Analiza Porównawcza Grafowych Sieci Neuronowych na Datasecie Cora

Przemysław Dąbrowski

Wprowadzenie

Przeprowadzona analiza porównuje wydajność trzech architektur grafowych sieci neuronowych (GCN, GAT, GraphSAGE) na datasecie Cora w różnych konfiguracjach. Badanie obejmuje oryginalny dataset oraz warianty z losowymi cechami węzłów o wymiarach 1433 i 64.

1. Tabele Wydajności - Kluczowe Wyniki

1.1 Wydajność na Oryginalnym Datasecie Cora

Model	Test	Val	Średnia	Średnia	Średnia	Confidence
	Accuracy	Accuracy	Precision	Recall	F1-Score	(Mean)
GAT	80.20%	78.00%	0.7818	0.8152	0.7952	0. 8667
GraphSAGE	79.80%	77.00%	0.7789	0.8219	0.7935	0.7964
GCN	79.50%	77.00%	0.7714	0.8182	0.7879	0.8386

1.2 Wydajność na losowych cechach (dim=1433, seed=42)

Model	Test	Val	Średnia	Średnia	Średnia	Confidence
	Accuracy	Accuracy	Precision	Recall	F1-Score	(Mean)
GAT	52.80%	51.20%	0.5378	0.5704	0.5212	0.4671
GCN	51.60%	52.00%	0.5073	0.5621	0.5144	0.7000
GraphSAGE	42.10%	40.80%	0.4128	0.4482	0.4126	0.4354

1.3 Wydajność na losowych cechach (dim=64, seed=123)

Model	Test	Val	Średnia	Średnia	Średnia	Confidence
	Accuracy	Accuracy	Precision	Recall	F1-Score	(Mean)
GAT	43.60%	36.80%	0.4263	0.4512	0.4154	0.2274
GCN	35.90%	33.20%	0.3480	0.3889	0.3504	0.7288
GraphSAGE	27.10%	24.80%	0.2589	0.2810	0.2582	0.6439

2. Kluczowe Odkrycia

2.1 Hierarchia Wydajności na Oryginalnym Datasecie

- 1. **GAT wykazuje najwyższą dokładność** (80.20%) z marginalną przewagą nad GraphSAGE (79.80%) i GCN (79.50%)
- 2. **Wszystkie modele osiągają podobny poziom wydajności -** różnice nie przekraczają 0.7 punktów procentowych
- 3. GAT ma najwyższą pewność predykcji (0.8667), co sugeruje stabilność modelu

2.2 Dramatyczna Degradacja przy losowości cech

- 1. Utrata 25-40 punktów procentowych dokładności przy randomizacji dim=1433
- 2. **Jeszcze większa degradacja** przy dim=64 (spadek o 35-50 p.p.)
- 3. GAT wykazuje największą odporność na destrukcję cech
- 4. GraphSAGE najbardziej wrażliwy na utratę cech

2.3 Wzorce Konwergencji i Trenowania

Oryginalny Dataset:

- Wszystkie modele osiągają 100% dokładności na zbiorze treningowym oznacza to silne overfitting
- GAT wykazuje najwolniejszą konwergencję (Loss: 0.3690 w epoce 200)
- GraphSAGE najszybciej konwerguje (Loss: 0.0025 w epoce 200)
- GCN osiąga umiarkowaną szybkość konwergencji (Loss: 0.0396 w epoce 200)

Losowe cechy:

- GAT utrzymuje względnie wysoką dokładność treningową (97.14% dla dim=1433)
- GCN i GraphSAGE nadal osiągają 100% na treningowym mimo słabych wyników na testowym
- Zwiększona rozbieżność między train/test wskazuje na problemy z generalizacją

3. Analiza Per-Klasa

3.1 Najlepiej Klasyfikowane Kategorie (Oryginalny Dataset)

- 1. Neural_Networks: 90.28% (GAT), 92.36% (GCN), 86.11% (GraphSAGE)
- 2. **Genetic Algorithms**: 85.71% (GAT), 86.81% (GCN), 92.31% (GraphSAGE)
- 3. **Theory**: 85.94% (GAT), 89.06% (GCN), 87.50% (GraphSAGE)

3.2 Najtrudniejsze Kategorie do Klasyfikacji

- 1. Case Based: 74.62% (wszystkie modele)
- 2. **Probabilistic_Methods**: 75.86% (GAT), 71.47% (GCN), 71.79% (GraphSAGE)

3.3 Wpływ Randomizacji na Różne Kategorie

- Neural_Networks utrzymują względnie wysoką dokładność nawet po randomizacji
- Probabilistic Methods wykazują największą degradację wydajności
- Case Based i Rule Learning są szczególnie wrażliwe na utratę cech węzłów

4. Rozkład Pewności Predykcji

4.1 Oryginalny Dataset - Wysoka Pewność

- GAT: 74.2% predykcji z wysoką pewnością (>0.8)
- GCN: 70.0% predykcji z wysoką pewnością
- GraphSAGE: 62.5% predykcji z wysoką pewnością

4.2 Randomizowane Cechy - Niska Pewność

- **Dim=1433**: Dramatyczny spadek pewności we wszystkich modelach
- **Dim=64**: GAT wykazuje najniższą średnią pewność (0.2274)
- GCN utrzymuje względnie wysoką pewność nawet przy degradacji dokładności

5. Wnioski

5.1 Odporność na Destrukcję cech

- 1. GAT: Najodporniejszy na randomizację, zachowuje względnie wysoką dokładność
- 2. GCN: Średnia odporność, ale utrzymuje wysoką pewność predykcji
- 3. GraphSAGE: Najmniej odporny, największa degradacja wydajności

5.2 Problem Overfittingu

- Wszystkie modele wykazują silny overfitting na oryginalnym datasecie
- 100% dokładność treningowa vs ~80% testowa wskazuje na potrzebę regularyzacji
- Randomizacja cech poglębia problem overfittingu

5.3 Mechanizmy Uwagi vs Agregacji

- GAT (mechanizm uwagi) wykazuje lepszą adaptację do zaburzonych cech
- GCN (prosta agregacja) utrzymuje stabilność pewności predykcji
- GraphSAGE (sampling) najbardziej zależny od prawidłowych cech sąsiedztwa

5.4 Implikacje dla Zastosowań Praktycznych

- 1. Dla danych o stabilnych cechach: Wszystkie modele są porównywalne
- 2. Dla danych z zaburzonymi cechami: GAT jest preferowany
- 3. Gdy pewność predykcji jest kluczowa: GCN może być lepszym wyborem
- 4. **Potrzeba lepszej regularyzacji** we wszystkich modelach