

A Story of OLS Linear Regression

只有带着对数学纯粹的爱去接近她, 数学才会向你展开它的神秘所在。

Mathematics reveals its secrets only to those who approach it with pure love, for its own beauty.

—— 阿基米德 (Archimedes) | 古希腊数学家、物理学家 | 287 ~ 212 BC

- matplotlib.pyplot.contour() 绘制等高线图
- matplotlib.pyplot.scatter() 绘制散点图
- numpy.array() 创建 array 数据类型
- numpy.linalg.inv() 矩阵求逆
- numpy.linalg.solve() 求解线性方程组
- numpy.linspace()产生连续均匀向量数值
- numpy.meshgrid() 创建网格化数据
- numpy.random.randint() 产生随机整数
- numpy.random.seed() 设定初始化随机状态
- plot wireframe() 绘制三维单色线框图
- seaborn.scatterplot() 绘制散点图
- sympy.abc 引入符号变量
- sympy.diff() 求解符号导数和偏导解析式
- sympy.evalf() 将符号解析式中未知量替换为具体数值
- sympy.simplify() 简化代数式
- sympy.solvers.solve() 符号方程求根
- sympy.symbols() 定义符号变量
- sympy.utilities.lambdify.lambdify() 将符号代数式转化为函数

24.1 鸡兔数量的有趣关系

清江一曲抱村流,长夏江村事事幽。

舶来的线性代数知识悄悄地改变着小村,村民们凡事都要用这个数学工具探究一番。

大家这次盯上了一个养鸡养兔的小妙招。老人常言"两鸡一兔,百毒不入"。也就是说,不管 最开始养多少鸡兔,当鸡兔大概达到 2:1 这个比例,便达到某种神奇的平衡,鸡兔都健健康康。

农夫决定一探究竟,他搜集村中20位养鸡大户的鸡兔数量,总结在表1。

表 1.20 户农户鸡兔数量关系

养鸡数量, y	32	110	71	79	45	20	56	55	87	68	87	63	31	88	44	33	57	16	22	52
养兔数量, x	22	53	39	40	25	15	34	34	52	41	43	33	24	52	20	18	33	12	11	28

将表 1 数据以散点方式绘制在方格纸上得到图 1。老农隐隐觉得这个 2:1 的比例关系好像的确 存在。

但是,农夫并不满足于此,他想找到鸡兔达到平衡时确切的数学关系;于是乎,他想到了想 到了比例函数和一元函数,决心探究一番。

图 1. 平衡时, 各家鸡兔数量关系

24.2 试试比例函数:

观察图1, 农夫首先想到用比例函数。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站-— 生姜 DrGinger: https://space.bilibili.com/513194466

比例函数假设平衡时鸡兔数量好像呈现的某种比例关系:

$$\hat{\mathbf{y}} = a\mathbf{x} \tag{1}$$

其中, 为了区分数据 y, ŷ 上加了个帽子表示预测。

农夫在方格纸上, 用红笔画出一系列通过原点的斜线, 得到图 2。

老农先是觉得 a 取 0.5 比较好,但是又觉得 a 取 0.6 也不差。他隐约觉得 a 应该在 0.5 和 0.6 之间。

如何找到合理的 a 值?

这个问题让他陷入了沉思。显然,他需要找到一条红线足够靠近图2所有散点。那么,问题来了——如何量化"足够靠近"?

他决定先找几个值试试看。

图 2. 平衡时, 各家鸡兔数量好像呈现某种比例关系

a = 0.4

农夫先试了 a = 0.4,这时比例函数为:

$$\hat{\mathbf{y}} = 0.4x \tag{2}$$

将 x = 110 (鸡的数量) 代入 (2), 得到 44 (兔的数量) 这个预测值。

$$\hat{y}\big|_{x=110} = 0.4 \times 110 = 44 \tag{3}$$

当 x = 110 时,真实值 y 和预测值 \hat{y} 两者的误差 e 为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$e\big|_{x=100} = y - \hat{y} = 53 - 44 = 9$$
 (4)

农夫觉得从这个误差值入手,可能会找到合适的 a 值,并确定一条合理的比例函数。

于是乎,农夫开始计算 $\hat{y} = 0.4x$ 这个比例函数条件下,图 1 中每个点的误差值。

最后,他得到图 3。图中,竖直黄色线段代表实际数据和比例函数估值之间的误差,也就是不同 x 对应的 e。

农夫翻阅舶来的数学典籍,发现了最小二乘法;仔细研读后,他决定拿来一试。

图 3. a = 0.4 时,实际数据和比例函数估值之间的误差

24.3 最小二乘法

书上写道:"最小二乘法通过最小化误差的平方和,寻找数据的最佳回归参数匹配。"

误差平方和最小化

农夫已经得到了一系列 e 值,只需要对 e 平方。

他把计算得到的分步数据记录在表 2 中。表第一、二行数值分别为鸡、兔实际数量,第三行为 $\hat{y}=0.4x$ 估算得到的兔子数量,第四行为误差 $e=y-\hat{y}$,即实际兔数减去估算兔数,第五行为误差的平方值 e^2 。

表 2 第五行 e² 求和得到误差平方和为 1756.28。

表 2. a取 0.4 时,估计值、误差、误差平方

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

养鸡数量 x	32	110	71	79	45	20	56	55	87	68	87	63	31	88
养兔数量 y	22	53	39	40	25	15	34	34	52	41	43	33	24	52
$\hat{y} = 0.4x$ 估算兔数	12.8	44	28.4	31.6	18	8	22.4	22	34.8	27.2	34.8	25.2	12.4	35.2
误差e	9.2	9	10.6	8.4	7	7	11.6	12	17.2	13.8	8.2	7.8	11.6	16.8
误差平方 e ²	84.6	81	112.3	70.5	49	49	134.5	144	295.8	190.4	67.2	60.8	134.5	282.2

农夫突然意识到, e^2 不就是以e的绝对值为边长的正方形面积嘛!

有了这个几何视角,他绘制得到了图 4。图 4 中所有的正方形的边长为不同 x 位置的误差 e。将这些蓝色正方形面积相加得到面积和,即误差之和:

$$\sum_{i=1}^{20} \left(e^{(i)} \right)^2 = \sum_{i=1}^{20} \left(y^{(i)} - \hat{y}^{(i)} \right)^2 = \sum_{i=1}^{20} \left(y^{(i)} - ax^{(i)} \right)^2$$
 (5)

找到让上式值最小的 a, 就可以让图 4 中正方形面积之和最小。

图 4. a = 0.4 时, 可视化误差平方

a = 0.5

他决定再试几个值, 比如 a = 0.5 时,

$$\hat{\mathbf{y}} = 0.5x \tag{6}$$

表 3 给出 a 取 0.5 时,不同 x 对应的估计值 \hat{y} 、误差 e、误差平方 e^2 。

经过计算可以发现 (6) 这个比例函数模型条件下,误差平方和为 422。

几何角度来看,图 5 中的正方形面积之和看上去确实比图 4 要小。

表 3. a 取 0.5 时, 估计值、误差、误差平方

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

养鸡数量 x	32	110	71	79	45	20	56	55	87	68	87	63	31	88
养兔数量 y	22	53	39	40	25	15	34	34	52	41	43	33	24	52
$\hat{y} = 0.5x$ 估算兔数	16	55	35.5	39.5	22.5	10	28	27.5	43.5	34	43.5	31.5	15.5	44
误差 <i>e</i>	6	-2	3.5	0.5	2.5	5	6	6.5	8.5	7	-0.5	1.5	8.5	8
误差平方 e ²	36	4	12.25	0.25	6.25	25	36	42.25	72.25	49	0.25	2.25	72.25	64

图 5. a = 0.5 时, 可视化误差平方

a = 0.6

农夫又试了试 a = 0.6, 比例函数为:

$$\hat{y} = 0.6x \tag{7}$$

经过表4计算求得误差平方和为396.28。图6可视化误差平方和。

农夫感觉到,似乎在 0.5 和 0.6 之间存在一个更好的 a,能够让误差平方和最小。

但是, 这样徒手计算, 一个一个值算, 终究不是办法。

表 4. a取 0.6 时,估计值、误差、误差平方

养鸡数量 x	32	110	71	79	45	20	56	55	87	68	87	63	31	88
养兔数量 y	22	53	39	40	25	15	34	34	52	41	43	33	24	52
ŷ = 0.6x 估算兔数	19.2	66	42.6	47.4	27	12	33.6	33	52.2	40.8	52.2	37.8	18.6	52.8
误差 <i>e</i>	2.8	-13	-3.6	-7.4	-2	3	0.4	1	-0.2	0.2	-9.2	-4.8	5.4	-0.8
误差平方 e ²	7.84	169	12.96	54.76	4	9	0.16	1	0.04	0.04	84.64	23.04	29.16	0.64

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6.a = 0.6 时,可视化误差平方

目标函数

观察 (5),他发现 $x^{(i)}$ 和 $y^{(i)}$ 都是给定数值,而式中唯一的变量就是 a。也就是说,把 a 看做一个未知数,(5) 可以写成一个函数 f(a):

$$f(a) = \sum_{1}^{20} (y^{(i)} - ax^{(i)})^2$$
 (8)

而最小化误差对应的就是让上述函数值取得最小值! 农夫想到这里,高兴地不住拍手。农夫把所有的 $x^{(i)}$ 和 $y^{(i)}$ 代入上式,整理并得到函数具体解析式。

$$f(a) = 65428a^2 - 72228a + 20179 (9)$$

他惊奇地发现,竟然得到了一元二次函数!这个函数,我懂啊!

如图7所示,这个一元二次函数的图像是一条开口朝上的抛物线,具有凸性。显然,函数在对称轴处取得最小值。而这个一元二次函数就是优化问题中的目标函数,优化变量为a。

图 7. 函数 f(a) 图像

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

解析法求解优化问题

利用导数这个数学工具,对f(a)求一阶导数,得到f'(a):

$$f'(a) = 130856a - 72228 \tag{10}$$

f'(a)=0 得到 f(a) 取得最小值时 a 的值,记做 a^* :

$$a^* = \frac{18057}{32714} \approx 0.552 \tag{11}$$

这个 a*就是农夫要找的最佳 a 值, 它让误差平方和最小。

此时,对应的最优比例函数为。

$$\hat{\mathbf{y}} = 0.552x \tag{12}$$

带回检验

农夫决定用"土办法"再算算 a*对应的估计值、误差、误差平方这几个数值,他得到表 5。 此时,误差平方和为 245.32,明显小于 a=0.5 或 a=0.6 这两种情况。

他不忘绘制图 6,看看正方形的面积到底怎样。

表 5. a取 0.5504 时,估计值、误差、误差平方

养鸡数量 x	32	110	71	79	45	20	56	55	87	68	87	63	31	88
养兔数量 y	22	53	39	40	25	15	34	34	52	41	43	33	24	52
ŷ=0.5504x 估算兔数	17.6	60.5	39.1	43.5	24.8	11.0	30.8	30.3	47.9	37.4	47.9	34.7	17.1	48.4
误差 <i>e</i>	4.4	-7.5	-0.1	-3.5	0.2	4.0	3.2	3.7	4.1	3.6	-4.9	-1.7	6.9	3.6
误差平方 e ²	19.2	56.9	0.0	12.1	0.1	15.9	10.1	13.9	16.9	12.8	23.9	2.8	48.1	12.7

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 8. a = 0.552 时, 可视化误差平方

农夫如获至宝,不住地说"最小二乘法,好!真好!"。

他回过头再次翻阅数学典籍,又仔仔细细把最小二乘方法反复研读几遍。兴奋之余,他想让自己的数学模型再复杂一点,决定试试一元一次函数。

以下代码绘制本节图像、并求解最优化问题。


```
# Bk3 Ch24 1
from sympy.abc import a
import numpy as np
import matplotlib.pyplot as plt
def fig decor(ax):
   plt.xlabel('$x$ (number of chickens)')
   plt.ylabel('$y$ (number of rabbits)')
   plt.axis('scaled')
   ax.set_xlim([0, 120])
   ax.set_ylim([0, 80])
   plt.xticks(np.arange(0, 120 + 1, step=10))
   plt.yticks(np.arange(0, 80 + 1, step=10))
  plt.minorticks_on()
   ax.spines['top'].set visible(False)
   ax.spines['right'].set_visible(False)
   ax.spines['bottom'].set_visible(False)
   ax.spines['left'].set visible(False)
   ax.grid(linestyle='--', linewidth=0.25, color=[0.5, 0.5, 0.5])
num_chickens = np.array([32, 110, 71, 79, 45, 20, 56, 55, 87, 68, 87, 63, 31, 88])
num rabbits = np.array([22, 53, 39, 40, 25, 15, 34, 34, 52, 41, 43, 33, 24, 52])
# scatter plot
fig, ax = plt.subplots()
plt.scatter(num chickens, num rabbits)
fig_decor(ax)
\$\% generate f(a), sum of squared errors (SSE), symbolic
from sympy import *
y pred = a*num chickens
f a SSE = np.sum((num rabbits - y pred) **2)
f a SSE = simplify(f a SSE)
print(f a SSE)
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
```

```
#%% plot f(a) versus a
a array = np.linspace(0,1,51)
f a SSE fcn = lambdify(a, f a SSE)
SSE_array = f_a_SSE_fcn(a_array)
# first-order differential
df da SSE = diff(f_a_SSE, a)
print(df_da_SSE)
# solution of a
a star only = solve(df da SSE, a)
print(a star only)
a star only = a star only[0].evalf()
SSE_min = f_a_SSE_fcn(a_star_only)
fig, ax = plt.subplots()
plt.plot(a_array, SSE_array)
plt.axvline(x=a_star_only, linestyle = '--')
plt.plot(a star only, SSE min, 'rx', markersize = 16)
plt.xlabel('a, slope')
plt.ylabel('f(a), sum of squared errors, SSE')
ax.set_xlim([a_array.min(), a_array.max()])
ax.set ylim([0, SSE array.max()])
ax.grid(linestyle=':', linewidth='0.5', color=[0.8, 0.8, 0.8])
ax.spines['top'].set visible(False)
ax.spines['right'].set visible(False)
#%% y = ax model
def plot square(x,y1,y2):
    if y2 > y1:
        temp = y2;
        y2 = y1;
        y1 = temp;
    d = y1 - y2;
    plt.fill(np.vstack((x, x + d, x + d, x)),
             np.vstack((y2, y2, y1, y1)),
             facecolor='b', edgecolor='none',
             alpha = 0.3)
x array = np.linspace(0,150,10)[:, None]
y pred = a star only*x array
fig, ax = plt.subplots()
plt.plot(x_array, y_pred, color = 'r')
plt.scatter(num chickens, num rabbits)
num rabbits predicted = a star_only*num_chickens
plt.plot(np.vstack((num_chickens,num_chickens)),
         np.vstack((num_rabbits, num_rabbits_predicted)),
         color = np.array([255,182,0])/255)
for i in range(0,len(num rabbits predicted)):
   plot square(num chickens[i],num rabbits[i],num rabbits predicted[i]);
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
```

代码及 PDF 文件下载: https://github.com/Visualize-ML

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

fig decor(ax)

24.4 再试试一次函数: y = ax + b

农夫知道,比例函数通过原点,也就是纵轴截距为0。而一元函数则没有这个限制。

他决定试一下如下这个一元函数,看看是否有更好的结果:

$$\hat{\mathbf{y}} = a\mathbf{x} + b \tag{13}$$

这个一元函数对应的误差平方和为。

$$\sum_{i=1}^{20} \left(e^{(i)} \right)^2 = \sum_{1}^{20} \left(y^{(i)} - \hat{y}^{(i)} \right)^2 = \sum_{1}^{20} \left(y^{(i)} - ax^{(i)} - b \right)^2$$
 (14)

式中, $x^{(i)}$ 和 $y^{(i)}$ 都是给定的样本数据。也就是说,上式有两个自变量,有两个需要优化的参数 a 、b 。

农夫还是决定暴力求解一番,将 $x^{(i)}$ 和 $y^{(i)}$ 代入(14),整理并得到二元函数f(a,b)解析式。

$$f(a,b) = 65428a^2 + 1784ab - 72228a + 14b^2 - 1014b + 20179$$
 (15)

这不就是是二元二次函数,我也懂啊!几何角度不就是个开口朝上的旋转椭圆面嘛!农夫再次惊叹数学的精妙!

图 9. 误差平方和 f(a,b) 随 $a \times b$ 变化构造的开口向上抛物曲面

用偏导求极值点

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

计算 f(a, b) 最小值极值点处,利用 f(a, b) 对 $a \times b$ 求偏导为 0 为条件,构造两个等式。

$$\begin{cases} \frac{\partial f}{\partial a} = 130856a + 1784b - 72228 = 0\\ \frac{\partial f}{\partial b} = 1784a + 28b - 1014 = 0 \end{cases}$$
 (16)

联立等式,求得最优解:

$$\begin{cases} a^* = \frac{513}{1157} \approx 0.4434\\ b^* = \frac{18429}{2314} \approx 7.9641 \end{cases}$$
 (17)

图 10 告诉我们这个最优解就在旋转椭圆中心位置。农夫看着图 10, 嘴里叨叨着"椭圆真是个好东西! 哪都离不开它!"

图 10. f(a, b) 平面等高线和最优解位置

(17) 对应的一次函数:

$$\hat{\mathbf{y}} = 0.4434x + 7.9641 \tag{18}$$

这就是农夫要找的最佳一次函数!

带回检验

农夫还是想用"土办法"再验算一遍!

他用 (18) 一步步仔细运算,并在将分步结果记录在表 6 中。农夫最终,并求得误差平方和为 128.67,这比之前的比例函数对应的误差平方和还要小。

他不怕麻烦,又画了图11。图中,一次函数的截距为正。

表 6. $a = 0.4434$ 、 $b = 7.9641$ 时,	估计值、	误差、	误差平方
-------------------------------------	------	-----	------

养鸡数量 x	32	110	71	79	45	20	56	55	87	68	87	63	31	88
养兔数量 y	22	53	39	40	25	15	34	34	52	41	43	33	24	52
$\hat{y} = 0.4863x + 4.312$	19.9	57.8	38.8	42.7	26.2	14.0	31.5	31.1	46.6	37.4	46.6	34.9	19.4	47.1
误差 <i>e</i>	2.1	-4.8	0.2	-2.7	-1.2	1.0	2.5	2.9	5.4	3.6	-3.6	-1.9	4.6	4.9
误差平方 <i>e</i> ²	4.5	23.1	0.0	7.5	1.4	0.9	6.0	8.7	28.9	13.1	13.1	3.8	21.3	23.9

图 11. a = 0.4434、b = 7.9641 时,可视化误差平方

以下代码绘制本节图像, 并求解优化问题。


```
# Bk3 Ch24 2
import numpy as np
import matplotlib.pyplot as plt

def fig_decor(ax):

    plt.xlabel('$x$ (number of chickens)')
    plt.ylabel('$y$ (number of rabbits)')

    plt.axis('scaled')
    ax.set_xlim([0, 120])
    ax.set_ylim([0, 80])

    plt.xticks(np.arange(0, 120 + 1, step=10))
    plt.yticks(np.arange(0, 80 + 1, step=10))
```

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

```
plt.minorticks on()
    ax.grid(which='minor', linestyle=':', linewidth='0.5', color=[0.8, 0.8, 0.8])
    ax.spines['top'].set visible(False)
    ax.spines['right'].set visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
num_chickens = np.array([32, 110, 71, 79, 45, 20, 56, 55, 87, 68, 87, 63, 31, 88])
num_rabbits = np.array([22, 53, 39, 40, 25, 15, 34, 34, 52, 41, 43, 33, 24, 52])
#%% generate f(a, b), sum of squared errors (SSE), symbolic
from sympy.abc import a, b
from sympy import *
y_pred = a*num_chickens + b
f ab SSE = np.sum((num rabbits - y pred) **2)
f ab SSE = simplify(f ab SSE)
print(f_ab_SSE)
#%% plot f(a) versus a
a array = np.linspace(0,0.9,40)
b array = np.linspace(-20,36,40)
aa,bb = np.meshgrid(a_array,b_array)
f ab SSE fcn = lambdify((a,b), f ab SSE)
SSE matrix = f ab SSE fcn(aa,bb)
# SSE matrix = SSE matrix.evalf()
# first-order partial differential
df da SSE = diff(f ab SSE, a)
print(df da SSE)
df db SSE = diff(f ab SSE, b)
print(df_db_SSE)
# solution of (a,b)
sol = solve([df da SSE, df db SSE], [a, b])
print(sol)
a_star = sol[a]
b star = sol[b]
a star = a star.evalf()
b_star = b_star.evalf()
print(a star)
print(b star)
SSE_min = f_ab_SSE_fcn(a_star,b_star)
print(SSE_min)
fig, ax = plt.subplots(subplot kw={'projection': '3d'})
ax.plot_wireframe(aa,bb, SSE_matrix,
                    color = [0.5, 0.5, 0.5],
                    linewidth = 0.25)
plt.plot(a_star, b_star, SSE_min,
         marker = 'x', markersize = 12)
```

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

```
colorbar = ax.contour(aa,bb, SSE matrix,30,
             cmap = 'RdYlBu r')
fig.colorbar(colorbar, ax=ax)
ax.set proj type('ortho')
ax.set_xlabel('$a$, slope')
ax.set_ylabel('$b$, intercept')
ax.set zlabel('$Sum of squared errors')
plt.tight layout()
ax.set_xlim(aa.min(), aa.max())
ax.set_ylim(bb.min(), bb.max())
ax.view init(azim=-135, elev=30)
ax.grid(False)
plt.show()
fig, ax = plt.subplots()
colorbar = ax.contourf(aa,bb, SSE matrix, 30, cmap='RdYlBu r')
fig.colorbar(colorbar, ax=ax)
plt.plot(a_star, b_star, marker = 'x', markersize = 12)
ax.set xlim(aa.min(), aa.max())
ax.set ylim(bb.min(), bb.max())
ax.set_xlabel('$a$, slope')
ax.set_ylabel('$b$, intercept')
# plt.gca().set_aspect('equal', adjustable='box')
plt.show()
#%% y = ax + b model
def plot square(x,y1,y2):
    if y2 > y1:
        temp = y2;
        y2 = y1;
        y1 = temp;
    d = y1 - y2;
    plt.fill(np.vstack((x, x + d, x + d, x)),
             np.vstack((y2, y2, y1, y1)),
             facecolor='b', edgecolor='none',
             alpha = 0.3)
x array = np.linspace(0,150,10)[:, None]
y pred = a star*x array + b star
fig, ax = plt.subplots()
plt.plot(x array, y pred, color = 'r')
plt.scatter(num_chickens, num rabbits)
num_rabbits_predicted = a_star*num_chickens + b_star
plt.plot(np.vstack((num chickens,num chickens)),
        np.vstack((num rabbits, num rabbits predicted)),
         color = np.array([255, 182, 0])/255)
plt.plot(num_chickens, num_rabbits_predicted,
         linestyle = 'None', marker = 'x',
markerfacecolor = 'darkorange',
         markeredgecolor = 'darkorange',
         markersize = 10)
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。
版权归清华大学出版社所有,请勿商用,引用请注明出处。
```

代码及 PDF 文件下载: https://github.com/Visualize-ML

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

for i in range(0,len(num rabbits predicted)): plot square(num chickens[i], num rabbits[i], num rabbits predicted[i]);

fig decor(ax)

24.5 再探黄鼠狼惊魂夜: 超定方程组

突然间,一道灵光闪过!

农夫回想,那夜黄鼠狼来偷鸡抓兔,邻居甲乙丙丁四人数头数、脚数时,为了估算鸡兔数 量,他采用的舶来线性代数典籍中的超定方程组的求解方法。

回过头来看自己手中的数学问题,"这不也是一个超定方程组吗?!"

比例函数

他立刻摊开纸,把表1数据写成列向量形式。

$$\mathbf{x} = \begin{bmatrix} 32\\110\\ \vdots\\ 52 \end{bmatrix}, \ \mathbf{y} = \begin{bmatrix} 22\\53\\ \vdots\\ 28 \end{bmatrix}$$
 (19)

农夫将比例函数模型写成:

$$y = ax \tag{20}$$

即

$$\begin{bmatrix} 22\\53\\ \vdots\\28 \end{bmatrix} = a \begin{bmatrix} 32\\110\\ \vdots\\52 \end{bmatrix}$$

$$(21)$$

只有一个未知数 a, 但是方程组有 20 个方程, 这显然也是一个超定方程组!

农夫顿时兴奋起来,他用黄鼠狼惊魂夜一模一样的方法求解。

$$a = \left(\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}\right)^{-1} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{y} \tag{22}$$

实际上, x^Tx 是一个 1×1 矩阵, 也就是一个数字; 它的逆就是 x^Tx 这个数字的倒数。 将x和y具体数值代入(22),得到。

$$a = \left[\begin{bmatrix} 32 \\ 110 \\ \vdots \\ 52 \end{bmatrix}^{T} @ \begin{bmatrix} 32 \\ 110 \\ \vdots \\ 52 \end{bmatrix} \right]^{-1} @ \begin{bmatrix} 32 \\ 110 \\ \vdots \\ 52 \end{bmatrix}^{T} @ \begin{bmatrix} 22 \\ 53 \\ \vdots \\ 28 \end{bmatrix} = 0.552$$
 (23)

农夫惊呼,"得来全不费工夫啊!"这个结果和他用最小二乘法得到结果完全一致。

一元函数

灵光再现, 他立刻疾步多取回些纸笔, 将一元函数这个模型也写成矩阵形式:

$$\begin{bmatrix} 22 \\ 53 \\ \vdots \\ 28 \end{bmatrix} = a \begin{bmatrix} 32 \\ 110 \\ \vdots \\ 52 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$

$$(24)$$

即

$$\hat{\mathbf{y}} = a\mathbf{x} + b\mathbf{1} \tag{25}$$

1叫做全1列向量。

只有二个未知数 $a \times b$,但是方程组有 20 个方程,这明显也是一个超定方程组。

将(25)写成:

$$\hat{\mathbf{y}} = \underbrace{\begin{bmatrix} \mathbf{I} & \mathbf{x} \end{bmatrix}}_{\mathbf{Y}} \begin{bmatrix} b \\ a \end{bmatrix} \tag{26}$$

令,

$$\boldsymbol{X} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{x} \end{bmatrix} = \begin{bmatrix} 1 & 32 \\ 1 & 110 \\ \vdots & \vdots \\ 1 & 52 \end{bmatrix}$$
 (27)

(26) 则写成:

$$\hat{\mathbf{y}} = \mathbf{X} \begin{bmatrix} b \\ a \end{bmatrix} \tag{28}$$

求解超定方程组,得到。

$$\begin{bmatrix} b \\ a \end{bmatrix} = \left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{y} \tag{29}$$

将 X 和 y 具体数值代入 (29), 得到。

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

$$\begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} 1 & 32 \\ 1 & 110 \\ \vdots & \vdots \\ 1 & 52 \end{bmatrix}^{T} @ \begin{bmatrix} 1 & 32 \\ 1 & 110 \\ \vdots & \vdots \\ 1 & 52 \end{bmatrix}^{-1} @ \begin{bmatrix} 1 & 32 \\ 1 & 110 \\ \vdots & \vdots \\ 1 & 52 \end{bmatrix}^{T} @ \begin{bmatrix} 22 \\ 53 \\ \vdots \\ 28 \end{bmatrix} = \begin{bmatrix} 14 & 892 \\ 892 & 65428 \end{bmatrix}^{-1} \begin{bmatrix} 507 \\ 36114 \end{bmatrix} = \begin{bmatrix} 7.9641 \\ 0.4434 \end{bmatrix} (30)$$

几何视角

农夫知道,凡是有向量的地方,就有几何!

图 12. 几何角度解释一元最小二乘结果,二维平面

上述解法肯定可以通过几何角度解释。如图 12 所示,将y 向量向x 和 1 张成的平面 H 投影, 得到结果为向量 \hat{y} ; 而误差 ϵ 可以写成。

$$\varepsilon = y - \hat{y} = y - (ax + b1) \tag{31}$$

误差 ε 显然垂直于 H, 即 ε 分别垂直 I 和 x。

也就是说:

$$\varepsilon \perp \mathbf{1} \quad \Rightarrow \quad \mathbf{1}^{\mathsf{T}} \varepsilon = 0 \quad \Rightarrow \quad \mathbf{1}^{\mathsf{T}} \left(y - (ax + b\mathbf{1}) \right) = 0$$

$$\varepsilon \perp x \quad \Rightarrow \quad x^{\mathsf{T}} \varepsilon = 0 \quad \Rightarrow \quad x^{\mathsf{T}} \left(y - (ax + b\mathbf{1}) \right) = 0$$
(32)

以上两式合并:

$$\underbrace{\begin{bmatrix} \mathbf{I} \quad \mathbf{x} \end{bmatrix}}^{\mathrm{T}} \left(\mathbf{y} - \mathbf{X} \begin{bmatrix} b \\ a \end{bmatrix} \right) = \mathbf{0}$$
 (33)

整理得到:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

$$X^{\mathsf{T}}X \begin{bmatrix} b \\ a \end{bmatrix} = X^{\mathsf{T}}y \tag{34}$$

等式左右分别左边乘以 XTX 的逆, 不就得到 (29) 嘛!

"嗟夫!我的神仙姑奶奶!",这个结果让农夫惊呆了半晌。

带回检验

醒过神来,他把比例函数和一次函数对应的图像都画在一幅图上,如图 13。

"朝闻道夕死可矣!"线性代数的魅力让农夫彻底折服。

图 13. 比较比例模型和线性模型

以下代码求解本节优化问题,并绘制图 13。


```
# Bk3 Ch24 3
import numpy as np
import matplotlib.pyplot as plt
def fig decor(ax):
   plt.xlabel('$x$ (number of chickens)')
   plt.ylabel('$y$ (number of rabbits)')
   plt.axis('scaled')
   ax.set_xlim([0, 120])
   ax.set_ylim([0, 80])
   plt.xticks(np.arange(0, 120 + 1, step=10))
   plt.yticks(np.arange(0, 80 + 1, step=10))
```

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

```
plt.minorticks on()
    ax.grid(which='minor', linestyle=':', linewidth='0.5', color=[0.8, 0.8, 0.8])
   ax.spines['top'].set visible(False)
    ax.spines['right'].set_visible(False)
    ax.spines['bottom'].set_visible(False)
    ax.spines['left'].set_visible(False)
    ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
num_chickens = np.array([32, 110, 71, 79, 45, 20, 56, 55, 87, 68, 87, 63, 31, 88])
num rabbits = np.array([22, 53, 39, 40, 25, 15, 34, 34, 52, 41, 43, 33, 24, 52])
# scatter plot
fig, ax = plt.subplots()
plt.scatter(num chickens, num rabbits)
fig decor(ax)
#%% proportional function, y = ax
x array = np.linspace(0,150,10)[:, None]
x = num chickens[:, None]
y = num rabbits[:, None]
a_star_only = np.linalg.inv(x.T@x)@x.T@y
y pred = a star only*x array
fig, ax = plt.subplots()
plt.plot(x_array, y_pred, color = 'r')
plt.scatter(num_chickens, num_rabbits)
fig_decor(ax)
#%% linear function, y = ax + b
X = np.hstack((np.ones like(x),x))
sol = np.linalg.inv(X.T@X)@X.T@y
a_star_ = sol[0]
b_star_ = sol[1]
a star, b star = np.polyfit(num chickens, num rabbits, 1)
y pred = a star*x array + b star
fig, ax = plt.subplots()
plt.plot(x array, y pred, color = 'r')
plt.scatter(num_chickens, num rabbits)
fig_decor(ax)
```

25.6 统计方法求解回归参数

突然间,农夫想起前几日在一本叫做《概率统计》的数学典籍中一个有趣的公式,它赶忙取来典籍,找到如下这个公式:

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```

$$y = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X} \left(x - \mu_X \right) + \mu_Y = \underbrace{\rho_{X,Y} \frac{\sigma_Y}{\sigma_X}}_{q} x + \underbrace{\left(-\rho_{X,Y} \frac{\sigma_Y}{\sigma_X} \mu_X + \mu_Y \right)}_{h} y$$
 (35)

其中, μ_X 为 X 均值, μ_Y 为 Y 均值; σ_X 为 X 的标准差, σ_Y 为 Y 的标准差; $\rho_{X,Y}$ 为 X 和 Y 的相关性系数。

农夫意识到,从统计角度,也可以用(35)计算一元一次线性回归模型。

他赶紧利用表1数据计算得到均值、标准差和相关性系数等值:

$$\begin{cases} \mu_{x} = 63.714 \\ \mu_{y} = 36.214 \end{cases} \begin{cases} \sigma_{x} = 25.712 \\ \sigma_{y} = 11.826 \end{cases}, \quad \rho_{x,y} = 0.96397$$
 (36)

这样可以计算得到参数 a 和 b:

$$a = \rho_{X,Y} \frac{\sigma_Y}{\sigma_X} = 0.96397 \times \frac{11.826}{25.712} = 0.4434$$

$$b = -\rho_{X,Y} \frac{\sigma_Y}{\sigma_X} \mu_X + \mu_Y = -0.96397 \times \frac{11.826}{25.712} \times 63.714 + 36.214 = 7.9641$$
(37)

这和前面的几种方法结果完全吻合! 农夫顿悟, 原来最小二乘法线性回归是几何、向量、优化、概率统计的完美合体!

他不忘绘制图 14 这幅图;图中回归直线通过 $(\mu x, \mu y)$ 这点。

图 14. 利用统计方法获得线性模型

以下代码绘制图 14。


```
# Bk3 Ch24 4
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
def fig decor(ax):
     plt.xlabel('$x$ (number of chickens)')
     plt.ylabel('$y$ (number of rabbits)')
     plt.axis('scaled')
     ax.set_xlim([0, 120])
    ax.set ylim([0, 80])
    plt.xticks(np.arange(0, 120 + 1, step=10))
     plt.yticks(np.arange(0, 80 + 1, step=10))
     plt.minorticks_on()
    ax.grid(which='minor', linestyle=':',
linewidth='0.5', color=[0.8, 0.8, 0.8])
     ax.spines['top'].set_visible(False)
     ax.spines['right'].set visible(False)
     ax.spines['bottom'].set visible(False)
     ax.spines['left'].set_visible(False)
ax.grid(linestyle='--', linewidth=0.25, color=[0.5,0.5,0.5])
num_chickens = np.array([32, 110, 71, 79, 45, 20, 56, 55, 87, 68, 87, 63, 31, 88])
num_rabbits = np.array([22, 53, 39, 40, 25, 15, 34, 34, 52, 41, 43, 33, 24, 52])
sigma_X = num_chickens.std(ddof = 1)
sigma Y = num rabbits.std(ddof = 1)
rho_XY = np.corrcoef(num_chickens, num_rabbits)[1][0]
mean X = num_chickens.mean()
mean Y = num rabbits.mean()
a = rho XY*sigma Y/sigma X
b = -a*mean X + mean Y
print('=== Slope, a ====')
print(a)
print('=== Intercept, b ===')
print(b)
x array = np.linspace(0,120,20)
fig, ax = plt.subplots()
sns.regplot(x=num_chickens, y=num_rabbits, ax = ax, truncate=False,
             line kws={"color": "red"});
plt.plot(mean X, mean Y, marker = 'x', markerfacecolor = 'r',
          markersize = 12)
fig decor(ax)
#%% use sklearn
from sklearn.linear model import LinearRegression
x = num chickens.reshape((-1, 1))
y = num rabbits
model = LinearRegression().fit(x, y)
print('Slope, a:', model.coef_)
print('Intercept, b:', model.intercept_)
```

```
本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。
代码及 PDF 文件下载: https://github.com/Visualize-ML
本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466
欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com
```


农夫落笔刹那,毫无防备之间,黑云压城城欲摧,窗外云浪翻腾。

农夫赶忙起身关紧门窗, 只见道道长龙电光从西方汹汹而来! 它们撕开天幕, 列缺霹雳, 丘 峦崩摧。

瞬时,天河倾注,拳头大的雨滴敲击着大地,冲刷每一条沟壑,涤荡每一片浮尘。 农夫却毫无惧色, 他喜出望外, 连声说道, "天上之水啊! 上善若水啊! 好水, 好水!" 未完待续。