#### A. Write a program for obtaining descriptive statistics of data.

Go to File Menu > Options Add-Ins > Select Analysis ToolPak > press Ok.









Select the data range from excel worksheet.





## Import data from different data sources.

Go to Data > click on "From Text/CSV".



## Select file you require > click on import







#### Perform analysis of given secondary data.

**Determine your research question -** Knowing exactly what you are looking for.

**Locating data -** Knowing what is out there and whether you can gain access to it. Aquick Internet search, possibly with the help of a librarian, will reveal a wealth of options.

**Evaluating relevance of the data -** Considering things like the data's original purpose, when it was collected, population, sampling strategy/sample, data collection protocols, operationalization of concepts, questions asked, and form/shape of the data.

**Assessing credibility of the data -** Establishing the credentials of the original researchers, searching for full explication of methods including any problems encountered, determining how consistent the data is with data from other sources, and discovering whether the data has been used in any credible published research. **Analysis -** This will generally involve a range of statistical processes.

**Example:** Analyze the given Population Census Data for Planning and Decision Making byusing the size and composition of populations.



Click on cell A20 and label it as "total population".

Click on C20 and click on AutoSum > a range will be selected automatically > clickenter. Similarly follow this for cell D20 and E20.

| File Home Insert Page Layout Formulas Data Review View Automate Help    Sx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |           |          |              |             | •                        | •           |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|----------|--------------|-------------|--------------------------|-------------|----------|
| Insert   Function   Insert   Louisian   Insert   Function   Vised   Vised | X    | AutoSav   | re Off   | 回り、          | √ ⊽ ric_pra | ac_ALL ∨                 |             | م        |
| Insert   Function   Insert   Louisian   Insert   Function   Vised   Vised |      |           |          |              |             |                          |             |          |
| Insert   Function   AutoSum Recently Financial Logical   Text   Date & Lookup & Math & More   Name   Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | File | e Hon     | ne Inser | t Page Layou | it Formulas | Data Review View         | v Automa    | ate Help |
| Insert   Function   AutoSum Recently Financial Logical   Text   Date & Lookup & Math & More   Name   Manager                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | fr 1      | 7 6      |              |             |                          |             | / / •    |
| Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | JX        | _ [      |              |             |                          | $\sqcup$    |          |
| A   B   C   D   E   F   G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |           |          |              |             |                          |             |          |
| A B C D E F G  1 sr.no Age Males Females total males and females %males %females  2 1 0-4 3,28,759 3,07,079 6,35,838  3 2 5-9 3,15,119 2,93,664 6,08,783  4 3 10-14 3,11,456 2,90,598 6,02,054  5 4 15-19 3,12,831 2,93,313 6,06,144  6 5 20-24 3,11,077 2,95,739 6,06,816  7 6 25-29 2,84,258 2,73,379 5,57,637  8 7 30-34 2,55,596 2,47,383 5,02,979  9 8 35-39 2,48,575 2,41,938 4,90,513  10 9 40-44 2,32,217 2,26,914 4,59,131  11 10 45-49 2,02,633 2,01,142 4,03,775  12 11 50-54 1,76,241 1,76,440 3,52,681  13 12 55-59 1,53,494 1,56,283 3,09,777  14 13 60-64 1,14,194 1,21,200 2,35,394  15 14 65-69 83,129 92,071 1,75,200  16 15 70-74 65,266 77,990 1,43,256  17 16 75-79 43,761 56,895 1,00,656  18 17 80-84 25,060 37,873 62,933  19 18 85+ 19,792 37,825 57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Fur  | nction    | → Us     | ed *      *  | *           | ime * Reference * Trig * | Functions > | Manager  |
| 1         sr.no         Age         Males         Females         total males and females         %males         %females           2         1         0-4         3,28,759         3,07,079         6,35,838         8           3         2         5-9         3,15,119         2,93,664         6,08,783         8           4         3         10-14         3,11,456         2,90,598         6,02,054         6           5         4         15-19         3,12,831         2,93,313         6,06,144         6           6         5         20-24         3,11,077         2,95,739         6,06,816         6           7         6         25-29         2,84,258         2,73,379         5,57,637         8           8         7         30-34         2,55,596         2,47,383         5,02,979         9           9         8         35-39         2,48,575         2,41,938         4,90,513         10           10         9         40-44         2,32,217         2,26,914         4,59,131         11           11         10         45-49         2,02,633         2,01,142         4,03,775         12           12         11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 119  |           | ▼ : X    | $\sqrt{f_x}$ |             |                          |             |          |
| 2       1 0-4       3,28,759       3,07,079       6,35,838         3       2 5-9       3,15,119       2,93,664       6,08,783         4       3 10-14       3,11,456       2,90,598       6,02,054         5       4 15-19       3,12,831       2,93,313       6,06,144         6       5 20-24       3,11,077       2,95,739       6,06,816         7       6 25-29       2,84,258       2,73,379       5,57,637         8       7 30-34       2,55,596       2,47,383       5,02,979         9       8 35-39       2,48,575       2,41,938       4,90,513         10       9 40-44       2,32,217       2,26,914       4,59,131         11       10 45-49       2,02,633       2,01,142       4,03,775         12       11 50-54       1,76,241       1,76,440       3,52,681         13       12 55-59       1,53,494       1,56,283       3,09,777         14       13 60-64       1,14,194       1,21,200       2,35,394         15       14 65-69       83,129       92,071       1,75,200         16       15 70-74       65,266       77,990       1,43,256         17       16 75-79       43,761<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | Α         | В        | С            | D           | E                        |             | G        |
| 3         2         5-9         3,15,119         2,93,664         6,08,783           4         3         10-14         3,11,456         2,90,598         6,02,054           5         4         15-19         3,12,831         2,93,313         6,06,144           6         5         20-24         3,11,077         2,95,739         6,06,816           7         6         25-29         2,84,258         2,73,379         5,57,637           8         7         30-34         2,55,596         2,47,383         5,02,979           9         8         35-39         2,48,575         2,41,938         4,90,513           10         9         40-44         2,32,217         2,26,914         4,59,131           11         10         45-49         2,02,633         2,01,142         4,03,775           12         11         50-54         1,76,241         1,76,440         3,52,681           13         12         55-59         1,53,494         1,56,283         3,09,777           14         13         60-64         1,14,194         1,21,200         2,35,394           15         14         65-69         83,129         92,071         1,75,200<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 s  | r.no      | Age      | Males        | Females     | total males and females  | %males      | %females |
| 4       3       10-14       3,11,456       2,90,598       6,02,054         5       4       15-19       3,12,831       2,93,313       6,06,144         6       5       20-24       3,11,077       2,95,739       6,06,816         7       6       25-29       2,84,258       2,73,379       5,57,637         8       7       30-34       2,55,596       2,47,383       5,02,979         9       8       35-39       2,48,575       2,41,938       4,90,513         10       9       40-44       2,32,217       2,26,914       4,59,131         11       10       45-49       2,02,633       2,01,142       4,03,775         12       11       50-54       1,76,241       1,76,440       3,52,681         13       12       55-59       1,53,494       1,56,283       3,09,777         14       13       60-64       1,14,194       1,21,200       2,35,394         15       14       65-69       83,129       92,071       1,75,200         16       15       70-74       65,266       77,990       1,43,256         17       16       75-79       43,761       56,895       1,00,656 <td>2</td> <td>1</td> <td>0-4</td> <td>3,28,759</td> <td>3,07,079</td> <td>6,35,838</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2    | 1         | 0-4      | 3,28,759     | 3,07,079    | 6,35,838                 |             |          |
| 5       4       15-19       3,12,831       2,93,313       6,06,144         6       5       20-24       3,11,077       2,95,739       6,06,816         7       6       25-29       2,84,258       2,73,379       5,57,637         8       7       30-34       2,55,596       2,47,383       5,02,979         9       8       35-39       2,48,575       2,41,938       4,90,513         10       9       40-44       2,32,217       2,26,914       4,59,131         11       10       45-49       2,02,633       2,01,142       4,03,775         12       11       50-54       1,76,241       1,76,440       3,52,681         13       12       55-59       1,53,494       1,56,283       3,09,777         14       13       60-64       1,14,194       1,21,200       2,35,394         15       14       65-69       83,129       92,071       1,75,200         16       15       70-74       65,266       77,990       1,43,256         17       16       75-79       43,761       56,895       1,00,656         18       17       80-84       25,060       37,873       62,933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3    | 2         | 5-9      | 3,15,119     | 2,93,664    | 6,08,783                 |             |          |
| 6         5         20-24         3,11,077         2,95,739         6,06,816           7         6         25-29         2,84,258         2,73,379         5,57,637           8         7         30-34         2,55,596         2,47,383         5,02,979           9         8         35-39         2,48,575         2,41,938         4,90,513           10         9         40-44         2,32,217         2,26,914         4,59,131           11         10         45-49         2,02,633         2,01,142         4,03,775           12         11         50-54         1,76,241         1,76,440         3,52,681           13         12         55-59         1,53,494         1,56,283         3,09,777           14         13         60-64         1,14,194         1,21,200         2,35,394           15         14         65-69         83,129         92,071         1,75,200           16         15         70-74         65,266         77,990         1,43,256           17         16         75-79         43,761         56,895         1,00,656           18         17         80-84         25,060         37,873         62,933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4    | 3         | 10-14    | 3,11,456     | 2,90,598    | 6,02,054                 |             |          |
| 7 6 25-29 2,84,258 2,73,379 5,57,637 8 7 30-34 2,55,596 2,47,383 5,02,979 9 8 35-39 2,48,575 2,41,938 4,90,513 10 9 40-44 2,32,217 2,26,914 4,59,131 11 10 45-49 2,02,633 2,01,142 4,03,775 12 11 50-54 1,76,241 1,76,440 3,52,681 13 12 55-59 1,53,494 1,56,283 3,09,777 14 13 60-64 1,14,194 1,21,200 2,35,394 15 14 65-69 83,129 92,071 1,75,200 16 15 70-74 65,266 77,990 1,43,256 17 16 75-79 43,761 56,895 1,00,656 18 17 80-84 25,060 37,873 62,933 19 18 85+ 19,792 37,825 57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5    | 4         | 15-19    | 3,12,831     | 2,93,313    | 6,06,144                 |             |          |
| 8     7     30-34     2,55,596     2,47,383     5,02,979       9     8     35-39     2,48,575     2,41,938     4,90,513       10     9     40-44     2,32,217     2,26,914     4,59,131       11     10     45-49     2,02,633     2,01,142     4,03,775       12     11     50-54     1,76,241     1,76,440     3,52,681       13     12     55-59     1,53,494     1,56,283     3,09,777       14     13     60-64     1,14,194     1,21,200     2,35,394       15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6    | 5         | 20-24    | 3,11,077     | 2,95,739    | 6,06,816                 |             |          |
| 9 8 35-39 2,48,575 2,41,938 4,90,513 10 9 40-44 2,32,217 2,26,914 4,59,131 11 10 45-49 2,02,633 2,01,142 4,03,775 12 11 50-54 1,76,241 1,76,440 3,52,681 13 12 55-59 1,53,494 1,56,283 3,09,777 14 13 60-64 1,14,194 1,21,200 2,35,394 15 14 65-69 83,129 92,071 1,75,200 16 15 70-74 65,266 77,990 1,43,256 17 16 75-79 43,761 56,895 1,00,656 18 17 80-84 25,060 37,873 62,933 19 18 85+ 19,792 37,825 57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7    | 6         | 25-29    | 2,84,258     | 2,73,379    | 5,57,637                 |             |          |
| 10         9         40-44         2,32,217         2,26,914         4,59,131           11         10         45-49         2,02,633         2,01,142         4,03,775           12         11         50-54         1,76,241         1,76,440         3,52,681           13         12         55-59         1,53,494         1,56,283         3,09,777           14         13         60-64         1,14,194         1,21,200         2,35,394           15         14         65-69         83,129         92,071         1,75,200           16         15         70-74         65,266         77,990         1,43,256           17         16         75-79         43,761         56,895         1,00,656           18         17         80-84         25,060         37,873         62,933           19         18         85+         19,792         37,825         57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8    | 7         | 30-34    | 2,55,596     | 2,47,383    | 5,02,979                 |             |          |
| 11     10     45-49     2,02,633     2,01,142     4,03,775       12     11     50-54     1,76,241     1,76,440     3,52,681       13     12     55-59     1,53,494     1,56,283     3,09,777       14     13     60-64     1,14,194     1,21,200     2,35,394       15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9    | 8         | 35-39    | 2,48,575     | 2,41,938    | 4,90,513                 |             |          |
| 12     11     50-54     1,76,241     1,76,440     3,52,681       13     12     55-59     1,53,494     1,56,283     3,09,777       14     13     60-64     1,14,194     1,21,200     2,35,394       15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10   | 9         | 40-44    | 2,32,217     | 2,26,914    | 4,59,131                 |             |          |
| 13     12     55-59     1,53,494     1,56,283     3,09,777       14     13     60-64     1,14,194     1,21,200     2,35,394       15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11   | 10        | 45-49    | 2,02,633     | 2,01,142    | 4,03,775                 |             |          |
| 14     13     60-64     1,14,194     1,21,200     2,35,394       15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12   | 11        | 50-54    | 1,76,241     | 1,76,440    | 3,52,681                 |             |          |
| 15     14     65-69     83,129     92,071     1,75,200       16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13   | 12        | 55-59    | 1,53,494     | 1,56,283    | 3,09,777                 |             |          |
| 16     15     70-74     65,266     77,990     1,43,256       17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | 13        | 60-64    | 1,14,194     | 1,21,200    | 2,35,394                 |             |          |
| 17     16     75-79     43,761     56,895     1,00,656       18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 14        | 65-69    | 83,129       | 92,071      | 1,75,200                 |             |          |
| 18     17     80-84     25,060     37,873     62,933       19     18     85+     19,792     37,825     57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 15        | 70-74    | 65,266       | 77,990      | 1,43,256                 |             |          |
| 19 18 85+ 19,792 37,825 57,616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |           |          |              |             | 1,00,656                 |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 17        | 80-84    | 25,060       | 37,873      | 62,933                   |             |          |
| 20 total population 34,83,458 34,27,726 69,11,183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 19   | 18        | 85+      | 19,792       | 37,825      | 57,616                   |             |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 t | otal popu | lation   | 34,83,458    | 34,27,726   | 69,11,183                |             |          |

To calculate percent of males in cell F2, enter formula=100\*C2/E20. And copy theformula in cell F2 down to cell F19.

Similarly, to calculate the percent of females in cell G2, enter the formula =100\*D2/E20.Copy the formula in cell G2 down to cell G19.

| F  | ile <u>Hor</u> | ne Inser      | t Page Layou          | t Formulas             | Data Review Vie           | w Autom    | ate Help           |     |
|----|----------------|---------------|-----------------------|------------------------|---------------------------|------------|--------------------|-----|
|    | Paste 🎺        | В.            | <i>I</i>              | ·   <u>&amp;</u> · A · | = = = 8/ <b>&gt; &gt;</b> |            | Text<br>e & Center |     |
|    | Clipboard      | <u>[2</u>     | Font                  | Г                      | Alig                      | nment      |                    | [Zi |
| G  | 12             | <b>∨</b> ! [× | $\checkmark f_x$ =100 | *D12/E20               |                           |            |                    |     |
| 4  | Α              | В             | C                     | D                      | E                         | F          | G                  | Н   |
| 2  | 1              | 0-4           | 3,28,759              | 3,07,079               | 6,35,838                  | 4.756913   | 4.443219           |     |
| 3  | 2              | 5-9           | 3,15,119              | 2,93,664               | 6,08,783                  | 4.559552   | 4.249113           |     |
| 4  | 3              | 10-14         | 3,11,456              | 2,90,598               | 6,02,054                  | 4.506551   | 4.20475            |     |
| 5  | 4              | 15-19         | 3,12,831              | 2,93,313               | 6,06,14                   | 4.526446   | 4.244034           |     |
| 6  | 5              | 20-24         | 3,11,077              | 2,95,739               | 6,06,81                   | 4.501067   | 4.279137           |     |
| 7  | 6              | 25-29         | 2,84,258              | 2,73,379               | 5,57,63                   | 4.113015   | 3.955603           |     |
| 8  | 7              | 30-34         | 2,55,596              | 2,47,383               | 5,02,979                  | 3.698296   | 3.579459           |     |
| 9  | 8              | 35-39         | 2,48,575              | 2,41,938               | 4,90,51                   | 3.596707   | 3.500674           |     |
| 10 | 9              | 40-44         | 2,32,217              | 2,26,914               | 4,59,13                   | 3.360018   | 3.283287           |     |
| 11 | 10             | 45-49         | 2,02,633              | 2,01,142               | 4,03,775                  | 2.931958   | 2.910384           |     |
| 12 | 11             | 50-54         | 1,76,241              | 1,76,440               | 3,52,683                  | 2.550084   | 2.552964           |     |
| 13 | 12             | 55-59         | 1,53,494              | 1,56,283               | 3,09,77                   | 7 2.220951 | 2.261306           |     |
| 14 | 13             | 60-64         | 1,14,194              | 1,21,200               | 2,35,394                  | 1.652307   | 1.753679           |     |
| 15 | 14             | 65-69         | 83,129                | 92,071                 | 1,75,200                  | 1.202819   | 1.332203           |     |
| 16 | 15             | 70-74         | 65,266                | 77,990                 | 1,43,250                  | 0.944353   | 1.128461           |     |
| 17 | 16             | 75-79         | 43,761                | 56,895                 | 1,00,650                  | 0.633191   | 0.823231           |     |
| 18 | 17             | 80-84         | 25,060                | 37,873                 | 62,93                     | 0.362601   | 0.547996           |     |
| 19 | 18             | 85+           | 19,792                | 37,825                 | 57,610                    | 0.28637    | 0.547297           |     |
| 20 | total popu     | lation        | 34,83,458             | 34,27,726              | 69,11,183                 | 3 50.4032  | 49.5968            |     |

We need to show a chart with two series of data (% male and % female) and the age labels incolumn A as the Category X-axis labels. Highlight the range A2:A19, hold down the CTRL key and highlight the range E2:F19 Under inset tab, under horizontal bar charts select clustered bar chart and under line or area chart select line chart.

2-D Column





## A. Perform testing of hypothesis using one sample t-test.

**One sample t-test:** The One Sample T Test determines whether the sample mean is statistically different from a known or hypothesized population mean. The One Sample T Testis a parametric test.

| No. Of Bars | Protein Values |
|-------------|----------------|
| 1           | 20.7           |
| 2           | 20.75          |
| 3           | 22.14          |
| 4           | 22.12          |
| 5           | 27.46          |
| 6           | 22.91          |
| 7           | 19.56          |
| 8           | 22.15          |
| 9           | 25.34          |
| 10          | 21.1           |
| 11          | 19.85          |
| 12          | 20.33          |
| 13          | 18.04          |
| 14          | 21.29          |
| 15          | 21.54          |

| 16 | 24.12 |
|----|-------|
| 17 | 24.75 |
| 18 | 21.08 |
| 19 | 19.95 |
| 20 | 25.06 |
| 21 | 21.39 |
| 22 | 19.72 |
| 23 | 22.44 |
| 24 | 22.33 |
| 25 | 18.28 |
| 26 | 19.08 |
| 27 | 25.79 |
| 28 | 16.26 |
| 29 | 19.88 |
| 30 | 20.53 |
| 31 | 17.46 |
|    |       |

Here.

H0 is population mean is 20.

H1 is population mean is not 20.

First, we require descriptive statistics for above data.





We require Mean, Standard Error, Standard Deviation and Count.

We require to degrees of freedom, hypothesized mean, alpha value, t-statistic, p-value.

We calculate degrees of freedom as function= E19 -1.

Hypothesized mean is 20 and Alpha value is taken as 0.05.

t-statistic is calculated as function = (E7-E25)/E8.

P value is calculated as function = TDIST (E27, E24, 2)



Then for final step of T-test, we use function =IF(E28>E26,"H0 accepted, H1 rejected","H1accepted")



#### B. Perform testing of hypothesis using two sample t-test.

Suppose researchers want to know whether or not two different species of plants in a particular country have the same mean height. Because it would take too long to go around and measure every single plant, they decide to collect a sample of 20 plants from each species.

The following data shows the height (in inches) for each plant in each sample:

| species 1 | species 2 |
|-----------|-----------|
| 12        | 10        |
| 12        | 24        |
| 20        | 17        |
| 12        | 23        |
| 24        | 19        |
| 25        | 16        |
| 10        | 10        |
| 15        | 14        |
| 16        | 19        |
| 21        | 14        |
| 21        | 12        |

| 11 | 21 |
|----|----|
| 12 | 12 |
| 16 | 12 |
| 15 | 11 |
| 17 | 21 |
| 17 | 18 |
| 14 | 23 |
| 19 | 16 |
| 19 | 23 |

When we conduct a two-sample t-test, we must first decide if we will assume that the two populations have equal or unequal variances. As a rule of thumb, we can assume the populations have equal variances if the ratio of the larger sample variance to the smaller sample variance is less than 4:1.

To calculate the variance of two samples Click on cell A22 and type = VAR.S(A2:A21) Click on cell B22 and type = VAR.S(B2:B21)

| A2 | .2       | <b>∨</b> ] <b>:</b> [X | $\sqrt{f_x}$ | =VAR.S(A2: | A21) |
|----|----------|------------------------|--------------|------------|------|
|    | А        | В                      | С            | D          | Е    |
| 21 | 19       | 23                     |              |            |      |
| 22 | 18.88421 | 22.40789               | variance     |            |      |
| 22 |          |                        |              |            |      |

The ratio of the larger sample variance to the smaller sample variance is 1.1865, which is less than 4. This means we can assume that the population variances are equal.

H0= Two different species of plants in a particular country have the same mean height.

H1= Two different species of plants in a particular country do not have the same mean height.

Go to Data tab > Data Analysis



Click on OK.



Click on D18 type =IF(E14>0.05,"H0 accepted","H1 accepted, H0 rejected")

| D18 $\checkmark$ : $\times$ $\checkmark$ $f_x$ |           |           | $\checkmark fx$ | =IF(E14>0.05,"H0 accepted","H1 accepted, H0 rejected") |           |           |   |  |
|------------------------------------------------|-----------|-----------|-----------------|--------------------------------------------------------|-----------|-----------|---|--|
| 4                                              | Α         | В         | С               | D                                                      | E         | F         | G |  |
| 1                                              | species 1 | species 2 |                 |                                                        |           |           |   |  |
| 2                                              | 12        | 10        |                 | t-Test: Two-Sample Assuming Equal Variances            |           |           |   |  |
| 3                                              | 12        | 24        |                 |                                                        |           |           |   |  |
| 4                                              | 20        | 17        |                 |                                                        | species 1 | species 2 |   |  |
| 5                                              | 12        | 23        |                 | Mean                                                   | 16.4      | 16.75     |   |  |
| 6                                              | 24        | 19        |                 | Variance                                               | 18.88421  | 22.40789  |   |  |
| 7                                              | 25        | 16        |                 | Observations                                           | 20        | 20        |   |  |
| 8                                              | 10        | 10        |                 | Pooled Variance                                        | 20.64605  |           |   |  |
| 9                                              | 15        | 14        |                 | Hypothesized Mean Difference                           | 0         |           |   |  |
| 10                                             | 16        | 19        |                 | df                                                     | 38        |           |   |  |
| 11                                             | 21        | 14        |                 | t Stat                                                 | -0.24358  |           |   |  |
| 12                                             | 21        | 12        |                 | P(T<=t) one-tail                                       | 0.404431  |           |   |  |
| 13                                             | 11        | 21        |                 | t Critical one-tail                                    | 1.685954  |           |   |  |
| 14                                             | 12        | 12        |                 | P(T<=t) two-tail                                       | 0.808863  |           |   |  |
| 15                                             | 16        | 12        |                 | t Critical two-tail                                    | 2.024394  |           |   |  |
| 16                                             | 15        | 11        |                 |                                                        |           |           |   |  |
| 17                                             | 17        | 21        |                 |                                                        |           |           |   |  |
| 18                                             | 17        | 18        |                 | H0 accepted                                            |           |           |   |  |
| 19                                             | 14        | 23        |                 |                                                        |           |           |   |  |
| 20                                             | 19        | 16        |                 |                                                        |           |           |   |  |
| 21                                             | 19        | 23        |                 |                                                        |           |           |   |  |
| 22                                             | 18.88421  | 22.40789  | variance        |                                                        |           |           |   |  |

#### C. Perform testing of hypothesis using paired t-test.

The T distribution provides a good way to perform one sample tests on the mean when the population variance is not known provided the population is normal or the sample is sufficiently large so that the Central Limit Theorem applies.

#### **Paired Sample t Test**

**Example:** A college Principal informed classroom teachers that some of their students showed unusual potential for intellectual gains. One months later the students identified to teachers as having potential for unusual intellectual gains showed significantly greater gains performance on a test said to measure IQ than did students who were not so identified. Below are the data for the students:

|    | experimental | comparison |
|----|--------------|------------|
| 1  | 35           | 2          |
| 2  | 40           | 27         |
| 3  | 12           | 38         |
| 4  | 15           | 31         |
| 5  | 21           | 1          |
| 6  | 14           | 19         |
| 7  | 46           | 1          |
| 8  | 10           | 34         |
| 9  | 28           | 3          |
| 10 | 48           | 1          |
| 11 | 16           | 2          |
| 12 | 30           | 3          |
| 13 | 32           | 2          |
| 14 | 48           | 1          |
| 15 | 31           | 2          |
| 16 | 22           | 1          |
| 17 | 12           | 3          |
| 18 | 39           | 29         |
| 19 | 19           | 37         |
| 20 | 25           | 2          |

H0 represents that the difference in gain scores is not likely the result of the experimental treatment. H1 represents that the difference in gain scores is likely the result of the experimental treatment and not the result of chance variation.

#### **Experimental Data**

To calculate Standard Mean, go to cell B22 and type =AVERAGE (B2:B21) To calculate Standard Deviation, go to cell B23 and type =STDEV (B2:B21)

#### **Comparison Data**

To calculate Standard Mean, go to cell C22 and type =AVERAGE (C2:C21) To calculate Standard Deviation, go to cell C23 and type =STDEV (C2:C21)

|    | Α       | В           | С          | D |  |
|----|---------|-------------|------------|---|--|
| 21 | 20      | 23          | 2          |   |  |
| 22 | mean    | 27.15       | 11.95      |   |  |
| 23 | std dev | 12.50799744 | 14.6124496 |   |  |
| 24 |         |             |            |   |  |
| 25 |         |             |            |   |  |

Find T-test Statistics, go to Data > Data Analysis > Click on Ok.



To calculate the T-Test square value go to cell F17 and type =(B22-C22)/SQRT(((B23\*B23)/COUNT (B2:B21)) +((C23\*C23)/COUNT (C2:C21)))

|    | D | E                | F           | G | Н |
|----|---|------------------|-------------|---|---|
| 16 |   |                  |             |   |   |
| 17 |   | calculated value | 3.534053898 |   |   |
| 10 |   |                  |             |   |   |

Now go to cell F18 and type =IF (F17<F9,"H0 is Accepted", "H0 is Rejected and H1 is Accepted")

| E18        | $\Rightarrow$ $\times$ $\times$ $f_x$ =IF(F17 <f9,"h0 "h0="" accepted")<="" accepted",="" and="" h1="" is="" rejected="" th=""><th></th></f9,"h0> |             |   |   |   |   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---|---|---|---|
| <b>⊿</b> D | E                                                                                                                                                 | F           | G | Н | 1 | J |
| 14         | P(T<=t) two-tail                                                                                                                                  | 0.007422452 |   |   |   |   |
| 15         | t Critical two-tail                                                                                                                               | 2.093024054 |   |   |   |   |
| 16         |                                                                                                                                                   |             |   |   |   |   |
| 17         | calculated value                                                                                                                                  | 3.534053898 |   |   |   |   |
| 18         | H0 is Rejected and H1 is Accept                                                                                                                   | ed          |   |   |   |   |

Our calculated value is larger than the tabled value at alpha = 0.05, so we reject the null hypothesis and accept the alternative hypothesis, namely, that the difference in gain scores is likely the result of the experimental treatment and not the result of chance variation.

## A. Perform testing of hypothesis using chi-squared goodness-of-fit test.

**Problem**: A system administrator needs to upgrade the computers for his division. He wantsto know what sort of computer system his workers prefer. He gives three choices: Windows,Mac, or Linux. Test the hypothesis or theory that an equal percentage of the population prefers each type of computer.

| system  | Oi | Ei       |
|---------|----|----------|
| windows | 20 | 33.33333 |
| mac     | 60 | 33.33333 |
| linux   | 20 | 33.33333 |

H0: The population distribution of the variable is the same as the proposed distribution.

H1: The distributions are different.

**To calculate the Chi** –Squared value for Windows go to cell D2 and type =((B2-C2)^2)/C2

**To calculate the Chi** –Squared value for mac go to cell D3 and type =((B3-C3)^2)/C3

**To calculate the Chi** – Squared value for linux go to cell D4 and type = ((B4-C4)^2)/C4

Go to Cell D5 for "sum{[(Oi-Ei)^2]/Ei}" and type=SUM(D2:D4)

To get the table value for Chi-Square for  $\alpha = 0.05$  and dof = 2, go to cell D7 and type = CHIINV(0.05,2) At cell D8 type =IF(D5>D7, "H0 Accepted", "H0 Rejected")

| 4 | Α       | В  |     | С           | D                   | L |
|---|---------|----|-----|-------------|---------------------|---|
| 1 | system  | Oi |     | Ei          | sum{[(Oi-Ei)^2]/Ei} |   |
| 2 | windows |    | 20  | 33.333333   | 5.333333333         |   |
| 3 | mac     |    | 60  | 33.333333   | 21.33333333         |   |
| 4 | linux   |    | 20  | 33.333333   | 5.333333333         |   |
| 5 | total   |    | 100 | 100         | 32                  |   |
| 6 |         |    |     |             |                     |   |
| 7 |         |    |     | table value | 5.991464547         |   |
| 8 |         |    |     | H0 Accepted |                     |   |
| 9 |         |    |     |             |                     |   |

# B. Perform testing of hypothesis using chi-squared test of independence.

In a study to understand the performance of M. Sc. IT Part -1 class, a college selects a random sample of 100 students. Each student was asked his grade obtained in B. Sc. IT. Thesample is as given below.

| Sr.<br>No   | Roll<br>No | Name      | Gen | Grd |
|-------------|------------|-----------|-----|-----|
| 1           | 1          | Gaborone  | m   | О   |
| 2           | 2          | Francesco | m   | О   |
| 3           | 5          | Niamey    | m   | О   |
| 4           | 13         | Maxixe    | m   | O   |
|             | 16         | Tema      | m   | O   |
| 5<br>6<br>7 | 17         | Kumasi    | m   | О   |
| 7           | 34         | Blida     | m   | О   |
| 8           | 35         | Oran      | m   | О   |
| 9           | 38         | Saefda    | m   | О   |
| 10          | 42         | sonam     | m   | О   |
| 11          | 43         | Annaba    | m   | О   |
| 12          | 45         | Bejaefa   | m   | O   |
| 13          | 48         | Medea     | m   | О   |
| 14          | 49         | Djelfa    | m   | O   |
| 15          | 50         | Tipaza    | m   | O   |
| 16          | 51         | Bechar    | m   | O   |
| 17          | 54         | Mostag    | m   | O   |
| 18          | 55         | Tiaret    | m   | O   |
| 19          | 56         | Bouira    | m   | О   |
| 20          | 59         | Tebessa   | m   | O   |
| 21          | 61         | Harrach   | m   | O   |
| 22          | 62         | Mila      | m   | О   |
| 23          | 65         | Fouka     | m   | О   |
| 24          | 66         | El Eulma  | m   | O   |
| 25          | 68         | Abbes     | m   | O   |
| 26          | 69         | Jijel     | m   | O   |
| 27          | 70         | Guelma    | m   | O   |
| 28          | 85         | Khechna   | m   | O   |
| 29          | 87         | Kiffan    | m   | O   |
| 30          | 88         | Lakhdaria | m   | O   |
| 31          | 6          | Maputo    | m   | D   |
| 32          | 12         | Lichinga  | m   | D   |
| 33          | 15         | Garcia    | m   | D   |
| 34          | 19         | Accra     | m   | D   |
| 35          | 27         | Wa        | m   | D   |
| 36          | 28         | Navrongo  | m   | D   |
| 37          | 37         | Mascara   | m   | D   |
| 38          | 44         | Batna     | m   | D   |
| 39          | 57         | El Biar   | m   | D   |
| 40          | 60         | Boufarik  | m   | D   |
| 41          | 63         | Oued      | m   | D   |
| 42          | 64         | Ahras     | m   | D   |
| 43          | 71         | Befda     | m   | D   |
| 44          | 86         | Birtouta  | m   | D   |
| 45          | 18         | Takoradi  | m   | C   |

| u ms | grade | obtained iii b | . 50 | . 11.       |
|------|-------|----------------|------|-------------|
| 46   | 22    | Cape Coast     | m    | С           |
| 47   | 29    | Kwabeng        | m    | C<br>C      |
| 48   | 30    | Algiers        | m    | С           |
| 49   | 31    | Laghouat       | m    | С           |
| 50   | 39    | Relizane       | m    | C           |
| 51   | 52    | Setif          | m    | C<br>C<br>C |
| 52   | 53    | Biskra         | m    | С           |
| 53   | 67    | Kolea          | m    | С           |
| 54   | 100   | AefnFakroun    | m    | С           |
| 55   | 26    | Nima           | m    | В           |
| 56   | 32    | TiziOuzou      | m    | В           |
| 57   | 33    | Chlef          | m    | В           |
| 58   | 89    | M'sila         | m    | A           |
| 59   | 96    | Heliopolis     | m    | A           |
| 60   | 97    | Berrouaghia    | m    | A           |
| 61   | 98    | Sougueur       | m    | A           |
| 62   | 3     | Maun           | f    | О           |
| 63   | 7     | Tete           | f    | О           |
| 64   | 9     | Chimoio        | f    | О           |
| 65   | 11    | Pemba          | f    | О           |
| 66   | 14    | Chibuto        | f    | O           |
| 67   | 25    | Mampong        | f    | O           |
| 68   | 36    | Tlemcen        | f    | O           |
| 69   | 40    | Adrar          | f    | O           |
| 70   | 41    | Tindouf        | f    | О           |
| 71   | 46    | Skikda         | f    | O           |
| 72   | 47    | Ouargla        | f    | О           |
| 73   | 10    | Matola         | f    | D           |
| 74   | 20    | Legon          | f    | D           |
| 75   | 21    | Sunyani        | f    | D           |
| 76   | 72    | Teenas         | f    | D           |
| 77   | 73    | Kouba          | f    | D           |
| 78   | 75    | HussenDey      | f    | D           |
| 79   | 77    | Khenchela      | f    | D           |
| 80   | 82    | HassiBahbah    | f    | D           |
| 81   | 84    | Baraki         | f    | D           |
| 82   | 91    | Boudouaou      | f    | D           |
| 83   | 95    | Tadjenanet     | f    | D           |
| 84   | 4     | Molepolole     | f    | С           |
| 85   | 8     | Quelimane      | f    | С           |
| 86   | 23    | Bolgatanga     | f    | С           |
| 87   | 58    | Mohammadia     | f    | С           |
| 88   | 83    | Merouana       | f    | С           |
| 89   | 24    | Ashaiman       | f    | В           |
| 90   | 76    | N'gaous        | f    | В           |
| 91   | 90    | Oued           | f    | В           |

| 92  | 92 | BordjMenael | f | В |
|-----|----|-------------|---|---|
| 93  | 93 | Boukhari    | f | В |
| 94  | 74 | Reghaa      | f | A |
| 95  | 78 | Cheria      | f | A |
| 96  | 79 | Mouzaa      | f | A |
| 97  | 80 | Meskiana    | f | A |
| 98  | 81 | Miliana     | f | A |
| 99  | 94 | Sig         | f | A |
| 100 | 99 | Kadiria     | f | A |

H0: The performance of girl students is same as boy students.

H1: The performance of boy and girl students are different.

Open Excel Workbook

|       | 0    | Α   | В | С   | D    | total | sum{[(Oi-Ei)^2]/Ei} |
|-------|------|-----|---|-----|------|-------|---------------------|
| girls | 11   | 7   | 5 | 5   | 11   | 39    | 6.074863267         |
| boys  | 30   | 4   | 3 | 10  | 14   | 61    | 6.074863267         |
| total | 41   | 11  | 8 | 15  | 25   | 100   | 12.14972653         |
| Ei    | 20.5 | 5.5 | 4 | 7.5 | 12.5 | 50    |                     |

To prepare a contingency table as shown above. To calculate Girls Std with "O" Grade

Go to Cell H2 and type =COUNTIFS(D2:D101,"f",E2:E101,"O")

To calculate Girls Students with "A" Grade

Go to Cell I2 and type =COUNTIFS(D2:D101,"f",E2:E101,"A")

To calculate Girls Students with "B" Grade

Go to Cell J2 and type =COUNTIFS(D2:D101,"f",E2:E101,"B")

To calculate Girls Students with "C" Grade

Go to Cell K2 and type =COUNTIFS(D2:D101,"f",E2:E101,"C")

To calculate Girls Students with "D" Grade

Go to Cell L2 and type =COUNTIFS(D2:D101,"m",E2:E101,"D")

To calculate Boys Students with "O" Grade

Go to Cell H3 and type =COUNTIFS(D2:D101,"m",E2:E101,"O")

To calculate Boys Students with "A" Grade

Go to Cell I3 and type =COUNTIFS(D2:D101,"m",E2:E101,"A")

To calculate Boys Students with "B" Grade

Go to Cell J3 and type =COUNTIFS(D2:D101,"m",E2:E101,"B")

To calculate Boys Students with "C" Grade

Go to Cell K3 and type =COUNTIFS(D2:D101,"m",E2:E101,"C")

To calculate Boys Students with "D" Grade

Go to Cell L3 and type =COUNTIFS(D2:D101,"m",E2:E101,"D")

Use AutoSum to get total values.

To calculate Ei

On H5 type =H4/2 On I5 type =I4/2 On J5 type =J4/2 On K5 type =K4/2 On L5 type =L4/2 On M5 type =M4/2

Now calculate "sum{[(Oi-Ei)^2]/Ei}"

Go to cell N2 and type

=SUM((H2-H5)^2/H5,(I2-I5)^2/I5,(J2-J5)^2/J5,(K2-K5)^2/K5,(L2-L5)^2/L5)

Go to cell N3 and type

=SUM((H3-H5)^2/H5,(I3-I5)^2/I5,(J3-J5)^2/J5,(K3-K5)^2/K5,(L3-L5)^2/L5)

To get the table value go to cell N7 and type =CHIINV(0.05,4)

Go to cell N8 and type =IF(N4>=N7," H0 is Accepted", "H0 is Rejected")

| N8 |       | v) i [X | $\sqrt{fx}$ | =IF(N4>=N7," H0 is Accepted", "H0 is Rejected") |     |            |             |                     |
|----|-------|---------|-------------|-------------------------------------------------|-----|------------|-------------|---------------------|
|    | G     | Н       | 1           | J                                               | K   | L          | М           | N                   |
| 1  |       | 0       | Α           | В                                               | С   | D          | total       | sum{[(Oi-Ei)^2]/Ei} |
| 2  | girls | 11      | 7           | 5                                               | 5   | 11         | 39          | 6.074863267         |
| 3  | boys  | 30      | 4           | 3                                               | 10  | 14         | 61          | 6.074863267         |
| 4  | total | 41      | 11          | 8                                               | 15  | <b>2</b> 5 | 100         | 12.14972653         |
| 5  | Ei    | 20.5    | 5.5         | 4                                               | 7.5 | 12.5       | 50          |                     |
| 6  |       |         |             |                                                 |     |            |             |                     |
| 7  |       |         |             |                                                 |     |            | table value | 9.487729037         |
| 8  |       |         |             |                                                 |     |            |             | H0 is Accepted      |

# > Perform testing of hypothesis using Z-test.

### One sample:

| IQ  |
|-----|
| 82  |
| 82  |
| 85  |
| 87  |
| 87  |
| 88  |
| 92  |
| 92  |
| 94  |
| 94  |
| 95  |
| 96  |
| 97  |
| 97  |
| 97  |
| 99  |
| 99  |
| 101 |
| 101 |
| 103 |
| 103 |
| 105 |
| 107 |
| 109 |
| 109 |
| 109 |
| 110 |
| 112 |
| 112 |
| 113 |

114 115 Given:

population mean = 100, population std dev = 15.

H0: population mean is equal to 100. H1: population mean is not equal to 100.

Click on D2 and type =Z.TEST(A2:A33,100,15)

(Please note that this gives us value for a one-tailed test. To obtain P-value for two-tailed test click on D4 and type =D2\*2. This will give us an approximate P-value for two-tailed Z-test.)

|         | 0.565525 | one tail |
|---------|----------|----------|
|         |          |          |
| P-value | 1.131049 | two tail |

Go to D6 and type =IF(D4>0.05,"H0 accepted","H1 accepted,H0 rejected")



## Two sample:

| CITY A | CITY B |
|--------|--------|
| 82     | 88     |
| 84     | 88     |
| 85     | 90     |
| 89     | 91     |
| 89     | 91     |
| 90     | 91     |
| 90     | 93     |
| 90     | 93     |
| 91     | 95     |
| 91     | 95     |
| 92     | 99     |
| 94     | 99     |
| 94     | 102    |
| 94     | 102    |
| 98     | 105    |
| 98     | 107    |
| 99     | 108    |
| 99     | 109    |
| 105    | 109    |
| 106    | 114    |
| 106    | 115    |
| 109    | 116    |
| 109    | 117    |
| 109    | 117    |
| 110    | 119    |
| 112    | 123    |
| 112    | 128    |
| 113    | 129    |
| 114    | 130    |

114

133

**Given:** variance for city a: 225 Variance for city b: 225

**H0:** population mean for city a = population mean for city b

**H1:** population mean for city a is not equal to population mean for city b.

Go to Data tab > Data Analysis



#### Click on OK.



Click on OK.



Click on D15 and type =IF(E12>0.05,"H0 accepted","H1 accepted, H0 rejected")

| _ A      | В      | С | D                            | Е        | F        |
|----------|--------|---|------------------------------|----------|----------|
| 1 CITY A | CITY B |   |                              |          |          |
| 2 82     | 88     |   | z-Test: Two Sample for Means |          |          |
| 3 84     | 88     |   |                              |          |          |
| 4 85     | 90     |   |                              | CITY A   | CITY B   |
| 5 89     | 91     |   | Mean                         | 98.93333 | 106.5333 |
| 6 89     | 91     |   | Known Variance               | 255      | 255      |
| 7 90     | 91     |   | Observations                 | 30       | 30       |
| 8 90     | 93     |   | Hypothesized Mean Difference | 0        |          |
| 9 90     | 93     |   | z                            | -1.84327 |          |
| 10 91    | 95     |   | P(Z<=z) one-tail             | 0.032645 |          |
| 11 91    | 95     |   | z Critical one-tail          | 1.644854 |          |
| 12 92    | 99     |   | P(Z<=z) two-tail             | 0.065289 |          |
| 13 94    | 99     |   | z Critical two-tail          | 1.959964 |          |
| 14 94    | 102    |   |                              |          |          |
| 15 94    | 102    |   | H0 accepted                  |          |          |
| 16 98    | 105    |   |                              |          |          |

#### A. Perform testing of hypothesis using One-way ANOVA.

ANOVA assumptions:

- The dependent variable (none, low medium and high in our example) should becontinuous.
- The independent variables (daily and weekly in our example) should be two or morecategorical groups.
- There must be different participants in each group with no participant being in morethan one group.
- The dependent variable should be approximately normally distributed for each category.
- Variances of each group are approximately equal.

Below you can find the salaries of people who have a degree in economics, medicine orhistory.

| economics | medicine | history |
|-----------|----------|---------|
| 42        | 69       | 35      |
| 53        | 54       | 40      |
| 49        | 58       | 53      |
| 53        | 64       | 42      |
| 43        | 64       | 50      |
| 44        | 55       | 39      |
| 45        | 56       | 55      |
| 52        |          | 39      |
| 54        |          | 40      |

H0 – all means are same (  $\mu 1 = \mu 2 = \mu 3$  ).

H1 – at least one mean is different.

To perform ANOVA, go to Data > Data Analysis



Input Range: A1:C10 Output Range: E1

| <b>4</b> [ | E                    | F       | G   | Н        | I        | J        | K        |
|------------|----------------------|---------|-----|----------|----------|----------|----------|
| 1          | Anova: Single Factor |         |     |          |          |          |          |
| 2          |                      |         |     |          |          |          |          |
| 3          | SUMMARY              |         |     |          |          |          |          |
| 4          | Groups               | Count   | Sum | Average  | Variance |          |          |
| 5          | economics            | 9       | 435 | 48.33333 | 23.5     |          |          |
| 6          | medicine             | 7       | 420 | 60       | 32.33333 |          |          |
| 7          | history              | 9       | 393 | 43.66667 | 50.5     |          |          |
| 8          |                      |         |     |          |          |          |          |
| 9          |                      |         |     |          |          |          |          |
| 10         | ANOVA                |         |     |          |          |          |          |
| 11         | Source of Variation  | SS      | df  | MS       | F        | P-value  | F crit   |
| 12         | Between Groups       | 1085.84 | 2   | 542.92   | 15.19623 | 7.16E-05 | 3.443357 |
| 13         | Within Groups        | 786     | 22  | 35.72727 |          |          |          |
| 14         |                      |         |     |          |          |          |          |
| 15         | Total                | 1871.84 | 24  |          |          |          |          |
| 4.5        |                      |         |     |          |          |          |          |

To take a decision, in cell B14 type =IF(J11<C13,"H0 accepted","H1 accepted, H0 rejected") Since the resulting p value is less than 0.05. The null hypothesis (H0) is rejected and concluded that at least one mean is different.

|    | Α            | В          | С            | D   |
|----|--------------|------------|--------------|-----|
| 1  | economics    | medicine   | history      |     |
| 2  | 42           | 69         | 35           |     |
| 3  | 53           | 54         | 40           |     |
| 4  | 49           | 58         | 53           |     |
| 5  | 53           | 64         | 42           |     |
| 6  | 43           | 64         | 50           |     |
| 7  | 44           | 55         | 39           |     |
| 8  | 45           | 56         | 55           |     |
| 9  | 52           |            | 39           |     |
| 10 | 54           |            | 40           |     |
| 11 |              |            |              |     |
| 12 |              |            |              |     |
| 13 | significance | level      | 0.05         |     |
| 14 |              | H1 accepte | ed, H0 rejec | ted |

#### B. Perform testing of hypothesis using Two-way ANOVA.

A two-way ANOVA ("analysis of variance") is used to determine whether or not there is a statistically significant difference between the means of three or more independent groupsthat have been split on two variables (sometimes called "factors").

The results of a two-way ANOVA to be valid, the following assumptions should be met:

- **Normality** The response variable is approximately normally distributed for each group.
- **Equal Variances** The variances for each group should be roughly equal.
- **Independence** The observations in each group are independent of each other andthe observations within groups were obtained by a random sample.

#### **Example:**

A botanist wants to know whether plant growth is influenced by sunlight exposure and watering frequency. She plants 40 seeds and lets grow for two months under different conditions for sunlight

exposure and watering frequency. After two months, she records theheight of each plant. The results are shown below:

| Water     | Sunlight Exposure |     |        |      |  |
|-----------|-------------------|-----|--------|------|--|
| Frequency | None              | Low | Medium | High |  |
|           | 4.8               | 5   | 6.4    | 6.3  |  |
|           | 4.4               | 5.2 | 6.2    | 6.4  |  |
| Daily     | 3.2               | 5.6 | 4.7    | 5.6  |  |
| •         | 3.9               | 4.3 | 5.5    | 4.8  |  |
|           | 4.4               | 4.8 | 5.8    | 5.8  |  |
|           | 4.4               | 4.9 | 5.8    | 6    |  |
|           | 4.2               | 5.3 | 6.2    | 4.9  |  |
| Weekly    | 3.8               | 5.7 | 6.3    | 4.6  |  |
| ,         | 3.7               | 5.4 | 6.5    | 5.6  |  |
|           | 3.9               | 4.8 | 5.5    | 5.5  |  |

**H0** represents whether a plant watered daily or weekly has impact on how sunlightexposure affects a plant.

**H1** represents whether a plant watered daily or weekly has no impact, how sunlightexposure affects a plant.

Go to Data tab > Data Analysis



|                     | Anova: Two-Factor With Replication |       |          |          |          |          |
|---------------------|------------------------------------|-------|----------|----------|----------|----------|
| SUMMARY             | none<br><i>daily</i>               | _     | medium   | high     | Total    |          |
| Count               | 5                                  | 5     | 5        | 5        | 20       |          |
| Sum                 | 20.7                               | 24.9  | 28.6     | 28.9     | 103.1    |          |
| Average             | 4.14                               | 4.98  | 5.72     | 5.78     | 5.155    |          |
| Variance            | 0.378                              | 0.232 | 0.447    | 0.412    | 0.775237 |          |
| weekly              |                                    |       |          |          |          |          |
| Count               | 5                                  | 5     | 5        | 5        | 20       |          |
| Sum                 | 20                                 | 26.1  | 30.3     | 26.6     | 103      |          |
| Average             | 4                                  | 5.22  | 6.06     | 5.32     | 5.15     |          |
| Variance            | 0.085                              | 0.137 | 0.163    | 0.317    | 0.722632 |          |
|                     |                                    |       |          |          |          |          |
| Total               |                                    |       |          |          |          |          |
| Count               | 10                                 | 10    | 10       | 10       |          |          |
| Sum                 | 40.7                               | 51    | 58.9     | 55.5     |          |          |
| Average             | 4.07                               | 5.1   | 5.89     | 5.55     |          |          |
| Variance            | 0.211222                           | 0.18  | 0.303222 | 0.382778 |          |          |
|                     |                                    |       |          |          |          |          |
| ANOVA               |                                    |       |          |          |          |          |
| Source of Variation | SS                                 | df    | MS       | F        | P-value  | F crit   |
| Sample              | 0.00025                            | 1     | 0.00025  | 0.000921 | 0.975975 | 4.149097 |
| Columns             | 18.76475                           | 3     | 6.254917 | 23.04898 | 3.9E-08  | 2.90112  |
| Interaction         | 1.01075                            | 3     | 0.336917 | 1.241517 | 0.310898 | 2.90112  |
| Within              | 8.684                              | 32    | 0.271375 |          |          |          |
| Total               | 28.45975                           | 39    |          |          |          |          |

To take a decision, click on cell B15 and type==IF(L24<B14,"H0 accepted","H1 accepted,H0 rejected")

|    | ٨                  | D          | C            | Ь        | Г    |
|----|--------------------|------------|--------------|----------|------|
| 4  | А                  | В          | C            | D        | E    |
| 1  |                    |            | sunlight (   | exposure |      |
| 2  | water frequency    | none       | low          | medium   | high |
| 3  | daily              | 4.8        | 5            | 6.4      | 6.3  |
| 4  |                    | 4.4        | 5.2          | 6.2      | 6.4  |
| 5  |                    | 3.2        | 5.6          | 4.7      | 5.6  |
| 6  |                    | 3.9        | 4.3          | 5.5      | 4.8  |
| 7  |                    | 4.4        | 4.8          | 5.8      | 5.8  |
| 8  | weekly             | 4.4        | 4.9          | 5.8      | 6    |
| 9  |                    | 4.2        | 5.3          | 6.2      | 4.9  |
| 10 |                    | 3.8        | 5.7          | 6.3      | 4.6  |
| 11 |                    | 3.7        | 5.4          | 6.5      | 5.6  |
| 12 |                    | 3.9        | 4.8          | 5.5      | 5.5  |
| 13 |                    | ·          |              |          |      |
| 14 | significance level | 0.05       |              |          |      |
| 15 |                    | H1 accepte | ed, H0 rejec | ted      |      |

### A. Perform the Random sampling for the given data and analyze it.

**Example:** A test conducted of 40 marks for a class of 100. We want a sample that represents the class. Data for the same is given below.

| rollno                          | marks |
|---------------------------------|-------|
| 1                               | 19    |
| 2                               | 29    |
| 3                               | 8     |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 27    |
| 5                               | 38    |
| 6                               | 5     |
| 7                               | 36    |
| 8                               | 24    |
| 9                               | 23    |
| 10                              | 12    |
| 11                              | 33    |
| 12                              | 30    |
| 13                              | 27    |
| 14                              | 13    |
| 15                              | 22    |
| 16                              | 10    |
| 17                              | 36    |
| 18                              | 17    |
| 19                              | 26    |
| 20                              | 10    |
| 21                              | 17    |
| 22                              | 12    |
| 23                              | 4     |
| 24                              | 22    |
| 25                              | 23    |

| 1  |
|----|
| 9  |
| 12 |
| 3  |
| 8  |
| 18 |
| 5  |
| 32 |
| 15 |
| 26 |
| 5  |
| 24 |
| 2  |
| 29 |
| 4  |
| 31 |
| 31 |
| 13 |
| 7  |
| 31 |
| 31 |
| 8  |
| 13 |
| 20 |
| 13 |
|    |

| 51 | 36 |
|----|----|
| 52 | 6  |
| 53 | 26 |
| 54 | 0  |
| 55 | 4  |
| 56 | 4  |
| 57 | 19 |
| 58 | 38 |
| 59 | 40 |
| 60 | 13 |
| 61 | 25 |
| 62 | 30 |
| 63 | 21 |
| 64 | 5  |
| 65 | 21 |
| 66 | 33 |
| 67 | 29 |
| 68 | 1  |
| 69 | 7  |
| 70 | 19 |
| 71 | 24 |
| 72 | 33 |
| 73 | 21 |
| 74 | 7  |
| 75 | 34 |

| 76  | 25 |
|-----|----|
| 77  | 33 |
| 78  | 10 |
| 79  | 26 |
| 80  | 17 |
| 81  | 34 |
| 82  | 18 |
| 83  | 19 |
| 84  | 22 |
| 85  | 3  |
| 86  | 31 |
| 87  | 4  |
| 88  | 31 |
| 89  | 25 |
| 90  | 25 |
| 91  | 28 |
| 92  | 8  |
| 93  | 13 |
| 94  | 9  |
| 95  | 1  |
| 96  | 25 |
| 97  | 39 |
| 98  | 2  |
| 99  | 33 |
| 100 | 38 |

Go to Data tab > Data Analysis



Select sampling > ok



#### For random sampling Sampling Input ₫ \$B\$1:\$B\$101 Input Range: Cancel <u>L</u>abels <u>H</u>elp Sampling Method O Periodic Period: Random 10 Number of Samples: Output options \$D\$2 ₫ Output Range: New Worksheet Ply: O New Workbook

Select **input range** - B1:B101 Make sure you have checked checkbox for labels. Select Sampling method as Random. Number of samples – 10

Select **output range** – D2.

## For periodic sampling



Select **input range** - B1:B101 Make sure you have checked checkbox for labels. Select Sampling method as Periodic. period – 20

if you want a specific number of samples and you want to know what to type in this field then use the formula: total number of samples/samples required.

Example: Select output range – E2

| 1  | random sample | periodic sample |
|----|---------------|-----------------|
| 2  | 27            | 10              |
| 3  | 33            | 4               |
| 4  | 18            | 13              |
| 5  | 31            | 17              |
| 6  | 18            | 38              |
| 7  | 13            |                 |
| 8  | 31            |                 |
| 9  | 38            |                 |
| 10 | 25            |                 |
| 11 | 27            |                 |

### B. Perform the Periodic sampling for the given data and analyze it.

**Example:** A test conducted of 40 marks for a class of 100. We want a sample that represent intervals such as below 10, between 11 to 20, between 21 to 30, greater than 30, etc. Data forthe same is given below.

| rollno                          | marks |
|---------------------------------|-------|
| 1                               | 19    |
| 2                               | 29    |
| 3                               | 8     |
| 4                               | 27    |
| 1<br>2<br>3<br>4<br>5<br>6<br>7 | 38    |
| 6                               | 5     |
|                                 | 36    |
| 8                               | 24    |
| 9                               | 23    |
| 10                              | 12    |
| 11                              | 33    |
| 12                              | 30    |
| 13                              | 27    |
| 14                              | 13    |
| 15                              | 22    |
| 16                              | 10    |
| 17                              | 36    |
| 18                              | 17    |
| 19                              | 26    |
| 20                              | 10    |
| 21                              | 17    |
| 22                              | 12    |
| 23                              | 4     |
| 24                              | 22    |
| 25                              | 23    |

| 26 | 1  |
|----|----|
| 27 | 9  |
| 28 | 12 |
| 29 | 3  |
| 30 | 8  |
| 31 | 18 |
| 32 | 5  |
| 33 | 32 |
| 34 | 15 |
| 35 | 26 |
| 36 | 5  |
| 37 | 24 |
| 38 | 2  |
| 39 | 29 |
| 40 | 4  |
| 41 | 31 |
| 42 | 31 |
| 43 | 13 |
| 44 | 7  |
| 45 | 31 |
| 46 | 31 |
| 47 | 8  |
| 48 | 13 |
| 49 | 20 |
| 50 | 13 |

| 51                         | 36                 |
|----------------------------|--------------------|
| 52<br>53<br>54<br>55<br>56 | 6                  |
| 53                         | 26                 |
| 54                         | 0                  |
| 55                         | 4                  |
| 56                         | 4                  |
| 57                         | 19                 |
| 58                         | 38                 |
| 59                         | 40                 |
| 60                         | 13                 |
| 61                         | 25                 |
| 62                         | 30                 |
| 63                         | 21                 |
| 64                         | 5                  |
| 65                         | 21                 |
| 66                         | 33                 |
| 67                         | 29                 |
| 68                         | 33<br>29<br>1<br>7 |
| 69                         | 7                  |
| 70                         | 19                 |
| 71                         | 24                 |
| 72                         | 33                 |
| 73                         | 21<br>7            |
| 74                         | 7                  |
| 75                         | 34                 |

| 76  | 25 |
|-----|----|
| 77  | 33 |
| 78  | 10 |
| 79  | 26 |
| 80  | 17 |
| 81  | 34 |
| 82  | 18 |
| 83  | 19 |
| 84  | 22 |
| 85  | 3  |
| 86  | 31 |
| 87  | 4  |
| 88  | 31 |
| 89  | 25 |
| 90  | 25 |
| 91  | 28 |
| 92  | 8  |
| 93  | 13 |
| 94  | 9  |
| 95  | 1  |
| 96  | 25 |
| 97  | 39 |
| 98  | 2  |
| 99  | 33 |
| 100 | 38 |
| ·   |    |

#### Go to Data tab > Data Analysis



Select sampling > ok



## For periodic sampling



# Select input range - B1:B101

Make sure you have checked checkbox for labels. Select

Sampling method as Periodic.

period - 20

if you want a specific number of samples and you want to know what to type in this field then use the formula: total number of samples/samples required.

**Example**: Select **output range** – E2



# Compute different types of correlation.

Correlation is a statistical term describing the degree to which two variables move in coordination with one another. If the two variables move in the same direction, then those variables are said to have a positive correlation. If they move in opposite directions, then they have a negative correlation.

In Excel.

- "1" represents positive correlation.
- "0" represents no correlation.
- "-1" represents negative correlation.

#### Positive correlation

| X  | Y  |
|----|----|
| 0  | 2  |
| 10 | 12 |
| 2  | 4  |
| 12 | 14 |
| 6  | 8  |

Go to Data tab > Data Analysis > Correlation > Click Ok.



Select **input range** – A1:B6.

Select radio button Columns.

Check checkbox labels in first row.

Select **output range** – A8.

Click on Ok.

Another way to calculate correlation is to type =CORREL(A2:A6,B2:B6) in cell B12. To plot a graph, go to Insert tab > Charts > Line Chart > Line.



## Negative correlation

| X  | Z   |
|----|-----|
| 0  | 2   |
| 10 | -8  |
| 2  | 0   |
| 12 | -10 |
| 6  | -4  |

Go to Data tab > Data Analysis > Correlation > Click Ok.





## **Select input range** – A1:B6.

Select radio button Columns.

Check checkbox labels in first row.

## Select output range -A8.

Click on Ok.

Another way to calculate correlation is to type =CORREL(A2:A6,B2:B6) in cell B12. To plot a graph, go to Insert tab > Charts > Line Chart > Line.



# • Correlation for three or more variables

| A  | В | C  |
|----|---|----|
| 0  | 2 | 2  |
| 14 | 6 | 11 |
| 1  | 8 | 3  |
| 10 | 5 | 13 |
| 5  | 6 | 4  |

Go to Data tab > Data Analysis > Correlation > Click Ok.





\$A\$8

₫

Select input range – A1:C6.

Output Range:

New Worksheet Ply:

New Workbook

Select radio button Columns.

Check checkbox labels in first row.

Select output range – A8.

Click on Ok.

To plot a graph, go to Insert tab > Charts > Line Chart > Line.



This example represents more real life situations.

Correlation between A and B is near "0".

Correlation between A and C is near "1".

Correlation between B and C is near "0".

# A. Perform linear regression for prediction.

| Car_Name      | Selling_Price | Present_Price |
|---------------|---------------|---------------|
| ritz          | 3.35          | 5.59          |
| sx4           | 4.75          | 9.54          |
| ciaz          | 7.25          | 9.85          |
| wagon r       | 2.85          | 4.15          |
| swift         | 4.6           | 6.87          |
| vitara brezza | 9.25          | 9.83          |
| ciaz          | 6.75          | 8.12          |
| s cross       | 6.5           | 8.61          |
| ciaz          | 8.75          | 8.89          |
| ciaz          | 7.45          | 8.92          |

Go to Data tab > Data Analysis > Regression > Click Ok.



Select **input Y range** – B1:B10. Select **input X range** – C1:C10.

Check checkboxes for Labels and Confidence Level.

Select **output range** – F3.

Check checkbox Residuals.

Click Ok.

| SUMMARY    | OUTPUT       |             |          |          |             |           |            |            |
|------------|--------------|-------------|----------|----------|-------------|-----------|------------|------------|
| Regression | Statistics   |             |          |          |             |           |            |            |
| Multiple R | 0.806128     |             |          |          |             |           |            |            |
| R Square   | 0.649843     |             |          |          |             |           |            |            |
| Adjusted R | 0.599821     |             |          |          |             |           |            |            |
| Standard E | 1.431531     |             |          |          |             |           |            |            |
| Observatio | 9            |             |          |          |             |           |            |            |
| ANOVA      |              |             |          |          |             |           |            |            |
|            | df           | SS          | MS       | F        | ignificance | F         |            |            |
| Regressior | 1            | 26.62226    | 26.62226 | 12.99103 | 0.00869     |           |            |            |
| Residual   | 7            | 14.34496    | 2.04928  |          |             |           |            |            |
| Total      | 8            | 40.96722    |          |          |             |           |            |            |
|            |              |             |          |          |             |           |            |            |
| (          | Coefficients | andard Erro | t Stat   | P-value  | Lower 95%   | Upper 95% | ower 95.0% | pper 95.09 |
| Intercept  | -1.21357     | 2.058974    | -0.58941 | 0.574111 | -6.08227    | 3.655128  | -6.08227   | 3.655128   |
| Present Pr | 0.909337     | 0.252292    | 3.604307 | 0.00869  | 0.312762    | 1.505913  | 0.312762   | 1.505913   |

| RESIDUAL OUTPUT |              |           |  |  |  |  |
|-----------------|--------------|-----------|--|--|--|--|
|                 |              |           |  |  |  |  |
| Observation     | ted Selling_ | Residuals |  |  |  |  |
| 1               | 3.869624     | -0.51962  |  |  |  |  |
| 2               | 7.461505     | -2.71151  |  |  |  |  |
| 3               | 7.7434       | -0.4934   |  |  |  |  |
| 4               | 2.560178     | 0.289822  |  |  |  |  |
| 5               | 5.033575     | -0.43358  |  |  |  |  |
| 6               | 7.725213     | 1.524787  |  |  |  |  |
| 7               | 6.170247     | 0.579753  |  |  |  |  |
| 8               | 6.615822     | -0.11582  |  |  |  |  |
| 9               | 6.870436     | 1.879564  |  |  |  |  |
|                 |              |           |  |  |  |  |

# B. Perform multiple regression for prediction.

| Quantity | price in | Advertising in |
|----------|----------|----------------|
| Sold     | dollars  | dollars        |
| 8500     | 2        | 2800           |
| 4700     | 5        | 200            |
| 5800     | 3        | 400            |
| 7400     | 2        | 500            |
| 6200     | 5        | 3200           |
| 7300     | 3        | 1800           |
| 5600     | 4        | 900            |

Go to Data tab > Data Analysis > Regression > Click Ok.



Select **input Y range** – A1:A8. Select **input X range** – B1:C8. Check checkboxes for Labels and Confidence Level. Select **output range** – E2. Check checkbox Residuals. Click Ok.

| E                      | F            | G              | Н            | 1           | J              | K            | L           | М            |
|------------------------|--------------|----------------|--------------|-------------|----------------|--------------|-------------|--------------|
|                        |              |                |              |             |                |              |             |              |
| SUMMARY OUTPUT         |              |                |              |             |                |              |             |              |
| Regressio              | n Statistics |                |              |             |                |              |             |              |
| Multiple R             | 0.980681431  |                |              |             |                |              |             |              |
| R Square               | 0.961736068  |                |              |             |                |              |             |              |
| Adjusted R Square      | 0.942604102  |                |              |             |                |              |             |              |
| Standard Error         | 310.5239249  |                |              |             |                |              |             |              |
| Observations           | 7            |                |              |             |                |              |             |              |
| ANOVA                  |              |                |              |             |                |              |             |              |
|                        | df           | SS             | MS           | F           | Significance F |              |             |              |
| Regression             | 2            | 9694299.568    | 4847149.784  | 50.26854403 | 0.001464128    |              |             |              |
| Residual               | 4            | 385700.4318    | 96425.10794  |             |                |              |             |              |
| Total                  | 6            | 10080000       |              |             |                |              |             |              |
|                        | Coefficients | Standard Error | t Stat       | P-value     | Lower 95%      | Upper 95%    | Lower 95.0% | Upper 95.0%  |
| Intercept              | 8536.213882  | 386.9117478    | 22.06243137  | 2.49812E-05 | 7461.974654    | 9610.453111  | 7461.974654 | 9610.453113  |
| price in dollars       | -835.7223514 | 99.65304469    | -8.386320297 | 0.001106064 | -1112.40356    | -559.0411432 | -1112.40356 | -559.0411432 |
| Advertising in dollars | 0.592228496  | 0.104346803    | 5.675578729  | 0.004755309 | 0.302515325    | 0.881941666  | 0.302515325 | 0.88194166   |
|                        |              |                |              |             |                |              |             |              |
|                        |              |                |              |             |                |              |             |              |

|    |                 | <b>.</b>                |              |
|----|-----------------|-------------------------|--------------|
| 4  | E               | F                       | G            |
| 23 |                 |                         |              |
| 24 | RESIDUAL OUTPUT |                         |              |
| 25 |                 |                         |              |
| 26 | Observation     | Predicted Quantity Sold | Residuals    |
| 27 | 1               | 8523.008967             | -23.00896712 |
| 28 | 2               | 4476.047825             | 223.9521754  |
| 29 | 3               | 6265.938227             | -465.9382265 |
| 30 | 4               | 7160.883427             | 239.1165726  |
| 31 | 5               | 6252.733311             | -52.73331119 |
| 32 | 6               | 7095.05812              | 204.9418798  |
| 33 | 7               | 5726.330123             | -126.3301229 |
| 3/ |                 |                         |              |