24

Chapter 3

3.1

F = x + y'z**(f)**

3.3

(a)
$$F = xy + x'y'z' + x'yz'$$
$$F = xy + x'z'$$

	$\setminus yz$			<u>y</u>	
	x	00	01	11	10
	0	1 1	1	1	1
х	1	m_4	m_{5}	1	m_6
	_ (b)	i	F = x'y'		x'yz'

(b)
$$F = x'y' + yz + x'yz'$$

 $F = x' + yz$

(d) F = xyz + x'y'z + xyz'F = x'y'z + xy

	∖CD)		C			
ΑE	3 \	00	01	11	10		
	00	m_0	1	m_3	m_2		
	01	$m_{_{4}}$	1	m_7	m_6		n
4	11	m ₁₂	m_{I3}	1	1		В
A	10	m_8	1 1	1	1		
	_						
			ı.	D			
	(b)	F	G = A'C	+A'C	D + B'	C'D	

	√yz			у		
wx	: /	00	01	11	10	
	00	1 1	1	m_3	m_2	
	01	m ₄ 1	m ₅	^m ₇ 1	m ₆	
	11	m ₁₂	m ₁₃	m ₁₅	m_{I4}	X
w	10	<i>m</i> ₈ 1	<i>m_g</i> 1	m_{II}	<i>m</i> ₁₀	
	(c)	F	y' = w'y'	z + wx' y'	+ w'xy	

	CD	ı		C			
AE	`\	00	01	11	_10		
	00	1 1	m_I	m_3	1		
	01	m_4	m ₅	m ₇	<i>m</i> ₆		מ
4	11	1 1	1 1	m ₁₅	m_{I4}		В
A	10	m ₈	m_g	m_{II}	1 1		
				D.			
				D			
	(a)	F	T = B'D	P' + A'BI	O + ABC	71	

(a)
$$F(x, y, z) = \Sigma(3, 5, 6, 7)$$

	$\setminus yz$			y	
	x	00	01	11	10
	0		m_I	m ₃	m ₂
x	1	m_4	m ₅	m ₇ 1	m ₆
	_			Z	J

(b) $F = \Sigma(1, 3, 5, 9, 12, 13, 14)$

(c) $F = \Sigma(0, 1, 2, 3, 11, 12, 14, 15)$

(d) $F = \Sigma(3, 4, 5, 7, 11, 12)$

3.9

Essential: xz, x'z'Non-essential: w'x, w'z'F = xz + x'z' + (w'x or w'z') Essential: B'D', AC, A'BDNon-essential: CD, B'C $F = B'D' + AC + A'BD + (CD \ OR \ B'C)$

Essential: BC', AC, A'B'DF = BC' + AC + A'B'D Essential: wy', xy, w'x'zF = wy' + xy + w'x'z

Essential: BD, B'C, B'C'D'F = BD + B'C + B'C'D' **Essential**: wy', wx, x'z', xyzF = wy' + wx + x'z' + xyz

3.10

Essential: xz, w'x, x'z'F = xz + w'x + x'z'

Essential: AC, B'D', CD, A'BDF = AC + B'D' + CD + A'BD

Essential: BC', AC

Non-essential: AB, A'B'D, B'CD, A'C'D

F = BC' + AC + A'B'D

Essential: wy', xyNon-essential: wx, x'y'z, w'wz, w'x'zF = wy' + xy + w'x'z

Essential: BD, B'C, AB'CNon-essential: CDF = BD + B'C + AB'C Essential: wy', wx, xyz, x'yz'F = wy' + wx + xyz + x = yz'

3.11 (a) $F(A, B, C, D, E) = \sum (0, 1, 4, 5, 16, 17, 21, 25, 29)$

 m_0 : A'B'C'D'E' = 00000 m_1 : A'B'C'D'E = 00001

F = A'B'D' + AD'E + B'C'D'

 m_4 : A'B'CD'E' = 00100 m_5 : A'B'CD'E = 00101

 m_{16} : AB'C'D'E' = 10000 m_{17} : AB'C'D'E = 10001

 m_{21} : AB'CD'E = 10101

 m_{21} : ABC'D'E = 11001

 m_{29} : ABCD'E = 11101

(b) F(A, B, C, D, E) = A'B'CE' + B'C'D'E' + A'B'D' + B'CD' + A'CD + A'BDF(A, B, C, D, E) = A'B'D' + B'D'E' + B'CD' + A'CD + A'BD

A'B'CE': AB'CDE' + A'B'CD'E' B'C'D'E': AB'C'D'E' + A'B'C'D'E' A'B'D': A'B'CD'E + A'B'CD'E' + A'B'C'D'E + A'B'C'D'E' B'CD': AB'CD'E + AB'CD'E' + A'B'CD'E + A'B'CD'E' A'CD: A'BCDE + A'BCDE' + A'B'CDE + A'B'CDE' A'BD: A'BCDE + A'BCDE' + A'BC'DE + A'BC'DE'

$$F = \Sigma(0, 1, 2, 5, 8, 10, 13)$$

 $F = x'z' + w'x'y' + w'y'z$

	\ y.	Z			v	
WX	: /	00	01	11	10	
	00	m_{θ}	m_{j}	0	m_2	
	01	0	m_5	0	0	
	11	0	m_{I3}	0	0	
w	10	m_8	0	0	<i>m</i> ₁₀	
					l	

$$F' = yz + xz' + xy + wx'z$$

$$F = (y' + z')(x' + z)(x' + y')(w' + x + z')$$

(b)						
	\CD			C		
AI	3 /	00	01	11	10	l
	00	m_{θ}	0	m_3	m_2	
	01	m_4	<i>m</i> ₅ 0	0	m_{δ}	B
A	11	m ₁₂	0	0	m ₁₄	
А	10	m_8	m_g	m_{II}	m_{10}	
	_					•
				D		

$F = \Pi(1, 3, 5, 7, 13, 15)$
F' = A'D + B'D
F = (A + D)(B' + D)
F = C'D' + AB' + CD'

$$F = \Pi(1, 3, 6, 9, 11, 12, 14)$$

$$F' = B'D + BCD' + ABD'$$

$$F = (B + D')(B' + C' + D)(A' + B' + D)$$

$$F = BD + B'D' + A'C'D'$$

3.13 (a) F = xy + z' = (x + z)(y + z)

Γ	101	10	C'D +	ADIC
r =	AU \pm	$AD \pm$	(しコ) エ	ABU

	∖CE)			,	
AE	' \	00	01	11	10	
	00	0	1	0	0	
	01	0	m ₅	0	0	B
A	11	1	1	1	0	
А	10	m ₈	<i>m</i> ₉ 1	1	^m 10	
	_			D		

$$F'A'D' + A'C + BCD'$$

 $F = (A + D)(A + C')(B' + C' + D)$

$$F = (A + C' + D')(A' + B' + D')(A' + B + D')(A' + B + C')$$

$$F' = A'CD + ABD + AB'D + AB'C$$

$$F = A'C + A'D' + BD' + C'D'$$

$$F' = AD + CD + AB'C$$

 $F = (A' + D')(C + D')(A' + B + C')$

$$F = ABC' + AB'D + BCD$$

$$F = AD + ABC' + BCD$$

$$F' = A'C' + A'B' + CD' + B'C'D'$$

$$F = (A + C)(A + B)(C' + D)(B + C + D)$$

SOP form (using 1s): F = B'C'D' + AB'D' + BC'D + A'BDF = B'D'(A + C') + BD(A' + C')

POS form (using 0s): F' = BD' + B'D + A'CD' + ACD

F = [(B' + D)(B + D')][(A + C' + D)(A' + C' + D')]

Alternative POS: F' = BD' + B'D + A'CD' + A'B'C

F = [(B' + D)(B + D')][(A + C' + D)(A' + B + C)]

3.16 (a)

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

D

(c)

(b)

	\mathcal{L}^{CD})		C		1	
AE	' \	00	01	11	10	_	EI = AIDID
	00	1 1	m_I	m_3	1 1		$F' = A'B'D$ $F = (A'B'D)'$ $A' \longrightarrow$
	01	<i>m</i> ₄ 1	<i>m</i> ₅ 1	<i>m</i> ₇ 1	m ₆	$igg _B$	B' D F
4	11	1	1	1	1		
A	10	m ₈	1 1	<i>m</i> ₁₁ 1	1 1		
	_			D	J	-	

(d)

$$F = AC + AB$$
$$F = ((AC)' (AB)')'$$

F = A'B' + C'D' + B'C'

F = (BC)'(AC)'(BD)'

3.18
$$F = (A \oplus)B'(C \oplus D) = (AB' + A'B)(CD' + C'D) = AB'CD' + AB'C'D + A'BCD' + A'BC'D$$

F = AB'CD' + AB'C'D + A'BCD' + A'BC'D and F' = A'B' + AB + C'D' + CD $F = (A'B')'(AB)'(C'D')'(CD)' = (A + B)(A' + B') \ (C' + D')(C + D)$ F' = [(A + B)(A' + B')]' + [(C' + D')(C + D)]' F = ([(A + B)(A' + B')]' + [(C' + D')(C + D)]')' F = ([(A + B)' + (A' + B')'] + [(C' + D')' + (C + D)'])'

$$F = y'z' + wx' + w'z'$$

$$F = [(y + z)' + (w' + x)' + (w + z)']$$

$$F' = [(y + z)' + (w' + x)' + (w + z)']'$$

(b)

	\ yz			<u>y</u>		
wx	: \	00	01	11	10	
	00	m_0	1	m_3	^m ₂ 1	
	01	m_4	m_5	<i>m</i> ₇	m_6	
	11	m ₁₂	1 1	m ₁₅	1	x
w	10	m_8	m_g	m_{II}	m ₁₀	
	_			z		

$$F = \Sigma(1, 2, 13, 14)$$

$$F' = w'x + wx' + y'z' + yz = [(w + x')(w' + x)(y + z)(y' + z')]'$$

$$F = (w + x')' + (w' + x)' + (y + z)' + (y' + z')$$

(c)
$$F = [(x + y)(x' + z)]' = (x + y)' + (x' + z)'$$

 $F' = [(x + y)' + (x' + z)']'$
 x
 y
 x'
 z

3.20 Multi-level NOR:

$$F = (AB' + CD')E + BC(A + B)$$

$$F' = [(AB' + CD')E + BC(A + B)]'$$

$$F' = [[(AB' + CD')' + E']' + [(BC)' + (A + B)']']'$$

$$F' = [[((A' + B)' + (C' + D)')' + E']' + [(B' + C')' + (A + B)']']'$$

Multi-level NAND:

F = (AB' + CD')E + BC(A + B) F' = [(AB' + CD')E]'[BC(A + B)]' F' = [((AB')'(CD')')'E]'[BC(A'B')']'

3.21
$$F = w(x + y + z) + xyz$$
$$F' = [w(x + y + z)]'[xyz]' = [w(x'y'z')']'(xyz)'$$

$$F = AC' + A'D' + B'CD'$$

 $F' = D + ABC$
 $F = [D + ABC]' = [D + (A' + B' + C']')]'$

3.24

(a) F = C'D' + AB' + AD'

Digital Design - Solution Manual. M. Mano. M.D. Ciletti, Copyright 2007, All rights reserved.

F' = (C'D')'(AB')'(AD')'AND-NAND:

(b) F' = [C'D' + AB' + AD']'

AND-NOR:

(c)
$$F = C'D' + AB' + AD' = (C + D)' + (A' + B)' + (A' + D)'$$

 $F' = (C'D')'(AB')'(AD')' = (C + D)(A' + B)(A' + D)$
 $F = [(C + D)(A' + B)(A' + D)]'$
OR-NAND:

(d) F = C'D' + AB' + AD' = (C + D)' + (A' + B)' + (A' + D)'NOR-OR:

The degenerate forms use 2-input gates to implement the functionality of 4-input gates.

(a) 3-bit odd parity generator

(b) 4-bit odd parity generator

3.29
$$D = A \oplus B \oplus C$$

$$E = A'BC + AB'C = (A \oplus B)C$$

$$F = ABC' + (A' + B')C = ABC' + (AB)'C = (AB) \oplus C$$

$$G = ABC$$

3.30
$$F = AB'CD' + A'BCD' + AB'C'D + A'BC'D$$
$$F = (A \oplus B)CD' + (A \oplus B)C'D = (A \oplus B)(C \oplus D)$$

3.31 Note: It is assumed that a complemented input is generated by another circuit that is not part of the circuit that is to be described.

```
(a)
       module Fig_3_22a_gates (F, A, B, C, C_bar, D);
        output F;
        input
                 A, B, C, C_bar, D;
                 w1, w2, w3, w4;
        wire
        and
                 (w1, C, D);
        or
                 (w2, w1, B);
                 (w3, w2, A);
        and
                 (w4, B, C_bar);
        and
                 (F, w3, w4);
        or
       endmodule
```

```
(b)
       module Fig_3_22b_gates (F, A, B, C, C_bar, D);
        output F;
                 A, B, C, C bar, D;
        input
        wire
                 w1, w2, w3, w4;
                 (w1 bar, w1);
        not
                 (B bar, B);
        not
                 (w3 bar, w3);
        not
        not
                 (w4_bar, w4);
        nand
                 (w1, C, D);
                 (w2, w1_bar, B_bar);
        or
        nand
                 (w3, w2, A);
                 (w4, B, C_bar);
        nand
                 (F, w3_bar, w4_bar);
        or
       endmodule
```