UNIVERSIDADE FEDERAL DE OURO PRETO Instituto de Ciências Exatas e Biológicas DEPARTAMENTO DE MATEMÁTICA

MTM 131 – Geometria Analítica e Cálculo Vetorial – 2019/2 Prof. Fabiana Lopes Fernandes

Lista L2P2 – Elipses

Instruções: Utilizar apenas conceitos e fórmulas vistos em aula para resolver os exercícios. Bom trabalho!

1. Escreva as equações das elipses mostradas na figura abaixo e determine as coordenadas de seus focos.

(a) Elipse horizontal

(b) Elipse vertical

2. Em cada item, é dada a equação de uma elipse. Pede-se: (i) as coordenadas dos focos e vértices; (ii) o comprimento do eixo maior; (iii) o comprimento do eixo menor; (iv) esboço.

(a)
$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

(b) $225x^2 + 289y^2 = 65025$

(c)
$$144x^2 + 169y^2 = 24336$$

(b)
$$225x^2 + 289y^2 = 65025$$

- 3. Determine a equação e faça um esboço da elipse que satisfaz às condições dadas em cada item:
 - (a) focos ($\pm 3, 0$) e passsa pelo ponto P = (0, 4);
 - (b) centro na origem, um foco em (0,3) e eixo maior de comprimento 10;
 - (c) vértices $(\pm \frac{5}{2}, 0)$ e focos $(\pm \frac{3}{2}, 0)$;
 - (d) focos $(0,\pm 3)$ e eixo maior de comprimento $6\sqrt{3}$;
 - (e) vértices $(\pm 2,0)$ e passa pelo ponto $Q = \left(-1, \frac{\sqrt{3}}{2}\right)$;
 - (f) centro em (4, -2), um vértice está em (9, -2) e, um foco, em (0, -2).
- 4. Determine o lugar geométrico dos pontos do plano, cuja soma das distâncias aos pontos $(0, \pm 5)$ é igual a 26. Faça um esboço.
- 5. Em cada item, determine os pontos em que a reta r intercepta a elipse de equação dada. Esboce a reta e a elipse no plano cartesiano e assinale os pontos de interseção.

1

(a)
$$r: 5x + y = 5$$
, elipse: $25x^2 + y^2 = 25$

(b)
$$r: x + 2y = 6$$
, elipse: $x^2 + 4y^2 = 20$

- 6. A figura acima, mostra o vão da entrada de um armazém, pelo qual deverá passar um caminhão que tem 4 metros de largura. Determine a altura máxima que o caminhão pode ter, sabendo que o arco superior do vão é semi-elíptico.
- 7. O teto de saguão, com 10m de largura, tem a forma de uma semielipse, com 9m de altura no centro e 6m de altura nas paredes laterais. Determine a altura do teto a 2m de cada parede.
- 8. O arco de uma ponte tem a forma de uma semielipse com um vão horizontal de 40m e com 16m de altura no centro. Qual a altura do arco a 9m à esquerda ou à direita do centro?
- 9. Dertermine o valor da constante m para que a reta r:y=mx+8 seja tangente à elipse $16x^2+25y^2=400$.

RESPOSTAS

1 (a)
$$\frac{x^2}{36} + \frac{y^2}{16} = 1$$
; $F = \left(\pm 2\sqrt{5}, 0\right)$

(b)
$$x^2 + \frac{y^2}{16} = 1$$
; $F = \left(0 \pm \sqrt{15}\right)$

2 (a) (i)
$$F = (0, \pm \sqrt{5}), V = (0, \pm 3),$$

 $B = (\pm 2, 0); (ii) 6; (iii) 4$

(b) (i)
$$F = (\pm 8, 0), V = (\pm 17, 0),$$

 $B = (0, \pm 15); (ii)34; (iii) 30$

(c) (i)
$$F = (\pm 5, 0), V = (\pm 13, 0),$$

 $B = (0, \pm 12); (ii) 26; (ii) 24$

$$3 \quad \text{(a)} \quad 16x^2 + 25y^2 = 400$$

(b)
$$25x^2 + 16y^2 = 400$$

(c)
$$16x^2 + 25y^2 = 100$$

(d)
$$3x^2 + 2y^2 = 54$$

(e)
$$x^2 + 4y^2 = 4$$

(f)
$$9(x-4)^2 + 25(y+2)^2 = 225$$

$$4 \ 169x^2 + 144y^2 = 24336$$

5 (a)
$$(0,5)$$
 e $(1,0)$

(b)
$$(2,0)$$
 e $(4,1)$

$$6 \quad \frac{8+3\sqrt{3}}{2}m$$

$$7 \frac{42}{5}m$$

$$8 \frac{4}{5}\sqrt{319}m$$

9
$$m = \pm \frac{48}{25}$$