# NumNet: Machine Reading Comprehension with Numerical Reasoning

#### **EMNLP-IJCNLP 2019**

Qiu Ran<sup>1\*</sup> , Yankai Lin<sup>1\*</sup> , Peng Li<sup>1</sup> , Jie Zhou<sup>1</sup> , Zhiyuan Liu<sup>2</sup>

<sup>1</sup>Pattern Recognition Center, WeChat AI, Tencent Inc, China <sup>2</sup>Department of Computer Science and Technology, Tsinghua University, Beijing, China

### Machine reading comprehension (MRC)

- Infer the answer to a question given the document
- Achieve remarkable results in various public benchmarks such as SQuAD and RACE
- The success of MRC models
  - Multi-layer architectures which allow these models to read the document and the question iteratively for reasoning
  - Attention mechanisms which would enable these models to focus on the part related to the question in the document
- The limitations of MRC models
  - These models are still weak in numerical reasoning such as addition, subtraction, sorting and counting
  - Naturally require when reading financial news, scientific articles, etc.

- Previous Work: A numerically-aware QANet (NAQANet)
  - Divides the answer generation for numerical MRC into three types:
    - (1) Extracting spans; (2) Counting; (3) Addition or Subtraction over numbers
  - Answer numerical questions but still does not explicitly consider numerical reasoning

- Integrate numerical reasoning into existing MRC models
- How to perform numerical comparison in MRC systems, which is crucial for two common types of questions:
- (1) Numerical Comparison:
- (2) Numerical Condition:

- Integrate numerical reasoning into existing MRC models
- How to perform numerical comparison in MRC systems, which is crucial for two common types of questions:
- (1) Numerical Comparison:
  - The answers of the questions can be directly obtained via performing numerical comparison, such as sorting and comparison, in the documents
  - If the MRC system knows the fact that "49>47>36>31>22", it could easily extract that the second longest field goal is 47-yard

| Question                                    | Passage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Answer  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| What is the second longest field goal made? | The Seahawks immediately trailed on a scoring rally by the Raiders with kicker <i>Sebastian Janikowski nailing a 31-yard field goal</i> Then in the third quarter <i>Janikowski made a 36-yard field goal</i> . Then <i>he made a 22-yard field goal</i> in the fourth quarter to put the Raiders up 16-0 The Seahawks would make their only score of the game with kicker <i>Olindo Mare hitting a 47-yard field goal</i> . However, they continued to trail as <i>Janikowski made a 49-yard field goal</i> , followed by RB Michael Bush making a 4-yard TD run. | 47-yard |

- Integrate numerical reasoning into existing MRC models
- How to perform numerical comparison in MRC systems, which is crucial for two common types of questions:
- (2) Numerical Condition:
  - The answers of the questions cannot be directly obtained through simple numerical comparison in the documents
  - Needs to know which age group made up more than 7% of the population to count the group number

| Question                                                    | Passage                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Answer |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| How many age groups made up more than 7% of the population? | Of Saratoga Countys population in 2010, 6.3% were between ages of 5 and 9 years, 6.7% between 10 and 14 years, 6.5% between 15 and 19 years, 5.5% between 20 and 24 years, 5.5% between 25 and 29 years, 5.8% between 30 and 34 years, 6.6% between 35 and 39 years, 7.9% between 40 and 44 years, 8.5% between 45 and 49 years, 8.0% between 50 and 54 years, 7.0% between 55 and 59 years, 6.4% between 60 and 64 years, and 13.7% of age 65 years and over | 5      |

- Encode both the question and passages through an encoding module consisting of convolution layers, self-attention layers and feed-forward layers as well as a passagequestion attention layer
- Feed the question and passage representations into a numerically-aware graph neural network (NumGNN)
  - Further to integrate the comparison information among numbers into their representations
  - Utilize the numerically-aware representation of passages to infer the answer to the question
- The experimental results
  - Dataset: A public numerical MRC dataset DROP
  - Achieve significant and consistent improvement
  - Effectively deal with questions requiring sorting with multi-layer NumGNN

#### Framework

- The numerical relations between numbers are encoded with the topology of the graph
  - The edge pointing from "6" to "5" denotes "6" is greater than "5"
- The reasoning module leverages a numerically-aware graph neural network



### Encoding Module

- Without loss of generality
- Use the encoding components of QANet and NAQANet to encode the question and passage into vector-space representations
- First encoding
- Convolution, selfattention and feed-forward layers
- With stacked embedding encoder layer

QANet-Emb-Enc
$$(\cdot)$$

- The passage-aware question representation
- The question-aware passage representation
- With context-query attention layer

QANet-Att
$$(\cdot)$$

$$Q$$
 = QANet-Emb-Enc $(Q)$ 

$$oldsymbol{P}$$
 = QANet-Emb-Enc $(P)$ 

$$ar{m{Q}}$$
 = QANet-Att $(m{P},m{Q})$   $ar{m{P}}$  = QANet-Att $(m{Q},m{P})$ 

$$ar{m{P}}$$
 = QANet-Att $(m{Q},m{P})$ 

### Reasoning Module

- $^{\circ}$  A heterogeneous directed graph  $\,\mathcal{G}\,=\,(oldsymbol{V};oldsymbol{E})\,$
- Nodes V
  - They are corresponding to the numbers in the question and passage
- Edges E
  - They are used to encode numerical relationships among the numbers
- Reasoning on the graph based on a graph neural network

$$m{M}^Q$$
 = QANet-Mod-Enc $(m{W}^Mar{m{Q}})$   $m{M}^P$  = QANet-Mod-Enc $(m{W}^Mar{m{P}})$   $m{U}$  = Reasoning $(m{\mathcal{G}};m{M}^Q,m{M}^P)$ 

- A shared weight matrix  $W^M$
- $\circ$  The representations of the nodes corresponding to the numbers U
- Model encoder layer
   QANet-Mod-Enc(.)

### Reasoning Module

- $\circ$  **U** only contains the representations of numbers, to tackle span-style answers containing non-numerical words
- $\circ$  Concatenate U with  $M^P$  to produce numerically-aware passage representation  $M_0$

$$m{M}^{ ext{num}}[i] = egin{cases} m{U}[I(i)] & ext{if } w_i^p ext{ is a number} \ m{M}_0' & = m{W}_0[m{M}^P;m{M}^{ ext{num}}] + m{b}_0 \ m{M}_0 & = m{QANet-Mod-Enc}(m{M}_0') \end{cases}$$

- Matrix concatenation [.;.]
- W[k] denotes the k-th column of a matrix W
- $\circ$  I(i) denotes the node index corresponding to the passage word (number)  $w_i^p$
- $W_0$  A weight matrix
- $\circ$   $b_0$  A bias vector

#### Prediction Module

- $\circ$  Following NAQANet (Dua et al., 2019), divide the answers into four types Use a unique output layer for the conditional answer probability  $\Pr(\text{answer}|\text{type})$
- Passage Span/Question Span
  - The answer is a span of the passage
  - The answer probability is defined as the product of the probabilities of the start and end positions.
- Count
  - The answer is obtained by counting, and it is treated as a multi-class classification problem over ten numbers (0-9), which covers most of the Count type answers in the DROP dataset
- Arithmetic expression
  - The answer is the result of an arithmetic expression
  - The expression is obtained in three steps: (1) extract all numbers from the passage; (2) assign a sign (plus, minus or zero) for each number; (3) sum the signed numbers

#### Prediction Module

- $\circ$  An extra output layer is used to predict the probability  $\Pr(\mathsf{type})$
- Training time
  - The final answer probability is defined as the joint proba Pbility over all feasible answer type  $\sum_{tvpe} \Pr(type) \Pr(answer|type)$
  - The answer type annotation is not required and the probability  $\Pr(\mathsf{type})$  is learnt by the model
- Test time
  - The model first selects the most probable answer type greedily and then predicts the best answer accordingly
- Without loss of generality
  - Leverage the definition of the five output layers in (Dua et al., 2019), with  $M_0$  and  $\mathbf{Q}$  as inputs

#### Prediction Module

- The major difference between our model and NAQANet
  - NAQANet does not have the reasoning module
  - i.e.,  $M_0$  is simply set as  $M^P$
- Numbers are treated as common words in NAQANet except in the prediction module
- NAQANet may struggle to learn the numerical relationships between numbers, and potentially cannot well generalize to unseen numbers

### Numerically-aware Graph Construction

- Regard all numbers from the question and passage as nodes in the graph for reasoning
  - $V^Q$  and  $V^P$
  - All the nodes  $oldsymbol{V} = oldsymbol{V}^Q \cup oldsymbol{V}^P$
  - The number corresponding to a node  $v \in oldsymbol{V}$  as n(v)
- $_{\circ}$  Greater Relation Edge  $\overrightarrow{m{E}}$ 
  - For two nodes  $v_i, v_j \in \mathbf{V}$  , A directed edge  $\overrightarrow{e}_{ij} = (v_i, v_j)$
  - Pointing from  $v_i$  to vj will be added to the graph if  $n(v_i) > n(v_j)$
  - Solid arrow
- $_{\circ}$  Lower or Equal Relation Edge  $\stackrel{\longleftarrow}{E}$ 
  - For two nodes  $v_i, v_j \in \mathbf{V}$  , A directed edge  $\overleftarrow{e}_{ij} = (v_j, v_i)$
  - The edge will be added to the graph if  $n(v_i) \leq n(v_j)$
  - Dashed arrow

### Method

# • Numerically-aware Graph Construction $\stackrel{\circ}{}$ Theoretically, $\stackrel{\longrightarrow}{E}$ and $\stackrel{\longleftarrow}{E}$ are complement to each other

- As a number may occur several times and represent different facts in a document
- Add a distinct node for each occurrence in the graph to prevent potential ambiguity
- $\circ$  More reasonable to use both  $\overrightarrow{E}$  and  $\overleftarrow{F}$  in order to encode the equal information among nodes

- Numerical Reasoning Reasoning  $(\cdot)$ 
  - $_{\circ}$  Built the graph  $\;\mathcal{G}=(oldsymbol{V},oldsymbol{E})$

#### Initialization

- $\circ$  For each node  $\ v_i^P \in oldsymbol{V}^P$
- $\circ$  Its representation is initialized as the corresponding column vector of  $M^P$
- $\circ$  Formally, the initial representation is  $oldsymbol{v}_i^P = oldsymbol{M}^P[I^P(v_i^P)]$
- $\circ$   $I^P(v_i^P)$  denotes the word index corresponding to  $v_i^P$
- $oldsymbol{\cdot}$  The initial representation  $oldsymbol{v}_j^Q$  for a node  $v_j^Q \in oldsymbol{V}^Q$ 
  - Set as the corresponding column vector of  $M^Q$
  - Denote all the initial node representations as  $~m{v}^0 = \{m{v}_i^P\} \cup \{m{v}_j^Q\}$

### One-step Reasoning

 $\circ$  Given the graph  ${\mathcal G}$  and the node representations v, we use a GNN to perform reasoning in three steps

### • (1) Node Relatedness Measure

- As only a few numbers are relevant for answering a question generally
   Compute a weight for each node to by-pass irrelevant numbers in reasoning
- $\circ$  Formally, the weight for node  $v_i$

$$\alpha_i = \operatorname{sigmoid}(\boldsymbol{W}_v \boldsymbol{v}[i] + b_v)$$

### • (2) Message Propagation

- The role a number plays in reasoning is not only decided by itself,
- but also related to the context,
- Propagate messages from each node to its neighbors to help to perform reasoning
- Edges corresponding to different numerical relations should be distinguished
- Use relation-specific transform matrices in the message propagation

#### **Propagation Function**

$$\widetilde{\boldsymbol{v}}_i' = rac{1}{|\mathcal{N}_i|} \left( \sum_{j \in \mathcal{N}_i} \alpha_j \boldsymbol{W}^{\mathtt{r}_{ji}} \boldsymbol{v}[j] \right)$$

The message representation of node  $\widetilde{oldsymbol{v}}_i'$ 

 $au_{ji}$  is the relation assigned to edge  $e_{ji}$ 

Relation-specific transform matrices  $W^{r}{}_{ji}$ 

$$\mathcal{N}_i = \{j | (v_j, v_i) \in oldsymbol{E} \}$$
 is the neighbors of node  $v_i$ 

#### For each edge $e_{ji}$ , $r_{ji}$ is determined by the following two attributes:

• Number relation:  $> or \le$ 

$$r_{ij} \in \{>, \leq\} \times \{q-q, p-p, q-p, p-q\}$$

19

Node types: q-q, p-p, q-p, p-q

### • (3) Node Representation Update

- As the message representation obtained in the previous step only contains information from the neighbors
- It needs to be fused with the node representation to combine with the information carried by the node itself

$$v_i' = \text{ReLU}(W_f v_i + \widetilde{v}_i' + b_f)$$

• The entire one-step reasoning process as a single function

$$oldsymbol{v}' = exttt{Reasoning-Step}(\mathcal{G},oldsymbol{v})$$

 The graph constructed in Sec. 3.2 has encoded the numerical relations via its topology, the reasoning process is numerically-aware

### Multi-step Reasoning

- By single-step reasoning, we can only infer relations between adjacent nodes
- Relations between multiple nodes may be required for certain task (e.g., sorting)

$$oldsymbol{v}^t = exttt{Reasoning-Step}(oldsymbol{v}^{t-1}) \hspace{0.5cm} t \, \geq \, 1$$

 $\circ$  Suppose we perform K steps of reasoning, extstyle V is used as U

# Part 3. Experiment

#### Dataset and Evaluation Metrics

- DROP dataset (Dua et al., 2019)
  - Require numerical reasoning such as addition, counting, or sorting over numbers in the passages
- Exact Match (EM)
- Numerically-focused F1 scores
  - Set to be 0 when the predicted answer is mismatched for those questions with the numeric golden answer

#### Baselines

- Semantic parsing models
  - Syn Dep (Dua et al., 2019), OpenIE (Dua et al., 2019), SRL (Dua et al., 2019)
- Traditional MRC models
  - BiDAF (Seo et al., 2017), QANet (Yu et al., 2018), BERT (Devlin et al., 2019)
- Numerical MRC models
  - NAQANet (Dua et al., 2019), NAQANet+

# Part 3. Experiment

### Overall results

| Method            | D     | ev    | Test  |       |  |
|-------------------|-------|-------|-------|-------|--|
|                   | EM    | F1    | EM    | F1    |  |
| Semantic Parsing  |       |       |       |       |  |
| Syn Dep           | 9.38  | 11.64 | 8.51  | 10.84 |  |
| OpenIE            | 8.80  | 11.31 | 8.53  | 10.77 |  |
| SRL               | 9.28  | 11.72 | 8.98  | 11.45 |  |
| Traditional MRC   |       |       |       |       |  |
| BiDAF             | 26.06 | 28.85 | 24.75 | 27.49 |  |
| QANet             | 27.50 | 30.44 | 25.50 | 28.36 |  |
| BERT              | 30.10 | 33.36 | 29.45 | 32.70 |  |
| Numerical MRC     |       |       |       |       |  |
| NAQANet           | 46.20 | 49.24 | 44.07 | 47.01 |  |
| NAQANet+          | 61.47 | 64.85 | 60.82 | 64.29 |  |
| NumNet            | 64.92 | 68.31 | 64.56 | 67.97 |  |
| Human Performance | -     | -     | 94.09 | 96.42 |  |

# Part 3. Experiment

### Overall results

| Method             | Comp  | arison | ison Numb |       | nber ALL |       |
|--------------------|-------|--------|-----------|-------|----------|-------|
| 2120220            | EM    | F1     | EM        | F1    | EM       | F1    |
| GNN                | 69.86 | 75.91  | 67.77     | 67.78 | 61.90    | 65.16 |
| NumGNN             | 74.53 | 80.36  | 69.74     | 69.75 | 64.54    | 68.02 |
| - question num     | 74.84 | 80.24  | 68.42     | 68.43 | 63.78    | 67.17 |
| $- \le $ type edge | 74.89 | 80.51  | 68.48     | 68.50 | 63.66    | 67.06 |
| - > type edge      | 74.86 | 80.19  | 68.77     | 68.78 | 63.64    | 66.96 |

#### Effect of GNN Structure



# Case Study

| Question & Answer                                                                                 | Passage                                                                                                                                                                                                                                                                                                                                                                                       | NAQA Net+           | NumNet    |
|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| Q: Which age group is larger: under the age of 18 or 18 and 24?  A: 18 and 24                     | The median age in the city was 22.1 years. 10.1% of residents were under the age of 18; 56.2% were between the ages of 18 and 24; 16.1% were from 25 to 44; 10.5% were from 45 to 64; and 7% were 65 years of age or older. The gender makeup of the city was 64.3% male and 35.7% female.                                                                                                    | under the age of 18 | 18 and 24 |
| Q: How many more yards was Longwell's longest field goal over his second longest one?  A: 26-22=4 | The Vikings would draw first blood with a 26-yard field goal by kicker Ryan Longwell. In the second quarter, Carolina got a field goal with opposing kicker John Kasay. The Vikings would respond with another Longwell field goal (a 22-yard FG) In OT, Longwell booted the game-winning 19-yard field goal to give Minnesota the win. It was the first time in Vikings history that a coach | 26-19 = 7           | 26-22 = 4 |

# • Error Analysis

| Question                                         | Passage                                                                                                                                                                                                                                                                                                                                | Answer                       | NumNet         |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------|
| Which ancestral groups are at least 10%?         | As of the census of 2000, there were 7,791 people, 3,155 households, and 2,240 families residing in the county 33.7% were of <i>Germans</i> , 13.9% <i>Swedish</i> people, 10.1% <i>Irish</i> people, 8.8% United States, 7.0% English people and 5.4% Danish people ancestry                                                          | German;<br>Swedish;<br>Irish | Irish          |
| Were more people 40 and older or 19 and younger? | Of Saratoga Countys population in 2010, 6.3% were between ages of 5 and 9 years, 6.7% between 10 and 14 years, 6.5% between 15 and 19 years,, 7.9% between 40 and 44 years, 8.5% between 45 and 49 years, 8.0% between 50 and 54 years, 7.0% between 55 and 59 years, 6.4% between 60 and 64 years, and 13.7% of age 65 years and over | 40 and older                 | 19 and younger |

### Ablation Studies

| Method                                                                                        | Comp                                      | arison                                    | Number                                    |                                           | Al                                        | ALL                                       |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--|
|                                                                                               | EM                                        | F1                                        | EM                                        | F1                                        | EM                                        | F1                                        |  |
| NAQANet+ - real number - richer arithmetic expression - passage-preferred - data augmentation | 69.11<br>66.87<br>68.62<br>64.06<br>65.28 | 75.62<br>73.25<br>74.55<br>72.34<br>71.81 | 66.92<br>45.82<br>52.48<br>66.46<br>67.05 | 66.94<br>45.85<br>52.51<br>66.47<br>67.07 | 61.11<br>47.82<br>52.02<br>59.64<br>61.21 | 64.54<br>51.22<br>55.32<br>63.34<br>64.60 |  |