مسائل مشتق

ارای هر کنید تابع $f'(x)=rac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر f در \mathbb{R} داشته باشیم $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در $f(b)-f(a)=\frac{1}{2}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای هر که در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به ازای در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان دهید به در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ نشان در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$ در عدد حقیقی $f'(x)=\frac{x}{1+x^{\gamma}}$

۲- فرض کنید تابع \mathbb{R} جار $(\cdot, 1)$ بر $f:[\cdot, 1]$ بیوسته باشد و $g:[\cdot, 1]$ بر بازهٔ باز $f:[\cdot, 1]$ موجود و صعودی باشد، نشان $g:[\cdot, 1]$ بر بازهٔ $g(x)=\frac{f(x)}{x}$ با دستور $g:[\cdot, 1]$ نیز بر بازهٔ $g(x)=\frac{f(x)}{x}$

۳- کوتاهترین فاصلهٔ نقطهٔ (۰٫۵) تا سهمی $y=rac{1}{15}\chi^{7}$ را بیابید.

آیا راه حل بالا درست است؟ اگر درست نیست اشکال آن و راه حل درست را بنویسید.