

Spectroscopie

31-10-2023

Lecture 8

L'HEXANE

Vibration CH₂ Vibration CH₃

nombre d'onde (cm⁻¹)

HEX-1-ÈNE

hept-1-yne

Oct-1-yne

nombre d'onde (cm⁻¹)

Oct-2-yne

nombre d'onde (cm⁻¹)

hexan-1-ol

La liaison covalente O-H est affaiblie

Donc k diminue d'où v diminue

Functional Group	Molecular Motion	Wavenumber (cm⁻¹)
alkanes	C-H stretch	2950-2800
	CH₂ bend	~1465
	CH₃ bend	~1375
	CH₂ bend (4 or more)	~720
	=CH stretch	3100-3010
	C=C stretch (isolated)	1690-1630
alkenes	C=C stretch (conjugated)	1640-1610
	C-H in-plane bend	1430-1290
	C-H bend (monosubstituted)	~990 & ~910
	C-H bend (disubstituted - E)	~970
	C-H bend (disubstituted - 1,1)	~890
	C-H bend (disubstituted - Z)	~700
	C-H bend (trisubstituted)	~815
alkynes	acetylenic C-H stretch	~3300
	C.C triple bond stretch	~2150
	acetylenic C-H bend	650-600

Functional Group	Molecular Motion	Wavenumber (cm ⁻¹)
aromatics	C-H stretch	3020-3000
	C=C stretch	~1600 & ~1475
	C-H bend (mono)	770-730 & 715-685
	C-H bend (ortho)	770-735
	C-H bend (meta)	~880 & ~780 & ~690
	C-H bend (para)	850-800
alcohols	O-H stretch	~3650 or 3400-3300
	C-O stretch	1260-1000
ethers	C-O-C stretch (dialkyl)	1300-1000
	C-O-C stretch (diaryl)	~1250 & ~1120
aldehydes	C-H aldehyde stretch	~2850 & ~2750
	C=O stretch	~1725
ketones	C=O stretch	~1715
	C-C stretch	1300-1100

Functional Group	Molecular Motion	Wavenumber (cm ⁻¹)
carboxylic acids	O-H stretch	3400-2400
	C=O stretch	1730-1700
	C-O stretch	1320-1210
	O-H bend	1440-1400
esters	C=O stretch	1750-1735
	C-C(O)-C stretch (acetates)	1260-1230
	C-C(O)-C stretch (all others)	1210-1160
acid chlorides	C=O stretch	1810-1775
	C-Cl stretch	730-550
anhydrides	C=O stretch	1830-1800&1775-1740
	C-O stretch	1300-900

Functional Group	Molecular Motion	Wavenumber (cm ⁻¹)
amines	N-H stretch (1 per N-H bond)	3500-3300
	N-H bend	1640-1500
	C-N Stretch (alkyl)	1200-1025
	C-N Stretch (aryl)	1360-1250
	N-H bend (oop)	~800
amides	N-H stretch	3500-3180
	C=O stretch	1680-1630
	N-H bend	1640-1550
	N-H bend (1°)	1570-1515
alkyl halides	C-F stretch	1400-1000
	C-Cl stretch	785-540
	C-Br stretch	650-510
	C-I stretch	600-485
nitriles	C,N triple bond stretch	~2250

Functional Group	Molecular Motion	Wavenumber (cm⁻¹)
isocyanates	-N=C=O stretch	~2270
isothiocyanates	-N=C=S stretch	~2125
imines	R _z C=N-R stretch	1690-1640
nitro groups	-NO₂ (aliphatic)	1600-1530&1390-1300
intro groups	-NO₂ (aromatic)	1550-1490&1355-1315
mercaptans	S-H stretch	~2550
sulfoxides	S=O stretch	~1050
sulfones	S=O stretch	~1300 & ~1150
sulfonates	S=O stretch	~1350 & ~11750
	S-O stretch	1000-750
phosphines	P-H stretch	2320-2270
	PH bend	1090-810
phosphine oxides	P=O	1210-1140

EXERCICE

Analysez le spectre suivant

 $C_5H_{10}O_2$

EXEMPLE D'ÉTUDE D'UN SPECTRE IR forte absorption vers 3400 - 2400 oui OH **Acide** cm⁻¹ (souvent superposée au C-H) spectre non oui absorption moyenne intensité vers NH **Amide** 3500 cm⁻¹ (parfois double pics) oui non C=O non absorption de forte intensité vers oui Forte bande dans la région C-O **Ester** 1300-1000 cm⁻¹ 1650 - 1800 cm⁻¹. Bande souvent la plus intense et de largeur non moyenne oui 2 absorptions de faible intensité C=O **Anhydride** vers 1810 et 1760 cm⁻¹ non oui 2 absorptions de forte intensité C-H **Aldehyde** vers 2850 et 2750 cm⁻¹ non Cétone 14

EXERCICE

Analysez le spectre suivant

 $\mathbf{C_5H_{10}O_2}$

H-0 3-Hydroxy-3-methyl-2-butanone

CHINA IN CHESCHART HE SCHART HE

Functional Group	Molecular Motion	Wavenumber (cm ⁻¹)
	C-H stretch	2950-2800
alkanes	CH₂ bend	~1465
attailes	CH₃ bend	~1375
	CH₂ bend (4 or more)	~720
	=CH stretch	3100-3010
	C=C stretch (isolated)	1690-1630
	C=C stretch (conjugated)	1640-1610
	C-H in-plane bend	1430-1290
alkenes	C-H bend (monosubstituted)	~990 & ~910
	C-H bend (disubstituted - E)	~970
	C-H bend (disubstituted - 1,1)	~890
	C-H bend (disubstituted - Z)	~700
	C-H bend (trisubstituted)	~815
	acetylenic C-H stretch	~3300
alkynes	C.C triple bond stretch	~2150
	acetylenic C-H bend	650-600

Functional Group	Molecular Motion	Wavenumber (cm⁻¹)
	C-H stretch	3020-3000
	C=C stretch	~1600 & ~1475
aromatics	C-H bend (mono)	770-730 & 715-685
	C-H bend (ortho)	770-735
	C-H bend (meta)	~880 & ~780 & ~690
	C-H bend (para)	850-800
	O-H stretch	~3650 or 3400-3300
alcohols	C-O stretch	1260-1000
ethers	C-O-C stretch (dialkyl)	1300-1000
	C-O-C stretch (diaryl)	~1250 & ~1120
aldehydes	C-H aldehyde stretch	~2850 & ~2750
	C=O stretch	~1725
ketones	C=O stretch	~1715
	C-C stretch	1300-1100

Functional Group	Molecular Motion	Wavenumber (cm⁻¹)
carboxylic acids	O-H stretch	3400-2400
	C=O stretch	1730-1700
	C-O stretch	1320-1210
	O-H bend	1440-1400
esters	C=O stretch	1750-1735
	C-C(O)-C stretch (acetates)	1260-1230
	C-C(O)-C stretch (all others)	1210-1160
acid chlorides	C=O stretch	1810-1775
	C-Cl stretch	730-550
anhydrides	C=O stretch	1830-1800&1775-1740
	C-O stretch	1300-900

THE STATE OF THE S

TO SERVICION OF SE

L'HEXANE

Vibration CH₂ Vibration CH₃

nombre d'onde (cm⁻¹)

THE TOTAL OF STREET, WHICH THE TANK OF STREET, WHITE THE TANK OF STREE

A SE T A SECRETARIAN OF SECRETARIAN

CHINAL OF CARRIETING

PRÉPARATION D'UN ÉCHANTILLON

Suivant la nature de l'échantillon, solide ou liquide, les techniques diffèrent.

Un liquide sera déposé entre deux pastilles de chlorure de sodium monocristallin comprimées, de manière à obtenir un film fin, ou placé dans une cuve dont les fenêtres seront des monocristaux de chlorure de sodium ou de fluorure de calcium (qui a l'avantage de ne pas être altéré par l'eau).

Cuve en fluorine (CaF2)

monocristal de chlorure de sodium

Dans le cas des liquides purs, l'épaisseur de la cuve est souvent trop importante pour obtenir un spectre de qualité satisfaisante.

PRÉPARATION D'UN ÉCHANTILLON

Un solide sera broyé en présence de KBr (qui est transparent jusqu'à 400 cm⁻¹) puis comprimé sous pression réduite pour former une fine pastille.

Pastille de KBr

Une autre technique consiste à disperser le solide dans une paraffine (le nujol) et à déposer la suspension sur une pastille de chlorure de sodium monocristallin (transparent jusqu'à 625 cm⁻¹).

Gaz

TA STATE OF THE ST

APPAREILLAGE

Analyseur simple faisceau

Spectromètre à transformée de Fourier

SPECTROMÈTRE À TRANSFORMÉE DE FOURIER

Schéma de principe

Interféromètre de Michelson

La radiation de la source est divisée en deux faisceaux par un séparateur de faisceaux.

Un des faisceaux parcourt un chemin optique fixe

L'autre un chemin optique de longueur variable à cause d'un miroir mobile.

Les deux faisceaux sont ensuite recombinés

Quand la différence de chemin optique entre les faisceaux correspond à un multiple entier d'une longueur d'onde donnée, on obtient une interférence constructive.

Une interférence destructive est obtenue lorsque la différence de chemin optique correspond à un nombre impair de demi-longueur d'onde.

L'ensemble des interférences constructives et destructives produit un interférogramme. Celui-ci contient toutes les informations requises pour produire un spectre suite à une opération mathématique appelée transformée de Fourier.

APPAREILLAGE

Obtention d'un spectre Échantillon

Référence

Transmission: Is/Iref

Avantages:

Précision sur la fréquence supérieure à 0.01 cm⁻¹ due à l'utilisation d'un signal de référence (laser He-Ne).

Très rapide (<60 sec/spectre).

CELEBRICAL OF SCIENCES

APPAREILLAGE

- Sources IR

Globar : barreau de carbure de silicium + oxydes réfractaires

Filament tungstène : Proche infrarouge

- Séparatrices

NaCl (jusqu'à 650 cm⁻¹)

KBr (jusqu'à 400 cm⁻¹)

- Détecteurs

Pyroélectrique : D.T.G.S. (Deuterium + TriGlycine Sulfate)

Photoélectrique : M.C.T. (Mercure/Cadmium/Tellure)

Attenuated Total Reflectance (ATR)

Schéma illustrant le principe de l'ATR

Atomic force microscopy (AFM) - IR

Principe de l'AFM

Cantilever deflection signal (a.u.)

Ε

Osc. amplitude (a.u.)

2.9

DiFM signal (a.u.) 1.9 1.4 0.9 0.4

-0.1

1400

EG6-OH SAM

Wavenumber (cm⁻¹)

1440 1480 1520 Wavenumber (cm⁻¹)

FTIR-

PIFM-

1550

1600

1450

1650

1500 1550

Wavenumber (cm-1)

1700

1750

1600

1800

APPLICATION DE L'INFRAROUGE

Atomic force microscopy (AFM) - IR

PiFM signal (a.u.)

0.6

0.2

-0.6

1400

1460

1480

1500

1520

Wavenumber (cm⁻¹)

1540

1560

Q

1580

1600

Webb telescope

Webb telescope

Near Infrared Camera (NIRCam) detector

Pourquoi des détecteurs infrarouge?

Expansion de l'univers

Webb telescope

Piliers de la création (nébuleuse de l'aigle)

IR proche

IR moyen

Webb telescope

Piliers de la création (nébuleuse de l'aigle)

Combinaison des deux images précédentes