The common ion effect. ld's dissole Agass in HeO. Ksp = 1.6 x 10-10 molar sol? Agais) = Agross + arag (s) (z) Ksp = [Az+][a-]ea $1.6 \times 10^{-10} = (5)(5) = 5^2 = 5 = \sqrt{1.6 \times 10^{-10}}$ = 1.3×10 mol What would soi of Aga be in, L say 0.25 M Mgazag)? $M_{q}(l_{2}(e_{q})) \longrightarrow M_{q}^{2+}(e_{q}) + 2(l_{e_{q}})$

Again
$$\Rightarrow$$
 Again \Rightarrow Coron \Rightarrow I \Rightarrow Coron \Rightarrow Cosom \Rightarrow Compare that to sol in part \Rightarrow Compare that to sol in part \Rightarrow Cosom \Rightarrow Compare that to sol in part \Rightarrow Cosom \Rightarrow Cos

Ch 18 - Thermodynamics Ohb - thermochemistry

heat absorbed/released in chem oxus

(9) endo-/exothermic oxu

DHan= +ve / DHan = -ve

1st Law of Thermo.

Energy can neither be created or destroys

Euniverse = constant.

DEuniu - 0

2nd Law of thermo.

- tell us if things can happen!

"The entropy of the Universe is always in creasing."

analogy is " Disorder

It turns out that we can be measure (+ calculate) entropy for chemical substances!

tabulate there (3rd Law) entropies:5°

$$\Delta Suniv = \Delta S_{sys} + \Delta S_{sup} R$$

$$\Rightarrow 0$$
aside: can ΔS_{sys} be -ue
as long as ΔS_{sun} is man tue!
How do we calculate ΔS_{nxn} I'm soles:
$$e_{Y}: N_{2}(g) + 3H_{2}(g) \longrightarrow 2NH_{3}(g)$$

$$Appendix 2$$
Substance $S^{\circ}(\frac{3}{mol})$

$$N_{2}(g) = 191.5$$

$$H_{2}(g) = 193.0$$
Can calc $\Delta S_{nxn} = \sum_{n} S^{\circ}(prodo) - \sum_{n} S^{\circ}(reach)$

N2G1+3H2G1 -> 2NH3G).

notive: we are demany # gas moleculo... in general, this leads to —ve ΔS_{rrn}° .