

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

Факультет «Информатика и системы управления» Кафедра ИУ5 «Системы обработки информации и управления»

Отчёт по РК1

«Технологии машинного обучения»

Вариант 12

Выполнила:

студентка группы ИУ5-63Б

Румак Д.П.

Преподаватель:

Гапанюк Ю. Е.

Задание:

Задача №2.

Для заданного набора данных проведите обработку пропусков в данных для одного категориального и одного количественного признака. Какие способы обработки пропусков в данных для категориальных и количественных признаков Вы использовали? Какие признаки Вы будете использовать для дальнейшего построения моделей машинного обучения и почему?

Для студентов групп ИУ5-63Б - для произвольной колонки данных построить график "Ящик с усами (boxplot)".

https://www.kaggle.com/datasets/johnsmith88/heart-disease-dataset

Решение:

Загружаем датасет и подключаем необходимые библиотеки:

```
[1] import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

[2] data = pd.read_csv(r"heart.csv")
```

Получим информацию о датасете:

```
  [3] data.head()
                sex cp trestbps chol fbs restecg thalach exang oldpeak slope ca thal target
                               125
                                    212
                                                           168
                                    203
                                           1
                                                    0
                                                                    1
                                                                            3.1
                                                                                                      0
             53
                               140
                                                           155
                                                                                    0
                      0
                                           0
                                                    1
                                                           125
                                                                    1
                                                                            2.6
                                                                                                      0
             70
                               145
                                    174
                                                                                    0
                      0
                                    203
                                           0
                                                    1
                                                           161
                                                                    0
                                                                            0.0
                                                                                              3
                                                                                                      0
             61
                               148
                                                                                    2
                      0
                                                           106
                                                                    0
             62
                               138
                                    294
```

```
data.info()
 <class 'pandas.core.frame.DataFrame'>
       RangeIndex: 1025 entries, 0 to 1024
       Data columns (total 14 columns):
         # Column
                          Non-Null Count Dtype
            age 1025 non-null int64
sex 1025 non-null int64
cp 1025 non-null int64
trestbps 1025 non-null int64
chol 1025 non-null int64
fbs 1025 non-null int64
restecg 1025 non-null int64
trestecg 1025 non-null int64
thalach 1025 non-null int64
exang 1025 non-null int64
         0
         1
         2
         3
         7
         8 exang 1025 non-null int64
9 oldpeak 1025 non-null float64
                            1025 non-null int64
        10 slope
                            1025 non-null int64
         11 ca
                            1025 non-null int64
        12 thal
        13 target 1025 non-null int64
        dtypes: float64(1), int64(13)
       memory usage: 112.2 KB
```

Данный датасет не имеет пропусков поэтому заменим его на другой.

```
[10] data=pd.read_csv(r"uk_universities.csv")

[11] data.head()
```

	Название университета	Регион	Год основания	Девиз	Национальный ранг	Мировой рейтинг	Оценка мировых рейтингов	Minimum_IELTS_score	Иностранные студенты	Оι студє
0	University of Cambridge	East of England	1209	From here, light and sacred draughts	1	4	94.1	6.5	20.20%	85
1	University of Oxford	South East England	1096	The Lord is my light	2	2	93.3	6.5	16.80%	86
2	University of St Andrews	Scotland	1413	Ever to excel	3	86	75.8	6.5	40.40%	87
3	Imperial College London	London	1907	Knowledge is the adornment and safeguard of th	4	8	86.6	6.5	41.40%	77
4	Loughborough University	East Midlands	1966	With Truth, Knowledge and Labour	5	404	72.8	5.5	22.00%	85
1										
4										•

```
// [12] data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 126 entries, 0 to 125
        Data columns (total 17 columns):
        # Column
                                                   Non-Null Count Dtype
         0 Название университета
                                                  126 non-null object
126 non-null object
126 non-null int64
            Регион
         1
         2 Год основания
                                                  112 non-null object
         3 Девиз
         4 Национальный ранг
                                                  126 non-null int64
         5 Мировой рейтинг 126 non-null int64
6 Оценка мировых рейтингов 82 non-null float64
7 Minimum_IELTS_score 126 non-null float64
8 Иностранные студенты 126 non-null object
9 Оценка студентов 126 non-null object
         10 Кол-во поступивших студентов (тыс.) 126 non-null int64
         11 Кол-во преподавательского состава 126 non-null float64
         12 Тип управления университета 126 non-null object
         13 Местоположение кампуса
                                                   109 non-null object
                                                   126 non-null
         14 Стоимость жизни в год
                                                                    int64
         15 Широта
                                                    126 non-null
                                                                    float64
                                                   126 non-null object
         16 Долгота
        dtypes: float64(4), int64(5), object(8)
        memory usage: 16.9+ KB
        data.isnull().sum()
                                                       0
         Название университета
         Регион
                                                       0
                                                      0
         Год основания
                                                     14
         Девиз
         Национальный ранг
                                                      0
         Мировой рейтинг
                                                      0
         Оценка мировых рейтингов
                                                     44
         Minimum IELTS score
         Иностранные студенты
         Оценка студентов
         Кол-во поступивших студентов (тыс.)
         Кол-во преподавательского состава
                                                     Θ
                                                      Θ
         Тип управления университета
                                                     17
         Местоположение кампуса
                                                      0
         Стоимость жизни в год
                                                       0
         Широта
         Долгота
         dtype: int64
```

Категориальные признаки: "Девиз", "Местоположение кампуса".

Количественный признак: "Оценка мировых рейтингов".

Выберем колонки с категориальными признаками, которые содержат пропущенные значения

```
[6] total_count = data.shape[0]
       print('Всего строк: {}'.format(total_count))
       Всего строк: 126
[7] from sklearn.impute import SimpleImputer
       from sklearn.impute import MissingIndicator
                                                                                                          ↑ ↓ ⊖ 🗏 🗘 🗓
   # Выберем категориальные колонки с пропущенными значениями
       # Цикл по колонкам датасета
       cat_cols = []
       for col in data.columns:
          # Количество пустых значений
           temp_null_count = data[data[col].isnull()].shape[0]
           dt = str(data[col].dtype)
           if temp_null_count>0 and (dt=='object'):
               cat_cols.append(col)
               temp_perc = round((temp_null_count / total_count) * 100.0, 2)
               print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt, temp_null_count, temp_perc))
       Колонка Девиз. Тип данных object. Количество пустых значений 14, 11.11%.
       Колонка Местоположение кампуса. Тип данных object. Количество пустых значений 17, 13.49%.
```

Будем работать с признаком "Местоположение кампуса".

Проверим уникальные значения.

Так как мы не можем точно определить местоположение кампуса университетов, где стоят пропуски, просто напишем, что данные не указаны. Заменим пропуски константой "NotIndicated":

```
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='NotIndicated')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3

['Urban'],
['NotIndicated'],
['Suburban'],
['Urban'],
['Urban'],
['Urban'],
['Urban'],
['Urban'],
['NotIndicated'],

pp.unique(data_imp3)

array(['NotIndicated', 'Rural', 'Suburban', 'Urban'], dtype=object)
```

```
data_imp3[data_imp3=='NotIndicated'].size
```

Как мы можем увидеть, пропуски отсутствуют.

Проведем обработку данных с числовым признаком "Оценка мировых рейтингов".

```
у [16] # Фильтр по колонкам с пропущенными значениями data_num = data[['Оценка мировых рейтингов']] data_num
```

	0ценка	мировых	рейтингов	1
0			94.1	
1			93.3	
2			75.8	
3			86.6	
4			72.8	
121			NaN	
122			NaN	
123			NaN	
124			NaN	
125			NaN	

126 rows x 1 columns


```
data num.describe().T
                                                                            50%
                                    count
                                                mean
                                                          std min
                                                                                  75%
                                                                                       max
         Оценка мировых рейтингов
                                    82.0 74.071951 6.364645 66.0 68.725 72.6 77.7 94.1
  [18] indicator = MissingIndicator()
        mask missing values only = indicator.fit transform(data num)
        mask_missing_values_only
                [False],
                [False],
                [False],
                [False],
                [False],
                [False],
/ [19] strategies=['mean', 'median', 'most_frequent']
 [20] # Более сложная функция, которая позволяет задавать колонку и вид импьютации
       def test_num_impute_col(dataset, column, strategy_param):
           temp_data = dataset[[column]]
           indicator = MissingIndicator()
           mask_missing_values_only = indicator.fit_transform(temp_data)
           imp_num = SimpleImputer(strategy=strategy_param)
           data_num_imp = imp_num.fit_transform(temp_data)
           filled_data = data_num_imp[mask_missing_values_only]
           return column, strategy_param, filled_data.size, filled_data[0], filled_data[filled_data.size-1]
 [21] test_num_impute_col(data_num, 'Оценка мировых рейтингов', strategies[0])
       ('Оценка мировых рейтингов', 'mean', 44, 74.07195121951219, 74.07195121951219)
[22] test_num_impute_col(data_num, 'Оценка мировых рейтингов', strategies[1])
       ('Оценка мировых рейтингов', 'median', 44, 72.6, 72.6)
У [23] test_num_impute_col(data_num, 'Оценка мировых рейтингов', strategies[2])
       ('Оценка мировых рейтингов', 'most_frequent', 44, 71.1, 71.1)
```

Заполним пропуски медианой, так как при таком заполнении сохраняется распределение значений:

```
data['Оценка мировых рейтингов'] = data['Оценка мировых рейтингов'].fillna(data['Оценка мировых рейтингов'].median())
```

При заполнении пропусков была использована импьютация константным и медианным значениями.

Вернемся к первому набору данных. Целевая переменная - "target" (наличие или отсутствие заболевания пациента).

Чтобы ответить на вопрос, какие признаки лучше всего использовать для построения модели машинного обучения, необходимо провести корреляционный анализ.

corr = data.corr() corr.style.background_gradient(cmap="coolwarm")														
	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
age	1.000000	-0.103240	-0.071966	0.271121	0.219823	0.121243	-0.132696	-0.390227	0.088163	0.208137	-0.169105	0.271551	0.072297	-0.229324
sex		1.000000	-0.041119	-0.078974	-0.198258	0.027200	-0.055117	-0.049365	0.139157	0.084687	-0.026666	0.111729	0.198424	-0.279501
ср	-0.071966	-0.041119	1.000000	0.038177	-0.081641	0.079294	0.043581	0.306839	-0.401513	-0.174733	0.131633	-0.176206	-0.163341	0.434854
trestbps	0.271121		0.038177	1.000000	0.127977	0.181767	-0.123794	-0.039264	0.061197	0.187434	-0.120445	0.104554	0.059276	-0.138772
chol	0.219823	-0.198258		0.127977	1.000000	0.026917	-0.147410	-0.021772	0.067382	0.064880	-0.014248	0.074259	0.100244	-0.099966
fbs	0.121243	0.027200	0.079294	0.181767		1.000000	-0.104051	-0.008866	0.049261	0.010859	-0.061902	0.137156		-0.041164
restecg	-0.132696		0.043581	-0.123794	-0.147410	-0.104051	1.000000	0.048411	-0.065606	-0.050114	0.086086		-0.020504	0.134468
thalach	-0.390227	-0.049365	0.306839	-0.039264	-0.021772	-0.008866	0.048411	1.000000	-0.380281	-0.349796	0.395308	-0.207888		0.422895
exang	0.088163	0.139157	-0.401513	0.061197		0.049261	-0.065606	-0.380281	1.000000	0.310844	-0.267335	0.107849	0.197201	-0.438029
oldpeak	0.208137	0.084687	-0.174733	0.187434		0.010859	-0.050114	-0.349796	0.310844	1.000000	-0.575189	0.221816	0.202672	-0.438441
slope	-0.169105		0.131633	-0.120445	-0.014248	-0.061902		0.395308	-0.267335	-0.575189	1.000000	-0.073440	-0.094090	0.345512
ca	0.271551	0.111729	-0.176206				-0.078072	-0.207888	0.107849	0.221816	-0.073440	1.000000	0.149014	-0.382085
thal	0.072297	0.198424	-0.163341	0.059276	0.100244	-0.042177	-0.020504		0.197201	0.202672	-0.094090	0.149014	1.000000	-0.337838
target	-0.229324	-0.279501	0.434854	-0.138772	-0.099966	-0.041164	0.134468	0.422895	-0.438029	-0.438441	0.345512	-0.382085	-0.337838	1.000000

Проанализировав матрицу, можем сказать, что все признаки слабо коррелируют друг с другом, в том числе и наша целевая переменная, поэтому построение модели по данной выборке нецелесообразно.

Дополнительное задание.

Построение графика "Ящик с усами (boxplot)"

