Enseignant es: Blanche Buet, Dominique Hulin et Thomas Letendre.

Feuille 6 – Convolution au sens des distributions, distributions tempérées

Exercice 1 (Convolution $\mathcal{D}' * \mathcal{E}'$). Soient $T \in \mathcal{D}'(\mathbb{R}^d)$, $S \in \mathcal{E}'(\mathbb{R}^d)$ et $\varphi \in \mathcal{D}(\mathbb{R}^d)$, on rappelle que $T * \varphi : x \mapsto \langle T, \tau_x \check{\varphi} \rangle = \langle T, \varphi(x - \cdot) \rangle$ définit un élément de $\mathcal{E}(\mathbb{R}^d)$ et que $S * \varphi \in \mathcal{D}(\mathbb{R}^d)$. On rappelle également que T * S est la distribution $\varphi \mapsto \langle T, \check{S} * \varphi \rangle$.

- 1. Montrer que la convolution est bilinéaire sur $\mathcal{D}'(\mathbb{R}^d) \times \mathcal{D}(\mathbb{R}^d)$ puis sur $\mathcal{D}'(\mathbb{R}^d) \times \mathcal{E}'(\mathbb{R}^d)$.
- 2. Soient $T \in \mathcal{D}'(\mathbb{R}^d)$, $\varphi \in \mathcal{D}(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, montrer que $\tau_a T * \varphi = \tau_a (T * \varphi) = T * \tau_a \varphi$.
- 3. Soient $T \in \mathcal{D}'(\mathbb{R}^d)$, $S \in \mathcal{E}'(\mathbb{R}^d)$ et $a \in \mathbb{R}^d$, montrer que $\tau_a(T * S) = \tau_a T * S = T * \tau_a S$.

Exercice 2 (Quelques calculs de convolées). Soient $T \in \mathcal{D}'(\mathbb{R}^d)$ et $S \in \mathcal{E}'(\mathbb{R}^d)$.

- 1. Calculer $T * \delta_0$
- 2. En déduire une expression simple de la distribution $T * (\partial^{\alpha} \delta_{a})$ où $\alpha \in \mathbb{N}^{d}$ et $a \in \mathbb{R}^{d}$.
- 3. Soient a < b et c < d, calculer $(\mathbf{1}_{[a,b]} * \mathbf{1}_{[c,d]})''$ dans $\mathcal{D}'(\mathbb{R})$.
- 4. Soient $a \in \mathbb{R}^d$ et $e_a : x \mapsto e^{a \cdot x}$, exprimer $S * e_a$ en fonction de e_a .

Exercice 3 (Convolution de fonctions au sens des distributions). Soient p,q et $r \in [1,+\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$. Soient $f \in L^p(\mathbb{R}^d)$ et $g \in L^q(\mathbb{R}^d)$, de sorte que $f * g \in L^r(\mathbb{R}^d)$ par le théorème de Young. On suppose g nulle presque partout hors d'un compact $K \subset \mathbb{R}^d$. Montrer que $T_f * T_g = T_{f*g}$.

Exercice 4 (Distributions harmoniques). On sait que Δ admet une solution fondamentale (en particulier une paramétrice) $E \in \mathcal{D}'(\mathbb{R}^d)$ telle que $\operatorname{supp}(E) = \mathbb{R}^d$ et $\operatorname{supp}\operatorname{sing}(E) = \{0\}$. Cela implique pour tout $T \in \mathcal{D}'(\mathbb{R}^d)$ que $\operatorname{supp}\operatorname{sing}(T) = \operatorname{supp}\operatorname{sing}(\Delta T)$, en particulier les distributions harmoniques sont lisses. On va donner une démonstration plus élémenaire de ce dernier point.

- 1. Montrer que Δ admet une paramétrix $\Pi \in \mathcal{E}'(\mathbb{R}^d)$ dont le support singulier est $\{0\}$.
- 2. En déduire que si $T \in \mathcal{D}'(\mathbb{R}^d)$ est harmonique alors T est une fonction \mathcal{C}^{∞} sur \mathbb{R}^d .

Exercice 5 (Solution fondamentale de l'opérateur de la chaleur). Soit $H=\mathbf{1}_{]0,+\infty[}$ la fonction de Heaviside, on considère la fonction $F:\mathbb{R}^2\to\mathbb{R}$ définie par :

$$F:(t,x)\longmapsto \frac{H(t)}{\sqrt{4\pi t}}\exp\left(-\frac{x^2}{4t}\right).$$

- 1. Vérifier que $F \in \mathcal{D}'(\mathbb{R}^2)$.
- 2. Montrer que $\partial_t F \partial_x^2 F = 0$ sur $\mathbb{R}_+^* \times \mathbb{R}$.
- 3. Soit $\varphi \in \mathcal{D}(\mathbb{R}^2)$, prouver que

$$\langle \partial_t F - \partial_x^2 F, \varphi \rangle = \lim_{\varepsilon \to 0^+} \int_{\mathbb{R}} F(\varepsilon, x) \varphi(\varepsilon, x) \, \mathrm{d}x.$$
 (1)

- 4. Soit $P = T X^2 \in \mathbb{R}[T, X]$, afin que $P(\partial) = \partial_t \partial_x^2$. Déduire de ce qui précède que $P(\partial)F = \delta_0$.
- 5. Soit $S \in \mathcal{E}'(\mathbb{R}^2)$, montrer qu'il existe $T \in \mathcal{D}'(\mathbb{R}^2)$ tel que $\partial_t T \partial_x^2 T = S$.

- 6. Décrire les $S \in \mathcal{E}'(\mathbb{R}^2)$ telles que $\partial_t S \partial_x^2 S = 0$.
- 7. Existe-t-il des $T \in \mathcal{D}'(\mathbb{R}^2)$ non nulles telles que $\partial_t T \partial_x^2 T = 0$?
- 8. Montrer que supp $\operatorname{sing}(F) = \{0\}$.

 Indication. Montrer par récurrence sur $|\alpha|$ que pour tout $\alpha \in \mathbb{N}^2$ il existe $Q_{\alpha} \in \mathbb{R}[T, X]$ et $k_{\alpha} \in \mathbb{N}$ tels que $\partial^{\alpha} F(t, x) = t^{-k_{\alpha}} F(t, x) Q_{\alpha}(t, x)$ pour tout $(t, x) \in \mathbb{R}^* \times \mathbb{R}$.
- 9. Soient $f \in \mathcal{C}^{\infty}(\mathbb{R}^2)$ et $T \in \mathcal{D}'(\mathbb{R}^2)$ telle que $\partial_t T \partial_x^2 T = f$, montrer que $T \in \mathcal{C}^{\infty}(\mathbb{R}^2)$.

Définition. Soit $\varphi : \mathbb{R}^d \to \mathbb{C}$ une fonction \mathcal{C}^{∞} , pour tout $p \in \mathbb{N}$ on note

$$N_p(\varphi) = \sup \left\{ |x^{\alpha} \partial^{\beta} \varphi(x)| \mid x \in \mathbb{R}^d, \alpha, \beta \in \mathbb{N}^d, |\alpha| \leqslant p, |\beta| \leqslant p \right\} \in [0, +\infty].$$

On rappelle que $\varphi \in \mathcal{S}(\mathbb{R}^d)$ si et seulement si $N_p(\varphi) < +\infty$ pour tout $p \in \mathbb{N}$.

Exercice 6 (Densité de \mathcal{D} dans \mathcal{S}). Soit $\chi \in \mathcal{D}(\mathbb{R}^d)$ telle que $\chi(x) = 1$ si $||x|| \leq 1$, $\chi(x) = 0$ si $||x|| \geq 2$ et $\chi(x) \in [0,1]$ si $1 \leq ||x|| \leq 2$. Pour tout R > 0, on note $\chi_R : x \mapsto \chi(\frac{x}{R})$. Soit $\varphi \in \mathcal{S}(\mathbb{R}^d)$, montrer que $\chi_R \varphi \xrightarrow[R \to +\infty]{\mathcal{S}(\mathbb{R}^d)} \varphi$.

Exercice 7 (Exemples de fonctions dans \mathcal{S}'). Pour tout $x \in \mathbb{R}^d$, on note $\langle x \rangle = (1 + \|x\|^2)^{\frac{1}{2}}$. Soient $s \in \mathbb{R}$ et $f : \mathbb{R}^d \to \mathbb{C}$ une fonction mesurable telle que $\langle X \rangle^s f \in L^1(\mathbb{R}^d)$.

- 1. Montrer que $f \in L^1_{loc}(\mathbb{R}^d)$.
- 2. Soit $S_f : \varphi \mapsto \int_{\mathbb{R}^d} f(x)\varphi(x) \, \mathrm{d}x \, \mathrm{d}$

Indication. Montrer que $\forall k \in \mathbb{N}, \exists C \geqslant 0, \forall \varphi \in \mathcal{S}(\mathbb{R}^d), \left\| \left(1 + \|X\|^2\right)^k \varphi \right\|_{\infty} \leqslant CN_{2k}(\varphi).$

On introduit les fonctions $g: x \mapsto e^{-x^2}$ et $h: x \mapsto x \cos(e^{x^2})e^{x^2}$ de \mathbb{R} dans \mathbb{R} .

- 3. Existe-t-il $s \in \mathbb{R}$ tel que $\langle X \rangle^s h \in L^1(\mathbb{R})$?

 Indication. Considérer les propriétés d'intégrabilité sur \mathbb{R} de la fonction $\widetilde{h} : x \mapsto \left| \cos \left(e^{x^2} \right) \right|$.
- 4. Montrer qu'il existe $S \in \mathcal{S}'(\mathbb{R})$ tel que $S_{|\mathcal{D}(\mathbb{R})} = T_h$.
- 5. Peut-on dire que $S = S_h$?
- 6. Calculer $\langle S, g \rangle$.

Exercice 8 (Injection de L^p dans \mathcal{S}'). Soient $p \in [1, +\infty]$ et $f \in L^p(\mathbb{R}^d)$, montrer que l'application $S_f : \varphi \mapsto \int_{\mathbb{R}^d} f(x)\varphi(x) \, \mathrm{d}x$ de $\mathcal{S}(\mathbb{R}^d)$ dans \mathbb{C} définie une distribution tempérée.

Exercice 9 (Mesures tempérées). Dans cet exercice on considère une mesure de Radon (i.e. finie sur les compacts) positive μ sur \mathbb{R}^d . On note de nouveau $\langle x \rangle = (1 + ||x||^2)^{\frac{1}{2}}$.

- 1. On suppose qu'il existe $s \in \mathbb{R}$ tel que $\langle X \rangle^s \in L^1(\mathrm{d}\mu)$. Montrer que $\varphi \mapsto \int_{\mathbb{R}^d} \varphi(x) \, \mathrm{d}\mu(x)$ définit une distribution tempérée, que l'on notera encore μ .
- 2. Inversement, on suppose désormais que $\mu \in \mathcal{D}'(\mathbb{R}^d)$ s'étend en une distribution tempérée. Montrer qu'il existe $C \geqslant 0$ et $p \in \mathbb{N}$ tels que $\int_{\|x\| \leqslant R} \mathrm{d}\mu(x) \leqslant CR^p$ pour tout $R \geqslant 1$.
- 3. En déduire qu'il existe $s \in \mathbb{R}$ tel que $\langle X \rangle^s \in L^1(\mathrm{d}\mu)$.