

Comprender los colores y tensiones de los cables es fundamental para el montaje y mantenimiento seguro de equipos informáticos, especialmente en sistemas modernos con componentes de alto consumo.

+3.3V PCle y componentes

+5V Componentes varios

+12V CPU y GPU

GND Tierra

PROFES ONAL TEVIEW

Esquema Detallado de Conectores ATX (24 Pines)

Fuente de Alimentación

ATX - Conector principal de alimentación 24 Pines(20 pines + 4 pines(11,12 y 23,24))

Tensión	Pin	Color	Color	Pin	Tensión
+3.3 V	1			13	+3.3 V
+3.3 V	2			14	-12 V
Tierra	3			15	Tierra
+5 V	4			16	PS_ON
Tierra	5			17	Tierra
+5 V	6			18	Tierra
Tierra	7			19	Tierra
Power OK	8			20	-5 V(opcional)
+5 VSB	9			21	+5 V
+12 V	10			22	+5 V
+12 V	11			23	+5 V
+3.3 V	12			24	Tierra

Diagrama de pines del conector ATX de 24 pines

Pin	Color	Voltaje	Función
1, 2, 11, 24	Naranja	+3.3V	Alimentación 3.3V
4, 6, 19	Rojo	+5V	Alimentación 5V
10, 23	Amarillo	+12V	Alimentación 12V
12	Azul	-12V	Alimentación -12V
18	Blanco	-5V	Alimentación -5V
3, 5, 7, 13, 15, 16, 17, 20, 21, 22	Negro	GND	Tierra
9	Morado	+5VSB	Standby 5V
8	Gris	-	Power OK
14	Verde	-	PS_ON#

Color	Signal	Pin	Pin	Signal	Color
0	.227		42	+3.3 V	Orange
Orange	+3.3 ∨	1	13	+3.3 V sense	Brown
Orange	+3.3 V	2	14	-12 V	Blue
Black	Ground	3	15	Ground	Black
Red	+5 V	4	16	Power on	Green
Black	Ground	5	17	Ground	Black
Red	+5 V	6	18	Ground	Black
Black	Ground	7	19	Ground	Black
Grey	Power good	8	20	Reserved	N/C
Purple	+5 ∨ standby	9	21	+5 V	Red
Yellow	+12 V	10	22	+5 V	Red
Yellow	+12 V	11	23	+5 V	Red
Orange	+3.3 V	12	24	Ground	Black

Códigos de colores de cables en conectores ATX

Evolución de la Distribución de Energía

Antes de 2010: Mayor dependencia de +3.3V y +5V

2010-2020: Transición hacia mayor dependencia de +12V

2020-2024: Estándar ATX12VO simplifica a solo +12V

Importancia en sistemas modernos

- El +12V es el voltaje más crítico para CPU y GPU modernas
- GPUs consumen hasta 90% de su energía a través de +12V
- Los pines 21-24 son los "4 pines adicionales" del conector de 24 pines
- El -5V y -12V son prácticamente obsoletos en sistemas actuales

Conectores Específicos y sus Colores

Pines 1-4: Amarillo (+12V)

Pines 5-8: Negro (GND)

- ✓ Proporciona hasta 336W (12V × 28A)
- Cables de 16-18 AWG en fuentes. premium
- Conectores 8+8 pines para procesadores extremos

E PCle para GPU (6+2 Pines)

Pines 1-3: Negro (GND)

Pines 4-6: Amarillo (+12V)

Pines 7-9: Negro (GND)

Pines 10-12: Amarillo (+12V)

- ✓ Conector 12VHPWR (16 pines) hasta 600W
- Cables trenzados con identificación
- ✓ Monitoreo inteligente en conectores premium

≡ Conectores SATA

- Naranja (poco usado) +3.3V:
- +5V: Rojo
- +12V: Amarillo
- Tierra: Negro × 3
- Diseño en forma de "L" para evitar errores
- ✓ Modernos omiten +3.3V (naranja)
- Protección contra cortocircuitos en premium

Conectores Molex (4 Pines)

- +5V: Rojo
- +12V: Amarillo
- Negro × 2 Tierra:
- Prácticamente obsoleto en fuentes modernas
- Reemplazado por SATA y conectores específicos
- Aún presente en fuentes económicas

A Advertencia crítica

Nunca usar adaptadores para exceder los 450W con el conector 12VHPWR, ya que puede causar arcos eléctricos y daños graves. Siempre utilizar conectores nativos para altas potencias.

Calidad de los Cables y Componentes

Identificación de una Buena Fuente

Característica	Económica	Premium
Calibre (AWG)	18-20 AWG	14-16 AWG
Aislamiento	PVC estándar	Silicona flexible
Conectores	Plástico económico	Metal reforzado
Condensadores	Electrolíticos estándar	De polímero sólido

Indicadores de calidad: Certificación 80 PLUS (Gold, Platinum, Titanium), garantía de 10-12 años, listado UL/CE/TÜV

80 PLUS Gold 87-90% eficiencia

Fuente de alimentación con certificación 80 PLUS Gold

№ Importancia del Calibre del Cable (AWG)

 20-22
 18-20
 16-18
 14-16

 AWG
 AWG
 AWG
 AWG

 Hasta 3A
 Hasta 5A
 Hasta 8A
 Hasta 11A

★ Impacto práctico

Una caída de voltaje excesiva puede causar inestabilidad del sistema

Ejemplo GPU 350W:

Con cable 20 AWG: Voltaje efectivo 11.5V (inestable) Con cable 16 AWG: Voltaje efectivo 11.85V (estable)

Requisitos 80 PLUS 230V EU PROFES ONAL review					
Certificació	ón	10%	NIVEL DE	E CARGA 50%	100%
		10%	20%	30%	100%
80 Plus White*	80 PLUS		82%	85%	82%
80 Plus Bronze	80 PLUS- BRONZE 1302 EST		85%	88%	85%
80 Plus Silver	80 PLUS SILVER 1339/L19		87%	90%	87%
80 Plus Gold	80 PLUS GOLD 2309 EU		90%	92%	89%
80 Plus Platinum	80 PLUS FEATINGEM 2007 EU		92%	94%	90%
80 Plus Titanium	80 PLUS- TTANIUM	90%	94%	96%	94%
EFICIENCIA REQUERIDA					

*80 PLUS White 230V EU coincide con el mínimo de eficiencia establecido por la Unión Europea en el Reglamento (UE) Nº 617/2013

Requisitos de eficiencia para certificación 80 PLUS

Consecuencias de mala calidad

- Sobrecalentamiento y posible fallo prematuro
- Inestabilidad del sistema y reinicios inesperados
- Riesgo de dañar componentes costosos (CPU, GPU)

Precauciones Importantes

• Errores Comunes y Consecuencias

Error	Consecuencia	Prevención
Confundir conectores ATX 12V y PCIe	Daño a placa base y GPU	Verificar formas diferentes
Forzar conexión SATA	Daño al conector de la placa base	Recordar forma de "L"
Usar adaptadores para 12VHPWR >450W	Arcos eléctricos, incendio	Usar solo conector nativo
Cableado desordenado	Sobrecalentamiento, inestabilidad	Gestionar cables adecuadamente

A Manipulación Segura

- Nunca trabajar con la fuente conectada
- Esperar 5 minutos para que los condensadores se descarguen
- Verificar polaridad, especialmente en conectores RGB/ARGB
- No forzar conexiones (SATA y PCIe tienen formas específicas)

Buenas Prácticas

Verificar voltaje con multímetro

Antes de conectar componentes críticos, verificar que los voltajes sean correctos y estables

Usar conectores modulares

Evitar cables innecesarios y mejorar el flujo de aire dentro del chasis

No sobrecargar un solo rail de 12V

Distribuir la carga entre múltiples conectores para evitar inestabilidad

Verificar compatibilidad

Antes de conectar, confirmar que el conector es adecuado para el dispositivo

Conexión adecuada de cables en la placa base

Tendencias y Futuro

Estándar ATX12VO

Introducido por Intel en 2020, simplifica la distribución de energía utilizando únicamente 12V.

- Mayor eficiencia energética (hasta 96%)
- Menor complejidad en la placa base
- Facilitation de componentes en la fuente

Eliminación de cables +3.3V y +5V, simplificación del conector ATX

Nitruro de Galio (GaN) es un material semiconductor que permite componentes más eficientes y compactos.

- Mayor eficiencia energética
- ★ Menor tamaño y peso
- de Mejor disipación térmica
- Mayor densidad de potencia

Fuentes más compactas, menos cables necesarios, estandarización de colores

(Monitoreo Inteligente

Sensores integrados en conectores para supervisión en tiempo real del rendimiento y seguridad.

- ▲ Detección de fallos en tiempo real
- **⇄** Comunicación bidireccional
- Protección avanzada
- Visualización en tiempo real

Software que muestra voltajes y corriente por conector, prevención de daños

Conclusión

Resumen Clave

- Los colores de los cables son **fundamentales** para montaje seguro
- Tendencia hacia +12V como voltaje principal en sistemas modernos
- Calidad de cables (AWG) afecta directamente a **estabilidad** del sistema
- ▲ Errores en conexiones pueden causar **daños irreparables** a componentes

Evolución Continua

Los estándares de alimentación evolucionan para satisfacer las demandas de componentes modernos, asegurando máxima eficiencia y seguridad.

ATX12VO y GaN representan el futuro de las fuentes de alimentación.

