Crop Recommendation System

- 21B01A05D7 P.Akshaya
- 21B01A05E4 P.Vaishnavi
- 21B01A05G2 S.Hasini
- 21B01A05J6 Y.Parimala

February 9, 2024

PROBLEM STATEMENT

Challenge

The selection of suitable crops for cultivation heavily depends on various environmental factors such as soil composition, climate conditions and geographical location.

There is a need to develop a data-driven approach that utilizes machine learning techniques to recommend the most suitable crops based on key environmental parameters.

Objective

The primary objective of this project is to design and implement a crop recommendation system that takes into account factors such as soil nutrient levels (potassium, phosphorus, nitrogen), humidity, rainfall, and temperature to suggest the most appropriate crops for cultivation in a given area.

APPROACH

- Data Collection: Gathering the Agricultural data.
- Data Preprocessing: Cleaning and normalizing the data.
- Feature Selection: Identifying the important features.
- Model Selection: Choosing a Machine Learning Algorithm.
- Model Training: Training the selected model.
- Model Evaluation: Evaluating the performance of the trained model.
- Deployment: Integrating it into a user-friendly interface.
- Monitoring and Maintenance: Regularly update and maintain the model.

MODEL SELECTION

 \exists

//usr/local/lib/python3.10/dist-packages/sklearn/linear_model/_logistic.py:469: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of TIFRATIONS REACHED LIMIT.

Increase the number of iterations (max iter) or scale the data as shown in:

https://scikit-learn.org/stable/modules/preprocessing.html

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression

n iter i = check optimize result(

Logistic Regression with accuracy: 0.945454545454545454

Naive Bayes with accuracy: 0.9954545454545455

Support Vector Machine with accuracy: 0.9613636363636363

K-Nearest Neighbors with accuracy: 0.9704545454545455

Decision Tree with accuracy: 0.981818181818181818

Decision Tree with accuracy: 0.981818181818181818

Random Forest with accuracy: 0.9931818181818182

Bagging with accuracy: 0.9886363636363636

/usr/local/lib/python3.10/dist-packages/sklearn/ensemble/_weight_boosting.py:519: FutureWarning: The SAWME.R algorithm (the deFault) is deprecated and will be removed in warnings.warn(

AdaBoost with accuracy: 0.09545454545454546

Gradient Boosting with accuracy: 0.9818181818181818

Extra Trees with accuracy: 0.925

CHALLENGES

- Data Quality and Availability
- Feature Engineering
- Model Complexity and Interpretability
- Model Generalization
- Domain Expertise
- Data Privacy and Security
- Scalability and Sustainability

LEARNINGS

- Importance of Agricultural Data: Recognizing the significance of agricultural data in building effective recommendation systems.
- Machine Learning Techniques: Understanding various machine learning algorithms and their applicability to crop recommendation.
- Data Preprocessing: Learning techniques for cleaning, preprocessing, and preparing agricultural data for analysis.
- Model Evaluation: Exploring methods for evaluating the performance of crop recommendation models.
- Real-world Applications: Gaining insights into the practical applications and impact of crop recommendation systems in agriculture.

TOOLS AND TECHNOLOGIES

Tools used:

- Google Colab
- Jupyter NoteBook
- Anaconda
- Pycharm

Technologies:

- Machine Learning
- Python
- HTML

PROGRAM OUTPUT

Crop Recommendation System 🔭 Nitrogen (N) Phosphorus (P) Potassium (K) 50 10 Temperature (°C) Humidity (%) pH 6.56 100 Rainfall (mm) 87.75 Get Recommendation

Recommended Crop:

OUTPUT

Crop Recommendation System Nitrogen (N) Phosphorus (P) Potassium (K) 60 50 10 Temperature (°C) Humidity (%) pH 22 100 6.56

Rainfall (mm) 87.75

Get Recommendation

Recommended Crop: Muskmelon is the best crop to be cultivated right there

CONCLUSION

 The development of a crop recommendation system based on soil nutrient levels and environmental factors represents a promising endeavor with the potential to revolutionize agricultural decision-making.

BIBLIOGRAPHY

- Project selected-From google
- Dataset-From Kaggle
- Model ChatGpt,Smart Ai Technologies(yt for model selection)