Явище електромагнітної індукції

Лекції з електрики та магнетизму

Пономаренко С. М.

Зміст

2

- 1. Явище електромагнітної індукції Вихрове електричне поле
- 2. Явище самоіндукції Перехідні процеси в колі з індуктивністю
- 3. Взаємна індукція Принцип роботи трансформаторів
- 4. Енергія магнітного поля
- 5. Пондеромоторні сили в магнітному полі

Явище електромагнітної індукції

Явище електромагнітної індукції (Фарадей)

У 1831 р. Фарадеєм було зроблено одне з найбільш фундаментальних відкриттів в електродинаміці— явище електромагнітної індукції. Воно полягає в тому, що в замкненому провідному контурі при зміні магнітного потоку, охопленого цим контуром, виникає електричний струм— його назвали індукційним.

Досліди Фарадея

Закон електромагнітної індукції

4

Електрорішійна сила (EPC), що виникає в контурі пропорційна швидкості зміни магнітного потоку, що пронизує площу, охоплену даним контуро:

$$\mathcal{E}_{\text{ind}} = -\frac{1}{c} \frac{d\Phi}{dt} = -\frac{1}{c} \frac{d}{dt} \iint_{S} \vec{B} \cdot \vec{S}.$$

$$\frac{d\Phi}{dt} > 0$$

$$\frac{d\Phi}{dt} < 0$$

Правило Ленца

Індукований струм має такий напрямок, щоб за допомогою створюваного ним магнітного поля перешкоджати зміні магнітного потоку, тобто щоб послабити дію причини, яка збуджує цей струм.

Струми Фуко

5

Струми Фуко — вихрові індукційні струми, які виникають у провіднику під час зміни магнітного потоку через поверхню провідника.

Струми Фуко, як і індукційні струми в лінійних провідниках, підпорядковані правилу Ленца: їх магнітне поле направлене так, щоб протидіяти змінам магнітного потоку, що індукували ці струми.

Закон збереження магнітного потока

Нехай замкнутий виток з опором R перебуває в зовнішньому магнітному полі.

За будь-якої зміни магнітного поля у витку збуджується ЕРС індукції. Струм, що виникає у витку:

$$I = \frac{\mathcal{E}_i}{R} = -\frac{1}{cR} \frac{d\Phi}{dt}.$$

Якщо опір контуру R = 0 (для надпровідника), то:

$$\frac{d\Phi}{dt} = 0, \Rightarrow \Phi = \text{const}$$

інакше навіть малі зміни Φ викликали б нескінченні струми. Тобто, магнітний потік через контур з малим опором зберігається.

Це означає, що число силових ліній, що пронизують виток незмінне. Силові лінії ніби «вморожені» в провідний контур, при зміщенні контура він захоплює силові лінії магнітного поля.

Вихрове електричне поле

Оскільки магнітний потік дорівнює $\Phi=\iint\limits_{S} \vec{B}\cdot d\vec{S}$, а EPC індукції $\mathscr{E}=\oint\limits_{S} \vec{E}\cdot d\vec{\ell}$, то із закону індукції випливає:

$$\oint\limits_{L} \vec{E} \cdot d\vec{\ell} = \iint\limits_{S} \vec{B} \cdot d\vec{S}.$$

Скориставшись теоремою Стокса, останнє інтегральне рівняння можна переписати у диференціальній формі:

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Вихрове електричне поле

$$\operatorname{rot} \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t}.$$

Згідно Максвеллу явище електромагнітної індукції полягає в тому, що будь-яке змінне магнітне поле збуджує в просторі електричне поле; провідники для цього не потрібні. Індукційні ж струми збуджуються в провідниках індукованим електричним полем.

На відміну від електростатики, де $\cot \vec{E}=0$, у випадку змінного в чаі магнітного поля $\cot \vec{E}\neq 0$. Це означає, що індуковане електричне поле, індукується (виникає) за рахунок зміни магнітного поля і не є потенційним, а вихровим.

Скористаємося законом електромагнічної індукції. Підставимо сюди вираз для магнітного поля через векторний потенціал $\vec{B} = \operatorname{rot} \vec{A}$:

$$\operatorname{rot}\left(\vec{E} + \frac{\partial \vec{A}}{\partial t}\right) = 0$$

Рівність нулю ротора деякого векторного поля означає, що це поле потенційне і може бути представлене як градієнт скалярної функції. Таким чином, отримуємо

$$\vec{E} = -\vec{\nabla}\varphi - \frac{\partial \vec{A}}{\partial t}$$

У окремому випадку постійних у часі полів приходимо до відомої рівності: $\vec{E} = -\vec{\nabla} \varphi$, звідки видно, що введена тут функція φ збігається зі скалярним потенціалом.

Явище самоіндукції

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, EPC індукції. Це явище називають самоіндукцією.

Якщо в просторі, де розташований контур зі струмом I, немає феромагнетиків, поле \vec{B} , а отже, і повний магнітний потік Φ через контур будуть пропорційні силі струму I:

$$\Phi = \frac{1}{c}LI$$

Коефіцієнт L називається індуктивністю контуру.

Явище самоіндукції

Зміна струму в контурі викликає зміну магнітного поля, що створює змінний магнітний потік через цей же контур і, як наслідок, ЕРС індукції. Це явище називають самоіндукцією.

При зміні сили струму в контурі згідно закону Фарадея виникає ЕРС самоіндукції:

$$\mathscr{E}_{\mathsf{si}} = -L \frac{dI}{dt}$$

Тут знак мінус показує, що $\mathscr E$ завжди спрямована так, щоб перешкоджати зміні сили струму відповідно до правила Ленца. Ця ЕРС прагне зберегти струм незмінним: вона протидіє струму, коли він збільшується, і підтримує струм, коли він зменшується.

Коефіцієнт L називається індуктивністю контуру.

10

Приклади розрахунку індуктивності

Одиницею індуктивності в системі СГС є сантиметр: [L] = см. Це означає, що індуктивність є геометричною характеристикою.

Перехідні процеси в колі з індуктивністю

Встановлення струму в LR-контурі

Закон Ома для кола $\mathscr{C}+\mathscr{C}_{\rm si}=IR$. Враховуючи що $\mathscr{C}_{\rm si}=-LdI/dt$, закон набуде вигляду

$$L\frac{dI}{dt} + IR = \mathscr{E}.$$

Після інтегрування ми отримаємо:

$$I(t) = \frac{\mathscr{E}}{R} \left(1 - e^{-\frac{R}{L}t} \right),\,$$

де $au = \frac{L}{R}$ — називають часом релаксації.

Перехідні процеси в колі з індуктивністю

Екстраструми при розмиканні

Спочатку ключ S замкнутий. Тоді через опір R і через котушку індуктивності L тече струм:

$$I_0 = \mathscr{E}/r$$
.

Після розмикання ключа (відключення ЕРС) магнітне поле почне убувати. Це збудить електрорушійну \mathscr{E}_{si} силу та індукційний струм I у контурі. Такий струм називається екстраструмом розмикання. По закону Ома:

$$I(R+r) = -L\frac{dI}{dt}.$$

Після інтегрування ми отримаємо: $I(t) = I_0 e^{-\frac{R+r}{L}t}$

Якщо $R\gg r$, то $\mathscr{E}_{\rm si}=\frac{R}{r}\mathscr{E}e^{-\frac{R}{L}t}$. При розмиканні ця величина може значно перевершити ЕРС батареї, тобто може статись пробій, що спостерігається під час вимкнення струму в колах з великими індуктивностями.

Взаємна індукція

Нехай два нерухомих контури 1 і 2 розташовані близько один до одного. Якщо в контурі 1 тече струм I_1 , він створює через контур 2 магнітний потік Φ_2 , пропорційний струму I_1 :

$$\Phi_{21} = \frac{1}{c} L_{21} I_1$$

Аналогічно, якщо в контурі 2 тече струм I_2 , то він створює через контур 1 магнітний потік:

$$\Phi_{12} = \frac{1}{c} L_{12} I_2.$$

Коефіцієнти пропорційності L_{12} і L_{21} називають коефіцієнтами взаємної індуктивністю контурів.

Взаємна індукція

Закони Ома для контурів:

$$\begin{cases} I_1 R_1 = \mathcal{E}_1 - \frac{1}{c^2} \frac{d}{dt} \left(L_{11} I_1 \right) - \frac{1}{c^2} \frac{d}{dt} \left(L_{12} I_2 \right), \\ I_2 R_2 = \mathcal{E}_2 - \frac{1}{c^2} \frac{d}{dt} \left(L_{21} I_1 \right) - \frac{1}{c^2} \frac{d}{dt} \left(L_{22} I_2 \right). \end{cases}$$

Наявність магнітного зв'язку між контурами проявляється в тому, що за будь-якої зміни струму в одному з контурів в іншому контурі виникає ЕРС індукції. е явище називають взаємною індукцією.

 L_{12} — алгебраїчна величина, яка може мати різний знак, а також дорівнювати нулю.

Розрахунок коефіцієнтів взаємної індуктивності

Приклад

Довгий парамагнітний циліндр об'ємом V має дві обмотки (одна на іншій). Одна обмотка містить n_1 витків на одиницю довжини, інша — n_2 . Знайдемо їхню взаємну індуктивність, нехтуючи крайовими ефектами.

Розв'язок

Оскільки $L_{21}=\Phi_2/I_1$. Це означає, що ми повинні створити струм I_1 в обмотці 1 і обчислити повний магнітний потік через всі витки обмотки 2. Якщо в обмотці 2 міститься N_2 витків, то

$$\Phi_2 = N_2 B_1 S,$$

де S — площа поперечного перерізу циліндра. Оскільки $N_2=n_2l,\ l$ — довжина циліндра, $B_1=\frac{4\pi}{2}\mu n_1I_1$, то

$$\Phi_2 = \frac{4\pi}{c} \mu N_2 n_1 I_1 S.$$

Отже

$$L_{21} = \frac{4\pi}{c} \mu \frac{N_2 N_1}{l} S.$$

Аналогічно знаходимо і L_{12} :

$$L_{12} = \frac{4\pi}{c} \mu \frac{N_1 N_2}{l} S.$$

Розрахунок коефіцієнтів взаємної індуктивності

Приклад

Довгий парамагнітний циліндр об'ємом V має дві обмотки (одна на іншій). Одна обмотка містить n_1 витків на одиницю довжини, інша — n_2 . Знайдемо їхню взаємну індуктивність, нехтуючи крайовими ефектами.

Зауваження

В розглянутому прикладі коефіцієнти індуктивності задовольняють співвідношенням:

$$L_{21} = L_{12} = \sqrt{L_1 L_2}$$

Їх справедливість пов'язана, по-перше, з тим, що ми знехтували розсіюванням магнітного потоку, а по-друге, з тим, що магнітна проникність осердя не залежить від величини магнітного поля. Співвідношення $L_{21}=L_{12}$ не буде виконуватись для феромагнетика, для якого $\mu=\mu(H)$ і за умови що $N_1\neq N_2$. Тоді обмотки при однакових струмах створюють в осерді різні магнітні поля, так що вирази для L_{21} і L_{12} міститимуть різні коефіцієнти μ , що й призводить до нерівності.

Теорема взаємності

Теоремою взаємності стверджує, що коефіцієнтами взаємної індуктивністю контурів однаков:

$$L_{12} = L_{21}.$$

Завдяки цій теоремі можна не робити різниці між L_{12} і L_{21} і просто говорити про взаємну індуктивність двох контурів.

Практичне застосування

Практичне застосування теореми взаємності полягає у тому, що якщо по контурам течуть однакові струми I, то

$$\Phi_1 = \Phi_2$$

Ця обставина нерідко дає змогу сильно спрощувати вирішення питання про знаходження, наприклад, магнітних потоків.

Задачі на застосування теореми взаємності

Задача 1

Два тонкі колові провідники, осі яких співпадають, лежать в одній площині. Радіус зовнішнього провідника R_1 внутрішнього R_2 ($R_2 \ll R_1$). Знайдіть магнітний потік, що пронизує площу зовнішнього провідника, якщо по внутрішньому провіднику тече струм I.

Задача 2

Магнітний диполь з моментом p_m обертається з частотою ω навколо осі, яка проходить через його центр і перпендикулярна магнітному моменту (див. рис.). Знайти струм в плоскому нерухомому кільці радіусом a з опором R, яке знаходиться на відстані $l\gg a$ від диполя. Нормаль \vec{n} до площини кільця перпендикулярна осі обертання диполя. Самоїндукцією рамки знехтувати.

Трансформатор

Принцип роботи

Принцип дії трансформаторів — пристроїв, що застосовуються для підвищення або зниження напруги змінного струму, заснований на явищі взаємної індукції.

Первинна і вторинна обмотки з N_1 і N_2 витками укріплені на замкнутому залізному осерді. Змінна напруга \mathcal{E}_1 у первинній обмотці створює струм I_1 і змінний магнітний потік Φ , локалізований в осерді. Потік пронизує витки вторинної обмотки, викликаючи EPC взаємної індукції, а в первинній — EPC самоіндукції.

16

Трансформатор

Теорія

Струм I_1 у первинній обмотці визначається за законом Ома:

$$\mathscr{E}_1 - \frac{d}{dt}(N_1 \Phi) = I_1 R_1.$$

При швидкозмінних полях $I_1R_1\ll \mathscr{E}_1, \frac{d}{dt}(N_1\Phi)$:

$$\mathscr{E}_1 \approx N_1 \frac{d\Phi}{dt}.$$

ЕРС у вторинній обмотці:

$$\mathscr{E}_2 = -N_2 \frac{d\Phi}{dt} = -\frac{N_2}{N} \mathscr{E}_1$$
, знак «–» вказує на протилежність фаз.

Відношення $\eta = \frac{N_2}{N_1}$ називається коефіцієнтом трансформації.

Якщо $\eta > 1$, то це підвищувальний трансформатор, що збільшує EPC і зменшує струм. Якщо $\eta < 1$, то це знижувальний трансформатор, що зменшує EPC і збільшує струм.

Енергія магнітного поля

Провідник зі струмом створює магнітне поле, яке з'являється та зникає разом зі струмом. Магнітне поле є носієм енергії, що дорівнює роботі струму на його створення. Розглянемо роботу, яку виконує джерело при замиканні ключа в колі по переміщенню заряду dq = Idt:

$$\delta A = \mathcal{E} dq = I^2 R dt - \mathcal{E}_{\rm Si} I dt = \\ = \underbrace{I^2 R dt}_{\rm Ten, nota} + \underbrace{\frac{1}{c^2} LI dI}_{\rm Eheprig} \\ \underbrace{\text{Marhithoro}}_{\rm nong}$$

Енергія магнітного поля:
$$W = \frac{1}{c^2} \int_0^I LIdI = \frac{1}{c^2} \frac{LI^2}{2} = \frac{1}{c} I \Phi = \frac{\Phi^2}{2L}$$
.

Енергія магнітного поля

Енергію магнітного поля визначається через характеристики поля.

Розглянемо однорідне магнітне поле всередині довгого соленоїда.

Індуктивність соленоїда:

$$L = \frac{4\pi\mu N^2 S}{l}.$$

Магнітне поле в середині соленоїда:

$$B = \frac{4\pi\mu NI}{cl}$$

Енергія магнітного поля:

$$W = \frac{1}{c^2} \frac{LI^2}{2} = \frac{1}{c^2} \frac{(4\pi\mu NI)^2 Sl}{8\pi\mu l^2} = \frac{B^2}{8\pi\mu} V = \frac{BH}{8\pi} V.$$

Енергія магнітного поля

Енергію магнітного поля визначається через характеристики поля.

Розглянемо однорідне магнітне поле всередині довгого соленоїда.

Індуктивність соленоїда:

$$L = \frac{4\pi\mu N^2 S}{l}.$$

Магнітне поле в середині соленоїда:

$$B = \frac{4\pi\mu NI}{cl}$$

Густина енергії магнітного поля:

$$w = \frac{BH}{8\pi}.$$

Магнітна енергія зосереджена в об'ємі соленоїда — в тій області простору, де присутнє магнітне поле.

18

Пондеромоторні сили в магнітному полі

Закон збереження енергії

По закону збереження енергії робота, яку виконують джерела струму, йде на теплоту, на збільшення магнітної енергії і на механічну роботу:

$$\delta A_{\text{\tiny DK}} = \delta Q + dW + \delta A_{\text{\tiny Mex}}.$$

З іншого боку, та ж робота визначається як:

$$\delta A_{\text{\tiny DM}} = \delta Q - \mathcal{E}_{\text{in}} I dt,$$

Звідки

$$-\mathcal{E}_{in}Idt = dW + \delta A_{Mex}$$

Пондеромоторні сили в магнітному полі

Випадок I = const

$$-\mathcal{E}_{\rm in}Idt = dW + \delta A_{\rm Mex}$$

Розглянемо умову, коли в колі підтримується постійним струм.

$$-\mathscr{E}_{\mathsf{in}}Idt = +\frac{I^2}{c^2}dL.$$

При цьому, зміна магнітної енергії $dW=rac{I^2}{2c^2}dL$. Отже, $\delta A_{\text{mex}}=+dW$, а сила втягування:

$$F_x = +\left(\frac{dW}{dx}\right)_{I}$$

Пондеромоторні сили в магнітному полі

Випадок $\Phi = \text{const}$

$$-\mathcal{E}_{\rm in}Idt=dW+\delta A_{\rm mex}$$

Розглянемо умову, коли в колі підтримується потік, що пронизує котушку (наприклад якщо котушка із надпровідника).

$$-\mathcal{E}_{in}Idt=0.$$

Отже, $\delta A_{\text{mex}} = -dW$, а сила втягування:

$$F_{x} = -\left(\frac{dW}{dx}\right)_{\Phi}$$

Приклади

Поведінка різних тіл в магнітному полі

Ампула з парамагнітним розчином хлористого заліза в магнітному полі

Діамагнітна паличка вісмута в магнітному полі

Втягування розчину хлористого заліза в магнітне поле

Діамагнетизм полум'я

Підйомна сила електромагніта

За теоремою про циркуляцію для \vec{H} :

$$\frac{B}{\mu}l+B\;2x=\frac{4\pi}{c}IN, \Rightarrow B=\frac{4\pi\mu}{c}\frac{NI}{l+2\mu x},$$

де l — довжина контура в середині магніту. Потік магнітного поля через площу перерізу S магніту:

$$\Phi = NBS = \frac{4\pi\mu}{c} \frac{N^2 I}{l + 2\mu x} S.$$

За умови, що струм постійний, зміна енергії магнітного поля при віртуальній зміні x дорівнює $dW=\frac{Id\Phi}{2c}$, і силу можна знайти як:

$$F_{x} = \left(\frac{dW}{dx}\right)_{I} = \frac{I}{2c} \left(\frac{d\Phi}{dx}\right)_{I} = -\frac{4\pi\mu^{2}}{c^{2}} \frac{N^{2}I^{2}}{(l+2\mu x)^{2}} S = \frac{B^{2}}{8\pi} 2S.$$

Сила $F_{\rm x} < 0$ означає, що це сила притягання.