大学物理实验报告

实验名称:

自组装迈克尔逊干涉仪

学院: 理学院 专业: 应用物理学 班级: 应物 1601

学号: 20161413 姓名: 谢尘竹 电话: 18640451671

实验日期: 2019 年 7 月 21 日

第<u>二十一</u>周星期<u>日</u>第<u>二</u>节

实验室房间号: 120 实验组号: 2

成绩	指导教师	批阅日期
	王旗	2019 年 7 月 21 日

1. 实验目的:

- ①.了解迈克尔孙干涉仪的结构、原理及调节和使 用方法;
- ②.在光学平台上利用已有仪器和部件,根据迈克尔逊干涉仪结构和原理以及调节方法,自制一台迈克尔逊干涉仪;
- ③.用自组装的迈克尔逊干涉仪,观察到等倾干涉 条纹。

2. 实验器材:

名称	编号	型号	精度
He-Ne 激光光源			
全反射镜×3			
半透半反镜×1			
扩束镜×1			
观察屏×1			

3. 实验原理(请用自己的语音简明扼要地叙述,注意原理图需要画出,测试公式需要写明)

1.迈克耳孙干涉仪的结构与光路

如图 3.11.1 所示,为迈克耳孙干涉仪的侧视图与俯视图,导轨7固定在一只稳定的底座上,底座由三颗调平螺丝9及其锁紧螺丝10来调平。丝杠6螺距为1mm,转动粗调手轮2,经一对齿轮带动丝杠转动,进而带动移动镜M₂在导轨上滑动。

移动距离可在毫米刻度尺5上读到1mm,在窗口3中的刻度盘上读到0.01m,转动微调手轮1,经1:100的蜗轮传动,可实现微动。微动手轮上的最小刻度为0.0001mm,可估读到0.00001m。

分光板G₁和补偿板G₂固定在基座上,不得强板,且不能用手接触其光学表面。固定参考镜 (定镜) 13 和移动镜 (动镜) 11 后各有三颗螺丝,用于粗调两者相互垂直,不能拧得太紧或太松,以免使其变形或松动。

固定参考镜 13 的一侧和下部各有一颗微调螺丝 14 和 15,可用来微调 13 的左右偏转和俯视,微调螺丝也不能拧得 太松或太紧。丝杠的顶进力由丝杠顶进螺帽 8 来调整。

迈克耳孙干涉仪的实验原理如图 3.11.2 所示,由光源 S 发出一束光,射到分光板 G_1 的半透半反膜 L 上,L 使反射光和透射光的光强基本相同,所以称 G 为分光板。透过膜层 L 的光束(1)经 G_2 到达参考镜 M_1 后,被反射回来;被 L 反射的光束(2)到达移动镜 M_2 后,也被反射回来。由于(1)、(2)两束光满足光的相干条件,各自反射回来在膜层 L 所

 G_2 是补偿板,它使光束(1)和(2)经过玻璃的次数相同,当使用白光作为光源时, G_2 还可以补偿 G_1 的色散。 M_1' 是在 G_1 中看到的 M_1 的虚像。

在表面相遇后, 就发生干涉, 在 E 处即可观察到干涉条纹。

2.单色点光源等倾干涉条纹的观察

如图 3.11.3 所示,由 He-Ne 激光器发出的细束平行激光经过会聚透镜聚焦于一点,相当于一个强度足够大的点光源。当 M_1' 与 M_2 互相平行,即 M_1 与 M_2 互相垂直时,对于与 M_2 的法线和 M_1 的法线夹角皆为 θ 的入射光,经 M_1' 与 M_2 反射后,两束光的光程差为 \triangle = $2d\cos\theta$ 。

式中 d 为 M_1' 与 M_2 间的空气膜的厚度,在 E 处可以观察 到明暗相间的同心圆环(图 3.11.4),每一个圆环对应一个恒 定的倾角,称这种干涉为等倾干涉,观察这些同心圆的圆心 处,此处有 $\triangle=2d$, $\theta=0$,由干涉条纹的明暗条件

$$\triangle=2d= egin{cases} k\lambda, 明纹 \\ (2k+1)rac{\lambda}{2}, 暗纹 \end{cases} (k=1,2,3\cdots)$$
可知,圆心处干涉

条纹的级数最高,并且当移动 M_2 使d 改变时,中心处条纹数随之增减,可观察到条纹由中心处"冒出"或"缩入",而每当中心处"冒出"或"缩入"一个条纹,光程 \triangle 就增加或减少一个波长 λ ,d 就增加或减少了 $\frac{\lambda}{2}$,即 M_2 移动了 $\frac{\lambda}{2}$ 。

4. 实验内容与步骤

1.调整迈克耳孙干涉仪及其光路

(1).接通激光器电源,点亮 He-Ne 激光器,由于其倾角(已调至水平)与方位(水平出射方向)已不能再调整,则需要放置一个全反射镜M₃,将其调整至圆形镜面圆心与激光器出射口等高,并调节M₃的水平位置使激光器射出光束打在M₃正中心。

接着调节M₃的水平倾角螺钉和竖直偏转螺钉,且 使得光束打在M₃后的反射光线平行于光学平台,并且 方向尽量垂直于激光器所在直线。此时M₃与入射光和 反射光的夹角应分别成 45°。

(2).先不要放置扩束镜,在M₃的反射光路中, 放置半透半反镜G₁,同样需使得该镜子中心与激光光 斑(中心)重合,并调整镜子倾角使其垂直于光学平台, 以使得反射光路平行于光学平台,接着调节它的水平 倾角,使得透射光与反射光成 90°,此时G₁便与入射 光、反射光、透射光均成 45°。

- (3).用对G₁和M₃的调节方法,去调整M₁和M₂的 镜中心,使得透射光透过G₁的中心,垂直地射到左全 反射镜M₁的中心部位,而由G₁反射到下全反射镜M₂的 光也处于M₂的中心部位。接着安装上白色观察屏,其上将会出现两排(一般是 3 个点,中间那个光斑比较亮)光斑。
- (4).调节M₁、M₂背后的两颗螺丝,即调节两面镜子的竖直倾角、水平倾角,直到两排光斑中相对应的两个较亮光斑完全重合,此时仔细观察,可隐约看到重叠的光斑上有干涉条纹。

注:一般来说,操作步骤可以更细致一点:可先只调节其中一面镜子如 M_2 的两颗螺钉,使得其屏上比较亮的光斑处于屏中央,且光路 \perp 屏,然后再调节 M_1 的两颗螺钉,使得其较亮光斑与 M_2 的亮光斑重合。

【注意该过程需要绕轴旋转,以免造成全反射镜 上的光斑脱离镜面圆心】

(5).将会聚透镜放在激光出射口之前,调整其

高低、方位、远近距离和与光束的夹角,使激光经其 扩束后均匀照在半透半反镜入射面,并使得光束尽量 将其完全包住,此时观察屏上应出现照明均匀的干涉 图样,且干涉条纹中心应该就在视场中央。

此时也可再继续调节M₁(或M₂)背后的两颗螺丝, 使屏上呈现圆形干涉条纹,或将其移动到光屏 or 视场 中央。 5. 实验记录(注意:单位、有效数字、列表)

一.平台上搭好的光路 (亮室)

二.观察激光的非定域干涉图样 (暗室)

6.	数据处理及误差分析

7.	思考题及实验	小结		

以下内容为报告保留内容,请勿填写或删除,否则影响实验成绩

上课时间:
上课地点:
任课教师:
报告得分:
教师留言:
操作得分:
教师留言:
预习得分:
预习情况: