The ABC of tensor

Andersen Ang

Mathématique et recherche opérationnelle UMONS, Belgium

manshun.ang@umons.ac.be Homepage: angms.science

First draft : October 21, 2020 Last update : October 21, 2020

What is tensor

Tensor is the generalization of scalar, vector and matrix.

- ► The tensor here is an example of order-3 tensor.
- ▶ The column direction of the tensor is called mode-1
- ► The row direction of the tensor is called mode-2
- ▶ The tube direction of the tensor is called mode-3
- ▶ The (i, j, k)-th element of a tensor \mathcal{T} is denoted as $\mathcal{T}_{i,j,k}$ or $\mathcal{T}(i, j, k)$.

Fiber

The vectors in a tensor are called fibers.

There are specific names for vectors in order-3 tensors:

- ▶ Mode-1 vector in tensor, denoted as $\mathcal{T}(:,j,k)$, is called column.
- ▶ Mode-2 vector in tensor, denoted as T(i,:,k), is called row.
- ▶ Mode-3 vector in tensor, denoted as T(i, j, :), is called tube.

There is no specific name for vectors in order-4,5,... tensors.

Slice

The matrices in a tensor are called slices.

There are specific names for vectors in order-3 tensors. For example, frontal slide refer to the matrices $\mathcal{T}(:,:,k)$.

Rank 1 tensor

A matrix \mathbf{X} is rank-1 if it can be expressed as the outer product of two vectors as $\mathbf{X} = \mathbf{u}\mathbf{v}^{\top}$. Similarly, an order-3 tensor is rank-1 if it can be expressed as the outer product of three vectors as $\mathbf{X} = \mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}$.

Note: here \otimes is the notation of outer product. There is no unified notation used in the literature.

CPD: CP decomposition

If a tensor $\mathcal X$ can be expressed as the sum of r rank-1 tensor, then the tensor is said to have rank r, and such decomposition is called CP decomposition.

- ► The *i*th rank-1 component and the *j*th rank-1 component are independent to each other in CPD.
- ► Historical note: CP stands for CANDECOMP/PARAFAC. And CPD stands for canonical polyadic decomposition.

Tucker decomposition

When the ith rank-1 component and the jth rank-1 component are not independent to each other, CPD becomes the Tucker decomposition.

We can also say that, when the core tensor/kernel ${\cal G}$ is a super-diagonal tensor, then Tucker decomposition reduces to CPD.

Solving CPD

(Approximate) CPD can be expressed as the following nonconvex optimization problem

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C}} \lVert \mathcal{T} - \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C} \rVert_F^2$$

Here we have a order-3 CPD problem: given a tensor \mathcal{T} , find the matrices $\mathbf{A}, \mathbf{B}, \mathbf{C}$ such that their CPD product is as close to \mathcal{T} as close as possible. Here $\mathbf{A}, \mathbf{B}, \mathbf{C}$ correspond to the mode-1, mode-2, mode-3 factor matrix of the CPD model.

BCD scheme to solve CPD

- ► (Approximate) CPD can be solve by using block coordinate descent: update each block at a time while fixing the other blocks.
- ▶ For CPD cost function $f(\mathbf{A}, \mathbf{B}, \mathbf{C}) = \|\mathcal{T} \mathbf{A} \otimes \mathbf{B} \otimes \mathbf{C}\|_F^2$, when we update block \mathbf{A} , we only need the information of \mathbf{B} and \mathbf{C} : by definition, the block \mathbf{A}_k minimizes the function $f(\mathbf{A}, \mathbf{B}_{k-1}, \mathbf{C}_{k-1})$ as

$$\mathbf{A}_k = \min_{\mathbf{A}} \| \mathcal{T} - \mathbf{A} \otimes \mathbf{B}_{k-1} \otimes \mathbf{C}_{k-1} \|_F^2$$

Let $\mathbf{D}_{k-1} = \mathbf{B}_{k-1} \otimes \mathbf{C}_{k-1}$, then

$$\mathbf{A}_{k} = \min_{\mathbf{A}} \|\mathcal{T} - \mathbf{A} \otimes \mathbf{D}_{k-1}\|_{F}^{2}$$
$$= \min_{\mathbf{A}} \|\mathcal{T}\|_{F}^{2} - 2\langle \mathcal{T}, \mathbf{A} \otimes \mathbf{D}_{k-1} \rangle + \|\mathbf{A} \otimes \mathbf{D}_{k-1}\|_{F}^{2}$$

Ignoring the constant term, \mathbf{A}_k is thus the minimizer of the function $-2\langle \mathcal{T}, \mathbf{A} \otimes \mathbf{D}_{k-1} \rangle + \|\mathbf{A} \otimes \mathbf{D}_{k-1}\|_F^2$. Take the derivative of this function w.r.t. to \mathbf{A} and set the derivative to zero gives the update of \mathbf{A} (we postpone the details of the algebra involved later).

BCD scheme to solve CPD

Last page - summary

Discussed

- ► What is tensor
- ► Fiber and slice
- ▶ Rank-1 tensor
- ► CPD and Tucker decomposition
- ► Solving CPD by BCD

Not discussed

- ► Existence of CPD/Tucker decomposition
- Uniqueness of the solution
- ► The issue of degeneracy
- ► Algebraic method to solve CPD

See here for details on CPD.

End of document