Announcements:

- 1) Tentatively, you can collect your midderms on Thursday 3:30-5:00pm, from our TAS (James & Eli).
- 2) HWO5 is due this Friday.
- 3) There will be Quiz 03 on the Mounday after the Reading Week.

Recall: For absolute unin/max 4.1) in an interval:

- 1) Find critical points
- 2 Compare the y-values ait of oritical points and end points.

For local min/max:

- O Find critical points.
- ② At each critical point x=a, find the second derivative f'(a).
- 3) If $f''(a) < 0 \Rightarrow a$ is local mean $f''(a) > 0 \Rightarrow a$ is local min.

$$f(x) = \sin(2x) + 3$$
, g is a function.

$$(fg)''(0) = 4$$

Find g'(0). Q.

we need to use product rule

$$(fg)' = fg' + g'f$$

- Product rule

$$= \frac{(f'g)' + (g'f)'}{f''g' + f'g'}$$

Product Rule

$$\int (fg)''(o) = f''(o) \cdot g(o) + f'(o) \cdot g'(o) + g'(o) \cdot f'(o) + g''(o) \cdot f'(o) + g''(o) \cdot f'(o) + g''(o) \cdot f'(o)$$

at
$$x=0$$

at
$$x=0$$
 $f(0)=3$

$$f'(x) = 2\cos(2x)$$

$$f''(x) = -2.2.\sin(2x)$$

$$f''(o) = 0$$

Plugging everything back in (*)

$$4 = 0.9(0) + 2.9(0) + (-4).3 + 9(0).2$$

$$=)$$
 $4 = 4.9'(0) - 12$

$$=)$$
 $16 = 4 \cdot 9'(0)$

Reason: as
$$x \to 0^-$$
, $\frac{1}{x} \to -\infty$,

$$e^{1/\chi} \rightarrow 0$$
.

Definitions:

· Local

: n=a is local max for f(x) in for all points near a, $f(x) = \langle f(a) \rangle$.

×=9

· Similarly, local min

- Absolute: x = a is absolute max in an interval max/min (c,d) if $f(a) \ge f(x)$ for all $x \in [c,d]$.

10cd max
but only

O is the absolute max.

- absolute max/min can also occur at the endpoints

1 is the absolute max.

"Similarly, others is absolute min.

- (2) f'(a) > 0 =) f(x) increasing near a. f'(a) < 0 =) f(x) decreasing near a.
- (3) Fr=a is inflection point of f(n) if f"(a)=0.
- (4) $f''(a) > 0 \Rightarrow f(x)$ is concave downward near a. Upward $f''(a) < 0 \Rightarrow f(x)$ is concave downward near a.
- at a local min/max a f(x) cannot be increasing nor can it be decreasing.

 =) local min/ are critical points.
- How to tell if a critical point is a min / max? f'(a) = 0.

 \underline{Am} : f'(x) is the rate of change of f(x).

At local min:

as we increase x the slope of the tangent increases

=) as we increase
$$x$$
, $f(x)$ increases

(at a local min)

$$\Rightarrow$$
 $(f'(x))' = f''(x)$ is positive at a

i.e. at local min
$$f''(a) > 0$$
 $x = a$

Basic
$$f(x) = x^2$$

f'(x) = 2x

concave upward for all a

$$f'(x) = 2 > 0$$
 for all x

This Shape is called concave downward.

$$f(x) = -x^2$$

$$f'(x) = -2x$$

$$f''(x) = -2$$
 <0 \Rightarrow for all x

concave downward

inflection = the curve is changing its concavity at point the inflection point.

eg:
$$f(x) = \sin(x)$$
 $x \in (-\pi, \pi)$

Find a local min/max, conscavity, inflection point etz.

O Critical points:

$$f'(\alpha) = 0$$

$$=) \quad \cos x = 0 \quad \text{in } (-\pi, \pi)$$

· 12 At the critical points

$$x = -\pi$$

$$f''(-\frac{\pi}{2}) = -\sin\left(-\frac{\pi}{2}\right)$$

=) concave up

x = T/2

$$f''\left(\frac{\pi}{2}\right) = -\sin\left(\frac{\pi}{2}\right) = -1 < 0$$

- =) concave down
- -) local max.

$$f''(x) = 0$$

$$\Rightarrow$$
 -sin $x = 0$ in $(-\Pi, \Pi)$

=)
$$[x=0]$$
 \leftarrow at $x=0$ Sin x goes from being concave upward to concave downward.

Ch 4. (4.1, 4.3, 4.5, 4.7) = critical points Concavity

4.1 absolute min/max
4.3 local min/max

4.5 sketching graphs

4.7 Word problems

· (Find critical boints, check conservity / inflection.)

1 Critical points:

$$\Rightarrow$$
 $2\cos x = -1$

$$=) \qquad \boxed{\cos x = -\frac{1}{2}}$$

$$T - T_{3} = \frac{2T_{3}}{3}$$

$$T + T_{3} = \frac{4T_{3}}{3}$$

The critical points are $\lambda = \frac{2\pi}{3}, \frac{4\pi}{3}$

2
$$f(x) = x + 2\sin x$$

 $f'(x) = 1 + 2\cos x$

$$f''(x) = -2\sin x$$

$$f''\left(\frac{2\pi}{3}\right) = -\frac{2}{3} 2 \sin\left(\frac{2\pi}{3}\right) < 0$$

as sin is positive in second quadrant

$$x = 2\pi$$
 is local max i.e. $f(x)$ is concave downward at $\frac{2\pi}{3}$

downward at 217

ii) at
$$n = 4\pi/3$$

$$f''(4\pi) = -2\sin\left(\frac{4\pi}{3}\right) > 0$$

as sin is negative in third quadrant

=)
$$x = 4\pi$$
 is local min i.e. $f(x)$ is concave abouted at 4π

upward at 2 TT

$$\lambda = 2\pi$$
, $f(\lambda) = f(2\pi)$

$$x = \frac{2\pi}{3}$$
, $f(x) = f(\frac{2\pi}{3})$
= $\frac{2\pi}{3} + 2.\sin(\frac{2\pi}{3})$

f(x)=x+ 2sinx

$$= \frac{2\pi}{3} + 2 \cdot \frac{\sqrt{3}}{2}$$

local
$$x = 4\pi$$
, $f(4\pi) = Something$

$$x = 2\pi$$
, $f(2\pi) = 2\pi + 2\sin(2\pi)$

 $=2\pi$

Point of: $f(x) = x + 2\sin x$ inflection $f'(x) = 1 + 2\cos x$

$$f(x) = x + 2\sin x$$

$$f'(x) = 1 + 2\cos x$$

$$\int f'(x) = -2\sin x$$

=)
$$[x=T] \leftarrow \text{curve goes}$$
 from t

concause down to concave up

Ans:

$$f(x) = x^4 - 4x^3$$

$$f'(x) = 4x^3 - 12x^2$$
 $f'(x) = 0$

$$f''(x) = 12x^2 - 24x$$
 = $4x^2(x-3) = 0$

Critical points:

$$f'(x) = 0$$

=)
$$\sqrt{4x^3-12x^2}=0$$

$$\Rightarrow$$
 $4x^{2}(x-3)=0$

1 x=0, check concavity:

$$f''(0) = 12.0 - 24.0$$

f(x) is changing concavity at x=0.

2) x=3, check concavity:

$$f''(3) = 12 \cdot (3)^2 - 24 \cdot 3$$

$$= 12.3.(3-2.1)$$

$$= 12.3.1 > 0$$

= 12-3.1 >0 => concave up

=) x=3 is local min

4) What happens at +0, -0?

$$\lim_{x\to\infty} x^4 - 4x^3 = \lim_{x\to\infty} x^3(x-4) = \infty$$

$$\lim_{n\to -\infty} x^4 - 4x^3 = \lim_{n\to -\infty} x^3(x-4) = +\infty$$

- . at both oo, -oo, lim f(x) is + oo
- · at x=3 locd min
- . at n=0, both critical point, inflection. point.

$$f''(x) = 0$$

$$=)$$
 $12x^2 - 24x = 0$

$$=)$$
 $12x(x-2)=0$

$$\Rightarrow \quad \chi = 0 \qquad , \quad \chi = 2 = 0$$

$$=$$
) $\chi=0$, $\chi=2$

Summary:
$$x=0$$
 critical point & point of inflection $f(2)=2^4-4\cdot 2^3$ $x=2$ only point of inflection $=2^3(2-4)$ $x=3$ only critical point, local min $=2^3(-2)$ $=-16$ $\lim_{x\to\infty} \lim_{x\to\infty} \lim_{x\to\infty} |x-x|^2$ or $\lim_{x\to\infty} |x-x|^2$

At a critical po

- · To sketch functions
 - Find critical points, find confavily at these critical points
 - · find inflection points,
 - . Find "y-values" at all of the above points.
 - of we have endpoints find y-values at them. else find $\lim_{x\to\infty} f(x)$, $\lim_{x\to-\infty} f(x)$
 - . Find points of discontinuities, (vertical asymptotes).