

Ontario High School Grade 11 Chemistry

Summer 2024, Chapter 2 Notes

Welcome to Wizeprep

These notes were created on Jun 7th, 2024

We're always updating our content. Check back for more.

Welcome to Your Course Notes

I'm Dana, your Wizeprep chemistry tutor. I put these notes and the corresponding online course together especially for Grade 11 Chemistry at Ontario High School. It's formulated to tell you everything you need to know, in a quick and easy format so you can get better grades, spend less time studying, and more time living.

Dana 4.4/5 🛨 MSc

Find Your Course Online

These course notes correspond to an online course full of video lectures, practice problems, instructor Q&A and more. Access it with this QR code or at wizeprep.com/in-course-experience/Sch3U-High-School

98%

Of Wizeprep **Students Get Better Grades** 66

After discovering Wizeprep at the beginning of my second semester, my grades have gone up significantly. I feel so much more confident when taking my exams.

Emily, Undergraduate Student

Your Wizeprep Resources

Get Better Grades

98% of students who study with Wizeprep reported higher grades

Really Understand Concepts

Our instructors know how to make complex topics feel simple

Cut Your Study Time in Half

Quick, curated lessons allow you to focus your study time where it matters

Find in These Course Notes

🔀 Relevant Theory

All the theory and expert knowledge you need to fully understand your course.

Practice Questions

Tons of practice problems, similar to those expected on your exam.

Exam Tips

Unique exam writing tips proven to help you score higher.

Find Online

□ Bite-Sized Video Lessons

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Not subscribed yet?

Get started for free on Wizeprep.com

Table of Contents

Chapter 2. Atomic Structure and Periodic Trends

2.1. Atoms

2.1.1. Atoms: Composition and Structure

2.1.2. Atomic Number and Mass Number

2.1.3. Valence Electrons and Ions

2.1.4. Example: Counting Subatomic Particles

2.1.5. Practice Level 1

2.1.6. Practice Level 3

2.1.7. Practice Level 2

2.2. Isotopes

2.2.1. Isotopes and Atomic Mass

2.2.2. Example: Solving for the Atomic Mass

2.2.3. Example: Finding the Number of

Subatomic Particles in a Nucleus

2.2.4. Practice Level 1

2.2.5. Practice Level 2

2.2.6. Practice Level 3

2.3. The Periodic Table

2.3.1. The Periodic Table of Elements

2.3.2. Families and Series of Elements

2.3.3. Example: The Periodic Table

2.3.4. Practice Level 1

2.3.5. Practice Level 2

2.3.6. Practice Level 3

2.4. Periodic Trends

2.4.1. Atomic and Ionic Radii

2.4.2. Ionization Energy

2.4.3. Electron Affinity

2.4.4. Electronegativity

2.4.5. Example: Periodic Trends

2.4.6. Practice Level 1

2.4.7. Practice Level 2

2.4.8. Practice Level 3

2. Atomic Structure and Periodic Trends

2.1 Atoms

2.1.1 Atoms: Composition and Structure

Atoms: Composition and Structure

Subatomic Particles

- All matter is made out of atoms.
- Atoms are made of even smaller particles, known as subatomic particles.

Properties of Subatomic Particles

Subatomic Particle	Symbol	Charge	Location	Approximate Mass
Protons	p+	+1	Inside the nucleus	1 a.m.u.
Neutrons	n ⁰	0	Inside the nucleus	1 a.m.u.
Electrons	e-	-1	Outside the nucleus	0 a.m.u.

- A neutral atom will have equal numbers of protons and electrons.
 Example: Oxygen has eight protons inside the nucleus, so for the atom to be neutral it has to have electrons orbiting the nucleus
- An atom that has lost or gained electrons is known as an ion.
 Example: Oxygen can gain two electrons to form an oxide ion. Lithium can lose an electron to form a lithium ion.
- Atoms that have the same number of protons, but different number of neutrons are known as isotopes.

Example: There are three stable isotopes of oxygen: oxygen-16, oxygen -17 and oxygen-18.

Watch the video tutorial for this lesson (04:21)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=74577&activity_type=CourseLesson

Atomic Number and Mass Number

- The number of protons in a given atoms is known as the atomic number, represented by the symbol **Z**.
- The mass number for an atom is the sum of all particles in the nucleus.

 $mass\ number = number\ of\ neutrons + number\ of\ protons$

- We use atomic mass units to measure the mass of an atom (a.m.u.). An a.m.u. is equal to 1/12th the mass of a carbon-12 atom.
- The **chemical notation** of an atom in the periodic table helps us determine the number of protons and neutrons inside the nucleus

Example: Carbon has a mass number of 12 and an atomic number of 6, meaning it has _______neutrons inside the nucleus

6 12.011 **C** Carbon

12₆C

Watch the video tutorial for this lesson (03:03)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74384&activity_type=CourseLesson

Valance Electrons and Ions

- Valence electrons are the electrons found in the outermost shell of an atom. These are the electrons that participate in **bonding**
- The simplest way of determining the number of valence electrons an atom has is by looking at which group an atom is in

- Atoms will form ions by losing or gaining electrons, such that they obtain a full valence shell (full octet).
 - Metals will lose electrons to form cations
 - o Non-metals will gain electrons to form anions
- Multivalent atoms are atoms that can form more than one stable ion. Most transition metals are multivalent
- Polyatomic ions are ions containing more than one atom

Watch the video tutorial for this lesson (03:52)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=75301&activity_type=CourseLesson

Example: Counting Subatomic Particles

How many electrons, protons and neutrons are in a ⁵²Cr isotope?

Solution available online

Watch the video tutorial for this lesson (01:33)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=78162&activity_type=CourseLesson

Practice: Atoms Definitions

Connect the term with the definition

A Positively charged subatomic particle

	·										
B. 9	Subatomic particle that weighs significantly less than the others										
C. ^T	he total number of protons and neutrons in the atom										
D. ¹	D. The total number of protons in the atom										
E. T	he charge-neutral subatomic particle										
	Proton										
	Electron										
	Mass Number										
	Atomic Number										
	Neutron										

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113654&activity_type=QuizQuestion

Practice: Atomic Number and Mass Number

How many electrons, protons, and neutrons are in $[^{38}_{17}C\ell]^{1-}$?

17 electrons, 17 protons and 21 neutrons	0
18 electrons, 18 protons and 20 neutrons	0
18 electrons, 17 protons and 21 neutrons	0
16 electrons, 17 protons and 21 neutrons	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=108759&activity_type=QuizQuestion

Practice: Counting Protons and Neutrons

Fill in the blanks in the following table. Assume each atom is uncharged.

- a) $^{45}_{21}Sc$
- b) $^{33}_{16}S$
- c) $^{23}_{11}Na$
- d) $^{39}_{18}Ar$

Element	Number of Protons	Number of Neutrons
a)		
b)		
c)		
d)		

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113787&activity_type=QuizQuestion

2.2 Isotopes

2.2.1

Isotopes and Atomic Mass

Isotopes and Radioisotopes

- When two atoms have the same atomic number, but a different number of neutrons, we call these isotopes.
- Since they have a different number of neutrons, isotopes will have different mass numbers

- Isotopes can be **stable**, meaning that they do not decay.
- Radioisotopes are radioactive isotopes of an element. The nucleus of these isotopes is unstable and will decay with time, emitting radiation.

Calculating the Atomic Mass

- The atomic mass number is a weighted average based on the relative abundance of isotopes Isotopes have similar reactivity to one another, that's why we can form C bonds with either C-12 or C-13
- To determine the average mass of an element, use this equation:

atomic mass = (mass of isotope 1)(abundance of isotope 1) + (mass of isotope 2)(abundance of isotope 1)

• Plug in the mass of each isotope in a.m.u. and plug in the relative abundance of each isotope as a decimal

Example: we are told the relative abundance of C-12 is 98%. You would want to plug in for this isotope's relative abundance.

Watch the video tutorial for this lesson (04:00)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74801&activity_type=CourseLesson

Example: Solving for the Atomic Mass

Chlorine can be found in nature as 35 Cl (mass 34.969a.m.u, 75.78% abundance) and 37 Cl (mass 36.966a.m.u, 24.22% abundance). What is the average atomic mass of Cl?

Solution available online

Watch the video tutorial for this lesson (02:22)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75502&activity_type=CourseLesson

2.2.3

Example: Finding the Number of Subatomic Particles in a Nucleus

a) How many protons are in an ⁵³Cr nuclei?

Group → Period ↓	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	³ Li	4 Be											5 B	6 C	7 N	8 O	9 F	Ne
3	Na	Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	Ca	Sc	Ti	23 V	Cr	Mn	²⁶ Fe	Co	28 Ni	²⁹ Cu	30 Zn	31 Ga	Ge	As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	Nb	Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 A g	48 Cd	49 In	50 Sn	Sb	Te	53 	Xe
6	55 Cs	56 Ba	57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	** 89-103	104 Rf	Db	106 Sg	Bh	108 Hs					,	,	,			
			6*	La	58 Ce	59 Pr	Nd	Pm	Sm	63 Eu	Gd	65 Tb	Dy	Ho	68 Er	Tm	70 Yb	Lu Lu
			7**	89 A c	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm	Md	102 No	103 Lr

b) How many protons are in a ²³²Th nuclei?

c) How many neutrons are in a ¹⁸O nuclei?

d) How many neutrons are in a $^{64}\mathrm{Cu}$ nuclei?

Solution available online

Watch the video tutorial for this lesson (02:42)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75503&activity_type=CourseLesson

Practice: Identifying Isotopes of Elements

An atom with 6 neutrons and a mass number of 13 is an isotope of which element?

	carbon	0)
	oxygen	0
(nitrogen	0
(boron	0

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=108760&activity_type=QuizQuestion

Practice: Solving for the Weight of an Isotope

Naturally occurring potassium contains two stable isotopes. The lighter isotope, 39 K (38.9637 amu) is the more abundant isotope, accounting for 93.26% of the nuclei. What is the weight of the heavier isotope, 41 K?

41.00 a.m.u.	0
40.96 a.m.u.	0
39.09 a.m.u.	0
41.08 a.m.u.	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113655&activity_type=QuizQuestion

Practice: Finding Abundance

The two stable isotopes of Boron are as follows:

Isotope 1: ${}^{10}_5B$ (10.013a.m.u) Isotope 2: ${}^{11}_5B$ (11.009a.m.u.).

Calculate the percentage abundance of each isotope based on boron's average atomic mass. Express your answer in a percentage value, rounded to the nearest whole integer. Do not include any symbols.

Isotope 1

Isotope 2

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=113788&activity_type=QuizQuestion

2.3 The Periodic Table

2.3.1

The Periodic Table of Elements

Periodic Law

- The periodic table organizes the elements by their atomic number (Z) and is organized into groups (columns) and periods (rows).
- Elements in the same group have very similar reactivity

$\begin{array}{c}Group\to\\Period\downarrow\end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	Na	Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	Sc	22 Ti	23 V	Cr	Mn	²⁶ Fe	27 Co	28 Ni	²⁹ Cu	30 Zn	31 Ga	Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	Nb	Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	⁴⁹ In	50 Sn	51 Sb	Te	53 	Xe
6	55 Cs	56 Ba	* 57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	** 89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs										
			6*	57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			7**	89 A c	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm	Md	No	103 Lr

Metals

- Metals are found on the left hand side of the periodic table
- They are solid at room temperature, with the exception of mercury which is a liquid
- They are generally shiny and flexible
- Most metals are good conductors of heat and electricity

Non-metals

- Non-metals are found on the right hand side of the periodic table
- Most are gas or solid at room temperature, with bromine being the only liquid element
- They are dull and non-malleable
- They are poor conductors of heat and electricity

Watch the video tutorial for this lesson (03:24)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74641&activity_type=CourseLesson

Families and Series of Elements

Alkali Metals

- Chemical properties:
 - react with water to form strong bases and release hydrogen Example:

Solution available online

react with oxygen to form oxides Example:

Solution available online

react with halogens to form metal halides
 Example:

Alkaline Earth Metals

• Chemical properties:

react with water to form strong bases and release hydrogen (with the exception of Be)
 Example:

$$Ba\left(s
ight) +2H_{2}O\left(\ell
ight)
ightarrow Ba\left(OH
ight) _{2}\left(aq
ight) +H_{2}\left(g
ight)$$

react with halogens to form metal halides
 Example:

$$Mg\left(s
ight) +I_{2}\left(g
ight)
ightarrow MgI_{2}\left(s
ight)$$

react with oxygen to form metal oxides Example:

$$2Ca\left(s
ight) +O_{2}\left(g
ight)
ightarrow 2CaO\left(s
ight)$$

Transition Metals

• Chemical properties:

- o form colored ions with different charges
- o overall, less reactive then alkali and alkaline metals
- o Ag and Au are unreactive

Rare Earth Metals

- The rare earth metals are the lanthanides and actinides
- Rare earth metals tend to share many of their properties; that means that sometimes it is hard to distinguish them from one another

Noble Gases

- Chemical properties:
 - $\circ\;$ inert; they are unreactive

Halogens

- Chemical properties:
 - o all exist as diatomic molecules
 - react with water to produce acids Example:

$$Cl_{2}\left(aq
ight) +H_{2}O\left(\ell
ight)
ightarrow HC\ell\left(aq
ight) +HOC\ell\left(aq
ight)$$

react with metals to produce metal halides
 Example:

$$2Na\left(s
ight) +C\ell_{2}\left(g
ight)
ightarrow2NaC\ell\left(s
ight)$$

react with hydrogen to produce hydrogen halides
 Example:

$$H_{2}\left(g
ight) +I\left(g
ight)
ightarrow 2HI\left(g
ight)$$

Watch the video tutorial for this lesson (08:22)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74642&activity_type=CourseLesson

Example: The Periodic Table

Using the periodic table, give an example of each of the following:

- a. a gas
- b. an element that is a solid at room temperature
- c. a noble gas
- d. an alkaline earth metal
- e. an element that is a liquid at room temperature

Watch the video tutorial for this lesson (01:33)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=78163&activity_type=CourseLesson

Practice: Periodic Law

Select all that apply. In the modern periodic table elements are arranged in order of increasing:

(atomic number	
(mass number	
(number of isotopes	
(melting point	

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=112578&activity_type=QuizQuestion

Practice: Families of Elements and Their Properties

Match each term with the correct definition below.

Α.	Reactive elements of group 17 that are poor conductors
В.	Group 2 elements that have two valence electrons
C.	Highly reactive elements that belong to group 1
D.	Elements that belong to groups 3 - 12 and are somewhat reactive
E.	Very stable due to the fact that they have a full outermost energy level
	halogens
	alkaline - earth metals
	alkali metals
	transition metals
	noble (inert) gases

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113789&activity_type=QuizQuestion

Practice: Families and Series of Elements

The greatest similarity in chemical properties is expected for elements with the atomic numbers:

$\begin{array}{c} Group \to \\ Period \downarrow \end{array}$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	Sc	22 Ti	23 V	Cr	Mn	²⁶ Fe	Co	28 Ni	²⁹ Cu	30 Zn	31 Ga	Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	Nb	Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te	53 	Xe
6	55 Cs	56 Ba	* 57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 A u	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	** 89-103	104 Rf	105 Db	Sg	Bh	108 Hs			-	-	•					
			6*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	Lu Lu
			7**	89 A c	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

3 and 4	0
6 and 12	0
17 and 25	0
19 and 37	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=112577&activity_type=QuizQuestion

2.4 Periodic Trends

2.4.1

Atomic and Ionic Radii

• Atomic radius is the radius of the atom, which includes the nucleus and all the way to the valence electrons.

Periodic Trend

- In a period the atomic radius increases from right to left;
 The nuclear "pull" on valence electrons decreases, which means these valence electrons can wander farther away from the nucleus.
- In a group the atomic radius increases from top to bottom; The number of electron shells increases and makes the atom larger.

- The ionic radius of an ion is the distance from the center of the atom to the outermost electrons
- For a cation, when you remove an electron the ionic radius is smaller than the atomic radius The remaining electrons in the ion feel a stronger pull by the nucleus

• For an anion, when you add an electron, the ionic radius is greater than the atomic radius. The added electron is not strongly attracted by the nucleus

Watch the video tutorial for this lesson (03:14)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=75233&activity_type=CourseLesson

Ionization Energy

• **lonization energy** is the energy required to remove a single electron from an atom in a gaseous state.

$$A\left(g
ight)
ightarrow A^{+}\left(g
ight) +e^{-}$$

• More positive value means more energy is required to remove electrons. The atom or the ion really wants to hang onto its electrons!

Periodic Trend

- In a period, ionization energy increases from left to right;
 This can be explained by the smaller atom size, hence electrons feel a stronger pull by the nucleus
- In a group, ionization energy increases from the bottom to the top.
 It is easier to remove electrons that are further away from the nucleus.

Watch the video tutorial for this lesson (01:58)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74629&activity_type=CourseLesson

Electron Affinity

• Electron affinity is the energy associated with the addition of an electron to an atom

$$A(g) + e^-
ightarrow A^-(g)$$

• Depending on element, reaction can be endothermic (require energy) or exothermic (releasing energy). More negative value means more stability in gaining electrons (the atom really wants extra electron)

Periodic Trend

- In a period electron affinity increases from left to right

 The attraction between the nucleus and electrons increases as you go across a period, hence easier to add an electron
- In a group electron affinity increases from bottom to top
 It is easier to add electrons to smaller atoms, the extra electron will be easily attracted to the nucleus
- WATCH OUT!

This trend excludes noble gases. Noble gases have stable, completely filled shells. Adding electrons to noble gases will break the noble gas configuration.

							Inc	rease	in Ele	ctron	Affini	tv						_
							IIIC	cusc	III EIC	Ction	A	Ly.						7
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	Н																	He
	Li	Be											В	С	N	О	F	Ne
ľ	Na	Mg											Al	Si	Р	5	CI	Ar
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	- 1	Хe
	Cs	Ba	*	Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мc	Lv	Ts	Og
			,															
			6 *	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			7 **	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Watch the video tutorial for this lesson (02:10)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=74630&activity_type=CourseLesson

2.4.4 **Electronegativity**

Electronegativity

- Valence electrons are involved in chemical bonding.
- The type of bond depends on the difference in electronegativity (ΔΕΝ) between bonding species.
- Electronegativity is the tendency for an atom to draw bonding electrons to itself.

■ WATCH OUT!

This is similar to electron affinity but not the same! Electron affinity involves a single atom/ion, whereas electronegativity involves two bonded atoms.

					Ir	ncreas	se in E	lectro	onega	tivity						>
H 2.2																
Li 1.0	Be 1.6											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0
Na 0.9	Mg 1.3											AI 1.6	Si 1.9	P 2.2	S 2.6	CI 3.2
K 0.8	Ca 1.0	Sc 1.4	Ti 1.5	V 1.6	Cr 1.7	Mn 1.5	Fe 1.8	Co 1.9	Ni 1.9	Cu 1.9	Zn 1.6	Ga 1.8	Ge 2.0	As 2.2	Se 2.6	Br 3.0
Rb 0.8	Sr 1.0	Y 1.2	Z r 1.3	Nb 1.6	Mo 2.2	Tc 1.9	Ru 2.2	Rh 2.3	Pd 2.2	Ag 1.9	Cd 1.7	In 1.8	Sn 2.0	Sb 1.9	Te 2.1	I 2.7
Cs 0.8	Ba 0.9	Lu 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	lr 2.2	Pt 2.3	Au 2.5	Hg 2.0	TI 1.6	Pb 2.3	Bi 2.0	Po 2.0	At 2.2

Watch the video tutorial for this lesson (01:33)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=74624&activity_type=CourseLesson

Example: Periodic Trends

Label the following statements as either TRUE or FALSE

- 1. Ionization energy decreases when the atomic size decreases
- 2. As atomic size increases it gets easier to add an additional electron

Solution available online

2.

Watch the video tutorial for this lesson (02:46)

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=75504&activity_type=CourseLesson

Practice: Atomic and Ionic Size

Group → Period ↓	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	³ Li	4 Be											5 B	6 C	7 N	8 O	9 F	Ne
3	Na	Mg											Al	14 Si	15 P	16 S	CI	18 Ar
4	19 K	20 Ca	Sc 21	22 Ti	23 V	24 Cr	Mn	²⁶ Fe	Co	28 Ni	²⁹ Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	Nb	Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te	53 	Xe
6	55 Cs	56 Ba	* 57-71	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 A u	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	** 89-103	104 Rf	105 Db	106 Sg	107 Bh	108 Hs										
			6*	57 La	58 Ce	59 Pr	60 Nd	Pm	Sm	63 Eu	64 Gd	65 Tb	Dy	67 Ho	68 Er	Tm	70 Yb	Lu Lu
			7**	89 A c	90 Th	91 Pa	92 U	93 N p	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	Fm	Md	102 No	103 Lr

Part 1
Use the periodic table to choose the largest atom in the following set

Rb	0
Sr	0
Sn	0
Те	0)

Practice: Atomic and Ionic Size

Part 2 Use the periodic table to determine the smallest ion or atom in the series

Fe	0)
Fe ²⁺	0)
Fe ³⁺	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=113740&activity_type=QuizQuestion

Practice: Ionization Energy

Rank the following atoms in order of increasing ionization energy: C, Ca, Al, K, Si, Ne (1 = smallest ionization energy, 6 = largest ionization energy).

$Group \! \to \!$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period ↓																		
1	Н																	He
2	Li	Be											В	С	N	О	F	Ne
3	Na	Mg											AI	Si	Р	S	CI	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
6	Cs	Ва	*	Hf	Та	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
			6 *	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			7 **	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

- **A.** 5
- **B.** 2
- **C.** 3
- **D.** 1
- **E.** 4
- **F.** 6

Si		
Ne		

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School?activity_id=108762&activity_type=QuizQuestion

Practice: Electron Affinity

Which of the following has the lowest electron affinity?

$Group \rightarrow$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period ↓																		
1	Н																	He
2	Li	Be											В	С	N	О	F	Ne
3	Na	Mg											ΑI	Si	Р	S	CI	Ar
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Хe
6	Cs	Ba	*	Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
7	Fr	Ra	**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
			6 *	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			7 **	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Si	0
Р	0
Ро	0
	0)

View Solutions on Wizeprep.com

Solutions to these questions, as well as step-by-step breakdowns of the answers at:

https://www.wizeprep.com/in-course-experience/Sch3U-High-School? activity_id=108763&activity_type=QuizQuestion

Find this, and much, much more on Wizeprep.com

Each section corresponds to a minutes-long video explanation by your expert instructors.

Solutions to Problems

See the solutions to the practice problems as well as a step-by-step breakdown of the answers.

24/7 Instructor Q&A

Need help clarifying a concept? You have direct access to your instructor.

Also on Wizeprep.com

Crash Courses

A live review of all testable concepts, exam-like practice problems, tips & tricks, and Q&A. Led by an instructor who is an expert on your course.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Weekly Tutorials

A weekly, live review of lecture topics led by an instructor who knows your course inside and out.

✓ Live Online Session
✓ Booklet
✓ Solutions
✓ Recording

First week free!

Mock Exam Walkthroughs

A realistic practice exam based on past exams from your course. An instructor experienced with your course will walk through the solutions.

✓ Live Online Session ✓ Booklet ✓ Solutions ✓ Recording

Wizeprep MCAT

Chemistry

Org Chem

Biochem

Physics

Psych

Two Plans

ELITE 515 LIVE

Flexible live schedules, face-time with our MCAT instructors.

515+ performance guarantee

SELF-PACED

Watch 144 hours of expert MCAT instruction whenever you have time.

Both Plans Include...

- 144 hrs of expert instruction
- 15 full-length practice exams
- ✓ 100+ practice passages
- 405+ passage-based questions

- All AAMC materials
- Personalized study plan
- 6 top-quality textbooks
- Unlimited Q&A with MCAT experts

Performance Guarantee

The Elite 515 program promises you a score of at least 515 on the MCAT or money back. A 515 puts you within the top 2% of scores!

Find Free MCAT Resources on Wizeprep.com/MCAT

Free Live Events

Learn about the med school application process and more.

Free Diagnostic Exam

Predict your MCAT score and assesses strengths and weaknesses.

Free Trial

Don't just take our word for it. Try out the first few lessons vourself.

Other Courses at Ontario High **School**

Grade 12 **Chemistry**

Resource for SCH4U

Grade 12 Calculus & Vectors

Resource for MCV4U

Grade 12 Biology

Resource for SBI4U

Grade 10 **Principles of Mathematics**

Resource for MPM2D

Grade 12 Data Management

Resource for MDM4U

Grade 12 Advanced

Functions

Resource for MHF4U

Grade 11 **Functions**

Resource for MCR3U

Grade 12 Physics

Resource for SPH4U

Grade 11 Biology

Resource for SBI3U

Grade 9 Math (De-streamed)

Resource for MTH1W