Компаративна анализа приоритетних редова

Коста Грујчић

Увод

Дефиниција

Приоритетни ред је скуп у ком је сваком елементу придружен елемент неког потпуно уређеног скупа као његов npuopumem.

Операција	Хип	Биномни хип	Фибоначијев хип	Сплеј стабло	ван Емде Боасово стабло
FIND-MIN	$O(\log_d n)$	$O(\log n)$	$O(1)^*$	$O(\log n)*$	O(1)
Delete-Min	$O(d\log_d n)$	$O(\log n)$	$O(\log n)^*$	$O(\log n)^*$	$O(\log \log u)$
Insert	$O(\log_d n)$	$O(\log n)$	$O(1)^*$	$O(\log n)^*$	$O(\log \log u)$
Decreasy-Key	$O(\log_d n)$	$O(\log n)$	$O(1)^*$	$O(\log n)^*$	$O(\log \log u)$
Merge	O(n)	$O(\log n)$	$O(1)^*$	$O(\log n)^{**}$	O(u)

Хип

- Сложеност Дајкстриног алгоритма употребом хипа је $O(m \log_{m/n} n)$.
- ightharpoonup Сложеност Примовог алгоритма употребом хипа је $O(m \log n)$.

- Лако се имплементира.
- Ефикасан у пракси.
- ► Не подржава ефикасну MERGE операцију.

Биномни хип

- Сложеност Дајкстриног алгоритма употребом биномног хипа је $O((m+n)\log n)$.
- ightharpoonup Сложеност Примовог алгоритма употребом биномног хипа је $O(m \log n)$.

- За разлику од хипа, подржава ефикасну MERGE операцију.
- У пракси спор јер се лако дешава најгори случај приликом уклањања/додавања чвора.

Фибоначијев хип

- Сложеност Дајкстриног алгоритма употребом Фибоначијевог хипа је $O(m + n \log n)$.
- Сложеност Примовог алгоритма употребом Фибоначијевог хипа је $O(m \log n)$.

- Теоријски значајна структура података.
- У пракси изузетно неефикасан због велике константе при свакој операцији.

Сплеј стабло

- Сложеност Дајкстриног алгоритма употребом сплеј стабла је $O((n+m)\log n)$.
- Сложеност Примовог алгоритма употребом сплеј стабла је $O(m \log n)$.

- Врло ефикасан дериват стабла бинарне претраге.
- У пракси ефикасна структура података.

Ван Емде Боасово стабло

Ван Емде Боасово стабло

Слика 5: Основа ван Емде Боасовог стабла

$$T(u) = T(\sqrt{u}) + O(1) = O(\log \log u)$$

- Сложеност Дајкстриног алгоритма употребом ван Емде Боасовог стабла је $O((n+m)\log\log u)^{**}$.
- Сложеност Примовог алгоритма употребом ван Емде Боасовог стабла је $O(m \log \log u)^{**}$.

- Оптимална структура података за операције Successor и Predecessor.
- Када је универзум вишеструко већи од броја елемената у стаблу, меморија представља велики проблем.
- У основној верзији овог стабла кључеви морају бити јединствени.
- Употребом ван Емде Боасовог стабла је могуће сортирати низ у $O(n \log \log u)$.

Закључак

Бинарни хип представља најбољи избор приоритетног реда за Дајкстрин и Примов алгоритам, у случају када број чворова и број грана графа не прелази $2 \cdot 10^5$.