²⁴¹₉₅ Am ₁₄₆

1 Decay Scheme

Am-241 decays 100% by alpha transitions to Np-237. Most of the decay (84.6 %) populate the excited level of Np-237 with energy of 59.54 keV. Branching of Am-241 decay by spontaneous fission is 3,6 (9) E-10 %.

L'américium 241 se désintègre à 100 % par émission alpha vers le neptunium 237. Le branchement principal (84,6 %) se fait vers le niveau excité de 59 keV. Un faible branchement (3,6 (9) E-10 %) par fission spontanée a été observé.

2 Nuclear Data

2.1 α Transitions

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	Probability $\times 100$	F
$\alpha_{0,36}$	4838,00 (13)	0,00004(3)	47
$\alpha_{0,34}$	4882,14 (13)	0,000086	44
$\alpha_{0,33}$	4915,86 (13)	0,0007	9,5
$\alpha_{0,32}$	4971,62 (15)		
$\alpha_{0,30}$	5039,83 (15)		
$\alpha_{0,29}$	5045,49(14)		
$\alpha_{0,28}$	5047,73(13)		
$\alpha_{0,27}$	5091,70 (14)	0,0001	1000
$\alpha_{0,25}$	5140,81 (13)		
$\alpha_{0,24}$	5151,60 (15)	0,00011	2300
$\alpha_{0,23}$	5178,13 (13)	$\sim 0,0004$	~ 1000
$\alpha_{0,22}$	5185,27 (13)	$\sim 0,0004$	~ 1000
$\alpha_{0,21}$	5193,04 (16)		
$\alpha_{0,20}$	5203,70 (13)	0,0004	1400

	Energy keV	Probability × 100	F
$\alpha_{0,19}$	5219,6 (2)		
$\alpha_{0,18}$	5242,25 (13)	0,0007	1400
$\alpha_{0,17}$	5266,89 (13)	0,0003	4600
$\alpha_{0,16}$	5269,21 (13)	0,0009	1600
$\alpha_{0,15}$	5277,90 (23)	0,0006	2700
$\alpha_{0,14}$	5305,44 (13)	,	
$\alpha_{0,13}$	5313,40 (13)	0,0013	2100
$\alpha_{0,12}$	5321,0 (3)	,	
$\alpha_{0,11}$	5332,77 (13)	0,0022(3)	1600
$\alpha_{0,9}$	5370,25 (13)	0,0005	12000
$\alpha_{0,8}$	5411,82 (13)	0,014 (3)	770
$\alpha_{0,6}$	5479,32 (13)	1,66 (3)	16,4
$\alpha_{0,5}$	5507,83 (13)	~ 0.01	≈ 4000
$\alpha_{0,4}$	5534,86 (12)	13,23 (10)	4,3
$\alpha_{0,3}$	5561,92 (12)	< 0.04	> 2000
$\alpha_{0,3}$ $\alpha_{0,2}$	5578,28 (12)	84,45 (10)	1,3
, , , , , , , , , , , , , , , , , , ,	5604,62 (12)	0.23(1)	600
$\alpha_{0,1}$	5637,82 (12)	0.38(1)	610
$\alpha_{0,0}$	0001,02 (12)	0,00 (1)	010

2.2 Gamma Transitions and Internal Conversion Coefficients

	Energy	$P_{\gamma+ce}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	$lpha_T$
	keV	× 100					
$\gamma_{10,9}(\mathrm{Np})$	13,81 (2)		M1 + 0.10 % E2			365 (7)	494 (10)
$\gamma_{2,1}(\mathrm{Np})$	26,34460 (24)	21 (5)	E1 anomalous		6 (2)	1,6 (2)	8 (2)
$\gamma_{4,3}(Np)$	27,06 (1)	,			,	, , ,	. ,
$\gamma_{27,26}({\rm Np})$	31,92 (8)						
$\gamma_{(-1,1)}(Np)$	32,183	0,0174(4)					
$\gamma_{1,0}(\mathrm{Np})$	33,1963 (3)	21,3 (30)	M1 + 1,66 % E2		131 (17)	33(5)	175(24)
$\gamma_{17,14}(\mathrm{Np})$	38,54 (3)		M1 + > 30 % E2		> 94	> 345	> 472
$\gamma_{3,1}(\mathrm{Np})$	42,704(5)	$\approx 0.42 (9)$	$(M1 + \approx 1.7 \% E2)$		$\approx 56 (5)$	$\approx 13.9 (14)$	$\approx 75 (7)$
$\gamma_{4,2}(\mathrm{Np})$	43,420 (3)	12,1 (16)	M1 + 16.6 % E2		132 (17)	35 (5)	180 (23)
$\gamma_{14,10}({ m Np})$	51,01 (3)	0,000046 (21)	$\mathbf{E1}$		0,564 (11)	0,141(3)	0,753 (11)
$\gamma_{5,3}(\mathrm{Np})$	54,09 (3)						
$\gamma_{6,4}(\mathrm{Np})$	55,56 (2)	1,19 (16)	M1 + 17.5 % E2		48 (4)	12,6 (11)	65(6)
$\gamma_{13,9}(\mathrm{Np})$	56,86 (3)						
$\gamma_{(-1,2)}(Np)$	57,85 (5)						
$\gamma_{2,0}(\mathrm{Np})$	59,5409 (1)	77.6(25)	E1 anomalous		0.84(6)	0,226(7)	1,16(7)
$\gamma_{7,5}(\mathrm{Np})$	61,56(7)						
$\gamma_{14,9}(\mathrm{Np})$	64,83 (2)	0,000196(28)	E1		0,301(6)	0.0744(15)	0,400(8)
$\gamma_{8,6}(\mathrm{Np})$	67,50(2)	0,013(4)	(M1 + 17 % E2)		22 (5)	5,7(13)	29 (6)
$\gamma_{4,1}(\mathrm{Np})$	69,76 (3)	0,0039(5)	(E1)		0,248(5)	0,0612 (12)	0,330(7)
$\gamma_{3,0}(\mathrm{Np})$	75,90 (1)	0,032	(E2)		38,6 (8)	10,76 (22)	53,1 (11)
$\gamma_{36,33}(\mathrm{Np})$	77,86 (4)		, ,				
$\gamma_{11,8}(\mathrm{Np})$	79,05 (3)						
$\gamma_{15,9}(\mathrm{Np})$	92,35 (20)						
$\gamma_{5,1}(\mathrm{Np})$	96,79 (3)	0,000047(16)					
$\gamma_{6,2}(Np)$	98,97 (2)	0,329 (10)	E2		11,07 (22)	3,08(6)	15,2(3)

	$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	α_K	$lpha_L$	$lpha_M$	$lpha_T$
$\gamma_{4,0}(\mathrm{Np})$	102,98 (2)	0,0218 (5)	E1		0,0895 (18)	0,0219 (4)	0,1189 (24)
$\gamma_{(-1,3)}(Np)$	106,42 (5)		f== - 1		/		
$\gamma_{20,13}(\mathrm{Np})$	109,70 (7)	0,000051	[E2]		6,86 (14)	1,91(4)	9,44 (19)
$\gamma_{7,3}(\mathrm{Np})$	115,65 (6)						
$\gamma_{21,13}(Np)$	120,36 (8)	0.000== (00)	T-0	0.104 (4)	4.07 (0)	1 107 (00)	F FF (10)
$\gamma_{8,4}(Np)$	123,05 (1)	0,00675 (30)	E2	0,184 (4)	4,05 (8)	1,127 (23)	5,75 (12)
$\gamma_{6,1}(Np)$	125,30 (2)	0,00533 (26)	(E1)	0,228(5)	0,0538 (11)	0,0132(3)	0,299(6)
$\gamma_{(-1,4)}(Np)$	128,05						
$\gamma_{20,11}(Np)$	129,07 (6)						
$\gamma_{23,13}(Np)$	135,27 (4)						
$\gamma_{(-1,5)}(Np)$	136,7						
$\gamma_{30,23}(Np)$	138,30 (9)	0.000033 (5)	[120]	0.211 (4)	2.20 (5)	0,638 (13)	3,37 (7)
$\gamma_{29,22}(Np)$	139,44 (8)	0,000023 (5)	[E2]	$0,211 (4) \\ 0,210 (4)$	2,29 (5)	0.038 (13) $0.51 (1)$. , ,
$\gamma_{11,6}(Np)$	146,55 (3)	0,00172 (5)	E2	, , ,	1,83 (4)		2,73 (6)
$\gamma_{8,3}(Np)$	150,04 (3)	0,000087 (6)	[E1]	0.152(3)	0.0339(7)	0,00827 (17) 0,269 (6)	0.197(4)
$\gamma_{26,15}(Np)$	154,27 (20)	0,000004	[M1]	5,59 (11)	1,108 (22)	0,269 (6)	7,06 (14)
$\gamma_{(-1,6)}(Np)$	156,4 (3)	0.0000016 (6)	[17:1]	0.120 (2)	0.0000 (c)	0.00711 (14)	0.171 (4)
$\gamma_{29,20}(Np)$	159,26 (20)	0,0000016 (6)	[E1]	0,132 (3)	0,0292 (6)	0,00711 (14)	0,171 (4)
$\gamma_{24,13}(Np)$	161,54 (10)	0,000011	[M1]	4,91 (10)	0,971 (19)	0,236 (5)	6,20 (12)
$\gamma_{9,4}(Np)$	164,61 (2)	0,000178 (9)	E2	0.195(4)	1,095 (22)	0,304 (6)	1,70 (4)
$\gamma_{13,6}(Np)$	165,81 (6)	0,00011 (5)	[M1 + E2]	2,4 (22)	0,98 (8)	0.26(4)	3,7 (22)
$\gamma_{18,8}(Np)$	169,56 (3)	0.000427 (26)	E2	0,189 (4)	0,961 (19)	0,267 (6)	1,51 (3)
$\gamma_{11,5}(Np)$	175,07 (4)	0,000021(3)	[E1]	0,1066 (21)	0,0230(5)	0,00560 (11)	0,137(3)
$\gamma_{(-1,7)}(Np)$	190,4	0.0000415 (90)	[E-0]	0.160 (2)	0.501 (11)	0.155 (2)	0.020 (10)
$\gamma_{25,11}(Np)$	191,96 (4)	0,0000415 (20)	[E2]	0.162(3)	0,561 (11)	0,155 (3)	0,932 (19)
$\gamma_{29,18}(Np)$	196,76 (8)	0,00000054	[E1]	0,0816 (16)	0,0172(4)	0,00418 (9)	0,1045 (21)
$\gamma_{(-1,8)}(Np)$	201,70 (14)	0,0000008	[17:1]	0.0759 (15)	0.0157 (2)	0.00202 (0)	0.0060 (10)
$\gamma_{18,7}(Np)$	204,06 (6)	0,00000226 (7)	[E1] $M1 + 2.38 \% E2$	0.0752 (15)	$0.0157(3) \ 0.473(9)$	0,00382 (8)	0,0960 (19) 2,98 (6)
$\gamma_{9,2}(Np)$	208,005 (23)	0,00313 (6)	[M1 + 2,38 % E2]	2,35 (5)		0.1149(23)	
$\gamma_{13,4}(Np)$	221,46 (3)	0,00011 (5)		1,1 (10)	$0,35 (5) \\ 0,345 (7)$	0.090(7)	1,5 (10) $2,22 (5)$
$\gamma_{26,10}(Np)$	232,81 (5) 234,40 (4)	0,0000155 (4) 0,0000080 (8)	[M1] M2	1,76 (4)		0,0837 (17) 0,511 (10)	, , ,
$\gamma_{9,1}(\mathrm{Np}) \ \gamma_{26,9}(\mathrm{Np})$, , ,	0,00000703 (22)	[M1]	5,60 (11) 1,49 (3)	$ \begin{array}{c} 1,95 (4) \\ 0,294 (6) \end{array} $	0.0711 (10) $0.0711 (14)$	8,24 (17) 1,88 (4)
	246,73 (10)	0,00000103 (22)	[E1]	0,0482 (10)	0,294 (0) 0,00975 (20)	0,00236 (5)	0,0612 (12)
$\gamma_{13,3}(Np)$	248,52 (3)	0,00000155 (5)	[171]	0,0462 (10)	0,00975 (20)	0,00230 (3)	0,0012 (12)
$\gamma_{24,8}(Np)$	260,22 (9)	0.00000160 (9)	[120]	0.0070 (20)	0.156 (2)	0,0428 (9)	0.212 (6)
$\gamma_{22,7}(Np)$	261,00 (7) 264.76 (7)	0,00000169 (8)	[E2]	0,0979 (20)	0,156(3)	0,0428 (9)	0,312(6)
$\gamma_{27,10}(Np)$	264,76 (7) 264,88 (3)	0,000018 (7)	[M1 + E2]	0,7 (6)	0.19(5)	0,049 (9)	0,9 (7)
$\gamma_{13,2}(Np)$	267,54 (4)	0,000018 (7) $0,000055$ (2)	E1 + 19,4 % M2	0.74 (4)	0.19(3) $0.238(12)$	$0,049 (9) \\ 0,062 (2)$	1,06 (6)
$\gamma_{9,0}(\mathrm{Np}) \ \gamma_{(-1,9)}(\mathrm{Np})$	270,63 (15)	0,000033 (2)	E1 + 19,4 /0 M2	0,74 (4)	0,236 (12)	0,002 (2)	1,00 (0)
	270,03 (13)						
$\gamma_{(-1,10)}(\mathrm{Np})$ $\gamma_{20,6}(\mathrm{Np})$	275,77 (8)	0,000011 (4)	[M1 + E2]	0,6 (5)	0.17(5)	0,043 (9)	0,8 (6)
$\gamma_{20,6}(Np)$	278,04 (15)	0,000011 (4)	[M1]	1,072 (21)	0,210 (4)	0,0509 (10)	1,35 (3)
$\gamma_{27,9}(Np)$ $\gamma_{13,1}(Np)$	291,3 (2)	0,00000210 (8)	[E1]	0,0341 (7)	0,00671 (14)	0,00162 (3)	0,0430 (9)
$\gamma_{16,3}(\mathrm{Np})$	292,77 (6)	0,0000173 (4)	[E2]	0,0796 (16)	0,0991 (20)	0,0270 (6)	0,0430(3) $0,215(4)$
$\gamma_{15,2}(Np)$	300,13 (6)	0,0000113 (4)		0,0130 (10)	0,0331 (20)	0,0210 (0)	0,210 (4)
$\gamma_{20,5}(\mathrm{Np})$	304,21 (20)	0,000000966 (21)	[E1]	0,0310 (6)	0,00607 (12)	0,00147 (3)	0,0391 (8)
$\gamma_{16,2}(\mathrm{Np})$	309,1 (3)	0,000000300 (21)	[E1]	0,0300 (6)	0,00585 (12)	0,00147 (3)	0,0377 (8)
$\gamma_{16,2}(Np)$ $\gamma_{12,0}(Np)$	316,8 (2)	0,00000210 (01)	[1-1	0,0000 (0)	0,00000 (12)	0,00112 (0)	0,0011 (0)
$\gamma_{12,0}(\mathrm{Np})$ $\gamma_{28,9}(\mathrm{Np})$	322,52 (4)						
$\gamma_{28,9}(Np)$ $\gamma_{22,5}(Np)$	322,52 (4) $322,56 (3)$	0,000257 (7)	(M1 + 26.5 % E2)	0,541 (8)	0,1204 (17)	0,0297 (5)	0,702 (12)
$\gamma_{(-1,11)}(Np)$	324,69	0,0000018 (3)	(2011 20,0 /0 112)	0,011 (0)	0,1201 (11)	0,0201 (0)	0,102 (12)
$\gamma_{(-1,11)}(Np)$ $\gamma_{(-1,12)}(Np)$	329,69	0,0000013 (3)					
$\gamma_{14,0}(\mathrm{Np})$	332,35 (3)	0,000172 (5)	E2	0,0631 (13)	0,0611 (12)	0,0165 (4)	0.147(3)
$\gamma_{14,0}(Np)$ $\gamma_{16,1}(Np)$	335,37 (3)	0,000172 (3)	M1 + 17.3 % E2	0,54 (7)	0,113 (8)	0,0278 (10)	0,69 (8)
$\gamma_{16,1}(Np)$ $\gamma_{17,1}(Np)$	337,7 (2)	0,0000556 (10)	(E2)	0,0612 (12)	0,0575 (11)	0,0156 (3)	0,03 (3) $0,140$ (3)
$\gamma_{17,1}(Np) = \gamma_{(-1,13)}(Np)$	350,71	0,00000330 (10)	(114)	0,0012 (12)	0,0010 (11)	0,0100 (0)	0,140 (0)
$\gamma_{(-1,13)}(Np) = \gamma_{20,3}(Np)$	358,25 (20)	0,00000133 (5)	[E1]	0,0220 (4)	0,00419 (8)	0,00101 (2)	0,0275 (6)
$\gamma_{16,0}({ m Np})$	368,62 (3)	0,000347 (9)	(M1)	0,494 (10)	0,0963 (19)	0,00101 (2) $0,0233 (5)$	0,6213 (0) $0,622$ (12)
	550,04 (5)	0,00001 (3)	(1111)	0,707 (10)	0,0000 (10)	0,0400 (0)	0,022 (12)

	Energy keV	$P_{\gamma+ce} \times 100$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$
$\gamma_{17,0}(\mathrm{Np})$	370,94 (3)	0,000080 (4)	M1 + 16 % E2	0,42 (6)	0,086 (8)	0,0211 (10)	0,53 (7)
$\gamma_{(-1,14)}(Np)$	374,83	0,00000313 (5)	(7.5.)	/->	()	(-)	()
$\gamma_{22,3}(Np)$	376,65 (3)	0,000225 (9)	(M1)	0,466 (9)	0,0908 (18)	0,0220 (5)	0,586 (12)
$\gamma_{23,3}(Np)$	383,81 (3)	0,000037 (7)	[M1 + E2]	0,25 (20)	0.06(3)	0,015(6)	0,33 (23)
$\gamma_{(-1,15)}(Np)$	389,0 (3)	0,0000005					
$\gamma_{(-1,16)}(Np)$	390,61 (5)	0,00000573 (8)					
$\gamma_{32,9}(Np)$	398,64 (15)	0.00000019 (5)	[M1 + E2]	0.22 (19)	0.054 (22)	0,013 (6)	0.20 (21)
$\gamma_{29,7}(Np)$	400,78 (10)	0,00000018 (5)	[M1 + E2]	0,22 (18)	0,054 (23)		0.29(21)
$\gamma_{30,7}(Np)$	406,35 (15) 411,27	0,00000175 (28) 0,00000018 (4)	[M1 + E2]	$0,21 \ (17)$	0,052 (22)	0,013 (5)	0,28 (20)
$\gamma_{(-1,17)}(Np)$	411,27 $419,33$ (4)	0,000036 (5)	[M1 + E2]	0,19 (16)	0,047 (21)	0,012 (5)	0,26 (18)
$\gamma_{22,1}(Np) \\ \gamma_{23,1}(Np)$	419,33 (4) $426,47 (4)$	0,000039 (9)	[M1 + E2] [M1 + E2]	0.19 (10) $0.19 (15)$	0.047 (21) 0.045 (20)	0.012(5) $0.011(5)$	0.25 (18) $0.25 (18)$
$\gamma_{23,1}(Np) = \gamma_{(-1,18)}(Np)$	429,9 (1)	0,000039 (9)	[M11 + E2]	0,19 (15)	0,045 (20)	0,011 (5)	0,25 (16)
$\gamma_{(-1,18)}(Np) = \gamma_{(-1,19)}(Np)$	440,63	0,00000109 (3)					
$\gamma_{(-1,19)}(Np)$ $\gamma_{(-1,20)}(Np)$	442,81 (7)	0,00000331 (7)					
$\gamma_{35,13}({ m Np})$	446,15 (6)	0,00000031 (7)					
$\gamma_{22,0}({ m Np})$	452,6 (2)	0,00000011 (2)	[E2]	0,0357(7)	0,0205 (4)	0,00543 (11)	0,0635 (13)
$\gamma_{26,2}(Np)$	454,66 (8)	0,0000129 (2)	[M1]	0,279 (6)	0,0542 (11)	0,0131 (3)	0.351 (7)
$\gamma_{23,0}({\rm Np})$	459,68 (10)	0,0000123 (2)	[M1 + E2]	0.15 (12)	0,036 (17)	0,009 (4)	0.20 (14)
$\gamma_{29,5}(\mathrm{Np})$	462,34 (8)	0,0000012	[M1 + E2]	0.15 (12)	0,035 (17)	0,009 (4)	0,20 (14)
$\gamma_{30,5}(\mathrm{Np})$	468,12 (15)	0,0000032 (4)	[M1 + E2]	0.15 (12)	0,034 (16)	0,008 (4)	0,19 (14)
$\gamma_{(-1,21)}(Np)$	486,05	0,00000105 (6)	[,]	-, - ()	- / (- /	-, ()	-, - ()
$\gamma_{28,4}({\rm Np})$	487,13 (4)	0,00000080 (6)	[M1]	0,232(6)	0,0449 (9)	0,0109 (2)	0,291(6)
$\gamma_{(-1,22)}(\mathrm{Np})$	494,39	0,00000010 (2)	. 1	-, - (-)	- / (- /	-, ()	-) - (-)
$\gamma_{(-1,23)}(Np)$	501,39	0,00000014 (2)					
$\gamma_{27,1}(Np)$	512,5 (3)	0,00000210 (41)	[E1]	0.0107(2)	0,00195(4)	0,00047(1)	0,0133(3)
$\gamma_{26,0}(\mathrm{Np})$	514,0 (5)	0,0000039 (2)	[E1]	0,0106 (2)	0,00194 (4)	0,00047 (1)	0,0132
$\gamma_{30,3}(\mathrm{Np})$	522,06 (15)	0,00000113 (11)	[M1 + E2]	0,11 (9)	0,025 (13)	0,006 (3)	0,14 (10)
$\gamma_{(-1,24)}(Np)$	525,14	0,00000016 (3)					
$\gamma_{38,13}(\mathrm{Np})$	529,17 (20)	0,00000072(5)	[E2]	0,0269(5)	0,0124(2)	0,00324(6)	0,0437(9)
$\gamma_{(-1,25)}(Np)$	532,44	0,000000008(2)					
$\gamma_{27,0}(\mathrm{Np})$	546,12(6)	0,00000025 (3)	[E1]	0,00947 (19)	0,00171(3)	0,00041(1)	0,0117(2)
$\gamma_{(-1,26)}(Np)$	$548,\!15$	0,00000005 (2)					
$\gamma_{(-1,27)}(Np)$	$555,\!25$	0,00000009(2)					
$\gamma_{33,6}(\mathrm{Np})$	563,46(2)	0,000000460 (21)	[E2]	0,0241(5)	0,0102(2)	0,00266 (5)	0,0378 (8)
$\gamma_{36,8}(\mathrm{Np})$	573,94(20)	0,00000142 (12)	[M1 + E2]	0.09(7)	0,019(10)	0,0027 (16)	0,11(8)
$\gamma_{(-1,28)}(Np)$	582,89	0,00000101(6)					
$\gamma_{31,2}(\mathrm{Np})$	586,59(20)	0,00000128(5)	[E2]	0,0224(4)	0,00903 (18)	0,00235(5)	0,0346 (7)
$\gamma_{28,0}(\mathrm{Np})$	590,09(4)	0,00000283 (6)	[E1]	0,00818 (16)	0,00147(3)	0,000351 (7)	0,0101(2)
$\gamma_{34,6}(\mathrm{Np})$	597,19(2)	0,0000080 (5)	[M1 + E2]	0.08(6)	0,017(9)	0,0042 (20)	$0{,}10\ (7)$
$\gamma_{(-1,29)}(Np)$	600,26	0,00000022 (3)					6.3
$\gamma_{33,4}(\mathrm{Np})$	619,01 (2)	0,000065 (5)	[M1 + E2]	0.07(5)	0,016 (8)	0,0037 (10)	0,09 (7)
$\gamma_{38,8}(Np)$	627,18 (20)	0,00000056 (4)	[M1 + E2]	0.07(5)	0,015 (8)	0,0037 (10)	0,09(6)
$\gamma_{32,1}(\mathrm{Np})$	632,93 (15)	0,00000124 (5)					
$\gamma_{(-1,30)}(Np)$	636,9	0,00000021 (3)	[Mar. Pol	0.00 (*)	0.014 (0)	0.000 (10)	0.00 (0)
$\gamma_{36,6}(Np)$	641,32 (4)	0,0000076 (5)	[M1 + E2]	0.06(5)	0,014 (8)	0,0035 (10)	0,08 (6)
$\gamma_{34,4}(Np)$	652,73 (2)	0,0000410 (25)	[M1 + E2]	0,06 (5)	0,013 (7)	0,0033 (10)	0.08(6)
$\gamma_{33,2}(Np)$	662,40 (2)	0,00045 (10)	(E0+M1+E2)	0.18(4)	0,045 (15)		0,23 (5)
$\gamma_{32,0}(Np)$	666,2 (2)	0.00000095 (7)	[17:1]	0.00647 (19)	0.00114 (9)	0.00079 (1)	0.0000 (0)
$\gamma_{36,5}(Np)$	669,83 (2)	0.00000051 (7)	[E1]	0,00647 (13)	0,00114 (2)	0,00073(1)	0.0080(2)
$\gamma_{37,5}(Np)$	675,78 (13)	0,00000091 (7)	[E2,M1]	0,06 (4)	0.012(7)	0,0030 (15)	0.07(5)
$\gamma_{34,3}(Np)$	679,79 (2)	0,00000334 (8)	[E1]	0,00630 (13)	0.00111(2)	0.000265(5)	0,00776 (16)
$\gamma_{33,1}(Np)$	688,72 (4)	0,0000325 (6)	[E1]	0,00615 (12)	0,00108(2)	0,000259(5)	0,00758 (16)
$\gamma_{(-1,31)}(Np)$	693,46 696,14 (2)	0,00000354 (7)	[M1 + E2]	0.05 (4)	0.011 (6)	0,0028 (10)	0.07 (5)
$\gamma_{34,2}(Np)$	696,14 (2)	0,0000055 (3)	[W11 + E2]	0,05 (4)	0,011(6)	0,0028 (10)	0,07(5)
$\gamma_{(-1,32)}(Np)$	709,42 (5)	0,00000641 (18)					
$\gamma_{(-1,33)}(Np)$	712,5	0,00000020 (3) 0,000197 (5)	[TD:1]	0.0056 (1)	0.00000 (2)	0.00024 (1)	0.0070 (2)
$\gamma_{33,0}(\mathrm{Np}) \gamma_{37,3}(\mathrm{Np})$	721,96 (2) 729,72 (15)	0,000197 (5) 0,00000151 (6)	[E1] $[M1]$	$0,0056 (1) \\ 0,079 (2)$	0,00099 (2) 0,0151 (4)	0,00024 (1) 0,0036 (1)	0,0070 (2) 0,099 (2)

	Energy keV	$\begin{array}{c} \mathrm{P}_{\gamma+\mathrm{ce}} \\ \times \ 100 \end{array}$	Multipolarity	$lpha_K$	$lpha_L$	$lpha_M$	$lpha_T$
$\gamma_{(-1,34)}(\mathrm{Np})$	731,44	0,00000046 (4)					
$\gamma_{(-1,35)}(Np)$	736,68	0,00000128(5)					
$\gamma_{35,1}(\mathrm{Np})$	737,34 (5)	0,00000794 (8)					
$\gamma_{(-1,36)}(Np)$	740,51	0,00000019 (3)					
$\gamma_{(-1,37)}(Np)$	742,9 (3) 745,02	0,00000035 0,00000009 (2)					
$\gamma_{(-1,38)}(Np)$ $\gamma_{(-1,39)}(Np)$	745,02 $750,39$	0,00000009 (2)					
$\gamma_{(-1,39)}(Np)$ $\gamma_{34,0}(Np)$	755,68 (2)	0,00000000 (2)	[E1]	0,0052 (1)	0,00091 (1)	0,000217 (4)	0,0064 (1)
$\gamma_{(-1,40)}(Np)$	759,5 (1)	0,00000181 (5)	[131]	0,0002 (1)	0,00001 (1)	0,000211 (1)	0,0001 (1)
$\gamma_{(-1,41)}(Np)$	763,31	0,00000023 (2)					
$\gamma_{36,1}(\mathrm{Np})$	766,62 (4)	0,00000504 (6)	[E1]	0,00507 (10)	0,00088(2)	0,000211(4)	0,00623 (12)
$\gamma_{35,0}(\mathrm{Np})$	770,57 (10)	0,00000481 (5)					
$\gamma_{37,1}(\mathrm{Np})$	772,57(12)	0,00000303(5)	[M1]	0,0675 (14)	0,0129(3)	0,00312(6)	0,0847 (17)
$\gamma_{(-1,42)}(Np)$	774,67	0,00000011 (2)					
$\gamma_{(-1,43)}(Np)$	777,39	0,00000015 (2)					
$\gamma_{(-1,44)}(Np)$	780,53	0,00000031 (2)					
$\gamma_{(-1,45)}(Np)$	782,2 (5)	0,00000015					
$\gamma_{39,3}(Np)$	786,00 (15) 789,0 (3)	0,00000062 (0) 0,00000042 (6)					
$\gamma_{(-1,46)}(Np)$ $\gamma_{(-1,47)}(Np)$	792,6	0,00000042 (0)					
$\gamma_{(-1,48)}(Np)$	794,92 (20)	0,00000003 (1)					
$\gamma_{39,2}(\mathrm{Np})$	801,94 (20)	0,00000123 (7)					
$\gamma_{(-1,49)}(Np)$	803,19	0,00000016 (3)					
$\gamma_{37,0}(\mathrm{Np})$	805,77 (12)	0,00000033	[M1,E2]	0,037(24)	0,008(4)	0,0019 (10)	0,05(3)
$\gamma_{(-1,50)}(\mathrm{Np})$	811,9(3)	0,00000063 (6)					
$\gamma_{(-1,51)}(\mathrm{Np})$	819,33	0,00000043 (6)					
$\gamma_{(-1,52)}(\mathrm{Np})$	822,21	0,00000024 (6)					
$\gamma_{39,1}(\mathrm{Np})$	828,60 (12)	0,00000021 (4)					
$\gamma_{(-1,53)}(Np)$	835,21	0,00000003 (1)					
$\gamma_{(-1,54)}(Np)$	838,88	0,00000004 (1) 0,00000010 (3)					
$\gamma_{(-1,55)}(Np)$ $\gamma_{(-1,56)}(Np)$	841,14 $843,7$	0,00000010 (3)					
$\gamma_{(-1,56)}(Np)$ $\gamma_{(-1,57)}(Np)$	846,86	0,00000031 (3)					
$\gamma_{(-1,58)}(Np)$	847,4 (5)	0,0000003					
$\gamma_{(-1,59)}(Np)$	851,6 (10)	0,00000041 (6)					
$\gamma_{(-1,60)}(\mathrm{Np})$	854,95	0,00000023 (4)					
$\gamma_{(-1,61)}(Np)$	856,26	0,00000010(3)					
$\gamma_{40,2}(\mathrm{Np})$	861,34(20)	0,00000008					
$\gamma_{39,0}(\mathrm{Np})$	861,80 (12)	0,00000061 (6)					
$\gamma_{(-1,62)}(Np)$	870,63	0,00000150 (3)					
$\gamma_{(-1,63)}(Np)$	882 886 53	0,00000004 (1)					
$\gamma_{(-1,64)}(Np)$	886,53 887 68 (20)	0,00000015 (3) 0,00000033 (6)					
$\gamma_{40,1}(\mathrm{Np}) \\ \gamma_{(-1,65)}(\mathrm{Np})$	887,68 (20) 890,38	0,00000033 (6)					
$\gamma_{(-1,65)}(Np)$ $\gamma_{(-1,66)}(Np)$	894,47	0,00000032 (3)					
$\gamma_{(-1,66)}(Np)$ $\gamma_{(-1,67)}(Np)$	898,17	0,00000006 (2)					
$\gamma_{(-1,68)}(Np)$	902,61	0,00000033 (3)					
$\gamma_{(-1,69)}(Np)$	909,95	0,00000005 (1)					
$\gamma_{(-1,70)}(Np)$	$912,\!4$	0,00000028 (3)					
$\gamma_{40,0}(\mathrm{Np})$	920,88 (20)	0,00000019 (3)					
$\gamma_{(-1,71)}(Np)$	928,95	0,00000009 (2)					
$\gamma_{(-1,72)}(Np)$	939,2	0,00000005 (1)					
$\gamma_{41,0}(Np)$	946,06	0,000000010 (3)					
$\gamma_{(-1,73)}(Np)$	952,72 $955,91$	0,00000003 (1) 0,00000060 (5)					
$\gamma_{(-1,74)}(Np)$ $\gamma_{42,0}(Np)$	962,19	0,00000000 (3)					
$\gamma_{42,0}(Np)$ $\gamma_{(-1,75)}(Np)$	969,09	0,00000004 (1)					
$\gamma_{(-1,75)}(Np) = \gamma_{(-1,76)}(Np)$	980,84	0,00000003 (1)					
/(-1,/0)(- ·F/	1014,33	0,0000010 (2)					

3 Atomic Data

3.1 Np

 $\begin{array}{cccc} \omega_K & : & 0.971 & (4) \\ \bar{\omega}_L & : & 0.511 & (20) \\ n_{KL} & : & 0.791 & (5) \end{array}$

3.1.1 X Radiations

		$\begin{array}{c} {\rm Energy} \\ {\rm keV} \end{array}$		Relative probability
X_{K}				
	$K\alpha_2$	97,069		62,82
	$K\alpha_1$	101,059		100
	$K\beta_3$	113,303	}	
	$\mathrm{K}eta_1$	114,234	}	
	$\mathrm{K}eta_5''$	114,912	}	$36,\!21$
	$\mathrm{K}eta_2$	117,463	}	
	$K\beta_4$	117,876	} } }	12,47
	$KO_{2,3}$	118,429	}	,
${ m X_L}$				
	$\mathrm{L}\ell$	11,89		
	$L\alpha$	13,76 - 13,944		
	${ m L}\eta$	15,876		
	$L\beta$	$16,\!13-17,\!79$		
	${ m L}\gamma$	$20,\!12-22,\!2$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY	73,50 - 83,13 $90,36 - 97,28$ $107,10 - 114,58$	100 60,2 9,06
Auger L	$6,\!04-13,\!52$	55000000

4 α Emissions

	Energy	Probability
	${ m keV}$	× 100
$\alpha_{0,36}$	4757,58 (13)	0,00004 (3)
$\alpha_{0,34}$	4800,99 (13)	0,000086
$\alpha_{0,33}$	4834,15 (13)	0,0007
$\alpha_{0,32}$	4888,98 (15)	
$\alpha_{0,30}$	4956,06 (15)	
$\alpha_{0,29}$	4961,63 (14)	
$\alpha_{0,28}$	4963,83 (13)	
$\alpha_{0,27}$	5007,07 (14)	0,0001
$\alpha_{0,25}$	5055,36 (13)	
$\alpha_{0,24}$	5065,97 (15)	0,00011
$\alpha_{0,23}$	5092,06 (13)	$\sim 0,0004$
$\alpha_{0,22}$	5099,08 (13)	$\sim 0,0004$
$\alpha_{0,21}$	5106,72(16)	
$\alpha_{0,20}$	5117,21 (13)	0,0004
$\alpha_{0,19}$	5132,8(2)	
$\alpha_{0,18}$	5155,12 (13)	0,0007
$\alpha_{0,17}$	5179,35(13)	0,0003
$\alpha_{0,16}$	5181,63 (13)	0,0009
$\alpha_{0,15}$	5190,17(23)	0,0006
$\alpha_{0,14}$	5217,26 (13)	
$\alpha_{0,13}$	5225,08 (13)	0,0013
$\alpha_{0,12}$	5232,6(3)	
$\alpha_{0,11}$	5244,13 (13)	0,0022(3)
$\alpha_{0,9}$	5280,99 (13)	0,0005
$\alpha_{0,8}$	5321,87(13)	0,014(3)
$\alpha_{0,6}$	5388,25 (13)	1,66(3)
$\alpha_{0,5}$	5416,28 (13)	~ 0.01
$\alpha_{0,4}$	5442,86 (12)	13,23 (10)
$\alpha_{0,3}$	5469,47(12)	< 0.04
$\alpha_{0,2}$	5485,56 (12)	84,45 (10)
$\alpha_{0,1}$	5511,46 (12)	0,23(1)
$\alpha_{0,0}$	$5544,11 \ (12)$	0,38(1)

5 Electron Emissions

		Energy keV	Electrons per 100 disint.
$\mathrm{e_{AL}}$	(Np)	6,04 - 13,52	33,4 (17)
e_{AK}	(Np) KLL KLX KXY	73,50 - 83,13 90,36 - 97,28 107,10 - 114,58	0,000114 (16) } } }
$\begin{array}{c} ec_{2,1} \ L \\ ec_{1,0} \ L \\ ec_{3,1} \ L \\ ec_{2,1} \ M \\ ec_{4,2} \ L \\ ec_{1,0} \ M \\ ec_{1,0} \ N \\ ec_{6,4} \ L \\ ec_{3,1} \ M \\ ec_{2,0} \ L \\ ec_{4,2} \ M \\ ec_{4,2} \ N \\ ec_{6,4} \ M \\ ec_{2,0} \ M \\ ec_{6,4} \ N \end{array}$	(Np) (Np) (Np) (Np) (Np) (Np) (Np) (Np)	3,92 - 8,73 10,769 - 15,590 20,28 - 25,09 20,606 - 22,681 20,99 - 25,81 27,46 - 29,53 31,70 - 32,79 33,13 - 37,95 36,97 - 39,04 37,114 - 41,930 37,68 - 39,76 41,92 - 43,02 49,82 - 51,90 53,802 - 55,877 54,06 - 55,16	14 (5) 15,9 (21) 0,31 (7) 3,7 (5) 8,8 (12) 4,0 (6) 1,08 (16) 0,87 (11) 0,076 (17) 30,2 (22) 2,3 (4) 0,65 (9) 0,228 (30) 8,12 (25) 0,062 (8)
$ec_{6,2}$ L $ec_{6,2}$ M	(Np) (Np)	76,54 - 81,36 93,23 - 95,31	0,225 (5) 0,0625 (16)

6 Photon Emissions

6.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Np)	11,89 — 22,2		37,66 (17)	
$XK\alpha_2 XK\alpha_1$	(Np) (Np)	97,069 101,059		0,001134 (30) 0,00181 (5)	} Κα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \end{array}$	(Np) (Np) (Np)	113,303 114,234 114,912	} } }	0,000658 (21)	$\operatorname{K}'\beta_1$
$\begin{array}{c} XK\beta_2 \\ XK\beta_4 \\ XKO_{2,3} \end{array}$	(Np) (Np) (Np)	117,463 117,876 118,429	<pre>} } </pre>	0,000226 (8)	$K'\beta_2$

6.2 Gamma Emissions

	Energy	Photons
	keV	per 100 disint.
	II.O V	per 100 disine.
$\gamma_{2,1}(\mathrm{Np})$	26,3446 (2)	2,31 (8)
$\gamma_{(-1,1)}^{(2,1)}(Np)$	32,183	0,0174 (4)
$\gamma_{1,0}(\mathrm{Np})$	33,1963 (3)	0,1215 (28)
$\gamma_{3,1}(\mathrm{Np})$	42,704 (5)	0,0055 (11)
$\gamma_{4,2}(Np)$	43,420 (3)	0,0669 (29)
$\gamma_{14,10}^{(Np)}$	51,01 (3)	0,000026 (12)
$\gamma_{6,4}(\mathrm{Np})$	55,56 (2)	0,0181 (18)
·	57,85 (5)	0,0052 (15)
$\gamma_{(-1,2)}(Np)$	59,5409 (1)	35,92 (17)
$\gamma_{2,0}(Np)$	64,83 (2)	0,00014 (2)
$\gamma_{14,9}(Np)$	67,50(2)	0,00014 (2)
$\gamma_{8,6}(Np)$	69,76 (3)	0,0029 (4)
$\gamma_{4,1}(Np)$	75,90 (1)	0,0029 (4)
$\gamma_{3,0}(Np)$	96,79 (3)	0,00047 (16)
$\gamma_{5,1}(Np)$	98,97 (2)	0,00047 (10)
$\gamma_{6,2}(Np)$	102,98 (2)	$0,0203 (4) \\ 0,0195 (4)$
$\gamma_{4,0}(Np)$	102,98 (2) $106,42 (5)$	0,0195 (4) $0,000015$
$\gamma_{(-1,3)}(Np)$	100,42 (3) $109,70 (7)$	0,000019
$\gamma_{20,13}(Np)$	120,36 (8)	0,0000045
$\gamma_{21,13}(Np)$	120,30 (8) $123,05 (1)$	0,00100 (4)
$\gamma_{8,4}(Np)$	125,30 (1) $125,30 (2)$	0,00100 (4) $0,0041 (2)$
$\gamma_{6,1}(Np)$	139,44 (8)	0,0000053 (11)
$\gamma_{29,22}(Np)$. ,
$\gamma_{11,6}(Np)$	146,55 (3) 150,04 (3)	0,00046 (1) $0,000073 (5)$
$\gamma_{8,3}(Np)$	154,27 (20)	
$\gamma_{26,15}(Np)$	154,27 (20) $159,26 (20)$	0,0000005 $0,0000014$ (5)
$\gamma_{29,20}(Np)$		0,0000014 (3)
$\gamma_{24,13}(Np)$	161,54 (10) 164,61 (2)	0,000066 (3)
$\gamma_{9,4}(Np)$	165,81 (6)	, , ,
$\gamma_{13,6}(Np)$		0,000023(1)
$\gamma_{18,8}(Np)$	169,56 (3)	0,00017 (1) $0,000018 (3)$
$\gamma_{11,5}(Np)$	175,07 (4) $190,4$	0,000018 (3) $0,0000022 (5)$
$\gamma_{(-1,7)}(Np)$	190,4 191,96 (4)	0,0000022 (3) 0,0000215 (10)
$\gamma_{25,11}(Np)$	191,96 (4) 196,76 (8)	0,0000213 (10)
$\gamma_{29,18}(Np)$	201,70 (3)	0,00000049
$\gamma_{(-1,8)}(Np)$	201,70 (14) 204,06 (6)	0,0000008
$\gamma_{18,7}(Np)$	204,00 (0) 208,005 (23)	0,000786 (9)
$\gamma_{9,2}(Np)$	208,005 (23)	0,000786 (9)
$\gamma_{13,4}(Np)$	232,81 (5)	0,0000434 (8)
$\gamma_{26,10}(Np)$	232,81 (3) 234,40 (4)	0,00000482 (9)
$\gamma_{9,1}(Np)$	234,40 (4) $246,73 (10)$	0,00000037 (8)
$\gamma_{26,9}(Np)$	240,73 (10) $248,52 (3)$	0,00000244 (7) $0,00000146$ (3)
$\gamma_{13,3}(Np)$	240,32 (3) $261,00 (7)$	0,00000140 (3)
$\gamma_{22,7}(Np)$	264,88 (3)	0,00000129 (0) 0,00000943 (12)
$\gamma_{13,2}(Np)$	267,54 (4)	0,00000945 (12)
$\gamma_{9,0}(\mathrm{Np})$	401,04 (4)	0,0000208 (0)
İ		

	Energy	Photons
	keV	per 100 disint.
2/(1 a) (Np)	270,63 (15)	0,0000005 (2)
$\gamma_{(-1,9)}(Np)$	270,53 (19)	0,0000003 (2)
$\gamma_{(-1,10)}(Np)$ $\gamma_{20,6}(Np)$	275,77 (8)	0,00000144 (3)
$\gamma_{27,9}(\mathrm{Np})$	278,04 (15)	0,00000032 (10)
$\gamma_{13,1}(\mathrm{Np})$	291,3 (2)	0,00000115 (3)
$\gamma_{16,3}({ m Np}) = \gamma_{16,3}({ m Np})$	292,77(6)	0,0000142 (3)
$\gamma_{20,5}(\mathrm{Np})$	304,21 (20)	0,00000093 (2)
$\gamma_{16,2}(\mathrm{Np})$	309,1 (3)	0,00000033 (2) $0,0000020$ (3)
$\gamma_{22,5}(\mathrm{Np})$	322,56(3)	0,000151 (4)
$\gamma_{(-1,11)}^{(22,5)}(\mathrm{Np})$	324,69	0,0000018 (3)
, , , , ,	329,69	0,0000011 (2)
$\gamma_{(-1,12)}(Np)$	332,35 (3)	0,000011(2) $0,000150(4)$
$\gamma_{14,0}(Np)$	335,37(3)	0,000190(4) $0,000496(7)$
$\gamma_{16,1}(\mathrm{Np})$ $\gamma_{17,1}(\mathrm{Np})$	337,7(2)	0,0000488 (9)
$\gamma_{(-1,13)}^{(17,1(17p))}$	350,71	0,00000139 (5)
$\gamma_{20,3}(Np)$	358,25 (20)	0,00000139 (5)
$\gamma_{16,0}({ m Np})$	368,62 (3)	0,0000123 (5) $0,000214$ (5)
$\gamma_{17,0}(\mathrm{Np})$	370,94 (3)	0,0000520 (8)
*	374,83	0,00000313 (6)
$\gamma_{(-1,14)}(Np)$ $\gamma_{22,3}(Np)$	376,65(3)	0,000137 (3)
$\gamma_{23,3}(\mathrm{Np})$ $\gamma_{23,3}(\mathrm{Np})$	383,81 (3)	0,0000281 (6)
$\gamma_{(-1,15)}(Np)$	389,0 (3)	0,00000049
$\gamma_{(-1,16)}(Np)$	390,61 (5)	0,00000573 (10)
$\gamma_{29,7}(\mathrm{Np})$	400,78 (10)	0,00000014 (3)
$\gamma_{30,7}(\mathrm{Np})$	406,35 (15)	0,0000011(5)
$\gamma_{(-1,17)}(\mathrm{Np})$	411,27	0,00000018 (4)
$\gamma_{22,1}(\mathrm{Np})$	419,33 (4)	0,0000284 (4)
$\gamma_{23,1}(\mathrm{Np})$	426,47 (4)	0,000031 (6)
$\gamma_{(-1,18)}(Np)$	429,9 (1)	0,00000109(5)
$\gamma_{(-1,19)}(Np)$	440,63	0,00000056 (3)
$\gamma_{(-1,20)}^{(-1,19)}(\mathrm{Np})$	442,81 (7)	0,00000331 (8)
$\gamma_{35,13}({ m Np})$	446,15 (6)	0,00000011 (2)
$\gamma_{22,0}(\mathrm{Np})$	452,6 (2)	0,00000236 (7)
$\gamma_{26,2}(\mathrm{Np})$	454,66 (8)	0,00000953 (12)
$\gamma_{23,0}(\mathrm{Np})$	459,68 (10)	0,00000355 (7)
$\gamma_{29,5}(\mathrm{Np})$	462,34 (8)	0,000001
$\gamma_{30,5}(\mathrm{Np})$	468,12 (15)	0,00000269 (6)
$\gamma_{(-1,21)}(Np)$	486,05	0,00000105 (6)
$\gamma_{28,4}(\mathrm{Np})$	487,13 (4)	0,00000062 (5)
$\gamma_{(-1,22)}(Np)$	494,39	0,00000010 (2)
$\gamma_{(-1,23)}(Np)$	501,39	0,00000014 (2)
$\gamma_{27,1}(\mathrm{Np})$	512,5 (3)	0,0000021 (4)
$\gamma_{26,0}(\mathrm{Np})$	514,0 (5)	0,0000038 (2)
$\gamma_{30,3}(\mathrm{Np})$	522,06 (15)	0,00000099 (5)
$\gamma_{(-1,24)}(Np)$	525,14	0,00000016 (3)
$\gamma_{38,13}({ m Np})$	529,17 (20)	0,00000069 (5)
$\gamma_{(-1,25)}(Np)$	532,44	0,00000008 (2)
, , , , ,		` '

	Energy	Photons
	${ m keV}$	per 100 disint.
0/2= 2 (Np)	546,12 (6)	0,00000025 (3)
$\gamma_{27,0}(Np)$	548,15	0,00000025 (3) $0,00000005$ (2)
$\gamma_{(-1,26)}(Np)$	555,25	0,00000009 (2)
$\gamma_{(-1,27)}(Np)$	563,46 (2)	0,00000003 (2)
$\gamma_{33,6}(Np)$	573,94 (20)	0,00000128 (5)
$\gamma_{36,8}(Np)$	582,89	0,00000128 (3)
$\gamma_{(-1,28)}(Np)$	586,59 (20)	0,00000101 (0)
$\gamma_{31,2}(Np)$	590,09 (4)	0,00000124(5) 0,00000280(6)
$\gamma_{28,0}(Np)$	597,19 (2)	0,00000280 (0)
$\gamma_{34,6}(Np)$	600,26	0,00000729 (11)
$\gamma_{(-1,29)}(Np)$	619,01 (2)	0,0000022 (3) $0,000060$ (2)
$\gamma_{33,4}(Np)$	627,18 (20)	0,000000(2) $0,00000051(2)$
$\gamma_{38,8}(Np)$	632,93 (15)	0,00000031 (2)
$\gamma_{32,1}(Np)$	636,9	0,00000124(3) $0,00000021(3)$
$\gamma_{(-1,30)}(Np)$	641,32(4)	0,00000704 (10)
$\gamma_{36,6}(Np)$ $\gamma_{34,4}(Np)$	652,73(2)	0,0000376 (9)
$\gamma_{33,2}(Np)$	662,40 (2)	0,000367 (6)
$\gamma_{33,2}(\mathrm{Np})$ $\gamma_{32,0}(\mathrm{Np})$	666,2(2)	0,000007 (0) $0,00000095$ (7)
$\gamma_{36,5}({ m Np})$	669,83 (2)	0,00000055 (7) $0,00000051$ (7)
$\gamma_{37,5}(Np)$	675,78 (13)	0,00000031 (7) $0,00000085$ (5)
$\gamma_{34,3}(Np)$	679,79 (2)	0,00000331 (8)
$\gamma_{33,1}(\mathrm{Np})$	688,72 (4)	0,0000331 (6)
$\gamma_{(-1,31)}(Np)$	693,46	0,0000323 (8)
$\gamma_{34,2}(Np)$	696,14 (2)	0,00000517 (8)
$\gamma_{(-1,32)}^{(34,2)}(Np)$	709,42 (5)	0,00000641 (19)
$\gamma_{(-1,33)}(Np)$	712,5	0,00000020 (3)
$\gamma_{33,0}({\rm Np})$	721,96 (2)	0,000196 (5)
$\gamma_{37,3}(\mathrm{Np})$	729,72 (15)	0,00000137 (5)
$\gamma_{(-1,34)}(Np)$	731,44	0,00000046 (4)
$\gamma_{(-1,35)}(Np)$	736,68	0,00000128 (5)
$\gamma_{35,1}(\mathrm{Np})$	737,34 (5)	0,00000794 (11)
$\gamma_{(-1,36)}(Np)$	740,51	0,00000019 (3)
$\gamma_{(-1,37)}(Np)$	742,9 (3)	0,00000035
$\gamma_{(-1,38)}(Np)$	745,02	0,00000009 (2)
$\gamma_{(-1,39)}(Np)$	750,39	0,00000006 (2)
$\gamma_{34,0}(Np)$	755,68 (2)	0,00000784 (11)
$\gamma_{(-1,40)}(\mathrm{Np})$	759,5 (1)	0,00000181 (5)
$\gamma_{(-1,41)}(Np)$	763,31	0,00000023 (2)
$\gamma_{36,1}(Np)$	766,62 (4)	0,00000501 (6)
$\gamma_{35,0}(\mathrm{Np})$	770,57 (10)	0,00000481 (7)
$\gamma_{37,1}(\mathrm{Np})$	772,57 (12)	0,00000279 (4)
$\gamma_{(-1,42)}(Np)$	774,67	0,00000011 (2)
$\gamma_{(-1,43)}(Np)$	777,39	0,00000015 (2)
$\gamma_{(-1,44)}(Np)$	780,53	0,00000031 (2)
$\gamma_{(-1,45)}(Np)$	782,2 (5)	0,00000015
$\gamma_{39,3}(Np)$	786,00 (15)	0,00000062
$\gamma_{(-1,46)}(Np)$	789,0 (3)	0,00000042 (6)
1,10,0	, ()	, , , , , , , , , , , , , , , , , , , ,

	Energy	Photons
	keV	per 100 disint.
$\gamma_{(-1,47)}(Np)$	792,6	0,00000003(1)
$\gamma_{(-1,48)}(Np)$	794,92 (20)	0,00000094
$\gamma_{39,2}(Np)$	801,94 (20)	0,00000123(7)
$\gamma_{(-1,49)}(Np)$	803,19	0,00000016(3)
$\gamma_{37,0}(\mathrm{Np})$	805,77 (12)	0,00000031
$\gamma_{(-1,50)}(Np)$	811,9(3)	0,00000063 (6)
$\gamma_{(-1,51)}(Np)$	819,33	0,00000043 (6)
$\gamma_{(-1,52)}(Np)$	$822,\!21$	0,00000024 (6)
$\gamma_{39,1}(\mathrm{Np})$	828,60 (12)	0,00000021 (4)
$\gamma_{(-1,53)}(Np)$	835,21	0,00000003(1)
$\gamma_{(-1,54)}(Np)$	838,88	0,00000004(1)
$\gamma_{(-1,55)}(Np)$	841,14	0,00000010 (3)
$\gamma_{(-1,56)}(Np)$	843,7	0,00000097 (8)
$\gamma_{(-1,57)}(Np)$	846,86	0,00000016 (3)
$\gamma_{(-1,58)}(Np)$	847,4(5)	0,00000027(3)
$\gamma_{(-1,59)}(Np)$	851,6 (10)	0,00000041 (6)
$\gamma_{(-1,60)}(Np)$	$854,\!95$	0,00000023 (4)
$\gamma_{(-1,61)}(Np)$	$856,\!26$	0,00000010 (3)
$\gamma_{40,2}(\mathrm{Np})$	861,34(20)	0,00000008 (3)
$\gamma_{39,0}(\mathrm{Np})$	861,80 (12)	0,00000061 (6)
$\gamma_{(-1,62)}(Np)$	870,63	0,00000150 (4)
$\gamma_{(-1,63)}(Np)$	882	0,00000004(1)
$\gamma_{(-1,64)}(Np)$	$886,\!53$	0,00000015 (3)
$\gamma_{40,1}(\mathrm{Np})$	887,68 (20)	0,00000033 (6)
$\gamma_{(-1,65)}(Np)$	890,38	0,00000032(5)
$\gamma_{(-1,66)}(Np)$	$894,\!47$	0,00000003(1)
$\gamma_{(-1,67)}(Np)$	$898,\!17$	0,00000006 (2)
$\gamma_{(-1,68)}(Np)$	$902,\!61$	0,00000033(3)
$\gamma_{(-1,69)}(Np)$	$909,\!95$	0,00000005(1)
$\gamma_{(-1,70)}(Np)$	912,4	0,00000028 (3)
$\gamma_{40,0}(\mathrm{Np})$	920,88 (20)	0,00000019(3)
$\gamma_{(-1,71)}(Np)$	$928,\!95$	0,00000009 (2)
$\gamma_{(-1,72)}(Np)$	939,2	0,00000005(1)
$\gamma_{41,0}(\mathrm{Np})$	946,06	0,000000010 (2)
$\gamma_{(-1,73)}(\mathrm{Np})$	952,72	0,00000003 (1)
$\gamma_{(-1,74)}(\mathrm{Np})$	955,91	0,00000060 (5)
$\gamma_{42,0}(\mathrm{Np})$	962,19	0,00000004 (1)
$\gamma_{(-1,75)}(\mathrm{Np})$	969,09	0,00000003 (1)
$\gamma_{(-1,76)}(Np)$	980,84	0,00000003 (1)
$\gamma_{43,0}(\mathrm{Np})$	1014,33	0,0000010(2)

7 Main Production Modes

$$Pu-241(\beta^-)Am-241$$

8 References

- J. K. Beling, J. O. Newton, B. Rose. Phys. Rev. 86 (1952) 797 (gamma-ray emission probabilities.)
- J. F. TURNER. Phil. Mag. 46 (1955) 687 (gamma-ray emission probabilities.)
- H. Jaffe, T. O. Passell, C. I. Browne, I. Perlman. Phys. Rev. 97 (1955) 142 (gamma-ray emission probabilities.)
- R. B. Day. Phys. Rev. 97 (1955) 689 (gamma-ray emission probabilities.)
- J. M. HOLLANDER, W. G. SMITH, J. O. RASMUSSEN. Phys. Rev. 102 (1956) 1372 (gamma-ray emission probabilities.)
- L. L. Goldin, G. I. Novikova, E. F. Tretyakov. Conf. Acad. Sci. USSR Moscow (1956) 226 (energies of alpha-particles, alpha-particle emission probabilities.)
- S. ROSENBLUM, M. VALADARES, J. MILSTED. J. Phys. Radium 18 (1957) 609 (energies of alpha-particles.)
- L. B. Magnusson. Phys. Rev. 107 (1957) 161 (gamma-ray energies and emission probabilities.)
- P. S. Samoilov. Columbia Tech. Transl. (Izv.Akad.Nauk SSSR, ser.fiz. 23 (1959) 1416) 23 (1960) 1401 (gamma-ray energy, gamma transition probabilities and multipolarities.)
- F. Asaro, F. S. Stephens, J. M. Hollander, I. Perlman. Phys. Rev. 117 (1960) 494 (anomalous electric dipole gamma-ray transitions.)
- C. F. Leang. Comp. Rend. Acad. Sci. (Paris) 255 (1962) 3155 (energies of alpha-particles.)
- J. L. Wolfson, J. H. Park. Can. J. Phys. (also Erratum Can. J. Phys. 48(1970)2782) 42 (1964) 1387 (gamma-ray energies and multipolarities.)
- S. A. Baranov, V. M. Kulakov, V. M. Shatinsky. Nucl. Phys. 56 (1964) 252 (alpha-particle energies and emission probabilities.)
- W. MICHAELIS. Z. Phys. 186 (1965) 42 (alpha particle energies and emission probabilities.)
- G. BERTOLINI, F. CAPPELLANI, G. RESTELLI. Nucl. Instrum. Methods 32 (1965) 86 (gamma-ray emission probabilities.)
- L. D. McIsaac. Report IDO-17052 (1965) 31 (gamma-ray emission probabilities.)
- W. Yamazaki, J. M. Hollander. Nucl. Phys. 84 (1966) 505 (internal conversion probabilities.)
- C. M. Lederer, J. K. Poggenburg, F. Asaro, J. O. Rasmussen, I. Perlman. Nucl. Phys. 84 (1966) 481 (internal conversion coefficients.)
- H. -C. Pauli, K. Alder. Z. Physik 202 (1967) 255 (anomalous electric dipole gamma-ray transitions.)
- C. Gunther, D. R. Parsignault. Nucl. Phys. A104 (1967) 588 (XK-ray emission probabilities.)
- C. Briancon, M. Valadares, R. J. Walen. Comp. Rend. 265B (1967) 1496 (gamma-ray emission probabilities.)
- F. L. OETTING, S. R. GUNN. J. Inorg. Nucl. Chem. 29 (1967) 2659 (half-life.)
- L. N. Kondratev, E. F. Tretyakov. Bull. Acad. Sci. URSS, Phys. Ser. 30 (1967) 393 (internal conversion probabilities.)
- R. E. Stone, E. K. Hulet. J. Inorg. Nucl. Chem. 30 (1968) 2003 (half-life.)
- R. W. Jewell, W. John, R. Massey, B. G. Saunders. Nucl. Instrum. Methods 62 (1968) 68 (gamma-ray energies.)
- L. C. Brown, R. C. Propst. J. Inorg. Nucl. Chem. 30 (1968) 2591 (half-life.)
- S. A. Baranov, V. M. Kulakov, V. M. Shatinskii. Sov. J. Nucl. Phys. 7 (1968) 442. (energies of alpha-particles.)
- R. KAMOUN, R. BALLINI, S. BERGSTROM-ROHLIN, J. -M. KUCHLY, P. SIFFERT. Comp. Rend. Acad. Sci. (Paris) B266 (1968) 1241 (energies of alpha-particles.)

- A. PEGHAIRE. Nucl. Instrum. Methods 75 (1969) 66 (gamma-ray emission probabilities.)
- G. C. Nelson, B. G. Saunders. Nucl. Instrum. Methods 84 (1970) 90 (gamma-ray energies.)
- V. N. GRIGOREV, A. P. FERESIN. Sov. J. Nucl. Phys. 12 (1970) 361 (anomalous electric dipole gamma-ray transitions.)
- J. E. CLINE. IN-1448 Rev. (1971) (1971) (gamma-ray emission probabilities.)
- R. L. Watson, T. K. Li. Nucl. Phys. A178 (1971) 201 (LX-ray emission probabilities.)
- B. Grennberg, A. Rytz. Métrologia 7 (1971) 65 (energies of alpha-particle.)
- E. Karttunen, H. U. Freund, R. W. Fink. Phys. Rev. A4 (1971) 1695 (MX-ray emission probability.)
- R. J. Gehrke, R. A. Lokken. Nucl. Instrum. Methods 97 (1971) 219 (XL- and gamma -ray emission probabilities.)
- J. Jove, R. Robert. Radiochem. Radioanal. Letters 10 (1972) 139 (half-life.)
- R. L. Heath. Report ANCR 1000 (1974) 2 (gamma ray energies and emission probabilities.)
- W. J. Gallagher, S. J. Cipolla. Nucl. Instrum. Methods 122 (1974) 405 (LX- ray emission probabilities.)
- J. L. Campbell, L. A. McNelles. Nucl. Instrum. Methods 117 (1974) 519 (LX- and gamma ray emission probabilities.)
- W. W. Strohm, K. C. Jordan. Trans. Am. Nucl. Soc. 18 (1974) 185 (half-life.)
- V. G. Polyukhov, G. A. Timofeev, P. A. Privalova, P. F. Baklanova. Soviet J. At. Energy 36 (1974) 402 (half-life.)
- H. RAMTHUN, W. MULLER. Int. J. Appl. Radiat. Isotop. 26 (1975) 589 (half-life.)
- J. Legrand, J. P. Perolat, C. Bac, J. Gorry. Int. J. Appl. Radiat. Isotop. 26 (1975) 179 (gamma ray emission probabilities.)
- J. Plch, J. Zderadicka, L. Kokta. Czech. J. Phys. 26B (1976) 1344 (gamma-ray emission probability.)
- R. Gunnink, J. E. Evans, A. L. Prindle. Report UCRL-52139 (1976) (LX-, KX- and gamma-ray emission probabilities.)
- A. Genoux-Lubain, G. Ardisson. Radiochem. Radioanal. Letters 33 (1978) 59 (gamma-ray energies and emission probabilities.)
- V. V. Ovechkin. Bull. Acad. Sci. URSS, Ser. Phys. 42(1) (1978) 82 (gamma-ray energies and emission probabilities.)
- A. Genoux-Lubain, G. Ardisson. Comp. Rend. Acad. Sci. (Paris) B287 (1978) 13 (Gamma-ray emission energies and intensities.)
- C. Ardisson, A. Genoux-Lubain, V. Barci, G. Ardisson. Radiochem. Radioanal. Letters 40 (1979) 207 (gamma-ray energies.)
- D. D. Cohen. Nucl. Instrum. Methods 178 (1980) 481 (LX-ray emission probabilities.)
- G. Barreau, H. G. Borner, T. von Egidy, R. W. Hoff. Z. Phys. A308 (1982) 209 (KX-ray energies.)
- K. Debertin, W. Pessara. Int. J. Appl. Radiat. Isotop. 34 (1983) 515 (gamma-ray emission probabilities.)
- J. M. R. HUTCHINSON, P. A. MULLEN. Int. J. Appl. Radiat. Isotop. 34 (1983) 543 (gamma-ray emission probabilities.)
- I. Ahmad, J. Hines, J. E. Gindler. Phys. Rev. C27 (1983) 2239 (LX-, KX-ray energies and KX-, gamma-ray emission probabilities.)
- I. Ahmad. Nucl. Instrum. Methods 223 (1984) 319 (alpha-particle emission probabilities.)
- V. V. OVECHKIN, A. E. KHOKHLOV. Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1032 (gamma-ray energies and emission probabilities.)
- G. Bortels, P. Collaers. Appl. Rad. Isotopes 38 (1987) 831 (alpha-particle emission probabilities.)

- B. Denecke. Appl. Rad. Isotopes 38 (1987) 823 (gamma-ray emission probabilities.)
- V. P. CHECHEV, N. K. KUZMENKO, V. O. SERGEEV, K. P. ARTAMONOVA. Evaluated decay data, Energoatomizdat Ed. Moscow (1988)

(gamma-ray energies.)

- D. D. COHEN. Nucl. Instrum. Meth. Phys. Res. A267 (1988) 492 (LX-ray emission probabilities.)
- J. H. Hubbell. Report NIST 89-4144 (1989) (M fluorescence yield.)
- L. J. Martin, P.A.Burns. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 146 (gamma-ray emission probabilities.)
- C. J. Bland, J. Morel, E. Etcheverry, M. C. Lépy. Nucl. Instrum. Meth. Phys. Res. A312 (1992) 323 (LX-ray emission probabilities.)
- M. C. Lépy, K. Debertin, H. Janssen, U. Schötzig. Report PTB- Ra-31 (1993) (L X-ray emission intensities.)
- I. Ahmad. Private communication, cited in 1994Bl12 (1993) (alpha-particle emission probabilities.)
- M. C. Lépy, B. Duchemin, J. Morel. Nucl. Instrum. Meth. Phys. Res. A353 (1994) 10 (LX-ray emission probabilities.)
- C. J. Bland. Nucl. Instrum. Meth. Phys. Res. A339 (1994) 180 (alpha-particle emission probabilities.)
- Y. A. AKOVALI. Nucl. Data Sheets 74 (1995) 461 (Decay scheme.)
- C. C. Bueno, J. A. C.Gonçalves, M. D. S. Santos. Nucl. Instrum. Meth. Phys. Res. A371 (1996) 460 (alpha-particle emission probabilities.)
- A. M. SANCHEZ, P. R. MONTERO, F. V. TOME. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 593 (alpha-particle emission probabilities.)
- P. N. Johnson. Nucl. Instrum. Meth. Phys. Res. A369 (1996) 107 (evaluated gamma-ray emission probabilities and internal conversion coefficients.)
- A. Abdul-Hadi. J. Radional. Nucl. Chem 231 (1998) 147 (Gamma-ray emission energies and intensities.)
- A. Kovalik, E. A. Yakushev, V. M. Gorozhankin, M. Novgorodov, M. Rysavy. J. Phys. (London) G24 (1998) 2247

(Conv. Elec. emission energies and intensities.)

- Y. Jang, J. Ni. Nucl. Instrum. Meth. Phys. Res. A413 (1998) 239 (Alpha emission intensities.)
- E. Schönfeld, G. Rodloff. Report PTB 6.11-1, Braunscheig (1999) (XK-ray energies and emission probabilities.)
- N. E. HOLDEN, D. C. HOFFMAN. Pure Appl. Chem. 72 (2000) 1525 (241Am spontaneous fission half-life.)
- R. G. Helmer, C. van der Leun. Nucl. Instrum. Meth. Phys. Res. A450 (2000) 35 (gamma-ray energies.)
- E. SCHÖNFELD, U. SCHÖTZIG. Appl. Rad. Isotopes 54 (2001) 785 (calculated absolute emission probabilities of LX-rays.)
- M.M. Bé, R. Helmer, V. Chisté. J. Nucl. Sci. Tech., suppl.2 (2002) 481 (Saisinuc software.)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- A. Iwahara, M. A. L. da Silva, A. E. Carvalho Filho, E. M. de Oliveira Bernardes, J. U. Delgado. Appl. Rad. Isotopes 63 (2005) 107
- (absolute emission probabilities of gamma-rays.)
- M. S. Basunia. Nucl. Data Sheets 107 (2006) 2323
- (241Am decay scheme, 237Np level energies and gamma-ray transition multipolarities.)
- M. C. Lépy, J.Plagnard, L.Ferreux. Appl. Rad. Isotopes 66 (2008) 715 (absolute emission probabilities of LX-rays.)
- V. M. GOROZHANKIN, M. -M.Bé. Appl. Rad. Isotopes 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions.)
- T. Kibedi, W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W. Nestor Jr.. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions.)

- E. Schönfeld, U. Schötzig. Appl. Rad. Isotopes 54 (2001) 785 (calculated absolute emission probabilities of LX-rays.)
- M.M. Bé, R. Helmer, V. Chisté. J. Nucl. Sci. Tech., suppl.2 (2002) 481 (Saisinuc software.)
- G. Audi, A. H. Wapstra, C. Thibault. Nucl. Phys. A729 (2003) 337 (Q value.)
- A. Iwahara, M. A. L. da Silva, A. E. Carvalho Filho, E. M. de Oliveira Bernardes, J. U. Delgado. Appl. Rad. Isotopes 63 (2005) 107 (absolute emission probabilities of gamma-rays.)
- M. S. Basunia. Nucl. Data Sheets 107 (2006) 2323 (241Am decay scheme, 237Np level energies and gamma-ray transition multipolarities.)
- M. C. Lépy, J.Plagnard, L.Ferreux. Appl. Rad. Isotopes 66 (2008) 715 (absolute emission probabilities of LX-rays.)
- V. M. GOROZHANKIN, M. -M.Bé. Appl. Rad. Isotopes 66 (2008) 722 (ICC for anomalous E1 gamma-ray transitions.)
- T. Kibedi, W. Burrows, M. B. Trzhaskovskaya, P. M. Davidson, C. W. Nestor Jr.. Nucl. Instrum. Methods Phys. Res. A589 (2008) 202 (Band-Raman ICC for gamma-ray transitions.)

γ Emission intensities per 100 disintegrations

KRI / V.P. Chechev, N.K. Kuzmenko

KRI / V.P. Chechev, N.K. Kuzmenko

KRI / V.P. Chechev, N.K. Kuzmenko

 $Q^{\alpha} = 5637,82 \text{ keV}$ % $\alpha = 100$

 $\boldsymbol{\gamma}$ Emission intensities per 100 disintegrations

KRI / V.P. Chechev, N.K. Kuzmenko

 $\% \alpha = 100$

Scheme page: 6/6