

自动控制理论课程的任务与体系结构

课程的体系结构

本章主要内容

• 控制系统的时域数学模型

• 控制系统的复数域数学模型

——传递函数定义

• 控制系统的结构图与信号流图

2-1 控制系统的时域数学模型

控制系统的运动方程式

一一根据描述系统特性的物理学定律 (机械、电气、热力、液压)写出,展示 系统在运动过程中各变量之间的相互关系, 一般以微分方程的形式来描述输入量与输 出量之间的关系。

建立系统微分方程的基本步骤

• 1) 分析: 确定系统的

输人量、输出量及中间变量

• 2) 列写: 从系统的输入端开始

注意: 前后相连的两个元件之间的负载效应。

• 3) 消去: 消去中间变量

• 4) 规范: 将方程写成规范形式, 各导数项降幂 顺序排列。

\bigcirc

一、线性元件的微分方程

1、电路系统:

基本要素

电阻、电容和电感

基本定律

基尔霍夫电流和电压定律

电阻、电容、电感(补充)

$$i(t)$$
 R $\overline{}$

$$u(t) = i(t) \cdot R$$

$$u(t)=i(t)\cdot R \qquad i(t)=\frac{u(t)}{R}$$

$$+ \underbrace{\circ \quad \mid \quad \mid}_{t} C$$

$$= \underbrace{\mid \quad \mid}_{t} (t) = \underbrace{\mid \quad \mid}_{t} (t) dt \qquad i(t) = C \frac{du(t)}{dt}$$

$$\mathbf{u}(\mathbf{t}) = \frac{1}{\mathbf{C}} \int \mathbf{i}(\mathbf{t}) d\mathbf{t}$$

$$i(t) = C \frac{du(t)}{dt}$$

$$i(t)$$
 $u(t)$
 L

$$\mathbf{u}(\mathbf{t}) = \mathbf{L} \frac{\mathrm{d} \, \mathbf{i} \, (\mathbf{t})}{\mathrm{d} \mathbf{t}}$$

$$\mathbf{u}(t) = \mathbf{L} \frac{\mathrm{d} \, i(t)}{\mathrm{d}t} \qquad i(t) = \frac{1}{\mathbf{L}} \int \mathbf{u}(t) \, \mathrm{d}t$$

• 例2-1: 电阻R和电容C组成的网络如图所示,列写以 $U_r(t)$ 为输入量, $U_c(t)$ 为输出量的网络微分方程。

$$RC\frac{du_c(t)}{dt} + u_c(t) = u_r(t)$$

例:四端网络如图所示,列写以 $U_r(t)$ 为输入量, $U_c(t)$ 为输出量的网络微分方程。

$$T^{2} \frac{d^{2} u_{c}}{dt^{2}} + 3T \frac{d u_{c}}{dt} + u_{c} = u_{r}$$

$$T = RC$$

2、机械系统:

遵循力学的基本规律---牛顿定律 (力和力矩平衡方程)

在机械系统的分析中, 常使用三种理想化的要素: 质量、弹簧和阻尼器。

基本要素	示意图	运动方程
质量要素	V(t) $X(t)$	$F = m\frac{dv}{dt} = m\frac{d^2x}{dt^2}$
弹性要素	$ \begin{array}{c c} & \longrightarrow & x_1(t) \\ & \searrow & \downarrow \\ & \searrow & \downarrow \\ & \searrow & \downarrow \\ & \downarrow & $	$F = k(x_1 - x_2) = kx$
阻尼要素	$F(t) \longrightarrow \begin{matrix} x_1(t) \\ v_1(t) \\ \end{matrix} \longrightarrow \begin{matrix} x_2(t) \\ v_2(t) \\ \end{matrix}$	$F = f(v_1 - v_2) = fv$

例 2-2: 设有一个弹簧—质量块—阻尼器组成的机械平移系统如图。 f 为阻尼系数。当外力作用于系统时,系统将产生平移。试列写出以系统外力 F 为输入量,以质量块位移x为输出量的系统运动方程式。

$$m\frac{d^{2}x(t)}{dt^{2}} + f\frac{dx(t)}{dt} + Kx = F(t)$$

例2-3: 机械转动系统。设一个机械转动系统由惯性负载和粘性摩擦阻尼器组成,原理图如图所示。试列写以外力矩 M_1 为输入量、负载转动角速度 ω 输出量的系统运动方程式。

$$\sum M = J \frac{d\omega}{dt}$$

$$J\frac{d\omega}{dt} + f\omega = M_1$$

二 线性微分方程的求解

三、非线性微分方程的线性化

• 控制系统中, 非线性因素的问题可以分两大类:

解决办法

- 对弱非线性的线性化
- 平衡点附近的小偏差线性化

设系统输入输出变量之间 y=f(x) 具有如图所示的非线性特性,并设系统经常工作在平衡点 $A(x_0,y_0)$ 处,当系统受到扰动后,变量y只在A点附近变化则在A点处的输入输出关系函数可展开成

泰勒级数

\bigcirc

平衡点附近的小偏差线性化

• 线性化的基本假设:

控制系统各个元件的输入量和输出量只是在平衡点附近作微小变化,即变量偏离其预期工作点的偏差甚小。

列写四端网络的微分方程,并求传递函数。

$$\frac{U_c(s)}{U_r(s)} = \frac{T_1 T_2 s^2 + (T_1 + T_2) s + 1}{T_1 T_2 s^2 + (2T_1 + T_2) s + 1}$$

$$T_1 = R_1 C \qquad T_2 = R_2 C$$

2-1 控制系统的时域数学模型

——微分方程

2-2 控制系统的复数域数学模型

——传递函数

2-2 控制系统的复数域数学模型

——传递函数

定义 表达形式 性质 菜取

$$RC\frac{du_c(t)}{dt} + u_c(t) = u_r(t)$$

2-2 控制系统的复数域数学模型

一、传递函数的定义和性质

1、定义:

线性系统的传递函数是在初始条件(状态)为零的情况下,线性定常系统或元件输出信号的拉氏变换式与输入信号的拉氏变换式之比,称为该系统或元件的传递函数,记为:

$$G(S) = \frac{C(S)}{R(S)}$$

2. 传递函数的表达形式

•有理分式形式:

$$G(s) = \frac{C(s)}{R(s)} = \frac{b_m s^m + b_{m-1} s^{m-1} + \dots + b_1 s + b_0}{a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0} = \frac{M(s)}{N(s)}, m \le n$$

•零、极点形式

--**首**1.形式

$$G(s) = \frac{b_m(s - z_1)(s - z_2)\cdots(s - z_m)}{a_n(s - p_1)(s - p_2)\cdots(s - p_n)} = K^* \frac{\prod_{i=1}^m (s - z_i)}{\prod_{j=1}^n (s - p_j)}$$

• 时间常数形式

-- 尾 1 形式

$$G(s) = \frac{b_0(\tau_1 s + 1)(\tau_2 s + 1) \cdots (\tau_m s + 1)}{a_0(T_1 s + 1)(T_2 s + 1) \cdots (T_n s + 1)} = K \frac{\prod_{i=1}^{m} (\tau_i s + 1)}{\prod_{j=1}^{n} (T_j s + 1)}$$

3. 传递函数的性质

1) 传递函数只适用于线性定常系统

$$G(s) = \frac{U_0(s)}{U_i(s)} = \frac{1}{LCs^2 + RCs + 1}$$

$$LC\frac{d^{2}u_{0}(t)}{dt^{2}} + RC\frac{du_{0}(t)}{dt} + u_{0}(t) = u_{i}(t)$$

传递函数取决于系统或元件的结构和参数。

与输入量、输出量、扰动量等外部因素无关,

只表示系统的固有属性。

二、传递函数的求取方法

◆方法1 直接计算法

◆方法2 间接法

直接计算法求取传递函数的基本步骤:

- 1) 列写系统的微分方程;
- 2) 初始状态为零,对方程两边作拉氏变换;
- 3) 写出标准的传递函数形式。

直接法求取传递函数

例: 求弹簧-质量-阻尼系统传递函数 Y(s)/F(s)

M: 质量

f: 粘性摩擦系数

k: 弹簧刚度

$$m\frac{d^2y(t)}{dt^2} = F(t) - ky - f y$$

零初始条件下

$$ms^2Y(s) = F(s) - kY(s) - fsY(s)$$

$$G(s) = \frac{Y(s)}{F(s)} = \frac{1}{ms^2 + fs + k}$$

• 方法2----间接法

步骤:

- 1) 列写微分方程组
- 2) 在零初始条件下对方程组进行拉氏变换
- 3) 消去中间变量

列写四端网络的微分方程,并求传递函数。

$$G(s) = \frac{U_c(s)}{U_r(s)}$$

$$\frac{U_c(s)}{U_r(s)} = \frac{T_1 T_2 s^2 + (T_1 + T_2) s + 1}{T_1 T_2 s^2 + (2T_1 + T_2) s + 1}$$

$$T_1 = R_1 C \qquad T_2 = R_2 C$$

$$T_2 = R_2 C$$

二、控制系统的典型环节及其传递函数

• 典型环节

典型环节求取传递函数

1) 比例环节 (放大环节):

传递函数:
$$G(s) = \frac{C(s)}{R(s)} = K \quad K 为 放 大 系 数$$
。

例:

$$u_1 R_p \qquad u_2 \qquad u_2 = \frac{R'_p}{R_p} \qquad G(s) = \frac{R'_p}{R_p}$$

典型环节及其传递函数

微分环节:

传递函数:

$$G(s) = \frac{C(s)}{R(s)} = s$$

$$G(s) = \frac{C(s)}{R(s)} = \tau s$$

$$G(s) = \frac{C(s)}{R(s)} = \tau s + 1$$

$$G(s) = \frac{C(s)}{R(s)} = \tau s$$
 $G(s) = \frac{C(s)}{R(s)} = \tau^2 s^2 + 2\zeta \tau s + 1$

$$i \stackrel{L}{\longleftarrow} u_{\iota} u_{\iota}$$

$$u_L = L \frac{di_L}{dt} \Rightarrow U_L(s) = LsI_L(s)$$

$$\frac{U_L(s)}{I_L(s)} = Ls$$

典型环节及其传递函数

3) 积分环节:

传递函数:

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{s}$$

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts}$$

例:

$$i \quad C = u$$

$$i_c = C \frac{du_c}{dt} \Rightarrow I_c(s) = CsU_c(s)$$

$$\frac{U_c(s)}{I_c(s)} = \frac{1}{Cs}$$

典型环节及其传递函数

4) 惯性环节:

传递函数:

$$G(s) = \frac{C(s)}{R(s)} = \frac{1}{Ts+1}$$

T为时间常数。

实例: RC网络

典型环节及其传递函数

5) 二阶振荡环节:

传递函数:

$$G(s) = \frac{C(s)}{R(s)} = \frac{{\omega_n}^2}{s^2 + 2\xi\omega_n s + {\omega_n}^2} = \frac{1}{T^2 s^2 + 2\xi T s + 1}$$

 ξ 为阻尼比。

 ω_n 为自然振荡角频率

实例: RLC电路的输出与

输入电压间的传递函数。

典型环节及其传递函数

6) 延迟环节:

时域方程:
$$c(t) = r(t-\tau), t \ge 0$$

传递函数:
$$G(s) = \frac{C(s)}{R(s)} = e^{-\tau s}$$

τ 为延迟时间

实例: 管道压力、流量等物理量的控制。

A.测速发电机

B.机械转动系统

C.直流电动机

☆ 2-3 控制系统的结构图和信号流图

一、结构图定义及绘制

1、定义:

描述信号在系统中流通过程的图示, 它将控制系统的全部变量联系起来。

2、组成:

- •函数方框
- •信号线
- •分支点
- •相加点

例 试绘制图2-24无源网络的结构图。

$$U_i(s) - U_c(s) = U_{R1}(s);$$
 $U_{R1}(s) \frac{1}{R_1} = I_1(s);$
 $U_{R1}(s) Cs = I_2(s);$
 $I_1(s) + I_2(s) = I(s);$
 $R_2 \cdot I(s) = U_c(s);$

二、结构图的等效变换和简化

结构图的分析

(一) 三种连接方式的等效传递函数

(1) 串联环节的等效传递函数

"串联相乘"。

(2) 并联环节的等效传递函数

"并联相加"。

(3) 反馈连接环节的等效传递函数

等效传递函数=

前向传递函数 1+开环传递函数

例2-12: 试绘制图2-24无源网络的结构图。

等效变换例4(补充)

三、信号流图

节点、支路、增益(传输)

信号流图的绘制

• 依据微分方程绘制信号流图

例2-17: 绘制图2-24的信号流图。

$$U_i(s) - U_o(s) = U_{R1}(s)$$

$$U_{R1}(s) \frac{1}{R_1} = I_1(s)$$

$$U_{R1}(s)Cs = I_2(s)$$

$$I_1(s) + I_2(s) = I(s)$$

$$I(s)R_2 = U_o(s)$$

※ 依据结构图绘制信号流图

例2-17 (图2-24)绘制信号流图

依据结构图绘制信号流图的步骤:

确定信号流图中的节点

- ①系统的输入为源点, 输出为阱点
- ②在结构图的主前向通路上选取节点
- ③反馈结构中相加点后的信号选作节点

依据信号流。用支路连接这些节点

注意支路上的正负号

例2-18 试绘制图2-44系统方框图对应的信号流图

图2-44 系统方框图

※※四 梅森公式

$$P = \frac{1}{\Delta} \sum_{k=1}^{n} P_k \Delta_k$$

梅森公式介绍

△称为系统特征式

$$\frac{\mathbf{C}(\mathbf{s})}{\mathbf{R}(\mathbf{s})} = \frac{\sum \mathbf{P}_{\mathbf{k}} \triangle_{\mathbf{k}}}{\triangle}$$

$$\triangle = 1 - \sum L_A + \sum L_B L_C - \sum L_D L_E L_F + \dots$$

其中:

 \sum L_A —所有单独回路增益之和 $\sum L_B L_C$ —所有两两互不接触回路增益乘积之和 $\sum L_D L_E L_F$ —所有三个互不接触回路增益乘积之和

 P_k —从R(s)到C(s)的第k条前向通路传递函数

△k称为第k条前向通路的余子式

$$\triangle_{k}=1-\sum L_{a}+\sum L_{b}L_{c}-\sum L_{d}L_{e}L_{f}+...$$

例2-20 求图2-47所示系统的传递函数C(s)/R(s)。

$$\Phi(s) = \frac{G_1 G_2 G_3 + G_1 G_4}{1 + G_1 G_2 H_1 + G_2 G_3 H_2 + G_4 H_2 + G_1 G_2 G_3 + G_1 G_4} \circ$$

$$\frac{C(s)}{R(s)} = \frac{G_1G_2G_3 + G_4G_3(1 + G_1H_1)}{1 + G_1H_1 + G_3H_3 + G_1G_2G_3H_3H_1 + G_4G_3 + G_1G_2G_3 + G_1H_1G_3H_3 + G_1H_1G_4G_3}$$

例2-22 求图2-49信号流图的传递函数 C(s)/R(s)

前向通道

$$P_1 = KG_1G_2G_3$$
, $P_2 = KG_1G_3$, $P_3 = KG_2G_3$, $P_4 = -KG_1G_2G_3$;

回路?

2-4 控制系统的传递函数

$$\Phi(s) = \frac{C(s)}{R(s)} = \frac{G_1(s)G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

$$\Phi_n(s) = \frac{C(s)}{N(s)} = \frac{G_2(s)}{1 + G_1(s)G_2(s)H(s)}$$

- 1) 闭环传递函数的分母
 - = 1+开环传递函数
- 2) 闭环传递函数的分子
 - = 各自前向通道传递函数

2-4 控制系统的传递函数

$$\Phi_{\varepsilon}(s) = \frac{\varepsilon(s)}{R(s)} = \frac{1}{1 + G_1(s)G_2(s)H(s)}$$

$$\Phi_{\varepsilon n}(s) = \frac{\varepsilon(s)}{N(s)} = \frac{-G_2(s)H(s)}{1 + G_1(s)G_2(s)H(s)}$$

- 1) 闭环传递函数的分母
 - = 1+开环传递函数
- 2) 闭环传递函数的分子
 - 各自前向通道传递函数

补充题: 某系统如图

- 1)绘制系统的信号流图
- 2) $\# \Phi(s) = C(s)/R(s)$
- 3) 什么条件下不受扰动的影响?

补充题: 某系统如图

- 1)绘制系统的信号流图
- 2) # $\Phi(s) = C(s)/R(s)$
- 3) 什么条件下不受扰动的影响?

$$(1+G_1G_2H_1)G_3G_4 = G_3G_5H_2$$

本章重点

- 理解传递函数定义
- 根据系统原理图建立系统结构图
- 掌握系统结构图等效变换法求传递函数
- 熟练掌握信号流图法求传递函数
- 熟练掌握梅森公式计算系统闭环传递函数

