Disciplined Convex Optimization with CVXR

Anqi Fu Bala Narasimhan Stephen Boyd

EE & Statistics Departments

Stanford University

useR! Conference 2018

Convex Optimization

CVXR

Examples

Outline

Convex Optimization

CVXR

Examples

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., M$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_M$ are convex
- Equality constraints are linear

Convex Optimization

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., M$
 $Ax = b$

with variable $x \in \mathbf{R}^n$

- ▶ Objective and inequality constraints $f_0, ..., f_M$ are convex
- Equality constraints are linear

Why?

- We can solve convex optimization problems
- ► There are many applications in many fields, including machine learning and statistics

Convex Problems in Statistics

- Least squares, nonnegative least squares
- ► Ridge and lasso regression
- ► Isotonic regression
- ► Huber (robust) regression
- ► Logistic regression
- Support vector machine
- Sparse inverse covariance
- Maximum entropy and related problems
- ...and new methods being invented every year!

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- ► CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

Domain Specific Languages for Convex Optimization

- Special languages/packages for general convex optimization
- CVX, CVXPY, YALMIP, Convex.jl
- Slower than custom code, but extremely flexible and enables fast prototyping

```
from cvxpy import *
beta = Variable(n)
cost = norm(X * beta - y)
prob = Problem(Minimize(cost))
prob.solve()
beta.value
```

Outline

Convex Optimization

CVXR

Examples

CVXR

A modeling language in R for convex optimization

- ► Connects to many solvers: ECOS, SCS, MOSEK, etc
- ▶ Mixes easily with general R code and other libraries
- Uses disciplined convex programming to verify convexity

CVXR 8

Outline

Convex Optimization

CVXR

Examples

Future Work

Examples

9

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- ▶ $\beta \in \mathbf{R}^n$ is variable, $X \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^m$ are constants

Ordinary Least Squares (OLS)

- ▶ minimize $||X\beta y||_2^2$
- ▶ $\beta \in \mathbf{R}^n$ is variable, $X \in \mathbf{R}^{m \times n}$ and $y \in \mathbf{R}^m$ are constants

```
library(CVXR)
beta <- Variable(n)
obj <- sum_squares(y - X %*% beta)
prob <- Problem(Minimize(obj))
result <- solve(prob)
result$value
result$getValue(beta)</pre>
```

- ▶ X and y are constants; beta, obj, and prob are S4 objects
- solve method returns a list that includes optimal beta and objective value

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

Non-Negative Least Squares (NNLS)

▶ minimize $||X\beta - y||_2^2$ subject to $\beta \ge 0$

```
constr <- list(beta >= 0)
prob2 <- Problem(Minimize(obj), constr)
result2 <- solve(prob2)
result2$value
result2$getValue(beta)</pre>
```

- Construct new problem with list constr of constraints formed from constants and variables
- Variables, parameters, expressions, and constraints exist outside of any problem

True vs. Estimated Coefficients

True vs. Estimated Coefficients

Sparse Inverse Covariance Estimation

- ▶ Samples $x_i \in \mathbf{R}^n$ drawn i.i.d. from $N(0, \Sigma)$
- ▶ Know covariance $\Sigma \in \mathbf{S}^n_+$ has **sparse** inverse $S = \Sigma^{-1}$

Sparse Inverse Covariance Estimation

- ▶ Samples $x_i \in \mathbf{R}^n$ drawn i.i.d. from $N(0, \Sigma)$
- ▶ Know covariance $\Sigma \in \mathbf{S}_+^n$ has **sparse** inverse $S = \Sigma^{-1}$
- ▶ One way to estimate S is by maximizing the log-likelihood with a sparsity constraint:

$$\begin{array}{ll} \underset{S}{\text{maximize}} & \log \det(S) - \operatorname{tr}(SQ) \\ \text{subject to} & S \in \mathbf{S}^n_+, \quad \sum_{i=1}^n \sum_{j=1}^n |S_{ij}| \leq \alpha \end{array}$$

- $Q = \frac{1}{m-1} \sum_{i=1}^{m} (x_i \bar{x})(x_i \bar{x})^{\top}$ is sample covariance
- lacktriangledown $lpha \geq 0$ is a parameter controlling the degree of sparsity

Sparse Inverse Covariance Estimation

```
S <- Semidef(n)
obj <- log_det(S) - matrix_trace(S %*% Q)
constr <- list(sum(abs(S)) <= alpha)
prob <- Problem(Maximize(obj), constr)
result <- solve(prob)
result$getValue(S)</pre>
```

- ▶ Semidef restricts variable to positive semidefinite cone
- Must use log_det(S) instead of log(det(S)) since det is not a supported atom
- ► result\$getValue(S) returns an R matrix

True vs. Estimated Sparsity of Inverse

True vs. Estimated Sparsity of Inverse

True vs. Estimated Sparsity of Inverse

Outline

Convex Optimization

CVXR

Examples

Future Work

Future Work

- ▶ Flesh out convex functions in library
- ► Develop more applications and examples
- Make connecting new solvers easier
- ► Add warm start support
- Further speed improvements

Official site: cvxr.rbind.io

CRAN page: CRAN.R-project.org/package=CVXR