



LISTS OF SPECIES

Check List 11(6): 1803, Month 2015 doi: http://dx.doi.org/10.15560/11.6.1803 ISSN 1809-127X © 2015 Check List and Authors

# Species richness and functional groups of angiosperms from the Paraná River Delta region (Argentina)

Nora Madanes<sup>1\*</sup>, Rubén Darío Quintana<sup>1, 2, 3</sup>, Patricia Kandus<sup>2</sup> and Roberto Fabián Bó<sup>1</sup>

1 Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes 2160. Ciudad Universitaria. (1428) Ciudad Autónoma de Buenos Aires, Argentina

1

- 2 Universidad Nacional de San Martín, Instituto de Investigaciones e Ingeniería Ambiental. Campus Miguelete, 25 de Mayo y Francia, (1650). San Martín, Provincia de Buenos Aires, Argentina
- 3 Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- \* Corresponding author. E-mail: noram@ege.fcen.uba.ar

**Abstract:** We provide a checklist of angiosperms collected in the Paraná River Delta Region during the 1990s and early 2000s. Plants were taxonomically identified and classified according to their origin (native/endemic and exotic) and functional group based on their distribution, biological type, morpho-ecology, photosynthetic type and life cycle. A total of 79 families and 375 species were recorded, of which 87.5% were native (46.93% of subtropical-temperate distribution) and 12.5% were exotic (62.72% of temperate distribution). The herbaceous broadleaf and graminoid vegetation predominated in native (76.65%) and exotic (82.35%) species groups. There were only equisetoid herbaceous plants in native species group. Rooted emergent plants and the C<sub>3</sub> functional group predominated among native (88.69% and 80.62%, respectively) and exotic (100% in both cases) species groups. Most of the native plants (85.23%) were perennials, while annuals and perennials were equally represented among the exotic species.

**Key words:** biological types, distribution, life cycles, morpho-ecology, native and exotic plant species, photosynthetic types, wetlands

## INTRODUCTION

The large wetlands of South America, associated with the floodplains of the large rivers (Orinoco, Amazonas and Paraná), are macrosystems of sub-regional extent in which spatial and temporal fluctuations of the water table constrain biogeochemical cycles and fluxes, promote soils with strong hydromorphic features, and support a very rich and particular biota, well adapted to a wide range of water availability and hydroperiods. The surface area and permanence of

these wetlands depends mainly on superficial water input (by rainfall and river water discharge) as well as the timing of the flooding-non flooding cycle (Neiff and Malvárez 2004).

The Paraná River is unique among the large rivers of the world in that it flows from tropical to temperate latitudes. After its confluence with the Uruguay River, the Paraná River reaches the Río de la Plata estuary, where it forms a large delta (Figure 1). Thus, species of subtropical lineage from the Chaco and the Interior Atlantic Forest penetrate into the delta through both rivers, and coexist with other temperate climate species from the neighboring Pampean Plain. The particular spatial-temporal hydrological dynamics of the delta leads to a highly heterogeneous environment, supporting high levels of plant and animal biodiversity (Malvárez 1999; Kandus et al. 2003). Species typical of these wetlands have different strategies to cope with hydrological changes, including survival during periods of soil anoxia and/or the presence of structures providing buoyancy (Tiner 1999).

The main economic activities in the delta are extensive cattle grazing, hunting, fishing, apiculture, and firewood extraction in the portion corresponding to the Entre Rios Province, and forestry and tourism in the portion corresponding to the Buenos Aires Province. However, economic activities have generally failed to meet sustainability criteria and/or have been complemented with infrastructure development, which altered the hydrological functioning of the wetlands. This caused considerable changes in the abundance and spatial distribution of many plant and animal native species promoting the invasion of exotic species (Bó and Quintana 1999; Bó et al. 2010).

Although there is available information on the

floristic composition of the different landscape units in the region (Malvárez 1999; Kandus et al. 2003, Quintana et al. 2005), it has never been organized in terms of type of environmental scenario, potential adaptive strategies of plant species to the particular wetland conditions, and their ability to respond to changes driven by anthropic activities.

The objective of this work is to construct a checklist of angiosperm species occurring in the Paraná River Delta region, which were taxonomically identified and grouped according to their origin (as either native, including endemics, or exotic species). Plants within these groups were classified into functional groups based on distribution, biological type, morpho-ecology, photosynthetic type and life cycle.

# MATERIALS AND METHODS Study area

The Paraná river drains an approximate area of 2,310,000 km² and is ranked as the second most important river in South America, after the Amazonas, in terms of length, basin size and water discharge (Neiff and Malvárez 2004).

The Paraná River Delta Region (PRDR) stretches through the final 300 km of the Paraná River basin and covers approximately 17,500 km², including the south of the Entre Ríos Province and the northeast of the Buenos Aires province, close to Buenos Aires city (Figure 1). Due to its particular location, the PRDR receives energy and sediment input from upstream and is under the influence of the Rio de la Plata estuary at its terminal portion.

The climate is predominantly temperate with precipitation throughout the year. Mean annual temperature is 16°C and annual precipitation is 1,000 mm. The combined influence of the Paraná and Uruguay rivers, the Rio de la Plata estuary, and local precipitation leads to a complex hydrological regime.

The seasonal regime of the Paraná River affects almost the entire region, except for the terminal portion of the Buenos Aires province section ("delta front" sensu Kandus et al. 2006). The Uruguay River mainly affects the "Lower Delta" located in the Entre Ríos province section, while moon and wind tides of the Río de la Plata estuary increase water levels up to the locality of Zárate and, sporadically, up to the city of Rosario (Kandus et al. 2006; Sepulcri et al. 2012). On some occasions, events associated with El Niño–Southern Oscillation (ENSO) phenomenon, which produces heavy rainfall in southern Brazil, bring about extreme floods all over the Paraná River basin, including the PRDR (Kandus et al. 2006).

The PRDR was first classified within the Mesopotamic Forest in a phytogeographic point of view, (Parodi 1945; Burkart 1947) and later, within the Uruguayense

district of the Pampa province (Cabrera and Willink 1973). Recently, it has been included in the Delta and Islands of the Paraná River ecoregion (Burkart et al. 1999). Because of its particular hydrological and geomorphological features, distinct ecological units of different landscape physiognomy (Malvárez 1999) characterize the PRDR.

# Data collection and analysis

We selected some ecological units representing the environmental heterogeneity of the region and for which there is a substantial amount of information from surveys with a similar sampling effort, conducted in the 1990s and early 2000s (Malvárez 1999; Arias et al. 2002; Kandus et al. 2003; Pereira et al. 2003; Quintana et al. 2005). These were Unit A: Forest, prairie and pond in a meandering plain; Unit B: patches of prairies in low ridges; Unit C<sub>1</sub>: prairies with ridges and depressions; Unit C<sub>3</sub>: forests, prairies and streams in sand ridges and depressions; Unit F: grasslands and savannas of the former littoral plain; and Unit I: marshes and forests of the Lower Delta (sensu Malvárez 1999) (Figure 1).

Based on the available information for each unit, a



**Figure 1.** Map of the Delta of the Paraná River Region and the landscape units surveyed. Unit A: Forest, prairie and pond in a meandering plain; Unit B: Patches of prairies in low ridges; Unit  $C_1$ : Prairies with ridges and depressions; Unit  $C_3$ : Forests, prairies and streams in sand ridges and depressions; Unit F: Grasslands and savannas of the former littoral plain; and Unit I: Marshes and forests of the Lower Delta (*sensu* Malvárez 1999).

checklist of angiosperms was compilated. The species' names and families were updated according to Tropicos (2015). They were classified according to their origin as native (including endemic and cosmopolitan plants) and exotic species (Zuloaga et al. 2008). In turn, native and exotic species were characterized into functional groups (sensu Smith et al. 1997) based on distribution, biological type, morpho-ecological characteristics, photosynthetic type and life cycle. According to their distribution, plants were categorized as: temperate, subtropical, tropical, tropical-subtropical, subtropical-temperate, tropical-temperate and tropical-subtropical-temperate (Burkart 1969, 1974; Cabrera and Zardini 1993; Zuloaga et al. 2008). Biological types were classified following Barkman (1988) as tree (T), shrub (S), graminoid herbaceous plant (GH), broadleaf herb (BL), equisetoid herbaceous plant (E) and climber (C). On the basis of morpho-ecological traits, plants were grouped as: freefloating (FF), rooted submerged (RS), rooted emergent (RE) and floating-leaved rooted emergent (FLRE) (Cronk and Fennessy 2001). According to the photosynthetic pathway, species were classified into the types  $C_3$ ,  $C_4$  and intermediate  $C_3$ – $C_4$  (Black 1971; Smith and Brown 1973; Waller and Lewis 1989; Ueno and Takeda 1992; Sage 2004). Finally, based on life cycle, species were grouped as annual and perennial (Zuloaga et al. 2008).

The species richness was calculated for each category mentioned above, which was expressed as the percentage of all angiosperm species present.

# **RESULTS**

Overall, 375 species in 79 families of angiosperms were recorded in the five ecological units under consideration. Of these species, 87.5% were native (Table 1). The following families showed the highest species richness: Poaceae (19.93%), Asteraceae (13.19%), Cyperaceae (7.68%) and Fabaceae (6.13%). There were only two endemic species: Panicum sabulorum var. polycladum and Baccharis phyteuma Hering. Most of the native species had a subtropical-temperate distribution (46.93%; Table 1 and Figure 2), while species of temperate distribution predominated among the exotic angiosperms (62.72%; Table 2 and Figure 2).

The biological types with the highest species richness were BL and GH, for both native (46.93% and 19.94%, respectively; Table 1 and Figure 3) and exotic species (56% and 26%, respectively; Table 2 and Figure 3). There was a low percentage of E and S, all of which were native species. In analyzing morpho-ecological characteristics, the RE predominated in both native (96%) and exotic species (100%), while all the FLRE, FF and RS belonged to the native flora, with low values of species richness (Figure 4). The most represented photosynthetic group was  $C_3$  for both native (80.62%; Table 1 and Figure 5) and exotic species (86%; Table 2 and Figure 5). Concerning the life cycle, most of the native plants were perennials (85.23%; Table 1 and Figure 6), while annuals and perennials were equally represented among the exotic species (52% and 48%, respectively; Table 2 and Figure 6).

**Table 1.** List of native species present in the landscape units surveyed in the Delta of the Paraná River Region, arranged by family. BT: biological type; MT: morpho-ecological traits; PT: photosynthetic types; LC: life cycle; Sub-Tem: Subtropical-temperate; Tro-Sub-Tem: Tropical-subtropical-temperate; Tro-Sub: Tropical-subtropical; Tro-tem: Tropical-temperate; BL: broadleaf herb; GH: graminoid herbaceous plant; S: shrub; E: equisetoid herbaceous plant; T: tree; C: climber; RE: rooted emergent; FLRE: floating-leaved rooted emergent; FF: free-floating; RS: rooted submerged; A: annual; P: perennial.

| Family         | Species                                                  | Distribution | ВТ | MT   | PT             | LC |
|----------------|----------------------------------------------------------|--------------|----|------|----------------|----|
| Acanthaceae    | Ruellia morongii Britton                                 | Sub-Tem      | BL | RE   | C <sub>3</sub> | Р  |
| Acanthaceae    | Hygrophila costata Nees & T. Nees                        | Sub-Tem      | BL | SF   | $C_3$          | Р  |
| Alismataceae   | Echinodorus grandiflorus (Cham. & Schltdl.) Micheli      | Tro-Sub-Tem  | BL | FLRE | C <sub>3</sub> | Р  |
| Alismataceae   | Sagittaria montevidensis Cham. & Schltdl.                | Tro-Sub      | BL | FLRE | $C_3$          | Р  |
| Amaranthaceae  | Alternanthera philoxeroides (Mart.) Griseb.              | Sub-Tem      | BL | FREL | $C_{_{4}}$     | Р  |
| Amaranthaceae  | Alternanthera kurtzii Schinz ex Pedersen                 | Sub-Tem      | BL | RE   | $C_{_{4}}$     | Р  |
| Amaranthaceae  | Gomphrena celosioides Mart.                              | Sub-Tem      | BL | RE   | $C_{_{\!4}}$   | Р  |
| Amaranthaceae  | Gomphrena elegans Mart.                                  | Sub-Tem      | BL | RE   | $C_3$          | Р  |
| Amaranthaceae  | Gomphrena pulchella Mart                                 | Sub-Tem      | BL | RE   | $C_{_{4}}$     | Р  |
| Amaranthaceae  | Pfaffia glomerata (Spreng.) Pedersen                     | Sub-Tem      | BL | RE   | $C_3$          | Α  |
| Amaranthaceae  | Atriplex montevidensisL. Spreng.                         | Sub-Tem      | BL | RE   | $C_{_{\!4}}$   | Р  |
| Amaranthaceae  | Sarcocornia ambigua (Michx.) M. Á. Alonso & M. B. Crespo | Temperate    | S  | RE   | $C_{_{\!4}}$   | Р  |
| Amaranthaceae  | Pfaffia gnaphaloides (L. f.) Mart.                       | Sub-Tem      | BL | RE   | $C_3$          | Р  |
| Amaryllidaceae | Allium ampeloprasum L.                                   | Temperate    | BL | RE   | $C_3$          | Р  |
| Anacardiaceae  | Schinus longifolia (Lindl.) Speg.                        | Sub-Tem      | Т  | RE   | $C_3$          | Р  |
| Apiaceae       | Bowlesia incana Ruiz & Pav.                              | Sub-Tem      | BL | RE   | $C_3$          | Р  |
| Apiaceae       | Cyclospermum leptophyllum (Pers.) Sprague                | Sub-Tem      | BL | RE   | $C^3$          | Α  |
| Apiaceae       | Eryngium eburneum Decne.                                 | Sub-Tem      | BL | RE   | C <sub>3</sub> | Р  |
| Apiaceae       | Eryngium echinatum Urb.                                  | Sub-Tem      | BL | RE   | $C_3$          | Р  |
| Apiaceae       | Eryngium nudicaule Lam.                                  | Sub-Tem      | BL | RE   | C <sub>3</sub> | Р  |
| Apiaceae       | Eryngium pandanifolium Cham. & Schltdl.                  | Sub-Tem      | BL | RE   | C <sub>3</sub> | Р  |
| Apiaceae       | Lilaeopsis carolinensis J. M. Coult. & Rose              | Tro-Tem      | BL | FLRE | C,             | Р  |

 Table 1. Continued.

| Family            | Species                                        | Distribution   | BT | MT   | PT                    | LC     |
|-------------------|------------------------------------------------|----------------|----|------|-----------------------|--------|
| Apocynaceae       | Orthosia virgata (Poir.) E. Fourn.             | Sub-Tem        | Е  | RE   | C <sub>3</sub>        | Р      |
| Araceae           | Pistia stratiotes L.                           | Tro-Sub-Tem    | BL | FF   | C <sub>3</sub>        | Р      |
| Araliaceae        | Hydrocotyle bonariensis Lam.                   | Tro-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| Araliaceae        | Hydrocotyle modesta Cham. & Schltdl.           | Sub-Tem        | BL | FF   | C³                    | Р      |
| Araliaceae        | Hydrocotyle pusilla A. Rich.                   | Sub-Tem        | BL | RE   | C³                    | Р      |
| Araliaceae        | Hydrocotyle ranunculoides L. f.                | Sub-Tem        | BL | FF   | C <sub>3</sub>        | Р      |
| Aristolochiaceae. | Aristolochia fimbriata Cham. & Schltdl.        | Subtropical    | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Acmella decumbens (Sm.) R. K. Jansen           | Subtropical    | BL | RE   |                       | Р      |
| Asteraceae        | Alomia spilanthoidesD. Don exHook. & Arn       | Sub-Tem        | BL | RE   | C <sub>3</sub>        | P      |
|                   | Ambrosia scabra Hook. & Arn.                   | Sub-Tem        |    |      | C <sub>3</sub>        |        |
| Asteraceae        |                                                |                | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Ambrosia tenuifolia Spreng.                    | Temperate      | BL | RE   | C <sub>3</sub>        | P<br>- |
| Asteraceae        | Aspilia silphioides Benth. & Hook. f.          | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Aster squamatus (Spreng.) Hieron.              | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Baccharis articulata (Lam.) Pers.              | Sub-Tem        | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Baccharis caprariifolia DC.                    | Sub-Tem        | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Baccharis coridifolia DC.                      | Sub-Tem        | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Baccharis penningtonii Heering                 | Temperate      | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Baccharis phyteuma Heering                     | Temperate      | S  | RE   | $C_{_{4}}$            | Р      |
| Asteraceae        | Baccharis pingraea DC.                         | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Baccharis salicifolia (Ruiz & Pav.) Pers.      | Sub-Tem        | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Baccharis spicata (Lam.) Baill.                | Temperate      | S  | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Bidens laevis (L.) Britton, Stern & Poggenb.   | Tro-Sub        | BL | RE   | C <sub>3</sub>        | P      |
| Asteraceae        | Calyptocarpus biaristatus (DC.) H. Rob.        | Sub-Tem        | BL | RE   |                       | А      |
|                   |                                                | Sub-Tem        | BL | RE   | C <sub>3</sub>        |        |
| Asteraceae        | Conyza bonariensis L. Cronquist                |                |    |      | C <sub>3</sub>        | A      |
| Asteraceae        | Conyza sumatrensis (Retz.) E. Walker           | Sub-Tem        | BL | RE   | C <sub>3</sub>        | A      |
| steraceae         | Enydra anagallis Gardner                       | Sub-Tem        | BL | FLRE | C <sub>3</sub>        | Р      |
| steraceae         | Eupatorium cabrerae B. L. Rob.                 | Sub-Tem        | BL | RE   | $C_3$                 | Р      |
| steraceae         | Eupatorium filifolium Hassl.                   | Sub-Tem        | S  | RE   | $C_3$                 | Р      |
| steraceae         | Eupatorium tremulum Hook. & Arn.               | Subtropical    | S  | RE   | $C_3$                 | Р      |
| Asteraceae        | Gamochaeta coarctata (Willd.) Kerguélen        | Sub-Tem        | BL | RE   | $C_3$                 | Р      |
| steraceae         | Gamochaeta pensylvanica (Willd.) Cabrera       | Subtropical    | BL | RE   | $C_3$                 | Р      |
| Asteraceae        | Holocheilus hieracioides (D. Don) Cabrera      | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Hypochaeris microcephala (Sch. Bip.) Cabrera   | Temperate      | BL | RE   | C³                    | Р      |
| Asteraceae        | Melanthera latifolia (Gardner) Cabrera         | Sub-Tem        | BL | RE   | C³                    | Α      |
| Asteraceae        | Micropsis spathulata (Pers.) Cabrera           | Temperate      | BL | RE   | C <sub>3</sub>        | Р      |
| Asteraceae        | Mikania micrantha Kunth                        | Tro-Sub        | E  | RE   | $C_3$                 | Р      |
| Asteraceae        | Mikania periplocifolia Hook. & Arn.            | Sub-Tem        | BL | FLRE |                       | Р      |
|                   |                                                |                |    |      | C <sub>3</sub>        |        |
| Asteraceae        | Mikania urticifolia Hook. & Arn.               | Subtropical    | BL | FLRE | C <sub>3</sub>        | P      |
| Asteraceae        | Morrenia odorata (Hook. & Arn.)Lindl.          | Sub-Tem<br>_   | E  | RE   | <b>C</b> <sub>3</sub> | P      |
| steraceae         | Plagiocheilus tanacetoides Haenke ex DC.       | Temperate      | HL | RE   | $C_3$                 | Α      |
| steraceae         | Pluchea sagittalis (Lam.) Cabrera              | Sub-Tem        | HL | RE   | $C_3$                 | Р      |
| steraceae         | Pterocaulon cordobense Kuntze                  | Sub-Tem        | HL | RE   | $C_3$                 | Р      |
| steraceae         | Senecio bonariensis Hook. & Arn.               | Temperate      | HL | RE   | $C_3$                 | Р      |
| steraceae         | Senecio grisebachii Baker                      | Sub-Tem        | HL | RE   | $C_3$                 | Р      |
| steraceae         | Senecio montevidensis (Spreng.) Baker          | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Р      |
| steraceae         | Soliva anthemifolia (Juss.) R. Br.             | Subtropical    | BL | RE   | C <sub>3</sub>        | Α      |
| steraceae         | Soliva sessilis Ruiz & Pav.                    | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Α      |
| steraceae         | Symphyotrichum squamatum (Spreng.) G. L. Nesom | Sub-Tem        | BL | RE   | $C_3$                 | Р      |
| steraceae         | Tessaria integrifolia Ruiz & Pav.              | Sub-Tem        | T  | RE   | C <sub>3</sub>        | P      |
| steraceae         | Xanthium spinosum L.                           | Temperate      | BL | RE   |                       | А      |
|                   | Begonia cucullata Willd.                       | Tro-Sub        |    |      | C <sub>3</sub>        | P      |
| egoniaceae        |                                                |                | BL | RE   | C <sub>3</sub>        |        |
| rassicaceae       | Lepidium bonariense L.                         | Temperate      | BL | RE   | C <sub>3</sub>        | A      |
| rassicaceae       | Lepidium didymum L.                            | Temperate<br>_ | BL | RE   | <b>C</b> <sub>3</sub> | A      |
| rassicaceae       | Lepidium spicatum Desv.                        | Temperate      | BL | RE   | C <sub>3</sub>        | Р      |
| rassicaceae       | Rorippa hilariana (Walp.) Cabrera              | Tro-Tem        | BL | RE   | $C_3$                 | Α      |
| romeliaceae       | Tillandsia aëranthos (Loisel.) L. B. Sm.       | Tropical       | E  | RE   | $C_3$                 | Р      |
| alyceraceae       | Acicarpha tribuloides Juss.                    | Sub-Tem        | BL | RE   | C <sub>3</sub>        | Α      |
| ampanulaceae      | Triodanis perfoliata (L.) Nieuwl.              | Tro-Tem        | BL | RE   | C³                    | Α      |
| iannaceae         | Canna glauca L.                                | Tropical       | BL | RE   | C <sub>3</sub>        | Р      |
| aprifoliaceae     | Valeriana salicariifolia Vahl                  | Temperate      | BL | RE   | $C_3$                 | Р      |
|                   | Talenta da | .cperate       | -  |      | -3                    | •      |

**Table 1.** Continued.

| Family             | Species                                                        | Distribution | BT                | MT | PT                             | LC     |
|--------------------|----------------------------------------------------------------|--------------|-------------------|----|--------------------------------|--------|
| Caryophyllaceae    | Cerastium rivulariastrum Möschl & Pedersen                     | Sub-Tem      | BL                | RE | C <sub>3</sub>                 | Α      |
| Caryophyllaceae    | Spergula levis (Cambess.) D. Dietr.                            | Temperate    | BL                | RE | $C_3$                          | Р      |
| Celastraceae       | Maytenus ilicifolia Mart. ex Reissek                           | Sub-Tem      | Т                 | RE | $C_3$                          | Р      |
| Celtidaceae        | Celtis ehrenbergiana (Klotzsch)Liebm.                          | Subtropical  | Т                 | RE | C <sub>3</sub>                 | Р      |
| Cleomaceae         | Cleome trachycarpa Klotzch ex Eichler                          | Sub-Tem      | BL                | RE | $C_3$                          | Α      |
| Cleomaceae         | Tarenaya hassleriana (Chodat) Iltis                            | Sub-Tem      | BL                | RE | C³                             | Р      |
| Combretaceae       | Terminalia australis Cambess.                                  | Sub-Tem      | Т                 | RE | C <sub>3</sub>                 | Р      |
| Commelinaceae      | Tradescantia fluminensis Vell.                                 | Sub-Tem      | BL                | RE | C <sub>3</sub>                 | Р      |
| Commelinaceae      | Tripogandra diuretica (Mart.) Handlos                          | Sub-Tem      | BL                | RE | $C_3$                          | Р      |
| Convolvulaceae     | Dichondra microcalyx (Hallier f.)Fabris                        | Temperate    | BL                | RE | $C_3$                          | Р      |
| Convolvulaceae     | Dichondra sericea Sw.                                          | Tropical     | BL                | RE |                                | r<br>P |
| Convolvulaceae     | Ipomoea alba L.                                                | Sub-Tem      |                   | RE | C <sub>3</sub>                 | P      |
|                    | •                                                              |              | E                 |    | C <sub>3</sub>                 |        |
| Cucurbitaceae<br>- | Cayaponia podantha Cogn.                                       | Sub-Tem      | E                 | RE | C <sub>3</sub>                 | P      |
| Cyperaceae<br>-    | Carex brongniartiiKunth                                        | Sub-Tem<br>_ | E                 | RE | <b>C</b> <sub>3</sub>          | P      |
| Typeraceae         | Carex bonariensis Desf. ex Poir.                               | Temperate    | E                 | RE | $C_3$                          | Р      |
| Typeraceae         | Carex excelsa Poepp. ex Kunth.                                 | Sub-Tem      | E                 | RE | $C_3$                          | Р      |
| Typeraceae         | Carex fuscula d'Urv.                                           | Tro-Sub-Tem  | E                 | RE | $C_3$                          | Р      |
| Typeraceae         | Carex longii Mack.                                             | Sub-Tem      | Е                 | RE | $C_3$                          | Р      |
| Typeraceae         | Carex subdivulsa (Kük.)G. A. Wheeler                           | Sub-Tem      | Ε                 | RE | $C_3$                          | Р      |
| Typeraceae         | Carex tweediana Nees ex Hooker                                 | Sub-Tem      | Е                 | RE | C <sub>3</sub>                 | Р      |
| Typeraceae         | Carex uruguensis Boeckeler                                     | Sub-Tem      | Ε                 | RE | C <sub>3</sub>                 | Р      |
| Typeraceae         | Cyperus aggregatus (Willd.) Endl.                              | Sub-Tem      | Е                 | RE | $C_3$                          | Р      |
|                    | Cyperus entrerianus Boeckeler.                                 | Tropical     | Е                 | RE | C <sub>4</sub>                 | Р      |
| Typeraceae         | Cyperus eragrostis Lam.                                        | Tro-Sub-Tem  | E                 | RE | C <sub>4</sub>                 | P      |
| Typeraceae         | Cyperus giganteus Vahl                                         | Tropical     | E                 | RE | _                              | D      |
|                    | Cyperus intricatus Schrad. ex Schult.                          | Subtropical  |                   | RE | C <sub>4</sub>                 | r<br>P |
| Typeraceae         |                                                                | •            | E                 |    | C <sub>4</sub>                 |        |
| Typeraceae<br>-    | Cyperus reflexus Vahl                                          | Tropical     | E                 | RE | C <sub>4</sub>                 | P      |
| Typeraceae<br>-    | Cyperus rotundus L.                                            | Tropical     | E                 | RE | C <sub>4</sub>                 | P      |
| Typeraceae         | Cyperus virens Michx.                                          | Tropical     | E                 | RE | $C_{_4}$                       | Р      |
| Typeraceae         | Eleocharis bonariensisNees                                     | Temperate    | E                 | RE | $C_3 - C_4$                    | Р      |
| Typeraceae         | Eleocharis macrostachya Britton                                | Tro-Sub-Tem  | E                 | RE | $C_3$ - $C_4$                  | Р      |
| Typeraceae         | Eleocharis montana (Kunth) Roem. & Schult.                     | Tropical     | E                 | RE | $C_3 - C_4$                    | Р      |
| -<br>Typeraceae    | <i>Kyllinga vaginata</i> Lam.                                  | Tro-Sub      | Ε                 | RE | $C_{\scriptscriptstyle{4}}$    | Р      |
| Typeraceae         | Pycreus flavescens (L.) P. Beauv. ex Rchb                      | Sub-Tem      | E                 | RE | $C_3$                          | Р      |
| Typeraceae         | Rhynchospora corymbosa (L.) Britton                            | Sub-Tem      | Ε                 | RE | $C_{_{4}}$                     | Р      |
| -<br>Typeraceae    | Rhynchospora organensis C. B. Clarke                           | Subtropical  | Е                 | RE | C <sub>4</sub>                 | Р      |
| Cyperaceae         | Scirpus giganteus Kunth                                        | Sub-Tem      | Ε                 | RE | C <sub>3</sub>                 | Р      |
| Cyperaceae         | Schoenoplectus californicus (C. A. Mey.) Soják                 | Sub-Tem      | Е                 | RE | C³                             | Р      |
| Dioscoreaceae      | Dioscorea sinuata Vell.                                        | Tro-Sub      | C                 | RE | C <sub>3</sub>                 | Р      |
| Euphorbiaceae      | Croton urucurana Baill.                                        | Sub-Tem      | T                 | RE | C <sub>3</sub>                 | P      |
| Euphorbiaceae      | Euphorbia prostrata Aiton                                      | Tropical     | BL                | RE |                                | А      |
|                    |                                                                | · ·          |                   | RE | C <sub>3</sub> -C <sub>4</sub> | P      |
| Euphorbiaceae<br>  | Sapium haematospermum Müll. Arg.                               | Subtropical  | T<br><del>T</del> |    | C <sub>3</sub>                 |        |
| abaceae<br>        | Acacia caven Molina                                            | Sub-Tem      | T                 | RE | C <sub>3</sub>                 | P      |
| abaceae            | Aeschynomene montevidensis Vogel                               | Sub-Tem      | S                 | RE | <b>C</b> <sub>3</sub>          | Р      |
| abaceae            | Albizia inundata (Mart.) Barneby & J. W. Grimes                | Sub-Tem      | Т                 | RE | $C_3$                          | Р      |
| abaceae            | Amorpha fruticosaL.                                            | Temperate    | S                 | RE | $C^3$                          | Р      |
| abaceae            | Enterolobium contortisiliquum (Vell.) Morong                   | Sub-Tem      | T                 | RE | $C_3$                          | Р      |
| abaceae            | Erythrina crista-galli L.                                      | Sub-Tem      | T                 | RE | $C_3$                          | Р      |
| abaceae            | Inga edulis Mart.                                              | Temperate    | Т                 | RE | $C_3$                          | Р      |
| abaceae            | Lathyrus paranensis Burkart                                    | Temperate    | BL                | RE | C <sub>3</sub>                 | Α      |
| abaceae            | Lupinus grisebachianus C. P. Sm.                               | Sub-Tem      | BL                | RE | $C_4$                          | Р      |
| abaceae            | Mimosa bonplandii (Gillies ex Hook. & Arn.) Benth.             | Temperate    | S                 | RE | C <sub>3</sub>                 | Р      |
| abaceae            | Mimosa pigra L.                                                | Tropical     | S                 | RE | C <sub>3</sub>                 | Р      |
| abaceae            | Mimosa tweedieana Barneby ex Glazier& Mackinder                | Sub-Tem      | S                 | RE |                                | r<br>P |
|                    |                                                                | Sub-Tem      |                   |    | C <sub>3</sub>                 | P<br>P |
| Fabaceae           | Prosopis affinis Spreng.                                       |              | T<br>T            | RE | C <sub>3</sub>                 |        |
| abaceae<br>        | Prosopis nigra (Griseb.) Hieron.                               | Sub-Tem      | T<br>-            | RE | C <sub>3</sub>                 | P      |
| abaceae            | Senna corymbosa (Lam.) H. S. Irwin &Barneby                    | Sub-Tem      | T                 | RE | C <sub>3</sub>                 | P      |
| abaceae            | Senna pendula (Humb. & Bonpl. ex Willd.) H. S. Irwin & Barneby | Sub-Tem      | S                 | RE | $C_3$                          | Р      |
| abaceae            | Sesbania punicea (Cav.) Benth.                                 | Sub-Tem      | S                 | RE | <b>C</b> <sub>3</sub>          | Р      |
| abaceae            | Sesbania virgata (Cav.) Pers.                                  | Sub-Tem      | S                 | RE | $C_3$                          | Р      |
| abaceae            | Vicia graminea Sm.                                             | Temperate    | BL                | RE | C <sub>3</sub>                 | Α      |

**Table 1.** Continued.

| Family                       | Species                                                                             | Distribution       | ВТ | MT   | PT             | LC     |
|------------------------------|-------------------------------------------------------------------------------------|--------------------|----|------|----------------|--------|
| abaceae                      | Vigna luteola (Jacq.) Benth.                                                        | Sub-Tem            | E  | RE   | C <sub>3</sub> | Α      |
| laloragaceae                 | Myriophyllum aquaticum (Vell.) Verdc.                                               | Sub-Tem            | BL | RS   | C <sub>3</sub> | Р      |
| lydrocharitaceae             | Elodea sp. Michx.                                                                   | Tro-Sub-Tem        | BL | RS   | C <sub>3</sub> | Р      |
| lydrocharitaceae             | Limnobium laevigatum (Humb. & Bonpl. ex Willd.) Heine                               | Temperate          | BL | FF   | $C_3$          | Р      |
| ridaceae                     | Cypella herbertii Hook.                                                             | Sub-Tem            | BL | RE   | $C_3$          | Р      |
| ridaceae                     | Herbertia lahue (Molina) Goldblatt                                                  | Sub-Tem            | BL | RE   | $C_3$          | Р      |
| ridaceae                     | Sisyrinchium minus Engelm. &A. Gray                                                 | Temperate          | BL | RE   | C <sub>3</sub> | Α      |
| ridaceae                     | Sisyrinchium chilenseHook.                                                          | Sub-Tem            | BL | RE   | C <sub>3</sub> | Α      |
| ridaceae                     | Sisyrinchium iridifolium Kunth                                                      | Tro-Sub-Tem        | BL | RE   | $C_3$          | A      |
| ridaceae                     | Sisyrinchium pachyrhizum Baker                                                      | Sub-Tem            | BL | RE   |                | P      |
| luncaceae                    | Juncus capillaceus Lam.                                                             | Sub-Tem            | E  | RE   | C <sub>3</sub> | P      |
|                              |                                                                                     |                    |    |      | C <sub>3</sub> |        |
| uncaceae                     | Juncus dichotomus Elliot                                                            | Tro-Sub-Tem        | E  | RE   | C <sub>3</sub> | P      |
| uncaceae                     | Juncus imbricatus Laharpe                                                           | Tro-Sub-Tem        | E  | RE   | C <sub>3</sub> | P      |
| uncaceae                     | Juncus microcephalus Kunth                                                          | Tro-Sub-Tem        | E  | RE   | C <sub>3</sub> | P      |
| amiaceae                     | Hyptis fasciculata Benth.                                                           | Sub-Tem            | BL | RE   | C <sup>3</sup> | Р      |
| amiaceae                     | Hyptis mutabilis (Rich.) Briq.                                                      | Tropical           | BL | RE   | $C^3$          | Р      |
| amiaceae                     | Salvia pallida Benth.                                                               | Sub-Tem            | BL | RE   | C <sub>3</sub> | Р      |
| .amiaceae                    | Scutellaria racemosa Pers.                                                          | Sub-Tem            | BL | RE   | $C_3$          | Р      |
| amiaceae                     | Stachys gilliesii Benth.                                                            | Tropical           | BL | RE   | $C_3$          | Р      |
| .amiaceae                    | Teucrium vesicarium Mill.                                                           | Sub-Tem            | BL | RE   | $C_3$          | Р      |
| .auraceae                    | Nectandra angustifolia (Schrad.) Nees & Hart.                                       | Sub-Tem            | T  | RE   | C <sub>3</sub> | Р      |
| auraceae                     | Ocotea acutifolia (Nees) Mez                                                        | Sub-Tem            | T  | RE   | C³             | Р      |
| entibulariaceae              | Utricularia gibba L.                                                                | Tro-Tem            | BL | RS   | C <sub>3</sub> | Р      |
| entibulariaceae              | Utricularia platensis Speg.                                                         | Tem                | BL | RE   | $C_4$          | Р      |
| imnocharitaceae              | Hydrocleys nymphoides (Willd.) Buchenau                                             | Sub-Tem            | BL | FLRE | $C_3$          | Р      |
| ythraceae                    | Cuphea fruticosa Spreng.                                                            | Sub-Tem            | BL | RE   | C <sub>3</sub> | Р      |
| Malvaceae                    | Hibiscus striatus Cav.                                                              | Temperate          | S  | RE   | $C_3$          | Р      |
| //alvaceae                   | Modiola caroliniana (L.) G. Don                                                     | Sub-Tem            | BL | RE   |                | Р      |
| Nalvaceae<br>Nalvaceae       | Modiolastrum lateritium (Hook.) Krapov.                                             | Sub-Tem            | BL | RE   | C <sub>3</sub> | P      |
|                              | ·                                                                                   |                    |    |      | C <sub>3</sub> |        |
| // Alvaceae                  | Modiolastrum malvifolium (Griseb.) K. Schum.                                        | Sub-Tem            | BL | RE   | C <sub>3</sub> | Р      |
| Malvaceae                    | Monteiroa glomerata (Hook. & Arn.)Krapov.                                           | Temperate          | S  | RE   | C <sub>3</sub> | P      |
| Malvaceae                    | Sida rhombifolia L.                                                                 | Sub-Tem            | S  | RE   | $C_3$          | Р      |
| Marantaceae                  | <i>Thalia multiflora</i> Horkel.                                                    | Sub-Tem            | BL | RE   | $C_3$          | Р      |
| Menyanthaceae                | Nymphoides indica (L.) Kuntze                                                       | Sub-Tem            | BL | BFL  | C <sub>3</sub> | Р      |
| Myrsinaceae                  | Myrsine laetevirens (Mez) Arechav.                                                  | Tro-Sub            | Т  | RE   | $C^3$          | Р      |
| Myrsinaceaetaceae            | <i>Myrsine parvula</i> (Mez) Otegui                                                 | Tro-Sub            | Т  | RE   | $C^3$          | Р      |
| Лyrtaceae                    | Blepharocalyx tweediei (Hook. & Arn.) O. Berg                                       | Sub-Tem            | Т  | RE   | $C_3$          | Р      |
| Лyrtaceae                    | Blepharocalyx salicifolius (Kunth) O. Berg                                          | Sub-Tem            | Т  | RE   | $C_3$          | Р      |
| Лyrtaceae                    | Eugenia uruguayensis Cambess.                                                       | Sub-Tem            | T  | RE   | $C_3$          | Р      |
| Myrtaceae                    | Myrceugenia glaucescens (Cambess.) D. Legrand & Kausel                              | Sub-Tem            | Т  | RE   | C <sub>3</sub> | Р      |
| Dleaceae                     | Cabomba australis Speg.                                                             | Sub-Tem            | BL | RS   | C³             | Р      |
| Onagraceae                   | Ludwigia bonariensis (Micheli) H. Hara                                              | Temperate          | BL | RE   | $C_4$          | Р      |
| Onagraceae                   | Ludwigia peploides (Kunth) P. H. Raven                                              | Temperate          | BL | FLRE | C <sub>4</sub> | Р      |
| Onagraceae                   | Ludwigia peruviana (L.) H. Hara                                                     | Tro-Sub-Tem        | BL | RE   | C <sub>4</sub> | P      |
| Onagraceae<br>Onagraceae     | Ludwigia grandiflora (Michx.)Greuter& Burdet                                        | Tro-Sub-Tem        | BL | RE   | $C_{_{4}}$     | Р      |
| )nagraceae<br>)nagraceae     | Oenothera longiflora L.                                                             | Sub-Tem            | BL | RE   |                | A      |
| Probanchaceae                | Agalinis communis (Cham. & Schltdl.) D'Arcy                                         | Sub-Tem            | S  | RE   | C <sub>3</sub> | P      |
| Orobanchaceae<br>Oxalidaceae | -                                                                                   | Sub-Tem<br>Sub-Tem |    |      | C <sub>3</sub> | P<br>P |
|                              | Oxalis conorrhiza Jacq.                                                             |                    | BL | RE   | C <sub>3</sub> |        |
| Passifloraceae               | Passiflora caerulea L.                                                              | Temperate          | E  | RE   | C <sub>3</sub> | Р      |
| assifloraceae                | Passiflora misera Kunth                                                             | Tro-Sub-Tem        | E  | RE   | C <sub>3</sub> | Р      |
| hyllanthaceae                | Phyllanthus sellowianus (Klotzsch) Müll. Arg.                                       | Tro-Tem            | S  | RE   | C <sub>3</sub> | P<br>- |
| lantaginaceae                | Bacopa monnieri (L.) Wettst.                                                        | Tro-Tem            | BL | RE   | C <sub>3</sub> | Р      |
| lantaginaceae                | Plantago myosuros Lam.                                                              | Sub-Tem            | BL | RE   | $C^3$          | Α      |
| lantaginaceae                | Plantago tomentosa Lam.                                                             | Sub-Tem            | BL | RE   | C <sub>3</sub> | Р      |
| Plantaginaceae               | Mecardonia procumbens (Mill.) Small var. flagellaris (Cham. & Schltdl.) V. C. Souza | Temperate          | BL | RE   | C <sub>3</sub> | Α      |
| lantaginaceae                | Scoparia montevidensis (Spreng.) R. E. Fr.                                          | Sub-Tem            | BL | RE   | $C_{_3}$       | Α      |
| oaceae                       | Amphibromus scabrivalvis (Trin.) Swallen                                            | Temperate          | GH | RE   | C <sub>3</sub> | Р      |
| Poaceae                      | Aristida murina Cav.                                                                | Temperate          | GH | RE   | C <sub>4</sub> | Р      |
| Poaceae                      | Axonopus compressus (Sw.) P. Beauv.                                                 | Tro-Tem            | HG | RE   | C <sub>4</sub> | Р      |
|                              | Total op as solipi coons (over) is beauti                                           | Tro-Tem            |    | RE   | 4              |        |

**Table 1.** Continued.

| Family | Species                                                  | Distribution   | ВТ | MT | PT                             | LC     |
|--------|----------------------------------------------------------|----------------|----|----|--------------------------------|--------|
| oaceae | Bothriochloa laguroides (DC.) Herter                     | Sub-Tem        | GH | RE | C <sub>4</sub>                 | Р      |
| oaceae | Bouteloua megapotamica (Spreng.) Kuntze                  | Sub-Tem        | GH | RE | <b>C</b> <sub>4</sub>          | Р      |
| oaceae | Briza rufa (J. Presl) Steud.                             | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Briza subaristata Lam.                                   | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Bromidium hygrometricum (Nees) Nees & Meyen              | Temperate      | GH | RE | C³                             | Α      |
| oaceae | Bromus brachyanthera Döll                                | Tropical       | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Bromus catharticus Vahl                                  | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Coleataenia prionitis (Nees) Soreng                      | Tro-Sub        | GH | RE | C <sub>4</sub>                 | Р      |
| oaceae | Cortaderia selloana (Schult&Schult, f)Asch. &Graebn.     | Temperate      | GH | RE | $C_3$                          | Р      |
| oaceae | Chloris sesquiflora Burkart                              | Temperate      | GH | RE |                                | Р      |
| oaceae | Dichanthelium sabulorumvar. polycladum (Ekman) Zuloaga   | Temperate      | GH | RE | C <sub>4</sub>                 | r<br>P |
| oaceae | Diplachne uninervia (J. Presl) Parodi                    | Temperate      | GH | RE | C <sub>4</sub>                 |        |
|        | •                                                        | •              |    |    | C <sub>4</sub>                 | A      |
| oaceae | Distichlis spicata (L.) Greene                           | Tro-Sub-Tem    | GH | RE | C <sub>4</sub>                 | P      |
| oaceae | Echinochloa helodes (Hack.) Parodi                       | Tro-Sub        | GH | FF | C <sub>4</sub>                 | P      |
| oaceae | Echinochloa polystachya (Kunth) Hitchc.                  | Tro-Sub        | GH | FF | $C_{_{4}}$                     | P      |
| oaceae | Eleusine tristachya (Lam.) Lam.                          | Tro-Sub-Tem    | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Eragrostis hypnoides (Lam.) Britton, Stern & Poggenb.    | Tro-Sub-Tem    | GH | RE | $C_{\scriptscriptstyle{4}}$    | Α      |
| oaceae | Eragrostis lugens Nees                                   | Tro-Sub-Tem    | GH | RE | $C_{\scriptscriptstyle{4}}$    | Р      |
| oaceae | Eustachys paspaloides (Vahl) Lanza& Mattei               | Subtropical    | GH | RE | $C_{_4}$                       | Р      |
| oaceae | Glyceria multiflora Steud.                               | Temperate      | GH | RE | $C_3$                          | Р      |
| oaceae | Hordeum euclaston Steud.                                 | Sub-Tem        | GH | RE | $C_3$                          | Α      |
| oaceae | Hordeum stenostachys Godr.                               | Subtropical    | GH | RE | $C_3$                          | Р      |
| oaceae | Hymenachne grumosa (Nees) Zuloaga                        | Tro-Sub        | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Jarava plumosa (Spreng.)S. W. L. Jacobs & J. Everett     | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Lachnagrostis filiformis (G. Forst.) Trin.               | Temperate      | GH | RE | C₃                             | Р      |
| oaceae | Leersia hexandra Sw.                                     | Sub-Tem        | GH | RE | C <sub>3</sub>                 | Р      |
| paceae | Luziola peruviana Juss. ex J. F. Gmel.                   | Tropical       | GH | RE | C <sub>3</sub>                 | P      |
| oaceae | Melica macra Nees                                        | Temperate      | GH | RE | C <sub>3</sub>                 | P      |
| paceae | Melica sarmentosa Nees                                   | Subtropical    | GH | RE | C <sub>3</sub>                 | Р      |
| paceae | Mnesithea selloana (Hack.) de Koning & Sosef             | Tro-Tem        | GH | RE |                                | r<br>P |
|        |                                                          |                |    |    | C <sub>3</sub>                 | r<br>P |
| oaceae | Nassella hyalina (Nees) Barkworth                        | Temperate      | GH | RE | C <sub>3</sub>                 |        |
| oaceae | Nassella megapotamia (Spreng. ex Trin.) Barkworth        | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Nassella neesiana (Trin. & Rupr.) Barkworth              | Temperate      | GH | RE | C <sub>3</sub>                 | P      |
| oaceae | Oplismenopsis najada (Hack. & Arech.) Parodi             | Tro-Sub        | GH | FF | $C_{_{4}}$                     | Р      |
| oaceae | Panicum bergii Arechav.                                  | Temperate      | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Panicum elephantipes Ness ex Trin.                       | Temperate      | GH | FF | $C_{_4}$                       | Р      |
| oaceae | Panicum sabulorum var. polycladum (Ekman) R. A. Palacios | Tro-Sub        | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Paspalum almum Chase                                     | Tro-Sub        | GH | RE | $C_{\scriptscriptstyle{4}}$    | Р      |
| oaceae | Paspalum denticulatum Trin.                              | Temperate      | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Paspalum dilatatum Poir.                                 | Temperate      | GH | RE | $C_{_4}$                       | Р      |
| oaceae | Paspalum distichum L.                                    | Temperate      | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Paspalum haumanii Parodi                                 | Sub-Tem        | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Paspalum inaequivalve Raddi                              | Temperate      | GH | RE | $C_4$                          | Р      |
| oaceae | Paspalum quadrifarium Lam.                               | Tropical       | GH | RE | C <sub>4</sub>                 | Р      |
| oaceae | Paspalum repensP. J. Bergius                             | Temperate      | GH | FF | C <sub>4</sub>                 | Р      |
| oaceae | Phalaris angusta Nees. ex Trin.                          | Temperate      | GH | RE | $C_3$                          | A      |
| oaceae | Piptochaetium lasianthumGriseb.                          | Temperate      | GH | RE | C <sub>3</sub>                 | P      |
| oaceae | Piptochaetium montevidense (Spreng.) Parodi              | Sub-Tem        | GH | RE |                                | r<br>P |
|        |                                                          |                |    |    | C <sub>3</sub>                 |        |
| oaceae | Piptochaetium stipoides (Trin. & Rupr.)Hack. ex Arechav. | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Poa bonariensis (Lam.) Kunth.                            | Temperate<br>– | GH | RE | C <sub>3</sub>                 | P      |
| oaceae | Poa lanigera Nees                                        | Temperate      | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Polypogon chilensis (Kunth) Pilg.                        | Temperate      | GH | RE | C <sub>3</sub>                 | A      |
| oaceae | Setaria fiebrigii R. A. W. Herrm.                        | Tro-Tem        | GH | RE | $C_{\scriptscriptstyle{4}}$    | Р      |
| oaceae | Setaria parviflora (Poir.) Kerguélen                     | Tro-Tem        | GH | RE | $C_{\scriptscriptstyle{4}}$    | Р      |
| oaceae | Setaria vaginata Spreng.                                 | Tro-Tem        | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Sporobolus indicus (L.) R. Br.                           | Subtropical    | GH | RE | $C_{_{4}}$                     | Р      |
| oaceae | Stachys gilliesii Benth.                                 | Subtropical    | GH | RE | C <sub>3</sub>                 | Р      |
| oaceae | Steinchisma hians (Elliott) Nash                         | Tro-Sub-Tem    | GH | RE | C <sub>3</sub> -C <sub>4</sub> | Р      |
| oaceae | Stenotaphrum secundatum (Walter) Kuntze                  | Tro-Sub-Tem    | GH | RE | C <sub>4</sub>                 | Р      |
| oaceae | Vulpia australis (Nees ex Steud.) C. H. Blom             | Temperate      | GH | RE | C <sub>3</sub>                 | Α      |
|        | Zizaniopsis bonariensis (Balansa & Poitr.) Speg.         | Temperate      | GH | RE | -3                             |        |

 Table 1. Continued.

| Family                     | Species                                                                | Distribution         | ВТ       | MT       | PT                    | LC     |
|----------------------------|------------------------------------------------------------------------|----------------------|----------|----------|-----------------------|--------|
| Polygonaceae               | Muehlenbeckia sagittifolia (Ortega) Meisn.                             | Sub-Tem              | S        | RE       | <b>C</b> <sub>3</sub> | Р      |
| Polygonaceae               | Polygonum acuminatum Kunth                                             | Tropical             | BL       | FLRE     | C <sup>3</sup>        | Р      |
| Polygonaceae               | Polygonum ferrugineum Wedd.                                            | Tropical             | BL       | FLRE     | $C_3$                 | Р      |
| Polygonaceae               | Polygonum hydropiperoides Michx.                                       | Subtropical          | BL       | FLRE     | $C_3$                 | Р      |
| Polygonaceae               | Polygonumhispidum Kunth                                                | Tropical             | BL       | FLRE     | $C_3$                 | Р      |
| Polygonaceae               | Polygonum meisnerianumCham. & Schltdl.                                 | Tro-Sub              | BL       | FLRE     | C <sub>3</sub>        | Р      |
| Polygonaceae               | Polygonum punctatum Elliot                                             | Tropical             | BL       | FLRE     | C <sub>3</sub>        | Р      |
| Polygonaceae               | Polygonum stelligerum Cham.                                            | Sub-Tem              | BL       | FLRE     | $C_3$                 | Р      |
| Polygonaceae               | Polygonum stypticum Cham. & Schltdl.                                   | Sub-Tem              | BL       | RE       | $C_3$                 | Α      |
| Polygonaceae               | Rumex argentinus Rech. f.                                              | Sub-Tem              | BL       | RE       | $C_3$                 | Р      |
| Pontederaceae              | Eichhornia azurea (Sw.) Kunth                                          | Tropical             | BL       | FF       | C <sub>3</sub>        | Р      |
| Pontederaceae              | Eichhornia crassipes (Mart.) Solms                                     | Tropical             | BL       | FLRE     | $C_3$                 | Р      |
| Pontederaceae              | Pontederia cordata L.                                                  | Sub-Tem              | BL       | FLRE     | $C_3$                 | Р      |
| Pontederaceae              | Pontederia rotundifolia L. f.                                          | Sub-Tem              | BL       | FLRE     | $C^3$                 | Р      |
| Portulacaceae              | Portulaca gilliesiiHook.                                               | Subtropical          | BL       | RE       | $C_{_4}$              | Р      |
| Potamogetonaceae           | Potamogeton L.                                                         | Sub-Tem              | BL       | FF       | $C_3$                 | Р      |
| Ranunculaceae              | Clematis bonariensis Juss. ex DC.                                      | Sub-Tem              | Е        | RE       | $C_3$                 | Р      |
| Ranunculaceae              | Ranunculus apiifolius Pers.                                            | Sub-Tem              | BL       | RE       | $C_3$                 | Α      |
| Ranunculaceae              | Ranunculus bonariensis Poir.                                           | Sub-Tem              | BL       | RE       | C <sub>3</sub>        | Α      |
| Rhamnaceae                 | Scutia buxifolia Reissek                                               | Subtropical          | T        | RE       | $C_3$                 | Р      |
| Rubiaceae                  | Borreria dasycephala (Cham. &Schltdl.) Bacigalupo & E. L. Cabral       | Temperate            | BL       | RE       | C <sub>3</sub>        | Α      |
| Rubiaceae                  | Borreria verticillata (L.) G. Mey.                                     | Tropical             | S        | RE       | $C_3$                 | Р      |
| Rubiaceae                  | Cephalanthus glabratus (Spreng.) K. Schum.                             | Temperate            | S        | RE       | $C_3$                 | Р      |
| Rubiaceae                  | Galium vile (Cham. & Schltdl.)Dempster.                                | Sub-Tem              | BL       | RE       | $C_3$                 | Α      |
| Rubiaceae                  | Psychotriacarthagenensis Jacq.                                         | Sub-Tem              | S        | RE       | $C_3$                 | Р      |
| Salicaceae                 | Salix humboldtiana Willd.                                              | Sub-Tem              | Т        | RE       | C <sub>3</sub>        | Р      |
| Santalaceae                | Acanthosyris spinescens (Mart. & Eichler) Griseb.                      | Tropical             | Т        | RE       | C <sub>3</sub>        | Р      |
| Santalaceae                | Jodina rhombifolia (Hook. & Arn.) Reissek                              | Tropical             | Т        | RE       | C <sub>3</sub>        | Р      |
| Samolaceae                 | Samolus valerandi L.                                                   | Sub-Tem              | BL       | RE       | C <sub>3</sub>        | Р      |
| Sapindaceae                | Allophylus edulis (A. StHil., A. Juss. & Cambess.) Hieron. ex Niederl. | Tropical             | Т        | RE       | C <sub>3</sub>        | Р      |
| Sapindaceae                | Dodonaea viscosa L. Jacq.                                              | Tropical             | S        | RE       | C <sub>3</sub>        | Р      |
| Sapotaceae                 | Pouteria salicifolia (Spreng.) Radlk                                   | Sub-Tem              | Т        | RE       | C <sub>3</sub>        | Р      |
| Scrophulariaceae           | Buddleja stachyoides Cham. & Schltdl.                                  | Sub-Tem              | S        | RE       | C <sub>3</sub>        | Р      |
| Smilacaceae                | Smilax campestris Griseb.                                              | Sub-Tem              | Е        | RE       | C <sub>3</sub>        | Р      |
| Solanaceae                 | Cestrum parqui L' Hér                                                  | Sub-Tem              | S        | RE       | C <sub>3</sub>        | Р      |
| Solanaceae                 | Jaborosa integrifolia Lam.                                             | Sub-Tem              | BL       | RE       | C <sub>3</sub>        | Р      |
| Solanaceae                 | Jaborosa runcinata Lam.                                                | Sub-Tem              | BL       | RE       | $C_3$                 | Р      |
| Solanaceae                 | Nierembergia aristata Sweet                                            | Temperate            | BL       | RE       | C³                    | Р      |
| Solanaceae                 | Nierembergia linariaefolia Graham var. linariaefolia                   | Temperate            | BL       | RE       | $C_{_{\!4}}$          | Р      |
| Solanaceae                 | Physalis viscosa L.                                                    | Tropical             | BL       | RE       | C <sub>3</sub>        | Р      |
| Solanaceae                 | Solanum amygdalifolium Steud.                                          | Sub-Tem              | S        | RE       | $C_3$                 | Р      |
| Solanaceae                 | Solanum bonariense L.                                                  | Sub-Tem              | S        | RE       | $C_3$                 | Р      |
| Solanaceae                 | Solanum chenopodioides Lam.                                            | Temperate            | S        | RE       | $C_3$                 | Р      |
| Solanaceae                 | Solanum glaucophyllum Desf.                                            | Temperate            | S        | RE       | $C_3$                 | Р      |
| Solanaceae                 | Solanum laxum Spreng                                                   | Temperate            | BL       | RE       | C³                    | Α      |
| Solanaceae                 | Solanum nigrescens M. Martens &Galeotti                                | Sub-Tem              | BL       | RE       | $C_3$                 | Р      |
| Solanaceae                 | Solanum sisymbriifolium Lam.                                           | Sub-Tem              | BL       | RE       | C³                    | Α      |
| Typhaceae                  | Typha latifoliaL.                                                      | Sub-Tem              | GH       | RE       | $C_3$                 | Р      |
| Typhaceae                  | Typha dominguensis Pers.                                               | Sub-Tem              | GH       | RE       | $C_3$                 | Р      |
| Urticaceae                 | Boehmeria cylindrica (L.) Sw.                                          | Temperate            | BL       | RE       | $C_3$                 | Р      |
| Urticaceae                 | Parietaria debilis G. Forst                                            | Temperate            | BL       | RE       | C <sub>3</sub>        | Α      |
| Urticaceae                 | Urtica urens L.                                                        | Temperate            | BL       | RE       | C <sub>3</sub>        | Р      |
| Verbenaceae                | Glandularia incisa (Hook.) Tronc.                                      | Sub-Tem              | BL       | RE       | $C_3$                 | А      |
| Verbenaceae                | Lantana camara L.                                                      | Tro-Sub              | S        | RE       | $C_3$                 | P      |
| Verbenaceae                | Lippia alba (Mill.) N. E. Br. ex Britton & P. Wilson                   | Sub-Tem              | S        | RE       | $C_3$                 | r<br>P |
| Verbenaceae                | Phyla canescens (Kunth) Greene                                         | Sub-Tem              | BL       | RE       |                       | P      |
|                            | inya cancoccio (Kanta) dicene                                          | JUN ICIII            | OL.      | 116      | $C_3$                 |        |
|                            | Verhena honariensis I                                                  | Sub-Tem              | RI       | RF       | $\boldsymbol{c}$      | Δ      |
| Verbenaceae<br>Verbenaceae | Verbena bonariensis L.<br>Verbena gracilescens (Cham) Herter           | Sub-Tem<br>Temperate | BL<br>BL | RE<br>RE | C <sub>3</sub>        | A<br>P |



**Figure 2.** Distribution of the native and exotic species present in the land-scape units surveyed in the Delta of the Paraná River Region. Sub-Tem: Subtropical-temperate; Tro-Sub-Tem: Tropical-subtropical-temperate; Tro-Sub: Tropical-subtropical; Tro-tem: Tropical-temperate. White bars: natives, blacks bars: exotics.



**Figure 4.** Morpho-ecological traits of the native and exotic species present in the landscape units surveyed in the Delta of the Paraná River Region. RE: rooted emergent; FLRE: floating-leaved rooted emergent; FF: free-floating; RS: rooted submerged. White bars: natives, blacks bars: exotics.

### **DISCUSSION**

Our analysis of species richness for the angiosperms present in the RDRP provides a first approximation to the understanding of the relative importance of some ecological traits, observed in the functional groups under consideration. Due to this, it may be possible to draw the following conclusions: the high percentage of native species present in the RDRP suggests that the wetland area is well conserved, despite the environmental changes caused by human activity over the last years. The structural and functional diversity of native species reflects the heterogeneity of the wetlands, resulting from the different landscape patterns in the region and their interaction with the hydrological regime (Malvárez 1999). The higher percentage of native subtropical-temperate species would be explained by the particular climate characteristics of the region, such as low seasonal temperature fluctuations and high environmental humidity due to the effect of large amounts of water (Malvárez 1999). These conditions, together with the availability of a variety of habitats and



**Figure 3.** Biological type of the native and exotic species present in the landscape units surveyed in the Delta of the Paraná River Region. BL: broadleaf herb; GH: graminoid herbaceous plant; S: shrub; E: equisetoid herbaceous plant; T: tree; C: climber. White bars: natives, blacks bars: exotics.



**Figure 5.** Photosynthetic types of the native and exotic species present in the landscape units surveyed in the Delta of the Paraná River Region. White bars: natives, blacks bars: exotics.



**Figure 6.** Life cycles of the native and exotic species present in the land-scape units surveyed in the Delta of the Paraná River Region. A: annual; P: perennial. White bars: natives, blacks bars: exotics.

the important role played by the Paraná and Uruguay rivers as biological corridors, may have favored the colonization of subtropical species in a temperate area. In this regard, it is worthwhile to mention that the Paraná River constitutes a major dispersion route for

**Table 2.** List of exotic species present in the landscape units surveyed in the Delta of the Paraná River Region, arranged by family. BT: biological type; MT: morpho-ecological traits; PT: photosynthetic types; LC: life cycle; Sub-Tem: Subtropical-temperate; Tro-Sub-Tem: Tropical-subtropical-temperate; Tro-Sub: Tropical-subtropical; Tro-tem: Tropical-temperate; BL: broadleaf herb; GH: graminoid herbaceous plant; S: shrub; E: equisetoid herbaceous plant; T: tree; C: climber; RE: rooted emergent; FLRE: floating-leaved rooted emergent; FF: free-floating; RS: rooted submerged; A: annual; P: perennial.

| Family          | Species                                         | Distribution | ВТ | MT | PT             | LC |
|-----------------|-------------------------------------------------|--------------|----|----|----------------|----|
| Aceraceae       | Acer negundo L.                                 | Temperate    | Т  | RE | C <sub>3</sub> | Р  |
| Amaranthaceae   | Dysphania multifida (L.) Mosyakin & Clemants    | Tro-Sub      | BL | RE | $C_4$          | Р  |
| Amaranthaceae   | Salsola kali L.                                 | Sub-Tem      | BL | RE | C <sub>4</sub> | Α  |
| Apiaceae        | Apium leptophyllum (Pers.) F. Muell. ex Benth.  | Sub-Tem      | BL | RE | $C_3$          | Α  |
| Asteraceae      | Cotula australis (Sieber ex Spreng.) Hook. f.   | Subtropical  | BL | RE | $C_3$          | Α  |
| Asteraceae      | Cotula coronopifolia L.                         | Subtropical  | BL | RE | $C_3$          | Р  |
| Asteraceae      | Sonchus asper (L.) Hill                         | Sub-Tem      | BL | RE | $C_3$          | Α  |
| Asteraceae      | Tragopogon pratensis L.                         | Sub-Tem      | BL | RE | $C_3$          | Α  |
| Asteraceae      | Xanthium cavanillesii Schouw                    | Sub-Tem      | BL | RE | $C_3$          | Α  |
| Brassicaceae    | Coronopus dydimus (L.) Sm.                      | Temperate    | BL | RE | $C_3$          | Α  |
| Caprifoliaceae  | Lonicera japonica Thunb.                        | Temperate    | C  | RE | $C_3$          | Р  |
| Caryophyllaceae | Cerastium glomeratum Thuill.                    | Temperate    | BL | RE | C <sub>3</sub> | Α  |
| Caryophyllaceae | Silene gallica L.                               | Temperate    | BL | RE | $C_3$          | Α  |
| Caryophyllaceae | Stellaria media (L.) Vill.                      | Temperate    | BL | RE | $C_3$          | Α  |
| Convolvulaceae  | Calystegia sepium (L.) R. Br.                   | Temperate    | C  | RE | C <sub>3</sub> | Р  |
| Euphorbiaceae   | Euphorbia peplus L.                             | Temperate    | BL | RE | $C_4$          | Α  |
| Euphorbiaceae   | Euphorbia spathulata Lam.                       | Temperate    | BL | RE | C <sub>4</sub> | Α  |
| Fabaceae        | Gleditsia triacanthos L.                        | Temperate    | Т  | RE | C <sub>3</sub> | Р  |
| Fabaceae        | Lathyrus pubescens Hook. & Arn.                 | Temperate    | C  | RE | $C_3$          | Р  |
| Fabaceae        | Medicago lupulina L.                            | Temperate    | BL | RE | $C_3$          | Α  |
| Fabaceae        | Trifolium repens L.                             | Temperate    | BL | RE | $C_3$          | Р  |
| Gentianaceae    | Centaurium pulchellum (Sw.) Druce               | Temperate    | BL | RE | $C_3$          | Α  |
| Geraniaceae     | Geranium dissectum L.                           | Temperate    | BL | RE | $C_3$          | Α  |
| Iridaceae       | Iris pseudacorus L.                             | Temperate    | GH | RE | $C_3$          | Р  |
| Geraniaceae     | Geranium robertianum L.                         | Temperate    | BL | RE | C <sub>2</sub> | Α  |
| Nyctaginaceae   | Mirabilis jalapa L.                             | Tropical     | BL | RE | C <sub>3</sub> | Р  |
| Meliaceae       | Melia azedarach L.                              | Sub-Tem      | Т  | RE | $C_3$          | Р  |
| Oleaceae        | Ligustrum lucidum W. T. Aiton                   | Temperate    | Т  | RE | $C_3$          | Р  |
| Oleaceae        | Ligustrum sinense Lour.                         | Temperate    | Т  | RE | C <sub>3</sub> | Р  |
| Poaceae         | Briza minor L.                                  | Temperate    | GH | RE | $C_3$          | Р  |
| Poaceae         | Cynodon dactylon (L.) Pers.                     | Tro-Tem      | GH | RE | C <sub>4</sub> | Р  |
| Poaceae         | Echinochloa crus-galli (L.) P. Beauv.           | Tro-Sub      | GH | RE | C <sub>4</sub> | Α  |
| Poaceae         | Hemarthria altissima (Poir.) Stapf & C. E. Hubb | Tropical     | GH | RE | C <sub>3</sub> | Р  |
| Poaceae         | Hordeum flexuosum Nees ex Steud.                | Temperate    | GH | RE | $C_3$          | Р  |
| Poaceae         | Lolium multiflorum Lam.                         | Temperate    | GH | RE | $C_3$          | Α  |
| Poaceae         | Paspalum vaginatum Sw.                          | Temperate    | GH | RE | C <sub>4</sub> | Р  |
| Poaceae         | Phalaris aquatica L.                            | Tropical     | GH | RE | $C_3$          | Р  |
| Poaceae         | Poa annua L.                                    | Temperate    | GH | RE | $C_3$          | Α  |
| Poaceae         | Polypogon monspelliensis (L.) Desf.             | Sub-Tem      | GH | RE | $C_3$          | Α  |
| Poaceae         | Vulpia bromoides (L.) Gray                      | Temperate    | GH | RE | C³             | Α  |
| Poaceae         | Vulpia myuros (L.) C. C. Gmel.                  | Temperate    | GH | RE | $C_3$          | Α  |
| Plantaginaceae  | Plantago lanceolata L.                          | Temperate    | BL | RE | $C_3$          | Р  |
| Plantaginaceae  | Veronica peregrina L.                           | Tro-Tem      | BL | RE | C <sub>3</sub> | Р  |
| Polygonaceae    | Rumex conglomeratus Murray                      | Temperate    | BL | RE | C <sub>3</sub> | Р  |
| Polygonaceae    | Rumex crispus L.                                | Temperate    | BL | RE | C <sub>3</sub> | Р  |
| Polygonaceae    | Rumex pulcher L.                                | Temperate    | BL | RE | C <sub>3</sub> | Р  |
| Portulacaceae   | Portulaca oleracea L.                           | Subtropical  | BL | RE | C <sub>4</sub> | Α  |
| Primulaceae     | Centunculus minimus L.                          | Temperate    | BL | RE | C <sub>3</sub> | Α  |
| Rosaceae        | Duchesnea indica (Andrews) Teschem.             | Temperate    | BL | RE | C <sub>3</sub> | Р  |
| Salicaceae      | Populus alba L.                                 | Sub-Tem      | T  | RE | C,             | P  |

species of Chaco-Interior Atlantic Forest lineage and the Uruguay River for species of Interior Atlantic Forest lineage (Burkart 1947).

In contrast, the predominance of exotic temperate species would be related to anthropic activities traditionally developed in the neighboring Pampean region(temperateclimate), which have been continuously undertaken in the delta region and increased at a rapid rate in recent years (Bó et al. 2010). This is evidenced by the fact that many of the exotic species recorded in the RDRP occur in Pampean agroecosystems, such as *Carduus* sp., *Cotula australis*, *Hypochaeris* sp. and *Sonchus* 

asper, among others (Requesens and Madanes 1992).

The high species richness of both native and exotic BL and GH reflects the predominant physiognomy of the marsh ("pajonal") and grasslands in island and coastal areas. The former cover 80% of the surface area of the deltaic islands and include many E, all of which are native. This may be explained by the fact that, except for *Iris pseudocorus*, the native E are better adapted than exotic E to high water level and water permanency, and therefore to anaerobic conditions.

The morpho-ecological characteristics of the angio-sperms living in the RDRP are a consequence of the different morphological, anatomical, physiological and metabolic adaptations developed to cope with different water level conditions (Tiner 1999). In this respect, the high species richness of native and exotic RE plants may be due to their presence along an upland-to-lowland landscape gradient (e.g., *Blepharocalyx salicifolius* in temporary flooded areas and *Schoenoplectus californicus* in permanently flooded areas).

All the exotic species were RE, most of which were found in the upper portion of the topographic gradient (e.g., Lepidium didymum, Cerastium glomeratum, Silene gallica, Spergula levisand Stellaria media) but a few occurred in the lower portion (e.g., Echinochloa crusgalli). The absence of exotic FLRE and RS is probably because most of the anthropic activities, closely related to the presence of exotic species, are mainly undertaken in the upper portion of the gradient.

The higher richness of native and exotic  $C_3$  species is likely to be related to the latitude of the study area, as this photosynthetic group is associated with intermediate temperatures in temperate climates (Medina 1977). Additionally, species in the  $C_3$  group may be particularly adapted to flooded lowlands occupying a large surface area of the islands. On the other hand, the considerable presence of the  $C_4$  group, which is typical of subtropical climate, could be partially explained by the peculiar climate conditions of the RDRP but mainly by their location in the uplands. Some exceptions include *Cyperus giganteus* and *Rhynchospora corymbosa*, which tolerate flooding because they can grow under low nutrient conditions (Ueno and Takeda 1992; Sage 2004).

The higher species richness of native perennial species may be related to their adaptation to extreme hydrological conditions through specialized structures (e.g., stolons and rhizomes) providing attachment to the substrate and high vegetative growth. This is the case for many GH and T common in the region, such as Schoenoplectus californicus, Zizaniopsis bonariensis and Typha latifolia, which live in permanently flooded areas and Salix humboldtiana (Malvárez 1999) and Tessaria integrifolia (Reboratti et al. 1987), which are rapid growing plants. In addition, the latter two species are adapted to highly variable environmental conditions

resulting from two processes characteristic of the fluvial wetlands in the region: erosion and sediment deposition (Kandus et al. 2006).

The equal representation of exotic perennial and annual species would probably be due to a higher proportion of BL, which are r-strategists able to reproduce by vegetative through rhizomes and stolons (perennials) or have a short life-span (annuals).

#### **ACKNOWLEDGEMENTS**

We thank Mark Brinson for his encouragement of this work. This study was supported by both the PICT Bicentenario 2227 from the ANPCyT-FONCyT and the PIP 092 from the National Council of Scientific and Technical Researchers (CONICET) grants.

#### LITERATURE CITED

- Arias, S., N. Madanes and R.D. Quintana. 2002. Patrones de cambio en la estructura de la vegetación entre vizcacheras activas e inactivas en el Delta del Paraná. Mastozoología Neotropical 9(2): 5–16. doi: 10.1080/01650520902789724
- Barkman, J. 1988. New systems of plants growth forms and phenological plant types; pp. 9–44, in: M.A.J. Werger, P.J.M. van der Aart, H.J. During and J.T.A. Verhoeven (eds.). Plant form and vegetation structure. The Hague: SPB Academic Publishing.
- Black, C.C. 1971. Ecological implications of dividing plants into groups with distinct photosynthesis production capacities; pp. 87–114, in: J.B. Cragg (ed.). Advances in Ecological Research. New York: Academic Press.
- Bó, R.F. and R.D. Quintana. 1999. Actividades humanas y biodiversidad en humedales: el caso del Bajo Delta del Río Paraná; pp. 291–315, in: S.D. Matteucci, O.T. Solbrig, J. Morello and G. Halffter (eds.). Biodiversidad y uso de la tierra. Conceptos y ejemplos de Latinoamérica. Buenos Aires: Colección CEA, EUDEBA.
- Bó, R.F., R.D. Quintana, P. Courtalon, E. Astrada, M.L. Bolkovik, G. Lo Coco and A. Magnano. 2010. Efectos de los cambios en el régimen hidrológico por las actividades humanas sobre la vegetación y la fauna silvestre del Delta del Río Paraná; pp. 33–63, in: D. Blanco and F.M. Méndez (eds.). Endicamientos y terraplenes en el Delta del Paraná. Situación, efectos ambientales y marco jurídico. Buenos Aires: Fundación Humedales/Wetlands International.
- Burkart, A. 1947. Leguminosas Nuevas o Críticas, II. Darwiniana 7(4): 504–539.
- Burkart, A. 1969. Flora ilustrada de Entre Ríos (Argentina). 2: 1–554. Buenos Aires: Colección Científica INTA.
- Burkart, A. 1974. Flora ilustrada de Entre Ríos (Argentina). 6: 1–219. Buenos Aires: Colección Científica INTA.
- Burkart, R., N. Bárbaro, R.O. Sánchez and D.A. Gómez. 1999. Ecoregiones de la Argentina. Programa de Desarrollo Institucional Ambiental (PRODIA), Administración de Parques Nacionales. Buenos Aires: APN. 43 pp.
- Cabrera, A. L. and E.M. Zardini. 1993. Manual de la flora de los alrededores de Buenos Aires. Buenos Aires: ACME. 624 pp.
- Cabrera, A.L. and A. Willink. 1973. Biogeografía de América Latina. Monografía 13. Serie de Biología. Secretaría General de la Organización de los Estados Americanos. Washington, DC: OEA. 120 pp.
- Cronk, J.K. and M.S. Fennessy. 2001. Wetland Plants: Biology and Ecology. Boca Raton: CRC Press/Lewis Publishers. 440 pp.
- Kandus, P., A.I. Malvárez and N. Madanes. 2003. Estudio de las Comunidades de Plantas Herbáceas Naturales de las Islas del Bajo Delta del Río Paraná (Argentina). Darwiniana 41 (1–4): 1–16. Kandus P., R.D. Quintana and R.F. Bó. 2006. Patrones de Paisaje y

- Biodiversidad del Bajo Delta del Río Paraná. Mapa de Ambientes. Primera Edición. Grupo de Investigaciones en Ecología de Humedales (GIEH), Dpto. de Ecología, Genética y Evolución, FCEyN, UBA. Buenos Aires; Pablo Casamajor Ediciones. 48 pp.
- Malvárez, A.I. 1999. El Delta del Río Paraná como mosaico de humedales; pp. 35–53, in: A.I. Malvárez (ed.). Tópicos sobre humedales subtropicales y templados de Sudamérica. Montevideo: Oficina Regional de Ciencia y Tecnología de la UNESCO ORCYT.
- Medina, E. 1977. Introducción a la ecofisiología vegetal. Serie de Biología; Monografía No. 16 Programa Regional de Desarrollo Científico y Tecnológico. Washington, D.C: Secretaría General de la Organización de Estados Americanos. 102 pp.
- Neiff, J.J. and A.I. Malvárez. 2004. Grandes humedales fluviales; pp. 77–83, in: A.I. Malvárez (ed.). Documentos del curso-taller Bases ecológicas para la clasificación de humedales en Argentina. Buenos Aires: Talleres Gráficos Leograf S. R. L.
- Parodi, L. 1945. Las regiones fitogeográficas argentinas y sus relaciones con la industria forestal; pp. 127–132; in: F. Verdoorn (ed.). Plants and plant sciences in Latin America. Massachusetts: A new series of Plant Science Books.
- Pereira, J., R.D. Quintana and S. Monge. 2003. Diets of plains vizcacha, greater rhea and cattle in Argentina. Journal of Range Management 56(1): 13–20. doi: 10.2307/3895908
- Quintana, R.D., N. Madanes, A.I. Malvárez, F.A. Kalesnik and M. Cagnoni. 2005. Caracterización de la vegetación en tres tipos de hábitat de carpinchos en la baja cuenca del Río Paraná, Argentina. Temas de la Biodiversidad del Litoral fluvial argentino. INSUGEO, Miscelánea 14: 83–96. http://www.insugeo.org.ar/libros/misc17-1/miscelanea17pdf
- Reboratti, H.J., J.J. Neiff and M. Romano. 1987. Estructura de los "Alisales" de *Tessaria integrifolia* (Ruiz Pavón). Revista de la Asociación de Ciencias Naturales del Litoral 18(1):77–83. http://bibliotecavirtual.unl.edu.ar:8180/publicaciones/handle/11185/2688
- Requesens, E. and N. Madanes. 1992. Organización de comunidades estacionales de malezas en el sudeste de la Provincia de Buenos Aires. Ecología Austral 2: 101–108. doi: 10.13140/2.1.1412.0009

- Sage, R.F. 2004. The evolution of  $C_4$  photosynthesis. New Phytologist 161:341–370. doi: 10.1111/j.1469-8137.2004.00974.x
- Sepulcri, M.G., M..J. Pizarro, E. Flamenco, M. Herrera, J. Borus, and L. Giordano. 2012. Cartografía de susceptibilidad hídrica en el Delta del Río Paraná. RIA Vol. 38(2): 182–189. http://www.scielo.org.ar/scielo.php?pid=S1669-23142012000200013&script=sci\_abstract
- Smith, B.N. and W.V. Brown. 1973. The Kranz syndrome in the Gramineae as indicated by carbon isotopic ratios. American Journal of Botany 60: 505–513.
- Smith, T.M., H.H. Shugart, F.I. Woodward and P.J. Burton. 1993. Plant functional types; pp. 272–292, in: A.M. Solomon and H.H. Shugart (eds.). Vegetation dynamics and global change. London: Chapman & Hall.
- Tiner, R.W. 1999. Wetland Indicators: A Guide to Wetland Identification, Delineation, Classification, and Mapping. Boca Raton: CRC Press. 410pp.
- Tropicos.org. 2015. Missouri Botanical Garden. Accessed at http://www.tropicos.org, 15 April 2015.
- Ueno, O. and T. Takeda. 1992. Photosynthetic pathways, ecological characteristics and the geographical distribution of Cyperaceae in Japan. Oecología 89: 195–205. doi: 10.1007/BF00317218
- Waller, S.S. and J.K. Lewis. 1979. Occurrence of C₃ and C₄ photosynthetic pathways in North American grasses. Journal of Range Management 32: 12–28.
- Zuloaga, F.O., O. Morrone, M.J. Belgrano, C. Marticorena and E. Marchesi (eds.). 2008. Catálogo de las plantas vasculares del Cono Sur (Argentina, Sur de Brasil, Chile, Paraguay y Uruguay). Monographs in Systematic Botany from the Missouri Botanical Garden. 3348 pp. Buenos Aires: Instituto Darwinion.

**Author contributions:** NM, RDQ and PK collected the data: NM and PK made the analysis. NM, RDQ, PK and RFQ wrote the text.

**Received:** 30 November 2014 **Accepted:** 29 September 2015

Academic editor: Juliana de Paula-Souza