AMAT 362 Lecture 1 Worksheet

Dr. Justin M. Curry

Due: February 6, 2021

	Questions marked with a \star have subjective answers and will only be graded for completeness.
1.	(2 points) What's the probability of a 4 of a kind, assuming you're dealt a 5 card hand, uniformly at random, from a standard 52 card deck?
2.	(1 point) \star How much money do you need to make to be in the top 1% of income earners in the United States? What about the top 1% of New Yorkers? Do you think there is such a thing as a "fair" distribution of incomes? What does that look like?
3.	(1 point) \star What's the probability of life on Mars? What does this question illustrate about the different meanings of the term "probability"?
4.	(1 point) \star How many people should you date before settling down on "the one," assuming that's something you want to do?
5.	(6 points) Translate each of the following symbolic expressions into English statements: (a) (1 point) $x \in A$
	(b) (1 point) $A \subseteq B$

(c) (1 point) A^c
(d) (1 point) $R \times S$
(e) $(1 \text{ point}) A $
(f) (1 point) How do you interpret \varnothing and Ω in probability?
(2 points) State De Morgan's Laws. What does this have to do with the star battle problem' https://krazydad.com/tablet/starbattle/
(2 points) Consider the set Ω , the union operation $A \cup B$ of subsets of Ω and the intersection operation $A \cap B$ on Ω . What does it mean to say that \cup and \cap are associative and symmetric. How does the union operation "distribute over" the intersection operation?
 (5 points) Suppose we have a deck of 20 cards, 10 are red and 10 are blue. Each of the blue cards has a unique number between 1 and 10. Each of the red cards has a unique number also between 1 and 10. (a) (1 point) Describe the sample space Ω as a Cartesian product.
(a) (2 point) 2 oscillo viio bailipio space 11 ab a carvostan produce.

6.

7.

8.

- ullet Let A be the event that a card drawn has an even number on it.
- \bullet Let B be the event that a blue card is drawn.
- \bullet Let C be the event that a card with a number (strictly) less than 5 is drawn.

What are the sizes of A, B, and C?

(c) (2 points) Describe the events $A \cup B \cup C$ and $A^c \cap B^c \cap C^c$.

(d) (1 point) What are the number of outcomes in each of the events in part (c)?