Lógica Matemática – 1^a Avaliação

Rogério Eduardo da Silva e Claudio Cesar de Sá

9 de setembro de 2013

"A educação é um processo social, é desenvolvimento. Não é a preparação para a vida, é a própria vida." (John Dewey)

- 1. (1.0 pt) Determina o valor lógico das fórmulas abaixo:
 - $-2 < 0 \leftrightarrow \pi^2 < 0 \land$ Roma é a capital da França
 - $3+4=7\lor 13$ é um número primo $\to \sqrt{2}>2$
 - $3^2 + 4^2 = 5^2 \$ Tóquio fica no Japão $\rightarrow (\pi > 2.04 \leftrightarrow 2 \neq 3)$
 - Brasil fala português \wedge $2^3 4 > 5^2 10 \lor 5 \neq 3 + 3$
- 2. (1.0 pt) Determinar por tabela-verdade se a fórmula abaixo é uma tautologia, contradição ou contingência:
 - (a) $(P \to Q) \to (P \lor R \to Q \lor R)$
 - (b) $P \to (P \to Q \land \sim Q)$
 - (c) $\sim X = 0 \rightarrow X \neq Y \lor Y \neq T$
 - $(d) \sim (P \wedge Q) \veebar \sim P$
- Obs.: $\underline{\vee} = \oplus$
- 3. (3.0 pts) Determine as formas normais mais simples (FNC e FND) equivalentes para as fórmulas abaixo:
 - (a) $(\sim P \land Q) \stackrel{\vee}{\rightarrow} Q$ (b) $(\sim P \lor \sim Q) \leftrightarrow P$
- 4. (2.0 pts) Utilizando as propriedades e equivalências fornecidas na página seguinte verifique SE essas fórmulas apresentam uma relação de implicação lógica verdadeira:
 - (a) $(P \leftrightarrow \sim Q) \Rightarrow (P \to Q)$
 - (b) $Q \Rightarrow P \lor Q \leftrightarrow P$
 - (c) $(P \to Q) \Rightarrow P \land R \to Q$
- 5. (3.0 pts) Utilizando as propriedades e algumas equivalências fornecidas na página seguinte, demonstre **SE** as equivalências abaixo se aplicam:

1

- (a) $P \to Q \Leftrightarrow P \lor Q \to Q$
- (b) $P \lor Q \Leftrightarrow (P \to Q) \to P$
- (c) $(P \to Q) \to R \Leftrightarrow P \land \sim R \to \sim Q$

Equivalências Notáveis:

Idempotência (ID): $P \Leftrightarrow P \land P$ ou $P \Leftrightarrow P \lor P$

Comutação (COM): $P \wedge Q \Leftrightarrow Q \wedge P$ ou $P \vee Q \Leftrightarrow Q \vee P$

Associação (ASSOC): $P \land (Q \land R) \Leftrightarrow (P \land Q) \land R \text{ ou } P \lor (Q \lor R) \Leftrightarrow (P \lor Q) \lor R$

Distribuição (DIST): $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$ ou $P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R)$

Dupla Negação (DN): $P \Leftrightarrow \sim \sim P$

De Morgan (DM): $\sim (P \land Q) \Leftrightarrow \sim P \lor \sim Q \text{ ou } \sim (P \lor Q) \Leftrightarrow \sim P \land \sim Q$

Conditional (COND): $P \rightarrow Q \Leftrightarrow \sim P \vee Q$

Bicondicional (BICOND): $P \leftrightarrow Q \Leftrightarrow (P \rightarrow Q) \land (Q \rightarrow P)$

Contraposição (CP): $P \rightarrow Q \Leftrightarrow \sim Q \rightarrow \sim P$

Exportação-Importação (EI): $P \land Q \rightarrow R \Leftrightarrow P \rightarrow (Q \rightarrow R)$

Tautologia: $P \lor \sim P \Leftrightarrow \blacksquare$

Contradição: $P \land \sim P \Leftrightarrow \Box$

Conectivos de Scheffer: $P \uparrow Q \Leftrightarrow \sim P \lor \sim Q \in P \downarrow Q \Leftrightarrow \sim P \land \sim Q$

Ou-exclusivo (X-or): $P \veebar Q \Leftrightarrow (P \lor Q) \land \sim (P \land Q)$ Obs.: $\veebar = \oplus$