Questions possibles

Quelles sont les propriétés physiques attendues pour les polymères ?

Cela dépend des utilisations, on distingue les thermoplastiques (qui changent de formes lorsqu'ils sont chauffés) des thermodurcissables qui ont une forme non modifiable une fois qu'ils sont formés.

Comment quantifier l'élasticité d'un matériau?

Par son module d'Young : $\sigma = E\varepsilon$, σ étant la contrainte en Pa et ε l'allongement relatif. Ainsi le module d'Young est en Pascal. Un matériau avec un module d'Young élevé est dit rigide Il vaut environ 30 MPa pour le polystyrène

Qu'est-ce qu'il y a dans le polystyrène expansé?

On a injecté un gaz dedans

Quel phénomène est responsable de la précipitation de la caséine en milieu acide ?

La floculation (Rassemblement, sous forme de flocons, des particules d'une solution colloïdale) est responsable de cette précipitation.

C'est quoi la caséine?

Il s'agit d'une amine

Pourquoi utiliser un cristallisoir pour la manipulation de l'extraction de la caséine du lait ?

On utilise un bain marie à 40°C car il s'agit des conditions optimales de précipitation des protéines du lait. Le pH doit être d'environ 5,5 pour que l'extraction soit optimale.

Où sont les polymères dans les objets de notre quotidien ?

Dans les fibres textiles : nylon, laine Dans les plastiques : PVC, polystyrène...

Pourquoi le polystyrène est blanc?

Ce n'est pas toujours le cas...

C'est quoi un polymère biodégradable?

C'est un polymère qui se dégrade seul dans la nature dans un temps limité

Quelle est la différence entre un polymère et un plastique ?

Je ne sais pas trop.

Certains polymères ne sont pas des plastiques : ADN

Les matières plastiques sont constituées de polymères mais la réciproque est fausse.

On définit deux masses molaires différentes, pouvez-vous expliquer?

On définit la masse molaire en nombre et en masse.

$$\overline{M_n} = rac{\sum_i N_i M_i}{\sum_i N_i}$$
 pour la masse molaire moyenne en nombre $\overline{M_w} = rac{\sum_i N_i M_i^2}{\sum_i N_i M_i}$ pour la masse moyenne en masse

Et on définit l'indice de polymolécularité : $IP = \frac{\overline{M_w}}{\overline{M_n}}$

À quoi servent ces définitions ?

Osmométrie : nombre de macromolécules donc masse molaire en nombre Diffusion de la lumière : taille qui compte donc masse molaire en masse

Quelle est la différence entre les macromolécules et les molécules déjà vues par les élèves ? La masse molaire de ces molécules sont bien plus grandes.

Quel est le comportement des polymères en solution ?

Initialement les polymères ne se regroupent pas et au-dessus d'une certaine concentration, on observe la formation de micelles (cette concentration est appelée concentration micellaire critique).

Quelle est l'origine de cette formation de micelles ?

Gain entropique dû aux interactions entre les parties hydrophobe et hydrophile.

Comment se passe une polyaddition?

Il s'agit d'une réaction radicalaire

Rôle de l'AIBN?

Permet de détruire l'inhibiteur de radicaux