#### 67678 - Introduction to Control with Learning

Spring 2024

# Linear Dynamical Systems - Summary

Lecturer: Prof. Oron Sabag Name: Hadar Tal

# 1 Kalman Filter

## Definition 1.1 (Kalman Filter State Space)

$$x_{i+1} = Fx_i + Gw_i$$

$$y_i = Hx_i + v_i$$
(1.1)

where:

- $x_{i+1}$  is the state vector at time i+1,
- $x_i$  is the state vector at time i,
- $y_i$  is the measurement vector at time i,
- $w_i$  is the process noise (zero mean, uncorrelated),
- $v_i$  is the measurement noise (zero mean, uncorrelated).

#### Definition 1.2 (Kalman Filter Covariance Matrix)

Formally, the following covariance matrix describes the model:

$$\mathbb{E}\left[\begin{pmatrix} w_i \\ v_i \\ x_0 \end{pmatrix} \begin{pmatrix} w_j^* & v_j^* & x_0^* & 1 \end{pmatrix}\right] = \begin{pmatrix} \begin{pmatrix} Q & S \\ S^* & R \end{pmatrix} \delta_{ij} & 0 & 0 \\ 0 & \Pi_0 & 0 \end{pmatrix}, \tag{1.2}$$

where  $\begin{pmatrix} Q & S \\ S^* & R \end{pmatrix}$  and  $\Pi_0$  are positive semidefinite matrices and  $\delta_{ij}$  equals 1 if i=j and is zero otherwise. Note that  $w_i$  is uncorrelated as a process over time but its coordinates at a fixed time can be correlated via Q.

#### Markings:

•  $P_i$  - The error covariance matrix at time i

$$P_i \stackrel{\triangle}{=} (x_i - \hat{x}_i)(x_i - \hat{x}_i)^T \tag{1.3}$$

•  $R_{e,i}$  - The covariance of the innovation (or residual) at time i

$$R_{e,i} \stackrel{\triangle}{=} {}^{\mathbf{H}}P_{i}{}^{\mathbf{H}^{*}} + R \tag{1.4}$$

ullet  $K_{p,i}$  - The optimal Kalman gain at time i

$$K_{p,i} \triangleq (\mathbf{F}P_i\mathbf{H}^* + \mathbf{G}S)R_{e,i}^{-1} \tag{1.5}$$

# Kalman Filter Optimality

We suggest the following predictor:

$$\hat{x}_{i+1|i} = F \hat{x}_{i|i-1} + K_{p,i} (y_i - H \hat{x}_{i|i-1})$$
(1.6)

### Lemma 1.1

$$\tilde{x}_{i+1} = (F - K_{p,i}H)\tilde{x}_i + (G - K_{p,i}) \begin{pmatrix} w_i \\ v_i \end{pmatrix}. \tag{1.7}$$

Proof.

$$\begin{split} \hat{x}_{i+1} &= x_{i+1} - \hat{x}_{i+1|i} \\ &= (Fx_i + Gw_i) - (F\hat{x}_i + K_{p,i}(y_i - H\hat{x}_i)) \\ &= Fx_i + Gw_i - F\hat{x}_i - K_{p,i}(Hx_i + v_i - H\hat{x}_i) \\ &= Fx_i + Gw_i - F\hat{x}_i - K_{p,i}Hx_i - K_{p,i}v_i + K_{p,i}H\hat{x}_i \\ &= Fx_i - F\hat{x}_i - K_{p,i}Hx_i + K_{p,i}H\hat{x}_i + Gw_i - K_{p,i}v_i \\ &= (F - K_{p,i}H)(x_i - \hat{x}_i) + Gw_i - K_{p,i}v_i \\ &= (F - K_{p,i}H)\tilde{x}_i + Gw_i - K_{p,i}v_i. \end{split}$$

### Lemma 1.2

For j < i, the recursion can be evolved as

$$\tilde{x}_i = (F - K_{p,i-1}H)\tilde{x}_{i-1} + (G - K_{p,i-1}) \begin{pmatrix} w_{i-1} \\ v_{i-1} \end{pmatrix}$$

$$= \dots$$

$$= \phi_p(i,j)\tilde{x}_j + \xi_i(j),$$

where

$$\phi_p(i,j) = \prod_{k=j}^{i-1} (F - K_{p,k}H),$$
  
$$\xi_i(j) = \sum_{k=j}^{i-1} \phi_p(i,k+1) (Gw_k - K_{p,k}v_k).$$