CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya Partha Bhowmick 16 February 2022 Lecture #18

Indian Institute of Technology Kharagpur Computer Science and Engineering

Problem of the day:

Find the farthest pair of points

Antipodal Points

Antipodal pairs of a set S must be extreme points and therefore must be the vertices of CH(S)

Rotating Calipers (Shamos)

- Find the convex hull
- Find an antipodal pair (p_i,p_i) by marching along the hull
- Generate the next antipodal pair:
 - Determine $\theta_i \& \theta_j$
 - (suppose θ_i < θ_j) rotate the lines of support by θ_i
 - Output (p_{i+1}, p_j) as the next antipodal pair
- Repeat step 2 until L₁ or L₂ is rotated by 180°

Farthest or nearest pairs between two parallel lines of support can thus be found in O(n) time

2D Convex Hull: Summary

```
Brute-force algorithm:
                                       O(n^3)
  Quick hull:
                                       O(n^2)
  Jarvis' march (gift wrapping):
                                       O(nh); output-sensitive
                                       O(n \log n)
  Incremental hull:
  Divide-and-conquer:
                                        O(n \log n)
 Graham's scan:
                                        O(n \log n)
• Lower bound:
                                        \Omega(n \log n)
  Chan's algorithm:
                                        O(n \log h);
                                        output-sensitive;
```

• Convex hull of a simple polygon/poly-chain with *n* vertices: ?

Convex Hull of a Simple Polygon

Problem: Given a simple polygon P, determine its convex hull.

- O(nlogn) algorithm is easy
- Linear time algorithm is tricky but can be designed.
- **Note:** $\Omega(nlogn)$ lower bound does not apply since the points of P are not unorganized points

A. Melkman, On-line Construction of the Convex Hull of a Simple Polyline, *Information Processing Letters,* Vol. 24, pp. 11-12, 1987; O(n)-time algorithm

Melkman's Algorithm: Key Ideas

Process the poly-chain/polygon sequentially: $v_0, v_1, ..., v_{i-1}...$, and construct incremental hull;

let $d_b = d_t =$ last vertex that is added to the hull;

let the next vertex be v_i ; can we draw tangents and proceed as in incremental hull? partial hull is stored as "deque"

Q1: Where can v_i appear??

Q2: Why deque??

- $push v: \\ (t \leftarrow t + 1; d_t \leftarrow v) \\ pop d_t: t \leftarrow t-1$
- insert v: $(b \leftarrow b - 1; d_b \leftarrow v)$ $remove d_b : b \leftarrow b + 1$

- If v_i lies in the interior, do nothing;
- Else keep on popping/deleting from the queue based on the test, and update the hull by pushing/inserting v_i when tests flag convexity;
- Repeat until the last vertex is processed

Melkman's Algorithm: Snapshots

Melkman's Algorithm

Let the simple chain be $C = (v_0, v_1, \dots, v_{n-1})$, with vertices v_i and edges $v_i v_{i+1}$, etc.

(0) Initialize: If Left
$$(v_0, v_1, v_2)$$
, then $D \leftarrow \langle v_2, v_0, v_1, v_2 \rangle$; else, $D \leftarrow \langle v_2, v_1, v_0, v_2 \rangle$. $i \leftarrow 3$

- (1) While (Left(d_{t-1}, d_t, v_i) and Left(d_b, d_{b+1}, v_i)) do i ← i + 1

 If i = n, Exit
 (2) Restore convexity:
 - Until Left (d_{t-1}, d_t, v_i) , do pop d_t . Push v_i .

Until Left (v_i, d_b, d_{b+1}) , do remove d_b . Insert v_i .

$$i \leftarrow i + 1$$
; If $i = n$, Exit

Go to (1).

Assume all vertices are in general positions

On termination, the content of the deque read from $L \to R$ would provide the CCW-ordering of vertices on the CH; each vertex is processed O(1) times. Hence, time complexity: O(n)

CS60064 Spring 2022 Computational Geometry

Instructors

Bhargab B. Bhattacharya
Partha Bhowmick
18 February 2022
Lecture #19 & Lecture #20

Indian Institute of Technology Kharagpur Computer Science and Engineering

Agenda Today

- Problem of the day: Maximum-Containment Problem or MaxRS (Maximum Range-Search Query)
- Convex hull: Chan's Method
- Bi-chromatic non-crossing matching using convex hull
- Proximity problem: Closest-pair of points

Problem of the Day: Maximum-Containment Problem

F: A rectangle comprising n random points in general positions

P: A smaller rectangle with given aspect ratio

Max-containment: Find an isothetic position of P in F that encloses

Maximum-Containment Problem (MaxRS)

(Max-containment): find an isothetic position of P that encloses the maximum number of points in F

Naïve: $O(n^3)$ time

F

How?

Use line-sweep algorithm and determine intersections of rectangles

Helly property

Convex Hull: Summary So Far

 Brute force algorithm: 	$O(n^3)$
• Quick-Hull:	$O(n^2)$
• Jarvis' march (gift wrapping):	O(nh)
• Incremental insertion:	$O(n \log n)$
• Divide-and-conquer:	$O(n \log n)$
• Graham's scan:	$O(n \log n)$
• Lower bound:	$\Omega(n \log n)$
• CH for simple polygons/poly-chains:	O(n)

Longstanding open question:

Is it possible to improve the time complexity of a convex-hull algorithm to $O(n \log h)$, where h: #hull vertices?

Faster Algorithms (Output-Sensitive)

Kirkpatrick-Seidel (1986): an $O(n \log h)$ worst-case algorithm n: # vertices; h: # vertices on the hull

Chan $(1996)^*$: $O(n \log h)$ algorithm - combines two slower methods (Jarvis March and Graham Scan)

Note:

Jarvis' is good when h << n; Graham's is good when $h \approx n$ (i.e., reduces backtracks)

*Timothy Chan, "Output-sensitive results on convex-hulls, extreme points, and related problems", *Discrete & Computational Geometry*, Vol. 16, pp. 369-387, 1996

Timothy Chan's Algorithm (*DCG*, 1996)

Objective: Can we implement CH for an n-set in $O(n \log h)$ time, where h denotes the number vertices on the hull?

Note: Full sorting cannot be done!

Main Idea:

random

shattering

Integrate: Divide-and-Conquer (D&C), Graham Scan, and Jarvis March

 $\stackrel{\cdot}{\longrightarrow} \stackrel{\checkmark}{\nearrow} \stackrel{\checkmark}{\longrightarrow}$

sub-hulls may be intersecting

size of each group should not be two small or too large!

- 1. Suppose we shatter (D&C) the point-set into $r = \lceil n/m \rceil$ groups each having size "m", $m \approx h$
- 2. (convex hulls of these groups may not be *disjoint*)
- 3. Run Graham scan on each group \Rightarrow "log h" factor
- 4. Wrap these groups using Jarvis March

know h!

Problem:

we do not

Observation: Interior points within the convex hull of each partition cannot appear on the final hull; only a subset of their *hull points* can! Two-fold reduction: Discard interior points; also the hull points that do not satisfy tangency will not appear in Jarvis-M

Timothy Chan's algorithm (1996): Key Ideas

Objective: Can we implement CH for an n-set in $O(n \log h)$ time, where h denotes the number vertices on the hull?

Basic Idea: Partition into smaller groups, and combine Graham scan and Jarvis March

Problem: we need to choose a suitable size for each group! Assume each group has size m; during execution of the algorithm, we will fix m iteratively. Note that $1 \le m \le n$; If m is too large or too small, we have no benefit;

Partition the n points into groups of size m; number of groups is $r = \lceil n/m \rceil$. Compute hull of each group with Graham's scan.

Next, run Jarvis on the groups.

Chan's Algorithm

Partition points *P* into *r*-groups of size m, $r = \lceil n/m \rceil$

- Each group takes $O(m \log m)$ time sort + Graham
- r-groups take $O(r m \log m) = O(n \log m) \longrightarrow (1)$

r groups, each of size m

A tangent to a convex *m*-gon from an external point can be found in $O(\log m)$ by binary search

- Cost of Jarvis on r convex hulls: Each step takes $O(r \log m)$ time; total $O(hr \log m) = ((hn/m) \log m)$ time. \longrightarrow (2)
- Thus, total complexity

points on CH(P)

h: number of

$$(1) \& (2) \Rightarrow O\left(\left(n + \frac{hn}{m}\right) \log m\right)$$

• If m = h, this gives $O(n \log h)$ bound.

Unfortunately we do not know *h* and hence, *m*. Ideas?

First Part of Chan's algorithm: Partial_Hull (P, m)

As if *m* is known via Little Birdie!

Partition P into r groups of m each.

Compute $\text{Hull}(P_i)$ using Graham scan, $i = 1, 2, \dots, r$.

 $p_0 = (-\infty, 0)$; p_1 bottom point of P.

For k = 1 to m do

Run Jarvis March on r hulls: for i = 1 to r, do

Draw tangent from p_k to r-hulls and choose the one that first hits the sweep-line when rotated CCW with pivot at p_k ;

If $p_{k+1} = p_1$, then return the convex hull $\{p_1, p_2, ..., p_k\}$ else m is too small, "try again" [for success, $m \ge h$]

Fact: $m = 1 \Rightarrow$ the problem reduces to full Jarvis March $m = n \Rightarrow$ the problem reduces to full Graham scan

Finishing Chan's algorithm: Analysis

Referring to Exp. (2): Jarvis-M is being wrapped m times \Rightarrow thus for each value of t, the time including Graham's and Jarvis' becomes $O(n \log m)$

How to choose m? use doubly-exponential search

Partial_Hull(*P*, *m*)

 $\mathbf{Hull}(P)$

- for t = 1, 2, ... do
 - 1. Let $m = \min(2^{2^t}, n)$.
 - 2. Run Chan with m, output to L.
 - 3. If $L \neq$ "try again" then return L.

Iteration t takes time $O(n \log 2^{2^t}) = O(n2^t)$.

Max value of $t = \lceil \lg \lg h \rceil$, since we succeed as soon as $2^{2^t} > h$. [Note that for success, $m \ge h$]

Hence, the running time (ignoring constant factors) =
$$\sum_{t=1}^{\lg \lg h} n2^t = n \sum_{t=1}^{\lg \lg h} 2^t \le n2^{1+\lg \lg h} = 2n \lg h$$

$$\Rightarrow O(n \log h) \square$$

Chan's Algorithm: Example

One iteration of gift wrapping: find tangents to convex hulls and take the one with the least slope; since m = 6, continue wrapping six times; however, Jarvis-M will not take you to the start vertex in six steps. More wraps are needed. Instead, m should be incremented, Graham's and Jarvis' be redone so as to construct the hull in $m \ge h$ steps and to achieve the intended complexity results.

Non-Crossing Matching

Given *n* red and *n* blue points in the plane (no three collinear), compute a red-blue non-crossing matching

A non-crossing matching always exists;

Matching with minimum total length must be non-crossing

Non-Crossing Matching

Given *n* red and *n* blue points in the plane (no three collinear), compute a red-blue non-crossing matching

- find a common tangent, say, rb
- output (r, b) as a matching edge
- remove points r, b
- update convex hulls and iterate

Courtesy:
Subhash Suri, UCSB

Non-Crossing Matching

What if Red, Blue CHs are nested? No tangents can be drawn!

- Split by a vertical line, creating two smaller, intersecting or disjoint hull problems; select tangents and iterate as before
- [Hershberger-Suri '92] gives optimal $O(n \log n)$ solution

Proximity Problem: Closest Pair of Points

Given *n* points on the plane determine the closest pair

Naïve: $O(n^2)$ time

- 1D problem is easy;sort and check2D problem: useDivide-and-Conquer
- We partition S into S_1, S_2 by vertical line ℓ defined by median x-coordinate in S.
- Recursively compute closest pair distances δ_1 and δ_2 . Set $\delta = \min(\delta_1, \delta_2)$.
- Now compute the closest pair with one point each in S_1 and S_2 .

Courtesy:
Subhash Suri, UCSB

Closest Pair of Points

Given *n* points on the plane determine the closest pair

In each candidate pair (p,q), where $p \in S_1$ and $q \in S_2$, the points p,q must both lie within δ of ℓ .

Is it possible that all n/2 points of S_1 (and S_2) lie within δ of ℓ ? Complexity still remains $O(n^2)$!

Closest Pair of Points

R can contain at most six points!

 \Rightarrow # Overall tests \leq 6 × n/2 distance comparisons

Use some properties from discrete geometry: packing

Consider a point $p \in S_1$. All points of S_2 within distance δ of p must lie in a $\delta \times 2\delta$ rectangle R.

How many points can be inside R if each pair is at least δ apart?

Courtesy: Subhash Suri

Closest-Pair Problem: Analysis

• In order to determine at most 6 potential mates of p, project p and all points of P_2 onto line ℓ .

Ref: Preparata and Shamos, Computational Geometry

Analogous to merge sort

- Pick out points whose projection is within δ of p; at most six.
- We can do this for all p, by walking sorted lists of P_1 and P_2 , in total O(n) time.
- The sorted lists for P_1, P_2 can be obtained from pre-sorting of S_1, S_2 .
- Final recurrence is T(n) = 2T(n/2) + O(n), which solves to $T(n) = O(n \log n)$.

Announcement of Online Test - 01

Friday, 25 February, 2022; 11:05 am - 12:50 pm

Coverage: Polygons, point-inclusion queries, orientation test, robustness issues, polygonization, diagonals, triangulation, convex partition, art-gallery problems, DCEL, intersections, map overlay, convex hull, related algorithms, data structures, and complexities (material covered until 18 February 2022);

Questions will be made available through Moodle and answers should also be submitted via Moodle. The submission server will open at 10:55 am and close at 1:05 pm, 25 February 2021.

Credit: 25%