# **LECTURE 7**

#### LECTURE OUTLINE

- Preservation of closure under partial minimization
- Hyperplanes
- Hyperplane separation
- Nonvertical hyperplanes
- Min common and max crossing problems

\_\_\_\_\_\_

• Question: If F(x,z) is closed, is  $f(x) = \inf_z F(x,z)$  closed? Can be addressed by using the relation

$$P(\operatorname{epi}(F)) \subset \operatorname{epi}(f) \subset \operatorname{cl}(P(\operatorname{epi}(F))),$$

where  $P(\cdot)$  denotes projection on the space of (x,w), i.e., P(x,z,w)=(x,w).

• Closedness of f is guaranteed if the closure of epi(F) is preserved under the projection operation  $P(\cdot)$ .

#### PARTIAL MINIMIZATION THEOREM

- Let  $F: \Re^{n+m} \mapsto (-\infty, \infty]$  be a closed proper convex function, and consider  $f(x) = \inf_{z \in \Re^m} F(x, z)$ .
- If there exist  $\overline{x} \in \Re^n$ ,  $\overline{\gamma} \in \Re$  such that the set

$$\{z \mid F(\overline{x}, z) \le \overline{\gamma}\}$$

is nonempty and compact, then f is convex, closed, and proper. Also, for each  $x \in \text{dom}(f)$ , the set of minima of  $F(x,\cdot)$  is nonempty and compact.

**Proof:** (Outline) By the hypothesis, there is no nonzero y such that  $(0,y,0) \in R_{\mathrm{epi}(F)}$ . Also, all the nonempty level sets

$$\{z \mid F(x,z) \le \gamma\}, \qquad x \in \Re^n, \ \gamma \in \Re,$$

have the same recession cone, which by the hypothesis, is equal to  $\{0\}$ .



## **HYPERPLANES**



- A hyperplane is a set of the form  $\{x \mid a'x = b\}$ , where a is nonzero vector in  $\Re^n$  and b is a scalar.
- We say that two sets  $C_1$  and  $C_2$  are separated by a  $hyperplane H = \{x \mid a'x = b\}$  if each lies in a different closed halfspace associated with H, i.e.,

either 
$$a'x_1 \leq b \leq a'x_2, \quad \forall x_1 \in C_1, \, \forall x_2 \in C_2,$$
 or  $a'x_2 \leq b \leq a'x_1, \quad \forall x_1 \in C_1, \, \forall x_2 \in C_2.$ 

• If  $\overline{x}$  belongs to the closure of a set C, a hyperplane that separates C and the singleton set  $\{\overline{x}\}$  is said be  $supporting\ C\ at\ \overline{x}$ .

# **VISUALIZATION**

Separating and supporting hyperplanes:



• A separating  $\{x \mid a'x = b\}$  that is disjoint from  $C_1$  and  $C_2$  is called strictly separating:

$$a'x_1 < b < a'x_2, \qquad \forall x_1 \in C_1, \ \forall x_2 \in C_2.$$



#### SUPPORTING HYPERPLANE THEOREM

• Let C be convex and let  $\overline{x}$  be a vector that is not an interior point of C. Then, there exists a hyperplane that passes through  $\overline{x}$  and contains C in one of its closed halfspaces.



**Proof:** Take a sequence  $\{x_k\}$  that does not belong to  $\operatorname{cl}(C)$  and converges to  $\overline{x}$ . Let  $\hat{x}_k$  be the projection of  $x_k$  on  $\operatorname{cl}(C)$ . We have for all  $x \in \operatorname{cl}(C)$ 

$$a'_k x \ge a'_k x_k, \qquad \forall x \in \operatorname{cl}(C), \ \forall \ k = 0, 1, \dots,$$

where  $a_k = (\hat{x}_k - x_k)/\|\hat{x}_k - x_k\|$ . Le a be a limit point of  $\{a_k\}$ , and take limit as  $k \to \infty$ . Q.E.D.

## SEPARATING HYPERPLANE THEOREM

• Let  $C_1$  and  $C_2$  be two nonempty convex subsets of  $\Re^n$ . If  $C_1$  and  $C_2$  are disjoint, there exists a hyperplane that separates them, i.e., there exists a vector  $a \neq 0$  such that

$$a'x_1 \leq a'x_2, \quad \forall x_1 \in C_1, \ \forall x_2 \in C_2.$$

Proof: Consider the convex set

$$C_1 - C_2 = \{x_2 - x_1 \mid x_1 \in C_1, x_2 \in C_2\}.$$

Since  $C_1$  and  $C_2$  are disjoint, the origin does not belong to  $C_1 - C_2$ , so by the Supporting Hyperplane Theorem, there exists a vector  $a \neq 0$  such that

$$0 \le a'x, \qquad \forall \ x \in C_1 - C_2,$$

which is equivalent to the desired relation. Q.E.D.

## STRICT SEPARATION THEOREM

• Strict Separation Theorem: Let  $C_1$  and  $C_2$  be two disjoint nonempty convex sets. If  $C_1$  is closed, and  $C_2$  is compact, there exists a hyperplane that strictly separates them.



**Proof:** (Outline) Consider the set  $C_1 - C_2$ . Since  $C_1$  is closed and  $C_2$  is compact,  $C_1 - C_2$  is closed. Since  $C_1 \cap C_2 = \emptyset$ ,  $0 \notin C_1 - C_2$ . Let  $\overline{x}_1 - \overline{x}_2$  be the projection of 0 onto  $C_1 - C_2$ . The strictly separating hyperplane is constructed as in (b).

• Note: Any conditions that guarantee closedness of  $C_1 - C_2$  guarantee existence of a strictly separating hyperplane. However, there may exist a strictly separating hyperplane without  $C_1 - C_2$  being closed.

# **ADDITIONAL THEOREMS**

- Fundamental Characterization: The closure of the convex hull of a set  $C \subset \Re^n$  is the intersection of the closed halfspaces that contain C.
- We say that a hyperplane  $properly\ separates\ C_1$  and  $C_2$  if it separates  $C_1$  and  $C_2$  and does not fully contain both  $C_1$  and  $C_2$ .



• Proper Separation Theorem: Let  $C_1$  and  $C_2$  be two nonempty convex subsets of  $\Re^n$ . There exists a hyperplane that properly separates  $C_1$  and  $C_2$  if and only if

$$\operatorname{ri}(C_1) \cap \operatorname{ri}(C_2) = \emptyset.$$

# MIN COMMON / MAX CROSSING PROBLEMS

- We introduce a pair of fundamental problems:
- Let M be a nonempty subset of  $\Re^{n+1}$ 
  - (a)  $Min\ Common\ Point\ Problem$ : Consider all vectors that are common to M and the (n+1)st axis. Find one whose (n+1)st component is minimum.
  - (b)  $Max\ Crossing\ Point\ Problem$ : Consider "nonvertical" hyperplanes that contain M in their "upper" closed halfspace. Find one whose crossing point of the (n+1)st axis is maximum.



Need to study "nonvertical" hyperplanes.

## **NONVERTICAL HYPERPLANES**

- A hyperplane in  $\Re^{n+1}$  with normal  $(\mu, \beta)$  is non-vertical if  $\beta \neq 0$ .
- It intersects the (n+1)st axis at  $\xi = (\mu/\beta)'\overline{u} + \overline{w}$ , where  $(\overline{u}, \overline{w})$  is any vector on the hyperplane.



- A nonvertical hyperplane that contains the epigraph of a function in its "upper" halfspace, provides lower bounds to the function values.
- The epigraph of a proper convex function does not contain a vertical line, so it appears plausible that it is contained in the "upper" halfspace of some nonvertical hyperplane.

# NONVERTICAL HYPERPLANE THEOREM

- Let C be a nonempty convex subset of  $\Re^{n+1}$  that contains no vertical lines. Then:
  - (a) C is contained in a closed halfspace of a nonvertical hyperplane, i.e., there exist  $\mu \in \Re^n$ ,  $\beta \in \Re$  with  $\beta \neq 0$ , and  $\gamma \in \Re$  such that  $\mu'u + \beta w \geq \gamma$  for all  $(u, w) \in C$ .
  - (b) If  $(\overline{u}, \overline{w}) \notin cl(C)$ , there exists a nonvertical hyperplane strictly separating  $(\overline{u}, \overline{w})$  and C.

**Proof:** Note that cl(C) contains no vert. line [since C contains no vert. line, ri(C) contains no vert. line, and ri(C) and cl(C) have the same recession cone]. So we just consider the case: C closed.

- (a) C is the intersection of the closed halfspaces containing C. If all these corresponded to vertical hyperplanes, C would contain a vertical line.
- (b) There is a hyperplane strictly separating  $(\overline{u}, \overline{w})$  and C. If it is nonvertical, we are done, so assume it is vertical. "Add" to this vertical hyperplane a small  $\epsilon$ -multiple of a nonvertical hyperplane containing C in one of its halfspaces as per (a).