통계학 개론

제1장 데이터와 통계학

1.1 통계학이란

통계학(statistics): 관심대상에 대해 관련된 데이터를 수집하고, 그 데이터를 요약·정리하여 이로부터 불확실한 사실에 대한 결론이나 일반적인 규칙성을 찾는 학문

1.2 통계학의 역사

통계학이란 용어는 라틴어의 주(state)를 의미하는 스타투스(status)로부터 유래 통계학의 기원은 세금을 부과하기 위해 조사한 가축의 수, 작물의 작황량 조사하 는 것 또는 전쟁에 대비하여 청장년 인구수를 조사한 것

1.3 통계학의 역할

- 1) 데이터의 수집 통계분석의 가장 중요한 부분
- 2) 데이터의 요약
- 3) 데이터로부터 결론을 유도

1.4 통계학의 연구분야

통계학 연구는 기술통계(descriptive statistics)와 추측통계(inferential statistics)로 구분된다.

1) 기술통계

기술통계는 대표되는 몇 개의 숫자로 데이터 전체를 요약하여 양적으로 축소하거나, 정리된 표나 그래프를 통하여 데이터의 특징을 파악하는 것을 목적으로 한다.

2) 추측통계

표본 데이터의 일부를 분석함으로써 전체에 관해 추측하고 일반화시키는 통계적 방법을 추측통계학이라고 한다.

1.5 주요 용어

관심대상 전체를 모두 조사하지 않고 일부만 조사·관측하여 전체를 파악하는 것은 통계학의 중요한 출발배경이다.

예시) 국 끓일 때 간 보기, 마트의 시식코너, 의자 사기전에 앉아보기, 결혼 전 상견례, 입사지원 서류 받기 등

1) 모집단(population)

관심대상이 되는 전체

모집단의 크기가 유한한 경우 유한모집단, 무한한 경우 무한모집단이라 한다.

2) 표본(sample)

실제 조사되거나 측정되는 모집단의 일부 표본조사를 하는 이유

- ① 전수조사가 시간적 경제적 여건상 불가능한 경우
- ② 때에 맞추어 조사결과가 제시되어야 조처가 가능한 경우
- ③ 관심 특성값을 파괴해야만 얻을 수 있는 데이터인 경우
- ④ 전수조사를 함으로써 오차개입이 커져서 오히려 정확도를 떨어뜨리는 경우

3) 임의추출법

모집단의 구성요소 하나하나가 표본으로 뽑힐 확률이 같은 상황에서 표본을 뽑는 방법

4) 모수와 통계량

모수(parameter): 모집단에 대한 수치 특성값 통계량(statistic): 표본에서 얻은 수치 특성값

1.6 통계학의 적용과정

군제의 정의 →
분석결과 해석 데이터 수집 및 의사결정 ←
적리·분석

1.7 데이터의 종류

1) 데이터란

데이터(data): 관심대상이 되는 사물이나 사건의 속성을 일정한 규칙에 의해 측정·관찰·조사함으로써 얻은 것

단위(unit): 관찰되는 항목이나 대상

관찰(observation): 각 조사단위로부터 기록된 정보나 특성

변수(variable): 각 단위에 대해서 측정되는 특성

2) 변수의 종류

질적 변수(qualitative variable): 조사대상을 특성에 따라 범주로 구분하여 측정한 변수. 범주형 변수(categorical data)라고도 함

- · 명목형(nominal): 변수가 크기나 순서에 대한 의미가 없고 이름만 의미를 부여할 수 있는 경우
- · 순서형(ordinal): 변수가 어떤 기준에 따라 순서에 의미를 부여할 수 있는 경우 양적 변수(quantitative variable): 길이, 무게와 같이 양적인 수치로 측정되거나 몇 개인가를 세어 측정하는 변수로 덧셈, 뺄셈 등의 연산이 가능
- · 이산형(discrete): 변수가 취할 수 있는 값을 하나하나 셀 수 있는 경우
- · 연속형(continuous): 변수가 구간 안의 모든 값을 가질 수 있는 경우
- 3) 변수의 분포

변수의 분포는 어떤 변수가 취할 수 있는 가능한 전체 값에 대해 각 값이 발생할 수 있는 빈도를 표현한 것이다.

원시 데이터(raw data): 조사대상의 어떤 특성을 측정하거나 조사하여 수치로 나타내 정리한 것

도수분포표(frequency table): 데이터 각 값의 출현도수를 세거나 전체 데이터를 몇 개의 구간으로 나누어 각 구간에 속하는 데이터의 개수를 세어서 정리한 표 (연속형 데이터에 대한) 도수분포표 작성방법

- 1. 데이터의 개수를 센다.
- 2. 데이터의 최대값과 최소값을 구한다.
- 3. 계급의 수를 정한다.
- 4. 계급의 폭을 구한다.
- 5. 계급의 경계값과 중심값을 구한다.
- 6. 도수분포 용지를 준비하고 표를 작성하여 도수를 센다.

1.8 질적 데이터에 대한 그래프 표현

1) 원그래프

전체를 구성하는 부분의 구성비를 나타낼 때 적합함

2) 막대그래프

각 범주에 속한 비율을 하나의 막대로 나타낸 그래프

일반적으로 질적 변수는 변수값의 순서에 의미가 없으므로 비율의 순서로 정렬하여 나타내는 것이 바람직하다.

1.9 양적 데이터에 대한 그래프 표현

1) 히스토그램

작성된 도수분포표의 계급을 밑변으로 하고, 그 계급에 포함되는 데이터의 도수

- 에 비례하는 면적을 가진 직사각형을 나열하여 작성한 그래프
- 2) 줄기-잎그림(stem-and-leaf plot; stem plot)

데이터의 수가 많지 않을 때 데이터의 분포를 빠른 시간 내에 쉽게 나타낼 수 있는 방법이다.

줄기-잎그림은 히스토그램과는 달리 데이터의 원래 값을 그대로 갖고 있다.

줄기-잎그림의 작성방법

- 1. 각 원시 데이터를 줄기와 잎 부분으로 나눈다. 일반적으로 잎은 한 자릿수 마지막 자리이고, 줄기 부분은 하나 이상의 자릿수를 차지한다.
- 2. 줄기를 아래로 나열하여 쓴다.
- 3. 데이터마다의 잎을 해당되는 줄기에 정렬한다.
- 4. 잎의 수치를 크기순으로 정렬한다.
- 3) 점도표

점도표(dot plot): 실선 위에 데이터의 분포를 빠른 시간 내에 나타낼 수 있는 간단한 그래프

그래프를 작성하여 다음과 같은 사항을 검토하면 데이터의 특징에 대한 좀 더 세부적인 정보를 얻을 수 있다.

- ① 데이터의 중심위치는 어디인가?
- ② 데이터의 산포는 큰가?
- ③ 분포는 대칭인가 또는 한쪽으로 치우쳤는가?
- ④ 분포의 봉우리는 하나인가, 둘인가?
- ⑤ 동떨어진 이상한 데이터(특이점)는 없는가?

특이점(이상치, outlier): 대부분의 데이터가 모여 있는 군집(cluster)으로부터 멀리 떨어져 있는 데이터

분포의 유형

(1) 일반형

가장 일반적인 분포. 종모양이고, 좌우가 대칭이며, 데이터가 가운데에 집중적으로 모여있는 형태

(2) 쌍봉우리형

두 가지 다른 요인이 작용한 결과 분포의 봉우리가 두 개로 나뉘어 있는 형태

(3) 치우침형

봉우리는 하나인데, 왼쪽/오른쪽으로 치우친 형태

(4) 균일형

어떤 범위 내의 값이 동일한 빈도로 나타나는 경우

4) 시계열그래프

시계열그래프(time series plot): 시간의 변화에 따른 경향을 파악할 목적이거나 데이터가 수집된 순서에 따라 데이터를 정리해야 할 때 널리 사용되는 그래프

1.10 도표와 그래프 작성 시 유의사항

- ① 그래프에 적합한 제목을 붙여야 한다
- ② 데이터의 출처와 표본크기 및 수집방법에 대한 사항을 포함해야 한다
- ③ 축에 대한 제목을 명확히 달아야 한다
- ④ 도수, 비율, 퍼센트 등이 0에서 시작하는지를 점검해야 한다
- ⑤ 축이 연속적으로 이어지는지 또는 중간에 끊기는지 점검해야 한다
- ⑥ 변수의 측정단위가 표시되어야 한다.

1.11 R Commander를 이용한 실습

< 생략 >