Part I: Real Analysis

1

Let (X, \mathcal{A}, μ) be an arbitrary measure space with μ a positive measure. Prove that (X, \mathcal{A}, μ) is σ -finite if and only if there exists a strictly positive function $f \in L^1(\mu)$.

Solution:

Proof. (\Rightarrow) Suppose (X, \mathcal{A}, μ) is σ -finite. Then there exists sets $\{A_n\}_{n=0}^{\infty} \subseteq \mathcal{A}$ such that $\mu(A_n) < \infty$ for all $n \in \mathbb{N}$ and $X = \bigcup_{n=0}^{\infty} A_n$. Without loss of generality assume $\{A_n\}_{n=0}^{\infty}$ is pairwise disjoint and $A_n \neq \emptyset$ for all $n \in \mathbb{N}$. Let $f: X \to \mathbb{R}$ be defined

$$f(x) := \sum_{n=0}^{\infty} \frac{2^{-n}}{\mu(A_n)} \chi_{A_n}(x).$$

Then f is strictly positive and

$$||f||_1 = \sum_{n=0}^{\infty} 2^{-n} = 2 < \infty.$$

(\Leftarrow) Suppose there exists a strictly positive function $f \in L^1(\mu)$. By way of contradiction assume (X, \mathcal{A}, μ) is not σ -finite. For each $n \in \mathbb{N}$, let $A_n := \{x \in X : f(x) > 2^{-n}\}$. Since f is measurable, A_n is measurable for all n. Also, since $\bigcup_{n=0}^{\infty} A_n = X$, there must exist some $n_0 \in \mathbb{N}$ such that $\mu(A_{n_0}) = \infty$. Therefore,

$$||f||_1 = \int_X f \ d\mu \ge \int_{A_{n_0}} f \ d\mu \ge \int_{A_{n_0}} 2^{-n_0} \ d\mu = \infty.$$

This contradicts the assumption that $f \in L^1(\mu)$.

 $\mathbf{2}$

Give an example of each of the following:

- (a) A function f which is unbounded but Lebesgue integrable on $(0, \infty)$.
- (b) A function f which is Lipschitz continuous but not differentiable everywhere.
- (c) A function f which is absolutely continuous but not Lipschitz continuous on [0,1].
- (d) A sequence $\{f_n\}$ of functions that converges to 0 pointwise on [0,1] but not in $L^1([0,1])$.

Solution:

(a) Let $f:(0,\infty)\to\mathbb{R}$ be defined by

$$f(x) := \sum_{n=0}^{\infty} 2^{-n} \chi_{(n,n+1]}(x).$$

- (b) Let f(x) := |x|.
- (c) Let $f(x) := \sqrt{x}$.
- (d) For each $n \in \mathbb{N}$, let $f_n(x) := 2^{-n} \chi_{(0,2^{-n})}(x)$.

Let p, q > 1 be conjugate and $\Omega \subset \mathbb{R}^N$.

- (a) Show that if $f_n \to f$ in $L^p(\Omega)$ and $g_n \to g$ in $L^q(\Omega)$, then $f_n g_n \to f g$ in $L^1(\Omega)$.
- (b) Explain carefully what is meant by the statement that $L^q(\Omega)$ is the dual space of $L^p(\Omega)$.

Solution:

(a) Proof. Since $f_n \to f$ in $L^p(\Omega)$, there exists $N \in \mathbb{N}$ such that $n \geq N$ implies $||f_n - f||_p < 1$. Thus, for $n \geq N$,

$$\left| \|f_n\|_p - \|f\|_p \right| \le \|f_n - f\|_p < 1,$$

so $\{\|f_n\|_p\}_{n\geq N}$ is bounded. But since $\{\|f_n\|_p\}_{n< N}$ is a finite collection of reals, $\{\|f_n\|_p\}$ is bounded. Thus there exists M>0 such that $\|f_n\|_p< M$ for all n. Therefore, by Minkowski's and multiple use of Hölder's Inequality,

$$||f_n g_n - fg||_1 = ||f_n g_n - f_n g + f_n g - fg||_1 \le ||f_n (g_n - g)||_1 + ||g(f_n - f)||_1$$

$$\le ||f_n||_p \cdot ||g_n - g||_q + ||g||_q \cdot ||f_n - f||_p$$

$$\le M \cdot ||g_n - g||_q + ||g||_q \cdot ||f_n - f||_p \xrightarrow{n \to \infty} 0.$$

(b) To say that $L^q(\Omega)$ is the dual space of $L^p(\Omega)$ means that for every bounded linear function T on $L^p(\Omega)$, there exists $g \in L^q(\Omega)$ such that

$$T(f) = \int_{\Omega} f \cdot g \ d\mu,$$

for all $f \in L^p(\Omega)$.

4

If $f \in L^q(\mathbb{R}^N)$ for some $q < \infty$, show that

$$\lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Also show by example that the conclusion may be false without the assumption that $f \in L^q(\mathbb{R}^N)$.

Solution:

Proof. Without loss of generality assume $||f||_{\infty} < \infty$. Let $0 < \delta < ||f||_{\infty}$ and let $E := \{x : |f(x)| \ge ||f||_{\infty} - \delta\}$. Since $f \in L^q(\mathbb{R}^N)$, $\mu(E) < \infty$. Now for any 0 ,

$$||f||_p \ge \left(\int_E (||f||_\infty - \delta)^p d\mu\right)^{1/p} = (||f||_\infty - \delta) \cdot \mu(E)^{1/p},$$

so $\liminf_{p\to\infty} ||f||_p \ge \lim_{p\to\infty} ||f||_{\infty} - \delta$. Thus,

$$\liminf_{p \to \infty} ||f||_p \ge ||f||_{\infty}.$$
(1)

Further, for any 0 ,

$$||f||_p = \left(\int |f|^{p-q}|f|^q d\mu\right)^{1/p} \le ||f||_{\infty}^{\frac{p-q}{p}} ||f||_q^{q/p}.$$

Hence

$$\lim_{p \to \infty} \sup_{p \to \infty} ||f||_p \le ||f||_{\infty}. \tag{2}$$

So by (1) and (2) we have equality.

For an illustration of how this relationship fails when there does not exist a $q < \infty$ such that $f \in L^q(\mathbb{R}^N)$, consider any constant function $f(x) \equiv c$. Then $||f||_{\infty} = c$ but $||f||_p = \infty$ for all 0 .

Show that

$$f(x) := \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{x}{n+1}\right)$$

converges pointwise on \mathbb{R} and uniformly on each bounded interval of \mathbb{R} to a differentiable function f which satisfies $|f(x)| \leq |x|$.

Solution:

Proof. Note that

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{\infty} \left[\frac{1}{n} - \frac{1}{n+1} \right] = 1.$$

Thus,

$$|f(x)| \le \sum_{n=1}^{\infty} \left| \frac{1}{n} \sin\left(\frac{x}{n+1}\right) \right| \le \sum_{n=1}^{\infty} \frac{|x|}{n(n+1)} \le |x|, \tag{3}$$

for all $x \in \mathbb{R}$. By (3) it is obvious that f(x) converges pointwise and uniformly on every bounded interval of \mathbb{R} . Also, if $f_n(x) := \frac{1}{n} \sin\left(\frac{x}{n+1}\right)$, then $f'_n(x) := \frac{1}{n(n+1)} \cos\left(\frac{x}{n+1}\right)$. From a similar argument as above, it follows that $\sum_{n=1}^{\infty} f'_n(x)$ converges uniformly on every bounded interval of \mathbb{R} . Therefore f is differentiable with derivative

$$f'(x) = \sum_{n=1}^{\infty} f'_n(x)$$
 (see Baby Rudin Thm 7.17).

Prove the Riemann-Lebesgue Lemma: For any $f \in L^1(\mathbb{R})$

$$\lim_{n \to \infty} \int_{\mathbb{R}} f(x)e^{inx} \ d\mu(x) = 0.$$

You may use the fact that for any $f \in L^1(\mathbb{R})$ and $\epsilon > 0$, there exists a step function $g \in L^1(\mathbb{R})$ such that

$$\int_{\mathbb{R}} |f(x) - g(x)| \ d\mu(x) < \epsilon.$$

Solution:

Proof. Suppose $f \in L^1(\mathbb{R})$.

Claim 1: If $g: \mathbb{R} \to \mathbb{R}$ is a step function then $\int g(x)e^{inx} d\mu(x) \to 0$ as $n \to \infty$.

<u>Proof of claim 1:</u> Suppose $-\infty < a < b < \infty$. Then

$$\left| \int \chi_{[a,b]}(x)e^{inx} \ d\mu(x) \right| = \left| \int_a^b e^{inx} \ dx \right| = \left| \frac{e^{inb} - e^{ina}}{in} \right| \to 0 \text{ as } n \to \infty.$$

By the linearity of integration claim 1 follows for any step function g.

■ Claim 1

Now let $\epsilon > 0$. Then there exists a step function g such that $||f - g||_1 < \epsilon$. Thus,

$$\left| \int f(x)e^{inx} \ d\mu(x) \right| = \left| \int (f(x) - g(x))e^{inx} \ d\mu(x) + \int g(x)e^{inx} \ d\mu(x) \right|$$

$$\leq \int |f(x) - g(x)| \cdot |e^{inx}| \ d\mu(x) + \left| \int g(x)e^{inx} \ d\mu(x) \right|$$

$$\leq \int |f(x) - g(x)| \ d\mu(x) + \left| \int g(x)e^{inx} \ d\mu(x) \right|$$

$$\leq \epsilon + \left| \int g(x)e^{inx} \ d\mu(x) \right| \longrightarrow \epsilon + 0.$$

Since $\epsilon > 0$ was arbitrary, $\lim_{n \to \infty} \int f(x)e^{inx} d\mu(x) = 0$.