1) Quantile Regression

Vitor Kamada

August 2019

Reference

Angrist & Pischke (2009). **Mostly Harmless Econometrics: An Empiricist's Companion.**Ch 7.

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID = 475846

Wooldridge (2010). **Econometric Analysis of Cross Section and Panel Data.** Ch 12.10

https://ebookcentral.proquest.com/lib/wayne/detail.action?docID = 33391968 and the state of th

Vitor Kamada ECO 7110 Econometrics II August 2019 2 / 19

Population Quantiles

$$Y \sim N(0,1)$$

$$q = Pr[Y \le \mu_q] = F_y(\mu_q)$$
 $\mu_q = F_y^{-1}(q)$

$$\mu_{0.5} = 0$$
, then $Pr[Y \le 0] = 0.5$

 $\mu_{0.975} = 1.96$, then $Pr[Y \le 1.96] = 0.975$

OLS vs Median and Quantile Regression

$$\sum_{i} u_{i}^{2}$$

$$\sum_{i} |u_{i}|$$

$$\sum_{i:y_i \geq x_i'\beta}^{N} q \mid y_i - x_i'\beta_q \mid + \sum_{i:y_i < x_i'\beta}^{N} (1-q) \mid y_i - x_i'\beta_q \mid$$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣り○

4 / 19

Vitor Kamada ECO 7110 Econometrics II August 2019

Standard Errors

$$\hat{\beta}_q \stackrel{a}{\sim} N(\beta_q, A^{-1}BA^{-1})$$

$$A = \sum_{i} q(1-q)x_i x_i'$$

$$B = \sum_{i} f_{u_q}(0|x_i) x_i x_i'$$

 $f_{u_q}(0|x_i)$: conditional density of the error term $u_q = y - x'\beta_q$ at $u_q = 0$

Interpretation of Conditional Quantile Coefficients

$$Q_q(y_i|x_i) = \beta_1 + \beta_2 x_i + F_{u_i}^{-1}(q)$$

If errors are iid, then

$$F_{u_i}^{-1}(q) = F_u^{-1}(q)$$

$$Q_q(y_i|x_i) = \{\beta_1 + F_u^{-1}(q)\} + \beta_2 x_i$$

$$\frac{\partial Q_q(y|x)}{\partial x_i} = \beta_{qj}$$

Angrist et al. (2006): Returns to Schooling

$$Ln(wage) = \beta_q educ + Xs + u$$

Census	Obs.	Desc. Stats.		Quantile Regression Estimates				OLS Estimates		
		Mean	SD	0.1	0.25	0.5	0.75	0.9	Coeff.	Root MSE
1980	65,023	6.4	.67	.074 (.002)	.074 (.001)	.068 (.001)	.070 (.001)	.079 (.001)	.072 (.001)	.63
1990	86,785	6.5	.69	.112 (.003)	.110 (.001)	.106 (.001)	.111 (.001)	.137 (.003)	.114 (.001)	.64
2000	97,397	6.5	.75	.092 (.002)	.105 (.001)	.111 (.001)	.120 (.001)	.157 (.004)	.114 (.001)	.69

The sample includes US born white and black men aged 40-49

All models control for race and potential experience

Vitor Kamada ECO 7110 Econometrics II August 2019 7 / 19

Working Class Belgian Households in 1857

Roger & Hallock (2001). "Quantile Regression". Journal of Economic Perspectives, Vol 15(4),143–156

```
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
```

August 2019

Engel dataset

data = sm.datasets.engel.load_pandas().data
data.head()
data.describe()

	income	foodexp
0	420.157651	255.839425
1	541.411707	310.958667
2	901.157457	485.680014
3	639.080229	402.997356
4	750.875606	495.560775

	income	foodexp
count	235.000000	235.000000
mean	982.473044	624.150111
std	519.230879	276.456997
min	377.058369	242.320202
25%	638.875788	429.688763
50%	883.984917	582.541251
75%	1163.986672	743.881432
max	4957.813024	2032.679190

OLS

```
ols = smf.ols('foodexp ~ income', data).fit()
print(ols.summary())
```

('a': 147.47538852370573, 'b': 0.48517842367692354, 'lb': 0.45687381301<u>8</u>4233, 'ub': 0.5134<u>8</u>303433

Vitor Kamada ECO 7110 Econometrics II August 2019 10 / 19

Least Absolute Deviation

```
mod = smf.quantreg('foodexp ~ income', data)
medianReg = mod.fit(q=.5)
print(medianReg.summary())
```

QuantReg Regression Results

Dep. Variabl Model: Method: Date: Time:		foode: QuantRo Least Squaro on, 29 Jul 20: 16:49:	eg Bandw es Spars 19 No.O	ity: bservations: siduals:		0.6206 64.51 209.3 235 233
	coef	std err	t	P> t	[0.025	0.975]
Intercept income	81.4823 0.5602	14.634 0.013	5.568 42.516	0.000 0.000	52.649 0.534	110.315 0.586

Many Quantiles between .05 and .95

```
quantiles = np.arange(.05, .96, .1)
def fit model(a):
    res = mod.fit(q=q)
    return [q, res.params['Intercept'],
            res.params['income']] + \
            res.conf int().loc['income'].tolist()
models = [fit model(x) for x in quantiles]
models = pd.DataFrame(models,
             columns=['q', 'a', 'b', 'lb', 'ub'])
print(models)
```

Result

	q	а	b	1b	ub
0	0.05	124.880099	0.343361	0.268632	0.418090
1	0.15	111.693660	0.423708	0.382780	0.464636
2	0.25	95.483539	0.474103	0.439900	0.508306
3	0.35	105.841294	0.488901	0.457759	0.520043
4	0.45	81.083647	0.552428	0.525021	0.579835
5	0.55	89.661370	0.565601	0.540955	0.590247
6	0.65	74.033433	0.604576	0.582169	0.626982
7	0.75	62.396584	0.644014	0.622411	0.665617
8	0.85	52.272216	0.677603	0.657383	0.697823
9	0.95	64.103964	0.709069	0.687831	0.730306

Plotting 10 Quantile Regression Models

```
x = np.arange(data.income.min(), data.income.max(), 50)
get y = lambda a, b: a + b * x
fig, ax = plt.subplots(figsize=(8, 6))
for i in range(models.shape[0]):
    y = get y(models.a[i], models.b[i])
    ax.plot(x, y, linestyle='dotted', color='grey')
y = get y(ols['a'], ols['b'])
ax.plot(x, y, color='red', label='OLS')
ax.scatter(data.income, data.foodexp, alpha=.2)
ax.set xlim((240, 3000))
ax.set ylim((240, 2000))
legend = ax.legend()
ax.set xlabel('Income', fontsize=16)
ax.set ylabel('Food expenditure', fontsize=16);
```

Quantile Regressions and OLS

Quantiles of the Conditional Food Expenditure

```
n = models.shape[0]
p1 = plt.plot(models.q, models.b, color='black', label='Quantile Reg.')
p2 = plt.plot(models.q, models.ub, linestyle='dotted', color='black')
p3 = plt.plot(models.q, models.lb, linestyle='dotted', color='black')
p4 = plt.plot(models.q, [ols['b']] * n, color='red', label='OLS')
p5 = plt.plot(models.q, [ols['b']] * n, linestyle='dotted', color='red')
p6 = plt.plot(models.q, [ols['ub']] * n, linestyle='dotted', color='red')
plt.ylabel(r'$\beta_{income}$')
plt.xlabel('\$\beta_{income}$')
plt.legend()
plt.show()
```


Abadie, Angrist, and Imbens (2002)

$$Earnings_i = \rho JTPA_i + Xs + u_i$$

The Job Training Partnership Act (JTPA): subsidized training to disadvantaged American workers in the 1980s.

6,102 women and 5,102 men

60% of those offered training actually received JTPA services.

Z: randomly assigned offer of JTPA services

Vitor Kamada ECO 7110 Econometrics II August 2019 17/

OLS and Quantile Regression

		Quantile					
Variable	OLS	.15	,25	.50	.75	.85	
Training effect	3,754	1,187	2,510	4,420	4,678	4,806	
vara see	(536)	(205)	(356)	(651)	(937)	(1,055)	
% Impact of training	21.2	135.6	75.2	34.5	17.2	13.4	
High school or GED	4,015	339	1,280	3,665	6,045	6,224	
	(571)	(186)	(305)	(618)	(1,029)	(1,170)	
Black	-2,354	-134	-500	-2,084	-3,576	-3,609	
	(626)	(194)	(324)	(684)	(1087)	(1,331)	
Hispanic	251	91	278	925	-877	-85	
ence and an	(883)	(315)	(512)	(1,066)	(1,769)	(2,047)	
Married	6,546	587	1,964	7,113	10,073	11,062	
	(629)	(222)	(427)	(839)	(1.046)	(1.093)	
Worked < 13	-6,582	-1,090	-3,097	-7,610	-9,834	-9,951	
weeks in past year	(566)	(190)	(3.39)	(665)	(1,000)	(1,099)	
Constant	9,811	-216	365	6,110	14,874	21,527	
	(1,541)	(468)	(765)	(1,403)	(2,134)	(3,896)	

2SLS and Quantile Treatment Effect (QTE)

		Quantile					
Variable	2SLS	.15	.25	.50	.75	.85	
Training effect	1,593 (895)	121 (475)	702 (670)	1,544 (1,073)	3,131 (1,376)	3,378 (1,811)	
% Impact of training	8.55	5.19	12.0	9.64	10.7	9.02	
High school or GED	4,075 (573)	714 (429)	1,752 (644)	4,024 (940)	5,392 (1,441)	5,954 (1,783)	
Black	-2,349 (625)	-171 (439)	-377 (626)	-2,656 $(1,136)$	-4, 182 (1,587)	-3,523 $(1,867)$	
Hispanic	(888)	328 (757)	1,476 (1,128)	1,499 (1,390)	379 (2,294)	1,023 (2,427)	
Married	6,647 (627)	1,564 (596)	3,190 (865)	7,683 (1,202)	9,509 (1,430)	10,185	
Worked <13 weeks in past year	-6,575 (567)	-1,932 (442)	-4, 195 (664)	-7,009 (1,040)	-9,289 (1,420)	-9,078 (1,596)	
Constant	10,641 (1,569)	-134 (1,116)	1,049 (1,655)	7,689 (2,361)	14,901 (3,292)	22,412 (7,655)	

Vitor Kamada ECO 7110 Econometrics II August 2019 19 / 19