Algebraic Curve

Lectured by Wenchuan Hu and Noted by Xinyu Xiang

Jun. 2025

1 Day I

Definition 1.1 (Polynomial). The collection of polynomials would denoted by $\mathbb{K}[x_1, \dots, x_n]$, whose elements are of the form

$$f = \sum_{i_1, \dots, i_n} a_{i_1, \dots, i_n} x_1^{i_1} \cdots x_n^{i_n},$$

where $a_{i_1,\dots,i_n} \in \mathbb{K}$, and i_1,\dots,i_n are non-negative integers.

Definition 1.2 (Algebraic Closed Field). If

Remark 1.1. Finite field is not algebraic closed: Consider $f = (x - a_1) \cdots (x - a_n) + 1$ which has no zero point.

Definition 1.3 (Unique Factorization Domain (UFD)).

Proposition 1.1. (1) $\mathbb{K}[x_1, \dots, x_n]$ is a commutative ring with unity called the polynomial ring in n variables over \mathbb{K} .

(2) If R is UFD, then R[X] is a UFD, which means that every non-zero polynomial can be factored uniquely into irreducible polynomials, up to order and units.

From here on, we assume that \mathbb{K} is an algebraic closed field.

Definition 1.4 (Affine Variety). An affine variety is a subset of \mathbb{K}^n defined by the vanishing of a set of polynomials, i.e., it is the solution set of a system of polynomial equations.

Formally, given a set of polynomials $f_1, \ldots, f_m \in \mathbb{K}[x_1, \ldots, x_n]$, the affine variety $V(f_1, \ldots, f_m)$ is defined as:

$$V(f_1,...,f_m) = \{(a_1,...,a_n) \in \mathbb{K}^n; f_i(a_1,...,a_n) = 0 \text{ for all } i = 1,...,m\}.$$

Proposition 1.2 (Zariski Topology). *Consider* $f, g \in \mathbb{K}[x, y]$

- (1) $V(fg) = V(f) \cup V(g)$,
- (2) $V(f,g) = V(f) \cap V(g)$, $V(f_{\lambda})_{\lambda \in \Lambda} = \bigcap_{\lambda \in \Lambda} V(f_{\lambda})$,
- (3) $V(0) = \mathbb{A}^2_{\mathbb{K}}$.

Definition 1.5 (Affine Curve). *Consider* $f \in \mathbb{K}[x,y]$, V(f) *denotes affine curve.*

- (1) $\deg V(f) = \deg f$,
 - (a) deg = 1: Line,
 - (b) deg = 2: conic curve (non-degenerate),
- (2) $F = F_1^{n_1} F_2^{n_2} \cdots F_m^{n_m}$, where F_i irreducible.

Example 1.1. $(x + y)^2$ is irreducible, xy is reducible.

Example 1.2. $y^2 - x^3 + x$ is irreducible (left as exercise).

Definition 1.6 (Field of Fractions). The field of fractions of a UFD R is the smallest field in which R can be embedded, denoted by K(R). It consists of elements of the form $\frac{a}{b}$ where $a,b\in R$ and $b\neq 0\in R$.

Formally, if R is a UFD, then the field of fractions K(R) is defined as:

$$Q_{\mathrm{uot}}(R) = \left\{ \frac{a}{b} \mid a, b \in R, b \neq 0 \right\},$$

which is indeed a field.

Lemma 1.3. Consider $f \in \mathbb{K}[x,y]$ and deg f > 0, then

- (1) V(f) has infinitely many points,
- (2) $\mathbb{A}^2_{\mathbb{K}} V(f)$ has infinitely many points.

Theorem 1.4 (Simple Bezout Theorem). *If* $F,G \in \mathbb{K}[x,y] \subset \mathbb{K}(x)[y]$ *has no common component, then* V(F,G) *is a finite set* $\Leftrightarrow F=0$, G=0 *have finite solutions in* \mathbb{K}^2 .

Proof. (1) Assume there is an element α such that $F = \alpha F'$ and $G = \alpha G'$, where we consider the ring $\mathbb{K}(x)[y]$, then

$$\begin{cases} aF = HF' \\ bG = HG', \end{cases}$$

where $a \in \mathbb{K}[x]$ and $H \in \mathbb{K}[x, y]$.

(2) TBD

Theorem 1.5. Consider irreducible $F, G \in \mathbb{K}[x,y], F|G \Leftrightarrow V(F) \subset V(G)$.

Proof. (1) If F|G, then G = FH for some $H \in \mathbb{K}[x,y]$, thus $V(F) \subset V(G)$.

(2) If $V(F) \subset V(G)$, by definition F|G.

2 Day II: Intersection Number (1)

Definition 2.1 (Localized Ring). *Consider* $\mathbb{K}[x,y]$ *and a prime ideal* $P \subset R$, *the localized ring* \mathcal{O}_P *is defined as:*

$$\mathcal{O}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0 \right\},$$

the maximal ideal \mathfrak{m}_P is defined as:

$$\mathfrak{m}_P = \left\{ \frac{f}{g}; f, g \in \mathbb{K}[x, y], g(p) \neq 0, f(p) = 0 \right\}.$$

which satisfies

$$0 \to \mathfrak{m}_P \to \mathcal{O}_P \to \mathbb{K}$$
.

2.1 Definition

Definition 2.2 (Intersection Number). *Consider* $F,G \in \mathbb{K}[x,y]$ *irreducible,* $P = V(F) \cap V(G)$, *then the intersection number* $I_P(F,G)$ *is defined as:*

$$I_P(F,G) = \dim_{\mathbb{K}} \mathcal{O}_P / \langle F,G \rangle$$
,

where $\langle F, G \rangle$ is the ideal generated by F and G in the localized ring \mathcal{O}_P .

Proposition 2.1. (1) $I_P(F,G) \in \mathbb{N} \cup \{\infty\}$;

- (2) $P \in F \cap G \Leftrightarrow I_P(F,G) \ge 1$, $I_P(F,G) = 1 \Leftrightarrow \langle F,G \rangle = I_P$
- (3) $I_P(F,G) = I_P(G,F);$
- (4) $I_P(F, G + FH) = I_P(F, G);$
- (5) $I_P(FG, H) = I_P(F, H) + I_P(G, H);$
- (6) $I_{(0,0)}(x,y) = 1$,

Example 2.1. Consider $F = y - x^2$ and G = y.

Solution. Use properties to compute:

$$I_0(y, y - x^3) = I_0(y, -x^3)$$
=2 $I_0(y, x)$
=2

where we used the property (4) to reduce the degree of the polynomial for the given variable, and use the fact that $I_0(x,y) = 1$.

The most important part is to use the property (4) to reduce the degree of the polynomial for the given variable.

Example 2.2. Consider $F = y^2 - x^3$ and $G = x^2 - y^3$.

Solution.

$$I_{0}(y^{2}-x^{3}, x^{2}-y^{3}) = I_{0}(y^{2}-x^{3}+x(x^{2}-y^{3}), y^{3}-x^{2})$$

$$=I_{0}(y^{2}-xy^{3}, y^{3}-x^{2})$$

$$=I_{0}(y^{2}, y^{3}-x^{2}) + I_{0}(1-xy, y^{3}-x^{2})$$

$$=2I_{0}(y, y^{3}-x^{2}) + 0$$

$$=2I_{0}(y, x^{2})$$

$$=4I_{0}(y, x)$$

$$=4$$

 $I_0(1-xy, y^3-x^2)$ vanished since at (0,0), $1-xy \neq 0$ and $y^3-x^2=0$.

Example 2.3. Consider $F = y - x - x^2$ and $G = y^2 - x^2 - 3x^2y$.

Solution.

$$I_{0}(y-x-x^{2},y^{2}-x^{2}-3x^{2}y) = I_{0}(y-x-x^{2},y^{2}-x^{2}-3x^{2}y-(x+y)(y-x-x^{2}))$$

$$=I_{0}(y-x-x^{2},-2x^{2}y+x^{3})$$

$$=I_{0}(y-x-x^{2},x^{2}(x-2y))$$

$$=2I_{0}(y-x-x^{2},x)+I_{0}(y-x-x^{2},x-2y)$$

$$=3.$$

Another way to compute is to use definition of intersection number, where we plug the equation $y = x + x^2$ into the second equation, we have

$$I_0(y-x-x^2,y^2-x^2-3x^2y)=\mathfrak{m}_0\left((x+x^2)^2-x^2-3x^2(x+x^2)\right)=\mathfrak{m}_0\left(x^3(-1-2x)\right)=0.$$

Proposition 2.2. *If the lowest degree of F is* x^n *and the lowest degree of G is* y^m , *then the intersection number* $I_{(0,0)}(F,G)$ *is nm.*

Definition 2.3 (Short Exact Sequence). A short exact sequence of modules is a sequence of modules and homomorphisms

$$0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$$

such that the image of f is equal to the kernel of g, i.e., Im(f) = ker(g).

We would use the short exact sequence for linear space.

Definition 2.4. Consider $P \in \mathbb{A}^2$ and $F, G, H \in \mathbb{K}[x, y]$, then

(1) If F, G has no common component cross P, then

$$0 \to \mathcal{O}_P / \langle F, H \rangle \xrightarrow{\bullet G} \mathcal{O}_p / \langle F, GH \rangle \xrightarrow{\pi} \mathcal{O}_P / \langle F, G \rangle \to 0,$$

where π is the natural projection map.

(2)
$$I_P(F,GH) = I_P(F,G) + I_P(F,H)$$
.

Proof. (1) π is surjection;

(2) Consider an element acted by multiplication by *G*:

$$\bullet G: \frac{f}{g} + aF + bH \mapsto F(aG) + G\left(\frac{f}{g} + bH\right) \in \ker \pi,$$

where $a, b \in \mathbb{K}[x, y]$ and $g \in \mathcal{O}_P$. On the other side, consider $f/g \in \ker \pi$, thus $f/g = aF + bG \rightarrow b \in \mathcal{O}_P / \langle F, H \rangle$.

(3) $\bullet G$ is injection.

Note that all the vector spaces are finite dimensional, thus the dimension of the kernel is equal to the dimension of the image, and we can conclude that

$$I_P(F,GH) = I_P(F,G) + I_P(F,H),$$

which proofs the proposition (5).

2.2 The Algorithm to Compute Intersection Number

Consider $F(x,y) \in \mathbb{K}[x,y]$, in order to compute the insertion number $I_0(y,F(x,y))$, we can expand F as F(x,y) = F(x,0) + yH(x,y), thus

$$I_0(y, F(x, y)) = I_0(y, F(x, 0) + yH(x, y)) = I_0(y, F(x, 0)).$$

Assume $F(x,0) = x^m f(x)$ where f(x) is no vanishing at x = 0, thus

$$I_0(y, F(x, y)) = m.$$

Now we shell consider the linear (homogeneous 1 degree part). We denote $F \in \mathbb{K}[x,y]$ as

$$F = F_0 + F_1 + \cdots$$

where F_i is homogeneous degree i part. The F_1 part is important, because of the theorem below:

Theorem 2.3 (2.17 Intersection multiplicity 1). *If* F, $G \in \mathbb{K}[x,y]$ *pass through the origin, then*

$$I_0(F,G) = 1 \Leftrightarrow F,G$$
 Linear Independent

Definition 2.5 (Tangents and multiplicities of points). *Let* $F \in \mathbb{K}[x,y]$ *be a curve, then*

- (1) The smallest $m \in \mathbb{N}$ for which the homogeneous part F_m is non-zero is called the multiplicity $m_0(F)$ of F at the origin. Any linear factor of F_m (considered as a curve) is called a tangent to F at the origin.
- (2) For a general point $P = (x_0, y_0) \in \mathbb{A}^2$, tangents at P and the multiplicity $m_P(F)$ are defined by first shifting coordinates to $x' = x x_0$ and $y' = y y_0$, and then applying (a) to the origin (x', y') = (0, 0).