

Europäisches Patentamt

European Patent Office

Office européen des br vets

EP 0 915 144 A1

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 12.05.1999 Bulletin 1999/19 (51) Int. Cl.⁶: **C09K 11/06**, H05B 33/14, **C09K 19/00**

(21) Application number: 98120668.3

(22) Date of filing: 04.11.1998

(84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

MC NL PT SE

Designated Extension States:

AL LT LV MK RO SI

(30) Priority: 04:11:1997 JP 316654/97 04:11:1997 JP 316656/97

(71) Applicant:
DAI NIPPON PRINTING CO., LTD.
Tokyo 162-01 (JP)

(72) inventors:

 Hanna, Junichi Yokohama-shi, Kanagawa-ken (JP)

Kogo, Kyoko,
 Dai Nippon Printing Co.,Ltd.
 Shinjuku-ku, Tokyo-to (JP)

 Katuku, Komel Las Vegas, Nevada 89113 (US)

(74) Representative: Müller-Boré & Partner Patentarnwähte Grafinger Strasse 2 81671 München (DE)

(54) Fluorescent ilquid crystalline charge transfer materials

(57) The present invention relates to novel charge transfer materials which have both the advantageous properties of amorphous materials such as structural flexibility and uniformity over large areas, and those of crystalline materials such as molecular orientation and which are excellent in charge transferability, thin-film formability, and durability of various types. The liquid crystalline charge transfer materials have the following structure (A) containing a fluorescent skeletal structure Y, and the core Z of a liquid crystal:

in which R_1 , which may directly be combined with Z without interposing X_1 , represents a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X_1 and X_2 represent oxygen atom, sulfur atom, or -CO-, -CCO-, -CCO-, -N=CH-, -CONH-, -NH-, -NHCO- or -CH₂- group; or

in which R_1 and R_2 , which may directly be combined with Y without interposing X_1 and X_2 , each represent a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X_1 and X_2 represent oxygen atom, sulfur atom, or -CO-, -COO-, -COO-, -N=CH-, -CONH-, -NH-O- or - CH₂- group.

EP 0 915 144 A

Description

[0001] The present invention relates to fluorescent liquid crystalline charge transfer materials. More particularly, the present invention relates to liquid crystalline organic materials having fluorescence and charge transferability, and to various elements or devices using these organic materials.

[9002] As charge transfer materials, there have conventionally been known those materials which are obtained by dissolving or dispersing charge transfer molecules, which will become charge transfer sites, in matrix materials such as polycarbonate resins; and those materials such as polycinyl carbazole which have polymer backbones and charge transfer molecular structures as pendants to the backbones. These materials have widely been used for producing photoconductors for use in copying machines, printers, and the like.

[0003] In the case of the dispersion-type charge transfer materials in the above-described conventional charge transfer materials, it is desirable for improving charge transferability that charge transfer molecules be highly soluble in a matrix polymer. Practically, however, charge transfer molecules are crystallized in a matrix when the concentration of the charge transfer molecules in the matrix is made high. Therefore, the concentration of charge transfer molecules in a matrix is, in general, limited to 20 to 50% by weight although it depends on the type of the charge transfer molecules. Consequently, the amount of the matrix having no charge transferability becomes 50% by weight or more of the whole material; and, when such a material is made into a film, the sufficiently high charge transferability and speed of response of the charge transfer molecules are restricted by the matrix.

[0004] On the other hand, in the case of charge transfer polymers of the above-described pendant type, although the proportion of pendants having charge transferability is high, the polymers have many practical problems in film formsbility, and also in mechanical strength, environmental stability and durability when they are made into films. Further, in the charge transfer materials of this type, the charge transfer pendants are locally in close proximity. Such locally close pendants become stable sites when hopping of electric charges is conducted, and act as a land of traps. Consequently, the mobility of electric charges is lowered.

[0005] Furthermore, the features of the above-described amorphous materials, viewed from electrical characteristics are different from those of crystalline materials; and the amorphous materials have such a problem that hopping sites have fluctuation in terms of not only space but also energy. For this reason, the mobility of electric charges in the amorphous materials is highly dependent on the concentration of charge transfer sites; and it is generally from about 10⁻⁶ to 10⁻⁵ cm²/vs. This value is much smaller than the mobility of electric charges in molecular crystals, which is in the range of 0.1 to 1 cm²/vs. Moreover, there is such a problem that the charge transferability is highly dependent on both temperature and electric field strength. This is the great difference between the amorphous charge transfer materials and crystalline ones.

[0006] In addition, for such applications that require charge transfer tayers having large areas, polycrystalline charge transfer materials are anticipated because they can uniformly be made into charge transfer films having large areas. However, polycrystalline materials are essentially unhomogeneous from the microscopical point of view. They have therefore some problems; for example, it is necessary to suppress those defects which will be formed on particle-particle interfaces.

[0007] An object of the present invention is therefore to solve the aforementioned problems in the prior art, thereby providing novel charge transfer materials which have both the advantageous properties of amorphous materials such as structural flexibility and uniformity over large areas, and those of crystalline materials such as molecular orientation and which are excellent in charge transferability, thin-film formability, and durability of various types.

[0008] Further, we also found that some of the above-described novel charge transfer materials themselves are fluorescent. When a display element such as an electro-luminescent element is composed by using such a charge transfer material, it is not necessary to introduce any fluorescent material which tends to impede the orientation of molecules in a liquid crystal. Therefore, the present invention also provides charge transfer materials which are free from lowering of charge transferability, which do not change the nature of liquid crystals and which can attain high mobility of electric charges.

[0009] Furthermore, the liquid crystalline materials of the present invention have both charge transferability and fluorescence. Therefore, when they are used, for example, as electro-luminescent elements, the electro-luminescent elements can be produced by using only the liquid crystalline materials, and the production process of the elements can thus be simplified, although it is necessary, for composing conventional electro-luminescent elements, to use two or three layers of an electron transfer layer; a hole transfer layer and a luminescent layer respectively made from materials having electron transferability, hole transferability or fluorescence.

[0010] The above-described object is attained by the present invention which will be described hereinafter. Namely, a first embodiment of the present invention is a liquid crystalline charge transfer material having the following structure (A) containing a fluorescent skeletal structure Y, and the core Z of a liquid crystal:

wherein R₁, which may directly be combined with Z without interposing X₁, represents a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X₁ and X₂ represent oxygen atom, sulfur atom, or -CO₂, -COO₃, -COO₃, -N=CH₃, -CONH₃, -NHCO₃ or -CH₂- group.

[0011] A second embodiment of the present invention is a liquid crystalline charge transfer material having the following skeletal structure (B) containing the fluorescent core Y of a liquid crystal:

wherein R₁ and R₂, which may directly be combined with Y without interposing X₁ and X₂, each represent a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X₁ and X₂ represent oxygen atom, sulfur atom, or -CO-, -COO-, -COO-, -N=CH-, -CONH-, -NH-CO- or - CH₂- group.

[0012] Liquid crystalline molecules have self-orienting property due to their structures. Therefore, in the case of charge transfer in which liquid crystalline molecules are used as hopping sites, scattering of hopping sites in terms of both space and energy is prevented unlike in the case of charge transfer utilizing the previously-mentioned molecule-dispersed materials, and band-like charge transfer which can be seen in molecular liquid crystals is thus attained. For this reason, the liquid crystalline molecules can attain extremely high mobility of electric charges as compared with the conventional molecule-dispersed materials; and, moreover, the mobility is not dependent on electric field. In addition, by introducing fluorescent skeletal structures to the above-described liquid crystalline molecules having self-orienting property, there can be obtained liquid crystalline charge transfer materials whose self-orienting property is not adversely affected by the addition of fluorescent materials.

[0013] In the drawings,

Fig. 1 is a schematic view showing an electro-luminescent element;

Fig. 2 is a schematic view showing an electro-luminescent element (an example of electrode pattern);

Fig. 3 is a schematic view showing an electro-luminescent element;

Fig. 4 is a schematic view showing an electro-luminescent element;

Fig. 5 is a schematic view showing an optical sensor;

5

35

Fig. 6 is a schematic view showing an optical sensor;

Fig. 7 is a schematic view showing an optical sensor;

Fig. 8 is a schematic view showing an image-displaying element;

Fig. 9 is a schematic view showing an image-recording device;

Fig. 10 is a schematic view showing an image-recording device;

Fig. 11 is a schematic view showing a spacial optical modulator; and

Fig. 12 is a schematic view showing a thin-film transistor.

[0014] By showing preferable embodiments of the present invention, the present invention will be described more specifically.

[0015] Liquid crystalline charge transfer materials of the present invention will be enumerated below. Among the following charge transfer materials, preferable ones are those liquid crystalline charge transfer materials which fulfill the previously-mentioned requirements, and, at the same time, have the core (6π electron system aromatic ring), (10π electron system aromatic ring) or (14π electron system aromatic ring), (where I, m and n are an integer of 0 to 4, provided that I + m + n = 1 to 4), the 6π electron system aromatic ring being combined through a combining group having carbon-carbon double bond or carbon-carbon triple bond. The number of the aromatic rings combined are restricted by taking mobility of electric charges into consideration. Examples of 6π electron system aromatic rings include benzene, pyridine, pyrimidine, pyridazine, pyrazine and tropolone rings; examples of 10π electron system aromatic rings include naphthalene, azulene, benzofuran, indole, indazole, berizothiazole, benzoxazole, benzimidazole, quinoline, isoquinoline, quinazoline and quinoxaline rings; and 14π electron system aromatic rings include phenanthrene and anthracene

rings. It has been known that these π electron system aromatic rings show fluorescence when voltage or light is applied thereto. Those charge transfer materials which are preferably used in the present Invention have structures combined with these π electron system aromatic rings, so that they are more preferable from the viewpoint of fluorescence.

L — I	2
-------	---

<u> </u>	<u></u>		a	LC
C3H11	-CO-NH-NH-CO-CH2CN		K 124	S 141
CeH13"	-CO-NH-NH-CO-CH2-CN		K 121	S 162 1
CHIP	-CO-NH-NH-CO-CH ₂ -CN	Ì	K 125	3 184
CHIT	-00-NH-NH-CO-CH-CN	ı	K 130	S 178
CAHPO	-CO-NH-NH-CO-CH ₂ -CN		X 141	8 130
CoH,,	-DO-NH-NH-CO-CH ₂ -CN		K 136	\$ 140
C*H**-O-	-CO-NH-NH-CO-CH-CN	Į	K 133	S 167
CHIS-O-	-CO-NH-NH-CO-CH2-CN	-	K 134	S 170
CaH, O	-CO-NH-NH-CO-CH ₂ -CN	-	X 131	3 188
CHIPO	-CH=CH-CO-NH-NH-CO-CH2-CN	ı	K 142	S 215

L R

0

10	Ĺ.	R	Cr	[21
	CoHis	-O-C4H4	K 26	\$44.51
	CeHir	-O-CHIS	K 57	137 C 58 A 79 I
	CeH17	-0-C ₂ H ₁₇	K 22	S 37 G 51 F 62 C 77 A 85 1
	CaH17"	-00C-C ₂ H ₁₁	K 84	C 69 N 70 I
15	C.H17-	-00C-C ₆ H ₁₃	K 81	· C771
	CeHir	-00C-C ₇ H ₁₈	K 41	F77C851
	CeH17	-00C-C ₆ H ₁₇	K 58	G 48 F 85 C 88 I
	Cally	-00C-C ₀ H ₁₀	K 36	G 60 F 92 I
	Cally.	-000-C ₁₀ H ₂₁	X 13	G 66 F 93 I
20	CeHir	-00C-C11H22	K 26	G 43 F 96 I
	C.H.O.	-CaHe	K 43	· 8631
	CaHe-O-	-Celtha	K 50	S54 N 81 I
	CHLO	-CeHtt	K 33	B 57.3 C 66.8 A 69.41
25	Cather-O-	-CeH13	K 20.5	H 31.5 G 45 F 48.5 C 58 H 60.8 I
23	C3H11-C-	- C7Hta	K 25.5	G 35 F 48 C 67.5 N 68.7 I
	Cathira	-CeH17	K 37.4	B 52 C 70.1 I
	C3H11-C-	-C ₀ H ₁₀	K 42.5	B 65 C 72.4 A 74.5 I
	C3H11-C-	-C ₁₀ H ₂₁	K44.4	B 68.7 C 70.4 A 74.7 I
30	CeH15-C-		K 50	\$ 72 I
	CPH13-C-	, -CeH13	K 22	C 66 N 69 B
	CeH13-C-	-C ₇ H ₁₈	X 34	H 31.2 G 44.4 F 53 C 74.4 N 75.2 I
	CeH15-C+	-CaH17	K 30	G 23 1 58 C 77 1
	CeH13-C-	-C ₉ H ₁₉	K 38	. 984.4C80.51
35	CeH13-C-	-CroHar	K30	8 67.6 C 90)
	C2H15-O-	-CeH11	K 56.9	S 61.8 N 68.2 1
	C7H15-O-	-CeH13	K 40	C 68 B
	CyH15-C-	-C ₇ H ₁₅	K 31	G 40 1 52 C 77 I
	C2H12-C-	-CeH17	K38.5	F 56 C 76.5 I
40	C+H15-C-	-C ₉ H ₁₀	K 33	B 64 C 81.5 I
	C7H18-C-	-C10H21	K41	B 67.8 C 80.8 I

 $L \longrightarrow R$

<u> L</u>	R	Cr	L
CaH7-	-CO-C7H18	K 118	A 1191
Catter	-со-с ₋ н ₁₃	K 114	A 123 I
C.H,1-	-co-c ₁ H ₁₁	K 107	E 83 A 127 I
CeH13-	-co-c _u H _e	K 92	E 82 A 126 I
C7H18-	COCH	K75	E73 A 107 I
CoHim	-CO-C ₂ H ₈	K 80	E 55 A 117 I
Callin	-co-c _a H _a	K 75	A 120 I
CoHier	-co-c ₃ H ₇	K74	E 64 A 104 !
CaHian	CO-CuH _e	X71	A 118 [
CeH19-	-co-c ₂ H ₁₁	K 98	A 118 I
- C+H12-O-	-O-C-H ₁₃	K 114	- \$125i
C7H15-O-	-O-CH15	K 99	\$ 101 S 123 I
CaH17-O-	-O-C ₆ H ₁₇	K 90	· · · · · - · · - · · - · · · · · · · ·
Callia-C-	-O-C _e H ₁₉	K 83	S 83 S 122 I
C10H21-O-	-O-C10H21	K94	. 81191
C11H22-O-	-O-C ₁₁ H ₂₃	K See	\$ 1171
C12H21-O-	-O-C ₁₂ H ₂₃		\$ 1137
Calla-CO-	-co-c _a H _e	K 99 K 130	S 109 !
C2H11-CO-			E 108 A 157 I
C*H2-CO-	-co-c ₂ H ₁₁	K 149	A 164 I
C7H15-CO-	-CO-C ₄ H ₁₃	K 148.5	A 166 I
C2H11-COO-	-CO-C ₇ H ₁₃	K 140	A 167 I
C*H12-COO-	-00C-C ₃ H ₁₁	K 109	A 1178
	-00C-C ₆ H ₁₃	K72	X 105 A 119 B
C7H13-COO-	-00C-C ₇ H ₁₈	K 57	X 53 X 93 A 123 B
CPHIP-COO-	-OOC-CeH18	K 88	A 126 B

$$L \longrightarrow R$$

10	IL	[R	ļc.	l LCI
	C ₂ H ₁₁ -O-	· -C7H13	K78	A731
	CHIS-O-	-CeH13	K79.	A741
	CoHig-O-	-CyHts	K 83	A821
15	CiHis-O-	-C#111	K72	C74A791
15	C ₁ H ₁₂ -O-	C.His	X74	C81;
	C ₇ H ₁₅ -O-	-C ₇ H ₁₈	K79	l cast
	Cytis-O-	-C ₂ H ₁₇	K70	Casi
	Cytis-O-	-C ₂ H ₁₀	K77	C 891
20	CiHis-C-	-C ₁₀ H ₂₁	K 75	C 861
	C ₀ H ₁₇ ·O·	-C ₅ H ₁₁	K73	C69 A811
	C.H. C.	-C ₂ H ₁₃	K73	CBOABSI
	CH17-O-	-C7H1s	K 50	C871
	C.H.17-C-	-C ₂ H ₁₇	K 80	C 90 1
26	Celly-O-	-C _p H ₁₈	K77	C 901
	CH17-C	CioHzi	K78 .	· 670 C 901
	CaH 19-O-	-CeHn	K 59	G 53 C 66 A 521
	C _B H ₁₀ -C-	-CyH ₁₃	K 62	G 61 C 81 A 83 I
	Calling-O-	-C7H15	K72	C 87 1
30	CaH18-C	-C ₂ H ₁₀	K78	C901
•	CigHz1-O-	-C ₂ H ₁₁	K73	F 55 C 57 A 84 I
	C10H21-O-	-C _e H ₅₃	K 50.6	S 65.4 C 81.1 A 85.4 I
	C10H21-O-	-C ₇ H ₁₅	K70	C.89 (
	(C10HZ1-C)-	-CeHie	K79	C 92 I
35	CaHe-CMez-CaHe-O-	-C,H,s	K49	C331
	CaHe CMez CaHtz-O-	-C7H13	K 54	C 55 I
	C7H15-COO-	-C7H15	K 79	B 68 A 79 (
	C ₆ H ₁₇ -COO-	-C _p H _{1p}	K 85	C 84.5 I
	C11H23-COO-	-C ₁₁ H ₂₃	K 88	8 85 1
40	CoH17-O	-CHMo-CaHs 1	K 52	A 191
	C ₇ H ₁₃ .	-CaHe-CHMe-CaHs	K 42.6	C* 27.5 A 34 I

5

$$L \longrightarrow R$$

10	ĮL	l R	C	[LC]
	CeH13-O-	-CH-CH-CH ₂ O-CH ₃	K 16	B 30 N 38 I
	CH15-O-	-ch-ch-ch-coh-	K14	B 381
	CH-CO-	-C ₂ H ₇	K 45	9 54 1
	C'H*CO-	-CHtt	K 60.7	8 52.5 N 58 I
15	C.H.CO-	-CrH1s	K 56.5	1 E.18 M 2.02 A
	C*H'2-CO-	-C ₇ H ₁₈	K 70	871.51
	C ₆ H ₁₇ -CO-	-C7H1s	K70.2	E 43 B 80.1 I
	C ₂ H ₇ -CF ₂ -CO-	-C ₃ H ₁₁	K 20	. B 33 N 53.9 I
	CH3-NH-CH%CH-CO-	CeH ₃₃	K 107.8	A 144.3 N 153 I
20	CTH2-4H-CH2-CC-	-C _e H ₁₃	K.88.4	A 78,8 N 120 I
	CHIS-NH-CHISCH-CO-	دائرے۔	K 61	C35 N 104.2 I
	CHIS-NH-CHXCH-CO-	CH ₁₃	K 55.2	H 40 C 88.9 N 107.8 I
	CHIP-NH-CHIXCH-CO-	Cillia	K 50.8	H 57.8 C 80.3 N 104 1
	C+HI=NH-CH%CH-CO-	-C ₂ H ₁₃	K54	H74.6 C94.1 N 107.3 I
25	C10H21-NH-CH%CH-CO-	-C ₄ H ₁₃	K61.3	H 83.3 C 100.1 N 105.21
	C11H22-NH-CH%CH-CO-	-C ₄ H ₁₃	K 66.7	H 94.3 C 106.6 N 109.5 I
	CIZHZENH-CHTACH-CO-	-C _e H ₁₃	K 64.1	H 97.8 C 109 N 109.4 I
	C13H2FNH-CH%CH-CO-	-C ₆ H ₁₃	K 65	H 103.2 C 111.4 I
	CIAHER NH-CHINCH-CO-	-C ₆ H ₁₃	K 55	H 102.1 C 109.8 I
30	C19H31-NH-CH%CH-CO-	-C ₆ H ₁₃	K 54.2	H 106.1 C 110.61
	C19H27-NH-CH%CH-CO-	-C ₆ H ₁₃	X 54.1	H 107.41
	C4Hg-COC-	-C ₃ H ₁₁	K 11	A-4N-321
	C ₂ H ₇ -COO-	-C ₃ H ₇	K 11	B 26.1 N 30.3 I
	C4H#-COO-	-Catty	K32.3	8 42.71
35	C3H11-COO-	-C7H15	K34.2	B 64.5 I
	C ₆ H ₁₇ -O-	-OOC-CH2-CHMe-C3He-CHMe-CH3 S	K 53	B 39 I
	C10H21-O-	-OOC-CHF-C ₆ H ₆ S	X 42.5	B 41 (
	C3H11-COO-	-OOC-CHF-CaHe F	K 42	8.591
	C*H12-COO-	OOC-CHF-CH+) F	K 52	B 59 I
40	C3H12-COO-	-OOC-CHF-CUHy F	K42	B 64 I

10		•		
	L	1	lc ⁻	LC)
	C2H3-O-	-CN	K 150	S 144 N 189 I
	C _e H ₁₂ .	-C _a H ₁₃	K 68	C 108 N 1161
	C ₅ H ₅₁ -	-O-CuH ₉	K77	S76 N 1181
15	C#H11-C-	-C ₃ H ₁₁	K73	C77 N 1181
	C ₆ H ₁₁ -O-	-CuH ₁₂	K73	C 88 N 1141
	C ₆ H ₅₁ -O-	-C ₇ H ₁₉	K71	C 96 A 96 N 118 I
	C ₂ H ₃₁ -O-	-C ₉ H ₁₇	K73	C 92 A 105 N 112 I
	C ₆ H ₁₅ -C-	-CgH ₁₁	K 68	C 93 N 1251
20	C ₆ H ₁₂ -O-	-CeH ₁₃	K 68	C 98 N 1171
	C ₆ H ₁₂ O-	-C ₇ H ₁₈	K 65	C 104 A 108 N 121 I
	CeH12-C-	-CeH ₁₇	K 69	C 104 A 113 N 117 I
	CHu-O-	-C ₃ H ₁₁	K73	C 96 N 121 I
	Critis-O-	-C ₂ H ₁₃	K70	C 105 N 1181
25	C7H18-O	-C7H15	K70	C 109 A 113 N 120 I
	C7H1g-O-	-CeH ₁₇	K71	C 109 A 115 N 1161
	CeH17-O-	-C ₃ H ₁₁	K72	C 104 N 120 I
	CpH17-O-	-C ₆ H ₁₃	K 68	C 106 N 1161
30	C ₂ H ₁₇ -O-	-C ₇ H ₁₅	K70	C 109 A 117 N 1201
30	C _e H ₁₇ -C-	-CeH ₁₇	K 69	C 113 A 1181
	CgH1g-O-	-C ₉ H ₁₁	K76	C 107 A 109 N 118 I
	C ₉ H ₁₉ -C-	-CeH ₁₃	K78	C 111 A 113 N 1151
	CeHterOr	-C7H13	K 76	C 113 A 119 I
35	C ₉ H ₁₉ -O-	-C ₈ H ₁₇	K75	C 114 A 117 I
35	C10H21-O-	-C ₅ H ₁₁	K77	C 107 A 113 N 118 I
	C10H21-O-	-C ₆ H ₁₃	K75	C 110 A 114 N 1161
	C10H21-O-	-C ₇ H ₁₅	K74	C 114 A 119 I
	C ₁₈ H ₂₁ -O-	-C ₂ H ₁₇	X 68	C 114 A 1181
40	C ₁₁ H ₂₂ -O-	-C ₂ H ₁₁	K 83	C 105 A 114 N 1161
	C11H25-O-	-CeH13	K 82	C 110 A 115 I
	C11H23-O-	-C7H15	K81 .	C 113 A 118 I

 $L \longrightarrow R$

L	R	Cr	lo1
CyHir	-CN	K 125.6	S 154.1 N 163.7 I
CeH17-O-	-O-C ₉ H ₁₇		C 105 A 111 N 129 I
CeH17-C-	-o-chf-chokh(f-chf-	S K 85	C" 128.4 A 130.5 Nº 141 I

æ

 $L \longrightarrow R$

<u>L</u>	l A	C7	tc
NC-	-O-CsHyo-SiMeCl2	K 119.4	S 191.41
G ₁₀ H ₂₁ -O-	- 41	K 196.8	B 94 I
Cotter	-CX	K 61.5	Š 73.5 N 90 I
CHI	-CN	K 52	S 57.5 A 80 N 89 B
Celtier	CN	K 56.2	A 94.4 N 96.7 I
C ₁₀ H ₂₁ -	-CN	K 47.2	A 95.1
C11H22-	CN	X 85.5	A 100.2
C ₇ H ₁₆ -O-	-CN	K 80	A 80.5 N 126 B
Citin-O-	CN	K 103	A 110 N 126 B
C10H21-C-	-CN	K 87	A 129 B
C ₁₇ H _{SF} CONH- · ·	-CN	K 144	5 150 i
CaHe-CHMo-CaHe-	-CN	1 K 58.A	S 67.21
C ₂ H ₈ -CHMe-C ₂ H ₁₀ -	-CN 1	1 K44.7	568.31
C7H12=O-	+102	K77.5	A 94 N 106.5 B
CeH17-O-	-NO ₂	K111	A 111 N 1141
C10H21-O-	+IO₂	K 97	A 1181
C ₁₂ H ₂₅ -O-	NO₂	K 85	A 1151
C ₁₃ H ₂₆ -NH-	+1C2	K 109	E 141 I
C ₁₈ H ₃₇ -NH-	-NO ₂	K 1121	E 132 i
C ₁₇ H ₃₆ -CONH-	· NO ₂	K 139	A 160 B
C _e H ₁₇ -	-C _a H ₁₇	K46	H 108 G 108 I
CeHier	-C ₂ H ₁₉	K41	H 93 G 109 I
C10H21-	-CnoH2n	K 64	H 92 G 106 L
C ₁₁ H ₂₂ -	-C11H23	K 61	S 70 H 85 G 106 I
G ₁₂ H ₂₅ -	-C ₁₂ H ₂₃	K 75	577 H 81 G 103 I
C3H11-	-O-CH ₂	K 118	B 109,8 N 124,7 I
C ₀ H ₁₁ -	-O-C ₂ H ₁₇	K 121.3	5 121.1 5 125.5 S 131 I
CH-O-	-O-C ₉ H ₁₉	K 149	S 1425 N 142.6
CH2-O-	-O-C12H25	X 142	S 136)
cut-o-	-O-C14H28	K 139	S 132 1

 $L \longrightarrow \bigcup_{O \longrightarrow \mathbb{R}} R$

-	

	JL.	, A	Cr	l LCI
	Collige	-O-C ₇ H ₁₈	K 46	C41 N 81 I
	CoHier	-O-C ₂ H ₁₇	K 53	C48 N 64 I
	Calling.	-O-CoHia	K 54	C52N631
15	CoHier	-O-C ₁₀ H ₂₁	K 58.7	C 57.9 N 65.81
	C ₂ H ₁₂	-O-C ₁	K 62.1	B 47.5 C 63.1 A 63.8 N 66.51
	Cellier	-O-C ₁₄ H ₂₀	K 83.7	B 55.7 C 65.4 A 66.81
	CoHier	-O-C ₁₈ H ₂₅	K 69.4	B 61.3 C 66.4 A 67.5 I
20	Crotter-	-O-CaHia	K 52.5	A42.4 N 62.5 I
20	Cnotter-	-O-CaHia	K 44.1	B 33.6 A 47,7 N 501
	Custan-	-O-C ₇ H ₁₂	K 52.8	B 58.2 C 40.8 A 61.7 N 68.7 I
	Ciellar		K 55.2	B 40.5 C 52.4 A 58.9 N 62.5 1
	C10,191-	-O-C ₁₀ H ₈₁	K 81.4	B 45.9 C 60.5 A 62.1 N 64.5 I
25	C ₁₆ H ₂₁ -	-O-C ₁₂ H ₂₅	Ke45	B51 C64.1 A65.71
25	CroHar.	-O-CyaHan	K 65.2	B 58.1 C 68.7 I
	C ₁₀ H ₂₁ -	-D-C1-1-120	K 67.2	B 64.2 C 89.6!
	Cish ₂₈ -	-O-C ₁₀ H ₂₀	K73.7	B 68.9 C 71 I
	Cells-	-CO-C ₄ H ₀	K 80	A761
30	Cellis	-co-c ₀ H ₁₁	K 81.6	A 80,41
•	Cellus	-co-C ₇ H _{ts}	K91.4	A 85.8 I
	Callian	-co-c _e +h ₁	K 88.7	A 88.51
	Cudia1-	-00-04	K 81.4	A 87.31
	Crotize	-co-C ₆ H ₁₁	X 57.8	LEE A 93.51
35	C ₁₀ H ₂₁ ·	-co-C ₇ H ₁₃	K 97.1	V 201
	Col	-co-ch-coc-c ₂ h-	K 80.2	S 90.4 N 95,61
	C10H21*	-00C-C ₁ H ₁₃	K 69	C 61.7 N 70.41
	CeH19-O-	-Celf13	X 43.7	A 36.7 N 59.6 I
	Callis-O-	-C ₆ H ₁₇	K 43.6	A 42.1 N 51.6 I
40	CeH12-O-	-CyH1a	K 38.3	C28,1 A 40 N 85,21
	CeH13-O-	-C10H21	K 51	A 49 N 62 I
	C#H12-O-	-C12H2s	K 81.2	A 51.4 N 62.21

$$L \longrightarrow R$$

1	0
•	-

	<u> </u> L	R	Cr	LCI
	CH-O-	-CH ₃	K 65	G 45 N 72 I
	CHO	-C ₂ H ₃	K 40.5	G 51 N 88.51
15	CHO	-C ₄ H ₀	KB	G 41 B 45 A 45.5 N 75 I
	CH-C	-C ₆ H ₁₁	K 28	\$ 30 \$ 41.5 A 44.4 N 84.8 I
	CH-C-	-C _e H ₁₃	K 26	B 47.3 A 54.7 N 78.9 I
	C.H.O.	-C ₇ H ₁₃	K 20	S 29 B 48.8 A 56.8 N 83.3 I
	CH+C-	-CeH177	K 33	B 49.5 A 64.5 N 79 I
20	CH-O-	-C ₀ H ₁₉	K?	B 48 A 84.7 N 60.2 I
	CH-O-	-C ₁₆ H ₂₁	K44.3	- 846.8 A 64.7 N 76.7 I
	CoHe-O-	-C12Hzs	K 37.5	G 45.6 B 52.5 A 60.4 N 76.7 I
	C3H17-C-	-CH ₃	K 55	G 44 N 70.51
	CeHtto	-C ₂ H ₅	K 492	G54.2,N501
25	C9H11-C-	-CaH ₇	K 24	A 58 N 77.7 B
	CeH11-C-	-C ₄ H ₉	K 20	G 51.9 A 52.4 N 69.2 I
	CoH11-C	-C ₆ H ₁₁	K 28	G 46.1 8 48 C 52 A 53 N 77.5 I
	C3H11-O-	-C ₀ H ₁₃	X 34.5	G 41 F 44.3 B 51.6 C 53 A 61.1 N 72,9 I
	C ₂ H ₁₁ -C-	-C ₇ H ₁₅	K 29.5	G 33.9 B 51 C 53.1 A 62.8 N 78 I
30	C3H11-C-	· -C ₂ H ₁₇	K 43.2	G 26.2 B 53.7 A 67.8 N 73.1 I
	CoHon-C-	-C _P H ₁₀	K7	B 52.9 A 68.7 N 78.71
	CyH11-O-	-C10Hat	K 41	B54 A 67 N 78.21
	C _t H ₁₁ -C-	-C ₁₁ H ₂₂	K?	B 53 A 70.4 N 75.1
-	C3H11-C-	-C ₁₂ H ₂₅	K 37	B533 A 71 N 73.91
35	CPH11-C-	-C ₁₃ H ₂₇	K?	B 529 A 702 N 73.21
	C*H***-C*	-C ₁₄ H ₂₉	K7	B 52.7 A 69.5 N 71.21
	C*H12-C-	-CH ₃	K 58	G 44 B 53 N 76 I
	C*H**O-	-Č _Z H _B	K 47	. G 58 N 70 (
	C4H12-O-	-CaH ₇	X 29	G 65.7 A 68 N 85.8 I
40	C'H2-O-	-CaHe	K 33.5	G 68.5 8 59.8 A 70.1 N 77.8 I
	C _t H ₁₂ -O _t	-C ₅ H ₁₁	K 41.9	G 45.6 B 62 A 75,1 N 85 I
	CoH12-C	-C ₆ H ₁₃	K 15	G 35 B 63 A 77 N 82 I

5

$$L \longrightarrow N \longrightarrow R$$

	<u> L</u>	R R	Cr	LC
	C ₉ H ₁₇ -	-C9H27	K 47.9	A 36.4 N 41.61
	Cultiur .	-CeHte	K 37	B 40.5 A 59.21
	C10H21-	-Ciottel	K 42.3	. B44.6A53.71
15	CH ₂	-O-CsH1	K 81	548 N 651
	CoHy	-O-CrH ₁₈	K 59.7	C40.3 N70.21
	CoHer	· OCH	K 55.2	B35 C 54.2 A 57.8 N 75.2 I
	CaHar	OCHIO	K 82.1	C 58.9 A 63.8 N 73.21
	Caller	-O-C10Hg1	KSLA	8 50.3 C 61.5 A 69.4 N 78.8 I
ŽŪ	Citie	-OCHH	K 62	1 60 G 64 A 75 N 78.21
	CoHe-	-O-Cydlyn	K 84	S 56 C 69 A 77 1
	Colfe	-O-Cultur	K725	872 A771
	Celter	-O-CHIS	X 53,2	C 56.6 A 60.2 N-77.5 I
	CeHia	OCHIT!	K 49.2	144.8 C 65 A 77.8 N 84.7 I
25	CeH ₁₈	-O-CeHia	Kan	151.5 C 72.5 A 80.5 N 84.7 I
	Collie-	-O-C16H21	K 42.5	1623 C77.2 A 87.31
	CeH19-	-O-CuHus	K41.5	G 521722 C 83 A 88.51
	Cultur	-O-CraHze	K51	G 68 81.1 C 88.2
	CaH ₁₀ -	-O-C16Has	K 57.5	G 77.7186.2 C 88.61
30	CoHyar	-O-CigHer	K 63	G 81.81891
	CH-OOC-CH-CH-	-CH-CH-COO-CH ₀	K 237	\$246 \$2491
	CH#OOC-CH#CH-	-CH=CH-CCO-C2He	K 237	S 246 S 249 I
	C2H2-OOC-CH=CH-	-CH-CH-COO-C ₂ H ₅	K 156	A2401
	C3H2-OOC-CHECH-	-CH-CH-CCC-C-H7	K 120	S 2091
35	CH2-O-	-CH-CH-CCC-C2H6	K 117.7	A 124.2 N 142.8 I
	C2H5-O-	-CHECH-COO-C ₂ H ₆	K 110	S 137 S 147 N 160 I
	C3H11-O-	-CHCH-CCO-C ₂ H ₁₁	K 87	E 91 A 133 I
	CaH11-O-	-CH=CH-COO-C16H31	K 50.5	E64A1191
40	C10H21-O-	-CH=CH-COO-C6H11	K 54	B 94.5 C 95 A 127.5 [
40	C10H21-O-	-CH-CH-COO-C++H21	K 50	E 60 8 72 C 93 A 116.5 I
	CH2-CCO-	-CH-CH-COO-CaHa	K 138.3	A 153.2 N 162.2 I

10		•			
	[L	R		C	c
	CHIFO-CHIP-CH-OCC-	-COO-CH ₂ -CHM+-O-C ₂ H ₁₈	3	K 57.8	A 80,1 i
	Cally-O-CHM+-CH-COC-	COO-CHI-CHIN-O-C ₂ H ₁₇	3	K 83	A8411
	CH-COO: -	-00C-CH ₂	l	K 229	· S 282,5 X 294.5 I
	CH_OCOO-	-0C00-CH ₂	l	K 229	3 257 N 277 I
15	CaHe-OCOO-	-осоо-с ₋ н _е		X 213	9 225.5 X 242.5 I
	CH11-	-CHCN-CCC-CHIM-CAL	5	K 124	Adil
	Capter-	-O-CHMo-CyH11	A	K76.5	8 101.5 S 118 C 122.5 A 126 [
	Celty	-COO-CHM+-CyH _{EP}	1	K 116.5	A 123.41
	Caller	-COO-CH ₂ CHM+-C ₂ H ₂	1	K 1047	S 125.1 G* 126.9 B 147.6 A 173.5 I
	Celtur	-coo-chy-chc-chy-chy	1	K 1142	Q" 106 F 114.2 A 163.5 I
20	Celler	-coo-chy-chan-chy-chine-chy	1	X81.8	3 43.8 A 96.7 J
	CpH11-	OCH CHACH	8	K?	B 198 A 215.51
•	CroH21-	-O-Cyly-CHIRD-Cyly	s	K 85	S 181.5 C* 186.5 A 191 I
	Cellin	- 0000404041	1	K 54.9	S 111.7 G* 148.5 C* 149.1 A 185.4 I
	Cally	-cco-caf-catcarc?rf	1	K 123.6	G* 130.6 C* 130.7 A 165.5 I
25	C _e H _s ,	-000-01-0HQHQ1-01-01-01-01-01-01-01-01-01-01-01-01-01	1	K 138	C* 151.4 A 168.5 I
27	Calter	-coo-chi-chch-ciri	1	X77.8	QT 99.7 IT 118.5 A 139.6 I
	Cally-	-000-014-0101-0314	1	K 97	8 92.8 A 112.71
	C _e H ₁₇ -	-000-CH-CHCHC-CH-	1	K78.3	8 86.7 A 101.2 I
	Caller .	00%	ł	K 211	B 221 A 230 I
	Celfer-	-O-CF _E H	J	K 223	A 241 S
30	CHOCH	-o-chi-choch(h-chi-	덕	K 210	€ 227,8 A 257.3 I
	Cell to CHMe-OCC-			K 55.2	C*57.9A78.11
	Cellur Childe-OOC-	-coo-chi-chich chi-chi-chi	9	K Sa.#	C 543A 61.91
	Cultur Chime-COC-		ᅿ	K78.8	C*90.4.A 120.2.1
	C ₆ H ₁₂ -CHMe-OOC-	-coo-caf-caca-cht	ㅋ	KB4.9	C-783A8431
	C _e H ₁₃ -CHMe-COC-	coo-a-t-cha-c'h-	ᆁ	K 91,8	A 83.8 1
35	CzHz-CHMe-CHz-OOC-	-coo-chi-chm-c'hi	3	K 132	. A 143 N° 1463
	Coff CHCP CHF COC	-coo-cH²-cHci-cH²	뼥	K 123	1901 "N 201 A
	C*H*CHCHCH*OOC	-coo-ci-t-ci-ci-fi	4	K 137.3	A 1383 Nº 151 3 BP 15221

	<u> </u>	R	10	<u> </u>
10	CH+COO-CHM+CH+O-	· C.H.	5 K 82.0	\$ 101.2 0 121.7 1
	CHI-COO-CHI-CHIN-CHI-O-	-CHO	R KT	5 80 \$ 114 \$ 122 C 145 A 145 E
	CH-CON+COCON+CH-CH-C	C.M.	8 K763	C" 101 A 113.3 H" 114.9 I
	CHOCIOH COO CHILICILO	حهام	SKTLI	C" 100.7 A 106.6 N" 108.2 1
	CHOOM-COO GOLGLO	-CyH _{te}	SKTLS	C 1042M 11121
	CH-OCHH-CCC-CHH-CH-O-	وبالري	S × 70.1	C- 102,7 A 107,9 NF 108.5 I
15	CHOCHM-COO CHM-CHO	-cym	SKTE	C 80.4 A 191.1 I
	CH-O-CHI-COO-CHI-CH-O-	جانے	S K 67.5	C 94 A 108.1 E
	Chouse coountale	-CH-	8 × ers	C 67.8 A 108.81
	CHI-OCHU-COO-CHU-CH-O-	والرع	5 X 553.9	C* 107 1
	CHOOLCOOCLONGLO	C)	N K 653	8 77.8 5 121.5 CT 132.5 A 138.8 I
	CHI O GIAN COO GIL CHINACILIO	CHO	M KT	5@\$#C*116A 117.41
20	CHI-O-CHIM-CCC	حبر_	P-K-110	3.116.3.137 C'.161.41
	Cylin	-O-CHIM-C-H _{SP}	1 K78	A 1301
	Celler	-O-CHAN-CHAN		A (27 (
	CHIPO	O-OHM-Cylls	1 K 104	3 117 B 132 C' 142 A 165 I
	CH	. octometr	F K7	H 118.3 Q* 138.2 P* 144.4 8 158.7 G* 185.8 A 191.4 I
	CHIPO-	- oatamert	1 K114	£ 127 F 168 C 213 A 215 I
25	CHI-O	-oayamed	1 K 110	E 122 F 164 C 212 A 214 I
23	CHING	-octometh	1 K 97	E 117 F 160 C 207 A 208 I
	Ciatter-O-	-oayast-cyt	1 K 85	E 108 F* 144 C* 205 A 206 I
	C ₀ H ₁₇ -	-OCH-CHI-CHI	2 K 67	8 100 S 160 C 194 A 215 I
	C _r H _r .	-000-CH-CHH-CH	H K1.	. 0° 111.3 F 152.4 \$ 161.6 A 207 I
•	CH	-O-CyH _{IB} CHIM-CyH ₃	F X 81	SALAS 102.58 170 CT 182.3 A 186.3 I
00	C ₂ H ₁₇ -	-con-corcello	F K75,A	\$ 104 6 153.7 C* 138.5 A 183.3 I
30	C'HII CIMP O	راليك.		C 115A 118N 1171
	C ⁵ / CION COO CIAN CIP O			C* 1121
	CHECHMO-COO-CHINO-CHEO-	-C ₂ H ₁₈		[Chail
	CHI-CHI-COCCHI-CHI-O	-C _e H ₁₀	3 X 52,3	C 108.6 N 110.81
	CHGCISS-COC-	Celle	P K 57,4	S S S S S C S A 114.5 I

..

$$L \longrightarrow \bigcup_{Q} \bigcup_{R}$$

	<u> </u> L] R] [Cr	
	Cally	-COO-CHg-CHMe-CgHg 1 K 1	77 A 156 N° 166 I
	Calthr	-COO-CH ₂ -CHM+-C ₂ H ₂ 1 K 8	16231 M 161.8
15	CeHia	-COO-CH2-CHMa-C2H3 1 K 6	C 86 A 157 I
	CoHier	-COO CHI CHIMO CHI 1 K &	C 90 A 158 I
	CeH17	-COO-CH ₂ -CHMs-C ₂ H ₈ 1 K 6	C 101 A 153 (
	Callyan	-COO-CH ₂ -CHMe-C ₂ H ₆ 1 K S	C*100 A 151 1
	CsoHar-	-COO-CH ₂ -CHMo-C ₂ H ₂ 1 K 67	C*102 A 1481
20	Cultur .	-COO-CH ₂ -CH ₃₀ -C ₂ H ₃ 1 K 4	C-81 A 175U
	CeH11-	-COO-CH ₂ -CHMe-C ₂ H ₈ 2 K 16	06.5 A 163 I
	CeH ₁₇	-COO-CHI-CHIMO-C2H5 2 K 60	LB 151.4 C 103.6 A 164.5 I
	Cally	-COO-CH2-CHM-C3H7 2 K 57	7.2 136.4 C 93.7 A 180.4 I
	Celly-	-COO-CH2-CHMa-CuHa 2 K5	1.5 135.7 C P1.7 A 145 I
25	CyHyg	-OCOO-CHI-CHMO-CaHS S K M	B 105 A 1607 N° 163.81
	Cellin	-OCCO-CH2-CHM-C2H3 S K7	L3 A 1502 Nº 165.2 I
	CHAO	-CH2-CHMa-C2Ha S K 10	7 E102 A 174 N° 183 I
	CoH11-C-	-CH2-CHMO-C2H3 S K 91	E70 B 96 A 172 N° 1861
	CeH15-O-	-CH_CHM+C3H3 SK 8	L5 J 84 C 103.5 A 172 N 1821
30	CHI1E-D-	-CHI-CHMO-CHE S K SE	L5 K 66 J 70 F 79 C 128 A 170 N 177 I
	CeH17-O-	-CH_CHMO-C2H6 S K 77	K61 J 72 P 80 C 152 A 171 N 174 I
	C ₉ H ₁₉ -O-	-CH2-CHMa-C2H4 S K 82	K 61 J 70 F 79 C 133 A 169 N 171 I
	CioHaro	-CH_CHM+CH SKS	K60 J 70 F 79 C 133 A 167 I
	CIFHTE-C	-CH3-CHMo-C3H3 S K74	J 68 179 C 131 A 162 I
35	CIAH SE-C-	-CH_CHMo-CaHa S K75	J 67 F 79 C 124 A 157 I
	CIOH ST C	-CH2-CHM+C2H8 E K 85	J 65 P 79 C 120 A 154 I
	ClaHay-O-	-CH2-CHM+-C2H3 S K71	J 64.5 P 79 C 118 A 150 1
	CH+O-	-CH_CHMo-C_Hs 2 K 10	7 E 103 A 174 N 1921
	CaH11-O-	-CH ₃ -CHMa-C ₂ H ₈ 2 K 90	E 72 B 98 A 172 N 188 I
40	CeH12-O-	-CH ₂ -CHMa-C ₂ H ₅ 2 K 88	G 84 C 103 A 172 N 182 I
	Citte	-CH2-CHMa-C2H3 2 K 86	
	Calture	-CHCHMa-C2Hs 2 K74	K 61 J 72 I 79 C 132 A 171 N 174 I

L-	R

|--|

L	1	10	
Chit Chillip Chill	O-C ₇ H ₁₈	SKES	J 85 T 91 C 1 10 M 184 I
CH-ORI-CH ₂ -	-O-CH ₁₇	5 X 60	J 80 P 82 C* 114 N* 163 I
CHI CHICAL	ماليک ت	E K	" J" 88 I" 90 C" 116 N" 152 J
CH-COM-CH-	-O-CuMan	B K 65	J* 78 F 87 C* 117 N* 148 €
CHOMOGE	-0 C ₁ H ₂₀	S K SO	J-70 F 87 C- 116 N- 136 I
CH-OM-OL-	-OC14Hai	1 K#0.8	C* 90.1 A 190.8 U
CH-CHA-CH-	-O Craffer	2 K 55	J768 190 C 117.5 N 181.8 I
CHICAMOCHOCH	-00	8 K78.5	8 75 C 115.5 I
CHCHIM-CH-O-CHA-	-D-C1+H21	3 K 89	C**1
CHOSE CHICE CT	DCJ4,	a x∞	5 105 C*114 K*-125 I
CHOMOLIMON.	-0C,H	8 K-25	5 80 CT 111 NT 115 J
CHI CHERO CHI PRIO CHI	-OCH	S K 48	8 83 C" 105 N" 100 I
CALCANIA CAL NAME CAL	-00	8 K65	8 82 C" 104 N"- 107 I
CH CHACHENACH	-00	S X72	873 C* 104 N* 107 I
CHARLOLO.		8 X 198.5	C* 128.8 N* 174 I
CHIPCHNOCHEO	-ocu	1 K 108.2	C 1253 W 1413 I
CHACHE CHOOC	-O-C _e H _{ts}	1 K94	E 121.3 8.125.6 A 186.9 Nº 177.5 I
CHICANICAL COC.	-OCHIP	1 K 85.3	E 102 B 119 C* 125.9 A 182.9 N* 170.4 I
CH-CHIM-CH-COC-	-O-Caller	1 K 85.5	8 97.3 C* 145.5 A 158.8 N* 162.7 I
CH-CHA-CH-COO-	-OCHIT	E K 110	C* 148.8 N* 188.9 I
CHACING OF DISHACOO	-O-CHI	3 K 120	C" 130 N" 134 I
CH-CIEN-CH-C-CIEN-CCC-	-O-Caller	3 K 115	C" 136 N" 130 I
CHI-CISSIO CHI-COCHISIO COCHI	-OCH	3 K 104	C" 131 N" 139 I
CAR-CH-0-CH-00C	OC.	3 K 109	C* 134 /
CH-CIEN-CIL-O-CIEN-COO-	-O-Cytha	3 K 106	Cr 129)
CHIP CHIP CHIP OCCO-	-OCH	S K99.7	C" 125.1 N" 186)
Carla Citilla City OCCOO	-0GH77	S K 104	C* 1359 N* 173.8 i
CH_CHIM-CH_CCCO-	1 - "1	8 x 102.8	C" 136.8 N" 170.4 I
CH CHACH CH CCO	-O-C ₁₀ H ₂₁		C* 142.9 N* 186.8 I
CH-CHINOCH-	OCH OCH		S 64 C" 78 A92 N" 126 I

5

<u> L</u>	A)	icr	L · Lei
Colfir	-O-C ₂ H ₁₇	X 86.3	C 88.5 N 132.4 I
Cellis .	-O-C,H ₁₇	K 87	C 102.2 N 128.8 I
CpH ₁₈ -	-O-C ₂ H ₁₇₇	K 87.3	176.4 C 112.6 A 123 N 130.9 I
CeH17-	-O-C.H.17	K 87.8	189.4 C 120 A 125 N 128.2 I
CeHier	-D-C+H ₁₇	K 84.6	B 92.3 C 124.7 A 129 N 129.5 I
C10H31-	-OCH17	K 87.8	G 943 C 127.2 A 128.3 I
C10H21-O-	-COO-CHMe,CyH13 1	K7	CA7C-97C71
C12H25-O-	-COO-CHMe-CeH11 1	K?	CA7C-97C-71

L R Cr LC C10H21-O-COC-C10H21 K 40.7 P-321

15	[L	N A		icr.	<u>. </u>
	C.Hiz-	-Br		K 104.5	S 141.5 N 148.51
	C10H21-	-8:		K 95	S 143 !
	Cighter	· Br		K 100.5	\$ 144.61
	Cally-	-CN		K 133.1	. A 107.3 N 209.1 I
2ú	C12H25-	_CN		K.98.5	S 165 I
	سرابلیت	-COO-C ₂ H ₄ -SIMe ₂ C ₄ H ₆		K 45	S-17 C41 A 701
	14-	-0-C ₂ H ₁₇	1	K 118.7	F 93 N 118.51
	H-	-O'CiHii	-	K 113-	F948N11451
	H-	-O-C10H21	1	K 110.8	F 96.5 N 116 l
25	H-	-O-C ₁₂ H ₂₅		K 114.6	B 89.6 C 99.7 N 115.2 I
	CaHe-	-C ₂ H ₁₉	1	K 89.7	G 95 N 114.6 I
	C ₂ H ₃ -	-C10H21	- {	K72	G 69.4 N 109.7 I
	Catty	-C ₆ H ₁₇	1	K 88.9	G 73.5 N 110.6 I
	C ₃ H ₃ -	-C ₉ H ₁₉	ı	K 88.2	I C.E11 N 7.87 D
30	Catti	-CieHzi	1	K 83	G 74.1 N 110.81
	Caller	-C _e H ₁₇	ļ	K 90	G 79 N 104.31
	C1HP	-C ₉ H ₁₉	Ì	K71.1	G 81.8 N 108.5 I
	C ₄ H ₆ -	-CroHar	-	K70	K79.5 J 80.5 F 81.5 I 82.7 N 103.7 I
	CgHer-	-CeH17	.]	X 82.4	G 82.3 N 108.5 I
35	CaH11-	-Cell 10	١	K eo	G 85.8 N 110.21
	C ₂ H ₁₁ -	-CroHzr	ı	K73.2	K78.9 J 82.5 F 84.3 I 86.3 C 87.7 N 106,7 I
	CaHts	-CeH17	1	K78	K 80.7 J 82.2 I 85 C 80.7 N 104.5 I
	Caption.	-Cultiu	-	K74.5	X 82.6 J 65.4 F 87 I 88.3 C 91.4 N 107.2 I
	CeHia	-C10Hz1	ı	K 67.4	K79.2 J 80.9 F 85 I 88 C 92.8 N 103.8 I
40	C ₇ H ₁₆	-C _e H ₁₇	1	K 88	K66 J 78 J 81.5 C 91.6 N 107.4 J
	C7H15	-C ₉ H ₁₉	1	K 86.3	K79 J 82.2 F 84.8 I 88.4 C 98 N 110.2 I
	C7H15	-CtoHat	1	K-78.8	K 76.6 J 78.1 F 83.4 I 86.5 C 96.6 N 106.7 I
	Cather	-CeH17	1	K 87.3	J 71.1 I 80 C 96.3 N 106.7 I
	CeH17-	-CeH19	1	K 88.8	J76.4 F 82.6 84.9 C 100.6 N 108.1
45	CeHt-	-C10H21	1	K 75.8	K 66.1 J 74 F 83.9 I 86.7 C 103 N 107 I

50

10	

	<u>į</u> L	'R	Cr	l ici	
	CoHir	-C7H18	K 60	E 54.5 B 81.8 A 128.2 N 128.8 I	
15	C ₆ H ₁₇ -	-CeH17 .	K 70	E 47.7 B 82.2 A 126.5 J	
13	Culty-	-0-C ₂ H ₁₇	K 84.4	C 73.9 N 149.5 I	
	C _a H _a -	-O-C ₉ H ₁₉	K 92	C78.8 N 141.7 I	
	CaHa-	-O-C10H21	K 88.8	C 82.8 N 143.8 I	
	Call 17-	-O-CgH ₁₁	K 88.9	E 84.3 8 99.7 A 137.6 N 147.3 I	
20	CoH17-	-O-C ₀ H ₁₃	K 86.1	E 75.9 B 99.7 C 120.7 A 138.6 N 148.9 I	
	C ₀ H ₁₇ -	-O-C7H1s	K91.7	E 73.3 B 97.8 C 125.8 A 138.8 N 146.2 I	
	CeH ₁₇	-O-CeHtt	K 57	· E70-1 B 95-2 C 130.5 A 139,5 N 148,4 I	
	C ₆ H ₁₇ -	-0-C ₄ H ₁₀	K 95.8	E 68.9 B 96.5 C 130 A 139.5 N 143.2 I	
	C ₆ H ₁₇ -	-O-CnoHen	K 92.3	E 68.2 B 93.5 C 131 A 138.9 N 142.6 I	
25	Cuotian	-O-CaHtt	K 90.1	H 81.5 B 102.8 C 119.6 A 141.1 N 143.2 I	
	CtoH21-	-O-C+H19	K 89.5	H 70 B 99.4 C 131,5 A 142,7 N 145.3 I	
	CroHar-	-O-C+His	K94.2	H 65.5 B 100.5 C 135.7 A 141.7 N 143.1 I	
	C10H21-	-O-CeH17	K 93	H 62.2 B 99.5 C 138 A 142 N 142.9 I	
	CioHzi-	-O-C ₆ H ₁₉	K 97	H 60,5 B 99.9 C 137,8 A 141,1 I	
30	C ₁₀ H ₂₁ -	-O-CigHzi	K 96.5	B 99.5 C 138.3 A 140.7 I	
	C12Hgg-	-0-C ₂ H ₁₁	K 95.8	H 83.2 G 93.4 B 103.8 C 123.9 A 140.A I	
	C ₁₂ H ₂₅ -	-O-C ₂ H ₁₂	K 95.8	H 88.5 B 103.1 C 134 A 142.1 I	
	C12H23-	-O-C7H15	K 97.4	H 62 B 102.5 C 137.1 A 140,41	
	C ₁₃ H ₂₅ -	-O-C ₂ H ₁₇	K 97.4	H 69 B 101.3 C 139.6 A 140.9 I	
35	Cushtar	-O-C ₂ H ₁₉	K 99.8	H 63,7 B 102.2 C 139.6 I	
	C ₁₂ H ₂₅ -	-0-C10H21	K 97.9	B 102.2 C 139.3 I	

<u> L</u>	R	ı	lcr I	
Me ₂ SI-O-Me ₂ SI-C ₄ H _g -	-C-H-	12	K 65	LC C C C C C C C C C C C C C C C C C C
MesSI-CHa-SIMea-CaHa-	• •	F -	K 45	G 88 C 93 I
MezSI-CzHz-SiMez-CzHa-	-Calty		. ,	C 56 I
MegSi-(CHg-SiMeg)g-CaHg-	-Cally	,	5 1	E77C841
(MesSI-CHz) SIME CoH SIMes CoHe	-Cally		J ' ')	943671
MeySi-CaHa-SiMey-O-SiMey-CaHa-	Cally			945C551

	L.	RI	la I	LC
40	CyH ₁₈ .	-O-C ₂ H ₁₃	K74 K78.8	C 77.9 A 123.3 I
	CeH ₁₇ . CeH ₁₇ .	-O-C ₂ H ₁₃	K 70	C 77.9 A 122 I C 99 A 122.3 I
40	CeH ₁₉ -	-0-C ₆ H ₁₇	K 77.3	C 100.2 A 120.3 i C 103.5 A 123.8 i
45	C ₂ H ₁₂	-O-C ₆ H ₁₇	K72.9	C 107.4 A 121.7 1

	 ι	R	L	<u>α</u>	<u></u>
15	CoH10-O-	-CaH11		K 74	S 48 S 70.5 F 74 C 102 N 124.5 I
	Ciotal-O-	-CuH11	H	K 75	6 58.5 8 83.5 C 111 H 125 (
	C11H25-0-	-C ₂ H ₁₁	ŀ	K 74.	S 85 B 94 C 118 A 120 N 123 I
	C12H25-O-	-C ₂ H ₁₁	Н	K 78	8 90 C 115 N 124 I
	C7H15	-00-042		K 125	8 132 N 140.5 I
20	CH-O-	-00-014		K 134	S 144 N 1761
20	CHI2-O-	40-03-		K 149.5	C 154,5 N 100 I
	C1H11-COO-	-∞-αн₂		K 143	S 150 N 1791
	CHF	-coo-c ₂ H ₂		K118	B119.5 N 1251
	C'H*O-	-000-C*H*		K 121	A 129 N 156.5 I
	CHIS CHM-OOC .	-O-C ₄ H ₁₃	Я	K 51	. 5821
25	C _e H ₁₂ -CHMe-OOC-	-O-C _F H ₁₅	F	K 62	Sett
	CHIS-CHAM-COC-	-0-C ₆ H ₁₇	F	X73	\$631
	CeH13-CHMe-OOC-	-O-C ₂ H ₁₀	A	K70	5771
	C ₂ H _{C2} -C 1Me -OOC-	-O-Chiller	P	K72	S76 A 81 J
	C+H12 CHMe-OOC-	-O-C ₁₁ H ₂₅	Ħ	K 55	S70 C-74 A791
30	CHISCHMO-COC-	-O-C12H2s	Я	K 54	. S 69 C*75 A 78 I
	CH-CHM+CHCI-COC-	-O-C ₆ H ₁₃	1	K 59	S 84 B 96 C* 106 N* 125 I
	CH3-CHM-CHCI-COC-	-O-C ₇ H _{td}	1	K 59	S 96 C 110 A 111 N 122 I
	CH2-CHMe-CHCI-COO-	-O-C ₆ H ₁₇	1	KBI	\$ 96 C* 112 A 115 N* 121.7 I
	CH3-CHMe-CHCFCOO-	-O-C ₂ H ₁₀	1	K 49	1° 96.5 C° 114 A 117 N° 120 I
35	CH3-CHMe-CHCI-COO-	*O-C*P174	1	K 48	F 96 C* 114 A*118 N* 119.5 I
	CH3-CHM+CHCI-COO-	-O-C11H25	1	K 57	₽ 96.5 C* 114 A 119 I
	CH3-CHM+CHCI-COC-	-0-C#H2	1	K 60	F 95.2 C* 114 A 118 I
	CaHe CHMa CaHe O-	-O-C ₂ H ₁₉	1	K 65	J 62 T 95 C 111 N 123 I
	C2Hg-CHMa-C4Hg-O-	-O-C ₂ H ₁₀	1	K 60	J-79 P 93 C 111 A 118 i
40	CyHe-CHMe-CyHyo-O-	-0-C ₂ H ₁₀	1	K 72	J* 82 J* 99 C* 121 N* 123 I
	CaH12-O-	-COO-CHM+-C4H13	F	K 50	C 65 A 100 I
	C ₇ H ₁₂ -C ₇	-COO-CHMa-CaH13	F	K 62	C* 78 A 97 I
	Cathara	-COO-CHM+-C+H13	Я	K 84	C" 83 A 90 1

	_ <u> </u>	l_	1 0 .	
yHurch .	-COO-CHIN-CHI	7	KE23	1961 A 136 4-3 1,36 2-3 E-78 1.3 TET.
William Co.	COO-CHAN-CHIS	1	X 67.0	*71.8 CA 98.1 C-g 97 C* 104 C-a 108.5 A 198.5 I
خيال ح	COO-CHING-CHIN	1	K 22.2	*84 CA 22.5 G-g 85 C* 107.8 C-4 108.5 A 129.6 1
ing for C	-co-co-cyl ₁₃	A	K 58.2	. CA BLE C-gall C 1112 A 12681
Hart-	-COC-CHAID-CAH ₁₂	1	K es	CA 80 G-g 82.3 G 112.4 A 123 I
-C-	-coocamechia	1	K73.4	CARC-2843C* 1152A 121.3 I
indian Co	-coopy came chi	S	K 53	9 S4 C" 131 A 169 N" 172 I
Muz CHNe-OOC-			K sez	C 42 A 122 i
WI12-CHMO-ODC-	-OCHIS	A	K ab	C*85A1171
Alto CHAR-OCC	-00	A	X 84	C*90 A 1171
WILE-CHING-OCC-		A	K 87	C 49 A 112 I
AID-CHIMP-COC-	-OC-Man	F	X ST	C 102 A 112 I
Hg-CHMa-DOC-	-O-C11Mp	A	K 91	C" 107 A 109 /
	OC.JI	P	Kan	C 105 A 109 I
FIFCHING CHEOCC	-O-C+117	S	K84	C" 120 A 158 N" 176 I
	-0-0		Kan .	C" 122 A 158 N" 168 I

:

	L	R	[Cr	LC(
15	CIPHSI-O-	-04	K 106.5	9 121.5 N 202.5 I
	CIPHET-C-	المدي-	K84	S 138.5 N 197 I
	CtoHar-O-	-CuHe	X 68	B 86 C 151 N 192 !
	C12H2E-C-	-04	K 99.5	\$ 142.5 N 193.5 I
	Cultus-O-	-Catte	K 90	S 150 N 186.5 I
20	CiaHar-O-	-C.H.	K 66	8 91 C 159 N 185 1
	C14H24-O-	-CH ₃	K 95	S 155 N 184 I
	CuHz-C-	-C ₂ H ₆	K94	S 155 N 180 !
	C10Hzg-O-	-C _u H _b	K 64	. B 95 C 162 N 178 I
	C1#H33-CI-	-04	K 91	S 160.5 N 178 I
25	CteHay-O-	-C.H.	K.94	\$ 157 N 172 I
	Cistas-O-	-C.H.	K 63	B 96 C 183 N 172 I
	C ₁₈ /La-C-	-CH ₃	K 68	S 150 N 171.5 I
	CINTO-	-0,445	K 95	S 157.5 N 160.5 I
	C3H11-O-	-O-CaHn	K 95	S 136 N 226 I
30	CeH to-O-	-O-C4H17	K 90	S 151 N 221 I
	CiHia-O-	-0-C2H2	K 101.5	C 73.8 N 250 I
	C+H1s-O-	-0-C3H7	K 1143	S 84.5 C 108 N 235 I
	Critis-C-	-0-C*H*	K 90.4	8 88.4 C 128.4 N 234.8 I
	Cittera	-O-C#H11	K 89.4	8 85.5 C 141.5 N 221.5 I
35	C7H18-C-	-O-C ₂ H13	K 92	S 83 S 84 C 150 N 221.7 I
	CHIE-O-	-O-C ³ H ¹⁸	K 101.4	8 85 C 157 N 215.5 I
	CHIFO	-O-Caltin	K 89.7	S 84 S 86 C 182.6 N 213.4 I
	C ₂ H ₁₈ -C ₂	-0-CH10	K 92.9	. S 81.2 S 85.8 C 188.8 N 208.7 I
	Chli20	-O-C10H21	K 95.4	5 80 \$ 85.5 C 167.4 N 205.3 I
40	CeHir-Co	-O'C#H17	K 94	S 169 N 215.5 i
	CeHte-O-	-O-C ₂ H ₃	K 104,2	C 99 N 236 I
	CeH1e-C-	-0-0347	K 105.4	S 79 C 134.5 N 224 !
	CyH1g-O-	-0-C14*	K 94.5	S 80 C 148.8 N 221.8 I
	Catharo	-0-C ₆ H ₁₁	K 91.2	5 79 5 60.5 C 158.8 N 215.3 I
45	•	•	. ,	•

$$L \longrightarrow N \longrightarrow R$$

	<u> -</u>	N R	10	LC
	Culty	-C214	K 127	9 136 3 149 N 231 I
15	C.H.	CHA	K 108.2	H 114.5 G 143 C 150,7 A 180.8 N 255 I
	Caller	-	X 113	5 74 H 60.2 G 144.5 C 172 A 199 N 235 I
	Callyy-	-CyHen	K72.8	H 62.8 G 139 F 148.8 C 178.3 A 212 N 233.3 I
	CeHige	-C ₂ H ₁₃	K71.3	H 64.5 G 141.8 F 152.4 C 186.2 A 207.5 N 215.5 I
	C,H ₁₈	-C,Hu	K81.8	H 48 G 149 F 156.9 G 191.4 A 210 N 211.5 I
	Celly	-CaHiri	X 83.5	H 46 Q 136.5 F 136.8 C 182.5 A 202.5 I
20	Callin	والوعة	K 57.3	G 152.5 F 155.5 I 157.5 C 192.7 A 189 I
	Cudley-	-CreHan	K73	G 115 F 149 I 158 € 198 A 198 I
	Cultur	اوراني-	K 80.7	G 112.9 F 136.9 I 181 C 140.3 I
	Cialian	Custigg	K 95	G 115 P 130 183 C 178
	Caller	-Cultan	K90	F 120.1 144 C 170
25	Cister	-C12/61	X 91	@ 117 147 C 178
	Cieller	-Culton	Kes	F 133,8 138,8 Ç 160 i
	CH-OOC-CHECH	-CH-CH-CCC-CHI	K 180.8	B 189.7 C 232 A 305 N 7 Z
	· Chil-ooc-alear	-CH-CH-CCO-C ₂ H ₁₁	K 124.7	8 133 C 247 A 307 N 314 Z
	Cally COC-CAM-CH-	-CH-CM-COO-CaN	K 169	S 241 8 249 N 308 Z
	CHO	004	K 191	C 221 N 2951
30	C _e H _{to} -O-	-O-CaHus	K 159	S 176 \$ 232 9 239 N 282 I
	Cellin-O-	OC#117	K144	S 172 S 234 S 241 H 244 I
	Custles C.	-O-C12H29	K 130	S 162 S 215.1 i
	Callas	SCH	K 175.8	A 204.5 N 236.2 I
	aroaro	-0-04-0-04-	K 136.2	B 140,8 A 147.1 N 222 I
<i>3</i> 5	CHAOCHEO	-0-CH-0-CH-	K 106.2	· A11871
	CHI-COC-	-000-CH+	K 153	A 199 N 258 t
	C++-OOC-	-000-CH	X 82	C 137 A 190 N 209 1
	C-11-00C-	-coo-c ₂ H ₁₁	K 100	A 206 N 216 I
	CH1700C-	-COO-C ₂ H ₁₂	K 113	C 148 A 189 I
40	CHIPOOC-	-COO-C/H18	K RZ	C 140 A 198 L
₩.	C ₂ D ₂	-6,00	K 112	S 148 C 174 A 201 N 238 I

BHSDOCID: <EP__0915144A1_I_>

$$L \longrightarrow \bigcap_{i \in \mathcal{A}} \bigcap_{i \in \mathcal{A}}$$

5

15	<u>L</u>	l n	C	LC
15	CeH17-C-	-CH-C(COO-C+H13)2	K 52	C 51 A 85 N 101 I
	CH17-C-	-CH-C(COO-C7H18)2	K 58	C 51.5 A 83 N 97 I
	CoH17-O-	-CH-C(COO-C+H17)2	K 58	C 53 A 84 N 84 I
	C.H.7-O-	-CH-C(COO-C ₀ H ₁₀) ₂	K 58	C 53 A 66 N 94 I
20	C _b H ₁₇ -C-	-CH=C(COO-C ₁₀ H ₂₁) ₂	K 63	C 55 A 64 N 61 I
ZV	C _e H ₁₇ -O-	-CH-C(COO-C,1H23)2	K 81	C 58 A 84 N 90 !
	CaH17-C-	-CH=C(COO-C ₁₂ H ₂₂) ₂	K 57	C 57 A 85 N 80 I
	CH17-C	-CH-C(COO-C19H3032	K 83	· C65 A 85 N 86 I
	C ₀ H ₁₇ -O-	-CH=C(COO-C19H37)2	K 96	C 69 A 83 I
25	C ₂ H ₁₈ -O-	-CH=C(COO-C ₂ H ₁₁) ₂	K70	C 56 A 86 N 107 I
20	CoH17-C	-CHCN-CH(COO-C ₂ H ₇) ₂ 2	Z Kao	A 100 N 131 i
	CHFO-	-O-C ₂ H ₁₇	K?	C 65 N 207 I
	CaHer-O-	-O-C ₈ H ₁₇	K 97	- C 101 N 201 I
	C*H12-C-	-O-C ₆ H ₁₇	K 96	C 132 A 144 N 196 I
30	C+H+5-O-	-O-C ₇ H ₁₉	K87	C 143 A 162 N 193 I
	CpH19-O-	-O-C ₆ H ₁₇	K7 ·	C 142 A 155 N 183 !
	C9H17-O-	-0.CH	K 107	A 122 N 226 I
	CaH17-O-	-O-C2H6	K 110	A 130 N 213 I
	- C.H17-O-	-O-C ₈ H ₁₇	K 57 .	C 145 A 163 N 189,5 I
35	CHIN-O-		K 86	A 117 N° 122 I
	CeH17-C-	-0-CHM-COO-C ₀ H ₁₇ S	K71	A 94 NT 113 I
	C.H.,-C-	-co-cH ₂	K 131	A 210 N 227 I
	CeH12-O-	-COO-C ₂ H ₇	K 101.5	C 188.5 N 193 I
	CeH17-O-	-CO-H(-CH7) ²	K 127	A 144 N 204 I
40	CoH17-O-	-COO-N=C(-CH7/2	K 116	A 160 N 230 Z
	CoH17-O-	-COO-N=C(-C2H4)2	K77.5	A 155.5 N 192 Z
	CaH17-O-	-COO-N=C(-C ₃ H ₇) ₂	K91	A 128 N 165 I
	CeH17-O-	-COO-N=C(-C7H15)2	K78	A 83 N 116.5 I
	CpH ₁₇ -O-	-COO-NC(-C11H22)2	K73	A78 N 99 I
45	CeH17-O-	-COO-N-C(-C13Hz1)2	K 59	A 78 H 93 I

L	RI	la I	
CgH ₁₃ -O- CgH ₂₁ -O-	-O-C ⁰ H ²¹	K 122.4 K 81.2 K 89.9	8 132.6 N 243 I H 100.2 G 121.2 C 158.4 N 223.1 I H 87.2 G 96.5 C 173.4 N 202.1 I

L R

| R | Cr | LC | C₀H₀ | K89 | P 107 1 | K70 | P 112 1 | K70 | P 114 1 | C₁₂H₂₂ | C₀H₁₂ | K60 | P 114 1 | C₁₂H₂₂ | C₁₂H₂₂ | K53 | P 108.8 1 | C₁₂H₂₂ | C₁₂H₂₂ | K89 | P 102.5 1 | C₁₂H₂₂ | C₁₂H₂₂ | K89 | P 102.5 1 | C₁₂H₂₂ | C₁₂H₂₂ | K89 | P 102.5 1 | C₁₂H₂₂ | C₁₂H₂₂ | C₁₂H₂₂ | K89 | P 102.5 1 | C₁₂H₂₂ | C

 $L \longrightarrow R$

CoH12- CoH12 K 57 P 61 1 CoH12- CoH10 K 57 P 68 1

55

15

20

25

35

45

$$L$$
 R

<u> </u>	[R	Cr	LC Ref
H-O-CoH12-O-	-0-CeH12-O-H	K 97.9	S 178.8 1 516
H-CONH-	- NHOCH	K 274	5 286 1 410
Br-C ₃ H _e -COO-	-00C-C ₃ H ₆ -Br	K114	8 142 1 745
. Br-C ₄ H ₆ -COO-	-00C-C_H-8r	K 96	5 1161 745
Br-C3H10-COO-	-OOC-C ₅ H ₁₀ -Br	K 57	8 103 1 745
B1-C7H11-COO-	-00C-C7H14-Br	K71	8 99 1 745

	<u> </u>	R	_	cr	<u></u>
30	Br-C10Hap-COO-	-000C-C ₁₀ H ₉₀ -Br		K 83	9 100 1
	Celtis-		1	X 11.5	Ń-34 E
	CeHer-	Ch4OH		K 72	'S 112.51
	C2H2-O-	(HO:	Н	K 189	X 176 !
	C.H17-O-	-O-CH2-CHIBH-O-H	8	K 95	5 58 6 103 S 113.1 S 113.6 S 115.6 A 119.5 I
	CH ² O-	-O-CaH12-OOC-CMa=CH-H		K 86	\$731
35	CzHs-O-	-O-CaH12-OOC-CMe=CHH1		K 63,1	N 87.61
	CeH11-O-	-0-C ₂ H ₁₂ -00C-CM+=CH-H		K 53	8 57 1
	C.Hiz-O-	-0-C ₂ H ₁₂ -00C-CM+=CH-H		X 79	3641
	Catter	-со-н		K 4.5	N21
	CeHst	н-со-н		K 21.5	N 23.51
40	CH13-	-со-н	l	K-5.5	N 17.51
	C ₇ H ₁₃ -	-co-x		K 4.5	N 33 I
	CHIT	-со-н		K 20.5	S 30 N 36 I
	CHIP	-со-н		K 33	S 42 N 45 !

$$L$$
 R

	<u> </u> L	R	l	C	LC	l
10	CroHar-	HOO-		K 42	541	Ť
	C ₁ H ₁₇ -O-	-COO-CH ₂ -CHMe-O-H	s	K 119	A 1181	
	CtH3-O-	-OOC-CM=-CH-H		K 95	X 105 I]
	C ₂ H ₁ P-C-	-000-C1H=000-CM==CH-H	1	K 80.5	S 88.2 I	}
	CeH ₁₇ -O-	-OOC-C2H4-CHMe-CH2-OOC-CMe=CH-H	1	K 45	\$ 54.11	1
15	CeH13-O-	-COC-C11H2Z-NHOC-CM9CH-H		K111	S 132 X 7 J	1
	C.HCHM-CHF-CH-OOC-			K 127.5	ŧ	•
	CH2-CHM+-CH2-CHCI-CH2-DDC-	- ОН	s	K48.3	ĝ:	1
	Calle-Calle-Calle-Ca	-O-C ₆ H ₁₂ -OOC-CMe=CH-H	5	K 42.5	S 40 I	
	CaFir CitHzz O-	-CONH-H		K 224	1	1
20	HIC-CH-C-HI-C-	. - 0-н	1	K-138	j j	ľ
	H ₂ C=CH-C ₂ H ₁₂ -O-	но-	1	K 134	S 139 I	1
	Celti-	-CH=CH-F		K7	<u>5 123 I</u>	
	Cally	-SO ₂ F	}_	K P4	N-100 E	
	Caller CIIIC	-	,	K7	573.71	
25	CgH13*	- ८, भ-व		K 49	N14E	
	C ₄ H ₂ O-	-co-cH ₂ -ct	l	K 115	E 1101	l
	C3H11-O-	-co-chi-a	ł	K 98	E72 A 103 I	l
	CeH15-O-	-co-cH ₂ -ci		K 87	E 107 A 116 I	l
	C ₂ H ₁₅ -O-	-co-ch ₂ -c		K 93	E 106 A 122 I	
30	Califo-	-co-cH ₂ -ci		K 88	E 105 A 126 I	l

$$L$$
 R

	IL ·	ln	tor	l LCI
10	CoHIN-O-	-co-cH ₂ -ca	K BS	E 102 A 126 I
	C10H21-O-	-co-cH ₂ -ci	K 89	E 101 A 1281
	C4H1T-CO-C2H4-CO-	-Br	K119	'A 123.8 I
	CaH13-CO-CaH4-CO-	-Br	K 120.3	A 127.51
	C3H-COO-CH2-CO-	-Br	K94.4	5 112 1
15	C3H11-COO-	-ar	K70	E 83 B 103 I
	C+H12-COO	-Br	K 88.5	E 74 B 104 I
	C7H15-COO-	-e.r	K78	3 59.7 B 104.5 I
	C9H17-COO-	-Br	K 60	E 46 B 103 I
	CoHur-COO-	-Bx	K73.5	B 102.51
20	C ₂ H ₁₁ -	-CH ₂ -Br	K78	NISE
	CsH11-	-C:::C-Br	K 88	X 100 I
	CH-C-	-O-CaH ₁₀ -Br	K 88.4	
	CoHist	-co-cH _e -Br	K 64	A 52 I
	C7H16-	-CO-CH ₂ -Br	K 80.5	A 59.51
25	CeH17-	-co-ch _{e-Br}	K 65.5	A 64 I
	CeH15	CO-CH ₂ -Br	K 84	A 67 I
	C19H21-	-co-city-Br	K725	A701
	C2H=O-	-CO-CH _g -Br	K 137	\$ 112.51
	C ₃ H ₂ -O-	-co-ch ₂ -bc	K 124	8 118.51
30	C4Ha-O-	-co-chi-ar	K 107	E 108 I
	CsH ₁₇ O-	-co-ch _{e-Br}	K 93	E 101 (
	C ₀ H ₁₃ -O-	-CO-CH _Z -Br	K79	E 98 A 104 I
	C7H18-O-	-CO-CH ₂ -Br	K96	E 92 A 104 I
	Cellin-O-	-co-ch ₂ -Br	K 50	E 95 A 107 I
35	CeH19-O-	-co-cit_Br	K 95	E 100 A 1161
	CtoHat-O-	-co-cH ₂ -Br	K91	E 98 A 116 I
	C7H15-O-	,	2 × 95	A 56 I
	CeHer-O-		2 K 68	A715
	C ₉ H ₁₉ -O-		2 K 68	A781
40	C ₁₀ H ₂₁ -O-		2 K 65	1 65 A
	C2H3-CHM4-C2H4-COO- C3H11-O-	-Br	1 K 56	S 28 1 N <42 1
	CH120-	-NO ₂)	K 87	N 32.51
	C ₂ H ₁₂ -O-	-NO ₂	K38.5	A 30.5 N 38.5 B
	C.H.2-O-	-NO ₂	K 51.5	A 49.5 N 51.5 B
45	H2C=CH-O-C11H2Z-O-	-NO ₂	K 97	
	CoHist	CH=CF ₂	K 59	595.81
	C3H33-	-CH2-CH=CF2	X 36.9	\$ 53.1
	C ₃ H ₃₇ -	-C ₂ H ₄ -CH=CF ₂	K -25.4	S 30,8 S 50.6 I
	Cyty-O-		F K 87.5	A 48.7 N° 55.7 I
50	CH	-C ₉ H ₁₁	K 48	N-11
		- ''1	•	

r—	R
----	---

	L	R	a	L
10	Calle-	-C ₂ H ₁₁	K <20	\$33.91
	CsH ₂ -	-C ₂ H ₃₁	K-18	S 47.81
	CoHr	-CyH ₁₃	K-10.5	E 48 1
	C ₃ H ₂	-C7H13	K-14	E 29 B 50.5 I
	Caller	-CyH ₁₃	K-2	E 40.5 B 48.5 I
15	(CaHe-	-C,H19	K-15	E 16.5 B 38.5 i
	CgH ₁₁ -	-C ₂ H ₁₁	K 25.1	E 48.1 E 47.1 L 52.31
	CgH ₁₁ -	-C ₄ H ₁₃	K?	E 11.7 E 41.7 E 42.6 L 53.7 I
	C#H11-	-C ₇ H ₁₅	K7	
	Cell 13-	-C ₄ H ₁₂	K 25.1	E 36 B 63 I
20	C _E H _{ts}	-C+H _{tt}	K-?	E 48.1 E 47.1 L 62.31
	C+H15	-CH10	K7	E29.7 E30.2 L 56.1 I
	CaH 17-	-C _e H ₁₇₇	K 57	E 19.5 E 35.1 L 61 1
	Cellip	- CHI	K 57	_P811
	Callyr	-CH2-O-CH2	K 48	P 68 I
25	C ₅ H ₁₁ -	-CH-OCH	K27	\$471
	Caltin-	CH_OCHI	K18	S 21 I
	Cetter	-O-CH-	K72	\$ 10 1
	CeH++	-0-0-1	K37	S81 I
	CoH11-	OCH29	K 82	S 80.1 S 88.1 L
30	CeH13-	O-C ₂ H ₁₉	KB	. 5841
	C ₇ H ₁₃ -	-0-CH ₂₂	K 58	E 68 B 43.9 I
	CaH17-	OCHU	K 46	B 86.5 I
	CaHIP	-O-C ₄ H ₁₇	K 57.	B 84 I
	Calling	O-CH12	K34	E861
35	Colty	-NH-C ₁ H ₂	K75	B 62 I
	CeH11-	-NH-G ₄ H ₉		\$74.11
	CoHy-	-co-c _i H _i	X 45	A781
	C ₉ H ₁₁ -	-co-ch	K 42	S 130 I
	CuHir		K77	B 84 I
40	1	-co-c,He	K 90	S 106.2 S 110.5 I

EP 0 915 144 A1

$$L \longrightarrow R$$

	<u> </u>	· · · · · · · · · · · · · · · ·	Cr	1
10	C2H11-	-CO-C _e H ₁₁	K 106	LC
	C ₅ H ₁₁ -	-CO-C ₂ H ₁₃	K 98	B 104 A 109.5 J
	CuHiz	-co-ch _b	K79	. A1111
	CeHisar	-co-c _e H ₁₁	K 106	B 85.51
	C7H15-	-co-ch ₃	K76.5	A 105.91
15	C7H15-	-co-с ₋ н,,	K94.3	884.51
	C2H17-	-00-04	K86.5	8 95.6 A 103.8 I
	C _b H ₁₇	-co-c _s H ₁₁	K 87.5	B 641
	C.H.	-CO-CH ₂	K 85	B 92.2 A 101.31
	CaH ₁₉	-co-c,H11	K80.2	B 82.51
20	C10H21-	-co-c _p H ₁₁	K77.5	B 58.1 A 99.7 I
	CioHai-	-CO-C ₂ H ₁₈	K 57.8	B 88.8 A 98.71
	C ₂ H ₁₁ -	-co-ch-co-ch	K110	E 110 I
	CieHar	-co-ch-co-ch-	K 86	X 125 I
	C3H31-	-co-ch-coc-ch	K 85	E 97 B 107 A 136 I
25	CaH17-	-CO-CHOOC-CH-	K70	\$ 147
	CaH13-	-CO-CH-CH-COO-C ₂ H ₆	K40	S 144 I
	CeH13-	-co-ch-ch-cco-ch-	K 40	\$ 59 1
	CeH ₁₃ -	CO-CH-CH-COO-CH-	K34 .	\$ 66 1
	CeH12r	-co-cH-cH-coo-c ₂ H ₁₁	K25	8 68 !
30	C ₂ H ₁₇ -	-CO-CH-CH-COO-C-H7	K 62	9571
	C ₂ H ₁₇	-CO-CH-CH-COO-C.H.	K 58	5721
	. C ₂ H ₁₇	-co-cH-cH-coo-C ₆ H ₁₁	K54	S 69 I
	CeHip	-co-cH=cH-coo-c ₂ H ₁₃	K36	\$701
	CuH,	-CO-CH=CH-COO-C/H ₁₆	K 40	\$711
35	C ₀ H ₁₇	-co-cH-cH-coo-cH17	K35	\$721
	Catte	-000-04,	K 63	S71 I
	CeH11-	-600-541,	K-55	X 61 I
	C3H11-	-COO-C ₂ H ₁₇	K29	X 56 I
40	C ₆ H ₁₇	-coo-c _a H _a	K84	8 25 1 B 81.4 A 61.4 I

$$L$$
 R

10	<u> L</u>	LR	1	lc _r	1
	C ₀ H ₁₇ -	-COO-C ₃ H ₇	T	K 60	<u> </u>
	C ₅ H ₁₁ -	-COS-C ₂ H ₆	1	K7	A 57 i
	C ₂ H ₁₁ -	-cos-c ₂ H,		K?	E 103.5 L 113 A 121.4 U
	CpH11-	-COS-C ₄ H ₂		K2	E90 L 110.3 A 118.5 I
15	CeH11-	-cos-c _e H _{tt}	ı	K 7	E75 L 109 A 120.5 I
	CgH117	-COS-C ₂ H ₁₃	Ì	K2	E 59.8 L 104.5 A 120 I
	CaH11	-COS-C ₇ H ₁₅		K7	E50 L 102 A 118 I
	C4H,,,-	-cos-c _a H ₁₇		K 2	E 40.1 L 100.2 A 118.7 I
	C3H11-	-COS-C ₂ H ₁₉		K 7	E33 L 89.8 A 116.3
20	CgH11-	-COS-C10Ha1		K.?	E 25 L 85.4 A 113.8
	CaHer-	-00C-C ₂ H ₃₁		K 45.7	E-15 L-94 A-113.2 i
	CHIP	-OOC-CrH1s		K 65	S 57.4
	CiHia	1 - A	٠,	K-18	E638911
	CH17	-COC-CHM-CHM-O-CH2	- 1	K32	C-9A1SI
25	C.H.	-CMo-N-O-C ₂ H ₄	'	K73	C" 10A 151
	CeH13-	-CMe=N-OOC-CaHe	1	KAS	A61 I
	CoH15-	-CMe-N-OOC-CeH17	ı	K70	188A
	C.H.7-C-		٦		. A 86 I
	C10H21-O-		1	K 14	S 18 S 37 C 41 I
30	GnoHan-O-		- 1	K41	\$ 49 C* 53 I
•	CieHan-O-		- 6	K31	\$ 32 \$ 36 C* 48 i
	CtoHat-O-		1	X 28	5 23 5 35 C 44 I
	C10H21-O-	-CsH10-CHM0-O-CaH0	٠,١	K 33	S 25 C 35 A 39 I
	C19H24-O-		-1	K 32	S 27 C; 30 A 36 I
35	1		1	K 40	CHU
35	C19H21-O-	-CeH12-CHMa-O-CeH7	1	K 43	S 45 S 56 1
	CzHe-O-	-O-C ₂ H ₆	1	K 176	X 185 t
	CeH13-O-	-O-C ₆ H ₁₃	-	K 124	. N 130 U
	CeH17-O-		ᅿ	K 57	A 49.2 I
	CeH17-O-	-O-CHMe-COO-C ₂ H ₈	d	K 39	A 42 I
40	ch-o-	-CO-C2Hs	1	K 145.7	E 148.4 I

10	L	R	a	LCI
	CHFO	-co-c ₂ H ₂	K 128.2	E 122.2 A 125.0
	CH2O-	-CO-C ₄ H ₉	K 120.5	A 117.71
	CHPO	-CO-C ₆ H ₁₁	K 123	A1191
15	CH3-C	-co-c ₄ H ₁₂	K 118	A1171
15	CH3-O-	-CO-C ₇ H ₁₈	K 120	A 117.71
	CH ₂ O-	-CO-C ₆ H ₁₇	K 116	A118.21
	CHyO	-CO-C _e H _{th}	K118	· A 116.7 I
	C2H2-C	-00-01-	K 98	E 156.2 (
20	CaHa-C-	-CO-C2H6	K 124	E 172.4 I
20	Calla-C	-CO-C ₃ H ₇	K 123	E 158.2 !
	C2H3-C-	CO-Cuta	K 106	E 136 A 153 I
	C ₂ H ₅ -O-	-co-c ₅ H ₁₁	K 110	E 129.9 A 150.6
	C2H8-O-	-CO-C _e H ₁₃	K 107	E 124 A 1481
25	C*H*O-	-CO-C ₂ H ₁₈	K 111.5	E 121 A 146.41
23	Cattle-O-	-CO-C ₀ H ₁₇	K 108	E 120.2 A 144.8 I
	∫C ₈ H ₈ -O-	-CO-C ₉ H ₁₉	K 118	E 121.7 A 143.1 I
	Call, O.	-00-016	K 107	E155.61
	CH+O-	-CO-C ₂ H ₃	K 119	E 177.3!
30	Cally-O-	-CO-C ₂ H ₇	K 136.5	E 153.9 A 158.2 I
30	C ₃ H ₇ -C ₂	COCH	K 126	E 135.7 A 154.6 I
	C3H3-O-	-CO-C _e H ₁₁	K 116	E 125.9 A 150.3 I
	Call-O-	-CO-C _e H _{tp}	K 113	E 120.1 A 147.3 I
	C3H3-O-	-CO-C ₇ H ₁₅	K 118	E 121 A 145.21
35	Calty-O	-CO-C ₀ H ₁₇	K 115	E 120.3 A 1431
30	Cotto	-CO-C ₂ H ₁₈	X 106	E 119.5 A 141 I
	Califo-	-00-CH ₂	K 97	E1441
	C ₄ H ₈ -O-	-CO-C ₂ H ₃	K 114	E 167.3 A 171.41
	CaHa-O-	-00-0347	K 101.5	E 145.7 A 155.9
40	CaHa-O-	-CO-CaHa	K 124	E 136.2 A 156.8 !
₩	C+H-O-	-со-с _а н,,	K 115	E 120 A 150.8
	•	1 "1	i ' l	_ , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

$$L$$
 R

10	<u>.</u>	R	icr i	LC
,,,	C4HPO-	-co-c _e H ₁₂	K 109	E 115 A 151.51
	C*H*O	-CO-C ₇ H ₁₈	K 99	
	CHEO	-CO-C ₂ H ₁₇	K 102.5	E 113.7 A 148.9 I
	C*H*-O-	-CO-C ₀ H ₁₀	K 107	E111.8 A 146.8 I
15	C ₂ H ₁₁ -O-	-co-cH ₂	K 90	E111.5 A 144.7 I
15	C+111-O-	-CO-C ₂ H ₂	K91	E 139.5
	C ₆ H ₁₁ -O-	-co-c ₂ H ₂	K 93	E 165.8 A 169 (
	C ₆ H ₁₁ -O-	-CO-C ₄ H _e	K 124	E 129.5 A 150.8
	Celtit-O-	-CO-C3H11	K 128.8	E 121 A 152.1)
	C.HIFO-	-CO-C ₂ H ₁₃	K 117	E 127 A 147.8]
20	C3H11-C-	-CO-C ₇ H ₁₉	K111	E 113 A 146.3 [
	C ₂ H ₁₇ -C-	-CO-C _e H ₁₇	K 104	E 108 A 143.8 (
	CeH11-OL	CO-C ₀ H ₁₈	K-102.7	E 101 A 1441
	Call to O-	-co-cH ₂	K 91	E 101.5 A.141.8 [
25	CaH13-C-	COCH	K78	E 137 I
~ 53	CeH15-O-	COCH	K 82	E 148 A 165.5
	CeH 15-O-	-CO-C.H.	K 109	E 121.8 A 147
	C*N12-O-	-CO-C ₀ H ₁₁	K 120.5	E 116A 149.61
	CeH10-O-	-CO-C ₆ H ₁₃	K 1245	A 145.9 I
30	CeH 15-O-	-CO-C ₇ H ₁₈	K 123	A 145.21
30	CH12-C-	-CO-C ₉ H ₁₇	K 113.5	A 142.51
	CeH15-O-	CO-C ₂ H ₁₃	K 110.2	A 141.2 ! A 139.5 !
	CyH15-C-	-CO-CH ₃	K 99	E 136 I
	Cylins-O-	-CO-C ₂ H ₆	K 98	E 146.8 A 8.8.7
35	C7Hcs-O-	-CO-C ₂ H ₇	K 87	E 120.2 A 145.2
•	CHIST	-CO-C ₂ H ₂	K 106	r e
	C7H15-O-	-CO-C ₈ H ₁₁	K 112.5	E 110 A 147 (
	C2H18-C-	-CO-C ₂ H ₁₃	K 123	A 142.3 I
	C7H15-O-	-CO-C ₂ H ₁₅	K 126.5	A 138 /
40	C'H12-O-	-CO-C ₈ H ₁₇	K 119	A 139.7 (A 138.7 (

$$L \longrightarrow R$$

10	} L	l al	[cr]	
	CyH15-O-	-CO-C ₉ H ₁₉	K 114	A 134.71
	CHITO-	-co-ch	K 98	E 136.5
	C.Hir-O	-CO-C _E H ₃	K 104	E 144.8 A 161.8 I
15	C.H. O	-00-6,44,	K 98	E 118.9 A 142.9
10	C+1,70-	COCH	K 106.5	. E 107 A 145.7 I
	CHIT-O-	-CO-C ₂ H ₁₁	K 104	A 140)
	C_H17-O-	-co-c ₊ H ₁₃	K 118	A 140.3 (
	C.H. O	-CO-C _H H ₁₈	K 125	A 138.5 I
20	C4H17-O-	-CO-C ₆ H ₁₇	K 124.5	A 137.4 I
20	CeH17-O-	-co-c _e H ₁₉	K 124.5	A 134.8 I
	CeH19-O-	-co-ch	K 104.2	£ 135 !
	CaHta-O-	COCH	K 112	E 144.3 A 160 I
	CpH ₁₉ -O-	-00-CaH7	K 109.5	E 118.2 A 141 I
25	CeH19-C-	-co-c _a H _e	K 101	E 106.4 A 143.9 I
	C ₂ H ₁₈ -O-	-co.c _s H ₁₁	K 108	A 138.51
	CeH19-O-	-CO-C ₂ H ₁₂	K 112.8	A 139 i
	C ₂ H ₁₈ -O-	stH;3-03-	K 124	A 1361
	CeH19-CI-	-CO-C ₂ H ₁₇	K 124.5	A 135.4 I
30	C ₂ H ₁₈ -O-	COCHIO	K 128.5	A 132.81
	Custize-O-	-co-crts	K 103	E 1321
	C10H21-C-	-CO-C ₂ H ₃	K 82	E 143.4 A 157.51
	CtoH21-O-	-CO-C ₃ H ₇	K 90	E 117.5 A 138.61
	C ₁₀ H ₂₁ -O-	-CO-C4Ha	K 97	E 108 A 141,21
35	C10H21-O-	COCHII	K-101.9	A 136.8 I
	C ₁₀ H ₂₁ -O-	-CO-C ₂ H ₁₂	K 108.7	A 137 1
	· C10H21-O-	-CO-C7H15	K 110.5	A 134 I
	C10H21-O-	-CO-C ₂ H ₁₇	K 118	A 133,3 (
	C ₁₀ H ₂₁ ·O-	. CO-C ₂ H ₁₀	K 123.5	A 130.9 i
40	C11H22-C-	-CO-CH ₂	K 110.5	E 130.5 I
	C ₁₂ H ₂₅ -O-	-co-ch ₂	K 109.8	E 129.9 I

10	<u> i </u>	[R]]Cr	w
	C12H25-O-	-CO-C ₂ H ₈	K 95.5	E 139.3 A 151.51
	C ₁₂ H ₂₅ -O-	-CO-C3H7	K 105.5	E 113.5 A 134.81
	C12 120-Q-	-co-c ₄ H _e	K 102	E 106 S 115 A 141 I
	C12H25-O-	-co-c ₂ H ₁₁	K 98	A 132.51
15	C ₁₂ H ₂₅ -O-	-CO-C ₂ H ₁₃	K 105	A 131 I
	C ₁₂ H ₂₈ -O-	-CO-C ₇ H ₁₈	K 108.5	A 129.7 !
	C ₁₂ H ₂₉ -O-	-CO-C ₄ H ₁₇	K 112.5	A 129.8 (
	CuHz-O-		K 115.5	A 127.4 I
	C ₁₄ H ₂₉ ,O-	-00-016	K 112.1	E 123.2 B
20	Chiristo	-co-cH ₃	K-116.8	E 122.51
	C.H.O.	-co-ch-co-ch	K 126.1	A 165.41
	CH ₁₃ O	CO.CH, CO.C.H	K 108.6	E 128.1 A 175.2 I
	Caller-O-	-co-ch-co-ch-	K 108.7	E 140.7 A 176.51
	CeH17-O-	-CO-CH ₂ -CO-C ₂ H ₆	K 101	E 124.3 A 173.1 I
ස	CoH17-C-	-co-ch-co-c.h.	K110.2	A 152.5 1
	C _e H ₁₇ -O-	-CO-CH ₂ -CO-C ₂ H ₁₇	K 125.3	A 137 I
	Calling	-co-ch-co-ch	K 104.5	E 141 A 175.51
	C10H21-C	-co-chi-co-chi	K 100.5	E 137.4 A 173.8 I
	C10H21-O-	CO-CH ₂ -CO-C ₂ H ₃	K98.5	E 123.4 A 188,3 I
30	C11H22-O	-co-ch ₂ -co-ch ₃	K 108.5	E 135.6 A 172 I
	Ct1H2=O-	CO-CH ₂ -CO-C ₂ H ₂	K 105.1	E 123.7 A 186.8 1
	C12H22-O-	-co-chi ₂ -co-chi ₃	K 105	E 135 A 167.5 I
	C12H25-C-	-co-ch ₂ -co-c ₂ H ₃	K 95.8	E 120 A 151.5 I
	C12H22-O-	CO-CH, CO-C,H,	K 1125	E 103.3 A 147 I
35	C12H23-O-	CO-CH-CO-C-H-	K 105.2	A 133.8 1
	CtzHzs-C-	-CO-CH ₂ -CO-C ₁₂ H ₂₈	K 124.4	A 125.8 I
	C14H29-O	CO-CH ₂ -CO-C ₂ H ₈	K 106	E 120.5 A 158.5 I
	C ₁₈ H ₃₂ -O-	-CO-CH ₂ -CO-CH ₃	K 118.9	E 139.1 A 162 1
	Ctaltar-O-	-CO-CHCO-CH ₂	K 121.7	E 137 A 157.8 (
40	C12H27-O-	CO-CH ₂ -CO-C ₂ H ₈	K 113	E 114.5 A 150.7 I

50

$$L \longrightarrow R$$

	ĮL .	l Al	Cr	LC
10	CH3-C-	-coo-c _e H ₁₃	K 81.7	E45.4 I
	C ₂ H ₂ -O-	-000-0-1-1	K 102	S 103 i
	Cally O	-COO-C ₂ H ₇	K 105	S 107 I
	Cath-O-	-C00-C4H7	K 97	A 113.51
	C4Hg-O-	-CCO-C ₆ H ₆	K 93	E 92 A 102 I
15	Cettin-O-	-COO-C ₂ H ₆	K 114.5	A 123.51
	Callin-O-	(H-2-002-	K 80	A 108.5 I
	CaHIT-O-	-coo-c ₄ H ₂	K 63.7	E 83.3 B 68.4 A 85,41
	C ₂ H ₁ -C-	-coo-c ₁ H ₁₆	K?	E 59 B 65 A 81 1
	CoH11-O-	-COO-C ₁₂ H ₂₅	K70.4	E54.4 A 70.8 I
20	Celis-O-	-coo-cH ₂	K 124	E 132 B 139 A 139 I
	C _e H ₁ -C-	-COO-C ₂ H ₄	KBI	E 92 B 97 A 118 I
	CH ₁₉ C-	-COO-C ₃ H ₇	K BO	E 67 B 74 A 107 I
	CeH15-C-	-COO-C.H.	K 58	B 64 A 92 I
	CoH13-C-	-COO-C ₂ H ₁₁	K83	8 58 A 90 E
25	C+12-0-	COO-C ₄ H ₁₃	K79	8 57.5 A 86 E
	CoH15-C	-COO-C ₂ H ₁₈	K76	B 57 A 84 E
	Callis-C-	-COO-C ₂ H ₁₇	K74	B 56 A 82 I
	Cellis-C-	-COO-C ₂ H ₁₈	K71	B 55 A 80 1
	CoH15-O-	-COO-C ₁₀ H ₂₁	K 59	854.5 A 78 i
30	C7H13-O-	-000-014	K 124	E 127 B 133 A 133 I
	C7H18-O-	-COO-C ₂ H ₆	K 52	E 88 B 94 A 111 I
	C3H15-C-	-COO-C ₂ H ₇	K78	E 54 B 64 A 102 I
	C7H15-D-	-C00-C ₄ H _e	K 52	C 58 A 89 I
	CHIEC	-COO-C ₂ H ₃₃	K79	C 50 A 87 E
3 5	C7H15-C	-coo-c _u H ₁₂	K 86	C 60 A 84 E
	C7H15-C-	-COO-C ₇ H ₁₈	K 86	C 55 A 82 E
	C7H18-O-	-COO-C ₂ H ₁₇	K 76	1 08 A
	C7H15-O-	-COO-C ₂ H ₁₉	K 69	A781
40	C7H15-C-	-COO-C ₁₀ H ₂₁	K 69	A 76 I

10	L	j Aj	Cr	LCI
10	CoH17-O-	-COO-CH ₂	K 117	E 126 B 132 A 132 I
	CeH17-O-	-COO-C ₂ H ₅	K 75	E 88 B 96 A 112 i
	CaH17-O-	-000-03H3	K 83	B 64 A 101 i
	CeH17-O-	-coo-c4He	K 56	C 56 A 86 I
15	CeH17-O-	-coo-c _e H ₁₁	K 68	C 55 A 88 E
,3	CeH17-O-	-coo-c ₄ H ₁₃	K72	C 56 A 82 E
	CeH17-O-	-COO-C ₇ H ₁₈	K 87	C46 A 83 E
	CeH17-C-	COO-C ₆ H ₁₇	K 80	A SC I
	CeH17-O-	-C00-C ₉ H ₁₉	K79	A 80 I
20	CeH17-O	-COO-C10H21	X 75	· A.78.1
20	CaH17-O-	-COO-C ₁₁ H ₂₂	K74	A791
	CeH17-O-	-COO-C ₁₂ H ₂₅	K78	A781
. — .	CeHI+O-	-COO C 13H27	K77	A781
	CaH17-C-	-COO-C14H20	K 80	A741
25	CaH17-C-	-COO-C12H31	K77	A741
	CaH17-O-	-COD-C ₁₉ H ₂₂	K 83	· A721
	C.H17-O-	-COO-C ₁₇ H ₃₆	K 81	A72 E
	CaH17-C-	-COO-CraHar	-K 80	. A70 E
	GoH17-O-	-coo-c ₁₂ H ₂₀	K 81	A 69 E
30	CeH18-O-	-coo-ch ₂	K 124	E 123 B 129 A 129 I
	CeH19-O-	-COO-C ₂ H ₈	K78	E 81 8 91 A 1061
	CeH1g-O-	-coo-c ₃ H ₇	K 87	B 63 A 99 t
	CoH10-C-	-coo-c _a H ₉	'K 84	C 56 A 86 I
	CoH12-O-	-coo-c _s H ₁₁	K 62	C 55 A 86 E
35	CoH10-O-	-COO-CeH13	K71	C 57 A 83 E
	C9H19-O-	-COO-C7H15	K84	C54 A 82 E
	CeHte-O-	-COO-C ₀ H ₁₇	K 86	C 38 A <84 E
	C10H21-O-	-000-015	K 122	E 117 B 124 A 124 I
	C10H21-O-	-COO-C ₂ H ₃	K71	E 80 8 90 A 104 I
40	C10H21-O-	COO-Cats	K7.	8 67.9 A 99 I

50

$$L$$
 R

C C D D C C D D C C		L		Cr	
C C C C C C C C C C	10	C10H21-O-	-C00-C-H-		
C_10H21-O-		C10H21-C		1	(
C_10H21-O-		C10H21-O-		1	
Cooking Cook		C19H21-O-			
Ciphtar-O- Ciph		C10H21-O-			
Cipflar-O-	15	C10H21-O-	-000-04		r s
C12H23-O- C00-CH3 K122.5 K124.1 K122.5 K124.1 K122.5 K124.1 K122.5 K124.1 K122.5 K124.1 K122.5 K124.1 K124.1 K124.1 K124.1 C12H23-O- C00-CH3 K124.1 K124		C10H21-O-		1	
C_13H23-O-					C54A7E
C12H2s-O- C00-C2H12 K71 S 971 K71 S 971 K72		C12H23-O-			
C 13 13 C C C C C C C C C		C12H25-O		1	\$ 102.51
C12H2s-O- C0O-CyH1s K77 G72 C74 A 81 C72.8 A 80 K77 K78.3 K78 C72.8 A 80 C72	20	C12H25-O-			
C12H2g-O- C0O-CgH17 C14H2g-O- C14H2g-O- C14H2g-O- C0O-CgH18 K78.3 K88 K71.2 C72.8 A 80.1 C72.5 A 82.5 C72.				1	
C14H2e-O- C14H2e		C12H22-O-	-COCH	1 1	
C10H2gr-O- C00-CyH16 C72.5 A 82.51 C74.5 A 80.51 C74.5 A 80.5 C7			-coocan		
25		Ctalian-O-			
C18H32-O- C18H32	25	-			C72.5 A 82.51
C C C C C C C C C C		1 —		1	C74.5 A 80.5 I
GiaHar-O- CriaHar-O- C			2000,044		B 82 A 94 I
30 C1eH3s-O- C1e		" "			8 46 A 89 E
30 C1eH3s-O- C00-CeH1s C00		"			A 79 I
C19H32-O- C19H33-O- C19H33	30				G 40 A 81 E
C1eH32-O- C1eH32				–	G 60 A 78 E
C18H32-O- C18H32					G 72 A 60 I
35 C ₁₀ H ₃₂ O- CCOC ₁₀ H ₂₁ CCOC ₁₀ H ₂₂ CC ₁₀ H ₃₂ O- CC ₁₀ C ₂ H ₃₂ CCOC ₂ H ₃₂					G76A781
C1eH3r-O- C1eH3r					G 78 A 50 I
C ₁₈ H ₃₃ -O ₋ C ₁₈ H ₃₃ -O ₋ C ₁₈ H ₃₂ -O ₋	35		-COO-C ₁₀ H ₂₁		G77 A78 E
C ₁₆ H ₃₂ -O- COO-C ₂ H ₂₇ COO-C ₂ H ₂₇ COO-C ₂ H ₂₇ COO-C ₂ H ₂₇ COO-C ₂ H ₃ K 91 G 40 A 78 E COO-C ₂ H ₃ K 72 B 55 A 87 E		1 = -	-COO-C ₁₁ H ₂₃		G72A79E
C ₁₉ H ₃₇ -O- COO-C ₂ H ₆ K72 B 55 A 87 E			-COO-C ₁₂ H ₂₅		G64A77E
C19H ₃₇ -O- C00-C ₂ H ₈ K72 B 55 A 87 E			-COO-C ₁₂ H ₂₇		
COCCUL Van				K72	B 55 A 87 E
	40			K 83	A 86 I

AE.

10	L	R	1	Cr	LC
	Callia-O-	-OOC-CHCI-CHMe-CH ₃	1	K BO	S 62.5 C* 68 A 82.5 I
	C10H21-C-	-OOC-CHCI-CHMe-CH ₃	1	K 82	C' 69 A 81 I
	C ₁₁ H ₂₃ -O-	-000-CHCI-CHMCH ₃	s	K 88	A 85 I
	C ₁₂ H ₂₅ -O-	-OOC-CHCI-CHM+-CH ₃	1	K 92	A 851
15	C ₂ H ₁₈ -O-	-OOC-CHCI-CHMe-CH ₃	2	K7	G70.2 C72.4 A 82 I
	C.H.1-O-	-OOC-CHCI-CHMa-CaHa	3	K7	C* 55 A 64 B
	C-H13-O-	-OOC-CHCI-CHIMe-C2H4	3	K 47	S 48 C" 51.5 A 61 I
	C>H15-O-	-OOC-CHCI-CHMa-CaHa	3	K 55	C 55 A 62 I
	C_H17-O-	-OOC-CHCI-CHMa-C ₂ H ₄	3	K 48	S 36 C* 56 A 66 I
20	Chila-O-	-OOC-CHCI-CHMe-C2H2	3	-K 52	C* 53.5 A 65.1
	ChoHz1-O-	-OOC-CHCI-CHMe-CaHe	3	K 50	C-43 A 49 U
	C12H23-O-	-00C-CHCI-CHM+-C2H3			C' 66 A 87 I
	C14 lay-O	-OOC-CHCI-CHMa-C2H3			A 68 I
	Cythr-O-	-OOC-CHCI-CHM+-C2H4	5	K7	C* 59 A 80 I
25	CyH12-C-	-OOC-CHBr-CHMe-CH ₃	s	K 64	C 47 1
	C ₆ H ₁₇ -O-	-OOC-CHBr-CHMe-CH ₂	9	K 35	C 48 A 56 I
	C10H21-O-	-OOC-CHBr-CHMe-CH ₃	퇴	K 55	C 57 A 88 I
	C ₁₃ H ₂₃ -O-	-OOC-CHBr-CHMe-CH ₃	S	K 69	A701
	CeH19-O-	-OOC-CHBr-CHMe-C2H4			C" 55 B
30	C*H12-O-	-OOC-CHBr-CHMe-C ₂ H ₃	3	K 20	C*42 A 53 I
	C10H21-C	-OOC-CHBr-CHMe-CaHa	3	K7	C 49 A 58 B
	C12H25-O-	-OOC-CHBr-CHMe-C2H6	3	K?	C* 47 A 59 B
	CoH17-O-	-OOC-CHMe-CHMe-C ₂ H ₅	3	X 48	1 36 C 53 A 84 I
	C ₂ H ₁₇ -O-	-OCOO-CH ₂ -CHCI-CHMe-C ₂ H ₅	3	K 43	C- 50 I
35	2(C2H5-OOC)-CH-C2H12-O-	-O-CHM-C-H13	5	K -20	. X191
	C2H11-COO-	-CO-CHMe-C ₂ H ₃	S	K7	S 15 S 32 A 57 I
	C_H17-COO-	-CO-CHMe-C ₂ H ₅	8	K 47.8	A 65.1 1
	C13H27-COO-	-CO-CHMe-C ₂ H ₆	8	K 69.4	A 66.7 I
	C7H15-COO-	-COO-CHMe-C ₂ H ₅	·F	K 46.7	C* 22.4 A 44.81
40	C ₆ H ₁₇ -COO-	-000-CHMe-C2H5	Я	K 56.2	C* 28.4 A 45.6 I

The state of the second second

•

	·[L	[B]	IC:	L uch
10	Custige-C-	-0000-	K 80	A701
	Ctall 25 Ct	COO C.H.,	K as	A791
	Custos-C-	-COO-C-H ₂₁	X 84	Q 80 A 70 E
	Cust las-Co-	-COO-C ₇ M _M	K az	9 67 A 78 E
	Cust typ-CI-	-COO-C-H _D	K B4	973A76E
	GupH _{arr} Cr-	-000-001	K ao	977A781
15	Culture	-cocc _w 1 ₂₁	X 84	675A79E
	Cuelgro	-coo-c ₁ ,H ₂₂	Ka1	Q 66 A 78 E
	Cultura	-COO-C ₁₂ H ₂₈	Kas	A70E
	Cettiro	-cos-c.H.	X 91	L 121 A 148.51
	CeH ₁₇ -C-	-000 CH1	KT	E 97.7 B 106 I
	CHINC	-00C-C ₂ H ₁₉	K 87	Q 107 F 106.5!
20	CHIP C	-COCC ₁₁ H _{ba}	K78	9 196 F 104.51
	Cally-O-	-000-0-1-1-1	K az	G 104 F 1081
	CHU-181-	-tos-C ₂ H ₁₀	K MA.D	C 85 N 103.8 I
	Call 19-101-	-NI-C-HIT	K SO	1981 C 110 N 110.41
	Catty 481-	-101-C ₂ 11 ₁₉	KSSA	I 102 C 112 A I
	Capitanion	401 Culta	K 87.1	1108.8 C 136.81
25	C ₁₁ H _{E2} -101-	-MIC: Hes	KSSA	F92.81108.9 C 1171
23	CuHurith.	+es-Cuphus	KSGA	11135C 117.81
	Cutto 181	HHCUIL	K 105	1154
	C µ/U,101 -	NI Colle	K 105.2	£ 134.0 J
	CH2-O-C2H4-O-	OCHOOL	X 127	X 130 1
	CHLOCHLO	ochoch	K78	K 1181
	C+H-0000-C+H-0-	-0-CH-0000-CH-	K 23	\$ 100 (
30	CHU-OCOO-CHL-O-	O-CHI-OCOO-CHIE	K77	2 35 1
	C+1,70000C+14-0-	-0-CH-0000-CH ₁₇	K 83	3.441
	CH2-0C00-C ₂ H12-0-	-OCHIPOCOOCIA	K 107	5 140 (
	Chi-ocoochiso-	-O-CH-0000-CH	K se	3 1461
	CH-CCCCCHIPO	المرى 2000 مالات	X 96	31571
	CH+CCCC-CHIEC-	OCH-OCOCH	K NO	\$ 1701
35	CHII-OCOO-CHIE-O-	OCH COOCH	K as	2 1901
	CHIT-OCOO-CHIT-O-	OCHHOCOOCHH	K #9	3 1401
	CHIT-OCOO-CHIT-O-	OCHEOCOO-CHI	X as	\$ 1501
	C*H12-OCOOC*H12-O-	OCHHOCOOCHH	X M	\$ 1721
	Cultiva CO.	-00-00-1	K 148.3	C147.81
	CIOHSI-CO-	-CO-C, 214,	K 141	5141
40	CeH11-CO.	-coc-c ₂₁₁₁	K 87.5	E#181115A1401
	C2H6-CO-	NHOC-CH,	K 233	. \$2251
	C_H_OOC.	-COO-C ₂ H ₂	K 114	xau
	•		•,	, , , , , ,

	R
--	---

10	1	<u> </u>	[<u>l</u> (c)
	CH-OOC-	-00C-C ₄ H ₆	K 86.5	5 112 1 118 1
	Carta-COC-	-coc-c _i H _o	X 96	L 100 I
	CHY-OOC-	-000-014	K 59.6	9 COLA ET
	CH+OOC	-000-044	K #0.3	5 43.4 L 64.9 A 74.4 1
	C-MIT-COC-	-000-644	K 49.7	S 62.8 L 55.6 A 70.2 (
15	CH-COC	-000-014	K 49.1	LSETA BEAT
	C*H*E-OOC-	00C-CHP	K47.3	LESASSEI
	CHIFOCC	-000-0441	K 50	1 CB A COS 8
	Critis-COC-	-OOC-CHU	K 57	B 745 A 76 I
	CHI-OOC-	-000-044)	K 61,4	L523A6641
	CHO-OOC-	-COC-C _P H _M	K 32	5705A761
20	CHITOCC	-000-6341	Kes	5 62 A 65 I
	CH WOOC	-000-6,14	X 49.8	BALANDIAI
	Citter-OOC-	-00C-C,H ₂	K 88.4	, was 1
	C"H"-COC		K 85 _	
	CHAN-OOC-	-000-0419	X 82.5	877.5 A 81 (
	C11HE-COC-	-000-014	X 80.5	Aazali
25	C-H17-COC-	-cooatamoat	1 K 49.6	
	CHIT COO.	-coocil-cim-o-chi	1 K 28	P21.1 A 44.21
	CHIP COO	-cooch-comochia	1 K7	A 202 I
	CHI-COC-	-co-cit-cut-o-cit	1 K 35.8	A 32.61
	C+11+ COO	-coo-cit-ci-ci-ci-ci-	1 K33.1	F 26 A 50 I
	CH1#000-	-coo-cifcam-o-chin	1 K 35.7	IAMAI
30	CMP*-COO-	-coo-cH ₂ CHM+-O-CH ₃	1 K #3	ASAAT
30	C*his*-COO-	-coocificamochi	1 K38.8	1 32,1 A 49.8 I
	C**/**COO-	-coo-call-calm-o-chin	1 K 38.9	A4631
	C19Her-CCC-	-000-014-014-0-014	1 X 47	A SA I
	C141FF-CCCO-	COO-CHI-CHIM-O-CHI	1 K 47	A SS I
	C, H2, COO.	COO-CHIPCHUR-O-CHIP	1 K 47.1	A48AI
35	CIPHER CÓO-	-cco-cst-csam-c-csts	1 K 50.2	A 80.4 1

	[L	l	> 1	LC
10	CH3-COO-		K 163	X<1
	C3H11-COO-	-00C-C ₂ H ₁₁	K 117	S 118 J
	C ₀ H ₁₂ COO-		K 105	\$ 118 1
	C7H18-000-	-OOC-CHIS I	K 95	S 122 I
4=	C_H17-COO-	-00C-C ₂ H ₁₇	K 95	S 121 /
15	C9H19-COO-	1	K 98	8 122 1
	C ₂ H ₁₁ -COO-	-OOC-CHIMA-CHIMA-O-CHIA 1	K 47	C* 55 I
	C ₆ H ₁₃ -COO-	-OOC-CHIM-CHIM-O-CH- 1	K 23	5 31 C 39 I
	C ¹ H ¹¹ -COO-	-OOC-CHIM-CHIM-O-CH- 1	K 37	C' 451
20	CaH17-COO-	-OCC-CHM+-CHM+-O-CH ₂ 1	K38	C 471
20	CoH17-COO-	-OCC-CHING-CHING-O-CHING 1	K 47	5 49 C 56 I
	CH2-OCOO-	1	K 148	. X<1
	C2H3-0COO-		K 96	X
	C ₄ H ₈ -COO-N=CMe-		K 111	A 121 I
25	C ₆ H ₁₇ -COO-N=CMe-	-CMe=N-OCC-CaH17 N	K 104	A 132 I
EJ	C ₈ H ₁₇ -	-O-CHMo-CeH13 1 N	K 2.	1
	C ₂ H ₁₅ -	-COC-CHM+ C2Hs 1 H		S 57.3 i
	CeH19-O-	-C2H4-COO-CHM9-C4H12 1 N		Nº 145.9 U
	C ₁₂ H ₂₈ -O-	-CO-CHM-CHT 2		A 49 I
30	CeH13-O-	-COO-CHMe-CaHs 1 N		A 36 U
•	C ₆ H ₁₇ -O-	-COO-CHIMO-C2H4 S H		C' 30 A 53 I
	CeH19-O-		K7	עראריט
	CeH17-O-	1 1 3	K75	C41 A 69 I
	C ₆ H ₁₇ -O-	-COO-CHM+-C2H4 2 H	K 67	C31 A 50 I
35	Colin-O-	-COO-CHN+-C3H7 2 H		C 26 A 36 I
	C _s H ₁₇ -O-	-COO-CHMe-CaHe 2 H		A34E
	C ₆ H ₁₇ -O ₇	-COO-CHM+-C+H11 2 H	K 61	A30 E
	C ₈ H ₁₇ -O-	-COO-CHMo-CoH12 2 1		A37 E
	CeH17-O-	-COO-CHMe-CyH18 2 N	K 81	A37 E
40	C ₀ H ₁₃ -O-	-COO-CH ₂ -CHCI-CHMe-CH ₃ 1 1	K 48	C" 15 A 15 U

	L	R[[Cr]	ıcı
10	CoH17-O-	-COO-CH2-CHCI-CHMe-CH2	1 K34	C"34 A 54 I
10	Calliano	-c00-CH_CHC-CHMe-CH ₂	1 K 39	C* 44 A 56 1
	CngH21-O-	-coo-chy-cha-chw-chy	1 K 38	C-45 A 58 I
	C11H23-O-	-000-CH2-CHCI-CH446-CH4	1 K 55	C 49 A BO I
	C12H25-O-	-coo-chy-chch-chs-chs	1 K 52	C-47 A 61 S
15	C13H27-O-	-coo-chiz-chici-chis-chis	1 K 57	A 61 I
15	CeH13-C-	-COO-CH2-CHCI-CHMe-C2H5	3 K31	C* 10 A 40 I
	C7H15-O-	-coo-cist-citci-cittis-cittis	3 X 75	C- 39 A 56 I
	CaH17-C	-COO-CH2-CHCI-CHMa-C2Ha	3 K 15	S 18 C-32 A 50 I
	C ₀ H ₁₉ -C-	-COO-CH2-CHCI-CHMC2H2	3 K 27	C* 40 A 53 I
æ	C19H21-O-	COO-CH ₂ -CHCI-CHM ₂ -C ₂ H ₂	3 X 39	C-41 A541
20	C11Har-O-	-COO-CHG-CHCI-CHMa-CgHa		C-42 A 55 I
	C12H25-Q-		3 K 40	C 43 A 57 I
	C13H27-O	-COO-CH2 CHCI CHM+ C2H2	3 X 45-	-C*47 A 60 1
	CeH17-O-	-COO-CHM+ COO-CHM+ CeH12	3 X 42	A211
25	C ₆ H ₁₇ -O-	-COC-CHMo-CaHa		C*84.41
29	C18H21-O-	-OOC-CHMe-CaHe	S K74.8	H 75.8 C* 79.4 A 83.21
	C11H22-O-	-OOC-CHMe-CaHa	1 K70	C 721
	C ₁₂ H ₂₄ -C-	-OOC-CHMe-CaHe		C- 69 1
	G14H25-O-	-OOC-CHMe-CaHe		A 81.4 B
30	C7H18-C-	-COC-CHF-CHMCHa		S 105 A 107 I
~	CeH17-O-	-COC-CHF-CHM-CH2	S K 95	S 103 NF 109 I
	CaH17-O-	-OOC-CHF-CHM-CaHa	3 X 7	C-71
	C10H21-O-	-OOC-CHF-CHMa-CaHa		nl.
	CuH2-O-	-OOC-CHF-CHMa-CaHa		A 72 I
35	CoH17-C	-OOC-CHF-CHM+-CHL		C' 88 A 94 1
	C12H25-O-	-OOC-CHF-CHMa-C2H3		C 61 A 93 I
	CaH13-O-	-COC-CHCI-CHMe-CH		Q-77.6 A 83.3 [
	C2H18-O-	-OOC-CHCHCHM+-CH-	1 K72	H 64 G' 71 C' 73 A 81.51
	CaH 17-O-	-OOC-CHCI-CHM+-CH3	1 K78	S 66 C' 71 A 83 I
	• [

__

50

10	JL I	R)	a	LC
	C#117-COO-	-COO-CHMa-C3H7	1 K 48.2	A 38.41
	C ₂ H ₁₇ -COO-	-COO-CHMe-CaHe	1 K 29.6	A32.61
	C_H17-COO-	-COO-CHM+-C ₆ H ₁₁	1 K37	A 31.91
	C2H17-COO-	-COO-CHMe-CeH12	K343	A 26.3 1
15	C+H17-COO-	-COO-CHMe-C7H15	1 K34	A 26 I
	C ₂ H ₁₂ -CCO-	-COO-CHMe-C ₂ H ₅	E.163 A	J* 21,1 C* 35.2 A 48.9 I
	C10H21-COO-	-COO-CHMe-C ₂ H ₃	F K 44.8	J' 31.1 C* 36.8 A 48.5 !
	C11H25-COO-	-COO-CHMe-C ₂ H ₃	R K41.2	J" 38.8 C" 41.2 A 50.5 I
	C12H25-CCO-	-COO-CHMe-C2H3 1		J* 41.3 A 50 1
20	C19H27-COO-	-COO-CHMe-CeHs 1	K 49.8	J* 46.7 A 52.7 I
	C ₂ H ₁₃ -COO-	-COO-CH2-CHCI-CHMa-CH2	1 X 48	C 15 A 45 1
	C.H17-COO-	-COO-CH-CHCI-CHM-CH-	K37	1" 10 C" 40 A 54 3
	C ₂ H ₁₂ -COO-	-COO-CH2-CHCI-CHMa-CH3	K7	C 7 tl
	CtoHat-COO-	-COO-CH2-CHCI-CHMa-CH3	1 K38	C* 45 A 56 I
25	C*H12-COO-	-COO-CH2-CHCI-CHMa-C2H2	K31	C* 10 A 40 1
	C ₂ H ₁₇ -COO-	-COO-CH2-CHCI-CHMa-C2H4	K36	S 13 C 35 A 49 I
	C10H21-COO-	-COO-CHIZ-CHCI-CHMa-CZHZ	K 38	C" 41 A 52 I
	C ₂ H ₁₇ -COO-	COO-CH2-CHCI-CHMa-C2H3	SK6	C" 87 A 47 I
	C ₆ H ₁₇ -COO-	-COC-CH2-CH(OMe)-CHMe-CH2 1	K 25	S 10 C* 19 A 39 I
30	C ₂ H ₁₇ -CCO-	-COO-CH2-CH(OMe)-CHMe-C2H3	K 38	C* 16 A 37
	CHIT-COO-	-OOC-CHCI-CHIMe-CH2	K 88	S 85 C" 95 I
	C ₂ H ₁₉ -COO-	-OCC-CHCI-CHIM-CH2	K 68	S 82 C' 91 A 92 I
	CoH12-COO-	-OOC-CHCI-CHMa-CaMa	3 K 38	S 51 C 67 1
	C ₇ H ₁₈ -COO-	-OOC-CHCI-CHMa-CzHs	3 K7	C71
35	C ₂ H ₁₇ -CCO ₂	-COC-CHCI-CHMa-C2H3	3 K41	S 49 C* 71 1
	C18H21-COO-	-OOC-CHCI-CHMa-C2H5	3 K48	S 53 C" 80 I
	C*H12-COO-	-OCOO-CH2-CHCI-CHMe-C2H3	s KSS	5 49 1
	C.H17-COO-	OCOO-CH2-CHCI-CHMa-C2H3	3 K48	S 46 C* 53)
40	C+H++-COO-	-OCOO-CH2-CHCI-CHMa-C2Ha	3 K 54	S 54 C* 58 I
40	C#11-0C00-	-CO-CHMe-C ₂ H ₃		A 41.61

$$L$$
 R

10	<u> </u>	AI .	la	rcl
	CH-OCOO-	-COO-CHMe-CeHta	1 K <20	
	C _B H ₁₉ -OCOO-	-כסס-כון-בווכו-בוואו-בוו	1 K 68	C-361
	CaH18-0000-	-coc-chc-chm-ch-	1 K 50	1*55 0" 581
	C+H17-OCOC-	COC CHCI CHM CH	3 K 29	C' 29 A 41 1
15	CeH19-0C00-	COC-CHCI-CHIM-CHI		1°27 C° 431
	C*H12-OCOO-,	1	5 K 22	1°25 C° 37 (
	C ₂ H ₁₉ -OCOO-	-OOC-CHCI-CHMC2H4	5 K 15	1° 25 C' 39 I
	CoHyr	-CO-CH=CH-COO-CH2-CHM+-CH2	K 68.5	N401
	CrH18-		S K 40.4	S 68.71
20	CHITCH	OCH CHIME CHI	S X 70.2	S 83.7 H 88 I
	CioHaro	: OCH_CHMoC_Ha		H 78.3 C* 80.31
** **	C12H25-O	OCH_CHINGCH		873.9H77.4C'78.9A78.81-
	CaHtt-O-	CO-CH ₂ -CHM ₂ -C ₂ H ₂		C' 68.3 A 98.3
	CisHas-O	-CO-CH ₂ -CHM-C ₂ H ₆		1 38 A
25	CHH-O-	COO-CH_CHM+-C_H		S73.51
	C6H11-O-		S K 57.5	. A65.31
	CoHIS-C-	COO-CH-CHMa-CaHe	S K 48	A 661
	C ₂ H ₁₈ -O ₂	-COO-CH2-CHM+-C2H6	1	C*43A84.21
	C2H17-O-	-COO-CH-CHM-CHA		C'44 A 65.91
30	CyH ₁₉ -O-	-COO-CHCHMe-C2H8		C 38 A 64.41
	C18Har-O-	-COO-CH2-CHM-C2H6		C' 41.2 A 88.2 I
	C11H22-C)-		9 X 40	C 50 A 63 U
	C12H22-O-	-COO-CHCHM=-C2H2	S K 53.2	C*39 A 63.A1
	C19H27-C-	-COO-CH2-CHMa-C2H3		C* 51 A 64 U
35	C14H22-O-	-COO-CH_CHMe-CaHa	S K 81.1	A 61.71
	CHEC	-COO-CH2-CHCI-CH3-CH3	1 K36	C*4A301
	CHIPO	-COO-CH2-CHCI-CH2-CHMe-CH3	1 K35	SOC-30A401
	C ₀ H ₁₀ -C ₂	-соо-сну сно-сну-снм-сну	1 K 50	C* 36 A 45)
	C10121-O-	-COO-CH_CHCI-CHMa-CH3	1 K 28	C* 40 A 47 I
40	C11H22-O-	-COO-CH_CHCI-CHM-CH3		A471

$$L \longrightarrow R$$

10	jt.	<u> </u>	l rel
	CtgH25-C-	-COO-CHY-CHCI-CHY-CHN+-CH3 1 K 48	C* 42 A 48 I
	CoH13-C-	-OOC-CH_CHIMe-C2H4 S K 56	.2 S91.5 C* 94.5 I
	Capter-C	-OOC-CH_CHMa-C2H3 S K 65	7 H 63.4 C* 83.9 A 99.51
	C14H24C	-OOC-CH, CHM-CH, S K77	.5 C*83.4 A 89.51
15	C ₂ H ₁₇ -O-	-DOC-CHCI-CH-L-CHMCH- 1 K7	E6291713A7451
	CeHia-O-	-OOC-CHCI-CHI-CHIM-CH3 1 K71	C* 65 A 74 I
	CyH1E-C-	-OOC-CHCI-CHIM-CHI 1 K 54	C' 57 A 67.51
	CeH17-C-	-OOC-CHCI-CH ₂ -CHMa-CH ₃ 1 K 64	C* 58.5 A 67 I
	Celtie-O-	-OOC-CHCI-CH ₂ -CHM+-CH ₂ 1 K 67	C" 54 A 88.5 I
20	C2H5-CCC-	-OOC-CHM-O-CH ₂ -CHM-C ₂ H ₂ 3 K7	ı)
	C7H13-COO-	-CHL-CHM-CHI S K30	B 66 I
	C.H.; COO-	O-CHI_CHMo-CaHa S K 85	2 251
	C*H**-COO-	-O-CH ₂ -CHMo-C ₂ H ₆ 1 K7	· B1171
	CH13-COO-	-COO-CH2-CHM+C2H6 S K 22	A C' 184 A 51.91
25	C'H'12-COO-	-COO-CH ₂ -CHM+-C ₂ H ₆ S K 33	.7 C'33.1 A 57.1 i
	C_H17-COO-	COO-CH_CHIM-CHI S K35	
	C*HIP-COO-	-COO-CH_CHMe-C_Hs & K54	2 C' 47.4 A 61.51
	C10H21-COO-	-COO-CH ₂ -CHM+-C ₂ H ₀ S K 43	.9 C-49.6 A 62.31
	C11H2FCCO-	-COO-CH ₂ -CHM+-C ₂ H ₆ S K 45	C" 50.4 A \$3.8 I
30	C12H2FCOO-	-COO-CH2-CHMe-C2H6 S K41	2 C*50.5 A 89.8 I
30	C ₁₉ H ₂₇ -CCO	-COO-CH2-CHM+-C2H4 S K 52	.9 C*51.1 A 84,8 1
	C18H91-CCC-	-COO-CH2-CHM+C2H6 & K 60	.9 A6421
	CHI2COO-	-COO-CH2-CHCI-CH2-CH24-CH2 1 K Si	C-4A301
	C*H12-COO-	-COO-CH2-CHCI-CH2-CH36-CH3 1 K35	S 0 C* 30 A 40 I
	CtoHat-COO-	COO-CH ₂ -CHOI-CH ₂ -CHM+ CH ₃ 1 K 25	C* 40 A 451
35	CPH12-COO-	-COO-CH2-CH(OM+)-CH2-CHM+-CH4 1 K31	.7 A31.7 I
	C*H14-COO-	-COO-CH2-CH(OMe)-CH2-CHMe-CH3 1 K 38	2 A3721
	C ₁₈ H ₂₁ -COO-	-COO-CH2-CH(OMe)-CH2-CHMe-CH3 1 K 41	.5 A 43.4 I
	C12H25-COO-	-COO-CH_CH(OMe)-CH_CHMe-CH_ 1 K51	.7 A39.8 E
	C ₈ H ₁₇ -COO-	-OOC-CHCI-CH ₂ -CHM-CH ₃ 1 K 55	3 35 C* 88 A 70 I
40	•	11	•

$$L \longrightarrow R$$

	<u> </u>	1 ¹⁵ , 8	LÞ	a	tc)
	CHIPCOO.	400-010-01-011-01	1	K 54 ·	8 55 C 64 A 711
10	C ₂ H ₂ -DCCC-	-Ot-Om-CH	8	K 36.8	C" 24.5 N" 27 I
טז	CHIPOCOO.	-0-01-0311-016	3	K 🗱	· C*461
	Callandono.	-0-01-0111-01-1	=	K 56	C-47 NF 48.31
	CHIMOCOC	- ochowich	ᅧ	X.59	CHRAI
	C.) 10 0000	-coc-chip-chip-chip	1	X 20	rzcsi
	C.H. OCOO.	000010-01-010-01	} }	Ko	racasil
	C ₁ H ₁₀ -O-	-CH-CHI-CH		K14.1	8 54 2 64.91
15	CHIPO	-CH-CH-CH	a	KO	\$ \$7.9 H \$2.5 C* 68.1 1
	Callano	-Cylir Cittle-Cyli		K 58.4	8 49.3 H 50 C- 02.7 A 63.5 I
	Cuttyo	CH-CION-CH	d	X 47.3	· 351 H 53.5 C- 54.9 A 62.5 i
	CuMar C	-00-01-01-01-01-01-01-01-01-01-01-01-01-	1	X 96	licetà
	CHO	COCH CHI		K 60	C-SEA721
	Cultura	COCCHONICH	H	K 41	\$45-85 AFT U
20	Called	-CCO-C-H-C-DIN-C-H-	N	K 45	850 C STATE
	CHIPO	-cocchicametr	1	K7	G-82.5 A 53.1
	C_H _U -CO-	-cocchioneche	2	KTLE	A 112 U
	CHIFCO	COCCHECHNICH	1	KT -	868C WAATHAU
	CHITO	-cooch am-ch	1	K 30	Q*822A#1
	CHEO	-co-cy-com-cy-com-cy-	11	K 45	C-46 A 20 1
25	Callaro	COOCHCOMCHCOMCO	1	K 53	A 54 I
	Culture	-cochtam-chtam-ch	a	X 50	C-47 A 50 I
	CpHg-COO-	-cocche care che care care	a	X242	B 41.3 A 66.7 I
	CHIP-COO	COOCHE CHECHE CHECHE	la	X 38.6	J 385 C 43.8 A 831
	CHI COO	COO CAL CAM CAL CAM CAL	le	X 40.0	J' 39.8 C' 51.5 A 98.4 I
	Capter COO.	COO CHILOHIN CHILOHIN CH	s	K452	J" 42.8 C" 53.5 A 50.8 I
30	C11HPLCDO-	COOCH CHI CH CHI			J 49.5 C 55.8 A 56.5 I
	Cultur COO	-COO-CAT-CAM-CAT-CAM-CAF	ja	K 57,3	ASSS!
	Cubber	-O-Cally-Canas-Cath	14	K 22	COLSI
	Cutter	OCH-One-CH	12	X 28.6	COAL

10	L	R}	[Cr	LC)
	C.H17-O-	-OOC-CHF-CaH13	1 K?	C* 71
	CoHir-O-	-00C-CHCI-C ₂ H ₈	1 X 103.5	G* 107 I
	C+H13-O-	OOC-CHCI-C ² H ⁸	1 K98	H 87 G* 103 A 107 I
	CyHig-O-	-000-CHCI-C ₂ H ₃	1 K91.5	H 80 G' 83 F' 96 A 104 I
15	CeH17-O-	-000-CHCI-C*H*	1 K 98	H71 G" 91 F" 95 A 104 I
	C _p H ₁₉ -O-	-000-CHCI-CH4	SK?	G. <31
	C ₀ H ₁₉ -C-	-000-CHCI-C3H4	1 K 100	G' 85 F' 96 A 102.5 I
	C10H21-O-	450-CHG-C3H4		G* 82 F* 95 A 101 I
	C12H24-O-	-OOC-CHCI-C ₂ H ₈	1 K 96	G* 74 F* 95 A 100 I
20	CpH19-COO-	-000-CHG-C ₂ H ₈	1 K 123	S 132 I
	C.H17-0000-	-00C-CHCI-C3H6	1 K 62	. 170 CT 80 I
	C _e H ₁₇ -	-coo-cH2-CHCI-CH3	1 K38.5	A341
	CsH11-O-	-coo-cH₂-cHcI-cH₃	F K 80	A 92.51
	CyH13-O-	-coo-ch2-chci-ch3	A K73	A 36,41
25	C+Hzz-O-	-coo-cH ₂ -CHCI-CH ₃	F K79	A 36.7 1
	C ₆ H ₁₇ -O-	-COO-CH2-CHCI-CH3	R K77.5	A 86,21
	C ₆ H ₁₆ -O	-coo-ch2-chci-ch6	9 K B4	A 86.7 I
	C10H21-O-	-coo-ch _a -cha-ch _a -	F K 82.8	A 87 I
	C12H2s-C-	-coo-ch ₂ -chci-ch ₃	F K 85.6	A86.11
30	C10He1-O-	-COC-CH2-CHCI-CH3	1 K 96	5 95 S 108 I
	C*H12-COO-	-coo-cHz-CHCI-CH-	1 K 61.3	· E30.5 B 69.7 A 90.2 I
	C.H17-COO-	-C00-CH2-CHCI-C2H3	S K 25	C* 22 A 58 I
	C*H*=COO-	, -C00-CH ₂ -CHCI-CH ₃	1 K 48.4	A 80 1
35	C.H.7-COO-	-000-C*H*-CHCI-CH*	S K 50.4	J 53.2 53.2 A 85
30	CHIP-COO-	-coo-c ³ H ⁴ -cHc 1 -CH ³	5 K 53.8	J 57.4 A 67.5 1
	C10H21-COO-	-COO-C3H4-CHCI-CH3	S K 58.4	J 60.3 A 68.21
	C11H22-COO-	-000-0314-01101-0113	S K 88-2	J 63.7 A 69.3 I
	C13H27-COO-	-c00-c3H4-cHCI-CH3	S K 70.6	A 69.6 I
40	C*H*O-	-CO-CHBr-CH ₃	. [A 103 I
₩	C3H11-O-	-со-снвсн	2 K 91	A 99 I

	L		Cr	rcl
10	CoH15-O-	-CO-CH9r-CH ₂	2 K 85	A 99 I
	C7H13-O-		2 K 78	A 103 I
	C ₆ H ₁₇ -O-	•	2 K 84	A 103 J
	CoH10-O-	-со-снв-сн		A 1031
	C10H21-O-	-со-снв-сн		A 1031
15	C ₁₂ H ₂₂ -O-		2 K 95	A781
	C3H7-	-CF ₃	K 97	N-80 E
	C ₃ H ₂ -	-O-CF ₃	K 92	N-60 E
	C _i H ₁₁ -	S-CF ₃	K31	N-80 E
	C ₉ H ₁₁ -	O-CH ₂ -CF ₃	K 107	N-30 E
20	CaHite	-CO ₋ CF ₃	K.15	N_40.E
	C4H+O-	-C _a F ₁₃	K 85	\$ 1041
	C ₇ H ₁₅ -O ₂	-CF ₃	K 89	B 114.51
	CHIPO	-CFs	'K'115	N-20 E
	C ₄ H ₂ -O-	-S-CF ₃	K 82	N-40 E
25	CeHtr-O-	-coo-cH ₂ -C ₂ F ₁₂	K 85	C 109 A 1191
	C ₆ H ₁₇ -O-	-COO-C ₂ H ₄ -C ₄ F ₉	K 108	C 1121
	Celtir-O-	-COO-C2Hr-C4F13	K114	C 125 A 127 I
	C ₆ H ₁₇ -O-	-COO-C ₂ H ₄ -C ₉ F ₁₇	K 122	C 132 A 141 J
	CoH17-O-	-COO-C2H4-C10F21	K 141	
30	CH-NH-	-C ₆ F ₁₃	K 142	A 152 I S 168 I
	C2H3-NH-	-C ₀ F ₁₃	K 122	\$ 1741
	C3H3-NH-	-CoF13	K110	\$ 1341
	C.HNH-	-C ₂ F ₇	K117	
	C4He-NH-	-C ₆ F ₁₃	K 107	\$ 123 1
35	CsH11-NH-	-C ₃ F ₇	X 108	\$ 1451
	C ₆ H ₁₁ -NH-	-CoF13	K 108	\$1111
	CoH17-NH-	-C ₆ F ₁₃	K 115	S 133
	C ₆ H ₁₇ -OOC-	-O-C2H4-C4F13	K7	\$ 1131
	CaH ter COO-			CTATI
40	1	-CF ₃	K 63.3	E 74 B 108.3 I

L	\mathcal{L}	-{	-R
<u> </u>			

	<u> </u>	jė	0	៤)
10	CHACHMA-CHACHCACO	-OCH-CIFE	1 K#8	A 561
	CHOMORO	40-40-000-841-00-	S K BZ	Aesi
	Chit cum cut coc.	-D-Cyllig-O-CH-CHg	S K 27.8	C 202 A 22.3 I
	CHI-CHIN-CH-COC-	-o-cyt-coc-cyt-cyt-	8 K 53	A421
	Chrame ar ooc	-OCHIPOOCOHCH	5 X 28	C 13 A 36 1
	C'HP-CHMP-CHF-COC-	-0-Cm/m-000-CH-CH-	8 K48	C-42 A 64 1
15	Calle Citie Cite COC-	PHO-HO-200-1941/2-0.		A43.71
15	Chromoroc.	-o-chi-at-at-	8 K20	C*29 A 63 I
	CHECHNECH COC	-000-CHH-CH-CH-	8 X 44.5	G-417A71
	CAMPON-COO-	-coccas.chf	3 K?	B 162.1 & 167 I
	CHI-CHP-CCC-	-00CCI#C#+	3 X 102.4	,a tan.s i
	CHIPOIF-CH-C-	-0-C34-C4-	1 K7	547 5 87 5 91 5 97 C" 172 A 130 I
	Caff-Catch-Coo-	-000 CHIS-CH-		8 102,4 \$ 103,3 (
20	CH-CHG-COC-	-coc-chta-c*H*	3 K 22.0	3 103 3 102.2
	ar-ala-co-	-O-CHF-CHF-CHF	1 K 99	E 1124 2 1161
	cut-cuc-coo-	-0-CH+CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-C	1 K 112	A 1051
	Coft to Citylan Or	-cco-cs+c5-	K 95	• \$42A1131
	CyFer-CerHen-O-	-000-014_0,7%	K 103	C 1161
	H-C-CH-CH-COC-C-H-F-C-	-000-כיוויים-מוי-מו-מוי	K78	. •
25	Hic-chchio	- OCH-CH-CH-	K51.2	* 119.5 1
	CHICE	البائن عيد	KOL	8 86 1
	[CHIPCEC	· CECCHIA	R7	E73

L			R
F	_/	<u> </u>	

	<u> </u>	R	1	i Cr	L LCI
10	CH-COC	OCHIPCH-CH		K 95	E 110)
	CH-OOC-	-OOC-C ₂ N ₁ -CH-CH ₂		K 42	
	CH-OOC-CHRH-OOC-	ocalination		K 46	Assu
	CHISO	och, al-al		K 102	5 102 5 105 [
	Colum	H-3=3-		KALA	
	Catter	c:con		X eo.s	8 10.7
	Ot-O	0000==0==0			883.41
15	CH/O-		1	K &4	H ad 1
	are	-ochirocostalaces	11	X.76	S 106 t
	. Cityo	-00СС/4-С=СН		K 92	M 60.1 /
	- -	-000-CH-CCH		K76.7	Hazel
	Chrame and an ooc	- 0 -C11/61-0-01-01/			832 C-347 A 84.3 I
	Chraim-aicrair-coc	-0-CM-0-CM-CM-	14	K 84.2	1
20	ch-cum-cuc-cu-coc	-ochi-odi-ali	В	K 40	C*26.5 A 55 I
20	CM-Cam-Cacchace	-ಎಲ್ <u>ರ</u> ಚ್ಚಾರಿಯ <u>+</u> ದಿಕ್ಕ	.2	ES .	G-7.651.31
	CHAIN-GIGGEOC	-0-G1:N-2-CH-CH-	ᆲ	K 41.9	. C. SI Y3071
	CHI CHMO O	-o-al-al-al-		K77	3 65 1
	CH-CHH-CHC-CCC			X 91	,
	CH-CHH-CHC-COO-	OCHITCHEON		K41	C 35 A 51 1
	CH-CH-CHCCC	OCH CH-CH		K49	
25	Calle CHC CHC COO				C'39ARI
	CH-CHI-CH-	COO-CH-CHM-C-M-		K-4	C'48A801
	CH-ON-OL				N-70E
	CH, CHILO	-COO-CH ₂ -C ₇ F ₁₄			A 101 I
	lot-to-compage	-000-014-C ₁ F ₁₈	1	KT	H 96 A 115 I

10	t,	ı aj] 🛛 📗	rc)
	Catty	-O-CF ₂ -H	K 84	N-30 E
	Collo	-S-CF ₂ H	X.58	N-70 E
	Cytic-	SO-CF-H	K72	N-70 E
	C7H16-	-SO _F CF _F H	K 50	N-110E
15	C ₀ H ₁₂ -O-	-0-CF_H	K 104	N 20 E
	GH17-O-	-COO-CHCF ₂ -C ₂ H ₁₃	K 45.5	E 69 A 741
	C#H17-OCOO-		1 K?	8 5 8 25 1
	CHIT-O-		1 X 42	A 351
	CeH11-	-01-01-	K 122	N 51.5 U
20	Cally	OCCCHECHCHIS	K36	E 59 B 66 N 75 1
	GH-O-	OC11H22OCH-CH2	K95	
	C.H.O.	-coo-c44-00c-c4-c44	K7	\$ 551
•	CH12-O	-000-C4H4-000-CH4-CH4-	KBL1	\$ 91.71
	GH17-O-	-OOC-C2H4-CHM+-CH2-OOC-CH=CH2	1 K 48.7	\$ 73.91
25	Culti-	-0-CH_CH-CH-CH-CH11	K75	E 031
	GH ₂ O	-0-C4H12-0-CH2-CH2-CH3	K 101	N 98 I
	CHIS-O-	ochieochechech	K 100	3 99 1
	CH ₂ O-	och och och och chat	K73	X 83 I
	Calla-OOC-CHMa-OOC-	ochirochechech	1 K 10	A 20 I
30	CH-O-	OCCCHECHICH	K70	N 761
	Culte-	-CIH-CH-CH	K?	B 26.3 i
	Caller	-CH-CH-CH ₂	K24.4	B 38.5 I
	Calle-	-Catter-CH-CH	K9A.	B 28.2 1
	Caller	-CeH12-CH=CH2	K-24.6	B 42.41
3 5	CH-O-	-O-C ₆ H ₁₂ -CH=CH ₂	K 96	E 108 i
	CH15-O	-O-CoHig-CH=CH2	K 113	S 112 I
	CH_00C-	-O-CHU-CH-CH	K 103	E 123 S 127 I
	CH ₂ O-	-O-C*H18-CH=CH2	K 81	E 1081
40	CH3-C-	-OOC-CHHIR-CH-CH2	K75	N 79 I

[0016] The liquid crystalline charge transfer materials of the present invention are useful for a variety of applications such as optical sensors, electro-luminescent elements, photoconductors, spacial optical modulators and thin-film transistors.

45

[0017] The liquid crystalline charge transfer materials of the present invention can attain high mobility of electric charges, and prevent the formation of structural traps. Therefore, optical sensors having high-speed responsibility can be mentioned as a primary application of these materials. Secondarily, the materials of the present invention are excellent in charge transferability, and they themselves are fluorescent, so that they can be used for charge transfer layers in electro-luminescent elements which can be produced with the mobility maintaining high. Moreover; the materials of the invention are such that orientation in an electric field and photoconductivity can be switched at the same time. Therefore, they can be used for image-displaying elements.

[0018] Figs. 1 to 4 are views for illustrating typical examples of the application of the charge transfer materials of the present invention to electro-luminescent elements. The simplest structure of the elements is shown in Fig. 1, in which a luminescent layer (charge transfer layer) 10, 14 is formed as a single layer; and sandwiched between a cathode

(transparent electrode) 13 provided on a transparent substrate 15 and an anode 13' provided on a substrate 15. Reference numeral 16 indicates a spacer. Only when the charge transfer material has both charge transferability and fluorescence like the liquid crystalline charge transfer materials of the present invention, it is possible to produce an electroluminescent element having the above structure. In this case, in order to obtain strong luminescence, it is preferable that a material having a low work function be selected as a material for forming the cathode which acts as an electron injector and that a material having a work function which is equal to or greater than the work function of the cathode be selected for forming the anode.

[0019] Examples of materials for forming the anode generally include ITO, indium code, tin oxide (doped with anti-mony, arsenic, or fluorine), Cd₂SnO₄, zinc oxide, copper iodide, alkaline or alkaline earth metals such as sodium, potassium, magnesium and lithium, sodium-potassium alloys, magnesium-indium alloys, magnesium-silver alloys, aluminum, gold, silver, gallium, indium and copper, and those materials which are used for forming the cathode.

[0020] A material for forming the luminescent layer or charge transfer layer is composed of a charge transfer material and a luminescent material. The charge transfer material is preferably an electron-hole transfer material, a mixture of electron-hole transfer materials, or a mixture of an electron transfer material and a hole transfer material. However, in the case where luminescence at the surface of the electrode is utilized, a material which transfers only electrons or holes may also be used. Since the charge transfer materials of the present invention themselves are fluorescent, it is not necessary to use any luminescent material in the present invention; however, such a material may also be used along with the materials of the invention.

[0021] Further, in the case of an electro-luminescent element having a structure as shown in Fig. 3 or 4, the thickness of a luminescent layer. (luminescent material). 10 is so made that the transfer of electrons or holes will not be impeded. The thickness of the luminescent layer is preferably from 0.2 to 15 µm; and it can be adjusted by scattering spacer particles in the luminescent material, or by a sealer to be provided around the periphery of the cell.

[0022] Figs. 5 to 7 are views for illustrating typical examples of the application of the charge transfer materials of the present invention to optical sensors. An optical sensor is composed of electrodes 13, 13', and a liquid crystalline charge transfer material 14 of the present invention. For optical sensors, such a property that the value of electric current changes when light is applied to the charge transfer materials can be utilized.

[0023] Fig. 8 is a view for illustrating a typical example of the application of the charge transfer materials of the present invention to image-displaying elements. An image-displaying element is composed of a transparent substrate 15 such as a glass plate, a transparent electrode 13 made from ITO (indium titanium exide) or the like, a charge-generating layer 14' which generates carriers correspondingly to light applied to this layer, a liquid crystalline charge transfer material 14 of the present invention and a counter electrode (gold electrode) 13', which are successively laminated in the mentioned order. When light is applied image-wise (input image) to the lower part (transparent substrate) of the element, molecules in the liquid crystalline charge transfer material are oriented correspondingly to the light applied, and carriers flow toward the counter electrode (gold electrode) 13'. By optically reading this orientation of molecules in the liquid crystal, the input image can be reproduced. If the above liquid crystal is highly smectic, the orientation of molecules in the liquid crystal is maintained for a long time, and the input information can thus be maintained for a long time.

[0024] Fig. 9 is a view for illustrating an example of the application of the liquid crystalline charge transfer materials of the present invention to a charge transfer layer 14 in an image-recording device. While applying voltage to upper and lower electrodes 13 and 13' as shown in Fig. 9, light is applied pattern-wise to the upper part of the device. In a charge-generating layer 14', carriers are generated pattern-wise; and charges transferred by the charge transfer layer 14 are discharged in the space 19, and reach the surface of an information-recording layer 11.

[0025] The information-recording layer is a liquid crystal-polymer composite layer consisting of a smectic liquid crystal and a polymer. Molecules in the liquid crystal are oriented pattern-wise by an electric field produced by accumulated charges, and accumulated. Optical reading can thus be conducted.

45 [0026] Fig. 10 also shows an information-recording device. Application of voltage and that of light are conducted in the same manner as in the case of the information-recording device shown in Fig. 9. Charges generated (image) are accumulated on the upper surface of a dielectric layer 20, and optical reading can thus be conducted.

[0027] Further; the liquid crystalline charge transfer materials of the present invention can also be used for a spacial optical modulator as schematically shown in Fig. 11. Moreover, they can also be used as an active layer in a thin-film transistor. For example, as shown in Fig. 12, the above-described liquid crystalline material can be used by providing it on a substrate on which a source electrode, a drain electrode and a gate electrode have been arranged.

[0028] The present invention will now be explained more specifically by referring to the following Examples. However, the present invention is not limited by these examples.

SS Example A1

· 本名 · 後 · 本 · 本 ·

[0029] 4-Heptyloxybiphenylcarbonic acid (manufactured by Teikoku Chemical Industries Co., Ltd., Japan) and 7-hydroxy-4-methylcumarin (synthesized in accordance with the description in *J. Chem. Soc. Chem. Commun.*, (2) 225-

226, 1995) were dissolved in 4-pyridinyl phenol, and dehydration condensation was then carried out at 90°C by using 1,3-dicyclohexylcarbodiimide to synthesize 7-hydroxy-6-(4-heptyloxybiphenylcarboxy)-4-methylcumarin.

Example A2

5

[0030] Two glass substrates, each having thereon an ITO electrode (surface resistance: 100 to 200 Ω/D) formed by means of vacuum deposition were bonded with the ITO electrodes facing each other; a gap being provided between the substrates by using spacer particles, thereby obtaining a cell. Into this cell, the 7-hydroxy-6-(4-heptyloxybiphenyl-carboxy)-4-methylcumarin obtained in Example A1 was injected under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell, luminescence originating from the above compound was observed.

Example A3

[0031] A glass substrate on which an ITO electrode (surface resistance: 100 to 200 Ω/□) had been provided by means of vacuum deposition, and a glass substrate on which an Ag electrode (specific resistance: 1 Ω/cm or less) film thickness: 3,000 Å) had been provided were bonded with the electrodes facing each other, a gap being provided between the substrates by using spacer particles, thereby obtaining a cell. Into this cell, a liquid crystalline material which was the compound obtained in Example A1 was injected under the condition of 11°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example A4

[0032] A cell having the structure shown in Fig. 2 was made by using a liquid crystalline material which was the compound obtained in Example A1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example A5

30

35

[0033] A cell having the structure shown in Fig. 3 was made by using a liquid crystalline material which was the compound obtained in Example A1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example A6

[0034] A cell having the structure shown in Fig. 4 was made by using a liquid crystalline material which was the compound obtained in Example A1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example B1

45 [0035] Two glass substrates, each having thereon an ITO electrode (surface resistance: 100 to 200 Ω/D) formed by means of vacuum deposition were bonded with the ITO electrodes facing each other, a gap being provided between the substrates by using spacer particles, thereby obtaining a cell. Into this cell, benzthlazole liquid crystal (2-(4-heptyloxy-phenyl)-6-dodecylbenzothiazole, Crystal-90°C-SmA-100°C-Iso.) was injected under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell, luminescence originating from the above compound was observed.

Example B2

[0036] A glass substrate on which an ITO electrode (surface resistance: 100 to 200 Ω/□) had been provided by means of vacuum deposition, and a glass substrate on which an Ag electrode (specific resistance: 1 □/cm or less, film thickness: 3,000 Å) had been provided were bonded with the electrodes facing each other, a gap being provided between the substrates by using spacer particles, thereby obtaining a cell. Into this cell, a liquid crystalline material which was the compound obtained in Example B1 was injected under the condition of 110°C. When a direct current electric field

of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example B3

6

10

...

[0037] A cell having the structure shown in Fig. 2 was made by using a liquid crystalline material which was the compound obtained in Example B1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example B4

[0038] A cell having the structure shown in Fig. 3 was made by using a liquid crystalline material which was the compound obtained in Example B1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

Example B5

20 [0039] A cell having the structure shown in Fig. 4 was made by using a liquid crystalline material which was the compound obtained in Example B1, where the liquid crystalline material was injected into the cell under the condition of 110°C. When a direct current electric field of 250 V was applied to this cell in a dark room, luminescence originating from the above liquid crystalline material was observed.

25 Claims

30

 A liquid crystalline charge transfer material having the following structure (A) containing a fluorescent skeletal structure Y, and the core Z of a liquid crystal:

- in which R₁, which may directly be combined with Z without interposing X₁, represents a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X₁ and X₂ represent oxygen atom, sulfur atom, or -CO-, -COO-, -N=CH-, -CONH-, -NH-, -NHCO- or -CH₂- group.
- 2. The liquid crystalline charge transfer material according to claim 1, wherein Z has a structure represented by Z₁ or Z₁-Z₂-Z₃, in which Z₁ and Z₃ are (6π electron system aromatic ring)_n (10π electron system aromatic ring)_n or (14π electron system aromatic ring)_n (where I, m and n are an integer of 0 to 4, provided that I + m + n = I to 4), and Z₂ is -CH=CH-, -C=C-, -N=N-, -CH=N- or -COO- group, or Z₁ and Z₃ are directly combined with each other.
- 3. The liquid crystalline charge transfer material according to claim 1 or 2, wherein Y is selected from radicals of metal chelate compounds, polycyclically condensed or conjugated aromatic hydrocarbons, diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, bisstyryl derivatives, benzothiazole derivatives, benzothiazole derivatives, azole derivatives, aromatic diamine derivatives, quinacridone compounds, perylene compounds, oxadiazole derivatives, cumarin compounds and anthracene derivatives.
- 4. An electro-luminescent element containing in its driving path at least one material set forth in any one of claims 1 to 3.
 - All electro-luminescent element whose charge transfer part and luminescent part are made from at least one material set forth in any one of claims 1 to 3.
 - An electro-luminescent element which contains in its driving path at least one material set forth in any one of claims
 to 3 and whose charge transfer part and luminescent part are composed of a single layer.

- 7. All optical sensor containing in its driving path at least one material set forth in any one of claims 1 to 3.
- 8. A photoconductor containing in its driving path at least one material set forth in any one of claims 1 to 3.
- 9. An image-displaying element containing in its driving path at least one material set forth in any one of claims 1 to 3.
 - 10. A special optical modulator containing in its driving path at least one material set forth in any one of claims 1 to 3.
 - 11. A thin-film transistor containing in its driving path at least one material set forth in any one of claims 1 to 3.
 - 12. A liquid crystalline charge transfer material having the following skeletal structure (B) containing the fluorescent core Y of a liquid crystal:

in which H_1 and H_2 , which may directly be combined with Y without interposing X_1 and X_2 , each represent a saturated or unsaturated, and linear, branched or cyclic hydrocarbon group having 1 to 22 carbon atoms; and X_1 and X_2 represent oxygen atom, sulfur atom, or -CO-, -COO-, -N=CH-, -CONH-, -NH-, -NHCO- or - CH₂- group.

- 13. The liquid crystalline charge transfer material according to claim 12, wherein Y is (6π electron system aromatic ring)_b (10π electron system aromatic ring)_m or (14π electron system aromatic ring)_n (where I, m and n are an integer of 0 to 4, provided that I + m + n = 1 to 4), and the aromatic rings may be combined through -CH=CH-, -C=C-, -N=N-, -CH=N- or -COO- group.
- 14. The liquid crystalline charge transfer material according to claim 12, wherein Y is selected from radicals of metal chelate compounds, polycyclically condensed or conjugated aromatic hydrocarbons, diphenylethylene derivatives, triphenylamine derivatives, diaminocarbazole derivatives, bisstyryl derivatives, benzothiazole derivatives, diamine derivatives, quinacridone compounds, perylene compounds, oxadizole derivatives, cumarin compounds and anthracene derivatives.
- 15. An electro-luminescent element containing in its driving path at least one material set forth in any one of claims 12 to 14.
 - 16. An electro-luminescent element whose charge transfer part and luminescent part are made from at least one material set forth in any one of claims 12 to 14.
- 40 17. An electro-luminescent element which contains in its driving path at least one material set forth in any one of claims 12 to 14 and whose charge transfer part and luminescent part are composed of a single layer.
 - 18. An optical sensor containing in its driving path at least one material set forth in any one of claims 12 to 14.
- 45 19. A photoconductor containing in its driving path at least one material set forth in any one of claims 12 to 14.
 - An image-displaying element containing in its driving path at least one material set forth in any one of claims 12 to 14.
- 50 21. A spacial optical modulator containing in its driving path at least one material set forth in my one of claims 12 to 14.
 - 22. A thin-film transistor containing in its driving path at least one material set forth in any one of claims 12 to 14.

55

10

20

25

F | G. |

F I G. 2

F I G. 3

FIG. 6

FIG. 7

FIG. 8

F1G. 9

F1G. 10

F1G. 11

F16.12

EUROPEAN SEARCH REPORT

Application Number EP 98 12 0668

!	DOCUMENTS CONSID	DERED TO BE RELEVANT		
Category	Citation of document with of relevant pas	indication, where appropriate, sages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.CLB)
X	EP 0 763 532 A (DA 19 March 1997 * the whole docume	INIPPON PRINTING CO LTD)	1-22	C09K11/06 H05B33/14 C09K19/00
x		R (DE); FUNHOFF DIRK)	1-22	
اً ويست د	capability" CHEMISTRY LETTERS, 1 303-304, XP00208849	ectron transporting April 1997, pages	1-22	· · ·-
P,X	* the whole document DE 198 09 944 A (MI 1 October 1998 * the whole document	ERCK PATENT GMBH)	1-22	
.	EP 0 860 417 A (DA) 26 August 1998 * the whole documen	INIPPON PRINTING CO LTD)	1-22	TECHNICAL FIELDS SEARCHED (Int.Cl.6)
	homologous series: 7-(4'-n-alkoxybenzo s II. 4'-formylpher 7-n-alkoxycoumarin- MOLECULAR CRYSTALS	I. pyloxy)-3-acetylcoumarin nyl	1-22	H058
		-/		
	The present search report has	been drawn up tor all claims		Exemples
	THE HAGUE	18 December 1998	Sha	ade, M
X : partic Y : partic docus A : techn O : non-	ATEGORY OF CITED DOCUMENTS cutarly relevant if taken alone cutarly relevant if combined with ano ment of the same category nological background written disclosure mediate document	T: theory or principle E: earlier patent doc after the filing date	underlying the urners, but pub the application of other reasons	invention dished on, or

EUROPEAN SEARCH REPORT

Application Number EP 98 12 0668

	DOCUMENTS CONSID	ERED TO BE RELEVANT		ļ	
Category	Citation of document with it of relevant pass	ndication, where appropriate, ages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)	
X	NAKAI ET AL: "Ther properties of liqui coumarin skeleton" BULLETIN OF THE CHE vol. 56, 1983, page XP00208B496 * tables 1-5 *	d crystals with a MICAL SOCIETY OF JAPAN,	1-22		
X	ethylcarbazoles" MOLECULAR CRYSTALS	aviour of xybenzylideneamino)-9-m AND LIQUID CRYSTALS, es 105-117, XP002088497	1-22		
x	EP 0 677 565 A (CAN + page 8 - page 153		1-22		
X	EP 0 357 372 A (SUM 7 March 1990 * page 13, line 30	ITOMO CHEMICAL CO) — page 19, line 24 *	1-22	TECHNICAL FIELDS SEARCHED (Int.Cl.6)	
	The present search report has I	been drawn up for all claims			
	Place of search	Date of completion of the search		Extrniner	
THE HAGUE CATEGORY OF CITED DOCUMENTS X : particularly relevant if taken alone y : particularly relevant if combined with another document of the same category A : technological background C : non-written disclosure P : intermediate document		T: theory or principle E: earter patent doc after the titing dat b: document cited is 1: document cited for	18 December 1998 Shall T: theory or principle underlying the in E: earlier patient document, but public after the titing date D: document cited in the application L: document cited for other reasons A: member of the same patent tamby document		

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 98 12 0668

This arms; lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on:
The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

18-12-1998

Cit	Patent document ed in search repo		Publication date		Patent family member(s)	Publication date
EP	0763532	A	19-03-1997	JP	9059266 A	04-03-199
				JP	9059267 A	04-03-199
				JP	9255670 A	30-09-199
				US	5766510 A	16-06-199
_				JP	9316442 A	09-12-199
WO	9517018	A	22-06-1995	DE	4343412 A	22-06-199
				CN	1137841 A	11-12-199
				EP	0734592 A	02-10-199
				JP.	_9506646 T	30-06-199
DE	19809944	A	01-10-1998	NON	ξ.	
EP	0860417	A	26-08-1998	JP	10231260 A	02-09-199
EP	0677565	A	18-10-1995	JP	8092558 A	09-04-199
				US	5688437 A	18-11-199
EP	0357372	A	07-03-1990	DE	68919391 D	22-12-199
				ÐΕ	68919391 T	18-05-199
				JP	2131443 A	21-05-199
				JP	2727675 B	11-03-199
				US	5385693 A	31-01-199
				US	5124070 A	23-06-199
				US	5264151 A	23-11-199
				JP	2131448 A	21-05-199
				JP	2725397 B	11-03-199
				JP JP	2174743 A	06-07-199
				JP	2734676 B 2167251 A	02-04-199 27-06-199
				JP	2743506 B	27-06-199 22-04-199
				JP	2196755 A	03-08-199
				JP	2811788 B	15-10-199

For more details about this annex : see Official Journal of the European Patent Office, No. 12/82