Unit 14: Ratio and Proportion

Overview

Theorem 14.1.1

A line parallel to one side of a triangle and intersecting the other two sides divides them proportionally.

Given:

In \triangle ABC, the line ℓ is intersecting the sides AC and AB at points E and D respectively such that ED||CB

To Prove

 $\overline{MAD}:\overline{DB}=\overline{MAE}:\overline{MEC}$

Construction:

Join B to E and C to D .From D draw DM⊥AC and from E draw $\overline{EL} \perp \overline{AB}$

Proof

Statements

In triangles BED and AED, EL is the common perpendicular

∴ Area of ΔBED =
$$\frac{1}{2} \times m\overline{BD} \times m\overline{EL}$$
.....(i) Area of a $\Delta = \frac{1}{2}$ (base)(height)

and Area of
$$\triangle AED = \frac{1}{2} \times m\overline{AD} \times m\overline{EL}$$
.....(ii)

Thus Area of
$$\frac{\Delta BED}{\Delta AED} = \frac{m\overline{DB}}{m\overline{AD}}$$
.....(iii)

Similarly

$$\frac{\text{Area of }\Delta\text{CDE}}{\text{Area of }\Delta\text{ADE}} = \frac{m\overline{\text{EC}}}{m\overline{\text{AE}}}.....(iv)$$

But $\triangle BED \cong \triangle CDE$

.. From (iii) and (iv) We have
$$\frac{m\overline{DB}}{m\overline{AD}} = \frac{m\overline{EC}}{m\overline{AE}} \text{ or }$$

$$\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$$
Hence $m\overline{AD} : m\overline{DB} = m\overline{AE} : m\overline{EC}$

Reasons

Area of a
$$\Delta = \frac{1}{2}$$
 (base)(height)

Dividing (i) by (ii)

(Areas of triangles with common base and same altitudes are equal. Given that ED||CB, so altitudes are equal).

Taking reciprocal of both sides.

Theorem: 14.1.2 Converse of Theorem 14.1.1

If a line segment intersects the two sides of a triangle in the same ratio, then it is parallel to the third side.

Given

In $\triangle ABC$, \overline{ED} intersect \overline{AB} and \overline{AC} such that $m\overline{AD}: \overline{DB} = m\overline{AE}: m\overline{EC}$

To Prove

 $\overline{ED} \parallel \overline{CB}$

Construction

If $\overline{ED}/\!\!/\overline{CB}$ then draw $\overline{BF}||\overline{DE}$ to meet \overline{AC}

Produced at F

Proof

Proof	
Statements	Reasons
In $\triangle ABF$	
$\overline{DE} \parallel \overline{BF}$	Construction
$\therefore \frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EF}}(i)$	(A line parallel to one side of a triangle divides the other two sides proportionally Theorem 14.1.1)
But $\frac{m\overline{AD}}{m\overline{DB}} = \frac{m\overline{AE}}{m\overline{EC}}$ (ii)	Given
$\therefore \frac{m\overline{AE}}{m\overline{EF}} = \frac{m\overline{AE}}{m\overline{EC}}$	From (i) and (ii)
or $mEF = mEC$,	
This is possible only if point F is coincident with C.	(Property of real numbers)
:. Our supposition is wrong	
Hence $\overline{ED} \parallel \overline{CB}$	

Last Updated: September 2020

Report any mistake at freeilm786@gmail.com

[WEBSITE: WWW.FREEILM.COM] [PAGE: 2 OF 2]