(コ) ホモロジー群の積演算について

以下, (コ) ホモロジー群の係数として用いる環R は単項イデアル整域 (\mathbb{Z} や体など) であるとする.

Alexander-Whitney の写像

• (復習) 位相空間 X に対し, 標準 n-単体

$$\Delta^n := \{(x_0, x_1, \dots, x_n) \in \mathbb{R}^{n+1} \mid t_0 + t_1 + \dots + t_n = 1$$
 かつ各 i に対し $t_i \geq 0\}$

から X への連続写像を X の特異 n-単体と呼び, それらを基底とする自由加群 $S_n(X)$ の元を特異 n-チェインと呼んだ. それらの直和加群 $S_*(X) = \bigoplus_{n\geq 0} S_n(X)$ には境界写像と呼ばれる準同型写像 $\partial_n\colon S_n(X)\to S_{n-1}(X)$ が定まり, チェイン複体 $(S_*(X),\partial)$ が構成された. そのホモロジー群が X の特異ホモロジー群 $H_*(X)$ であった. R-係数の特異ホモロジー群 $H_*(X;R)$ は $(S_*(X)\otimes R,\partial\otimes 1)$ のホモロジー群として与えられる.

- コチェイン複体 $S^*(X;R)$ やそのコホモロジー群 $H^*(X;R)$, 空間対版 $(S_*(X,A;R)$ など) の記法も同様に定める.
- 位相空間 X,Y に対し、その直積空間からそれぞれの成分への射影を

$$p_1: X \times Y \longrightarrow X, \qquad p_2: X \times Y \longrightarrow Y$$

と書くことにする. このとき Alexander-Whitney 写像 と呼ばれる準同型写像

$$\rho \colon S_n(X \times Y) \longrightarrow \bigoplus_{p+q=n} (S_p(X) \otimes S_q(Y))$$

が, $X \times Y$ の各 n-単体 $\sigma: \Delta^n \to X \times Y$ に対して

$$\rho(\sigma) := \sum_{i=0}^{n} \left(\partial_n^{i+1} \partial_n^{i+2} \cdots \partial_n^{n} (p_1 \circ \sigma) \otimes \partial_n^0 \partial_n^1 \cdots \partial_n^{i-1} (p_2 \circ \sigma) \right)$$

を対応させ、一般の n-チェインに対しては線型に拡張することで定まる. ここで ∂_n^j は境界写像 $\partial_n = \sum_{i=0}^n (-1)^i \delta_n^i$ を定めるときに用いた写像 (大雑把には写像の定義域を標準 n 単体の j 番目の面に制限するもの) であるが詳細は割愛する.

• ρ がチェイン写像となることは直接確かめられるが, 実はチェインホモトピー同値写像となっている (Eilenberg-Zilber の定理). よって κ を ρ のチェインホモトピー逆写像とすると (κ を Eilenberg-Zilber 写像ということがある), 同型写像

$$\rho_* = (\kappa_*)^{-1} \colon H_*(X \times Y; R) \xrightarrow{\cong} H_*(S_*(X) \otimes S_*(Y) \otimes R) = H_*(S_*(X; R) \otimes_R S_*(Y; R))$$

が誘導される. ここで、複体のテンソル積 $S_*(X)\otimes S_*(Y)$ は $\partial(c\otimes c')=(\partial_X c)\otimes c'+(-1)^{\deg c}c\otimes(\partial_V c')$ を境界写像とするチェイン複体とみなしている.

ホモロジー群のクロス積

- 次の写像により、ホモロジー群のクロス積×を定めることができる:
 - $\times : H_p(X;R) \otimes_R H_q(Y;R) \longrightarrow H_{p+q}(S_*(X;R) \otimes_R S_*(Y;R)) \xrightarrow{\kappa_*} H_{p+q}(X \times Y;R).$

ここで最初の写像は $[z_1] \otimes [z_2]$ (z_1 は $S_p(X;R)$ のサイクル, z_2 は $S_q(Y;R)$ のサイクル) に対して $[z_1 \otimes z_2]$ を対応させるものである.

• 空間対 (X,A), (Y,B) について, 上記のクロス積は空間対版のクロス積

$$\times: H_p(X, A; R) \otimes_R H_q(Y, B; R) \longrightarrow H_{p+q}(X \times Y, (A \times Y) \cup (X \times B); R)$$

を誘導する (κ_* は同型とは限らないがそのまま用いる). 以下, 空間対 ($X \times Y$, ($A \times Y$) \cup ($X \times B$)) を (X, A) \times (Y, B) と記す.

• $\{A \times Y, X \times B\}$ が $X \times Y$ における切除対であれば、

$$\kappa_* \colon H_{p+q}(S_*(X,A) \otimes S_*(Y,B) \otimes R) \longrightarrow H_{p+q}((X,A) \times (Y,B);R)$$

は同型写像となる.このことは次に述べる Kunneth の定理の証明で用いられる.

ホモロジー群に対する Künneth の定理

• 積空間のホモロジー群については次の定理が基本的である. ホモロジー群の係数環 R は単項イデアル整域であることを思い出しておく.

定理 (Künneth の定理) 空間対 (X, A), (Y, B) について, $\{A \times Y, X \times B\}$ が切除対であれば、分裂する完全列

$$0 \longrightarrow \bigoplus_{p+q=n} (H_p(X, A; R) \otimes_R H_q(Y, B; R)) \xrightarrow{\times} H_n((X, A) \times (Y, B); R)$$

$$\longrightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}^R(H_p(X, A; R), H_q(Y, B; R)) \longrightarrow 0$$

が存在する. とくに, $H_*(X,A;R)$, $H_*(Y,B;R)$ のいずれかが R-自由加群ならば, Tor^R の部分が 0 となるので, クロス積

$$\times: H_*(X,A;R) \otimes_R H_*(Y,B;R) \longrightarrow H_*((X,A) \times (Y,B);R)$$

は同型写像となる.

• $A=\emptyset$ または $B=\emptyset$ であれば定理にある切除対に関する仮定は満たされる. $A=B=\emptyset$ のときの完全列

$$0 \longrightarrow \bigoplus_{p+q=n} (H_p(X;R) \otimes_R H_q(Y;R)) \xrightarrow{\times} H_n(X \times Y;R)$$
$$\longrightarrow \bigoplus_{p+q=n-1} \operatorname{Tor}^R(H_p(X;R), H_q(Y;R)) \longrightarrow 0$$

はしばしば用いられる.

コホモロジー群のクロス積

• 空間対 (X,A), (Y,B) について, $\{A \times Y, X \times B\}$ が切除対であれば, コホモロジー群のクロス積

$$\times : H^p(X, A; R) \otimes_R H^q(Y, B; R) \longrightarrow H^{p+q}((X, A) \times (Y, B); R)$$

が定義される.

コホモロジー群に対する Künneth の定理 (弱型)

• 積空間のホモロジー群についても, Künneth の定理は存在するが, ホモロジー群の場合と異なり, 幾つか注意しなければならない点があるため, ここでは以下の形で述べるにとどめておく:

定理 (Künneth の定理の弱型) 空間対 (X,A), (Y,B) について, $\{A \times Y, X \times B\}$ が切除対であるとする. さらに $H_*(X,A;R)$, $H_*(Y,B;R)$ のいずれかが「各次数において有限生成 R-自由加群」を満たすならば、

$$\times : H^p(X, A; R) \otimes_R H^q(Y, B; R) \longrightarrow H^{p+q}((X, A) \times (Y, B); R)$$

は同型写像である.

カップ積

• 位相空間 X の 2 つの部分空間 $A,B\subset X$ について, $\{A\times X,X\times B\}$ が切除対のとき、合成写像

$$\cup : H^{p}(X, A; R) \otimes_{R} H^{q}(X, B; R) \xrightarrow{\times} H^{p+q}(X \times X, (A \times X) \cup (X \times B); R)$$

$$\xrightarrow{\Delta^{*}} H^{p+q}(X, A \cup B; R)$$

を定めることができる. ここで $\Delta: X \to X \times X$ は X の対角線写像 $\Delta(x) = (x,x)$ である. この合成写像 \cup を**カップ積**という.

- $\{A, B\}$ が切除対のときも少しの工夫でカップ積が定義できる (詳しくは割愛).
- A = B = ∅ のときは常にカップ積

$$\cup: H^p(X;R) \otimes_R H^q(X;R) \longrightarrow H^{p+q}(X;R)$$

が定義される. これにより $H^*(X;R)$ は次数つき環の構造を持つ. とくに, $u\in H^p(X;R), v\in H^q(Y;R)$ に対して

$$u \cup v = (-1)^{pq} v \cup u \in H^{p+q}(X;R)$$

が成り立つ.

• 連続写像 $f\colon X\to Y$ が与えられたとき任意の $v_1,v_2\in H^*(Y;R)$ に対して

$$f^*(v_1 \cup v_2) = f^*(v_1) \cup f^*(v_2) \in H^*(X; R)$$

が成り立つ.

• $u \in H^p(X;R), v \in H^q(Y;R)$ に対し、

$$p_1^*(u) \cup p_2^*(v) = u \times v \in H^{p+q}(X \times Y; R)$$

が成り立つ. ここで $p_1: X \times Y \to X, p_2: X \times Y \to Y$ はそれぞれの成分への射影である.

以上.