

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA ELÉTRICA UBERLÂNDIA, MINAS GERAIS

Semana 05b - Amplificadores Operacionais

SISTEMAS DE CONTROLE

Prof.: Éder Alves de Moura

Aluno: Pedro Paulo Costa Castro Alves – 11721ECP017

a) O Amplificador Integrador:

Figura 1: Diagrama do Amp-Op Integrador

Através da relação essencial dos Amp-Ops onde: $v_+ = v_-$, então $v_+ = 0 \Rightarrow v_- = 0$. A corrente de R_1 então será igual a $\frac{v_i}{R_1}$. Como a corrente na porta inversora é nula, então

 $I_{R_1}=I_{R_2}+I_C$. Sendo R_2 um resistor utilizado para limitar a tensão de C, e a maior parte da corrente fluirá por C por se comportar como um curto circuito em corrente alternada então consideramos $I_{R_1}=I_C$. Pela equação da corrente no capacitor $I_C=C$ $\frac{d v_C}{dt}$

$$\int \frac{d v_c}{dt} = \int \frac{1}{C} \frac{v_i}{R_1} \Rightarrow v_c(t) = \frac{1}{R_1 C} \int v_i(t) dt + v_0(0)$$

Como $v_c = -v_o$, então:

$$v_o(t) = -\frac{1}{R_1 C} \int v_i(t) dt + v_0(0)$$

Assim, pela característica que o capacitor introduz no sistema, a saída será uma integral do sinal de entrada, daí o nome do Amp-Op.

b) O Amplificador Diferenciador:

Figura 2: Diagrama do Amp-Op Diferenciador

Pelas leis inerentes aos amp ops citadas anteriormente e pela configuração do Amp-Op Diferenciador, inferimos que: $i_C = C \frac{d v_i}{dt} = i_R$; $v_R = R \cdot i_R = -v_o$

Então:

$$v_o(t) = -RC \frac{d v_i}{dt}$$

Temos que a tensão de saída é a tensão de entrada invertida e ponderada pelos valores da capacitância e resistência.

c) O Amplificador Comparador:

Figura 3: Diagrama do Amp-Op Comparador

Para exemplificarmos o Amp-Op comparador agora explicitamos as entradas $+V_{cc}$ e s $-V_{cc}$ que antes eram omitidas, elas são as tensões de alimentação e referência do circuito e normalmente simétricas.

O funcionamento dessa configuração é simples:

se
$$v_+ > v_-$$
, então $v_o = +V_{cc}$. Se: $v_- > v_+$, $v_o = -V_{cc}$.

d) O Amplificador Comparador com Realimentação Positiva

E um Amp-Op Comparador real, no intervalo de transição da saída entre $+V_{cc}$ e $-V_{cc}$ e vice-versa haverá um transitório, o qual resolveremos ao introduzir a realimentação positiva ao comparador convencional.

Figura 4: Diagrama do Amp-Op Comparador com Realimentação Positiva.

Ao adicionarmos os resistores R_1 e R_2 , temos um divisor de tensão onde: $v_{R_1}=v_+$ e $v_{R_2}=v_o$.

$$v_+ = \frac{R_1}{R_1 + R_2} \cdot v_o ,$$

mas como v_o só pode assumir valores no intervalo $\{+V_{cc}, -V_{cc}\}$:

$$v_+ = \frac{R_1}{R_1 + R_2} \cdot \pm V_{cc}$$

Para que a saída v_o altere de valor, v_- precisa ser maior ou menor que v_+ , porém como o valor de v_+ está ponderado por $\pm V_{cc}$ (que dependerá do estado atual v_o), e este consequentemente de v_- , haverá a introdução de uma *histerese* no circuito. Assim, como a saída não pode fugir do intervalo $\{+V_{cc}, -V_{cc}\}$, condicionamos o sistema para que ele transacione entre os dois estados bem definidos independentemente de ruídos ou transitórios.

e) Resumo das configurações básicas

Retomamos a lei geral para Amp-Ops ideais onde:

$$\begin{cases} v_{+} = v_{-} \\ i_{+} = i_{-} = 0 \end{cases}$$

Figura 5: Amp-Op sem configuração.

Através dessa lei geral podemos chegar às seguintes configurações (mais usuais) para o Amp-Op e suas respectivas funções de transferência:

Integrador

$$v_o = -rac{1}{RC}\int v_{in}dt + v_0$$

Comparador

$$v_o = egin{array}{ccc} v_- < v_+ &\Longrightarrow +V_{CC} \ v_- > v_+ &\Longrightarrow -V_{CC} \end{array}$$

Comparador com realimentação positiva

$$v_o = \pm V_{CC}$$

$$v_{up} = rac{R_1}{R_1 + R_2} \cdot + V_{CC}$$

$$v_{down} = rac{R_1}{R_1 + R_2} \cdot - V_{CC}$$

2) Para os exemplos citados na questão anterior, construa um exemplo e sua simulação no SimulIDE. Apresente os prints da simulação e o desenvolvimento matemático.

A) AMPLIFICADOR INTEGRADOR E DIFERENCIADOR:

Figura 6: Simulação dos amplificadores integrador e diferenciador no SimulIDE

Para comprovarmos o funcionamento dos amplificadores na prática, aplicou-se uma onda quadrada na entrada do amplificador integrador, resultando em uma onda triangular, como esperado pela relação de integração da função degrau.

Reciprocamente introduzimos a onda triangular na entrada do amplificador diferenciador, e a saída fora a onda quadrada como previsto.

B) AMPLIFICADORES COMPARADORES

O funcionamento do comparador padrão é intuitivo, apenas seguimos a regra apresentada na questão anterior, já o comparador com realimentação, mais complexo, exige um osciloscópio para entendermos seu funcionamento. Fornecemos um sinal senoidal na entrada do comparador, este que é alimentado num intervalo ± 5 V, que é o esperado na saída, e é o que percebemos: temos dois níveis discretos na saída que está na forma de uma onda quadrada, e uma onda quadrada menor que é v_+ : o sinal de v_o ponderado por um divisor resistivo. Quando a senoide (v_{in}) atinge seu pico, coincide com a borda de descida de v_+ , tendo v_o = -5V, e do contrário temos v_o = 5V