ALL OP-AMPS CAN BE ASSUMED IDEAL unless stated otherwise.

1. Calculate the closed loop gain $\frac{v_o}{v_g}$ for the following amplifiers.

2. Calculate v_o in terms of v_{g1} and v_{g2} for

3. A method of generating a low output resistance DC voltage supply of any value between 0 and 20V is shown.

If upper part of potential is 15k, and lower half is 5k, find $\ensuremath{V_{\text{DC}}}$

4. A voltage subtracting circuit is shown. Show that

$$v_o = \frac{1 + \frac{R_2}{R_1}}{1 + \frac{R_3}{R_4}} v_2 - \frac{R_2}{R_1} v_1$$

Design a circuit with an output $v_o = 4v_2 - 11v_1$ When $R_1 = 10k$ and $R_4 = 10k$

5. Find v_0 if $R_L = 12k$

6. Find R such that $\frac{v_o}{v_g}$ = -100 when R₁ = 10k

7. Find $\frac{v_o}{v_g}$ for

8. Show that this simple analogue computer solves the differential equation $\frac{dv_o}{d_t} + 2v_o = +V_m Cos(\omega t)$

