Matemática Discreta

Vaira, Stella - Fedonczuk, Miguel Colliard, David - Cottonaro, Mariana

Lic en Sistemas de Información - FCyT - UADER

2022

Anillos.

La estructura de anillo: definición y ejemplos.

Anillo

Si R es un conjunto no vacío con dos operaciones binarias cerradas, denotadas con + y \cdot (que pueden ser diferentes de la suma y producto usuales). Entonces $(R,+,\cdot)$ es un *anillo* si para todos $a,b,c\in R$ se cumplen las siguientes condiciones:

- \bullet a+b=b+a. (ley de conmutativa de +)
- a + (b+c) = (a+b) + c (ley asociativa de +)
- $\exists z \in R \text{ tal que } a + z = z + a = a, \forall a \in R \text{ (Identidad para +)}$

Al trabajar con la segunda operación, en vez de escribir $a \cdot b$ se escribe con frecuencia ab. Además por medio de Inducción matemática se puede probar que dichas propiedades sobre las operaciones se pueden extender para n elementos del anillo definido.

Con las operaciones binarias (cerradas) de la suma y producto usuales, \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} son anillos. En todos estos anillos, la identidad de la suma z es el entero 0 y el inverso aditivo de cualquier número x es -x.

Ejemplo 2

Sea $M_2(\mathbb{Z})$ el conjunto de todas las matrices 2×2 con elementos enteros. En $M_2(\mathbb{Z})$, dos matrices son iguales si sus elementos correspondientes son iguales en \mathbb{Z} . Se definen + y \cdot como sigue:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} e & f \\ a & h \end{bmatrix} = \begin{bmatrix} ae+bg & af+bh \\ ce+da & cf+dh \end{bmatrix}$$

Conocidas como suma y producto usuales entre matrices.

Se puede probar que $(M_2(\mathbb{Z}),+,\cdot)$ es un anillo. Como se puede ver fácilmente, la identidad z y el inverso aditivos de A son respectivamente:

$$z = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \quad A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \quad (-A) = \left[\begin{array}{cc} -a & -b \\ -c & -d \end{array} \right]$$

Observar qué ocurre con estas multiplicaciones:

$$\begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 7 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 7 \\ 4 & 7 \end{bmatrix} \qquad \begin{bmatrix} 3 & 7 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 13 \\ 1 & 2 \end{bmatrix}$$

Entonces...

$$\left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right] \left[\begin{array}{cc} 2 & 1 \\ 2 & 1 \end{array}\right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right]$$

Entonces...

Sea $(R, +, \cdot)$ un anillo.

- **1** Si ab = ba, $\forall a, b \in R$, entonces R es un anillo conmutativo.
- ② El anillo R no tiene divisores propios de cero si para cualquiera $a, b \in R$, ab = z implica que a = z o b = z.
- 3 Si un elemento $u \in R$ es tal que $u \neq z$ y au = ua = a para todo $a \in R$, decimos que u es elemento unidad (o identidad para el producto) de R. Entonces R es un anillo con unidad.

Ejemplo 1

Analicemos si la estructura $(\mathbb{Z}, \oplus, \odot)$, con las operaciones definidas a continuación, es un anillo:

$$x \oplus y = x + y - 1$$
 $x \odot y = x + y - xy$

Sea $\mathsf{U} = \{1,2\}$ y $R = \mathsf{P}(\mathsf{U})$. Definimos + y · sobre los elementos de R como:

$$A + B = A\Delta B = (A \cup B) - (A \cap B)$$
 $A \cdot B = A \cap B$

Como el conjunto de partes de U es finito, podemos ver los resultados en las siguientes tablas. Analicemos si dicha estructura es un anillo:

$+(\Delta)$	Ø	{1}	{2}	\underline{u}
Ø	Ø	{1}	{2}	u
{1}	{1}	Ø	u	{2}
{2}	{2}	u	Ø	{1}
u	u	{2}	{1}	Ø

• (∩)	Ø	{1}	{2}	\mathfrak{u}
Ø	Ø	Ø	Ø	Ø
{1}	Ø	{1}	Ø	{1}
{2}	Ø	Ø	{2}	{2}
u	Ø	{1}	{2}	u

Para $R = \{a, b, c, d, e\}$, definimos + y · mediante las siguientes tablas:

+	а	b	c	d	e
a	а	b	c	d	e
b	b	c	d	e	a
c	c	d	e	a	b
d	d	e	a	b	c
e	e	a	b	c	d

a	b	c	d	e
a	а	а	а	a
a	b	c	d	e
a	С	e	b	d
a	d	b	e	c
a	e	d	c	b
	a a a a a a	a a a b a c a d	a a a a b c a c e a d b	a a a a b c d a c e b a d b e

Dicha estructura es un anillo. Analizar algunas de las propiedades que la hacen un anillo, identificar el elemento unidad, la identidad para +, el inverso aditivo de cada elemento, y si tiene divisores propios de cero.

Sea R un anillo con elemento unidad u. Si $a, b \in R$ y ab = ba = u, entonces b es un inverso multiplicativo de q y a es una unidad de R.

Sea R un anillo conmutativo con elemento unidad. Entonces:

- lacksquare R es un dominio de integridad si R no tiene divisores propios de cero.
- **2** R es un cuerpo (o campo) si todo elemento distinto de cero en R es $una\ unidad$.

Analice si los conjuntos \mathbb{Z} , \mathbb{Q} , \mathbb{R} y \mathbb{C} con la suma y producto usuales son dominio de integridad y cuerpos. Lo mismo para los ejemplos 1, 2 y 3 presentados anteriormente.

Sea $R = \{s, t, v, w, x, y\}$. Definimos + y · por medio de las siguientes tablas.

+	s	t	υ	w	х	у
s	s	t	v	w	x	у
t	t	v	\boldsymbol{w}	x	y	S
v	v	w	x	y	S	t
w	w	x	y	S	t	v
x	x	у	S	t	v	\boldsymbol{w}
У	у	S	t	v	w	x

	s	t	v	w	x	у
s	s	S	S	s	S	s
t	s	t	v	w	x	у
v	s	v	x	S	v	x
$oldsymbol{w}$	s	w	S	w	S	\boldsymbol{w}
x	s	x	v	S	x	v
y	s	y	X	\boldsymbol{w}	v	t

Se puede probar que dicha estructura es un anillo. Analizar algunas de las propiedades que la hacen un anillo, y si posee elemento unidad, y en tal caso, hallar las unidades.