Note Title

23/11/2024

Serie con termini di segno variabile

- -> CRITERIO DI LEIBNITZ (Serie a seguo alteruo)
- -> CRITERIO ASSOLUTA CONVERGENZA

(-> DIRICHLET)

[Criterio di Leibuitz] Considerians une serie del tipo

(-1) m dn

Suppositions the

- (i) dn ≥0 almens definitiv. (questo dice de (-1) du é a segus alterns)
- (îi) dm → 0 (sostaurialmente è la cond. necessaria) ciri) dm+1 ≤ dn almeno definitiv. (debole decrescenza di dn)

Allora la serie couverge.

Criterio dell'assoluta cousergeura

Se \(\sum_{n=0}^{\infty} \) and converge, allora \(\sum_{n=0}^{\infty} \) an converge

Oss. Se 2 land diverge, allora BOH.

Oss Ouando studiamo 2 lan, abbiamo a disposizione

tutti gli strumenti per le serie a termini ≥0.

Achtung! Nou borta dire cos(n!) < 1 $\sum \frac{1}{m^3}$ cow. $\Rightarrow \sum \frac{\cos(m!)}{m^3}$ converge per confronts. Jufatti il confronto vale solo per serie a termini >0, e sa prima non lo é. Din Leibuitz Rappresentians graficamente le somme parziali 50 = do S1 = d0 -d1 S2 = do - d1 + d2 S3 = d0 - d1 +d2 -d3 Idea: Son V e Sonti 1 $S_{2m} \, decresce$ $S_{2m+2} = S_{2m} - d_{2m+1} + d_{2m+2}$ < Szm ≤0 per (121) S_{2m+1} cresce $S_{2m+3} = S_{2m+1} + d_{2m+2} - d_{2m+3} \ge S_{2m+1}$ ≥ 0 per (iii) (tutt i dispari sous più piccoli di So) $5_{2m+1} = 5_{2m} - d_{2m+1} \le 5_{2m} \le 5_0$ sui pari decresse $S_{2m} \ge S_1$ $S_{2m} = S_{2m-1} + d_{2m} \ge S_{2m-1} \ge S_1$ sui dispani decresee

Per il 40. delle successioni mondone
$S_{2m} \longrightarrow \mathcal{Q}_{p} \in \mathbb{R}$ $S_{2m+1} \longrightarrow \mathcal{Q}_{d} \in \mathbb{R}$
Resta da dimostrare che Op = Qd. Per questo basta osservare che
$S_{2m+1} - S_{2m} = - \alpha_{2m+1}$ $\downarrow \qquad \qquad \downarrow$ $\downarrow \qquad \qquad \downarrow$ $\downarrow \qquad \qquad \downarrow$ $\downarrow \qquad \qquad \downarrow$
Canabinieri per serie Siano au, bu, au he seucr tali che
au b m au definitio. (uessura i potesi di seguo)
Suppositions che Zan e Zan convergano. Allora auche Zbn converge
Dim 1º passo Z (a,-an) couverge (diff. di due serie che couvergons)
2º parsso Ossewiamo de O ≤ bm-an ≤ a-an au≤bn bm≤a
Ora Z (ai-ai) couverge, quiudi audre Z (bn-ai) couverge (confronto tra serie a termini positivi)
3° passo $\sum b_m = \sum a_u + \sum (b_m - a_u)$ couverge per per ipolesi il 2° passo -0 -0 -0
Div. assoluta cow.] - an < an < an Per èpolesi le due Deterali couvergous, quiudi couverge la centrale