1. Find $\frac{dy}{dx}$ for each of expression below by implicit differentiation.

(a)
$$e^{xy} = x + y + 1$$

$$e^{xy} \cdot (1 \cdot y + x \cdot dy) = 1 + dy$$
 $ye^{xy} + xe^{xy} dy = 1 + dy$
 $(xe^{xy} - 1) dy = 1 - ye^{xy}$
 $(xe^{xy} - 1) dy = 1 - ye^{xy}$

(b)
$$x = \sin y$$

$$1 = (\cos y) \frac{dy}{dx} . So \frac{dy}{dx} = \frac{1}{\cos y}$$

(c)
$$x = \cos y$$

$$1 = -\sin y \cdot \frac{dy}{dx}$$
So $\frac{dy}{dx} = \frac{-1}{\sin y}$
(d) $x = \tan y$

$$1 = \left(\sec^2 y\right) \cdot \frac{dy}{dx}$$
6 $\frac{dy}{dx} = \frac{1}{\sec^2 y}$

2. For each inverse trigonometric function below, sketch its graph and state its domain and range.

Why did we just do that? Recall: y= arcsinx (=> X= Siny $\frac{dy}{dx} = \frac{1}{\cos(\arcsin(x))} = \frac{1}{\cos(\arcsin(x))}$ We found Recall: hyp opp sind = opp hyp. So arcsin(opp hyp) = 0 So, $\arcsin(\frac{x}{1}) = \theta$ where Thus, $\cos(\arcsin x) = \cos(\frac{6}{3}) = \sqrt{1-x^2}$ Similarly: y=arc 605x (=> x = cosy . So dy = we can do better

Now
$$\frac{1}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1-x^2}}$$

$$\frac{1}{\sqrt{1-x^2}}$$
So $\sin(\arccos x) = \sqrt{1-x^2}$

Pythagorean identity

Finally:
$$y = \arctan x \iff x = \tan y.$$
So $\frac{dy}{dx} = \frac{1}{\sec^2 y} = \frac{1}{1+\tan^2 y}$

$$= \frac{1}{1+(\tan(\arctan x))^2} = \frac{1}{1+x^2}$$

3. For your own reference, state the derivatives of $f(x) = \sin^{-1} x$, $f(x) = \cos^{-1} x$, and $f(x) = \tan^{-1} x$, in the space below:

$$\frac{d}{dx} \left[\operatorname{arcsinx} \right] = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx} \left[\operatorname{arctanx} \right] = \frac{1}{1+x^2}$$

$$\frac{d}{dx} \left[\operatorname{arccosx} \right] = \frac{-1}{\sqrt{1-x^2}}$$

4. Find the derivatives of each of the following functions.

(a)
$$f(x) = \sin^{-1}(3x)$$

$$f'(x) = \frac{1}{\sqrt{1 - (3x)^2}} \cdot 3 = \frac{3}{\sqrt{1 - 9x^2}}$$

(b)
$$f(x) = (\cos^{-1} x)^2$$

$$f'(x) = 2(arccosx) \cdot \frac{d}{dx}(arccosx) = 2arccosx - \frac{1}{\sqrt{1-x^2}} = \frac{-2 arccosx}{\sqrt{1-x^2}}$$

(c)
$$f(x) = x \tan^{-1} x$$

$$f'(x) = 1 \cdot \arctan x + x \cdot \frac{1}{1+x^2} = \arctan x + \frac{x}{1+x^2}$$

(d)
$$f(x) = \arctan(\sqrt{4-x^2}) = \arctan\left((4-x^2)^{\frac{1}{2}}\right)$$

$$f'(x) = \frac{1}{1 + \left[(4-x^2)^{\frac{1}{2}} \right]^2} \cdot \frac{d}{dx} \left((4-x^2)^{\frac{1}{2}} \right) = \frac{1}{1 + 4 - x^2} \cdot \frac{1}{2} \left(4 - x^2 \right)^{\frac{1}{2}} (-2x) = \frac{-x}{(5-x^2)\sqrt{4-x^2}}$$

(e)
$$f(x) = \frac{\arcsin(\frac{1}{x})}{x} = x$$
 · $\arcsin(x^{-1})$

$$f'(x) = -x^2 \cdot \arcsin(x^1) + x^1 \cdot \frac{1}{\sqrt{1-x^2}} \cdot -x^2 = \frac{\arcsin(x^2)}{x^2} - \frac{1}{x^3\sqrt{1-x^2}}$$

$$= -\frac{1}{x^2} \left(\arcsin\left(\frac{1}{x}\right) + \frac{1}{x\sqrt{1-x^2}} \right)$$

UAF Calculus 1 2 3-5