Digital conference - The ongoing evolution of 5G - driven by test & measurement, October 7, 2020,

THE ONGOING EVOLUTION OF 5G NEW RADIO RELEASES 16 AND 17

Reiner Stuhlfauth
Technology Manager Wireless

ROHDE&SCHWARZ

Make ideas real

5G NR TECHNOLOGY EVOLUTION – THE NEXT PHASE

eMBB: enhanced Mobile Broadband URLLC: Ultra-Reliable Low Latency Communication mMTC: massive Machine Type Communication

3GPP RAN STANDARDIZATION TIMELINE

SEPT 2020 (RAN #89)

3GPP REL. 16 TOPIC SUMMARY

Highlighted work items: major new aspects

5G New Radio evolution

Rohde & Schwarz

3GPP REL. 16 TOPICS AND REL. 17 FOLLOW-UPS

3GPP FR1 FREQUENCY BANDS

NR operating band	Uplink	Downlink	Duplex mode
n1	1920 MHz – 1980 MHz	2110 MHz – 2170 MHz	FDD
n2	1850 MHz – 1910 MHz	1930 MHz – 1990 MHz	FDD
n3	1710 MHz – 1785 MHz	1805 MHz – 1880 MHz	FDD
n5	824 MHz – 849 MHz	869 MHz – 894 MHz	FDD
n7	2500 MHz – 2570 MHz	2620 MHz – 2690 MHz	FDD
n8	880 MHz – 915 MHz	925 MHz – 960 MHz	FDD
n12	699 MHz – 716 MHz	729 MHz – 746 MHz	FDD
n14	788 MHz – 798 MHz	758 MHz – 768 MHz	FDD
n18	815 MHz – 830 MHz	860 MHz – 875 MHz	FDD
n20	832 MHz – 862 MHz	791 MHz – 821 MHz	FDD
n25	1850 MHz – 1915 MHz	1930 MHz – 1995 MHz	FDD
n28	703 MHz – 748 MHz	758 MHz – 803 MHz	FDD
n29	N/A	717 MHz – 728 MHz	SDL
n30³	2305 Mhz – 2315 MHz	2350 MHz – 2360 MHz	FDD
n34	2010 MHz – 2025 MHz	2010 MHz – 2025 MHz	TDD
n38	2570 MHz – 2620 MHz	2570 MHz – 2620 MHz	TDD
n39	1880 MHz – 1920 MHz	1880 MHz – 1920 MHz	TDD
n40	2300 MHz – 2400 MHz	2300 MHz – 2400 MHz	TDD
n41	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD
n48	3550 MHz – 3700 MHz	3550 MHz – 3700 MHz	TDD
n50	1432 MHz – 1517 MHz	1432 MHz – 1517 MHz	TDD ¹
n51	1427 MHz – 1432 MHz	1427 MHz – 1432 MHz	TDD

NR operating band	Uplink	Downlink	Duplex mode
n65	1920 MHz – 2010 MHz	2110 MHz – 2200 MHz	FDD ⁴
n66	1710 MHz – 1780 MHz	2110 MHz – 2200 MHz	FDD
n70	1695 MHz – 1710 MHz	1995 MHz – 2020 MHz	FDD
n71	663 MHz – 698 MHz	617 MHz – 652 MHz	FDD
n74	1427 MHz – 1470 MHz	1475 MHz – 1518 MHz	FDD
n75	N/A	1432 MHz – 1517 MHz	SDL
n76	N/A	1427 MHz – 1432 MHz	SDL
n77	3300 MHz – 4200 MHz	3300 MHz – 4200 MHz	TDD
n78	3300 MHz – 3800 MHz	3300 MHz – 3800 MHz	TDD
n79	4400 MHz – 5000 MHz	4400 MHz – 5000 MHz	TDD
n80	1710 MHz – 1785 MHz	N/A	SUL
n81	880 MHz – 915 MHz	N/A	SUL
n82	832 MHz – 862 MHz	N/A	SUL
n83	703 MHz – 748 MHz	N/A	SUL
n84	1920 MHz – 1980 MHz	N/A	SUL
n86	1710 MHz – 1780 MHz	MHz N/A	
n89	824 MHz – 849 MHz N/A		SUL
[n90]	2496 MHz – 2690 MHz	2496 MHz – 2690 MHz	TDD⁵
n91	832 MHz – 862 MHz	1427 MHz – 1432 MHz	FDD
n92	832 MHz – 862 MHz	1432 MHz – 1517 MHz	FDD
n93	880 MHz – 915 MHz	1427 MHz – 1432 MHz	FDD
n94	880 MHz – 915 MHz	1432 MHz – 1517 MHz N/A	FDD
n95	2010 MHz – 2025 MHz	IN/A	SUL

Source: <u>3GPP TS 38.101-1</u>

3GPP FR2 FREQUENCY BANDS

NR operating band	Uplink	Downlink	Duplex mode
n257	26500 MHz – 29500 MHz	26500 MHz – 29500 MHz	TDD
n258	24250 MHz – 27500 MHz	24250 MHz – 27500 MHz	TDD
n260	37000 MHz – 40000 MHz	37000 MHz – 40000 MHz	TDD
n261	27500 MHz – 28350 MHz	27500 MHz – 28350 MHz	TDD
N262	47200 MHz – 48200 MHz	47200 MHz – 48200 MHz	TDD

Source: <u>3GPP TS 38.101-1</u>

SPECTRUM FOR 5G NR

- ► FR1, FR2 frequency ranges defined for 3GPP Release 15
 - 3GPP Release 17 extends FR2 towards 71 GHz

5G BROADCAST TECHNOLOGY EVOLUTION

Rohde & Schwarz

5G New Radio evolution

scenarios

1728

120

How can we reduce network delays? 5G URLLC approach

Traffic prioritization by QoS and network virtualization

Short symbol times, min-slots, semipersistent scheduling High speed data connection leveraging more bandwidth

Local processing, by edge/fog computing, non-public networks

ASPECTS ABOUT LATENCY

Rohde & Schwarz

5G New Radio evolution

5G INTEGRATION INTO A ETHERNET TSN ARCHITECTURE 3GPP RELEASE 16 TECHNOLOGY COMPONENTS

Control plane

The 5G system appears as a set of transparent TSN Ethernet bridges.

Bridge supports time sync, store&forward scheduling, jitter management & reporting

TSN translator (TT) function is used for the adaptation to the TSN domain on user and control plane

- 5GS time synchronization
- TSN time synchronization

REL. 16: NR POSITIONING

Outlook: relative positioning methods, e.g. sidelink based

RAT independent methods A-GNSS A-GNSS + RTK **WLAN** Bluetooth Terrestrial beacon system Sensor based methods (i.e. barometric)

TDOA, RTT AND POWER BASED LBS TECHNOLOGIES

REL. 16: NR ACCESS TO UNLICENSED SPECTRUM (NR-U)

- ► Scenario A: Carrier aggregation between licensed band NR (PCell) and NR-U (SCell)
 - NR-U SCell may have both DL and UL, or DL-only
- ► Scenario B: Dual connectivity between licensed band LTE (PCell) and NR-U (PSCell)
- Scenario C: Stand-alone NR-U
- Scenario D: A stand-alone NR cell in unlicensed band and UL in licensed band
- ► Scenario E: Dual connectivity between licensed band NR and NR-U

Unlicensed

Licensed NR

Licensed LTE

Rohde & Schwarz 5G New Radio evolution Scenarios acc. TR 38.889

REL. 16: NR ACCESS TO UNLICENSED SPECTRUM (NR-U)

REL. 16: NR INTEGRATED ACCESS AND BACKHAUL (IAB)

Outlook: multi-connectivity to UEs (resilience) & SDM multiplexing (flexibility)

- Wireless backhaul links to relay the access traffic
- ► Enabling flexible and ultra-dense cell deployments at lower cost, leverages coverage (not capacity)
- Multi-hops for the short range in mmWave

- ► Replaces the proprietary solutions in current (extensively used) wireless backhaul links (P2P, LOS)
- ► Motivated by larger bandwidths and native beamforming in NR (as opposed to LTE Rel-10 relays)
- ► Very beneficial for NR rollout and during the early phases of the initial growth

REL. 16: NR eNR-MIMO

CSI enhancements, e.g. type II to close gap to near-ideal CSI

Allow larger size multi-TRP/panel

Multi-beam operation, including beam failure recovery

REL. 16: NR 2-STEP RACH

Idea: change legacy 4-step RACH into 2-step RACH Motivation: reduce latency and control signaling overhead

5G NR MOBILITY ENHANCEMENTS

5G NR DUAL CONNECTIVITY AND CARRIER AGGREGATION

ENHANCEMENTS 5GC **MCG** SCG gNB gNB Early Asynchronous DC operation measurement reporting Cross-carrier Fast recovery procedure scheduling of different numerologies Fast Recovery procedure MCG link failure a. MCG link failure b. MCG link fast Recovery c. MCG link recovery procedure on SCG link

5G New Radio evolution

Rohde & Schwarz

NB-IoT radio interface => integration into 5GC **UE** power DL + UL consumption Scheduling **Extreme coverage** transmission DL: (EDT, WUS) enhancement for non-BL UEs efficiency and/or (Multiple UL/DL **UL:** (Predefined TBs) UL resources, LTE-M PUR) Stand-alone deployment **Mobility Connection to 5G Coexistence with** (without LTE enhancement NR (((|||||))) carrier) core NG**eNB UE** power **Scheduling Network** DL + UL consumption DL: enhancement transmission management tool (EDT, WUS) (Multiple UL/DL **AMF UPF** enhancement efficiency TBs) UL: (PUR) **NB-IoT** 5GC Improved multi-**Mobility** Coexistence with **Connection to** C-IoT service carrier operation enhancement NR 5GC

Surveillance camera

- Video with 2 to 4 Mbps, high end with 7.5 to 25 Mbps
- Latency <500 ms and reliability 99 to 99.9%
- Traffic is heavy in UL

Industrial wireless sensor

- Service availability 99.99%
- End-to-end latency < 100 ms (Critical device with 5 ms to 10 ms)
- Stationary device with < 2 Mbps
- Years of battery life

Wearables

- Bitrate approx. 150 Mbps/50 Mbps.
- Days of battery

Rel. 17 5G NR light

- Throughput
- Cost
- Size
- Coverage

EVOLUTION OF 3GPP MOBILE COMMUNICATIONS STANDARD RELEASES 12 TO 16 FF RELEVANT FOR AUTOMOTIVE

5G NR C-V2X COMMUNICATION MODES AT PHY LAYER

Note: eNB can schedule NR or LTE sidelink. gNB can schedule NR or LTE sidelink

V2X PHYSICAL LAYER PARAMETERS Parameter LTE D2D (Rel. 12) LTE V2X (Rel. 14) LTE V2X (Rel. 15)

DFT-s-OFDM

QPSK. 16QAM

1 subframe = 1ms

4 per subframe

Single layer

Broadcast only

Up to 2

~32 Mbps

Nο

FDM

NA

Turbo code

15 kHz

Normal

5G NR V2X (Rel. 16/17)

Target 5.9 GHz FR1 but also FR 2

NR numerologies 15/30/60/120 kHz

QPSK. 16QAM. 64QAM. 256QAM

RX UE reports to TX UE, TX UE

Up to 32 (configurable + resource

Unicast, groupcast + broadcast

~200 Mbps (256QAM)

1 slot flexible duration, slot aggregation possible

Normal + extended (only 60 kHz SCS)

LDPC (data) + Polar (signaling) codes

possible

CP-OFDM

2 to 4 per slot

reports to gNB

Up to 2 layers

reservation)

Nο

TDM+FDM

Target 5.9 GHz

DFT-s-OFDM

QPSK. 16QAM. 64QAM

15 kHz

Normal

Turbo code

1 subframe = 1ms

4 per subframe

TX + RX diversity

Broadcast only

Up to 8 CCs

~72 Mbps

FDM

NA

Up to 2

Parameter	LTE D2D (Rel. 12)	LTE V2X (Re	
Frequency	All bands possible (e.g.	Target 5.9 GHz	

FirstNet 700 MHz)

Normal + extended

1 subframe = 1 ms

2 per subframe

Single layer

4 by default

Groupcast, broadcast

TDM

NA

Nο

~7 Mbps

QPSK. 16QAM

Turbo code

DFT-s-OFDM

15 kHz

Waveform

Cyclic prefix

Modulation

HARQ

MIMO

Channel coding

Time scheduling

Retransmissions

Communication type

Carrier aggregation

Peak throughput

DMRS symbols /TTI

Data/control multiplex

Subcarrier spacing

5G NR SIDELINK – CHANNEL STRUCTURE

Technology of PC5 direct communications (5G)

NR V2X SIDELINK SUPPORTING QoS

	D	Defect:	Declar:	Dealer	Defend:	Defect	Formula Con 1
	Resource Type	Default Priority Level	Packet Delay Budget	Packet Error Rate	Default Maximum Data Burst Volume	Default Averaging Window	Example Service
21	GBR	3	20 ms	10 ⁻⁴	1. N/A	2. 2000 ms	Platooning between UEs – Higher degree of automation; Platooning between UE and R: – Higher degree of automation
22	(NOTE 1)	4	50 ms	10 ⁻²	5. N/A	6. 2000 ms	 Sensor sharin higher degree of automation
23		3	100 ms	10 ⁻⁴	8. N/A	9. 2000 ms	10. Information sharing for automat driving – between UEs or UE and RSI higher degree of automation
55	Non-GBR	3	10 ms	10 ⁻⁴	11. N/A	12. N/A	 Cooperative la change – higher degree of automatic
56		6	20 ms	10 ⁻¹	14. N/A	15. N/A	16. Platooning informative exchanged low degree of automation; 17. Platooning — information sharing with RSU
57		5	25 ms	10 ⁻¹	18. N/A	19. N/A	 Cooperative la change – lower degree of automatic
58		4	100 ms	10 ⁻²	21. N/A	22. N/A	23. Sensor information sharing lower degree of automation
59		6	500 ms	10 ⁻¹	24. N/A	25. N/A	 Platooning – reporting to an RSL
90	Delay Critical GBR	3	10 ms	10 ⁻⁴	27. 2000 bytes	28. 2000 ms	29. Cooperative collision avoidance; 30. Sensor sharin Higher degree of automation; 31. Video sharing higher degree of automation
91	(NOTE 1)	2	3 ms	10 ⁻⁵	32. 2000 bytes	33. 2000 ms	34. Emergency trajectory alignmen 35. Sensor sharin Higher degree of automation

Not an eye test © but an example of the flexibility:

3GPP defines ~10 different QoS flow profiles for the NR V2X sidelink

THE 7 PILLARS OF 5G NR-C-V2X

- 1 CP-OFDM with multiple numerologies
 - 2 Greater flexibility & higher throughput
 - 3 Low latency slot structure (self-contained)
 - 4 Broadcast, multicast and unicast
 - 5 QoS management policy
 - 6 Beamforming support
- 7 Channel structure: reliability + flexibility

NON TERRESTRIAL NETWORK APPLICATIONS

ETSI TR 103 612: Mobile/fixed communication network in the frequency range 6425 to 7125 MHz

3GPP: NR over NTN

5G NR air interface adopted to NTN GEO, LEO, HAPS -> air to ground Fixed or moving terrestrial cells UE support GNSS + NTN

Business case: "human": eMBB

3GPP: IoT over NTN

NB-IoT & LTE-M adopted to NTN GEO, LEO, HAPS -> air to ground

Business case: "IoT"

e.g. ICARUS: Internet of animals @400MHz

Rohde & Schwarz

5G New Radio evolution

NON TERRESTRIAL NETWORK IN ONE SLIDE

Non-terrestrial networks refer to networks, or segments of networks, using an airborne or spaceborne vehicle for transmission (part of Rel. 17):

Scenario:

- Device:
 - Low speed, pedestrian/ship, VSAT
 - Medium/high speed vehicle/train
 - Very high speed aerial
 - Unmanned aerial system UAS
- Base station
 - Spaceborne: satellite systems like GEO, MEO or LEO
 - Airborne: aerial vehicles (8 to 50 km)
 - Air 2 ground (A2G) system
 - High altitude platform station (HAPS)
 - Terrestrial

Deployment:

- Rural, suburban, isolated areas
- Internet access rural areas (MBB), MTC/IoT
- Cataclysm/disaster relief, public safety
- Discussion to operate in S and Ka-band

5G evolution, Releases 16 and 17

BEYOND 5G

FROM 5G NR PHASE 2 AND 2+ TOWARDS BEYOND 5G & 6G

eMBB: enhanced Mobile Broadband URLLC: Ultra-Reliable Low Latency Communication mMTC: massive Machine Type Communication

TRENDS TO HIGHER FREQUENCIES AND WIDER BANDWIDTHS WILL CONTINUE

Bandwidth extension for FSW signal and spectrum analyzer up to 8.3 GHz

Source: https://www.rohde-schwarz.com/us/about/news-press/all-news/rohde-schwarz-enables-sub-thz-ultra-wideband-signal-analysis-press-release-detailpage 229356-793512.html

5G IS A MARATHON, NOT A 100M SPRINT

- ➤ First 5G NR network are being deployment based on Non-standalone (NSA) mode (Option 3X) using FR1 and FR2 frequencies
 - Not yet mature, optimization ongoing
 - Standalone (SA) rollout started
- ▶ Initial 5G deployments focus on enhanced mobile broadband (eMBB), upcoming releases of the standard will focus on URLLC use cases to address the two market verticals Industrial IoT (IIoT) and automotive
- ▶ Rohde & Schwarz helps the industry to pave the way with innovative test solutions for 5G

Digital conference - The ongoing evolution of 5G - driven by test & measurement

THE ONGOING EVOLUTION OF 5G NEW RADIO RELEASES 16 AND 17

Thank you for listening.

For any questions please contact me via chat in the expert lounge area the next 30 minutes.

ROHDE&SCHWARZ

Make ideas real

