PREDICTING SEVERITY IN CAR CRASHES

CAMILO RIVERA 08/09/2020

INTRODUCTION

CURRENTLY, DRIVING THROUGH THE STREETS IN VEHICLES, WHETHER PUBLIC OR OWNED, IS ONE
OF THE MOST DAILY ACTIVITIES THAT PEOPLE CARRY OUT. EVEN SO, TRAFFIC ACCIDENTS CAUSE
ABOUT 40,000 DEATHS A YEAR ONLY IN THE UNITED STATES.

TO REDUCE THE FREQUENCY AND THE SEVERITY OF CAR COLLISIONS IN A COMMUNITY, AN ALGORITHM MUST BE DEVELOPED TO PREDICT THE SEVERITY OF AN ACCIDENT GIVEN THE CURRENT WEATHER, ROAD AND VISIBILITY CONDITIONS.

When conditions are prone to fatal accidents, the model developed will allow drivers to be alerted to the likelihood of an accident and to be reminded to drive carefully.

DATA ACQUISITION AND CLEANING

THE DATA SET USED CONTAINS DATA ABOUT CAR ACCIDENTS PROVIDED BY SPD AND RECORDED BY TRAFFIC RECORDS. THE LABEL FOR THE DATA SET IS 'SEVERITYCODE' (TARGET VARIABLE), WHICH DESCRIBES THE FATALITY OF AN ACCIDENT, IT CAN TAKE 4 VALUES

- 0: LITTLE TO NO PROBABILITY
- 1: VERY LOW PROBABILITY CHANCE OR PROPERTY DAMAGE
- 2: Low Probability Chance of Injury
- 2B: MILD PROBABILITY CHANCE OF SERIOUS INJURY
- 3: HIGH PROBABILITY CHANCE OF FATALITY

- DATASET:

 HTTPS://OPENDATA.ARCGIS.COM/DATA

 SETS/5B5C745E0F1F48E7A53ACEC63

 A0022AB 0.CSV
- METADATA: https://s3.us.cloud-
 OBJECT STORAGE.APPDOMAIN.CLOUD/CF COURSES DATA/COGNITIVECLASS/DP0701EN/V
 ERSION-2/METADATA.PDF

DATA ACQUISITION AND CLEANING

 AFTER SOME DATA EXPLORATION AND DISCARDING VARIABLES CORRESPONDING TO ID'S, IT IS DECIDED TO WORK WITH THE FOLLOWING VARIABLES:

Variables	Description
WEATHER	A description of the weather conditions during the time of the collision
SPEEDING	Whether or not speeding was a factor in the collision. (Y/N)
LIGHTCOND	The light conditions during the collision
ROADCOND	The condition of the road during the collision
JUNCTION TYPE	Category of junction at which collision took place
PERSONCOUNT	The total number of people involved in the collision
VEHCOUNT	The number of vehicles involved in the collision

ANALYSIS OF VARIABLES

ANALYSIS OF VARIABLES

DATA PREPARATION

THE VALUES OF THE CATEGORICAL VARIABLES ARE REPLACED BY NUMERICAL VALUES, AND THE CONTINUOUS
VARIABLES ARE COMBINED INTO CATEGORIES ACCORDING TO THE QUARTILES OF EACH VARIABLE TO LATER
CONVERT THE DATAFRAME INTO A NUMPY ARRAY AND APPLY THE MODELS FROM THE SKLEARN LIBRARY,
FINALLY THE DATA IS BALANCED.

Code Mapping														
		WEATHE	R		CODE		SPEEDING	CODE				LIGHTCOND	CODE	
		Blowing S	and/E	Dirt	0		N	0		Dark	- No Street Lights / St	reet Lights Off	0	
		Blowing S	now		1		Υ	1			Dark - St	reet Lights On	1	
		Clear			2						Dark - Unk	nown Lighting	2	
		Fog/Smog	g/Smc	ke	3							Dawn	3	
		Overcast			4							Daylight	4	
		Partly Clo	udy		5							Dusk	5	
		Raining			6									
		Severe Ci	rossw	ind	7									
		Sleet/Hail	/Free:	zing Rain	8									
		Snowing			9									
<u> </u>	ROADCOND	CODE					JUNCTI	ONTYPE	CC	DE	PERSONCOUNT	CODE	VEHCOUN	T CODE
[Ory	C)	At Inters	ection (b	ut not	related to inte	ersection)	0	0 <= x < 2	0	0 <= x <	2 0
le	ce	1			At Inter	section	on (intersection	n related)	1	2 <= x < 3	1	2 <= x <	3 1
C	Dil	2					Driveway	Junction	ı	2	3 <= x < 93	2	3 <= x < 9	3 2
C	Other	3			Mid-B	ock (t	out intersection	n related)	3				
S	Sand/Mud/Dir	t 4			Mid-Bloc	k (not	related to inte	ersection)	4				
5	Snow/Slush	5	·				Ramp	Junction	1	5				
S	Standing Wat	er 6												
V	Net	7												

MODELING

KNN

#K vs Accuracy 0.42 0.40 0.38 0.36 0.34 0.32 0.30 0.28 0.26 Number of Nabors (K)

DECISION TREE

LOGISTIC REGRESSION

lr = LogisticRegression(C=0.01, solver='liblinear').fit(x_train,y_train)
yhat_lr = lr.predict(x_test)
yhat_prob_lr = lr.predict_proba(x_test)

KNN

clf = svm.SVC(kernel='rbf')
clf.fit(x_train, y_train)

MODEL EVALUATION

	Score	F1 Score
KNN	0.422	0.384
Decision Tree	0.449	0.397
Logistic Regression	0.407	0.353
SVM	0.425	0.375

CONCLUSION

THE PURPOSE OF THIS PROJECT WAS TO PREDICT THE SEVERITY OF A CAR COLLISSION BASED ON THE CURRENT WEATHER, ROAD AND VISIBILITY CONDITIONS THROUGH THE DEVELOPMENT OF AN ALGORITHM IN WHICH ALL THE PRINCIPLES OF DATA SCIENCE WERE DEVELOPED.

Using different prediction models it was obtained that the most suitable model is the decision tree with an accuracy of 45%, this is not a desired value as it is too low to consider that the prediction model is correct.

WORK SHOULD CONTINUE ON THE MODEL TO IMPROVE ITS ACCURACY BY PRIOR MANIPULATION OF THE DATA, RETHINKING THE VARIABLES THAT ARE CONSIDERED IMPORTANT.