LNG-1100 : Méthodes expérimentales et analyse de données

Analyse de données : test $t \to ANOVA$

Guilherme D. Garcia

fr.gdgarcia.ca

Révision

Test t

Pratique

- 1. Dans quelles conditions pouvons-nous utiliser le test *t*?
- 2. Quelle est la fonction et la syntaxe pour exécuter le test?
- 3. Quelle est l'hypothèse nulle dans un test *t*?
- 4. Quelle est l'interprétation de la valeur *p*?
- 5. Qu'est-ce qu'on voit dans le résultat d'un test *t*?
- 6. Quelles sont les limitations du test *t*?

Quand il y a plus de 2 groupes

Et plus d'une variable...?

Hypothèse nulle : a, b et c ne sont pas différents; ils viennent de la même population ($p \ge 0,05$). Autrement dit, $\mu_a = \mu_b = \mu_c$.

Hypothèse alternative : a, b et c sont différents; ils viennent des populations différentes (p < 0,05). Autrement dit, $\mu_a \neq \mu_b \neq \mu_c$.

Les limitations du test t

- On a souvent plus de deux groupes dans notre analyse
- En plus, on veut analyser plusieurs variables en même temps
- Un test *t* est simplement **trop limité**

Aujourd'hui : **ANOVA** (*ANalysis Of VAriance*)

- Une méthode qui nous permet d'analyser plusieurs groupes/variables en même temps
- Ici, l'ANOVA sera examinée de façon temporaire : on cible les régressions complètes
- Mais il est important de bien connaître l'ANOVA:

la littérature contient beaucoup d'articles que l'utilisent

test
$$t \to \mathsf{ANOVA} \to \boxed{\mathsf{régressions}}$$

Pratique

Révision du chapitre 5

Questions de base

- 1. Si on examine 5 villes dans notre fichier, combien de tests *t* faudra-t-il exécuter pour comparer toutes les villes?
- 2. Quel est le problème de cet approche?
- 3. Quels sont les deux types d'erreurs pertinents à l'analyse de données?

Erreurs

Nos possibilités

	H ₀ est vraie	H ₀ est fausse
on rejette H_0	Type I	
on ne rejette pas H_0		Type II

Exemple classique : un test de grossesse

- Positif mais la femme n'est pas enceinte
- Négatif mais la femme est enceinte

erreur de type I erreur de type II

Ces concepts sont pertinent n'importe quelle méthode on utilise dans le cours

ANOVA

Concepts de base

• L'idée générale : $F = \frac{\text{variabilité entre les groupes}}{\text{variabilité à l'intérieur des groupes}}$ Si F > 1, peut-être les groupes sont différents

Vrai ou faux?

- 1. Une ANOVA nous montre où sont les différences entre des groupes
- 2. La fonction utilisé pour exécuter une ANOVA est anova()
- 3. L'hypothèse alternative (H_1) d'une ANOVA est que tous les groupes sont différents

Qu'est-ce la variance...?

La variabilité à l'intérieur des groupes

- Si l'ANOVA cible la variance, il faut bien comprendre la définition de variance
- Voici les premières lignes de villes2.csv (version simplifiée)
- Analysons notre tableau : pour Calgary, la note moyenne est 67.

	note	ville
1	52.47	Calgary
2	68.67	Calgary
3	48.29	Calgary
4	96.91	Calgary
5	71.59	Calgary
6	48.59	Calgary
		•••

Qu'est-ce la variance...?

La variabilité à l'intérieur des groupes

- On calcule la différence (l'écart) entre chaque note et la moyenne du groupe
- Après, on calcule le carré de l'écart (ce qui nous donnera juste des valeurs positives)

	note	ville	moyenne	note-moyenne	(note-moyenne) ²
1	52.47	Calgary	67.00	-14.53	211.09
2	68.67	Calgary	67.00	1.67	2.80
3	48.29	Calgary	67.00	-18.71	350.16
4	96.91	Calgary	67.00	29.91	894.35
5	71.59	Calgary	67.00	4.59	21.07
6	48.59	Calgary	67.00	-18.41	338.90
	•••				$\frac{somme}{N-k}$

• La variance à l'intérieur des groupes sera la | somme totale divisée par N-k

N = nombre total d'observations; k = nombre de groupes (villes ici)

ANOVA

Concepts de base

• L'idée générale : $F = \frac{\text{variabilité entre les groupes}}{\text{variabilité à l'intérieur des groupes}}$

Maintenant, calculons la variabilité entre les groupes

Qu'est-ce la variance...?

La variabilité entre les groupes

- Calculez les moyennes par groupe ainsi que la différence entre leurs moyennes et la moyenne générale ($\bar{x} = 70.25$)
- ullet Après, multipliez les carrés des écarts (CE) par le nombre d'observations (n) \to n_CE

	ville	moyenne	n	diff	CE	n_CE
1	Calgary	67.01	50	-3.25	10.54	526.90
2	Montréal	69.58	50	-0.67	0.45	22.54
3	Québec	74.17	50	3.92	15.35	767.38
						$\frac{somme}{k-1}$

• La somme totale est donc divisée par k-1, et cela sera notre variété entre les groupes

Pratique

Chapitre 5

• Examinons les code et les exercices dans le chapitre [3]

ANOVA + R

• Heureusement, il y a une fonction qui automatise le calcul pour nous : aov()

Pratique

Complétez le script seance-5.R:

- 1. Calculez les moyennes et les écarts-types des cinq groupes.
- 2. Visualisez les données et exécutez une ANOVA.
- 3. Pouvons-nous rejeter l'hypothèse nulle? Générez des comparaisons multiples.
- 4. Avons-nous des erreurs dans les résultats?
- 5. Communiquer les résultats en utilisant le modèle présenté dans le chapitre.

ANNEXE: LA DISTRIBUTION F

La distribution F

Pour mieux comprendre la logique de l'ANOVA

- 1. On calcule les variabilités et la valeur F
- 2. Ensuite, avec les **dégrées de liberté** des données (2 et 147 pour villes2.csv),¹ on consulte un tableau de valeurs critiques. Pour $\alpha=0.05$ et une hypothèse bilatérale cette valeur sera de ≈ 3.06 . Donc, si notre valeur F est supérieure à cette valeur, on sera dans la **région critique**, ce qui nous permettra de rejeter l'hypothèse nulle.
- Examinez le tableau en question : quelle est la relation entre les dégrées de liberté et les valeurs critiques de *F*?

¹Nombre de groupes (3) - 1. Nombre d'observations (150) - nombre de groupes (3).

La distribution F

Visualisons nos données

• Après avoir calculé F (ou après avoir exécuté aov (...)), on arrive à F=5.82

La distribution F

La région critique (rouge) = 5 % de la distribution

5.82 (ligne pointillée) est **beaucoup** plus élevé que 3.06, la valeur critique pour F(2, 147)

ullet On est donc dans la région critique o on **rejette** l'hypothèse nulle

Commentaires finaux

Test t vs. ANOVA

- L'ANOVA et le test *t* suppose que la variable de réponse est **normale**
- En plus, les deux méthodes suppose que la variance est la même à travers les groupes
- Le test t est limité à 1 ou 2 groupes; l'ANOVA est libre
- L'ANOVA peut avoir plusieurs variables : aov (y ~ x + w + z)
- Ces méthodes nous donnent une valeur *p*, ce qui nous permet de rejeter ou de ne pas rejeter l'hypothèse nulle. La statistique nous permet de conclure si un effet ou si une différence est **significative** ou **crédible**. Notre analyse ne doit pas pourtant se concentrer simplement sur les valeurs *p*!

Les deux méthodes servent de point de départ pour le cours