扫地才子的学习笔记

——复分析

扫地才子

2023年3月15日

前言

这是我的笔记, 不是讲义, 尽管很像讲义风格.

有任何疑问都可以和我交流

这是高某人新开的坑,用的课本为 Stein 的复分析,内容为前三章

由于时间原因, 很多证明都没有详细去写, 但详细写的基本都是我没有弄明白而对我继续学习造成极大困扰的.

还有很多坑没有填上, 估计要以后再填了.

高某人更注重的是数学的直觉, 即对数学的直观感受.

如果觉得不直观, 那就在学习的过程中让它变得直观

由于这是期末写的, 我尽量写的详细一些

反正肯定比孙七七写的详细

贴上孙七七的主页

https://tysunseven.github.io/

高 2023 年 3 月 15 日

目录

第一章	复分析的准备工作	1
1.1	复数的概念	1
1.2	复数的基本运算	2
1.3	复平面的集合	3
1.4	复变函数	4
1.5	Cauchy-Riemann 方程	6
1.6	幂级数	10
1.7	沿曲线的积分	12
1.8	习题	14
第二章	Cauthy 定理及其应用	15
第 二章 2.1	Cauthy 定理及其应用三角形上的 Cauthy 定理	15
	·	
2.1	三角形上的 Cauthy 定理	15
2.1	三角形上的 Cauthy 定理	15 17
2.1 2.2 2.3	三角形上的 Cauthy 定理	15 17 18
2.1 2.2 2.3 2.4	三角形上的 Cauthy 定理	15 17 18 23 24
2.1 2.2 2.3 2.4 2.5	三角形上的 Cauthy 定理	15 17 18 23 24

目录		II
3.1	奇点	29
3.2	亚纯函数	35
3.3	幅角原理及其应用	36
3.4	同伦与单连通区域	38
3.5	习题	39

第一章 复分析的准备工作

这一节介绍的是复分析的一些基本概念

1.1 复数的概念

定义 1.1.1. 虚数单位 若 $x^2 + 1 = 0$ 则定义 $x = \pm \sqrt{i}$, 其中 i 称为虚数单位.

其实复数的来源并不是我们所认为的那样,这个故事等我之后填坑.

定义 1.1.2. 复数 若 z 为一个复数,z 会由实部和虚部组成,即 z=x+iy,其中 x=Re(z) 为 z 的实部,y=Im(z) 为 z 的虚部. 类似的,如果将复数放在平面直角坐标系中,定义模长 $R=\sqrt{x^2+y^2}$,那么复数也可以表示为 $z=R(\cos\theta+i\sin\theta)$,上式称为复数的三角形式,由欧拉公式 $e^{i\theta}=\sin\theta+i\cos\theta$ 可知,复数还可以表示为: $z=Re^{i\theta}$,上式称为复数的复指数形式.

注 1.1.1. • 纯虚数: $x = 0, y = \neq 0, z = yi$

- $x \le 0, y == 0, z = x$
- $\mathbb{R} \subset \mathbb{C}$
- <math><math>a + bi = a' + b'i,<math><math><math><math><math>a = a', b = b'
- z = x + iy 的共轭记为 $\bar{z} = x iy$
- 实数可以比较大小, 但复数不可以.

1.2 复数的基本运算

设 $z_1 = x_1 + iy_1, z_2 = x_2 + iy_2$ 基本运算:

- 加减法: $z_1 \pm z_2 = (x_1 \pm x_2) + (y_1 \pm y_2)i$
- 乘法: $z_1 \cdot z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1x_2 y_1y_2) + i(x_1y_2 + y_1x_2)$
- 除法: $\frac{z_1}{z_2} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{x_2 y_1 x_1 y_2}{x_2^2 + y_2^2}$

运算律:

- 交換律: $z_1 + z_2 = z_2 + z_1, z_1 \cdot z_2 = z_2 \cdot z_1$
- 结合律: $z_1 + z_2 + z_3 = (z_1 + z_2) + z_3 = z_1 + (z_2 + z_3), z_1 z_2 z_3 = (z_1 z_2) z_3 = z_1(z_2 z_3)$
- $\oint \mathbb{R} \mathbb{E} z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3$

注 1.2.1. •
$$z + 0 = z, 0 \cdot z = 0$$

- $z \cdot 1 = z, z \cdot \frac{1}{z} = 1$
- $z_1 \cdot z_2 = 0$, 则 z_1 和 z_2 至少有一个为 z_1 0, 反之也成立

对于复数的复指数形式, 值得一提的只有乘除法, 将会变得异常的简洁.

$$z_1 = R_1 e^{i\theta_1}, z_2 = R_2 e^{i\theta_2}$$

那么可以得到:

$$z_1 z_2 = R_1 R_2 e^{i(\theta_1 + \theta_2)}$$

用这种形式可以很好的计算复数的乘幂.

$$z = Re^{i\theta}$$

$$z^n = R^n e^{in\theta}$$

1.3 复平面的集合

结合拓扑中的概念可以理解的更加全面.

- 开集: 全是内点的集合.
- 闭集: 余集为开集的集合, 当然还有一个等价的定义, 一个集合是闭的当且仅当该集合包含它所有的聚点.
- 闭包: 集合本身并上该集合的导集.
- 有界集: 一个集合有界当且仅当存在 M>0, 对于所有的 $|z|\leq M, \forall z\in\Omega$
- 集合的直径: $diam(\Omega) = \sup_{z,w \in \Omega} |z w|$
- 紧集: 有界闭集.

注 1.3.1. 闭集一定有界吗?似乎不是这样的,以拓扑角度来看,开集闭集事实上是和拓扑的选取有关的,比如在一维欧氏空间中, \emptyset , $\mathbb R$ 都是是既开又闭的,因此很容易找到闭集无界的反例.

定理 1.3.1. 复平面上一个集合是紧集当且仅当从该集合中取出的任意一列 $\{z_n\}\subseteq\Omega$ 都收敛到该集合中的一个点.

证明略,这个坑之后再填,因为这个和主线剧情关系不大,并且也很直观,尽管很多时候直观的东西证明起来并不容易.

定理 1.3.2. 一个集合 A 是紧的当且仅当对于 A 的任意开覆盖都有有限子覆盖.

证明略, 理由同上.

定理 1.3.3. 复平面上的区间套定理 有复平面上非空集合列 $\Omega_1 \supset \Omega_2 \supset \cdots \supset \Omega_n \supset$, 如果有 $diam(\Omega_n) \to 0$ $asn \to \infty$, 那么就存在一个点 $\omega \in \mathbb{C}$ 使 得 $\omega \in \Omega_n, \forall n \geq 1$

证明略

定义 1.3.4. 连通集 一个集合是连通的当且仅当不能表示成两个互不相交的开集的并.

定义 1.3.5. 道路连通 如果在空间中的任意两个点,都有一条连续的通路可以将二者连接. 这原本是比连通更强的拓扑性质,但在复平面中,二者是等价的.

1.4 复变函数

啊 无聊的东西终于结束了, 现在可以开始真正的复分析了.

 $f:\mathbb{C}\to\mathbb{C}$

定义 1.4.1. 复变函数 设 Ω 为一复数集合, 若对 Ω 内任一复数 z, 有唯一确定的复数 ω 与之对应, 则称在 Ω 上定义了一个单值函数.

事实上复变函数还会有多值的情况,比如复对数函数,这在后文将会给与阐述.

本文更多阐述的是单复变函数.

定义 1.4.2. 连续函数 设 f 是定义在复数集 Ω 上的一个函数,称 f 在 $z_0 \in \Omega$ 处连续,若对任意的 $\epsilon > 0$,存在 $\delta > 0$,使得 $|z - z_0| < \delta$ 有 $|f(z) - f(z_0)| < \epsilon$. 该定义还等价于任意序列 $\{z_n\}$,只需要 $\lim_{n \to \infty} z_n = z_0$,总有 $\lim_{n \to \infty} f(z_n) = f(z_0)$ 则称 f 在 z_0 处连续.

• 如果 f 在 Ω 上任意一点都连续, 则称 f 在 Ω 上连续

- 如果 f, g 在 Ω 上连续, 那么 f + g, f g 在 Ω 上也连续
- 如果 f 在 Ω 上连续, 那么 |f(z)| 也连续
- 称点 $z_0 \in \Omega$ 处达到最大值, 若 $|f(z)| \leq |f(z_0)|, \forall z \in \Omega$
- 最小值同理

定理 1.4.3. 定义在紧集 Ω 上的连续函数 f(z), 它在 Ω 上有界, 并且在 Ω 上能达到最大值和最小值.

值得一提的是,复变函数还可以看成 f(x,y) = u(x,y) + iv(x,y), 其中 u,v 均为实值函数.

因此, 复变函数的连续还等价于 u, v 两个二元实值函数连续.

当然,实际上很少会用到这个形式,但这个形式确实很好用.

设 Ω 为 \mathbb{C} 中的一个开集, f为定义在 Ω 上的复变函数

定义 1.4.4. 复可导 称 f 在 z_0 处可导, 如果当 $h \to 0$, 比值 $f'(z_0) = \frac{f(z_0+h)-f(z_0)}{h}$ 的极限存在, (其中 $h \in \mathbb{C}, h \neq 0, z_0+h \in \Omega$) 则称 $f'(z_0)$ 为 f 在点 z_0 处的导数

定义 1.4.5. 全纯函数 称 f 在 z=0 处全纯, 若存在 z_0 的一个邻域, f 在邻域内都可导. 称 f 在 Ω 上全纯, 若 f 在 Ω 上任一点均为全纯. 若 F 为 $\mathbb C$ 中的一个闭子集, 称 f 在 F 上全纯, 指的是 f 在包含 F 的某一开集上全纯. 特别的, 若 f 在 $\mathbb C$ 中任一点处均为全纯的, 则称 f 是整函数.

全纯函数又称为解析函数.

函数 f 可导和可微的概念是等价的, 可按照定义证明.

如果 f 和 g 均为 Ω 上的全纯函数, 则:

- f + q 在 Ω 上全纯,(f + q)' = f' + q'
- $f \cdot g$ 在 Ω 上全纯,(fg)' = f'g + g'f

- $\frac{f}{g}$ 在 $g \neq 0$ 处全纯, $(\frac{f}{g})' = \frac{f'g g'f}{g^2}$
- $f: \Omega \to U, g: U \to \mathbb{C}$, 则 $g \circ f$ 也全纯, $(g \circ f)'(z) = g'(f(z)) \cdot f'(z)$

1.5 Cauchy-Riemann 方程

这是第一章最重要的一个地方,本节将会以巨量的篇幅去阐述此事.

记点
$$P_0(x_0,y_0)$$
, 函数 $f=u(x,y)+iv(x,y)$, 向量值函数 $F(x,y)=\begin{pmatrix} u(x,y)\\ v(x,y) \end{pmatrix}$

称二元函数可微, 如果存在 $a,b \in \mathbb{R}$ 使得

$$u(x_0 + h_1, y_0 + h_2) - u(x_0, y_0) = ah_1 + bh_2 + \sqrt{h_1^2 + h_2^2} \phi_1(H)$$

其中 $\phi_1(H) \to 0$ as $H \to 0$

同理

$$u(x_0 + h_1, y_0 + h_2) - u(x_0, y_0) = ah_1 + bh_2 + \sqrt{h_1^2 + h_2^2}\phi_1(H)$$

称 F 在 P_0 点处可微, 若

$$\begin{pmatrix} u \\ v \end{pmatrix} (P_0 + H) - \begin{pmatrix} u \\ v \end{pmatrix} (P_0) = \begin{pmatrix} ah_1 + bh_2 \\ ch_1 + dh_2 \end{pmatrix} + |H|\phi(H)$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} + |H|\phi(H)$$

$$= \begin{pmatrix} a & b \\ c & d \end{pmatrix} H + |H|\phi(H)$$

$$F(P_0 + H) - F(P_0) = J_F(P_0)(H) + |H|\phi(H), \ \sharp \ \phi(H) \to 0 \text{ as } H \to 0$$

其中
$$J_F(P_0) = \begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix}$$

既然复变函数连续可以看成 u,v 均连续, 那复变函数可导是不是也可以看成 u,v 均可导呢?

事实上,u,v 均可导这个条件还是远远不够的,具体原因可以在下面的分析与证明中得到

性质 1.5.1. 设 f 在 z_0 处可导, 则必有:f = u(x,y) + iv(x,y)

- $1. \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ 均存在
- 2. u(x,y),v(x,y) 在 (x_0,y_0) 点处满足 Cauchy-Riemann 方程: $\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

事实上, 考虑极限 $\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = f'(z_0)$

在前面提到过,这个 $h \in \mathbb{C}$,因此先取 h 为实数. 记 $h = h_1 + ih_2$ $h_2 =$

$$0 \quad h_1 \to 0$$

$$\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = \frac{f(x_0+h_1,y_0)-f(x_0,y_0)}{h_1} = \frac{\partial f}{\partial x}(x_0,y_0)$$

再取 h 为纯虚数. 记 $h = h_1 + ih_2$ $h_1 = 0$ $h_2 \rightarrow 0$

$$\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h} = \frac{f(x_0,y_0+h_2)-f(x_0,y_0)}{ih_2} = \frac{1}{i} \frac{\partial f}{\partial y}(x_0,y_0)$$

但是, 不管 h 是沿着实轴趋于零, 还是沿着虚轴趋于零, 导数值应该只有一个

$$\frac{\partial f}{\partial x} = \frac{1}{i} \frac{\partial f}{\partial y}(x_0, y_0)$$

也就是满足 Cauthy-Riemann 方程

$$\begin{cases} \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \\ \frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} \end{cases}$$

这个分析看起来是很有道理的,但这个结论并不能完全让人信服,因为仅仅是沿着实轴与虚轴趋于0得出的极限值,并不能代表沿着复平面任意

一条线趋于 0 都是如此. 只能说, 函数全纯, 至少要满足 Cauthy-Riemann 方程. 因此这只是一个必要条件. 我并不能说明如果满足 Cauthy-Riemann 方程函数就是全纯的.

为了方便之后的叙述, 在此做一些记号:

$$\begin{cases} \frac{\partial}{\partial z} \triangleq \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \bar{z}} \triangleq \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right) \end{cases}$$

当然,这仅仅是形式上的记号,尽管我觉得它很有道理,但还是最好只 把它当成形式上的记号

当然, 为了方便记忆, 我们还可以从这个方面来理解:

f(z) 可以表示成 f(x,y) 的形式, 自然也可以表示成 $f(z,\bar{z})$ 的形式 因为

$$\begin{cases} z = x + iy \\ \bar{z} = x - iy \end{cases}$$

$$\begin{cases} x = \frac{z + \bar{z}}{2} \\ y = \frac{z - \bar{z}}{2} \end{cases}$$

之后由偏导数的链式法则即可得到上式:

$$\begin{cases} \frac{\partial}{\partial z} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y} \right) \\ \frac{\partial}{\partial \bar{z}} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} - \frac{1}{i} \frac{\partial}{\partial y} \right) \end{cases}$$

看起来很有道理有木有!

返回正题, 我们还没有证明 Cauthy-Riemann 方程的充分性, 在此之前, 我们需要先取证明一个引理

引理 1.5.1. 如果 f 在 z_0 点复可导,那么在 z_0 点处有 $\frac{\partial f}{\partial z} = 0, f'(z_0) = \frac{\partial f}{\partial z}(z_0) = 2\frac{\partial u}{\partial z}(z_0)$ 并且记 $F(x,y) = \begin{pmatrix} u(x,y) \\ v(x,y) \end{pmatrix}$,将 F 看成实变量函数,则 F 在 z_0 点可微,并且 $det(J_F(x_0,y_0)) = |f'(z_0)|^2$

前者很好证明,用 Cauthy-Riemann 方程替换一下就好了

$$f'(z_0) = \frac{\partial f}{\partial x}(z_0)$$

$$= \frac{1}{i} \frac{\partial f}{\partial y}(z_0)$$

$$= \frac{1}{2} (\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial y}) f(z_0)$$

$$= \frac{\partial f}{\partial z}(z_0)$$

$$= \frac{\partial u}{\partial x} + \frac{1}{i} \frac{\partial u}{\partial y}$$

$$= (\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial x}) u$$

$$= 2 \cdot \frac{1}{2} (\frac{\partial}{\partial x} + \frac{1}{i} \frac{\partial}{\partial x}) u$$

$$= 2 \frac{\partial u}{\partial z}(z_0)$$

后者的证明稍微麻烦一点, 但由于与本文联系不大, 这个坑等我之后再填.

接下来就可以证明充分性了

定理 1.5.2. 假设 f=u+iv 是定义在开集 Ω 上的复值函数, 若 u,v 均为连续可微的并且在 Ω 上满足 Cauthy-Riemann 方程, 则 f 在 Ω 上全纯且 $f'(z)=\frac{\partial f}{\partial z}$

由于 u, v 是连续可微的, 因此

$$u(x + h_1, y + h_2) - u(x, y) = \frac{\partial u}{\partial x} h_1 + \frac{\partial u}{\partial y} h_2 + |h|\phi_1(h)$$
$$v(x + h_1, y + h_2) - v(x, y) = \frac{\partial v}{\partial x} h_1 + \frac{\partial v}{\partial y} h_2 + |h|\phi_2(h)$$

其中
$$\lim_{|h|\to 0} \phi_1(h) = 0$$
 $\lim_{|h|\to 0} \phi_2(h) = 0$ $h = h_1 + ih_2$ 进而

$$f(z+h) - f(z) = u(x+h_1, y+h_2) - u(x, y) + i(u(x+h_1, y+h_2) - v(x, y))$$
$$= \frac{\partial u}{\partial x} h_1 + \frac{\partial u}{\partial y} h_2 + i \frac{\partial v}{\partial x} h_1 + i \frac{\partial u}{\partial y} h_2 + |h| [\phi_1(h) + i \phi_2(h)]$$

然后用 Cauthy-Riemann 方程一顿替换

$$f(z+h) - f(z) = \frac{\partial u}{\partial x} h_1 + \frac{\partial u}{\partial y} h_2 - i \frac{\partial u}{\partial y} h_1 + i \frac{\partial u}{\partial x} h_2 + |h| \phi(h)$$
$$= \left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}\right) (h_1 + i h_2) + |h| \phi(h)$$

由于 $\lim_{h\to 0} \phi(h) = 0$ 得到 $f(z+h) - f(z) = (\frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y})h + |h|\phi(h)$ 故 f 可导, 从而 f 在 Ω 上全纯 并且 $f'(z) = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} + \frac{1}{i}\frac{\partial u}{\partial y} = \frac{\partial f}{\partial z}$ 由此结束充分性的证明.

很久之前就听说 Stein 的书写得和小说一样, 现在看来确实如此, 娓娓道来. 在我读 Stein 的 Fourier 分析的时候也是如此, 会时不时的会用生动的比喻来叙述一个数学概念.

然而我英语水平太差了完全 get 不到 Stein 的笑点.

1.6 幂级数

定义 1.6.1. 复数项级数
$$\sum_{n=1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n + \cdots$$

定义 1.6.2. 部分和
$$\sum_{n=1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \cdots + \alpha_n$$

定义 1.6.3. 收敛 指 $\{S_n\}_{n\geq 1}$ 收敛, 若 $\lim_{n\to\infty}S_n=S$, 则称该级数收敛

定义 1.6.4. 柯西收敛准则 设 $\sum_{\alpha=1}^{\infty}$ 收敛,当且仅当 $\forall \epsilon>0, \exists N(\epsilon)$ 使得当 m>N 时, $|\alpha_{m+1}+\cdots+\alpha_{m+p}|<\epsilon, p\in N^*$

定义 1.6.5. 绝对收敛 称 $\sum_{n=0}^{\infty} \alpha_n$ 绝对收敛, 即 $\sum_{n+1}^{\infty} |\alpha_n|$ 收敛. 绝对收敛必然可以推出条件收敛.

定义 1.6.6. 复变函数项级数 $\sum\limits_{n=0}^{\infty}f_n(z)$, 例如 $e^z=\sum\limits_{n=0}^{\infty}a_nz^n$

定理 1.6.7. 给定幂级数 $\sum_{n=0}^{\infty} a_n z^n$, 则存在 $0 \le R \le \infty$, 使得:

- 1. 如果 |z| < R 级数绝对收敛
- 2. 如果 |z| > R 级数发散

进一步, 约定 $\frac{1}{0}=+\infty, \frac{1}{\infty}=0$, 则 R 由 Hadmard 公式给出

$$\frac{1}{R} = \lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}$$

R 称为幂级数的收敛半径, 区域 |z| < R 称为幂级数的收敛圆盘证明先略, 这不重要

定理 1.6.8. 幂级数 $\sum_{n=0}^{\infty} a_n z^n$ 在收敛圆盘内为全纯函数. 在收敛圆盘内 $f'(z) = \sum_{n=1}^{n} n \cdot a_n z^{n-1}$, 并且 f' 与 f 的收敛半径相同.

证明先略,这不重要

推论 1.6.9. 幂级数在收敛半径内 n 次可导

注 1.6.1. 引入复数之后, 实数范围内的一些结论便不再成立, 例如 $|\cos z| \le 1$

解析函数可以展成幂级数, 相反, 可以展成幂级数的也是解析函数. 若 在 Ω 内逐点解析, 那么称该函数全纯.

在第三章会更加详细的介绍幂级数, 因此在此不作过多赘述.

1.7 沿曲线的积分

可类似的看成第二类曲线积分

参数化的曲线:

- $z(): [a,b] \to \mathbb{C}$
- z(a) 为左端点
- z(b) 为右端点

z 连续

 $z'(s) \neq 0$ (速度不为 0)

导数存在,导数连续

定义 1.7.1. 光滑 若函数 $z() \to \mathbb{C}$ 如果 z'(t) 存在连续 $z'(t) \neq 0, \forall t \in [a,b]$, 则称参数化的曲线 γ 是光滑的

定义 1.7.2. 分段光滑 如果函数 z 在 [a,b] 上连续, 并且存在点 $a=a_0 < a_1 < \cdots < a_n = b$ 使得,z() 在 $[a_k,a_{k+1}](k=0,1,\cdots,n-1)$ 上都是光滑的,则称参数化的曲线是分段光滑的.

一条曲线可以有很多种参数化方式,满足一定条件,两种曲线的参数化方式等价.

定义 1.7.3. 等价 如果对两条不同的参数化曲线 $z():[a,b]\to\mathbb{C},\tilde{z}():[c,d]\to\mathbb{C}$ 存在由 $[c,d]\to[a,b]$ 的连续可微的双射 $s\to t(s)$ 使得 t'(s)>0 并且 $\tilde{z}(s)=z(t(s)), \forall s\in[c,d]$

定义 1.7.4. 给定光滑曲线 γ , 则可定义 γ^- , 若 γ 有 $z():[a,b] \to \gamma$, 则 γ^- 有参数化方式: $z^-:[a,b] \to \gamma, z^-(t) \triangleq z(b+a-t)$

在此声明:

曲线: 指的是分段光滑曲线

闭曲线:z(a) = z(b)

简单曲线不相交:

- (1) 非闭曲线时, $z(t) \neq z(s), \forall t \neq s, t, s \in [a, b]$
- (2) 闭曲线时, 除了 t = a, s = b 时, $z(t) \neq z(s)$, $\forall t \neq s, t, s \in [a, b]$

定义 1.7.5. f 沿光滑曲线 γ 的积分 设 γ 为 $\mathbb C$ 中一条光滑曲线, f 为 γ 上的一个连续函数

$$\int_{\gamma} f(z)dz \triangleq \sum_{k=1}^{n} f(\zeta)\Delta z_{k}$$

设 γ 有一种参数化方式: $z:[a,b] \rightarrow \gamma$

$$\int_{\gamma} f(z)dz \triangleq \int_{a}^{b} f(z(t))z'(t)dt$$

我们说上述定义是良好的,因为它并不依赖参数化曲线的选取.证明暂时略过,当然,这很简单.

定义 1.7.6. f 沿分段光滑曲线 γ 的积分 设 γ 为 $\mathbb C$ 中一条分段光滑曲线, f 为 γ 上的一个连续函数

$$\int_{\gamma} f(z)dz \triangleq \sum_{k=1}^{n} f(\zeta)\Delta z_{k}$$

设 γ 有一种参数化方式: $z:[a,b]\to \gamma$

$$\int_{\gamma} f(z)dz \triangleq \sum_{k=1}^{n} \int_{a_{k-1}}^{a_k} f(z(t))z'(t)dt$$

其中 $z():[a_0,a_n]\to\mathbb{C}$ 是 γ 的一种参数化方法.z() 在 $[a_k,a_{k+1}](k=0,\cdots,n-1)$ 上光滑

定义 1.7.7. 光滑曲线 γ 的长度 $length(\gamma) \triangleq \int_a^b |z'(t)| dt$

光滑曲线的长度自然也是良好定义的,因为它不依赖参数化曲线的选取.

性质 1.7.1. •
$$\int_{\gamma} [\alpha f(z) + \beta g(z)] = \alpha \int_{\gamma} f(z) dz + \beta \int_{\gamma} g(z) dz$$

- $\int_{\gamma} f(z)dz = -\int_{\gamma^{-}} f(z)dz$
- $|\int_{\gamma} f(z)dz| \leq \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$

定义 1.7.8. 原函数 设 f 是开集 Ω 上的一个函数, 如果 F 在 Ω 上全纯, 且 $F'(z)=f(z), \forall z\in\Omega$, 则称 F 为 f 在 Ω 上的原函数

定理 1.7.9. 如果 f 连续, 并且在 Ω 上有原函数 F(x), γ 是 Ω 中以 ω_1 到 ω_2 的一条曲线则 $\int_{\gamma} f(z)dz = F(\omega_2) - F(\omega_1)$

推论 1.7.10. 设 f 在开集 Ω 上有原函数 ,f 在 Ω 上连续 ,设 γ 为 Ω 内的一条闭曲线 ,则 $\int_{\gamma} f(z)dz=0$

推论 1.7.11. 如果 f 在区域 Ω 上全纯, 且 f'=0, 那么 f 为一个常数.

至此无聊至极的第一章就结束了, 啊, 留下了好多坑没有填.

1.8 习题

妈的, 这题是不是都忒难了点?

例 1.8.1. 计算下列幂级数 $\sum_{n=1}^{\infty} a_n z_n$ 的收敛半径

- 1. $a_n = (log(n))^2$
- $2. \ a_n = n!$
- $3. \ a_n = \frac{n^2}{4^n + 3n}$

第二章 Cauthy 定理及其应用

2.1 三角形上的 Cauthy 定理

定理 2.1.1. Goursat 定理 如果 Ω 是 $\mathbb C$ 中的一个开集, $T\subset\Omega$ 且 T 是一个三角形,T 的内部也包含在 Ω 中, 设 f 在 Ω 上全纯, 则 $\int_T f(z)dz=0$

定理证明起来技巧性还是比较强的, 因此我花了个图

我们用 $T^{(0)}$ 表示三角形 T, 方向为逆时针方向. 用 $p^{(0)}$ 表示 $T^{(0)}$ 的周 长, $d^{(0)}$ 表示 $T^{(0)}$ 的直径.

取 $T^{(0)}$ 的三个中点,并将中点连接起来,得到 4 个小三角形. 记为 $T_1^{(1)},T_2^{(1)},T_3^{(1)},T_4^{(1)}$,它们的方向与原 $T^{(0)}$ 的方向相同

则 $\int_{T^{(0)}} f(z)dz = \int_{T_1^{(1)}} f(z)dz + \int_{T_2^{(1)}} f(z)dz + \int_{T_3^{(1)}} f(z)dz + \int_{T_4^{(1)}} f(z)dz$ 故 $|\int_{T^{(0)}} f(z)dz| \le 4 \max_{1 \le i \le 4} |\int_{T_i^{(1)}} f(z)dz|$ 不妨设 $|\int_{T_1^{(1)}} f(z)dz| = \max_{1 \le i \le 4} |\int_{T_i^{(1)}} f(z)dz|$ 那么, 则有 $|\int_{T^{(0)}} f(z)dz| \le 4|\int_{T^{(1)}} f(z)dz|$ 记 $p^{(1)}$ 表示 $T^{(1)}$ 的周长, $d^{(1)}$ 表示 $T^{(1)}$ 的直径. 以此类推, 我似乎可以得到一串三角形

$$T^{(0)}, T^{(1)}, \cdots, T^{(n)}$$

以及一串周长和直径.

$$p^{(n)} = \frac{1}{2^n} p^{(0)}, d^{(n)} = \frac{1}{2^n} d^{(0)}$$

记 $T^{(n)}$ 为 $T^{(n)}$ 的内部, 很容易知道它为有界闭集.

有
$$\mathcal{T}^{(1)} \supset \mathcal{T}^{(2)} \supset \cdots \supset \mathcal{T}^{(n)} \cdots$$

由闭区间套定理可得, 存在唯一的点 z_0 使得 $z_0 \in \mathcal{T}^{(n)}, \forall n \geq 1$

由于 f 在 Ω 上有原函数, 那么 f 就可以写成 $f(z) = f(z_0) + f'(z_0)(z - z_0)$ $(z_0) + \phi(z)(z - z_0), \text{ #A. } \lim_{z \to z_0} \phi(z) = 0$

考虑 $\int_{T(n)} f(z)dz = \int_{T(n)} f(z_0)dz + \int_{T(n)} f'(z_0)(z-z_0)dz + \int_{T(n)} \phi(z)(z-z_0)dz$ $z_0)dz$

 $f(z_0), f'(z_0)(z-z_0)$ 均在 $T^{(n)}$ 内全纯, $\int_{T^{(n)}} f(z_0)dz = 0$, $\int_{T^{(n)}} f'(z_0)(z-z_0)$ $z_0)dz = 0$

$$\int_{T^{(n)}} f(z)dz = \int_{T^{(n)}} \phi(z)(z - z_0)dz$$

由第一章,曲线积分的性质
$$|\int_{\gamma} f(z)dz| \leq \sup_{z \in \gamma} |f(z)| \cdot length(\gamma)$$
 $\int_{T^{(n)}} \phi(z)(z-z_0)dz \leq p^{(n)} \max_{z \in T^{(n)}} |\phi(z)(z-z_0)| \leq p^{(n)} d^{(n)} \max_{z \in T^{(n)}} |\phi(z)|$ 当 $n \to \infty$

$$\int_{T^{(n)}} \phi(z)(z-z_0)dz \le 0$$

至此 Goursat 定理证毕.

我们现在已经知道沿三角形上的 Cauthy 定理了

推论 2.1.2. 设 Ω 为 $\mathbb C$ 上的一个开集,R 为 Ω 内部一长方体,R 的内部也包含在 Ω 中, 如果 f 在 Ω 内全纯, 则 $\int_R f(z)dz=0$

证明, 可将长方形按对角线相连, 得到两个三角形, 之后利用 Goursat 定理

至此我们知道了沿长方形的 Cauthy 定理

2.2 圆盘上的 Cauthy 定理

定理 2.2.1. 定义在开圆盘上的全纯函数存在原函数.

传说中的定理 2.1, 划重点. 如果不想当然, 严格的证明的话, 还是很有 技巧性的.

图太难画了,凑活着看吧,还少一个箭头,但实在不想画了

选取类似图中的曲线, 定义原函数 $F(z) = \int_{\gamma_z} f(w) dw$

选择 h 充分小, 使得 z+h 也在圆盘内

$$F(z+h) - F(z) = \int_{\gamma_{z+h}} f(w)dw - \int_{\gamma_z} f(w)dw = \int_{\eta} f(w)dw$$

其中 η 是 $z \rightarrow z + h$ 的直线段.

由于连续, 可以得到:

$$f(w) = f(z) + \phi(w)$$

因此原式

故

$$\begin{split} |\frac{F(z+h)-F(z)-f(z)\cdot h}{h}| &= |\frac{F(z+h)-F(z)}{h} - f(z)| < \epsilon \\ \text{从而有} \lim_{h\to 0} \frac{F(z+h)-F(z)}{h} &= f(z) \\ \text{故结论得证}. \end{split}$$

定理 2.2.2. 设 f 在圆盘 D 上全纯, 则对圆盘内的任意闭曲线 $\gamma, \int_{\gamma} f(z) dz = 0$

于是我们得到了圆盘上的柯西定理.

推论 2.2.3. 假设 f 在开集 Ω 中全纯,C 为开集中的一个圆, 且 C 的内部也包含在开集 Ω 中, 则 $\int_C f(z)dz=0$

定义 2.2.4. toy countour

- 该曲线内部的定义非常明确
- 可类似定理 2.1 的过程构造出原函数.

因为这个单词太不好打了, 所以之后也会叫它玩具曲线.

类似的, 我们可以得到玩具曲线上的柯西定理.

2.3 Cauthy 积分公式

定理 2.3.1. $D \in \mathbb{C}$, f 在包含 \overline{D} 上的某个开集上全纯, 用 C 表示 D 的边界, C 沿正方向, 则: $f(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta - z} d\zeta$, $\forall z \in D$

当然, 这个公式我更喜欢写成 $f(z_0)=\frac{1}{2\pi i}\int_C\frac{f(z)}{z-z_0}dz, \forall z_0\in D$ 因为第一个式子看起来很别扭.

这个证明很有必要,因为在我学到后面留数公式的时候,因为这个的证明没有弄明白,给我造成了很大的困扰

任意固定一点, $z \in D$ 考虑如图所示的玩具曲线,将其分成四部分

函数
$$F(\zeta) = \frac{f(z)}{\zeta - z}$$
 在如图所示的曲线内部全纯, 利用柯西定理,

$$(\int_C + \int_{C_{\epsilon,\delta}} + \int_{\eta_{\delta}^+} + \int_{\eta_{\delta}^-}) F(\zeta) d\zeta = 0$$

$$\Leftrightarrow \delta \to 0$$

原式变成了:

$$\int_{C} F(\zeta)d\zeta + \int_{C_{\epsilon}} F(\zeta)d\zeta = 0$$

稍作变换

$$\begin{split} &\int_{C} \frac{f(\zeta)}{\zeta - z} d\zeta + \int_{C_{\epsilon}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta + \int_{C_{\epsilon}} \frac{f(z)}{\zeta - z} d\zeta = 0 \\ & \text{由于 } f \ \text{在 } \zeta \ \text{处全纯,} \ \text{因此} \lim_{\zeta \to z} \frac{f(\zeta) - f(z)}{\zeta - z} = f'(z) \\ & \text{故} \ \forall \epsilon > 0, \exists \delta > 0, |\zeta - z| < \delta, |\frac{f(\zeta) - f(z)}{\zeta - z} - f'(z)| < \epsilon \end{split}$$

不妨取 $\epsilon = 1$

$$\left|\frac{f(\zeta) - f(z)}{\zeta - z}\right| < 1 + |f'(z)|$$

$$\lim_{\epsilon \to 0^+} \left| \int_{C_{\epsilon}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta \right| \le \lim_{\epsilon \to 0^+} (|f'(z) + 1|) 2\pi\epsilon = 0$$

$$\int_{C_{\epsilon}} \frac{f(z)}{\zeta - z} dz = -f(z) 2\pi i$$

上式选取合适的参数化曲线即可得到, 我应该在上面讲参数化曲线那加一道例题的.

因此得到了

$$\int_C \frac{f(\zeta)}{\zeta - z} d\zeta = 2\pi i f(z)$$

Cauthy 积分公式得证.

注 2.3.1. • 定理 4.1 的结论对于一般的玩具曲线都成立.

• 如果 z 位于 C 的外部, 则 $\int_C \frac{f(\zeta)}{\zeta - z} d\zeta = 0$

其实很多时候, 你只需要知道定理是怎么证明的, 基本上就可以知道使用这个定理时需要注意什么了.

推论 2.3.2. 如果 f 在开集 Ω 上全纯, 那么 f 在 Ω 上有任意阶负导数, 进一步如果 C 是包含在 Ω 中的一个圆, C 的内部也包含在 Ω 中, 则:

$$f^{(n)}=rac{n!}{2\pi i}\int_Crac{f(\zeta)}{(\zeta-z)^{n+1}}d\zeta, orall z\in C$$
的内部

利用数学归纳法即可得出该结论.

易知,n=0 时成立

假设 f 直到 n 阶复导数, 均有以下形式

$$f^{(n-1)}(z) = \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^n} d\zeta$$

根据导数的定义式, 我们有:

$$f^{(n)} = \lim_{h \to 0} \frac{f^{(n-1)}(z+h) - f^{(n-1)}(z)}{h}$$

取 h 充分小, 考虑

$$\frac{f^{(n-1)}(z+h) - f^{(n-1)}(z)}{h} = \frac{(n-1)!}{2\pi i} \int_C \frac{f(\zeta)}{h} \left[\frac{1}{(\zeta - z - h)^n} - \frac{1}{(\zeta - z)^n} \right]$$

对于此式子, 不能直接令 $h \to 0$

利用
$$A^n - B^n = (A - B)(A^{n-1} + \dots + B^{n-1})$$

$$\frac{1}{h} \left[\frac{1}{(\zeta - z - h)^n} - \frac{1}{\zeta - z)^n} \right] = \frac{1}{h} \left(\frac{1}{\zeta - z - h} - \frac{1}{\zeta - z} \right) (A^{n-1} + \dots + B^{n-1})$$

$$= \frac{1}{(\zeta - z - h)(\zeta - z)} (A^{n-1} + \dots + B^{n-1})$$

其中
$$A = \frac{1}{\zeta - z - h}, B = \frac{1}{\zeta - z}$$

当
$$h \to 0$$
, 原式变为 $\frac{n}{(\zeta-z)^{n+1}}$

得到

$$\lim_{h \to 0} \frac{f^{(n-1)}(z+h) - f^{(n-1)}(z)}{h} = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} dz$$

推论 2.3.3. 柯西不等式 设 D 是一个以 z_0 为圆心,R 为半径的圆盘,f 在某一包含在 \bar{D} 的开集上全纯, 则

$$|f^{(n)}| \le \frac{n!}{R^n} \|f\|_C$$

其中
$$\|f\|_C = \sup_{\zeta \in C} |f(\zeta)|$$

注意 \mathbb{C} 和 Cd 的不同含义.

己知:
$$f^{(n)} = \frac{n!}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$

当 $\zeta \in C$ 时, $\zeta = z_0 + Re^{i\theta}, \theta \in [0, 2\pi]$

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + Re^{i\theta})}{R^{n+1}e^{i(n+1)\theta}} iRe^{i\theta} d\theta$$
$$= \frac{n!}{2\pi} \int_0^{2\pi} \frac{f(z_0 + Re^{i\theta})}{R^n} e^{-in\theta} d\theta$$

$$|f^{(n)}(z_0)| \le \frac{n!}{2\pi} \frac{1}{R^n} \int_0^{2\pi} |f(z_0 + Re^{i\theta})|$$

$$\le \frac{n!}{2\pi} \frac{1}{R^n} ||f||_C \cdot 2\pi$$

$$= \frac{n!}{R^n} ||f||_C$$

得证

定理 2.3.4. 假设 f 在开集 Omega 上全纯, 如果 D 是以 z_0 为圆心的圆盘, $\bar{D} \subset \Omega$, 那么 f 在 z_0 点可展为幂级数

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

其中
$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

证明还有些细节没有太明白, 先不写了.

定义 2.3.5. 整函数 复平面上处处全纯.

推论 2.3.6. 刘维尔定理 若 f 是有界整函数,则 f 是常数

证明:f 有界,则 $|f(z)| \le B, \forall z \in \mathbb{C}$ 任取 $z_0 \in \mathbb{C}$

$$f'(z_0) = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{(\zeta - z)^2} dz$$

由 Cauthy 不等式, $|f'(z_0)| \le \frac{1}{R} ||f||_C \le \frac{1}{R} \cdot B$, as $R \to \infty$ $|f'(z_0)| = 0$, $f'(z_0) = 0$

推论 2.3.7. 代数学基本定理 任意复系数非常值多项式函数 $P(z) = a_n z^n + \cdots + a_0$ 在复数域内至少有 1 个根.

推论 2.3.8. 任一 n 次多项式 $(n \ge 1), p(z) = a_n z^n + \dots + a_0$, 在 \mathbb{C} 内恰有 n 个根.

证明暂时略过

定理 2.3.9. 假设函数 f 在区域 Ω 上全纯, 假设 f 在 Ω 上全纯, 假设 f 在 Ω 上全纯, 假设 f 在 Ω 上一个互不相同的点列上取值为 0, 并且该点列在 Ω 内有一个极限点, 则 f 在 Ω 上取值为 0

推论 2.3.10. 设 f 以及 g 在区域 Ω 上全纯, 并且在 Ω 中某一非零开集上有 $f(z) \equiv g(z)$, (或者更一般的, f 与 g 在一个互不相同的点列上相等, 并且该点列在 Ω 中有一个极限点), 则在 Ω 上有 $f = \equiv g$

类似的证明在 Stein 的书中很常见,零往往会和恒等于联系在一起

定义 2.3.11. 解析延拓 设 f 在区域 Ω 上解析,F 在区域 Ω' 上解析, 如果 $\Omega \subseteq \Omega'$, 如果在 Ω 上,F = f, 则称 F 为 f 在 Ω' 上的解析延拓.

下面总结一下复变函数全纯的一些必要条件:

• 设 f=u+iv 在 Ω 上全纯 \Leftrightarrow 1.u,v 在 Ω 上是连续可微的. $2.\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$

- 设 f 在 Ω 上全纯 \Leftrightarrow f 在 Ω 内任意一点 a 的某一邻域内都可以展开 成为幂级数 $f(z) = \sum a_n(z-a)^n$
- 设区域 D 为 $\mathbb C$ 内一个圆盘, 则 f 全纯 \Leftrightarrow 1.f 在 D 内连续 2. 任给一 条 D 内闭曲线 γ , 则 $\int_{\gamma} f(z)dz = 0$

2.4 Morera 定理

这一节需要一个较强的分析功底,但这一节的证明都比较复杂,但用到的时候很少,因此本节等我有时间再把证明补上.

定理 2.4.1. Morera 定理 假设 f 在某一开圆盘 D 内连续, 并且对任一包含在 D 内的三角形下, 均有 $\int_T f(z)dz = 0$, 则 f 在 D 上全纯.

引理 2.4.2. 设 $f_n(z)$ 在集合 k 上连续, $\forall n \geq 1$, 并且 $f_n(z)$ 在 k 上一致收敛 于 f(z), 则 f 在 k 上连续

定理 2.4.3. 设 $\{f_n\}_{n\geq 1}$ 是开集 Ω 上的全纯函数列, 并且在 Ω 的任一紧子 集上 f_n 一致收敛于 f, 则 f 在 Ω 内全纯

定理 2.4.4. 在上一个定理的假设条件下, 导函数序列 $\{f'_n\}_{n=1}^{\infty}$ 在 Ω 上也一 致收敛于 f

在分析中, 我们有一个 Weistrass 定理, 内容如下:

在闭区间 [0,1] 上任何一个连续函数 f, 都可以由一列多项式函数 $\{P_n(x)\}_{n=1}^{\infty}$ 来一致逼近, 即 $\forall \epsilon > 0, \exists N \, \text{ in } |P_n(x) - f(x)| < \epsilon$ 即 $\sup_{x \in [0,1]} |P_n(x) - f(x)| < \epsilon$

但事实上,这个定理在复平面内是不正确的.

定理 2.4.5. 设 Ω 是 $\mathbb C$ 中的一个开集,F(z,s) 是定义在 $\Omega \times [0,1]$ 上的函数. 假设:(1) 任给 $s \in [0,1]$, F(z,s) 关于 z 是全纯的 (2)F 在 $\Omega \times [0,1]$ 上连续则定义函数 $f(z) = \triangleq \int_0^1 F(z,s) ds, \forall z \in \Omega, f$ 在 Ω 中全纯

性质 2.4.1. 幂级数 形如 $f(z) = \sum_{n=0}^{\infty}, R \triangleq \frac{1}{\sup \sqrt[n]{|a_n|}}$

- 在收敛圆盘内 |z| < R, 任意一点处绝对收敛
- 若 |z| > R 则奇数在 z 点不连续
- 任给 0 < r < R, 则 f 在 $\bar{D}_r \triangleq \{z \in C, |z| \le r\}$ 上均为一致收敛

定理 2.4.6. 如果幂级数 $\sum_{n=0}^{\infty} c_n z^n$ 的收敛半径 R>0, 且 $f(z)=\sum_{n=0}^{\infty} c_n z^n$, (|z|< R), 则 f 在 |z|< R 上至少有一个奇点,也就是说,不可能有这样的 F(z) 存在,在 |z|< R 于 f 恒等而在 C 上处处解析

2.5 Schwarz 反射原理

设 Ω 为复平面中的开集, Ω 关于实轴对称, 即 $z \in \Omega \Leftrightarrow \bar{z} \in \Omega \Leftrightarrow \Omega^+$ 表示 Ω 位于上半平面的部分, Φ Ω^- 表示 Ω 位于下半平面的部分, $\Omega = \Omega \cap \mathbb{R}$ 当然 $\Omega = \Omega^+ \cap \Omega^- \cap I$ 假设 $\Omega = \Omega^+$

 Ω 开集:f 在 Ω 上连续,f 在 $\bar{\Omega}$ 上连续 $\forall \epsilon > 0, \exists \delta = \delta(\epsilon, z_0)$ 当 $|z - z_0| < \delta$ 且 $z \in \bar{\Omega}$ 时, $|f(z) - f(z_0)| < \epsilon$

定义在 Ω 上的函数连续延拓到 $\partial\Omega$ 上, 指的是存在 $F(z):\bar{\Omega}\to\mathbb{C}, F$ 在 $\bar{\Omega}$ 上连续, 且 $F(z)=f(z), \forall z\in\Omega$, 则称 F 为 f 在 $\bar{\Omega}$ 上连续延拓

定理 2.5.1. 对称原理 设 f^+ 及 f^- 分别是 Ω^+ 及 Ω^- 的全纯函数, 他们可以连续的延拓到 I 上, 且有 $f^+(x) = f^-(x), \forall x \in I$ 则定义在 Ω 上的全纯函数:

$$f(z) = \begin{cases} f^+(z) & z \in \Omega^+ \\ f^-(z) & z \in \Omega^- \\ f^+(z) = f^-(z) & z \in I \end{cases}$$

定理 2.5.2. Schwarz 反射原理 假设 f 是 Ω^+ 上的全纯函数, f 可以连续延 拓到 I 上,且 f 在 I 上为实值函数, 就存在 F 定义在 Ω 上, F 在 Ω 上全 纯,并且 $F(z)=f(z), \forall z\in\Omega$

2.6 Runge 逼近定理

定义 2.6.1. 有理函数 形如 $\frac{P(z)}{Q(z)}$ 的函数, 其中 P(z), Q(z) 均为多项式函数, Q(z) 的零点称为 $\frac{P(z)}{Q(z)}$ 的奇点.

定理 2.6.2. 设 k 为复平面上的一个紧集.

- 任一定义在 k 的某一邻域上的全纯函数均可被一列有理函数在 k 上一致逼近, 且有理函数的奇点都在 k^c 中
- 假设 k^c 是连通的,则任一定义在 k 的某一邻域上的全纯函数均可被一列多项式函数在 k 上一致逼近

引理 2.6.3. 设 k 为 $\mathbb C$ 中的一个紧集, $\Omega \supset k$ 是一个开集假设 f 在 Ω 内全 纯, 那么存在 $\Omega - k$ 中国的有线条线段 $\gamma_1, \gamma_2, \dots \gamma_n$

$$f(z) = \sum_{i=1}^{N} \frac{1}{2\pi i} \int_{\gamma_i} \frac{f(\zeta)}{\zeta - z} d\zeta$$

引理 2.6.4. 对任意的包含在 $\Omega-k$ 中的一条直线段 γ , 存在一列在 γ 上的有理函数, 它们在 k 上一致收敛于 $\int_{\gamma} \frac{f(\zeta)}{\zeta-z} dz$

引理 2.6.5. 如果 k^c 连通, 并且 $z_0 \in k$, 那么函数 $\frac{1}{z-z_0}$ 可在 k 上被一列多项式一致逼近.

2.7 习题

这章的题似乎有点小难, 我先挑简单的

26

例 2.7.1. 利用柯西积分公式计算

1.
$$\int_C \frac{2z^2-z+1}{z-1} dz$$

2.
$$\int_C \frac{2z^2-z+1}{(z-1)^2}$$

- 1. 看分母, 全纯否? 全纯, 直接 $2\pi i \cdot 2 = 4\pi i$
- 2. 柯西积分公式, 一阶导情况直接套公式 6πi

例 2.7.2. 假设 f(z) 在 C 上解析, 且 |f(z)| 恒大于一个正的常数. 试证明 f(z) 必为常数.

看见没, 没零点, 考虑 $\frac{1}{f(z)}$, 该函数也解析, 并且有界, 由刘维尔定理, 该函数为常数, 故 f(z) 必为常数.

例 2.7.3. 试证明

$$\left| \int_C \frac{z+1}{z-1} dz \right| \le 8\pi$$

其中 C 为圆周 |z-1|=2

开始吧, 参数化 $z = 1 + 2e^{i\theta}, \theta \in (0, 2\pi]$

$$\int_0^{2\pi} \frac{2 + 2e^{i\theta}}{2e^{i\theta}} 2e^{i\theta} \cdot id\theta$$
$$= \int_0^{2\pi} 2(1 + e^{i\theta}) \cdot id\theta$$

$$\left| \int_0^{2\pi} 2(1+e^{i\theta}) \cdot id\theta \right| \le \int_0^{2\pi} |2(1+e^{i\theta})| d\theta \le 2 \cdot 2 \cdot 2\pi = 8\pi$$

例 2.7.4. 设 f(z) 在区域 D 内解析, 在某一点 $z_0 \in D$, 有 $f^{(n)}(z_0) = 0$, $n = 1, 2, \dots$, 试证明 f(z) 在 D 内必为常数

考虑
$$F(z) = f(z) - f(z_0) = \sum_{n=1}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$
 取点列 z_k 在 D 内, 且 $\lim_{k \to \infty} z_k = z_0$ 都有 $F(z_k) = 0$ 由某个不知名但用的很多的定理, $F(z) = 0$ 故 $f(z) = f(z_0)$

例 2.7.5. 设 f(z) 为非常数的整函数, 又设 R, M 为任意正数, 试证明: 满足 |z| > R 且 |f(z)| > M 的 z 不存在.

反证法, 当 |z| > R 时, $f(z) \le M$ f 为整函数, f 有界由刘维尔定理, 函数恒为常数, 矛盾.

例 2.7.6. 设 C 表示圆周 |z|=1 的上半部分, 方向从 $z_1=1$ 到 $z_2=-1$, 试计算积分

$$\int_C (z^2 + z\bar{z})dz$$

来吧! 参数化

$$z=e^{i\theta}, z^2=e^{2i\theta}, \bar{z}=e^{-i\theta}$$

$$\int_0^{\pi} (e^{i2\theta} + 1)ie^{i\theta}d\theta$$

$$= i \int_0^{\pi} e^{i3\theta}d\theta + i \int_0^{\pi} e^{i\theta}d\theta = -\frac{8}{3}$$

例 2.7.7. 若变换 w = f(z) 是一个整函数,将实轴变为实轴,并且满足 $f(z) = -f(\bar{z})$, 试证明 f(z) 是一个奇函数

由 Schwarz 反射原理可知

$$f(z) = f(\bar{z})$$

 $f(-z) = f(\bar{z})$
啊, 这个符号写的真恶心

由题意
$$f(z) = -f(\overline{z})$$

故 $f(z) = -f(-z)$

第三章 零点与极点

3.1 奇点

定义 3.1.1. 奇点

- 函数 f 在 z_0 点处没有定义, 但在 z_0 的任一邻域中都有定义的点, z_0 称为 f 的奇点
- 函数 f 在 z_0 点处没有定义或不解析但在 z_0 的任一邻域中都存在点,s.t.f 在该点处解析

在此我们研究的主要是孤立奇点

定义 3.1.2. 孤立奇点

- f 在 z_0 点的某一个邻域内有定义, 但在 z_0 点处没有定义.
- f 在 zn 点的某一个去心邻域内解析, 但在 zn 点处不解析.

定义 3.1.3. 零点 设 f 为全纯函数, 如果 $f(z_0) = 0$ 则称 z_0 为 f 的零点

定理 3.1.4. f 在一个连通开集 Ω 上全纯, 假设 z_0 为 f 的一个零点, f 在 Ω 中不恒为 0, 则存在 z_0 的某一个邻域 U, 以及 U 上的全纯函数 g, 唯一的正整数 $n, s.t. f(z) = (z-z_0)^n g(z), \forall z \in U(g$ 在 U 上恒不为 0)

利用幂级数展开来证明

由于 f 在 Ω 上全纯, $z_0 \in \Omega$, Ω 为连通开集, 因此存在 $r_0 > 0$, s.t, $D_r(z_0) \subset \Omega$ 则: $\forall z \in D_{r_0}(z)$

$$f(z) = a_0 + a_1(z - z_0) + \dots + a_n(z - z_0)^n + \dots$$

$$= a_1(z - z_0) + \dots + a_n(z - z_0)^n + \dots$$

$$= a_n(z - z_0)^n + \dots$$

$$= (z - z_0)^n [a_n + a_{n+1}(z - z_0) + \dots]$$

由于 $f(z_0) = 0$ 故 $a_0 = 0$ 由于 f 在 Ω 上恒不为 0, 故 f 在 $D_{r_0}(z_0)$ 上不恒为 0, 故至少有一个 $a_n \neq 0$, 记 n 为使得 $a_n \neq 0$ 的最小正整数, 则

$$f(z) = a_n(z - z_0)^n + \dots = (z - z_0)^n [a_n + a_{n+1}(z - z_0) + \dots]$$

$$\exists z \ g(z) = a_n + a_{n+1}(z - z_0) + \dots + a_{n+k}(z - z_0)^k + \dots$$

$$\exists z \ f(z) = (z - z_0)^n g(z), \forall z \in D_{r_0}(z_0)$$

由于 g 在 $D_{r_0}(z_0)$ 全纯, 且 $g(z) = a_n \neq 0$, 故存在 $0 < r \leq r_0, s.t. g(z) \neq 0, \forall z \in D_r(z_0)$

下证明 n 是唯一的

设

$$f(z) = (z - z_0)^m h(z) = (z - z_0)^m g(z), \forall z \in D_{r'}(z_0), 0 < r' \le r$$

其中 h(z) 在 $D_{r'}(z_0)$ 上全纯, 且 $h(z_0) \neq 0$, 设 m < n, 则

$$h(z_0) = (z - z_0)^{n-m} g(z), h(z_0) = 0$$

矛盾

在上一个定理中, 称 z_0 为 f 的 n 阶零点, n=1 时称 z_0 为 f 的简单零点

零点在分子上叫零点,在分子上就叫极点.

定义 3.1.5. 极点 设 f 定义在 z_0 某去心邻域中, 称 z_0 某一去心邻域中, 称 z_0 是 f 的极点, 如果 $\frac{1}{f(z)}$ 是以 z_0 为零点, $\frac{1}{f(z)}$ 在 z_0 的某一邻域中保持全纯. $\frac{1}{f(z)} = (z - z_0)^n g(z) \quad f(z) = \frac{1}{(z-z_0)^n} G(z)$

定理 3.1.6. 如果 $z_0 \in \Omega$ 为 f 的极点, 那么在 z_0 某一邻域中存在一个恒不 为 0 的全纯函数 h 和唯一的正整数 $n, s.t. f(z) = \frac{1}{(z-z_0)^n} h(z)$ 称 z_0 为 f 的 n 阶极点

既然 h(z) 为全纯函数, 那么 h(z) 就可以展开成幂级数的形式

$$h(z) = A_0 + A_1(z - z_0) + \cdots + A_n(z - z_0)^n + A_{n+1}(z - z_0)^{n-1} + \cdots$$

之后 $f(z)$ 又可以写成 $f(z) = \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + G(z)$

定理 3.1.7. 如果 z_0 是 f 的 n 阶极点, 那么

$$f(z) = \frac{a_{-n}}{(z-z_0)^n} + \dots + \frac{a_{-1}}{(z-z_0)} + G(z)$$
 其中 G 在 $z=z_0$ 的某一邻域中全纯, $a_{-n} \neq 0$
注: 和函数 $\frac{a_{-n}}{(z-z_0)^n} + \dots + \frac{a_{-1}}{(z-z_0)}$ 称为函数 f 的主要部分称 a_{-n} 为 f 在 z_0 点处的留数, 记为 $res_{z_0}f = a_{-1}$

$$f(z) = \frac{a_{-1}}{(z - z_0)} + G(z)$$

$$\Rightarrow a_{-1} = (z - z_0)f(z) - (z - z_0)G(z)$$

$$\Rightarrow a_{-1} = \lim_{z \to z_0} (z - z_0)f(z)$$

此时称 z_0 为 f 的简单极点, 则 $res_{z_0}f = \lim_{z \to z_0} f(z)$

定理 3.1.8. 如果 z_0 是 f 的 n 阶极点, 那么

$$res_{z_0} f = \frac{1}{(n-1)!} \lim_{z \to z_0} (\frac{d}{dz})^{n-1} (z - z_0)^n f(z)$$

证明: 由于 z_0 是 f 的 n 阶极点,则在 z_0 的某个邻域中,那么 $f(z) = \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + G(z)$

$$\text{III} (z-z_0)^n f(z) = a_{-n} + a_{-n+1}(z-z_0) + \dots + a_{-1}(z-z_0)^{n-1} + (z-z_0)^n G(z)$$

要想消掉 a_{-n} , ·, a_{-2} , 则需要求 n-1 次导数

从而
$$\frac{d^{n-1((z-z_0)^n f(z))}}{dz^{n-1}} = (n-1)!a_{-1} + (n-1)!(z-z_0)F(z)$$

$$a_{-1} = \frac{1}{(n-1)!} \lim_{z \to z_0} \left(\frac{d}{dz}\right)^{n-1} (z - z_0)^n f(z)$$

当然,为什么我们更关注的是 a_{-1} 而并非别的值,这在接下来的留数公式中将会得到说明.

定理 3.1.9. 留数公式 设圆周 C 及其内部包含在某一开集 Ω 中, z_0 是 C 的内部,f 在 Ω 上除了 z_0 点外处处全纯, z_0 是 f 的极点,t 那么

$$\int_C f(z)dz = 2\pi i \cdot res_{z_0} f$$

证明是很类似柯西积分公式的证明过程的.

考虑如图所示的曲线 $C_{\epsilon,\delta}$, 则 f 在 $C_{\epsilon,\delta}$ 及其内部, 故

$$\int_{C_{\epsilon,\delta}} f(z)dz = 0$$

先固定 ϵ , 令 $\delta \to 0^+$, 则: $\int_C f(z)dz = \int_{\epsilon} f(z)dz$

其中 C_{ϵ} 是以 z_0 为圆心, ϵ 为半径的圆周, C_{ϵ} 逆时针方向

由于 z_0 为 f 的极点,则存在 z_0 的某一邻域 U, s.t. 在该邻域中,f 可写成 $f(z) = \frac{a_{-n}}{(z-z_0)^n} + \cdots + \frac{a_{-1}}{(z-z_0)} + G(z)$

其中 G(z) 在 U 中全纯, 当 ϵ 充分小, $s.t.C_{\epsilon} \subset U$ 中

$$\int_{C_{\epsilon}} f(z)dz = \int_{C_{\epsilon}} \frac{a_{-n}}{(z - z_0)^n} dz + \dots + \int_{C_{\epsilon}} \frac{a_{-1}}{z - z_0} dz + \int_{C_{\epsilon}} G(z)dz$$

$$= 2\pi i a_{-1}$$

$$= 2\pi i \cdot res_{z_0} f$$

推论 3.1.10. z_1, \dots, z_N 在 C 的内部, 均为 f 的极点,f 在 Ω 上除了 z_1, \dots, z_N 外全纯, 则: $\int_C f(z)dz = 2\pi i \sum_{k=1}^N res_{z_k} f$

定义 3.1.11. 可去奇点 设 Ω 为复平面上的开集, $z_0 \in \Omega$, f 在 Ω 上除了 z_0 外处处全纯, 如果可以补充定义 f 在 z_0 点的取值, 使得函数 f 在 Ω 上处处全纯, 则称 z_0 为 f 的可去奇点

定理 3.1.12. 设 Ω 为复平面上的开集, $z_0 \in \Omega$, 假设 f 开 $\Omega - \{z_0\}$ 上全纯, 如果 f 在 $\Omega - \{z_0\}$ 上有界, 则 z_0 为 f 的可去奇点

推论 3.1.13. 假设 z_0 为 f 的孤立奇点, 那么 z_0 为 f 的奇点 \Leftrightarrow 当 $z\to z_0$ 时, $f(z)\to\infty$

复变函数全纯是很好的概念,我们不喜欢不全纯的点,奇点本质上都是不全纯的点,但是可去奇点和极点可以稍作修改让其全纯,但本性奇点则不能,本性奇点从本质上就是无法变成全纯的.老一辈数学家翻译概念的水平确实很高.

定理 3.1.14. 假设 f 在 z_0 的某去心邻域 $D_r(z_0) - \{z_0\}$ 上全纯, 并以 z_0 为本质奇点, 则 f 作用在 $D_r(z_0) - \{z_0\}$ 上的图像在 $\mathbb C$ 中是稠密的.

定义 3.1.15. 双边幂级数 形如 $\sum_{n=-\infty}^{+\infty} c_n(z-a)^n$, 收敛圆环为 H: r < |z-a| < R. 则:

• $\sum_{n=-\infty}^{+\infty} c_n(z-a)^n$ 在 H 上绝对收敛且内闭一致收敛

- 函数 f 在 H 内解析
- 函数 f 在 H 内可逐项求导
- 函数 f 沿 H 内的曲线 C 可逐项积分

定理 3.1.16. 洛朗展开 在圆环 $r < |z-a| < R(r \ge 0, R \le +\infty)$ 内的解析函数 f(z) 必可展成双边幂级数: $f(z) = \sum_{n=-\infty}^{+\infty} c_n (z-a)^n$ 其中 $c_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{(\zeta-a)^{n+1}} d\zeta, \forall n = 0, \pm 1, \cdots, \Gamma: |z-a| = \rho, r < \rho < R$ 逆时针并且这种展开是唯一的

这个定理本身没什么,但这个证明很有借鉴价值,无奈它真的太长了以下为可去奇点的等价判断条件:

设 f 在 Ω 上为解析函数, 则 z_0 为可去奇点:

- $\lim_{z \to z_0} f(z) = \alpha(\alpha)$ 为有限复数)
- f 在 z₀ 附近有界
- f 在 z_0 某去心邻域内可展为 $f(z) = a_0 + a_1(z z_0) + \cdots$, 也就是说, f 在 z_0 附近的洛朗展式中没有负整数次幂的项.

以下为极点的等价判断条件:

设 z_0 为 f 的极点

- z₀ 为 ½ 的零点
- 存在唯一一个 $n,h,U,f(z)=\frac{h(z)}{(z-z_0)^n},h$ 在 \bar{U} 内全纯不为 0
- $\lim_{z \to z_0} |f(z)| = \infty$
- f 在 z_0 附近的洛朗展式中只有有限个负整数次项, 因此可以用乘以有限个整数次项被修正为全纯函数

以下为本性奇点的等价判断条件: 设 z_0 为 f 的本性奇点:

- $\lim_{z \to z_0} f(z)$ 不存在 (该不存在指的是, 不等于某一 α 也不等于 ∞ , 值得注意的是在复平面内应考虑不同方向去趋向)
- f 作用在 $D_r(z_0) \{z_0\}$ 的像在 \mathbb{C} 上稠密
- f 在 z_0 附近的洛朗展式有无穷多负整数次幂的项, 因此无法被修正

至于对无穷远点的判断,只需令 $F(z)=f(\frac{1}{z})$ 进而对 $F(z),z\to 0$ 进行判定即可

3.2 亚纯函数

定义 3.2.1. 亚纯函数 定义在开集 Ω 上的函数 f 被称为是亚纯函数, 如果存在复平面上的点列 $\{z_0, z_1, \cdots, \}$ (他们在复平面中没有极限点), 并且:

- 1. 函数在 $\Omega \{z_0, z_1, \dots\}$ 处全纯.
- $2. z_0, z_1, \cdots$ 为 f 的极点

注: 如果 Ω 为有限集合, 那么在上述定义中 $\{z_0, z_1, \cdots\}$ 至少有有点多个点

在此引入无穷远点 ∞

定义 3.2.2. ∞ 为孤立奇点 如果对充分大的 z,f 在 z 处全纯, 即存在 R > 0, s.t. 只要 |z| > R, f 在 z 点处全纯, 则称 ∞ 为 f 的孤立奇点

说实话没怎么看懂, 但我看得懂下面的等价定义 考虑 $F(z) \triangleq f(\frac{1}{z})$, F 在 z=0 的某去心邻域中全纯

1. 如果 z=0 是 F 的可去奇点, 则称 ∞ 是 F 的可去奇点 (解析点)

- 2. 如果 z = 0 是 F 的极点, 则称 ∞ 是 F 的极点
- 3. 如果 z=0 是 F 的本性奇点, 则称 ∞ 是 F 的本性奇点

定义 3.2.3. 扩充复平面 $\mathbb{C} \cup \{\infty\}$

定义 3.2.4. 扩充复平面上的亚纯函数 扩充复平面上的亚纯函数: 如果定义在 \mathbb{C} 上的亚纯函数 f 以 ∞ 为可去奇点或极点, 则称 f 是扩充复平面上的亚纯函数

显然有理函数是扩充复平面上的亚纯函数, 但神奇的是反之也成立

定理 3.2.5. 扩充复平面上的亚纯函数一定是有理函数.

3.3 幅角原理及其应用

设 $e^w = z, w = Log(z)$ 为多值函数, 其中 $w = Log(z) = Log(|z|) + i \arg(z)$

其中 log 代表以 e 为底数的.

相传美苏冷战时期, 美国和苏联数学家为了表示自己的立场, 用了不同的数学符号表示同一个意思. 但是我翻阅图书的时候, 现在似乎一些美国数学家也会用 \ln 代表以 e 为底数, 当然更多的还是用 \log 这种传统甚至在如今的编程语言中仍有体现.

限制 $\mathbb{C} - \{(\infty, 0)\}$ 规定 $|\theta| < \pi$

得到 Log(z) 的一个主值分支 log(z)

$$(\log(z))' = \frac{1}{z}$$

$$(log f(z))' = \frac{f'(z)}{f(z)}$$

值得注意的是 $\log z_1 z_2 = \log z_1 + \log z_2$ 可能不再成立

但有一个更加良好的性质:

$$(\log f_1 \cdot f_2)' = (\log f_1)' + (\log f_1)'$$

定义 3.3.1. 对数留数 形如 $\frac{1}{2\pi i}\int_{\Gamma}\frac{f'(z_0)}{f(z_0)}dz$ 的积分称为 f 关于曲线 Γ 的对数 留数

定理 3.3.2. 幅角原理 假设 f 在包含圆周 C 及其内部的某一开集上为亚纯函数, 如果 f 在圆周 C 上没有零点和极点, 则:

 $\frac{1}{2\pi i}\int_C \frac{f'(z)}{f(z)}dz = f$ 在 C 内部零点的个数 - f 在 C 内部极点的个数 m 阶零点算作 m 个零点,m 阶极点算作 m 个极点.

我们有留数公式:

$$\int_C f(z)dz = 2\pi i$$

设 z_0 是 f 的 n 阶零点,f 在 z_0 附近全纯

则在 z_0 附近, $f(z) = (z - z_0)^n g(z)$ 且 g(z) 在 z_0 附近恒不为 0

$$\frac{f'(z)}{f(z)} = \frac{n(z-z_0)^{n-1}g(z)}{(z-z_0)^n g(z)} + \frac{(z-z_0)^n g'(z)}{(z-z_0)^n g(z)}$$

$$\frac{f'(z)}{f(z)} = \frac{n}{z - z_0} + \frac{g'(z)}{g(z)}$$

因此 z_0 为 $\frac{f'(z)}{f(z)}$ 的简单极点, $res_{z_0} \frac{f'}{f} = n$

设 z_0 是 f 的 m 阶极点, f 在 z_0 附近全纯

则在 z_0 附近, $f(z) = \frac{h(z)}{(z-z_0)^m}$ 且 h(z) 在 z_0 附近全纯

$$\frac{f'(z)}{f(z)} = \frac{-m\frac{h(z)}{(z-z_0)^{m+1}}}{\frac{h(z)}{(z-z_0)^m}} + \frac{\frac{h'(z)}{(z-z_0)^m}}{\frac{h(z)}{(z-z_0)^m}}$$

$$\frac{f'(z)}{f(z)} = \frac{-m}{z - z_0} + \frac{h'(z)}{h(z)}$$

因此 z_0 为 $\frac{f'(z)}{f(z)}$ 的简单极点, $res_{z_0}\frac{f'}{f}=-m$ 证毕

定理 3.3.3. Rouche 定理 假设圆周 C 及其内部包含在开集 Ω 中,f,g 均在 Ω 上全纯, 如果 $|f(z)| < |g(z)|, \forall z \in C$,则 f 与 f+g 在 C 内部有相同个数的 零点

定义 3.3.4. 开映射 如果一个映射将开集映为开集, 则称它为开映射.

定理 3.3.5. 设定义在区域 Ω 上的全纯函数 f, 如果非常值, 那么它一定是一个开映射.

定理 3.3.6. 最大模原理 如果 f 是区域 Ω 上的非常值全纯函数, 那么 f 在 Ω 内达不到最大值

推论 3.3.7. 设 Ω 为区域 $\bar{\Omega}$ 为紧集,f 定义在 Ω 上的全纯函数 $\bar{\Omega}$ 上连续, 那 $\Delta: \sup_{z \in \Omega} |f(z)| \leq \sup_{\bar{\Omega} - \Omega} |f(z)|$

3.4 同伦与单连通区域

定义 3.4.1. 同伦 设 Ω 为一开集, γ_0 , γ_1 是包含在 Ω 中的两条曲线,均以 α 为起点, β 为终点,设 $\gamma_0(t)$, $\gamma_1(t)$: $[a,b] \to \mathbb{C}$ 是 γ_0 和 γ_1 的参数化曲线, $\gamma_0(a) = \gamma_1(a) = \alpha$, $\gamma_0(b) = \gamma_1(b) = \beta$, 称 γ_0 , γ_1 在开集上同伦, 若存在一族曲线 $\gamma_s(\gamma_s(t) : [a,b] \to \mathbb{C}$ 为 γ_s 的参数化) $s \in [0,1]$ 满足:

1.
$$\gamma_s(a) = \alpha, \gamma_s(b) = \beta, \forall s \in [0, 1]$$

2.
$$\gamma_s|_{s=0} = \gamma_0, \gamma_s|_{s=1} = \gamma_1$$

$$3. \gamma_s(t): [0,1] \times [a,b] \to \mathbb{C}$$
 连续

4.
$$\gamma_s \subset \Omega, \forall s \in [0, 1]$$

定理 3.4.2. 如果 f 在 Ω 中全纯, 则 $\int_{\gamma_0} f(z)dz = \int_{\gamma_1} f(z)dz$

定义 3.4.3. 单连通区域 区域 Ω 称为是单连通的, 如果 Ω 中任意一对具有相同起点和终点的曲线都是同伦的.

定理 3.4.4. 设 f 是定义在单连通区域 Ω 上的全纯函数, 则对 Ω 中任意一条闭曲线 γ_s , 均有 $\int_{\gamma_s} f(z) dz = 0$

3.5 习题

例 3.5.1. P103 (1)

$$\sin \pi z = \frac{e^{i\pi z} - e^{-i\pi z}}{2i} = 0$$

通过计算可得:

$$e^{i2\pi z} = 1 = e^{2k\pi i}$$

z = n 其中 n 为整数

故所有的零点都是整数.

$$(\sin \pi z)'|_{z=n} = \pi \cos \pi z|_{z=n} \neq 0$$

故阶数均为一阶

$$res_{z=n} \frac{1}{\sin \pi z} = \lim_{z \to n} (z - n) \frac{1}{\sin \pi z} = \lim_{z \to n} \frac{1}{\pi \cos \pi z} = \frac{1}{\cos n\pi}$$

本题所用的复变函数的洛必达法则将于下一题证明

例 3.5.2. 设 z_0 为解析函数 f(z) 的至少 n 阶零点, 又为解析函数 $\phi(z)$ 的 n 阶零点, 试证明:

$$\lim_{z \to z_0} \frac{f(z)}{\phi(z)} = \frac{f^{(n)}(z_0)}{\phi^{(n)}(z_0)}, (\phi^{(n)}(z_0) \neq 0)$$

由于 f(z), $\phi(z)$ 全纯, 又由于是 n 阶零点, 故可以在圆盘上展成如下幂级数:

$$f(z) = (z - z_0)^n (a_n + a_{n+1}(z - z_0) + \cdots)$$

$$\phi(z) = (z - z_0)^n (b_n + b_{n+1}(z - z_0) + \cdots)$$
原式变为:

$$\lim_{z \to z_0} \frac{f(z)}{\phi(z)} = \lim_{z \to z_0} \frac{a_n + a_{n+1}(z - z_0) + \dots}{b_n + b_{n+1}(z - z_0) + \dots} = \frac{a_n}{b_n}$$

故得证.

解析函数也有类似洛必达法则的结论, 这是个很有用的结论.

例 3.5.3. 求下列函数的极点, 并指出它们的阶数

1.
$$\frac{1}{e^z-1}$$

2.
$$\frac{1}{(z^2+i)^3}$$

1.

$$e^z = 1, z = 2k\pi i$$

 $(e^z - 1)'|_{z=2k\pi i} = e^z|_{z=2k\pi i} \neq 0$
 故为一阶.

值得注意的是,该题的无穷远点为非孤立奇点.

2.

啊, 不太好算

$$(z^{2} + i)^{3} = 0$$

$$z^{2} + i = 0$$

$$z^{2} = -i$$

$$e^{i2\theta} = e^{(-\frac{\pi}{2} + 2k\pi)i}$$

$$\theta = -\frac{\pi}{4} + k\pi$$

故有两个根, 奶奶滴, 懒得算了, 剩下的省略吧.

例 3.5.4. P103 2

我没有任何计算的欲望, 但这题和下一题思路是一样的, 所以还是直接 看下一题吧

例 3.5.5. P103 2

很容易得到有两个极点 z = ai, z = -ai

选取该积分 $\int_{-R}^{R} \frac{e^{iz}}{z^2+a^2} dz$

因为 $e^{iz} = \cos z + i \sin z$, 而 $\frac{i \sin z}{z^2 + a^2}$ 为奇函数, 积分为 0

选取上半圆周作为积分曲线, 易知只有一个极点 z = ai 在该区域内

$$\int_{-R}^{R} \frac{e^{iz}}{z^2 + a^2} dz + \int_{\gamma^+} \frac{e^{iz}}{z^2 + a^2} dz = 2\pi i \cdot res_{z=ai} f = \pi \frac{e^{-a}}{a}$$

之后对于上半圆弧上的积分做一个简单估计

$$|e^{iz}| = |e^{ix-y}| = |e^{-y}| \cdot |e^{ix}| = |e^{-y}| < 1$$

$$|\int_{\gamma^+} \frac{e^{iz}}{z^2 + a^2} dz| \le \pi R \max_{z \in C_R} \{ \frac{1}{z^2 + a^2} \}$$

$$|z^2 + a^2| \ge |z|^2 - a^2$$

当 R 足够大时, 即 $a \leq \frac{R}{2}$ 时

$$|z|^2 - a^2 \ge R^2 - \frac{R^2}{2} = \frac{R^2}{2}$$

$$\pi R \max_{z \in C_R} \{ \frac{1}{z^2 + a^2} \} \le \pi R \cdot \frac{2}{R^2} = \frac{2\pi}{R}$$

$$\stackrel{\text{\tiny ω}}{=} R \stackrel{\text{\tiny z}}{\to} \infty, \frac{2\pi}{R} = 0$$

例 3.5.6. P104 6

和上题一样,除了不好算,不好算就不算了

例 3.5.7. P104 7

能不能别拿这么不好算的题来惩罚我

42

例 3.5.8. 将下列各函数在指定圆环中展开为洛朗级数

1.
$$\frac{z+1}{z^2(z-1)}$$
, $0 < |z| < 1$, $1 < |z| < +\infty$

- 2. 行了行了, 做这一个洛朗展开就行了, 下面的太难算了...
 - 1.(1).0 < |z| < 1

$$\frac{z+1}{z-1} = 1 + \frac{2}{z-1} = 1 - 2\frac{2}{1-z} = 1 - 2\sum_{n=0}^{\infty} z^n$$

$$\frac{1}{z^2} \cdot \frac{z+1}{z-1} = \frac{1}{z^2} - \sum z^{n-2}$$

$$(2).1 < |z| < +\infty$$

$$\frac{z+1}{z-1} = 1 + \frac{2}{z-1} = 1 + \frac{2}{1-\frac{1}{z}} = 1 + 2 \cdot \sum_{n=0}^{\infty} (\frac{1}{z})^n$$

$$\frac{1}{z^2} \cdot \frac{z+1}{z-1} = \frac{1}{z^2} + 2 \cdot \sum_{n=0}^{\infty} (\frac{1}{z})^{n-2}$$

例 3.5.9. 判断下列函数的极点及其类别

- 1. $\frac{1}{e^z-1} \frac{1}{z}$
- 2. $e^{z-\frac{1}{z}}$
- 3. $\sin \frac{1}{z} + \frac{1}{z^2}$
- 4. $\frac{e^{\frac{1}{z-1}}}{(e^z-1)}$
 - 1. 化简得到 $\frac{z-e^z+1}{z(e^z-1)}$

第一个奇点为
$$z=0,\lim_{z\to 0}\frac{z-e^z+1}{z(e^z-1)}=-\frac{1}{2}$$

故为可去奇点.

第二个奇点为 $z=2k\pi i$ 一阶极点, 取个倒数, 别的不用看, 直接看是 e^z-1 的几阶零点, 一阶, 这很容易得出

不要忘了无穷远点

第三个奇点为无穷远点, 事实上, 我们可以视 $z=2k\pi i$ 收敛到无穷远点那么无穷远点就是一个

2.

拆出来 $\frac{e^z}{e^{\frac{1}{z}}}$

z=0 为 $e^{\frac{1}{z}}$ 的本质奇点

 $z = \infty$ 为 e^z 的本质奇点

故均为本质奇点.

3. 同上

4.

z=1 为本质奇点

 $z = 2k\pi i$ 为一阶极点

无穷远点为非孤立奇点

例 3.5.10. 计算积分 $\int_C e^{\frac{1}{z^2}} dz$ C: |z| = 1

先做洛朗展开,之后进行积分,结果为0

例 3.5.11. 若函数 f(z) 在 0 < |z-a| < R 内全纯, 且恒不为 0, 又若 f(z) 有一列异于 a 但却以 a 为聚点的零点. 试证明 a 必为 f(z) 的本质奇点

这个题很好, 充分的展示了不同奇点之间的区别.

采用反证法.

若不是本质奇点

那么可能为可去奇点, 补充定义后全纯, 由第二章某个定理,f(z) 恒为 0, 矛盾

可能为极点, 考虑函数 $F(z) = (z-a)^n f(z)$, 该函数全纯, $\{a_n\}$ 也是 F(z) 的零点, 故 F(z) 恒为 0, 那么 f(z) 也恒为 0, 矛盾 故只能是本质奇点.

例 3.5.12. 扩充复平面上的全纯函数必为常数

44

注意是扩充复平面, 无穷远点为可去奇点

$$\overline{\mathbb{M}} \lim_{z \to 0} F(z) = \alpha$$

若
$$a_i \neq 0, i = 1, 2, 3 \cdots$$

那么 z=0 为本质奇点

故只能是常数

例 3.5.13. 用孺歇定理证明代数学基本定理

$$\Re f(z) = a_n z^n, g(z) = a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

C: |z| = R, f(z), g(z) 在 C 内全纯

当 R 充分大的时候, f(z) > g(z)

下证明 R 的存在性

要证明
$$f(z) > g(z)$$

即证明:
$$\frac{|f(z)|}{|z|^n} > \frac{|g(z)|}{|z|^n}$$

$$\frac{|f(z)|}{|z^n|} = a_n$$

$$\frac{|g(z)|}{|z^n|} = \frac{a_{n-1}}{|z|} + \dots + \frac{a_0}{|z|^n}$$

进行参数化 $z = Re^{i\theta}$

$$\frac{|f(z)|}{|z^n|} = a_n$$

$$\frac{|g(z)|}{|z^n|} = \frac{a_{n-1}}{R} + \dots + \frac{a_0}{R^n}$$

当 $R \to \infty$ 时,|f(z)| > |g(z)|

例 3.5.14. 试证明: 方程 $z^7 - z^3 + 12 = 0$ 的根全在圆环 1 < |z| < 2 内

我觉得考试考这样的

当
$$|z| < 1$$

$$f(z) = z^7 + 12, g(z) = -z^3, |f(z)| > |g(z)|$$

而 f(z) 无根, 因此原方程无根.

$$f(z) = z^7, g(z) = 12 - z^3, |f(z)| > |g(z)|$$

此时 f(z) 有七个根故所有的根都在圆环内

例 3.5.15. 证明最小模原理: 如果函数 f 是区域 D 上的非常值全纯函数, 并且在此区域中不取零值, 则 |f| 在区域 D 中取不到最小值.

不取零! 这说明什么! 说明 $\frac{1}{f}$ 是全纯的! 没有奇点! 联想最大模原理, $|\frac{1}{f}|$ 取不到最大值 故证明成立

例 3.5.16. 设 f(z) 在闭圆盘 $|z| \le R$ 上全纯. 如果存在 a > 0, 使得当 |z| = R, |f(z)| > a 且 ||f(0)| < a, 则在圆盘 $|z| \le R$ 内, f(z) 至少有一个零点

采取反证法,假设没有零点,那么 $\frac{1}{f(z)}$ 就全纯

$$\frac{1}{f(0)} = \frac{1}{2\pi i} \int_C \frac{\frac{1}{f(z)}}{z - 0} dz = \frac{1}{2\pi i} \int_C \frac{1}{zf(z)} dz$$

$$\left| \frac{1}{f(0)} \right| \le \frac{1}{2\pi} \int_C \left| \frac{1}{zf(z)} \right| dz$$

$$< \frac{1}{2\pi} 2\pi R \frac{1}{Ra}$$

$$= \frac{1}{a}$$

而 $\frac{1}{|f(0)|} > \frac{1}{a}$ 矛盾 做复杂了, 最大模原理其实几步就可以出来, 比这个要简单. 由最大模原理 $|\frac{1}{f}| < \frac{1}{a}$, 而 $\frac{1}{f(0)} > \frac{1}{a}$ 矛盾