

DU Python Big Data

Machine Learning
Partie 2

gilles.michel@sudintralog.com @unimes.fr

Principe

Mettre en œuvre des algorithmes améliorant automatiquement les performances d'un système

Plan 4

- 1. Régressions
- 11. Arbres de décision
- III. Forêt aléatoire et apprentissage d'ensemble
- IV. SVM (Support Vector Machine)

Descente de gradient

A chaque étape de l'apprentissage, on veut minimiser l'erreur globale J

$$J(paramètres) = \frac{1}{2} \sum_{BDD} (S_{calcul\acute{e}e} - S_{attendue})^2$$

- Somme est calculée sur la BDD complète
- Bonne qualité mais temps de calcul important

Descente de gradient stochastique (SGD)

A chaque étape de l'apprentissage, on veut minimiser l'erreur globale J

$$J(paramètres) = \frac{1}{2} \sum_{Lot} (S_{calcul\'ee} - S_{attendue})^2$$

- Somme est calculée sur un lot = échantillon aléatoire (mini-batch) de la BDD souvent de taille entre 10 et 1 000
- Très rapide à calculer
- On peut changer de lot régulièrement durant l'apprentissage

Learning rate adaptatif

On fait varier le PAS d'apprentissage

- PAS élevé au départ de l'apprentissage pour converger rapidement
- PAS faible vers la fin de l'apprentissage pour améliorer la précision

Exemple de pas adaptatif:

$$PAS = \frac{PAS_0}{t^{0,25}}$$

Plan 8

- 1. Régressions
- II. Arbres de décision
- III. Forêt aléatoire et apprentissage d'ensemble
- IV. SVM (Support Vector Machine)

II. Arbres de décision

Ensemble de choix représentés symboliquement sous la forme d'un arbre, permettant de classer une population.

Recherche de variables discriminantes

Exemple d'arbre de décision

Avantages des arbres de décision

- Calculable automatiquement par apprentissage supervisé
- Lisible
- Exécutable rapidement (application à un nouvel individu pour le classer)
- Sortie = une ou plusieurs classes ou un nombre

Objectif visé

Objectifs:

Obtenir les critères les plus discriminants

- Obtenir des classes les plus homogènes possible
- Obtenir l'erreur la plus faible possible

Visualisation d'un graphe

Utilisation du module graphviz de Python

Utilisation module graphviz

Installation du module pip install graphviz

(Vérification des dépendances dans Anaconda Navigator)

- Importation de la classe Digraph de graphviz pour les arbres directionnels from graphviz import Digraph
- Langage DOT pour décrire un arbre

Langage DOT

Création de l'objet arbre arbre = Digraph(comment='Mon arbre')

Création d'un noeud arbre.node('A', 'Femme')

nom du noeud

texte affiché sur le noeud

Création des branches arbre.edges(['AB', 'AC',...]) ou arbre.edge('A','B')

Apparence —— arbre.node_attr={"shape":"box"}

TP1: Représenter l'arbre

Module scikit-learn

- Calcule variables discriminantes d'une BDD
- ---- une valeur d'une variable discrim. = nœud

Crée un arbre décrit dans le langage DOT

Module sklearn

```
from sklearn import tree
X = [[0, 0], [1, 1]] \longrightarrow BDD d'apprentissage
Y = ['H', 'F'] \longrightarrow classe de chaque individu
clf = tree.DecisionTreeClassifier()
clf = clf.fit(X, Y) \longrightarrow démarre l'apprentissage
clf.predict([[2., 2.]]) \longrightarrow classe un nouvel individu
clf.predict_proba([[2., 2.]]) \longrightarrow proba des classes
tree.plot_tree(clf.fit(X, Y)) \longrightarrow représente l'arbre
```

Critères d'évaluation d'arbres de décision

On suppose que l'arbre donne des classes C1, ..., Cn avec des probabilités P1, ..., Pn

Ci* = la classe la plus fréquente de probabilité Pi*

Mesure de l'hétérogénéité des classes :

Taux d'erreur = 1 – Pi* → peu utilisé

Critère de Gini = $\sum_k P_k$ (1 – P_k) (utilisé dans méthode CART) indicateur synthétique permettant de rendre compte du niveau d'inégalité pour une variable et sur une population donnée

Entropie = $-\sum_k P_k \log(P_k)$ (utilisé dans méthode ID3) \rightarrow quantité moyenne d'information nécessaire pour identifier la classe d'un exemple

Construction de l'arbre de décision

Une fois le critère de mesure choisi, il y a 2 phases

- Phase 1 : Construction = processus récursif de division (toutes les modalités pour variable qualitative, souvent binaire (seuil), notamment pour les variables quantitatives avec détermination d'un seuil)
 - Séparation parallèle aux axes (suivant 1 variable)
 - Séparation oblique (combinaison de variables)
- On minimise le mélange des classes dans les feuilles

- Moins de tests pour une séparation oblique mais plus complexes
- Problème d'échelle (ordre de grandeur) pour oblique normaliser
- Cross-validation (on divise la base d'apprentissage en K échantillons utilisés pour le calcul ou la validation)

- Phase 2 : Élagage (pruning) = moins de feuilles (nœuds terminaux) → on garde les plus pertinentes
 - Pré-élagage : on arrête de subdiviser l'arbre quand un test est vérifié par une quantité acceptable d'individus
 - Post-élagage : on supprime un test si le taux d'erreur s'améliore

TP2: Calcul d'arbres de décision

Pour chaque série, calculer l'arbre de décision et l'afficher

Série 1

- $(0.1, 0.5) \rightarrow 1$
- $(0.2, 0.9) \rightarrow 1$
- $(0.6, 0.5) \rightarrow 0$
- $(0.7, 0.9) \rightarrow 0$
- $(0.3, 0.7) \rightarrow 1$
- $(0.6, 0.5) \rightarrow \text{valeur } ?$

Série 2

- $(0.4, 0.9) \rightarrow 0$
- $(0.0, 0.2) \rightarrow 1$
- $(0.3, 0.6) \rightarrow 0$
- $(0.1, 0.4) \rightarrow 1$
- $(0.2, 0.0) \rightarrow 1$
- $(0.2, 0.7) \rightarrow \text{valeur } ?$

Sous Python avec Sklearn

 Par défaut, Scikit-Learn utilise l'algorithme CART (basé sur l'indice de Gini)

Pour utiliser l'algorithme ID3 (basé sur l'indice d'entropie) : DecisionTreeClassifier(criterion="entropy")

TP3 : Arbre de décision pour prêt bancaire

 Utiliser la base de données de prêts bancaires pour générer 2 arbres de décision (méthodes CART par défaut ou ID3) puis comparer les taux d'erreur Plan 26

- 1. Régressions
- 11. Arbres de décision
- III. Forêt aléatoire et apprentissage d'ensemble
- IV. SVM (Support Vector Machine)

Forêt aléatoire (random forest)

 Algorithme proposé en 1995 par Ho et détaillé en 2001 par Breiman et Cutler

Constat:

- les arbres de décision sont sensibles à l'ordre des prédicteurs (variables dans les tests)
- \rightarrow On calcule différents arbres basés uniquement sur une partie des variables (en général moins que $\sqrt{nb_variables}$)
- → Algorithme très efficace quand nb_variables est grand

Principe de bagging

Bagging = agrégation de modèles

- Les forêts aléatoires fournissent plusieurs arbres de décision -> plusieurs prédictions différentes pour chaque individu
- Nécessité de regrouper toutes ces prédictions en une seul -> agrégation (bagging)

Méthodes de bagging

Comment obtenir la prédiction finale pour un individu à partir de plusieurs arbres de décision ?

- Pour une classification : on choisit la catégorie la plus fréquente
- Pour une régression : on fait la moyenne des valeurs prédites