Introductory Lectures on Optimization

Beyond The Black-box Model (3)

Hui Qian qianhui@zju.edu.cn

College of Computer Science, Zhejiang University

December 16, 2024

Outline

- 1 Smoothing Techniques
 - Nesterov's Smoothing
 - Moreau-Yosida Regularization
- 2 Generalized Distance: Mirror Descent
 - Motivation
 - Bregman Divergence
 - Mirror Descent
- 3 Reference

Part I Smoothing Techniques This section mainly refers to the lecture notes of IE598 by Niao He.

Introduction

Consider the following problem:

$$\min_{\boldsymbol{x}\in\mathcal{X}}f(\boldsymbol{x}),$$

where f is convex but nonsmooth, and \mathcal{X} is a convex and compact set. One intuitive way to approach the above problem is to approximate the nonsmoothing function f(x) by a smooth and convex function $f_u(x)$, so that we can use the standard techniques learnt so far in the course to solve the problem. Hence, we want to reduct the problem into the following:

$$\min_{\boldsymbol{x}\in\mathcal{X}} f_u(\boldsymbol{x}).$$

where f_u is a L_u -Lipschitz continuous, smooth and convex approximation of the function f(x).

Motivation Example

Consider the simplest non-smooth and convex function, f(x) = |x|. The following function, known as the Huber function,

$$f_u(\boldsymbol{x}) = \left\{ egin{array}{ll} rac{\boldsymbol{x}^2}{2u}, & |\boldsymbol{x}| \leq u, \\ |\boldsymbol{x}| - rac{u}{2}, & |\boldsymbol{x}| > u, \end{array}
ight.$$

is a smooth approximation of the absolute value function. The Hubert function approximation has been widely used in machine learning to approximate non-smooth loss functions, e.g. absolute loss (robust regression), hinge loss (SVM), etc.

Motivation Example

$$f_u(\boldsymbol{x}) = \left\{ egin{array}{ll} rac{\boldsymbol{x}^2}{2u}, & |\boldsymbol{x}| \leq u, \\ |\boldsymbol{x}| - rac{u}{2}, & |\boldsymbol{x}| > u, \end{array}
ight.$$

- If $f_u(x)$ is clearly continuous and differentiable everywhere.
- $f(x) \frac{u}{2} \le f_u(x) \le f(x).$
- If $u \to 0$, then $f_u(x) \to f(x)$.
- | $|f_u''(x)| \leq \frac{1}{u}$. This implies that $f_u(x)$ is $\frac{1}{u}$ -Lipschitz continuous.

Motivation Example

Robust Regression. Suppose we have m data samples $(a_1, b_1), \ldots, (a_m, b_m)$. We intend to solve the following regression problem with absolute loss:

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \sum_{i=1}^m |a_i^ op oldsymbol{x} - b_i|.$$

We can approximate the absolute loss in the above optimization problem with the Huber loss and solve instead the following smooth convex optimization problem.

$$\min_{oldsymbol{x} \in \mathbb{R}^d} \sum_{i=1}^m f_u(a_i^ op oldsymbol{x} - b_i).$$

Major Techniques

Nesterov's Smoothing technique [Nesterov, 2005]: Nesterov's smoothing technique uses the following function to approximate f(x):

$$f_u(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \text{dom} f^*} \{ \boldsymbol{x}^\top \boldsymbol{y} - f^*(\boldsymbol{y}) - ud(\boldsymbol{y}) \}$$

where f^* is the convex conjugate of f defined as the following:

$$f^*(\boldsymbol{y}) = \max_{\boldsymbol{x} \in \text{dom } f} \{ \boldsymbol{x}^\top \boldsymbol{y} - f(\boldsymbol{x}) \}.$$

and d(y) is some proximity function that is strongly convex and nonnegative everywhere.

Major Techniques

2 Moreau-Yosida smoothing/regularization: Moreau-Yosida's smoothing technique uses the following function to approximate f(x):

$$f_u(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \text{dom } f} \{ f(\boldsymbol{y}) + \frac{1}{2u} \|\boldsymbol{x} - \boldsymbol{y}\|_M^2 \}$$

where u > 0 the approximation parameter, and the M-norm is defined as

$$\|\boldsymbol{x}\|_{M}^{2} = \boldsymbol{x}^{\top} M \boldsymbol{x}.$$

This is also known as the Moreau envelope of f.

- Ben-Tal-Teboulle smoothing based on recession function [Ben-Tal and Teboulle, 1989].
- 4 Randomized smoothing [Duchi et al., 2012].

We consider a more generalized problem setting as compared to the previous sections. The goal is to solve the nonsmooth convex optimization problem

$$\min_{\boldsymbol{x} \in \mathcal{X}} f(\boldsymbol{x}) \Leftrightarrow f_u(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \text{dom} f^*} \{ \boldsymbol{x}^\top y - f^*(\boldsymbol{y}) - ud(\boldsymbol{y}) \}.$$

Assume that function f can be represented by

$$f(\boldsymbol{x}) = g(A\boldsymbol{x} + b) \triangleq \max_{\boldsymbol{y} \in \mathcal{Y}} \{ \langle A\boldsymbol{x} + b, \ \boldsymbol{y} \rangle - \phi(\boldsymbol{y}) \}$$

where $\phi(y)$ is a convex and continuous function and \mathcal{Y} is a convex and compact set.

Remark. For many cases, we are able to construct such representation easily as compared to using the convex conjugate.

Example 16

Let $f(x) = \max_{1 \le i \le m} |a_i^\top x - b_i|$. Computing the convex conjugate for f is a cumbersome task and f^* turns out to be very complex. But we can easily represent f as follows:

$$f(oldsymbol{x}) = \max_{oldsymbol{y} \in \mathbb{R}^m} \left\{ (Aoldsymbol{x} - b)^{ op} oldsymbol{y} \ \Big| \sum_i |oldsymbol{y}_i| \leq 1
ight\}$$

Remark. Let $\|\cdot\|$ be a norm in \mathbb{R} , The associated dual norm is defined as

$$\|z\|_* = \sup_{x} \{z^{\top}x \mid \|x\| \le 1\}.$$

Proximity Function

Proximity Function: The function d(y) should satisfy the following properties:

- 1 d(y) is continuous and 1-strongly convex on \mathcal{Y} ;
- 2 $d(y_0) = 0$, for $y_0 \in \operatorname{Argmin}_{y \in \mathcal{Y}} d(y)$;
- $d(\boldsymbol{y}_0) \geq 0, \forall \boldsymbol{y} \in \mathcal{Y}.$

Let $b \in \mathcal{Y}$, here are some examples of valid proximity functions:

- $d(y) = \frac{1}{2} \|y b\|_2^2;$
- 2 $d(\boldsymbol{y}) = \frac{1}{2} \sum w_i (\boldsymbol{y}_i b_i)^2$ with $w_i \ge 1$;
- 3 $d(y) = w(y) w(b) \nabla w(b)^{\top} (y b)$ with w(x) being 1-strongly convex on \mathcal{Y} .

Consider the following smooth approximation of f

$$f_u(\boldsymbol{x}) = \max_{\boldsymbol{y} \in \mathcal{Y}} \{ \langle A\boldsymbol{x} + b, \ \boldsymbol{y} \rangle - \phi(\boldsymbol{y}) - ud(\boldsymbol{y}) \}.$$

Propsition 17

- \mathbf{I} $f_u(\mathbf{x})$ is continuously differentiable.
- $\nabla f_u(x) = A^{\top} y(x)$, where $y(x) = \operatorname{argmax}_{z \in \mathcal{Y}} \{ \langle Ax + b, z \rangle \phi(z) ud(z) \}$.
- 3 $f_u(x)$ is M-Lipschitz smooth, where $M = \frac{\|A\|_2^2}{u} (\|A\|_2 = \max_x \|Ax\|_2^2 |\|x\|_2 < 1)$.

See Theorem 1 of [Nesterov, 2005] for proofs.

Theorem 18 (Approximation Accuracy)

For any u > 0, let $D_{\mathcal{Y}}^2 = \max_{\boldsymbol{y} \in \mathcal{Y}} d(\boldsymbol{y})$, we have

$$f(\boldsymbol{x}) - uD_{\mathcal{Y}}^2 \le f_u(\boldsymbol{x}) \le f(\boldsymbol{x}).$$

Proof. The result can be derived directly from

$$f_u(\boldsymbol{x}) \le f_0(\boldsymbol{x}) = f(\boldsymbol{x}),$$

and

$$f(\boldsymbol{x}) - uD_{\mathcal{V}}^2 \le f_u(\boldsymbol{x})$$

can be easily obtained.

Remark.

$$f(\boldsymbol{x}) - uD_{\mathcal{Y}}^{2} = \langle A\boldsymbol{x} + b, \ \boldsymbol{y}^{*} \rangle - \phi(\boldsymbol{y}^{*}) - uD_{\mathcal{Y}}^{2}$$

$$\leq \langle A\boldsymbol{x} + b, \ \boldsymbol{y}^{*} \rangle - \phi(\boldsymbol{y}^{*}) - ud(\boldsymbol{y}^{*})$$

$$\leq f_{u}(\boldsymbol{x}),$$

where

$$f(\mathbf{x}) = \max_{\mathbf{y} \in \mathcal{Y}} \{ \langle A\mathbf{x} + b, \mathbf{y} \rangle - \phi(\mathbf{y}) \}$$
$$= \langle A\mathbf{x} + b, \mathbf{y}^* \rangle - \phi(\mathbf{y}^*).$$

Analysis of Nesterov's smoothing:

Let
$$f_* = \min_{x \in \mathcal{X}} f(x)$$
 and $f_{u,*} = \min_{x \in \mathcal{X}} f_u(x)$, we have

$$f_{u,*} \leq f_*$$
.

Moreover, for any x_t generated by an algorithm,

$$f(\boldsymbol{x}_t) - f_* \leq f(\boldsymbol{x}_t) - f_{u,*},$$
 $\Leftrightarrow f(\boldsymbol{x}_t) - f_* \leq \underbrace{f(\boldsymbol{x}_t) - f_u(\boldsymbol{x}_t)}_{\text{approximation error}} + \underbrace{f_u(\boldsymbol{x}_t) - f_{u,*}}_{\text{optimization error}}.$

Analysis of Nesterov's smoothing:

2 If we apply projected gradient descent to solve the smooth problem, we have

$$f(\boldsymbol{x}_t) - f^* \le O\left(\frac{\|A\|_2^2 D_{\mathcal{X}}^2}{ut} + uD_{\mathcal{Y}}^2\right).$$

Therefore, if we want the error to be less tan a threshold ϵ , we need to set $u = O\left(\frac{\epsilon}{D_{\mathcal{Y}}^2}\right)$ and the total number of iterations is at most $T_{\epsilon} = O\left(\frac{\|A\|_2^2 D_{\mathcal{X}}^2}{\epsilon u}\right) = O\left(\frac{\|A\|_2^2 D_{\mathcal{X}}^2 D_{\mathcal{Y}}^2}{\epsilon^2}\right)$.

Analysis of Nesterov's smoothing:

3 If we apply accelerated gradient descent to solve the smooth problem, the we have

$$f(x_t) - f^* \le O\left(\frac{\|A\|_2^2 D_{\mathcal{X}}^2}{ut^2} + uD_{\mathcal{Y}}^2\right).$$

Therefore, if we want the error to be less tan a threshold ϵ , we need to set $u = O\left(\frac{\epsilon}{D_{\mathcal{Y}}^2}\right)$ and the total number of iterations is at most $T_{\epsilon} = O(\frac{\|A\|_2 D_{\mathcal{X}}}{\sqrt{\epsilon u}}) = O(\frac{\|A\|_2 D_{\mathcal{X}} D_{\mathcal{Y}}}{\epsilon})$.

In the later case the overall complexity $O(1/\epsilon)$ is substantially better than the $O(1/\epsilon^2)$ complexity when we directly apply subgradient descent to solve the original nonsmooth convex problem.

Consider objective f(x) = |x|. Note that f admits the following two different representation:

$$f(\boldsymbol{x}) = \sup_{|\boldsymbol{y}| \leq 1} \boldsymbol{y} \boldsymbol{x}$$

or

$$f(\boldsymbol{x}) = \sup_{\substack{\boldsymbol{y}_1, \boldsymbol{y}_2 \ge 0\\\boldsymbol{y}_1 + \boldsymbol{y}_2 = 1}} (\boldsymbol{y}_1 - \boldsymbol{y}_2) x$$

Hence, $\mathcal{Y} = \{ \boldsymbol{y} : |\boldsymbol{y}| \le 1 \}$ or $\mathcal{Y} = \{ \boldsymbol{y} = (\boldsymbol{y}_1, \boldsymbol{y}_2) : \boldsymbol{y}_1, \boldsymbol{y}_2 \ge 0, \boldsymbol{y}_1 + \boldsymbol{y}_2 = 1 \}$; and function $\phi(\boldsymbol{y}) \triangleq 0$.

Example 19
$$(d(y) = \frac{1}{2}y^2)$$

 $d(\cdot)$ is 1-strongly convex on $\mathcal{Y} = \{ \boldsymbol{y} : |\boldsymbol{y}| \leq 1 \}$, and $d(\boldsymbol{y}) \geq 0$.

$$f_u(oldsymbol{x}) = \sup_{|oldsymbol{y}| \leq 1} \left\{ oldsymbol{y} oldsymbol{x} - rac{u}{2} oldsymbol{y}^2
ight\} = \left\{ egin{array}{c} rac{oldsymbol{x}^2}{2u}, & |oldsymbol{x}| \leq u, \ |oldsymbol{x}| - rac{u}{2}, & |oldsymbol{x}| > u, \end{array}
ight.$$

which is the well-known Huber function.

Remark.

$$\underset{\boldsymbol{y} \in Y}{\operatorname{argmax}} \left\{ -\frac{u}{2} \left(\boldsymbol{y} - \frac{\boldsymbol{x}}{u} \right)^2 + \frac{\boldsymbol{x}^2}{2u} \right\}.$$

We have to discuss the constraint $|y| \le 1$:

(1) when
$$-1 \le \frac{x}{u} \le 1$$
, we have $y_* = \frac{x}{u}$ and $f_u(x) = \frac{x^2}{2u}$.

(2) when
$$\frac{x}{u} \ge 1 > 0$$
, we have $y_* = 1$ and $f_u(x) = x - \frac{u}{2}$.

(3) when
$$\frac{x}{u} \le -1 < 0$$
, we have $y_* = -1$ and $f_u(x) = -x - \frac{u}{2}$.

Example 20 (
$$d(\boldsymbol{y}) = 1 - \sqrt{1 - \boldsymbol{y}^2}$$
) $d(\cdot)$ is 1-strongly convex on $\mathcal{Y} = \{\boldsymbol{y} : |\boldsymbol{y}| \leq 1\}$, and $d(\boldsymbol{y}) \geq 0$.
$$f_u(\boldsymbol{x}) = \sup_{|\boldsymbol{y}| \leq 1} \left\{ \boldsymbol{y} \boldsymbol{x} - u \left(1 - \sqrt{1 - \boldsymbol{y}^2}\right) \right\}$$
$$= \sqrt{\boldsymbol{x}^2 + u^2} - u.$$

Example 21
$$(d(\boldsymbol{y}) = \boldsymbol{y}_1 \log \boldsymbol{y}_1 + \boldsymbol{y}_2 \log \boldsymbol{y}_2 + \log 2)$$

 $d(\cdot)$ is 1-strongly convex on $\mathcal{Y} = \{\boldsymbol{y} = (\boldsymbol{y}_1, \boldsymbol{y}_2) : \boldsymbol{y}_1, \boldsymbol{y}_2 \geq 0, \boldsymbol{y}_1 + \boldsymbol{y}_2 = 1\}$, and $d(\boldsymbol{y}) \geq 0$.

$$f_u(\boldsymbol{x}) = \sup_{\substack{\boldsymbol{y}_1, \boldsymbol{y}_2 \geq 0 \\ \boldsymbol{y}_1 + \boldsymbol{y}_2 = 1}} \{(\boldsymbol{y}_1 - \boldsymbol{y}_2)\boldsymbol{x} - u\,(\boldsymbol{y}_1 \log \boldsymbol{y}_1 + \boldsymbol{y}_2 \log \boldsymbol{y}_2 + \log 2)\}$$

$$= u \log \left(\frac{e^{-\frac{\boldsymbol{x}}{u}} + e^{\frac{\boldsymbol{x}}{u}}}{2}\right).$$

Moreau-Yosida Regularization

Consider function

$$f(\boldsymbol{x}) = \max_{\boldsymbol{y}} \{ \boldsymbol{y}^{\top} \boldsymbol{x} - f^*(\boldsymbol{y}) \}.$$

We can show that

$$f_{u}(\boldsymbol{x}) = \max_{\boldsymbol{y}} \left\{ \boldsymbol{y}^{\top} \boldsymbol{x} - f^{*}(\boldsymbol{y}) - \frac{u}{2} \|\boldsymbol{y}\|_{2}^{2} \right\} = \left(f^{*} + \frac{u}{2} \|\cdot\|_{2}^{2} \right)^{*} (\boldsymbol{x})$$
$$= \inf_{\boldsymbol{y}} \left\{ f(\boldsymbol{y}) + \frac{1}{2u} \|\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} \right\}$$

Let f and g be two proper, convex and semi-continuous functions, then

$$(f+g)^*(x) = \inf_y \{ f^*(y) + g^*(x-y) \}.$$

$$(\alpha f)^*(\boldsymbol{x}) = \alpha f^*(\frac{\boldsymbol{x}}{\alpha})$$
 for $\alpha > 0$.

Moreau-Yosida Regularization

Interpretation of Proximal Point Algorithm: Apply gradient method to minimize Moreau envelop

$$\min \left\{ f_u(oldsymbol{x}) = \inf_{oldsymbol{y}} \left(f(oldsymbol{y}) + rac{1}{2u} \left\| oldsymbol{x} - oldsymbol{y}
ight\|_2^2
ight)
ight\}.$$

This is an exact smooth reformulation of problem of minimizing f(x):

- \blacksquare solution x is minimizer of f.
- 2 f_u is differentiable with Lipschitz continuous gradient (L = 1/t).

Gradient Update: with fixed $t_k = 1/L = u$

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - u \nabla f_u(\boldsymbol{x}_k) = \operatorname{prox}_{uf}(\boldsymbol{x}_k).$$

Remark:
$$\nabla f_u(\boldsymbol{x}_k) = \frac{1}{u}(\boldsymbol{x}_k - \operatorname{prox}_{uf}(\boldsymbol{x}_k)).$$

Moreau-Yosida Regularization

Remark.

Since

$$f_u(\boldsymbol{x}) = \max_{\boldsymbol{y}} \left\{ \boldsymbol{y}^{\top} \boldsymbol{x} - f^*(\boldsymbol{y}) - \frac{u}{2} \|\boldsymbol{y}\|_2^2 \right\},$$

we have

$$abla f_u(x) = A \top y(x)$$
, where $A = I$ and y attained the above $\max_{y} x - uy \in \partial f^*(y) \Leftrightarrow y \in \partial f(x - uy) \Leftrightarrow y = \frac{1}{u}(x - \operatorname{prox}_{uf}(x))$.

The last equality follows from the following properey.

$$\begin{split} \boldsymbol{z} &= \operatorname{prox}_h(p) \Leftrightarrow p - \boldsymbol{z} \in \partial h(\boldsymbol{z}). \end{split}$$
 That is $\boldsymbol{x} - u \boldsymbol{y} = \operatorname{prox}_{uf}(\boldsymbol{x}) \Leftrightarrow \boldsymbol{x} - (\boldsymbol{x} - u \boldsymbol{y}) \in u \partial f(\boldsymbol{x} - u \boldsymbol{y}).$

Part II Mirror Descent

Introduction

Generally, each iteration of gradient descent, Newton method, subgradient descent can be regarded as a local optimization, and the objective functions are respectively:

$$\begin{split} x_{k+1} &= \operatorname{argmin} \left\{ f(x_k) + \langle \nabla f(x_k), \ x - x_k \rangle + \frac{1}{2h_k} \left\| x - x_k \right\|_2^2 \right\}, \\ x_{k+1} &= \operatorname{argmin} \left\{ f(x_k) + \langle \nabla f(x_k), \ x - x_k \rangle + \frac{1}{2} \langle \nabla^2 f(x_k) (x - x_k), \ (x - x_k) \rangle \right\}, \\ x_{k+1} &= \operatorname{argmin} \left\{ f(x_k) + \langle g, \ x - x_k \rangle + \frac{1}{2h_k} \left\| x - x_k \right\|_2^2 \right\}. \end{split}$$

To generalize the method beyond Euclidean distance, it is straightforward to use Bregman divergence as a measure of displacement.

Bregman Divergence

Definition 22 (Bregman Divergence)

Let $\psi: \Omega \to \mathbb{R}$ be a function that is : a) strictly convex, b) continuously differentiable, c) defined on a closed convex set Ω . Then the Bregman divergence is defined as

$$\triangle_{\psi}(x,y) = \psi(x) - \psi(y) - \langle \nabla \psi(y), \ x - y \rangle, \forall x, y \in \Omega.$$

That is, the difference between the value of ψ at x and the first order Taylor expansion of ψ around y evaluated at point x.

Examples of Bregman Divergence

I Euclidean distance. Let $\psi(x) = \frac{1}{2} ||x||_2^2$. Then

$$\triangle_{\psi}(x,y) = \frac{1}{2} \|x - y\|_{2}^{2}.$$

2 Kullback-Leibler divergence. For $\Omega = \{x \in \mathbb{R}^n_+ : \sum_i x_i = 1\}$, and $\psi(x) = \sum_i x_i \log x_i$. Then

$$\triangle_{\psi}(x,y) = \sum_{i} x_{i} \log \frac{x_{i}}{y_{i}}$$

for $x, y \in \Omega$. This is called relative entropy, or Kullback-Leibler divergence, commonly used between probability distributions x and y.

Examples of Bregman Divergence

1 Based on ℓ_p **norm.** Let $p \geq 1$ and $\frac{1}{p} + \frac{1}{q} = 1$. $\psi(x) = \frac{1}{2} \|x\|_q^2$. Then

$$\triangle_{\psi}(x,y) = \frac{1}{2} \|x\|_q^2 - \frac{1}{2} \|y\|_q^2 - \langle x, \nabla \frac{1}{2} \|y\|_q^2 \rangle.$$

Note $\frac{1}{2} ||y||_q^2$ is not necessarily continuously differentiable, which makes this case not precisely consistent with our definition.

Remark. The subgradient is a linear oracle on the dual sphere. (see Frank-Wolfe section)

- I Strict convexity in the first argument x. Trivial by the strict convexity of ψ .
- Nonnegativity: $\triangle_{\psi}(x,y) \ge 0$ for all x and y. $\triangle_{\psi}(x,y) = 0$ if and only if x = y.
- **3** Asymmetry: in general, $\triangle_{\psi}(x,y) \neq \triangle_{\psi}(y,x)$.
- **4** Linearity in ψ . For any $\alpha > 0$, $\triangle_{\psi+\alpha\varphi}(x,y) = \triangle_{\psi}(x,y) + \alpha \triangle_{\varphi}(x,y)$.
- **5** Gradient in x: $\frac{\partial}{\partial x} \triangle_{\psi}(x,y) = \nabla \psi(x) \nabla \psi(y)$.
- 6 Generalized triangle inequality:

$$\triangle_{\psi}(x,y) + \triangle_{\psi}(y,z) = \psi(x) - \psi(y) - \langle \nabla \psi(y), x - y \rangle$$
$$+ \psi(y) - \psi(z) - \langle \nabla \psi(z), y - z \rangle$$
$$= \triangle_{\psi}(x,z) + \langle x - y, \nabla \psi(z) - \nabla \psi(y) \rangle$$

7 Duality. Suppose ψ is strongly convex. Then

$$(\nabla \psi^*)(\nabla \psi(x)) = x, \quad \triangle_{\psi}(x,y) = \triangle_{\psi^*}(\nabla \psi(y), \nabla \psi(x)).$$

Proof. (for the first equality only) Recall

$$\psi^*(y) = \sup_{z \in Q} \left\{ \langle z, y \rangle - \psi(z) \right\}.$$

Here, sup must be attainable because ψ is strongly convex and Q is closed.

Remark.
$$(\nabla \psi)^{-1} = \nabla \psi^*$$
.

7 Duality.

Proof. (Continued.) x is a maximier if and only if $y = \nabla \psi(x)$. So

$$\psi^*(y) = -\psi(x) + \langle x, y \rangle \Leftrightarrow y = \nabla \psi(x).$$

Since $\psi = \psi^{**}$, so $\psi^{*}(y) + \psi^{**}(x) = \langle x, y \rangle$, which means y is the maximizer in

$$\psi^{**}(x) = \sup_{z} \left\{ \langle x, z \rangle - \psi^{*}(z) \right\}.$$

This means
$$x = \nabla \psi^*(y)$$
.

8 Extension of Pythagorean:

Lemma 23 (Extension of Pythagorean)

Suppose L is a proper convex function whose domain is an open set containing C. L is not necessarily differentiable. Let x^* be

$$x^* = \underset{x \in C}{\operatorname{argmin}} \left\{ L(x) + \triangle_{\psi}(x, x_0) \right\}.$$

Then for any $y \in C$ we have

$$L(y) + \triangle_{\psi}(y, x_0) \ge L(x^*) + \triangle_{\psi}(x^*, x_0) + \triangle_{\psi}(y, x^*).$$

Properties of Bregman Divergence

$$L(y) + \triangle_{\psi}(y, x_0) \ge L(x^*) + \triangle_{\psi}(x^*, x_0) + \triangle_{\psi}(y, x^*).$$

Proof. Denote $J(x) = L(x) + \triangle_{\psi}(x, x_0)$. Since x^* minimizes J over C, there must exist a subgradient $d \in \partial J(x^*)$ such that

$$\langle d, x - x^* \rangle \ge 0, \quad \forall x \in C.$$

Since $\partial J(x^*) = \{g + \nabla_{x=x^*} \triangle_{\psi}(x,x_0) : g \in \partial L(x^*)\}$, we have $\partial J(x^*) = \{g + \nabla \psi(x^*) - \nabla \psi(x_0) : g \in \partial L(x^*)\}$. So there must be a subgradient $g \in L(x^*)$ such that

$$\langle g + \nabla \psi(x^*) - \nabla \psi(x_0), \ x - x^* \rangle \ge 0, \quad \forall x \in C$$

$$\Rightarrow \langle g, \ x - x^* \rangle \ge \langle \nabla \psi(x_0) - \nabla \psi(x^*), \ x - x^* \rangle. \tag{5}$$

Properties of Bregman Divergence

$$L(y) + \triangle_{\psi}(y, x_0) \ge L(x^*) + \triangle_{\psi}(x^*, x_0) + \triangle_{\psi}(y, x^*).$$

Proof. (continued.) Therefore using the property of subgradient, we have for all $y \in C$ that

$$L(y) \ge L(x^*) + \langle g, y - x^* \rangle$$

$$\ge L(x^*) + \langle \nabla \psi(x_0) - \nabla \psi(x^*), y - x^* \rangle \quad \text{by (5)}$$

$$\ge L(x^*) - \langle \nabla \psi(x_0), x^* - x_0 \rangle + \psi(x^*) - \psi(x_0)$$

$$+ \langle \nabla \psi(x_0), y - x_0 \rangle - \psi(y) + \psi(x_0)$$

$$- \langle \nabla \psi(x^*), y - x^* \rangle + \psi(y) - \psi(x^*)$$

$$= L(x^*) + \triangle_{\psi}(x^*, x_0) - \triangle_{\psi}(y, x_0) + \triangle_{\psi}(y, x^*).$$

Mirror Descent

If we use the Bregman divergence as a measure of displacement:

$$\begin{split} x_{k+1} &= \operatorname*{argmin}_{x \in C} \left\{ f(x_k) + \langle g_k, \; x - x_k \rangle + \frac{1}{\alpha_k} \bigtriangleup_{\psi} (x, x_k) \right\} \\ &= \operatorname*{argmin}_{x \in C} \left\{ \alpha_k f(x_k) + \alpha_k \langle g_k, \; x - x_k \rangle + \bigtriangleup_{\psi} (x, x_k) \right\} \end{split}$$

Suppose the constraint set C is the whole space (i.e. no constraint). Then we can take gradient with respect to x and find the optimality condition.

$$g_k + \frac{1}{\alpha_k} (\nabla \psi(x_{k+1}) - \nabla \psi(x_k)) = 0$$

$$\Leftrightarrow \nabla \psi(x_{k+1}) = \nabla \psi(x_k) - \alpha_k g_k$$

$$\Leftrightarrow x_{k+1} = (\nabla \psi)^{-1} (\nabla \psi(x_k) - \alpha_k g_k) = (\nabla \psi^*) (\nabla \psi(x_k) - \alpha_k g_k).$$

Mirror Descent

Illustration of mirror descent (from Bubeck et al. [2015])

Mirror Descent

For example, in KL-divergence over simplex, since we have

$$\psi(x) = \sum_{i} x^{(i)} \log x^{(i)},$$

the $\nabla \psi(x)^{(i)} = \log x^{(i)} + 1$. Thus the update rule becomes

for
$$i$$
: $\log x_{k+1}^{(i)} = \log x_k^{(i)} - \alpha_k g_k \Leftrightarrow x_{k+1}^{(i)} = x_k^{(i)} \exp(-\alpha_k g_k)$.

For the simplex constraint, we have $x_0^{(i)} = 1/n$, and in each iteration we set,

for
$$i: \quad x_{k+1}^{(i)} = x_{k+1}^{(i)} / \sum_{i} x_{k+1}^{(i)}$$

$$L(y) + \triangle_{\psi}(y, x_0) \ge L(x^*) + \triangle_{\psi}(x^*, x_0) + \triangle_{\psi}(y, x^*).$$

We further assume ψ is μ strongly convex. for

$$L(x) = \alpha_k \left(f(x_k) + \langle g_k, x - x_k \rangle \right),\,$$

in view of Lemma 23, we have

$$L(x^*) + \triangle_{\psi}(x^*, x_k) \left(= \alpha_k(f(x_k) + \langle g_k, x^* - x_k \rangle) + \triangle_{\psi}(x^*, x_k) \right)$$

$$\geq \underbrace{L(x_{k+1})}_{\alpha_k(f(x_k) + \langle g_k, x_{k+1} - x_k \rangle)} + \triangle_{\psi}(x_{k+1}, x_k) + \triangle_{\psi}(x^*, x_{k+1}).$$

For Extension of Pythagorean, we use $y \leftarrow x^*$, $x_0 \leftarrow x_k$, and $x^* \leftarrow x_{k+1}$.

$$\alpha_k(f(x_k) + \langle g_k, x^* - x_k \rangle) + \triangle_{\psi}(x^*, x_k)$$

$$\geq \alpha_k(f(x_k) + \langle g_k, x_{k+1} - x_k \rangle) + \triangle_{\psi}(x_{k+1}, x_k) + \triangle_{\psi}(x^*, x_{k+1}).$$

Some terms can be canceled. Thus, we have

$$\Delta_{\psi}(x^*, x_{k+1}) \leq \Delta_{\psi}(x^*, x_k) + \alpha_k \left[\langle g_k, x^* - x_k \rangle \right] + \alpha_k \langle g_k, x_k - x_{k+1} \rangle \left[-\Delta_{\psi}(x_{k+1}, x_k) \right].$$

Since $\psi(\cdot)$ is strongly convex, we have

$$\Delta_{\psi}(x_{k+1}, x_k) = \psi(x_{k+1}) - \psi(x_k) - \langle \nabla \psi(x_k), x_{k+1} - x_k \rangle$$

$$\geq \frac{\mu}{2} \|x_{k+1} - x_k\|^2.$$

This implies

$$\left[-\triangle_{\psi}(x_{k+1},x_k)\right] \leq -\frac{\mu}{2} \|x_k - x_{k+1}\|^2.$$

Also, we have

$$f(x^*) \ge f(x_k) + \langle g_k, x^* - x_k \rangle.$$

Thus,

$$\overline{\langle g_k, x^* - x_k \rangle} \le -(f(x_k) - f(x^*)).$$

Thus, we have

Thus, we have

$$\Delta_{\psi}(x^*, x_{k+1}) \leq \Delta_{\psi}(x^*, x_k) - \alpha_k(f(x_k) - f(x^*)) + \frac{\alpha_k^2}{2\mu} \|g_k\|_*^2.$$

Then, we arrive at $(\alpha_k = \alpha)$

$$\min_{k \in \{1, \dots, T\}} (f(x_k) - f(x^*)) \le \frac{1}{T} \left(\frac{\triangle_{\psi}(x^*, x_1)}{\alpha} + \frac{\alpha}{2\mu} \sum_{k=1}^{T} \|g_k\|_*^2 \right) = c \frac{RM}{\sqrt{T}},$$

where M bounds the $||g_k||_*$, R^2 bounds $\triangle_{\psi}(x^*, x_1)$, and $\alpha = \frac{R}{M} \sqrt{\frac{2\mu}{T}}$. This is the same as the bound of sub-GD.

The advantage of using mirror descent over sub-gradient descent is that it takes into account the geometry of the problem through the potential function ψ . Consider the following problem.

$$\min_{x \in \mathcal{X}} f(x),$$

where
$$\mathcal{X} = \{x \in \mathbb{R}^n : x \ge 0, \sum x_i = 1\}.$$

For sub-GD, assume that f is 1-Lipchitz with norm $\|\cdot\|_1$, equivalently, $\|g\|_{\infty} \leq 1$. Recall that implies $\|g\|_2 = \sqrt{n} \|g\|_{\infty} \leq \sqrt{n} \triangleq M$. Thus, the bound is

$$||x_1 - x^*||_2 \cdot \frac{M}{\sqrt{T}} = ||x_1 - x^*||_2 \cdot \sqrt{\frac{n}{T}}.$$

For MD, set $\psi(x) = \sum x_i \log x_i$. The fact is that if ψ is 1-strongly convex on \mathcal{X} , with $\|\cdot\|_1$, we have

$$\triangle_{\psi}(x^*, x_1) \le \log n$$
$$\triangleq R^2,$$

if x_1 is $(\frac{1}{n}, \dots, \frac{1}{n})^{\top}$. Thus, we have the bound is

$$\sqrt{2}\sqrt{\frac{\log n}{T}}.$$

Remark. $\sqrt{\log n}$ is smaller than \sqrt{n} . This is crucial when n is very large.

References I

- Yu Nesterov. Smooth minimization of non-smooth functions. *Mathematical programming*, 103(1):127–152, 2005.
- A Ben-Tal and M Teboulle. A smoothing technique for nondifferentiable optimization problems. In *Optimization*, pages 1–11. Springer, 1989.
- John C Duchi, Peter L Bartlett, and Martin J Wainwright. Randomized smoothing for stochastic optimization. *SIAM Journal on Optimization*, 22(2):674–701, 2012.
- Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and Trends® in Machine Learning*, 8(3-4):231–357, 2015.
- Niao He. Big data optimizaton course, ie598. URL https://github.com/niaohe/Big-Data-Optimization-Course/blob/main/lecture_scribe/IE598-lecture16-smoothing-techniques-I.pdf.
- Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

References II

Yurii Nesterov. *Introductory lectures on convex optimization: A basic course*, volume 87. Springer Science & Business Media, 2013.

Xinhua Zhang. Bregman divergence and mirror descent. URL https://www2.cs.uic.edu/~zhangx/teaching/bregman.pdf.

Thank You!

Email:qianhui@zju.edu.cn