xLSTM

Extended
Long Short-Term
Memory

RNN

Проблемы

- Вектор контекста меняется на каждом шаге, поэтому не имеет возможности пройти на некотором этапе неизменным
- Затухание градиента

LSTM

Ключевая идея

Ворота забывания

Нужно понять, что необходимо забыть, а что оставить в памяти. Эту подзадачу можно интерпретировать как бинарную классификацию. Берётся вектор краткосрочной памяти, добавляется новый ввод, всё это умножается на матрицу забывания. В результате будет получен вектор из чисел между 0 и 1. Далее путем поэлементного умножения на вектор долгосрочной памяти часть информации удалится (умножение на ноль), часть останется (умножение на 1).

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Ворота входа

Нужно решить, что сохранить в памяти: имеется два потока (для первого используется бинарная классификация для регулирования того, какую часть второго потока добавить. После этого данные потоки перемножаются и добавляются в долгосрочную память.

$$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

Ворота выхода

Сколько информации из cell state следует отдавать на выход из LSTM-блока. В краткосрочную память добавляется новый вход, а затем переносится часть информации из долгосрочной памяти в краткосрочную.

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

Недостатки LSTM

Неспособность пересмотреть решение о сохранении данных внутри ячейки памяти. Это демонстрируют на простой задаче поиска ближайшего соседа (Nearest Neighbor Search), где сначала даётся референсный вектор, а далее сканируется последовательность других векторов, и модель должна найти наиболее похожий вектор и вернуть связанное с ним значение, когда последовательность закончится. Когда в последовательности попадается ещё более подходящий вектор, то модель не справляется.

Недостатки LSTM

Ограниченная память — всё надо впихнуть внутрь скаляра, который хранится в ячейке памяти LSTM. Это демонстрируют на задаче предсказания редкого токена (Rare Token Prediction)

Плохая параллелизация в силу последовательной обработки скрытых состояний ячейки между соседними временными отсчётами (состояние зависит от предыдущего через hidden-hidden связи)

xLSTM

Exponential Gates: добавляются экспоненциальные функции активации на input и forget gate. Также появляется отдельное состояние нормализатора, и чтобы от экспоненты всё не взлетело в космос - состояние стабилизатора.

$$c_{t} = f_{t} \quad c_{t-1} + i_{t} \quad z_{t}$$
 cell state (8)
$$n_{t} = f_{t} \quad n_{t-1} + i_{t}$$
 normalizer state (9)
$$h_{t} = o_{t} \quad \tilde{h}_{t} , \qquad \tilde{h}_{t} = c_{t} / n_{t}$$
 hidden state (10)
$$z_{t} = \varphi(\tilde{z}_{t}) , \qquad \tilde{z}_{t} = \boldsymbol{w}_{z}^{\top} \boldsymbol{x}_{t} + r_{z} h_{t-1} + b_{z}$$
 cell input (11)
$$i_{t} = \exp(\tilde{i}_{t}) , \qquad \tilde{i}_{t} = \boldsymbol{w}_{i}^{\top} \boldsymbol{x}_{t} + r_{i} h_{t-1} + b_{i}$$
 input gate (12)
$$f_{t} = \sigma(\tilde{f}_{t}) \text{ OR } \exp(\tilde{f}_{t}) , \qquad \tilde{f}_{t} = \boldsymbol{w}_{f}^{\top} \boldsymbol{x}_{t} + r_{f} h_{t-1} + b_{f}$$
 forget gate (13)
$$o_{t} = \sigma(\tilde{o}_{t}) , \qquad \tilde{o}_{t} = \boldsymbol{w}_{o}^{\top} \boldsymbol{x}_{t} + r_{o} h_{t-1} + b_{o}$$
 output gate (14)
$$m_{t} = \max\left(\log(f_{t}) + m_{t-1}, \log(i_{t})\right)$$
 stabilizer state (15)
$$i'_{t} = \exp\left(\log(i_{t}) - m_{t}\right) = \exp\left(\tilde{i}_{t} - m_{t}\right)$$
 stabil. input gate (16)
$$f'_{t} = \exp\left(\log(f_{t}) + m_{t-1} - m_{t}\right)$$
 stabil. forget gate (17)

Scalar Pre-activations:

$$\tilde{\mathbf{z}}_{t} = \mathbf{w}_{z}^{\top} \mathbf{x}_{t} + r_{z} h_{t-1} + b_{z}
\tilde{\mathbf{i}}_{t} = \mathbf{w}_{i}^{\top} \mathbf{x}_{t} + r_{i} h_{t-1} + b_{i}
\tilde{\mathbf{f}}_{t} = \mathbf{w}_{f}^{\top} \mathbf{x}_{t} + r_{f} h_{t-1} + b_{f}
\tilde{\mathbf{o}}_{t} = \mathbf{w}_{o}^{\top} \mathbf{x}_{t} + r_{o} h_{t-1} + b_{o}$$

Vector Pre-activations:

Блок LSTM

Блок sLSTM

Маtrix memory: не что иное, как ассоциативная память; аналогично терминологии трансформера, создают запросы, ключи и значения qkv и получают hidden state в качестве значений v наиболее близких к запросу q. В формулу обновления ассоциативной памяти так же включены input и forget gates чтобы сделать ее более "Istm-like" это все параллелизуется

Exponential Gating

$$c_t = \sigma(\tilde{\mathbf{f}}_t) \quad c_{t-1} + \exp(\tilde{\mathbf{i}}_t)$$

$$n_t = \sigma(\tilde{\mathbf{f}}_t) \quad n_{t-1} + \exp(\tilde{\mathbf{i}}_t)$$

$$h_t = \sigma(\tilde{\mathbf{o}}_t) \quad \frac{c_t}{n_t}$$

sLSTM

$$\begin{vmatrix} c_t & = & \sigma(\tilde{\mathbf{f}}_t) & c_{t-1} & + & \exp(\tilde{\mathbf{i}}_t) & \tanh(\tilde{z}_t) \\ \\ n_t & = & \sigma(\tilde{\mathbf{f}}_t) & n_{t-1} & + & \exp(\tilde{\mathbf{i}}_t) \\ \\ h_t & = & \sigma(\tilde{\mathbf{o}}_t) & \frac{c_t}{n_t} \\ \end{vmatrix}$$

$$c_t \in \mathbb{R}$$

$$n_t \in \mathbb{R}$$

$$h_t \in \mathbb{R}$$

mLSTM

$$egin{array}{lll} oldsymbol{C}_t &=& \sigma(ilde{\mathbf{f}}_t) & oldsymbol{C}_{t-1} &+& \exp(ilde{\mathbf{i}}_t) & oldsymbol{v}_t & oldsymbol{k}_t^ op & oldsymbol{C}_t & oldsymbol{q}_t & oldsymbol{q}_$$

$$oldsymbol{C}_t \in \mathbb{R}^{d imes d}$$

$$oldsymbol{n}_t \in \mathbb{R}^d$$

$$oldsymbol{h}_t \in \mathbb{R}^d$$

"scalar" cell state

"matrix" cell state

Как все собрать в xLSTM?

Дополнительно обернули каждую из структур в residual блоки

Как все собрать в xLSTM?

Входы Х делятся на головы – на рисунке ниже их четыре. Перед этим входы опционально могут быть пропущены через несколько сверточных слоев. После деления в каждой из голов отрабатывает sLSTM. Выходы с голов затем объединяются с помощью GroupNorm, а потом проецируются в пространство большей размерности и обратно. Эта последняя часть названа up-projection и проделывается для того, что повысить качество histories seperating. Это умение сети разделять "линии повествования": например, понимать, к какому из персонажей относится то или иное действие.

Как все собрать в xLSTM?

Все то же самое, что и в sLSTM, но в другом порядке. Отражаем входы в пространство большей размерности \rightarrow делим на головы \rightarrow пропускаем через mLSTM \rightarrow объединяем по GroupNorm \rightarrow проецируем обратно в родную размерность \rightarrow складываем со входами, чтобы получится residual \rightarrow готово!

Результаты

Ablation studies on the new xLSTM components.

Model	Modification	Exponential Gating	Matrix Memory	#Params M	SlimPajama (15B) ppl↓
LSTM	Vanilla Multi-Layer LSTM Adding Resnet Backbone Adding Up-Projection Backbone	X X X	X X X	607.8 506.1 505.9	2417.86 35.46 26.01
xLSTM[0:1] xLSTM[7:1]	Adding Exponential Gating Adding Matrix Memory	√ √	×	427.3 408.4	17.70 13.48

Результаты

Model	#Params M	SlimPajama (15B) ppl↓	
GPT-3	356	14.26	
Llama	407	14.25	
Н3	420	18.23	
Mamba	423	13.70	
Hyena	435	17.59	
RWKV-4	430	15.62	
RWKV-5	456	16.53	
RWKV-6	442	17.40	
RetNet	431	16.23	
HGRN	411	21.83	
GLA	412	19.56	
HGRN2	411	16.77	
xLSTM[1:0]	409	13.43	
xLSTM[7:1]	408	13.48	

