Monte Carlo Methods

Story So Far...

- In the previous chapter, we learned how to compute the optimal policy using two dynamic programming methods
 - value iteration
 - policy iteration
- Dynamic programming can be used when the model dynamics is known.
 - transition probability
 - reward
- What is we do not know the model dynamics?
 - In that case, we cannot use dynamic programming.
- We need a model-free learning method when we do not know the model dynamics.
- The Monte Carlo method is one of the model-free methods.

The Monte Carlo Method

- A statistical technique used to find an approximate solution through sampling.
- Suppose we have a random variable X, for which we do not know the probability distribution. We want to find out its expectation E(X).
- If we know the probability distribution, then E(X) can be calculated as:

$$E(X) = \sum_{i=1}^{N} x_i p(x_i)$$

• If we do not know the probability distribution, then we can just find out by sampling values of X for some N times. We will approximate the expectation with the mean of sampled values. The approximation gets better when N is larger.

$$\mathbb{E}_{x \sim p(x)}[X] \approx \frac{1}{N} \sum_{i} x_{i}$$

Prediction Task and Control Task

Prediction Task

- With policy π given, we try to predict the value function or Q function using the policy.
- Why? because we want to evaluate the policy.
- What is a good policy? One that gets a good return for the agent.
- How can we get the return? From the Q function
- Thus, by predicting a Q function, we predict the (expected) return, and that will evaluate the policy π .
- In prediction task, we don't make any change to the given policy.

Control Task

- We are not given any policy here. We start off with a random policy.
- Iteratively, we <u>make changes to the policy</u>, hoping to find the optimal policy.

Monte Carlo Methods

Prediction Task using the Monte Carlo method

The Value Function

- Here we would like to calculate a value function for an environment where model dynamics is not known.
- Definition of a value function is:

$$V^{\pi}(s) = \mathbb{E} \left[R(\tau) | s_0 = s \right]$$
$$\tau \sim \pi$$

- It means the expected return when the agent starts from state s and follows policy π .
- We can approximate the value of the state using the Monte Carlo method.
- We sample episodes following the given policy π for some N times and compute the value of the state as the average return across sampled episodes.

$$V(s) \approx \frac{1}{N} \sum_{i=1}^{N} R_i(s)$$

The Grid World Again

- We consider the 3x3 Grid World again.
- The agent has a choice of "moving right" and "moving down".
- Here, the agent obtains +1 reward when it visits an unshaded state, and obtains -1 reward when it visits a shaded state.
- The episode ends when the agent arrives at state I.

- Suppose we have an environment where the transition probability is like the following.
 - If agent moves "down" in state A, it moves to state D 80% of the time, and it moves to state B 20% of the time.
 - For all other states, the agent successfully moves according to its intention.
 - If the agent moves right, it will move to the right state 100% of the time.
- In this environment, we are going to have a policy π that does the following.
 - In State A, B, C, and F, the agent selects "down".
 - In State D, E, G, and H, the agent selects "right".

- We generate an episode τ_1 using the policy π .
 - In this episode, the agent moves to state D by "moving down" in state A.
 - The return $R_1(A)$ is +1+1+1+1 = 4.

- We generate another episode τ_2 using the policy
 - In this episode, the agent moves to state B by "moving down" in state A.
 - The return $R_2(A)$ is -1+1+1+1 = 2.

- We generate another episode τ_3 using the policy
 - In this episode, the agent moves to state D by "moving down" in state A.
 - The return $R_3(A)$ is +1+1+1+1 = 4.

- Now, we estimate value of state A using the three episodes.
- We let V(A) to be the average return of the three sampled episodes.

$$V(A) \approx \frac{1}{N} \sum_{i=1}^{N} R_i(A)$$

- In this example, $V(A) = \frac{4+2+4}{3} = 3.3$
- What is the "real" value of state A according to policy π ?
 - If the agent moves to state B from state A, V(A) = 2.
 - If the agent moves to state D from state A, V(A) = 4.
 - Since the agent moves to D in 80% of the time, $V(A) = 0.8 \times 4 + 0.2 \times 2 = 3.6$.
- Similarly, we can compute the value of other states.
- The accuracy of estimation is improved when number of samples is larger.

Monte Carlo Prediction Algorithm

1. Let total_return(s) be the sum of return of a state across several episodes and N(s) be the number of times a state is visited across several episodes. Initialize total_return(s) and N(s) as zero for all the states. The policy π is given as input.

2. For *M* number of iterations:

- 1. Generate an episode using the policy π .
- 2. Store all rewards obtained in the episode in the list called **rewards**.
- 3. For each step t in the episode:
 - 1. Compute the return of state s_t as $R(s_t)$ = sum(rewards[:t])
 - 2. Update total return of state s_t as total_return(s_t) = total_return(s_t) + $R(s_t)$
 - 3. Update the counter as $N(s_t) = N(s_t) + 1$
- 3. Compute the value of state by taking the average, that is:

$$V(s) = \frac{\text{total_return}(s)}{N(s)}$$

Types of Monte Carlo Prediction

First-visit Monte Carlo

 If a state is visited multiple times in an episode, only consider the first visit to that state when calculating the value function.

Every-visit Monte Carlo

 If a state is visited multiple times in an episode, consider all visits to the state when calculating the value function.

First-Visit Monte Carlo

1. Let total_return(s) be the sum of return of a state across several episodes and N(s) be the number of times a state is visited across several episodes. Initialize total_return(s) and N(s) as zero for all the states. The policy π is given as input.

2. For *M* number of iterations:

- 1. Generate an episode using the policy π .
- 2. Store all rewards obtained in the episode in the list called **rewards**.
- 3. For each step t in the episode:

If the state s_t is occurring for the first time in the episode:

- 1. Compute the return of state s_t as $R(s_t)$ = sum(rewards[:t])
- 2. Update total return of state s_t as total_return(s_t) = total_return(s_t) + $R(s_t)$
- 3. Update the counter as $N(s_t) = N(s_t) + 1$
- 3. Compute the value of state by taking the average

Implementing the Monte Carlo Prediction Method

- Our environment: Blackjack
- Understanding the game of Blackjack
 - Blackjack is a card game that is played between a player and a dealer.
 - The goal of the player is to have the value of the sum of all the cards be 21, or a larger value than the sum of the dealer's cards while not exceeding 21.
 - The value of the cards Jack (J), Queen (Q), and King (K) is considered as 10.
 - The value of the Ace (A) can be 1 or 11, depending on the player's choice.
 - The value of the rest of the cards (2 to 10) is their face value.

- Initially, a player is given two cards. Both cards are face up.
- Similarly, the dealer is also given two cards. One of the card is face up, and the other is face down.

- The player plays first.
- The player has two actions Hit or Stand.
- If the player selects "Hit", an additional card is given to the player.
 - The player can select "Hit" multiple times until deciding to select "Stand".
 - If the sum exceeds 21 after "Hit", then the player automatically loses and the game ends there. This is called "bust".
- If the player selects "Stand", the player stops getting more cards.
- Then, the dealer plays.
- The dealer has a fixed policy. If the sum is less than 17, the dealer selects "Hit". Otherwise, the dealer selects "Stand".
- Once the player and the dealer is done playing, their cards are compared to select the winner.

- If the player "busts" (the sum exceeds 21), then the player loses.
- If the player's sum is less than or equal to 21 and the dealer "busts", the player wins.
- If the player's sum is larger than the dealer's sum, the player wins.
- If the player's sum is smaller than the dealer's sum, the player loses.
- If the player's sum is equal to the dealer's sum, the game is a draw.
- Reward for a Win: +1
- Reward for a Draw: 0
- Reward for a Loss: -1

the player goes bust

- "Usable" Ace
 - The Ace (A) card can be used as 1 or 11.
 - If the player holds an Ace card that is being used as 11 without going bust, we say that the player has a "usable" ace.
 - The player might select "hit" even with a large number.
 - e.g.) If the player has an ace and 5, the ace here is the "usable" ace.

Modeling Blackjack for Reinforcement Learning

 Although the game involves two players (the player and the dealer), this is a single-agent environment because the dealer has a deterministic policy.

States

- Player's sum
- Dealer's face-up card
- Whether the player has a usable ace or not

```
(15, 9, True)
```

- Actions
 - Stand (0), Hit (1)
- Rewards
 - Win (+1), Draw (0), Loss (-1)

- Create the environment
 - We are going to use the pandas library.

```
import gym
import pandas as pd
from collections import defaultdict

env = gym.make('Blackjack-v0')
```

- Define a policy
 - To run a Monte Carlo prediction, we need an input policy.
 - In our policy, we will choose Stand if our sum is larger than 19. Otherwise, we will choose Hit.

```
def policy(state):
    return 0 if state[0] > 19 else 1
```


- Define a function that generates a single episode
 - Perform actions based on the policy
 - Record (state, action, reward) for each state it visits

```
def generate_episode(policy):
    episode = []
    state = env.reset()
    for t in range(num_timesteps):
        action = policy(state)
        next_state, reward, done, info = env.step(action)
        episode.append((state, action, reward))
        if done:
            break
        state = next_state

    return episode
```


- Run multiple episodes and record the total return and N (number of times the state is visited) for all states.
- Value of a state is the total return of the state divided by N of the state.
- We can use the pandas dataframe to conveniently organize the value table.

```
total_return = defaultdict(float)
N = defaultdict(int)
num_iterations = 500000
for i in range(num_iterations):
    episode = generate_episode(policy)
    states, actions, rewards = zip(*episode)
    for t, state in enumerate(states):
        R = (sum(rewards[t:]))
        total_return[state] = total_return[state] + R
        N[state] = N[state] + 1

total_return = pd.DataFrame(total_return.items(), columns=['state', 'total_return'])
N = pd.DataFrame(N.items(), columns=['state', 'N'])
df = pd.merge(total_return, N, on='state')
df['value'] = df['total_return'] / df['N']
```


- As the result of Monte Carlo prediction, we get the value for each state.
 - The left only shows the first 10 lines in the table.
 - From the right, we can see that if the player's sum is 21, the approximated expected return is 0.938015, which is a very high value.
 - If the player's sum is 5 and the dealer's face-up card is an Ace, than the value of the state is -0.615741, a low value.

 When implementing the First-visit Monte Carlo prediction, we can just change one line in the code implementing the Every-visit MC prediction.

```
total_return = defaultdict(float)
N = defaultdict(int)
num_iterations = 500000
for i in range(num_iterations):
    episode = generate_episode(policy)
    states, actions, rewards = zip(*episode)
    for t, state in enumerate(states):
        if state not in states[0:t]:
            R = (sum(rewards[t:]))
            total_return[state] = total_return[state] + R
            N[state] = N[state] + 1
```


Incremental Mean Updates

• In the previous example code, we used the "arithmetic mean" to calculate the average return of the state across multiple episodes.

$$V(s) = \frac{\text{total_return}(s)}{N(s)}$$

Another way is to use incremental mean

$$V(s_t) = V(s_t) + \alpha (R_t - V(s_t))$$

- where
$$\alpha = \frac{1}{N(s_t)}$$

- The incremental mean can be used when we prefer using returns from the latest episodes compared to the earlier episodes.
 - e.g.) non-stationary environment

Monte Carlo Prediction of the Q Function

- Previously, we used Monte Carlo prediction to predict the value function.
- Similarly, we can use Monte Carlo prediction to predict the Q function.
- MC Prediction of the Q Function
 - We generate multiple episodes using the given policy π .
 - We calculate total_return(s,a), the sum of the return of the state-action pair across multiple episodes.
 - We also calculate N(s, a), the number of times the state-action pair is visited across multiple episodes.
 - Then, we calculate the Q value for a state-action pair as:

$$Q(s,a) = \frac{\text{total_return}(s,a)}{N(s,a)}$$

Monte Carlo Prediction of the Q Function

- The algorithm for predicting the Q function using the Monte Carlo method
- 1. Let total_return(s, a) be the sum of the return of the state-action pair across several episodes and N(s,a) be the number of times a state-action pair is visited across several episodes. Initialize total_return(s, a) and N(s,a) for all state-action pairs to zero. The policy π is given as input.
- 2. For *M* number of iterations:
 - 1. Generate an episode using policy π .
 - 2. Store all rewards obtained in the episode in the list called rewards.
 - 3. For each step t in the episode:
 - 1. Compute the return for the state-action pair, $R(s_t, a_t) = \text{sum}(\text{rewards}[t:])$
 - 2. Update the total return of the state-action pair, total_return(s_t , a_t) += $R(s_t, a_t)$
 - 3. Update the counter as $N(s_t, a_t) += 1$
- 3. Compute the Q function by taking the average

$$Q(s,a) = \frac{\text{total_return}(s,a)}{N(s,a)}$$

Monte Carlo Prediction of the Q Function

- Every-visit vs. First-visit
 - Similar to when predicting the value function, we have two types of MC: first-visit MC and every-visit MC.
- Arithmetic mean vs. Incremental mean
 - Incremental mean can be used instead of arithmetic mean

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha (R_t - Q(s_t, a_t))$$

Monte Carlo Methods

Control Task using the Monte Carlo method

Monte Carlo Control

- In the previous section, we learned how to predict the value function and the Q function using the Monte Carlo method.
- In the control task, we use the predicted functions to find the optimal policy.
- The procedure for Monte Carlo control
 - Start with a random policy
 - We predict the Q function of the random policy
 - From the Q function, we extract a new policy by selecting an action in each state that has the maximum Q value. That is:

$$\pi = \arg\max_{a} Q(s, a)$$

- We predict the Q function using the new policy
- From the Q function, we extract a new policy
- Repeat the iteration until we think we have found the optimal policy

$$\pi_0 \rightarrow Q^{\pi_0} \rightarrow \pi_1 \rightarrow Q^{\pi_1} \rightarrow \pi_2 \rightarrow Q^{\pi_2} \rightarrow \pi_3 \rightarrow Q^{\pi_3} \rightarrow \cdots \rightarrow \pi^* \rightarrow Q^{\pi^*}$$

Monte Carlo Control Algorithm

- 1. Let total_return(s, a) be the sum of the return of a state-action pair across several episodes and N(s,a) be the number of times a state-action pair is visited across several episodes. Initialize total_return(s,a) and N(s,a) for all state-action pairs to zero and initialize a random policy π .
- 2. For *M* number of iterations:
 - 1. Generate an episode using policy π .
 - 2. Store all rewards obtained in the episode in the list called rewards.
 - 3. For each step *t* in the episode:

If (s_t, a_t) is occurring for the first time in the episode:

- 1. Compute the return of a state-action pair, R(s, a)=sum(rewards[t:])
- 2. Update the total return of the state-action pair, total_return(s_t , a_t) += $R(s_t, a_t)$
- 3. Update the counter as $N(s_t, a_t) += 1$
- 4. Compute the Q value by taking the average $Q(s_t, a_t) = \frac{\text{total_return}(s_t, a_t)}{N(s_t, a_t)}$
- 4. Compute the new updated policy π using the Q function:

$$\pi = \arg\max_{a} Q(s, a)$$

Types of Monte Carlo Control

- On-policy control
 - The agent behaves using one policy π , and tries to improve the <u>same policy</u> π .
- Off-policy control
 - The agent behaves using one policy b and tries to improve a <u>different policy</u> π .

On-Policy Monte Carlo Control

- In on-policy MC control, we iteratively update policy π .
 - Initially, π is a random policy.
 - Generate multiple episodes using π , and calculate Q values for state-action pairs.
 - From the Q function, extract a new policy π .
 - Repeat.
- The problem with this procedure is that <u>some state-action pairs may never</u> <u>be experienced</u>.
 - If the agent never explores a particular action in a state, we never know whether it is a good action or not.
- In order to explore new state-action pairs, we must choose actions other than one that has the maximum Q value.
 - This is called exploration.

On-Policy Monte Carlo Control

- One way to include exploration is to start an episode with a random stateaction pair.
 - This is called exploring starts.
 - 2. For *M* number of iterations:
 - 1. Select the initial state s_0 and initial action a_0 randomly such that all state-action pairs have a probability greater than 0
 - 2. Generate an episode from the selected initial state s_0 and action a_0 using policy π
 - 3. Store all the rewards obtained in the episode in the list called rewards
 - 4. For each step t in the episode:
- Drawback of the exploring starts method
 - We do not know how to allocate probability for selecting an initial state-action pair.
 - Some states rarely occur while other states occur more frequently.
 - The exploring starts method does not reflect this.

On-Policy Monte Carlo Control

Greedy policy

- A greedy policy is one that selects the best action available at the moment.
- If we have a Q table as below, the greedy policy would always choose action "up" in state A.

State	Action	Value
Α	up	3
Α	right	1

- Suppose we did not explore actions "down" and "left" in state A, and their Q values are initialized to zeros.
- Then, using a greedy policy, we might never be able to explore those actions, although they might turn out to be better than "up".
- Exploration-exploitation dilemma
 - Whether to choose the best action or to try other actions is called the exploration-exploitation dilemma.

On-Policy Monte Carlo Control

- Epsilon-greedy policy
 - A strategy to mix exploration and exploitation together.
 - In most cases, we choose the best action based on the Q table (exploitation).
 - But, with small probability ϵ , we choose a random action and explore new trajectories in the environment (exploration).
 - If $\epsilon = 0$, the policy becomes a greedy policy.
 - If $\epsilon = 1$, the policy becomes a policy which always chooses exploration.
 - The value of ϵ is typically chosen as a value between 0 and 1.

On-Policy Monte Carlo Control

Python code that implements the epsilon-greedy policy

```
def epsilon_greedy_policy(state, epsilon):
    if random.uniform(0,1) < epsilon:
        return env.action_space.sample()
    else:
        return max(list(range(env.action_space.n)), key = lambda x:
q[(state,x)])</pre>
```


On-Policy Monte Carlo Control

- On-Policy Monte Carlo Control with Epsilon-Greedy Policy
 - 2. For *M* number of iterations:
 - 1. Generate an episode using policy π
 - 2. Store all rewards obtained in the episode in the list called rewards
 - 3. For each step t in the episode:

If (s_t, a_t) is occurring for the first time in the episode:

- 1. Compute the return of a state-action pair, $R(s_t, a_t) = \text{sum}(\text{rewards}[t:])$
- 2. Update the total return of the state-action pair as total_return(s_t , a_t) = total_return(s_t , a_t) + R(s_t , a_t)
- 3. Update the counter as $N(s_t, a_t) = N(s_t, a_t) + 1$
- 4. Compute the Q value by just taking the average, that is,

$$Q(s_t, a_t) = \frac{\text{total_return}(s_t, a_t)}{N(s_t, a_t)}$$

4. Compute the updated policy π using the Q function. Let $a^* = \arg\max_a Q(s,a)$. The policy π selects the best action a^* with probability $1 - \epsilon$ and random action with probability ϵ

Implementing On-Policy Monte Carlo Control

Create environment and prepare variables

```
import gym
import pandas as pd
import random
from collections import defaultdict
from tqdm import tqdm

env = gym.make('Blackjack-v0')
Q = defaultdict(float)
total_return = defaultdict(float)
N = defaultdict(int)
num_timesteps = 100
```

- Define the epsilon-greedy policy
 - epsilon is set to 0.5

```
def epsilon_greedy_policy(state, Q):
    epsilon = 0.5
    if random.uniform(0, 1) < epsilon:
        return env.action_space.sample()
    else:
        return max(list(range(env.action_space.n)), key = lambda x: Q[(state, x)])</pre>
```


Implementing On-Policy Monte Carlo Control

Define a function that generates an episode based on the Q function

```
def generate_episode(Q):
    episode = []
    state = env.reset()
    for t in range(num_timesteps):
        action = epsilon_greedy_policy(state, Q)
        next_state, reward, done, info = env.step(action)
        episode.append((state, action, reward))
        if done:
            break
        state = next_state

return episode
```


Implementing On-Policy Monte Carlo Control

- Run multiple episode, updating the Q function after each episode
 - Updating the Q function will change the policy → control task

```
num_iterations = 500000
for i in tqdm(range(num_iterations)):
    episode = generate_episode(Q)
    all_state_action_pairs = [(s,a) for (s,a,r) in episode]
    rewards = [r for (s,a,r) in episode]
    for t, (state, action, _) in enumerate(episode):
        if not (state, action) in all_state_action_pairs[0:t]:
            R = sum(rewards[t:])
            total_return[(state,action)] = total_return[(state,action)] + R
            N[(state,action)] = total_return[(state,action)] / N[(state,action)]
```

The policy can be extracted from the Q function

Off-Policy Monte Carlo Control

- In the off-policy method, we use two policies
 - behavior policy b
 - target policy π
- The agent generates an episode using the behavior policy b.
- For each step in the episode, we compute the return of the state-action pair and compute the Q function $Q(s_t, a_t)$ as an average return.
- From this Q function, we extract a new target policy π .
- We repeat this step iteratively to find the optimal policy π .
- In off-policy method, the behavior policy b is not updated by the iteration.
- ullet To explore various state-action pairs, the behavior policy b is set to an epsilon-greedy policy

Off-Policy Monte Carlo Control Algorithm

- 1. Initialize the Q function Q(s,a) with random values, set the <u>behavior</u> policy b to be epsilon-greedy, and also set the <u>target policy</u> π to be a greedy policy.
- 2. For *M* number of episodes:
 - 1. Generate an episode using the behavior policy b
 - 2. Initialize return R to 0
 - 3. For each step t in the episode, t = T-1, T-2, ..., 0:
 - 1. Compute the return as $R = R + r_{t+1}$
 - 2. Compute the Q value as $Q(s_t, a_t) += \alpha(R_t Q(s_t, a_t))$
 - 3. Compute the target policy $\pi(s_t) = arg \max_a Q(s_t, a)$
- 3. Return the target policy π

Off-Policy Monte Carlo Control Algorithm

- The problem of off-policy method
 - Difference of distribution between the behavior policy and the target policy can cause the target policy to be inaccurate.
 - To correct this, a technique called importance sampling is used.
- Importance Sampling
 - A technique for estimating the values of one distribution when given samples from another distribution

Importance Sampling

• The expectation of a function f(x) where the value of x is sampled from the distribution p(x) that is, $x \sim p(x)$; then we can write:

$$\mathbb{E}_{x \sim p(x)}[f(x)] = \int_{x} p(x)f(x)dx$$

- In the importance sampling method, we estimate the expectation using a different distribution q(x).
- Instead of sampling x from p(x) we use a different distribution q(x) as shown as follows:

$$E_{x \sim p}[f(x)] = \int p(x)f(x)dx = \int \frac{p(x)}{q(x)}q(x)f(x)dx = E_{x \sim q}\left[\frac{p(x)}{q(x)}f(x)\right]$$

$$E_{x \sim p}[f(x)] \approx \frac{1}{N} \sum_{i=1}^{N} \frac{p(x_{i})}{q(x_{i})}f(x_{i}), \quad x_{i} \sim q$$

• Importance sampling ratio: $\frac{p(x)}{q(x)}$

- Since we generate an episode to obtain return from a state, it will be inaccurate because the actions taken from the behavior policy b is different from the actions taken from the target policy π .
- We need to adjust the return using the importance sampling ratio.
- Given a starting state S_t , the probability of the subsequent state-action trajectory, $A_t, S_{t+1}, A_{t+1}, \dots, S_T$, occurring under a policy π is

$$\Pr\{A_{t}, S_{t+1}, A_{t+1}, \dots, S_{T} \mid S_{t}, A_{t:T-1} \sim \pi\}$$

$$= \pi(A_{t}|S_{t})p(S_{t+1}|S_{t}, A_{t})\pi(A_{t+1}|S_{t+1}) \cdots p(S_{T}|S_{T-1}, A_{T-1})$$

$$= \prod_{k=t}^{T-1} \pi(A_{k}|S_{k})p(S_{k+1}|S_{k}, A_{k}),$$

- where p is the transition probability.

• The relative probability of the trajectory under the target and behavior policies (the importance sampling ratio) is:

$$\rho_{t:T-1} \doteq \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} b(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{b(A_k|S_k)}$$

• If we get the expected return starting from state *s* using the behavior policy *b*, it will be the value of state *s* under policy *b*.

$$\mathbb{E}[G_t|S_t=s] = v_b(s)$$

• In order to get $v_{\pi}(s)$, we need to use importance sampling ratio to transform the return.

$$\mathbb{E}[\rho_{t:T-1}G_t \mid S_t = s] = v_{\pi}(s)$$

- Suppose we concatenate all the episodes.
- For example, if the first episode ends at time 100, then the next episode starts at time 101.
- Let T(s) denote the set of all time steps in which state s is visited.
- Also, let T(t) denote the first time of termination following time t, and G_t denote the return after t up through T(t).
- Then, $\{G_t\}_{t\in\mathcal{T}(S)}$ are the returns that pertain to state S, and
- $\{\rho_{t:T(t)-1}\}_{t\in\mathcal{T}(s)}$ are the corresponding importance-sampling ratios.
- To estimate $v_{\pi}(s)$, we scale the returns by the ratios and average the results.

$$V(s) \doteq \frac{\sum_{t \in \mathfrak{T}(s)} \rho_{t:T(t)-1} G_t}{|\mathfrak{T}(s)|}.$$

This is called ordinary importance sampling.

• An alternative is weighted importance sampling, where we use a weighted average for calculating V(s).

$$V(s) \doteq \frac{\sum_{t \in \Im(s)} \rho_{t:T(t)-1} G_t}{\sum_{t \in \Im(s)} \rho_{t:T(t)-1}}$$

- Characteristics of ordinary importance sampling and weighted importance sampling
 - Ordinary importance sampling is unbiased, whereas weighted importance sampling is biased.
 - The variance of ordinary importance sampling is unbounded whereas the variance of weighted importance sampling converges to zero.

Weighted Importance Sampling using Incremental Mean

- Suppose we have a sequence of returns G_1 , G_2 , ..., G_{n-1} all starting in the same state.
- Each return has a corresponding weight W_i ($W_i = \rho_{t_i:T(t_i)-1}$).
- We wish to calculate V(n) using the previous returns we observed.

$$V_n \doteq \frac{\sum_{k=1}^{n-1} W_k G_k}{\sum_{k=1}^{n-1} W_k}, \qquad n \ge 2,$$

• Once we obtain an additional return G_n , we update V_n using incremental mean. The update rule for V_n is:

$$V_{n+1} \doteq V_n + \frac{W_n}{C_n} \left[G_n - V_n \right], \qquad n \ge 1$$

and

$$C_{n+1} \doteq C_n + W_{n+1}$$

Off-Policy Control with Weighted Importance Sampling

- We generate an episode using the behavior policy.
- We initialize return R to 0 and the weight W to 1.
- On every step of the episode in reverse order, we compute the return and update the cumulative weight as $C(s_t, a_t) = C(s_t, a_t) + W$.
- After updating the cumulative weight, we update the Q value as

$$- Q(s_t, a_t) = Q(s_t, a_t) + \frac{W}{C(s_t, a_t)} (R_t - Q(s_t, a_t))$$

- From the Q value, we extract the target policy $\pi(s_t) = \arg\max_a Q(s_t, a)$
- When the action a_t given by the behavior policy and the target policy is not the same, then we break the loop and generate the next episode.
- Else, we update the weight as: $W = W \frac{1}{b(a_t|s_t)}$

Off-Policy Control with Weighted Importance Sampling

The algorithm

- 1. Initialize the Q function Q(s, a) with random values, set the behavior policy b to be epsilon-greedy, and target policy π to be greedy policy and initialize the cumulative weights as C(s, a) = 0
- 2. For *M* number of episodes:
 - 1. Generate an episode using the behavior policy *b*
 - 2. Initialize return *R* to 0 and weight *W* to 1
 - 3. For each step t in the episode, t = T-1, T-2, ..., 0:
 - 1. Compute the return as $R = R + r_{t+1}$
 - 2. Update the cumulative weights $C(s_t, a_t) = C(s_t, a_t) + W$
 - 3. Update the Q value as $Q(s_t, a_t) = Q(s_t, a_t) + \frac{W}{C(s_t, a_t)} (R_t Q(s_t, a_t))$
 - 4. Compute the target policy $\pi(s_t) = \arg \max_a Q(s_t, a)$
 - 5. If $a_t \neq \pi(s_t)$ then break
 - 6. Update the weight as $W = W \frac{1}{b(a_t|s_t)}$
- 3. Return the target policy π

Off-Policy Control with Weighted Importance Sampling [ex006]

Imports and environment setup

```
import sys
import gym
import numpy as np
from collections import defaultdict
env = gym.make('Blackjack-v0')
```

Function that returns the random policy

```
def random_policy(nA):
    A = np.ones(nA, dtype=float) / nA
    def policy_fn(observation):
        return A
    return policy_fn
```

Function that returns the greedy policy based on the Q function

```
def greedy_policy(Q):
    def policy_fn(state):
        A = np.zeros_like(Q[state], dtype=float)
        best_action = np.argmax(Q[state])
        A[best_action] = 1.0
        return A
    return policy_fn
```


Off-Policy Control with Weighted Importance Sampling [ex006]

Implementation of the of-policy MC control (1/2)

```
def mc_off_policy(env, num_episodes, behavior_policy, max_time=100, discount_factor=1.0):
   Q = defaultdict(lambda:np.zeros(env.action space.n))
   C = defaultdict(lambda:np.zeros(env.action_space.n))
   target policy = greedy policy(Q)
   for i_episode in range(1, num_episodes+1):
        if i episode % 1000 == 0:
            print("\rEpisode {}/{}.".format(i episode, num episodes), end="")
            sys.stdout.flush()
       episode = []
       state = env.reset()
       for t in range(max_time):
           probs = behavior policy(state)
            action = np.random.choice(np.arange(len(probs)), p=probs)
           next state, reward, done, = env.step(action)
           episode.append((state, action, reward))
            if done:
                break
            state = next state
```


Off-Policy Control with Weighted Importance Sampling [ex006]

Implementation of the of-policy MC control (2/2)

```
G = 0.0
W = 1.0
for t in range(len(episode))[::-1]:
    state, action, reward = episode[t]
    G = discount_factor * G + reward
    C[state][action] += W
    Q[state][action] += (W / C[state][action]) * (G - Q[state][action])
    if action != np.argmax(target_policy(state)):
        break
    W = W * 1./behavior_policy(state)[action]
return Q, target_policy
```

Calling functions to obtain the optimal policy

```
random_policy = random_policy(env.action_space.n)
Q, policy = mc_off_policy(env, num_episodes=500000, behavior_policy=random_policy)
```


Is the Monte Carlo method applicable to all tasks?

- Since the Monte Carlo is a model-free learning method, it can be applied to environments where the transition probability is not known (or too complex).
- The Monte Carlo method is only applicable to episodic tasks, because it relies on averaging sample returns.
 - We need to run multiple episodes to compute value or Q functions, or update the policy.
- It cannot be applied to continuous tasks.
- For continuous tasks, we have another model-free method called temporal difference learning.

End of Chapter

- Can you use the Monte Carlo control method to train an agent to play the Blackjack game?
- Can you write [ex004], [ex005], and [ex006] yourself?

End of Class

Questions?

Email: jso1@sogang.ac.kr

