

دانشگاه صنعتی شریف دانشکده مهندسی کامپیوتر

عنوان:

الگوها در سیستم های نهفته بی درنگ

نویسنده علی محسنی نژاد

استاد دکتر رامان رامسین

مرداد ۱۴۰۳

الگوها در مهندسی نرم افزار صفحه ۲ از ۵

fi f		•
مطالب	(4,11	. ^ 9
ب س		π

٣	مقدمه	١
4	الگوهای طراحی برای دسترسی به سختافزار ۱.۲ الگوی Hardware Proxy	٢
۵	مراجع	٣

الگوها در مهندسی نرم افزار

۱ مقدمه

این گزارش به طور مفصل به توضیح الگوهای معرفی شده در مقالات و کتب مختلف در حوزه سیستمهای نهفته و بی درنگ می پردازد. برای درک عمیق تر این الگوها، باید ابتدا مشخص شود که منظور از سیستمهای نهفته بی درنگ چیست. سیستمهای نهفته در بخشهای زیادی از زندگی روزمره وجود دارند؛ به طور مثال سیستمهای رادیویی، سیستمهای ناوبری، سیستمهای تصویربرداری. به طور کلی یک سیستم نهفته را می توان اینگونه تعریف کرد،: «یک سیستم کامپیوتری که به طور مشخص برای انجام یک کار در دنیای واقعی تخصیص داده شده و هدف آن ایجاد یک محیط کامپیوتری با کاربری عام نیست» [۱]. یک دسته مهم از سیستمهای نهفته، سیستمهای بی درنگ هستند. «سیستمهای بی درنگ هستند. (۱].

حال که مفهوم سیستمهای نهفته بی درنگ را دریافتیم، باید تعریفی از الگو در این سیستمها ارائه دهیم. منابع متنوع تعاریف متفاوتی از الگوها ارائه کردهاند و بسیاری از آنها این تعریف را به الگوهای طراحی محدود می کنند [۱]. هدف این گزارش تقسیم بندی الگوهای نرمافزاری به طور کلی نیست و صرفا می خواهیم الگوهای مورد استفاده در سیستمهای نهفته و بی درنگ را بررسی کنیم. Zalewski می گوید: «یک الگو یک مدل یا یک قالب نرمافزاری است که به فرایند ایجاد نرمافزار کمک می کند.» این تعریف در عین سادگی، جامع است؛ به طوری که الگوهای طراحی، معماری و فرایندی را در خود شامل می شود. با این حال این مقاله نیز مانند بسیاری از دیگر مقالات، تعریف جدیدی از الگوهای طراحی، مهراحی ارجاع دادهاند.

ساختار گزارش و مطالبی که گفته میشود.

الگوها در مهندسی نرم افزار

۲ الگوهای طراحی برای دسترسی به سختافزار

نرمافزارهای نهفته بر روی یک بستر سختافزاری مستقر میشوند و معمولا بسیاری از قابلیتهای آنها ملزم به ارتباط با سختافزار میشود. به همین دلیل Douglass [۱] یک دسته از الگوها را با عنوان الگوهای دسترسی به سختافزار معرفی می کند.

۱.۲ الگوی Hardware Proxy

این الگو با ایجاد یک رابط روی یک جزء سختافزاری، یک دسترسی مستقل از پیچیدگیهای اتصال به سختافزار برای کلاینت ایجاد می کند. این الگو با معرفی یک کلاس به نام پروکسی بین سختافزار و کلاینت، باعث می شود که تمامی عملیات وابسته به سختافزار در پروکسی انجام شود و در صورت تغییر در سختافزار، هیچ تغییری به کلاینت تحمیل نشود. در این الگو بر روی یک جزء سختافزاری، یک پروکسی قرار گرفته و کلاینتان متعدد می توانند از آن سرویس بگیرند. لازم به ذکر است که ارتباط پروکسی و سختافزار بر پایه یک «رابط قابل آدرس دهی توسط نرمافزار» است. دیاگرام کلاس این الگو در شکل ۱ رسم شده است.

شکل ۱: دیاگرام کلاس Hardware Proxy

همانطور که در شکل ۱ دیده میشود، کلاس پروکسی توابع مشخصی را در اختیار کلاینتها قرار میدهد^۱. توضیحات مربوط به هر یک از توابع کلاس پروکسی در شکل زیر داده شدهاست:

- initialize: این تابع برای آماده سازی اولیه ارتباط با سختافزار استفاده می شود و معمولا تنها یک بار صدا زده می شود.
- □ configure: این تابع برای ارسال تنظیمات برای سختافزار استفاده میشود. معمولا باید در سختافزار تنظیماتی قرار دادهشود که آن را قابل استفاده کند.
 - 🛘 disable: این تابع برای غیرفعال کردن سختافزار به صورت امن استفاده میشود.
 - access: این تابع برای دریافت اطلاعات از طرف سختافزار استفاده میشود.
 - mutate این تابع برای فرستادن اطلاعات به سمت سختافزار استفاده میشود.

اتوابع دیگری نیز در [1] گفته شده ولی اینجا تنها توابع public کلاس پروکسی را بررسی می کنیم.

لگوها در مهندسی نرم افزار صفحه ۵ از ۵

۲ مراج

Douglass, Bruce Powel. Design patterns for embedded systems in C: an embedded software [1] engineering toolkit. Elsevier, 2010.

- Zalewski, Janusz. "Real-time software architectures and design patterns: Fundamental concepts and their consequences." Annual Reviews in Control 25 (2001): 133-146.
- Gamma, Erich, et al. "Design patterns: Abstraction and reuse of object-oriented design." [7] ECOOP'93—Object-Oriented Programming: 7th European Conference Kaiserslautern, Germany, July 26–30, 1993 Proceedings 7. Springer Berlin Heidelberg, 1993.