Divide and Conquer (Dynamic Programming)

Raymond Klefstad, Ph.D.

Introduction

- Divide-and-Conquer <u>Link</u>
 - partition problem into disjoint sub-problems
 - solve the sub-problems recursively
 - combine their solutions to solve original problem
- Dynamic Programming <u>Link</u>
 - applies when sub-problems overlap
 - when sub-problems share sub-sub-problems
 - "Programming" refers to "tabular method" like "Linear Programming"
 - o compute solutions to sub-problems once and save them in a table
- Recursion must be mastered first

Recursion

- Recursion occurs when a function calls itself <u>Link</u>
- Usually starts with case analysis
 - Handle base cases, e.g., N==0, an empty list or string
 - Handle general cases, e.g., N>0, non-empty list or string
 - Beware infinite recursion (like infinite looping)
- Example: sum up the first N positive numbers

```
int sum( int N ) {
    if ( N <= 0 ) return 0;
    else return N + sum(N - 1);
}</pre>
```

Factorial

```
<u>N! = N * N-1 * N-2 ... * 1</u>
int factorial(int N) {
    if ( N == 0 ) return 1;
    else return N * factorial(N - 1);
N! re-write using the ternary conditional operator
int factorial(int N) {
    return N == 0 ? 1 : N * factorial(N - 1);
```

Review of C-strings

- C-strings excellent for recursion
- Null terminated array of characters
 - E.g., char s[] = "Hello"; // s has 6 chars and last is '\0'
- C-arrays can be processed using pointer arithmetic
 - *s is current character, e.g., 'H'
 - s+1 is rest of string, e.g., "ello"
- Can traverse a string in two ways

```
for (int i=0; s[i] != '\0'; ++i) putchar(s[i]);
for (char *p = s; *p != '\0'; ++p) putchar(*p)
```

C-string parameters are often declared as char *
 char * strcpy(char * dest, char * src);

How To Think About Recursion

- I want to write a function that computes the length of a c-string named s
- Assume I already have such a function, but I can't call it directly on my parameter s
- Suppose I know the length of the rest of this string s+1
 - o I just add one to that length
- What is my base case?
 - The empty string? Yes What is its length? Zero
- Let's write a few and compare iterative to recursive

String Length: strlen()

```
char s[] = "ABC";
int i = strlen(s); // should be 3
int strlen( char * s ) {
     int len = 0:
     for ( int i=0; s[i] != '\0'; ++i )
         ++len:
     return len;
int strlen( char * s ) {
    return *s == (0'?0:1 + strlen(s+1);
```

Find char in String: strchr()

```
char s[100] = "ABC";
char *p = strchr(s, 'B'); // p will be "BC"
char * strchr( char * src, char c ) {
    for (; *src!= c; ++src)
         if (!*src) return 0;
     return src:
char * strchr( char * src, char c ) {
    return *src == c ? src : !*src ? 0 : strchr( src + 1, c );
```

String copy: strcpy()

```
char s[] = "ABC", t[4];
char *p = strcpy(t, s); // p will be "ABC" pointing to array t
char * strcpy( char * dest, char * src ) {
    char * ret = dest:
    while ( *dest++ = *src++ )
     return ret;
char * strcpy( char * dest, char * src ) {
    *dest = *src:
    if (*src) strcpy(dest + 1, src + 1);
    return dest:
```

Append to End: strcat()

```
char s[100] = "ABC";
strcat(s, "DEF"); // s will be ABCDEF
char * strcat( char * dest, char * src ) {
    char * ret = dest:
    while ( *dest++ = *src++ )
     return ret;
char * strcat( char * dest, char * src ) {
    if (!*dest) strcpy( dest, src );
    else strcat( dest + 1, src );
    return dest:
```

Divide & Conquer Examples

- Problems that can be divided, solved, and merged are often ideal for recursion
 - Draw a line on a pen plotter
 - Sorting data within an array: Quick Sort, Merge Sort
 - Traversing a binary search tree
 - Searching a hierarchical directory structure
 - Solving towers of Hanoi puzzle

Towers of Hanoi

```
void solve(int N, char * from, char * to, char * with) {
    if (N >= 1)
         solve(N-1, from, with, to);
         print("move top disk from ", from, " to ", to);
         solve(N-1, with, to, from);
```

fromPole

Performance

- Recursion adds function call overhead
 - Compared to loops
- Compilers can optimize some types of recursion
- Tail recursion
 - When there is one recursive call, e.g., linked lists, c-strings, numbers
 - Can be converted to looping
- Complete recursion or Total recursion
 - Two or more calls
 - E.g., Sorts, Trees, Graphics
 - More difficult to optimize, requires explicit stack, rarely done
- But what about stack depth? O(N), O(Ig N)

Recursion Summary

- Recursion is when a function is defined by calling itself
- Often leads to concise, elegant solutions
- Must beware of infinite recursion
- Potential function call overhead may be removed by some optimizing compilers

Dynamic Programming

- an improvement to divide and conquer
- often applied to optimization problems
- may have many solutions, but seeking optimal
- 4 steps:
 - 1. Characterize structure of an optimal solution
 - 2. Recursively define value of an optimal solution
 - 3. Compute value of an optimal solution bottom-up
 - 4. Construct solution from computed information
- use memoization to avoid duplicated computation

Memoization

- Memoization save computed values for reuse <u>Link</u>
- Often combined with recursion
 - o If value is memoized, return saved value
 - Else, compute new value, save it, return it
- Example: sum up the first N positive numbers

```
int sum( int N ) {
    if ( N <= 0 ) return 0;
    else return N + sum( N - 1 );
}</pre>
```

Memoization Example

```
#define M 1000
int sum(int N) {
  static int A[ M ] = { 0 };
  if (N < 0)
     return 0;
  if (A[N] == 0)
     A[N] = N + sum(N - 1);
  return A[N];
```

```
int main()
{
   int N = 30;
   for ( int i = 0; i < N; ++i )
      cout << i << '=' << sum(i) << endl;
   cout << endl;
   return 0;
}</pre>
```

Fibonacci Numbers

- Fibonacci number <u>Link</u>
- 0,1,1,2,3,5,8,13,21,34,55,89,144,... int fib(int N) { if (N <= 0) return 0; else if (N == 1) return 1; else return fib(N - 1) + fib(N - 2); $T(n) = O(1.6180^n) = O(2^N)$

Fib Bottom-up

```
int fib( int N ) {
 int f[N+1];
 f[0] = 0; f[1] = 1;
 for (int i = 2; i < = N; ++i)
   f[i] = f[i-1] + f[i-2];
 return f[N];
```

Fib Top-down

```
int fib(int N) {
 static int f[N+1] = \{0\};
 if ( N <= 0 ) return 0;
 else if (N == 1) return 1;
 if (f[N] == 0) f[N] = fib(N-1) + fib(N-2);
 return f[ N ];
```

Dynamic Programming

- 4 steps:
 - 1. Characterize structure of an optimal solution
 - 2. Recursively define value of an optimal solution
 - 3. Compute value of an optimal solution bottom-up
 - 4. Construct solution from computed information
- use memoization to avoid duplicated computation

DP Example: LCS

- given two strings: S of length N, and T of length M
- find Longest Common Subsequence
 - the longest sequence of characters that appear left-to-right
 - but not necessarily in a contiguous block

S = ABAZDC

T = BACBAD

- LCS has length 4 and is the string ABAD
- useful for genomics and text editor display update
- naive algorithm is exponential

Solving LCS with DP

- sub-problem: look at LCS for prefix of S and prefix of T
 - overall pairs of prefixes
- to simplify, find only length of LCS
 - o later we'll modify to extract the answer
- let LCS[i][j] be length of LCS of S[0..i] with T[0..j]
- Can we solve LCS[i][j] using LCS's of smaller problems? Yes!

Recursive Cases

- Case 1: S[i]!= T[j] no match
 - Desired subsequence must ignore either S[i] or T[j]
 - LCS[i][j] = max(LCS[i 1][j], LCS[i][j 1])
- Case 2: S[i] == T[j] match
 - LCS of S[0..i] and T[0..j] is one longer...
 - o LCS[i][j] = 1 + LCS[i-1][j-1]

Computation of the Table

```
for ( int i = 0; i < N; ++i ) // S
for (int j = 0; j < M; ++j) // T
T[ i ][ j ] = case analysis from previous slide, is O(1)
```

The Table

S\T	В	А	С	В	А	D
А	0	1	1	1	1	1
В	1	1	1	2	2	2
А	1	2	2	2	3	3
Z	1	2	2	2	3	3
D	1	2	2	2	3	4
С	1	2	3	3	3	4

final answer is in the lower right-hand corner: 4

What is the Sequence?

- must be extracted from our table
- walk backwards through table, starting at lower-right corner
- If cell directly above or directly to right is equal to value
 - move to that cell (if both are, choose either one)
- if both are less than value
 - move diagonally up and left (case 2)
 - and output the associated matching character

Extracting the Answer

S\T	В	А	С	В	А	D
А	0	1	1	1	1	1
В	1	1	1	2	2	2
А	1	2	2	2	3	3
Z	1	2	2	2	3	3
D	1	2	2	2	3	4
С	1	2	3	3	3	4

this will print answer in reverse, DABA

Time Complexity

- exhaustive search is exponential
- our dynamic programming algorithm is O(N * M)