Mathematik für Studierende der Informatik II Analysis und Lineare Algebra

Abgabe der Hausaufgaben zum 8. Juni 2015

Louis Kobras 6658699 4kobras@informatik.uni-hamburg.de

Utz Pöhlmann 6663579 4poehlma@informatik.uni-hamburg.de

Jennifer Hartmann 6706472 fwuy089@studium.uni-hamburg.de

8. Juni 2015

Aufgabe 1

[/4]

Berechnen Sie

$$\lim_{x \to 1} \frac{x^2 - x}{x^2 - 3x + 2}.$$

$$\frac{(1+h)^2 - (1+h)}{(1+h)^2 - 3(1+h) + 2} \; = \; \frac{1+2h+h^2-1-h}{1+2h+h^2-3-3h+2} \; = \; \frac{h+h^2}{-h+h^2} \; = \; \lim_{h \to 0} \frac{1+h}{-1+h} \; = \; -1$$

Aufgabe 2

/4]

Bestimmen Sie alle $a \in \mathbb{R}$, so dass die im Folgenden definierte Funktion $f : \mathbb{R} \to \mathbb{R}$ stetig ist.

$$f(x) := \begin{cases} 8a + 16x, \text{ falls } x < 2\\ a^2(x+2), \text{ falls } x \ge 2 \end{cases}$$

Aufgabe 3

[/4]

Benutzen Sie die ϵ - δ -Definition der Stetigkeit, um zu zeigen, dass es keine reelle Zahl a gibt, so dass die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit der Definition

$$f(x) = \begin{cases} \frac{1}{x}, \text{ falls } \neq 0 \text{ und} \\ a, \text{ sonst} \end{cases}$$

an der Stelle 0 stetig ist.

Aufgabe 4

[/4]

Weisen Sie mit Hilfe der ϵ - δ -Definition der Stetigkeit nach, dass das Produkt zweier stetiger Funktionen $f,g:\mathbb{R}\to\mathbb{R}$ stetig ist.

Aufgabe 5

[/4]

Gegeben sei die Funktion $f: \mathbb{R} \to \mathbb{R}; x \to x^3$. Bestimmen Sie die Ableitung von f an der Stelle $x_0 \in \mathbb{R}$ als Grenzwert des Differenzquotienten.

Hinweis: Im letzten Semester gab es Fragen, ob Polynomdivision etwas mit Ableitungen zu tun hat. In dieser Aufgabe kann man Polynomdivision benutzen, um die Ableitung zu berechnen.