Week 5 Summary Exercises Results for Edmund Dea

Score for this attempt: **61** out of 65 Submitted Nov 3 at 6:51pm This attempt took 178 minutes.

	Question 1	1 / 1 pts
	Compute the sum with carry-wraparound (sometimes called the complement sum) of the following two numbers. Give answer zero-padded to 8 bits if necessary, with no spaces (e.g. 00101 note this is different than the checksum calculation. NOTE: Canvas will remove any leading zeros from your answer cause your answer to be marked as incorrect.	in 8-bit binary, 000). Please
	10000010 10000001	
Correct!	100	
orrect Answe	ers 100 (with margin: 0)	
	Question 2	2 / 2 pts
	The UDP protocol provides error detection and correction.	
	True	
Correct!	False	

Question 3 2 / 2 pts

	The TCP protocol provides error detection and correction.	
	O True	
Correct!	False	
	Question 4	2 / 2 pts
	The UDP protocol provides unreliable, connectionless service.	
Correct!	True	
	False	
I		
	Question 5	2 / 2 pts
	The UDP protocol provides error detection.	
Correct!	True	
	False	
I		
	Question 6	2 / 2 pts
	The TCP protocol provides reliable, connection-oriented service.	
Correct!	True	

False

Question 7 2 / 2 pts

Server X is running XBox Live services on port #3072. Client A is running an application that uses port #1796 to request an XBox Live TCP connection to Server X. Client B is running an application that uses port #2076 to request an XBox Live TCP connection to Server X.

IP addresses:

Server X: 201.164.10.123
Client A: 128.193.11.113
Client B: 128.193.45.227

The connection created for Client A is identified by the sockets at the endpoints as follows:

	IP Address	Port Number
On Client A	[Select] •	[Select] •
On Server X	[Select] •	[Select] •

Answer 1:

Correct!

201.164.10.123

Answer 2:

Correct!

3072

Answer 3:

Correct!

128.193.11.113

Answer 4:

Correct!

1796

	Question 8	2 / 2 pts
	Retransmitting a missing segment before the segment's countdown ti expires is called	mer
	duplicate transmission	
	retransmission avoidance	
	early retransmission	
Correct!	fast retransmission	

ī	Question 9	2 pts
	Which of the following are fields in the UDP header? (Select all that apply	·)
	☐ Window Size	
	Sequence Number	
	Options	
Correct!	✓ Destination Port	
Correct!	✓ Length	
	☐ Header Length/Data Offset	
Correct!		
Correct!	Source Port	

Question 10 2 / 2 pts

Match the event with the TCP receiver action:

Event	TCP Receiver Action
Arrival of in-order segment with expected sequence number. All data up to expected sequence number already acknowledged.	Delayed ACK. Wait up to 500ms for arrival of another in-order segment. If next inorder segment does not arrive in this interval, send an ACK.

Answer 1:

Correct!

Delayed ACK. Wait up to 500ms for arrival of another in-order segment. If next in-order segment does not arrive in this interval, send an ACK.

Question 11 2 / 2 pts

Match the event with the TCP receiver action:

Event	TCP Receiver Action
	Immediately send duplicate
Arrival of out-of-order segment with higher-than-	ACK, indicating sequence
expected sequence number.	number of next expected
	byte.

Answer 1:

Correct!

Immediately send duplicate ACK, indicating sequence number of next expected byte.

2 / 2 pts **Question 12** Put the steps in the most correct order for closing a TCP Connection. [Select] 2. Server sends ACK of received segment 3. Server sends segment with FIN bit set [Select] Answer 1: Correct! Client sends segment with FIN bit set Answer 2: Correct! Server sends ACK of received segment Answer 3: Correct! Server sends segment with FIN bit set Answer 4: Correct! Client sends ACK of received segment

Question 14

2 / 2 pts

In a Selective acknowledgement scheme, a received ACK indicates only that the ACK'd segment was received.

Answer 1:

Correct!

Selective

Question 15

2 / 2 pts

In a Cumulative acknowledgement scheme, a received ACK indicates all segments prior to the ACK'd segment were received.

Answer 1:

Correct!

Cumulative

Question 16

2 / 2 pts

Match the event with the TCP receiver action:

Event	TCP Receiver Action
Arrival of in-order segment with expected sequence	Immediately send single
number. One other in-order segment waiting for ACK	cumulative ACK, ACKing
transmission.	both in-order segments.

Answer 1:

Correct!

Immediately send single cumulative ACK, ACKing both in-order segments.

Question 17

2 / 2 pts

A Go-back-N -type retransmission protocol will retransmit all un-ACK'd segments upon a countdown timer interrupt.

Answer 1:

Correct!

Go-back-N

Question 18

4 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending segments to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment). Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #1,134. HostA now sends segments of the same application data stream in order:

P: 346 bytes

Q: 145 bytes

R: 499 bytes

What is the sequence number on segment R?

Correct!

1,626

orrect Answer

1,626

Question 19

4 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending packets to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment).

Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #3,564. HostA now sends segments of the same application data stream in order:

P: 283 bytes Q: 458 bytes

R: 386 bytes

Suppose the segments arrive at Host B in the order Q, P, and R. What is the acknowledgment number on the segment sent in response to segment P?

Correct!

4,306

orrect Answer

4,306

Question 20

4 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending packets to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment). Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #4,038. HostA now sends segments of the same application data stream in order:

P: 356 bytes

Q: 242 bytes

R: 387 bytes

Suppose segments P, Q, and R arrive at Host B in order. What is the acknowledgment number on the segment sent in response to segment Q?

Correct!

4,637

orrect Answer

4,637

Question 21

0 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending packets to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment). Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #4,215. HostA now sends segments of the same application data stream in order:

P: 289 bytes

Q: 225 bytes

R: 312 bytes

Suppose the segments arrive at Host B in the order Q, P, and R. What is the acknowledgment number on the segment sent in response to segment Q?

'ou Answered

4,441

orrect Answer

4,216

Question 22

4 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending packets to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment). Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #1,648. HostA now sends segments of the same application data stream in order:

P: 230 bytes

Q: 220 bytes

R: 385 bytes

Suppose the segments arrive at Host B in the order Q, P, and R. What is the acknowledgment number on the segment sent in response to segment R?

Correct!

2,484

orrect Answer

2,484

Question 23

4 / 4 pts

HostA has established a TCP connection with HostB in a remote network. HostA is sending packets to HostB. Assume we have configured TCP, somehow, to ACK every segment (no ACKing every other segment). Assume that the timeout is the same for all packets. HostB's "window size" is 20000 bytes. HostB has already received and acknowledged everything sent by HostA's application up to and including byte #2,175. HostA now sends segments of the same application data stream in order:

P: 237 bytes

Q: 175 bytes

R: 394 bytes

What is the sequence number on segment P?

Correct!

2,176

orrect Answer

2,176

Question 24

8 / 8 pts

Assume a TCP sender is continuously sending 1,250-byte segment. If a TCP receiver advertises a window size of 7,251 bytes, and with a link transmission rate 45 Mbps an end-to-end propagation delay of 39.3 ms, what is the utilization? Assume no errors, no processing or queueing delay, and ACKs transmit instantly. Also assume the sender will not transmit a non-full segment. Give answer in percentages, rounded to one decimal place, without units (e.g. for an answer of 10.43% you would enter "10.4" without the quotes).

Quiz Score: 61 out of 65