E355 Engineering Economics Spring 2022 Homework #4

"I pledge my honor that I have abided by the Stevens Honor System"

By: Alexander Gaskins, Daniel Goldberg, and Samuel Gavrilov

4.1 The Daily Planet, a prime retail company, is considering buying new land in Smallville for \$900,000 to build a high tech distribution center on it. Three different buildings are being analyzed.

Building Size	2 acres		4 acres	7 acres	
Initial Cost (excludes land)	\$	750,000	\$ 860,000	\$	920,000
Resale value* of land + building after 20-year horizon	\$	1,600,000	\$ 2,592,000	\$	2,096,000
Annual net income	\$	150,000	\$ 250,000	\$	225,000

^{*} Resale value considered a reduction in cost, not a benefit.

Using benefit-cost ratio analysis and an 16% MARR, determine which alternative, if any, should be selected.

a) Using PW, calculate the B/C Ratios of 3 building designs. [3 points]

$$(\frac{P}{A}, 16\%, 20) = [\frac{0.18 - 0.15}{5.353 - 6.259} = \frac{0.18 - 0.16}{5.353 - x}] = 5.957$$

 $(\frac{P}{F}, 16\%, 20) = [\frac{0.18 - 0.15}{0.0365 - 0.0611} = \frac{0.18 - 0.16}{0.0365 - x}] = 0.0529$

2 acres:

$$\frac{B}{C} = \frac{150000(\frac{P}{A}, 16\%, 20)}{750000 - 1600000(\frac{P}{E}, 16\%, 20)} = 1.343$$

4 acres:

$$\frac{B}{C} = \frac{250000(\frac{P}{A}, 16\%, 20)}{860000 - 2592000(\frac{P}{B}, 16\%, 20)} = 2.0602$$

7 acres:

$$\frac{B}{C} = \frac{225000(\frac{P}{A}, 16\%, 20)}{920000 - 2096000(\frac{P}{F}, 16\%, 20)} = 1.657$$

b) Conduct an incremental B/C analysis. [2 points]

(4-2) Acre:

$$\frac{(250000-150000)(5.957)}{[860000-2592000(0.0529)]-[750000-16000000(0.0529)]} = 10.35582 > 1, Consider 4$$

(7-2) Acre:

$$\frac{(225000-150000)(5.957)}{[920000-2096000(0.0529)]-[750000-1600000(0.0529)]}=3.\,10774>1,\,\textit{Consider}\,\,7$$

(7-4) Acre:

$$\frac{(225000-250000)(5.957)}{[920000-2096000(0.0529)]-[860000-2592000(0.0529)]} = -1.727 < 1, Consider 4$$

c) Based on your analysis, which alternative should be selected? [1 points]

Based on the previous results, the 4 acre option should be selected, as it presented the largest $\frac{B}{C}$ ration compared to its competitors. It's validity was confirmed through the incremental $\frac{B}{C}$ analysis, which showed the 7 acre and 4 acre options to be favorable, with the 4 acre option being preferable when compared to the 7 acre option.

4.2 Consider two similar types of equipment manufactured by two different companies, and you want to decide which you should buy. If the MARR is 10%, calculate the value of S that makes the two alternatives equally desirable based on AW. [3 points]

Alternative	Α	В		
Initial Cost	\$ 70,000	\$	90,000	
Uniform Annual Benefit	\$ 99,000	\$	100,000	
Salvage Value	\$ 28,000		S	
Useful Life, in years	20		20	

Alternative A:

$$AW_{Benefits} = F(\frac{A}{F}, 10\%, 20) + A = 28000(0.0175) + 99000 = $99,490$$
 $AW_{Costs} = P(\frac{A}{P}, 10\%, 20) = 70000(0.1175) = $8,225$
 $\frac{B}{C} = \frac{99490}{8225} = 12.096$

Alternative B:

$$AW_{Costs} = P(\frac{A}{P}, 10\%, 20) = 90000(0.1175) = $10,575$$

 $\frac{AW_{Benefits}}{10575} = 12.096$
 $AW_{Benefits} = $127,915.20$
 $S(0.0175) + 100000 = $127,915.20$
 $S = $1,595,154.29$

4.3 Mr. Botticelli recently purchased new painting equipment for his new art school and spent \$120,000. After its 5-year useful life, the equipment can be sold for \$25,000. Prepare a table showing the depreciation expenses and the book values for the DDB and SOYD depreciation methods.

DDB:

Year	Dt	$\sum Dt$	BV
0	-	-	120000
1	(2/5)*120000	48000	72000
2	(2/5)*72000	76800	43200
3	(2/5)*43200	94080	25920
4	95000-94080	95000	25000
5	0	95000	25000

Depreciable value = 120000-25000 = 95000

DDB Rate = $\frac{2}{5}$ = 40% For depreciable life

SOYD:

Year	Dt	$\sum Dt$	BV
0	-	-	120000
1	(5/15)*95000	31666.66667	88333.33333
2	(4/15)*95000	57000	63000
3	(3/15)*95000	76000	44000
4	(2/15)*95000	88666.66667	31333.33333
5	(1/15)*95000	95000	25000

Sum of Years Digits = 5 years = 1+2+3+4+5 = 15

- 4.4 The Reiph Transportation Company is planning to buy a new fleet of trucks requiring an initial investment of \$1,000,000, and \$2,500,000 annually to maintain and operate. The expected life of the new fleet is 10 years. The revenue is estimated to be \$5,000,000 per year and the salvage value is expected to be \$250,000. The MARR is 18%. Conduct a sensitivity analysis based on the given information.
- a) Calculate the PW of the Base case based on above given data. (Do not use AW or FW) [2 point]

$$PW = A(\frac{P}{A}, i, N) + S(\frac{P}{F}, i, N) - P = 2500000(\frac{P}{A}, 18\%, 10) + 250000(\frac{P}{F}, 18\%, 10) - 1000000$$

 $PW = 2500000(5.273) + 250000(0.0508) - 1000000 = $12, 195, 200$

b) Calculate the PW for the range of -10% to +15% for initial cost. (Do not use AW or FW) [4 point]

-10% of Initial Cost (IC):

$$IC_{-10\%} = \$1,000,000(1-0.10) = \$900,000$$

 $PW = 2500000(5.273) + 250000(0.0508) - 900000 = \$12,295,200$

+18% of Initial Cost (IC):

$$\overline{IC}_{+18\%} = \$1,000,000(1 + 0.18) = \$1,180,000$$

 $PW = 2500000(5.273) + 250000(0.0508) - 1180000 = \$12,015,200$

c) Calculate the PW for the range of -8% to +12% for annual revenue. [4 points]

-8% of Annual Revenue (AR):

$$AR_{-8\%} = \$5,000,000(1 - 0.08) = \$4,600,000$$

 $A = 4600000 - 2500000 = \$2,100,000$
 $PW = 2100000(5.273) + 250000(0.0508) - 1000000 = \$10,086,000$

+12% of Annual Revenue (AR):

$$AR_{+12\%} = \$5,000,000(1 + 0.12) = \$5,600,000$$

 $A = 5600000 - 2500000 = \$3,100,000$
 $PW = 3100000(5.273) + 250000(0.0508) - 1000000 = \$15,359,000$

d) Prepare a tabular distribution by using PW as FoM. [5 points]

Parameter	% Change in Parameter	Value		FOM (PW)		Deviation from base		% Deviation from base
	Initial Cost							
Upper Limit	18%	\$	1,180,000.00	\$	12,015,200.00	\$	(180,000.00)	-1.48%
Base Case	-	\$	1,000,000.00	\$	12,195,200.00	\$	-	-
Lower Limit	-10%	\$	900,000.00	\$	12,295,200.00	\$	100,000.00	0.82%
	Annual Revenue							
Upper Limit	12%	\$	5,600,000.00	\$	15,359,000.00	\$	3,163,800.00	25.94%
Base Case	-	\$	5,000,000.00	\$	12,195,200.00	\$	-	-
Lower Limit	-8%	\$	4,600,000.00	\$	10,086,000.00	\$	(2,109,200.00)	-17.30%

e) Rank order the input variables for their impact of the PW. [2 points]

Parameter	% Change in Parameter	%Change in FOM	Sensitivity Ratio	Rank Order			
Initial Cost							
Upper Limit	18%	-1.48%	-0.082	Low			
Lower Limit	-10%	0.82%	-0.082	Low			
Annual Revenue							
Upper Limit	12%	25.94%	2.162	I II ala			
Lower Limit	-8%	-17.30%	2.162	High			

f) Prepare a sensitivity graph comparing the percentage of change in parameter from the base case and the respective PW. [2 points]

