

UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE COMPUTAÇÃO

RELATÓRIO DO PROJETO DE MC548

Aluno: Murilo Fossa Vicentini **RA**: 082335 **Aluno**: Tiago Chedraoui Silva **RA**: 082941

Sumário

1	IIIC	grantes	4
2	Part 2.1 2.2 2.3 2.4 2.5 2.6	te 1 [nd30] [mn27] [ss2] [ss15] [mn22] Resultados	2 2 2 3 4 5
3	Part 3.1 3.2 3.3	te 2 Estruturas implementadas	6 6 6 7
		bientes computacionais	9
L	ısta	de Tabelas	
	I II III IV	Resultados da parte 1 - Modelagem gmpl	5 6 7 8
L	ista	de Figuras	
	1 2	Melhora com busca local - Ganho fotografando shards - Instância big-0	8 9

1 Integrantes

Aluno: Murilo Fossa Vicentini **RA**: 082335 **Aluno**: Tiago Chedraoui Silva **RA**: 082941

2 Parte 1

2.1 [nd30]

Variáveis usadas no modelo

• Para cada aresta $(i, j) \in A$, criou-se a variável binária y_{ij} que assume valor $y_{ij} = 1$ se e somente se a aresta (i, j) pertence ao caminho mínimo.

Restrições do modelo

 Todo vértice diferente do inicial e do final deve conter ou nenhuma aresta entrando e saindo ou uma entrando e saindo.

$$\sum_{i\in V}^{m} y_{ik} = \sum_{j\in V}^{m} y_{kj}, \quad \forall k \in V, \forall (i,k) \in (k,j) \in A$$

• Peso total do caminho não deve exceder K

$$\sum_{i,j\in A} w_{i,j} y_{i,j} \le K$$

• Deve existir uma aresta que sai de s

$$\sum_{j\in V} y_{s,j} = 1$$

• Deve existir uma aresta que chega em t

$$\sum_{j \in V} y_{j,t} = 1$$

Função objetivo

Objetivo: minimizar o custo do caminho

$$\min \sum_{i,j \in A} c_{i,j} y_{i,j} \tag{1}$$

2.2 [mn27]

Variáveis usadas no modelo

- Para cada vértice $u \in V$ e para cada cor $k \in \{1, 2, ..., m\}$, criou-se a variável binária x_{uk} que assume valor $x_{uk} = 1$ se e somente se o vértice u foi colorido com a cor k.
- Criou-se uma variável binária y_k para toda cor $k \in \{1, 2, ..., m\}$. $y_k = 1$ se e somente se pelo menos um vértice recebeu essa cor.

Restrições do modelo

• Todo vértice deve receber exatamente uma cor

$$\sum_{k=1}^{m} x_{uk} = 1, \quad \forall u \in V$$

2

• Se um vértice recebe a cor k, esta deve ser usada

$$x_{uk} \le y_k$$
, $\forall u \in V, k \in \{1...m\}$

• Os Vértices vizinhos não podem ter a mesma cor

$$x_{uk} + x_{vk} \le 1$$
, $\forall (u, v) \in E, k \in \{1...m\}$

Função objetivo

Objetivo: minimizar o número de cores usadas:

$$\min \sum_{k=1}^{m} y_k \tag{2}$$

2.3 [ss2]

Variáveis usadas no modelo

- Criou-se uma variável binária x_{ij} para toda tarefa $i, j \in T$ que recebe valor $x_{ij} = 1$ se e somente se a tarefa i precede j.
- Para cada tarefa i ∈ T criou-se uma variável binária y_i que recebe valor y_i = 1 se e somente se a tarefa i não cumpriu o deadline.

Restrições do modelo

• Todo par de tarefas (i, j) deve ter uma precedência, em que se i precede j, j não pode preceder i.

$$x_{ii} + x_{ij} = 1, \quad \forall i, j \in T$$

• Todo par de tarefas (i, j) deve ter uma transitoriedade de precedência, em que se i precede j, e j precede k, i precede k. Se $x_{ij} = 1$ e $x_{jk} = 1$, então $x_{ik} = 1$.

$$x_{i,i} + x_{i,k} - 1 \le x_{i,k}, \quad \forall i, j, k \in T$$

• Para cada par de tarefas (i, j) em S, a tarefa i, obrigatoriamente tem que preceder j.

$$x_{ij} = 1, \quad \forall (i, j) \in S$$

 Se uma j tarefa é precedida por outras n tarefas, o tempo de término da tarefa j deve ser no mínimo o tempo de execução de todas as tarefas predecessoras, mais o seu tempo para ser executada. Se for esse término for menor que o deadline, y_i = 0, senão y_i = 1

$$\sum_{i \in T, i \neq j} x_{ij} * t_i \le d_j - t_j + M * y_j \quad \forall j \in T$$

Em que M é um número grande e para calculá-lo somou-se todos os tempos das tarefas mais um.

$$M = \sum_{i \in T} (t_i) + 1$$

Função objetivo

Objetivo: minimizar o número de tarefas que terminem fora do prazo:

$$\min \sum_{i=1}^{n} y_i \tag{3}$$

2.4 [ss15]

Variáveis usadas no modelo

- Criou-se uma variável binária $x_{i,j,k}$ para toda tarefa $k \in T$ de todo projeto $i, j \in J$ que recebe valor $x_{i,j,k} = 1$ se e somente se a tarefa k do projeto i precede a tarefa k do projeto j.
- Para cada projeto j ∈ J e cada tarefa i ∈ T criou-se uma variável inteira begin_{j,i} que recebe valor o valor de início da tarefa i do projeto j.
- Criou-se uma variável inteira *fim* que recebe o tempo de término do último projeto.

Restrições do modelo

Toda tarefa dos pares de projetos (i, j) deve ter uma precedência, em que se i precede j, j não pode preceder
 i.

$$x_{j,i,k} + x_{i,j,k} = 1, \quad \forall i, j \in J$$

 Toda tarefa i ∈ T do projeto j ∈ J tem um tempo mínimo de início que é equivalente ao tempo de início da tarefa que a antecede i − 1 mais o tempo da execução da tarefa predecessora t_{j,i-1} para o mesmo projeto.

$$begin_{j,i} \ge begin_{j,i-1} + t_{j,i-1}, \quad \forall i \in T, \forall j \in J$$

• Se um projeto *j* precede um projeto *k* o tempo de término da tarefa *i* do projeto *k* deve ser maior que o tempo de término da tarefa *i* do projeto *j* mais o seu tempo de execução.

$$begin_{j,i} + t_{j,i} \le begin_{k,i} + (1 - x_{j,k,i}) * M, \quad \forall i \in T, \forall j,k \in J : k! = j$$

Em que M é um número grande e para calculá-lo somou-se todos os tempos das tarefas de todos os projetos.

• Se um projeto *k* precede um projeto *j* o tempo de término da tarefa *i* do projeto *j* deve ser maior que o tempo de término da tarefa *i* do projeto *k* mais o seu tempo de execução.

$$begin_{k,i} + t_{k,i} \le begin_{i,i} + x_{i,k,i} * M, \quad \forall i \in T, \forall j,k \in J : k! = j$$

Em que M é um número grande e para calculá-lo somou-se todos os tempos das tarefas de todos os projetos.

$$M = \sum_{i \in J, i \in T} (t_{j,i})$$

• O tempo total da execução dos projetos deve ser igual ao tempo do último terminar.

$$fim > begin_{i,m} + t_{i,m}, \quad \forall j \in J$$

Em que m é o tempo em que a última tarefa do projeto é executada (tarefa no último processador).

Função objetivo

Objetivo: minimizar o tempo de término de todos os projetos:

$$\min fim$$
 (4)

2.5 [mn22]

Variáveis usadas no modelo

- Para cada máquina $m \in V$ e para cada sala $r \in \{1, 2, ..., |V|\}$, criou-se a variável binária x_{mr} que assume valor $x_{mr} = 1$ se e somente se a máquina m foi colocada na sala r.
- Para cada peça $p \in U$ e para cada sala $r \in \{1, 2, ..., |U|\}$, criou-se a variável binária y_{pr} que assume valor $y_{pr} = 1$ se e somente se a peça p foi colocada na sala r.
- Criou-se uma variável binária $rdiff_{mp}$ para cada aresta da máquina $(m, p) \in E$ para a qual $rdiff_{mp} = 1$ se e somente se a máquina e a peça especificada pela aresta estão em salas diferentes.

Restrições do modelo

• Toda máquina deve estar em uma única sala

$$\sum_{r \in \{1, 2, \dots, |V|\}} x_{mr} = 1, \quad \forall m \in V$$

• Toda peça deve estar em uma única sala

$$\sum_{r \in \{1,2,\dots,|V|\}} y_{pr} = 1, \quad \forall p \in U$$

• Número de máquinas por sala não deve exceder limite K

$$\sum_{m \in V} x_{mr} \le K, \quad \forall r \in \{1, 2, ..., |V|\}$$

• Se uma máquina estiver em sala diferente de sua peça, rdiff = 1

$$rdiff_{mp} \ge x_{mr} - y_{pr}, \quad \forall r \in \{1, 2, ..., |V|\}, \forall (p, m) \in E$$

Função objetivo

Objetivo: minimizar a soma do custo de transporte de uma peça p para a mesma sala da máquina m:

$$\min \sum_{(i,j)\in E} c_{i,j} * rdiff_{i,j} \tag{5}$$

2.6 Resultados

ID exercício	1	2	3
[nd30]	3	13	21
[mn27]	3	7	13 ¹
[ss2]	1	6	17
[ss15]	8	165	245^{2}
[mn22]	1	4131	3691 ³

Tabela I: Resultados da parte 1 - Modelagem gmpl

¹Rodou-se durante 30 minutos para somente 13 cores (13 cores havia sido uma solução encontrada anteriormente, diminui-se os número de cores para o número de restrições diminuir e assim o processamento ser mais rápido);

²Rodou-se durante 30 minutos para somente 4 salas;

³Utilizando a abordagem apresentada na seção do problema, e utilizando-a durante 8 horas em um servidor do laboratório de redes da Unicamp encontrou-se o resultado não ótimo 257. Contudo, se considerarmos somente a ordem dos projetos a solução é encontrada em questão de segundos e o resultado é melhor, 245, porém talvez não seja o ótimo. Como sabe-se que esse resultado é um resultado para a abordagem da seção do problema (seção 2.4) esse resultado foi considerado o melhor que encontramos;

ID exercício	1	2	3
[nd30]	3	13	21
[mn27]	3	7	Não terminou
[ss2]	1	Não terminou	Não terminou
[ss15]	8	Não terminou	Não terminou
[mn22]	1	Não terminou	Não terminou

Tabela II: Resultados da parte 1 - Modelagem planilha

3 Parte 2

Na segunda parte desenvolveu-se uma heurística gulosa, no qual ordenava-se os shards em relação ao ganho do shard com o mínimo de custo entre o satélite vertical e o horizontal. A partir disso pegava-se os shards até que não fossem mais possível. Posteriormente, desenvolveu-se uma busca local a partir da solução gulosa.

Na busca local retirava-se um shard da solução ótima e tentava colocar outros candidatos no lugar. A remoção de um shard da solução ótima é realizada do que possuir menor relação custo/benefício para a melhor, ou seja, se um shard ocupa mais espaço e possibilita um menor ganho.

A lista de candidatos (LRC) foi limitada a 10 candidatos, estes constituídos dos 10 que possuem melhores relação custo/benefício. A escolha dos candidatos foi novamente feito através de uma busca gulosa. Percorre-se a lista lrc e tenta inserir cada um.

Isso era feito para todos os shards da solução ótima, se o resultado fosse melhorado ele era salvo. Caso não fosse, o estado anterior era restaurado, de modo que a mudança na solução que foi ruim, fosse descartado. Feito isso uma vez, isso é repetido até que o tempo limite seja atingido.

A idéia inicial do algoritmo guloso era dar uma solução boa em tempo curto e a busca local seria justamente inserir uma variabilidade no algoritmo.

3.1 Estruturas implementadas

Foram utilizadas algumas estruturas, dentre elas:

Estrutura Shard contendo dois inteiros x e y correspondentes aos satélites que conseguem tirar foto do shard. Dois inteiro hcost e vcost representam o custo de armazenamento dos shards para cada satélite x e y. E uma flag active, se o shard já está ou não na solução.

Estrutura Satélite Contem dois inteiro que contem o tamanho da memória de cada satélite sendo um na horizontal e outro na vertical.

Estrutura CSShard Contém shards inseridos na solução, contém x e y do shard, a direção do satélite responsável pela foto, o indíce idx do shard na estrutura com todos os shards.

Estrutura Solution Contém valor da solução ótima encontrada, o número de shards inseridos na solução, e um vetor de CSshards.

3.2 Análise de complexidade do algoritmo

Denotaremos a |Sat| = m e |Shards| = n.

- 1. função main $O(n^2 + nm)$
 - (a) função get_args: O(1)
 - (b) função read_instances: O(n+m)
 - (c) função quicksort: $O(n^2)$
 - (d) função Greedy_solver: O(n)

(e) Local_search: $O(n^2 + nm)$

i. copy_sol: O(n)

ii. save state: O(n+m)

iii. recover_statel: O(n+m)

iv. find lrc: O(n)v. choose lrc: O(n)vi. save sol: O(n)

Observações:

• Local_search executa |n| as funções de i até vi listadas acima;

• A função main tem sua complexidade delimitada pela função Local_search; e exata é executada até que o tempo seja atingido.

3.3 Resultados

Apresentamos dois resultados, o primeiro para a solução gulosa (ver tabela III) e o segundo aplicando a busca local (ver tabela IV)sobre a solução gulosa encontrada.

Posteriormente, utilizando duas instâncias de entrada (big-0 e small-0) projetou-se um gráfico (ver figuras 1 e 2) com a melhora da solução em relação ao número de iterações para a heurística.

Instância	Melhor solução encontrada	Parâmetro Tempo
small-0	8874	5s
small-1	56435	5s
small-2	29430	5s
small-3	14848	5s
small-4	31403	5s
medium-0	3354366	5s
medium-1	1334090	5s
medium-2	3590494	5s
medium-3	1927658	5s
medium-4	3696487	5s
medium-5	2350322	5s
medium-6	743412	5s
medium-7	1157211	5s
big-0	10148418	5s
big-1	19194050	5s

Tabela III: Resultados da parte 2 - Somente parte gulosa

Instância	Melhor solução encontrada	Parâmetro Tempo
small-0	9937	2 min
small-1	58763	2 min
small-2	33013	2 min
small-3	17449	2 min
small-4	33029	2 min
medium-0	3484321	2 min
medium-1	1394863	2 min
medium-2	3756501	2 min
medium-3	2001891	2 min
medium-4	3858310	2 min
medium-5	2454255	2 min
medium-6	779016	2 min
medium-7	1203455	2 min
big-0	10538294	2 min
big-1	19714711	2 min

Tabela IV: Resultados da parte 2 - Parte gulosa e busca local

Figura 1: Melhora com busca local - Ganho fotografando shards - Instância big-0

Figura 2: Melhora com busca local - Ganho fotografando shards - Instância small-0

4 Ambientes computacionais

1. Máquina 1 - Usada na parte 1 (gmpl) parte 2

Memória 2.0 GB

Processador Intel® CoreTM2 Duo CPU T5250 @ $1.50 GHz \times 2$

Gráfico Intel® 965GM

Tipo SO 32 bits

SO Fedora 15 (Lovelock)

Compilador gcc 4.6.0

Linguagem de programação C

2. Máquina 2 - Usada na parte 1 (planilhas)

Memória 4.0 GB

Processador Intel® Core 2 Quad 2.66GHz

Tipo SO 32 bits

SO Fedora 14 - linux 2.6.35

Compilador gcc 4.5.1

3. Máquina 3 - Usada na instância ss15 da parte 1 conforme especificado.

Memória 16.0 GB

Processador Intel® Xeon® CPU E5430 @ 2.66GHz x 8

Tipo SO 64 bits

SO Debian - linux 2.6.32-5-686

Compilador gcc 4.3.5