我们以 tadpole 额外顶点图为例, 计算中实际要计算的积分是

$$A = \frac{C_{\phi\phi}}{f^2} \int \frac{d^4k}{(2\pi)^4} {\rm Tr}[2k\!\!\!/ \frac{(2k+q)^+}{2kq+q^2} (\not\!\!p + M_N) \gamma^+ (\not\!\!p' + M_N)] \tilde{F}(k) \frac{i}{D_\phi(k)} [\tilde{F}(k+q) - \tilde{F}(k)] \delta(y + \xi - \frac{k^+}{P^+})$$

那么对于这个积分,我们将分子和分母做化简并变形到这样的形式:

$$\int \frac{d^4k}{(2\pi)^4} \frac{a_1(k^-)^2 + a_2k^- + a_3}{D_{\phi}(k)D_{\phi}^4(k)D_{\phi}^2(k+q)} \delta(y+\xi - \frac{k^+}{P^+})$$

判断是否存在 δ 项的方式是取 $k^+=0$,比较分子分母中 k^- 的幂次。那么对上面的积分取 $k^+=0$,分母上 $D_{\phi}(k)D_{\Lambda}^4(k)$ 都不再含有 k^- ,只有 $D_{\Lambda}^2(k+q)$ 会贡献一个平方项,同时分子中也存在平方项(这里不详细给出分子的形式),所以判断存在 δ 项。但是, δ 项还有一个要求就是在 $k^+ \neq 0$ 的时候积分为 0,而由于在 $k^+ \neq 0$ 的时候,积分必然能够使用留数定理计算,这则要求分母的奇点必须在 x 轴的同一侧。具体来看分母上的奇点, $D_{\phi}(k)D_{\Lambda}^4(k)$ 的奇点的虚数部分是 $\frac{-i\epsilon}{k^+}$,由于 $k^+ > 0$ 所以奇点必然在 x 轴下方,而 $D_{\Lambda}^2(k+q)$ 的奇点虚数部分则是 $\frac{-i\epsilon}{k^++q^+}$,由于 $k^+=(y+\xi)P^+,q^+=-2\xi P^+$,所以会在 $y<\xi$ 时奇点在 x 轴上方,导致积分不是恒定为 x0。这样就能判断,这个积分是 x0 + x1 + x2 + x3 + x3 + x4 + x5 + x5 + x6 + x7 + x7 + x8 + x9 + x

那么在分离 δ 项的时候就要注意上面两方面的要求。首先对于正常积分部分,需要满足的就是保证在 $k^+=0$ 的时候分子上不存在 k^{-2} ,积分变为

$$\int \frac{d^4k}{(2\pi)^4} (\frac{a_1(k^-)^2}{D_\phi(k)D_\Lambda^4(k)D_\Lambda^2(k+q)} + \frac{a_2k^- + a_3}{D_\phi(k)D_\Lambda^4(k)D_\Lambda^2(k+q)}) \delta(y+\xi - \frac{k^+}{P^+})$$

这里后半部分是肯定能够使用留数定理计算的正常积分,需要处理的是前半部分。

$$\int \frac{d^4k}{(2\pi)^4} \frac{a_1(k^-)^2}{D_{\phi}(k)D_{\Lambda}^4(k)D_{\Lambda}^2(k+q)} \delta(y+\xi-\frac{k^+}{P^+})$$

首先,考虑到分子上只有 $(k^-)^2$,我们最好不要添加更高的幂次,所以 $D_{\Lambda}(k)$ 一定会保存下来,最多幂次降低。而考虑到上面所说的奇点问题,在 $0 < k^+ < -q^+$ 的时候,对 a_1 这部分 $D_{\Lambda}^2(k+q)$ 仍然贡献一个和 $D_{\phi}(k)D_{\Lambda}^4(k)$ 不同侧的奇点,积分不恒为 0。所以我们在分母上因为不添加高幂次必然保存 $D_{\Lambda}(k)$,那么如果也保留 $D_{\Lambda}^2(k+q)$,就不可能得到一个在 $k^+ \not= 0$ 的时候恒为 0 的积分。所以这里在约化并分离得到 δ term 的时候就必须把 $D_{\Lambda}^2(k+q)$ 完全消去。这部分是我所说的,必须做这样的约化的意思。

但是在分子上,我们能做不同的分离方案。例如,现在上面的公式中表达的意思是把 $(k^-)^2$ 完全放到 δ 函数中去,但是实际上,我们能对 $a_1(k^-)^2$ 做这样的变形,

$$a_1(k^-)^2 = c_1 k^+ (k^-)^2 + c_2 (k^-)^2$$

其中 c_1 和 c_2 两个系数都不含 k^+ , 那么积分变为

$$\int \frac{d^4k}{(2\pi)^4} \left(\frac{c_2(k^-)^2}{D_\phi(k)D_\Lambda^4(k)D_\Lambda^2(k+q)} + \frac{c_1k^+(k^-)^2 + a_2k^- + a_3}{D_\phi(k)D_\Lambda^4(k)D_\Lambda^2(k+q)}\right) \delta(y+\xi-\frac{k^+}{P^+})$$

这样显然是一个不同的分离方式,第二项在 $k^+=0$ 的时候也保证了分子上不存在 $(k^-)^2$,所以也是一个正常积分。这个分离方式,经过验证和上面的方案计算得到的 splitting function 结果是一致的。