IFRS – Instituto Federal de Educação, Ciência e Tecnologia **Campus Rio Grande**

Lista de Matemática I – Trigonometria - Exercícios de Vestibulares 2

- (Fatec-SP) Se x é um arco do 3º quadrante e $\cos x = -\frac{4}{5}$, então $\csc x$ é

- (Uneb-BA) Se x pertence ao interva- $\log \left[0; \frac{\pi}{2}\right]$ e tg x = 2, então cos x vales
 - a) $\frac{\sqrt{3}}{2}$ d) $\frac{\sqrt{5}}{2}$

- (Esccai-MG) O valor de

$$y = \frac{\sec x - \cos x}{\csc x - \sin x}, \text{ where } x = 0$$

sabendo que tg x = 3, é:

- a) 9 b) 27 c) 3 d) 1
- (U. E. Londrina-PR) Seja x a medida de um arco em radianos. O número real a, que satisfaz as sentenças sen x = $=\sqrt{3-a}$ e $\cos x = \frac{a-2}{2}$, é tal que:
- d) $0 \le a < 3$
- b) $5 \le a < 7$
- c) 3 ≤ a < 5
- (PUC-MG) O arco que tem medida x em radianos é tal que $\frac{\pi}{2}$ < x < π e tg x = $=-\sqrt{2}$. O valor do seno de x é:

- 7 (PUC-RS) Se tg x = 2, a expressão $\frac{2 \cos x}{3 \cos x}$

- (UA-AM) A expressão:

 $\frac{1}{\operatorname{cossec} x \cdot (1 + \cos x)} + \operatorname{cossec} x \cdot (1 + \cos x)$ cos x) é igual a:

- a) 2 sen x
- d) 2 tg x
- b) 2 cos x
- e) 2 sec x
- c) 2 cossec x

12 (UF-PA) Qual das expressões abaixo é

idêntica a $\frac{1-\sin^2 x}{}$? cotg x · sen x

- a) sen x
- d) cossec x e) cotg x
- b) cos x
- 13 (UF-RS) Para todo $x \in \left[-\frac{\pi}{3}, \frac{\pi}{2} \right]$, o valor de $(tg^2 x + 1) \cdot (sen^2 x - 1)$ é:
 - a) -1
- d) $\cos^2 x$
- b) 0
- e) -sec² x
- 15 (U. E. Londrina-PR) A expressão $\cos\left(\frac{3\pi}{2} + x\right)$ é equivalente a:
 - a) sen x
- d) cos x
- b) cos x
- e) sen x
- c) sen x · cos x
- (Fatec-SP) Simplificando a expressão

$$y = \frac{1}{\cos^2 x \cdot \csc^2 x} - \sec^2 x + 2, \text{ vamos obter:}$$

- a) y = x
 - c) y = 2 e) y = -1
- d) y = 0b) y = 1
- (Unifor-CE) Para todo $x \neq k\pi$, sendo $k \in \mathbb{Z}$, a expressão
 - $2 \cdot \cos(\pi x) \cdot \sin(\pi + x) \cdot tg\left(\frac{\pi}{2} x\right) \acute{e}$ equivalente a:
 - a) sec2 x
- d) $2 \cdot \cos^2 x$
- b) $2 \sin^2 x$
- e) $1 \sin^2 x$
- c) $1 + \cot^2 x$
- 18 (Cesgranrio-RJ) A tangente do arco θ, do 1º quadrante, cujo seno vale $\frac{3}{5}$, é:

a)
$$\frac{1}{2}$$
 b) 1 c) $\frac{4}{5}$ d) $\frac{5}{3}$ e) $\frac{3}{4}$

(Unama-PA) Sendo

$$M = \frac{\sec x - \csc x}{1 - \cot g x}, \cos x = \frac{1}{5} e x$$

pertencente ao 4º quadrante, então:

- a) $M = \frac{\sqrt{5}}{5}$
- b) $M = 5\sqrt{5}$
- d) M = 5e) M = 25
- c) $M = \sqrt{5}$
- 20 (U. F. Viçosa-MG) Sabendo que

$$\sin x = \frac{1}{3} e^{\frac{\pi}{2}} < x < \pi$$
, o valor de

$$\frac{\operatorname{cossec} x - \operatorname{sec} x}{\operatorname{cotg} x - 1} \notin$$

- a) $\frac{3\sqrt{2}}{4}$ c) $-\frac{3\sqrt{2}}{4}$ e) 3 b) $\frac{2\sqrt{2}}{3}$ d) $-\frac{2\sqrt{2}}{3}$

- 21 (U. F. Uberlândia-MG) O valor de k, para o qual ($\cos x + \sin x$)² + $k \cdot \sin x \cos x 1 = 0$ representa uma identidade, é:
 - a) menor do que -1.
 - b) maior do que -1 e menor do que zero.
 - c) maior do que zero e menor do que 1.

 - d) maior do que 1. e) não existe $k \in \mathbb{R}$ que satisfaz tal con-
- (U. F. Ouro Preto-MG) Se $\cos x = \frac{n-1}{n}$,

então
$$\frac{tg^2 x + 1}{\cot^2 x + 1}$$
 é igual a

então
$$\frac{tg^2x+1}{\cot g^2x+1}$$
 é igual a:
a) $\frac{2n-1}{(n-1)^2}$ c) $\frac{n-1}{(n+1)^2}$ e) $\frac{(n-1)^2}{2n+1}$
b) $\frac{2n-1}{n^2}$ d) $\frac{(n+1)^2}{2n+1}$

b)
$$\frac{2n-1}{n^2}$$
 d) $\frac{(n+1)^2}{2n+1}$

- 24 (Fesp/UPE-PE) Se sen $x + \cos x = a$ e sen $x \cos x = b$, podemos afirmar que: a) a + b = 1 d) $a^2 2b = 1$ b) $a^2 + b^2 = 1$ e) $b^2 2a = 1$
- a) a + b = 1b) $a^2 + b^2 = 1$ c) $a 2b^2 = 1$