### Health Insurance Premium Prediction

An Interactive ML App with Real-Time Predictions

Presented by: Neethu Manikantan

#### PROBLEM STATEMENT

- Rising healthcare costs make fair premium estimation essential
- Insurance companies need data-driven pricing models
- Users expect transparency in premium determination

#### PROJECT OBJECTIVE

- Help insurance companies estimate premiums efficiently.
- Develop a predictive model to predict health insurance premium using ML
- Use demographic and medical features
- Provide real-time predictions via Streamlit app

#### **BUSINESS REQUIREMENTS**

- Develop a high-accuracy (>97%) predictive model to predict health insurance premium using ML
- The percentage difference between the predicted and actual value on a minimum of 95% of the errors should be less than 10%
- Deploy the model in the cloud so that an insurance companies can run it from anywhere
- Create an interactive Streamlit application that insurance companies can use for predictions

#### **DATA COLLECTION**

#### Dataset (~50000 records)

| Feature Name          | Description                                                                                                                                                                                                                        |  |  |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| age                   | Age of the individual                                                                                                                                                                                                              |  |  |  |  |  |
| gender                | Gender: Male / Female                                                                                                                                                                                                              |  |  |  |  |  |
| region                | Geographic location: Northwest / Southeast / Northeast / Southwest                                                                                                                                                                 |  |  |  |  |  |
| marital_status        | Marital status: Unmarried / Married                                                                                                                                                                                                |  |  |  |  |  |
| number_of_dependants  | Count of dependents                                                                                                                                                                                                                |  |  |  |  |  |
| bmi_category          | BMI category: Underweight / Normal / Overweight / Obesity                                                                                                                                                                          |  |  |  |  |  |
| smoking_status        | Smoking habit: No Smoking / Regular / Occasional                                                                                                                                                                                   |  |  |  |  |  |
| employment_status     | Employment type: Salaried / Freelancer / Self-Employed                                                                                                                                                                             |  |  |  |  |  |
| income_level          | Income group: <10L / 10L-25L / 25L-40L / >40L                                                                                                                                                                                      |  |  |  |  |  |
| income_lakhs          | Income in lakhs (numerical value)                                                                                                                                                                                                  |  |  |  |  |  |
| medical_history       | Details of past medical conditions -'Diabetes' 'High blood pressure' 'No Disease' 'Diabetes & High blood pressure' 'Thyroid' 'Heart disease' 'High blood pressure & Heart disease' 'Diabetes & Thyroid' 'Diabetes & Heart disease' |  |  |  |  |  |
| insurance_plan        | Type of plan: Bronze / Silver / Gold                                                                                                                                                                                               |  |  |  |  |  |
| annual_premium_amount | Target variable: Premium amount to be predicted                                                                                                                                                                                    |  |  |  |  |  |

#### **EXPLORATORY DATA ANALYSIS**

- Missing value handling
  - remove null values
  - remove duplicate rows
- Handling Invalid Data
  - replace negative number of dependents with absolute value
- Numerical Column Analysis
  - Univariate Analysis: box plot
    - Age: limit set to 100 removed greater values
    - income : used 99.9th percentile as upper bound as per business requirements
  - Bivariate Analysis:
    - No major insights
- Categorical Columns Analysis:
  - Univariate:
    - clean smoking\_status values to unique values
  - Bivariate:
    - bar plots: no major insights

#### FEATURE ENGINEERING

- Assign numerical values to medical history to form new column
   normalized risk score
  - medical\_history->disease1+disease2->assign scores->normalise scores
- Label encoding of ordinal features
  - insurance\_plan = 'Bronze': 1, 'Silver': 2, 'Gold': 3
  - 'income\_level = <10L':1, '10L 25L': 2, '25L 40L':3, '> 40L':4
- One hot encoding of nominal features
- Drop original columns from which new columns were derived= medical\_history','disease1', 'disease2', 'total\_risk\_score

- Scaling the features using Min-Max
   Scaler
- Check Multicolinearity using VIF(Variance Inflation Factor)
  - Drop columns with VIF> 10
    - income\_level

|    | Column                          | VIF      |
|----|---------------------------------|----------|
| 0  | age                             | 4.545825 |
| 1  | number_of_dependants            | 4.526598 |
| 2  | income_lakhs                    | 2.480563 |
| 3  | insurance_plan                  | 3.445682 |
| 4  | normalized_risk_score           | 2.687326 |
| 5  | gender_Male                     | 2.409980 |
| 6  | region_Northwest                | 2.100789 |
| 7  | region_Southeast                | 2.919775 |
| 8  | region_Southwest                | 2.668314 |
| 9  | marital_status_Unmarried        | 3.393718 |
| 10 | bmi_category_Obesity            | 1.352748 |
| 11 | bmi_category_Overweight         | 1.549907 |
| 12 | bmi_category_Underweight        | 1.302636 |
| 13 | smoking_status_Occasional       | 1.272744 |
| 14 | smoking_status_Regular          | 1.777024 |
| 15 | employment_status_Salaried      | 2.374628 |
| 16 | employment_status_Self-Employed | 2.132810 |

#### **MODEL TRAINING**

#### Linear regression

MSE: 5165611.913027982

RMSE: 2272.798256121291

• R2-score: 0.92805



#### Ridge Regression Model

MSE: 5165652.017016523

RMSE: 2272.8070787060924

• R2-score: 0.928

#### **XGBoost**

MSE: 1563064.1356043513

RMSE: 1250.2256338774819

• R2-score: 0.978



#### Checking business requirement

- Calculate residual percentage = (residual/y\_test)\*100
- residual = y\_pred-y\_test
- Set extreme\_error\_threshold = 10
- For 30% customers the model will either overcharge or undercharge by 10% or more



|       | actual | predicted    | diff         | diff_pct   |
|-------|--------|--------------|--------------|------------|
| 42730 | 5018   | 7352.829590  | 2334.829590  | 46.529087  |
| 20029 | 5140   | 6670.849121  | 1530.849121  | 29.783057  |
| 4294  | 9631   | 7053.477539  | -2577.522461 | -26.762771 |
| 44419 | 4687   | 6670.849121  | 1983.849121  | 42.326629  |
| 6707  | 8826   | 10047.326172 | 1221.326172  | 13.837822  |

#### kde plot of all features with extreme errors

- found a pattern in age vs extreme errors
- majority of the extreme errors are coming from young age group



#### Age distribution in extreme errors list

- This shows errors
   are extreme for
   records with <25
   years of age.</li>
- We need to may be build a separate model for this segment



#### **MODEL SEGMENTATION**

#### Segment 1: Age>25

We have very few extreme errors (only 0.3%) which means this model looks good and no further investigation is required

extreme\_results\_df.shape
(29, 4)



#### Segment 2: Age<25

- In this segment, we have
   73% extreme errors.
- By comparing distributions of extreme errors vs features, we don't get much insights.
- May be we need more features in order to improve the performance

extreme\_results\_df.shape
(4404, 4)



#### Adding new feature - Genetic Risk

- Added genetic risk feature
- Retrained both models
- Evaluation metric: R2-score:
  - Linear regression 0.988
  - Ridge regression 0.988
  - xgboost 0.987

- Final Model
  - Linear regression-model explainability
- Extreme errors 2%



# System Architecture



#### FRONT END

### Interactive Streamlit Application

- Real-time input via web interface
- Age-based prediction flow
- User-friendly frontend with form inputs and result display.

#### **Health Insurance Prediction App**



## THANKYOU!