Recitation Material: Linear Algebra

10-606

September 2025

Matrix Calculus

- 1. Let $f(x) = x^T A x$, where $A \in \mathbb{R}^{n \times n}$. Compute the gradient of f(x) with respect to x. What if A is symmetric?
- 2. Let $A \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^n$. Compute the derivative of $f(x) = x^T A x + b^T x$, where $b \in \mathbb{R}^n$.
- 3. For linear regression, the loss function is $L(\beta) = ||y X\beta||^2$, where $X \in \mathbb{R}^{m \times n}$ is the design matrix, $\beta \in \mathbb{R}^n$ is the parameter vector, and $y \in \mathbb{R}^m$ is the target vector. Compute the gradient of $L(\beta)$ with respect to β .
- 4. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be

$$f(x,y) = \begin{pmatrix} x^2 y \\ \sin(x+y) \end{pmatrix}.$$

Compute the Jacobian matrix $J_f(x,y)$.

- 5. Let $b \in \mathbb{R}^n$ and $g(x) = (b^\top x)^2$.
 - (a) Compute $\nabla g(x)$.
 - (b) Compute the Hessian $\nabla^2 g(x)$.
 - (c) Is $\nabla^2 g(x)$ positive semidefinite?
- 6. Let $f: \mathbb{R}^n \to \mathbb{R}$. Let $J_x(y)$ be the Jacobian of a vector y with respect to the vector x (i.e., $J(y)_{ij} = \partial y_i/\partial x_j$). Show that the Hessian of f obeys

$$H(f) = J(\nabla_x f(x)).$$

Recall that the Hessian of a function g satisfies $H(g)_{ij} = \partial^2 g/\partial x_i \partial x_j$.

Convexity and Optimization

- 1. Let $f(x) = x^2 + 3x + 5$. Is f convex?
- 2. Compute the Hessian of the function $f(x,y) = x^2 + y^2 + xy$. Can we conclude whether or not f is convex?

- 3. Show that the Hessian of $f(x) = x^{\top} A x$ is $A + A^{\top}$.
- 4. Consider the loss function in linear regression $L(\beta)=\|y-X\beta\|^2$. Prove that this loss function is convex.
- 5. Perform two iterations of gradient descent for $f(x) = x^2 + 4x + 4$, starting at $x_0 = 3$, with a learning rate $\alpha = 0.1$.
- 6. Consider the function $f(x,y)=x^2+y^2$. Starting at $(x_0,y_0)=(1,2)$, perform one iteration of gradient descent with learning rate $\alpha=0.1$.