- Heavy Duty Outputs IOL Rated at 8mA/16 mA
- Counter One of Either 'LS68 or 'LS69 Has Individual Clicks for the A Flip-Flop
- Direct Clear for Each 4-Bit Counter
- Guaranteed Maximum Count Frequency is 50 MHz for 'LS69 and 40 MHz for 'LS68

description

Each of the 'LS68 and 'LS69 circuits contain two fourbit counters. The 'LS68 is a dual decade counter, while the 'LS69 is a dual binary counter. Counter number one of both the 'LS68 and 'LS69 has two clock pins. Clock 1 is for the A flip-flop, while clock 2 is for the B, C, D flipflops. Counter one of the 'LS68 can perform bi-quinary counting. All 1QA outputs are rated with sufficient IQL to drive clock 2 while maintaining a full fan-out.

All clocks trigger on the high-to-low transition of the clock pulse. All counters have direct overriding clear pins which, when low, reset Ω_A , Ω_B , Ω_C , and Ω_D low regardless of the state of the clock,

The SN54LS68 and SN54LS69 circuits are characterized for operation over the full military temperature range of -55°C to 125°C. The SN74LS68 and SN74LS69 circuits are characterized for operation from 0°C to 70°C

logic symbols†

5N54LS68, SN54LS69 . . . J PACKAGE SN74LS68, SN74LS69 . . . D OR N PACKAGE (TOP VIEW)

SN54LS68, SN54LS69 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

 † These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12 Pin numbers shown are for D, J, and N packages.

SN54LS68, SN54LS69, SN74LS68, SN74LS69 DUAL 4-BIT DECADE OR BINARY COUNTERS

count sequence tables

'LS68 DECADE COUNTER BCD COUNT SEQUENCE

(See Note 1)

Applies to Counters 1 & 2

'LS68 DECADE COUNTER BI-QUINARY SEQUENCE

(See Note 2)

Applies to Counter 1 only

COUNT	OUTPUT						
COUNT	QΔ	ΩD	σc	СB			
0	L	L	L	L			
1	L	L	L	Н			
2	L	L	Н	Ł			
3	L	L	н	н			
4	L	Ħ	L	L			
5	н	L	L	L			
6	Н	L	L	н			
7	7 H L		Н	L			
8	н	H L		Н			
9	Н	Н	_ L	L			

COUNT.		OUT	PUT		wer dasc
COOKI	СD	α_{C}	α_{B}	QA.	,
0	L	L	L	L,	
1	L	L	L	Ħ	
2	L	L	Н	L	
3	L	L	Н	H	
4	L	Н	L	L	
5	L	Н	L	H	
6	L	н	H	L	
7	L	Н	Н	H	
8	н	L	L	L	
9	н	L	L	14	
					•

NOTES: 1. Output 10_A is connected to 1CLK2 for BCD count,

- 2. Output 10A is connected to 1CLK1 for bi-guinary
- 3. Output $1Q_{\Delta}$ is connected to 1CLK2 for binary count.

'LS69 BINARY COUNTER BCD COUNT SEQUENCE

(See Note 3)

Applies to Counters 1 & 2

COUNT		OUT	PUT	
COUNT	ΔD	Δ _C	QΒ	ΩA
0	L	L	L	L
1	L	L	L	н
2		L	ιΗ	L
3	L	L	Н	н
4	L	н	L	L
5	L	Н	L	н
6	Ł	н	Н	L
7	L	н	Н	н
8	н	L	Ļ	L
9	н	L	Ł	Н
10	н	L.	Н	L
11	н	L	Н	н
12	н	Н	L	L
13	н	н	L	н
14	Н	н	11	L
15	Н	н	н_	н

schematics of inputs and outputs

logic diagrams (positive logic)

Pin numbers shown are for D, J, and N packages.

SN54LS68, SN54LS69, SN74LS68, SN74LS69 __DUAL 4-BIT DECADE OR BINARY COUNTERS

Supply voltage, VCC (see Note 4)	
Input voltage: Clear inputs	
Clock inputs	
Operating free-air temperature range: SN54LS'	
SN74LS'	
Storage temperature range	– 65° C to 150° C

recommended operating conditions

					SN54LS		SN74LS'			J.,,,,,
				MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage			4.5	5	5.5	4.75	5	5.25	V
VIH	High-level input voltage			2			2			V
VIL	Low-level input voltage					0.7			0.8	V
юн	High-level output current					- 1		•	– 1	mΑ
IOL	Low-level output current			1		8			16	mA
		1CLK1		Ü		50	0		50	MHz
		1CLK2	LS68	0		20	0	***	20	
fmax	Clock frequency		'LS69	0		25	0		25	
			'LS68	0		40	0		40	
		2018	'LS69	0		50	0		50	
		1CLK1		10			10]
		1CLK2	'LS68	25			25]
·vv	Pulse width	LS69	'LS69	20			20			ns
. >>	Tuas Wigin		'L\$68	13			13			
		2CLK	2CLK 'LS69 10 10				j			
		CLEAR		15		•	15]
t _{su}	Clear inactive-state set-up time			25		_	25			ns
TA	Operating free-air temperature			- 55		125	٥		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		_		wat	SN54LS' SN		SN74LS	N74LS'				
		'	EST CONDITIO	M2 ·	MiN	TYP‡	MAX	MIN	TYP#	MAX	דומט	
v_{iK}	<u>-</u>	V _{CC} = MIN,	N, I ₁ = - 18 mA				- 1.5			– 1.5	V	
Vон		V _{CC} = MIN, V _{IL} = MAX	V _{IH} = 2 V,	1 _{OH} = - 1 mA	2.5	3.4		2.7	3.4		V	
VOL		V _{CC} = MIN, V _{IH} = 2 V, I _{OL} =		I _{OL} = 8 mA	1	0.25	0.4		0.25	0.4		
TOL		VIL = MAX		IOL=16mA	1				0.35	0.5	7	
1	CLK	V _{CC} = MAX,	V ₁ = 5.5 V	·		· · · · · · · · · · · · · · · · · · ·	0.1		0.1		mΑ	
	CLR	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1] ""A	
Levi	CLK		, V ₁ = 2.7 V				40			40	Ι.	
<u>ин</u>	CLR	VCC MAX,					20			20	μА	
	1CLK1, 2CLK						- 2			- 2		
l _{IL}	1CLK2	VCC = MAX.	V ₁ = 0.4 V				-1.2			- 1.2	mA	
	CLR	1.					- 0.2			- 0.2]	
los§		V _{CC} = MAX,	V0=0 V		- 20		- 100	20		- 100	mΑ	
Icc	· · · · · · · · · · · · · · · · · · ·	V _{CC} = MAX.	see Note 5			36	54		36	54	mΑ	

 $[\]uparrow$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (see note 6)

PARAMETER	FROM	TO	TECT 004	IDITIONS		'LS68		1	'LS69		
- ANAMETER	(INPUT)	(OUTPUT)	TEST CON	NDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
fmax	1CLK1	10 _A		50	70		50	70		MHz	
f _{max}		1Ω _B , 1Ω _C , 1Ω _D			20	30		25	35		MHz
fmax		20 _A , 20 _B 20 _C , 20 _D			40	60		50	70		MHz
TPLH	1CLK1	10				7	11	 	7	11	
^t PHL	ICENT	10 _A				14	21		14	21	ns
^t PLH		10-				8	12	_	7	11	
TPHL		10B				12	18		14	21	1
[†] PLH	1CLK2	10 _C				15	23		16	24	
^T PHL] ''	100	Q 1 kO	С _L = 30 pF		21	32		21	32	ns
tpLH		1 0 D	11[- 1 K37,	C - 30 bF		8	12	.	25	38	l
^t PHL		, ab				13	20		30	45	l
tPLH_		20 -				1	11			11	
¹ PHL]	20 _A				14	21		14	21	ĺ
tpLH		2QB				16	24	-	14	21	ł
tPH1	2CLK					19	29		19	29	
^t PLH] 2001	70				23	35		23	35	ns
^I PHL	į	20 _C				27	40	_	27	40	i
tpLH		2Q _D				16	24		32	48	į
tbH[24[]				19	29		36	54	İ
^T PHL	Any CLR	Any Q				20	30		20	30	ns

NOTE 6: Load circuits and voltage waveforms are shown in Section 1

2 42

^{\$\}frac{1}{2}\$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 5: ICC is measured with all inputs grounded and all outputs open.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated