CS124: Deep Learning - IIT Ropar

Nihar Ranjan Sahoo Prime Minister Research Fellow, IIT Bombay

Instructors:

Prof. Mitesh M. Khapra, IIT Madras

Prof. Sudarshan Iyengar, IIT Ropar

NPTEL Problem Solving Session

Week-2

Date: 06/08/2022

Outline:

- Linearly Separable Boolean Functions
- Network of Perceptrons
- Sigmoid Neuron
- Supervised Machine Learning Setup
- Learning Parameters: Gradient descent
- Problem Solving

Linearly Separable Boolean Functions

x_1	x_2	XOR	
0	0	0	$w_0 + \sum_{i=1}^2 w_i x_i < 0$
1	0	1	$w_0 + \sum_{i=1}^2 w_i x_i < 0$ $w_0 + \sum_{i=1}^2 w_i x_i \ge 0$
0	1	1	$w_0 + \sum_{i=1}^{2} w_i x_i \ge 0$
1	1	0	$w_0 + \sum_{i=1}^{2} w_i x_i < 0$

$$\begin{split} & w_0 + w_1 \cdot 0 + w_2 \cdot 0 < 0 \implies w_0 < 0 \\ & w_0 + w_1 \cdot 0 + w_2 \cdot 1 \ge 0 \implies w_2 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 0 \ge 0 \implies w_1 \ge -w_0 \\ & w_0 + w_1 \cdot 1 + w_2 \cdot 1 < 0 \implies w_1 + w_2 < -w_0 \end{split}$$

Network of Perceptrons

Any boolean function of n inputs can be represented exactly by a network of perceptrons containing 1 hidden layer with 2^n perceptrons and one output layer containing 1 perceptron

Proof (informal:) We just saw how to construct such a network

Note: A network of $2^n + 1$ perceptrons is not necessary but sufficient. For example, we already saw how to represent AND function with just 1 perceptron

Catch: As *n* increases the number of perceptrons in the hidden layers obviously increases exponentially

Sigmoid Neuron

Perceptron

$$y = 1 \quad if \sum_{i=0}^{n} w_i * x_i \ge 0$$
$$= 0 \quad if \sum_{i=0}^{n} w_i * x_i < 0$$

Sigmoid (logistic) Neuron

Not smooth, not continuous (at w0), not differentiable

Smooth, continuous, differentiable

Supervised Machine Learning Setup

As an illustration, consider our movie example

- Data: $\{x_i = movie, y_i = like/dislike\}_{i=1}^n$
- Model: Our approximation of the relation between \mathbf{x} and y (the probability of liking a movie).

$$\hat{y} = \frac{1}{1 + e^{-(\mathbf{w}^{\mathbf{T}}\mathbf{x})}}$$

- Parameter: w
- Learning algorithm: Gradient Descent [we will see soon]
- Objective/Loss/Error function: One possibility is

$$\mathscr{L}(\mathbf{w}) = \sum_{i=1}^{n} (\hat{y}_i - y_i)^2$$

The learning algorithm should aim to find a w which minimizes the above function (squared error between y and \hat{y})

Gradient Descent

Gradient Descent Rule

- The direction u that we intend to move in should be at 180° w.r.t. the gradient
- In other words, move in a direction opposite to the gradient

Parameter Update Equations

$$w_{t+1} = w_t - \eta \nabla w_t$$

$$b_{t+1} = b_t - \eta \nabla b_t$$

$$where, \nabla w_t = \frac{\partial \mathcal{L}(w, b)}{\partial w}_{at \ w = w_t, b = b_t}, \nabla b = \frac{\partial \mathcal{L}(w, b)}{\partial b}_{at \ w = w_t, b = b_t}$$

Algorithm: gradient_descent()

$$t \leftarrow 0;$$

 $max_iterations \leftarrow 1000;$
while $t < max_iterations$ do

$$w_{t+1} \leftarrow w_t - \eta \nabla w_t;$$

$$b_{t+1} \leftarrow b_t - \eta \nabla b_t;$$

$$t \leftarrow t + 1;$$

end

1) Squared error function is preferred over simple difference between the actual and predicted value of output. Identify the appropriate reason for this statement.

The statement cannot be justified

$$\hat{y} = \frac{1}{1 + e^-(w^T x)}$$

0

x

Both x and w

None of the above

3) Identify the function that cannot be used in a Machine learning model?

- 4) The condition for the new loss to be less than the current loss is $u^T \mathcal{L}(\theta) < 0$. What is the direction of u with respect t to the Gradient for which the decrease of loss is maximum?
 - O 45°
 - 0.
 - 90°
 - 180° ~

6) Which of the following statements is True for a Multilayer Perceptron model?

Statement I: Any boolean function can be represented by a single hidden layer

Statement II: The number of perceptrons for this hidden layer is n² where n is the number of classes

Only I

Only II

Both I and II

None

$$\sigma(x) = \frac{1}{1 + e^{wx + b}}$$

value of x at which transition occurs changes

- o value of w changes
- the slope becomes steeper
- the transition point is found

- の いったさけいくる の いっともけいとる
- 9) Consider a single perceptron that that takes a single input, whether the student has passed in the internal assessment. The perceptron predicts if the student can pass in the end semester exam, Now, if the bias is -0.5 and w1 is 1, what will be the prediction if the output value is 0.51 and 0.49?
 - 01,0
 - 0.1
 - 011
 - 0,0

none

10) Identify the statements that are True about learning algorithm.

Statement I. Maximizes objective function

Statement II. Learns the parameters from data

I only

I only

I and II