Министерство науки и высшего образования Российской Федерации Новосибирский государственный технический университет Кафедра прикладной математики

Численные методы Практическая работа №3

Факультет: прикладной математики и информатики

Группа: ПМ-63

Студент: Кожекин М.В.

Преподаватели: Задорожный А. Г.

Персова М.Г.

Новосибирск

1. Цель работы

Изучить особенности реализации трёхшаговых итерационных методов для СЛАУ с разреженными матрицами. Исследовать влияние предобусловливания на сходимость изучаемых методов на нескольких матрицах большой (не менее 10000) размерности.

Вариант 6: Локально-оптимальная схема для несимметричной матрицы. Факторизация LU_(sq).

2. Анализ

Выбирается начальное приближение x^0 и полагается

$$r^{0} = f - Ax^{0}$$
$$z^{0} = r^{0}$$
$$p^{0} = Az^{0}$$

Далее для k = 1, 2, ... производятся следующие вычисления:

$$\alpha_{k} = \frac{\left(p^{k-1}, r^{k-1}\right)}{\left(p^{k-1}, p^{k-1}\right)}$$

$$x^{k} = x^{k-1} + \alpha_{k} z^{k-1}$$

$$r^{k} = r^{k-1} - \alpha_{k} p^{k-1}$$

$$\beta_{k} = -\frac{\left(p^{k-1}, Ar^{k}\right)}{\left(p^{k-1}, p^{k-1}\right)}$$

$$z^{k} = r^{k} + \beta_{k} z^{k-1}$$

$$p^{k} = Ar^{k} + \beta_{k} p^{k-1}$$

где $p^k = Az^k$ — вспомогательный вектор, который вычисляется не умножением матрицы на вектор, а пересчитывается рекуррентно.

Можно показать, что при использовании матриц неполной факторизации L и U (соответственно нижняя и верхняя треугольные матрицы неполной факторизации исходной матрицы A), локально оптимальная схема (3.25)–(3.32) (при применении ее к СЛАУ с матрицей $L^{-1}AU^{-1}$) преобразуется к следующему виду.

Выбирается начальное приближение $\,x^0\,$ и полагается

$$\tilde{r}^0 = L^{-1} \left(f - Ax^0 \right)$$
$$\hat{z}^0 = U^{-1} \tilde{r}^0$$
$$\hat{p}^0 = L^{-1} A \hat{z}^0$$

Далее для k = 1, 2, ... производятся следующие вычисления:

$$\begin{split} \tilde{\alpha}_{k} &= \frac{\left(\hat{p}^{k-1}, \tilde{r}^{k-1}\right)}{\left(\hat{p}^{k-1}, \hat{p}^{k-1}\right)} \\ x^{k} &= x^{k-1} + \tilde{\alpha}_{k} \hat{z}^{k-1} \\ \tilde{r}^{k} &= \tilde{r}^{k-1} - \tilde{\alpha}_{k} \hat{p}^{k-1} \\ \tilde{\beta}_{k} &= -\frac{\left(\hat{p}^{k-1}, L^{-1}AU^{-1}\tilde{r}^{k}\right)}{\left(\hat{p}^{k-1}, \hat{p}^{k-1}\right)} \\ \hat{z}^{k} &= U^{-1}\tilde{r}^{k} + \tilde{\beta}_{k} \hat{z}^{k-1} \\ \hat{p}^{k} &= L^{-1}AU^{-1}\tilde{r}^{k} + \tilde{\beta}_{k} \hat{p}^{k-1} \end{split}$$

Выход из процесса можно организовать по норме относительной невязки и по шагу.

Разложение LU_{sq} = А имеет следующий вид

$$\begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \cdot \begin{bmatrix} l_{11} & u_{12} & u_{13} \\ 0 & l_{22} & u_{23} \\ 0 & 0 & l_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Матрица А должна положительно определённой, что следует из формул разложения:

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{ki}}, \quad i \in [1, n]$$

$$l_{ij} = \frac{1}{l_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj} \right), i \in [1, n], j \in [1, i-1]$$

$$u_{ij} = \frac{1}{l_{ii}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj} \right), i \in [1, n], j \in [1, i-1]$$

Остальные формулы:

• Прямой обход

$$y_i = \frac{1}{l_{ii}} \left(f_i - \sum_{k=1}^n l_{ik} y_k \right), i \in [1, n]$$

• Обратный обход

$$x_i = \frac{1}{l_{ii}} \left(y_i - \sum_{k=2}^n l_{ik} y_k \right), i \in [n, 1]$$

3. Исследования на матрице с диагональным преобладанием

Матрица А:

7	-1	0	0	0	-2	-3	0	0	0		1		-28
-2	9	-4	0	0	0	-1	-2	0	0		2		-19
0	0	7	-4	0	0	0	-2	-1	0		3		-20
0	0	-4	13	-3	0	0	0	-2	-4		4		-33
0	0	0	-3	6	-2	0	0	0	-1	*	5	_	-4
-1	0	0	0	-4	5	0	0	0	0		6	-	9
0	-4	0	0	0	0	5	-1	0	0		7		19
0	-1	-3	0	0	0	-2	7	-1	0		8		22
0	0	-3	-2	0	0	0	-1	6	0		9		29
0	0	0	-2	-1	0	0	0	-2	5		10		19

Сравнение методов:

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	36	87	1.1951631020067435e-01
LOS + diag	31	121	1.3510187796629339e-02
LOS + LU(sq)	27	110	1.3896886947002099e-01
Гаусс-Зейдель	368	52	8.92218e-11

Результат:

i esymbiai.		
ЛОС	ЛОС + diag	ЛОС + LU(sq)
-3.8479794551408943	-3.4610008991866175	-3.6150097078215948
-3.6007303077764932	-3.1623063694195062	-3.3366238530177528
-2.8601421076610580	-2.4031715320642113	-2.5682759571407257
-1.8732920149572483	-1.4167916593613392	-1.5944920719647848
-0.8326614909701502	-0.3653950042013192	-0.5468770754383668
0.3363292182248062	0.8012136625279839	0.6012973686004954
1.3492249947438317	1.7948063309146856	1.5914305679977652
2.2257657801087878	2.6787677927053677	2.4803746307553549
3.1324516992180453	3.5930814195271421	3.4002377141688473
4.1093354659720136	4.5773840479308321	4.3810035925507842

Вывод: происходит выход по шагу, т.к. метод не устойчив на данной матрице

Матрица В:

7	1	0	0	0	2	3	0	0	0		1		42	ĺ
2	9	4	0	0	0	1	2	0	0		2		55	ı
0	0	7	4	0	0	0	2	1	0		3		62	ĺ
0	0	4	13	3	0	0	0	2	4		4		137	ĺ
0	0	0	3	6	2	0	0	0	1	*	5	_	64	ĺ
1	0	0	0	4	5	0	0	0	0		6	=	51	l
0	4	0	0	0	0	5	1	0	0		7		51	ı
0	1	3	0	0	0	2	7	1	0		8		90	ĺ
0	0	3	2	0	0	0	1	6	0		9		79	ĺ
0	0	0	2	1	0	0	0	2	5		10		81	

Сравнение методов:

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	43	51	2.9717076472420172e-16
LOS + diag	34	60	5.4612844374616470e-16
LOS + LU(sq)	9	27	8.0883721911317692e-16
Гаусс-Зейдель	21	3	8.56651e-11

Результат:

ЛОС	ЛОС + diag	ЛОС + LU(sq)
0.999999997257614	0.999999985587995	0.999999981868053
2.000000000685660	2.000000001424310	1.999999965236945
2.999999973882785	2.9999999879836565	3.0000000048610276
4.000000014854136	4.000000072016979	3.999999954997643
4.999999971429965	4.9999999896441478	5.000000017843949
6.000000027227447	6.0000000093366541	5.999999985623047
7.000000002622711	6.999999998263442	7.000000052129767
8.0000000022680293	8.0000000089289198	7.9999999891807176
8.999999993412008	9.000000009928502	9.000000005857039
10.000000006557013	9.999999994548698	9.999999982579038

4. Исследование на матрице Гильберта

Размерность матрицы: 4

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	7	11	8.5560482027294059e-41
LOS + diag	7	12	3.1190059370947037e-43
LOS + LU(sq)	2	13	1.4861646610310086e-61

Размерность матрицы: 7

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	18	24	6.2912460078970593e-39
LOS + diag	16	25	2.1809465921464475e-38
LOS + LU(sq)	3	12	9.4053950450887990e-62

Размерность матрицы: 10

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	60	74	3.7951471106617626e-41
LOS + diag	60	194	2.5761723928040929e-39
LOS + LU(sq)	3	16	1.7973819358951991e-54

5. Тесты с большой размерностью

0945

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	416	20222	7.0153309415727521e-21
LOS + diag	44	2589	8.7758789218854143e-23
LOS + LU(sq)	8	1327	2.3653994181649045e-25

4545

Метод	Количество итераций	Время решения, мкс	Невязка
LOS	1982	501143	3.7057100205773134e-20
LOS + diag	156	46491	9.7364037730067872e-23
LOS + LU(sq)	8	6851	3.0559498009255747e-24

6. Вывод:

Как видно из тестов решение СЛАУ при помощи локально-оптимальной схемы с помощью неполной факторизации LU(sq) быстрее и точнее, чем с помощью диагональной факторизации или решение без предобуславливания.

7. Текст программы

Для удобства программа была разбита на следующие модули:

head.h — заголовочный файл, в котором определяется точность вычислений slae.h и slae.cpp — класс СЛАУ

main.cpp – файл с исследованиями

head.h

```
#pragma once
#define _CRT_SECURE_NO_WARNINGS
#include <fstream>
#include <iostream>
#include <vector>
#include <string>
#include <iomanip>
#include <chrono>
using namespace std;
// float || double
typedef double real;
typedef std::vector<real> vec;
// Умножение на константу
inline bool operator==(const vec& a, const vec& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        for (int i = 0; i < a.size(); ++i)</pre>
                if (a[i] != b[i])
                        return false;
        return true;
}
// Сложение векторов
inline vec operator+(const vec& a, const vec& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        vec result = a;
        for (int i = 0; i < b.size(); i++)</pre>
                result[i] += b[i];
        return result;
```

```
// Вычитание векторов
inline vec operator-(const vec& a, const vec& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        vec result = a;
        for (int i = 0; i < b.size(); i++)
                result[i] -= b[i];
        return result;
}
// Умножение на константу
inline vec operator*(const vec& a, double b) {
        vec result = a;
        for (int i = 0; i < result.size(); i++)</pre>
                result[i] *= b;
        return result;
}
// Умножение на константу
inline vec operator*(double b, const vec& a) {
        return operator*(a, b);
}
// Скалярное произведение
inline real operator*(const vec& a, const vec& b) {
#ifdef _DEBUG
        if (a.size() != b.size())
                throw std::exception();
#endif
        real sum = 0;
        for (int i = 0; i < a.size(); i++)</pre>
                sum += a[i] * b[i];
        return sum;
}
// Потоковый вывод
inline std::ostream& operator<<(std::ostream& out, const vec& v) {</pre>
        for (int i = 0; i < v.size() - 1; ++i)
                out << v[i] << "\t";
        out << v.back();</pre>
        return out;
```

SLAE.h

```
#include "head.h"

// Система линейных алгебраических уравнений class SLAE {

public:
    int readSLAEfromFiles(const string &folderName, bool firstNumberIsOne);
    void writeSLAEToFiles(const string &folderName);
    void writeDenseMatrixLToFile(std::ofstream& fout, const char *str);
    void writeDenseMatrixUToFile(std::ofstream& fout, const char *str);
    void convAToDense();
    void convLUToDense();
    void multAAndX();

void getVectX(vec &x) { x = F; };
```

```
void generateVectX(int size);
        void writeXToFile(const char *fileName);
        void writeXToStream(std::ofstream& fout);
        void writeFToFile(const char *fileName);
        int getDimention() { return n; }
        void decomposionD();
        void decomposionChol();
        void decomposionLUsq();
        vec execDirectTraversal(const vec & F);
        vec execReverseTraversal(const vec &_y);
        void createHilbertMatrix(int size);
        void createHilbertMatricies(int a, int b, int step, const string &folderNameTemplate);
        pair<int, real> LOS();
        pair<int, real> LOSfactD();
        pair<int, real> LOSfactLUsq();
        void clearAll();
        void setMaxiter(int new_maxiter) { maxiter = new_maxiter; }
        void setE(real new_E) { E = new_E; }
private:
        vec multA(const vec&x);
        vec multD(const vec&x);
        real calcRelativeDiscrepancy();
        real calcNormE(vec &x);
        vector <vector <double>> L, U;
        vec di, al, au, di_f, al_f, au_f;
        vector <int> ia, ja;
        int n, maxiter;
        real E;
        vec x, r, z, p, F, Ftmp;
```

SLAE.cpp

```
#include "head.h"
#include "slae.h"
// Ввод СЛАУ: матрицы А и вектора у
int SLAE::readSLAEfromFiles(const string &folderName, bool firstNumberIsOne) {
        std::ifstream fin;
        fin.open(folderName + "/" + "kuslau.txt");
        fin >> n >> maxiter >> E;
        fin.close();
        x.resize(n, 0);
        r.resize(n, 0);
        z.resize(n, 0);
        p.resize(n, 0);
        F.resize(n, 0);
        Ftmp.resize(n, 0);
        fin.open(folderName + "/" + "di.txt");
        di.resize(n);
        for (int i = 0; i < di.size(); ++i) {
                fin >> di[i];
        fin.close();
        fin.open(folderName + "/" + "ig.txt");
        ia.resize(n + 1);
        for (int i = 0; i < ia.size(); ++i) {
                fin >> ia[i];
                if (firstNumberIsOne)
                        ia[i]--;
        fin.close();
```

```
fin.open(folderName + "/" + "jg.txt");
        ja.resize(ia.back());
        for (int i = 0; i < ja.size(); ++i) {
                fin >> ja[i];
                if (firstNumberIsOne)
                        ja[i]--;
        fin.close();
        fin.open(folderName + "/" + "ggl.txt");
        al.resize(ia.back());
        for (int i = 0; i < al.size(); ++i) {
                fin >> al[i];
        fin.close();
        fin.open(folderName + "/" + "ggu.txt");
        au.resize(ia.back());
        for (int i = 0; i < au.size(); ++i) {
                fin >> au[i];
        fin.close();
        fin.open(folderName + "/" + "pr.txt");
        F.resize(n);
        for (int i = 0; i < F.size(); ++i) {
                fin >> F[i];
        fin.close();
        return 0;
}
// Ввод СЛАУ: матрицы А и вектора у
void SLAE::writeSLAEToFiles(const string &folderName) {
        std::ofstream fout;
        fout.open(folderName + "/" + "kuslau.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1)
                << n << endl
                << maxiter << endl
                << E << endl;
        fout.close();
        fout.open(folderName + "/" + "di.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < di.size(); ++i) {
                fout << di[i] << endl;</pre>
        }
        fout.close();
        fout.open(folderName + "/" + "ig.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < ia.size(); ++i) {
                fout << ia[i] << endl;</pre>
        fout.close();
        fout.open(folderName + "/" + "jg.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < ja.size(); ++i) {
                fout << ja[i] << endl;</pre>
        fout.close();
```

```
fout.open(folderName + "/" + "ggl.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < al.size(); ++i) {
                 fout << al[i] << endl;</pre>
        fout.close();
        fout.open(folderName + "/" + "ggu.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < au.size(); ++i) {
                 fout << au[i] << endl;</pre>
        fout.close();
        fout.open(folderName + "/" + "pr.txt");
        fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        for (int i = 0; i < F.size(); ++i) {
                 fout << F[i] << endl;</pre>
        fout.close();
}
// Вывод плотной матрицы L
void SLAE::writeDenseMatrixLToFile(std::ofstream& fout, const char *str) {
        //fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        fout << str;
        for (int i = 0; i < L.size(); ++i) {
                 for (int j = 0; j < L.size(); ++j) {
    fout << L[i][j] << " ";
                         fout << L[i][j] << "
                 fout << ";" << endl;
        fout << "]" << endl << endl;
}
// Вывод плотной матрицы U
void SLAE::writeDenseMatrixUToFile(std::ofstream& fout, const char *str) {
        //fout << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        fout << str;
        for (int i = 0; i < U.size(); ++i) {
                 for (int j = 0; j < U.size(); ++j) {
    fout << U[i][j] << " ";
                 fout << ";" << endl;
        fout << "]" << endl << endl;
}
// Преобразуем разряженную матрицу в плотный формат
void SLAE::convAToDense() {
        L.clear();
        L.resize(n);
        for (int i = 0; i < n; ++i) {
                 L[i].resize(n, 0);
        }
        for (int i = 0; i < n; ++i) {
                 L[i][i] = di[i];
                 int i0 = ia[i];
                 int i1 = ia[i + 1];
                 for (int k = i0; k < i1; ++k) { // Идём по всему профилю
                         L[i][ja[k]] = al[k];
                         L[ja[k]][i] = au[k];
```

```
}
// Преоразуем матрицы L и U в плотный формат
void SLAE::convLUToDense() {
        L.clear();
        L.resize(n);
        U.clear();
        U.resize(n);
        for (int i = 0; i < n; ++i) {
                L[i].resize(n, 0);
                U[i].resize(n, 0);
        }
        for (int i = 0; i < n; ++i) {
                L[i][i] = di_f[i];
                U[i][i] = di_f[i];
                int i0 = ia[i];
                int i1 = ia[i + 1];
                for (int k = i0; k < i1; ++k) {
                        L[i][ja[k]] = al_f[k];
                        U[ja[k]][i] = au_f[k];
                }
        }
}
// A*x = F
void SLAE::multAAndX() {
        F = multA(x);
// A*x = b, где x - произвольный вектор
vec SLAE::multA(const vec&x) {
        vec result(n);
        for (int i = 0; i < n; ++i) {
                result[i] = di[i] * x[i];
                int i0 = ia[i];
                int i1 = ia[i + 1];
                for (int k = i0; k < i1; ++k) {
                        result[i] += al[k] * x[ja[k]];
                        result[ja[k]] += au[k] * x[i];
                }
        }
        return result;
// A*x = b, где x - произвольный вектор
vec SLAE::multD(const vec&x) {
        vec result(n);
        for (int i = 0; i < n; ++i)
                result[i] = di_f[i] * x[i];
        return result;
}
// Создаём вектор x* = (1,2,...n)'
```

```
void SLAE::generateVectX(int size) {
        x.resize(size);
        for (int i = 0; i < size; ++i) {
                x[i] = i + 1;
        }
}
// Вывод вектора F в файл
void SLAE::writeFToFile(const char *fileName) {
        std::ofstream fout;
        fout.open(fileName);
        for (int i = 0; i < F.size(); ++i)</pre>
                fout << F[i] << endl;</pre>
        fout.close();
}
// Вывод вектора х в файл
void SLAE::writeXToFile(const char * fileName) {
        std::ofstream fout;
        fout.open(fileName);
        for (int i = 0; i < x.size(); ++i)
               fout << x[i] << " ";
        fout << " \t";
        fout.close();
}
// Вывод вектора х в поток
void SLAE::writeXToStream(std::ofstream& fout) {
        for (int i = 0; i < x.size(); ++i)
                fout << x[i] << "\n";
        fout << "\n";</pre>
}
// Диагональное предобуславливание M = D
void SLAE::decomposionD() {
        di_f.clear();
        di_f.resize(n);
        for (int i = 0; i < n; ++i)
                di_f[i] = 1.0 / sqrt(di[i]);
}
// LU_sq разложение матрицы A
void SLAE::decomposionLUsq() {
        real sum_u, sum_l, sum_d;
        di_f = di;
        al_f = al;
        au_f = au;
        // Идём построчно в верхнем треугольнике, что экививалентно
        // Обходу нижнего треугольника по столбцам вниз, начиная с первого
        for (int i = 0; i < n; ++i) {
                int i0 = ia[i];
                int i1 = ia[i + 1];
                // Рассчёт элементов нижнего треугольника
                for (int k = i0; k < i1; ++k) {
                         int j = ja[k]; // текущий j
                        int j0 = ia[j]; // i0 строки j
```

```
int j1 = ia[j + 1]; // i1 строки j
                        sum_1 = 0;
                        sum_u = 0;
                        int ki = i0; // Индекс l_ik
                        int kj = j0; // Индекс u_kj
                        while (ki < k \&\& kj < j1) {
                                 if (ja[ki] == ja[kj]) { // l_ik * u_kj}
                                         sum_l += al_f[ki] * au_f[kj];
                                         sum_u += au_f[ki] * al_f[kj];
                                         ki++;
                                         kj++;
                                 else { // Ищем следующие элементы і и ј строки, которые можем перемножить
                                         if (ja[ki] > ja[kj]) kj++;
                                         else ki++;
                                 }
                        }
                        al_f[k] = (al_f[k] - sum_1) / di_f[j];
                        au_f[k] = (au_f[k] - sum_u) / di_f[j];
                }
                // Рассчёт диагонального элемента
                sum_d = 0.0;
                for (int k = i0; k < i1; ++k)
                        sum_d += al_f[k] * au_f[k];
                di_f[i] = sqrt(di_f[i] - sum_d);
        }
}
// LL' разложение матрицы А
void SLAE::decomposionChol() {
        real sum;
        di_f = di;
        al_f = al;
        au_f = au;
        // Идём построчно в верхнем треугольнике, что экививалентно
        // Обходу нижнего треугольника по столбцам вниз, начиная с первого
        for (int i = 0; i < n; ++i) {
                int i0 = ia[i];
                int i1 = ia[i + 1];
                // Рассчёт элементов нижнего треугольника
                for (int k = i0; k < i1; ++k) {
                        int j = ja[k]; // текущий j
                        int j0 = ia[j]; // i0 строки j
                        int j1 = ia[j + 1]; // i1 строки j
                        sum = 0;
                        int ki = i0; // Индекс l_ik
                        int kj = j0; // Индекс u_kj
                        while (ki < k \&\& kj < j1) {
                                 if (ja[ki] == ja[kj]) { // l_ik * u_kj
                                         sum += al_f[ki] * al_f[kj];
                                         ki++;
                                         kj++;
                                else { // Ищем следующие элементы і и ј строки, которые можем перемножить
                                         if (ja[ki] > ja[kj]) kj++;
                                         else ki++;
                                 }
```

```
al_f[k] = (al_f[k] - sum) / di_f[j];
                 }
                 // Рассчёт диагонального элемента
                 sum = 0.0;
                 for (int k = i0; k < i1; ++k)
                         sum += al_f[k] * al_f[k];
                 di_f[i] = sqrt(di_f[i] - sum);
        }
}
// Прямой ход
               L y = F ==> y = L^-1 F
vec SLAE::execDirectTraversal(const vec &_F) {
        vec y;
        y.resize(n, 0);
        for (int i = 0; i < n; ++i) {
                 real sum = 0;
                 int i0 = ia[i];
                 int i1 = ia[i + 1];
                for (int k = i0; k < i1; ++k)

sum += al_f[k] * y[ja[k]];
                y[i] = (_F[i] - sum) / di_f[i];
        }
        return y;
}
// Обратный ход U(sq) x = y \Longrightarrow x = U(sq)^-1 y
vec SLAE::execReverseTraversal(const vec &_y) {
        vec x, y = _y;
        x.resize(n);
        for (int i = n - 1; i >= 0; --i) {
                 x[i] = y[i] / di_f[i];
                 int i0 = ia[i];
                 int i1 = ia[i + 1];
                 for (int k = i0; k < i1; ++k)
                         y[ja[k]] -= au_f[k] * x[i];
        }
        return x;
}
// Генерация матрицы Гильберта
void SLAE::createHilbertMatrix(int size) {
        clearAll();
        n = size;
        di.resize(n);
        ia.resize(n + 1);
        ja.resize(n*(n - 1) / 2);
        al.resize(n*(n - 1) / 2);
au.resize(n*(n - 1) / 2);
        ia[0] = 0;
        ia[1] = 0;
        for (int i = 0; i < ia.size() - 1; ++i)
                ia[i + 1] = ia[i] + i;
        for (int i = 0; i < n; ++i) {
                 int i0 = ia[i];
                 int i1 = ia[i + 1];
```

```
int j = 0;
                 for (int k = i0; k < i1; ++k, ++j) {
                         ja[k] = j;
                         al[k] = 1.0 / real(i + j + 1);
                         au[k] = 1.0 / real(i + j + 1);
                 di[i] = 1.0 / real(i + j + 1);
        }
}
// Генерация матриц Гильберта
void SLAE::createHilbertMatricies(int a, int b, int step, const string &folderNameTemplate) {
        for (int i = a; i <= b; i += step) {
    string folderName = folderNameTemplate + to_string(i);</pre>
                 createHilbertMatrix(i);
                 generateVectX(i);
                 multAAndX();
                 setE(1e-22);
                 setMaxiter(10000);
                 writeSLAEToFiles(folderName);
        }
}
// Полная очистка СЛАУ
void SLAE::clearAll() {
        n = 0;
        E = 0.0;
        maxiter = 0;
        di.clear();
        ia.clear();
        ja.clear();
        al.clear();
        au.clear();
        di_f.clear();
        al_f.clear();
        au_f.clear();
        x.clear();
        r.clear();
        z.clear();
        p.clear();
        F.clear();
        Ftmp.clear();
}
// Вычисление нормы в Евклидовом пространстве
real SLAE::calcNormE(vec &x) {
        return sqrt(x * x);
}
// Рассчёт относительной невязки
real SLAE::calcRelativeDiscrepancy() {
        //return calcNormE(r) / calcNormE(F);
        return (r*r);
}
// Локально - оптимальная схема
pair<int, real> SLAE::LOS() {
                                         // Задаём начальное приближение
        x.clear();
        x.resize(n, 0);
                                 // x_0 = (0, 0, ...)
        r.resize(n);
```

```
vec xprev = x;
        r = F - multA(x);
                                // r_0 = f - A*x_0
                                       // z_0 = r_0
        z = r;
        p = multA(z);
                                 // p 0 = A*z 0
        for (int i = 0; i < maxiter; ++i) {
                real pp = (p * p);
                real alpha = (p * r) / pp;
                x = x + alpha * z;
                r = r - alpha * p;
                Ftmp = multA(r);
                real beta = -(p * Ftmp) / pp;
                z = r + beta * z;
                p = Ftmp + beta * p;
                real relativeDiscrepancy = calcRelativeDiscrepancy();
                if (x == xprev || relativeDiscrepancy < E)</pre>
                       return make_pair(i, relativeDiscrepancy);
                xprev = x;
        }
}
// Локально - оптимальная схема с неполной диагональной факторизацией
pair<int, real> SLAE::LOSfactD() {
                                         // Задаём начальное приближение
        x.clear();
        x.resize(n, 0);
                                // x_0 = (0, 0, ...)
        vec xprev = x;
        decomposionD();
        r = F - multA(x);
                                // r_0 = f - A*x_0
        r = multD(r);
        z = multD(r);
                                // z = U^{-1} r
        p = multA(z);
                                // p = A*z
                                // p = L^{-1} A*z
        p = multD(p);
        for (int i = 0; i < maxiter; ++i) {
                real pp = p * p;
                real alpha = (p*r) / pp;
                x = x + alpha * z;
                r = r - alpha * p;
                vec tmp = multD(r);
                tmp = multA(tmp);
                tmp = multD(tmp);
real beta = -(p * tmp) / pp;
                p = tmp + beta * p;
                tmp = multD(r);
                z = tmp + beta * z;
                real relativeDiscrepancy = calcRelativeDiscrepancy();
                if (x == xprev || relativeDiscrepancy < E)</pre>
                        return make_pair(i, relativeDiscrepancy);
                xprev = x;
        }
}
// Локально - оптимальная схема с неполной факторизацией LU(sq)
pair<int, real> SLAE::LOSfactLUsq() {
```

```
x.clear();
                                                          // Задаём начальное приближение
x.resize(n, 0);
                                                  // x_0 = (0, 0, ...)
vec xprev = x;
decomposionLUsq();
r = F - multA(x);
                                                 // r_0 = f - A*x_0
                                         // r = L^{-1} (f - A*x_0)
r = execDirectTraversal(r);
z = execReverseTraversal(r);
                              // z = U^{-1} r
                                                 // p = A*z
p = multA(z);
p = execDirectTraversal(p);
                                         // p = L^-1 A*z
for (int i = 0; i < maxiter; ++i) {</pre>
        real pp = p * p;
        real alpha = (p*r) / pp;
        x = x + alpha * z;
        r = r - alpha * p;
        vec tmp = execReverseTraversal(r);
        tmp = multA(tmp);
        tmp = execDirectTraversal(tmp);
        real beta = -(p * tmp) / pp;
        p = tmp + beta * p;
        tmp = execReverseTraversal(r);
        z = tmp + beta * z;
        real relativeDiscrepancy = calcRelativeDiscrepancy();
        if (x == xprev || relativeDiscrepancy < E)</pre>
                return make_pair(i, relativeDiscrepancy);
        xprev = x;
}
```

main.cpp

```
#include "slae.h"
#include <iomanip>
void testSLAE(const string &folderName, bool firstNumberIsOne, bool doWriteHeader) {
        SLAE slae;
        pair <int, real> iterationsCountAndDiscrapancy;
        std::ofstream foutTable, foutX;
        foutTable.open(folderName + "/table.txt");
        foutX.open(folderName + "/x.txt");
        foutTable << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1) <</pre>
std::scientific;
        foutX << std::fixed << std::setprecision(std::numeric_limits<real>::digits10 + 1);
        if (doWriteHeader)
                foutTable << "Method\tIterations count\tTime\tRelative discrepancy" << endl;</pre>
        slae.clearAll();
        slae.readSLAEfromFiles(folderName, firstNumberIsOne);
        auto begin = std::chrono::steady_clock::now();
        iterationsCountAndDiscrapancy = slae.LOS();
        auto end = std::chrono::steady_clock::now();
        auto elapsed_ms = std::chrono::duration_cast<std::chrono::microseconds>(end - begin);
        foutTable << "LOS\t" << iterationsCountAndDiscrapancy.first << "\t" << elapsed_ms.count() << "\t" <</pre>
iterationsCountAndDiscrapancy.second << endl;</pre>
        slae.writeXToStream(foutX);
        slae.clearAll();
        slae.readSLAEfromFiles(folderName, firstNumberIsOne);
        begin = std::chrono::steady_clock::now();
        iterationsCountAndDiscrapancy = slae.LOSfactD();
        end = std::chrono::steady_clock::now();
```

```
elapsed ms = std::chrono::duration cast<std::chrono::microseconds>(end - begin);
                        foutTable << "LOS + diag\t" << iterationsCountAndDiscrapancy.first << "\t" << elapsed_ms.count() <</pre>
"\t" << iterationsCountAndDiscrapancy.second << endl;
                        slae.writeXToStream(foutX);
                        slae.clearAll();
                        slae.readSLAEfromFiles(folderName, firstNumberIsOne);
                        begin = std::chrono::steady_clock::now();
                       iterationsCountAndDiscrapancy = slae.LOSfactLUsq();
                        end = std::chrono::steady_clock::now();
                        elapsed_ms = std::chrono::duration_cast<std::chrono::microseconds>(end - begin);
                        fout Table << "LOS + LU(sq)\t" << iterations Count And Discrapancy. first << "\t" << elapsed_ms.count() << true for the count of the 
"\t" << iterationsCountAndDiscrapancy.second << endl;
                       slae.writeXToStream(foutX);
                        foutTable.close();
                       foutX.close();
int main() {
                        // Сначала нужно создать папки HilbertN, N - размерность матрицы
                        /*SLAE slae;
                       slae.createHilbertMatricies(4, 12, 4, "Hilbert");*/
                       testSLAE("A", false, false);
testSLAE("B", false, false);
                       testSLAE("Hilbert4", false, false);
                       testSLAE("Hilbert8", false, false);
testSLAE("Hilbert12", false, false);
                       testSLAE("0945", true, false);
                       testSLAE("4545", true, false);
```