

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN TRABAJO PRÁCTICO N°2

1. ECUACIONES HOMOGÉNEAS

Ejercicio 1:

Hallar la solución general de las siguientes ecuaciones homogéneas. En caso de tener condiciones iniciales, hallar la solución particular.

a)
$$y'' + 6y' - 7y = 0$$
 \longrightarrow CI: $y(0) = 1$ $y'(0) = 10$

b)
$$y'' + 4y' + 4y = 0$$
 \longrightarrow CI: $y(0) = 3$ $y'(0) = 1$

c)
$$y'' + 2y' = 0$$

d)
$$y'' - 4y = 0 \longrightarrow CI$$
: $y(1) = 0$ $y'(1) = -2$

e)
$$y'' + 9y = 0 \longrightarrow CI$$
: $y(\pi) = 0$ $y'(\pi) = 1$

f)
$$y'' - 4y' + 13y = 0$$

2. ECUACIONES NO HOMOGÉNEAS

Ejercicio 2:

Hallar la solución general de las siguientes ecuaciones diferenciales, aplicando el método de coeficientes indeterminados

a)
$$y'' + 4y' + 9y = 9x^2 + 5x$$

b)
$$y'' - 5y' = x + 2$$

c)
$$y'' + 4y' + 3y = 7e^{2x}$$

d)
$$y'' - 2y' + y = 2e^x$$

e)
$$y'' - 2y' - 3y = 2 sen(x)$$

Ejercicio 3:

Hallar la solución general de las siguientes ecuaciones diferenciales por variación de parámetros

a)
$$y'' + 4y = 4 \sec(2x)$$

b)
$$y'' - 2 y' + y = x e^x ln(x)$$

c)
$$y'' + 2y' - 3y = xe^x$$

d)
$$y'' + 3 y' + 2 y = 4 e^{-2x}$$

Ejercicio 4:

Hallar la solución de las siguientes ecuaciones diferenciales utilizando el método más adecuado para determinar y_P .

a)
$$y'' + y' = 3 \cos(3x)$$

b)
$$y'' + y' - 12y = 0$$

c)
$$y'' - 5y' = 2x + 3$$

d)
$$y'' + y = sec(x)$$

e)
$$y'' - 4y' + 13y = 0$$

f)
$$y'' - y' - 2y = 3 e^{2x}$$