

Bibliographie

- Systèmes d'exploitation temps réel, G. Frey, cours EnsiCaen 3A info/instru, 2013.
- Systèmes d'exploitation 3ème ed., A. Tanenbaum, Edition Pearson Education. ISBN 978-2-7440-7299-4
- Systèmes temps-réels, R. Demoment, NXP Semiconducteurs, 14460 Colombelles, 2010.
- Introduction aux systèmes temps réel, C. Bonnet, I. Demeure, HERMES Sciences Publications, 1999. ISBN 2-7462-0016-3

Cours construit à partir des références suivantes (pouvant apporter de précieux compléments d'information à ceux que ça intéresse) :

Définition

- John Stankovic (1988) :
 - « en informatique temps réel, le comportement correct du système dépend, non seulement des résultats logiques des traitements, mais aussi du temps auquel ces résultats sont produits ».

Un système temps réel est un système qui satisfait à des contraintes temporelles.

- Objectifs du système
 - Déterminisme logique
 - Déterminisme temporel

Objectifs du système :

<u>Déterminisme logique : les mêmes données en entrée du système produisent les mêmes résultats.</u>

<u>Déterminisme temporel : le système doit respecter des contraintes temporelles (échéances, deadlines).</u>

Fiabilité.

Répercussion sur l'OS

- Optimiser ses temps de réponses
- Fournir les outils nécessaires à la bonne gestion des temps de réponse
- Prédire son comportement dans toutes les circonstances

Un OS temps-réel a pour but d'optimiser ses temps de réponses et doit fournir les outils nécessaires à la bonne gestion des temps de réponse (doit permettre de prédire son comportement dans toutes les circonstances). VS

Un OS non temps-réel (MacOS, Windows, Linux, ...) doit améliorer le confort d'utilisation (ex : réactivité envers l'utilisateur) et la richesse des fonctionnalités offertes (abstraction).

Exemples

- Aéronautique, ordinateur de bord d'une voiture, machines à laver, percolateurs, HiFi
 - → Tous ne sont pas logés à la même enseigne
- Grandeurs de temps
 - Milliseconde: systèmes radar; airbag...
 - Seconde : temps de réponse des applications informatiques
 - Minutes/heures : contrôle de production avec réaction chimique ; contrôle du trafic
 - 24 heures : prévisions météo
- 1. Calculateur d'injection doit commander l'envoi du mélange de carburant dans la culasse avec une grande précision en fonction de la position du piston \rightarrow < 1 ms
- 2. Percolateur doit arrêter l'écoulement du café dans la tasse \rightarrow < 1 s

Catégories (1/2)

- Temps-réel DUR
 - La réponse du système dans le temps imparti est vitale.
 - L'absence de réponse est catastrophique et entraîne la faute du système.
- Temps-réel MOU
 - Le respect des échéances est important.
 - La réponse tardive ou la non-réponse n'a pas de conséquence catastrophique.

Temps-réel DUR:

La réponse du système dans le temps imparti est vitale.

L'absence de réponse est catastrophique et entraîne la faute du système.

Exemples : contrôle du trafic aérien, système de conduite de missiles, ESP d'une voiture,

...

Temps-réel MOU:

Le respect des échéances est important.

La réponse tardive ou la non-réponse n'a pas de conséquence catastrophique.

Exemples : acquisition de données pour affichage, ...

Temps-réel FERME :

Temps réel MOU où le résultat est inutile une fois la deadline passée.

Temps réel DUR où quelques échéances peuvent être occasionnellement manquées.

Exemples: projection vidéo, téléphonie, ...

Catégories (2/2)

→ C'est le degrés de tolérance à la non-réponse qui caractérise les catégories (et non le temps de réponse)

Un système peut inclure des sous-systèmes avec leur contraintes temps-réel propre (dur, mou, ferme)

Notions importantes

- Concurrence
 - le système se décompose en plusieurs activités qui doivent souvent être exécutées en parallèle.
- Préemption
 - capacité d'interrompre une tâche en cours au profit d'une autre tâche.
- Prédictibilité
 - caractéristique essentielle d'un système tempsréel.

Rappel : Dans le monde réel les périphériques et l'environnement du système évoluent simultanément (en parallèle ou concurrence).

<u>Concurrence</u>: le système se décompose en plusieurs activités qui doivent souvent être exécutées en parallèle.

Car l'environnement est parallèle (Ex : quand il y a des turbulences, la gravitation ne s'arrête pas).

Ces activités sont plus ou moins critiques (EX : l'ordinateur de bord gère à la fois l'airbag, l'injection et le lève-vitre).

<u>Préemption : capacité d'interrompre une tâche en cours au profit d'une autre tâche.</u> Prédictibilité : caractéristique *première d'un système temps-réel.*

On cherche à déterminer à priori si le système va répondre aux exigences temporelles. Prouver que toutes les contraintes (deadlines) sont respectées, au moins pour les activités critiques (TR dur).

Malentendus fréquents*

- Système temps-réel système rapide et performant
- Programmation temps-réel assembleur
- Développement de systèmes temps-réel aucune sciences, tout est bidouillage
- L'augmentation de la vitesse des processeurs va résoudre les problèmes liés au temps-réel

^{*} Misconceptions about real-time computing : a serious problem for next-generation systems, J. Stankovic, IEEE Computer, vol.21, no.10, 1988.