Reviewing Tables and ggplot2

Tyson S. Barrett

Data

For these slides, the activities, and examples we will use the "Office_Parks" data set.

- Contains ficticious data on both *The Office (U.S.)* and *Parks and Recreation* television shows
- Longitudinal (two time points) and nested (within show)
- Currently in wide format

Data can be downloaded from: tysonstanley.github.io

Review of Beautiful Tables and agplot2 1

Load the Data

Showing 1 to 5 of 38 entries

Explore the Data

What are some ways to explore this data?

- data summaries via tables
- univariate and multi-variate plots

Quick Summaries

Among the important aspects of the data to explore include:

- correlations
- means and standard deviations
- ranges
- distributions
- missingness

For this we'll use a few functions:

- 1. furniture::tableC()
- 2. furniture::table1()
- 3. summary()
- 4. psych::describe()

Correlations

Simple

```
library(furniture)
table1(d,
       prod1, ment1, depr1, awkw1)
##
                 Mean/Count (SD/%)
##
   Observations 38
##
   prod1
##
                 3.2 (1.4)
   ment1
                 5.3 (2.2)
##
##
   depr1
                 11.3 (4.1)
##
##
    awkw1
                 7.6 (5.9)
##
```

Stratified

```
library(furniture)
table1(d,
          prod1, ment1, depr1, awkw1,
          splitby = ~show)
```

```
##
##
                      show
                Parks and Rec The Office
##
   Observations 22
                             16
##
   prod1
                3.1 (1.6) 3.2 (1.1)
##
   ment1
##
                5.4 (2.3) 5.2 (2.2)
##
   depr1
##
                10.6 (4.5) 12.1 (3.7)
##
   awkw1
                12.2 (4.6) 2.6 (1.3)
##
```

Stratified with bivariate statistical tests (by show)

```
library(furniture)
table1(d,
          prod1, ment1, depr1, awkw1,
          splitby = ~show, test = TRUE)
```

```
##
##
                          show
                Parks and Rec The Office P-Value
##
   Observations 22
                              16
##
   prod1
                                         0.693
                3.1 (1.6) 3.2 (1.1)
##
                                         0.838
   ment1
                5.4 (2.3)
##
                              5.2 (2.2)
##
                                         0.314
   depr1
                10.6 (4.5) 12.1 (3.7)
##
##
   awkw1
                                         <.001
                12.2 (4.6)
##
                              2.6 (1.3)
```

```
##
##
                           show
                 Parks and Rec The Office P-Value
##
   Observations 22
                               16
                                          0.693
##
    prod1
                 3.1 (1.6)
##
                               3.2 (1.1)
##
   ment1
                                          0.838
                 5.4 (2.3)
##
                               5.2 (2.2)
##
    depr1
                                          0.314
                 10.6 (4.5) 12.1 (3.7)
##
##
    awkw1
                                          <.001
                 12.2 (4.6)
##
                               2.6 (1.3)
```

Any surprises?

- awkw1 seems massively different
- Could be a problem with the data

```
##
##
                          show
                Parks and Rec The Office P-Value
   Observations 22
                              16
##
   prod1
                                         0.693
                3.1 (1.6)
##
                              3.2 (1.1)
##
                                         0.838
   ment1
                5.4 (2.3)
##
                              5.2 (2.2)
##
   depr1
                                         0.314
                10.6 (4.5) 12.1 (3.7)
##
##
   awkw1
                                         <.001
                12.2 (4.6)
                            2.6 (1.3)
##
```

Any surprises?

- awkw1 seems massively different
- Could be a problem with the data

We can see if there are weird things in the ranges and distributions

Ranges and Distributions

```
library(tidyverse) ## for the pipe and select()
d %>%
  select(awkw1, awkw2) %>%
  psych::describeBy(group = d$show)
## Parks and Rec
       vars n mean sd median trimmed mad min max range
##
## awkw1 1 17 12.235 4.562 10 12.333 7.413 4 19
## awkw2 2 22 14.909 7.030 13 14.889 9.637 4 26 22 ...
## ----
## The Office
       vars n mean sd median trimmed mad min max range
##
## awkw1 1 16 2.625 1.258 3 2.571 1.483 1 5
## awkw2 2 16 1.938 1.769 2 1.786 2.224 0 6 ...
```

All descriptives suggest there is a problem with the awkw1 measures between the shows.

Univariate and Multi-variate Plots

We can only assess the data so much without plots.

Generally, there are two things we want to understand quickly:

- distributions
- relationships
 - especially bi-variate or tri-variate relationships

Some background on ggplot2

Three major aspects:

- **layers**: The layers include all the points, bars, lines, etc. The geom_functions.
- **scales**: The scales the scales of the x and y, the colors, the fills, etc. The scale_ functions.
- facets: The facets are the stratified plots. The facet_ functions.

Additionally, the general look of the plot can be controlled by the theme functions.

Univariate Plots

Simplest

```
qplot(d$awkw1)
```

```
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

Warning: Removed 5 rows containing non-finite values (stat_bin).

Univariate Plots

Better

Warning: Removed 5 rows containing non-finite values (stat_density).

Univariate-ish Plots

Even Better

```
ggplot(d, aes(x=awkw1, group = show, fill = show, color = show)) +
  geom_density(alpha = .5)
```

Warning: Removed 5 rows containing non-finite values (stat_density).

Univariate-ish Plots

Maybe Best?

```
ggplot(d, aes(x=awkw1, group = show, fill = show, color = show)) +
  geom_density(alpha = .5) +
  theme_classic()
```

Warning: Removed 5 rows containing non-finite values (stat_density).

Some Notes, Comments, and Questions

- The warning: there are some missing values!
- Again, awkw1 looks iffy.
- What else would you like to do to the plot?
- Would you want to try a different type of plot?

Multi-variate Plots

Let's check some relationships using

- scatterplots
- scatterplots with groups
- joy plots
- bar plots
- line plots

We'll use the group, color and fill options as well as the facet_functions.

Multi-variate Plots

Let's check some relationships using

- scatterplots
- scatterplots with groups
- joy plots
- bar plots
- line plots

We'll use the group, color and fill options as well as the facet_functions.

Let's get a blank plot started for each scatterplot and make gend a factor.

```
d$gend = factor(d$gend, labels = c("Male", "Female"))
scatter <- ggplot(d, aes(x = awkw1, y = prod1))</pre>
```

Scatterplot

```
scatter + geom_jitter()
```

Warning: Removed 5 rows containing missing values (geom_point).

Scatterplot

```
scatter + geom_jitter() +
  geom_smooth(method = "lm")
```

Warning: Removed 5 rows containing non-finite values (stat_smooth).

Warning: Removed 5 rows containing missing values (geom_point).

Scatterplot with Interaction

Let's see if there appear to be differences across the genders.

To create a joy plot, we need to reshape our data a bit. We are going to do two steps of reshaping:

- 1. Put our data in long form based on the time periods, and
- 2. Turn each variable into a single variable for the joy plot.

df_long

What do you expect to see in df_long? Go step by step through the functions.

Copy CSV Excel		PDF	Print	Search:			
	nam 🛊	phys *	marr \$	gend 🛊	race 🛊	inco 🛊	chil 🛊
● 1.1.Prod	Michael	8	0	Male	White	55	0
● 2.1.Prod	Pam	7	1	Female	White	35	2
3.1.Prod	Jim	8	1	Male	White	70	2
4.1.Prod	Dwight	8	0	Male	White	70	0
● 5.1.Prod	Stanley	4	1	Male	Black	70	1
• 6.1.Prod	Phyllis	4	1	Female	White	70	0
Showing 1 to 6 of 304 entries							
	Previous	1	2 3	4	5	51	Next

```
library(ggjoy)
ggplot(df_long, aes(x = Value, y = Variable)) +
  geom_joy(alpha = .7)
```


This highlights the overall distributions but ignores time points.

This, however, ignores the differences by show.

What patterns do you see?

Bar Plots

In general, to do bar plots, we want some summary statistics (e.g., means and standard errors).

Bar Plots

This is probably a bit much... Let's try a line plot instead.

Line Plots

We are going to look at two types

- 1. Pre-Post Plots
- 2. Spaghetti plots

Pre-Post Plots

Much better! We can see trends for each variable across both time points really easily.

Spaghetti Plot

We may want to see individual trajectories. Spaghetti plots are made for this.

Spaghetti Plot

I want to highlight a piece of the code before.

Note the:

- interaction(Variable, nam)
- Variable~show in the facet_grid() function

interaction() let's us group by more than one variable. Why would we want to do that here?

Variable~show facets the plots by both variables where one is the rows (Variable) and one is the columns (show). We could have them both be the rows (Variable+show~.) or both be the columns (~Variable+show).

Use it 💪

Using the "OfficeParks" data set:

- Understand time trends
- Find out if awkw2 has the same problem as awkw1
- Find a way to fix awkw1 (and awkw2 if necessary)
- Demonstrate where there is a strong bivariate relationship (using a plot)

What did you find??