

PATH FINDING VISUALIZOR

Course Title: Artificial Intelligence Lab

Course Code: CSE-3636

Submitted By:

ID: C223298

Name: Sakaratul Ara Tasmia

ID: C223303

Name: Nowshin Islam Mim

ID: C223311

Name: Tahsin Islam Nafisa

Submitted To:

Ms. Bibi Sara Karimullah Adjunct Lecturer, CSE

PRESENTATION OUTLINE

Introduction

Objectives

Tools & Technologies

Project Demonstration

Algorithm Integration

Testing

Future Implementation

Conclusion

INTRODUCTION

This project is a Pathfinding Visualizer, an interactive tool designed to demonstrate how various pathfinding algorithms work in real time. It helps users understand and compare algorithms by visualizing their step-by-step process of exploring nodes and finding the shortest path.

OBJECTIVES

- An interactive tool to visualize how pathfinding algorithms work in real-time.
- Helps users understand and compare the behavior of different algorithms.
- Built using Python and Pygame for smooth graphical interface and animation.

TOOLS & TECHNOLOGIES

FRONTEND

- PygameLibrary
- GUI for mouse interaction

BACKEND

Python

DEVELOPMENT TOOLS

VS Code

PROJECT DEMONSTRATION

> Grid Manipulation

Step-by-Step Visualization

Algorithm Selection

Perfomance metrics

ALGORITHM INTEGRATION

GREEDY BEST
FIRST SEARCH

DEPTH FIRST SEARCH

ALGORITHM INTEGRATION

TESTING (INPUT)

TESTING (OUTPUT)

Greedy Breadth First Search

Depth First Search

TESTING (OUTPUT)

A* Search

Breadth First Search

TESTING (OUTPUT)

Dijkstra's Search

Results

FUTURE IMPLEMENTATION

- Add more algorithms
- Add options to save and load custom grids
- Improve the user experience
- Support diagonal movement.
- Integration with real world application

CONCLUSION

This project makes learning algorithms engaging and visual. It is a great educational tool for students and educators. Future additions can make it even more interactive and useful.

#