Handout zur Präsentation:

Simulation und Modellierung in der Medizininformatik

Referent: Nicolas Mayer

Studiengang / Semester: Informatik (B.Sc.), 6. Semester

Seminarthema: Simulation und Modellierung in der Medizininformatik

Betreuer: Prof. Dr. Rafael Mayoral Malmström

1. Modellierung in der Medizininformatik

Was ist Modellierung?

→ Vereinfachte Darstellung realer medizinischer Prozesse (z. B. mathematisch, statistisch). Ziel: Verstehen, Vorhersagen, Optimieren, Steuern medizinischer Abläufe.

Modellierungsarten (Beispiele):	Voraussetzungen:
 Mathematische Modelle: Glukose-Insulin-Regelung Stochastische Modelle: Rückfallwahrscheinlichkeit Agentenbasierte Modelle: Patientenverhalten Ontologien: SNOMED CT ML-Modelle: Diagnosen mit neuronalen Netzen Entscheidungsbäume: Therapiepfade 	 Hochwertige, strukturierte medizinische Daten Interdisziplinäre Zusammenarbeit Klinische Validierung der Modelle
Anwendungen:	Herausforderungen:
 Entscheidungsunterstützungssysteme 	 Komplexität biologischer Systeme

Zukunftsperspektiven:

- Kombination mit Echtzeitdaten (Wearables)
- Digitale Patientenzwillinge
- KI-basierte adaptive Modelle
- Integration in Gesundheitsakten

2. Simulation in der Medizininformatik

Was ist Simulation?

→ Nachbildung medizinischer Prozesse zur Analyse, Schulung oder Planung.

Typen medizinischer Simulationen:	Vorteile:
 Physikalisch: OP-Simulatoren Computergestützt: Kreislaufmodelle Agentenbasiert: Infektionsausbreitung VR: Notfallszenarien Prozesssimulation: Patientenfluss 	 Gefahrloses Training Kostenreduktion Wiederholbarkeit Realitätsnähe bei seltenen Ereignissen
Anwendungsbereich:	Herausforderungen:
 Ausbildung von Fachpersonal Therapieplanung Notfall- & Krisenmanagement Epidemiologische Forschung Medizinproduktentwicklung 	 Modellgenauigkeit & Realitätsnähe Kosten technischer Systeme Datenverfügbarkeit Ethische Fragestellungen

Zukunftsperspektiven:

- KI-gestützte Echtzeitsimulationen
- Digitale Zwillinge
- Cloud-Training
- Telemedizinische Simulationssysteme

3. Fallbeispiel: Max Berger

Patientendaten:

- 62 Jahre, Prostatakrebs (Gleason 7), BRCA2-Risiko
- Ziel: Schonende, kurative Therapie

Modellierung in der Diagnose:	Therapieentscheidung:
 Klinisches Entscheidungsmodell Genetisches Risikomodell Risiko-Prognosemodell (22 % Progressionsrisiko) Tumorwachstumsmodell 	 Strahlensimulation: Nähe zum Rektum → Risiko KI-Modell: Nebenwirkungsprognose Patientenpräferenz: kurze Therapie → Entscheidung: Roboterassistierte Prostatektomie
OP-Vorbereitung:	Nachsorge & Modellierung:
3D-Prostata-ModellOP-Simulation für Zugangsplanung	Rückfallrisiko- & LifestylemodellePharmamodell zur Schmerztherapie

Fazit:

Max Berger profitiert von personalisierter, modell- & simulationsgestützter Behandlung – auch als Lehr fall nutzbar ist.