Pliage

Éloi Perdereau

1er août 2013

1 Définition de la scène (voir figure 1)

Soit e une arête concave, [ab] le dernier segment du chemin à étendre tel que a domine b et $b \in e$. Soit P_{max} le plan contenant e et [ab], et P_{min} le plan plat de l'obstacle.

Soit q_{min} et q_{max} les points d'intersections des plans P_{min} et P_{max} respectivement. On note θ_{max} l'angle $\angle q_{min}bq_{max}$. On cherche à calculer l'angle θ^* tel que si on applique à P_{max} une rotation de $\theta_{max} - \theta^*$ autour de e (pliage), alors l'image de la droite (ab) sur ce plan intersecte d en un point q^* qui sera l'extension voulue du chemin.

2 Calcul de θ^*

En regardant la projection sur le plan (xy) (e varie selon z uniquement), on peut calculer θ_{max} :

$$cos(\theta_{max}) = \frac{|\overrightarrow{bq_{min}}|}{|\overrightarrow{bq_{max}}|}$$

Ensuite, on aplati P_{max} sur P_{min} (rotation de P_{max} de $-\theta_{max}$ autour de e). On a donc tous les points sur un seul plan, on note q le point d'intersection entre la droite (ab) et le segment $[q_{min}q_{max}]$:

Si q existe, il est unique. S'il n'existe pas, cela signifie qu'il faut plier dans un angle interdit. Une fois qu'on a cette construction on remarque qu'il y a une relation d'équivalence entre les points sur le plan déplié et les angles du pliage, notamment :

$$\begin{aligned} |q_{min}\vec{q}_{max}| &\leftrightarrow \theta_{max} \\ |\vec{q_{min}}q^*| &\leftrightarrow \theta^* \end{aligned}$$

$$\theta^* = \frac{|\vec{q_{min}}q^*|}{|\vec{q_{min}}\vec{q}_{max}|} \times \theta_{max}$$

D'où

Figure 1 – Scene