## Problem 1

Let  $\mathcal{A} \subseteq \mathcal{P}(\Omega)$  be a family of subsets satisfying

- (i) if  $A \in \mathcal{A}$ , then  $A^c \in \mathcal{A}$ ;
- (ii) If  $\{A_k\}_{k\geq 1}$  is a countable family of pairwise disjoint members of  $\mathcal{A}$ , then  $\bigsqcup_{k\geq 1}A_k\in\mathcal{A}$ .

Prove that A is a  $\sigma$ -algebra on  $\Omega$ .

## **Problem 2**

Consider the family  $\mathcal{E}: \{(-\infty, b) \mid b \in \mathbb{R}\}$ . Show that  $\sigma(\mathcal{E}) = \mathcal{B}_{\mathbb{R}}$ .

**Proof:** Consider the family  $\mathcal{E}' := \{[a,b) \mid a,b \in \mathbb{R}\}$ . We have established that  $\sigma(\mathcal{E}') = \mathcal{B}_{\mathbb{R}}$ .

We see that for any element of  $\mathcal{E}$ ,  $(-\infty, b) = \bigcup_{n=1}^{\infty} [a-n, b)$ , meaning  $\mathcal{E} \in \sigma(\mathcal{E}')$ , so  $\sigma(\mathcal{E}) \subseteq \sigma(\mathcal{E}') = \mathcal{B}_{\mathbb{R}}$ .

Additionally,  $[a, b) = (-\infty, b) \setminus (-\infty, a)$ , meaning  $\mathcal{E}' \in \sigma(\mathcal{E})$ , so  $\sigma(\mathcal{E}') \subseteq \sigma(\mathcal{E})$ , so  $\sigma(\mathcal{E}) = \sigma(\mathcal{E}') = \mathcal{B}_{\mathbb{R}}$ .

#### **Problem 3**

Let  $(\Omega, \mathcal{M})$  and  $(\Lambda, \mathcal{N})$  be measurable spaces. We define the product  $\sigma$ -algebra on  $\Omega \times \Lambda$  as

$$\mathcal{M} \otimes \mathcal{N} := \sigma(\{E \times F \mid E \in \mathcal{M}, F \in \mathcal{N}\}).$$

Prove that  $\mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}} = \mathcal{B}_{\mathbb{R}^2}$ .

**Proof:** For a < b and c < d, it is the case that  $(a, b) \times (c, d) \subseteq \mathbb{R}^2$  is open, meaning

$$\sigma\left(\left\{(a,b)\times(c,d)\mid a,b,c,d\in\mathbb{R}\right\}\right)=\mathcal{B}_{\mathbb{R}}\otimes\mathcal{B}_{\mathbb{R}}$$
$$\subset\mathcal{B}_{\mathbb{R}^{2}}.$$

Letting  $U \in \mathcal{B}_{\mathbb{R}^2}$ , it is the case that  $U = \bigcup_{j=1}^{\infty} U(x_j, r_j)$ . For each  $U(x_j, r_j)$ , take  $I_j = (x_{jx} - r_j, x_{jx} + r_j) \times (x_{jy} - r_j, x_{jy} + r_j)$ , so  $U \subseteq \bigcup_{j=1}^{\infty} I_j$ . Thus,  $U \in \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ , so  $\mathcal{B}_{\mathbb{R}^2} \subseteq \mathcal{B}_{\mathbb{R}} \otimes \mathcal{B}_{\mathbb{R}}$ .

## **Problem 4**

Let  $(\Omega, \mathcal{M})$  and  $(\Lambda, \mathcal{N})$  be measurable spaces. A map  $f: \Omega \to \Lambda$  is  $\mathcal{M}-\mathcal{N}$ -measurable if  $E \in \mathcal{N} \Rightarrow f^{-1}(E) \in \mathcal{M}$ .

Let  $(\Omega, \mathcal{M})$  be a measurable space and suppose  $E \in \mathcal{M}$ . Show that  $\mathcal{M}_E = \{M \cap E \mid M \in \mathcal{M}\}$  is a  $\sigma$ -algebra on E and the inclusion map  $\iota : E \to \Omega$  is  $\mathcal{M}_E$ - $\mathcal{M}$ -measurable.

**Proof:** Let  $M \in \mathcal{M}$ . Then,  $\iota^{-1}(M) = E \cap M \in \mathcal{M}_E$ . Thus, f is  $\mathcal{M}_E$ - $\mathcal{M}$ -measurable.

## **Problem 5**

Let  $(\Omega, \mathcal{M})$  and  $(\Lambda, \mathcal{N})$  be measurable spaces. Suppose  $\mathcal{N}$  is generated as a  $\sigma$ -algebra by a family of subsets  $\mathcal{E} \subseteq \mathcal{P}(\Lambda)$ . Prove that a map  $f: \Omega \to \Lambda$  is  $\mathcal{M}$ - $\mathcal{N}$ -measurable if and only if  $f^{-1}(E) \in \mathcal{M}$  for all  $E \in \mathcal{E}$ . Conclude that a continuous function  $f: X \to Y$  between metric spaces is  $\mathcal{B}_X$ - $\mathcal{B}_Y$ -measurable.

**Proof:** Let  $\mathcal{N}$  be generated by  $\mathcal{E}$ . Then, for any  $E_1, E_2 \in \mathcal{E}$ , it is the case that  $E_1^c \in \mathcal{N}$  or  $E_1 \cup E_2 \in \mathcal{N}$ .

Let f be measurable. Then, since  $\mathcal{E} \subseteq \mathcal{N}$ , and for any  $E \in \mathcal{N}$ ,  $f^{-1}(E) \in \mathcal{M}$ , it is the case that for any  $E \in \mathcal{E}$ ,  $f^{-1}(E) \in \mathcal{M}$ .

Let f be a function such that for any  $E \in \mathcal{E}$ ,  $f^{-1}(E) \in \mathcal{M}$ . So,  $f^{-1}(E^c) = (f^{-1}(E))^c \in \mathcal{M}$ , and  $f^{-1}(E_1 \cup E_2) = f^{-1}(E_1) \cup f^{-1}(E_2) \in \mathcal{M}$ . Therefore, for any  $E \in \mathcal{N}$ , it must be the case that  $f^{-1}(E) \in \mathcal{M}$ .

Since the preimage of any element of the topology on Y is the topology on X if f is continuous, it is the case that such a continuous function is  $\mathcal{B}_{X}$ - $\mathcal{B}_{Y}$ -measurable.

## Problem 6

Suppose  $(\Omega, \mathcal{M})$  is a measurable space and  $f : \Omega \to \Lambda$  is a map. Show that  $\mathcal{N} := \{E \subseteq \Lambda \mid f^{-1}(E) \in \mathcal{M}\}$  is a  $\sigma$ -algebra on  $\Lambda$  and f is  $\mathcal{M}$ - $\mathcal{N}$ -measurable.  $\mathcal{N}$  is called the  $\sigma$ -algebra produced by f.

#### Problem 7

Let  $(\Omega, \mathcal{M}, \mu)$  be a measure space, and suppose  $\{E_k\}_{k\geq 1}$  is a decreasing sequence of measurable sets with  $\mu(E_1) < \infty$ . Show that

$$\mu\left(\bigcap_{k\geq 1} E_k\right) = \lim_{k\to\infty} \mu(E_k)$$
$$= \inf_{k>1} \mu(E_k).$$

**Proof:** We see that for n,  $\bigcap_{k=1}^{n} E_k = E_n$ . Therefore,  $\mu\left(\bigcap_{k=1}^{n} E_k\right) = \mu(E_n)$ , meaning

$$\mu\left(\bigcap_{k=1}^{\infty} E_k\right) = \lim_{n \to \infty} \mu\left(\bigcap_{k=1}^{n} E_k\right)$$
$$= \lim_{n \to \infty} \mu(E_n).$$

### **Problem 8**

Let  $(\Omega, \mathcal{M})$  and  $(\Lambda, \mathcal{N})$  be measurable spaces and suppose  $f : \Omega \to \Lambda$  is measurable. If  $\mu$  is a measure on  $\mathcal{M}$ , show that

$$f_*\mu:\mathcal{N}\to[0,\infty]; \ f_*\mu(E):=\mu(f^{-1}(E))$$

defines a measure on  $(\Lambda, \mathcal{N})$ . This is called the pushforward measure.

**Proof:** Clearly,  $f_*\mu(\emptyset)=0$ . Let  $E_1,E_2\in\mathcal{N}$  be disjoint and nonempty. Note that  $E_1\sqcup E_2\in\mathcal{N}$ . Thus,

$$f_*\mu(E_1 \sqcup E_2) = \mu \left( f^{-1}(E_1 \sqcup E_2) \right)$$

$$= \mu \left( f^{-1}(E_1) \sqcup f^{-1}(E_2) \right)$$

$$= \mu(f^{-1}(E_1)) + \mu(f^{-1}(E_2))$$

$$= f_*\mu(E_1) + f_*\mu(E_2),$$

meaning  $f_*\mu$  is a measure on  $(\Lambda, \mathcal{N})$ .

## **Problem 9**

A group G is paradoxical if there are pairwise disjoint subsets of G;  $E_1, \ldots, E_n, F_1, \ldots, F_m$  and group elements  $t_1, \ldots, t_n, s_1, \ldots, s_m$  such that

$$G = \bigsqcup_{j=1}^{n} t_j E_j$$
$$= \bigsqcup_{k=1}^{m} s_k F_k.$$

A mean on a group G is a finitely additive probability measure  $\nu: \mathcal{P}(G) \to [0,1]$  that is translation invariant; that is,  $\nu(tE) = \nu(E)$  for all  $E \subseteq G$  and  $t \in G$ . A group is said to be amenable if it admits a mean.

Show that a paradoxical group is nonamenable.

**Proof:** Let G be paradoxical. Suppose toward contradiction that there existed such a  $\nu$ . Then,  $\nu(G)$ , and

$$\nu(G) = \nu\left(\bigsqcup_{j=1}^{n} t_j E_j\right)$$
$$= \sum_{j=1}^{n} \nu(t_j E_j)$$
$$= \sum_{j=1}^{n} \nu(E_j).$$

We know that  $G \cup s_1 F_1 = G$ , meaning  $\nu(G) = \nu(G \cup s_1 F_1)$ . However,

$$\nu(G \cup s_1 F_1) = \nu \left( \bigsqcup_{j=1}^n t_j E_j \sqcup s_1 F_1 \right)$$

$$= \sum_{j=1}^n \nu(t_j E_j) + \nu(s_1 F_1)$$

$$= \nu(G) + \nu(s_1 F_1)$$

$$= \nu(G) + \nu(F_1)$$

$$> \nu(G).$$

# **Problem 10**

Let  $\Delta$  be a totally disconnected compact metric space (for example, the Cantor set). Suppose  $\varphi: C(\Delta) \to \mathbb{R}$  is a state —  $\varphi$  is linear, continuous, positive, and  $\varphi(\mathbb{1}_{\Delta}) = 1$ .

- (i) Show that  $C := \{E \mid E \subseteq \Delta\}$  is an algebra of subsets on  $\Delta$ .
- (ii) Show that

$$\mu_0: \mathcal{C} \to [0, 1]; \quad \mu_0(E) = \varphi(\mathbb{1}_E)$$

is a well-defined finitely additive measure.

(iii) If  $\{E_k\}_{k\geq 1}$  is a countable family of members of  $\mathcal C$  such that  $\bigsqcup_{k\geq 1} E_k \in \mathcal C$ , show that

$$\mu_0\left(\bigsqcup_{k>1}E_k\right)=\sum_{k=1}^\infty\mu_0(E_k).$$

#### **Proof:**

- (i) If  $E \in \mathcal{C}$ , then  $E \subseteq \Delta$ , so  $E^c \subseteq \Delta$ , and for  $E_1, E_2 \in \mathcal{C}$ ,  $E_1 \cup E_2 \in \Delta$ .
- (ii) Let  $E, F \in \mathcal{C}$  with  $E \cap F = \emptyset$ . Then,

$$\mu_0(E \sqcup F) = \varphi (\mathbb{1}_{E \sqcup F})$$

$$= \varphi (\mathbb{1}_E + \mathbb{1}_F)$$

$$= \varphi (\mathbb{1}_E) + \varphi (\mathbb{1}_F)$$

$$= \mu_0(E) + \mu_0(F).$$

(iii) Let  $\{E_k\}_{k\geq 1}$  be a countable family of members of  $\mathcal C$  with  $\bigsqcup_{k\geq 1} E_k \in \mathcal C$ . We see that for any  $n\in N$ ,

$$\bigsqcup_{k=1}^{n} E_k \in \mathcal{C}, \text{ since } \mathcal{C} \text{ is an algebra of subsets.}$$

Therefore,

$$\mu_0\left(\bigsqcup_{k=1}^n\right)=\sum_{k=1}^n\mu_0(E_k),$$

for any  $n \in \mathbb{N}$ , as  $\mu_0$  is finitely additive. Since  $\bigsqcup_{k \geq 1} E_k \in \mathcal{C}$ , it is then the case that

$$\mu_0 \left( \bigsqcup_{k=1}^{\infty} \right) = \lim_{n \to \infty} \mu_0 \left( \bigsqcup_{k=1}^{n} \right)$$
$$= \lim_{n \to \infty} \sum_{k=1}^{n} \mu_0(E_k)$$
$$= \sum_{k=1}^{\infty} \mu_0(E_k).$$