"Funciones Trigonométricas"

FUNCIONES 4° PARTE

Funciones Hiperbólicas

ENLACES

- https://www.youtube.com/watch?v=L5GNg9a_gSc
- https://www.youtube.com/watch?v=-nz4EpEWhzw
- https://www.youtube.com/watch?v=8zVW0U2jn8U
- https://www.youtube.com/watch?v=mUrRX0lahDQ
- https://www.youtube.com/watch?v=RY_cl4GFM1U
- https://www.youtube.com/watch?v=aOyEA3w3EgM

FUNCIONES TRIGONOMÉTRICAS

1. Introducción

Ángulo. Porción de plano comprendida entre dos rectas que se cruzan

DESCRIPCIÓN DE TRIÁNGULO RECTANGULO

La trigonometría es el estudio de la relación entre los lados y los ángulos del triángulo rectángulo. Muchas aplicaciones de la trigonometría dependen de esta relación. A estas relaciones las denominamos funciones trigonométricas.

2. Definición de las funciones trigonométricas

Sea θ un ángulo definido en el intervalo $0 \le \theta \le 360^{\circ}$. O bien $0 \le \theta \le 2\pi$

La circunferencia queda dividida en cuatro partes iguales de 90° (π /2) cada una, que va desde 0° hasta 360° (2π), a las que se denomina cuadrantes:

1er cuadrante: 0º a 90º

2do cuadrante: 90º a 180º

3 er cuadrante: 180° a 270°

4to cuadrante: 270 a 360°

Razones trigonométricas. Dada una circunferencia de radio r, si tomamos un arco AP, donde A es un punto del semieje positivo de las x y P(x,y), el punto del extremo, se definen las razones trigonométricas del ángulo en la forma:

- Seno sen α = ordenada / radio = y / r
- Coseno $\cos \alpha = abscisa / radio = x / r$
- Tangente $tg \alpha = seno / coseno = ordenada / abscisa = y / x$
- Cotangente cotg α = coseno / seno = abscisa / ordenada = x / y
- Secante $\sec \alpha = 1/\cos = 1/(x/r) = r/x$
- Cosecante cosec $\alpha = 1 / \text{seno} = 1 / (y/r) = r/y$

Signo de las razones. En cada cuadrante, dependiendo del signo de las abscisas y ordenadas, las razones presentan los siguientes signos:

Ángulos notables.

• 30° Para determinar sus razones tenemos en cuenta que se forma un triángulo equilátero:

sen
$$30^{\circ} = y/r = (r/2) / r = 1/2$$

$$\cos 30^\circ = x/r = 3^{\frac{1}{2}}/2$$

$$r^2 = x^2 + (r/2)^2 = x^2 + r^2/4$$
 $x = (3r^2/4)^{\frac{1}{2}} = r3^{\frac{1}{2}}/2$

60° Formamos el triángulo equilátero de la figura:

sen 60°=
$$y/r= (r 3^{1/2}/2)/r= 3^{1/2}/2$$

$$r^2 = y^2 + (r/2)^2$$

$$y = (r^2 - r^2/4)^{\frac{1}{2}} = (3r^2/4)^{\frac{1}{2}} = r 3^{\frac{1}{2}}/2$$

$$\cos 60^{\circ} = (r/2)/r = 1/2$$

$$tg 60^\circ = (3^{\frac{1}{2}}/2)/(1/2) = 3^{\frac{1}{2}}$$

• 45° La x y la y son iguales, por lo que se forma un triángulo isósceles:

sen
$$45^\circ = y/r = 2^{\frac{1}{2}}/2$$

$$r^2 = x^2 + y^2 = 2y^2$$

$$y=(r^2/2)^{\frac{1}{2}}=r(2^{\frac{1}{2}})/2$$

$$\cos 45^{\circ} = x/r = y = 2^{\frac{1}{2}}/2$$

$$tg 45^{\circ} = sen 45^{\circ} / cos 45^{\circ} = 1$$

Relaciones entre las razones trigonométricas.

1.- Teorema fundamental.

 $sen \alpha = y/r$ de donde $y = r sen \alpha$

 $\cos \alpha = x/r$ de donde $x = r \cos \alpha$

como según Pitágoras: $x^2+y^2=r^2$ tenemos que $r^2\cos^2\alpha+r^2\sin^2\alpha=r^2$

es decir:
$$\cos^2 \alpha + \sin^2 \alpha = 1$$

2.- Dividiendo el teorema fundamental entre sen² α :

$$1 + \cos^2 \alpha / \sin^2 \alpha = 1/ \sin^2 \alpha$$

$$1 + \cot^2 \alpha = \csc^2 \alpha$$

3.– Dividiendo el teorema fundamental entre $\cos^2 \alpha$

$$tg^2\alpha+1=1/\cos^2\alpha$$

$$1 + tg^2 \alpha = sec^2 \alpha$$

Relaciones entre las razones trigonométricas de algunos ángulos.

1. ángulos suplementarios. Teniendo en cuenta la definición de cada razón trigonométrica, se deduce:

$$sen \alpha = sen \beta$$
 $cos \alpha = -cos \beta$ $tg \alpha = -tg \beta$

$$tg \alpha = -tg \beta$$

2. ángulos complementarios.

Observamos que y'=x y que x'=y

$$\operatorname{sen} \beta = \operatorname{sen} (90 - \alpha) = y'/r = x/r = \cos \alpha$$

$$\cos \beta = \cos (90-\alpha) = x'/r = y / r = sen \alpha$$

$$tg \beta = cotg \alpha$$

3. ángulos que difieren en 180°

$$\operatorname{sen} \beta = \operatorname{sen} (180 + \alpha) = -\operatorname{sen} \alpha$$

$$\cos \beta = \cos (180 + \alpha) = -\cos \alpha$$

$$tg \; \beta = sen \; \beta \; / \; cos \; \beta = - \; sen \; \; \alpha \; / \; - \; cos \; \alpha = tg \; \alpha$$

4.- ángulos opuestos.

sen
$$\beta = y'/r = -y/r = -sen \alpha$$

$$\cos \beta = x'/r = x/r = -y/r = \cos \alpha$$

$$tg \beta = sen \beta / cos \beta = - sen \alpha / cos \alpha = - tg \alpha$$

Representación de las razones trigonométricas sobre la circunferencia goniométrica.

Se denomina circunferencia goniométrica a la que tiene de radio la unidad.

En esta circunferencia: sen $\alpha = y / r = y$

Fórmulas

$$sen(x \pm y) = sen x cos y \pm cos x sen y;$$

$$\cos (x \pm y) = \cos x \cos y - \sin x \sin y;$$

$$tg(x + y) = (tg x + tg y) / (1 - tg x tg y).$$

 $tg(x - y) = (tg x - tg y) / (1 + tg x tg y).$

$$sen 2x = 2 sen x cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2 \sin^2 x = 2 \cos^2 x - 1$$

$$tg 2x = (2 tg x) / (1 - tg^2 x).$$

```
Derivada de las funciones hiperbólicas
ducatina 🗬
                                                 1 (x241)
                                     arctghx
                  coskxv
                  Souhx V
     Coshxv
                                     arcotahx
                  Sech X V
     tghxv
                 - cschx V
     cotghar
                                                 -1 (02x21)
                                     arcsechx
     SechxV
                - Sechrtghx
     Lichxv
                - cschxcotghx
                                      arcosechx
                    一
     arcsenhy
                    1x-1 (x>1)
     47 Cosenhx
```

Funciones Hiperbólicas

- Las funciones hiperbólicas se definen a través de expresiones algebraicas que incluyen funciones exponenciales e^x y su función inversa e^{-x}, donde e es la llamada constante de Euler, Las funciones hiperbólicas básicas son :
- > seno hiperbólico (sinh)
- > el coseno hiperbólico (cosh),
- de éstos se derivan la función de tangente hiperbólica (tanh).
- Las otras funciones: cotangente (coth), secante (sech) y cosecante (csch),

Gráficamente:

Definición de cada una de ellas > COSENO HIPERBÓLICO

$$Cosh(x) = \frac{e^x + e^{-x}}{2}$$

> Es una función par.

SENO HIPERBÓLICO

$$Sinh(x) = \frac{e^x - e^{-x}}{2}$$

> Es una función impar.

TANGENTE HIPERBÓLICA

$$Tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$$

Es una función impar

COTANGENTE HIPERBÓLICA

$$Coth(x) = \frac{\cosh(x)}{\sinh(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}} = \frac{e^{2x} + 1}{e^{2x} - 1}$$

Definida sobre R* y más generalmente sobre C*; es una función impar.

SECANTE HIPERBÓLICA

$$Sech(x) = \frac{1}{Cosh(x)} = \frac{2}{e^x + e^{-x}} = \frac{2e^x}{e^{2x} + 1}$$

Es una función par.

COSECANTE HIPERBÓLICA

$$Csch(x) = \frac{1}{sinh(x)} = \frac{2}{e^x - e^{-x}} = \frac{2e^{2x}}{e^{2x} - 1}$$

Definida sobre R* y m**á**s generalmente sobre C*; es una funci**ó**n impar.

NOTA:

Las funciones sinh y cosh satisfacen la ecuación de la hipérbola $x^2 - y^2 = 1$.

Suponiendo que

```
x = \cosh(t)
```

y = sinh(t)

 π

	Expresión analítica	Dominio	Imagen
Seno hiperbólico	$\sinh x = \frac{e^x - e^{-x}}{2}$	\mathbb{R}	${\mathbb R}$
Coseno hiperbólico	$\cosh x = \frac{e^x + e^{-x}}{2}$	\mathbb{R}	$[1,+\infty)$
Tangente hiperbólica	$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	\mathbb{R}	(-1,1)
Cotangente hiperbólica	$\coth x = \frac{1}{\tanh x} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$	$\mathbb{R}\setminus\{0\}$	$(-\infty,-1)\cup(1,+\infty)$
Secante hiperbólica	$\operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}}$	\mathbb{R}	(0,1]
Cosecante hiperbólica	$\operatorname{csch} x = \frac{1}{\sinh x} = \frac{2}{e^x - e^{-x}}$	$\mathbb{R}\setminus\{0\}$	$\mathbb{R}\setminus\{0\}$

