有希望、不放弃

迎难而上,勇于攀登最高峰

博客园:: 首页:: 新随笔:: 联系:: 订阅 XML :: 管理 36 Posts:: 4 Stories:: 0 Comments:: 0 Trackbacks

公告

深度学习交流群:134449436

欢迎交流,邮箱: junlinhe@yeah.net

昵称: hejunlin 园龄: 2年3个月

粉丝:0 关注:3 +加关注

搜索

找找看
谷歌搜索

常用链接

我的随笔 我的评论 我的参与 最新评论 我的标签

我的标签

deep learning(13) leetcode(13) tensorflow(10) 动态规划(8) CNN(6) paper reading(5) 线性代数(3) algorithms(1) math(1)

随笔档案

2017年12月 (3) 2017年11月 (7) 2017年10月 (11) 2017年9月 (15)

CNN中减少网络的参数的三个思想

CNN中减少网络的参数的三个思想:

- 1) 局部连接 (Local Connectivity)
- 2) 权值共享 (Shared Weights)
- 3) 池化 (Pooling)

局部连接

局部连接是相对于全连接来说的。全连接示意图如下:

比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 * 10^6=10^12,数目非常之大,基本很难训练。

一般认为人对外界的认知是从局部到全局的,而图像的空间联系也是局部的像素联系较为紧密,而距离较远的像素相关性则较弱。因而,每个神经元其实没有必要对全局图像进行感知,只需要**对局部进行感知**,然后在更高层将局部的信息综合起来就得到了全局的信息。网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。如下图所示:左图为全连接,右图为局部连接。

文章分类

computer vision deep learning(1) leetcode(2) machine learning

阅读排行榜

- 1. 深度学习的一些技巧(261)
- 2. [Kaggle] dogs-vs-cats之制 作数据集[1](248)
- 3. 卷积神经网络中的参数计 算(163)
- 4. [翻译] Tensorflow模型的保存与恢复(127)
- 5. CNN中减少网络的参数的 三个思想(80)

在上右图中,假如每个神经元只和10*10个像素值相连,那么权值数据为10^6*100=10^8个参数(在有padding=same, stride=1,即输出输出尺寸相同,相邻两个卷积核距离1个像素的情况下计算得到),减少为原来的千分之一。而那10*10个像素值对应的10*10个参数,其实就相当于卷积操作。

注:感受野(receptive field),其大小等同于卷积核的大小(比如说5×5)。

权值共享

通过局部连接处理后,神经元之间的连接个数已经有所减少。可是实际上并没有减少很多,参数数量还是很大。而权值共享就是来解决这个问题的,它能 **显著降低参数的数量**。该如何理解权值共享呢?首先从生物学意义上来看,相邻神经元的活性相似,从而它们可以共享相同的连接权值。其次单从数据特征上来看,我们可以把每个卷积核当作一种特征提取方式,而这种方式与图像等数据的位置无关。这就意味着,对于同一个卷积核,它在一个区域提取到的特征,也能适用于于其他区域。

在上面的局部连接中,每个神经元都对应100个参数,一共10⁶个神经元,如果这10⁶个神经元的100个参数都是相等的,那么参数数目就变为100了。 由此可见,权值共享可以大大减少网络的参数。

注:上面说明均是在一个卷积核的情况下。

池化

池化一般分为max pooling和average pooling。我们定义池化窗口的大小为sizeX,即下图中红色正方形的边长,定义两个相邻池化窗口的水平位移/竖直位移为stride。一般池化由于每一池化窗口都是不重复的,所以sizeX=stride。最大池化为取窗口中最大的那个值,平均池化为取窗口中所有数的平均值。

如上图所示,为最大池化,其中sizeX=stride=2。

经过池化层之后,模型参数会减少很多。

附:

摘自:https://zhuanlan.zhihu.com/p/25005808

CNN最成功的应用是在CV,那为什么NLP和Speech的很多问题也可以用CNN解出来?为什么AlphaGo里也用了CNN?这几个不相关的问题的相似性在哪里?CNN通过什么手段抓住了这个共性?

以上几个不相关问题的相关性在于,都存在**局部与整体的关系**,由低层次的特征经过组合,组成高层次的特征,并且得到不同特征之间的空间相关性。如下图:低层次的直线/曲线等特征,组合成为不同的形状,最后得到汽车的表示。

It's deep if it has more than one stage of non-linear feature transformation

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

CNN抓住此共性的手段主要有四个:局部连接/权值共享/池化操作/多层次结构。

局部连接使网络可以提取数据的局部特征;权值共享大大降低了网络的训练难度,一个Filter只提取一个特征,在整个图片(或者语音/文本) 中进行卷积;池化操作与多层次结构一起,实现了数据的降维,将低层次的局部特征组合成为较高层次的特征,从而对整个图片进行表示。如下图:

上图中,如果每一个点的处理使用相同的Filter,则为全卷积,如果使用不同的Filter,则为Local-Conv。

参考文献:

https://yq.aliyun.com/articles/161164

http://www.cnblogs.com/zf-blog/p/6075286.html

一文读懂卷积神经网络CNN

关注 - 3

海 粉丝 - 0

+加关注

«上一篇: [Leetcode] 17. Letter Combinations of a Phone Number

» 下一篇:[Leetcode] 338. Counting Bits

posted on 2017-09-23 23:16 hejunlin 阅读(79) 评论(0) 编辑 收藏

注册用户登录后才能发表评论,请登录或注册,访问网站首页。

【推荐】50万行VC++源码: 大型组态工控、电力仿真CAD与GIS源码库

【推荐】加入腾讯云自媒体扶持计划,免费领取域名&服务器

【推荐】高性能云服务器2折起,0.73元/日节省80%运维成本

【新闻】H3 BPM体验平台全面上线

0 0

刷新评论 刷新页面 返回顶部

最新IT新闻:

- · 人民日报评论同天生日募捐: 慈善不能有新意而无心意
- ·火绒回应拦截腾讯程序:QQ推广产品和病毒行为一致
- · 《王者荣耀》全新模式: 五军对决 每局8分钟
- · Ruby 2.5.0发布
- · iPhone X砍单四成?相关公司集体否认,但苹果概念股已大跌
- » 更多新闻...

最新知识库文章:

- ·步入云计算
- · 以操作系统的角度述说线程与进程
- · 软件测试转型之路
- · 门内门外看招聘
- · 大道至简, 职场上做人做事做管理
- » 更多知识库文章...

Copyright @ hejunlin Powered by: .Text and ASP.NET Theme by: .NET Monster