

${\sf Survey\ Alignment\ } \to {\sf Conditions\ Database}$

Dmitry Yakorev, Jim Pivarski, Alexei Safonov

Texas A&M University

31 May, 2007

CSCs have two alignment pins, equidistant from center

Real positions of these pins measured by photogrammetry

Goal: translate, rotate chamber to match measured

Analytic solution: we apply only one motion to the Alignable Rotation around y is unconstrained, so we don't touch ϕ_{v}

Goal: translate, rotate chamber to match measured

measured positions

ideal positions

Analytic solution: we apply only one motion to the Alignable Rotation around y is unconstrained, so we don't touch ϕ_{v}

Goal: translate, rotate chamber to match measured

Measurement error can stretch a chamber. Stretch is included in formal solution but not applied to Alignable.

Calculation in detail

displacement vector (global)

Inputs: $\vec{P_1}^{\mathrm{global}}$ and $\vec{P_2}^{\mathrm{global}}$

Calculation in detail

correction applied in the local frame

Inputs: $\vec{P_1}^{\text{global}}$ and $\vec{P_2}^{\text{global}}$

Convert $\vec{P_1}^{\text{global}}$ and $\vec{P_2}^{\text{global}}$ to local frame (Alignable::surface)

Displacement in local frame: $\vec{P_1}, \vec{P_2}$

$$\Delta x = \frac{P_{1x} + P_{2x}}{2} - \sin \phi_z \sin \phi_x b$$

$$\Delta y = \frac{P_{1y} + P_{2y}}{2} + \cos \phi_z \sin \phi_x b$$

$$\Delta z = \frac{P_{1z} + P_{2z}}{2} - \cos \phi_X b$$

$$\cos^{2} \phi_{z} = \frac{\left(\frac{P_{1y} - P_{2y}}{2a}\right)^{2}}{\left(\frac{P_{1x} - P_{2x}}{2a}\right)^{2} + \left(\frac{P_{1y} - P_{2y}}{2a}\right)^{2}}$$

$$\cos^2 \phi_{\rm X} = \frac{\left(\frac{P_{\rm 1x} - P_{\rm 2x}}{2a}\right)^2 + \left(\frac{P_{\rm 1y} - P_{\rm 2y}}{2a}\right)^2}{\left(\frac{P_{\rm 1x} - P_{\rm 2x}}{2a}\right)^2 + \left(\frac{P_{\rm 1y} - P_{\rm 2y}}{2a}\right)^2 + \left(\frac{P_{\rm 1z} - P_{\rm 2z}}{2a}\right)^2}$$

Built-in sanity check

remember the pin position in global coordinates

Built-in sanity check

now it should match local expected position

(This is a tautology.)

Two ways of measuring error

(stretch factor -1) \times length \rightarrow error in survey constraints \rightarrow error in our computation

mismatch of global point

12/12

