In re:

Lee et al.

Serial No.: 10/624,327

Filed:

July 22, 2003

Page 2

In the Specification:

Please replace the paragraph at page 10, lines 7-23 with the following amended paragraph:

The ferroelectric pattern 79 may be PZT(Pb, Zr, TiO₃) that si formed using PbTiO₃ as a seed layer. The ferroelectric pattern 79 may alternatively be formed from at least one material selected from the group consisting of Pb(Zr, Ti)O₃, SrTiO₃, BaTiO₃, (Ba, Sr)TiO₃, Pb(Zr,Ti)O₃, SrBi₂Ta₂O₉, (Pb,La)(Zr,Ti)O₃, and Bi₄Ti₃O₁₂. A PZT and PbTiO₃ thin layer may be formed using CSD. The CSD process may use as a precursor lead acetate[Pb(CH3CO₂)₂ 3H₂O], zirconium n-butoxide [Zr(n-OC₄H₉)₄], and titanium isopropoxide [Ti(i-OC₃H₇)₄], and as using a solvent 2-methoxyethano [CH₃OCH₂CH₂OH]. Thin PZT and PbTiO₃ layers may be stacked using, for example, spin coating and baking at about 200°C. The resultant structures may be annealed using, for example, rapid thermal processing (RTP) in an oxygen atmosphere of 500 to 675°C. The resulting ferroelectric pattern 79 may exhibit an improved ferroelectric characteristics, and which may allow a corresponding reduction in the thickness of the ferroelectric pattern 79 and, thereby, a reduction in the thickness of the ferroelectric capacitor. Reducing the thickness of the ferroelectric capacitor 82 allows the sidewalls of the ferroelectric capacitor 82 to be patterned to be substantially vertical sidewalls or close to vertical. For example, the ferroelectric pattern 79 and the ferroelectric capacitor 82 may have respective thicknesses of 100nm or less and 400nm or less.