Cognome									
Nome		N	ON S	SCR	IVEI	RE G	QUI		
MATRICOLA									
Laurea	CIV AMB GEST INF ELN TLC MEC	1	2	3	4	5	6		

Università degli Studi di Parma

Dipartimento di Ingegneria e Architettura

Esame di Analisi Matematica 2 — Soluzioni

A.A. 2019-2020 — PARMA, 15 GENNAIO 2020

Compilate l'intestazione in alto a sinistra e scrivete cognome e nome in stampatello anche su ogni altro foglio. Il tempo massimo per svolgere la prova è di due ore e mezza. Al momento della consegna, inserite tutti i fogli dentro a questo foglio.

Esercizio 1. L'insieme $A = \{(x, y) : x < y < 2x \text{ e } 1 < xy < 3\}$ è

- (a) chiuso;
- (b) illimitato:
- connesso.

Soluzione. L'insieme A è aperto perché è intersezione di controimmagini di intervalli aperti mediante funzioni continue (polinomi) ed è limitato poiché deve essere x,y>0 e $3>xy>x^2$ da cui segue $0 < x < \sqrt{3}$ e $\sqrt{3} < y < 2\sqrt{3}$. L'insieme A deve quindi essere connesso. Risulta infatti $A = \Phi(R)$ dove R è il rettangolo aperto $R=(1,3)\times(1,2)$ e $\Phi=(\Phi^1,\Phi^2)$ è il diffeomorfismo di $(0,+\infty)\times(0,+\infty)$ su se stesso definito da

$$\Phi^1(u,v) = \sqrt{u/v}$$
 e $\Phi^2(u,v) = \sqrt{uv}$

per ogni u, v > 0. Essendo R convesso e quindi connesso, anche A è tale per il teorema di Darboux. La risposta corretta è quindi (c).

Esercizio 2. L'equazione del piano tangente al grafico di $f(x,y) = e^{x-y^2} + \operatorname{sen}(x+y), (x,y) \in \mathbb{R}^2$, nel punto di coordinate (1, -1) è

(a)
$$2x + 3y - z = -2$$
:

(b)
$$3x + 2y - z = 0$$
; (c) $3x - y + 2z = 6$.

(c)
$$3x - y + 2z = 6$$

Soluzione. Si ha f(1,-1)=1 e

$$f_x(1,-1) = e^{x-y^2} + \cos(x+y)\Big|_{x=1 \text{ e } y=-1} = 2;$$

$$f_y(\sqrt{\pi}, \sqrt{\pi}) = -2ye^{x-y^2} + \cos(x+y)\Big|_{x=1 \text{ e } y=-1} = 3;$$

e quindi l'equazione del piano tangente è z = 1 + 2(x - 1) + 3(y + 1) da cui segue 2x + 3y - z = -2. La risposta corretta è quindi (a).

Esercizio 3. L'integrale curvilineo I del campo vettoriale $f \in C(\mathbb{R}^2, \mathbb{R}^2)$ di componenti $f^1(x,y) = 2x + y$ e $f^2(x,y) = 4y - x$, $(x,y) \in \mathbb{R}^2$, lungo la curva parametrica $\gamma(t) = \operatorname{sen}(t)e_1 + te_2$, $t \in [0,\pi]$, è

(a)
$$I = 4\pi - 2$$
;

(b)
$$I = 2\pi^2 - 4;$$
 (c) $I = \pi^2 + 2.$

(c)
$$I = \pi^2 + 2$$

Soluzione. Poiché la curva γ è liscia e il campo vettoriale f è continuo, risulta

$$I = \int_{\gamma} f \cdot dl = \int_{0}^{\pi} \left[(2 \operatorname{sen} t + t) \cos t + (4t - \operatorname{sen} t) \right] dt =$$

$$= \int_{0}^{\pi} \left(2 \cos t \operatorname{sen} t + t \cos t - \operatorname{sen} t + 4t \right) dt = \left(\operatorname{sen}^{2} t + t \operatorname{sen} t + 2 \cos t + 2t^{2} \right) \Big|_{0}^{\pi} = 2\pi^{2} - 4.$$

La risposta corretta è quindi (b).

Esercizio 4. Sia

$$f(x,y) = x^2 + y^2, \qquad (x,y) \in \mathbb{R}^2,$$

e sia

$$\Gamma = \left\{ (x, y) : 13x^2 - 6\sqrt{3}xy + 7y^2 = 4 \right\}.$$

Determinate

- (a) Provate che Γ è una curva regolare e compatta in \mathbb{R}^2 .
- (b) Determinate il minimo e il massimo globale di f su Γ .

Soluzione. (a) Si ha $\Gamma = \{(x,y): q_A(x,y) = 1\}$ ove q_A è la forma quadratica associata alla matrice simmetrica

$$A = \begin{pmatrix} 13/4 & -3\sqrt{3}/4 \\ -3\sqrt{3}/4 & 7/4 \end{pmatrix} \in \mathbb{M}_{\text{sym}}^{2 \times 2}$$

i cui autovalori sono $\lambda_1=1$ e $\lambda_4=4$ cui corrispondono gli autovettori (normalizzati) $v_1=(1/2,\sqrt{3}/2)$ e $v_2=(\sqrt{3}/2,1/2)$. Pertanto la forma quadratica q_A è definita positiva e Γ è l'ellisse nel piano avente come assi le rette di equazione $\sqrt{3}x-y=0$ e $x+\sqrt{3}y=0$ con semiassi di lunghezza 1 e 1/2 rispettivamente. L'insieme Γ è chiuso perché controimmagine di 1 mediante il polinomio q_A ed è limitato poiché la forma quadratica q_A è definita positiva e risulta

$$(x,y) \in \Gamma$$
 \Longrightarrow $1 \ge q_A(x,y) \ge \min\{\lambda_1,\lambda_2\} \left(x^2 + y^2\right) = \frac{1}{4} \left(x^2 + y^2\right).$

Questo prova che Γ è un insieme compatto. Infine Γ è una curva regolare in \mathbb{R}^2 poiché il gradiente di q_A si annulla solo nell'origine e $q_A(0,0)=0$.

(b) La funzione f è un polinomio e dunque è di classe C^{∞} in \mathbb{R}^2 cosicché per (a) f assume minimo e massimo globale su Γ per il teorema di Weierstrass.

Tenuto conto che gli insiemi di livello di f sono circonferenze concentriche con centro nell'origine, da (a) segue immediatamente che i punti di minimo globale e di massimo globale di f su Γ sono le intersezioni degli assi con l'ellisse e che i valori di minimo globale e massimo globale sono 1/4 e 1 rispettivamente.

Alternativamente, essendo Γ una curva regolare, possiamo determinare il minimo globale e il massimo globale di f su Γ con il metodo dei moltiplicatori di Lagrange. Il sistema dei moltiplicatori di Lagrange è

$$\begin{cases} 2x - \lambda(26x - 6\sqrt{3}y) = 0 \\ 2y - \lambda(14y - 6\sqrt{3}x) = 0 \\ 13x^2 - 6\sqrt{3}xy + 7y^2 = 4 \end{cases} \iff \begin{cases} (1 - 13\lambda)x + 3\sqrt{3}\lambda y = 0 \\ 3\sqrt{3}\lambda x + (1 - 7\lambda)y = 0 \\ 13x^2 - 6\sqrt{3}xy + 7y^2 = 4. \end{cases}$$

Affinché il sistema lineare formato dalle prime due equazioni abbia altre soluzioni oltre alla soluzione x = y = 0, deve essere

$$\det\begin{pmatrix} 1 - 13\lambda & 3\sqrt{3}\lambda \\ 3\sqrt{3}\lambda & 1 - 7\lambda \end{pmatrix} = 64\lambda^2 - 20\lambda + 1 = 0$$

e ciò avviene per $\lambda = 1/16$ e $\lambda = 1/4$.

Nel primo caso $\lambda = 1/16$, le soluzioni delle prime due equazioni del sistema dei moltiplicatori di Lagrange sono i punti (x,y) tali che $x=-\sqrt{3}y$. Imponendo che tali punti stiano su Γ , si trovano i punti di coordinate $P_{\pm}=(\mp\sqrt{3}/4,\pm1/4)$.

Nell'altro caso $\lambda=1/4$, le soluzioni delle prime due equazioni del sistema dei moltiplicatori di Lagrange sono i punti (x,y) tali che $y=\sqrt{3}x$ e, imponendo che tali punti stiano su Γ , si trovano i punti di coordinate $Q_{\pm}=(\pm 1/2,\pm \sqrt{3}/2)$.

Risulta infine $f(P_{\pm})=1/4$ e $f(Q_{\pm})=1$ come previsto e conseguentemente il minimo globale di f su Γ è assunto nei punti P_{\pm} mentre il massimo globale è assunto nei punti Q_{\pm} .

Gli insiemi di livello $\{f=1\}$, $\{f=1/4\}$ e il bordo di Γ sono rappresentati nella seguente figura.

Esercizio 5. Sia

$$K = \left\{ (x, y, z) : x^2 + y^2 \le z \le \sqrt[4]{x^2 + y^2} e |y| \le x \right\}.$$

(a) Descrivete e disegnate l'insieme K.

(b) Calcolate
$$I = \int_K xzdm_3(x,y,z) \in J = \int_K yzdm_3(x,y,z).$$

Soluzione. L'insieme K è l'intersezione del poliedro definito da $|y| \le x$ con il solido di rotazione che si ottiene facendo ruotare attorno all'asse z la figura contenuta nel primo quadrante del piano rz (con $r = \sqrt{x^2 + y^2}$) compresa tra la parabola $z = r^2$ e il grafico della funzione $z = \sqrt{r}$ come illustrato nella figura seguente.

L'insieme K è compatto perché è limitato ed è intersezione di controimmagini di intervalli chiusi mediante funzioni continue e quindi è (Lebesgue) misurabile. Le funzioni f e g definite da

$$f(x, y, z) = xz$$
 e $g(x, y, z) = yz$

per ogni $(x, y, z) \in \mathbb{R}^3$ sono polinomi e quindi sono integrabili in K.

Calcoliamo I mediante la formula di riduzione per fili. La proiezione di K sul piano xy è la porzione di cerchio

$$\pi_{xy}(K) = \{(x,y) : x^2 + y^2 \le 1 \text{ e } |y| \le x\}$$

e per ogni $(x,y)\in\pi_{xy}(K)$ la corrispondente sezione è il segmento

$$K_{(x,y)} = \left[x^2 + y^2, \sqrt[4]{x^2 - y^2} \right], \quad (x,y) \in \pi_{xy}(K).$$

Per la formula di riduzione si ha allora

$$I = \int_{\pi_{xy}(K)} \left(\int_{x^2 + y^2}^{\sqrt[4]{x^2 + y^2}} xz dz \right) dm_2(x, y) = \frac{1}{2} \int_{\pi_{xy}(K)} x \left[\sqrt{x^2 + y^2} - \left(x^2 + y^2\right)^2 \right] dm_2(x, y)$$

e, utilizzando coordinate polari nel piano abbinate nuovamente alla formula di riduzione, risulta

$$I = \frac{1}{2} \int_{-\pi/4}^{\pi/4} \cos\theta \, d\theta \int_{0}^{1} r^{2} \left(r - r^{4} \right) dr = \frac{1}{2} \sin\theta \bigg|_{-\pi/4}^{\pi/4} \left(\frac{1}{4} r^{4} - \frac{1}{7} r^{7} \right) \bigg|_{0}^{1} = \frac{3\sqrt{2}}{56}.$$

Infine, per il calcolo di J osserviamo che, posto

$$K_{\pm} = \{(x, y, z): \pm y \ge 0\},\$$

risulta $K = K_+ \cup K_-$ e $|K_+ \cap K_-| = 0$ cosicché da

$$(x, y, z) \in K_+ \iff (x, -y, z) \in K_-$$

e da g(x, -y, z) = -g(x, y, z) per ogni $(x, y, z) \in \mathbb{R}^3$ dalla formula di cambiamento di variabili si ricava

$$J = \int_{K_{+}} g(x, y, z) dm_{3}(x, y, z) + \int_{K_{-}} g(x, y, z) dm_{3}(x, y, z) =$$

$$= \int_{K_{+}} g(x, y, z) dm_{3}(x, y, z) - \int_{K_{+}} g(x, y, z) dm_{3}(x, y, z) = 0.$$

Esercizio 6. Determinate la soluzione del problema di Cauchy

$$\begin{cases} x'(t) = 2t \left([x(t)]^3 + x(t) \right) \\ x(0) = 1. \end{cases}$$

Soluzione. L'equazione differenziale proposta può essere risolta come equazione a variabili separabili o come equazione di Bernoulli. Procediamo in questo secondo modo. La funzione a secondo membro è

$$f(t,x) = 2tx + 2tx^3, \qquad (t,x) \in \mathbb{R} \times \mathbb{R},$$

ed è di classe $f \in C^{\infty}(\mathbb{R} \times \mathbb{R})$. Conseguentemente, il problema di Cauchy considerato ha soluzione massimale $x \in C^{\infty}(\alpha, \beta)$ con $-\infty \le \alpha = \alpha(x_0) < 0 < \beta = \beta(x_0) \le +\infty$. Tale soluzione è prolungamento di ogni altra soluzione del medesimo problema di Cauchy.

Poiché la soluzione del medesimo problema di Cauchy con dato iniziale $x_0 = 0$ è la funzione identicamente nulla x(t) = 0 per ogni $t \in \mathbb{R}$, la soluzione massimale del problema di Cauchy considerato verifica la condizione x(t) > 0 per ogni $t \in (\alpha, \beta)$. La funzione

$$y(t) = [x(t)]^{\lambda}, \qquad t \in (\alpha, \beta),$$

con $\lambda \neq 0$ da determinare è di classe $C^{\infty}(\alpha, \beta)$ e, essendo x(t) soluzione del problema di Cauchy considerato con x(t) > 0 per ogni $t \in (\alpha, \beta)$, risulta

$$y'(t) = \lambda[x(t)]^{\lambda - 1} x'(t) = 2t\lambda[x(t)]^{\lambda - 1} \left([x(t)]^3 + x(t) \right) = 2t\lambda y(t) + 2t\lambda[x(t)]^{\lambda + 2}$$

con y(t) > 0 per ogni $t \in (\alpha, \beta)$. Scegliendo $\lambda = -2$, la funzione y(t) per $t \in (\alpha, \beta)$ risulta essere soluzione positiva del problema di Cauchy

$$\begin{cases} z'(t) = -4tz(t) - 4t \\ z(0) = 1. \end{cases}$$

La soluzione di tale problema è

$$z(t) = e^{-2t^2} \left\{ 1 - \int_0^t 4se^{2s^2} ds \right\} = 2e^{-2t^2} - 1, \quad t \in \mathbb{R},$$

e quindi y(t) coincide con z(t) sull'intervallo aperto (α, β) contenente l'origine in cui risulta z(t) > 0. Risolvendo tale disequazione si trova

$$y(t) = 2e^{-2t^2} - 1, |t| < \sqrt{\log \sqrt{2}},$$

e quindi la soluzione massimale del problema di Cauchy proposto è

$$x(t) = \frac{e^{t^2}}{\sqrt{2 - e^{2t^2}}}, \qquad |t| < \sqrt{\log \sqrt{2}}.$$