

# UM EECS 270 F22 Introduction to Logic Design

10. Analysis of Sequential Circuits

### Sequential Circuits



- Modeled as Finite State Machines
- Timing behavior:
  - Synchronous (clocked)
  - Asynchronous

Our Focus: Synchronous Sequential Circuits

- Sequential Circuit Components:
  - Next state logic (combinational): next state = f(current state, inputs)
  - **Memory** (sequential): stores state in terms of state variables
  - Output logic (combinational):
    - Moore Output: output = g(current state)

      Clock

      Inputs

      Next-State

      Logic

      Next-State

      With a clock

      that goes through
      all of them
    - Mealy Output: output= g(current state, inputs)



also

## Sequential Circuit Analysis

Goal: Given a sequential circuit, describe the circuit's behavior



 Excitation equations describe memory (FF or latch) input signals as a function of inputs and current state (i.e., state variables)



#### Excitation Equations:

$$D_0 = EN \oplus Q_0$$

$$D_1 = EN \cdot (Q_0 \oplus Q_1) + \overline{EN} \cdot Q_1$$

- Transition equations describe the next state as a function of inputs and current state
  - Generated by substituting the excitation equations into the characteristic equation for the sequential gates



D FF Characteristic Eqn:

Transition Equations:

$$Q^+ = D$$
 
$$Q_0^+ = D_0 = EN \oplus Q_0$$
 
$$Q_1^+ = D_1 = EN \cdot (Q_0 \oplus Q_1) + \overline{EN} \cdot Q_1$$

This step is trivial when using D FFs!

 Output equations describe the output signals as a function of the current state (for a Moore machine) or as a function of the current state and inputs (for a Mealy machine)



Output Equation:

$$QTR = Q_0 \cdot Q_1$$

- The transition/output table shows the next state and output for every current state/input combination
  - Entries of the table are obtained from the transition equations and the output equations



#### Transition Equations:

$$Q_0^+ = D_0 = EN \oplus Q_0$$

$$Q_1^+ = D_1 = EN \cdot (Q_0 \oplus Q_1) + \overline{EN} \cdot Q_1$$

#### Output Equation:

$$QTR = Q_0 \cdot Q_1$$

#### Transition/Output Table:

| current<br>state |       | input<br>EN |    | output<br>I |
|------------------|-------|-------------|----|-------------|
| $Q_1$            | $Q_0$ | 0           | 1  | QTR         |
| 0                | 0     | 00          | 01 | 0           |
| 0                | 1     | 01          | 10 | 0           |
| 1                | 0     | 10          | 11 | 0           |
| 1                | 1     | 11          | 00 | 1           |
| $Q_1^+ Q_0^+$    |       |             |    |             |
| next state       |       |             |    |             |

 State labels are a one-to-one mapping from state encodings to state names

| $Q_1$ | $Q_0$ | State name |
|-------|-------|------------|
| 0     | 0     | Α          |
| 0     | 1     | В          |
| 1     | 0     | С          |
| 1     | 1     | D          |

 The state/output table has the same format as the transition table, but state names are substituted in for state encodings

Transition/Output Table:

| <sub>I</sub> EN <sub>I</sub>                                        |       |    |    |     |
|---------------------------------------------------------------------|-------|----|----|-----|
| $Q_1$                                                               | $Q_0$ | 0  | 1  | QTR |
| 0                                                                   | 0     | 00 | 01 | 0   |
| 0                                                                   | 1     | 01 | 10 | 0   |
| 1                                                                   | 0     | 10 | 11 | 0   |
| 1                                                                   | 1     | 11 | 00 | 1   |
| $\overline{Q_1^{\scriptscriptstyle +}\;Q_0^{\scriptscriptstyle +}}$ |       |    |    |     |



State/Output Table:

| S  | 0 | 1 | QTR |
|----|---|---|-----|
| Α  | Α | В | 0   |
| В  | В | С | 0   |
| С  | С | D | 0   |
| D  | D | Α | 1   |
| S⁺ |   |   |     |

- A state diagram is a graphical representation of the information in the state/output table
- Nodes (or vertices) represent states
  - Moore machines: output values are written in state node
- Arcs (or edges) represent state transitions
  - Labeled with a transition expression
    - when an arc's transition expression evaluates to 1 for a given input combination, that arc is followed to the next state
  - Mealy machines: output values (or expressions) are written on arcs

#### State/Output Table:

| <sub>I</sub> EN |   |   | 1   |
|-----------------|---|---|-----|
| S               | 0 | 1 | QTR |
| Α               | Α | В | 0   |
| В               | В | С | 0   |
| C               | С | D | 0   |
| D               | D | Α | 1   |
| <u>S</u> +      |   |   |     |

#### State Diagram:



### Sequential Circuit Analysis Recap

- 1) Find the circuit's excitation equations
- 2) Using the excitation and characteristic equations, write the circuit's **transition equations**
- 3) Write the circuit's **output equations**
- 4) From the transition and output equations, create the circuit's **transition/output table**
- 5) Create state labels
- 6) Using the transition table and state labels, create the state table
- 7) (optional) Draw the circuit's state diagram