Biochemie 1 Les 11

Vandaag

Mechanismen enzymen (8.1)

Chymotrypsine (8.3)

Irreversible inhibitors (8.2)

Allosterie (7.3)

De volgorde van de lessen wijkt af van het boek, maar de inhoud is wel hetzelfde.

Katalyse door enzymen

- 1. Covalente katalyse: reactieve groep (vaak nucleofiel) bindt (tijdelijk) covalent aan het substraat.
- 2. Zuur-base katalyse: zure of basische groep doneert/accepteert H⁺ (bijv histidine)
- 3. Metaal-ion katalyse: meerdere manieren, b.v.: intermediair stabiliseren; binding substraat; nucleofiel genereren.
- 4. Bijeen brengen en oriënteren: bij een reactie met 2 substraten is de grootste winst het goed positioneren. Een enzym kan ze binden en, bijeenbrengen en draaien tot de juiste oriëntatie

Chymotrypsine

Proteolytisch enzym / peptidase

Knipt aan C-terminale kant van grote hydrofobe aminozuren

Serine protease

http://pdb101.rcsb.org/motm/46

Chymotrypsin(ogen)

Eerst synthese van chymotrypsinogen

chymotrypsinogen

- polypeptide van 245 aminozuren, gelinked d.m.v. 5 disulfidebruggen.
- gemaakt en opgeslagen in de alvleesklier
- in dunne darm omgezet in chymotrypsine (zie volgende slide)

chymotrypsinogen is een voorbeeld van een zymogen

zymogen: inactieve precursor van een enzyme; actieve vorm ontstaat na verbreken van een of meer covalente bindingen

Campbell, Biochemistry

Chymotrypsine active site

Wat zijn de eigenschappen van Ser, His en Asp?

Serine (Ser, S)

Histidine (His, H)

Aspartate (Asp, D)

Chymotrypsine active site

Catalytic triad:

- His57: dient als 'general base catalyst': accepteert H+ van Ser195
- Ser195: wordt daardoor sterker nucleofiel (O⁻ → alkoxide ion)
- Asp102: stabiliseert His⁺ 57 en maakt het tot een betere proton acceptor door H-binding en elektrostatische effecten.

Mechanisme chymotrypsine

Mechanisme chymotrypsine

catalytic triad in active site

His57 (general base catalyst) neemt proton over van Ser195

Oxyanion hole Gly 193 Ser 195

Tetrahedral-intermediair gestabiliseerd door waterstofbruggen tussen de negatief geladen zuurstof en NH-groepen in **oxyanion hole**.

His57 doneert een proton aan N (His dient nu als general acid catalyst!)

Oxyanion hole

Carbonyl C nog gebonden aan Ser195

Dus tot nu toe:

- 1. Binding substraat; His57 ('general basa catalyst') neemt H over van Ser195
- 2. Nucleofiele aanval van Ser 195 op carbonylgroep; vorming tetrahedral intermediate
- 3. His57 doneert H ('general acid catalyst') aan NH; tetrahedral intermedaite valt uit elkaar
- 4. Resultaat: acyl-enzyme

Stap 5-8: hydrolyse estergroep acylenzym (zie volgende slides)

intermediate

Acyl-enzyme

Dus: laatste stappen

- 5. His57 ('general base catalyst') neemt H⁺ over van water
- 6. Nucleofiele aanval van OH- op carbonylgroep; vorming **tetrahedral intermediate**
- 7. Carboxylic acid product laat los
- 8. Terug bij beginsituatie

Dus: mechanisme chymotrypsine

Chymotrypsine mechanisme

Uitleg in b.v. onderstaande videos

https://www.youtube.com/watch?v=OY1WsqlcUdo

https://www.youtube.com/watch?v=gJNMryCX3YY

Chemotrypsin kinetiek m.b.v. chromogeen substraat

N-Acetyl-L-phenylalanine p-nitrophenyl ester

p-Nitrophenolate

Figure 8.21
Biochemistry: A Short Course, Third Edition
© 2015 Macmillan Education

Chemotrypsin kinetiek m.b.v. chromogeen substraat

Figure 8.22

Biochemistry: A Short Course, Third Edition

© 2015 Macmillan Education

Covalente katalyse

P-nitrophenolate (dit meet je!)

Bij de eerste ronde kan het substraat direct aan het enzym binden \rightarrow P-nitrophenolate al snel te meten ('burst phase'). De volgende ronde kan pas plaatsvinden na deacylatie (dus als het enzym weer 'vrij' is).

Rol Serine 195

m.b.v. diisopropylphosphofluoridate (DIPF) is een 'group specific inhibitor'

'group specific inhibitors' modificeren de specifieke R-groepen

van aminozuren

DIPF modificeert **Serines**

DIPF inactiveert chymotrypsine door Ser 195 (slechts één van de 28 Serines van chymotrypsine) te modificeren

Rol histidine 57

m.b.v. TPCK (een substraat analoog: lijkt op substraat \rightarrow covalente modificatie active site \rightarrow enzym geïnactiveerd)

Irreversible inhibitors

Binden sterk aan enzym (covalent of niet-covalent)

Vier categorieën:

- Groepspecifieke reagents (b.v. DIPF)
 - modificeren de specifieke R-groepen van aminozuren
- Substraatanalogen (=affinity labels, b.v. TPCK)
 - Icovalente modificatie active site → enzym geïnactiveerd
- Transitiestaat analogen
- Suicide inhibitors

Zie volgende slides

Toepassing? B.v. medicijnen en ophelderen mechanisme enzymen

Irreversible inhibition – suicide inhibitors

Mechanism-based inhibitors

Chemisch gemodificeerde substraten

Reactieve intermediair inactiveert enzym door covalente modificatie

Waarom de naam 'suicide inhibitors'?

→ laten enzym meewerken aan eigen inactivatie

Voorbeeld: penicilline

Irreversible inhibition - transitiestaat analogen

Moleculen die lijken op de transitiestaat van een reactie, maar waar het enzym niet op kan aangrijpen.

Reactie gekatalyseerd door *proline racemase*

Pyrrole 2-carboxylic acid (transition-state analog)

Irreversible inhibition – suicide inhibitors

Mechanism-based inhibitors

Chemisch gemodificeerde substraten

Reactieve intermediair inactiveert enzym door covalente modificatie

Waarom de naam 'suicide inhibitors'?

→ laten enzym meewerken aan eigen inactivatie

Voorbeeld: penicilline

Voorbeeld suicide inhibitor: penicilline

Remt transpeptidase (betrokken bij crosslinking celwand)

Vorige lessen: Michaelis Menten kinetiek

$$V_0 = V_{max} \frac{[S]}{[S] + K_M}$$

Michaelis Menten enzymen

Activiteit bepaald door 'mass action'

Geldt dit voor alle enzymen?

Wat valt je op aan deze grafiek van de V_0 van twee enzymen?

Metabole route

Voorbeeld pathway:

Substraat A: moet bewaard blijven, tenzij product F nodig is

Product F: niet veel nodig en kan niet opgeslagen worden

Intermediairen B, C, D en E hebben geen functie

A > B: committed step (hierna moeten de stappen tot F doorgaan)

Feedback inhibitie

Committed step wordt gereguleerd door allosterische enzymen

Een feedback inhibitor lijkt vaak niet op het substraat of het product van het enzym waar de inhibitor op aangrijpt.

Een feedback inhibitor bindt niet aan de active site, maar aan een andere site op het allosterische enzym

Allosterie

Proces waarbij biologische macromoleculen het effect van binding aan de ene site doorgeven aan een andere, functionele, site.

→ dit maakt regulatie van de activiteit mogelijk

allos → ander
stereos → structuur

Allosterische enzymen volgen geen Michaelis Menten kinetiek

Regulatie allosterische enzymen

Verschillende modellen

Concerted model (MWC model)

Gebaseerd op de volgende aannames:

- Een allosterisch enzym heeft meerdere active sites op verschillende polypeptide ketens
- Elk subunit heeft 2 toestanden:
 - R (relaxed), actieve conformatie, bindt wel S, minder stabiel
 - T (tense), niet-actieve conformatie, bindt geen S, meest stabiel
 - zonder substraat: T en R in evenwicht, T stabieler
 - allosteric constant $L_0 = T/R$ ratio
- Symmetrie regel: Alle subunits moeten dezelfde staat hebben
- Het substraat bindt beter aan de R vorm dan aan de T vorm.

Coöperativiteit: door het binden van 1 S binden de volgende S moleculen makkelijker

Door de binding van substraten verschuift het T-R evenwicht in de richting van R (symmetry rule).

Michealis Menten enzym

Allosterische enzym

De activiteit van een allosterisch enzym is gevoeliger voor veranderingen in [S] rond de K_M dan een Michaelis Mentenenzym met dezelfde V_{max} → treshold effect

Regulatiemoleculen beïnvloeden het evenwicht tussen T en R

- Positieve regulatie:
 - molecuul stabiliseert R
 - concentratie R ↑
 - grotere kans op binding van S
- Negatieve regulatie:
 - molecuul stabiliseert T
 - concentratie T ↑
 - kleinere kans op binding van S

Heterotrophic effects

B.v. aspartaat transcarbamoylase (betrokken bij pyrimidine synthese) wordt gereguleerd door ATP (activator) en CTP (inhibitor)

Homotrophic effects

Effect van substraten op allosterische enzymen

Verantwoordelijk voor de sigmoidale vorm van de curve

Sequential model

In het concerted model heeft een enzym 2 toestanden, T en R

Sequential model: binden van S aan één subunit verandert opeenvolgend de conformaties van andere subunits.

Onderzoek naar allosterische enzymen suggereert dat veel van deze enzymen werken volgens een combinatie van beide modellen (>> hemoglobine, zie volgende les)