1. Trabajo Práctico 1: Introducción

- 1. Un gas ideal a temperatura $T_1=80K$ y presión $P_1=1$ atm fluye isentrópicamente a un número de Mach $M_1=6,9$. La relación de calores específicos del gas es $\gamma=1,4$ y su masa molecular es $M_m=29\,\mathrm{g/mol}$. Calcular:
 - a)La densidad ρ_1 y la energía cinética del gas.
 - b) La temperatura y presión de remanso.
 - c) La entalpia estática y la de remanso.

2. Un gas ideal que fluje a un número de Mach $M_1 = 8$ se encuentra con una onda de choque normal. La temperatura es $T_1 = 80K$ y la presión $P_1 = 1$ atm. La relación de calores específicos del gas es $\gamma = 1,4$ y su masa molecular es $M_m = 29$ g/mol.

Calcular:

- a) La relación entre la temperatura estática correinte abajo de la onda, T_2 , y la temperatura de remanso corriente arriba de la onda de choque normal $T_{0,1}$.
- b) La temperatura de remanso corriente abajo de la onda de choque normal, $T_{0,2}$.
- c) La relación entre la presión estática corriente abajo de la onda de choque, P_2 , y el doble de la presión dinámica corriente arriba de la onda de choque, $\rho_1 U_1^2$.

3. Un gas ideal que fluje a un número de Mach $M_1=8$ se encuentra con una onda de choque oblicua que deflecta las líneas de corriente un ángulo $\delta=20^\circ$. La temperatura es $T_1=80K$ y la presión $P_1=1$ atm. La relación de calores específicos del gas es $\gamma=1,4$ y su masa molecular es $M_m=29\,\mathrm{g/mol}$.

Calcular:

a) La componente normal del número de Mach corriente arriba de la onda de choque y la temperatura estática del gas post-shock.

- 4. La figura muestra la velocidad y la altitud del módulo Soyuz TMA durante la maniobra de rentrada. Asumiendo el modelo de Atmósfera Estándar Internacional (véase ESDU 77021 y ESDU77022) y que la longitud característica del módulo de descenso de la Soyuz es $L=2,2\,\mathrm{m}$, calcular para $z=\{90;60;20\}$ km de altitud:
 - a) El número de Reynolds de la corriente libre.
 - b) El número de Mach de la corriente libre.
 - c) El número de Knudsen de la corriente libre.

