13-1 Classwork: Similar triangles, dilation ratios

1. Given $\triangle ABP$ and $\triangle JKP$ as shown below. $\overline{AB} \parallel \overline{JK}$. Prove $\triangle ABP \sim \triangle JKP$.

Statement

- 1) $\triangle ABP$, $\triangle JKP$
- 2) _____
- 3) $\angle APB \cong \angle JPK$
- 4) $\angle PAB \cong \angle PJK$
- 5) $\triangle ABP \sim \triangle JKP$

Reason

- 1) Given
- 2) Given
- 3)
- 4) _____
- 5) _____
- 2. Triangle ABC is dilated with a factor of $\frac{3}{2}$ centered at A, yielding $\triangle ADE$, as shown. Given $AB=10,\ BC=12,\ \text{and}\ AC=14.$

Find AD, AE, and DE.

3. Triangle ADE is drawn with $\overline{BC} \parallel \overline{DE},$ as shown. Given AB=5, BC=7, AC=8, and BD=5.

Find CE, AE, and DE.

4. Given $\triangle ABP$ and $\triangle JKP$ as shown below. $\overline{AB} \parallel \overline{JK}$. $AP=5.7,\ JP=11.4,$ and JK=14.8. Find AB.

13-1 Homework: Similar triangles, dilation ratios

1. A dilation maps triangle PQR onto triangle STU with QR=4 and TU=6.

(a) $\overline{QR} \rightarrow \underline{\hspace{1cm}}$

(b) Complete the fraction numerators with the corresponding segment and length:

$$k = \frac{}{QR} = \frac{}{4}$$

- (c) What scale factor maps $\triangle PQR \rightarrow \triangle STU$?
- 2. Triangle ADE and its midline \overline{BC} are drawn, with B the midpoint of \overline{AD} and C the midpoint of \overline{AE} . The two medians \overline{AE} and \overline{AE} are drawn, as shown, intersecting in point F, the centroid.

 $\triangle FCB \sim \triangle FDE$ with scale factor k=2.

Given BC = 7, find DE.

Given BF = 4, find FE.

