EDA_and_modelling_5oct

Michael Wang

2025-10-10

```
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
             1.1.4
                       v readr
                                   2.1.5
## v dplyr
## v forcats 1.0.0 v stringr 1.5.2
## v ggplot2 4.0.0
                       v tibble
                                    3.3.0
## v lubridate 1.9.4
                      v tidyr
                                    1.3.1
## v purrr
              1.1.0
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
                    masks stats::lag()
## x dplyr::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(glmnet)
## Loading required package: Matrix
## Attaching package: 'Matrix'
## The following objects are masked from 'package:tidyr':
##
##
       expand, pack, unpack
## Loaded glmnet 4.1-10
library(randomForest)
## randomForest 4.7-1.2
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## The following object is masked from 'package:ggplot2':
##
      margin
```

```
library(xgboost)
##
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
##
##
       slice
library (MASS)
##
## Attaching package: 'MASS'
##
## The following object is masked from 'package:dplyr':
##
##
       select
library(caret)
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
##
       lift
library(pROC)
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
select <- dplyr::select</pre>
setwd('/Users/michaelwang/Desktop/unsw/unsw\ actl/4305/Assignment')
df <- read_csv('/Users/michaelwang/Desktop/unsw/unsw actl/4305/Assignment/actl4305-ggins-datathon/stand
## Rows: 70000 Columns: 77
## -- Column specification -----
## Delimiter: ","
## chr
         (7): destinations, traveller_ages, platform, discount, convert, quote_...
       (45): quote_price, extra_cancellation, quote_hour, trip_length, lead_le...
```

(5): has_child_U12, has_teen_013, has_adult_018, has_senior_065, is_fa...

lgl

```
## dttm (1): quote_create_time
## date (19): trip_start_date, trip_end_date, boost_1_start_date, boost_1_end_d...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
crime_indices <- read_csv('/Users/michaelwang/Desktop/unsw/unsw act1/4305/Assignment/cleaned_crime_indi</pre>
## Rows: 70000 Columns: 2
## -- Column specification ---
## Delimiter: ","
## chr (1): crime index
## dbl (1): quote_id
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
df trim <- df %>%
  select(-destinations, -traveller_ages, -quote_create_time, -matches("^boost_.*_date$"))
df_clean <- df_trim %>%
  mutate(
    across(starts_with("boost_"), ~ if_else(is.na(.x), 0, .x)),
    quote_hour = if_else(quote_hour > 23, 24, quote_hour)
any(is.na(df_clean))
## [1] FALSE
df_discount <- df_clean %>%
  mutate(
    discount = as.numeric(str_extract(discount, "^[0-9]*"))
character_colnames <- names(df_discount)[sapply(df_discount, is.character)]</pre>
df_factors <- df_discount %>%
  mutate(
    across(all_of(character_colnames), ~ as.factor(.x))
df_crime_scores <- df_factors %>%
  mutate(quote_id = row_number()) %>%
  left_join(crime_indices, by = "quote_id") %>%
  select(-quote_id)
df_crime_scores <- df_crime_scores %>%
  rowwise() %>%
  mutate(
    median_crime_index = median(as.numeric(unlist(strsplit(crime_index, ", "))))
```

```
) %>%
  ungroup %>%
  select(-crime_index)
df_clean_quote_hour <- df_crime_scores %>%
  mutate(quote_hour = if_else(quote_hour > 23, 24, quote_hour))
df extra cancellation <- df clean quote hour %>%
  mutate(
    extra_cancel_tier = case_when(
      extra_cancellation == 0 ~ 0,
      extra_cancellation <= 5000 ~ 1,
      extra_cancellation > 5000 ~ 2,
      TRUE ~ 1
    )
  ) %>%
    select(-extra_cancellation)
df_final <- df_extra_cancellation %>%
  select(-quote_time)
df_eda <- df_final</pre>
df_large_quote_price <- df_eda[df_eda$quote_price > 5000,]
df large lengths <- df eda[df eda$trip length > 365,]
df_capped <- df_eda
cap_trip_len <- quantile(df_capped$trip_length, 0.99)</pre>
df_capped$trip_length_capped <- pmin(df_capped$trip_length, cap_trip_len)</pre>
cap_price <- quantile(df_capped$quote_price, 0.99)</pre>
df_capped$quote_price_capped <- pmin(df_capped$quote_price, cap_price)</pre>
cap_lead_len <- quantile(df_capped$lead_length, 0.99)</pre>
df_capped$lead_length_capped <- pmin(df_capped$lead_length, cap_lead_len)</pre>
boost_cols_1_2 <- paste0("boost_", 1:2, "_length")</pre>
for (col in boost_cols_1_2) {
  cap_val <- quantile(df_capped[[col]], 0.99)</pre>
  df_capped[[col]] <- pmin(df_capped[[col]], cap_val)</pre>
boost_cols_3_4_5 <- paste0("boost_", 3:5, "_length")</pre>
for (col in boost_cols_3_4_5) {
  cap_val <- quantile(df_capped[[col]], 0.999)</pre>
  df_capped[[col]] <- pmin(df_capped[[col]], cap_val)</pre>
boost_cols_6_7_8 <- paste0("boost_", 6:8, "_length")</pre>
for (col in boost_cols_6_7_8) {
```

```
cap_val <- quantile(df_capped[[col]], 0.999)</pre>
  df_capped[[col]] <- pmin(df_capped[[col]], cap_val)</pre>
cap_age_range <- quantile(df_capped$age_range, 0.99)</pre>
df_capped$age_range_capped <- pmin(df_capped$age_range, cap_age_range)</pre>
df capped <- df capped %>%
  select(-trip_length, -quote_price, -lead_length, -age_range)
df_correlation <- df_capped %>%
  select(-median_age, -min_age, -max_age)
df_correlation <- df_correlation %>%
  select(-generations, -age_range_capped, -boost_4_length, -boost_5_length, -boost_6_length, -boost_7_l
df_pretransform_modelling <- df_correlation</pre>
df_transformations <- df_correlation</pre>
box_cox_cols <- c(</pre>
 "mean_age",
  "trip_length_capped",
  "quote_price_capped",
  "lead_length_capped",
  paste0("boost_", 1:3, "_length")
small <- 1e-6
for (col in box_cox_cols) {
  zero_flag <- min(df_transformations[[col]])</pre>
  if (zero_flag <= 0) {</pre>
    df_transformations[[col]] <- df_transformations[[col]] + small</pre>
  }
}
X <- as.data.frame(df_transformations[, box_cox_cols])</pre>
preprocess_boxcox <- preProcess(X, method = "BoxCox")</pre>
X_boxcox <- predict(preprocess_boxcox, X)</pre>
df_transformations[paste0(names(X_boxcox), "_boxcox")] <- X_boxcox</pre>
z_cols <- paste0(box_cox_cols, "_boxcox")</pre>
X <- as.data.frame(df_transformations[, z_cols])</pre>
preprocess_z <- preProcess(X, method = c("center", "scale"))</pre>
X_z <- predict(preprocess_z, X)</pre>
df_transformations[paste0(box_cox_cols, "_boxcox_z")] <- X_z</pre>
df_transformations <- df_transformations %>%
  select(-ends_with("_boxcox"), -all_of(box_cox_cols))
```

```
df_transformations_1 <- df_transformations</pre>
remaining_z_cols <- c(</pre>
  "median crime index",
  "num_adults",
  "boost_num",
  "num_travellers",
  "discount"
small <- 1e-6
for (col in remaining_z_cols) {
  zero_flag <- min(df_transformations_1[[col]])</pre>
  if (zero_flag <= 0) {</pre>
    df_transformations_1[[col]] <- df_transformations_1[[col]] + small</pre>
  }
}
X_z_df <- as.data.frame(df_transformations_1[, remaining_z_cols])</pre>
preprocess_z <- preProcess(X_z_df, method = c("center", "scale"))</pre>
X_z <- predict(preprocess_z, X_z_df)</pre>
df_transformations_1[paste0(remaining_z_cols, "_z")] <- X_z</pre>
df_transformations_1 <- df_transformations_1 %>%
  select(-all_of(remaining_z_cols))
df_modelling <- df_transformations_1</pre>
```

No imb data proc

Train/Test/Val

```
# model.matrix converts to numeric matrix to run regression, [, -1] removes convert column
X <- model.matrix(convert ~ ., df_modelling)[, -1]
y <- ifelse(df_modelling$convert == "YES", 1, 0)

set.seed(111)
# regular sampling:
# train_index <- sample(seq_len(nrow(X)), 0.8 * nrow(X))
# stratified sampling to make sure test and train have equal proportions of converted and non-converted train_index <- createDataPartition(y, p = 0.8, list = FALSE)
# 0.25 of 0.8 is 0.2 of total

X_train <- X[train_index,]
y_train <- y[train_index]

validation_index <- createDataPartition(y_train, p = 0.25, list = FALSE)
X_val <- X_train[validation_index,]</pre>
```

```
y_val <- y_train[validation_index]
X_train_inner <- X_train[-validation_index, ]
y_train_inner <- y_train[-validation_index]

X_test <- X[-train_index,]
y_test <- y[-train_index]

# length(y_train_inner) / length(y)
# length(y_val) / length(y)
# length(y_test) / length(y)

Train_Data <- df_modelling[train_index,]
validation_index_df <- createDataPartition(Train_Data$convert, p = 0.25, list = FALSE)
Validation_Data <- Train_Data[validation_index_df, ]
Train_Data_inner<- Train_Data[-validation_index_df, ]
Test_Data <- df_modelling[-train_index,]
y_test_glm <- ifelse(Test_Data$convert == "YES", 1, 0)
y_validation_glm <- ifelse(Validation_Data$convert == "YES", 1, 0)</pre>
```

GLM/Shrinkage

##

##

##

##

```
glm_basic <- glm(convert ~ ., data = Train_Data, family = binomial)</pre>
# summary(glm_basic)
\# ridge (alpha = 0), lasso (alpha = 1), elastic Net (0 < alpha < 1)
# then check best one. At the same time, also runs default 10 fold cv on training data to pick best lam
# hyperparameter for shrinkage to control degree of penalty applied.
cv_lasso <- cv.glmnet(X_train, y_train, family = "binomial", alpha = 1)</pre>
cv_ridge <- cv.glmnet(X_train, y_train, family = "binomial", alpha = 0)</pre>
cv_enet <- cv.glmnet(X_train, y_train, family = "binomial", alpha = 0.5)</pre>
# # cv_lasso, etc. are cv.glmnet objects - running coef on them returns a sparse coeff matrix with one
# # fitted coeffecients, with intercept in first row. This is with the best lambda, stored in the cv.gl
coef_lasso <- coef(cv_lasso, s = "lambda.min")</pre>
# coef_ridge <- coef(cv_ridge, s = "lambda.min")</pre>
# coef_enet <- coef(cv_enet, s = "lambda.min")</pre>
# # this extracts that column of coeffecients, keeps only the non 0 ones, and keeps it as a matrix (dro
# prevent dropping into a vector); then returns top 20.
lasso_nonzero <- coef_lasso[coef_lasso[,1] != 0, , drop = FALSE]</pre>
sort(lasso_nonzero[,1], decreasing = TRUE)[1:20]
##
                       (Intercept)
                                                        Antarctica
##
                        51.9998897
                                                         0.7423665
##
                        discount_z
                                      trip_length_capped_boxcox_z
##
                         0.6093428
                                                         0.6016991
```

South_America

group_typesingle_old_060

0.5609581

0.4836544

has_child_U12TRUE

0.5882245

0.4973767

North_America

```
## group_typeolder_parents_family
                                                            Africa
##
                         0.4073433
                                                         0.3744716
                                                      gadget_cover
##
                      boost num z
##
                         0.3408810
                                                         0.3398086
                        snowsports
##
                                                      Central_Asia
##
                         0.3185885
                                                         0.3177019
                                      group_typesingle_middle_U60
##
                      Middle East
##
                         0.2988412
                                                         0.2614825
##
       group_typesingle_young_U30
                                                  has_teen_013TRUE
##
                         0.2526183
                                                         0.2312086
##
                 motorcycle_cover
                                                   Domestic_Cruise
                         0.2247859
                                                         0.2224792
##
\# ridge\_nonzero \leftarrow coef\_ridge[coef\_ridge[,1] != 0, , drop = FALSE]
# sort(ridge_nonzero[,1], decreasing = TRUE)[1:20]
# enet_nonzero <- coef_enet[coef_enet[,1] != 0, , drop = FALSE]</pre>
# sort(enet_nonzero[,1], decreasing = TRUE)[1:20]
# # cv error vs log(lambda)
# plot(cv_lasso)
# plot(cv_ridge)
# plot(cv_enet)
# type = response means to give probabilities for logistic reg instead of values for normal regression
# predict() as a universal apply data to model base r function
# idea of using dataframe for glm prediction and matrix for shrinkage prediction i think is because of
# the glm model saw the original data, so it was the test data in the same form to help process. The sh
# saw the dataframe only a matrix rep, so thus it wants it in the same format.
pred_glm <- predict(glm_basic, newdata = Test_Data, type = "response")</pre>
pred_lasso <- predict(cv_lasso, newx = X_test, type = "response", s = "lambda.min")</pre>
pred_ridge <- predict(cv_ridge, newx = X_test, type = "response", s = "lambda.min")</pre>
pred_enet <- predict(cv_enet, newx = X_test, type = "response", s = "lambda.min")</pre>
glm_class <- ifelse(pred_glm > 0.5, 1, 0)
lasso_class <- ifelse(pred_lasso > 0.5, 1, 0)
ridge_class <- ifelse(pred_ridge > 0.5, 1, 0)
enet class <- ifelse(pred enet > 0.5, 1, 0)
acc_glm <- mean(glm_class == y_test_glm)</pre>
acc_lasso <- mean(lasso_class == y_test)</pre>
acc_ridge <- mean(ridge_class == y_test)</pre>
acc_enet <- mean(enet_class == y_test)</pre>
c(glm = acc_glm, Lasso = acc_lasso, Ridge = acc_ridge, ElasticNet = acc_enet)
                               Ridge ElasticNet
          glm
                   Lasso
```

0.8824286 0.8822857 0.8806429 0.8823571

```
calculate_metrics <- function(predictions, actual) {</pre>
  tp <- sum(predictions == 1 & actual == 1)</pre>
  tn <- sum(predictions == 0 & actual == 0)
  fp <- sum(predictions == 1 & actual == 0)</pre>
  fn <- sum(predictions == 0 & actual == 1)
  accuracy \leftarrow (tp + tn) / (tp + tn + fp + fn)
  precision <- tp / (tp + fp)</pre>
  recall <- tp / (tp + fn)
  sensitivity <- recall</pre>
  specificity <- tn / (tn + fp)</pre>
  f1 <- 2 * precision * recall / (precision + recall)
  return(c(
    Accuracy = accuracy,
    Precision = precision,
    Recall = recall,
    Specificity = specificity,
    F1_Score = f1
  ))
}
metrics_glm <- calculate_metrics(glm_class, y_test_glm)</pre>
metrics_lasso <- calculate_metrics(lasso_class, y_test)</pre>
metrics_ridge <- calculate_metrics(ridge_class, y_test)</pre>
metrics_enet <- calculate_metrics(enet_class, y_test)</pre>
comparison_table <- data.frame(</pre>
  GLM = metrics_glm,
  Lasso = metrics_lasso,
 Ridge = metrics_ridge,
  ElasticNet = metrics_enet
print(round(comparison_table, 4))
##
                   GLM Lasso Ridge ElasticNet
                0.8824 0.8823 0.8806
                                          0.8824
## Accuracy
## Precision 0.6159 0.6147 0.6238
                                          0.6161
## Recall
               0.1550 0.1533 0.1110
                                          0.1533
## Specificity 0.9862 0.9863 0.9905
                                          0.9864
## F1_Score
               0.2477 0.2454 0.1884
                                          0.2455
library(pROC)
roc_glm <- roc(y_test_glm, as.vector(pred_glm))</pre>
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
```

```
roc_lasso <- roc(y_test, as.vector(pred_lasso))</pre>
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
roc_ridge <- roc(y_test, as.vector(pred_ridge))</pre>
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
roc_enet <- roc(y_test, as.vector(pred_enet))</pre>
## Setting levels: control = 0, case = 1
## Setting direction: controls < cases
auc(roc_glm)
## Area under the curve: 0.8047
auc(roc_lasso)
## Area under the curve: 0.8046
auc(roc_ridge)
## Area under the curve: 0.8011
auc(roc_enet)
## Area under the curve: 0.8045
LASSO for more interpretability (feature selection)
ENET for slightly more stable coeffecients
HORRENDOUS F1 SCORE when not treating any imbalanced data stuff.
RF
df_tree_modelling <- df_eda %>%
```

```
df_tree_modelling <- df_eda %>%
select(-median_age, -min_age, -max_age, -generations, -age_range)
```

```
set.seed(111)
df_tree_modelling$convert <- factor(df_tree_modelling$convert, , levels = c("NO", "YES"))</pre>
y_tree <- df_tree_modelling$convert</pre>
train_index <- createDataPartition(y_tree, p = 0.8, list = FALSE)</pre>
y_train_tree <- y[train_index]</pre>
validation index <- createDataPartition(y train tree, p = 0.25, list = FALSE)
tree_train <- df_tree_modelling[train_index, ]</pre>
tree_train_inner <- df_tree_modelling[-validation_index, ]</pre>
tree_val <- tree_train[validation_index, ]</pre>
tree_test <- df_tree_modelling[-train_index, ]</pre>
y_val_tree <- as.numeric(ifelse(tree_val$convert == "YES", 1, 0))</pre>
y_test_tree <- as.numeric(ifelse(tree_test$convert == "YES", 1, 0))</pre>
set.seed(222)
rf <- randomForest(</pre>
  convert ~ .,
  data = tree_train,
  ntree = 500,
 mtry = floor(sqrt(ncol(tree_train) - 1)),
  importance = TRUE
# type = prob returns probabilities instead of class labels. This is for several reasons,
# first is calculating metrics like ROC or just probability in general, and second for
# later decision threshold tuning. [, "YES"] means we select the YES probability column.
pred_test <- predict(rf, tree_test, type = "prob")[, "YES"]</pre>
pred_class <- ifelse(pred_test >= 0.5, 1, 0)
rf_metrics <- calculate_metrics(pred_class, y_test_tree)</pre>
# RUN THESE ONLY
rf_metrics
##
      Accuracy Precision
                                 Recall Specificity
                                                        F1_Score
##
     0.8703479 0.4836601
                              0.1233333 0.9805722
                                                       0.1965471
print(rf)
##
## Call:
                                                                                mtry = floor(sqrt(ncol(tre
## randomForest(formula = convert ~ ., data = tree_train, ntree = 500,
                   Type of random forest: classification
##
                         Number of trees: 500
## No. of variables tried at each split: 7
           OOB estimate of error rate: 12.86%
##
## Confusion matrix:
          NO YES class.error
## NO 47906 894 0.01831967
## YES 6309 892 0.87612832
```

varImpPlot(rf)

rf

Imb data procs

GLM DTO

```
optimise_threshold <- function(predictions, actual, metric = "f1") {
    thresholds <- seq(0.1, 0.9, by = 0.01)
    results <- data.frame(
        threshold = thresholds,
        accuracy = NA,
        precision = NA,
        recall = NA,
        f1 = NA,
        specificity = NA
)

# quick logic for this loop: predictions is a numeric vector of probabilities. Use an if else to chan
# into class labels 1 or 0 according to the new threshold. Scan across all the thresholds, calculate
# neg, false pos and false neg. Then use these to calculate the diff metrics to eventually get to F1

# At the end, we have a results data frame. Append each metric into the result data frame, such that</pre>
```

```
# the result data frame is a list of the metrics for each threshold level.
  for (i in seq along(thresholds)) {
    threshold <- thresholds[i]</pre>
    pred class <- ifelse(predictions > threshold, 1, 0)
    tp <- sum(pred_class == 1 & actual == 1)</pre>
    tn <- sum(pred_class == 0 & actual == 0)</pre>
    fp <- sum(pred class == 1 & actual == 0)</pre>
    fn <- sum(pred_class == 0 & actual == 1)</pre>
    results\$accuracy[i] <- (tp + tn) / (tp + tn + fp + fn)
    results$precision[i] <- tp / (tp + fp)</pre>
    results$recall[i] <- tp / (tp + fn)
    results\$f1[i] <- 2 * results\$precision[i] * results\$recall[i] / (results\$precision[i] + results\$rec
    results\specificity[i] <- tn / (tn + fp)
  }
  # which picks out the index of the list which is the highest. We can decide which metric to use. Here
  # to F1 since its the best indicator overall esp for this imbalanced data.
  # then we extract the threshold that corresponds do it, and return everything.
  optimal_index <- which.max(results[[metric]])</pre>
  optimal_threshold <- results$threshold[optimal_index]</pre>
  return(list(
    optimal_threshold = optimal_threshold,
    all_results = results,
    best_metrics = results[optimal_index, ]
  ))
}
glm_dt_opt <- glm(convert ~ ., data = Train_Data_inner, family = binomial)</pre>
cv_lasso_dt_opt <- cv.glmnet(X_train_inner, y_train_inner,</pre>
                               family = "binomial", alpha = 1)
cv_ridge_dt_opt <- cv.glmnet(X_train_inner, y_train_inner,</pre>
                               family = "binomial", alpha = 0)
cv_enet_dt_opt <- cv.glmnet(X_train_inner, y_train_inner,</pre>
                              family = "binomial", alpha = 0.5)
pred_glm_dt_opt_val <- predict(glm_dt_opt, newdata = Validation_Data, type = "response")</pre>
pred_lasso_dt_opt_val <- predict(cv_lasso_dt_opt, newx = X_val, type = "response",</pre>
                       s = "lambda.min")
pred_ridge_dt_opt_val <- predict(cv_ridge_dt_opt, newx = X_val, type = "response",</pre>
                       s = "lambda.min")
pred_enet_dt_opt_val <- predict(cv_enet_dt_opt, newx = X_val, type = "response",</pre>
                      s = "lambda.min")
opt_glm_dt_opt <- optimise_threshold(pred_glm_dt_opt_val, y_validation_glm, metric = "f1")
opt_lasso_dt_opt <- optimise_threshold(pred_lasso_dt_opt_val, y_val, metric = "f1")</pre>
opt_ridge_dt_opt <- optimise_threshold(pred_ridge_dt_opt_val, y_val, metric = "f1")</pre>
opt_enet_dt_opt <- optimise_threshold(pred_enet_dt_opt_val, y_val, metric = "f1")</pre>
```

Decision Threshold Optimisation (F1)

Optimal threshold = 0.18


```
# ValidatioN Results After Tuning Decision Threshold
res_glm_dt_opt <- opt_glm_dt_opt$all_results
res_ridge_dt_opt <- opt_ridge_dt_opt$all_results
res_enet_dt_opt <- opt_enet_dt_opt$all_results
res_glm_dt_opt[res_glm_dt_opt$threshold == opt_glm_dt_opt$optimal_threshold,]</pre>
```

```
## threshold accuracy precision recall f1 specificity ## 11 0.2 0.8109421 0.3517266 0.5446527 0.4274281 0.8505785
```

```
res_lasso_dt_opt[res_lasso_dt_opt$threshold == opt_lasso_dt_opt$optimal_threshold,]
     threshold accuracy precision
                                      recall
                                                     f1 specificity
## 9
          0.18 0.7970714 0.3510155 0.6232508 0.4490983 0.8236699
res_ridge_dt_opt[res_ridge_dt_opt$threshold == opt_ridge_dt_opt$optimal_threshold,]
     threshold accuracy precision
                                      recall
                                                     f1 specificity
## 8
          0.17\ 0.7864286\ 0.3406532\ 0.6512379\ 0.4473198 \qquad 0.8071158
res_enet_dt_opt[res_enet_dt_opt$threshold == opt_enet_dt_opt$optimal_threshold,]
##
     threshold accuracy precision
                                      recall
                                                     f1 specificity
## 9
          0.18 0.7976429 0.3518687 0.6232508 0.4497961 0.8243288
# Model Eval Using Test Set
pred_glm_dt_opt <- predict(glm_dt_opt, newdata = Test_Data, type = "response")</pre>
pred_lasso_dt_opt <- predict(cv_lasso_dt_opt, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_ridge_dt_opt <- predict(cv_ridge_dt_opt, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_enet_dt_opt <- predict(cv_enet_dt_opt, newx = X_test, type = "response",</pre>
                     s = "lambda.min")
glm_class_dt_opt <- ifelse(pred_glm_dt_opt > opt_glm_dt_opt$optimal_threshold, 1, 0)
lasso_class_dt_opt <- ifelse(pred_lasso_dt_opt > opt_lasso_dt_opt$optimal_threshold,
                             1, 0)
ridge_class_dt_opt <- ifelse(pred_ridge_dt_opt > opt_ridge_dt_opt$optimal_threshold,
                             1, 0)
enet_class_dt_opt <- ifelse(pred_enet_dt_opt > opt_enet_dt_opt$optimal_threshold, 1, 0)
metrics glm dt opt <- calculate metrics(glm class dt opt, y test glm)
metrics_lasso_dt_opt <- calculate_metrics(lasso_class_dt_opt, y_test)</pre>
metrics ridge dt opt <- calculate metrics(ridge class dt opt, y test)
metrics_enet_dt_opt <- calculate_metrics(enet_class_dt_opt, y_test)</pre>
comparison_table <- data.frame(</pre>
 GLM = metrics_glm_dt_opt,
  Lasso = metrics_lasso_dt_opt,
 Ridge = metrics_ridge_dt_opt,
  ElasticNet = metrics_enet_dt_opt
comparison table
##
                     GLM
                                       Ridge ElasticNet
                             Lasso
## Accuracy
               0.8196429 0.8014286 0.7905714 0.8012857
## Precision
               0.3536723 0.3320312 0.3194021 0.3317057
## Recall
               0.5371854 0.5835240 0.5989703 0.5829519
## Specificity 0.8599412 0.8325171 0.8179073 0.8324355
## F1 Score
              0.4265274 0.4232365 0.4166335 0.4228216
```

RF DTO

```
set.seed(222)
rf_dto <- randomForest(</pre>
  convert ~ .,
  data = tree_train_inner,
  ntree = 500,
  mtry = floor(sqrt(ncol(tree_train_inner) - 1)),
  importance = TRUE
pred_val <- predict(rf_dto, tree_val, type = "prob")[, "YES"]</pre>
opt_rf_dto <- optimise_threshold(pred_val, y_val_tree, metric = "f1")
res_opt_rf_dto <- opt_rf_dto$all_results</pre>
cat("Validation Results")
## Validation Results
res_opt_rf_dto[res_opt_rf_dto$threshold == opt_rf_dto$optimal_threshold,]
##
      threshold accuracy precision
                                       recall
                                                      f1 specificity
## 29
           0.38 0.971502 0.9266169 0.8413326 0.8819177 0.9903516
pred_test_dto <- predict(rf, tree_test, type = "prob")[, "YES"]</pre>
rf_class_dt_opt <- ifelse(pred_test_dto > opt_rf_dto$optimal_threshold, 1, 0)
metrics_rf_dto <- calculate_metrics(rf_class_dt_opt, y_test_tree)</pre>
metrics_rf_dto
##
                                 Recall Specificity
                                                        F1_Score
      Accuracy
                 Precision
```

U/D Sampling

0.8659904

##

glmnet / cv.glmnet (logistic) - for family="binomial", glmnet expects a binary outcome. It accepts either numeric 0/1, or a 2-level factor (internally converted to 0/1 with the first level as 0). Turning it into numeric makes it simple and less error prone (0/1 encoding)

0.9515534

0.3544391

0.2861111

randomForest - in rf, the task is inferred from the type of y. if y is factor, it is classification forest (type="prob" gives class probs as mentioned earlier). if y is numeric, we will get a regression forest (continuous outputs; no type="prob").

Thus pass numeric into glm but factor into

0.4656420

```
X_train_matrix <- as.data.frame(X_train)
y_train_fac <- droplevels(as.factor(y_train))

set.seed(123)
train_up <- upSample(x = X_train_matrix, y = y_train_fac, yname = "convert")
X_train_up <- data.matrix(subset(train_up, select = -convert))
y_train_up <- as.numeric(as.character(train_up$convert))</pre>
```

```
set.seed(123)
train_down <- downSample(x = X_train_matrix, y = y_train_fac, yname = "convert")</pre>
X_train_down <- data.matrix(subset(train_down, select = -convert))</pre>
y_train_down <- as.numeric(as.character(train_down$convert))</pre>
Train_Data_up <- Train_Data</pre>
Train_Data_up$convert <- factor(Train_Data_up$convert, levels = c("NO","YES"))</pre>
up_train <- upSample(x = subset(Train_Data_up, select = -convert),
                      y = Train_Data_up$convert, yname = "convert")
Train_Data_down <- Train_Data</pre>
Train Data down$convert <- factor(Train Data down$convert, levels = c("NO", "YES"))
down_train <- upSample(x = subset(Train_Data_down, select = -convert),</pre>
                      y = Train_Data_down$convert, yname = "convert")
# prop table is just table but in proportions
# prop.table(table(y_train))
# prop.table(table(y_train_up))
# prop.table(table(y_train_down))
X_train_inner_matrix <- as.data.frame(X_train_inner)</pre>
y_train_inner_fac <- droplevels(as.factor(y_train_inner))</pre>
set.seed(123)
train_up_inner <- upSample(x = X_train_inner_matrix, y = y_train_inner_fac, yname = "convert")
X_train_inner_up <- data.matrix(subset(train_up_inner, select = -convert))</pre>
y_train_inner_up <- as.numeric(as.character(train_up_inner$convert))</pre>
set.seed(123)
train_down_inner <- downSample(x = X_train_inner_matrix, y = y_train_inner_fac, yname = "convert")
X_train_inner_down <- data.matrix(subset(train_down_inner, select = -convert))</pre>
y_train_inner_down <- as.numeric(as.character(train_down_inner$convert))</pre>
Train_Data_inner_up <- Train_Data_inner</pre>
Train_Data_inner_up$convert <- factor(Train_Data_inner_up$convert, levels = c("NO", "YES"))</pre>
up_train_inner <- upSample(x = subset(Train_Data_inner_up, select = -convert),
                      y = Train_Data_inner_up$convert, yname = "convert")
Train_Data_inner_down <- Train_Data_inner</pre>
Train_Data_inner_down$convert <- factor(Train_Data_inner_down$convert, levels = c("NO", "YES"))</pre>
down_train_inner <- upSample(x = subset(Train_Data_inner_down, select = -convert),</pre>
                      y = Train_Data_inner_down$convert, yname = "convert")
# set seed is a random number SEQUENCE setter - use it again before each random act to make sure each r
set.seed(111)
glm_up <- glm(convert ~ ., data = up_train, family = binomial)</pre>
cv lasso up <- cv.glmnet(X train up, y train up, family = "binomial", alpha = 1)
cv_ridge_up <- cv.glmnet(X_train_up, y_train_up, family = "binomial", alpha = 0)</pre>
cv_enet_up <- cv.glmnet(X_train_up, y_train_up, family = "binomial", alpha = 0.5)</pre>
```

```
set.seed(111)
glm_down <- glm(convert ~ ., data = down_train, family = binomial)</pre>
cv_lasso_down <- cv.glmnet(X_train_down, y_train_down, family = "binomial", alpha = 1)</pre>
cv_ridge_down <- cv.glmnet(X_train_down, y_train_down, family = "binomial", alpha = 0)</pre>
cv_enet_down <- cv.glmnet(X_train_down, y_train_down, family = "binomial", alpha = 0.5)</pre>
pred_glm_up <- predict(glm_up, newdata = Test_Data, type = "response")</pre>
pred_lasso_up <- predict(cv_lasso_up, newx = X_test, type = "response", s = "lambda.min")</pre>
pred_ridge_up <- predict(cv_ridge_up, newx = X_test, type = "response", s = "lambda.min")</pre>
pred_enet_up <- predict(cv_enet_up, newx = X_test, type = "response", s = "lambda.min")</pre>
glm_class_up <- ifelse(pred_glm_up > 0.5, 1, 0)
lasso_class_up <- ifelse(pred_lasso_up > 0.5, 1, 0)
ridge_class_up <- ifelse(pred_ridge_up > 0.5, 1, 0)
enet_class_up <- ifelse(pred_enet_up > 0.5, 1, 0)
metrics_glm_up <- calculate_metrics(glm_class_up, y_test_glm)</pre>
metrics_lasso_up <- calculate_metrics(lasso_class_up, y_test)</pre>
metrics_ridge_up <- calculate_metrics(ridge_class_up, y_test)</pre>
metrics_enet_up <- calculate_metrics(enet_class_up, y_test)</pre>
comparison_table <- data.frame(</pre>
 GLM = metrics_glm_up,
 Lasso = metrics_lasso_up,
 Ridge = metrics_ridge_up,
 ElasticNet = metrics_enet_up
print(round(comparison_table, 4))
##
                  GLM Lasso Ridge ElasticNet
## Accuracy
               0.7341 0.7356 0.7231
                                          0.7356
## Precision 0.2824 0.2837 0.2731
                                          0.2837
## Recall
               0.7328 0.7328 0.7328
                                          0.7328
## Specificity 0.7343 0.7360 0.7217
                                         0.7360
## F1_Score
              0.4077 0.4091 0.3979
                                         0.4091
pred_glm_down <- predict(glm_down, newdata = Test_Data, type = "response")</pre>
pred_lasso_down <- predict(cv_lasso_down, newx = X_test, type = "response",</pre>
                            s = "lambda.min")
pred_ridge_down <- predict(cv_ridge_down, newx = X_test, type = "response",</pre>
                            s = "lambda.min")
pred_enet_down <- predict(cv_enet_down, newx = X_test, type = "response",</pre>
                           s = "lambda.min")
glm_class_down <- ifelse(pred_glm_down > 0.5, 1, 0)
lasso_class_down <- ifelse(pred_lasso_down > 0.5, 1, 0)
ridge_class_down <- ifelse(pred_ridge_down > 0.5, 1, 0)
enet_class_down <- ifelse(pred_enet_down > 0.5, 1, 0)
metrics_glm_down <- calculate_metrics(glm_class_down, y_test_glm)</pre>
metrics_lasso_down <- calculate_metrics(lasso_class_down, y_test)</pre>
```

```
metrics_ridge_down <- calculate_metrics(ridge_class_down, y_test)
metrics_enet_down <- calculate_metrics(enet_class_down, y_test)

comparison_table <- data.frame(
   GLM = metrics_glm_down,
   Lasso = metrics_lasso_down,
   Ridge = metrics_ridge_down,
   ElasticNet = metrics_enet_down
)
print(round(comparison_table, 4))</pre>
```

```
## GLM Lasso Ridge ElasticNet
## Accuracy 0.7355 0.7314 0.7179 0.7314
## Precision 0.2831 0.2807 0.2710 0.2808
## Recall 0.7300 0.7368 0.7454 0.7374
## Specificity 0.7363 0.7306 0.7139 0.7306
## F1_Score 0.4080 0.4065 0.3975 0.4068
```

U/D Samp+DTO

```
# attempt for u/d sampling with earlier optimal decision threshold
# up:
glm_class_up <- ifelse(pred_glm_up > opt_glm_dt_opt$optimal_threshold, 1, 0)
lasso_class_up <- ifelse(pred_lasso_up > opt_lasso_dt_opt$optimal_threshold, 1, 0)
ridge_class_up <- ifelse(pred_ridge_up > opt_ridge_dt_opt$optimal_threshold, 1, 0)
enet_class_up <- ifelse(pred_enet_up > opt_enet_dt_opt$optimal_threshold, 1, 0)
metrics_glm_up <- calculate_metrics(glm_class_up, y_test_glm)</pre>
metrics_lasso_up <- calculate_metrics(lasso_class_up, y_test)</pre>
metrics_ridge_up <- calculate_metrics(ridge_class_up, y_test)</pre>
metrics_enet_up <- calculate_metrics(enet_class_up, y_test)</pre>
comparison_table <- data.frame(</pre>
 GLM = metrics_glm_up,
  Lasso = metrics_lasso_up,
 Ridge = metrics_ridge_up,
  ElasticNet = metrics_enet_up
)
print(round(comparison_table, 4))
##
                  GLM Lasso Ridge ElasticNet
## Accuracy
               0.4081 0.3845 0.3203
                                         0.3843
## Precision 0.1692 0.1648 0.1530
                                         0.1648
## Recall
               0.9565 0.9662 0.9794
                                         0.9662
## Specificity 0.3299 0.3015 0.2262
                                         0.3013
## F1 Score
             0.2875 0.2816 0.2646
                                         0.2815
```

lasso_class_down <- ifelse(pred_lasso_down > opt_lasso_dt_opt\$optimal_threshold, 1, 0)

glm_class_down <- ifelse(pred_glm_down > opt_glm_dt_opt\$optimal_threshold, 1, 0)

```
ridge_class_down <- ifelse(pred_ridge_down > opt_ridge_dt_opt$optimal_threshold, 1, 0)
enet_class_down <- ifelse(pred_enet_down > opt_enet_dt_opt$optimal_threshold, 1, 0)
metrics_glm_down <- calculate_metrics(glm_class_down, y_test_glm)</pre>
metrics_lasso_down <- calculate_metrics(lasso_class_down, y_test)</pre>
metrics_ridge_down <- calculate_metrics(ridge_class_down, y_test)</pre>
metrics_enet_down <- calculate_metrics(enet_class_down, y_test)</pre>
comparison_table <- data.frame(</pre>
  GLM = metrics_glm_down,
  Lasso = metrics_lasso_down,
 Ridge = metrics_ridge_down,
  ElasticNet = metrics_enet_down
print(round(comparison_table, 4))
##
                   GLM Lasso Ridge ElasticNet
## Accuracy
               0.4061 0.3872 0.3210
                                          0.3872
## Precision 0.1687 0.1654 0.1532
                                          0.1654
               0.9559 0.9657 0.9805
## Recall
                                          0.9657
## Specificity 0.3277 0.3047 0.2269
                                          0.3047
## F1 Score
               0.2867 0.2824 0.2650
                                          0.2824
# Actual optimisation:
set.seed(111)
glm_up_inner <- glm(convert ~ ., data = up_train_inner, family = binomial)</pre>
cv_lasso_up_inner <- cv.glmnet(X_train_inner_up, y_train_inner_up,</pre>
                           family = "binomial", alpha = 1)
cv_ridge_up_inner <- cv.glmnet(X_train_inner_up, y_train_inner_up,</pre>
                           family = "binomial", alpha = 0)
cv_enet_up_inner <- cv.glmnet(X_train_inner_up, y_train_inner_up,</pre>
                           family = "binomial", alpha = 0.5)
set.seed(111)
glm_down_inner <- glm(convert ~ ., data = down_train_inner, family = binomial)</pre>
cv_lasso_down_inner <- cv.glmnet(X_train_inner_down, y_train_inner_down,</pre>
                                  family = "binomial", alpha = 1)
cv_ridge_down_inner <- cv.glmnet(X_train_inner_down, y_train_inner_down,</pre>
                                  family = "binomial", alpha = 0)
cv_enet_down_inner <- cv.glmnet(X_train_inner_down, y_train_inner_down,</pre>
                                  family = "binomial", alpha = 0.5)
pred_glm_up_inner <- predict(glm_up_inner, newdata = Validation_Data, type = "response")</pre>
pred_lasso_up_inner <- predict(cv_lasso_up_inner, newx = X_val, type = "response", s = "lambda.min")</pre>
pred_ridge_up_inner <- predict(cv_ridge_up_inner, newx = X_val, type = "response", s = "lambda.min")</pre>
pred_enet_up_inner <- predict(cv_enet_up_inner, newx = X_val, type = "response", s = "lambda.min")</pre>
pred_glm_down_inner <- predict(glm_down_inner, newdata = Validation_Data,</pre>
                                 type = "response")
pred_lasso_down_inner <- predict(cv_lasso_down_inner, newx = X_val, type = "response", s = "lambda.min"</pre>
pred_ridge_down_inner <- predict(cv_ridge_down_inner, newx = X_val, type = "response", s = "lambda.min"</pre>
pred_enet_down_inner <- predict(cv_enet_down_inner, newx = X_val, type = "response", s = "lambda.min")</pre>
```

```
opt_glm_up_inner <- optimise_threshold(pred_glm_up_inner,</pre>
                                       y validation glm, metric = "f1")
opt_lasso_up_inner <- optimise_threshold(pred_lasso_up_inner, y_val, metric = "f1")
opt_ridge_up_inner <- optimise_threshold(pred_ridge_up_inner, y_val, metric = "f1")
opt_enet_up_inner <- optimise_threshold(pred_enet_up_inner, y_val, metric = "f1")
res_glm_up_inner <- opt_glm_up_inner$all_results</pre>
res_lasso_up_inner <- opt_lasso_up_inner$all_results
res_ridge_up_inner <- opt_ridge_up_inner$all_results</pre>
res_enet_up_inner <- opt_enet_up_inner$all_results</pre>
res_glm_up_inner[res_glm_up_inner$threshold == opt_glm_up_inner$optimal_threshold,]
##
      threshold accuracy precision
                                      recall
                                                    f1 specificity
## 51
            0.6 0.797943 0.3390422 0.5893054 0.4304409 0.8289981
res_lasso_up_inner[res_lasso_up_inner$threshold == opt_lasso_up_inner$optimal_threshold,]
      threshold accuracy precision
                                       recall
                                                     f1 specificity
## 51
            0.6 0.7979286 0.3504774 0.6124865 0.4458374
                                                          0.8263054
res_ridge_up_inner[res_ridge_up_inner$threshold == opt_ridge_up_inner$optimal_threshold,]
      threshold accuracy precision
##
                                       recall
                                                     f1 specificity
           0.8116455
res_enet_up_inner[res_enet_up_inner$threshold == opt_enet_up_inner$optimal_threshold,]
##
      threshold accuracy precision
                                       recall
                                                     f1 specificity
## 51
           0.6 0.7977857 0.3502616 0.6124865 0.4456628
                                                         0.8261407
# down
opt_glm_down_inner <- optimise_threshold(pred_glm_down_inner,</pre>
                                         y_validation_glm, metric = "f1")
opt_lasso_down_inner <- optimise_threshold(pred_lasso_down_inner, y_val, metric = "f1")
opt_ridge_down_inner <- optimise_threshold(pred_ridge_down_inner, y_val, metric = "f1")
opt enet down inner <- optimise threshold(pred enet down inner, y val, metric = "f1")
res_glm_down_inner <- opt_glm_down_inner$all_results</pre>
res_lasso_down_inner <- opt_lasso_down_inner$all_results
res_ridge_down_inner <- opt_ridge_down_inner$all_results</pre>
res_enet_down_inner <- opt_enet_down_inner$all_results</pre>
res_glm_down_inner[res_glm_down_inner$threshold == opt_glm_down_inner$optimal_threshold,]
##
      threshold accuracy precision
                                      recall
                                                     f1 specificity
## 50
           0.59 0.7910864 0.3321245 0.6058434 0.4290455
                                                         0.8186592
```

```
res_lasso_down_inner[res_lasso_down_inner$threshold ==
                       opt_lasso_down_inner$optimal_threshold,]
##
      threshold accuracy precision
                                                      f1 specificity
                                        recall
## 53
           0.62 0.8046429 0.3563708 0.5855759 0.4430869
                                                             0.838165
res_ridge_down_inner[res_ridge_down_inner$threshold ==
                       opt_ridge_down_inner$optimal_threshold,]
##
      threshold accuracy precision
                                        recall
                                                      f1 specificity
            0.6 0.7992857 0.3500315 0.5979548 0.4415739
## 51
                                                           0.8300939
res_enet_down_inner[res_enet_down_inner$threshold ==
                      opt_enet_down_inner$optimal_threshold,]
##
      threshold accuracy precision
                                                     f1 specificity
                                       recall
## 53
           0.62 0.8057857 0.3580613 0.5844995 0.444081
                                                          0.8396475
# test set
# up
pred_glm_up_inner <- predict(glm_up_inner, newdata = Test_Data, type = "response")</pre>
pred_lasso_up_inner <- predict(cv_lasso_up_inner, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_ridge_up_inner <- predict(cv_ridge_up_inner, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_enet_up_inner <- predict(cv_enet_up_inner, newx = X_test, type = "response",</pre>
                     s = "lambda.min")
glm_class_up_inner <- ifelse(pred_glm_up_inner >
                                opt_glm_up_inner$optimal_threshold, 1, 0)
lasso_class_up_inner <- ifelse(pred_lasso_up_inner >
                                  opt_lasso_up_inner$optimal_threshold, 1, 0)
ridge_class_up_inner <- ifelse(pred_ridge_up_inner >
                                  opt_ridge_up_inner$optimal_threshold, 1, 0)
enet_class_up_inner <- ifelse(pred_enet_up_inner >
                                  opt_enet_up_inner$optimal_threshold, 1, 0)
metrics_glm_up_inner <- calculate_metrics(glm_class_up_inner, y_test_glm)</pre>
metrics_lasso_up_inner <- calculate_metrics(lasso_class_up_inner, y_test)</pre>
metrics_ridge_up_inner <- calculate_metrics(ridge_class_up_inner, y_test)</pre>
metrics_enet_up_inner <- calculate_metrics(enet_class_up_inner, y_test)</pre>
comparison_table_up_inner <- data.frame(</pre>
 GLM = metrics_glm_up_inner,
  Lasso = metrics_lasso_up_inner,
 Ridge = metrics_ridge_up_inner,
 ElasticNet = metrics_enet_up_inner
comparison_table_up_inner
```

GLM Lasso Ridge ElasticNet

```
## Accuracy
               0.8038571 0.8016429 0.7951429 0.8015000
## Precision 0.3328868 0.3286713 0.3234552 0.3282239
## Recall
               0.5686499 0.5646453 0.5869565 0.5635011
## Specificity 0.8374143 0.8354554 0.8248449 0.8354554
## F1 Score
               0.4199409 0.4154915 0.4170732 0.4148242
# down
pred_glm_down_inner <- predict(glm_down_inner, newdata = Test_Data, type = "response")</pre>
pred_lasso_down_inner <- predict(cv_lasso_down_inner, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_ridge_down_inner <- predict(cv_ridge_down_inner, newx = X_test, type = "response",</pre>
                      s = "lambda.min")
pred_enet_down_inner <- predict(cv_enet_down_inner, newx = X_test, type = "response",</pre>
                     s = "lambda.min")
glm_class_down_inner <- ifelse(pred_glm_down_inner >
                                 opt_glm_down_inner$optimal_threshold, 1, 0)
lasso_class_down_inner <- ifelse(pred_lasso_down_inner >
                                   opt_lasso_down_inner$optimal_threshold, 1, 0)
ridge_class_down_inner <- ifelse(pred_ridge_down_inner >
                                   opt_ridge_down_inner$optimal_threshold, 1, 0)
enet_class_down_inner <- ifelse(pred_enet_down_inner >
                                   opt_enet_down_inner$optimal_threshold, 1, 0)
glm_class_up_inner <- ifelse(pred_glm_up_inner > 0.5, 1, 0)
lasso_class_up_inner <- ifelse(pred_lasso_up_inner > 0.5, 1, 0)
ridge class up inner <- ifelse(pred ridge up inner > 0.5, 1, 0)
enet class up inner <- ifelse(pred enet up inner > 0.5, 1, 0)
metrics_glm_down_inner <- calculate_metrics(glm_class_down_inner, y_test_glm)</pre>
metrics_lasso_down_inner <- calculate_metrics(lasso_class_down_inner, y_test)
metrics_ridge_down_inner <- calculate_metrics(ridge_class_down_inner, y_test)</pre>
metrics_enet_down_inner <- calculate_metrics(enet_class_down_inner, y_test)</pre>
comparison_table_down_inner <- data.frame(</pre>
 GLM = metrics_glm_down_inner,
  Lasso = metrics_lasso_down_inner,
 Ridge = metrics_ridge_down_inner,
  ElasticNet = metrics_enet_down_inner
comparison_table_down_inner
##
                     GLM
                                       Ridge ElasticNet
                             Lasso
## Accuracy
               0.7984286 0.8090000 0.8040714 0.8095714
## Precision 0.3277742 0.3366267 0.3301468 0.3368870
## Recall
               0.5846682 0.5457666 0.5532037 0.5423341
## Specificity 0.8289259 0.8465557 0.8398629 0.8476983
```

seems like overall performace is better without up or down sampling maybe? need to think about what metrics we really want to be using.

0.4200575 0.4164120 0.4135129 0.4156072

F1 Score

Next Steps - tuning, feature selection, weights, analysis of error and residuals

To do: - tune hyper parameters - do better feature selection —> hybrid/forward/backward subset feature selection - try the weights 4 to 1 thing for lasso/enet after optimising decision boundary - check if under or overfitting by comparing pure train and test error

```
cv_lasso <- cv.glmnet(X_train, y_train, family = "binomial", alpha = 1)
train_preds <- predict(cv_lasso, newx = X_train, s = "lambda.min", type = "response")
test_preds <- predict(cv_lasso, newx = X_test, s = "lambda.min", type = "response")

opt_threshold <- opt_lasso_dt_opt$optimal_threshold
train_class <- ifelse(train_preds > opt_threshold, 1, 0)
test_class <- ifelse(test_preds > opt_threshold, 1, 0)

train_error <- mean(train_class != y_train)
test_error <- mean(test_class != y_test)

cat("Training error:", round(train_error, 3), "\n")

## Training error: 0.203

cat("Test error:", round(test_error, 3))</pre>
```

underfitting? maybe a discuss for next week.

```
library(MASS)
step_model <- stepAIC(glm_basic, direction = "both", trace = FALSE)</pre>
summary(step_model)
##
## Call:
## glm(formula = convert ~ trip_start_date + trip_end_date + platform +
       quote_date + quote_hour + has_child_U12 + has_teen_013 +
##
       has_adult_018 + has_senior_065 + group_type + Africa + Europe +
##
       Oceania + Multi_Region + Domestic_Cruise + North_America +
##
       South_America + Middle_East + South_East_Asia + Antarctica +
##
       snowsports + cruise_cover + medical_conditions + gadget_cover +
##
       motorcycle_cover + rental_vehicle_excess + specified_items +
##
       extra_cancel_tier + trip_length_capped_boxcox_z + quote_price_capped_boxcox_z +
##
       lead_length_capped_boxcox_z + boost_2_length_boxcox_z + boost_3_length_boxcox_z +
       boost_num_z + num_travellers_z + discount_z, family = binomial,
##
##
       data = Train_Data)
##
## Coefficients:
                                       Estimate Std. Error z value Pr(>|z|)
                                     51.9896700 11.5899906 4.486 7.27e-06 ***
## (Intercept)
```

```
## trip_start_date
                                     0.0058859 0.0007968
                                                             7.387 1.50e-13 ***
                                                           -6.258 3.91e-10 ***
## trip_end_date
                                     -0.0044913
                                                 0.0007177
## platformqw
                                     -1.1431971
                                                 0.0461346 -24.780 < 2e-16 ***
                                     -1.4623446
                                                 0.0433361 -33.744 < 2e-16 ***
## platformweb
## quote_date
                                     -0.0040665
                                                 0.0006786
                                                            -5.993 2.07e-09 ***
## quote hour
                                     0.0060232
                                                 0.0027875
                                                             2.161 0.030712 *
## has child U12TRUE
                                     0.7192795
                                                 0.1258277
                                                             5.716 1.09e-08 ***
## has_teen_013TRUE
                                     0.2685638
                                                 0.0858783
                                                             3.127 0.001764 **
## has_adult_018TRUE
                                     -0.1346085
                                                 0.0848409
                                                            -1.587 0.112604
## has_senior_065TRUE
                                      0.2385898
                                                 0.0853812
                                                             2.794 0.005200 **
## group_typemiddle_couple_U60
                                      0.5968600
                                                 0.2594158
                                                             2.301 0.021404 *
## group_typemiddle_peer_group_U60
                                     -0.0556439
                                                 0.3646781
                                                           -0.153 0.878727
## group_typemixed_generation_family 0.4519563
                                                 0.2561232
                                                             1.765 0.077630
## group_typeold_couple_060
                                      0.7063987
                                                 0.2553325
                                                             2.767 0.005665 **
## group_typeolder_parents_family
                                      0.6935275
                                                 0.2675870
                                                             2.592 0.009548 **
## group_typeolder_peer_group_060
                                      0.2846445
                                                 0.3720303
                                                             0.765 0.444205
## group_typeparents_plus_kids
                                     -0.2237712
                                                 0.2167544 -1.032 0.301898
## group_typeparents_plus_teens
                                      0.3364114
                                                 0.2614978
                                                             1.286 0.198276
## group_typesingle_middle_U60
                                      1.0065086
                                                 0.2830151
                                                             3.556 0.000376 ***
## group_typesingle_old_060
                                      1.2623870
                                                 0.2832342
                                                             4.457 8.31e-06 ***
## group_typesingle_young_U30
                                      0.9427224
                                                 0.2834049
                                                             3.326 0.000880 ***
## group_typeyoung_couple_U30
                                                 0.2660326
                                                             1.729 0.083760 .
                                      0.4600432
## group_typeyoung_peer_group_U30
                                                             0.791 0.428795
                                      0.2382936
                                                 0.3011587
## Africa
                                      0.3932084
                                                 0.1027016
                                                             3.829 0.000129 ***
## Europe
                                      0.0669381
                                                0.0461674
                                                             1.450 0.147086
## Oceania
                                     -0.4490016
                                                 0.0530016 -8.471 < 2e-16 ***
                                     -0.3200958
                                                 0.1051790 -3.043 0.002340 **
## Multi_Region
## Domestic_Cruise
                                      0.2243940
                                                 0.0681832
                                                             3.291 0.000998 ***
## North_America
                                     0.4952722
                                                 0.0616095
                                                             8.039 9.07e-16 ***
## South_America
                                    0.5507066
                                                 0.1259625
                                                             4.372 1.23e-05 ***
## Middle_East
                                     0.2967711
                                                 0.1054927
                                                             2.813 0.004905 **
## South_East_Asia
                                      0.1241377
                                                 0.0408088
                                                             3.042 0.002351 **
## Antarctica
                                    0.7703325
                                                 0.4041080
                                                             1.906 0.056617 .
                                                             4.649 3.33e-06 ***
## snowsports
                                     0.3022167
                                                 0.0650045
                                     -0.5082200
                                                 0.0710317
                                                            -7.155 8.38e-13 ***
## cruise cover
                                                 0.4760769 -4.341 1.42e-05 ***
                                     -2.0665083
## medical_conditions
## gadget cover
                                    0.3344531
                                                 0.0716914
                                                             4.665 3.08e-06 ***
## motorcycle_cover
                                     0.2142588
                                                 0.0807262
                                                             2.654 0.007951 **
## rental_vehicle_excess
                                     -0.5450064
                                                 0.1063316 -5.126 2.97e-07 ***
## specified_items
                                     -0.6935199
                                                 0.1520318 -4.562 5.07e-06 ***
## extra_cancel_tier
                                     -1.9299735
                                                 0.0656929 -29.379
                                                                   < 2e-16 ***
## trip_length_capped_boxcox_z
                                      0.6393268
                                                 0.0422400 15.136 < 2e-16 ***
## quote_price_capped_boxcox_z
                                     -1.1246251
                                                 0.0402617 -27.933
                                                                    < 2e-16 ***
                                     -0.5365335
                                                 0.0209170 -25.651
## lead_length_capped_boxcox_z
                                                                    < 2e-16 ***
## boost_2_length_boxcox_z
                                      0.1153383
                                                 0.0188556
                                                             6.117 9.54e-10 ***
                                                            -2.169 0.030061 *
## boost_3_length_boxcox_z
                                     -0.0338023
                                                 0.0155822
## boost_num_z
                                      0.3914406
                                                 0.0362338
                                                            10.803 < 2e-16 ***
## num_travellers_z
                                      0.1060001
                                                 0.0405087
                                                             2.617 0.008878 **
## discount_z
                                      0.6260933
                                                 0.0259373 24.139 < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
```

```
## Null deviance: 43173 on 55999 degrees of freedom
## Residual deviance: 34509 on 55950 degrees of freedom
## AIC: 34609
##
## Number of Fisher Scoring iterations: 6
```

formula(step_model)

```
## convert ~ trip_start_date + trip_end_date + platform + quote_date +
##
       quote_hour + has_child_U12 + has_teen_013 + has_adult_018 +
##
       has_senior_065 + group_type + Africa + Europe + Oceania +
##
       Multi_Region + Domestic_Cruise + North_America + South_America +
       Middle_East + South_East_Asia + Antarctica + snowsports +
##
##
       cruise_cover + medical_conditions + gadget_cover + motorcycle_cover +
##
       rental_vehicle_excess + specified_items + extra_cancel_tier +
##
       trip_length_capped_boxcox_z + quote_price_capped_boxcox_z +
##
       lead_length_capped_boxcox_z + boost_2_length_boxcox_z + boost_3_length_boxcox_z +
##
       boost_num_z + num_travellers_z + discount_z
```

- stratified samplied didn't do much, the original sampling was already relatively well split between train and test for the target variable.
- tested model with more significant predictors, didn't change model too much
- tested using weights in cv.glmnet, worse overall than decision threshold optimisation

To Do:

- loads of testing with different models, with different params, before and after box cox or z scaling
- loads of testing to do with hyperparams