

Institute of Primate Research

STANDARD OPERATING PROCEDURE (SOP) DOCUMENT

Predictive modelling and ensemble modelling

SOP No.	Issue Number	Issue Date	Revision Status	Revision Date
SOP/KIPRE/RPD/DSAS/3.1.76	Version 01	October 2025	-	-

Approvals			
	Name	Signature	Date
Developed by:	_Patrick Waweru Mwaura_		
Reviewed by:			
Approved by:			

Table of Contents 4 1. PURPOSE 4 2. SCOPE 4 3. PERSONS RESPONSIBLE: 4 4. FREQUENCY 4 5. MATERIALS 5 6. PROCEDURE 5 7. REFERENCES 6

1. PURPOSE

To provide a standardized framework for the development, validation, deployment, and documentation of predictive and ensemble models within DS&AS-supported research projects, ensuring:

- Methodological rigor and reproducibility in alignment with institutional statistical and computational standards (SOPs 1, 4, 14).
- Compliance with ethical, regulatory, and data governance requirements (SOPs 2, 6–9).
- Transparent reporting, version control, and auditable records of all modelling activities.
- Continuous evaluation and updating of models based on new data, methods, or performance assessments.

2. SCOPE

Applies to all DS&AS-supported research projects that involve the development, validation, and application of predictive and ensemble models, including but not limited to:

- Epidemiological modelling for disease surveillance and control.
- Predictive analytics for biomedical outcomes and translational research.
- Ecological and conservation forecasting.
- Genomic and proteomic data-driven predictions.

This SOP governs all stages of modelling, from data preparation and model selection to validation, deployment, and documentation, in accordance with institutional policies (SOP 1), ethical and regulatory standards (SOP 2), statistical analysis plans (SOP 4), and computational tool validation procedures (SOP 14).

3. PERSONS RESPONSIBLE:

- **Data Scientist / Biostatistician:** Leads model development, ensures adherence to statistical principles (SOP 3, SOP 4), and implements predictive/ensemble models.
- Computational Biologist / Bioinformatician (if genomic/proteomic data involved):
 Applies domain-specific modelling methods, ensures compliance with
 genome/proteome data management (SOP 12, SOP 13).

Head of DS&AS: Reviews and approves model specifications, validates
documentation and compliance with institutional policies (SOP 1), ethical standards
(SOP 2), and computational tool validation (SOP 14).

4. FREQUENCY

- Pre-deployment: All predictive and ensemble models must undergo validation before being used for analysis or decision-making.
- **Re-validation:** Models must be reviewed and re-validated whenever:
- New datasets are added or existing data significantly updated.
- Changes to modelling methods, algorithms, or software versions occur.
- Regulatory or ethical requirements impacting model use are updated (see SOP 2, SOP 14).
- **Periodic Review:** At least annually, DS&AS conducts a review of active models to ensure continued accuracy and compliance.

5. MATERIALS

- Statistical and Machine Learning Software: R (caret, mlr3, tidymodels), SAS, Python (scikit-learn, TensorFlow, PyTorch, XGBoost, LightGBM).
- Validation Datasets: Independent datasets for model training, validation, and testing; benchmark datasets where applicable.
- Documentation Templates: Standardized templates for model specifications, assumptions, performance metrics, and versioning logs.
- Computational Resources: HPC/Cloud infrastructure for training and deployment of models.
- Version Control Systems: Git/GitHub/GitLab repositories for reproducible code management.
- Reporting Tools: Visualization tools (ggplot2, matplotlib, seaborn) and dashboards for communicating model performance.

6. PROCEDURE

1. Model Selection:

- Identify candidate models appropriate for the data and outcome type (e.g., linear/logistic regression, decision trees, random forests, gradient boosting, neural networks).
- Consider interpretability, computational resources, and regulatory requirements.

2. **Data Preparation**:

- Clean datasets and handle missing values.
- Partition data into training, validation, and test sets.
- Apply preprocessing (normalization, feature encoding, feature engineering)
 consistently across partitions.

3. Model Development:

- Train models on the training set using cross-validation to prevent overfitting.
- Tune hyperparameters systematically (grid search, random search, Bayesian optimization).
- Document assumptions, parameter choices, and rationale for model selection.

4. Validation:

- Evaluate model performance on validation and test sets using metrics appropriate to the problem (AUC, RMSE, accuracy, sensitivity/specificity, calibration plots).
- Conduct sensitivity analyses and assess generalizability.
- Record performance results for audit and reproducibility.

5. Ensemble Modelling:

- Combine multiple models where appropriate using bagging, boosting, or stacking.
- Validate ensemble performance against individual models to ensure improvement.

6. **Documentation**:

- Archive all code, scripts, parameter settings, datasets used for training/validation, and results.
- Maintain version-controlled repositories (Git/GitHub/GitLab) for reproducibility.

7. **Deployment and Monitoring**:

- Deploy validated model in production or for research use with controlled access.
- Establish monitoring mechanisms to track model performance over time and trigger re-validation when new data or drift is detected.

7. REFERENCES

- 1. Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. Springer.
- 2. Hastie, T., Tibshirani, R., & Friedman, J. (2009). *The Elements of Statistical Learning:*Data Mining, Inference, and Prediction. Springer.
- 3. Wilkinson, M.D. et al., (2016). FAIR Guiding Principles for scientific data management and stewardship. Scientific Data.
- 4. Kenya Data Protection Act (2019) ensuring ethical use of personal or sensitive data (linked to SOP 2: Alignment with Institutional and National Regulations; SOP 6: Data Access and Authentication; SOP 9: Data Sharing and Anonymisation).
- 5. KIPRE Institutional Data Governance and Software Development Guidelines (linked to SOP 1: Policies & Strategies; SOP 7: Data Storage, Backup, Encryption, and Disaster Recovery; SOP 8: Database and Workflow Management).
- Sandve, G.K., et al., (2013). Ten Simple Rules for Reproducible Computational Research.
 PLoS Comput Biol (linked to SOP 14: Development and Validation of Computational Tools; SOP 13: Bioinformatics Pipelines).
- 7. Git/GitHub/GitLab documentation for version-controlled code and reproducibility (linked to SOP 4: Statistical Analysis Plans; SOP 13: Bioinformatics Pipelines; SOP 14: Development and Validation of Computational Tools).

8. APPENDIX: Forms and Templates for Predictive and Ensemble Modelling

A1. Predictive Model Specification Form

Field	Description
Project Title	Name of the research project
PI / Research Team	Names and roles
Data Source	Dataset(s) used for modelling
Outcome Variable(s)	Dependent variables to predict
Predictor Variables	Independent variables/features
Model Type	Regression, decision tree, random forest, boosting, deep learning, etc.
Assumptions	List model assumptions and data considerations
Preprocessing Steps	Scaling, normalization, missing data handling
Training/Validation Split	Method and proportion (e.g., 70/30, cross-validation)
Hyperparameters	Initial values or tuning ranges
Expected Metrics	Performance metrics to evaluate (AUC, RMSE, sensitivity, specificity, etc.)
Date & Version	Version of the model specification

A2. Model Validation Report Template

Field	Description	
Model Name & Version	Name and version number of the model	
Validation Dataset	Dataset used for validation	
Metrics	Quantitative results (AUC, RMSE, MAE, calibration, etc.)	
Cross-Validation Results	Summary of folds, mean, SD	
Sensitivity Analyses	Analyses conducted to check robustness	
Limitations	Known limitations of the model	
Reviewer	Name of internal reviewer	
Date	Date of validation completion	

A3. Ensemble Modelling Record

Field	Description	
Ensemble Name & Version	Name of ensemble model	
Constituent Models	List of individual models included in ensemble	
Combination Method	Bagging, boosting, stacking, weighted averaging	
Validation Metrics	Performance of ensemble vs. individual models	
Notes	Observations on model performance or adjustments made	
Date & Version	Versioning information	

A4. Deployment & Monitoring Checklist

Field	Description
Model / Ensemble Version	Name and version number
Deployment Platform	R, Python, Shiny, web API, HPC/Cloud
Monitoring Plan	Frequency and type of monitoring (accuracy drift, input data changes, logs)
Responsible Staff	Name of person/team monitoring the model
Documentation Location	Repository or folder for scripts, logs, results
Approval	Head of DS&AS sign-off for deployment