

DADOS e APRENDIZAGEM AUTOMÁTICA

Decision Trees

Contents

Exercise < 10

minutes

Try a little more

exercise.

True

Consider

joining a gym!

Decision Trees

100% Effective

Classification Tree Regression Tree Dosage < 14.5 40 years old, or older False Exercise < 20 Exercise > 30 2% Effective Dosage >= 29 minutes minutes False False True 2.5% Effective Dosage >= 23.5 No worries! No worries **Eats Doughnuts**

52.8% Effective

True

Try more

exercise.

False

Awesome!!!

Chest Pain	Good nest Pain Blood Circulation		Heart Disease
No	No	No	No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Mesure Impurity:

- Gini Impurity
- Entropy Impurity
- Information Gain

Chest Pain	Good Blood Circulation Blocked Arteries		Heart Disease	
No	No No		No	
Yes	Yes Yes		Yes	
Yes	Yes	No	No	
Yes	No	???	Yes	
etc	etc	etc	etc	

 $G=1-(P_{ves})^2-(P_{no})^2$

G = 0.336

#=159

 $G = 1 - (34/(34+125))^2 - (125/(34+125))^2$

Total Geni Impurity = weighted avergae of Gini impurities for the Leaves:

 $G = 1 - (105/(105+39))^2 - (39/(105+39))^2$

 $G=1-(P_{ves})^2-(P_{no})^2$

G = 0.395

= 144

Chest Pain	Good est Pain Blood Circulation		Heart Disease
No	No No		No
Yes	Yes	Yes	Yes
Yes	Yes	No	No
Yes	No	???	Yes
etc	etc	etc	etc

Method:

- 1 calculate the Geni Impurity scores
- 2 If node has lowest score do not separate any more and becomes leaf
- 3 If separating becomes an improvement than choose the separation with the lowest impurity score

Chest Pain	Good Blood Circulation Blocked Arteries		Heart Disease	
No	No	No No		
Yes	Yes	Yes Yes		
Yes	Yes	No	No	
Yes	No	???	Yes	
etc	etc	etc	etc	

Method:

- 1 calculate the Geni Impurity scores
- 2 If node has lowest score do not separate any more and becomes leaf
- 3 If separating becomes an improvement than choose the separation with the lowest impurity score

7

Classification Trees – continuous attributes

	Weight	Heart Disease	
Lowest	155	No	
	180	Yes	
	190	No	
	220	Yes	
Highest	225	Yes	

Method (continuous attributes):

- 1 sort the attribute lowest to highest
- 2 calculate the average value for all adjacent attributes
- 3 calculate the impurity values for each average value
- 4 if separating becomes an improvement than choose the separation with the lowest impurity score

Method

- 1 For each possible threshold calculate the average of the left and right samples and calculate the sum of the square error for each sample
- 2 select the threshold with the minimum sum of squared errors for a branch
- 3 when number of samples less then predefined value (e.g. 20) then it is a leaf with value equal to the average of samples $_{11}$

Regression Trees – multiple attributes

Dosage	Age	Sex	Etc.	Drug Effect.
10	25	Female	•••	98
20	73	Male	•••	0
35	54	Female		100
5	12	Male		44
etc	etc	etc	etc	etc

Regression Trees – multiple attributes

Method

- 1 calculate the minimum of the sum of squared errors for each atribute
- 2 select the attribute and threshold with the minimum sum of squared errors for a branch
- 3 when number of samples less then predefined value (e.g. 20) then it is a leaf with value equal to the average of samples

Decision Trees – prunning

A decision tree will always overfit the training data if we allow it to grow to its max depth

```
full tree = DecisionTreeClassifier(random state=2020)
full tree.fit(X train, y train)
```

Pre-prunnig (early stopping):

min sample split is the minimum no. of sample required for a split.

```
min samples split grid search = GridSearchCV(
    estimator=DecisionTreeClassifier(random_state=2020),
    scoring=make scorer(accuracy score),
        {"min samples split":[[min samples split] for min samples split in np.arange(EPS, 1, 0.025)]}),
```

print(full tree.get depth())

print(full_tree.get_n_leaves())

min_sample_leaf on the other hand is basically the minimum no. of sample required to be a leaf

param grid=ParameterGrid(

```
min samples leaf grid search = GridSearchCV(
   estimator=DecisionTreeClassifier(random_state=2020),
   scoring=make_scorer(accuracy_score),
   param grid=ParameterGrid(
        {"min_samples_leaf": [ [min_samples_leaf] for min_samples_leaf in np.arange(0.000001, 0.5, 0.025)]})
```


Decision Trees – prunning

A decision tree will always overfit the training data if we allow it to grow to its max depth

Post-prunnig (after perfect training):

- Assign a maximum depth to a tree

Decision Trees – prunning

A decision tree will always overfit the training data if we allow it to grow to its max depth

Post-prunnig (after perfect training):

- Assign a maximum depth to a tree
- Pruning starts with an unpruned tree, takes a sequence of subtrees (pruned trees), and picks the best one through cross-validation.
- Cost complexity pruning generates a series of trees where cost complexity measure for sub-tree T_t is:

 $R_{\alpha}(T_{t}) = R(T_{t}) + \alpha |T_{t}|$ or $TreeScore_{t} = SSR + \alpha |T_{t}|$ where: R((T) - Total training error of leaf nodes |T| — The number of leaf nodes α — complexity parameter

cost_complexity_pruning_path returns the effective alphas and the corresponding total leaf impurities at each step of the pruning process.

```
ccp_alphas = full_tree.cost_complexity_pruning_path(X_train, y_train)["ccp_alphas"]
ccp_alpha_grid_search = GridSearchCV(
    estimator=DecisionTreeClassifier(random_state=42),
    scoring=make_scorer(accuracy_score),
    param_grid=ParameterGrid({"ccp_alpha": [[alpha] for alpha in ccp_alphas]}),
```


Algorithms

Algorithm ID3: Iterative Dichotomiser 3

https://iq.opengenus.org/id3-algorithm/

Developed by Ross Quinlan;
Builds the decision tree from root to leafs;
selects the best attribute using maximum Information Gain (IG) or minimum Entropy (H)

Algorithm C4.5

https://towardsdatascience.com/what-is-the-c4-5-algorithm-and-how-does-it-work-2b971a9e7db0

Improvements to algoritmo ID3, Also developed by Ross Quinlan;

Manipulates continuas and discrete attributes;

Handles missing values; very well;

Supports weighted attributes;

Allows for pruning the tree (goes back 1 iteration in the tree and removes branches that contribute less or not at all to the solution by replacing them with leaves)

Algorithm J48

https://www.cs.waikato.ac.nz/ml/weka)

Open source Implementation of the C4.5 algorithm in JAVA within the WEKA framework;
WEKA: Waikato Environment for Knowledge Analysis;

Algorithm CART:

Classification and Regression Tree Introduced by Breiman, practically in parallel with Ross Quinlan's ID3;

A same algorithm that shares the similarities of classification and regression models;

Algorithm CHAID: Chi-square Automatic Interaction Detection

It operates data separation in multi-level mode, while CART uses binary modes for this division;

Suitable for large datasets;

Often used in marketing studies for market segmentation;

Conclusions

Strengths:

- Simple configuration (doesn't have too many configuration parameters);
- Compared to other algorithms decision trees requires less effort for data preparation during pre-processing.
- A decision tree does **not require normalization** of data.
- A decision tree does not require scaling of data as well.
- Missing values in the data also do NOT affect the process of building a decision tree to any considerable extent.
- A Decision tree model is very intuitive and easy to explain to technical teams as well as stakeholders.

Weaknesses:

- Inadequate for problems characterized by many interactions between attributes;
- Does not avoid **replicas** of subtrees;
- A small change in the data can cause a large change in the structure of the decision tree
 causing instability.
- For a Decision tree sometimes calculation can go far more complex compared to other algorithms.
- Decision tree often involves higher time to train the model.

References

- The StatQuest Illustrated Guide to Machine Learning (PDF). (n.d.). https://statquest.gumroad.com/I/wvtmc
- Ross Quinlan (1986), "Induction of decision trees", Machine Learning, 1(1):81-106 (http://hunch.net/~coms-4771/quinlan.pdf)
- Ross Quinlan (1993), "C4.5 Programs for Machine Learning", Morgan Kaufmann
- Breiman, Leo; Friedman, J. H.; Olshen, R. A.; Stone, C. J. (1984), "Classification and regression trees",
 Monterey, CA
- Pang Ning Tan, Michael Steinbach, Anuj Karpatne, Vipin Kumar (2018) "Introduction to Data Mining", ISBN 9780133128901