

F.E. (Semester – I) (R.C. 2007-08) Examination, November/December 2012 BASIC ELECTRICAL ENGINEERING

Duration: 3 Hours Company and Company and

Instructions: 1) Answer 5 questions in full, with atleast one question from each Module.

2) Missing data, if any may be suitably assumed.

MODULE-I

- a) Derive the expression for equivalent capacitance, when two capacitances are connected in :
 - i) Series and
 - ii) Parallel.
 - b) Using Thevenin's theorem, find the current flowing in the 10 Ω resistor. 7

c) A long straight wire located in air carries a current of 4 (df) 9rugi7

c) Calculate the current supplied by the source, in the series-parallel circuit shown. Also find the voltage drops across the 2 Ω resistances.

Figure (1c)

P.T.O.

7

6

6

8

- 2. a) State and explain Norton's theorem. (80 7000 (3.8) (1 16186me2) = 6
 - b) Calculate the resistance of 100 m length of wire having a uniform cross-sectional area of 0.1 mm², if the wire is made of manganin having resistivity of $50 \times 10^{-8} \Omega m^2$. If the wire is drawn out to three times its original length, by how many times would its resistance increase?
 - c) Using mesh analysis, determine the current in the 1 Ω resistance in the circuit as shown in fig. (2c).

Figure (2c)

MODULE - II

- 3. a) State and explain Lenz's Law. What are its applications?
 - b) Explain the concept of mutually induced emf and self induced emf.
 - c) A long straight wire located in air carries a current of 4A. Assume the relative permeability of air is unity:
 - i) Find the value of the magnetic field intensity at a distance of 0.5 m from the centre of the wire.
 - ii) A second long straight wire carrying a current of 2 A is placed parallel to the first one at a distance of 0.5 m with the current flowing in the same direction. Find the direction and magnitude of the force per metre, existing between the wires.
 - iii) Repeat part (ii) for the case when the wires are imbedded in iron having a relative permeability of 10,000 and a spacing of 0.05 m.

7

6

7

4.	a)	Derive the expression for magnetic field strength at a distance r, for a long straight current carrying conductor. Hence derive expression for flux density.	े 6
	b)	Value of alternating sinusoidal emi in terms of its m: neewted daily	7
		i) Mutually induced emf and self induced emf.	
		ii) Statically induced emf and dynamically induced emf.	
	c)	The total inductance of two coils A and B when connected in series is 0.5 H or 0.2 H depending on the relative directions of the current in the coils. Coil A when isolated from coil B, has a self inductance of 0.2 H. Calculate:	7
		i) The mutual inductance between the two coils responsible later than	
		ii) The self inductance of coil B	
		iii) The coupling factor between the coils	
ð		iv) The two possible values of the induced emf in coil A, when the current is decreasing at 1000 A/S in the series circuit.	
		b) With the helplot a neat sketch, exclain the construction and working of dynamometer type of instrum III - aludom	
5.	a)	Explain the following terms related to ac quantities:	5
		primary and secondary windings respectively. The peak value of the density is required to be not more than 1.2 wb/m ² . Calculate the require	
		cross-sectional area of the steel core. If the out substantanal (ii)	
		iii) Effective value	
		iv) Frequency of in ensurement of measurement of polygonal (vi	
		v) Cycle	
	b)	Derive the relationship between phase and line quantities in a delta connected three phase system.	8
	es (2)	A Sinusoidal source of e (t) = 170 $\sin 377$ t is applied to an RL series circuit. It is found that the circuit draws 720 w power, when an effective current of 12 Amps flows :	7
		i) Find the power factor of the circuit.	
		ii) Compute the value of the impedance.	
		iii) Calculate the inductance of the circuit in Henrys.	

6.	Sity	With a neat sketch explain how an alternating voltage is produced, when a coil is rotated in a magnetic field. Derive an expression for the instantaneous value of alternating sinusoidal emf in terms of its maximum value, angular frequency and time.	7
	i H	Derive a relationship between current and voltage in a pure inductive and in a pure capacitive circuit. Draw the waveforms of instantaneous values of voltage and current.	7
	c)	A balanced star connected load of (8 + j6) Ω per phase is connected to a balanced 3-phase, 400 V supply. Find the line current, power factor, power and total volt-amperes.	6
		ii) The self inductance of coll B VI-3JUDOM	
7.	a)	Derive the emf equation for a single phase transformer. Mention the assumptions made.	6
	,	With the help of a neat sketch, explain the construction and working of dynamometer type of instrument.	9
	c)	A single phase, 50 Hz transformer is required to step down from 1900 V to 240 V. It is to have 1.5 V per turn. Calculate the required number of turns on primary and secondary windings respectively. The peak value of the flux density is required to be not more than 1.2 wb/m². Calculate the required cross-sectional area of the steel core. If the output is 10 KVA, calculate the	5
		secondary current.	7
8	. a	Explain the two Wattmeter method of measurement of power in a three- phase circuit.	6
	b) Write a short note on the following:	8
8		i) Rating of a single phase transformer .metaya easing earli	
		ii) Losses in a single phase transformer. = (1) 9 10 20 100 100 100 100 100 100 100 100 1	
7	C	With the help of a neat phasor diagram, explain the working of single phase transformer on no load.	6
		Repeat part (ii) for the case when the wires are imbedded a trop having a relative permeability of 10,000 and a sensitive permeability	