
sequenced reads
sample 1:
sample 2:
naivly normalized
sample 1:
sample 2:

(slide from Simon Anders)

Median of ratios method

simple approach & works well for each gene look at count ratios:

2

2500

1500

500

log2(sample1 / sample2)

- in general: create a pseudo-reference-sample (row-wise geometric mean)
- calculate ratio of each sample to the reference

3

- assumes that not ALL genes are DE (differentially expressed)
- robust to imbalance in up-/down- regulation and large numbers of DE genes

Variance of counts

Consider one gene:

Variance of counts

Consider one gene:

Binomial sampling distribution

With millions of reads & small proportion for each gene
 → Poisson sampling distribution

Raw counts vs. normalized counts

Raw count with mean of 100 Poisson sampling, so SD=10

Raw count mean = 1000 Scaled by 1/10 SD = ?

Raw count mean = 10 Scaled by 10 SD = ?

Raw gene counts (htseq, featureCounts, etc.) and estimated counts (Salmon, etc.)

Biological replicates

If the proportions of mRNA stays exactly constant But realistically, biological variation ("technical replicate") we can expect Poisson dist. across sample units is expected

Biological replicates

Biological variation for the abundance of a given gene produces "over-dispersion" relative to the Poisson dist.

Negative Binomial = Poisson with a varying mean

Dispersion parameter

$$Var(K_{ij}) = \mu_{ij} + \alpha_i \mu_{ij}^2$$

variance depends on mean value though

Dispersion parameter

$$Var(K_{ij}) = \mu_{ij} + \alpha_i \mu_{ij}^2$$

Poisson part: sampling fragments

Extra variation due to biological variance

for large counts:
$$\sqrt{\alpha_i} pprox \frac{\sigma}{\mu} \equiv CV$$

(coefficient of variation)

disp =
$$0.01 \rightarrow CV 10\%$$

disp = $0.25 \rightarrow CV 50\%$

Transformations and power

RNA-SEQ PART II

Two paths in RNA-seq analysis

Count matrix

Differential expression

testing, p-values, FDR

<u>Transformations and</u> Exploratory Data Analysis (EDA)

clustering, heatmaps, sample-sample distances

How to transform data for distances?

Variance stabilizing transformation

- Closed-form expression f(x) for stabilizing Var
- vst() is a faster implementation than rlog()

Regularized logarithm, "rlog"

similar idea as fold change shrinkage, now sample-to-sample fold changes

VST and rlog vs log(x+1)

Essentially provides a similar outcome as filtering at T and/or adding a pseudocount of X, but parameter estimation is data-driven.

Statistical power

 False positive rate: of the null, how many positives?

 False discovery rate: of the positives, how many false positives?

 Power (sensitivity): of the non-null, how many positive?

test: \ true:	null	non-null
negative	true negative	false negative
positive	false positive	true positive

Statistical power

Why not use a simple t-test on log normalized counts?

Factors influencing power

- Range of count
 - Sequencing depth
 - Expression
 - Gene length
- Sample size
- Dispersion
- True fold change

Bioc pkg: RNASeqPower

Salmon quantification

RNA-SEQ PART III

Biases estimated by Salmon

Fragment sequence bias

Love, Hogenesch, & Irizarry, "Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation" (2016) PMC5143225

We have a plugin for MultiQC

Theoretical GC Content

It is possible to plot a dashed line showing the theoretical GC content for a reference genome. MultiQC comes with genome and transcriptome guides for Human and Mouse. You can use these in your reports by adding the following MultiQC config keys (see Configuring MultiQC):

```
fastqc_config:
    fastqc_theoretical_gc: 'hg38_genome'
```

Only one theoretical distribution can be plotted. The following guides are available: hg38_txome,

Lightweight quantifiers

Sailfish: Patro et al (2014), kallisto: Bray et al (2016), Salmon: Patro et al (2017)

Salmon maps reads to transcriptome with RapMap: Srivastava et al (2016)

Elements of mapping algorithm use ideas from **kallisto**: Bray *et al* (2016):

- (1) skipping ahead to find Next Informative Position (NIP) and
- (2) defining the consensus as \cap of transcript sets from all hits

Salmon maps all PE reads, useful for estimating bias

Steps for running Salmon

