DS4400 Notes

DS4400 Notes 01/24

1. Convex functions:

A function $f: \mathbb{R}^d \to \mathbb{R}$ is convex iff $\forall \theta_1, \theta_2 \in \mathbb{R}^d$ and $\forall \alpha \in [0,1]$ we have $f(\alpha\theta_1 + (1-\alpha)\theta_2) \le \alpha f(\theta_1) + (1-\alpha)f(\theta_2)$ In the special case (d=1) $f: \mathbb{R} \to \mathbb{R}$, f is convex iff $\forall \theta, f''(\theta) \ge 0$

When the function is convex, **local min** \equiv **global min**. When the system is not convex, we might find only a **local min** but not a **global min**

2. Dealing with non convex function:

In gradient descent:

- (a) use larger ρ in the beginning and gradually decrease ρ with interation.
- (b) Run SGD/GD with multiple random initializations $\theta_1^{(0)}$, $\theta_2^{(0)}$... and keep the best solution.

3. $\min_{\theta} \sum_{i=1}^{N} (y_i - \theta^T x_i)^2 \triangleq J(\theta)$

In linear regression, $J(\theta)$ is convex.

4. Robustness of Regression to outliers:

- (a) Run outlier detection algorithm, remove detected outliers, then run Linear Regression on remaining points.
- (b) Robust Regression cost function. $\min_{\theta} \sum_{i=1}^{N} e_i^2$, $e_i \triangleq y_i \theta^T x_i$ e^2 is extremly unhappy with large errors.

we might use |e| to replace the function. This might be more tolerance. Then, $\min_{\theta} \sum_{i=1}^{N} |y_i - \theta^T x_i|$

5. Exercise:
$$D = \{(x_1, y_1 = 100)...(x_10, y_10 = 100), (x_{11}, y_{11} = 0), (x_{12}, y_{12} = 0)\}$$

$$e^2: 10(\theta - 100)^2 + 2\theta^2 \rightarrow \frac{\partial}{\partial \theta} = 20(\theta - 100) + 4\theta = 0 \rightarrow \theta = 83.3$$

$$|e|: \min_{\theta} \sum_{i=1}^{12} |\theta - y_i| = 10|\theta - 100| + 2\theta$$

$$(\theta \le 100) = \min_{\theta} 10(100 - \theta) + 2\theta$$

$$= 1000 - 8\theta \rightarrow \theta = 100$$

$$(\theta \ge 100) = \min_{\theta} 10(\theta - 100) + 2\theta$$

$$= 12\theta - 1000 \rightarrow \theta = 100$$

6. How to solve 11-norms cost functions?

- (a) No closed form
- (b) we need to be careful with gradient descent
- (c) We need to use convex programming toolboxs (convex optimizations)

7. Huber loss funct

$$l_{\delta}(e) = \begin{cases} \frac{1}{2}e^{2} & |e| \leq \delta \\ \delta|e| - \frac{\delta^{2}}{2} & |e| \geq \delta \end{cases}$$

$$\frac{\partial l_{\delta}(e)}{\partial e} = \begin{cases} e & -\delta \le ele\delta \\ \delta & e > \delta \\ -\delta & e < \delta \end{cases}$$

in huber loss function, we don't have closed form solution but we can run gredient descent now.

8. Definition: Overfitting:

1

Learning a system from traning data that does very well on training data itself (e.g, very low regression error on traning data), but performs poorly on test data. 9. Definition: Overfitting in Linear Regression

$$\Phi^{T}\Phi\theta = \Phi^{T}Y$$

$$\Rightarrow \theta^{*} = (\Phi^{T}\Phi)^{-1}\Phi^{T}Y$$

$$\operatorname{rank}(\Phi^{T}\Phi) \leq \min\{rk(\Phi^{T}), rk(\Phi)\} = rk(\Phi) \leq \min\{N, d\}$$

 $\Phi^T \Phi$ is $d \times d$ matrix, then rank is $\leq d$.

Therefore, when N < d it is not invertible which means we have multiple solutions and results in overfitting.

DS4400 Notes 01/28

1. Definition: Overfitting

Refers to situation where the learned model does well on traning data and poorly on testing data.

As *d* (dimension of system) increases, then training error godes down (can be exactly ZERO for sufficiently large d)

2. In Linear regression:

$$\min \sum_{i=1}^{n} (\theta^T \phi(x_i) - y_i)^2$$

set the derivative to 0 and we find

$$\Phi^T \Phi \theta = \Phi^T Y$$

Then
$$\theta^* = (\Phi^T \Phi)^{-1} \Phi^T Y$$

When is it the case that $\Phi^T\Phi$ is not invertible?

Since $\Phi^T \Phi \in \mathbb{R}^{N \times d}$

$$rk(\Phi^T\Phi) \le rk(\Phi) \le min\{N,d\}$$

 $\Phi^T \Phi \in \mathbf{R}^{d \times d}$ is invertible when $rk(\Phi^T \Phi) = d$. Therefore, when $N < d, rk(\Phi^T \Phi) = N, \Phi^T \Phi$ is not invertible. There will be infinitely many solutions for θ .

Generally, need sufficient # samples

3. Test overfitting. If $\Phi^T \Phi$ is not invertible, $\exists v \neq 0, \Phi^T \Phi v = 0$ $\Rightarrow \theta^* + \alpha v$ is also a solution for any $\alpha \in R$

$$\Phi^{T}\Phi(\theta^* + \alpha v) = \Phi^{T}\Phi\theta^* + \Phi^{T}\Phi(\alpha v)$$
$$= \Phi^{T}\Phi\theta^* + \alpha\Phi^{T}\Phi v$$
$$= \Phi^{T}\Phi\theta^* = \Phi^{T}Y$$

We can find large α so that θ^* have extremly large entries.

Generally, if the entries are very large (abs) we might have overfitting

4. Treat overfitting

We want to change regreession optimization to prevent θ from very large terms.

then we change the cost function:

$$\min_{\theta} \sum_{i=1}^{N} (\theta^T \phi(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} \theta_j^2$$

 λ : regularization parameter (> 0) $\sum_{j=1}^{d} \theta_{j}^{2}$: regularizer. $\lambda \to 0$: back to overfitting $\lambda \to \infty$: $\theta^{*} = 0$, underfitting

(a) closed-form $\frac{\partial J}{\partial \theta}$ $= 2\Phi^{T}(\Phi\theta - Y) + \lambda \frac{\partial \sum_{j=1}^{N} \theta_{j}^{2}}{\partial \theta}$ $= 2\Phi^{T}(\Phi\theta - Y) + 2\lambda\theta$ Let it be zero:

$$\Phi^{T}\Phi\theta + \lambda\theta = \Phi^{T}Y$$

$$(\Phi^{T}\Phi + \lambda I_{d})\theta = \Phi^{T}Y$$
 Then $\theta^{*} = (\Phi^{T}\Phi + \lambda I_{d})^{-1}\Phi^{T}Y$

- (b) Gradient descent Find initial $\theta^{(0)}$ $\theta^t = \theta^{(t-1)} \rho \frac{\partial J}{\partial \theta}|_{\theta^{(t-1)}}$ $= \theta^{(t-1)} 2\Phi^T (\Phi\theta^{(t-1)} Y) + 2\lambda\theta^{(t-1)}$
- 5. Hyperparameter Tunning GD: set learning rate ρ Robust Reg: Huber loss δ overfitting and regularization: λ ρ, δ, λ = hyperparameters

How to pick hyperparameters? BAD APPROACH 1:

2

(a) pick some set of possible $\lambda_i \in \{\lambda_1, \lambda_2 ...\}$ Run regression with λ_i and find θ_i^* Measure regression error:

$$\epsilon_{tr}(\lambda) = \sum_{i=1}^{N} ((\theta^*(\lambda))^T x_i - y_i)^2$$

To sum: just find λ for which $\epsilon_{tr}(\lambda)$ is minimum

This approach is setting λ back to 0 Test data needed!!!

(a) We need to Train λ_i on **training set** to minimize the cost function

$$2\Phi^T(\Phi\theta - Y) + 2\lambda\theta$$

to find θ_i^*

(b) Measure regression error on the hold-out set D^{ho}

$$\epsilon_{tr} = \sum_{x_i, y_i \in D^{ho}} (y_i - (\theta^*(\lambda))^T x_i)^2$$