Applications

Premier principe de la thermodynamique

Application 1: Turbine hydraulique

Une turbine hydraulique est un dispositif de conversion d'énergie hydraulique d'un fluide incompressible sous pression en énergie mécanique récupérée au niveau d'un arbre moteur.

De l'eau sous une pression de 4 bar et une température de 40°C vient se détendre sur les pales d'une turbine pour s'éjecter à pression atmosphérique.

- Appliquer le premier principe de la thermodynamique dans cette situation.
- Quel serait le travail fourni par cette turbine pour un volume d'eau de 0.05 m³ si la transformation était adiabatique et isotherme ?
- Quel serait alors le travail fourni par le même volume d'eau lors d'une transformation réelle. Déterminer alors la température de sortie de l'eau de la turbine. (C_{eau}= 4.18kJ/K.kg, H₁=30 000 kJ, H₂=13 000 kJ)

Application 2 : Tuyère

Une tuyère est un dispositif d'augmentation de vitesse d'un fluide en écoulement. En régime subsonique. La diminution de la section d'un tube engendre l'augmentation de la vitesse d'écoulement.

- Y-a-t-il un travail échangé avec l'extérieur dans ce dispositif?
- Appliquer le premier principe à cette tuyère.

De l'eau entre dans une tuyère à 4m/s, la section de la sortie est égale à la moitié de celle d'entrée. Le dispositif étant horizontal de même hauteur.

- Quel serait dans ce cas la variation d'enthalpie massique sachant que l'échange de chaleur est négligeable.

Application 3 : Radiateur

Dans un radiateur, l'eau entre à une température de 70°C pour sortir à la même pression à une température de 30°C. Quel est la puissance thermique délivrée par ce radiateur pour un débit d'eau égal à 0.2kg/s.