Take car crashes dataset from seaborn library and perform Data visualization steps

```
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]:
df=sns.load dataset('car crashes')

In [4]:

df

Out[4]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses	abbrev
0	18.8	7.332	5.640	18.048	15.040	784.55	145.08	AL
1	18.1	7.421	4.525	16.290	17.014	1053.48	133.93	AK
2	18.6	6.510	5.208	15.624	17.856	899.47	110.35	AZ
3	22.4	4.032	5.824	21.056	21.280	827.34	142.39	AR
4	12.0	4.200	3.360	10.920	10.680	878.41	165.63	CA
5	13.6	5.032	3.808	10.744	12.920	835.50	139.91	со
6	10.8	4.968	3.888	9.396	8.856	1068.73	167.02	СТ
7	16.2	6.156	4.860	14.094	16.038	1137.87	151.48	DE
8	5.9	2.006	1.593	5.900	5.900	1273.89	136.05	DC
9	17.9	3.759	5.191	16.468	16.826	1160.13	144.18	FL
10	15.6	2.964	3.900	14.820	14.508	913.15	142.80	GA
11	17.5	9.450	7.175	14.350	15.225	861.18	120.92	HI
12	15.3	5.508	4.437	13.005	14.994	641.96	82.75	ID
13	12.8	4.608	4.352	12.032	12.288	803.11	139.15	IL
14	14.5	3.625	4.205	13.775	13.775	710.46	108.92	IN
15	15.7	2.669	3.925	15.229	13.659	649.06	114.47	IA
16	17.8	4.806	4.272	13.706	15.130	780.45	133.80	KS
17	21.4	4.066	4.922	16.692	16.264	872.51	137.13	KY
18	20.5	7.175	6.765	14.965	20.090	1281.55	194.78	LA
19	15.1	5.738	4.530	13.137	12.684	661.88	96.57	ME
20	12.5	4.250	4.000	8.875	12.375	1048.78	192.70	MD
21	8.2	1.886	2.870	7.134	6.560	1011.14	135.63	MA
22	14.1	3.384	3.948	13.395	10.857	1110.61	152.26	MI
23	9.6	2.208	2.784	8.448	8.448	777.18	133.35	MN
24	17.6	2.640	5.456	1.760	17.600	896.07	155.77	MS
25	16.1	6.923	5.474	14.812	13.524	790.32	144.45	МО
26	21.4	8.346	9.416	17.976	18.190	816.21	85.15	MT
27	14.9	1.937	5.215	13.857	13.410	732.28	114.82	NE
28	14.7	5.439	4.704	13.965	14.553	1029.87	138.71	NV

29	tötaf	spe edilfig	al cofio l	not_distr lacted	no_previous	ins_prefficient	ins_ ldeses	abb₩
30	11.2	1.792	3.136	9.632	8.736	1301.52	159.85	NJ
31	18.4	3.496	4.968	12.328	18.032	869.85	120.75	NM
32	12.3	3.936	3.567	10.824	9.840	1234.31	150.01	NY
33	16.8	6.552	5.208	15.792	13.608	708.24	127.82	NC
34	23.9	5.497	10.038	23.661	20.554	688.75	109.72	ND
35	14.1	3.948	4.794	13.959	11.562	697.73	133.52	ОН
36	19.9	6.368	5.771	18.308	18.706	881.51	178.86	OK
37	12.8	4.224	3.328	8.576	11.520	804.71	104.61	OR
38	18.2	9.100	5.642	17.472	16.016	905.99	153.86	PA
39	11.1	3.774	4.218	10.212	8.769	1148.99	148.58	RI
40	23.9	9.082	9.799	22.944	19.359	858.97	116.29	sc
41	19.4	6.014	6.402	19.012	16.684	669.31	96.87	SD
42	19.5	4.095	5.655	15.990	15.795	767.91	155.57	TN
43	19.4	7.760	7.372	17.654	16.878	1004.75	156.83	TX
44	11.3	4.859	1.808	9.944	10.848	809.38	109.48	UT
45	13.6	4.080	4.080	13.056	12.920	716.20	109.61	VT
46	12.7	2.413	3.429	11.049	11.176	768.95	153.72	VA
47	10.6	4.452	3.498	8.692	9.116	890.03	111.62	WA
48	23.8	8.092	6.664	23.086	20.706	992.61	152.56	WV
49	13.8	4.968	4.554	5.382	11.592	670.31	106.62	WI
50	17.4	7.308	5.568	14.094	15.660	791.14	122.04	WY

```
In [5]:
```

```
sns.__version__
Out[5]:
```

'0.12.2'

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 51 entries, 0 to 50

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	total	51 non-null	float64
1	speeding	51 non-null	float64
2	alcohol	51 non-null	float64
3	not_distracted	51 non-null	float64
4	no_previous	51 non-null	float64
5	ins_premium	51 non-null	float64
6	ins_losses	51 non-null	float64
7	abbrev	51 non-null	object
4+++	oc. floot(1/7)	obioct (1)	

dtypes: float64(7), object(1)

memory usage: 3.3+ KB

1.Scatter plot

```
In [7]:
```

```
sns.scatterplot(x="alcohol",y="total",data=df)
```

∩11+ [7] •

Juc[/].

<Axes: xlabel='alcohol', ylabel='total'>

In []:

Inference: The scatterplot helps visualize the relationship between alcohol involvement and total crashes.

2.Histplot

In [8]:

sns.histplot(x="total",bins=20, kde=True,data=df)

Out[8]:

<Axes: xlabel='total', ylabel='Count'>

In []:

Inference: The histplot allows you to draw the following inferences about the distribution of total crashes

3.Boxplot

In [9]:

sns.boxplot(df)

Out[9]:

<Axes: >

In []:

Inference: This boxplot helps visualize the relationship between all columns ${\sf and}$ their p rices.

4.Countplot

In [10]:

```
sns.countplot(x="abbrev", data=df)
```

Out[10]:

<Axes: xlabel='abbrev', ylabel='count'>

In []:

Inference: In this countplot we can see that relation between states and count of crashes occured in each state.

5.Jointplot

In [11]:

sns.jointplot(x="alcohol", y="speeding", data=df)

Out[11]:

<seaborn.axisgrid.JointGrid at 0x233c8e8dd90>

In []:

Inference: The joint plot above displays the relationship between the "alcohol" and "speed ing" variables.

6.Relplot

```
In [12]:
```

sns.relplot(x="alcohol",y="speeding",data=df,height=6,hue="speeding")

Out[12]:

<seaborn.axisgrid.FacetGrid at 0x233c922edd0>

In []:

Inference: The relplot allows us to visually assess the relationship between alcohol involvement and speeding involvement in car crashes

7.Lineplot

```
In [13]:
```

```
sns.lineplot(x="abbrev",y="total",data=df,marker="o")
```

Out[13]:

```
<Axes: xlabel='abbrev', ylabel='total'>
```


In []:

Inference: The plot visualizes how the total number of crashes varies $from\ one$ state to a nother state.

8.Barplot

In [14]:

```
sns.barplot(x="abbrev", y="total", data=df)
```

Out[14]:

<Axes: xlabel='abbrev', ylabel='total'>

In []:

Inference: The bar plot shows the average total crashes by state.

9.Heatmap

In [22]:

corr=df.corr()
corr

C:\Users\murra\AppData\Local\Temp\ipykernel_27992\1661191605.py:1: FutureWarning: The def ault value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silen ce this warning.

corr=df.corr()

Out[22]:

	total	speeding	alcohol	not_distracted	no_previous	ins_premium	ins_losses
total	1.000000	0.611548	0.852613	0.827560	0.956179	-0.199702	-0.036011
speeding	0.611548	1.000000	0.669719	0.588010	0.571976	-0.077675	-0.065928
alcohol	0.852613	0.669719	1.000000	0.732816	0.783520	-0.170612	-0.112547
not_distracted	0.827560	0.588010	0.732816	1.000000	0.747307	-0.174856	-0.075970
no_previous	0.956179	0.571976	0.783520	0.747307	1.000000	-0.156895	-0.006359
ins_premium	-0.199702	-0.077675	-0.170612	-0.174856	-0.156895	1.000000	0.623116
ins_losses	-0.036011	-0.065928	-0.112547	-0.075970	-0.006359	0.623116	1.000000

In [23]:

sns.heatmap(corr,annot=True)

Out[23]:

<Axes: >

In []:

Inference:

- 1. Darker colors indicate stronger correlations, while lighter colors indicate weaker or no correlations.
- 2. The diagonal of the heatmap is always 1 because it represents the correlation of a variable with itself (perfect correlation).

In []:			
In []:			
In []:			