第五章晶体的宏观对称性

第一节对称性基本概念

第二节 晶体的宏观对称元素

第三节 宏观对称元素组合原理

第四节 晶体的三十二点群

第一节对称性基本概念

- 对称— 物体或图形的相同部分有规律的重复。
- ●对称动作(操作) 使物体或图形相同部分重复出现的动作。
- ●对称元素(要素)-- 对称动作所借助的几何元素 (点、线、面)。
- 晶体外形的对称为宏观对称性,晶体内部结构原子或离子排列的对称性为微观对称性。前者是有限大小宏观物体具有的对称性,后者是无限晶体结构具有的对称性。两者本质上是统一的。宏观对称性是微观对称性的外在表现。晶体的对称必须满足晶体对称性定律。

第二节 晶体的宏观对称元素

● 宏观对称元素(Symmetry element)和对称动作 (symmetry operation)

对称动作类型	对称元素	对称动作
简单	<u> </u>	反映 倒反 (反演) 旋转
复合	<u>反轴</u>	旋转倒反

晶体对称性

对称自身: 国际符号为1, 习惯记号为L1。

当它处于任意坐标中的坐标原点时,它的坐标是1(000),所导出的一般位置等效点系为:

 $x,y,z \rightarrow x, y, z (1(000))$

反映面(reflection plane):对称物体或图形中,存在一平面,作垂直于该平面的任意直线,在直线上距该平面等距离两端上必定可以找到对应的点。这一平面即为反映面。相应的对称操作为反映。

反映面的惯用符号: P; 国际符号: m; 圣佛里斯符号: Cs

反映面的极射赤面投影

 $x, y, z \rightarrow \bar{x}, y, z m(0yz)$

 $x, y, z \rightarrow x, \bar{y}, z m(x0y)$

 $x, y, z \rightarrow x, y, z m(xy0)$

立方体的反映面

对称中心(inversion center):对称物体或图形中,存在一定点,作通过该点的任意直线,在直线上距该点等距离两端,可以找到对应点,则该定点即为对称中心。相应的对称操作为反演。

对称中心的惯用符号: C; 国际符号: 1; 圣佛里斯符号: C

设对称中心位于任意坐标系的坐标原点上1(000),对称图形中任意一点,坐标为 x,y,z,经

此对称中心的对称操作后,获得另一对称等效点,其坐标应为x,y,z,即

 $x, y, z \rightarrow \bar{x}, \bar{y}, \bar{z}$ (1(000))

对称中心的极射赤面投影

旋转轴(rotation axe):物体或图形中存在一直线,当图形围绕它旋转一定角度后,可使图形相同部分复原,此直线即为旋转轴。相应的对称操作为旋转。

在旋转过程中,能使图形相同部分复原的最小旋转角 称为该对称轴的基转角(α)。

任何图形在旋转一周(360°)必然自相重复,因此有:

 $360/\alpha = n$ n正整数

n表示图形围绕旋转轴旋转一周过程中,图形相同部分重复的次数,因此n定义为旋转轴的轴次。

晶体的对称性定律: 晶体只能出现1,2,3,4,6 次旋转轴。

m'a = ma +
$$2a\cos\alpha$$
 = ma + $2a\cos(2\pi/n)$
 $\cos(2\pi/n) = (m'-m)/2 = M/2$
 $M = 0, 1, 2, -1, -2$

 $\alpha = 0(360), 180, 120, 90, 60; n = 1, 2, 3, 4, 6$

对称轴(旋转对称轴)

二次旋转轴: 国际符号为2, 习惯记号为L2

$$x, y, z \rightarrow x, y, z = 2(00z)$$

$$x, y, z \rightarrow x, \bar{y}, \bar{z} \ 2(x00)$$

三次旋转轴: 国际符号为3, 习惯记号为L3

对第一类坐标系,即Z与X、Y轴垂直,而X轴与Y轴的单位轴长相等(a0=b0),而且相交120°。这类坐标系称为H取向坐标系,

$$x, y, z \rightarrow y, x - y, z \ 3(00z) \rightarrow x + y, x, z \ 3(00z)$$

第二类坐标系,即 a_0 = b_0 = c_0 ,且 α = β = γ ,为任意值。三次旋转轴 在此坐标中通过原点且与3个坐标轴 的夹角都相等(即处于3个轴之间的中分线上),其坐标为3(xxx),这类 坐标系称为R取向坐标系

 $x, y, z \rightarrow y, z, x \ 3(xxx) \rightarrow z, x, y \ 3(xxx)$

四次旋转轴

国际符号为4,习惯记号为L4

$$x, y, z \rightarrow \bar{y}, x, z = 4(00z) \rightarrow \bar{x}, \bar{y}, z = 4(00z) \rightarrow y, \bar{x}, z = 4(00z)$$

六次旋转轴:国际符号为6,习惯记号为L6

在几何晶体学中符合六次旋转轴特性的坐标系必须是与三次旋转轴的第一类坐标系一样,即六次旋转轴与Z轴重合,而X轴与Y轴的单位轴长相等,(a0=b0),而且相交120°,这就是H取向坐标系。

 $x, y, z \rightarrow x - y, x, z = 6(00z) \rightarrow \bar{y}, x - y, z = 6(00z) \rightarrow \bar{x}, \bar{y}, z = 6(00z) \rightarrow \bar{x} + y, \bar{x}, z = 6(00z) \rightarrow y, \bar{x} + y, z = 6(00z)$

旋转轴的极射赤面投影

正方体中的旋转轴

反轴(rotary inversion axe): 物体或图形中存在一直线,当图形绕直线旋转一定角度后,再继之以对此直线上的一个定点进行反演,其最后结果可使图形相同部分重合。相应的对称操作为旋转和倒反的复合对称操作。

先旋转后倒反

先倒反后旋转

反轴及其极射赤面投影

 $\overline{2} = m$

 $\overline{3} = 3 + i$

 $\overline{4} = 4 \cdot i$

 $\overline{6} = 3 + m$

旋转反伸轴Lin

- 一次旋转反伸轴为对称中心;
- 二次旋转反伸轴为对称面;
- 三次旋转反伸轴为三次旋转轴+对称中心; (三次反轴)
- 六次旋转反伸轴为三次轴+对称面(该对称面垂直于三次轴);(六次反轴)

四次旋转反伸轴为四次反轴,国际符号为4,习惯记号为Li4

 $x, y, z \rightarrow \bar{y}, x, \bar{z} \ 4(00z) \rightarrow \bar{x}, \bar{y}, z \ 4(00z) \rightarrow y, \bar{x}, \bar{z} \ 4(00z)$

宏观对称元素

旋转轴 对称元素		对称中 反映面	反轴		
	1 2 3 4 6	1 2	3 4 6		
惯用符号	L ¹ L ² L ³ L ⁴ L ⁶	C P	L ₁ L ₁ L ₁ L ₁		
圣佛里斯 符号	C_1 C_2 C_3 C_4 C_6	$i(C_i)$ C_s	$C_{3i}S_4C_{3h}$		
国际符号	1 2 3 4 6	1 m	3 4 6		
图示) \triangle \Diamond	· 双线或粗线			

镜转轴(旋转反映轴): 图形绕一直线旋转一定角度后,再以垂直于该直线的平面进行反映,相应的对称动作为旋转和反映的复合操作。

- 一次镜转轴为反映面。
- 二次镜转轴为对称中心
- 三次镜转轴为三次轴和反映面的组合(六次反轴)

四次镜转轴为四次反轴

六次镜转轴为三次轴和对称中心的组合 (三次反轴)

第三节宏观对称元素组合原理

- 反映面之间的组合
- 反映面与旋转轴的组合
- ●旋转轴、对称中心、反映面的组合
- ●旋转轴的组合

定理一:两个反映面相交,交线必为旋转轴,其基转角为反映面交角的二倍。

推论: 基转角为 2α 的旋转轴可以分解为两个夹角为 α 为的反映面的连续操作。 $P_1 \cdot P_2 = L^n$

定理三:如果有一反映面穿过一n次旋转轴,则必同时有n个反映面穿过此旋转轴。

$$L^{n} + P_{/} = L^{n} nP_{/}$$

$$P \bullet L^{n} = P \bullet P_{1} \bullet P_{2} = I \bullet P_{2} = P_{2}$$

定理三:如果在偶次旋转轴上有对称中心,则必有一反映面与旋转轴垂直相交与对称中心。

$$L^{2n} + C = L^{2n} P_{\perp} C$$

$$L^2 \cdot C = P_{\perp}$$

推论一: 偶次旋转轴和反映面垂直相交,交点为对称中心。

$$L^{2n} + P_{\perp} = L^{2n} P_{\perp} C$$

$$L^{2} \cdot P_{\perp} = C$$

推论二:反映面和对称中心的组合,必有一垂直反映面的二次轴。

$$P + C = L^2 P_{\perp} C$$

$$P \cdot C = L^2$$

推论三: 晶体对称元素中有对称中心存在时, 偶次对称轴的总数必等于对称面的总数。

定理四:如果有一反映面穿过一反轴(或有一条二次旋转轴垂直于反轴);当反轴轴次n为奇数,必有n个二次轴垂直于该反轴,并有n个反映面穿过该反轴;当反轴轴次为偶数时,必有n/2个二次轴垂直于该反轴,同时有n/2个反映面穿过该反轴,且反映面的法线与相邻二次轴的交角为360°/2n。

推论:如果一条二次旋转轴与反映面斜交,反映面的法 线与二次轴的交角为α,则在反映面法线所决定的平面上 存在一垂直于二次轴的反轴,其转角为2α。

黑色和红色分别为左、右形,实心为投影面上方,空心为投影面下方。

$$n = 3$$

$$L^{3} + C + P = L^{3}C 3P 3L^{2}$$

$$L^{3} + C + L^{2} = L^{3}C 3P 3L^{2}$$

$$n = 4$$

$$L_i^4 + P = L_i^4 2P 2L^2$$

$$L_i^4 + L^2 = L_i^4 2P 2L^2$$

只包含一个高次轴的对称元素组合

1. 唯一的一个高次轴只能与对称面或二次轴垂直相交,或与对称面平行相交。

如高次轴与对称面、二次轴以任意角度相交,必然会派生出新的高次轴和对称面,这些对称面又可派生出许多与它们等效的高次轴,如此反复下去,只要角度是任意的,其最终结果必然导出无穷多个高次轴和对称面。换句话说,这种对称组合将会导出无穷对称(球对称)的结果。这种没有终止的对称组合称为"不封闭"的对称组合。这种"不封闭"的组合在晶体学中是不能存在的。在晶体学中只能存在那些"封闭"的对称组合,所谓对称组合,就是两个或两个以上的对称元素的组合,其最终结果只导出有限个数的新派生对称元素,新派生的对称元素与原始的对称元素相互之间的任意组合,只会导出其中已有的对称元素,再也不会派生另一些新的对称元素。

2. 一个三次轴与一对称面以夹角ω=45°相交,经反复充分的对称操作后,通过它们的交点,即垂直于二次轴又平行于对称面必然派生出一个基转角为90°的四次旋转反伸轴,同时也导出全部数目为两个均垂直于四次反轴的二次轴及两个平行相交于四次反轴的对称面,且二次轴之间夹角及对称面之间夹角均为90°。

如二次轴2(xx0)与对称面m(x0z)以45度相交,则

 $x, y, z \rightarrow x, \bar{y}, z m(x0z), x, y, z; x, \bar{y}, z \rightarrow y, x, \bar{z}; \bar{y}, x, \bar{z} 2(xx0)$

 $y, x, \bar{z}; \bar{y}, x, \bar{z} \rightarrow y, \bar{x}, \bar{z}; \bar{y}, \bar{x}, \bar{z} m(x0z)$

 $y, \bar{x}, \bar{z}; \bar{y}, \bar{x}, \bar{z} \rightarrow \bar{x}, y, z; \bar{x}, \bar{y}, z \ 2(xx0)$

如此,最终应有 8 个等效点组成这种组合的一般位置等效点系。在这等效点系中,x, y, z 与 \bar{x} , y, z; x, \bar{y} , z 与 \bar{x} , \bar{y} , z; y, x, \bar{z} 与 \bar{y} , x, \bar{z} ; y, \bar{x} , \bar{z} 与 \bar{y} , \bar{x} , \bar{z} 的等效关系证明此组合应有派生的同 m(0yz)。同理,x, y, z 与 \bar{y} , \bar{x} , \bar{z} ; x, \bar{y} , z 与 y, \bar{x} , \bar{z} ; y, x, \bar{z} 与 \bar{x} , \bar{y} , z; \bar{y} , x, \bar{z} 与 \bar{x} , y, z 之间的等效 关系亦证明存在派生的二次轴 $2(\bar{x}x0)$ 。另外,在此等效点系中,等效点 x, y, z; \bar{y} , x, \bar{z} ; \bar{x} , \bar{y} , z; y, \bar{x} , \bar{z} 之间的等效关系都满足四次反轴 \bar{x} (00z)的对称。

3. 一个二次轴与一对称面以夹角ω=60°相交,经充分对称操作后,必然导出一个六次旋转反伸轴。

同理,六次反轴与对称面平行重合,或六次反轴与二次轴垂直相交都可以导出上述组合的最终结果。

6. 一个二次轴与一对称面相交 30o, 经充分对称操作后,必可导出全部 3 个对称面分别以 60o相交于一轴线,全部 3 个二次轴经 60o相交且垂直相交于轴线,对称面与二次轴互相垂直(即分别以 30o相错)。也就是说,对称面与二次轴这样的组合必然在它们相交的轴线上派生出三次旋转反伸轴3。

同理,三次反轴与对称面平行相交或三次反轴与二次轴垂直相交都将会导出与上述组合相同的最终结果。

欧拉定理:通过任意两个相交旋转轴的交点,必可产生第三个旋转轴,它的作用等于前两者的连续动作。新旋转轴的轴次及其与二原始旋转轴的交角决定于该二原始旋转轴的轴次及它们的交角。

$$L^{n1} \cdot L^{n2} = L^{n3}$$

$$L^{n1} \cdot L^{n2} = P1 \cdot P2 \cdot P3 \cdot P4 = P1 \cdot I \cdot P4 = L^{n3}$$

$$A: 2 \rightarrow 1$$

$$B: 1 \rightarrow 3$$

$$2 \rightarrow 3 = C$$

欧拉公式: A, B为两个相交的旋转轴,它们的基转角分别为2α,2β,必存在一个旋转轴C,基转角为2γ,它们之间的关系为:

$$\cos(BC) = (\cos\alpha + \cos\beta\cos\gamma)/\sin\beta\sin\gamma$$

$$\cos(AC) = (\cos\beta + \cos\alpha\cos\gamma)/\sin\alpha\sin\gamma$$

$$\cos(AB) = (\cos\gamma + \cos\alpha\cos\beta)/\sin\alpha\sin\beta$$

由于空间点阵对称性的限制,旋转轴只能为2,3,4,6,它们的组合结果有20种,其中六种实际存在:222,223,224,226,233,234。

旋轉軸組合家

					-
А	В	c	в̂С	я̂с	ÂB
2	2	2	90°	90°	90°
2	2	3	90°	90°	60°
2	2	4	90°	90°	45°
2	2	6	90°	90°	30°
2	3	3	70° 32′	54° 44′	54° 44′
2	3	~4	54° 44′	45°	35° 16′
2	3	6	0	0	0
2	4	4	0	0	0
2	4	6	•	*	. : *
2	6	6	*	*	*
3	3	3	0	0	, a a o
3	3	4	*	* - 1	*
3	3	6	*	*	. *
3.	, : 4 :	4	*	* •	*
3	.4	6	.*	*	*
3	6	6	*	• • •	*
4	4	4		•	. •
4	4	6	*	*	*
4	6	6	*	*	
6	6	6	•	•	*

* 表示不能存在的組合

推论一:两个二次轴相交,交角为α/2,则垂直于这两个 二次轴所定平面,必有一基转角为α的n次轴。

推论二:一个二次轴和一个n次轴垂直相交,,则有n个二次轴同时与n次轴相交,且相邻两二次轴的交角为n次轴基转角的一半。

二次轴和四次 轴的组合 例. 二次由 2(x00)与二次轴2(0x0)垂直相交,必然派生出与前两者垂直相交的二次轴2(00z)

$$x, y, x \rightarrow x, \bar{y}, \bar{z} \ 2(x00) \rightarrow \bar{x}, \bar{y}, z \ 2(0y0)$$

$$x, y, z \rightarrow x, y, z = 2(00z)$$

具有一个以上高次轴的对称轴组合

若两个高次轴(或一个高次轴与一个二次轴)以任意角相交,则可能 经相互反复的对称操作后,导出具有无穷对称的球体对称。因此, 必须让相交角为一些特殊值,使派生出的新对称轴是有限的,而且 它们的反复组合结果是重复的,这就是所谓组合的封闭性(有限性)

设有许多对称轴通过球心并与球壳相交。然后在球壳上每两交点引一直径平面(即通过球心的平面),从而我们可以把每一个对称轴看成是这些直径平面的相交直线,其中两个平面相交的夹角ω是该对称轴基转角的一半α/2。这样,整个球面被割分为若干个球面三角形,每一球面三角形可能的内角为ω。

现有三个值得注意的条件:

- (1) 晶体中可能的对称轴的轴次分别为2,3,4,6,由于 $\omega = \alpha / 2$,所以 ω 分别为90°,60°,45°和30°。
- (2) 球面三角形里三内角之和(S) 应为: 180°<S<540°。
- (3)现在讨论的是包含两个以上高次轴的组合,因此,每个球面三角形的3个顶点,至少应有两个以上的高次轴。

于是,按照上述(1)和(3)的要求,可以有下列6种球面三角形存在, 其3个内角的值及其和为

- (a) $30^{\circ}+30^{\circ}+90^{\circ}=150^{\circ}$
- (b) $30^{\circ}+45^{\circ}+90^{\circ}=165^{\circ}$
- (c) $30^{\circ}+60^{\circ}+90^{\circ}=180^{\circ}$
- (d) 45°+45°+90°=180°
- (e) $45^{\circ}+60^{\circ}+90^{\circ}=195^{\circ}$
- (f) 60°+60°+90°=210°

按照上述第(2)个条件,上述6种组合中,只有最后两种(e)和(f)才能满足180°<S<540°

显然,可能存在的具有一个以上高次轴的对称轴组合只有下述两种。

1. 一个四次轴,一个三次轴及一个二次轴的组合 45°+60°+90°=195°

整个球的表面应由这种球面三角形拼组覆盖。四次轴与三次轴的夹角54°44′8″,四次轴与二次轴的夹角45°,三次轴与二次轴的夹角35°15′52″。

这种组合最终具有对称元素3L⁴4L³6L²,这种对称类型的国际符号是"点群43"。

其一般位置等效点系的坐标为:

x, y, z; z, x, y; y, z, x; x, z, y; y, x, z; z, y, x;

x, y, z; z, x, y; y, z, x; x, z, y; y, x, z; z, y, x;

x, y, z; z, x, y; y, z, x; x, z, y; y, x, z; z, y, x;

x, y, z; z, x, y; y, z, x; x, z, y; y, x, z; z, y, x;

2. 两个三次轴与一个二次轴的组合

60°+60°+90°=210°

以这种球面三角形拼组覆盖整个球的表面,它的3个边长应为:三次轴与三次轴的夹角70°31′44″,三次 轴与二次轴的夹角 54°44′8″ 这种组合(对称类型)最终具有对称元素3L²4L³,它的国际符号为"点群23"。

其一般位置等效点系的坐标为:

x, y, z; z, x, y; y, z, x; x, y, z; z, x, y; y, z, x;

x, y, z; z, x, y; y, z, x; x, y, z; z, x, y; y, z, x;

第四节 晶体的三十二点群

- 晶体32点群的推导
- ●晶体的分类
- ●点群的符号
- ●晶体的定向

- 点群的推导
- 一、旋转轴的组合
- 1、单一旋转轴: L¹(C₁), L²(C₂), L³(C₃), L⁴(C₄), L⁶(C₆)。

2、高次轴与二次轴的组合:

$$L^{2} + L^{2} = 3L^{2} (D_{2})$$

 $L^{4} + L^{2} = L^{4} 4L^{2} (D_{4})$

$$L^3 + L^2 = L^3 3L^2 (D_3)$$

$$L^6 + L^2 = L^6 6L^2 (D_6)$$

3、高次轴的组合:

 $4L^{3}3L^{2}$ (T)

 $4L^{3}3L^{4}6L^{2}(O)$

旋转轴型的对称类型共11种。

二、旋转轴型与反映面的组合

1、旋转轴与反映面垂直

$$L^{1} + P_{\perp} = P (Cs)$$

 $L^{3} + P_{\perp} = L^{3} P (C_{3h})$
 $L^{6} + P_{\perp} = L^{6} PC (C_{6h})$

$$L^{2} + P_{\perp} = L^{2} PC (C_{2h})$$

 $L^{4} + P_{\perp} = L^{4} PC (C_{4h})$

 $3L^{2}4L^{3} + P_{\perp} = 3L^{2}4L^{3}3PC (T_{h})$

T点群的主轴 是2次轴

4次轴与垂直镜面 得对称中心,对称 中心分别与3次轴 和2次轴得3次反轴 和6个镜面

 $L^3 3L^2$

 $L^3 3L^2 4P$

 $3L^2 4L^3$

3L² 4L³ 3PC

2、反映面穿过旋转轴

1) 单一轴型

$$L^2 + P_/ = L^2 2P (C_{2v})$$

$$L^4 + P_/ = L^4 4P (C_{4v})$$

$$L^3 + P_1 = L^3 3P (C_{3v})$$

 $L^6 + P_2 = L^6 6P (C_{6v})$

2mm

6mm

2) 反映面平分相邻二次轴夹角

 $L^{2}2L^{2} + P_{d} = L_{i}^{4} 2L^{2} 2P (D_{2d})$

 $L^33L^2 + P_d = L^3 3L^2 3PC (D_{3d})$

3个镜面分别与 3个二次轴垂直, 得一对称中心

 $\frac{2}{3}\frac{2}{m}$

 $3L^24L^3 + P_d = 3L_i^4 4L^3 6P (T_d)$

 $3L^44L^36L^2 + P_d = 3L^44L^36L^29PC$ O_h 在2次轴平分线上加镜面,等于在4次轴

上加垂直镜面

T点群在2次轴平分线上加镜面,交角为45度,则得4次反轴, 镜面过3次轴,共得6个镜面。

L_i⁴ 2L² 2P

 $L^3 3L^2 3PC$

3) 反映面垂直或穿过二次轴

$$L^{2}2L^{2} + P = 3L^{2}3PC$$
 D_{2h}
 $L^{4}4L^{2} + P = L^{4}4L^{2}5PC$ D_{4h}
 $L^{6}6L^{2} + P = L^{6}6L^{2}7PC$ D_{6h}
 $3L^{2}4L^{3} + P = 3L^{2}4L^{3}3PC$ T_{h}
 $3L^{4}4L^{3}6L^{2} + P = 3L^{4}4L^{3}6L^{2}9PC$ O_{h}

 $L^{3}3L^{2} + P1 = L^{3}3L^{2}3PC$ D_{3d} 反映面同时穿过3次轴和垂直 2次轴并平分另外二根2次轴

 $L^{3}3L^{2} + P2 = L^{3}3L^{2}4P$ D_{3h} 反映面同时穿过3 次轴和一个2次轴

旋转轴和反映面的组合的对称类型有18种。

三、旋转轴与对称中心的组合

$$L^{1} + C = C (C_{i})$$
 $L^{3} + C = L^{3} C = L_{i}^{3} (C_{3i})$

旋转轴与对称中心组合的对称类型有2种。

四、四次反轴与其他对称元素的组合

$$L_i^4 + P_{\perp} = L^4 PC C_{4h}$$

$$L_i^4 + P_{/} = L_i^4 2L^2 2P D_{2d}$$

$$L_{1}^{4} + C = L^{4} PC C_{4h}$$

$$L_i^4 + L^2 = L_i^4 2L^2 2P D_{2d}$$

$$L_i^4 + L^3 = 3L^44L^36P T_d$$

可用4次反轴和图与三 次轴导出Td的图

$$L_i^4 + L_i^3 = 3L^44L^36L^29PC$$

4次反轴与3次反轴可导出2 次轴,2次轴与对称中心可 导出镜面

四次反轴 (S_4) 为独立的对称类型。

晶体共有32种宏观对称类型,即32点群。

•晶体的分类

一、根据32点群的对称特征,可把晶体分为七个晶系:

立方晶系 有四个3次轴

四方晶系 唯一的高次轴为4次轴或4次反轴

六方晶系 唯一的高次轴为6次轴或6次反轴

三方晶系 唯一的高次轴为3次轴和3次反轴

正交晶系 二次轴或反映面大于1

单斜晶系 二次轴或反映面等于1

三斜晶系 只有1次轴

七个晶系的晶胞形状

立方晶系 a=b=c, $\alpha=\beta=\gamma=90^\circ$ Oh

四方晶系 $a=b\neq c$, $\alpha=\beta=\gamma=90^{\circ}$ D4h

六方晶系 $a=b\neq c$, $\alpha=\beta=90^{\circ}$, $\gamma=120^{\circ}$ D6h

三方晶系 a=b=c, $\alpha=\beta=\gamma\neq90^{\circ}$ D3d

正交晶系 $a\neq b\neq c$, $\alpha=\beta=\gamma=90^{\circ}$ D2h

单斜晶系 a≠b≠c, α=γ=90°, β≠90° C2h

三斜晶系 $a\neq b\neq c$, $\alpha\neq \beta\neq \gamma$ Ci

品系的划分依据的是晶体的对称性(宏观或微观),而不是根据晶胞形状划分。

- 二、根据晶体中高次轴的数目,晶体分为三个晶族:
 - 1、具有四个三次轴的立方晶系为高级晶族。
 - 2、只有一个高次轴的晶体属于中级晶族。四方晶系,三方晶系,六方晶系均属于中级晶族。
 - 3、无高次轴的晶体为低级晶族。三斜晶系,单斜晶系,正交晶系属于低级晶族。
- 三、晶体的32点群反映了晶体的宏观对称特征,又称为32 种对称型。具有同一对称型的晶体称为一个晶类。与点群 相对应,晶体分为32晶类。

• 晶体的定向

			点	群国际符号	的特征方向					
Ħ	系	与国际符号的三位相应之方向(順序列出)								
	Ж	以单位	晶胞之三个。	基矢表示	以カ	方向指数	表示			
立	方	3 .	a+b+c	a+b	[100]	[111]	[110]			
.六	方	c	2	2 a + b	[001]	[100]	[210]			
Ξ	方*	c	а		[001]	[100]				
四	方	C	8.	a+b	[001]	[100]	[110]			
正	交	a	Ь	C	[100]	[010]	[001]			
单	斜	ь			[010]					
Ξ	斜	a			[100]					

^{*} 此处所列是按三方晶系的H取向

• 点群的符号

		2种点群符	목 (점	际符号中n/m	表示镜面垂直n次轴, nm表示镜面	包含n次軸)	
晶系	序号	熊夫利符 号	国际符号 (全写)	国际符号 (简写)	对称型种类	劳厄群	
Ξ	1	C ₁	1	1	L1 .	_	
斜	2	C,	ī	ī	\mathbf{C}	1	
单	3	C ₂	2	2	. L2 :		
•	4	Cg	m	m	P	2/m	
斜	5	Cah	$\frac{2}{m}$	2/m	L2PC	-	
Œ	6	D_2	2 2 2	2 2 2	3L2		
	7	C2 v	mm 2	mm 2 mm 2 L2 2P		mmm	
交	8	D_{2h}	$\frac{2}{m}\frac{2}{m}\frac{2}{m}$	mmm	3L2 3PC	-	
	9	C ₄	4	4	, L4		
1777	10	. S ₄	4	4	L4i	4/m	
四	11	Cah	4/m	4/m	L4 PC		
	12	D_4	422	422	L4 4L2		
方	13	C4 v	4mm	4mm	L4 4P		
73	14	D_{2d}	4 2m	4 2m	L4i 2L2 2P	4/mmm	
	15	Das	$\frac{4}{m}\frac{2}{m}\frac{2}{m}$	4/mmm	L4 4L2 5PC		

续表

						and the second s
	16	C_3	$\frac{3}{3}$	3	L3	. _
Ξ	17	C_{3i}	3	3	L3 C	3
	18	D_3	32	32	L3 3L2	
٠. ا	19	C3"	3 <i>m</i>	3 m	L3 3P	3 m
方	20	D _{3d}	$\frac{3}{3}\frac{2}{m}$	3 m	L3 3L2 3PC	3 112
	21	C 6	6	6	L6	
	22	C_{3h}	$\vec{6}$	<u>-</u> 6	L3 P	6/m
. 六	23	C 6 &	$\frac{6}{m}$	6/m	L6 PC	
	24	D_6	622	622	L6 6L2	
方	25	C 6 v	6mm	6mm	L6 6P	
//	26	D_{3h}	6 m 2	6 m 2	L3 3L2 4P	6/mmm
-	27	D 6 %	$\frac{6}{m}\frac{2}{m}\frac{2}{m}$	6/mmm	L6 6L2 7PC	
-	28	T	23	23	3L2 4L3	
立	29	T_{b}	$\frac{2}{m}\overline{3}$	m3	3L2 4L3 3PC	<i>m</i> 3
	30	o	432	432	3L4 4L3 6L2	
方	31	Td	4 3 m	4 3 m	3L4i 4L3 6P -	m3m
	32	0	$\frac{4}{m} \frac{3}{3} \frac{2}{m}$	тзт	3L4 4L3 6L2 9PC	

32个晶体学点群的对称类型

晶系	中心对称型Laue 型	非中心对称-对映 对称型	非中心对称-非对 映对称型
三斜	Ci	C1	
单斜	C2h	C2	Cs
正交	D2h	D2	C2v
四方	C4h	C4	S4
	D4h	D4	C4v,D2d
三方	C3i	C3	
	D3d	D3	C3v
六方	C6h	C6	C3h
	D6h	D6	C6v,D3h
立方	Th	T	
	Oh	O	Td

32点群物理性质间的相互关系

对于点群,给定一个普通位置的晶面,通过点群的全部对称操作,得到的一组面,称为晶形(单形),记为{hkl}。 其中的每一个晶面为等效面。

如m3m点群, {111}代表的的等效面为:

(111), (111), (111), (111), (111), (111), (111), (111), (111), (111), (111), (111), (11111), (1111), (1111), (1111), (11111), (1111), (1111), (1111), (1111), (1111), (11111), (11111

如晶面在一般位置,对称操作得到的晶形为普形。如晶面在特殊位置,得到的晶形为特形。

http://webmineral.com/crystall.shtml

System (1)	Class Name (2)		ΑX	(ES		Planes	Center	Hermann- Maugin
		2-Fold	3-Fold	4-Fold	6-Fold			Symbols (3)
Isometric	<u>Tetartoidal</u>	3	. 4	-		-	-	<u>23</u>
	<u>Diploidal</u>	3	4	-	-	3	yes	<u>2/m-3</u>
	<u>Hextetrahedral</u>	3	4	-	-	6	-	<u>-43m</u>
	<u>Gyroidal</u>	-6	4	3-		-	_	<u>432</u>
	<u>Hexoctahedral</u>	6	4	3	-	9	yes	<u>4/m-32/m</u>
Tetragonal	<u>Disphenoidal</u>	1	· _	-	- 1	-	-	<u>-4</u>
romagonar	<u>Pyramidal</u>	-	_*.	1	-	-	-	4
	<u>Dipyramidal</u>	-,	-	1	-	1	yes	<u>4/m</u>
	<u>Scalenohedral</u>	3	-	-	-	2	-	<u>-42 m</u>
	Ditetragonal pyramidal	-	-	-	-	4	-	<u>4mm</u>
	<u>Trapezohedral</u>	4	-	1	- "	-	-	<u>422</u>
	Ditetragonal-Dipyramidal	4	-	1	_	5	yes	4/m 2/m 2/m
Orthorhombic	<u>Pyramidal</u>	1.	-	-	-	2		<u>mm2</u>
	<u>Disphenoidal</u>	3	-	-	-	-	-	<u>222</u>
	<u>Dipyramidal</u>	3	-	-	-	3	yes	2/m 2/m 2/m

Hexagonal	Trigonal Dipyramidal	-	1	-	-	1	-	<u>-6</u>
<u>rrexagoriai</u>	<u>Pyramidal</u>	-	-	-	1	-	-	<u>6</u>
	<u>Dipyramidal</u>	-"	-	-	1	1	yes	<u>6/m</u>
	<u>Ditrigonal Dipyramidal</u>	3	1	-	-	4	-	<u>6m2</u>
	<u>Dihexagonal Pyramidal</u>	-	-	_	1,	-6		<u>6mm</u>
	<u>Trapezohedral</u>	6		-	1	-	-	<u>622</u>
	Dihexagonal Dipyramidal	6	-	-	1	7	yes	6/m 2/m 2/n
Trigonal	<u>Pyramidal</u>	-	1	-	_	-		<u>3</u>
111,3 3 1 1 3 1	<u>Rhombohedral</u>	-	1	-	-	-	yes	<u>-3</u>
	<u>Ditrigonal Pyramidal</u>	-	.]	-		3	-	<u>3m</u>
	<u>Trapezohedral</u>	3].	-	-	-	-	<u>32</u>
	Hexagonal Scalenohedral	3	1	-	-	3	yes	<u>-32/m</u>
Monoclinic	<u>Domatic</u>	-	-	-	_	1	-	<u>m</u>
	<u>Sphenoidal</u>	1	-	-	-	-	-	2
	<u>Prismatic</u>	1	-	-	- "	1	yes	<u>2/m</u>
Triolinio	<u>Pedial</u>	-	_*.	-	-	-	_	<u>1</u>
<u>Triclinic</u>	<u>Pinacoidal</u>	-,	-	-	-	-	yes	<u>-1</u>

六方晶系的四轴定向

三轴定向

四轴定向

Miller-Bravais指数: (hkil)

i = -(h+k)

六方晶系的三轴坐标系的晶向指数[UVW]与四轴坐标系的晶向指数[uvtw]的换算关系

International Tables for X-ray Crystallography

	Triclinic	Monoclinic (1st setting)	Tetragonal
х			
X (even)		$m(-\overline{2})$	
(even) plus centure and X (odd)	Monoclinic (2nd setting)	Orthorhombic	4/m

•晶体的晶形

对于点群,给定一个晶面,通过点群的全部对称操作, 得到的一组面,称为晶形(单形),记为{hkl}。其中的 每一个晶面为等效晶面。由若干组单形构成的晶体外形为 聚形。

如晶面在一般位置,对称操作得到的单形为普形。如 晶面在特殊位置,得到的单形为特形。

闭形为封闭的等面多面体单形,不能形成闭合多面体 的单形为开形。 对于m3m点群, {111}晶形的等效晶面为:
 (111), (

对于4/m点群, {111} 晶形的等效晶面为:
 (111), (111), (111), (1 11), (111), (111), (111), (1 1 1)
晶形为普形。
{100} 晶形的等效晶面为:
 (100), (010), (100), (010), 晶形为开形。

- (a) 普形, 闭形
- (c) 特形, 开形

- (b) 特形, 开形
- (d) 聚形, 闭形