Rafael Villarroel

2021-01-21 15:00 -0500

Idea general

A cada complejo simplicial Δ le queremos asociar un espacio topológico que denotaremos con $|\Delta|$, que se llama su realización geométrica.

Vamos a considerar un número n suficientemente grande, y entonces $|\Delta|$ será un subespacio de \mathbb{R}^n .

Por cada simplejo de dimensión 0, ponemos un punto en \mathbb{R}^n . Por cada simplejo de dimensión 1, ponemos un segmento de recta entre los puntos del simplejo. Por cada simplejo de dimensión 2, ponemos un triángulo entre sus vértices, etc.

• Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$

- Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$
- Δ_2 con caras maximales {12, 23, 34, 145}.

- Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$
- Δ_2 con caras maximales {12, 23, 34, 145}.
- Δ_3 con caras maximales {012, 123, 03}.

- Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$
- Δ_2 con caras maximales {12, 23, 34, 145}.
- Δ_3 con caras maximales {012, 123, 03}.
- Δ_4 con caras maximales {145, 246, 356, 12, 23, 13}.

- Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$
- Δ_2 con caras maximales {12, 23, 34, 145}.
- Δ_3 con caras maximales {012, 123, 03}.
- Δ_4 con caras maximales {145, 246, 356, 12, 23, 13}.
- Δ_5 con caras maximales {12345} (4-simplejo).

- Consideremos el complejo simplicial Δ_1 con facetas $\{\{1, 2, 3\}, \{2, 4\}\}.$
- Δ_2 con caras maximales {12, 23, 34, 145}.
- Δ_3 con caras maximales {012, 123, 03}.
- Δ_4 con caras maximales {145, 246, 356, 12, 23, 13}.
- Δ_5 con caras maximales {12345} (4-simplejo).
- Tarea: Δ₆ con caras maximales {124, 126, 134, 135, 156, 235, 245, 236, 346, 456}.

3 | 6

Independencia afín

posición general.

Decimos que el conjunto $\{v_0, v_1, \ldots, v_k\} \subseteq \mathbb{R}^n$ es afinmente independiente si $\{v_1 - v_0, v_2 - v_0, \ldots, v_k - v_0\} \subseteq \mathbb{R}^n$ es linealmente independiente. Por convención, todo conjunto con un solo punto es afinmente independiente. Cuando un conjunto de puntos en \mathbb{R}^n es afinmente independiente, también se dice que los puntos están en

Tarea Demuestra que el conjunto $\{v_0, v_1, \ldots, v_k\}$ es afínmente independiente si y solo si $\sum_{i=0}^k t_i v_i = 0$ y $\sum_{i=0}^k t_i = 0$ implican que $t_0 = t_1 = \cdots = t_k = 0$. Por lo tanto, la propiedad de que un conjunto sea afínmente independiente no depende del punto escogido como v_0 . Eiemplo En \mathbb{R}^3 , el conjunto

 $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$ es afínmente independiente.

Tarea Demuestra que si un conjunto no es afínmente

Independencia afín

posición general.

Decimos que el conjunto $\{v_0, v_1, \ldots, v_k\} \subseteq \mathbb{R}^n$ es afinmente independiente si $\{v_1 - v_0, v_2 - v_0, \ldots, v_k - v_0\} \subseteq \mathbb{R}^n$ es linealmente independiente. Por convención, todo conjunto con un solo punto es afinmente independiente. Cuando un conjunto de puntos en \mathbb{R}^n es afinmente independiente, también se dice que los puntos están en

Tarea Demuestra que el conjunto $\{v_0, v_1, \ldots, v_k\}$ es afínmente independiente si y solo si $\sum_{i=0}^k t_i v_i = 0$ y $\sum_{i=0}^k t_i = 0$ implican que $t_0 = t_1 = \cdots = t_k = 0$. Por lo tanto, la propiedad de que un conjunto sea afínmente independiente no depende del punto escogido como v_0 . Eiemplo En \mathbb{R}^3 , el conjunto

 $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$ es afínmente independiente.

Tarea Demuestra que si un conjunto no es afínmente

Independencia afín

posición general.

Decimos que el conjunto $\{v_0, v_1, \ldots, v_k\} \subseteq \mathbb{R}^n$ es afinmente independiente si $\{v_1 - v_0, v_2 - v_0, \ldots, v_k - v_0\} \subseteq \mathbb{R}^n$ es linealmente independiente. Por convención, todo conjunto con un solo punto es afinmente independiente. Cuando un conjunto de puntos en \mathbb{R}^n es afinmente independiente, también se dice que los puntos están en

Tarea Demuestra que el conjunto $\{v_0, v_1, \ldots, v_k\}$ es afínmente independiente si y solo si $\sum_{i=0}^k t_i v_i = 0$ y $\sum_{i=0}^k t_i = 0$ implican que $t_0 = t_1 = \cdots = t_k = 0$. Por lo tanto, la propiedad de que un conjunto sea afínmente independiente no depende del punto escogido como v_0 . Eiemplo En \mathbb{R}^3 , el conjunto

 $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1)\}$ es afínmente independiente.

Tarea Demuestra que si un conjunto no es afínmente

Simplejo geométrico

Consideremos el conjunto $A = \{v_0, v_1, \dots, v_k\} \subset \mathbb{R}^n$ que sea afínmente independiente. El simplejo geométrico generado por A es el subespacio:

$$|A| = \{\sum_{i=0}^k t_i v_i \mid t_i \geq 0, \sum_{i=0}^k t_i = 1\} \subseteq \mathbb{R}^n.$$

Por ejemplo, el simplejo geométrico generado por un punto es el mismo punto. Si $A = \{v_0, v_1\}$, entonces |A| es el segmento de recta de v_0 a v_1 . Si $A = \{v_0, v_1, v_2\}$, entonces |A| es el triángulo con vértices v_0 , v_1 , v_2 , etc.

Todo elemento de la forma $\sum_{i=0}^{k} t_i v_i$ con $t_i \ge 0$ y $\sum_{i=0}^{k} t_i = 1$,

se llama una combinación convexa de v_0, v_1, \ldots, v_k .

Tarea Demuestra que si $\alpha \in |A|$, los números t_i tales que $\alpha = \sum_{i=0}^{k} t_i v_i$ están unívocamente determinados.

Vértices de un complejo simplicial Si Δ es un complejo simplicial en X, denotamos con $\Delta_0 = \{x \in X \mid \{x\} \in \Delta\}$. Los elementos de Δ_0 se llaman vértices de Δ .

Vértices de un complejo simplicial

Si Δ es un complejo simplicial en X, denotamos con $\Delta_0 = \{x \in X \mid \{x\} \in \Delta\}$. Los elementos de Δ_0 se llaman vértices de Δ .

Encaje afín

Sea Δ un complejo simplicial. Decimos que $\phi \colon \Delta_0 \to \mathbb{R}^n$ es un encaje afín si ϕ es inyectiva y $\phi(\sigma)$ es afínmente independiente para todo $\sigma \in \Delta$.

Vértices de un complejo simplicial

Si Δ es un complejo simplicial en X, denotamos con $\Delta_0 = \{x \in X \mid \{x\} \in \Delta\}$. Los elementos de Δ_0 se llaman vértices de Δ .

Encaje afín

Sea Δ un complejo simplicial. Decimos que $\phi \colon \Delta_0 \to \mathbb{R}^n$ es un encaje afín si ϕ es inyectiva y $\phi(\sigma)$ es afínmente independiente para todo $\sigma \in \Delta$.

Ejemplo.

Si ϕ es inyectiva y $\phi(\Delta_0)$ es afínmente independiente, entonces ϕ es un encaje afin.

Vértices de un complejo simplicial

Si Δ es un complejo simplicial en X, denotamos con $\Delta_0 = \{x \in X \mid \{x\} \in \Delta\}$. Los elementos de Δ_0 se llaman

Encaje afín

vértices de Δ .

Sea Δ un complejo simplicial. Decimos que $\phi \colon \Delta_0 \to \mathbb{R}^n$ es un encaje afín si ϕ es inyectiva y $\phi(\sigma)$ es afínmente independiente para todo $\sigma \in \Delta$.

Ejemplo.

Si ϕ es inyectiva y $\phi(\Delta_0)$ es afínmente independiente, entonces ϕ es un encaje afin.

Realización respecto a un encaje

Sea Δ un complejo simplicial. Sea $\phi \colon \Delta_0 \to \mathbb{R}^n$ un encaje

Pafin/ill Entonces se define |Δ||_{acim} depara | σ|_a, dende, para o