複雑さの理論5

創域理工学部 情報計算科学科 入山聖史

差分方程式

- ・微分方程式:時間に対して連続な力学系→解析的に解けない
- 時間を離散化(t = 0,1,2,・・・)し, 不連続な力学系を得る
- Newton法
- Verlet法
- Runge-Kutta法, etc…
- 差分方程式

$$x_{n+1} = f(x_n)$$

$$x_n = f^n(x_0)$$
 x_0 :時刻t = 0 での解

• (例)バクテリアの個体数

 $oldsymbol{x}$:ある時刻の実験室培地での個体数

f(x) :1時間後の個体数

$$f(x) = 2x$$

 $x_0 = 10000$ とすると,

$$f(10000) = 20000$$

$$f(f(10000)) = 40000$$

. . .

→初期値が正ならば、限りなく増える(指数的成長)

- ・実際には有限の資源
- 成長には限界がある(Malthus, 1798)
- モデルの改良

$$g(x) = 2x(1-x)$$

個体数が0に近いとき

$$1 - x \simeq 1$$
$$g(x) \simeq f(x)$$

- 0から離れる→個体数に比例しない
- →ロジスティック成長モデル

ロジスティックモデル

n	f^n(x)	g^n(x)	
0	0.01	0.01	
1	0.02	0.0198	
2	0.04	0.0388…	
÷	:	:	
5	0.32	0.2381	
÷	:	:	
10	10.24	0.49998…	
11	20.48	0.499999…	
12	40.96	0.5	
:	:	0.5	

g(x)は個体数が定常状態(x=0.5)に落ち着く

• 定義:fを写像としfの定義域をDとする。初期値 $x \in D$ に対し

$$\mathcal{O} = \{x, f(x), f^{2}(x), \dots \}$$
$$= \{f^{n}(x) | n = 0, 1, 2, \dots \}$$

を軌道という. f(p) = pならば点pはfの**不動点**であるという.

• 例: g(x)の不動点は $x=0,\frac{1}{2}$ である.

- グラフによる軌道の表現
- クモの巣図法,関数fのグラフを対角線y=xと共に描く $\rightarrow f$ の不動点の位置がわかる
- 例, f(x) = 2x

- 例, g(x) = 2x(1-x)
- x = 2x(1-x)を解いて, $x = 0,\frac{1}{2}$ を得る. $\rightarrow 2$ つの不動点

$$x = 0.1$$
の軌道は $x = 0$ に収束 $x \in (0.1)$ の軌道は $x = \frac{1}{2}$ に収束

不安定な不動点:付近の点は離れる (x=0)

安定な不動点:付近の点は近づく $(x=\frac{1}{2})$

$$y = g(x)$$

• fを写像,pを不動点とする

$$|f'(p)| < 1$$
 ⇒ p は吸引的不動点

$$|f'(p)| > 1$$
 ⇒ p は**反発的不動点**

$$g'(x) = 2(1-x) - 2x$$
$$= 2 - 4x$$

$$g'(0) = 2 > 1$$
 $\Rightarrow x = 0$ は反発的不動点

$$g'\left(\frac{1}{2}\right) = 0 < 1$$
 $\Rightarrow x = \frac{1}{2}$ は吸引的不動点

• ロジスティック写像(パラメータ $a \in [0,4]$) $f_a(x) = ax(1-x) \qquad x \in [0,1]$

• a = 3.3としたとき、不動点は

$$x = 0, \frac{23}{33} = 0.696969 \cdots$$

- 両方とも反発的不動点
- ・→吸引的不動点なし. 軌道はどこへ向かうか?

n	f^(x)		
0	0.2	0.5	0.95
÷	:	:	:
8	0.8236	0.4795	0.4803
9	0.4796	0.8236	0.8237
10	0.8236	0.4796	0.4792
11	0.4796	0.8236	0.8236
12	0.8236	0.4796	0.4796

• 軌道は $p_1=0.4794, p_2=0.8236$ が交互に出現

$$f_{3.3}(p_1) = p_2$$
$$f_{3.3}(p_2) = p_1$$

したがって、 p_1, p_2 は $(f_{3.3})^2(x)$ の不動点である。

• 定義:fを \mathbb{R} 上の写像とする。pが周期kの周期点であるとは、

$$f^k(p) = p$$

であり、kがこれをみたす最小の正の整数であることをいう

- この初期値pの軌道をk周期軌道という
- f_{3.3}は2周期軌道をもつ
- すべてのパラメータaで、同じ周期をもつか?

分岐図

$$f_a(x) = ax(1-x)$$
について、計算機を用いて次の手順で作図

- Step1 パラメータaを選ぶ
- Step2 初期値*x* ∈ (0,1)を適当に選ぶ
- Step3 $f_a(x)$ を計算し、ある程度長い軌道を得る
- Step4 初めの軌道(100くらい)を無視し、軌道をプロット
- Step5 aを変えてくり返す

a = 3.3,2周期

a = 3.5,4周期

a=3.7, 無数の周期点

a = 3.85, カオスの窓

• a = 3.9 → カオス的な軌道

• 2進変換 (Bernoulli shift)

•
$$0 \le a \le 1$$
, $x_{n+1} = B_a(x_n) = \begin{cases} 2ax_n, & 0 \le x_n < \frac{1}{2} \\ a(2x_n - 1), & \frac{1}{2} \le x \le 1 \end{cases}$

まとめ

- ロジスティックモデル
- 不動点と,不動点の2つの性質
- k周期軌道