Sequence Listing.txt SEQUENCE LISTING

<110>	LUKYANOV, SERGEY A SHAGIN, DMITRY A YANUSHEVICH, YURY G											
<120>	FLUORESCENT PROTEINS AND CHROMOPROTEINS FROM NON-AEQUOREA HYDROZOA SPECIES AND METHODS FOR USING SAME											
<130><140><141>	U 015745-9 10/532,681 2005-04-26	10/532,681										
<160>	23											
<170>	PatentIn version 3.4											
<210><211><211><212><213>	> 784 > DNA											
<400>	1 gataa aagaaatcat catcatgt	ct actoraccac	tattattaa	cadaaadatc	60							
	gttg ttgagatgga gggaaatg				120							
	ggag atgcaagtgt tggtaaag				180							
	gttc catggtcaac tttagtaa		_		240							
	ggtc cagaattaaa ggatttct				300							
	acaa tcacatttga aggggacg				360							
	ggat ctgtttataa ccgagtca				420							
	cttg gaaagaatct tgaattca				480							
					540							
	geta atcatggttt gaagtetg											
	gact tcattgttgc agaccaca				600							
	gtcc ctgaatacca tcatataa				660							
_	aggg ataacatgag cttggttg			_	720							
	taaa ttgtaaattt atttgtag	itt gaaaaccttt	tgtcacgata	tataccttta	780							
ttat					784							
<210><211><211><212><213>	2 234 PRT Phialidium sp.											
<400>	2											

Page 1

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu	Gly Asn '	Val Asp Gl		e Listing.tx Phe Ser Ile		Lys
Gly Tyr Gly	Asp Ala s	Ser Val Gl 40		Asp Ala Gln 45	Phe Ile	Cha
Thr Thr Gly	Asp Val :	Pro Val Pr 55	ro Trp Ser	Thr Leu Val	Thr Thr	Leu
Thr Tyr Gly		Cys Phe Al 70	la Lys Tyr	Gly Pro Glu 75	Leu Lys	Asp 80
Phe Tyr Lys	s Ser Cys I 85	Met Pro Gl	lu Gly Tyr 90	Val Gln Glu	Arg Thr 95	Ile
Thr Phe Glu	Gly Asp	Gly Val Ph	ne Lys Thr 105	Arg Ala Glu	Val Thr 110	Phe
Glu Asn Gly		Tyr Asn Ar 12	_	Leu Asn Gly 125	Gln Gly	Phe
Lys Lys Asp	Gly His '	Val Leu Gl 135	ly Lys Asn	Leu Glu Phe 140	Asn Phe	Thr
Pro His Cys	_	Ile Trp Gl 150	ly Asp Gln	Ala Asn His 155	Gly Leu	Lys 160
Ser Ala Phe	Lys Ile I 165	Met His Gl	lu Ile Thr 170	Gly Ser Lys	Glu Asp 175	Phe
Ile Val Ala	Asp His 1	Thr Gln Me	et Asn Thr 185	Pro Ile Gly	Gly Gly 190	Pro
Val His Val		Tyr His Hi 20		Tyr His Val 205	Thr Leu	Ser
Lys Asp Val	Thr Asp l	His Arg As 215	sp Asn Met	Ser Leu Val 220	Glu Thr	Val
Arg Ala Val 225		Arg Lys Th 230	nr Tyr Leu			
<210> 3 <211> 705 <212> DNA <213> Arti	ficial sec	quence				
<220> <223> phiY	FP-Y1 muta	ant of the	-	Paqe 2		

		:	Sequence Li	sting.txt						
<400> 3 atgcctag	tg gagcactgtt	gttccacgga	aagatcccat	atgttgttga	gatggaggga	60				
aatgttga	tg gacacacatt	ctccattaga	ggtaaaggtt	atggagatgc	aagtgttggt	120				
aaagttga	tg cccaattcat	ctgcacaact	ggagatgtac	cagttccatg	gtcaacttta	180				
gtaacaac	ac ttacttatgg	tgcacaatgc	ttcgccaaat	atggtccaga	attaaaggat	240				
ttctacaa	ga gttgcatgcc	tgaaggctat	gtgcaggagc	gtacaatcac	atttgaaggg	300				
gacggagt	at ttaaaactcg	cgctgaagtt	acatttgaaa	acggatctgt	ttataaccga	360				
gtcaaact	ta atggacaagg	atttaagaaa	gacggacatg	tgcttggaaa	gaatcttgaa	420				
ttcaattt	ca cacctcattg	tctttacatt	tggggagatc	aggctaatca	tggtttgaag	480				
tctgcttt	ca aaattatgca	tgagattact	ggatcaaaag	gagacttcat	tgttgcagac	540				
cacaccca	aa tgaacacacc	cattggtggt	ggaccagtcc	atgtccctga	ataccatcat	600				
atgacata	cc atgtcactct	cagcaaagat	gttactgatc	acagggataa	catgagcttg	660				
gttgaaac	cg tacgggctgt	ggattgcaga	aaaacatatc	tttaa		705				
<211> 2 <212> P	<210> 4 <211> 234 <212> PRT									
<220> <223> p	hiYFP-Y1 mutar	nt of the pl	niYFP							
<400> 4										
Met Pro	Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val									

1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 55 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp

Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Val Phe Lys Thr Arg Ala Glu Val Thr Phe Page 3

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125										
Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 140										
Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys 145 150 155 160										
Ser Ala Phe Lys Ile Met His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175										
Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro 180 185 190										
Val His Val Pro Glu Tyr His His Met Thr Tyr His Val Thr Leu Ser 195 200 205										
Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Val Glu Thr Val 210 220										
Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230										
<210> 5 <211> 705 <212> DNA <213> Artificial sequence										
<220> <223> phiYFP-M0 mutant of the phiYFP										
<400> 5 atgcctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga	60									
aatgttgatg gacacacatt ctccattaga ggtaaaggtt atggagatgc aagtgttggt	120									
aaagttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta	180									
gtaacaacac ttacttatgg tgcacaatgc ttcgccaaat atggtccaga attaaaggat	240									
ttctacaaga gttgcatgcc tgaaggctat gtgcaggagc gtacaatcac atttgaaggg	300									
gacggaaact ttaaaactcg cgctgaagtt acatttgaaa acggatctgt ttataaccga	360									
gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttggaaa gaatcttgaa	420									
ttcaatttca cacctcattg tctttacatt tggggagatc aggctaatca tggtttgaag	480									
tetgetttea aaattegeea tgagattaet ggateaaaag gagaetteat tgttgeagae	540									
cacacccaaa tgaacacacc cattggtggt ggaccagtcc atgtccctga aaaccatcat	600									

atgagctacc atgtcaagct cagcaaagat gttactgatc acagggataa catgagcttg

aaggaaaccg tacgggctgt ggattgcaga aaaacatatc tttaa

660 705

<210>	6
<211s	234

<211> 234 <212> PRT

<213> Artificial sequence

<220>

<223> phiYFP-M0 mutant of the phiYFP

<400> 6

Met Pro Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35 40 45

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 60

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp 65 70 75 80

Phe Tyr Lys Ser Cys Met Pro Glu Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95

Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe 115 120 125

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr $130 \\ 135 \\ 140 \\ $

Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys 145 150 155

Ser Ala Phe Lys Ile Arg His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
180 185 190

Val His Val Pro Glu Asn His His Met Ser Tyr His Val Lys Leu Ser 200

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val 215

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 230

<210> 7

<211> 705 <212> DNA

<213> Artificial sequence

<223> phiYFP-M1 mutant of the phiYFP

<400>

atgtctagtg gagcactgtt gttccacgga aagatcccat atgttgttga gatggaggga 60 aatqttqatq qacacacatt ctccattaqa qqtaaaqqtt atqqaqatqc aaqtqttqqt 120 aaagttgatg cccaattcat ctgcacaact ggagatgtac cagttccatg gtcaacttta 180 gtaacaacac ttacttatgg tgcacaatgc ttcgccaaat atggtccaga attaaaggat 240 ttctacaaga gttgcatgcc tgatggctat gtgcaggagc gtacaatcac atttgaaggg 300 gacggaaact ttaaaactcg cgctgaagtt acatttgaaa acggatctgt ttataaccga 360 gtcaaactta atggacaagg atttaagaaa gacggacatg tgcttggaaa gaatcttgaa 420 ttcaatttca cacctcattg tctttacatt tggggagatc aggctaatca tggtttgaag 480 tctgctttca aaatttgcca tgagattact ggatcaaaag gagacttcat tgttgcagac 540 cacacccaaa tgaacacacc cattggtggt ggaccagtcc atgtccctga ataccatcat 600 atgagetace atgteaaget cageaaagat gttactgate acagggataa catgagettg 660 705 aaggaaaccg tacgggctgt ggattgcaga aaaacatatc tttaa

<210> 8

<211> 234

<212> PRT

<213> Artificial sequence

<220>

<223> phiYFP-M1 mutant of the phiYFP

<400> 8

Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 5

Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys

Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu

Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp

Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile

Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe

Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr

Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys

Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro 180

Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser 195 200

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230

<210> 9

<211> 705

<212> DNA

<213> Artificial sequence

<220>

<223> humanized version of the phiYFP-M1

<400> 9

atgagcagcg gcgccctgct gttccacggc aagatcccct acgtggtgga gatggaggc 60 Page 7

aatgtggatg	gccacacctt	cagcatccgc	ggcaagggct	acggcgatgc	cagcgtgggc	120
aaggtggatg	cccagttcat	ctgcaccacc	ggcgatgtgc	ccgtgccctg	gagcaccctg	180
gtgaccaccc	tgacctacgg	cgcccagtgc	ttcgccaagt	acggccccga	gctgaaggat	240
ttctacaaga	gctgcatgcc	cgatggctac	gtgcaggagc	gcaccatcac	cttcgagggc	300
gatggcaatt	tcaagacccg	cgccgaggtg	accttcgaga	atggcagcgt	gtacaatcgc	360
gtgaagctga	atggccaggg	cttcaagaag	gatggccacg	tgctgggcaa	gaatctggag	420
ttcaatttca	cccccactg	cctgtacatc	tggggcgatc	aggccaatca	cggcctgaag	480
agcgccttca	agatctgcca	cgagatcacc	ggcagcaagg	gcgatttcat	cgtggccgat	540
cacacccaga	tgaatacccc	catcggcggc	ggccccgtgc	acgtgcccga	gtaccaccac	600
atgagctacc	acgtgaagct	gagcaaggat	gtgaccgatc	accgcgataa	tatgagcctg	660
aaggagaccg	tgcgcgccgt	ggattgccgc	aagacctacc	tgtga		705

- <210> 10
- <211> 234
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> humanized version of the phiYFP-M1
- <400> 10
- Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15
- Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30
- Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35 40 45
- Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu 50 55 60
- Thr Tyr Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp 70 75 80
- Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile 85 90 95
- Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe 100 105 110
- Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Asn Gly Gln Gly Phe Page 8

Lys Lys Asp Gly His Val Leu Gly Lys Asn Leu Glu Phe Asn Phe Thr 130 135 140										
Pro His Cys Leu Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys 145 150 160										
Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175										
Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro 180 185 190										
Val His Val Pro Glu Tyr His His Met Ser Tyr His Val Lys Leu Ser 195 200 205										
Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Val 210 215 220										
Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230										
<210> 11 <211> 1047 <212> DNA <213> Anthomedusae species										
<220> <221> misc_feature <223> hydromedusa 1 from sub-order Anthomedusae										
<400> 11 cttttcttaa aaagaattca aaaaggacgg tttactagac atacttatac agctttactt	60									
ataaaggaag aaatgaatgt gatgcgttac aacagaggat tctgcagagt tttgcaaaat	120									
ggtgtcaaaa atttacgttc tagaaattgc agtacggaag aaaaacccgt catacttggt	180									
gcaatgacag aaacatttca gaaaaaattg ccatataagt tagaattgga tggagatgtt	240									
gatgggcaaa catttaaggt tattggtgag ggcgttgggg atgcaaccac tggtgtaatt	300									
gaaggaaaat atgtttgtac agaaggagaa gttcctattt catgggtttc gctcatcacc	360									
tcattaagtt atggtgcgaa atgttttgtt cgatatccaa atgaaataaa tgattttttc										
	420									
aaaagtactt ttccttctgg atatcatcaa gaaagaaaaa ttacatatga gaatgatggt	420 480									
aaaagtactt ttccttctgg atatcatcaa gaaagaaaaa ttacatatga gaatgatggt	480									

atctatccaa	caaaagatgg	tcactatgtt	gttgccgaca	cacagcaagt	aaatcgacca	720
attagagcac	aaggaacatc	agctatccca	acatatcatc	acattaaatc	gaaagttgat	780
ctttcaacag	atccagaaga	aaataaagat	catattatca	tcaaagaaac	caactgcgca	840
tttgacgctg	atttttctta	agatttccga	tttgcatcaa	gattgaaaaa	ctaaataaag	900
ataggtaaaa	aaaatatgtc	tttgatgtta	catacagtat	tgatataagc	ttcaaagaaa	960
tatattttca	aataaacttt	ataaaattag	gaatctttga	atatataaac	taaacctttt	1020
atttgtagaa	taaaaataat	taaagac				1047

- <210> 12 <211> 262
- <212> PRT
- <213> Anthomedusae species
- <220>
- <221> misc_feature
 <223> hydromedusa 1 from sub-order Anthomedusae
- <400> 12

Met Asn Val Met Arg Tyr Asn Arg Gly Phe Cys Arg Val Leu Gln Asn

- Gly Val Lys Asn Leu Arg Ser Arg Asn Cys Ser Thr Glu Glu Lys Pro
- Val Ile Leu Gly Ala Met Thr Glu Thr Phe Gln Lys Lys Leu Pro Tyr
- Lys Leu Glu Leu Asp Gly Asp Val Asp Gly Gln Thr Phe Lys Val Ile
- Gly Glu Gly Val Gly Asp Ala Thr Thr Gly Val Ile Glu Gly Lys Tyr
- Val Cys Thr Glu Gly Glu Val Pro Ile Ser Trp Val Ser Leu Ile Thr
- Ser Leu Ser Tyr Gly Ala Lys Cys Phe Val Arg Tyr Pro Asn Glu Ile 100 105
- Asn Asp Phe Phe Lys Ser Thr Phe Pro Ser Gly Tyr His Gln Glu Arg 115
- Lys Ile Thr Tyr Glu Asn Asp Gly Val Leu Glu Thr Ala Ala Lys Ile 130 135
- Thr Met Glu Ser Gly Ala Ile Val Asn Arg Ile Asn Val Lys Gly Thr Page 10

150

Gly Phe Asp Lys Asp Gly His Val Cys Gln Lys Asn Leu Glu Ser Ser 165 170 175

Pro Pro Ser Thr Thr Tyr Val Val Pro Glu Gly Glu Gly Ile Arg Ile 180 185 190

Ile Tyr Arg Asn Ile Tyr Pro Thr Lys Asp Gly His Tyr Val Val Ala 195 200 205

Asp Thr Gln Gln Val Asn Arg Pro Ile Arg Ala Gln Gly Thr Ser Ala 210 215 220

Ile Pro Thr Tyr His His Ile Lys Ser Lys Val Asp Leu Ser Thr Asp 225 230 235 240

Pro Glu Glu Asn Lys Asp His Ile Ile Lys Glu Thr Asn Cys Ala 245 250 255

Phe Asp Ala Asp Phe Ser 260

<210> 13

<211> 1089

<212> DNA

<213> Anthomedusae species

<220>

<221> misc_feature

<223> hydromedusa 2 from sub-order Anthomedusae

<400> 13

atcattcgct gatacgaagt gaaagtagcg tttgctgaaa gcttcctgga attgctccta 60 cqtatcttga aagttgctcc tacgctccaa cttgtttgtt caaaatggaa ggtggtccag 120 cattatttca atccqatatq acattcaaqa tcttcatcqa tqqaqtqqtq aatqatcaqa 180 aattcacgat aatcgcagat ggatcgtcca aattccccca tggtgacttc aacgtgcatg 240 ctgtgtgcga aaccgggaaa ctcccaatgt catggaaacc tatttgtcac cttatccaat 300 acqqqqaqcc attctttqca aaatatccca atqqcatcaq ccattttqca caqqaqtqct 360 ttccagaagg attaacaatt gatcgaacag tcagattcga aaatgacggc actatgacgt 420 ctcaccacac ctatgagttg gacggcacct gtgtcatttc caggataacc gttaattgtg 480 acqgatttca acctgatgga ccaatcatga aagaccagct tgttgatatc ctgccaactg 540 agacacatat gttccctcat gggtccaatg ctgtcagaca attgtgctac attggcttca 600 cgacagetga tggtggtete atgatgteae attttgatte gaaattgaea tteaatggtt 660

cgagagcaat	caagattcct	ggacctcatt	tcgttactgt	gataatcaaa	cagatgaaag	720
atacaagcga	caagcgtgat	catgtgtgtc	aacgtgaagt	cacctacgct	cactcagttc	780
cacgcatcac	ttctgctatc	taaacatcat	tcttaaaagg	ggaacatgca	catcatactt	840
cagtgtgagg	gtcagtgtga	gggtctttag	atgtcaattt	gtcgcaggtg	tcacacggcg	900
tcgtttagat	gttgaaggac	gaaatgcgac	aaagagatta	atagagactc	atatttttat	960
gtagaatcga	ttcattcagc	ccattggtaa	cctttttggt	attttatcat	cttattattg	1020
tattggcact	ttgtttatat	tttgtatgta	atgtgtaaac	aattgttgaa	aatacatgtc	1080
aagaacttg						1089

<210> 14

<211> 232

<212> PRT

<213> Anthomedusae species

<220>

<221> misc feature

<223> hydromedusa 2 from sub-order Anthomedusae

<400> 14

Met Glu Gly Gly Pro Ala Leu Phe Gln Ser Asp Met Thr Phe Lys Ile 1 5 10 15

Phe Ile Asp Gly Val Val Asn Asp Gln Lys Phe Thr Ile Ile Ala Asp 20 25 30

Gly Ser Ser Lys Phe Pro His Gly Asp Phe Asn Val His Ala Val Cys 35 40 45

Glu Thr Gly Lys Leu Pro Met Ser Trp Lys Pro Ile Cys His Leu Ile 50 55 60

Gln Tyr Gly Glu Pro Phe Phe Ala Lys Tyr Pro Asn Gly Ile Ser His 70 75 80

Phe Ala Gln Glu Cys Phe Pro Glu Gly Leu Thr Ile Asp Arg Thr Val 85 90 95

Arg Phe Glu Asn Asp Gly Thr Met Thr Ser His His Thr Tyr Glu Leu 100 105 110

Asp Gly Thr Cys Val Ile Ser Arg Ile Thr Val Asn Cys Asp Gly Phe 115 120 125

Gln Pro Asp Gly Pro Ile Met Lys Asp Gln Leu Val Asp Ile Leu Pro 130 135 140

Thr Glu Thr His Met Phe Pro His Gly Ser Asn Ala Val Arg Gln Leu 145 150 155 160	
Cys Tyr Ile Gly Phe Thr Thr Ala Asp Gly Gly Leu Met Met Ser His 165 170 175	
Phe Asp Ser Lys Leu Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro 180 185 190	
Gly Pro His Phe Val Thr Val Ile Ile Lys Gln Met Lys Asp Thr Ser 195 200 205	
Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser 210 220	
Val Pro Arg Ile Thr Ser Ala Ile 225 230	
<210> 15 <211> 699 <212> DNA <213> Artificial sequence	
<220> <223> S3-2 mutant of the hm2CP from a hydromedusa 2 from sub-order Anthomedusae	
<400> 15 atggaaggtg gtccagcatt atttcaatcc gacatgacat	60
gtggtgaatg gtcagaaatt cacgatagtc gcagatggat cgtccaaatt cccccatggt	120
gacttcaacg tacatgctgt gtgcgaaacc gggaaactcc caatgtcatg gaaacccatt	180
tgtcacctta tccaatacgg ggagccattc tttgcaagat atcccaacgg catcagccat	240
tttgcacagg agtgctttcc agaaggatta tcaattgatc gaacagtcag attcgaaaat	300
gacggcacta tgacgtctca ccacacctat gagttggacg gcacctgtgt cgtttccagg	360
ataaccgtta attgtgacgg atttcaacct gatggaccaa tcatgagaga ccagcttgtt	420
gatateetge caaacgagae acatatgtte eetcatggae eeaatgetgt cagacaattg	480
gctttcatag gcttcacgac agctgatggt ggtctcatga tgtcacattt tgattcgaaa	540
atgacattca atggttcgag agcaatcaag attcctggac ctcatttcgt cactaccata	600
accaaacaga tgaaagatac aagcgacaag cgtgatcatg tgtgtcagcg ggaagtcacc	660
tacgctcact cagttccacg catcacttct gctatctaa	699
<210> 16 <211> 232 <212> PRT	

- <213> Artificial sequence
- <220>
- <223> S3-2 mutant of the hm2CP from a hydromedusa 2 from sub-order Anthomedusae
- <400> 16
- Met Glu Gly Gly Pro Ala Leu Phe Gln Ser Asp Met Thr Phe Lys Ile 5 10 15
- Phe Ile Asp Gly Val Val Asn Gly Gln Lys Phe Thr Ile Val Ala Asp 20 25 30
- Gly Ser Ser Lys Phe Pro His Gly Asp Phe Asn Val His Ala Val Cys 35 40 45
- Glu Thr Gly Lys Leu Pro Met Ser Trp Lys Pro Ile Cys His Leu Ile 50 55 60
- Gln Tyr Gly Glu Pro Phe Phe Ala Arg Tyr Pro Asn Gly Ile Ser His 65 70 75 80
- Phe Ala Gln Glu Cys Phe Pro Glu Gly Leu Ser Ile Asp Arg Thr Val 85 90 95
- Arg Phe Glu Asn Asp Gly Thr Met Thr Ser His His Thr Tyr Glu Leu 100 105 110
- Asp Gly Thr Cys Val Val Ser Arg Ile Thr Val Asn Cys Asp Gly Phe 115 120 125
- Gln Pro Asp Gly Pro Ile Met Arg Asp Gln Leu Val Asp Ile Leu Pro 130 135 140
- Asn Glu Thr His Met Phe Pro His Gly Pro Asn Ala Val Arg Gln Leu 145 150 155 160
- Ala Phe Ile Gly Phe Thr Thr Ala Asp Gly Gly Leu Met Met Ser His 165 170 175
- Phe Asp Ser Lys Met Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro 180 185 190
- Gly Pro His Phe Val Thr Thr Ile Thr Lys Gln Met Lys Asp Thr Ser 195 200 205
- Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser 210 225 220

Val Pro Arg Ile Thr Ser Ala Ile 225 230									
<210> 17 <211> 705 <212> DNA <213> Artificial sequence									
<220> <223> phiYFP-M1G1 mutant, derived from humanized version of the phiYFP-M1									
<400> 17									
atgtccagcg gcgccctgct gttccacggc aagatcccct acgtggtgga gatggagggc 60									
aatgtggatg gccacacctt cagcatccgc ggcaagggct acggcgatgc cagcgtgggc 120									
aaggtggatg cccagttcat ctgcaccacc ggcgatgtgc ccgtgccctg gagcaccctg 180									
gtgaccaccc tgtcctacgg cgcccagtgc ttcgccaagt acggccccga gctgaaggat 24									
ttctacaaga gctgcatgcc cgatggctac gtgcaggagc gcaccatcac cttcgagggc 300									
gatggcaatt tcaagacccg cgccgaggtg accttcgaga atggcagcgt gtacaatcgc 360									
gtgaagctga atggccaggg cttcaagaag gatggccacg tgctgggcaa gaatctggag 420									
ttcaatttca cccccactg ccagtacatc tggggcgatc aggccaatca cggcctgaag 480									
agegeettea agatetgeea egagateace ggeageaagg gegattteat egtggeegat 540									
cacacccaga tgaatacccc catcggcggc ggccccgtgc acgtgcccga gtaccaccac 600									
atgagcaccc acgtgaagct gagcaaggat gtgaccgatc accgcgataa tatgagcctg 660									
aaggagaccg tgcgcgccgt ggattgccga acagcctacc tgtga 709									
<210> 18 <211> 234 <212> PRT <213> Artificial sequence									
<220> <223> phiYFP-M1G1 mutant, derived from humanized version of the phiYFP-M1									
<400> 18									
Met Ser Ser Gly Ala Leu Leu Phe His Gly Lys Ile Pro Tyr Val Val 1 5 10 15									
Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys 20 25 30									

Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35

Thr	Thr 50	Gly	Asp	Val	Pro	Val 55	Pro	Trp	Ser	Thr	Leu 60	Val	Thr	Thr	Leu	
Ser 65	Tyr	Gly	Ala	Gln	Cys 70	Phe	Ala	Lys	Tyr	Gly 75	Pro	Glu	Leu	Lys	Asp 80	
Phe	Tyr	Lys	Ser	Cys 85	Met	Pro	Asp	Gly	Tyr 90	Val	Gln	Glu	Arg	Thr 95	Ile	
Thr	Phe	Glu	Gly 100	Asp	Gly	Asn	Phe	Lys 105	Thr	Arg	Ala	Glu	Val 110	Thr	Phe	
Glu	Asn	Gly 115	Ser	Val	Tyr	Asn	Arg 120	Val	Lys	Leu	Asn	Gly 125	Gln	Gly	Phe	
Lys	Lys 130	Asp	Gly	His	Val	Leu 135	Gly	Lys	Asn	Leu	Glu 140	Phe	Asn	Phe	Thr	
Pro 145	His	Cys	Gln	Tyr	Ile 150	Trp	Gly	Asp	Gln	Ala 155	Asn	His	Gly	Leu	Lys 160	
Ser	Ala	Phe	Lys	Ile 165	Cys	His	Glu	Ile	Thr 170	Gly	Ser	Lys	Gly	Asp 175	Phe	
Ile	Val	Ala	Asp 180	His	Thr	Gln	Met	Asn 185	Thr	Pro	Ile	Gly	Gly 190	Gly	Pro	
Val	His	Val 195	Pro	Glu	Tyr	His	His 200	Met	Ser	Thr	His	Val 205	Lys	Leu	Ser	
Lys	Asp 210	Val	Thr	Asp	His	Arg 215	Asp	Asn	Met	Ser	Leu 220	Lys	Glu	Thr	Val	
Arg 225	Ala	Val	Asp	Cys	Arg 230	Thr	Ala	Tyr	Leu							
<211 <212	<210> 19 <211> 705 <212> DNA <213> Artificial sequence															
<220 <223	3 > E		FP-M1 FP-M1		mutar	ıt, d	deriv	red f	From	huma	anize	ed ve	ersio	on of	f the	
<400 atgt		geg g	geged	ccago	ct gt	tcca	acggo	c aag	gatco	cact	acgt	ggtg	gga g	gatgg	gagggc	60
aato	gtgga	atg 🤉	gccad	cacct	t ca	agcat	caga	ggc	caago	ggct	acgo	gcgat	gc (cagco	gtgggc	120
aagg	gtgga	atg d	cccag	gttca	at ct	gcac	ccaco	c ggd		gtgc age		gaad	ctg g	gagca	accctg	180

gtgaccaccc	tgtcctgggg	cgcccagtgc	ttcgccaagt	acggccccga	gctgaaggat	240
ttctacaaga	gctgcatgcc	cgatggctac	gtgcaggagc	gcaccatcac	cttcgagggc	300
gatggcaatt	tcaagacccg	cgccgaggtg	accttcgaga	atggcagcgt	gtacaatcgc	360
gtgaagctga	aaggccaggg	cttcaagaag	gatggccacg	tgctgggcaa	gaatctggag	420
ttcaatttca	cccccacta	ccagtacatc	tggggcgatc	aggccaatca	cggcctgaag	480
agcgccttca	agatctgcca	cgagatcacc	ggcagtaagg	gcgatttcat	cgtggccgat	540
cacacccaga	tgaatacccc	catcggcggc	ggccccgtgc	acgtgcccga	gtaccaccac	600
atgagcaccc	acgtgaagct	gagcaaggat	gtgaccgatc	accgcgataa	tatgagcctg	660
aaggagacct	tgcgcgccgt	ggattgccgc	aagacctacc	tgtga		705

- <210> 20 <211> 234 <212> PRT <213> Artificial sequence
- <220>
- <223> phiYFP-M1C1 mutant, derived from humanized version of the phiYFP-M1
- <400> 20
- Met Ser Ser Gly Ala Gln Leu Phe His Gly Lys Ile Pro Tyr Val Val 5 10 15
- Glu Met Glu Gly Asn Val Asp Gly His Thr Phe Ser Ile Arg Gly Lys
- Gly Tyr Gly Asp Ala Ser Val Gly Lys Val Asp Ala Gln Phe Ile Cys 35
- Thr Thr Gly Asp Val Pro Val Pro Trp Ser Thr Leu Val Thr Thr Leu
- Ser Trp Gly Ala Gln Cys Phe Ala Lys Tyr Gly Pro Glu Leu Lys Asp
- Phe Tyr Lys Ser Cys Met Pro Asp Gly Tyr Val Gln Glu Arg Thr Ile
- Thr Phe Glu Gly Asp Gly Asn Phe Lys Thr Arg Ala Glu Val Thr Phe
- Glu Asn Gly Ser Val Tyr Asn Arg Val Lys Leu Lys Gly Gln Gly Phe 120

Lys Lys	Asp	Gly	His	Val	Leu	Gly	Lys	Asn	Leu	Glu	Phe	Asn	Phe	Thr
130					135					140				

Pro His Tyr Gln Tyr Ile Trp Gly Asp Gln Ala Asn His Gly Leu Lys 145 150 155

Ser Ala Phe Lys Ile Cys His Glu Ile Thr Gly Ser Lys Gly Asp Phe 165 170 175

Ile Val Ala Asp His Thr Gln Met Asn Thr Pro Ile Gly Gly Pro
180 185 190

Val His Val Pro Glu Tyr His His Met Ser Thr His Val Lys Leu Ser 195 200 205

Lys Asp Val Thr Asp His Arg Asp Asn Met Ser Leu Lys Glu Thr Leu 210 215 220

Arg Ala Val Asp Cys Arg Lys Thr Tyr Leu 225 230

<210> 21

<211> 699

<212> DNA

<213> Artificial sequence

<220>

<223> humanized version of the S3-2 mutant of hm2CP from a hydromedusa
2 from sub-order Anthomedusae

<400> 21

atggagggcg gccccgccct gttccagagc gacatgacct tcaaaatctt catcgacggc 60 gtggtgaacg gccaqaagtt caccatcgtg gccgacggca gcagcaagtt cccccacggc 120 gacttcaacg tgcacgccgt gtgcgagacc ggcaagctgc ccatgagctg gaagcccatc 180 tgccacctga tccagtacgg cgagcccttc ttcgcccgct accccaacgg catcagccac 240 ttegeecagg agtgetteec egagggeetg ageategace geacegtgeg ettegagaae 300 qacqqcacca tqaccaqcca ccacacctac qaqctqqacq qcacctqcqt qqtqaqccqc 360 atcaccgtga actgcgacgg cttccagccc gacggcccca tcatgcgcga ccagctggtg 420 gacatectge ccaaegagac ccaeatgtte ecceaeggee ccaaegeegt gegecagetg 480 gccttcatcg gcttcaccac cgccgacggc ggcctgatga tgagccactt cgacagcaag 540 atgacettea acqqcaqccq cqccatcaaq atccccqqcc cccacttcqt qaccaccatc 600 accaagcaga tgaaggacac cagcgacaag cgcgaccacg tgtgccagcg cgaggtgacc 660 tacgcccaca gcgtgccccg catcaccagc gccatctga 699

- <210> 22
- <211> 232
- <212> PRT
- <213> Artificial sequence

<220>

<223> humanized S3-2 mutant of hm2CP from a hydromedusa 2 from sub-order Anthomedusae

<400> 22

Met Glu Gly Gly Pro Ala Leu Phe Gln Ser Asp Met Thr Phe Lys Ile 5 10 15

Phe Ile Asp Gly Val Val Asn Gly Gln Lys Phe Thr Ile Val Ala Asp 20 25 30

Gly Ser Ser Lys Phe Pro His Gly Asp Phe Asn Val His Ala Val Cys 35 40 45

Glu Thr Gly Lys Leu Pro Met Ser Trp Lys Pro Ile Cys His Leu Ile 50 60

Gln Tyr Gly Glu Pro Phe Phe Ala Arg Tyr Pro Asn Gly Ile Ser His 65 70 75 80

Phe Ala Gln Glu Cys Phe Pro Glu Gly Leu Ser Ile Asp Arg Thr Val

Arg Phe Glu Asn Asp Gly Thr Met Thr Ser His His Thr Tyr Glu Leu $100 \hspace{1cm} 105 \hspace{1cm} 110$

Asp Gly Thr Cys Val Val Ser Arg Ile Thr Val Asn Cys Asp Gly Phe 115 120 125

Gln Pro Asp Gly Pro Ile Met Arg Asp Gln Leu Val Asp Ile Leu Pro 130 140

Asn Glu Thr His Met Phe Pro His Gly Pro Asn Ala Val Arg Gln Leu 145 150 155 160

Ala Phe Ile Gly Phe Thr Thr Ala Asp Gly Gly Leu Met Met Ser His 165 170 175

Phe Asp Ser Lys Met Thr Phe Asn Gly Ser Arg Ala Ile Lys Ile Pro 180 185 190

Gly Pro His Phe Val Thr Thr Ile Thr Lys Gln Met Lys Asp Thr Ser 195 200 205

Asp Lys Arg Asp His Val Cys Gln Arg Glu Val Thr Tyr Ala His Ser 210 220

Val Pro Arg Ile Thr Ser Ala Ile 225 230

<210> 23

<211> 238

<212> PRT

<213> Aequorea victoria

<400> 23

Met Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro Ile Leu Val 1 5 10 15

Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val Ser Gly Glu
20 25 30

Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys Phe Ile Cys 35 40 45

Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val Thr Thr Phe 50 55 60

Ser Tyr Gly Val Gln Cys Phe Ser Arg Tyr Pro Asp His Met Lys Gln 65 70 75 80

His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val Gln Glu Arg 85 90 95

Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg Ala Glu Val

Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu Lys Gly Ile 115 120 125

Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu Glu Tyr Asn 130 135 140

Tyr Asn Ser His Asn Val Tyr Ile Met Ala Asp Lys Gln Lys Asn Gly 145 150 155 160

Ile Lys Val Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Ser Val 165 170 175

Gln Leu Ala Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro 180 185 190

Sequence Listing.txt
Val Leu Leu Pro Asp Asn His Tyr Leu Ser Thr Gln Ser Ala Leu Ser 200

Lys Asp Pro Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val

Thr Ala Ala Gly Ile Thr His Gly Met Asp Glu Leu Tyr Lys