1.	n all pair shortest path problem, we try to find out			
	The shortest path from one vertex to all other vertices	The shortest path between every pair of vertices	The longest path from one vertex to all other vertices	The longest path between every pair of vertices
2.	While modifying the values, the value chosen should be			
	Minimum	Maximum	Equal	None of the above
3.	The Dijkastra algorithm is used to find			
	The shortest path from one vertex to all other vertices	The shortest path between every pair of vertices	The longest path from one vertex to all other vertices	The longest path between every pair of vertices
4.	In binary search tree, the right subtree always contains the elements the root node.			
	Lesser than	Greater than	Equal to	None of the above.
5.	Out of these techniques, which one provides the fastest method for generating optimal binary search tree?			
	Greedy method	Dynamic programming	Branch and bound	Divide and Conquer
6.	n binary search tree, the left subtree always contains the elements the root node.			
	Lesser than	Greater than	Equal to	None of the above
7.	f there are 3 key elements, then the number of possible binary search trees will be			
	3	4	5	6
8.	Which algorithm can work on negative edges of a graph?			
	Dijkastra algorithm	Bellman Ford algorithm	Sreeman's algorithm	None of the above
9.	Which approach is followed by Bellman Ford algorithm?			
	Greedy approach	Dynamic programming	Divide and Conquer	None of the above
10.	In Bellman Ford algorithm, how many times, the edges are relaxed, if the number of vertices is 7?			
	5	6	7	8
11.	In Bellman Ford algorithm, v	ve always look for valu	e.	

