Over Dispersion

- Definition: the variance of the response Y exceeds the nominal variance. $Y \sim Bin(m, \pi) \rightarrow var_n(Y) = m\pi(1 \pi)$.
- Dispersion parameter:

$$a(\phi) = \operatorname{var}(Y)/\operatorname{var}_n(Y).$$

Example: we hypothesize that the support rate of NE Patriots is constant across 5 midwestern states. That is, the proportion of people in the populations of those states who would root for the team is constant. We perform polls by randomly sampling m=200 people in each of the 5 states: Wisconsin 57, Michigan 113, Illinois 56, Iowa 121, Minnesota 153.

$$var_n(Y_i) = 50, \quad var(Y_i) = 1801$$

- Over dispersion is very common in practice (under-dispersion is relatively rare)
- ► It means the data may not exactly follow the hypothetical distribution
- ► Grouped data may have over dispersion
- ▶ Binary data (m = 1) do NOT have over dispersion
- Count data may also have over dispersion

Source of Over-Dispersion

► Intra-class correlation:

For $Y = \sum_{i=1}^{m} Y_i$, $Y_i \sim Bin(1, \pi)$, we have $corr(Y_i, Y_j) = \rho$. Then Y may NOT follow $Bin(m, \pi)$.

$$\mathbb{E}(Y) = m\pi$$

$$\operatorname{var}(Y) = m\pi(1-\pi)[1+(m-1)\rho]$$

Hierarchical sampling:

Assume m individuals form m/k clusters, each with cluster size k. Each cluster has its own event rate which follows a distribution. For example, assume $Y_i|p_i\sim Bin(k,p_i)$ and $p_i\sim (\pi,\delta\pi(1-\pi))$ for

$$i=1,\cdots,k$$
. Then $Y=\sum_{i=1}^{m/k}Y_i$ actually has

$$\mathbb{E}(Y) = m\pi$$
$$\operatorname{var}(Y) = m\pi(1-\pi)[1+(k-1)\delta]$$

In particular, if k = m and $p_i \sim Beta(a, b)$, we have $Y \sim Beta - Binomial(m, \pi, \delta)$, where

$$\mathbb{E}(Y) = m\pi$$

 $\operatorname{var}(Y) = m\pi(1-\pi)[1+(m-1)\delta]$

and
$$\pi = \frac{a}{a+b}$$
 and $\delta = \frac{1}{1+a+b}$.

Parameter Estimation

To model over-dispersed binomial data, we assume

$$\mathbb{E}(y_i) = m_i \pi_i, \quad \text{var}(y_i) = m_i \pi_i (1 - \pi_i) \phi.$$

We need to estimate β and ϕ .

If ϕ is a constant independent of m_i

- lackbox Quasi-likelihood estimator: $\hat{eta}_Q = \hat{eta}_{MLE}$
- $ightharpoonup \operatorname{var}(\hat{\beta}_{Q}) = \phi \operatorname{var}(\hat{\beta}_{MLE})$

Estimating Constant Dispersion

Assume the dispersion parameter ϕ is a constant for independent m_i

▶ Under the dispersion model, the generalized Pearson χ^2 is

$$G = \sum_{i=1}^{n} \frac{(y_i - m_i \hat{\pi}_i)^2}{m_i \hat{\pi}_i (1 - \hat{\pi}_i) \phi} \sim \chi^2(n - p)$$

 $\blacktriangleright \phi$ can be estimated from

$$\hat{\phi}=G_0/(n-p),$$

where G_0 is the generalized Pearson χ^2 from the original model fitting without over-dispersion.

▶ Similarly, ϕ can be also estimated by $D_0/(n-p)$ where D_0 is the deviance of the original model without over-dispersion.

Model Checking of Over Dispersion

Half Normal Plot:

- Order the absolute value of residuals (Pearson or deviance residuals)
 obtained from the Binomial model without dispersion
- ▶ Plot $|r_{(i)}|$ (y coordinates) against $\Phi^{-1}(\frac{n+i+0.5}{2n+1.125})$ (x coordinates), for $i=1,\cdots,n$
- ▶ Reference line is a straight line through origin with slope 1
- Linear deviation from the reference line indicates constant over-dispersion
- ightharpoonup Empirical slope is roughly $\sqrt{\phi}$

Hypothesis Testing

$$H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0 \text{ vs } H_1: \boldsymbol{\beta} \neq \boldsymbol{\beta}_0$$

Wald Test

$$TS = (\hat{\boldsymbol{\beta}}_Q - \boldsymbol{\beta}_0)^T \mathsf{var}^{-1} (\hat{\boldsymbol{\beta}}_Q) (\hat{\boldsymbol{\beta}}_Q - \boldsymbol{\beta}_0) = TS_W/\phi$$

where TS_W is the Wald Test statistic for the model ignoring dispersion.

Score Test

$$TS = Q(\beta_0)^T \text{var}^{-1}(Q(\beta_0))Q(\beta_0) = TS_S/\phi$$

where TS_S is the Score Test statistic for the model ignoring dispersion.

Assume (β_1, β_2) is the coefficient vector.

$$H_0: \boldsymbol{\beta}_2 = \boldsymbol{0}$$
 vs $H_1: \boldsymbol{\beta}_2 \neq \boldsymbol{0}$

Deviance Analysis

- ▶ Model 1: $\eta = \mathbf{Z}_1 \boldsymbol{\beta}_1$, Deviance D_1
- ▶ Model 2: $\eta = \mathbf{Z}_1 \boldsymbol{\beta}_1 + \mathbf{Z}_2 \boldsymbol{\beta}_2$, Deviance D_2
- Pearson χ^2 statistic G_0
- ▶ Calculate D_1, D_2, G_0 from binomial model without dispersion.
- $ightharpoonup rac{D_1-D_2}{\phi}\sim \chi^2(p_2)$ and $rac{G_0}{\phi}\sim \chi^2(n-p_1-p_2)$ are approximately independent
- ► Therefore, the test statistic is

$$rac{(D_1-D_2)/p_2}{G_0/(n-p_1-p_2)} \sim F(p_2,n-p_1-p_2)$$
 (under H_0)

Example

The table below listed the number of rats surviving the 21-day lactation period (Y), and the number of rats alive at four days in the same litter (m) in control and treated groups.

Group		1	2	3	4	5	6	7	8
Control	Y	13	12	9	9	8	8	12	11
(X=0)	m	13	12	9	9	8	8	13	12
Treated	Y	12	11	10	9	10	9	9	8
(X=1)	m	12	11	10	9	11	10	10	9
Group		9	10	11	12	13	14	15	16
Control	Y	9	9	8	11	4	5	7	7
(X=0)	m	10	10	9	13	5	7	10	10
Treated	Υ	8	4	7	4	5	3	3	0
(X=1)	m	9	5	9	7	10	6	10	7