Chapter 8 Random-Variate Generation

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

 Develop understanding of generating samples from a specified distribution as input to a simulation model.

- Illustrate some widely-used techniques for generating random variates.
 - □ Inverse-transform technique
 - Acceptance-rejection technique
 - □ Special properties

Inverse-transform Technique

- The concept:
 - \square For cdf function: r = F(x)
 - ☐ Generate r from uniform (0,1)
 - ☐ Find x:

$$x = F^{-1}(r)$$

Steps in inverse-transform technique

Step 2. Set F(X) = R on the range of X

Step 3. Solve the equation F(x) = R for X in terms of R.

$$1 - e^{-\lambda X} = R$$

$$e^{-\lambda X} = 1 - R$$

$$-\lambda X = \ln(1 - R)$$

$$X = -\frac{1}{\lambda} \ln(1 - R)$$

Step 4. Generate (as needed) uniform random numbers R₁, R₂, R₃, . . . and compute the desired random variates

See the next slide

Exponential Distribution

[Inverse-transform]

□ Exponential cdf:

$$r = F(x)$$
= $1 - e^{-\lambda x}$ for $x \ge 0$

□ To generate X_1 , X_2 , X_3 ...

$$X_i = F^{-1}(R_i)$$

= $-(1/\lambda) \ln(1-R_i)$ [Eq'n 8.3]

Figure: Inverse-transform technique for $exp(\lambda = 1)$

- Example: Generate 200 variates X_i with distribution exp(λ= 1)
 - □ Generate 200 Rs with U(0,1) and utilize eq'n 8.3, the histogram of Xs become:

□ Check: Does the random variable X_1 have the desired distribution?

$$P(X_1 \le x_0) = P(R_1 \le F(x_0)) = F(x_0)$$

Does the random variable X₁ have the desired distribution?

$$P(X_1 \le X_0) = P(R_1 \le F(X_0)) = F(X_0)$$
 (8.4)

- First equality: See figure 8.2 on slide 5.
- It can be seen that $X_1 \le x_0$ when and only when $R_1 \le F(x_0)$.
- Since $0 \le F(x_0) \le 1$, the second equality in the equation follows immediately from the fact that R_1 is uniformly distributed on [0,1].
- The equation shows that the cdf of X₁ is F;
 - □ hence X₁ has the desired distribution

- Examples of other distributions for which inverse cdf works are:
 - Uniform distribution

$$X = a + (b - a)R$$

□ Weibull distribution – time to failure – see steps on p278

$$X = \alpha[-\ln(1 - R)]^{1/\beta}$$

□ Triangular distribution

$$X = \begin{cases} \sqrt{2R}, & 0 \le R \le 1/2 \\ 2 - \sqrt{2(1-R)}, 1/2 < R \le 1 \end{cases}$$

Section 8.1.5 Empirical Continuous Distributions

- This is a worthwhile read (as is the whole chapter of course)
- Works on the question:
 - What do you do if you can't figure out what the distribution of the data is?
- The example starting on slide 13 is a good model to work from.

Empirical Continuous Dist'n [Inverse-transform]

- To collect empirical data:
 - Resample the observed data (i.e. use the data for the distribution)
 - Interpolate between observed data points to fill in the gaps
- For a small sample set (size *n*):
 - Arrange the data from smallest to largest

$$X_{(1)} \le X_{(2)} \le \ldots \le X_{(n)}$$

Assign the probability 1/n to each interval $X_{(i-1)} \le X \le X_{(i)}$

$$X = \hat{F}^{-1}(R) = x_{(i-1)} + a_i \left(R - \frac{(i-1)}{n} \right)$$

where
$$a_i = \frac{x_{(i)} - x_{(i-1)}}{1/n - (i-1)/n} = \frac{x_{(i)} - x_{(i-1)}}{1/n}$$

Empirical Continuous Dist'n

[Inverse-transform]

Example: Suppose the data collected for 100 brokenwidget repair times are:

Interval			Relative	Cumulative	Slope,
i	(Hours)	Frequency	Frequency	Frequency, c _i	ai
1	$0.25 \le x \le 0.5$	31	0.31	0.31	0.81
2	$0.5 \le x \le 1.0$	10	0.10	0.41	5.0
3	$1.0 \le x \le 1.5$	25	0.25	0.66	2.0
4	$1.5 \le x \le 2.0$	34	0.34	1.00	1.47

Consider $R_1 = 0.83$: $c_3 = 0.66 < R_1 < c_4 = 1.00$ $X_1 = x_{(4-1)} + a_4(R_1 - c_{(4-1)})$ = 1.5 + 1.47(0.83-0.66)= 1.75

8.1.6

- There are continuous distributions without a nice closed-form expression for their cdf or its inverse.
 - □ Normal distribution
 - □ Gamma
 - □ Beta
- Must approximate in these cases

- All discrete distributions can be generated via inverse-transform technique
- Method: numerically, table-lookup procedure, algebraically, or a formula
- Examples of application:
 - Empirical
 - Discrete uniform
 - □ Gamma

Example 8.4

An Empirical Discrete Distribution

[Inverse-transform]

- Example: Suppose the number of shipments, x, on the loading dock of IHW company is either 0, 1, or 2
 - □ Data Probability distribution:

X	p(x)	F(x)
0	0.50	0.50
1	0.30	0.80
2	0.20	1.00

■ Method - Given R, the generation scheme becomes:

$$x = \begin{cases} 0, & R \le 0.5 \\ 1, & 0.5 < R \le 0.8 \\ 2, & 0.8 < R \le 1.0 \end{cases}$$

Consider
$$R_1 = 0.73$$
:
 $F(x_{i-1}) < R <= F(x_i)$
 $F(x_0) < 0.73 <= F(x_1)$
Hence, $x_1 = 1$

Discrete distributions continued

 Example 8.5 concerns a Discrete Uniform Distribution

 Example 8.6 concerns the Geometric Distribution

8.2: Acceptance-Rejection technique

- Useful particularly when inverse cdf does not exist in closed form, a.k.a. thinning
- Illustration: To generate random variates, X ~ U(1/4, 1)

Procedures:

Step 1. Generate R ~ U[0,1]

Step 2a. If $R \ge \frac{1}{4}$, accept X=R.

Step 2b. If R < 1/4, reject R, return to Step 1

- R does not have the desired distribution, but R conditioned (R') on the event $\{R \ge \frac{1}{4}\}$ does. (8.21, P. 289)
- Efficiency: Depends heavily on the ability to minimize the number of rejections.

- Non-stationary Poisson Process (NSPP): a Possion arrival process with an arrival rate that varies with time
- Idea behind thinning:
 - □ Generate a stationary Poisson arrival process at the fastest rate, $\lambda^* = \max \lambda(t)$
 - □ But "accept" only a portion of arrivals, thinning out just enough to get the desired time-varying rate

8.2 Acceptance – Rejection continued

- 8.2.1 Poisson Distribution
 - □ Step 1 set n = 0, P = 1
 - □ Step 2 generate a random number R_{n+1}

And replace P by P * R_{n+1}

□ Step 3 if $P < e^{-\lambda}$, then accept, otherwise, reject the current n, increase n by 1 and return to step 2

Non-Stationary Poisson Process

[Acceptance-Rejection]

Data: Arrival Rates

t (min)	Mean Time Between Arrivals (min)	Arrival Rate λ(t) (#/min)
0	15	1/15
60	12	1/12
120	7	1/7
180	5	1/5
240	8	1/8
300	10	1/10
360	15	1/15
420	20	1/20
480	20	1/20

Procedures:

Step 1.
$$\lambda^* = \max \lambda(t) = 1/5$$
, $t = 0$ and $i = 1$.

Step 2. For random number
$$R = 0.2130$$
,

$$E = -5ln(0.213) = 13.13$$

 $t = 13.13$

Step 3. Generate
$$R = 0.8830$$

$$\lambda(13.13)/\lambda = (1/15)/(1/5)=1/3$$

Since R>1/3, do not generate the arrival

Step 2. For random number R = 0.5530,

$$E = -5ln(0.553) = 2.96$$

$$t = 13.13 + 2.96 = 16.09$$

Step 3. Generate
$$R = 0.0240$$

$$\lambda(16.09)/\lambda^*=(1/15)/(1/5)=1/3$$

Since
$$R < 1/3$$
, $T_1 = t = 16.09$,

and
$$i = i + 1 = 2$$

8.3: Special Properties

- Based on features of particular family of probability distributions
- For example:
 - Direct Transformation for normal and lognormal distributions
 - □ Convolution
 - □ Beta distribution (from gamma distribution)

□ Consider two standard normal random variables, Z_1 and Z_2 , plotted as a point in the plane: Z_2 -axis \uparrow

In polar coordinates:

$$Z_1 = B \cos \phi$$
$$Z_2 = B \sin \phi$$

- □ $B^2 = Z_1^2 + Z_2^2$ ~ chi-square distribution with 2 degrees of freedom = $Exp(\lambda = 2)$. Hence, $B = (-2 \ln R)^{1/2}$
- \square The radius B and angle ϕ are mutually independent.

$$Z_1 = (-2 \ln R)^{1/2} \cos(2\pi R_2)$$
$$Z_2 = (-2 \ln R)^{1/2} \sin(2\pi R_2)$$

Direct Transformation [Special Properties]

- Approach for normal(μ , σ^2):
 - \square That is, with mean μ and variance σ^2
 - □ Generate $Z_i \sim N(0,1)$ as above

$$X_i = \mu + \sigma Z_i$$

- Approach for lognormal (μ, σ^2) :
 - □ Generate $X \sim N((\mu, \sigma^2))$

$$Y_i = e^{X_i}$$

Summary

- Principles of random-variate generate via
 - □ Inverse-transform technique
 - □ Acceptance-rejection technique
 - Special properties
- Important for generating continuous and discrete distributions