Siguiente

 ✓ Volver a la semana 6

× Lecciones

3 min

3 min

Evaluating a Learning

Bias vs. Variance

Algorithm

0	Diagnosing Bias vs.	7 min
	Variance	

- Diagnosing Bias vs.
 Variance
- Regularization and Bias/Variance 11 min
- Regularization and Bias/Variance
- Learning Curves 11 m
- Learning Curves 3 min
- Deciding What to Do Next Revisited 6 min
- Deciding What to do Next
 Revisited 3 min

Review

Building a Spam Classifier

Handling Skewed Data

Using Large Data Sets

Review

Learning Curves

Training an algorithm on a very few number of data points (such as 1, 2 or 3) will easily have 0 errors because we can always find a quadratic curve that touches exactly those number of points. Hence:

- As the training set gets larger, the error for a quadratic function increases.
- The error value will plateau out after a certain m, or training set size.

Experiencing high bias:

Low training set size: causes $J_{train}(\Theta)$ to be low and $J_{CV}(\Theta)$ to be high.

 $\textbf{Large training set size} : \text{causes both } J_{train}(\Theta) \text{ and } J_{CV}(\Theta) \text{ to be high with } J_{train}(\Theta) \approx J_{CV}(\Theta).$

If a learning algorithm is suffering from high bias, getting more training data will not (by itself) help much.

Experiencing high variance:

Low training set size: $J_{train}(\Theta)$ will be low and $J_{CV}(\Theta)$ will be high.

 $\textbf{Large training set size}: J_{train}(\Theta) \text{ increases with training set size and } J_{CV}(\Theta) \text{ continues to decrease without leveling off. Also, } J_{train}(\Theta) \leq J_{CV}(\Theta) \text{ but the difference between them remains significant.}$

If a learning algorithm is suffering from **high variance**, getting more training data is likely to help.

✓ Completado

