浙江大学 2013-2014 学年 秋冬 学期

《计算理论》课程期末考试试卷

课程号: <u>21120520</u> **开课学院:** 计算机学院

考试试卷: ☑ A卷 □ B卷

考试形式: ② 闭卷 □ 开卷,允许带 _____入场

考试日期: <u>2014</u> 年 <u>1</u> 月 <u>15</u> 日, 考试时间: <u>120</u> 分钟

诚信考试、沉着应考、杜绝违纪

考生	姓名		学 -	号	所属院系				
	题序	1	9	9	1		C	844	П
		1		3	4	О	0	总分	
	得分								
	评卷人								

Zhejiang University Theory of Computation, Fall-Winter 2013 Final Exam

- 1. (24%) Determine whether the following statements are true or false. If it is true fill a \bigcirc otherwise a \times in the bracket before the statement.
 - (a) (7) Language $\{a^mb^nc^j|m,n,j\in\mathbb{N} \text{ and } m+n+j\geq 2014\}$ is regular.
 - (b) (\upgamma) Let L be a regular language, so is $\{ww^R|\ w\in\Sigma^*\ \text{and}\ w\in L\}$.
 - (c) (\digamma) Let L_1 and L_2 be two languages. If L_1L_2 is regular, then either L_1 or L_2 is regular.
 - (d) (\upsigma) Let L be a context-free language, then L^* is also context-free.
 - (e) () Language $\{w_1 \# w_2 \# \cdots \# w_n | n \in \mathbb{N}, \text{ for each } i, w_i \in \{a, b\}^* \text{ and for some } i, w_i \text{ is a palindrome}\}$ is context-free.
 - γ (f) (γ) Let L be a context-free language, then so is $H(L) = \{x | \exists y \in \Sigma^*, |x| = |y| \text{ and } xy \in L\}.$
 - (g) () Language $\{ M_1 M_2 M_2 | M_1 \text{ and } M_2 \text{ are FA}, L(M_1) \subseteq L(M_2) \}$ is undecidable.
 - (h) () There's a function φ such that φ can be computed by some Turing machines, yet φ is not a primitive recursive function.
 - (i) () If L_1, L_2 , and L_3 are all recursively enumerable, then $L_1 \cap (L_2 \cup L_3)$ must be recursively enumerable.
 - (j) () Let L_1 and L_2 be two recursively enumerable language. If $L_1 \cup L_2$ and $L_1 \cap L_2$ are recursive, then both L_1 and L_2 are recursive.
 - (k) () Let L be a recursively enumerable language and $L \leq_{\tau} \overline{H}$, then L is recursive, where $H = \{ M'' w'' \mid \text{Turing machine } M \text{ halts on } w \}$.
 - (l) (7) The set of undecidable languages is uncountable.

2. (20%) Decide whether the following languages are regular or not and provide a formal proof for your answer.

(a)
$$L_1 = \{uvu^R | u, v \in \{a, b\}^+\}$$

(b)
$$L_2 = \{uvu|u, v \in \{a, b\}^+\}$$

where $L^+ = LL^*$.

- 3. (20%) Let $L_3 = \{ab^m c^n a^{m+2n} c | m, n \in \mathbb{N}\}.$
 - (a) Give a context-free grammar for the language L_3 .
 - (b) Design a PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ accepting the language L_3 .

Solution: (a)

(b) The PDA $M = (K, \Sigma, \Gamma, \Delta, s, F)$ is defined below:

4. (12%) Try to construct a Turing Machine to decide the following language

$$L = \{ww^R | w \in \{0, 1\}^*\}.$$

Where w^R is the inverse of w. Always assume that the Turing machines start computation from the configuration $\trianglerighteq \underline{\sqcup} w$. When describing the Turing machines, you can use the elementary Turing machines described in textbook.

5. (12%) Show that the function: $\varphi : \mathbb{N} \to \mathbb{N}$ given by

$$\varphi(x) = \begin{cases} x \mod 3, & \text{if } x \text{ is a composite number;} \\ x^2 + 1, & \text{otherwise.} \end{cases}$$

is primitive recursive.

6. (12%) Consider the problem

 $L_{even} = \{ M'' | M \text{ is a TM and } L(M) \text{ contains at least one string of even number of } b's \}$

- (a) Show that L_{even} is recursively enumerable.
- (b) Show that L_{even} is non-recursive.