Digital-Analog-Wandler DAC 5086

Der programmierte DAC 5086 ist ein hochauflösender 16-Bit-Digital-Analog-Wandler, der aus einem 32poligen DIL-Hermetikgehäuse und einem dazugehörige nEPROM besteht.

Beide Bauelemente ermöglichen durch modulare Zusammenschaltung eine Pinanpassung zum DAC 1136 von Analog Devices.

Der Wandler verfügt über einen Strom- und einen Spannungsausgang. Für den jeweiligen Anwendungsfall können durch Wahl der Außenbeschaltung (Brücken) zwei digitale Eingangscodes (CB oder COB) gewählt werden.

Durch ein spezielles Syste.n geregelter Stromquellen in Verbindung mit hochstabilen Dünnschichtwiderständen wird auf modernen Trimmanlagen eine Linearität von ca. 15 Bit erreicht. Mit Hilfe eines internen Korrekturwandlers mit einer minimalen Schrittweite von ±0,25 LSB von 16 Bit wird eine absolute bzw. differentielle Linearität von 16 Bit garantiert. Diese Genauigkeit wird im Temperaturbereich von 15···35°C eingehalten. Der Wandler arbeitet mit einer internen Referenzspannung von 10,0 Volt mit einem Temperaturkoeffizient von kleiner ±5 ppm/K. Diese Referenzspannung kann auch für externe Aufgaben genutzt werden.

Der Wandler beinhaltet einen Präzisionsoperationsverstärker vom Typ B 0 87 für die Strom-Spannungs-Wandlung.

Die Ansteuerung des Feinkorrekturwandlers übernimmt die im EPROM vom Typ U 2716 gespeicherte Software, die aber auch unabhängig von diesem Speicher durch einen externen Rechner bereitgestellt werden kann. Der Speicher beeinflußt nicht das Temperaturdriftverhalten und die Einschwingzeit des Wandlers.

Bauform Hermetik DIL PDS 32/22.5 Pins vergoldet

Pinbelegung des Hybridschaltkreises DAC 5086 Gehäusetyp-PDS-32/+2:5

Pin Bedeutung Bemerkung			•
1 2	Bit 1 Bit 2	Digitaleingang (MSB) Digitaleingang	2 ¹⁵ - 2 ¹⁴
·			-
14	Bit 14	Digitaleingang	2 ²
15	Bit 15	Digitaleingang	21
16	Bit 16	Digitaleingang (LSB)	2^{0}
17	Bit 18-K	Korrektureingang (LSB)	1/4 LSB v. 16 Bit
18	Bit 17-K	Korrektureingang	1/2 LSB v. 16 Bit
19	Bif 16-K	Korrektureingang	1 LSB v. 16 Bit
20	Bit 15-K	Korrektureingang (MSB)	2 LSB v. 16 Bit
21	Ucc3	Betriebsspannung 3	+5 V
22	Ucc2	Betriebsspannung 2	-15 V
23	Uout	Verstärkerausgang (Spar bei CB U und COB U)	

Pin	Bedeutung	Bemerkung				
24 Rf		Rückführwiderstand 5 kOhm				
25	–Amp In	invertierender Eingang des Ausgangs- verstärkers				
26	lout	Stromausgang bei CB I und COB I, Offsetabal.				
27	СОВ	Bipolarbetrieb				
28	Uref out	Referenzspannungsausgang +10 V				
29	Ucc1	Betriebsspannung 1 +15 V				
30	Uref in	Referenzspannungseingang +10 V				
31	Gain Adj.	Full-Scale Abgleich				
32	СОМ	Masse (Bezugspkt. für Ucc und Uout)				

Elektrische Parameter des programmierten DAC 5086

(Hybridschaltkreis incl. EPROM)

Betriebsbedingungen

Kenngröße	Symbol	min.	typ.	max.	Einheit
Betriebsspannungen	Ucc1	14,25	15,00	15,75	Volt
	-Ucc2	14,25	15,00	15,75	Volt
	Ucc3	4,75	5,00	5,25	Volt
Eingangsspannungen	UIL	0		0,8	Volt
	UIH	2,4		Ucc3	Volt
BetriebstempBereich	Ta 1	0	23	70	°C
ArbeitstempBereich	Ta 2	15	23	35	°C

Kennwerte

Die Kennwerte gelten bei Ucc1 = -Ucc2 = 15 V \pm 0,5 V, Ucc3 = 5 V \pm 0,25 V, U IL = 0 V und U IH = Ucc3 sowie der Umgebungstemperatur von 23 °C \pm 2 K.

Symbol	min.	typ	max.	Einheit
			16 (18)	Bit
	0,5		+0,5	LSB
			•	
	0,5		-1-0.5	LSB
r	-0,0008			% FSR
B)	—1			mV
•			, ,	****
С	17			Bit
	r B)	-0,5 r -0,0008 B) -1	0,5 0,5 r0,0008 B)1	16 (18)0,5 +-0,50,5 +-0,50,0008 +-0,0008 B) -1 +1

Drift im Umgebungst	emperaturbereich	$1a2 = 15\cdots$	∙35 °C
Gaindrift¹)	0,0005		⁰/₀ FSR/K
Offsetdrift (CB U)	0,0002	+0,0002	% FSR/K
- Fs-Drift (COB U)1)	-0,0005	+0,0005	% FSR/K
Drift der diff.		•	, , , , , , , , , , , , , , , , , , , ,
Linearität	0,00007	+0,00007	% ESR/K
Drift der abs.	•	,	70.0.41
Linearität	-0,00007	+0,00007	% FSR/K
		1 2,00007	70, 51410

Omsetzzeit am	Spannu	ngsausgang	aut	+0.0008 9	n FSR (16 B
bei vollem					
Hub (—Fs					
〈⇄〉+Fs)	tsu			150	ILS
beim Teilhub ²)	tsu			50	μs
slew rate	SR	8	15		۷/μs
					•

¹⁾ Außer Referenzdrift

²⁾ Änderung des Eingangscodes von LHHLH...H auf HLLHL...L (1/8 FSR)

Kenngröße	Symbol	min.	typ	max.	Einheit
Referenz- spannung Drift Laststrom	Uref Uref (T)	9,97 —50	10,00	10,03 +50	V μV/K
für externe Anwendung	Iref			1	mA
Thermische Einlaufzeit			10		min
Stromaufnahn	ne (Hybri	dschaltkrei	s)		
,	lcc1 -lcc2 lcc3		12 44 16	18 50 20	mA mA mA
Betriebsspann	nungsabh	ängigkeit			
Bipolar Offset	t PSS (—	Fs)			
$Ucc1 = 14,5 \cdot \cdot \cdot 15,5 \text{ V}$ (Ucc2 = -15) Ucc3 = 5 V	V, _.	0,001		+ 0,001	% FSR/ % Ucc1
Ucc2 = -15,5 14,5 V (Ucc1 = 15 V)		0,001		+0,001	⁰/₀ FSR/
Ucc3 == 5 V) Ucc3 == $4,75 \cdot \cdot \cdot 5,25 \text{ V}$		0,0005		+0,0005	% Ucc2 % FSR/ % Ucc3
Full Scale	PSS (+	·Fs)			
Ucc1 = $14.5 \cdot \cdot \cdot 15.5 \text{ V}$ (Ucc2 = -15 Ucc3 = 5 V)		0,005		+0,005	⁰/₀ FSR/ ⁰/₀ Ucc1
Ucc2 = -15,5 $\cdots -14,5$ V (Ucc1 = 15 V Ucc3 = 5 V)		0,005		+0,005	⁰/₀ FSR/ ⁰/₀ Ucc2
Ucc3 = 4,75···5,25 V	1	0,0005		+0,0005	% FSR/ % Ucc3
Eingangsströ	me (UII	= 0 V. U II	1 = Uc	:c3)	
	–I IL I IH		25	100 50	μA nA

Betriebsarten

Betriebsart/ Abkürzung	Ausgang	Brücken
COB U	tary Bipolar Offset Bin ± 5 V (pin 23) ± 1 mA (pin 26)	ary 23—24, 25—26—27, 28—30 26—27, 28—30
Complemen CB U CB I	tary Binary 0··· 10 V (pin 23) 0···—2 mA (pin 26)	23–24, 25–26, 28–30 28–30

Abbildungen und Werte gelten nur bedingt als Unterlagen für Bestellungen. Rechtsverbindlich ist jeweils die Auftragsbestätigung. Änderungen vorbehalten.

digitale Eingänge MSB LSB	Einstellwerte	Reihenfolge der Regler
HHHHHHHH	—5,00000 V —4,99985 V	 Offset Fs
HHHHHHHH LLLLLLLL	0,00000 V 9,99985 V	1. Offset 2. Fs
HHHHHHHH LLLLLLLL		 Offset Fs
HHHHHHHH LLLLLLLL	0,00000 mA —1,99997 mA	1. Offset 2. Fs
	MŠB LSB HHHHHHHHH LLLLLLL HHHHHHHHH LLLLLLL HHHHHHHHH LLLLLLL HHHHHHHHH	MSB LSB HHHHHHHH —5,00000 V LLLLLLL +4,99985 V HHHHHHHH 0,00000 V LLLLLL 9,99985 V HHHHHHHH +1,00000 mA LLLLLLL −0,99997 mA HHHHHHHH 0,00000 mA

KWH Erz.-Nr.: 4587.8-2279.31

Bauform

Hermetisches Metall-Glas-Gehäuse PDS 32/22.5

(Maße in mm)