Representing Data

Dov Kruger

Department of Electrical and Computer Engineering Rutgers University

November 7, 2024

Digital Representation of Information

- This module describes how to represent data as bits
- By the end you will be able to
 - Represent unsigned and signed Integers
 - Convert binary to/from decimal
 - Convert binary to/from hexadecimal
 - Compute twos complement numbers
 - Identify when integers overflow
 - Identify how to store text on computers
 - Identify how bits are interpreted as floating point

It's all Bits

- With binary data, it's all context
- It is not obvious what bits represent
- In this module you will lean how the computer represents
- whole numbers, fractions, and text

Bits and Bytes

- Bit: Smallest unit of data (0,1)
- Byte: Group of 8 bits
- Type of data completely depends on context

Combinations

- 2 bits: 00, 01, 10, 11
- 3 bits: 000, 001, 010, 011, 100, 101, 110, 111
- n bits = 2^n combinations
- 8 bits = $2^8 = 256$ combinations
- ullet 16 bits $=2^{16}=65536$ combinations
- 32 bits = $2^{32} = 4294967296$ combinations

Different Binary Data Representations

- Unsigned Integers
- Signed Integers
- ASCII text
- Unicode
- Fixed Point Fractions
- Floating Point

Integer Representations

- Integers come in different sizes (8, 16, 32, 64 bits)
- Signed/Unsigned
- Little-endian/Big-endian

Representing 3 bit Integers

bits	unsigned	signed
000	0	0
001	1	1
010	2	2
011	3	3
100	4	-4
101	5	-3
110	6	-2
111	7	-1

What happens if we add 1 to 7?

What happens if we subtract 1 from 0?

Twos Complement Arithmetic

- Consider just 8 bit number for simplicity
- First bit is sign 0 = positive, 1 = negative
- To negate a number
 - invert all bits
 - add 1
 - the resulting number is the negative of the original
 - Example: $5 = 00000101 \rightarrow 11111010 \rightarrow 11111011 = -5$
 - Example: $17 = 00010001 \rightarrow 11101110 \rightarrow 11101111 = -17$
 - Example: $-11 = 11110101 \rightarrow 00001010 \rightarrow 00001011 = 11$
 - Example:

$$-128 = 100000000 \rightarrow 011111111 \rightarrow 000000000 = -128$$

Overflow and Underflow

- Overflow is when the result of a computation is too large to fit
- Underflow is the same in the negative direction
- Example: given 3-bit unsigned

•
$$3+5=1000=8=000=0$$

•
$$4+6=1010=10=010=2$$

•
$$4-5=111=7$$

• Example: given 3-bit signed

•
$$3+2=101=-2$$

•
$$2-3=111=-1$$

•
$$3+1=100=-4$$

Overflow and Underflow

- When a result is too large, store only the low n bits
- Example: 3 bits
 - 3 + 3 = 6 (no overflow)
 - 4 + 4 = 8 (too big) = 0 (overflow)
 - 3 2 = 1 (no overflow)
 - 3 4 = -1 = 7 (underflow)

Integer Data Types

bits		minval	maxval
8	signed	-128	127
8	unsigned	0	255
16	signed	-32768	32767
16	unsigned	0	65535
32	signed	-2147483648	2147483647
32	unsigned	0	4294967295
64	signed	-9223372036854775808	9223372036854775807
64	unsigned	0	18446744073709551615

Bases in General

A number in a base b is represented as a sum of powers of b

- Base 10 (digits 0-9): $123 = 1 * 10^2 + 2 * 10^1 + 3 * 10^0$
- Base 2 (digits 0-1): $11111111 = 1*2^6 + 1*2^5 + 1*2^4 + 1*2^3 + 1*2^2 + 1*2^1 + 1*2^0$
- Base 8 (digits 0-7): $123 = 1 * 8^2 + 2 * 8^1 + 3 * 8^0 = 64 + 16 + 3 = 83$
- Base 16 (digits 0-9, A-F): $123 = 7 * 16^1 + 11 * 16^0$

Examples of Base numbers

- What is $(543)_8$ in decimal?
- What is $(101101)_2$ in decimal?
- What is $(3AB)_{16}$ in decimal?
- 78651 cannot be base 8, why not?

Every digit in octal represents 3 bits

Oct	bits	-	Oct	bits
0	000		4	100
1	001		5	101
2	010		6	110
3	011		7	111

$$\overline{(123)_8 = 1 * 8^2 + 2 * 8^1 + 3 * 8^0} = 64 + 16 + 3 = 83$$

 $(456)_8 = 100101110$

Base 16: Hexadecimal

Hex	bits		Hex	bits
0	0000		8	1000
1	0001		9	1001
2	0010		Α	1010
3	0011		В	1011
4	0100		C	1100
5	0101		D	1101
6	0110		Ε	1110
7	0111		F	1111

Encoding a byte in Hexadecimal

- D9 = 11011001
- AF = 10101111
- 8C = 10001100

Converting Between Binary and Decimal

- Method 1: sum powers of 2
- $\bullet \ 10010010 = 128 + 16 + 2 = 146$
- Method 2: start from left
 - Start with 1
 - For each digit, multiply by 2
 - If the digit is 1, add 1
 - Example: (((((1*2)*2)*2)*1)*2*2*2+1)*2=146

Integer Operations Overview

- Integer operations are fundamental in digital systems
- We'll cover arithmetic, logical, and shift operations
- Each operation will be demonstrated with 8-bit examples
- Understanding these operations is crucial for digital design

Addition

- Addition is performed bit by bit, carrying over when necessary
- Example (8-bit):

• Note: Overflow can occur if the result exceeds 8 bits

Subtraction

- Subtraction is often implemented as addition with two's complement
- Example (8-bit):

• Two's complement of 00110110 is 11001010

Bitwise AND

- AND operation: 1 if both bits are 1, otherwise 0
- Example (8-bit):

Often used for masking specific bits

Bitwise OR

- OR operation: 1 if either bit is 1, otherwise 0
- Example (8-bit):

Useful for setting specific bits

Bitwise XOR

- XOR operation: 1 if bits are different, 0 if same
- Example (8-bit):

• Often used in cryptography and error detection

Bitwise NOT

- Inverts all bits: 1 becomes 0, 0 becomes 1
- Example (8-bit):

$$\frac{\sim 01101001}{10010110}$$

Useful for flipping specific bits

Logical Left Shift

- Shifts all bits to the left, filling rightmost with 0
- Example (8-bit, shift by 2):

 \bullet Equivalent to multiplication by 2^n for n shifts

Logical Right Shift

- Shifts all bits to the right, filling leftmost with 0
- Example (8-bit, shift by 2):

• Equivalent to multiplication by 2^n for n shifts (unsigned)

Rotate Left

- All bits move to the left
- Bits that drop off the end come in on right
- Example (8-bit, rotate by 2):

Preserves all bits, useful in cryptography

Rotate Right

- Shifts all bits to the right, wrapping around
- Example (8-bit, rotate by 2):

- Example (8-bit, rotate by 2):
- Also preserves all bits, used in various algorithms

Arithmetic Left Shift

- Shifts bits to left just like logical shift
- If sign changes, it's an overflow
- Example (8-bit, shift by 2):

- ullet Equivalent to multiplication by 2^n for n shifts
- Can cause overflow if significant bits are shifted out

Arithmetic Right Shift

- Shift bits right preserving sign
- Leftmost bits are filled with the sign bit
- Example (8-bit, shift by 2):

- ullet For positive numbers, equivalent to division by 2^n for n shifts
- For negative numbers, rounds towards negative infinity
- Preserves the sign of the number

Bitwise Operations in Verilog

- Verilog provides operators for various bitwise operations
- These operations are fundamental in digital design
- Examples (assuming 8-bit variables a and b):

```
c = a \& b;
                                // Bitwise AND
d = a \mid b:
                                // Bitwise OR
                                // Bitwise XOR
e = a \hat{b};
f = -a;
                                // Bitwise NOT
g = a << 2;
                                // Logical left shift
h = a >> 2;
                                // Logical right shift
i = $signed(a) >>> 2;
                                // Arithmetic right shift
i = \{a[5:0], a[7:6]\};
                                // Rotate left
k = \{a[1:0], a[7:2]\};
                                // Rotate right
```


ASCII Encoding

- ASCII: American Standard Code for Information Interchange
- Maps characters to binary values
- ASCII table overview https://www.ascii-code.com/
- Example: 'A' = 01000001 = 65
- Example: 'B' = 01000010 = 66
- Example: a' = 01100001 = 97

Unicode UTF-8 Encoding

- Unicode is a standard for representing text of all languages
- Originally fit into 16 bits
- Now requires 19 bits because of emoji
- UTF-8 is a variable length encoding
- Useful when most of the text is English
- https://symbl.cc/en/unicode-table/
- https://r12a.github.io/app-conversion/

1st byte 2nd byte 3rd byte 4th byte 19-bit value				
0xxxxxx				00000000000000xxxxxx
110ууууу	10xxxxxx			00000000000ууууухххххх
1110zzzz	10yyzzzz	10уууууу	10xxxxxx	00000zzzzyyyyyyxxxxxx
11110uuu	10uuzzzz	10уууууу	10xxxxxx	uuuuuzzzzyyyyyyxxxxxx

Unicode UTF-8 Encoding

Let's decode the following bytes

```
00000000: 74 65 73 74 0a ce b5 cf 85 cf 87 ce b1 cf 81 ce 1 00000010: cf 83 cf 84 cf 8e 0a E5 A4 A7
```

- \bullet 74 = 01110100 starts with 0, so look up ASCII
- same through 0A (ASCII for linefeed)
- CE B5 = $11001110 \ 10110101$ starts with 110, so it's a 2-byte char
- bits = 01110 110101 = 011 1011 0101 = 3B1
- Look up 3B1 in Unicode online (it's a Greek letter)
- E5 A4 A7 = 11100101 10100100 10100111 starts with 1110, so it's a 3-byte char
- bits = 0101 100100 100111 = 5 9 2 7
 - Look up 0x5927 in Unicode online (Chinese)

Fixed Point Fractions

$$2^3 \mid 2^2 \mid 2^1 \mid 2^0 \mid . \mid 2^{-1} \mid 2^{-2}$$

- Fractions in binary are represented as negtive powers
- $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$
- Examples

101.1 =
$$4 + 1 + \frac{1}{2} = 5.5$$

1.01 = $1 + \frac{1}{4} = 1.25$
110.11 = $4 + 2 + \frac{1}{2} + \frac{1}{4}$
1001.001 = $8 + 1 + \frac{1}{8}$

Floating Point

- Fixed point represents fractions, but only a single size
- Floating point can represent values wildly different values
- IEEE-754

Single precision	32 bits
Double precision	64 bits
Quad Precision	128 bits (not yet in hardware)
Half Precision	16 bits (GPUs)
fp8	8 bits (GPUs)

float (32-bit) Representation

value	seeeeeeemmmmmmmmmmmmmmmmmmmmmmmmmmmmmm	hex
1.0	000111111000000000000000000000000000000	3f800000
2.0	010000000000000000000000000000000000000	40000000
1.5	000111111100000000000000000000000000000	3fc00000
0.1	00111101110011001100110011001101	3dcccccd
1234567.8	01001001100101101011010000111110	4996b43e
1.2345678e+10	01010000001101111111011100000110	5037f706
6.023e+23	0110011011111111100010101011111111	66ff157f
6.674e-11	00101110100100101100001101001000	2e92c348
-1234567.8	11001001100101101011010000111110	c996b43e
1.234e-30	00001101110010000011101001011011	0dc83a5b
NaN	011111111100000000000000000000000000000	7fc00000
Infinity	011111111000000000000000000000000000000	7f800000
-Infinity	111111111000000000000000000000000000000	ff800000

Infinity

- Infinity is a special value
- Too large to be countable
- From calculus: $\lim_{x\to 0} \frac{1}{x} = \infty$
- Example: $1.0/0.0 = \infty$
- Not countable: 1.0/0.0 = 2.0/0.0
- Negative infinity: $-1.0/0.0 = -\infty$

NaN: Not a Number

- NaN is a special value meaning the answer is unknown
- When two opposing infinities fight, we don't know the answer
- Example 1.0/0.0 1.0/0.0 = NaN
- Example: 0.0/0.0 = NaN

NaN: Not a Number

For each of the following, determine if the result is NaN, Infinity, or a number

<u>a number</u>	
x = 5.0/0.0	
y = 1.0/x	
$z = \sqrt{x}$	
$w = \sin(x)$	
v = -3.5/0.0	
$u = \sqrt{v}$	

