Machine learning autonome : apprendre à sortir d'un labyrinthe grâce au Q-learning

Par OZDEMIR Serdar

Sommaire

Introduction: Intérêt, problématiques

- I. <u>Le coeur de l'apprentissage: théorie et formule maîtresse</u>
 - A. Théorie: agent, état, action et récompense
 - B. L'algorithme de Q-learning : Formule maîtresse
- II. Expérience pratique : le labyrinthe en Python
 - A. Présentation du labyrinthe
 - B. Transcription en python : Matrice Q , récompenses et malus
 - C. Outil de lecture visuelle : interface graphique et carte "thermique"

III. <u>Expériences et résultats</u>

- A. Influence des coefficients sur l'interaction et sa vitesse
- B. Influencer le trajet de l'agent : résoudre le voyageur de commerce?
- C. Aspect apprentissage : Réutilisation de la même matrice Q

Conclusion

Le coeur de l'apprentissage: théorie et formule maîtresse

Principe

Un agent évoluant dans un milieu caractérisé par:

- Un état discret
- Une action

"Récompense" en fonction de l'utilité de l'action pour se rapprocher d'un but

Quantifier l'utilité? Formule maîtresse du Q-learning

action 3

Fonction ou matrice Q définie par itération :

d'après [4] Démontré comme convergeant vers une succession d'actions Q* optimale

action 2

action 1

Ofsital

 $Q(s, a) \leftarrow Q(s, a) + \alpha \left[r + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - Q(s, a)\right]$ \mathcal{E} L'ensemble des états \mathcal{A} L'ensemble des actions

 $\begin{array}{ccc} s & & \text{Un \'etat} \\ a & & \text{Une action} \end{array}$

 $0 \le \gamma \le 1$ Le taux de diminution des renforcements

action n

Q[S][a]	action 1	action 2	action 5	action 4	***	action n
état 1	0,2840122869	0,294580213	0,9293091949	0,2375495187	***	0,3089669029
état 2	0,423317852	0,9370502509	0,4366532197	0,3178643791	***	0,3935787244
état 3	0,6688511702	0,07705257775	0,4321472519	0,9057358908	***	0,8057912989
état 4	0,07296739802	0,9314849402	0,7807701583	0,6717572414		0,7068750649
	***					•••
	***				***	
				ii.	***	***
état n-2	0,9749142464	0,2425538003	0,006806069254	0,4505776883	0,6856231027	0,2900142387
état n-1	0,3992379726	0,5353277435	0,8625905616	0,5218028734	0,7136122717	0,3896530229
état n	0,9000002751	0,1975965812	0,2337589261	0,8397484591	0,7743333472	0,4762497543

action A

Expérience pratique : le labyrinthe en Python

Présentation du labyrinthe

Parcours d'obstacle : but?
Parvenir à l'arrivée jaune en un
minimum de pas
Grille 20*20

Transcription en python

Matrice Q: utilisée comme matrice

États: tuples de position (x , y)

Actions: Déplacements possibles (haut, bas,

gauche, droite)

Max Q : plus grande valeur associée à une action

pour un état donné

r : récompense de l'action effectuée

ici c'est:

- un walk reward de -0.05 pour une arrivée sur un bloc "normal"
- +1 ou -1 sur un bloc terminal jaune ou rouge

Q[s][a]	haut	bas	gauche	droite
(0; 0)	0,8887586574	0,2318675143	0,291397744	0,2530896776
(0;1)	0,3159628038	0,5096924007	0,7021593453	0,3244752051
(0;2)	0,02252814672	0,009478397598	0,1081616977	0,4140526635
(0;3)	0,08914194099	0,4238189238	0,02721855479	0,9993835742
	/	mis	***	***
	<i>f</i> -			
***	/		***	
	/	***	***	
(19;17)	0,9647931298	0,3892247012	0,6084894526	0,7331544589
(19 ;18)	0,8670433842	0,1460729469	0,8346330623	0,1193675221
(19;19)	0,2679125273	0,3604113458	0,06685312541	0,9984351647

MaxQ pour un état

Voir annexe Apprentissage.py (lignes 60 à 106) pour l'implémentation de cette itération

$$Q[s][a] = (1-\alpha) * Q(s,a) + \alpha (r + \gamma * max_{a' \in A}(Q(s,a'))$$

Transcription en python : exemple de déplacement

Initialisation : tous les évènements sont équiprobables

Outil de lecture visuelle : carte "thermique"

chaque passage par une case la rosit un peu plus : visualisation du chemin optimal trouvé (Voir annexe Milieu.py lignes 75 à 102 + ligne 115)

L'algorithme ne s'arrête que lorsque l'agent effectue le meme score un certain nombre de fois d'affilée (Voir annexe apprentissage.py fonction signal_arret ligne 45)

Expériences et résultats

Formule et influence des coefficients

 $Q[s][a] = (1 - \alpha) * Q(s, a) + \alpha (r + \gamma * max_{a' \in A}(Q(s, a')))$

milieu déterministe : meilleur alpha = 1 d'après L'apprentissage de réflexes par renforcement :

Apprentissage artificiel: Concepts et algorithmes [4]

effectivement

Méthodologie : voir annexes milieu_nogui.py et apprentissage_nogui.py

Formule et influence des coefficients

 $Q[s][a] = (1 - \alpha) * Q(s, a) + \alpha (r + \gamma * max_{a' \in A}(Q(s, a')))$

alpha fixé à 1 dans ce cas, influence de gamma?

Valeur minimale de gamma! Sinon impossible de converger vers un chemin optimal! Modifie l'interaction avec le milieu

score limite en cas de divergence à -10000

Voir annexe apprentissage.py ligne 110

Formule et influence des coefficients : aspect du score

Convergence vers un chemin "presque optimal" rapide mais chemin optimal long à obtenir

Pourquoi pas essayer d'influencer l'agent?

Expérience : bloc de "récompense" (en bleu) pour inciter à passer par ce bloc

Approche naïve : récompense immédiate

Échec

Pourquoi pas essayer d'influencer l'agent?

Hypothèse: il faut différer la récompense pour "masquer" la position du bonus à l'agent: instauration d'un coffre (Voir annexe Milieu.py lignes 119 à 138) récompense seulement à l'arrivée

Échec 2 mais prévisible par la théorie:

$$Q[s][a] = (1-\alpha) * Q(s,a) + \alpha (r + \gamma * max_{a' \in A}(Q(s,a'))$$

OR ICI ALPHA = 1!

Pourquoi pas essayer d'influencer l'agent?

Avec alpha = 0.1 (prend en compte état précédent) cela fonctionne!

Bonus ici initialisé à 10

Aspect apprentissage: atout majeur du Q-learning

Enregistrement/lecture de la matrice Q pré-optimale pour une grille donnée dans un fichier et lancement avec cette matrice

(Voir annexe apprentissage.py ligne 22 et apprentissage_nogui.py ligne 185)

Chemin trouvé trivialement

Aspect apprentissage: atout majeur du Q-learning

Tolérance aux modifications? Meilleur chemin toujours instantané (Voir Milieu.py ligne 47 pour la modification du chemin)

Conclusion

Intérêts:

- permet l'analyse de l'interaction entre un agent autonome et un milieu
- évolution en toute autonomie de l'agent sans aucune information sur le milieu
- apprentissage et adaptation de l'agent à des milieux similaires
- pourrait éventuellement permettre une résolution du problème du voyageur de commerce?

Inconvénients:

- lourd en calculs pour des environnements très grands
- solution : Considérer des chemins "presque idéaux"?