SEGUNDO PARCIAL DE MATEMÁTICA DISCRETA 2

Nombre

Duración: 3:30 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios, presentar únicamente la respuesta final carece de valor.

Ejercicio 1.

- A. Enuncie (y NO demuestre) el Teorema de Lagrange.
- **B.** Probar que si G es un grupo finito y $g \in G$ entonces $o(g) \mid |G|$.

(Obs. No se puede utilizar que $g^{|G|} = e$ ya que esto es consecuencia de lo que se pide probar; a menos que lo prueben de forma independiente).

- C. Probar que 2 es raíz primitiva módulo 29 y hallar $s \in \{0, 1, \dots, 27\}$ tal que $9 \equiv 2^s \pmod{29}$.
- **D.** Hallar todos los $x \in \mathbb{Z}$ que verifican $x^{18} \equiv 9 \pmod{29}$.

Ejercicio 2

- A. Enuncie (y NO demuestre) el Primer Teorema de Isomorfismo.
- **B.** Probar que $\frac{(\mathbb{R}^*, \cdot)}{\{1, -1\}} \simeq (\mathbb{R}, +)$.

 $((\mathbb{R}^*,\cdot) \text{ es el grupo } \mathbb{R} - \{0\} = \mathbb{R} \setminus \{0\} \text{ con el producto usual } y (\mathbb{R},+) \text{ son los reales con la suma usual.})$

- C. Sean p y q primos distintos.
 - i) Probar que si $\overline{z} \in \mathbb{Z}_{p^2}$ es tal que $o(\overline{z}) = p$ entonces $z \equiv kp \pmod{p^2}$ para algún $k \in \mathbb{Z}$.

(Recordar que la estructura de grupo de \mathbb{Z}_{p^2} es con la suma de clases, y no con el producto).

- ii) Probar que $H = \langle \overline{p} \rangle$ es el único subgrupo de \mathbb{Z}_{p^2} de orden p.
- iii) Si $\psi: \mathbb{Z}_{p^2} \to \mathbb{Z}_{pq}$ es un homomorfismo no trivial, hallar $\ker(\psi)$.

Ejercicio 3

- **A.** Sea $\psi: G_1 \to G_2$ un homomorfismo, probar que $o(\psi(g)) \mid o(g)$ para todo $g \in G_1$.
- **B.** Sea S_n el grupo de permutaciones de n elementos. Probar que si $\psi: S_n \to G$ es un homomorfismo que verifica $\psi(\tau) = e_G$ para toda **trasposición** $\tau \in S_n$, entonces ψ es el homomorfismo trivial (es decir, $\psi(\sigma) = e_G$, $\forall \sigma \in S_n$).
- **C.** Probar que si G es un grupo de orden impar entonces no existen homomorfismos $\psi: S_n \to G$ no triviales. (Sugerencia: utilizar las partes anteriores).
- **D.** Hallar todos los homomorfismos no triviales $\psi: S_3 \to \mathbb{Z}_4$.