

=====

Sequence Listing was accepted.

See attached Validation Report.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2008; month=10; day=27; hr=10; min=3; sec=7; ms=792;]

=====

Application No: 10588570 Version No: 1.0

Input Set:

Output Set:

Started: 2008-09-23 15:34:43.539
Finished: 2008-09-23 15:34:46.103
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 564 ms
Total Warnings: 37
Total Errors: 8
No. of SeqIDs Defined: 37
Actual SeqID Count: 37

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (1)
W 213	Artificial or Unknown found in <213> in SEQ ID (2)
W 213	Artificial or Unknown found in <213> in SEQ ID (3)
W 213	Artificial or Unknown found in <213> in SEQ ID (4)
W 213	Artificial or Unknown found in <213> in SEQ ID (5)
E 342	'n' position not defined found at POS: 17 SEQID(5)
E 342	'n' position not defined found at POS: 18 SEQID(5)
E 342	'n' position not defined found at POS: 19 SEQID(5)
E 342	'n' position not defined found at POS: 20 SEQID(5)
E 342	'n' position not defined found at POS: 21 SEQID(5)
E 342	'n' position not defined found at POS: 22 SEQID(5)
E 342	'n' position not defined found at POS: 23 SEQID(5)
E 342	'n' position not defined found at POS: 24 SEQID(5)
W 213	Artificial or Unknown found in <213> in SEQ ID (6)
W 213	Artificial or Unknown found in <213> in SEQ ID (7)
W 213	Artificial or Unknown found in <213> in SEQ ID (8)
W 213	Artificial or Unknown found in <213> in SEQ ID (9)
W 213	Artificial or Unknown found in <213> in SEQ ID (10)
W 213	Artificial or Unknown found in <213> in SEQ ID (11)
W 213	Artificial or Unknown found in <213> in SEQ ID (12)

Input Set:

Output Set:

Started: 2008-09-23 15:34:43.539
Finished: 2008-09-23 15:34:46.103
Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 564 ms
Total Warnings: 37
Total Errors: 8
No. of SeqIDs Defined: 37
Actual SeqID Count: 37

Error code	Error Description
W 213	Artificial or Unknown found in <213> in SEQ ID (13)
W 213	Artificial or Unknown found in <213> in SEQ ID (14)
W 213	Artificial or Unknown found in <213> in SEQ ID (15)
W 213	Artificial or Unknown found in <213> in SEQ ID (16)
W 213	Artificial or Unknown found in <213> in SEQ ID (17)
W 213	Artificial or Unknown found in <213> in SEQ ID (18)
W 213	Artificial or Unknown found in <213> in SEQ ID (19)
W 213	Artificial or Unknown found in <213> in SEQ ID (20) This error has occurred more than 20 times, will not be displayed

SEQUENCE LISTING

<110> Marx, Andreas
Summerer, Daniel
Rudinger, Nicolaus Zackes

<120> MUTATED DNA POLYMERASE WITH INCREASED MISPAIRING
DISCRIMINATION

<130> 630196.401USPC

<140> 10588570
<141> 2008-09-23

<150> PCT/EP2005/050479
<151> 2005-02-04

<150> DE 102004005885.7
<151> 2004-02-05

<160> 37

<170> PatentIn Ver. 2.1

<210> 1
<211> 2787
<212> DNA
<213> Artificial Sequence

<220>

<223> E. Coli wild type Klenow fragment of DNA polymerase I

<400> 1
atggttcaga tcccccaaaa tccacttata cttgttagatg gttcatctta tctttatcg 60
gcataatcacg cgttttcccc gctgactaac agcgcaggcg agccgaccgg tgcgatgtat 120
ggtgtcctca acatgtcgcg cagtctgatc atgcaatata aaccgacgca tgcagcgggt 180
gtcttgacg ccaaggaaaa aacctttcgat gatgaactgt ttgaacatta caaatcacat 240
cgcccgccaa tgccgacgca tctgcgtgca caaatcgaac cttgcacgc gatggtaaaa 300
gcatggggac tgccgctgct ggccgtttct ggcgtagaag cggacgacgt tatcggtact 360
ctggcgcgcg aagccgaaaa agccggcgat ccggctgtga tcagcactgg cgataaaagat 420
atggcgcagc tggtgacgccc aaatattacg cttatcaata ccatgacgaa taccatcctc 480
ggaccggaag aggtgggtgaa taagtacggc gtgccgcccag aactgatcat cgatttcctg 540
gcgcgtatgg gtgactcctc tgataacatt cctggcgtac cgggcgtcg tgaaaaaacc 600
gcgcaggcat tgctgcaagg tcttggcgaa ctggataacgc tgtatgccga gccagaaaa 660
attgctgggt tgagcttccg tggcgcgaaa acaatggcag cgaagctcga gcaaaaacaaa 720
gaagttgctt atctctcata ccagctggcg acgattaaaa ccgacgttga actggagctg 780
acctgtgaac aactggaagt gcagcaaccc gcagcggaaag agttgtggg gctgttcaaa 840
aagtatgagt tcaaaccgtg gactgtgtat gtcgaagcgg gcaaatggtt acaggccaaa 900
ggggcaaaac cagccgcgaa gccacaggaa accagtgttg cagacgaagc accagaagtg 960
acggcaacgg tgatttctta tgacaactac gtcaccatcc ttgatgaaga aacactgaaa 1020
gcgtggattt cgaagctgga aaaagcggcc gtatttgcattt tgataccga aaccgacagc 1080
cttgataaca tctctgctaa cctggctggg ctttcttttgcatc tcatcgagcc aggctgtac 1140
gcataatattc cgggtgctca tgattatctt gatgcggccg atcaaatctc tcgcgagcgt 1200
gcactcgagt tgctaaaacc gctgctggaa gatgaaaagg cgctgaaggt cgggcggaaa 1260
ctgaaatacg atcgccgtat tctggcgaac tacggcattt aactgcgtgg gattgcgttt 1320
gataccatgc tggagtccata cattctcaat agcgttgcgg ggcgtcacga tatggacagc 1380

ctcgcggAAC gttgggtgaa gcacaaaacc atcaactttt aagagattgc tggtaaaggc 1440
 aaaaatcaac tgacctttaa ccagattgcc ctcgaagaag ccggacgtt cggccggaa 1500
 gatgcagatg tcacccgtca gttgcattcg aaaatgtggc cgatctgca aaaacacaaa 1560
 gggccgttga acgtcttcga gaatatcgaa atgcccgtgg tggccgtgct ttacacgcatt 1620
 gaacgttaacg gtgtgaagat cgatccgaaa gtgctgcaca atcattctga agagctcacc 1680
 cttcgtctgg ctgagctgga aaagaaagcg catgaaattt caggtgagga atttaacctt 1740
 tcttccacca agcaggtaa aaccattctc tttgaaaaac agggcattaa accgctgaag 1800
 aaaacgcggg gtggcgcgccc gtcaacgtcg gaagaggtac tggagaact ggccgtggac 1860
 tatccgttgc caaaaagtgtat ctggagttat cgtggcttgg cgaagctgaa atcgacctac 1920
 accgacaagc tgccgtgat gatcaacccg aaaaccgggc gtgtgcatac ctcttatcac 1980
 caggcagtaa ctgcaacggg acgtttatcg tcaaccgtatc ctaacccgtca aaacattccg 2040
 gtgcgttaacg aagaaggtcg tctgtatccgc caggcgttta ttgcgcaga ggattatgt 2100
 attgtctcag cggactactc gcagattgaa ctgcccattt tggccgtatct ttccgtgtac 2160
 aaaggcgttgc tgaccgcatt cgcggaaaggaa aaagatatcc accgggcaac ggcggcagaa 2220
 gtgtttgggt tgccactgga aaccgtcacc agcgagcaac gccgtagcgc gaaagcgatc 2280
 aactttggtc tgatttatgg catgagtgtt ttccgttgg cgcggcaattt gaacattcca 2340
 cgtaaagaag cgcagaagta catggacatt tacttcaaac gctaccctgg cgtgttggag 2400
 tataatggAAC gcaccgtgc tcaggcgaaa gagcagggtt acgttggaaac gctggacgg 2460
 cgcgtctgt atctggcgga tatcaaattcc agcaatgggt ctcgtcgatc agcggctgaa 2520
 cgtgcagcca ttaacgcgccc aatgcaggaa accggccggc acattatcaa acggggcgatg 2580
 attgccgtt atgcgtgggtt acaggcttagt caaccgcgt tacgtatgtt catgcaggtt 2640
 cacgatgaac tggattttga agttcataaa gatgtatgtt atgccgtcgc gaagcagatt 2700
 catcaactga tggaaaactt taccgcgtt gatgtggcgt tgcgttggaa agtggggagt 2760
 ggcggaaaactt gggatcaggc gcactaa 2787

<210> 2
 <211> 928
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> E.coli Klenow fragment of DNA polymerase I

<400> 2
 Met Val Gln Ile Pro Gln Asn Pro Leu Ile Leu Val Asp Gly Ser Ser
 1 5 10 15

Tyr Leu Tyr Arg Ala Tyr His Ala Phe Pro Pro Leu Thr Asn Ser Ala
 20 25 30

Gly Glu Pro Thr Gly Ala Met Tyr Gly Val Leu Asn Met Leu Arg Ser
 35 40 45

Leu Ile Met Gln Tyr Lys Pro Thr His Ala Ala Val Val Phe Asp Ala
 50 55 60

Lys Gly Lys Thr Phe Arg Asp Glu Leu Phe Glu His Tyr Lys Ser His
 65 70 75 80

Arg Pro Pro Met Pro Asp Asp Leu Arg Ala Gln Ile Glu Pro Leu His
 85 90 95

Ala Met Val Lys Ala Met Gly Leu Pro Leu Leu Ala Val Ser Gly Val
 100 105 110

Glu Ala Asp Asp Val Ile Gly Thr Leu Ala Arg Glu Ala Glu Lys Ala

	115	120	125
Gly Arg Pro Val Leu Ile Ser Thr Gly Asp Lys Asp Met Ala Gln Leu			
130	135	140	
Val Thr Pro Asn Ile Thr Leu Ile Asn Thr Met Thr Asn Thr Ile Leu			
145	150	155	160
Gly Pro Glu Glu Val Val Asn Lys Tyr Gly Val Pro Pro Glu Leu Ile			
165	170	175	
Ile Asp Phe Leu Ala Leu Met Gly Asp Ser Ser Asp Asn Ile Pro Gly			
180	185	190	
Val Pro Gly Val Gly Glu Lys Thr Ala Gln Ala Leu Leu Gln Gly Leu			
195	200	205	
Gly Gly Leu Asp Thr Leu Tyr Ala Glu Pro Glu Lys Ile Ala Gly Leu			
210	215	220	
Ser Phe Arg Gly Ala Lys Thr Met Ala Ala Lys Leu Glu Gln Asn Lys			
225	230	235	240
Glu Val Ala Tyr Leu Ser Tyr Gln Leu Ala Thr Ile Lys Thr Asp Val			
245	250	255	
Glu Leu Glu Leu Thr Cys Glu Gln Leu Glu Val Gln Gln Pro Ala Ala			
260	265	270	
Glu Glu Leu Leu Gly Leu Phe Lys Lys Tyr Glu Phe Lys Arg Trp Thr			
275	280	285	
Ala Asp Val Glu Ala Gly Lys Trp Leu Gln Ala Lys Gly Ala Lys Pro			
290	295	300	
Ala Ala Lys Pro Gln Glu Thr Ser Val Ala Asp Glu Ala Pro Glu Val			
305	310	315	320
Thr Ala Thr Val Ile Ser Tyr Asp Asn Tyr Val Thr Ile Leu Asp Glu			
325	330	335	
Glu Thr Leu Lys Ala Trp Ile Ala Lys Leu Glu Lys Ala Pro Val Phe			
340	345	350	
Ala Phe Asp Thr Glu Thr Asp Ser Leu Asp Asn Ile Ser Ala Asn Leu			
355	360	365	
Val Gly Leu Ser Phe Ala Ile Glu Pro Gly Val Ala Ala Tyr Ile Pro			
370	375	380	
Val Ala His Asp Tyr Leu Asp Ala Pro Asp Gln Ile Ser Arg Glu Arg			
385	390	395	400
Ala Leu Glu Leu Leu Lys Pro Leu Leu Glu Asp Glu Lys Ala Leu Lys			
405	410	415	
Val Gly Gln Asn Leu Lys Tyr Asp Arg Gly Ile Leu Ala Asn Tyr Gly			

	420	425	430
Ile Glu Leu Arg Gly Ile Ala Phe Asp Thr Met Leu Glu Ser Tyr Ile			
435	440	445	
Leu Asn Ser Val Ala Gly Arg His Asp Met Asp Ser Leu Ala Glu Arg			
450	455	460	
Trp Leu Lys His Lys Thr Ile Thr Phe Glu Glu Ile Ala Gly Lys Gly			
465	470	475	480
Lys Asn Gln Leu Thr Phe Asn Gln Ile Ala Leu Glu Glu Ala Gly Arg			
485	490	495	
Tyr Ala Ala Glu Asp Ala Asp Val Thr Leu Gln Leu His Leu Lys Met			
500	505	510	
Trp Pro Asp Leu Gln Lys His Lys Gly Pro Leu Asn Val Phe Glu Asn			
515	520	525	
Ile Glu Met Pro Leu Val Pro Val Leu Ser Arg Ile Glu Arg Asn Gly			
530	535	540	
Val Lys Ile Asp Pro Lys Val Leu His Asn His Ser Glu Glu Leu Thr			
545	550	555	560
Leu Arg Leu Ala Glu Leu Glu Lys Lys Ala His Glu Ile Ala Gly Glu			
565	570	575	
Glu Phe Asn Leu Ser Ser Thr Lys Gln Leu Gln Thr Ile Leu Phe Glu			
580	585	590	
Lys Gln Gly Ile Lys Pro Leu Lys Lys Thr Pro Gly Gly Ala Pro Ser			
595	600	605	
Thr Ser Glu Glu Val Leu Glu Glu Leu Ala Leu Asp Tyr Pro Leu Pro			
610	615	620	
Lys Val Ile Leu Glu Tyr Arg Gly Leu Ala Lys Leu Lys Ser Thr Tyr			
625	630	635	640
Thr Asp Lys Leu Pro Leu Met Ile Asn Pro Lys Thr Gly Arg Val His			
645	650	655	
Thr Ser Tyr His Gln Ala Val Thr Ala Thr Gly Arg Leu Ser Ser Thr			
660	665	670	
Asp Pro Asn Leu Gln Asn Ile Pro Val Arg Asn Glu Glu Gly Arg Arg			
675	680	685	
Ile Arg Gln Ala Phe Ile Ala Pro Glu Asp Tyr Val Ile Val Ser Ala			
690	695	700	
Asp Tyr Ser Gln Ile Glu Leu Arg Ile Met Ala His Leu Ser Arg Asp			
705	710	715	720
Lys Gly Leu Leu Thr Ala Phe Ala Glu Gly Lys Asp Ile His Arg Ala			

725	730	735
Thr Ala Ala Glu Val Phe Gly Leu Pro Leu Glu Thr Val Thr Ser Glu		
740	745	750
Gln Arg Arg Ser Ala Lys Ala Ile Asn Phe Gly Leu Ile Tyr Gly Met		
755	760	765
Ser Ala Phe Gly Leu Ala Arg Gln Leu Asn Ile Pro Arg Lys Glu Ala		
770	775	780
Gln Lys Tyr Met Asp Leu Tyr Phe Glu Arg Tyr Pro Gly Val Leu Glu		
785	790	795
Tyr Met Glu Arg Thr Arg Ala Gln Ala Lys Glu Gln Gly Tyr Val Glu		
805	810	815
Thr Leu Asp Gly Arg Arg Leu Tyr Leu Pro Asp Ile Lys Ser Ser Asn		
820	825	830
Gly Ala Arg Arg Ala Ala Ala Glu Arg Ala Ala Ile Asn Ala Pro Met		
835	840	845
Gln Gly Thr Ala Ala Asp Ile Ile Lys Arg Ala Met Ile Ala Val Asp		
850	855	860
Ala Trp Leu Gln Ala Glu Gln Pro Arg Val Arg Met Ile Met Gln Val		
865	870	875
880		
His Asp Glu Leu Val Phe Glu Val His Lys Asp Asp Val Asp Ala Val		
885	890	895
Ala Lys Gln Ile His Gln Leu Met Glu Asn Cys Thr Arg Leu Asp Val		
900	905	910
Pro Leu Leu Val Glu Val Gly Ser Gly Glu Asn Trp Asp Gln Ala His		
915	920	925

<210> 3
<211> 2499
<212> DNA
<213> Artificial Sequence

<220>
<223> Wildtype Taq polymerase

<400> 3
atgagggggta tgctgcccct ctttgagccc aaggggccggg tcctcctgggt ggacggccac 60
cacctggcct accgcacccctt ccacgcctcg aaggggcctca ccaccagccg gggggagccg 120
gtgcaggccgg tctacggcctt cgccaagggc ctcctcaagg ccctcaagga ggacggggac 180
gcgggtatcg tggtctttga cgccaaggcc ccctccttcc gccacggggc ctacgggggg 240
tacaaggccgg gcccggcccc cacgcccggag gactttcccc ggcaactcgc cctcatcaag 300
gagctggtgg acctcctggg gctggcgcgc ctcgagggcc cgggctacga ggcggacgac 360

gtcctggcca gcctggccaa gaaggcggaa aaggagggct acgaggtccg catcctcacc 420
 gcccacaag accttacca gtccttcc gaccgcattcc acgtcctcca ccccgagggg 480
 tacctcatca cccccgcctg getttggaa aagtacggcc tgaggcccga ccagtggcc 540
 gactaccggg ccctgaccgg ggacgagtc gacaaccttc cggggtaa gggcatcgaa 600
 gagaagacgg cgaggaagct tctggaggag tggggagcc tggaaagccct cctcaagaac 660
 ctggaccggc tgaagccgc catccggag aagatcctgg cccacatgga cgatctgaag 720
 ctctcctggg acctggccaa ggtgcgcacc gacctgcccc tggaggtgga cttcgcacaa 780
 aggccggagc cgcacggga gaggcttagg gccttctgg agaggctga gtttggcagc 840
 ctccctccacg agttcggcct tctggaaagc cccaaggccc tggaggaggc cccctggccc 900
 ccgcggaaag gggcctcgt gggcttgtg cttdccgca aggagccat gtggccgat 960
 cttdctggccc tggccgcgc cagggggggc cgggtccacc gggcccccga gccttataaa 1020
 gcccctcaggc acctgaagga ggccgcgggg ctttcgcac aagacctgag cgttctggcc 1080
 ctgagggaaag gccttggcct cccgcgggc gacgacccca tgctcctcgc ctacctcctg 1140
 gacccttcca acaccacccc cgagggggtg gcccggcgct acggcgggggaa gtggacggag 1200
 gagggcggggg agcggccgc ctttccgag aggcttctcg ccaacctgtg ggggaggcgtt 1260
 gaggggggagg agaggtctt ttggcttac cgggaggtgg agaggccctt ttccgctgtc 1320
 ctggcccaca tggaggccac gggggtgcgc ctggacgtgg cctatctcag ggccttgc 1380
 ctggaggtgg cggaggagat cgcggccctc gaggccgagg tttccgcct ggccggccac 1440
 cccttcaacc tcaactccc ggaccagctg gaaagggtcc tctttgacga gctagggttt 1500
 cccgcacatcg gcaagacgga gaagacccggc aagcgctcca ccagcgccgc cgtcttgag 1560
 gcccctcgcg aggcccaccc catcggtggag aagatcctgc agtaccgggaa gctcaccaag 1620
 ctgaagagca cctacattga ccccttgcgc gacctcattcc accccaggac gggccggcctc 1680
 cacaccgcgt tcaaccagac ggccacggcc acgggcaggc taagtagctc cgatccaaac 1740
 ctccagaaca tccccgtccg caccggctt gggcagagga tccggccggc cttcatcgcc 1800
 gaggggggggt ggctattggg ggccttggac tatagccaga tagagctcag ggtgctggcc 1860
 cacctctccg gcgacgagaa cctgatccgg gtcttccagg aggggggggaa catccacacg 1920
 gagaccgcca gctggatgtt cggcgtcccc cgggaggccg tggacccctt gatgcggccgg 1980
 gcggccaaga ccatcaactt cggggcttcc tacggcatgt cggcccaccc cctctccct 2040
 gagctagcca tcccttacga ggaggcccag gccttcattt agcgctactt tcagagcttc 2100
 cccaaagggtgc gggcctggat tgagaagacc ctggaggagg gcaggaggcg ggggtacgtg 2160
 gagaccctct tcggccggcg cgcgtacgtg ccagacccatgg agggccgggt gaagagcgtg 2220
 cggggaggccg cgcgtacgtg ggccttcaac atgcccgtcc agggcaccgc cggccaccc 2280
 atgaagctgg ctatggtaaa gctttcccc aggctggagg aaatggggggc caggatgttc 2340
 cttcagggtcc acgacgagct ggtcttcgag gccccaaaag agggggggaa ggccgtggcc 2400
 cggctggcca aggaggctat ggaggggggtg tatccccctgg ccgtgccccct ggaggtggag 2460
 gtggggatag gggaggactg gctctccgccc aaggagtga 2499

<210> 4
 <211> 832
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Wildtype Taq polymerase

<400> 4
 Met Arg Gly Met Leu Pro Leu Phe Glu Pro Lys Gly Arg Val Leu Leu
 1 5 10 15

Val Asp Gly His His Leu Ala Tyr Arg Thr Phe His Ala Leu Lys Gly
 20 25 30

Leu Thr Thr Ser Arg Gly Glu Pro Val Gln Ala Val Tyr Gly Phe Ala
 35 40 45

Lys Ser Leu Leu Lys Ala Leu Lys Glu Asp Gly Asp Ala Val Ile Val

	50	55	60
Val Phe Asp Ala Lys Ala Pro Ser Phe Arg His Glu Ala Tyr Gly Gly			
65	70	75	80
Tyr Lys Ala Gly Arg Ala Pro Thr Pro Glu Asp Phe Pro Arg Gln Leu			
85	90	95	
Ala Leu Ile Lys Glu Leu Val Asp Leu Leu Gly Leu Ala Arg Leu Glu			
100	105	110	
Val Pro Gly Tyr Glu Ala Asp Asp Val Leu Ala Ser Leu Ala Lys Lys			
115	120	125	
Ala Glu Lys Glu Gly Tyr Glu Val Arg Ile Leu Thr Ala Asp Lys Asp			
130	135	140	
Leu Tyr Gln Leu Leu Ser Asp Arg Ile His Val Leu His Pro Glu Gly			
145	150	155	160
Tyr Leu Ile Thr Pro Ala Trp Leu Trp Glu Lys Tyr Gly Leu Arg Pro			
165	170	175	
Asp Gln Trp Ala Asp Tyr Arg Ala Leu Thr Gly Asp Glu Ser Asp Asn			
180	185	190	
Leu Pro Gly Val Lys Gly Ile Gly Glu Lys Thr Ala Arg Lys Leu Leu			
195	200	205	
Glu Glu Trp Gly Ser Leu Glu Ala Leu Leu Lys Asn Leu Asp Arg Leu			
210	215	220	
Lys Pro Ala Ile Arg Glu Lys Ile Leu Ala His Met Asp Asp Leu Lys			
225	230	235	240
Leu Ser Trp Asp Leu Ala Lys Val Arg Thr Asp Leu Pro Leu Glu Val			
245	250	255	
Asp Phe Ala Lys Arg Arg Glu Pro Asp Arg Glu Arg Leu Arg Ala Phe			
260	265	27	