## LECTURE 2 – SIMPLICIAL SETS

#### NOTES ANOTATED BY ROGER MURRAY

# 1. Notation

Categories will typically be sans serif (i.e. Top, sSet, etc.) or caligraphric (i.e. C, S, etc.). If C is an arbitrary category then we denote the set of C-morphisms from objects  $A, B \in C$  by C(A, B).

### 2. Simplices

Recall the definition of the standard topological n-simplex as the set

$$\Delta^n_{\mathsf{Top}} := \left\{ (t_0, \cdots, t_n) \in \mathbb{R}^{n+1} \, \middle| \, \sum t_i = 1 \text{ and } t_i \geqslant 0 \text{ for all } i \right\}$$

Alternatively we may think of  $\Delta_{\mathsf{Top}}^n$  as the convex hull of vertices  $v_i = (0, \dots, 1, \dots, 0)$ . We then have codegeneracy maps  $s^i : \Delta_{\mathsf{Top}}^{n+1} \to \Delta_{\mathsf{Top}}^n$ , and coface maps  $d^i : \Delta_{\mathsf{Top}}^{n-1} \to \Delta_{\mathsf{Top}}^n$  defined by

$$s^{i}(t_{0},...,t_{n+1}) = (t_{0},...,t_{i}+t_{i+1},...,t_{n+1})$$
$$d^{i}(t_{0},...,t_{n-1}) = (t_{0},...,t_{i},0,t_{i+1},...,t_{n})$$

Clearly  $d^i$  is just the map embedding  $\Delta_{\mathsf{Top}}^{n-1}$  as the  $i^{th}$  face of  $\Delta_{\mathsf{Top}}^n$ , and  $s^i$  is a retration of  $\Delta_{\mathsf{Top}}^{n+1}$  minus the  $i^{th}$  vertice  $v_i$  onto the face opposite  $v_i$ .

Given any topological space  $X \in \mathsf{Top}$  we define the singular n-simplices of X to be the set of maps

$$\operatorname{Sing}(X)_n := \operatorname{\mathsf{Top}}(\Delta^n_{\operatorname{\mathsf{Top}}},\,X)$$

This turns out to be an important example of something called a simplicial object. Before we can define what a simplicial object is, we must first define the  $simplex\ category\ \Delta$ . The objects of  $\Delta$  are the ordered sets  $[n] = \{0, 1, \ldots, n\}$ , and the morphisms  $f: [m] \to [n]$  are the weakly-order-preserving (i.e. non-decreasing) functions. Similarly to above we have maps  $s^i: [n+1] \to [n]$  and  $d^i: [n-1] \to [n]$  given by repeating the i, and skipping i respectively. The following lemma says that these maps are the only maps we care about.

**Lemma 2.1.** Any map f in  $\Delta$  is the composition of some  $d^i$  and  $s^j$ .

Proof sketch. If you have a map  $f:[m] \to [n]$  then you have the inequality  $f(0) \leq f(1) \leq \cdots \leq f(m)$ . We obtain a unique chain of elements of the form  $g_0 < \cdots < g_k$  for  $k \leq \min\{m, n\}$ . By composing  $d^0$  with itself  $g_0$  times we get a map that sends [m] to  $[g_0, g_0 + 1, \ldots, g_0 + m]$ . We repeat  $g_0$  with  $s^0$  as many times as it occurs in the sequence of f(i)s. We then simply repeat this process inductively on the  $g_i$  for  $0 < i \leq k$ .  $\square$ 

**Definition 2.2.** Let  $\mathcal{C}$  be a category. A *simplicial object in*  $\mathcal{C}$  is a functor  $X:\Delta^{\mathrm{op}}\to\mathcal{C}$ . Similarly a *cosimplicial object in*  $\mathcal{C}$  is a functor  $Y:\Delta\to\mathcal{C}$ .

We write  $X_n$  and  $Y^n$  for X([n]) and Y([n]) respectively, and hence we will often use the notation  $X_{\bullet}$  and  $Y^{\bullet}$  for X and Y respectively. Similarly we write  $d_i$ ,  $s_i$  and  $d^i$ ,  $s^i$  for the obvious maps in C.

**Example 2.3.** The standard simplices  $\Delta_{\mathsf{Top}}^{\bullet}$  is a cosimplicial space.

**Example 2.4.** Given any space  $X \in \mathsf{Top}$  we therefore have that  $\mathsf{Sing}(X)_{\bullet}$  is a simplicial set acting on objects by  $[n] \mapsto \mathsf{Top}(\Delta^n_{\mathsf{Top}}, X)$ , and on morphisms by  $(f : [m] \to [n]) \mapsto f_*$  where  $f_*$  is precomposition with f.

Date: November 26, 2019.

**Properties 2.5.** The degeneracy, and face maps belonging to any simplicial object X in C satisfy the following,

- (1)  $d_i \circ d_j = d_{j-1} \circ d_i$  for i < j
- (2)  $s_i \circ s_j = s_{j+1} \circ s_i \text{ for } i \leq j$
- (3) Lastly,

$$d_i \circ s_j = \begin{cases} s_{j-1} \circ d_i & \text{if } i < j \\ \text{id} & \text{if } i = j, j+1 \\ s_j \circ d_{i-1} & \text{if } i > j+1 \end{cases}$$

We refer to these properties as the *simplicial properties*. A dual statement holds for cosimplicial objects. These (dual) properties are obvious in the case of  $\Delta$ . We next construct a functor which is adjoint to Sing  $(-)_{\bullet}$ .

Let X be a simplicial object in a category  $\mathcal{C}$ .

**Definition 2.6.** An *n*-simplex  $x \in X_n$  is degenerate if there exists some  $y \in X_{n-1}$  such that  $x = s_i(y)$  for some  $0 \le i \le n-1$ .

**Definition 2.7.** The geometric realisation of X is the space given by

$$|X_{\bullet}| = \coprod_{n \geqslant 0} X_n \times \Delta^n_{\mathsf{Top}} / \sim$$

where the equivalence relation is given by identifying  $(f^*x, u) \sim (y, f_*u)$  for any  $f \in \Delta([m], [n])$ , and  $x \in X_n$ , and  $u \in \Delta_{\mathsf{Top}}^m$ .

By 2.1 it is enough to consider when f is a degeneracy, or face map.

We have the following useful lemma,

**Lemma 2.8.** Every object  $x \in X_n$  may be written uniquely as  $s_{i_1} \circ s_{i_2} \circ \cdots \circ s_{i_l}(y)$  such that  $i_1 > \cdots > i_n$  and  $y \in X_{\bullet}$  is non-degenerate.

*Proof.* By (2) of 2.5 it is easy to see that we can find an increasing sequence  $i_j$ . Furthermore this sequence must terminate since  $x \in X_n$  and each degeneracy map increases degree by 1. Thus we obtain a y such that  $x = s_{i_1} \circ \cdots \circ s_{i_n}(y)$ . All that is left to check is that these are unique. This is immediate by starting at x and working backwards.

Given two simplicial sets X and Y we obtain another simplicial set  $X \times Y$  defined by  $(X \times Y)_n = X_n \times Y_n$ . The above lemma implies that we may combine two degenerate simplices  $x \in X_n$  and  $y \in Y_n$  to get a non-degenerate simplex (x, y). This will be important below.

**Lemma 2.9.** Given a simplicial set X its geometric realisation |X| is a CW-complex with an n-cell for every non-degenerate n-simplex  $x \in X_n$ .

For a classical proof of this see page 56 of [May].

**Proposition 2.10.** The functors |-|: sSet  $\iff$  Top: Sing are adjoint.

*Proof.* We wish to show that, given any  $X_{\bullet} \in \mathsf{sSet}$  and any  $Y \in \mathsf{Top}$ , the sets  $\mathsf{sSet}(X_{\bullet}, \mathrm{Sing}(Y)_{\bullet})$  and  $\mathsf{Top}(|X_{\bullet}|, Y)$  are in bijection. This proof relies on the fact that any map  $f_n \in \mathsf{sSet}(X_n, \mathrm{Sing}(Y)_n)$  corresponds to a map  $\widetilde{f_n} : X_n \times \Delta^n_{\mathsf{Top}} \to Y$  where  $\widetilde{f_n}(x, u) = f_n(x)(u)$ . If we now consider any map  $g \in \Delta([m], [n])$  then we get the following commutative diagram by definition

$$\begin{array}{c} X_n \xrightarrow{f_n} \mathsf{sSet}(\Delta^\mathsf{n}_\mathsf{Top}, \mathsf{Y}) \\ \downarrow^{X(g)} & \downarrow \left(\Delta^\bullet_\mathsf{Top}(g)\right)^* \\ X_m \xrightarrow{f_m} \mathsf{sSet}(\Delta^\mathsf{m}_\mathsf{Top}, \mathsf{Y}) \end{array}$$

By the existence of  $\widetilde{f_n}$  in relation to  $f_n$  this gives us the following commutative diagram

$$\begin{split} X_n \times \Delta_{\mathsf{Top}}^m & \xrightarrow{\mathrm{id} \times \Delta_{\mathsf{Top}}^{\bullet}(g)} X_n \times \Delta_{\mathsf{Top}}^n \\ & \downarrow^{X(g) \times \mathrm{id}} & \downarrow^{\widetilde{f_n}} \\ X_m \times \Delta_{\mathsf{Top}}^m & \xrightarrow{\widetilde{f_m}} \mathsf{sSet}(\Delta_{\mathsf{Top}}^m, \mathsf{Y}) \end{split}$$

Taking g to be (a composition of the)  $s^i$  gives us that  $\widetilde{f_n}$  respects the equivalence relation defining  $|X_{\bullet}|$  and hence is a map  $\widetilde{f_n} \in \mathsf{Top}(|X_{\bullet}|, Y)$ . We can go backwards in a similar fashion.

**Example 2.11.** We define the *standard* n-simplex  $\Delta^n$  as the simplicial set given by letting its k-simplices be the set of maps  $\Delta([k], [n])$ .

**Lemma 2.12.** A k-simplex  $x \in \Delta([k], [n])$  is non-degenerate if and only if x is injective.

*Proof.* This is immediate once one considers the effect of  $s_i$  (which is precomposition by  $s^i$ ).

**Lemma 2.13.** The geometric realisation of  $\Delta^n$  is  $\Delta^n_{\mathsf{Top}}$ . Similarly the geometric realisation of  $\Delta^n \times \Delta^m$  is  $\Delta^n_{\mathsf{Top}} \times \Delta^m_{\mathsf{Top}}$ .

*Proof.* This first statement is a result of 2.9. The second statement also requires 2.8  $\Box$ 

**Example 2.14.** We then define a simplicial set called *the boundary*  $\partial \Delta^n$  *of*  $\Delta^n$ . We define this by specifying that  $(\partial \Delta^n)_k$  is the set of non-surjective maps  $x \in \mathsf{sSet}([n],[k])$ . Indeed  $\partial \Delta^n$  is a subsimplex of  $\Delta^n$ , and it matches our intuition from  $\Delta^n_{\mathsf{Top}}$  since any element of  $(\Delta^n)_k$  which is the image of some  $d^i$  is clearly not surjective.

**Lemma 2.15** (The Yoneda Lemma). Let A be an object in a category C and let  $F: C \to \mathsf{Set}$  be a functor. There is an isomorphism of sets

$$\operatorname{Natl}(\mathcal{C}(A, \_), F) \cong F(A)$$

It is not hard to find a proof of this, and even though the lemma is ubiquitous throughout category theory the proof is very straightforward.

An immediate consequence of the Yoneda lemma is,

**Lemma 2.16.** Given a simplicial set  $X_{\bullet}$  we have that

$$X_n \cong \operatorname{sSet}(\Delta^n, X_{\bullet})$$

#### 3. Horns and Nerves

**Definition 3.1.** The horn  $\Lambda_k^n$  is the simplicial subset of  $\partial \Delta^n$  defined by

$$(\Lambda_k^n)_i = \left\{ x \in \Delta_k^n \,\middle|\, x([k]) \cup \{i\} \supsetneq [n] \right\}$$

Intuitively one thinks of this as the boundary of  $\Delta^n$  excluding the  $i^{th}$  face.

**Definition 3.2.** Let  $\mathcal{C}$  be a small category. The nerve of  $\mathcal{C}$  is the simplicial set  $N\mathcal{C}$  defined by

$$NC_n = \left\{ C_0 \xrightarrow{f_1} C_1 \xrightarrow{f_2} \cdots \xrightarrow{f_n} C_n \right\}$$

The maps  $s_i$  and  $d_i$  are defined as follows. Let  $(f_1, \ldots, f_n)$  be an ordered *n*-tuple of composable maps in  $\mathcal{C}$ . We define  $s_i$  to simply be the map  $(f_1, \ldots, id, \ldots, f_n) \in \mathcal{NC}_{n+1}$ . The map  $d_i$  is slightly more complicated.

$$d_i(f_1, \dots, f_n) = \begin{cases} (f_2, \dots, f_n) & \text{if } i = 0, \\ (f_1, \dots, f_i \circ f_{i+1}, \dots, f_n) & \text{if } 0 < i < n, \\ (f_1, \dots, f_{n-1}) & \text{if } i = n \end{cases}$$

An important example of such a construction is the nerve of the category G associated to a group G. In this case  $NG_n = G^n$  and thus the geometric realisation of  $N\mathcal{C}$  is

$$\coprod G^n imes \Delta^n_{\mathsf{Top}} / \sim$$

This is isomorphic to the Eilenberg Maclane space K(G, 1).

Let X be a simplicial set. We define  $M: \mathsf{sSet} \to \mathsf{Ch}_{\geqslant 0}$  by specifying  $M(X)_n$  to the free abelian group generated by the non-degenerate n-simplices of X. Our boundary maps are then the maps  $d(x) = \sum_i (-1)^i d_i(x)$ . Another way of stating this is that, by 2.9, M(X) is the singular chain complex of |X|.

**Theorem 3.3.** Let X and Y be simplicial sets. Then  $M(X \times Y) \cong M(X) \otimes M(Y)$ 

This follows from the following theorem,

**Theorem 3.4** (The Eilenberg-Zilber theorem). Given topological spaces X, Y, and their product  $X \times Y$ , Then

$$C_{\bullet}(X) \otimes C_{\bullet}(Y) \cong C_{\bullet}(X \times Y)$$

in the category of chain complexes.

Proof. See 
$$[EZ]$$
.

Proof of 3.3.  $(M(X) \otimes M(Y))_n = \bigoplus_{i+j=n} M(X)_i \otimes M(Y)_j$ . By 2.1 we have that (x,y) is non-degenerate when either x or y is non-degenerate, or when they are incompatibly degenerate. By incompatibly degenerate I mean that they decompose as  $x = s_{i_l} \circ \cdots \circ s_{i_1} x'$  and  $y = s_{j_k} \circ \cdots \circ s_{j_1} y'$  such that  $s_{i_r} \neq s_{j_s}$  for all r, s. Let us refer to l and k from the decomposition above as the order of degeneracy for arbitrary degenerate elements x and y respectively. A non-degenerate element has order of degeneracy 0. To see that the inequality holds note that if (x,y) is non-degenerate in  $(X \times Y)_n$  then we must have that the total order of degeneracy l+k is less than or equal to n. This follows since if l+k>n then x and y could not possibly be incompatibly degenerate by the pigeonhole principle. We may restate this succinctly as (x,y) non-degenerate in  $X_n \times Y_n$  is a pair  $(s_{i_1} \circ \cdots s_{i_1} x', s_{j_k} \circ \cdots \circ s_{j_1} y')$  in  $X_n \times Y_n$  where  $j_r \neq i_s$  and where x' is non-degenerate in  $X_{n-l}$  and y' is non-degenerate in  $Y_{n-k}$ , where  $l+k \leq n$ . Consider the pair (x', y') in  $X_{n-l} \times Y_{n-k}$ . We therefore have that  $|X \times Y| = |X| \times |Y|$ . This allows us to use the Eilenberg-Zilber theorem, which gives us the result (by the discussion preceding 3.3).

# 4. sSet as a Model Category

We can put a model category structure on the category of simplicial sets. We first define two sets  $I = \bigcup_{n \geqslant 0} \mathsf{sSet}(\partial \Delta^n, \Delta^n)$  and  $J = \{\mathsf{sSet}(\Lambda^n_k, \Delta^n) \mid n > 0 \text{ and } 0 \leqslant k \leqslant n\}.$ 

**Definition 4.1.** Given a map  $f \in \mathsf{sSet}(X,Y)$ , we say f is

• a fibration if  $J \square f$ , which is to say that if we have any map  $p \in J$ , and any  $\Lambda_k^n \to X$  and  $\Delta^n \to Y$ , making the following diagram commute,

$$\begin{array}{ccc}
\Lambda_k^n & \longrightarrow & X \\
\downarrow^p & & \downarrow^f \\
\Delta^n & \longrightarrow & Y
\end{array}$$

then we must have a lift  $h:\Delta^n\to X$  which commutes with the diagram,

- a weak equivalence if  $|f|:|X|\to |Y|$  is a weak equivalence in Top,
- a cofibration if it is injective.

Lemma 4.2. This defines a model structure on sSet.

*Proof.* (I think we're showing this next lecture).

I'm not entirely sure why we introduced the set I. I thought it would be used to define cofibrations but apparently not. Perhaps this will become apparent next week.

## References

- [May] Jon Peter May, Simplicial Objects in Algebraic Topology, University of Chicago Press, 1982
- [EZ] Eilenberg, S., & Zilber, J. (1953). On Products of Complexes. American Journal of Mathematics, 75(1), 200-204. doi:10.2307/2372629
- [BK] Bousfield, A.K., & Kan, D.M. (1972). Homotopy Limits, Completions and Localizations. Springer-Verlag Berlin Heidelberg.