S-8252系列

2节电池串联用电池保护IC

精度±20 mV

www.sii-ic.com

© SII Semiconductor Corporation, 2011-2015

Rev.3.1_02

S-8252系列内置高精度电压检测电路和延迟电路,是用于2节串联锂离子 / 锂聚合物可充电电池的保护IC。 S-8252系列最适合于对2节串联锂离子 / 锂聚合物可充电电池组的过充电、过放电和过电流的保护。

■ 特点

• 针对各节电池的高精度电压检测功能

过充电检测电压n (n = 1, 2) 3.550 V ~ 4.600 V (5 mV进阶) 精度±20 mV (Ta = +25°C) 精度±25 mV (Ta = -10°C ~ +60°C) $3.150 \text{ V} \sim 4.600 \text{ V}^{*1}$ 过充电解除电压n (n = 1, 2) 精度±30 mV 过放电检测电压n (n = 1, 2) 2.00 V ~ 3.00 V (10 mV进阶) 精度±50 mV 过放电解除电压n (n = 1, 2) $2.00 \text{ V} \sim 3.40 \text{ V}^{*2}$ 精度±100 mV 0.05 V ~ 0.40 V (10 mV进阶) 放电过电流检测电压 精度±10 mV 负载短路检测电压 精度±100 mV 0.5 V (固定)

-0.40 V ~ -0.05 V (25 mV进阶)

- 可选择充电过电流检测功能的 "有"/"无"
- 各种检测延迟时间仅通过内置电路即可实现 (不需要外接电容) 精度±20%
- 充电器连接端子采用高耐压器件 (VM端子、CO端子: 绝对最大额定值 = 28 V)
- 可选择 "允许" / "禁止" 向0 V电池充电的功能
- 可选择休眠功能的 "有" / "无"

充电过电流检测电压

• 工作温度范围广 Ta = -40°C ~ +85°C

• 消耗电流低

工作时 8.0 μ A (最大值) (Ta = +25°C) 休眠时 0.1 μ A (最大值) (Ta = +25°C)

- 无铅 (Sn 100%)、无卤素
- *1. 过充电解除电压 = 过充电检测电压 过充电滞后电压 (过充电滞后电压n (n = 1, 2) 为0 V或者可在0.10 V ~ 0.40 V的范围内, 以50 mV为进阶单位进行选择)
- *2. 过放电解除电压 = 过放电检测电压 + 过放电滞后电压 (过放电滞后电压n (n = 1, 2) 为0 V或者可在0.1 V ~ 0.7 V的范围内,以100 mV为进阶单位进行选择)

■ 用途

- 锂离子可充电电池组
- 锂聚合物可充电电池组

■ 封装

- SOT-23-6
- SNT-6A

■ 框图

备注 图中的二极管全部为寄生二极管。

■ 产品型号的构成

1. 产品名

- *1. 请参阅卷带图。
- *2. 请参阅 "3. 产品名目录"。

2. 封装

表1 封装图纸号码

- 6		•			
	封装名	外形尺寸图	卷带图	带卷图	焊盘图
	SOT-23-6	MP006-A-P-SD	MP006-A-C-SD	MP006-A-R-SD	_
	SNT-6A	PG006-A-P-SD	PG006-A-C-SD	PG006-A-R-SD	PG006-A-L-SD

3. 产品名目录

3.1 SOT-23-6

表2

				表2					
	过充电	过充电	过放电	过放电	放电过电流	充电过电流	向0 V	休眠	延迟时间
产品名	检测电压	解除电压	检测电压	解除电压	检测电压	检测电压	电池的	功能	
	[V _{CU}]	[V _{CL}]	$[V_{DL}]$	$[V_{DU}]$	$[V_{DIOV}]$	[V _{CIOV}]	充电功能	圳能	的组合*1
S-8252AAA-M6T1U	4.280 V	4.080 V	2.00 V	2.00 V	0.20 V	-0.10 V	禁止	有	(1)
S-8252AAB-M6T1U	4.325 V	4.075 V	2.20 V	2.90 V	0.21 V	-0.20 V	禁止	有	(1)
S-8252AAC-M6T1U	4.300 V	4.100 V	2.40 V	3.00 V	0.20 V	-0.20 V	禁止	有	(1)
S-8252AAD-M6T1U	4.280 V	4.130 V	2.40 V	2.90 V	0.15 V	-0.25 V -0.15 V	禁止	有	
									(1)
S-8252AAE-M6T1U	4.350 V	4.150 V	2.30 V	3.00 V	0.30 V	-0.30 V	允许	有	(1)
S-8252AAF-M6T1U	4.350 V	4.100 V	2.40 V	3.00 V	0.15 V	−0.15 V	允许	有	(1)
S-8252AAG-M6T1U	4.300 V	4.150 V	2.80 V	3.00 V	0.15 V	−0.15 V	允许	有	(1)
S-8252AAH-M6T1U	4.250 V	4.100 V	3.00 V	3.00 V	0.20 V	−0.20 V	允许	有	(1)
S-8252AAI-M6T1U	3.650 V	3.450 V	2.00 V	2.70 V	0.20 V	−0.20 V	允许	无	(1)
S-8252AAJ-M6T1U	3.900 V	3.500 V	2.00 V	2.50 V	0.20 V	−0.20 V	允许	无	(1)
S-8252AAK-M6T1U	4.350 V	4.150 V	2.30 V	3.00 V	0.20 V	-0.20 V	允许	有	(1)
S-8252AAL-M6T1U	4.200 V	4.050 V	2.50 V	3.00 V	0.20 V	-0.20 V	禁止	有	(1)
S-8252AAO-M6T1U	4.250 V	4.100 V	2.50 V	3.00 V	0.20 V	-0.10 V	禁止	有	(1)
S-8252AAP-M6T1U	4.350 V	4.150 V	2.20 V	2.90 V	0.20 V	-0.40 V	禁止	有	(1)
S-8252AAQ-M6T1U	4.300 V	4.100 V	2.60 V	3.00 V	0.40 V	-0.40 V	禁止	有	(1)
S-8252AAQ-M011U	4.300 V	4.100 V	2.60 V	3.00 V	0.40 V	-0.40 V	禁止	有	
									(3)
S-8252AAS-M6T1U	4.250 V	4.050 V	2.50 V	3.00 V	0.20 V	-0.20 V	允许	无	(1)
S-8252AAT-M6T1U	4.250 V	4.100 V	2.70 V	3.00 V	0.12 V	-0.05 V	允许	有	(1)
S-8252AAU-M6T1U	4.275 V	4.075 V	2.50 V	2.90 V	0.30 V	−0.10 V	允许	有	(1)
S-8252AAV-M6T1U	4.400 V	4.250 V	2.50 V	2.90 V	0.15 V	–0.10 V	允许	有	(1)
S-8252AAW-M6T1U	4.350 V	4.150 V	2.30 V	3.00 V	0.20 V	−0.40 V	禁止	有	(1)
S-8252AAX-M6T1U	4.230 V	4.030 V	2.75 V	3.05 V	0.15 V	-0.10 V	禁止	有	(1)
S-8252AAY-M6T1U	4.250 V	4.050 V	3.00 V	3.20 V	0.15 V	−0.05 V	禁止	有	(2)
S-8252AAZ-M6T1U	4.225 V	4.075 V	2.40 V	2.90 V	0.15 V	-0.15 V	禁止	有	(1)
S-8252ABA-M6T1U	4.300 V	4.150 V	3.00 V	3.10 V	0.10 V	-0.15 V	允许	有	(1)
S-8252ABB-M6T1U	4.300 V	4.100 V	2.00 V	2.00 V	0.12 V	_	允许	有	(3)
S-8252ABC-M6T1U	4.300 V	4.100 V	2.00 V	2.00 V	0.055 V	_	允许	有	(3)
S-8252ABD-M6T1U	4.300 V	4.100 V	2.40 V	3.00 V	0.20 V	-0.20 V	禁止	有	(4)
S-8252ABE-M6T1U	4.225 V	4.075 V	2.40 V	2.90 V	0.10 V	-0.20 V	禁止	有	(1)
	4.300 V	4.100 V	2.40 V	2.40 V	0.10 V				
S-8252ABF-M6T1U			-			-0.10 V	允许	有	(1)
S-8252ABG-M6T1U	4.280 V	4.130 V	2.40 V	2.90 V	0.15 V	-0.15 V	禁止	无	(1)
S-8252ABH-M6T1U	4.300 V	4.100 V	2.40 V	2.40 V	0.15 V	-0.15 V	允许	有	(1)
S-8252ABI-M6T1U	4.425 V	4.225 V	2.50 V	2.80 V	0.15 V	−0.10 V	禁止	无	(1)
S-8252ABQ-M6T1U	4.300 V	4.100 V	2.37 V	2.97 V	0.21 V	_	禁止	无	(3)
S-8252ABR-M6T1U	4.300 V	4.100 V	2.30 V	2.70 V	0.28 V	−0.25 V	禁止	有	(1)
S-8252ABS-M6T1U	4.350 V	4.150 V	2.00 V	2.40 V	0.25 V	−0.40 V	禁止	有	(1)
S-8252ABT-M6T1U	4.450 V	4.250 V	2.30 V	2.70 V	0.28 V	−0.25 V	禁止	有	(1)
S-8252ABU-M6T1U	4.500 V	4.300 V	2.00 V	2.40 V	0.25 V	-0.40 V	禁止	有	(1)
S-8252ABV-M6T1U	4.300 V	4.100 V	2.37 V	2.57 V	0.21 V	_	禁止	无	(3)
S-8252ABW-M6T1U	4.300 V	4.100 V	2.37 V	2.57 V	0.40 V	_	禁止	无	(3)
S-8252ABX-M6T1U	4.350 V	4.150 V	2.10 V	2.40 V	0.25 V	_	禁止	无	(3)
S-8252ABY-M6T1U	4.450 V	4.250 V	2.30 V	2.70 V	0.23 V		禁止	无	(3)
S-8252ACB-M6T1U ^{*2}	4.300 V	4.230 V 4.100 V	2.30 V	2.70 V	0.37 V 0.21 V		禁止	无	
						_			(3)
S-8252ACC-M6T1U*2	4.300 V	4.100 V	2.28 V	2.38 V	0.25 V	-	禁止	无	(3)

^{*1.} 有关延迟时间的组合的详情,请参阅表4。

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

^{*2.} 负载短路检测电压:0.9 V ± 0.1 V

3. 2 SNT-6A

表3

产品名	过充电 检测电压 [V _{CU}]	过充电 解除电压 [V _{CL}]	过放电 检测电压 [V _{DL}]	过放电 解除电压 [V _{DU}]	放电过电流 检测电压 [V _{DIOV}]	充电过电流 检测电压 [V _{ClOV}]	向0 V 电池的 充电功能	休眠 功能	延迟时间 的组合 ^{*1}
S-8252AAA-I6T1U	4.280 V	4.080 V	2.00 V	2.00 V	0.20 V	-0.10 V	禁止	有	(1)
S-8252AAH-I6T1U	4.250 V	4.100 V	3.00 V	3.00 V	0.20 V	−0.20 V	允许	有	(1)
S-8252AAM-I6T1U	4.250 V	4.050 V	2.40 V	3.00 V	0.10 V	−0.10 V	允许	有	(1)
S-8252AAN-I6T1U	4.325 V	4.075 V	2.20 V	2.90 V	0.21 V	-0.10 V	允许	有	(1)
S-8252AAY-I6T1U	4.250 V	4.050 V	3.00 V	3.20 V	0.15 V	−0.05 V	禁止	有	(2)
S-8252ABJ-I6T1U	4.300 V	4.100 V	2.40 V	3.00 V	0.21 V	−0.25 V	禁止	有	(1)
S-8252ABK-I6T1U	4.350 V	4.150 V	2.30 V	2.90 V	0.16 V	-0.40 V	禁止	有	(1)
S-8252ABL-I6T1U	4.300 V	4.100 V	2.40 V	2.60 V	0.24 V	-0.20 V	禁止	有	(5)
S-8252ABM-I6T1U	4.350 V	4.150 V	2.30 V	2.50 V	0.17 V	-0.40 V	禁止	有	(5)
S-8252ABO-I6T1U	4.300 V	4.100 V	2.30 V	2.70 V	0.23 V	−0.25 V	禁止	有	(5)
S-8252ABP-I6T1U	4.350 V	4.150 V	2.00 V	2.40 V	0.19 V	−0.40 V	禁止	有	(5)

^{*1.} 有关延迟时间的组合的详情,请参阅表4。

备注 需要上述检测电压值以外的产品时,请向本公司营业部咨询。

表4

延迟时间 的组合	过充电检测 延迟时间 [t _{CU}]	过放电检测 延迟时间 [t _{DL}]	放电过电流检测 延迟时间 [t _{DIOV}]	负载短路检测 延迟时间 [t _{short}]	充电过电流检测 延迟时间 [t _{clov}]
(1)	1.0 s	128 ms	8 ms	280 μs	8 ms
(2)	1.0 s	500 ms	8 ms	280 μs	8 ms
(3)	1.0 s	128 ms	8 ms	280 μs	_
(4)	1.0 s	128 ms	8 ms	1 ms	8 ms
(5)	1.0 s	128 ms	16 ms	280 μs	8 ms

备注 可更改在下述范围内的延迟时间,请向本公司营业部咨询。

表5

延迟时间	符号		选择范围		备注
过充电检测延迟时间	t _{CU}	256 ms	512 ms	1.0 s ^{*1}	从左项中选择
过放电检测延迟时间	t _{DL}	32 ms	64 ms	128 ms*1	从左项中选择
放电过电流检测延迟时间	t _{DIOV}	4 ms	8 ms ^{*1}	16 ms	从左项中选择
负载短路延迟时间	t _{SHORT}	280 μs ^{*1}	500 μs	1 ms	从左项中选择
充电过电流检测延迟时间	t _{CIOV}	4 ms	8 ms*1	16 ms	从左项中选择

^{*1.} 标准产品的延迟时间。

■ 引脚排列图

1. SOT-23-6

图2

表6

引脚号	符号	描述						
	DO	放电控制用FET门极连接端子						
1	DO	(CMOS输出)						
	СО	充电控制用FET门极连接端子						
2		(CMOS输出)						
	VM	VM端子 – VSS端子间的电压检测端子						
3	VIVI	(过电流 / 充电器检测端子)						
4	VC	电池1的负电压和电池2的正电压连接端子						
_	VDD	正电源输入端子,						
5	טטע	电池1的正电压连接端子						
	VSS	负电源输入端子,						
6	V33	电池2的负电压连接端子						

2. SNT-6A

图3

表7

	N.I							
引脚号	符号	描述						
1	VM	VM端子 – VSS端子间的电压检测端子						
Į.	VIVI	(过电流 / 充电器检测端子)						
2	CO	充电控制用FET门极连接端子						
2	CO	(CMOS输出)						
3	DO	放电控制用FET门极连接端子						
3		(CMOS输出)						
4	VSS	负电源输入端子,						
4	V33	电池2的负电压连接端子						
5	VDD	正电源输入端子,						
Э	VDD	电池1的正电压连接端子						
6	VC	电池1的负电压和电池2的正电压连接端子						

■ 绝对最大额定值

表8

(除特殊注明以外: Ta = +25°C)

项目		符号	适用端子	绝对最大额定值	单位
VDD端子 - VSS	端子间输入电压	V _{DS}	VDD	$V_{SS} - 0.3 \sim V_{SS} + 12$	V
VC端子输入电压		V_{VC}	VC	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
VM端子输入电压		V_{VM}	VM	$V_{DD} - 28 \sim V_{DD} + 0.3$	V
DO端子输出电压		V_{DO}	DO	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	V
CO端子输出电压		V _{CO}	СО	$V_{VM} - 0.3 \sim V_{DD} + 0.3$	V
宛 许九年	SOT-23-6	P _D	-	650 ^{*1}	mW
合计切札 【	容许功耗 SNT-6A		_	400 ^{*1}	mW
工作环境温度		T _{opr}	_	−40 ~ +85	°C
保存温度		T _{stg}	_	−55 ~ +125	°C

*1. 基板安装时

[安装基板]

(1) 基板尺寸: 114.3 mm × 76.2 mm × t1.6 mm(2) 名称: JEDEC STANDARD51-7

注意 绝对最大额定值是指无论在任何条件下都不能超过的额定值。万一超过此额定值,有可能造成产品劣化等物理性的损伤。

图4 封装容许功耗 (基板安装时)

■ 电气特性

1. $Ta = +25^{\circ}C$

表9

(除特殊注明以外: Ta = +25°C)

	(除特殊注明以外:Ta								
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路		
检测电压									
\\ \tau \tau \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	\/	-	$V_{CU} - 0.020$	V _{CU}	$V_{CU} + 0.020$	V	1		
过充电检测电压n (n = 1, 2)	V_{CUn}	Ta = -10°C ~ +60°C ⁻¹	V _{CU} - 0.025	V _{CU}	$V_{CU} + 0.025$	V	1		
	. ,	$V_{CL} \neq V_{CU}$	V _{CL} - 0.030	V_{CL}	V _{CL} + 0.030	٧	1		
过充电解除电压n (n = 1, 2)	V_{CLn}	$V_{CL} = V_{CU}$	V _{CL} - 0.030	V _{CL}	V _{CL} + 0.020	V	1		
过放电检测电压n (n = 1, 2)	V_{DLn}	_	$V_{DL} - 0.050$	V _{DL}	$V_{DL} + 0.050$	V	2		
及版名世界名至11 (11 1,2)		$V_{DL} \neq V_{DU}$	$V_{DU} - 0.100$	V _{DU}	$V_{DU} + 0.100$	V	2		
过放电解除电压n (n = 1, 2)	V_{DUn}	$V_{DL} = V_{DU}$	V _{DU} - 0.050	V _{DU}	V _{DU} + 0.050	V	2		
拉电过电流检测电压	V_{DIOV}	-	$V_{DIOV} - 0.030$	V _{DIOV}	$V_{DIOV} + 0.030$	V	2		
放电过电流检测电压		=	0.40	0.50	0.60	V	2		
负载短路检测电压	V _{SHORT}	_	0.40	0.50	0.60	V			
检测电压 (有充电过电流检测功			0.000	1/	0.000	17	_		
充电过电流检测电压 检测电压 (无充电过电流检测功	VCIOV	-	$V_{\text{CIOV}}-0.020$	V_{CIOV}	$V_{CIOV} + 0.020$	V	2		
	1	<u> </u>	-1.0	-0.7	-0.4	V	2		
充电器检测电压 + 2 × 4 × 1 + 2 + 4 ×	V _{CHA}	-	-1.0	-0.7	-0.4	V			
向0 V电池充电的功能	11/	"스챤" 卢OVA 과초 라 성자상	0.0	0.7	1.0	17			
开始向0 V电池充电的充电器电压	V _{0CHA}	"允许" 向0 V电池充电的功能	0.0 0.4	0.7 0.8	1.0 1.1	V	2		
禁止向0 V电池充电的电池电压	V_{0INH}	"禁止"向0 V电池充电的功能	0.4	0.8	1.1	V	2		
内部电阻	I D	1/4 1/0 4 0 1/ 1/2 0 1/			1	1.0	_		
VM端子 – VDD端子间电阻	R _{VMD}	V1 = V2 = 1.8 V, V3 = 0 V	100	300	900	kΩ	3		
VM端子 – VSS端子间电阻	R _{VMS}	V1 = V2 = 3.5 V, V3 = 1.0 V	10	20	40	kΩ	3		
输入电压	1				T				
VDD端子 – VSS端子间	V_{DSOP1}	_	1.5	-	10	V	_		
工作电压 输入电流 (有休眠功能)							L		
工作时消耗电流	I _{OPE}	V1 = V2 = 3.5 V, V3 = 0 V	_	4.0	8.0	μА	2		
休眠时消耗电流	I _{PDN}	V1 = V2 = 3.5 V, V3 = 3.0 V	_	7.0	0.1	μΑ	2		
VC端子电流	I _{VC}	V1 = V2 = 1.5 V, V3 = 5.0 V	0.0	0.7	1.5	μА	2		
输入电流 (无休眠功能)	IVC	v i = v2 = 0.5 v, v5 = 0 v	0.0	0.7	1.0	μπ			
工作时消耗电流	I _{OPE}	V1 = V2 = 3.5 V, V3 = 0 V		4.0	8.0	μА	2		
过放电时消耗电流	I _{OPED}	V1 = V2 = 1.5 V, V3 = 3.0 V		2.5	5.0	μΑ	2		
VC端子电流	Ivc	V1 = V2 = 3.5 V, V3 = 0 V	0.0	0.7	1.5	μА	2		
输出电阻	1.40	1 2 2 2 3 3 7 7 3 3 7		-	1	h4, ,			
	_	V1 = V2 = 3.5 V,	0 -	_	4.5				
CO端子电阻 "H"	R _{COH}	V3 = 0 V, V4 = 6.5 V	2.5	5	10	kΩ	4		
00W3+80 W W	_	V1 = V2 = 4.7 V,	2.5	-	40	I _r O			
CO端子电阻 "L"	R _{COL}	V3 = 0 V, V4 = 0.5 V	2.5	5	10	kΩ	4		
DO端子电阻 "H"	R _{DOH}	V1 = V2 = 3.5 V, V3 = 0 V, V5 = 6.5 V	5	10	20	kΩ	4		
DO端子电阻 "L"	R _{DOL}	V1 = V2 = 1.8 V, V3 = 3.6 V, V5 = 0.5 V	5	10	20	kΩ	4		
延迟时间	1			1	I .				
过充电检测延迟时间	t _{CU}	_	$t_{\text{CU}} \times 0.8$	t _{CU}	$t_{\text{CU}} \times 1.2$	_	5		
过放电检测延迟时间	t _{DL}	_	$t_{DL} \times 0.8$	t _{DL}	$t_{DL} \times 1.2$	_	5		
放电过电流检测延迟时间	t _{DIOV}	_	$t_{DIOV} \times 0.8$	t _{DIOV}	$t_{DIOV} \times 1.2$	_	5		
负载短路检测延迟时间	tshort	_	$t_{SHORT} \times 0.8$	tshort	$t_{SHORT} \times 1.2$	_	5		
充电过电流检测延迟时间	t _{CIOV}	_	$t_{CIOV} \times 0.8$	t _{CIOV}	$t_{CIOV} \times 1.2$	_	5		
元元是元州四州民民門門	2010 V		-010 v A 0.0	•0101	*CIOV /: 1		٥		

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

2. Ta = -40° C ~ $+85^{\circ}$ C^{*1}

表10

(除特殊注明以外: Ta = -40°C~+85°C*1)

(除特殊注明以外:Ta = −40°C ~ +85°C [™]								
项目	符号	条件	最小值	典型值	最大值	单位	测定 电路	
检测电压								
过充电检测电压n (n = 1, 2)	V_{CUn}	_	V _{CU} - 0.045	V _{CU}	$V_{CU} + 0.030$	V	1	
过充电解除电压n (n = 1, 2)	V_{CLn}	V _{CL} ≠ V _{CU}	$V_{CL} - 0.070$	V_{CL}	$V_{CU} + 0.040$	V	1	
型光电解脉电压Ⅱ (II = 1, 2)	V CLN	V _{CL} = V _{CU}	$V_{CL}-0.050$	V_{CL}	$V_{CU} + 0.030$	V	1	
过放电检测电压n (n = 1, 2)	V_{DLn}	-	$V_{DL}-0.085$	V_{DL}	$V_{CU} + 0.060$	٧	2	
过放电解除电压n (n = 1, 2)	V_{DUn}	$V_{DL} \neq V_{DU}$	$V_{DU} - 0.140$	V_{DU}	$V_{CU} + 0.110$	٧	2	
型放电解脉电压Ⅱ (II = 1, 2)	V DUn	$V_{DL} = V_{DU}$	$V_{DU} - 0.085$	V_{DU}	$V_{CU} + 0.060$	V	2	
放电过电流检测电压	V_{DIOV}	-	$V_{\text{DIOV}} - 0.010$	V_{DIOV}	$V_{CU} + 0.010$	٧	2	
负载短路检测电压	V _{SHORT}	-	0.40	0.50	0.60	٧	2	
检测电压 (有充电过电流检测功	能)							
充电过电流检测电压	V_{CIOV}	_	$V_{\text{CIOV}}-0.020$	V_{CIOV}	$V_{CIOV} + 0.020$	V	2	
检测电压 (无充电过电流检测功)								
充电器检测电压	V_{CHA}	_	-1.2	-0.7	-0.2	V	2	
向0 V电池充电的功能		T	T					
开始向0 V电池充电的充电器电压	V_{0CHA}	"允许" 向0 V电池充电的功能	0.0	0.7	1.5	V	2	
禁止向0 V电池充电的电池电压	V _{0INH}	"禁止"向0 V电池充电的功能	0.3	8.0	1.3	V	2	
内部电阻			l				1	
VM端子 – VDD端子间电阻	R _{VMD}	V1 = V2 = 1.8 V, V3 = 0 V	78	300	1310	kΩ	3	
VM端子 – VSS端子间电阻	R _{VMS}	V1 = V2 = 3.5 V, V3 = 1.0 V	7.2	20	44	kΩ	3	
输入电压	•		•					
VDD端子 – VSS端子间 工作电压	V _{DSOP1}	-	1.5	=	10	V	_	
输入电流 (有休眠功能)								
工作时消耗电流	I _{OPE}	V1 = V2 = 3.5 V, V3 = 0 V	_	4.5	8.5	μА	2	
休眠时消耗电流	I _{PDN}	V1 = V2 = 1.5 V, V3 = 3.0 V	_	_	0.15	μΑ	2	
VC端子电流	I _{VC}	V1 = V2 = 3.5 V, V3 = 0 V	0.0	1.2	2.0	μA	2	
输入电流 (无休眠功能)	l.		l .					
工作时消耗电流	I _{OPE}	V1 = V2 = 3.5 V, V3 = 0 V	-	4.5	8.5	μΑ	2	
过放电时消耗电流	I _{OPED}	V1 = V2 = 1.5 V, V3 = 3.0 V	-	2.5	5.5	μА	2	
VC端子电流	I _{VC}	V1 = V2 = 3.5 V, V3 = 0 V	0.0	1.2	2.0	μΑ	2	
输出电阻		·	l .			•		
CO端子电阻 "H"	R _{COH}	V1 = V2 = 3.5 V, V3 = 0 V, V4 = 6.5 V	1.2	5	15	kΩ	4	
	R _{COL}	V1 = V2 = 4.7 V,	1.2	5	15	kΩ	4	
		V3 = 0 V, V4 = 0.5 V V1 = V2 = 3.5 V,						
DO端子电阻 "H" ———————————————————————————————————	R _{DOH}	V3 = 0 V, V5 = 6.5 V	2.4	10	30	kΩ	4	
DO端子电阻 "L"	R _{DOL}	V1 = V2 = 1.8 V, V3 = 3.6 V, V5 = 0.5 V	2.4	10	30	kΩ	4	
延迟时间								
过充电检测延迟时间	t _{CU}	=	$t_{\text{CU}} \times 0.3$	tcu	$t_{\text{CU}} \times 2.0$	_	5	
过放电检测延迟时间	t _{DL}	_	$t_{DL} \times 0.3$	t _{DL}	$t_{DL} \times 2.0$	_	5	
放电过电流检测延迟时间	t _{DIOV}	_	$t_{\text{DIOV}} \times 0.3$	t _{DIOV}	$t_{\text{DIOV}} \times 2.0$	_	5	
	+	_			+		5	
负载短路检测延迟时间 ***	tshort	_	t _{SHORT} × 0.3	tshort	t _{SHORT} × 2.0	_		
充电过电流检测延迟时间	tciov	-	$t_{\text{CIOV}} \times 0.3$	tciov	$t_{\text{CIOV}} \times 2.0$	ı	5	

^{*1.} 并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

■ 测定电路

注意 在未经特别说明的情况下,CO端子的输出电压 (V_{co}),DO端子的输出电压 (V_{Do}) 的 "H", "L" 的判定是以N沟道 FET的阈值电压 (1.0 V) 为基准。此时,CO端子请以 V_{VM} 为基准、DO端子请以 V_{SS} 为基准进行判定。

1. 过充电检测电压、过充电解除电压

(测定电路1)

在V1 = V2 = V_{CU} − 0.05 V, V3 = 0 V设置后的状态下,将V1缓慢提升至V_{CO} = "H" → "L" 时的V1的电压即为过充电检测电压(V_{CU1})。随后,设定V2 = 3.5 V,将V1缓慢下降至V_{CO} = "L" → "H" 时的V1的电压即为过充电解除电压(V_{CL1})。 V_{CU1}与V_{CL}的差额即为过充电滞后电压(V_{HC1})。

在V1 = V2 = V_{CU} − 0.05 V, V3 = 0 V设置后的状态下,将V2缓慢提升至V_{CO} = "H" → "L" 时的V2的电压即为过充电检测电压 (V_{CU2})。随后,设定V1= 3.5 V,将V2缓慢下降至V_{CO} = "L" → "H" 时的V2的电压即为过充电解除电压 (V_{CL2})。 V_{CU2}与V_{CL2}的差额即为过充电滞后电压 (V_{HC2})。

2. 过放电检测电压、过放电解除电压

(测定电路2)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V1缓慢下降至 V_{DO} = "H" → "L" 时的V1的电压即为过放电检测电压 (V_{DL1})。随后,将V1缓慢提升至 V_{DO} = "L" → "H" 时的V1的电压即为过放电解除电压 (V_{DU1})。 V_{DU1} 与 V_{DL1} 的差额即为 过放电滞后电压 (V_{HD1})。

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V2缓慢下降至 V_{DO} = "H" → "L" 时的V2的电压即为过放电检测电压 (V_{DL2})。随后,将V2缓慢提升至 V_{DO} = "L" → "H" 时的V2的电压即为过放电解除电压 (V_{DU2})。 V_{DU2} 与 V_{DL2} 的差额即为 过放电滞后电压 (V_{HD2})。

3. 放电过电流检测电压

(测定电路2)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为放电过电流延迟时间 (t_{DIOV}),此时的V3的电压即为放电过电流检测电压 (V_{DIOV})。

4. 负载短路检测电压

(测定电路2)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3提升,从电压提升后开始到 V_{DO} = "H" → "L" 为止的延迟时间即为负载短路延迟时间 (t_{SHORT}),此时的V3的电压即为负载短路检测电压 (V_{SHORT})。

5. 充电过电流检测电压、充电器检测电压

(测定电路2)

5.1 有充电过电流检测功能

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3降低,从电压降低后开始到 V_{CO} = "H" → "L" 为止的延迟时间即为充电过电流检测延迟时间(t_{CIOV}),此时的V3的电压即为充电过电流检测电压(V_{CIOV})。

5.2 无充电过电流检测功能

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3降低至 V_{CO} = "H" → "L" 时的V3的电压即为充电器检测电压 (V_{CHA})。

6. 工作时消耗电流

(测定电路2)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,流经VDD端子的电流(IDD)即为工作时消耗电流(IDPE)。

7. VC端子电流

(测定电路2)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,流经VC端子的电流 (I_{VC}) 即为VC端子电流 (I_{VC})。

8. 休眠时消耗电流、过放电时消耗电流

(测定电路2)

8.1 有休眠功能

在V1 = V2 = 1.5 V, V3 = 3.0 V设置后的状态下,流经VSS端子的电流(Iss)即为休眠时消耗电流(Ippn)。

8.2 无休眠功能

在V1 = V2 = 1.5 V, V3 = 3.0 V设置后的状态下,流经VSS端子的电流 (I_{SS}) 即为过放电时消耗电流 (I_{OPED})。

9. VM端子 - VDD端子间电阻

(测定电路3)

在V1 = V2 = 1.8 V, V3 = 0 V设置后的状态下,VM端子 – VDD端子间电阻即为 R_{VMD} 。

10. VM端子 - VSS端子间电阻

(测定电路3)

在V1 = V2 = 3.5 V, V3 = 1.0 V设置后的状态下, VM端子 - VSS端子间电阻即为R_{VMS}。

11. CO端子电阻 "H"

(测定电路4)

在V1 = V2 = 3.5 V, V3 = 0 V, V4 = 6.5 V设置后的状态下, VDD端子 - CO端子间电阻即为CO端子电阻 "H" (R_{COH})。

12. CO端子电阻 "L"

(测定电路4)

在V1 = V2 = 4.7 V, V3 = 0 V, V4 = 0.5 V设置后的状态下, VM端子 - CO端子间电阻即为CO端子电阻 "L" (R_{COL})。

13. DO端子电阻 "H"

(测定电路4)

在V1 = V2 = 3.5 V, V3 = 0 V, V5 = 6.5 V设置后的状态下, VDD端子 - DO端子间电阻即为DO端子电阻 "H" (RDOH)。

14. DO端子电阻 "L"

(测定电路4)

在V1 = V2 = 1.8 V, V3 = 0 V, V5 = 0.5 V设置后的状态下, VSS端子 – DO端子间电阻即为DO端子电阻 "L" (R_{DOL})。

15. 过充电检测延迟时间

(测定电路5)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V1提升,从V1超过 V_{CU} 时开始到 V_{CO} = "L" 为止的时间即为过充电检测延迟时间 (t_{CU})。

16. 过放电检测延迟时间

(测定电路5)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V1降低,从V1低于 V_{DL} 时开始到 V_{DO} = "L" 为止的时间即为过放电检测延迟时间(t_{DL})。

17. 放电过电流检测延迟时间

(测定电路5)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3提升,从V3超过 V_{DIOV} 时开始到 V_{DO} = "L" 为止的时间即为放电过电流检测延迟时间 (t_{DIOV})。

18. 负载短路检测延迟时间

(测定电路5)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3提升,从V3超过 V_{SHORT} 时开始到 V_{DO} = "L" 为止的时间即为负载短路检测延迟时间 (t_{SHORT})。

19. 充电过电流检测延迟时间

(测定电路5)

在V1 = V2 = 3.5 V, V3 = 0 V设置后的状态下,将V3降低,从V3低于 V_{Clov} 时开始到 V_{CO} = "L" 为止的时间即为充电过电流检测延迟时间 (t_{Clov})。

20. 开始向0 V电池充电的充电器电压 ("允许" 向0 V电池充电的功能) (测定电路2)

在V1 = V2 = V3 = 0 V设置后的状态下,将V3缓慢下降,当 V_{CO} = "H" (V_{CO} = V_{DD}) 时的V3的电压的绝对值即为向0 V 电池充电开始充电器电压 (V_{OCHA})。

21. 禁止向0 V电池充电的电池电压 ("禁止" 向0 V电池充电的功能) (测定电路2)

在V1 = V2 = 1.5 V, V3 = -6.0 V设置后的状态下,将V1缓慢下降,当 V_{CO} = "L" (V_{VM} + 0.1 V以下) 时的V1的电压即为向0 V电池充电禁止电池电压 (V_{OINH})。

图5 测定电路1

图6 测定电路2

图7 测定电路3

图8 测定电路4

图9 测定电路5

■ 工作说明

备注 请参阅 "■ 电池保护IC的连接例"。

注意 在未经特别说明的情况下, VM端子电压以Vss为基准。

1. 通常状态

1.1 有充电过电流检测功能

S-8252系列是通过监视连接在VDD端子 – VSS端子间的电池电压以及VM端子 – VSS端子间的电压差,来控制充电和放电。电池电压在过放电检测电压 (V_{DL}) 以上且在过充电检测电压 (V_{CL}) 以下、VM端子电压在充电过电流检测电压 (V_{CL}) 以上且在放电过电流检测电压 (V_{DL}) 以下的情况下,充电控制用FET和放电控制用FET的双方均被打开。这种状态称为通常状态,可以自由地进行充电和放电。

在通常状态下,没有连接VM端子 – VDD端子间电阻 (R_{VMD}) 和VM端子 – VSS端子间电阻 (R_{VMS})。

注意 初次连接电池时,有可能处于不能进行放电的状态下。此时,通过短路VM端子和VSS端子,或连接充电器使 VM端子电压在V_{ClOV}以上且在V_{DlOV}以下,就能恢复到通常状态。

1.2 无充电过电流检测功能

S-8252系列是通过监视连接在VDD端子 – VSS端子间的电池电压以及VM端子 – VSS端子间的电压差,来控制充电和放电。电池电压在过放电检测电压 (V_{DL}) 以上且在过充电检测电压 (V_{CU}) 以下、VM端子电压在充电器检测电压 (V_{CHA}) 以上且在放电过电流检测电压 (V_{DIOV}) 以下的情况下,充电控制用FET和放电控制用FET的双方均被打开。这种状态称为通常状态,可以自由地进行充电和放电。

在通常状态下,没有连接VM端子 – VDD端子间电阻 (R_{VMD}) 和VM端子 – VSS端子间电阻 (R_{VMS})。

注意 初次连接电池时,有可能处于不能进行放电的状态下。此时,通过短路VM端子和VSS端子,或连接充电器使 VM端子电压在V_{CHA}以上且在V_{DIOV}以下,就能恢复到通常状态。

2. 过充电状态

在充电中,通常状态的电池电压若超过 V_{CU} ,且这种状态保持在过充电检测延迟时间 (t_{CU}) 以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为过充电状态。

在过充电状态下,没有连接Rvmd及Rvms。

过充电状态的解除,分为如下的2种情况((1),(2))。

- (1) 如果VM端子电压在低于Vplov的情况下,当电池电压降低到VcL以下时,即可解除过充电状态。
- (2) 如果VM端子电压在V_{DIOV}以上的情况下,当电池电压降低到V_{CU}以下时,即可解除过充电状态。

检测出过充电之后,连接负载开始放电,由于放电电流通过充电控制用FET的内部寄生二极管流动,因此VM端子电压比VSS端子增加了内部寄生二极管的V_f电压。此时,如果VM端子电压在V_{DIOV}以上的情况下,当电池电压在V_{CU}以下时,即可解除过充电状态。

- 注意 1.对于超过Vcu而被充电的电池,即使连接了较大值的负载,也不能使电池电压下降到Vcu以下的情况下,在电池电压下降到Vcu为止,放电过电流检测以及负载短路检测是不能发挥作用的。但是,实际上电池的内部阻抗有数十mΩ,在连接了可使过电流发生的较大值负载的情况下,因为电池电压会马上降低,因此放电过电流检测以及负载短路检测是可以发挥作用的。
 - 2.如果在过充电检测后连接充电器,即使电池电压下降到V_{CL}以下,也不能解除过充电状态。如果切断充电器而使VM端子电压恢复到V_{ClOV} (无充电过电流检测功能时为V_{CHA}) 以上时,即可解除充电过电流状态。

3. 过放电状态

当通常状态下的电池电压在放电过程中降低到过放电检测电压 (V_{DL}) 以下,且这种状态保持在过放电检测延迟时间 (t_{DL}) 以上的情况下,会关闭放电控制用FET而停止放电。这种状态称为过放电状态。

在过放电状态下,由于IC内部的VM端子 – VDD端子间可通过 R_{VMD} 来进行短路,因此VM端子会因 R_{VMD} 而被上拉。在过放电状态下,没有连接 R_{VMS} 。

3.1 有休眠功能

在过放电状态下,如果VM端子 – VDD端子间的电压差降低到0.8 V (典型值)以下,休眠功能则开始工作,消耗电流将减少到休眠时消耗电流(I_{PDN})。通过连接充电器,使VM端子电压降低到0.7 V (典型值)以下,来解除休眠功能。

- 在不连接充电器, VM端子电压≥0.7 V (典型值) 的情况下, 即使电池电压在Vpu以上也维持过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > -0.7 V (典型值) 的情况下, 电池电压在 V D 以上, 解除过放电状态。
- 在连接充电器, -0.7 V (典型值)≥VM端子电压的情况下, 电池电压在V_{DL}以上, 解除过放电状态。

3.2 无休眠功能

在过放电状态下,即使VM端子 - VDD端子间的电压差降低到0.8 V (典型值)以下,休眠功能也不工作。

- 在不连接充电器, VM端子电压≥0.7 V (典型值) 的情况下, 电池电压在V_{DU}以上, 解除过放电状态。
- 在连接充电器, 0.7 V (典型值) > VM端子电压 > -0.7 V (典型值) 的情况下, 电池电压在 V D 以上, 解除过放电状态。
- 在连接充电器,-0.7 V (典型值)≥VM端子电压的情况下,电池电压在V_{DL}以上,解除过放电状态。

4. 放电过电流状态 (放电过电流、负载短路)

处于通常状态下的电池,当放电电流达到所定值以上时,会导致VM端子电压上升到V_{DIOV}以上,若这种状态持续保持在放电过电流检测延迟时间(t_{DIOV})以上的情况下,会关闭放电控制用FET而停止放电。这种状态称为放电过电流状态。在放电过电流状态下,IC内部的VM端子 – VSS端子间可通过R_{VMS}来进行短路。但是,在连接着负载的期间,VM端子的电压由于连接着负载而变为V_{DD}电位。若切离与负载的连接,则VM端子恢复回V_{SS}电位。

当VM端子电压降低到VDIOV以下时,即可解除放电过电流状态。

在放电过电流检测状态下,没有连接RVMD。

5. 充电过电流状态 (有充电过电流检测功能)

在通常状态下的电池,由于充电电流在额定值以上,会导致VM端子电压降低到 V_{ClOV} 以下,若这种状态持续保持在充电过电流检测延迟时间(t_{ClOV})以上的情况下,会关闭充电控制用FET而停止充电。这种状态称为充电过电流状态。

在过放电状态下,充电过电流检测功能不工作。

在充电过电流检测状态下,没有连接R_{VMD}和R_{VMS}。

6. 异常充电电流状态 (无充电过电流检测功能)

通常状态的电池在充电中如果VM端子电压低于充电器检测电压 (V_{CHA}) , 并且这个状态持续在过充电检测延迟时间 (t_{CU}) 以上就关闭充电控制用FET停止充电。这种状态称为异常充电电流状态。

当VM端子 - VSS端子间的电压差小于充电器检测电压 (VCHA) 时, 异常充电电流状态被解除。

如果切断充电器而使VM端子电压恢复到Vclov以上时,即可解除充电过电流状态。

7. "允许" 向0 V电池充电的功能

已被连接的电池的电压因自身放电,在为0 V时的状态下开始变为可进行充电的功能。在EB+端子与EB-端子之间连接电压在向0 V电池充电开始充电器电压 (V_{OCHA}) 以上的充电器时,充电控制用FET的门极会被固定为 V_{DD} 电位。借助于充电器电压,当充电控制用FET的门极和源极间电压达到阈值电压以上时,充电控制用FET将被导通 (ON) 而开始进行充电。此时,放电控制用FET被截止 (OFF),充电电流会流经放电控制用FET的内部寄生二极管而流入。在电池电压变为 V_{DU} 以上时恢复回通常状态。

- 注意 1. 有可能存在被完全放电后,不推荐再一次进行充电的锂离子电池。这是由于锂离子电池的特性而决定的,所以当决定 "允许" 或 "禁止" 向0 V电池充电的功能时,请向电池厂商确认详细情况。
 - 2. 对于充电过电流检测功能来说,向0 V电池的充电功能更具优先权。因此,"允许"向0 V电池充电的产品,在电池电压比 V_D 还低时会被强制地充电,而不能进行充电过电流的检测工作。

8. "禁止"向0 V电池充电的功能

连接了内部短路的电池 (0 V电池) 时,禁止充电的功能。电池电压在向0 V电池充电禁止电池电压 (V_{OINH}) 以下时,充电控制用FET的门极被固定在EB-端子电压,而禁止进行充电。当电池电压在 V_{OINH} 以上时,可以进行充电。

注意 有可能存在被完全放电后,不推荐再一次进行充电的锂离子电池。这是由于锂离子电池的特性而决定的,所以当决定 "允许" 或 "禁止" 向0 V电池充电的功能时,请向电池厂商确认详细情况。

9. 延迟电路

各种检测延迟时间是将约4 kHz的时钟进行计数之后而分频计算出来的。

备注 t_{DIOV}, t_{SHORT}的计时是从检测出V_{DIOV}时开始的。因此,从检测出V_{DIOV}时刻起到超过t_{SHORT}之后,当检测出V_{SHORT} 时,从检测出时刻起在t_{SHORT}之内立即关闭放电控制用FET。

■ 工作时序图

1. 过充电检测、过放电检测

*1. (1):通常状态 (2):过充电状态 (3):过放电状态

备注 假设为恒流状态下的充电。

2. 放电过电流检测

***1.** (1):通常状态

(2): 放电过电流状态

备注 假设为在恒流时的充电。

***1.** (1): 通常状态

(2): 充电过电流状态 (3): 过放电状态

备注 假设为在恒流时的充电。

■ 电池保护IC的连接例

表11 外接元器件参数

符号	元器件	目的	典型值	最小值	最大值	备注
FET1	N沟道 MOS FET	放电控制	-	-	-	阈值电压≤过放电检测电压 ^{*2} , 门极和源极间耐压≥充电器电压 ^{*3}
FET2	N沟道 MOS FET	充电控制	-	-	-	阈值电压≤过放电检测电压 ^{*2} , 门极和源极间耐压≥充电器电压 ^{*3}
R1, R2	电阻	ESD对策 电源变动对策	470 Ω	150 Ω ^{*1}	1 kΩ ^{*1}	为了避免因消耗电流引起的过充电检测精度 的降低,请尽可能进取最小的数值。*4
C1, C2	电容	电源变动对策	0.1 μF	0.068 μF ^{*1}	1.0 μF ^{*1}	请务必在VDD端子 – VSS端子间加载0.068 μF以上的电容。 ^{*5}
R3	电阻	充电器反向 连接对策	2 kΩ	300 Ω ^{*1}	4 kΩ ^{*1}	为控制充电器逆连接时的流经电流,请尽可 能进取最大的数值。 ^{*6}

- *1. 请将过滤器定数设定为 $R1 \times C1 = R2 \times C2$ 。
- ***2.** 使用的FET的阈值电压低的情况下,有可能导致充电电流不能切断的情况发生。使用的FET的阈值电压在过放电检测电压以上的情况下,有可能导致在过放电检测之前停止放电的情况发生。
- *3. 门极和源极间耐压在充电器电压以下的情况下,FET有可能被破坏。
- *4. 可在R1 = 470 Ω的条件下保证过充电检测电压的精度。如在R1处连接470 Ω以外的电阻,则会导致过充电检测电压的精度的恶化。在R1处加载大的电阻的情况下,由于充电器反向连接,电流从充电器流向IC,有可能导致VDD端子 VSS端子间电压超过绝对最大额定值的情况发生。在R1处为了保护ESD,请加载150 Ω以上的电阻。
- *5. 在R1, R2处加载小于150 Ω 的电阻、或在C1, C2处加载小于0.068 μ F的电容的情况下,有可能在发生较大的电源变动时引发误工作。
- *6. 在R3处加载大于 $4 k\Omega$ 的电阻的情况下,有可能导致不能切断充电电流的情况。

注意 1. 上述参数有可能不经预告而作更改。

2. 对上述连接例以外的电路未作动作确认,且上述电池保护IC的连接例以及参数并不作为保证电路工作的依据。请在实际的应用电路上进行充分的实测后再设定参数。

■ 注意事项

- ·请注意输入输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。
- ·本IC虽内置防静电保护电路,但请不要对IC施加超过保护电路性能的过大静电。
- ·使用本公司的IC生产产品时,如因其产品中对该IC的使用方法或产品的规格,或因进口国等原因,包含本IC产品在内的制品发生专利纠纷时,本公司概不承担相应责任。

■ 各种特性数据 (典型数据)

1. 消耗电流

 $1.\ 2\quad I_{PDN}-Ta$

2. 过充电检测 / 解除电压、过放电检测 / 解除电压、过电流检测电压、充电过电流检测电压以及各种延迟时间

$2.\ 1\quad V_{\text{CU}}-\text{Ta}$

2. 2 $V_{CL} - Ta$

2. 3 V_{DL} – Ta

 $\textbf{2. 4} \quad \textbf{V}_{\text{DU}} - \textbf{Ta}$

 $2. 5 \quad t_{\text{CU}} - \text{Ta}$

 $2.\ 6\quad t_{DL}-Ta$

2. 7 V_{DIOV} – Ta

2. 8 $t_{DIOV} - V_{DD}$

 $2. \ 9 \quad t_{\text{DIOV}} - \text{Ta}$

2. 10 V_{CIOV} – Ta

 $\textbf{2. 11} \quad t_{\text{CIOV}} - V_{\text{DD}}$

 $\textbf{2. 12} \quad t_{\text{CIOV}}-\text{Ta}$

2. 13 V_{SHORT} – Ta

2. 14 t_{SHORT} - V_{DD}

2. 15 t_{SHORT} - Ta

3. CO端子 / DO端子

3. 1 $R_{COH} - V_{CO}$

3. 2
$$R_{COL} - V_{CO}$$

$3.~3~~R_{DOH}-V_{DO}$

3. 4 $R_{DOL} - V_{DO}$

■ 标记规格

1. SOT-23-6

(1)~(3): 产品简称 (请参照产品名和产品简称的对照表)

(4): 批号

产品名与产品简称的对照表

产品名		产品简称	ζ
厂吅石	(1)	(2)	(3)
S-8252AAA-M6T1U	С	G	Α
S-8252AAB-M6T1U	С	G	В
S-8252AAC-M6T1U	С	G	С
S-8252AAD-M6T1U	С	G	D
S-8252AAE-M6T1U	С	G	Е
S-8252AAF-M6T1U	С	G	F
S-8252AAG-M6T1U	С	G	G
S-8252AAH-M6T1U	С	G	Н
S-8252AAI-M6T1U	С	G	- 1
S-8252AAJ-M6T1U	С	G	J
S-8252AAK-M6T1U	С	G	K
S-8252AAL-M6T1U	С	G	L
S-8252AAO-M6T1U	С	G	0
S-8252AAP-M6T1U	С	G	Р
S-8252AAQ-M6T1U	С	G	Q
S-8252AAR-M6T1U	С	G	R
S-8252AAS-M6T1U	С	G	S
S-8252AAT-M6T1U	С	G	Т
S-8252AAU-M6T1U	С	G	U
S-8252AAV-M6T1U	С	G	V
S-8252AAW-M6T1U	С	G	W
S-8252AAX-M6T1U	С	G	Х
S-8252AAY-M6T1U	С	G	Υ
S-8252AAZ-M6T1U	С	G	Z

立口友	产品简称		
产品名	(1)	(2)	(3)
S-8252ABA-M6T1U	С	Н	Α
S-8252ABB-M6T1U	С	Η	В
S-8252ABC-M6T1U	С	Η	С
S-8252ABD-M6T1U	С	Ι	D
S-8252ABE-M6T1U	С	Ι	Е
S-8252ABF-M6T1U	С	Η	F
S-8252ABG-M6T1U	С	Η	G
S-8252ABH-M6T1U	С	Н	Н
S-8252ABI-M6T1U	С	Η	1
S-8252ABQ-M6T1U	С	Н	Q
S-8252ABR-M6T1U	С	Н	R
S-8252ABS-M6T1U	С	Н	S
S-8252ABT-M6T1U	С	Н	Т
S-8252ABU-M6T1U	С	Н	U
S-8252ABV-M6T1U	С	Н	V
S-8252ABW-M6T1U	С	Н	W
S-8252ABX-M6T1U	С	Η	Χ
S-8252ABY-M6T1U	С	Н	Υ
S-8252ACB-M6T1U	С	В	В
S-8252ACC-M6T1U	С	В	С

2. SNT-6A

Top view

(1)~(3): 产品简称 (请参照产品名和产品简称的对照表)

(4)~(6): 批号

产品名和产品简称的对照表

产品名	产品简称		
广阳石	(1)	(2)	(3)
S-8252AAA-I6T1U	С	G	Α
S-8252AAH-I6T1U	С	G	Η
S-8252AAM-I6T1U	С	G	М
S-8252AAN-I6T1U	С	G	Z
S-8252AAY-I6T1U	С	G	Υ

产品名	产品简称		
厂吅石	(1)	(2)	(3)
S-8252ABJ-I6T1U	С	Н	J
S-8252ABK-I6T1U	С	Н	K
S-8252ABL-I6T1U	С	Η	Ш
S-8252ABM-I6T1U	С	Η	М
S-8252ABO-I6T1U	С	Н	0
S-8252ABP-I6T1U	С	Н	Р

No. MP006-A-P-SD-2.0

TITLE	SOT236-A-PKG Dimensions
No.	MP006-A-P-SD-2.0
SCALE	
UNIT	mm
011.0	<u> </u>
SII Semiconductor Corporation	

No. MP006-A-C-SD-3.1

TITLE	SOT236-A-Carrier Tape
No.	MP006-A-C-SD-3.1
SCALE	
UNIT	mm
SII Semiconductor Corporation	

No. MP006-A-R-SD-2.1

TITLE	SOT236-A-Reel		
No.	MP006-A-R-SD-2.1		
SCALE		QTY	3,000
UNIT	mm		
SII Semiconductor Corporation			

No. PG006-A-P-SD-2.0

TITLE	SNT-6A-A-PKG Dimensions
No.	PG006-A-P-SD-2.0
SCALE	
UNIT	mm
SII Semiconductor Corporation	

No. PG006-A-C-SD-1.0

TITLE	SNT-6A-A-Carrier Tape
No.	PG006-A-C-SD-1.0
SCALE	
UNIT	mm
SII S	emiconductor Corporation

SII Semiconductor Corporation

TITLE	SNT-6A-A-Reel		
No.	PG006-A-R-SD-1.0		
SCALE		QTY.	5,000
UNIT			
		·	
SII Semiconductor Corporation			

※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.30 mm ~ 1.40 mm)。

- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。
 - 3. マスク開口サイズと開口位置はランドパターンと合わせてください。
 - 4. 詳細は "SNTパッケージ活用の手引き" を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- ※2. Do not widen the land pattern to the center of the package (1.30 mm ~ 1.40 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请勿向封装中间扩展焊盘模式 (1.30 mm~1.40 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在 0.03 mm 以下。
 - 3. 钢网的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT 封装的应用指南"。

No. PG006-A-L-SD-4.1

TITLE	SNT-6A-A -Land Recommendation
No.	PG006-A-L-SD-4.1
SCALE	
UNIT	mm
SII Semiconductor Corporation	

免责事项 (使用注意事项)

- 1. 本资料记载的所有信息 (产品数据、规格、图、表、程序、算法、应用电路示例等) 是本资料公开时的最新信息,有可 能未经预告而更改。
- 2. 本资料记载的电路示例、使用方法仅供参考,并非保证批量生产的设计。 使用本资料的信息后,发生并非因产品而造成的损害,或是发生对第三方知识产权等权利侵犯情况,本公司对此概不承 担任何责任。
- 3. 因本资料记载的内容有说明错误而导致的损害,本公司对此概不承担任何责任。
- 4. 请注意在本资料记载的条件范围内使用产品,特别请注意绝对最大额定值、工作电压范围和电气特性等。 因在本资料记载的条件范围外使用产品而造成的故障和(或)事故等的损害,本公司对此概不承担任何责任。
- 5. 在使用本资料记载的产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本资料记载的产品出口海外时,请遵守外汇交易及外国贸易法等的出口法令,办理必要的相关手续。
- 7. 严禁将本资料记载的产品用于以及提供(出口)于开发大规模杀伤性武器或军事用途。对于如提供(出口)给开发、制 造、使用或储藏核武器、生物武器、化学武器及导弹,或有其他军事目的者的情况,本公司对此概不承担任何责任。
- 8. 本资料记载的产品并非是设计用于可能对人体、生命及财产造成损失的设备或装置的部件(医疗设备、防灾设备、安全 防范设备、燃料控制设备、基础设施控制设备、车辆设备、交通设备、车载设备、航空设备、太空设备及核能设备等)。 本公司指定的车载用途例外。上述用途未经本公司的书面许可不得使用。本资料所记载的产品不能用于生命维持装置、 植入人体使用的设备等直接影响人体生命的设备。考虑使用于上述用途时,请务必事先与本公司营业部门商谈。 本公司指定用途以外使用本资料记载的产品而导致的损害,本公司对此概不承担任何责任。
- 9. 半导体产品可能有一定的概率发生故障或误工作。 为了防止因本公司产品的故障或误工作而导致的人身事故、火灾事故、社会性损害等,请客户自行负责进行冗长设计、 防止火势蔓延措施、防止误工作等安全设计。并请对整个系统进行充分的评价,客户自行判断适用的可否。
- 10. 本资料记载的产品非耐放射线设计产品。请客户根据用途,在产品设计的过程中采取放射线防护措施。
- 11. 本资料记载的产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。 另外,晶元和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 12. 废弃本资料记载的产品时,请遵守使用国家和地区的法令,合理地处理。
- 13. 本资料中也包含了与本公司的著作权和专有知识有关的内容。 本资料记载的内容并非是对本公司或第三方的知识产权、其它权利的实施及使用的承诺或保证。严禁在未经本公司许可 的情况下转载或复制这些著作物的一部分,向第三方公开。
- 14. 有关本资料的详细内容,请向本公司营业部门咨询。

1.0-2016.01