Ліхтарі

Назва	Lanterns
Вхідний файл	стандартний ввід
Вихідний файл	стандартний вивід
Обмеження часу	3 секунди
Обмеження пам'яті	1024 мегабайтів

Фермер Джон взяв своє стадо корів на пішохідну екскурсію в Альпи! Через деякий час небо потемніло і екскурсія закінчилась. Однак деякі корови залишились в пастці по всьому гірському хребту і Джон збирається врятувати усіх їх!

Гірський хребет, який корови зараз проходять, може бути представлений як серія з n точок в 2D площині. Ми будемо називати ці точки "вершинами". Вершини пронумеровані від 1 до n, в такому ж порядку. Вершина i має координати (i,h_i) . Значення h_i позначає **висоту** вершини i. Гарантується, що h_1,h_2,\ldots,h_n формують перестановку $1\ldots n$. (Це означає, що для кожного $j=1,\ldots,n$, ми маємо $h_i=j$ рівно для одного $i\in\{1,\ldots,n\}$.)

Для кожного i ($1 \le i < n$), вершини i та i+1 з'єднані одним прямим відрізком.

Оскільки вже ніч, Джон не може подорожувати до будь-якої частини гори, якщо не має з собою як мінімум одного ліхтаря, що функціонує. На щастя, є k ліхтарів, що доступні для покупки. Для кожного j ($1 \le j \le k$), j-ий ліхтар можна купити на вершині p_j за c_j франків.

На жаль, j-ий ліхтар може працювати тільки коли Джон знаходиться на висоті в межі $[a_j,b_j]$. Іншими словами, коли поточна висота строго менша за a_j або строго більша за b_j , ліхтар j не працює. Зверніть увагу, що ліхтарі не ламаються, коли залишають свій діапазон висот. Наприклад, коли висота Джона перевищує b_j , ліхтар j перестає працювати, але як тільки Джон повернеться на висоту b_j ліхтар почне працювати знову.

Якщо Джон зараз знаходиться на вершині p, він може здійснити одну з трьох наступних операцій:

ullet Він може купити один з ліхтарів, що доступні на вершині p. Як тільки він купує ліхтар, він може використовувати його завжди.

- Якщо p > 1, він може перейти до вершини p 1.
- Якщо p < n, він може перейти до вершини p + 1.

Джон ніколи не повинен рухатись без справного ліхтаря. Він може переходити між двома вершинами тільки якщо в кожен момент його дороги існує хоча б один ліхтар, який він придбав і який працює. (Це не обов'язково має бути один і той же ліхтар на всю дорогу).

Наприклад, уявімо, що Фермер Джон зараз знаходиться на вершині з висотою 4 і бажає перейти до сусідньої вершини з висотою 1. Якщо Джон має ліхтарі, які працюють на діапазонах висот [1,3] та [3,4], то він зможе перейти від однієї вершини до іншої.

Однак, якщо Джон має ліхтарі, які працюють на діапазонах висот [1,1] та [2,5], тоді Джон не може перейти між цими двома вершинами: оскільки жоден з ліхтарів не буде працювати на висоті 1.47.

Ваша задача визначити відповідь для різних незалежних один від одного запитів.

Для кожного $1 \leq j \leq k$ таких, що $a_j \leq h_{p_j} \leq b_j$, уявімо, що Джон починає свою подорож з вершини p_j купуючи ліхтар j. Аби пройти повністю гірський хребет, він має відвідати кожну з усіх n вершин хоча б один раз послідовно виконуючи одну з трьох операцій описаних вище. Для кожного з j, визначіть мінімальну кількість франків, що потрібно заплатити Джону для того, щоб обійти увесь гірський хребет. (Ця вартість включає в себе початкову вартість покупки ліхтаря j.)

Вхідні дані

Перший рядок містить n та k ($1 \le n \le 2000$, $1 \le k \le 2000$) – кількість вершин гірського хребта та кількість доступних ліхтарів відповідно.

Другий рядок містить n відокремлених пробілом цілих чисел h_1,h_2,\ldots,h_n ($1\leq h_i\leq n$): висоти кожної з вершин. Гарантується, що значення h_i формують перестановку чисел від 1 до n.

j-ий рядок з наступних k рядків містить чотири числа, відокремлених пробілом, p_j , c_j , a_j , та b_j ($1 \le p_j \le n$, $1 \le c_j \le 10^6$, $1 \le a_j \le b_j \le n$) – номер вершини, де ліхтар j може бути придбаний, його ціна та діапазон відповідно.

Вихідні дані

Для кожного j ($1 \le j \le k$) виведіть один рядок:

- ullet Якщо h_{p_i} виходить за межі діапазону $[a_j,b_j]$, виведіть -1.
- Інакше, якщо Джон не може пройти усі вершини гірського хребта спершу купуючи ліхтар j, виведіть -1.

ullet Інакше, виведіть мінімальну кількість франків, що Джон має витратити аби відвідати кожну вершину гірського хребта, якщо він починає купуючи ліхтар j.

Оцінювання

Блок 1 (9 балів): $n \le 20$ та $k \le 6$.

Блок 2 (12 балів): $n \le 70$ та $k \le 70$.

Блок 3 (23 бали): $n \leq 300$, $k \leq 300$ та $h_i = i$ для усіх $1 \leq i \leq n$.

Блок 4 (16 балів): $n \le 300$, $k \le 300$.

Блок 5 (40 балів): без додаткових обмежень.

Приклади

стандартний ввід	стандартний вивід
7 8	7
4231567	-1
3 1 2 4	4
1 2 1 3	10
4 4 1 7	30
6 10 1 7	-1
6 20 6 6	-1
6 30 5 5	-1
7 40 1 6	
7 50 7 7	

Примітка

Якщо Джон починає з покупки ліхтаря 1 на вершині 3, він може здійснити таку послідовність операцій:

- йде ліворуч двічі до вершини 1
- купує ліхтар 2
- йде праворуч до вершини 4
- купує ліхтар 3
- йде праворуч до вершини 7

В такому випадку, Джон відвідає кожну вершину щонайменше один раз і витратить в сумі 1+2+4=7 франків.

Джон не може почати купуючи ліхтарі 2, 6, або 7, оскільки вони не працюють на

висоті, де вони можуть бути придбані. Тому, відповідь для цих ліхтарів -1.

Якщо Джон починає з купівлі ліхтаря 3 або 4, він може відвідати усі вершини без купівлі додаткових ліхтарів.

Якщо Джон починає з купівлі ліхтаря 5, він має також купити ліхтар 4 пізніше.

Якщо Джон починає з купівлі ліхтаря 8, він застрягне на вершині 7. Навіть якщо він купить ліхтар 7, він все одно не зможе перейти від вершини 7 до вершини 6.