- ۱. مساحت قسمتی از صفحه به معادله ی z=y را بیابید که توسط استوانه به معادله ی $x^{r}+y^{r}=ry$ بریده می شود. (۷ نمره)
- $R = \{(x,y) : x^{\mathsf{r}} + y^{\mathsf{r}} \leq \mathsf{r}\}$ را روی ناحیه ی $f(x,y) = x^{\mathsf{r}}y + x^{\mathsf{r}} + \frac{y^{\mathsf{r}}}{\mathsf{r}}$ به دست آورید.
- $z=\sqrt{1-x^{\mathsf{T}}-y^{\mathsf{T}}}$ که در آن T ناحیهی محصور توسط نیم کره ک $\int \int_T y \, dx dy dz$ است.
- $z = \sqrt{1-x^{\mathsf{Y}}-y^{\mathsf{Y}}}$ به کمک قضیه ی دیورژانس، که در آن S نیمکره $\mathbf{F} \cdot \mathbf{n} \, d\sigma$ به $\int_{S} \mathbf{F} \cdot \mathbf{n} \, d\sigma$ نیمکره و بالا است و $\mathbf{F}(x,y,z) = (xy+\mathbf{Y}z)\mathbf{i} + (x^{\mathsf{Y}}+z^{\mathsf{Y}})\mathbf{j} + (\mathbf{Y}x-\mathbf{Y}y^{\mathsf{Y}})\mathbf{k}$ نمره \mathbf{n}
- ۵. فرض کنید ناحیه ی $y = \sqrt{x}$ و y = x و محدود به خطوط y = y و دایره های به معادلات $y = \sqrt{x}$ و y = x باشد.
 - . $\iint_{R} (x^{\mathsf{Y}} + y^{\mathsf{Y}}) dA$ الف) مطلوبست محاسبه انتگرال
- ب) اگر G مرز G در جهت مثبت باشد، با استفاده از قضیه ی گرین مقدار G در آن در آن G در آن در
- ۶. فرض کنید رویه ی S بخشی از صفحه ی z+Yy=1 باشد که توسط سهمیگون $z=1-x^{\gamma}-y^{\gamma}$ بریده شده است.
 - $\int_{S} (xz-x) d\sigma$ الف) مطلوب است محاسبه مطلوب
- ب) اگر $F(x,y,z) = (xz^{r})\mathbf{i} + yz\mathbf{j} + x^{r}\mathbf{k}$ و $F(x,y,z) = (xz^{r})\mathbf{i} + yz\mathbf{j} + x^{r}\mathbf{k}$ و $F(x,y,z) = (xz^{r})\mathbf{i} + yz\mathbf{j} + x^{r}\mathbf{k}$ صفحه) مقدار $\mathbf{F} \cdot \mathbf{dr}$ را به کمک قضیهی استوکس بیابید.

موفق باشید