

Bisection Technique

1. What?

2. **Why?**

3. Method:

4. Algorithm:

5. **Drawbacks:**

6. **Stopping Criterions:**

The best criterion is:

7. Convergence:

lt:

8. Rate of Convergence \ Error Bound:

9. The problem of Percision:

We use,

10. The Signum Function:

We use,

Fixed-Point Problems

	_				_			_
1		IV	0	n	D	oi	n	÷٠
		\mathbf{I}		u		u		

2. Root-finding problems and Fixed-point problems:

Root Finding and Fixed-point problems are

3. **Why?:**

4. Existence and Uniqueness of a Fixed Point.:

Fixed-Point Iteration

1. Approximating Fixed-Points:

2. Algorithm:				
3. Convergence: • Fixed-Point Theorem:				
$\circ\;$ Error bound in using p_n for p :				
Notice:				
4. Using Fixed-Points:				
Question:				

Answer:

5. Newton's Method as a Fixed-Point Problem:

2.3/

Newton's Method

- 1. What?:
 - Newton's (or the Newton-Raphson) method is:

- C
- 0
- 2. **Derivation:**

3	Alg	or	itk	m

4. Stopping Criterions:

Convergence using Newton's Method

1. Convergence Theorem:

Theorem:

The crucial assumption is

Theorem 2.6 states that,

(1)

(2)

The Secant Method

1. **What?**

In Newton's Method

We approximate $f'(p_n-1)$ as:

To produce:

2. **Why?**

•

Frequently,

Note:

3. Algorithm:

4. Convergence Speed:

The Method of False Position

1. **What?**

2. **Why?**

3. Method:

4. Algorithm:

Order of Convergence

1. Order of Convergence:

2. Important, Two cases of order:

3. An arbitrary technique that generates a convergent sequences does so only linearly:

4. Conditions to ensure Quadratic Convergence:

5. Theorems 2.8 and 2.9 imply:

(i)

(ii)

6. Newtons' Method Convergence Rate:

Multiple Roots

1. Problem:

2. Zeros and their Multiplicity:

3. Identifying Simple Zeros:
• Theorem:
 Generalization of Theorem 2.11:
The result in Theorem 2.12 implies
4. Why Simple Zeros:
Example:
5. Handling the problem of multiple roots:
o We
We define as:

• Derivation:

Properties:

2.5/

Aitken's Δ^2 Method

1. **What?**

2. **Why?**

7/17/2017

/1//2017	Anmad Badary
3. Derivation:	
4. Del [Forward Difference]:	
5. \hat{p}_n [Formula]:	
6. Generating the Sequence [Formula]:	
Ctofforcopic Motherd	
Steffensen's Method	
1. What?:	
2. Zeros and their Multiplicity:	

3. Difference from Aitken's method:

Aitken's method:

Steffensen's method:

Notice

4. Algorithm:

5. Convergance of Steffensen's Method:

2.6/

Algebraic Polynomials

1. Fundamental Theorem of Algebra:

2. Existance of Roots:		
3. Polynomial Equivalence:		
This result implies		
Horner's Method		
1. What?		
2. Why?		
3. Horner's Method:		

4.	Αl	gorithm:
т.		8011011111

5. Horner's Derivatives:

6. **Deflation:**

7. MatLab Implementation:

Complex Zeros: Müller's Method

- 1. What?
 - o It is a:

o Müller's method uses

2.	Why?
	_

- 1. First:
- 2. Second:

If the initial approximation is a real number,

3. Complex Roots:

4. Algorithm:

5. Calculations and Evaluations:

Müller's method can: