Lab1

Lab1.1 Xilinx高层次综合工具实验

针对矩阵乘算法进行HLS加速,具体提交实验报告。实验报告具体包括:

- C/C++代码, 含pragma或directive TCL设置。
- 展示生成的Verilog或VHDL (关键截图)
- 不同加速方式得到的效果,包括latency值和不同资源数量对比。
- 必要的分析。

如果时间充足,可尝试更复杂的C/C++应用,通过不同pragma或者C代码变换,得到不同的加速效果。

另外,请将你修改后的C++代码,同时也压缩一并提交。

init

代码实现了矩阵乘法, 时间复杂度O(n^3)

- 外层循环 (for (i = 0; i < N; i++)): 遍历矩阵 A 的行。
- 中间循环 (for (j = 0; j < N; j++)): 遍历矩阵 B 的列。
- 内层循环 (for (k = 0; k < N; k++)): 计算矩阵 A 的第 i 行与矩阵 B 的第 j 列的点积。

```
void matmult(short int A[N][N], short int B[N][N], int C[N][N]){
   int i, j, k;
   int sum = 0;

   for (i = 0; i < N; i++){
        for(j = 0; j < N; j++){
            for(k = 0; k < N; k++){
                sum += A[i][k] * B[k][j];
            }
        C[i][j] = sum;
        sum = 0;
    }
}</pre>
```

Verilog & VHDL

Verilog

```
[/home/eda304/large/zibo/lab1_2/prj/solution_init/syn/verilog]$ll
total 64
-rw-rw-r-- 1 eda304 eda304 1698 Sep 27 03:40 matmult_flow_control_loop_pipe.v
-rw-rw-r-- 1 eda304 eda304 1791 Sep 27 03:40 matmult_mac_muladd_16s_16s_32s_32_4_1.v
-rw-rw-r-- 1 eda304 eda304 1130 Sep 27 03:40 matmult_mul_mul_16s_16s_32_4_1.v
-rw-rw-r-- 1 eda304 eda304 51960 Sep 27 03:40 matmult.v
```

VHDL

```
[/home/eda304/large/zibo/lab1_2/prj/solution_init/syn/vhdl]$ll
total 96
-rw-rw-r-- 1 eda304 eda304 1960 Sep 27 03:40 matmult_flow_control_loop_pipe.vhd
-rw-rw-r-- 1 eda304 eda304 2960 Sep 27 03:40 matmult_mac_muladd_16s_16s_32s_32_4_1.vhd
-rw-rw-r-- 1 eda304 eda304 2328 Sep 27 03:40 matmult_mul_mul_16s_16s_32_4_1.vhd
-rw-rw-r-- 1 eda304 eda304 85503 Sep 27 03:40 matmult.vhd
```

效果

latency值

```
≡ matmult_csynth.rpt ×
large > zibo > lab1_2 > prj > solution_init > syn > report > ≡ matmult_csynth.rpt
       == Performance Estimates
       + Timing:
           * Summary:
                                | Estimated| Uncertainty|
              Clock |
                       Target
 23
                                                  3.51 ns
           |ap_clk | 13.00 ns| 8.262 ns|
       + Latency:
           * Summary:
              Latency (cycles) |
                                    Latency (absolute)
                                                              Interval
                                                                          Pipeline|
               min
                          max
                                     min
                                                  max
                                                            min | max
                                                                            Type
                 2057|
                            2057| 26.741 us| 26.741 us|
                                                            2058|
                                                                    20581
                                                                                no|
```

.

不同资源数量

matmult_csynth.rpt ×					
large > zibo > lab1_2 > prj > solution_init > syn > report > ≡ matmult_csynth.rp					
	======================================				
51 ========= 52 * Summary: 53 +					
Name	BRAM_18K	DSP	FF	LUT	URAM
55 + 66 DSP		+- 16			+ -
7 Expression	I -I	-1	0	678	-1
58 FIFO	l -I	-1	-1	-1	-1
9 Instance	l –I	-1	-1	-1	-1
60 Memory	I -I	-1	-1		-1
51 Multiplexer	-		-		
32 Register	' '	•	607		-1
53 + 54 Total			+- 607		
65 +					
	1590				
57 + 58 Utilization (%)		•	•		

accelerate

- 提高并行性:通过对数组的分区和循环的优化,增加硬件的并行访问能力。
- 减少延迟:通过流水线化循环操作,减少执行时间。
- 平衡资源与性能:根据硬件资源约束,选择适当的优化策略。

加速1

流水线循环操作,提高吞吐量;循环展开提高并行度

Verilog & VHDL

Verilog

VHDL

```
[/home/huzibo/large/Work_1/Eda_Lab/lab1_2/accelerate_1/prj_1/solution_1/syn/vhdl]$ll
total 4668
-rw-rw-r-- 1 huzibo huzibo 2991 Nov 29 16:04 matmult_mac_muladd_16s_16s_32s_32_4_1.vhd
-rw-rw-r-- 1 huzibo huzibo 2328 Nov 29 16:04 matmult_mul_mul_16s_16s_32_4_1.vhd
-rw-rw-r-- 1 huzibo huzibo 4768925 Nov 29 16:03 matmult.vhd
```

效果

- latency
 - 。 与基准比下降了1个数量级

resource

== Utilization Estimates * Summary: Name	=======================================	==========	======		=========	=====
Name	== Utilization Est	imates				
Name						=====
DSP	* Summary:					
DSP	+	++	+-	+-	+	+
Expression - - 0 62722 - FIFO - - - - - -	Name	BRAM_18K	DSP	FF	LUT	URAM
Expression - - 0 62722 - FIFO - - - - - -	+	++	+-	+-	+	+
FIFO	DSP	-1	4096	-	-	-1
Instance	Expression	l -l	-1	0	62722	-
Memory	FIF0	l -l	-1	-	-	-
Multiplexer	Instance	-I	-1	-	-	-1
Register	Memory	-I	-1	-1	-	-1
Total	Multiplexer	-I	-1	-1	6120	-
t	Register	I -I	-1	105442	-1	-
t	+	++	+-	+-		4
+	Total	0	4096	105442	68842	0
+	+	++	+-	+-	+	
+	Available	1590	1260	728400	364200	0
Utilization (%) 0 325 14 18 0	+	++	+-	+-	+	4
+	Utilization (%)	0	325	14	18	0
	+	++	+-	+-	+	

必要分析

- #pragma HLS PIPELINE 允许多个循环在硬件中并行执行
 - 减少总延迟,提高吞吐量,同时会造成硬件资源增加
- #pragma HLS UNROLL factor=4 将最内层k循环,每4次迭代展开为并行执行的硬件逻辑
 - 。 通过并行计算减少总延迟, 同时增加硬件的并行度
 - 。 会产生
 - 。 每个时钟周期能完成4次迭代计算

加速1中,如果数组 A 和 B 没有分区,则 A[i][k] 和 B[k][j] 的访问可能会发生冲突(因为默认情况下数组映射到单一存储块,存储端口有限),从而限制性能提升。

加速2

加速1中,如果数组 A 和 B 没有分区,则 A[i][k] 和 B[k][j] 的访问可能会发生冲突(因为默认情况下数组映射到单一存储块,存储端口有限),从而限制性能提升。

```
void matmult(short int A[N][N], short int B[N][N], int C[N][N]){
    int i, j, k;
    int sum = 0;
    #pragma HLS ARRAY_PARTITION variable=A complete
    #pragma HLS ARRAY PARTITION variable=B complete
    #pragma HLS ARRAY_PARTITION variable=C complete
    #pragma HLS PIPELINE
    for (i = 0; i < N; i++){}
        for(j = 0; j < N; j++){
            for(k = 0; k < N; k++){
                sum += A[i][k] * B[k][j];
            }
            C[i][j] = sum;
            sum = 0;
        }
    }
}
```

Verilog & VHDL

Verilog

```
[/home/huzibo/large/Work_1/Eda_Lab/lab1_2/accelerate_3/prj/solution_init/syn/verilog]$ll
total 3092
-rw-rw-r-- 1 huzibo huzibo 1822 Nov 29 11:47 matmult_mac_muladd_16s_16s_32s_32_4_1.v
-rw-rw-r-- 1 huzibo huzibo 1130 Nov 29 11:47 matmult_mul_mul_16s_16s_32_4_1.v
-rw-rw-r-- 1 huzibo huzibo 3155844 Nov 29 11:47 matmult.v
```

VHDL

```
[/home/huzibo/large/Work_1/Eda_Lab/lab1_2/accelerate_3/prj/solution_init/syn/vhd1]$ll
total 4400
-rw-rw-r- 1 huzibo huzibo 2991 Nov 29 11:47 matmult_mac_muladd_16s_16s_32s_32_4_1.vhd
-rw-rw-r- 1 huzibo huzibo 2328 Nov 29 11:47 matmult_mul_mul_16s_16s_32_4_1.vhd
-rw-rw-r- 1 huzibo huzibo 4495029 Nov 29 11:47 matmult.vhd
```

效果

latency

```
accelerate_3 > prj > solution_init > syn > report > ≡ matmult_csynth.rpt
     ______
     == Performance Estimates
     + Timing:
 19
       * Summary:
        | Clock | Target | Estimated | Uncertainty |
        |ap_clk | 13.00 ns| 8.658 ns|
                                3.51 ns
     + Latency:
        * Summary:
        | Latency (cycles) | Latency (absolute) | Interval | Pipeline| | | |
       | min | max | min | max | min | max | Type |
        | 18| 18| 0.234 us| 0.234 us| 8| 8|
                                                  yes
```

resource

<u> </u>								
accelerat	e_3 > prj > solution_init >	syn > report >	= matm	nult_csynth.r	pt			
43								
44								
45	== Utilization Estimates							
46								
47	* Summary:							
48	+	++	+-	+-	+	+		
49	Name	BRAM_18K	DSP	FF	LUT	URAM		
50	+	++	+-	+-	+	+		
51	DSP	l -I	4096	-	-	-1		
52	Expression	l -l	-	0	62722	-1		
53	FIFO	l -l	-	-	-	-1		
54	Instance	l -l	-	-	-	-1		
55	Memory	l -l	-	-	-	-1		
56	Multiplexer	l -l	-	-	4791	-1		
57	Register	l -l	-	80203	-	-1		
58	+	++	+-	+-	+	+		
59	Total	0	4096	80203	67513	0		
60	+	++	+-	+-	+	+		
61	Available	1590	1260	728400	364200	0		
62	+	++	+-	+-	+	+		
63	Utilization (%)	0	325	11	18	0		
64	+	++	+-	+-	+	+		

必要分析

- #pragma HLS ARRAY_PARTITION , 将数组A、B、C完全展开,这样硬件可以同时访问数组多个元素,提高了并行性。
- #pragma HLS PIPELINE,将整个循环流水化显著提高硬件吞吐量,减少硬件执行延迟
- 改为流水线, 且提供了经可能高的并行访存, latency大幅降低, 但资源使用大幅增高

附件: HLS pragmas

HLS pragma

HLS 工具提供各种编译指示,用于最优化设计、降低时延、提升吞吐量性能,以及减少生成的 RTL 代码的面积和器件资源利用率。这些编译指示可直接添加到内核源代码中。

类型	属性
内核最优化	 pragma HLS aggregate pragma HLS alias pragma HLS disaggregate pragma HLS expression balance pragma HLS latency pragma HLS performance pragma HLS protocol pragma HLS reset pragma HLS top pragma HLS stable
函数内联	- pragma HLS inline
接口综合	pragma HLS interfacepragma HLS stream
任务级流水线	pragma HLS dataflowpragma HLS stream
流水线	pragma HLS pipelinepragma HLS occurrence
循环展开	pragma HLS unrollpragma HLS dependence
循环最优化	pragma HLS loop_flattenpragma HLS loop_mergepragma HLS loop_tripcount
阵列最优化	pragma HLS array_partitionpragma HLS array_reshape
结构封装	pragma HLS aggregatepragma HLS dataflow
资源使用情况	 pragma HLS allocation pragma HLS bind_op pragma HLS bind_storage pragma HLS function_instantiate