Program: Final Year B. Tech Electronics, Chemical and Mechanical Engineering (Minors)								Semester: VII		
Course: Deep Learning								Course Code: DJ19MN6C3		
Course: Deep Learning Laboratory								Course Code: DJ19MN6L2		
Teaching Scheme (Hours / week)				Evaluation				n Scheme		
				Semester End Examination Marks (A)			Continuous Assessment Marks (B)			Total Mark (A+B)
	Practical	Tutorial	Total Credits	Theory			Term Test 1	Term Test 2	Avg.	
Lectures 4				75			25	25	25	100
				Laboratory Examination			Term work To		Total	al
	2	Á	5	Oral	Prac tical	Oral & Practi cal	Labora tory Work	Tutorial / Mini project / presentation/ Journal	Ter m work	50
				25		-	15	10		

Pre-requisite: --

1. Machine Learning

The objective of this course is

To familiarize students with the concept of deep learning and to enable them to assimilate to different types of neural networks. The course also aims to expose students to the idea of auto encoders and GANs.

Outcomes: On completion of the course, the learner will be able to:

- 1. Understand the deep learning and its concepts.
- 2. Interpret working of different types of neural networks.
- 3. Choose the suitable deep learning architecture for various real-world applications.

Deep Learning (DJ19MN6C3)				
Unit	Description	Duration		
1	Fundamentals of Deep Learning	08		
	Getting started with Neural Network, Fundamental concepts of Biological Neural Network, Perceptron, Multilayer feed-forward network, Terminologies in Deep Learning: weight, bias, threshold, Activation functions, loss functions			
2	Deep Networks	10		
	Cost functions, Optimizations: Gradient descent, learning rate, batch size and stochastic gradient descent, Tuning hidden layer count and neuron count, Exploding gradient and vanishing gradient, Avoiding overfitting through model generalization, Fancy optimizers, Hyperparameters			

3	Artificial Neural Network	08
	Artificial Neural Network, Dense Networks, Feedforward and Feedback propagation	
	McCulloch Pitts Neuron: Theory and Architecture; Linear separability; Hebb Network:	
	Theory and Algorithm. ANN with backpropagation.	
4	Convolutional Neural Network	08
	Introduction to CNNs, Kernel filter, Stride, Padding, Principles behind CNNs, Multiple	
	Filters, CNN applications.	
	ConvNet Architectures: AlexNet, VGG, GoogLeNet, ResNet.	
5	Recurrent Neural Networks	10
	Introduction to Sequence Models and Recurrent Neural Network Model, Backpropagation	
	Through Time, Different Types of RNNs: Unfolded RNNs, Seq2Seq RNNs, Long Short-	
	Term Memory (LSTM), BERT, Bidirectional RNN, Vanishing Gradients with RNNs, Gated	
	Recurrent Unit (GRU), RNN applications.	
6	Auto Encoders and Adversarial Networks	08
	43	
	Auto encoders (standard, denoising, contractive, etc.), Variational Autoencoder, Introduction	
	to Adversarial Networks, Generative Adversarial Networks, Applications of Adversarial	
	Networks.	
	Total	52

List of Practicals:

- 1. To build a Neural Network for the given problem.
- 2. To perform Image captioning using Convolutional Neural Network.
- 3. To perform Image classification using Convolutional Neural Network.
- 4. To perform image classification like digit identification using LSTM
- 5. Sentiment Analysis using LSTM
- 6. Implement Recommendation system using LSTM
- 7. Text Summarization using BERT
- 8. Fake news detection using BERT
- 9. To implement EBPTA for the given problem.
- 10. Text Prediction/ Language Translators using Recurrent Neural Network
- 11. Implementation of Generative Adversarial Networks
- 12. Mini Project