

什么是预后预测,意义是什么

寻找与病人预后表现相关的特征(因素),从而判断病人所属生存组别,针对不同组别选择治疗方案

基于深度学习的方法-COX 比例风险回归

 $h_0(t)$ 基础风险函数,表示疾病在t时刻的风险

联合概率分布 (似然)

$$L(\beta) = \prod_{i=1}^{I} \frac{h(X_i, t; \beta)}{\sum_{k=i}^{I} h(X_k, t; \beta)} = \prod_{i=1}^{I} \frac{e^{DL(x_i)}}{\sum_{k=i}^{I} e^{DL(x_k)}}$$

极小化负对数似然

$$\min - \sum_{i=1}^{I} (DL(x_i) - \ln \sum_{k=i}^{I} e^{DL(x_k)})$$

基于概率分布的损失函数,需要对数据分布密集采样,获得有效的统计

基于深度学习的方法-COX 比例风险回归

挑战1:统计失效导致训练不稳定,难以获得有效的收敛。损失函数依靠概率分布,每次计算均需要大量统计数据,基于batch的损失函数计算方式受限于GPU存储空间只能获得少量的统计数据,导致概率分布统计失效,使得损失函数失真,训练不稳定。

基于深度学习的方法-低效的特征提取

预后网络的CAM

心脏内部对比度低,感兴趣结构边缘模糊,难以聚焦感知任务感兴趣特征。

已有的策略-缩小尺寸

严重丢失本就不清晰的边界信息

已有的策略-辅助任务学习

MPA估计分支的注 意力图:**更加聚焦, 关注重要区域**

限制:

- 1. 主导任务的不稳定性。
- 2. 低效率的知识嵌入。仅通过梯度引导底层共享参数的学习,无法嵌入高级的全局知识。

基于先验提示学习和记忆漂移的PAH预后预测

优势:

- 1. **隐先验嵌入**。通过梯度,利用共享表征偏好,引导网络关注与预后相关的特征区域,隐式地嵌入先验知识
- 2. 显先验嵌入。直接将辅助任务预测结果作为提示输入主任务分支,显式地嵌入高级先验知识
- 3. 密集输出空间采样。利用记忆库,保存大量的输出结果,从而无代价的获得大量的采样数据,计算具有统计意义的损失值
- 4. **动态记忆更新**。随着训练动态地更新记忆库,把老的样本丢弃,从而使记忆库中样本分布随输出分布变化。

先验提示学习

b) Memory Drift (MD-) NLPL Loss for optimization on representative statistics

$$y = \mathbf{W}^{\mathbf{T}} \times \mathbf{D} + b$$

COX回归公式

$$y = \mathbf{W^T} \times \mathbf{D} + y^{aux}$$
 先验偏置回归 辅助任务输出

对比分析

Method	HR (95% CI)	p-value	C-index (%)	logrank p	AUC (%)			
					TP3	TP6	TP9	TP12
MPA (Manual)	3.21 (1.62-6.33)	7.96×10^{-4}	61,70	4.23×10^{-4}	63.32	65.16	82.60	84.96
LPA (Manual)	2.54 (1.31-4.93)	5.91×10^{-3}	60.52	4.21×10^{-3}	62.79	54.15	72.45	81.01
RPA (Manual)	2.23 (1.10-4.55)	2.67×10^{-2}	58.15	2.27×10^{-2}	60.42	57.33	72.61	87.89
AAo (Manual)	2.27 (1.12-4.59)	2.29×10^{-2}	57.61	2.00×10^{-2}	60.19	68.73	84.25	89.56
DAo (Manual)	1.90 (0.98-3.70)	5.92×10^{-2}	56.06	5.56×10^{-2}	55.87	66.63	77.61	72.69
Radiomics (Zhang et al., 2020)	3.84 (1.75-8.34)	8.12×10^{-4}	67.72	3.22×10^{-4}	72.45	64.50	63.12	36.24
DeepSurv(Katzman et al., 2018)	5.61 (2.33-13.48)	1.17×10^{-4}	68.12	1.34×10^{-5}	70.29	74.34	77.17	92.68
SurvialNet(Yousefi et al., 2016)	4.56 (2.00-10.41)	3.19×10^{-4}	67.22	7.49×10^{-5}	67.94	70.57	70.57	70.92
LungNet(Mukherjee et al., 2020)	3.89 (1.77-8.54)	7.31×10^{-4}	65.17	2.60×10^{-4}	64.89	72.55	81.21	90.42
Deep Profiler(Lou et al., 2019)	3.43 (1.61-7.30)	1.37×10^{-3}	66.95	6.45×10^{-4}	68.07	67.62	69.24	78.58
Our P ² -Net	6.81 (2.65-17.52)	6.97×10^{-5}	70.11	3.84×10^{-6}	70.67	75.72	82.66	93.57

我们的方法在各项指标上都表现出了 更高的性能。KM分析也表明,我们的方 法得到的预后因素拥有更高的预后相关性。

对比分析

模型分析

MD	MT PPL HR (95% CI)		C-index (%)		
√			5.61 (2.33-13.48)	68.12	
1	1		5.46 (2.38-12.52)	69.77	
	1	V			
1	1	1	6.81 (2.65-17.52)	70.11	

消融实验: DeepSurv仅使用记忆漂移,可获得68.12的C-index,加上多任务学习,由于先验特征的引入,c-index增加了1.65。再加入我们的先验提示学习策略,c-index进一步提高了0.34,HR提高了1.25.

模型分析

分组分析: 利用我们模型输出 的预后因素可视化各组别对象。 高风险普遍表现出更大的的心 脏体积和更大的肺动脉直径。 这是因为分动脉高压累积在肺 动脉和心室, 使得心脏膨大, 肺动脉变粗。低风险则心脏更 小, 肺动脉更细。这证明我们 模型预后结果的准确性。

MPA估计准确性分析: MPA估计 具有临床参考意义,能够为模型的 临床使用提供一定的参考。利用 Bland-Altman分析,模型估计MPA 和医生测量MPA普遍在95%LoA之 内,在临床上可接受。

先验偏置模块分析: 先验偏置模块 是对估计的MPA的微调,基于临床 先验知识获得更好的预后结果。对 于不同案例,先验偏执模块对估计 的MPA以4.405为均值进行微调, 从而获得更好的预后结果。

$$y = \mathbf{W}^{\mathsf{T}} \times \mathbf{D} + y^{aux}$$

模型分析

CAM from Priori Network

CAM from Prognosis Network

各分支关注区域分析: 利用CAM图 分析模型关注区域, 先验网络拥有 更聚焦的关注区域, 能够为主网络 提供好的偏好。

感谢大家, 欢迎提问