Modélisation et spécification – Master 2 Informatique TD 1 : Logique temporelle LTL-

On veut exprimer des propriétés avec la logique temporelle LTL-.

Les formules se construisent selon la grammaire :

 $\phi ::= proposition \mid \phi \lor \phi \mid \phi \land \phi \mid \neg \phi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{X}^{-1} \phi \mid \mathbf{F}^{-1} \phi$

Elles s'interprètent sur une position $i \in \mathbb{N}$ le long d'une exécution ρ d'un STE $\mathcal{S} = (Q, Act, q_0, \rightarrow, AP, L)$. On rappelle la sémantique vue en cours :

- $-\rho, i \models p \text{ ssi } p \in L(\rho(i))$ (c'est-à-dire p est une proposition de l'état $\rho(i)$).
- $-\rho, i \models \phi \land \psi \text{ ssi } \rho, i \models \phi \text{ et } \rho, i \models \psi$
- $--\rho,i\models\phi\vee\psi\text{ ssi }\rho,i\models\phi\text{ ou }\rho,i\models\psi$
- $--\rho, i \models \neg \phi \text{ ssi } \rho, i \not\models \phi$
- $--\rho, i \models \mathbf{X}\phi \text{ ssi } \rho, i+1 \models \phi$
- $--\rho, i \models \mathbf{F}\phi \text{ ssi } \exists j \geq i : \rho, j \models \phi$
- $\rho, i \models \mathbf{X}^{-1}\phi$ ssi i > 0 et $\rho, i 1 \models \phi$
- $-\rho, i \models \mathbf{F}^{-1}\phi \text{ ssi } \exists 0 \leq j \leq i : \rho, j \models \phi$

Et on définit aussi \mathbf{G} par $\neg \mathbf{F} \neg$ et \mathbf{G}^{-1} par $\neg \mathbf{F}^{-1} \neg$.

Exercice 1: Evaluer les formules

Pour chaque formule ci-dessus, (1) donner deux modèles différents vérifiant la formule et deux modèles ne vérifiant pas la formule, et (2) écrire en français ce que la formule signifie.

Par exemple, pour $G(pb \Rightarrow Falarme)$, on pourrait donner les modèles ci-dessous :

Et dire : "tout état vérifiant pb est suivi plus tard par un état vérifiant alarme."

- 1. $\mathbf{F}(a \wedge \mathbf{X}b)$
- 2. $\mathbf{F}(a \wedge \mathbf{X}b) \wedge \mathbf{F}(a \wedge \mathbf{X} \neg b)$
- 3. $\mathbf{G}(a \Rightarrow \mathbf{X}^{-1}b)$
- 4. $\mathbf{F}(a \wedge \mathbf{X}^{-1}\mathbf{G}^{-1}b)$
- 5. (**GF** a) \vee (**FG** $\neg a$)
- 6. $(\mathbf{GF} \, a) \wedge (\mathbf{GF} \, b)$
- 7. $(\mathbf{GF} a) \Rightarrow (\mathbf{GF} b)$
- 8. $\mathbf{G}(\mathtt{pb} \Leftrightarrow \mathbf{X} \mathtt{alarme})$
- 9. $\mathbf{F}(a \wedge \mathbf{X} \mathbf{F} (a \wedge \mathbf{X} \mathbf{F} a))$
- 10. $\mathbf{G}(\texttt{alarme} \Leftrightarrow \mathbf{F} \, \texttt{pb})$