

Fundamentals of MQTT

Dr. Binil Starly

School of Manufacturing Systems & Networks

Ira A. Fulton Schools of Engineering

Arizona State University

How is MQTT Relevant to SM

Various Machines Assets

From Various Vendors

Industrial Environment

Assets on the field with low infrastructure

Generated with varying frequencies.

What is MQTT

"MQTT is a Client Server publish/subscribe messaging transport protocol. It is light weight, open, simple, and designed to be easy to implement.

Ideal for use in many situations, including constrained environments such as for communication in Machine to Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required and/or network bandwidth is at a premium."

Citation from the official **MQTT 3.1.1 specification**

Conventional Client-Server Communication

Poll-Response

Report by Exception VS

Publish-Subscribe Pattern Protocol

Alternate Example

Alternate Example

Clients can be both a Publisher and a Subscriber at the same time.

Pub-Sub Characteristics

- 1. Space De-coupling
- 2. Time De-coupling (queued)
- 3. Synchronization De-coupling
- 4. Producer Agnostic & Decoupled

Message Transfer Protocols

1. Asynchronous Message Transfer service between factory floor assets to higher order and lower order systems.

2. Enable interoperability between various machine asset vendors while creating the value chain of IIoT towards a digital factory.

Design Principles of MQTT

- 1. Simple Implementation
- 2. Lightweight Code
- 3. Bandwidth Efficient
- 4. Quality of Service Delivery
- 5. Continuous Session Awareness

A Simple MQTT Client-Broker Example

Machine Operator

Machine Device

IT System

Database or Live Report

Robot Alarm

Machine Coolant Alarm

Pub-Sub Scalability through Clustering

•

iot.eclipse.org

•

broker.hivemq.com

•

test.mosquitto.org

Pub-Sub Scalability through Topics

•

•

•

Characteristics

- 1. Built on top of TCP/IP foundation of the internet communication
- 2. Binary Protocol
- 3. Efficient (can be as small as 2bytes)
- 4. Bi-Directional
- 5. Data structure/content agnostic
- 6. Scalable to millions of assets over the same installation
- 7. Built for push notifications
- 8. Built for constrained devices particularly for devices with minimal computing / other constraints