Decision Tree

the excuse

marco milanesio MScDSAI

Decision Tree

- Supervised learning
 - Classification
 - Regression
- Leaves = class labels
- Many algorithms
 - ID3
 - CART
 - FDT
 - ...

Survival of passengers on the Titanic

source: wikipedia

Key idea

- Split the dataset
- Find the "best" split

- Given training vectors: $x_i \in \mathbb{R}^n$, i = 1,...,l
- and a label vector: $y \in R^l$
- Recursively partitions the feature space s.t. samples with the same labels are grouped together

Maths

- data at node m : Q_m with n_m samples
- For each candidate split $s=(i,t_m)$ consisting of (feature, threshold)
- Do the partition

$$Q_m^L(s) = \{(x, y) | x_i \le t_m \}$$

$$Q_m^R(s) = Q_m \backslash Q_m^L(s)$$

Impurity

$$Q_m^L(s) = \{(x, y) | x_i \le t_m \}$$

$$Q_m^R(s) = Q_m \backslash Q_m^L(s)$$

$$G(Q_{m}, s) = \frac{n_{m}^{L}}{n_{m}}G(Q_{m}^{L}(s)) + \frac{n_{m}^{R}}{n_{m}}G(Q_{m}^{R}(s))$$

Impurity function

The goal

• Select the parameters that minimize the impurity

$$s * = argmin_sG(Q_m, s)$$

• Recurse until max_depth or n_m = 1

Gini impurity

- measures how often a random element would be incorrectly labeled if it were labeled randomly
- ullet J classes
- relative frequencies p_i , $i \in 1,..,J$
- p_i is the probability of choosing an item of label i
- Prob of miscategorizing $\sum_{k \neq i} p_k = 1 p_i$

Gini impurity

$$I_G(p) = \sum_{i=1}^{J} \left(p_i \sum_{k \neq i} p_k \right)$$

$$I_G(p) = \sum_{i=1}^{J} p_i (1 - p_i) = 1 - \sum_{i=1}^{J} p_i^2$$

An example

$$x: [1,2,3,6,7,8]$$
 Total $n = 6$.
 $y: [0,0,0,1,1,1]$ Total $n = 6$.
Threshold = 3
Left (<= 3): values $[1,2,3]$, $y_left = [0,0,0]$
Counts: class0: 3, class1 = 0
 $p0 = 3/3 = 1$; $p1 = 0/3 = 0$
 $G(L) = 1 - (1^2 + 0^2) = 1 - 1 = 0$
Right (> 3): values $[6,7,8]$, $y_right = [1,1,1]$
Counts: class0: 0, class1 = 3
 $p0 = 0/3 = 1$; $p1 = 3/3 = 1$
 $G(R) = 1 - (0^2 + 1^2) = 1 - 1 = 0$

GINI = (3/6) * 0 + (3/6) * 0 = 0

An example

```
x:[1,2,3,6,7,8]
                                  Total n = 6.
                                  Threshold = 2
       y : [0,0,0,1,1,1]
Left (\leq 2): values [1,2], y left = [0,0]
              Counts: class0: 2, class1 = 0
              p0 = 2/2 = 1; p1 = 0/2 = 0
              G(L) = 1 - (1^2 + 0^2) = 1 - 1 = 0
Right (> 2): values [3,6,7,8], y_right = [0,1,1,1]
              Counts: class0: 1, class1 = 3
              p0 = 1/4; p1 = 3/4
              G(R) = 1 - (1/4^2 + 3/4^2) = 1 - 1/16 - 9/16 = 6/16 = 3/8
```

GINI = (2/6) * 0 + (4/6) * 3/8 = 1/4 = 0.25

Spelled out

- for each feature index:
 - compute thresholds (use unique values)
 - for each threshold:
 - split the dataset into L and R
 - compute gini factor
 - if best:
 - update
- return solution

- Implement your own best_split algorithm
- 1 script "gini.py" with 3 functions (1 given)

```
def gini_inpurity(y) # given
def split_dataset(X, y, feature_index, threshold)
def best_split(X, y)
```

- 1 script "main.py" is given. Use it and complete it.
- [OPTIONAL1] plot the history of the gini factor computation
- [OPTIONAL2]: implement optimization strategy (next slide)
- DON'T DO OPTIONALS BEFORE COMPLETING
- DON'T DO OPTIONAL2 BEFORE OPTIONAL1

EXAM: OPTIONAL 2

- Sort feature values and consider splits only between distinct consecutive values (and only when the class label actually changes across that boundary).
- Set threshold to the midpoint.

```
def split dataset(X, y, feature index, threshold):
   Splits dataset into left/right based on threshold
   param X: np.array / list
   param y: np.array / list
   feature index: np.array / list
   threshold: numerical
   return tuple
```

111111

```
def best_split(X, y):
    """

Find the best split for dataset
    param X: np.array / list
    param y: np.array / list

return tuple
"""
```

- Return:
 - 1 python script "yourname_gini.py" containing the main algorithm
 - 1 python script "yourname_main.py"
- Zip them (yourname_exam.zip) and send email
- Deadline: TODAY AT 12:00 PM.
- EMAIL TIMESTAMP will rule out late comings
 - <insert trivia about pasts courses here>