Height and Distance

1. *Trigonometry*:

In a right angled \triangle OAB, where \angle BOA = θ ,

i.
$$\sin \theta = \frac{Perpendicular}{Hypotenuse} = \frac{AB}{OB}$$
;

ii.
$$\cos \theta = \frac{Base}{Hypotenuse} = \frac{OA}{OB}$$
;

iii.
$$\tan \theta = \frac{\text{Perpendicular}}{\text{Base}} = \frac{\text{AB}}{\text{OA}};$$

iv. cosec
$$\theta = \frac{1}{\sin \theta} = \frac{OB}{AB}$$
;

v.
$$\sec \theta = \frac{1}{\cos \theta} = \frac{OB}{OA};$$

vi.
$$\cot \theta = \frac{1}{\tan \theta} = \frac{OA}{AB}$$
;

2. Trigonometrical Identities:

i.
$$\sin^2 \theta + \cos^2 \theta = 1$$
.

i.
$$\sin^2 \theta + \cos^2 \theta = 1$$
.
ii. $1 + \tan^2 \theta = \sec^2 \theta$.

iii.
$$1 + \cot^2 \theta = \csc^2 \theta$$
.

3. Values of T-ratios:

8	0°	(17/6)	(17/4)	(11/3)	(17/2)
		30°	45°	60°	90°
sin θ	0	<u>1</u>	1 2	3 2	1
cos 8	1	3 2	1 2	1/2	0
tan ⁰	0	1 3	1	3	not defined

4. Angle of Elevation:

Suppose a man from a point O looks up at an object P, placed above the level of his eye. Then, the angle which the line of sight makes with the horizontal through O, is called the *angle of elevation* of P as seen from O.

 \therefore Angle of elevation of P from $O = \angle AOP$.

5. Angle of Depression:

Suppose a man from a point O looks down at an object P, placed below the level of his eye, then the angle which the line of sight makes with the horizontal through O, is called the *angle of depression* of P as seen from O.