MA1200 Calculus and Basic Linear Algebra I

Lecture Note 7 Continuity of functions

What is continuous function?

Roughly speaking, a continuous function f(x) is a function which the graph y = f(x) is continuous (no jumps, no breaks).

Mathematical definition of continuity

Definition (Continuity of function f(x))

We say a function is continuous at x = c if both $\lim_{x \to c} f(x)$ and f(c) exist and

$$\lim_{x\to c}f(x)=f(c).$$

Furthermore, we say a function is continuous on its domain if it is continuous at every point of its domain.

If the condition " $\lim_{x\to c} f(x) = f(c)$ " does not satisfy, we say the function is not continuous at x=c. For example

$$\lim_{x \to c} f(x) \neq f(c)$$

$$\lim_{x \to c} f(x) \text{ does not exist}$$

$$\left(\lim_{x \to c^{-}} f(x) \neq \lim_{x \to c^{+}} f(x)\right)$$

Notes on continuity

- Most of the elementary functions such as $y=x^3$, $y=e^x$, $y=\cos x$, $y=\sqrt{x}$, y=|x| are all continuous on its domain.
- To check the continuity of a function at x = c, we may follow the following procedure:

Step 1: Compute f(c)

Step 2: Compute $\lim_{x\to c} f(x)$

(Note: If necessary, one needs to consider the left-hand limit and right-hand limit when computing

$$\lim_{x\to c} f(x)$$

Step 3: Compare the limits with f(c).

Consider the function

$$f(x) = \begin{cases} \frac{\sin 3x}{x} & \text{if } x \neq 0 \\ 2 & \text{if } x = 0 \end{cases}.$$

Is f(x) continuous at x = 0?

Solution:

Step 1: First, note that f(0) = 2 by definition.

Step 2:
$$\lim_{x \to 0} f(x) \stackrel{\text{x \neq 0}}{=} \lim_{x \to 0} \frac{\sin 3x}{x} = \lim_{x \to 0} 3 \left(\frac{\sin 3x}{3x} \right) \stackrel{\lim_{\theta \to 0} \frac{\sin \theta}{\theta}}{=} 1$$
 $3 \times 1 = 3$.

Step 3:
$$\lim_{x\to 0} f(x) = 3 \neq 2 = f(0)$$
.

Therefore, we conclude that f(x) is not continuous at x = 0.

Consider the function

$$f(x) = \begin{cases} 2x+1 & if \ x < 1 \\ 3x^2 & if \ x \ge 1 \end{cases}.$$

Determine whether the function is continuous at x = 1.

© Solution:

Step 1: First, note that $f(1) = 3(1)^2 = 3$.

Step 2: Note that

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (2x + 1) = 3, \qquad \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} 3x^{2} = 3.$$

So the limits $\lim_{x\to 1} f(x)$ exists and $\lim_{x\to 1} f(x) = 3$.

Step 3:
$$\lim_{x \to 1} f(x) = 3 = f(1)$$
.

Therefore, we conclude that f(x) is continuous at x = 1.

Consider the function

$$f(x) = \begin{cases} \frac{x^2 - 3x - 10}{x - 5} & \text{if } x \neq 5\\ a & \text{if } x = 5 \end{cases}$$

where a is real number.

- (a) If a = 4, is f(x) continuous at x = 5?
- (b) What is the value of a so that f(x) is continuous at x = 5?

• Solution:

(a) Step 1: By definition, we get f(5) = a = 4.

Step 2: For
$$x \neq 5$$
, we have $f(x) = \frac{x^2 - 3x - 10}{x - 5}$.

$$\lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 3x - 10}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 2)}{x - 5} = \lim_{x \to 5} (x + 2) = 7.$$

Step 3:
$$\lim_{x \to 5} f(x) = 7 \neq 4 = f(5)$$
.

Hence, the function is not continuous at x = 5 in this case.

(b) If f(x) is continuous at x = 5, then we must have

$$\lim_{x\to 5} f(x) = f(5).$$

Using the result in (a), we obtain

$$\underbrace{a}_{f(5)} = \underbrace{7}_{\underset{x \to 5}{\lim}} f(x)$$

Some properties of continuous functions

Theorem 1 (Basic algebraic operation of continuous functions)

If f(x) and g(x) be continuous at x = c, then the function

$$kf(x), \quad f(x) + g(x), \quad f(x) - g(x), \quad f(x)g(x), \quad \frac{f(x)}{g(x)}(if \ g(c) \neq 0), \quad |f(x)|$$

are all continuous at x = c.

Theorem 2 (Composition of continuous functions)

If f(x) is continuous at c and g(x) is continuous at f(c), then the composition $(g \circ f)(x)$ is also continuous at x = c

$$\lim_{x \to c} (g \circ f)(x) = \lim_{x \to c} g(f(x)) = g\left(\lim_{x \to c} f(x)\right) = g(f(c)).$$

(*Note: Theorem 2 is quite useful in computing limits)

Let $f(x) = \cos x$ and $g(x) = e^x$ are continuous function over the real number. Using Theorem 1 and 2, we can conclude that the following functions

$$kf(x) = k\cos x, \qquad f(x) \pm g(x) = \cos x \pm e^x$$

$$f(x)g(x) = e^x \cos x, \qquad \frac{f(x)}{g(x)} = \frac{\cos x}{e^x} (e^x \neq 0)$$

$$|f(x)| = |\cos x|, \qquad (g \circ f)(x) = g(f(x)) = g(\cos x) = e^{\cos x}$$

are all continuous over real number.

Theorem 3

If f(x) is a continuous function and g(x) is a function (may not be continuous), then we have

$$\lim_{x \to c} f(g(x)) = f\left(\lim_{x \to c} g(x)\right)$$

provided that the limits $\lim_{x\to c} g(x)$ exists.

Example 5

Compute $\lim_{x \to \pi} \sin(x + \cos x)$ and $\lim_{x \to 1} \cos \frac{\sqrt{x+3}-2}{x-1}$.

© Solution:

1st limit

Note that $f(x) = \sin x$ is continuous, then

$$\lim_{x \to \pi} \sin(x + \cos x) = \sin\left(\lim_{x \to \pi} (x + \cos x)\right) = \sin(\pi - 1) \approx 0.8415.$$

2nd limit

Note that $g(x) = \cos x$ is continuous, then

$$\lim_{x \to 1} \cos \frac{\sqrt{x+3}-2}{x-1} = \cos \left(\lim_{x \to 1} \frac{\sqrt{x+3}-2}{x-1} \right) \dots \dots (*)$$

Note that

$$\lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x+3} - 2}{x - 1} \left(\frac{\sqrt{x+3} + 2}{\sqrt{x+3} + 2} \right) = \lim_{x \to 1} \frac{\overbrace{x+3-2^2}}{(x-1)(\sqrt{x+3} + 2)}$$

$$= \lim_{x \to 1} \frac{1}{\sqrt{x+3} + 2} = \frac{1}{\sqrt{1+3} + 2} = \frac{1}{4}.$$

From (*), we conclude that

$$\lim_{x \to 1} \cos \frac{\sqrt{x+3} - 2}{x-1} = \cos \left(\frac{1}{4}\right) = 0.9689.$$

Let $f: \mathbb{R} \to \mathbb{R}$ be a function (may or may not continuous) such that $\lim_{x\to 0} \frac{f(x)}{x^3} = \frac{\pi}{2}$. Compute the limits

(a)
$$\lim_{x\to 0} f(x)$$
 and (b) $\lim_{x\to 0} e^{\cos\left(\frac{f(x)}{x^2}\right)}$.

© Solution:

(a) Note that
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{f(x)}{x^3} x^3 = \frac{\pi}{2} \times 0 = 0$$
.

(b) Note that the function $e^{\cos x}$ is continuous (see Example 4) and

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f(x)}{x^3} x = \frac{\pi}{2} \times 0 = 0.$$

So using Theorem 3, we have

$$\lim_{x \to 0} e^{\cos\left(\frac{f(x)}{x^2}\right)} = e^{\cos\left(\lim_{x \to 0} \frac{f(x)}{x^2}\right)} = e^{\cos 0} = e^1 = e.$$

- (a) Find the limits $\lim_{x\to 0^+} \frac{1}{x}$ and $\lim_{x\to 0^-} \frac{1}{x}$.
- (b) Hence, determine if the limits $\lim_{x\to 0} \frac{1+2^{1/x}}{3+2^{1/x}}$ exists.
- © Solution:
- (a) Using the graph of $y = \frac{1}{x}$, one can see that $\lim_{x\to 0^+} \frac{1}{x} = +\infty$ and $\lim_{x\to 0^-} \frac{1}{x} = -\infty$.
- (b) We consider the left-hand limits and right-hand limits.
 - Left-hand limits

When $x \to 0^-$, then $\frac{1}{x} \to -\infty$. So we have

$$\lim_{x \to 0^{-}} \frac{1 + 2^{1/x}}{3 + 2^{1/x}} = \frac{1 + 2^{\lim_{x \to 0^{-}} \frac{1}{x}}}{3 + 2^{\lim_{x \to 0^{-}} \frac{1}{x}}} = \frac{1 + 2^{-\infty}}{3 + 2^{-\infty}} \stackrel{2^{-\infty} = \frac{1}{2^{\infty}} \to 0}{\stackrel{2}{=} \frac{1}{3}}.$$

Right-hand limits

When
$$x \to 0^+$$
, then $\frac{1}{x} \to +\infty$, $2^{\frac{1}{x}} \to 2^{+\infty} = +\infty$ and hence $\frac{1}{2^{\frac{1}{x}}} = 0$.

So we have

$$\lim_{x \to 0^+} \frac{1 + \overbrace{2^{1/x}}^{\to \infty}}{3 + \underbrace{2^{1/x}}_{\to \infty}} = \lim_{x \to 0^+} \frac{\frac{1}{2^{1/x}} + 1}{\frac{3}{2^{1/x}} + 1} = \frac{0 + 1}{0 + 1} = 1.$$

Since $\lim_{x \to 0^{-}} \frac{1+2^{1/x}}{3+2^{1/x}} \neq \lim_{x \to 0^{+}} \frac{1+2^{1/x}}{3+2^{1/x}}$, so we conclude that the limits

$$\lim_{x \to 0} \frac{1 + 2^{1/x}}{3 + 2^{1/x}}$$

does not exist.

Important property of continuous function

Theorem 4 (Intermediate Value Theorem)

If f(x) is a continuous function on an interval [a,b] and y_0 is a real number between f(a) and f(b), then there is a number c ($a \le c \le b$) such that

$$f(c) = y_0$$

The intermediate value theorem is useful in checking whether a given equation has solution. It provides a way to find the solution of the equation.

Example 8

Consider the equation $x^5 + 2x - 1 = 0$, show that there is a solution between 0 and 1.

© Solution:

One may rephrase the statement as

"There is a number $0 \le z \le 1$ such that $z^5 + 2z - 1 = 0$."

We let $f(x) = x^5 + 2x - 1$ and f(x) is continuous. By simple calculation, we get f(0) = -1 < 0 and f(1) = 2 > 0.

By intermediate value theorem, there is z ($0 \le z \le 1$) such that

$$f(z) = z^5 + 2z - 1 = 0.$$

Application of intermediate value theorem: Method of Bisection

- It is a root-finding technique by using intermediate value theorem repeatedly.
- In Example 8, we have shown that the solution lies between 0 and 1. The bisection method aims to obtain the solution by narrowing this range.

Step 1:

We pick the mid-point between 0 and 1. That is, x = 0.5. We compute the value of f(0.5).

Since f(0.5) = 0.03125 > 0, then the solution lies between 0 and 0.5.

Step 2:

We pick the mid-point between 0 and 0.5. That is, x = 0.25. We compute the value of f(0.25).

Since f(0.25) = -0.4990 < 0, then the solution lies between 0.25 and 0.5.

One can repeat this process and obtain the approximated solution of the equation:

Midpoint x	f(x)	Updated range of z
0.5	0.03125	$0 \le z \le 0.5$
0.25	-0.4990	$0.25 \le z \le 0.5$
0.375	-0.24258	$0.375 \le z \le 0.5$
0.4375	-0.10897	$0.4375 \le z \le 0.5$
0.46875	-0.03987	$0.46875 \le z \le 0.5$
0.484375	-0.00459	$0.484375 \le z \le 0.5$
0.492188	0.01326	$0.484375 \le z \le 0.492188$
0.488282	0.004319	$0.484375 \le z \le 0.488282$
0.486329	-0.00014	$0.486329 \le z \le 0.488282$
0.487306	0.00209	$0.486329 \le z \le 0.487306$
0.486818	0.000977	$0.486329 \le z \le 0.486818$
0.486574	0.000421	$0.486329 \le z \le 0.486574$
0.486452	0.000142	$0.486329 \le z \le 0.486452$

The approximated solution is $x \approx 0.486$.