Cours : Cryptographie et Sécurité Informatique

Cryptographie classique II Chiffres par substitution

T. Akharraz Université Sidi Mohamed Ben Abdellah

Sommaire.

- Introduction.
- Chiffre de César.
- Chiffre affine.
- Chiffre de Vigenère.
- Chiffre de Hill.
- Chiffre de Vernam.

1 Introduction.

- Chiffre par substitution : un caractère du texte clair est remplacée par un autre caractère du même alphabet ou d'un autre alphabet suivant un algorithme précis.
- Si le symbole de substitution est fixe : Chiffre mono-alphabétique.
 - Le chiffre de César,
 - Le chiffre affine,
 - · Les chiffres désordonnés.
- Si le symbole de substitution change : Chiffre poly-alphabétique.
 - Le chiffre de Vigenère.
 - Le chiffre de Hill.
 - Le chiffre de Vernam.

2 Chiffre de César

- Le code César est mono-alphabétique.
- Pour coder on décale les lettres : A devient D, B devient E, ..., Z devient C: décalage par 3
- Formulation mathématique du code César :
- A=0, B=1, C=2,D=3, E=4, F=5, G=6, H=7, I=8, J=9, K=10, L=11, M=12, N=13, O=14, P=15, Q=16, R=17, S=18, T=19, U=20, V= 21, W=22, X=23, Y=24, Z = 25
- {A, B, ..., Z} \cong ($\mathbb{Z}/26\mathbb{Z}$, +,*).
- Décalage par trois \iff C(x) = x + 3 modulo 26

Exemple: Clair: RENDEZ VOUS DEMAIN MIDI VILLETANEUSE 17 4 13 3 4 25 21 16 20 18 3 4 12 0 8 13 12 8 3 8 21 8 11 11 4 19 0 13 4 20 4 + 3 mod 26 20 7 17 6 7 2 24 19 23 21 6 7 3 11 17 15 11 6 11 24 11 14 14 7 22 3 16 7 23 7 Chiffré: UHQGHC YRXV GHPDLQ PLGL YLOOHWDQHXVH ΛVΠ (□ > 4♂ > 4 ≧ > 4 ≧ > ≧ 2 2 4 18

2. Chiffre de César.

• Le chiffre de césar se généralise par :

$$C(x) = x + N \text{ modulo } 26$$

où N \in {0, 1, ..., 25} est la clef du code. Exemple. N = 7 : le chiffre du texte codé précédement devient :

YLUKLG CVBZ KLTHPU TPKP CPSSLAHULBZLBZL

- Le déchiffrement se fait en utlisant la relation : $x = y N \mod 26$
- Si on sait que le code utilisé est Cesar, On peut facilement le casser par force brute : 25 clés sont possibles \implies 25 essais au maximum.

(Attaque par force brute : On essaye toutes les clés possibles.)

• Le problème c'est que le chiffre mono-alphabétique restait un mystère pendant des siecles.

2 Chiffre de César

- Jusqu'à ce que Al-Kindi (801-873) : découvre l'analyse des fréquences des lettres.
- Al Kindi avait étudié la fréquence des lettres de l'arabe : ∮ et J sont les plus courantes, à cause notamment de l'article ^J alors que le [€] apparaît dix fois moins souvent,
- Naissance de la science de la cryptanalyse
- · Langue française :

Lettre	%	Lettre	%	Lettre	%	Lettre	%
A	9,4	Н	0.8	N	7,2	U	6,2
В	1,0	I	8.4	O	5.1	V	2,1
C	2,6	J	0.9	P	2,9	W	0
D	3,4	K	0	Q	1,1	X	0,3
E	15,9	I.	5.3	R	6,5	Y	0,2
F	1	M	3,2	S	7,9	Z	0,3
G	1	141	0,2	Т	7.2		

Al Kindi

- Fonction affine : $x \longrightarrow a.x + b$ (un polynôme de degré 1).
- Utiliser les fonctions affines pour chiffrer : Le chiffre d'un caractère x est : $c(x) = a.x + b \mod 26$,
- La clé de ce chiffre est le couple: (a,b)
- Déchiffrement : $x = a^{-1}(y-b)$.
- Pour déchiffrer il faut que a soit inversible pour la multiplication(a^{-1} existe dans ($\mathbb{Z}/26\mathbb{Z}$, \times)) : Sinon, on ne pourra pas déchiffrer;
- Si a = 1, on retrouve le chiffre de César.

- Arithmétique : a est inversible dans ($\mathbb{Z}/26\mathbb{Z}$, \times) si et seulement si, pgcd(a , 26) = 1 .
- $(\mathbb{Z}/26\mathbb{Z}, \times)^* = \{1, 3, 5, 6, 7, 9, 11, 17, 19, 21, 23, 25\}$
- Nombre de clés possible pour un chiffre affine :
 - 12 choix possibiles pour a.
 - 26 choix possibiles pour b.

Donc : $12 \times 26 = 312$ choix possibles pour (a,b). 312 clés possibles.

Exemple: Soient la clé = (a, b) = (3, 11)

Chiffrement: $c_i = f(m_i) = 3 * m_i + 11 mod 26$.

Déchiffrement :

$$a^{-1} = 3^{-1} \mod 26 = 9, \ m_i = f^{-1}(c_i) = 9 * (c_i - 11) \mod 26$$

'NSA' \longrightarrow 13 18 0 \longrightarrow 24 13 11 \longrightarrow 'YNL'.

Cryptanalyse du chiffre affine.

- La cryptanalyse du chiffre affine se fait en deux étapes :
 - (1) Analyse des fréquences des lettres.
 - (2) Recherche et résolution des équations.

Exemple.

Soit HGAHY RAEFT GAGRH DGAGM OEHIY RAAOT ZGAGJ GKFDG AZGSB INNTG KGRHE NNIRG le chiffré d'un texte en français.

- (1) G apparait 12 fois, A apparait 8 fois.
- (2) G est un E : f(E) = G c.à.d f(4) = 6.
- (2) A est un S : f(S) = A c.à.d f(18) = 0

 On résout les équations pour que retrouver la clé (a,b).

$$f(4) = 6, f(18) = 0$$

$$\downarrow \downarrow$$

$$4 * a + b \equiv 6 \pmod{26}$$

$$18 * a + b \equiv 0 \pmod{26}$$

$$\downarrow \downarrow$$

$$14a \equiv -6 \mod 26 \iff 14a \equiv 20 \mod 26$$

$$\downarrow \downarrow$$

$$a = 7 \implies b = 4.$$

• La fct de déchiffrement est : $m_i = 15 * (c_i - 4) mod 26$.

 ${\tt HGAHYRAEFTGAGRHDGAGMOEHIYRAAOTZGAGJGKFDGAZGSBINNTGKGRHENNIRG} \\ {\tt devient}$

TESTONS APRESENTLES EQUATIONS SURDES EXEMPLES DECHIFFREMENT AFFINE

4. Chiffre polyalphabétique.

- Les chiffres : par permutation, césar et affine sont monoalphabétique.
- La faiblesse de ces chiffre est qu'une lettre est remplacée par une même lettre le long du cryptage. Ceci permet une cryptanalyse facile par analyse de fréquences.
- Pour améliorer la sécurité on a pensé aux codes polyalphabétique :
 - On découpe le texte clair en blocs.
 - On applique à chaque bloc une permutation différente des autres blocs.
- Vigemère , Hill, ...

5. Chiffre de Vigenère.

- Chiffre de Vigenère (1568).
- Amélioration décisive du chiffre de César.
- Ce chiffre utilise un mot comme clef qui définit le décalage appliqué au caractères de texte clair.

Exemple :

- Texte claire : CHIFFRE DE VIGENERE
- Clef : BACHELIER , la clef est répétée plusieurs fois pour être aussi longue que le texte clair.

Clair	C	Н	I	F	F	R	Е	D	E	V	I	G	Е	N	E	R	Е
Clé	В	A	C	H	E	L	I	E	R	В	A	C	H	E	L	I	E
Décalage	1	0	2	7	4	11	8	4	17	1	0	2	7	4	11	8	4
Chiffré	D	H	K	M	J	C	M	H	V	W	Ι	I	L	R	P	Z	I

5. Chiffre de Vigenère.

- Le code de Vigenère est un code par blocs.
- En général :
 - On se fixe une longueur de bloc m.
 - On découpe le message en blocs de m lettres.
 - On chiffre par blocs de m lettres :

la première lettre d'un bloc de m est codée avec un César de clef k_1 , la deuxième avec un César de clef k_2 et la m^{eme} par un César de clef k_m .

Formulation mathématique :

Soit
$$m > 0$$
 et $\mathcal{P} = \mathcal{C} = \mathcal{K} = (\mathbb{Z}_{26})^m$. Pour la clé $\mathcal{K} = (k_1, k_2, ..., k_m)$. Le chiffre de Vigenère : $e_{\mathcal{K}}(x_1, x_2, ..., x_m) = (x_1 + k_1, x_2 + k_2, ..., x_m + k_m)$ $d_{\mathcal{K}}(y_1, y_2, ..., y_m) = (y_1 - k_1, y_2 - k_2, ..., y_m - k_m)$

5. Chiffre de Vigenère.

Exemple.

I. Akharraz

- jadoree couterl aradiot outelaj ournee
- + MUSIQUE MUSIQUE MUSIQUE MUSIQUE MUSIQU
- = VUVWHYT OTMBULP MLSLYTX AOLMBUN AOJVUY
- Force du chiffre de Vigenère : la même lettre chiffrée de différentes manières = perte de la fréquence des lettres.
- Très sûr pendant 4 siècles. Ils ont été cryptanalysés officieellement par Charles Babbage et Friedrich Wilhelm Kasiski au 19^{me} siècle.

6. Chiffre de Hill.

- Cryptosystème qui généralise celui de Vigénère.
- Il a été publié par L. S. Hill en 1929.
- On choisit un alphabet de n lettres (n = 26, dans nos exemples) et une taille m pour les blocs, par exemple m = 2. Alors $\mathcal{P}=\mathcal{E}=(\mathbb{Z}/26\mathbb{Z})^2$.
- La clef de codage est une matrice inversible $K_2 \in GL_m(\mathbb{Z}/26\mathbb{Z}),$ si m = 2

$$K = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}/26\mathbb{Z})$$

• Si $(x_1,x_2)\in (\mathbb{Z}/26\mathbb{Z})^2$ est le message clair alors le codé sera:

6. Chiffre de Hill.

$$(y_1, y_2) = e_K((x_1, x_2)) = (x_1, x_2) \begin{pmatrix} a & b \\ c & d \end{pmatrix} = (ax_1 + cx_2, bx_1 + dx_2)$$

- La clé de déchiffrage est la matrice inverse de K dans $GL_m(Z/26Z)$.
- Par exemple avec m = 2 et

$$K = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}$$
 ona $K^{-1} = \begin{pmatrix} 7 & 18 \\ 23 & 11 \end{pmatrix}$

• Le cryptosystème de Hill succombe facilement aux attaques à texte clair choisi.

7. Chiffre de Vernam.

- Claude Shannon : un chiiffre est à confidentialité parfaite si un message chiffré ne permet de retrouver ni la clé secrète ni le message clair en un temps raisonnable.
- De tels codes existent : code de Vernam ou masque jetable, (Gilbert Vernam, 1917).
- Les codes de Vernam :
 - La clé est de la taille du message à envoyer.
 - Les lettres de cette clé sont choisies de façon totalement aléatoire.
 - La clé ne doit servir qu'une seule et unique fois.
- Rarement utilisés, mais, parfaitement sûr : il a longtemps protégé le fameux "téléphone rouge", qui reliait la Maison Blanche au Kremlin.
- Problème : stockage et transmission des clés.

7. Chiffre de Vernam.

Principe:

- On tranforme le texte en une suite de chiffres en base b (souvent b = 2).
- On fabrique ensuite une suite aléatoire de chiffres de même longueur (la clé)
- On ajoute les deux suites ainsi obtenues. sans retenue, c.à.d. que l'on fait une addition chiffre à chiffre modulo b.
- Un XOR si b = 2. Exemple b = 26.

lettre codée =lettre claire + lettre de la clé mod 26

- On code le message CHIENS par la clef KZUTEG : CHIENS + KZUTEG = NHDYSZ
- Le même que le chiffre de CERISE par la clé KCNPZC : CERISE + KCNPZC = NHDYSZ

