Title

D. Zack Garza

Friday 20^{th} March, 2020

Contents

1	Frid	lay February 21st	1
	1.1	Proof of Cartan's Theorem	3
		1.1.1 Step 1	3

1 Friday February 21st

Question: how do we define $h_{V,D}$?

Answer: write $D = D_1 - D_2$ which are (very) ample divisors and basepoint free. We then obtain embeddings

$$\varphi_1: V \hookrightarrow \mathbb{P}_K^{n_1}$$
$$\varphi_2: V \hookrightarrow \mathbb{P}_K^{n_2}.$$

So write

$$h_{V,D}(p) = h(\varphi_1(p)) - h(\varphi_2(p)) + O(1)$$

Example 1.1.

For E/K an elliptic curve,

- 2[0] is an ample divisor
- 3[0] is a very ample divisor.

Let K be a local field (i.e. \mathbb{C}, \mathbb{R} , a p-adic field, or $\mathbb{F}_q((t))$ formal Laurent series) and A/K be an abelian variety; we want to understand A(K). We know this has the structure of compact abelian K-analytic Lie group.

- Question 1: What does Lie theory say?
- Question 2: What extra information comes from A/K being a g-dimensional abelian variety?

If $K = \mathbb{C}$, then $A(K) \cong (\mathbb{R}/\mathbb{Z})^{2g}$. If $K = \mathbb{R}$, then $A(K) \cong (\mathbb{R}/\mathbb{Z})^g \oplus \prod_{i=1}^d \mathbb{Z}/2\mathbb{Z}$ where $0 \leq d \leq g$.

Fix d, then

- Let E_1/\mathbb{R} with $\Delta > 0$ (and thus 3 real roots), then $E_1(\mathbb{R})[2] = (\mathbb{Z}/2\mathbb{Z})^2$.
- Let E_2/\mathbb{R} with $\Delta < 0$ (and 1 real root), then $E_2(\mathbb{R})[2] = \mathbb{Z}/2\mathbb{Z}$.

By taking products of E_1 and E_2 , i.e. $A = (E_1)^d \times (E_2)^{g-d}$.

Todo: find reference in Silverman?

Fact A(K) is totally disconnected and homeomorphic to a Cantor set.

Fact (From Lie Theory, Serre p.116) If G is an abelian compact K-analytic Lie group, then there exists a filtration by open finite index subgroups

$$G = G^0 \supset G^1 \supset \cdots \supset G^n \supset \cdots$$

such that

- 1. The successive quotients are finite, and each G^i is *standard*, i.e. obtained by evaluating a formal group law on $\left(\mathfrak{m}^i\right)^g$.
- 2. $\bigcap_{i} G^{i} = (0)$.
- 3. G^i/G^{i+1} has exponent p, i.e. it is a finite dimensional $\mathbb{Z}/p\mathbb{Z}$ -vector space.
- 4. $G'[tors] = G'[p^{\infty}]$, all of the prime-to-p torsion is p-primary.

Todo: define p-primary torsion, \mathbb{Q}_p .

What structure theorem does this give?

Theorem 1.1(C-Lacy).

Let G be a compact, second countable, K-analytic abelian Lie group of dimension $g \ge 1$. Then a. If char K = 0 and $d = [K : \mathbb{Q}_p]$, then

$$G \cong_{\operatorname{TopGrp}} \mathbb{Z}_p^{dg} \oplus G[\operatorname{tors}]$$

where G[tors] is finite.

b. If char K = p, i.e. $K = \mathbb{F}_q((t))$, and if it is true that G[tors] is finite iff G[p] finite, then

$$G \cong_{\text{TopGrp}} \prod_{i=1}^{\infty} \mathbb{Z}_p \oplus G[\text{tors}]$$

For any $g \geq 1$, (T, +) a finite discrete abelian group $(R, +) \cong (\mathbb{Z}_p^d, +)$ and $R^g \oplus T$ is a compact abelian K-analytic Lie group isomorphic to $\mathbb{Z}_p^{dg} \oplus T$ (?).

Question: what does this mean for $G = S^1$? Ask Pete!

Theorem 1.2(Cartan).

Let K be a local field, $\mathbb{Q} \hookrightarrow K$ dense (so $K = \mathbb{R}, \mathbb{Q}_p$). Then if G_1, G_2 are K-analytic, and $\varphi \in \text{hom}_{\text{TopGrp}}(G_1, G_2)$, then $\varphi \in \text{hom}_{k\text{-analytic}}(G_1, G_2)$.

Example 1.2.

For
$$R = \mathbb{F}_q[[t]], (R, +)^g[p] = (R, +)^g.$$

Example 1.3.

Take $G = \mathbb{G}_a^g(K)$ the additive group or A/K a g-dimensional abelian variety (i.e. G = A(K)) then $G[p] \subsetneq (\mathbb{Z}/p\mathbb{Z})^{2g}$ and is finite.

1.1 Proof of Cartan's Theorem

1.1.1 Step 1

We want to show that $G[p] < \infty$, then $G[\text{tors}] < \infty$. We'll use the filtration in Serre's result; then for $i \gg 1$, we'll have $G^i[p] = 0$. Thus for $i \gg 1$, we'll have $G^i[p^\infty] = 0$; but this is the only torsion that can appear. We'll then obtain an injection $G[\text{tors}] \hookrightarrow G/G^i < \infty$.

Lemma 1.3.

Let H be an abelian torsionfree pro-p group (e.g. $\prod \mathbb{Z}_p$). Then $H \cong \prod_{i \in I} \mathbb{Z}_p$, and if H is second-countable, then I is countable.

Proof.

Omitted. Idea: use Pontrayagin duality $G^{\vee} := \hom_{\text{Top}}(G, \mathbb{R}/\mathbb{Z})$ for locally compact abelian groups.

Use the fact that this is naturally an exact contravariant functor, this lets you trade in profinite groups for discrete torsion abelian groups.

Note: look up pro-p groups. Is the Pontrayagin dual a cohomotopy group?

1 FRIDAY FEBRUARY 21ST

3