ПРИКЛАДНАЯ ИНФОРМАТИКА

УДК 519.876.5:622.453

ПРОЕКТИРОВАНИЕ СИСТЕМЫ ВОЗДУХОРАСПРЕДЕЛЕНИЯ В ГОРНЫХ ВЫРАБОТКАХ УГОЛЬНОЙ ШАХТЫ

Алексеев И.С., Газенаур Е.Г.

Кемеровский государственный университет vanya07155@mail.ru, ketigaz@yandex.ru

Аннотация. В работе представлены результаты компьютерного моделирования распределения воздуха в вентиляционной системе угледобывающей шахты с использованием сетей Петри, упрощающих решение задач проектирования схем ее проветривания.

Ключевые слова: угольная шахта, вентиляция, сети Петри, python.

Добыча угля является важным компонентом экономической и энергетической системы Кузбасса. Современные методы математического моделирования используются при проектировании новых или реконструировании существующих шахт, позволяя проводить оптимизацию основных параметров, а также сравнение различных вариантов при проектировании. Эффективность и безопасность добычи угля невозможны без анализа параметров вентиляционной схемы угольной шахты, отношения между элементами которой можно представить в виде сетевой структуры [1, 2].

Для анализа вентиляционной системы действующей угледобывающей шахты "Алардинская", входящей в состав ОАО «ЮЖКУЗБАССУГОЛЬ» в настоящей работе использовали сеть Петри - эффективный инструмент описания и исследования динамики функционирования сложных систем [3, 4]. Ветви и узлы сети моделируются позициями и переходами. Каждая горная выработка соответствует позиции, соединения двух и более выработок – переходам. Распределение воздуха в системе определяется заданными расходами в истоковых и стоковых позициях сети. В результате анализа формальных свойств сети определена система независимых контуров вентиляционной системы шахты. Вместо множества маршрутов и контуров сети в расчетах использовали подмножества независимых маршрутов и контуров этой же сети, алгоритм нахождения которых реализовали, используя язык программирования Python. Получена система независимых Pинвариантов, тождественная системе независимых маршрутов движения воздуха в вентиляционной сети шахты. Предварительные результаты программной реализации показали сходимость расчетов с реальными исходными данными. Кроме того, использование только подмножества независимых маршрутов и контуров сети значительно упрощает решение вентиляционных задач на сетях. Результаты работы могут быть полезны для проектирования и оптимизации вентиляционных систем в различных промышленных секторах, в частности, в горнодобывающей, энергетической и химической отраслях, интересны для исследователей в области автоматического управления и моделирования сложных систем.

Образование, наука, инновации: вклад молодых исследователей. Выпуск №24

Список литературы

- 1. Машинцов, Е.А. Управление вентиляцией в угольной шахте / Е.А. Машинцов, Л.В. Котлеревская, Н.А. Криничная // Известия ТулГУ. Технические науки. 2014. № 7. С. 188-195.
- 2. Палеев, Д.Ю. Сетевая задача проветривания горных выработок и выработанного пространства шахты / Д.Ю. Палеев // Вестник КузГТУ. 2006. №5. С.58-62.
- 3. Питерсон, Д.Л. Теория сетей Петри и моделирование систем / Д.Л. Питерсон. М.: Мир, 1984. 264 с.
- 4. Тайлаков, О.В. Моделирование процессов воздухораспределения в действующих выработках угольных шахт на основе сетей Петри / О.В. Тайлаков // Известия ТулГУ. Науки о земле. 2019. Вып. 4. С.72-79.

Научный руководитель: д.т.н., доцент Степанов Ю.А., Кемеровский государственный университет

УДК 004.42

СПОСОБЫ АВТОМАТИЗАЦИИ ОБРАБОТКИ ДАННЫХ ПРИ СОСТАВЛЕНИИ ЦИФРОВОГО ПОРТРЕТА СТУДЕНТА

Балахонцев В.И., Ткач А.А.

Кемеровский государственный университет vovabalaxoncev@mail.ru, annatkach225@gmail.com

Аннотация. В статье рассматриваются возможности автоматизации процессов обработки данных при работе с цифровыми портретами студентов. Приводится сравнение типового и предложенных способов обработки данных. Составляются критерии оценки каждого подхода при автоматизации обработки данных.

Ключевые слова. Цифровой портрет, студент, сообщества, языки программирования, данные, автоматизация.

Информационная деятельность представляет собой неотъемлемую составляющую жизни человека, который занимается анализом информационных ресурсов в различных сферах деятельности. Данные - это информация, которую можно использовать для принятия решений, анализа и понимания различных явлений. Это может быть числовая, текстовая, графическая или звуковая информация. Данные могут быть собраны из разных источников, например, из баз данных, сенсоров или интернета [1]. Когда объем данных становится значительным, человеческая концентрация и продуктивность при работе с ними уменьшается, работа становится монотонной и неэффективной, так как человеку приходится использовать мультизадачность (анализировать, собирать, обрабатывать) [2]. В таких случаях стоит обратить внимание на возможности автоматизации обработки данных.

Автоматизация процессов обработки данных является широко распространенной практикой в различных сферах деятельности человека [3]. Она предполагает применение различных технологий и инструментов для автоматизации рутинных задач и процессов в бизнесе или организации. Например, это может включать создание специального программного обеспечения, использование роботов для автоматизации производственных процессов, применение искусственного интеллекта и машинного обучения для автоматизации работы с большими объемами данных. Основная цель автоматизации – повышение эффективности работы, снижение расходов на персонал и уменьшение вероятности ошибок в работе [4]. Существует множество способов автоматизировать