Agentes Inteligentes

Franz Mayr mayr@ort.edu.uy

Universidad ORT Uruguay 17 de abril de 2023

6. Métodos de Diferencias Temporales

```
Inicializar:
     V(s) \in \mathbb{R} arbitrariamente, \forall s \in \mathcal{S}
     Retornos(s) \leftarrow lista vacía, \forall s \in \mathcal{S}
Repetir:
     Generar un episodio según \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Para cada paso del episodio, t = T - 1, T - 2, \dots, 0:
          G \leftarrow \gamma G + R_{t\perp 1}
          Si S_t no aparece en S_0, S_1, \ldots, S_{t-1}:
                  Agregar G a Retornos(S_t)
                  V(S_t) \leftarrow \operatorname{promedio}(Retornos(S_t))
V(s) converge a v_{\pi}(s) (para los estados visitados).
```

Inicializar:

$$V(s) \in \mathbb{R}$$
 arbitrariamente, $\forall s \in \mathcal{S}$
 $Retornos(s) \leftarrow lista vacía, \forall s \in \mathcal{S}$

Repetir:

Generar un episodio según π : $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$

Para cada paso del episodio, $t = T - 1, T - 2, \dots, 0$:

$$G \leftarrow \gamma \, G + R_{t+1}$$

Si S_t no aparece en $S_0, S_1, \ldots, S_{t-1}$:

Agregar G a $Retornos(S_t)$

$$V(S_t) \leftarrow \operatorname{promedio}(Retornos(S_t))$$

V(s) converge a $v_{\pi}(s)$ (para los estados visitados).

También vimos estimación MC de $q_{\pi}(s, a)$, control MC, con exploración inicial y con políticas ε -greedy.

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la i-ésima iteración.

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \dots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la i-ésima iteración.

Al terminar el episodio k + 1, el valor estimado de s es:

$$V' = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)} + G^{(k+1)}}{k+1}$$

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \dots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la i-ésima iteración.

Al terminar el episodio k + 1, el valor estimado de s es:

$$V' = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)} + G^{(k+1)}}{k+1}$$
$$= \frac{V \cdot k + G^{(k+1)}}{k+1}$$

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la *i*-ésima iteración.

Al terminar el episodio k + 1, el valor estimado de s es:

$$V' = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)} + G^{(k+1)}}{k+1}$$
$$= \frac{V \cdot k + G^{(k+1)}}{k+1}$$
$$= \frac{V \cdot k}{k+1} + \frac{G^{(k+1)}}{k+1} + \frac{V}{k+1} - \frac{V}{k+1}$$

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la i-ésima iteración.

Al terminar el episodio k + 1, el valor estimado de s es:

$$\begin{split} V' &= \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)} + G^{(k+1)}}{k+1} \\ &= \frac{V \cdot k + G^{(k+1)}}{k+1} \\ &= \frac{V \cdot k}{k+1} + \frac{G^{(k+1)}}{k+1} + \frac{V}{k+1} - \frac{V}{k+1} \\ &= V \cdot \frac{k+1}{k+1} + \frac{G^{(k+1)}}{k+1} - \frac{V}{k+1} \end{split}$$

Después de k episodios que pasaron por un estado $s \in \mathcal{S}$, el valor estimado de s es:

$$V = \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)}}{k}$$

donde $G^{(i)}$ es el retorno medido desde v en la i-ésima iteración.

Al terminar el episodio k + 1, el valor estimado de s es:

$$\begin{split} V' &= \frac{G^{(1)} + G^{(2)} + G^{(3)} + \ldots + G^{(k)} + G^{(k+1)}}{k+1} \\ &= \frac{V \cdot k + G^{(k+1)}}{k+1} \\ &= \frac{V \cdot k}{k+1} + \frac{G^{(k+1)}}{k+1} + \frac{V}{k+1} - \frac{V}{k+1} \\ &= V \cdot \frac{k+1}{k+1} + \frac{G^{(k+1)}}{k+1} - \frac{V}{k+1} \\ &= V + \frac{1}{k+1} \cdot \left(G^{(k+1)} - V\right) \end{split}$$

Recordemos la asignación que vimos hace un tiempo:

$$NuevaEst \leftarrow ViejaEst + TasaAct \left[\begin{array}{ccc} Objetivo - ViejaEst \end{array} \right]$$

Recordemos la asignación que vimos hace un tiempo:

$$NuevaEst \leftarrow ViejaEst + TasaAct \left[\begin{array}{c} Objetivo - ViejaEst \end{array} \right]$$

Los métodos MC actualizan su estimación V de v_{π} al final de cada episodio, una vez que conocen el retorno del mismo:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

Recordemos la asignación que vimos hace un tiempo:

$$NuevaEst \leftarrow ViejaEst + TasaAct \left[\begin{array}{ccc} Objetivo - ViejaEst \end{array} \right]$$

Los métodos MC actualizan su estimación V de v_{π} al final de cada episodio, una vez que conocen el retorno del mismo:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

En contraste, los métodos de diferencias temporales (TD) no esperan hasta el final del episodio, sino que actualizan V en cada paso del episodio:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Recordemos la asignación que vimos hace un tiempo:

$$NuevaEst \leftarrow ViejaEst + TasaAct \left[Objetivo - ViejaEst \right]$$

Los métodos MC actualizan su estimación V de v_{π} al final de cada episodio, una vez que conocen el retorno del mismo:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[G_t - V(S_t) \right]$$

En contraste, los métodos de diferencias temporales (TD) no esperan hasta el final del episodio, sino que actualizan V en cada paso del episodio:

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Al término $G_t - V(S_t)$ se lo denomina error MC, y al término $R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$, error TD.

Inicializar V(s) arbitrariamente $\forall s \in \mathcal{S}$

Inicializar V(s) arbitrariamente $\forall s \in \mathcal{S}$

Repetir:

Inicializar S

Repetir:

 $A \leftarrow$ acción desde S según π Ejecutar la acción A; observar R, S'

 $S \leftarrow S'$ hasta que S sea terminal

Inicializar V(s) arbitrariamente $\forall s \in \mathcal{S}$

Repetir:

Inicializar S

Repetir:

 $A \leftarrow \text{acción desde } S \text{ según } \pi$

Ejecutar la acción A; observar R, S'

$$V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$$

 $S \leftarrow S'$

hasta que S sea terminal

Inicializar V(s) arbitrariamente $\forall s \in \mathcal{S}$

Repetir:

Inicializar S

Repetir:

 $A \leftarrow \text{acción desde } S \text{ según } \pi$

Ejecutar la acción A; observar R, S'

$$V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$$

 $S \leftarrow S'$

hasta que S sea terminal

La tasa de aprendizaje $\alpha \in (0,1]$ es un parámetro del algoritmo.

Observación:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] \tag{1}$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$
 (2)

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$
 (3)

 $^{^1\}mathrm{Sin}$ relación con el método estadístico de muestreo con reemplazo.

Observación:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] \tag{1}$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$
 (2)

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma \, v_{\pi}(S_{t+1}) \mid S_t = s] \tag{3}$$

En la línea (1) vemos el objetivo de MC: G_t .

En la línea (3) vemos el objetivo de TD: $R_{t+1} + \gamma V(S_{t+1})$.

Esto muestra que ambos métodos convergen a la misma estimación de $v_{\pi}(s)$.

¹Sin relación con el método estadístico de muestreo con reemplazo.

Observación:

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s] \tag{1}$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1} \mid S_t = s]$$
 (2)

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \mid S_t = s]$$
 (3)

En la línea (1) vemos el objetivo de MC: G_t .

En la línea (3) vemos el objetivo de TD: $R_{t+1} + \gamma V(S_{t+1})$.

Esto muestra que ambos métodos convergen a la misma estimación de $v_{\pi}(s)$.

La gran diferencia entre ambos es que MC basa su estimación en un valor real de G_t , pero TD la basa en otro valor estimado. La literatura de Aprendizaje Reforzado se refiere a esta característica como bootstrapping.¹

¹Sin relación con el método estadístico de muestreo con reemplazo.

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35
Ruta local, atrás de camión	18:30	10	40

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35
Ruta local, atrás de camión	18:30	10	40
Calle de casa	18:40	3	43

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35
Ruta local, atrás de camión	18:30	10	40
Calle de casa	18:40	3	43
Entrando en casa	18:43	0	43

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35
Ruta local, atrás de camión	18:30	10	40
Calle de casa	18:40	3	43
Entrando en casa	18:43	0	43

		Tiempo restante	Tiempo total
Estado	Hora	predicho	predicho
Saliendo del trabajo	18:00	30	30
En el auto, llueve	18:05	35	40
Saliendo de autopista	18:20	15	35
Ruta local, atrás de camión	18:30	10	40
Calle de casa	18:40	3	43
Entrando en casa	18:43	0	43

MC vs. TD - Ejemplo: Random walk

MC vs. TD - Ejemplo: Random walk

Eje y: valores de los estados, aprendidos por TD(0) después del número indicado de episodios.

Eje y: RMSE de los valores aprendidos respecto de los reales, promediado para los 5 estados.

El algoritmo TD(0) para estimar la función de valor de los pares estado-acción es análogo:

```
Inicializar Q(s,a) arbitrariamente \forall s \in \mathcal{S}, a \in \mathcal{A}(s)
Repetir:
Inicializar S
A \leftarrow acción desde S según \pi
Repetir:
Ejecutar la acción A; observar R, S'
A' \leftarrow acción desde S' según \pi
Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]
```

hasta que S sea terminal

 $S \leftarrow S'$ $A \leftarrow A'$

La tasa de aprendizaje $\alpha \in (0,1]$ es un parámetro del algoritmo.

En MC, la actualización de la estimación de $q_{\pi}(s, a)$ se realiza al final de cada episodio, una vez conocido el objetivo G_t :

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[G_t - Q(S_t, A_t) \right]$$

En MC, la actualización de la estimación de $q_{\pi}(s, a)$ se realiza al final de cada episodio, una vez conocido el objetivo G_t :

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[G_t - Q(S_t, A_t) \right]$$

En TD, esta estimación se actualiza después de tomar cada acción A_t y observar (S_{t+1}, R_{t+1}) (bootstrapping):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

donde A_{t+1} es una acción desde S_{t+1} elegida según una política basada en Q (p.ej., ε -greedy).

En MC, la actualización de la estimación de $q_{\pi}(s, a)$ se realiza al final de cada episodio, una vez conocido el objetivo G_t :

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[G_t - Q(S_t, A_t) \right]$$

En TD, esta estimación se actualiza después de tomar cada acción A_t y observar (S_{t+1}, R_{t+1}) (bootstrapping):

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

donde A_{t+1} es una acción desde S_{t+1} elegida según una política basada en Q (p.ej., ε -greedy).

$$\cdots \underbrace{S_{t}}_{A_{t}} \underbrace{R_{t+1}}_{A_{t}} \underbrace{S_{t+1}}_{A_{t+1}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{S_{t+2}}_{A_{t+2}} \underbrace{S_{t+3}}_{A_{t+3}} \underbrace{S_{t+3}}_{A_{t+3}} \cdots$$

Esta regla usa la quíntupla S_t , A_t , R_{t+1} , S_{t+1} , A_{t+1} , de ahí su nombre.

Inicializar Q(s, a) arbitrariamente $\forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

Repetir:

Inicializar S

 $A \leftarrow$ acción desde Ssegún política $\varepsilon\text{-greedy}$ basada en Q

Repetir:

Ejecutar la acción A; observar R, S'

 $A' \leftarrow$ acción desde S' según política ε -greedy basada en Q

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma Q(S', A') - Q(S, A) \right]$$

 $S \leftarrow S'$

 $A \leftarrow A'$

hasta que S sea terminal

La tasa de aprendizaje $\alpha \in (0,1]$ es un parámetro del algoritmo.

Off-policy TD control: Q-learning

Sarsa usa la misma política ε -greedy basada en Q para elegir la siguiente acción A_{t+1} y para estimar el retorno G_t (en rojo) en la regla de actualización de Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\mathbf{R}_{t+1} + \gamma \, Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Por eso, SARSA es un método on-policy.

Con este cambio a la regla de actualización de Q:

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\underbrace{R_{t+1} + \gamma \, \max_{a} Q(S_{t+1}, a)}_{q} - Q(S_t, A_t) \right]$$

desacoplamos la estimación del retorno G_t (ahora se supone una política greedy pura) de la política seguida para elegir la siguiente acción del episodio (ε -greedy).

Por eso, Q-learning es un método off-policy.

Off-policy TD control: Q-learning

Inicializar Q(s, a) arbitrariamente $\forall s \in \mathcal{S}, a \in \mathcal{A}(s)$

Repetir:

Inicializar S

Repetir:

 $A \leftarrow$ acción desde S según política ε -greedy basada en Q Ejecutar la acción A; observar R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

 $S \leftarrow S'$

hasta que S sea terminal

La tasa de aprendizaje $\alpha \in (0,1]$ es un parámetro del algoritmo.

Resumen - Métodos de Diferencias Temporales

Los métodos TD no esperan al final del episodio para actualizar sus estimaciones, sino que lo hacen luego de cada paso en el episodio.

- ► Algoritmo TD(0) para estimar $v_{\pi}(s)$ o $q_{\pi}(s, a)$.
- ► On-policy TD control: algoritmo Sarsa.
- ► Off-policy TD control: algoritmo Q-learning.

Próximas clases:

- ► Introducción a redes neuronales y deep learning.
- ▶ Métodos de aproximación de funciones; deep reinforcement learning.