电工电子实验中心

实验报告

Thursday $3^{\rm rd}$ September, 2020

课程名称: 数字电子技术 实验项目: 同步时序电路

姓名: xxx 学号: xxxxxxxxx

班级: xxxxxxx 日期: Thursday 3rd September, 2020

地点: 3313 成绩:

南京航空航天大学

1. 原理及设计方案:

1. 设计步骤

2. 状态图

3. 状态表

现态	输入	次态/输出
S0	0	S0/0
50	1	S1/0
S1	0	S0/0
51	1	S2/0
S2	0	S3/1
52	1	S2/0
S3	0	S0/0
33	1	S1/0

4. 化简后状态表

_

现态	输入	次态/输出
50	0	S0/0
S0	1	S1/0
S1	0	S0/0
51	1	S2/0
S2	0	S0/1
	1	S2/0

5. 编码状态表

X	0	
00	00/0	01/0
01	00/0	11/0
11	00/1	11/0
10	xx/xx	xx/xx

6. 次态卡诺图和输出卡诺图

			,				•				,
$Q_0^nQ_1^n$	0	1		$Q_0^n Q_1^n$	0	1		$Q_0^nQ_1^n$	0	1	
00	0	0		00	0	0		00	0	0	
01	0	1		01	0	1		01	0	1	
11	0	1		11	0	1		11	0	1	
10	X	X	Q_1^{n+1}	10	X	X	Q_0^{n+1}	10	X	X	Z
Q	$D_1 = \times Q_0^n$	Q_0^n			$Q_0^{n+1} = X$ $D_0 = X$	<			$z=xQ_1^{\gamma}$	ı	
	$D_1 = \times Q_0^n$!			$D_0 = x$						

7. 选择D触发器作为状态寄存器获得激励方程

$$D_1 = xQ_0^n$$
$$D_0 = x$$

9

8. 画出逻辑电路图

2. 计算及仿真:

3. 实验目的:

- 1. 加深理解触发器的特征。
- 2. 掌握同步时序电路的设计与调试方法。

-

4. 实验过程及数据分析:

0