

Last name, First name

Exercise 1 (value 13)

Red-Fir is a forestry company that owns and manages a large forest in the Alps. They have to plan a set of m tree cutting activities in the next W weeks. Each activity v requires $a_v \leq W$ consecutive work weeks. The company uses teams of woodcutters (boscaioli) hired in the near villages. Each team may execute any activity of any duration $w(1 \leq w \leq W)$. The cost of a team to work for w weeks is c_w euros. When two teams are hired for the same duration w, the woodcutters recognize to the company a discount of d_w euros, so, sometimes, it is convenient to hire a team for a period longer than necessary, to gain the discount. Write a linear mathematical programming model to help the Red-Fir to choose the set of hiring periods which allow to complete all the activities and minimizes the total cost. Now consider that each activity v has a given starting week s_v ($1 \leq s_v \leq W$). In this case the discount d_w is applied only if two teams are hired both for a_v weeks, and the two activities start on the same week. Reformulate the above model by considering this new requirement.

Exercise 2 (value 9)

Consider the following LP problem.

Perform the following tasks:

- (i) solve the problem using the symplex method;
- (ii) write the dual problem, draw the feasible region and determine its solution.

Exercise 3 (value 6)

Consider the following digraph and find the shortest path from 1 to all other vertices using the Bellman-Ford algorithm reporting all iteration in the table in the rear.

	$f^k(j)$				$pred_j \ 1 2 3 4 5$							
iter	1	2	3	4	5	6	1	2	3	4	5	6
0												
1												
2												
3												
4												
5												

Last name, First name_

Exercise 1

Variables

 $x_{vw} = 1$ if activity v is executed by a team hired for w weeks, 0 otherwise. $z_w =$ number of pairs of teams hired for w weeks

Model

$$\min \sum_{v=1}^{m} \sum_{w=1}^{W} c_w x_{wv} - \sum_{w=1}^{W} d_w z_w$$
 (25)

$$\sum_{w=1}^{W} x_{wv} = 1 \quad v = 1, \dots, m \tag{26}$$

$$\sum_{w=1}^{W} w x_{wv} \ge a_v \quad v = 1, \dots, m \tag{27}$$

$$z_w \le \sum_{v=1}^m x_{wv}/2 \quad w = 1, \dots, W$$
 (28)

$$x_{wv} \in \{0,1\} \quad w = 1, \dots, W, v = 1, \dots, m$$
 (29)

$$z_w \ge 0, \text{integer} \quad w = 1, \dots, m$$
 (30)

Second Model

Constants

 $A_s = \text{set of all activities } v \in \{\dots, m\} \text{ starting in } s \text{ (i.e., } s_v = s).$

Variables

 $x_{wv} = 1$ if activity v is executed by a team hired for w weeks (starting in week s_v), 0 otherwise. $z_{ws} =$ number of pairs of teams hired for w weeks, starting at week s

Model

$$\min \sum_{v=1}^{m} \sum_{w=1}^{W} c_w x_{wv} - \sum_{w=1}^{W} \sum_{s=1}^{W-w+1} d_w z_{ws}$$
(31)

$$\sum_{w=1}^{W} x_{wv} = 1 \quad v = 1, \dots, m \tag{32}$$

$$\sum_{w=1}^{W} w x_{wv} \ge a_v \quad v = 1, \dots, m \tag{33}$$

$$z_{ws} \le \sum_{v \in A_s} x_{wv}/2 \quad w = 1, \dots, W, s = 1, \dots, W - w + 1$$
 (34)

$$x_{wv} \in \{0,1\} \quad w = 1, \dots, W, v = 1, \dots, m$$
 (35)

$$z_{ws} \ge 0, \text{integer} \quad w = 1, \dots, m, s = 1, \dots, W - w + 1$$
 (36)

Exercise 2 Let's write the model in standard form:

min
$$4x_1 + 8x_2 + 2x_3$$
$$2x_1 - 3x_2 + x_4 = -3$$
$$-3x_1 + 2x_2 + x_3 + x_5 = 1$$
$$x_1, \dots, x_5 \ge 0$$

x_1	x_2	x_3	x_4	x_5		
4	8	2	0	0	0	-z
2	(-3)	0	1	0	-3	x_4
-3	2	1	0	1	1	x_5

x_1	x_2	x_3	x_4	x_5		
$\frac{28}{3}$	0	2	<u>8</u>	0	-8	-z
$-\frac{2}{3}$	1	0	$-\frac{1}{3}$	0	1	x_2
$-\frac{5}{3}$	0	1	$\frac{2}{3}$	1	-1	x_5

x_1	x_2	x_3	x_4	x_5		
0	0	<u>38</u> 5	$\frac{32}{5}$	$\frac{28}{5}$	$-\frac{68}{5}$	-z
0	1	$-\frac{2}{5}$	$-\frac{3}{5}$	$-\frac{2}{5}$	$\frac{7}{5}$	x_2
1	0	$-\frac{3}{5}$	$-\frac{2}{5}$	$-\frac{3}{5}$	<u>3</u> 5	x_1

$$x = (3/5, 7/5, 0, 0, 0), z_P = 68/5$$

PRIMAL

 DUAL

min
$$4x_1 + 8x_2 + 2x_3$$
$$-2x_1 + 3x_2 \ge 3$$
$$3x_1 - 2x_2 - x_3 \ge -1$$
$$x_1, x_2, x_3 \ge 0$$

 $\max 3u_1 - u_2$ $-2u_1 + 3u_2 \le 4$ $3u_1 - 2u_2 \le 8$ $-u_2 \le 2$ $u_1, u_2 \ge 0$

Exercise 3

rcise 3		$f^k(j)$					
iter	1	2	3	4	5	6	
0	0	∞	∞	∞	∞	∞	
1	0	5	3	6	∞	∞	
2	0	4	3	4	7	∞	
3	0	4	3	3	7	9	
4	0	4	3	3	7	8	
5	0	4	3	3	7	8	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
1	2	3	4	5	6				
1	-	-	-	-	-				
1	1	1	1	-	-				
1	3	1	2	3	-				
1	3	1	2	3	5				
1	3	1	2	3	4				
1	3	1	2	3	4				