Introduction to Time Series Analysis. Lecture 16.

- 1. Review: Spectral density
- 2. Examples
- 3. Spectral distribution function.
- 4. Autocovariance generating function and spectral density.

Review: Spectral density

If a time series $\{X_t\}$ has autocovariance γ satisfying $\sum_{h=-\infty}^{\infty} |\gamma(h)| < \infty$, then we define its **spectral density** as

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma(h)e^{-2\pi i\nu h}$$

for $-\infty < \nu < \infty$.

Review: Spectral density

1. $f(\nu)$ is real.

- 2. $f(\nu) \ge 0$.
- 3. f is periodic, with period 1. So we restrict the domain of f to $-1/2 \le \nu \le 1/2$.
- 4. f is even (that is, $f(\nu) = f(-\nu)$).
- 5. $\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} f(\nu) d\nu$.

Examples

White noise: $\{W_t\}$, $\gamma(0) = \sigma_w^2$ and $\gamma(h) = 0$ for $h \neq 0$.

$$f(\nu) = \gamma(0) = \sigma_w^2.$$

AR(1):
$$X_t = \phi_1 X_{t-1} + W_t$$
, $\gamma(h) = \sigma_w^2 \phi_1^{|h|} / (1 - \phi_1^2)$.

$$f(\nu) = \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi\nu) + \phi_1^2}.$$

$$f(\nu) = \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi\nu) + \phi_1^2}.$$

If $\phi_1 > 0$ (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain.

If $\phi_1 < 0$ (negative autocorrelation), spectrum is dominated by high frequency components—rough in the time domain.

$$X_t = W_t + \theta_1 W_{t-1}.$$

$$\gamma(h) = \begin{cases} \sigma_w^2 (1 + \theta_1^2) & \text{if } h = 0, \\ \sigma_w^2 \theta_1 & \text{if } |h| = 1, \\ 0 & \text{otherwise.} \end{cases}$$

$$f(\nu) = \sum_{h=-1}^{1} \gamma(h) e^{-2\pi i \nu h}$$

= $\gamma(0) + 2\gamma(1) \cos(2\pi \nu)$
= $\sigma_w^2 \left(1 + \theta_1^2 + 2\theta_1 \cos(2\pi \nu)\right)$.

$$X_t = W_t + \theta_1 W_{t-1}.$$

 $f(\nu) = \sigma_w^2 \left(1 + \theta_1^2 + 2\theta_1 \cos(2\pi\nu) \right).$

If $\theta_1 > 0$ (positive autocorrelation), spectrum is dominated by low frequency components—smooth in the time domain.

If $\theta_1 < 0$ (negative autocorrelation), spectrum is dominated by high frequency components—rough in the time domain.

Introduction to Time Series Analysis. Lecture 16.

- 1. Review: Spectral density
- 2. Examples
- 3. Spectral distribution function.
- 4. Autocovariance generating function and spectral density.
- 5. Rational spectra. Poles and zeros.

Recall: A periodic time series

$$X_t = \sum_{j=1}^k \left(A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t) \right)$$

$$= \sum_{j=1}^k (A_j^2 + B_j^2)^{1/2} \sin(2\pi\nu_j t + \tan^{-1}(B_j/A_j)).$$

$$\mathbf{E}[X_t] = 0$$

$$\gamma(h) = \sum_{j=1}^k \sigma_j^2 \cos(2\pi\nu_j h)$$

$$\sum_{k=1}^k |\gamma(h)| = \infty.$$

Discrete spectral distribution function

For $X_t = A\sin(2\pi\lambda t) + B\cos(2\pi\lambda t)$, we have $\gamma(h) = \sigma^2\cos(2\pi\lambda h)$, and we can write

$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} dF(\nu),$$

where F is the discrete distribution

$$F(\nu) = \begin{cases} 0 & \text{if } \nu < -\lambda, \\ \frac{\sigma^2}{2} & \text{if } -\lambda \le \nu < \lambda, \\ \sigma^2 & \text{otherwise.} \end{cases}$$

The spectral distribution function

For any stationary $\{X_t\}$ with autocovariance γ , we can write

$$\gamma(h) = \int_{-1/2}^{1/2} e^{2\pi i \nu h} dF(\nu),$$

where F is the spectral distribution function of $\{X_t\}$.

We can split F into three components: discrete, continuous, and singular.

If γ is absolutely summable, F is continuous: $dF(\nu) = f(\nu)d\nu$.

If γ is a sum of sinusoids, F is discrete.

The spectral distribution function

For $X_t = \sum_{j=1}^k (A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t))$, the spectral distribution function is $F(\nu) = \sum_{j=1}^k \sigma_j^2 F_j(\nu)$, where

$$F_{j}(\nu) = \begin{cases} 0 & \text{if } \nu < -\nu_{j}, \\ \frac{1}{2} & \text{if } -\nu_{j} \leq \nu < \nu_{j}, \\ 1 & \text{otherwise.} \end{cases}$$

Wold's decomposition

Notice that $X_t = \sum_{j=1}^k (A_j \sin(2\pi\nu_j t) + B_j \cos(2\pi\nu_j t))$ is deterministic (once we've seen the past, we can predict the future without error).

Wold showed that every stationary process can be represented as

$$X_t = X_t^{(d)} + X_t^{(n)},$$

where $X_t^{(d)}$ is purely deterministic and $X_t^{(n)}$ is purely nondeterministic. (c.f. the decomposition of a spectral distribution function as $F^{(d)} + F^{(c)}$.)

Example:
$$X_t = A \sin(2\pi\lambda t) + \frac{\theta(B)}{\phi(B)} W_t$$
.

Introduction to Time Series Analysis. Lecture 16.

- 1. Review: Spectral density
- 2. Examples
- 3. Spectral distribution function.
- 4. Autocovariance generating function and spectral density.

Suppose X_t is a linear process, so it can be written

$$X_t = \sum_{i=0}^{\infty} \psi_i W_{t-i} = \psi(B) W_t.$$

Consider the autocovariance sequence,

$$\gamma_h = \operatorname{Cov}(X_t, X_{t+h})$$

$$= \operatorname{E}\left[\sum_{i=0}^{\infty} \psi_i W_{t-i} \sum_{j=0}^{\infty} \psi_j W_{t+h-j}\right]$$

$$= \sigma_w^2 \sum_{i=0}^{\infty} \psi_i \psi_{i+h}.$$

Define the autocovariance generating function as

$$\begin{split} \gamma(B) &= \sum_{h=-\infty}^{\infty} \gamma_h B^h. \\ \text{Then,} \quad \gamma(B) &= \sigma_w^2 \sum_{h=-\infty}^{\infty} \sum_{i=0}^{\infty} \psi_i \psi_{i+h} B^h \\ &= \sigma_w^2 \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \psi_i \psi_j B^{j-i} \\ &= \sigma_w^2 \sum_{i=0}^{\infty} \psi_i B^{-i} \sum_{j=0}^{\infty} \psi_j B^j = \sigma_w^2 \psi(B^{-1}) \psi(B). \end{split}$$

Notice that

$$\gamma(B) = \sum_{h=-\infty}^{\infty} \gamma_h B^h.$$

$$f(\nu) = \sum_{h=-\infty}^{\infty} \gamma_h e^{-2\pi i \nu h}$$

$$= \gamma \left(e^{-2\pi i \nu} \right)$$

$$= \sigma_w^2 \psi \left(e^{-2\pi i \nu} \right) \psi \left(e^{2\pi i \nu} \right)$$

$$= \sigma_w^2 \left| \psi \left(e^{2\pi i \nu} \right) \right|^2.$$

For example, for an MA(q), we have $\psi(B) = \theta(B)$, so

$$f(\nu) = \sigma_w^2 \theta \left(e^{-2\pi i \nu} \right) \theta \left(e^{2\pi i \nu} \right)$$
$$= \sigma_w^2 \left| \theta \left(e^{-2\pi i \nu} \right) \right|^2.$$

For MA(1),

$$f(\nu) = \sigma_w^2 \left| 1 + \theta_1 e^{-2\pi i \nu} \right|^2$$

= $\sigma_w^2 \left| 1 + \theta_1 \cos(-2\pi \nu) + i\theta_1 \sin(-2\pi \nu) \right|^2$
= $\sigma_w^2 \left(1 + 2\theta_1 \cos(2\pi \nu) + \theta_1^2 \right)$.

For an AR(p), we have $\psi(B) = 1/\phi(B)$, so

$$f(\nu) = \frac{\sigma_w^2}{\phi \left(e^{-2\pi i\nu}\right) \phi \left(e^{2\pi i\nu}\right)}$$
$$= \frac{\sigma_w^2}{\left|\phi \left(e^{-2\pi i\nu}\right)\right|^2}.$$

For AR(1),

$$f(\nu) = \frac{\sigma_w^2}{|1 - \phi_1 e^{-2\pi i\nu}|^2}$$
$$= \frac{\sigma_w^2}{1 - 2\phi_1 \cos(2\pi\nu) + \phi_1^2}.$$

Spectral density of a linear process

If X_t is a linear process, it can be written $X_t = \sum_{i=0}^{\infty} \psi_i W_{t-i} = \psi(B) W_t$. Then

$$f(\nu) = \sigma_w^2 \left| \psi \left(e^{-2\pi i \nu} \right) \right|^2.$$

That is, the spectral density $f(\nu)$ of a linear process measures the modulus of the ψ (MA(∞)) polynomial at the point $e^{2\pi i\nu}$ on the unit circle.

Introduction to Time Series Analysis. Lecture 16.

- 1. Review: Spectral density
- 2. Examples
- 3. Spectral distribution function.
- 4. Autocovariance generating function and spectral density.