

V85X Tina Linux 功耗性能参考指南

版本号: 1.0

发布日期: 2022.03.14

版本历史

版本号	日期	制/修订人	内容描述
0.1	2020.07.30	AWA1610	1. 初始版本,添加测试说明。
1.0	2022.03.14	AWA1610	1. 增加 V853 平台测试数据。

目 录

1	1 概述	1
	1.1 编写目的	
	1.2 适用范围	
	1.3 相关人员	
2	2 测试说明	2
	2.1 测试方法约定	
	2.1.1 直接电流法	
	2.1.2 间接电流采样法	
	2.2 测试场景约定	
	2.3 测量取值约定	
3	3 V851 平台测试数据	4
	3.1 典型场景一	4
	3.1.1 测试环境	
	3.1.2 测试数据	
	3.2 典型场景二	
	3.2.1 测试环境	5
	3.2.2 测试数据	5
4	4 V853 平台测试数据	6
-		6
		6
		6
	4.2 典型场景二	
	4.2.1 测试环境	
	4.2.2 测试数据	
	4.3 典型场景三	
	4.3.1 测试环境	
	4.3.2 测试数据	
	4.4 典型场景四	
	4.4.1 测试环境	
	4.4.2 测试数据	8
	4.5 典型场景五	9
	4.5.1 测试环境	
	4.5.2 测试数据	
5	5 FAQ	10
•	5.1 同一场景多次测量值不同	
		· · · · · · · · · · · · · · · · · · ·

插图

3-1	v851_perf1_power_scene1_20220108	4
3-2	v851_perf1_power_scene2_20220108	5
4-1	v853_perf1_power_scene1_20220302	6
4-2	v853_perf1_power_scene2_20220302	7
4- 3	v853_perf1_power_scene3_20220302	8
4-4	v853_perf1_power_scene4_20220302	8
4-5	v853 perf1 power scene5 20220302	9

概述

1.1 编写目的

提供全志平台常见场景的功耗测试数据,方便用于参考评估功耗性能指标。

1.2 适用范围

表 1-1: 适用产品列表

表 1-1	:适用产品列	表
产品名称	内核版本	备注
V853	Linux-4.9	M
	[M]	
†及省,测1	式者和第三方.	人员。

需关注全志平台功耗性能指标的开发者,测试者和第三方人员。

2 测试说明

2.1 测试方法约定

2.1.1 直接电流法

此种测试方法是指,在待测电路中直接串联电流表,然后测得该回路功耗数据的方法。

• 优点:

● a 测量精度高;由于是串联电流表直接测量,因此其测量精度直接取决于电流表的精度,一般可达 uA 级。

• 缺点:

- a 测量压降明显;由于电流表内阻,表笔线线阻,以及接触点平面电阻的存在,会对电路造成 影响,尤其是大电流情况下,回路压降明显,有可能会导致系统重启,关机,卡死等不稳定现 象;
- b 测量不方便;由于电流表中流过回路电流,因此每次切换测量回路,都需要对系统掉电复位, 这种方法一般适用于对关机漏电场景的测试。

综上,此种方法适合测量电流小,精度要求高,测量分量少的场景,例如关机漏电流,RTC 模块功耗等。

🛄 说明

注意事项: 使用此种方法需要注意不要超过仪器量程。

2.1.2 间接电流采样法

此种测试方式是指,在待测电路中串联精密采样电阻,然后测量该采样电阻上的分压,间接测量电流得到功耗数据的方法。

• 优点:

• a 测量压降低;由于采样电阻可以根据实际电流大小灵活调整,一般可在 $10~m\Omega\sim 1\Omega$ 之间。 若为 $10~m\Omega$, 则对于 1A 的电流,也只有 10mV 的回路压降,基本不会影响电路工作。

● b 测量方便;由于采样电阻是串联在电路中的,而万用表使用电压档与电阻并联,因此测量其他 分量时不影响电路工作状态,非常方便。

• 缺点:

● a 测量精度不高;由于是通过测量采样电阻两端的压降,通过欧姆定律 I=U/R,因此测量精度 取决于仪器精度,电阻误差,采样电阻两端压降等。尤其是采样电阻压降,必须合理,压降过 低,会影响测量精度,而过高,会导致一些系统稳定性问题,影响测试场景。因此精度普遍不 高。

综上,此种方法适合测量电流大,精度要求低,测量分量多的场景,例如场景功耗等。

注意事项: 使用此种方法需要根据经验或初测值,对采样电阻合理的取值评估。

2.2 测试场景约定

测试场景一般由产品规格书,及产品具体的使用场景确定。

一般来说,包含但不限于关机场景,休眠场景,空载场景,产品典型场景等 MIN

2.3 测量取值约定

一般情况下,我们提供的最终测试数据,都会使用一段时间的平均测量值。具体的平均时长一般 根据具体情况来定。常用下列几种方法评估:

- 对于 vdd-sys, vdd-dram 等分量,在特定场景下功耗变化不大,对于此分量功耗测试平均时长 一般在 30s~1min。
- 对于 vdd-cpu, vcc-pa(功放) 等分量以及总功耗,功耗变化大,一般取 3~5min 平均。
- 对于呈缓慢单调递增/递减的分量功耗场景,在测量时,一般取 30s~1min 内平均功耗基本没 有变化时的平均值。功耗基本没有变化指的是,误差在测量精度范围内。
- 对于具有一个长周期的大波动的分量功耗场景,如 vcc-wifi, 在测量时, 一般取值为 3~5 个周 期的平均值。

V851 平台测试数据

3.1 典型场景-

3.1.1 测试环境

• 测试条件:

常温,1080P@20fps输入,单参考帧3DNR,编码1080P@20fps H265+VGA@20fps H264,两路编码1.5x lbc, 不开AI

• 相关配置:

·#! DDR: SIP DDR2 16bits 532MHz; SENSOR: GC2063; CPU=900Mhz; VE=300Mhz; CSI=297Mhz; ISP=297Mhz;

3.1.2 测试数据

V851-PER1		插卡录像1080P20FPS									
电压分支	电压V	l(ave)	I(max) I(min)		功耗mW	温度℃	备注				
VCC-DRAM	1.5218	53.2	57.5	49.2	80.95976	36.7					
VDD-SYS	0.9338	203.4	214.8	196	189.93492	36.7					
VCC-IO/VCC-PD/VCC- PG/VCC33-USB	3.2777	32.9	40.2	32.4	107.83633	36.7					
SOC功耗 (含LDOA)					378.73101						
SOC功耗 (不含LDOA)					338.98101						

图 3-1: v851_perf1_power_scene1_20220108

版权所有 © 珠海全志科技股份有限公司。保留一切权利

3.2 典型场景二

3.2.1 测试环境

• 测试条件:

常温,4M30输入,开WDR,单参考帧3DNR,编码4M@30fps H265,D3D-1.5x VIPP 2.0x,离线编码,不WIFI 不开AI: (备注: WIFI未打开、AI未打开、关闭DE、单路4M30 编码 WDR,离线编码)

• 相关配置:

DDR: SIP DDR2 16bits 532MHz;

SENSOR: GC2063; CPU=900Mhz VE=300Mhz CSI=297Mhz ISP=297Mhz

3.2.2 测试数据

CPU=900Mhz VE=300Mhz CSI=297Mhz ISP=297Mhz										
3.2.2 测试数据										
V851-PER1			插卡录	像4M30fp	s		备 注			
电压分支	电压V	l(ave)	l(max)	l(min)	功耗mW	温度℃	田/工			
VCC-DRAM	1.5198	71.9	/81.2	61.8	109.27362	41.1				
VDD-SYS	0.9325	342.2	346	309.1	319.1015	41.1				
VCC-IO/VCC-PD/VCC- PG/VCC33-USB	3.2748	35.5	42.4	36.1	116.2554	41.1				
SOC功耗 (含LDOA)					544.63052					
SOC功耗 (不含LDOA)					499.63052					
针对4M30场景	,建议使	用外部L	DO供电,	不使用	内部LDO供电	3, 减少9	OC发热			
,-,,			,							
场景补充										
VCC-DRAM	1.5206	72.3	48.3	67	109.93938		ためが <u></u>			
VDD-SYS	0.9324	343.7	353.4	336.4	320.46588		在线编码			

图 3-2: v851_perf1_power_scene2_20220108

△ 警告

注意:此数据基于实际开发环境测试,由于测试条件复杂,无法完全说明,因此数据仅供参考。如有实际的功耗 评估需求,请与我司联系。

V853 平台测试数据

4.1 典型场景-

4.1.1 测试环境

• 测试条件:

带电软件关机 ER 硬件更改:切断gsensor供电、AVCC输入源更改为BLD01、去掉USB口充电IC

• 相关配置:

Dram Clk: 936M; CPUX Clk: 1104M;

4.1.2 测试数据

测试回路	IC温度	IC温度 电压 (V)				电流(mA)	功耗	备注	
网络阿拉西	(°C)	Max	Max Avg Min		Max Avg		Min		H /T
整机(适配器)								0.000	
整机(VBAT)	27.7		4.0000		0.156	0.026	0.025	0.104	美 电流表m
3.3V供电域(DCDC1)								0.000	
VDD-SYS								0.000	
VCC-DRAM								0.000	
IC功耗(计算值)				/				0.006	

图 4-1: v853_perf1_power_scene1_20220302

4.2 典型场景二

4.2.1 测试环境

• 测试条件:

Superstandby休眠

硬件更改:切断gsensor供电、AVCC输入源更改为BLD01、去掉USB口充电IC

• 相关配置:

Dram Clk: 936M; CPUX Clk: 1104M;

4.2.2 测试数据

测试回路	IC温度 电压(V)				电流(mA)	功耗	备注		
	(°C)	Max	Avg	Min	Max	Avg	Min		田江
整机(适配器)								0.000	
整机(VBAT)	28.9		4.0000		3.705	3.682	3.674	14.728	K 电流表 m
3.3V供电域(DCDC1)								0.000	
VDD-SYS								0.000	
VCC-DRAM			1.5148		6.10	6.05	5.75	9.165	RP35 20m
IC功耗(计算值)								9.213	

图 4-2: v853_perf1_power_scene2_20220302

4.3 典型场景三

4.3.1 测试环境

• 测试条件:

常温,单路,5M@30fps输入,单参考帧3DNR,H265,一路编码,写卡录像+显示,关wifi,关AI

硬件:

Camera: 4lane mipi SC530AI, LCD: 720x1280 4.99inch 4lane mipi LCD T050KT589, WIFI: SDIO WIFI XR829模组

使用USB供电、保证到板级输入端电压大于5V,测量方法: DCDC-采样电阻、LDO-外挂直流源

• 相关配置:

Dram Clk: 936M; CPUX Clk: 1104M;

4.3.2 测试数据

测试回路	IC温度	IC温度 电压(V)				电流(mA)	功耗	备注	
	(°C)	Max	Avg	Min	Max	Avg	Min	(m)A()	田江
整机(适配器)	43.3		4.7813		462.8	396.4	386.5	1895.3	DU6
整机(VBAT)								0.0	
3.3V供电域(DCDC1)			3.3060		258.8	178.3	175.9	589.5	RP81 TOP
VDD-SYS			1.0174		432.2	416.8	403.4	424.1	RP28
VCC-DRAM			1.5067		237.3	229.3	210.3	345.5	RP35 20m
IC功耗(计算值)				/				901.8	

图 4-3: v853_perf1_power_scene3_20220302

4.4 典型场景四

4.4.1 测试环境

• 测试条件:

常温,单路,5M@30fps输入,单参考帧3DNR,H265,一路编码,写卡录像,关wifi,关AI,关显示(DE)

硬件:

Camera: 4lane mipi SC530AI, WIFI: SDIO WIFI XR829模组

使用USB供电、保证到板级输入端电压大于5V,测量方法: DCDC-采样电阻、LDO-外挂直流源

• 相关配置:

Dram Clk: 936M; CPUX Clk: 1104M;

4.4.2 测试数据

测试回路	IC温度 电压 (V)					电流(mA)	功耗	备注	
	(°C)	Max	Avg	Min	Max	Avg	Min	(m)A()	田江
整机(适配器)	40.8		4.8293		300.4	236.0	225.2	1139.7	DU6
整机(VBAT)								0.0	
3.3V供电域(DCDC1)			3.3069		186.4	110.3	108.2	364.8	RP81 TOP
VDD-SYS			1.0162		394.0	378.5	361.5	384.6	RP28
VCC-DRAM			1.5148		6.10	6.05	5.75	9.165	RP35 20m
IC功耗(计算值)				/				768.084	

图 4-4: v853_perf1_power_scene4_20220302

版权所有 © 珠海全志科技股份有限公司。保留一切权利

4.5 典型场景五

4.5.1 测试环境

• 测试条件:

常温,单路,5M@30fps输入,单参考帧3DNR,H264,一路编码,写卡录像+显示,关wifi,关AI

Camera: 4lane mipi SC530AI, LCD: 720x1280 4.99inch 4lane mipi LCD T050KT589, WIFI: SDIO WIFI

使用USB供电、保证到板级输入端电压大于5V,测量方法: DCDC-采样电阻、LDO-外挂直流源

• 相关配置:

4.5.2 测试数据

							8		
Dram Clk: 936M;						4			
CPUX Clk: 1104M;									J
4.5.2 测试数据				N	N	1E			
测试回路	IC温度		电压 (V)			电流(mA)		功耗	备注
火州以巴西	(°C)	Max	Avg	Min	Max	Avg	Min	(m)M)	田江
整机(适配器)	44.5		4.7836		451.6	391.0	382.4	1870.4	DU6
整机 (VBAT)			1					0.0	
3.3V供电域(DCDC1)			3.3064		254.5	178.1	175.7	588.9	RP81 TOP
VDD-SYS			1,0167		412.0	398.3	383.0	405.0	RP28
VCC-DRAM			1.5077		248.7	225.7	212.1	340.3	RP35 20m
IC功耗(计算值)				/				883.7	

图 4-5: v853_perf1_power_scene5 20220302

▲ 警告

注意:此数据基于实际开发环境测试,由于测试条件复杂,无法完全说明,因此数据仅供参考。如有实际的功耗 评估需求,请与我司联系。

5 FAQ

5.1 同一场景多次测量值不同

一般出现在复杂场景下,例如播放音乐,运行算法,录音录像等,在此场景下由于负载波动较大,以及有时测量使用的算法版本/种类差异,软件流程差异,模拟负载波动,测试环境(信号强度)变化,测量平均周期不同等情况,可能造成多次测量结果存在差异。

对此情况,可通过适当减少两者间测量差异等,来提高两者数据匹配度,但这个一般是没有好的方法确认和调整的。可能比较好做到的有:使用相同的 WIFI, 相同的固件,相同的板子,测量开始和测量时间保持基本相同等。因此,更常见的做法是,做一些误差规定,将误差控制在一定的范围,如下。

- 一般以 50% 以内为界限,超过此测量值需要做功耗合理分析;当然,对精度要求高,功耗波动小的特殊分量功耗,可根据测量要求,调整这个界限。例如 vcc-rtc,精度高,应当以 10% 为界。
- 另外,对于超过 30%,不超过 50% 误差的,可根据测量要求选择重新测试,最后做比较取其一,或对各分量平均值以减少误差。

著作权声明

版权所有 © 2022 珠海全志科技股份有限公司。保留一切权利。

本文档及内容受著作权法保护,其著作权由珠海全志科技股份有限公司("全志")拥有并保留 一切权利。

本文档是全志的原创作品和版权财产,未经全志书面许可,任何单位和个人不得擅自摘抄、复制、修改、发表或传播本文档内容的部分或全部,且不得以任何形式传播。

商标声明

举)均为珠海全志科技股份有限公司的商标或者注册商标。在本文档描述的产品中出现的其它商标,产品名称,和服务名称,均由其各自所有人拥有。

免责声明

您购买的产品、服务或特性应受您与珠海全志科技股份有限公司("全志")之间签署的商业合同和条款的约束。本文档中描述的全部或部分产品、服务或特性可能不在您所购买或使用的范围内。使用前请认真阅读合同条款和相关说明,并严格遵循本文档的使用说明。您将自行承担任何不当使用行为(包括但不限于如超压,超频,超温使用)造成的不利后果,全志概不负责。

本文档作为使用指导仅供参考。由于产品版本升级或其他原因,本文档内容有可能修改,如有变更,恕不另行通知。全志尽全力在本文档中提供准确的信息,但并不确保内容完全没有错误,因使用本文档而发生损害(包括但不限于间接的、偶然的、特殊的损失)或发生侵犯第三方权利事件,全志概不负责。本文档中的所有陈述、信息和建议并不构成任何明示或暗示的保证或承诺。

本文档未以明示或暗示或其他方式授予全志的任何专利或知识产权。在您实施方案或使用产品的过程中,可能需要获得第三方的权利许可。请您自行向第三方权利人获取相关的许可。全志不承担也不代为支付任何关于获取第三方许可的许可费或版税(专利税)。全志不对您所使用的第三方许可技术做出任何保证、赔偿或承担其他义务。