I Maratona SBC de Programação do Cerrado: Aquecimento

Caderno de Problemas

05 de abril de 2025

la Maratona SBC do Cerrado

(Este caderno contém 3 problemas)

Comissão Organizadora:

Alberto Tavares Duarte Neto (UnB)

Bruno César Ribas (UnB/FCTE)

Daniel Porto (UnB)

Daniel Saad Nogueria Nunes (IFB)

Edson Alves das Costa Júnior (UnB/FCTE)

Gabriel Bernardi (UFU/Neospace)

Giullia Rodrigues de Menezes (UFU)

Guilherme Novaes Ramos (UnB)

Gustavo Machado Leal (UFG)

Jeremias Moreira Gomes (IDP)

João Henrique de Souza Pereira (UFU/Neospace)

José Leite (UnBallon)

Luiz Cláudio Theodoro (UFU)

Maxwell Oliveira (UnB)

Tiago de Souza Fernandes (UnBallon)

Universidade Federal de Uberlândia, Campus Sta. Mônica, Uberlândia, Av. João Naves de Ávila, 2121, MG

Lembretes

- É permitido consultar livros, anotações ou qualquer outro material impresso durante a prova, entretanto, o mesmo não vale para materiais dispostos eletronicamente.
- A correção é automatizada, portanto, siga atentamente as exigências da tarefa quanto ao formato da entrada e saída conforme as amostras dos exemplos. Deve-se considerar entradas e saídas padrões;
- Para cada problema, além dos testes públicos, o juiz executará a sua submissão contra uma série de testes secretos para fornecer um parecer sobre a correção do programa.
- Procure resolver o problema de maneira eficiente. Se o tempo superar o limite prédefinido, a solução não é aceita. Lembre-se que as soluções são testadas com outras entradas além das apresentadas como exemplo dos problemas;
- Utilize a aba *clarification* para dúvidas da prova. Os juízes podem opcionalmente atendê-lo com respostas acessíveis a todos;

C/C++

• Seu programa deve retornar zero, executando, como último comando, return 0 ou exit 0.

Java

- Não declare 'package' no seu programa Java.
- Note que a convenção para o nome do arquivo-fonte deve ser obedecida, o que significa que o nome de sua classe pública deve ser uma letra maiúscula igual à letra que identifica o problema.

Problema A – IMC aproximado

Limite de tempo: 1s Limite de memória: 256MB

Autor: Edson Alves

O índice de massa corpórea (IMC) é um dos indicadores de saúde de um indivíduo, computado a partir de sua massa m, em quilos, e sua altura h, em metros, por meio da relação

$$IMC = \frac{m}{h^2}$$

O intervalo [18.5, 24.9] é considerado a faixa de normalidade: valores de IMC abaixo ou acima desta faixa correspondem a magreza ou a obesidade, respectivamente.

Uma recomendação informal é que, para estar dentro da faixa de normalidade, basta ao indivíduo ter massa igual ao descarte da parte inteira de sua altura. Por exemplo, se o indivíduo tem $1.70\ m$ de altura, ele deveria ter massa igual a $70\ kq$.

Dada a altura do indivíduo, em metros, determine se esta aproximação leva ou não a um IMC dentro da faixa da normalidade.

Entrada

A entrada consiste em uma única linha contendo a altura h (1.01 $\leq h \leq$ 1.99) do indivíduo, em metros. É garantido que a altura será dada com exatamente duas casas decimais.

Saída

Se o IMC resultante da aproximação descrita estiver dentro da faixa de normalidade, imprima, em uma linha, a mensagem "Sim". Caso contrário, imprima "Nao" (sem acento e sem aspas).

Exemplo

Entrada	Saída
1.70	Sim
1.92	Nao
1.16	Nao

Notas

No primeiro caso, o IMC aproximado seria igual 24.22, dentro da faixa da normalidade. No segundo caso, o valor aproximado do IMC está acima da faixa de normalidade (24.95). No terceiro caso, a aproximação levaria à magreza (11.89).

Problema B – Ticket de Estacionamento

Limite de tempo: 2s Limite de memória: 256MB

Autor: Daniel Saad Nogueira Nunes

Um estacionamento possui o seguinte sistema de tarifas:

Tempo	Tarifa
Primeiros quinze minutos	Grátis
Primeira hora	R\$ 0,10 por minuto.
Até a terceira hora	R\$ 0,08 por minuto.
Até a sétima hora	R\$ 0,06 por minuto.
Demais horas	R\$ 0,02 por minuto.

Este sistema é regressivo, isto é, supondo que um usuário passe 2 horas no estacionamento, dessas duas horas: 15 minutos são gratuitos, 10 centavos são aplicados para cada minuto dos 45 minutos da primeira hora, e 8 centavos são aplicados para cada minuto da hora restante.

Apesar de tudo, este estacionamento está desprovido do sistema que efetua o cálculo de quanto o usuário do estacionamento deve pagar, e por isso, o proprietário do estacionamento contratou você para criar um sistema que, dada a quantidade de minutos que um usuário utilizou o estacionamento, calcular a quantia a ser paga por ele.

Entrada

A primeira linha da entrada possui um inteiro N $(1 \le N \le 10^5)$ indicando a quantidade de usuários.

As próximas N linhas descrevem os tempos utilizados por cada usuário, isto é, a i-ésima linha deste conjunto contém um inteiro T_i ($1 \le T_i \le 10^5$), indicando a quantidade de minutos que o i-ésimo usuário utilizou.

Saída

Para cada caso de teste, seu programa deverá imprimir uma linha com o valor a ser pago pelo usuário com duas casa decimais de precisão.

Exemplo

Entrada	Saída	
6	0.00	
10	1.50	
30	7.70	
100	15.30	
200	27.30	
400	36.10	
800		

Problema C – Run-twice

Limite de tempo: 1s Limite de memória: 256MB

Autor: Alberto Neto

Esse é um problema de dupla execução.

Você, agente secreto da SBC (Sociedade de Busca e Criptografia), recebe uma missão do agente Carlinhos para mandar arquivos secretos para João Henrique. Esta informação é representada como um inteiro x. O seu trabalho é escrever funções que criptografem e descriptografem esta informação.

O seu código será executado duas vezes. Primeiro, você recebe um inteiro m, que tem valor 1 se é para criptografar ou 2 se é para descriptografar.

Se m=1, então você recebe a informação x, e deve imprimir um código c. Para que sua criptografia não seja muito fraca, é necessário que x seja **diferente** de c.

Se m=2, você recebe o código c gerado na execução passada e deve recuperar a informação x.

Escreva o programa pedido e salve o Cerrado.

Entrada

A primeira linha de entrada contém um inteiro m $(1 \le m \le 2)$ — m é 1 se é a primeira execução, ou 2 se é a segunda execução.

Na primeira execução, a segunda linha de entrada contém um único inteiro x ($0 \le x \le 1000$) — o número a ser codificado.

Na segunda execução, a segunda linha de entrada contém um único inteiro c ($0 \le c \le 2000$; $c \ne x$) — o código gerado pela sua primeira execução.

Saída

Na primeira execução, imprima um inteiro c diferente de \mathbf{x} ($0 \le c \le 2000$; $c \ne x$). Este código fará parte da entrada da segunda execução.

Na segunda execução, imprima um inteiro r. A resposta será considerada correta se r=x.

Interação

Explicação de um problema dupla execução.

O seu código será executado duas vezes. Na primeira, a entrada será um caso de teste do juiz. A saida do seu código na primeira execução será validada e, se estiver no formato correto, uma nova execução do seu código será feita cuja entrada é a saída da primeira execução.

A resposta será considerada correta se a saida da segunda execução satisfazer as exigências do problema.

Exemplo

Entrada	Saída	
1	2	
2		
1	314	
314		