Züchtungslehre - Verwandtschaft und Inzucht

Peter von Rohr

2016-10-21

Selektion und Variabilität

- Annahmen: Selektion auf ein bestimmtes Zuchtziel
- Häufigkeit von positiven Allelen steigt
- ► Genetische Ähnlichkeit zwischen Individuen nimmt zu
- Genetische Diversität nimmt ab

Verschiedene Arten der Ähnlichkeit

Verwandtschaft

Zwei Tiere x und y sind miteinander verwandt, falls

$$\mathcal{P}(\mathsf{Allele}\;\mathsf{an}\;\mathsf{beliebigem}\;\mathsf{Locus}\;\mathsf{IBD})>0$$

Quantifizierung mit Verwandtschaftsgrad axy

$$a_{x,y} = \sum_{i=1}^{P} \left(\frac{1}{2}\right)^{t_1^{(i)} + t_2^{(i)}} (1 + F_{Z_i})$$

wobei i über alle möglichen Verbindungen im Pedigree zwischen den Tieren x und y läuft und Z_i der gemeinsame Ahne von x und y auf der Verbindung i darstellt.

Diagram zum Verwandtschaftsgrad

Inzucht

- ► Tier x ist ingezüchtet, falls seine Eltern m(x) und v(x) miteinander verwandt
- ► Inzuchtkoeffizient *F*_×

$$F_{x} = \frac{1}{2} a_{m(x),v(x)}$$

$$= \frac{1}{2} \sum_{i=1}^{P} \left(\frac{1}{2}\right)^{t_{1}^{(i)} + t_{2}^{(i)}} (1 + F_{Z_{i}})$$

$$= \sum_{i=1}^{P} \left(\frac{1}{2}\right)^{t_{1}^{(i)} + t_{2}^{(i)} + 1} (1 + F_{Z_{i}})$$

Matrixmethode

- 1. Tiere dem Alter nach von links nach rechts in Matrix anordnen. Erstes Tier ist unbekanntes Tier NA.
- 2. Oberhalb jedes Tieres werden Eltern eingetragen
- 3. Offdiagonalelemente der ersten Zeile und ersten Kolonne werden mit lauter Nullen aufgefüllt.
- 4. Als Diagonalelement für Tier x tragen wir $1 + F_x$ ein
- 5. Offdiagonalelemente für Tier x werden mit den Verwandtschaftsgraden $a_{x,y}$ aufgefüllt. Dabei gilt, dass

$$a_{xy} = \frac{1}{2}(a_{x,m(y)} + a_{x,v(y)})$$

6. Damit Matrix symmetrisch, Zeilenelemente für Tier x in die Kolonnen für Tier x übertragen.

Beispiel

Pedigree Liste

```
##
      sire
           dam
## 1
      <NA> <NA>
## 2
     <NA> <NA>
## 3 <NA> <NA>
     <NA> <NA>
## 4
## 5
         3
## 6
         3
## 7
         6
              5
## 8
         6
## 9
## 10
         8
              9
```

```
NA 1 2 3 4 5 6 7 8 9 10
```

```
1-2 3-2 3-4 6-5
                                            8
                                                           10
2
3
4
5
6
7
8
10
```

```
1-2 3-2 3-4 6-5
                                            8
                                                           10
2
3
4
5
6
7
8
10
```

```
1-2 3-2 3-4
                                      6 - 5
    NA
          2 3 4 5
                                      8
                                                  10
NA
                    0.5
                                      0.25
                                                  0.125
                                            0
2
5
6
10
```

10

0.25

0.125

```
6 - 5
                          1-2 3-2 3-4
     NA
               2 3 4 5
                                              8
                                                            10
                         0.5
                                              0.25
                      0
                                                     0
2
3
4
5
6
7
        0.5
```

Abschluss

A =	1.0000	0.0000 1.0000	0.0000	0.0000	0.5000 0.5000	0.0000 0.5000	0.0000	0.2500 0.5000	0.0000 0.2500	0.1250 - 0.3750
	0.0000	0.0000	1.0000	0.0000	0.0000	0.5000	0.5000	0.2500	0.5000	0.3750
	0.0000	0.0000	0.0000	1.0000	0.0000	0.0000	0.5000	0.0000	0.2500	0.1250
	0.5000	0.5000	0.0000	0.0000	1.0000	0.2500	0.0000	0.6250	0.1250	0.3750
	0.0000	0.5000	0.5000	0.0000	0.2500	1.0000	0.2500	0.6250	0.6250	0.6250
	0.0000	0.0000	0.5000	0.5000	0.0000	0.2500	1.0000	0.1250	0.6250	0.3750
	0.2500	0.5000	0.2500	0.0000	0.6250	0.6250	0.1250	1.1250	0.3750	0.7500
	0.0000	0.2500	0.5000	0.2500	0.1250	0.6250	0.6250	0.3750	1.1250	0.7500
	0.1250	0.3750	0.3750	0.1250	0.3750	0.6250	0.3750	0.7500	0.7500	1.1875