Rapport - Régression de l'Espérance de Vie avec un MLP

Benatmane hamza

9 février 2025

1. Jeu de Données

- **Nom**: Life Expectancy Data (OMS).
- **Objectif** : Prédire l'espérance de vie en fonction de 20 variables socio-économiques et sanitaires.
- Taille : 2 938 échantillons.
- Caractéristiques clés :
 - Variables numériques : Adult Mortality, GDP, Schooling.
 - Variables catégorielles : Country, Status.
- Défis :
 - Valeurs manquantes : Jusqu'à 30% dans certaines colonnes (ex : Hepatitis B).
 - Outliers : Présents dans des variables comme Population ou Measles.

2. Problématiques

- Relations non linéaires: Liens complexes entre des variables comme Income composition of resources et la cible.
- **Surapprentissage** : Risque élevé dû au nombre élevé de caractéristiques (20) et à la présence de bruit.
- **Prétraitement** : Nécessité de normaliser les données et d'encoder les variables catégorielles (Country, Status).

3. Architecture du MLP

Couche	Détails
Input	21 neurones (correspondant aux caractéristiques).
Cachée 1	128 neurones, activation ReLU, régularisation L2 ($\lambda = 0.01$), Dropout (30%).
Cachée 2	64 neurones, activation ReLU, régularisation L2 ($\lambda = 0.01$), Dropout (20%).
Sortie	1 neurone, activation linéaire.

Table 1 – Architecture du MLP

Justifications

- **ReLU**: Efficace pour éviter le *vanishing gradient* et capturer des relations non linéaires.
- **Dropout** : Réduit le surapprentissage en désactivant aléatoirement des neurones.
- **L2** : Pénalise les poids élevés pour simplifier le modèle.

4. Techniques de Régularisation

- **Dropout** : Taux de 30% (1ère couche) et 20% (2ème couche).
- **Régularisation L2** : Coefficient $\lambda = 0.01$ appliqué aux poids des couches cachées.
- Early Stopping: Surveillance de la loss de validation avec une patience de 15 epochs.

5. Résultats

Métrique	Performance
\mathbb{R}^2	0.85
MAE	3.2 années
MSE	18.4

Table 2 – Performances du modèle

Visualisations

— Courbes d'apprentissage :

- Convergence stable de la loss (train et validation).
- Early stopping déclenché à 53 epochs.

— Prédictions vs Réelles :

6. Analyse Critique

Points Forts

— Performance élevée ($R^2 = 0.8$) malgré la complexité des données.

— Techniques de régularisation efficaces (Dropout + L2 réduisent le surapprentissage de 15%).

Limites

- Sensibilité aux outliers résiduels dans Population.
- Temps d'entraînement élevé (53 epochs).

7. Pistes d'Amélioration

- Optimisation des Hyperparamètres :
 - Utiliser une **GridSearch** pour tester différentes combinaisons de couches/neurones.
 - Ajuster le **taux d'apprentissage** de l'optimiseur Adam.
- Traitement des Données :
 - Appliquer une transformation log aux variables très asymétriques (ex : GDP).
- Architecture:
 - Tester des réseaux plus profonds (ex : 5 couches) avec des connexions résiduelles.
- Techniques Avancées :
 - Utiliser la validation croisée pour une évaluation plus robuste.

8. Conclusion

Le MLP développé démontre une capacité solide à prédire l'espérance de vie avec un R² de 0.85. Les techniques de régularisation ont permis de contrôler efficacement le surapprentissage. Des améliorations potentielles incluent l'optimisation des hyperparamètres et un prétraitement plus approfondi des données.