

The NATO TG-25 Unattended Ground Sensors Field Experiment 2002

by Brian Mays, Hao Vu, and Nino Srour

ARL-TR-3010

September 2003

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-TR-3010

September 2003

The NATO TG-25 Unattended Ground Sensors Field Experiment 2002

Brian Mays, Hao Vu, and Nino Srour Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)	2. REPORT TYPE	3. DATES COVERED (From - To)
September 2003	Final	October 2002
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER
The NATO TG-25 Unattended G	round Sensors Field Experiment 2002	
		5b. GRANT NUMBER
		5c. PROGRAM ELEMENT NUMBER
		62120A
6. AUTHOR(S)		5d. PROJECT NUMBER
Brian Mays, Hao Vu, and Nino S	rour	3NE4RT
		5e. TASK NUMBER
		5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAM	E(S) AND ADDRESS(ES)	8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory		REPORT NUMBER
ATTN: AMSRL-SE-S		ADT TD 2010
2800 Powder Mill Road	•	ARL-TR-3010
Adelphi, MD 20783-1197		
9. SPONSORING/MONITORING AGENCY	Y NAME(S) AND ADDRESS(ES)	10. SPONSOR/MONITOR'S ACRONYM(S)
U.S. Army Research Laboratory		
2800 Powder Mill Road		11. SPONSOR/MONITOR'S REPORT
Adelphi, MD 20783-1197		NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In October 2002, the U.S. Army Research Laboratory (ARL) participated in the NATO TG-25 unattended ground sensors experiment held in Bourges, France. The field experiment was a joint international signature collection and vehicle tracking exercise with nine participating NATO countries. The experiment consisted of nine different ground vehicles that covered the heavy-tracked, light-tracked, heavy-wheeled, and light-wheeled class of ground vehicles. The vehicles were run in single vehicle and convoy formations. This report describes the raw signature data that was collected by the ARL during the TG25 field experiment. The raw signature data collected include acoustic array data at two geographic locations, three-axis seismic data at two geographic locations, and still infrared images of the vehicles at one location.

15. SUBJECT TERMS

unattended ground sensors (UGS), acoustics, seismics, ground vehicles (heavy-tracked, light-tracked, heavy-wheeled, light-wheeled), NATO

16. SECURITY CLA	ASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON Brian Mays
	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	UL	37	19b. TELEPHONE NUMBER (Include area code) 301-394-2185

Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18

Contents

Lis	t of F	Figures	iv
Lis	t of T	Tables	iv
1.	Bac	kground	1
	1.1	Field Experiment Purpose and Goals	1
	1.2	Raw Data Collection Hardware	
	1.3	Acoustic Sensors	3
	1.4	Seismic Sensor	
	1.5	Infrared (IR) Sensor	
2.	Sen	sor Installations and Configurations	4
	2.1	Z1: Sensor 6 (ARL Hardware Number)	4
	2.2	Site Z1 Surroundings	4
	2.3	Z3: Sensor 8 (ARL Hardware Number)	4
	2.4	Site Z3 Surroundings	5
	2.5	IR Camera: (Located at Z3)	6
	2.6	Sensor Microphone Configurations and Seismic Configuration	6
	2.7	Sensor Data Acquisition Parameters	8
	2.8	Sensor 6 Failure During Test	8
3.	Veh	nicle Test Matrix	9
4.	Des	cription of Raw Data	9
5.	Fiel	d Calibration Files	15
6.	Cor	ntact Information for Data Requests	15
Аp	pend	ix A. Test Site Locations and Vehicle Trajectories	17
Аp	pend	ix B. BL-1994 Sensitivity Specifications	19
Аp	pend	ix C. GS-11D Sensitivity Specifications	21
Аp	pend	ix D. ALPHA Infrared (IR) Camera Specifications	23

Appendix E. Vehicle Descriptions	25				
Appendix F. Data Format Specifications Appendix G. Sample MATLAB Program to Read Data Files					
List of Figures					
Figure 1. ALPHA uncooled IR camera	3				
Figure 2. Locations of local Z3 surroundings	5				
Figure 3. IR camera position at Z3.	6				
Figure 4. Array topology and signal connections.	7				
Figure A-1. Test site locations and vehicle trajectories	17				
Figure B-1. BL-1994 sensitivity specifications.	19				
Figure C-1. GS-11D sensitivity specifications.	21				
Figure D-1. ALPHA IR camera specifications	23				
Figure E-1. AMX-10P: Infantry combat vehicle.	25				
Figure E-2. AMX-10RC: Reconnaissance vehicle	26				
Figure E-3. AMX-30 MBT: Medium battle tank	27				
Figure E-4. CBH P4: Armored personnel carrier.	28				
Figure E-5. TRM 10000: 10,000-Kg truck	29				
Figure E-6. TRM 200: Truck.	30				
Figure E-7. VAB: Armored personnel carrier	31				
List of Tables					
Table 1. Test matrix	10				
Table F-1. Packet header format.					
Table H-1. Gain table	37				
Table U.2. Cutoff fraguency table	37				

1. Background

1.1 Field Experiment Purpose and Goals

The North American Treaty Organization (NATO) research group SET-08/Task Group (TG)-25 on "Advanced Concepts of Acoustic and Seismic Technology" is involved in emphasizing acoustic and seismic concepts within Unattended Ground Sensors (UGS). The main objective of the group is to assess the potential technologies that can be cooperatively developed and assessed within NATO to provide low-cost battlefield sensors based on acoustic and seismic technology.

The approach adopted by TG-25 is as follows:

- 1. Evaluate emerging technologies for applicability to battlefield needs.
- 2. Develop cooperative efforts aimed at reducing costs to each participating country.
- 3. Evaluate potential of UGS to meet battlefield requirements.
- 4. Cooperate in known areas of overlap.
- 5. Cooperate on sensor environmental modelling.

The TG-25 has acquired participation from nine nations to include Canada, France, Germany, Italy, the Netherlands, Norway, Poland, the United Kingdom, and the United States. The group has worked on tasks with the primary objective of establishing quantitatively the military benefits that Acoustic and Seismic sensor systems offer. Although these technologies cover a wide range of applications, a few of these proposed topics will be selected for cooperation to include the following:

- a. Propagation Modeling,
- b. Signature Collection and Storage,
- c. Standards,
- d. Simulation and Modeling of Sensors,
- e. Sensor Fusion,
- f. Joint Field Experiments,
- g. Unattended Ground Sensors, and
- h. Sniper Detection.

In support of these tasks, a decision was made to further investigate the benefits of networking UGS systems and to demonstrate interoperability among participating nations. It was deemed necessary to organize a field-campaign in which each participant will collect data and provide real-time UGS system output to a network. Via the network, the UGS system output would be collected and visualized in real-time on a central server. Analysis of the collected data (i.e., data-fusion) would be carried out after the field-campaign.

In October 2002, under the auspices of the SET-08/TG-25 NATO research group, France hosted the Joint UGS field experiment campaign at the "Les Ormeaux" testing facility in Bourges. Appendix A shows the test site locations and the vehicle trajectories.

Apart from each team's own objectives concerning the field-campaign, the following collective goals have been defined:

- <u>Centralized UGS system output.</u> During the field-campaign, output data from each
 participant's UGS system(s) would be collected and displayed in real-time on a central
 server. This would demonstrate the potential of networked UGS systems, enabling the
 centralized and uniform collection of UGS systems' output.
- Exchange of sensor data. After the field-campaign, each TG-25 member would provide sensor data recorded during the field-campaign to other TG-25 members upon request.
- Analysis of networked UGS systems. After the field-campaign, the centrally collected UGS systems' output data would be made available to TG-25 members to determine the benefits of networking UGS systems.
- <u>Field-campaign report</u>. A report would be written to provide participants and others with information about the field-campaign.
- Demonstration for VIPs. During the field-campaign, a number of invitees were given the opportunity to attend the field-campaign. The purpose was to demonstrate current developments and to gain support for the funding of research in networked UGS systems.

1.2 Raw Data Collection Hardware

The data collection hardware that was used by the U.S. Army Research Laboratory (ARL) is referred to as the Data Fusion Testbed (DFT). The DFT was developed by ARL to allow rapid in-field testing of various sensors and algorithms. The field-rugged, self-contained DFT can operate on battery or alternating current (AC) power, is remotely operated via wireless or RJ-45 network connection, and provides on-board recording of up to 56 channels of raw sensor data. The DFT can also host eight concurrent signal processing algorithms operating on the real-time

¹Mays, B. Electrical and Software Design Report for the Data Fusion Testbed; ARL-MR-536; U.S. Army Research Laboratory. Adelphi, MD, July 2002.

sensor data. The algorithms can operate independently or fuze data locally prior to sending processed results to additional assets in the field. A final feature of the DFT allows remote clients to receive real-time sensor data. This allows high-level clients such as MATLAB or Labview clients to process field data and inject results into the network as if they were operating locally on the DFT. This feature avoids the costly step of porting software from a high level language for evaluation purposes. By using several DFTs, the backbone of a generic UGS field can be formed.

1.3 Acoustic Sensors

The acoustics sensors used were instrumentation-grade piezo-ceramic microphones. The specific microphones used were model number BL-1994 manufactured by Emkay Innovative Products. Emkay is a subsidiary company to Knowles, which is the common term used for the microphones. The sensitivity-vs.-frequency curve for the BL-1994 is shown in Appendix B.

1.4 Seismic Sensor

The seismic sensor used was a commercial tri-axial geophone. The specific unit is produced by Geo Space, LP, Inc. and contains three GS11D, 4.5-Hz, 4000-ohm coil resistance sensors packaged in a GSC-3C land case. The output sensitivity as a function of frequency is shown in Appendix C. Note curve C should be used due to the specific shunt resistor selected.

1.5 Infrared (IR) Sensor

IR images were collected for all of the vehicles used during the test. The images have various pass bye orientation to the camera and include both left and right turns in both approaching and receding directions. The IR sensor used for still image collection was the ALPHA uncooled IR camera, manufactured by Indego, Inc. The picture of the camera is shown in Figure 1. The specifications for the camera are shown in Appendix D.

Figure 1. ALPHA uncooled IR camera.

The images were collected using a commercial frame grabber card, associated software, and laptop. The frame grabber card was manufactured by Video Capture Essentials. The captured images are stored as Microsoft Windows Bitmap files and had the following properties: height

640 (pixels), width 480 (pixels), 24-bit color-stored as true color RGB. Even though the color format is true color, the actual data are gray scale.

2. Sensor Installations and Configurations

Two ARL DFT sensors were installed to support the field experiment. The first sensor is sensor number 6 and was located at Bourges site Z1 (see map in Appendix A). The second sensor was sensor number 8 and was located at Bourges site Z3. The locations and network address follow:

2.1 Z1: Sensor 6 (ARL Hardware Number)

Location

N 47.00484°

E 2.68050°

Alt: 191 m

Position estimated with Garmin Receiver (accuracy 4 m)

IP Address: 192.168.10.40

Sensor ID number used in NATO Messages: 120

Geodetic survey location:

N 47° 0.29145 min

E 02° 40.8274 min

Alt: 238.2-m ellipsoid

Seismic sensor is 170 cm from the center of acoustic array. Acoustic array and seismic sensor are both aligned to True North.

2.2 Site Z1 Surroundings

Sensor location 6, site Z1, had only one reflective source and that was the electronics hut. The hut was approximately the same separation as the array from site Z3, but at an angle of $\sim 265^{\circ}$.

Sensor 6 at Z1 site is not operational on the last day of the field test, October 24, 2002. Sensor 8 at Z3 site remained operational for the entire series of tests on that same day.

2.3 Z3: Sensor 8 (ARL Hardware Number)

Location

N 47.00293°

E 02.68576°

Alt: 183 m

Position estimated with Garmin Receiver (accuracy 4 m)

IP Address: 192.168.10.60

Sensor ID number used in NATO Messages: 370

Geodetic survey location:

N 47° 0.1768 min

E 02° 41.14357 min

Alt: 232.7-m ellipsoid

Seismic sensor is 193 cm from the center of acoustic array. Acoustic array and seismic sensor are both aligned to True North.

- Locations in WGS-84 coordinates
- NATO Sensor ID numbers were unique for all participants

2.4 Site Z3 Surroundings

Site Z3 has an old farm building ~100 m from the array. The walls were intact and created an efficient reflective source. The wall facing the array was parallel to the road between Z1 and Z3. The distances and locations of the surroundings at Z3 are mapped out in Figure 2.

Figure 2. Locations of local Z3 surroundings.

Controlling Computer "Magenta" was configured with IP Address 192.168.10.90.

Both sensors were configured to connect to the "Spider" socket server at IP Address 192.168.10.31 and port 1000.

2.5 IR Camera: (Located at Z3)

Camera Location: N 47.00269°

E 02.68582°

Alt: 172 m

Distance from camera perpendicular to middle of the track: 5.2 m

Distance from camera to center of intersection: 27.8 m

Angle from camera to intersection: 135° from magnetic north.

Figure 3 shows the IR camera position relative to the road.

Figure 3. IR camera position at Z3.

2.6 Sensor Microphone Configurations and Seismic Configuration

The sensor configurations for Sensor 8 site Z3 are as follows:

Group θ : Array of Microphones. The microphones were configured as a 7-element 4-ft circular array with topology shown in Figure 4.

Group 0 used junction box serial number (SN): 213(3 temp label)

Channel 1: Mic SN 101

Channel 2: Mic SN 117

Channel 3: Miç SN 48

Channel 4: Mic SN 63

Channel 5: Mic SN 19

Figure 4. Array topology and signal connections.

Channel 6: Mic SN 122.

Channel 7: Mic SN 26

Channel 8: No Connection

Group 1: 3 channels of seismic data from tri-axis seismometer with ARL SN 6.

Group 1 used junction box SN: 2-15

Channel 1: North

Channel 2: East

Channel 3: Vertical

Channels 4-8: No Connections

The sensor configurations for Sensor 6 site Z1 are as follows:

Group 0: Array of Microphones. The microphones were configured as a 7-element 4-ft circular array with topology shown in Figure 4.

Group 0 used junction box SN: (C-1 and B-5 temp label)

Channel 1: Mic SN 85

Channel 2: Mic SN 32

Channel 3: Mic SN 107

Channel 4: Mic SN (no label)

Channel 5: Mic SN 24

Channel 6: Mic SN 38

Channel 7: Mic SN 6 -

Channel 8: No Connection

Group 1: 3 channels of seismic data from a tri-axis seismometer

Group 1 used junction box SN: (Not Recorded)

Channel 1: North

Channel 2: East

Channel 3: Vertical

Channels 4-8: No Connections

2.7 Sensor Data Acquisition Parameters

The settings for Sensors 6 and 8 were identical and are as follows:

Group 0 Sample Rate: 2048 Hz

Group 1 Sample Rate: 1024 Hz

Group 0 Gain 100× (33 in hardware setting): 10× in junction box 10× in mic preamp

Group 1 Gain 100× (44 in hardware setting): 100× in junction box no preamp on seismic

Group 0 Cutoff 625 Hz (66 in hardware setting)

Group 1 Cutoff 312 Hz (77 in hardware setting)

2.8 Sensor 6 Failure During Test

General Notes: On the evening of October 21, 2002 and into the morning of October 22, 2002, a severe thunderstorm went through the test area. The CPU in Sensor 6 was damaged. The sensor was replaced with the development system that was on site as a backup. All of the sensors remained in order so the data sets will have the same calibration files. There should be no noticeable difference in the data, but the change in sensors is noted for completeness.

3. Vehicle Test Matrix

Table 1 is the test matrix that provides a detailed record of the actual vehicle (Appendix E) runs during the field test. It records the number of runs that had taken place during the field test, the date when the runs occurred, the time when the vehicle(s) started their runs, the time when the vehicle(s) ended their runs, what type of target(s), the speed of the target(s), and how many targets were involved during the runs. It also provides the footnote that documents additional information that occurred during the runs.

4. Description of Raw Data

The raw acoustic and seismic data that were collected at the TG-25 field experiment have the same fundamental format specification. The data are organized into one file per eight analog signal channels. For each site, the first group (group 0) of channels contained the acoustic array data on channels 1–7 and the second group (group 1) contained the three-axis seismic data. The seismic group had three channels 1–3, containing the North, East, and Vertical components, respectively. Channels 8 on group 0 and channels 4–8 on group 1 had no sensor elements connected and should be ignored. During the tests, each vehicle run produced two data files per site location. The filenames have the basic format of year_month_day_hour_min_sec_ SensorNumber_ GroupNumber. The Sensor number indicates the site where the data were collected, and the group number indicates which set of eight analog channels are contained in the file.

The data within each file are stored in a binary file that is specified in Appendix F. The fundamental structure is a 40 byte header followed by a packet of raw data. The size of the raw data packet is calculated from the header information but is in this case 1 s of analog data for the eight channels specified by the group number. The blocks of headers followed by data repeat throughout the entire data file, which spans the entire vehicle run. The binary files are easily read into application by calculating the size parameters from the header fields, and an example MATLAB (Matrix Laboratory) program is included in Appendix G, which demonstrates the reading of the raw data files.

Table 1. Test matrix.

Notes	Artillery fire 8:32	Z1 is magnetic north. Z3 is True North. Magnetic North is offset by 2° 35 min counterclockwise from True North	Separation 75 m	Note: Run 1 is not Figure 8, on return driver skipped Z1 to Z3 path	ļ	Separation 75 m. Z1 was rotated ~3° clockwise and is now pointing to True North. Z3 is True North. High winds	High winds	Very high winds, Separation 75 m	Very high winds, Separation 75 m	Very high winds
Speed	20	20	20	30	30	20	30	30	30	30
Num			2	-	-	4	-	7	7	-
Target type	AM×30	AM×30	AM×30 (2)	VAB	TRM2000	AM×30 (4)	TRM110000	TRM10000 (1) TRM2000 (1)	TRM2000 (1) TRM10000 (1)	AM×10-RC
Stop	0840	1344	1427	1515	1554	1303	1430 ·	1501	1513	1606
Start	0827	1312	1356	1454	1533	1231	1406	1449	1501	1542
IR Image Filename	Triall_16Oct02_ANK30 Trial2_16Oct02_AMK30	Run la 160ct02 AMX30 Run lb 160ct02 AMX30 Run lc 160ct02 AMX30 Run ld 160ct02 AMX30	Run2a_16Oct02_AMK30_broadside Run2b_16Oct02_AMK30_broadside Run2c_16Oct02_2AMK30 Run2d_16Oct02_2AMK30 Run2d_16Oct02_2AMK30	Run3a_16Oct02_VAB Run3b_16Oct02_VAB Run3c_16Oct02_VAB	Run4a_16Oct02_TRNZ000 Run4b_16Oct02_TRNZ000 Run4c_16Oct02_TRNZ000 Run4d_16Oct02_TRNZ000	Run5a_170ct02_4AMX30 Run5b_170ct02_4AMX30 Run5c_170ct02_4AMX30 Run5d_170ct02_4AMX30	Run6a_17Oct02_TRM10000 Run6b_17Oct02_TRM10000 Run6c_17Oct02_TRM10000 Run6d_17Oct02_TRM10000	Run7_1a_170ct02_TRM10K_TRM2 K Run7_1b_170ct02_TRM10K_TRM2 K	Run7_2a_170c402_TRMZK_TRM10 K Run7_2b_170c402_TRMZK_TRM10	Run8a 170ct02 AMX10RC Run8b 170ct02 AMX10RC Run8c 170ct02 AMX10RC Run8d 170ct02 AMX10RC
RawData Filename	2002 10 16 08 27 10 Sens8 Grp0 2002 10 16 08 27 10 Sens8 Grp1 2002 10 16 08 27 24 Sens6 Grp0 2002 10 16 08 27 24 Sens6 Grp0 2002 10 16 08 27 24 Sens6 Grp1	2002 10 16 13 12 34 Sense Grp0 2002 10 16 13 12 34 Sense Grp1 2002 10 16 13 12 44 Sens8 Grp1 2002 10 16 13 12 44 Sens8 Grp1	2002 10 16 13 56 02 Sense Grp0 2002 10 16 13 56 02 Sense Grp1 2002 10 16 13 56 13 Sense Grp0 2002 10 16 13 56 13 Sense Grp1 2002 10 16 13 56 13 Sense Grp1	2002 10 16 14 54 37 Sens8 Gp0 2002 10 16 14 54 37 Sens8 Gp1 2002 10 16 14 54 57 Sens6 Gp0 2002 10 16 14 54 57 Sens6 Gp0 2002 10 16 14 54 57 Sens6 Gp1	2002 10 16 15 33 46 Sens8 Grp0 2002 10 16 15 33 46 Sens8 Grp1 2002 10 16 15 33 56 Sens6 Grp0 2002 10 16 15 33 56 Sens6 Grp0 2002 10 16 15 33 56 Sens6 Grp1	2002 10 17 12 31 10 Sens8 Gp0 2002 10 17 12 31 10 Sens8 Gp1 2002 10 17 12 31 20 Sens6 Gp0 2002 10 17 12 31 20 Sens6 Gp0	2002 10 17 14 06 45 Sens8 Grp0 2002 10 17 14 06 45 Sens8 Grp1 2002 10 17 14 06 49 Sens6 Grp0 2002 10 17 14 06 49 Sens6 Grp0 2002 10 17 14 06 49 Sens6 Grp1	2002 10 17 14 49 21 Sens8 Grp0 2002 10 17 14 49 21 Sens8 Grp1 2002 10 17 14 49 22 Sens6 Grp0 2002 10 17 14 49 22 Sens6 Grp0	2002 10 17 14 49 21 Sens8 Grp0 2002 10 17 14 49 21 Sens8 Grp1 2002 10 17 14 49 22 Sens6 Grp0 2002 10 17 14 49 22 Sens6 Grp0 2002 10 17 14 49 22 Sens6 Grp1	2002 10 17 15 42 53 Sens8 Grp0 2002 10 17 15 42 53 Sens8 Grp1 2002 10 17 15 42 53 Sens6 Grp0 2002 10 17 15 42 53 Sens6 Grp0 2002 10 17 15 42 53 Sens6 Grp1
Date	10/16/02	10/16/02	10/16/02	10/16/02	10/16/02	10/17/02	10/17/02	10/17/02	10/17/02	10/17/02
Ruh #	Te .		2	en en	4	ĸ	9	7.1	7.2	∞

Table 1. Test matrix (cont'd).

Separation 75 m	Runs 10–16 only have direction 2 (i.e., Z5 to Z1 to Z3 to Z2 back to PC—to Z1 to Z3 to Z4 to Z5) Overshot the field after Z1 and backton to go down to Z3	Separation 75 m			l	Separation 75 m	1	Loud Bang (Artillery) 0822 Aircraft 0830 Aircraft 0837 Aircraft 0842 Aircraft 0847 Aircraft 0847	Direction 1: Loud Bang (Artillery) 0909 Aircraft 0911 Aircraft 0923 Sensor 6 may have bad gain settings
30	50	29	30	30	30	30	30	01∼	10
2		2	-			7	-	_	_
AM × 10-RC (2)	AM×30	AM×30 (2)	VAB	TRM2000	TRM110000	TRM10000 (1) & TRM2000 (1)	P4	AM×10P	AM× 10P
1855	1938	1958	2040	2107	2120	2134	2152	08597	0929
1832	1923	1944	2029	2055	2108	2121	2141	0820	6060
Run9a_170ct02_2xAMK10RC Run9b_170ct02_2xAMK10RC Run9c_170ct02_2xAMK10RC Run9d_170ct02_2xAMK10RC	Run 10a_17Oct02_AMX30 Run 10b_17Oct02_AMX30	Run 11a_17Oct02_2xAMX30 Run 11b_17Oct02_2xAMX30	Run12a_17Oct02_VAB Run12b_17Oct02_VAB	Rµn 13a_17Oct02_TRM2000 Rµn 13b_17Oct02_TRM2000	Run 14a 17Oct02_TRM 10000 Run 14b_17Oct02_TRM 10000	Run15a_17Oct02_TRM10K_TRM2K Run15b_17Oct02_ TRM10K_TRM2K	Run 16a_17Oct02_p4 Run 16b_17Oct02_P4	Trial4a_210ct02_AMX10P Trial4b_210ct02_AMX10P Trial4c_210ct02_AMX10P	Run 17a_21Oct02_AMX10P Run 17b_21Oct02_AMX10P
2002_10_17_18_32_19_Sens8_Grp0 2002_10_17_18_32_19_Sens8_Grp1 2002_10_17_18_32_27_Sens6_Grp0 2002_10_17_18_32_27_Sens6_Grp0	2002 10 17 19 23 10 Sens8 Grp0 2002 10 17 19 23 10 Sens8 Grp1 2002 10 17 19 23 12 Sens6 Grp0 2002 10 17 19 23 12 Sens6 Grp1	2002_10_17_19_44_46_Sens8_Grp0 2002_10_17_19_44_46_Sens8_Grp1 2002_10_17_19_44_44_Sens6_Grp0 2002_10_17_19_44_44_Sens6_Grp0	2002_10_17_20_29_02_Sens8_Grp0 2002_10_17_20_29_02_Sens8_Grp1 2002_10_17_20_28_42_Sens6_Grp0 2002_10_17_20_28_42_Sens6_Grp1	2002_10_17_20_56_15_\$enş8_Grp0 2002_10_17_20_56_15_\$ens8_Grp1 2002_10_17_20_55_57_\$ens6_Grp0 2002_10_17_20_55_57_\$ens6_Grp1	2002_10_17_21_08_25_Sens8_Grp0 2002_10_17_21_08_25_Sens8_Grp1 2002_10_17_21_08_06_Sens6_Grp0 2002_10_17_21_08_06_Sens6_Grp0	2002_10_17_21_22_04_Sens8_Grp0 2002_10_17_21_22_04_Sens8_Grp1 2002_10_17_21_21_46_Sens6_Grp0 2002_10_17_21_21_46_Sens6_Grp0	2002_10_17_21_41_51_Sens8_Grp0 2002_10_17_21_41_51_Sens8_Grp1 2002_10_17_21_41_49_Sens6_Grp0 2002_10_17_21_41_49_Sens6_Grp0	2002_10_21_08_20_33_Sen6_Grp0 2002_10_21_08_20_33_Sen6_Grp1 2002_10_21_08_20_43_Sen8_Grp0 2002_10_21_08_20_43_Sen8_Grp1	2002_10_21_09_09_20_Sen6_Grp0 2002_10_21_09_09_20_Sen6_Grp1 2002_10_21_09_09_25_Sen8_Grp0 2002_10_21_09_09_25_Sen8_Grp1
10/17/02		10/17/02		10/17/02	10/17/02	10/17/02	10/17/02	10/21/02	10/21/02
6	10	=		13	14	15	16	_	17

Table 1. Test matrix (cont'd).

Directions 1 & 2. Separation: 75 m Each dir has a file; Sensor 6 may have bad gain settings. Have different weights, one has more armor than the other	Helicopter running during the whole run started at 1237 Vehicles started at 1239 Sensor 6 may have bad gain settings	Helicopter flying during run. Helo engine off 1357 Helo engine on 1408		Helo loitering in background separation 75 m	Sensor 6 down, Z3 only direction 2 (i.e., Z5 to Z1 to Z3 to Z2 back to PC—to Z1 to Z3 to Z4 to Z5)	Sehsor 6 down, Z3 only direction 2 (i.e., Z5 to Z1 to Z3 to Z2 back to PC—to Z1 to Z3 to Z4 to Z5)	Sensor 6 down, Z3 only, ~0.5-hr run, rest is background noise measurements direction 2 (i.e., Z5 to Z1 to Z3 to Z2 back to PC—to Z1 to Z3 to Z4 to Z5)	Direction 2: (i.e., Z5 to Z1 to Z3 to Z2 back to PC—to Z1 to Z3 to Z4 to Z5)	Sensor 6 Up; Replaced with development unit. Plane 0854
750	50	30	50	20	20	20	50	20	20
C4	4			7		64	-	-	, , ,
AM × 10P (2)	AM×30 (4)	P4	AM× 10RC	AM× 10-RC (2)	AM×30	AM×30 (2)	AM×10	AM× 10RC	Toyota Pickup
1015	I	1409	15137	1547	0557	Did not record	Did not record	0748	0901
0943- 1000	1237	1346	1447	1519	0538	0556	0649	0733	0827
Run 18a_210cd02_2xANK 10P Run 18b_210cd02_2xANK 10P Run 18c_210cd02_2xANK 10P Run 18d_210cd02_2xANK 10P	Run 19a- 210ct02- 4xAMX30 Run 19b- 210ct02- 4xAMX30 Run 19c- 210ct02- 4xAMX30 Run 19d- 210ct02- 4xAMX30	Run20a- 21Oct02- P4 Run20a- 21Oct02- P4 Run20a- 21Oct02- P4 Run20a- 21Oct02- P4	Run21a-210qt02, AVK10RC Run21b-210qt02, AVK10RC Run21c-210ct02, AVK10RC Run21d-210ct02, AVK10RC	Run22a- 21Oct02- 2xAMX10RC Run22b- 21Oct02- 2xAMX10RC Run22c- 21Oct02- 2xAMX10RC Run22d- 21Oct02- 2xAMX10RC	1	I		ļ	ļ
2002_10_21_09_43_45_Sen6_Gp0 2002_10_21_09_43_45_Sen6_Grp1 2002_10_21_09_43_53_Sen8_Grp0 2002_10_21_09_43_53_Sen8_Grp0 2002_10_21_10_00_08_Sen6_Grp0 2002_10_21_10_00_08_Sen6_Grp0 2002_10_21_10_00_16_Sen8_Grp0 2002_10_21_10_00_16_Sen8_Grp0 2002_10_21_10_00_16_Sen8_Grp0	2002_10_21_12_37_15_Sen6_Grp0 2002_10_21_12_37_15_Sen6_Grp1 2002_10_21_12_37_28_Sen8_Grp0 2002_10_21_12_37_28_Sen8_Grp1	2002_10_21_13_46_59_Sen8_Grp0 2002_10_21_13_46_59_Sen8_Grp1 2002_10_21_13_47_13_Sen6_Grp0 2002_10_21_13_47_13_Sen6_Grp1	2002_10_21_14_47_31_Sen8_Grp0 2002_10_21_14_47_31_Sen8_Grp1 2002_10_21_14_47_36_Sen6_Grp0 2002_10_21_14_47_36_Sen6_Grp0	2002_10_21_15_20_14_Sen8_Grp0 2002_10_21_15_20_14_Sen8_Grp1 2002_10_21_15_20_27_Sen6_Grp0 2002_10_21_15_20_27_Sen6_Grp1	2002_10_22_05_38_08_Sen8_Grp0 2002_10_22_05_38_08_Sen8_Grp1	2002_10_22_05_56_24_Sen8_Grp0 2002_10_22_05_56_24_Sen8_Grp1	2002_10_22_06_49_34_Sen8_Grp0 2002_10_22_06_49_34_Sen8_Grp1	2002_10_22_07_33_32_Sen8_Grp0 2002_10_22_07_33_32_Sen8_Grp1	2002_10_22_08_27_02_Sen6_Grp0 2002_10_22_08_27_02_Sen6_Grp1 2002_10_22_08_27_16_Sen8_Grp0 2002_10_22_08_27_16_Sen8_Grp1
10/21/02	10/21/02	10/21/02	10/21/02	10/21/02	10/22/02	10/22/02	10/22/02	10/22/02	10/22/02
<u>«</u>		20	21	22		24	25	26	27

Table 1. Test matrix (cont'd).

	Both Sensors Up	Directions 1 & 2: Did not record dir 1 during this run. Due to conflict of IP addr. Record the 2	direction at 1228. Directions 1 & 2: Did calibration before this run. Sunshine, but high wind (8.1 m/s = 20-25 mph) Vehicles moving at 1253. The vehicles are interfeave	(amx30,amx10p) Directions 1 & 2:		Direction 1: Sensor 8 only site Z3 rest of runs	Sensor 8 Only Z3	Plane will fly over until 1800. The vehicles are in order as labeled.	Gain might be incorrect in group 0 of sensor 8 for runs 33-36			This 10RC is different than the	0 10 10 10 10 10 10 10 10 10 10 10 10 10
	20	70	20	20	20	20	20	20	20	20	70	70	20
	7	77	4	4	2	7	7	4	2	-	2		
	2x Toyota Pickpp	AM×10RC, (1) AM×10P	AM×30, (1) AM×10P, (1) AM×30, (1) AM×10P	(1) AM×10P, (1) AM×10RC, (1) AM×10P, (1) AM×10RC	(1) VAB, (1) AM×10P (1)	P4, (1) TRM2000	P4, (1) TRM10000 (1)	10rc, (1) vab, (1) trm2000, (1) trm10000 (1)	Pickup, (1) P4 (1)	P4	10RC (2)	AM×10RC, (1)	AM× 10P, (1)
		1242	1	1431			1310	1351	1432	1508	1546	1603	1902
	0924	1214	1249	1402	1517	1231	1256	1336	1419	1457	1532	1550	1848
]							1		I			
,	2002 10 22 09 24 00 Sené Grp0 2002 10 22 09 24 00 Sené Grp1 2002 10 22 09 24 04 Sen8 Grp0 2002 10 22 09 24 04 Sen8 Grp0 2002 10 22 09 24 04 Sen8 Grp0	2002 10 22 12 28 21 Sené Grp0 2002 10 22 12 28 21 Sené Grp1 2002 10 22 12 28 21 Sené Grp0 2002 10 22 12 28 21 Sené Grp0 2002 10 22 12 28 21 Sené Grp1	2002_10_23_12_49_04_Sen6_Grp0 2002_10_23_12_49_04_Sen6_Grp1 2002_10_23_12_49_17_Sen8_Grp0 2002_10_23_12_49_17_Sen8_Grp1	2002_10_23_14_02_28_Sen6_Grp0 2002_10_23_14_02_28_Sen6_Grp1 2002_10_23_14_02_34_Sen8_Grp0 2002_10_23_14_02_34_Sen8_Grp1	2002_10_23_15_17_36_Sen6_Grp0 2002_10_23_15_17_36_Sen6_Grp1 2002_10_23_15_17_44_Sen8_Grp0 2002_10_23_15_17_44_Sen8_Grp0	2002_10_24_12_31_56_Sen8_Grp0 2002_10_24_12_31_56_Sen8_Grp1		2002_10_24_13_36_59_Sen8_Grp0 2002_10_24_13_36_59_Sen8_Grp1			2002_10_24_15_32_18_Sen8_Grp0 2002_10_24_15_32_18_Sen8_Grp1	2002_10_24_15_50_28_Sen8_Grp0 2002_10_24_15_50_28_Sen8_Grp1	2002_10_24_18_48_13_Sen8_Gp0 2002_10_24_18_48_13_Sen8_Gp1
	10/22/02	10/22/02	10/23/02	10/23/02	10/23/02	10/24/02	10/24/02	70.45.0	10/24/02	10/24/02	10/24/02	10/24/02	10/24/02
	28	29	30				34						40

Table 1. Test matrix (cont'd).

[
20	20	20	20
 24-	-	.	7
1934 AM× 10P (2)	AM×10RC type 1	AM×10RC type 2	AM × 10RC (1) AM × 10P (1)
1934	2008 A	2048	2127
1911	1956	2032	2115
1	_	_	I
41 10/24/02 2002_10_24_19_11_20_Sen8_Grp0 2002_10_24_19_11_20_Sen8_Grp1	2002_10_24_19_56_55_Sen8_Grp0 2002_10_24_19_56_55_Sen8_Grp1	2002_10_24_20_32_30_Sen8_Grp0 2002_10_24_20_32_30_Sen8_Grp1	2002_10_24_21_15_08_Sen8_Gpp0 2002_10_24_21_15_08_Sen8_Gpp1
10/24/02	42 10/24/02	43 10/24/02	44 10/24/02
41	42	43	4

A key field in the header file is the gain specified for the associated data packet. The gain table values are specified in Appendix H and require some additional interpretation for between the acoustic channels and the seismic channels. The gain table shows a box gain and a mic gain. For the acoustic channels, the total gain is the product of the two. For the seismic groups, only the box gain has significance because there is no preamplifier (Mic gain stage) to be concerned with. This implies that the total gain on the seismic groups is just the box gain and is not affected by any setting on the mic gain. For this test, the mic gain on the seismic groups was set to unity so the box gain equals the total gain shown in the chart.

5. Field Calibration Files

Calibration files were collected for both sensor arrays in the field on 23 October 2002. A 1-KHz calibration tone was injected into the microphones for ~10 s/channel. The calibrator used was a 94-dBSPL unit. A single calibration file was collected for each sensor; therefore, the tones must be searched for in the data files to extract the time window in which a specific microphone was being stimulated. The two files are 2002_10_23_12_06_Sen6_Grp0.dat and 2002_10_23_12_16_Sen8_Grp0.dat. The units were reconfigured to have the following data acquisition parameters for the calibration files:

```
Sample Rate = 4096 \text{ Hz}

Gain = 10 \times

Cutoff Frequency = 1.25 \text{ KHz}
```

Note that the meteorological conditions during the calibration collection were windy (gusts 20–25 mph and sustained winds of 15 mph).

6. Contact Information for Data Requests

Requests for the raw sensor data described in this report and information on any restrictions in its distribution, should be sent to the following address:

U.S. Army Research Laboratory Attn: AMSRL-SE-SA 2800 Powder Mill Rd Adelphi, MD 20783 INTENTIONALLY LEFT BLANK

Appendix A. Test Site Locations and Vehicle Trajectories

Figure A-1. Test site locations and vehicle trajectories.

INTENTIONALLY LEFT BLANK

Appendix B. BL-1994 Sensitivity Specifications

Figure B-1. BL-1994 sensitivity specifications.

INTENTIONALLY LEFT BLANK

Appendix C. GS-11D Sensitivity Specifications

Figure C-1. GS-11D sensitivity specifications.

INTENTIONALLY LEFT BLANK

Appendix D. ALPHA Infrared (IR) Camera Specifications

ALPHA Specifications					
Detector type	Uncooled Microbolometer				
Detector spectral range	7.5–13.5 microns				
Array format	160 H × 128 V pixels				
Field of view (degrees)	25 H × 19 V				

Figure D-1. ALPHA IR camera specifications.

INTENTIONALLY LEFT BLANK

Appendix E. Vehicle Descriptions

Figure E-1. AMX-10P: Infantry combat vehicle.

Combat weight: 14,500 Kg

Unloaded weight: 12,700 Kg

Track width: 425 mm

Length of track on ground: 2.93 m

Engine: Hispano-Suiza HS 115 V8 water-cooled supercharged diesel developing 260 hp at

3000 rpm

Transmission: preselective with four forward and one reverse gears

Suspension: torsion bar

Figure E-2. AMX-10RC: Reconnaissance vehicle.

Configuration: 6×6

Combat weight: 15,880 Kg

Unloaded weight: 14,900 Kg

Track: 2.425 m

Wheelbase: 1.55 + 1.55 m

Engine: Baudouin Model 6F 11 SRX diesel engine developing 280 hp at 3000 rpm

Transmission: preselective with four forward and four reverse gears

Suspension: hydropneumatic

Figure E-3. AMX-30 MBT: Medium battle tank.

Combat weight: 36,000 Kg

Unloaded weight: 34,000 Kg

Track: 2.53 m

Track width: 570 mm

Length of track on ground: 4.12 m

Engine: Hispano-Suiza HS 110 12-cylinder, water-cooled supercharged multifuel developing

720 hp at 2000 rpm

Transmission: mechanical with five gears in both directions

Suspension: torsion bar

Figure E-4. CBH P4: Armored personnel carrier.

Configuration: 4×4

Combat weight:

Petrol engine: 3300 Kg

Diesel engine: 3380 Kg

Max load: 1100 Kg

Track: 1.4 m

Wheelbase: 2.4 m

Engine: 4-cylinder diesel developing 76 hp or 4-cylinder intercooled diesel developing 110 hp

Suspension:

(front) coil springs, antisway bar and double-acting telescopic hydraulic shock absorbers (rear) coil springs and double-acting telescopic hydraulic shock absorbers

Figure E-5. TRM 10000: 10,000-Kg truck.

Configuration: 6×6

Loaded weight: 29,000 Kg

Unloaded weight: 13,520 Kg

Track: 2.015 m

Wheelbase: 4.3 m + 1.4 m

Engine: Renault MIDR 06-20-45 9.839 liters 6-cylinder supercharged exhaust diesel developing

326 hp at 2000 rpm

Gearbox: Model B.9.150, nine forward and one reverse gears

Suspension:

(front) semi-elliptical leaf springs (auxiliary and main springs), mechanical stops, and telescopic shock-absorbers

(rear) semi-elliptical leaf springs, mechanical stops

Figure E-6. TRM 200: Truck.

Configuration: 4×4

Loaded weight: 13,500 Kg

Unloaded weight: 5490 Kg

Track: 1.96 m

Wheelbase: 3.85 m

Engine: MIDR 06-02-26 W

Figure E-7. VAB: Armored personnel carrier.

Configuration: 6×6

Combat weight: 14,200 Kg with limited amphibious capabilities

Unloaded weight: 11,400 Kg

Track: 2.035 m

Wheelbase: 3 m

Engine: Renault MIDS 06-20-45 in-line water-cooled turbocharged 6-cylinder diesel developing 220 bhp at 2200 rpm. Original engine was a MAN D.2356 HM 72 in-line water-cooled 6-cylinder diesel developing 220 hp at 2200 rpm

Transmission: Transfluide with five forward and three reverse gears

Appendix F. Data Format Specifications

F.1 Introduction

Every data packet will contain a header section and a data section. The header section comes with a fixed length of 40 bytes long. Depending on the sampling rate, the length of the data section is varied.

HEADER: Each field is a 16-bit unsigned integer in Little Endian Format (LSB) first.

Table F-1. Packet header format.

Fields	Name	Description	Value
1	Header ID	Distinguish different kind of data	2000 = acoustic data
			0 = NULL data
2.	Data type ID	Distinguish different type of data	0 = RAW data
		-	1 = FFT data
3	Year	Years since 1900	99
4	Month	_	1–12
-5	Day		1–31
6	Hour	Hours after midnight	0–23
7	Minute	Minutes after hour	0–59
8	Second	Seconds after minute	0–59
.9	Millisecond	Milliseconds after second	0–999
10	Sensor/group ID	Sensor ID/"signal condition" box ID	Sensor ID or w/ group ID
-11	Sampling rate	Number of samples per second	2048 = Maximum sampling rate
12	Update rate	How often data are being transfer to	
		host in hertz	
13	Gain	Amplifier gain setting for "signal	Refer to Appendix C for gain
		condition" box	table
14	Cutoff	Cutoff frequency setting for "signal	Refer to Appendix C for cutoff
-		condition" box	table
15	Full scale voltage	<u> </u>	±5 volts
16	Number of channels	A/D channels	64 A/D channels that split into 8
	per group		channels per group
17	Days since sunday	Number of days from sunday	0–6
18	Board sampling rate	Used for calculating mux delays across	
		groups	
19	Active group mask	Bit 0-7 set indicates corresponding	
		Group Active	
20	Frame counter	Rolling counter used to detect lost	1–65535
		frames	

Note: The size of each data packet can be calculated as follows:

RAW data packet (in bytes):

(((Header.Sampling Rate * Header.Number of Channels) / Header.Update Rate) * 2) + 40

NULL data = Contains only the header data

RAW data = Unprocessed data

FFT data = Fast Fourier data

F.2 Mux Delay Calculation

In applications using multigroup data, the mux delay between groups is calculated using Header Fields 18 and 19. The groups are scanned at the board sample rate making the base mux delay 1/bpard sample rate. The total delay is the base delay * the number of active groups between groups of interest, which is shown in field 19. Note that only active groups add to delay calculations. For example, an active group mask of $0 \times 0B$ groups 0, 1, and 3 is active. The delay between 0 and 3 is a 2*base mux delay and the delay is 1*base mux delay between 0 and 1 and 3.

F.3 Data Block Specifications

Raw Data:

The raw data sent to the host is in individual blocks for each group. Within the block, the eight channels are stored as signed 16-bit integers (Little Endian) in an interleaved fashion. The interleave pattern is ([channel 1, 2, 3, 4, 5, 6, 7, 8][channel 1, 2....]). Note that within a sub-block (channels 1–8), the samples are simultaneous and each sub-block represents one sample event.

Appendix G. Sample MATLAB Program to Read Data Files

```
% Initialize look-up vector for gain factors as read from packet header
% Gain values range from 0 to 7 and map as follows:
% 0=10,1=100,2=100,3=1000,4=1000,5=10000,6=10000,7=100000
gain vector=[1:10:10:100:100:1000:1000:10000];
file name = '2000 09 28 18 40 06 Sen2 Grp0.dat';
number of seconds = 7:
% All data are 16 bit unsigned int store in Little Indian Format
input fd = fopen(file name,'r','l');
% Each data block preceded by a packet header
[Header,count] = fread(input fd,20,'ushort');
sample rate = Header(11); -
update rate = Header(12);
% loop through file extracting the data and stripping of packet headers
data=[];
for j=1:number of seconds
% Extract current gain values for packet. The gains are stored in the low byte
% with the top nibble containing the gain value for the low channel group (1–4)
% and the low nibble used for the high channels. The gain values stored are
% converted to real values via the gain lookup vector
  gain channel 1to4 = gain vector(bitshift(bitand(Header(13),hex2dec('000000f0')),-4)+1);
  gain channel 5to8 = gain vector(bitand(Header(13),hex2dec('0000000f'))+1);
% All of the data is read in as a two dimensional array with the row
% count set to the number of channels (8) and duration of 1 packet = sample rate/
% update rate
  clear temp
  [temp,count] = fread(input fd,[8,sample rate/update rate],'short');
  temp(1:4,:) = temp(1:4,:)./gain channel 1to4;
  temp(5:8,:) = temp(5:8,:)./gain channel 5to8;
  data = [data,temp];
  % Grab next header
  [Header,count] = fread(input fd,20,'ushort');
%convert to voltage full scall is +/- 5 volts
data = (data .*5.0)/2^15;
fclose(input_fd)
```

This appendix appears in its original form without editorial change.

Appendix H. Gain Table for Signal Conditioning Boxes

H.1 Gain Table for Signal Conditioning Boxes

Gain value selects the gain used in the signal conditioning boxes. It is a hex pair with the top nibble effecting the low four channels and the low nibble effecting the high four channels. The nibble values map to gains as in Table H-1.

Table H-1. Gain table.

Constant	Box Gain	Mic Gain
0	1	1
1	1	10
2	10	1
3	10	10
4	100	1
5	100	10
6	1000	1
7	1000	10
A	AGC ch0	AGC ch0
В	AGC ch4	AGC ch4

Notes: AGC = Automatic gain control
The A or B options enable AGC
on respective group of Channels with the
reference channel indicated above. Any other
valid gain sent to the group will disable AGC.

H.2 Cutoff Values for Signal Conditioning Boxes

Cutoff value selects the cutoff frequency used in the signal conditioning boxes. It is a hex pair with the top nibble effecting the low four channels and the low nibble effecting the high four channels. The nibble values map to frequencies as in Table H-2.

Table H-2. Cutoff frequency table.

0	No Change
1	20 kHz
2	10 kHz
3	5 kHz
4	2.5 kHz
5	1.25 kHz
6	625 Hz
7	312 Hz
8	156 Hz
9	78 Hz
Α	39 Hz
В	19 Hz
С	10 Hz

Distribution

DARPA

ATTN E Carapezza ATTN S Welby 3701 N Fairfax Dr

Arlington VA 22203-1714

ArmyCECOM

ATTN AMSEL-RD-IW-SC R Pastore

Bldg 600

Ft Monmouth NJ 07703

US Army TRADOC

Battle Lab Integration & Techl Directrt

ATTN ATCD-B 10WhistlerLane

FT Monroe VA 23651-5850

CECOM NVESD

ATTN AMSEL-RD-NV-Air Systems Div G

Klauber

10221 Burbeck Rd Ste 430 Bldg 305 Rm 280

FTBelvoir VA 22060-5806

CECOM NVESD

ATTN D Bryski

ATTN G Slagle

ATTN M Jennings

10221 Burbeck Rd

FT Belvoir VA 22060-5806

USMilitary Acdmy

Mathematical Sci Ctr of Excellence

ATTN LTCT Rugenstein

Thayer Hall Rm 226C

West Point NY 10996-1786

Close Combat Systems

Ofc of the Proj Mgr

ATTN K Heider

Picatinny Arsenal B162N

Dover NJ 07806-5000

Prg Exe Ofc for Strike Wpns and Unmanned

Aviation

ATTN D Thorp

47123 Buse Rd Ste 254

Patuxent River MD 20670-1547

TECOM

ATTN AMSTE-CL

Aberdeen Proving Ground MD 21005-5057

USArmy ARDEC

ATTN AMSTA-AR-FSF-RM J Heberley

Bldg 95N

Picatinny Arsenal NJ 07806

US Army CECOM NVESD

ATTN AMSEL-RD-NV-TIS-PS D Rehak

10221 Burbeck Rd Ste 430

FTBelvoir VA 22060-5806

US Army CRREL

ATTN CECL-GP M Moran

72 Lyme Rd

Hanover NH 03755-1290

US Army Info Sys Engrg Cmnd

ATTN AMSEL-IE-TD F Jenia

FT Huachuca AZ 85613-5300

US Army INSCOM

ATTN A Harrison

8825 Beulah Stret

FT Belvoir VA 22060-5246

US Army Natick RDEC Acting Techl Dir

ATTN SBCN-T P Brandler

Kansas Street Bldg78

Natick MA 01760-5002

US Army Rsrch Lab

ATTN AMSRL-CS-IO-FI J Rosell

White Sands Missile Range NM 88002-5513

US Army Simulation Train & Instrmntn Cmnd

ATTN AMSTI-CG M Macedonia

12350 Research Parkway

Orlando FL 32826-3726

US Army Sys Mgr Abrams

ATTN K W Pavek

Bldg 1002

FT Knox KY 40121

Distribution (cont'd)

US Army Tank-Automtv Cmnd RDEC ATTN AMSTA-TR J Chapin Warren MI 48397-5000

Nav Air Warfare Ctr
ATTN O Allen
22347 Cedar Point Rd B2185 S1100 Unit 6
Patuxent River MD 20670-1161

Nav Rsrch Lab ATTN Code 5712 C Bovais 4555 Overlook Ave Bldg 210 Washington DC 20375

Naval Rsrch Lab ATTN T Barock 4555 Overlook Ave NRL 5603 Washington DC 20375

Naval Surf Warfare Ctr ATTN T Clem 6703 W Hwy 98 Panama City FL 32407

NAWCAD ATTN G Mersten 48150 Shaw Rd Unit 5 Patuxent River MD 20670-1907

Ofc of Naval Rsrch ATTN L Green 800 N Qunicy St Arlington VA 22217

AFRL/SNRT ATTN G Bustos 26 Electronic Pkwy Rome NY 13341-4514

AFRL/SNZC ATTN R Pearson 2241 Avionics Cir Bldg 620 Rm N1A12 WPAFB OH 45433

AFTAC/TAP ATTN P Sincebaugh 1030 S Hwy A1A AFTAC/TAP Patrick AFB FL 32925 BAE Systems ATTN J Sledge PO Box 1898 Eglin AFBFL 32542

Central MASINT Org ATTN S Hall 1030 S Hwy A1A Patrick AFB FL 32925

Nat Assessment Grp ATTN J Higbie 2251 Wyoming Blvd SE Kirtland AFB NM 87117

SPAWARSYSCEN ATTN S Jarrett PO Box 190022 North Charleston SC 29405

SPAWARSYSCEN ATTN T Jones 53470 Hull Stret San Diego CA 92152-5001

US Air Force ATTN 46 OG/OGMLS W Terrell 410 Wicker Circle Eglin AFB FL 32542

Commanding General Marine Corps Sys Command ATTN IWS/UAV Lt Col Bruce 2033 Barnett Ave Ste 315 Quantico VA 22134-5010

Sandia Natl Lab ATTN D Craft PO Box 5800 0844 Albuquerque NM 87185

Univ of Mississippi NCPA ATTN HE Bass 1 Coliseum Dr University MS 38677

Distribution (cont'd)

Draper Lab ATTN MS 53 K Houston 555 Technology Square Cambridge MA 02139

Natl Security Agcy ATTN T Mielke 9800 Savage Rd Ste 6513 FT Meade MD 20755-6516

Palisades Inst for Rsrch Svc Inc ATTN E Carr 1745 Jefferson Davis Hwy Ste 500 Arlington VA 22202-3402

US Army Rsrch Lab ATTN AMSRL-CI-LP (305) Aberdeen Proving Ground MD 21005

Director
US Army Rsrch Lab
ATTN AMSRL-RO-D JCI Chang
ATTN AMSRL-RO-EN W D Bach
PO Box 12211
Research Triangle Park NC 27709

USArmyRsrchLab ATTN AMSRL-RO-EM J Lavery PO Box 12211 Research Triangle Park NC 27709-2211

USArmyRsrchLab ATTN SMR TechlLib Br STEWSIMITZ White Sands Missile Range NM 88002-5513 US Army TACOM-ARDEC ATTN J Chang Btdg 95 Picatinny Arsenal NJ 07806

US Army Rsrch Lab
ATTN AMSRL-CI-IS-R Mail & Records Mgmt
ATTN AMSRL-CI-IS-T Techl Pub (2 copies)
ATTN AMSRL-CI-OK-TL Techl Lib
(2 copies)
ATTN AMSRL-D D R Smith
ATTN AMSRL-DD J M Miller
ATTN AMSRL-SE-SA A Ladas
ATTN AMSRL-SE-SA B Mays (9 copies)
ATTN AMSRL-SE-SA L Sim
ATTN AMSRL-SE-SA S Tenney
ATTN AMSRL-SE-SA T Pham
ATTN AMSRL-SE-SA T Tran-Luu

ATTN AMSRL-SE-SS J Hopkins

Adelphi MD 20783-1197