- 13 G. Garcia, L. Nahon, C. J. Harding and I. Powis, *Phys. Chem. Chem. Phys.*, 2008, **10**, 1628–1639.
- 14 G. Garcia, H. Soldi-Lose, L. Nahon and I. Powis, J. Phys. Chem. A, 2010, 114, 847.
- 15 M. Tia, B. Cunha de Miranda, S. Daly, F. Gaie-Levrel, G. A. Garcia, L. Nahon and I. Powis, *J. Phys. Chem. A*, 2014, 118, 2765–2779.
- 16 M. Stener, G. Fronzoni, D. Di Tommaso and P. Decleva, J. Chem. Phys., 2004, 120, 3284–3296.
- 17 G. A. Garcia, H. Dossmann, L. Nahon, S. Daly and I. Powis, *Phys. Chem. Chem. Phys.*, 2014, **16**, 16214–16224.
- 18 L. Nahon, G. Garcia, H. Soldi-Lose, S. Daly and I. Powis, *Phys. Rev. A: At., Mol., Opt. Phys.*, 2010, **82**, 032514.
- 19 S. Daly, I. Powis, G. A. Garcia, H. Soldi-Lose and L. Nahon, J. Chem. Phys., 2011, 134, 064306.
- 20 I. Powis, S. Daly, M. Tia, B. Cunha de Miranda, G. Garcia and L. Nahon, *Phys. Chem. Chem. Phys.*, 2014, **16**, 467-476.
- 21 G. Garcia, L. Nahon, S. Daly and I. Powis, *Nat. Commun.*, 2013, 4, 2132.
- 22 I. Powis, J. Chem. Phys., 2014, 140, 111103.
- 23 M. H. M. Janssen and I. Powis, Phys. Chem. Chem. Phys., 2014, 16, 856–871.
- 24 C. Lux, M. Wollenhaupt, T. Bolze, Q. Q. Liang, J. Kohler, C. Sarpe and T. Baumert, *Angew. Chem., Int. Ed.*, 2012, 51, 5001–5005.
- 25 C. Lux, M. Wollenhaupt, C. Sarpe and T. Baumert, *ChemPhysChem*, 2015, **16**, 115–137.
- 26 C. S. Lehmann, N. B. Ram, I. Powis and M. H. M. Janssen, J. Chem. Phys., 2013, 139, 234307.
- 27 M. M. Rafiee Fanood, I. Powis and M. H. M. Janssen, *J. Phys. Chem. A*, 2014, **118**, 11541–11546.
- 28 M. M. Rafiee Fanood, M. H. M. Janssen and I. Powis, *Phys. Chem. Chem. Phys.*, 2015, 17, 8614–8617.
- 29 A. Ferré, C. Handchin, M. Dumergue, F. Burgy, A. Comby, D. Descamps, B. Fabre, G. A. Garcia, R. Géneaux, L. Merceron, E. Mével, L. Nahon, S. Petit, B. Pans, D. Staeder, S. Weber, T. Ruchon, V. Blanchet and Y. Mairesse, *Nat. Photonics*, 2015, 9, 93–98.
- 30 M. M. Fanood, N. B. Ram, C. S. Lehmann, I. Powis and M. H. M. Janssen, *Nat. Commun.*, 2015, 6, 7511.
- 31 D. Patterson, M. Schnell and J. M. Doyle, *Nature*, 2013, 497, 475–477.
- 32 D. Patterson and J. M. Doyle, Phys. Rev. Lett., 2013, 111, 023008.
- 33 V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle and M. Schnell, *Angew. Chem.*, *Int. Ed.*, 2014, 53, 1152–1155.
- 34 G. A. Garcia, L. Nahon, M. Lebech, J. C. Houver, D. Dowek and I. Powis, *J. Chem. Phys.*, 2003, **119**, 8781–8784.
- 35 T. Lischke, N. Böwering, B. Schmidtke, N. Muller, T. Khalil and U. Heinzmann, *Phys. Rev. A: At., Mol., Opt. Phys.*, 2004, **70**, 022507.
- 36 L. Nahon, G. A. Garcia, C. J. Harding, E. A. Mikajlo and I. Powis, J. Chem. Phys., 2006, 125, 114309.
- 37 C. Lux, A. Senftleben, C. Sarpe, M. Wollenhaupt and T. Baumert, *J. Phys. B: At., Mol. Opt. Phys.*, 2016, 49, 02LT01.
- 38 R. Cireasa, A. E. Boguslavskiy, B. Pons, M. C. H. Wong, D. Descamps, S. Petit, H. Ruf, N. Thiré, A. Ferré, J. Suarez,

- J. Higuet, B. E. Schmidt, A. F. Alharbi, F. Légaré, V. Blanchet, B. Fabre, S. Patchkovskii, O. Smirnova, Y. Mairesse and V. R. Bhardwaj, *Nat. Phys.*, 2015, **11**, 654–658.
- 39 C. Loge and U. Boesl, ChemPhysChem, 2011, 12, 1940-1947.
- 40 I. Powis, C. J. Harding, G. Garcia and L. Nahon, ChemPhysChem, 2008, 9, 475–483.
- 41 M. Stener, D. D. Tommaso, G. Fronzoni, P. Decleva and I. Powis, *J. Chem. Phys.*, 2006, **124**, 024326.
- 42 I. Dreissigacker and M. Lein, *Phys. Rev. A: At., Mol., Opt. Phys.*, 2014, **89**, 053406.
- 43 A. N. Artemyev, A. D. Muller, D. Hochstuhl and P. V. Demekhin, J. Chem. Phys., 2015, 142, 244105.
- 44 C. Meinert and U. J. Meierhenrich, *Angew. Chem., Int. Ed.*, 2012, 51, 10460-10470.
- 45 X. Tang, G. Garcia, G. Jean-Francois and L. Nahon, Rev. Sci. Instrum., 2015, 86, 123108.
- 46 L. Nahon, N. de Oliveira, G. Garcia, J. F. Gil, B. Pilette, O. Marcouille, B. Lagarde and F. Polack, *J. Synchrotron Radiat.*, 2012, 19, 508–520.
- 47 B. Mercier, M. Compin, C. Prevost, G. Bellec, R. Thissen, O. Dutuit and L. Nahon, J. Vac. Sci. Technol., A, 2000, 18, 2533–2541.
- 48 L. Nahon and C. Alcaraz, Appl. Opt., 2004, 43, 1024-1037.
- 49 G. Garcia, B. Cunha de Miranda, M. Tia, S. Daly and L. Nahon, *Rev. Sci. Instrum.*, 2013, 84, 053112.
- 50 G. A. Garcia, L. Nahon and I. Powis, *Rev. Sci. Instrum.*, 2004, 75, 4989–4996.
- 51 E. E. Rennie, I. Powis, U. Hergenhahn, O. Kugeler, G. Garcia, T. Lischke and S. Marburger, J. Electron Spectrosc. Relat. Phenom., 2002, 125, 197–203.
- 52 A. Kastner, C. Lux, T. Ring, S. Zullighoven, C. Sarpe, A. Senftleben and T. Baumert, *ChemPhysChem*, 2016, DOI: 10.1002/cphc.201501067.
- 53 D. Patterson and M. Schnell, *Phys. Chem. Chem. Phys.*, 2014, 16, 11114–11123.
- 54 A. Hong, C. M. Choi, H. J. Eun, C. Jeong, J. Heo and N. J. Kim, *Angew. Chem., Int. Ed.*, 2014, 53, 7805–7808.
- 55 V. Ulrich, S. Barth, S. Joshi, U. Hergenhahn, E. Mikajlo, C. J. Harding and I. Powis, *J. Phys. Chem. A*, 2008, **112**, 3544–3549.
- 56 V. Alvin Shubert, D. Schmitz and M. Schnell, *J. Mol. Spectrosc.*, 2014, 300, 31–36.
- 57 E. Allaria, B. Diviacco, C. Callegari, P. Finetti, B. Mahieu, J. Viefhaus, M. Zangrando, G. De Ninno, G. Lambert, E. Ferrari, J. Buck, M. Ilchen, B. Vodungbo, N. Mahne, C. Svetina, C. Spezzani, S. Di Mitri, G. Penco, M. Trovó, W. M. Fawley, P. R. Rebernik, D. Gauthier, C. Grazioli, M. Coreno, B. Ressel, A. Kivimäki, T. Mazza, L. Glaser, F. Scholz, J. Seltmann, P. Gessler, J. Grünert, A. De Fanis, M. Meyer, A. Knie, S. P. Moeller, L. Raimondi, F. Capotondi, E. Pedersoli, O. Plekan, M. B. Danailov, A. Demidovich, I. Nikolov, A. Abrami, J. Gautier, J. Lüning, P. Zeitoun and L. Giannessi, *Phys. Rev. X*, 2014, 4, 041040.
- 58 D. D. Hickstein, F. J. Dollar, P. Grychtol, J. L. Ellis, R. Knut, C. Hernández-García, D. Zusin, C. Gentry, J. M. Shaw, T. Fan, K. M. Dorney, A. Becker, A. Jaroń-Becker,