BONUS Week 10 Homework

(!) This is a preview of the published version of the quiz

Started: Jul 2 at 7:54am

Quiz Instructions

Question 1
$$Ca+s = C$$
 $P(c)=0.6$ $C \sim N(12,4) = N(12,2^2)$
 $P(D)=0.4$ $P(D)$

(Lesson 7.11: Composition.) BONUS: It's Raining Cats and Dogs is a pet store with 60% cats and 40% dogs. The weights of cats are Nor(12,4), and the weights of dogs are Nor(30,25). How would we use composition to simulate the weight W of a random pet from the store? (Let $\Phi(\cdot)$ denote the standard normal c.d.f., and let U_i 's denote PRN's.)

$$\odot$$
 a. $W=0.6(12+4\Phi^{-1}(U_1))+0.4(30+25\Phi^{-1}(U_2))$

$$\bigcirc$$
 b. $W=0.6(12+2\Phi^{-1}(U_1))+0.4(30+5\Phi^{-1}(U_2))$

$$\bigcirc$$
 c. If $U_1 < 0.6$, then $W = 12 + 4\Phi^{-1}(U_2)$; otherwise, $W = 30 + 25\Phi^{-1}(U_2)$

$$ilde{ ilde{oldsymbol{arphi}}}$$
 d. If $U_1 < 0.6$, then $W = 12 + 2\Phi^{-1}(U_2)$; otherwise, $W = 30 + 5\Phi^{-1}(U_2)$

$$\bigcirc$$
 e. If $U_1 < 0.4$, then $W = 12 + 4\Phi(U_2)$; otherwise, $W = 30 + 25\Phi(U_2)$

Question 2 1 pts

(Lesson 7.15: Baby Stochastic Processes.) BONUS: Consider a Markov chain in which $X_i=0$ if it rains on day i; and otherwise, $X_i=1$. Denote the day-to-day transition probabilities by

 $P_{jk} = \Pr(\mathrm{state} \ k \ \mathrm{on} \ \mathrm{day} \ i \mid \mathrm{state} \ j \ \mathrm{on} \ \mathrm{day} \ i-1), \quad j,k=0,1.$ Suppose that the probability state transition matrix is

$$\mathbf{P} = \begin{pmatrix} 0.8 & 0.2 \\ 0.4 & 0.6 \end{pmatrix}. \qquad \begin{array}{c} P_{00} = 0.8 \\ P_{01} = 0.2 \end{array} \qquad \begin{array}{c} P_{10} = 0.4 \\ P_{11} = 0.6 \end{array}$$

Suppose that it rains on Monday, e.g., $X_0 = 0$. Use simulation to find the probability that it rains on Wednesday, e.g., estimate $\Pr(X_2=0|X_0=0)$. [You may have to simulate the process a bunch of times in order to estimate this probability.]

Question 3 1 pts

(Lesson 7.17: Time Series Generation.) BONUS: Suppose that $Y_0 \sim \operatorname{Nor}(0,1)$ and consider the time series $Y_i=0.7Y_{i-1}+\epsilon_i$, $i=1,2,\ldots$, where the ϵ_i 's are i.i.d. Nor $(0,1-(0.7)^2)$. (The funny variance of ϵ_i guarantees that $Var(Y_i)=1$ for all i). Use simulation to find $Cov(Y_2,Y_5)$. Hint: Simulate Y_0,Y_1,\ldots,Y_5 many times. For each run of the simulation, save the pair (Y_2, Y_5) . Then use those pairs to estimate the covariance.

This is AR(1)

$$0 = 0.4 Y_{i-1} + \varepsilon_{i} \qquad i = 1, 2, ...$$

$$0 = 0.4 Y_{i-1} + \varepsilon_{i} \qquad i = 1, 2, ...$$

- O b. 0.7
- Oc. 0.49

$$\emptyset$$
 d. 0.7^3 $Cov(Y;,Y_{i+k}) = \emptyset$ |ki

$$\bigcirc e. 0.7^4$$
 $cov(Y_2, Y_{2+3}) = \phi^{131} = 0.7^{-3}$