

Datenstrukturen, Algorithmen und Programmierung 2

Amin Coja-Oghlan

June 10, 2022

Lehrstuhl Informatik 2 Fakultät für Informatik

Aufbau

- Register $(r_i)_{i\geq 0}$; jedes speichert eine ganze Zahl, initialisiert auf Null
- r_0 ist der "Akkumulator"
- ferner werden in Register r₀ die Ein- und Ausgabe placiert
- einen Programmzähler z
- Programm aus Zeilen, die jeweils einen Befehl enthalten

$\operatorname{read} j$	schreibe den Wert von r_j in r_0
$\mathtt{read} * j$	wenn h der Wert von r_j ist, schreibe den Wert von r_h in r_0
$\mathtt{store} j$	schreibe den Wert von r_0 in r_j
store *j	wenn h der Wert von r_j ist, schreibe den Wert von r_0 in r_h
load x	schreibe die Zahl x in r_0
add x	addiere x zu der Zahl in r_0
half	wenn y der Wert von r_0 ist, setze r_0 auf $\lfloor y/2 \rfloor$
jump j	setze den Programmzähler auf den Wert <i>j</i>
jpos <i>j</i>	wenn der Wert in r_0 positiv ist, führe $jump j$ aus
j n e g j	wenn der Wert in r_0 negativ ist, führe jump j aus
jzero <i>j</i>	wenn der Wert in r_0 gleich Null ist, führe jump j aus
halt	beende das Programm

Eingabecodierung

- die Eingabe wird als Zahl codiert
- mit einer geeigneten Codierung können beliebige Zeichenketten eingegeben werden
- diese können wiederum kombinatorische Strukturen beschreiben

Laufzeit

- die Laufzeit $T_{\mathcal{M}}(e)$ einer Registermaschine \mathcal{M} auf Eingabe $e \in \mathbb{Z}$ ist die Zahl der ausgeführten Befehle
- also $T_{\mathcal{M}}(e) \in \mathbb{N} \cup \{\infty\}$
- die Eingabelänge einer Zahl $e \in \mathbb{Z}$ ist $\lceil \log_2(2 + |e|) \rceil$
- Anzahl Bits, um e hinzuschreiben

Effiziente Algorithmen

■ $\mathcal{T}_{\mathcal{M}}(n)$ ist die maximale Laufzeit von \mathcal{M} auf einer Eingabe der Länge $\leq n$:

$$\mathcal{T}_{\mathcal{M}}(n) = \max \left\{ \mathcal{T}_{\mathcal{M}}(e) : \log_2(2 + |e|) \le n \right\}$$

 \blacksquare der "Algorithmus" $\mathcal M$ ist effizient, wenn es eine Zahl $\ell > 0$ gibt, so daß

$$\mathcal{T}_{\mathcal{M}}(n) = O(n^{\ell})$$

Die Klasse P

- $f: \mathbb{Z} \to \mathbb{Z}$ heißt effizient berechenbar, wenn es einen effizienten Algorithmus \mathcal{M} gibt, der für alle $e \in \mathbb{Z}$ bei Eingabe e den Wert f(e) ausgibt
- P ist die Menge aller effizient berechenbaren Funktionen $f: \mathbb{Z} \to \{0, 1\}$

Zusammenfassung

- die Registermaschine ist ein exaktes Modell von Algorithmen
- wir können damit Laufzeiten messen
- P bezeichnet die Menge aller effizient lösbaren Entscheidungsprobleme