

Universidade Federal da Fronteira Sul Curso de Ciência da Computação Campus Chapecó

GEX208 - Informática Básica Sistemas de Numeração

Prof. Luciano L. Caimi lcaimi@uffs.edu.br

O número é um conceito abstrato que representa a ideia de quantidade

Um Sistema de Numeração (SN) é o conjunto de símbolos utilizados para a representação de quantidades e as regras que definem a forma de representação. Um SN pode ser:

- Não posicional
- Posicional

- Sistema de Numeração Não Posicional
- Cada símbolo representa um valor fixo, independente de sua posição relativa no número
- Exemplo: Sistema de algarismos romanos
 - Símbolos: I, V, X, L, C, D, M
 - Regras:
 - Cada símbolo colocado à direita de um maior é adicionado a este
 - Cada símbolo colocado à esquerda de um maior tem o seu valor subtraído do maior

Cada símbolo representa um valor fixo, independente de sua posição relativa no número

- Sistema de Numeração Posicional
- O valor de cada símbolo é determinado de acordo com a sua posição no número
 - Um sistema de numeração é determinado fundamentalmente pela <u>BASE</u>, que indica a <u>quantidade de símbolos</u> e o valor de cada símbolo
 - Todos os sistemas posicionais, independente da BASE, possuem as mesmas regras de formação, contagem e operações aritméticas básicas

▶ Teorema Fundamental da Numeração

O teorema fundamental da numeração expressa a característica principal dos sistemas posicionais:

$$N^{o} = \sum_{i=-d}^{n} (digito)_{i} * (base)^{i}$$

expandindo

...
$$+a_3*B^3+a_2*B^2+a_1*B^1+a_0*B^0+a_{-1}*B^{-1}+...$$

Onde:

i = posição em relação à vírgula,
 d = nº de dígitos à direita da vírgula,
 n = nº de dígitos à esquerda da vírgula –1,
 dígito = cada um símbolos dos que compõem o número

UFFS - Universidade Federal da Fronteira Sul - Informática Básica

Teorema Fundamental da Numeração

O valor total do número é a soma dos valores relativos de cada algarismo (decimal)

O algarismo 5 representa 5 unidades, o algarismo 3 representa 3 dezenas, e por último que o algarismo 7 representa 7 centenas...

Já no 2º exemplo é diferente

Base Decimal: 10 símbolos

Símbolos: 0,1,2,3,4,5,6,7,8,9

Contagem:

00

01

"encheu a casa menos significativa:

02 reinicia a contagem nesta casa e usa o

03 próximo símbolo na casa a sua esquerda"

04 assim:

Esta "regra" é válida independente da base de numeração utilizada

Base Decimal

Cada casa decimal possui um peso 10 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos decimais teremos:

10³ = 1000 valores
UFFS - Universidade Federal da Fronteira Sul - Informática Básica

Base Decimal

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 3 dígitos decimais teremos:

$$10^3 - 1 = 999$$

Considerando o maior símbolo possível

Base Decimal:

Adição: quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1

Exemplo:

Base Decimal

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base (10) Exemplo:

Base Binária

Símbolos: 0,1

Contagem:

"encheu a casa menos significativa: 000

reinicia a contagem nesta casa e usa o 001

próximo símbolo na casa a sua esquerda"

010 011

101

100

110

111 UFFS – Universidade Federal da Fronteira Sul – Informática Básica

Base Binária

- Cada casa ou dígito binário é chamado de bit (do inglês Binary Digit)
- Um agrupamento de 8 bits é chamado de Byte
- Pelo T.F.N. cada casa binária possui um peso <u>2</u> vezes maior do que a casa a sua direita

Com n bits podemos representar: $B^n \Rightarrow 2^n$

Para 3 casas binárias (ou 3 bits) teremos:

$$2^3 = 8$$
 valores

O maior valor a ser representado com N dígitos será: Bⁿ -1

Para 5 bits teremos:

$$2^5 - 1 = 31$$

Considerando o maior símbolo possível:

Adição: quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1

Exemplo:

Base Binária

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base(2)

Exemplo:

Considerando o peso de cada casa teremos:

$2^0 = 1$	$2^{10} = 1024 = 1K$	$2^{20} = 1024K = 1M$
$2^1 = 2$	$2^{11} = 2048 = 2K$	$2^{21} = 2048K = 2M$
$2^2 = 4$	$2^{12} = 4096 = 4K$	$2^{22} = 4096K = 4M$
$2^3 = 8$	$2^{13} = 8192 = 8K$	$2^{23} = 8M$
$2^4 = 16$	$2^{14} = 16K$	$2^{24} = 16M$
$2^5 = 32$	$2^{15} = 32K$	$2^{25} = 32M$
$2^6 = 64$	$2^{16} = 64K$	$2^{26} = 64M$
$2^7 = 128$	$2^{17} = 128K$	$2^{27} = 128M$
$2^8 = 256$	2 ¹⁸ = 256K	$2^{28} = 256M$
$2^9 = 512$	$2^{19} = 512K$	$2^{29} = 512M$

rara valores entre 200 e 2001: Giga

Conversões:

- Exemplos de conversão
- Considerando que 1 byte é um agrupamento de 8 bits teremos:
- a) 56 bits = ? Bytes \Rightarrow 56/8 Bytes = 7 Bytes
- b) 9 Bytes = ? bits \Rightarrow 9 x 8 bits = 72 bits
- c) 32KBytes = ? bits \Rightarrow 32 * 8 Kbits
 - ⇒ 256 * 1024 bits
 - ⇒ 262144 bits
 - d) 131072Kbits = ? MBytes \Rightarrow 131072/8 KBytes
 - ⇒ 16384 / 1024 KB
 - ⇒ 16 MBytes

Símbolos: 0,1,2,3,4,5,6,7

Contagem:

00

03

04

01

02

05

06

"encheu a casa menos significativa:

reinicia a contagem nesta casa e usa o

próximo símbolo na casa a sua esquerda"

assim:

10

UFFS – Universidade Federal da Fronteira Sul – Informática Básica

100

cada casa octal possui um peso 8 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos octais teremos:

$$8^3 = 512$$
 valores

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 4 dígitos octais teremos:

$$8^4 - 1 = 4095$$

Considerando o maior símbolo possível

Base Octal

Adição: Quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1

Exemplo:

Base Octal

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base(8).

Exemplo:

Base Hexadecimal

Símbolos: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Contagem:

 $\cap \cap$

UC)			encheu a casa
01	. 0A			reinicia a contag
02	2 OB			o próximo sím
03	0C			es
04	0D	19	20	
05	0E	1A	21	
06	6 OF			
07	10	1F	2F	:
30	3 11		30	
09	12	UFFS – Univer	sidade Federal da l	Fronteira Sul – Informática Básica

"encheu a casa menos significativa: reinicia a contagem nesta casa e usa o próximo símbolo na casa a sua esquerda"

Cada casa hexadecimal possui um peso 16 vezes maior do que a casa a sua direita

Considerando um número com N dígitos (ou casas) teremos capacidade de representar

B^N valores diferentes (onde B é a base de numeração).

Para 3 dígitos hexadecimais teremos:

 $16^3 = 4096 \text{ valores}$

O maior valor a ser representado com N dígitos será:

B^N -1 (onde B é a base de numeração).

Para 4 dígitos hexa, teremos:

$$16^4 - 1 = 65535$$

Considerando o maior símbolo possível

Base Hexadecimal

Adição: Quando a soma em uma determinada casa excede o maior símbolo da base, devemos deixar o excedente e levar o peso da base para a casa mais a esquerda valendo 1

UFFS – Universidade Federal da Fronteira Sul – Informática Básica

Base Hexadecimal

Subtração: quando uma determinada casa necessita "pedir emprestado" a casa a sua esquerda fica com um a menos e a casa solicitante recebe o peso da base (16)

Exemplo:

Conversão entre Bases

São 4 técnicas básicas

Base Origem Base Destino	Técnica		
Base Qualquer → Decimal	Teorema Fundamental da Numeração		
Decimal → Base Qualquer	Divisões Sucessivas		
Octal/Hexa → Binário	Substituir de 3 em 3 / 4 em 4		
Binário → Octal/Hexa	Agrupar de 3 em 3 / 4 em 4 e substituir		

Conversão entre Bases

UFFS - Universidade Federal da Fronteira Sul - Informática Básica

Códigos Numéricos

Código BCD (Binary Coding Decimal)

O código BCD é um sistema de representação dos dígitos decimais desde 0 até 9 com um código binário de 4 bits. Esse código BCD usa o sistema de pesos posicionais 8421 do código binário puro

Apesar de usar 4 bits existem apenas dez códigos válidos. Os números binários de 4 bits representando os números decimais desde 10 até 15 são inválidos no sistema BCD

Ex: 238 = 001000111000

Decimal	BCD		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

Códigos Numéricos

	_		UFF
Códigos 2 em 5	Código	2 em 5	
Características	Decimal	01236	74210
Grupo de códigos onde 2 entre 5	0	01100	11000
dígitos recebem o valor 1	1	11000	00011
Cada posição tem um peso	2	10100	00101
associado	3	10010	00110
O zero tem codificação especial	4	01010	01001
3	5	00110	01010
Ex:	6	10001	01100
804 = 001010110001010	7	01001	10001
	8	00101	10010
= 100101100001001	9	00011	10100

Códigos Numéricos

UFFS – Universidade Federal da Fronteira Sul – Informática Básica

Decimal

10

11

. . .

Código GRAY

Características

Ex: 237 = 011010100

- Cíclico

natural

- Refletido

0011

0010

0110

0111

0101

0100

1101

1001

1111

1110

0001

- Palavras adjacentes variam apenas 1 bit

- Bit mais significativo é igual ao código inário