

# INVENTORY CONTROL MANAGEMENT



## INTRODUCTION

#### WHAT?

Inventory control balances
having enough product to
meet demand without tying
up excess cash

#### WHY?

Stock-outs lose revenue and erode customer trust; overstock inflates holding costs and hides obsolete items

## PROBLEM STATEMENT

The dataset captures operational details across a wide range of SKUs, covering product types, pricing, stock levels, order quantities, lead times (both shipping and manufacturing), supplier and logistics data, and basic customer demographics.

However, the company lacks a structured inventory strategy. SKUs may be understocked, leading to lost sales, or overstocked, resulting in increased holding costs. There's also no formal system to determine when to reorder or how much to order.

#### **Project Aim**

**SKU Risk Flagging** 

**Cost Quantification** 

**Reorder Optimization** 

**Demand Simulation** 

**Capital Efficiency** 



## DATA PREPROCESSING

#### **Data Description**

Product type

SKU

Price

Availability

Number of products sold

Revenue generated

**Customer demographics** 

Stock levels

Lead times

Order quantities

Shipping times

**Shipping carriers** 

**Shipping costs** 

Supplier name

Location Lead time

**Production volumes** 

Manufacturing lead time

Manufacturing costs

Inspection results

**Defect rates** 

**Transportation modes** 

Routes

Costs

#### **Data Cleaning & Transformation**

- Fixed data types for each column (e.g., float for costs, int for counts)
- Removed duplicates
- Standardized column names
- Merged lead time fields
- Checked for null or inconsistent entries

### Feature Engineering

#### annual\_sales\_value

= price × units sold

avg\_daily\_demand

= units sold  $\div$  365

annual\_holding\_cost

= stock × price × 20% holding rate

#### days\_of\_supply

= stock levels ÷ daily demand

gross\_margin

= revenue - cost \* # of products

abc\_segment

## **Exploratory Data Analysis**



#### **Key Findings**

Sales concentration – 20 % of SKUs (ABC "A") generate roughly 80 % of annual sales value, while "C" items contribute < 5 % but occupy the bulk of catalogue space.

Days-of-supply spread — Median DoS is ~18 days, but the long right tail (many SKUs > 150 days) signals dormant stock and locked-up cash.

Lead-time disparities — Box plots show that A-class items have slightly longer lead times than B/C, and scatter jitter confirms that several "A" SKUs exceed 25 days.

## Risk & Cost Quantification





#### **Key Findings**

#### **Opportunity cost**

= (demand when stock = 0)  $\times$  gross margin

#### **Excess holding cost**

= excess inventory × price × holding rate

The data reveals that there are no opportunity costs due to stockouts in the inventory.

**Excess-holding bars**, on the other hand, reveal > \$50K per year tied up in slow movers.

Color-coding by ABC shows that most of that cash sits in **B and C-class** inventory.

## Inventory Policy Optimization



#### **Key Findings**

Service Level = 0.90, We aim to have stock available 90% of the time, since there is an overstocking problem

Ordering Cost = 300, \$ per purchase order (standard)

Ordering Cost = 300, \$ per purchase order (standard)
Holding Rate = 0.20, 20 % per year cost (standard)

**Safety Stock** is calculated by assuming a Poisson Variance ( $\sigma \approx V\mu$ ) at a 90% service level

**Reorder point** = average daily demand × lead-time + safety stock

**EOQ (Economic Order Quantity)** using the standard formula with estimated ordering and holding costs

Dual-axis bars make it clear that EOQs are 3-10 × larger than their reorder points.

The system is **re-ordering** only when stock is **low**, then **buying big lots** because ordering cost is assumed at \$300/PO, resulting in **overstocking**.

## Recommendations & Limitations



#### Protect the cash-cow SKUs

Any A-class item whose Days-of-Supply is below its supplier lead time should have its reorder point raised immediately, or the lead time shortened via expedited or dual sourcing.

#### **Drain the overstock**

Freeze new orders on C-class SKUs with DoS > 90 days and run targeted markdowns or kits to sell through excess units.

#### **Re-estimate ordering cost**

The model uses a \$300 fixed ordering cost; a quick time-and-cost audit of recent POs will likely show a lower figure (often \$100-\$150).

Lower ordering cost  $\Rightarrow$  smaller  $EOQ \Rightarrow 10-15 \%$  less average inventory without harming service

#### **Service levels by ABC class**

Keep **95** % cycle-service for "A", "B" to **90** % and "C" to **85** %.

Re-compute safety stock accordingly, which might trim another **10** % of tied-up capital in B/C items

#### **Stabilize lead time**

Use the lead-time box-plot to identify outlier vendors; set a target that no SKU's lead time exceeds the 75th percentile of its class.

Even a 5-day reduction on erratic SKUs cuts their safety-stock requirement by ≈10 %.

## Collecting daily demand going forward

Save a daily sales extract per SKU.

This unlocks statistically robust safety-stock sizing and seasonality insight, and forecasting demands

## THANK YOU