High-Confidence Ubiquitous Computing Systems

David S. Rosenblum
School of Computing
National University of Singapore

Some Facts

Google Android Market

- The average price of the top 50 paid applications is US\$3.79 [modymi.com]
- 79.3% of paid applications have been downloaded less than 100 times [Distimo]
- Only 0.1% of paid applications have been downloaded 50,000 times or more [Distimo]

Some Facts

Google Android Market

- The average price of the top 50 paid applications is US\$3.79 [modymi.com]
- 79.3% of paid applications have been downloaded less than 100 times [Distimo]
- Only 0.1% of paid applications have been downloaded 50,000 times or more [Distimo]

There are many simplistic, low-quality apps!

Application

Environment

Application

Physical Context

Environment

Application

Adaptation

Manager

Context

Manager

Physical Context

Environment

Middleware

Application Adaptation Manager Context Manager Environment

Sensed Context

Physical Context

Application

Inferred Context

Sensed Context

Physical Context

Presumed Context

Inferred Context

Sensed Context

Physical Context

Presumed Context

Inferred Context

Sensed Context

Physical Context

3rd-Party Libraries

Presumed Context

Inferred Context

Sensed Context

Physical Context

Rule Engine

3rd-Party Libraries

Application

Adaptation

Manager

Context

Manager

Rule Engine

Environment

Middleware

Rules are strongly interdependent

and have multiple priorities

making reasoning difficult even for a small number of rules **Application**

Adaptation

Manager

Context Manager Rule Engine

Environment

Middleware

Application

Adaptation

Manager

Context Manager Middleware

3rd-Party Libraries

Environment

Context is sensed periodically

from multiple sources

at varying rates

3rd-Party Libraries

Approach

- I. Derive Adaptation Finite-State Machine (A-FSM) from rule logic
- 2. Explore state space of A-FSM to discover potential faults
 - **✓** Enumerative algorithms
 - **✓** Symbolic algorithms
 - **✓** Planner-based counterexample generation
- 3. (Confirm existence of discovered faults)

PhoneAdapter

PhoneAdapter

loud,

divert to

hands-free

loud, vibrate

PhoneAdapter

PhoneAdapter A-FSM

PhoneAdapter A-FSM

User's phone discovers office PC at home (or vice versa)

Nondeterminism!

User leaves home

User starts driving before Bluetooth detects hands-free system

Activation hazard!

Activation hazard!

Faults in CAAAs

- Behavioral Faults
 - Nondeterminism
 - Dead rule
 - Dead state

- Unreachable state
- Activation race
- Activation cycle

Faults in CAAAs

- Behavioral Faults
 - Nondeterminism
 - Dead rule
 - Dead state
- Hazards
 - Hold hazard
 - Activation hazard

- Unreachable state
- Activation race
- Activation cycle

Priority inversion hazard

Why Not Use Model Checkers?

- Difficult to encode fault patterns as temporal logic formulae
 - * Bisimilar models may fail differently
- Difficult to encode rule logic as models in common model checkers
 - * Predicates and actions label the transitions
- Difficult to interpret counterexamples as faults in adaptation behavior

Basic Operation

For each state

PhoneAdapter Results

Behavioral Faults: Enumerative, Symbolic

State	Nondeterministic	Dead	Adaptation		Unreachable
	Adaptations	Predicates	Races	Cycles	States
General	37	1	45	13	0
Outdoor	3	0	135	23	0
Jogging	0	0	97	19	0
Driving	0	0	36	13	0
DrivingFast	0	0	58	19	0
Home	0	0	76	19	0
Office	0	0	29	1	0
Meeting	0	0	32	1	0
Sync	0	0	27	5	1

PhoneAdapter Results

Hazards: Enumerative

State	Context Hazards				
	Paths	Hold	Activ.	Prior.	
General	14085	0	11	3182	
Outdoor	161	0	0	52	
Jogging	2	0	0	0	
Driving	16	2	2	4	
DrivingFast	2	0	0	0	
Home	104	8	0	13	
Office	82634	1828	368	2164	
Meeting	0	0	0	0	
Sync	2	2	0	0	

Conclusion

Comparison of Approaches

Enumerative	Symbolic	Hybrid	Planner
Local Search	Local Search	Local Search	Global Search
Less Precise	Less Precise	Less Precise	More Precise
Concrete Counterexamples	Symbolic Counterexamples	Symbolic Counterexamples	Concrete Counterexamples
Handles Smaller State Spaces	Handles Big State Spaces	Handles Bigger State Spaces	Sequential Search
Fast	Faster	Fastest	Slowest

Future Work

Verification

- Continue the work on hazards and planners
- Quantitative reasoning about faults
 - Battery level, movement timings, etc.
- Online analysis of rules and faults

Future Work

Design

- Alternatives to rule-based adaptation!
 - Machine learning approaches to context classification and adaptation selection

Future Work

Design

- Alternatives to rule-based adaptation!
 - Machine learning approaches to context classification and adaptation selection

Felicitous Computing Institute

Thank You!

REFERENCES

- Z. Wang, S. Elbaum and D.S. Rosenblum, *Automated Generation of Context-Aware Tests*, **Proc. 2007 Int'l Conf. on Software Engineering** (ICSE 2007), Minneapolis, MN, USA, May 2007, pp. 406–415.
- M. Sama, D.S. Rosenblum, Z. Wang and S. Elbaum, Multi-Layer Faults in the Architectures of Mobile, Context-Aware Adaptive Applications: A Position Paper, Short Paper, Proc. ICSE 2008 Workshop on Software Architectures and Mobility (SAM 2008), Leipzig, Germany, May 2008, pp. 47–49.
- M. Sama, F. Raimondi, D. Rosenblum and W. Emmerich, Algorithms for Efficient Symbolic Detection of Faults in Context-Aware Applications, Proc. 1st Int'l Workshop on Automated Engineering of Autonomous and Run-Time Evolving Systems (ARAMIS 2008), L'Aquila, Italy, Sep. 2008, pp. 1–8.
- M. Sama, D.S. Rosenblum, Z. Wang and S. Elbaum, *Model-Based Fault Detection in Context-Aware Adaptive Applications*, **Proc. 16th ACM SIGSOFT Int'l Symposium on the Foundations of Software Engineering** (FSE 2008), Atlanta, GA, USA, Nov. 2008, pp. 261–271.
- J. Cubo, F. Raimondi, M. Sama and D. Rosenblum, A Model to Design and Verify Context-Aware Adaptive Service Composition, Proc. IEEE Int'l Conf. on Services Computing (SCC 2009), Bangalore, India, Sep. 2009, pp. 184–191.
- M. Sama, D.S. Rosenblum, Z. Wang and S. Elbaum, *Multi-Layer Faults in the Architectures of Mobile, Context-Aware Adaptive Applications*, **Journal of Systems and Software**, invited paper for Special Issue on Software Architecture and Mobility, Vol. 83, Issue 6, Jun. 2010, pp. 906–914.
- M. Sama, S. Elbaum, F. Raimondi and D.S. Rosenblum, *Context-Aware Adaptive Applications: Fault Patterns and Their Automated Identification*, **IEEE Transactions on Software Engineering**, invited paper for Special Issue on the Best Papers of FSE 2008, Vol. 36, No. 5, Sep./Oct. 2010, pp. 644–661.