From FAs to Regular Expressions

MIEIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Conversion from FAs to Regular Expressions

- ► Given an FA (Finite Automaton), how to generate an equivalent regular expression (RE)?
- We will focus on two methods:
 - State Elimination Method
 - Construction of Paths (Transitive Closure Method)
- ▶ Both algorithms work with Finite Automata (FA) as input, i.e., DFAs, NFAs, and ϵ -NFAs

State Elimination Method

State Elimination Method

- Maintains an extended finite automaton
 - ► transitions are labeled with regular expressions, rather than alphabet symbols
 - also known as generalized nondeterministic finite automaton (GNFA)
- ► Results in shorter regular expressions than the Construction of Paths technique (to be presented)

Input: FA with a single final state qf and an initial state q0Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. Eliminate each state of the FA not initial and not final and substitute in the FA the state by the transitions to/from that state
- 3. if exists qf \rightarrow q0 then remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf); endif
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

When the DFA includes $n \ge 2$ final states:

- (a) Transform it in a ε -NFA with one final state;
- (b) Consider n FAs (each one with a final state) and determine an RE for each FA. The resultant RE is the union of the REs of each of the FAs.

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. Eliminate each state of the FA not initial and not final and substitute in the FA the state by the transitions to/from that state
- 3. if exists qf \rightarrow q0 then remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf); endif
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $\mid q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4.** foreach pair (si, dj) | si \in S \land dj \in D do
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Note: For FAs with more than one final state, multiple FAs are considered, each one with one of the final states (and the other final states marked as non-final). This conversion is applied to each one of the FAs and the resulting RE is the union of the individual REs. With a generalized FA (an FA where include a start and a final state connected to the original FA via ε), step 3 is not needed and we just need to apply the conversion to a single FA and RE = RE($q0 \rightarrow qf$).

A possible pseudo-code representing an implementation of the algorithm

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $\mid q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition si \rightarrow dj if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition si \rightarrow dj if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - Add a transition si → dj if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

$$S = \{1, 3\}$$

$$\mathsf{D} = \{\}$$

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

$$S = \{1, 3\}$$

$$D = {3}$$

0+1

Regular expression representing the transition between 2 states (i, j). No need to include "+ɛ"

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

$$S = \{1, 3\}$$

$$D = {3}$$

$$RE(1,2) = 0+1$$

$$RE(2,2) = 1$$

$$RE(2,3) = 0$$

$$RE(3,2) = 1$$

L (

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $\mid q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

: (2)

RE(1,2) = 0+1RE(2,2) = 1

 $S = \{1, 3\}$

RE(2,3) = 0RE(3,2) = 1

 $D = {3}$

pairs(si, dj) = {(1,3), (3,3)}

pair(1, 3) = $1 \rightarrow 3$

 $\mathbf{0}$

Input: FA with a single final state qf and an initial state q0

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $| q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA | $q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4.** foreach pair (si, dj) | si $\in S \land dj \in D$ do
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

pairs(si, dj) = $\{(1,3), (3,3)\}$

$$pair(1, 3) = 1 \rightarrow 3$$

RE(1,2).(RE(2,2))*.RE(2,3);

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA | $q \neq q0 \land q \neq qf$
 - 1. Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

pairs(si, dj) = {(1,3), (3,3)}

pair(3, 3) =
$$3 \rightarrow 3$$

Input: FA with a single final state gf and an initial state g0

Output: a regular expression RE representing the language of the FA

- Change to unions of symbols the multiple symbols in transitions;
- For each state q of the FA | $q \neq q0 \land q \neq qf$
 - Get S (sources), the set of all states from which the state q can be reached
 - Get D (destinations), the set of all states that can be reached from q
 - Remove g from FA but keep info about transitions to/from g;
 - **foreach** pair (si, dj) | $si \in S \land dj \in D$ **do**
 - Add a transition $si \rightarrow dj$ if it does not exist;
 - Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + $RE(si \rightarrow q).(RE(q \rightarrow q))^*.RE(q \rightarrow dj); // passing through q$
- if exists qf \rightarrow q0 then
 - remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- $RE = (RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

pairs(si, dj) = $\{(1,3), (3,3)\}$

pair(3, 3) =
$$3 \rightarrow 3$$

 $D = {3}$

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- Change to unions of symbols the multiple symbols in transitions;
- For each state q of the FA | $q \neq q0 \land q \neq qf$
 - Get S (sources), the set of all states from which the state q can be reached
 - Get D (destinations), the set of all states that can be reached from q
 - 3. Remove g from FA but keep info about transitions to/from g;
 - **foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - Add a transition si \rightarrow dj if it does not exist;
 - Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + $RE(si \rightarrow q).(RE(q \rightarrow q))^*.RE(q \rightarrow dj); // passing through q$
- 3. if exists qf \rightarrow q0 then
 - remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- $RE = (RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

RE(1,2) = 0+1RE(2,2) = 1

 $S = \{1, 3\}$

RE(2,3) = 0

 $D = {3}$

RE(3,2) = 1

pairs(si, dj) = $\{(1,3), (3,3)\}$

 $pair(3, 3) = 3 \rightarrow 3$

RE(3,2).(RE(2,2))*.RE(2,3)

0+11*0

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

- Change to unions of symbols the multiple symbols in transitions;
- For each state q of the FA | $q \neq q0 \land q \neq qf$
 - Get S (sources), the set of all states from which the state q can be reached
 - Get D (destinations), the set of all states that can be reached from q
 - 3. Remove g from FA but keep info about transitions to/from g;
 - **foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - Add a transition si \rightarrow dj if it does not exist;
 - Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + $RE(si \rightarrow q).(RE(q \rightarrow q))^*.RE(q \rightarrow dj); // passing through q$
- if exists qf \rightarrow q0 then
 - remove qf \rightarrow q0 and add qf \rightarrow qf with the RE: RE(qf \rightarrow q0).RE(q0 \rightarrow qf);
- $RE = (RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

q:

 $S = \{\}$

 $\mathsf{D} = \{\}$

0+11*0

 $RE=(RE(1,1))*.RE(1,3).(RE(3,3))*_{20}$

Input: FA with a single final state qf and an initial state q0

Output: a regular expression RE representing the language of the FA

q:

 $S = \{\}$

 $D = \{\}$

- 1. Change to unions of symbols the multiple symbols in transitions;
- 2. For each state q of the FA $\mid q \neq q0 \land q \neq qf$
 - Get S (sources), the set of all states from which the state q can be reached
 - 2. Get D (destinations), the set of all states that can be reached from q
 - 3. Remove q from FA but keep info about transitions to/from q;
 - **4. foreach** pair (si, dj) | si \in S \land dj \in D **do**
 - 1. Add a transition $si \rightarrow dj$ if it does not exist;
 - 2. Add a regular expression to transition $si \rightarrow dj$: RE($si \rightarrow dj$) + RE($si \rightarrow q$).(RE($q \rightarrow q$))*.RE($q \rightarrow dj$); // passing through q
- 3. if exists qf \rightarrow q0 then
 - 1. remove $qf \rightarrow q0$ and add $qf \rightarrow qf$ with the RE: RE($qf \rightarrow q0$).RE($q0 \rightarrow qf$);
- 4. RE = $(RE(q0 \rightarrow q0))^*.RE(q0 \rightarrow qf).(RE(qf \rightarrow qf))^*$

RE=(0+1)1*0(0+11*0)*

State Elimination: in the presence of more than one final state

- And when we have more than one final state?
- ► Possible method:
 - Consider one FA per final state (mark all the other states as non-final) and then make the union of the regular expressions obtained for each FA
- Other method:
 - ▶ Mark the final states of the FA as non-final, connect them via ϵ transitions to a new final state
 - When there are input transitions to the initial state, we can also mark the initial as non-initial and connect a new initial state via an ε transition to the old initial state (this way we always obtain an FA with two states and the final regular expression in the only transition between the two)
 - ► The FA resultant is also known as a special form of the generalized nondeterministic finite automaton (GNFA)
 - ▶ This method avoids lines 3 and 4 in the pseudo-code presented in the beginning

State Elimination Method

- ► We can always use the generalized nondeterministic finite automaton (GNFA)
- ► The use of GNFA usually helps

State Elimination: in the presence of more than one final state (example using the GNFA)

NFA:

► GNFA:

Eliminating:

q1, then q0, then q3, and, finally, q2:

RE = $(0+1)*1(0+1)(\epsilon+0+1)$

Ordering of the elimination of states

Impacts the length of the final regular expression

- ► The order we consider the elimination of states influences the length (complexity) of the regular expression (RE)
 - ▶ One can use a heuristic to provide an ordering of the states to be eliminated
 - Example of heuristic: sort those states by the number of input/output transitions from/to other states in the FA
 - ► There are heuristics that for each state eliminated recalculate and select the next state to eliminate

- Example of heuristic to select the elimination ordering:
 - ▶ the number of input/output transitions from/to other states in the FA
 - ► For FA A results in the following state elimination ordering: $4 \rightarrow 3 \rightarrow 2$ or $4 \rightarrow 2 \rightarrow 3$

State	#in/out transitions from/to other states
2	4
3	4
4	2

- Example of heuristic to select the elimination ordering:
 - ▶ the number of input/output transitions from/to other states in the FA
- ► For the FA below results in the following state elimination ordering:

$$4 \rightarrow 3 \rightarrow 2 \text{ or } 4 \rightarrow 2 \rightarrow 3$$

▶ The recalculation for each state eliminated would result in: $4 \rightarrow 3 \rightarrow 2$

State	#in/out transitions from/to other states		
	start	after eliminating 4	
2	4	4	
3	4	2	
4	2	-	

- ► Use the DFA to show the impact of the elimination order in the final regular expression
- ▶ Does the ordering provided by the heuristic produce a more compact regular expression?

Summary

- ► We presented the State elimination technique to convert Finite Automata to Regular Expressions
- ► The size of the regular expressions obtained using the state elimination method depends on the order the states are eliminated (there are methods for selecting the states to eliminate)
- ► The conversion of the FA to a generalized nondeterministic finite automaton (GNFA) with a start state with only a single transition to another state and with a single final state may help in the conversion

Further Reading

- ► State Elimination (known as reduction procedure):
 - ▶ J. A. Brzozowski & E. J. McCluskey (1963): Signal flow graph techniques for sequential circuit state diagrams. In IEEE Transactions on Computers C-12(2), pp. 67–76
- ▶ Heuristics for selecting the elimination ordering of states:
 - ► M. Delgado & J. Morais (2004): Approximation to the Smallest Regular Expression for a Given Regular Language. In Proceedings of the 9th Conference on Implementation and Application of Automata, LNCS 3317, Springer, Kingston, Ontario, Canada, pp. 312–314.
 - ➤ Yo-Sub Han and Derick Wood (2007): Obtaining shorter regular expressions from finite-state automata. *Theor. Comput. Sci.* 370, 1-3 (February 2007), pp. 110-120.
 - ➤ Yo-Sub Han (2013): State Elimination Heuristics for Short Regular Expressions, Fundamenta Informaticae, v.128 n.4, (October 2013) pp. 445-462.

Further Reading (cont.)

- Construction of Paths (Kleene's transitive closure method)
 - ▶ Robert McNaughton & Hisao Yamada (1960): Regular expressions and state graphs for automata. IRE Transactions on Electronic Computers EC-9(1), pp. 39–47
- Brzozowski Algebraic method (based on Arden's lemma)
 - ▶ D. N. Arden (1961): Delayed-Logic and Finite-State Machines. In T. Mott, editor: Proceedings of the 1st and 2nd Annual Symposium on Switching Theory and Logical Design, American Institute of Electrical Engineers, New York, Detroit, Michigan, USA, pp. 133–151.
 - ▶ Janusz A. Brzozowski, "Derivatives of regular expressions", J. ACM,11(4) pp. 481-494, 1964.
 - ▶ J. H. Conway (1971): Regular Algebra and Finite Machines. Chapman and Hall.