Week 3: Regular expressions, languages, and the pumping lemma for regular languages

Textbook: 1.3 and 1.4

Regular languages

Def: Regular languages. A language is said to be "regular" iff there exists a DFA recognizing it.

Corollary: Since DFA are closed under the regular operations, so to are regular languages.

Corollary: Since DFA and NFA are equivalent, a language is regular iff there exists an NFA recognizing it.

Corollary: All finite sets are regular. Since the language consisting of exactly one string is trivially decidable by a DFA and regular languages are closed under union, any finite set of strings is regular.

Regular expressions

- ► Invented by Kleene (of the Kleene star, Kleene plus, and Kleene recursion theorem)
- ► Formal notation for expressing DFAs
- Commonly used in non-theoretical computer science

Formal definition of regular expressions

Def: Regular expressions. We say R is a regular expression on alphabet Σ if R is:

- 1) a character $\in \Sigma$
- 2) the **empty string** ϵ
- 3) the **empty set** \emptyset
- 4) $(R_1 \cup R_2)$ where R_1, R_2 are regular expressions
- 5) $(R_1 \circ R_2)$ where R_1, R_2 are regular expressions
- 6) $(R_1)^*$ (zero or more repetitions of R_1) where R_1 is a regular expression

RegEx shorthands

- ▶ For convenience, $A \circ B$ is written AB
- ▶ A^+ is shorthand for $A \circ A^*$
- ▶ **Informally,** $A \cup B$ is given by (A|B). This is used in real life, but not here
- Σ is usually inferred

Thm: Regular expressions and NFA are equivalent. This will be informally proved after this slide.

Corollary: A language is regular iff there exists a regular expression recognizing it.

RegEx-NFA equivalence pt. 1

Figure 1: a for some $a \in \Sigma$

Figure 2: ϵ

Figure 3: \emptyset

RegEx-NFA equivalence pt. 2

Figure 4: $(R_1 \cup R_2)$

Figure 5: $(R_1 \circ R_2)$

Generalized Nondeterministic Finite Automata (GNFAs) pt. 1

- We can use the previous diagrams to convert REs to NFAs (and thus to DFAs)
- How do we convert NFAs to REs?

Def: Generalized nondeterministic finite automata (GNFAs). A GNFA is a NFA where edges are allowed to be any RE, rather than a character $a \in \Sigma$ for alphabet Σ . For convenience, we make the following assumptions:

- 1) The start state has transition arrows going to every other state but no arrows coming in from any other state
- 2) There is only a single accept state, and it has arrows coming in from every other state but no arrows going to any other state
- 3) The accept state is not the start state
- 4) Except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself

GNFAs pt. 2

▶ It is trivial to show that any NFA can be converted to an equivalent one in this form

Figure 7: A generalized nondeterministic finite automaton

Non-regular languages

The pumping lemma for regular languages

Next up: Context-free grammars