

CRAb

Métodos Numéricos 1 (MN1)

Unidade 2: Raízes de Equações Parte 6: Raízes de Polinômios

Joaquim Bento Cavalcante Neto

joaquimb@lia.ufc.br

Grupo de Computação Gráfica, Realidade Virtual e Animação (CRAb)

Departamento de Computação (DC)

Universidade Federal do Ceará (UFC)

Introdução

Polinômio de grau n

$$p_n(x) = a_0 + a_1x + a_2x^2 + \dots + a_{n-1}x^{n-1} + a_nx^n, \ a_n \neq 0$$

- Exemplo $p_3(x) = 7x^3 + 2x^2 x 9$
 - Coeficientes: $a_3 = 7$, $a_2 = 2$, $a_1 = -1$, $a_0 = -9$
- Teoremas da Álgebra que fornecem informações importantes sobre equações do tipo polinomiais
 - localização e classificação dos tipos de zeros

Teorema Fundamental da Álgebra:

"Se $p_n(x)$ é um polinômio de grau $n \ge 1$, ou seja, $p_n(x) = a_0 + a_1x + ... + a_nx_n$, com seus coeficientes a_i reais ou complexos, com $a_n \ne 0$, então $p_n(x)$ tem pelo menos um zero, ou seja, existe um número complexo ξ tal que $p_n(\xi) = 0$ "

- Regra de sinal de Descartes:
 - Determinar número de zeros reais com coeficientes reais

"Dado um polinômio com coeficientes reais, o número de zeros reais positivos, **p**, desse polinômio não excede o número **v** de variações de sinal dos coeficientes. Ainda mais, **v-p** é **inteiro**, **par não negativo**."

- Exemplos:

$$p_5(x) = 2x^5 - 3x^4 - 4x^3 + x + 1 \Rightarrow v = 2 \Rightarrow p$$
:
$$\begin{cases} se \ v-p = 0, \ p=2 \\ se \ v-p = 2, \ p=0 \end{cases}$$

- Exemplos:

- Exemplos:

$$p_3(x) = x^3 - 9x^2 + 33x - 65 \Rightarrow v = 3 \Rightarrow p$$
: $\begin{cases} se \ v-p = 0, \ p=3 \\ se \ v-p = 2, \ p=1 \end{cases}$ Ou

$$p_7(x) = x^7 + 1 \Rightarrow v = 0 \text{ e p: } (v-p \ge 0) \Rightarrow p = 0$$

- Para se determinar o número de raízes negativas, n, tomamos p_n(-x) e usamos a regra para raízes positivas
 (Obs: não é somente trocar o sinal, tem de aplicar -x)
- Exemplos:

$$p_5(x) = 2x^5 - 3x^4 - 4x^3 + x + 1$$

 $p_5(-x) = -2x^5 - 3x^4 + 4x^3 - x + 1$ $\Rightarrow v = 3 \Rightarrow n$:
 $se \ v - n = 0, \ n = 3$ ou $se \ v - n = 2, \ n = 1$

- Exemplos:

$$p_3(x) = x^3 - 9x^2 + 33x - 65$$

 $p_3(-x) = -x^3 - 9x^2 - 33x - 65 \implies v = 0 \implies n: (v - n ≥ 0) \implies n = 0$

$$p_7(x) = x^7 + 1$$

 $p_7(-x) = -x^7 + 1 \Rightarrow v = 1 e n: (v - n ≥0) \Rightarrow n = 1$

ou seja, $p_7(x) = 0$ não tem raiz real positiva, o zero não é raiz, tem apenas uma raiz real negativa e tem três raízes complexas conjugadas

• Teorema: Dado um determinado polinômio p_n(x) de grau n, se desenvolvermos por Taylor em torno do ponto x=α, fica:

$$p_n(x) = p_n(\alpha) + p'_n(\alpha)(x - \alpha) + \frac{p''_n(\alpha)}{2!}(x - \alpha)^2 + \dots + \frac{p_n^{(n)}(\alpha)}{n!}(x - \alpha)^n$$

- Fazendo x- α =y, encontrando o número de raízes reais de p_n(y)=0 que são maiores que 0, estaremos encontrando o número de raízes reais de p_n(x)=0 que são maiores que α
- Podemos usar este resultado, juntamente com a regra de sinal de Descartes para analisar as raízes de um polinômio

Sequências de Sturm:

- Achar número de zeros do polinômio em intervalo $[\alpha,\beta]$
- Dado o polinômio $p_n(x)$ e um número real α , vamos definir $\tilde{v}(\alpha)$ como sendo o número de variações de sinal em $\{g_i(\alpha)\}$, onde construimos uma sequência $g_0(\alpha)$, $g_1(\alpha)$,..., $g_n(\alpha)$, ignorando os zeros. Assim:

$$\begin{cases} g_0(x) = p_n(x) \\ g_1(x) = p_n'(x) \end{cases}$$

e, para $k \ge 2$, $g_k(x)$ é o resto da divisão de g_{k-2} por g_{k-1} , com sinal trocado

$$p_3(x) = x^3 + x^2 - x + 1$$

$$\begin{cases} g_0(x) = p_3(x) = x^3 + x^2 - x + 1 \\ g_1(x) = p_3'(x) = 3x^2 + 2x - 1 \end{cases}$$

$$g_2(x) = ?$$

$$x^{3} + x^{2} - x + 1$$

$$-x^{3} - \frac{2}{3}x^{2} + \frac{1}{3}x$$

$$\frac{1}{3}x^{2} - \frac{2}{3}x + 1$$

$$-\frac{1}{3}x^{2} - \frac{2}{9}x + \frac{1}{9}$$

$$\begin{array}{c|c}
-x+1 \\
2+\frac{1}{3}x \\
3x^2+2x-1 \\
\frac{1}{3}x+\frac{1}{9} \\
\frac{2}{3}x+1 \\
\frac{2}{3}x+\frac{1}{9} \\
\frac{2}{3}x+\frac{1}{9$$

$$p_3(x) = x^3 + x^2 - x + 1$$

$$\begin{cases} g_0(x) = p_3(x) = x^3 + x^2 - x + 1 \\ g_1(x) = p_3'(x) = 3x^2 + 2x - 1 \\ g_2(x) = \frac{8}{9}x - \frac{10}{9} \end{cases}$$

$$g_3(x) = ?$$

$$3x^{2} + 2x - 1$$

$$-3x^{2} + \frac{15}{4}x$$

$$\frac{23}{4}x - 1$$

$$-\frac{23}{4}x + \frac{115}{16}$$

$$\frac{\frac{8}{9}x - \frac{10}{9}}{\frac{27}{8}x + \frac{207}{32}}$$

$$\frac{99}{16} \Rightarrow g_3(x) = -\frac{99}{16}$$

• Exemplo:

$$p_3(\mathbf{x}) = \mathbf{x}^3 + \mathbf{x}^2 - \mathbf{x} + \mathbf{1}$$

$$\begin{cases} g_0(x) = p_3(x) = x^3 + x^2 - x + 1 \\ g_1(x) = p_3'(x) = 3x^2 + 2x - 1 \\ g_2(x) = \frac{8}{9}x - \frac{10}{9} \\ g_3(x) = -\frac{99}{16} \end{cases}$$

Por exemplo, se $\alpha = 2$, temos:

$$\begin{cases} g_0(\alpha) = 11 > 0 \\ g_1(\alpha) = 15 > 0 \\ g_2(\alpha) = \frac{2}{3} > 0 \\ g_3(\alpha) = -\frac{99}{16} < 0 \end{cases} + 1 \Rightarrow \tilde{v}(\alpha) = \tilde{v}(2) = 1$$

Teorema de Sturm:

- Se $p_n(\alpha) \neq 0$ e $p_n(\beta) \neq 0$, então o número de raízes distintas $p_n(x)=0$ no intervalo $\alpha \leq x \leq \beta$ é $\tilde{v}(\alpha)-\tilde{v}(\beta)$
- Exemplo:

Sejam $p_3(x) = x^3 + x^2 - x + 1$, $\alpha = 2 e \beta = 3$:

$$\begin{cases} g_0(\beta) = 34 > 0 \\ g_1(\beta) = 32 > 0 \\ g_2(\beta) = \frac{14}{9} > 0 \\ g_3(\beta) = -\frac{99}{16} < 0 \end{cases} \rightarrow \tilde{v}(\beta) = \tilde{v}(3) = 1$$

Então
$$x^3 + x^2 - x + 1 = 0$$
 não possui raízes reais no intervalo [2,3], pois $\tilde{v}(2) - \tilde{v}(3) = 1 - 1 = 0$

- Teorema 1 da Localização no Círculo:
 - Se p_n(x) é um polinômio com coeficientes a_k, k=0,1,...,n, então p_n(x) tem pelo menos um zero na região do plano determinado pelo interior de um determinado círculo centrado na origem e de raio igual a min {ρ₁,ρ_n}, onde:

$$\rho_1 = n \frac{|a_0|}{|a_1|} \quad \rho_n = \sqrt[n]{\frac{|a_0|}{|a_n|}}$$

- Exemplo: $p_5(x) = x^5 3.7x^4 + 7.4x^3 10.8x 6.8$
 - n=5, a_5 =1, a_0 =-6.8, a_1 =-10.8. Logo:

$$\rho_1 = 5(\frac{6.8}{10.8}) = 3.1481\dots$$
 $\rho_5 = \sqrt[5]{\frac{6.8}{1}} = 1.4672\dots$

Então $p_5(x)$ tem pelo menos um zero (real ou complexo) no círculo de raio 1.4672..., ou seja, $|x| \le 1.4672...$

- Teorema 2 da Localização no Círculo:
 - Se p_n(x) é um polinômio com coeficientes a_k, k=0,1,...,n,

e se
$$r pprox 1 + \max_{0 \le k \le n-1} rac{|a_k|}{|a_n|}$$
 então cada zero de pn(x) estará

em uma região de forma circular definidad por |x| ≤ r

• Exemplo: $p_3(x) = x^3 - x^2 + x - 1$ - n=3, a_3 =1, a_2 =-1, a_1 =1, a_0 =-1. Logo:

$$\frac{|a_0|}{|a_3|} = \frac{1}{1} = 1$$
 $\frac{|a_1|}{|a_3|} = \frac{1}{1} = 1$ $\frac{|a_2|}{|a_3|} = \frac{1}{1} = 1$

$$\max_{0 \le k \le 2} \frac{|a_k|}{|a_3|} = \max\{1, 1, 1\} = 1$$

Logo r = 1+1 = 2. Então todos os zeros de $p_3(x)$ se encontram no disco centrado na origem e com raio 2 Zeros de $p_3(x)$:

$$\begin{cases} x_1 = 1 \\ x_2 = i \\ x_3 = -i \end{cases}$$

- Após a localização das raízes, o próximo passo é a determinação das raízes reais
- Pode-se aplicar qualquer um dos métodos numéricos estudados anteriormente para a determinação das raízes reais do polinômio
- Deve-se buscar uma maneira eficiente para calcular o valor numérico de um polinômio:
 - Dependendo do método utilizado, este cálculo deve ser feito uma ou mais vezes por iteração

Avaliação de um polinômio

• Para obter o valor de um polinômio de grau n $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$ em um dado ponto x=c, normalmente se faz: $p_n(c) = a_n c^n + a_{n-1} c^{n-1} + \cdots + a_2 c^2 + a_1 c + a_0$

Exemplo:

Avaliar $p_5(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$ em x=2 $p_5(2) = 3 \times 2^5 - 2 \times 2^4 + 5 \times 2^3 + 7 \times 2^2 - 3 \times 2 + 1 = 127$ foram necessárias (5+4+3+2+1=**15**) multiplicações e **5** adições

• Dessa forma, para avaliar $p_n(x)$ em c tem-se:

$$-n+(n-1)+...+2+1 = n(n+1)/2$$
 multiplicações

- Maneira mais eficiente de avaliar um polinômio, evitando potências (número alto de operações)
- Reescreve-se o polinômio da seguinte forma:

$$p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0,$$

$$(a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x + a_1) x + a_0,$$

$$((a_n x^{n-2} + a_{n-1} x^{n-3} + \dots + a_2) x + a_1) x + a_0,$$

$$p_n(x) = (\dots (a_n x + a_{n-1}) x + a_{n-2}) x + \dots + a_2) x + a_1) x + a_0$$

- Requer então apenas n multiplicações e n adições para avaliar o polinômio de grau n (Forma dos parênteses encaixados)
- Exemplo:

Avaliar
$$p_5(x) = 3x^5 - 2x^4 + 5x^3 + 7x^2 - 3x + 1$$
 em $x=2$ $p_5(x) = (((3x - 2)x + 5)x + 7)x - 3)x + 1$ $p_5(2) = (((3x 2 - 2)x 2 + 5)x 2 + 7)x 2 - 3)x 2 + 1 = 127$ foram necessárias **5** multiplicações e **5** adições

• Então no caso de n = 4:

$$p_{4}(x) = ((\underbrace{(a_{4}x + a_{3})x + a_{2})x + a_{1}}_{b_{3}}x + a_{0}$$

$$b_{2}$$

$$b_{1}$$

$$b_{0}$$

p₄(x) em x = c:

$$b_4 = a_4$$

 $b_3 = a_3 + b_4c$
 $b_2 = a_2 + b_3c$
 $b_1 = a_1 + b_2c$
 $b_0 = a_0 + b_1c$
 $\Rightarrow p(c) = b_0$

Caso geral:

Calculam-se b_j , j = n, n-1,...,1, 0, sucessivamente:

- $-b_n = a_n$
 - $b_i = a_i + b_{i+1}c, j = n-1, n-2, ..., 1,0$
- e b₀ será o valor de p_n(x) para x = c

Cálculo de pn'(x)

- Usa-se valores de b_i no cálculo de p_n' (x)

• Exemplo n=4:
$$p_4(x) = a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0$$

 $\Rightarrow p_4'(x) = 4a_4x^3 + 3a_3x^2 + 2a_2x + a_1$

já sabemos!

$$b_4 = a_4$$

$$b_3 = a_3 + b_4 c$$

$$b_2 = a_2 + b_3 c$$

$$b_1 = a_1 + b_2 c$$

$$b_0 = a_0 + b_1 c$$

$$\Rightarrow a_4 = b_4$$

$$\Rightarrow a_3 = b_3 - b_4 c$$

$$\Rightarrow a_2 = b_2 - b_3 c$$

$$\Rightarrow a_1 = b_1 - b_2 c$$

$$\Rightarrow a_0 = b_0 - b_1 c$$

Cálculo de pn' (x)

$$p'_{4}(c) = 4a_{4}c^{3} + 3a_{3}c^{2} + 2a_{2}c + a_{1}$$

$$= 4b_{4}c^{3} + 3(b_{3} - b_{4}c)c^{2} + 2(b_{2} - b_{3}c)c + (b_{1} - b_{2}c)$$

$$= 4b_{4}c^{3} - 3b_{4}c^{3} + 3b_{3}c^{2} - 2b_{3}c^{2} + 2b_{2}c + b_{1} - b_{2}c$$

$$\Rightarrow p'_{4}(c) = b_{4}c^{3} + b_{3}c^{2} + b_{2}c + b_{1}$$

Aplicando o mesmo esquema anterior:

$$c_4 = b_4$$
 $c_3 = b_3 + c_4 c$
 $c_2 = b_2 + c_3 c$
 $c_1 = b_1 + c_2 c$ $\Rightarrow \mathring{p}(c) = c_1$

Cálculo de pn'(x)

Caso geral:

Calculam-se c_j , j = n, n-1,...,1, successivamente:

- $-c_n = b_n$
 - $c_j = b_j + c_{j+1}c, \quad j = n-1, n-2, ..., 1$
- e c₁ será o valor de p_n' (x) para x = c

- Sejam $p_n(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$ e x₀ uma aproximação inicial para a raiz
- Método de Newton para polinômios:

- Aproximar ξ a partir da iteração $x_{k+1} = x_k \frac{p(x_k)}{p'(x_k)}$
- Utilizaremos as observações anteriores para construir um algoritmo especializado em achar raízes de polinômios usando método de Newton

Algoritmo

```
<u> Algoritmo: Newton Polinômios</u>
Entrada: n, coeficientes a_0, ..., a_n, x, \epsilon_1, \epsilon_2, iterMax
Saída: raiz
 deltax = x
 para k = 1 até iterMax faça:
   b = a_n
   c = b
   para i = (n-1) até 1 faça:
      b = a_i + bx
      c = b + cx
   fim para
   b = a_0 + bx
   se abs(b) < \epsilon_1 então raiz \leftarrow x; Fim.
   deltax = b/c
   x = x - deltax
   se abs(deltax) < \epsilon_2 então raiz \leftarrow x; Fim.
 fim para
 raiz ← x; escreva "Erro: algoritmo não convergiu após ", iterMax, " iterações."
fim algoritmo
```

- Ache a raiz do polinômio p(x) = $x^3 + 2x^2 x 2$ pelo método de Newton, considerando $\varepsilon = 10^{-3}$
 - Utilizando a regra de sinal de Descartes, tem-se:
 - Em p(x), v = 1, p = 1 (uma raiz positiva)
 - Em p(-x), v = 2, n = 2 ou n = 0 (0 ou 2 raízes negativas)
 - Utilizando o teorema 2 da localização no círculo:
 - $r = 1 + max\{2,1,2\} = 3$ (então todas as raízes estão em |r| < 3)

$$r \approx 1 + \max_{0 \le k \le n-1} \frac{|a_k|}{|a_n|}$$

- Ache a raiz do polinômio p(x) = $x^3 + 2x^2 x 2$ pelo método de Newton, considerando $\varepsilon = 10^{-3}$
 - Sabemos que existe uma raiz positiva entre [0,3]
 - Executando o método de Newton para polinômios,
 com aproximação inicial x=2

		1
k	Х	p(x)
1	2.0000	1.200000e+01
2	1.3684	2.939204e+00
3	1.0771	4.932089e-01
4	1.0045	2.722323e-02
5	1.0000	1.015792e-04

E se quiséssemos saber se as outras duas raízes são reais?

- Ache a raiz do polinômio $p(x) = x^3 + 2x^2 x 2$ pelo método de Newton, considerando $\varepsilon = 10^{-3}$
 - Construiremos as sequências de Sturm para saber ao certo quantas raízes reais estarão em [-3,0]:

$$g_0(x) = x^3 + 2x^2 - x - 2$$
 $g_1(x) = 3x^2 + 4x - 1$
 $g_2(x) = ?$
 $x^3 + 2x^2 - x - 2$
 $-x^3 - \frac{4}{3}x^2 + \frac{1}{3}x$
 $\frac{2}{3}x^2 - \frac{2}{3}x - 2$
 $\frac{2}{3}x^2 - \frac{8}{9}x + \frac{2}{9}$
 $\frac{-\frac{14}{3}x - \frac{16}{9}}{\frac{14}{3}x - \frac{16}{9}}$

$$\begin{array}{c|c}
 3x^2 + 4x - 1 \\
 \hline
 \frac{1}{3}x + \frac{2}{9}
 \end{array}$$

$$\Rightarrow g_2(x) = \frac{14}{9}x + \frac{16}{9}$$

- Ache a raiz do polinômio p(x) = $x^3 + 2x^2 x 2$ pelo método de Newton, considerando $\varepsilon = 10^{-3}$
 - Construiremos as sequências de Sturm para saber ao certo quantas raízes reais estarão em [-3,0]:

$$g_{0}(x) = x^{3} + 2x^{2} - x - 2$$

$$g_{1}(x) = 3x^{2} + 4x - 1$$

$$g_{2}(x) = \frac{14}{9}x + \frac{16}{9}$$

$$g_{3}(x) = ?$$

$$3x^{2} + 4x - 1$$

$$-3x^{2} - \frac{24}{7}x$$

$$\frac{4}{7}x - 1$$

$$-\frac{4}{7}x - \frac{32}{49}$$

$$-\frac{81}{49}$$

$$\Rightarrow g_{3}(x) = \frac{8}{4}$$

- Ache a raiz do polinômio $p(x) = x^3 + 2x^2 x 2$ pelo método de Newton, considerando $\varepsilon = 10^{-3}$
 - Construiremos as sequências de Sturm para saber ao certo quantas raízes reais estarão em [-3,0]:

$$g_0(x) = x^3 + 2x^2 - x - 2$$

$$g_0(-3) = -8 < 0$$

$$g_0(0) = -2 < 0$$

$$g_1(x) = 3x^2 + 4x - 1$$

$$g_2(x) = \frac{14}{9}x + \frac{16}{9}$$

$$g_3(x) = \frac{81}{49} > 0$$

$$g_3(x) = \frac{81}{49}$$

$$g_3(x) = \frac{14}{9} = \frac{16}{9}$$

$$g_3(x) = \frac{14}{9} = \frac{16}{9}$$

$$g_3(-3) = \frac{14}{9} = \frac{16}{9}$$

$$g_3(-3) = \frac{14}{9} = \frac{11}{9} =$$

Exercício

$$f(x) = x^3-9x+3$$
, $x_0 = 0.5$, $\varepsilon_1 = \varepsilon_2 = 1 \times 10^{-4}$, $\xi \in (0,1)$
 $a_3 = 1$, $a_2 = 0$, $a_1 = -9$, $a_0 = 3$

k	p(x)	p'(x)	X	f(x)
0			0.5	-1.375000e+00
1	-1,3750	-8,2500	0.333333	3.703704e-02
2	0,0373	-8,6667	0.337603	5.156714e-05

raiz = 3.37603e-01

Obs: Newton-Rapson normal (k=2) raiz = 3.376068e-01

Observações finais

- Vantagens: ©
 - O método continua eficiente

- Não precisa calcular derivada
- É um método bastante simples

Observações finais

- Desvantagens: ☺
 - Convergência também não é assegurada
 - Faz mais cálculos que o Newton normal
 - Só funciona para as funções polinomiais