Leveraging Multiprocessing for Thermodynamic Optimization and Generation of Orthogonal DNA Libraries

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

To preface: we will cover picked orthogonality criteria which is a bit dry. However for the DNA group as a whole, the multiprocessing aspect of calculating general thermodynamic values might be of the greatest interest as a research tool.

For the sake of simplicity I will only cover Duplex library generation here although single stranded libraries can be generated too.

Motivation

- Goal: to generate an orthogonal DNA duplex library.
 - Composed of sequences which when put together in a test tube only bind to their reverse complement if the reverse complement is available.
 - The sequences should not bind to other sequences, reverse complements or not, in the library.
- Useful across domains from DNA assembly, DNA strand displacement, HCR probe design and more
- Most approaches try to use predominantly string based methods like Sequence Symmetry Minimization.
 - Thermodynamic calculations are costly
- We propose using string based methods to generate an initial library which is optimized via thermodynamic calculations.
- Critically, we make thermodynamic calculations multiprocessed leveraging multiple cores on a CPU for speed.

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Nomenclature

- We will write the following to represent expected concentration:
 - $E([(a,b)]|I_c,T,\Theta,\Psi)$
 - Where (a, b) is some complex composed of strands a and b.
 - I_c represents the set of initial concentrations for starting species.
 - T represents the temperature.
 - Θ represents other user-adjustable salt conditions when carrying out thermodynamic predictions $(Na^+ \& Mg^{2+}$ concentration).
 - Ψ represents the considered complexes possible from the initial concentrations I_c .
- Complexes can be represented by (a, b) for duplexes, or simply (a) for a single stranded system (given strands a and b). We will not consider complexes in size above a duplex for the sake of simplicity.
- Strand \tilde{a} is the reverse complement of strand a.

Nomenclature

- A user will define:
 - ullet Length of sequences l
 - Symmetry minimization criterion k
 - Some working concentration c
 - Some working temperature au
 - Some standard salt conditions θ
 - Some thresholds $\eta_{SIM}, \eta_{ON}, \eta_{OFF}, \delta$ for various optimization steps
 - ullet Which specifies the temperature space to explore in melting temperature optimization

Note on runtimes

- For the sake of consistency and fair comparison, all runtimes reported here come from runs on a single computer (the Caltech Undergraduate Computer Science Club server).
 - CPU: 2023 14th generation Intel Core i9-14900 Raptor Lake-S Refresh 2.0GHz 24 Core LGA 1700
- Note that this computer context switches between my tasks and the many other tasks of other students.

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Overall Flowchart of Steps

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Initial Library Processing Sequence Symmetry Minimization & Character Similarity

- Sequence symmetry minimization defines a set of sequences where:
 - ullet Each sequence is of length l
 - Each sequence shares no subsequence of length $k \leq l$ with any other sequence in the set
- We can generate the max size set (which also considers reverse complements of the sequences generated).
- ullet We will call the current library of sequences L
 - In our notation, L will not contain reverse complements of its sequences which are instead contained in a separate set \tilde{L} .

Initial Library Processing Sequence Symmetry Minimization & Character Similarity

- We then ensure character similarity between sequences is less than some threshold η_{SIM}
- Let SIM(x, y) be a function that counts the number of characters in the same position between 2 strings x, y.
- Go through each $a, b \in L$ where $a \neq b$
 - Define $H_{ab}=H_{ba}=\max(SIM(a,b),SIM(\tilde{a},b),SIM(a,\tilde{b}),SIM(\tilde{a},\tilde{b}))$
- $H_{aa} = 0, \forall a \in L$
- Then, while $\max(H) > \eta_{SIM}$:
 - Given $a, b \in L$ where $H_{ab} = \max(H)$
 - Remove a if $\max(H_a H_{ab}) > \max(H_b H_{ab})$
 - Remove b if $\max(H_a H_{ab}) < \max(H_b H_{ab})$
 - Remove one of a, b at random

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

On-Target Thermodynamic Optimization

• Given a present library L whose size is denoted n, for each $a \in L$:

•
$$\iota_c = \{ [a] = c, [\tilde{a}] = c \}$$

•
$$\psi = \{(a), (\tilde{a}), (a, a), (\tilde{a}, \tilde{a}), (a, \tilde{a})\}$$

. Calculate
$$p_a = \frac{E([(a,\tilde{a})] \,|\, I_c = \imath_c, T = \tau, \Theta = \theta, \Psi = \psi)}{c}$$

- We can treat each p_a as a separate calculation and can compute each independently with multiprocessing.
- We drop any a from the library L if $p_a < \eta_{ON}$ (the user defined On-Target threshold)

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Off-Target Thermodynamic Optimization

- Given a present library L of size n, for each $a,b \in L$ where $a \neq b$:
 - For each $i \in \{a, \tilde{a}\}, j \in \{b, \tilde{b}\}$
 - $\iota_c = \{[i] = c, [j] = c\}$
 - $\psi = \{(i), (i, i), (j), (j, j), (i, j)\}$
 - . Calculate $r_{ij} = \frac{E([(i,j)] | I_c = \iota_c, T = \tau, \Theta, \Psi = \psi)}{c}$
 - Then let $\omega_{ab} = \omega_{ba} = \max(r_{ii})$

- Given a present library L of size n, for each $a \in L$
 - For each $i \in \{a, \tilde{a}\}$
 - $\iota_c = \{[i] = 2c\}$
 - $\psi = \{(i), (i, i)\}$
 - . Calculate $r_i = \frac{E([(i,i)] | I_c = \iota_c, T = \tau, \Theta, \Psi = \psi)}{c}$
 - Then let $\omega_{aa} = \max(r_i)$
- Once again, we can treat each ω entry as a separate calculation and can compute each entry independently with multiprocessing.

Off-Target Thermodynamic Optimization

- Once ω is generated, first go through each $a \in L$ and remove a from L and ω if $\omega_{aa} > \eta_{OFF}$ (the user defined Off-Target threshold)
- Then go through each $a,b\in L$ where $\omega_{ab}>\eta_{OFF}$
 - Remove a from L and ω , if $\sum_{i=1}^n \omega_{ai} > \sum_{i=1}^n \omega_{bi}$
 - Remove b from L and ω , if $\sum_{i=1}^n \omega_{ai} < \sum_{i=1}^n \omega_{bi}$
 - Else remove one of a,b from L and ω at random

On and Off Target Calculations are in Parallel

- We calculate p and ω together at the same time in a multiprocessed way.
 - Runtime:
 - 14mins 13sec for 3800 sequences including reverse complements to analyze (24 core)
 - 2hrs 42mins 30sec for 3794 sequences including reverse complements to analyze (1 core)
 - ~12x faster

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Melting Temperature Optimization

Defining melting temperature

- Given a present library L of size n, for each $a, b \in L \cup \tilde{L}$:
 - $\iota_c = \{ [a] = c, [b] = c \}$
 - $\psi = \{(a), (b), (a, b)\}$
 - Γ is a user defined set of temperatures to explore

. Calculate
$$\mu_{ab}=\mu_{ba}=\operatorname*{argmin}_{t\in\Gamma}|\frac{E([(a,b)]\,|\,I_c=\iota_c,T=t,\Theta=\theta,\Psi=\psi)}{c}-0.5\,|$$

- We can use binary search across Γ to find μ_{ab} reducing the number of calculations
- Each μ_{ab} can be calculated independently over multiple processes.

Melting Temperature Optimization

Defining melting temperature

- Let $\lambda = \{\mu_{i,j} : i = \tilde{j}, i \in L, j \in L\}$
- Then for each $a, b \in L$
 - $m_{aa} = \max(\mu_{aa}, \mu_{\tilde{a}\tilde{a}})$
- For each $a, b \in L$
 - $m_{ab} = \max(\mu_{ab}, \mu_{a\tilde{b}}, \mu_{\tilde{a}b}, \mu_{\tilde{a}\tilde{b}})$
- Algorithm (defined next slide) will remove sequences from L (and correspondingly μ, m, λ) such that $\max(m) < \min(\lambda) \delta$

Melting Temperature Optimization

Defining melting temperature

- Strategy 1:
 - Go through all a where $m_{aa} > \min(\lambda) \delta$
 - Remove a from L, m, λ
 - Go through all a, b where $m_{ab} > \min(\lambda) \delta$
 - Remove a from L, m, λ , if $\sum_{i=1}^n m_{ai} > \sum_{i=1}^n m_{bi}$
 - Remove b from L, m, λ , if $\sum_{i=1}^n m_{ai} < \sum_{i=1}^n m_{bi}$
 - Else remove one of a, b from L, m, λ at random
- Strategy 2:
 - . Remove $a = \underset{i \in L}{\operatorname{argmin}} |\lambda_i| \operatorname{from} L, m, \lambda$
 - Repeat Strategy 1
- Carry out Strategy 1 and Strategy 2 independently.
 - If |L| after strategy 1 is larger than or equal to after strategy 2, go with strategy 1.
 - If |L| after strategy 1 is smaller than after strategy 2, repeat this full process again.

Melting Temperature

- Most intensive function.
- Runtime
 - 7mins 33sec for 482 sequences including reverse complements to analyze (24 core)
 - 1hr 49min 32sec for 482 sequences including reverse complements to analyze (1 core)
 - ~16x faster

- Motivation
- Nomenclature & Notes
- Overall Steps
- Symmetry Minimization & Character Similarity
- On-Target Optimization
- Off-Target Optimization
- Melting Temperature Optimization
- Conclusions

Advantages of This Approach: Speed

- An example run with
 - Length of sequences l = 16
 - Symmetry minimization criterion k=8
 - Some working concentration $c = 1 \mu M$
 - Some working temperature $\tau = 20^{\circ}C$
 - Some standard conditions $\theta = \{ [Na^+] = 1\mu M, [Mg^{2+}] = 0\mu M \}$
 - $\eta_{SIM} = 12, \eta_{ON} = 0.7, \eta_{OFF} = 0.3, \delta = 5^{\circ}C$
 - $\Gamma = \{30^{\circ}C, 31^{\circ}C, 32^{\circ}C, ..., 80^{\circ}C\}$

An equivalent job on 1 core with same specifiers has Wall Clock Time: 4hrs 32mins 34sec

24 Core Wall Clock Time: 22mins 19sec

Advantages of This Approach: Modularity

- Easy to build other thermodynamic optimization methods leveraging general intermediate results or simply the
 existing general processor spawning code.
 - NUPACK intermediate analysis calculations can give other interesting metrics eg complex free energy
- Example 1: Bounds on ON-target melting temperature
 - We can use λ to optimize the library such that $\max(\lambda) \min(\lambda) \leq \delta_{bound}$
- Example 2: Approximating thermodynamic equilibrium in a pot
 - We can change off target optimization to include selecting for each $i, j \in L, i \neq j$ against high:

•
$$1 - \frac{E([(i,\tilde{i})] | I_c = \{[i] = c, [\tilde{i}] = c, [j] = c, [\tilde{j}] = c\}, T = \tau, \Theta, \Psi = \psi)}{c}$$

• (Where $\psi = \{(i,i),(i,\tilde{i}),(i,j),(i,\tilde{j}),(\tilde{i},\tilde{i}),(\tilde{i},j),(\tilde{i},\tilde{j}),(j,j),(j,j),(j,\tilde{j}),(\tilde{j},\tilde{j}),(i),(\tilde{i}),(j),(\tilde{j})\}$)

These examples are existing methods already written

Disadvantages and Things to Work on

- Currently using forkspawn in process generation
 - Forks from an initial python parent process, not the current parent process.
 - This means we reimport different libraries and functions for each new process
 - Use pickle to pass objects from parent to child.
- This is due to an issue where using fork caused deadlocks when NUPACK was imported.
 - Python 3.13 might fix this with an experimental mode without the Python Global Interpreter Lock...
- Disadvantage: cannot be run in a Jupyter notebook.
 - Cells are not "main" scripts
 - But can execute python script separately and pickle and depickle intermediate calculations of interest into a notebook.