IE 202 Project Solution

Bilkent University

February 2021

PART A

Parameters

- districts = $\{1..10\}$
- types = $\{1 = \text{jet}, 2 = 2M, 3 = 3M, 4 = 5M\}$
- $\cdot c :$ cost of travel
- OC : Overcapacity cost
- \bullet K: Maximum difference between 3M and Jet
- D_i : Demand for district i
- \bullet $Dist_{ij}$: Distance between districts i and j
- f_t : Fixed building cost of store type t
- cap_t : Capacity of store type t
- r_t : range of store type t
- \bullet M: A very large value to be used in big-M linearizations
- $n_{ij} = \begin{cases} 1 & \text{if the districts i and j are neighbours} \\ 0 & \text{if not} \end{cases}$
- $Servability_{tij} = \begin{cases} 1 & \text{if the store type t opened in district i can serve to district j} \\ 0 & \text{if not} \end{cases}$

Decision Variables

- x_{ijt} : The amount of demand that is satisfied for district j from the shop in district i which has type t
- $y_{it} = \begin{cases} 1 & \text{if store that has type t is opened in district i} \\ 0 & \text{otherwise} \end{cases}$

 $\bullet \ O_{it} = \left\{ \begin{array}{ll} 1 & \quad \text{if store type t in district i decides to use overcapacity} \\ 0 & \quad \text{otherwise} \end{array} \right.$

Objective Function

minimize

$$\sum_{t=1}^{4} \sum_{i=1}^{10} f_t * y_{it} + \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{t=1}^{4} x_{ijt} * dist_{ij} * c + \sum_{i=1}^{10} \sum_{t=1}^{4} OC * O_{it}$$

 $\mathbf{s.t}$

1. Demand for every district should be met

$$\sum_{i=1}^{10} \sum_{t=1}^{4} x_{ijt} \ge D_j$$
 forall j in districts

2. Constraint for 5M Migros

$$\sum_{i=1}^{k} n_{ij} * y_{i4} = 0 \iff y_{j4} = 1$$
 for
all j in districts

leads to

$$\sum_{i=1}^{10} n_{ij} * y_{i4} \le M * (1 - y_{j4})$$

$$1 - y_{j4} \le \sum_{i=1}^{10} n_{ij} * y_{i4}$$

3. Difference between 3M and Jet

$$|\sum_{i=1}^{10} y_{i1} - \sum_{i=1}^{10} y_{i3}| \le K$$

leads to

$$\sum_{i=1}^{10} y_{i1} - \sum_{i=1}^{10} y_{i3} \le K$$

$$\sum_{i=1}^{10} y_{i3} - \sum_{i=1}^{10} y_{i1} \le K$$

 $4.\,$ After observing demand values Migros concludes that district 4 and 8 have similar demand behaviours.

$$(y_{4t} - y_{8t}) = 0$$
 forall t in types

5. Range Constraint

 $(1-Servability_{tij})*x_{ijt} \leq 0$ for all i,j in districts, for all t in types

6. Capacity Constraint

$$\sum_{i=1}^{10} x_{ijt} \le y_{it} * cap_t + 0.1 * O_{it} * cap_t$$
 for all i in districts, for all t in types

7. Relating the variables

$$x_{ijt} \leq y_{it} * M$$
 for all i,j in districts, for all t in types

8. Relating the variables

$$y_{it} \leq O_{it}$$
 for all i in districts, for all t in types

Thus the model in compact form becomes:

$$\begin{array}{lll} & \min & \sum_{t=1}^{4} \sum_{i=1}^{10} f_t * y_{it} + \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{t=1}^{4} x_{ijt} * dist_{ij} * c + \sum_{i=1}^{10} \sum_{t=1}^{4} OC * O_{it} \\ & \text{s.t.} & \sum_{i=1}^{10} \sum_{t=1}^{4} x_{ijt} \geq D_j & \forall j \in \text{districts} \\ & \sum_{i=1}^{10} n_{ij} * y_{i4} \leq M * (1 - y_{j4}) & \forall j \in \text{districts} \\ & 1 - y_{j4} \leq \sum_{i=1}^{10} n_{ij} * y_{i4} & \forall j \in \text{districts} \\ & \sum_{i=1}^{10} y_{i1} - \sum_{i=1}^{10} y_{i3} \leq K & \\ & \sum_{i=1}^{10} y_{i3} - \sum_{i=1}^{10} y_{i1} \leq K & \forall t \in \text{types} \\ & (1 - Servability_{tij}) * x_{ijt} \leq 0 & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & \sum_{j=1}^{10} x_{ijt} \leq y_{it} * cap_t + 0.1 * O_{it} * cap_t & \forall i \in \text{districts}, \forall t \in \text{types} \\ & x_{ijt} \leq y_{it} * M & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & x_{ijt} \geq 0 & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & y_{it} \in \{0,1\} & \forall i \in \text{districts}, \forall t \in \text{types} \\ & \forall i \in \text{districts}, \forall$$

PART B

Parameters

- districts = $\{1..10\}$
- $Served_i = \left\{ \begin{array}{ll} 1 & \text{if district i has a store according to the results of part(a)} \\ 0 & \text{if not} \end{array} \right.$
- \bullet $Dist_{ij}$: Distance between district i and warehouse j

Decision Variables

- t : The maximum distance a truck has to travel in a single journey
- $x_{ij} = \begin{cases} 1 \\ 0 \end{cases}$ if district j is being served by warehouse in district i
- $y_i = \begin{cases} 1 & \text{if a warehouse is opened in district i} \\ 0 & \text{otherwise} \end{cases}$

Objective Function

minimise

$\mathbf{s.t}$

1. min of max constraint

 $t \ge dist_{ij} * x_{ij}$ forall i,j in districts

2. 4 warehouses should be opened

$$\sum_{i=1}^{10} y_i = 4$$

3. Districts with stores should be served with a single warehouse

$$\sum_{i=1}^{10} x_{ij} = Served_j \qquad \text{forall j in districts}$$

4. Relating variables

 $y_i \geq x_{ij}$

forall i,j in districts

Thus, the model in compact form becomes:

$$\begin{array}{lll} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

PART C

Parameter Additions to Part A

• ST : Given threshold

Decision Variable Additions to Part A

• $z_{ijt} = \begin{cases} 1 & \text{if store that has type t is opened in district i serves j} \\ 0 & \text{otherwise} \end{cases}$

Constraint Additions to Part A

1. Relating variables

$$x_{ijt} \leq M * z_{ijt}$$
 for all i,j in districts, for all t in types

2. The served districts cannot exceed treshhold

$$\sum_{i=1}^{10} z_{ijt} \le ST \qquad \text{forall j in districts, forall t in types}$$

3. Binary variable

$$z_{ijt} \in \{0,1\}$$
 for all i,j in districts, for all t in types

Thus, the model in compact form becomes:

$$\begin{aligned} & \min & & \sum_{t=1}^{4} \sum_{i=1}^{10} f_t * y_{it} + \sum_{i=1}^{10} \sum_{j=1}^{10} \sum_{t=1}^{4} x_{ijt} * dist_{ij} * c + \sum_{i=1}^{10} \sum_{t=1}^{4} OC * O_{it} \\ & \text{s.t.} & \sum_{i=1}^{10} \sum_{t=1}^{4} x_{ijt} \geq D_j & \forall j \in \text{districts} \\ & \sum_{i=1}^{10} n_{ij} * y_{i4} \leq M * (1 - y_{j4}) & \forall j \in \text{districts} \\ & \sum_{i=1}^{10} n_{ij} * y_{i4} \leq M * (1 - y_{j4}) & \forall j \in \text{districts} \\ & \sum_{i=1}^{10} y_{i1} - \sum_{i=1}^{10} y_{i3} \leq K & \\ & \sum_{i=1}^{10} y_{i1} - \sum_{i=1}^{10} y_{i3} \leq K & \forall t \in \text{types} \\ & \sum_{i=1}^{10} y_{i3} - \sum_{i=1}^{10} y_{i1} \leq K & \forall t \in \text{types} \\ & (1 - Servability_{tij}) * x_{ijt} \leq 0 & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & \sum_{j=1}^{10} x_{ijt} \leq y_{it} * cap_t + 0.1 * O_{it} * cap_t & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & x_{ijt} \leq y_{it} * M & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & x_{ijt} \leq M * z_{ijt} & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & \sum_{i=1}^{10} z_{ijt} \leq ST & \forall j \in \text{districts}, \forall t \in \text{types} \\ & x_{ijt} \geq 0 & \forall i, j \in \text{districts}, \forall t \in \text{types} \\ & y_{it} \in \{0,1\} & \forall i \in \text{districts}, \forall t \in \text{types} \\ & \forall i \in \text{dis$$

DATA

- \bullet If districts are closer than 140 they are considered neighbours
- Travel cost = 0.1
- Overcapacity cost = 60
- $\bullet\,$ Max difference between 3M and Jet = 2
- \bullet The service threshold for part(c)=1
- \bullet Demand:

```
[483 426 736 790 894 524 386 784 302 662]
```

• Distances :

[0	102	934	948	136	757	522	596	79	849
102	0	427	36	144	483	80	803	740	718
934	427	0	874	439	176	70	540	925	22
948	36	874	0	901		246	807	327	901
136	144	439	901	0	830	985	812	976	561
757	483	176	475	830	0		945	567	96
522	80	70	246	985	144	0	847	76	757
596	803	540	807	812	945	847	0	807	729
79	740	925	327	976	567	76	807	0	684
849	718	22	901	561	96	757	729	684	0

 \bullet Fixed Cost :

• Capacity:

 $\bullet \ \mbox{Range}:$