

Dareen Hussein Israa Fahmy

Problem summary

Problem statement
Our application
Dataset

Base Model

Summary Model Architecture

Our Progress

Proposed Model Modifications on proposed model Final Model Comparison

Results

Experiments summary Evaluation Results Sample Outputs

Conclusion

Progress report Future work Lessons Learnt

Table of Contents

O1Proposal summary

- Problem statement
- Our application
- Dataset

Problem statement

Text summarization is a powerful tool to process and compress texts and produce concise, refined and brief content that contains the main information from the original. Neural sequence-to-sequence models have provided a viable new approach for abstractive text summarization. However, they still face challenges when dealing with long text.

Our application

Customer reviews can often be long and descriptive. Analyzing these reviews manually, is really time-consuming. This is where we can apply Natural Language Processing to generate a summary for long reviews.

Dataset

Name: Amazon Fine Food Reviews

Description: Reviews of fine foods

from amazon.

Size: 642.49 MB

Data includes: 568,454 reviews

O2Base Model

- Summary
- Base architecture

Summary of Base Model

Text Summarization to Amazon Reviews

Encoder-decoder RNN with LSTM units and attention to generating headlines.

Abstractive Summarizer

Used the training and holdout loss.

An embedding layer that transforms the word into a distributed representation

Evaluated using ROUGE metrics for performance.

Base code: <u>Text-Summarization-with-Amazon-Reviews</u>

Baseline Architecture

03 Our progress

- Proposed Model
- Modifications on proposed model
- Final Model
- Comparison

Proposed Solution

Abstractive Summarizer

Generate new sentences from the original text.

Seq2Seq

The input is a sequence of words and the output is a sequence of tags for every word in the input sequence

Greedy Vs Beam Search

Beam search saves computational powers and performs well..

Encoder-Decoder Architecture

An Encoder LSTM reads the entire input sequence. The decoder is trained to predict the next word in the sequence given the previous word.

Attention Mechanism

It aims to predict a word by looking at a few specific parts of the sequence only, rather than the entire sequence.

Model Modifications

$$p_{\text{gen}} = \sigma(w_{h^*}^T h_t^* + w_s^T s_t + w_x^T x_t + b_{\text{ptr}})$$

$$P(w) = p_{\text{gen}} P_{\text{vocab}}(w) + (1 - p_{\text{gen}}) \sum_{i:w_i = w} a_i^t$$

- At each decoder timestep, a generation probability is calculated.
- Decides the probability of generating words versus extracting words from source text.
- Vocabulary and attention distribution are weighted and summed to make prediction.

Coverage Mechanism

Coverage vector

$$c^t = \sum_{t'=0}^{t-1} a^{t'}$$

$$e_i^t = v^T \tanh(W_h h_i + W_s s_t + w_c c_i^t + b_{\text{attn}})$$

- We build on top of the model with a coverage, that sums attention distributions over all previous decoders and introduce an extra loss term.
- This penalizes the network for attending to the same words again.

Final Solution

Comparison between Baseline and Final Model

-		
	Baseline	Solution
Model	LSTM encoder-decoder	Bi-LSTM encoder-decoder
Attention	Third party imported layer	Customized attention layer
Decoding algorithm	Greedy algorithm	Beam search algorithm
Word Embedding	Word2vec	Fasttext
Behaviour	Abstractive mechanism	Pointer generator with Coverage

04 Results

- Experiments summary
- Evaluation Results
- Sample Outputs

Hyperparameters Experiments

Parameter	Experiment 1	Experiment 2	Experiment 3	Experiment 4
Dropout	0.4	0.4	0.4	0.3
Activation	softmax	softmax	softmax	softmax
L1	1e-5	1e-5	1e-2	1e-2
L2	1e-4	1e-4	1e-2	1e-2
Optimizer	RMSprop	Adam	Adam	RMSprop
Loss function	Sparse categorical cross entropy			

Hyperparameters Experiments (Cont.)

Parameter	Experiment 1	Experiment 2	Experiment 3	Experiment 4
Stacked LSTM layers	1	3	3	5
Loss	2.79	1.99	1.6	1.2
Accuray	0.43	0.57	0.7.09	0.745

Evaluation Metrics

35.46	13.30	32.65	-
30.49	11.17	28.08	-
31.33	11.81	28.83	-
36.44	15.66	33.42	-
43.95	22.22	40.14	78.67
	30.49 31.33 36.44	30.49 11.17 31.33 11.81 36.44 15.66	30.49 11.17 28.08 31.33 11.81 28.83 36.44 15.66 33.42

Best Result Graphs train 0.7 test 0.6 0.5 0.4 0.3 Accuracy: 75% 0.2 12.5 17.5 0.0 2.5 5.0 7.5 10.0 15.0 3.5 test Loss: 1.2 3.0 2.5 2.0 1.5 2.5 7.5 10.0 12.5 15.0 17.5

Sentence: wonderful flavor would purchase this blend of coffee again light flavor not bitter at all and price was great the best i found anywhere

Our model Summary: great coffee flavor Baseline Summary: good flavour

Actual Summary: wolfgang puck k cup breakfast in bed.

Sentence: the pepper plant habanero extra hot california style hot pepper sauce 10 oz has great flavor as all the pepper plants do i just love it it is a bit pricey but worth it

Our model Summary: great seasoning Baseline Summary: great flavour Actual Summary: wonderful love it

Sentence: once more amazon was great the product is good for kids even though it has a little bit more sugar than needed

Our model Summary: good as expected

Baseline Summary: good **Actual Summary:** as expected

05 Conclusion

- Progress report
- Future work
- Lessons Learnt

Future Work

Train whole data

01

Expand the architecture to improve the quality of the generated summaries.

Web/Mobile Application

02

Take the model one step further and apply it on a web or mobile application to be user friendly.

Lessons Learnt

- Better understanding of seq2seq models and their different types.
- More sense in choosing the suitable hyperparameters.
- Making sure of code availability when looking for base models.
- How to understand and modify existing coded.
- Difference between different evaluation metrics like BLEU and ROUGE.
- Hand on experience on Machine language translation and NLP library.
- How to mount from driver and use third party libraries.
- Know the development environment and its limitations.

Members Contribution

01

Israa

- Added attention layer to base code.
- Deployed base model and changed parameters.
- Changed stacked LSTM layers.
- Implemented Word embedding
- Co-implemented Pointer generator and coverage
- Added customized attention.
- Added BLEU score.

02

Dareen

- Loaded and checked different base line codes.
- Deployed the other base model and changed parameters.
- Downloaded Dataset.
- Co-implemented Pointer generator and coverage
- Imported and used pickle
- Implemented Beam search algorithm.
- Added ROUGE score.

Resources

- Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Sequence to sequence learning with neural networks. In NIPS.
- Vishal Gupta and Gurpreet Singh Lehal. 2010. A survey of text summarization extractive techniques. Journal of Emerging Technologies in Web Intelligence, 2(3):258-268.
- Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google's neural machine translation system: Bridging the gap between human and machine translation. In arXiv preprint arXiv:1609.08144.
- Ian Good fellow, Aaron Courville ,and Yoshua Bengio. Deep learning. Book in preparation for MIT Press. 2015.
- Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for sequence prediction with recurrent neural networks. CoRR, abs/1506.03099, 2015.
- William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Listen, attend and spell.
 CoRR, abs/1508.01211, 2015.

Resources (Cont.)

- Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization. CoRR, abs/1409.2329, 2014.
- Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5 rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, 2012.
- Caglar Gulcehre, Sungjin Ahn, Ramesh Nallapati, Bowen Zhou, and Yoshua Bengio. 2016.
 Pointing the unknown words. In Association for Computational Linguistics.
- Aravind PaiAravind is a sports fanatic. His passion lies in developing data-driven products for the sports domain. He strongly believes that analytics in sports can be a game-changer. (2020, May 10). Text summarization: Text summarization using deep learning. Retrieved March 30, 2021, from https://www.analyticsvidhya.com/blog/2019/06/comprehensive-guide-text-summarization-using-deep-learning-python/
- Ramesh Nallapati, Bowen Zhou, Cicero dos Santos, C aglar Gulc ehre, and Bing Xiang.
 2016. Abstractive text summarization using sequence—to—sequence RNNs and beyond. In Computational Natural Language Learning.

