FEKETE-SZEGÖ PROBLEM FOR SOME SUBCLASSES OF COMPLEX ORDER RELATED TO $S\Breve{A}\Breve{L}\Breve{A}\Breve{G}\Br$

C.SELVARAJ, T.R.K.KUMAR

ABSTRACT. In the present investigation, sharp upper bounds of $\left|a_3-\mu a_2^2\right|$ for function $f\left(z\right)$ belonging to certain subclasses of $Re\left[1+\frac{1}{b}\left\{(1-\alpha)\frac{f(z)}{z}+\alpha f'\left(z\right)-1\right\}\right]\succ 0$ are obtained. Also certain applications of the main results for subclasses of functions defined by convolution with a normalized analytic function are given. In particular, $Fekete-Szeg\ddot{o}$ inequalities for certain classes of functions defined through fractional derivatives are obtained.

1. Introduction

We let \mathcal{A} to denote the class of all analytic functions f(z) of the form

(1.1)
$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n, (z \in D = \{z \in \mathbb{C} : |z| < 1\})$$

and \mathbb{S} be the subclass of \mathcal{A} consisting of univalent functions. For two analytic functions f(z) given by (1.1) and $g(z) = z + \sum_{n=2}^{\infty} b_n z^n$, their convolution (or Hadamard product) is defined to be the function (f*g)(z) given by $(f*g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n$.

For two functions $f, g \in \mathcal{A}$, we say that the function f(z) is subordinate to g(z) in D and write $f \prec g$ or $f(z) \prec g(z) \quad (z \in D)$, if there exists an analytic function w(z) with w(0) = 0 and |w(z)| < 1 $(z \in D)$, such that

$$f(z) = g(w(z)) \quad (z \in D).$$

 $^{2010\} Mathematics\ Subject\ Classification.\ 30C45.$

 $Key\ words\ and\ phrases.$ analytic functions, subordination, coefficient problem, Fekete-Szegö inequality.

In particular, if the function g is univalent in D, the above subordination is equivalent to f(0) = g(0) and $f(D) \subset g(D)$.

Throughout this paper, we assume that ϕ is an analytic univalent function with positive real part in D, $\phi(D)$ is symmetric with respect to the real axis and starlike with respect to $\phi(0) = 1$, and $\phi'(0) > 0$. The Taylor's series expansion of such function is of the form

$$(1.2) \phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots \text{ with } B_1 > 0.$$

In the present investigation, we obtain Fekete- $Szeg\ddot{o}$ inequality for function in a more general class $\Re\left(\alpha,\phi\right)$ which we define below. We also give applications of our results to certain functions defined through Hadamard product and functions defined by fractional derivatives.

Definition 1.1. Let $\alpha \geq 0$. A function $f \in \mathcal{A}$ given by (1.1) is in the class $\Re(\alpha, \phi)$, if it satisfies

(1.3)
$$Re\left[1 + \frac{1}{b}\left\{\left(1 - \alpha\right)\frac{f(z)}{z} + \alpha f'(z) - 1\right\}\right] \succ 0$$

Lemma 1.1. If $p_1(z) = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$ is analytic function with positive real part in D, then

$$|c_2 - vc_1^2| \le \begin{cases} -4v + 2 & if \quad v \le 0, \\ 2 & if \quad 0 \le v \le 1, \\ 4v - 2 & if \quad v \ge 1. \end{cases}$$

when v < 0 or v > 1, the equality holds if and only if $p_1(z)$ is (1+z)/(1-z) or one of its rotations. If 0 < v < 1, then the equality holds if and only if $p_1(z)$ is $(1+z^2)/(1-z^2)$ or one of its rotations. If v = 0, the equality holds if and only if

$$p_1(z) = \left(\frac{1}{2} + \frac{1}{2}\lambda\right)\frac{1+z}{1-z} + \left(\frac{1}{2} - \frac{1}{2}\lambda\right)\frac{1-z}{1+z} , (0 \le \lambda \le 1)$$

or one of its rotations. If v=1, the equality holds if and only if $p_1\left(z\right)$ is the reciprocal of one of the functions such that the equality holds in the case v=0. Also the above upper bound is sharp and it can be improved as follows:

when 0 < v < 1,

$$\left| c_2 - vc_1^2 \right| + v \left| c_1 \right|^2 \le 2 \quad (0 < v \le 1/2)$$

and

$$|c_2 - vc_1^2| + (1 - v)|c_1|^2 \le 2 \quad (1/2 < v \le 1).$$

Let a differential operator be defined $S\Breve{a}l\Breve{a}gean$ [10] on a class of analytic functions of the form (1.1) as follows

$$D^{0}f(z) = f(z), \qquad D^{1}f(z) = Df(z) = zf'(z),$$

and in general

$$D^{n} f(z) = D(D^{n-1} f(z)), (n \in \mathbb{N}_{0} = \mathbb{N} \cup \{0\}).$$

We easily find that

(1.4)
$$D^{n} f(z) = z + \sum_{k=2}^{\infty} k^{n} a_{k} z^{n} \quad (n \in \mathbb{N}_{0}).$$

2. Fekete-Szeg \ddot{O} Poroblem for the Function class $\Re(\alpha, \phi)$

By using Lemma 1.1 , we prove the following Fekete- $Szeg\ddot{o}$ inequalities.

Theorem 2.1. Let b be a non zero complex number. If f(z) given by (1.1) belongs to $\mathcal{N}_n^b(\alpha, \phi)$, then

$$|a_{3} - \mu a_{2}^{2}| \leq \begin{cases} \frac{b}{3^{n}} \left[\frac{B_{2}}{1+2\alpha} - \frac{\mu B_{1}^{2} b}{(1+\alpha)^{2}} \left(\frac{3}{4} \right)^{n} \right] & if \quad \mu \leq \sigma_{1}, \\ \frac{bB_{1}}{3^{n} (1+2\alpha)} & if \quad \sigma_{1} \leq \mu \leq \sigma_{2}, \\ -\frac{b}{3^{n}} \left[\frac{B_{2}}{1+2\alpha} - \frac{\mu B_{1}^{2} b}{(1+\alpha)^{2}} \left(\frac{3}{4} \right)^{n} \right] & if \quad \mu \geq \sigma_{2}. \end{cases}$$

where

$$\sigma_1 := \frac{(1+\alpha)^2 (B_2 - B_1)}{b (1+2\alpha) B_1^2} \left(\frac{4}{3}\right)^n \quad , \qquad \sigma_2 := \frac{(1+\alpha)^2 (B_2 + B_1)}{b (1+2\alpha) B_1^2} \left(\frac{4}{3}\right)^n$$

The result is sharp.

If $f(z) \in \Re(\alpha, \phi)$, then there exists a Schwarz functions w(z) analytic in D with

w(0) = 0 and |w(z)| < 1 $(z \in D)$, such that

(2.1)
$$1 + \frac{1}{b} \left\{ (1 - \alpha) \frac{f(z)}{z} + \alpha f'(z) - 1 \right\} = \phi(w(z))$$

Define the function p_1 by

(2.2)
$$p_1 = \frac{1 + w(z)}{1 - w(z)} = 1 + c_1 z + c_2 z^2 + c_3 z^3 + \cdots$$

since w(z) is a Schwarz function, we see that $\Re(p_1(z)) > 0 (z \in D)$ and $p_1(0) = 1$. Now, defining the function p(z) by

$$p(z) = 1 + \frac{1}{b} \left\{ (1 - \alpha) \frac{f(z)}{z} + \alpha f'(z) - 1 \right\} = 1 + b_1 z + b_2 z^2 + b_3 z^3 + \dots$$

we find from (2.1) and (2.2) that

(2.4)
$$p(z) = \phi\left(\frac{p_1(z) - 1}{p_1(z) + 1}\right).$$

Thus by using (2.2) in (2.4), we obtain

$$b_1 = \frac{1}{2}B_1c_1$$
 $b_2 = \frac{1}{2}B_1\left(c_2 - \frac{1}{2}c_1^2\right) + \frac{1}{4}B_2c_1^2$.

Also, from (2.3) we obtain

$$b_1 = \frac{1}{b} (1 + \alpha) 2^n a_2$$
 $b_2 = \frac{1}{b} (1 + 2\alpha) 3^n a_3.$

Therefore we have

(2.5)
$$a_3 - \mu a_2^2 = \frac{bB_1}{3^n 2(1+2\alpha)} \left[c_2 - vc_1^2 \right].$$

where

$$v := \frac{1}{2} \left[1 - \frac{B_2}{B_1} + \frac{b\mu B_1 (1 + 2\alpha)}{(1 + \alpha)^2} \left(\frac{3}{4} \right)^n \right].$$

Our result now follows by an application of lemma 1.1. To show that the bounds are sharp, we define the functions $K_{\phi_n}^{\alpha}$ $(n=2,3,4,\ldots)$ by

$$1 + \frac{1}{b} \left\{ (1 - \alpha) \frac{\left[K_{\phi_n}^{\alpha}(z)\right]}{z} + \alpha \left[K_{\phi_n}^{\alpha}\right]'(z) - 1 \right\} = \phi \left(z^{n-1}\right),$$

$$K_{\phi_n}^{\alpha}(0) = 0 = \left[K_{\phi_n}^{\alpha}\right]'(0) - 1$$

 $K_{\phi_{n}}^{\alpha}\left(0\right)=0=\left[K_{\phi_{n}}^{\alpha}\right]'\left(0\right)-1$ and the function F_{λ}^{α} and G_{λ}^{α} $\left(0\leq\lambda\leq1\right)$ by

$$1 + \frac{1}{b} \left\{ (1 - \alpha) \frac{[F_{\lambda}^{\alpha}(z)]}{z} + \alpha [F_{\lambda}^{\alpha}]'(z) - 1 \right\} = \phi (z^{n-1}),$$
$$F_{\lambda}^{\alpha}(0) = 0 = [F_{\lambda}^{\alpha}]'(0) - 1$$

$$1 + \frac{1}{b} \left\{ (1 - \alpha) \frac{\left[G_{\lambda}^{\alpha}(z)\right]}{z} + \alpha \left[G_{\lambda}^{\alpha}\right]'(z) - 1 \right\} = \phi \left(z^{n-1}\right),$$

$$G_{\lambda}^{\alpha}(0) = 0 = \left[G_{\lambda}^{\alpha}\right]'(0) - 1$$

Clearly the functions $K_{\phi_n}^{\alpha}$, F_{λ}^{α} and $G_{\lambda}^{\alpha} \in \Re(\alpha, \phi)$. Also we write $K_{\phi}^{\alpha} := K_{\phi_0}^{\alpha}$.

 $K^{\alpha}_{\phi_2}$. If $\mu \leq \sigma_1$ or $\mu \geq \sigma_2$, then the equality holds if and only if f is K^{α}_{ϕ} or one of its rotations. When $\sigma_1 \leq \mu \leq \sigma_2$, the equality holds if and only if f is $K^{\alpha}_{\phi_3}$ or one of its rotations. If $\mu = \sigma_1$, then the equality holds if and only if f is F^{α}_{λ} or one of its rotations. If $\mu = \sigma_2$, then the equality holds if and only if f is G^{α}_{λ} or one of its rotations.

Remark 2.1. If $\sigma_1 \leq \mu \leq \sigma_2$, then,in view of Lemma 1.1, Theorem 2.1 can be improved. Let σ_3 be given by

$$\sigma_3 := \frac{(1+\alpha)^2 B_2}{b(1+2\alpha) B_1^2} \left(\frac{4}{3}\right)^n.$$

Let $f \in \Re(\alpha, \phi)$. If $\sigma_1 \le \mu \le \sigma_3$, then

$$|a_3 - \mu a_2^2| + \frac{1}{b(1+2\alpha)B_1^2} \left(\frac{4}{3}\right)^n \left[(1+\alpha)^2 (B_2 - B_1) \left(\frac{3}{4}\right)^n + \mu b (1+2\alpha) B_1^2 \left(\frac{4}{3}\right)^n |a_2|^2 \le \frac{bB_1}{3^n (1+2\alpha)}.$$

If $\sigma_3 \leq \mu \leq \sigma_2$, then

$$\left| a_3 - \mu a_2^2 \right| + \frac{1}{b(1+2\alpha)B_1^2} \left(\frac{4}{3} \right)^n \left[(1+\alpha)^2 (B_2 + B_1) \left(\frac{3}{4} \right)^n - \mu b (1+2\alpha) B_1^2 \left(\frac{4}{3} \right)^n |a_2|^2 \le \frac{bB_1}{3^n (1+2\alpha)}.$$

For $\phi(z) = (1 + Cz)/(1 + Dz)$, $-1 \le D < C \le 1$. Theorem 2.1 leads to the following results:

Corollary 2.2. Let $-1 \le D < C \le 1$. If $f \in \Re(\alpha, (1 + Cz) / (1 + Dz))$, then

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{b(D-C)}{3^n(1+2\alpha)} \left[D - \frac{b\mu(D-C)(1+2\alpha)}{2(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \mu \le -\frac{2}{b} \left[\frac{(1+D)(1+\alpha)^2}{(1+2\alpha)(C-D)} \left(\frac{4}{3} \right)^n \right], \\ \frac{b(C-D)}{3^n(1+2\alpha)} & if - \frac{2}{b} \left[\frac{(1+D)(1+\alpha)^2}{(1+2\alpha)(C-D)} \left(\frac{4}{3} \right)^n \right] \le \mu \le \frac{2}{b} \left[\frac{(1-D)(1+\alpha)^2}{(1+2\alpha)(C-D)} \left(\frac{4}{3} \right)^n \right], \\ -\frac{b(D-C)}{3^n(1+2\alpha)} \left[D - \frac{b\mu(D-C)(1+2\alpha)}{2(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \mu \le \frac{2}{b} \left[\frac{(1-D)(1+\alpha)^2}{(1+2\alpha)(C-D)} \left(\frac{4}{3} \right)^n \right]. \end{cases}$$

For $\phi(z) = (1+z)/(1-z)$, Theorem 2.1 leads to the following results:

Corollary 2.3. Let $-1 \le D < C \le 1$. If $f \in \Re(\alpha, (1+z)/(1-z))$, then

$$\left| a_3 - \mu a_2^2 \right| \le \begin{cases} \frac{2b}{3^n (1+2\alpha)} \left[1 - \frac{\mu b (1+2\alpha)}{(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \quad \mu \le 0, \\ \\ \frac{2b}{3^n (1+2\alpha)} & if \quad 0 \le \mu \le \frac{2(1+\alpha)^2}{b(1+2\alpha)} \left(\frac{4}{3} \right)^n, \\ \\ -\frac{2b}{3^n (1+2\alpha)} \left[1 - \frac{\mu b (1+2\alpha)}{(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \quad \mu \ge \frac{2(1+\alpha)^2}{b(1+2\alpha)} \left(\frac{4}{3} \right)^n. \end{cases}$$

For $C=1-2\beta$ with $0 \le \beta < 1$ and D=-1, Corollary 2.2 reduces to the following result:

Corollary 2.4.

$$\left| a_3 - \mu a_2^2 \right| \le \begin{cases} \frac{2b(1-\beta)}{3^n(1+2\alpha)} \left[1 - \frac{\mu b(1-\beta)(1+2\alpha)}{(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \quad \mu \le 0, \\ \frac{2b(1-\beta)}{3^n(1+2\alpha)} & if \quad 0 \le \mu \le \frac{2(1+\alpha)^2}{b(1-\beta)(1+2\alpha)} \left(\frac{4}{3} \right)^n, \\ -\frac{2b(1-\beta)}{3^n(1+2\alpha)} \left[1 - \frac{\mu b(1-\beta)(1+2\alpha)}{(1+\alpha)^2} \left(\frac{3}{4} \right)^n \right] & if \quad \mu \ge \frac{2(1+\alpha)^2}{b(1-\beta)(1+2\alpha)} \left(\frac{4}{3} \right)^n. \end{cases}$$

3. Application to Functions Defined by Fractional Derivatives

In order to introduce the class $\Re^{\lambda}(\alpha,\phi)$, we need the following:

Definition 3.1. see ([2, 3], see also [7, 8]).Let f(z) be analytic in a simply connected region of the z-plane containing the origin. The fractional derivative of f of order λ is defined by

$$D_z^{\lambda} f(z) := \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta \quad (0 \le \lambda < 1),$$

where the multiplicity of $(z - \zeta)^{\lambda}$ is removed by requiring that $\log(z - \zeta)$ is real for $z - \zeta > 0$. Using the above Definition 3.1 and its known extensions involving fractional derivatives and fractional integrals, Owa and Srivastava [3] introduced the operator $\Omega^{\lambda} : \mathcal{A} \to \mathcal{A}$ defined by

$$(\Omega^{\lambda} f)(z) = \Gamma(2 - \lambda) z^{\lambda} D_z^{\lambda} f(z) \quad (\lambda \neq 2, 3, 4, \dots).$$

The class $\Re^{\lambda}(\alpha, \phi)$ consists of functions $f \in \mathcal{A}$ for which $\Omega^{\lambda} f \in \Re(\alpha, \phi)$. Note that $\Re^{\lambda}(\alpha, \phi)$ is the special case of the class $\Re^{g}(\alpha, \phi)$ when

(3.1)
$$g(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} z^{n}.$$

Let $g(z) = z + \sum_{n=2}^{\infty} g_n z^n$ $(g_n > 0)$. Since $f(z) = z + \sum_{n=2}^{\infty} a_n z^n \in \Re^g(\alpha, \phi)$ if and only if $(f * g)(z) = z + \sum_{n=2}^{\infty} g_n a_n z^n \in \Re(\alpha, \phi)$, we obtain the coefficient estimate for functions in the class $\Re^g(\lambda, \phi)$, from the corresponding estimate for functions in the class $\Re(\lambda, \phi)$. Applying Theorem 2.1 for the function $(f * g)(z) = z + g_2 a_2 z^2 + g_3 a_3 z^3 + \cdots$, we get the following theorem after an obvious change of the parameter μ :

Theorem 3.1. Let the function $\phi(z)$ be given by $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$ If f(z) given by (1.1) belongs to $\Re^g(\alpha, \phi)$, then

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{b}{g_3} \left[\frac{B_2}{1 + 2\alpha} - \frac{\mu b g_3 B_1^2}{(1 + \alpha)^2 g_2^2} \right] & if \quad \mu \le \sigma_1, \\ \\ \frac{b B_1}{g_3 (1 + 2\alpha)} & if \quad \sigma_1 \le \mu \le \sigma_2, \\ \\ -\frac{b}{g_3} \left[\frac{B_2}{1 + 2\alpha} - \frac{\mu b g_3 B_1^2}{(1 + \alpha)^2 g_2^2} \right] & if \quad \mu \ge \sigma_2. \end{cases}$$

where

$$\sigma_1 := \frac{g_2^2 (1 + \alpha)^2 (B_2 - B_1)}{b g_3 (1 + 2\alpha) B_1^2} \quad , \qquad \sigma_1 := \frac{g_2^2 (1 + \alpha)^2 (B_2 + B_1)}{b g_3 (1 + 2\alpha) B_1^2}$$

The result is sharp.

Since

$$\left(\Omega^{\lambda} f\right)(z) = z + \sum_{n=2}^{\infty} \frac{\Gamma(n+1)\Gamma(2-\lambda)}{\Gamma(n+1-\lambda)} a_n z^n ,$$

we have

(3.2)
$$g_2 := \frac{\Gamma(3)\Gamma(2-\lambda)}{\Gamma(3-\lambda)} = \frac{2}{2-\lambda}$$

and

(3.3)
$$g_3 := \frac{\Gamma(4)\Gamma(2-\lambda)}{\Gamma(4-\lambda)} = \frac{6}{(2-\lambda)(3-\lambda)}.$$

For g_2 and g_3 given by (3.2) and (3.3) , Theorem 3.1 reduces to the following:

Theorem 3.2. Let the function $\phi(z)$ be given by $\phi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 + \cdots$ If f(z) given by (1.1) belongs to $\Re^{\lambda}(\alpha, \phi)$, then

$$|a_3 - \mu a_2^2| \le \begin{cases} \frac{b(2-\lambda)(3-\lambda)}{6} \left[\frac{B_2}{1+2\alpha} - \frac{\mu b 3(2-\lambda)B_1^2}{2(1+\alpha)^2(3-\lambda)} \right] & if \quad \mu \le \sigma_1, \\ \frac{b(2-\lambda)(3-\lambda)B_1}{6(1+2\alpha)} & if \quad \sigma_1 \le \mu \le \sigma_2, \\ -\frac{b(2-\lambda)(3-\lambda)}{6} \left[\frac{B_2}{1+2\alpha} - \frac{\mu b 3(2-\lambda)B_1^2}{2(1+\alpha)^2(3-\lambda)} \right] & if \quad \mu \ge \sigma_2. \end{cases}$$

where

$$\sigma_1 := \frac{2(3-\lambda)(1+\alpha)^2(B_2-B_1)}{3b(2-\lambda)(1+2\alpha)B_1^2} \quad , \qquad \sigma_2 := \frac{2(3-\lambda)(1+\alpha)^2(B_2+B_1)}{3b(2-\lambda)(1+2\alpha)B_1^2}$$

The result is sharp.

References

- W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in *Proceedings of the Conference on Complex Analysis (Tian-jin, 1992)*, 157–169, Conf. Proc. Lecture Notes Anal., I Int. Press, Cambridge, MA,1994.
- [2] S.Owa, On the distortion theorem I, Kyungpook Math. J. 18 (1978), 53–58.
- [3] S.Owa and H.M.Srivastava, Univalent and starlike generalized hypergeometric functions, Canad.J. Math.**39** (1987), 1057–1077.
- [4] V.Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math.Acad.Paedagog.Nyhazi.(N.S.) **20**(1) (2004), 31–37.
- [5] K.Sakaguchi, On a certain univalent mapping, J.Math.Soc.Japan 11 (1959), 72–75.

- [6] T.N.Shanmugam, C.Ramachandran and V.Ravicnandran, Fekete-Szegö problem for subclasses of starlike functions with respect to symmetric points, Bull. Korean Math. 43 (3)(2006), 589–598.
- [7] H.M.Srivastava and S.Owa, An application of the fractional derivative, Math.Japon. **29** (1984), 383–389.
- [8] H.M.Srivastava and S.Owa, Univalent functions, Fractional Calculus, and their Applications, Halsted Press/John Wiley and Songs, Chichester/New York, (1989).
- [9] S.P.Goyal and R.Kumar, Fekete-Szegö problem for a class of complex order related to sălăgean Operator, Bulletin of Mathematical analysis and applications, 3 (4)(2011), 240–246.
- [10] G.S.Sălăgean, Subclasses of univalent functions, Complex Analysis-Proc. 5th Rom.-Finn.Semin., Bucharest 1981,part 1, Lec. Notes Math., 1013 (1983), 362-372.

C.Selvaraj, Presidency College, Chennai-600 005, Tamilnadu, India

T.R.K.Kumar*, R.M.K.Engineering College, R.S.M.Nagar, Kavaraipettai-601 206, Tamilnadu, India

^{*}CORRESPONDING AUTHOR