

Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

Lily Kuentz¹, Anton Salem², M. Singh³, M.C. Halbig⁴, J.A. Salem⁴

¹Lake Ridge Academy, North Ridgeville, OH 44039
²Hawken School, Gates Mill, OH 44040
³Ohio Aerospace Institute, Cleveland, OH 44142
⁴NASA Glenn Research Center, Cleveland, OH 44135

Additive Manufacturing

- 3D printing
 - 3D CAD files are sliced
 - Filament is heated and extruded

3D Printing Materials

- **Main 3D printer filaments**
 - PLA
 - ABS
- Composite materials
 - Contain metal powders
 - Various fibers

Polylactic Acid (PLA)

Benefits

Environmentally friendly

Does not release toxic fumes/safe for

people

Disadvantages

- Does not last as long as other plastics.
- Not as tough as ABS, based on fracture toughness testing

Applications of Polylactic Acid

- **Films**
 - Food packaging
 - Plastic bags
- **Fibers**
 - Upholstery
 - Disposable garments
- **Biomedical applications**

Objectives

Determine the properties of the new PLA composite materials

- Microscopy
- Tribology
- Tensile Strength
- Fracture Toughness
- Thermogravimetric analysis
- Differential Scanning **Calorimetry**

Compare the properties of the PLA with the **PLA** composites

- Are the PLA composites an improvement on the plain PLA materials?
- In what ways are these PLA composite materials an improvement?

Materials Used in Present Study

- PLA (Polylactic acid)
- **Bronze fill PLA**
- Copper fill PLA
- **Magnetic Iron PLA**
- **Stainless Steel PLA**

3-D Printed Materials

- The test samples were printed at several different layer heights seen below:
 - Tensile bars 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm
 - Wear test samples 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm
 - Fracture toughness bars 0.1 mm, 0.3 mm
 - Microscopy samples 0.1 mm, 0.3 mm

ASTM D5045

Three samples per condition

Macrostructure

- **Print resolution**
 - Prints of different layer heights exhibit different structures. Different mechanical properties?

Density

- Metal Composite PLA vs. Pure PLA
 - The metal filled materials had much higher densities than the pure PLA; correlate to metal mass content.

Thermogravimetric Analysis

<u>Filament</u>	Metal Weight Percentage	Metal Volume Percentage
Bronzefill PLA	80.35%	36.02%
Copperfill PLA	80.57%	36.41%
Stainless Steel PLA	58.87%	18.09%
Magnetic Iron PLA	48.33%	11.05%

Thermogravimetric Analysis

Microstructure

- Spheroidal Cu and bronze particles
- Deformed stainless and iron particles; poor dispersion!

Tensile Data

PLA shows no layer height effect:

PLA layer height of 0.1 to 0.4mm

Tensile Data

PLA shows the greatest strength:

As the concentration of metal in the filament increases, the strength decreases.

Tensile Data

Metal filled PLA show an effect of layer height:

Lower strength and strain to failure.

Young's Modulus

- Young's modulus follows the V% of metal porosity.
- Still stiffer than premium ABS.
- Poisson's ratio was ~0.33.

Fracture Toughness

- Generally, the fracture toughness follows the V% of metal.
- PLA has greater toughness than ABS, but metal additions can lower significantly (50% for Cu).

Fracture Surfaces

• Do we have pictures?

Tribology

Friction Coefficient of metal filled PLA:

Related talk to be given on wear etc.

- The metal composite materials generally exhibit a higher coefficient of friction than pure PLA.
- Higher layer height exhibits lower friction.

Conclusions

- PLA exhibits the greatest strength, with no dependence on layer height.
- Metal filled PLA is stiffer but weaker than unfilled; Good strain to failure is usually exhibited.
- SS filled PLA exhibits lower strain to failure irregular powder and higher % fill. Bonding? Distribution? Surface finish? Fractography!
- As the metal volume percentage increases, the porosity increases, and lower strength is exhibited.
- Young's Modulus generally increase as the V% of metal increases.
- Fracture toughness decreases as metal content increases.
- Higher coefficient of friction is exhibited by metal filled PLA's.
- Metal powder act as a weak interface thereby lowering strength and toughness.

Future Work

- Continuing to process tests, and analyze these metal filled PLA materials.
- Characterization of new filaments.