Linear Regression:

In [447... #importing the libraries and csv file

import pandas as pd import numpy as np

from sklearn import preprocessing

from sklearn.preprocessing import LabelEncoder

import math

file_automob=pd.read_csv('./Automobile_data.csv')

In [448... #displaying the top 5 data file_automob.head(5)

Out[448]:

:		symboling	normalized- losses	make	fuel- type	aspiration	num- of- doors	body- style	drive- wheels	engine- location	wheel- base	 engine- size
	0	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130
1	1	3	?	alfa- romero	gas	std	two	convertible	rwd	front	88.6	 130
	2	1	?	alfa- romero	gas	std	two	hatchback	rwd	front	94.5	 152
	3	2	164	audi	gas	std	four	sedan	fwd	front	99.8	 109
	4	2	164	audi	gas	std	four	sedan	4wd	front	99.4	 136

5 rows × 26 columns

file_automob.describe() In [449...

Out[449]:

		symboling	wheel- base	length	width	height	curb-weight	engine- size	compression- ratio	
C	ount	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	205.000000	2
m	ean	0.834146	98.756585	174.049268	65.907805	53.724878	2555.565854	126.907317	10.142537	
	std	1.245307	6.021776	12.337289	2.145204	2.443522	520.680204	41.642693	3.972040	
	min	-2.000000	86.600000	141.100000	60.300000	47.800000	1488.000000	61.000000	7.000000	
	25%	0.000000	94.500000	166.300000	64.100000	52.000000	2145.000000	97.000000	8.600000	
	50%	1.000000	97.000000	173.200000	65.500000	54.100000	2414.000000	120.000000	9.000000	
	75%	2.000000	102.400000	183.100000	66.900000	55.500000	2935.000000	141.000000	9.400000	
	max	3.000000	120.900000	208.100000	72.300000	59.800000	4066.000000	326.000000	23.000000	

In [450... #check for duplicate

file_automob.index[file_automob.duplicated()]

Int64Index([], dtype='int64') Out[450]:

In [451... #checking for type of data in columns

file_automob.dtypes

Loading [MathJax]/extensions/Safe.js

```
symboling
                                  int64
Out[451]:
          normalized-losses
                                 object
          make
                                 object
          fuel-type
                                 object
          aspiration
                                 object
          num-of-doors
                                 object
          body-style
                                 object
          drive-wheels
                                 object
          engine-location
                                 object
          wheel-base
                                float64
          length
                                float64
          width
                                float64
                                float64
          height
          curb-weight
                                  int64
          engine-type
                                 object
          num-of-cylinders
                                 object
                                  int64
          engine-size
          fuel-system
                                 object
          bore
                                 object
                                 object
          stroke
          compression-ratio
                                float64
          horsepower
                                 object
          peak-rpm
                                 object
                                  int64
          city-mpg
                                  int64
          highway-mpg
                                 object
          price
          dtype: object
In [452...
         #Conversion of some columns' datatype from object type to numeric value (numeric value r
         file_automob['normalized-losses'] = pd.to_numeric(file_automob['normalized-losses'], err
         file_automob['wheel-base'] = pd.to_numeric(file_automob['wheel-base'], errors='coerce')
         file_automob['bore'] = pd.to_numeric(file_automob['bore'], errors='coerce')
         file_automob['stroke'] = pd.to_numeric(file_automob['stroke'], errors='coerce')
         file_automob['horsepower'] = pd.to_numeric(file_automob['horsepower'], errors='coerce')
         file_automob['peak-rpm'] = pd.to_numeric(file_automob['peak-rpm'], errors='coerce')
         file_automob['price'] = pd.to_numeric(file_automob['price'], errors='coerce')
In [453... #checking for columns with NaN
```

file_automob.isna().sum()

```
symboling
                                  0
Out[453]:
          normalized-losses
                                 41
          make
                                  0
          fuel-type
                                  0
          aspiration
                                  0
          num-of-doors
                                  0
          body-style
                                  0
           drive-wheels
                                  0
          engine-location
                                  0
          wheel-base
                                  0
          length
                                  0
          width
                                  0
          height
                                  0
          curb-weight
                                  0
          engine-type
                                  0
          num-of-cylinders
                                  0
          engine-size
                                  0
          fuel-system
                                  0
           bore
                                  4
           stroke
                                  4
                                  0
          compression-ratio
                                  2
          horsepower
           peak-rpm
                                  2
           city-mpg
                                  0
                                  0
          highway-mpg
                                  4
          price
          dtype: int64
In [454... # fill -1 to all , mean value
          numeric_columns = file_automob.select_dtypes(include=['number']).columns
          file_automob[numeric_columns] = file_automob[numeric_columns].fillna(file_automob[numeri
          file_automob.shape
In [455...
           (205, 26)
Out[455]:
         # file_automob.boxplot(column='price')
In [456...
          file_automob.boxplot(column='engine-size')
          <AxesSubplot:>
Out[456]:
```

```
In [457...
          #plotting heatmap to see the correlation
          import seaborn as sn
          import matplotlib.pyplot as plt
          sn.set(rc = {'figure.figsize':(35,18)})
          hm = sn.heatmap(data=file_automob.corr(),linewidths=.75,annot=True)
          plt.show()
                                                0.87
                           0.78
                                0.88
                                                          0.65
                                                               1
                                                                                              0.76
In [ ]:
```

Encoding the data to numeric value

1

```
In [458...
          #label encoding
          file_automob["make"].value_counts()
          file_automob["make"] = file_automob["make"].astype('category')
          file_automob["make_code"] = file_automob["make"].cat.codes
          file_automob[["make", "make_code"]].head(10)
Out[458]:
                  make make_code
           0 alfa-romero
                                 0
             alfa-romero
                                 0
           2
                                 0
              alfa-romero
           3
                    audi
                                 1
           4
                                 1
                    audi
           5
                    audi
                                 1
           6
                    audi
                                 1
           7
                                 1
                    audi
           8
                    audi
                                 1
```

audi

```
file_automob["fuel-type"].value_counts()
          file_automob=pd.get_dummies(file_automob, columns=["fuel-type"])
          file_automob["aspiration"].value_counts()
In [460...
          file_automob=pd.qet_dummies(file_automob, columns=["aspiration"])
          file_automob["num-of-doors"].value_counts()
In [461...
          file_automob["num-of-doors"] = file_automob["num-of-doors"].replace('?', 'four')#replace
          #find and replace
          file_automob.head()
Out[461]:
                                            num-
                        normalized-
                                                     body-
                                                             drive-
                                                                   engine-
                                                                           wheel-
              symboling
                                     make
                                                                                   length width ... horsepowe
                                             of-
                             losses
                                                      style
                                                           wheels
                                                                   location
                                                                             base
                                           doors
                                      alfa-
           0
                      3
                             122.0
                                                 convertible
                                                              rwd
                                                                      front
                                                                             88.6
                                                                                   168.8
                                                                                          64.1
                                                                                                        111.0
                                             two
                                    romero
                                      alfa-
           1
                      3
                             122.0
                                             two
                                                 convertible
                                                              rwd
                                                                      front
                                                                             88.6
                                                                                   168.8
                                                                                          64.1 ...
                                                                                                        111.0
                                    romero
                                      alfa-
           2
                      1
                              122.0
                                                  hatchback
                                                                      front
                                                                             94.5
                                                                                   171.2
                                                                                          65.5
                                                                                                        154.0
                                             two
                                                              rwd
                                    romero
           3
                      2
                                      audi
                                                                      front
                                                                             99.8
                                                                                   176.6
                             164.0
                                             four
                                                     sedan
                                                              fwd
                                                                                          66.2
                                                                                                        102.0
                      2
           4
                             164.0
                                                     sedan
                                                                                   176.6
                                      audi
                                             four
                                                              4wd
                                                                      front
                                                                             99.4
                                                                                          66.4
                                                                                                        115.0
          5 rows × 29 columns
In [462...
          file_automob["num-of-cylinders"].value_counts()
          file_automob=pd.get_dummies(file_automob, columns=["num-of-cylinders"])
In [463... #label encoding
          file_automob["body-style"].value_counts()
          file_automob["body-style"] = file_automob["body-style"].astype('category')
          file_automob["body-style-code"] = file_automob["body-style"].cat.codes
In [464...
          #one-hot encoding
          file_automob["drive-wheels"].value_counts()
          file_automob=pd.get_dummies(file_automob, columns=["drive-wheels"])
          file_automob["engine-type"].value_counts()
In [465...
          file_automob=pd.get_dummies(file_automob, columns=["<mark>engine-type"</mark>])
          file_automob["engine-location"].value_counts()
In [466...
          file_automob=pd.get_dummies(file_automob, columns=["engine-location"])
          file_automob["fuel-system"].value_counts()
In [467... |
          file_automob=pd.get_dummies(file_automob, columns=["fuel-system"])
In [468...
          file_automob_back_up=file_automob
          file_automob.drop("make", axis=1, inplace=True)
          file_automob.drop("body-style", axis=1, inplace=True)
          file_automob
```

[468]:

	symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	 engine- location_front
	3	122.0	two	88.6	168.8	64.1	48.8	2548	130	3.47	 1
:	3	122.0	two	88.6	168.8	64.1	48.8	2548	130	3.47	 1
:	2 1	122.0	two	94.5	171.2	65.5	52.4	2823	152	2.68	 1
;	3 2	164.0	four	99.8	176.6	66.2	54.3	2337	109	3.19	 1
	4 2	164.0	four	99.4	176.6	66.4	54.3	2824	136	3.19	 1
20	-1	95.0	four	109.1	188.8	68.9	55.5	2952	141	3.78	 1
20	1 -1	95.0	four	109.1	188.8	68.8	55.5	3049	141	3.78	 1
20	2 -1	95.0	four	109.1	188.8	68.9	55.5	3012	173	3.58	 1
20	3 -1	95.0	four	109.1	188.8	68.9	55.5	3217	145	3.01	 1
20	4 -1	95.0	four	109.1	188.8	68.9	55.5	3062	141	3.78	 1

205 rows × 50 columns

In [469... file_automob

Out[469]:

	symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	 engine- location_front
0	3	122.0	two	88.6	168.8	64.1	48.8	2548	130	3.47	 1
1	3	122.0	two	88.6	168.8	64.1	48.8	2548	130	3.47	 1
2	1	122.0	two	94.5	171.2	65.5	52.4	2823	152	2.68	 1
3	2	164.0	four	99.8	176.6	66.2	54.3	2337	109	3.19	 1
4	2	164.0	four	99.4	176.6	66.4	54.3	2824	136	3.19	 1
200	-1	95.0	four	109.1	188.8	68.9	55.5	2952	141	3.78	 1
201	-1	95.0	four	109.1	188.8	68.8	55.5	3049	141	3.78	 1
202	-1	95.0	four	109.1	188.8	68.9	55.5	3012	173	3.58	 1
203	-1	95.0	four	109.1	188.8	68.9	55.5	3217	145	3.01	 1
204	-1	95.0	four	109.1	188.8	68.9	55.5	3062	141	3.78	 1

205 rows × 50 columns

```
In [470... file_automob["num-of-doors"].value_counts()
   set_nums = {"num-of-doors": {"four": 4, "two": 2}}
   file_automob = file_automob.replace(set_nums)
```

```
In [471... np.corrcoef(file_automob['price'], file_automob['engine-size'])
    file_automob
```

71]:		symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	 engine- location_front
	0	3	122.0	2	88.6	168.8	64.1	48.8	2548	130	3.47	 1
	1	3	122.0	2	88.6	168.8	64.1	48.8	2548	130	3.47	 1
	2	1	122.0	2	94.5	171.2	65.5	52.4	2823	152	2.68	 1
	3	2	164.0	4	99.8	176.6	66.2	54.3	2337	109	3.19	 1
	4	2	164.0	4	99.4	176.6	66.4	54.3	2824	136	3.19	 1
	200	-1	95.0	4	109.1	188.8	68.9	55.5	2952	141	3.78	 1
	201	-1	95.0	4	109.1	188.8	68.8	55.5	3049	141	3.78	 1
	202	-1	95.0	4	109.1	188.8	68.9	55.5	3012	173	3.58	 1
	203	-1	95.0	4	109.1	188.8	68.9	55.5	3217	145	3.01	 1
	204	-1	95.0	4	109.1	188.8	68.9	55.5	3062	141	3.78	 1

205 rows × 50 columns

Out [4]

```
#min max normalization is used when features are of different scales.
In [472...
         for i,col in enumerate(file_automob,1):
             file_automob[col]=(file_automob[col]-file_automob[col].min())/(file_automob[col].max
In [473...
         sn.set(rc = {'figure.figsize':(35,18)})
         hm = sn.heatmap(data=file_automob.corr(),linewidths=.75,annot=True)
         plt.show()
```

Creation of training and testing data for univariate

```
In [474... #split the data into 80% training and 20% testing
         file_automob_data = file_automob.sample(frac=1, random_state=42)
         # Define a size for your train set
         train_size = int(0.80 * len(file_automob))
         # Split your dataset
         train_set = file_automob_data[:train_size]
         test_set = file_automob_data[train_size:]
```

In [475... train_set

Out[475]:

	symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	
15	0.4	0.298429	1.0	0.492711	0.714925	0.550000	0.658333	0.675718	0.558491	0.771429	
9	0.4	0.298429	0.0	0.376093	0.553731	0.633333	0.350000	0.607060	0.264151	0.421429	
100	0.4	0.214660	1.0	0.309038	0.482090	0.408333	0.575000	0.315749	0.222642	0.564286	
132	1.0	0.445026	0.0	0.364431	0.679104	0.516667	0.691667	0.453840	0.226415	0.714286	
68	0.2	0.146597	1.0	0.682216	0.743284	0.833333	0.908333	0.877424	0.460377	0.742857	
59	0.6	0.335079	0.0	0.355685	0.547761	0.516667	0.491667	0.347944	0.230189	0.607143	
176	0.2	0.000000	1.0	0.460641	0.514925	0.516667	0.591667	0.359193	0.230189	0.550000	
131	0.8	0.298429	0.0	0.276968	0.532836	0.525000	0.225000	0.377036	0.267925	0.657143	
17	0.4	0.298429	1.0	0.682216	0.834328	0.883333	0.708333	0.782389	0.558491	0.771429	
72	1.0	0.403141	0.0	0.291545	0.585075	0.850000	0.250000	0.852211	0.652830	0.657143	

164 rows × 50 columns

In [476... test_set

\sim		г.	$A \rightarrow$		7	
() (17	1 /	47	h		

Out[476]:		symboling	normalized- losses	num- of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	
	180	0.2	0.130890	1.0	0.521866	0.697015	0.516667	0.525000	0.637316	0.415094	0.521429	
	134	1.0	0.445026	0.0	0.364431	0.679104	0.516667	0.691667	0.472847	0.226415	0.000000	
	171	0.8	0.361257	0.0	0.344023	0.523881	0.441667	0.350000	0.475562	0.320755	0.771429	
	198	0.0	0.198953	1.0	0.516035	0.711940	0.575000	0.700000	0.603957	0.260377	0.771429	
	63	0.4	0.298429	1.0	0.355685	0.547761	0.516667	0.641667	0.370442	0.230189	0.607143	
	54	0.6	0.251309	1.0	0.189504	0.383582	0.325000	0.525000	0.179209	0.113208	0.385714	
	107	0.4	0.502618	1.0	0.620991	0.680597	0.675000	0.741667	0.594259	0.222642	0.657143	
	50	0.6	0.204188	0.0	0.189504	0.268657	0.325000	0.525000	0.155935	0.113208	0.350000	
	201	0.2	0.157068	1.0	0.655977	0.711940	0.708333	0.641667	0.605508	0.301887	0.885714	
	169	0.8	0.361257	0.0	0.344023	0.523881	0.441667	0.350000	0.412335	0.320755	0.771429	
	58	1.0	0.445026	0.0	0.253644	0.416418	0.450000	0.150000	0.392552	0.071698	0.564108	
	48	0.4	0.298429	1.0	0.769679	0.873134	0.775000	0.416667	1.000000	0.743396	0.778571	
	88	0.2	0.376963	1.0	0.282799	0.467164	0.425000	0.316667	0.354926	0.184906	0.450000	
	21	0.6	0.277487	0.0	0.206997	0.241791	0.291667	0.250000	0.150504	0.109434	0.307143	
	57	1.0	0.445026	0.0	0.253644	0.416418	0.450000	0.150000	0.347944	0.033962	0.564108	
	160	0.4	0.136126	1.0	0.265306	0.376119	0.341667	0.433333	0.235066	0.139623	0.464286	
	197	0.2	0.047120	1.0	0.516035	0.711940	0.575000	0.808333	0.602793	0.301887	0.885714	
	129	0.6	0.298429	0.0	0.344023	0.516418	1.000000	0.225000	0.728472	0.535849	1.000000	
	37	0.4	0.214660	0.0	0.288630	0.394030	0.408333	0.458333	0.290147	0.184906	0.435714	
	157	0.4	0.136126	1.0	0.265306	0.376119	0.341667	0.416667	0.240884	0.139623	0.464286	
	193	0.4	0.298429	1.0	0.402332	0.626866	0.550000	0.608333	0.416990	0.181132	0.464286	
	1	1.0	0.298429	0.0	0.058309	0.413433	0.316667	0.083333	0.411171	0.260377	0.664286	
	52	0.6	0.204188	0.0	0.189504	0.268657	0.325000	0.525000	0.161753	0.113208	0.350000	
	149	0.4	0.104712	1.0	0.300292	0.485075	0.425000	0.591667	0.450737	0.177358	0.771429	
	130	0.4	0.298429	1.0	0.276968	0.602985	0.516667	0.616667	0.423196	0.267925	0.657143	
	151	0.6	0.115183	0.0	0.265306	0.262687	0.275000	0.558333	0.214119	0.116981	0.364286	
	103	0.4	0.225131	1.0	0.402332	0.649254	0.516667	0.608333	0.609775	0.452830	0.635714	
	99	0.4	0.214660	1.0	0.309038	0.482090	0.408333	0.575000	0.324282	0.222642	0.564286	
	116	0.4	0.502618	1.0	0.620991	0.680597	0.675000	0.741667	0.684251	0.343396	0.828571	
	87	0.6	0.314136	1.0	0.282799	0.467164	0.425000	0.316667	0.354926	0.184906	0.450000	
	74	0.6	0.298429	0.0	0.740525	0.867164	0.975000	0.633333	0.863848	0.916981	0.900000	
	121	0.6	0.465969	1.0	0.206997	0.391045	0.291667	0.250000	0.194337	0.109434	0.307143	
	204	0.2	0.157068	1.0	0.655977	0.711940	0.716667	0.641667	0.610551	0.301887	0.885714	
	20	0.4	0.083770	1.0	0.230321	0.264179	0.275000	0.350000	0.163305	0.109434	0.350000	
	188	0.8	0.151832	1.0	0.311953	0.456716	0.433333	0.658333	0.314973	0.181132	0.464286	
	71	0.2	0.298429	1.0	0.845481	0.917910	0.950000	0.725000	0.873545	0.652830	0.657143	
	106	0.6	0.869110	0.0	0.367347	0.558209	0.633333	0.158333	0.640419	0.452830	0.635714	
Loading [MathJax]/	14 extens	0.6 ions/Safe.js	0.298429	1.0	0.492711	0.714925	0.550000	0.658333	0.607836	0.388679	0.550000	
J		,-										

	symboling	normalized- losses	of- doors	wheel- base	length	width	height	curb- weight	engine- size	bore	
92	0.6	0.298429	1.0	0.230321	0.361194	0.291667	0.558333	0.174554	0.135849	0.435714	
179	1.0	0.691099	0.0	0.475219	0.632836	0.616667	0.350000	0.592708	0.415094	0.521429	
102	0.4	0.225131	1.0	0.402332	0.649254	0.516667	0.691667	0.701319	0.452830	0.635714	

41 rows × 50 columns

Out[477]: <matplotlib.collections.PathCollection at 0x293c13d47c0>

In [478... plt.scatter(file_automob["curb-weight"], file_automob["price"], color='red', marker='+')
Out[478]: <matplotlib.collections.PathCollection at 0x293c15e5eb0>

Using Inbuilt Linear regression model for comparision

```
In [479... #inbuilt model
Loading [MathJax]/extensions/Safe.js
```

```
from sklearn import linear_model as lm
         model = lm.LinearRegression()
         model.fit(np.array(train_set["engine-size"].values).reshape(-1,1), train_set.price.value
          LinearRegression()
Out[479]:
         model.coef_, model.intercept_
In [480...
          (array([1.11877542]), -0.07432904428071588)
Out[480]:
In [481...|
         import sklearn
         import math
         predicted_val=[]
         for i in test_set["engine-size"]:
              predicted_val.append(model.predict([[i]]))
         actual_val=[]
         for j in test_set["price"]:
             actual_val.append(j)
         mse=sklearn.metrics.mean_squared_error(actual_val, predicted_val)
         print('MSE is: ', mse)
         rmse=math.sqrt(mse)
         print('RMSE is: ', rmse)
         MSE is: 0.012841620378245079
         RMSE is: 0.1133208735328363
In [482... model.score(np.array(test_set["engine-size"].values).reshape(-1,1), test_set.price.value
         #sklearn.metrics.mean_squared_error(test_set)
          0.7040297043422985
Out[482]:
```

Univariate Linear regression using Closed form

```
In [483... #linear regression model for closed form
             m=0
             C=0
             def determine_para(A,B):
                 result = [[0], [0]]
                 C=np.linalg.inv(A)# find inverse
                 for i in range(len(C)):
                     for j in range(len(B[0])):
                         for k in range(len(B)):
                              result[i][j] += C[i][k] * B[k][j]
                 return result
             def predict_target_value(val):
                 return m * val + c
             n=len(train_set)
             #print(n)
             sum_of_x=sum(train_set["engine-size"])
             sum_of_y=sum(train_set["price"])
             sum_of_xy=sum(train_set["price"]*train_set["engine-size"])
             sum_of_x_square=sum(train_set["engine-size"]**2)
             A = [[n, sum\_of\_x],
                 [sum_of_x, sum_of_x_square]]
             B=[[sum\_of\_y],
Loading [MathJax]/extensions/Safe.js [y]]
```

```
parameters=determine_para(A,B)
          c=parameters[0][0]
         m=parameters[1][0]
         m,c
          (1.1187754249398885, -0.07432904428071707)
Out[483]:
In [484...
         def find_pred_val(x):
              y_pred=[]
              for i in x:
                  y_pred.append(predict_target_value(i))
              return y_pred
          def rmse_val():
             X_test = test_set["engine-size"]
             Y_test = test_set["price"]
             Y_predicted = find_pred_val(X_test)
              mse = np.square(np.subtract(Y_test,Y_predicted)).mean()
              rmse=math.sqrt(mse)
              return rmse
          rmse=rmse_val()
          print('MSE is: ', mse)
          rmse=math.sqrt(mse)
          print('RMSE is: ', rmse)
         MSE is: 0.012841620378245079
         RMSE is: 0.1133208735328363
         plt.figure(figsize=(10,5))
In [485...
          plt.scatter(train_set["engine-size"], train_set["price"],color = "red")
          plt.plot(train_set["engine-size"], predict_target_value(train_set["engine-size"]), color
          plt.title("Price vs engine-size using training data ")
          plt.ylabel("Price")
          plt.xlabel("Engine Size")
          plt.show()
```


plt.scatter(test_set["engine-size"], test_set["price"],color = "red")

plt.title("Price vs engine-size using test data ")

plt.plot(test_set["engine-size"], predict_target_value(test_set["engine-size"]), color =

In [486...

Loading [MathJax]/extensions/Safe.js 'rice")

plt.figure(figsize=(10,5))

Univariate Linear regresssion using gradient descent

```
In [487... w0=0
            w1=0
             def predict(val):
                 return w0 * val + w1
             def find_pred(x):
                 y_pred=[]
                 for i in x :
                     y_pred.append(predict(i))
                 return y_pred
            def rmse_():
                 Y_test = test_set["price"]
                 X_test = test_set["engine-size"]
                 Y_predicted = find_pred(X_test)
                 mse = np.square(np.subtract(Y_test,Y_predicted)).mean()
                 rmse=math.sqrt(mse)
                 print('The Mean Square Error(RMSE) is: ',mse)
                 return rmse
            def gradient(X,Y):
                 m=0
                 C=0
                 iterations=12000#386600
                 a=0.009 #0.000056 #learning rate
                 losses=[]
                 n=float(len(X))
                 for i in range(iterations):#for iterations
                     y_pred=m*X+c
                     mse=1/n*np.sum((Y-y_pred)**2)
                     losses.append(mse)
                     part_der_wrt_m=-2/n*(np.sum(X*(Y-y_pred)))
                          _der_wrt_c=-2/n*(np.sum((Y-y_pred)))
Loading [MathJax]/extensions/Safe.js
```

```
m = m-(a*part_der_wrt_m)
        c = c - (a*part_der_wrt_c)
    plt.figure(figsize=(10,5))
    plt.title("Cost convergence")
    plt.xlabel("Iterations")
    plt.ylabel("Error or Cost")
    plt.plot(losses)
    return m, c
X_train=train_set["engine-size"]
Y_train=train_set["price"]
# plt.scatter(X,Y)
# plt.show()
parameters=gradient(X_train,Y_train)
w0=parameters[0]
w1=parameters[1]
parameters[0], parameters[1]
```

Out[487]: (1.1064240760502142, -0.07128546857536082)


```
In [488... rmse=rmse_()
print('The Root Mean Square Error(RMSE) is: ',rmse)

The Mean Square Error(RMSE) is: 0.012701828970142576
The Root Mean Square Error(RMSE) is: 0.11270239114651727
```

Multivariate Linear regresssion using inbuilt function

```
X_sample=X.sample(frac=1, random_state=11)
         Y_sample=Y.sample(frac=1, random_state=11)
         train_size = int(0.8 * len(X))
         X_train = X_sample[:train_size]
         Y_train = Y_sample[:train_size]
         X_test = X_sample[train_size:]
         Y_test = Y_sample[train_size:]
         LR.fit(X_train,Y_train)
Out[489]: LinearRegression()
In [490... y_prediction = LR.predict(X_test)
         y_prediction
          array([0.04384636, 0.27215356, 0.0370507, 0.14580452, 0.1303776,
Out[490]:
                 0.08989466, 0.042458 , 0.08659459, 0.09760683, 0.2938108 ,
                 0.24566261, 0.43619594, 0.43320337, 0.16138151, 0.03620116,
                 0.36556709, 0.30130425, 0.10913507, 0.88212057, 1.17830258,
                 0.10579358, 0.07149404, 0.19241201, 0.371574 , 0.0235186 ,
                 0.04610698, 0.15587699, 0.04028869, 0.25347847, 0.01693921,
                 0.26053726, 0.7506575 , 0.04593311, 0.03385995, 0.40576928,
                 0.13103607, 0.08335017, 0.03895706, 0.11177206, 0.22435964,
                 0.07585564])
In [491... # MSE
         mse = np.square(np.subtract(Y_test,y_prediction)).mean()
         rmse=math.sqrt(mse)
         print('MSE is: ', mse)
         MSE is: 0.026984294648760725
In [492... print('RMSE is: ', rmse)
         RMSE is: 0.16426897043800062
```

Multivariate Linear regresssion using closed form for some features as including all features resulted in non invertible matrix

```
In [493... file_automob.columns
```

```
Index(['symboling', 'normalized-losses', 'num-of-doors', 'wheel-base',
Out[493]:
                    'length', 'width', 'height', 'curb-weight', 'engine-size', 'bore',
                   'stroke', 'compression-ratio', 'horsepower', 'peak-rpm', 'city-mpg',
                   'highway-mpg', 'price', 'make_code', 'fuel-type_diesel', 'fuel-type_gas', 'aspiration_std', 'aspiration_turbo',
                   'num-of-cylinders_eight', 'num-of-cylinders_five',
                   'num-of-cylinders_four', 'num-of-cylinders_six',
                   'num-of-cylinders_three', 'num-of-cylinders_twelve',
                   'num-of-cylinders_two', 'body-style-code', 'drive-wheels_4wd',
                   'drive-wheels_fwd', 'drive-wheels_rwd', 'engine-type_dohc', 'engine-type_dohcv', 'engine-type_ohc', 'engine-type_ohc', 'engine-type_ohcv', 'engine-type_rotor',
                   'engine-location_front', 'engine-location_rear', 'fuel-system_1bbl',
                   'fuel-system_2bbl', 'fuel-system_4bbl', 'fuel-system_idi',
                   'fuel-system_mfi', 'fuel-system_mpfi', 'fuel-system_spdi',
                   'fuel-system_spfi'],
                  dtype='object')
In [494...] # X = file_automob.drop('price',axis="columns")
          X = file_automob[[ 'width', 'height', 'length', 'curb-weight', 'engine-size',
                               'horsepower', 'normalized-losses', 'bore', 'wheel-base', 'fuel-system_mpfi
                               'drive-wheels_rwd', 'num-of-cylinders_twelve', 'num-of-cylinders_six',
                               'num-of-cylinders_eight', 'engine-type_ohcv']]
          Y = file_automob['price']
          X_sample=X.sample(frac=1, random_state=11)
          Y_sample=Y.sample(frac=1, random_state=11)
          train_size = int(0.8 * len(X))
          X_train = X_sample[:train_size]
          Y_train = Y_sample[:train_size]
          X_test = X_sample[train_size:]
          Y_test = Y_sample[train_size:]
In [495... \# add \times 0 =1 to dataset so that to multiply with \times 0 of the equation
          #np.ones: Return a new array of given shape and type, filled with ones.
          X_{\text{train_new}} = \text{np.c}_{\text{np.ones}}((X_{\text{train.shape}}[0], 1)), X_{\text{train}}
          X_{\text{test_new}} = \text{np.c_[np.ones(}(X_{\text{test.shape[0],1}})), X_{\text{test]}}
          # find the parameter (W=inv(Xt.X).(Xt.Y))
          W = np.matmul(np.linalg.inv(np.matmul(X_train_new.T , X_train_new)) , np.matmul(X_train_n
          \#Y\sim\sim X.W
          Y_pred = np.matmul(X_test_new , W)
          Y_pred
           array([0.04384636, 0.27215356, 0.0370507, 0.14580452, 0.1303776,
Out[495]:
                   0.08989466, 0.042458 , 0.08659459, 0.09760683, 0.2938108 ,
                   0.24566261, 0.43619594, 0.43320337, 0.16138151, 0.03620116,
                   0.36556709, 0.30130425, 0.10913507, 0.88212057, 1.17830258,
                   0.10579358, 0.07149404, 0.19241201, 0.371574 , 0.0235186 ,
                   0.04610698, 0.15587699, 0.04028869, 0.25347847, 0.01693921,
                   0.26053726, 0.7506575 , 0.04593311, 0.03385995, 0.40576928,
                   0.13103607, 0.08335017, 0.03895706, 0.11177206, 0.22435964,
                   0.07585564])
In [496... # MSE
```

Loading [MathJax]/extensions/Safe.js

```
mse = np.square(np.subtract(Y_test,Y_pred)).mean()
rmse=math.sqrt(mse)
print('MSE is: ', mse)

MSE is: 0.026984294648760485

In [497... # RMSE
rmse=math.sqrt(mse)
print('RMSE is: ', rmse)

RMSE is: 0.1642689704379999
```

Multivariate Linear regresssion using gradient descent

```
In [498... a=0.0009
         iteration=526
         n=len(Y_train)
         def cost_fun(X,Y,W):
             \#h=(X.WT)-Y
             h=(np.matmul(X,W.T))-Y
             # Equation of cost : J=1/2n*(hT.h)=1/2n*((X.wT)-Y)T.((X.wT)-Y)
             cost = 1/(2*n) * np.matmul(h.T, h)
              return cost
         def gradient_descent(X,Y,W):
              losses = np.zeros(iteration)
              for i in range(iteration):
                  cost= cost_fun(X, Y, W)
                  h = (np.matmul(X, W.T)) - Y
                  \#W=W-a*(1/n)*(XT.((X.WT)-Y))
                  W = W - (a * (1/n) * np.matmul(X.T, h))
                  losses[i] = cost
              return W, losses
         #initialize the parameter list to 0's as number of columns
         W = np.zeros(X_train_new.shape[1])
         initial_cost=cost_fun(X_train_new, Y_train, W)
         W, errors = gradient_descent(X_train_new, Y_train, W)
In [499...
         plt.figure(figsize=(8,5))
         plt.title("Cost convergence")
         plt.xlabel("Iterations")
         plt.ylabel("Error or Cost")
         plt.plot(errors)
          [<matplotlib.lines.Line2D at 0x293bf4bd490>]
Out[499]:
```

```
In [500...
         #Y~~XW
         Y_pred = np.matmul(X_test_new , W)
         Y_pred
          array([0.11359184, 0.24877547, 0.1113323 , 0.17404583, 0.13059704,
Out[5001:
                 0.14096133, 0.11181719, 0.10536457, 0.12154128, 0.2336385 ,
                 0.22360861, 0.24277081, 0.22783729, 0.17876933, 0.10247644,
                 0.2585757 , 0.25379041, 0.1195151 , 0.3104399 , 0.2737284 ,
                 0.1218028 , 0.09399162 , 0.1976006 , 0.2359169 , 0.0982692 ,
                 0.1116657 , 0.17597444, 0.11142883, 0.26154042, 0.09740014,
                 0.14527938, 0.30013581, 0.1116095 , 0.09987955, 0.24797645,
                 0.16781049, 0.12542451, 0.11167359, 0.12319246, 0.18549648,
                 0.11970865])
In [501... mse = np.square(np.subtract(Y_test,Y_pred)).mean()
         print('MSE is: ', mse)
         MSE is: 0.02690475433695938
In [502...
         # RMSE
         rmse=math.sqrt(mse)
         print('RMSE is: ', rmse)
         RMSE is: 0.164026687880233
 In [ ]:
```