CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2013 series

9709 MATHEMATICS

9709/11

Paper 1, maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2/1/0 means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

Page 3	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

The following abbreviations may be used in a mark scheme or used on the scripts:

AEF	Any Equivalent Form (of answer is equally acceptable)		
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)		
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)		
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)		
CWO	Correct Working Only - often written by a "fortuitous" answer		
ISW	Ignore Subsequent Working		
MR	Misread		
PA	Premature Approximation (resulting in basically correct work that is insufficiently accurate)		
SOS	See Other Solution (the candidate makes a better attempt at the same question)		
SR	Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)		

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through \(\bigcap^*\)" marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy. An MR-2 penalty may be applied in particular cases if agreed at the coordination meeting.
- PA -1 This is deducted from A or B marks in the case of premature approximation. The PA -1 penalty is usually discussed at the meeting.

Page 4	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

1	> 0 ($(2x-5)^{2} \times 2 + 1 \text{ or } 24\left(x - \frac{5}{2}\right)^{2} + 1$ $(\text{allow} \ge)$	B1B1 B1 √	[3]	B1 for $3(2x-5)^2$, B1 for $(\times 2+1)$ SC B1 for $24x^2 - 120x + 151$ Dep on $k(2x-5)^2 + c$ $(k > 0)$, $(c \ge 0)$ Subst of particular values is B0
2	,,	$1 - 6px \qquad +15p^2x^2$ $15p^2 \times 1 - 6p \times -1$	B1B1 M1	[2]	Simplifien of nCr can be scored in (ii)
	()	$3p(5p+2) = 0$ $p = -\frac{2}{5} \text{ oe}$	DM1 A1		Obtain & attempt to solve quadratic Allow $p = 0$ in addition
		5 5	AI	[3]	7 How p o in addition
3	(i)	$(OAB) = \frac{1}{2} \times 8^2 \alpha, (OAC) = \frac{1}{2} \times \pi \times 4^2$	B1B1		Accept 25.1 (for OAC)
		$\alpha = \frac{\pi}{8}$	B1	[3]	
	(ii)	$8 + 8 \times \text{their } \alpha + \frac{1}{2} \times 8 \times \pi$ $8 + 5\pi$	B1 √ B1		23.7 gets B1B0 SC B1 for e.g. 5 π (omitted <i>OB</i>)
				[2]	Se Bi for e.g. 5 % (diffitted OB)
4		$ar^2 = -108, ar^5 = 32$ $r^3 = \frac{32}{-108} = \left(-\frac{8}{27}\right)$	B1		
			M1		Eliminating <i>a</i>
		$r = \left(-\frac{2}{3}\right)$ or -0.666 or -0.667	A1	[3]	$-\frac{2}{3}$ from little or no working $\rightarrow \frac{3}{3}$ www
	(ii)	a = -243	B1 √	[1]	ft on their $r\left(-\frac{108}{r^2}\text{ or }\frac{32}{r^5}\right)$
	(iii)	$S_{\infty} = \frac{-243}{1 + \frac{2}{3}} = -\frac{729}{5} \text{ or } -145.8$	M1A1	[2]	Accept -146 . For M1 $ r $ must be < 1
5	(i)	$\frac{\sin\theta(\sin\theta-\cos\theta)+\cos\theta(\sin\theta+\cos\theta)}{(\sin\theta+\cos\theta)(\sin\theta-\cos\theta)}$	M1		
		$\frac{\sin^2 \theta - \sin \theta \cos \theta + \cos \theta \sin \theta = \cos^2 \theta}{\sin^2 \theta - \cos^2 \theta}$	A1		
		$\frac{1}{\sin^2\theta - \cos^2\theta}$ AG	A1	[3]	www

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

CA OA OC (±)(1+4 p^2+q^2) (i) Ignore CA OC OA OB E F F F F F F F F F			T		
or $\tan \theta = (\pm)\sqrt{2}$ $\theta = 54.7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$ 6 (i) OA.OC = $-4p^2 - q^2 + 4p^2 + q^2$ $= 0$ (ii) CA = OA - OC = $(\pm)(1 + 4p^2 + q^2)$ (i) $ CA = 1 + 4p^2 + q^2$ (iii) BA = OA - OB = $i + 6j + 2k - (2j - 6k)$ $= (\pm)(i + 4j + 8k)$ MI 7 (i) $x^2 - 4x + 4 = x \Rightarrow x^2 - 5x + 4 = 0$ $(x - 1)(x - 4)(= 0)$ or other valid method (1, 1), (4, 4) Mid-point = $(2\sqrt{2}, 2\sqrt{2})$ Alt (ii) $x^2 - (4 + m)x + 4 = 0 \rightarrow (4 + m)^2 - 4(4) = 0$ $4 + m = \pm 4$ or $m(8 + m) = 0$ $x = -2$, $y = 16$ Alt (ii) $2x - 4 = m$ $x^2 - 4x + 4 = (2x - 4)x$ Alt (iii) $2x - 4 = m$ $x^2 - 4x + 4 = (2x - 4)x$ $x = -2$ (ignore +2) $x = -8$ (ignore 0) $x = -8$ (ignore one of the content of the conte	(ii)	or $3(s^2 - c^2) = c^2 + s^2$	M1		Applying $c^2 + s^2 = 1$
$\theta = 54.7^{\circ}, 125.3^{\circ}, 234.7^{\circ}, 305.3^{\circ}$ A1A1 [4] A1		13 13	A1		
CA CA OC (±)(1+4 $p^2 + q^2$) (i) Ignore CA CO CO CA CA			A1A1	[4]	
CA = 1 + 4 $p^2 + q^2$ A1 [2] Not $\sqrt{(1 + 4p^2 + q^2)^2}$ A1 Allow subtn reversed for both M man $= (\pm)(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $= (\pm)(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 independent of 1st M1 M1 A1 A1 A1 A1 A1 A1	6 (i)			[2]	Attempt scalar product. Allow M1 even for e.g. $\mathbf{OA.OB} = 2pq - 2pq$ etc.
CA = $1 + 4p^2 + q^2$ A1 [2] Not $\sqrt{(1 + 4p^2 + q^2)^2}$ A1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Independent of 1^{st} M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M man $\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$ M1 Allow subtn reversed for both M M1 Allow subtn reversed for both M M1 M1 M1 M1 M1 M1 M1	(;;)	$CA = CA$ $CC = (\pm)(1 + 4\pi^2 + a^2)$ (3)	M1		Ignore $CA = OC - OA$
(iii) $BA = OA - OB = i + 6j + 2k - (2j - 6k)$ $= (\pm)(i + 4j + 8k)$ M1 Allow subtn reversed for both M man $\frac{xi + yj + zk}{\sqrt{x^2 + y^2 + z^2}} \rightarrow \frac{1}{9}(i + 4j + 8k)$ 7 (i) $x^2 - 4x + 4 = x \Rightarrow x^2 - 5x + 4 = 0$ $(x - 1)(x - 4)(= 0)$ or other valid method $(1, 1), (4, 4)$ Mid-point $= (2\frac{1}{2}, 2\frac{1}{2})$ M1 Applying $b^2 - 4ac = 0$ Attempt solution A1 Applying $b^2 - 4ac = 0$ Attempt solution A1 Applying $b^2 - 4ac = 0$ Attempt solution A1 Applying $b^2 - 4ac = 0$ Attempt solution Sub non-zero m and attempt to solve Ignore $(2, 0)$ solution from $m = 0$ Alt (ii) $2x - 4 = m$ $x^2 - 4x + 4 = (2x - 4)x$ $x = -2$ (ignore $+2$) $x = -8$ (ignore 0) $x = -8$ (ignore 0) $x = -8$ (ignore 0) $x = -2$, $b = -3$, $c = -5$ B1B1B1	(11)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$ \mathbf{C}\mathbf{A} = 1 + 4p^2 + q^2$	AI	[2]	Not $\sqrt{1+4p+q}$
	(iii)		M1		Allow subtn reversed for both M marks
M1		$\frac{x\mathbf{i} + y\mathbf{j} + z\mathbf{k}}{\sqrt{x^2 + y^2 + z^2}} \to \frac{1}{9} (\mathbf{i} + 4\mathbf{j} + 8\mathbf{k})$	M1A1	[3]	M1 independent of 1 st M1
(1, 1), (4, 4) Mid-point = $(2\frac{1}{2}, 2\frac{1}{2})$ (ii) $x^2 - (4+m)x + 4 = 0 \rightarrow (4+m)^2 - 4(4) = 0$ $4+m = \pm 4$ or $m(8+m) = 0$ m = -8 $x^2 + 4x + 4 = 0$ x = -2, y = 16 (Iii) $2x - 4 = mx^2 - 4x + 4 = (2x - 4)x Alt (ii) 2x - 4 = mx^2 - 4x + 4 = (2x - 4)x x = -2 (ignore +2)x = -8$ (ignore 0) $y = 16$ (Iii) $x^2 - (4+m)x + 4 = 0 \rightarrow (4+m)^2 - 4(4) = 0$ x = -2 (ignore +2) x = -2 (ignore 0) x = -3 (ignore 0)	7 (i)		M1		Eliminate <i>y</i> to reach 3-term quadratic Attempt solution
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				[4]	ft dependent on 1 st M1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(ii)	$x^2 - (4 + m)x + 4 = 0 \rightarrow (4 + m)^2 - 4(4) = 0$	M1		Applying $b^2 - 4ac = 0$
$m = -8$ A1 Ignore $m = 0$ in addition $x^2 + 4x + 4 = 0$ Sub non-zero m and attempt to solve $x = -2$, $y = 16$ Ignore $(2, 0)$ solution from $m = 0$ Alt (ii) $2x - 4 = m$ M1 $x^2 - 4x + 4 = (2x - 4)x$ OM1 $x = -2$ (ignore $+2$) A1 $m = -8$ (ignore 0) A1 $y = 16$ A1 $m = -8$ from resulting quad $m(m + 8)$ $x = -2$ $y = 16$ B1B1B1	(11)		DM1		Attempt solution
$x^{2} + 4x + 4 = 0 \\ x = -2, y = 16$ M1 Alt (ii) $2x - 4 = m$ $x^{2} - 4x + 4 = (2x - 4)x$ M1 $x = -2 \text{ (ignore } +2) \\ m = -8 \text{ (ignore } 0) \\ y = 16$ M1 OR $2x - 4 = m$ Sub $x = \frac{m+4}{2}, y = \frac{m(m+4)}{2} \text{ into quad } m(m+8) \\ x = -2 \\ y = 16$ M1 $x = -8 \text{ from resulting quad } m(m+8) \\ x = -2 \\ y = 16$ M1 $x = -2 \\ y = 16$ M1 $x = -2 \\ y = 16$ M1 $x = -3 \text{ from resulting quad } m(m+8) \\ x = -2 \\ y = 16$ M1 $x = -2 \\ y = 16$ M1 $x = -3 \text{ from resulting quad } m(m+8) \\ x = -2 \\ y = 16$ M1 $x = -3 \text{ from resulting quad } m(m+8) \\ x = -2 \\ y = 16$		` ,	A1		Ignore $m = 0$ in addition
Alt (ii) $2x - 4 = m$ $x^2 - 4x + 4 = (2x - 4)x$ M1 OR $2x - 4 = m$ Sub $x = \frac{m+4}{2}$, $y = \frac{m(m+4)}{2}$ into quad $m(m+8)$ m = -8 (ignore 0) $m = -8$ (ignore 0) $m = -8$ (ignore 0) Alt $m = -8$ from resulting quad $m(m+8)m = -8$ (ignore 0) $m = -8$ (i		$x^2 + 4x + 4 = 0$			_
Alt (ii) $2x - 4 = m$ $x^2 - 4x + 4 = (2x - 4)x$ M1 OR $2x - 4 = m$ Sub $x = \frac{m+4}{2}$, $y = \frac{m(m+4)}{2}$ into quad $m(m+8)$ m = -8 (ignore 0) $m = -8$ (ignore 0) $m = -8$ (ignore 0) Alt $m = -8$ from resulting quad $m(m+8)m = -8$ (ignore 0) $m = -8$ (i		$x = -2, \ y = 16$	A1	r = 1	Ignore $(2, 0)$ solution from $m = 0$
$x^{2} - 4x + 4 = (2x - 4)x$ $x = -2 \text{ (ignore } +2)$ $m = -8 \text{ (ignore } 0)$ $y = 16$ $x = -2 \text{ (ignore } 20$ $y = 16$ $x = -2 \text{ (ignore } 30)$ $x = -3 \text{ (ignore } 30)$				[5]	
x = -2 (ignore +2) m = -8 (ignore 0) y = 16 A1 $m = -8$ from resulting quad $m(m + 8)A1 x = -2y = 16 8 (i) 2(x-3)^2 - 5 or a = 2, b = -3, c = -5 B1B1B1$	Alt (ii)	2x - 4 = m	M1		
m = -8 (ignore 0) y = 16 A1 $x = -2y = 16 8 (i) 2(x-3)^2 - 5 or a = 2, b = -3, c = -5 B1B1B1$		$x^2 - 4x + 4 = (2x - 4)x$	DM1		Sub $x = \frac{m+4}{2}$, $y = \frac{m(m+4)}{2}$ into quad
y = 16 A1 $y = 168 (i) 2(x-3)^2 - 5 or a = 2, b = -3, c = -5 B1B1B1$					m = -8 from resulting quad $m(m + 8) = 0$
8 (i) $2(x-3)^2 - 5$ or $a = 2, b = -3, c = -5$ B1B1B1		, ,			
		·	AI		<i>y</i> – 10
	8 (i)	$2(x-3)^2 - 5$ or $a = 2$, $b = -3$, $c = -5$	B1B1B1		
(ii) 3	(ii)	3	B1 √	[1]	ft on – their b. Allow $k \ge 3$ or $x \ge 3$

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

	(iii)	$(y) \geq 27$	B1 [1]	Allow >. Allow $27 \le y \le \infty$ etc. OR (x/y interchange as 1^{st} operation)
	(iv)	$2(x-3)^2 = (y+5)$	M1	$x = 2(y-3)^2 - 5$
		$x-3 = (\pm)\sqrt{\frac{1}{2}(y+5)}$	M1	$(y-3)^2 = \frac{1}{2}(x+5)$
		$x = 3 + \frac{1}{2}(y+5)$	A1 ↑	$y-3=(\pm)\sqrt{\frac{1}{2}(x+5)}$
		$(f^{-1}(x)) = 3 + \sqrt{\frac{1}{2}(x+5)} \text{ for } x \ge 27$	A1B1 [↑] [5]	ft on their 27 from (iii)
9	(i)	$3u + \frac{3}{u} - 10 = 0$	B1	Or $3x-10\sqrt{x}+3=0$ Or $(3\sqrt{x}-1)(\sqrt{x}-3)$ or apply formula
		$3u^2 - 10u + 3 = 0 \Rightarrow (3u - 1)(u - 3) = 0$	M1	etc.
		$\sqrt{x} = \frac{1}{3} \text{ or } 3$	A1	
		$\sqrt{x} = \frac{1}{9} \text{ or } 9$	A1 [4]	
	(ii)	$\mathbf{f''}(x) = \frac{3}{2}x^{-\frac{1}{2}} - \frac{3}{2}x^{-\frac{3}{2}}$	B1	Allow anywhere
		At $x = \frac{1}{9}$ $f''(x) = \frac{3}{2}(3) - \frac{3}{2}(27) (= -36) < 0 \to \text{Max}$ At $x = 9$	M1	Valid method. Allow innac subs, even $3, \frac{1}{3}$
		$f''(x) = \frac{3}{2} \times \frac{1}{3} - \frac{3}{2} \times \frac{1}{27} (= \frac{4}{9}) > 0 \rightarrow Min$	A1 [3]	Fully correct. No working, no marks.
	(iii)	$f(x) = 2x^{\frac{3}{2}} + 6x^{\frac{1}{2}} - 10x \ (+c)$ $-7 = 16 + 12 - 40 + c$ $c = 5$	B2 M1 A1 [4]	B1 for $2/3$ terms correct. Allow in (i) Sub $(4, -7)$. c must be present.
10	(i)	$\frac{\mathrm{dy}}{\mathrm{dx}} = 4(x-2)^3$	B1	Or $4x^3 - 24x^2 + 48x - 32$
	(-)	Grad of tangent = -4	M1	Sub $x = 1$ into <i>their</i> derivative
		Eq. of tangent is $y - 1 = -4(x - 1)$	M1	Line thru $(1, 1)$ and with m from deriv
		$\rightarrow B\left(\frac{5}{4},0\right)$	A1	
		Grad of normal = $\frac{1}{4}$	M1	Use of $m_1 m_2 = -1$
		Eq. of normal is $y - 1 = \frac{1}{4}(x - 1) \to C(0, \frac{3}{4})$	A1 [6]	

Page 7	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2013	9709	11

(ii) $AC^2 = 1^2 + \left(\frac{1}{4}\right)^2$ $\frac{\sqrt{17}}{4}$	M1 A1 [2]	Allow $\sqrt{\frac{17}{16}}$
(iii) $\int (x-2)^4 dx = \frac{(x-2)^5}{5}$	B1	Or $\frac{x^5}{5} - 2x^4 + 8x^3 - 16x^2 + 16x$
$\left[0-\left(-\frac{1}{5}\right)\right]=\frac{1}{5}$	M1	Apply limits $1 \rightarrow 2$ for curve
$\Delta = \frac{1}{2} \times 1 \times (their \frac{5}{4} - 1) = \frac{1}{8}$	M1	Or $\int_{1}^{\frac{5}{4}} (-4x+5) dx = \frac{1}{8}$
$\frac{1}{5} - \frac{1}{8} = \frac{3}{40} \text{ or } 0.075$	A1 [4]	