(Justifique las respuestas)

Cuestión 1 $(1\frac{1}{2} \text{ puntos})$

Determine si el lenguaje $L = \{xy : x, y \in \{a, b\}^* \land |x| = |y| \land a \in Seg(y)\}$ es regular o no.

Solución:

Demostraremos que no lo es por reducción al absurdo. Supongamos que L es regular, por lo tanto, existirá un AFD $A = (Q, \Sigma, \delta, q_0, F)$ tal que L(A) = L.

Consideremos el conjunto infinito de palabras $C = \{a^{2i} : i \geq 1\}$, y tomemos dos palabras cualesquiera de este conjunto, $u = a^{2n}$ y $v = a^{2m}$ con $n \neq m$. Consideremos sin pérdida de generalidad que n < m.

Podemos encontrar una palabra $w=b^{2n}$ tal que $uw=a^{2n}b^{2n} \not\in L$ (puede verse que, en este caso, la división de la palabra en dos factores de igual longitud implica que $x=a^{2n}, \ y=b^{2n}$ y por lo tanto no hay símbolos a en y) pero donde $vw=a^{2m}b^{2n}\in L$ (al ser m>n, en este caso la división de $a^{2m}b^{2n}$ en dos factores de igual longitud sí provoca que haya símbolos a en y).

Esto implica que el estado que se alcanza al procesar en A la palabra v es distinto del estado que se alcanza al procesar w ($\delta(q_0, u) \neq \delta(q_0, v)$), por lo que, ya que C contiene infinitas palabras y la elección de u y v se hace sin condición de ningún tipo, el AFD A debería tener infinitos estados, lo que supone una contradicción, e implica que el lenguaje no es regular.

De forma análoga, puede verse que, independientemente de las palabras $uy\ v$ escogidas los cocientes del lenguaje respecto a estas palabras son distintos, por lo que la relación \equiv_L es de índice infinito y por lo tanto L no es regular.

Cuestión 2 $(1\frac{1}{2} \text{ puntos})$

Obtener el AFD mínimo equivalente al siguiente autómata:

Solución:

Una traza del algoritmo de minimización de Moore para el autómata del ejercicio es la siguiente:

$$\pi_0 = \{\{q_1, q_3, q_5, q_8\}, \{q_2, q_4, q_6, q_7\}\}$$

$$\pi_1 = \{\{q_1\}, \{q_2, q_7\}, \{q_3, q_5, q_8\}, \{q_4, q_6\}\}$$

	π_1	a	b
$[1]_{\pi_1}$	q_1	$[3]_{\pi_1}$	$[2]_{\pi_1}$
$[2]_{\pi_1}$	q_2	$[4]_{\pi_1}$	$[3]_{\pi_1}$
	q_7	$[4]_{\pi_1}$	$[3]_{\pi_1}$
$[3]_{\pi_1}$	q_3	$[4]_{\pi_1}$	$[2]_{\pi_1}$
	q_5	$[2]_{\pi_1}$	$[4]_{\pi_1}$
	q_8	$[4]_{\pi_1}$	$[2]_{\pi_1}$
$[4]_{\pi_1}$	q_4	$[3]_{\pi_1}$	$[2]_{\pi_1}$
	q_6	$[3]_{\pi_1}$	$[2]_{\pi_1}$

$$\pi_2 = \{\{q_1\}, \{q_2, q_7\}, \{q_3, q_8\}, \{q_4, q_6\}, \{q_5\}\}$$

	π_2	a	b
$[1]_{\pi_2}$	q_1	$[5]_{\pi_2}$	$[2]_{\pi_2}$
$[2]_{\pi_2}$	q_2	$[4]_{\pi_2}$	$[3]_{\pi_2}$
	q_7	$[4]_{\pi_2}$	$[3]_{\pi_2}$
$[3]_{\pi_2}$	q_3	$[4]_{\pi_2}$	$[2]_{\pi_2}$
	q_8	$[4]_{\pi_2}$	$[2]_{\pi_2}$
$[4]_{\pi_2}$	q_4	$[3]_{\pi_2}$	$[2]_{\pi_2}$
	q_6	$[3]_{\pi_2}$	$[2]_{\pi_2}$
$[5]_{\pi_2}$	q_5	$[2]_{\pi_2}$	$[4]_{\pi_2}$

con lo que el autómata mínimo equivalente es el siguiente:

Cuestión 3 $(1\frac{1}{2} \text{ puntos})$

Dados el autómata y el homomorfismo siguientes:

$$\begin{cases} h(0) = aa \\ h(1) = ab \end{cases}$$

Obtenga un AFD para el lenguaje obtenido por la operación $(011)^{-1}\overline{(h^{-1}L(A))}$.

Solución:

Aplicamos primero la construcción para el homomorfismo inverso y obtenemos:

Posteriormente consideramos la construcción para el complementario y obtenemos el autómata que acepta $\overline{h^{-1}L(A)}$:

Finalmente, aplicando la construcción para el autómata cociente obtenemos:

(el estado q_1 no es accesible y puede ser eliminado).

Cuestión 4 $(1\frac{1}{2} \text{ puntos})$

Sean L_1 y L_2 dos lenguajes sobre el alfabeto $\{a,b\}$. El lenguaje L_1 es igual a todas las palabras con sufijo b junto con todas las palabras de L_2 precedidas de una secuencia impar de símbolos a. El lenguaje L_2 es igual a todas las palabras de L_1 junto con todas las palabras formadas exclusivamente por símbolos b (al menos uno).

Describa los lenguajes L_1 y L_2 utilizando expresiones regulares. Justifique el proceso utilizado.

Solución:

Los lenguajes pueden describirse utilizando ecuaciones en expresiones regulares como:

$$\begin{cases} L_1 = a(aa)^* L_2 + (a+b)^* b \\ L_2 = L_1 + bb^* \end{cases}$$

Sustituyendo L_2 en la primera ecuación se obtiene que $L_1 = a(aa)^*L_1 + a(aa)^*bb^* + (a+b)^*b$, que es equivalente a $L_1 = a(aa)^*L_1 + (a+b)^*b$.

Aplicando el Lema de Arden a esta ecuación se obtiene que $L_1 = (a(aa)^*)^*(a+b)^*b = (a+b)^*b$.

Finalmente, sustituyendo en la segunda ecuación obtenemos $L_2 = (a+b)^*b + bb^* = (a+b)^*b$.

Cuestión 5 (2 puntos)

Obtener los autómatas de posición y follow de la expresión $\alpha = a^*b(ba^*)^* + (b+ba)^*$.

Solución:

Considerando la expresión linearizada $\overline{\alpha} = a_1^* b_2 (b_3 a_4^*)^* + (b_5 + b_6 a_7)^*$, el autómata local estandar para la subexpresión $a_1^* b_2$ es el siguiente:

el autómata local estandar para la subexpresión $(b_3 a_4^*)^*$ es el siguiente:

el autómata local estandar para la subexpresión $a_1^*b_2(b_3a_4^*)^*$ es el siguiente:

el autómata local estandar para la subexpresión $(b_5 + b_6 a_7)^*$ es el siguiente:

el autómata local estandar de que acepta $L(\overline{\alpha})$ es:

y el autómata de posición para α :

La relación follow para este autómata se resume en la siguiente tabla:

	$\in F$	sucesores
λ	Τ	$\{a_1, b_2, b_5, b_6\}$
a_1	\mathbf{F}	$\{a_1, b_2\}$
b_2	Τ	$\{b_3\}$
b_3	T	$\{b_3, a_4\}$
a_4	T	$\{b_3, a_4\}$
b_5	T	$\{b_5, b_6\}$
b_6	F	$\{a_7\}$
a_7	T	$\{b_5, b_6\}$

con lo que el autómata follow es el siguiente:

Cuestión 6 (1 punto)

Dado un lenguaje L sobre $\{a,b\}$ se define a operación P sobre lenguajes como aquella que duplica el primer símbolo de cada palabra no vacía del lenguaje. ¿Es P cerrada en la clase de los lenguajes regulares?

Ejemplo: Dado $L = \{\lambda, a, ba, abb\}$, se obtiene $P(L) = \{\lambda, aa, bba, aabb\}$

Solución:

La operación puede describirse como:

$$P(L) = (\{aa\}a^{-1}L) \cup (\{bb\}b^{-1}L) \cup (\{\lambda\} \cap L),$$

por lo que, teniendo que cuenta que los lenguajes $\{aa\}$, $\{bb\}$ y $\{\lambda\}$ son regulares, la operación P puede describirse como una composición de operaciones de cierre en la clase de los lenguajes regulares, podemos concluir que la operación P es de cierre.

Una solución equivalente se obtiene al describir la operación como:

$$P(L) = (\{a\}(L \cap \{a\}\{a+b\}^*)) \cup (\{b\}(L \cap \{b\}\{a+b\}^*)) \cup (\{\lambda\} \cap L),$$

y siguiendo un razonamiento análogo.

Cuestión 7 (1 punto)

Dado un AFD completo y accesible $A = (Q, \Sigma, \delta, q_0, F)$, denotamos con R_q el lenguaje por la derecha de un estado cualquiera $q \in Q$. A partir de A se define:

$$L = \bigcup_{q \in Q} R_q,$$

describa el lenguaje L poniéndolo en relación con L(A).

Solución:

El lenguaje L se define como la unión de los lenguajes por la derecha de cada estado del autómata A.

Al ser todos los estados de A accesibles, para un estado cualquiera q, las palabras en R_q pueden verse como sufijos de las palabras x tales que $\delta(q_o, x) = q$, por lo que L puede describirse como el lenguaje Suf(L(A)).