Eléments de correction du Devoir Commun n°2 – session 2012

<u>Informations sur le codage</u>: 0 = pas de réponse, 9 = réponse fausse et/ou un raisonnement erroné,1 = réponse juste et complète, 2 = réponse incomplète ou un raisonnement partiel...

Exercice 1 1.a. B

- 1.b. D
- 1.c. A
- 1.d. C 2. $-\sqrt{3}$ et $\sqrt{3}$

Exercice 2 1.c.
$$-2x+5 = \iff x = \frac{5}{2} = 2,5$$

;
$$2x+1=0 \iff x=-\frac{1}{2}=-0.5$$

х	- ∞		$-\frac{1}{2}$		$\frac{5}{2}$	+ ∞
2 <i>x</i> +1		_	Ф	+		+
-2x+5		+		+	Ф	-
(-2x+5)(2x+1)		_	Ф	+	Ф	_

1.d.
$$S =]-\infty; -0.5] \cup [2.5; +\infty[$$

2.a.

x	-∞	1	+∞
f(x)		9	*

2.b. f(1,5) > f(1,57) car 1,5 < 1,57 et la fonction f est décroissante sur [1; + ∞ [...

EXERCICE 3

- Il n'y a pas de point d'abscisse 2 sur la courbe car 2 est une valeur interdite (on ne peut pas diviser par zéro...)
- Cette courbe est une hyperbole.
- Graphiquement, l'image de 9 est 3 par la fonction f.
- 4. f(9) = ... = 3.
- 5. Graphiquement, l'inéquation $f(x) \le 4$ a pour solution $]-\infty$; $2[\cup [5,5]+\infty]$

6. a. $\frac{2x+3}{x-2} \le 4 \iff \frac{2x+3}{x-2} - 4 \le 0 \iff \frac{2x+3}{x-2} - 4 \times \frac{x-2}{x-2} \le 0 \iff \frac{2x+3-4x+8}{x-2} \le 0 \iff \frac{-2x+11}{x-2} \le 0$

b. $-2x+11 = 0 \iff x = 5,5$

x-2 = 0	$\Rightarrow x = 2$
---------	---------------------

Х	-∞	2		5,5	+∞
<i>x</i> – 2	_	Ó	+		+
-2x+11	+		+	þ	_
$\frac{-2x+11}{x-2}$	_		+		_

donc $S =]-\infty$; $2[\cup[5,5; +\infty[$ (cela confirme donc la lecture graphique de la question 5.)

- 1. $3,00001^2 > 2,99997^2$ car 3,00001 > 2,99997 et la fonction carré est croissante sur $[0; +\infty[$
- 2. $(-299999)^2 < (-300000)^2$ car -299999 > -300000 et la fonction carré est décroissante sur $]-\infty$; 0]
- 3. $-13,1^2 < (-0,2)^2$ car $-13,1^2$ est un nombre négatif et que $(-0,2)^2$ est un nombre positif.

Seconde 2011-2012

DEVOIR COMMUN N°2

Nom:

classe:

EXERCICE 5:

1. D1:
$$y = 3x + 1$$
; D2: $y = \frac{1}{3}x + 1$; D3: $y = -\frac{5}{2}x + 4$; D4: $y = -2$.

EXERCICE 6:

$$\rightarrow$$
 \rightarrow 1. $u(1:-2)$ et $v(2:0)$

 $2.\ \ V\'{e}rifier\ votre\ construction\ en\ comparant\ avec\ les\ coordonn\'{e}es\ des\ points\ suivants\ :$

 $\begin{array}{c} M(5\ ; -3)\ ; \ N(2\ ; 2)\ ; \ P(0\ ; 4)\ et\ Q(-3\ ; -3) \\ \longrightarrow \end{array} \quad \begin{array}{c} \longrightarrow \end{array}$

- 3. Détaillez vos calculs... AB(3; 2) et BC(1; 5)
- 4. On utilise la formule de la leçon pour calculer les longueurs BC et BD... On obtient BC = BD = $\sqrt{26}$ et le triangle est donc isocèle en B...
- 5. On calcule les coordonnées de DC : on obtient DC(6; 4). Avec les coordonnées, on remarque que DC = 2AB. Comme ces deux vecteurs sont colinéaires, on peut conclure que les droites (AB) et (CD) sont parallèles.
- 6. On utilise la formule de la leçon : on obtient I(0; 2).
- 7. Voir exercice type de la leçon... On obtient R(-1; -2).

EXERCICE 7:

1. a) Si x = 4, alors $y = 2 \times 4 - 4 = 4$

b) si x = -2, alors $y = (-2)^2 = 4$

2. On sait que y = 36. - Si $x \ge 0$, 2x - 4 = 36 ... d'où x = 20

- Si x < 0, $x^2 = 36$... d'où x = -6 ou x = 6 (mais la valeur 6 est impossible car x < 0).

Conclusion: Pour obtenir y = 36, il faut saisir -6 ou 20.