PCT

ELTORGANISATION FÜR GEISTIGES EIGENTUM Internationales Büro

TUM

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6: C12N 9/10

A1

(11) Internationale Veröffentlichungsnummer: WO 99/15634

(43) Internationales

Veröffentlichungsdatum:

1. April 1999 (01.04.99)

(21) Internationales Aktenzeichen:

PCT/EP98/05770

(22) Internationales Anmeldedatum:

10. September 1998

(10.09.98)

(30) Prioritätsdaten:

197 41 489.3

19. September 1997 (19.09.97) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG [DE/DE]; Patent- und Lizenzabteilung, Gebäude K801, D-65926 Frankfurt am Main (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): KIY, Thomas [DE/DE]; Loreleistrasse 14, D-65929 Frankfurt (DE).

(81) Bestimmungsstaaten: JP, US, europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Veröffentlicht

Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

number EK219455103

Date of Deposit - March 17. 2000-

I hereby certify that this paper or fee is being deposited with the United States Posts! Service "Express Mail Post Office to Assresse" service under 37CFR 1 10 on the date undicated above and is addressed to the Assistant Commissioner for Patents, Weshington, D. C. 20231

Washington, D.C. 20231

-Carrie A. McPherson (Typed or printed name of person mailing

(Signature of person mailing paper of feb)

(54) Title: FERMENTATION METHOD WITH CONTINUOUS MASS CULTIVATION OF CILIATES (PROTOZOA) FOR PRODUCING BIOGENOUS VALUABLE SUBSTANCES

(54) Bezeichnung: FERMENTATIONSVERFAHREN MIT KONTINUIERLICHER MASSENKULTIVIERUNG VON CILIATEN (PROTOZOA) ZUR PRODUKTION BIOGENER WERTSTOFFE

(57) Abstract

The invention relates to a fermentation method with continuous mass cultivation of ciliates (protozoa) in which the ciliate cells are cultivated in a complex axenic medium free of living feeding organisms or predatory organisms. The biomass containing the desired biogenous valuable substances are obtained by means of continuous (permanent) cell extraction.

INTERNATIONAL APPLICATION -with- Search Report 1997/F-237 (5822*181)

(57) Zusammenfassung

Bei dem erfindungsgemäßen Fermentationsverfahren mit kontinuierlicher Massenkultivierung von Ciliaten (Protozoa) werden die Ciliatenzellen in komplexem, axenischem Medium – frei von lebenden Futter- bzw. Beuteorganismen – kultiviert, und die die gewünschten biogenen Wertstoffe enthaltende Biomasse wird durch kontinuierlichen (permanenten) Zellaustrag gewonnen.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AΤ	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Мопасо	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
вв	Barbados	GH	Ghana	MG	Madagaskar	ТJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugostawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML.	Mali	TT	Trinidad und Tobago
ВJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger ·	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
СН	Schweiz	KG	Kirgisistan	NO	Norwegen	ΥU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	ŁK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION

International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51)	International	T	T (1 C1)	,		
	International patent classification ⁶ :		(11) International publication number: WO 99/	15634		
	C12N 9/10	A1	(43) International publication date:			
1		<u> </u>	1 April 1999 (01.0	04.991		
(21)	International application number: PCT/EP98/	05770	(81) Designated states: JP, US, European Patent (AT			
(22)	International filing date: 10 September 1998 (10.0	09.98)	CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, I MC, NL, PT, SE).			
(30)	Data relating to the priority: 197 41 489.3 19 September 1997 (19.09.97)	DE	Published With the International Search Report.			
(71)	Applicant (for all designated States except US): AVENTIS RESEARCH & TECHNOLOGIES GMBH & CO. KG [DE/DE]; Patent- und Lizenzabteilung, Gebäude K801, D-65926 Frankfurt am Main (DE).		Before expiry of the period provided for amending the claims; will be republished if such amendments are received.			
(72) (75)	Inventors; and Inventors/Applicants (US only): KIY, The [DE/DE]; Loreleistrasse 14, D-65929 Fran (DE).	omas kfurt				

As printed

- (54) Title: FERMENTATION METHOD WITH CONTINUOUS MASS CULTIVATION OF CILIATES (PROTOZOA) FOR PRODUC-
- (54) Bezeichnung: FERMENTATIONSVERFAHREN MIT KONTINUIERLICHER MASSENKULTIVIERUNG VON CILIATEN (PROTOZOA) ZUR PRODUKTION BIOGENER WERTSTOFFE

(57) Abstract

The invention relates to a fermentation method with continuous mass cultivation of ciliates (protozoa) in which the ciliate cells are cultivated in a complex axenic medium free of living feeding organisms or predatory organisms. The biomass containing the desired biogenous valuable substances are obtained by means of continuous (permanent) cell extraction.

WO 99/15634 PCT/EP98/05770

Fermentationsverfahren mit kontinuierlicher Massenkultivierung von Ciliaten (Protozoa) zur Produktion biogener Wertstoffe

Beschreibung

Die Erfindung betrifft ein Fermentationsverfahren mit kontinuierlicher Massenkultivierung von Ciliaten (Protozoa) zur Produktion biogener Wertstoffe, bei dem die die biogenen Wertstoffe enthaltende Biomasse durch kontinuierlichen (permanenten) Zellaustrag gewonnen werden.

Die biotechnologische Nutzung von Ciliaten - einer Klasse der Protozoen - ist bisher nur ansatzweise realisiert, obwohl zahlreiche Stoffwechselprodukte dieser Organismen von wirtschaftlichem Interesse sind, z.B lysosomale Enzyme. Derzeit sind nur wenige biotechnologische Verfahren zur Gewinnung von biogenen Wertstoffen aus Ciliaten beschrieben, - vorwiegend für das Ciliat Tetrahymena (Kiy & Tiedtke, 1991, Appl. Microbiol. Biotechnol., 35, 14; Kiy et al., 1996, Enzyme Microb. Technol., 18, 268; Kiy & Tiedtke, 1992, Appl. Microbiol. Biotechnol., 38, 141), - und es handelt sich hierbei ausschließlich um Verfahren zur Gewinnung von ausgeschiedenen Zellprodukten, d.h. von solchen Zellprodukten, die von den Ciliatenzellen ins Kulturmedium abgegeben werden. Bei dieser Art von Verfahren werden die Ciliaten in Fermentern kultiviert und das die ausgeschiedenen biogenen Wertstoffe enthaltende Kulturmedium wird periodisch, in mehr oder weniger regelmäßigen Zeitabständen, abgenommen und gegen frisches Medium ausgetauscht. Während des Mediumaustauschs werden die Ciliaten über bestimmte Verfahren - z.B. den Einsatz von Membranen, eine Zellimmobilisierung o.ä. - im Fermenter zurückgehalten, so daß praktisch kein Zellmaterial verloren geht und die Zellkultur im Prinzip permanent fortbesteht.

Zur Gewinnung von biogenen Wertstoffen, die zellgebunden vorliegen, ist es jedoch nötig, die gesamten Zellen, die sog. Biomasse, zu ernten. Zu diesem Zweck wird in der Regel - d.h. bei den allgemein bekannten Fermentationsverfahren mit Bakterien oder Pilzen als Wertstoffproduzenten - eine sog. Batch-Fermentation durchgeführt, bei der der Fermenter angeimpft wird und die Zellen solange kultiviert werden, bis die

2

maximale Biomasse bzw. Produktkonzentration erreicht ist. Dann wird die Biomasse geerntet. Derartige Verfahren sind auch bereits für verschiedene Ciliaten wie Paramecium, Colpoda und Tetrahymena beschrieben worden (Proper & Garver, 1966, Biotechnol. Bioeng., <u>8</u>, 287, Schönefeld et al., 1986, J. Protozool., <u>33</u>, 222; Kiy & Tiedtke, 1992, Appl. Microbiol. Biotechnol., 37, 576).

Die Batch-Fermentations-Verfahren haben jedoch den grundsätzlichen Nachteil, daß sie ein intervallmäßiges Reinigen, neues Animpfen des Fermenters und eine intensive Überwachung und Pflege der Zellkultur - vor allem während der kritischen Anwachsphase - erfordern.

Aus der Fermentationstechnik mit Bakterien oder Hefen als Wertstoffproduzenten ist neben dem Batch-Fermentationsverfahren auch das "kontinuierliche Fermentationsverfahren" bekannt. Bei diesem Verfahren werden die Zellen im Fermenter bis zu einer bestimmten Zelldichte gezüchtet und dann ständig durch kontinuierlichen Zellaustrag aus dem Fermenter geerntet während gleichzeitig im selben Umfang frisches Kulturmedium zugeführt wird. Die pro Zeiteinheit entnommene Zellmenge (der Zellaustrag) ist so bemessen, daß die im Fermenter verbleibenden Zellen die durch die Ernte bedingte Abnahme der Zelldichte durch kontinuierliche Zellteilungen mühelos wieder ausgleichen können. Im Bereich einer bestimmten Zellaustragsrate bzw. Verdünnungsrate "D" bleibt die Zelldichte im Fermenter somit konstant, obwohl kontinuierlich Kultur und damit das gewünschte Produkt geerntet wird.

Prinzipiell ist dieses kontinuierliche Fermentationsverfahren einer Batch-Fermentation ökonomisch weit überlegen, aber seine Durchführung setzt voraus, daß die kultivierten bzw. gezüchteten Organismen relativ schnell und gleichmäßig wachsen und sich vermehren, und daß sie unempfindlich gegen die Rühr- und Scherkräfte sind, die bei einem kontinuierlichen Fermentationsverfahren auftreten.

Von Ciliaten ist hingegen allgemein bekannt, daß sie häufig nur sehr langsam wachsen und sich vermehren, daß sie unterschiedliche Wachstumsphasen durchlaufen, und daß sie sehr empfindlich auf Rühr- und Scherkräfte reagieren (Curds

& Cockburn, 1971, Journal of General Microbiology <u>66</u>, 95-109; Middler & Finn, 1966, Biotechnology and Bioengineering <u>8</u>, 71-84). Zwar sind auch schon Versuche zur kontinuierlichen Massenkultivierung von Ciliaten beschrieben worden, aber ausschließlich unter Verwendung von bakterienhaltigen Kulturmedien und mit Ergebnissen zur maximalen Zelldichte von wenigen Zehntausend Zellen pro ml trotz 10 Tagen Kultivierung und länger (Curds & Cockbum, supra).

Solche Zelldichten sind für einen Einsatz im großtechnischen, industriellen Maßstab völlig unzureichend. Darüberhinaus ist die von Curds & Cockburn beschriebene Kultivierung auch deshalb für einen großtechnischen Einsatz gänzlich ungeeignet, weil sie die Verwendung von beuteorganismen-, nämlich bakterienhaltigem Medium vorschreibt. Bei einem bakterienhaltigen Kulturmedien kommt es selbstverständlich auch zu einer ständigen Weitervermehrung der Bakterien, und zwar im Umfang abhängig davon, wieviele Ciliaten vorhanden sind. Das Koexistenzgleichgewicht von Ciliatenpopulation und Bakterienpopulation ist sehr labil, und schon ein geringfügiger Eingriff kann gravierende Veränderungen bei beiden Populationen hervorrufen.

Die Versuche von Curds & Cockburn liegen überdies mehr als 25 Jahre zurück und haben die Fachwelt offensichtlich in ihrer Meinung bestärkt, daß Ciliaten für ein kontinuierliches Fermentationsverfahren im großtechnischen Maßstab nicht geeignet sind.

Der vorliegenden Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren zur kontinuierlichen Fermentation durch Ciliaten mit Zellaustrag bereitzustellen, bei dem die genannten Nachteile vermieden sind und das insbesondere für den großtechnischen, industriellen Einsatz gut geeignet ist.

Eine Lösung dieser Aufgabe besteht in der Bereitstellung eines Verfahrens der Eingangs genannten Art, bei dem die Ciliatenzellen in komplexem, axenischem Medium kultiviert werden.

Im Sinne dieser Erfindung bedeutet komplexes Medium ein Nährmedium wäßriger Lösung von Naturprodukten bzw. aus diesen gewonnenen Extrakten zur Kultivierung von Mikroorganismen.

WO 99/15634 PCT/EP98/05770

Im Sinne dieser Erfindung bedeutet axenisches Medium ein, von Futter- und Beuteorganismen (sogenannte Nahrungsorganismen) freies Nährmedium.

Das erfindungsgemäße Verfahren beruht auf der überraschenden Erkenntnis, daß ein kontinuierliches Fermentationsverfahren mit Zellaustrag unter Verwendung komplexer axenischer Medien auch mit reinen Ciliatenkulturen erfolgreich und wirtschaftlich außerordentlich rentabel durchführbar ist. Kontinuierliche Zelldichten in der Größenordnung von 1 Millionen Zellen pro ml sind ohne weiteres realisierbar, im Fall von Tetrahymena bereits ab dem dritten Tag nach Beginn der Kultivierung. Damit ist das Vorurteil der Fachwelt überwunden, daß Ciliaten für eine kontinuierliche Massenkultivierung mit Zelldichten von mehreren Hunderttausend bis Millionen Zellen pro ml unter Einsatz von bekannten Fermentern und in Gegenwart der üblicherweise zusammen auftretenden Scherkräfte, in axenischem Medium - d.h. ohne lebende Futter- bzw. Beuteorganismen - nicht geeignet sind, weil:

- sie zu langsam und zu ungleichmäßig wachsen,
- sie nur geringe Widerstandskräfte gegen Rühr- und Scherkräfte haben und sehr leicht und schnell durch solche Kräfte geschädigt bzw. zerstört werden, und
- bei den bisherigen Kultivierungsversuchen trotz Verwendung von Beuteorganismenhaltigem Medium und damit weitgehend naturgetreuem Nahrungsangebot nur verhältnismäßig sehr geringe maximale Zelldichten erreicht wurden.

Mit dem erfindungsgemäßen Verfahren ist es erstmals möglich, Ciliaten zur großtechnischen Produktion von zellgebundenen biogenen Wertstoffen einzusetzen und damit insbesondere solche Wertstoffe, die nur von Ciliaten bekannt sind, wie z.B. Taurolipide und Tetrahymanol, oder die speziell von Ciliaten in großem Umfang gebildet werden, wie z.B. Gamma-Linolensäure, Docosahexaensäure, Eicosapentaensäure, Octatetraensäure und Arachidonsäure, in wirtschaftlich bedeutendem Umfang zu gewinnen.

Da die Ciliaten als Reinkultur - d.h. frei von anderen lebenden Organismen – gehalten werden, sind wesentliche Störfaktoren von vorne herein vermieden, und auch der

technische Aufwand ist auf ein Mindestmaß beschränkt: Fermenter zur Nachzucht der Beuteorganismen sind beispielsweise vollständig entfallen.

Zu den Produkten, die aus der ausgetragenen Biomasse gewonnen werden können, gehören Peptide und Proteine, vor allem Enzyme (z.B. ß-Hexosaminidase, L-Asparaginase, Diisopropylfluorophosphatase, Glucosidase, Fucosidase, Phosphatase Nuklease oder Cathepsin.L), Fettsäuren und Lipide (z,B. Gamma-Linolensäure, Docosahexaensäure, Eicosapentaensäure, Octatetraensäure, Arachidonsäure, Phosphonolipide, Taurolipide, oder Tetrahymanol), Polysaccharide, Nukleinsäuren, Sekundärmetabolite, Polymerer, u.a..

Auch die Biomasse als solche kann das Produkt sein.

Die Gruppe der Ciliaten, die sich mittels des beschriebenen Verfahrens kultivieren lassen, umfaßt alle taxonomischen Ciliaten-Untergruppen, die sich prinzipiell in konventionellen Stand- und/oder Schüttelkulturen bzw. Batch-Fermentationen auf * axenischen Nährmedien bzw. Nährmedien, die als Nährstoff abgetötete Biomasse eines Futterorganismus enthalten, kultivieren lassen. Dies sind insbesondere die Ciliatenunterklassen Holotricha, Peritricha, Spirotricha und Suctoria und ganz besonders die Gattungen Tetrahymena, Paramecium, Colpoda, Glaucoma, Parauronema, Engelmanniella, Stylonichia, Euplotes und Colpidium (Klassifizierung nach K. Hausmann: Protozoologie, Thieme Verlag, 1985). Die Erfindung ist auch nicht auf Wildstämme beschränkt, sondern schließt Mutanten und rekombinante Stämme ein.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird die Fermentation in einem Rühr-, oder Blasensäulen- oder Airliftfermenter durchgeführt.

Während der Fermentation kann der pH-Wert reguliert werden, vorzugsweise auf einen Wert im Bereich von pH 4 bis pH 9.

Die Fermentationstemperatur liegt je nach Ciliatenspezies zwischen 15 und 40°C.

Als Kohlenstoff-Quelle wird vorzugsweise wenigstens eine der nachfolgend aufgelisteten Substanzen verwendet, nämlich: Glucose, Fructose, Xylose, Saccharose,

Maltose, Stärke, Fucose, Glucosamin, Lactose, Melasse, Dextran, Fettsäuren (z.B. Ölsäure), Sojaöl, Sonnenblumenöl, Glycerin, Glutaminsäure, Mannitol, Magermilch-pulver oder Acetat.

WO 99/15634

Die Konzentration der Kohlenstoff-Quelle sollte zwischen 0,2 und 20 Gewichts-%, bezogen auf das Kulturmedium, liegen.

Als Stickstoff-Quelle wird vorzugsweise wenigstens eine der nachfolgend aufgelisteten Substanzen verwendet, nämlich: Peptone, Hefeextrakt, Malzextrakt, Fleischextrakt, Magermilchpulver, Casamino Acid, Corn Steep Liquor, organische Stickstoff-Quellen wie Na-Glutamat und Harnstoff, anorganische Stickstoff-Quellen wie Ammoniumaterat, Ammoniumsulfat, Ammoniumchlorid oder Ammoniumnitrat.

Die Konzentration der Stickstoff-Quelle sollte zwischen 0,1 und 10 Gewichts-%, bezogen auf das Kulturmedium, liegen.

Bei einer Variante des erfindungsgemäßen Verfahrens wird dem Kulturmedium wenigstens eine Phosphatquelle, z.B. Kaliumphosphat oder Kalium-Dihydrogenphosphat, zugesetzt. Alternativ oder kumulativ kann auch Ammoniumsulfat, Natriumsulfat, Magnesium, Eisen, Kupfer, Calcium, Vitamine, Spurenelemente und Wachstumsfaktoren zugesetzt werden, um die Wachstums- und Vermehrungsrate der betreffenden Ciliatenkultur weiter zu optimieren.

Die kontinuierlich geerntete Biomasse wird vom Kulturmedium vorzugsweise mittels Zentrifugation, Tangentialfiltration, Mikrofiltration, Sedimentation, Flotation oder Separatoren abgetrennt. Andere Methoden sind aber ebenfalls denkbar.

Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens liegt die Zellaustragsrate bzw. Verdünnungsrate D (= täglich ausgetauschtes Volumen / Arbeitsvolumen des Fermenters) im Bereich von 0,1 bis 12 (=1/10 bis12/1) je nach Wachstumsrate des Ciliatenstammes.

Die Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1: Kontinuierliche Fermentation von Tetrahymena pyriformis

Tetrahymena pyriformis wurde in einem 2 I Fermenter des Typs Biostat MD (Braun Biotech, Melsungen) unter folgenden Bedingungen kultiviert:

Medium:

Wasser mit Zusätzen von

- 0,5 Gewichts-% Proteose Pepton
- 0,1 Gewichts-% Hefeextrakt
- 3 Gewichts-% flüssiger Stärkezucker
- 1 ml/l Eisenspur

Fermentationsbedingungen:

- Temperatur: 30°C
- Sauerstoffsättigung: 20 %
- pH-Regulierung: pH 7
- Start (t on): Inokulum 50.000 Zellen / ml; Kultivierung nach Batch-Verfahren-Art
- Beginn der kontinuierlichen Fermentation: t ₅₁h mit D = 1;
- Fortsetzung der kontinuierlichen Fermentation: ab t_{78h} mit D = 1,5; ab t_{98h} mit D = 2,4

Zu Beginn der Kultivierung wurde das Medium mit etwa 50.000 Zellen angeimpft und diese Starterkultur nach Art eines Batch-Verfahrens so lange kultiviert, bis die Zellpopulation am Ende der Vermehrungsphase und kurz vor dem Eintritt in die stationäre Phase stand. Zu diesem Zeitpunkt - im vorliegenden Beispiel 51 Stunden nach der Animpfung (t sih) - wurde auf kontinuierliche Fermentation umgestellt, d.h. von da an wurde kontinuierlich zellhaltiges Medium abgenommen und die entsprechende Menge zellfreies Medium zugeführt. Zu Beginn der kontinuierlichen Fermentation betrug die Zellaustrags- bzw. Verdünnungsrate (=Volumenmenge an täglich ausgetauschtem Medium pro Arbeitsvolumen des Fermenters) D=1, d.h. pro Tag wurde der gesamte Inhalt des Fermenters (2 I) einmal ausgetauscht und 2 I Ciliaten-haltiges Medium gewonnen. Dieses Medium enthielt etwa 1 Millionen Zellen pro ml.

27 Stunden nach Beginn der kontinuïerlichen Fermentation (= 78 Stunden nach der Animpfung= t_{78h}) wurde die Zellaustragsrate bzw. Verdünnungsrate auf D=1,5 erhöht, d.h. pro Tag wurden ab diesem Zeitpunkt etwa 3 I Ciliaten-haltiges Medium gewonnen. Die Zelldichte blieb dabei praktisch unverändert bei etwa 1 Millionen Zellen pro ml. Nach weiteren 20 Stunden (= 98 Stunden nach der Animpfung= t_{98h}) wurde die Zellaustragsrate bzw. Verdünnungsrate nochmals erhöht auf D=2,4, d.h. pro Tag wurden etwa 5 I Ciliaten-haltiges Medium gewonnen, wobei die Zelldichte nach wie vor praktisch unverändert bei etwa 1 Millionen Zellen / ml lag.

Die Ergebnisse dieses Fermentationsprozesses sind in Fig. 1 graphisch darstellt. Aus dem dort abgebildeten Kurvenverlauf ist ersichtlich, daß es trotz kontinuierlichem Zellaustrag zu keiner Ausverdünnung kam, sondern eine ständige und kontinuierliche Vermehrung der Ciliaten stattfand. Mit anderen Worten: die Kultur befand sich auch bei größerem Zellaustrag (D=2,4) immer in einem dynamischen Gleichgewicht zwischen Zellaustrag und Zellvermehrung.

Beispiel 2: Kontinuierliche Fermentation von Tetrahymena thermophila

Tetrahymena thermophila wurde in einem 2 l Fermenter des Typs Biostat MD (Braun Biotech, Melsungen) unter folgenden Bedingungen kultiviert:

Medium:

Wasser mit Zusätzen von

- 5 g/l Proteose Pepton
- 1 g/l Hefeextrakt
- 1 ml/l Eisenspur
- 1 Gewichts-% Glucose in Form von flüssigem Stärkezucker

Fermentationsbedingungen:

Temperatur: 30°C

Sauerstoffsättigung: 20 %

- pH-Regulierung: pH 7

Start (t oh): Inokulum 50.000 Zellen / ml; Kultivierung nach Batch-Verfahren-Art

9

Beginn der kontinuierliche Fermentation: t 45h mit D = 1,2;

- Fortsetzung der kontinuierlichen Fermentation: ab t_{178h} mit D = 2,4; ab t_{190h} mit D = 3

Das Verfahren wurde im Prinzip wie unter Beispiel 1 beschrieben durchgeführt.

In Fig. 2 ist das Wachstums- bzw. Vermehrungsverhalten der Ciliatenpopulation unter den genannten Fermentationsbedingungen graphisch darstellt. Aus dem abgebildeten Kurvenverlauf ist erkennbar, daß die Steigerung der Zellaustrags- bzw. Verdünnungsrate von D=1,2 auf D=2,4 (Verdoppelung) zu einer Abnahme der Zelldichte von etwa 1 Millionen Zellen/ml auf etwa 500.000 Zellen/ml (Halbierung) führte, daß diese Zelldichte dann aber relativ konstant blieb und nicht weitere abnahm, selbst bei einer weiteren Steigerung der Zellaustrags- bzw. Verdünnungrate von D=2,4 auf D=3.

Beispiel 3: Kontinuierliche Fermentation von Tetrahymena thermophila

Medium:

Wasser mit Zusätzen von

- 20 g/l Magermilchpulver
- 10 g/l Glucose
- 5 g/l Hefeextrakt
- 1 ml/l Eisenspur

Ferrnentationsbedingungen:

- Temperatur: 30°C

- Sauerstoffsättigung: 20 %

Rührer: als 2. Kaskade für Sauerstoffregulation

- pH-Regulierung: pH 7

- Start (t_{Oh}): Inokulum 50.000 Zellen / ml; Kultivierung nach Batch-Verfahren-Art
- Beginn der kontinuierlichen Fermentation: t 20h mit D = 1,125;
- Fortsetzung der kontinuierlichen Fermentation ab t_{68h} mit D = 1,9;

ab t_{139h} mit D = 4,14;

10

ab t_{168h} mit D = 4,94

Das Verfahren wurde im Prinzip wie unter Beispiel 1 beschrieben durchgeführt.

In Fig. 3 ist das Wachstums- bzw. Vermehrungsverhalten der Ciliatenpopulation unter den vorstehend genannten Fermentationsbedingungen graphisch darstellt. Der abgebildete Kurvenverlauf zeigt, daß es zu Beginn der kontinuierlichen Fermentation zu einer Abnahme der Zelldichte von anfänglich etwa 1 Millionen Zellen pro ml auf etwa 600.000 Zellen pro ml kam. Die Zellpopulation erholte sich aber wieder trotz einer Steigerung der Zellaustrags- bzw. Verdünnungrate innerhalb von 1,5 Tagen (etwa 36 Stunden), und hatte etwa 4 Tage (90 Stunden) nach Beginn der kontinuierlichen Fermentation wieder ihre Ausgangsdichte von 1 Millionen Zellen pro ml erreicht. Dieser Wert wurde auch bei weiterer Steigerung der Zellaustrags- bzw. Verdünnungsrate auf D=4,1 und schließlich auf D=4,9 nicht mehr unterschritten.

In der unteren Kurve in Fig. 3 sind die Ergebnisse von Bestimmungen des Trockengewichts der Zellen (in g pro I) während der Kultivierungsdauer dargestellt. Aus dem im wesentlichen parallel zur Zellvermehrungskurve verlaufenden Kurvenverlauf ist erkennbar, daß die Zellvermehrung nicht auf Kosten der Zellgröße bzw. des Zellvolumens der einzelnen Ciliatenzellen erfolgt, sondern daß tatsächlich entsprechend mehr Biomasse produziert wird.

Beispiel 4: Kontinuierliche Fermentation von Colpidium campylum

Colpidium campylum wurde in einem 2-l Fermenter des Typs Biostat MD (Braun

Biotech. Melsungen) unter folgenden Bedingungen kultiviert:

Medium:

Wasser mit Zusätzen von

- 20g/l Magermilchpulver
- 10 a/I Glucose
- 5 g/l Hefeextrakt
- 1ml/l Eisenspur

Fermentationsbedingungen:

- Temperatur: 25°C

- Sauerstoffsättigung: 20%

- Rührer: 108 upm

- pH-Regulierung: pH 7

- Start (t_{oh}): Inokulum 50.000 Zellen / ml; Kultivierung nach Batch-Verfahren-Art

Beginn der kontinuierlichen Fermentation: t 114,75h mit D = 0,665;

- Fortsetzung der kontinuierlichen Fermentation ab t $_{140h}$ mit D = 0,632

ab t _{159h} mit D = 0,462

Das Verfahren wurde im Prinzip wie unter Beispiel 1 beschrieben durchgeführt.

Ansprüche

- Fermentationsverfahren mit kontinuierlicher Massenkultivierung von Ciliaten (Protozoa) zur Produktion biogener Wertstoffe, bei dem die die biogenen Wertstoffe enthaltende Biomasse durch kontinuierlichen Zellaustrag gewonnen wird, dadurch gekennzeichnet, daß die Ciliatenzellen in komplexem axenischem Medium kultiviert werden.
- 2. Fermentationsverfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Ciliaten einer der taxonomischen Gruppen Holotricha, Peritricha, Spirotricha und Suctoria, insbesondere die Gattungen Tetrahymena, Paramecium, Colpoda, Glaucoma, Parauronema, Engelmanniella, Stylonichia, Euplotes und Colpidium, angehören, wobei neben den Wildstämmen auch Mutanten und/oder Rekombinanten dieser Stämme umfaßt sind.
- Fermentationsverfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß
 die Fermentation in einem Rühr- oder Blasensäulen- oder Airliftferrnenter durchgeführt wird.
- 4. Fermentationsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Fermentation bei einem pH-Wert im Bereich von pH 4 bis pH 9 und/oder einer Fermentationstemperatur im Bereich von etwa 15 bis etwa 40°C durchgeführt wird.
- 5. Fermentationsverfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Medium eine Kohlenenstoff-Quelle enthält, die eine oder mehrere Substanzen aus der Gruppe: Glucose, Fructose, Xylose, Saccharose, Maltose, Stärke, Fucose, Glucosamin, Lactose, Melasse, Dextran, Fettsäuren (z.B. Ölsäure), Sojaöl, Sonnenblumenöl, Glycerin, Glutaminsäure, Mannitol, Mager-milchpulver und Acetat umfaßt.

- 6. Fermentationsverfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Konzentration der Kohlenstoff-Quelle einen Wert im Bereich von etwa 0,2 bis etwa 20 Gewichts-%, bezogen auf das Kulturmedium, beträgt.
- 7. Fermentationsverfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Medium eine Stickstoff-Quelle enthält, die eine oder mehrere Substanzen aus der Gruppe: Peptone, Hefeextrakt, Malzextrakt, Fleischextrakt, Magermilchpulver, Casamino Acid, Corn Steep Liquor, Na-Glutamat, Harnstoff, Ammoniumacetat, Ammoniumsulfat, Ammoniumchlorid und Ammoniumnitrat umfaßt.
- 8. Fermentationsverfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Konzentration der Stickstoff-Quelle einen Wert im Bereich von etwa 0,1 bis etwa 10 Gewichts-%, bezogen auf das Kulturmedium, beträgt.
- 9. Fermentationsverfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Medium wenigstens eine Phosphatquelle enthält, vorzugsweise Kaliumphosphat und/oder Kalium-Dihydrogenphosphat.
- 10. Fermentationsverfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Medium eine oder mehrere der folgenden Substanzen enthält: Ammoniumsulfat, Natriumsulfat, Magnesium, Eisen, Kupfer, Calcium, Vitamine, Spurenelemente.
- 11. Fermentationsverfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Medium abgetötete Biomasse von Futterorganismen der Ciliaten enthält.
- 12. Fermentationsverfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die im Zellaustrag enthaltenen Zellen (= geerntete Biomasse) mittels Zentrifugation und/oder Tangentialfiltration und/oder Mikrofiltration und/oder Sedimentation und/oder Flotation vom Kulturmedium abgetrennt wird.

PCT/EP98/05770

14

- 13. Fermentationsverfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Zellaustragsrate bzw. Verdünnungsrate (= täglich ausgetauschtes Volumens / Arbeitsvolumen des Fermenters) einen Wert im Bereich von 0,1 bis 12 beträgt.
- 14. Fermentationsverfahren nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die biogenen Wertstoffe eine oder mehrere Substanz(en) aus der Gruppe, bestehend aus: Peptiden und Proteine, insbesondere Enzymen, Fettsäuren und Lipide, Polysaccharide, Nukleinsäuren, Sekundärmetabolite und Polymere, sind oder aber die Biomasse selbst einen Wertstoff (z.B. Tierfutter) darstellt.

1/3

Hig. 1

430 Rec'd PCT/PTO 1 7 MAR 2000

and the transfer of the Charles

Hig. 2

430 Rec'd PCT/PTO 1 7 MAR 2000

Marine Control of the Control of the

3/3

430 Rec'd PCT/PTO 1 7 MAR 2000

٠.,

.

			PCT/EP 98	1/05770
A. KLASS	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C 12N9/10		101711 90	
I Trk 6	C15W3\10			
1	nternationalen Patentklassifikation (IPK) oder nach der nationalen Kl	assifikation und der IPK		
	RCHIERTE GEBIETE orter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymt			
IPK 6	C12N	pole)		
İ				
Recherchie	nte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	soweit diese unter die reche	rchierten Gebiete	fallen
Während de	er internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und	evtl. verwendete	Suchbeanffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN			
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	be der in Betracht kommen	den Teile	Pote Agencies No
			den rene	Betr. Anspruch Nr.
Χ	CHEMICAL ABSTRACTS, vol. 66, no.	5,		1
	30. Januar 1967	-		
	Columbus, Ohio, US; abstract no. 17297,			
	ROSENBAUM, NANCY ET AL: "Induct			
	phospholipid requirement and mor	à.		
	abnormalities in Tetrahymena pyr growth at supraoptimal temperatu			
	XP002090950			
	siehe Zusammenfassung			
	& J. PROTOZOOL. (1966), 13(4), 5: CODEN: JPROAR,	35-46		
		-/ 		
X Weite	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Pa	tentfamilie	
* Besondere	Kategorien von angegebenen Veröffentlichungen	い Spätere Veröffentlichui	ng, die nach dem	internationalen Anmeldedatum
aberni	ntlichung, die den allgemeinen Stand-der Technik definiert, cht als besonders bedeutsam anzusehen ist	Anmeldung nicht kollk	tum veroffentlicht diert, sondern nur	worden ist und mit der zum Verständnis des der
Anmeid	Dokument, das jedoch erst am oder inach dem internationalen dedatum veröffentlicht worden ist	ineone angegeben is	ŧ .	oder der ihr zugrundeliegenden
	itlichung, die geeignet ist, einen Priontätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veroffentlichungsdatum einer	kann allein aufgrund d	lieser Veröffentlic	tung; die beanspruchte Erfindung hung nicht als neu oder auf
soll ode	n im Hecherchenbericht genannten Veröffentlichung belegt werden. Er die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von be	esonderer Bedeu	cntet werden tung; die beanspruchte Erfindung
"O" Veröffer	Michano, die sich auf eine mündliche. Offenbarung	werden, wenn die Ver	öffentlichung mit	einer oder mehreren anderen
- veroner	enutzung, eine Ausstellung oder andere Maßnahmen bezieht itlichung, die vor dem internationalen. Anmeidedatum, aber nach eanspruchten Prioritätsdatum veröffentlicht worden ist	alese verbindung tur e	einen Fachmann	Verbindung gebracht wird und naheliegend ist
	Abschlusses der internationalen Recherche	"&" Veröffentlichung, die M Absendedatum des in		
			onadoralen 1190	arer chemberichts
25	5. Januar 1999	04/02/199	9	
Name und P	ostanschrift der Internationalen Recherchenbehörde	Bevollmachtigter Bedi	ensteter	
	Europaisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk			
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Delanghe, L		

Delanghe, L

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	CHEMICAL ABSTRACTS, vol. 94, no. 9, 2. März 1981 Columbus, Ohio, US; abstract no. 61384, YAMIN, MICHAEL A.: "Cellulose metabolism by the flagellate Trichonympha from a termite is independent of endosymbiotic bacteria" XP002090951 siehe Zusammenfassung & SCIENCE (WASHINGTON, D. C., 1883-) (1981), 211(4477), 58-9 CODEN: SCIEAS;ISSN: 0036-8075,	1
Υ	DE 42 38 842 A (GERMANY) 19. Mai 1994 siehe Ansprüche	1
Y	FR 2 334 630 A (BATTELLE MEMORIAL INST) 12. August 1977 siehe Ansprüche	1
Y	WILLIAM TRAGER ET AL.: "Human malaria parasites in continuous culture" SCIENCE, Bd. 193, 20. August 1976, Seiten 673-675, XP002090949 US siehe das ganze Dokument	1
Y	CHEMICAL ABSTRACTS, vol. 76, no. 9, 28. Februar 1972 Columbus, Ohio, US; abstract no. 43778, VAN WAGTENDONK, W. J. ET AL: "Axenic cultivation of Paramecium aurelia" XP002090952 siehe Zusammenfassung & METHODS CELL PHYSIOL. (1970), 4, 117-30 CODEN: MCPHA6,	1
Y	CHEMICAL ABSTRACTS, vol. 70, no. 21, 26. Mai 1969 Columbus, Ohio, US; abstract no. 94181, CURDS, C. R. ET AL: "Growth and feeding of Tetrahymena pyriformis in axenic and monoxenic culture" XP002090953 siehe Zusammenfassung & J. GEN. MICROBIOL. (1969), 54(3), 343-58 CODEN: JGMIAN, 1969,	1
	abstract no. 94181, CURDS, C. R. ET AL: "Growth and feeding of Tetrahymena pyriformis in axenic and monoxenic culture" XP002090953 siehe Zusammenfassung & J. GEN. MICROBIOL. (1969), 54(3), 343-58	

1

INTERNATIONALER REFERENCE ERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentlamilie gehören

Inte les Aktenzeichen
PCT/EP 98/05770

Im Recherchenbericht angeführtes Patentdokume	Datum der nt Veröffentlichung	Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
DE 4238842	A 19-05-1994	KEINE	
FR 2334630	A 08-07-1977	BE 849148 A DE 2655614 A JP 52081299 A NL 7613363 A	07-06-1977 16-06-1977 07-07-1977 10-06-1977

 \bigcirc