

RECAP: DEEP LEARNING

$$y \approx f_w(x)$$

PROGRAMMING VS DEEP LEARNING

PROGRAMMING

DEEP LEARNING

MNIST DIGIT CLASSIFICATION

2

$$y \approx f_w(x)$$

CHALLENGES IN DEEP LEARNING

- ITS DATA HUNGRY
- NO ACTIVE PARTICIPATION

REINFORCEMENT LEARNING

RL VS DL

- · ACTIVE ENGAGEMENT
- · GET RID OF MANUAL DATA COLLECTION

Components of RL

ENVIRONMENT

- EPISODIC VS NON-EPISODIC
- · FIXED VS DYNAMIC
- · SINGLE VS MULTIPLAYER

VIDEO 1: COMPONENTS OF RL

GYM EXAMPLE

GOAL OF RL

STATE	ACTION
A	GO STRAIGHT
В	TAKE LEFT
C	TAKE RIGHT OR LEFT

WHICH ACTION IS BEST?

MOST REWARDING ACTION

IMMEDIATE REWARD?

IMMEDIATE REWARD?

DISCOUNTED REWARD

TYPES OF RL ALGORITHMS (BASED ON MODEL)

- MODEL DEPENDENT

 (TOO MUCH MATH/ LESS USEFUL)
- MODEL FREE

 (LESS MATH + MORE FUN)

TYPES OF RL ALGORITHMS (BASED ON POLICY)

· POLICY EVALUATION

ESTIMATE THE STATE/ACTION REWARDS FOR A GIVEN POLICY

· POLICY CONTROL

TASK IS TO IMPROVE A POLICY

POLICY CONTROL EPSILON GREEDY POLICY

EXPLORE EXPLOIT PROBLEM

EXPLORE EXPLOIT PROBLEM

STATE VISITATION FREQUENCY

MONTE CARLO EVALUATION

Farm \rightarrow Sea \rightarrow Island \rightarrow Forest \rightarrow Dead

Sea \rightarrow Island \rightarrow Forest \rightarrow Mountain \rightarrow Forest \rightarrow Dead

Forest \rightarrow Sea \rightarrow Island \rightarrow Sea \rightarrow Island \rightarrow Forest \rightarrow Dead

MONTE CARLO EVALUATION

5

7

8

10

11

12

13

Algorithm 1: Monte Carlo Evaluation

```
1 N(s) \leftarrow 0, \forall s \in S
 2 S(s) \leftarrow 0, \forall s \in S
 3 for each episode do
          for each state(s) \in episode do
                G_t \leftarrow 0
 5
 6
               for t \leftarrow [t_{curr}, T] do
 7
                G_t \leftarrow G_t + \gamma^i R_ti \leftarrow i + 1
 8
 9
               N(s) \leftarrow N(s) + 1
10
               S(s) \leftarrow S(s) + G_t
11
```

 $V(s) \leftarrow S(s)/N(s)$

12

Algorithm 2: Monte Carlo Evaluation with incremental updates

```
1 N(s) \leftarrow 0, \forall s \in S
2 S(s) \leftarrow 0, \forall s \in S
3 for each episode do
        for each state(s) \in episode do
              G_t \leftarrow 0
             for t \leftarrow [t_{curr}, T] do
               G_t \leftarrow G_t + \gamma^i R_t
              i \leftarrow i + 1
              V(s) \leftarrow V(s) + \alpha(G_t - V(s))
              or
              N(s) \leftarrow N(s) + 1
              V(s) \leftarrow
               V(s) + \frac{1}{N(s)}(G_t - V(s))
```

TEMPORAL DIFFERENCE

$$G_t(s_t) = R_{t+1} + \gamma R_{t+2} + \gamma^{T-2} \cdots R_{T-1}$$

We can write reward for next state as

$$G_{t+1}(s_{t+1}) = R_{t+2} + \gamma R_{t+3} + \gamma^{T-3} \cdots R_{T-1}$$

Therefore we can also write the first equation as

$$G_t(s_t) = R_{t+1} + \gamma \overbrace{\left\{ R_{t+2} + \gamma^{T-3} \cdots R_{T-1}
ight\}}^{G_{t+1}(s_{t+1})}$$

and we all know we want to update value function, closer to discounted reward $(G \leftarrow V)$, therefore our new update for TD Learning becomes

$$V(s_t) = V(s) + lpha(\hat{G}_t - V(s))$$
 $V(s_t) = V(s_t) + lpha(R_{t+1} + \gamma V(s_{t+1}) - V(s_t))$

TEMPORAL DIFFERENCE

REMINDER: GOAL OF RL

STATE	ACTION
A	GO STRAIGHT
В	TAKE LEFT
C	TAKE RIGHT OR LEFT

MC VS TD

MONTE CARLO

$$V(S_t) \leftarrow V(S_t) + \alpha (G_t - V(S_t))$$

$$q(a_t|s_t) = q(a_t|s_t) + a(G_t - q(a_t|s_t))$$

TEMPORAL DIFFERENCE

$$V(S_t) \leftarrow V(S_t) + \alpha \left(R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right)$$

$$q(a_t|s_t) = q(a_t|s_t) + \alpha((R_t + \gamma q(a_{t+1}|s_{t+1})) - q(a_t|s_t))$$

TD CONTROL + GREEDY = SARSA

(STATE ACTION REWARD STATE ACTION)

POLICY EVALUATION

$$q(a_t|s_t) = q(a_t|s_t) + \alpha((R_t + \gamma q(a_{t+1}|s_{t+1})) - q(a_t|s_t))$$
$$q(a_t|s_t) = (\mathbf{1} - \alpha)q(a_t|s_t) + \alpha(R_t + \gamma q(a_{t+1}|s_{t+1}))$$

POLICY UPDATE

 ϵ – greedy approach

SARSA

$$q(a_t|s_t) = (1 - \alpha)q(a_t|s_t) + \alpha(R_t + \gamma q(a_{t+1}|s_{t+1}))$$

Q LEARNING

REQUIRES ONLY SARS PAIRS

$$q(a_t|s_t) = (1 - \alpha)q(a_t|s_t) + \alpha * \max(R_t + \gamma q(a_*|s_{t+1}))$$

DEMO TIME

(GRID-WORLD)

GOAL OF Q LEARNING

- ESTIMATING ACTION VALUE FUNCTION (Q)
- UPDATE Q FUNCTION VIA MOVING AVG

$$q(a_t|s_t) = (1 - \alpha)q(a_t|s_t) + \alpha * \max(R_t + \gamma q(a_*|s_{t+1}))$$

PROBLEM WITH Q LEARNING

- · CAN'T HANDLE NEAR INFINITE STATES (IMAGES)
- · CAN'T HANDLE STATE AS FEATURE VECTOR

Q LEARNING

$$q(a_t|s_t) = (1 - \alpha)q(a_t|s_t) + \alpha * \max(R_t + \gamma q(a_*|s_{t+1}))$$

DEEP Q LEARNING

Update neural network by setting label for $q(a_t|s_t)$ as $\max_{t} (R_t + \gamma q(a_*|s_{t+1}))$

$$q(a_t|s_t) = neural - network(s_t)$$

FUNCTION APPROXIMATOR

DEEP Q LEARNING

BEHAVIORAL CLONING

DEMO TIME

(CARTPOLE IN OPENAI-GYM)

POLICY GRADIENT APPROACHES

CHANGE POLICY RATHER THAN Q VALUES

POLICY ENTROPY = 0.9

POLICY ENTROPY = 0.1

ACTOR CRITIC MODEL

ACTOR

Learns to act based on advantage factor given by critic.

CRITIC

Understands each shot(State), based on rewards

EXPECTED REWARD

PREDICTED REWARD

= ADVANTAGE

PREDICTED REWARD

$$R_{t+1} + \gamma R_{t+2} + ... + \gamma^{T-t-2} R_T$$

OTHER COOL STUFF

PROXIMAL POLICY OPTIMIZATION

MONTE CARLO TREE SEARCH

Subscribe

www.youtube.com/c/crazymuse

Contact Details

jaley.dholakiya@crazymuse.in 8105207901

Github link: www.github.com/crazymuse

Medium Link: www.medium.com/crazymuse

Ping me for any doubt