

 Álgebra Linear
 LCC
 Teste 1
 Duração: 1h45
 4/11/2019
 A
 Universidade do Minho Escola de Clências

Nome:		Número:
	Grupo	I
Em cada questão deste grupo deve ser assinalada apenas uma das opções de resposta. A uma resposta correta é atribuída uma cotação de 1.25 valores (apenas uma resposta está correta) e a uma resposta errada é atribuída uma cotação de -0.25 valores. A cotação mínima total deste grupo é de 0 valores.		
1. Dadas duas matrizes $A \in \mathcal{M}_{4\times 2}(\mathbb{R})$ e $B \in \mathcal{M}_{2\times 4}(\mathbb{R})$, a matriz		
	AB + BA está bem definida.	
	$\left(A+B^T\right)^T$ pode ser calculada.	
2. Cons	sidere a matriz $A = \begin{bmatrix} \alpha & \beta \\ 0 & 1 \end{bmatrix}$, com $\alpha \neq 0$.	
	A comuta com A^T para qualquer $\beta \in \mathbb{R}$.	$\hfill \hfill \hfill A$ e A^T nunca são comutáveis.
	A é uma matriz elementar quaisquer que sejam $\alpha,\beta\in\mathbb{R}.$	A é um produto de matrizes elementares para α e β não nulos.
3. Se A é um matriz quadrada de ordem n tal que $A^3 = \frac{1}{4}I_n$, então		
	A é invertível e $A^{-1} = 4A^2$.	\square A não é invertível.
	A^2 é invertível e $(A^2)^{-1} = A$.	
4. Se A é uma matriz quadrada de ordem n e B é tal que $A \xrightarrow[l_1 \leftarrow 2l_1]{} B$, então		
	$\det(-B) = \det(-A).$	
	$\det(AB) = 2\det(A).$	
5. Cons	sidere a matriz $\begin{bmatrix} 1 & 1 & b & 1 \\ 0 & 1 & a & 1 \\ 0 & a & 0 & b \end{bmatrix}, \text{ com } a, b \in$	$\mathbb R.$ Sobre a característica de A sabemos que
	$car(A) = 2$ para quaisquer $a, b \in \mathbb{R}$.	
	$\operatorname{car}(A) \geq 3$ para quaisquer $a, b \in \mathbb{R}$.	
6. Se $\begin{bmatrix} & & & \\ & & & \\ & & & & \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 1 & & 1 \\ 0 & 1 & 1 & & -1 \\ 0 & 0 & \alpha - 1 & \beta - 3 \end{bmatrix}$ é a matriz ampliad parâmetros reais, então	a de um sistema de equações lineares, com α
	o sistema é possível e determinado se $\alpha \neq 1$.	o sistema é possível e indeterminado se $\alpha = 1$.

o sistema é impossível se $\beta = 3$.

o sistema é sempre possível.

Grupo II

Neste grupo as respostas a todos as questões devem ser devidamente justificadas.

- 1. [1.5 valores] Se A e B são duas matrizes invertíveis de ordem n tais que $\left[\left(A^{-1}\right)^T B\right]^{-1} = I_n$, mostre que $B = A^T$.
- 2. [3.5 valores] Considere o sistema de equações lineares nas incógnitas x_1, x_2, x_3 e x_4 com a seguinte matriz simples e vetor dos termos independentes:

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 2 & -2 & -1 & -1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \qquad \mathbf{e} \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 1 \\ -2 \\ 5 \end{bmatrix}.$$

- (a) Verifique que $s_1 = (1, 4, -3, -1)$ é uma solução do sistema Ax = b.
- (b) Verifique que o sistema homogéneo associado Ax = 0 é possível e indeterminado, usando o método de eliminação de Gauss, e apresente a solução geral deste sistema.
- (c) Se \mathbf{s} é uma solução do sistema $A\mathbf{x} = \mathbf{0}$, então $\mathbf{s} + \mathbf{s}_1$ é uma solução do sistema $A\mathbf{x} = \mathbf{b}$. Mostre este resultado e use-o para apresentar duas outras soluções do sistema $A\mathbf{x} = \mathbf{b}$.
- 3. [3 valores] Considere a matriz invertível $A = \begin{bmatrix} 2 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix}$.
 - (a) Verifique que $A^{-1} = \begin{bmatrix} 1 & 0 & -1/2 \\ 0 & 1 & -1/2 \\ -1 & 0 & 1 \end{bmatrix}$.
 - (b) Use A^{-1} para resolver as equações matriciais

i.
$$2A\boldsymbol{x} = \boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$$
. ii. $AA^T\boldsymbol{x} = A\boldsymbol{b} \text{ com } \boldsymbol{b} = \begin{bmatrix} 1 & 0 & 2 \end{bmatrix}^T$.

- 4. [3 valores] Suponha que existe uma matriz A tal que $\operatorname{adj}(A) = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 4 & 1 \\ 3 & 2 & 2 \end{bmatrix}$ e $\det(A) = 3$.
 - (a) Calcule $\det (\operatorname{adj}(A))$ e verifique que $\det (\operatorname{adj}(A)) = [\det(A)]^2$. Conclua que $\operatorname{adj}(A)$ e A são matrizes invertíveis.
 - (b) Mostre que, em geral, para uma matriz invertível \boldsymbol{A} de ordem \boldsymbol{n} se tem

$$A = \det(A) \cdot \left[\operatorname{adj}(A)\right]^{-1}.$$

- (c) Sem calcular $\left[\operatorname{adj}(A)\right]^{-1}$, determine o elemento na posição (3,2) de A. Sugestão: recorde que a segunda coluna de $\left[\operatorname{adj}(A)\right]^{-1}$ é a solução do sistema $\operatorname{adj}(A)\boldsymbol{x} = \begin{bmatrix}0 & 1 & 0\end{bmatrix}^T$ e use a Regra de Cramer.
- 5. [1.5 valores] Um matriz A de ordem n diz-se involutiva se $A^2 = I_n$ e idempotente se $A^2 = A$. Mostre que
 - (a) se N é involutiva, então $\frac{1}{2}(I_n+N)$ e $\frac{1}{2}(I_n-N)$ são idempotentes e $(I_n+N)(I_n-N)=O$.
 - (b) toda a matriz involutiva se pode escrever como a diferença de duas matrizes idempotentes, cujo produto é a matriz nula.

2