ECE 4110/5110 Monday, 11/06/23

Lecture 19: MMSE and LLSE

Dr. Kevin Tang Handout 20

Related Reading

Grimmett and Stirzaker Section 9.2

MMSE and Conditional Expectation

Let there be two random vectors X and Y. Let's use $h(Y) = \hat{X}$ as an estimator of X. We adopt the minimal mean-squared-error (MMSE) criterion for optimality. In other words, we are looking for \hat{X} , which minimizes $E(\|X - \hat{X}(Y)\|^2)$.

The optimal solution is $\hat{X}(Y) = E(X|Y)$.

LLSE and Orthogonality Principle

E(X|Y) depends on f(X|Y), which is usually hard to obtain. We instead often restrict our attention to linear least mean-squared-error (LLSE or LLMSE) estimator.

Given X and Y_1, \ldots, Y_m , and assume E(X) = 0, $E(Y_i) = 0$, $C_{ij} = E(Y_i, Y_j)$, and $C_{XY_j} = E(X, Y_j)$. How to construct $\hat{X} = \sum_{i=1}^m a_i Y_i$ to minimize mean-squared-error?

Orthogonality Principle: if error $e = X - \hat{X}$ is orthogonal to Y_1, \ldots, Y_m , then \hat{X} is LLSE. Mathematically, the condition means that for any $j = 1, \ldots, m$, we have

$$E((X - \sum_{i=1}^{m} a_i Y_i) Y_j) = 0$$
(1)