PHẦN II: CÁC DẠNG BÀI TẬP ESTER

DẠNG 1: TÌM CTPT CỦA ESTER DỰA VÀO PHẦN TRĂM NGUYÊN TỐ, TỈ KHỐI. Câu 1: Ester no, đơn chức, mạch hở X có 54,54% C về khối lượng. Công thức phân tử của X là:				
A. C ₂ H ₄ O ₂	B . C ₄ H ₆ O ₂	C. C ₃ H ₆ O ₂	D . C ₄ H ₈ O ₂	
Câu 2: Trong phân tử mãn CTPT của X là.	ester X no, đơn chức, mạc	h hở, oxi chiếm 36,36% khố	oi lượng. Số CTCT tho	
A. 2	B. 3	C. 4	D. 5	
	lượng 1 ester A nhận thấy B. Este không no.	%O = 53,33%. Ester A là	D. CH3COOCH3	
Câu 4. Trong phân tử r		ch hở X có 40% khối lượng		
A. metyl axetat.	B. metyl acrylat.	C. metyl fomat.	D. etyl propionat.	
		với oxygen là 2,3125. Công		
A. CH ₃ COOCH ₃ .	B. $C_2H_5COOCH_3$.	$\mathbf{C.}$ CH ₃ COOC ₂ H ₅ .	D. $C_2H_5COOC_2H_5$	
		tỉ khối hơi so với H ₂ là 44.	=	
		C. CH ₃ COOC ₂ H ₅ .		
	=	iềm thu được sodium acetate	e và chất hữu cơ Y. Biế	
tỉ khối của X so với H ₂ A. CH ₃ COOCH ₃ .		C. CH ₃ COOC ₂ H ₅ .	D. CH ₃ COOC ₂ H ₃	
	•••••		•••••	

		. Khi thủy phân X trong môi t	rường kiềm thu được	
ethanol. CTCT của X A. CH2=CHCH2		B. CH ₃ COOCH=CHCH ₃	,	
C. C2H5COOCH	_	D. CH2=CHCOOC2H5.		
c. cznycooch-cnz.				
	_	óa hơi 13,2 gam X thu được th). Xà phòng hóa X thu ddược 1		
	B . HCOOCH ₃	C CH2COOC2H5	D . C ₂ H ₅ COOCH ₃	
	_	được ester Z. Làm bay hơi 4, cùng t^0 , p). Biết $M_X > M_Y$. Côn	· .	
của Z là công thức nà		$\mathcal{L}_{\text{unig}}(\mathfrak{t},\mathfrak{p})$. Dict $\mathcal{M}_{X} > \mathcal{M}_{Y}$. Con	ng muc cau tạo mu gọn	
A. CH ₃ COO-CH=C		B. CH ₂ =CH-COO)-CH ₃	
C. H-COO-CH=CH		D. H-COO-CH ₂ -C		
Câu 11: Một ester tạ	o bởi acid đơn chức và alc	ohol đơn chức có tỷ khối hơi	so với khi N ₂ O bằng 2.	
_	lay với dùng dịch NaOH tạ cấu tạo thu gọn của ester n	io ra muối có khối lượng bằn lày là?	g 1 // 22 lượng ester da	
A. CH ₃ COO-CH ₃		B. H-COO- C_3H_7		
$C.CH_3COO-C_2H_5$		D. C_2H_5COO - CH	I_3	
		ohol đơn chức có tỷ khối hơi s	_	
-	- <u>-</u>	o ra muối có khối lượng bằng	93,18% lượng ester đã	
	cấu tạo thu gọn của ester n	•		
A. CH ₃ COO-CH ₃		B. H-COO- C ₃ H ₇		
$\mathbf{C.}$ $\mathbf{CH_3COO}$ - $\mathbf{C_2H_5}$	•	\mathbf{D}_{\bullet} C ₂ H ₅ COO-CH		
•••••				
	• • • • • • • • • • • • • • • • • • • •			

			•	NG CHAY
•••••				
• • • • • • • • • • • • • • • • • • • •		•••••		
•••••				
Câu 1: là	Đốt hoàn toàn 4	1,2g một ester E thu đu	rợc 6,16g CO ₂ và 2,52g	H ₂ O. Công thức cấu tạo của E
	A. HCOOC ₂ H ₅		B . CH ₃ COOC ₂ H ₅	
	C. CH ₃ COOCH	I_3 .	\mathbf{D} . HCOOCH ₃ .	
• • • • • • • • • • • • • • • • • • • •				
	=		nai ester đông phân, thu đ	được 7,437 lít CO_2 (ở đkc) và
5.4 gam	H ₂ O. CTPT của			D CHO
-				
A . C	$C_3H_6O_2$	\mathbf{B} . $\mathbf{C}_2\mathbf{H}_4\mathbf{O}_2$		
A . C				D . C4H8O2
A. C	Đốt cháy hoàn t	oàn 0,1 mol một chất l	nữu cơ X cần 4,958 lít kh	uí oxygen (đkc) thu được
A. C	Đốt cháy hoàn t	oàn 0,1 mol một chất l		uí oxygen (đkc) thu được
A. C 	Đốt cháy hoàn t _{H₂O} =1:1. Biết r	oàn 0,1 mol một chất l ằng X tác dụng với Na	nữu cơ X cần 4,958 lít kh	ú oxygen (đkc) thu được σ. CTCT của X là:
A. C	Đốt cháy hoàn t H ₂ O =1:1. Biết r HCOOC ₃ H ₇	oàn 0,1 mol một chất l ằng X tác dụng với Na B . HCOOCH ₃	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu co	ú oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃
A. C. Câu 3: n _{CO2} : n ₁ A. Câu 4:	Đốt cháy hoàn t H ₂ O =1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy ho	oàn 0,1 mol một chất l ằng X tác dụng với Na B . HCOOCH ₃	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu co C. CH3COOC2H5	ú oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃
A. C. Câu 3: n _{CO2} : n _i A. Câu 4: phản ứn	Đốt cháy hoàn t H ₂ O =1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy ho g. Tên gọi của e	coàn 0,1 mol một chất h ằng X tác dụng với Na B. HCOOCH ₃ àn toàn một ester no, đ	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu cơ C. CH ₃ COOC ₂ H ₅ on chức thì số mol CO ₂	uí oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃
A. C Câu 3: n _{CO2} : n ₁ A. Câu 4: phản ứn A. met	Đốt cháy hoàn t H ₂ O =1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy ho g. Tên gọi của ea hyl fomiate.	oàn 0,1 mol một chất l ằng X tác dụng với Na B. HCOOCH ₃ àn toàn một ester no, đ ster là	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu co C. CH ₃ COOC ₂ H ₅ on chức thì số mol CO ₂	uí oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃
A. C Câu 3: n _{CO2} : n ₁ A. Câu 4: phản ứn A. met C. n-pi	Đốt cháy hoàn t H ₂ O = 1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy ho g. Tên gọi của e hyl fomiate.	coàn 0,1 mol một chất l ằng X tác dụng với Na B. HCOOCH ₃ àn toàn một ester no, đ ster là B	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu co C. CH ₃ COOC ₂ H ₅ on chức thì số mol CO ₂ • ethyl acetate.	uí oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃
A. C. Câu 3: n _{CO2} : n ₁ A. Câu 4: phản ứn A. met C. n-pr	Đốt cháy hoàn t H ₂ O =1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy hoa g. Tên gọi của ea hyl fomiate. ropyl acetate.	oàn 0,1 mol một chất l ằng X tác dụng với Na B. HCOOCH ₃ àn toàn một ester no, đ ster là B	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu co C. CH ₃ COOC ₂ H ₅ on chức thì số mol CO ₂ • ethyl acetate.	ú oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃ sinh ra bằng số mol O ₂ đã
A. Cau 3: n _{co2} : n _i A. Câu 4: phản ứm A. met C. n-pi	Đốt cháy hoàn t H ₂ O = 1:1. Biết r HCOOC ₃ H ₇ Khi đốt cháy ho g. Tên gọi của e hyl fomiate. ropyl acetate. Đốt cháy hoàn t	coàn 0,1 mol một chất h ằng X tác dụng với Na B. HCOOCH ₃ àn toàn một ester no, đ ster là B I	nữu cơ X cần 4,958 lít kh OH tạo ra hai chất hữu cơ C. CH ₃ COOC ₂ H ₅ on chức thì số mol CO ₂ ethyl acetate. D. methyl acetate.	ú oxygen (đkc) thu được σ. CTCT của X là: D . C ₂ H ₅ COOCH ₃ sinh ra bằng số mol O ₂ đã

			•••••
cần dùng 6,16 lít khí O_2 ester của 2 este là:	(đktc), thu được 6.1975	ester kế tiếp nhau troi lít khí CO ₂ (đkc) và 4,5 g C. C ₃ H ₄ O ₂ và C ₄ H ₆ O ₂ .	gam H ₂ O. Công thức
Câu 9: Hỗn hợp X gồm 1 đơn chức mạch hở. Đốt ch vào bình đựng dung dịch C gam kết tủa. CTPT của 2 c	iáy hoàn toàn 0,15 mol X Ca(OH) ₂ dư. Sau phản ứn	=	cháy hấp thụ hoàn toàn
A. $C_2H_4O_2$, $C_3H_4O_2$.		B. $C_3H_6O_2$, C_5H_8	
$C. C_2H_4O_2, C_5H_8O_2.$		D. $C_2H_4O_2$, C_4H_6	O_2
	X đơn chức mạch hở vớ CO ₂ và nước tỉ lệ mol 1 : 3 gam. Biết X không có p	. Cho toàn bộ sp cháy vào	alcohol. Đốt cháy hoàn nước vôi trong dư thấy tên gọi X là :
Câu 11: Đun nóng ester X toàn 0,1 mol X thu được V 10 gam kết tủa, dung dịch nữa. Biết X có phản ứng tr	V lít CO_2 (đktc) và nước. h A và khối lượng bình t	Cho toàn bộ sp cháy vào r ăng 24,8 gam. Đun nước l	uớc vôi trong thu được
A. HCOO-CH ₂ -CH-CH ₃		B. H-COO	OCH_2 - $CH=CH_2$.
C. CH ₂ =CH-COOCH ₃		D. H-COC	CH ₂ -CH ₃

• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
trong dãy đồng đẳr	ng $(M_X < M_Y)$. Đốt cháy l θ_2 (đktc) và 4,5 gam θ_2 0. θ_3 và 6,7	bởi cùng một alcohol và hai c noàn toàn m gam Z cần dùng Công thức ester X và giá trị c B . HCOOC ₂ H ₅ và 9,5 D . (HCOO) ₂ C ₂ H ₄ và 6	g 6,16 lít khí O ₂ (đktc), thư của m tương ứng là
	•••••		•••••
		• • • • • • • • • • • • • • • • • • • •	
		• • • • • • • • • • • • • • • • • • • •	
	DANC 3. RÀI TO	DÁN THỦY PHÂN EST	'FD
	DANG 3. DAI 10	AN IIIUI IIIAN ESI	LK
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••
Câu 1: Cho 8,8 gar chất rắn khan thu đ		ới 150 ml dd NaOH 1M. Cô c	ạn dd sau pứ thì khối lượng
	B. 10,5 gam.	C 12.3 gam	D. 10,2 gam
			, 0
	•••••		•••••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
	_	với 100 ml dd KOH 1M. Cô	cạn dung dịch sau phản ứng
_	rắn khan thu được là:	C 105 com	D 11.2 com
A. 6,8 gam	_	C. 10,5 gam	_
	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •	•••••		

Tài liệu lớp Xuất phát sớm lớp 12 – 2k7 – chương 1- ester lipid

1M. Cô cạn dung dịch sa	u phản ứng thì khối lượ	ợng chất rắn khan thu được	dụng với 150 ml dd NaOH : là:
A. 4,1 gam	B. 11,2 gam.	C. 8,1 gam	D. 8,2 gam
Câu 4: Cho 14,8 gam mớ dụng hết với 250ml dung	ot ester A được tạo nên c dịch KOH 1M. Khối l	từ methanol có tỉ khối so v ượng chất rắn thu được sau	với oxygen bằng 2,3125 tác u khi cô cạn dung dịch là:
, &		C. 22,4 gam	
			phản ứng hết với dung dịch
NaOH ta thu được 8,2 ga	_	_	H ₅ . D. HCOOCH(CH ₃) ₂ .
,		erc 3 mol khí CO. Mặt khá	 c khi xà phòng hóa 0,1 mol
ester trên thu được 8,2g 1	_		ic kili xa pilolig iloa 0,1 illoi
		CH ₃ COOC ₂ H ₅ D . Cl	
Câu 7: Cho 6.6 gam một được 7,2 gam muối. Côn			với dung dịch NaOH ta thu
=	=	H ₃ . C. HCOOC₃H	D. C ₂ H ₅ COOCH ₃ .
Câu 9 : Cho 11,1 gam me	ột ester có công thức C	$C_3H_6O_2$ tác dụng với 200ml chất rắn khan. Công thức c	dung dịch NaOH 1M. Cô
A. HCOOCH3.		H3. C. CH3COOC	
HCOOCH(CH3)2.			

khi phản ứng hoàn to	chất hữu cơ đơn chức X tác àn thu được 9,6 gam muối c		
thứccủa X là: A. CH ₃ COOCH=CH CH ₂ =CHCOOCH ₃ .	H ₂ . B. CH ₃ COOC ₂ H ₅	C. $C_2H_5COOCH_3$.	D.
	óa 6,6 gam một ester đơn ch an dung dịch sau phản ứng t		
· ·	B . Methyl propionate		•
NaOH 1M. Sau phản của X là	n một ester X (có phân tử k ứng, cô cạn dung dịch thu c	được 23,2 gam chất rắn kha	n. Công thức cấu tạo
A. CH2=CHCH2		B. C ₂ H ₅ COOCH=CHCH	
C. C ₂ H ₅ COOCH	H=CH2.	D. CH2=CHCOOC2H5.	
		•••••	
	ơn chức X và Y là đồng phâ nể tích của 0,7 gam N2 (đo		_
	và CH3COOCH3.	B. C2H3COOC2H5 và C	C2H5COOC2H3.
	I3 và HCOOCH(CH3)2.		
	X có công thức phân tử C ₅	_	
NaOH, thu được một thức của X là	hợp chất hữu cơ không làm	mât màu nước bromine và	3,4 gam một muối. Công

A. HCOOC(CH ₃)=CHCH ₃ .	B. CH ₃ COOC(C	H_3)= CH_2 .	
C. HCOOCH ₂ CH	H=CHCH ₃ .	D. HCOOCH=C	HCH_2CH_3 .	
*			,	
DẠNG HÔN	HOP 2 ESTER cù	ng CTPT, cùng	gôc ACID	hoặc ALCOHOL
Cân 1. Và nhàna h	oá hoàn toàn 22.2 com	hẫn ham aầm hai a	stan IICOOCa	He wa
	oá hoàn toàn 22,2 gam	= =		
	g dung dịch NaOH 1M	(dun nong). The tic	en aung aich N	NaOH toi thieu can
dùng là	D 200 1	G 150	1	D 400 1
A. 300 ml.	B. 200 ml.		ıl.	D. 400 ml.
•••••	•••••	•••••		
•••••	•••••	•••••		
lượng vừa đủ V (ml A. 200 ml.) dung dịch NaOH 0,5M B. 500 ml.	M. Giá trị V là C. 400 ml.	. 1	à methyl propionate bằn D. 600 ml.
•••••		•••••	• • • • • • • • • • • • • • • • • • • •	
_	ım hỗn hợp gồm methy: I 2M. Khối lượng muối	-	acetate tác dụ	ng với NaOH thì hết 15
A. 23,2 gam.	B. 21,8 gam.		3 gam	D. 28,1 gam.
A. 23,2 gain.	D. 21,0 gain.	C. 22,	,5 gaiii.	D. 20,1 gam.
Câu 4. Và phòng họ	óa hoàn toàn 66 6 gam l	hỗn hơn hại ester E	ICOOC ₂ H ₅ và	CH ₃ COOCH ₃ bằng dun
	_			H_2SO_4 đặc ở 140°C, sa
	hoàn toàn thu được m	_	-	1112504 dặc 0 140 C, sa
A. 4,05.	B. 8,10.	C. 18,00.		
л. т,UJ.	D. 0,10.	C. 10,00.	D. 10,20	•
•••••	•••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •

A. 14,48 gam	B. 17,52 gam	C. 17,04 gam	D. 11,92 gam
Chung cất dung dịch sau	ı phản ứng thu được h	ỗn hợp ancol Y và chấ	H_8O_2 bằng dung dịch KOH dư t rắn khan Z. Đun nóng Y vớ nản ứng xảy ra hoàn toàn. Khố
A. 50,0 gam	B. 53,2 gam	C. 42,2 gam	D. 34,2 gam.
			ung digh NoOH 0 5M thu Ave
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5.	p 2 ester bằng 200ml d	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do bl là đồng đẳng kế tiếp t B. C2H5COOCH2 D. HCOOCH3 và	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do ol là đồng đẳng kế tiếp t B. C2H5COOCH3 D. HCOOCH3 và	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. . HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do ol là đồng đẳng kế tiếp t B. C2H5COOCH3 D. HCOOCH3 và	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. . HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do ol là đồng đẳng kế tiếp t B. C2H5COOCH3 D. HCOOCH3 và	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. . HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do ol là đồng đẳng kế tiếp t B. C2H5COOCH3 D. HCOOCH3 và	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. . HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do ol là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dun	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. . HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v Câu 8: Xà phòng hoá ho gam muối của một carbox	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dun nỗn hợp hai alcohol là đ	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5 HCOOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v Câu 8: Xà phòng hoá ho gam muối của một carbox thức của hai ester đó là A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. và CH3COOC3H7.	p 2 ester bằng 200ml do là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dung nỗn hợp hai alcohol là đạng B. C2H5COOCH3	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. HCOOC2H5. g dịch NaOH thu được 2,05 ồng đẳng kế tiếp nhau. Công 3 và C2H5COOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v Câu 8: Xà phòng hoá ho gam muối của một carbox thức của hai ester đó là A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. TÀ CH3COOC3H7.	p 2 ester bằng 200ml do là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dung nỗn hợp hai alcohol là đạng B. C2H5COOCH3	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. HCOOC2H5. g dịch NaOH thu được 2,05 ồng đẳng kế tiếp nhau. Công 3 và C2H5COOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v Câu 8: Xà phòng hoá ho gam muối của một carbox thức của hai ester đó là A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. TÀ CH3COOC3H7.	p 2 ester bằng 200ml do là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dung nỗn hợp hai alcohol là đạng B. C2H5COOCH3	ung dịch NaOH 0,5M thu đượ nhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. HCOOC2H5. g dịch NaOH thu được 2,05 ồng đẳng kế tiếp nhau. Công 3 và C2H5COOC2H5.
Câu 7: Xà phòng hóa ho 8,2 gam một muối và 3,9 A. CH3COOCH3 và C. CH3COOC2H5 v Câu 8: Xà phòng hoá ho gam muối của một carbox thức của hai ester đó là A. CH3COOCH3 và	àn toàn m gam hỗn hợ gam hỗn hợp 2 alcoho CH3COOC2H5. TÀ CH3COOC3H7.	p 2 ester bằng 200ml do là đồng đẳng kế tiếp to B. C2H5COOCH3 D. HCOOCH3 và hợp hai ester bằng dung nỗn hợp hai alcohol là đạng B. C2H5COOCH3	ung dịch NaOH 0,5M thu đượnhau. CTCT của 2 ester đó là 3 và C2H5COOC2H5. HCOOC2H5. g dịch NaOH thu được 2,05 ồng đẳng kế tiếp nhau. Công 3 và C2H5COOC2H5.

Câu 5. Hóa hơi hoàn toàn 10,64 gam hỗn hợp X chứa hai ester đều đơn chức, mạch hở thì thể tích hơi

	ợp hai ester bằng dung dịch KOH thu được 15,4 gam và 4,8 gam một alcohol duy nhất. Công thức của 2
A. CH3COOCH3 và CH3COOC2H5.	B. CH3COOCH3 và C2H5COOCH3.
C. CH3COOC2H5 và HCOOC2H5.	D. HCOOCH ₃ và CH ₃ COOCH ₃ .
Câu 10: Xà phòng hóa hòan toàn 14,55 gam h	ỗn hợp 2 ester đơn chức X,Y cần 150 ml dung dịch
NaOH 1,5M. Sau phản ứng cô cạn dung dịch th muối duy nhất. công thức cấu tạo của 2 ester là:	nu được hỗn hợp 2 alcohol đồng đẳng kế tiếp và mộ
A. HCOOCH ₃ , HCOOC ₂ H ₅ .	B . CH ₃ COOCH ₃ , CH ₃ COOC ₂ H ₅
C. C ₂ H ₅ COOCH ₃ , C ₂ H ₅ COOCH ₃	D . $C_3H_7COOCH_3$, $C_2H_5COOCH_3$
Câu 11: Hỗn hợp X gồm hai ester no, đơn chức	c, mạch hở. Đốt cháy hoàn toàn một lượng X cần
dùng vừa đủ 3,976 lít khí O2 (ở đktc), thu được	c 6,38 gam CO ₂ . Mặt khác, X tác dụng với dung
dịch NaOH, thu được một muối và hai alcohol ester trong X là	là đồng đẳng kế tiếp. Công thức phân tử của hai
A. C ₂ H ₄ O ₂ và C ₅ H ₁ OO ₂ . B. C ₂ H ₄ O ₂ và C ₃ H ₆ O ₂	O2. C. C3H4O2 và C4H6O2. D. C3H6O2 và
C4H8O2	

0,05 mol NaOH,	, ,	hỗn hợp Y gồm hai ald	r đơn chức, mạch hợ thi can vưa c cohol cùng dãy đồng đẳng. Đốt cl 1 là	
A. 1,80	B. 1,35	C. 3,15	D. 2,25	
				• • • • •
				• • • • • •
			nai ester đơn chức, mạch hở cần v rboxylic acid trong cùng dãy đồng	
			c Na ₂ CO ₃ , H ₂ O và V lít khí CO ₂ (-
Giá trị của V là	areonon Bot onay not	r dong 02 da, ma day	01\u2003, 1120 \u \ 110 \u11 \u11 \u11 \u11 \u11 \u11	(GIIII)
A. 3,920.	B. 2,912.	C. 1,9	D. 4,928.	
				• • • • • •
• • • • • • • • • • • • • • • • • • • •				• • • • •
•••••				• • • • •

DANG	G 4: HIỆU SUẤ	T PHẢN ỨNG EST	TER HÓA
CH ₃ COOC ₂ H ₅ . Hiệu suất A. 20,75%.	am CH ₃ COOH với C của phản ứng ester ho B. 36,67%.	C ₂ H ₅ OH dư (xúc tác H ₂ SC	D. 50,00%.
(b) (C.07): Đun 12 gan ứng đạt tới trạng thái cân l	n acetic acid với 13,8 bằng, thu được 11 gar	gam ethanol (có H ₂ SO ₄ đặc n ester. Hiệu suất của phản	làm xúc tác) đến khi phản ứng ester hoá là
	B. 50%.	C. 62,5%.	D. 75%.
phản ứng ester hoá bằng 5 A. 6,0 gam.	50%). Khối lượng este B. 4,4 gam.	với 6,0 gam C ₂ H ₅ OH (có H ₂ er tạo thành là C. 8,8 gam.	D. 5,2 gam.
Câu 3. [KNTT - SGK] I dầu chuối. Khi đun	soamyl acetate có mù	ii thơm đặc trưng của chuố 2 g acetic acid và 14 c, thu được 15,6 g dầu chuố	i chín nên còn được gọi là 4,96 g isoamyl alcohol
điều chế dầu chuối trên là		, mu duộc 15,0 g dau chưc	on. Theu suat cua phan ung
		C. 62,50%.	D. 70,59%.
Câu 4. Benzyl acetate có	mùi thơm của hoa nl	nài. Khi đun nóng hỗn hợp c 22,5 g benzyl acetate. Hi	18 g acetic acid và 21,6 g
A. 50%.	B. 75%.		D. 80%.

• • •	với xúc tác H ₂ SO ₄ đặc, th	•	hợp 18,5 g propionic acid và nate. Hiệu suất của phản ứng
A. 60%.	B. 70%.	C. 65%.	D. 75%.
ethanoic acid và 18 g		ii lê. Khi đun nóng hỗn họ ác H_2SO_4 đặc, thu được m \mathfrak{g}	
bóp giảm đau, được HOC ₆ H ₄ COOH - salicylic acid Để sản xuất 3,8 tr tấn salicylic acid. Bi	- 2024] Methyl salicyla điều chế theo phản ứng sựch CH ₃ OH H ₂ SO _{4 dig} . t° HC methanol methriệu tuýp thuốc xoa bóp gết mỗi tuýp thuốc chứa 2, ag tính theo salicylic acid B. 12,420.	au: OC ₆ H ₄ COOCH ₃ + H ₂ O nyl salicylate iảm đau cần tối thiểu m 7 gam methyl salicylate	Methocylat Mothocylat
Câu 8. Meth	yl salicylate dùng làm thu	າຣິ່c xoa bóp giảm đau, được	c điều chế theo phản ứng sau:
HOC ₆ H ₄ COOH -	$+CH_3OH \xrightarrow{H_2SO_{4dac},t^o} HC$	OC ₆ H ₄ COOCH ₃ +H ₂ O	
salicylic acid Từ 18,63 tấn sali		thyl salicylate t được tối đa x triệu tuýp tl	huốc xoa bóp giảm đau. Biết
mỗi tuýp thuốc chứa			nh theo salicylic acid là 75%.
Giá trị của x là A. 7,6.	B. 4,6.	C. 6,9.	D. 5,7.
A. /,U.	D. 4,0.	 0, <i>5</i> .	

Câu 9. Cho salicylic acid (methyl alcohol có mặt sulfur (C ₈ H ₈ O ₃) dùng làm chất giả giảm đau khi vận động thể th trên. Biết mỗi miếng cao dán phản ứng đạt 70%. Giá trị củ A. 1,9. C. 2,0.	ric acid làm xúc tác, thu đư um đau. Để sản xuất 15,4 ao cần tối thiểu m tấn salic n có chứa 105 mg methyl s	ược methyl salicylate triệu miếng cao dán ylic acid từ phản ứng alicylate và hiệu suất	Source divine such that the su
Câu 10. Aspirin là một hợp c chế theo phản ứng sau:			#####################################
•	le salicylic acid	aspirin	Acid acont Analysis (1 mg) Ac
Để sản xuất 2 triệu viên thu chứa 81 mg aspirin và hiệu s		• •	g môi viên thuốc có
A. 184,5.	B. 165,6.	C. 124,2.	D. 114,6.
Câu 11. Aspirin là một hợp c			
$(CH_3CO)_2O + HOC_6H_4C$	$OOH \stackrel{H_2SO_4 dac}{\longleftarrow} CH_3C$	$COOC_6H_4COOH + CH_3CO$	ОН
acetic anhydride salicylic		aspirin	
Từ 4,6 tấn salicylic acid có th có chứa 500 mg aspirin và hi	_	_	rang moi vien thuoc
A. 8,4.	B. 12,0.	C. 7,8.	D. 12,4.

	Tài liệu lớp Xuất phát sớm lớp 12 – 2k7 – chương 1- ester lipid			
	• • • • • • • • • • • • • • • • • • • •			
Câu 12. (A.07): Hỗn hợp X gồm acid HCOOH và acid CH ₃ COOH (tỉ lệ mol 1:1). L hợp X tác dụng với 5,75 gam C_2H_5OH (có xúc tác H_2SO_4 đặc) thu được m gam hỗn	• •			
suất của các phản ứng ester hoá đều bằng 80%). Giá trị của m là				
	. 16,20.			
	• • • • • • • • • • • • • • • • • • • •			