UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
09/903,014	07/11/2001	Tadahiro Ohata	450100-03328	9048
	20999 7590 12/30/2009 FROMMER LAWRENCE & HAUG		EXAMINER	
	ENUE- 10TH FL.		USTARIS, JOSEPH G	
NEW YORK, NY 10151			ART UNIT	PAPER NUMBER
			2424	
			MAIL DATE	DELIVERY MODE
			12/30/2009	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)			
	09/903,014	OHATA ET AL.			
Office Action Summary	Examiner	Art Unit			
	JOSEPH G. USTARIS	2424			
The MAILING DATE of this communication appeariod for Reply	pears on the cover sheet with the c	correspondence address			
A SHORTENED STATUTORY PERIOD FOR REPLY IS SET TO EXPIRE 3 MONTH(S) OR THIRTY (30) DAYS, WHICHEVER IS LONGER, FROM THE MAILING DATE OF THIS COMMUNICATION. - Extensions of time may be available under the provisions of 37 CFR 1.136(a). In no event, however, may a reply be timely filed after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period will apply and will expire SIX (6) MONTHS from the mailing date of this communication. - Failure to reply within the set or extended period for reply will, by statute, cause the application to become ABANDONED (35 U.S.C. § 133). Any reply received by the Office later than three months after the mailing date of this communication, even if timely filed, may reduce any earned patent term adjustment. See 37 CFR 1.704(b).					
Status					
Responsive to communication(s) filed on 17 № 2a) This action is FINAL . 2b) This 3) Since this application is in condition for alloware closed in accordance with the practice under N	s action is non-final. ince except for formal matters, pro				
Disposition of Claims					
 4) Claim(s) 1,2,7-9,12-14,23,24,28-31,34-36,45-47 and 49 is/are pending in the application. 4a) Of the above claim(s) is/are withdrawn from consideration. 5) Claim(s) is/are allowed. 6) Claim(s) 1,2,7-9,12-14,23,24,28-31,34-36,45-47 and 49 is/are rejected. 7) Claim(s) is/are objected to. 8) Claim(s) are subject to restriction and/or election requirement. 					
Application Papers					
9) The specification is objected to by the Examine 10) The drawing(s) filed on is/are: a) acc Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct 11) The oath or declaration is objected to by the Examine 11.	cepted or b) objected to by the land drawing(s) be held in abeyance. Section is required if the drawing(s) is object.	e 37 CFR 1.85(a). jected to. See 37 CFR 1.121(d).			
Priority under 35 U.S.C. § 119					
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No. 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 					
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal F 6) Other:	ate			

Application/Control Number: 09/903,014 Page 2

Art Unit: 2424

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on October 29, 2009 has been entered.

Response to Arguments

2. Applicant's arguments filed October 29, 2009 have been fully considered but they are not persuasive.

Applicant argues with respect to claims 1, 2, 7-9, 12-14, 23, 24, 28-31, 34-36, 45-47, and 49 that Riggins and Limor does not disclose matching identification information of the specific object, and determines whether an image of an apparatus is showing the specific object, wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus, the image of the imaging apparatus is selected, and wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus, the specific object chasing function estimates which imaging apparatus will show the specific object next, and selects the imaging apparatus that will show the specific object next. However, reading the claims in the broadest sense, Limor does disclose those

Application/Control Number: 09/903,014

Art Unit: 2424

limitations in the claims. Limor discloses matching identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range), wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

Page 3

Applicant is reminded that although the claims are interpreted in light of the specification, limitations from the specification are not read into the claims. See *In re Van Geuns*, 988 F.2d 1181, 26 USPQ2d 1057 (Fed. Cir. 1993).

Claim Rejections - 35 USC § 103

3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:

⁽a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the

invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.

4. Claim(s) 1-2, 7, 9, 12-13, 23-24, 28-29, 31, 34-35, 45-47, and 49 are rejected under 35 U.S.C. § 103(a) as being unpatentable over Riggins, III (US 6,195,090; cited in prior Office Action) in view of Limor et al. (US 2002/0090217; cited in prior Office Action).

As to claims 1, 2, 9, 12, 23, 24, 28, 31, 34, 45-47 and 49, Riggins does not expressly teach GPS position information received from an imaging apparatus that is operable to acquire imaging area information concerning the corresponding program and is disposed mechanically independent of a movable body that is an object in the corresponding program.

In analogous art, Limor et al. ("Limor") teaches GPS position information received from an imaging apparatus (Figs. 1 and 2—camera station 18) that is operable to acquire imaging area information concerning the corresponding program and is disposed mechanically independent of a movable body (Figs. 1 and 3—car 12) that is an object in the corresponding program (Figs. 1-4; paragraphs 22-26, 29, 31, 39 and 40—camera station, or "imaging apparatus", 18 acquires imaging area information of the race car track and is mechanically independent of car, or "movable body", 12).

Therefore, it would have been obvious to one of ordinary skill in the art to modify Riggins to teach wherein the data collection station (col. 2, lines 65-67), or "imaging apparatus", to have GPS position information received from the imaging apparatus that is operable to acquire imaging area information concerning the corresponding program and is disposed mechanically independent of a movable body that is an object in the

corresponding program, as taught by Limor, in order to point a camera unit at the car as the car moves along the track (Limor: paragraph 40).

As to claim 1, Riggins teaches a digital broadcast signal processing apparatus comprising:

a memory section for storing GPS position information received from a movable body that is an object in a corresponding program (Fig. 4, col. 7, lines 25-42); and

a multiplex processing section for multiplexing on a digital broadcast signal of the corresponding program 1) GPS position information received from the movable body, 2) GPS position information and imaging area information received from an imaging apparatus (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45) and (Limor Figs. 1-4; paragraphs 22-26, 29, 31, 39 and 40), and 3) mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and position information of the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040),

a display (e.g. TV set 27 or computer display 33) for mapping positions of a plurality of moveable bodies on the map and displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the

system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the

Application/Control Number: 09/903,014

Art Unit: 2424

specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 2, Riggins teaches a digital broadcast signal processing apparatus comprising:

a mapping processing section for mapping on a map position information of a movable body that is an object in a corresponding program and position information of an imaging apparatus on a basis of information of a map (See Limor Fig. 1; paragraphs 0029 and 0040; e.g. the GPS signal gives coordinates on a map), GPS position information received from the movable body and GPS position information received from the imaging apparatus (Figs. 3 and 4; col. 7, lines 25-42; col. 9, line 47-col. 10, line 11); and

a multiplex processing section for multiplexing mapping information generated by said mapping processing section on a digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for mapping positions of a plurality of movable bodies on the map and displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2,

line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 7, Riggins teaches said multiplex processing section multiplexes profile information concerning the movable body on the digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45).

As to claims 9 and 31, Riggins teaches a digital broadcast signal processing apparatus comprising:

a mapping processing section for separating from a digital broadcast signal that was received or reproduced GPS position information of a movable body that is an object in a corresponding program and GPS position information of an imaging apparatus, to map position information of the movable body and the imaging apparatus on a map on a basis of information of a map (See Limor Fig. 1; paragraphs 0029 and 0040; e.g. the GPS signal gives coordinates on a map), GPS position information of the movable body and GPS position information of the imaging apparatus (Figs. 3 and 4; col. 7, lines 25-42; col. 9, line 47-col. 10, line 11; and

a multiplex processing section for multiplexing mapping information generated in said mapping processing section on a digital broadcast signal of the corresponding program (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for mapping positions of a plurality of movable bodies on the map and displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation).

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See

Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 12, Riggins teaches a digital broadcast signal processing apparatus comprising:

a memory section for storing profile information concerning a movable body that is an object in a corresponding program (Fig. 4; col. 7, lines 25-42); and

a multiplex processing section for multiplexing on a digital broadcast signal the profile information, position information of an imaging apparatus that was received or reproduced (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45), and mapping

information (e.g. GPS data) indicating position information of the imaging apparatus on a map (Limor Fig. 1; paragraphs 0029 and 0040); and

a display (e.g. TV set 27 or computer display 33) for mapping positions of a plurality of movable bodies on the map and displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether

an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 13, Riggins teaches wherein position information of the movable body that is the object, mapping information generated by mapping of the position information of the movable body that is the object and/or position information of an imaging apparatus on a map, imaging area information by the imaging apparatus and object information by the imaging apparatus is multiplexed on the digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45).

As to claim 23, Riggins teaches a digital broadcast signal processing method comprising the steps of:

reading out GPS position information received from a movable body that is an object in a corresponding program (Fig. 4—41; col. 7, lines 25-42);

reading out GPS position information received from an imaging apparatus; and multiplexing GPS position information received from the movable body, GPS position information received from the imaging apparatus, and mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040) on a digital broadcast signal of the corresponding program (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to

simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the

specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 24, Riggins teaches a digital broadcast signal processing method comprising the steps of:

mapping on a map position information of a movable body that is an object in a corresponding program and position information of an imaging apparatus on a map on a basis of information of a map (See Limor Fig. 1; paragraphs 0029 and 0040; e.g. the GPS signal gives coordinates on a map), GPS position information received from the movable body and GPS position information received from the imaging apparatus, (Figs. 3 and 4; col. 7, lines 25-42; col. 9, line 47-col. 10, line 11); and

multiplexing mapping information generated in said mapping step on a digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the

Application/Control Number: 09/903,014

Art Unit: 2424

multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging

apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 28, Riggins teaches a digital broadcast signal processing method comprising the steps of:

reading out GPS position information received from a movable body that is an object in a corresponding program (Fig. 4—41; col. 7, lines 25-42);

reading out imaging area information by an imaging apparatus (Fig. 4—41; col. 7, lines 25-42);

reading out GPS position information received from an imaging apparatus; and multiplexing GPS position information received from the movable body, GPS position information received from the imaging apparatus, the imaging area information, and mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040) on a digital broadcast signal of a the corresponding program (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

Application/Control Number: 09/903,014

Art Unit: 2424

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 29, Riggins teaches multiplexing profile information concerning the movable body on the digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45).

As to claim 34, Riggins teaches a digital broadcast signal processing method comprising the steps of:

reading out profile information concerning a movable body that is an object in a corresponding program (Fig. 4—41; col. 7, lines 25-42);

reading out GPS position information of an imaging apparatus; and multiplexing the profile information concerning the movable body, the GPS position information of

the movable body (e.g. telemetry data), and mapping information indicating position information of the movable body on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26) on a digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45;

e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 35, Riggins teaches wherein position information of the movable body that is the object, mapping information generated by mapping of the position information of the movable body that is the object and/or position information of an imaging apparatus on a map, imaging area information by the imaging apparatus and object

information by the imaging apparatus is multiplexed on the digital broadcast signal (Figs. 2-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45).

As to claim 45, Riggins teaches a digital broadcast signal processing method comprising the processes of:

multiplexing on a picture signal GPS position information received from a movable body that is an object in a corresponding program and GPS position information received from an imaging apparatus (Fig. 4—74; col. 7, lines 25-42), and mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040); and

transmitting the picture signal after the multiplexing process as a digital broadcast signal (Fig. 4—77; col. 7, lines 25-42); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45;

e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 46, Riggins teaches s digital broadcast signal processing method comprising the processes of:

multiplexing on a picture signal GPS position information of a movable body that is an object in a corresponding program, GPS position information of an imaging apparatus, and mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040) (Fig. 4—74; col. 7, lines 25-42); and

transmitting the picture signal after the multiplexing process as a digital broadcast signal (Fig. 4—77; col. 7, lines 25-42); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 47, Riggins teaches a digital broadcast signal processing method comprising the processes of:

multiplexing on a picture signal mapping information generated by mapping on a position information of a movable body that is an object in a corresponding program and position information of an imaging apparatus (Figs. 3 and 4—74; col. 7, lines 25-42) on a basis of information of a map (See Limor Fig. 1; paragraphs 0029 and 0040; e.g. the GPS signal gives coordinates on a map), GPS position information received from the movable body (e.g. telemetry data) and GPS position information received from the imaging apparatus (See Limor Fig. 1; paragraphs 0029 and 0040); and

transmitting the picture signal after the multiplexing process as a digital broadcast signal (Fig. 4—77; col. 7, lines 25-42); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation).

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether

an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

As to claim 49, Riggins teaches a digital broadcast signal processing method comprising the processes of:

multiplexing on a picture signal profile information concerning a movable body that is an object in a corresponding program and GPS position information of an imaging apparatus (Fig. 4—74; col. 7, lines 25-42) and mapping information (e.g. telemetry data and GPS data) indicating position information of the moveable body and the imaging apparatus on a map (e.g. near video quality three-dimensional model of the racetrack and competing vehicles) (See Riggins col. 12 lines 7-26 and Limor Fig. 1; paragraphs 0029 and 0040); and

transmitting the picture signal after the multiplexing process as a digital broadcast signal (Fig. 4—77; col. 7, lines 25-42); and

mapping positions of a plurality of movable objects on the map (See Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45); and

a display (e.g. TV set 27 or computer display 33) for displaying a positional relationship between the movable bodies on the screen as a function of the multiplexing processing section (Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race. This is a function of the multiplexing processing section because the multiplexing processing section provides the all the data needed to construct the simulation),

wherein, when a specific object chasing function is selected (See Limor paragraphs 0029; when cameras are assigned to cars), the display maps the positions of the specific object and plurality of movable bodies on the map (See Limor Fig. 1; paragraph 0027 and Riggins Figs. 1-5; col. 11, line 65-col. 12, line 31; col. 9, line 47-col. 10, line 11; col. 2, line 30-col. 3, line 18; col. 5, lines 25-38; col. 6, line 1-col. 7, line 45; e.g. the system displays a three-dimensional model of the actual racetrack, all of the competing vehicles, and camera positions to achieve different angles in order to simulate the race), matches identification information of the specific object (e.g. speed

and GPS information of the assigned car matches the positioning of the camera) (See Limor Fig. 5, 202 and 212; paragraphs 0029 and 0031-0032), and determines whether an image of an apparatus is showing the specific object (See Limor Fig. 5, 212 or 222; paragraph 0036; e.g. is car within range),

wherein, if the specific object chasing function determines that the specific object is included in the image of an imaging apparatus (e.g. car is within range), the image of the imaging apparatus is selected (e.g. continues to collect video signal from current camera) (See paragraph 0036), and

wherein, if the specific object chasing function determines that the specific object is not included in the image of an imaging apparatus (e.g. car is out of range), the specific object chasing function estimates which imaging apparatus will show the specific object next (See Limor paragraphs 0031-0032), and selects the imaging apparatus that will show the specific object next (See Limor Fig. 5, 224; paragraph 0036; e.g. switches to next camera).

5. Claims 8, 14, 30, and 36 are rejected under 35 U.S.C. § 103(a) as being unpatentable over Riggins III (previously cited) in view of Limor (previously cited), as applied to claims 7, 12, 29 and 34, and further in view of Yuen et al. (US 2005/0198668; cited in prior Office Action).

As to claims 8, 14, 30, and 36, Riggins III does not specifically teach said profile information includes uniform resource locator (URL) information or mail address information, both being for access to information concerning the movable body.

Application/Control Number: 09/903,014 Page 32

Art Unit: 2424

In analogous art, Yuen et al. ("Yuen") teaches said profile information includes uniform resource locator (URL) information or mail address information, both being for access to information concerning the movable body (paragraph 51).

Therefore, it would have been obvious to one of ordinary skill in the art at the time the invention was made to modify Riggins III and Limor by having the profile information include uniform resource locator (URL) information or mail address information, both being for access to information concerning the movable body, as taught by Yuen, so as to provide additional information about the data provided on the display (Yuen: paragraph 51).

Conclusion

6. Any inquiry concerning this communication or earlier communications from the examiner should be directed to JOSEPH G. USTARIS whose telephone number is (571)272-7383. The examiner can normally be reached on M-F 7:30-5 PM; Alternate Fridays off.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Christopher S. Kelley can be reached on 571-272-7331. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Application/Control Number: 09/903,014 Page 33

Art Unit: 2424

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Joseph G Ustaris/ Primary Examiner, Art Unit 2424