Preuves à l'aide des tables de vérité

Exercice 1 Montrez que $\varphi_1 \models \varphi_2$ pour :

- $\varphi_1 = A \rightarrow B \land \neg B, \varphi_2 = \neg A$ (a)
- $\varphi_1 = A, \, \varphi_2 = B \to A \wedge B$ (6)
- (c) $\varphi_1 = A \to (B \to C), \ \varphi_2 = A \land B \to C$
- $\varphi_1 = A \land \neg B, \varphi_2 = \neg A \rightarrow C \lor A$

Exercice 2 Montrez que $\varphi_1 \equiv \varphi_2$ pour :

- (a) $\varphi_1 = (A \lor \neg B) \land \neg (\neg B \land A), \varphi_2 = \neg A \leftrightarrow \neg B$
- (6) $\varphi_1 = (A \to B) \land (C \to B), \ \varphi_2 = A \lor C \to B$

Détermination de formules propositionnelles

Exercice 3 Trouver une formule à 3 lettres propositionnelles dont chaque modèle contient exactement deux lettres sur les trois.

Variante : trouver une formule à 3 lettres propositionnelles dont chaque modèle contient un ou deux lettres sur les trois.

Connecteurs et complétude

Exercice 4 En plus des connecteurs CJ, \lor , \leftrightarrow , \rightarrow et \neg , considérons également les connecteurs, †, ↓, ←, Å, ∯, Å, définis par la table de vérité suivante :

		$p \uparrow q$	$p \downarrow q$	$p \leftarrow q$	$p \not\rightarrow q$	$p \not\vdash q$	$p \not\leftrightarrow q$
1	1	0.	0	1	0	0	0
1	0	1	0.	1	1	0	1
0	1	1	0	0	0	1	1
0.	0	1	1	1	0	0	0

Soit C l'ensemble de tous ces connecteurs. Pour chaque sous-ensemble E de C, on note BF(E) l'ensemble de toutes les fonctions booléennes exprimées par des formules obtenues à partir des connecteurs de E. On notera également :

$$E_1 \leq E_2$$
 si $BF(E_1) \subseteq BF(E_2)$
 $E_1 \approx E_2$ si $BF(E_1) = BF(E_2)$

et on dit que $E \subseteq C$ est complet si $BF(E_1)=BF(E_2)$. Montrez que :

- (a) $\{\neg, \lor\} \simeq C$ (b) $\{\neg, \land\} \simeq C$

4 Dualité

Exercice 5 Définissez la table de vérité du connecteur dual de \rightarrow .

Exercice 6 Montrez que le connecteur \circ est le dual du connecteur \bullet si et seulement si \bullet est lui-même dual de \circ .

5 Formes normales

Exercice 7 (Forme Normale Disjonctive (FND ou DNF)) Soit la formule

$$\varphi = (x \leftrightarrow \neg z) \lor (\neg x \leftrightarrow y)$$

- (a) Déterminez la FND de φ au moyen de sa table de vérité.
- (b) Déterminez une FND de φ par développement.
- Question : Comment vérifier les résultats ?
- (c) Déterminez sa FND complète (c'est-à-dire sa FND où toutes les conjonctions contiennent toutes les lettres) à partir de la seconde formule.

Exercice 8 (Forme Normale Conjonctive (FNC ou CNF)) Considérons à nouveau la formule φ de l'exercice précédent.

- (a) Déterminez une FNC de φ par développement.
- (b) Déterminez une FNC de φ en utilisant le principe de dualité.
- (c) Déterminez la FNCl de φ , c'est-à-dire sa Forme Normale Clausale.