МФТИ

Алгоритмы и структуры данных, весна 2023 Домашнее задание №06. Динамическое программирование

- 1. (1 балл) На прямой дощечке вбито n гвоздиков. Любые два гвоздика можно соединить ниточкой (но нельзя соединять гвоздик сам с собой). Требуется соединить некоторые пары гвоздиков ниточками так, чтобы к каждому гвоздику была привязана хотя бы одна ниточка, а суммарная длина всех ниточек была минимальна. Асимптотика: $O(n \log n)$.
- **2.** (2 балла) Нужно перевезти n объектов, стоящих в ряд, их веса равны a_1, a_2, \ldots, a_n . Корабль за одну переправу может перевезти лишь грузов суммарного веса не больше t. В каждый момент времени грузить на корабль разрешается только первый или последний объект, который ещё не был погружен. Иными словами, за одну переправу можно перевезти некий префикс и некий суффикс необработанных объектов. За $O(n^2)$ определите минимальное число переправ корабля для перевозки всех объектов.
- 3. (3 балла) Предложите метод решения задачи о рюкзаке с восстановлением ответа, использующий $O(W\sqrt{n})$ памяти и O(nW) времени. Здесь n число объектов, а W вместимость рюкзака.
- **4.** (4 балла) Пусть a_1, a_2, \ldots, a_n целые положительные числа, причём $a_i \geqslant 2a_{i-1}$ для всех $i \geqslant 2$. Требуется найти количество способов представить число W в виде суммы слагаемых из мультимножества $(a_1, a_1, a_2, a_2, \ldots, a_n, a_n)$, то есть каждое число можно брать не более двух раз. Порядок слагаемых в сумме не учитывается. Покажите, как можно найти ответ за $O(K \log K + F_{\log_2(W/K)})$ для произвольного K. Здесь $F_k k$ -е число Фибоначчи. Найдите оптимальное значение K и время работы для $W = 10^{18}$.
- **5.** (3 балла) Задан массив $a(0), \ldots, a(2^n-1)$. Определим $a'(mask) = \sum_{submask \subseteq mask} a(submask)$. Докажите,

что следующий код решает эту задачу на месте (результат сохраняется в исходном массиве).

```
void magic(vector<int>& a) {
   for (int i = 0; i < n; ++i)
      for (int mask = 0; mask < (1 << n); ++mask)
      if (!bit(mask, i))
          a[mask + (1 << i)] += a[mask];
}</pre>
```

- 6. (1 балл) Пусть в задаче о рюкзаке предметы не имеют стоимостей, то есть характеризуются только весами. Нужно найти максимальный суммарный вес предметов, который можно уместить в рюкзак вместимости W. Решите задачу за O(nW/w), где w длина машинного слова (обычно 32 или 64).
- 7. На гранях шестигранного кубика могут располагаться числа от 1 до n, повторы не запрещены. Два кубика считаются различными, если на кубиках различны мультимножества расположенных чисел. Скажем, что один кубик npeвocxodum другой, если с вероятностью, строго большей $\frac{1}{2}$, при случайном равномерном бросании обоих кубиков на первом выпадает большее число. Назовём тройку кубиков $xopome\ddot{u}$, если первый кубик превосходит второй, второй превосходит третий, а третий превосходит первый. Определите число хороших упорядоченных троек кубиков за
 - а) (2 балла) O(n);
 - б) (1 балл) $O(\log n)$;
 - в) (2 балла) O(1).
- 8. (4 балла) Дан набор строк s_1, \ldots, s_n из маленьких латинских букв суммарной длины $S = \sum_{i=1}^n |s_i|$. С каждой строкой ассоциирована стоимость a_1, \ldots, a_n . Стоимостью строки t из маленьких латинских букв назовём $\sum_{i=1}^n cnt(s_i,t) \cdot a_i$, где $cnt(s_i,t)$ количество вхождений строки s_i в строку t (вхождения могут перекрываться). По числу l найдите максимально возможную стоимость строки среди всех строк длины l. Асимптотика: $O(S^3 \log l)$.