Notes on the verification of the concurrent spanning tree algorithm

```
1 let rec span x =
2    if (x == null) then
3    false
4    else
5    if (CAS(x.mark, false, true)) then
6        let (l, r) =
7         (span (x.left) || span (x.right)) in
8        if (¬l) then x.left := null;
9        if (¬r) then x.right := null;
10        true
11    else
12    false
```

Figure 1. The pseudo-code of the spanning tree algorithm in ML style

Abstract

We give a short description of the verification of the concurrent algorithm for computing a spanning tree of a graph described below.

1. The program and intuition

The algorithm verified is depicted in Figure 1. In this text we assume graphs are doubly branching. Therefore, we refer to the children of a node as the left or right child (which may not exist for some nodes). We write x.left = null and x.right = null whenever a node x has no left or right child respectively. Whenever not clear to which graph we are referring we use g.x.left and g.x.right to refer to the children of a node x in a particular graph g.

We write path(p, g, x, y) to say that p is a path in g from x to y. Here a path p is a sequence $p = [d_1, \ldots, d_n]$ where $d_1, \ldots, d_n \in \{left, right\}$.

We assume that there is always an empty path from a node to itself.

$$x \in nodes(g) \Rightarrow path([], g, x, x)$$

A graph is called connected from a node x if for any node in the graph there is a path from x to that node.

$$connected(q, x) \stackrel{\Delta}{=} \forall y \in nodes(q). \exists p. path(p, q, x, y)$$

where nodes(g) is the set of nodes of graph g. The front of a set of nodes A in a graph is the set of nodes immediately reachable from nodes in A.

$$front(g, A) \stackrel{\Delta}{=} \{x \mid \exists y \in nodes(g). \ x = y.left \lor x = y.right\}$$

A graph is maximal if the set of its nodes is a subset of the front of its nodes.

$$maximal(g) \stackrel{\Delta}{=} nodes(g) \subseteq front(g, nodes(g))$$

A tree is a graph

$$istree(g, x) \stackrel{\Delta}{=} \forall y \in nodes(g), \exists ! p. \ path(p, g, x, y)$$

A graph g is strict subgraph of g' written as $g \subseteq_{strict} g'$ if the graph g can be obtained from g' by removing some nodes and children.

$$\begin{split} g \subseteq_{strict} g' & \stackrel{\Delta}{=} & \forall x \in nodes(g). \\ & (g.x.left = null \lor g.x.left = g'.x.left) \land \\ & (g.x.right = null \lor g.x.right = g'.x.right) \end{split}$$

A graph q is a spanning tree of a graph q' if

$$g \subseteq_{strict} g' \land istree(g, x) \land nodes(g) = nodes(g')$$

Lemma 1.

$$\forall A, front(g, A) \subseteq A \Rightarrow A = nodes(g)$$

1.1 The intuition

Let's assume x is a node of the graph g and the graph g is connected from x. Note that in such a case, any node y with a path from x to y is also a node of graph g. Therefore, in the recursive calls we can assume that whenever we have a call span y, y is a node of graph g.

Intuitively, span x returns true if it has managed to mark x. In that case, we know that there is a graph g' such that $g' \subseteq_{strict} g$, istree(g', x), maximal(g'), nodes of g' are all marked and front(g, nodes(g')) are marked (either by us through recursive calls or we have seen them marked through recursive calls).

If span x returns false, either x is null or we have seen it marked.

Let's confirm this intuition by going through the code. The call span x returns false if x is null (in line 3) or if the CAS of line 5 fails (in line 12). In the latter case, we know that x.mark is not false and there it is true (i.e., x is marked).

Otherwise, if the **CAS** of line 5 succeeds, the program returns **true** in line 10. In this case, we run span on the left and right child of x concurrently ad get result. In case span returns **false** for any of the children, we remove it. In what follows, we show that the desired properties hold.

First note that whenever we have a graph that consists of a node x and its children such that the children of x (if any) are maximal trees, the whole graph is a maximal tree. Furthermore, since the children (if any) are strict subgraphs of the original graph and for x we have only possibly removed children the whole graph is a strict subgraph of the original graph. Finally, note that front of the graph consisting of x and its children in the original graph is the front of the children of x in the original graph and their fronts. We know that these are all marked as guaranteed by the recursive calls on the children of x (they are either by the recursive calls or have been seen marked by the recursive calls).

At the top-level call to span x, we know that (as the precondition) x is not null and the graph we start with is not marked, it is maximal and it is it is connected from x. Therefore, the call

to span x can't return **false** as it would indicate x was **null** or x was marked which is contradiction. Furthermore, we know that any marked node is marked (recursively) through this call.

Hence, at the top-level call to span x assuming x is a node of graph g, we know that there is a graph g' such that $g' \subseteq_{strict} g$, istree(g',x), maximal(g'), nodes of g' are exactly those nodes that are marked and front(g,nodes(g')) are all marked. Hence, we have $front(g,nodes(g')) \subseteq nodes(g')$. And by Lemma 1 we have nodes(g) = nodes(g'). Therefore, by definition of a spanning tree above we have g' is a spanning tree of g.

2. Proof in Iris

The main theorem proven in Irisi is wp_span below:

```
Lemma wp_span g markings (x: val) (l: loc): l \in \text{dom} (\text{gset}\_) \, g \to \text{maximal} \, g \to \text{connected} \, g \, l \to \text{heap\_ctx} \, \star \\ ([\star \, \text{map}] \, l \mapsto v \in g, \\ \exists \, (\text{m: loc}), \, \, \text{markings} \, !! \, l = \text{Some} \, \text{m} \, \star \\ l \mapsto (\#\text{m, children\_to\_val} \, v) \star \text{m} \mapsto \#\text{false}) \vdash \\ \text{WP span} (\text{SOME} \, \#l) \\ \{\{\_, \exists \, g', \\ ([\star \, \text{map}] \, l \mapsto v \in g', \\ \exists \, \text{m: loc, markings} \, !! \, l = \text{Some} \, \text{m} \, \star \\ l \mapsto (\#\text{m, children\_to\_val} \, v) \star \text{m} \mapsto \#\text{true}) \\ \star \, \text{dom} \, (\text{gset}\_) \, g = \text{dom} \, (\text{gset}\_) \, g' \\ \star \, \blacksquare \, \text{strict\_subgraph} \, g \, g' \star \, \blacksquare \, \text{tree} \, g' \, l \, \}.
```

The proof of correctness of span in Iris follows the intuitive reasoning above.

In Iris, we formalize graphs as finite maps from memory locations *loc* to pairs of memory *option loc*.

Definition graph := gmap loc (option loc * option loc).