

TOPIC OUTLINE

Addition

Subtraction

Multiplication

Division

Modulo

Increment

Decrement

ARITHMETIC OPERATORS

ARITHMETIC OPERATORS

Arithmetic operators are used to perform basic mathematical operations on numeric values.

These operators are fundamental to performing calculations and manipulating data in programs.

Unary Operators operates with a single
operand (e.g., ++ , --).

Binary Operators operates with two operands (e.g., +, -, *, %).

ADDITION

Example:

```
int a = 5;
int b = 3;
int result = a + b;
// result = 8
```

The addition (+) operator <u>adds</u> two operands.

SUBTRACTION

The subtraction <u>(-)</u> operator <u>subtracts</u> the second operand from the first.

```
int a = 10;
int b = 4;
int result = a - b;
// result = 6
```


MULTIPLICATION

The multiplication (*) operator <u>multiplies</u> two operands.

```
int a = 7;
int b = 6;
int result = a * b;
// result = 42
```


DIVISION

The division (/) operator <u>divides</u> the first operand by the second.

```
int a = 10;
int b = 3;
float result = a / b;
// result = 3.333
```


MODULO

The modulo (%) operator returns the remainder of the division of the first operand by the second.

```
int a = 10;
int b = 3;
float result = a % b;
// result = 1
```


INCREMENT

The increment <u>(++)</u> operator <u>increases</u> the value of a variable <u>by 1</u>.

```
int x = 5;
x++;
// x = 6
```

DECREMENT

The decrement <u>(--)</u> operator <u>decreases</u> the value of a variable <u>by 1</u>.

Determine the output of this code snippet:

```
int a = 2;
int b = 4;
int c = 0;
c = (a + b)/a;
cout << c;
output:</pre>
```

```
int a = 2;
int b = 4;
int c = 0;
c = (a + b)%a;
cout << c;
output:</pre>
```


Determine the output of this code snippet:

```
int x = 5;
int y = 3;
int z = 0;
z = (x * y) - (x + y);
cout << z;
output:</pre>
```

```
int p = 10;
int q = 2;
int r = 0;
r = (p % q) + (p / q);
cout << r;
output:</pre>
```


Determine the output of this code snippet:

```
char a = '2';
char b = '3';
char c = '4';
c = a + b;
cout << c;
output:
101</pre>
```

Output Explanation:

When you add two **char** variables, they are implicitly converted to their ASCII integer values before the addition.

ASCII of '2' is **50**.

ASCII of '3' is **51**.

Determine the output of this code snippet:

```
string a = "2";
string b = "3";
string c = "4";
c = a + b;
cout << c;
output:
23</pre>
```

Output Explanation:

The + operator performs string concatenation. a + b concatenates the string "2" and "3", resulting in the string "23".

Determine the output of this code snippet:

```
int a = 5;
int b = a++;
int c = ++a;
cout << b << " " << c;
output:</pre>
```

Output Explanation:

++a is pre-increment: increment first then use.

a++ is post-increment: use first then increment.

Determine the output of this code snippet:

```
int x = 10;
int y = --x;
int z = x--;
cout << y << " " << z;
output:</pre>
```

```
int x = 10;
int y = --x;
int z = ++x;
cout << y << " " << z;
output:</pre>
```


Determine the output of this code snippet:

```
int p = 3;
int q = p++ + ++p;
cout << q;
output:</pre>
```

Output Explanation:

p++ evaluates to **3** (current value of **p**), then increments **p** to **4**.

++p increments **p** to **5** and evaluates to **5**.

$$q = 3 + 5$$
.

Determine the output of this code snippet:

```
int m = 6;
int n = 2;
int o = m-- - --n;
cout << o
output:</pre>
```

```
int d = 4;
int e = d++ * --d;
cout << e;
output:</pre>
```


LABORATORY

Complete the code to calculate and display the area of a circle using the given variables. Use the formula:

$$area = \pi r^2$$

assume $\pi = 3.1416$.

```
// variables
  float radius = 0.0;
  float area = 0.0;
// calculate area
// display
```

Expected output:

Area of the circle with radius 5 is 78.54

Area of the circle with radius 12.6 is 498.76

