EGZAMIN Z ANALIZY NUMERYCZNEJ (L)

8 lutego 2021 r.

Pierwszy termin

Pracuj samodzielnie!!!

Imię i nazwisko: Krystian Jossonek

Numer części: Numer zadania: 3......

f(x)= 6in (2x) interpolyey Ln & IIn wwild Calyson Int, × n= cos (2ht/II)
ha publishe × 6[-1,1]. Cheey, vely:

max | f(x) - Ln(x) | \le 10^8, eyldshe may, et

 $\max_{x \in \mathcal{E}^{-1}, 1J} |f^{(n+1)}(x)|, \max_{x \in \mathcal{E}^{-1}, 1J} |f^{(n+1)}(x)|, \max_{x \in \mathcal{E}^{-1}, 1J} |x \in \mathcal{E}^{-1}, 1J|$

olla certer (rely sien na probale $x \in [-1,1]$ olla $[n+1] \times n = cos(\frac{2\ln 1}{2\ln 4\pi}]$) of $[n+1] \times n = cos(\frac{2\ln 1}{2\ln 4\pi}]$) max $[(x-x_0)(x-x_1)-\dots(x-x_n)]=\frac{1}{2^n}$, 2oten $[n+1] \times n = cos(\frac{2\ln 1}{2\ln 4\pi}]$ $[n+1] \times n = cos(\frac{2\ln 1}{2\ln 4\pi}]$

 $f''(x) = \sin(2x)$, $f'(x) = 2\cos(2x)$, $f''(x) = -4\sin(2x)$, f''(x) =

 $\max_{\substack{x \in [T-1], 1J \\ x \in [T-1], 1J}} |f^{(n+1)}(x)| = 1 \cdot 2^{n+1}, st_{qol}$ $\max_{\substack{x \in [T-1], 1J \\ x \in [T-1], 1J}} \frac{1}{(n+1)!} \cdot \frac{1}{2^{n}} \leq 10^{-8}$ $\frac{2}{(n+1)!} \leq 10^{-8}$

2.10 8 & (n+1)! nojmmisse n, all htorep jest spelnion ta novouvosi to n=11.

Pamiętaj o zasadach nadsyłania rozwiązań!