1.m

Logaritmer

Titalslogaritmen

Har vi en ligning af typen $x^2=k$, så kan vi bestemme x ved at tage kvadratroden på begge sider af lighedstegnet og bestemme (en af) løsningerne til ligningen. I forbindelse med eksponentiel vækst vil vil gerne kunne løse ligninger af typen $10^x=k$ og $e^x=k$ (hvor e betegner Eulers tal, $e\approx 2.71$). Til dette vil vi introducere logaritmefunktionerne.

Logaritme
funktionen er en omvendt funktion til eksponentialfunktionen. I følgende tabel kan vi
 se eksponentialfunktionen f givet ved

$$f(x) = 10^x$$
.

Da $\log(x)$ gør det omvendte af 10^x , så vil en tilsvarende tabel se ud som følgende.

Definition 1.1 (Titalslogaritmen). Titalslogaritmen log er den entydige funktion, der opfylder, at

$$\log(10^x) = x$$

og

$$10^{\log(x)} = x.$$

Eksempel 1.2. Vi har, at

$$\log(100) = \log(10^2) = 2.$$

For titalslogaritmen gælder der en række regneregler.

Sætning 1.3 (Logaritmeregneregler). For a, b > 0 gælder der, at

$$i) \log(a \cdot b) = \log(a) + \log(b),$$

$$ii) \log\left(\frac{a}{b}\right) = \log(a) - \log(b),$$

$$iii) \log(a^x) = x \log(a).$$

Bevis. Vi vil løbende udnytte, at $\log(10^a) = a$ og $10^{\log(a)} = a$. Vi betragter udtrykkene.

i)

$$\log(a \cdot b) = \log(10^{\log(a)} 10^{\log(b)})$$
$$= \log(10^{\log(a) + \log(b)})$$
$$\log(a) + \log(b).$$

ii)

$$\log\left(\frac{a}{b}\right) = \log\left(\frac{10^a}{10^b}\right)$$
$$= \log(10^{\log(a) - \log(b)})$$
$$= \log(a) - \log(b).$$

iii)

$$\log(a^{x}) = \log\left(\left(10^{\log(a)}\right)^{x}\right)$$
$$= \log\left(10^{\log(a)x}\right)$$
$$= x\log(a),$$

og vi er færdige med beviset.

Eksempel 1.4. Vi ønsker at løse ligningen $10^{x+5} = 1000$. Vi tager derfor logaritmen på begge sider af lighedstegnet:

$$\log(10^{x+5}) = \log(1000) \iff x+5 = \log(1000) = 3 \iff x = -2.$$

Eksempel 1.5. Vi ønsker at løse ligningen

$$\log(4x) = 4$$
.

Vi opløfter derfor 10 i begge sider af lighedstegnet.

$$10^{\log(4x)} = 10^4 \iff 4x = 10000 \iff x = 2500.$$

Opgave 1

En tabel med funktionsværdier for 10^x er givet.

x	-4	-3	-2	-1	0	1	2	3	4	5
10^x	0.0001	0.001	0.01	0.1	1	10	100	1000	10000	100000

Brug tabellen til at bestemme følgende.

1) $\log(10)$

 $2) \log(1)$

3) $\log(0.001)$

4) $\log(100000)$

Opgave 2

Bestem følgende udtryk

1) $\log(10^7)$

 $2) \log(10000)$

3) $\log(10^{1.5})$

- 4) $\log(10^{\sqrt{2}})$
- 5) log(10000000)
- 6) $\log(1)$

7) $\log(100)$

8) $\log(1000)$

9) $\log(10^{-4})$

10) $\log(0.00001)$

Opgave 3

1) $\log(2 \cdot 10^3)$

 $2) \log(3000)$

 $3) \log(500)$

4) $\log(10) + \log(1000)$

5) log(2500)

6) $\log(20) + \log(5)$

7) $\log(5^6)$

- 8) $\log(4000) \log(4)$
- 9) $\log(2) + \log(2) + \log(5) + \log(5)$
- 10) $\log(50) \log(5)$

Opgave 4

Aflevering