## **CSE 360-Computer Architecture**

## Lecture-3

## **Computer Components**

Dr. Shamim Akhter

**Associate Professor** 

Department of Computer Science and Engineering

email: shamimakhter@ewubd.edu



#### Von Neumann Architecture

#### Based on three(3) key concepts:

**Y** 

 Data and instruction are stored in a single read-write memory.

2

 Memory contents are addressable by location, without regard to the type of data.

3

- Execution occurs in a sequential fashion.
- From one instruction to the next.

#### Von Neumann Kitchen



## Where is the Program?



High-level language program (In C)

#### **Stored Program Concept**

Assembly language program (for MIPS)

The idea that instructions and data of many types can be stored in memory as numbers.

Binary machine language program (for MIPS)

```
swap(int v[], int k)
{int temp;
  temp = v[k];
  v[k] = v[k+1];
  v[k+1] = temp;
}
```



```
wap:
mull $2, $5,4
add $2, $4,$2
lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
ir $31
```



## Where Does It All Begin?

• In a register called *program counter (PC)*.

 PC contains the memory address of the next instruction to be executed.

 In the beginning, PC contains the address of the memory location where the program begins.

#### How Does It Run?



## Instruction Cycle State Diagram



## **Program Execution Concept**

Programming connects various components in the desired configuration. Two different approaches



## Top Level Computer Components



Chapter 4 @Computer Organization and Architecture, William Stallings

# Example of a Program Execution @ Hypothetical Machine



0101 = Add to AC from memory

(d) Partial list of opcodes

0010 = Store AC to memory



# Computer Modules with Interconnection Structure



Chapter 4 @Computer Organization and Architecture, William Stallings

## Interconnection Structure

Bus and various multiple bus structures

# Interconnection Structure

Point-to-point interconnection with packetized data transfer

### **Bus Interconnection**

#### What is BUS?

- A bus (group of electrical lines/wires) is a shared transmission medium, that carries computer signals.
- Computer signals: 1 bit memory address, a sequence of data bits, or timing control that turns a device on or off.



Chapter 4 @Computer Organization and Architecture, William Stallings

### **Bus Structure**



#### The operation of the bus is as follows:

- -obtain the control to use the bus, transfer data via bus
- -transfer a request to the other module over the appropriate control and address lines.

## Bus performance suffers

#### Two main causes:

- more devices attached to the bus,
  - greater bus length and greater bus delay. Bus control passes from one device to another frequently and affects performance.
- data transfer bottleneck
  - Aggregated data transfer demands capacity of the bus (32 to 64 bits)
  - However, data rates generated by the devices (NIC, graphics and video controllers) growing rapidly, creates bottleneck to the single bus system.

## Solution: Bus Hierarchies

# Multiple Buses Configuration

2) High speed bus (Mezzanine) architecture



Chapter 4 @Computer Organization and Architecture, William Stallings

# Element of Bus Design: Bus Width

- Data- width of the bus (32, 64, 128 separate lines)
  - determines overall performance of the system
  - e.g.: 32 bits wide data bus and 64 bits instruction needs twice memory accesses in a instruction cycle
- Address- width of the address line (8, 16, or 32 bits)
  - determines the maximum possible memory capacity.
  - Higher order bits are used to select the particular module
    - » Memory (module 0) **0**1111111
    - » I/O port (module 1) **1**0000001
- Control-transmits both command and timing information
  - timing signal determines the validity of data and address information
  - command signal specify operations to be performed.
  - memory write/read, I/O write/read, Bus req/grant, interrupt req/ack
     data transfer ack, clock, reset

# Element of Bus Design: Type

- Dedicated- line is permanently assigned either to one function (data/address) or to a physical subset of components.
  - Adv: High throughput, less bus contention
  - Dis Adv Increase size and cost

Multiplexed/shared-Address Valid or Data Valid control lines

Advantages

• Few lines,

Save space and cost

Disadvantages

Time multiplexing

transfer needs to be done specific period of time

More complex circuitry

Performance reduction



# Element of Bus Design: Arbitration

#### Centralized:

- an arbitration circuit (bus controller/ arbiter)
  - receives requests from the contending bus requesters/masters and then decides which of them is to be given control of the bus.
- may be part of CPU or separate.
- I/O module or CPU is assigned to memory bus.

#### • Distributed:

- No central controller each module may claim the bus
- Each module contains access control logic and the modules act together to share the bus.

# Element of Bus Design: Timing

Timing refers to the way in which events are coordinated on the bus.

#### **Synchronous Timing**

The occurrence of events on the bus are determined by a clock.

Bus signal changes at leading edge of clock.

Synchronous read/write operations between

Processor and Memory modules Read



# Element of Bus Design: Timing



### Point-to-Point Interconnection

- Shared bus to point-to-point technology
  - Increasing data rates makes difficult to perform the synchronization and arbitration functions in a timely fashion.
  - Adjustment (increasing rate & reducing latency) of data rates with multiprocessor, multicore, memory in chip components.
  - Point-to-point provides
    - Higher data rate
    - Lower latency
    - Better scalability

# QuickPath Interconnection (QPI) Intel 2008

#### Characteristics of QPI:

- Multiple direct connections
  - direct pair wise connections between components
  - removes the requirement of arbitration

#### Layered protocol architecture

 Rather than use of simple control signals, processor level interconnections use layered protocol architecture (TCP/IP based data network)

#### Packetized data transfer

- Data are not send as raw bit stream.
- Data sent as a sequence of packets, includes control headers and error control codes

# QuickPath Interconnection (QPI)

Work as switch





#### QPI provides

- -point to point interconnection
- -Socket to socket connections
- -Socket to chipset connection
- -Build scalable connection
- -6.4 GT/s transfers 20 bits /T
- -Up to 16 GB/sec
- Bidirectional 32 GB/sec

FOR Large # of cores
Three links...
Route traffic through the
intermediate processors

Chapter 4 @Computer Organization and Architecture, William Stallings



