RCT Implementation

Randomized Control Trial

In this excecise, I'll provide some simple examples of how to implement a basic RCT analysis.

Before we start, however, we need to create some data.

1. Estimate two wages models. For men and women, using an heteroskedastic regression model.

The goal: estimate two potential outcomes for wages. One following Womens wage structure, and the other using Men wage structure.

```
set linesize 255
frause oaxaca, clear
set seed 101
qui:hetreg lnwage age agesq married divorced kids6 kids714 if female==0, het(age agesq mar
est sto m1
predict xb1, xb
predict s1, sigma
qui:hetreg lnwage age agesq married divorced kids6 kids714 if female==1, het(age agesq mar
est sto m2
predict xb0, xb
predict s0, sigma
```

(Excerpt from the Swiss Labor Market Survey 1998)

Here, as I did for UQ regression, I obtain the predicted mean and predicted standard errors. and simulate two wages. I will use wage differences between simulated men and women predicted log wages as the treated effect

$$\begin{split} TE &= \hat{lnw_1} - \hat{lnw_0} \\ \hat{lnw_1} &\sim N(xb_1, s_1^2); \hat{lnw_0} \sim N(xb_0, s_0^2) \end{split}$$

```
gen lnwage1 = rnormal(xb0,s0)
gen lnwage0 = rnormal(xb1,s1)
gen teff=lnwage1-lnwage0
```

I will create a randomzed treatment, and assume those treated get the treatment effect

$$Y_i = Y_i(0) + trt_i * \delta_i$$

```
gen trt = runiform()<.5
replace lnwage = lnwage0 + trt * teff</pre>
```

(1,647 real changes made)

Visual Exploration

Now that we have a randomized treatment, we could start exploring the data:

```
two (kdensity lnwage if trt == 1) (kdensity lnwage if trt == 0) , ///
legend(order(1 "Treated" 2 "Untreated"))
```


Figure 1: Log wage distribution between Treated and untreated

In order to estimate the treatment effects, we could simple estimate a regression model of the outcome. Compare it to the treatment effect

Estimation of ATE Effect

```
** True Effect
sum teff
** Simple Regression
set linesize 255
reg lnwage trt, robust
est sto m0
```

Variable	Obs	Mean	Std. dev.	Min	Max
teff	1,647	2121816	.6613419	-3.024343	2.704082

Because treatment is randomized, we could also add other controls to the model, and improve on precision

```
qui:reg lnwage trt age agesq , robust
est sto m1
qui:reg lnwage trt age agesq married divorced , robust
est sto m2
qui:reg lnwage trt age agesq married divorced kids6 kids714 , robust
est sto m3
esttab m0 m1 m2 m3, se nonum mtitle("m0" "m1" "m2" "m3") keep(trt) md
```

	m0	m1	m2	m3
trt	-0.221***	-0.214***	-0.213***	-0.212***
	(0.0248)	(0.0225)	(0.0225)	(0.0224)
N	1647	1647	1647	1647

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Falsification

We could just use other outcomes that shouldnt be affected by the treatment. You expect they have no impact on outcome

```
qui:reg exper trt age agesq married divorced kids6 kids714 , robust
est sto m0
qui:reg tenure trt age agesq married divorced kids6 kids714 , robust
est sto m1
esttab m0 m1 , se nonum mtitle("m0" "m1") keep(trt) md
```

	m0	m1
trt	-0.104	-0.458
	(0.366) 1434	(0.335)
N	1434	1434

Standard errors in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001

Balance test

You should also try to create balance tables, where you compare and test if characteristics are similar across treated and control groups:

```
tabstat age agesq married divorced kids6 kids714 , by(trt) sureg age agesq married divorced kids6 kids714 =trt,
```

Summary statistics: Mean Group variable: trt

	age	0 1				
0 1	39.14475 39.3643	1649.63 1675.521	.53076 .5158924	.1206273 .1466993	.2979493 .2713936	.3365501 .3215159
	39.25379					

Seemingly unrelated regression

Equation	Obs	Params	RMSE	"R-squared	" chi	2 P>chi2
age	1,647	1	11.02798	0.0001	0.1	6 0.6862
agesq	1,647	1	893.7224	0.0002	0.3	5 0.5566
married	1,647	1	.4993979	0.0002	0.3	6 0.5458
divorced	1,647	1	.3399466	0.0015	2.4	2 0.1197
kids6	1,647	1	.6626276	0.0004	0.6	6 0.4161
kids714	1,647	1 	.7071256 	0.0001	0.19	9 0.6662
	Coefficient	Std. err.	Z	P> z	[95% conf.	interval]
age						
trt	.2195505	.5434865	0.40	0.686 -	.8456636	1.284765
_cons	39.14475	.3830175	102.20	0.000	38.39405	39.89545
agesq						
trt	25.89111	44.04489	0.59	0.557 -	60.43528	112.2175
_cons	1649.63	31.04026	53.14	0.000	1588.792	1710.467
married						
trt	0148675	.0246116	-0.60	0.546 -	.0631054	.0333703
_cons	.53076	.0173448	30.60	0.000	.4967648	.5647552
divorced						
trt	.026072	.0167534	1.56	0.120 -	.0067641	.0589081
_cons	.1206273	.0118068	10.22	0.000	.0974863	.1437682
kids6						
trt	0265557	.032656	-0.81	0.416 -	.0905602	.0374488
_cons	.2979493	.023014	12.95	0.000	. 2528427	.343056
kids714			 _			 _
trt	0150342	.0348489	-0.43	0.666 -	.0833368	.0532685
_cons	.3365501	.0245595	13.70	0.000	.2884143	.3846858
		_	·			_

Here, the goal is just to see if trt is not-significant across groups