Wydział Informatyki,	Data 12.11.2023 r.		
Laboratorium Układów Elektronicznych i Techniki Pomiarowej			
Ćwiczenie nr. 3	Prowadzący: Dr inż. W. Jakowluk		
Temat: Bloki kombinacyjne: multipleksery, demultipleksery i dekodery.	Ocena:		
Grupa LAB.02			
Zespół nr 4:			
Dominik GąsowskiGrzegorz GresiukWojciech Domański			

Zadanie 1.

Polecenie:

Zrealizować multiplekser dwuwejściowy na bramkach logicznych (DB10).

Wykonanie:

Przy użyciu modułu DB10 podłączyliśmy wejścia D0 i D1 oraz jedno wejście adresowe S0. Aby zapewnić poprawne działanie układu, ustawiliśmy stałą wartość jedynki (5V) na drugim wejściu adresowym S1. Konieczność tego kroku wynika z tego, że moduł DB10 jest pierwotnie skonfigurowany jako multiplekser 4-wejściowy.

D0	D1	S0	Z
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Tabela prawdy multipleksera dwuwejściowego

Sprawdziliśmy poprawność tabeli prawdy dla kilku przykładowych rekordów.

Zdjęcie przedstawiające "0" na wyjściu dla D0, D1=0 i S0 = 1.

Zdjęcie przedstawiające "1" na wyjściu dla D0=0 i D1,S0=1

Zadanie 2.

Polecenie:

Zrealizować multiplekser czterowejściowy na bramkach logicznych (DB10).

Wykonanie:

Przy użyciu tego samego modułu, podłączyliśmy wejścia D0, D1, D2 i D3, a także dwa wejścia adresowe S0 i S1. Następnie zweryfikowaliśmy poprawność tabeli prawdy przedstawionej poniżej.

D0	D1	D2	D3	S1	S0	Z
1	0	1	0	0	0	1
1	0	1	0	0	1	0
1	0	1	0	1	0	1
1	0	1	0	1	1	0

Fragment tabeli prawdy dla multipleksera 4-wejściowego

Zdjęcie przedstawiające "0" na wyjściu dla samych zer.

Zdjęcie przedstawiające "1" na wyjściu dla D0=1 i samych zer.

Zadanie 3.

Polecenie:

Zrealizować demultiplekser na bramkach logicznych (DB10).

Wykonanie:

Przy użyciu modułu DB10 podłączyliśmy jedno wejście, dwa wejścia adresowe oraz cztery wyjścia, tworząc w ten sposób układ demultipleksera. Następnie zweryfikowaliśmy poprawność tabeli prawdy dla kilku przykładów. Ze względu na słabą jakość zdjęć, powtórzyliśmy zadanie w programie MultiSim w celu potwierdzenia naszych wyników.

D	S1	S0	D0	D1	D2	D3
0	0	0	0	1	1	1
0	0	1	1	0	1	1
0	1	0	1	1	0	1
0	1	1	1	1	1	0
1	0	0	1	1	1	1
1	0	1	1	1	1	1

Zdjęcie przedstawiające same "1" na wyjściu dla S0,S1=0 i D=1

Zdjęcie przedstawiające "0" na wyjściu D0 dla samych zer

Zdjęcie przedstawiające "0" dla samych zer na wejściu

Zdjęcie przedstawiające same "1" na wyjściu dla D=1 i S0,S1=0

Zadanie 4.

Polecenie:

Przebadać blok funkcjonalny z dekoderem DB31. Zrealizować dekodery kodu 1 z 8 oraz 1 z 16.

Wykonanie:

Przy użyciu modułu DB31 zrealizowaliśmy dekodery 1 z 8 i 1 z 16 zgodnie z dokumentacją. Z powodu słabej jakości zdjęć zrobiliśmy zadanie również w programie MultiSim.

Zdjęcia przedstawiające dekoder 1 z 8:

Zdjęcia przedstawiające dekoder 1 z 8 wykonany w programie MultiSim:

Zdjęcia przedstawiające dekoder 1 z 16:

Zdjęcia przedstawiające dekoder 1 z 16 wykonany w programie MultiSim:

Zadanie 5.

Polecenie:

Zrealizować dekoder kodu BCD z wyjściem na wyświetlacz 7 – segmentowy (DB15).

Wykonanie:

Przy pomocy modułu DB15 podłączyliśmy 4 wejścia informacyjne i 3 wejścia sterujące. Wejściom informacyjnym podawaliśmy liczbę w postaci binarnej, która była wyświetlania na 7-segmentowym wyświetlaczu.

Zdjęcia przedstawiające działanie wyświetlacza 7-segmentowego:

Zdjęcia przedstawiające zadanie wykonane w programie MultiSim:

Wnioski:

Zadanie 1, 2:

Multipleksery służą do wyświetlania jednego z wejść na wyjściu. Dzięki temu możemy zamieniać sygnał równoległy na szeregowy. Rezultaty, które sprawdziliśmy przy użyciu obu multiplekserów zgadzają się z ich tablicami prawdy.

Zadanie 3:

Demultipleksery działają przeciwnie do multiplekserów tj. zamieniają sygnał szeregowy na równoległy. Tablica prawdy demultipleksera zgadza się z naszymi wynikami.

Zadanie 4:

Dekoder 74138 ma na wyjściach domyślnie logiczne jedynki, co oznacza, że wszystkie diody LED są zapalone. Zgaszona lampka będzie oznaczać aktywację konkretnego wyjścia dekodera. Z powodu niewystarczającej ilości diod LED, dekoder 1 z 16 zrealizowaliśmy w programie Multisim. Podczas wykonywania tego zadania zauważyliśmy momentalne cofnięcia do poprzedniej diody. W trakcie wykonywania zadania na zajęciach takie przeskoki nie miały miejsca. Nie wiemy, czym jest to spowodowane.

Zadanie 5:

Podczas analizy naszych wyników doszliśmy do liczby "13". Jej postać na wyświetlaczu 7-segmentowym nie zgadzała się z dokumentacją. Z tego powodu zrobiliśmy te zadanie w programie MultiSim, aby sprawdzić, czy rezultat również będzie inny. Okazało się, że również nie zgadza się z dokumentacją.