CMPUT463/563 Probabilistic Graphical Models

Exact Inference: Message Passing

Lili Mou

Dept. Computing Science, University of Alberta

lmou@ualberta.ca

Outline

- Variable elimination (last lecture)
 - Dynamic programming: pulling sum/max inside
 - Sum-product, max-product identical, due to semirings
 - To eliminate a node X: consider all potentials involving $X\Rightarrow$ marginalize/max X out \Rightarrow Put resulting potential back, with scope N(X)
- Message passing
 - VE two passes => answer all queries of a variable
 - Belief propagation: Sum-product message passing
- Message passing on factor trees
- Message passing on junction trees

Variable Elimination

Input: Variables Y, Z, X = x, set of factors Φ

Elimination order (assuming Z_1, Z_2, \dots, Z_k wlog)

- 1. $\Phi \leftarrow \Phi$ with evidence potentials
- 2. For $i = 1, \dots, k$
- 2.1 $\Phi' \leftarrow \{ \phi \in \Phi' : Z_i \in \text{scope}(\phi) \}$
- 2.2. $\varphi \leftarrow \sum_{z_i} \prod_{\phi \in \Phi'} \phi$
- 2.3 $\Phi = \Phi \setminus \Phi' \cup \{\varphi\}$

Return $\prod_{\phi \in \Phi} \phi$ as a factor on Y given X

Examples

$$P(e) = \sum_{d} \sum_{c} \sum_{b} \sum_{a} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

$$P(d) \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$$

$$P(d) = \sum_{a} \sum_{b} \sum_{a} \sum_{b} P(a)P(b|a)P(c|b)P(d|c)P(e|d)$$

Observation: If we have multiple queries for a graph, some DP results are reusable

Even More

Observation: DP twice (from left and from right), all marginals are obtained. Congratulations! You are inventing the belief propagation algorithm

Trees

For certain graphs (namely, trees) DP results are reusable for different queries. A chain is a special case of trees.

Any node separates a tree into two parts. VE needed for both sides, but is reusable

Work with factor graphs. Later

Message Passing

Without loss of generality, we assume having **one singleton** potential for each node and **one pairwise** potential for two connected nodes.

Initialization

Consider a leaf node j. If j does not have a neighbor, it's done. Otherwise, j can only have one neighbor, which we call i.

$$m_{ji}(x_i) = \sum_{x_j} \phi(x_j) \phi(x_i, x_j)$$

 m_{ii} is called the message from j to i, a potential when j is eliminated.

Sum-product message passing is also called belief propagation; such a message is also called a belief.

Message Passing

Recursion

Suppose node j is now a leaf and can have at most one neighbor, which we call i. Other neighbors of j are already eliminated.

$$\vdots \qquad j \qquad i \qquad m_{ji}(x_i) = \sum_{x_j} \left(\phi(x_j) \phi(x_i, x_j) \prod_{k \in N(j) \setminus \{i\}} m_{kj}(x_j) \right)$$

 m_{ji} is called the *message* from j to i, the potential after eliminating variables up to j before i, with a scope of i only.

Who can pass message? j can pass message to i if j has received messages from all its neighbors except i.

Message Passing

Termination

Suppose node j is now a leaf and it does not have other neighbors. Done!

But note: this is half of the story

We need message passing the other way around. It's also true for trees.

Non-Tree Structures

Assuming singleton and pairwise potentials

Suppose the query is $P(X_3)$. If we start sending messages from a node, say X_1 , we have

$$m_{12} = \sum_{X_1} \phi(X_1)\phi(X_1, X_2)$$
 $m_{13} = \sum_{X_1} \phi(X_1)\phi(X_1, X_3)$

$$P(X_3) = \sum_{X_2} \sum_{X_1} \phi(X_1)\phi(X_2)\phi(X_3)\phi(X_1, X_2)\phi(X_2, X_3)\phi(X_1, X_3)$$

Factorization in such a style is fundamentally wrong

$$\sum_{x} xyz = \left(\sum_{x} xz\right) \left(\sum_{x} xy\right)$$

In fact, you can show that two message passings yield different results, which is also the evidence that such factorization is wrong

Non-Tree Structures

But suppose the remaining structures are tree-like, message passing can treat X_1, X_2, X_3 as a whole, as a factor

Factor graph is a bipartite graph between variables and factors. We consider such graphs that are trees.

Suppose we would like to eliminate X_j and X_k , whose left nodes are already eliminated with potentials μ_{tj} from factor t to node j

$$P(X_i, left(X_i)) \propto \phi(x_i, left(X_i)) \sum_{X_{N(s) \setminus i}} f_s(X_{N(s)}) \prod_{j \in N(s) \setminus i} \prod_{t \in N(j) \setminus s} \mu_{tj}(x_j)$$

Suppose now we would like to eliminate X_i and X_k

Reusable! DP is possible

$$\nu_{js} = \prod_{t \in N(j) \setminus s} \mu_{tj}(x_j)$$

Two types of messages

 $X_{N(s)\setminus i}$

 ν_{is} : variables j to factor s

$$\nu_{js}(x_i) = \prod_{t \in N(j) \setminus s} \mu_{tj}(x_j)$$

 $j \in N(s) \setminus i t \in N(j) \setminus s$

(marginalization is deferred with the factor f_s)

 μ_{si} : factor s to variable i

$$\mu_{si}(x_i) = \sum_{X_{N(s)\setminus i}} f_s(X_{N(s)}) \prod_{j \in N(s)\setminus i} \nu_{js}(x_j)$$

(potential on X_i by eliminating other variables in the factor)

$$P(X_i, left(X_i)) \propto \phi(x_i, left(X_i)) \sum_{X_{N(s) \setminus i}} f_s(X_{N(s)}) \prod_{j \in N(s) \setminus i} \prod_{t \in N(j) \setminus s} \mu_{tj}(x_j)$$

$$\nu_{js}(x_i) = \prod_{t \in N(j) \setminus s} \mu_{tj}(x_j)$$

$$\mu_{si}(x_i) = \sum_{X_{N(s)\backslash i}} f_s(X_{N(s)}) \prod_{j \in N(s)\backslash i} \nu_{js}(x_j)$$

Message passing on factor trees is indeed an exact inference algorithm, as it's reusing VE intermediate results

Complexity

Complexity: exponential wrt largest factor

For ancestor trees, as efficient as representation the conditional probability

If the factor graph is cyclic, then we need to consider more variables at a time

What if factor graph is cyclic?

- The factor graph is cyclic. We cannot start message passing on the factor graph.
- However, we don't have to consider all variables either

For example, when we eliminate A, we connect B, C without involving D

A special type of graphs: chordal graphs

Chordal Graphs

Def: A graph is *chordal* (aka *triangulated*) if any loop of length >=4 has a chord (a straight line going across the loop)

Many graph-theoretical results:

- For a chordal graph, there exists a VE order that does not introduce new edges
- The graph induced by VE is chordal

Junction Tree

For a chordal graph, define a vertex C_i in the junction tree as a max clique. Connect the nodes by spanning tree algorithms (e.g., max spanning tree with intersecting variables)

This will correspond to VE with some order such that $C_i - C_j$ if the message of i is used in computing the message of j.

Running intersection property: If a variable occurs in C_i and C_j , then it must occur on every nodes in the trail $C_i - \cdots - C_j$. VE satisfies running intersection property because a variable eliminated will not recur.

Elimination order: *ABCDEFGH*

Now we can design a MP-like algorithm to eliminate variables Results will be clique marginals

Let the variables of *i*th clique be C_i . Let $S_{ij} = C_i \cap C_j$

Sending message from C_i to C_j is to eliminate variables $C_i \backslash S_{ij}$

Shafer-Shenoy update:

Shafer-Shenoy update:
$$\mu_{i \to j}(S_{ij}) = \sum_{C_i \setminus S_{ij}} \psi(C_i) \prod_{k \in N(i) \setminus \{j\}} \mu_{k \to i}(S_{ki})$$

Clique marginal

$$P(C_i) = \psi(C_i) \prod_{k \in N(i)} \mu_{k \to i}(S_{ki})$$

Hugin update

- Store the product in the potential. Store previous message on the edge and discount it during MP back.
- More time efficient

<u>Initialization</u>

$$\phi_i(C_i) = \psi(C_i)$$

$$\phi_{ij}(S_{ij}) = 1$$

 $\underline{\mathsf{Update}} \; \mathsf{from} \; C_i \; \mathsf{to} \; C_j \; \mathsf{over} \; S_{ij}$

$$\phi_{ij}(S_{ij})^{(\text{new})} = \sum_{C_i \setminus S_{ij}} \phi_i(C_i)$$

$$\phi_j(C_j)^{\text{(new)}} = \phi_j(C_j) \frac{\phi_{ij}(C_{ij})^{\text{(new)}}}{\phi_{ij}(C_{ij})}$$

Denominator = 1 if first time passing an edge from i to j; or = message from i to j, if second time passing from j to i

Summary

- 1. Moralize (easy)
- 2. Triangulate the graph (NP-hard) Can be
- 3. Build the junction tree
- 4. Shafer-Shenoy update or Hugin update

Two-pass message passing => marginals of all potentials