

TEORÍA LOCAL DE CURVAS: FORMA CANÓNICA LOCAL

ALAN REYES-FIGUEROA GEOMETRÍA DIFERENCIAL

(AULA 05) 23.ENERO.2024

Al cambiar la orientación de α , el vector tangente $\mathbf{t}(s)$ cambia de dirección, el vector normal $\mathbf{n}(s)$ no cambia $\Rightarrow \mathbf{b}(s)$ cambia de dirección.

Para ver esto, hagamos t=-s, y sea $\beta(t)=\alpha(s)$. Entonces

$$\begin{split} \mathbf{t}_{\beta}(t) &= \beta'(t) = \frac{d}{dt}\beta(t) = \frac{d}{ds}\frac{ds}{dt}\alpha(s) = -\frac{d}{ds}\alpha(s) = -\alpha'(s) = \mathbf{t}_{\alpha}(s), \\ \mathbf{n}_{\beta}(t) &= \mathbf{n}_{\alpha}(s), \\ \mathbf{b}_{\beta}(t) &= \mathbf{t}_{\beta}(t) \times \mathbf{n}_{\beta}(t) = -\mathbf{t}_{\alpha}(s) \times \mathbf{n}_{\alpha}(s) = -\mathbf{b}_{\alpha}(s), \\ \mathbf{b}_{\beta}'(t) &= \frac{d}{dt}\mathbf{b}_{\beta}(t) = \frac{d}{ds}\frac{ds}{dt}(-\mathbf{b}_{\alpha}(s)) = -\frac{d}{ds}(-\mathbf{b}_{\alpha}(s)) = \mathbf{b}_{\alpha}'(s). \end{split}$$

En consecuencia,

$$\kappa_{\beta}(t) \, \mathbf{n}_{\beta}(t) = \beta''(t) = \alpha''(s) = \kappa_{\alpha}(s) \, \mathbf{n}_{\alpha}(s) \Rightarrow \kappa_{\beta}(t) = \kappa_{\alpha}(s),$$

$$\tau_{\beta}(t) \, \mathbf{n}_{\beta}(t) = \mathbf{b}_{\beta}'(t) = \mathbf{b}_{\alpha}'(s) = \tau_{\alpha}(s) \, \mathbf{n}_{\alpha}(s) \Rightarrow \tau_{\beta}(t) = \tau_{\alpha}(s).$$

Así, la curvatura κ y la torsión au son invariantes al cambiar orientación.

Para cada $s \in I$ hemos definido tres vectores unitarios $\mathbf{t}(s)$, $\mathbf{n}(s)$ y $\mathbf{b}(s)$. Las derivadas de estos vectores satisfacen

$$\mathbf{t}'(s) = \kappa(s)\mathbf{n}(s)$$
 y $\mathbf{b}'(s) = \tau(s)\mathbf{n}(s)$.

Además, $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ es una base ortonormal en cada punto $\alpha(s)$, con orientación positiva. Esto implica que

$$\mathbf{b}(s) = \mathbf{t}(s) \times \mathbf{n}(s), \qquad \mathbf{t}(s) = \mathbf{n}(s) \times \mathbf{b}(s), \qquad \mathbf{n}(s) = \mathbf{b}(s) \times \mathbf{t}(s).$$

Así,

$$\mathbf{n}'(s) = (\mathbf{b}(s) \times \mathbf{t}(s))' = \mathbf{b}'(s) \times \mathbf{t}(s) + \mathbf{b}(s) \times \mathbf{t}'(s)$$

$$= [\tau(s)\mathbf{n}(s)] \times \mathbf{t}(s) + \mathbf{b}(s) \times [\kappa(s)\mathbf{n}(s)]$$

$$= \tau(s)[\mathbf{n}(s) \times \mathbf{t}(s)] + \kappa(s)[\mathbf{b}(s) \times \mathbf{n}(s)]$$

$$= -\kappa(s)\mathbf{t}(s) - \tau(s)\mathbf{b}(s).$$

Obtenemos entonces el sistema de EDOs

$$\mathbf{t}'(\mathbf{s}) = \kappa(\mathbf{s})\mathbf{n}(\mathbf{s}),$$

 $\mathbf{n}'(\mathbf{s}) = -\kappa(\mathbf{s})\mathbf{t}(\mathbf{s}) - \tau(\mathbf{s})\mathbf{b}(\mathbf{s}), \quad \forall \mathbf{s} \in I.$
 $\mathbf{b}'(\mathbf{s}) = \tau(\mathbf{s})\mathbf{n}(\mathbf{s}),$

que en forma matricial, se escribe como

$$\begin{pmatrix} \boldsymbol{t}'(s) \\ \boldsymbol{n}'(s) \\ \boldsymbol{b}'(s) \end{pmatrix} = \begin{pmatrix} O & \kappa(s) & O \\ -\kappa(s) & O & -\tau(s) \\ O & \tau(s) & O \end{pmatrix} \begin{pmatrix} \boldsymbol{t}(s) \\ \boldsymbol{n}(s) \\ \boldsymbol{b}(s) \end{pmatrix}, \quad \forall s \in \textit{I}.$$

Estas EDO se llaman las fórmulas de Frenet.

Definición

El sistema $\{t(s), n(s), b(s)\}$ se llama el triedro de Frenet-Serret, triedro móvil o referencial móvil.

Definición

Al plano $\langle \mathbf{t}(s), \mathbf{b}(s) \rangle$, pasando por $\alpha(s)$, se le llama **plano rectificante**, mientras que al plano $\langle \mathbf{n}(s), \mathbf{b}(s) \rangle$ se le llama el **plano normal**.

Definición

La recta generada por $\mathbf{t}(s)$ es la **recta tangente**, la recta generada por $\mathbf{n}(s)$ es la **recta normal principal**, y la recta generada por $\mathbf{b}(s)$ es la **recta binormal**.

Obs. Usualmente, una curva $\alpha: I \subseteq \mathbb{R} \to \mathbb{R}^3$, que es de clase C^3 , regular, y tal que $\kappa(s)$ y $\tau(s)$ nunca se anulan, se llama una **curva de Frenet**.

Físicamente, una curva de Frenet puede pensarse como la deformación de una recta cuando esta es enrollada por la acción de $\kappa(s)$ y torcida por la acción de $\tau(s)$.

El triedro de Frenet proporciona un marco de referencia apropiado para estudiar curvas en \mathbb{R}^3 .

Sea $\alpha: I \to \mathbb{R}^3$ una curva de Frenet (clase C^3 y regular), de modo que $\{\mathbf{t}(s), \mathbf{n}(s), \mathbf{b}(s)\}$ siempre es una base de \mathbb{R}^3 .

Consideramos la expansión de Taylor de $\alpha(s)$ alrededor de s=o

$$\alpha(s) = \alpha(0) + s\alpha'(0) + \frac{s^2}{2}\alpha''(0) + \frac{s^3}{6}\alpha'''(0) + o(s^3).$$

($o(s^3)$ es un término que satisface $\lim_{s\to 0} \frac{o(s^3)}{s^3} = o$).

Como
$$\alpha'(\mathbf{0}) = \mathbf{t}(\mathbf{0}) = \mathbf{t}, \ \alpha''(\mathbf{0}) = \kappa(\mathbf{0})\mathbf{n}(\mathbf{0}) = \kappa\mathbf{n} \ \mathbf{y}$$

$$\alpha'''(\mathbf{0}) = (\kappa(\mathbf{s})\mathbf{n}(\mathbf{s}))'\big|_{\mathbf{s}=\mathbf{0}} = \kappa'\mathbf{n} + \kappa\mathbf{n}' = \kappa'\mathbf{n} - \kappa^2\mathbf{t} - \kappa\tau\mathbf{b},$$

Al sustituir en el desarrollo de Taylor, obtenemos

$$\alpha(s) = \alpha(0) + s\mathbf{t} + \frac{s^2}{2}\kappa\mathbf{n} + \frac{s^3}{6}(\kappa'\mathbf{n} - \kappa^2\mathbf{t} - \kappa\tau\mathbf{b}) + o(s^3)$$
$$= \alpha(0) + \left(s - \frac{\kappa^2s^3}{6}\right)\mathbf{t} + \left(\frac{\kappa s^2}{2} - \frac{\kappa's^3}{6}\right)\mathbf{n} - \left(\frac{\kappa\tau s^3}{6}\right)\mathbf{b} + o(s^3).$$

Tomamos ahora un sistema de coordenasa *Oxyz*, de modo que el origen *O* coincide con $\alpha(0)$, $\mathbf{t} = (1, 0, 0)$, $\mathbf{n} = (0, 1, 0)$ y $\mathbf{b} = (0, 0, 1)$.

Entonces, la curva $\alpha(s) = (x(s), y(s), z(s))$ es dada por:

$$\begin{array}{lcl} x(s) & = & s - \frac{1}{6}\kappa^2 s^3 + o(s^3)_x, \\ y(s) & = & \frac{1}{2}\kappa S^2 + \frac{1}{6}\kappa' s^3 + o(s^3)_y, \\ z(s) & = & -\frac{1}{6}\kappa\tau s^3 + o(s^3)_z. \end{array}$$

Cuando s es muy pequeño, podemos aproximar la forma de $\alpha(\mathbf{s})$ por

$$x(s) \approx s,$$

 $y(s) \approx \frac{1}{2}\kappa s^2,$
 $z(s) \approx -\frac{1}{6}\kappa \tau s^3.$

y esperamos obtener algo parecido a $y=\frac{1}{2}\kappa x^2$, $z=-\frac{1}{6}\kappa\tau x^3$, y $z^2=\frac{2}{9}\frac{\tau^2}{\kappa}y^3$.

(a) Osculating plane

(b) Normal plane

(c) Rectifying plane

Forma canónica local de las curvas de Frenet.

Definición

Sea $\alpha(s): I \subseteq \mathbb{R} \to \mathbb{R}^n$ una curva regular, parametrizada por longitud de arco, y de clase C^n . α es una **curva de Frenet** si en todo punto s, los vectores $\alpha'(s), \alpha''(s), \ldots, \alpha^{(n-1)}(s)$ son l.i.

El **referencial de Frenet** de α se define como $\{\mathbf{e_1},\mathbf{e_2},\ldots,\mathbf{e_n}\}$ y está únicamente determinado por

- $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ es una base ortonormal de \mathbb{R}^n .
- Para todo $k = 1, \ldots, n 1, \langle \mathbf{e}_1, \ldots, \mathbf{e}_k \rangle = \langle \alpha'(\mathbf{s}), \ldots, \alpha^{(k)}(\mathbf{s}) \rangle$.
- $\langle \alpha^{(k)}(s), \mathbf{e}_k \rangle > 0$, para $k = 1, \ldots, n-1$.

Obs: Se puede usar el método de Gram-Schmidt para construir el referencial de Frenet a partir de las primeras n-1 derivadas α en s.

Teorema

Sea $\alpha: I \to \mathbb{R}^n$ una curva de Frenet en \mathbb{R}^n , con referencial de Frenet $\{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$. Entonces, existen funciones $\kappa_1, \kappa_2, \dots, \kappa_{n-1}$, definidas en I, con $\kappa_1, \dots, \kappa_{n-1} > 0$, tales que κ_i es de clase C^{n-1-i} y

$$\begin{pmatrix} \mathbf{e}_{1}' \\ \mathbf{e}_{2}' \\ \vdots \\ \vdots \\ \mathbf{e}_{n-1}' \\ \mathbf{e}_{n}' \end{pmatrix} = \begin{pmatrix} 0 & \kappa_{1} & 0 & 0 & \dots & 0 \\ -\kappa_{1} & 0 & \kappa_{2} & 0 & \ddots & \vdots \\ 0 & -\kappa_{2} & 0 & \kappa_{3} & \ddots & 0 \\ 0 & 0 & \ddots & \ddots & \kappa_{n-2} & 0 \\ \vdots & \ddots & 0 & -\kappa_{n-2} & \dots & \kappa_{n-1} \\ 0 & \dots & 0 & 0 & -\kappa_{n-1} & 0 \end{pmatrix} \begin{pmatrix} \mathbf{e}_{1} \\ \mathbf{e}_{2} \\ \vdots \\ \vdots \\ \mathbf{e}_{n-1} \\ \mathbf{e}_{n} \end{pmatrix}, \ \forall s.$$

Definición

 κ_i se llama la i**-ésima curvatura de Frenet**, y el sistema anterior se llaman las **fórmulas** de Frenet.

Prueba:

Como $\{{f e}_1,{f e}_2,\ldots,{f e}_n\}$ es una base ortonormal de ${\Bbb R}^n$, podemos descomponer

$$\mathbf{e}'_i = \sum_{i=1}^n \langle \mathbf{e}'_i, \mathbf{e}_j \rangle \mathbf{e}_j, \quad i = 1, \dots, n.$$

Para cada 1 $\leq i \leq n-1$, el vector \mathbf{e}_i está en el subespacio generado por $\alpha'(\mathbf{s}), \alpha''(\mathbf{s}), \ldots, \alpha^{(i)}$,

 \Rightarrow \mathbf{e}'_i está en el subespacio $\langle \alpha'(\mathbf{s}), \alpha''(\mathbf{s}), \dots, \alpha^{(i+1)}(\mathbf{s}) \rangle = \langle \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_{i+1} \rangle$.

Luego,

$$\langle \mathbf{e}_i', \mathbf{e}_{i+2} \rangle = \langle \mathbf{e}_i', \mathbf{e}_{i+3} \rangle = \ldots = \langle \mathbf{e}_i', \mathbf{e}_n \rangle = 0.$$

Definimos $\kappa_i = \langle \mathbf{e}'_i, \mathbf{e}_{i+1} \rangle$.

Por construcción del referencial de Frenet, para $1 \le i \le n-2$, el signo de $\langle \mathbf{e}_i', \mathbf{e}_{i+1} \rangle$ es el mismo signo de $\langle \alpha^{(i+1)}, \mathbf{e}_{i+1} \rangle$, el cual es positivo (condición 3). De ahí que $\kappa_1, \kappa_2, \ldots, \kappa_{n-1} > 0$.

Por otro lado, como los \mathbf{e}_i son ortonormales, tenemos $\langle \mathbf{e}_i, \mathbf{e}_j \rangle = 0$, $\forall i \neq j$. Derivando en s,

$$\langle \mathbf{e}_i, \mathbf{e}_j \rangle' = \langle \mathbf{e}_i', \mathbf{e}_j \rangle + \langle \mathbf{e}_i, \mathbf{e}_j' \rangle = 0.$$

En particular, de la ecuación anterior

$$\langle \mathbf{e}'_{i+1}, \mathbf{e}_i \rangle = \langle \mathbf{e}'_i, \mathbf{e}_{i+1} \rangle = -\kappa_i.$$

Comentarios:

- Una curva de Frenet en \mathbb{R}^n está contenida en un hiperplano H si, y sólo si, $\kappa_{n-1} = 0$. Esto es equivalentemente a requerir que \mathbf{e}_n sea un vector constante $\kappa_{n-1} = 0$, el cual es perpendicular a este hiperplano H.
- Como consecuencia, en ocasiones κ_{n-1} se llama la **torsión** de α .