Student Name: Chencheng Zhang

Student ID: 023071910029

Lecture Notes for K-seminar Recollections from Projective Modules

1 About the Lecture

We strongly recommend the readers to review the basic definitions and facts about

- 1. groups, rings, modules, field, algebra, etc;
- 2. the definition of Abelian category A;
- 3. basic knowledge on categories, such as commutative diagrams.

The Lecture Note mainly discusses

- 1. When free objects are defined and how free objects related to projective objects.
- 2. Equivalent definitions of projective modules (for small Abelian categories).
- 3. The chain: Free Mods \rightarrow Stably Free Mods \rightarrow Projective Mods \rightarrow Flat Mods \rightarrow Torison Free Mods.

2 Equivalent definitions of projective modules

Definition 1 (The adjoint pair of Free and Forgetful functors). For category \mathcal{C} and Set the category of sets, if there exists an adjoint pair $(F \dashv U)$ such that

- $F: Set \to \mathcal{C}$ is the free functor sending the category of sets to \mathcal{C} ;
- *U* is the forgetul functor sending the collection of objects (resp., morphisms) of C to the underlying sets (resp., set mappings);
- the collection $\{\varepsilon_X : FU(X) \to X\}_{X \in \mathsf{Ob}(\mathcal{C})}$ is called co-unit;
- $\{\eta_X: S \to UF(X)\}_{S \in \mathsf{Ob}(\mathsf{Set})}$ is called unit.

Remark 1. Freyd-Mitchell embedding theorem says that every small Abelian category \mathcal{A} is a full subcategory of a category of modules over some ring R, such that the embedding functor $\mathcal{A} \hookrightarrow R$ -Mod is an exact functor.

SLOGAN 1. Small Abelian categories Longle ftarrow R—Mod categories.

Definition 2 (projective modules). Suppose that \mathcal{A} is an Abelian category. We say $P \in \mathcal{A}$ is projective, whenever

• for arbitrary epimorphism $X \xrightarrow{\pi} Y$ and $P \xrightarrow{f} Y$, there exists a lift \tilde{f} such that the following diagram commutes

