

UNIVERSIDAD NACIONAL DE LANUS

LICENCIATURA EN SISTEMAS Introducción a los Sistemas Operativos

Prof.: Hernán Merlino / Pablo Pytel

EXAMEN DE PRÁCTICA

- 1. Responda las siguientes preguntas:
 - a) ¿Qué significa el concepto de "multiprogramación"? ¿Cómo se logra?
 - b) ¿Por qué es conveniente distinguir a los procesos que se están ejecutando, los que están "listos" para ser ejecutados y los que están realizando una operación de entrada/salida?
 - c) ¿Qué es la PCB? ¿Para qué se utiliza?
 - d) ¿Cuál es el objetivo del módulo de Entrada/Salida de un Sistema Operativo?
 - e) ¿Cómo es la arquitectura de un Sistema Operativo?
 - f) ¿Qué funciones realiza el planificador de procesos de mediano alcance?
 - g) ¿Qué ventajas presenta la Memoria Virtual? ¿Por qué se utiliza con Paginación?
 - h) ¿Qué es un Sistema de Archivos? ¿Cómo funciona la asignación de archivos indexada?
 - i) ¿Qué significa administrar la seguridad para el Sistema Operativo?
- 2. Resuelva el siguiente ejercicio de planificación de procesos para utilizar el procesador indicando la traza completa de ejecución de los mismos.

Proceso	Comienza en tiempo	Duración			Prioridad
		СРИ	E/S	CPU	
P1	t1	4	2	3	Baja
P2	t1	2	6	4	Media
Р3	t2	5	5	3	Alta
P4	t3	3	3	3	Media
P5	t3	7	1	4	Alta

Consideraciones:

- Existe un único Procesador.
- Es posible resolver las operaciones de Entrada/Salida en forma independiente y paralela.
- a) Utilizar el algoritmo de planificación Round Robing q=3 (Apropitativo).
- b) Utilizar el algoritmo de planificación Shortest Process Next (No Apropitativo).
- c) Utilizar el algoritmo de planificación Shortest Remaining Time (Apropitativo).

3. Resuelva el siguiente ejercicio de memoria indicando: número de página y desplazamiento (offset); si se produce o no un fallo de página; y, finalmente, el número de frame que le corresponde (luego de resolver el fallo de página, en caso necesario).

Tabla de Páginas:

Nro de Página	¿Presente?	Nro de Frame	Tiempo último acceso	Cantidad de accesos
0	Sí	11	t3	2
1	No	-	-	-
2	No	-	-	-
3	Sí	22	t2	1
4	No	-	-	-
5	No	-	-	-
6	Sí	33	t1	3

Consideraciones:

- El Tamaño de Página es 1KB (1024 Bytes).
- La asignación de páginas es fija y local (3 frames).
- El reemplazo es local con algoritmo Least-Recently-Used (menos usada recientemente).

<u>Direcciones Lógicas solicitadas:</u>

a) 6582 (t3)

b) 455 (t4)

c) 6011 (t5)

d) 6588 (t6)

e) 2222 (t7)

Múltiplos de 1024

1024; 2048; 3072; 4096; 5120;

6144; 7168; 8192; 9216; 10240;

11264; 12288; 13312; 14336; 15360;

16384; 17408; 18432; 19456; 20480