Analiza działalności firmy Space-U

Bazy Danych

AUTHORS Weronika Jaszkiewicz Dominik Hołoś Weronika Pyrtak Katarzyna Rudzińska

Wstęp o firmie

Firma Space-U jest firmą turystyczną organizującą wyprawy kosmiczne, oferującą doświadczenie podróży między galaktycznych. Firma zatrudnia 62 pracowników na stanowiskach Technician, Pilot, Commander, Mission Specialist, Navigator i do tej pory obsłużyła 1000 klientów. Do dyspozycji firmy jest 20 rakiet. Firma oferuje 45 typów wypraw. Firma operuje w 5 galaktykach, w tym w 15 systemach planetarnych

Zawartość raportu

Celem raportu było przeanalizowanie działalności firmy Space-U pod kątem rentowności wypraw, struktury kosztów, lojalności klientów, sezonowości oraz efektywności operacyjnej w różnych galaktykach i systemach planetarnych. Zadano następujące pytania analityczne:

- 1. Jakie wyprawy są najbardziej popularne i opłacalne?
- 2. Czy firma rośnie, czy traci klientów?
- 3. Jakie czynniki wpływają na powracalność klientów?
- 4. Czy wyprawy round-trip są bardziej popularne w określonych miejscach?
- 5. Czy pojemność rakiet wpływa na punktualność?
- 6. Jak wynagrodzenia pracowników wiążą się z wyprawami?
- 7. Które galaktyki i układy są najbardziej dochodowe?
- 8. Czy odległość od Ziemi wpływa na organizację wypraw?
- 9. Jakie są trendy sezonowe w działalności firmy?

Najpopularniejsze wyprawy - koszty, przychody i opłacalność

Tabela 1. Zestawienie popularności, kosztów i zysków według rodzaju podróży

	Mission to Caelus	101				
34		121	12617124.57	369821730	357204605	0.97
	Mission to Heliora	120	927744.50	26976635	26048891	0.97
10	Mission to Mnestra	119	1099196.78	29636356	28537160	0.96
36	Mission to Sibylla	115	823353.13	21398430	20575077	0.96
6	Mission to Euryale	113	739066.13	17123445	16384378	0.96
3	Mission to Notos	100	6180179.15	192022529	185842350	0.97
12	Mission to Meliora	93	477678.83	12356239	11878561	0.96
27	Mission to Oenone	92	729016.13	20636205	19907189	0.96
24	Mission to Eileithyia	92	343095.62	8477263	8134167	0.96
32	Mission to Thalia	90	444236.90	12044882	11600645	0.96
37	Mission to Sterope	90	706868.76	23640847	22933978	0.97
33	Mission to Laelapsa	88	483237.82	12300358	11817121	0.96
23	Mission to Alecto	77	1034831.05	25253351	24218520	0.96
1	Mission to Rhea	76	547333.42	16312973	15765639	0.97
7	Mission to Lemuria	71	4283618.52	129000366	124716747	0.97
30	Mission to Neoma	70	892507.13	24049701	23157194	0.96
40	Mission to Rhenara	68	1103736.60	30273520	29169783	0.96
35	Mission to Iris	66	551709.44	13835264	13283555	0.96
45	Mission to Idonea	63	985047.54	24250040	23264992	0.96
9	Mission to Astraeus	53	2007537.30	64298254	62290716	0.97
16	Mission to Mesembria	33	2541737.43	104203169	101661432	0.98
5	Mission to Thyone	32	1206012.49	22326374	21120362	0.95
43	Mission to Malina	32	370028.00	14101920	13731892	0.97
17	Mission to Harmonia	26	3103370.40	100357738	97254367	0.97
2	Mission to Cerestra	26	143286.21	4080902	3937616	0.96
26	Mission to Hemera	25	132289.45	3732796	3600506	0.96
20	Mission to Leto	24	300788.35	8492050	8191262	0.96
21	Mission to Metis	23	333248.93	9211757	8878508	0.96
4	Mission to Eucharis	22	84710.69	1974244	1889533	0.96
31	Mission to Vacuna	21	352564.65	8791772	8439207	0.96

Tabela 1. przedstawia zestawienie danych dotyczących różnych typów podróży kosmicznych. Każdy wiersz odnosi się do konkretnego rodzaju podróży (*trip_name*). Kolumna *bookings_count* zawiera liczbę dokonanych rezerwacji, *total_costs* to całkowite koszty realizacji danego typu podróży, natomiast *total_revenue* przedstawia łączny przychód. Na tej podstawie wyliczono *profit* (czyli zysk netto: przychód minus koszty) oraz *profit_margin* – marżę zysku, wyrażoną jako udział zysku w przychodzie.

Liczba rezerwacji na rodzaje wypraw

Analiza danych rezerwacyjnych wskazuje, że największą popularnością wśród klientów cieszyły się wyprawy typu Mission to Caelus, Mission to Heliora, Mission to Mnestra, Mission to Sibylla, Mission to Euryale. Każda z nich miała od 113 do 121 rezerwacji, co potwierdza ich wysokie zainteresowanie na tle pozostałych ofert.

Zysk brutto dla rodzajów wypraw

Pod względem rentowności na czoło wysuwają się wyprawy:

- Mission to Caelus : 357.20 mln USD zysku brutto

- Mission to Heliora: 26.05 mln USD zysku brutto

- Mission to Mnestra : 28.54 mln USD zysku brutto

- Mission to Sibylla: 20.58 mln USD zysku brutto

- Mission to Euryale: 16.38 mln USD zysku brutto

To pokazuje, że nie tylko popularność wpływa na opłacalność – ważna jest również struktura kosztów i cena jednostkowa. Co ciekawe, wiele wypraw z mniejszą liczbą rezerwacji (np.13 z 30) okazało się bardziej zyskownych niż te najbardziej uczęszczane.

Z drugiej strony, odnotowano kilka wypraw generujących straty – np. – ich koszty przewyższyły uzyskane przychody, a wskaźnik powrotu klientów po tych wyjazdach był zerowy. Wskazuje to jednoznacznie na potrzebę rewizji tych pozycji w ofercie.

Opłacalność wypraw zależy nie tylko od liczby klientów, ale przede wszystkim od właściwego zarządzania kosztami i odpowiedniego ustalenia cen. Warto skupić się na dalszym rozwijaniu wypraw o wysokiej rentowności i ograniczyć te, które przynoszą straty.

Dynamika zmian liczby klientów w czasie

Tabela 2. Suma przychodów, kosztów i liczba wypraw dla każdego typu wycieczki

Mission to Caelus						
	8	1479286918	297791064	484	1181495854	2441107.14
Mission to Heliora	34	107906540	23385308	480	84521232	176085.90
Mission to Mnestra	10	118545425	25721445	476	92823981	195008.36
Mission to Sibylla	36	85593722	19020064	460	66573657	144725.34
Mission to Euryale	6	68493778	15591836	452	52901942	117039.70
Mission to Notos	3	768090116	155163943	400	612926173	1532315.43
Mission to Meliora	12	49424957	11276952	372	38148006	102548.40
Mission to Eileithyia	24	33909050	8304690	368	25604360	69577.06
Mission to Oenone	27	82544819	17784964	368	64759855	175977.87
Mission to Sterope	37	94563387	20172998	360	74390390	206639.97
Mission to Thalia	32	48179527	10884146	360	37295381	103598.28
Mission to Laelapsa	33	49201434	11291007	352	37910427	107700.08
Mission to Alecto	23	101013402	21290001	308	79723402	258842.21
Mission to Rhea	1	65251891	14147819	304	51104073	168105.50
Mission to Lemuria	7	516001462	104327892	284	411673570	1449554.83
Mission to Neoma	30	96198805	20232801	280	75966005	271307.16
Mission to Rhenara	40	121094080	25203296	272	95890784	352539.65
Mission to Iris	35	55341056	12012131	264	43328926	164124.72
Mission to Idonea	45	97000158	20307592	252	76692567	304335.58
Mission to Astraeus	9	257193014	52265083	212	204927931	966641.19
Mission to Mesembria	16	416812676	83877335	132	332935341	2522237.43
Mission to Malina	43	56407680	11840896	128	44566784	348178.00
Mission to Thyone	5	89305496	18391019	128	70914477	554019.35
Mission to Cerestra	2	16323608	3725441	104	12598167	121136.22
Mission to Harmonia	17	401430951	80687630	104	320743321	3084070.39
Mission to Hemera	26	14931182	3307236	100	11623946	116239.46
Mission to Leto	20	33968201	7218920	96	26749281	278638.34
Mission to Metis	21	36847027	7664725	92	29182301	317198.93
Mission to Eucharis	4	7896977	1863635	88	6033341	68560.70
Mission to Vacuna	31	35167088	7403858	84	27763230	330514.65

Tabela 2. przedstawia zestawienie finansowe dla różnych typów wycieczek kosmicznych, oznaczonych identyfikatorem *trip_type_id*. Kolumny *total_income* oraz *total_cost* przedstawiają łączne wartości przychodów i kosztów wygenerowanych przez każdy typ wycieczki. W kolumnie *count* znajduje się liczba zrealizowanych wypraw danego rodzaju. Na tej podstawie wyliczono wartość *profit* (czyli całkowity zysk) oraz *avg_profit_per_trip* — średni zysk przypadający na jedną wyprawę.

Zestawienie pokazuje łączny przychód, koszty i zyski brutto dla poszczególnych typów wypraw. Najwięcej wypraw przeprowadzono na planetę Caelus (484 wypraw), a najmniej w przypadku planety Vacuna (84 wypraw).

Wykres pokazuje średni zysk brutto przypadający na pojedynczą wyprawę dla każdego typu misji. Na jego podstawie widać, że wyprawy typu Mission to Harmonia, Mission to Mesembria, Mission to Caelus, Mission to Notos, Mission to Lemuria są pięcioma najbardziej dochodowymi. Z kolei wyprawy, które generują najniższy średni zysk (lub nawet straty), to Mission to Meliora, Mission to Eileithyia, Mission to Eucharis. Wskazuje to, że warto dokładnie przeanalizować ich opłacalność i ewentualnie rozważyć modyfikację oferty.

Analiza miesięczna pokazuje, jak zmieniała się liczba obsłużonych klientów na przestrzeni czasu. Największy ruch zanotowano w wrzesień 2023, obsługując wtedy 184 unikalnych klientów. Z kolei najmniej klientów firma miała w lipiec 2023, tylko 19 osób.

Można zauważyć, że najchętniej wybieranym sezonem na wyprawy jest okres zimowo-wiosenny. Zmienność w liczbie klientów sugeruje potrzebę elastycznego zarządzania zasobami i wdrożenia sezonowych strategii cenowych.

Powracalność klientów

Na wykresie widać, które wycieczki budują lojalność klientów. Najlepiej wypadły: Mission to Vacuna, Mission to Sibylla, Mission to Euryale, Mission to Iris, Mission to Mnestra, Mission to Lemuria, Mission to Alecto, Mission to Rhenara, powyżej 0.64. Wysoka lojalność może wskazywać na unikalne doświadczenia, wysoki poziom satysfakcji lub atrakcyjną cenę. Warto zwrócić uwagę na wyprawy z niskim wskaźnikiem powrotu – poniżej 0.3 – takie jak Mission to Oenone, które wymagają dalszej analizy i ewentualnego dostosowania oferty.

Lojalność klientów powinna być kluczowym wskaźnikiem sukcesu wypraw – warto ją monitorować i budować programy retencji oparte na danych.

Porównanie wycieczek w jedną stronę z wycieczkami "tam i z powrotem"

Współczynnik round-trip ratio określa stosunek liczby podróży tam i z powrotem do liczby wypraw w jedną stronę. Jest liczony jako:

$$round_trip_ratio = \frac{round_trip}{one_way + 1}$$

Użycie +1 w mianowniku zapobiega dzieleniu przez zero w przypadku braku podróży one-way.

Stosunek round-trip do one-way dla planet

Największy udział round-tripów odnotowano dla planety Euryale, gdzie współczynnik wyniósł 30. Świadczy to o ich atrakcyjności lub logistyce sprzyjającej podróżom powrotnym.

Cechy specjalne mają wpływ na preferencje dotyczące typu wypraw. Najwyższą medianę współczynnika round-trip zaobserwowano dla cechy lava_rivers. Sugeruje to, że planety zawierające tą cechę są atrakcyjne do wizyt powrotnych – być może ze względu na warunki sprzyjające krótkim, rekreacyjnym wyprawom.

Widoczna jest ujemna korelacja (-0.14) między długością orbity a skłonnością do wypraw typu roundtrip,co oznacza, że dalsze planety rzadziej odwiedzane są z powrotem.

Analiza wykazała, że planety z najwyższym współczynnikiem round-trip to m.in. Euryale, z maksymalnym wskaźnikiem 30. W przestrzeni najwięcej planet to te z 21 dominującymi round-trip, 7 dominującymi one-way i 2 zrównoważonymi wyprawami. Oznacza to, że różnorodność preferencji podróżnych jest wyraźnie widoczna i może wskazywać na zróżnicowane potrzeby oraz charakterystyki poszczególnych planet.

Wnioski te mogą być wykorzystane przy planowaniu nowych kierunków i tworzeniu elastycznych modeli podróży (np. mix one-way + return).

Wpływ pojemności rakiety na czynniki podróży

Tabela 3. Dane dotyczące rakiet względem ich pojemności

delayed_flights	total_flights	total_clients	capacity
0	6	148	12
0	16	380	11
0	8	200	10
2	11	233	9
0	19	481	8
0	9	223	7
0	3	71	5
0	14	305	4

Tabela 3. prezentuje statystyki dotyczące rakiet w zależności od ich pojemności (*capacity*). W kolumnie *total_clients* podano łączną liczbę obsłużonych pasażerów, *total_flights* wskazuje liczbę zrealizowanych lotów, natomiast *delayed_flights* zawiera liczbę lotów, które wystąpiły z opóźnieniem. Dane pozwalają na ocenę efektywności i niezawodności rakiet o różnej pojemności.

Największą liczbę klientów przewieziono rakietami o pojemności 8, łączna liczba obsłużonych pasażerów wyniosła aż 481. Jeśli chodzi o liczbę odbytych lotów, przodowały rakiety o pojemności 8, wykonując 19 wypraw.

Pod względem średniej liczby podróży przypadającej na jednego klienta, najwyższy wynik zanotowano dla pojemności 8. W tym przypadku, przeciętny klient korzystał z usług rakiety średnio 1.19 razy. Może to świadczyć o preferencjach bardziej zaangażowanych lub lojalnych klientów.

Z kolei w zestawieniu częstości opóźnień widać wyraźne różnice. Najniższy odsetek opóźnionych lotów dotyczył rakiet o pojemności 12, 11, 10, 8, 7, 5, 4, wynosząc 0%. Największy odsetek opóźnień przypadł na rakiety o pojemności 9, gdzie opóźnienia osiągnęły aż 18%.

Liczba klientów w zależności od pojemności pokazuje wyraźną tendencję: rakiety o większej pojemności obsługują więcej pasażerów. Największą popularnością cieszyły się maszyny o pojemności 8, które przewiozły łącznie 481 klientów. Mniejsze rakiety naturalnie miały mniejsze obłożenie, co jednak może być również efektem ich rzadszego wykorzystania w harmonogramie lotów.

Analiza wynagrodzenia pracowników względem uczęszczanych wypraw

Analiza liczby wystąpień ról pokazuje, które funkcje są kluczowe i najczęściej powtarzane. Wykres słupkowy pomaga zidentyfikować, że dominujące role to Navigator, Pilot. Oznacza to, że są to funkcje kluczowe operacyjnie, silnie związane z liczbą realizowanych wypraw.

Top 10 pracowników wg liczby wypraw i ich wynagrodzenia

Analizując wykres pokazujący zarobki pracowników, w top 3 najlepiej zarabiającymi pracownikami są Michael Jones, Rebecca Jennings, Kimberly Mendez, którzy zarabiają między 12,500 a 13,300 USD. Zajmują oni stanowiska Commander.

Porównując wykresy dotyczące liczby wypraw per rola oraz poziomu zarobków, widać dodatnia korelacja (0.09) między zaangażowaniem w wyprawy a poziomem wynagrodzenia. Oznacza to, że funkcje częściej wykorzystywane w misjach są także lepiej opłacane. Wskazuje to na dobrze dostosowaną strukturę płac do potrzeb operacyjnych.

Wpływ lokalizacji planet na zyskowność wypraw oraz związek między odległością od Ziemi a ich częstotliwością

Tabela 4. Top 10 układów planetarnych wg zysku netto

galaxy_name	planetary_system	planetary_system_id	num_trips	total_cost	total_revenue	avg_planet_distanc
Polaris Nexus	Neptunus	3	1536	804,237,911	3,990,576,761	948.379
Polaris Nexus	Trion	2	4272	764,041,734	3,735,145,467	919.881
Omega Verge	Phantos	7	800	351,626,203	1,741,596,609	1007.021
Kronis Ring	Ilyssar	6	396	251,632,006	1,250,438,029	497.327
Polaris Nexus	Axioma	4	2064	233,959,583	1,127,215,319	995.446
Virelia Cluster	Liora	10	2548	193,456,609	919,561,254	567.033
Zerion Reach	Typhonis	12	3612	163,252,509	746,523,955	744.099
Omega Verge	Aether	8	2000	144,773,630	689,302,145	866.589
Zerion Reach	Liora	13	2520	141,210,985	661,943,712	567.033

galaxy_name	planetary_system	planetary_system_id	d num_	trips	total_cost	total_revenue	avg_planet_distanc
Zerion Reach	Sagitta	1.	5	1520	128,593,950	613,631,352	725.801

Tabela 4. pokazuje 10 układów planetarnych generujących największy zysk netto, co pozwala wskazać najbardziej dochodowe kierunki wypraw. Kolumny *galaxy_name* oraz *planetary_system* identyfikują lokalizację danej trasy. *num_trips* to liczba odbytych wypraw, *total_cost* i *total_revenue* przedstawiają odpowiednio całkowite koszty i przychody związane z realizacją tych tras. *avg_planet_distance* wskazuje średnią odległość do planet w danym układzie. Na podstawie przychodów i kosztów obliczono również *net_profit* (zysk netto) oraz *profit_per_trip*, czyli średni zysk przypadający na jedną wyprawę.

Wykres "Zysk netto według galaktyk" ilustruje znaczącą koncentrację zysków w wybranych galaktykach. Galaktyka z najwyższym łącznym zyskiem netto to Polaris Nexus, generująca łącznie 7,178,102,797 USD. Najmniej zyskowną galaktyką jest Kronis Ring z łącznym zyskiem netto 1,189,546,052 USD.

Zysk netto wg układów planetarnych

W top 5 galaktykach widać wyraźne różnice w zyskowności między układami planetarnymi. Można zauważyć, że w niektórych galaktykach pojedyncze układy dominują pod względem generowanego zysku, co sugeruje koncentrację atrakcyjnych celów wypraw.

Galaktyka o najwyższym średnim zysku na wyprawę to Kronis Ring, ze średnim zyskiem około 1,312,393 USD na wyprawę. To pokazuje, że efektywność pojedynczych wypraw różni się znacznie między galaktykami.

Analiza wykazuje, że korelacja między odległością planet a liczbą wypraw wynosi 0.186, co sugeruje brak istotnej zależności. Oznacza to, że im dalej planeta od Ziemi, tym mniej wypraw jest do niej organizowanych.

Trendy sezonowe w liczbie wypraw, przychodach oraz ich statusach

Największa liczba wypraw została zorganizowana w miesiącu styczeń, osiągając 12 wypraw. Z kolei najmniejszą liczbę wypraw odnotowano w miesiącu grudzień, z liczbą 1. Różnice te sugerują istnienie wyraźnej sezonowości w liczbie organizowanych wypraw.

Najwyższy miesięczny przychód odnotowano w miesiącu czerwiec, osiągając wartość 319 mln USD. Najniższy przychód przypadł na miesiąc październik, wynosząc 9 mln USD. To również może wskazywać na sezonowość przychodów.

Najwięcej zakończonych wypraw (Completed) odnotowano w miesiącu kwiecień, z liczbą 196 wypraw. Największa liczba opóźnionych wypraw (Delayed) wystąpiła w miesiącu marzec, osiągając 21 przypadków. W przypadku anulowanych wypraw (Cancelled) szczyt przypadł na miesiąc styczeń, luty, marzec, kwiecień, maj, czerwiec, lipiec, sierpień, wrzesień, październik, listopad, grudzień, gdzie naliczono 0 przypadków.

Największą liczbę wypraw zorganizowano w kwartale 1, osiągając wynik 31 wypraw. Z kolei najmniejszą liczbę wypraw zrealizowano w kwartale 4, zaledwie 10 wypraw.

W tych samych okresach zauważalna jest również wyraźna zmienność przychodów. Najwyższy przychód firma osiągnęła w kwartale 2, generując 574,228,592 USD. Natomiast najniższy przychód zanotowano w kwartale 4, z wartością 122,275,931 USD.

Najwięcej zakończonych wypraw przypadło na kwartał 2, z liczbą 424. Największa liczba opóźnionych wypraw wystąpiła w kwartale 1, natomiast najwięcej anulowanych wypraw miało miejsce w kwartale - brak anulowanych wypraw.

Takie dane pozwalają lepiej rozumieć problemy operacyjne oraz cykliczność niepowodzeń w realizacji wypraw.

Ciekawostką jest, że nie odnotowano żadnych anulowanych wypraw w żadnym miesiącu, co świadczy o bardzo wysokim poziomie operacyjnej niezawodności.

Podsumowanie

W przeprowadzonej analizie wykorzystano relacyjną bazę danych firmy Space-U w celu pozyskania informacji o strukturze organizacyjnej, klientach oraz zasobach technicznych. Z pomocą języka SQL oraz pakietów R wykonano szereg zapytań i transformacji, umożliwiających ekstrakcję, agregację i wizualizację danych.

Efektem prac jest zestaw wniosków opartych na rzeczywistych danych, takich jak liczebność i zróżnicowanie zatrudnienia, aktywność klientów oraz stan techniczny i wykorzystanie rakiet. Analiza ujawnia m.in. potencjalne obszary do optymalizacji procesów oraz kierunki rozwoju operacyjnego.

Z punktu widzenia projektowania baz danych, raport potwierdza znaczenie poprawnej struktury schematu, spójnych typów danych i kluczy obcych dla zapewnienia integralności oraz wydajności zapytań. Proces analityczny pokazał również, że odpowiednia integracja narzędzi programistycznych (R + SQL) umożliwia szybkie i skalowalne uzyskiwanie informacji biznesowych na podstawie dużych wolumenów danych.