Prophet_Turkey

December 19, 2020

```
[1]: from fbprophet import Prophet
     import pandas as pd
     from pandas import DataFrame
     from matplotlib import pyplot
     #univariate
[2]: turkey = pd.read_excel("TurkeyData3.xlsx",header=0)
[3]: turkey.columns = ['ds', 'y']
     turkey
     turkey['ds'] = pd.to_datetime(turkey['ds'])
[4]: model = Prophet()
[5]: model.fit(turkey)
    INFO:numexpr.utils:NumExpr defaulting to 8 threads.
    INFO:fbprophet:Disabling weekly seasonality. Run prophet with
    weekly_seasonality=True to override this.
    INFO:fbprophet:Disabling daily seasonality. Run prophet with
    daily_seasonality=True to override this.
[5]: <fbprophet.forecaster.Prophet at 0x7f7ba592d040>
[8]: # define the period for which we want a prediction
     future = list()
     while True:
         date_in = input("enter year or enter (q)uit" )
         if date_in =="q":
             break
         for i in range(1,12,3):
             date = "{0}-{1}".format(date_in,i)
             future.append([date])
         print(future)
     print(future)
     future = DataFrame(future)
     future.columns = ['ds']
     future['ds'] = pd.to_datetime(future['ds'])
```

```
# use the model to make a forecast
forecast = model.predict(future)
# summarize the forecast
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']])
# plot forecast
model.plot(forecast)
pyplot.scatter(forecast['ds'],forecast['yhat'])
pyplot.show()
enter year or enter (q)uit2016
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10']]
enter year or enter (q)uit2017
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10']]
enter year or enter (q)uit2018
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10']]
enter year or enter (q)uit2019
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10'],
['2019-1'], ['2019-4'], ['2019-7'], ['2019-10']]
enter year or enter (q)uit2020
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10'],
['2019-1'], ['2019-4'], ['2019-7'], ['2019-10'], ['2020-1'], ['2020-4'],
['2020-7'], ['2020-10']]
enter year or enter (q)uit2021
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10'],
['2019-1'], ['2019-4'], ['2019-7'], ['2019-10'], ['2020-1'], ['2020-4'],
['2020-7'], ['2020-10'], ['2021-1'], ['2021-4'], ['2021-7'], ['2021-10']]
enter year or enter (q)uit2022
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10'],
['2019-1'], ['2019-4'], ['2019-7'], ['2019-10'], ['2020-1'], ['2020-4'],
['2020-7'], ['2020-10'], ['2021-1'], ['2021-4'], ['2021-7'], ['2021-10'],
['2022-1'], ['2022-4'], ['2022-7'], ['2022-10']]
enter year or enter (q)uitq
[['2016-1'], ['2016-4'], ['2016-7'], ['2016-10'], ['2017-1'], ['2017-4'],
['2017-7'], ['2017-10'], ['2018-1'], ['2018-4'], ['2018-7'], ['2018-10'],
['2019-1'], ['2019-4'], ['2019-7'], ['2019-10'], ['2020-1'], ['2020-4'],
['2020-7'], ['2020-10'], ['2021-1'], ['2021-4'], ['2021-7'], ['2021-10'],
['2022-1'], ['2022-4'], ['2022-7'], ['2022-10']]
          ds
                        yhat
                                 yhat lower
                                                yhat_upper
0 2016-01-01
                29094.201917
                               24631.786554
                                              33200.107170
1 2016-04-01
                32012.680777
                               27302.972218
                                              36471.837735
```

2	2016-07-01	42060.280124	37367.024873	46448.066932
3	2016-10-01	37131.392173	32849.480596	41890.964426
4	2017-01-01	41264.973385	36755.216281	45784.204848
5	2017-04-01	44242.266662	39396.481793	48414.538258
6	2017-07-01	53229.171147	48873.194268	57395.420438
7	2017-10-01	54748.735439	50398.155548	59554.654438
8	2018-01-01	60785.826399	56634.696695	65232.119511
9	2018-04-01	66989.322771	62153.530722	71680.753023
10	2018-07-01	74557.706923	69858.437065	78988.453253
11	2018-10-01	78147.965021	73355.185437	82962.189069
12	2019-01-01	83676.019674	79161.399925	88199.395537
13	2019-04-01	89706.300298	85289.070519	94298.362585
14	2019-07-01	98133.630061	93762.231948	102775.716851
15	2019-10-01	102084.309275	97587.024970	106399.343629
16	2020-01-01	107344.826386	102771.198184	111964.057702
17	2020-04-01	114801.011325	110325.818235	119539.441431
18	2020-07-01	127476.917156	122766.565151	131983.246890
19	2020-10-01	125205.218178	120866.167723	129646.122196
20	2021-01-01	131994.082392	127447.469167	136296.093554
21	2021-04-01	137568.935126	132983.625469	142449.105358
22	2021-07-01	146555.839611	141874.111232	151514.390977
23	2021-10-01	148075.403904	143096.045427	152733.800414
24	2022-01-01	154112.494863	149137.624984	158865.577375
25	2022-04-01	160315.991236	154922.222399	165832.985071
26	2022-07-01	167884.375388	162470.895534	173282.320846
27	2022-10-01	171474.633485	165769.209471	177270.006747


```
[9]: # create test dataset, in quarters length
    train = turkey.drop(turkey.index[:-18])
    print(train)
    model.plot_components(forecast)
```

```
ds
                        у
45 2016-04-01
                33540.70
46 2016-07-01
                35564.10
                36377.03
47 2016-10-01
48 2017-01-01
                41252.10
49 2017-04-01
                47138.21
50 2017-07-01
                56096.90
51 2017-10-01
                52838.28
52 2018-01-01
                56672.95
53 2018-04-01
                63083.56
54 2018-07-01
                76672.68
55 2018-10-01
                75088.54
56 2019-01-01
                78769.81
57 2019-04-01
                87255.83
58 2019-07-01
                99103.90
59 2019-10-01
               103265.11
60 2020-01-01
               101339.37
61 2020-04-01
               111949.08
62 2020-07-01
               148634.52
```

[9]:


```
[10]: len(forecast['yhat'].values)
```

[10]: 28

loss score 0.38828359395967255 MAE: 40472.427

```
[12]: # plot expected vs actual
    pyplot.plot(y_true, label='Actual')
    pyplot.plot(y_pred, label='Predicted')
    pyplot.legend()
    pyplot.show()
```

