

Raisonnement par récurrence

Introduction:

En mathématiques, un certain nombre de propriétés dépendent d'un entier naturel n.

Par exemple, la somme des entiers naturels de 1 à n est égale à $\frac{n(n+1)}{2}$, c'est-à-dire que pour tout entier naturel $n \ge 0$:

$$1+2+3+...+n=\frac{n(n+1)}{2}$$

Nous pouvons vérifier ce résultat pour n=2 et pour n=3 :

Pour
$$n = 2$$
: Pour $n = 3$:
$$1 + 2 = 3$$

$$1 + 2 + 3 = 6$$

$$\frac{2(2+1)}{2} = 3 \qquad \qquad \frac{3(3+1)}{2} = 6$$

Même si ce résultat est vrai jusqu'à n=100, cela ne démontre pas pour autant qu'il est vrai pour tout $n\in\mathbb{N}^*$. Pour effectuer cette démonstration, on dispose d'un outil particulier : le raisonnement par récurrence.

1 <u>Le</u> raisonnement par récurrence

a. Principe

Pour démontrer par récurrence qu'une proposition P_n est vraie pour tout entier naturel n supérieur ou égal à un entier naturel n_0 fixé, on procède en trois étapes.

- ightarrow Avant de commencer, on note P_n la proposition que l'on va démontrer.
- 1 Initialisation

On vérifie que P_{n_0} est vraie, c'est-à-dire que la proposition est vraie pour le premier indice n_0 .

- → On dit qu'on a **initialisé** la récurrence.
- 2 Hérédité

On suppose que, pour un entier naturel quelconque $k \geq n_0$, P_k est vraie.

Sous cette hypothèse (dite de récurrence), on démontre que la proposition P_{k+1} est vraie.

- ightharpoonup On a ainsi prouvé que l'hypothèse de récurrence « P_n vraie » est **héréditaire**.
- (3) Conclusion

Lorsque les deux premières étapes ont été réalisées, on peut conclure.

ightharpoonup Par récurrence, la proposition P_n est vraie pour tout entier naturel $n \geq n_0$.

En effet:

- \cdot on a montré que P_{n_0} est vraie ;
- $\cdot\,\,$ on a démontré l'hérédité : si P_k est vraie, alors P_{k+1} est vraie ;
- \cdot donc, avec n = n_0 , P_{n_0+1} est vraie ;
- · par hérédité, $P_{(n_0+1)+1} = P_{n_0+2}$ est vraie ;
- · toujours par hérédité, $P_{(n_0+2)+1} = P_{n_0+3}$ est aussi vraie ;
- · et ainsi de suite...
 - → C'est ce que l'on appelle un raisonnement par récurrence.

b. Illustration

Démontrons maintenant la formule vue en introduction à l'aide du raisonnement par récurrence et montrons que, pour tout entier naturel $n \in \mathbb{N}^*$, $1 + \ldots + n = \frac{n(n+1)}{2}$.

- \rightarrow Notons P_n la proposition : $1 + ... + n = \frac{n(n+1)}{2}$.
- 1 Initialisation

La proposition P_1 est vraie, car $1 = \frac{1(1+1)}{2}$.

On conçoit donc que, si l'on sait démontrer que, pour $n \geq 1$, « P_n vraie » entraı̂ne « P_{n+1} vraie », alors la proposition est vraie pour tout entier naturel $n \geq 1$.

² Hérédité

Supposons donc que P_k est vraie pour un entier naturel $k \geq 1$, c'est-à-dire que, pour un entier naturel $k \geq 1$:

$$1+2+...+(k-1)+k=\frac{k(k+1)}{2}$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la propriété est vraie au rang supérieur (k+1), c'est-à-dire que P_{k+1} est vraie. Autrement dit, montrons que :

$$1+2+...+k+(k+1)=\frac{(k+1)((k+1)+1)}{2}$$

Comme P_k est vraie, dans la somme $1+2+\ldots+k+(k+1)$, on peut remplacer les k premiers termes par $\frac{k(k+1)}{2}$.

→ On obtient alors :

$$1+2+...+k+(k+1) = \underbrace{\frac{k(k+1)}{2}}_{2} + (k+1)$$
$$= \frac{k(k+1)}{2} + (k+1)$$

 \rightarrow En factorisant par (k+1), on obtient :

$$1+2+...+k+(k+1) = (k+1)\frac{k}{2}+(k+1)$$
$$= (k+1)\left(\frac{k}{2}+1\right)$$

→ En réduisant le deuxième facteur au même dénominateur 2, on a :

$$1+2+...+k+(k+1) = (k+1)\frac{k+2}{2}$$
$$= \frac{(k+1)((k+1)+1)}{2}$$

- \rightarrow Ainsi, P_{k+1} est vraie.
- (3) Conclusion

 P_n est vraie pour tout entier naturel $n \geq 1$.

ightharpoonup C'est-à-dire que, pour tout entier naturel $n\geq 1$:

$$1+\ldots+n=\frac{n(n+1)}{2}$$

La meilleure façon de se familiariser avec le raisonnement par récurrence, c'est de le travailler. Nous donnons donc ici quatre exemples d'un tel raisonnement.

- → N'hésitez pas à mener vous-même le raisonnement à partir de la formule à démontrer, avant de regarder le déroulé donné.
- a. Exemple 1

On considère la suite (u_n) définie par $u_0=1$ et, pour tout entier naturel n, $u_{n+1}=\sqrt{u_n+1}$.

Montrons par récurrence que tous les termes de la suite (u_n) sont strictement positifs et que la suite est croissante.

Rappel

Une suite (u_n) est croissante si, pour tout entier naturel n, $u_n \leq u_{n+1}$.

Il s'agit ici donc de démontrer que $0 \le u_n \le u_{n+1}$, pour tout entier naturel n.

- ightharpoonup Commençons par noter P_n la proposition : $0 < u_n \le u_{n+1}$.
- 1 Initialisation

$$u_0 = 1$$

$$u_1 = \sqrt{u_0 + 1}$$
$$= \sqrt{1 + 1}$$
$$= \sqrt{2}$$

On a bien : $0 \le 1 \le \sqrt{2}$, donc : $0 \le u_0 \le u_1$.

- ightharpoonup La proposition P_0 est vraie.
- 2 Hérédité

Supposons la proposition P_k vraie pour un certain entier naturel k, c'est-à-dire :

$$0 \le u_k \le u_{k+1}$$

→ C'est l'hypothèse de récurrence.

Montrons que la proposition P_{k+1} est vraie, c'est-à-dire que $0 \le u_{k+1} \le u_{k+2}$.

En utilisant la définition de la suite (u_n) , c'est équivalent à :

$$0 < \sqrt{u_k + 1} \le \sqrt{u_{k+1} + 1}$$

Hypothèse de récurrence :	$0 \le u_k \le u_{k+1}$
On ajoute 1 aux inégalités :	$1 < u_k + 1 \le u_{k+1} + 1$
Comme la fonction racine carrée est strictement croissante sur l'intervalle $[0;+\infty[$, elle ne change pas le sens des inégalités, et on obtient :	$\sqrt{1} < \sqrt{u_k + 1} \le \sqrt{u_{k+1} + 1}$
Soit:	$0 < 1 < u_{k+1} \le u_{k+2}$

- ightharpoonup La propriété P_{k+1} est donc vraie.
- Conclusion

Par récurrence, la proposition P_n est vraie pour tout entier naturel n.

 \rightarrow La suite (u_n) est croissante et à termes strictement positifs pour tout entier naturel n.

b. Exemple 2

Démontrons que, pour tout entier naturel n, $(4^n + 2)$ est divisible par 3.

- \rightarrow Notons P_n la proposition « $(4^n + 2)$ est divisible par 3 ».
- 1 Initialisation

Pour n = 0, on a:

$$4^0 + 2 = 1 + 2$$

= 3

3 est bien divisible par 3.

- ightharpoonup La proposition P_0 est vraie.
- 2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k.

Pour montrer qu'un entier x est divisible par un entier a, il faut montrer qu'il existe un entier b tel que $x=a\times b$.

 $(4^k + 2)$ est divisible par 3, c'est-à-dire qu'il existe un entier relatif b tel que $4^k + 2 = 3 \times b$.

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition P_{k+1} est vraie, c'est à dire que $(4^{k+1} + 2)$ est aussi divisible par 3.

On cherche à montrer qu'il existe un entier relatif c tel que $4^{k+1} + 2 = 3 \times c$.

Hypothèse de récurrence :	$4^k + 2 = 3 \times b$
On soustrait 2 à l'égalité :	$4^k = 3 \times b - 2$
De plus :	$4^{k+1} + 2 = 4^k \times 4 + 2$
On remplace 4^k par $(3 \times b - 2)$:	$4^{k+1} + 2 = (3 \times b - 2) \times 4 + 2$
On développe :	$4^{k+1} + 2 = 12b - 8 + 2$ $= 12b - 6$
On factorise par 3 :	$4^{k+1} + 2 = 3 \times (4b - 2)$
b étant un entier relatif, $4b-2$ est donc aussi un entier relatif. Posons ainsi un entier relatif c tel que $4b-2=c.$ On obtient :	$4^{k+1} + 2 = 3 \times c$

- ightharpoonup Donc la proposition P_{k+1} est vraie.
- (3) Conclusion

Pour tout entier naturel n, P_n est vraie.

- \rightarrow Pour tout entier naturel n, $4^n + 2$ est divisible par 3.
- c. Exemple 3

Soit (u_n) la suite définie par $u_0=2$ et, pour tout entier naturel n, $u_{n+1}=\frac{u_n}{1+u_n}$.

Démontrons que, pour tout $n\in\mathbb{N}$, $u_n=rac{2}{2n+1}$.

 \rightarrow Notons P_n la proposition « $u_n = \frac{2}{2n+1}$ ».

1 Initialisation

Pour n=0:

$$u_0 = 2$$

$$\frac{2}{2 \times 0 + 1} = 2$$

ightharpoonup La proposition P_0 est vraie.

2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k, c'est-à-dire que, pour un entier naturel k :

$$u_k = \frac{2}{2k+1}$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition est vraie au rang (k+1), c'est-à-dire :

$$u_{k+1} = \frac{2}{2(k+1)+1}$$

Hypothèse de récurrence :	$u_k = \frac{2}{2k+1}$
Par définition de la suite :	$u_{k+1} = \frac{u_k}{1 + u_k}$
On remplace u_k par $\dfrac{2}{2k+1}$:	$u_{k+1} = \frac{\frac{2}{2k+1}}{1 + \frac{2}{2k+1}}$
On réduit au même dénominateur le dénominateur du deuxième terme :	$u_{k+1} = \frac{\frac{2}{2k+1}}{\frac{2k+1+2}{2k+1}}$ $= \frac{2}{2k+1} \times \frac{2k+1}{2k+1+2}$
On simplifie par $(2k+1)$:	$u_{k+1} = \frac{2}{2k+2+1}$
On factorise $(2k+2)$ par 2 :	$u_{k+1} = \frac{2}{2(k+1)+1}$

- ightharpoonup Donc la proposition P_{k+1} est vraie.
- 3 Conclusion

Pour tout entier naturel n, P_n est vraie.

- ightharpoonup Pour tout entier naturel n, $u_n = \frac{2}{2n+1}$.
- d. Exemple 4 : inégalité de Bernoulli

L'inégalité de Bernoulli dit que, pour tout réel x strictement positif et n entier naturel, $(1+x)^n \ge 1+nx$.

Nous utiliserons cette inégalité dans le cours suivant, sur les suites. Nous allons donc la démontrer ici, par récurrence.

Soit x un réel strictement positif.

- \rightarrow Notons P_n la proposition « $(1+x)^n \ge 1+nx$ ».
- 1 Initialisation

Pour n = 0:

$$(1+x)^0 = 1$$
$$\geq 1 + 0 \times x$$

- ightharpoonup Donc la proposition P_0 est vraie.
- 2 Hérédité

Supposons la proposition P_k vraie pour un entier naturel k, c'est-à-dire, que pour un entier naturel k :

$$(1+x)^k \ge 1 + kx$$

→ C'est l'hypothèse de récurrence.

Montrons maintenant que la proposition est vraie au rang (k+1), c'est-à-dire :

$$(1+x)^{k+1} \ge 1 + (k+1)x$$

On a :	$(1+x)^{k+1} = (1+x)^k \times (1+x)$
Hypothèse de récurrence :	$(1+x)^k \ge 1 + kx$
D'où, en multipliant par $(1+x)$ $(x>0$, donc $x+1>0$, et cela ne change pas le sens des inégalités) :	$(1+x)^{k+1} \ge (1+kx)(1+x)$
On développe :	$(1+x)^{k+1} \ge 1 + x + kx + kx^2$
On factorise $(x+kx)$ par x :	$(1+x)^{k+1} \ge 1 + x(k+1) + kx^2$
k étant un entier positif, $kx^2 \geq 0$:	$1 + x(k+1) + kx^2 \ge 1 + (k+1)x$
D'où :	$(1+x)^{k+1} \ge 1 + (k+1)x$

- ightharpoonup La proposition P_{k+1} est vraie.
- (3) Conclusion

Pour tout entier naturel n, P_n est vraie.

ightharpoonup Pour tout entier naturel n et tout réel x strictement positif, $(1+x)^k \geq 1+kx$.

Conclusion:

Dans ce cours, nous avons vu ce principe puissant qu'est le raisonnement par récurrence : il permet de démontrer assez rapidement une propriété sur l'ensemble des entiers naturels, ou une partie de cet ensemble.

Ainsi, notamment en travaillant sur les suites, nous ferons souvent appel à ce type de raisonnement.