Then if we denote the 2m dual variables by (y', y''), with $y', y'' \in (\mathbb{R}^m)^*$, the dual of the above program is

minimize
$$y'b - y''b$$

subject to $(y' \ y'') \begin{pmatrix} A \\ -A \end{pmatrix} \ge c$ and $y', y'' \ge 0$,

where $y', y'' \in (\mathbb{R}^m)^*$, which is equivalent to

minimize
$$(y' - y'')b$$

subject to $(y' - y'')A \ge c$ and $y', y'' \ge 0$,

where $y', y'' \in (\mathbb{R}^m)^*$. If we write y = y' - y'', we find that the above linear program is equivalent to the following Linear Program (D):

minimize
$$yb$$

subject to $yA \ge c$,

where $y \in (\mathbb{R}^m)^*$. Observe that y is not required to be nonnegative; it is arbitrary.

Next we would like to know what is the version of Theorem 47.8 for a linear program already in standard form. This is very simple.

Theorem 47.12. Consider the Linear Program (P2) in standard form

maximize
$$cx$$

subject to $Ax = b$ and $x \ge 0$,

and its Dual (D) given by

minimize
$$yb$$

subject to $yA \ge c$,

where $y \in (\mathbb{R}^m)^*$. If the simplex algorithm applied to the Linear Program (P2) terminates with an optimal solution (u^*, K^*) , where u^* is a basic feasible solution and K^* is a basis for u^* , then $y^* = c_{K^*}A_{K^*}^{-1}$ is an optimal solution for (D) such that $cu^* = y^*b$. Furthermore, if we assume that the simplex algorithm is started with a basic feasible solution (u_0, K_0) where $K_0 = (n-m+1, \ldots, n)$ (the indices of the last m columns of A) and $A_{(n-m+1,\ldots,n)} = I_m$ (the last m columns of A constitute the identity matrix I_m), then the optimal solution $y^* = c_{K^*}A_{K^*}^{-1}$ for (D) is given in terms of the reduced costs by

$$y^* = c_{(n-m+1,\dots,n)} - (\overline{c}_{K^*})_{(n-m+1,\dots,n)},$$

and the $m \times m$ matrix consisting of last m columns and the last m rows of the final tableau is $A_{K^*}^{-1}$.