Unidad 2: Solución de Ecuaciones No Lineales

Ejemplos

Ejemplo: Buscar la raíz negativa de $F(x) = x^2 - 0.5$.

Aproximaciones sucesivas

1. Buscar un punto inical x_0 , tabulando y graficando la función F(x). Recordar el Teorema de Bolzano.

	x	$F(x) = x^2 -$	-0,5
0	.0		-0.50
-0	.1		-0.49
-0	.2		-0.46
-0	.3		-0.41
-0	.4		-0.34
-0	.5	,	-0.25
-0	.6		-0.14
-0	.7		-0.01
-0	.8		0.14
_			

El punto inicial puede ser $x_0 = -0.7$.

2. Reescribir la ecuación en la forma x = f(x):

$$x = x^2 + x - 0.5$$

3. Escribir la fórmula recursiva:

$$x_{i+1} = f(x_i) = x_i^2 + x_i - 0, 5$$

4. Realizar las iteraciones, con 6 cifras decimales.

\overline{i}	x_i	$x_{i+1} = f(x_i) = x_i^2 + x_i - 0.5$	Error
1	-0.710000	-0.705900	0.004100
2	-0.705900	-0.707605	0.001705
3	-0.707605	-0.706900	0.000705
4	-0.706900	-0.707192	0.000292
5	-0.707192	-0.707071	0.000121
6	-0.707071	-0.707122	0.000051
7	-0.707122	-0.707100	0.000022
8	-0.707100	-0.707110	0.000010
9	-0.707110	-0.707105	0.000005
10	-0.707105	-0.707108	0.000003
11	-0.707108	-0.707106	0.000002
12	-0.707106	-0.707107	0.000001
13	-0.707107	-0.707107	0.000000

Vemos que $|x_{13}-x_{12}| < 0.000001$, por lo que podemos dejar de iterar e informar como solución a x = -0,707107.

Interpretación gráfica

Tengo que agregar los pasos del proceso iterativo en el gráfico.

Haciendo zoom:

Evaluación convergencia

Considerando el intervalo [a;b] = [-0,8;-0,6]:

- 1. La función $f(x) = x^2 + x 0,5$ es continua en [a;b].
- 2. $f(x) \in [a; b] \quad \forall x \in [a; b]$ (ver gráfico).
- 3. f' existe en (a; b) con $|f'(x)| \le m < 1 \quad \forall x \in (a; b)$:

 - f'(x) = 2x + 1• |f'(-0,8)| = 0, 6 < 1• |f'(-0,6)| = 0, 2 < 1

Todo lo anterior lo podemos evaluar gráficamente:

¿Qué sucede con la otra raíz de F(x)? Esta función es simétrica alrededor del 0, por lo que la solución aproximada será x = 0,707107. Tomando el intervalo [a;b] = [0,6;0,8]:

$$|f'(x)| \not< 1 \quad \forall x \in (a;b)$$

$$|f'(0,7)| = 2, 4 > 1$$

Este método converge para hallar la raíz negativa pero no la positiva.

Newton-Raphson

- 1. Buscar un punto inical x_0 . Elegimos otra vez $x_0 = -0, 7$.
- 2. Hallar las derivadas:

$$F'(x) = 2x$$

$$F''(x) = 2$$

3. Evaluar convergencia:

$$\frac{|F(-0,7)F''(-0,7)|}{[F'(-0,7)]^2} = \frac{|-0,01\cdot 2|}{1.96} = 0.0102 < 1$$

4. Escribir la fórmula recursiva:

$$x_{i+1} = x_i - \frac{F(x_i)}{F'(x_i)} = x_i - \frac{x_i^2 - 0.5}{2x_i} = \frac{x_i^2 + 0.5}{2x_i}$$

5. Realizar las iteraciones, con 6 cifras decimales.

i	x_i	$x_{i+1} = f(x_i) = x_i^2 + x_i - 0.5$	Error
0	-0.700000	-0.707143	-0.007143
1	-0.707143	-0.707107	0.000036
2	-0.707107	-0.707107	0.000000

Vemos que con sólo dos iteraciones se logra un error < 0.000001, mientras que el método de las aproximaciones sucesivas necesitó 13. Además, también se puede comprobar que N-R converge para hallar la raíz positiva.

Interpretación gráfica

Converge tan rápido y son números tan pequeños que no se puede representar. Por eso tomo un valor inicial más alejado: $x_0 = -1.5$

\overline{i}	x_i	$x_{i+1} = f(x_i) = x_i^2 + x_i - 0.5$	Error
0	-1.500000	-0.916667	0.583333
1	-0.916667	-0.731061	0.185606
2	-0.731061	-0.707499	0.023562
3	-0.707499	-0.707107	0.000392
4	-0.707107	-0.707107	0.000000

