FINAL PROJECT PHYTON FOR FINANCE

PROJECT TITLE

Exploring the Impact of Covid-19 on Financial Performance of Health and Industrial Firms:

Evidence from Cross-Sectional Study of US Market

GROUP 1

- 1. Amin Ilyas
- 2. Hélène Do
- 3. Logba Elvire Ursule Vera Yapi
 - 4. Nico Benedikt Horstmann
 - 5. Pritam Ritu Raj

Contents

- 1. Project Overview
- 2. Data and Sample
- 3. Data Preparation
- 4. Python (brief coding) and Results
- 5. Discussion (all interpretations: hypotheses)
- 6. Conclusion
- 7. Recommendation
- 8. List of References

Project Overview

- Project Topic:
 - Analysing Impact of Covid-19 on quarterly firm performance in US
- Time Horizon:
 - COVID-19 and quarterly (continuous)
 - 2020 2022: Q1 Q4
- Research Method:
 - CROSS SECTIONAL
- Aim:
 - To analyze the relationship between:
 - Firms' financial performance (Altman Z-score) in a sector in US
 - COVID-19 data in US
 - Macroeconomic variable: Federal Funds Effective Rate in US
 - With analysis on heterogeneity between 2 (two) industries/ sectors in US: HEALTH and INDUSTRIAL
- Variables:
 - Dependent variable (DV)
 - Altman Z-Score : Z Score
 - Independent variable
 - Stringency Index : SI
 - Number of Cases : NC
 - Federal funds Effective Rate : FF
 - Size of firms : size

- Data Processing
- PART 0 Data Preparation
 - 0.1. IV1 and IV2 csv in quarterly data
 - 0.2. Split WRDS csv data into two sectors
 - 0.3. For each sector, convert WRDS csv into DV csv (i.e. compute z-score, using excel)
- PART 1 Descriptive Statistics
 - 1.1. Preliminary Data Visualization (# samples, etc.)
 - 1.2. Univariate Descriptive Statistics
 - 1.3. Histograms
 - 1.4. Winsorizing (if necessary)
 - 1.5. Correlation coefficients:
 - 1.5.1. Pearson
 - 1.5.2. Spearman's rank
- PART 2 Inferential Statistics
 - 2.1 Classic assumption test
 - 2.1.1 Jarque Bera
 - 2.1.2 Kolmogorov-Smirnov
 - 2.2. Hypothesis Test:
 - 2.2.1. One Sample t-Test
 - 2.2.2. Two Sample t-Test
 - 2.2.3. Simple Regression
 - 2.2.4 Multiple Linear Regression
 - 2.2.5. Quantile Regression
- PART 3 Heterogeneity

Data and Sample (1)

COVID 19 Data: Stringency Index (DAILY)

https://ourworldindata.org/explorers/coronavirus-data-explorer?uniformYAxis=0&hideControls=tru

e&Metric=Stringency+index&Interval=7day+rolling+average&Relative+to+Populatio n=true&Color+by+test+positivity=false&cou ntry=~USA

Macroeconomic Data: Federal Funds ER (QUARTERLY)

https://fred.stlouisfed.org/series/FEDFUNDS# 0

Financial Data – WRDS Fundamentals (QUARTERLY)

https://wrds-

www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/compustat/north-america-daily/fundamentals-quarterly/?saved query=2316916

Data and Sample (2)

4	A B	C D		F	G	Н		J	K	L	M	N	0	Р	Q	R	S	- 1	U	V W	X Y	Z
g	vkey datadate fy		indfmt				tic	cusip	conm	curcdq	datacqtr	datafqtr	0 1				_		_	xoprq costat		
	1004 20200229	2019	3 INDL	С	D	STD	AIR		AAR COR		2020Q1	2019Q3	461.9	2.3		562.9	0.2	672.8	2.4	518.7 A	1212.74 AAR Corp	
	1004 20200531	2019	4 INDL	С	D	STD	AIR		AAR COR		2020Q2	2019Q4	353.7	-16.5	661.4	424	-4	1055.6	2.8	397.7 A	707.9065 AAR Corp	
	1004 20200831	2020	1 INDL	С	D	STD	AIR		AAR COR		2020Q3	2020Q1	341.3	-14.5	648.3	402.7	-3.8	679.9	1.7	383.7 A	712.3742 AAR Corp	
	1004 20201130	2020	2 INDL	С	D	STD	AIR	361105	AAR COR	USD	2020Q4	2020Q2	332.2	8.2	656.6	401.7	5.2	633.5	1.3	376.4 A	1001.234 AAR Corp	J.
	1004 20210228	2020	3 INDL	С	D	STD	AIR	361105	AAR COR	USD	2021Q1	2020Q3	336.8	28.1	685.3	411.8	12	640.7	1.1	383.4 A	1404.99 AAR Corp	j.
	1004 20210531	2020	4 INDL	С	D	STD	AIR	361105	AAR COR	USD	2021Q2	2020Q4	354.3	14	723.4	435.2	4.8	600.2	0.9	406.1 A	1476.906 AAR Corp	J.
	1004 20210831	2021	1 INDL	C	D	STD	AIR	361105	AAR COR	USD	2021Q3	2021Q1	373.7	11.5	734.6	456.1	3.9	620.7	0.7	422 A	1200.693 AAR Corp	J.
	1004 20211130	2021	2 INDL	C	D	STD	AIR	361105	AAR COR	USD	2021Q4	2021Q2	352.5	20.8	751.8	434.1	7.9	626.5	0.5	398.3 A	1158.418 AAR Corp	J.
	1004 20220228	2021	3 INDL	C	D	STD	AIR	361105	AAR COR	USD	2022Q1	2021Q3	365.3	22.5	776.4	452	8.2	634.1	0.6	412.7 A	1581.753 AAR Corp	١.
	1004 20220531	2021	4 INDL	C	D	STD	AIR	361105	AAR COR	USD	2022Q2	2021Q4	378.8	23.9	8.008	474.9	6.6	659	0.6	434.8 A	1706.554 AAR Corp	j.
	1004 20220831	2022	1 INDL	С	D	STD	AIR	361105	AAR COR	USD	2022Q3	2022Q1	358.7	22.7	820.4	446.4	8.1	677.3	1.1	408.1 A	1504.359 AAR Corp.	j.
	1019 20200331	2020	1 INDL	С	D	STD	AFAP	1038108	AFA PROT	USD	2020Q1	2020Q1								Α	AFA Prote	è
	1019 20200630	2020	2 INDL	С	D	STD	AFAP	1038108	AFA PROT	USD	2020Q2	2020Q2								Α	AFA Prote	8
	1019 20200930	2020	3 INDL	С	D	STD	AFAP	1038108	AFA PROT	USD	2020Q3	2020Q3								Α	AFA Prote	e
	1019 20201231	2020	4 INDL	С	D	STD	AFAP	1038108	AFA PROT	USD	2020Q4	2020Q4	55.673	2.603	10.262	82.679	1.2	15.525	0.109	76.909 A	28.188 AFA Prote	e
	1045 20200331	2020	1 INDL	С	D	STD	AAL	02376R10	AMERICA	1 USD	2020Q1	2020Q1	7541	-2241	-6501	8515	-649	-12038	257	9196 A	5154.993 American	1
	1045 20200630	2020	2 INDL	С	D	STD	AAL	02376R10	AMERICA	1 USD	2020Q2	2020Q2	4538	-2067	-8551	1622	-592	-4211	255	5195 A	6646.827 American	1
	1045 20200930	2020	3 INDL	С	D	STD	AAL	02376R10	AMERICA	USD	2020Q3	2020Q3	5191	-2399	-10963	3172	-696	-4244	339	5986 A	6250.743 American	1
	1045 20201231	2020	4 INDL	С	D	STD	AAL	02376R10	AMERICA	USD	2020Q4	2020Q4	5237	-2178	-13767	4028	-631	-5474	376	5982 A	9800.74 American	1
	1045 20210331	2021	1 INDL	С	D	STD	AAL	02376R10			2021Q1	2021Q1	5820	-1250	-14931	4008	-323	756	371	6687 A	15328.84 American	
	1045 20210630	2021	2 INDL	C	D	STD	AAL	02376R10			202102	202102	6697	19	-14873	7478	-10	1126	485	7932 A	13732.33 American	
	1045 20210930	2021	3 INDL	c	D	STD	AAL	02376R10			2021Q3	2021Q3	7448	170		8969	37	257	476	8875 A	13286.23 American	
	1045 20211231	2021	4 INDL	c	D	STD	AAL	02376R10			2021Q4	2021Q4	8004	-932	-14580	9427	-259	-1670	468	9567 A	11633.19 American	
	1045 20220331	2022	1 INDL	C	D	STD	AAL	02376R10			202201	2022Q1	8276	-1635	-16189	8899	-451	-4104	463	9893 A	11853.34 American	
	1045 20220630	2022	2 INDL	C	D	STD	AAL	02376R10			2022Q2	2022Q2	9933	476	-15687	13422	127	-4245	469	11827 A	8239.198 American	
	1045 20220930	2022	3 INDL	C	D	STD	AAL	02376R10			2022Q2	2022Q2	10064	483	-15176	13462	176	-4593	498	11921 A	7824.351 American	
	1050 20200331	2020	1 INDL	C	D	STD	CECO	1.25E+08			2020Q1	2020Q1	51.723	3.412	-59.705	80,486	0.779	109.905	1.023	73.699 A	164.384 CECO Env	
	1050 20200630	2020	2 INDL	C	D	STD	CECO	1.25E+08			2020Q1	2020Q1	48.688	3.258	-55.28	75.17	0.564	73,997	0.944	67.095 A	232.996 CECO Env	
	1050 20200030	2020	3 INDL	C	D	STD	CECO	1.25E+08			2020Q2 2020Q3	2020Q2 2020Q3	52.087	-0.239	-54.155	77.425	0.206	74.055	0.772	71.07 A	257.8254 CECO Env	
	1050 20200930	2020	4 INDL	C	D	STD	CECO	1.25E+08			2020Q3 2020Q4	2020Q3 2020Q4	56.073	1.78		82.93	2.123	74.129	0.772	73.633 A	246.1543 CECO Env	
	1050 20201231	2020	1 INDL	c	D	STD	CECO	1.25E+08			2020Q4 2021Q1	2020Q4 2021Q1	46.841	1.181	-51.401	71.892	0.551	75.434	0.795	66.295 A	280.9599 CECO Env	
	1050 20210331	2021	2 INDL	C	D	STD	CECO	1.25E+08			2021Q1	2021Q1	53.235	0.293	-50.818	78.68	0.331	75.305	0.725	73.746 A	254.9819 CECO Env	
				C	D											79.979	0.199					
	1050 20210930 1050 20211231	2021 2021	3 INDL	C	D	STD	CECO	1.25E+08			2021Q3	2021Q3 2021Q4	56.564	-1.25 1.202		93.589		71.299 72.326	0.722	77.493 A 85.417 A	247.456 CECO Env	
			4 INDL	-	D			1.25E+08			2021Q4		64.514		-48.785		1.878		0.8		218.2244 CECO Env	
	1050 20220331	2022	1 INDL	C		STD	CECO	1.25E+08			2022Q1	2022Q1	65.172	2.792	-46.524	92.436	1.112	79.248	0.822	86.324 A	192.5672 CECO Env	
	1050 20220630	2022	2 INDL	С	D	STD	CECO	1.25E+08			2022Q2	2022Q2	72.768	4.388	-45.105	105.375	1.86	74.69	1.098	95.756 A	206.5133 CECO Env	
	1050 20220930	2022	3 INDL	C	D	STD	CECO	1.25E+08			2022Q3	2022Q3	75.086	1.942	-49.052	108.414	0.315	82.867	1.569	100.252 A	303.8205 CECO Env	
	1062 20200229	2020	1 INDL	С	D	STD	ASA	G3156P10			2020Q1	2020Q1	0.886	-8.931	256.285	0.157	0		0	0.886 A	237.8457 ASA Gold	
	1062 20200531	2020	2 INDL	С	D	STD	ASA	G3156P10			2020Q2	2020Q2	0.842	87.373		0.503	0		0	0.842 A	295.137 ASA Gold	
	1062 20200831	2020	3 INDL	С	D	STD	ASA	G3156P10			2020Q3	2020Q3	1.201	158.462		0.243	0		0	1.201 A	449.0712 ASA Gold	
	1062 20201130	2020	4 INDL	C	D	STD	ASA	G3156P10	ASA GOLE	USD	2020Q4	2020Q4	1.045	-58.461	443.274	0.43	0		0	1.045 A	384.0639 ASA Gold	4

10 Energy 3694 15 Materials 4346 20 Industrials 7773 25 Consumer Discretionary 7099 30 Consumer Staples 2806 35 Health Care 14558 40 Financials 10833 45 IT 8696 50 Communication Services 3305 55 Utilities 2492 60 Real estates 2677 68279 Total TRUE

GCSI Structure

https://www.msci.com/documents/1296102/11185224/GICS+ Methodology+2022.pdf/f9910041-6127-17d2-1246-4052926adaf7?t=1645738126436

Data Preparation

- 1. Altman Z-Score computation
- 2. Creation of COVID- and FederalFunds Quarterly Data
- 3. Duplication of Stringency Index Quarterly Data
- 4. Duplication of Covid and Federal Funds Quarterly Data
- 5. Merging data and using the common Sample Period

Sample Period:

2020Q1 to 2022Q3 (Covid period)

$$Z\: score = 1.2 \times \frac{WC}{TA} + 1.4 \times \frac{RE}{TA} + 3.3 \times \frac{EBIT}{TA} + 0.6 \times \frac{ME}{TL} + 1.0 \times \frac{SALE}{TA}$$

The Z-Score is then calculated the same way like we did in Class

- Only 11 values for the COVID Data → We needed to merge them with the firm data such that the values are duplicated and matched to the respective quarter
- Selection of the columns we needed for the statistical analysis.

1.1. Preliminary Data Visualization (Number of .)

1.2. Univariate Descriptive Statistics

SECTOR 1: INDUSTRIAL

- W. =	new_cases	stringency_in	dex	FEDFUNDS	Z_Score
count	5.660000e+03	5660.000	000	5660.000000	5660.000000
mean	9.108190e+06	50.307	819	0.004157	-114.186900
std	6.607299e+06	17.299	089	0.006382	5821.615094
min	1.920780e+05	17.047	597	0.000600	-430411.821234
25%	3.202890e+06	29.152	842	0.000800	0.228439
50%	8.686982e+06	51.214	645	0.000900	1.189588
75%	1.136729e+07	67.637	665	0.007700	2.776037
max	2.533413e+07	72.030	444	0.021900	2492.176716
2.0	logNC	logSI		logFF	
count	5660.000000	5660.000000 5	660.	000000	
mean	15.614944	3.864351	0.	004129	
std	1.174522	0.411697	0.	006319	
min	12.165662	2.893013	0.	000600	
25%	14.979564	3.406279	0.	008800	
50%	15.977336	3.955363	0.	000900	
75%	16.246250	4.228841	0.	007671	
max	17.047663	4.290876	0.	021664	
		_			

- 10 - 10 d - 10 d - 40 d to		FEDELWOO	7 6
new_cases	stringency_ind	ex FEDFUNDS	Z_Score
1.056200e+04	10562.0000	00 10562.000000	10562.000000
9.240568e+06	50.0088	11 0.004179	-174.501036
6.617038e+06	17.1044	0.006398	4089.558398
1.920780e+05	17.0475	97 0.000600	-177398.552000
4.597537e+06	29.1528	42 0.000800	-2.007426
8.686982e+06	51.2146	45 0.000900	1.808619
1.136729e+07	67.6376	65 0.007700	9.108121
2.533413e+07	72.0304	44 0.021900	2300.534229
logNC	logSI	logFF	
10562.000000	10562.000000	10562.000000	
15.642457	3.860041	0.004150	
1.155428	0.406362	0.006334	
12.165662	2.893013	0.000600	
15.341032	3.406279	0.000800	
15.977336	3.955363	0.000900	
16.246250	4.228841	0.007671	
17.047663	4.290876	0.021664	
	9.240568e+06 6.617038e+06 1.920780e+05 4.597537e+06 8.686982e+06 1.136729e+07 2.533413e+07 logNC 10562.000000 15.642457 1.155428 12.165662 15.341032 15.977336 16.246250	1.056200e+04 10562.00000 9.240568e+06 50.0088 6.617038e+06 17.10440 1.920780e+05 17.0475 4.597537e+06 29.1528 8.686982e+06 51.21460 1.136729e+07 67.63760 2.533413e+07 72.03040 10562.000000 10562.0000000 15.642457 3.860041 1.155428 0.406362 12.165662 2.893013 15.341032 3.406279 15.977336 3.955363 16.246250 4.228841	1.056200e+04 10562.000000 10562.000000 9.240568e+06 50.008811 0.004179 6.617038e+06 17.104406 0.006398 1.920780e+05 17.047597 0.000600 4.597537e+06 29.152842 0.000800 8.686982e+06 51.214645 0.000900 1.136729e+07 67.637665 0.007700 2.533413e+07 72.030444 0.021900 logNC logSI logFF 10562.000000 10562.000000 10562.000000 15.642457 3.860041 0.004150 1.155428 0.406362 0.006334 12.165662 2.893013 0.000600 15.341032 3.406279 0.000800 15.977336 3.955363 0.000900 16.246250 4.228841 0.007671

1.3. Histograms

SECTOR 1: INDUSTRIAL

SECTOR 2: HEALTH

stringency_index

0.02

0.00

1.4. Winsorizing of the Z-Score

0.25 0.20 0.10 0.05 0.00

- Values that exceeded the 2.5% or 97.5% percentile were replaced with the percentile
- Makes the distribution more normalized
- And the mean has a value that is in the range of the actual Z-Score

For example for the Industrial sector we get the following Statistics:

Before: After:

count	Z_Score	Z_Score
mean	5660.000000	5376.000000
std	-114.186900	1.699561
	5821.615094	4.347951
min	-430411.821234	-24.034667
25%	0.228439	0.285224
50%	1.189588	1.189588
75%	2.776037	2.654219
max	2492.176716	21.648497

1.5. Correlation Coefficients: Pearson

SECTOR 1: INDUSTRIAL

logNC logSI logFF Z_Score size logNC 1.000000 0.451678 -0.295122 0.069025 0.078571 logSI 0.451678 1.000000 -0.783331 0.056297 0.030001 logFF -0.295122 -0.783331 1.000000 -0.059580 -0.013437 Z_Score 0.069025 0.056297 -0.059580 1.000000 0.349764 size 0.078571 0.030001 -0.013437 0.349764 1.000000

	logNC	logSI	logFF	Z_Score	size
logNC	1.000000	0.510591	-0.671029	0.051455	0.043267
logSI	0.510591	1.000000	-0.928709	0.091064	0.096937
logFF	-0.671029	-0.928709	1.000000	-0.098879	-0.098745
Z_Score	0.051455	0.091064	-0.098879	1.000000	0.400855
size	0.043267	0.096937	-0.098745	0.400855	1.000000

1.5. Correlation Coefficients: Spearman's Rank

SECTOR 1: INDUSTRIAL

	logNC	logSI	logFF	Z_Score	size
logNC	1.000000	0.049512	0.043613	0.089391	0.060635
logSI	0.049512	1.000000	-0.789485	0.034115	0.004085
logFF	0.043613	-0.789485	1.000000	-0.071404	-0.026252
Z_Score	0.089391	0.034115	-0.071404	1.000000	0.404897
size	0.060635	0.004085	-0.026252	0.404897	1.000000

	logNC	logSI	logFF	Z_Score	size
logNC	1.000000	-0.012001	0.084017	0.038203	0.023209
logSI	-0.012001	1.000000	-0.731064	0.096633	0.091844
logFF	0.084017	-0.731064	1.000000	-0.119743	-0.101599
Z_Score	0.038203	0.096633	-0.119743	1.000000	0.492085
size	0.023209	0.091844	-0.101599	0.492085	1.000000

2.1.1 Classic assumption test: Jarque Bera

SECTOR 1: INDUSTRIAL

The Jarque-Bera test stat of New Cases is 4600.01 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of Stringency-index is 845.67 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of FEDFUNDS is 3933.99 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of Z-score is 13620.47 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of size is 109.41 The p value of Jarque-Bera test is 0.0

Reject *H*₀
Non-normal distribution

SECTOR 2: HEALTH

The Jarque-Bera test stat of New Cases is 6789.91 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of Stringency-index is 2882.59 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of FEDFUNDS is 6806.68 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of Z-score is 35725.88 The p value of Jarque-Bera test is 0.0

The Jarque-Bera test stat of size is 156.81 The p value of Jarque-Bera test is 0.0

> Reject *H*₀ Non-normal distribution

2.1.2. Classic assumption test: Kolmogorov-Smirnov

SECTOR 1: INDUSTRIAL

The KS test stat of New Cases is 1.0 The p value of KS test is 0.0

The KS test stat of Stringency is 1.0 The p value of KS test is 0.0

The KS test stat of FEDFUNDS is 0.5 The p value of KS test is 0.0

The KS test stat of Z_Score is 0.39 The p value of KS test is 0.0

The KS test stat of size is 0.96 The p value of KS test is 0.0

Reject *H*₀
Non-normal distribution

SECTOR 2: HEALTH

The KS test stat of New Cases is 1.0 The p value of KS test is 0.0

The KS test stat of Stringency is 1.0 The p value of KS test is 0.0

The KS test stat of FEDFUNDS is 0.5 The p value of KS test is 0.0

The KS test stat of Z_Score is 0.48 The p value of KS test is 0.0

The KS test stat of size is 0.96 The p value of KS test is 0.0

> Reject H_0 Non-normal distribution

2.1.3 Justification on Parametric Test on Non-Normal

PARAMETRIC TESTS CAN PERFORM WELL WITH SKEWED AND NONNORMAL DISTRIBUTIONS

Parametric tests can perform well with continuous data that are nonnormal if you satisfy the sample size guidelines in the table below. These guidelines are based on simulation studies conducted by statisticians here at Minitab.

Parametric analyses	Sample size guidelines for nonnormal data
1-sample t test	Greater than 20
2-sample t test	Each group should be greater than 15
One-Way ANOVA	 If you have 2-9 groups, each group should be greater than 15. If you have 10-12 groups, each group should be greater than 20.

https://blog.minitab.com/en/adventures-in-statistics-2/choosing-between-a-nonparametric-test-and-a-parametric-test

2.2.1. One Sample and 2.2.2. Two Sample t-Test

SECTOR 1: INDUSTRIAL

SECTOR 2: HEALTH

One Sample t-test:

The t-test stat of Z_Score against 1.81 is -1.86 The p value of t-test is 0.063

Two Sample t-test:

The t-test stat of the diff between two groups is -6.63 The p value of t-test is 0.0

The t-test stat of the diff between two groups is -5.88 The p value of t-test is 0.0

The t-test stat of the diff between two groups is 6.41 The p value of t-test is 0.0

The t-test stat of the diff between two groups is -18.09 The p value of t-test is 0.0

One Sample t-test:

The t-test stat of Z_Score against 1.81 is 7.92 The p value of t-test is 0.0

Two Sample t-test:

The t-test stat of the diff between two groups is -5.33 The p value of t-test is 0.0

The t-test stat of the diff between two groups is -10.24 The p value of t-test is 0.0

The t-test stat of the diff between two groups is 10.99 The p value of t-test is 0.0

The t-test stat of the diff between two groups is -39.61 The p value of t-test is 0.0

2.2.3. Simple Regression

```
NC_zscore_reg = smf.ols(formula='Z_Score ~ 1 + logNC', data = Total_df).fit()
print(NC_zscore_reg.summary())
SI_zscore_reg = smf.ols(formula='Z_Score ~ 1 + logSI', data = Total_df).fit()
print(SI_zscore_reg.summary())
FF_zscore_reg = smf.ols(formula='Z_Score ~ 1 + logFF', data = Total_df).fit()
print(FF_zscore_reg.summary())
Size_zscore_reg = smf.ols(formula='Z_Score ~ 1 + size', data = Total_df).fit()
print(Size_zscore_reg.summary())
# visualizing simple linear regression
# binscatter plot with fitted line

#model = sm.OLS(Y, X, missing='drop')
#model_result = model.fit()
sm.graphics.plot_fit(NC_zscore_reg,1, vlines=False)
sm.graphics.plot_fit(FF_zscore_reg,1, vlines=False)
sm.graphics.plot_fit(FF_zscore_reg,1, vlines=False)
```

OLS Regression Results											
Dep. Variabl	le:			s	core		R-squa	red:			0.00
Model:					0LS		Adj. R	-squared	:		0.00
Method:			Leas	t Squ	iares		F-stat	istic:			31.7
Date:		T	ue, 29	Nov	2022		Prob (F-statis	tic):		1.92e-0
Time:				21:0	7:15		Log-Li	kelihood	:		-11654
No. Observat	ions:				3865		AIC:				2.331e+0
Df Residuals	::				3863		BIC:				2.332e+0
Df Model:					1						
Covariance T	Гуре:			nonro	bust						
	СС	ef	std	err			t	P> t		[0.025	0.975
 Intercept	-3.86	67	o	.981		 -3.	.879	0.000		-5.731	-1.88
logNC	0.35	91	0	.064		5.	631	0.000		0.234	0.48
======= Omnibus:				===== 888	.944		Durbin	====== -Watson:			1.94
Prob(Omnibus	:):			e	.000		Jarque	–Bera (J	B):		16610.21
Skew:				-6	.604		Prob(J	B):			0.0
Kurtosis:				13	.084		Cond.	No.			191

2.2.4. Multiple Linear Regression

```
Covid_zscore_reg = smf.ols(formula='Z_Score ~ 1 + logNC + logSI + logFF + size', data = Total_df).fit()
print(Covid_zscore_reg.summary())
sm.graphics.plot_fit(Covid_zscore_reg,1, vlines=False)
```


2.2.5. Quantile Regression

```
# the 60% unconditional quantiles of Z_score
Z_Score_p60=Total_df['Z_Score'].quantile(0.6)
print("The 60% (and below) percentile of Z_SCore is 1.61.")
# quantile regression for 80% quantile
e_qreg = smf.quantreg(formula='Z_Score ~ 1 + logNC + logSI + logFF + size', data = Total_df).fit(q=0.8)
print(e_qreg.summary())
# plot the quantile regression coeffcient and confidence intervals
q_end=0.98
q_inc=0.02
n=(q_end-q_start)/q_inc+1
n=int(n)
q_forplot=np.linspace(q_start,q_end,n)
beta_forplot=np.zeros(n)
se_forplot=np.zeros(n)
for i in range(n):
   e_qreg = smf.quantreg(formula='Z_Score ~ 1 + logNC + logSI + logFF + size', data = Total_df).fit(q=q_forplot[i])
    beta_forplot[i]=beta[1]
    se=e_qreg.bse
    se_forplot[i]=se[1]
e_reg_control = smf.ols(formula='Z_Score ~ 1 + logNC + logSI + logFF + size', data = Total_df).fit()
beta=e_reg_control.params
beta_ols=beta[1]
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(q_forplot,beta_forplot,label='Quantile Reg')
ax.fill_between(q_forplot,beta_forplot-1.96*se_forplot,
                beta_forplot+1.96*se_forplot,color='b',
                alpha=0.1)
ax.plot(q_forplot,beta_ols*np.ones(n),color='r',
        linestyle='dashed',linewidth=0.8,
        label='OLS Reg')
ax.legend(loc='lower left')
ax.set xlabel('Ouantile')
ax.set_ylabel(r'$\beta_{logNC,logSI, logFF, size}$')
```

	ticollinearit nd below) per	centile of Z		1.61.	trix is singu	ilar.
ep. Varia	======================================	Z_Sco	ore Pseudo	R-square	d:	0.02713
odel:		Quant				0.4887
ethod:		Least Squar				13.23
ate:	Τι	ie, 29 Nov 26			s:	3865
ime:		21:07:		siduals:		3860
			Df Mod	del: 		4
	coef	std err	t	P> t	[0.025	0.975]
tercept	-4.8938	1.049	-4.666	0.000	-6.950	-2.837
ogNC	0.5436	0.112	4.853	0.000	0.324	0.763
ogSI	-0.7514	0.344	-2.181	0.029	-1.427	-0.076
ogFF	-1.96e-07	4.41e-08	-4.446	0.000	-2.82e-07	-1.1e-07
ize	0.3984	0.036	11.163	0.000	0.328	0.468

Discussion: Hypotheses Test, Results and Interpretation

No.	Hpotheses	Test	Sector 1: Industrial	Sector 2: Health
H1	Z is significantly different from 1.81	One-sample t-test	Do no reject H ₀	Reject H ₀
H2	SI _{distressed} is significantly different from SI _{non-distressed}	Two-sample t-test	Reject H ₀	Reject H ₀
Н3	FF _{distressed} is significantly different from FF _{non-distressed}	Two-sample t-test	Reject H ₀	Reject H ₀
H4	Size _{distressed} is significantly different from Size _{non-distressed}	Two-sample t-test	Reject H ₀	Reject H ₀
H5	There is a significant relationship between Z and logNC	SRA (p-value)	Reject H ₀	Reject H ₀
Н6	There is a significant relationship between Z and logSI	SRA (p-value)	Reject H ₀	Reject H ₀
H7	There is a significant relationship between Z and logFF	SRA (p-value)	Reject H ₀	Reject H ₀
Н8	There is a significant relationship between Z and size	SRA (p-value)	Reject H ₀	Reject H ₀
Н9	At least one of the independent variables is related to Z	MRA (p of F)	Reject H ₀	Reject H ₀
H10	At least one of the independent variables is related to Z	QRA (p-value)	Reject H ₀	Reject H ₀

Conclusion

Observations based on our analysis: -

- Industrial sector performed better during the Covid period. During pandemic FED kept on reducing the interest rate thereby, the debt burden on industrial sector diminished.
- Health sector performed even better than industrial sector during the same tenure. With the reduced debt burden and in anticipation of vaccine development the health sector performed as per the expectation.
- Industrial sector and Health sector both are in positive co-relation with increase in number of covid cases. Both these sector were inversely propotional to the FED rate.

Limitation

 This analysis measured the impact of COVID-19 using the growth rate of all confirmed cases and the stringency index. However, other measures, such as the net growth rate (i.e., numbers subtracting recovered cases from confirmed cases), may capture net declines in active confirmed cases which may help avoid unnecessarily inflating the negative impact of global pandemic.

• It should be also noted that there is much uncertainty in calculating recovered cases due to questionable data source reporting recovered cases in many countries, including U.S.

List of References

- Cho, B., & Saki, Z. (2021). Firm performance under the COVID-19 pandemic: The case of the U.S. textile and apparel industry. *The Journal of the Textile Institute*, 1–11. https://doi.org/10.1080/00405000.2021.1943258
- COVID-19 Data Explorer. (n.d.). Our World in Data. Retrieved November 29, 2022, from https://ourworldindata.org/explorers/coronavirus-dataexplorer?uniformYAxis=0&hideControls=true&Metric=Stringency+index&Interval=7day+rolling+average&Relative+to+Population=true&Color+by+test+positivity=false&country=~USA
- Editor, M. B. (2015, February 19). *Choosing Between a Nonparametric Test and a Parametric Test*. Blog.minitab.com. https://blog.minitab.com/en/adventures-in-statistics-2/choosing-between-a-nonparametric-test-and-a-parametric-test
- Effective Federal Funds Rate. (2019). Stlouisfed.org. https://fred.stlouisfed.org/series/FEDFUNDS#0
- GLOBAL INDUSTRY CLASSIFICATION STANDARD (GICS®) METHODOLOGY Guiding Principles and Methodology for GICS. (2022).
 https://www.msci.com/documents/1296102/11185224/GICS+Methodology+2022.pdf/f9910041-6127-17d2-1246-4052926adaf7?t=1645738126436
- Wharton WRDS Login. (n.d.). Wrds-Www.wharton.upenn.edu. Retrieved November 29, 2022, from https://wrds-www.wharton.upenn.edu/pages/get-data/compustat-capital-iq-standard-poors/compustat/north-america-daily/fundamentals-quarterly/?saved_query=2316916
- Xu, J., & Jin, Z. (2022). Exploring the Impact of the COVID-19 Pandemic on Firms' Financial Performance and Cash Holding: New Evidence from China's Agri-food Sector. *Agronomy*, *12*(8), 1951. https://doi.org/10.3390/agronomy12081951