Lab04 - COEFICIENTE DE CORRELACIÓN

Escriba Flores, Daniel Agustin

2025-04-13

Contents

Contexto:	1
Pregunta A: Diagrama de dispersion	1
Lectura de datos	
Diagrama	2
Pregunta B: Correlacion y determinacion	3
Interpretacion:	4
Pregunta C: Prueba de normalidad	4
Interpretación:	4
Conclusión:	4

Contexto:

El director del Zoológico de Tampa estudia la relación entre el número de visitantes, en miles, y la temperatura alta, en grados Fahrenheit. Selecciona una muestra de 15 días y la información muestral recopilada se tabula a continuación:

Visitantes (miles)	Temperatura (°F)	Visitantes (miles)	Temperatura (°F)
2.0	86	2.2	84
0.6	71	2.5	66
2.0	89	1.3	76
2.1	73	3.6	84
2.2	76	1.0	75
2.1	75	1.8	72
0.5	68	2.1	76
0.3	72		

De acuerdo a lo anterior, haga lo siguiente:

Pregunta A: Diagrama de dispersion

a. Traslade la información de la tabla mostrada a un documento de Excel, asígnele el nombre 'zoológico.xlsx', lea la base de datos y elabore un diagrama de dispersión para las variables numéricas.

Lectura de datos

```
library(readxl) #Llamamos a la liberia
data = read_excel("zoologico.xlsx", sheet="Hoja1")
data = data[-1]
data = as.data.frame(data)
data
##
      visitantes temperatura
## 1
             2.0
                           86
## 2
             0.6
                           71
## 3
             2.0
                           89
## 4
             2.1
                           73
## 5
             2.2
                           76
                           75
## 6
             2.1
## 7
             0.5
                           68
             0.3
                           72
## 9
             2.2
                           84
## 10
             2.5
                           66
             1.3
                           76
## 11
## 12
             3.6
                           84
## 13
             1.0
                           75
## 14
             1.8
                           72
## 15
             2.1
                           76
```

Diagrama

elaboramos

75 2

0

0.5

1.0

```
pairs(data)
                                         70
                                               75
                                                      80
                                                            85
                                                                     3.5
                                                                     2
                                     0
           visitantes
                                               08
                                             0
                                                                     1.5
                                                                     0.5
                                           0
                                       0
                                0
80
                                          temperatura
          0 0
```

80

2.5 3.0

1.5 2.0

```
# llamamos a la libreria para utilizar PerformanceAnalytics
library(PerformanceAnalytics)

chart.Correlation(data)
```


Pregunta B: Correlacion y determinacion

b. Calcule e interprete el coeficiente de correlación y el de determinación.

```
cor(data) # Matriz de correlación

## visitantes temperatura
## visitantes 1.0000000 0.4567093
## temperatura 0.4567093 1.0000000
```

Para calcular el coeficiente de determinación solo debemos elevar al cuadrado el valor del coeficiente de correlación.

```
correlación.
x = data$temperatura
y = data$visitantes

coef_corr = cor(x, y, method = "pearson")
coef_corr # Coeficiente de correlación

## [1] 0.4567093

coef_deter = coef_corr^2
coef_deter # Coeficiente de determinación
```

[1] 0.2085834

Interpretacion:

- Coeficiente de correlación (r = 0.457): Indica una relación positiva, pero moderadamente débil, entre la temperatura y el número de visitantes. Esto sugiere que, aunque días más cálidos tienden a atraer más público al zoológico, el efecto no es particularmente fuerte ni consistente.
- Coeficiente de determinación (R² = 0.209): Revela que solo el 20.9% de las variaciones en la asistencia pueden atribuirse a cambios en la temperatura. La mayor parte (79.1%) depende de otros factores no considerados en este análisis, como días festivos, promociones, condiciones climáticas adicionales (lluvia, humedad) o temporadas escolares.

Pregunta C: Prueba de normalidad

c. Realice la prueba de normalidad Shapiro-Wilk y diga si estas siguen o no una distribución normal.

```
##
## Shapiro-Wilk normality test
##
## data: x
```

W = 0.92746, p-value = 0.25

Interpretación:

shapiro.test(x)

El valor p (0.25) es mayor que el nivel de significancia típico $(\alpha = 0.05)$. Esto indica que no hay evidencia suficiente para rechazar la hipótesis nula de normalidad.

Conclusión:

Los datos analizados siguen una distribución normal según la prueba de Shapiro-Wilk.