Chapter 1

1.1 Brownian Motion

Definition 1.1

A real-valued stochastic process $B = (B_t)_{t\geq 0}$ defined on a probability space $(\Omega, \mathcal{F}; P)$ is called a Brownian motion if it satisfies the following conditions:

- a. Almost surely $B_0 = 0$.
- b. For all $0 \le t_1 < \cdots t_n$ the increments $B_{t_n} B_{t_{n-1}}, \cdots, B_{t_2} B_{t_1}$ are independent random variables.
- c. If $0 \le s < t$, the increment $B_t B_s$ is a Gaussian random variable with mean zero and variance t s.
- d. With probability one, the map $t \to B_t$ is continuous.
- A d-dimensional Brownian motion is defined as an \mathbb{R}^d -valued stochastic process $B=(B_t)_{t\geq 0}$, $B_t=(B_t^1,\cdots,B_t^d)$, where B^1,\cdots,B^d are d independent Brownian motions.

Proposition 1.1

Properties (a),(b),(c) are equivalent to that B is a Gaussian process,i.e. for any finite set of indices t_1, \dots, t_n , $(B_{t_1}, \dots, B_{t_n})$ is a multivariate Gaussian random variable, equivalently, any linear combination of B_{t_i} is normal distributed r.v., with mean zero and covariance function

$$\Gamma(s,t) = \min(s,t)$$

Proof

Suppose (a),(b),(c) holds, then we know $(B_{t_1}, \dots, B_{t_n})$ is normal for any finite indices and then

$$m(t) = E(B_t) = 0$$

$$\Gamma(s,t) = E(B_s B_t) = E(B_{\min(s,t)}^2) = \min(s,t)$$

Conversly, we know $E(B_0^2) = 0$ and hence $B_0 = 0$ a.s., then we know $E(B_s^2) = s$ and for any 0 < s < t,

$$E(B_s(B_t - B_s)) = 0$$

and it is easy to check (c), and (b) is deduced by computing the covariance of the increments, notice that two r.v.s are independent iff $\phi_{(X_1,X_2,\cdots,X_n)} = \phi_{X_1}\phi_{X_2}\cdots\phi_{X_n}$ which implies that normal r.v.s are independent iff they have zero covariances.

Theorem 1.1

(Kolmogorov's continuity theorem) Suppose that $X = (X_t)_{t \in [0,T]}$ satisfies

$$E(|X_t - X_s|^{\beta}) \le K|t - s|^{1+\alpha}$$

for all $s,t \in [0,T]$ and some constant $\beta,\alpha,K>0$. Then there exists a version \tilde{X} of X such that if

$$\gamma < \alpha/\beta$$

then

$$|\tilde{X}_t - \tilde{X}_s| \le G_{\gamma} |t - s|^{\gamma}$$

for all $s, t \in [0, T]$ where G_{γ} is a random variable. The trajectories of \tilde{X} are Holder continuous of order γ for any $\gamma < \alpha/\beta$.

Proposition 1.2

There exists a version of B with Holder-continuous trajectories of order γ for any $\gamma < (k-1)/2k$ on any interval [0,T].

Proof

Since we know $B_t - B_s$ has the normal distribution $\mathcal{N}(0, t - s)$ and then we know

$$E((B_t - B_s)^{2k}) = \frac{1}{\sqrt{2\pi(t-s)}} \int_{-\infty}^{\infty} x^{2k} \exp^{-\frac{x^2}{2(t-s)}} dx = (2k-1)!!(t-s)^k = \frac{(2k)!}{2^k k!} (t-s)^k$$

and by the theorem 1.1, the proposition holds.

Proposition 1.3

Brownian motion are basic properties:

- a. For any a > 0, the process $(a^{-1/2}B_{at})_{t>0}$ is a Brownian motion.
- b. For any h > 0, the process $(B_{t+h} B_h)_{t \ge 0}$ is a Brownian motion.
- c. The process $(-B_t)_{t\geq 0}$ is a Brownian motion.
- d. Almost surely $\lim_{t\to\infty} B_t/t = 0$ and the process $X_t = tB_{1/t}$ for t > 0, $X_t = 0$ for t = 0 is a Brownian motion.

Proof

a. Consider $0 \le t_1 < t_2 < \cdots < t_n$ and we may calculate the covariance matrix for

$$a^{-1/2}B_{at_n} - a^{-1/2}B_{at_{n-1}}, \cdots, a^{-1/2}B_{at_2} - a^{1/2}B_{at_1}$$

by

$$\begin{split} E[(a^{-1/2}B_{at_{j}}-a^{-1/2}B_{at_{j-1}})(a^{-1/2}B_{at_{k}}-a^{-1/2}B_{at_{k-1}})]\\ =&a^{-1}(at_{j}\wedge at_{k})-a^{-1}(at_{j}\wedge at_{k-1})-a^{-1}(at_{j-1}\wedge at_{k})+a^{-1}(at_{j-1}\wedge at_{k-1})\\ =&\begin{cases} t_{j}-t_{j-1}-t_{j-1}+t_{j-1}=t_{j}-t_{j-1} & \text{if } j=k\\ t_{j}-t_{j}-t_{j-1}+t_{j-1}=0 & \text{if } j< k\\ 0 & \text{if } j>k \end{cases} \end{split}$$

and hence $(a^{-1/2}B_{at})_{t>0}$ satisfies the property (b) in definition 1.1, a,d are obvious and c is easy to be checked.

- b. Obvious.
- c. Obvious.
- d. Notice B is Holder continuous. Now we only need to check that

$$E(tB_{1/t}sB_{1/s}) = ts(1/t \wedge 1/s) = (t \wedge s)$$

and the rest is easy to be checked.

Theorem 1.2

(The law of the iterated logarithm)

$$\limsup_{t\to s^+}\frac{|B_t-B_s|}{\sqrt{2|t-s|\ln\ln|t-s|}}=1,\quad a.s.$$

Proposition 1.4

Fix a time interval [0,t] and consider the following subvision π of this interval:

$$0 = t_0 < t_1 < \dots < t_n = t$$

The norm of the subdivision π is defined as $|\pi| = \max_{0 \le j \le n-1} (t_{j+1} - t_j)$. Then

$$\lim_{|\pi| \to 0} \sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 = t$$

in $L^2(\Omega)$.

Proof

Consider let $\xi_j = (B_{t_{j+1}} - B_{t_j})^2 - (t_{j+1} - t_j)$ and we know ξ_j are independent with mean 0 and hence

$$E\left(\sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 - t\right)^2 = \sum_{j=0}^{n-1} E\xi_j^2 = \sum_{j=0}^{n-1} (3(t_{j+1} - t_j)^2 - 2(t_{j+1} - t_j)^2 + (t_{j+1} - t_j)^2)$$

$$= 2\sum_{j=0}^{n-1} (t_{j+1} - t_j)^2 \le 2t|\pi| \to 0$$

Proposition 1.5

The total variation of Browian motion on an interval [0,t] defined By

$$V = \sup_{\pi} \sum_{j=0}^{n-1} |B_{t_{j+1}} - B_{t_j}|$$

where $\pi = \{0 = t_0 < t_1 < \dots < t_n\}$ is infinite with probability one.

Proof

Here we know

$$\sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 \le V \sup_j |B_{t_{j+1}} - B_{t_j}|$$

and hence if $V < \infty$, then

$$\lim_{|\pi| \to 0} \sum_{j=0}^{n-1} (B_{t_{j+1}} - B_{t_j})^2 = 0$$

which means $P(V < \infty) = 0$.