Lecture 5 Epipolar Geometry

Professor Silvio Savarese

Computational Vision and Geometry Lab

Lecture 5 Epipolar Geometry

- Why is stereo useful?
- Epipolar constraints
- Essential and fundamental matrix
- Estimating F
- Examples

Reading: [AZ] Chapter: 4 "Estimation – 2D perspective transformations

Chapter: 9 "Epipolar Geometry and the Fundamental Matrix Transformation"

Chapter: 11 "Computation of the Fundamental Matrix F"

[FP] Chapter: 7 "Stereopsis"

Chapter: 8 "Structure from Motion"

Recovering structure from a single view

From calibration rig → location/pose of the rig, K

From points and lines at infinity
+ orthogonal lines and planes → structure of the scene, K

Knowledge about scene (point correspondences, geometry of lines & planes, etc...

Recovering structure from a single view

Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)

Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)

Courtesy slide S. Lazebnik

Two eyes help!

Two eyes help!

This is called triangulation

Triangulation

Find P* that minimizes

$$d(p, M|P^*) + d(p', M'P^*)$$
 [Eq. 2]

Multi (stereo)-view geometry

- Camera geometry: Given corresponding points in two images, find camera matrices, position and pose.
- Scene geometry: Find coordinates of 3D point from its projection into 2 or multiple images.
- Correspondence: Given a point p in one image, how can I find the corresponding point p' in another one?

Epipolar geometry

- Epipolar Plane
- Baseline
- Epipolar Lines

- Epipoles e, e'
 - = intersections of baseline with image planes
 - = projections of the other camera center

Example of epipolar lines

Example: Parallel image planes

- Baseline intersects the image plane at infinity
- Epipoles are at infinity
- Epipolar lines are parallel to u axis

Example: Parallel Image Planes

Example: Forward translation

- The epipoles have same position in both images
- Epipole called FOE (focus of expansion)

- Two views of the same object
- Given a point on left image, how can I find the corresponding point on right image?

Epipolar geometry

$$M = K \begin{bmatrix} I & 0 \end{bmatrix}$$

$$MP = \begin{vmatrix} u \\ v \\ 1 \end{vmatrix} = p \quad [Eq. 3]$$

$$M' = K' \begin{bmatrix} R^T & -R^TT \end{bmatrix}$$

$$M' P = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = p' \quad [Eq. 4]$$

$$M = K \begin{bmatrix} I & 0 \end{bmatrix} \begin{bmatrix} K = K' \text{ are known} \\ \text{(canonical cameras)} \end{bmatrix} M' = K' \begin{bmatrix} R^T & -R^T T \end{bmatrix}$$

$$M = \begin{bmatrix} I & 0 \end{bmatrix}$$
 [Eq. 5]

$$M' = \begin{bmatrix} R^T & -R^TT \end{bmatrix}$$
 [Eq. 6]

$$p^{T} \cdot \left[T \times (R \ p')\right] = 0 \longrightarrow p^{T} \cdot \left[T_{\times}\right] \cdot R \ p' = 0$$
[Eq. 8]

Cross product as matrix multiplication

$$\mathbf{a} \times \mathbf{b} = \begin{bmatrix} 0 & -a_z & a_y \\ a_z & 0 & -a_x \\ -a_y & a_x & 0 \end{bmatrix} \begin{bmatrix} b_x \\ b_y \\ b_z \end{bmatrix} = [\mathbf{a}_{\times}] \mathbf{b}$$

$$\mathbf{a} = [\mathbf{a}_{\mathbf{x}} \ \mathbf{a}_{\mathbf{y}} \ \mathbf{a}_{\mathbf{z}}]^{\mathrm{T}}$$
$$\mathbf{b} = [\mathbf{b}_{\mathbf{x}} \ \mathbf{b}_{\mathbf{y}} \ \mathbf{b}_{\mathbf{z}}]^{\mathrm{T}}$$

$$p^{T} \cdot \left[T \times (R \ p')\right] = 0 \longrightarrow p^{T} \cdot \left[T_{\times} \cdot R \ p' = 0\right]$$
[Eq. 8]
$$E = \text{Essential matrix}$$

(Longuet-Higgins, 1981)

- I = E p' is the epipolar line associated with p'
- $I' = E^T p$ is the epipolar line associated with p
- E e' = 0 and $E^{T} e = 0$
- E is 3x3 matrix; 5 DOF
- E is singular (rank two)

$$M = K[I \quad 0]$$

$$p_c = K^{-1} p$$
 [Eq. 11]

$$M' = K' \begin{bmatrix} R^T & -R^TT \end{bmatrix}$$

$$p'_c = K^{-1} p'$$
 [Eq. 12]

$$p'_c = K^{-1} p'$$
[Eq. 12]

[Eq.9]

$$p_c^T \cdot [T_{\times}] \cdot R \ p_c' = 0 \rightarrow (K^{-1} p)^T \cdot [T_{\times}] \cdot R \ K'^{-1} p' = 0$$

$$p^{T} K^{-T} \cdot [T_{\times}] \cdot R K'^{-1} p' = 0 \rightarrow p^{T} F p' = 0$$
 [Eq. 13]

$$p^T F p' = 0$$

$$F = K^{-T} \cdot [T_{\times}] \cdot R K'^{-1}$$

F = Fundamental Matrix

[Eq. 14]

(Faugeras and Luong, 1992)

- I = F p' is the epipolar line associated with p'
- I'= FT p is the epipolar line associated with p
- Fe' = 0 and $F^{T}e = 0$
- F is 3x3 matrix; 7 DOF
- F is singular (rank two)

Why F is useful?

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second imag

Why F is useful?

- F captures information about the epipolar geometry of
 2 views + camera parameters
- MORE IMPORTANTLY: F gives constraints on how the scene changes under view point transformation (without reconstructing the scene!)
- Powerful tool in:
 - 3D reconstruction
 - Multi-view object/scene matching

The Eight-Point Algorithm

$$p^T F p' = 0$$

[Eq. 13]
$$\mathbf{p}^{\mathrm{T}} \mathbf{F} \mathbf{p'} = \mathbf{0}$$
 \Rightarrow $p = \begin{bmatrix} u \\ v \\ 1 \end{bmatrix}$ $p' = \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix}$

$$(u,v,1) \begin{pmatrix} F_{11} & F_{12} & F_{13} \\ F_{21} & F_{22} & F_{23} \\ F_{31} & F_{32} & F_{33} \end{pmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0$$

$$(uu',uv',u,vu',vv',v,u',v',1) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{13} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{32} \\ F_{32} \end{pmatrix} = 0$$
take 8 corresponding points
$$(Eq. 14)$$

Let's take 8 corresponding points

$$\left(u_{i}u'_{i},u_{i}v'_{i},u_{i},v_{i}u'_{i},v_{i}v'_{i},v_{i},u'_{i},v_{i}',1\right) \begin{pmatrix} F_{11} \\ F_{12} \\ F_{21} \\ F_{21} \\ F_{22} \\ F_{23} \\ F_{31} \\ F_{32} \\ F_{33} \end{pmatrix} = 0$$
 [Eq. 14]

$$V \begin{bmatrix} u_{1}u'_{1} & u_{1}v'_{1} & u_{1} & v_{1}u'_{1} & v_{1}v'_{1} & v_{1} & u'_{1} & v'_{1} & 1 \\ u_{2}u'_{2} & u_{2}v'_{2} & u_{2} & v_{2}u'_{2} & v_{2}v'_{2} & v_{2} & u'_{2} & v'_{2} & 1 \\ u_{3}u'_{3} & u_{3}v'_{3} & u_{3} & v_{3}u'_{3} & v_{3}v'_{3} & v_{3} & u'_{3} & v'_{3} & 1 \\ u_{4}u'_{4} & u_{4}v'_{4} & u_{4} & v_{4}u'_{4} & v_{4}v'_{4} & v_{4} & u'_{4} & v'_{4} & 1 \\ u_{5}u'_{5} & u_{5}v'_{5} & u_{5} & v_{5}u'_{5} & v_{5}v'_{5} & v_{5} & u'_{5} & v'_{5} & 1 \\ u_{6}u'_{6} & u_{6}v'_{6} & u_{6} & v_{6}u'_{6} & v_{6}v'_{6} & v_{6} & u'_{6} & v'_{6} & 1 \\ u_{7}u'_{7} & u_{7}v'_{7} & u_{7} & v_{7}u'_{7} & v_{7}v'_{7} & v_{7} & u'_{7} & v'_{7} & 1 \\ u_{8}u'_{8} & u_{8}v'_{8} & u_{8} & v_{8}u'_{8} & v_{8}v'_{8} & v_{8} & u'_{8} & v'_{8} & 1 \end{bmatrix} = 0$$
 [Eqs. 15]

- Homogeneous system $\mathbf{W}\mathbf{f} = 0$
- Rank 8

 A non-zero solution exists (unique)
- If N>8 \longrightarrow Lsq. solution by SVD! \longrightarrow \widehat{F} $\|\mathbf{f}\|=1$

$$\hat{F}$$
 satisfies: $p^T \hat{F} p' = 0$
and estimated \hat{F} may have full rank (det(\hat{F}) $\neq 0$)
But remember: fundamental matrix is Rank2

Find F that minimizes
$$\|F-\hat{F}\| = 0$$
 Frobenius norm (*) Subject to $\det(F)=0$

SVD (again!) can be used to solve this problem

(*) Sq. root of the sum of squares of all entries

Find F that minimizes
$$\left\|F-\hat{F}\right\|=0$$

Frobenius norm (*)

Subject to det(F)=0

$$F = U \begin{vmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{vmatrix} V^T$$

$$F = U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^T \qquad \text{Where:} \\ U \begin{bmatrix} s_1 & 0 & 0 \\ 0 & s_2 & 0 \\ 0 & 0 & s_3 \end{bmatrix} V^T = SVD(\hat{F})$$
 [HZ] pag 281, chapter 11, "Computation of F"

Data courtesy of R. Mohr and B. Boufama.

Mean errors: 10.0pixel 9.1pixel

Problems with the 8-Point Algorithm

$$\mathbf{W} \mathbf{f} = 0, \qquad \xrightarrow{\text{Lsq solution}} F$$

$$\|\mathbf{f}\| = 1$$

- Recall the structure of W:
 - do we see any potential (numerical) issue?

Problems with the 8-Point Algorithm

$$\mathbf{W}\mathbf{f} = 0$$

- Highly un-balanced (not well conditioned)
- Values of W must have similar magnitude
- This creates problems during the SVD decomposition

Normalization

IDEA: Transform image coordinates such that the matrix **W** becomes better conditioned (**pre-conditioning**)

For each image, apply a transformation T (translation and scaling) acting on image coordinates such that:

- Origin = centroid of image points
- Mean square distance of the image points from origin is ~2 pixels

Example of normalization

- Origin = centroid of image points
- Mean square distance of the image points from origin is ~2 pixels

Normalization

$$q_i = T p_i$$

$$q_i' = T' p_i'$$

The Normalized Eight-Point Algorithm

- 0. Compute T and T' for image 1 and 2, respectively
- 1. Normalize coordinates in images 1 and 2:

$$q_i = T p_i \qquad q'_i = T' p'_i$$

- 2. Use the eight-point algorithm to compute \hat{F}_q from the corresponding points ${\bf q_i}$ and ${\bf q_i'}$.
- 1. Enforce the rank-2 constraint: $ightarrow F_{
 m q}$

2. De-normalize F_q : $F = T^T F_q T'$

such that:

$$\begin{cases} q^{T} F_{q} q' = 0 \\ det(F_{q}) = 0 \end{cases}$$

Mean errors: 10.0pixel 9.1pixel

Mean errors: 1.0pixel 0.9pixel

The Fundamental Matrix Song

Next lecture: Stereo systems

Essential matrix for parallel images

$$\mathbf{E} = \left[\mathbf{T}_{\times}\right] \cdot \mathbf{R}$$

$$\mathbf{E} = \begin{bmatrix} 0 & -T_z & T_y \\ T_z & 0 & -T_x \\ -T_y & T_x & 0 \end{bmatrix} \mathbf{R} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix}$$

[Eq. 20]

$$\mathbf{T} = [T \ 0 \ 0]$$

$$\mathbf{R} = \mathbf{I}$$

What are the directions of epipolar lines?

$$l = \mathbf{E} \ p' = \begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{vmatrix}$$

$$l = E \ p' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{bmatrix} u' \\ v' \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -T \\ Tv' \end{bmatrix} \text{ horizontal!}$$

How are p and p' related?

$$p^T \cdot E p' = 0$$

How are p and p'
$$\Rightarrow (u \quad v \quad 1) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -T \\ 0 & T & 0 \end{bmatrix} \begin{pmatrix} u' \\ v' \\ 1 \end{pmatrix} = 0 \Rightarrow (u \quad v \quad 1) \begin{pmatrix} 0 \\ -T \\ Tv' \end{pmatrix} = 0 \Rightarrow Tv = Tv'$$
 related?

Rectification: making two images "parallel"

- Why it is useful? Epipolar constraint $\rightarrow v = v'$
 - New views can be synthesized by linear interpolation

Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30

Rectification

From its reflection!

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

