Classification

- 주어진 상황이 어느 라벨(class)에 해당하는지와 해당할 확률을 예측하는 것.
- 일반적으로 각 클래스에 해당할 확률을 예측한 후, 확룔이 가장 높은 클래스로 분류함

In [46]:

import warnings warnings.simplefilter(action='ignore', category=FutureWarning) # FutureWarning 제거

Logistic Regression

• 연속형 숫자가 아닌 이진 타입/binary 타입인 데이터를 분석하기 위한 multi linear regression

Iogistic Response Function / Logit

• 확률의 (0, 1) scale을, linear model 분석의 적합한 scale(∞, -∞)로 변환하는 함수

- logistic regression은 (∞, -∞)의 값을 계산하며, 이를 inverse logit / logistic response function에 적용하여 주어진 데이터의 label이 '1'일 확률인 p를 구함
- sigmoid function / logistic function을 적용하며, 형태는 아래와 같음 ~ (1)

$$f(x) = \frac{1}{1 + e^{-x}} \quad g(x) = \frac{e^x}{e^x + 1} \qquad p = \frac{1}{1 + e^{-\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q\right)}}$$

- 위 p에 대한 식을 일반적인 multiple linear model 형태로 변환하기 위해 odds 개념 적용
- odds: 실패 확률에 대한 성공 확률의 비 / 성공 확률이 실패 확률보다 몇 배 높은지 표현할 수 있음예) 어떤 사건의 성공 확률이 75%(0.75)면 실패 확률은 25%(0.25)이고 이때의 odds는 0.75/0.25 = 3.0

즉 odds의 계산식을 성공 확률 p로 표현하면 ~ (2)

$$Odds(Y = 1) = \frac{p}{1 - p}$$

역으로 p를 odds를 사용하여 표현하면

$$p = \frac{\text{Odds}}{1 + \text{Odds}}$$

(1)의 p를 (2)에 대입하면 ~ (3)

$$\begin{aligned} Odds &= \frac{p}{1-p} = \frac{\frac{1}{1+e^{-(\beta_0+\beta_1x_1+\ldots+\beta_1x_1)}}}{1-\frac{1}{1+e^{-(\beta_0+\beta_1x_1+\ldots+\beta_1x_1)}}} \\ &= \frac{1}{1+e^{-(\beta_0+\beta_1x_1+\ldots+\beta_1x_1)}} = \frac{1}{e^{-(\beta_0+\beta_1x_1+\ldots+\beta_1x_1)}} = e^{\beta_0+\beta_1x_1+\ldots+\beta_1x_1} \end{aligned}$$

식 (3)의 양변에 로그를 취하면, multiple linear regression 모델의 형태가 됨 => logistic regression

log (Odds(Y = 1)) =
$$\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q$$

즉 기존 multiple linear regression 형태의 logistic regression 모델을 실행하면, 결과값은 성공확룔 p의 logit 변환값(log odds 값)을 반환. p는 모델 수행 결과에 inverse logit 함수를 적용하여 구할 수 있음

p에는 cut-off / threshold를 두어, 이상이면 label은 '1' 그렇지 않으면 '0'으로 결정 (defalut threshold = 0.5)

In []:

데이터셋 분석

In [47]:

import pandas as pd
import matplotlib.pyplot as plt

In [48]:

```
df = pd.read_csv('purchase.csv')
print(df.shape)
df.head()
# Y: Purchased - 1 (구매), 0 (구매 x)
# X: 성별, 나이, 수익(연봉)
```

(400, 5)

Out[48]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	Male	19	19000	0
1	15810944	Male	35	20000	0
2	15668575	Female	26	43000	0
3	15603246	Female	27	57000	0
4	15804002	Male	19	76000	0

In [49]:

```
# 구매 여부에 따른 남녀 수
cond1 = df["Purchased"] == 1 # 구매한 사람
cond2 = df['Gender'] == 'Male' # 남자

print(f'구매한 남성: {len(df[cond1 & cond2])}, 여성: {len(df[cond1 & ~cond2])}')
print(f'구매하지 않은 남성: {len(df[~cond1 & cond2])}, 여성: {len(df[~cond1 & ~cond2])}')
```

구매한 남성: 66, 여성: 77

구매한지 않은 남성: 130, 여성: 127

In [50]:

```
# 구매 여부에 따른 나이 분포
fig, ax = plt.subplots(1, 1, figsize=(6, 6))

df[cond1]['Age'].hist(density=True, color='teal', alpha=0.6, ax = ax)
df[~cond1]['Age'].hist(density=True, color='orange', alpha=0.6, ax = ax)
plt.show()
```


In [52]:

```
# 구매 여부에 따른 연봉 차이 fig, ax = plt.subplots(1, 1, figsize=(6, 6))

df[cond1]['EstimatedSalary'].hist(density=True, color='teal', alpha=0.6, ax = ax)
df[~cond1]['EstimatedSalary'].hist(density=True, color='orange', alpha=0.6, ax = ax)
plt.show()
```


In []:

sklearn을 사용하여 logistic regression 구현

In [54]:

from sklearn.linear_model import LogisticRegression

In [56]:

```
df['Gender'] = df['Gender'].apply(lambda x: 1 if x == 'Male' else 0)
df.head()
```

Out [56]:

	User ID	Gender	Age	EstimatedSalary	Purchased
0	15624510	1	19	19000	0
1	15810944	1	35	20000	0
2	15668575	0	26	43000	0
3	15603246	0	27	57000	0
4	15804002	1	19	76000	0

```
In [57]:
```

```
Xs = df[['Gender', 'Age', 'EstimatedSalary']]
Y = df['Purchased']
logit_reg = LogisticRegression().fit(Xs, Y)
```

In [58]:

```
print(logit_reg.coef_)
print(logit_reg.intercept_)
print(logit_reg.classes_)
```

```
[[-1.31721757e-10 -2.10415187e-09 -2.69301405e-06]]
[-2.2494472e-10]
[0 1]
```

In [61]:

```
sum(logit_reg.predict(Xs) == Y) / len(Y) # accuracy
```

Out[61]:

0.6425

In [63]:

```
# 독립변수 간 스케일 차이로 학습 실패
from sklearn.preprocessing import StandardScaler
sc = StandardScaler() # (X - mean) / std
Xs = sc.fit_transform(Xs)
Xs
```

Out [63]:

In [64]:

```
logit_reg.fit(Xs, Y)
```

Out [64]:

LogisticRegression()

In [74]:

```
pd.DataFrame({'coef': logit_reg.coef_[0]},
    index = ['gender', 'age', 'salary'])
```

Out [74]:

coef gender 0.146125 age 2.292050

salary 1.147433

In [66]:

Out [66]:

0.8525

Prediction Values from Logistic Regression

$$\hat{Y} = \log \left(\text{Odds}(Y = 1) \right) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q$$

$$p = \frac{1}{1 + e^{-\left(\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_q x_q\right)}} \qquad \hat{p} = \frac{1}{1 + e^{-\hat{Y}}}$$

In []:

sklearn 모델의 logistic regression에서 predict 사용시 반환하는 값

In []:

```
# predict(데이터셋)
# predict_log_proba(데이터셋) # -inf ~ + inf
# predict_proba(데이터셋) # p
```

In [69]:

```
logit_reg.predict_log_proba(Xs)[0]
```

Out[69]:

array([-1.17783618e-03, -6.74466513e+00])

In [67]:

Out [67]:

	0	1
count	400.000000	400.000000
mean	-0.832526	-1.931392
std	1.240442	1.765161
min	-6.193475	-6.969347
25%	-0.881405	-3.008570
50%	-0.317757	-1.301547
75%	-0.050624	-0.534777
max	-0.000941	-0.002045

In [70]:

```
logit_reg.predict_proba(Xs)[0]
```

Out [70]:

array([0.99882286, 0.00117714])

In [71]:

Out [71]:

	0	1
count	400.000000	400.000000
mean	0.642500	0.357500
std	0.337467	0.337467
min	0.002043	0.000940
25%	0.414200	0.049364
50%	0.727809	0.272191
75%	0.950636	0.585800
max	0.999060	0.997957

Logistic regression에서 회귀계수의 의미

- logistic regression에서 계수는 해당 변수의 odds ratio에 log를 취한 값을 의미함
- odds ratio: 0dds 간 비율
 (binary factor variable X에 대한 odds ratio 예시)

odds ratio =
$$\frac{\text{Odds}(Y = 1 \mid X = 1)}{\text{Odds}(Y = 1 \mid X = 0)}$$

: (X=1일 때 Y=1일 Odds) / (X=0일 때 Y=1일 Odds) -> X=0일 때와 비교하여 X=1일 때 Y=1인 경우가 몇배더 증가하는지

- 즉, 변수 Age의 계수가 2.3이라면, 나이 단위가 증가하면 어린 것보다 구매할 확률이 9.97(np.exp(2.3)) 정도 높아진다고 해석할 수 있음
- 계수의 양수/음수 여부로, 변수와 성공확률이 양의 상관관계 / 음의 상관관계를 가지는지 알 수 있음

Logistic Regression 모델 및 변수 평가

In []:

statsmodels 패키지를 사용하여 모델을 구성하는 변수의 coef 평가

In [75]:

import statsmodels.api as sm

In [77]:

Xs = pd.DataFrame(Xs, columns = ['gender', 'age', 'salary'])

In [79]:

```
logit_reg_sm = sm.GLM(Y, Xs,
family = sm.families.Binomial()) # logistic regression 모델을 나타내는 paramet
logit_result = logit_reg_sm.fit()
print(logit_result.summary())
```

Generalized Linear Model Regression Results							
Dep. Variable: Model:		Purchase GL		No. Observations: Df Residuals:			
Model Family:		Binomia		Df Model:			
Link Function:		Logi	t Scal	Scale:			
Method:		IRL	S Log-	Likelihood:		-166.71	
Date:	Tu	e, 10 May 202	2 Devi	Deviance:			
Time:		11:10:5	1 Pear	Pearson chi2:			
No. Iterations:		6		ido R—squ. (C	S):	0.3752	
Covariance Type): 	nonrobus	t 				
	coef	std err	Z	P> z	[0.025	0.975]	
gender	0.0746	0.136	0.549	0.583	-0.192	0.341	
age	2.0227	0.217	9.318	0.000	1.597	2.448	
salary	1.0780	0.175	6.173	0.000	0.736	1.420	

Evaluationg Classification Models

혼동행렬 confusion matrix

		Predicted condition				
	Total population = P + N	Positive (PP)	Negative (PN)			
condition	Positive (P)	True positive (TP)	False negative (FN)			
Actual co	Negative (N)	False positive (FP)	True negative (TN)			

- 두가지 선택에 대해, 더 가치있다고 판단하는 일을 positive(1)로 취급함 환자에 대한 Cancer/Non-Cancer - Cancer(1), Non-Cancer(0) 기기에 대한 고장/정상 - 고장(1), 정상(0)
- 일반적으로 (1) case는 (0) case보다 적어, 모두 (0)으로 판단해도 정확도가 높은 경우 존재
- 그러나 (1)을 (1)로 제대로 판별하는게 더 중요한 상황이 많으므로 여러 지표를 고려해야 함

$$Precision = rac{TP}{TP+FP}$$
 Recall, Sensitivity = $rac{TP}{TP+FN}$
 $Specificity = rac{TN}{TN+FP}$ Accuracy = $rac{TP+TN}{TP+TN+FP+FN}$

- 정밀도(precision, Positive Predictable Value): 모델이 양성으로 평가한 것 중 실제 양성의 비율
- 재현율(recall), 민감도(sensitivity): 실제 양성 중 모델이 양성으로 평가한 비율
- 특이도(specificity, True Negativity Rate): 실제 음성 중 모델이 음성으로 평가한 비율
- 정확도(accuracy): 전체 중 모델이 올바르게 평가한 비율
- 민감도. 특이도는 bio, medical 분야에서 / 정밀도, 재현율은 기계 학습, 딥러닝 모델 평가 지표로 주로 사용

In []:

```
# confusion matrix 연산 (coding, sklearn, dmba)
# dmba 설치 명령어: conda install -c conda-forge dmba
```

In [82]:

```
# coding
true_y = Y == 1
pred_y = logit_reg.predict(Xs) == 1
```

C:\Users\user\understanaconda3\undervs\undervn_temp\Uib\underste-packages\undersklearn\underbase.py:443: User\understarning: X has feature names, but LogisticRegression was fitted without feature names warnings.warn(

In [85]:

Out [85]:

	model 구매	model 구매 x
true 구매	104	39
true 구매 x	20	237

In [89]:

```
from sklearn.metrics import confusion_matrix
from dmba import classificationSummary
```

In [87]:

```
confusion_matrix(Y, logit_reg.predict(Xs))
```

C:\Users\user\unders\un

Out[87]:

```
array([[237, 20], [39, 104]], dtype=int64)
```

In [91]:

Confusion Matrix (Accuracy 0.8525)

```
Prediction
Actual 0 1
0 237 20
1 39 104
```

In [98]:

```
# 평가 지표 계산
precision = tp / (tp + fp)
recall = tp / (tp + fn)
sensitivity = tn / (tn + fp)
accuracy = (tp + tn) / (tp + tn + fp + fn)
print(precision, recall, sensitivity, accuracy)
```

0.8387096774193549 0.7272727272727273 0.9221789883268483 0.8525

ROC Curve

- sensitivity와 specificity는. 하나가 증가하면 다른 하나는 감소하는 상충 관계를 가짐 (이상적인 모델은 sensitivity와 specificity가 모두 높음)
- 둘의 관계를 2차원 그래프로 나타낸 것을 "Receiver Operating Characteristics curve(ROC curve)"라고 함
- 일반적으로, 우상향 그래프 모양을 위해 x축은 1-specificity, y축은 sensitivity 값을 가짐

In []:

```
# sklearn을 사용하여 ROC Curve 그리기
```

In [99]:

```
from sklearn.metrics import roc_curve
```

In [100]:

```
logit_reg.predict_proba(Xs)[0]
```

C:\Users\user\unders\un

Out[100]:

array([0.99882286, 0.00117714])

In [138]:

```
print(tpr[:5]) # (2) 민감도는 높아지고
print(1 - fpr[:5]) # (3) 특이도는 낮아짐(상충관계)
print(threshold[:5]) # (1) threshold 기준이 내려갈수록
```

```
[0. 0.00699301 0.12587413 0.12587413 0.16083916]
[1. 1. 1. 0.98832685 0.98832685]
[1.99795728 0.99795728 0.98070235 0.9762448 0.96858916]
```

In [109]:

```
fpr, tpr, threshold = roc_curve(Y, logit_reg.predict_proba(Xs)[:, 1], pos_label = 1)
# false positive rate: FP / (FP + TN) -> 1 - fpr: TN / (FP + TN): 특이도
# true positive rate: TP / (TP + FN): 민감도

roc_df = pd.DataFrame({'sensi': tpr, '1 - speci': fpr})

fig, ax = plt.subplots(1, 1, figsize = (5, 5))
roc_df.plot(x = '1 - speci', y = 'sensi', legend = False, ax = ax)
ax.set_ylim(0, 1)
ax.set_xlim(0, 1)
ax.set_xlim(0, 1)
ax.set_xlabel('1 - speci')
ax.set_ylabel('sensi')
```

C:\Users\user\undercommaa3\undercommaa3\undercommaes.py:443: User\undercommar ning: X has feature names, but LogisticRegression was fitted without feature names warnings.warn(

Out[109]:

Text(0, 0.5, 'sensi')

In [138]:

```
print(tpr[:5]) # (2) 민감도는 높아지고
print(1 - fpr[:5]) # (3) 특이도는 낮아짐(상충관계)
print(threshold[:5]) # (1) threshold 기준이 내려갈수록
```

```
[0. 0.00699301 0.12587413 0.12587413 0.16083916]
[1. 1. 1. 0.98832685 0.98832685]
[1.99795728 0.99795728 0.98070235 0.9762448 0.96858916]
```

AUC (Area Under ROC Curve)

- 그림으로 표현되는 ROC Curve를 점수 형태로 표현하기 위해 사용
- AUC = ROC Curve 아래 넓이(~1)

• AUC가 클수록 모델의 분류 성능이 좋다고 판단하며, 모델이 완전히 랜덤으로 분류할 때(학습이 되지 않았을 때) AUC 기댓값은 0.5임

In []:

```
# sklearn을 사용하여 AUC 계산하기
```

In [110]:

```
fpr, tpr, threshold = roc_curve(Y, logit_reg.predict_proba(Xs)[:, 1], pos_label = 1)
# false positive rate: FP / (FP + TN) -> 1 - fpr: TN / (FP + TN): 특이도
# true positive rate: TP / (TP + FN): 민감도

roc_df = pd.DataFrame({'sensi': tpr, '1 - speci': fpr})
fig, ax = plt.subplots(1, 1, figsize = (5, 5))
roc_df.plot(x = '1 - speci', y = 'sensi', legend = False, ax = ax)
ax.set_ylim(0, 1)
ax.set_xlim(0, 1)
ax.set_xlim(0, 1)
ax.set_xlabel('1 - speci')
ax.set_ylabel('sensi')

ax.fill_between(roc_df['1 - speci'], 0, roc_df['sensi'], alpha = 0.3)
plt.show()
```

C:\Users\user\unders\un

In [113]:

```
from sklearn.metrics import roc_auc_score from sklearn.metrics import auc
```

```
In [115]:
```

```
auc(fpr, tpr)
```

Out[115]:

0.9274441511795597

In [116]:

```
roc_auc_score(Y, logit_reg.predict_proba(Xs)[:, 1])
```

C:\Users\user\unders\un

Out[116]:

0.9274441511795597

In []:

In [118]:

from sklearn.metrics import precision_recall_fscore_support

In [121]:

C:\Users\user\unders\un

Out[121]:

```
(array([0.85869565, 0.83870968]),
array([0.92217899, 0.72727273]),
array([0.88930582, 0.77902622]),
array([257, 143], dtype=int64))
```

In []:

In []:

```
# class가 여러개 일 때 logistic regression
```

In [125]:

```
glasses = pd.read_csv('glass.txt', header = None)
glasses.columns = ["Id", "RI", "Na", "Mg", "AI", "Si", "K", "Ca", "Ba", "Fe", "glass-type"]
glasses
```

Out[125]:

	ld	RI	Na	Mg	ΑI	Si	K	Ca	Ва	Fe	glass-type
0	1	1.52101	13.64	4.49	1.10	71.78	0.06	8.75	0.00	0.0	1
1	2	1.51761	13.89	3.60	1.36	72.73	0.48	7.83	0.00	0.0	1
2	3	1.51618	13.53	3.55	1.54	72.99	0.39	7.78	0.00	0.0	1
3	4	1.51766	13.21	3.69	1.29	72.61	0.57	8.22	0.00	0.0	1
4	5	1.51742	13.27	3.62	1.24	73.08	0.55	8.07	0.00	0.0	1
		•••				•••					
209	210	1.51623	14.14	0.00	2.88	72.61	0.08	9.18	1.06	0.0	7
210	211	1.51685	14.92	0.00	1.99	73.06	0.00	8.40	1.59	0.0	7
211	212	1.52065	14.36	0.00	2.02	73.42	0.00	8.44	1.64	0.0	7
212	213	1.51651	14.38	0.00	1.94	73.61	0.00	8.48	1.57	0.0	7
213	214	1.51711	14.23	0.00	2.08	73.36	0.00	8.62	1.67	0.0	7

214 rows × 11 columns

In [126]:

```
glasses['glass-type'].unique()
```

Out[126]:

array([1, 2, 3, 5, 6, 7], dtype=int64)

In [127]:

```
Xs = glasses[["RI", "Na", "Mg", "AI", "Si", "K", "Ca", "Ba", "Fe"]]
Y = glasses['glass-type']
```

In [128]:

C:\Users\user\undermoda3\undermodeI\underworm\underworm\undermodeI

Increase the number of iterations (max_iter) or scale the data as shown in:
 https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessing.html)

Please also refer to the documentation for alternative solver options:

https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (h
ttps://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
n_iter_i = _check_optimize_result(

In [134]:

C:\Users\user\under anaconda3\under vs\under v_temp\ullib\under ite-packages\under klearn\under ics\under classificat ion.py:1318: UndefinedMetric\under arning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to con trol this behavior.

_warn_prf(average, modifier, msg_start, len(result))

Out[134]:

In [137]:

```
glass_reg.coef_
```

Out[137]:

```
array([[-2.93109904e-02, -6.76670564e-01, 1.48245662e+00,
        -1.96059025e+00, 8.53200241e-02, -2.64997045e-01,
        3.00461455e-01, 1.89585790e-03, -3.01533889e-01],
       [ 5.74797767e-02, -3.55236813e-01, 4.66634922e-01,
         4.06595659e-01, 9.85988377e-03, 6.48653669e-01,
         4.03686961e-01, 3.41904892e-01, 6.67183726e-01],
       [ 4.75362710e-03, 1.72242358e-01, 1.22284973e+00,
        -6.96750062e-01, -1.11305770e-01, -3.50759275e-01,
         3.94852993e-01, -1.69462199e-01, 2.74619588e-03],
       [ 2.22340366e-02, -7.35969449e-01, -8.27460430e-01,
         1.99834768e+00, 9.00733156e-02, 9.61251518e-01,
         1.46454999e-01, -1.05623956e-01, -5.14914152e-02],
       [-5.07882344e-02, 1.19100069e+00, -8.03590147e-01,
       -2.74332747e-01, -1.35930025e-01, -1.27618197e+00,
       -4.03605860e-01, -1.05859898e+00, -1.92845438e-01],
       [-4.36821569e-03, 4.04633777e-01, -1.54089070e+00,
        5.26729717e-01, 6.19825712e-02, 2.82033101e-01,
        -8.41850548e-01, 9.89884389e-01, -1.24059180e-01]])
```