ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

- **8.** Załóżmy, że kula o promieniu r₀ ma we wnętrzu pustą kulistą wnękę o promieniu r_w, której środek przypada na centrum kuli. Ładunek Q jest rozłożony jednorodnie w powstałej powłoce, tzn. między r= r_w, a r= r₀.
 - Obliczyć i narysować wykres natężenia pola elektrycznego w funkcji r dla:
 - a) $r < r_w$
 - b) $r_w < r < r_0$
 - c) $r > r_0$.

Dla zadania, w którym mamy kule z pusta wneka wewnetrzna i ładunek jednolicie rozłożony w powstałej powłoce, możemy zastosować prawo Gaussa, aby obliczyć nateżenie pola elektrycznego E w różnych strefach:

1. **Dla $r < r_w$:**

W tej strefie znajdujemy sie wewnatrz pustej wneki, gdzie nie ma ładunku. Ze wzgledu na symetrie, pole elektryczne wewnatrz wneki wynosi:

$$E = 0$$

2. **Dla $r_w < r < r_0$:**

W tej strefie jesteśmy wewnatrz powłoki z ładunkiem. Użyjemy prawa Gaussa. Niech ładunek wewnatrz sfery o promieniu r wynosi Q', który jest proporcjonalny do objetości sfery o promieniu r w stosunku do objetości całkowitej powłoki. Objetość sfery o promieniu r to $\frac{4}{3}\pi r^3$, a objetość powłoki to $\frac{4}{3}\pi (r_0^3 - r_w^3)$.

Wyrażenie dla ładunku wewnetrznego Q' to:

$$Q' = Q \cdot \frac{r^3 - r_w^3}{r_0^3 - r_w^3}$$

Nateżenie pola elektrycznego w odległości r jest dane przez:

$$E = \frac{Q'}{4\pi\varepsilon_0 r^2} = \frac{Q(r^3 - r_w^3)}{4\pi\varepsilon_0 r^2 (r_0^3 - r_w^3)}$$

3. **Dla $r > r_0$:**

W tej strefie cały ładunek Q znajduje sie wewnatrz powierzchni gaussowskiej. Nateżenie pola elektrycznego wynosi:

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

- **Wvkres:**
- Dla $r < r_w, E = 0$. Dla $r_w < r < r_0, E$ rośnie zgodnie z równaniem podanym wyżej. Dla $r > r_0, E$ maleje jak $\frac{1}{r^2}$.

Na wykresie E wzgledem r, bedziesz miał stałe E = 0 dla $r < r_w$, nastepnie wzrost do pewnej wartości dla $r_w < r < r_0$, a nastepnie spadek jak $\frac{1}{r^2}$ dla $r > r_0$.