

H H King thin they King H Hall Hall

Į.a

das has sen sen sen s

FIG. 2

FIG. 3

APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DRAFTSMAN			

Are are then then the think the tree there there then the tree the think then the tree the tree than the tree than

#

FIG. 5B

FIG. 5C

A S Time from their time I A Sant Stad

Œ

FIG. 6A

FIG. 6B

pping	Sequence							3 3 8
Seqt	Source	De	kination	Amount	To Recipe	Tag 🧖	Collaboration	ert
1	F (1,1),(1,1) Pla	te (1,1),(7,4)	10.00 to 70.00	☑	Ĭ.		
2	E (1,1),(1,1) Pla	te (1,5),(7,8)	10.00 to 70.00	$oldsymbol{arPsi}$		>>:De	lete
L 3	G (1,1),(1,1) Pla	te (1,9),(7,12)	10.00 to 70.00	v		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4	B (1,1),(1,1) Pla	te (1,1),(2,4)	10.00 to 40.00	V		Modify	
4 5	B (1,1),(1,1) Pla	te (1,5),(2,8)	10.00 to 40.00	2		Replic	ate
- 6	B (1,1),(1,1) Pla	te (1,9),(2,12)	10.00 to 40.00	v			
4 7	C (1,1),(1,1) Pla	te (5,1),(6,4)	10.00 to 40.00	v	8		
-4 8	C (1,1),(1,1) Plai	te (5,5),(6,8)	10.00 to 40.00	9			
- 9	C (1,1),(1,1) Pla	te (5,9),(6,12)	10.00 to 40.00	v	Ž.		
10	B (1,1),(1,1) Pla	te (8,1),(8,2)	70.00 to 70.00	Y			
11	C (1,1),(1,1) Plai	te (8,9),(8,10)	70.00 to 70.00	y	•		
12	H (1,1),(1,1) Pla	te (1,1),(8,12)	500.00 to 500.0	V	į.	Caramanana	
4 13	L[1,1],[1],A) Pla	e (3,1),(4,4)	10.00 to 40.00	7		- 	

FIG. 6C

660-

FIG. 7A

FIG. 7B

FIG. 7C

¿ Equation Matrixes - Cell (1, 1) atus: Equation solving failed SubB CoCatE CatO Mole Equiv I CoC 0.000000 0.000000 -0.000001 0.000010 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 20.00000 (mg) mg) Substrate = 0. -0.120000 0.880000 -0.120000 -0.120000 -0.120000 0.000000 0.000000 0.000000 0.000000 0.000000 2.72739 (mg) 0.000000 1.000000 0.00027 (mg) (uL) Total Volume 0.000000 0.000000 0.000000 0.000000 1.0000000 1.000000 1.000000 200.000000 Mole Equiv.] Cata 0.000000 -0.000000 0.000010 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00003 (mg) 0.00055 (mg) 0.000000 0.000000 0.000000 -1.0000000 0.000000 0.000000 0.100000 0.100000 0.100000 0.100000 0.000000 -1.0000000 0.000000 0.000000 0.000000 0.001000 0.000000 0.000000 0.000000 0.000000 2727.39 (uL 0.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 0.001000 0.000000 SolvA -2527.66 (uL 0.000000 0.000000 0.000000 -1.000000 0.000000 0.000000 0.000000 0.010000 0.000000 0.000000 CoCatE 0.00 (ut. 0.000000 0.000000 0.000000 0.000000 0.000000 0.27 (uL 0.000000 -1.000000 0.000000 0.000000 0.002000 OK. 835 830 845 850

FIG. 8B

- 32 S. S. S.

FIG. 8C

FIG. 8D

FIG. 9A

ar ger gert uger gree uter ste e geen geen geen serst ste stere geen geen serst steel stee

APPROVED	O.G. FIG.		
BY	CLASS	SUBCLASS	
DRAFTSMAN			

FIG. 9B

FIG. 10

1

Type MW (g/Mail) Equiv Structure Density (g/mL) Velue Unit Assumption Core (g/mL)

1.0000 Mole/L

Neat/Solvent d[Neat] const

0.0010

1.0000

are great eigen group, eigen apper ap og gener proces proces process in the figure of the figure of

1 24 B

2 👪 A

0.208

0.702 ≇ a

க் Chemicals பூர் Stock Materials 🔛 Parameters