SQUID Characterization RUN 18 and RUN 19, measurements taken on 15.05.2024 and 24.05.2024, respectively

Nicolas Sierra Manrique

Abstract—The following paper presents the results of the latest characterization of SQUID sensors for the Nucleus experiment.

Contents

Figure 2. Circuit connected to the Shunt resistances, without a detector

1. Introduction

The previous characterization indicates that the SQUID-noise patterns depend on the circuit setup. Currently, there are four configurations installed in the SQUID system:

- A SQUID with a short installed (see Figure 1).
- A SQUID connected to the breakout box but not to a detector (see Figure 2), also referred to a Shunt-shorted circuit.
- A SQUID with a bias current flowing entirely through the shunt resistances (see Figure 3), also referred as an Open circuit.
- A SQUID with a TES detector in operation (see Figure 4).

			SQI	JID		
		1	2	3	4	
		5	6	7	8	
			Breako	out box		
SCSI 1	QUAD 185	О	О	О	О	TUM
SCSI I	QUAD 186	О	SH	SH	SH	TUM
SCSI 3	QUAD 190	SH	SH	D	SH	STAR
SCSI 3	QUAD 191	SH	SH	SH	SH	STAR
SCSI 2	QUAD 107	S	S	S	S	STAR
SCSI 2	QUAD 189	S	S	S	S	STAR

Table 1. Measured detector configuration ${\bf O}$ stands for Open, ${\bf SH}$ stands for Shunt, ${\bf S}$ stands for Short, and ${\bf D}$ for Detector

Figure 3. Open Circuit, entire Bias current flowing through the shunt resistances

2. RUN 15

The SQUID noise of QUADS 107 and 189 with STAR Cryogenic wiring was measured with the Pulse Tube on and with the Pulse Tube off.

L X SQUID X

Figure 1. Shorted Circuit

Table 2. Amplitude of the SQUID patterns

	SQUID 1 [V]	SQUID 2 [V]
QUAD 107	4,680	5,893
QUAD 189	3,459	4,184
	SQUID 3 [V]	SQUID 4 [V]
QUAD 107	3,591	3,545
QUAD 107 QUAD 189		

Both QUADs (107, 189) were installed with a short attached to the breakout box ${\bf v}$

Figure 4. Circuit with a TES Detector

Figure 5. Noise of QUAD 107 with pulse tube ON

Figure 6. Noise of QUAD 189 with pulse tube ON

Figure 7. Noise of QUAD 189 and QUAD 107 with pulse tube OFF

Table 3. Mean SQUID noise for QUAD 107 and 189 around 10 Hz, with pulse tube \mathbf{ON}

	SQUID 1 $\frac{pA}{\sqrt{Hz}}$	SQUID 2 $\frac{pA}{\sqrt{Hz}}$
QUAD 107	118	84
QUAD 189	150	125
	SQUID 3 PA	SQUID 4 PA
	$\sqrt{\text{Hz}}$	$\sqrt{\text{Hz}}$
QUAD 107	6	114

Table 4. Mean SQUID noise for QUAD 107 and 189 around 10 Hz, with pulse tube **OFF**

SQUID 1 $\frac{pA}{\sqrt{Hz}}$	SQUID 2 $\frac{pA}{\sqrt{Hz}}$
126	95
N/A	N/A
SQUID 3 $\frac{pA}{\sqrt{Hz}}$	SQUID 4 $\frac{pA}{\sqrt{Hz}}$
5	N/A
	126 N/A SQUID 3 $\frac{\text{pA}}{\sqrt{\text{Hz}}}$

2.1. QUAD 190

Additionally, the noise of **SQUID 3** from **QUAD 190** with pulste on and off was measured.

Figure 8. Noise of SQUID 3 from QUAD 190 with pulste on and off

Table 5. Mean SQUID noise of SQUID 3 in QUAD 190 around 10 Hz, with pulse tube ON and OFF

	SQUID 3 $\frac{pA}{\sqrt{Hz}}$
ON	3.8
OFF	3.7

3. RUN 19

In Run 19 the noise of QUADs 185, 186, 190 and 191 was measured.

Figure 9. Noise of QUAD 185

Figure 10. Noise of QUAD 186

Figure 11. Noise of QUAD 190

Figure 12. Noise of QUAD 191

Table 6. Mean SQUID noise at 10 Hz for QUAD 185, 186, 190 and 191 from RUN $\mathbf{19}$

	SQUID 1 $\frac{pA}{\sqrt{Hz}}$	SQUID 2 $\frac{pA}{\sqrt{Hz}}$
QUAD 185	275	82
QUAD 186	150	9
QUAD 190	613	451
QUAD 191	26	75
	SQUID 3 $\frac{pA}{\sqrt{Hz}}$	SQUID 4 $\frac{pA}{\sqrt{Hz}}$
QUAD 185	SQUID 3 $\frac{pA}{\sqrt{Hz}}$	300ID 4 -
QUAD 185 QUAD 186	√Hz	SQUID 4 $\frac{1}{\sqrt{\text{Hz}}}$
-	10 √Hz	31
QUAD 186	10 57	$ \begin{array}{c} 31 \\ 64 \end{array} $

Table 7. Mean SQUID noise for each QUAD around 10 Hz, from **RUN 8** cells in blue are the SQUIDs in which a detector is connected: Table from [1]

	SQUID 1 $\frac{pA}{\sqrt{Hz}}$	SQUID 2 $\frac{pA}{\sqrt{Hz}}$
QUAD 185	133.50	8.6462
QUAD 186	125.73	15.381
QUAD 190	150.22	262.83
QUAD 191	4.8968	4.1133
	SQUID 3 $\frac{pA}{\sqrt{Hz}}$	SQUID 4 $\frac{pA}{\sqrt{Hz}}$
QUAD 185	SQUID 3 $\frac{\text{pA}}{\sqrt{\text{Hz}}}$ 7.0264	SQUID 4 $\frac{pA}{\sqrt{Hz}}$ 98.251
QUAD 185 QUAD 186	√Hz	√Hz
-	7.0264	98.251

4. Noise Code Run 18

Since the data taken from Run 18 was saved as int32, some modifications had to be made to the conversion factors to account for the VDAQ values.

```
nhead = 6
toVolt = 39.3216/((2**24) -1)
touAmp= (77/55)*toVolt
```

Code 1. ToVolt conversion value for Int32.

Here is an example code for the Fourier transform which allows for the measurement of the noise:

```
1 for i in range(4):
2     file_path = r"C:\Users\n1cos\Downloads\
        clusterCryostatRun18\noise\noise_SQ"+ str(i + 1) +
        "_000.bin"
```

```
#print("squidchar_noise_186" + str(i+1)+"M")
        fs=100e3
4
        nperseg=int(0.5*fs)
5
 6
        if os.path.isfile(file_path):
             #readRDT(file_path)
             fd = open(file_path, 'rb')
             read_data = np.fromfile(file=fd, dtype=np.int32
10
             fd.close()
11
             read_data= toVolt*read_data[12:]/1.70
12
             f, pxx = sig.welch(read_data, fs=fs, nperseg=
13
         nperseg)
14
             f = f[:-1]
             ppx = 1e6 * np.sqrt(pxx[:-1])
P10 = np.mean(ppx[(f >= 7) & (f <= 11)])
P103 = np.mean(ppx[(f >= 900) & (f <= 1100)])</pre>
15
16
17
             print(P10)
18
             plt.plot(f, ppx,label=f"SQUID_"+ str(i + 1))
20
21
        else:
print("No data taken")
22 print("No data taken")
23 #plt.title("QUAD 185",fontsize= 16)
#plt.axhline(y=4, color='r', linestyle='--', linewidth =5,label=" Shunt Noise")
plt.legend()
26 plt.title("QUAD 107")
27 plt.yscale("log")
28 plt.xscale("log")
29 plt.grid(True)
30 plt.xlabel(r'$f$ [Hz]', fontsize= 16)
31 plt.ylabel(r'$ \frac{p A}{\sqrt{Hz}}$', fontsize= 16)
32 plt.show()
```

Code 2. Noise Code for QUAD 185.

5. Noise Code Run 19

Run 19 was saved as int16, some modifications had to be made to the conversion factors to account for the VDAQ values.

```
1 nhead = 12
2 toVolt = 39.3216/((2**16) -1)
3 touAmp= (77/55)*toVolt
```

Code 3. ToVolt conversion value for Int16.

References

[1] N. S. Manrique, Characterization of squid sensors for the nucleus experiment, 2024.